Alignment, Clocking, and Macro Patterns of Episodes in the Life Course

Tim Riffe, Angelo Lorenti, Andrés Castro European Population Conference Session 48 Data and Methods 1 July 2022

Example questions:

▶ Do disability episodes get shorter or longer with age? And over time?

Example questions:

- ▶ Do disability episodes get shorter or longer with age? And over time?
- ► How much of a state expectancy is composed of short vs long episodes?

Example questions:

- ▶ Do disability episodes get shorter or longer with age? And over time?
- ► How much of a state expectancy is composed of short vs long episodes?
- ► How do parity-specific birth interval distributions vary by completed fertility or in response to birth outcomes?

Solution

trajectory data.

operations to flexibly derive aggregate patterns from

We develop a framework (or grammar) of data

Solution

We develop a framework (or grammar) of data operations to flexibly derive aggregate patterns from trajectory data.

Approach

Clocks are within and between episode timekeeping operations.

Alignment is a time structuring operation.

Approach

Clocks

Within episodes of state **s**, count time steps or episode order up or down, or total episode duration conditional on time of episode entry, exit, or neither.

Approach

Alignment

left, right, center, etc. on the first, last, longest, shortest, n^{th} , n^{th} from last episode of state **s**.

Requisites

Trajectory data

A set of either observed or simulated time series of discrete time steps consisting in categories.

Illustrations

10 lives simulated from Dudel & Myrskylä (2017)

Illustration: Age structured prevalence.

Identity clock in employment state

Illustration: Age structured prevalence.

Illustration: Clocks: Duration (unconditional)

Illustration: Clocks: Duration conditioned on entry

Illustration: Clocks: Duration conditioned on exit

Illustration: Clocks: Order Ascending

Illustration: Clocks: Order Descending

Illustration: Clocks: Steps Ascending

Illustration: Clocks: Steps Descending

Illustration: Alignment: Age = Birth alignment

Illustration: Alignment: Death

Illustration: Alignment: Entry to first retirement

Illustration: Alignment: Exit from first employment

Illustration: Alignment: Exit from longest employment

Aggregation

Macro patterns

Combine clocks and alignment to aggregate (e.g. means, quantiles)

A Health Application

Inequality in disability spell duration

How many times have people been disabled?

Inequality in end-of-life disability levels and dispersion

Conclusions

- ► Help pose and answer questions
- ► Measure recipes translate to natural language
- ▶ Diverse applications
- ► R package Spells in beta version

Conclusions

- ► Help pose and answer questions
- ► Measure recipes translate to natural language
- ▶ Diverse applications
- ► R package Spells in beta version

