PROGRAM NO:5

Compress an Image using Harr Transform.

PROGRAM

```
# include <stdlib.h>
# include <stdio.h>
# include <math.h>
# include "haar.h"
int main ();
void test01 ( );
void test02 ( );
int main ()
timestamp();
 printf ( "\n" );
printf ( "HAAR_PRB\n" );
printf ( " C version\n");
printf ( " Test the HAAR library.\n");
test01 ();
test02 ();
 Terminate.
printf ( "\n" );
printf ( "HAAR_PRB\n" );
printf ( " Normal end of execution.\n" );
printf ( "\n" );
timestamp ();
return 0;
void test01 ()
double err;
int i;
int n;
int seed;
double *u;
double *v;
 double *w;
 printf ( "\n" );
```

```
printf ( "TEST01\n" );
 printf ( " HAAR_1D computes the Haar transform of a vector.\n" );
 Random data.
*/
 n = 16;
 seed = 123456789;
 u = r8vec_uniform_01_new ( n, &seed );
 v = r8vec\_copy\_new(n, u);
 haar_1d ( n, v );
 w = r8vec\_copy\_new(n, v);
 haar_1d_inverse ( n, w );
 printf ( "\n" );
 printf (" i U(i)
                        H(U)(i) Hinv(H(U))(i)\n");
 printf ( "\n" );
 for ( i = 0; i < n; i++)
  printf ( " %2d %10f %10f %10f\n", i, u[i], v[i], w[i] );
 free (u);
 free (v);
 free (w);
 Constant signal.
*/
 n = 8;
 u = r8vec\_ones\_new(n);
 v = r8vec\_copy\_new(n, u);
 haar_1d ( n, v );
 w = r8vec\_copy\_new(n, v);
 haar_1d_inverse ( n, w );
 printf ( "\n" );
 printf (" i U(i)
                        H(U)(i) Hinv(H(U))(i)\n";
 printf ( "\n" );
 for (i = 0; i < n; i++)
  printf ( " %2d %10f %10f %10f\n", i, u[i], v[i], w[i] );
 free (u);
 free (v);
 free (w);
 Linear signal.
*/
 n = 16;
 u = r8vec_linspace_new ( n, 1.0, ( double ) n );
 v = r8vec\_copy\_new (n, u);
 haar_1d ( n, v );
```

```
w = r8vec\_copv\_new(n, v);
 haar_1d_inverse ( n, w );
 printf ( "\n" );
 printf (" i U(i)
                        H(U)(i) Hinv(H(U))(i)\n";
 printf ( "\n" );
 for (i = 0; i < n; i++)
  printf(" %2d %10f %10f %10f\n", i, u[i], v[i], w[i]);
 free (u);
 free (v);
 free (w);
 Quadratic data.
*/
 n = 8;
 u = ( double * ) malloc ( n * sizeof ( double ) );
 u[0] = 25.0;
 u[1] = 16.0;
 u[2] = 9.0;
 u[3] = 4.0;
 u[4] = 1.0;
 u[5] = 0.0;
 u[6] = 1.0;
 u[7] = 4.0;
 v = r8vec\_copy\_new(n, u);
 haar_1d ( n, v );
 w = r8vec\_copy\_new(n, v);
 haar_1d_inverse ( n, w );
 printf ( "\n" );
 printf (" i U(i)
                        H(U)(i) Hinv(H(U))(i)\n";
 printf ( "\n" );
 for (i = 0; i < n; i++)
  printf ( " %2d %10f %10f %10f\n", i, u[i], v[i], w[i] );
 free (u);
 free (v);
 free (w);
 N not a power of 2.
*/
 n = 99;
 seed = 123456789;
 u = r8vec_uniform_01_new ( n, &seed );
 v = r8vec\_copy\_new(n, u);
 haar_1d ( n, v );
 w = r8vec\_copy\_new(n, v);
 haar_1d_inverse ( n, w );
```

```
err = r8vec_diff_norm ( n, u, w );
 printf ( "\n" );
 printf ( " For N = %d, \|u-haar_1d_inverse(haar_1d(u))\| = %g\n", n, err );
 free (u);
 free (v);
 free (w);
return;
void test02 ()
double err;
int i;
int j;
 int m = 16;
 int n = 4;
 int seed:
 double *u;
 double *v;
 double *w;
printf ( "\n" );
 printf ( "TEST02\n" );
 printf ( " HAAR_2D computes the Haar transform of an array.\n" );
printf ( " HAAR_2D_INVERSE inverts the transform.\n" );
Demonstrate successful inversion.
 seed = 123456789;
u = r8mat_uniform_01_new ( m, n, &seed );
 r8mat_print ( m, n, u, " Input array U:" );
 v = r8mat\_copy\_new (m, n, u);
haar_2d ( m, n, v );
 r8mat_print ( m, n, v, " Transformed array V:" );
 w = r8mat\_copy\_new (m, n, v);
 haar_2d_inverse ( m, n, w );
 r8mat_print ( m, n, w, " Recovered array W:");
 free (u);
 free (v);
 free (w);
```

```
M, N not powers of 2.
m = 37;
n = 53;
seed = 123456789;
u = r8mat_uniform_01_new ( m, n, &seed );
v = r8mat\_copy\_new (m, n, u);
haar_2d ( m, n, v );
w = r8mat\_copy\_new (m, n, v);
haar_2d_inverse ( m, n, w );
err = r8mat_dif_fro ( m, n, u, w );
printf ( "\n" );
printf ( " M = %d, N = %d, ||haar_2d_inverse(haar_2d(u))-u|| = %g\n", m, n, err );
free (u);
free (v);
free (w);
return;
```

RESULT

Program to perform harr transform is executed successfully and required output is obtained.

OUTPUT

TEST01

HAAR_1D computes the Haar transform of a vector.

```
i
            H(U)(i) Hinv(H(U))(i)
    U(i)
0
   0.218418
             1.639767
                       0.218418
   0.956318
             0.067684
                       0.956318
1
2
   0.829509
             0.607044
                       0.829509
3
   0.561695 -0.270838
                       0.561695
   0.415307 -0.108234
4
                       0.415307
5
   0.066119
             0.056946
                       0.066119
   0.257578
6
             0.083264
                       0.257578
7
   0.109957
             0.178427
                       0.109957
8
   0.043829 -0.521774
                       0.043829
9
   0.633966
             0.189373
                       0.633966
10
   0.061727
              0.246913
                        0.061727
   0.449539
             0.104384
11
                        0.449539
12
    0.401306 -0.417290
                        0.401306
                        0.754673
13
    0.754673 -0.274224
14
    0.797287 -0.249868
                        0.797287
15
    0.001838  0.562467
                        0.001838
i
            H(U)(i) Hinv(H(U))(i)
    U(i)
0
   1.000000
             2.828427
                       1.000000
   1.000000
1
             0.000000
                       1.000000
2
   1.000000
             0.000000
                       1.000000
3
   1.000000
             0.000000
                       1.000000
4
   1.000000
             0.000000
                       1.000000
5
   1.000000
             0.000000
                       1.000000
   1.000000
             0.000000
6
                        1.000000
   1.000000
7
             0.000000
                       1.000000
i
    U(i)
            H(U)(i) Hinv(H(U))(i)
   1.000000 34.000000
0
                        1.000000
   2.000000 -16.000000
                        2.000000
1
2
   3.000000 -5.656854
                        3.000000
   4.000000 -5.656854
3
                        4.000000
4
   5.000000 -2.000000
                        5.000000
5
   6.000000 -2.000000
                       6.000000
6
   7.000000 -2.000000
                        7.000000
7
   8.000000 -2.000000
                        8.000000
8
   9.000000 -0.707107
                        9.000000
9 10.000000 -0.707107 10.000000
10 11.000000 -0.707107 11.000000
11 12.000000 -0.707107 12.000000
12 13.000000 -0.707107 13.000000
13 14.000000 -0.707107 14.000000
14 15.000000 -0.707107 15.000000
15 16.000000 -0.707107 16.000000
```

```
U(i)
          H(U)(i) Hinv(H(U))(i)
0 25.000000 21.213203 25.000000
1 16.000000 16.970563 16.000000
2 9.000000 14.000000 9.000000
3 4.000000 -2.000000 4.000000
4 1.000000 6.363961 1.000000
  0.000000 3.535534 0.000000
5
  1.000000 0.707107 1.000000
  4.000000 -2.121320 4.000000
```

For N = 99, $||u-haar_1d_inverse(haar_1d(u))|| = 3.33568e-15$

TEST02

HAAR_2D computes the Haar transform of an array. HAAR_2D_INVERSE inverts the transform.

Input array U:

Col:	0	1	2		3		
Row							
0:	0.218418	0.	897504	0.	861216	0	.825003
1:	0.956318	0.	350752	0.	453794	0	.824660
2:	0.829509	0.	094545	0.	911977	0	.061862
3:	0.561695	0.	013617	0.	597917	0	.710781
4:	0.415307	0.	859097	0.	188955	0	.088283
5:	0.066119	0.8	840847	0.	761492	0	.777994
6:	0.257578	0.	123104	0.	396988	0	.745303
7:	0.109957	0.	007512	0.	185314	0	.308675
8:	0.043829	0.	260303	0.	574366	0	.899373
9:	0.633966	0.	912484	0.	367027	0	.763537
10:	0.061727	0.	.113664	0	.617205	(0.761731
11:	0.449539	0.	.351629	0	.361529	(0.406970
12:	0.401306	0.	.822887	0	.212930	(0.938749
13:	0.754673	0.	.267132	0	.714471	(0.562088
14:	0.797287	0.	.692066	0	.117707	(0.017820
15:	0.001838	0.	.561662	0	.299329	(0.501103

Transformed array V:

Col: Row	0	1 2	3	
0:	3.818003	-0.386034	-0.107788	-0.277843
1:	0.007521	-0.138549	0.188370	0.283179
2:	0.536878	-0.097469	0.547781	0.197526
3:	-0.014880	-0.505449	-0.015094	-0.059040
4:	0.401441	0.060372	-0.479618	-0.378976
5:	0.465916	0.375694	-0.514575	0.196521
6:	0.332723	0.104288	-0.191260	-0.187931
7:	0.421356	-0.324784	0.184047	-0.166718
8:	0.076586	-0.211748	-0.642326	0.203540
9:	0.004908	0.241689	0.093443	0.481489
10:	-0.316363	0.576181	0.165469	0.058587
11:	0.322269	-0.136150		-0.112477
12:	-0.317895	-0.560556		0.035751

13:	-0.005423	-0.437067	-0.074924	-0.049542
14:	0.027403	0.115707	-0.454561	-0.439101
15:	0.092259	0.562418	0.332522	0.150830

Recovered array W:

Col: Row	0	1	2	3	
0:	0.218418	0.8	397504	0.861216	0.825003
1:	0.956318	0.3	350752	0.453794	0.824660
2:	0.829509	0.0)94545	0.911977	0.061862
3:	0.561695	0.0	013617	0.597917	0.710781
4:	0.415307	3.0	359097	0.188955	0.088283
5:	0.066119	3.0	340847	0.761492	0.777994
6:	0.257578	0.1	123104	0.396988	0.745303
7:	0.109957	0.0	007512	0.185314	0.308675
8:	0.043829	0.2	260303	0.574366	0.899373
9:	0.633966	0.9	912484	0.367027	0.763537
10:	0.061727	0.	113664	0.617205	0.761731
11:	0.449539	0.	351629	0.361529	0.406970
12:	0.401306	0.	822887	0.212930	0.938749
13:	0.754673	0.	267132	0.714471	0.562088
14:	0.797287	0.	692066	0.117707	0.017820
15:	0.001838	0.	561662	0.299329	0.501103

M = 37, N = 53, $||haar_2d_inverse(haar_2d(u))-u|| = 2.54887e-14$

HAAR_PRB
Normal end of execution.