- [37] L. Pucci, A. Roy, and M. Kastner, Simulation of quantum spin dynamics by phase space sampling of Bogoliubov-Born-Green-Kirkwood-Yvon trajectories, Phys. Rev. B 93, 174302 (2016).
- [38] O. L. Acevedo, A. Safavi-Naini, J. Schachenmayer, M. L. Wall, R. Nandkishore, and A. M. Rey, Exploring many-body localization and thermalization using semiclassical methods, Phys. Rev. A 96, 033604 (2017).
- [39] A. P. Orioli, A. Safavi-Naini, M. L. Wall, and A. M. Rey, Nonequilibrium dynamics of spin-boson models from phasespace methods, Phys. Rev. A 96, 033607 (2017).
- [40] S. Czischek, M. Gärttner, M. Oberthaler, M. Kastner, and T. Gasenzer, Quenches near criticality of the quantum Ising chain—power and limitations of the discrete truncated Wigner approximation, Quantum Sci. Technol. 4, 014006 (2018).
- [41] A. P. Orioli, A. Signoles, H. Wildhagen, G. Günter, J. Berges, S. Whitlock, and M. Weidemüller, Relaxation of an isolated dipolar-interacting Rydberg quantum spin system, Phys. Rev. Lett. 120, 063601 (2018).
- [42] B. Sundar, K. C. Wang, and K. R. A. Hazzard, Analysis of continuous and discrete Wigner approximations for spin dynamics, Phys. Rev. A 99, 043627 (2019).
- [43] R. Khasseh, A. Russomanno, M. Schmitt, M. Heyl, and R. Fazio, Discrete truncated Wigner approach to dynamical phase transitions in Ising models after a quantum quench, Phys. Rev. B 102, 014303 (2020).
- [44] M. Kunimi, K. Nagao, S. Goto, and I. Danshita, Performance evaluation of the discrete truncated Wigner approximation for quench dynamics of quantum spin systems with long-range interactions, Phys. Rev. Res. 3, 013060 (2021).
- [45] W. Morong, S. R. Muleady, I. Kimchi, W. Xu, R. M. Nandkishore, A. M. Rey, and B. DeMarco, Disorder-controlled relaxation in a three-dimensional Hubbard model quantum simulator, Phys. Rev. Res. 3, L012009 (2021).
- [46] S. M. Davidson and A. Polkovnikov, *SU* (3) semiclassical representation of quantum dynamics of interacting spins, Phys. Rev. Lett. **114**, 045701 (2015).
- [47] J. Wurtz, A. Polkovnikov, and D. Sels, Cluster truncated Wigner approximation in strongly interacting systems, Ann. Phys. **395**, 341 (2018).
- [48] B. Zhu, A. M. Rey, and J. Schachenmayer, A generalized phase space approach for solving quantum spin dynamics, New J. Phys. **21**, 082001 (2019).
- [49] K. Nagao and S. Yunoki, Two-dimensional correlation propagation dynamics with a cluster discrete phase-space method, arXiv:2404.18594.
- [50] Y. Mohdeb, J. Vahedi, N. Moure, A. Roshani, H.-Y. Lee, R. N. Bhatt, S. Kettemann, and S. Haas, Entanglement properties of disordered quantum spin chains with long-range antiferromagnetic interactions, Phys. Rev. B 102, 214201 (2020).
- [51] Y. Mohdeb, J. Vahedi, and S. Kettemann, Excited-eigenstate entanglement properties of XX spin chains with random long-range interactions, Phys. Rev. B **106**, 104201 (2022).

- [52] Y. Mohdeb, J. Vahedi, R. N. Bhatt, S. Haas, and S. Kettemann, Global quench dynamics and the growth of entanglement entropy in disordered spin chains with tunable range interactions, Phys. Rev. B 108, L140203 (2023).
- [53] E. Altman and R. Vosk, Universal dynamics and renormalization in many-body-localized systems, Annu. Rev. Condens. Matter Phys. **6**, 383 (2015).
- [54] R. Vasseur, A. C. Potter, and S. A. Parameswaran, Quantum criticality of hot random spin chains, Phys. Rev. Lett. 114, 217201 (2015).
- [55] F. Iglói and C. Monthus, Strong disorder RG approach—a short review of recent developments, Eur. Phys. J. B 91, 290 (2018).
- [56] https://github.com/abraemer/DiscreteCTWAPaper
- [57] A. Braemer, T. Franz, M. Weidemüller, and M. Gärttner, Pair localization in dipolar systems with tunable positional disorder, Phys. Rev. B **106**, 134212 (2022).
- [58] S. Geier, N. Thaicharoen, C. Hainaut, T. Franz, A. Salzinger, A. Tebben, D. Grimshandl, G. Zürn, and M. Weidemüller, Floquet Hamiltonian engineering of an isolated many-body spin system, Science 374, 1149 (2021).
- [59] N. Y. Yao, C. R. Laumann, S. Gopalakrishnan, M. Knap, M. Müller, E. A. Demler, and M. D. Lukin, Many-body localization in dipolar systems, Phys. Rev. Lett. 113, 243002 (2014).
- [60] R. Vosk, D. A. Huse, and E. Altman, Theory of the many-body localization transition in one-dimensional systems, Phys. Rev. X 5, 031032 (2015).
- [61] I. V. Protopopov, R. K. Panda, T. Parolini, A. Scardicchio, E. Demler, and D. A. Abanin, Non-Abelian symmetries and disorder: A broad nonergodic regime and anomalous thermalization, Phys. Rev. X 10, 011025 (2020).
- [62] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, Julia: A fresh approach to numerical computing, SIAM Rev. 59, 65 (2017).
- [63] G. Datseris, J. Isensee, S. Pech, and T. Gál, DrWatson: The perfect sidekick for your scientific inquiries, J. Open Source Software 5, 2673 (2020).
- [64] F. van der Plas, M. Dral, P. Berg, P. Γεωργακόπουλος, R. Huijzer, M. Bocheński, A. Mengali, C. Burns, B. Lungwitz, H. Priyashan, J. Ling, G. Wu, S. Kadowaki, E. Zhang, F. S. S. Schneider, I. Weaver, Xiu-zhe (Roger) Luo, J. Gerritsen, R. Novosel, Supanat *et al.*, Fonsp/Pluto.jl: V0.19.42, Zenodo.
- [65] C. Rackauckas and Q. Nie, DifferentialEquations.jl–a performant and feature-rich ecosystem for solving differential equations in Julia, J. Open Res. Software 5, 15 (2017).
- [66] J. H. Verner, Numerically optimal Runge–Kutta pairs with interpolants, Numer. Algo. **53**, 383 (2010).
- [67] S. Danisch and J. Krumbiegel, Makie.jl: Flexible high-performance data visualization for Julia, J. Open Source Software 6, 3349 (2021).
- [68] M. Bouchet-Valat and B. Kamiński, DataFrames.jl: Flexible and fast tabular data in Julia, J. Stat. Soft. 107, 1 (2023).