Laboratório de Sistemas de Controle

Djonathan Luiz de Oliveira Quadras

2020-06-25

Contents

A	prese	entação	5
1	Sim	ulação de Sistemas	7
2	Efe	itos de Pólos e Zeros na Dinâmica	9
	2.1	Pólos e Zeros	9
	Pro	cedimentos Lab 2	10
3	Ide	ntificação de Sistemas	35
	3.1	Modelagem de Sistemas Lineares	35
	3.2	Identificação de sistemas de primeira ordem	36
	3.3	Identificação de Sistemas de Segunda Ordem	37
	Pro	cedimentos Lab 3	39
4		streamento de Referências e Rejeição de Perturbações - Erro Regime Permanente	47
	4.1	Tipos de Sistemas	47
	4.2	Erro em regime permanente	48
	Pro	cedimentos Lab 4	51
5	Pro	jeto de Controladores por Métodos Algébricos	65
	5.1	Controladores Clássicos	65
	5.2	Método Algébrico de Projeto de Controladores	66
	5.3	Erro em Regime Permanente	67
	Pro	cedimentos Lab 5	70

4		CONTENTS

6 Linearização de Sistemas Não-Lineares 6.1 Apresentação do Laboratório	73
7 Controle de Sistemas Não-Lineares	77
8 Análise pelo Lugar das Raízes	7 9
9 Projeto de Controladores pelo Lugar das Raízes	81
10 Projeto do controlador atraso de fase	83
11 Análise pelos Diagramas de Bode e Nyquist	85
12 Projeto de Controladores pelo Diagrama de Bode	87
13 Digitalização de Controladores Analógicos	89

Apresentação

Working on it:)

6 CONTENTS

Chapter 1

Simulação de Sistemas

Este laboratório consistiu apenas na apresentação da disciplina, da ferramenta e do método que será aplicado. Não teve nehuma atividade desenvolvida.

Chapter 2

Efeitos de Pólos e Zeros na Dinâmica

Nesta experiência, verificaremos a influência dos pólos e zeros de uma Função de Transferência na resposta dinâmica para entradas do tipo degrau e também para entradas senoidais. Utilizaremos o Matlab para realizar as simulações.

2.1 Pólos e Zeros

Considere uma função de Trasnferência da forma

$$G(s) = \frac{Y(s)}{U(s)} = \frac{N(s)}{D(s)} = \frac{b_1 s^m + b_2 s^{m-1} + \dots + b_m s + b_{m+1}}{s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n}$$

onde Y(s) é a saída, U(s) é a entrada, $n \geq m$ e todos os coeficientes são reais. Temos as seguintes definições:

- 1. Os pólos G(s) são as raízes de D(s) (D(s) = 0);
- 2. Os zeros de G(s) são as raízes de N(s) (N(s) = 0);
- 3. G(s) é estável quando todos os pólos possuem parte real negativa, ou seja, estão no semi-plano esquerdo (SPE) do plano s;
- 4. G(s) é *instável* quando existe ao menos um pólo com parte real positiva, ou seja, no semi-plano (SPD);
- 5. G(s) é de fase não-mínima quando há pólos ou zeros no SPE.

Considere que G(s) é estável, ou seja, todos os pólos estão no SPE. Em geral, para entradas do tipo degrau, temos:

- 1. A componente da resposta dinâmica referente a um pólo afastado da origem (do plano s) é relativamente rápida;
- 2. A componente da resposta dinâmica referente a um pólo próximo da origem é relativamente lenta;
- 3. Um zero tende a fazer com que a resposta dinâmica apresente sobressinal. Quanto mais próximo da origem estiver o zero, maior o sobressinal. E, quanto mais longe da origem, menor se torna o sobressinal, podendo o mesmo não existir. Assim, um sistema de segunda ordem com pólos reais e um zero poderá apresentar um sobressinal dependendo do posicionamento do zero no plano s;
- 4. Um zero bem próximo de um pólo tende a anular os efeitos dos mesmos na resposta dinâmica.

Procedimentos Lab 2

Problema 1

Considere o sistema de primeira ordem

$$G(s) = \frac{1}{\tau s + 1},$$

onde $\tau=1,\,\tau=0.5$. Para cada valor de τ , determine o pólo e sua posição no plano s (use os comandos zpk e pzmap no Matlab), e conclua sobre a estabilidade e a rapidez da resposta do sistema. Simule para uma entrada do tipo degrau unitário. Analise e compare os resultados. Agora, repita o procedimento para o sistema

$$G(s) = \frac{1}{s-1}.$$

Resolução

A resolução será feita em quatro partes: (1) a resolução para $\tau=1$ usando pzmap, (2) a resolução para $\tau=0.5$ usando pzmap, (3) a simulação e comparação dos resultados e, por fim, (4) a resolução para $G(s)=\frac{1}{s-1}$.

Parte 1 Para $\tau = 1$, temos a função de transferência dada por

$$G(S) = \frac{1}{s+1}.$$

O código implementado no Matlab foi o apresentado abaixo.

```
g = tf([1], [1 1])
[p, z] = pzmap(g)
pzmap(g)
```

Tendo como resultados de pólos e zeros:

p = -1 z =

0×1 empty double column vector

Ou seja, a função de transferência não apresenta zeros e tem seu pólo em s=-1. A sua posição no plano é apresentada na figura abaixo.

Como o pólo da função de transferência se encontra na SPE, conclui-se que o sistema se compartará de uma forma estável.

Parte 2 Para $\tau = 0.5$, temos a função de transferência dada por

$$G(S) = \frac{1}{0.5s + 1}.$$

O código implementado no Matlab foi o apresentado abaixo.

```
g = tf([1], [0.5 1])
[p, z] = pzmap(g)
pzmap(g)
```

Tendo como resultados de pólos e zeros:

p = -2

z =

0×1 empty double column vector

Ou seja, a função de transferência não apresenta zeros e tem seu pólo em s=-2. A sua posição no plano é apresentada na figura abaixo

Como o pólo da função de transferência se encontra na SPE, conclui-se que o sistema se compartará de uma forma estável. Também é possível concluir que o sistema alcanraça a estabilidade mais rápido para $\tau=0.5$.

Parte 3 A simulação do sistema implementada em Matlab está apresentado na figura abaixo.

O resultado apresentado pelo scope é apresentado na figura abaixo.

Percebe-se que, assim como esperado, o sistema se comporta de forma estável e tem uma convergência mais rápida para $\tau=0.5$.

Parte 4 Para a última etapa temos a função de transferência dada por

$$G(S) = \frac{1}{s-1}.$$

O código implementado no Matlab foi o apresentado abaixo.

```
g = tf([1], [1 -1])
[p, z] = pzmap(g)
pzmap(g)
```

Tendo como resultados de pólos e zeros:

p =

1

z =

0×1 empty double column vector

Ou seja, a função de transferência não apresenta zeros e tem seu pólo em s=1. A sua posição no plano é apresentada na figura abaixo

Como o pólo da função de transferência se encontra na SPD, conclui-se que o sistema se compartará de uma forma instável. A simulação em Matlab está apresentada na figura abaixo.

15

O resultado apresentado pelo scope é apresentado na figura abaixo.

O resultado comprova o esperado. O sistema se comporta de forma instável para a função de transferência dada por $G(s)=\frac{1}{s-1}.$

Problema 2

Considere o sistema de primeira ordem (integrador)

$$G(s) = \frac{1}{s}.$$

Determine o pólo e a sua posição no plano s e simule para uma entrada do tipo degrau unitário e também para $\sin(t)$ (para $\sin(t)$, escolha **Max Step Size** = **0.1** em **Simulation** \Longrightarrow **Configurarion Parameters**). Note que a saída é a integral da entrada. Tais resultados eram esperados? Dica: relembre que Y(s) = G(s)U(s), e que se $x(t) \iff X(S)$, então $\int_0^t x(\tau) d\tau \iff X(s)/s$.

Resolução

O código utilizado no Matlab é apresentado abaixo.

```
g = tf([1], [1 0])
[p,z] = pzmap(g)
pzmap(g)
```

Obtendo como resultado:

p =

0

z =

0×1 empty double column vector

Conclue-se então que a função de transferência $G(s)=\frac{1}{s}$ não tem zeros e tem pólo em s=0. O mapa da posição no plano é mostrado na figura abaixo.

Isso mostra que o sistema é um caso crítico. Neste caso a resposta em regime permanente do sistema a uma entrada de amplitude limitada será uma senóide.

A simulação feita em Matlab está apresentada na figura abaixo.

O resultado da simulação é apresentado na figura abaixo.

O resultados eram esperados, uma vez que em um estado crítico a função de transferência pode estar em um estado permanente senoidal caso a entrada seja senoidal ou pode divergir caso a entrada seja um sinal constante.

Problema 3

Considere o sistema de segunda ordem

$$G(s) = \frac{1}{s^2 + 25}.$$

Determine os pólos e suas posições no plano s. Simule para as seguintes entradas: degrau unitário, $\sin(4t)$, $\sin(6t)$. Observe que a saída é limitada. Agora, semule para a entrada $\sin(5t)$. Note que a amplitude de saída cresce indefinidamente. Tal fenômeno é denominado de ressonância. De moro mais geral, para

$$G(s) = \frac{1}{s^2 + \omega_0^2},$$

teremos ressonância quando aplicamos uma entrada senoidal da forma $\sin(\omega_0 t + \phi)$. Note que a frequência de ressonância ω_0 é igual a parte imaginária dos pólos de G(s).

Resolução

O código utilizado no Matlab é apresentado abaixo.

```
g = tf([1], [1 0 25])
[p,z] = pzmap(g)
pzmap(g)
```

Obtendo como resultado:

```
p =
    0.0000 + 5.0000i
    0.0000 - 5.0000i

z =
    0×1 empty double column vector
```

Conclue-se então que a função de transferência $G(s)=\frac{1}{s^2+25}$ não tem zeros e tem pólo em $s=\pm 5i$. O mapa da posição no plano é mostrado na figura abaixo.

De acordo com o mapa de posição, pode-se concluir que a função de transferência é classificada como um caso crítico. A figura abaixo apresenta o modelo de simulação criado no Simulink.

O resultado da simulação é apresentado abaixo.

É fácil perceber que o modelo se comporta de maneira instável com a entrada $u(t) = \sin(5t)$, se mostrando estável nas demais situações.

Problema 4

Considere o sistema de segunda orde

$$G(s) = \frac{1.6}{(s+1)(s+2)} = \frac{0.8}{0.5s^2 + 1.5s + 1}.$$

Determine os pólos e suas posições no plano s e simule para uma entrada do tipo degrau unitário. Note que não há sobressinal. Tal resultado era esperado? Justifique.

Agora, adicionando um zero, temos

$$G(s) = \frac{1.6(\beta s + 1)}{(s+1)(s+2)} = \frac{0.8(\beta s + 1)}{0.5s^2 + 1.5s + 1},$$

onde $\beta=0.1,\ \beta=0.6,\ \beta=0.99,\ \beta=1.2,\ \beta=2,\ \beta=10.$ Para cada valor de β , determine os pólos e zeros, suas posições no plano s e simule para uma entrada do tipo degrau unitário. Analise e compare os resultados. Note que dependendo da posição do zero o sobressinal será maior ou menor, podendo também não estar presente.

Resolução

Utilizando a função pzmap() do Matlab para encontrar os pólos da função de transferência $G(s) = \frac{0.8}{0.5s^2 + 1.5s + 1}$ temos que a função não possui zeros e possui pólos para s=-2 e s=-1. O mapa de posições é apresentado na figura abaixo.

O resultado da função de transferência é apresentado na figura abaixo.

Table 2.1: Valores de Pólo e Zero variando β

	Pólos	Zeros
$\beta = 0.1$	-2, -1	-10.0
$\beta = 0.6$	-2, -1	-1.67
$\beta = 0.99$	-2, -1	-1.01
$\beta = 1.2$	-2, -1	-0.83
$\beta = 2$	-2, -1	-0.50
$\beta = 10$	-2, -1	-0.10

O resultado não era esperado pois, para uma Função de Transferência de segundo grau é esperado que a resposta tenha sobressinal. Agora, considerando a função de transferência

$$G(s) = \frac{0.8(\beta s + 1)}{0.5s^2 + 1.5s + 1},$$

e substituindo os valores de β pelos valores propostos temos os valores de zero e pólo apresentados na tabela abaixo.

Os gráficos de posição estão apresentados abaixo.

O resultado da simulação está apresentado na figura abaixo.

É possível perceber que quanto mais alto o valor de β maior o sobressinal. Também é possível perceber que há um intervalo no qual o tempo de reação aumenta, encontrando seu tempo de reação mínimo, voltando então a aumentar.

Problema 5

Considere o sistema de segunda ordem

$$G(s) = \frac{0.9}{s^2 + s + 1}.$$

Determine os pólos e suas posições no plano s e simule para uma entrada do tipo degrau unitário. Note que há sobressinal. Tal resultado era esperado? Justifique.

Agora, adicionando um zero, temos

$$G_z(s) = \frac{0.9(\beta s+1)}{s^2+s+1}, \label{eq:Gz}$$

onde $\beta=0.05,\ \beta=0.5,\ \beta=1$ e $\beta=2.5.$ Para cada valor de β determine os pólos e zeros, suas posições no plano s e simule para uma entrada do tipo degrau unitário. Analise e compare os resultados.

Resolução

Utilizando a função p
zmap() do Matlab para encontrar os pólos da função de transferência
 $G(s)=\frac{0.9}{s^2+s+1}$ temos que a função não possui zeros e possui pólos

para s=-0.5+0.86i e s=-0.5-0.86i. O mapa de posições é apresentado na figura abaixo.

O resultado da função de transferência é apresentado na figura abaixo.

	Pólos	Zeros
$\beta = 0.05$	$-0.5 \pm 0.86i$	-20.0
$\beta = 0.5$	$-0.5\pm0.86i$	-2.0
$\beta = 1$	$-0.5\pm0.86i$	-1.0
$\beta - 25$	$-0.5 \pm 0.86i$	0.4

Table 2.2: Valores de Pólo e Zero variando β

É possível perceber que há sobressinal.

Agora, considerando a função de transferência $G_z(s)=\frac{0.9(\beta s+1)}{s^2+s+1}$, e substituindo os valores de β pelos valores propostos temos os valores de zero e pólo apresentados na tabela abaixo.

Os gráficos de posição estão apresentados abaixo.

A simulação feita em Matlab está apresentada na figura abaixo.

O resultado da simulação está apresentado na figura abaixo.

É possível perceber que quanto mais alto o valor de β maior o sobressinal e o tempo de resposta do sistema.

Problema 6

Considere o sistema de segunda ordem de fase não-mínima

$$G(s) = \frac{-s+1}{0.5s^2 + 1.5s + 1}.$$

Determine os pólos e o zero, suas posições no plano s e simule para uma entrada do tipo degrau unitário. Note que a resposta é negativa nos instantes iniciais. Justificaremos tal comportamento no que se segue.

Escrevemos

$$G(s) = \frac{-s+1}{0.5s^2+1.5s+1} = \underbrace{\frac{G_1(s)}{1}}_{0.5s^2+1.5s+1} - \underbrace{\frac{G_2(s) = sG_1(S)}{s}}_{0.5s^2+1.5s+1} \, .$$

Assim,

$$Y(s) = G(s)U(s) = G_1(s)U(s) - G_2(s)U(s) = \underbrace{G_1(s)U(s)}_{Y_1(s)} - \underbrace{sG_1(s)U(s)}_{Y_2(s) = sY_1(s)}.$$

Relembre-se que se $x(t) \iff X(S)$ com x(0) = 0, então $dx(t)/dt \iff sX(s)$. Portanto,

$$y(t) = y_1(t) - y_2(t) = y_1(t) - \frac{dy_1(t)}{dt}.$$

Verifique a validade da equação acima no Simulink (utilize o bloco **Derivative** no Simulink) para uma entrada do tipo degrau unitário. Analise o motivo da resposta ser negativa nos instantes iniciais.

Resolução

Utilizando a função p
zmap() do Matlab para encontrar os pólos da função de transferência
 $G(s)=\frac{-s+1}{0.5s^2+1.5s+1}$ temos que a função possui zeros para
 s=1e possui pólos para s=-2
es=-1. O mapa de posições é apresentado na figura abaixo.

A resposta de G(s) a uma função degrau unitário é apresentada na figura abaixo.

A validade da equação proposta pelo programa é apresentada na figura abaixo. Pode-se perceber que a equação é valida pois as curvas são satisfatoriamente similares.

O motivo da resposta ser negativa se deve ao fato de o zero da função G(s) se encontrar no SPD.

Chapter 3

Identificação de Sistemas

Nesta experiência, veremos como modelar matematicamente um sistema linear por uma Função de Transferência. Identificaremos os parâmetros de uma Função de Transferência de primeira e de segunda ordem. Compararemos a dinâmica do sistema com a do modelo matemático.

3.1 Modelagem de Sistemas Lineares

Encontrar um modelo matemático que capture as características dinâmicas relevantes de um sistema real é de fundamental importância para a análise e controle do sistema. No Laboratório 1 estudamos um modelo linear com motor CC. Tal modelo pode ser obtido a partir das leis da física (mecânica e eletromagnetismo) e os valores dos parâmetros dependem de constantes e coeficientes físicos (indutância do enrolamento, resistência do enrolamento, constante de torque do motor, coeficiente de atrito ciscoso). Em situações reais, não conheceremos uma estimativa para os mesmos. Por exemplo, todo resistor possui um valor normal e uma faixa de tolerância percentual (e.g. $R=1000\pm5\%$). Além disso, muitas vezes a determinação de um modelo matemático para um sistema a partir de leis naturais é extremamente difícil e, mesmo no caso em que isso é possível, o modelo obtido pode ser demasiadamente complexo para ser estudado matematicamente.

Devido às dificuldades que acabamos de expor, em geral buscamos um modelo matemático relativamente simples mas que capture, ao menos aproximadamente, as características dinâmicas relevantes do sistema. Assim, primeiramente fixamos um modelo (modelagem do sistema) e em seguida determinamos de maneira aproximada o valor de seus parâmetros (identificação dos parâmetros).

Nesta experiência, consideraremos apenas sistemas lineares que possam ser modelados por uma função de Transferência G(s) de primeira ordem ou de segunda

ordem. Veremos então como identificar os parâmetros de G(s).

3.2 Identificação de sistemas de primeira ordem

Toda Função de Transferência G(s) de primeira ordem pode ser escrita na forma padrão como

$$G(s) = \frac{K}{\tau s + 1}. (3.1)$$

Supunha que G(s) é estável, ou seja, $\tau>0$. considere uma entrada u(t)=A do tipo degrau de magnitude A. Temos que a saída correspondente é

$$y(t) = AK(1 - e^{\frac{-t}{\tau}}).$$

O valor da saída em regime permanente é

$$y(\infty) = AK$$
,

e o tempo de acomodação de 5% é dado por

$$0.95KA = KA(1 - e^{\frac{-t_s(5\%)}{\tau}}) \implies t_s(5\%) = 3\tau.$$

Isto é ilustrado na figura 1.

Figure 3.1: Figura 1: Resposta de um sistema de primeira ordem ao degrau.

Logo,

$$K = \frac{y(\infty)}{A}, \tau = \frac{t_s(5\%)}{3}.$$
 (3.2)

3.3 Identificação de Sistemas de Segunda Ordem

Toda Função de Transferência G(s) de segunda ordem com pólos não-nulos pode ser escrita como

$$G(s) = \frac{K\omega_n^2}{s^2 + 2\xi\omega_n + \omega_n^2},\tag{3.3}$$

onde $\omega_n > 0$. Os pólos de G(s) são:

$$p_{1,2} = -\xi\omega_n \pm \sqrt{\xi^2 - 1}.$$

Temos as seguintes situações:

- 1. Sistema não-amortecido ($\xi=0$): os pólos são complexos com $p_{1,2}=\pm j\omega_n$, e a resposta a uma entrada do tipo degrau é senoidal.
- 2. Sistema sub-amortecido (0 < ξ < 1): os pólos são complexos com $p_{1,2}=-\xi\omega_n\pm j\omega_n\sqrt{1-\xi^2}$ e a resposta ao degrau apresenta oscilação e sobressinal.
- 3. Sistema criticamente amortecido ($\xi=1$): os pólos são reais e iguais com $p_{1,2}=-\xi\omega_n$ e a resposta ao degrau não apresenta oscilação nem sobressinal.
- 4. Sistema super-amortecido ($\xi > 1$): os pólos são reais, negativos e diferentes e a resposta ao degrau não apresenta oscilação nem sobressinal.
- 5. Sistema instável ($\xi < 0$): os pólos possuem parte real positiva.

Sistemas sub-amortecidos

Suponha que G(s) é estável com $0 < \xi < 1$ (sub-amortecido). Considere uma entrada u(t) = A do tipo degrau de magnitude A. A resposta correspondente y(t) é ilustrada na figura 2.

Temos que

$$y(\infty)=KA, \quad M_p=\frac{y_p-y(\infty)}{y(\infty)}=e^{\frac{-(\xi\pi)}{\sqrt{1-\xi^2}}}, \quad t_p=\frac{\pi}{\omega_n\sqrt{1-\xi^2}}.$$

Logo,

$$K = \frac{y(\infty)}{A}, \quad M_p = \frac{y_p - y(\infty)}{y(\infty)}, \quad \xi = \sqrt{\frac{(\ln M_p)^2}{(\ln M_p)^2 + \pi^2}}, \quad \omega_n = \frac{\pi}{t_p \sqrt{1 - \xi^2}}. \tag{3.4}$$

Figure 3.2: Figura 2: Resposta de um sistema de segunda ordem sub-amortecido ao degrau.

Sistemas criticamente amortecidos e super-amortecidos

Suponha que G(s) é estável com $\xi \geq 1$ (criticamente amortecido ou superamortecido). Neste caso, os dois pólos de G(s) são reais e a resposta ao degrau se assemelha ao de um sistema de primeira ordem (não apresenta oscilação nem sobressinal). Podemos identificar G(s) indiretamente através da identificação da Função de Transferência F(s) em malha-fechada. Considere o diagrama de blocos em malha-fechada mostrando na Figura 3, onde $K_c > 0$ é o ganho de um controlador proporcional e r é a referência.

Figure 3.3: Figura 3: Diagrama de blocos em malha-fechada.

Relembre que

$$F(s) = \frac{Y(s)}{R(s)} = \frac{K_c G(s)}{1 + K_c G(s)}. \label{eq:force}$$

Para qualquer $K_c > 0$, temos que F(s) é um sistema de segunda ordem estável. E, quando $K_c > 0$ for suficientemente grade, temos que F(s) será um sistema de segunda ordem sub-amortecido. Assim, escolhemos K_c de modo que F(s) seja sub-amortecido e então identificamos F(s) conforme descrito na seção anterior aplicando uma referência r(t) = A do tipo degrau de magnitude A. Desta maneira, identificaremos G(s) indiretamente pois

$$F(s) = \frac{K_cG(s)}{1 + K_cG(s)} \implies G(s) = \frac{F(s)}{K_c - K_cF(s)}. \tag{3.5} \label{eq:3.5}$$

Procedimentos Lab 3

Problema 1

Aplique um degrau u(t)=2 no Sistema 1 do arquivo MatLab3.mdl do Simulink. Pelas características da resposta, modele o Sistema 1 como uma Função de Transferência $G_1(s)$ de primeira ou segunda ordem. Em seguida, identifique os parâmetros do modelo utilizando a equação (3.2) ou (3.4). Compare a resposta do modelo identificado com a do Sistema 1.

Resolução

Simulando o sistema do modelo 1 obtemos o resultado abaixo.

Pela curva feita espera-se que a Função de Transferência seja de primeira ordem. Utilizando as ferramentas fornecidas pelo Simulink foi estimado que

$$y(\infty) = 1.60.95 y(\infty) = 1.52 \implies t_s(5\%) = 9.97s \implies \tau = 3.33$$

Assim,

$$G_1(s) = \frac{0.8}{3.33s + 1}.$$

Simulando ${\cal G}_1(s),$ temos o resultado apresentado abaixo.

Percebe-se, assim, que a Função de Transferência $G_1(s)$ se aproxima satisfatoriamente bem do Sistema 1.

Problema 2

Aplique um degrau u(t)=4 no Sistema 2. Pelas características da resposta modele o Sistema 2 como uma Função de Transferência $G_2(s)$ de primeira ou segunda ordem. Em seguida, identifique os parâmetros do modelo utilizando a equação (3.2) ou (3.4). Realize os cálculos na linha de comando do Matlab $(\ln(x) \implies \log(x) \ e \ \sqrt{x} \implies \operatorname{sqrt}(x))$. Compare a resposta do modelo identificando com a do Sistema 2.

Resolução

Simulando o sistema do modelo 1 obtemos o resultado abaixo.

Pela curva feita espera-se que a Função de Transferência seja de segunda ordem. Utilizando as ferramentas fornecidas pelo Simulink foi estimado que

$$y_p=5.588y(\infty)=4.805t_p=5s$$

Dessa forma, aplicando as equações 3.4, temos que

$$K=1.2, \quad M_p=0.163, \quad \xi=0.5 \quad {\rm e} \quad \omega_n=0.7255.$$

Dessa forma, a Função de Transferência ${\cal G}_2(s)$ será

$$G_2(s) = \frac{0.6316}{s^2 + 0.7255s + 0.5264}.$$

Simulando $G_2(s)$, temos o resultado apresentado abaixo.

Percebe-se, assim, que a Função de Transferência $G_2(s)$ se assemelha ao Sistema 2, porém, com menor precisão que a função $G_1(s)$ se aproximou do Sistema 2.

Problema 3

Parte A

Aplique um degrau u(t)=3 no Sistema 3. Obtenha um modelo aproximado para o Sistema 3 como uma Função de Transferência G(s) de primeira ordem. Agora implemente o diagrama de blocos em malha fechada da Figura 3 para o Sistema 3 com r(t)=1 do tipo degrau e $K_c=3$ Observamos que, na Figura 3, se G(s) é de primeira ordem, então a Função de Transferência em malha fechada F(s) também será de primeira ordem para qualquer valor de $K_c>0$. A resposta do Sistema 3 em malha-fechada está de acordo com tal propriedade? O que pode estar errado?

Resolução Simulando o sistema do modelo 1 obtemos o resultado abaixo.

Pela curva feita espera-se que a Função de Transferência seja de primeira ordem. Utilizando as ferramentas fornecidas pelo Simulink foi estimado que

$$y(\infty) = 3.90.95y(\infty) = 3.8415 \implies t_s(5\%) = 3.22s \implies \tau = 1.072$$

Assim,

$$G_3(s) = \frac{1.3}{1.072s + 1}.$$

Simulando $G_1(s)$, temos o resultado apresentado abaixo.

Percebe-se, assim, que a Função de Transferência $G_B(s)$ não se aproxima satisfatoriamente bem ao Sistema 3. Aplicando a malha fechada vista na figura 3, temos o resultado apresentado abaixo.

Como $K_c=3>0$ e a Função de Transferência em malha fechada retornou um sistema de segunda ordem, percebe-se a resposta não está de acordo com a propriedade estabelecida. Desta forma, presume-se que G(s) não é de primeira ordem e sim de segunda.

Parte B

Identifique F(s). Em seguida, identifique G(s) indiretamente através da equação (??). Para isto, utilize os seguintes comandos no Matlab:

```
F = tf([K*wn^2], [1 2*ksi*wn wn^2])
G = F/(Kc-Kc*F)
G = zpk(minreal(G)) % minreal simplifica e zpk fatora
```

Note que G(s) é de segunda ordem com pólos reais. Neste momento, temos condições de responderm o que estava errado em nossa modelagem inicial do Sistema 3 como um sistema de primeira ordem. Compare a resposta em malha-aberta de G(s) (identificando indiretamente) com a do Sistema 3 para u(t)=3 do tipo degrau.

Resolução Simulando o sistema do Sistema 3 em malha fechada e utilizando as ferramentas fornecidas pelo Simulink foi estimado que

$$y_p = 0.868y(\infty) = 0.796t_p = 0.4s$$

Assim, tem-se que:

$$K = 0.796, \quad M_p = 0.09, \quad \xi = 0.61 \quad \text{e} \quad \omega_n = 9.888.$$

Dessa forma, tem-se que

$$F(s) = \frac{77.83}{s^2 + 12.01s + 97.77}$$

que gera a curva abaixo.

Assim, é possível calcular G(s) a partir de F(s), tendo como resultado

$$G(s) = \frac{25.94}{s^2 + 12.025s + 19.96}.$$

Agora é possível comprar G(s) com sua curva anterior, gerando o resultado abaixo.

Percebe-se que, considerando o modelo como uma Função de Transferência de segundo grau obtida através de F(s) é possível encontrar a curva exata correspondente ao Sistema 3.

Chapter 4

Rastreamento de Referências e Rejeição de Perturbações - Erro em Regime Permanente

Nesta experiência analisaremos o erro em regime permanente de sistemas em malha-fechada para o rastreamento de referências e a rejeição de perturbações. Consideraremos referências e perturbações do tipo degrau, rampa e parábola. Comprovaremos os resultados teóricos através de simulações no Simulink/Matlab.

4.1 Tipos de Sistemas

Considere a Função de Transferência

$$G(s) = \frac{N(s)}{D(s)}$$

onde N(s) e D(s) são polinômios em s sem raízes em comum e com grau $(N) \le \text{grau}(D)$. Temos a seguinte classificação para G(s):

- Tipo 0: G(s) não possui pólos em s=0. Denominamos $K_p=G(0)$ de constante de posição. Note que $K_p=\lim_{s\to 0}G(s)$.
- Tipo 1: G(s) tem um (e apenas um) pólo em s=0. Podemos então escrever

$$G(s) = \frac{1}{s}G_0(s),$$

48CHAPTER 4. RASTREAMENTO DE REFERÊNCIAS E REJEIÇÃO DE PERTURBAÇÕES - ERR

onde $G_0(s)=\frac{N(s)}{D_0(s)}$ não possui pólos em s=0. Chamamos $K_v=G_0(0)\neq 0$ de constante de velocidade. Note que $K_v=\lim_{s\to 0}sG(s)$.

• Tipo 2: G(s) tem dois (e apenas dois) pólos em s=0. Podemos escrever

$$G(s) = \frac{1}{s^2}G_0(s),$$

onde $G_0(s)=\frac{N(s)}{D_0(s)}$ não possui pólos em s=0. Denominamos $K_a=G_0(0)\neq 0$ de constante de aceleração. Note que $K_a=\lim_{s\to 0}s^2G(s)$.

4.2 Erro em regime permanente.

Considere o sistema em malha-fechada com realimentação unitária mostrado na Figura @ref{fig:fig41}, onde:

 $\begin{cases} y(t) & : \text{ saída} \\ r(t) & : \text{ referência} \\ e(t) = r(t) - y(t) & : \text{ erro de rastreamento} \\ w(t) & : \text{ perturbação externa que não é possível de ser medida} \end{cases}$

Figure 4.1: Sistema em malha-fechada com perturbação na saída.

Desejamos analisar o erro em regime permanente $(t \to \infty)$ quando existem perturbações externas. Temos que

$$E(s) = R(s) - Y(s) = R(s) - [G(s)E(s) + W(s)] \implies E(s) = \frac{1}{1 + G(s)}R(s) - \frac{1}{1 + G(s)}W(s) \implies E(s) = \frac{1}{1 + G(s)}R(s) - \frac{1}{1 + G(s)}W(s) \implies E(s) = \frac{1}{1 + G(s)}R(s) - \frac{1}{1 + G(s)}W(s) \implies E(s) = \frac{1}{1 + G(s)}R(s) - \frac{1}{1 + G(s)}W(s) \implies E(s) = \frac{1}{1 + G(s)}R(s) - \frac{1}{1 + G(s)}W(s) \implies E(s) = \frac{1}{1 + G(s)}R(s) - \frac{1}{1 + G(s)}W(s) \implies E(s) = \frac{1}{1 + G(s)}R(s) - \frac{1}{1 + G(s)}W(s) \implies E(s) = \frac{1}{1 + G(s)}R(s) - \frac{1}{1 + G(s)}R(s) - \frac{1}{1 + G(s)}R(s) - \frac{1}{1 + G(s)}R(s) + \frac{1}{1 + G(s)}R(s) - \frac{1}{1 + G(s)}R(s) + \frac{1}{1 + G(s)}R(s) - \frac{1}{1 + G(s)}R(s) + \frac{1}{1 +$$

Note que $E=E_R$ quando W=0 e que $Y=Y_W$ quando R=0. Podemos então analisar E através de E_R e Y_R . O erro em regime permanente é dado por

$$e(\infty) = \lim_{t \to \infty} e(t) = e_r(\infty) - y_w(\infty), \tag{4.1}$$

desde que os limites $e_r(\infty)=\lim_{t\to\infty}e_r(t)$ e $y_w(\infty)=\lim_{t\to\infty}y_w(t)$ existam. Dizemos que há rastreamento de referência quando $e_r(\infty)=0$. De maneira semelhante, dizemos que há rejeição de perturbação quando $y_w(\infty) = 0$. Portanto, quando há rastreamento de referência e rejeição de perturbação teremos que $e(\infty) = 0$.

Iremos agora analisar $e_r(\infty)$ e $y_w(\infty)$ através de $E_R(s)$ e $Y_W(s)$, respectivamente, considerando que a referência r e a perturbação externa w são do tipo degrau, rampa ou parábola. Relembramos que:

- 1. Degrau: $x(t) = A \iff X(s) = \frac{A}{s}$ 2. Rampa: $x(t) = Bt \iff X(s) = \frac{B}{s^2}$ 3. Parábola: $x(t) = Ct^2 \iff X(s) = \frac{2C}{s^3}$

Suponha que D(s) + N(s) = 0 possui todas as raízes no SPE (Semi-Plano Esquerdo do plano s) e que D(s)R(s) e D(s)W(s) possuem no máximo um pólo em s=0. Isto garante que $e_r(\infty)$ e $y_w(\infty)$ existem e, assim, o Teorema do Valor Final pode ser aplicado. Ressaltamos que as raízes de D(s) + N(s) = 0nada mais são do que os pólos da Função de Transferência de malha-fechada quando não há perturbação (w=0)

$$F(s) = \frac{Y(s)}{R(s)} = \frac{G(s)}{1+G(s)} = \frac{N(s)}{D(s)+N(s)}, \quad (\text{para } w=0). \label{eq:force}$$

Desse modo, estamos assumindo que F(s) é estável para w=0. Com base no Teorema do Valor Final, podemos construir a tabela 4.1 e a tabela 4.2 mostradas abaixo. Note que os valores de $e_r(\infty)$ e de $y_w(\infty)$ (regime permanente) dependem apenas da constante de posição $K_p,$ da constante de velocidade K_v e da cos
ntante de aceleração K_a . Tl
 nomenclatura tem origem em sistemas mecânicos de controle. Por exemplo, para um sistema Tipo 0 e r(t) = A (degrau) temos que (Teorema do Valor Final)

$$e_r(\infty) = \lim_{s \to 0} s E_R(s) = \lim_{s \to 0} \frac{D(s)}{D(s) + N(s)} \frac{A}{s} = \lim_{s \to 0} \frac{AD(s)}{D(s) + N(s)} = \frac{AD(0)}{D(0) + N(0)} = \frac{A}{1 + N(0)/D(0)} = \frac{A}{1 + G(0)} = \frac{A}{1$$

pois como $D(0) + N(0) \neq 0$ (F(s) é estável) e $D(0) \neq 0$ (G(0) é de Tipo 0) não há divisão por zero!

E, para um sistema Tipo 2 e r(t)=Bt (rampa), temos $G(s)=\frac{N(s)}{D(s)}=\frac{N(s)}{s^2D_{\alpha}(s)}$ e

$$e_r(\infty) = \lim_{s \to 0} s E_r(s) = \lim_{s \to 0} s \frac{D(s)}{D(s) + N(s)} \frac{B}{s^2} = \lim_{s \to 0} s \frac{s^2 D_0(s)}{D(s) + N(s)} \frac{B}{s^2} = \lim_{s \to 0} \frac{s B D_0(s)}{D(s) + N(s)} = \frac{0 B D(0)}{N(0) + D(0)} = 0,$$

Table 4.1: Valores de $e_r(\infty)$ (w=0)

Sistema $G(s)$ / Referência	r(t) = A	r(t) = Bt	$r(t) = Ct^2$
Tipo 0	$\frac{A}{1+K_n}$	∞	∞
Tipo 1	0	$\frac{B}{K_v}$	∞
Tipo 2	0	0 "	$\frac{2C}{K_a}$

Table 4.2: Valores de $y_r(\infty)$ (r=0 e w na saída de G(s))

Sistema $G(s)$ / Perturbação	w(t) = A	w(t) = Bt	$w(t) = Ct^2$
Tipo 0	$\frac{A}{1+K_p}$	∞	∞
Tipo 1	0	$\frac{B}{K_v}$	∞
Tipo 2	0	0 "	$\frac{2C}{K_a}$

pois $D(0) + N(0) \neq 0$ (F(s) é estável) e não há divisão por zero!

Observamos que a tabela 4.1 e a tabela 4.2 são válidas apenas para sistemas com realimentação unitária com perturbação na saída (veja a Figura 4.1) e tais que a Função de Transferência em malha-fechada é estável para w=0.

Agora, considere o sistema mostrado na Figura 4.2 e assuma que $G_2(s)$ não possui zeros em s=0. Para tal sistema, a Tabela 4.1 continua válida para $G(s)=G_1(s)G_2(s)$. No entanto, a Tabela 4.2 deve ser substituída pela Tabela 4.3. Ressaltamos que os valores $\neq 0$ na Tabela 4.3 podem ser calculados analiticamente a partir de $G_1(s)$ e $G_2(s)$. Entretanto, isso não é o objeto de estudo desta experiência.

Figure 4.2: Sistema em malha-fechada com perturbação na entrada de $G_s(s)$ e $G_2(s)$ não possui *zeros* em s=0.

Sistema $G(s)$ / Perturbação	w(t) = A	w(t) = Bt	$w(t) = Ct^2$
Tipo 0	$\neq 0$	∞	∞
Tipo 1	0	$\neq 0$	∞
Tipo 2	0	0	$\neq 0$

Table 4.3: Valores de $y_r(\infty)$ $(r = 0 \text{ e } w \text{ na saída de } G_2(s))$

Procedimentos Lab 4

Em todos os itens abaixo consideramos o sistema em malha-fechada mostrado na Figura 4.3 onde C(s) é o controlador, G(s) é a planta (processo) e u(t) é o sinal de controle.

Figure 4.3: Sistema em malha-fechada.

Problema 1

Considere que

$$G(s) = \frac{1}{0.5s+1}, \quad C(s) = K_c \quad \text{(proporcional)}, \quad w = 0 \quad \text{(sem perturbação)}.$$

- a. Simule para r(t)=1 (degrau unitário) e $K_c=1$ Determine $e(\infty)=e_r(\infty)$ por simulação e compare com a Tabela 4.1 (note que $K_p=Kc$). Repita para $K_c=10$ e $K_c=100$, analisando também o regime transitório de saída y(t).
- b. Percebemos que $e(\infty)$ diminui a medida que aumentamos o ganho K_c do controlador. Poderíamos então escolher $K_c=\infty$ para que $e(\infty)=0$? Justifique sua resposta (dica: observe o sinal de controle u(t)).
- c. Com $K_c=1$ simule para r(t)=t (rampa) e $r(t)=0.5t^2$ (parábola). Determine o erro em regime permanente e verifique se os resultados estão de acordo com o esperado.

Resolução

Parte A

Por meio da simulação foi encontrado o valor de $e(\infty)=e_r(\infty)=0.5$ conforme apresenta a Figura 4.4.

Figure 4.4: Valor de e(r).

Utilizando a Tabela 4.1 temos que $e_r(\infty)=\frac{A}{1+K_p}$. Assim, tendo A=1 e $K_c=1$, temos que $e_r(\infty)=\frac{1}{2}=0.5$, o que está de acordo com o resultado encontrado na simulação. A figura 4.5 apresenta os valores de $e(s)=e_r(s)$ e Y(s) para $K_c=10$ e $K_c=100$.

Parte B

Teoricamente, é possível encontrar um erro nulo $e(\infty)=0$ se utilizado um ganho infinito $K_c=\infty$. Pois, de acordo com a Tabela 4.1, temos que

$$e(\infty) = \frac{A}{1+K_c} = \frac{A}{1+\infty} = 0.$$

Entretanto, não existe um sistema prático que retorne um ganho infinito. O ideal seria considerar um sistema que seja de Tipo 1 ou 2 para que, ao aplicar uma entrada do tipo degrau ele retorne um erro nulo.

Figure 4.5: Valores para $K_c=10$ e $K_c=100.\,$

Parte C

A Figura 4.6 apresenta os valores de y(s) e e(s) para uma entrada r(t) = t (rampa).

A Figura 4.7 apresenta os valores de y(s) e e(s) para uma entrada $r(t) = 0.5t^2$ (parábola).

É possível perceber que, como o esperado, $e(\infty) = e_r(\infty) = \infty$ para ambos os casos.

Problema 2

Considere que

$$G(s) = \frac{1}{0.5s+1}, \quad C(s) = \frac{K_c}{s} \text{ (integral)}, \quad w = 0 \text{ (sem perturbação)}.$$

- a. Simule para r(t)=1 (degrau unitário) e $K_c=1$. Determine $e(\infty)=e_r(\infty)$ por simulação e compare com a Tabela 4.1. Analise também o regime transitório da saída para y(t) (sobressinal, por exemplo). Repita para $K_c=10$. Observe o aumento no sobressinal.
- b. Simule para $K_c=2$ e r(t)=t (rampa). Determine $e(\infty)$ por simulação e compare com a Tabela 4.1 (note que $K_v=K_c$). Encontre analiticamente K_c de modo que o erro à rampa r(t)=t em regime permanente seja

Figure 4.6: Valores para entrada do tipo rampa.

Figure 4.7: Valores para entrada do tipo parábola.

igual a 0.1. Agora verifique se as simulações estão de acordo com o valor calculado de K_a .

- c. Simule para $K_c=2$ e $r(t)=0.5t^2$ (parábola). Determine o erro em regime permanente por simulação e analise os resultados.
- d. Agora suponha que

$$G(s) = \frac{-s+2}{0.5s+1}, \quad C(s) = \frac{2}{s}, \quad r(t) = 1 \text{ (degrau)}.$$

Determine $e(\infty)$ por simulação. Note que o erro não converge para zero. O resultado está de acordo com o esperado? Relembre que a Tabela 4.1 e a Tabela 4.2 são validas apenas quando o sistema em malha-fechada para w=0 é estável (os pólos estão no SPE).

Resulução

Parte A Aplicando um controle $C(s)=\frac{K_c}{s}$ em série a uma função $G(s)=\frac{1}{0.5s+1}$ temos como resultado a Função de Transferência

$$G_t(s) = C(s)G(s) = \frac{K_c}{s}\frac{1}{0.5s+1} = \frac{K_c}{s(0.5s+1)},$$

que não possui zeros e possui pólos em s=0 e s=2. Deste modo, o sistema se caracteriza como um sistema do Tipo 1. Simulando o sistema temos como resultado a Figura 4.8.

Simulando para $K_c = 10$, temos o resultado abaixo.

Parte B Simulando o sistema para um $K_c=2$ e uma entrada tipo rampa, temos que o sistema tem $e(\infty)=0.5$, o que está de acordo com a Tabela 4.1. O resultado da simulação está apresentado abaixo.

Analiticamente, é possível calcular o valor de K_v para que $e(\infty) = 0.1$.

$$0.1 = \frac{1}{K_v} \implies K_v = 10$$

Simulando o sistema o valor foi comprovado.

Parte C Simulando o sistema para $K_c = 2$ e uma entrada do tipo parábola, temos $e(\infty) = \infty$, o que está de acordo com a Tabela 4.1.

Figure 4.8: Valores para $K_c=1$.

Figure 4.9: Valores para $K_c=10.$

Figure 4.10: Valores para ${\cal K}_c=2$ e entrada do tipo rampa.

Figure 4.11: Valores para $K_c=10$ e entrada do tipo rampa.

Figure 4.12: Valores para ${\cal K}_c=2$ e entrada do tipo parábola.

Figure 4.13: Valores de e(s) e y(s).

Parte D Simulando a Função de Transferência $G(s)=\frac{-s+2}{0.5s+1}$, controle $C(s)=\frac{2}{s}$ e entrada do tipo degrau temos o resultado apresentado na Figura 4.13.

Diferentemente do esperado (que o $e(\infty)=0$) uma vez que segundo a Tabela 4.1 para sistemas do Tipo 1 para entrada igual degrau o erro esperado é nulo, o erro não converge. Na realidade, é possível notar que o sistema não se comportou de forma estável.

Problema 3

Considere que

$$G(s) = \frac{1}{0.5s+1}, \quad C(s) = \frac{2}{s} \text{ (integral)}.$$

- a. Determine $y(\infty) = y(\infty)$ por simulação para w = 1 (degrau unitário) e r = 0. Compare com a Tabela 4.2.
- b. Considere que r(t) = 5 (degrau em t = 0) e aplique uma perturbação w = 1 (degrau) no instante t = 9. Determine $e(\infty)$ e analise os resultados (talvez seja necessário aumentar o tempo de simulação).
- c. Considere que r(t)=2t (rampa) e w=0. Determine $e(\infty)=e_r(\infty)$ por simulação e compare com a Tabela 4.1.
- d. Considere que r(t) = 0 e w = t (rampa). Determine $y(\infty) = y_w(\infty)$ por simulação e compare com a Tabela 4.2.
- e. Considere que r(t) = 2t (rampa) e w = t (rampa). Determine $e(\infty)$ por simulação e verifique que tal valor é a diferença dos valores obtidos nas letras c e d. Tal resultado era esperado? Justifique (relembre (4.1)).

Resolução

Parte A Simulando o sistema com uma referência em zero e uma perturbação do tipo degrau unitário, temos o resultado apresentando na Figura 4.14 que está de acordo com o resultado esperado da Tabela 4.2, retornando um valor de $y(\infty) = 0$

Parte B Simulando o sistema tendo uma entrada degrau de amplitude 5 e uma perturbação de amplitude 1, temos o resultado apresentado na figura 4.15. O resultado mostra que o sistema era estável e havia convergido para 0. Ao receber a perturbação, o sistema se comportou de forma semelhante (a resposta voltou ao pico do sobressinal que havia chegado inicialmente) ao início da simulação, voltando a convergir para 0 em $t=\infty$.

Figure 4.14: Valores para sistema sem referência, apenas com perturbação.

Figure 4.15: Valores para referência tipo degrau com perturbação.

Figure 4.16: Valores para rampa sem perturbação.

 ${\bf Parte}~{\bf C}~{\bf A}$ simulação para um sistema com referência r(t)=2te sem perturbação é mostrada na Figura 4.16.

Percebe-se que o resultado está de acordo com o esperado, pois, de acordo com a tabela 4.1, temos que

$$e(\infty) = \frac{B}{K_v} = \frac{2}{2} = 1.$$

Parte D A simulação para um sistema com referência nula e perturbação w(t)=t é mostrada na Figura 4.17.

Percebe-se que o resultado está de acordo com o esperado, pois, de acordo com a tabela 4.2, temos que

$$y(\infty) = \frac{B}{K_v} = \frac{1}{2} = 0.5.$$

 ${\bf Parte}~{\bf E}~{\bf A}$ simulação para um sistema com referência r(t)=2te perturbação w(t)=té mostrada na Figura 4.18.

Percebe-se que o resultado está de acordo com o esperado, pois, de acordo com a equação (4.1), temos que

$$e(\infty) = e_r(\infty) - y_w(\infty) = 1 - 0.5 = 0.5$$

Figure 4.17: Valores para rampa sem perturbação.

Figure 4.18: Valores para referência e perturbação tipo rampa.

Problema 4

Considere que

$$G(s) = \frac{2s+1}{0.5s+1}, \quad C(s) = \frac{K_c}{s^2}, \quad r(t) = t, \quad w(t) = 0.1t.$$

- a. Considere que $K_c=1$. Determine $e(\infty)$ por simulação. O Resultado está de acordo com o esperado?
- b. Considere que $K_c=2,\ r(t)=t^2,\ w(t)=0.5t^2.$ Determine $e(\infty)$ por simulação e verifique se o mesmo está de acordo com o esperado. Note que $K_a=K_c.$

Parte A

O resultado da simulação está apresentado na Figura 4.19.

Figure 4.19: Valores para rampa com perturbação.

O resultado era esperado pois, para uma entrada tipo rampa com perturbação tipo rampa, um sistema do Tipo 2 retorna $e_r(\infty)=0$ e $y_w(\infty)=0$, resultando em $e(\infty)=0$.

Parte B

O resultado da simulação está apresentado na Figura 4.20.

O resultado era esperado pois temos $(e_r(\infty)$ e $y_w(\infty)$ obtidos por meio de simulação)

$$e_r(\infty) = 0.5y_w(\infty) = 0.25e(\infty) = 0.25.$$

Figure 4.20: Valores para parábola com perturbação.

Chapter 5

Projeto de Controladores por Métodos Algébricos

Nesta experiência projetaremos controladores que atendam determinadas especificações de regime transitório e de regime permanente em malha-fechada por métodos algébricos. Comprovaremos por simulação no Matlab o desempenho do sistema em malha-fechada.

5.1 Controladores Clássicos

Considere o diagrama de blocos G(s) em malha-fechada da Figura 5.1 onde r(t) é a referência, w(t) é uma perturbação externa, y(t) é a saída, e(t) = r(t) - y(t) é o erro de rastreamento, u(t) é o controle e C(s) é o controlador a ser projetado.

Relebramos que se $G(s) = \frac{N(s)}{D(s)}$ então os zeros de G(s) são as raízes de N(s) e os pólos de G(s) são as raízes de D(s). Além disso, uma Função de Transferência é estável quando todos os pólos estão no SPE (Semi-Plano Esquerdo do plano complexo) e instável quando existe algum pólo no SPD (Semi-Plano Direito).

Projetar um controlador significa definir uma estrutura para

$$C(s) = \frac{N_c(s)}{D_c(s)}$$

e então escolher adequadamente os parâmetros correspondentes de modo que o sistema em malha-fechada atenda determinadas especificações de regime transitório (tempo de acomodação e sobressinal, por exemplo) e de regime permanente (erro nulo em regime permanente para referências e perturbações do tipo degrau, por exemplo). Na prática as seguintes estruturas de controladores são amplamente utilizadas, onde $K_c>0$:

Figure 5.1: Diagrama de blocos do processos G(s) em malha-fechada com perturbação w.

- 1. Proporcional (P): $C(s) = K_c$ 2. Integral (I): $C(s) = \frac{K_c}{s}$ 3. Proporcional-Integral (PI): $C(s) = \frac{K_c(s+z)}{s}$

É importante ressaltar que em situações reais devemos sempre procurar utilizar controladores com a estrutura mais simples possível. Isto implica em menos dificuldades na implementação e em menores custos. Na próxima seção veremos um método algébrico de projeto de controladores.

Método Algébrico de Projeto de Contro-5.2 ladores

Considerando que w=0 (sem perturbação), temos que a Função de Transferência em malha-fechada da figura 5.1 é

$$F(s) = \frac{Y(s)}{R(s)} = \frac{C(s)G(s)}{1 + C(s)G(s)} = \frac{N_c(s)N(s)}{D_c(s)D(s) + N_c(s)N(s)}, \quad \text{ para } w = 0.$$

Uma maneira de projetarmos o controlador é primeiramente escolhermos a estrutura de C(s) de modo que as especificações de regime permanente sejam atendidas e que F(s) seja uma função de Transferência de primeira ou de segunda ordem (relembre que a ordem de F(s) é igual a ordem de C(s)G(s)). Em muitos casos, isto pode ser alcançado através de um cancelamento entre um zero de C(s) e um pólo de G(s). Em seguida os parâmetros de C(s) são determinados por igualdade polinomial. Na prática, F(s) sempre feverá ser estável. Assim, sempre consideramos que F(s) é estável. No entanto, tal método algébrico apresenta algumas restrições.

- 1. Em geral, o método é válido para G(s) de primeira ou segunda ordem;
- 2. Cancelamentos pólo-zero em C(s)G(s) que estão no SPD (instável) não podem ser efetuados;
- 3. Mesmo quando fazemos cancelamento pólo-zero em C(s)G(s) que está no SPE (estável), temos que o regime transitório referente à perturbação w será influenciado pelo pólo de G(s) que foi cancelado. Desse modo, se o pólo cancelado de G(s) é muito lento, ou seja, está muito próximo do eixo imaginário, a dinâmica da rejeição de tais perturbações também será bastante lenta:
- 4. Quando desejamos que F(s) seja de segunda ordem, muitas vezes não conseguimos atender simultaneamente as especificações de tempo de acomodação $(t_s(5\%))$ e de sobressinal (M_p) .

5.3 Erro em Regime Permanente

Relembramos o Teorema do Valor Final:

Teorema 1 (Teorema do Valor Final). Seja X(s) a Transformada de Laplace de um sinal x(t). Suponha que X(s) ou sX(s) tem todos os pólos no SPE. Então, o limite $x(\infty) = \lim_{t \to \infty} x(t)$ existe e é dado por

$$x(\infty) = \lim_{t \to \infty} x(t) = \lim_{s \to 0} sX(s).$$

Analisaremos agora o erro de rastreamento e(t) = e(t) - y(t) em regime permanente $(t \to \infty)$ para referências e perturbações do tipo degrau. Suponha que F(s) é estável, ou seja, todas as raízes de

$$D_c(s)D(s) + N_c(s)N(s)$$

estão no SPE. Isto garante que $e(\infty)=\lim_{t\to\infty}e(t)$ existe e, assim, o Teorema do Valor Final pode ser aplicado.

Temos que

$$E(s) = R(s) - Y(s) = R(s) - \left[C(s)G(s)E(s) + G(s)W(s)\right] \implies E(s) = \frac{1}{1 + C(s)G(s)}R(s) - \frac{G(s)}{1 + C(s)G(s)}W(s) \implies E(s) = \frac{1}{1 + C(s)G(s)}R(s) - \frac{G(s)}{1 + C(s)G(s)}W(s) \implies E(s) = \frac{1}{1 + C(s)G(s)}R(s) - \frac{G(s)}{1 + C(s)G(s)}W(s) \implies E(s) = \frac{1}{1 + C(s)G(s)}R(s) - \frac{G(s)}{1 + C(s)G(s)}W(s) \implies E(s) = \frac{1}{1 + C(s)G(s)}R(s) - \frac{G(s)}{1 + C(s)G(s)}W(s) \implies E(s) = \frac{1}{1 + C(s)G(s)}R(s) - \frac{G(s)}{1 + C(s)G(s)}W(s) \implies E(s) = \frac{1}{1 + C(s)G(s)}R(s) - \frac{G(s)}{1 + C(s)G(s)}W(s) \implies E(s) = \frac{1}{1 + C(s)G(s)}R(s) - \frac{G(s)}{1 + C(s)G(s)}W(s) \implies E(s) = \frac{1}{1 + C(s)G(s)}R(s) - \frac{G(s)}{1 + C(s)G(s)}W(s) \implies E(s) = \frac{1}{1 + C(s)G(s)}R(s) - \frac{G(s)}{1 + C(s)G(s)}W(s) \implies E(s) = \frac{1}{1 + C(s)G(s)}R(s) - \frac{G(s)}{1 + C(s)G(s)}W(s) + \frac{G(s)}{1$$

Considere que r(t) e w(t) são do tipo degrau de magnitudes A e B, respectivamente. Assim,

$$R(s) = \frac{A}{s}, \quad W(s) = \frac{B}{s}.$$

68CHAPTER 5. PROJETO DE CONTROLADORES POR MÉTODOS ALGÉBRICOS

B=0 (sem perturbação)

Suponha que $D_c(s)D(s)=s\overline{D}(s),$ ou seja, C(s)G(s) tem um pólo em s=0 (integrador). Temos que

$$E(s) = \frac{D_c(s)D(s)}{D_c(s)D(s) + N_c(s)N(s)}R(s) = \frac{s\overline{D}(s)}{D_c(s)D(s) + N_c(s)N(s)}\frac{A}{s} = \frac{A\overline{D}(s)}{D_c(s)D(s) + N_c(s)N(s)}\frac{A}{s} = \frac{A\overline{D}(s)}{D_c(s)D(s) + N_c(s)N(s)}\frac{A}{s}$$

e (Teorema do Valor Final)

$$e(\infty) = \lim_{s \to 0} sE(s) = \lim_{s \to 0} \frac{sA\overline{D}(s)}{D_c(s)D(s) + N_c(s)N(s)} = \frac{0A\overline{D}(0)}{D_c(0)D(0) + N_c(0)N(0)} \boxed{=0}$$

pois $D_c(0)D(0) + N_c(0)N(0) \neq 0$ (F(s) é estável) enão há divisão por zero! Desse modo, $e(\infty) = 0$ independente da magnitude A de r(t). Isto significa que a saída y(t) rastreia a referência r(t) do tipo degrau em regime permanente.

$B \neq 0$ (com perturbação)

Suponha que $D_c(s)=s\overline{D_c}(s),$ ou seja, C(s) tem um pólo em s=0 (integrador). Temos que

$$E(s) = \frac{D_c(s)D(s)}{D_c(s)D(s) + N_c(s)N(s)} R(s) - \frac{D_c(s)N(s)}{D_c(s)D(s) + N_c(s)N(s)} W(s) = \frac{s\overline{D}(s)}{D_c(s)D(s) + N_c(s)N(s)} \frac{A}{s} - \frac{D_c(s)D(s)}{D_c(s)D(s) + N_c(s)N(s)} \frac{A}{s} - \frac{D_c(s)D(s)}{D_c(s)D(s) + N_c(s)N(s)} \frac{A}{s} - \frac{D_c(s)D(s)}{D_c(s)D(s) + N_c(s)D(s)} \frac{A}{s} - \frac{D_c(s)D(s)}{D_c(s)D(s) + D_c(s)D(s)} \frac{A}{s} - \frac{D_c(s)D(s)}{D_c(s)D(s) + D_c(s)D(s)} \frac{A}{s} - \frac{D_c(s)D(s)}{D_c(s)D(s)} \frac{A}{s} - \frac{D_c(s)D(s)}{$$

e (Teorema do Valor Final)

$$e(\infty) = \lim_{s \to 0} sE(s) = \lim_{s \to 0} \frac{A\overline{D_c}(s)D(s) - B\overline{D_c}(s)N(s)}{D_c(s)D(s) + N_c(s)N(s)} = \frac{0[A\overline{D_c}(0)D(0) - B\overline{D_c}(0)N(0)]}{D_c(0)D(0) + N_c(0)N(0)} = \boxed{0}$$

pois $D_c(0)D(0) + N_c(0)N(0) \neq 0$ (F(s) é estável) enão há divisão por zero! Desse modo, $e(\infty) = 0$ independente da magnitude A e B de r(t) e w(t), respectivamente. Portanto, em regime permanente, a saída y(t) rastreia a referência r(t) com rejeição da perturbação w(t).

F(s) de primeira ordem

Suponha que F(s) é uma Função de Transferência de primeira ordem da forma

$$F(s) = \frac{1}{\tau s + 1},$$

onde $\tau > 0$ (pólo estável em $s = \frac{-1}{\tau}$). Para referências r(t) do tipo degrau, não há sobressinal em y(t) e

$$\boxed{t_s(5\%) = 3\tau, \quad e(\infty) = 0}.$$

F(s) de segunda ordem

Suponha que F(s) é uma Função de Transferência de segunda ordem da forma

$$F(s) = \frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2},$$

onde $0<\xi<1$ e $\omega_n>0$ (pólos estáveis em $s=-\xi\omega\pm j\sqrt{1-\xi^2}$). Para referências r(t) do tipo degrau temos que

$$\boxed{ M_p = \frac{y_p - y(\infty)}{y(\infty)}, \quad \xi = \sqrt{\frac{(\ln M_p)^2}{(\ln M_p)^2 + \pi^2}}, \quad t_s(5\%) \cong \frac{3}{\xi \omega_n}, \quad e(\infty) = 0 } \,.$$

 $(M_p$ é o sobressinal relativo e $y(\infty)$ é o valor em regime permanente da saída y(t)).

Exemplo 2. Seja

$$G(s) = \frac{1}{s+2}.$$

Queremos projetar C(s) de modo que tenhamos: (i) erro nulo em regime permanente ara referências e perturbações do tipo degrau e (ii) $M_p=0.05$ (sobressinal de 5%) para referências do tipo degrau. Para que (i) seja entendida, C(s) deve ter um integrador (pólo em s=0) (desde que F(s) seja estável). Escolhemos então um controlador integral

$$C(s) = \frac{K_c}{s}.$$

Logo,

$$F(s) = \frac{C(s)G(s)}{1 + C(s)G(s)} = \frac{\frac{K_c}{s}\frac{1}{s+2}}{1 + \frac{K_c}{s}\frac{1}{s+2}} = \boxed{\frac{K_c}{s^2 + 2s + K_c} = \frac{\omega_n^2}{s^2 + 2\xi\omega_n + \omega_n^2}}$$

e

$$M_p = 0.05 \implies \boxed{\xi = 0.69}$$
.

Por igualdade polinomial, obtemos que

$$\xi \omega_n = 1 \implies \omega = \frac{1}{0.69} K_c = \omega_n^2 \implies K_c = 2.1$$

Assim,

$$C(s) = \frac{2.1}{s}.$$

Procedimentos Lab 5

Problema 1

Considere

$$G(s) = \frac{0.5}{10s + 1}.$$

- (a) Simule G(s) em malha-aberta para u(t)=1 do tipo degrau. Conforme o esperado, observe que $t_s(5\%)=30$ e $y(\infty)=G(0)=0.5$. Agora, aplique uma perturbação w(t)=0.25 do tipo degrau em t=100. Note que a perturbação não é rejeitada.
- (b) Projete C(S) de modo que se tenha: (i) erro nulo em regime permanente para r(s) e w(s) do tipo degrau; (ii) $t_s^{MF}(5\%) = \frac{t_s^{MA}(5\%)}{2}$ e a saída y(t) não apresenta sobressinal para referências do tipo degrau. Dica: utilize um controlador PI $C(s) = \frac{K_c(10s+1)}{s}$ (cancelamento pólo-zero).
- (c) Simule o sistema em malha-fechada para r(t)=1 e w(t)=0.25 do tipo degrau, aplicando w(t) em t=100. Verifique se os requisitos de desempenho foram realmente atendidos e visualize o sinal de controle u(t). Note que $u(\infty)=\frac{1}{G(0)}-0.25=1.75$ Isto era esperado? Justifique.
- (d) Mantendo o mesmo controlador C(s) repita o item anterior para $G(s) = \frac{0.45}{9.9s+1}$. Explique o motivo pelo qual ainda temos $e(\infty) = 0$.

Resolução

Working on it:)

Problema 2

Considere que não há perturbações (w = 0) e

$$G(s) = \frac{0.9}{s(s+1)}.$$

- (a) Note que G(s) tem um pólo em s=0. Simule G(s) em malha-aberta para u(t)=5 do tipo degrau e analise os resultados. Note que $y(t)\to\infty$ quando $t\to\infty$. Isto era esperado? Justifique.
- (b) Projete C(s) de modo que $M_p=0.2$ (sobressinal de 20%) e que se tenha erro nulo em regime permanente para r(t) do tipo degrau (dica: utilize um controlador proporcional $C(s)=K_c$).
- (c) Simule o sistema em malha-fechada para r(t)=5 do tipo degrau e verifique se os requisitos de desempenho foram realmente atendidos. Visualize o sinal de controle u(t).
- (d) Repita o item anterior, mas agora aplicando uma perturbação do tipo degrau w(t) não nula. Explique o motivo pelo qual $e(\infty) \neq 0$.

71

Resolução

Working on it:)

Problema 3

Considere

$$G(s) = \frac{1.2}{s^2 + 4s + 3} = \frac{1.2}{(s+1)(s+3)}.$$

- (a) Simule G(s) em malha-aberta para u(t)=3 do tipo degrau e analise os resultados. Note que a saída y(t) não apresenta sobressinal. Isto era esperado? Justifique.
- (b) Projete C(s) de modo que se tenha erro nulo em regime permanente para r(t) e w(t) do tipo degrau unitário e que $M_p=0.05$ (sobressinal de 5%) para referências do tipo degrau. Dica: utilize um controlador PI que cancele o polo mais lendo de G(s) (s=-1) para que se obtenha um $t_s(5\%)$ menor.
- (c) Simule o sistema em malha-fechada para r(t) = 3 e w(t) = 0.5 do tipo degrau, aplicando w(t) em t = 15. Verifique se os requisitos de desempenho foram realmente atendidos. Visualize o sinal de controle u(t).

Resolução

Working on it:)

Problema 4

Repita o problema 1 para

$$G(s) = \frac{0.5}{s-1}$$
 (instável),

e simule (dica: basta mudar o numerador do PI projetado no Problema 1 para s-1). Agora mantenha o mesmo controlador C(s) obtido mas altere o denominador de G(s) para s-0.99 (incerteza de 1% no pólo de G(s)) e simule. Observe que $y(t) \to -\infty$ quando $t \to \infty$. Isto mostra o motivo pelo qual não podemos efetual cancelamentos pólo-zero instáveis em C(s)G(s).

Resolução

Working on it:)

72CHAPTER 5. PROJETO DE CONTROLADORES POR MÉTODOS ALGÉBRICOS

Linearização de Sistemas Não-Lineares

6.1 Apresentação do Laboratório

6.1.1 Objetivos

Nesta experiência, veremos como podemos simular um sistema não-linear utilizando pacotes computacionais de simulação. Analisaremos os resultados de simulação do sistema de um tanque do Simulink/Matlab e verificaremos a noção de ponto de equilibrio. Por fim, com base na Função de Transferência do sistema linearizado, compararemos a dinâmica do mesmo com a dinâmica do sistema não-linear original por simulação.

6.1.2 Sistema de um tanque

Considere o sistema de um tanque ilustrado na Figura 6.1. A equação diferencial que descreve a dinâmica da altura do nível H do tanque é

$$H(t) = \frac{1}{A}(Q_e(t)-Q_s(t)) = \boxed{\frac{1}{A}(Q_e(t)-\beta\sqrt{H(t)})}, \tag{6.1} \label{eq:6.1}$$

onde

Figure 6.1: Tanque

 $\begin{cases} H & : \text{ altura do nível,} \\ Q_e & : \text{ vazão de entrada,} \\ Q_s = \beta \sqrt{H} & : \text{ vazão de saída,} \\ \beta \geq 0 & : \text{ parâmetro do tanque,} \\ A & : \text{ área da base do tanque.} \end{cases}$

Note que (6.1) é uma equação diferencial não-linear. O diagrama de blocos corresponde à equação diferencial (6.1) é mostrado abaixo, onde H(0) é a condição inicial.

Figure 6.2: Diagrama de blocos da dinâmica da altura do nível H do tanque.

A implementação deste diagrama de blocos em um pacote computacional de simulação fornece a solução da equação diferencial (6.1) através de métodos numéricos de integração. Consequentemente, podemos analisar o comportamento dinâmico da altura do nível H(t) em função do tempo t para uma determinada escolha da vazão de entrada $Q_e(t),\,t\geq 0.$

6.1.3 Pontos de equilíbrio

Intuitivamente, pensamos que um sistema está em *equilibrio* quando o mesmo apresenta um comportamento estático, ou seja, o sistema não exisbe qualquer dinâmica. Veremos agora como definir matematicamente tal noção.

Considere um sistema não-linear descrito pela equação diferencial

$$\dot{x}(t) = f(x(t), u(t)), \tag{6.2}$$

onde

Controle de Sistemas Não-Lineares

Análise pelo Lugar das Raízes

Projeto de Controladores pelo Lugar das Raízes

82CHAPTER 9. PROJETO DE CONTROLADORES PELO LUGAR DAS RAÍZES

Projeto do controlador atraso de fase

Análise pelos Diagramas de Bode e Nyquist

Projeto de Controladores pelo Diagrama de Bode

Digitalização de Controladores Analógicos