Доказательство.

В силу утверждения 4 достаточно доказать, что произвольная задача $Q\in\{Q\}$ является полной относительно $\{R\}$. Доказательство полноты Q состоит в прямом построении операторов $R_k, k=1,2,\ldots,l$ из $L\{R\}$, переводящих пару $(\hat{x},\bar{x}), \hat{x}=(\hat{x}_1,\ldots,\hat{x}_l), \bar{x}=(x_1,\ldots,x_q)$ в числовой вектор $\bar{x}_k^*=(x_{k1}^*,\ldots,x_{kl}^*)$, в котором $x_{kk}^*=1$, а $x_{ku}^*=0$ при $k{\neq}u$. Построение проводится для любого сколь угодно малого ϵ .

Пусть мощность множества \mathcal{Z}_i признака f_i равна N, норма $\|\bar{x}\|$ равна $M \leqslant q$, максимальная компонента вектора \bar{x} равна x_{max} . Зафиксируем величину i и коэффициенты $c_1 = \min_v \hat{x}_v, c_2 = \frac{M}{1+M}$. Рассмотрим матрицы предсказания из множеств $\mathcal{Z}_1, \ldots, \mathcal{Z}_l$ признаков f_1, \ldots, f_l , удовлетворяющие следующим условиям:

Доказательство (продолжение).

- f 0 в каждой матрице предсказаний $Z_r^i\in \mathcal{Z}_i$ в столбце $ar{z}_1^r=(z_{11}^r,\dots,z_{1q}^r)$ компонента $z_{1v}^r=1$, если $x_v=x_{max}$, и $z_{1v}^r=0$, если $x_v< x_{max}$;
- ② в каждой матрице предсказаний $Z^k_r\in\mathcal{Z}_k, u{
 eq}k$ в столбце $ar{z}^r_1=(z^r_{11},\dots,z^r_{1q})$ компонента $z^r_{1v}=0$ при любых v.

Вычислим величину x_{ii}^* . Т. к. $c_1=\min_u \hat{x}_u$, то условие $\hat{x}_k\!\geqslant\! c_1$ на шаге 4 алгоритма \mathfrak{A}_{th} автоматически выполняется и функция измерения \hat{f}_i попадает в множество \hat{F}^* . Из условия 1) следует, что каждая матрица $Z_r^k\in\mathcal{Z}_k$ попадает в множество Z^* на шаге 11 алгоритма \mathfrak{A}_{th} :

$$\frac{\|\bar{z}_1^r - \bar{x}\|}{\|\bar{z}_1^r\| + \|\bar{x}\|} < \frac{\sum_v |z_{1v}^r - x_v|}{1 + M} < \frac{M}{1 + M} = c_2,$$

Доказательство (продолжение).

так как минимум один компонент в \bar{z}_1^r равен 1 и существует элемент $x_v>1/2$. В этом случае $x_{kk}^*=\gamma\cdot N$, где γ — весовой коэффициент. Оценим величины x_{ku}^* . Т.к. $c_1=\min_v\hat{x}_v$, то условие $\hat{x}_u\!\!\geqslant\! c_1$ на шаге 4 алгоритма \mathfrak{A}_{th} автоматически выполняется и все функции измерения \hat{f}_j попадают в множество \hat{F}^* . Из условия 2) следует, что каждая матрица $Z_r^u\in\mathcal{Z}_u$ не попадает в множество Z^* на шаге 11 алгоритма \mathfrak{A}_{th} :

$$\frac{\|\bar{z}_1^r - \bar{x}\|}{\|\bar{z}_1^r\| + \|\bar{x}\|} = \frac{M}{M} = 1 > \frac{M}{1+M} > c_2.$$

В этом случае $x_{ku}^* = 0$.

Доказательство (окончание).

Рассмотрим оператор распознавания $\frac{1}{\gamma\cdot N}R_k(\hat{x},\mathcal{Z}^k,\bar{x})$, который переводит задачу Q в вектор \bar{x}_i^* , причем $\bar{x}_{kk}^*=1$, а $\bar{x}_{ku}^*=0, k{\ne}u$. Таким образом, условия на числовой вектор \bar{x}_k^* выполняются.

Полнота задачи Q доказана.