

Software Planning

- Size of project
- Cost of project
- Work break down structure
- Critical path method

Typical Size-Oriented Metrics

- errors per KLOC (thousand lines of code)
- defects per KLOC
- * \$ per LOC
- page of documentation per KLOC
- errors / person-month
- LOC per person-month
- \$ / page of documentation

Create three-point or expected value estimate

- Optimistic values for size
- Most likely values for size
- Pessimistic values for size
- $S=(s_{opt}+4s_m+s_{pess})/6$
- Where S = the expected value for the estimation variable(size)

Example of LOC-Based Estimation

Function	Est. LOC
user interface and control (UIC)	2,300
2-D geometric analysis (2DGA)	5,300
3-D geometric analysis (3DGA)	6,800
data base management (DBM)	3,350
graphics displays (GD)	4,950
peripheral control (PC)	2,100
design analysis (DA)	8,400
estimated LOC	33,200

Range of LOC estimates for the 3D geometric analysis function is optimistic-4600 LOC, most likely-6900 LOC, and pessimistic-8600 LOC

- Organizational average
 productivity=620 LOC/pm
- Labor rate = \$8000 per month
- Estimated effort = ?
 - Total Estimated Effort = LOC est. / prod.
- Cost/LOC = ?
 Cost / LOC = labor rate / prod.
- Total cost = ?
- Total Project Cost = LOC est. *
 (cost / LOC)

Optimistic values	Most likely	Pessimistic values	Est. LOC
23	24	30	24.8
50	54	59	54.17
101	105	108	104.83
		Total LOC	183.8

Function-Oriented Metrics

- Uses a measure of the functionality
 - inputs, outputs, files, inquiries, Interfaces
- Indirectly derived
- Function point
 - scaled by simple, average, complex

Typical Function-Oriented Metrics

- rerrors per FP (thousand lines of code)
- defects per FP
- * \$ per FP
- pages of documentation per FP
- FP per person-month

Computing Function Points

Analyze information domain of the application and develop counts

Establish *count* for input domain and system interfaces

Weight each count by assessing complexity

Assign level of complexity or <u>weight</u> to each count

Assess influence of global factors that affect the application

Grade significance of external factors, Fi such as reuse, concurrency, OS, ...

Compute function points

 $FP = Count Total * [0.65 + 0.01 * \sum (Fi)]$

Analyzing the Information Domain

measurement parameter	<u>count</u>		eighting ole avg.		<u>olex</u>	
number of user inputs		X 3	4	6	=	
number of user outputs		X 4	5	7	=	
number of user inquiries		X 3	4	6	=	
number of files		X 7	10	15	=	
number of ext.interfaces		X 5	7	10	=	므ᅵ
count-total -					-	
complexity multiplier						
function points						

Taking Complexity into Account

Factors are rated on a scale of 0 (not important) to 5 (very important):

data communications
distributed functions
heavily used configuration
transaction rate
on-line data entry
end user efficiency

on-line update complex processing installation ease operational ease multiple sites facilitate change

- Apply the following formula
 - $Fp_{estimated}$ = count-total*[0.65+0.01* $\Sigma(Fj)$]

Example of FP-Based Estimation

Information domain value	Optimistic	Most Likely	Pessimistic	
Number of inputs	20	24	30	
Number of outputs	12	15	22	
Number of inquiries	16	22	28	
Number of files	4	4	5	
Number of external interfaces	2	2	3	

measurement parameter	<u>count</u>			nting fa	actor compl	<u>ex</u>
number of user inputs		X	3	4	6	= 🔲
number of user outputs		X	4	5	7	= 🔲
number of user inquiries		X	3	4	6	= 🔲
number of files		X	7	10	15	= 🔲
number of ext.interfaces		X	5	7	10	= 🔲
count-total -						▶ □
complexity multiplier						
function points						

1/-

Estimated count	Weight	FP count
24	4	97
16	5	78
22	4	88
4	10	42
2	7	15
	24 16 22	24 4 16 5 22 4 4 10

1/-

Factor	Value	
Backup and recovery	4	
Data communication	2	
Distributed processing	0	
Performance critical	4	
Existing operating environment	3	
On-line data entry	4	
Input transaction over multiple screens	5	
Master files updated on-line	3	j
Information domain values complex	5	
Internal processing complex	5	
Code designed for reuse	4	
Conversion/installation in design	3	
Multiple installations	5	
Application designed for change	5	
Total	52	

1/1

- Fp_{estimated}=count-total*[0.65+0.01* Σ (Fj)]
- Fp_{estimated}=372
- Organizational average productivity=620 FP/pm
- Labor rate = \$8000 per month
- Estimated effort = ?

<u>Total Estimated Effort</u> = FP est. / prod.

Cost/FP = ?

Cost / FP = labor rate / prod.

Total cost = ?

<u>Total Project Cost</u> = FP est. * (cost / FP)