Week 1

Siva Sundar, EE23B151

June 2024

19th June

I started reading the book "Conceptual Mathematics". I have read the first two sections today. Key points for each session are listed below:

Section 1:

- Firstly, we see examples for Categories:
 - 1. Galileo's bird's flight puzzle which talks about a relationship between the objects 'time' and 'space' where the bird travels.
 - 2. The 'space' talked above can again be split into two objects: the 'plane' where the shadow of the bird lie, and the level of flight of bird which is a 'line'.
 - 3. Other examples like the a category of two dishes (a relation with 1st and 2nd course dishes).
- In the next part, we relate many topics in set theory with category theory like functions as morphisms etc. A **category of finite sets** contains:
 - 1. Data for the Category:
 - (1) Objects: the sets A, B, C, ...
 - (2) Maps: functions like f, g, \dots
 - 2. Rules:
 - (1) Identity law: if $\mathbf{A} \xrightarrow{f} \mathbf{B}$, then, $I_B \circ f = f \& f \circ I_A = f$.
 - (2) Associative law: $h \circ (g \circ f) = (h \circ g) \circ f$.

Section 2:

- Some definitions: Consider the category $\mathbf{A} \xrightarrow{f} \mathbf{B}$,
 - 1. The set \mathbf{A} is called the Domain of map 'f'.
 - 2. The set **B** is called the Co-Domain of map 'f'.
 - 3. A **rule** for map 'f', is that each element in **A** must be mapped to only one element in **B**.
- Test for equality of two maps:
 - A **point** of a set **A** is a map from a **singleton set 1** to **A**. Using this, we can say that "two maps f and g with domain **A** and co-domain **B** are said to be equal iff for all points $\mathbf{1} \xrightarrow{a} A$, $f \circ a = g \circ a$, then f = g."
- Internal and External Diagrams:
 - Internal: uses the arrow diagrams where the elements of the set are shown.
 - External: shows mapping with arrows between sets as a whole without explicitly showing the elements in them.

Author: Siva Sundar Roll No: EE23B151

Section 3:

• Total number of maps from set **A** to set **B** is given by: $n(B)^{n(A)}$, where n(X) represents the number of elements in set **X**

- Isomorphisms: a map $\mathbf{A} \xrightarrow{f} \mathbf{B}$ is called Isomorphic or invertible, if there exist another map $\mathbf{B} \xrightarrow{g} \mathbf{A}$ such that, $f \circ g = I_B$ and $g \circ f = I_A$. This map 'g' is called the inverse map of 'f'. (If both domain and co-domain are equal, then this isomorphism is called **Automorphism**.)
- Isomorphs are Reflexive, Symmetric, and Transitive.
- From Ex.1(T), we can see that for two isomorphs f and g, the inverse of the composition $f \circ g$ is $g^{-1} \circ f^{-1}$
- Determination and Choice Problems:

Determination Problems requires us to find the map g (which we call the **determination** of h by f) if both f and h are given, such that, $h = g \circ f$.

If such g exist, then we say h can be **determined** by f.

Choice Problems requires us to find the map f if both f and h are given, such that, $h = g \circ f$. When the map f is fixed, we get a lot of "choices" for the map g.

Note: When the set **B** is a "singleton set", then the maps f and h are constant maps.

• Retractions, Sections and Idempotents:

- 1. Retractions are the solution maps r for the determination problem: $r \circ f = I_A$.
- 2. Sections are the solution maps s for the choice problem: $f \circ s = I_B$.
- 3. Idempotents are the maps e such that: $e \circ e = e$. (eg: $e = f \circ r$)

Theorems:

- If a map $\mathbf{A} \xrightarrow{f} \mathbf{B}$ has a **section**, then for any \mathbf{T} and any map $\mathbf{T} \xrightarrow{y} \mathbf{B}$, there exist a map $\mathbf{T} \xrightarrow{x} \mathbf{A}$, such that $f \circ x = y$.

- If a map $\mathbf{A} \xrightarrow{x} \mathbf{B}$ has a **retraction**, then for any \mathbf{T} and any map $\mathbf{A} \xrightarrow{y} \mathbf{T}$, there exist a map $\mathbf{B} \xrightarrow{f} \mathbf{T}$, such that $f \circ x = y$.

(**Note:** Maps with retractions are **monomorphic** and maps with sections are **epimorphic**.)

- Uniqueness of Inverses: if a map f has many retractions r_1, r_2, \ldots and sections s_1, s_2, \ldots , then:
 - 1. All of the sections are equal to each other, same is true for retractions.
 - 2. Both section and retraction are equal. (f is an **Isomorphism**)