CLAIMS

What is claimed is:

D4601-3CIP

1	1. A system for detecting underwater buried objects comprising:
2	an acoustical camera adapted to produce three dimensional volumetric images of an
3	underwater target area volume of an underwater floor;
4	an acoustic transducer adapted to apply an acoustic pulse to the target area volume
5	so as to cause displacement of materials included in the target area volume;
6	and
7	a controller adapted to coordinate operation of the camera and the acoustic
8	transducer, wherein a first volumetric image of the target area volume is
9	produced before the acoustic pulse is applied, and a second volumetric
10	image of the target area volume is produced while the acoustic pulse is
11	present in the target area volume.
1	2. The system of claim 1 wherein the camera produces volumetric images of
2	the underwater target area volume at a real-time frame rate.
_	
1	3. The system of claim 1 wherein the camera is further adapted to operate in
2	an interferometer mode having a resolution of less than one wavelength.
1	4. The system of claim 1 wherein the controller is further adapted to compare
2	volumetric images for evidence of at least one of a partially or completely buried object.
_	J
1	5. The system of claim 4 wherein the evidence of buried objects is based on
2	movement of floor materials relative to the buried objects.
1	6. The system of claim 1 further comprising:
1	
2	an image recorder adapted to record the volumetric images.
1	7. The system of claim 1 wherein the acoustical transducer is extendible
2	towards the target area volume.
1	8. The system of claim 1 further comprising:

13

2	an image discrimination module adapted to discriminate interesting objects from
3	non-interesting objects detected in the volumetric images.
1	9. The system of claim 1 further comprising:
2	a range finder adapted to detect when the system is at a proper distance from the
3	target area volume for imaging purposes.
1	10. The system of claim 1 wherein the camera is configured for producing
2	volumetric images within a 16 feet range at a frame rate greater than 10 frames/second, the
3	camera having an acoustical lens configured for forming images on an array of acoustical
4	transducer elements.
1	11. A system for detecting underwater buried objects comprising:
2	an acoustical camera adapted to produce three dimensional volumetric images of an
3	underwater target area volume of an underwater floor;
4	an acoustic transducer adapted to apply an acoustic pulse to the target area volume
5	so as to cause displacement of materials included in the target area volume;
6	and
7	a controller adapted to coordinate operation of the camera and the acoustic
8	transducer, so that a volumetric image of the target area volume is produced
9	while the acoustic pulse is present in the target area volume, thereby
10	allowing buried objects to be detected based on relative movements in the
11	target volume area.
1	12. The system of claim 11 wherein the camera is further adapted to operate as
2	an acoustical imaging interferometer having a resolution of less than one wavelength.
1	13. A method for detecting underwater buried objects comprising:
2	producing one or more three dimensional volumetric images of an underwater
3	target area volume of an underwater floor;
4	applying an acoustic pulse to the target area volume so as to cause displacement of
5	materials included in the target area volume; and

D4601-3CIP 14

6	producing one or more second volumetric images of the target area volume while
7	the acoustic pulse is present in the target area volume.
1	14. The method of claim 13 wherein producing volumetric images of the
2	underwater target area volume is performed at a real-time frame rate.
1	15. The method of claim 13 wherein producing volumetric images of the
2	underwater target area volume is performed using a resolution of less than one wavelength.
	16 The mode of a faire 12 foothers are made in a
1	16. The method of claim 13, further comprising:
2	comparing volumetric images for evidence of at least one of a partially or
3	completely buried object.
1	17. The method of claim 16 wherein comparing volumetric images for evidence
2	of buried objects includes detecting movement of floor materials relative to the buried
3	objects.
1	18. The method of claim 13 further comprising:
2	recording the volumetric images.
1	19. The method of claim 13 further comprising:
_	
2	discriminating interesting objects from non-interesting objects detected in the
3	volumetric images.

The method of claim 13 further comprising:

detecting a proper distance from the target area volume for imaging purposes.

D4601-3CIP 15

3

1

2

20.