6.2. Suppose f is non-negative and measurable and μ is σ -finite. Show there exist simple functions s_n increasing to f at each point such that $\mu(\{x:s_n(x)\neq 0\})<\infty$ for each n.

Proof. Let $X = \bigcup_{1}^{\infty} X_i$ where $\mu(X_i) < \infty$ for each i, and $X_i \cap X_j = \emptyset$ for $i \neq j$. Define $f_i = f \cdot \mathbb{1}(X_i)$. Then f_i is non-negative and measurable, so for each i there is a sequence $\{s_i^n\}_{n=0}^{\infty}$ of simple functions increasing to f_i . Since $f_i = 0$ on X_i^c and this sequence is increasing, we must have $s_i^n = 0$ on X_i^c .

Define a sequence t_n of functions by $t_n = \sum_{i=1}^n s_i^n$. Each t_n is a sum of simple functions, hence simple. For $x \in X_i$ we have $t_n(x) = 0$ if i > n and $t_n = s_i^n(x)$ if $i \le n$. So $t_n(x) \to f(x)$ for all x. Also, for all n we have

$$\mu(\lbrace x: t_n(x) \neq 0\rbrace) \leq \mu\left(\bigcup_{1}^{n} X_i\right) \leq \sum_{1}^{n} \mu(X_i) < \infty.$$

6.3. Let f be a non-negative measurable function. Prove that

$$\lim_{n \to \infty} \int (f \wedge n) \to \int f.$$

Proof. This is a straightforward application of the monotone convergence theorem. Let $f_n = f \wedge n$. Let $x \in X$. Then one of $f(x) \leq n$, or $n+1 \leq f(x)$, or n < f(x) < n+1 holds. In the first case, $f(x) \wedge n = f(x) = f(x) \wedge (n+1)$. In the second, $f(x) \wedge n = n \leq n+1 = f(x) \wedge (n+1)$. In the last, $f(x) \wedge n = n \leq f(x) = f(x) \wedge (n+1)$. Therefore, $f_n \leq f_{n+1}$.

Let N=f(x). Whenever n>N, we have $|(f(x)\wedge n)-f(x)|=|f(x)-f(x)|=0<\epsilon$ for a given ϵ . Thus $\lim_{n\to\infty}f\wedge n=f$. Clearly, the minimum of two non-negative functions (f and the constant function f) is non-negative. Thus f as satisfies the hypotheses of the monotone convergence theorem, of which the conclusion is the desired result.

6.4. Let (X, \mathcal{A}, μ) be a measure space and suppose μ is σ -finite. Suppose f is integrable. Prove that given ϵ there exists δ such that

$$\int_{A} |f(x)| \mu(dx) < \epsilon$$

whenever $\mu(A) < \delta$.

Proof. Since f is integrable, f is measurable. Therefore, so is |f|. So, by the previous exercise, there exists an n such that $\left|\int |f| - \int (|f| \wedge n)\right| < \frac{\epsilon}{2}$. However, $|f| \wedge n \leq |f|$, so we may drop the outside absolute values. We can also apply linearity to obtain

$$\int |f| - (|f| \wedge n) < \frac{\epsilon}{2}.$$

For any measurable function g and measurable set A, we have $g \cdot \mathbb{1}(A) \leq g$, so $\int_A g \leq \int g$. This yields

$$\int_{A} |f| - (|f| \wedge n) \le \int |f| - (|f| \wedge n) < \frac{\epsilon}{2}.$$

Let $\delta = \frac{\epsilon}{2n}$, and assume $\mu(A) < \delta$. Since n is measurable and $|f| \wedge n \leq n$, we have

$$\int_{A} |f| \wedge n \le \int_{A} n = n\mu(A) \le \frac{\epsilon}{2}.$$

Note that we have applied here the fact that $\int_A n = n\mu(A)$, which we acquire from Proposition 6.3 (1) by taking a = b = n.

Combining these inequalities, we find

$$\int_A |f| = \int_A |f| - (|f| \wedge n) + (|f| \wedge n) = \int_A |f| - (|f| \wedge n) + \int_A |f| \wedge n < \epsilon.$$

The fact that μ is σ -finite seems irrelevant.

6.5. Suppose $\mu(X) < \infty$ and f_n is a sequence of bounded real-valued measurable functions that converge to f uniformly. Prove that

$$\int f_n d\mu \to \int f d\mu.$$

This is called the bounded convergence theorem.

Proof. Given $\epsilon > 0$, let $\epsilon' = \frac{\epsilon}{\mu(X)}$. Since each f_n is bounded by some M_n , $\int f_n \leq M_n \mu(X)$. So $\int f_n$ is finite. Since $f_n \to f$ uniformly, there is some N such that $|f(x) - f_n(x)| < \epsilon'$ for all x whenever n > N. So f is bounded as well, since $|f| = |f - f_{n+1}| + |f_{n+1}| \leq \epsilon' + M_{n+1}$. Thus $\int f$ is also finite (by the same reasoning). So

$$\left| \int f - \int f_n \right| = \left| \int f - f_n \right| \le \int |f - f_n| \le \int \epsilon' = \frac{\epsilon}{\mu(X)} \mu(X) = \epsilon$$

whenever n > N. Therefore, $\int f_n \to \int f$.