Алгебра Страница 28

10 Лекция 30.05

Базисы Гребнера Хотим научиться решать задачу вхождения: даны функции $f_1, ..., f_k \in K[x_1, ..., x_n]$; необходимо выяснить $f \in (f_1, ..., f_k)$? Иными словами, существуют ли $n_1, ..., n_k$, такие что $f = f_1 n_1 + \cdots + f_k n_k$.

Рассмотрим частный случай при n=1. Тогда любой идеал главный. Тогда $(f_1,\ldots,f_k)=(d)$. Нужно проверить, что $d\mid f$.

Теперь при k=1. Тогда нужно проверить, что $f \in (f_1) \Leftrightarrow f_1 \mid f$. Алгоритм следующий: сначала проверим, что $L(f_1) \mid L(f)$. Затем вычтем f_1 из f и продолжим процедуру дальше. Если в какой-то момент делимость не выполняется, то $f \notin (f_1)$.

Теперь попробуем обобщить алгоритм. Рассмотрим $\mathcal{F} = \{f_1, \dots, f_k\}$. Можно считать, что старшие коэффициенты f_i равны 1. Тогда $f_i = x^{b(i)} + \dots$, где под $x^{b(i)}$ следует понимать моном $x_1^{b(i)_1} \dots x_n^{b(i)_n}$. Пусть M_n — множество одночленов от x_1, \dots, x_n . Пусть $m \in M_n$ и $L(f_i) \mid m$. Определим оператор элементарной \mathcal{F} -редукции как $R_i^m : K[x_1, \dots, x_n] \to K[x_1, \dots, x_n]$. Задаем на базисе. Пусть $R_i^m(m) = m - \frac{m}{L(f_i)} f_i$. А при $m \neq m' : R_i^m(m') = m'$.

Оператор \mathcal{F} -редукции — это произвольная конечная композиция операторов \mathcal{F} -редукции.

Алгоритм деления Пусть $\mathcal{F} = \{f_1, \dots, f_k\}, f \in K[x_1, \dots, x_n]$. Представим $f = \lambda_1 x^{a(1)} + \dots + \lambda_p x^{a(p)}$. Считаем, что $\lambda_i \in K \setminus \{0\}$. Без ограничения общности считаем, что $x^{a(1)} > \dots > x^{a(p)}$. Будем называть это канонической формой f.

Шаг 1 Если $L(f_1) \mid x^{a(1)}$, то заменим $f = R_1^{x^{a(1)}}(f)$ и возвращаемся к шагу 1 опять. Сакральный смысл — каждый раз уменьшаем старший член.

Шаг 2 Если $L(f_1) \nmid x^{a(1)}$, но $L(f_2) \mid x^{a(1)}$, то заменяем $f = R_2^{x^{a(1)}}(f)$. И так далее. Если $L(f_1), \dots, L(f_k)$ не делят $x^{a(1)}$, то перейдем к $x^{a(2)}$ и повторим с шага 1.

Определение 57. Одночлен $m \in M_n$ называется \mathcal{F} -нормальным, если $\forall i : L(f_i) \nmid m$. Многочлен $f \in K[x_1, ..., x_n]$ называется \mathcal{F} -нормальным, если все его члены \mathcal{F} -нормальны.

Понятно, что h является \mathcal{F} -нормальным $\Leftrightarrow R(h) = h$ для любого оператора редукции R.

Предложение 9. Алгоритм деления, примененный к некоторому многочлену f, остановится на нормальном многочлене $N(f) = N_{\mathcal{F}}(f)$ за конечное число шагов.

Доказательство. Пусть не останавливается. Тогда получается бесконечная последовательность строго убывающих лексикографически одночленов. Но тогда получаем противоречие с леммой, что в лексикографическом порядке не существует бесконечных убывающих цепочек. □

Определение 58. Первой \mathcal{F} -нормальной формой многочлена f называется N(f).

Тогда нетрудно заметить, что $f \in (f_1, \dots, f_K) \Leftrightarrow N(f) = 0$.

Алгебра Страница 29

Пример. Возьмем $f_1 = x_1^2 + x_2$, $f_2 = x_1^2 + x_3$, $f = x_2 - x_3$. Хотим проверить, что $f \in (f_1, f_2)$. Но тогда N(f) = f, что значит, что $f \notin (f_1, f_2)$. А это неправда, так как $f = f_1 - f_2$.

Алгоритм сломался. Починим его.

Определение 59. Базисом Гребнера идеала $I = (f_1, ..., f_k) \subseteq K[x_1, ..., x_n]$ называется такое конечное множество $F = \{g_1, ..., g_s\} \subseteq I$, такое что $\forall f \in I : \exists i : L(g_i) \mid L(f)$.

Лемма 15. Пусть $G \subseteq I - B\Gamma$. Тогда $N_G(f) = 0 \Leftrightarrow f \in I$.

Доказательство. \Rightarrow . Если $N_G(f)=0$, то $f-h_ig_i-h_jg_j-\dots=0 \Rightarrow f\in (g_1,\dots,g_s)\subseteq I$.

Теперь \Leftarrow . Если $f \in I$, то $N_G(f) \in I$. Тогда $L(N_G(f)) \mid L(g_i)$. Но тогда нормальная форма не является нормальной. Получаем, что $N_G(f) = 0$.

Предложение 10. Пусть $I \subseteq K[x_1, ..., x_n]$ — идеал. Тогда верно:

- 1. БГ существует
- 2. Любой БГ является базисом идеала I

Доказательство. Сначала докажем 1. Воспользуемся леммой Диксона. Во множестве мономов L(f), $f \in I$ есть только конечное число минимальных элементов. Обозначим их $L(g_1), ..., L(g_s)$. Но тогда $g_1, ..., g_s - \mathrm{Б}\Gamma$.

Теперь докажем 2. Если $f \in I$, то $N_G(f) = 0$. поэтому $f \in (g_1, ..., g_s)$. Следовательно $(g_1, ..., g_s) \subseteq I$. Включение в обратную сторону верно по определению.

Как построить базис Гребнера? Ответ простой — с помощью алгоритма Бухбергера.

Определение 60. $\mathcal{F} = \{f_1, ..., f_k\}$. Тогда \mathcal{F} -нормальной формой f называется n(f), такой что n(f) нормален u n(f) = R(f), где R — оператор редукции.

Определение 61. Набор многочленов $G = \{g_1, ..., g_s\} - \mathcal{B}\Gamma$, если это $\mathcal{B}\Gamma$ идеала $(g_1, ..., g_s)$.

Замечание 13. Любой набор одночленов — $Б\Gamma$.

Пусть L — множество таких одночленов f, у которых нормальная форма относительно ${\mathcal F}$ единственна.

Лемма 16. $L \subseteq K[x_1, ..., x_n] - noд пространство.$

Доказательство. Понятно, что $L \neq \emptyset$, потому что $0 \in L$. Если $f \in L$, то и $\lambda f \in L$. Осталось показать, что L замкнуто относительно суммы. Мы докажем более сильное утверждение, что n(g+h) = N(g) + N(h). По определению, n(g+h) = R(g+h). Так как R линейный оператор, то n(g+h) = R(g) + R(h). Так как все нормлальные формы для g совпадают, $\exists R'$, что R'(R(g)) = N(g). Аналогично $\exists R''$, что R''(R'(R(h))) = N(h). А тогда

$$R(g+h) = R''(R'(R(g+h))) = R''(R'(R(g))) + R''(R'(R(h))) = R''(N(g)) + N(h) = N(g) + N(h)$$

Алгебра Страница 30

Определение 62. Пусть $f_i, f_j \in K[x_1, ..., x_n]$. Построим по ним S-многочлен.

$$S(f_i, f_j) = m_{ij}f_i - m_{ji}f_j$$

где m_{ij} , m_{ji} взимно простые одночлены, такие что $m_{ij}L(f_i)=m_{ji}L(f_j)$.

Пример. Если $L(f_i) = x_1^2 x_2, L(f_j) = x_1^2 x_3$, то целесообразно взять $m_{ij} = x_3, m_{ji} = x_2$.

Замечание 14. Старший член $S(f_i, f_j)$ может быть больше старших членов f_i, f_j .

Пример.
$$f_i = x_1x_3 + x_1x_4, f_j = x_2 + x_4$$
. Тогда $m_{ij} = x_2, m_{ji} = x_1x_3, S(f_i, f_j) = x_1x_2x_4$.

Теорема 15 (Критерий Бухбергера). Пусть $G = \{g_1, \dots, g_s\}$ — конечное подмножество в кольце многочленов $K[x_1, \dots, x_n]$. Тогда следующие условия эквивалентны:

- 1. $G B\Gamma$
- 2. $\forall i, j : N(S(g_i, g_j)) = 0$
- 3. $\forall i, j \exists$ оператор G-редукции, такой что $R(S(g_i, g_j)) = 0$
- 4. $\forall f \in K[x_1, ..., x_n]$ все его G-нормальные формы одинаковы.