Scilab Textbook Companion for ELECTRONIC DEVICES by THOMAS L FLOYD¹

Created by
PRAVEENA DEVAGUPTA
B.TECH

Electronics Engineering, NIT Karnataka, Surathkal College Teacher Dr. Laxminidhi T, NIT Surathkal Cross-Checked by

June 13, 2011

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: ELECTRONIC DEVICES

Author: THOMAS L FLOYD

Publisher: Dorling Kindersley Pvt. Ltd

Edition: 7

Year: 2009

ISBN: 81-7758-643-5

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	ist of Scilab Codes	
1	semiconductor basics	11
2	diode applications	14
3	Special purpose diodes	30
4	Bipolar Junction Transistors	37
5	Transistor Bias Circuits	42
6	BJT Amplifiers	48
7	Field Effect Transistors	57
8	FET Amplifiers	65
9	Power Amplifiers	71
10	Amplifier Frequency Response	76
11	Thyristors and Other Devices	86
12	The Operational Amplifier	89
13	Basic Opamp Circuits	95
14	Special Purpose Opamp Circuits	107

15 Active Filters	113
16 Oscillators	117
17 Voltage Regulators	122
18 Programmable Analog Arrays	126

List of Scilab Codes

Exa 1.1	Different diode models	11
Exa 2.1	Average value half wave rectifier	14
Exa 2.2.a	half wave rectifier	14
Exa 2.2.b	half wave rectifier	16
Exa 2.3	Rectifier peak value	17
Exa 2.4	Average value full wave rectifier	18
Exa 2.5	PIV full wave	18
Exa 2.6	Bridge Rectifier	20
Exa 2.7	Ripple Bridge rectifier	20
Exa 2.8	Voltage Regulator	21
Exa 2.9	Load regulation percentage	22
Exa 2.10		23
Exa 2.11		24
Exa 2.12	Positive diode limiter	25
Exa 2.13	Negative Clamper	27
Exa 3.1		30
Exa 3.2		30
Exa 3.3		31
Exa 3.4		31
Exa 3.5		32
Exa 3.6		32
Exa 3.7		33
Exa 3.8		34
Exa 4.1	DC beta	37
Exa 4.2		37
Exa 4.3		38
Exa 4.4		38
Exa. 4.5		39

Exa 4.6	Maximum Transistor Rating	39
Exa 4.7	Derating Power maximum	40
Exa 4.8		40
Exa 4.9		40
Exa 5.1	DC bias	42
Exa 5.2		42
Exa 5.3		43
Exa 5.4	Voltage bias PNP	43
Exa 5.5		44
Exa 5.6		45
Exa 5.7		46
Exa 5.8		47
Exa 6.1		48
Exa 6.2		48
Exa 6.3		48
Exa 6.4		49
Exa 6.5		49
Exa 6.6	*	50
Exa 6.7		50
Exa 6.8		50
Exa 6.9		53
Exa 6.10		54
Exa 6.11		55
Exa 6.12		56
Exa 7.1		57
Exa 7.2		57
Exa 7.3		58
Exa 7.4		58
Exa 7.5		59
Exa 7.6		59
Exa 7.7		59
Exa 7.8		60
Exa 7.9		60
Exa 7.10		61
Exa 7.11	1 3	61
Exa 7.12		62
Exa 7.13	1 0	62
Exa 7 14		63

Exa 7.15	DMOSFET bias	63
Exa 7.16	EMOSFET bias	63
Exa 7.17	EMOSFET drain current	64
Exa 8.1	Voltage gain	65
Exa 8.2	Rds effect	65
Exa 8.3	External source resistance	65
Exa 8.4	Unloaded amplifier	66
Exa 8.5	AC load effect	67
Exa 8.6	Input resistance	67
Exa 8.7	DMOSFET amplifier	67
Exa 8.8	MOSFET Q points	68
Exa 8.9	EMOSFET amplifier	68
Exa 8.10	Common gate amplifier	69
Exa 9.1	classA power amplifier	71
Exa 9.2	class A efficiency	72
Exa 9.3	class AB pushpull	73
Exa 9.4	Single supply pushpull	73
Exa 9.5	Power of amplifier	73
Exa 9.6	MOSFET pushpull amplifier	74
Exa 9.7	class C amplifier	75
Exa 9.8	class C efficiency	75
Exa 10.1	Gain in decibel	76
Exa 10.2	Critical frequency	77
Exa 10.3	Lower critical frequency	77
Exa 10.4	Voltage gains	78
Exa 10.5	Output RC circuit	78
Exa 10.6	Bypass RC circuit BJT	79
Exa 10.7	input RC circuit FET	80
Exa 10.8	Low frequency response FET	80
Exa 10.9	Low frequency response BJT	81
Exa 10.10	input RC circuit BJT	82
Exa 10.11	Critical frequency BJT output	83
Exa 10.12	FET capacitors	83
Exa 10.13	Critical frequency FET input	83
Exa 10.14	Critical frequency FET input	84
Exa 10.15	Bandwidth	84
	Bandwidth transistor	85
	Bandwidth 2stage amplifier	85

Exa 10.18	Bandwidth 2stage amplifier	5
Exa 11.1	Four layer diode	6
Exa 11.2	Anode current	6
Exa 11.3	Unijunction transistor	7
Exa 11.4	turn on off UJT	7
Exa 11.5	Critical angle	7
Exa 12.1	CMRR opamp	9
Exa 12.2	Slew rate	9
Exa 12.3	Non inverting amplifier	0
Exa 12.4	Inverting amplifier	0
Exa 12.5	Impedance noninverting amplifier	0
Exa 12.6	Voltage follower impedance	1
Exa 12.7	Impedance inverting amplifier	1
Exa 12.8	Open Loop gain	2
Exa 12.9	phase RC lag	2
Exa 12.10	Gain and phase lag	3
Exa 12.11	Closed loop bandwidth	4
Exa 12.12	Amplifier bandwidth	4
Exa 13.1	Comparator	5
Exa 13.2	Trigger points	7
Exa 13.3	Comparator hysteris Zener bounding 9	7
Exa 13.4	Summing amplifier unity gain	9
Exa 13.5	Summing amplifier	9
Exa 13.6	Averaging amplifier	0
Exa 13.7	Scaling adder	0
Exa 13.8	Opamp integrator	1
Exa 13.9	Opamp differentiator	3
Exa 14.1	Gain setting resistor	7
Exa 14.2	Voltage gain Instrumentation amplifier	7
Exa 14.3	Isolation amplifier	8
Exa 14.4	Voltage gain Isolation amplifier	8
Exa 14.5	Transconductance OTA	8
Exa 14.6	Voltage gain OTA	9
Exa 14.7	Output OTA amplitude modulator 10	9
Exa 14.8	Output log amplifier	
Exa 14.9	Transistor log amplifier	
Exa 14.10	Antilog amplifier	
Exa 15.1	Band pass filter	

Exa 15.2	Butterworth response	113
Exa 15.3	Sallen Key lowpass filter	114
Exa 15.4	4 pole filter	114
Exa 15.5	Sallen Key highpass filter	115
Exa 15.6	Cascaded filter	115
Exa 15.7	State variable filter	115
Exa 15.8	Band stop filter	116
Exa 16.1	Wien bridge oscillator	117
Exa 16.2	Phase shift oscillator	118
Exa 16.3	FET Colpitts oscillator	118
Exa 16.4	Triangular wave oscillator	118
Exa 16.5	Sawtooth VCO	119
Exa 16.6	555 timer	121
Exa 17.1	Percentage line regulation	122
Exa 17.2	Load regulation percentage	122
Exa 17.3	Series regulator	123
Exa 17.4	Overload protection	123
Exa 17.5	Shunt regulator	123
Exa 17.6	Positive linear voltage regulator	124
Exa 17.7	External pass filter	124
Exa 17.8	Power rating 7824	124
Exa 17.9	Current regulator	125
Exa 18.1	Switching capacitor	126
AP 1	Phase shift in degrees	127
AP 2	Open loop gain	127
AP 3	Voltage gain in decibel	127
AP 4	Power gain in decibel	127
AP 5	value of K	127
AP 6	Drain current value	128

List of Figures

2.1	half wave rectifier	15
2.2	PIV full wave	19
2.3	Negative diode limiter	22
2.4	Posiive Negative Limiter	24
2.5	Positive diode limiter	26
2.6	Negative Clamper	28
3.1	Zener limiting	34
6.1	Common emitter amplifier	51
13.1	Comparator	96
13.2	Comparator hysteris Zener bounding	98
13.3	Opamp integrator	102
13.4	Opamp differentiator	104
14.1	Output OTA amplitude modulator	110
16.1	Sawtooth VCO	120

Chapter 1

semiconductor basics

Scilab code Exa 1.1 Different diode models

```
1 / Ex - 1.1(a)
2 V_bias=10;
3 R_limit = 1000;
4 r_d = 10;
5 // Voltages in Volts, Currents in Amperes,
      Resistances in Ohms
6 //IDEAL MODEL
7 disp('IDEAL MODEL')
8 V_f = 0;
9 I_f=V_bias/R_limit;
10 V_R_limit=I_f*R_limit;
11 disp(V_f, 'forward voltage in volts');
12 disp(I_f, 'forward current in amperes');
13 disp(V_R_limit, 'voltage across limiting resistor in
      volts');
14 //PRACTICAL MODEL
15 disp('PRACTICAL MODEL');
16 V_f = 0.7;
17 I_f = (V_bias - V_f)/R_limit;
18 V_R_limit=I_f*R_limit;
19 disp(V_f, 'forward voltage in volts');
```

```
20 disp(I_f, 'forward current in amperes');
21 disp(V_R_limit, 'voltage across limiting resistor in
      volts');
22 //COMPLETE MODEL
23 disp ('COMPLETE MODEL')
I_f = (V_bias - 0.7) / (R_limit + r_d');
25 V_f = 0.7 + I_f * r_d;
V_R_{init} = I_f * R_{init};
27 disp(V_f, 'forward voltage in volts');
28 disp(I_f, 'forward current in amperes');
29 disp(V_R_limit, 'voltage across limiting resistor in
      volts');
30 / Ex1.1(b)
31 V_bias=5;
32 I_R = 1 * 10^-6;
33 //IDEAL MODEL
34 disp('IDEAL MODEL');
35 I_r=0;
36 V_R=V_bias;
37 V_R_limit=I_r*R_limit;
38 disp(I_r, 'reverse current in amperes')
39 disp(V_R, 'reverse voltage in volts')
40 disp(V_R_limit, 'voltage across limiting resistor in
      volts')
41 //PRACTICAL MODEL
42 disp ('PRACTICAL MODEL')
43 I_r=0;
44 V_R=V_bias;
45 V_R_limit=I_r*R_limit;
46 disp(I_r, 'reverse current in amperes')
47 disp(V_R, 'reverse voltage in volts')
48 disp(V_R_limit, 'voltage across limiting resistor in
      volts')
49 //COMPLETE MODEL
50 disp('COMPLETE MODEL')
51 I_r = I_R;
52 V_R_limit=I_r*R_limit;
53 V_R=V_bias-V_R_limit;
```

```
54 disp(I_r, 'reverse current in amperes')
55 disp(V_R, 'reverse voltage in volts')
56 disp(V_R_limit, 'voltage across limiting resistor in volts')
```

Chapter 2

diode applications

Scilab code Exa 2.1 Average value half wave rectifier

```
1 //Ex2.1
2 //Average value of half wave rectifier
3 V_p=50; //Peak value is 50V
4 V_avg=V_p/%pi;
5 disp(V_avg, 'average value of half wave rectifier in volts')
```

Scilab code Exa 2.2.a half wave rectifier

Figure 2.1: half wave rectifier

```
8 //t_d is the time till which diode will be reverse
      biased ie, till it reaches knee voltage
9 T=1/f;
10 clf();
11 //let n be double the number of cycles of output
      shown in graph
12 for n=0:1:8
       t=T.*n/2:0.0005:T.*(n+1)/2
                                       //time for each
13
          half cycle
       if modulo(n,2) == 0 then //positive half cycle
14
          , diode is forward biased
           V_{in}=V_{p_{in}}*sin(2*\%pi*f.*t)
15
                                     //0.7 is knee
16
           Vout = V_in - 0.7
              voltage of diode
                                     //replace elements
17
           a=bool2s(Vout>0)
              of Vout by 0 till input is 0.7
           y=a.*Vout
18
                                     //negative half
19
       else
          cycle, diode is reverse biased
           [p,q]=size(t);
20
21
           y=zeros(p,q);
22
       end
23
       plot(t,y)
24 end
25 xtitle('half wave rectifier output')
```

Scilab code Exa 2.2.b half wave rectifier

```
5 V_{p_in} = 100;
6 V_pout=(V_p_in-0.7);
7 disp(V_pout, 'output of half wave rectifier in volts'
8 t_d=(asin(0.7/V_p_in))/(2*%pi*f)
9 //t_d is the time till which diode will be reverse
      biased ie, till it reaches knee voltage
10 clf();
11 //let n be double the number of cycles of output
      shown in graph
12 for n=0:1:7
       t=T.*n/2:0.0005:T.*(n+1)/2
                                       // time for each
13
          half cycle
           modulo(n,2) == 0 then
14
                                    //positive half cycle
           V_{in}=V_{p_{in}}*sin(2*\%pi*f.*t)
15
           Vout = V_in - 0.7
16
                                     //0.7 is knee
              voltage of diode
           a=bool2s(Vout>0)
                                     //replace elements
17
              of Vout by 0 till input is 0.7
18
           y=a.*Vout
       else
                                     //negative half
19
          cycle
20
           [p,q]=size(t);
21
           y=zeros(p,q);
22
       end
23
       plot(t,y)
24 end
25 xtitle('half wave rectifier output')
```

Scilab code Exa 2.3 Rectifier peak value

```
1 //Ex2.3
2 V_p_in=156; //Peak input voltage
3 V_p_pri=156; //Peak voltage of primary of transformer
```

```
4 n=1/2;  //Turn ratio is 2:1
5 V_p_sec=n*V_p_pri;
6 V_p_out=(V_p_sec-0.7);
7 disp(V_p_out, 'peak output voltage of half wave rectifier in volts')  //Peak output voltage
```

Scilab code Exa 2.4 Average value full wave rectifier

```
1 //Ex2.4
2 //Average value of output of full wave rectifier
3 V_p=15; //Peak voltage
4 V_avg=(2*V_p)/%pi;
5 disp(V_avg, 'Average value of output of full wave rectifier in volts') //Result
```

Scilab code Exa 2.5 PIV full wave

```
1 / Ex2.5
2 //Assume frequency of input to be 1Hz
3 f=1;
4 T=1/f;
5 V_p_pri=100; //Peak voltage across primary
     winding
6 n=1/2;
                    //tun ratio is 2:1
7 V_p_sec=n*V_p_pri;
8 V_sec=V_p_sec/2;
                    //voltage across each secondary
     is half the total voltage
9 clf();
10 subplot (121)
11 xtitle('voltage across each secondary')
12 t=0:0.0005:2;
```


Figure 2.2: PIV full wave

```
13 x=V_sec*sin(2*\%pi*f.*t);
14 plot(t,x)
15 subplot (122)
16 xtitle('voltage across load')
17 //let n be double the number of cycles of output
      shown in graph
18 \quad for \quad n=0:1:4
19
       t=n.*T/2:0.0005:(n+1).*(T/2);
20 V_pout=V_sec-0.7;
21 V=V_pout*sin(2*%pi*f.*t)
22 a=bool2s(V*(-1)^n>0);
23 y=(-1)^n.*a.*V;
24 plot(t,y)
25 end
26 disp(V_pout, 'full wave rectifier output voltage')
27 \text{ PIV} = 2 * V_pout + 0.7;
28 disp(PIV, 'PIV in volts')
```

Scilab code Exa 2.6 Bridge Rectifier

Scilab code Exa 2.7 Ripple Bridge rectifier

```
1 / Ex2.7
2 R_1=2200; //load resistance in Ohm
3 C=50*10^-6;
                 //capacitance in Farad
                //rms of primary
4 V_rms=115;
5 V_p_pri=sqrt(2)*V_rms;
                           //peak voltage across
     primary
            //turn ratio is 10:1
6 n = 0.1;
7 V_p_sec=n*V_p_pri; //primary voltage across
     secondary
8 V_p_rect=V_p_sec-1.4 //unfiltered peak rectified
     voltage
9 //we subtract 1.4 because in each cycle 2 diodes
     conduct & 2 do not
10 f=120; //frequency of full wave rectified voltage
11 V_r_p=(1/(f*R_1*C))*V_p_rect; //peak to peak
     ripple voltage
12 V_DC = (1-(1/(2*f*R_1*C)))*V_p_rect;
13 r=V_r_pp/V_DC;
14 disp(r, 'Ripple factor')
```

Scilab code Exa 2.8 Voltage Regulator

```
1 / Ex2.8
2 V_REF=1.25;
                      //in volts
3 V_R1 = V_REF;
                 //in ohms
4 R1 = 220;
5 I_ADJ = 50*10^-6
                        //in amperes
6 // MAX VALUE OF R2=5000 Ohms
7 //V_out=V_REF*(1+(R2/R1))+I_ADJ*R2
8 R2_min=0;
9 V_{out_min} = V_{REF} * (1 + (R2_{min}/R1)) + I_{ADJ} * R2_{min};
10 R2_{max} = 5000;
11 V_{\text{out}_{\text{max}}} = V_{\text{REF}} * (1 + (R2_{\text{max}}/R1)) + I_{\text{ADJ}} * R2_{\text{max}};
12 disp(V_out_min, 'minimum output voltage in volts');
13 disp(V_out_max, 'maximum output voltage in volts');
```


Figure 2.3: Negative diode limiter

Scilab code Exa 2.9 Load regulation percentage

Scilab code Exa 2.10 Negative diode limiter

```
1 / Ex2.10
2 //let input wave be V_{in}=V_{p_in}*sin(2*\%pi*f*t)
3 f=1; //Frequency is 1Hz
4 T=1/f;
5 R_1 = 100;
               //Resistances in ohms
               //Load
6 R_L = 1000;
               //Peak input voltage
7 V_{p_in} = 10;
8 V_th=0.7;
                //knee voltage of diode
9 clf();
10 V_p_{ut}=V_{p_in}*(R_L/(R_L+R_1));
                                       //peak output
      voltage
11 disp(V_p_out, 'peak output voltage in volts')
12 //let n be double the number of cycles of output
     shown in graph
13 for n=0:1:6
14
       t=T.*n/2:0.0005:T.*(n+1)/2
                                      //time for each
          half cycle
15
       V_in=V_p_in*sin(2*%pi*f.*t);
       Vout=V_in*(R_L/(R_L+R_1));
16
       if modulo(n,2) == 0 then // positive half, diode
17
           reverse biased
           y = Vout;
18
                                //negative half, diode
19
       else
          forward biased
           a=bool2s(Vout <-0.7); //puts zero to
20
              elements for which diode will conduct
           b=bool2s(Vout>-0.7);
21
22
           y = -V_th*a+b.*Vout;
23
       end
24
           plot(t,y)
25
       end
26 xtitle ('Negative limiter graph')
```


Figure 2.4: Posiive Negative Limiter

Scilab code Exa 2.11 Posiive Negative Limiter

```
//knee voltage of diode
6 V_{th} = 0.7;
7 clf();
8 //let n be double the number of cycles of output
      shown in graph
9 \text{ for } n=0:1:8
                                        //time for each
10
       t=T.*n/2:0.0005:T.*(n+1)/2
          half cycle
       V_{in}=V_{p_in}*sin(2*\%pi*f.*t);
11
12
       Vout=V_in;
       if modulo(n,2) == 0 then
                                   //positive half,D1
13
          conducts till V_in=5.7V
           a=bool2s (Vout < 5.7);
14
15
           b=bool2s(Vout > 5.7);
                               //output follows input
16
           y=a.*Vout+5.7*b;
               till 5.7V then is constant at 5.7V
                                 //negative half, D2
17
       else
          conducts till V_in=-5.7V
           a=bool2s(Vout <-5.7);
18
           b=bool2s(Vout>-5.7);
19
           y = -5.7*a+b.*Vout;
                                //output follows input
20
               till -5.7V then stays constant at -5.7V
21
       end
           plot(t,y,'r')
22
23
           plot(t, V_in, '-.')
24
25
          end
26
          hl=legend(['output', 'input']);
       xtitle ('Positive and Negative diode limiter')
27
       disp('max output voltage is 5.7V')
28
       disp('min output voltage is -5.7V')
29
```

Scilab code Exa 2.12 Positive diode limiter

Figure 2.5: Positive diode limiter

```
1 / Ex2.12
2 // Positive diode limiter
3 //Let input wave be V_{in}=V_{p_in}*sin(2*\%pi*f*t)
4 f=1;
           //let frequency be 1Hz
5 T = 1/f;
6 \ V_p_in=18;
                  //peak input voltage is 18V
7 V_supply=12;
8 R2 = 100;
9 R3 = 220;
              //resistances in ohms
10 V_{\text{bias}} = V_{\text{supply}} * (R3/(R2+R3));
11 V=V_bias+0.7; //waveform clipped at V
12 clf();
13 //let n be double the number of cycles of output
      wave shown in graph
14 for n=0:1:8
       t=n*T/2:0.0005:T.*(n+1)/2;
15
       V_in=V_p_in*sin(2*%pi*f.*t);
16
17
       Vout=V_in;
       if modulo(n,2) == 0 then
                                    //positive half, diode
18
           conucts till V
19
            a=bool2s(Vout < V);</pre>
20
            b=bool2s(Vout>V);
21
            y=a.*Vout+V*b;
                                  //negative half cycle,
22
       else
          output follows input
23
         y=Vout;
24
       end
25
       plot(t,y)
26 \, \text{end}
27 xtitle ('Positive diode limiter graph')
28 disp(V, 'diode limiting the voltage at this voltage')
```

Scilab code Exa 2.13 Negative Clamper

Figure 2.6: Negative Clamper

```
1 / Ex2.13
2 // Negative Clamping circuit
3 //let input voltage be V_{in}=V_{p_{in}}*\sin(2*\%pi*f*t)
4 f=1; //let frequency be 1Hz
5 T=1/f;
6 V_p_in=24;
7 V_DC=-(V_p_in-0.7); //DC level added to output
8 disp(V_DC, 'V_DC in volts= ')
9 for n=0:1:8
10
       t=n*T/2:0.0005:T.*(n+1)/2;
       V_in=V_p_in*sin(2*%pi*f.*t);
11
12
       Vout = V_DC + V_in;
13
       plot(t, Vout)
14 end
15 xtitle('Negative clipper graph')
```

Chapter 3

Special purpose diodes

Scilab code Exa 3.1 Zener impedance

Scilab code Exa 3.2 Zener Voltage

Scilab code Exa 3.3 Temperature coefficient

```
1 //ex3.3
2 V_Z=8.2;  //8.2 volt zener diode
3 TC=0.0005;  //Temperature coefficient (per degree celsius)
4 T1=60;  //Temperatures in celsius
5 T2=25;
6 DEL_T=T1-T2;
7 del_V_Z=V_Z*TC*DEL_T;
8 voltage=V_Z+del_V_Z;
9 disp(voltage, 'zener voltage at 60 degree celsius')
```

Scilab code Exa 3.4 Zener power dissipation

```
1 //ex3.4
2 P_D_max=400*10^-3; //power in watts
3 df=3.2*10^-3 //derating factor in watts per celsius
4 del_T=(90-50); //in celsius, temperature difference
5 P_D_derated=P_D_max-df*del_T;
6 disp(P_D_derated, 'maximum power dissipated at 90 degree celsius')
```

Scilab code Exa 3.5 Zener voltage regulator

```
1 // ex3.5
2 V_Z=5.1;
3 I_ZT = 49 * 10^-3;
4 I_ZK=1*10^-3;
5 \ Z_Z = 7;
6 R = 100;
7 P_D_max=1;
8 //At I_ZK, output voltage
9 V_{out} = V_Z - (I_ZT - I_ZK) * Z_Z;
10 V_IN_min = I_ZK*R+V_out;
11 I_ZM=P_D_max/V_Z;
12 //at I_ZM, output voltage
13 V_{out}=V_Z+(I_ZM-I_ZT)*Z_Z;
14 V_{IN_max=I_ZM*R+V_out};
15 disp(V_IN_max, 'maximum input voltage in volts that
      can be regulated by the zener diode')
16 disp(V_IN_min, 'minimum input voltage in volts that
      can be regulated by the zener diode')
```

Scilab code Exa 3.6 Regulation Variable load

```
1 //ex3.6
2 V_Z=12;
3 V_IN=24;
4 I_ZK=1*10^-3;
5 I_ZM=50*10^-3;
6 Z_Z=0;
7 R=470;
8 //when I_L=0, I_Z is max and is equal to the total circuit current I_T
```

Scilab code Exa 3.7 Zener regulation

```
1 // ex3.7
2 V_IN = 24;
3 V_Z=15;
4 I_ZK=0.25*10^-3;
5 I_ZT = 17*10^-3;
6 Z_ZT = 14;
7 P_D_max=1;
8 //output voltage at I_ZK
9 V_{out_1} = V_Z - (I_ZT - I_ZK) * Z_ZT;
10 disp(V_out_1, 'output voltage in volts at I_ZK')
11 I_ZM=P_D_max/V_Z;
12 //output voltage at I_ZM
13 V_{out_2}=V_Z+(I_ZM-I_ZT)*Z_ZT;
14 disp(V_out_2, 'output voltage in volts a LZM')
15 R=(V_IN-V_out_2)/I_ZM;
16 disp(R, 'value of R in ohms for maximum zener current
      , no load')
17 disp('closest practical value is 130 ohms')
18 R = 130;
19 //for minimum load resistance (max load current)
      zener current is minimum (I_ZK)
```


Figure 3.1: Zener limiting

```
20 I_T=(V_IN-V_out_1)/R;
21 I_L=I_T-I_ZK;
22 R_L_min=V_out_1/I_L;
23 disp(R_L_min, 'minimum load resistance in ohms')
```

Scilab code Exa 3.8 Zener limiting

```
1 //Ex3.8
2 //let input wave be V_in=V_p_in*sin(2*%pi*f*t)
3 f=1; //Frequency is 1Hz
4 T=1/f;
```

```
//Peak input voltage
5 V_p_in=10;
                 //forward biased zener
6 V_{th} = 0.7;
7 V_Z1=5.1;
8 V_Z2=3.3;
9 clf();
10 subplot (121)
11 //let n be double the number of cycles of output
      shown in graph
12 for n=0:1:4
       t=T.*n/2:0.0005:T.*(n+1)/2
                                       //time for each
          half cycle
       V_{in}=V_{p_in}*sin(2*\%pi*f.*t);
14
15
       Vout=V_in;
       if modulo(n,2) == 0 then
                                   //positive half,
16
          conducts till V_in=5.8V
           a=bool2s(Vout < (V_Z1+V_th));
17
           b=bool2s(Vout>(V_Z1+V_th));
18
           y=a.*Vout+(V_Z1+V_th)*b;
                                         //output follows
19
               input till 5.8V then is constant at 5.8V
                                 //negative half,
20
       else
          conducts till V_in=-4V
           a=bool2s(Vout <-(V_Z2+V_th));</pre>
21
22
           b=bool2s(Vout>-(V_Z2+V_th));
           y = -(V_Z2 + V_th) *a + b. *Vout;
23
                                          //output
               follows input till -4V then stays
              constant at -4V
24
       end
25
           plot(t,y)
26
       end
27 xtitle ('zener limiting circuit -1')
28 disp((V_Z1+V_th), 'max voltage in volts')
29 disp(-(V_Z2+V_th), 'min voltage in volts')
30 subplot (122)
31 xtitle ('zener limiting circuit -2')
32 V_p_in=20;
33 V_Z1=6.2;
34 V_Z2=15;
35 //let n be double the number of cycles of output
```

```
shown in graph
36 \quad for \quad n=0:1:4
                                         //time for each
       t=T.*n/2:0.0005:T.*(n+1)/2
37
          half cycle
38
       V_{in}=V_{p_{in}}*sin(2*\%pi*f.*t);
39
       Vout=V_in;
       if modulo(n,2) == 0 then
                                    //positive half,
40
           conducts till V_in=6.9V
            a=bool2s(Vout < (V_Z1+V_th));</pre>
41
            b=bool2s(Vout>(V_Z1+V_th));
42
            y=a.*Vout+(V_Z1+V_th)*b;
                                            //output follows
43
                input till 6.9V then is constant at 6.9V
                                   //negative half,
44
        else
           conducts till V_in = -15.7V
            a=bool2s(Vout<-(V_Z2+V_th));</pre>
45
            b=bool2s(Vout>-(V_Z2+V_th));
46
            y = -(V_Z2 + V_th) *a + b. *Vout;
                                             //output
47
               follows input till -15.7V then stays
               constant at -15.7V
48
        end
49
            plot(t,y)
       \quad \text{end} \quad
50
       disp((V_Z1+V_th), 'max voltage in volts')
51
52 disp(-(V_Z2+V_th), 'min voltage in volts')
```

Chapter 4

Bipolar Junction Transistors

Scilab code Exa 4.1 DC beta

```
1 //ex4.1
2 I_C=3.65*10^-3;  //collector current in amperes
3 I_B=50*10^-6;  //base current in amperes
4 B_DC=I_C/I_B;
5 I_E=I_B+I_C;
6 disp(B_DC, 'B_DC')
7 disp(I_E, 'emitter current in amperes')
```

Scilab code Exa 4.2 Current Voltage Analysis

```
1  //ex4.2
2  V_BE=0.7;
3  B_DC=150;
4  V_BB=5;
5  V_CC=10;
6  R_B=10*10^3;
7  R_C=100;
8  I_B=(V_BB-V_BE)/R_B;
```

```
9 I_C=B_DC*I_B;
10 I_E=I_C+I_B;
11 V_CE=V_CC-I_C*R_C;
12 V_CB=V_CE-V_BE;
13 disp(I_B, 'base current in amperes')
14 disp(I_C, 'collector current in amperes')
15 disp(I_E, 'emitter current in amperes')
16 disp(V_CE, 'collector to emitter voltage in volts')
17 disp(V_CB, 'collector to base voltage in volts')
```

Scilab code Exa 4.3 Collector characteristic curve

```
1 //ex4.3
2 disp('cant be shown')
```

Scilab code Exa 4.4 DC loadline

```
1 // ex4.4
2 V_CE_sat = 0.2;
3 V_BE = 0.7;
4 V_BB = 3;
5 V_{CC} = 10;
6 \text{ B_DC=50};
7 R_B=10*10^3;
8 R_C=1*10^3;
9 I_C_sat = (V_CC - V_CE_sat)/R_C;
10 I_B = (V_BB - V_BE)/R_B;
11 I_C=B_DC*I_B;
12 if I_C>I_C_sat then
        disp('transistor in saturation')
13
14 else
        disp('transistor not in saturation')
15
16 \, \text{end}
```

Scilab code Exa 4.5 Transistor rating

Scilab code Exa 4.6 Maximum Transistor Rating

```
1 // ex4.6
2 P_D_max = 800*10^-3;
3 V_BE = 0.7;
4 V_CE_max=15;
5 I_C_max = 100*10^-3;
6 V_BB=5;
7 B_DC = 100;
8 R_B = 22*10^3;
9 R_C=10^3;
10 I_B = (V_BB - V_BE)/R_B;
11 I_C=B_DC*I_B;
                   //voltage drop across R_C
12 V_R_C = I_C * R_C;
13 V_CC_max = V_CE_max + V_R_C;
14 P_D=I_C*V_CE_max;
15 if P_D<P_D_max then
       disp(V_CC_max, 'V_CC in volts')
16
       disp('V_CE_max will be exceeded first
17
          becauseentire supply voltage V_CC will be
          dropped across the transistor')
18 end
```

Scilab code Exa 4.7 Derating Power maximum

Scilab code Exa 4.8 Transistor amplification

```
1 //ex4.8
2 R_C=1*10^3;
3 r_e=50;
4 V_b=100*10^-3;
5 A_v=R_C/r_e;
6 V_out=A_v*V_b;
7 disp(A_v,'voltage gain')
8 disp(V_out,'ac output voltage in volts')
```

Scilab code Exa 4.9 Collector in saturation

```
1 //ex4.9
2 V_CC=10;
3 B_DC=200;
```

```
4 R_C=10^3;
5 V_IN=0;
6 V_CE = V_CC;
7 disp(V_CE, 'when V_IN=0, transistor acts as open
      switch (cut-off) and collector emitter voltage in
      volts is')
8 //now when V_CE_sat is neglected
9 I_C_sat=V_CC/R_C;
10 I_B_min=I_C_sat/B_DC;
11 disp(I_B_min, 'minimum value of base current in
      amperes to saturate transistor')
12 \quad V_IN=5;
13 V_BE = 0.7;
14 \quad V_R_B = V_IN - V_BE;
                        //voltage across base resiatance
15 R_B_{max}=V_R_B/I_B_{min};
16 disp(R_B_max, 'maximum value of base resistance in
     ohms when input voltage is 5V')
```

Chapter 5

Transistor Bias Circuits

Scilab code Exa 5.1 DC bias

```
1 // \exp 5.1
2 V_BB = 10;
3 V_CC = 20;
4 B_DC = 200;
5 R_B = 47 * 10^3;
6 R_C = 330;
7 V_BE = 0.7;
8 I_B = (V_BB - V_BE)/R_B;
9 I_C=B_DC*I_B; //Q POINT
10 V_CE = V_CC - I_C * R_C; //Q POINT
11 I_C_sat=V_CC/R_C;
12 I_c_peak=I_C_sat-I_C;
13 I_b_peak=I_c_peak/B_DC;
14 disp(I_C, 'q point of I_C in amperes')
15 disp(V_CE, 'Q point of V_CE in volts')
16 disp(I_b_peak, 'peak base current in amperes')
```

Scilab code Exa 5.2 Input resistance

```
1 //ex5.2
2 B_DC=125;
3 R_E=10^3;
4 R_IN_base=B_DC*R_E;
5 disp(R_IN_base, 'DC input resistance in ohms, looking in at the base of transistor')
```

Scilab code Exa 5.3 Voltage divider bias

```
1 // \exp 5.3
2 B_DC = 100;
3 R1 = 10 * 10^3;
4 R2=5.6*10^3;
5 R_C=1*10^3;
6 R_E = 560;
7 V_CC = 10;
8 V_BE = 0.7
9 R_IN_base=B_DC*R_E;
10 //We can neglect R_IN_base as it is equal to 10*R2
11 disp(R_IN_base, 'input resistance seen from base,
      which can be neglected as it is 10 times R2')
12 V_B = (R2/(R1+R2))*V_CC;
13 V_E = V_B - V_BE;
14 \quad I_E=V_E/R_E;
15 I_C=I_E;
16 \quad V_CE = V_CC - I_C * (R_C + R_E);
17 disp(V_CE, 'V_CE in volts')
18 disp(I_C, 'I_C in amperes')
19 disp('Since V_CE>0V, transistor is not in saturation
      ')
```

Scilab code Exa 5.4 Voltage bias PNP

```
1 // \exp 5.4
2 V_{EE} = 10;
3 V_BE=0.7;
4 B_DC = 150;
5 R1=22*10^3;
6 R2=10*10^3;
7 R_C=2.2*10^3;
8 R_E = 1 * 10^3;
                            //R_{IN_base} > 10*R2, so it can
9 R_IN_base=B_DC*R_E;
      be neglected
10 disp(R_IN_base, 'input resistance in ohms as seen
      from base. it can be neglected as it is greater
      than 10 times R2')
11 V_B = (R1/(R1+R2))*V_EE;
12 V_E = V_B + V_BE;
13 I_E = (V_EE - V_E)/R_E;
14 I_C=I_E;
15 V_C = I_C * R_C;
16 \quad V_EC = V_E - V_C;
17 disp(I_C, 'I_C collector current in amperes')
18 disp(V_EC, 'V_EC emitter-collector voltage in Volts')
```

Scilab code Exa 5.5 PNP Transistor

```
1 //ex5.5
2 R1=68*10^3;
3 R2=47*10^3;
4 R_C=1.8*10^3;
5 R_E=2.2*10^3;
6 V_CC=-6;
7 V_BE=0.7;
8 B_DC=75;
9 R_IN_base=B_DC*R_E;
10 disp('input resistance as seen from base is not greater than 10 times R2 so it should be taken
```

```
into account')

//R_IN_base in parallel with R2

V_B=((R2*R_IN_base)/(R2+R_IN_base)/(R1+(R2*R_IN_base))/(R2+R_IN_base))*V_CC;

V_E=V_B+V_BE;

I_E=V_E/R_E;

I_C=I_E;

V_C=V_CC-I_C*R_C;

V_CE=V_C-V_E;

disp(I_C, 'collector current in amperes')

disp(V_CE, 'collector emitter voltage in volts')
```

Scilab code Exa 5.6 Qpoint base bias

```
1 // \exp 5.6
2 V_CC=12;
3 R_B = 100 * 10^3;
4 R_C = 560;
5 / FOR B_DC=85 AND V_BE=0.7V
6 \text{ B_DC=85};
7 V_BE = 0.7;
8 \quad I_C_1 = B_DC*(V_CC-V_BE)/R_B;
9 V_CE_1 = V_CC - I_C_1 * R_C;
10 //FOR B_DC=100 AND V_BE=0.6V
11 B_DC = 100;
12 V_BE = 0.6;
13 I_C_2=B_DC*(V_CC-V_BE)/R_B;
14 V_CE_2 = V_CC - I_C_2 * R_C;
15 \text{\%_del_I_C}=((I_C_2-I_C_1)/I_C_1)*100;
16 \text{ %\_del_V_CE=((V_CE_2-V_CE_1)/V_CE_1)*100;}
17 disp(%_del_I_C, 'percent change in collector current'
      )
18 disp(%_del_V_CE, 'percent change in collector emitter
       voltage')
```

Scilab code Exa 5.7 Emitter bias

```
1 // \exp 5.7
2 V_CC=20;
3 R_C=4.7*10^3;
4 R_E=10*10^3;
5 V_EE = -20;
6 R_B=100*10^3;
7 / FOR B_DC=85 AND V_BE=0.7V
8 B_DC=85;
9 V_BE=0.7;
10 I_C_1 = (-V_EE - V_BE) / (R_E + (R_B/B_DC));
11 V_C = V_C - I_C_1 * R_C;
12 I_E=I_C_1;
13 V_E = V_EE + I_E * R_E;
14 V_CE_1 = V_C - V_E;
15 disp(I_C_1)
16 disp(V_CE_1)
17 //FOR B_DC=100 AND V_BE=0.6V
18 B_DC = 100;
19 V_BE = 0.6;
20 I_C_2 = (-V_EE - V_BE) / (R_E + (R_B/B_DC));
21 V_C = V_CC - I_C_2 * R_C;
22 \quad I_E = I_C_2;
23 V_E = V_EE + I_E * R_E;
V_CE_2=V_C-V_E;
25 disp(I_C_2)
26 disp(V_CE_2)
27 \text{ %\_del_I\_C} = ((I\_C\_2 - I\_C\_1) / I\_C\_1) * 100;
28 \text{ %_del_V_CE=((V_CE_2-V_CE_1)/V_CE_1)*100;}
29 disp(%_del_I_C, 'percent change in collector currrent
30 disp(%_del_V_CE, 'percent change in collector emitter
       voltage')
```

31 //plz note that the answers differ because of the number of places after the decimal that scilab generates

Scilab code Exa 5.8 Q point

```
1 //ex5.8
2 V_CC=10;
3 B_DC=100;
4 R_C=10*10^3;
5 R_B=100*10^3;
6 V_BE=0.7;
7 I_C=(V_CC-V_BE)/(R_C+(R_B/B_DC));
8 V_CE=V_CC-I_C*R_C;
9 disp(I_C, 'Q point of collector current in amperes')
10 disp(V_CE, 'Q point of collector—emitter voltage in volts')
```

Chapter 6

BJT Amplifiers

Scilab code Exa 6.1 Linear amplifier

```
1 // ex6.1
2 disp('graph question, cannot be solved in scilab')
```

Scilab code Exa 6.2 AC Emitter resistance

```
1 //ex6.2
2 I_E=2*10^-3;
3 r_e=25*10^-3/I_E;
4 disp(r_e, 'ac emitter resistance in ohms')
```

Scilab code Exa 6.3 Base voltage

```
1 //ex6.3
2 I_E=3.8*10^-3;
3 B_ac=160;
4 R1=22*10^3;
```

```
5  R2=6.8*10^3;
6  R_s=300;
7  V_s=10*10^-3;
8  r_e=25*10^-3/I_E;
9  R_in_base=B_ac*r_e;
10  R_in_tot=(R1*R2*R_in_base)/(R_in_base*R1+R_in_base*R2+R1*R2);
11  V_b=(R_in_tot/(R_in_tot+R_s))*V_s;
12  disp(V_b,'voltage at the base of the transistor in volts')
```

Scilab code Exa 6.4 Emitter bypass capacitor

```
1 //ex6.4
2 R_E=560;
3 f=2*10^3; //minimum value of frequency in hertz
4 X_C=R_E/10; //minimum value of capacitive
    reactance
5 C2=1/(2*%pi*X_C*f);
6 disp(C2,'value of bypass capacitor in farads')
```

Scilab code Exa 6.5 Effect bypass capacitor

```
1    //ex6.5
2    r_e=6.58;    //from ex6.3
3    R_C=1*10^3;
4    R_E=560;
5    A_v=R_C/(R_E+r_e);
6    disp(A_v, 'gain without bypass capacitor')
7    A_v=R_C/r_e;
8    disp(A_v, 'gain in the presence of bypass capacitor')
```

Scilab code Exa 6.6 Gain with load

```
1 //ex6.6
2 R_C=10^3;
3 R_L=5*10^3;
4 r_e=6.58;
5 R_c=(R_C*R_L)/(R_C+R_L);
6 disp(R_c, 'ac collector resistor in ohms')
7 A_v=R_c/r_e;
8 disp(A_v, 'gain with load')
```

Scilab code Exa 6.7 Gain swamped amplifier

```
1 //ex6.7
2 R_C=3.3*10^3;
3 R_E1=330;
4 A_v=R_C/R_E1;
5 disp(A_v, 'approximate voltage gain as R_E2 is bypassed by C2')
```

Scilab code Exa 6.8 Common emitter amplifier

```
1 //ex6.8
2 B_DC=150;
3 B_ac=175;
4 V_CC=10;
5 V_s=10*10^-3;
```


Figure 6.1: Common emitter amplifier

```
6 R_s = 600;
7 R1=47*10^3;
8 R2=10*10^3;
9 R_E1 = 470;
10 R_E2 = 470;
11 R_C=4.7*10^3;
12 R_L = 47 * 10^3;
13 R_IN_base=B_DC*(R_E1+R_E2);
14 //since R_IN_base is ten times more than R2, it can
      be neglected in DC voltage calculation
15 V_B = (R2/(R2+R1))*V_CC;
16 V_E = V_B - 0.7;
17 I_E=V_E/(R_E1+R_E2);
18 I_C=I_E;
19 V_C = V_CC - I_C * R_C;
20 disp(V_C, 'dc collector voltage in volts')
21 r_e = 25*10^-3/I_E;
22 //base resistance
23 R_{in}=B_ac*(r_e+R_E1);
24 //total input resistance
25 R_{in\_tot} = (R1*R2*R_{in\_base})/(R1*R2+R_{in\_base}*R1+
      R_in_base*R2);
26 attenuation=R_in_tot/(R_s+R_in_tot);
27 //ac collector resistance
28 R_c = R_C * R_L / (R_C + R_L);
29 //voltage gain from base to collector
30 \quad A_v = R_c / R_E1;
31 //overall voltage gain A_V
32 \quad A_V = A_v * attenuation;
33 //rms voltage at collector V_c
34 \ V_c = A_V * V_s;
35 \text{ Max_V_c_p=V_C+sqrt}(2)*V_c;
36 \text{ Min_V_c_p=V_C-sqrt}(2)*V_c;
37 V_out_p=sqrt(2)*V_c;
38 //assume frequency to be 1Hz
39 f = 1;
40 t=0:0.0005:4;
41 y=V_C+V_c*sin(2*\%pi*f.*t);
```

```
42 clf();
43 subplot(121)
44 xtitle('Collector Voltage')
45 plot(t,y)
46 subplot(122)
47 xtitle('source and output ac voltage')
48 x=-V_s*sin(2*f*%pi.*t);
49 z=V_out_p*sin(2*%pi*f.*t);
50 plot(t,x,'r')
51 plot(t,z,'-.')
52 h1=legend(['source voltage'; 'output voltage'])
```

Scilab code Exa 6.9 Current gain

```
1 // ex6.9
2 R_E=10^3;
3 R_L=10^3;
4 R1=18*10^3;
5 R2=18*10^3;
6 B_ac = 175;
7 V_CC=10;
8 V_BE = 0.7;
9 V_in=1;
10 //ac emitter resistance R_e
11 R_e = (R_E * R_L) / (R_E + R_L);
12 //resistance from base R_in_base
13 R_in_base=B_ac*R_e;
14 //total input resistance R_in_tot
15 R_{in\_tot}=(R1*R2*R_{in\_base})/(R1*R2+R1*R_{in\_base}+R2*R1*R_{in\_base})
      R_in_base);
16 disp(R_in_tot, 'total input resistance in ohms')
17 V_E = ((R2/(R1+R2))*V_CC)-V_BE;
18 I_E=V_E/R_E;
19 r_e=25*10^-3/I_E;
20 A_v = R_e/(r_e + R_e);
```

```
disp(A_v,'voltage gain')
//ac emitter current I_e
//v_e=A_v*V_b=1V

V_e=1;
I_e=V_e/R_e;
I_in=V_in/R_in_tot;
A_i=I_e/I_in; //current gain
disp(A_i,'current gain')
A_p=A_i; //power gain
//since R_L=R_E, one half of the total power is disspated to R_L
A_p_load=A_p/2;
disp(A_p_load,'power gain delivered to load')
```

Scilab code Exa 6.10 Darlington emitter follower

```
1 // ex6.10
2 V_CC=12;
3 V_BE=0.7;
4 R_C=10^3;
5 \text{ r_e_ce=5};
                 //for common emitter amplifier
6 R1 = 10 * 10^3;
7 R2=22*10^3;
8 R_E=22;
9 R_L=8;
10 B_DC=100;
11 B_ac=100;
12 V_B = ((R2*B_DC^2*R_E/(R2+B_DC^2*R_E))/(R1+(R2*B_DC^2*R_E))
      R_E/(R2+B_DC^2*R_E)))*V_CC;
13 V_E = V_B - 2 * V_BE;
14 I_E=V_E/R_E;
15 r_e=25*10^-3/I_E; //for darlington emitter-
      follower
16 P_R_E=I_E^2*R_E; //power dissipated by R_E
17 P_Q2 = (V_CC - V_E) * I_E //power dissipated by
```

```
transistor Q2
18 R_e=R_E*R_L/(R_E+R_L); //ac emitter resistance of
       darlington emitter follower
19 R_in_tot=R1*R2*B_ac^2*(R_e+r_e)/(R1*R2+R1*B_ac^2*(
     r_e+R_e)+R2*B_ac^2*(r_e+R_e)); //total input
      resistance of darlington
20 R_c=R_c*R_in_tot/(R_c+R_in_tot); //effective ac
      resistance
21 \quad A_v_CE=R_c/r_e_ce;
22 disp(A_v_CE, 'voltage gain of common emitter
      amplifier')
23 A_v_EF = R_e/(r_e+R_e);
24 disp(A_v_EF, 'voltage gain of darlington emitter
      follower')
25 \quad A_v = A_v CE * A_v EF;
26 disp(A_v, 'overall voltage gain')
```

Scilab code Exa 6.11 Common base amplifier

```
1 // ex6.11
2 B_DC = 250;
3 R_C=2.2*10^3;
4 R_E=1*10^3;
5 R_L = 10 * 10^3;
6 R1 = 56 * 10^3;
7 R2=12*10^3;
8 V_BE = 0.7;
9 V_CC=10;
10 / \sin ce B_DC*R_E>>R2
11 V_B = (R2/(R1+R2))*V_CC;
12 V_E = V_B - V_BE;
13 I_E=V_E/R_E;
14 r_e = 25*10^-3/I_E;
15 R_in=r_e; //input resistance
16 R_c=R_c*R_L/(R_c+R_L); //ac collector resistance
```

```
17 A_v=R_c/r_e;
18 //current gain is almost 1
19 //power gain is approximately equal to voltage gain
20 A_p=A_v;
21 A_i=1;
22 disp(R_in, 'input resistance in ohms')
23 disp(A_v, 'voltage gain')
24 disp(A_i, 'current gain')
25 disp(A_p, 'power gain')
```

Scilab code Exa 6.12 Voltage gain decibel

```
//ex6.12
A_v1=10;
A_v2=15;
A_v3=20;
A_v=A_v1*A_v2*A_v3; //overall voltage gain
disp(A_v, 'overall voltage gain')
A_v1_dB=gain_in_decibel_voltage(A_v1);
A_v2_dB=gain_in_decibel_voltage(A_v2);
A_v3_dB=gain_in_decibel_voltage(A_v3);
A_v_dB=A_v1_dB+A_v2_dB+A_v3_dB;
disp(A_v_dB, 'total voltage gain in decibels')
```

Chapter 7

Field Effect Transistors

Scilab code Exa 7.1 cutoff FET

```
1 //ex7.1
2 V_GS_off=-4;
3 I_DSS=12*10^-3;
4 R_D=560;
5 V_P=-1*V_GS_off;
6 V_DS=V_P;
7 I_D=I_DSS;
8 V_R_D=I_D*R_D; //voltage across resistor
9 V_DD=V_DS+V_R_D;
10 disp(V_DD, 'The value of V_DD required to put the device in the constant current area of operation of JFET')
```

Scilab code Exa 7.2 Drain current

```
1 //ex7.2
2 disp('The p-channel JFET requires a positive gate to source voltage. The more positive the voltage,
```

```
the lesser the drain current. Any further increase in V_GS keeps the JFET cut off, so I_D remains 0')
```

check Appendix AP 6 for dependency:

```
value_of_I_D.sci
```

Scilab code Exa 7.3 JFET current voltage

```
1 //ex7.3
2 I_DSS=9*10^-3;
3 V_GS_off=-8;
4 V_GS=0;
5 I_D=value_of_I_D(9*10^-3,0,-8);
6 disp(I_D,'Value of I_D for V_GS=0V')
7 I_D=value_of_I_D(9*10^-3,-1,-8);
8 disp(I_D,'Value of I_D for V_GS=-1V')
9 I_D=value_of_I_D(9*10^-3,-4,-8);
10 disp(I_D,'Value of I_D for V_GS=-4V')
```

check Appendix AP 6 for dependency:

```
value_of_I_D.sci
```

Scilab code Exa 7.4 JFET transconductance

```
1  //ex7.4
2  I_DSS=3*10^-3;
3  V_GS_off=-6;
4  y_fs_max=5000*10^-6;
5  V_GS=-4;
6  g_m0=y_fs_max;
7  g_m=g_m0*(1-(V_GS/V_GS_off));
```

```
8 I_D=value_of_I_D(3*10^-3,-4,-6)
9 disp(g_m, 'forward transconductance in Siemens')
10 disp(I_D, 'value of I D in amperes')
```

Scilab code Exa 7.5 JFET input resistance

```
1  V_GS=-20;
2  I_GSS=-2*10^-9;
3  R_IN=abs((-20/(2*10^-9)))
4  disp(R_IN, 'Input Resistance in Ohms')
```

Scilab code Exa 7.6 Self bias

```
1 //ex7.5
2 V_DD=15;
3 V_G=0;
4 I_D=5*10^-3;
5 R_D=1*10^3;
6 R_G=10*10^6;
7 R_S=220;
8 V_S=I_D*R_S;
9 V_D=V_DD-I_D*R_D;
10 V_DS=V_D-V_S;
11 V_GS=V_G-V_S;
12 disp(V_DS, 'Drain to source voltage in volts');
13 disp(V_GS, 'Gate to source voltage in volts');
```

Scilab code Exa 7.7 Q point JFET

```
1 // ex7.6
```

Scilab code Exa 7.9 Midpoint bias

Scilab code Exa 7.10 Graphical analysis

```
1 //ex7.10
2 R_S=680;
3 I_D=0;
4 V_GS=I_D*R_S; //FOR I_D=0A
5 disp(V_GS, 'V_GS in Volts, at I_D=0A')
6 I_DSS=4*10^-3;
7 I_D=I_DSS;
8 V_GS=I_D*R_S; //FOR I_D=4mA
9 disp(V_GS, 'V_GS in Volts, at I_D=4mA')
10 disp('Plotting load line using the values of V_GS at I_D=0 and 4mA, we find the intersection of load line with transfer characteristic to get Q-point values of V_GS=-1.5V and I_D=2.25mA')
```

Scilab code Exa 7.11 Voltage Divider bias

```
1 //ex7.11
2 V_DD=12;
3 V_D=7;
4 R_D=3.3*10^3;
5 R_S=2.2*10^3;
6 R_1=6.8*10^6;
7 R_2=1*10^6;
8 I_D=(V_DD-V_D)/R_D;
9 V_S=I_D*R_S;
10 V_G=(R_2/(R_1+R_2))*V_DD;
11 V_GS=V_G-V_S;
12 disp(I_D, 'Drain current in amperes')
13 disp(V_GS, 'Gate to source voltage in volts')
```

Scilab code Exa 7.12 Graph voltage divider

```
1 // ex7.12
2 R_1 = 2.2 * 10^6;
3 R_2=R_1;
4 V_DD=8;
5 R_S=3.3*10^3;
6 V_{GS} = (R_2/(R_1+R_2)) * V_{DD}; //FOR I_{D} = 0A
7 V_G = V_GS;
8 disp(V_GS, 'V_GS in Volts, at I_D=0A')
9 I_D = (V_G - 0) / R_S;
                         //FOR V_GS=0V
10 disp(I_D, 'I_D in Amperes, at V_GS=0V')
11 disp('Plotting load line using the value of V_GS=4V
      at I_D=0 and I_D=1.2mA at V_GS=0V, we find the
      intersection of load line with transfer
      characteristic to get Q-point values of V-GS=-1.8
      V and I_D = 1.8 \text{mA}')
     check Appendix AP 6 for dependency:
```

```
value_of_I_D.sci
```

Scilab code Exa 7.13 DMOSFET

```
1 //ex7.13
2 I_DSS=10*10^-3;
3 V_GS_off=-8;
4 V_GS=-3;
5 I_D=value_of_I_D(10*10^-3,-3,-8)
6 disp(I_D,'Drain current when V_GS=-3V in Amperes')
7 V_GS=3;
8 I_D=value_of_I_D(10*10^-3,3,-8)
9 disp(I_D,'Drain current when V_GS=3V in Amperes')
```

```
check Appendix AP 5 for dependency:
value_of_K.sci
```

Scilab code Exa 7.14 EMOSFET

```
1 //EX7.14
2 I_D_on=500*10^-3;
3 V_GS=10;
4 V_GS_th=1;
5 K=value_of_K(500*10^-3,10,1)
6 V_GS=5;
7 I_D=K*(V_GS-V_GS_th)^2;
8 disp(I_D, 'Drain current')
```

Scilab code Exa 7.15 DMOSFET bias

Scilab code Exa 7.16 EMOSFET bias

value_of_K.sci

```
1 //ex7.16
2 I_D_on=200*10^-3;
3 V_DD=24;
4 R_D=200;
5 V_GS=4;
6 V_GS_th=2;
7 R_1=100*10^3;
8 R_2=15*10^3;
9 K=value_of_K(200*10^-3,4,2)
10 V_GS=(R_2/(R_1+R_2))*V_DD;
11 I_D=K*(V_GS-V_GS_th)^2;
12 V_DS=V_DD-I_D*R_D;
13 disp(V_DS, 'Drain to Source voltage in Volts')
14 disp(V_GS, 'Gate to Source voltage in Volts')
```

Scilab code Exa 7.17 EMOSFET drain current

Chapter 8

FET Amplifiers

Scilab code Exa 8.1 Voltage gain

```
1 //ex8.1
2 g_m=4*10^-3;
3 R_d=1.5*10^3;
4 A_v=g_m*R_d;
5 disp(A_v, 'Voltage gain')
```

Scilab code Exa 8.2 Rds effect

Scilab code Exa 8.3 External source resistance

```
1 //ex8.3
2 R_s=560;
3 R_d=1.5*10^3;
4 g_m=4*10^-3;
5 A_v=(g_m*R_d)/(1+(g_m*R_s))
6 disp(A_v,'Voltage gain')
```

Scilab code Exa 8.4 Unloaded amplifier

```
1 // ex8.4
2 V_DD=12;
3 V_{in}=100*10^{-3};
4 R_D=3.3*10^3;
5 I_DSS=12*10^-3;
6 V_GS_off = -3;
7 R_S = 910;
8 a=(R_S^2)/(V_GS_off^2); //we take V_GS_off
      positive so that we take current negative
9 b=(-1)*(((2*R_S)/(V_GS_off))-(1/I_DSS));
10 c = 1;
11 p1=poly([c b a], 'x', 'c')
12 A=roots(p1)
13 I_D=(-1)*A(1); //make the value of current
      positive
14 V_D = V_DD - I_D * R_D;
15 V_GS = -I_D * R_S;
16 g_m0 = (2*I_DSS)/(abs(V_GS_off));
17 g_m = g_m0 * (1 - (V_GS/V_GS_off));
18 V_{out=g_m*R_D*V_in}; //rms value
                           //peak to peak dc value
19 v_out=V_out*1.414*2;
20 disp(v_out, 'output dc voltage (peak to peak) in
      volts')
```

Scilab code Exa 8.5 AC load effect

Scilab code Exa 8.6 Input resistance

Scilab code Exa 8.7 DMOSFET amplifier

```
1 //ex8.7
2 I_DSS=200*10^-3;
3 g_m=200*10^-3;
4 V_in=500*10^-3;
5 V_DD=15;
6 R_D=33;
7 R_L=8.2*10^3;
```

```
8 I_D=I_DSS;
                  //Amplifier is zero biased
9 V_D = V_DD - I_D * R_D;
10 R_d = (R_D * R_L) / (R_D + R_L);
11 V_{out}=g_m*R_d*V_in;
12 disp(V_D, 'DC output voltage in Volts')
13 disp(V_out, 'AC output voltage in volts')
```

Scilab code Exa 8.8 MOSFET Q points

```
1 // ex8.8
2 disp('Part A: Q point: V_GS=-2V I_D=2.5mA. At V_GS
     =-1V, I_D = 3.4 \text{mA}, At V_G = -3V, I_D = 1.8 \text{mA}. So peak
     to peak drain current is the difference of the
     two drain currents=1.6mA')
3 disp('Part B: Q point: V_GS=0V I_D=4mA. At V_GS=1V,
     I_D = 5.3 \text{mA}, At V_G = -1 \text{V}, I_D = 2.5 \text{mA}. So peak to
     peak drain current is the difference of the two
     drain currents = 2.8\text{mA}')
4 disp('Part C: Q point: V_GS=8V I_D=2.5mA. At V_GS=9V
     , I_D=3.9mA, At V_GS=7V, I_D=1.7mA. So peak to
     peak drain current is the difference of the two
     drain currents = 2.2\text{mA}')
     check Appendix AP 5 for dependency:
```

```
value_of_K.sci
```

Scilab code Exa 8.9 EMOSFET amplifier

```
1 // ex8.9
2 R_1 = 47 * 10^3;
3 R_2=8.2*10^3;
4 R_D=3.3*10^3;
```

```
5 R_L=33*10^3;
6 I_D_on=200*10^-3;
7 V_GS=4;
8 V_GS_th=2;
9 g_m = 23 * 10^{-3};
10 V_{in}=25*10^{-3};
11 V_DD = 15;
12 V_GS = (R_2/(R_1+R_2))*V_DD;
13 K=value_of_K(200*10^-3,4,2);
14 I_D=K*(V_GS-V_GS_{th})^2;
15 V_DS = V_DD - I_D * R_D;
16 R_d = (R_D * R_L) / (R_D + R_L);
17 V_{out}=g_m*V_{in}*R_d;
18 disp(V_DS, 'Drain to source voltage in volts(V_DS)')
19 disp(I_D, 'Drain current (I_D) inAmperes')
20 disp(V_GS, 'Gate to source voltage (V_GS) in volts')
21 disp(V_out, 'AC output voltage in volts')
```

Scilab code Exa 8.10 Common gate amplifier

in ohms')

Chapter 9

Power Amplifiers

Scilab code Exa 9.1 classA power amplifier

```
1 // \exp .1
2 V_CC=15;
3 R_C=1*10^3;
4 R_1=20*10^3;
5 R_2=5.1*10^3;
6 R_3=5.1*10^3;
7 R_4=15*10^3;
8 R_E_1=47;
9 R_E_2=330;
10 R_E_3=16;
              //SPEAKER IS THE LOAD;
11 R_L=16;
12 B_ac_Q1=200;
13 B_ac_Q2=B_ac_Q1;
14 B_ac_Q3=50;
15 //R_c1=R_C | | [ R_3 | | R_4 | | B_acQ2*B_ac_Q3*(R_E_3 | | R_L) ]
      is ac collector resistance
16 R = (R_E_3 * R_L) / (R_E_3 + R_L);
17 R=B_ac_Q2*B_ac_Q3*R;
18 R = (R * R_4) / (R + R_4);
19 R = (R*R_3)/(R+R_3);
20 R_c1=(R*R_C)/(R_C+R); //ac collector resistance
```

```
21 //V_B = ((R_2) | (B_acQ1 * (R_E_1 + R_E_2))) / (R_1 + (R_2) |
                    B_{acQ1}*(R_{E_1}+R_{E_2}))))*V_{CC};
22 //This is the base voltage;
23 //LET R=(R_2 \mid | (B_acQ1*(R_E_1+R_E_2)))
R = (R_2 * B_ac_Q1 * (R_E_1 + R_E_2)) / (R_2 + B_ac_Q1 * (R_E_1 + R_E_2)) / (R_2 + R_ac_Q1 * (R_E_1 + R_Ac_Q1 * (R_E_1 + R_Ac_Q1 * (R_Ac_Q1 + R_Ac_Q
                    R_{E_2});
25 V_B = R * V_CC/(R_1 + R);
26 I_E = (V_B - 0.7) / (R_E_1 + R_E_2);
27 \text{ r_e_Q1=}25*10^{-3}/\text{I_E};
28 A_v1 = (-1)*(R_c1)/(R_E_1+r_e_Q1); //voltage gain
                     of 1st stage
29 //total input resistance of 1st stage is R_in_tot_1=
                    R_{-1} \mid R_{-2} \mid B_{-ac} = Q_1 * (R_{-E_1} + r_{-e_2} Q_1);
30 R_{in_{tot_1} = (R_1*(R_2*B_ac_Q1*(R_E_1+r_e_Q1)/(R_2+R_E))
                    B_ac_Q1*(R_E_1+r_e_Q1))))/(R_1+(R_2*B_ac_Q1*(
                    R_E_1+r_e_Q_1)/(R_2+B_ac_Q_1*(R_E_1+r_e_Q_1)));
31 A_v2=1; //gain of darlington voltage-follower
32 \quad A_v_tot = A_v1 * A_v2;
                                                                                        //total gain
33 A_p = (A_v_{tot^2}) * (R_{in_{tot_1}/R_L}); //power gain
34 disp(A_v_tot, 'Voltage gain')
35 disp(A_p, 'Power gain')
```

Scilab code Exa 9.2 class A efficiency

```
11 disp(eff, 'efficiency')
```

Scilab code Exa 9.3 class AB pushpull

```
1 //ex9.3
2 V_CC=20;
3 R_L=16;
4 V_out_peak=V_CC;
5 I_out_peak=V_CC/R_L;
6 disp(V_out_peak, 'ideal maximum peak output voltage in volts')
7 disp(I_out_peak, 'ideal maximum current in amperes')
```

Scilab code Exa 9.4 Single supply pushpull

```
1 //ex9.4
2 V_CC=20;
3 R_L=16;
4 V_out_peak=V_CC/2;
5 I_out_peak=V_out_peak/R_L;
6 disp(V_out_peak, 'ideal maximum output peak voltage in volts')
7 disp(I_out_peak, 'ideal maximum current in amperes')
```

Scilab code Exa 9.5 Power of amplifier

```
1 //ex9.5
2 V_CC=20;
3 R_L=8;
4 B_ac=50;
```

```
5 r_e=6;
6 V_out_peak=V_CC/2;
7 V_CEQ=V_out_peak;
8 I_out_peak=V_CEQ/R_L;
9 I_c_sat=I_out_peak;
10 P_out=0.25*I_c_sat*V_CC;
11 P_DC=(I_c_sat*V_CC)/%pi;
12 R_in=B_ac*(r_e+R_L);
13 disp(P_out, 'maximum ac output power in Watts');
14 disp(P_DC, 'maximum DC output power in Watts');
15 disp(R_in, 'input resistance in ohms');
```

Scilab code Exa 9.6 MOSFET pushpull amplifier

```
1 // \exp .6
 2 V_DD = 24;
 3 V_{in}=100*10^{-3};
4 R1 = 440;
 5 R2=5.1*10^3;
 6 R3=100*10^3;
 7 R4 = 10^3;
8 R5 = 100;
 9 R7=15*10^3;
10 R_L = 33;
11 V_TH_Q1=2;
12 V_TH_Q2=-2;
13 I_R1 = (V_DD - (-V_DD))/(R1+R2+R3);
14 V_B = V_DD - I_R1 * (R1 + R2);
                                 //BASE VOLTAGE
                   //EMITTER VOLTAGE
15 V_E = V_B + 0.7;
16 I_E=(V_DD-V_E)/(R4+R5); //EMITTER CURRENT
17 V_R6=V_TH_Q1-V_TH_Q2; //VOLTAGE DROP ACROSS R6
18 I_R6 = I_E;
19 R6 = V_R6 / I_R6;
20 r_e=25*10^-3/I_E; //UNBYPASSED EMITTER RESISTANCE
21 A_v=R7/(R5+r_e); //VOLTAGE GAIN
```

Scilab code Exa 9.7 class C amplifier

Scilab code Exa 9.8 class C efficiency

Chapter 10

Amplifier Frequency Response

```
check Appendix AP 4 for dependency:

gain_in_decibel_power.sci

check Appendix AP 3 for dependency:

gain_in_decibel_voltage.sci
```

Scilab code Exa 10.1 Gain in decibel

```
//ex10.1
//P out/P in = 250;
A_p_dB=gain_in_decibel_power (250)
disp(A_p_dB, 'Power gain when power gain is 250')
A_p_dB=gain_in_decibel_power (100)
disp(A_p_dB, 'Power gain when power gain is 100')
A_v_dB=gain_in_decibel_voltage (10)
disp(A_v_dB, 'Voltage gain when voltage gain is 10')
A_v_dB=gain_in_decibel_power (0.5)
disp(A_v_dB, 'Power gain when voltage gain is 0.5')
A_v_dB=gain_in_decibel_voltage (0.707)
disp(A_v_dB, 'Voltage gain when voltage gain is 0.707')
```

Scilab code Exa 10.2 Critical frequency

```
//ex10.2
//input voltage=10V
//at -3dB voltage gain from table is 0.707
v_out=0.707*10;
disp(v_out, 'output voltage in volts at -3dB gain')
//at -6dB voltage gain from table is 0.5
v_out=0.5*10;
disp(v_out, 'output voltage in volts at -6dB gain')
//at -12dB voltage gain from table is 0.25
v_out=0.25*10;
disp(v_out, 'output voltage in volts at -12dB gain')
//at -24dB voltage gain from table is 0.0625
v_out=0.0625*10;
disp(v_out, 'output voltage in volts at -24dB gain')
```

Scilab code Exa 10.3 Lower critical frequency

```
//ex10.3
R_in=1*10^3;
C1=1*10^-6;
A_v_mid=100; //mid range voltage gain
f_c=1/(2*%pi*R_in*C1);
//at f_c, capacitive reactance is equal to
    resistance(X_C1=R_in)
attenuation=0.707;
//A_v is gain at lower critical frequency
A_v=0.707*A_v_mid;
disp(f_c, 'lower critical frequency in hertz')
disp(attenuation, 'attenuation at lower critical frequency')
```

Scilab code Exa 10.4 Voltage gains

```
1 // \exp 10.4
2 A_v_mid=100;
3 //At 1Hz frequency, voltage gain is 3 dB less than at
       midrange. At -3dB, the voltage is reduced by a
      factor of 0.707
4 A_v = 0.707 * A_v_mid;
5 disp(A_v, 'actual voltage gain at 1Hz frequency')
6 //At 100Hz frequency, voltage gain is 20 dB less than
       at critical frequency (f_c). At -20dB, the
      voltage is reduced by a factor of 0.1
7 A_v = 0.1 * A_v_mid;
8 disp(A_v, 'actual voltage gain at 100Hz frequency')
9 //At 10Hz frequency, voltage gain is 40 dB less than
      at critical frequency (f<sub>-</sub>c). At -40dB, the
      voltage is reduced by a factor of 0.01
10 A_v = 0.01 * A_v_mid;
11 disp(A_v, 'actual voltage gain at 10Hz frequency')
```

Scilab code Exa 10.5 Output RC circuit

```
1 //ex10.5
2 R_C=10*10^3;
3 C3=0.1*10^-6;
4 R_L=10*10^3;
5 A_v_mid=50;
6 f_c=1/(2*%pi*(R_L+R_C)*C3);
7 disp(f_c,'lower critical frequency in hertz')
8 //at midrange capacitive reactance is zero
9 X_C3=0;
```

Scilab code Exa 10.6 Bypass RC circuit BJT

```
1 // ex10.6
2 B_ac=100;
3 r_e=12;
4 R1=62*10^3;
5 R2 = 22 * 10^3;
6 R_S = 1 * 10^3;
7 R_E=1*10^3;
8 C2=100*10^-6;
9 //Base circuit impedance= parallel combination of R1
      R_{-}S
10 R_{th}=(R1*R2*R_S)/(R1*R2+R2*R_S+R_S*R1);
11 //Resistance looking at emitter
12 R_in_emitter=r_e+(R_th/B_ac);
13 //resistance of equivalent bypass RC is parallel
      combination of R<sub>E</sub>, R<sub>in</sub>emitter
14 R=(R_in_emitter*R_E)/(R_E+R_in_emitter);
15 f_c=1/(2*\%pi*R*C2);
16 disp(f_c, 'critical frequency of bypass RC circuit in
       hertz')
```

Scilab code Exa 10.7 input RC circuit FET

```
1 //ex10.7
2 V_GS=-10;
3 I_GSS=25*10^-9;
4 R_G=10*10^6;
5 C1=0.001*10^-6;
6 R_in_gate=abs((V_GS/I_GSS));
7 R_in=(R_in_gate*R_G)/(R_G+R_in_gate);
8 f_c=1/(2*%pi*R_in*C1);
9 disp(f_c,'critical frequency in hertz')
```

Scilab code Exa 10.8 Low frequency response FET

```
1 // ex10.8
2 V_GS = -12;
3 I_GSS = 100 * 10^-9;
4 R_G=10*10^6;
5 R_D=10*10^3;
6 C1=0.001*10^-6;
7 C2=0.001*10^-6;
8 R_in_gate=abs((V_GS/I_GSS));
9 R_in=(R_in_gate*R_G)/(R_G+R_in_gate);
10 R_L=R_in;
             //according to question
11 f_c_input=1/(2*%pi*R_in*C1);
12 disp(f_c_input, 'critical frequency of input RC
      circuit in hertz')
13 f_c_output = 1/(2*\%pi*(R_D+R_L)*C2)
14 disp(f_c_output, 'critical frequency of output RC
      circuit in hertz')
```

Scilab code Exa 10.9 Low frequency response BJT

```
1 // ex10.9
2 B_ac=100;
3 r_e=16;
4 R1=62*10^3;
5 R2=22*10^3;
6 R_S = 600;
7 R_E=1*10^3;
8 R_C=2.2*10^3;
9 R_L=10*10^3;
10 C1=0.1*10^-6;
11 C2=10*10^-6;
12 C3=0.1*10^-6;
13 //input RC circuit
14 R_in=(B_ac*r_e*R1*R2)/(B_ac*r_e*R1+B_ac*r_e*R2+R1*R2
15 f_c_input=1/(2*%pi*(R_S+R_in)*C1);
16 disp(f_c_input, 'input frequency in hertz')
17 //For bypass circuit; Base circuit impedance=
      parallel combination of R1, R2, R_S
18 R_{th} = (R1*R2*R_S)/(R1*R2+R2*R_S+R_S*R1);
19 // Resistance looking at emitter
20 R_in_emitter=r_e+(R_th/B_ac);
21 //resistance of equivalent bypass RC is parallel
      combination of R<sub>E</sub>, R<sub>in_emitter</sub>
22 R=(R_in_emitter*R_E)/(R_E+R_in_emitter);
23 f_c_bypass=1/(2*\%pi*R*C2);
24 disp(f_c_bypass,'critical frequency of bypass RC
      circuit in hertz')
25 f_c_output = 1/(2*\%pi*(R_C+R_L)*C3)
26 disp(f_c_output, 'output frequency circuit in hertz')
27 R_c = R_C * R_L / (R_C + R_L);
28 \quad A_v_mid=R_c/r_e;
```

```
29 attenuation=R_in/(R_in+R_S);
30 A_v=attenuation*A_v_mid; //overall voltage gain
31 A_v_mid_dB=20*log10(A_v);
32 disp(A_v_mid_dB,'overall voltage gain in dB')
```

Scilab code Exa 10.10 input RC circuit BJT

```
1 // ex10.10
2 B_ac = 125;
3 C_be = 20*10^-12;
4 C_bc=2.4*10^-12;
5 R1 = 22 * 10^3;
6 R2=4.7*10^3;
7 R_E = 470;
8 R_S = 600;
9 R_L=2.2*10^3;
10 V_CC=10;
11 V_B = (R2/(R1+R2))*V_CC;
12 V_E = V_B - 0.7;
13 I_E=V_E/R_E;
14 r_e = 25*10^-3/I_E;
15 //total resistance of input circuit is parallel
      combination of R1, R2, R_s, B_ac*r_e
16 R_in_tot=B_ac*r_e*R1*R2*R_S/(B_ac*r_e*R1*R2+B_ac*r_e
      *R1*R_S+B_ac*r_e*R2*R_S+R1*R2*R_S);
17 R_c = R_C * R_L / (R_C + R_L)
18 \text{ A_v_mid=R_c/r_e};
19 C_in_Miller=C_bc*(A_v_mid+1)
20 C_in_tot=C_in_Miller+C_be;
21 f_c=1/(2*%pi*R_in_tot*C_in_tot);
22 disp(R_in_tot, 'total resistance of circuit in ohms'
      )
23 disp(C_in_tot, 'total capacitance in farads')
24 disp(f_c, 'critical frequency in hertz')
```

Scilab code Exa 10.11 Critical frequency BJT output

```
//ex10.11
C_bc=2.4*10^-12;  //from previous question
A_v=99;  //from previous question

R_C=2.2*10^3;
R_L=2.2*10^3;
R_c=R_C*R_L/(R_C+R_L);
C_out_Miller=C_bc*(A_v+1)/A_v;
f_c=1/(2*%pi*R_c*C_bc);  //C_bc is almost equal to C_in_Miller

disp(R_c,'equivalent resistance in ohms')
disp(C_out_Miller,'equivalent capacitance in farads')
disp(f_c,'critical frequency in hertz')
```

Scilab code Exa 10.12 FET capacitors

```
1 //ex10.12
2 C_iss=6*10^-12;
3 C_rss=2*10^-12;
4 C_gd=C_rss;
5 C_gs=C_iss-C_rss;
6 disp(C_gd,'gate to drain capacitance in farads')
7 disp(C_gs,'gate to source capacitance in farads')
```

Scilab code Exa 10.13 Critical frequency FET input

```
1 // ex10.13;
```

```
2 C_iss=8*10^-12;
3 C_rss=3*10^-12;
                   //in Siemens
4 g_m = 6500 * 10^-6;
5 R_D=1*10^3;
6 R_L=10*10^6;
7 R_s = 50;
8 C_gd=C_rss;
9 C_gs=C_iss-C_rss;
10 R_d=R_D*R_L/(R_D+R_L);
11 A_v = g_m * R_d;
12 C_in_Miller=C_gd*(A_v+1);
13 C_in_tot=C_in_Miller+C_gs;
14 f_c=1/(2*%pi*C_in_tot*R_s);
15 disp(f_c,'critical frequency of input RC circuit in
     hertz')
```

Scilab code Exa 10.14 Critical frequency FET input

```
1 //ex10.14
2 C_gd=3*10^-12; //from previous question
3 A_v=6.5; //from previous question
4 R_d=1*10^3; //from previous question
5 C_out_Miller=C_gd*(A_v+1)/A_v;
6 f_c=1/(2*%pi*R_d*C_out_Miller);
7 disp(f_c,'critical frequency of the output circuit in hertz')
```

Scilab code Exa 10.15 Bandwidth

```
1 //ex10.15
2 f_cu=2000;
3 f_cl=200;
4 BW=f_cu-f_cl;
```

```
5 disp(BW, 'bandwidth in hertz')
```

Scilab code Exa 10.16 Bandwidth transistor

```
1 //ex10.16;
2 f_T=175*10^6; //in hertz
3 A_v_mid=50;
4 BW=f_T/A_v_mid;
5 disp(BW, 'bandwidth in hertz')
```

Scilab code Exa 10.17 Bandwidth 2stage amplifier

Scilab code Exa 10.18 Bandwidth 2stage amplifier

```
1 //ex10.18
2 n=2;    //n is the number of stages of amplifier
3 f_cl=500;
4 f_cu=80*10^3;
5 f_cl_new=f_cl/(sqrt(2^(1/n)-1));
6 f_cu_new=f_cu*(sqrt(2^(1/n)-1));
7 BW=f_cu_new-f_cl_new;
8 disp(BW, 'bandwidth in hertz')
```

Chapter 11

Thyristors and Other Devices

Scilab code Exa 11.1 Four layer diode

```
1 //ex11.1
2 V_AK=20; //VOLTAGE ACROSS ANODE
3 I_A=1*10^-6;
4 R_AK=V_AK/I_A;
5 disp(R_AK, 'RESISTANCE IN OHMS')
```

Scilab code Exa 11.2 Anode current

Scilab code Exa 11.3 Unijunction transistor

```
1 //ex11.3
2 n=0.6;
3 V_BB=20;
4 V_pn=0.7;
5 V_P=n*V_BB+V_pn;
6 disp(V_P, 'peak point emitter voltage in volts')
```

Scilab code Exa 11.4 turn on off UJT

```
1 //ex11.4
2 V_BB=30;
3 V_P=14;
4 I_P=20*10^-6;
5 V_V=1;
6 I_V=10*10^-3;
7 x=(V_BB-V_P)/I_P;
8 y=(V_BB-V_V)/I_V;
9 disp('ohms',x,'R1 should be less than',)
10 disp('ohms',y,'R1 should be more than')
```

Scilab code Exa 11.5 Critical angle

```
1 //ex11.5
2 n2=1.3; //cladding index
3 n1=1.35; //core index
4 theta=acos(n2/n1);
5 t=theta*180/%pi;
6 disp(t,'critical angle in degrees')
```

Chapter 12

The Operational Amplifier

Scilab code Exa 12.1 CMRR opamp

```
1 //ex12.1
2 A_ol=100000; //open loop voltage gain
3 A_cm=0.2; //common mode gain
4 CMRR=A_ol/A_cm;
5 CMRR_dB=20*log10(CMRR);
6 disp(CMRR, 'CMRR')
7 disp(CMRR_dB, 'CMRR in decibels')
```

Scilab code Exa 12.2 Slew rate

```
1 //ex12.2
2 del_t=1; // in microseconds
3 //lower limit is -9V and upper limit is 9V from the graph
4 del_V_out=9-(-9);
5 slew_rate=del_V_out/del_t;
6 disp(slew_rate, 'slew rate in volts per microseconds')
```

Scilab code Exa 12.3 Non inverting amplifier

```
1 //ex12.3
2 R_f=100*10^3;
3 R_i=4.7*10^3;
4 A_cl_NI=1+(R_f/R_i);
5 disp(A_cl_NI, 'closed loop voltage gain')
```

Scilab code Exa 12.4 Inverting amplifier

```
1 //ex12.4
2 R_i=2.2*10^3;
3 A_cl=-100; //closed loop voltage gain
4 R_f=abs(A_cl)*R_i;
5 disp(R_f,'value of R_f in ohms')
```

Scilab code Exa 12.5 Impedance noninverting amplifier

```
1 //ex12.5
2 Z_in=2*10^6;
3 Z_out=75;
4 A_ol=200000;
5 R_f=220*10^3;
6 R_i=10*10^3;
7 B=R_i/(R_i+R_f); //B is attenuation
8 Z_in_NI=(1+A_ol*B)*Z_in;
9 Z_out_NI=Z_out/(1+A_ol*B);
10 A_cl_NI=1+(R_f/R_i);
11 disp(Z_in_NI, 'input impedance in ohms')
```

```
12 disp(Z_out_NI, 'output impedance in ohms')
13 disp(A_cl_NI, 'closed loop voltage gain')
```

Scilab code Exa 12.6 Voltage follower impedance

```
1 //ex12.6
2 B=1; //voltage follower configuration
3 A_ol=200000;
4 Z_in=2*10^6;
5 Z_out=75;
6 Z_in_VF=(1+A_ol)*Z_in;
7 Z_out_VF=Z_out/(1+A_ol);
8 disp(Z_in_VF, 'input impedance in ohms')
9 disp(Z_out_VF, 'output impedance in ohms')
```

Scilab code Exa 12.7 Impedance inverting amplifier

check Appendix AP 2 for dependency:

```
open_loop_gain.sci
```

Scilab code Exa 12.8 Open Loop gain

```
1 // ex12.8
2 f_c_ol=100;
3 A_ol_mid=100000;
4 f=0;
5 A_ol=open_loop_gain(A_ol_mid,f,f_c_ol)
6 disp(A_ol, 'open loop gain when f=0Hz');
7 f = 10;
8 A_ol=open_loop_gain(A_ol_mid,f,f_c_ol)
9 disp(A_ol, 'open loop gain when f=10Hz')
10 f = 100;
11 A_ol=open_loop_gain(A_ol_mid,f,f_c_ol)
12 disp(A_ol, 'open loop gain when f=100Hz')
13 f = 1000;
14 A_ol=open_loop_gain(A_ol_mid,f,f_c_ol)
15 disp(A_ol, 'open loop gain when f=1000Hz')
     check Appendix AP 1 for dependency:
```

```
phase_shift.sci
```

Scilab code Exa 12.9 phase RC lag

```
1 //ex12.9
2 f_c=100;
3 f=1;
4 theta=phase_shift(f,f_c);
5 disp(theta,'phase lag when f=1Hz (in degrees)')
6 f=10;
7 theta=phase_shift(f,f_c);
```

Scilab code Exa 12.10 Gain and phase lag

```
1 // ex12.10
               //all gains are in decibels
2 A_v1=40;
3 \text{ A}_v2=32;
4 A_v3=20;
5 f_c1=2*10^3;
6 f_c2=40*10^3;
7 f_c3=150*10^3;
8 f=f_c1;
9 A_ol_mid = A_v1 + A_v2 + A_v3;
10 theta_1=phase_shift(f,f_c1);
11 theta_2=phase_shift(f,f_c2);
12 theta_3=phase_shift(f,f_c3);
13 theta_tot=theta_1+theta_2+theta_3;
14 disp(A_ol_mid, 'open loop midrange gain in decibels')
15 disp(theta_tot, 'total phase lag in degrees')
```

Scilab code Exa 12.11 Closed loop bandwidth

```
1 //ex12.11
2 A_ol_mid=150000; //open loop midrange gain
3 B=0.002; //feedback attenuation
4 BW_ol=200; //open loop bandwidth
5 BW_cl=BW_ol*(1+B*A_ol_mid);
6 disp(BW_cl,'closed loop bandwidth in hertz')
```

Scilab code Exa 12.12 Amplifier bandwidth

```
1 // ex12.12
                //unity gain bandwidth
2 BW = 3 * 10^6;
3 A_ol=100; //open loop gain
4 disp("non-inverting amplifier")
5 R_f = 220*10^3;
6 R_i=3.3*10^3;
7 A_cl=1+(R_f/R_i); //closed loop gain
8 BW_cl=BW/A_cl;
9 disp(BW_cl, 'closed loop bandwidth in hertz')
10 disp("inverting amplifier")
11 R_f = 47 * 10^3;
12 R_i=1*10^3;
13 A_cl=-R_f/R_i;
14 BW_cl=BW/(abs(A_cl));
15 disp(BW_cl, 'closed loop bandwidth in hertz')
```

Chapter 13

Basic Opamp Circuits

Scilab code Exa 13.1 Comparator

```
1 // ex13.1
2 R2=1*10^3;
3 R1=8.2*10^3;
4 V = 15;
5 V_REF = R2*V/(R1+R2);
6 disp(V_REF, 'V_REF in volts')
7 V_max=12; //maximum output level of op-amp
                //minimum output voltage of comparator
8 \ V_{min} = -12;
          //assume frequency of input wave to be 1
      hertz
10 t=0:0.001:3;
11 V_{in}=5*sin(2*%pi*f.*t)
12 clf();
13 subplot (121)
14 xtitle('Input to comparator-1')
15 plot(t, V_in)
16 subplot (122)
17 xtitle('Output of Comparator-1')
18 a=bool2s(V_in>=V_REF)
```


Figure 13.1: Comparator

```
19 b=~a;
20 y=V_max*a+V_min*b;
21 plot(t,y)
22 disp(V_max, 'max output voltage in volts')
23 disp(V_min, 'min output voltage in volts')
```

Scilab code Exa 13.2 Trigger points

```
//ex13.2
R1=100*10^3;
R2=R1;
V_out_max=5;
V_UTP=R2*V_out_max/(R1+R2);
V_LTP=-V_out_max*R2/(R1+R2);
disp(V_UTP, 'upper trigger point in volts')
disp(V_LTP, 'lower trigger point in volts')
```

Scilab code Exa 13.3 Comparator hysteris Zener bounding

Figure 13.2: Comparator hysteris Zener bounding

```
12 f=1; //assume frequency of input as 1 Hertz
13 t=0:0.001:1;
14 T=1/f;
15 V_{in}=5*sin(2*\%pi*f.*t)
16 subplot (121)
17 xtitle('Input to comparator -2')
18 plot(t, V_in)
19 subplot (122)
20 xtitle ('Output of Comparator -2')
21 t1=(1/(2*\%pi*f))*asin((V_UTP/5))
22 \quad a=bool2s(t<t1)
23 b=bool2s(t>((T/2)+t1))
24 \quad a=bool2s(a|b)
25 \ b=~a;
26 \quad y = V_out*a - V_out*b;
27 plot(t,y)
28 disp(V_out, 'max output voltage in volts')
29 disp(-V_out, 'min output voltage in volts')
```

Scilab code Exa 13.4 Summing amplifier unity gain

```
1 //ex13.4
2 V_IN1=3;
3 V_IN2=1;
4 V_IN3=8;
5 //all resistors are of equal value so weight of each input is 1
6 V_OUT=-(V_IN1+V_IN2+V_IN3);
7 disp(V_OUT, 'output voltage in volts')
```

Scilab code Exa 13.5 Summing amplifier

```
1 // ex13.5
```

```
2 R_f=10*10^3;
3 R1=1*10^3;
4 R2=R1;
5 R=R1;
6 V_IN1=0.2;
7 V_IN2=0.5;
8 V_OUT=-(R_f/R)*(V_IN1+V_IN2);
9 disp(V_OUT, 'output voltage of the summing amplifier in volts')
```

Scilab code Exa 13.6 Averaging amplifier

```
1 // ex13.6
2 R_f = 25*10^3;
3 R1 = 100 * 10^3;
4 R2=R1;
5 R3=R1;
6 R4 = R1;
7 R=R1;
8 V_IN1=1;
9 V_IN2=2;
10 V_IN3=3;
11 V_IN4=4;
12 V_{OUT} = -(R_f/R) * (V_{IN1} + V_{IN2} + V_{IN3} + V_{IN4});
13 disp(V_OUT, 'output voltage in volts')
14 V_{IN_avg} = (V_{IN1} + V_{IN2} + V_{IN3} + V_{IN4})/4;
15 if abs(V_OUT) == V_IN_avg then
16
        disp('the amplifier produces an output whose
           magnitude is the mathematical average of the
           input voltages')
17 \text{ end}
```

Scilab code Exa 13.7 Scaling adder

```
1 // ex13.4
2 V_IN1=3;
3 V_IN2=2;
4 V_{IN3} = 8;
5 R_f = 10*10^3;
6 R1=47*10^3;
7 R2=100*10^3;
8 R3 = 10 * 10^3;
9 weight_of_input1=R_f/R1;
10 weight_of_input2=R_f/R2;
11 weight_of_input3=R_f/R3;
12 V_OUT = - (weight_of_input1 * V_IN1 + weight_of_input2 *
      V_IN2+weight_of_input3*V_IN3);
13 disp(weight_of_input1, 'weight_of_input1')
14 disp(weight_of_input2, 'weight_of_input2')
15 disp(weight_of_input3, 'weight_of_input3')
16 disp(V_OUT, 'output voltage in volts')
```

Scilab code Exa 13.8 Opamp integrator

```
1 //ex13.8
2 R_i=10*10^3;
3 C=0.01*10^-6;
4 V_in=2.5-(-2.5);
5 PW=100*10^-6; //pulse width
6 T=2*PW;
7 A=2.5;
8 op_change_cap_charge=-V_in/(R_i*C);
9 op_change_cap_discharge=V_in/(R_i*C);
10 disp(op_change_cap_charge, 'rate of change of output voltage with respect to time when capacitor is charging (in Volts per sec)')
11 disp(op_change_cap_discharge, 'rate of change of
```


Figure 13.3: Opamp integrator

```
output voltage with respect to time when
      capacitor is discharging (in Volts per sec)')
12 del_V_OUT=op_change_cap_discharge*PW;
13 disp(-del_V_OUT, 'when input is positive, the slope
      is negative, when input is negative, the slope
      is negative. So, the output is a triangular wave
      varying from zero to')
14 subplot (121)
15 xtitle('input voltage of op-amp differentiator')
16 t=0:10^-7:2*T;
17 a=bool2s(t>=T/2 \& t<=T)
18 b=bool2s(t>=1.5*T \& t<=2*T)
19 \quad a = bool2s(a|b)
20 b=~a;
21 y = -A * b + A * a;
22 plot(t,y)
23 subplot (122)
24 xtitle('output voltage of op-amp diferentiator')
25 x = [];
26 \quad A = del_V_OUT;
27 	 for t=0:10^-7:2*T
28
      tcor = t - floor(t/T) *T;
29
       if tcor >= 0 \& tcor < (T/2) then
             x_{temp} = -A + (2*A/T)*tcor;
30
31
         end;
32
         if tcor >= (T/2) \& tcor < T then
33
               x_{temp} = A - (2*A/T)*tcor;
34
           end
             x = [x, x_{temp}];
35
36
        end;
37 t=0:10^-7:2*T;
38 plot(t,x)
```


Figure 13.4: Opamp differentiator

Scilab code Exa 13.9 Opamp differentiator

```
1 / \exp 13.9
2 R_f = 2.2*10^3;
3 C=0.001*10^-6;
4 Vc=5-(-5);
5 A = 5;
6 time_const=R_f*C;
7 T = 10 * 10^{-6};
8 t=T/2;
9 slope=Vc/t;
10 V_{out}=slope*time_const; //V_{out} is negative when
      input is positive and V_out is positive when
      input is negative
11 disp(V_out, 'output voltage in volts is a square wave
       with peak voltages positive and negative of')
12 subplot (121)
13 xtitle('input voltage for integrator op-amp')
14 x = [];
15 for t=0:10^-8:2*T
16
      tcor = t - floor(t/T) *T;
17
       if tcor >= 0 \& tcor < (T/2) then
18
             x_{temp} = -A + (4*A/T)*tcor;
19
          end;
20
          if tcor >= (T/2) \& tcor < T then
21
               x_{temp} = 3*A - (4*A/T)*tcor;
22
            end
23
             x = [x, x_{temp}];
24
        end;
        t=0:10^-8:2*T;
25
26
        plot(t,x)
27 subplot (122)
28 xtitle('output voltage of differentiator op-amp')
29 a=bool2s(t>=T/2 \& t<=T)
30 b = bool2s(t > = 1.5 * T \& t < = 2 * T)
31 \quad a = bool2s(a|b)
32 b=~a;
33 y=V_out*a-V_out*b;
```

```
34 plot(t,y)
35 disp(V_out, 'max output voltage in volts')
36 disp(-V_out, 'min output voltage in volts')
```

Chapter 14

Special Purpose Opamp Circuits

Scilab code Exa 14.1 Gain setting resistor

```
1 //ex14.1
2 R1=25*10^3;
3 R2=R1;
4 A_cl=500; //closed loop voltage gain
5 R_G=2*R1/(A_cl-1);
6 disp(R_G,'value of the external gain setting resistor in ohms')
```

Scilab code Exa 14.2 Voltage gain Instrumentation amplifier

```
1 //ex14.2
2 R1=25.25*10^3;  //internal resistors
3 R2=R1;
4 R_G=510;
5 A_v=(2*R1/R_G)+1;
6 disp(A_v,'voltage gain')
```

```
7 BW=60*10^3;
8 disp(BW, 'bandwidth from graph, in hertz')
```

Scilab code Exa 14.3 Isolation amplifier

```
1 //ex14.3
2 disp("cannot be shown in scilab")
```

Scilab code Exa 14.4 Voltage gain Isolation amplifier

```
1  //ex14.4
2  R_f1=22*10^3;
3  R_i1=2.2*10^3;
4  R_f2=47*10^3;
5  R_i2=10*10^3;
6  A_v1=(R_f1/R_i1)+1;  //voltage gain of input stage
7  A_v2=(R_f2/R_i2)+1;  //voltage gain of output stage
8  A_v=A_v1*A_v2;
9  disp(A_v,'total voltage gain of the isolation amplifier')
```

Scilab code Exa 14.5 Transconductance OTA

```
1 //ex14.5
2 g_m=1000*10^-6;
3 V_in=25*10^-3;
4 I_out=g_m*V_in;
5 disp(I_out, 'output current in amperes')
```

Scilab code Exa 14.6 Voltage gain OTA

Scilab code Exa 14.7 Output OTA amplitude modulator

Figure 14.1: Output OTA amplitude modulator

Scilab code Exa 14.8 Output log amplifier

```
1 //ex14.8
2 V_in=2;
3 I_R=50*10^-9;
4 R1=100*10^3;
5 //voltage output for log amplifier
6 V_OUT=-0.025*log(V_in/(I_R*R1));
7 disp(V_OUT, 'output voltage in volts')
```

Scilab code Exa 14.9 Transistor log amplifier

```
1 //ex14.9
2 V_in=3;
3 I_EB0=40*10^-9;
4 R1=68*10^3;
5 //voltage output for log amplifier
6 V_OUT=-0.025*log(V_in/(I_EB0*R1));
7 disp(V_OUT, 'output voltage in volts')
```

Scilab code Exa 14.10 Antilog amplifier

```
1 //ex14.10
2 I_EB0=40*10^-9;
3 V_in=175.1*10^-3;
4 R_f=68*10^3;
5 V_OUT=-I_EB0*R_f*exp(V_in/0.025);
6 disp(V_OUT, 'output voltage in volts')
```

Active Filters

Scilab code Exa 15.1 Band pass filter

```
1 //EX15.1
2 f0=15*10^3; //center frequency in hertz
3 BW=1*10^3;
4 Q=f0/BW;
5 if Q>10 then
6    disp(Q, 'narrow band filter')
7 end
```

Scilab code Exa 15.2 Butterworth response

```
1 //ex15.2
2 R2=10*10^3;
3 R1=0.586*R2; //FOR BUTTERWORTH RESPONSE
4 disp(R1, 'R1 in ohms')
5 disp('5.6 kilo ohm will be ideally close to maximally flat butterworth response')
```

Scilab code Exa 15.3 Sallen Key lowpass filter

```
1 //ex15.3
2 R_A=1*10^3;
3 R2=1*10^3;
4 R_B=R_A;
5 R=R_A;
6 C_A=0.022*10^-6;
7 C_B=C_A;
8 C=C_A;
9 f_c=1/(2*%pi*R*C); //critical frequency
10 R1=0.586*R2; //for butterworth response
11 disp(f_c,'critical frequency in hertz')
12 disp(R1,'value of R1 in ohms')
```

Scilab code Exa 15.4 4 pole filter

```
1 // ex15.4
2 f_c = 2860;
3 R=1.8*10^3;
4 C=1/(2*\%pi*f_c*R);
5 R2=R;
                   //BUTTERWORTH RESPONSE IN FIRST
6 R1 = 0.152 * R2;
     STAGE
7 R4=R;
8 R3=1.235*R4;
                   //BUTTERWORTH RESPONSE IN SECOND
     STAGE
9 disp(C, 'capacitance in farads');
10 disp(R1, 'R1 in ohms for butterworth response in
      first stage')
11 disp(R3, 'R3 in ohms for butterworth response in
     second stage')
```

Scilab code Exa 15.5 Sallen Key highpass filter

```
//ex15.5
f_c=10*10^3; //critical frequency in hertz
R=33*10^3; //Assumption

R2=R;
C=1/(2*%pi*f_c*R);
R1=0.586*R2; //for butterworth response
disp(C, 'Capacitance in Farads')
disp(R1, 'R1 in ohms taking R2=33kilo-ohms')
R1=3.3*10^3; //Assumption
R2=R1/0.586; //butterworth response
disp(R2, 'R2 in ohms taking R1=3.3kilo-ohms')
```

Scilab code Exa 15.6 Cascaded filter

```
1 //ex15.6
2 R1=68*10^3;
3 R2=180*10^3;
4 R3=2.7*10^3;
5 C=0.01*10^-6;
6 f0=(sqrt((R1+R3)/(R1*R2*R3)))/(2*%pi*C);
7 A0=R2/(2*R1);
8 Q=%pi*f0*C*R2;
9 BW=f0/Q;
10 disp(f0, 'center frequency in hertz')
11 disp(A0, 'maximum gain')
12 disp(BW, 'bandwidth in hertz')
```

Scilab code Exa 15.7 State variable filter

```
1 // ex15.7
2 R4=10^3;
```

```
3 C1=0.022*10^-6;
4 R7=R4;
5 C2=C1;
6 R6=R4;
7 R5=100*10^3;
8 f_c=1/(2*%pi*R4*C1); //critical frequency in hertz for each integrator
9 f0=f_c //center frequency
10 Q=(1+(R5/R6))/3;
11 BW=f0/Q;
12 disp(f0, 'center frequency in hertz')
13 disp(Q, ' value of Q')
14 disp(BW, 'bandwidth in hertz')
```

Scilab code Exa 15.8 Band stop filter

```
1 //ex15.8
2 R4=12*10^3;
3 C1=0.22*10^-6;
4 R7=R4;
5 C2=C1;
6 R6=3.3*10^3;
7 Q=10;
8 f0=1/(2*%pi*R7*C2);
9 R5=(3*Q-1)*R6;
10 disp(f0, 'center frequency in hertz')
11 disp(R5, 'R5 in ohms')
12 disp('Nearest value is 100 kilo-ohms')
```

Oscillators

Scilab code Exa 16.1 Wien bridge oscillator

```
1 // ex16.1
2 R1 = 10 * 10^3;
3 R2 = R1;
4 R=R1;
5 C1=0.01*10^-6;
6 C2 = C1;
7 C=C1;
8 R3=1*10^3;
9 \text{ r_ds} = 500;
10 f_r=1/(2*\%pi*R*C);
11 disp(f_r, 'resonant frequency of the Wein-bridge
      oscillator in Hertz')
12 //closed loop gain A_v=3 to sustain oscillations
13 A_v = 3;
14 //A_v = (R_f + R_i) + 1 where R_i is composed of R3 and
      r_ds
15 R_f = (A_v - 1) * (R3 + r_ds);
16 disp(R_f, 'value of R_f in ohms')
```

Scilab code Exa 16.2 Phase shift oscillator

Scilab code Exa 16.3 FET Colpitts oscillator

Scilab code Exa 16.4 Triangular wave oscillator

```
1 // ex16.4
2 R1=10*10^3;
```

Scilab code Exa 16.5 Sawtooth VCO

```
1 // ex16.5
2 V = 15;
3 C=0.0047*10^-6;
4 R3=10*10^3;
5 R4 = R3;
6 R2=10*10^3;
7 R1=68*10^3;
8 R_i = 100 * 10^3;
9 V_G=R4*V/(R3+R4); //gate voltage at which PUT
      turns on
10 V_p = V_G;
               //neglecting 0.7V, this the peak voltage
       of sawtooth wave
11 disp(V_p, 'neglecting 0.7V, this the peak voltage of
      sawtooth wave in volts')
             //minimum peak value of sawtooth wave
12 V_F = 1;
13 V_pp = V_p - V_F;
14 disp(V_pp, 'peak to peak amplitude of the sawtooth
      wave in volts')
15 V_IN = -V * R2/(R1 + R2);
```


Figure 16.1: Sawtooth VCO

```
16 f=(abs(V_IN)/(R_i*C))*(1/(V_pp));
17 disp(f, 'frequency of the sawtooth wave')
18 T=1/f;
19 xtitle('Sawtooth voltage controlled oscillator')
20 x = [];
21 for t=0:1*10^-5:4*10^-3
      tcor = t - floor(t/T) *T;
22
               x_{temp} = (V_{pp}/T)*tcor + 1;
23
24
            x = [x, x_{temp}];
25
        end;
        t=0:1*10^-5:4*10^-3
26
27
        plot(t,x)
```

Scilab code Exa 16.6 555 timer

```
1 //ex16.6
2 R1=2.2*10^3;
3 R2=4.7*10^3;
4 C_ext=0.022*10^-6;
5 f_r=1.44/((R1+2*R2)*C_ext);
6 disp(f_r, 'frequency of the 555 timer in hertz')
7 duty_cycle=((R1+R2)/(R1+2*R2))*100;
8 disp(duty_cycle, 'duty cycle in percentage')
```

Voltage Regulators

Scilab code Exa 17.1 Percentage line regulation

```
1 //Ex17.1
2 Del_V_out=0.25;
3 V_out=15;
4 Del_V_in=5; //All voltages in Volts
5 line_regulation=((Del_V_out/V_out)/Del_V_in)*100;
6 disp(line_regulation, 'line regulation in %/V')
```

Scilab code Exa 17.2 Load regulation percentage

```
1 //Ex17.2
2 V_NL=12;    //No load output voltage in Volts
3 V_FL=11.9;    //Full load output voltage in Volts
4 I_F=10;    //Full load current in milli-Amperes
5 load_regulation=((V_NL-V_FL)/V_FL)*100;
6 load_reg=load_regulation/I_F;
7 disp('load_regulation as percentage change from no load to full load')
8 disp(load_regulation)
```

Scilab code Exa 17.3 Series regulator

```
//Ex17.3
//All voltages are in Volts and Resistances in Ohms
V_REF=5.1 //Zener voltage
R2=10*10^3;
R3=10*10^3;
V_out=(1+(R2/R3))*V_REF;
disp(V_out, 'output voltage in volts')
```

Scilab code Exa 17.4 Overload protection

```
1 //Ex-17.4
2 R4=1; //Resistance in Ohms
3 I_L_max=0.7/R4;
4 disp(I_L_max, 'maximum current provided to load(in amperes)')
```

Scilab code Exa 17.5 Shunt regulator

```
1 //Ex17.5
2 V_IN=12.5; //maximum input voltage in volts
3 R1=22; //In Ohms
4 //Worst case of power dissipation is when V_OUT=0V
5 V_OUT=0;
6 V_R1=V_IN-V_OUT; //Voltage across R1
```

Scilab code Exa 17.6 Positive linear voltage regulator

```
1 //Ex17.6
2 disp('SAME AS EX-2.8 in CHAPTER-2')
```

Scilab code Exa 17.7 External pass filter

```
1 //Ex17.7
2 I_max=700*10^-3; //in Amperes
3 R_ext=0.7/I_max;
4 disp(R_ext, 'value of resistor in Ohms for which max current is 700mA')
```

Scilab code Exa 17.8 Power rating 7824

Scilab code Exa 17.9 Current regulator

```
1 //Ex17.9
2 V_out=5; //7805 gives output voltage of 5V
3 I_L=1; //constant current of 1A
4 R1=V_out/I_L;
5 disp(R1, 'The value of current-setting resistor in ohms is')
```

Programmable Analog Arrays

Scilab code Exa 18.1 Switching capacitor

```
1 //Ex18.1
2 C=1000*10^-12;  //Switche capacitor value in farads
3 R=1000;  //resistance in ohms
4 T=R*C;  //Time period
5 f=1/T;  //Frequency at which switch should operate
6 disp(f,'Frequency at which each switch should operate(in hertz)')
7 disp('Duty cycle should be 50%')
```

Appendix

Scilab code AP 1 Phase shift in degrees

Scilab code AP 5 value of K

1 //VALUE OF K

```
1 function theta=phase_shift(f,f_c)
       theta_rad=-atan((f/f_c))
       theta=theta_rad*180/%pi;
3
4 endfunction
  Scilab code AP 2 Open loop gain
1 function A_ol=open_loop_gain(A_ol_mid,f,f_c_ol)
       A_ol=A_ol_mid/(sqrt(1+(f/f_c_ol)^2))
3 endfunction
  Scilab code AP 3 Voltage gain in decibel
1 function A_v_dB=gain_in_decibel_voltage(A_v)
       A_v_dB = 20 * log 10 (A_v)
3 endfunction
  Scilab code AP 4 Power gain in decibel
1 function A_p_dB=gain_in_decibel_power(A_p)
^2
       A_p_dB = 10 * log 10 (A_p)
3 endfunction
```