Departamento de Análisis Matemático y Matemática Aplicada

Análisis de Variable Real - Grupo E - Curso 2018-19 Ejercicios de repaso. Hoja 12.

231 i) Probar que si la serie $\sum_{n=1}^{\infty} x_n$ es absolutamente convergente y la sucesión $\{y_n\}_{n=1}^{\infty}$ está acotada

entonces la serie $\sum_{n=1}^{\infty} x_n y_n$ es absolutamente convergente. ii) Probar que si la serie $\sum_{n=1}^{\infty} x_n$ es convergente y la sucesión $\{y_n\}_{n=1}^{\infty}$ verifica $|y_n - a| \leq r^n$ para algún $a \in \mathbb{R}, \ 0 < r < 1$ y para todo $n \in \mathbb{N}$, entonces la serie $\sum_{n=1}^{\infty} x_n y_n$ es convergente.

(Indicación: utilizar el criterio de Cauchy de convergencia de series).

iii) Mediante un ejemplo mostrar que el resultado de i) no es verdad si sólamente se exige que $\sum_{n=1}^{\infty} x_n$ sea convergente.

iv) Estudiar la convergencia (absoluta, condicional, ...) de las series:

a)
$$\sum_{n=1}^{\infty} \frac{\sqrt{n^2 + 1} - \sqrt{n^2 - 1}}{\sqrt{n}}$$
 b) $\sum_{n=1}^{\infty} \left(\frac{1 - n}{2n + 1}\right)^n$ c) $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n + 1} + \sqrt{n}}$

232 Sea $\varphi: \mathbb{R} \to [0,1]$ una función que verifica $\lim_{h\to 0} \varphi(h) = 0$ y sea $f: \mathbb{R} \to \mathbb{R}$ una función que verifica

$$|f(y) - f(x)| \le \varphi(y - x)|y - x|, \quad \forall x, y \in \mathbb{R}$$

Se pide:

i) Probar que la función f es diferenciable en todo \mathbb{R} y f'(x) = 0 para todo $x \in \mathbb{R}$.

ii) Probar que una función derivable en R y con derivada identicamente nula es una una función constante. Deducir que f es una función constante.

233 La función $f(x) = 1 - \sqrt[3]{x^2}$ verifica f(-1) = f(1) = 0, sin embargo, no existe ningún $x \in [-1, 1]$ con f'(x) = 0. ¿Por qué? (explicar razonadamente).

234 Calcular, mediante una integral apropiada el área de la región encerrada por la elipse:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Calcular el volumen del sólido de revolución que se obtiene al girar el area alrededor del eje x.

235 Sea $f: \mathbb{R} \to \mathbb{R}$ una función continua que verifica f(x) = 0 para todo $x \notin (0,1)$ y $\int_0^1 f = 1$. Definimos la sucesión de funciones:

$$f_n(x) = nf(nx), \qquad x \in \mathbb{R}, \quad n = 1, 2, \dots$$

Se pide probar lo siguiente:

i) Para todo $n \in \mathbb{N}$, la función f_n es nula fuera del intervalo $(0, \frac{1}{n})$.

ii) La función
$$f_n \in \mathcal{R}[0,1]$$
 y $\int_0^1 f_n = 1$

iii) Identifica claramente la función $f_{\infty}(x)$ que es el límite puntual de la sucesión de funciones $\{f_n\}$.

iv) ¿Converge la sucesión f_n uniformemente a la función f_{∞} en [0,1]? ¿Lo hace en (0,1]? ¿Y en $[\varepsilon,1]$ para algún $0 < \varepsilon < 1$?

 $\sum_{n=1}^{\infty} 2^{-n} \operatorname{sen}(\sqrt{n}x).$ Probar que la serie converge uniformemente en 236 Sea la serie de funciones todo \mathbb{R} . Si denotamos porS(x) a la función dada por la serie, probar que S es derivable y dar una expresión de la derivada.

237 Demostrar que si una sucesión de números reales $\{x_n\}_{n=1}^{\infty}$ es convergente a un número $x \in \mathbb{R} \cup \{\pm \infty\}$, entonces la sucesión de sus medias aritméticas, es decir

$$\xi_n = \frac{x_1 + x_2 + \ldots + x_n}{n}$$

también es convergente y lo hace a x, es decir $\lim_{n\to+\infty}\xi_n=x\in\mathbb{R}\cup\{\pm\infty\}$.

- 238 Probar que si una función continua $f:\mathbb{R}\to\mathbb{R}$ verifica que f es derivable en todo punto salvo posiblemente el 0, y $\lim_{x\to 0^+} f'(x) = +\infty$ entonces f no puede ser derivable en 0
- **239** Sea $\{a_n\}_{n=1}^{\infty}$ y $\{\lambda_n\}_{n=1}^{\infty}$ dos sucesiones de números reales que verifican $a_n \to 0$ y $|\lambda_n| \to +\infty$. Consideremos la serie de funciones:

$$\sum_{n=1}^{\infty} a_n \operatorname{sen}(\lambda_n x)$$

Se pide probar lo siguiente:

- i) Si la serie numérica $\sum_{n=1}^{\infty} |a_n|$ converge, entonces la serie de funciones converge uniformemente en todo
- \mathbb{R} . En este caso, denotamos por S(x) a la función dada por la serie. ii) Si la serie numérica $\sum_{n=1}^{\infty} a_n \lambda_n$ converge absolutamente, entonces la función S es diferenciable en todo x. Dar una expresión para S'(x).
- iii) Probar que si $a_n = e^{-n}$ y $|\lambda_n| \le n$ para todo $n \in \mathbb{N}$ entonces la función S(x) es derivable de todos los órdenes.
- 240 Para las siguientes series de potencias, calcular el intervalo de convergencia y decidir si la serie converge o no (y qué tipo de convergencia presenta) en los extremos.

a)
$$\sum_{n=1}^{\infty} \frac{3^{-n}}{\sqrt{n^3 + 1}} x^n \qquad b) \quad \sum_{n=1}^{\infty} \frac{1}{n} (1 + \frac{1}{2} + \dots + \frac{1}{n}) x^{2n} \qquad c) \quad \sum_{n=1}^{\infty} \left(\frac{a^n}{n} + \frac{b^n}{n^2} \right) x^n \quad (a, b > 0)$$

$$d) \quad \sum_{n=1}^{\infty} \frac{x^n}{a^{\sqrt{n}}} \qquad e) \quad \sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!} x^n \qquad f) \quad \sum_{n=1}^{\infty} \frac{(3 + (-1)^n)^n}{n} x^n$$

241 Analizar la convergencia de las siguientes series de funciones (estudiar el conjunto de números reales donde la serie es convergente y analizar si la convergencia es uniforme o no, etc):

a)
$$\sum_{n=1}^{\infty} \frac{n3^{2n}}{2^n} x^n (1-x)^n$$
 b) $\sum_{n=1}^{\infty} \frac{n}{n+1} \left(\frac{x}{2x+1}\right)^n$, $c) \sum_{n=1}^{\infty} \frac{x^n}{1-x^n}$
d) $\sum_{n=1}^{\infty} \left(\frac{x(x+n)}{n}\right)^n$ e) $\sum_{n=1}^{\infty} \frac{2^n \sin^n(x)}{n^2}$, $f) \sum_{n=1}^{\infty} \frac{x^n}{1+x^{2n}}$

242 Calculad el límite puntual y estudiad la convergencia uniforme de las siguientes sucesiones de funciones en los intervalos que se mencionan:

a)
$$f_n(x) = \sqrt{x^2 + \frac{1}{n^2}}, \quad x \in \mathbb{R}$$

b) $f_n(x) = x^n - x^{n+1}, \quad x \in [0, 1]$
c) $f_n(x) = x^n - x^{2n}, \quad x \in [0, 1]$
d) $f_n(x) = e^{n(x-1)}, \quad x \in [0, 1]$

b)
$$f_n(x) = x^n - x^{n+1}, \quad x \in [0, 1]$$

c)
$$f_n(x) = x^n - x^{2n}, \quad x \in [0, 1]$$

d)
$$f_n(x) = e^{n(x-1)}, \quad x \in [0,1)$$

e)
$$f_n(x) = n\left(\sqrt{x + \frac{1}{n}} - \sqrt{x}\right), \quad x \in (0, \infty)$$

- 243 Calculad la serie en senos y cosenos del Ejercicio 227 (Series de Fourier) de las siguientes funciones periódicas, de periodo 2π e investigar si la serie de Fourier converge uniformemente:
 - a) $f(x) = x, \quad x \in [-\pi, \pi].$
 - b) $f(x) = |x|, \quad x \in [-\pi, \pi].$
- 244 Calcular el polinomio de Taylor centrado en $x_0 = 0$, de grado n de las siguientes funciones. Estimar el resto de Lagrange y probar que la "Serie de Taylor" converge a la función en un intervalo de la forma (-a, a). Estimar este valor a.

 - a) $f(x) = \sqrt{1-x}$ b) $f(x) = \frac{1}{\sqrt{1-x}}$