Progetto Performance Modeling of Computer Systems and Networks a.a: 2022/2023

Luca Mastrobattista 0292461

Introduzione

Modello concettuale

Modello delle specifiche

Modello computazionale

Analisi dei costi e dei guadagni

Altre statistiche transienti

Analisi statistiche stazionarie

Conclusioni e lezioni apprese

Caso di studio

Si prende in esame il contesto di un locale che offre servizi di bar e pizzeria in un piccolo paese.

- si analizza la gestione delle richieste in un'intera giornata lavorativa, sia nei giorni settimanali che finesettimanali
- ▶ il locale è aperto dalle 7.00 alle 15.00 e dalle 18.00 alle 2.00

Obiettivi

- Rispettare dei servizi di qualità:
 - Limitare i tempi di risposta per le richieste al bar a 3 minuti
 - Limitare i tempi di risposta per le richieste alla pizzeria a 10 minuti
- Massimizzare i guadagni cercando il numero di serventi di tipo B ottimale, considerando che ognuno di essi farà turni di 8 ore

Metodologia

Per raggiungere gli obiettivi è necessario identificare il numero minimo di serventi che garantisce il raggiungimento dei requisiti di qualità.

- Impostando m=1 il sistema non risulta stabile nella prima fascia oraria, il che porterebbe alla crescita incontrollata della coda. Questa configurazione non è quindi stata presa in esame.

Il sistema viene testato secondo l'approcco Next-event.

Introduzione

Modello concettuale

Modello delle specifiche

Modello computazionale

Analisi dei costi e dei guadagni

Altre statistiche transienti

Analisi statistiche stazionarie

Conclusioni e lezioni apprese

Visualizzazione grafica

- La frequenza di arrivo λ si compone della frequenza di arrivo λ_B e λ_P
- ightharpoonup Ogni servente di tipo B rappresenta un barista assunto, che lavora con una frequenza μ_B
- ▶ Ogni servente di tipo P, invece, rappresenta una delle due richieste che il pizzaiolo è in grado di gestire contemporaneamente e lavora con frequenza μ_P

Eventi e variabili di stato

- Eventi
 - Arrivi dall'esterno
 - Completamenti
- Completamenti
 - Numero di richieste di tipo B al centro
 - Numero di richieste di tipo P al centro
 - Stato del servente, per ogni servente di tipo B e P

Introduzione

Modello concettuale

Modello delle specifiche

Modello computazionale

Analisi dei costi e dei guadagni

Altre statistiche transienti

Analisi statistiche stazionarie

Conclusioni e lezioni apprese

Distribuzione degli arrivi

- ▶ Distribuzione base: Gli arrivi sono assunti esponenziali, per offrire una flessibilità dei tempi di interarrivo che riflette accuratamente la casualità degli arrivi in un bar.
- Ritardo gaussiano: È stato poi introdotto un ritardo gaussiano per rendere il modello più realistico permettendo di tener conto di effetti come le ore punta.

Fascia oraria	$\lambda_{B,W}$	$\lambda_{P,W}$	$\lambda_{B,WE}$	$\lambda_{P,WE}$	μ_{B}	σ_B	μ_P	σ_P
$\boxed{07:00 \rightarrow 11:00}$	30 j/h	Х	30 j/h	X	8	1.2	X	Х
$11:00 \rightarrow 15:00$	12.5 j/h	Х	20 j/h	X	13.5	2	Х	Х
$\boxed{18:00 \rightarrow 19:00}$	25 j/h	Х	45 j/h	Х	18.5	0.4	Х	Х
19:00 → 23:00	12.5 j/h	10 j/h	22.5 j/h	30 j/h	22.5	2	20.5	1
23:00 → 02:00	10 j/h	X	20 j/h	Х	24	0.9	X	Х

Tempi di servizio

I tempi di servizio si assumono esponenziali per entrambi i tipi di serventi.

- ▶ Servente di tipo B: Si assume che ogni servente sia in grado di completare una richiesta con il tempo medio di 2 minuti, durante i quali si dedica esclusivamente a quella richiesta.
- Servente di tipo P: Si assume che ogni pizza posso essere completamente preparata con un tempo medio di 3 minuti.

Guadagni e costi

Guadagni

- Per ogni richiesta di tipo B si assume un guadagno medio di 5.00 €
- Per ogni richiesta di tipo P si assume un guadagno medio di 10,00 €

Costi

- Stipendio medio di un barista per 8 ore: 40,00 €
- Stipendio del pizzaiolo per giorno: 50,00 €
- Costo medio delle bollette: 2.750,00 € al mese
- Costo medio dell'affitto: 1.500,00 € al mese
- Costo medio per il rifornimento: 2.000,00 € al mese

Introduzione

Modello concettuale

Modello delle specifiche

Modello computazionale

Analisi dei costi e dei guadagni

Altre statistiche transienti

Analisi statistiche stazionarie

Conclusioni e lezioni apprese

Descrizione generale del programma

Il simulatore, implementato in *Python*, segue l'approccio della *next-event simulation* ed è altamente configurabile in base alle esigenze, specificando opportuni flag a riga comando:

```
ion (main*) » python simulation.pv -h
usage: simulation.py [-h] [-cf FILEPATH] [-scf FILEPATH] [-fh] [-th] [-cc OPTION VALUE] [-fb THRESHOLD] [-s SEED] [-ngf]
PMCSN project command line interface
                       show this help message and exit
 -scf FILEPATH, --storeConfigFile FILEPATH
                       specify an output file where to store config
                       simulate a finite horizont case
                       simulate an infinite horizont case. Using this, gaussian factor is automatically disabled
  -cc OPTION VALUE, --change_config OPTION VALUE
                       specify configuration to change
                       find the value of b such tath autocorellation lag j=1 is <= THRESHOLD
 -s SEED, --seed SEED use the given SEED as random seed. if SEED = 0 then the initial seed is to be supplied
                       interactively; if SEED < 0 then the initial seed is obtained from the system clock; if SEED > 0 >
                       0 then it is the initial seed (unless too large), default value is 0
                       don't use the gaussian probability value to weight interarrival times
                       save output in ./output/OUTPUTFILE.csv. The file format .csv is added if not already present
                       simulate a weekend day, with the proper system variables. Default this option is disabled, meaning
  ns. --no solit
                       don't split the analysis using 2 lists for first half and second half of the day
```

Politica di scelta del servente

La scelta del servente per gestire una nuova richiesta è diversa per i due tipi B e P:

- Richieste al bar: La scelta del prossimo servente segue la politica di equity
- Richieste alla pizzeria: Il prossimo servente selezionato è il primo trovato libero scandendo la lista in ordine crescente

Evento di campionamento

Il tempo del prossimo evento di campionamento viene impostato in modo da evitare che due eventi successivi siano entrambi eventi di campionamento:

simulation.py

```
242 times = []
243 for index, ev in enumerate(stats.events):
244    if index != e and ev.x == 1:
245        times.append(ev.t)
246 stats.events[e].t = min(times) +
        samplingInterarrivalTime
```

Introduzione

Modello concettuale

Modello delle specifiche

Modello computazionale

Analisi dei costi e dei guadagni

Altre statistiche transienti

Analisi statistiche stazionarie

Conclusioni e lezioni apprese

Analisi a orizzonte finito

- Motivazione: Permette effettivamente di valutare le entrate e le uscite per un sistema con queste specifiche su un periodo di 16 ore lavorative effettive.
- ▶ Robustezza: La simulazione di una giornata lavorativa è stata ripetuta 1024 volte. In ciascuna di esse sono state ripristinate tutte le statistiche mentre lo stato del generatore di numeri casuali è stato mantenuto inalterato. Alle statistiche medie è stato associato un intervallo di confidenza al 95%.

$m_B = 2$

- ▶ Il valore teorico raramente rientra nell'intervallo di confidenza della statistica sperimentale.
- Tutti i requisiti di Qualità del Servizio (QoS) sono costantemente rispettati.

	Analisi senza fattore gaussiano					
	Statistica	Risultato teorico	Risultato sperimentale	Media nell'intervallo	Errore	Rispetta QoS
Week	Attesa di tipo B	2.251 min	2.455 ± 0.023 min	х	0.181	✓
	Attesa di tipo P	3.209 min	3.212 ± 0.049 min	✓		✓
Weekend	Attesa di tipo B	2.524 min	2.761 ± 0.032 min	х	0.205	✓
	Attesa di tipo P	6.857 min	5.813 ± 0.150 min	Х	0.894	✓

	Analisi con fattore gaussiano						
	Statistica	Risultato teorico	Risultato sperimentale	Media nell'intervallo	Errore	Rispetta QoS	
Week	Attesa di tipo B	2.251 min	2.184 ± 0.027 min	х	0.040	✓	
	Attesa di tipo P	3.209 min	3.082 ± 0.078 min	Х	0.049	✓	
Weekend	Attesa di tipo B	2.524 min	2.987 ± 0.075 min	х	0.388	✓	
	Attesa di tipo P	6.857 min	3.209 ± 0.056 min	Х	3.592	✓	

Senza fattore gaussiano - immagini

week - type B

week - type P

weekend - type B

weekend - type P

Con fattore gaussiano - immagini

week - type B

week - type P

weekend - type B

weekend - type P

Costi e guadagni

Spesa Valore		Contributo mensile		
Baristi	40,00€ al giorno per barista	2.240,00 € al mese		
Pizzaiolo 40,00€ al giorno		1.400,00 € al mese		
Bollette	2.750, 00€ al mese	2.750, 00€ al mese		
Affitto	1.500, 00€ al mese	1.500,00€ al mese		
Fornitori 2.000, 00€ al mese		2.000, 00€ al mese		
	Totale	12.970,00€		

		Tipo richiesta	Richieste week	Richieste weekend	Guadagno	Contributo mensile	Con IVA al 10%
	No gauss.	Tipo B	275	395	5,00 € a richiesta	43.300,00 € al mese	38.970,00 €
		Tipo P	41	116	10 € a richiesta	17.480,00 € al mese	15.732,00 €
		Totale					54.702,00 €
	155.	Tipo B	77	120	5,00 € a richiesta	12.500, 00€ al mese	11.250,00 €
	Gaus	Tipo P	10	31	10,00 € a richiesta	4.480, 00€ al mese	4.032,00 €
	9	Totale					15.282,00€

Il guadagno netto mensile risulta essere 41.732, 00€ nel caso non si usi il ritardo gaussiano e 2.312, 00€ nel caso in cui lo si utilizzi.

Introduzione

Modello concettuale

Modello delle specifiche

Modello computazionale

Analisi dei costi e dei guadagni

Altre statistiche transienti

Analisi statistiche stazionarie

Conclusioni e lezioni apprese

Interarrivi di tipo B

week - no gaussian factor

weekend - no gaussian factor

week - gaussian factor

weekend - gaussian factor

Interarrivi di tipo P

week - no gaussian factor

weekend - no gaussian factor

week - gaussian factor

weekend - gaussian factor

Popolazioni di tipo B nel centro

week - no gaussian factor

weekend - no gaussian factor

week - gaussian factor

weekend - gaussian factor

Popolazioni di tipo P nel centro

week - no gaussian factor

weekend - no gaussian factor

week - gaussian factor

weekend - gaussian factor

Ritardo di tipo B

week - no gaussian factor

weekend - no gaussian factor

week - gaussian factor

weekend - gaussian factor

Ritardo di tipo P

week - no gaussian factor

weekend - no gaussian factor

week - gaussian factor

weekend - gaussian factor

Popolazioni di tipo B in coda

week - no gaussian factor

weekend - no gaussian factor

week - gaussian factor

weekend - gaussian factor

Popolazioni di tipo P in coda

week - no gaussian factor

weekend - no gaussian factor

week - gaussian factor

weekend - gaussian factor

Introduzione

Modello concettuale

Modello delle specifiche

Modello computazionale

Analisi dei costi e dei guadagni

Altre statistiche transienti

Analisi statistiche stazionarie

Conclusioni e lezioni apprese

Analisi a orizzonte infinito

- Utilizzando k = 128 batches, ciascuno con b = 1024 campioni, l'autocorrelazione per lag j = 1 è inferiore a 0.2, contribuendo così alla stabilità e all'affidabilità dei risultati.
- L'analisi viene condotta per ciascun tipo di richiesta e per ciascuna statistica di interesse, coprendo tutte le fasce orarie sia nei giorni lavorativi che nei giorni del fine settimana.

Interarrivi - bar

	B type - Interarrivals							
	Slot	Risultato teorico	Risultato sperimentale	Media nell'intervallo	Errore			
	0	2.000 min	2.000 ± 0.014 min	✓				
~	1	4.762 min	4.950 ± 0.389 min	✓				
Week	3	2.381 min	2.614 ± 0.477 min	✓				
>	4	4.762 min	5.154 ± 0.811 min	✓				
	5	5.882 min	6.217 ± 0.074 min	✓				
	0	2.000 min	2.000 ± 0.014 min	✓				
pu	1	2.941 min	3.091 ± 0.322 min	✓				
Weekend	3	1.333 min	1.460 ± 0.259 min	✓				
	4	2.667 min	2.794 ± 0.268 min	✓				
	5	2.941 min	3.065 ± 0.285 min	✓				

Interarrivi al bar - Immagini week

Interarrivi al bar - Immagini weekend

Tempi di risposta - bar

	B type - Waits					
	Slot	Risultato teorico	Risultato sperimentale	Media nell'intervallo	Errore	
Week	0	2.667 min	2.665 ± 0.035 min	✓		
	1	2.092 min	2.083 ± 0.018 min	✓		
	3	2.428 min	2.440 ± 0.027 min	✓		
	4	2.092 min	2.086 ± 0.021 min	✓		
	5	2.060 min	2.067 ± 0.023 min	✓		
Weekend	0	2.667 min	2.665 ± 0.035 min	✓		
	1	2.261 min	$2.257 \pm 0.024 \; ext{min}$	✓		
	3	4.571 min	4.499 \pm 0.115 min	✓		
	4	2.327 min	2.339 ± 0.031 min	✓		
	5	2.261 min	2.246 ± 0.025 min	✓		

Tempi di risposta al bar - Immagini week

31/46

Tempi di risposta al bar - Immagini weekend

Numero di richieste nel centro - bar

	B type - Num. in the nodes				
	Slot	Risultato teorico	Risultato sperimentale	Media nell'intervallo	Errore
Week	0	1.333 min	1.336 ± 0.021 min	✓	
	1	0.439 min	0.440 ± 0.006 min	✓	
	3	1.020 min	1.031 ± 0.016 min	✓	
	4	0.439 min	0.440 ± 0.007 min	✓	
	5	0.350 min	0.355 ± 0.005 min	✓	
Weekend	0	1.333 min	1.336 ± 0.021 min	✓	
	1	0.769 min	0.773 ± 0.011 min	✓	
	3	3.429 min	3.399 ± 0.095 min	✓	
	4	0.873 min	0.881 ± 0.014 min	✓	
	5	0.769 min	0.769 ± 0.011 min	√	

Numero di richieste nel centro al bar - Immagini week

Numero di richieste nel centro al bar - Immagini weekend

Tempi in coda - bar

	B type - Delays					
	Slot	Risultato teorico	Risultato sperimentale	Media nell'intervallo	Errore	
Week	0	0.667 min	0.671 ± 0.027 min	✓		
	1	0.092 min	0.100 ± 0.006 min	Х	0.002	
	3	0.428 min	0.455 ± 0.019 min	Х	0.008	
	4	0.092 min	0.098 ± 0.007 min	✓		
	5	0.060 min	0.072 ± 0.007 min	Х	0.005	
Weekend	0	0.667 min	0.671 ± 0.027 min	√		
	1	0.261 min	0.268 ± 0.014 min	✓		
	3	2.571 min	2.519 ± 0.108 min	✓		
	4	0.327 min	0.342 ± 0.020 min	✓		
	5	0.261 min	0.265 ± 0.014 min	✓		

Tempi in coda al bar - Immagini week

Tempi in coda al bar - Immagini weekend

Numero di richieste in coda - bar

	B type - Num. in the queue				
	Slot	Risultato teorico	Risultato sperimentale	Media nell'intervallo	Errore
Week	0	0.333 min	0.339 ± 0.015 min	✓	
	1	0.019 min	0.021 ± 0.001 min	Х	0.001
	3	0.180 min	0.194 \pm 0.005 min	Х	0.009
	4	0.019 min	0.021 ± 0.001 min	Х	0.001
	5	0.010 min	0.013 ± 0.001 min	Х	0.002
Weekend	0	0.333 min	0.339 ± 0.015 min	✓	
	1	0.089 min	0.093 ± 0.005 min	✓	
	3	1.929 min	1.910 ± 0.087 min	✓	
	4	0.123 min	0.130 ± 0.008 min	✓	
	5	0.089 min	0.092 ± 0.005 min	√	

≡ 1 --- 2 -- 3 --- 4

--- 6

---- 8 -

39/46

Numero di richieste in coda - Immagini week

Numero di richieste in coda al bar - Immagini weekend

Statistiche - pizzeria

	P type - all statistics in the slot					
	Statistica	Risultato teorico	Risultato sperimentale	Media nell'intervallo	Errore	
Week	Interarrivo	5.882 min	6.145 ± 0.499 min	✓		
	Attesa	3.209 min	$3.223 \pm 0.038 \; ext{min}$	✓		
	Num. nel nodo	0.545 min	$0.548 \pm 0.009 \; ext{min}$	✓		
	Ritardo	0.209 min	$0.229 \pm 0.017 \; ext{min}$	Х	0.003	
	Num. in coda	0.035 min	0.040 ± 0.003 min	Х	0.002	
Weekend	Interarrivo	2.000 min	2.114 ± 0.228 min	✓		
	Attesa	6.867 min	$6.979 \pm 0.281 \; ext{min}$	✓		
	Num. nel nodo	3.429 min	3.505 ± 0.150 min	✓		
	Ritardo	3.857 min	$3.985 \pm 0.267 \; ext{min}$	✓		
	Num. in coda	1.929 min	$2.010\pm0.139~\mathrm{min}$	√		

Statistiche pizzeria - Immagini week

Statistiche pizzeria - Immagini weekend

Conclusioni e lezioni apprese

Conclusioni

- L'utilizzo di 3 serventi di tipo B porta a un costo mensile maggiorato di 2.240,00 €, rendendo il guadagno netto inferiore: la scelta migliore rimane $m_B = 2$.
- ▶ Il guadagno ottenuto introducendo il ritardo gaussiano sembra essere più realistico e più aderente alla realtà: la motivazione è che i risultati ottenuti sono relativi a uno scenario che tiene conto di condizioni più realistiche.

45/46

Lezioni apprese

- Ottenere risultati da campioni poco numerosi impatta significativamente l'attendibilità dei risultati.
- L'introduzione di uno scheduling di campionamento più complicato renede necessario uno studio delle medie più attento per ottenere risultati che convergono.