Natural Numbers

Definition

The set of *Natural Numbers*, denoted \mathbb{N} , are the whole numbers starting from 1 and continuing to infinity:

$$\mathbb{N} = \{1, 2, 3, \ldots\}$$

Notation

$$[n] = \{1, 2, 3, \dots, n\}$$

Peano Axioms

N1: $1 \in \mathbb{N}$.

N2: $n \in \mathbb{N} \implies (n+1) \in \mathbb{N}$.

N3: 1 is not the successor of any $n \in \mathbb{N}$.

N4: $n, m \in \mathbb{N}$ have the same successor $\implies n = m$.

N5: $S \subseteq \mathbb{N}$ and $1 \in S$ and $(n \in S \implies (n+1) \in S) \implies S = \mathbb{N}$.

Note that N5 is the basis for mathematical induction.

Closure Property

 $\forall n, m \in \mathbb{N}$:

- 1). $n+m \in \mathbb{N}$
- 2). $nm \in \mathbb{N}$

Theorem

$$\sum_{k=1}^{n} (2k - 1) = n^2$$

Proof

By induction:

Base: n=1

$$\sum_{k=1}^{n} (2k - 1) = 2(1) - 1 = 2 - 1 = 1$$

$$1^2 = 1$$

Inductive Assumption

Assume
$$\sum_{k=1}^{n} (2k - 1) = n^2$$
.

$$\sum_{k=1}^{n+1} (2k-1) = 2(n+1) - 1 + \sum_{k=1}^{n} (2k-1)$$

$$= 2n+2-1+n^{2}$$

$$= n^{2} + 2n + 1$$

$$= (n+1)^{2}$$