Advanced Algebra. MA180-4.

Prof. Götz Pfeiffer

School of Mathematics, Statistics and Applied Mathematics University of Galway

Semester 2 (2023/2024)

Outline

- The Language of Mathematics: Logic and Sets.
 - Propositional Logic.
 - Valid Arguments.
 - Sets and Boolean Algebra.
 - Functions and Relations.
- Examples of Algebraic Objects: Permutations and Polynomials.
 - Composition of Functions.
 - Permutations.
 - Polynomials.
 - Factorisation of Polynomials.
- Mathematical Tools: Induction and Probability.
 - Mathematical Induction.
 - Probabilities and Sample Spaces
 - Some Probability Rules
 - Binomial Probability Distribution

he Language (lathematics: ogic and Sets.

Valid Arguments.
Sets and Boolean Algebra
Functions and Relations.

Examples of Algebraic Objects: Permutations and Polynomials.

Permutations.
Polynomials.
Factorisation of

Polynomials. Summary.

Mathematical Fools: Induction and Probability.

Probabilities and Sam Spaces

Binomial Probability Distribution

Summary.

Course Summa

References.

Norman L. Biggs.

Discrete Mathematics.

Oxford UP 2003.

Lindsay Childs.

A Concrete Introduction to Higher Algebra.

Springer 2000.

Douglas E. Ensley and J.Winston Crawley Discrete Mathematics. Wiley 2006.

Mark V. Lawson
Algebra & Geometry: An Introduction to University Mathematics
Taylor & Francis 2016

The Language of Mathematics: Logic and Sets.

Propositional Logic. Valid Arguments. Sets and Boolean Algel Functions and Relation

Examples of Algebraic Objects: Permutations and

Composition of Functions.

Permutations.

Factorisation of Polynomials.

Mathematical
Tools: Induction

Probabilities and Samp Spaces

Binomial Probability Distribution

Summary.

Introduction: The Language of Mathematics Mathematics ...

- ... is about solving problems.
- ... explains patterns.
- ... is a set of statements deduced logically from axioms and definitions.
- ... uses abstraction to model the real world.
- ... employs a precise and powerful language to organize, communicate, and manipulate ideas.

As with any language, in order to participate in a conversation, it helps to be able to **read** and **write**. In this section, we introduce basic elements of the mathematical language and study their meaning:

- logic: the language of mathematical arguments;
- sets: the language of relationships between mathematical objects.

The Language of Mathematics: Logic and Sets.

Propositional Logic.
Valid Arguments.
Sets and Boolean Algebra
Functions and Relations.
Summary

Algebraic Objects:
Permutations and
Polynomials.
Composition of Functions.
Permutations.
Polynomials

Mathematical Tools: Induction and Probability.

Probabilities and Sam Spaces

Binomial Probabi Distribution

Links: The Language of Mathematics.

- http://en.wikipedia.org/wiki/Language_of_mathematics
- http://en.wikipedia.org/wiki/Knights_and_Knaves
- http://www.iep.utm.edu/prop-log/
- http://en.wikipedia.org/wiki/Mathematical_proof
- http://plato.stanford.edu/entries/boolalg-math/
- http://en.wikipedia.org/wiki/Power_set
- http://en.wikipedia.org/wiki/Equivalence_relation
- http://en.wikipedia.org/wiki/Injective_function
- http://en.wikipedia.org/wiki/Surjective_function
- http://mathshistory.st-andrews.ac.uk/Biographies/ Smullyan.html is a biography of the American mathematician, logician and magician Raymond Merrill Smullyan (1919–2017).
- http://mathshistory.st-andrews.ac.uk/Biographies/ Boole.html is a biography of the British mathematician George Boole (1815–1864).
- http://mathshistory.st-andrews.ac.uk/Biographies/De_ Morgan.html is a biography of the British mathematician Augustus De Morgan (1806–1871).

The Language of Mathematics: Logic and Sets.

Propositional Logic.
Valid Arguments.
Sets and Boolean Algebra
Functions and Relations.
Summary

Examples of Algebraic Objects: Permutations and Polynomials. Composition of Functions.

Factorisation of Polynomials. Summary.

Tools: Induction and Probability.

Mathematical Induction

Probabilities and Sample Spaces Some Probability Rules Binomial Probability

Summary.

Logic Puzzles.

 A logic puzzle is a riddle that can be solved by logical thinking.

Example (The Island of Knights and Knaves.)

- A certain island has two types of inhabitants: knights and knaves.
- Knights always tell the truth.
- Knaves always lie.
- Every inhabitant is either a knight or a knave.
- You visit the island, and talk to two of its inhabitants, called A and B.
- A says: "Exactly one of us is a knave".
- B says: "At least one of us is a knight."
- Who (if any) is telling the truth?

The Language of Mathematics:

Propositional Logic.

Sets and Boolean Algebra
Functions and Relations.

Examples of Algebraic Objects: Permutations and Polynomials.

Composition of Functions
Permutations.
Polynomials.

Factorisation of Polynomials. Summary.

Mathematical Fools: Induction and Probability.

Mathematical Induction. Probabilities and Sample Spaces

Spaces
Some Probability Rul

Binomial Probability
Distribution

Course Sumn

Systematical Solution: Table Method.

- For a systematical solution, we use a truth table.
- On the left, list all possible truth values of the claims 'X is a knight' (T for 'true', F for 'false').

A is a knight	B is a knight	Exactly one is a knave	At least one is a knight
T	T	F	T
T	F	Т	T
F	T	Т	T
F	F	F	F

- On the right, compute the corresponding truth values of each of the statements.
- X is a knight if and only if X speaks the truth.
 Therefore the entry in the left column 'X is a knight' must be equal to the right entry for X's statement.
- Here, row 4 contains the only match, hence the unique solution of the puzzle.

The Language of Mathematics:

Propositional Logic.

Sets and Boolean Algebra Functions and Relations.

Examples of Algebraic Objects: Permutations and Polynomials. Composition of Functions.

actorisation of Polynomials.

Mathematical Tools: Induction and Probability

Mathematical Induction Probabilities and Samp Spaces

ome Probability Rules inomial Probability distribution

Further Examples.

You meet 2 inhabitants of the island.

A: Exactly one of us is a knight.

B: All of us are knaves.

Who (if anyone) is telling the truth?

The following examples illustrate important points.

You meet 1 inhabitant of the island.

A: I am a knight.

A A:...

T T *
F F *

(There can be more than one solution.)

You meet 1 inhabitant of the island.

A: I am a knave.

A A: . . . F F T

(No solution? This cannot happen.)

The Language of Mathematics:

Propositional Logic.

Sets and Boolean Algebra.
Functions and Relations.

Examples of Algebraic Objects: Permutations and

Polynomials.
Composition of Functions.
Permutations.
Polynomials.
Factorisation of

Polynomials. Summary.

Mathematical
Tools: Induction
and Probability.

Probabilities and Sam Spaces

Some Probability Ru Binomial Probability Distribution

ummary.

A Puzzle With More Than Two Inhabitants.

You meet 3 inhabitants of the island.

A: Exactly one of us is a knight.

B: All of us are knaves.

C: The other two are lying.

Who (if anyone) is lying?

Solution

			A:	B:	C:	
T	T	Т	F	F	F	
T	T	F	F	F	F	
T	F	T	F	F	F	
T	F	F	Т	F	F	*
F	T	T	F	F	F	
F	Τ	F	Т	F	F	
F	F	Τ	Т	F	T	
F	F	F	F	T	T	

The Language of Mathematics:

Propositional Logic.

Sets and Boolean Algebra.
Functions and Relations.

Examples of Algebraic Objects: Permutations and Polynomials.

Composition of Functions.

Permutations.

Factorisation of Polynomials.

Mathematical Tools: Induction and Probability.

Probabilities and Sam Spaces

Some Probability Rule Binomial Probability Distribution

Symbols.

Truth Values

T: true

F: false

Logical Operations

∴ and (conjunction)

∨ : or (disjunction)

¬ : not (negation)

Variables

 $a, b, c, \ldots, p, q, r, \ldots$: any statement

- Let a stand for 'A is a knight' and b for 'B is a knight.
- Then $\neg a$ means: A is a knave.
- B's statement: 'At least one of us is a knight' (i.e., 'A is a knight' or 'B is a knight') becomes: a ∨ b.

Note: \vee is an **inclusive** 'or'.

The disjunction $p \lor q$ allows for **both** p and q to be true.

The Language of Mathematics:
Logic and Sets.

Propositional Logic.

Sets and Boolean Algebra.
Functions and Relations.

Examples of Algebraic Objects: Permutations and Polynomials.

Composition of Function Permutations. Polynomials. Factorisation of Polynomials.

lathematical cols: Induction

Mathematical Induction.
Probabilities and Sample
Spaces

Some Probability Rules Binomial Probability

istribution ummary.

Propositional Logic.

- Informally, a proposition is a statement that is unambiguously either true or false.
- A propositional variable is a symbolic name (like p, q, r, ...) that stands for an arbitrary proposition.
- Formally, a proposition is defined recursively:

Definition (Formal Proposition)

- Any propositional variable is a formal proposition.
 Moreover, if p and q are formal propositions, the following compound statements are formal propositions:
 - 2 the conjunction $p \land q$ (read: "p and q"), stating that "both p and q are true";
 - 3 the disjunction $p \lor q$ (read: "p or q"), stating that "either p or q are true";
 - 4 the negation $\neg p$ (read: "not p"), stating that "it is not the case that p is true".

The Language of Mathematics:

Propositional Logic.

Valid Arguments.

Sets and Boolean Algebra.

Functions and Relations.

Summary.

Algebraic Objects:
Permutations and
Polynomials.

ermutations.

Factorisation o Polynomials. Summary.

Mathematical Tools: Induction and Probability.

Mathematical Inducti Probabilities and Sar

Spaces
Some Probability Rul

Binomial Probabili Distribution Summary.

Truth Tables.

 A truth table shows the truth value of a compound statement for every possible combination of truth values of its simple components.

p	q	$p \wedge q$	p	q	$p \lor q$	p	¬р
T	T	T	T	T	T	Т	F
T	F	F	T	F	Т	F	Т
F	T	F	F	T	Т		
F	F	F	F	F	F		

Example (The truth table for $(p \lor q) \land \neg (p \land q)$.)

p	q	p∧q	$\neg(p \land q)$	p∨q	$(\mathfrak{p}\vee\mathfrak{q})\wedge\neg(\mathfrak{p}\wedge\mathfrak{q})$
T	T	T	F	T	F
T	F	F	Т	Т	T
F	T	F	Т	Т	Т
F	F	F	Т	F	F

A truth table built from the tables of $p \land q$, $p \lor q$ and $\neg p$.

The Language of Mathematics:
Logic and Sets.

Propositional Logic.

Sets and Boolean Algebra.
Functions and Relations.
Summary.

Examples of Algebraic Objects: Permutations and Polynomials.

Composition of Functions.

Permutations.

actorisation of Polynomials. Summary.

Tools: Induction and Probability.

Probabilities and Sam Spaces

Some Probability Rule Binomial Probability Distribution

Summary.

Simplifying Negations.

- In mathematics, propositions often involve formulas.
- The negation of such a proposition can usually be reformulated in simpler terms with different symbols.

Example

- The negation of the statement "x < 18" is " $\neg(x < 18)$ ", or simply " $x \geqslant 18$ ".
- The negation of a conjunction is a disjunction(!)

Example (Truth tables for $\neg(p \land q)$ and $(\neg p \lor \neg q)$.)

p	q	$p \wedge q$	$\neg(p \land q)$	¬р	¬q	$\neg p \lor \neg q$
Т	T	Т	F	F	F	F
T	F	F	Т	F	Т	Т
F	T	F	T	Т	F	T
F	F	F	Т	Т	Т	Т

The Language of Mathematics:
Logic and Sets.

Propositional Logic.

Sets and Boolean Algebra. Functions and Relations. Summary.

Examples of Algebraic Objects: Permutations and Polynomials.

omposition of Full ermutations.

actorisation of Polynomials. Summary.

Mathematical
Fools: Induction
and Probability.

Probabilities and Sam Spaces

Some Probability F Binomial Probability Distribution

Summary.

Logical Equivalence.

 Two statements p and q are logically equivalent if they have the same truth value for every row of the truth table: We then write p ≡ q.

Theorem (DeMorgan's Laws)

Let p and q be propositions. Then

- - A proposition p is a tautology, if its truth value is T for all possible combinations of the truth values of its propositional variables: p = T.
 - A proposition p is a contradiction, if its truth value is
 F for all possible combinations of the truth values of its propositional variables: p = F.
 - Every logical equivalence is a tautology.

The Language of Mathematics: Logic and Sets.

Propositional Logic.

Valid Arguments.

Sets and Boolean Algebra.

Functions and Relations.

Summary.

Examples of Algebraic Objects: Permutations and Polynomials.

Permutations.

actorisation of Polynomials. Summary.

Tools: Induction and Probability.

Mathematical Induction.

Probabilities and Sample

Probabilities and Sam Spaces Some Probability Bule

Binomial Probability Distribution

Course Summ

Logical Equivalences.

Theorem (for propositional variables p, q, r.)

All of the following are valid logical equivalences.

- Commutative Laws: $p \land q \equiv q \land p$, and $p \lor q \equiv q \lor p$.
- $\begin{tabular}{ll} \bullet & \textit{Associative Laws:} \ (p \land q) \land r \equiv p \land (q \land r), \\ & \textit{and} \ (p \lor q) \lor r \equiv p \lor (q \lor r). \\ \end{tabular}$
- Distributive Laws: $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$, and $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$.
- Absorption Laws: $p \land (p \lor q) \equiv p$, and $p \lor (p \land q) \equiv p$.
- Idempotent Laws: $p \land p \equiv p$, and $p \lor p \equiv p$.
- Complementary Laws: $p \land \neg p \equiv F$, and $p \lor \neg p \equiv T$.
- Identity Laws: $p \wedge T \equiv p$, and $p \vee F \equiv p$.
- Universal Bound: $p \land F \equiv F$, and $p \lor T \equiv T$.
- DeMorgan: $\neg(p \land q) \equiv \neg p \lor \neg q$, and $\neg(p \lor q) \equiv \neg p \land \neg q$.
- Negation: $\neg T \equiv F$, and $\neg F \equiv T$.
- Double Negation: $\neg(\neg p) \equiv p$.

Proof: Compare the corresponding truth tables.

The Language of Mathematics:

Propositional Logic.

Sets and Boolean Algebra. Functions and Relations. Summary.

Examples of Algebraic Objects: Permutations and Polynomials.

Permutations.
Polynomials.
Factorisation of

Polynomials. Summary.

Mathematical Fools: Induction and Probability.

athematical Induction.

Probabilities and Samp Spaces

Sinomial Probabilit Distribution

Sets

- Before moving on to Quantified Predicates, we need to briefly introduce sets.
- A set, naively, is a collection of objects, its elements.

Notation.

```
a \in S means: object a is an element of the set S. And
a \notin S means: object a is not an element of the set S.
```

• Two sets A and B are equal (A = B) if they have the same elements:

```
a \in B for all a \in A and b \in A for all b \in B.
```

Examples

```
\{0, 1\}.
\mathbb{N} = \{1, 2, 3, \dots\} (the natural numbers),
\{x \in \mathbb{N} \mid x \text{ is a multiple of 5}\},\
\emptyset = \{\} (the empty set).
```

Propositional Logic.

Predicates.

Definition

A **predicate** P(x) is a statement that incorporates a **variable** x, such that whenever x is **replaced by a value**, the resulting statement becomes a **proposition**.

Example

- Suppose P(n) is the **predicate** "n is even".
- Then P(14) is the **proposition** "14 is even".
- The proposition P(13) is false.
- P(22) is true.
- Predicates can be combined using the logical operators ∧ (and), ∨ (or), ¬ (not) to create compound predicates.
- A predicate can have more than one variable, e.g., P(x, y) can stand for the predicate " $x \le y$ ".

The Language of Mathematics:

Propositional Logic.

raild Arguments. Sets and Boolean Algebra. Functions and Relations. Summary.

Algebraic Objects: Permutations and Polynomials. Composition of Functions.

Permutations.
Polynomials.

Polynomials. Summary.

Mathematical Tools: Induction and Probability.

Probabilities and Sample Spaces

Sinomial Probabilit Distribution

Quantified Predicates.

Notation.

- Suppose that P(x) is a predicate and that S is a set.
- " $\forall \alpha \in S, P(\alpha)$ " is the proposition:

 "for all elements α of S the statement $P(\alpha)$ is true".
- "∃a ∈ S, P(a)" is the proposition:
 "there exists (at least) one element a in the set S such that the statement P(a) is true".

Suppose $S = \{x_1, x_2, ...\}.$

- " $\forall \alpha \in S, P(\alpha)$ " abbreviates " $P(x_1) \wedge P(x_2) \wedge \cdots$ ".
- $\bullet \ "\exists \alpha \in S, P(\alpha)" \ abbreviates \ "P(x_1) \lor P(x_2) \lor \cdots".$

Negating Quantified Predicates.

- The negation of " $\forall x \in S, P(x)$ " is " $\exists x \in S, \neg P(x)$ ";
- the negation of " $\exists x \in S, P(x)$ " is " $\forall x \in S, \neg P(x)$ ".

The Language of Mathematics:

Propositional Logic.

Valid Arguments.

Sets and Boolean Algebra.

Functions and Relations.

Summary.

Examples of Algebraic Objects: Permutations and Polynomials.
Composition of Functions.

ermutations. olynomials.

Polynomials.
Summary.

Tools: Induction and Probability.

Probabilities and San Spaces

Binomial Probability Distribution Summary.

Implications.

Definition

An **implication** is a statement of the form "if p then q". In symbols, we write this as $p \to q$ (read: "p implies q"). We call proposition p the **hypothesis** and proposition q the **conclusion** of the implication $p \to q$.

• The **truth table** of $p \rightarrow q$ has the form

p	q	$p \rightarrow q$
Т	Т	Т
T	F	F
F	Τ	Т
F	F	Т

Remark.

The **only way** for an implication $p \to q$ to be false is when the **hypothesis** p is **true**, but the **conclusion** q is **false**.

The Language of Mathematics: Logic and Sets.

Valid Arguments.

Sets and Boolean Algebra Functions and Relations. Summary.

Examples of Algebraic Objects: Permutations and Polynomials.

Composition of Functions.
Permutations.
Polynomials.

Factorisation of Polynomials.
Summary.

Mathematical Tools: Induction and Probability.

Probabilities and Sam Spaces

Some Probability Rules Binomial Probability

Binomial Probabil Distribution Summary.

Converse, Inverse, Contrapositive.

Various variations of the implication $p \to q$ are of sufficient interest:

- $q \rightarrow p$ is the **converse** of $p \rightarrow q$.
- $\neg p \rightarrow \neg q$ is the **inverse** of $p \rightarrow q$.
- $\neg q \rightarrow \neg p$ is the **contrapositive** of $p \rightarrow q$.

Remark.

- An implication is logically equivalent to its contrapositive: $p \rightarrow q \equiv \neg q \rightarrow \neg p$.
- 2 The converse and the inverse of an implication are logically equivalent: $q \rightarrow p \equiv \neg p \rightarrow \neg q$.
- But an implication is not logically equivalent to its converse (and hence not to its inverse).

Proof: Truth tables.

he Language of lathematics: ogic and Sets.

Valid Arguments.

Sets and Boolean Algebra. Functions and Relations. Summary.

Examples of Algebraic Objects: Permutations and Polynomials.

Permutations.
Polynomials.
Factorisation of

Polynomials.
Summary.

Mathematical

Tools: Induction

and Probability.

Probabilities and Sampl Spaces

Some Probability Rule Binomial Probability Distribution

Course Sum

Biconditional.

- Write $p \leftrightarrow q$ if both $p \rightarrow q$ and $q \rightarrow p$ are true.
- Then $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$.
- The **truth table** of $p \leftrightarrow q$ has the form

p	q	$p \rightarrow q$	$q \rightarrow p$	$p \leftrightarrow q$
T	T	T	T	T
T	F	F	Т	F
F	T	Т	F	F
F	F	Т	Т	Т

 Usually, to prove a statement of the form p ↔ q, one proves the two statements p → q and q → p separately.

Examples

- n is even if and only of n^2 is even.
- The integer n is a multiple of 10 if and only if it is even.

The Language of Mathematics:
Logic and Sets.

Valid Arguments.

Functions and Relations.
Summary.

Examples of Algebraic Objects: Permutations and Polynomials.
Composition of Functions. Permutations.
Permutations.
Polynomials

Summary.

Mathematical

and Probability.

Mathematical Induction.

Probabilities and Samp Spaces Some Probability Rules

Binomial Probabili Distribution Summary.

Validating Arguments.

- An argument is a list of statements, ending in a conclusion.
- The logical form of an argument can be abstracted from its content.

Definition

Formally, an **argument structure** is a list of statements p_1, p_2, \ldots, p_n, c starting with **premises** p_1, \ldots, p_n and ending in a **conclusion** c.

- An argument is valid if the conclusion follows necessarily from the premises.
- Validity of arguments depends only on the form, not on the content.
- The argument structure ' $p_1, \ldots, p_n, \ldots c$ ' is **valid** if the proposition $(p_1 \wedge \cdots \wedge p_n) \rightarrow c$ is a **tautology**, otherwise it is **invalid**.

The Language of Mathematics: Logic and Sets.

Valid Arguments.

Sets and Boolean Algebra.
Functions and Relations.
Summary

Examples of
Algebraic Objects:
Permutations and
Polynomials.

Permutations.
Polynomials.
Factorisation of

Factorisation of Polynomials.
Summary.

Mathematical
Fools: Induction
and Probability.

Probabilities and Sample
Spaces

Some Probability Ri Binomial Probability Distribution

How to Test Argument Validity.

- Identify the premises and the conclusion of the argument.
- Construct a truth table showing the truth values of all premises and the conclusion.
- A critical row is a row of the truth table in which all the premises are true. Check the critical rows as follows.
- If the conclusion is true in every critical row then the argument structure is valid.
- If there is a critical row in which the conclusion is false, then it is possible for an argument of the given form to have a false conclusion despite true premises and so the argument structure is invalid.

The Language of Mathematics:
Logic and Sets.
Propositional Logic.
Valid Arguments.

valid Arguments

Sets and Boolean Algebra Functions and Relations. Summary.

Examples of Algebraic Objects: Permutations and Polynomials.

Composition of Functions.

Polynomials.

Factorisation of Polynomials. Summary.

Mathematical
Fools: Induction
and Probability.

Probabilities and Sam Spaces

Some Probability Rule Binomial Probability Distribution

Example of an Invalid Argument Structure.

Example

- Premises: $p_1 = (p \to q \lor \neg r), p_2 = (q \to p \land r).$
- Conclusion: $c = (p \rightarrow r)$.
- The argument structure $p_1, p_2, ... c$ is **invalid**:

p	q	r	¬r	$q \vee \neg r$		p ₁	p ₂	c
T	T	T	F	Т	T	Т	T	T
T	T	F	Т	T	F	Т	F	
T	F	T	F	F	T	F	T	
T	F	F	Т	T	F	Т	T	F(!)
F	T	Τ	F	T	F	Т	F	
F	T	F	Т	T	F	Т	F	
F	F	Т	F	F	F	Т	Τ	T
F	F	F	Т	T	F	Т	T	Т

Valid Arguments.

Some Valid Argument Forms.

- Modus ponens: $p \rightarrow q$, p, $\therefore q$.
- Modus tollens: $p \to q, \neg q, \therefore \neg p$.
- Generalization: $p, : p \lor q$.
- Specialization: p ∧ q, ∴ p.
- Conjunction: $p, q, \therefore p \land q$.
- Elimination: $p \vee q$, $\neg q$, $\therefore p$.
- Transitivity: $p \rightarrow q$, $q \rightarrow r$, $p \rightarrow r$.
- Division into cases: $p \lor q$, $p \to r$, $q \to r$, $\therefore r$.
- Contradiction Rule: $\neg p \rightarrow F$, $\therefore p$.

Some Common Fallacies.

- Converse fallacy: $p \rightarrow q$, q, $\therefore p$.
- Inverse fallacy: $p \rightarrow q$, $\neg p$, $\therefore \neg q$.

Valid Arguments.

Modus Ponens:

$$p \rightarrow q, p, \therefore q.$$

Example

- If Socrates is human then he is mortal.
- Socrates is human.
- Socrates is mortal.
- Proof by truth table:

Modus Tollens:

$$p \rightarrow q, \neg q, \therefore \neg p$$
.

Example

- If Zeus is human then he is mortal.
- Zeus is not mortal.
- Zeus is not human.
- Proof by truth table:

p	q	$p \rightarrow q$	$\neg q$	¬р
T	T	Т	F	
T	F	F	T	
F	T	Т	F	
F	F	Т	Т	Т

Valid Arguments.

Fallacies.

Converse Fallacy:

$$p \rightarrow q, q, \therefore p.$$

Example (WRONG!)

- If Socrates is human then he is mortal.
- Socrates is mortal
- Socrates is human.
- Truth table:

Inverse Fallacy:

$$p \rightarrow q, \neg p, \therefore \neg q$$
.

Example (WRONG!)

- If Zeus is human then he is mortal.
- Zeus is not human.
- Zeus is not mortal.
- Truth table:

p	q	$p \rightarrow q$	¬р	¬q
T	T	T	F	
T	F	F	F	
F	Т	Т	T	F(!)
F	F	Т	T	Т

The Language of Mathematics:
Logic and Sets.

Valid Arguments.

Sets and Boolean Algel

Functions and Relations. Summary.

Examples of Algebraic Objects: Permutations and Polynomials.

Composition of Functions.

Polynomials. Factorisation of Polynomials.

Summary.

Tools: Induction and Probability.

Probabilities and Sar Spaces

Some Probability Binomial Probabil Distribution

Summary.

- a = A is a knight.
- b = 'B is a knight'.

Example

 You visit the island of knights and knaves and find that:

$$a \to \neg b$$

$$\neg a \to \neg b$$

$$b \to a \lor b$$

$$\neg b \to \neg a \land \neg b$$

(a 'formal version' of the original puzzle).

• Who (if any) is telling the truth?

Solution

- Start with the tautology a ∨ ¬a.
- Division into cases:

$$\begin{array}{l} a \vee \neg a, \\ a \to \neg b, \\ \underline{\neg a \to \neg b,} \\ \vdots \neg b. \end{array}$$

• Modus ponens:

- Both are knaves!
- This solution is a 'formal version' of the original solution.

The Language of Mathematics:
Logic and Sets.
Propositional Logic.

Valid Arguments.

Sets and Boolean Algebra. Functions and Relations. Summary.

Algebraic Objects
Permutations and
Polynomials.
Composition of Functions
Permutations.
Polynomials.

Summary.

Mathematical
Tools: Induction

and Probability.

Mathematical Induction.

Probabilities and Sample

Some Probability Rule Binomial Probability Distribution

Subsets and Set Operations.

- A set B is a subset of a set A if each element of B is also an element of A:
 - $B \subseteq A$ if $b \in A$ for all $b \in B$.
- A = B if and only if $B \subseteq A$ and $A \subseteq B$.
- We assume that all our sets are subsets of a (big) universal set, or universe U.

Definition

Let $A, B \subseteq U$.

- The union of A and B is the set $A \cup B = \{x \in U : x \in A \text{ or } x \in B\}.$
- The intersection of A and B is the set $A \cap B = \{x \in U : x \in A \text{ and } x \in B\}.$
- The (set) difference of A and B is the set $A \setminus B = \{x \in U : x \in A \text{ and } x \notin B\}.$
- The **complement** of A (in U) is the set $A' = \{x \in U : x \notin A\}.$

The Language of Mathematics:
Logic and Sets.
Propositional Logic.
Valid Arguments.

Sets and Boolean Algebra.
Functions and Relations.

Examples of Algebraic Objects: Permutations and Polynomials. Composition of Functions. Permutations.

Factorisation of Polynomials.
Summary.

Mathematical Tools: Induction and Probability.

Probabilities and Sam Spaces

Binomial Probabilit Distribution

Course Summa

Set Equations.

Theorem

Let A, B, C be subsets of a universal set U. Then all of

$$A \cap B = B \cap A, \qquad A \cup B = B \cup A,$$

$$(A \cap B) \cap C = A \cap (B \cap C), \qquad (A \cup B) \cup C = A \cup (B \cup C),$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C), \qquad A \cup (B \cap C) = (A \cup B) \cap (A \cup C),$$

$$A \cap (A \cup B) = A, \qquad A \cup (A \cap B) = A,$$

$$A \cap A = A, \qquad A \cup A = A,$$

$$A \cap A' = \emptyset, \qquad A \cup A' = U,$$

$$A \cap U = A, \qquad A \cup \emptyset = A,$$

$$A \cap \emptyset = \emptyset, \qquad A \cup U = U,$$

$$(A \cap B)' = A' \cup B', \qquad (A \cup B)' = A' \cap B',$$

$$U' = \emptyset, \qquad \emptyset' = U,$$

$$(A')' = A$$

are valid properties of set operations.

Proof: element-wise.

The Language of Mathematics:
Logic and Sets.

Propositiona

Sets and Boolean Algebra.

Examples of
Algebraic Objects
Permutations and

Permutations and Polynomials. Composition of Functions. Permutations. Polynomials.

Factorisation of Polynomials. Summary.

Mathematical Tools: Induction and Probability.

Probabilities and Sar Spaces

Binomial Probabili
Distribution

Boolean Algebra.

- An example of abstraction in mathematics . . .
- Sets (together with the operations ∩, ∪, ', and the constants Ø, U) behave similar to
 Propositions (together with the operations ∧, ∨, ¬, and the constants F, T)
- Both are examples of an abstract structure (with ·, +, ', and 0, 1) called a Boolean algebra
- For any logical equivalence, there is a corresponding set equality, and vice versa.

Duality

- The dual of a set equality is obtained by swapping ∩ with ∪ and swapping Ø with U.
- The dual of a valid set equality is also a valid set equality . . .

Mathematics: Logic and Sets. Propositional Logic. Valid Arguments. Sets and Boolean Algebra.

Examples of Algebraic Objects:

Composition of Funct Permutations. Polynomials. Factorisation of Polynomials.

Mathematical
Tools: Induction

Probabilities and Sam Spaces

Binomial Probabilit Distribution

Sets of Sets.

Definition

Let A be a set. The **power set** of A is the set $P(A) = \{B : B \subseteq A\}$ of **all** subsets B of A.

Example

The power set of $A = \{1,3,5\}$ is the set $P(A) = \{\emptyset,\{1\},\{3\},\{5\},\{1,3\},\{1,5\},\{3,5\},\{1,3,5\}\}$

Definition

A partition of a set A is a set $P = \{P_1, P_2, ...\}$ of parts $P_1, P_2, ... \subseteq A$ such that

- no part is empty: $P_i \neq \emptyset$ for all i;
- ② distinct parts are disjoint: $P_i \cap P_j = \emptyset$ for all $i \neq j$;
- **3** every point is in some part: $A = P_1 \cup P_2 \cup \cdots$

The Language of Mathematics: Logic and Sets.
Propositional Logic.

Sets and Boolean Algebra.

Functions and Relations.
Summary.

Algebraic Objects: Permutations and Polynomials. Composition of Functions.

Permutations.
Polynomials.

Polynomials.
Summary.

ools: Induction and Probability.

Probabilities and Sar Spaces

Some Probability Ru Binomial Probability Distribution

Summary.

Products of Sets.

Definition

The Cartesian product of sets A and B is the set $A \times B = \{(a, b) : a \in A \text{ and } b \in B\}$ of all (ordered) pairs (a, b).

Examples

- $A = \{1, 2, 3\}, B = \{X, Y\}.$ $A \times B = \{(1, X), (1, Y), (2, X), (2, Y), (3, X), (3, Y)\}.$
- $A = \{1,3\}$. $A^2 = A \times A = \{(1,1), (1,3), (3,1), (3,3)\}$
- More generally, for $n \in \mathbb{N}$, the Cartesian product of n sets S_1, S_2, \ldots, S_n is the set $S_1 \times S_2 \times \cdots \times S_n = \{(x_1, x_2, \ldots, x_n) : x_i \in S_i\}$ of all n-tuples (x_1, x_2, \ldots, x_n) .
- $A^n = A \times A \times \cdots \times A$ (n factors).

Mathematics:
Logic and Sets.
Propositional Logic.

Functions and Relations.

Examples of Algebraic Objects:

Permutations and Polynomials.
Composition of Functions.
Permutations.
Polynomials.
Factorisation of Polynomials.

Summary. Mathematical iools: Inductio

ING Probability.

Mathematical Induction.

Probabilities and Sample

Spaces

Some Probability Rules Binomial Probability Distribution

Course Summa

Relations are Sets.

 A relation from a domain X to a codomain Y is a subset R ⊆ X × Y.

Notation.

Write xRy (and say "x is related to y") for $(x,y) \in R$.

- Let R be a relation on X, i.e, $R \subseteq X \times X$.
- R is **reflexive** if xRx for all $x \in X$.
- R is **symmetric** if xRy then yRx for all $x, y \in X$.
- R is transitive if xRy and yRz then xRz, for all $x, y, z \in X$.
- A relation R ⊆ X × X that is reflexive, symmetric and transitive is called an equivalence relation.

Mathematics:
Logic and Sets.
Propositional Logic.
Valid Arguments.
Sets and Boolean Algebra

Functions and Relations.

Summary.

Examples of
Algebraic Objects:
Permutations and
Polynomials.
Composition of Functions.

ermutations. olynomials.

Factorisation of Polynomials.
Summary.

Mathematical
Fools: Induction
and Probability.

Probabilities and Sar Spaces

Some Probability Rule Binomial Probability Distribution

Equivalence Relations are Partitions.

 Suppose R is an equivalence relation on a set X. For $x \in X$, denote by $[x] = \{y : xRy\}$ the equivalence **class** of x, i.e., the set of all $y \in X$ that x is R-related to.

Also denote by $X/R = \{[x] : x \in X\}$ the quotient set, i.e., the set of all equivalence classes.

 Suppose that P is a partition of X. For $x \in X$, denote by P(x) the unique part of P that contains x.

Theorem

- If R is an equivalence relation on the set X, then the quotient set X/R is a partition of X.
- Onversely, if P is a partition of a set X, then the relation $R = \{(x, y) \in X^2 : P(x) = P(y)\}$ is an equivalence relation

Functions and Relations.

Functions are Relations are Sets.

 A function f from a domain X to a codomain Y is a relation f ⊆ X × Y, with the property that,

```
for every x \in X,
there is a unique y \in Y such that (x, y) \in f.
```

(This is often called the Vertical Line Test.)

Notation.

Write $f: X \to Y$ for a function f from X to Y and f(x) = y for the unique $y \in Y$ such that if $(x, y) \in f$.

A function thus consists of three things: a domain X and a codomain Y together with a rule f ⊆ X × Y that associates to each point x ∈ X a unique value f(x) = y ∈ Y.

Mathematics:
Logic and Sets.
Propositional Logic.
Valid Arguments.
Sets and Boolean Algebra

Cummonu

Summary

Algebraic Objects
Permutations and
Polynomials.
Composition of Functions
Permutations.
Polynomials.
Factorisation of
Polynomials.

Mathematical
Tools: Induction
and Probability.

Mathematical Induction.
Probabilities and Sample
Spaces

Some Probability Rul Binomial Probability Distribution

Summary.

Injective and Surjective Functions.

• A function $f: X \to Y$ is called **surjective** (or **onto**) if,

```
for every y \in Y, there is at least one x \in X such that f(x) = y.
```

 A function f: X → Y is called injective (or one-to-one) if,

```
for every y \in Y,
there is at most one x \in X such that f(x) = y.
```

 A function f: X → Y is called bijective (or a one-to-one correspondence if it is both injective and surjective, i.e., if,

```
for every y \in Y,
there is a unique x \in X such that f(x) = y.
```

 A function is injective/surjective/bijective if it passes a suitable Horizontal Line Test. I he Language of Mathematics: Logic and Sets. Propositional Logic. Valid Arguments. Sets and Boolean Algebra.

Functions and Relations.
Summary.

Examples of Algebraic Objects: Permutations and Polynomials. Composition of Functions. Permutations. Polynomials. Factorisation of

Mathematical Tools: Induction and Probability.

Probabilities and Sample Spaces

Binomial Probabilit Distribution

Bijections of Partitions and Subsets.

- Consider a function $f: X \to Y$.
- The image $f(X) = \{f(x) : x \in X\}$ is a subset of Y.
- The **relation** \sim_f on X by $x \sim_f x'$ if f(x) = f(x') is an **equivalence** relation and the equivalence classes $[x] = \{x' \in X : f(x) = f(x')\}$ form **partition** X/\sim_f of X, called the **kernel** of f.

Theorem

- Let f: X → Y. Then the function F: X/~_f → f(X) defined by F([x]) = f(x) for x ∈ X is a well-defined bijection between the kernel X/~_f of f and the image f(X) of f.
- ② Conversely, if $Y' \subseteq Y$ is any subset of Y, if \sim is any equivalence relation on X and $F: X/\sim \to Y'$ is a bijection then the rule f(x) = F([x]) defines a function f from X to Y.

The Language of Mathematics:
Logic and Sets.
Propositional Logic.
Valid Arguments.
Sets and Boolean Algebra
Functions and Relations.

Summary.

Algebraic Objects
Permutations and
Polynomials.
Composition of Functions
Permutations.
Polynomials.
Factorisation of
Polynomials.

Mathematical Tools: Induction and Probability.

Probabilities and Sample Spaces Some Probability Rules

Binomial Probabil Distribution Summary.

Summary: The Language of Mathematics.

- Formal propositions consist of propositional variables, combined by the logical connectives
 ∧ (and), ∨ (or), and ¬ (not).
- A truth table determines the truth value of a proposition depending on the truth values of its propositional variables.
- Truth tables can be used to validate or invalidate argument structures.
- Sets, with the operations ∩ (intersection), ∪ (union), and ' (complement in a universal set U) form a Boolean algebra, like the formal propositions with their logical operations.
- Claims about sets are proved by valid arguments.
- Functions and relations are sets (of pairs).
- A function is a one-to-one correspondence between a partition of its domain and a subset of its codomain.

The Language of Mathematics:
Logic and Sets.
Propositional Logic.
Valid Arguments.
Sets and Boolean Algebra.
Functions and Relations.
Summarv.

Examples of Algebraic Objects: Permutations and Polynomials.

olynomials. factorisation of folynomials.

Mathematical cools: Induction

Probabilities and Si Spaces

Binomial Probability Distribution

Course Summar