

MEF 3.0

Dynamic, Agile and Orchestrated Services over Automated Networks

Emerson Moura <u>emoura@cisco.com</u> Distinguished Architect

BRKSPG-2542

Barcelona | January 27-31, 2020

Cisco Webex Teams

Questions?

Use Cisco Webex Teams to chat with the speaker after the session

How

- 1 Find this session in the Cisco Events Mobile App
- 2 Click "Join the Discussion"
- 3 Install Webex Teams or go directly to the team space
- 4 Enter messages/questions in the team space

Agenda

- Recap of MEF Forum Carrier Ethernet Services
- MEF 3.0 Overview
- MEF L1 and L3 Services
- MEF LSO Reference Architecture and APIs
- Other MEF Work areas
- MEF LSO Implementation example

MEF Forum Carrier Ethernet Services Terminology

Courtesy of MEF

■ UNI: User Network Interface: demarcation point between Service Provider and Subscriber.

EVC: Ethernet Virtual Connection: logical association of 2 or more UNIs.

OVC: Operator Virtual Connection: logical connection between UNI and ENNI.

◆ ENNI: External Network to Network Interface: demarcation point between Service Providers.

Source: BRKSPG-2720 (2014)

MEF Carrier Ethernet Service Types

Service Type	MEF Service	Service Types		
		Port-based	VLAN Based	
Point-to-point	E-Line	EPL	EVPL	
	E-Access	Access EPL	Access EVPL	
Multipoint	E-LAN	EP-LAN	EVP-LAN	
Rooted Multipoint	E-Tree	EP-Tree	EVP-Tree	

MEF Carrier Ethernet Service Attributes

MEF CE 2.0 Services Features

Multiple Classes of Service

- 3 Classes of Services: H, M, L.
- Adds Egress Bandwidth Profile.
- Performance objectives defined for SLS (Service Level Specification).
- Designed to support 20+ application types.

Manageability

- Service OAM functions for service management and reliability.
- Enhanced traffic management features to optimize bandwidth resources (Bandwidth Profiles).

Interconnectivity

- New E-Access service.
- Standardizes ENNI interconnects between carriers.
- Allows service providers to extend CE 2.0 services to off-net locations via an access provider.

Fast forward to 2020...

... applying similar concepts to new services

...and a new framework to everything

MEF 3.0 at a glance

- Beyond L2 services
- Updated specifications for Carrier Ethernet
- LSO Lifecycle Services Orchestration
- Data/info models and APIs
- Reference implementations, focused on developers and open source
- New certifications

MEF 3.0 program framework

Orchestrated Services			LSO APIs
L1 to L3 and beyondUnderlay ServicesOverlay Services	Services	LSO APIs	 Orchestration across service providers and operators Orchestration over multiple network technology domains SDKs, implementation projects and specifications
New Certifications			Community
 Cloud-based test platform Virtualized test probes Agile model Services & LSO APIs Subscription-based 	Certification	Community	 MEF developer community implementation projects Liaisons with Open source projects & SDOs Enterprise advisory council Proof of Concepts

MEF 3.0 Overlay and Underlay Services Orchestrated by MEF LSO APIs

What is a MEF 3.0 Service?

Describing MEF 3.0 Services

MEF Subscriber and Operator Services

Service Provider

Barcelona

Operator

Milan

Subscriber Services (Provided to end users)

Operator Service (Between Providers/Operators)

MEF 3.0 services

Goal: provide an on-demand, cloud-centric experience with unprecedented user or application-directed control over network resources and service capabilities over single or multi-provider scenarios

Ex.: SD-WAN Service

MEF 3.0 Services:

- Enhanced traditional L2 services and created data Models (UML, YANG)
- New services:
 - SD-WAN
 - L3: IP Service Attributes
 - L2: E-Transit
 - L1: SONET/SDN, FC, others
- Future Services:
 - Security-as-a-Service
 - Application Services

MEF 3.0 Carrier Ethernet Services

MEF 3.0 Carrier Ethernet Standards

	335			
	Service Attribu	utes	Service De	finitions
Subscriber Services	MEF 10.4		MEF 6.3 MEF 22.3 (Mobile)	
Operator Services	MEF 26.2		MEF 5 MEF 6 MEF 6	52
Special Topics	SOAM MEF 30.1 MEF 35.1	L2CP MEF 45.1	CoS/BWPs MEF 23.2(.1)	SAT MEF 48.1

MEF Subscriber Ethernet Service Attributes

MEF Specification: MEF 10.4

- Main Concepts:
 - Service Provider, Subscriber
 - UNI, EVC, EVC End Point
- Main Service Attributes
 - End Point VLAN Map
 - Class of Service Map
 - Service Level Specification
 - Bandwidth Profiles
 - PCP/DEI Preservation

MEF Subscriber Ethernet Service <u>Definitions</u>

MEF Specification: MEF 6.3

- Three Subscriber Service Types:
 - E-Line point-to-point
 - E-LAN multipoint
 - E-Tree rooted multipoint
- "Port"-based or "VLAN"-based Types:
 - E-Line: EPL and EVPL
 - E-LAN: EP-LAN and EVP-LAN
 - F-Tree: FP-Tree and FVP-Tree

MEF Operator Ethernet Service Attributes

MEF Specification: MEF 26.2

- Key New Concepts:
 - Operator, Super-Operator
 - ENNI, OVC, OVC End Point
 - VUNI, Feeder OVC
- Service Attributes as for Subscribers, plus:
 - OVC EP VLAN Map
 - OVC EP Egress CoS Map
 - Available MEG Level
 - ENNI S-VLAN ID Control
 - ENNI Common and Multilateral Attributes

MEF Operator Ethernet Service <u>Definitions</u>

MEF Specification: MEF 51.1

- Three Operator Services:
 - O-Line (P2P)
 - O-LAN (MP)
 - O-Tree (Rooted MP)
- Four Specific Services
 - Access E-Line (P2P, ENNI+UNI)
 - Access E-LAN (MP, ENNI+UNI)
 - Transit E-Line (P2P, ENNI only)
 - Transit E-LAN (MP, ENNI only)

Managed Access E-Line (MAEL)

MEF Specification: MEF 62

- Special Case of Access E-Line
 - Avoid need for SP to deploy NID at Subscriber Premises
- Standard CoS and OAM capabilities
 - Single Class of Service for all traffic
 - Specific requirements for SOAM FM, SOAM PM, and Latching Loopback

MEF Simplified Transit E-Line (STEL)

MEF Specification: MEF 65

- Special Case of MEF 51.1
 Transit F-Line Service
 - Inverse of MAEL (MEF 62)
 - Constrains selected ENNI/OVC attributes to simplify ordering and provisioning
 - Enables a SP to connect their CEN to a SP NID at the Subscriber premises
 - Supports a single CoS Name and multiple UNIs/Subscribers on the SP NID

Ethernet Layer 2 Control Protocols

MEF Specification: MEF 45.1

- Comprehensive coverage of L2CP service behaviour
 - Service Attributes
 - L2CP Processing Requirements
 - Application to specific services
 - E-Line, E-LAN, E-Tree
 - Access E-Line/E-LAN
 - Transit E-Line/E-LAN

Additional MEF 3.0 enhancements for CE services

- CE services are orchestration ready
- Adds token sharing bandwidth profile models
- L2CP fully augmented for wholesale services
- Link aggregation is strengthened to support 'all-active' links
- Adds Virtual Instantiation of UNI for use with VMs
- Simplification of quantity and complexity of service attributes
- Service OAM is Enhanced for OVC management
- Performance objectives are upgraded for mp2mp services and add performance tiers for data centers

Summary: MEF 3.0 Carrier Ethernet services (L2)

	CE 2.0	MEF 3.0 CE	
Retail Services			
E-Line	V	V	Covered by MEF 6.3
E-LAN	V	V	Covered by MEF 6.3
E-Tree	V	V	Covered by MEF 6.3
Wholesale Services			
E-Access	V	X	Access E-Line superseeded CE 2.0 E-Access
Access E-Line, E-LAN	X	V	Covered by MEF 51.1
Transit E-Line, E-LAN	X	V	Covered by MEF 51.1
Managed Access E-Line	X	V	Covered by MEF 62

MEF 3.0 L1 Services

Subscriber Layer 1 Service Attributes

What it is:

- Standardized definition for L1 subscriber and operator services and services attributes
- Services are defined using abstractions, similar to MEF L2 services, i.e. it does not mandate any implementation
- Addresses Ethernet and non-Ethernet end services
- What it is not:
 - A new L1 protocol or technology
- End goal:
 - Address broader L1 service requirements (e.g. beyond Ethernet)
 - Simplify, drive consistency, certification, pave the road to LSO e.g. orchestrated L1 services
- Covered by MEF 63 specification

MEF Subscriber L1 Service Attributes

MEF Specification: MEF 63

- Defines Only 7 Service Attributes
 - UNI (2): ID, Physical Layer (Protocol, Coding, Optical Interface)
 - L1VC (3): ID, End Point List, Service Level Specification
 - L1VC End Point (2): ID, End Point UNI

Example: UNI Service Attributes

L1 UNI Service Attributes		
UNI ID Service Attribute	UNI ID	Non-null RFC 2579 String Must not contain characters 0x00 through 0x1f (up to 45 characters)
Physical Layer Service Attribute <p, c,="" o=""></p,>	p - Client ProtocolValue must be the same at both UNIs	Ethernet, Fibre Channel, SDH or SONET
	c - Coding FunctionValue must be the same at both UNIs	e.g. PCS clause 49 for 10GBASE-R (LAN-PHY)
	o - Optical Interface Function Value may be different at each UNIs	e.g. SX, LX, LR, ER for Ethernet
	Duplex mode	Full

MEF 63 L1 service client protocols

Reference Slide

	Client Protocol / Physical Port	Rate (Gb/s)	Coding	L1 Cl
	GigE	1.250	8B/10B	10-bit block
	10GigE WAN	9.95328	Scrambled	STS-192c frame
Ethernet	10GigE LAN	10.3125	64B/66B	66-bit block
	40GigE	41.250	64B/66B	66-bit block
	100GigE	103.125	64B/66B	66-bit block
	FC-100	1.0625	8B/10B	10-bit block
	FC-200	2.125	8B/10B	10-bit block
	FC-400	4.250	8B/10B	10-bit block
Fibre Channel	FC-800	8.500	8B/10B	10-bit block
	FC-1200	10.51875	64B/66B	66-bit block
	FC-1600	14.025	64B/66B	66-bit block
	FC-3200	28.05	64B/66B (1)	66-bit block
	OC-3 / STM-1	0.15552	Scrambled	STS-3/STM-1 Frame
SONET / SDH	OC-12 / STM-4	0.62208	Scrambled	STS-12/STM-4 Frame
	OC-48 / STM-16	2.48832	Scrambled	STS-48/STM-16 Frame
	OC-192 / STM-64	9.95328	Scrambled	STS-192/STM-64 Frame
	OC-768 / STM-256	39.81312	Scrambled	STS-768/STM-256 Frame

(1) At ingress the FC-3200 L1Cl is extracted after FEC decoding and 256B/257B transcoding

L1VC Service Level Specification Service Attribute

- SLS service attribute can have a *None* or a 3-tuple value $\langle t_s, T, PM \rangle$
 - t_s = date and time for the start of the SLS, specified to the nearest second
 - T = duration used in conjunction with t_s , for example a calendar month
 - *PM* = list where each element in the list consists of a performance metric name, a list of parameter values and the performance metric objective
- I 1VC Performance Metrics:
 - One-way Delay
 - · One-way Errored Second
 - One-way Severely Errored Second
 - · One-way Unavailable Second
 - One-way availability

Example of L1VC SLS with one PM

Subscriber L1VC Service Level Specification

Tuple Entry	Value
t_{s}	2017-07-01, 08:00:00 UTC
T	One calendar month
PM	One-way Availability Performance Metric
	Ordered Subscriber L1VC End Point pairs <u1, u2=""> and <u2, u1=""></u2,></u1,>
	= 99.99%

MEF Operator L1 Services

MEF Specification: MEF 64

- Main concepts:
 - Operator L1VC and L1VC End Points
 - Access L1 Services
 - Transit L1 Services
 - E-NNI (OTUk Interface)

Operator L1 service characteristics

- Same client protocols at the UNI as for Subscriber Layer 1 Service (by definition)
 - Ethernet, Fibre Channel, SONET, SDH
- The client protocol at the ENNI is OTN OTUk (k=1, 2, 2e, 3, 4)
- Access L1 Virtual Connections from multiple UNIs may be aggregated to a single OTUk port at the ENNI
- Transit L1 Virtual Connections from multiple ENNIs may be aggregated to a single OTUk port at another ENNI
- An ENNI may support multiple Service Provider L1 Virtual Connections (Shared ENNI)

Future MEF Work on L1 Services

- Service OAM
- Service Activation Testing
- Add latest Ethernet and Fibre Channel interfaces
- Add support for 'Beyond 100G' OTN ENNI and FlexO interfaces
- Add support for L1 Services in LSO Legato and Presto

MEF 3.0 IP Services

IP Service Attributes for Subscriber IP Services

What it is:

- Standardized definition for subscriber IP service attributes based on MEF framework, i.e. based on abstractions – not tied to any implementation. For instance RFC 4364 – BGP/MPLS IP VPNs is referenced and a valid implementation
- Other service attributes beyond connectivity applied to IP Services
- What it is not:
 - A new IP protocol or VPN solution
- End goal:
 - Drive consistency, support a broad set of use cases and automate inter-provider service lifecycle via LSO for IP Services – e.g. Info & Data Models, APIs
- Covered by MEF 61 specification

MEF 3.0 IP Service Standards

	335				
	Service Attributes		Se	rvice Definitions	
Subscriber Services	MEF 61.1			MEF 69	
Operator Services	MEF 61.1		Not Defined Yet		
Special Topics	SOAM Pending IETF STAMP publication	-	BWPs Defined	SAT Work in Progress	

MEF IP Subscriber Service Attributes

MEF Specification: MEF 61.1

- Main Concepts:
 - UNI, IPVC, IPVC End Point
 - UNI Access Link
- Main Service Attributes
 - UNI Connection Addressing
 - UNI Routing Protocols
 - Class of Service Maps
 - Service Level Specification
 - Bandwidth Profiles

BWP Flow Parameter Example

 $MaxIR_F = 100 \text{ Mb/s}$

Rank	CIR	MaxIR	Weight
1	20 Mb/s	20 Mb/s	0
2	0	40 Mb/s	1
3	0	100 Mb/s	5
4	0	100 Mb/s	2

Reference: MEF 61, Table 23

MEF IP Operator Service Attributes

MEF Specification: MEF 61.1

- Operator Services
 - Agreed between SP and an Operator
 - New concepts: ENNIs, Operators
- RFC 4364 Option A
 - No MPLS Labels at the ENNI.
 - New attributes for mapping services across an ENNI
- Not covered
 - RFC 4364 Option B and C

MEF IP Internet Service <u>Definition</u>

MEF Specification: MEF 69

- Two types of Internet Access:
 - Basic
 - · Best-effort, plug and play
 - Residential or SME use
 - Advanced
 - · SLS, static addressing, etc
 - · Commercial use
- Boundary between the ISP and "the Internet" is invisible to the Subscriber:
 - Internet Access can include access to things within and outside SP's own network

UNI Management Models for IP Services

- UNI can have one or more UNI Access links
 - Terminate at one or more devices
 - Separate physical or at L2 (e.g. VLANs)

- UNI Routing Protocols BGP, Static, OSPF
- UNI Link Addressing Static, DHCP, SLAAC, IP unumbered

MEF IP Services Attributes - Phase 1 Scope

- L3 VPN services
 - Unicast traffic
 - UNI L3 Control Protocols (BGP, OSPF)
 - Multi-CoS (ex. H, M, L)
 - BW Profiles (CIR, MaxIR, Weight, Burst)
 - SLS Performance Objectives and Metrics between UNIs or other reference points
 - Multipoint or Rooted Multipoint
 - Extranets

- Internet access services
 - NAT
 - DNS
 - Bandwidth Profiles
 - Data Limits

- To be addressed in Phase 2+:
 - Multicast
 - Private Cloud access
 - Policy Based Routing and Route manipulation
 - Egress Class of Service Map
 - BFD and OSPF Authentication, and OSPF sham links
 - Operator Service Attributes

Mapping between MEF IP Services and IETF IP VPNs

MEF 61 to IETF RFC 8299 mapping examples

MEF IP Services Term	Closest RFC 8299 Term		
Customer Edge (CE)	Customer Edge (CE) - same definition		
Provider Edge (PE)	Provider Edge (PE) - same definition		
Service Provider (SP)	Network Operator		
Subscriber	Customer		
IP Virtual Connection (IPVC)	VPN Service		
IPVC End Point	No equivalent		
IPVC Topology	vpn-service-topology		
UNI	Site		
UNI Access Link	Site Network Access		

For a more exhaustive mapping, please refer to MEF 61 - Appendix A

MEF 3.0 SD-WAN Service

MEF SD-WAN Service

Reference: MEF 70

cisco Life!

1. UNI - SD-WAN User to Network Interface

Demarcation between SP and Subscriber

2. SWVC - SD-WAN Virtual Connection

Logical multipoint connection between the SD-WAN UNIs that in the SD-WAN Service

3. SWVC EP - SD-WAN Virtual Connection End-Point

Logical point where application flow policies are assigned and applied

4. SD-WAN Edge

Connects SD-WAN UNI to UCSs, maps packets to application flows, enforces policies, and selects TVC over which to forward each flow

5. UCS - Underlay Connectivity Service

Any WAN service used by the SD-WAN, e.g., MEF Ethernet Services (MEF 6.2), MEF IP Services (MEF 61.1), MPLS VPNs and Internet Access, and MEF Optical Transport Services (MEF 63)

6. Tunnel Virtual Connection (TVC)

Point-to-point paths across UCSs that compose an SD-WAN Service

7. Internet Breakout

Application Flows forwarded from an SD-WAN UNI directly to the Internet rather than delivered to another SD-WAN UNI.

MEF SD-WAN Service Use Case Hybrid WAN: SD-WAN Service over Internet and MPLS UCSs

- Encrypted SD-WAN TVCs over the Internet UCS
- Internet and MPLS VPN UCS can be provided by different service providers
- Option to increase site-to-site bandwidth can be offered
- Increased network availability and resiliency with back-up UCS

MEF SD-WAN Service Use Case Dual Internet UCSs: SD-WAN Service over Multiple ISPs

- Encrypted SD-WAN TVCs over each Internet UCS from each ISP
- ISPs may not be the SD-WAN Service Provider
- Using multiple ISPs achieves provider diversity, increased network availability and resiliency

MEF SD-WAN Next Steps and Related Projects

MEF W70.1 (Phase 2 of MEF 70)

- Additional service attributes related to application business importance and prioritization
- Underlay Connectivity Service parameters required to deploy an SD-WAN Service

MEF W88 - Application Security for SD-WAN services

Information and data modeling standards including LSO Legato

MEF 3.0 Lifecycle Services Orchestration

MEF Lifecycle Services Orchestration (LSO) and related APIs

Goal: provide open APIs at device, infrastructure, services and business layers to enable multi-vendor solutions across single or multi provider scenarios.

Ex.: Dynamic Services

MEF Specifications and API SDKs:

- MEF Specification: MEF 55 The LSO Framework Specification
- APIs are released as SDKs in two flavors *:
 - Experimental: not public, based on unfinished specs
 - Published: public, based on released specs

^{*} As of 2018, only experimental SDKs were available.

^{*} SDKs developed in 6 months sprints -goal is to reduce to 3 months.

Why are LSO APIs important?

- Streamline B2B transactions via APIs
 - · Reduce time and cost
 - Scale operations
- Define standard APIs for:
 - Intra and inter-carrier scenarios
 - Service provisioning
 - Service changes
 - · SLA reporting
 - Many other use cases
- Cover full service lifecycle
 - Quote, ordering, monitoring, trouble-ticketing, others

Example: Sonata API

MEF LSO Reference Architecture (MEF 55)

MEF LSO Abstraction Layers

MEF LSO API Approach

Separation of API Framework, Functions and Product/service-specific data

API Framework Examples **Transport Protocol** REST/OpenAPIs RESTConf/YANG **Encoding Scheme NETCONF/YANG TOSCA Templates** Security Mechanisms **Notification Mechanisms** TMF, ONF TAPI, ONAP or MEF APIs for: Product/service ordering Product/Service Function Specific Information Product/service inventory **Independent** Information Serviceability **Function Specific Operations** Product/Service MEF 3.0 Services: Specific Information: **SD-WAN Services CE Services** Data Model **IP Services** L1 Services

Service Model

Business Model

Resource Model

Example: LSO Sonata API and SDK

- Sonata API initial focus: MEF 3.0 CE Access E-Line services
- Updated API definitions for:

Inventory | Quote | Serviceability | Product Order

- Updated draft standards of the business requirements and use cases:
 - Address, Service Site, and Product Offering Qualification Management
 - Quote Management
 - Product Inventory Management: Requirements and Use Cases
- LSO Sonata SDK Release 4 available on the MEF GitHub

LSO Sonata API Use Cases

MEF API Assets (MEF Members)

- MEF maintains a github with many assets available:
 - API Guide
 - API swaggers (JSON & YML)
 - · Postman collection
 - · Reference code

Collaboration with Open Source Projects & other standards groups

LSO Implementation Projects

Source: MEF Courtesy of MEF

MEF LSO Implementation Example

MEF LSO RA - Example Cisco Portfolio Mapping

MEF LSO Legato provides a YANG defined API for L2 Services

Operator chose this standard service definition over other options for its maturity

Source: Layer123 Zero Touch & Carrier Automation Congress. | March 20-23, 2018 | Madrid, Spain

MEF Legato Yang Models - Examples

Service Models

```
mef-legato-services.yang
 module mef-legato-services {
  namespace "urn:mef;yang:mef-legato-services";
prefix mef-services;
   import ietf-yang-types {
   import mef-types {
  import mef-global {
   prefix mef-global;
  import tailf-ncs {
  organization "MEF Forum";
    "Web URL: http://mef.net/
      Postal: MEFForum
                6033 W. Century Boulevard, Suite 1107
                Los Angeles, CA 90845
      Phone: +1 310-642-2800
     Fax: +1 310-642-2808":
    "This module implements the Carrier Ethernet Services as defined in MEF 10.3 and MEF 6.2.
      A number of base documents have been used to create the
      MEF Services YANG Module. The
       following are the abbreviations for the baseline documents:
       [MEF10.3] refers to MEF 10.3
        'Ethernet Services Attributes Phase 3', October 2013
        [MEF6.2] refers to MEF 6.2
       'EVC Ethernet Services Defintions Phase 3', August 2014
        [MEF7.3] refers to MEF 7.3
        'Carrier Ethernet Management Information Model',
      February 2017
[MEF10.3.1] refers to MEF 10.3.1
        'Composite Performance Metric (CPM) Amendment to MEF 10.3'.
  revision 2017-11-22 {
    description
"Initial Version.";
    reference
       "Legato - Services YANG SCA (MEF XX)":
```

Interface Models

```
mef-legato-interfaces.yang
module mef-legato-interfaces {
   namespace "urn:mef:yang:mef-legato-interfaces";
  prefix mef-interfaces;
  import mef-types {
  import mef-global {
   prefix mef-global;
  organization "MEF Forum";
    "Web URL: http://mef.net/
    E-mail: namespace@mef.net
Postal: MEF Forum
             6033 W. Century Boulevard, Suite 1107
    Phone: +1 310-642-2800
Fax: +1 310-642-2808"
    "This module implements the UNI functionality specified
     in MEF 10.3 and MEF 6.2.
    A number of base documents have been used to create
     the MEF Interfaces YANG Module. The following are the
     abbreviations for the baseline documents:
     [MEF10.3] refers to MEF 10.3
     'Ethernet Services Attributes Phase 3', October 2013
     [MEF10.3.2] refers to MEF 10.3.2
     'Amendment to MEF 10.3 - UNI Resiliency Enhancement',
     October 2015
     [MEF6.2] refers to MEF 6.2
     'EVC Ethernet Services Defintions Phase 3', August 2014
     [MEF45] refers to MEF 45 'Multi-CEN L2CP', August 2014
     [MEF7.3] refers to MEF 7.3
     'Carrier Ethernet Management Information Model', February 2017";
  revision 2017-11-22 {
   description
"Initial Version.";
      "Legato - Services YANG SCA (MEF XX)";
     "MEF Interfaces";
       "Carrier Ethernet Services within MEF Interfaces.";
           "Subscriber view of the MEF Interfaces supporting
          Carrier Ethernet Services.";
         key "uni-id";
```

- Yang Models for MEF L2 connectivity services and related service attributes
 - EVC services
 - CoS
 - Bandwidth Profiles
 - Interface attributes
- Can be easily loaded in Cisco NSO
- Requires extensions for device and technology specific deployments

MEF 3.0 and 5G

MEF 5G Work Areas

- 1 MEF Services for 5G
- 2 MEF Services over 5G

3 Network Slicing

5G Transport Requirements

cisco Live!

MEF Services for 5G

- Covered by MEF 22 Phase 4 (MEF 22.3.1)
- MEF Ethernet Service Types
 - Mobile Fronthaul 1,2,3
 - Mobile Backhaul
 - Ethernet Backhaul
- Multiple Ethernet Service Types can coexist

MEF 22.3 - Transport Services for Mobile Networks:

 Identifies the requirements for MEF Ethernet Services and MEF External Interfaces such as UNIs for use in Mobile Backhaul networks based on MEF specifications

MEF 22.3.1 - Amendment:

Add requirements in MEF 22.3 to allow support for Mobile Fronthaul Services (MFHS)

MEF Services over 5G

• Why?

- More traffic is terminating on mobile devices
- · Fiber availability is limited
- Copper plant may not meet demand
- Cost (avoid truck-roll + technician)

MEF vision

- End-to-end MEF LSO orchestrated delivery of MEF Services leveraging 5G
- Use case example:
 - MEF SD-WAN Service with 5G Access

5G Network Slicing

- A means to structure and organize infrastructure and management to provide flexible solutions for different market scenarios
 - For Service Provider internal purposes
 - For exposure to and use by Customer/Partner

5G Network Slicing

1:N EVC - Mobile Network Slice

Mobile Slice N

1:1 EVC - Mobile Network Slice

they can be over L3/IP VPNs.

Potential MEF Use Cases for Network Slicing

- MEF Services over 5G Network Slices, e.g. Fixed Wireless Access
- MEF SD-WAN Service mapping of applications to Network Slices
- MEF LSO orchestration of (Transport) Network Slices

MEF Certification

MEF 3.0 Certification

Equipment

Services

Software

New with MEF 3.0

Cloud-based test platform with virtualized test probes

Portal-driven continuous testing & certification

Subscription-based model

Reminder: MEF Certification is exclusively done by external companies.

MEF 3.0 services and certification

		CERTIFIED	₩3.0
	E-Line, E-LAN	•	⊘
	E-Tree, E-Access	•	•
NEW	Access E-Line, Transit E-Line *	×	Ø
	LSO Orchestrated Services / LSO APIs *	×	Ø
	L1 Connectivity and IP Services Attributes *	×	Ø

^{*} MEF Roadmap

MEF 3.0 Agile Certification Platform

Courtesy of MEF

MEF LSO Sonata Certification

Status: Pilot phase as of November 2019. First certifications expected by Q1 2020.

Cisco MEF 3.0 Certified Products*

ASR9901

ASR9k

NCS560

NCS 55A1

NCS 55A2

^{*} As of January 2020. For details and updates refer to MEF Certification Registry (Public): https://www.mef.net/certification/equipment_details?company=001U0000007OcrllAS

Summary

Summary

- MEF 3.0 supersedes MEF CE 2.0 and expands in many areas
 - New services, new technical specs, updated specifications
 - LSO architecture and APIs
 - New certification model currently available only for L2 connectivity services
 - Community driven implementations
- Practical impact:
 - Adds L2 service enhancements, new L1 and L3 services, including SD-WAN, with related terminology
 - Request for new MEF 3.0 services or service enhancements and related certifications
 - · Availability of standard data models for services
 - Provides a services orchestration framework based on LSO with related APIs

MEF 3.0 Supporting material

MEF Website (public)

http://www.mef.net/mef-3-0-information-kit-downloads

MEF Wiki (log-in required)

https://wiki.mef.net

MEF LSO Git (login and access required)

https://github.com/orgs/MEF-GIT/teams

Useful Links

• MEF19 MEF 3.0 Workshop (Public):

https://www.youtube.com/playlist?list=PLJ35mJXalMRYMNOFyNrvc8w1L7G9wA4yB

MEF 3.0 Presentations (Member Login Required)

https://wiki.mef.net/display/MC/Standard+Presentations

MEF Technology/Vendors Certification Registry (Public)

https://www.mef.net/certification/technology-certification-registry

Cisco equipment certifications on MEF Registry:

https://www.mef.net/certification/equipment_details?company=001U0000007OcrllAS

MEF 3.0 Services Certification (Public)

https://www.mef.net/certification/services-certification-registry

Useful Links

• MEF SD-WAN White Paper

https://www.mef.net/resources/download?id=47&fileid=file1

Complete your online session survey

- Please complete your session survey after each session. Your feedback is very important.
- Complete a minimum of 4 session surveys and the Overall Conference survey (starting on Thursday) to receive your Cisco Live t-shirt.
- All surveys can be taken in the Cisco Events Mobile App or by logging in to the Content Catalog on <u>ciscolive.com/emea</u>.

Cisco Live sessions will be available for viewing on demand after the event at ciscolive.com.

Cisco Webex Teams

Questions?

Use Cisco Webex Teams to chat with the speaker after the session

How

- 1 Find this session in the Cisco Events Mobile App
- 2 Click "Join the Discussion"
- 3 Install Webex Teams or go directly to the team space
- 4 Enter messages/questions in the team space

Continue your education

illiilli CISCO

Thank you

cisco live!

You make possible