

第38讲 总体与样本

数理统计学是一门以数据为基础的 学科.

数理统计学的任务就是如何获得样 本和利用样本,从而对事物的某些未知 方面进行分析、推断并作出一定的决策。

例如: 生产厂家声称他们生产的灯泡平均寿命不 低于6000小时,如何验证厂家说法的真伪?由于 灯泡寿命试验是破坏性试验, 不可能把整批灯泡 逐一检测, 只能抽取一部分灯泡进行检验, 通过 这部分灯泡的寿命数据来推断整批灯泡的平均寿 命。以部分数据信息来推断整体未知参数,就是

数理统计研究问题的基本方式。

- 总体: 研究对象的全体;
- 个体: 总体中的成员;
- 总体的容量: 总体中包含的个体数;
- 有限总体:容量有限的总体;
- 无限总体:容量无限的总体,通常将容量非常大的有限总体也按无限总体处理。

• 例: 1) 了解某校大学生"做过家教(包括正在做家教)"的比例。

总体是该校大学生全体。这是一个有限总体,每个大学生有许多指标,比如性别,年龄,身高,体重,高考成绩…。现在我们关心的是学生是否"做过家教"这一指标。

- 2) 了解某城市的空气质量情况,关注该城市的PM2.5值。总体是城市上空一定范围内的空气,这是一个无限总体,描述空气质量有许多指标,而我们仅关心PM2.5值。
- 3)药厂研究某种药物在人体中的吸收情况。
 总体是全体国民,这是一个有限总体,但数量非常巨大,我们常把它看成无限总体。

为了采用数理统计方法进行分析,首先要收集数据,数据收集方法一般有两种。

(1) 通过调查、记录收集数据。如为了调查大学生是否"做过家教",可以进行问卷调查;要了解PM2.5值,需要在城市设立若干监测站点,定时收集PM2.5数据。

(2) 通过实验收集数据。如为了了解药物吸收情况,首先要进行试验设计,并征集若干志愿者,按试验设计方案将他们分成若干组,监测他们服药后不同时间点身体中药物含量,记录相应的数据。

关于数据的收集(调查数据和实验数据) 可以根据数据本身的特点有多种不同的方法 和设计,有专门的课程讲授,本课程不作详 细介绍。

- 实际中人们通常只关注总体的某个(或几个)指标。
- 总体的某个指标X,对于不同的个体来说有不同的取值,这些取值构成一个分布,因此X可以看成一个随机变量.
- 有时候直接将X称为总体. 假设X的分布函数 为F(x). 也称总体X具有分布F(x).

例1:了解某校学生"做过家教"的情况,对每个学生来说,以 $\{X=1\}$ 表示"做过家教",以 $\{X=0\}$ 表示"未做过家教",则总体

 $X \sim B(1,p),$

p是全校学生中做过家教所占的比例, 未知.

 $P(X = x) = p^{x}(1-p)^{1-x}, x = 0,1.$

• 如何推断总体分布的未知参数(或分布)?

方

法

需要从总体中抽取一部分个体,根据这部分个体的数据,并利用概率 论的知识等作出分析推断.

被抽取的部分个体叫做总体的一个样本.

- ▶简单随机样本:满足以下两个条件的随机样本 (X₁, X₂, ···, X_n)称为容量是n的简单随机样本。
 - 1 代表性:每个X;与X同分布;
 - 2 独立性: X₁, X₂, ···, X_n是相互独立的随机变量。

[说明]:后面提到的样本均指简单随机样本。

- 获得简单随机样本的抽样称为简单随机抽样。如何进行简单随机抽样?
- 对于有限总体,采用放回抽样.
- 但当总体容量很大的时候,放回抽样有时候很不方便,因此在实际中当总体容量比较大时,通常将不放回抽样所得到的样本近似当作简单随机样本来处理.
- 对于无限总体,一般采取不放回抽样.

例2:有四个同学参加了《概率论与数理统计》课程考试,成绩分别为88,75,70,63. X表示这四人的成绩, (1) 写出总体X的分布律, 数学期望和方差; (2) 从总体中抽取容量为2的样本,列出全部的样本值.

解: (1) X 88 75 70 63 p ¼ ¼ ¼ ¼ ¼

$$E(X) = (88 + 75 + 70 + 63)/4 = 74,$$

$$D(X) = 83.5$$

$$= [(88 - 74)^{2} + (75 - 74)^{2} + (70 - 74)^{2} + (63 - 74)^{2}]/4$$

(2) 样本 (X_1, X_2) 取值 (x_1, x_2) 有16个样本值.

$$P(X_1 = x_1, X_2 = x_2) = \frac{1}{16}$$
,具体 (x_1, x_2) 如下表所示

(88,	88)	(88,	75)	(88,	70)	(88,	63)
(75,	88)	(75,	75)	(75,	70)	(75,	63)
(70,	88)	(70,	75)	(70,	70)	(70,	63)
(63,	88)	(63,	75)	(63,	70)	(63,	63)

[注意]: (1)一个样本(容量为n) $X_1, X_2, ..., X_n$

是指n个独立与总体分布相同的随机变量.

- (2) 对样本进行一次观测,得到实际数值(n个)
 - X_1, X_2, \dots, X_n 称为样本观察值(或样本值).
- (3)一般情形下,两次观测,样本值是不同的.

例3:设一批灯泡的寿命X(小时)服从参数为 λ 的 指数分布, A未知. 从该批灯泡中采用简单 随机抽样抽取容量为10的样本 $X_1,...,X_{10}$. 对样本实施观测,得到样本值为 6394, 1105, 4717, 1399, 7952, 17424, 3275, 21639, 2360, 2896. 写出总体X的概率密度,及样本的概率密度.

解: 总体X的概率密度为

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0, \\ 0, & x \le 0. \end{cases}$$

$$X_1,...,X_{10}$$
的概率密度为
$$f(x_1,...,x_{10}) = f(x_1)...f(x_{10})$$

$$= \begin{cases} \lambda^{10}e^{-\lambda\sum_{i=1}^{10}x_i}, & x_1,...,x_{10} > 0, \\ 0, &$$
其他.

已经得到的样本值为 6394, 1105, 4717, 1399, 7952, 17424, 3275, 21639, 2360, 2896. 该如何利用这些样本值 来估计未知参数2? 下一讲继续介绍.

