学生须将答案写在此线以下

鲁东大学 2022—2023 学年第一学期

2020 级 <u>电子信息工程</u>专业 <u>本</u> 科卷 <u>A</u> 课程名称 人工智能基础

课程号(2220184220)考试形式(闭卷) 时间(120分钟)

题目	_	=	三	四	五	总分	统分人	复核人
得分								

得分 评卷人

一、搜索(25分)

(1) 如下的状态空间图中,A 是开始状态,G 是目标状态。每条 边的成本如右图所示。每个边都是双向的。注意,启发函数 h_1 是一致的(consistent),但 h_2 是不一致的。

Node	h_1	h_2
A	9.5	10
В	9	12
C	8	10
D	7	8
E	1.5	1
F	4	4.5
G	0	0

1) 对于以下每个图搜索(graph search)策略 (注意:不是树搜索 tree search),判断它是否能够返回表中所列出的 3 个路径,可以画√,不可以画×。注意,当 fringe 中有相同代价的结点时,可选择任意一个进行扩展。(10 分)

Search Algorithm	A-B-D-G	A-C-D-G	A-B-C-D-G	A-B-C-D-F-G
Depth first search				
Breadth first search				
Uniform cost search				
A^* search with heuristic h_1				
A^* search with heuristic h_2				

2) 完成如下所示的新启发函数 h_3 。除 $h_3(B)$ 外,所有值均为固定值。

Node	A	В	С	D	Е	F	G
h_3	10	?	9.5	7	1.5	4.5	0

对于以下每种情况,写入 h_3 (B)可能的值的集合。例如, h_3 (B)可以为所有非负数,请写入[0, ∞],要表示空集,请写入 \emptyset 。

① $h_3(B)$ 取哪些值使启发函数 h_3 是可接受的(admissible)?(2 分)

② h_3 (B)取哪些值使启发函数 h_3 是一致的(consistent)?(2 分)

第 1 页共 6 页

- ③ $h_3(B)$ 取哪些值将使 A*图搜索依次展开结点 A、结点 C、结点 B 和结点 D? (2分)
- (2) 考虑同时控制 n 个 pacman 的问题。在一个连通的迷宫(maze)中有 n 个 pacman,每个 pacman 可独立行动。多个 pacman 可以同时停留在同一个方格上。在每个时间步,每个 pacman 可以不动,也可垂直或水平移动一个方格。游戏的目标是让所有的 pacman 在最小的 时间步数内汇集到同一个方格上。使用以下符号: M 表示迷宫中非墙壁的方格数(即 pacman 可以到达的方格数);n 表示 pacman 的数量; p_i =(x_i , y_i),i=1...n, 表示第 i 个 pacman 的位置。

- 1)如何表示这个问题的一个状态(state)?状态空间(state space)有多大?(2分)
- 2) 使用 UCS 搜索策略构造搜索树时,该树的结点数的上界 $(n \times M)$ 的函数)? $(2 \times M)$
- 3) 判断下面的启发函数的可接受性,并简单说明。(5 分) $h_1(p_1,\ldots,p_n) = \sum_{i=1}^n \sum_{j=i+1}^n \mathbf{1}[p_i \neq p_j] \quad \text{where} \quad \mathbf{1}[p_i \neq p_j] = \begin{cases} 1 & \text{if } p_i \neq p_j \\ 0 & \text{otherwise} \end{cases}$

得分 评卷人

二、博弈(15分)

本游戏中,有一个 Pacman,两个 ghost。ghost 总是会选择让 Pacman 的获益最小的动作。Pacman 有且只有一次机会使用"超能力",这种"超能力"能让 ghost 选择 Pacman 想要的任何动作。

(1) 与 minimax 算法类似,搜索数中每个节点的值由以它为根所展开的子树决定。为了记录节点的值,为每个节点定义一个元组 (u,v): 如果 "超能力"未在该子树中使用,其值为 u; 如果在子树中使用了一次"超能力",则其值为 v。对于终端状态,其值已经给出。在下面搜索树中填写 (u,v) 值。Pacman 是根节点,有两个 ghost 依次行动。(6 分)

(2) 完成以下算法,以适应上面所描述的Pacman有一次机会使用"超能力"的情况。注意:基于min和max函数实现,参考Max-Value函数中的使用方法。(9分)

function $Value(state)$	
if state is leaf then	
$u \leftarrow \text{Utility}(state)$	
$v \leftarrow \text{UTILITY}(state)$	
return (u, v)	function Min-Value(state)
end if	$uList \leftarrow [\], vList \leftarrow [\]$
if state is Max-Node then	for successor in Successors(state) do
return Max-Value(state)	$(u', v') \leftarrow \text{VALUE}(successor)$
else	uList.append(u')
return Min-Value(state)	vList.append(v')
end if	end for
end function	end for
function Max-Value(state)	$u \leftarrow _$
$uList \leftarrow [\], vList \leftarrow [\]$	
for successor in Successors(state) do	
$(u', v') \leftarrow \text{Value}(successor)$	$v \leftarrow$
uList.append(u')	
vList.append(v')	return (u, v)
end for	end function
$u \leftarrow \max(uList)$	
$u \leftarrow \max(uList)$ $v \leftarrow \max(vList)$	
return (u, v)	

得分 评卷人

end function

三、效用函数(20分)

Ghost-King 和 Pacman 的效用函数(utility function)分别用 U_{GK} 和 U_P 表示。两者输出的值都>=0(非负值)。

(1)以下 U_{GK} 和 U_P 之间的哪种关系与 Ghost-King 的观察结果一致: 他和 Pacman 在所有可能的事件结果(outcome)中都有相同的偏好顺序,但是他和 Pacman 并非对所有的 lotteries 都有相同的偏好。在相应的关系上画勾,并做出解释。(10 分)

$U_P = aU_{GK} + b$	(0 < a < 1, b > 0)
$U_P = aU_{GK} + b$	(a > 1, b > 0)
$U_P = U_{GK}^2$	
$U_P = \sqrt{(U_{GK})}$	

(2) Ghost-King 还观察到 Pacman 比他更冒险。以下 U_{GK} 和 U_P 之间的哪种关系符合 Ghost-King 的观察。在相应的关系上画勾,并做出解释。(10 分)

$U_P = aU_{GK} + b$	(0 < a < 1, b > 0)
$U_P = aU_{GK} + b$	(a > 1, b > 0)
$U_P = U_{GK}^2$	
$U_P = \sqrt{(U_{GK})}$	

得分	评卷人

四、马尔科夫决策过程(15分)

有一个掷骰子的游戏。在游戏的每一轮,游戏者有2个动作(action)可以选择: 1) *Stop*: 停止玩游戏,获得骰子点数所对应的钱作为 reward; 2) *Roll*:

花费 1 块钱,掷骰子,骰子以相同的概率掷出 1~6 点。游戏者从 Start 状态开始,至少要花 1 块钱掷一次骰子。状态 S_i 表示骰子掷出了 i 点。只要游戏者愿意每次支付 1 元钱掷骰子,游戏可以一直继续。一旦游戏者采用 Stop 动作,以当前骰子的点数作为 reward,游戏结束,切换到 End 状态。游戏者使用 MDP 方法对这个游戏进行分析。

(1) 给定一个下表所示的 policy π ,设 $\gamma=1$,求出 $V^{\pi}(s)$,并给出简单的计算过程。(6分)

State	s_1	s_2	s_3	s_4	s_5	s_6
$\pi(s)$	Roll	Roll	Stop	Stop	Stop	Stop
$V^{\pi}(s)$						

(2) 基于上面求出的 V 值,执行一次 policy update,以找到更优的 policy π '。下表给出了旧的 policy π ,以及新 policy π '的一部分。如果对于某个状态,Roll 和 Stop 都可以,则填写 Roll/Stop。设 $\gamma=1$ 。在表格下面给出简单的计算过程。(4 分)

State	s_1	s_2	s_3	s_4	s_5	86
$\pi(s)$	Roll	Roll	Stop	Stop	Stop	Stop
$\pi'(s)$	Roll					Stop

(3) 前面给出的旧 policy π 是否是最优的? 请给出理由 (5 分)

得分	评卷人

五、强化学习(25分)

有一个游戏,知道游戏只有两个状态 $\{A, B\}$,每个状态下,agent 有两个动作(action)可以选择 $\{Up, Down\}$ 。

一个 agent 根据某个 policy π 选择动作,生成了一系列的状态变化和收益(reward),如下所示。本题中一直设 discount factor γ =0.5,learning rate α =0.5,除非特别指定。

t	s_t	a_t	s_{t+1}	r_t
0	Α	Down	В	4
1	В	Down	В	-4
2	В	Up	В	0
3	В	Up	A	3
4	A	Up	A	-1

(1) 已知 Q-learning 的更新函数为:

$$Q(s_t, a_t) \leftarrow (1 - \alpha)Q(s_t, a_t) + \alpha(r_t + \gamma \max_{a'} Q(s_{t+1}, a'))$$

假设所有的 Q-value 被初始化成 0。请使用上表中的经验序列进行 Q-learning,并给出下列 $2 \uparrow Q$ -value 及简单的计算过程。(4 f)

$$Q(A, Down) = \underline{\hspace{1cm}}, \qquad Q(B, Up) = \underline{\hspace{1cm}}$$

(2) 在 model-based 的强化学习中,需要先估计 transition function $T(s,a,s')$ 和 reward func	ction
R(s,a,s')。请根据上表中的经验序列计算下面的 T 和 R 。如果未知的话,写" n/a "。写	出简
单的计算过程。(8分)	

$$\hat{T}(A,Up,A) = \underline{\hspace{1cm}}, \quad \hat{T}(A,Up,B) = \underline{\hspace{1cm}}, \quad \hat{T}(B,Up,A) = \underline{\hspace{1cm}}, \quad \hat{T}(B,Up,B) = \underline{\hspace{1cm}}$$

$$\hat{R}(A, Up, A) = \underline{\hspace{1cm}}, \quad \hat{R}(B, Up, A) = \underline{\hspace{1cm}}, \quad \hat{R}(B, Up, A) = \underline{\hspace{1cm}}, \quad \hat{R}(B, Up, B) = \underline{\hspace{1cm}}$$

(3)agent 又生成了一个新的经验序列,并且根据这次的经验,对 T 和 R 形成了如下的估计:

s	a	s'	$\hat{T}(s, a, s')$	$\hat{R}(s, a, s')$
A	Up	A	1	10
A	Down	A	0.5	2
A	Down	В	0.5	2
В	Up	Α	1	-5
В	Down	В	1	8

(i)根据上面的 \hat{T} 和 \hat{R} ,请给出最优的策略 $\hat{\pi}^*(s)$ 和 $\hat{V}^*(s)$ 。写出计算过程。提示:给定|x|<1, $1+x+x^2+x^3+x^4+...=1/(1-x)$ (8分)

$$\hat{\pi}^*(A) = \underline{\hspace{1cm}}, \quad \hat{\pi}^*(B) = \underline{\hspace{1cm}}, \quad \hat{V}^*(A) = \underline{\hspace{1cm}}, \quad \hat{V}^*(B) = \underline{\hspace{1cm}}$$

(ii)如果把这个经验序列重复的送入Q-learning算法,最终values会收敛到什么值(假设 α 被仔细的调整以保证收敛)?请给出理由(5分)

- 上面所求得的**ŷ***
- 最优值V*
- 既不是**Û***也不是**V***
- 无法判断