### Problem 12.8.

Use put—call parity to relate the initial investment for a bull spread created using calls to the initial investment for a bull spread created using puts.

A bull spread using calls provides a profit pattern with the same general shape as a bull spread using puts (see Figures 12.2 and 12.3 in the text). Define  $p_1$  and  $c_1$  as the prices of put and call with strike price  $K_1$  and  $p_2$  and  $p_2$  and  $p_3$  as the prices of a put and call with strike price  $p_1$  and  $p_2$  and  $p_3$  are the prices of a put and call with strike price  $p_3$ . From put-call parity

$$p_1 + S = c_1 + K_1 e^{-rT}$$

$$p_2 + S = c_2 + K_2 e^{-rT}$$

Hence:

$$p_1 - p_2 = c_1 - c_2 - (K_2 - K_1)e^{-rT}$$

This shows that the initial investment when the spread is created from puts is less than the initial investment when it is created from calls by an amount  $(K_2 - K_1)e^{-rT}$ . In fact as mentioned in the text the initial investment when the bull spread is created from puts is negative, while the initial investment when it is created from calls is positive. The profit when calls are used to create the bull spread is higher than when puts are used by  $(K_2 - K_1)(1 - e^{-rT})$ . This reflects the fact that the call strategy involves an additional risk-free investment of  $(K_2 - K_1)e^{-rT}$  over the put strategy. This earns interest of  $(K_2 - K_1)e^{-rT}(e^{rT} - 1) = (K_2 - K_1)(1 - e^{-rT})$ .

#### **Problem 12.11.**

Use put—call parity to show that the cost of a butterfly spread created from European puts is identical to the cost of a butterfly spread created from European calls.

Define  $c_1$ ,  $c_2$ , and  $c_3$  as the prices of calls with strike prices  $K_1$ ,  $K_2$  and  $K_3$ . Define  $p_1$ ,  $p_2$  and  $p_3$  as the prices of puts with strike prices  $K_1$ ,  $K_2$  and  $K_3$ . With the usual notation

$$c_1 + K_1 e^{-rT} = p_1 + S$$

$$c_2 + K_2 e^{-rT} = p_2 + S$$

$$c_3 + K_3 e^{-rT} = p_3 + S$$

Hence

$$c_1 + c_3 - 2c_2 + (K_1 + K_3 - 2K_2)e^{-rT} = p_1 + p_3 - 2p_2$$

Because  $K_2 - K_1 = K_3 - K_2$ , it follows that  $K_1 + K_3 - 2K_2 = 0$  and

$$c_1 + c_3 - 2c_2 = p_1 + p_3 - 2p_2$$

The cost of a butterfly spread created using European calls is therefore exactly the same as the cost of a butterfly spread created using European puts.

# **Problem 12.21.**

A trader sells a strangle by selling a call option with a strike price of \$50 for \$3 and selling a put option with a strike price of \$40 for \$4. For what range of prices of the underlying asset does the trader make a profit?

The trader makes a profit if the total payoff is less than \$7. This happens when the price of the asset is between \$33 and \$57.

#### Problem 12.24.

Draw a diagram showing the variation of an investor's profit and loss with the terminal stock price for a portfolio consisting of

- a. One share and a short position in one call option
- b. Two shares and a short position in one call option
- c. One share and a short position in two call options
- d. One share and a short position in four call options

In each case, assume that the call option has an exercise price equal to the current stock price.

The variation of an investor's profit/loss with the terminal stock price for each of the four strategies is shown in Figure S12.5. In each case the dotted line shows the profits from the components of the investor's position and the solid line shows the total net profit.



Figure S12.5 Answer to Problem 12.24

# Problem 12.26.

What trading position is created from a long strangle and a short straddle when both have the same time to maturity? Assume that the strike price in the straddle is halfway between the two strike prices of the strangle.

A butterfly spread (together with a cash position) is created.