HOMEWORK 10

Problem 1. Both the dihedral group D_8 and the quaternion group Q_8 have cardinality 8. Are they isomorphic to one another? If yes, exhibit an isomorphism. If not, explain why.

Proof.

Problem 2. Both the dihedral group D_6 and the permutation group S_3 have cardinality 6. Are they isomorphic to one another. If yes, exhibit an isomorphism. If not, explain why. (Hint: Label the vertices of the triangle using numbers 1, 2, 3...)

For the following problem, you might want to review the cartesian products of two groups.

Problem 3. Consider the abelian group

$$G = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z},$$

and the element $g = (\bar{1}, \bar{2}) \in G$. (I use the bar notation to denote an integer modulo n for some n which should be understood from the context...)

- (1) What is Ord(g)?
- (2) What is $H = \langle g \rangle$?
- (3) Enumerate all the elements in G/H.
- (4) What is (G:H)?

Solution. \Box

Problem 4. Consider the group morphism

$$\pi_2: \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z} \longrightarrow \mathbb{Z}/4\mathbb{Z}$$

given by

$$(\bar{a}, \bar{b}) \mapsto \pi_2(\bar{a}, \bar{b}) = \bar{b}.$$

- (1) What is $ker(\pi_2)$?
- (2) Let $H = \ker(\pi_2)$. Enumerate all the elements in G/H, where $G = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$.

Solution. \Box

Problem 5. Consider S_4 and let $\sigma = (2341) \in S_4$. Let $H = \langle (2341) \rangle$.

- (1) What is Ord(g)?
- (2) What is |H|?
- (3) What is (G:H)?
- (4) Find a representative for each left coset.

Date: November 5, 2024.