改进的不使用双线性对无证书签 密方案

岳泽轮

武警后勤学院

2019年10月

内容提要

- 1 研究背景
- ② 方案细节
- ③ 方案正确性
- 4 实验分析
- 5 方案改进
- 6 结论与展望

研究背景

定义(离散对数问题)

令 p 和 q 为满足条件 q|p-1 的两个大素数,g 是 \mathbb{Z}_p^* 中阶为 q 的生成元,给定 $g,g^a\in\mathbb{Z}_p^*$,求出 $a\in\mathbb{Z}_q^*$ 。

定义 (计算性 Diffie-Hellman(CDH) 问题)

令 p 和 q 为满足条件 q|p-1 的两个大素数,g 是 \mathbb{Z}_p^* 中阶为 q 的生成元,给定 $g,g^a,g^b\in\mathbb{Z}_p^*$,求出 $g^ab\in\mathbb{Z}_p^*$ 。

- 1 研究背景
- ② 方案细节
- ③ 方案正确性
- 4 实验分析
- 5 方案改进
- 6 结论与展望

系统建立阶段

输入安全参数 k,输出满足条件 q|p-1 的两个大素数 p 和 q,取 g 为群 \mathbb{Z}_p^* 中任意阶为 q 的生成元。

定义抗碰撞的安全哈希函数:

 $H_1: \{0,1\}^L \times \mathbb{Z}_p^* \times \mathbb{Z}_p^* \to \mathbb{Z}_q^*$,

 $H_2: \{0,1\}^L \times \mathbb{Z}_p^* \times \mathbb{Z}_p^* \times \mathbb{Z}_p^* \to \mathbb{Z}_q^*$, 其中, L 为用户身份标识 ID 的长度。

系统建立阶段

随机选取系统主密钥 $s \in \mathbb{Z}_p^*$, 计算 $P_{Pub} = g^s \mod p$; 公开 $Params = \langle p, q, \mathbb{Z}_p^*, g, P_{pub}, H_1, H_2 \rangle$, 秘密保存 主密钥 s.

用户密钥生成阶段

用户 ID_i 的密钥生成过程如下:

- 1) 随机选取秘密值 $x_i \in \mathbb{Z}_q^*$, 计算 $X_i = g^{x_i}$, 发送身份标识 ID_i 和公开参数 X_i 给 KGC。
- 2) 给定用户身份标识 ID_i 及公开参数 X_i , KGC 随机选取秘密数 $r_i \in \mathbb{Z}_q^*$, 分别计算 $Y_i = g^{r_i}$ 和 $y_i = r_i + sH_1(ID_i, X_i, Y_i)$, 通过安全信道将 y_i 和 Y_i 返回给用户 ID_i , 其中 y_i 为用户的部分私钥, Y_i 为用户的部分公钥。因此,用户 ID_i 人公私钥 对为 $< PK_i = (X_i, Y_i), SK_i = (x_i, y_i) >$ 。

用户密钥生成阶段

设发送方为 Alice $(ID_a) < PK_a = (X_a, Y_a), SK_a = (x_a, y_a) >$,接收方为

Reciver(ID_b)< $PK_b = (X_b, Y_b), SK_b = (x_b, y_b) >$ 。 通过等式 $g^{y_a} = Y_a P_{Pub}^{H_1(ID_a, X_a, Y_a)}$ 和 $g^{y_b} = Y_b P_{Pub}^{H_1(ID_b, X_b, Y_b)}$ 来验证 KGC 生成的部分私 钥和部分公钥的正确性。

签密阶段

要发送的明文消息为 m, 进行如下操作: 1) 随机选取秘密数 $\omega \in c$, 计算 $R = g^{\omega}$;

- 2) 计算 $h_1^B = H_1(ID_b, X_b, Y_b)$, $T = (X_b Y_b P_{Pub}^{h_1^B})^{\omega}$ 和 $C = m \cdot T$;
- 3) 计算 $h = H_2(ID_a, T, m, C)$ 和 $S = h \cdot \omega(x_a + y_a)^{-1}$;
- 4) 发送 $\sigma = (R, C, S)$ 给接收者 Bob。

解签密阶段

收到 $\sigma = (R, C, S)$ 后,进行如下操作: 1) 计算 $T' = R^{x_b + y_b}$, $m' = T^{-1} \cdot C$ 。

- 2) 计算 $h' = H_2(ID_a, T', m', C)$ 和 $h_1^A = H_1(ID_a, X_a, Y_a)$;
- 3) 验证等式 $R^{h'}=(X_aY_aP_{Pub}^{h_A^A})^S$,若成立,则接受 m',否则输出 \bot 。

- 1 研究背景
- ② 方案细节
- ③ 方案正确性
- 4 实验分析
- 5 方案改进
- 6 结论与展望

方案正确性

解密正确性

$$T' = R^{x_b + y_b} = g^{(x_b + y_b)\omega}$$

= $g^{(x_b + r_b + sh_1^B)\omega}$
= $(X_b Y_b P_{pub}^{h_1^B})^{\omega} = T$

签名正确性

由
$$T' = T$$
 可得 $h' = H_2(ID_a, T', m', C) = h$, $R^{h'} = g^{h'\omega} = g^{h\omega}$, $(X_a Y_a P_{Dub}^{h_1^A})^S = g^{(x_a + y_a) \cdot h \cdot \omega \cdot (x_a + y_a)^{-1}} = g^{h\omega}$

- 1 研究背景
- ② 方案细节
- ③ 方案正确性
- 4 实验分析
- 5 方案改进
- 6 结论与展望

实验分析

实验数据

方案	128bit	256bit	512bit	1024bit	2048bit
Zhou 方案	230.3	469.7	1760.3	6341.1	27950.2
本文方案	115.7	252.4	979.4	3711.1	17863.2

实验分析

- 1 研究背景
- ② 方案细节
- ③ 方案正确性
- 4 实验分析
- 5 方案改进
- 6 结论与展望

方案改进

签密阶段

要发送的明文消息为 m,进行如下操作: 1) 随机选取秘密数 $\omega \in \mathbb{Z}_q^*$,计算 $R = g^{\omega}$;

2) 计算 $h_1^B = H_1(ID_b, X_b, Y_b)$, $T = (X_b Y_b P_{Pub}^{h_1^B})^{\omega}$ 和 $C = m \cdot T$,

$$m = [m_1, m_2, \dots, m_{\mu}], \quad \mu = |m|/|\mathbb{Z}_p^*|,$$
 $C_1 = m_1 \cdot T, \quad C_2 = m_2 \cdot T, \quad \dots, \quad C_{\mu} = m_{\mu} \cdot T,$
 $C = [C_1, C_2, \dots, C_{\mu}];$

- 3) 计算 $h = H_2(ID_a, T, m, C)$ 和 $S = h \cdot \omega (x_a + y_a)^{-1}$;
- 4) 发送 $\sigma = (R, C, S)$ 给接收者 Bob。

改进后方案实验分析

实验数据

方案	128bit	256bit	512bit	1024bit	2048bit
Zhou 方案	330.1	559.4	1868.9	6398.9	28312.2
本文方案	301.2	397.9	1101.1	3815.8	17941.9

改进后方案实验分析

- 1 研究背景
- ② 方案细节
- ③ 方案正确性
- 4 实验分析
- 5 方案改进
- 6 结论与展望

结论与展望

1 结论

与周彦伟方案相比,本文方案在效率上有较大提 升。

2 不足之处

本文方案对明文的加密方式造成加密的效率并不 是很高,改进后虽然可以加密任意长度的明文, 但在一定程度上会造成安全性的降低。

3 下一步的研究方向

进一步提升无证书签密方案的加解密效率和安全性,探索无证书签密方案在前沿研究领域的应用。

谢谢! Thank you!