A: 非動断 ficon: オモリ A: 相等 ficon: オモリ ficon: オートリ f

谓词逻辑系统 作业参考答案 1.设 \mathcal{L} 是一阶语言,它有1个个体常元 a_1 ,1个函数符 f_1^2 和1个谓词符 A_1^2 ,设公式A为($\forall x_1$)(A_1^2 (x_1 , a_1) $\to A_1^2$ (f_1^2 (x_1 , x_1), a_1)).

(a) 设 \mathcal{L} 的解释为I, D_I 是整数集合Z, $\overline{a_1} = 0$, $\overline{f_1^2}(x,y) = x \times y$, $\overline{A_1^2}(x,y)$ 为x < y,问 公式A在此解释下的意义是什么?是真是假?

Solution

在解释I下, $(\forall x_1)(A_1^2(x_1,a_1) \rightarrow A_1^2(f_1^2(x_1,x_1),a_1))$ 的意义是:

对于任何整数 x_1 ,如果 $x_1 < 0$,则 $(x_1)^2 < 0$.

为假. 例: $x_1 = -1$ 时, $(-1)^2 = 1 > 0$.

谓词逻辑系统

(b) 把解释I稍作修改,记为I',设 $\overline{f_1^2}(x,y) = x + y$,其余不变,问公式A在此解释I'下的意义是什么? 是真是假?

Solution

在解释I'下, $(\forall x_1)(A_1^2(x_1, a_1) \to A_1^2(f_1^2(x_1, x_1), a_1))$ 的意义是:

对于任何整数 x_1 ,如果 $x_1 < 0$,则 $2x_1 < 0$.

为真.

(c) 把解释I稍作修改,记为I'',设 $\overline{A_1^2}(x,y)$ 表示x=y,其余不变,问公式A 在此解释I'' 下的意义是什么? 是真是假?

Solution

在解释I"下, $(\forall x_1)(A_1^2(x_1,a_1) \rightarrow A_1^2(f_1^2(x_1,x_1),a_1))$ 的意义是:

对于任何整数 x_1 ,如果 $x_1 = 0$,则 $(x_1)^2 = 0$.

为真.

2.设一阶语言 \mathcal{L} 中的公式A为($\forall x_1$)($A_1^1(x_1) \to A_1^1(f_1^1(x_1))$),公 式B为($\forall x_1$)($A_1^2(x_1, x_2) \rightarrow A_1^2(x_2, x_1)$),试分别作出不同的解释,使A与B有时为 真,有时为假分级。

Solution

omain of Interpretion 例如,可以令£的解释为//,D/是整数集合Z.

1) A与B为真

公式A表示"对于任意整数 x_1 ,如果 $x_1 > 0$,则x + 1 > 0."为真. 公式B表示"对于任意整数 x_1 ,如果 $x_1 = x_2$,则 $x_2 = x_1$."为真.

- 2) A与B为假
 - 令 $\overline{A_1^1}(x)$ 为x > 0, $\overline{f_1^1}(x) = x 1$, $\overline{A_1^2}(x, y)$ 为x < y. 公式A表示"对于任意整数 x_1 ,如果 $x_1 > 0$,则x - 1 > 0."为假. 例:x = 1时.x - 1 = 0.

公式B表示"对于任意整数 x_1 ,如果 $x_1 < x_2$,则 $x_2 < x_1$."为假. 例: $\mathbf{p}_{x_1} = 1, x_2 = 2.$

5 / 15

3.证明:在任何一阶语言 \mathcal{L} ,公式($\forall x_i$) $A(x_i)$ → $A(x_i)$ 在 \mathcal{L} 的任何解释下都为真.

Proof.

(说明:根据题意,应理解为($\forall x_i A(x_i)$) $\to A(x_i)$ 而非 $\forall x_i (A(x_i)) \to A(x_i)$). 下面只对第一种理解方式做出解释,另一种相似.)

对任意解释*I*下的任意赋值v, 要么有 $v \models \forall x_i A(x_i)$, 要么有 $v \models \neg \forall x_i A(x_i)$. 若 $v \models \neg \forall x_i A(x_i)$, 已经得结论. $\frac{\exists v}{\exists x_i} \not\models \forall x_i A(x_i)$, 则对任意的 $x_i \in D_I$, $A(x_i)$ 成立. 易知对任意的v的 x_i 等价v', 均满足 $v' \models A(x_i)$, 而v是自己的 x_i 等价.

无论如何,均有: 对任意解释I下的任意赋值v, $v \models \forall x_i A(x_i) \rightarrow A(x_i)$. 所以, $I \models \forall x_i A(x_i) \rightarrow A(x_i)$.

T

1.证明:~是公式集F(C)的一个同余关系. 代数系统了关系的写作关系.

Proof.

1.

根据' \simeq '的定义,易知: $\underline{A} \simeq \underline{B} \iff \underline{B} \simeq \underline{A} \text{ 并且} \underline{A} \simeq \underline{A}$. $\overline{A} = \underline{A} \simeq \underline{B}$, $\underline{B} \simeq \underline{C}$, 则有 $\underline{A} = \underline{A} \to \underline{B}$, $\underline{B} \to \underline{C}$ 所以 $\underline{A} \to \underline{C}$, 同理有: $\underline{E} \subset A$ 所以 $\underline{A} \simeq \underline{C}$ 综上, ' \simeq '是一个等价关系.

2.

- 1)证: $若A \simeq B$, 则 $\neg A \simeq \neg B$
- ∵ *A* ≃ *B*
- $\therefore \models A \iff \models B$

用反证法易知: $\neg A \simeq \neg B$ ($\forall v$, $\exists v \models \neg A$ 且 $v \models B$. 则 $v \models A 与 v \models A$ 矛盾).

2)证: ${\overline{A}}A \simeq B \ {\underline{A}}C \simeq D, \ {\underline{M}}A \to C \simeq B \to D.$

若 \models *A* → *C*,则对任意赋值 ν ,若 ν \models *A*,则 ν \models *C*.

- $\therefore A \simeq B, C \simeq D$
- ∴ 对任意v, $\overline{z}v \models A$, $\bigcup v \models B$, $v \models C$, $v \models D$.

Proof (Cont.)

若
$$v$$
 ⊨ ¬ A , 则 v ⊨ ¬ B ,

$$\therefore v \models B \rightarrow D$$

$$∴$$
 若 \models $A \rightarrow C$. 则 \models $B \rightarrow D$

同理可得: 若
$$\vdash B \rightarrow D$$
, 则 $\vdash A \rightarrow C$

$$\therefore A \rightarrow C \simeq B \rightarrow D.$$

3)证:
$$A \simeq B$$
, 则($\forall x_i$) $A \simeq (\forall x_i)B$.

若⊨
$$(\forall x_i)A$$
, 则对任意解释 I , 有 I ⊨ A 当且仅当 I ⊨ $(\forall x_i)A$.

同理有: 若
$$\models$$
 ($\forall x_i$) B , 则 \models ($\forall x_i$) A .

$$\therefore (\forall x_i)A \simeq (\forall x_i)B.$$

4)证:
$$\overline{A} \simeq B$$
, 则($\exists x_i$) $A \simeq (\exists x_i)B$

若⊨
$$(\exists x_i)A$$
, (反证法:)假设存在解释 I 下的赋值 v , 使得 $v \nvDash \exists x_iB$.

那么对任意v的i—等价v', 有 $v' \nvDash B$.

$$\therefore A \cong B, \therefore v' \vDash \neg A, \therefore v' \nvDash A$$

谓词逻辑系统 8 / 15

Proof (Cont.)

但这与⊨ ∃x;A 矛盾(因为v′是解释I下的任意i-等价)

 $\therefore \models \exists x_i B$

同理可得: 若 $\models \exists x_i B$, 则 $\models \exists x_i A$.

 $\therefore (\exists x_i)A \simeq (\exists x_i)B$

综上, ≃是一个同余关系.

谓词逻辑系统

2.设*A*, *B*, *C*是谓词公式,则:

(a) $A \vee B \simeq B \vee A$

Proof.

对任意I下的任意v, 若 $v \models A \lor B$, 则 $v \models A$ 或 $v \models B$

∴ v ⊨ *B*或*v* ⊨ *A*

∴ v ⊨ B ∨ A反之亦然。

 $\therefore \models A \lor B \Leftrightarrow \models B \lor A$

 $A \lor B \simeq B \lor A$.

2.设*A*, *B*, *C*是谓词公式,则:

(b) $A \wedge B \simeq B \wedge A$

Proof.

对任意/下的任意v, 若 $v \models A \land B$, 则 $v \models A \perp L v \models B$

∴ $v \models B \coprod v \models A$

 $\therefore v \models B \land A$

反之亦然. $:: E A \land B \Leftrightarrow E B \land A$

 $A \wedge B \simeq B \wedge A$.

2. 设*A*, *B*, *C*是谓词公式,则:

(c) $A \rightarrow B \simeq \neg A \lor B$

Proof.

对任意/下的任意v, 若 $v \models A \rightarrow B$,

1 若v ⊨ A, 则v ⊨ B

 $\therefore v \vDash \neg A \lor B.$

2 若 $v \models \neg A$, 则 $v \models \neg A \lor B$.

反之亦然.

 $\therefore \vDash A \to B \Leftrightarrow \vDash \neg A \lor B$

 $\therefore A \rightarrow B \simeq \neg A \lor B.$

谓词逻辑系统

2.设A, B, C是谓词公式,则:

 $(d) (\forall x_i) A \simeq \neg (\exists x_i) \neg A$

Proof.

对任意/下的任意v, 若 $v \models (\forall x_i)A$, 则 $v \models \neg(\exists x_i)\neg A$ 若v \forall ¬(∃ x_i)¬A, 则v \vDash (∃ x_i)¬A

· 存在一个v的 x_i 等价v', $v' \models \neg A$, 即 $v \not\models A$, 与 $v \models (\forall x_i)A$ 矛盾.

 $\therefore v \models \neg(\exists x_i) \neg A$ 反之 亦然。

 $\therefore (\forall x_i)A \simeq \neg(\exists x_i)\neg A.$

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶

13 / 15

1.证明: 设 x_i 不在A中自由出现, 则 \vdash ($\exists x_i$)($A \to B$) \to ($A \to (\exists x_i)B$).

[(, (B)A) - (7A+7B) Proof. $\{A, A \rightarrow B\} \vdash B$ $B \vdash (\exists x_i) B$ $\{A, A \rightarrow B\} \vdash (\exists x_i)B$ HS(1,2)演绎定理(未使用过Gen规则 $\vdash (A \rightarrow B) \rightarrow (A \rightarrow (\exists x_i B))$ 4. 5. $((A \rightarrow B) \rightarrow (A \rightarrow (\exists x_i)B)) \rightarrow$ $(\neg(A \to (\exists x_i)B) \to \neg(A \to B))$ MP(4,5) $\neg(A \to (\exists x_i)B) \to \neg(A \to B)$ 6. $\neg (A \rightarrow B) \rightarrow (\forall x_i) \neg (A \rightarrow B)$ HS(6,7) ABBC 8. $\neg (A \rightarrow (\exists x_i)B) \rightarrow (\forall x_i) \neg (A \rightarrow B)$ 9. $\neg (A \rightarrow (\exists x_i)B) \rightarrow (\forall x_i) \neg (A \rightarrow B)$ $\rightarrow (\neg(\forall x_i)\neg(A\rightarrow B))\rightarrow (A\rightarrow(\exists x_i)B)$ K3 10. $(\exists x_i)(A \rightarrow B) \rightarrow (A \rightarrow (\exists x_i)B)$ MP(8,9) $\therefore \vdash (\exists x_i)(A \to B) \to (A \to (\exists x_i)B).$

4□ > 4□ > 4 = > 4 = > = 990

谓词逻辑系统 14 / 15

2.化下列各式为和它们可证等价的前束范式:

(a)
$$(\exists x_1)A_1^1(x_1) \to (\forall x_2)A_1^2(x_1, x_2)$$

Solution

$$\begin{array}{l} (\exists x_1) A_1^1(x_1) \to (\forall x_2) A_1^2(x_1, x_2) \\ \sim (\forall x_1) (\forall x_2) (A_1^1(x_1) \to A_1^2(x_1, x_2)) \end{array}$$

(b)
$$(\forall x_1)A_1^2(x_1,x_2) \to (\forall x_2)A_1^2(x_1,x_2)$$

Solution

$$\begin{array}{l} (\forall x_1) A_1^2(x_1, x_2) \to (\forall x_2) A_1^2(x_1, x_2) \\ \sim (\forall x_2) (\exists x_1) (A_1^2(x_1, x_3) \to A_1^2(x_4, x_2)) \end{array}$$

$$(c) (\exists x_1)(A_1^1(x_1) \to A_1^2(x_1, x_2)) \to ((\forall x_2)A_1^1(x_2) \to (\exists x_3)A_1^2(x_2, x_3))$$

Solution

$$\begin{array}{l} (\exists x_1)(A_1^1(x_1) \to A_1^2(x_1, x_2)) \to ((\forall x_2)A_1^1(x_2) \to (\exists x_3)A_1^2(x_2, x_3)) \\ \sim (\forall x_1)(\exists x_2)(\exists x_3)((A_1^1(x_1) \to A_1^2(x_1, x_4)) \to (A_1^1(x_2) \to A_1^2(x_4, x_3)) \end{array}$$

◆□▶ ◆□▶ ◆臺▶ ◆臺▶ · 臺 · からで

15 / 15

司逻辑系统