- 1. 利用定积分的定义计算下列积分:
- (1) $\int_{a}^{b} x^{2} dx$ (b > a); $(2) \int_{0}^{1} e^{x} dx$.
- 2. 利用定积分的几何意义计算下列积分:
- (1) $\int_{0}^{2} (x-1) dx$;
- (2) $\int_{-1}^{1} |x| dx$;
- (3) $\int_0^a \sqrt{a^2 x^2} dx$ (a > 0); (4) $\int_{-\pi}^{\pi} \sin x dx$.
- 3. 利用定积分, 计算下列各式的极限:
- (1) 已知 $\int_{0}^{\pi} \sin x dx = 2$, 求

$$\lim_{n\to\infty}\frac{1}{n}\left(\sin\frac{\pi}{n}+\sin\frac{2\pi}{n}+\cdots+\sin\frac{(n-1)\pi}{n}\right).$$

(2) 已知 $\int_{1}^{2} \frac{dx}{x} = \ln 2$, 求

$$\lim_{n\to\infty}\left(\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2n}\right).$$

(3) $\exists \exists \prod_{1}^{2} \ln x dx = 2 \ln 2 - 1$, \vec{x}

$$\lim_{n\to\infty}\frac{\sqrt[n]{(n+1)(n+2)\cdots(2n)}}{n}.$$

4. 证明函数 $E(x) = \begin{cases} 1 , & x$ 为有理数, $E(x) = \begin{cases} 1 , & x \end{cases}$ 在[0,1]上不可积,但 $E(x) \in R[0,1]$.