ARes : plan du cours 2/5

1 Applications historiques

- introduction
- connexion à distance
- tranfert de fichiers
- 2 Applications principales
 - World Wide Web
 - messagerie électronique
 - multimedia
- 3 Applications support
 - annuaire (DNS)
 - administration de réseau

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Applications historiques

Applications principale

Applications support

Architecture des Réseaux (ARes) 2/5 : Application

introduction connexion à dista tranfert de fichie

Applications

Architecture des Réseaux (ARes) 2/5 : **Application**

Olivier Fourmaux

(olivier.fourmaux@upmc.fr)

Version 7.0

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Architecture des Réseaux (ARes) 2/5 : Application

Applications historiques Applications principales Applications support

introduction connexion à distance tranfert de fichiers

ARes: plan du cours 2/5

- 1 Applications historiques
 - introduction
 - connexion à distance
 - tranfert de fichiers
- 2 Applications principales
 - a World Wide Wel
 - messagerie électronique
 - multimedia
- 3 Applications support
 - annuaire (DNS
 - administration de réseau

Couche Application

<u>D</u>efinition

La couche application Ensemble des programmes et protocoles de haut niveau qui permettent aux utilisateurs de communiquer

Remarques:

- standardise les échanges entre les applications les plus courantes
 - accès au web (HTTP), envoi d'e-mail (SMTP, POP, IMAP) ...

 \bigcirc applications \neq protocoles de la couche application

- définit l'interface réseau avec les utilisateurs
 - s'appuie sur les services de bout-en-bout définis dans les couches inférieures
- supporte les environnements hétérogènes

Olivier Fourmaux (olivier.fourmaux@upmc.fr) Architecture des Réseaux (ARes) 2/5 : Application

Applications historiques Applications principales Applications support

Architectures (2)

Client/serveur avec réplication des serveurs

Architectures (1)

Client/serveur centralisé classique

UPMC

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Applications historiques Applications principales Applications support

Architectures (3)

Peer-to-peer classique

Comparaison Client/serveur et P2P

RPC/RMI

- synchrones
- asymétriques
- orientés langage
- identification

Client_call(args)

authentification

```
Server_main_loop()
  while (true)
    await(call)
    switch(call.procid)
      case 0: call.ret=proc0(call.arg)
```

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Messages P2P

- asynchrones
- symétriques
- orientés service
- anonymat
- haute disponibilité

```
Peer_main_loop()
                                  while (true)
                                    await(event)
                                    switch(event.type)
                                      case timer_expire:
                                             do_some_P2P_work()
                                             randomize timers()
case 1: call.ret=proc1(call.arg)
                                                             UPMC
                                      case inbound_mesg:
                                             handle_mesg()
```

Applications historiques Applications principales Applications support

Couche Application: modèle TCP/IP (1)

	OSI	TCP/IP	
7	Application	Application	
6	Presentation		
5	Session		
4	Transport	Transport	
3	Network	Internet	
2	Data link	Host-to-network	(
1	Physical		

Applications historiques Applications principal Applications support

Couche Application: modèle OSI

UPMC

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Applications historiques Applications principa Applications support

Couche Application: modèle TCP/IP (2)

Dans l'Internet, des centaines de protocoles applicatifs existent!

HTTP pour surfer sur la toile

FTP pour transférer des données

SMTP pour échanger du courrier électronique...

ARes: plan du cours 2/5

- Applications historiques
 - introduction
 - connexion à distance
 - tranfert de fichiers
- 2 Applications principales
 - World Wide Web
 - messagerie électronique
 - multimedia
- 3 Applications support
 - annuaire (DNS)
 - administration de réseau

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Architecture des Réseaux (ARes) 2/5 : Application

Applications historiques
Applications principales
Applications support

introduction connexion à distance

TELNET (TELecommunication NETwork protocol)

Application développée dès 1969 (RFC 15) et standardisé à l'IETF en 1983 (RFC 854 et Internet Standard STD 8)

- repose sur une connexion TCP (port serveur = 23)
- mécanisme de négociation d'options
- service de terminal virtuel
- pas de confidentialité (mot de passe en clair...)

Applications de connexion à distance

A partir d'un terminal ouvert sur une machine locale, connexion sur une machine distante

- plusieurs protocoles :
 - TELNET
 - RLOGIN
 - SSH...
- application de type client/serveur
 - client : interagit avec l'utilisateur et les protocoles réseaux
 - **serveur** : idem au niveau de l'application distante
- besoin d'interactivité
 - tout ce qui tapé sur le clavier local est envoyé rapidement sur la connexion
 - tout ce qui est reçu de la connexion est affiché rapidement sur l'écran local

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Architecture des Réseaux (ARes) 2/5 : Application

Applications historiques Applications principales Applications support

introduction connexion à distance tranfert de fichiers

TELNET : options

Plusieurs échanges initiaux pour les options (RFC 855) :

• le client émet des requêtes (WILL WON'T DO DON'T)

Command: Do Suppress Go Ahead Command: Will Terminal Type

Command: Will Negotiate About Window Size

Command: Will Terminal Speed...

• le serveur renvoie des réponses (DO DON'T WILL WON'T)

Command: Do Terminal Type

Command: Will Suppress Go Ahead

Command: Dont Negotiate About Window Size

Command: Do Terminal Speed...

- chaque extrémité implémente une version minimale du NVT
 - négociation d'options pour les machines plus évoluées

TELNET: NVT

Définition d'un terminal virtuel (Network Virtual Terminal)

- pas de format de message, mais un en codage des données
- codage vers un système de représentation commun : NVT
 - chaque système peut transcoder

terminal local réel ⇔ terminal réseau virtuel

- Exemple :
 - o local : cc maa<bs>x.c
 - NVT: c x IAC EC a a m c c c
 - il n'est pas nécessaire de connaître la conversion vers chaque type de machine
- o communication dans les environnement hétérogènes
- contrôle in-band

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Architecture des Réseaux (ARes) 2/5 : Application

Applications historiques Applications principales Applications support

introduction
connexion à distance
tranfert de fichiers

RLOGIN (Remote LOGIN)

Application standard d'Unix BSD (RFC 1282)

- beaucoup plus simple que TELNET, pas de négociation
- repose sur une connexion TCP (port serveur = 513)
- quelques commandes in-band en données urgentes
- pas de confidentialité (mot-de-passe en clair) et confiance (.rhost)

TELNET : Accès à d'autres serveurs

Exemple d'accès à un serveur web avec TELNET :

connexion TCP brute (limitation NVT)

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Architecture des Réseaux (ARes) 2/5 : Application

Applications historiques Applications principales

Applications support

introduction connexion à distanc tranfert de fichiers

SSH (Secure SHell)

- communications cryptées, assurant :
 - authentification
 - confidentialité
 - intégrité
- repose sur une connexion TCP (port serveur = 22)
 - rajoute une couche transport intermédiaire
 - authentification cryptée
 - négotiation des algorithmes
 - (mux. de sessions, tunnels : X11, relayage de port, SOCKS...)
- standardisation tardive (janvier 2006) : RFCs 4251 à 4254
- nombreuses implémentations
 - OpenSSH (natif sur BSDs, GNU/Linux, MacOSX, Cygwin...)
 - PuTTY (Windows et Unixes)...

ARes : plan du cours 2/5

- Applications historiques
 - introduction
 - connexion à distance
 - tranfert de fichiers
- 2 Applications principales
 - World Wide Web
 - messagerie électronique
 - multimedia
- 3 Applications support
 - annuaire (DNS)
 - administration de réseau

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Architecture des Réseaux (ARes) 2/5 : Application

Applications historiques Applications principales Applications support introduction connexion à distanc tranfert de fichiers

FTP (File Transfer Protocol)

Standard TCP/IP pour le transfert de fichiers (RFC 959)

- signalisation out-of-band, deux connexions TCP
- accès interactif
- o contrôle d'accès (mais mot de passe en clair)

Applications de transfert de fichiers usuelles

Copie d'un fichier d'un système vers un autre en environnement hétérogène

- plusieurs protocoles :
 - FTP
 - TFTP
 - RCP, SCP, SFTP...
- application de type client/serveur
 - client : interagit avec l'utilisateur, le système de fichier local et les protocoles réseaux
 - serveur : interagit avec les protocoles réseaux et le système de fichier distant
- ne pas confondre avec les systèmes de fichiers distants
 - NFS (Sun, TCP/IP), SMB (Mircosoft)...

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Architecture des Réseaux (ARes) 2/5 : Application

Applications historiques Applications principales Applications support

introduction connexion à distance tranfert de fichiers

FTP: Connexions

Deux connexions TCP sont utilisées en parallèle :

- connexion de contrôle
 - **permanente** (créée à l'ouverture de la session FTP)
 - full duplex initiée par le client (port serveur = 21)
 - utilisée uniquement pour échanger les **requêtes** et **réponses**
 - besoin d'interactivité (et de fiabilité)
- connexion de transfert de données
 - temporaire (créée à chaque transfert de fichier)
 - full duplex (initiée par le serveur)
 - transmission préalable du **port client** à utiliser
 - envoi de fichiers et de liste de fichiers/répertoires
 - besoin de débit (et de fiabilité)
 - libérée à la fin de chaque tranfert de fichier

FTP: Données

Nombreuses représentations des données (hôtes hétérogènes) :

- type de fichiers :
 - non structurés
 - enregistrements
 - pages
- encodage des données :
 - **ASCII** (American Standard Code for Information Interchange)
 - EBCDIC (Extended Binary-Coded Decimal Interchange Code)
 - binaire
- type de transmission :
 - flux
 - bloc
 - compressé
 - vérifier le type de données transférées

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Applications historiques Applications principales Applications support

Commandes utilisateur du programme ftp

Unix> ftp ftp> help

Commands may be abbreviated. Commands are:

!	debug	mdir	sendport	site
\$	dir	mget	put	size
account	disconnect	mkdir	pwd	status
append	exit	mls	quit	struct
ascii	form	mode	quote	system
bell	get	modtime	recv	sunique
binary	glob	mput	reget	tenex
bye	hash	newer	rstatus	tick
case	help	nmap	rhelp	trace
cd	idle	nlist	rename	type
cdup	image	ntrans	reset	user
chmod	lcd	open	restart	umask
close	ls	prompt	rmdir	verbose
cr	macdef	passive	runique	? IIDMC
delete	mdelete	proxy	send	SORBONNE UNIVERSITÉS

Applications historiques Applications principales Applications support

FTP: Requêtes

Codage ASCII NVT Mode interactif possible (si lisible)

Unix> telnet galion.ufr-info-p6.jussieu.fr 21 Trying 197.18.176.12... Connected to localhost. Escape character is '^]'. 220 ProFTPD 1.2.0pre10 Server (Debian) [galion.ufr-info-p6.jussieu.fr] 214-The following commands are recognized (* =>'s unimplemented). 214-USER PASS ACCT* CWD XCWD XCUP SMNT* CDUP 214-QUIT REIN* PORT PASV TYPE STRU* MODE* RETR 214-STOR STOU* APPE ALLO* REST RNFR RNTO ABOR

XRMD

SITE

214 Direct comments to root@galion.ufr-info-p6.jussieu.fr.

214-DELE

214-SIZE

Ne pas confondre avec les commandes de l'interface utilisateur de ftp

XPWD

NOOP

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

MDTM

LIST

XMKD

STAT

PWD

HELP

Applications historiques Applications principales Applications support

RMD

NLST

MKD

SYST

Réponses

Codage usuel : status + description textuelle

status	description	status	description
		×0z	syntaxe
1yz	réponse positive préliminaire	x1z	information
2yz	réponse positive complète	x2z	connexions
3yz	réponse positive intermédaire	x3z	authentification
4yz	réponse négative transitoire		
5yz	réponse négative définitive	x5z	système de fichier

- 150 Opening BINARY mode data connection
- 200 Command successful
- 220 ProFTPD 1.2.0pre10 Server (Debian)
- 226 Transfer complete
- 230 User toto logged in
- 331 Username OK, Password required
- 425 Can't open data connection
- 500 Syntax error (Unknown command)...

Programme ftp (interface utilisateur)

```
[toto@hobbes] $ ftp calvin.lip6.fr
   Connected to calvin.lip6.fr.
   220 FTPD 1.2pre8 Server (Debian)
Name (calvin.lip6.fr):toto
   331 Password required for toto
Password:
   230 User toto logged in.
ftp> get toinst.txt
   local: toinst.txt remote: toinst.txt
   200 PORT command successful.
   150 Opening BINARY mode data connection
       for toinst.txt (1 bytes).
   226 Transfer complete.
  1 bytes received in 0.377s (0.0026 KB/s)
ftp> quit
   221 Goodbye.
[toto@hobbes]$
```

Protocole FTP (connexion de contrôle)

```
220 FTPD 1.2pre8 Server (Debian)
  331 Password required for toto.
PASS AB]Ga!9F
  230 User toto logged in.
PORT 192,33,82,12,4,15
  200 PORT command successful.
RETR toinst.txt
  150 Opening BINARY mode data connection
      for toinst.txt (1 bytes).
  226 Transfer complete.
QUIT
  221 Goodbye.
```


Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Applications historiques Applications principales Applications support

TFTP (Trivial File Transfer Protocol)

- protocole léger pour le transfert de fichiers (version 2 : RFC 1350)
- datagrammes UDP sur le port 69

opcode	nom	description
1	RRQ	requête de lecture
2	WRQ	requête d'écriture
3	DATA	données numérotées
4	ACK	acquittement
5 ERREUR		message d'erreur

5 messages :

- messages DATA avec 512 octets (sauf le dernier de taille inférieure ou éventuellement nulle)
- protocole stop-and-wait
 - numérotation des messages DATA
 - acquittement immédiat avec ACK
- pas de contrôle d'accès (sous Unix, souvent limité à /tftpboot)

Applications historiques Applications principales Applications support

FTP: Divers

Anonymous: compte invité sur certains serveurs FTP:

username: anonymous

• password: adresse@electronique.org

Mode passif: ouverture de la connexion donnée en sens inverse

- si l'ouverture usuelle de la **connexion donnée** impossible
 - filtrage des adresses (firewall)
 - translation d'adresses (NAT)
- commande PASV (RFC 1579)
 - le client envoie la commande PASV au serveur a.b.c.d
 - le serveur alloue le port 256x+y, fait une ouverture passive sur ce port et en informe le client avec une réponse
 - 227 Entering passive mode (a,b,c,d,x,y)
 - le client fait une ouverture active vers le port 256x+y

nc

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Applications historiques Applications principales Applications support

TFTP: Exemple

[toto@hobbes]\$ tftp calvin.lip6.fr tftp> get config Received 5220 bytes in 0.377 secs tftp> quit [toto@hobbes]\$

RCP, SCP, SFTP

Protocole R*: RCP

- spécifique à Unix et associé aux r* commandes (dont rcp)
 - le client rcp fonctionne avec un serveur rshd
 - idem rlogin : obsolète, problèmes de sécurités...

Protocoles sécurisés : SCP, SFTP

- scp : copie simple similaire à rcp encapsulé dans SSH
- sftp: idem FTP mais facilement encapsulable
 - SFTP est un nouveau protocole (groupe IPSEC de l'IETF)
 - SFTP peut être utilisé avec SSH (par défaut avec de nombreux clients sftp)
 - SFTP est différent de FTPS qui introduit la sécurisation au niveau des connexions avec SSL/TLS (Secure Socket Layer/Transport Layer Security)

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Architecture des Réseaux (ARes) 2/5 : Application

Applications historiques Applications principales Applications support

introduction connexion à distance tranfert de fichiers

De nombreuses applications Peer-to-peer...

... mais peu de standards

- partage de fichiers
 - Napster, eDonkey, BitTorrent...
 - FastTrack (KaZaA, Grokster et Imesh), Gnutella2...
 - Gnutella...
 - BitTorrent
- distribution de flux audio/vidéo
 - VoD : Peercast, Joost...
 - P2PTV : Coolstreaming, TVants, PPLive...
- stockage anonyme
 - Freenet, Entropy...
- distributed computing

Applications de partage de fichier Peer-to-peer

UPMC

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Architecture des Réseaux (ARes) 2/5 · Application

Applications historiques
Applications principales
Applications support

introduction connexion à distanc tranfert de fichiers

Fonctionnalités P2P

Caractéristiques des systèmes peer-to-peer

- pas de rôle distinct
 - évite les points de congestion ou les nœuds défaillants
 - besoin d'algorithmes distribués
 - découverte de service (nommage, adressage, calcul de métriques)
 - maintien d'un état du voisinage
 - routage au niveau applicatif (lié au contenu)
 - o robustesse, gestion de perte de liens ou de nœuds ...

Programme de partage de fichiers MP3

- pas le premier, mais le plus connu.
 - très informatif sur l'intérêt du peer-to-peer...
 - ... sur les problèmes techniques, légaux, politiques, économiques
- une technologie de rupture?
 - historique
 - fin 98 : Shawn Fanning (19 ans) débute le developpement
 - 05/99 : création de Napster Online Music Service
 - 06/99 : premiers tests du logiciel
 - 12/99 : premières poursuites juridiques (Metallica, RIAA...)
 - mi 00 : plus de 60M d'utilisateurs importante part du trafic universitaire (30% à 50%)
 - 02/01 : jugement par la Cour d'Appel des US
 - mi 01 : 160K utilisateurs...

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Applications historiques Applications principales Applications support

Upload

Les utilisateurs chargent la liste des fichiers à partager

Approche mixte:

Napster: Principe

- recherche client/serveur avec liste centralisée
- échange direct des données recherchées entre pairs
- connexions point à point TCP (port 7777 ou 8888)
- 4 étapes :
 - Connexion au serveur Napster
 - Envoi de sa liste de fichiers au serveur (push)
 - Envoi des mots recherchés et récupération d'une liste de pairs
 - Selection du meilleur pair (pings)

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Applications historiques Applications principales Applications support

Napster : Search

Un utilisateur émet une requête de recherche Le serveur indique les localisations potentielles

Napster : Pings

Ping des pairs potentiels (recherche du meilleur débit de transfert)

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Applications historiques Applications principales Applications support

Napster : remarques

serveur centralisé

- un point de défaillance
- risque de congestion
- partage de charge en utilisant la rotation DNS
- controlé par une entreprise

absence de sécurité

- mot de passe en clair
- pas d'authentification
- pas d'anonymat
- code propriétaire
- téléchargement de mises-à-jour

Napster: Download

L'utilisateur récupère directement le fichier chez le pair choisi

napster.com

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Applications historiques Applications principales Applications support

Gnutella: motivations

Partage de fichiers complètement distribué

- corrige les défauts majeurs de Napster :
 - Open source
 - pas de serveurs pas d'index global
 - connaissance locale seulement
- mais toujours les mêmes problèmes juridiques, économiques...
 - pas de responsable direct du service
 - absence d'anonymat
 - le RIAA attaque directement des utilisateurs!

introduction connexion à distance tranfert de fichiers

Gnutella : principe

Recherche par inondation (flooding)

- si je n'ai pas le fichier recherché :
 - je demande à 7 pairs s'ils ont ce fichier
- s'ils ne l'ont pas, ils contactent à leur tour 7 pairs voisins
 - recherche récursive limitée à N sauts
- détection de boucle par mémorisation temporaire des requêtes
 - les messages peuvent être reçus deux fois

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

architecture des Réseaux (ARes) 2/5 : Application

Applications historiques Applications principales Applications support

introduction connexion à distance tranfert de fichiers

Gnutella : recherche de fichier

Requête pour trouver une information

Gnutella: identification des pairs

VPMC SORBOINE UNIVERSITES

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Architecture des Réseaux (ARes) 2/5 : Application

Applications historiques Applications principales Applications support

introduction connexion à distanc tranfert de fichiers

Gnutella: Firewall (2)

Retourner la connexion des données

Lecons retenues:

- saturation des petits pairs (modems)
 - possibilité d'indiquer que l'on a un fichier mais que l'on est
- taille du réseau atteignable limitée (rupture de connectivité liée aux modems)
 - création d'une hiérachie de pairs
- anonymat?
 - le pair où l'on récupère le fichier nous connait
 - \exists protocoles permettant de ne pas connaître le destinataire

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Applications historiques Applications principales Applications support

BitTorrent (1)

Partage d'un fichier :

- découpage en bloc de 64Ko à 1Mo (Chunk)
- création d'un .torrent
 - méta-données
 - signature pour chacun des chunks
- mise en place d'un tracker
 - machine qui supervise la distribution
- échange de données entre tous les demandeurs (leechers)
 - la source (seed) n'est sollicitée que pour amorcer

Spécificité :

- pas de système de recherche
- pas de téléchargement direct (type HTTP)
- avantages :
 - économique
 - redondant
 - résistance aux flash-crowd

Applications historiques Applications principales Applications support

Evolutions P2P

Gnutella2, KaZaA (réseau FastTrack)...

- hôtes hétérogènes
- topologie hiérarchique
 - Super-Nodes

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Applications historiques Applications principales Applications support

BitTorrent (2)

Stratégies :

- sélection de pair
 - tit-for-tat + choking
 - encourage la coopération et diminue les free-riders
 - sélectionne les meilleurs contributeurs, étouffe les autres
 - mécanisme périodique (10 s)
 - optimistic unchoke
 - découverte de nouveaux pairs
 - alimente un nouveau pair aléatoirement
 - mécanisme périodique (30 s)
- sélection de chunk :
 - rarest first
 - donne le chunk le plus rare en premier
 - maximise l'entropie de chaque chunk
 - random first
 - pour accélérer le démarrage des nouveaux

BitTorrent (3)

Evolutions:

- Indexage/recherche
 - initialement moteurs de recherche spécialisés (web)
 - tracker distribué (table de hachage distibuée)
 - basée sur Kademlia
- multitracker
 - redondance
 - surcout en signalisation
- cryptage des échanges
 - Protocol header encrypt (PHE)
 - Message stream encryption/Protocol encryption (MSE/PE)
- distribution de contenus (streaming A/V)
 - nombreux projets...

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Architecture des Réseaux (ARes) 2/5 : Application

Applications historiques
Applications principales
Applications support

World Wide Web messagerie électronique

ARes: plan du cours 2/5

- 1 Applications historiques
 - introduction
 - connexion à distance
 - tranfert de fichiers
- 2 Applications principales
 - World Wide Web
 - messagerie électronique
 - multimedia
- 3 Applications support
 - annuaire (DNS
 - administration de réseau

P2P: autres

Systèmes peer-to-peer structurés de recherche par le contenu :

- Chord
 - identification par clé (SHA-1 sur une chaine)
 - localisation par clé (SHA-1 sur l'adresse du noeud)
 - positionnement sur le nœud successeur le plus proche
- Tapestry
 - routage des identificateurs (hash) selon le suffixe des nœuds
- CAN (Content Addressable Network)
 - système de coordonnées cartésiennes virtuelles ...

UPMC

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Architecture des Réseaux (ARes) 2/5 : Application

Applications historiques
Applications principales
Applications support

World Wide Web messagerie électronique

World Wide Web

- ightarrow 90' : Internet = réseau académique
- $90' \rightarrow$: World Wide Web
 - système d'accès aux données convivial et intuitif (graphique)
 - développé au CERN par Tim Berners-Lee à partir de 1990
 - première "killer app." grand public
 - client (browser) :
 - NCSA Mosaic en 1993 (U. of Illinois Urbana-Champagne)
 - le WWW ne compte que 200 sites
 - première intégration d'images
 - gain de popularité exponentiel!
 - Netscape Navigator en 1994 (**™ Mozilla** en 1998)
 - Microsoft Internet Explorer en 1995 (début de la *browser wars*)
 - et beaucoup d'autres (voir le site du W3C)
 - serveur (web server) :
 - NCSA httpd Web Server (■ Apache en 1998)
 - Microsoft IIS (Internet Information Service) en 1995

HTTP: Principe

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

pictures from Tanenbaum A. S. Computer Networks 3rd edition

Applications principales Applications support

HTTP: Protocole

HyperText Transfer Protocol

- connexion TCP sur le port 80
- échanges définis :
 - les requêtes de demande d'objets (client ⇒ serveur)
 - les transferts d'objets demandés (serveur ⇒ client)
- versions HTTP :
 - \rightarrow 97 **HTTP/1.0** (RFC1945)
 - connexions non persistantes, une connexion créée par objet, charge et latence importantes (TCP three-way handshake et slowstart)
 - 98 \rightarrow **HTTP/1.1** (RFC2616)
 - compatibilité ascendante, connexions persistantes, possibilité de requêtes parallèles (pipelining)
- pas d'état dans le serveur (stateless protocol)

HTTP: Terminologie

- une page web ou un document est composé d'objets
 - fichiers texte au format HTML
 - images GIF, JPEG...
 - applets JAVA
- un document consiste généralement en un fichier HTML de base avec des références vers d'autres objets désignés par des URL
 - HTML (HyperText Markup Language) est un langage à balises pour la description de documents contenant des hyper-liens identifiés par des URL
 - une **URL** (*Uniform Resource Locator*) indique un protocole pour récupérer sur une machine un objets à travers le réseau
 - http://www.lip6.fr/info/linux.html
 - ftp://ftp.lip6.fr/pub/linux/disrib/debian/ls-lR.txt
 - file:/public/image/penguin.jpeg
 - mailto:olivier.fourmaux@lip6.fr

Olivier Fourmaux (olivier.fourmaux@upmc.fr) Architecture des Réseaux (ARes) 2/5 : Application

lications historiques Applications principales Applications support

HTTP: Exemple

Browser:

GET /index.html HTTP/1.1 Connection: Keep-Alive User-Agent: Mozilla/4 [en] (X11; I; Linux 0.99 i486) Host: calvin.lip6.fr Accept: image/gif, image/jpeg, image/png, */* Accept-Encoding: gzip Accept-Language: fr-FR, fr, en Accept-Charset: iso-8859-1,*,utf-8 Web server:

HTTP/1 1 200 OK Date: Tue, 24 Sep 2002 12:59:28 GMT Server: Apache/1.3.9 (Unix) Debian/GNU Last-Modified: Sat, 29 Apr 2000 07:07:45 GMT ETag: "1382c-ffe-390a8a41" Accept-Ranges: bytes Content-Length: 4094 Keep-Alive: timeout=15, max=100 Connection: Keep-Alive Content-Type: text/html; charset=iso-8859-1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN"> <HTML> <HEAD> <META HTTP-EQUIV="Content-Type" CONTENT="tex...</pre> META NAME="GENERATOR" CONTENT="Mozilla/4.05

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

<META NAME="Author" CONTENT="johnie@debian.o...</pre> <META NAME="Description" CONTENT="The initia... <TITLE>Welcome to Your New Home Page!</TITLE>

</HEAD> <BODY TEXT="#000000" BGCOLOR="#FFFFFF" LINK="#0...</pre>

<H1>Welcome to Your New Home in Cyberspace!</H1>

 </P>

<P>This is a placeholder page installed by the Debian release of the

Apache Web server package, because no home page was installed on this host. You may want to replace this as soon as possible with your own web pages, of course....

<BLOCKQUOTE>

This computer has installed the Debian GNU/Linux operating system but has nothing to do with the Debian GNU/Linux project. If you want to report something about this hosts behavour or domain, please contact the 15rs 11rv01rv0 --- not the Debian Project. <P>>not please contact the ISPs involved directly,

HTTP: Format requête

Format général d'un message :

- Request line
Method sp URL sp Version cr If

Header field name : Value cr If

Header field name : Value cr If

Header lines

Header field name : Value cr If

cr If

Exemple:

GET /index.html HTTP/1.1 Connection: Keep-Alive

User-Agent: Mozilla/4 [en] (X11;...)

Host: calvin.lip6.fr

Accept: image/gif, image/jpeg, */*

Accept-Encoding: gzip
Accept-Language: fr-FR, fr, en
Accept-Charset: iso-8859-1,*,utf-8

Method

- GET
- POST (formulaires)
- HEAD (test de pages)

Connection

Close

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Entity

body

architecture des Réseaux (ARes) 2/5 : Applicatio

Applications historiques
Applications principales
Applications support

World Wide Web messagerie électronique

HTTP: Identifier les utilisateurs (1)

Authentification (RFC 2617)

- 2 méthodes : simple (Basic) ou par signature MD5 (Digest)
- requête du client sur une page avec procédure d'authentification basique :
 - réponse du serveur page vide avec entête :
 - 401 Authorisation Required
 - WWW-Authenticate: détails méthode d'autorisation
 - requête du client sur la même page avec entête :
 - Authorization: nom utilisateur mot de passe
 - réponse du serveur :

 - sinon 401 Authorisation Required...

UZMC

HTTP : Format réponse

Format général d'un message :

- Status line -

Header lines

Exemple:

- status + description :
 - 200 OK
 - 301 Move permanently
 - 400 Bad Request
 - 404 Not Found
 - 505 HTTP Version Number

Supported

aitecture des Réseaux (ARes) 2/5 : Application

Applications historiques Applications principales Applications support World Wide Web messagerie électroni

HTTP: Identifier les utilisateurs (2)

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Cookies (RFC 2109)

- identifiant associé à un utilisateur sur sa machine :
- le serveur indique un cookie avec l'entête :
 - Set-cookie: nombre_identifiant
- le cookie est stocké chez le client qui, lorsqu'il demandera la même page sur le même serveur, l'intégrera grâce à l'entête :
 - Cookie: nombre identifiant

HTTP: GET conditionnel

1^{re} requête HTTP :

GET /carte/france.jpg HTTP/1.1

Host: www.atlas.org

1^{re} réponse HTTP :

HTTP/1.1 200 OK

Date: Mon, 2 Oct 2005 23:56:18 Server: Apache/1.3.9 (Unix)

Last-Modified: Sat, 29 Apr 2005 ...

Content-Type: image/jpeg

Données.....

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

2^{me} requête HTTP:

GET /carte/france.jpg HTTP/1.1

Host: www.atlas.org

If-modified-since: Sat, 29 Apr 2005 ...

2^{me} réponse HTTP :

HTTP/1.1 304 Not Modified Date: Mon, 3 Oct 2005 00:06:43

Server: Apache/1.3.9 (Unix) Debian/GNU

UPMC

Applications historiques Applications principales Applications support

HTTP: CDN

HTTP: Cache et proxy

UPMC

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Applications historiques Applications principales Applications support

Autour d'HTTP

Optimisation de l'accès aux ressources

- hiérarchie de caches
- répartition de charge
 - domaine des systèmes répartis

Contenu transféré

- génération automatique : PHP, ASP, Servlet...
 - programmation événementielle
- couplage aux bases d'information
 - domaine des bases de données et de la structuration de l'information type XML

Sécurité

- HTTPS (RFC 2818): utilise SSL sur le port 443 (ou TLS)
- Applets...

Protocole de transport générique

- XML, SOAP...
- encapsulation (firewall...)

ARes: plan du cours 2/5

- Applications historiques
 - introduction
 - connexion à distance
 - tranfert de fichiers
- 2 Applications principales
 - World Wide Web
 - messagerie électronique
 - multimedia
- 3 Applications support
 - annuaire (DNS
 - administration de réseau

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Architecture des Réseaux (ARes) 2/5 : Application

Applications historiques
Applications principales
Applications support

World Wide Web messagerie électronique

SMTP: introduction

Echange de messages asynchrones à travers l'Internet

- l'ancienne "killer app."
- trois éléments de base :
 - UA (User Agent)
 - mail, elm, pine, mutt...
 - Eudora, Outlook et MS Mail, Mail.app, Mozilla Thunderbird...
 - serveurs de mail ou MTA (Mail Transfer Agent)
 - sendmail...
 - compose l'infrastructure du système de distribution
 - boites aux lettres des utilisateurs locaux
 - file d'attente des messages au départ ou en transit
 - temporisation et reprise si destinataire inaccessible
 - un protocole : **SMTP**

Application de messagerie électronique

UPMC

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Architecture des Réseaux (ARes) 2/5 · Application

Applications historiques Applications principales Applications support World Wide Web messagerie électronique

SMTP: principes

Simple Mail Transfer Protocol (RFC 821 - STD 10, m.-à-j. RFC 5321)

- application client/serveur
- repose sur le service fiable des connexions TCP
- ancien
 - ✓ largement répandu
 - 🗶 messages encodées en ASCII NVT
- connexion aux serveurs mail sur le port 25

SMTP : exemple

```
220 hobbes.lip6.fr SMTP Sendmail 8.9.3; Wed, 22 Sep 2008 00:59:49 +0200
HELO calvin.lip6.fr
   250 hobbes.lip6.fr Hello calvin.lip6.fr, pleased to meet you
MAIL FROM: pere-noel@hobbes.lip6.fr
   250 pere-noel@hobbes.lip6.fr... Sender ok
RCPT TO: totu@hobbes.lip6.fr
   550 totu@hobbes.lip6.fr... User unknown
RCPT TO: toto@hobbes.lip6.fr
   250 toto@hobbes.lip6.fr... Recipient ok
DATA
   354 Enter mail, end with "." on a line by itself
Cher Toto,
{\tt N}'oubliez pas de m'envoyer votre liste de cadeaux
                   Le Pere Noel.
   250 BAA01090 Message accepted for delivery
QUIT
                                                               UPMC
   221 hobbes.lip6.fr closing connection
```

Olivier Fourmaux (olivier.fourmaux@upmc.fr) Architecture des Réseaux (ARes) 2/5 : Application

Applications principales

SMTP : commandes (2)

Commandes SMTP de base (RFC 821), ensemble minimal :

HELO	Présentation du nom de domaine du client
MAIL	Identification de l'expéditeur du message
RCPT	Identification du destinataire du message
DATA	Envoi du contenu jusqu'à une ligne avec seulement un "."
QUIT	Termine l'échange de courrier
VRFY	Vérification de l'adresse du destinataire
NOOP	Pas d'opération, force le serveur à répondre
RSET	Annule la transaction

Applications principales

SMTP : commandes (1)

Serveur SMTP en mode interactif:

```
Unix> telnet galion.ufr-info-p6.jussieu.fr 25
   Trying 192.133.82.123...
   Connected to galion.ufr-info-p6.jussieu.fr
   Escape character is '^]'.
   220 galion.ufr-info-p6.jussieu.fr SMTP Sendmail 8.9.3; Wed, 25 Sep 2002 00:
help
   214-This is Sendmail version 8.9.3
   214-Topics:
   214-
                           RCPT
                                   DATA
           HELO
                   MAIL
                           NOOP
                                   RSET
   214-
           QUIT
                   VRFY
   214-
           HELP
   214-For more info use "HELP <topic>".
   214-To report bugs in the implementation send email to
           sendmail-bugs@sendmail.org.
   214-For local information send email to Postmaster at your site.
                                                               U/2mc
   214 End of HELP info
```

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Applications historiques Applications principales

SMTP : réponses

Codage lisible usuel:

- status + description :
 - 220 SMTP Sendmail 8.9.3
 - 221 Closing connection
 - 250 Command successful
 - 354 Enter mail, end with "." on a line by itself
 - 550 User Unknown

SMTP : format des messages initiaux

Messages codés en ASCII NVT (RFC 822)

- l'enveloppe
 - modifiée par entités SMTP successives
 - commandes MAIL FROM: et RCPT TO:
- le message
 - principalement inséré par l'agent utilisateur
 - commande DATA
 - entête
 - chaque champ sur une ligne mom: valeur

From: Toto at Paris 13 <toto@galere.univ-paris13.fr>

Date: Mon, 22 Sep 2003 01:13:20 +0200 To: Titi at Paris 6 <titi@hypnos.lip6.fr>

Subject: rapport TER X-Scanned-By: isis.lip6.fr

- une ligne vide
- corps
 - terminaison par une ligne avec seulement "."

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Applications principales

Evolution du format des entêtes

Caractères non ASCII dans les entêtes :

=?charset?encode?encoded-text?=

- charset : us-ascii, iso-8859-x, ...
- encode : le texte encodé doit rester en ASCII NVT
 - Qoted-printable (Q) pour les jeux de caractères latins :
 - o caractères > 128 → encodé sur 3 caractères (= et code hexa.)
 - Base64 (B) :

 - valeur sur 6 bits (0, 1, 2... 63) ABC...YZab...yz01...9+/
 - bourrage avec "=" si non aligné sur 4 caractères.
- encoded-text :
 - =?iso-8859-2?Q?Igen,=20k=F6sz=F6n=F6m?=
 - =?iso-8859-1?B?QnJhdm8sIHZvdXMgYXZleiBy6XVzc2kgIQo=?Ū¬MC

Evolution de l'enveloppe : ESMTP

Quelques commandes ESMTP (RFC 1425):

EHLO	Utilisation de ESMTP et présentation du client
SIZE	Taille maximum de message acceptée par le serveur
8BITMIME	Possibilité d'envoyer le corps encodé sur 8 bits
X???	Extension SMTP locale

Négociation des extensions ESMTP :

EHLO hobbes.lip6.fr.

250-hobbes.lip6.fr Hello [62.62.169.227], pleased to meet you

250-ENHANCEDSTATUSCODES

250-PIPELINING

250-EXPN

250-VERB

250-8BITMIME

250-SIZE

250-DSN

250-DELIVERBY

250 HELP

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Applications principales

MIME (Multipurpose Internet Mail Extensions)

Nouveaux entêtes MIME (RFC 2045 et RFC 2046)

- Mime-Version: 1.0
- Content-Type: type/sous-type; parametres
 - simples : text/plain; charset="ISO-8859-1"
 - text/html, image/jpeg...
 - structurés : multipart/mixed; Boundary=hjfdskjhfdshf
 - chaque bloc du message débute par : hjfdskjhfdshf
 - imbrication possible
- Content-Disposition: présentation du bloc (RFC 2183)
- Content-Transfer-Encoding: encodage du bloc
 - 7 bits compatible avec les anciens MTA RFC 821
 - 7bit (ASCII NVT)
 - quoted-printable (recommandé pour tout texte)
 - base64 (recommandé pour les flux d'octets)
 - 8 bits si la commande 8BITMIME est acceptée
 - 8bit et Binary (lignes ou bloc de données sur 8 bits)

uzmo

World Wide Web messagerie électronique multimedia

MIME : types et sous-types

/etc/mime.types	audio/midi audio/mpeg	<pre>multipart/mixed multipart/parallel multipart/signed</pre>
application/mac-binhex40	audio/x-wav	marorparo, 518a
application/msword		text/html
application/octet-stream	image/jpeg	text/plain
application/postscript	image/png	text/richtext
application/vnd.hp-PCL	image/tiff	text/rtf
application/vnd.ms-excel		text/xml
application/x-debian-package	message/delivery-status	text/x-java
application/x-doom	message/external-body	text/x-tex
application/x-gnumeric	message/http	text/x-vcard
application/x-java-applet	message/partial	
application/x-javascript	message/rfc822	video/mpeg
application/x-msdos-program		video/quicktime
application/x-tar	${ t multipart/alternative}$	video/x-msvideo
audio/basic	<pre>multipart/digest multipart/encrypted</pre>	UP NC

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Architecture des Réseaux (ARes) 2/5 : Application

Applications historiques Applications principales Applications support World Wide Web messagerie électronique

Remise finale des messages

Machine accédant sporadiquement au réseau?

- Messages stockés sur le dernier MTA (celui de l'ISP par exemple)
 - plusieurs alternatives combinables :
 - accès direct au serveur (montage NFS ou SMB)
 - POP
 - IMAP
 - HTTP

Applications historiques Applications principales Applications support World Wide Web
messagerie électronique

ESMTP: exemple de message MIME

From: Olivier Fourmaux <olivier.fourmaux@lip6.fr>

Date: Wed, 20 Feb 2002 01:21:01 +0100

To: Toto <toto@free.fr>
Subject: Document no 3.02

Mime-Version: 1.0

Content-Type: multipart/mixed; boundary="/9DWx/yDrRhgMJTb"

Content-Disposition: inline Content-Transfer-Encoding: 8bit User-Agent: Mutt/1.2.5i

--/9DWx/yDrRhgMJTb

Content-Type: text/plain; charset=iso-8859-1

Content-Disposition: inline Content-Transfer-Encoding: 8bit

Voici le document secret que vous m'avez demandé...

--/9DWx/vDrRhgMJTb

Content-Type: application/pdf

Content-Disposition: attachment; filename="sujet-exam-RES.pdf"

Content-Transfer-Encoding: base64

JVBERiOxLjIKJcfsj6IKNSAwIG9iago8PC9MZW5ndGggNiAwIFIvRmlsdGVyIC9GbGF0ZUR1 Y29kZT4+CnN0cmVhbQp4n01dy7YdtRGd3684Mx6L07T63ZkBdghgXvY1JF1MHNSYm+sHhkCS...

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Architecture des Réseaux (ARes) 2/5 : Application

Applications historiques
Applications principales
Applications support

World Wide Web messagerie électronique

POP3

Post Office Protocol - Version 3 (RFC 1939)

- simple
- connexion TCP sur le port 110
- trois phases :
 - autorisation (identification)
 - transaction (récupération et marquage)
 - mise à jour (suppression effective du serveur)

Internet Mail Access Protocol – version 4 (RFC 2060)

- complexe
- connexion TCP sur le port 143
- même fonctionnalité que POP avec :
 - accès par attribut (12^{eme} e-mail d'Alice)
 - récupération de partie de message (3^{eme} pièce jointe)
 - synchronisation de boites aux lettres

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Applications principales

Messagerie et sécurité

Les protocoles de base ne sont pas sécurisés

- échange textuel non confidentiel (contrôle et données)
- aucune authentification avec SMTP
- identifiant et mot de passe en clair avec POP et IMAP

Quelques solutions:

- PGP (Pretty good privacy) en environnement hostile :
 - authentification, intégrité et confidentialité (données signées et/ou cryptées)
 - OpenPGP (RFC 2440) : GPG (Gnu Privacy Guard)
- si confiance dans le site distant, sécurisation des connexions :
 - si le site distant est accessible via SSH
 - accès à distance sur le serveur via SSH (UA textuels)
 - tunnels SSH
 - si clients et serveurs avec SSL (ou TLS)
 - POP3S (RFC 2595): port 995
 - IMAPS (RFC 2595): port 993
 - HTTPS pour sécuriser le Web-Mail...

Web-mail

UA sur le serveur SMTP et interface Web

- comptes web spécifiques :
 - Hotmail, Yahoo!, Gmail...
- autre moyen d'accès au serveur d'entreprise ou de l'ISP :
 - horde/IMP, Squirrelmail, Zimbra...

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Applications historiques Applications principales

ARes: plan du cours 2/5

- 1 Applications historiques
- 2 Applications principales

 - multimedia
- 3 Applications support

Nombreux mécanismes sont associés à ces applications (ex : pour une vidéo-conférence):

- établissement d'une session
 - préparation (médias, codecs, protocoles...)
 - annonce et invitation (news, web, e-mail...)
 - initiation (signalisation ou connexion)
- participation
 - **émission** : codage/compression, paquétisation, transmission...
 - réception : décodage/décompression, lecture audio/vidéo...
- Besoin de protocoles spécifiques pour :
 - encapsuler les données multimédia
 - gérer les participants

...

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Applications principales

Format d'un message RTP

Real-Time Transport Protocol (RFC 3550 pour la v2)

- distribution de données multimédia de bout-en-bout
- nombreux paramètres pour les applications
 - identification (type de données, participants)
 - numérotation spatiale et temporelle des paquets
 - synchronisation de flux
 - surveillance de qualité
 - communication vers un ou plusieurs destinataires

les algorithmes de codage, de synchronisation, de lecture sont implantés au niveau de l'application

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Applications historiques Applications principales

En-tête RTP

RTP

v2	Р	X	CC	M	PT	Seq. num.
					Times	stamp
					SSRC (Synd	Source Id)
CSRC (Contrib Source Id)						
Extensions						
Application data						

- P=1 si bourrage (padding), X=1 si extension présente
- CC : nombre d'identifiants CSRC qui suivent l'entête
- M : marqueur définit et interprété par un profil
- PT : type de données du paquet RTP (défini par un profil)
- Seq. num. : incrémenté de 1 pour chaque paquet RTP (valeur initiale aléatoire)

Applications principales

En-tête RTP : Estampille temporelle

v2 P X CC	M PT	Seq. num.						
	Timestamp							
	SSRC (Sync Source Id)							
CSRC (Contrib Source Id)								
···								
Extensions								
Application data								

- instants d'échantillonnage du premier octet du paquet RTP
 - sont liées à une horloge qui s'incrémente de façon monotone et linéaire
 - fréquence de l'horloge dépendant du type des données (spécifiée par le profil)
- instants de présentation
 - o calculés à partir d'une origine temporelle, dépend du profil

valeur initiale aléatoire

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Applications principales

En-tête RTP : CSRC

- liste de 0 à 15 items de 32 bits
- identifie les sources qui ont des données dans le paquet RTP.
- les CSRC sont insérés par les "mixers"
- plusieurs utilisations possibles, exemple :
 - identifier les interlocuteurs dans une session de télé-conférence (le mixer indique son SSRC et les SSRC des sources initiales deviendrons des CSRC)

En-tête RTP: SSRC

v2	РΧ	CC	M	PT	Seq. num.		
				Times	stamp		
	SSRC (Sync Source Id)						
	CSRC (Contrib Source Id)						
	Extensions						
Application data							

- identifie la source sur laquelle les données du paquet sont synchronisées
- à chaque SSRC correspond un interval de numéro de séquence
- choisi de manière aléatoire pour ne pas avoir 2 SSRC identiques dans la même session RTP (les implémentations de RTP doivent pouvoir gérer les collisions) UPMC
- chaque application peut avoir plusieurs SSRC

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Architecture des Réseaux (ARes) 2/5 : Application

Applications historiques Applications principales

En-tête RTP : CSRC

- permet de réaliser une implementation propriétaire
 - dans un cadre expérimental par exemple (pour de tester de nouveaux formats de données)
 - paramètres d?extension définis par l'implementation

Profiles RTP audio et vidéo

Le RFC 3551 défini un profil de base sans négociation de paramètres

PT	encodage	A/V	Clock	(Hz)
0	PCMU	Α	8000	
2	G721	Α	8000	
3	GSM	Α	8000	
5	DVI4	Α	8000	
7	LPC	Α	8000	
8	PCMA	Α	8000	
9	G722	Α	8000	
15	G728	Α	8000	
26	JPEG	V	90000	
31	H261	V	90000.	

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Applications principales

Autres formats d'encapsulation RTP vidéo

RFC 2435 RTP for JPEG-compressed Video

RFC 2250 RTP for MPEG1/MPEG2

RFC 3640 RTP for Transport of MPEG-4 Elementary Streams

RFC 4425 RTP for Video Codec 1 (VC-1)

RFC 4587 RTP for H.261 Video Streams

RFC 4628 RTP for H.263 Video Streams

RFC 4629 RTP for the 1998 Version of ITU-T Rec. H.263 Video

(H.263+)

RFC 5371 RTP for JPEG 2000 Video Streams

RFC 6184 RTP for H.264 Video

RFC 6190 RTP for Scalable Video Coding (extension H264 AVC)

RFC 6416 RTP for MPEG-4 Audio/Visual Streams

RFC 6469 RTP for DV (IEC 61834) Video

Applications principales

Autres formats d'encapsulation RTP audio

RFC 2658 RTP PureVoice(tm) Audio

RFC 3389 RTP Comfort Noise (CN)

RFC 3558 RTP for Enhanced Variable Rate Codecs (EVRC)

RFC 4184 RTP for AC-3 Audio

RFC 4298 RTP for BroadVoice Speech Codecs

RFC 4348 RTP for VMR-WB Audio Codec

RFC 4352 RTP for AMR-WB+ Audio Codec

RFC 4867 RTP for AMR (Adaptive Multi-Rate) and AMR-WB Audio Codecs

RFC 4598 RTP for Enhanced AC-3 (E-AC-3) Audio

RFC 5188 RTP for the Enhanced Variable Rate Wideband Codec (EVRC-WB)

RFC 5215 RTP for Vorbis Encoded Audio

RFC 5219 A More Loss-Tolerant RTP Payload Format for MP3 Audio

RFC 5391 RTP for ITU-T Recommendation G.711.1

RFC 5404 RTP for G.719

RFC 5574 RTP for the Speex Codec

RFC 5577 RTP for ITU-T Recommendation G.722.1 (wideband)

RFC 5584 RTP for the Adaptive TRansform Acoustic Coding (ATRAC) Family

RFC 5993 RTP for GSM Communications Half Rate (GSM-HR)

RFC 6884 RTP for the Enh. Var. Rate Narrowband-Wideband Codec

Olivier Fourmaux (olivier.fourmaux@upmc.fr) Architecture des Réseaux (ARes) 2/5 : Appl

Applications principales

RTCP

Real-Time Transport Control Protocol (RFC 3550)

- totalement intégré à RTP
 - même RFC 3550
- transmet les informations de session
 - synchronisation
 - participants
- fournit des statistiques sur la qualité de la session
- transmet des informations de contrôle sur la session
 - ex : identifier un participant sur les écran des participants

RTSF

Real Time Streaming Protocol (RFC 2326)

- contrôle hors bande de la diffusion (habituellement TCP port 554)
- identification de la resource via URL

(ex : rtsp://media.upmc.fr:554/videofile)

- fonctionnalités typiques d'un lecteur vidéo :
 - lecture/pause
 - avance rapide
 - accès à une position temporelle...
- ne définit aucun mécanismes de codage pour la vidéo/audio
- ne définit pas la méthode d'encapsulation des données
- n'impose aucun mode de mise en mémoire tampon du lecteur média

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Architecture des Réseaux (ARes) 2/5 : Application

Applications historiques Applications principales Applications support World Wide Web messagerie électroniqu

RTSP: exemple

```
C->W: GET /concert.sdp HTTP/1.1
      Host: www.upmc.fr
W->C: HTTP/1.1 200 OK
      Content-Type: application/x-rtsl
                                                      C->M: SETUP rtsp://live.upmc.fr/concert/audio RTSP/1.0
                                                            CSeq: 2
                                                            Transport: RTP/AVP; multicast
        <track src="rtsp://live.upmc.fr/concert/audio">
      </session>
                                                      M->C: RTSP/1.0 200 OK
                                                            CSeq: 2
                                                            Transport: RTP/AVP; multicast; destination=224.2.0.1;
                                                                port=3456-3457;ttl=16
C->M: DESCRIBE rtsp://live.upmc.fr/concert/audio RTSP/1.0
                                                            Session: 0456804596
      CSeq: 1
                                                      C->M: PLAY rtsp://live.upmc.fr/concert/audio RTSP/1.0
M->C: RTSP/1.0 200 OK
                                                            CSeq: 3
      CSeq: 1
                                                            Session: 0456804596
      Content-Type: application/sdp
      Content-Length: 44
                                                      M->C: RTSP/1.0 200 OK
                                                            CSeq: 3
                                                            Session: 0456804596
      v=0
      o=- 2890844526 2890842807 IN IP4 132.227.24.202
      s=RTSP Session
      m=audio 3456 RTP/AVP 0
                                                                                                UPMC
      a=control:rtsp://live.upmc.fr/concert/audio
      c=IN IP4 224.2.0.1/16
```

RTSP: fonctionnement

UPMC

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Architecture des Réseaux (ARes) 2/5 : Application

Applications historiques
Applications principales
Applications support

World Wide Web messagerie électroniq

SIP

Session Initiation Protocol (RFC 3261)

- mise en place d'appel
 - notification (intention d'établir un appel)
 - négociation (codages, média...)
 - terminaison (fin de l'appel/session)
- utilisateurs identifiés par noms et/ou e-mails (pas de numéros de téléphone)
- correspondance entre identifiants et adresses IP
- gestion des appels
 - ajout de nouveaux média pendant l'appel
 - changement de codage en cours
 - invitation de particpants
- protocole de base de l'IMS (IP Multimedia Subsystem du 3GPP)

SIP: fonctionnement

- négociation du codec (réponse 606 not acceptable avec la liste des codec supportés)
- rejet d'appel (réponse busy, gone, payment, forbidden...)
- transmission (données multimédia envoyées avec RTP ou un autre protocole)

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Architecture des Réseaux (ARes) 2/5 : Application

Applications historiques Applications principales Applications support World Wide Web messagerie électronique multimedia

SIP : conversion de nom et localisation

Comment faire correspondre l'identifiant SIP (nom/email) à l'adresse IP de l'appelé?

- l'appelé peut être mobile
- il peut obtenir une adresse IP dynamique/privée
- il peut avoir plusieurs appareils IP (ordinateur, tablette, smartphone... etc.)

Avec quelle flexibilité?

- en fonction du temps et du lieu
- en fonction de l'état de l'appel et/ou de l'appelée (transfert d'appel, etc.)
- ce service est assuré par des serveurs SIP :
 - serveur SIP Registrar
 - serveur SIP Proxy

SIP: exemple

```
INVITE sip:auto@localhost SIP/2.0
Via: SIP/2.0/UDP 127.0.0.1:13764;rport
                                                        SIP/2.0 200 OK
Max-Forwards: 70
                                                        Via: SIP/2.0/UDP 127.0.0.1:13764;;rport=13764;received=127.0.0.1
Contact: <sip:matthew@127.0.0.1:13764>
                                                        To: "sip:auto@localhost" <sip:auto@localhost>;tag=tCAED3F5A
To: "sip:auto@localhost"<sip:auto@localhost>
                                                        From: "Olivier"<sip:olivier@upmc.fr>;tag=5c7cdb68
From: "Olivier"<sip:olivier@upmc.fr>;tag=5c7cdb68
                                                        Call-ID: NmNhYWNhMjYOY2MOOTc4YTI2MzgzZTNlYTRhZTMxNTE
Call-ID: NmNhYWNhMjYOY2MOOT.
                                                        CSeq: 1 INVITE
                                                        Contact: <sip:127.0.0.1:5060>
CSeq: 1 INVITE
Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER, NOTIFY, Content-Type: application/sdp
  MESSAGE, SUBSCRIBE, INFO
                                                        Content-Length: 271
Content-Type: application/sdp
User-Agent: eyeBeam release 1014g stamp 44944
Content-Length: 389
                                                        o=olivier 1208261984604 1208261984604 IN IP4 127.0.0.1
o=- 7 2 IN IP4 132.227.61.199
                                                        ACK sip:127.0.0.1:5060 SIP/2.0
                                                        Via: SIP/2.0/UDP 127.0.0.1:13764;rport
                                                        Max-Forwards: 70
                                                        Contact: <sip:matthew@127.0.0.1:13764>
SIP/2.0 100 Trying
Via: SIP/2.0/UDP 127.0.0.1:13764:rport=13764:received=12700.0sip:auto@localhost"<sip:auto@localhost>:tag=tCAED3F5A
To: "sip:auto@localhost" <sip:auto@localhost>
                                                        From: "Olivier"<sip:olivier.@upmc.fr>;tag=5c7cdb68
From: "Olivier" < sip:olivier@upmc.fr>;tag=5c7cdb68
                                                        Call-ID: NmNhYWNhMjYOY2MOOTc4YTI2MzgzZTN1YTRhZTMxNTE
Call-ID: NmNhYWNhMjYOY2MOOTc4YTI2MzgzZTN1YTRhZTMxNTE.
                                                        CSeq: 1 ACK
CSeq: 1 INVITE
                                                        Content-Length: 0
Content-Length: 0
```

Applications historiques
Applications principales
Applications support

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

World Wide Web messagerie électroniq

SIP : Registrar

Au démarrage du client SIP de l'utilisateur :

• émission d'un message REGISTER vers le serveur SIP Registrar de l'utilisateur.

REGISTER sip:upmc.fr SIP/2.0

Via: SIP/2.0/UDP 132.227.61.205:5061;rport;branch=z9hG4bKDC8595CD770E4317ACBC3

From: Ivan <sip:olivier@upmc.fr>;tag=1516659370

To: Ivan <sip:olivier@upmc.fr>

Contact: "Ivan" <sip:olivier@132.227.61.205:5061> Call-ID: 46E1C3CB36304F84A020CF6DD3F96461@Verso.com

CSeq: 37764 REGISTER

Expires: 1800 Max-Forwards: 70

User-Agent: LIP6-SIP-Phone v0.9

Content-Length: 0

L'utilisateur envoie un message INVITE vers son Proxy SIP

• indique l'adresse SIP du destinataire (sip:olivier@upmc.fr)

Le serveur Proxy SIP est responsable de l'acheminement des messages SIP

- éventuellement à travers plusieurs proxys.
- l'appelé envoie la réponse à travers le(s) même proxy(s)
- ensuite, le proxy de l'appelé renvoie une réponse SIP à l'appelant contenant son l'adresse IP

Le service fournis par le proxy SIP est similaire à celui d'un serveur DNS local

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Applications principales Applications support

SDP

Session Description Protocol (RFC 4566

- description des sessions multimedia pour leur initialisation
- présente les détails du média à transmettre/recevoir aux participants
 - adresses, identifiants, codecs, métadata, etc.
- ce n'est pas un protocole de transmission/transport
 - seulement de la description
- peut être utilisé sur un protocole de transport quelconque
- peut être intégré à tout protocoles d'initialisation/signalisation RTSP, SIP, etc.
- format standard de présentation
 - indication de contenu d'une description SDP avec Content-Type: application/sdp
 - la description SDP est une suite de ligne de texte de type <type>=<value>

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Applications principales Applications support

SDP: example

o=fourmaux 2990844526 2990842807 IN IP4 132.227.63.51 s=SDP Seminar i=A Seminar on SDP u=http://www.upmc.fr/sem/sdp.pdf e=olivier.fourmaux@upmc.fr c=IN IP4 224.2.17.12/127 t=2973397496 2973404696 a=recvonly m=audio 49170 RTP/AVP 0 m=video 51372 RTP/AVP 99

Types SDP possibles:

- (protocol version) (originator and session identifier)
- s= (session name)
- i=* (session information)
- u=* (URI of description)
- e=* (email address)
- p=* (phone number)
- c=* (connection information)
- b=* (0 or more bandwidth information lines)
- t= (time the session is active)
- r=* (0 or more repeat times)
- z=* (time zone adjustments)
- k=* (encryption key)
- a=* (0 or more session attribute lines) 0 or more media descriptions
 - m= (media name and transport address)
 - i=* (media title)
 - c=* (connection information)
 - b=* (0 or more b.w. information lines)
 - k=* (encryption key)
 - a=* (0 or more media attribute lines)

a=rtpmap:99 h263-1998/90000

ARes: plan du cours 2/5

- 1 Applications historiques

 - tranfert de fichiers
- 2 Applications principales
- 3 Applications support
 - annuaire (DNS)

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Applications historiques Applications principales Applications support

Annuaire

Conversion des noms littéraux des hôtes de l'Internet en adresses numériques

- initialement
 - un fichier
 - espace de "nommage" à plat
 - gestion centralisée par un NIC (Network Information Center)
- actuellement : DNS
 - base de données distribuée
 - espace de "nommage" hiérarchique
 - décorrélé de la topologie physique
 - système contrôlé par l'InterNIC (1992-1998) et puis l'ICANN (Internet Corporation for Assigned Names and Numbers) et ses nombreux délégués
 - délégation hiérarchique (proche de celle du "nommage")
 - taille des délégations raisonables
 - protocole d'échange...

Correspondance noms – adresses

UPMC

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Applications historiques Applications principales Applications support

DNS (Domain Name System)

Annuaire standard de l'Internet (RFC 1034 et RFC 1035)

- espace de "nommage" hiérarchique et système de délégation
- serveurs de noms (serveurs DNS)
 - o composants physiques de la hiérarchie supportant la base distribuée
 - gèrent les requêtes DNS
 - transport sur UDP ou TCP, port 53
 - les applications y accèdent à travers le resolver (UNIX) :
 - gethostbyname (3), gethostbyaddr (3)
- services :
 - name resolving
 - host aliasing
 - mail server aliasing
 - load disribution...
- exemple :
 - BIND (Berkeley Internet Name Domain)
 - named (UNIX)

DNS: Espace de "nommage"

Système de "nommage" hiérarchique

- structure arborescente (~ système de fichier Unix)
- label d'un nœud : 63 car. max. (A..Za..z- insensible à la casse)
- domain name = liste des labels en parcourant l'arbre vers la racine (255 car. max. au total et "." séparateur de label) :
 - absolu (FQDN): pc24.CS.keio.ac.jp.
 - les noms relatifs sont gérés localement (hôte)

Applications historiques Applications principales Applications support

annuaire (DNS)

DNS: gTLD (generic Top Level Domain)

.aero	2001	Air-transport industry *	SITA
.asia 2006		Asia-Pacific region *	Afilias
.biz	2001	Unrestricted	NeuLevel
.cat	2005	Catalan lingu. & cult.*	Asso. puntCAT
.com/.net	1985	Unrestricted	VeriSign
.coop	2001	Cooperative *	DotCooperation
. edu	1985	(US) educational inst. *	VeriSign
.gov	1985	US government *	US Admin.
.info/.org	01/85	Unrestricted	Afilias
.int	1988	Internat. organisations	ICANN
.job	2005	Human resrc. managment*	Employ Media
.mil	1985	US military *	US DoD NIC
.mobi	2005	Mobile device use *	Mobi JV
.museum	2001	Museums *	MuseDoma
.name	2001	Individuals	VeriSign
.pro	2001	Professionals	RegistryPro
.tel	2005	Internet Tel. serv.*	Telnic Limited
.travel	2005	Travel industry*	Tralliance Corp.

DNS : ccTLD (country code Top Level Domain)

ccTLD (ISO 3166)	240 countries and external territories
.ac	Ascension Island
.af	Afghanistan
.aq	Antarctica (-60°S)
.eu	European Union
.fr	France
.gf	French Guiana
.gp	Guadeloupe
.mq	Martinique
.pf	French Polynesia + Clipperton
.pm	Saint-Pierre and Miquelon
.re	Réunion
.tf	TAAF
.ru	Russia (+.su)
.tv	Tuvalu
.uk	United Kingdom (+.gb)
.us	United States
.ZW	Zimbabwe

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Architecture des Réseaux (ARes) 2/5 · Application

Applications historiques Applications principales Applications support

annuaire (DNS)

DNS: Nouveau TLD depuis 2012

En 2012, l'ICANN, a autorisé \sim 2000 nouveaux TLD pour 2013-14

- Grande diversités de TLD :
 - marques (.google, .danone, etc.)
 - communautés (.archi, .immo, etc.)
 - zones géographiques (.paris, .nyc, etc.)
 - langues non ASCII (·移动(.xn-6frz82g, idéogramme pour "mobile"), etc.)
 - inclassable (.photo, .wtf , etc.)

DNS: Domaine .arpa

pc24.cs.keio.ac.jp. ➡? Résolution :

Résolution inverse : 24.57.237.198.in-addr.arpa. - ?

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

UPMC

Applications historiques Applications principales Applications support

DNS: zones (2)

Ne pas confondre zone et domaine!

DNS: zones (1)

ICANN gère la racine et délègue les TLDs à des domain name registry

- zones (sous-arbres de l'arbre DNS) administrés séparément
 - (∼ partitions physiques d'un système de fichier Unix)
 - délégation des noms de sous-domaines correspondants
 - exemple : keio.ac.jp.
- des serveurs de noms y sont associés

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

UPMC

Applications historiques Applications principal Applications support

: serveurs de noms

Différents types de serveurs de noms

- serveurs de référence d'une zone :
 - un primaire (primary name server)
 - informations de référence (authoritative reccords)
 - connaissance de ses descendants (délégations)
 - initialisation locale (disque)
 - un ou plusieurs **secondaire** (*secondary name server*)
 - redondance : complètement séparé du primaire
 - initialisation et m-à-j. à partir du primaire (transfert de zone)
 - physiquement indépendant de la zone
- serveurs locaux (accès au service)
 - résolution top-down (des TLD vers les sous-domaines)
 - connaissance des serveurs racines (root name server)
 - 1 primaire et 12 secondaires, haute disponibilité (anycast)
 - config. en dur (ftp.rs.internic.net/domain/named.root)
 - requêtes récursives ou itératives

DNS : requête itérative

Applications historiques Applications principales Applications support

DNS: performances

Capacité du système DNS à supporter la charge?

- problèmes liés à la consultation systématique de la racine
 - ne tient pas compte de la localité des requêtes
 - serveur local généralement distinct du serveur de référence
 - charge sur les serveurs racines
 - combien de requêtes pour tout l'Internet?
 - disponibilité des serveurs racines
 - passage obligé pour toute requête
- utilisation de cache
 - informations de seconde main (non-authoritative reccords)
 - réponses d'un serveur de référence inclue un délai de validité (TTL)
 - réponses pour les TLD sur les serveurs racines valide 48h
 - 100.000 requêtes par secondes (2005)

DNS : requête récursive

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Applications historiques Applications principales Applications support

DNS : format général du message

15 | 16

۱ ۵

	0 15	16 bit 31	ilags	•
Ì	identificateur	flags	•	QR (1 bit) : 0 = question,
	nombre de questions	nombre de réponses		1 = réponse
	nombre de serveurs	nombre d'info. add.		opcode (4 bit) 0 = standard
	Ques	tions	•	AA $(1 \text{ bit}): 1 = \text{réponse autoritaire}$
			•	TC $(1 \text{ bit}): 1 = \text{tronqué}$
	Cl			$(datagramme\ UDP < 512o)$
	Cnamps de	es réponses		RD (1 bit) : $1 = \text{demande récursion}$ (indiqué par le client)
	Champs des serv	eurs de référence		RA (1 bit) : $1 = \text{récursion disponible}$ (indiqué par le serveur)
Ì			•	réservé (3 bits) : 000
	Champs des informa	ations additionnelles	•	rcode (4 bits) : 0 = pas d'erreur 3 = erreur de nom
١			_	

Lip of flags

UPMC

Applications principales Applications support

DNS : format d'une question

15 | 16 bit 31 Nom (non aligné sur 32bits) Classe Type

• Nom : N octets, chaque nom de label est précédé par un octet indicant le nombre de caractères (si >0x3F alors si 0xC0ZZ =renvoi à ZZ octets du début du message). Terminé par 0x00.

4, 'p', 'c', '2', '4', 2, 'c', 's', 4, 'k', 'e', 'i', 'o', 2, 'a', 'c', 2, 'j', 'p', 0

• Type (16 bits) :

val	nom	description	val	nom	description
1	Α	adr. IPv4	13	HINFO	info sur l'équip.
2	NS	nom serv.	15	MX	serveur messag.
5	CNAME	alias	28	AAAA	adresse IPv6
6	SOA	zone gérée			
12	PTR	point. nom	255	*	tt types (quest.)

Classe (16 bits): 1 = Internet

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Applications historiques Applications principales Applications support

DNS: annuaire inversé

Conversion des adresses numériques en noms littéraux

- requêtes de type pointeur de nom (PTR)
 - adresse IPv4
 - 198.237.57.24
 - conversion dans le domaine in-addr.arpa
 - 24.57.237.198.in-addr.arpa
 - souvent utilisé pour vérifier les droits d'accès

Applications historiques Applications principales Applications support

DNS : format d'un champ réponse

0 15 | 16 bit 31 Nom (non aligné sur 32bits) Classe Type TTL Taille données (o.) Données

- Nom, Type, Classe : idem
- TTL (32 bits) : validité en secondes
- Taille des données (16 bits) : en octets
- Données (N octets sans bourrage) :
 - Nom (chaine codée comme pour une question) NS, CNAME
 Adresses (valeur numérique) A sur 4 octets, AAAA sur 16...

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Applications historiques Applications principales Applications support

DNS : obtention d'une délégation

Pour être référence pour un sous domaine officiel :

- réservation du nom du domaine auprès d'un domain name registrar
- mise en place de serveurs conformes à la norme DNS
 - information de référence de la zone
 - réplication dans au moins un serveur secondaire
 - si sous délégations :
 - connaissance des serveurs descendants
 - si gestion des adresses IP correspondantes :
 - information de référence des pointeurs de nom

DNS: modification dynamique

Dynamique DNS (RFC 2136)

- pour fonctionner avec l'auto-conf. des hôtes (DNS local) :
 - update
 - notification
- problèmes de sécurité...

Service DNS dynamique (prestataire externe)

- pour fonctionner avec une adresse dynamique (accès résidentiels) :
 - serveur : dyndns.org, no-ip.org...
 - client spécifique indiquant le changement d'adresse (host/setupbox)
 - délégation virtuelle (sous domaine de 3ème niveau)
 - toto123.myftp.biz
 - toto123.blogsite.org
 - toto123.homelinux.org
 - toto123.dyn-o-saur.com
 - toto123.endofinternet.net...

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Architecture des Réseaux (ARes) 2/5 : Application

Applications historiques Applications principales Applications support

DNS: exemple

```
Unix> dig www.math.keio.ac.jp
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 11895
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 3, ADDITIONAL: 4
;; QUESTION SECTION:
;www.math.keio.ac.jp.
                             IN A
;; ANSWER SECTION:
www.math.keio.ac.jp.
                     3600 IN CNAME sun3.math.keio.ac.jp.
sun3.math.keio.ac.jp. 3600 IN A
                                         131 113 70 3
;; AUTHORITY SECTION:
math.keio.ac.jp.
                     3600 IN
                                         relay.math.keio.ac.jp.
math.keio.ac.jp.
                     3600 IN
                                 NS
                                         ns.st.keio.ac.jp.
                     3600 IN NS
math.keio.ac.jp.
                                         ns0.sfc.keio.ac.jp.
;; ADDITIONAL SECTION:
relay.math.keio.ac.jp. 3600 IN A
                                         131.113.70.1
                     127
                           IN A
                                         131.113.1.8
ns.st.keio.ac.jp.
ns0.sfc.keio.ac.jp.
                     1199 IN AAAA
                                        3ffe:501:1085:8001::121
ns0.sfc.keio.ac.jp. 2358 IN A
                                         133.27.4.121
```

;; Query time: 577 msec MSG SIZE rcvd: 206

DNS: sécurité

Pas de sécurité dans le protocole de base (RFC 3833)

- interception / modification de message DNS
- faux messages (DNS cache poisoning)
- déni de service...

DNSSEC (RFC 4033 à 4035 + RFC 4310 + RFC 4641)

- extension du système DNS permettant :
 - authentification de l'origine des données
 - authentification du déni d'existence
 - intégrité des données
- obligatoire pour sécuriser les DNS update
 - attention aux extensions propriétaires...

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Applications historiques Applications principales Applications support

ARes: plan du cours 2/5

- 1 Applications historiques
- 2 Applications principales
- 3 Applications support

 - administration de réseau

administration de réseau

Développement du réseau (nombreux équipements et machines à gérer)

Besoins:

- surveillance du réseau
 - détection de pannes
 - mesure de performance
- intervention sur le matériel
 - activation (interface...)
 - configuration (table de routage...)
- poste de contrôle centralisé

Contraintes:

- matériels hétérogènes
 - routeurs, hubs, switchs...
 - ordinateurs, imprimantes, sondes...
- constructeurs multiples
- localisation géographique distante

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Applications historiques Applications principales Applications support

Administration TCP/IP

Comment gérer les machines en environnement TCP/IP?

- instrumentation des équipements (agents)
- logiciels de supervision (HP Openview, Cisco Works, Nagios...)
- protocole de gestion

UPMC

pictures from Tanenbaum A. S. Computer Networks 3rd edition

Equipements administrables

UPMC

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Applications historiques Applications principales Applications support

SNMP : principe

Informations réseau stockées dans deux types de bases :

- bases agents (dans les équipements) : Les valeurs sont directement couplées avec les registres internes
- base centralisée (plateforme de supervision) : dernières valeurs transmises et historique (statistiques)

Standardisation (pour échange en milieu hétérogène)

- désignation et type d'information définis par des MIB
- structures communes et nomenclature définies dans la SMI
- représentation des données en ASN.1
- protocole SNMP entre la station et les agents permettant :
 - lecture/écriture de variables sur des éléments gérés
 - alarmes non sollicitées
 - parcours de listes de variables dans les éléments gérés
 - wision agrégée globale

SNMP: commandes

La richesse est dans la MIB!

- seulement 5 commandes simples
- utilisation sur UDP port 161 et 162

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Applications principales Applications support

SNMP : SMI (Structure for Management Information)

• les info. respectent les types de la SMIv1 (RFC 1155 et 1212)

NULL	pas de valeur
INTEGER	entier signé non limité
Counter	entier positif (0 à $2^{32}-1$) bouclant
Gauge	entier positif (0 à $2^{32}-1$) borné
TimeTicks	durée en centième de secondes
OCTET STRING	chaine d'octets non limitée
DisplayString	chaine codée en NVT de 255 car. max.
IpAddress	chaine de 4 octets
PhyAddress	chaine de 6 octeys
OBJECT ID.	identifiant numérique
SEQUENCE	structure d'éléments nommés
SEQUENCE OF	vecteur d'éléments identiques

SNMP : format des messages

version	communauté		erreur status		nom	valeur	nom	valeur	
				III GOX					

- version : version SNMP 1 (0 \sim SNMPv1)
- communauté : chaine de caractères autorisant l'accès
 - généralement "public"
- type PDU: 0 (get), 1 (get-next), 2 (set), 3 (get-response)
 - le message de type 4 (trap) sera présenté dans la suite...
- ident. req. : fait correspondre requêtes et réponses
- erreur status et erreur index : type d'erreur concernant la variable référencée par l'indexage (0 \sim pas d'erreur)
- nom et valeur : variables transportées

Les tailles des champs ne sont pas précisées car la structure du message est décrite en ASN.1 avec encodage BER.

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Applications historiques Applications principales Applications support

OID (Object IDentifier)

- arbre de "nommage" (référencement unique d'un objet)
 - les objets de l'Internet commencent par 1.3.6.1.

SNMP: MIB (Management Information Base)

• les groupes d'objets définis dans la MIB II (RFC 1213) :

1.3.6.1.2.1.1 system 1.3.6.1.2.1.2

interfaces

1.3.6.1.2.1.3

1.3.6.1.2.1.4 ip

1.3.6.1.2.1.5 icmp

1.3.6.1.2.1.6 tcp

1.3.6.1.2.1.7 udp

1.3.6.1.2.1.8

1.3.6.1.2.1.10 transmission

1.3.6.1.2.1.11 snmp

• d'autres groupes, ou sous-groupes sont définis (autres RFC) :

1.3.6.1.2.1.17 bridge

1.3.6.1.2.1.43 printer ...

Ces groupes contiennent des variables simples ou tables

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Applications historiques Applications principales Applications support

MIB : variable table

Dans le groupe UDP, 1 variable table :

- udpTable indique les ports scrutés sur l'équipement
- udpTable est un vecteur de structures udpEntry

udpLocalAddress IpAddress ro adresse IP locale udpLocalPorts [0..65535] ro port correspondant

 l'index dans la table est ici udpLocalAddress.udpLocalPorts

l'index est précisé à la conception de la MIB

MIB: variable simple

Dans le groupe UDP, 4 variables simples :

• la MIB II fait correspondre des types SMI

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Applications historiques Applications principales Applications support

SNMP : référencement des variables

Référencement des variables :

- simples : ajout de ".0" à la fin
- tables : ajout des valeurs des champs index
 - parcours des OID de la table dans l'ordre lexicographique

nom abrégé	OID	valeur
udpInDatagrams.0	1.3.6.1.2.1.7.1.0	17625
udpLocalAddress.0.0.0.53	1.3.6.1.2.1.7.5.1.1.0.0.0.0.53	0.0.0.0
udpLocalAddress.0.0.0.161	1.3.6.1.2.1.7.5.1.1.0.0.0.0.161	0.0.0.0
udpLocalPort.0.0.0.53	1.3.6.1.2.1.7.5.1.2.0.0.0.0.53	53
udpLocalPort.0.0.0.161	1.3.6.1.2.1.7.5.1.2.0.0.0.0.161	161

- le référencement permet de spécifier les objets dans les messages UDP
 - seuls les OID et les valeurs sont transportées

UPMC

SNMP : commande get-next

Opérateur de parcours dans l'ordre lexicographique des OIDS :

- renvoie la prochaine référence terminale
 - get-next udp

 udpInDatagrams.0 = 17625
- permet le parcours des variables...
 - get-next udpInDatagrams.0 udpNoPorts.0 = 0
- ... et des tables

```
get-next udpTable
■ udpLocalAddress.0.0.0.0.53 = 0.0.0.0
get-next udpLocalAddress.0.0.0.53
■ udpLocalAddress.0.0.0.161 = 0.0.0.0
get-next udpLocalAddress.0.0.0.0.161
■ udpLocalPort.0.0.0.0.53 = 53 ...
```

• fin du tableau lors du changement de nom :

```
get-next udpLocalPort.0.0.0.0.161
■ snmpInPkts.0 = 12
```


Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Applications historiques Applications principales Applications support

Syntaxe abstraite ASN.1

Couche 6 de l'OSI (définie par l'UIT, recommandation X.680)

- propriétés :
 - représentation universelle d'informations
 - type associé aux données
 - désignation par un identificateur unique (OID)
 - notation de type BNF
- description des informations échangées par SNMP :

```
RFC1157-SNMP DEFINITIONS ::= BEGIN
    Message ::= SEQUENCE {
                                   INTEGER {version-1(0)},
                      version
                                  OCTET STRING,
                      community
    PDUs ::= CHOICE {
                  get-request
                                  GetRequest-PDU.
                  get-next-request GetNextRequest-PDU,
                                  GetResponse-PDU,
                  get-response
                  set-request
                                   SetRequest-PDU,
                  trap
```


Envoi d'un message SNMP de l'agent vers l'admin. sur le port 162

version	communauté	type	entreprise	adr.	type	code	estamp.	nom	valeur	
		= 4		agent	trap	entr.				

- entreprise : identificateur du créateur de l'agent • OID débutant par 1.3.6.1.4.1.
- adr. agent : adresse IP de l'agent

```
0 coldStart
                                        agent initialisé
                     warmStart
                                       agent réinitialisé
                     linkDown
                                       interface désactivée
• type trap
                                       interface activée
                     linkUp
                 6 entr. specific voir le champ code entr.
```

- code entr. : sous-code du trap spécifique à l'entreprise
- estamp. temp. : valeur indiquant le nombre de centièmes de secondes depuis le démarrage de l'agent

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Applications historiques Applications principales Applications support

ASN.1: PDU

Message get écrit en ASN.1 :

```
getRequest-PDU ::= [0]
                    IMPLICIT SEQUENCE {
                        request-id INTEGER,
                        error-status INTEGER {
                            noError(0), tooBig(1),
                            noSuchName(2), badValue(3),
                            readOnly(4), genErr(5),
                                                         -- always 0
                        error-index INTEGER.
                                                         -- always 0
                        variable-bindings SEQUENCE OF
                            SEQUENCE {
                                name
                                       ObjectName,
                                value ObjectSyntax
                            }
                   }
```


SNMP: encodage BER

Encodage TLV (Type, Longueur, Valeur)

• types (10) : les 2 bits de poids fort déterminent la catégorie

()		
	0×02	INTEGER
	0×04	OCTET STRING
• UNIVERSAL (00)	0×05	NULL
	0×06	OBJECT IDENTIFIER
	0×30	SEQUENCE
	0,100	EDGODNOD

APPLICATION (01)

0×40	IpAddress
0×41	Counter
0×42	Gauge
0×43	TimeTicks

- CONTEXT (10)
- PRIVATE (11)
- longueur des données (1 octet si < 0x80, sinon norme X.208)
 - o longueur 49 → 0x31, longueur 242 → 0x8200F2...
- données (valeur)
 - les OID (avec les valeurs entières successives A.B.C.D...) sont

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Applications historiques Applications principales Applications support

MIB RMON

Remote MONitoring (RFC 2819 - STD 59) Sonde pour obtenir des statistiques sur un réseau administré

- 9 groupes :
 - statistiques sur Ethernet (table de 21 attributs)
 - équipements du réseau (adresses observées...)
 - matrice de statistiques (entre deux stations)
 - capture de trames
 - o ...
- nombreuses extensions
 - identification de protocoles pour RMON (RFC 2895, 2896)
 - RMON pour réseaux commutés (SMON : RFC 2613)
 - gestion des interface pour RMON (IFTOPN: RFC 3144)
 - RMON pour les services différenciés (DSMON : RFC 3287) ...

SNMP: exemple

0020											30	82	00	f2	02	01	JD	0
0030	00	04	06	70	75	62	6c	69	63	a2	82	00	е3	02	01	01	publi	c
0040	02	01	00	02	01	00	30	82	00	d6	30	82	00	0d	06	80	0.	0
0050	2b	06	01	02	01	02	01	00	02	01	03	30	82	00	0f	06	+	0
0060	0a	2b	06	01	02	01	02	02	01	80	01	02	01	01	30	82	.+	0.
0070	00	0f	06	0a	2b	06	01	02	01	02	02	01	80	02	02	01	+	
0800	02	٠.																
0100													30	82	00	10		C,O
0110	06	Λa	2h	06	01	റാ	01	02	റാ	01	nα	01	43	02	01	20	+	С

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Applications historiques Applications principales Applications support

Autres MIB IETF (1)

MIB Imprimante Printer MIB (RFC 1759 - RFC 3805)

- 274 Objets (228 OID dont 16 tables)
 - 20 groupes :
 - groupe général
 - groupe des entrées
 - groupe des sorties
 - groupe des dimensions de sortie
 - groupe de la couverture
 - groupe des fournitures
 - groupe des colorants ...

Autres MIB IETF (2)

RFC5240: PIM Bootstrap Router MIB RFC1230: IEEE 802.4 Token Bus MIB RFC1381: MIB Extension for X.25 LAPB RFC5324: MIB for Fibre-Channel Security Protocols RFC1559: DECnet Phase IV MIB Extensions RFC5428: Management Event MIB for PacketCable RFC1593: SNA APPN Node MIB RFC5519: Multicast Group Membership Discovery MIB RFC5525: Reliable Server Pooling MIB Module Definition RFC1611 : DNS Server MIB Extensions RFC1612 : DNS Resolver MIB Extensions RFC5601 : Pseudowire (PW) MIB RFC5602 : Pseudowire (PW) over MPLS PSN MIB RFC1696: Modem MIB RFC1697 : Relational DB Mngmnt System MIB RFC5603 : Ethernet Pseudowire (PW) MIB RFC1724: RIP Version 2 MIB RFC5728: The SatLabs Group DVB-RCS MIB RFC1748 : IEEE 802.5 MIB RFC5813: ForCES MIB RFC5833 : CAPWAP Protocol Base MIB RFC2020: IEEE 802.12 Interface MIB RFC2320: Classical IP and ARP Over ATM MIB RFC5834: CAPWAP Proto. Binding MIB for IEEE 802.11 RFC6240 : SONET/SDH Circuit Emul. over Pck. MIB RFC2564: Application Management MIB RFC1792 : TCP/IPX Connection MIB RFC6639: MPLS-TP MIB-Based Management Overview RFC2605 : Directory Server Monitoring MIB RFC6643: Translation of SMIv2 MIB to YANG Modules RFC2707: Job Monitoring MIB RFC6727: Definitions of M. O. for Packet Sampling RFC2720 : Traffic Flow Measurement : Meter MIB RFC6765: xDSL Multi-Pair Bonding (G.Bond) MIB RFC2788: Network Services Monitoring MIB RFC6766: xDSL Multi-Pair Bonding TDIM MIB RFC2789: Mail Monitoring MIB RFC6767: Ethernet-Based xDSL Multi-Pair Bonding MIB RFC2790 : Host Resources MIB RFC6768: ATM-Based xDSL Bonded Interfaces MIB RFC2863: The Interfaces Group MIB RFC6779: Definition of Managed Objects for the NDP RFC2922 : Physical Topology MIB RFC6825 : TE Database MIB for MPLS-TE/GMPLS RFC2932 : IPv4 Multicast Routing MIB RFC6933: Entity MIB (Version 4) RFC2933 : IGMP MIB RFC7052: Locator/ID Separation Protocol (LISP) MIB RFC2934: PIM MIB for IPv4 RFC7124: Ethernet in the 1st Mile Copper (EFMCu) MIB RFC2981 : Event MIB RFC7147: Definitions of Managed Objects for iSCSI RFC2982: Distributed Management Expression MIB RFC7184: Def. of Managed Objects for the OLSRv2 RFC3014: Notification Log MIB RFC7330 : Def. of TCs for BFD RFC3144: RMon MIB Extensions for Interface RFC7331: BFD MIB RFC3287: RMon MIB Extensions for DiffServ...

> Applications principales Applications support

Plusieurs versions ont été standardisées :

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

- SNMPv1 définie dans le RFC 1157 (1990) simple et non sécurisée encore très utilisée
- SNMPv2 définie dans les RFC 1901 à 1908 avec extensions (requêtes get-bulk et inform, MIB SNMPv2 et SNMPv2-M2M) et sécurisation mais pas de consensus des industriels
 - SNMPv2c réduite aux nouvelles fonctionnalités mais sans la sécurité (Community-Based)
 - SNMPv2u nouveau mécanisme de sécurité simplifié (User-Based)
- SNMPv3 définie dans les RFC 3410 à 3418, réintègre la sécurité
 - seule la v3 est un standard IETF (STD-62)
 - Utilisation de multi-version : RFC 3584

Applications historiques Applications principales Applications support

MIB constructeur

Olivier Fourmaux (olivier.fourmaux@upmc.fr)

Applications historiques Applications principales Applications support

SNMP: limitations

- la mesure ne doit pas perturber le réseau
- latence
- MIB propriétaires
- sécurité
 - écoute sur le réseau (packet sniffing) pour connaître la
 - usurpation d'identité (IP spoofing) facilité par UDP
- améliorations avec SNMPv3

