Robótica / Sistemas Robotizados

ROBOTS MANIPULADORES INDUSTRIALES

Martin Mellado martin@ai2.upv.es http://personales.upv.es/mmellado

Departamento de Ingeniería de Sistemas y Automática (DISA) Instituto de Automática e Informática Industrial (ai2) Universitat Politècnica de València (UPV)

Robots manipuladores industriales

1

Robots manipuladores industriales

OBJETIVOS

- Conocer las configuraciones de robots manipuladores industriales más comunes
- Saber las especificaciones técnicas de los robots manipuladores industriales
- Entender los métodos de programación de robots
- Aprender una metodología adecuada de programación de aplicaciones industriales

Robots manipuladores industriales

CONTENIDOS

- 1. Configuraciones de brazo y muñeca
- 2. Especificaciones técnicas
- 3. Programación de robots

Robots manipuladores industriales

3

Configuraciones de brazo y muñeca

Robot Manipulador Industrial:

- ISO 8373: un manipulador programable en tres o más ejes, controlado automáticamente, reprogramable y multifuncional, que puede estar fijo en un lugar o móvil para uso en aplicaciones automáticas de la industria
- En cierta forma, diseñado a semejanza del cuerpo humano

Cortesía Kuk

Robots manipuladores industriales

Configuraciones de brazo y muñeca

Cadena cinemática abierta:

- Base: extremo fijo; elemento terminal: extremo libre
- Las tres primeras articulaciones forman el brazo:
 - Posicionan un punto en el espacio
- El resto de articulaciones forman la muñeca:
 - Reorientan el elemento terminal

Pueden haber bucles o lazos interiores:

- Paralelogramos
- Incluso estructuras paralelas

Configuraciones de brazo y muñeca

Para trabajar en el espacio 3D se necesitan:

- 3 grados de libertad para fijar posición (XYZ)
- 3 grados de libertad para fijar orientación (3 ángulos)
- Los robots, en general, tienen 6 ejes de movimientos
- Cuando la aplicación no requiera tantos grados de libertad, se pueden usar robots con menos ejes

Robots redundantes:

- Más de 6 ejes
- Presentan múltiples soluciones

No son ejes del robot:

- Movimientos de la herramienta
- Ejes externos

Robots manipuladores industriales

Configuraciones de brazo y muñeca

Movimientos de la herramienta

- De operación propios:
 - Apertura/cierre de pinza
 - Apertura/cierre de garra de soldadura
 - Rotación de un motor (sierra de corte)
 - ..
- Ejes de movimiento en la herramienta
 - Para aumentar su flexibilidad
 - Lineales / de revolución

@<u>()()()</u>

Curtesia A

Robots manipuladores industriales

Configuraciones de brazo y muñeca

Según el tipo de articulación en brazo y en muñeca se tienen diferentes configuraciones:

Brazo:

- RRR: 3 articulaciones de revolución
- RRP
- RPP
- PPP: 3 articulaciones prismáticas

Muñeca:

 Al servir para reorientar, sólo se usan articulaciones de revolución

Robots manipuladores industriales

a

Configuraciones del brazo

Robot angular (articulado, de revolución o antropomórfico):

RRR: vertical de cadera, horizontales de hombro y codo

Brazo-robot más común

Volumen de trabajo prácticamente esférico

Opciones: Con/sin paralelogramo

Robots manipuladores industriales

Configuraciones de la muñeca

Muñeca en línea (in-line) o muñeca RPY (roll-pitch-yaw) Tres ejes de giro perpendiculares (con punto común) Muñeca más usada (facilidad de construcción y economía) Problemas: rango limitado

existe configuración degenerada

Robots manipuladores industriales

Configuraciones de la muñeca

Muñeca desplazada (offset wrist)

Configuración en línea con último eje desplazado Rango ilimitado y mayor volumen de trabajo de la muñeca

Cortesia Comau

Robots manipuladores industriales

Configuraciones de la muñeca Muñeca tres giros o de triple giro (triple roll wrist) 3 ejes de giro no perpendiculares (hay opción desplazada) Construida con 4 articulaciones acopladas (cara y compleja) Rango ilimitado y mayor volumen de trabajo de la muñeca Triple-roll wrist TRW 100 kg (220 lbs) TRW 150 kg (330 lbs) Cortesia Kuka Cortesia Kuka Cortesia Kuka Cortesia Motoman

Configuraciones de la muñeca

Muñeca de giro (roll)

Un único eje de giro

Siempre perpendicular a la brida final del robot

Opción con paralelogramo en la unión al brazo

Hay una articulación previa, no motorizada, con enlace mecánico que garantiza la orientación fija

Cortesia Fanuc

Robots manipuladores industriales

17

Configuraciones del brazo

Robot SCARA (Selective Compliance Assembly Robot Arm):

RRP: Verticales de cadera y codo, extensión vertical Volumen de trabajo cilíndrico

Opciones RRP y PRR

Robots manipuladores industriales

Configuraciones de la muñeca

Muñeca de giro (roll)

Un único eje de giro

Perpendicular a la brida final del robot Robots de 4 ejes (cartesianos, SCARAS y deltas) Opción con paralelogramo

Robots angulares de doble paralelogramo

Robots manipuladores industriales

Robot SCARA de brazo doble

Cortesía Mitsubishi

Robots manipuladores industriales

Especificaciones técnicas

Clasificación por carga y alcance

Robot angulares según carga soportada y su alcance: (las barreras son estimativas):

- Robots compactos: alcance hasta medio metro y hasta 5 Kg de carga
- Robots pequeños: alcance hasta metro y medio y hasta 10 Kg de carga
- Robots medianos: alcance hasta dos metros y hasta 100 Kg de carga
- Robots pesados: alcance mayor de 2 metros y más de 100 Kg de carga

SCARA: cargas pequeñas o como mucho medias (hasta 25 Kg)

ROBOTS CARTESIANOS DE TIPO PORTICADO:

pueden llegar en versiones especiales a soportar más de una tonelada de carga

DELTA: soportan cargas muy pequeñas (hasta 3Kg)

Robots manipuladores industriales

Especificaciones técnicas

Sistema de control

- Sistemas de control cerrados por el propietario
- Apertura a arquitecturas PC en hardware
- RTOS Comerciales (VxWorks)

Robots manipuladores industriales

Métodos de programación de robots

Primera clasificación:

- Programación directa o en línea (on-line)
- Programación indirecta o fuera de línea (off-line)
- Programación híbrida

Segunda clasificación:

- Programación por guiado
- Programación textual
 Nivel de Robot
 Nivel de Objeto
 Nivel de Tarea

Cortesia R

Robots manipuladores industriales

Métodos de programación de robots

Programación Textual

- Programas de robot escritos
- Diferentes Niveles:
 Nivel de Robot → programación explícita
 Nivel de Objeto
 Nivel de Tarea
 programación implícita

Programación Gráfica

Programación Automática o Manual

Cortesia CRI

 $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Robots manipuladores industriales

Funciones de la programación de robots

Funciones básicas a cumplir:

- Control de Movimiento del Robot:
 - Sistemas de Coordenadas
 - Definición de Localizaciones
 - Parámetros de los Movimientos
- Control de las Acciones de Utillaje
- Control de Sensores
- Control de Dispositivos Externos
- Control Virtual del Entorno
- Control de Programas
- Cálculos Aritméticos y Lógicos
- Control de Interacción con el Operario

Robots manipuladores industriales

45

Programación de movimientos

Sistemas de Coordenadas

Programación en el Espacio de Articulaciones:

DRIVE(articulacion, valor)

DRIVE(vector_valores)

Puede ser absoluta o relativa

Robots manipuladores industriales

Programación de movimientos

Sistemas de Coordenadas

Programación en el Espacio Cartesiano Uso de sistemas de coordenadas:

- del robot (RobotFrame)
- de la herramienta (ToolFrame)

 $Transformación = \frac{RobotFrame}{T_{ToolFrame}}$ Vector de posición (x,y,z) y:

- ángulos de Euler de orientación (α,β,γ)
- cuaternión de orientación (q₁, q₂, q₃, q₄)
- matriz de rotación R_{3×3}

Matriz de transformación T_{4×4}

 Θ

Robots manipuladores industriales

Programación de movimientos Sistemas de Coordenadas

Movimientos Absolutos y Relativos

Sistema de coordenadas de la herramienta (ToolFrame)

Punto Centro de Herramienta (TCP)

Sistema de coordenadas:

- de objeto, auxiliar o base (ObjectFrame)
- del mundo (WorldFrame)

Cortesía Kuka

Robots manipuladores industriales

Programación de movimientos Sistemas de Coordenadas Sistema de Función Características Coordenadas (Frame) Referencia de movimientos y Único y difícilmente Robot localización del robot respecto modificable al del mundo Uno con origen en la Herramienta Sistema móvil del robot y brida y nuevos definibles referencia de movimientos respecto a éste Base o Referencia de movimientos y Definibles respecto al del Auxiliar localización de objetos respecto al del mundo Referencia de movimientos y Mundo Idéntico al del robot pero de localización de robots y modificable objetos Robots manipuladores industriales 50

Programación de movimientos

Definición de Localizaciones:

- Manualmente mediante su medición Incómodo o inviable
- Mediante el uso del propio robot Por guiado. Precisión Visual

Cortesía ABB

- Mediante un modelo del entorno del robot en un sistema CAD Requiere calibración sensorial entre el modelo virtual y el modelo real
- Mediante el uso de sensores (visión por computador)
 Dificultad para la orientación y poca precisión

Robots manipuladores industriales

51

Funciones de la programación de robots

Funciones básicas a cumplir:

- Control de Movimiento del Robot:
 - Sistemas de Coordenadas
 - Definición de Localizaciones
 - Parámetros de los Movimientos
- Control de las Acciones de Utillaje
- Control de Sensores
- Control de Dispositivos Externos
- Control Virtual del Entorno
- Control de Programas
- Cálculos Aritméticos y Lógicos
- Control de Interacción con el Operario

Robots manipuladores industriales

Programación de movimientos

Parámetros de movimiento

Velocidad

Parámetro nominal (porcentaje respecto a una velocidad básica) Velocidad lineal, no velocidad angular

Velocidad no uniforme, con rampas de aceleración/deceleración Valor aproximado

Importante para movimientos largos

Cortosia ARR

Robots manipuladores industriales

53

Programación de movimientos

Parámetros de movimiento

Aceleración

Aceleración de arranque y la deceleración de parada (rampas) Poco intuitivos

Importante para movimientos muy cortos

Cortesía ABB

Robots manipuladores industriales

Programación de movimientos Parámetros de movimiento • Tipo de movimiento Libre o Punto a Punto (PTP) Interpolación lineal en el espacio de articulaciones (independiente o coordinada) (incluida en la muñeca) Movimiento garantizado y sencillo Posicionamiento Posible Destino Exacto **Movimiento** Inicio PTP Posible Movim iento PTP Destino Inic io Posic io namiento Destino Exacto **@**(1) Robots manipuladores industriales

Programación de movimientos

Parámetros de movimiento

- Selección de la Configuración
 - Por control de usuario

Bits de control, variables de las articulaciones o comandos o instrucciones especiales

• Por sistema de control

Selecciona la configuración más adecuada: la más cercana o económica, en términos de menor energía consumida en el movimiento

Robots manipuladores industriales

EC

Metodología de programación de robots

Aspectos a contemplar

- Seleccionar la herramienta
 - Sistema de coordenadas, parámetros, carga
- Determinar operaciones de herramienta Apertura/cierre de pinza, soldadura, ...
- Determinar localizaciones de la herramienta (y localizaciones relativas)

- Determinar las precisiones
 - Sólo se indicará un requisito de precisión cuando sea necesario
- Determinar las velocidades de movimientos
 Se utilizará una velocidad alta siempre que sea posible
- Determinar tipo de movimientos

Movimiento libre o restringido (lineal, circular, ondular, ...) Se utilizarán movimientos libres mientras no sea necesario controlar la trayectoria que debe realizar la herramienta

Robots manipuladores industriales

61

Metodología de programación de robots

PROGRAMA GENÉRICO DE ROBOT:

Inicialización:

Inicialización de constantes, variables y estructura de datos

Determinar parámetros globales (velocidad, aceleración,

...)

Selección, configuración e inicialización de herramienta Inicialización de señales de salida

Mover el robot a configuración de reposo

Repetir siempre

Espera a condición de inicio del ciclo de trab Realización de un ciclo de trabajo Avisar de ciclo terminado

Cortesia ABB

Robots manipuladores industriales

Robots manipuladores industriales

CONCLUSIONES

- Existen diferentes configuraciones de robots según sus ejes de articulaciones
- Las configuraciones más usadas son robot angular, cartesiano, SCARA y delta
- El alcance y la carga son las características más resaltables de los robots industriales
- Los robots se pueden programar con diversos métodos, on-line y off-line
- Para programar aplicaciones correctas debe asegurarse una secuencia de movimientos aproximación-ataque-trabajo-retirada

Robots manipuladores industriales

71

Robótica / Sistemas Robotizados

ROBOTS MANIPULADORES INDUSTRIALES

Martin Mellado martin@ai2.upv.es http://personales.upv.es/mmellado

Departamento de Ingeniería de Sistemas y Automática (DISA) Instituto de Automática e Informática Industrial (ai2) Universitat Politècnica de València (UPV)

Robots manipuladores industriales

