Data repositories and File formats

Gustavo Adolfo Silva-Arias Ph.D

Technische Universität München

Bogotá, 24 Agosto 2021

Overview

- Part 1
 - Associate any NGS related study publication with the databases
 - Link the raw data files with the study
 - Download all the relevant data
- Part 2
 - Familiarize with basic data file formats and understand the information

Data repositories

- The National Center for Biotechnology Information (NCBI)
 - Genbank
 - Sequence Read Archive (SRA)
- EMBL-EBI
 - European Nucleotide Archive (ENA)
 - Ensembl
 - UniProt
- DNA DataBank of Japan (DDBJ)
- ... among many others
- https://www.nature.com/sdata/policies/repositories
- https://en.wikipedia.org/wiki/List of biological databases

The International Sequence Database Collaboration

Data repositories - NCBI

Accepts submissions of:

- Bibliographic records (publication)
- Primary research data (nucleotide sequences for an organism/gene)

Organizes the information into databases, maintains them, makes them available to the world

Develops software to retrieve and analyze the data conducts basic research to make new biological discoveries

NCBI databases

https://www.ncbi.nlm.nih.gov/guide/all/

https://www.ncbi.nlm.nih.gov/Web/Search/entrezfs.html

Data repositories - Basic structure

Experiment

Sample -

Data structure - Basic projects

Sample — Experiment — Data

Data structure - Basic projects

Data structure - Complex projects

BioProjects

- Initiative
- Organizations/Consortium
- Many studies in one big project

$$S \to E \to D$$

Data structure - Complex projects 1000 genomes bioproject

Accession: PRJNA28889

http://www.1000genomes.org/

Different SRA ID types

- **Study** (SRP)— A study is a set of experiments and has an overall goal.
- **Experiment** (SRX) An experiment is a consistent set of laboratory operations on input material with an expected result.
- Sample (SRS)— An experiment targets one or more samples. Results are expressed in terms of individual samples or bundles of samples as defined by the experiment.
- Run (SRR)— Results are called runs. Runs comprise the data gathered for a sample or sample bundle and refer to a defining experiment.
- **Submission** (SRA) A submission is a package of metadata and/or data objects and a directive for what to do with those objects.

Source: http://www.ncbi.nlm.nih.gov/books/NBK47533/
Also: http://www.ncbi.nlm.nih.gov/books/NBK56913/

BioSample: SAMN02981290

BioProjects:

PRJNA66163 Solanum lycopersicum

strain: Heinz 1706

PRJNA119 Solanum lycopersicum cultivar:Heinz 1706

Source: https://www.sgn.cornell.edu/organism/Solanum_lycopersicum/genome

BioProject:

PRJNA119

Project Data:

Resource Name	Number of Links
SEQUENCE DATA	
Nucleotide (total)	13
WGS master	1
SRA Experiments	11
Publications	
PubMed	2
PMC	1
OTHER DATASETS	
BioSample	12
Assembly	1

Experiment:

SRX129876

SRX129876: Tomato genome annotation using RNASeq data

1 ABI_SOLID (AB SOLID System 3.0) run: 269.5M spots, 13.5G bases, 10.9Gb downloads

Submitted by: SISTEMAS GENOMICOS

Study: International Tomato Genome Sequencing Consortium - RNASeq in tomato var Heinz - SOLiD sequencing

PRJNA119 • SRP011485 • All experiments • All runs

show Abstract

Sample: International Tomato Genome Sequencing Consortium - RNASeq from tomato var Heinz

SAMN00828737 • SRS300638 • All experiments • All runs

Organism: Rubinisphaera brasiliensis

Library:

Name: Tomato Heinz

Instrument: AB SOLiD System 3.0

Strategy: RNA-Seq

Source: TRANSCRIPTOMIC Selection: unspecified

Layout: SINGLE

Spot descriptor:

Runs: 1 run, 269.5M spots, 13.5G bases, <u>10.9Gb</u>

Run	# of Spots	# of Bases	Size	Published
SRR445714	269,512,040	13.5G	10.9Gb	2012-05-31

Data:

SRR445714

Tomato genome annotation using RNASeq data (SRR445714)

SRA Run Selector

SRA Run Selector

SRA Run Selector

Download NGS data

The majority of NCBI data are available for downloading, either directly from the NCBI FTP site or by using software tools to download custom datasets.

FTP

Download data from the NCBI FTP site

Aspera

High-speed downloads provided by Aspera software

Download Tools

Tools and APIs for downloading customized datasets

ADDITIONAL LINKS

How to download custom data sets

Large Data Download Best Practices

SRA Download Reference

https://www.ncbi.nlm.nih.gov/home/download/

Download NGS data

- Direct Download (ftp, http, Aspera) (Browser or command line)
 wget ftp://ftp.sra.ebi.ac.uk/.../SRR4454118_1.fastq.gz
- Direct Download from EBI/DDBJ
- sra-toolkit software has a command fastq-dump

Command	Argument	Input	Output
fastq-dump	-h		Print help
fastq-dump		SRR_ID	Download entire file
fastq-dump	-X <number></number>	SRR_ID	Download N spots
fastq-dump	skip-technical	SRR_ID	Do not include technical reads
fastq-dump	-Z	SRR_ID	Print to terminal
fastq-dump	-F	SRR_ID	Get original id
fastq-dump	split-files	SRR_ID	Print read pairs in separate files

Download NGS data

sra-toolkit

Fastq-dump (download fastq files, pair end in separated files, compressed)

Overview

- Part 1
 - Associate any NGS related study publication with the databases
 - Link the raw data files with the study
 - Download all the relevant data
- Part 2
 - Familiarize with basic data file formats and understand the information

NGS data processing workflow

Data files overview

Fasta – reference sequence

Fastq – unprocessed reads

Sam – aligned reads to the reference

Bam - binary (compressed) SAM file

BED – browser format (store genomic regions)

GFF/GTF – annotations

VCF – variant calls

FASTA format

- Nucleotide or peptide sequence
- Simple structure
 - 2 lines per sequence

> Header

Sequence

Multiple sequences per file

>the random protein sequence I found this morning MDSTGEFCWICHQPEGPLKRFCGCKGSCAVSHQDCLRGWLETSRRQTCALCGTPYSMKWKTKPLREWTWGE EEVLAAMEACLPLVLIPLAVLMIVMGTWLLVNHNGFLSPRMQVVLVVIVLLAMIVFSASASYVMVEGPGCL DTCTAKNSTVTVNSIDEAIATQQPTKTDLGLARETLSTRFRRGKCRSCCRLGCVRLCCV

FASTQ format

Standard format for high-throughput sequencing instruments

4 lines per sequence (read)

```
@HeaderSequence+quality
```

Multiple sequences per file

FASTQ format

Quality data

3 5 Cycle Spot **Hardware Photo Detector** Software **Color Intensity Processing** Call G value1 **Call Quality** value2 value3 value4 value5

FASTQ format Quality data

FASTQ format Quality data

- Higher the value higher the trust
- Higher the value higher the probability that call is correct
- Amenable to statistical and probabilistic methods
- Common across all studies/platforms/machines
- Universally accepted
- Easily encoded/printed in a file

Phred Score Quality data

- Denoted by letter Q
- . $Q = -10 \log_{10} P$
- P: probability of error or the call being wrong

Phred quality scores are logarithmically linked to error probabilities

Phred Quality Score	Probability of incorrect base call	Base call accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1000	99.9%
40	1 in 10,000	99.99%
50	1 in 100,000	99.999%
60	1 in 1,000,000	99.9999%

Phred scores: Phil Green's group, originally for Sanger reads. Ewing et al. (1998) Genome Res. 8:175-186

https://en.wikipedia.org/wiki/Phred_quality_score https://www.illumina.com/documents/products/technotes/technote Q-Scores.pdf

Source: Wikipedia

Sequence data and Phred scores together

- Encoding ~ printing the phred scores along with base calls in a file.
- Nucleotides are typically available as a fasta file
- Quality scores could be added to the fasta file?
- Cumbersome and space consuming

```
>read1
ATGC
>read1
10 20 30 40
```

Sequence data and Phred scores together

- · ... better solution
- Put calls and quality scores and one below another

```
>read1
ATGC
10 20 30 40
```

Encode ~ **Encrypt**

$$10 = +$$
 $20 = 5$
 $30 = ?$
 $40 = I$

>read1 ATGC +5?I

ASCII code

- . Decimal
- 10 12 34 39 40 23 4 7 17 22 19 20 35 12 3 18 29 30 11 5 18 22
- Add 33: 43 45 67 72 73 56 37 40 50 55 52 53 45 36 51 62 63 44 38 51 55
- · ASCII
- +-CHI8%(2745-\$3>?,&37

Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char
0	00	Null	32	20	Space	64	40	9	96	60	-
1	01	Start of heading	33	21	1	65	41	A	97	61	a
2	02	Start of text	34	22	**	66	42	В	98	62	b
3	03	End of text	35	23	#	67	43	C	99	63	c
4	04	End of transmit	36	24	ş	68	44	D	100	64	d
5	05	Enquiry	37	25	ŧ	69	45	E	101	65	e
6	06	Acknowledge	38	26	٤	70	46	F	102	66	r
7	07	Audible bell	39	27	4	71	47	G	103	67	a
8	08	Backspace	40	28	(72	48	H	104	68	h
9	09	Horizontal tab	41	29)	73	49	1	105	69	1
10	OA	Line feed	42	2Å	*	74	4A	J	106	6A	3
11	08	Vertical tab	43	28	+	75	4B	K	107	68	k
12	OC	Form feed	44	20		76	4C	L	108	6C	1
13	OD	Carriage return	45	20	-	77	4.0	n	109	6D	m
14	OE	Shift out	46	2 E		78	4E	N	110	6E	n
15	OF	Shift in	47	2F	1	79	4F	0	111	6F	0
16	10	Data link escape	48	30	0	80	50	P	112	70	p
17	11	Device control 1	49	31	1	81	51	Q	113	71	q
18	12	Device control 2	50	32	2	82	52	R	114	72	r
19	13	Device control 3	51	33	3	83	53	S	115	73	8
20	14	Device control 4	52	34	4	84	54	т	116	74	t
21	15	Neg. acknowledge	53	35	5	8.5	55	U	117	75	ta
22	16	Synchronous ide	54	36	6	86	56	v	118	76	v
23	17	End trans. block	55	37	7	87	57	u	119	77	w
24	18	Cancel	56	38	8	88	58	x	120	78	×
25	19	End of medium	57	39	9	89	59	Y	121	79	У
26	1A	Substitution	58	AE	1	90	5A	z	122	7A	E
27	18	Escape	59	38	,	91	5B	t	123	78	t
28	1C	File separator	60	30	<	92	SC	1	124	70	1
29	10	Group separator	61	30	-	93	5D	1	125	70)
30	1E	Record separator	62	3E	>	94	5E	6	126	7E	er .
31	1F	Unit separator	63	37	2	95	5F		127	79	0

Phred to ASCII

- Depends on encoding
- Sanger Encoding
 - Add 33 to the phred score and convert the number to character
 - Subtract 33 from the ascii code of the character
- Illumina encoding < 1.8 add 64
- Illumina encoding 1.8+ add 33
- Software like FASTQC will tell you the encoding

Phred to ASCII

Phred to ASCII

Encoding in different platforms

```
!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^ `abcdefghijklmnopqrstuvwxyz{|}~
33
                                 104
                                           126
0.2.....41
        Phred+33, raw reads typically (0, 40)
S - Sanger
        Solexa+64, raw reads typically (-5, 40)
X - Solexa
I - Illumina 1.3+ Phred+64, raw reads typically (0, 40)
J - Illumina 1.5+ Phred+64, raw reads typically (3, 40)
 with 0=unused, 1=unused, 2=Read Segment Quality Control Indicator (bold)
  (Note: See discussion above).
L - Illumina 1.8+ Phred+33, raw reads typically (0, 41)
```

Phred to ASCII

· Illumina 1.9 uses **ASCII-33**, i.e. Illumina **quality score of 40** becomes

. 40 + 33 = **73** : "**I**"

Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char
0	00	Null	32	20	Space	64	40	9	96	60	
1	01	Start of heading	33	21	1	65	41	A	97	61	a
2	02	Start of text	34	22	"	66	42	В	98	62	b
3	03	End of text	35	23	#	67	43	C	99	63	c
4	04	End of transmit	36	24	\$	68	44	D	100	64	d
5	05	Enquiry	37	25	4	69	45	E	101	65	e
6	06	Acknowledge	38	26	6	70	46	F	102	66	í
7	07	Audible bell	39	27	6	71	47	G	103	67	g
8	08	Backspace	40	28	(72	48	н	104	68	h
9						73	49	I	105	69	i
10	L					74	4A	J	106	6A	Ċ
11	OB	Vertical tab	43	2B	+	75	4B	K	107	6B	k
12	OC	Form feed	44	2C		76	4C	L	108	6C	1
13	OD	Carriage return	45	2 D	-	77	4D	H	109	6D	m.
14	OE	Shift out	46	2 E	.	78	4E	N	110	6E	n
15	OF	Shift in	47	2F	1.	79	4F	0	111	6F	0
16	10	Data link escape	48	30	0	80	50	P	112	70	p
17	11	Device control 1	49	31	1	81	51	Q	113	71	q
18	12	Device control 2	50	32	2	82	52	R	114	72	r
19	13	Device control 3	51	33	3	83	53	S	115	73	s
20	14	Device control 4	52	34	4	84	54	Т	116	74	t
21	15	Neg. acknowledge	53	35	5	85	55	U	117	75	u
22	16	Synchronous idle	54	36	6	86	56	V	118	76	v
23	17	End trans, block	55	37	7	87	57	u	119	77	w
24	18	Cancel	56	38	8	88	58	x	120	78	×
25	19	End of medium	57	39	9	89	59	Y	121	79	У
26	1A	Substitution	58	3A	:	90	5A	Z	122	7A	z
27	18	Escape	59	3 B	;	91	5B	1	123	78	(
28	10	File separator	60	3C	<	92	5C	١	124	70	1
29	10	Group separator	61	3 D	=	93	5D	1	125	7D)
30	1E	Record separator	62	3 E	>	94	5E	A	126	7E	**
31	1F	Unit separator	63	3F	2	95	5F		127	79	0

- Each read is 4 lines
- Read starts with a character @ followed by the read descriptor
- Sequence follows in the second line
- Third line is reserved for additional info
- Fourth line is the Phred score encoding
- Read pairs are typically in different files

- Store calls (ATGC ...)
- Store Phred scores (Encoded)
- Store Machine make/ID
- Store Flowcell id for each spot
- Store coordinates of the spot
- Store additional info (Seq names)
- Easily parsed and stored.

. Header

Identifier NCATACCAGCGACGACGAGGACGGGGATGAAGACCCTGAGAGTGCACAGACGTCGTGTCGGCCCTCTATGGAGAATCCTATTTCG ATGACGACTGCCCA Sequence #1=DDFFEHADHGIGHIEHIIIGHIIHHIIIG=CHE@BDFCE3>ACCCCCBB5;B=B<?<@57;?ACCCDCCBA(:@CCCCCEDC @CD@:?@BBBCCB4 Quality string Instrument name HWI-ST863 211 Run id Flowcell id C1MHVACXX Flowcell lane 3 1101 Tile number of flowcell lane 1245 'x'-coordinate of the cluster within the tile 1869 'y'-coordinate of the cluster within the tile the member of a pair, 1 or 2 Y if the read is filtered. N otherwise Ν 0 when none of the control bits are on, otherwise it is an even number **TGGTTGTT** Index sequence

· Old header format

@HWUSI-EAS100R:6:73:941:1973#0/1

HWUSI-EAS100R	the unique instrument name
6	flowcell lane
73	tile number within the flowcell lane
941	'x'-coordinate of the cluster within the tile
1973	'y'-coordinate of the cluster within the tile
#0	index number for a multiplexed sample (0 for no indexing)
/1	the member of a pair, /1 or /2 (paired-end or mate-pair reads only)

Source: Wikipedia

- **SAM**: Sequence Alignment/Map
- BAM: Binary Alignment/Map (binary SAM)
- Used for: aligned reads
- Multiple *tab* delimited columns
- It is flexible enough to store **all the alignment information** generated by various alignment programs
- It allows most of the operations on the alignment to work on a stream without loading the whole alignment into memory
- It allows the file to be **indexed by genomic position** to efficiently retrieve all reads aligning to a locus

Two sections

Header section, each line begins with "@"-Several record types
 5 fields

Alignment section
 11 mandatory fields (columns)

- Header section
- @HD The header line. The first line if present.

VN* Format version

 @SQ Reference sequence dictionary. The order of @SQ lines defines the alignment sorting order

SN* Reference sequence name

LN* Reference sequence length

@RG Read group. Unordered multiple @RG lines are allowed.

ID* Read group identifier

@PG Program

ID* Program record identifier

@CO One-line text comment

Header section + Alignment section (first line)

```
@HD
     VN:1.5 GO:none SO:coordinate
@SO
     SN:Spenn-ch01 LN:109333515
     SN:Spenn-ch02 LN:59803892
@SQ
@SQ
     SN:Spenn-ch03
                LN:75414019
@SQ
     SN:Spenn-ch04
                LN:77197300
     SN:Spenn-ch05 LN:77991103
@SQ
     SN:Spenn-ch06 LN:60730942
@SO
     ID:LA2932 28.CA1PNANXX.3.CAGATC PU:CA1PNANXX.3.CAGATC LB:LA2932 28
@RG
SM:LA2932 28
           PL:ILLUMINA
     ID:MarkDuplicates VN:1.119 CL:picard.sam.MarkDuplicates ...
@PG
     ID:bwa VN:0.7.12-r1039 CLbwa mem -M -t 24 Spenn2.fa ...
@PG
     ID:GATK IndelRealigner VN:3.7-0-gcfedb67
HISEQ:202:CA1PNANXX:4:1311:19476:42830 163
                                   Spenn-ch01
                                                     0
4S99M23S
                 124
                       228
ATCACCCAGAAAATGGTTTGCTATGTCACACGGAAATCGTTAAAATG
MD:Z:46G1G34A15 PG:Z:MarkDuplicates RG:Z:LA2932 28.CA1PNANXX.3.CAGATC
NM:i:3 MQ:i:0 AS:i:84 XS:i:90
```

• Alignment section

HISEQ:202:CA1PNANXX:4:1311:19476:42830	Query name: shared by pair-end mates
163	Flag value: Decimal > Binary > Multiple True/False values
Spenn-ch01	Chromosome/Contig where the read aligned
13	Position on chromosome/contig where the read aligned
0	Alignment confidence (Phred)
4S99M23S	CIGAR string
=	Chomosome/Contig where mate aligned (= if same)
124	Position on chromosome/contig where the mate aligned
228	Lenght of the reference sequence read aligned to
TTATGGCCAACCGGATGCATAGACAAGGTCTTGACG	Read sequence
BBBBB <ffffffffffffffffffffffffffffffff< td=""><td>Read quality score (same as fastq file)</td></ffffffffffffffffffffffffffffffff<>	Read quality score (same as fastq file)
MC:Z: MD:Z: PG:Z: RG:Z: NM:i:3 MQ:i:0 AS:i:84 XS:i:90	Optional tags: http://samtools.github.io/hts-specs/SAMtags.pdf

More details: https://samtools.github.io/hts-specs/SAMv1.pdf

bitwise flag

```
HISEQ: 202: CA1PNANXX: 4:1311:19476: 42830
                                             163
                                                       Spenn-ch01
                                                                         13
                                                                                  0
  4S99M23S
                                     228
  ATCACCCAGAAAATGGTTTGCTATGTCACACGGAAATCGTTAAAATG
  MD:Z:46G1G34A15 PG:Z:MarkDuplicates
                                              RG:Z:LA2932 28.CA1PNANXX.3.CAGATC
  NM:i:3 MQ:i:0 AS:i:84 XS:i:90
                                                    1
2
4
8
16
32
64
128
256
512
512
Read Wa

Mate was u

Mate was on revu

First in pair

Second in pair

Secondary alignment

Read failed platform QC

ad marked as duplicate

"ementary alignment
                                                     Second in pair
Secondary alignment
Read failed platform QC
Read marked as duplicate
Supplementary alignment
                                                                mapped
was unm
                           1 + 2 + 32 + 64 =
                                                                        1 + 2 + 16 + 128 =
                                                                        147
```

Decoding SAM flags https://broadinstitute.github.io/picard/explain-flags.html

• CIGAR string — Describes how the read align to the reference

On	BAM	Description	Consumes	Consumes	
Op	DAM	Description	query	reference	
M	0	alignment match (can be a sequence match or mismatch)	yes	yes	
I	1	insertion to the reference	yes	no	
D	2	deletion from the reference	no	yes	
N	3	skipped region from the reference	no	yes	
S	4	soft clipping (clipped sequences present in SEQ)	yes	no	
H	5	hard clipping (clipped sequences NOT present in SEQ)	no	no	
P	6	padding (silent deletion from padded reference)	no	no	
=	7	sequence match	yes	yes	
X	8	sequence mismatch	yes	yes	

Source: https://samtools.github.io/hts-specs/SAMv1.pdf

• CIGAR string — Describes how the read align to the reference

Reference: ATGAAGGATAGTGATACTCTAGAGGG

Read: ACGAATAGTGATACTCGGGTAGAGGG

Ор	BAM	Description	Consumes	Consumes	
Op	DAM	Description	query	reference	
M	0	alignment match (can be a sequence match or mismatch)	yes	yes	
I	1	insertion to the reference	yes	no	
D	2	deletion from the reference	no	yes	
N	3	skipped region from the reference	no	yes	
S	4	soft clipping (clipped sequences present in SEQ)	yes	no	
H	5	hard clipping (clipped sequences NOT present in SEQ)	no	no	
P	6	padding (silent deletion from padded reference)	no	no	
=	7	sequence match	yes	yes	
X	8	sequence mismatch	yes	yes	

Source: https://samtools.github.io/hts-specs/SAMv1.pdf

• CIGAR string — Describes how the read align to the reference

Reference: ATGAAGGATAGTGATACTC---TAGAGGG

Read: ACGAA---TAGTGATACTCGGGTAGAGGG

CIGAR: 5M3D11M3I7M

On	BAM	Description	Consumes	Consumes
Ор	DAM	DAM Description		reference
M	0	alignment match (can be a sequence match or mismatch)	yes	yes
I	1	insertion to the reference	yes	no
D	2	deletion from the reference	no	yes
N	3	skipped region from the reference	no	\mathbf{yes}
S	4	soft clipping (clipped sequences present in SEQ)	yes	no
H	5	hard clipping (clipped sequences NOT present in SEQ)	no	no
P	6	padding (silent deletion from padded reference)	no	no
=	7	sequence match	yes	yes
X	8	sequence mismatch	yes	yes

Source: https://samtools.github.io/hts-specs/SAMv1.pdf

• CIGAR string — Describes how the read align to the reference

On	BAM	Description	Consumes	Consumes
Op	DAM	Description	query	reference
M	0	alignment match (can be a sequence match or mismatch)	yes	yes
I	1	insertion to the reference	yes	no
D	2	deletion from the reference	no	yes
N	3	skipped region from the reference	no	yes
S	4	soft clipping (clipped sequences present in SEQ)	yes	no
H	5	hard clipping (clipped sequences NOT present in SEQ)	no	no
P	6	padding (silent deletion from padded reference)	no	no
=	7	sequence match	yes	yes
X	8	sequence mismatch	yes	yes

Source: https://samtools.github.io/hts-specs/SAMv1.pdf

BAM format

- Binary SAM
- Used for: aligned reads
- 25% of the size
- **SAMtools** to convert
- .bai = BAM index

VCF format

Variant call format

g.silvaarias@frontend:/data/proj/chilense/30_genomes_outputs/VCFs/map2penn/vcf_phased									
##fileformat=VCFv4.1									
##fileDate=29082018_13h53m12s ##source=SHAPEIT2.v904									
##log_file=vcf_phased/Spenn-ch01.snp.phase.log	a								
##FORMAT= <id=gt, description="Phased</td><td>Genotype" number="1," type="String,"></id=gt,>	7.5	D	3.T.M	OTT T		TNIEG	TODAKA TI	T. 10.00 22	
#CHROM	POS	ID	REF	ALT	QUAL	FILTER	INFO	FORMAT	LA1963_33
Spenn-ch01	548		G	A		PASS		GT	0 0
Spenn-ch01	8037		C	T		PASS		GT	0 0
Spenn-ch01	8045		C	T		PASS		GT	0 0
Spenn-ch01	8048		G	A		PASS		GT	0 0
Spenn-ch01	8071		T	C		PASS		GT	1 1
Spenn-ch01	8103		G	A		PASS		GT	0 1
Spenn-ch01	8110		G	A		PASS		GT	1 0
Spenn-ch01	8124		G	A		PASS		GT	0 0
Spenn-ch01	8138		G	A		PASS		GT	1 0
Spenn-ch01	8141		A	G		PASS		GT	1 1
Spenn-ch01	8157		T	С		PASS		GT	0 1
Spenn-ch01	8183		A	G		PASS		GT	1 1
Spenn-ch01	8184		C	A		PASS		GT	0 1
Spenn-ch01	8206		A	G		PASS		GT	1 1
Spenn-ch01	8209		G	A		PASS		GT	1 1
Spenn-ch01	8224		G	A		PASS		GT	1 1
Spenn-ch01	8228		C	\mathbf{T}		PASS		GT	0 0
Spenn-ch01	8230		G	A		PASS		GT	1 0
Spenn-ch01	8236		G	A		PASS		GT	1 1
Spenn-ch01	8239		A	${f T}$		PASS		GT	0 0
Spenn-ch01	8253		G	A		PASS		GT	0 0
Spenn-ch01	8271		G	С		PASS		GT	0 1
Spenn-ch01	8325		C	A		PASS		GT	0 0
Spenn-ch01	8326		G	T		PASS		GT	0 0
Spenn-ch01	8376		T	A		PASS		GT	1 0
Spenn-ch01	8504		С	A		PASS		GT	0 0
Spenn-ch01	8508		G	A		PASS		GT	1 0
Spenn-ch01	8546		G	A		PASS		GT	1 0
Spenn-ch01	8554		T	С		PASS		GT	0 0
Spenn-ch01	8569		T	C		PASS		GT	0 0
Spenn-ch01	8579		A	T		PASS		GT	0 0
Spenn-ch01	8635		G	C		PASS		GT	0 0

GFF/GTF format

Genome annotation

```
g.silvaarias@frontend:/data/proj/chilense/30_genomes_outputs/reference/S_lycopersicum/ITAG4
##gff-version 3
##sequence-regionSL4.0ch00
                                         9643250
##sequence-regionSL4.0ch01
                                         90863682
##sequence-regionSL4.0ch02
                                         53473368
##sequence-regionSL4.0ch03
                                         65298490
##sequence-regionSL4.0ch04
                                         64459972
##sequence-regionSL4.0ch05
                                         65269487
##sequence-regionSL4.0ch06
                                         47258699
##sequence-regionSL4.0ch07
                                         67883646
##sequence-regionSL4.0ch08
                                         63995357
##sequence-regionSL4.0ch09
                                         68513564
##sequence-regionSL4.0ch10
                                         64792705
##sequence-regionSL4.0ch11
                                         54379777
##sequence-regionSL4.0ch12
                                         66688036
SL4.0ch00
                maker ITAG
                                         93750
                                                  94430
                                                                                   ID=gene:Solyc00g500001.1;Alias=Solyc00g50000
                                 gene
SL4.0ch00
                maker ITAG
                                 mRNA
                                         93750
                                                  94430
                                                                                   ID=mRNA: Solyc00g500001.1.1; Parent=gene: Solyc
SL4.0ch00
                                                  94430
                maker ITAG
                                         93750
                                                                                   ID=exon:Solyc00g500001.1.1.1;Parent=mRNA:Sol
                                 exon
SL4.0ch00
                maker ITAG
                                         93750
                                                  94430
                                                                                   ID=CDS:Solyc00g500001.1.1.1;Parent=mRNA:Solyc0
                                 CDS
###
SL4.0ch00
                                                  306257
                                                                                   ID=gene:Solyc00g500002.1;Alias=Solyc00g50000
                maker ITAG
                                 gene
                                         305442
SL4.0ch00
                maker ITAG
                                         305442
                                                  306257
                                                                                   ID=mRNA: Solyc00g500002.1.1; Parent=gene: Solyc
SL4.0ch00
                                                 305873
                                                                           0
                                                                                   ID=CDS:Solyc00g500002.1.1.1;Parent=mRNA:Solyc0g500002.1.1.1
                maker ITAG
                                 CDS
                                         305442
                                                                                   ID=exon:Solyc00g500002.1.1.1;Parent=mRNA:So
SL4.0ch00
                                                  306257
                maker ITAG
                                         305442
SL4.0ch00
                maker ITAG
                                 five prime UTR
                                                 305874 306257
                                                                                            ID=five prime UTR:Solyc00g500002.1.
###
SL4.0ch00
                maker ITAG
                                         311496 382066
                                                                                   ID=gene:Solyc00g500003.1;Alias=Solyc00g50000
                                 gene
SL4.0ch00
                maker ITAG
                                 mRNA
                                         311496 382066
                                                                                   ID=mRNA: Solyc00g500003.1.1; Parent=gene: Solyc
SL4.0ch00
                maker ITAG
                                 exon
                                         311496 311570
                                                                                   ID=exon:Solyc00g500003.1.1.1;Parent=mRNA:So
SL4.0ch00
                maker ITAG
                                 CDS
                                         311496 311570
                                                                                   ID=CDS:Solyc00g500003.1.1.1;Parent=mRNA:Sol
                                                                                   ID=exon:Solyc00g500003.1.1.2;Parent=mRNA:So
SL4.0ch00
                maker ITAG
                                         330270
                                                 330628
                                 exon
SL4.0ch00
                                          330270 330628
                                                                                   ID=CDS:Solyc00g500003.1.1.2;Parent=mRNA:Solyc0g500003.1.1.2;
                maker ITAG
                                 CDS
SL4.0ch00
                                                 344133
                                                                                   ID=exon:Solyc00g500003.1.1.3;Parent=mRNA:So
                 maker ITAG
                                 exon
                                         344080
SL4.0ch00
                 maker ITAG
                                 CDS
                                         344080
                                                 344133
                                                                                   ID=CDS:Solyc00g500003.1.1.3;Parent=mRNA:Solyc00g500003.1.1.3
SL4.0ch00
                                                 347428
                                                                                   ID=exon:Solyc00g500003.1.1.4;Parent=mRNA:So
                maker ITAG
                                 exon
                                         347298
SL4.0ch00
                maker ITAG
                                 CDS
                                         347298
                                                 347428
                                                                                   ID=CDS:Solyc00g500003.1.1.4;Parent=mRNA:Soly
SL4.0ch00
                 maker ITAG
                                         351799
                                                  352644
                                                                                   ID=exon:Solyc00g500003.1.1.5;Parent=mRNA:So
                                 exon
SL4.0ch00
                maker ITAG
                                 CDS
                                          351799
                                                  352644
                                                                                   ID=CDS:Solyc00g500003.1.1.5;Parent=mRNA:Soly
SL4.0ch00
                maker ITAG
                                         381867
                                                  382066
                                                                                   ID=exon:Solyc00g500003.1.1.6;Parent=mRNA:Sol
                                 exon
SL4.0ch00
                maker ITAG
                                          381867
                                                 382066
                                                                                   ID=CDS:Solyc00g500003.1.1.6;Parent=mRNA:Soly
SL4.0ch00
                maker ITAG
                                         417592 418482
                                                                                   ID=gene:Solyc00g500004.1;Alias=Solyc00g50000
```

Hands-on ...

NGS wiki

https://github.com/gsilvaarias/NGS2021-AGROSAVIA/wiki/02.-Bases-dedatos-y-formatos-de-archivos-NGS

1st part: Download sequence data and familiarize with SRA data repository

2nd part: Dive into different file formats, read on your own, try to dissect information (focus on fastq and SAM)