1º Trabalho de Matemática Discreta – Profa Dra Karla Lima

Conteúdo abordado nas questões: Lógica formal (proposicional e de predicados) e construções de provas (diretas, indiretas, contrapositiva e por indução).

Data de entrega: 14-09-2015

- 1. Encontre uma expressão lógica utilizando os operadores \land , \lor e \neg , que é logicamente equivalente a $x \leftrightarrow y$. Prove que sua expressão está correta.
- 2. Qual é o valor verdade de cada uma das seguintes expressões onde o domínio consiste de inteiros, justifique.
 - a. $(\forall x)(\exists y)(x+y=x)$
 - b. $(\exists y)(\forall x)(x+y=x)$
 - c. $(\forall x)(\exists y)(x+y=0)$
 - d. $(\exists y)(\forall x)(x+y=0)$
- 3. Use a lógica proposicional para provar a validade dos seguintes argumentos:
 - a. $(P \rightarrow Q) \land (P' \rightarrow Q) \rightarrow Q$
 - b. $(P \lor (Q \land R)) \land (R' \lor S) \land (S \rightarrow T') \rightarrow (T \rightarrow P)$
 - c. $(A \lor B) \land (A \to C) \land (B \to C) \to C$
 - d. $A' \rightarrow (A \rightarrow B)$
- 4. Em cada uma das fórmulas ou prove que cada uma das seguintes expressões é válida ou dê uma interpretação em que esta é falsa.
 - a. $(\exists x)[A(x) \land B(x)] \rightarrow (\exists x)A(x) \land (\exists x)B(x)$
 - b. $(\forall x)(\forall y)Q(x,y) \rightarrow (\forall y)(\forall x)Q(x,y)$
 - c. $(\forall x)P(x) \lor (\exists x)Q(x) \to (\forall x)[P(x) \lor Q(x)]$
 - d. $(\forall y)[Q(x,y) \to P(x)] \to (\exists y)[Q(x,y) \to P(x)]$
- 5. Prove as seguintes declarações usando prova direta, indireta ou contrapositiva, ou dê contra exemplo em caso de falsidade.
 - a. Se dois inteiros são, cada um, divisível por algum inteiro n, então a soma destes inteiros é divisível por n.
 - b. Para x, y números positivos, x<y se somente se $x^2<$ y 2 .
 - c. O produto do quadrado de dois inteiros é um quadrado perfeito.
 - d. Prove que $\sqrt{5}$ não é um número racional.
 - e. O produto de dois números irracionais é irracional
 - f. A soma de dois números racionais é um número racional
- 6. Prove por indução que as seguintes afirmações são verdadeiras para todo inteiro positivo.
 - a. n³+2n é divisível por 3
 - b. $2^{n-1} \le n!$ para n≥1.
 - c. $1+2+...+n < n^2$ para n > 1.
 - d. $1.2^{1}+2.2^{2}+3.2^{3}+...+n.2^{n}=(n-1)2^{n+1}+2$