

AP2112

General Description

The AP2112 is CMOS process low dropout linear regulator with enable function, the regulator delivers a guaranteed 600mA (min.) continuous load current.

The AP2112 provides 1.2V, 1.8V, 2.5V, 2.6V and 3.3V regulated output, and provides excellent output accuracy 1.5%, also provides an excellent load regulation, line regulation and excellent load transient performance due to very fast loop response. The AP2112 has built-in auto discharge function.

The regulator features low power consumption, and provides SOT-23-5, SOT-89-5, and SOIC-8 packages.

Features

- Output voltage accuracy: ±1.5%
- Output Current: 600mA (Min.)
- Foldback Short Current Protection: 50mA
- Enable Function to Turn ON/OFF V_{OUT}
- Low Dropout Voltage (3.3V): 250mV (Typ.) @I_{OUT}=600mA
- Excellent Load Regulation: 0.2%/A (Typ.)
- Excellent Line Regulation: 0.02%/V (Typ.)
- Low Quiescent Current: 55µA (Typ.)
- Low Standby Current: 0.01µA (Typ.)
- Low Output Noise: 50μV_{RMS}
- PSRR: 100Hz -65dB, 1k -65dB
- OTSD Protection
- Stable with 1.0μF Flexible Cap: Ceramic, Tantalum and Aluminum Electrolytic
- Operation Temperature Range: -40°C to 85°C
- ESD: MM 400V, HBM 4000V

Applications

- Laptop computer
- Potable DVD
- LCD Monitor

Figure 1. Package Type of AP2112

AP2112

Pin Configuration

Figure 2. Pin Configuration of AP2112 (Top View)

Pin Descriptions

	PIN No.		N .T	D			
SOT-23-5	SOT-89-5	SOIC-8	Name	Descriptions			
1	4	8	VIN	Input Voltage			
2	2	6, 7	GND	GND			
3	3 (R5)	5	EN	Chip Enable, H – normal work, L – shutdown output			
3	1 (R5A)	J	EM	Chip Enable, H – normal work, L – shutdown output			
4	1 (R5)	2.2.4	NC	No Commondian			
4	3 (R5A)	2, 3, 4	NC	No Connection			
5	5	1	VOUT	Output Voltage			

AP2112

Functional Block Diagram

Figure 3. Functional Block Diagram of AP2112

AP2112

Ordering Information

Package	Temperature Range	Condition	Part Number	Marking ID	Packing Type
		1.2V	AP2112K-1.2TRG1	G3L	Tape & Reel
		1.8V	AP2112K-1.8TRG1	G3M	Tape & Reel
SOT-23-5	-40 to 85°C	2.5V	AP2112K-2.5TRG1	G3N	Tape & Reel
		2.6V	AP2112K-2.6TRG1	G5N	Tape & Reel
		3.3V	AP2112K-3.3TRG1	G3P	Tape & Reel
		1.27/	AP2112M-1.2G1	2112M-1.2G1	Tube
		1.2V	AP2112M-1.2TRG1	2112M-1.2G1	Tape & Reel
		1.8V	AP2112M-1.8G1	2112M-1.8G1	Tube
		1.6 V	AP2112M-1.8TRG1	2112M-1.8G1	Tape & Reel
		2.5V	AP2112M-2.5G1	2112M-2.5G1	Tube
SOIC-8	-40 to 85°C	2.3 V	AP2112M-2.5TRG1	2112M-2.5G1	Tape & Reel
		2.6V	AP2112M-2.6G1	2112M-2.6G1	Tube
			AP2112M-2.6TRG1	2112M-2.6G1	Tape & Reel
		2.277	AP2112M-3.3G1	2112M-3.3G1	Tube
		3.3V	AP2112M-3.3TRG1	2112M-3.3G1	Tape & Reel
		1.2V(R5)	AP2112R5-1.2TRG1	G37D	Tape & Reel
		1.8V(R5)	AP2112R5-1.8TRG1	G37E	Tape & Reel
SOT-89-5	-40 to 85°C	2.5V(R5)	AP2112R5-2.5TRG1	G37F	Tape & Reel
		2.6V(R5)	AP2112R5-2.6TRG1	G13F	Tape & Reel
		3.3V(R5)	AP2112R5-3.3TRG1	G37G	Tape & Reel
		1.2V(R5A)	AP2112R5A-1.2TRG1	G33C	Tape & Reel
		1.8V(R5A)	AP2112R5A-1.8TRG1	G33E	Tape & Reel
SOT-89-5	-40 to 85°C	2.5V(R5A)	AP2112R5A-2.5TRG1	G28G	Tape & Reel
		2.6V(R5A)	AP2112R5A-2.6TRG1	G13E	Tape & Reel
		3.3V(R5A)	AP2112R5A-3.3TRG1	G28H	Tape & Reel

BCD Semiconductor's Pb-free products, as designated with "G1" suffix in the part number, are RoHS compliant and Green.

AP2112

Absolute Maximum Ratings (Note 1)

Parameter		Symbol	Val	ue	Unit	
Power Supply Voltage		V_{CC}	6	6.5		
Operating Junction Temperature Range		T_{J}	150		°C	
Storage temperature Range		T_{STG}	-65 to	150	°C	
Lead Temperature (Soldering,10 Seconds)		T_{LEAD}	26	°C		
			SOT-23-5	184		
Thermal Resistanc		$ heta_{ m JA}$	SOIC-8	114	°C /W	
7 moient) (140 net	Ambient) (No heatsink)		SOT-89-5	120		
	Machine Model		400		V	
ESD	Human Body Model		4000		V	

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Supply Voltage	V_{IN}	2.5	6.0	V
Ambient Operation Temperature Range	T _A	-40	85	°C

AP2112

Electrical Characteristics

AP2112-1.2 Electrical Characteristic (Note 2)

 V_{IN} =2.5V, C_{IN} =1.0 μ F (Ceramic), C_{OUT} =1.0 μ F (Ceramic), Typical T_A =25°C, **Bold** typeface applies over -40°C \leq T $_J$ \leq 85°C ranges, unless otherwise specified (Note 3).

Parameter	Symbol	Test Co	onditions	Min	Тур	Max	Unit
Output Voltage	$V_{ m OUT}$	V _{IN} =2.5V, 1mA	$\leq I_{OUT} \leq 30 \text{mA}$	V _{OUT} *98.5%	1.2	V _{OUT} *101.5%	V
Maximum Output Current	$I_{OUT(MAX)}$	$V_{IN} = 2.5 V$, $V_{OUT} = 1.182 V$ to	1.218V	600			mA
Load Regulation	$(\triangle V_{OUT}/V_{OUT})/$ $\triangle I_{OUT}$	V _{IN} =2.5V, 1mA ≤	$\leq I_{OUT} \leq 600 \text{mA}$		0.2	±0.1	%/A
Line Regulation	$(\triangle V_{OUT}/V_{OUT})/$ $\triangle V_{IN}$	2.5V≤V _{IN} ≤6V, I _O	_{out} =30mA		0.02		%/V
		I _{OUT} =10mA			1000	1300	
Dropout Voltage	$V_{ m DROP}$	I _{OUT} =300mA			1000	1300	mV
		I _{OUT} =600mA			1000	1300	
Quiescent Current	I_Q	V _{IN} =2.5V, I _{OUT} =6	0mA		55	80	μA
Standby Current	I_{STD}	V_{IN} =2.5V, V_{EN} in	OFF mode		0.01	1.0	μA
Power Supply	PSRR	Ripple 0.5Vp-p V _{IN} =2.5V,	f=100Hz		65		dB
Rejection Ratio	Torus	$I_{OUT}=100\text{mA}$	f=1KHz		65		ų D
Output Voltage Temperature Coefficient	(△VOUT/VOUT)/ △T	I_{OUT} =30mA T_A =-40°C to 85°C			±100		ppm
Short Current Limit	I_{SHORT}	V _{OUT} =0V			50		mA
RMS Output Noise	$V_{ m NOISE}$	No Load, 10Hz ≤	≤ f≤100kHz		50		μV_{RMS}
V _{EN} High Voltage	V_{IH}	Enable logic high	n, regulator on	1.5		6.0	V
V _{EN} Low Voltage	V_{IL}	Enable logic low	, regulator off	0		0.4	V
Start-up Time	T_S	No Load			20		μs
EN Pull Down Resistor	R_{PD}				3.0		$M\Omega$
V _{OUT} discharge Resistor	R _{DCHG}	Set EN pin at Lo	W		60		Ω
Thermal Shutdown Temperature	T_{OTSD}				160		0.0
Thermal Shutdown Hysteresis	T _{HYOTSD}				25		°C
		SOT-23-5			96		
Thermal Resistance	$ heta_{ m JC}$	SOIC-8			75		°C/W
		SOT-89-5		47			

Note 2: To prevent the Short Circuit Current protection feature from being prematurely activated, the input voltage must be applied before a current source load is applied.

Note 3: Production testing at TA=25°C. Over temperature specifications guaranteed by design only.

AP2112

Electrical Characteristics (Continued)

AP2112-1.8 Electrical Characteristic (Note 2)

 V_{IN} =2.8V, C_{IN} =1 μ F (Ceramic), C_{OUT} =1 μ F (Ceramic), Typical T_A = 25°C, **Bold** typeface applies over -40°C \leq T_J \leq 85°C ranges, unless otherwise specified (Note 3).

Parameter	Symbol	Test Conditions		Min	Тур	Max	Unit	
Output Voltage	V_{OUT}	V _{IN} =2.8V, 1mA	$\leq I_{OUT} \leq 30 \text{mA}$	V _{OUT} *98.5%	1.8	V _{OUT} *101.5%	V	
Maximum Output Current	$I_{OUT(MAX)} \\$	V_{IN} =2.8V, V_{OUT} =1.773V to	1.827V	600			mA	
Load Regulation	$(\triangle V_{OUT}/V_{OUT})/$ $\triangle I_{OUT}$	V_{OUT} =1.8V, 1mA \le I _{OUT} \le 600	$V_{IN}=V_{OUT}+1V$		0.2		%/A	
Line Regulation	$(\triangle V_{OUT}/V_{OUT})/$ $\triangle V_{IN}$	2.8V≤V _{IN} ≤6V, I _O	_{UT} =30mA		0.02	±0.1	%/V	
		I _{OUT} =10mA			500	700		
Dropout Voltage	V_{DROP}	I _{OUT} =300mA			500	700	mV	
		I _{OUT} =600mA			500	700		
Quiescent Current	I_Q	V _{IN} =2.8V, I _{OUT} =0mA			55	80	μA	
Standby Current	I_{STD}	V _{IN} =2.8V, V _{EN} in OFF mode			0.01	1.0	μΑ	
Power Supply Rejection Ratio	PSRR	Ripple 0.5Vp-p	f=100Hz		65		15	
		V _{IN} =2.8V, I _{OUT} =100mA	f=1KHz		65		dB	
Output Voltage Temperature Coefficient	$(\triangle V_{OUT}/V_{OUT})/\triangle T$	I _{OUT} =30mA T _A =-40°C to 85°C			±100		ppm	
Short Current Limit	I_{SHORT}	V _{OUT} =0V			50		mA	
RMS Output Noise	$V_{ m NOISE}$	No Load, 10Hz≤	f≤100kHz		50		μV_{RMS}	
V _{EN} High Voltage	$V_{ m IH}$	Enable logic high	n, regulator on	1.5		6.0	V	
V _{EN} Low Voltage	V _{IL}	Enable logic low,	regulator off	0		0.4	V	
Start-up Time	T_S	No Load			20		μs	
EN Pull Down Resistor	R_{PD}				3.0		ΜΩ	
V _{OUT} Discharge Resistor	R_{DCHG}	Set EN pin at Lo	w		60		Ω	
Thermal Shutdown Temperature	T_{OTSD}				160		0.0	
Thermal Shutdown Hysteresis	T_{HYOTSD}				25		°C	
		SOT-23-5		96				
Thermal Resistance	θ_{JC}	SOIC-8			75		°C /W	
		SOT-89-5			47			

Note 2: To prevent the Short Circuit Current protection feature from being prematurely activated, the input voltage must be applied before a current source load is applied.

Note 3: Production testing at TA=25°C. Over temperature specifications guaranteed by design only.

AP2112

Electrical Characteristics (Continued)

AP2112-2.5 Electrical Characteristic (Note 2)

 V_{IN} =3.5V, C_{IN} =1 μ F (Ceramic), C_{OUT} =1 μ F (Ceramic), Typical T_A = 25°C, **Bold** typeface applies over -40°C \leq T_J \leq 85°C ranges, unless otherwise specified (Note 3).

Parameter	Symbol			Min	Typ	Max	Unit	
Output Voltage	$V_{ m OUT}$	V _{IN} =3.5V, 1mA		V _{OUT} *98.5%	2.5	V _{OUT} *101.5%	V	
Maximum Output Current	I _{OUT(MAX)}	V_{IN} =3.5V, V_{OU} 2.537V	_{JT} =2.463V to	600			mA	
Load Regulation	$(\triangle V_{OUT}/V_{OUT})/$ $\triangle I_{OUT}$	V_{OUT} =2.5V, 1mA \le I _{OUT} \le 600	V _{IN} =V _{OUT} +1V, mA		0.2		%/A	
Line Regulation	$(\wedge \mathbf{V} / \mathbf{V})/$	3.5V≤V _{IN} ≤6V, I _O			0.02	±0.1	%/V	
		I _{OUT} =10mA			5	8		
Dropout Voltage	$V_{ m DROP}$	I _{OUT} =300mA			125	200	mV	
		I _{OUT} =600mA			250	400		
Quiescent Current	I_Q	V_{IN} =3.5V, I_{OUT} =0		55	80	μΑ		
Standby Current	I_{STD}	$V_{\rm IN}$ =3.5V, $V_{\rm EN}$ in		0.01	1.0	μΑ		
Power Supply Rejection Ratio		Ripple 0.5Vp-p	f=100Hz		65		dB	
		V _{IN} =3.5V, I _{OUT} =100mA	f=1KHz		65		ав	
Output Voltage Temperature Coefficient	$(\triangle V_{OUT}/V_{OUT})/\triangle T$	I_{OUT} =30mA T_A =-40°C to 85		±100		ppm		
Short Current Limit	I_{SHORT}	$V_{OUT}=0V$			50		mA	
RMS Output Noise	$V_{ m NOISE}$	No Load, 10Hz≤	≦ f≤100kHz		50		μV_{RMS}	
V _{EN} High Voltage	$V_{ m IH}$	Enable logic high	n, regulator on	1.5		6.0	V	
V _{EN} Low Voltage	V_{IL}	Enable logic low	, regulator off	0		0.4	v	
Start-up Time	T_{S}	No Load			20		μs	
EN Pull Down Resistor	R_{PD}				3.0		ΜΩ	
V _{OUT} Discharge Resistor	R_{DCHG}	Set EN pin at Lo	w		60		Ω	
Thermal Shutdown Temperature	T_{OTSD}				160		0.0	
Thermal Shutdown Hysteresis	T_{HYOTSD}				25		°C	
		SOT-23-5			96			
Thermal Resistance	$\theta_{ m JC}$	SOIC-8			75		°C /W	
		SOT-89-5			47			

Note 2: To prevent the Short Circuit Current protection feature from being prematurely activated, the input voltage must be applied before a current source load is applied.

Note 3: Production testing at T_A =25°C. Over temperature specifications guaranteed by design only.

AP2112

Electrical Characteristics (Continued)

AP2112-2.6 Electrical Characteristic (Note 2)

 V_{IN} =3.6V, C_{IN} =1 μ F (Ceramic), C_{OUT} =1 μ F (Ceramic), Typical T_A = 25°C, **Bold** typeface applies over -40°C \leq T_J \leq 85°C ranges, unless otherwise specified (Note 3).

Parameter	Symbol	Test Conditions		Min	Typ	Max	Unit	
Output Voltage	V_{OUT}	V _{IN} =3.6V, 1mA		V _{OUT} *98.5%	2.6	V _{OUT} *101.5%	V	
Maximum Output Current	I _{OUT(MAX)}	V_{IN} =3.6V, V_{OU} 2.639V	_{UT} =2.561V to	600			mA	
Load Regulation	$(\triangle V_{OUT}/V_{OUT})/ \triangle I_{OUT}$	V_{OUT} =2.6V, 1mA $\leq I_{OUT} \leq 600$	V _{IN} =V _{OUT} +1V, 0mA		0.2		%/A	
Line Regulation	$(\triangle V_{OUT}/V_{OUT})/ \triangle V_{IN}$	3.6V≤V _{IN} ≤6V, I _{OUT} =30mA			0.02	±0.1	%/V	
		I _{OUT} =10mA			5	8		
Dropout Voltage	$V_{ m DROP}$	I _{OUT} =300mA			125	200	mV	
		I _{OUT} =600mA			250	400		
Quiescent Current	I_Q	V _{IN} =3.6V, I _{OUT} =0mA			55	80	μΑ	
Standby Current	I_{STD}	$V_{\rm IN}$ =3.6V, $V_{\rm EN}$ in		0.01	1.0	μΑ		
Power Supply Rejection Ratio	PSRR	Ripple 0.5Vp-p	f=100Hz		65		t n	
		V _{IN} =3.6V, I _{OUT} =100mA	f=1KHz		65		dB	
Output Voltage Temperature Coefficient	$(\triangle V_{OUT}/V_{OUT})/\triangle$	I_{OUT} =30mA T_A =-40°C to 85		±100		ppm		
Short Current Limit	I_{SHORT}	V _{OUT} =0V			50		mA	
RMS Output Noise	V _{NOISE}	No Load, 10Hz ≤	≤ f≤100kHz		50		μV_{RMS}	
V _{EN} High Voltage	$ m V_{IH}$	Enable logic high	n, regulator on	1.5		6.0	V	
V _{EN} Low Voltage	V _{IL}	Enable logic low	, regulator off	0		0.4	V	
Start-up Time	T_{S}	No Load			20		μs	
EN Pull Down Resistor	R_{PD}				3.0		МΩ	
V _{OUT} Discharge Resistor	R_{DCHG}	Set EN pin at Lo	w		60		Ω	
Thermal Shutdown Temperature	T_{OTSD}				160		0.0	
Thermal Shutdown Hysteresis	T_{HYOTSD}				25		°C	
		SOT-23-5			96			
Thermal Resistance	$\theta_{ m JC}$	SOIC-8			75		°C/W	
		SOT-89-5		47				

Note 2: To prevent the Short Circuit Current protection feature from being prematurely activated, the input voltage must be applied before a current source load is applied.

Note 3: Production testing at $T_A = 25$ °C. Over temperature specifications guaranteed by design only.

AP2112

Electrical Characteristics (Continued)

AP2112-3.3 Electrical Characteristic (Note 2)

 V_{IN} =4.3V, C_{IN} =1 μ F (Ceramic), C_{OUT} =1 μ F (Ceramic), Typical T_A = 25°C, **Bold** typeface applies over -40°C \leq T_J \leq 85°C ranges, unless otherwise specified (Note 3).

Parameter	Symbol			Min	Тур	Max	Unit	
Output Voltage	V _{OUT}	V _{IN} =4.3V, 1mA	$\leq I_{OUT} \leq 30 \text{mA}$	V _{OUT} *98.5%	3.3	V _{OUT} *101.5%	V	
Maximum Output Current	I _{OUT(MAX)}	V_{IN} =4.3V, V_{OU} 3.350V	_{JT} =3.251V to	600			mA	
Load Regulation	△¹OUT	V _{IN} =4.3V, 1mA ≤	≤ I _{OUT} ≤600mA		0.2		%/A	
Line Regulation	$(\wedge \mathbf{V} / \mathbf{V})$	4.3V≤V _{IN} ≤6V, I _C	_{out} =30mA		0.02	±0.1	%/V	
		I _{OUT} =10mA			5	8		
Dropout Voltage	$V_{ m DROP}$	I _{OUT} =300mA			125	200	mV	
		I _{OUT} =600mA			250	400		
Quiescent Current	I_Q	V_{IN} =4.3V, I_{OUT} =6		55	80	μΑ		
Standby Current	I_{STD}	$V_{\rm IN}$ =4.3V, $V_{\rm EN}$ in		0.01	1.0	μΑ		
Power Supply Rejection Ratio	on PSRR	Ripple 0.5Vp-p	f=100Hz		65	65		
		V _{IN} =4.3V, I _{OUT} =100mA	f=1KHz		65		dB	
Output Voltage Temperature Coefficient	$(\triangle V_{OUT}/V_{OUT})/\triangle T$	I_{OUT} =30mA T_A =-40°C to 85		±100		ppm		
Short Current Limit	I_{SHORT}	$V_{OUT}=0V$			50		mA	
RMS Output Noise	V_{NOISE}	No Load, 10Hz ≤	≦ f≤100kHz		50		μV_{RMS}	
V _{EN} High Voltage	$V_{ m IH}$	Enable logic high	n, regulator on	1.5		6.0	V	
V _{EN} Low Voltage	V_{IL}	Enable logic low	, regulator off	0		0.4	v	
Start-up Time	T_{S}	No Load			20		μs	
EN Pull Down Resistor	R_{PD}				3.0		ΜΩ	
V _{OUT} Discharge Resistor	R _{DCHG}	Set EN pin at Lo	w		60		Ω	
Thermal Shutdown Temperature	T_{OTSD}				160		200	
Thermal Shutdown Hysteresis	T_{HYOTSD}				25		°C	
		SOT-23-5			96			
Thermal Resistance	$ heta_{ m JC}$	SOIC-8			75		°C/W	
		SOT-89-5		47				

Note 2: To prevent the Short Circuit Current protection feature from being prematurely activated, the input voltage must be applied before a current source load is applied.

Note 3: Production testing at T_A =25°C. Over temperature specifications guaranteed by design only.

AP2112

Typical Performance Characteristics

Figure 4. Output Voltage vs. Input Voltage

Figure 5. Output Voltage vs. Input Voltage

Figure 6. Quiescent Current vs. Temperature

Figure 7. Quiescent Current vs. Input Voltage

AP2112

Typical Performance Characteristics (Continued)

3.35 V_{IN}=4.3V 3.34 $C_{_{IN}}$ =1 μF 3.33 Output Voltage(V) 3.32 3.31 3.30 Am01=_{TUC} 3.29 I_{OUT}=100mA 3.28 I_{оит}=300mA 3.27 I___=600mA 3.26 3.25 60 40 80 Temperature(°C)

Figure 8. Output Voltage vs. Temperature

Figure 9. Output Voltage vs. Temperature

3.0 V_{IN}=4.3V Output Voltage (V) 2.5 T_A=-40°C 2.0 T_A= 25°C T_Δ= 85°C 1.5 1.0 0.5 0.0 -0.5 0.0 0.1 0.5 0.6 0.7 0.9 0.2 0.8 Output Current (A)

Figure 10. Output Voltage vs. Output Current

Figure 11. Output Voltage vs. Output Current

4.0

AP2112

Typical Performance Characteristics (Continued)

Figure 12. Output Voltage vs. Output Current

Figure 13. Output Voltage vs. Output Current

Figure 14. Dropout Voltage vs. Output Current

0.6

Figure 15. Ground Current vs. Output Current

AP2112

Typical Performance Characteristics (Continued)

Figure 16. PSRR vs. Frequency

Figure 17. Load Transient

Figure 18. Enable On

Figure 19. Enable Off

AP2112

Typical Application (Note 4)

Note 4: It is recommended to use X7R or X5R dielectric capacitor if $1.0\mu F$ ceramic capacitor is selected as input/output capacitors.

Figure 20. AP2112 Typical Application

AP2112

Mechanical Dimensions

SOT-23-5 Unit: mm(inch)

AP2112

Mechanical Dimensions (Continued)

SOT-89-5

Unit: mm(inch)

AP2112

Mechanical Dimensions (Continued)

SOIC-8 Unit: mm(inch)

Note: Eject hole, oriented hole and mold mark is optional.

BCD Semiconductor Manufacturing Limited

http://www.bcdsemi.com

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE

- Headquarters

BCD Semiconductor Manufacturing Limited

No. 1600, Zi Xing Road, Shanghai ZiZhu Science-based Industrial Park, 200241, China Tel: +86-21-24162266, Fax: +86-21-24162277

REGIONAL SALES OFFICE

Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd., Shenzhen Office Unit A Room 1203, Skyworth Bldg., Gaoxin Ave.1.S., Nanshan District, Shenzhen,

China Tel: +86-755-8826 7951 Fax: +86-755-8826 7865

- Wafer Fab

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd. 800 Yi Shan Road, Shanghai 200233, China Tel: +86-21-6485 1491, Fax: +86-21-5450 0008

Taiwan Office

BCD Semiconductor (Taiwan) Company Limited 4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei,

Taiwan Tel: +886-2-2656 2808 Fax: +886-2-2656 2806

USA Office BCD Semiconductor Corp. 30920 Huntwood Ave. Hayward, CA 94544, USA Tel: +1-510-324-2988 Fax: +1-510-324-2788