

Positive voltage regulators

Features

- Output current to 1.5 A
- Output voltages of 5; 5.2; 6; 8; 8.5; 9; 10; 12; 15; 18; 20; 24 V
- Thermal overload protection
- Short circuit protection
- Output transition SOA protection

Description

The L78xx series of three-terminal positive regulators is available in TO-220, TO-220FP, TO-3 and D²PAK packages and several fixed output voltages, making it useful in a wide range of applications. These regulators can provide local on-card regulation, eliminating the distribution problems associated with single point regulation. Each type employs internal current limiting, thermal shut-down and safe area protection, making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 1 A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltage and currents.

Table 1. Device summary

Order codes					
L7805	L7810C				
L7805C	L7812C				
L7852C	L7815C				
L7806C	L7818C				
L7808C	L7820C				
L7885C	L7824C				
L7809C					

Contents

1	Diagram	5
2	Pin configuration	6
3	Maximum ratings	7
4	Test circuits	9
5	Electrical characteristics	1
6	Typical performance	1
7	Package mechanical data 4	1
8	Order code 5	0
9	Revision history	1

L78xx - L78xxC List of figures

List of figures

Figure 1.	Block diagram	
igure 2.	Pin connections (top view)	. 6
igure 3.	Schematic diagram	
igure 4.	Application circuits	
igure 5.	DC Parameter	. 9
igure 6.	Load regulation	
igure 7.	Ripple rejection	
igure 8.	Dropout voltage vs junction temperature	
igure 9.	Peak output current vs input/output differential voltage	
igure 10.	Supply voltage rejection vs frequency	
igure 11.	Output voltage vs junction temperature	
igure 12.	Output impedance vs frequency	
igure 13.	Quiescent current vs junction temp	
igure 14.	Load transient response	
igure 15.	Line transient response	
igure 16.	Quiescent current vs input voltage	
igure 17.	Fixed output regulator	
igure 18.	Current regulator	
igure 19.	Circuit for increasing output voltage	
igure 20.	Adjustable output regulator (7 to 30 V)	
igure 21.	0.5 to 10 V Regulator	
igure 22.	High current voltage regulator	34
igure 23.	High output current with short circuit protection	
igure 24.	Tracking voltage regulator	
igure 25.	Split power supply (± 15 V - 1 A)	
igure 26.	Negative output voltage circuit	
igure 27.	Switching regulator	
igure 28.	High input voltage circuit	
igure 29.	High input voltage circuit	
igure 30.	High output voltage regulator	
igure 31.	High input and output voltage	
igure 32.	Reducing power dissipation with dropping resistor	
igure 33.	Remote shutdown	
igure 34.	Power AM modulator (unity voltage gain, I _O ≤0.5)	
igure 35.	Adjustable output voltage with temperature compensation	39
igure 36.	Light controllers (V _{Omin} = V _{XX} + V _{BE})	
Figure 37.	Protection against input short-circuit with high capacitance loads	
Figure 38.	Drawing dimension D ² PAK (type STD-ST)	45
igure 39.	Drawing dimension D ² PAK (type WOOSEOK-SUBCON.)	46
igure 40.	D ² PAK footprint recommended data	48

List of tables L78xx - L78xxC

List of tables

Table 1.	Device summary	1
Table 2.	Absolute maximum ratings	7
Table 3.	Thermal data	7
Table 4.	Electrical characteristics of L7805 (refer to the test circuits, T _J = -55 to 150°C,	
	$V_I = 10 \text{ V}, I_O = 500 \text{ mA}, C_I = 0.33 \mu\text{F}, C_O = 0.1 \mu\text{F} \text{ unless otherwise specified}) \dots 1$	1
Table 5.	Electrical characteristics of L7806 (refer to the test circuits, $T_J = -55$ to 150°C,	
	$V_I = 11 \text{ V}, I_O = 500 \text{ mA}, C_I = 0.33 \mu\text{F}, C_O = 0.1 \mu\text{F} \text{ unless otherwise specified}) \dots 1$	2
Table 6.	Electrical characteristics of L7808 (refer to the test circuits, $T_J = -55$ to 150°C,	
	$V_1 = 14V$, $I_O = 500$ mA, $C_1 = 0.33$ μF , $C_O = 0.1$ μF unless otherwise specified)	3
Table 7.	Electrical characteristics of L7812 (refer to the test circuits, $T_J = -55$ to 150°C,	
	$V_1 = 19 \text{ V}, I_O = 500 \text{ mA}, C_1 = 0.33 \text{ µF}, C_O = 0.1 \text{ µF unless otherwise specified}) \dots 1$	4
Table 8.	Electrical characteristics of L7815 (refer to the test circuits, $T_J = -55$ to 150°C,	
	$V_1 = 23 \text{ V}, I_O = 500 \text{ mA}, C_1 = 0.33 \mu\text{F}, C_O = 0.1 \mu\text{F unless otherwise specified}) \dots 1$	5
Table 9.	Electrical characteristics of L7818 (refer to the test circuits, $T_{\text{J}} = -55$ to 150°C,	_
	V_{I} = 26 V, I_{O} = 500 mA, C_{I} = 0.33 μ F, C_{O} = 0.1 μ F unless otherwise specified) 1	6
Table 10.	Electrical characteristics of L7820 (refer to the test circuits, $T_J = -55$ to 150°C,	Ĭ
	$V_{I} = 28 \text{ V}$, $I_{O} = 500 \text{ mA}$, $C_{I} = 0.33 \mu\text{F}$, $C_{O} = 0.1 \mu\text{F}$ unless otherwise specified)	7
Table 11.	Electrical characteristics of L7824 (refer to the test circuits, $T_J = -55$ to 150°C,	•
	V_{l} = 33 V, I_{O} = 500 mA, C_{l} = 0.33 μ F, C_{O} = 0.1 μ F unless otherwise specified) 1	8
Table 12.	Electrical characteristics of L7805C (refer to the test circuits, $T_{ij} = 0$ to 150°C,	Ŭ
145.6 12.	V_{I} = 10 V, I_{O} = 500 mA, C_{I} = 0.33 μ F, C_{O} = 0.1 μ F unless otherwise specified) 1	9
Table 13.	Electrical characteristics of L7852C (refer to the test circuits, $T_{ij} = 0$ to 150°C,	Ŭ
145.6 16.	V_{I} = 10 V, I_{O} = 500 mA, C_{I} = 0.33 μ F, C_{O} = 0.1 μ F unless otherwise specified) 2	'n
Table 14.	Electrical characteristics of L7806C (refer to the test circuits, $T_{ij} = 0$ to 150°C,	Ŭ
145.5 1 1.	$V_I = 11 \text{ V}$, $I_O = 500 \text{ mA}$, $C_I = 0.33 \mu\text{F}$, $C_O = 0.1 \mu\text{F}$ unless otherwise specified) 2	1
Table 15.	Electrical characteristics of L7808C (refer to the test circuits, $T_{ij} = 0$ to 150°C,	•
145.6 16.	V_{I} = 14 V, I_{O} = 500 mA, C_{I} = 0.33 μ F, C_{O} = 0.1 μ F unless otherwise specified) 2	2
Table 16.	Electrical characteristics of L7885C (refer to the test circuits, $T_{ij} = 0$ to 150°C,	_
	$V_I = 14.5 \text{ V}$, $I_O = 500 \text{ mA}$, $C_I = 0.33 \mu\text{F}$, $C_O = 0.1 \mu\text{F}$ unless otherwise specified) 2	3
Table 17.	Electrical characteristics of L7809C (refer to the test circuits, $T_{ij} = 0$ to 150°C,	Ĭ
	V_{I} = 15 V, I_{O} = 500 mA, C_{I} = 0.33 μ F, C_{O} = 0.1 μ F unless otherwise specified) 2	4
Table 18.	Electrical characteristics of L7810C (refer to the test circuits, $T_{ij} = 0$ to 150°C,	•
	V_{I} = 15 V, I_{O} = 500 mA, C_{I} = 0.33 μ F, C_{O} = 0.1 μ F unless otherwise specified) 2	5
Table 19.	Electrical characteristics of L7812C (refer to the test circuits, $T_{ij} = 0$ to 150°C,	Ĭ
	$V_{I} = 19 \text{ V}$, $I_{O} = 500 \text{ mA}$, $C_{I} = 0.33 \mu\text{F}$, $C_{O} = 0.1 \mu\text{F}$ unless otherwise specified) 2	6
Table 20.	Electrical characteristics of L7815C (refer to the test circuits, $T_{ij} = 0$ to 150°C,	Ĭ
. 45.6 20.	$V_1 = 23 \text{ V}$, $I_O = 500 \text{ mA}$, $C_1 = 0.33 \mu\text{F}$, $C_O = 0.1 \mu\text{F}$ unless otherwise specified) 2	7
Table 21.	Electrical characteristics of L7818C (refer to the test circuits, $T_J = 0$ to 150°C,	•
. 45.6 2	$V_1 = 26 \text{ V}$, $I_O = 500 \text{ mA}$, $C_1 = 0.33 \mu\text{F}$, $C_O = 0.1 \mu\text{F}$ unless otherwise specified) 2	8
Table 22.	Electrical characteristics of L7820C (refer to the test circuits, $T_J = 0$ to 150°C,	Ŭ
	V_{I} = 28 V, I_{O} = 500 mA, C_{I} = 0.33 μ F, C_{O} = 0.1 μ F unless otherwise specified) 2	9
Table 23.	Electrical characteristics of L7824C (refer to the test circuits, $T_{ij} = 0$ to 150°C,	Ŭ
. 35.5 25.	$V_L = 33 \text{ V}$, $I_O = 500 \text{ mA}$, $C_I = 0.33 \mu\text{F}$, $C_O = 0.1 \mu\text{F}$ unless otherwise specified) 3	n
Table 24.	D^2 PAK mechanical data	
Table 25.	Footprint data	
Table 26.	Order code	
Table 27.	Revision history	

L78xx - L78xxC Diagram

1 Diagram

Figure 1. Block diagram

Pin configuration L78xx - L78xxC

2 Pin configuration

Figure 2. Pin connections (top view)

Figure 3. Schematic diagram

L78xx - L78xxC Maximum ratings

3 Maximum ratings

Table 2. Absolute maximum ratings

Symbol	Parameter		Value	
V	DC Input voltage	for V _O = 5 to 18 V	35	V
V _I	DC Input voltage	for V _O = 20, 24 V	40	v
Io	Output current		Internally Limited	
P_{D}	Power dissipation		Internally Limited	
T _{STG}	Storage temperature range		-65 to 150	°C
-	Operating junction temperature range	for L7800	-55 to 150	°C
T _{OP}	Operating junction temperature range	for L7800C	0 to 150	

Note:

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied

Table 3. Thermal data

Symbol	Parameter	D ² PAK	TO-220	TO-220FP	TO-3	Unit
R _{thJC}	Thermal resistance junction-case	3	5	5	4	°C/W
R _{thJA}	Thermal resistance junction-ambient	62.5	50	60	35	°C/W

Maximum ratings L78xx - L78xxC

Figure 4. Application circuits

L78xx - L78xxC Test circuits

4 Test circuits

Figure 5. DC Parameter

Figure 6. Load regulation

Test circuits L78xx - L78xxC

Figure 7. Ripple rejection

5 Electrical characteristics

Table 4. Electrical characteristics of L7805 (refer to the test circuits, $T_J = -55$ to 150° C, $V_I = 10$ V, $I_O = 500$ mA, $C_I = 0.33$ μ F, $C_O = 0.1$ μ F unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	4.8	5	5.2	V
V _O	Output voltage	I_O = 5 mA to 1 A, $P_O \le$ 15 W V _I = 8 to 20 V	4.65	5	5.35	٧
ΔV _O ⁽¹⁾	Line regulation	V _I = 7 to 25 V, T _J = 25°C		3	50	- mV
ΔΛΟ , ,	Line regulation	V _I = 8 to 12 V, T _J = 25°C		1	25	IIIV
ΔV _O ⁽¹⁾	Load regulation	$I_{O} = 5$ mA to 1.5 A, $T_{J} = 25^{\circ}$ C			100	m\/
ΔΛΟ , ,	Load regulation	I_{O} = 250 to 750 mA, T_{J} = 25°C			25	25 mV
I _d	Quiescent current	T _J = 25°C			6	mA
41	Quiescent current change	I _O = 5 mA to 1 A			0.5	mA.
$\Delta l_{\sf d}$		V _I = 8 to 25 V			0.8	IIIA
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5 mA		0.6		mV/°C
eN	Output noise voltage	B =10 Hz to 100 KHz, T _J = 25°C			40	μV/V _O
SVR	Supply voltage rejection	V _I = 8 to 18 V, f = 120 Hz	68			dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25°C		2	2.5	V
R _O	Output resistance	f = 1 KHz		17		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25°C		0.75	1.2	Α
I _{scp}	Short circuit peak current	T _J = 25°C	1.3	2.2	3.3	Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 5. Electrical characteristics of L7806 (refer to the test circuits, $T_J = -55$ to 150° C, $V_I = 11$ V, $I_O = 500$ mA, $C_I = 0.33$ μ F, $C_O = 0.1$ μ F unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	5.75	6	6.25	V
Vo	Output voltage	I_O = 5 mA to 1 A, $P_O \le$ 15 W V _I = 9 to 21 V	5.65	6	6.35	V
ΔV _O ⁽¹⁾	Line regulation	V _I = 8 to 25 V, T _J = 25°C			60	mV
ΔνΟ, ,	Line regulation	V _I = 9 to 13 V, T _J = 25°C			30	IIIV
ΔV _O ⁽¹⁾	Load regulation	I _O = 5 mA to 1.5 A, T _J = 25°C			100	mV
$\nabla \Lambda^{O}$,	Load regulation	I_{O} = 250 to 750 mA, T_{J} = 25°C			30	
I _d	Quiescent current	T _J = 25°C			6	mA
Al	Quiescent current change	I _O = 5 mA to 1 A			0.5	mA
$\Delta l_{\sf d}$		V _I = 9 to 25 V			0.8	
$\Delta V_O/\Delta T$	Output voltage drift	I _O = 5 mA		0.7		mV/°C
eN	Output noise voltage	B =10 Hz to 100 KHz, T _J = 25°C			40	μV/V _O
SVR	Supply voltage rejection	V _I = 9 to 19 V, f = 120 Hz	65			dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25°C		2	2.5	V
R _O	Output resistance	f = 1 KHz		19		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25°C		0.75	1.2	Α
I _{scp}	Short circuit peak current	T _J = 25°C	1.3	2.2	3.3	Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 6. Electrical characteristics of L7808 (refer to the test circuits, T_J = -55 to 150°C, V_I = 14V, I_O = 500 mA, C_I = 0.33 μF, C_O = 0.1 μF unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	7.7	8	8.3	V
Vo	Output voltage	I_O = 5 mA to 1A, $P_O \le$ 15 W V _I = 11.5 to 23 V	7.6	8	8.4	V
ΔV _O ⁽¹⁾	Line regulation	V _I = 10.5 to 25 V, T _J = 25°C			80	mV
Δνοζή	Line regulation	V _I = 11 to 17 V, T _J = 25°C			40	IIIV
ΔV _O ⁽¹⁾	Lood regulation	I _O = 5 mA to 1.5 A, T _J = 25°C			100	1 ,,
ΔνΟ΄,	Load regulation	I _O = 250 to 750 mA, T _J = 25°C			40	- mV
I _d	Quiescent current	T _J = 25°C			6	mA
4.1	Quiescent current change	I _O = 5 mA to 1 A			0.5	A
ΔI_d		V _I = 11.5 to 25 V			0.8	- mA
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5 mA		1		mV/°C
eN	Output noise voltage	B =10 Hz to 100 KHz, T _J = 25°C			40	μV/V _O
SVR	Supply voltage rejection	V _I = 11.5 to 21.5 V, f = 120 Hz	62			dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25°C		2	2.5	٧
R _O	Output resistance	f = 1 KHz		16		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25°C		0.75	1.2	Α
I _{scp}	Short circuit peak current	T _J = 25°C	1.3	2.2	3.3	Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 7. Electrical characteristics of L7812 (refer to the test circuits, T_J = -55 to 150°C, V_I = 19 V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25°C	11.5	12	12.5	V
Vo	Output voltage	$I_O = 5$ mA to 1 A, $P_O \le 15$ W V _I = 15.5 to 27 V	11.4	12	12.6	V
ΔV _O ⁽¹⁾	Line regulation	V _I = 14.5 to 30 V, T _J = 25°C			120	mV
ΔνΟ, ,	Line regulation	V _I = 16 to 22 V, T _J = 25°C			60	IIIV
ΔV _O ⁽¹⁾	Load regulation	I _O = 5 mA to 1.5 A, T _J = 25°C			100	mV
$\Delta v_{O'}$	Load regulation	I _O = 250 to 750 mA, T _J = 25°C			60	
I _d	Quiescent current	T _J = 25°C			6	mA
41	Quiescent current change	I _O = 5 mA to 1 A			0.5	mΛ
$\Delta l_{\sf d}$	Quiescent current change	V _I = 15 to 30 V			0.8	– mA
$\Delta V_O/\Delta T$	Output voltage drift	I _O = 5 mA		1.5		mV/°C
eN	Output noise voltage	B =10 Hz to 100 KHz, T _J = 25°C			40	μV/V _O
SVR	Supply voltage rejection	V _I = 15 to 25 V, f = 120 Hz	61			dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25°C		2	2.5	V
R _O	Output resistance	f = 1 KHz		18		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25°C		0.75	1.2	Α
I _{scp}	Short circuit peak current	T _J = 25°C	1.3	2.2	3.3	Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 8. Electrical characteristics of L7815 (refer to the test circuits, T_J = -55 to 150°C, V_I = 23 V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25°C	14.4	15	15.6	V
V _O	Output voltage	$I_O = 5$ mA to 1 A, $P_O \le 15$ W V _I = 18.5 to 30 V	14.25	15	15.75	V
ΔV _O ⁽¹⁾	Line regulation	V _I = 17.5 to 30 V, T _J = 25°C			150	mV
ΔνΟ, ,	Line regulation	V _I = 20 to 26 V, T _J = 25°C			75	IIIV
ΔV _Ω ⁽¹⁾	Load regulation	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}, T_{J} = 25^{\circ}\text{C}$			150	mV
ΔνΟ. ,	Load regulation	$I_{O} = 250 \text{ to } 750 \text{ mA}, T_{J} = 25^{\circ}\text{C}$			75	
I _d	Quiescent current	T _J = 25°C			6	mA
ΔI	Quiescent current change	I _O = 5 mA to 1 A			0.5	mA
$\Delta l_{\sf d}$		V _I = 18.5 to 30 V			0.8] ""^
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5 mA		1.8		mV/°C
eN	Output noise voltage	B =10 Hz to 100 KHz, $T_J = 25^{\circ}C$			40	μV/V _O
SVR	Supply voltage rejection	V _I = 18.5 to 28.5 V, f = 120 Hz	60			dB
V_d	Dropout voltage	I _O = 1 A, T _J = 25°C		2	2.5	V
R _O	Output resistance	f = 1 KHz		19		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25°C		0.75	1.2	Α
I _{scp}	Short circuit peak current	T _J = 25°C	1.3	2.2	3.3	Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 9. Electrical characteristics of L7818 (refer to the test circuits, T_J = -55 to 150°C, V_I = 26 V, I_O = 500 mA, C_I = 0.33 μF, C_O = 0.1 μF unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25°C	17.3	18	18.7	٧
V _O	Output voltage	$I_O = 5$ mA to 1 A, $P_O \le 15$ W $V_I = 22$ to 33 V	17.1	18	18.9	V
ΔV _O ⁽¹⁾	Line regulation	V _I = 21 to 33 V, T _J = 25°C			180	mV
ΔνΟ, ,	Line regulation	V _I = 24 to 30 V, T _J = 25°C			90	IIIV
ΔV _Ω ⁽¹⁾	Load regulation	$I_{O} = 5$ mA to 1.5 A, $T_{J} = 25^{\circ}$ C			180	180 90 mV
$\nabla \Lambda^{O}$,	Load regulation	I _O = 250 to 750 mA, T _J = 25°C			90	
I _d	Quiescent current	T _J = 25°C			6	mA
ΔI	Quiescent current change	I _O = 5 mA to 1 A			0.5	mA
$\Delta l_{\sf d}$		V _I = 22 to 33 V			0.8	
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5 mA		2.3		mV/°C
eN	Output noise voltage	B =10 Hz to 100 KHz, T _J = 25°C			40	μV/V _O
SVR	Supply voltage rejection	V _I = 22 to 32 V, f = 120 Hz	59			dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25°C		2	2.5	٧
R _O	Output resistance	f = 1 KHz		22		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25°C		0.75	1.2	Α
I _{scp}	Short circuit peak current	T _J = 25°C	1.3	2.2	3.3	Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 10. Electrical characteristics of L7820 (refer to the test circuits, T_J = -55 to 150°C, V_I = 28 V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25°C	19.2	20	20.8	٧
V _O	Output voltage	I_O = 5 mA to 1 A, $P_O \le$ 15 W V_I = 24 to 35 V	19	20	21	V
ΔV _O ⁽¹⁾	Line regulation	V _I = 22.5 to 35 V, T _J = 25°C			200	mV
Δ ν Ο΄,	Line regulation	V _I = 26 to 32 V, T _J = 25°C			100	IIIV
ΔV _O ⁽¹⁾	Load regulation	$I_{O} = 5$ mA to 1.5 A, $T_{J} = 25^{\circ}$ C			200	m\/
Δν _Ο ` ′	Load regulation	I _O = 250 to 750 mA, T _J = 25°C			100	100 mV
I _d	Quiescent current	T _J = 25°C			6	mA
41	Quiescent current change	I _O = 5 mA to 1 A			0.5	m 1
$\Delta l_{\sf d}$	Quiescent current change	V _I = 24 to 35 V			8.0	mA
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5 mA		2.5		mV/°C
eN	Output noise voltage	B =10 Hz to 100 KHz, T _J = 25°C			40	μV/V _O
SVR	Supply voltage rejection	V _I = 24 to 35 V, f = 120 Hz	58			dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25°C		2	2.5	V
R _O	Output resistance	f = 1 KHz		24		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25°C		0.75	1.2	Α
I _{scp}	Short circuit peak current	T _J = 25°C	1.3	2.2	3.3	Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 11. Electrical characteristics of L7824 (refer to the test circuits, T_J = -55 to 150°C, V_I = 33 V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	23	24	25	V
V _O	Output voltage	$I_O = 5 \text{ mA to 1 A}, P_O \le 15 \text{ W}$ $V_I = 28 \text{ to 38 V}$	22.8	24	25.2	V
ΔV _O ⁽¹⁾	Line regulation	V _I = 27 to 38 V, T _J = 25°C			240	mV
ΔΛO , ,	Line regulation	V _I = 30 to 36 V, T _J = 25°C			120	IIIV
ΔV _O ⁽¹⁾	Load regulation	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}, T_{J} = 25^{\circ}\text{C}$			240	240 120 mV
ΔνΟ , ,	Load regulation	$I_{O} = 250 \text{ to } 750 \text{ mA}, T_{J} = 25^{\circ}\text{C}$			120	
I _d	Quiescent current	T _J = 25°C			6	mA
ΔI	Quiescent current change	I _O = 5 mA to 1 A			0.5	- mA
∆l _d	Quiescent current change	V _I = 28 to 38 V			0.8	IIIA
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5 mA		3		mV/°C
eN	Output noise voltage	B =10 Hz to 100 KHz, $T_J = 25$ °C			40	μV/V _O
SVR	Supply voltage rejection	V _I = 28 to 38 V, f = 120 Hz	56			dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25°C		2	2.5	٧
R _O	Output resistance	f = 1 KHz		28		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25°C		0.75	1.2	Α
I _{scp}	Short circuit peak current	T _J = 25°C	1.3	2.2	3.3	Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 12. Electrical characteristics of L7805C (refer to the test circuits, $T_J = 0$ to 150°C, $V_I = 10$ V, $I_O = 500$ mA, $C_I = 0.33$ μ F, $C_O = 0.1$ μ F unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	4.8	5	5.2	V
V _O	Output voltage	I_O = 5 mA to 1 A, $P_O \le$ 15 W V _I = 7 to 20 V	4.75	5	5.25	V
$\Delta V_{O}^{(1)}$	Line regulation	V _I = 7 to 25 V, T _J = 25°C		3	100	mV
ΔΛΟ , ,	Line regulation	V _I = 8 to 12 V, T _J = 25°C		1	50	IIIV
ΔV _O ⁽¹⁾	Load regulation	$I_{O} = 5$ mA to 1.5 A, $T_{J} = 25^{\circ}$ C			100	m\/
ΔΛO , ,	Load regulation	I _O = 250 to 750 mA, T _J = 25°C			50	50 mV
I _d	Quiescent current	T _J = 25°C			8	mA
ΔI	Quiescent current change	I _O = 5 mA to 1 A			0.5	mA
∆l _d	Quiescent current change	V _I = 7 to 25 V			0.8	IIIA
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5 mA		-1.1		mV/°C
eN	Output noise voltage	B =10 Hz to 100 KHz, T _J = 25°C		40		μV/V _O
SVR	Supply voltage rejection	V _I = 8 to 18 V, f = 120 Hz	62			dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25°C		2		V
R _O	Output resistance	f = 1 KHz		17		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25°C		0.75		Α
I _{scp}	Short circuit peak current	T _J = 25°C		2.2		Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 13. Electrical characteristics of L7852C (refer to the test circuits, $T_J = 0$ to 150°C, $V_I = 10$ V, $I_O = 500$ mA, $C_I = 0.33$ μ F, $C_O = 0.1$ μ F unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	5.0	5.2	5.4	V
V _O	Output voltage	I_O = 5 mA to 1 A, $P_O \le 15$ W V _I = 8 to 20 V	4.95	5.2	5.45	V
ΔV _O ⁽¹⁾	Line regulation	V _I = 7 to 25 V, T _J = 25°C		3	105	- mV
Δ ν Ο, ,	Line regulation	V _I = 8 to 12 V, T _J = 25°C		1	52	IIIV
ΔV _O ⁽¹⁾	Load regulation	$I_{O} = 5$ mA to 1.5 A, $T_{J} = 25^{\circ}$ C			105	5 mV
ΔνO , ,	Load regulation	I _O = 250 to 750 mA, T _J = 25°C			52	IIIV
I _d	Quiescent current	T _J = 25°C			8	mA
41	Outle count oursent change	I _O = 5 mA to 1 A			0.5	m A
$\Delta l_{\sf d}$	Quiescent current change	V _I = 7 to 25 V			1.3	mA
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5 mA		-1		mV/°C
eN	Output noise voltage	B =10 Hz to 100 KHz, T _J = 25°C		42		μV/V _O
SVR	Supply voltage rejection	V _I = 8 to 18 V, f = 120 Hz	61			dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25°C		2		V
R _O	Output resistance	f = 1 KHz		17		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25°C		0.75		Α
I _{scp}	Short circuit peak current	T _J = 25°C		2.2		Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 14. Electrical characteristics of L7806C (refer to the test circuits, $T_J = 0$ to 150°C, $V_I = 11$ V, $I_O = 500$ mA, $C_I = 0.33$ μ F, $C_O = 0.1$ μ F unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	5.75	6	6.25	V
V _O	Output voltage	I_O = 5 mA to 1 A, $P_O \le$ 15 W V _I = 8 to 21 V	5.7	6	6.3	V
$\Delta V_{O}^{(1)}$	Line regulation	V _I = 8 to 25 V, T _J = 25°C			120	mV
ΔΛΟ , ,		V _I = 9 to 13 V, T _J = 25°C			60	IIIV
ΔV _Ω ⁽¹⁾	Load regulation	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}, T_{J} = 25^{\circ}\text{C}$			120	120 60 mV
$\nabla \mathbf{AO}_{x,y}$	Load regulation	I _O = 250 to 750 mA, T _J = 25°C			60	
I _d	Quiescent current	T _J = 25°C			8	mA
ΔI	Quiescent current change	I _O = 5 mA to 1 A			0.5	- mA
∆l _d	Quiescent current change	V _I = 8 to 25 V			1.3	IIIA
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5 mA		-0.8		mV/°C
eN	Output noise voltage	B =10 Hz to 100 KHz, T _J = 25°C		45		μV/V _O
SVR	Supply voltage rejection	V _I = 9 to 19 V, f = 120 Hz	59			dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25°C		2		V
R _O	Output resistance	f = 1 KHz		19		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25°C		0.55		Α
I _{scp}	Short circuit peak current	T _J = 25°C		2.2		Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 15. Electrical characteristics of L7808C (refer to the test circuits, $T_J = 0$ to 150°C, $V_I = 14$ V, $I_O = 500$ mA, $C_I = 0.33$ μ F, $C_O = 0.1$ μ F unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	7.7	8	8.3	V
V _O	Output voltage	$I_O = 5$ mA to 1 A, $P_O \le 15$ W V _I = 10.5 to 25 V	7.6	8	8.4	V
$\Delta V_{O}^{(1)}$	Line regulation	V _I = 10.5 to 25 V, T _J = 25°C			160	mV
ΔΛΟ , ,		V _I = 11 to 17 V, T _J = 25°C			80	IIIV
ΔV _O ⁽¹⁾	Load regulation	$I_{O} = 5$ mA to 1.5 A, $T_{J} = 25^{\circ}$ C			160	160 80 mV
ΔΛO , ,	Load regulation	I_{O} = 250 to 750 mA, T_{J} = 25°C			80	
I _d	Quiescent current	T _J = 25°C			8	mA
ΔI	Quiescent current change	I _O = 5 mA to 1 A			0.5	- mA
∆l _d	Quiescent current change	V _I = 10.5 to 25 V			1	IIIA
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5 mA		-0.8		mV/°C
eN	Output noise voltage	B =10 Hz to 100 KHz, T _J = 25°C		52		μV/V _O
SVR	Supply voltage rejection	V _I = 11.5 to 21.5 V, f = 120 Hz	56			dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25°C		2		V
R _O	Output resistance	f = 1 KHz		16		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25°C		0.45		Α
I _{scp}	Short circuit peak current	T _J = 25°C		2.2		Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 16. Electrical characteristics of L7885C (refer to the test circuits, T_J = 0 to 150°C, V_I = 14.5 V, I_O = 500 mA, C_I = 0.33 μF, C_O = 0.1 μF unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	8.2	8.5	8.8	V
V _O	Output voltage	I_O = 5 mA to 1 A, $P_O \le$ 15 W V _I = 11 to 26 V	8.1	8.5	8.9	V
$\Delta V_{O}^{(1)}$	Line regulation	V _I = 11 to 27 V, T _J = 25°C			160	- mV
	Line regulation	V _I = 11.5 to 17.5 V, T _J = 25°C			80	IIIV
ΔV _O ⁽¹⁾	Load regulation	$I_O = 5$ mA to 1.5 A, $T_J = 25^{\circ}$ C		160	\/	
ΔνO , ,	Load regulation	I_{O} = 250 to 750 mA, T_{J} = 25°C			80	mV
I _d	Quiescent current	T _J = 25°C			8	mA
41	Quiescent current change	I _O = 5 mA to 1 A			0.5	m A
$\Delta l_{\sf d}$	Quiescent current change	V _I = 11 to 27 V			1	mA
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5 mA		-0.8		mV/°C
eN	Output noise voltage	B =10 Hz to 100 KHz, T _J = 25°C		55		μV/V _O
SVR	Supply voltage rejection	V _I = 12 to 22V, f = 120Hz	56			dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25°C		2		V
R _O	Output resistance	f = 1 KHz		16		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25°C		0.45		Α
I _{scp}	Short circuit peak current	T _J = 25°C		2.2		Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 17. Electrical characteristics of L7809C (refer to the test circuits, $T_J = 0$ to 150°C, $V_I = 15$ V, $I_O = 500$ mA, $C_I = 0.33$ μ F, $C_O = 0.1$ μ F unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	8.64	9	9.36	V
V _O	Output voltage	$I_O = 5$ mA to 1 A, $P_O \le 15$ W V _I = 11.5 to 26 V	8.55	9	9.45	٧
$\Delta V_{O}^{(1)}$	Line regulation	V _I = 11.5 to 26 V, T _J = 25°C			180	mV
	Line regulation	V _I = 12 to 18 V, T _J = 25°C			90	IIIV
ΔV _O ⁽¹⁾	Load regulation	$I_{O} = 5$ mA to 1.5 A, $T_{J} = 25$ °C			180	m\/
Δv_{O}		I _O = 250 to 750 mA, T _J = 25°C			90	mV
I _d	Quiescent current	T _J = 25°C			8	mA
4.1	Quiescent current change	I _O = 5 mA to 1 A			0.5	A
ΔI_d	Quiescent current change	V _I = 11.5 to 26 V			1	mA
$\Delta V_O/\Delta T$	Output voltage drift	I _O = 5 mA		-1		mV/°C
eN	Output noise voltage	B =10 Hz to 100 KHz, T _J = 25°C		70		μV/V _O
SVR	Supply voltage rejection	V _I = 12 to 23 V, f = 120 Hz	55			dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25°C		2		V
R _O	Output resistance	f = 1 KHz		17		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25°C		0.40		Α
I _{scp}	Short circuit peak current	T _J = 25°C		2.2		Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 18. Electrical characteristics of L7810C (refer to the test circuits, $T_J = 0$ to 150°C, $V_I = 15$ V, $I_O = 500$ mA, $C_I = 0.33$ μ F, $C_O = 0.1$ μ F unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	$T_J = 25^{\circ}C$	9.6	10	10.4	V
Vo	Output voltage	$I_O = 5$ mA to 1 A, $P_O \le 15$ W $V_I = 12.5$ to 26 V	9.5	10	10.5	٧
ΔV _O ⁽¹⁾	Line regulation	V _I = 12.5 to 26 V, T _J = 25°C			200	mV
ΔνΟ, ,	Line regulation	V _I = 13.5 to 19 V, T _J = 25°C			100	IIIV
ΔV _O ⁽¹⁾	Load regulation	$I_{O} = 5$ mA to 1.5 A, $T_{J} = 25^{\circ}$ C			200	m\/
Δνο, ,	Load regulation	I _O = 250 to 750 mA, T _J = 25°C			100	100 mV
I _d	Quiescent current	T _J = 25°C			8	mA
4.1	Quiescent current change	I _O = 5 mA to 1 A			0.5	m 1
ΔI_d	Quiescent current change	V _I = 12.5 to 26 V			1	- mA
$\Delta V_O/\Delta T$	Output voltage drift	I _O = 5 mA		-1		mV/°C
eN	Output noise voltage	B =10 Hz to 100 KHz, T _J = 25°C		70		μV/V _O
SVR	Supply voltage rejection	V _I = 13 to 23 V, f = 120 Hz	55			dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25°C		2		V
R _O	Output resistance	f = 1 KHz		17		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25°C		0.40		Α
I _{scp}	Short circuit peak current	T _J = 25°C		2.2		Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 19. Electrical characteristics of L7812C (refer to the test circuits, $T_J = 0$ to 150°C, $V_I = 19$ V, $I_O = 500$ mA, $C_I = 0.33$ μF, $C_O = 0.1$ μF unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	11.5	12	12.5	V
V _O	Output voltage	$I_O = 5$ mA to 1 A, $P_O \le 15$ W V _I = 14.5 to 27 V	11.4	12	12.6	V
$\Delta V_{O}^{(1)}$	Line regulation	V _I = 14.5 to 30 V, T _J = 25°C			240	mV
ΔνΟ, ,		V _I = 16 to 22 V, T _J = 25°C			120	IIIV
ΔV _Ω ⁽¹⁾	Load regulation	$I_{O} = 5 \text{ mA to } 1.5 \text{ A, T}_{J} = 25^{\circ}\text{C}$	to 1.5 A, T _J = 25°C	240	m\/	
ΔνΟ. ,	Load regulation	$I_{O} = 250 \text{ to } 750 \text{ mA}, T_{J} = 25^{\circ}\text{C}$			120	120 mV
I _d	Quiescent current	T _J = 25°C			8	mA
ΔI	Quiescent current change	I _O = 5 mA to 1 A			0.5	- mA
$\Delta l_{\sf d}$	Quiescent current change	V _I = 14.5 to 30 V			1	IIIA
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5 mA		-1		mV/°C
eN	Output noise voltage	B =10 Hz to 100 KHz, T _J = 25°C		75		μV/V _O
SVR	Supply voltage rejection	V _I = 15 to 25 V, f = 120 Hz	55			dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25°C		2		V
R _O	Output resistance	f = 1 KHz		18		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25°C		0.35		Α
I _{scp}	Short circuit peak current	T _J = 25°C		2.2		Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 20. Electrical characteristics of L7815C (refer to the test circuits, $T_J = 0$ to 150°C, $V_I = 23$ V, $I_O = 500$ mA, $C_I = 0.33$ μ F, $C_O = 0.1$ μ F unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25°C	14.5	15	15.6	V
V _O	Output voltage	$I_O = 5$ mA to 1 A, $P_O \le 15$ W V _I = 17.5 to 30 V	14.25	15	15.75	V
$\Delta V_{O}^{(1)}$	Line regulation	V _I = 17.5 to 30 V, T _J = 25°C			300	mV
	Line regulation	V _I = 20 to 26 V, T _J = 25°C			150	IIIV
ΔV _O ⁽¹⁾	$I_O = 5 \text{ mA to}$	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}, T_{J} = 25^{\circ}\text{C}$			300	m\/
$\nabla \mathbf{A}^{O}$,	Load regulation	I _O = 250 to 750 mA, T _J = 25°C			150	150 mV
I _d	Quiescent current	T _J = 25°C			8	mA
41	Quiescent current change	I _O = 5 mA to 1A			0.5	m 1
ΔI_d	Quiescent current change	V _I = 17.5 to 30 V			1	mA
$\Delta V_O/\Delta T$	Output voltage drift	I _O = 5 mA		-1		mV/°C
eN	Output noise voltage	B =10 Hz to 100 KHz, T _J = 25°C		90		μV/V _O
SVR	Supply voltage rejection	V _I = 18.5 to 28.5 V, f = 120 Hz	54			dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25°C		2		V
R _O	Output resistance	f = 1 KHz		19		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25°C		0.23		Α
I _{scp}	Short circuit peak current	T _J = 25°C		2.2		Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 21. Electrical characteristics of L7818C (refer to the test circuits, $T_J = 0$ to 150°C, $V_I = 26$ V, $I_O = 500$ mA, $C_I = 0.33$ μ F, $C_O = 0.1$ μ F unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25°C	17.3	18	18.7	٧
V _O	Output voltage	I_O = 5 mA to 1 A, $P_O \le$ 15 W V_I = 21 to 33 V	17.1	18	18.9	V
$\Delta V_{O}^{(1)}$	Line regulation	V _I = 21 to 33 V, T _J = 25°C			360	mV
ΔνΟ, ,	Line regulation	V _I = 24 to 30 V, T _J = 25°C			180	IIIV
ΔV _Ω ⁽¹⁾	Load regulation	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}, T_{J} = 25^{\circ}\text{C}$			360	360 180 mV
$\nabla \Lambda^{O}$,	Load regulation	I _O = 250 to 750 mA, T _J = 25°C			180	
I _d	Quiescent current	T _J = 25°C			8	mA
Al	Quiescent current change	I _O = 5 mA to 1 A			0.5	mA
$\Delta l_{\sf d}$	Quiescent current change	V _I = 21 to 33 V			1	IIIA
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5 mA		-1		mV/°C
eN	Output noise voltage	B = 10 Hz to 100 KHz, T _J = 25°C		110		μV/V _O
SVR	Supply voltage rejection	V _I = 22 to 32 V, f = 120 Hz	53			dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25°C		2		٧
R _O	Output resistance	f = 1 KHz		22		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25°C		0.20		Α
I _{scp}	Short circuit peak current	T _J = 25°C		2.1		Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 22. Electrical characteristics of L7820C (refer to the test circuits, $T_J = 0$ to 150°C, $V_I = 28$ V, $I_O = 500$ mA, $C_I = 0.33$ μ F, $C_O = 0.1$ μ F unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	19.2	20	20.8	٧
Vo	Output voltage	$I_O = 5$ mA to 1 A, $P_O \le 15$ W V _I = 23 to 35 V	19	20	21	٧
$\Delta V_{O}^{(1)}$	Line regulation	V _I = 22.5 to 35 V, T _J = 25°C			400	mV
		V _I = 26 to 32 V, T _J = 25°C			200	
$\Delta V_{O}^{(1)}$	Load regulation	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}, T_{J} = 25^{\circ}\text{C}$			400	mV
		I _O = 250 to 750 mA, T _J = 25°C			200	
I _d	Quiescent current	T _J = 25°C			8	mA
$\Delta l_{\sf d}$	Quiescent current change	I _O = 5 mA to 1 A			0.5	- mA
		V _I = 23 to 35 V			1	
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5 mA		-1		mV/°C
eN	Output noise voltage	B = 10 Hz to 100 KHz, $T_J = 25^{\circ}C$		150		μV/V _O
SVR	Supply voltage rejection	V _I = 24 to 35 V, f = 120 Hz	52			dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25°C		2		٧
R _O	Output resistance	f = 1 KHz		24		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25°C		0.18		Α
I _{scp}	Short circuit peak current	T _J = 25°C		2.1		Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 23. Electrical characteristics of L7824C (refer to the test circuits, $T_J = 0$ to 150°C, $V_I = 33$ V, $I_O = 500$ mA, $C_I = 0.33$ μ F, $C_O = 0.1$ μ F unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25°C	23	24	25	٧
V _O	Output voltage	I_O = 5 mA to 1 A, $P_O \le$ 15 W V _I = 27 to 38 V	22.8	24	25.2	V
$\Delta V_{O}^{(1)}$	Line regulation	V _I = 27 to 38 V, T _J = 25°C			480	mV
		V _I = 30 to 36 V, T _J = 25°C			240	
$\Delta V_{O}^{(1)}$	Load regulation	$I_{O} = 5$ mA to 1.5 A, $T_{J} = 25^{\circ}$ C			480	mV
		I_{O} = 250 to 750 mA, T_{J} = 25°C			240	
I _d	Quiescent current	T _J = 25°C			8	mA
ΔI_d	Quiescent current change	I _O = 5 mA to 1 A			0.5	- mA
		V _I = 27 to 38 V			1	
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5 mA		-1.5		mV/°C
eN	Output noise voltage	B = 10 Hz to 100 KHz, T _J = 25°C		170		μV/V _O
SVR	Supply voltage rejection	V _I = 28 to 38 V, f = 120 Hz	50			dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25°C		2		٧
R _O	Output resistance	f = 1 KHz		28		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25°C		0.15		Α
I _{scp}	Short circuit peak current	T _J = 25°C		2.1		Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

6 Typical performance

Figure 8. Dropout voltage vs junction temperature

Figure 9. Peak output current vs input/output differential voltage

Figure 10. Supply voltage rejection vs frequency

Figure 11. Output voltage vs junction temperature

Figure 12. Output impedance vs frequency

Figure 13. Quiescent current vs junction temp.

Figure 14. Load transient response

Figure 15. Line transient response

Figure 16. Quiescent current vs input voltage

Figure 17. Fixed output regulator

- 1. To specify an output voltage, substitute voltage value for "XX".
- 2. Although no output capacitor is need for stability, it does improve transient response.
- 3. Required if regulator is locate an appreciable distance from power supply filter.

Figure 18. Current regulator

Figure 19. Circuit for increasing output voltage

Figure 20. Adjustable output regulator (7 to 30V)

Figure 21. 0.5 to 10V Regulator

Figure 22. High current voltage regulator

Figure 23. High output current with short circuit protection

L78xx - L78xxC Typical performance

Figure 24. Tracking voltage regulator

Figure 25. Split power supply (± 15V - 1 A)

^{*} Against potential latch-up problems.

Figure 26. Negative output voltage circuit

Figure 27. Switching regulator

Figure 28. High input voltage circuit

5/

Figure 29. High input voltage circuit

Figure 30. High output voltage regulator

Figure 31. High input and output voltage

Figure 32. Reducing power dissipation with dropping resistor

Figure 33. Remote shutdown

Figure 34. Power AM modulator (unity voltage gain, I_O ≤0.5)

Note: The circuit performs well up to 100 KHz.

 $V_{1} \circ U_{2} = V_{XX} (1+R_{2}/R_{1}) + V_{BE}$ $V_{0} = V_{XX} (1+R_{2}/R_{1}) + V_{BE}$ $R_{1} V_{XX} V_{0} = V_{XX} (1+R_{2}/R_{1}) + V_{BE}$ $R_{1} V_{XX} V_{0} = V_{XX} (1+R_{2}/R_{1}) + V_{BE}$

Figure 35. Adjustable output voltage with temperature compensation

Note:

 Q_2 is connected as a diode in order to compensate the variation of the Q_1 V_{BE} with the temperature. C allows a slow rise time of the V_{O} .

Figure 36. Light controllers $(V_{Omin} = V_{XX} + V_{BE})$

Figure 37. Protection against input short-circuit with high capacitance loads

 Application with high capacitance loads and an output voltage greater than 6 volts need an external diode (see fig. 32) to protect the device against input short circuit. In this case the input voltage falls rapidly while the output voltage decrease slowly. The capacitance discharges by means of the Base-Emitter junction of the series pass transistor in the regulator. If the energy is sufficiently high, the transistor may be destroyed. The external diode by-passes the current from the IC to ground.

7 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK[®] packages. These packages have a Lead-free second level interconnect. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

TO-3 mechanical data

Dim.		mm.		inch.		
Dilli.	Min.	Тур.	Max.	Min.	Тур.	Max.
Α		11.85			0.466	
В	0.96	1.05	1.10	0.037	0.041	0.043
С			1.70			0.066
D			8.7			0.342
E			20.0			0.787
G		10.9			0.429	
N		16.9			0.665	
Р			26.2			1.031
R	3.88		4.09	0.152		0.161
U			39.5			1.555
V		30.10			1.185	

Dim		mm.		inch.		
Dim.	Min.	Тур.	Max.	Min.	Тур.	Max.
А	4.40		4.60	0.173		0.181
b	0.61		0.88	0.024		0.035
b1	1.15		1.70	0.045		0.067
С	0.49		0.70	0.019		0.028
D	15.25		15.75	0.600		0.620
Е	10.0		10.40	0.394		0.409
е	2.4		2.7	0.094		0.106
e1	4.95		5.15	0.195		0.203
F	1.23		1.32	0.048		0.052
H1	6.2		6.6	0.244		0.260
J1	2.40		2.72	0.094		0.107
L	13.0		14.0	0.512		0.551
L1	3.5		3.93	0.138		0.155
L20		16.4			0.646	
L30		28.9			1.138	
φP	3.75		3.85	0.148		0.152
Q	2.65		2.95	0.104		0.116

TO-220FP mechanical data

Dim.		mm.			inch.		
Dim.	Min.	Тур	Max.	Min.	Тур.	Max.	
Α	4.40		4.60	0.173		0.181	
В	2.5		2.7	0.098		0.106	
D	2.5		2.75	0.098		0.108	
E	0.45		0.70	0.017		0.027	
F	0.75		1	0.030		0.039	
F1	1.15		1.50	0.045		0.059	
F2	1.15		1.50	0.045		0.059	
G	4.95		5.2	0.194		0.204	
G1	2.4		2.7	0.094		0.106	
Н	10.0		10.40	0.393		0.409	
L2		16			0.630		
L3	28.6		30.6	1.126		1.204	
L4	9.8		10.6	0.385		0.417	
L5	2.9		3.6	0.114		0.142	
L6	15.9		16.4	0.626		0.645	
L7	9		9.3	0.354		0.366	
DIA.	3		3.2	0.118		0.126	

– E1 – c2-L1 D1 Н THERMAL PAD *b2* SEATING PLANE A 1 COPLANARITY R 0.25 GAUGE PLANE V2. 0079457/L

Figure 38. Drawing dimension D²PAK (type STD-ST)

– E1 – *c2*→ D1 D Н *L2* THERMAL PAD *b2* SEATING PLANE A1→ GAUGE PLANE 0.25 *V2* 0079457/L

Figure 39. Drawing dimension D²PAK (type WOOSEOK-SUBCON.)

Table 24. D²PAK mechanical data

		TYPE STD-ST			TYPE WOOSEOK-SUBCON.		
DIM.	mm.			mm.			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	4.40		4.60	4.30		4.70	
A1	0.03		0.23	0		0.20	
b	0.70		0.93	0.70		0.90	
b2	1.14		1.70	1.17		1.37	
С	0.45		0.60	0.45	0.50	0.60	
c2	1.23		1.36	1.25	1.30	1.40	
D	8.95		9.35	9	9.20	9.40	
D1	7.50			7.50			
Е	10		10.40	9.80		10.20	
E1	8.50			7.50			
е		2.54			2.54		
e1	4.88		5.28		5.08		
Н	15		15.85	15	15.30	15.60	
J1	2.49		2.69	2.20		2.60	
L	2.29		2.79	1.79		2.79	
L1	1.27		1.40	1		1.40	
L2	1.30		1.75	1.20		1.60	
R		0.4			0.30		
V2	0°		8°	0°		3°	

Note: The D^2PAK package coming from the subcontractor Wooseok is fully compatible with the ST's package suggested footprint.

Figure 40. D²PAK footprint recommended data

Table 25. Footprint data

VALUES					
	mm.	inch.			
A	12.20	0.480			
В	9.75	0.384			
С	16.90	0.665			
D	3.50	0.138			
E	1.60	0.063			
F	2.54	0.100			
G	5.08	0.200			

Tape & reel D²PAK-P²PAK-D²PAK/A-P²PAK/A mechanical data

Dim.	mm.			inch.		
Dilli.	Min.	Тур.	Max.	Min.	Тур.	Max.
А			180			7.086
С	12.8	13.0	13.2	0.504	0.512	0.519
D	20.2			0.795		
N	60			2.362		
Т			14.4			0.567
Ao	10.50	10.6	10.70	0.413	0.417	0.421
Во	15.70	15.80	15.90	0.618	0.622	0.626
Ko	4.80	4.90	5.00	0.189	0.193	0.197
Ро	3.9	4.0	4.1	0.153	0.157	0.161
Р	11.9	12.0	12.1	0.468	0.472	0.476

Order code L78xx - L78xxC

8 Order code

Table 26. Order code

	Packaging						
Part numbers	TO-220 (A Type)	D ² PAK	TO-220FP	ТО-3			
L7805				L7805T			
L7805C	L7805CV	L7805CD2T-TR	L7805CP	L7805CT			
L7852C	L7852CV	L7852CD2T-TR ⁽¹⁾	L7852CP ⁽¹⁾	L7852CT ⁽¹⁾			
L7806C	L7806CV	L7806CD2T-TR		L7806CT			
L7808C	L7808CV	L7808CD2T-TR	L7808CP	L7808CT			
L7885C	L7885CV	L7885CD2T-TR ⁽¹⁾	L7885CP ⁽¹⁾	L7885CT ⁽¹⁾			
L7809C	L7809CV	L7809CD2T-TR	L7809CP	L7809CT			
L7810C	L7810CV	L7810CD2T-TR ⁽¹⁾					
L7812C	L7812CV	L7812CD2T-TR	L7812CP	L7812CT			
L7815C	L7815CV	L7815CD2T-TR	L7815CP	L7815CT			
L7818C	L7818CV	L7818CD2T-TR ⁽¹⁾		L7818CT			
L7820C	L7820CV	L7820CD2T-TR ⁽¹⁾	L7820CP ⁽¹⁾	L7820CT ⁽¹⁾			
L7824C	L7824CV	L7824CD2T-TR	L7824CP	L7824CT			

^{1.} Available on request.

L78xx - L78xxC Revision history

9 Revision history

Table 27. Revision history

Date	Revision	Changes
21-Jun-2004	12	Document updating.
03-Aug-2006	13	Order codes has been updated and new template.
19-Jan-2007	14	D ² PAK mechanical data has been updated and add footprint data.
31-May-2007	15	Order codes has been updated.
29-Aug-2007	16	Added Table 1. in cover page.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

