

集度-定位软件架构-设计方案

系统名称	定位系统
项目负责人	李奇
作者	
文档提交日期	2021-12-30

百度 APOLLO

(版权所有,翻版必究)

目录

集	度-定位	次件架构-设计方案	[
1.	修订。	历史1-	_
2.	概述	1-	
		背景1-	
	2.2	目的1-	-
	2.3	术语和缩写1-	-
3.	定位	需求及系统组成2 - 2 -	_
		定位关键需求2 -	
	3.2	定位系统组成3 -	_
4.	定位	系统架构4-	_
	4.1	概述 4 -	_
	4.2	定位输入4-	
	4.3	高精定位模块5 -	-
	4.4	局部里程计模块 5 -	-
	4.5	定位融合模块5 5 -	-
	4.6 O	UTPUT 6 -	-
	1.7	完价关联模切失效影响 — 6 ·	

1. 修订历史

版本	状态	内容	日期	撰写	批准
Version	Status	Contents	Date	Editor	Approver
V1.0	发布	初创	2021/12/12	邢永国,李新	

2. 概述

2.1 背景

定位系统是 ANP 功能的重要组成部分,集度项目使用了 GNSS 定位+航迹推算+环境特征匹配的组合定位方式。支持多场景下车辆位置,姿态精准,稳定的输出。

2.2 目的

本文档主要介绍了集度项目定位系统架构设计思想和实现方式。

2.3 术语和缩写

编号	术语与缩写	解释
1	ANP (Apollo Navigation Pilot)	Apollo 领航辅助
2	GNSS (Global Navigation Satellite System)	全球卫星定位系统
3	IMU (Inertial Mesurement Unit)	惯性测量单元
4	RTK (Realtime kinematic)	实时动态差分
5		
6		
7		

表1术语和缩写

3. 定位需求及系统组成

3.1 定位关键需求

- 1. 横向定位误差 < 20cm;
- 2. 纵向定位误差 < 30cm
- 3. 航向角误差 < 0.97°
- 4. 支持城市复杂场景定位

3.2 定位系统组成

硬件/服务	数量	功能	备注
GNSS 天线	1	接收 GNSS 信号	
GNSS 芯片	1	处理 GNSS 信号	
IMU	1	输出车辆位置,姿态信息	
RTK 服务		差分定位服务	
地图服务		视觉定位重要输入	
视觉感知服务		视觉定位重要输入	

表 2 定位系统

4. 定位系统架构

4.1 概述

ANP3.0 的定位模块主要输入有 GNSS, IMU, 车速, 感知输入(车道线,交通标志)和地图。通过 GNSS 定位, 航迹推算, 视觉定位的组合定位方式, 可支持输出车道级的定位结果。

优点:

- 组合高精定位,优势互补,系统稳定性强
- 支持城市高精定位
- 定位能力服务化

4.2 定位输入

输入数据	数据来源
三轴加速度、三轴角速度	IMU
车速、轮速	CAN
定位结果	GNSS+RTK
杆状物/标牌/红绿灯/车道线/道路边沿	感知模块
高精地图信息	HD Map

4.3 高精定位模块

高精定位模块的主要功能是支持全局定位结果输出

4.4 局部里程计模块

局部里程计模块输出平滑的相对定位信息给定位融合模块

4.5 定位融合模块

定位融合模块的主要功能,高精定位及局部里程计模块结果检查,全局/局部坐标转换,以及定位结果融合优化

4.6 OUTPUT

定位原子能力概述如下,详见《ANP3.0 定位原子能力说明》

4.7 定位关联模块失效影响

失效模块	失效影响	
GNSS	功能降级, global 失效, 通过局部里程计递推	
感知	场景适应能力降级,例无法应对多径效应场景	
Мар	道路级定位, 车道级定位失效	
IMU	定位失效	
轮速	无法保证定位精度,不建议下游模块使用	