Vegetation Analysis Site Description Slide 1 Vegetation Analysis Site Description Slide 2

Site Description

- 1. Diversity indices
- 2. Species abundance models
- 3. Species area relationship

©2002-2004 Jari Oksanen

Dept. Biology, Univ. Oulu, Finland

February 17, 2004

Vegetation Analysis Site Description Slide 3

Simpson diversity

The probability that two randomly picked individuals belong to the same species in an infinite community is $P = \sum_{i=1}^{S} p_i^2$.

Can be changed to a diversity measure (= increases with complexity):

- 1. Probability that two individuals belong to different species: 1-P.
- 2. Number of species in a community with the same probability P, but all species with equal abundances: 1/P.

Claimed to be ecologically more meaningful than Shannon diversity, but usually very similar.

Shannon diversity

$$H = -\sum_{j=1}^{S} p_j \log_b p_j$$

Originally information theory with base b=2: Average length in bits of code with shortest possible unique coding

• The limit reached when code length is $-\log_2 p_i$: longer codes for rare species.

Biologists use natural logarithms (base b = e), and call it H'

Information theory makes no sense in ecology: Better to see only as a variance measure for class data.

©2002-2004 Jari Oksanen

©2002-2004 Jari Oksanen

Dept. Biology, Univ. Oulu, Finland

February 17, 2004

Vegetation Analysis

Site Description

Slide 4

Hill numbers

Common measures of diversity are special cases of Rényi entropy;

$$H_a = \frac{1}{1-a} \log \sum_{i=1}^{S} p_i^a$$

Mark Hill proposed using $N_a = \exp(H_a)$ or the "Hill number":

$$H_0 = \log(S)$$
 $N_0 = S$ Number of species $H_1 = -\frac{S}{i=1} p_i \log p_1$ $N_1 = \exp(H_1)$ exp Shannon $H_2 = -\log \frac{S}{i=1} p_i^2$ $N_2 = 1/\frac{S}{i=1} p_i^2$ Inverse Simpson

Sensitivity to rare species decreases with increasing a: N_1 and N_2 are little influenced and nearly linearly related.

All Hill numbers in same units: "virtual species".

Vegetation Analysis Site Description Slide 5

Choice of index

- Diversity indices are only variances of species abundances.
- It is not so important which index is used, since all sensible indices are very similar.

©2002-2004 Jari Oksanen

Dept. Biology, Univ. Oulu, Finland

February 17, 2004

Vegetation Analysis Site Description Slide 7

Sample size and diversity

With increasing sample size

- Number of species S increases
- Diversity $(N_1 \text{ or } N_2)$ stabilizes
- Evenness decreases

Diversity little influenced by rare species: a variance measure.

Evenness based on twisted idea.

Evenness

Site Description

"If everything else remains constant", diversity increases when

- 1. Number of species S increases, or
- 2. Species abundances p_i become more equal.

Evenness: Hidden agenda to separate these two components

For a given number of species S, diversity is maximal when all probabilities $p_i = 1/S$: in Shannon index $H'_{max} = \log(S)$

Pielou's evenness is the proportion of observed and maximal diversity

$$J' = \frac{H'}{H'_{\text{max}}}$$

©2002-2004 Jari Oksanen

Vegetation Analysis

Dept. Biology, Univ. Oulu, Finland

February 17, 2004

Slide 8

Slide 6

Vegetation Analysis Site Description

Logarithmic series

- R.A. Fisher in 1940's
- Most species are rare, and species found only once are the largest group
- In larger samples, you may find more individuals of rare species, but you find new rare species

©2002-2004 Jari Oksanen Dept. Biology, Univ. Oulu, Finland February 17, 2004

©2002-2004 Jari Oksanen

Dept. Biology, Univ. Oulu, Finland

February 17, 2004

Vegetation Analysis Site Description Slide 9 Vegetation Analysis Site Description Slide 10

Log-Normal model

- Preston did not accept Fisher's log-series, but assumed that rare species end with sampling
- Plotted number of species against 'octaves': doubling classes of abundance
- Modal class in higher octaves, and not so many rare species
- Canonical standard model of our times

©2002-2004 Jari Oksanen

Dept. Biology, Univ. Oulu, Finland

February 17, 2004

©2002-2004 Jari Oksanen

Slide 12

Vegetation Analysis

Site Description

Slide 11

Fitting RAD models

- Pre-emption model
 - Species abundances decay by constant proportion.
 - A line in the ranked abundance diagram.
- Log-normal model
 - Species abundances distributed Normally
 - Sigmoid: excess of both abundant and rare species to pre-emption model.

Ranked abundance diagrams

- Horizontal axis: ranked species
- Vertical axis: Logarithmic abundance

The shape of abundance distribution clearly visible:

- Linear: Pre-emption model
- Sigmoid: Log-normal or brokenstick

Dept. Biology, Univ. Oulu, Finland

February 17, 2004

Vegetation Analysis Site Description

Broken Stick

- Species 'break' a community ('stick') simultaneously in S pieces.
- No real hierarchy, but chips \(\bar{\gamma} \) arranged in rank order:
- Result looks sigmoid, and can be fitted with log-Normal model.

©2002-2004 Jari Oksanen

Dept. Biology, Univ. Oulu, Finland

February 17, 2004

©2002-2004 Jari Oksanen

Dept. Biology, Univ. Oulu, Finland

February 17, 2004

Vegetation Analysis

Site Description

Slide 13

Vegetation Analysis Site Description

Hubbell's abundance model

Ultimate diversity parameter θ

- $\theta = 2J_M\nu$, where J_M is metacommunity size and ν evolution speed
- θ and J define the abundance distribution
- Simulations can be used for estimating θ .

Species generator $\theta/(\theta+j-1)$ gives the probability that jth individual is a new species for the community.

©2002-2004 Jari Oksanen

Dept. Biology, Univ. Oulu, Finland

February 17, 2004

Species richness: The trouble begins

- Species richness increases with sample size: can be compared only with the same size.
- Rare species have a huge impact in species richness.
- Rarefaction: Removing the effects of varying sample size.
- Sample size must be known in individuals: Equal area does not imply equal number of individuals.
- Plants often difficult to count.

©2002-2004 Jari Oksanen

Dept. Biology, Univ. Oulu, Finland

February 17, 2004

Slide 14

Vegetation Analysis

Site Description

Slide 15

Vegetation Analysis Site Description Slide 16

Rarefaction Rarefy to a lower, equal number of individuals Only a variant of Simpson's index Carabids Carabids Carabids Carabids Carabids Species richness Rarefied to N=4

Species richness and sample size

Fisher log-series predicts:

$$S = \alpha \ln \left(1 + \frac{N}{\alpha} \right)$$

Species never end, but the rate of increase slows down.

©2002–2004 Jari Oksanen Dept. Bi

100 200

Ν

Dept. Biology, Univ. Oulu, Finland

February 17, 2004

0.3 0.4 0.5 0.6 0.7 0.8 0.9

Simpson index

©2002-2004 Jari Oksanen

Dept. Biology, Univ. Oulu, Finland

February 17, 2004

Vegetation Analysis Site Description

Species – Area models

- Island biogeography: $S = cA^z$.
- Parameter c is uninteresting, but zshould describe island isolation.
- Regarded as universally good: Often the only model studied, so no $^{\circ}$ alternatives inspected.
- \bullet Assuming that doubling area Abrings along a constant number of new species fits often better.

©2002-2004 Jari Oksanen

Dept. Biology, Univ. Oulu, Finland

