1 distribution 1

2 important lemma

1 distribution

1

name	symbol	range	distribution	mean	variance	generating	characteristic
Bernoulli	$B(1,p), 0$	{0,1}	$\mu(0) = 1 - p, \mu(1) = p$	p	p(1 - p)	(1-p+pz)	$1 - p + pe^{it}$
Binomial	$B(n,p), 0$	$\mathbb{N}\cap [0,n]$	$\mu(k) = \binom{n}{k} p^k (1-p)^{n-k}$	np	np(1-p)	$(1-p+pz)^n$	$(1 - p + pe^{it})^n$
Geometric	$G(p), 0$	N+	$\mu(k) = (1 - p)^{k - 1} p$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	fuck	$\frac{p e^{it}}{1 - (1 - p)e^{it}}$
Hypergeometric	$H(n, K, N)$ $N \in \mathbb{N}$	$[\max\{0, n+K-N\}, \\ \min\{n, K\}] \cap \mathbb{N}$	$\mu(k) = \frac{\binom{K}{k} \binom{N-k}{n-k}}{\binom{N}{n}}$	$n\frac{K}{N}$	$n\frac{K}{N}\frac{N-k}{N}\frac{N-n}{N-1}$	fuck	fuck
	$K \in [0,N] \cap \mathbb{N}$ $n \in [0,N] \cap \mathbb{N}$						
Poisson	$P(\lambda), \lambda > 0$	N	$\mu(k) = \frac{e^{-\lambda} \lambda^k}{k!}$	λ	λ	$e^{\lambda(z-1)}$	$e^{\lambda(e^{it}-1)}$
Uniform	U[a, b], a < b	[a,b]	$f(x) = \frac{1}{b-a}$ $F(x) = \frac{x-a}{b-a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	-	$\frac{\mathrm{e}^{\mathrm{i}tb} - \mathrm{e}^{\mathrm{i}ta}}{\mathrm{i}t(b-a)}$
Exponential	$Exp(\lambda), \lambda > 0$	$[0,\infty)$	$f(x) = \lambda e^{\lambda x} \mathbb{1}_{\{x \ge 0\}}$ $F(x) = (1 - e^{\lambda x}) \mathbb{1}_{\{x \ge 0\}}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	-	$(1-\frac{\mathrm{i}t}{\lambda})^{-1}$
Gamma	$\Gamma(\alpha,\beta), \alpha,\beta > 0$	$(0,\infty)$	$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x} \mathbb{1}_{\{x > 0\}}$	$\frac{\alpha}{\beta}$	$\frac{\alpha}{\beta^2}$	-	$(1 - \frac{\mathrm{i}t}{\beta})^{-\alpha}$
Normal	$N(\mu, \sigma^2), \mu, \sigma \in \mathbb{R}$	\mathbb{R}	$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	μ	σ	-	$e^{\mu it - \frac{\sigma^2 t^2}{2}}$

2 important lemma

Lemma 1 (Borel-Cantelli). $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space. $\{A_n : n \in \mathbb{N}\} \subset \mathcal{F}$, then

- 1. if $\sum_{n\in\mathbb{N}} \mathbb{P}(A_n) < \infty$, then $\mathbb{P}(\bigcup_{k=0}^n \bigcap_{m=n}^\infty A_m) = 0$;
- 2. if $\{A_n : n \in \mathbb{N}\}$ are independent, $\sum_{n \in \mathbb{N}} \mathbb{P}(A_n) = \infty$, then $\mathbb{P}(\bigcup_{k=0}^n \bigcap_{m=n}^\infty A_m) = 1$.