RECONNAISSANCE DE CHIFFRES MANUSCRITS

MATHIEU SAVOURE

CONTENT

01

CONTEXTE ET OBJECTIFS

02

DATASET UTILISÉ

03

PRÉTRAITEMENT DES DONNÉES

04

ARCHITECTURE DU MODÈLE

05

ENTRAÎNEMENT DU MODÈLE

06

PERFORMANCE DU MODÈLE

07

INTERFACE UTILISATEUR AVEC STREAMLIT

INTRO

Contexte

- La reconnaissance de chiffres manuscrits est une tâche fondamentale en vision par ordinateur et apprentissage automatique.
- Utilisation courante dans les systèmes de reconnaissance optique de caractères (OCR).

- Développer un modèle capable de reconnaître des chiffres manuscrits avec une haute précision.
- Implémenter une interface utilisateur interactive pour tester le modèle en temps réel.

Objectifs

DATASET UTILISÉ

Dataset: train.csv.

Images d'entraînement : 33,600

Images de test: 8,400

Format des images: 28x28 pixels.

label: de 0 à 9

	label	pixel0	pixel1	pixel2	pixel3	pixel4	pixel5	pixel6	pixel7	pixel8
0	1	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0
2	1	0	0	0	0	0	0	0	0	0
3	4	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0
41995	0	0	0	0	0	0	0	0	0	0
41996	1	0	0	0	0	0	0	0	0	0
41997	7	0	0	0	0	0	0	0	0	0
41998	6	0	0	0	0	0	0	0	0	0
41999	9	0	0	0	0	0	0	0	0	0
42000 rows × 785 columns										

PRÉTRAITEMENT DES DONNÉES

reshape

 Reshape des images pour correspondre à l'entrée du modèle (28x28x1).

- Normalisation des pixels (valeurs entre 0 et 1).
- Stabilité / Convergence pus rapide / Consistance

Normalisation

ARCHITECTURE DU MODÈLE - CNN

Couches Convolutives:

- Conv2D(32 filtres, taille 3x3, activation ReLU)
- MaxPooling2D(taille 2x2)
- Conv2D(64 filtres, taille 3x3, activation ReLU)
- MaxPooling2D(taille 2x2)

Couches Denses:

- Flatten()
- Dense(128 unités, activation ReLU)
- Dense(10 unités, activation Softmax)

ENTRAÎNEMENT DU MODÈLE

- Optimiseur : Adam
- Fonction de perte : Sparse Categorical Crossentropy
- Métrique : Accuracy

• Early Stopping:

Monitor: val_loss

Patience: 3

Restore Best Weights: True

Paramètres d'entraînement :

Nombre d'époques : 50

Validation Split: 0.1

• Enregistrement format : h5

MODEL SUMMARY

Model: "sequential"		
Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 26, 26, 32)	320
<pre>max_pooling2d (MaxPooling2D)</pre>	(None, 13, 13, 32)	0
conv2d_1 (Conv2D)	(None, 11, 11, 64)	18496
<pre>max_pooling2d_1 (MaxPooling 2D)</pre>	(None, 5, 5, 64)	0
flatten (Flatten)	(None, 1600)	0
dense (Dense)	(None, 128)	204928
dense_1 (Dense)	(None, 10)	1290
Total params: 225,034 Trainable params: 225,034 Non-trainable params: 0		=======

PERFORMANCE DU MODÈLE

Test:

- Loss: 0.0332
- Accuracy: 0.9893

INTERFACE UTILISATEUR AVEC STREAMLIT

Fonctionnalités:

- Chargement d'images aléatoires pour prédiction.
- Dessin de chiffres pour prédiction en temps réel.
- Validation manuelle des prédictions avec suivi des performances (prédictions correctes/incorrectes).
- Visualisation des activations pour chaque filtre de chaque couche de convolution

DEMO

>

Reconnaissance de chiffres manuscrits