Introduction to Machine Learning part 2

Martha Lewis

Department of Engineering Mathematics University of Bristol martha.lewis@bristol.ac.uk

Outline

- Performance metrics
- Generalisation and overfitting
- Train, validate, test

Performance Metrics: Classification

- True Positives (TP): The class is + and the prediction is +
- True Negatives (TN): The class is and the prediction is -
- False Positive (FP): The class is and the prediction is +
- False Negative (FN): The class is + and the prediction is -

		Predicted	
		Dog	Cat
Actual	Dog	TP	FN
	Cat	FP	TN

Accuracy

Precision

■
$$Precision = \frac{TP}{TP+FP}$$

$$\frac{21}{21+1} = \frac{21}{22}$$

•
$$Recall = \frac{TP}{TP + FN}$$

F_1 -score

The F_1 score is the harmonic mean of precision and recall

$$F_{1} = \frac{1}{precision^{-1} + recall^{-1}}$$
$$= 2 \frac{precision \cdot recall}{precision + recall}$$

Metrics for more than two classes

Accuracy =
$$\frac{\sum_{i=1}^{n} 1(y_i = f(\vec{x_i}))}{n}$$
 Correct class.

■ This is the same as the binary case, even though the equation looks different

Metrics for more than two classes

■ Macro-averaging: $Precision = \frac{1}{k} \sum_{j=1}^{k} Precision_j$ $Recall = \frac{1}{k} \sum_{j=1}^{k} Recall_j$

		Predicted		
		Dog	Cat	Bird
-m	Dog	10	2	0
Actual	Cat	1	5	1
	Bird	2	0	12
	Rea	illolog	=	0

Metrics for more than two classes

Micro-averaging

Predicted

non

יומש	,	10	~
AC	non D	3	18
		В	non
פש		В	non B

non D•

18

Predicted

	O	non C
С	5	2
non C	2	24

	+	-
+	27	6
-	6	60

Mean Squared Error (MSE):

$$\underline{E} = \frac{1}{N} \sum_{(\vec{x}, y)} (y - f(\vec{x}))^2$$

■ Root Mean Squared Error (RMSE):

$$E = \sqrt{\frac{1}{N} \sum_{(\vec{x}, y)} (y - f(\vec{x}))^2}$$

■ Mean Absolute Error (MAE): $E = \frac{1}{N} \sum_{(\vec{x},y)} |y - f(\vec{x})|$

 $R^2 = 1 - \frac{\sum_{(\vec{x},y)} (y-f(\vec{x}))^2}{\sum_{(\vec{x},y)} (y-\bar{y})^2}$ where \bar{y} is the mean of the target values y

Summary: Performance Metrics

- For classification problems, we can use metrics such as accuracy, precision, recall, or F_1 score.
- These can be used for multi-class problems as well as binary problems
- Mean squared error or absolute error can be used for regression problems
- \blacksquare R^2 is often used for linear regression

Generalisation

- By fitting an approximation function with a high number of parameters it is possible to obtain very high accuracy for the data on which you train.
- However, this learnt approximation may not then perform well on different, previously unseen, data.
- This is called over-fitting

Over-Fitting in Classification

■ For classification problems we must be careful how we model the boundary between different classes in the feature space.

Summary: Generalisation and overfitting

- As well as attaining good scores onour training data, we want our algorithms to generalise well to unseen data
- Both regression and classification problems can overfit to data

Train and Test Data

■ To evaluate the generalisation of a model available data should be divided into training and test sets.

Train, Validation and Test Data

■ To fit model parameters the training data is sometimes further divided into train and validation sets.

n-Folds

- How do you know that you have not just been lucky in your choice of training and test data?
- Answer: Repeat many times with different divisions into training and test.

Cross-validation Can be used with the validation set.

- Splitting data into training and test sets helps ensure that our model can generalise.
- We can further split our training set into training and validation sets, to test the performance of our model on unseen data
- Cross-validation can give a more rounded view of performance

Overall summary

We have looked at:

- Performance metrics
- Generalization and overfitting
- Training and test splits

You can practice working with these concepts in the...

Worksheet

- Available as pdf and also as jupyter notebook
- Covers evaluation metrics, generalisation, overfitting
- If you don't already know Python, please do work through the Introduction to Python available on BlackBoard
- You can ask questions in the lecture or in problem classes

Next time

Simple supervised learning algorithms

- k-Nearest neighbours
- Linear regression
- Naive Bayes classifier