

IUT GEII – Mathématiques (Ma3)

Suites numériques

Andrés F. López-Lopera Laboratoire de Mathématiques pour l'Ingénieur (LMI) Université Polytechnique Hauts-de-France (UPHF)

Thèmes

1. Suites numériques

Mode de définition d'une suite

Suites de références

2. Convergence d'une suite

Suites de références

Définitions et vocabulaires

Étude de la monotonie

3. Limite d'une suite

l

Suites numériques

Suites numériques

 \cdot Les suites voient leur importance dans tous les aspects de la discrétisation que l'on peut rencontrer en génie électrique, e.g. signaux discrets

Suites numériques

 \cdot Une suite numérique est une fonction de $\mathbb N$ dans $\mathbb R$ définie par :

$$u_n = \begin{cases} \mathbb{N} \to \mathbb{R} \\ n \mapsto u_n \end{cases}$$

- · On utilise plus souvent:
 - $(u_n)_{n\in\mathbb{N}}$ pour désigner la suite dans son ensemble
 - u_n pour désigner l'image de l'entier n (n-ème terme de la suite)

3

Mode de définition d'une suite

 \cdot Les suites numériques sont généralement définies selon deux modes : suite explicite ou suite implicite

Définition explicite

 \cdot Si u_n est une suite donnée directement en fonction de n, on parle d'une suite explicite

4

Mode de définition d'une suite

Définition implicite

 \cdot Si u_n est une suite donnée en fonction des k termes précédents, on parle de définition par récurrence (ou implicite) d'ordre k

$$u_n = f(u_{n-1}, u_{n-2}, \dots, u_{n-k})$$

Exemple.

$$u_n = u_{n-1} + 1$$
, avec $u_0 = 0$

Mode de définition d'une suite

- · Cas particulier $u_n = f(u_{n-1})$:
 - On va faire une représentation graphique dans un repère (u_n, u_n)
 - On trace la droite de l'équation y = x
 - On trace la fonction y = f(x)

Exemple

$$u_n = \begin{cases} 1, & n = 0\\ \frac{4u_{n-1}}{u_{n-1} + 2}, & n \ge 1 \end{cases}$$

Suite de Dirac

· La suite de Dirac (δ_n) est définie par :

$$\delta_n = \begin{cases} 1, & \text{si } n = 0 \\ 0, & \text{si } n \ge 1 \end{cases}$$

7

Suite "échelon unité"

 \cdot La suite échelon unité (Un) est définie par :

$$U_n=1, n\geq 0$$

Suite arithmétique

· La suite arithmétique (u_n) de raison r et de premier terme a est définie par :

$$u_n = \begin{cases} a, & \sin n = 0\\ u_{n-1} + r, & \sin n \ge 1 \end{cases}$$

9

· Si (u_n) est une suite arithmétique de raison r et de premier terme a alors on peut écrire la définition implicite de la suite (u_n) :

$$u_n = \begin{cases} a, & \text{si } n = 0\\ u_0 + nr, & \text{si } n \ge 1 \end{cases}$$

· La sommes des (n + 1) premiers termes de la suite (u_n) est :

$$\sum_{p=0}^{n} u_p = u_0 + u_1 + u_2 + \dots + u_{n-2} + u_{n-1} + u_n$$

$$= u_0 + (u_0 + r) + (u_0 + 2r) + \dots + (u_n - 2r) + (u_n - r) + u_n (n+1 \text{ termes})$$

$$= (u_0 + u_n) + (u_0 + u_n) + (u_0 + u_n) + \dots ((n+1)/2 \text{ termes})$$

$$= \frac{(u_0 + u_n)(n+1)}{2}$$

Suite géométrique

· La suite géométrique (u_n) de raison q et de premier terme a est définie par :

$$u_n = \begin{cases} a, & \text{si } n = 0\\ qu_{n-1}, & \text{si } n \ge 1 \end{cases}$$

· Si (u_n) est une suite géométrique de raison q et de premier terme a alors on peut écrire la définition implicite de la suite (u_n) :

$$u_n = \begin{cases} a, & \sin n = 0\\ u_0 q^n, & \sin n \ge 1 \end{cases}$$

· La sommes des (n + 1) premiers termes de la suite (u_n) est :

$$\sum_{p=0}^{n} u_p = u_0 + u_1 + u_2 + \dots + u_{n-2} + u_{n-1} + u_n$$

$$= u_0 + qu_0 + q^2 u_0 + \dots + q^{n-1} u_0 + q^n u_0$$

$$= [1 + q + q^2 + \dots + q^{n-1} + q^n] u_0 = \frac{1 - q^{n+1}}{1 - q} u_0$$

Exercice. Démontrer que $1 + q + q^2 + \ldots + q^{n-1} + q^n = \frac{1 - q^{n+1}}{1 - q}$

Piste. Définir $S = 1 + q + q^2 + \ldots + q^{n-1} + q^n$, et développer S - qS

Suite récurrente linéaires d'ordre 1

On appelle suite récurrente linéaires d'ordre 1 (ou suite arithmético-géométrique) de raisons q et r, et de premier terme a toute suite (u_n) telle que :

$$u_n = \begin{cases} a, & \text{si } n = 0 \\ qu_{n-1} + r, & \text{si } n \ge 1 \end{cases},$$

avec $a \neq 0$

Cas particuliers:

- si q = 1 et $r \in \mathbb{R}$, on obtient la suite arithmétique
- si r = 0 et $q \in \mathbb{R} \setminus \{1\}$, on obtient la suite géométrique

Suites récurrentes linéaires d'ordre 2

On appelle *suite récurrente linéaires d'ordre* 2 toute suite (u_n) telle que :

$$u_{n} = \begin{cases} a, & \text{si } n = 0 \\ b, & \text{si } n = 1 , \\ \alpha u_{n-1} + \beta u_{n-2}, & \text{si } n \ge 2 \end{cases}$$

avec $\alpha \neq 0$

· Toute suite récurrente linéaire d'ordre 2 peut s'écrire comme combinaison linéaire de 2 suites.

Convergence d'une suite

Convergence d'une suite

· Une suite (u_n) est *convergente* de limite ℓ , si

$$\lim_{n\to\infty}(u_n)=\ell$$

Théorème

Si une suite (u_n) admet une limite alors cette limite est unique.

- · Si (u_n) n'est pas convergente, on dit qu'elle est *divergente*
- · Il y a deux types de divergence :
 - Soit (u_n) a une limite infinie
 - Soit (u_n) n'a pas de limite du tout

· Pour tout réel α tel que $\alpha > 0$, la suite $\left(\frac{1}{n^{\alpha}}\right)$ converge vers 0

· Pour tout réel α tel que $\alpha > 0$, la suite (n^{α}) diverge vers $+\infty$

· Pour tout réel q tel que |q| < 1, la suite (q^n) converge vers 0

· Pour tout réel q tel que $|q| \ge 1$, la suite (q^n) diverge

- · Une suite (u_n) est *majorée* si, pour tout n, on a $u_n \leq M$
- · Une suite (u_n) est *minorée* si, pour tout n, on a $u_n \ge m$
- · Une suite (u_n) est *bornée* si, pour tout n, on a $m \le u_n \le M$

- · Une suite (u_n) est *croissante* si, pour tout n, on a $u_n \le u_{n+1}$
- · Une suite (u_n) est *décroissante* si, pour tout n, on a $u_n \ge u_{n+1}$
- · Une suite croissante ou décroissante est dite monotone

· Une suite (u_n) est *alternée* si, pour tout n, on a $u_n u_{n+1} \le 0$

Théorème sur la convergence

- · Toute suite croissante et majorée est convergente
- · Toute suite décroissante et minorée est convergente
- · Toute suite monotone et bornée est convergente

Étude de la monotonie

Suite définie de façon explicite $u_n = f(n)$

- Si f est *croissante*, alors (u_n) est croissante
- Si f est décroissante, alors (u_n) est décroissante

Suite définie par récurrence $u_{n+1} = f(u_n)$

- Si f est *croissante*, et $u_0 \le u_1$, alors (u_n) est croissante
- Si f est *croissante*, et $u_0 \ge u_1$, alors (u_n) est décroissante
- $\operatorname{Si} f$ est décroissante alors on ne peut pas conclure

Convergence d'une suite

Exercice. Étudier la monotonie des suites suivantes :

1.
$$u_n = \frac{2n^2 - 3}{n^2 + 2}$$

2. $u_n = \begin{cases} 8, & n = 0\\ \frac{1}{2}u_{n-1} + 5, & n \ge 1 \end{cases}$

Convergence d'une suite

Exercice. Étudier la monotonie des suites suivantes :

1.
$$u_n = \frac{2n^2 - 3}{n^2 + 2}$$

2.
$$u_n = \begin{cases} 8, & n = 0 \\ \frac{1}{2}u_{n-1} + 5, & n \ge 1 \end{cases}$$

Solution.

1.

$$f'(n) = \frac{4n(n^2+2) - 2n(2n^2-3)}{(n^2+2)^2} = \frac{14n}{(n^2+2)^2} > 0, \quad \forall n \ge 1,$$

d'où on peut dire que f est croissante, donc (u_n) est croissante

2.

$$f'(u_n)=\frac{1}{2}>0,$$

d'où on peut dire que
$$f(u_n)$$
 est croissante
 Parce que, $u_1 = \frac{8}{2} + 5 = 9 > u_0$, donc (u_n) est croissante

Étude de la monotonie

Étude de la monotonie selon le signe de $u_{n+1} - u_n$

- Si $u_{n+1} u_n \ge 0$, alors (u_n) est croissante
- Si $u_{n+1} u_n \le 0$, alors (u_n) est décroissante

Étude de la monotonie selon le rapport de u_{n+1}/u_n

- Si $\frac{u_{n+1}}{u_n} \ge 1$, alors (u_n) est croissante
- Si $\frac{u_{n+1}}{u_n} \le 1$, alors (u_n) est décroissante

Opération sur les limites

- · Soient deux suites (u_n) et (v_n) convergentes, de limite respective ℓ et ℓ' , alors
 - $(u_n + v_n)$ est convergente, de limite $\ell + \ell'$
 - (λu_n) , avec $\lambda \in \mathbb{R}$, est convergente de limite $\lambda \ell$
 - $(u_n \cdot v_n)$ est convergente, de limite $\ell \cdot \ell'$
 - (u_n/v_n) est convergente, de limite ℓ/ℓ' , sous réserve que $\ell' \neq 0$

· A partir de la définition explicite, si $u_n = f(n)$ et $\lim_{x \to \infty} f(x) = \ell$, alors

$$\lim_{n\to\infty}(u_n)=\ell$$

· A partir de la définition implicite (d'ordre 1), si $u_{n+1} = f(u_n)$:

Propriété

Si (u_n) converge vers une limite ℓ , et f est continue en ℓ , alors ℓ est solution de l'équation f(x) = x

Théorème de gendarmes

Soient (u_n) , (v_n) et (w_n) trois suites telles que :

- $\cdot \lim_{n\to\infty} u_n = \ell \text{ et } \lim_{n\to\infty} v_n = \ell$
- · Il existe un entier n_0 tel que pour tout $n \ge n_0$, $u_n \le w_n \le v_n$

Alors, (w_n) est convergente et $\lim_{n\to\infty} w_n = \ell$

Suites adjacentes

- · Deux suites (u_n) et (v_n) sont adjacentes, si et seulement si :
 - L'une est croissante et l'autre est décroissante ;
 - $-\operatorname{et}\lim_{n\to\infty}(u_n-v_n)=0$

Théorème

Deux suites (u_n) et (v_n) adjacentes sont convergentes et ont la même limite ℓ

