14. Диференциране и интегриране на степенни редове

Равномерна сходимост на степенните редове

Теорема 1

Нека степенният ред $\sum_{n=0}^{\infty} a_n (x-a)^n$ има радиус на сходимост R>0.

Тогава редът е равномерно сходящ във всеки интервал $[\alpha, \beta]$ такъв, че $[\alpha, \beta] \subset (a - R, a + R)$. Ако $R = \infty$, то редът е равномерно сходящ във всеки интервал $[\alpha, \beta] \subset \mathbb{R}$.

Доказателство

Достатъчно е да докажем твърдението при a=0. Оттук то ще следва в общия случай чрез транслация: y:=x-a. Да положим $c:=\max\{|\alpha|,|\beta|\}$. Тогава $[\alpha,\beta]\subseteq [-c,c]\subset (-R,R)$. Ще докажем, че редът е равномерно сходящ в [-c,c]. Ще използваме Критерия на Вайерщрас (Теорема 3, Тема 11).

Имаме

$$\left|a_{n}x^{n}\right| \leq \left|a_{n}c^{n}\right|, \quad x \in [-c, c].$$
 (1)

Щом $0 \le c < R$ (ако $R = \infty$, това неравенство преминава в $0 \le c$ и всъщност е излишно), то степенният ред $\sum_{n=0}^{\infty} a_n x^n$ е абсолютно

е авсолютно сходящ за $\mathbf{x} = \mathbf{c}$ (Теорема 2, Тема 13), т.е. сходящ е числовият ред

 $\sum_{n=0}^{\infty} |a_n c^n|.$

Остава да приложим Критерия на Вайерщрас към функционалния ред с $u_n(x) := a_n x^n$ и числовия с $c_n := |a_n c^n|$.

Диференциране на степенни редове

Теорема 2

Степенният ред

$$\sum_{n=0}^{\infty} a_n (x-a)^n \tag{2}$$

и полученият от него степенен ред чрез почленно диференциране

$$\sum_{n=1}^{\infty} n a_n (x-a)^{n-1} \tag{3}$$

имат един и същи радиус на сходимост.

Бележка: Възможно е областите на сходимост на тези редове да са различни.

Диференциране на степенни редове

Теорема 3 (за диференциране на степенни редове)

Нека степенният ред $\sum_{n=0}^{\infty} a_n (x-a)^n$ има радиус на сходимости R>0

$$S(x) := \sum_{n=0}^{\infty} a_n (x-a)^n, \quad x \in (a-R, a+R).$$
 (4)

Тогава S(x) е диференцируема и

$$S'(x) = \sum_{n=1}^{\infty} n a_n (x-a)^{n-1}, \quad x \in (a-R, a+R).$$
 (5)

Ако $R = \infty$, то твърдението е в сила за всяко $\mathbf{x} \in \mathbb{R}$.

Доказателство

Както знаем от Теорема 2, радиусът на сходимост на степенния ред в (5) е също R. От Теорема 1 следва, че редът в (5) е равномерно сходящ във всеки интервал $[\alpha,\beta]\subset (a-R,a+R)$. Сега от теорема за почленно диференциране на функционални редове (Т-ма 4, Тема 12) следва равенството (5) за всяко $\mathbf{x}\in[\alpha,\beta]$.

Понеже тук $[\alpha, \beta]$ е произволен краен затворен подинтервал на (a-R, a+R), (5) следва за всяко $x \in (a-R, a+R)$.

Интегриране на степенни редове

Теорема 4 (за интегриране на степенни редове)

Нека степенният ред $\sum_{n=0}^{\infty} a_n (t-a)^n$ има радиус на сходимост R>0

$$S(t) := \sum_{n=0}^{\infty} a_n (t-a)^n, \quad t \in (a-R, a+R).$$
 (6)

Тогава $\mathcal{S}(t)$ е интегруема върху всеки интервал с краища \pmb{a} и $\pmb{x} \in (\pmb{a}-\pmb{R},\pmb{a}+\pmb{R})$, като

$$\int_{a}^{x} S(t) dt = \sum_{n=0}^{\infty} \frac{a_n}{n+1} (x-a)^{n+1}, \quad x \in (a-R, a+R).$$
 (7)

Ако $R = \infty$, то твърдението е в сила за всяко $\mathbf{x} \in \mathbb{R}$.

Бележка: Радиусът на сходимост на степенния ред в (7) е **R**. Това следва от Теорема 2, защото редът в (6) се получава от този в (7) чрез почленно диференциране.

Доказателство

Нека $x \in (a-R,a+R)$ е произволно фиксирано. Тогава, както знаем от Теорема 1, редът $\sum_{n=0}^{\infty} a_n (t-a)^n$ е равномерно сходящ в

затворения интервал с краища \boldsymbol{a} и \boldsymbol{x} . Сега, като приложим Теоремата за почленно интегриране на функционални редове (Теорема 2, Тема 12), получаваме

$$\int_{a}^{x} S(t) dt = \int_{a}^{x} \left(\sum_{n=0}^{\infty} a_n (t-a)^n \right) dt$$
 (8)

$$\stackrel{\text{\tiny T-MA } 2, \text{ TEMA } 12}{=} \sum_{n=0}^{\infty} a_n \int_{a}^{x} (t-a)^n dt$$
 (9)

$$\Phi$$
-ла $\stackrel{\text{на}}{=}$ Л.-Н. $\sum_{n=0}^{\infty} a_n \frac{(t-a)^{n+1}}{n+1} \Big|_a^x$ (10)

$$= \sum_{n=0}^{\infty} \frac{a_n}{n+1} (x-a)^{n+1}. \tag{11}$$

Относно краищата на областта на сходимост

Теорема 5 (Абел)

Нека степенният ред $\sum_{\substack{n=0 \ \infty}} a_n (x-a)^n$ има радиус на сходимост R>0

$$S(x) := \sum_{n=0}^{\infty} a_n (x-a)^n, \quad x \in (a-R, a+R).$$
 (12)

Ако числовият ред $\sum_{n=0}^{\infty} a_n R^n$ е сходящ, то

$$\lim_{\substack{x \to a+R \\ x < a+R}} S(x) = \sum_{n=0}^{\infty} a_n R^n.$$
 (13)

Аналогично твърдение е в сила за другия край на областта на сходимост на реда.

Бележка: В условията на теоремата, сходимостта на реда е равномерна в [a, a+R], съответно в [a-R, a]