

Motivation

Probability theory reminders

Loi des probabilités totales

$$\mathbb{P}(B) = \sum_{i=1}^{+\infty} \mathbb{P}(B|A_i)\mathbb{P}(A_i)$$

Corollaire : Soit X une variable aléatoire discrète prenant ses valeurs dans
$$\mathbb{N}$$
. Alors : $+\infty$

 $\mathbb{P}(B) = \sum \mathbb{P}(B|\mathbf{X} = i)\mathbb{P}(\mathbf{X} = i)$

Soit $(\Omega, \mathcal{P}, \mathcal{A})$ un espace probabilisé. Soit $(A_i)_{i \in \mathbb{N}}$ une partition de Ω , c'est-à-dire que

 $A_i \cap A_j = \emptyset$ pour $i \neq j$ et $\bigcup_{i \in \mathbb{N}} A_i = \Omega$. Soit $B \in \mathcal{A}$, alors :

Quelle est l'intuition de cette loi ? Autrement dit, d'où vient-elle ?

$$\sum_{i=1}^{+\infty} \mathbb{P}(\mathbf{B}|\mathbf{A}_i) \mathbb{P}(\mathbf{A}_i) = \sum_{i=1}^{+\infty} \mathbb{P}(\mathbf{B} \cap \mathbf{A}_i) = \mathbb{P}(\cup_{i=1}^n B \cap \mathbf{A}_i) = \mathbb{P}(\mathbf{B} \cap \cup_{i=1}^n \mathbf{A}_i) = \mathbb{P}(\mathbf{B} \cap \Omega) = \mathbb{P}(\mathbf{B})$$

Car partition (faire un schéma)

Loi des probabilités totales

Soit $(\Omega, \mathcal{P}, \mathcal{A})$ un espace probabilisé. Soit $(A_i)_{i \in \mathbb{N}}$ une partition de Ω , c'est-à-dire que $A_i \cap A_j = \emptyset$ pour $i \neq j$ et $\bigcup_{i \in \mathbb{N}} A_i = \Omega$. Soit $B \in \mathcal{A}$, alors :

$$\mathbb{P}(B) = \sum_{i=1}^{+\infty} \mathbb{P}(B|A_i)\mathbb{P}(A_i)$$

Quelle est l'intuition de cette loi ? Autrement dit, d'où vient-elle ?

$$\sum_{i=1}^{+\infty} \mathbb{P}(\mathbf{B}|A_i)\mathbb{P}(A_i) = \sum_{i=1}^{+\infty} \mathbb{P}(\mathbf{B} \cap A_i) = \mathbb{P}(\cup_{i=1}^n B \cap A_i) = \mathbb{P}(\mathbf{B} \cap \cup_{i=1}^n A_i) = \mathbb{P}(\mathbf{B} \cap \Omega) = \mathbb{P}(\mathbf{B})$$
Bayes Car éléments disjoints Car partition (faire un schéma)

Corollaire: Soit X une variable aléatoire discrète prenant ses valeurs dans N. Alors:

$$\mathbb{P}(B) = \sum_{i=1}^{+\infty} \mathbb{P}(B|\mathbf{X} = i)\mathbb{P}(\mathbf{X} = i)$$

- 1. Introduction
- 2. Les Bayésiens vs Les fréquentistes
- 3. Rappels de probabilités (exemples)
- 4. Loi a posteriori et modèles conjugués
- 5. Estimateur de Bayes

$$\mathbb{P}(\mathbf{T}) = \mathbb{P}(\mathbf{T}|\mathbf{A})\mathbb{P}(\mathbf{A}) + \mathbb{P}(\mathbf{T}|\mathbf{B})\mathbb{P}(\mathbf{B})$$

$$\mathbb{P}(\mathbf{B}|\mathbf{T}) = \frac{\mathbb{P}(\mathbf{T}|\mathbf{B})\mathbb{P}(\mathbf{B})}{\mathbb{P}(\mathbf{T})} = \frac{\mathbb{P}(\mathbf{T}|\mathbf{B})\mathbb{P}(\mathbf{B})}{\mathbb{P}(\mathbf{T}|\mathbf{A})\mathbb{P}(\mathbf{A}) + \mathbb{P}(\mathbf{T}|\mathbf{B})\mathbb{P}(\mathbf{B})}$$

 $= \frac{0.9 \times 0.1}{0.2 \times 0.9 + 0.9 \times 0.1} = \frac{1}{3}$

Agriculteurs

