Computer Vision Exercise 3

Calibration & Structure from Motion

Tasks

1. Calibration with a known target

- Data normalization
- DLT
- Optimization
- Decomposition

2. Scene reconstruction with SfM

- DLT (Essential matrix)
- Testing decompositions
- Map extension

Setup

cd code
python3 -m venv venv
source venv/bin/activate
pip install --upgrade pip
pip install -r requirements.txt

or just install the dependencies manually

We provide 2D-3D correspondence with the code

Computer Vision and Geometry Lab 08.11.2021

Data Normalization (& Denormalization)

Data Normalization (& Denormalization)

- move center of mass to origin
- scale to yield order 1 values

$$\hat{x} = T x \quad \hat{X} = U X$$

$$\hat{x} = \hat{P}\hat{X} \leftrightarrow x = PX$$

$$Tx = \hat{P}UX$$

$$x = T^{-1}\hat{P}UX$$

$$x = (T^{-1}\hat{P}U)X$$

$$P = T^{-1}\hat{P}U$$

$$P = T^{-1}\widehat{P}U$$

Direct Linear Transform (DLT)

$$x \times PX$$
 $x \propto PX \rightarrow x \times PX = [x]_{\times} PX = 0$

$$\begin{bmatrix} w & x_1 \\ w & x_2 \\ w \end{bmatrix} \rightarrow \begin{bmatrix} x_1 \\ x_2 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} w & x_1 \\ w & x_2 \\ w \end{bmatrix} \rightarrow \begin{bmatrix} x_1 \\ x_2 \\ 1 \end{bmatrix} \qquad \begin{bmatrix} W & X_1 \\ W & X_2 \\ W & X_3 \\ W \end{bmatrix} \rightarrow \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ 1 \end{bmatrix}$$

$$P_{11}X_1 + P_{12}X_2 + P_{13}X_3 + P_{14} + P_{31}(-x_1X_1) + P_{32}(-x_1X_2) + P_{33}(-x_1X_3) + P_{34}(-x_1) = 0$$

Direct Linear Transform (DLT)

$$P_{11}X_1 + P_{12}X_2 + P_{13}X_3 + P_{14} + P_{31}(-x_1X_1) + P_{32}(-x_1X_2) + P_{33}(-x_1X_3) + P_{34}(-x_1) = 0$$

$$\begin{bmatrix} \mathbf{0}^T & -\mathbf{X}^T & x_2\mathbf{X}^T \\ \mathbf{X}^T & \mathbf{0}^T & -x_1\mathbf{X}^T \end{bmatrix} \begin{bmatrix} P_{11} \\ \vdots \\ P_{34} \end{bmatrix} = \mathbf{0}$$

Optimization

$$P^* = \min_{P} \sum_{i} ||\boldsymbol{x}_i - P \boldsymbol{X}_i||^2$$

Normalize homogeneous coordinates!

Decomposition

$$P = K[R \mid t] = K[R \mid -RC] = [KR \mid -KRC]$$

$$M = KR$$

$$K^{-1}$$
, $R^{-1} = qr(M^{-1})$

$$PC = 0$$

Decomposition

K should have a positive diagonal!

$$KR = \widehat{K}TT^{-1}R$$
, $T = \text{diag}(\text{sign}(\text{diag}(K)))$

R should have determinant 1!

$$R = -\hat{R} \text{ if } \det(\hat{R}) < 0$$

- Initialization (Relative pose)
- Point Triangulation
- Absolute Pose estimation

Not covered:

- Feature matching
- Robust estimation (Model fitting)
- Bundle adjustment

Computer Vision and Geometry Lab 08.11.2021

13

Initialization

$$\hat{x} = K^{-1}x$$

$$\widehat{\boldsymbol{x}}_1^T E \widehat{\boldsymbol{x}}_2 = 0$$

Same approach as for P (DLT)!

Initialization – Constraints on E

$$U, S, V^T = svd(\widehat{E})$$

$$E = U \begin{bmatrix} 1 & & \\ & 1 & \\ & & 0 \end{bmatrix} V^T$$

Initialization – Finding the right decomposition

Decomposing E gives 4 possible relative poses

$$(R_1, t), (R_1, -t), (R_2, t), (R_2, -t)$$

Try each one to see where points end up in front of the cameras

Map extension

For each new image, call the point triangulation with every previous image

Computer Vision and Geometry Lab 08.11.2021 17

Hand-in

Report (PDF)

• Code

Upload to moodle until Nov. 19, 23:59

Literature

Digital version available through ETH library

19