Security Challenges on V2X Communications

Mesut ORMANLI Institute of Pure and Applied Sciences Marmara University

Vehicular Networks Overview

- Vehicular networks are a special class of mobile networks, which are deployed to the domain of vehicles.
- This type of networks generally operate in ad-hoc basis, because of the characteristics of overland transportation.

Vehicular Networks Overview

- Communications within vehicular networks include
 - vehicle-to-vehicle [V2V],
 - vehicle-to-infrastructure [V2I],
 - vehicle-to-pedestrian [V2P],
 - vehicle-to-device [V2D] and
 - vehicle-to-grid [V2G] communications

all of those are referred as vehicle-to-everything [V2X] communications.

Vehicular Networks Overview

- In this presentation, common security and privacy challenges intended to the V2X communications, and some of related solutions will be explained.
- First paper focuses on vehicular ad-hoc networks [VANET] security, second paper mainly focuses on security of vehicles itself.

Covered Papers

- [1]: Hasrouny, H., Samhat, A. E., Bassil, C., & Laouiti, A. (2017). VANet security challenges and solutions: A survey. Vehicular Communications, 7, 7-20.
- [2]: Bernardini, C., Asghar, M. R., & Crispo, B. (2017). Security and privacy in vehicular communications: Challenges and opportunities. Vehicular Communications, 10, 13-28.

VANet Security Challenges and Solutions: A Survey

- VANET Characteristics
- VANET Security Challenges and Constraints
- Security Requirements [Services]
- Attack Types
- Attacker Types
- Standardization Efforts
- Proposed Solutions from the Literature
- Emerging and Open Issues

VANET Characteristics

- Related to network topology and communication mode:
 - Unbounded and scalable network
 - Wireless communication
 - High mobility and rapidly changing network topology
 - Support to real-time and multimedia applications

VANET Characteristics

- Related to vehicles and drivers:
 - Processing power and energy consumption
 - Time and position knowledge
 - Honesty of participants
 - Existing law enforcement infrastructure
 - Central registration with periodic maintenance and inspection

VANET Security Challenges and Constraints

Challenges:

- Network size and geographical relevancy
- High mobility and dynamic topology
- Short connection duration
- Frequent disconnections
- Trust and information verification
- Key distribution

VANET Security Challenges and Constraints

Constraints:

- Congestion and collision control
- Low tolerance for error occurrence
- Environmental impact
- Risk analysis and management
- Anonymity, privacy and liability

Security Requirements [Related Services]

- Authentication
- Availability
- Confidentiality
- Integrity
- Privacy and anonymity

Security Requirements [Related Services]

- Data verification
- Access control
- Traceability and revocability
- Error detection
- Liability identification
- Flexibility and efficiency

Attack Types

Threats to wireless interface:

- Identity and geographical position revealing [location tracking]
- DoS [Denial of Service] and DDoS [Distributed Denial of Service]
- Sybil attack
- Malware
- Spam
- Man in the Middle Attack [MitM]
- Brute force attack
- Black hole attack

Attack Types

- Threats to hardware and software:
 - Injection of erroneous messages [bogus info]
 - Message suppression or alteration
 - Usurpation of the identity of a node [spoofing, impersonation]
 - Tampering hardware
 - Routing attacks
 - Cheating with position info [GPS spoofing]

Attack Types

- Threats to sensors input in vehicle:
 - Illusion attack
 - Jamming attack
- Threats to infrastructure:
 - Unauthorized access
 - Session hijacking
 - Repudiation [loss of event traceability]

Attacker Types

- Selfish/greedy drivers
- Malicious attackers
- Pranksters
- Snoops/eavesdroppers
- Industrial insiders

Attacker Classification

- The attackers are classified into:
 - Insider vs. outsider
 - Malicious vs. rational
 - Active vs. passive
 - Local vs. extended

Standardization Efforts

- Public key infrastructure [PKI]
 - A trusted party
 - A registration authority
 - A certificate database
 - A certificate store

Standardization Efforts

- Security architectures:
 - ETSI in Europe
 - NHTSA in United States
- Security standarts:
 - IEEE 1609.2 Standardization of IEEE
 - ETSI Standardizations

Proposed Solutions

- For attacks on wireless interface:
 - Tracking, Eavesdropping and Traffic analysis attacks
 - Information disclosure
 - DOS attack
 - Sybil attack
 - Malware and Spamming
 - Man in the middle attack
 - Brute force attack

Proposed Solutions

- For attacks on hardware and software:
 - Message tampering
 - Spoofing and forgery attacks
 - Message saturation
 - Node impersonation

Proposed Solutions

- For attacks on sensors input in vehicle:
 - Jamming attack
 - GPS spoofing or faking position or illusion attack
- For attacks on infrastructure:
 - Key and/or certificate replication that cause unauthorized access
 - Loss of event traceability [repudiation]

Emerging and Open Issues

- The trustworthiness evaluation of nodes participating in VANET and their misbehavior detection
- The revocation process and the certificate revocation list management and distribution
- The ability of the network to self-organize via a high mobile network environment

Emerging and Open Issues

- Data context trust and verification
- Cryptographic approaches for security, privacy and non-traceability assurance
- Anti-malware and Intrusion Detection System

Security and Privacy in Vehicular Communications: Challenges and Opportunities

- Requirements for Modern Cars
- Intra-vehicle Communications
- In-vehicle Network Gateways
- Inter-vehicle Communications
- Future Directions

• Security requirements:

- Authentication
- Intellectual property protection
- Confidentiality
- Integrity
- Access control
- Message freshness
- Privacy
- Availability

Safety requirements:

- Safe development
- Safety risks
- Real-time constraints
- Maintenance
- Free from interference
 - In time domain
 - In communication domain
 - In data processing domain

- Standardization of the architectural requirements:
 - Automotive Open System Architecture [AUTOSAR]
 - Developed by a strong consortium of key players in the automotive industry including BMW, Bosch,
 DaimlerChrysler, Volkswagen, Ford, Peugeot and Toyota
 - Aims to assist with the development of vehicular software, user interfaces and their management.

- AUTOSAR core modules:
 - Hardware dependent modules
 - Operating system [OS]
 - Basic software [BSW]
 - Runtime environment [RTE]
 - Software components [SWC]

- AUTOSAR safety features:
 - Memory protection
 - Timing monitoring
 - Logic monitoring
 - End-to-end communication
 - Execution modes

- AUTOSAR security modules and services:
 - Crypto service manager [CSM]
 - Crypto abstraction layer [CAL]
 - Secure on-board communication [SecOC]

Intra-Vehicle Communications

- Components:
 - Electronic control unit [ECU]
 - The unit of computation in the intra-vehicular network
 - Communication media
 - The intra-vehicle network is composed of physical wires that interconnect ECUs

Intra-Vehicle Communications

- Bus-based networks:
 - Controller area network [CAN]
 - Local interconnect network [LIN]
 - FlexRay
 - Media oriented systems transport [MOST]
 - Ethernet and BroadR-Reach

Intra-Vehicle Communications

- Security and privacy issues:
 - Authentication of ECUs.
 - Time-propagation errors
 - Network monitoring
 - Self-healing
 - Self-adaptive network
 - Secure communication
 - Counterfeiting and intellectual property theft

- In-vehicle gateways:
 - On-board diagnostics [OBD]
 - Tire pressure monitoring system [TPMS]
 - Electrical vehicles [EVs]
 - Remote keyless system [RKS]
 - Infotainment and telematics

- Security and privacy issues:
 - For on-board diagnostics
 - Authentication
 - Integrity
 - Secure communication
 - Attacks on third party interfaces
 - For tire pressure monitoring system
 - Authentication and confidentiality
 - Tracking vehicles

- Security and privacy issues:
 - For EV charging plug infrastructure
 - Key management
 - Integrity
 - Connection to the smart grid
 - EV privacy

- Security and privacy issues:
 - For remote keyless system
 - Security of RKS
 - Security of immobilizer
 - For infotainment and telematics
 - Secure interaction with smartphones
 - Privacy in "pay-as-you-drive" insurance

Inter-Vehicle Communications

- Physical and data link layers: 802.11p.
- IEEE 1609 / WAVE
 - Security features of WAVE
- Security and privacy issues
 - Authentication in V2V and V2I
 - VPKI
 - Pseudonyms [location privacy protection]

Future Directions

- Effective network monitoring
- Secure and efficient data processing
- Scalable and privacy-preserving Services
- Practical and reliable data fusion

Thank You!

• Any questions?