Stability Margins: Gain & Phase Margins

https://github.com/mertankarali/Lecture-Notes/tree/master/METU-EE302/Lecture%2017

Lecture #17

Assumptions

- $G_{OL}(s)$ is a minimum-phase system, i.e.
 - No poles/zeros in the Open Right Half Plane

$$-\lim_{\omega\to\infty} \left[\frac{G_{OL}(s)}{s}\right]_{s=\mathrm{J}\omega} = 0$$

- The feed-back system is Type 0-2
- Polar plot of $G_{OL}(j\omega)$ crosses the negative real-axis at most once.

Assumptions

- $G_{OL}(s)$ is a minimum-phase system, i.e.
 - No poles/zeros in the Open Right Half Plane

$$-\lim_{\omega\to\infty} \left[\frac{G_{OL}(s)}{s}\right]_{s=\mathrm{J}\omega} = 0$$

- The feed-back system is Type 0-2
- Polar plot of $G_{OL}(j\omega)$ crosses the negative real-axis at most once.

Assumptions ⇒ Gain & Phase Margin from Polar Plot

Gain Margin, g_m

 g_m : the change in open-loop gain required to reach the Nyquist stability limit

Gain Margin, g_m

 g_m : the change in open-loop gain required to reach the Nyquist stability limit

Gain Margin, g_m

 g_m : the change in open-loop gain required to reach the Nyquist stability limit

Phase Margin, ϕ_m

 ϕ_m : the amount of "phase lag" required to reach the (Nyquist) stability limit

Phase Margin, ϕ_m

 ϕ_m : the amount of "phase lag" required to reach the (Nyquist) stability limit

Phase Margin, ϕ_m

 ϕ_m : the amount of "phase lag" required to reach the (Nyquist) stability limit

Compute the gain margin and phase margin for the following closed-loop system for K = 2 and K = 4

Compute the gain margin and phase margin for the following closed-loop system for K = 1 and K = 8

