Math 222 Lec 3

Asa Royal (ajr74)

January 19, 2024

1 Limits and continuity

Definition 1 (Limit).

$$\lim_{x \to x_0} = L \iff f(x) \in \text{nbd}(L)$$

In english, the **limit** of $f(x_0 = L)$ if all points x in the neighborhood of x_0 have f(x) in the neighborhood of $f(x_0)$.

Remark. Tips for computing limts of multivariable functions

- 1. Apply l'hospital's to "simplify" limits.
 - (a) $\lim_{x\to 0} \frac{\sin x}{x} = 1$
- 2. Replace complicated terms like xy in $\lim_{x\to 0} \frac{\cos xy}{xy}$ with a simple parameter t, yielding the simpler limit $\lim_{x\to 0} \frac{\cos t}{t}$, which is 1 by L'hospital's rule.
- 3. If you don't see a way to simplify the limit, the limit may not exist. Try pluging in approaches to x from various paths.

Theorem 2 (epsilon-delta def of limits). Let $f:A\subset\mathbb{R}^n\mapsto\mathbb{R}^m$ nad let \vec{x}_0 be a boundary point of A. Then $\lim_{x\to x_0}f(x)=\vec{b}$ iff for every number $\varepsilon>0$, there is a $\delta>0$ such that for any $\vec{x}\in A$ satisfying $0<\|\vec{x}-\vec{x}_0\|<\delta$, we have $\|f(\vec{x})-\vec{b}\|<\varepsilon$.

Definition 3 (Alt epsilon-delta def of limits). $\lim_{x\to x_0} f(x) = L \text{ means } \forall \varepsilon > 0, \exists \delta > 0 \text{ such that}$

$$0 < \|\vec{x} - \vec{x}_0\| < \delta \implies \|f(x) - L\| < \varepsilon$$

1.1 Epsilon-delta proofs of existence of limit

Remark. When carrying out an epsilon delta proof, we want to show that given any ε , we can find a δ such that

$$0 < \|\vec{x} - \vec{x}_0\| < \delta \implies \|f(x) - L\| < \varepsilon$$

i.e. Imagine there's some neighborhood U of radius ε around L. We want a radius δ that defines a neighborhood V around x_0 such that any $\vec{x} \in V$ has $f(\vec{x}) \in U$.

- 1. Write out "Assume $||f(\vec{x}) L|| < \varepsilon$ for some ε ". "given $\varepsilon > 0$, choose $\delta = \dots$ "
- 2. Continue "We will find a δ s.t. $0 < ||\vec{x} \vec{x_0}|| < \delta$ " that satisfies the assumption.
- 3. Find such a delta by showing that $\|\mathbf{f}(\mathbf{x}) L\| < c\delta = \varepsilon^{**}$
 - (a) I.e. change the LHS to be some multiple of δ , showing that $\|\mathbf{f}(\mathbf{x}) L\| < c\delta$. Since $\|\mathbf{f}(\mathbf{x}) L\| < \varepsilon$, $c\delta = \varepsilon$ satisfies our hunt for a δ , thus showing that there's some way to limit the domain while ensuring that the output of f is in ε -neighborhood of f.
 - (b) if in evaluating $\|\mathbf{f}(\mathbf{x}) \mathbf{L}\|$, we end up with some multiple of our δ bound times a factor involving x (call it β), we need to take an add'l step

(c) Note that $\delta = min(1, ValueWeSolveFor)$. Then $\|\mathbf{x} - \mathbf{a}\| < 1$ and $-1 < \|\mathbf{x} - \mathbf{a}\| < 1$. Manipulate this inequality so that the x - a term resembles β . Then note that $\beta < 1$... Plug that back into **, thus concluding that $\delta = min(1, d\varepsilon)$ for some d, which means $\delta \leq d\varepsilon$.

Remark. Tips for $\varepsilon - \delta$ proof: Remember:

- 1. Triangle inequality: $\|\mathbf{a} + \mathbf{b}\| \le \|\mathbf{a}\| + \|\mathbf{b}\|$
- 2. Any term under a radical will always be positive. Applying this will often let us simplify inequalities by striking out radical terms.
- 3. Convert to polar to simplify fractions!
- 4. We can add positive terms at will to the RHS of a \leq inequality.
- 5. Have a product of ||xyz||? Remember that $|x| = \sqrt{x^2} \le \sqrt{x^2 + y^2 + z^2}$. Symmetry for y and z. Thus if $(x, y, z) \to (0, 0, 0), \delta \ge \sqrt{x^2 + y^2 + z^2}$ and thus $||xyz|| \le \delta^3$

Example (epsilon-delta proof). Show $\lim_{(x,y)\to(0,0)} x=0$. Steps for $\varepsilon-\delta$ proof:

2 Continuity

Definition 4 (continuous function). A function is **continuous** iff $\forall x \in \text{nbd}(x_0)$,

$$\lim_{x \to x_0} f(x) = f(x_0)$$

3 Differentiability

Definition 5 (Partial derivative). The partial derivative of a function $f(x_1, x_2, ..., x_n)$ at point $\vec{x} = (x_0, ..., x_n)$ is given by

$$\frac{\partial f}{\partial x_i} = \lim_{h \to 0} \frac{f(x_1, x_2, \dots x_{i-1}, x_i + h, x_{i+1}, \dots, x_n) - f(\vec{x})}{h}$$

Remark. A function can have partials at a point x, y even if the function is discontinuous at that point.

Definition 6 (Differentiable). $f: U \subset \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at $\vec{x_0}$ if

- 1. All partial derivatives of f exist at $\vec{x_0}$
- 2. The tangent plane at $\vec{x_0}$ provides a linear approximation of $f(\vec{x}) = f(x,y)$ near $\vec{x_0}$ In the 3d graph case, The linear approximation is

$$f(\vec{x}) \approx f(\vec{x_0}) + \begin{bmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \end{bmatrix} \begin{bmatrix} x - x_0 \\ y - y_0 \end{bmatrix}$$

So if the linear approximation is "good",

$$\lim_{x \to \vec{x_0}} \frac{\|f(\vec{x}) - [f(\vec{x_0}) + Df(\vec{x_0})(\vec{x} - \vec{x_0})]\|}{\|\vec{x} - \vec{x_0}\|} = 0$$

Definition 7 (C^1). Let $f: U \subset \mathbb{R}^n \to \mathbb{R}^m$. $f \in C^1$ iff the partials of f exist and are **continuous**

Remark. $f \in C^1$ (is continuous and has continuous partials) $\implies f$ is differentiable $\implies f \in C^0$ (is continuous)