5.41. Пусть A — матрица размерности $n \times n, \ \rho(A)$ — ее спектральный радиус и задано число $\varepsilon > 0.$ Доказать, что существует по крайней мере одна матричная норма, для которой имеют место оценки

$$\rho(A) \leqslant ||A|| \leqslant \rho(A) + \varepsilon.$$

$$D_t R D_t^{-1} = \begin{pmatrix} \lambda_1 & t^{-1} r_{12} & t^{-2} r_{13} & \dots & t^{-n+1} r_{1n} \\ 0 & \lambda_2 & t^{-1} r_{23} & \dots & t^{-n+2} r_{2n} \\ 0 & 0 & \lambda_3 & \dots & t^{-n+3} r_{3n} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & \lambda_n \end{pmatrix}.$$

При достаточно большом t>0 сумма модулей наддиагональных элементов матрицы $D_tRD_t^{-1}$ не превосходит ε . В частности, это приводит к неравенству $\|D_tRD_t^{-1}\|_1\leqslant \rho(A)+\varepsilon$. Теперь определим матричную норму с помощью формулы

$$||A|| = ||D_t U^* A U D_t^{-1}||_1 = ||(U D_t^{-1})^{-1} A (U D_t^{-1})||_1.$$

Таким образом, выбор достаточно большого t в приведенной выше формуле приводит к оценке сверху, а оценка снизу следует из 5.6.

5.2. Элементы теории возмущений

Рассмотрим систему линейных алгебраических уравнений

$$A \mathbf{x} = \mathbf{b}$$

с квадратной невырожденной матрицей A. При ее решении в результате вычислений с конечной разрядностью вместо \mathbf{x} получается *приближенное* решение $\tilde{\mathbf{x}}$, которое можно рассматривать как *точное* решение *возмущенной* системы

$$(A + \delta A)\,\tilde{\mathbf{x}} = \mathbf{b},$$

где матрица возмущений δA мала в каком-либо смысле.

Другой источник ошибок в $\tilde{\mathbf{x}}$ определяется возмущениями δA и $\delta \mathbf{b}$ в элементах матрицы A и в компонентах вектора правой части \mathbf{b} (например, вследствие ошибок округлений, возникающих в процессе ввода вещественных чисел в память компьютера).

Чтобы оценить насколько приближенное решение $\tilde{\mathbf{x}}$ отличается от точного решения \mathbf{x} , используют нормы векторов и подчиненные нормы матриц.

Пусть в системе $A\mathbf{x} = \mathbf{b}$ возмущается только вектор \mathbf{b} , т. е. вместо исходной системы решается возмущенная система $A\tilde{\mathbf{x}} = \tilde{\mathbf{b}} \equiv \mathbf{b} + \delta \mathbf{b}$,

и пусть $\tilde{\mathbf{x}}$ — точное решение возмущенной системы. Тогда для относительной ошибки в $\tilde{\mathbf{x}}$ верна оценка

$$\frac{||\mathbf{x} - \tilde{\mathbf{x}}||}{||\mathbf{x}||} \leqslant ||A|| \, ||A^{-1}|| \, \frac{||\mathbf{b} - \tilde{\mathbf{b}}||}{||\mathbf{b}||} = ||A|| \, ||A^{-1}|| \, \frac{||\mathbf{b} - A\tilde{\mathbf{x}}||}{||\mathbf{b}||} \, .$$

Величину $||A||\,||A^{-1}||$ называют *числом обусловленности* матрицы A и часто обозначают $\mathrm{cond}(A)$. Для вырожденных матриц $\mathrm{cond}(A) = \infty$. Конкретное значение $\mathrm{cond}(A)$ зависит от выбора матричной нормы, однако в силу их эквивалентности при практических оценках этим различием можно пренебречь.

Из приведенного выше неравенства следует, что даже если вектор невязки $\mathbf{r} = \mathbf{b} - A\tilde{\mathbf{x}}$ мал, относительные возмущения в решении могут быть большими, если $\operatorname{cond}(A)$ велико (такие матрицы называют плохо обусловленными).

5.42. Доказать неравенство

$$\frac{||\mathbf{x} - \tilde{\mathbf{x}}||}{||\mathbf{x}||} \leqslant \operatorname{cond}(A) \frac{||\mathbf{b} - \tilde{\mathbf{b}}||}{||\mathbf{b}||} = \operatorname{cond}(A) \frac{||\mathbf{b} - A\tilde{\mathbf{x}}||}{||\mathbf{b}||}.$$

 \triangleleft Из равенства $A^{-1}\mathbf{r}=A^{-1}\mathbf{b}-A^{-1}A\tilde{\mathbf{x}}=\mathbf{x}-\tilde{\mathbf{x}}$ следует, что

$$||\mathbf{x} - \tilde{\mathbf{x}}|| \leqslant ||A^{-1}|| \, ||\mathbf{r}||. \tag{5.1}$$

Из равенства $\mathbf{b} = A\mathbf{x}$ имеем, что $||\mathbf{b}|| = ||A\mathbf{x}|| \leqslant ||A|| \, ||\mathbf{x}||$, т. е.

$$||\mathbf{x}|| \geqslant \frac{||\mathbf{b}||}{||A||}.\tag{5.2}$$

Разделив неравенство (5.1) на неравенство (5.2), получим

$$\frac{||\mathbf{x} - \tilde{\mathbf{x}}||}{||\mathbf{x}||} \leqslant ||A|| \, ||A^{-1}|| \, \frac{||\mathbf{r}||}{||\mathbf{b}||} = \operatorname{cond}(A) \, \frac{||\mathbf{r}||}{||\mathbf{b}||} = \operatorname{cond}(A) \, \frac{||\mathbf{b} - A\tilde{\mathbf{x}}||}{||\mathbf{b}||} \, .$$

Отсюда видно, что если матрица A плохо обусловлена, то даже очень маленькая невязка не может гарантировать малость относительной ошибки в $\tilde{\mathbf{x}}$. С другой стороны, может оказаться так, что достаточно точное решение имеет большую невязку. Рассмотрим пример:

$$A = \begin{pmatrix} 1,000 & 1,001 \\ 1,000 & 1,000 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 2,001 \\ 2,000 \end{pmatrix}$$

Точное решение системы $A\mathbf{x} = \mathbf{b}$ имеет вид $\mathbf{x} = (1,1)^T$. Однако вектор $\tilde{\mathbf{x}} = (2,0)^T$, который никак нельзя назвать близким к \mathbf{x} , дает маленькую невязку $\mathbf{r} = (10^{-3},0)^T$.

Возьмем теперь $\hat{\mathbf{b}} = (1,0)^T$. Тогда вектор $\mathbf{x} = (-1000,1000)^T$ — точное решение системы. Вектор $\tilde{\mathbf{x}} = (-1001,1000)^T$ достаточно близок к \mathbf{x} в смысле относительной погрешности, однако $\tilde{\mathbf{x}}$ дает большую невязку $\mathbf{r} = (1,1)^T$, близкую по норме к вектору \mathbf{b} .

5.43. Найти решения двух систем с близкими коэффициентами:

$$\begin{cases} x + 3y & = 4, \\ x + 3,00001y & = 4,00001; \end{cases} \begin{cases} x + 3y & = 4, \\ x + 2,99999y & = 4,00001 \end{cases}$$

и объяснить полученный результат.

Ответ: $(1,1)^T$ и $(7,-1)^T$. Обе матрицы получены малыми возмущениями одной вырожденной матрицы. В данном случае это приводит к большой разнице в решениях систем.

5.44. Показать, что $\operatorname{cond}(A) \geqslant 1$ для любой матрицы A и $\operatorname{cond}_2(Q) = 1$ для ортогональной матрицы Q.

 \triangleleft Так как $I = AA^{-1}$, то

$$1 = ||I|| = ||A A^{-1}|| \leqslant ||A|| \, ||A^{-1}|| = \operatorname{cond}(A) \,.$$

Умножение матрицы на ортогональную не меняет ее спектральную норму, поэтому

$$||Q||_2 = ||QI||_2 = ||I||_2 = 1$$
 и $||Q^T||_2 = ||Q^TI||_2 = ||I||_2 = 1$. Таким образом, $\operatorname{cond}_2(Q) = ||Q||_2 ||Q^{-1}||_2 = ||Q||_2 ||Q^T||_2 = 1$.

5.45. Можно ли утверждать, что если определитель матрицы мал, то матрица плохо обусловлена?

 Пусть дана диагональная матрица $D=\varepsilon I$, где $\varepsilon>0$ —малое число и I—единичная матрица. Определитель $\det(D)=\varepsilon^n$ мал, тогда как матрица D хорошо обусловлена, поскольку

$$\operatorname{cond}(D) = ||D|| \, ||D^{-1}|| = \varepsilon ||I|| \, \varepsilon^{-1} ||I^{-1}|| = 1 \, .$$

Рассмотрим теперь матрицу

$$A = \begin{pmatrix} 1 & -1 & -1 & \dots & -1 \\ 0 & 1 & -1 & \dots & -1 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix},$$

у которой определитель равен 1, и вычислим ее число обусловленности. Для этого возьмем произвольный вектор $\mathbf{b} \neq 0$ и, решая систему $A\mathbf{x} = \mathbf{b}$ с помощью обратной подстановки, построим элементы обратной матрицы A^{-1} :

Запишем полученную обратную матрицу:

$$A^{-1} = \begin{pmatrix} 1 & 1 & 2 & 4 & \dots & 2^{n-3} & 2^{n-2} \\ 0 & 1 & 1 & 2 & \dots & 2^{n-4} & 2^{n-3} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & \dots & 1 & 1 \\ 0 & 0 & 0 & 0 & \dots & 0 & 1 \end{pmatrix}.$$

Следовательно, $\|A^{-1}\|_{\infty}=1+1+2+2^2+\cdots+2^{n-2}=2^{n-1}$. Так как $\|A\|_{\infty}=n$, то $\operatorname{cond}_{\infty}(A)=n\,2^{n-1}$, т. е. матрица A плохо обусловлена, хотя $\det(A)=1$.

Рассмотренные примеры показывают, что обусловленность матрицы зависит не только от величины определителя.

5.46. Пусть дана матрица A размерности $n \times n$ с параметром $|a| \neq 1$

$$A = \begin{pmatrix} 1 & a & 0 & \dots & 0 & 0 \\ 0 & 1 & a & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 & a \\ 0 & 0 & 0 & \dots & 0 & 1 \end{pmatrix}.$$

Вычислить $\operatorname{cond}_{\infty}(A)$ и оценить возмущение в компоненте x_1 решения системы $A\mathbf{x} = \mathbf{b}$, если компонента b_n вектора \mathbf{b} возмущена на ε .

≺ Как в 5.45, методом обратной подстановки получим обратную матрицу

$$A^{-1} = \begin{pmatrix} 1 & -a & (-a)^2 & \dots & (-a)^{n-2} & (-a)^{n-1} \\ 0 & 1 & -a & \dots & (-a)^{n-3} & (-a)^{n-2} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 & -a \\ 0 & 0 & 0 & \dots & 0 & 1 \end{pmatrix}.$$

Тогда

$$||A||_{\infty} = 1 + |a|,$$

$$||A^{-1}||_{\infty} = 1 + |a| + a^2 + \dots + |a|^{n-1} = \frac{|a|^n - 1}{|a| - 1},$$

$$\operatorname{cond}_{\infty}(A) = \frac{(|a| + 1)(|a|^n - 1)}{|a| - 1}.$$

Отсюда видно, что матрица A плохо обусловлена при |a|>1 и хорошо обусловлена при |a|<1. Например, при n=20 и a=5 имеем $\mathrm{cond}_{\infty}(A)\approx 10^{14}$.

Пусть компонента b_n задана с ошибкой ε . Тогда вычисленное значение \tilde{x}_1 компоненты x_1 имеет вид

$$\tilde{x}_1 = b_1 - ab_2 + \dots + (-a)^{n-2}b_{n-1} + (-a)^{n-1}(b_n + \varepsilon) = x_1 + (-a)^{n-1}\varepsilon$$
.

Следовательно, при |a| > 1 возмущение в b_n увеличивается в компоненте x_1 в $|a|^{n-1}$ раз, а при |a| < 1 во столько же раз уменьшается.

- **5.47.** Пусть A матрица размерности $n \times n$ с элементами $a_{ij} = \{p$ для i = j, q для i = j 1, 0 для остальных индексов $\}$. Вычислить матрицу A^{-1} и показать, что при |q| < |p| матрица A хорошо обусловлена, а при |q| > |p| и больших значениях n плохо обусловлена. У казание. Воспользоваться решением 5.46.
- **5.48.** Пусть матрица A определена как в 5.47. Выразить явно решение системы $A\mathbf{x} = \mathbf{b}$ через правую часть.

Указание. Воспользоваться решением 5.46.

5.49. Решается система $A\mathbf{x} = \mathbf{b}$ с матрицей

$$A = \begin{pmatrix} 1 & -1 & 1 \\ -1 & \varepsilon & \varepsilon \\ 1 & \varepsilon & \varepsilon \end{pmatrix}, \quad |\varepsilon| \ll 1.$$

В результате замены $x_1'=x_1,\,x_2'=\varepsilon x_2,\,x_3'=\varepsilon x_3$ для нахождения новых неизвестных ${\bf x}'$ имеем систему $A'{\bf x}'={\bf b}'$ с матрицей

$$A' = \begin{pmatrix} \varepsilon & -1 & 1 \\ -1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

В каком случае число обусловленности меньше?

< Имеем

$$A^{-1} = \begin{pmatrix} 0 & -\frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1-\varepsilon}{4\varepsilon} & \frac{1+\varepsilon}{4\varepsilon} \\ \frac{1}{2} & \frac{1+\varepsilon}{4\varepsilon} & \frac{1-\varepsilon}{4\varepsilon} \end{pmatrix}, \quad (A')^{-1} = \begin{pmatrix} 0 & -\frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1-\varepsilon}{4} & \frac{1+\varepsilon}{4} \\ \frac{1}{2} & \frac{1+\varepsilon}{4} & \frac{1-\varepsilon}{4} \end{pmatrix},$$

поэтому число обусловленности исходной матрицы стремится к бесконечности при $\varepsilon \to 0,$ а число обусловленности матрицы A' остается ограниченным. \triangleright

- **5.50.** Пусть $A=A^T>0,\ \lambda(A)\in[m,M]$ и $A\neq\beta I,$ где I—единичная матрица. Доказать, что $\mathrm{cond}_2(A+\alpha I)$ монотонно убывает по α при $\alpha>0.$ У к а з а н и е. Вычислить $\mathrm{cond}_2(A+\alpha I)=\frac{M+\alpha}{m+\alpha}=1+\frac{M-m}{m+\alpha}$.
- **5.51.** Существуют ли несимметричные матрицы, для которых справедливо $\mathrm{cond}^2(A) = \mathrm{cond}(A^2) > 1?$

Ответ: примером такой матрицы является

$$A = \begin{pmatrix} 10^3 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 10^{-3} \end{pmatrix},$$

$$\lambda(A^T A) \in \left\{ 10^6, 10^{-6}, 4, 5 \pm \sqrt{4, 25} \right\},$$

$$\operatorname{cond}(A^2) = ||A^2|| ||A^{-2}|| = 10^{12}; \quad \operatorname{cond}(A) = ||A|| ||A^{-1}|| = 10^6.$$

5.52. Доказать неравенство для квадратных невырожденных матриц размерности $n \times n$

 $\frac{1}{n} \leqslant \frac{\text{cond}_1(A)}{\text{cond}_2(A)} \leqslant n.$

< Воспользовавшись неравенством для векторных норм

$$||\mathbf{x}||_2 \leqslant ||\mathbf{x}||_1 \leqslant \sqrt{n} \, ||\mathbf{x}||_2,$$

получим $\frac{1}{\sqrt{n}} ||A||_2 \leqslant ||A||_1 \leqslant \sqrt{n} ||A||_2$, откуда и следует требуемый результат.

5.53. Оценить снизу и сверху $\operatorname{cond}_{\infty}(A)$ невырожденной матрицы A размерности $n \times n$, используя границы собственных чисел матрицы A^TA : $\lambda(A^TA) \in [\alpha, \beta]$.

$$\frac{1}{n} \sqrt{\frac{\beta}{\alpha}} \leqslant \operatorname{cond}_{\infty}(A) \leqslant n \sqrt{\frac{\beta}{\alpha}}.$$

5.54. Получить неравенство $\operatorname{cond}(A) \geqslant \left| \frac{\lambda_{\max}(A)}{\lambda_{\min}(A)} \right|$ для произвольной невырожденной матрицы A и любой матричной нормы, используемой при определении числа обусловленности.

Указание. Воспользоваться решением 5.6.

- **5.55.** Доказать, что $\operatorname{cond}(AB) \leqslant \operatorname{cond}(A)\operatorname{cond}(B)$ для любой заданной нормы в определении числа обусловленности и для любых невырожденных квадратных матриц.
- **5.56.** Оценить $\mathrm{cond}_2(A)$ матрицы A размерности $n \times n$

$$A = \begin{pmatrix} 2 & -1 & 0 & 0 & \dots & 0 & 0 \\ -1 & 2 & -1 & 0 & \dots & 0 & 0 \\ 0 & -1 & 2 & -1 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & \dots & 2 & -1 \\ 0 & 0 & 0 & 0 & \dots & -1 & 2 \end{pmatrix}.$$

У к а з а н и е. Воспользоваться для собственных векторов $\mathbf{y}^{(j)}$, $j=1,\ldots,n$, матрицы A явной формулой (см. 2.86): $\mathbf{y}_k^{(j)}=\sin\frac{\pi\,j\,k}{n+1}$. Соответствующие собственные числа: $\lambda^{(j)}=4\sin^2\frac{\pi\,j}{2(n+1)}$, так что

$$\operatorname{cond}_2(A) = \operatorname{ctg}^2 \frac{\pi}{2(n+1)} \approx \frac{4(n+1)^2}{\pi^2}.$$

5.57. Оценить $\operatorname{cond}_2(A)$ матрицы A размерности $n \times n$

$$A = \frac{1}{6} \begin{pmatrix} 4 & 1 & 0 & 0 & \dots & 0 & 0 \\ 1 & 4 & 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & 4 & 1 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & \dots & 4 & 1 \\ 0 & 0 & 0 & 0 & \dots & 1 & 4 \end{pmatrix}.$$

Указание. Для собственных векторов $\mathbf{y}^{(j)}$, $j=1,\dots,n$ матрицы A найти явную формулу (см. 2.86). Получим $\mathbf{y}_k^{(j)}=\sin\frac{\pi\,j\,k}{n+1}$. Соответствующие собственные числа: $\lambda^{(j)}=\frac{2}{3}+\frac{1}{3}\cos\frac{\pi\,j}{n+1}$, так что $\mathrm{cond}_2(A)\leqslant 3$.

5.58. Пусть I — единичная матрица, δI — ее возмущение и $||\delta I||<1$. Показать, что матрица $I-\delta I$ невырожденная и выполнена оценка

$$||(I - \delta I)^{-1}|| \leqslant \frac{1}{1 - ||\delta I||}$$
.

 \lhd Возьмем произвольный вектор $\mathbf{x} \neq 0$. Так как $1 - ||\delta I|| > 0$ и $||\mathbf{x}|| = ||(\mathbf{x} - \delta I\mathbf{x}) + \delta I\mathbf{x}|| \leq ||\mathbf{x} - \delta I\mathbf{x}|| + ||\delta I\mathbf{x}||$, то

$$||(I - \delta I)\mathbf{x}|| = ||\mathbf{x} - \delta I\mathbf{x}|| \geqslant ||\mathbf{x}|| - ||\delta I\mathbf{x}|| \geqslant$$
$$\geqslant ||\mathbf{x}|| - ||\delta I|| ||\mathbf{x}|| = (1 - ||\delta I||) ||\mathbf{x}|| > 0.$$

Следовательно, если $\mathbf{x}\neq 0$, то $(I-\delta I)\mathbf{x}\neq 0$, т. е. матрица $I-\delta I$ невырожденная. Из тождества $(I-\delta I)(I-\delta I)^{-1}=I$ получаем $(I-\delta I)^{-1}=I+\delta I$ $(I-\delta I)^{-1}$. Отсюда

$$||(I - \delta I)^{-1}|| \le ||I|| + ||\delta I|| \, ||(I - \delta I)^{-1}|| = 1 + ||(I - \delta I)^{-1}|| \, ||\delta I|| \, .$$

Из этого неравенства следует решение задачи (ее называют sadaчей о sosмущении edиничной mampuyы).

5.59. Пусть I — единичная матрица, δI — ее возмущение и $||\delta I||<1$. Получить оценку отклонения матрицы I от матрицы $(I-\delta I)^{-1}$.

 \triangleleft Из $(I-\delta I)^{-1}=I+\delta I(I-\delta I)^{-1}$ (см. 5.58) получим $I-(I-\delta I)^{-1}=-\delta I(I-\delta I)^{-1}.$ Отсюда в силу неравенства из 5.58

$$||I - (I - \delta I)^{-1}|| \le ||\delta I|| ||(I - \delta I)^{-1}|| \le \frac{||\delta I||}{1 - ||\delta I||}.$$

5.60. Пусть A — невырожденная матрица, δA — ее возмущение и $||A^{-1}\delta A|| < 1$. Показать, что матрица $A + \delta A$ невырожденная и выполнена оценка

$$||(A+\delta A)^{-1}|| \le \frac{||A^{-1}||}{1-||A^{-1}\delta A||}$$
.

 \triangleleft Имеем $A+\delta A=A(I+A^{-1}\delta A)$. Поскольку $||A^{-1}\delta A||<1$, из 5.58 следует, что матрица $I+A^{-1}\delta A$ невырожденная. Это означает, что и матрица $A+\delta A$ также не вырождена.

Из равенства $(A+\delta A)^{-1}=(I+A^{-1}\delta A)^{-1}A^{-1},$ в силу неравенства из 5.58, следует, что

$$||(A + \delta A)^{-1}|| \le ||(I + A^{-1}\delta A)^{-1}|| \, ||A^{-1}|| \le \frac{||A^{-1}||}{1 - ||A^{-1}\delta A||}.$$

5.61. Пусть A- невырожденная матрица, $\delta A-$ ее возмущение и $||A^{-1}\delta A||<1.$ Получить оценку отклонения матрицы $(A+\delta A)^{-1}$ от $A^{-1}.$

 \triangleleft Из равенства $(A+\delta A)^{-1}=(I+A^{-1}\delta A)^{-1}A^{-1}$ следует, что $A^{-1}-(A+\delta A)^{-1}=(I-(I+A^{-1}\delta A)^{-1})A^{-1}.$ Тогда в силу неравенства из 5.59

$$||A^{-1} - (A + \delta A)^{-1}|| \le ||I - (I + A^{-1}\delta A)^{-1}|| \, ||A^{-1}|| \le \frac{||A^{-1}\delta A||}{1 - ||A^{-1}\delta A||} \, ||A^{-1}||.$$

Относительная ошибка в матрице $(A+\delta A)^{-1}$ оценивается неравенством

$$\frac{||A^{-1} - (A + \delta A)^{-1}||}{||A^{-1}||} \leqslant \frac{||A^{-1}|| \, ||\delta A||}{1 - ||A^{-1}\delta A||} = \frac{\operatorname{cond}(A)}{1 - ||A^{-1}\delta A||} \, \frac{||\delta A||}{||A||} .$$

5.62. Оценить снизу число обусловленности $cond_2(A)$ матрицы:

$$1) \ \ A = \begin{pmatrix} 10 & 10 & 30 \\ 0,1 & 0,5 & 0,1 \\ 0,03 & 0,01 & 0,01 \end{pmatrix}; \quad 2) \ \ A = \begin{pmatrix} 1 & 20 & -400 \\ 0,2 & -2 & -20 \\ -0,04 & -0,2 & 1 \end{pmatrix}.$$

5.63. Система $A\mathbf{x} = \mathbf{b}$, где

$$A = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 10^{-10} & 10^{-10} \\ 1 & 10^{-10} & 10^{-10} \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 2(1+10^{-10}) \\ -10^{-10} \\ 10^{-10} \end{pmatrix},$$

имеет решение $\mathbf{x} = (10^{-10}, -1, 1)^T$. Доказать, что если $(A + \delta A)\mathbf{y} = \mathbf{b}$, $\|\delta A\| \le 10^{-8} \|A\|$, то $\|\mathbf{x} - \mathbf{y}\| \le 10^{-7}$. Это означает, что относительно малые изменения в элементах матрицы A не приводят к большим изменениям в решении, хотя $\mathrm{cond}_{\infty}(A)$ имеет порядок 10^{10} .

5.64. Пусть $A = \begin{pmatrix} 100 & 99 \\ 99 & 98 \end{pmatrix}$. Доказать, что данная матрица имеет наибольшее число обусловленности $\operatorname{cond}_2(A)$ из всех невырожденных матриц второго порядка, элементами которых являются положительные целые числа, меньшие или равные 100.

 \triangleleft Введем обозначения для элементов матрицы A

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

и найдем $\operatorname{cond}_2(A)$ в явном виде

$$||A||_2 = \sqrt{\max \lambda(A^T A)}, \quad ||A^{-1}||_2 = \sqrt{\max \lambda((A^{-1})^T A^{-1})} =$$

$$= \sqrt{\max \lambda((A^T A)^{-1})} = \frac{1}{\sqrt{\min \lambda(A^T A)}}.$$

Имеем

$$\operatorname{cond}_2(A) = \sqrt{\frac{\max \lambda(A^T A)}{\min \lambda(A^T A)}}.$$

Введем матрицу

$$B = A^{T}A = \begin{pmatrix} a^{2} + c^{2} & ab + cd \\ ab + cd & b^{2} + d^{2} \end{pmatrix}$$

и запишем ее характеристический многочлен

$$p_B(\lambda) = \lambda^2 - \lambda \operatorname{tr} B + \det B, \quad \operatorname{tr} B = a^2 + b^2 + c^2 + d^2.$$

Его корни равны $\lambda_{1,2}=rac{{
m tr}\, B\pm \sqrt{{
m tr}^2 B-4{
m det}\, B}}{2}.$ Так как ${
m tr}\, B~>~0,$ то

$$\operatorname{cond}_{2}(A) = \sqrt{\frac{\operatorname{tr} B + \sqrt{\operatorname{tr}^{2} B - 4 \det B}}{\operatorname{tr} B - \sqrt{\operatorname{tr}^{2} B - 4 \det B}}} = \frac{\operatorname{tr} B + \sqrt{\operatorname{tr}^{2} B - 4 \det B}}{\sqrt{4 \det B}} = \frac{\operatorname{tr} B}{2\sqrt{\det B}} + \sqrt{\frac{\operatorname{tr}^{2} B}{4 \det B}} - 1.$$

Таким образом, значение $\operatorname{cond}_2(A)$ максимально, если максимально $\frac{\operatorname{tr}^2(A^TA)}{\det(A^TA)}$. Имеем $\operatorname{tr}^2(A^TA) = (a^2 + b^2 + c^2 + d^2)^2$,

$$\det (A^T A) = (a^2 + c^2) (b^2 + d^2) - (ab + cd)^2 =$$

$$= a^2 d^2 + b^2 c^2 - 2abcd = (ad - bc)^2 = \left| \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right|^2 \equiv \det^2 A,$$

следовательно, значение $\frac{a^2+b^2+c^2+d^2}{\det^2 A}$ должно быть максимальным. От-

сюда получаем, что выражение $a^2+b^2+c^2+d^2$ максимально при условии $\det A=\pm 1$. Действительно, если модуль определителя больше 1, то $\operatorname{tr} B$ необходимо увеличить больше, чем в два раза. При ограничении $a_{ij}\leqslant 100$ это невозможно. Таким образом, при n=98 можно воспользоваться любой из следующих матриц:

$$A_{1} = \begin{pmatrix} n+2 & n+1 \\ n+1 & n \end{pmatrix}, \quad A_{2} = \begin{pmatrix} n+1 & n+2 \\ n & n+1 \end{pmatrix},$$

$$A_{3} = \begin{pmatrix} n+1 & n \\ n+2 & n+1 \end{pmatrix}, \quad A_{4} = \begin{pmatrix} n & n+1 \\ n+1 & n+2 \end{pmatrix}.$$

5.65. Пусть при некотором 1 > q > 0 для элементов каждой строки i невырожденной матрицы A выполнено неравенство $q |a_{ii}| \geqslant \sum_{i \neq j} |a_{ij}|$. Оце-

нить снизу и сверху $\operatorname{cond}_{\infty}(A)$, используя только диагональные элементы матрицы и параметр q.

< Отметим оценки

$$\max_{i} |a_{ii}| \leqslant ||A||_{\infty} \leqslant (1+q) \max_{i} |a_{ii}|.$$

Введем обозначение $C = A^{-1}$ и заметим, что для $\forall i, j$ справедливо $|c_{ij}| \leq \|C\|_{\infty}$. При каждом i имеем (A C = I)

$$\sum_{k=1}^{n} a_{ik} c_{ki} = 1, \quad 1 \leqslant \sum_{k=1}^{n} |a_{ik}| |c_{ki}| \leqslant |a_{ii}| (1+q) \|C\|_{\infty}.$$

Отсюда получаем оценку снизу для нормы матрицы A^{-1}

$$||A^{-1}||_{\infty} = ||C||_{\infty} \geqslant \frac{1}{(1+q)\min_{i}|a_{ii}|},$$

следовательно,

$$\operatorname{cond}_{\infty}(A) = ||A||_{\infty} ||A^{-1}||_{\infty} \geqslant \frac{1}{1+q} \frac{\max_{i} |a_{ii}|}{\min_{i} |a_{ii}|}.$$

Если правая часть неравенства не превышает единицы, то полученная оценка малосодержательна.

В силу невырожденности матрицы A, все диагональные элементы a_{ii} отличны от нуля, поэтому можно построить матрицы

$$J = \operatorname{diag}(a_{11}^{-1}, a_{22}^{-1}, \dots, a_{nn}^{-1}), \quad B = JA - I.$$

Отметим, что $\|B\|_{\infty} \leqslant q < 1$ в силу цепочки неравенств

$$\max_{i} |b_{i1}x_1 + \dots + b_{in}x_n| \leqslant \max_{i} \sum_{k} |b_{ik}x_k| \leqslant ||\mathbf{x}||_{\infty} \max_{i} \sum_{k} |b_{ik}| \leqslant q ||\mathbf{x}||_{\infty}.$$

Отсюда следует справедливость представления

$$A^{-1} = (I+B)^{-1}J = (I-B+B^2-B^3+\cdots)J,$$

так как ряд является сходящимся.

Далее для произвольного вектора \mathbf{x} получаем оценку

$$\|A^{-1}\mathbf{x}\|_{\infty} = \|(I - B + B^2 - B^3 + \cdots) J\mathbf{x}\|_{\infty} \leqslant$$

$$\leqslant \|J\mathbf{x}\|_{\infty} + q \|J\mathbf{x}\|_{\infty} + q^2 \|J\mathbf{x}\|_{\infty} + \cdots = \frac{1}{1 - q} \|J\mathbf{x}\|_{\infty} \leqslant$$

$$\leqslant \frac{1}{1 - q} \frac{1}{\min_{i} |a_{ii}|} \|\mathbf{x}\|_{\infty}.$$

Следовательно,

$$\operatorname{cond}_{\infty}(A) = ||A||_{\infty} ||A^{-1}||_{\infty} \leqslant \frac{1+q}{1-q} \frac{\max_{i} |a_{ii}|}{\min_{i} |a_{ii}|}.$$

Ответ:
$$\frac{1}{1+q} \frac{\max|a_{ii}|}{\min|a_{ii}|} \leqslant \operatorname{cond}_{\infty}(A) \leqslant \frac{1+q}{1-q} \frac{\max|a_{ii}|}{\min|a_{ii}|}$$
.

5.66. Пусть R — верхняя треугольная матрица размерности $n \times n$, у которой: 1) $|r_{ij}| \leqslant 1$ для всех i, j; 2) $r_{ii} = 1$ для всех i. Найти максимально возможное значение числа обусловленности $\operatorname{cond}_{\infty}(R)$.

 \triangleleft Рассмотрим вспомогательные матрицы A_k размерности $(k+1) \times (k+1)$ с элементами $|a_{ij}| \leqslant 1$ следующей структуры:

$$a_{ij} = \begin{cases} a_{ii} & \text{при} & i = j, \\ 1 & \text{при} & i = j + 1, \\ 0 & - & \text{иначе.} \end{cases}$$

Для определителя A_k из разложения по первому столбцу следует оценка

$$|\det(A_k)| \le |a_{11}| \left| \det\left(A_{k-1}^{(1)}\right) \right| + \left| \det\left(A_{k-1}^{(2)}\right) \right| \le 2 \left| \det\left(A_{k-1}\right) \right| \le$$

 $\le 4 \left| \det\left(A_{k-2}\right) \right| \le \dots \le 2^k,$

поскольку

$$|\det(A_1)| = \left|\det\begin{pmatrix} a_{11} & a_{12} \\ 1 & a_{22} \end{pmatrix}\right| \le 2, \quad |\det(A_0)| = |a_{11}| \le 1.$$

Выше было использовано обозначение $A_{k-1}^{(l)}$ (l=1,2) для подматриц k-го порядка, получающихся из исходной матрицы A_k вычеркиванием первого столбца и l-й строки.

Рассмотрим теперь обратную к R матрицу R^{-1} с элементами

$$r_{ij}^{(-1)} = \begin{cases} 1 & \text{при} & i = j \,, \\ 0 & \text{при} & i > j \,, \\ q_{ij} & \text{при} & i < j \,. \end{cases}$$

Так как $\det(R)=1$, то q_{ij} имеет смысл алгебраического дополнения элемента r_{ji} в определителе матрицы R. При этом его значение равно (с точностью до знака) определителю матрицы, у которой диагональные элементы не превышают единицы, на нижней побочной диагонали ровно k=j-i-1 единиц, а остальные элементы равны нулю. Отсюда имеем

$$|q_{ij}| \le |\det(A_{j-i-1})| \le 2^{j-i-1}$$
.

Рассмотрим случай максимально возможных значений q_{ij} :

$$R^{-1} = \begin{pmatrix} 1 & 1 & 2 & \dots & 2^{n-3} & 2^{n-2} \\ 0 & 1 & 1 & \dots & 2^{n-4} & 2^{n-3} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 0 & 1 \end{pmatrix}.$$

При этом исходная матрица R однозначно определяется как

$$R = \begin{pmatrix} 1 & -1 & -1 & \dots & -1 \\ 0 & 1 & -1 & \dots & -1 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix}.$$

Легко проверить, что

$$||R^{-1}||_{\infty} = 1 + 1 + 2 + \dots + 2^{n-2} = 2^{n-1}, \quad ||R||_{\infty} = n,$$

т. е. построена матрица, на которой одновременно достигаются максимально возможные значения как $\|R\|_{\infty}$, так и $\|R^{-1}\|_{\infty}$ среди всех матриц из заданного класса.

Ответ: $\max \operatorname{cond}_{\infty}(R) = n \, 2^{n-1}$.

5.67. Показать, что определитель D_n матрицы Коши K_n с элементами $k_{ij}=\frac{1}{a_i+b_j},\ 1\leqslant i,j\leqslant n$ равен

$$D_n = \prod_{1 \le i < j \le n} (a_i - a_j)(b_i - b_j) \left(\prod_{1 \le i, j \le n} (a_i + b_j) \right)^{-1}.$$

 \triangleleft Вычтем первый столбец определителя последовательно из второго, третьего, . . . , n-го столбцов, а затем вынесем b_1-b_2 за знак определителя из второго столбца, b_1-b_3 — из третьего и т. д. Затем вынесем $(a_1+b_1)^{-1}$ из первой строки, $(a_2+b_1)^{-1}$ — из второй строки и т. д. Далее вычтем первую строку последовательно из второй, третьей, . . . , n-й строки, а затем вынесем за знак определителя

$$(a_1-a_2)\dots(a_1-a_n)(a_1+b_2)^{-1}\dots(a_1+b_n)^{-1}$$
.

В результате останется определитель матрицы Коши (n-1)-го порядка. Поэтому искомая формула получается по индукции. \triangleright

5.68. Пусть задана матрица Гильберта H_n с элементами $h_{ij} = \frac{1}{i+j-1}$, $1 \le i,j \le n$. Показать, что элементами матрицы H_n^{-1} являются целые числа, которые можно вычислить по формуле

$$a_{ij} = (-1)^{i+j} \frac{(i+n-1)!(j+n-1)!}{[(i-1)!]^2[(j-1)!]^2(n-i)!(n-j)!(i+j-1)} .$$

 \triangleleft Рассмотрим матрицу Коши K_n с элементами $k_{ij} = \frac{1}{a_i + b_j}, \ 1 \leqslant i, j \leqslant n.$ Ее определитель вычислен в 5.67. Элементы матрицы K_n^{-1} являются отношениями алгебраических дополнений к определителю исходной матрицы. Миноры матрицы Коши снова являются матрицами Коши. Поэтому можно получить явные выражения для элементов K_n^{-1} :

$$b_{ij} = \prod_{k=1}^{n} (a_j + b_k)(a_k + b_i) \left[(a_j + b_i) \prod_{k \neq j} (a_j - a_k) \prod_{k \neq i} (b_i - b_k) \right]^{-1}.$$

Полагая $a_i=i,\ b_i=i-1,$ получим частный случай матрицы Коши—матрицу Гильберта и искомую формулу для элементов H_n^{-1} .

5.69. Оценить рост числа обусловленности $\mathrm{cond}_{\infty}(H_n)$ матрицы Гильберта с элементами $h_{ij}=\frac{1}{i+j-1},\ 1\leqslant i,j\leqslant n$ относительно параметра размерности n.

У к а з а н и е. Величина $\frac{(i+n-1)!}{((i-1)!)^2(n-i)!}$ принимает максимальное значение

при $i=\left[\frac{n}{\sqrt{2}}\right]$, поэтому для элементов a_{ij} матрицы H_n^{-1} (см. 5.68) по формуле Стирлинга

$$n! = \sqrt{2 \pi n} n^n e^{-n} e^{\theta(n)}, \quad |\theta(n)| \leqslant \frac{1}{12 n},$$

имеем асимптотику

$$\max_{i,j} |a_{ij}| = \frac{1}{4\sqrt{2}\pi^2 n} \left(\sqrt{2} + 1\right)^{4n} \left(1 + O\left(\frac{1}{n}\right)\right).$$

Отсюда следует равенство

$$||H_n^{-1}||_{\infty} = \frac{1}{(2\pi)^{3/2} 2^{7/4} \sqrt{n}} \left(\sqrt{2} + 1\right)^{4n} \left(1 + O\left(\frac{1}{n}\right)\right).$$

Так как

$$\ln n \leqslant \|H_n\|_{\infty} = \sum_{j=1}^n \frac{1}{j} \leqslant 3 \ln n \quad ($$
для $n \geqslant 2)$,

то главный член асимптотики $\operatorname{cond}_{\infty}(H_n)$ имеет вид $\operatorname{const} \cdot 4^n \ln \frac{n}{\sqrt{n}}$.

5.70. Доказать *неравенство Адамара* для квадратных матриц вида $A = A^T > 0$:

$$\det(A) \leqslant \prod_{i=1}^{n} a_{ii} .$$

 \triangleleft Положим $d_i = \frac{1}{\sqrt{a_{ii}}}$ и пусть $D = \mathrm{diag}(d_1, d_2, \ldots, d_n)$. Неравенство $\mathrm{det}(A) \leqslant a_{11}a_{22}\ldots a_{nn}$ равносильно условию $\mathrm{det}(DAD) \leqslant 1$, и в дальнейшем достаточно рассматривать матрицу A, все диагональные элементы которой равны единице. Если $\lambda_1, \lambda_2, \ldots, \lambda_n$ — собственные значения матрицы A (обязательно положительные), то

$$\det(A) = \prod_{i=1}^{n} \lambda_i \leqslant \left(\frac{1}{n} \sum_{i=1}^{n} \lambda_i\right)^n = \left(\frac{1}{n} \operatorname{tr} A\right)^n = 1.$$

Здесь мы воспользовались неравенством между арифметическим и геометрическим средними неотрицательных чисел. Равенство средних имеет место тогда и только тогда, когда все $\lambda_i=1$. В силу симметрии, матрица A диагонализуема. При единичных диагональных элементах и собственных значениях это равносильно тому, что A является единичной матрицей. Соответственно равенство в исходном неравенстве достигается тогда и только тогда, когда A— диагональная матрица.

5.71. Показать, что для произвольной квадратной матрицы C справедливы неравенства

$$|\det(C)| \leqslant \prod_{i=1}^n \left(\sum_{j=1}^n |c_{ij}|^2 \right)^{1/2} \,, \quad |\det(C)| \leqslant \prod_{j=1}^n \left(\sum_{i=1}^n |c_{ij}|^2 \right)^{1/2} \,,$$

а равенства в них достигаются тогда и только тогда, когда строки (соответственно столбцы) матрицы C попарно ортогональны.

 \triangleleft Если матрица C вырождена, то доказывать нечего. В случае невырожденной матрицы C нужно применить неравенство из 5.70 к положительно определенной матрице $A = C\,C^T$ и извлечь квадратный корень из обеих частей неравенства. Правая часть доказываемого неравенства — квадратный корень из произведения диагональных элементов матрицы A, а левая часть — квадратный корень из определителя этой матрицы. Строки матрицы C попарно ортогональны тогда и только тогда, когда A — диагональная матрица, а это и есть случай равенства в 5.70. Второе искомое неравенство получается применением первого к матрице C^T .

5.3. Точные методы

К точным методам решения системы $A\mathbf{x}=\mathbf{b}$ линейных алгебраических уравнений относятся алгоритмы, которые при отсутствии ошибок округления, позволяют точно вычислить искомый вектор \mathbf{x} за конечное число логических и арифметических операций. Если число ненулевых элементов матрицы имеет порядок n^2 , то большинство алгоритмов такого рода позволяют найти решение за $O(n^3)$ арифметических действий. Данная оценка, а также необходимость хранения всех элементов матрицы в памяти компьютера накладывают существенное ограничение на область применимости точных методов. Однако для решения задач размерности n менее 10^4 разумно применять точные алгоритмы. При численном решении задач математической физики часто требуется обращать матрицы блочнодиагонального вида. В этом случае удается построить точные методы с меньшим по порядку числом арифметических действий. К таким алгоритмам относят методы прогонки, стрельбы, Фурье (базисных функций).

Наиболее известным из точных методов, применяемых для решения задач с матрицами общего вида, является метод исключения Гаусса. В предположении, что коэффициент $a_{11} \neq 0$, уравнения исходной системы заменяем следующими:

$$\begin{cases} x_1 + \sum_{j=2}^{n} \frac{a_{1j}}{a_{11}} x_j = \frac{b_1}{a_{11}}, \\ \sum_{j=2}^{n} \left(a_{ij} x_j - \frac{a_{1j}}{a_{11}} a_{i1} x_j \right) = b_i - \frac{b_1}{a_{11}} a_{i1}, \quad i = 2, \dots, n, \end{cases}$$

т. е. первое уравнение делим на a_{11} , затем, умноженное на соответствующий коэффициент a_{i1} , вычитаем из последующих уравнений. В полученной системе $A^{(1)}\mathbf{x} = \mathbf{b}^{(1)}$ неизвестное x_1 исключено из всех уравнений,