

CUSTOMER CHURN PREDICTION USING MACHINE LEARNING

By Aymane HANINE

PLAN

Context
Problem
Aproach
Solution
Business impact

Conclusion

What is customer churn?

The customer who cease a product or service for a given period is referred as churner.

Customer churn analysis and prediction in ecommerce is an issue now a days because it's very important to analyze behaviors of various customer to predict which customers are about to leave the subscription.

Problem?

The main problem is to predict if a customer would leave a subscription/ stop buying or not depending upon the previous data of the customer.

The impact of the churn rate is clear, so we need strategies to reduce it. Predicting churn is a good way to create proactive marketing campaigns targeted at the customers that are about to churn.

A Machine Learning Approach

Thanks to Machine Learning, we can build high performing tool to predict customer churn. The overall scope to build an ML-powered application to forecast customer churn is generic to standardized ML project structure that includes the following steps:

•

Data Preprocessing

Columns data types, missing values, unique values...

- The dataset is a 5630 rows × 20 columns table.
- 5 categorical features
- 7 columns containing missing values
- encode categorical data

The target column is "Churn"

Churn Value	Count	
0	4682	
1	948	

Pang	eIndex: 5630 entries 0 to 56	29					
RangeIndex: 5630 entries, 0 to 5629 Data columns (total 20 columns):							
#	Column	Non-No.11 County Divino					
π		Non-Null Count	Dtype				
		5600					
0	CustomerID	5630 non-null	int64				
1	Churn	5630 non-null	int64				
2	Tenure	5366 non-null	float64				
3	PreferredLoginDevice	5630 non-null	object				
4	CityTier	5630 non-null	int64				
5	WarehouseToHome	5379 non-null	float64				
6	PreferredPaymentMode	5630 non-null	object				
7	Gender	5630 non-null	object				
8	HourSpendOnApp	5375 non-null	float64				
9	NumberOfDeviceRegistered	5630 non-null	int64				
10	PreferedOrderCat	5630 non-null	object				
11	SatisfactionScore	5630 non-null	int64				
12	MaritalStatus	5630 non-null	object				
13	NumberOfAddress	5630 non-null	int64				
14	Complain	5630 non-null	int64				
15	OrderAmountHikeFromlastYear	5365 non-null	float64				
16	CouponUsed	5374 non-null	float64				
17	OrderCount	5372 non-null	float64				
18	DaySinceLastOrder	5323 non-null	float64				
19	CashbackAmount	5630 non-null	float64				
dtypes: float64(8), int64(7), object(5)							
memory usage: 879.8+ KB							

Data Evaluation

Plot histogram of numeric Columns

Data Evaluation

Analyze the distribution of categorical variables

Data Evaluation

Plot positive & negative correlations

Correlation matrix helps us to discover the bivariate relationship between independent variables in a dataset.

In this case, we can see a good positive correlatio in "Complain". there is a high probability that a customer churn if he has already complained.

Also, the higher the tenue, day of last order and cashback are the less chance that a customer will churn.

Correlation with Churn Rate

Model Selection

Compare Baseline Classification Algorithms

I modeled each classification algorithm over the training dataset and evaluate their accuracy and standard deviation scores.

To select the best model, I have used the Accurancy of the model. which is

$$\label{eq:accuracy} Accuracy = \frac{Number of correct predictions}{Total number of predictions}$$

$$ext{Accuracy} = rac{TP + TN}{TP + TN + FP + FN}$$

Accuracy Score Comparison

	Algorithm	ROC AUC Mean	ROC AUC STD	Accuracy Mean	Accuracy STD
6	Random Forest	98.88	0.54	96.27	1.08
2	Kernel SVM	92.61	1.24	91.01	1.65
5	Decision Tree Classifier	91.83	2.30	95.18	1.15
3	KNN	89.95	1.72	88.10	2.02
0	Logistic Regression	89.22	1.74	80.66	1.65
1	SVC	89.12	1.97	89.14	1.71
4	Gaussian NB	77.63	2.41	74.22	1.33

Model Evaluation

To evaluate the model, I have run a 'K- fold Cross-Validation' technique that primarily helps us to fix the variance. Variance problem occurs when we get good accuracy while running the model on a training set and a test set but then the accuracy looks different when the model is run on another test set.

Model Improvement

Model improvement basically involves choosing the hyperparameters, a set of configurable values external to a model that cannot be determined by the data, for the machine learning model that we have come up with.

To do so I used a grid search lethod as shown in the code.

In this case, the hyperparameters tuning didn't increase the accuracy of the model.

```
from sklearn.model_selection import GridSearchCV
# Create the parameter grid based on the results of random search
param_grid = {
    'bootstrap': [True],
    'max_depth': [80, 90, 100, 110, None],
    'max_features': [2, 3, "sqrt"],
    'min_samples_leaf': [1, 3, 4, 5],
    'min_samples_split': [2, 8, 10, 12],
    'n_estimators': [100, 200, 300, 1000]
# Create a based model
rf = RandomForestClassifier()
# Instantiate the grid search model
grid_search = GridSearchCV(estimator = rf, param_grid = param_grid,
                          cv = 3, n_{jobs} = -1, verbose = 2)
```

```
{'bootstrap': True,
  'max_depth': 110,
  'max_features': 'sqrt',
  'min_samples_leaf': 1,
  'min_samples_split': 2,
  'n_estimators': 1000}
```

Best Model Parametes

Model Improvement

Model Explanability

SHAP values interpret the impact of having a certain value for a given feature in comparison to the prediction we'd make if that feature took some baseline value.

Business Impact

- Avoid the loss of revenue that results from a customer abandoning the business
- Know which marketing actions will have the greatest retention impact on each particular customer

Conclusion & perspectives

Customer churn prediction is crucial to the long-term financial stability of a company.

In this work, we have discovered a few machine learning algorithms to predict the churn. We can optimize futher more these algorithms and test other algorithms of Deep Learning.