

Data Collection and Preprocessing Phase

Date	07 JULY 2024
Team ID	739763
Project Title	Air Quality Index Analyzer using machine learning
Maximum Marks	6 Marks

Data Exploration and Preprocessing Report

Identifies data sources, assesses quality issues like missing values and duplicates, and implements resolution plans to ensure accurate and reliable analysis


```
26]: import pandas as pd
     import numpy as np
     import matplotlib.pyplot as plt
     def handle_outliers(df):
         # Plot boxplots before handling outliers
         plt.figure(figsize=(15, 10))
         df.boxplot(rot=90)
         plt.title('Boxplot Before Handling Outliers')
         plt.show()
         for column in df.columns:
             if pd.api.types.is_numeric_dtype(df[column]):
                 Q1 = df[column].quantile(0.25)
                 Q3 = df[column].quantile(0.75)
                 IQR = Q3 - Q1
                 lower_bound = Q1 - 1.5 * IQR
                 upper_bound = Q3 + 1.5 * IQR
                 # Cap the outliers
                 df[column] = np.where(df[column] < lower_bound, lower_bound,</pre>
                                        np.where(df[column] > upper bound, upper bound, df[
         # Plot boxplots after handling outliers
         plt.figure(figsize=(15, 10))
         df.boxplot(rot=90)
         plt.title('Boxplot After Handling Outliers')
         plt.show()
         return df
```

Data Preprocessing Code Screenshots

Loading	Code	to	10	oad .	the	da	taset	int	О	the	pr	eferred	
Data	In	[48]:	<pre>X=data_city.drop('AQI',axis=1) y=data_city['AQI']</pre>										
	In	[49]:	X										
	Out	ut[49]:		City	PM2.5	PM10	NO	NO2	NOx	NH3	со	SO2	C
			0	0	34.515	154.750	0.92	18.22	17.15	8.975	0.92	27.640	85.63
			1	0	25.830	226.235	0.97	15.69	16.46	9.095	0.97	24.550	34.06
			2	0	36.205	72.125	17.40	19.30	29.70	6.880	2.86	29.070	30.70
			3	0	25.830	226.235	1.70	18.48	17.97	9.085	1.70	18.590	36.08
			4	0	54.440	72.125	22.10	21.42	37.76	7.915	2.86	29.545	39.31
			29526	25	15.020	50.940	7.68	25.06	19.54	12.470	0.47	8.550	23.30
			29527	25	24.380	74.090	3.42	26.06	16.53	11.990	0.52	12.720	30.14
			29528	25	22.910	65.730	3.45	29.53	18.33	10.710	0.48	8.420	30.96
			29529	25	16.640	49.970	4.05	29.26	18.80	10.030	0.52	9.840	28.30
			29530	25	15.000	66.000	0.40	26.85	14.05	5.200	0.59	2.100	17.08
			29531 r	ows >	< 15 colu	umns							

Handling Missing Data	Code for identifying and handling missing values. Handling Null Values
	2]: data_city.isna().sum()
	2]: City 0 Date 0 PM2.5 4598 PM10 11140 NO 3582 NO2 3585 NOX 4185 NH3 10328 CO 2059 SO2 3854 O3 4022 Benzene 5623 Toluene 8041 Xylene 18109 AQI 4681 AQI_Bucket 4681
Data Transformation	dtype: int64 Code for transforming variables (scaling, normalization).
Feature Engineering	Code for creating new features or modifying existing ones.

In [48]: X=data_city.drop('AQI',axis=1) y=data_city['AQI'] In [49]: X Out[49]: City PM2.5 PM10 NO NO2 NOx NH3 CO SO2 O3 Benzene Toluene Xylene Year Month **0** 0 34.515 154.750 0.92 18.22 17.15 8.975 0.92 27.640 85.635 0.00 0.02 0.00 2015.0 1.0 **1** 0 25.830 226.235 0.97 15.69 16.46 9.095 0.97 24.550 34.060 3.68 5.50 3.77 2015.0 1.0 **2** 0 36.205 72.125 17.40 19.30 29.70 6.880 2.86 29.070 30.700 6.80 16.40 2.25 2015.0 1.0 **3** 0 25.830 226.235 1.70 18.48 17.97 9.085 1.70 18.590 36.080 4.43 10.14 1.00 2015.0 1.0 **4** 0 54.440 72.125 22.10 21.42 37.76 7.915 2.86 29.545 39.310 7.01 18.89 2.78 2015.0 1.0 **29526** 25 15.020 50.940 7.68 25.06 19.54 12.470 0.47 8.550 23.300 6.0 2.24 12.07 0.73 2020.0 **29527** 25 24.380 74.090 3.42 26.06 16.53 11.990 0.52 12.720 30.140 0.74 2.21 0.38 2020.0 6.0 **29528** 25 22.910 65.730 3.45 29.53 18.33 10.710 0.48 8.420 30.960 0.01 0.01 0.00 2020.0 6.0 **29529** 25 16.640 49.970 4.05 29.26 18.80 10.030 0.52 9.840 28.300 0.00 0.00 0.00 2020.0 6.0 0.00 0.00 0.00 2020.0 7.0 **29530** 25 15.000 66.000 0.40 26.85 14.05 5.200 0.59 2.100 17.050 29531 rows × 15 columns