Theorem: Properties of O-, Ω -, and Θ - Notations

Let f and g be real-valued functions defined on the same set of nonnegative real numbers.

- 1. f(x) is $\Omega(g(x))$ and f(x) is O(g(x)) if, and only if f(x) is $\Theta(g(x))$.
- 2. f(x) is $\Omega(g(x))$ if, and only if, g(x) is O(f(x)).
- 3. If f(x) is O(g(x)) and g(x) is O(h(x)), then f(x) is O(h(x)).

Proof

1. We first show that if f(x) is $\Omega(g(x))$, then g(x) is O(f(x)). Thus, suppose f(x) is $\Omega(g(x))$. By definition of Ω -notation, there exist a positive real number A and a nonnegative real number a such that

$$A|g(x)| \le |f(x)|$$
 for all real numbers $x > a$

Divide both sides by A to obtain

$$|g(x)| \le \frac{1}{4}|f(x)|$$
 for all real numbers $x > a$

Let B = 1/A and b = a. Then B is a positive real number and b is a nonnegative real number, and

$$|g(x)| \le B|f(x)|$$
 for all real numbers $x > b$

and so g(x) is O(f(x)).

3. Suppose f(x) is O(f(x)) and g(x) is O(h(x)). By definition of O-notation, there exist positive real numbers B_1 and B_2 , and nonnegative real numbers b_1 and b_2 such that

$$|f(x)| \le B_1 |g(x)|$$
 for all real numbers $x > b_1$

and

$$|g(x)| \leq B_2 |h(x)|$$
 for all real numbers $x > b_2$

Let $B = B_1B_2$, and let b be the greater of b_1 and b_2 . Then if x > b,

$$|f(x)| \le B_1|g(x)| \le B_1(B_2|h(x)|) \le B|h(x)|$$

Thus, by definition of O-notation, f(x) is O(h(x)).

Theorem: On Polynomial Orders

Suppose $a_0, a_1, a_2, \ldots, a_n$ are real numbers and $a_n \neq 0$.

1.
$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
 is $O(x^s)$ for all integers $s \ge n$.

2.
$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
 is $\Omega(x^r)$ for all integers $r \le n$.

3.
$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
 is $\Theta(x^n)$

Theorem: Limitation on Orders of Polynomial Functions

Let n be a positive integer, and let $a_0, a_1, a_2, \ldots, a_n$ be real numbers with $a_n \neq 0$. If m is any integer with m < n, then

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
 is not $O(x^m)$

and

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
 is not $\Theta(x^m)$

Theorem: Orders of Functions Composed of Rational Power Functions

Let m and n be positive integers, and let $r_0, r_1, r_2, \ldots r_n$ and $s_0, s_1, s_2, \ldots, s_m$ be nonnegative rational numbers with $r_0 < r_1 < r_2 < \cdots < r_n$ and $s_0 < s_1 < s_2 < \cdots < s_m$. Let $a_0, a_1, a_2, \ldots, a_n$ and $b_0, b_1, b_2, \ldots, b_m$ be real numbers with $a_n \neq 0$ and $b_m \neq 0$. Then

$$\frac{a_n x^{r_n} + a_{n-1} + \dots + a_1 x^{r_1} + a_0 x^{r_0}}{b_m x^{s_m} + b_{m-1} x^{s_1} + b_0 x^{s_0}} \text{ is } \Theta(x^{r_n - s_m})$$

$$\frac{a_n x^{r_n} + a_{n-1} + \dots + a_1 x^{r_1} + a_0 x^{r_0}}{b_m x^{s_m} + b_{m-1} x^{s_1} + b_0 x^{s_0}} \text{ is } O(x^c) \qquad \text{for all real numbers } c > r_n - s_m$$

$$\frac{a_n x^{r_n} + a_{n-1} + \dots + a_1 x^{r_1} + a_0 x^{r_0}}{b_m x^{s_m} + b_{m-1} x^{s_1} + b_0 x^{s_0}} \text{ is not } O(x^c) \qquad \text{for any real numbers } c < r_n - s_m$$