2.)
$$X = [1, 2]$$
 $f(x) = x + \ln(x) - 2$
 $f'(x) = 1 + \frac{1}{x}$
 $f(x) = x + \ln(x) - 2$
 $f'(x) = x + \frac{1}{x}$
 $f(x) = x + \ln(x) - 2$
 $f'(x) = x + \frac{1}{x}$
 $f'(x) = x + \ln(x) - 2$
 $f'(x) = x + \frac{1}{x}$
 $f'(x) = x + \ln(x) - 2$
 $f'(x) = x + \ln(x) -$

2 6)

k = 10

3.)
$$f(x) = arctan(x) - x$$
, $x = 0$ als energy

(a) $f(0) = arctan(0) - 0 = 0$
 $f'(x) = \frac{1}{x^2 - 1} - 1$
 $f'(0) = \frac{1}{x^2 - 1} - 1$
 $f''(0) = 0$
 $f'''(x) = \frac{2(3x^2 - 1)}{(x^2 - 1)^3}$
 $f'''(0) = \frac{2(0 - 1)}{(0 - 1)^3} = -2$

=) $x = 0$ ist eine 3-fache builtstelle van f
=7 Wach Satz 168 benverjert das bewern-bothen far rechefache builtstellen nur brear in einer umgehung von x .