1

Assignment 2

Harshal Verma AI21MTECH02003

I. Problem 1.8

Problem: A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is $\frac{1}{100}$. What is the probability that he will win a prize

- (a) At least once
- (b) Exactly once
- (c) At least twice?

Solution:Let **X** represent the number of winning prizes in 50 lotteries. The trials are Bernoulli trials. Clearly, **X** has a binomial distribution with n=50 and $p=\frac{1}{100}$

$$q = 1 - p = 1 - \frac{1}{100} = \frac{99}{100}$$

P(X = x) =
$${}^{n}C_{x}q^{n-x}p^{x}$$
 = ${}^{50}C_{x}(\frac{99}{100})^{50-x}(\frac{1}{100})^{x}$

(a) $P(At least once) = P(X \ge 1)$

$$= 1 - P(X < 1)$$

$$= 1 - P(X = 0)$$

$$= 1 - {}^{50}C_x(\frac{99}{100})^{50-x}(\frac{1}{100})^x$$

$$= 1 - {}^{50}C_0(\frac{99}{100})^{50}(\frac{1}{100})^0$$

$$= 1 - (\frac{99}{100})^{50}(1)$$

$$= 1 - (\frac{99}{100})^{50}$$

$$= 0.3950$$

(b) P(Winning exactly once) = P(X = 1)

$$=^{50} C_1 \left(\frac{99}{100}\right)^{49} \left(\frac{1}{100}\right)^1$$

$$= 50 \left(\frac{99}{100}\right)^{49} \left(\frac{1}{100}\right)$$

$$= \frac{1}{2} \left(\frac{99}{100}\right)^{49}$$

$$= 0.3055$$

(c) P(At least twice) = P($X \ge 2$)

$$= 1 - P(X < 2)$$

$$= 1 - P(X \le 1)$$

$$= 1 - [P(X = 0) + P(X = 1)]$$

$$= 1 - P(X = 0) - P(X = 1)$$

$$= 1 - (\frac{99}{100})^{50} - \frac{1}{2}(\frac{99}{100})^{49}$$

$$= 1 - (\frac{99}{100})^{49}[\frac{99}{100} + \frac{1}{2}]$$

$$= 1 - (\frac{99}{100})^{49}(\frac{149}{100})$$

$$= 1 - (\frac{149}{100})(\frac{99}{100})^{49}$$

$$= 0.0894$$

Code source: https://github.com/harshal9876/AI5002/blob/main/Codes/Assignment_2.py