MA327 Turma Z - 2S 2011 - Prova 1

Nome:	RA:	14/09/2011

Existem 10 pontos extras. Respostas sem justificativas serão desconsideradas. Bom trabalho!

- 1. Escreva as definições dos seguintes conceitos.
 - (a) (05pts) Conjunto linearmente independente.
 - (b) (05pts) Subespaço gerado por um conjunto de vetores.
 - (c) (05pts) Transformação linear.
- 2. (10pts) Determine se a seguinte afirmação é verdadeira ou falsa. Se U e W são subespaços do espaço vetorial V, então sua união $U \cup W$ também é subespaço de V.
- 3. Considere o conjunto $S = \{p_1, p_2, p_3, p_4\} \subseteq P_3(\mathbb{R})$, onde $p_1(t) = 1 + 2t + t^3$, $p_2(t) = 1 + 4t^2 + 3t^3$, $p_3(t) = -t + 2t^2 + t^3$, $p_4(t) = -1 3t + 2t^2$.
 - (a) (15pts) Encontre uma base para o espaço gerado por S e calcule sua dimensão.
 - (b) (08pts) Complete a base encontrada acima a uma base para $P_3(\mathbb{R})$.
 - (c) (12pts) Seja U o subespaço gerado por $\{p_1, p_2\}$ e W o subespaço gerado por $\{p_3, p_4\}$. Verifique que $\dim(U) = \dim(W) = 2$ e use isto em conjunto com o item (a) para calcular $\dim(U \cap W)$ sem calcular $U \cap W$.
- 4. Sejam $V = \mathbb{R}^4$, α a base canônica e $\beta = \{v_1, v_2, v_3, v_4\}$ onde $v_1 = (1, 1, 1, 1), v_2 = (-1, 0, 1, 0), v_3 = (1, 0, 1, -1), v_4 = (0, 0, 0, 2).$
 - (a) (10pts) Verifique que β é uma base de V.
 - (b) (15pts) Calcule as matrizes mudança de base de β para α e vice-versa.
 - (c) (10pts) Encontre as coordenadas de (2, -4, 3, 0) na base β .
 - (d) (15pts) Considere a transformação linear $T: \mathbb{R}^4 \to \mathbb{R}^3$ determinada por $T(v_1) = (1,1,2), T(v_2) = (0,-1,-1), T(v_3) = (-1,0,-1),$ e $T(v_4) = (-1,1,0)$ e seja γ a base canônica do \mathbb{R}^3 . Calcule as matrizes $[T]_{\gamma}^{\beta}$ e $[T]_{\gamma}^{\alpha}$ e use uma delas para calcular T(1,2,-1,1).