PROBABILITÉS E01

EXERCICE N°1 (Le corrigé)

Construire un diagramme de Venn (sur le modèle ci-dessous) pour chacun des événements suivants.

- 1) $A \cap \overline{B}$
- 2) $\overline{A \cap B}$
- 3) $\overline{A} \cap \overline{B}$
- 4) $A \cup \overline{B}$
- 5) $\overline{A \cup B}$
- 6) $\overline{A} \cup \overline{B}$

- 1) $A \cap \overline{B}$
- 2) $\overline{A \cap B}$
- 3) $\overline{A} \cap \overline{B}$
- 4) $A \cup \overline{B}$
- 5) $\overline{A \cup B}$
- 6) $\overline{A} \cup \overline{B}$

- 1) $A \cap \overline{B}$
- 2) $\overline{A \cap B}$
- 3) $\overline{A} \cap \overline{B}$
- 4) $A \cup \overline{B}$
- 5) $\overline{A \cup B}$
- 6) $\overline{A} \cup \overline{B}$

- 1) $A \cap \overline{B}$
- 2) $\overline{A \cap B}$
- 3) $\overline{A} \cap \overline{B}$
- 4) $A \cup \overline{B}$
- 5) $\overline{A \cup B}$
- 6) $\overline{A} \cup \overline{B}$

- 1) $A \cap \overline{B}$
- 2) $\overline{A \cap B}$
- 3) $\overline{A} \cap \overline{B}$
- 4) $A \cup \overline{B}$
- 5) $\overline{A \cup B}$
- 6) $\overline{A} \cup \overline{B}$

5)

- 1) $A \cap \overline{B}$
- $2) \quad \overline{A \cap B}$
- 3) $\overline{A} \cap \overline{B}$
- 4) $A \cup \overline{B}$
- 5) $\overline{A \cup B}$
- 6) $\overline{A} \cup \overline{B}$

6)

- 1) $A \cap \overline{B}$
- $2) \quad \overline{A \cap B}$
- 3) $\overline{A} \cap \overline{B}$
- 4) $A \cup \overline{B}$
- 5) $\overline{A \cup B}$
- 6) $\overline{A} \cup \overline{B}$

EXERCICE N°2 (Le corrigé)

On se donne le diagramme de Venn cicontre :

On peut calculer, par exemple, que:

A possède 5+2=7 éléments, \rightarrow On note alors Card(A)=7

On peut lire que 17 éléments n'appartiennent à aucun des ensembles A, B ou D.

 \rightarrow On note alors: $Card(\overline{A \cup B \cup D}) = 17$

Déterminer les nombres suivants :

- 1) Card(B)
- $2) \quad Card(D)$
- 3) $Card(A \cap D)$

- 4) $Card(B \cap D)$
- 5) $Card(A \cup B \cup D)$
- 6) $Card(\Omega)$

- 7) $Card(A \cup B)$
- 8) Card $(\overline{A \cup B})$
- 9) $Card(\overline{A} \cap \overline{B})$

- 1) Card(B)
- $2) \quad Card(D)$
- 3) $Card(A \cap D)$

Card(B) = 2 + 3 + 8 = 13

 $Card(A \cup B)$

Card(D) = 10 + 8 = 18

 $Card(A \cap D) = \mathbf{0}$

4) $Card(B \cap D)$

 $Card (A \cup B \cup D)$

6) $Card(\Omega)$

 $Card(B \cap D) = 8$

 $Card(A \cup B \cup D)$ =5+2+3+8+10=**27** $Card(\Omega) = 17 + 27 = 44$

7)

8) Card $(\overline{A \cup B})$

9) Card $(\overline{A} \cap \overline{B})$

 $Card(A \cup B)$

 $Card(\overline{A \cup B}) = 44 - 17 = 27$

 $Card(\overline{A} \cap \overline{B}) = 10 + 17 = 27$

PROBABILITÉS E01

EXERCICE N°3 (Le corrigé)

On se donne le diagramme de Venn cicontre :

On peut calculer, par exemple, que:

A possède 5+4+2+1=12 éléments, \rightarrow On note alors Card(A)=12

On peut lire que 17 éléments n'appartiennent à aucun des ensembles A, B ou C.

 \rightarrow On note alors : $Card(\overline{A \cup B \cup C}) = 17$

Déterminer les nombres suivants :

1)
$$Card(B)$$

$$2) \quad Card(C)$$

3)
$$Card(A \cap B)$$

4)
$$Card(B \cap C)$$

5)
$$Card(A \cup B \cup C)$$

6)
$$Card(\Omega)$$

7)
$$Card(A \cup B)$$

8) Card
$$(\overline{A \cup B})$$

9) Card
$$(\overline{A} \cap \overline{B})$$

1)
$$Card(B)$$

3)
$$Card(A \cap B)$$

$$Card(B)$$

=1+2+3+10=16

$$=4+2+3+8=17$$

$$Card(A \cap B)$$

$$= 2 + 1 = 3$$

4)
$$Card(B \cap C)$$

5)
$$Card(A \cup B \cup C)$$

6)
$$Card(\Omega)$$

$$Card(B \cap C)$$
=2+3=5

$$Card(A \cup B \cup C)$$

=5+4+2+1+8+3+10=33

$$Card(\Omega) = 33 + 17 = 50$$

7)
$$Card(A \cup B)$$

8)
$$Card(\overline{A \cup B})$$

9) Card
$$(\overline{A} \cap \overline{B})$$

$$Card(A \cup B)$$

=5+4+2+1+3+10=25

$$Card(\overline{A \cup B}) = 50 - 25 = 25$$

$$Card(\overline{A} \cap \overline{B}) =$$

 $Card(\overline{A \cup B}) = 50 - 25 = 25$

PROBABILITÉS E01

EXERCICE N°1

Construire un diagramme de Venn (sur le modèle ci-dessous) pour chacun des événements suivants.

- 1) $A \cap \overline{B}$
- 2) $\overline{A \cap B}$
- 3) $\overline{A} \cap \overline{B}$
- 4) $A \cup \overline{B}$
- 5) $\overline{A \cup B}$
- 6) $\overline{A} \cup \overline{B}$

EXERCICE N°2

On se donne le diagramme de Venn cicontre :

On peut calculer, par exemple, que:

A possède 5+2=7 éléments, \rightarrow On note alors Card(A)=7

On peut lire que 17 éléments n'appartiennent à aucun des ensembles A , B ou D .

 \rightarrow On note alors : $Card(\overline{A \cup B \cup D}) = 17$

Déterminer les nombres suivants :

- 1) Card(B)
- $2) \quad Card(D)$
- 3) $Card(A \cap D)$

- 4) $Card(B \cap D)$
- 5) $Card(A \cup B \cup D)$
- 6) $Card(\Omega)$

- 7) $Card(A \cup B)$
- 8) Card $(\overline{A \cup B})$
- 9) Card $(\overline{A} \cap \overline{B})$

EXERCICE N°3

On se donne le diagramme de Venn cicontre :

On peut calculer, par exemple, que:

A possède 5+4+2+1=12 éléments, \rightarrow On note alors Card(A)=12

On peut lire que 17 éléments n'appartiennent à aucun des ensembles A, B ou C.

 \rightarrow On note alors : $Card(\overline{A \cup B \cup C}) = 17$

Déterminer les nombres suivants :

- 1) *Card* (*B*)
- **2)** Card (C)
- 3) $Card(A \cap B)$

- 4) $Card(B \cap C)$
- 5) $Card(A \cup B \cup C)$
- 6) $Card(\Omega)$

- 7) $Card(A \cup B)$
- 8) Card $(\overline{A \cup B})$
- 9) $Card(\overline{A} \cap \overline{B})$