Empirical means to validate skills models and assess the fit of a student model

Behzad Beheshti Supervisor : Michel C. Desmarais

> Génie Informatique Et Génie Logiciel École Polytechnique de Montréal

> > 4 avril 2016

• Student skills assessment models

- Student skills assessment models
- Static Vs. Dynamic

- Student skills assessment models
- Static Vs. Dynamic
- How to decide which are the most representative of the underlying ground truth?

- Student skills assessment models
- Static Vs. Dynamic
- How to decide which are the most representative of the underlying ground truth?
- Model selection and goodness of fit
- A general answer : best performer

Our contribution

- To make a comprehensive comparison of educational data model performances
- To propose a new approach to assessing model fit

Our contribution

- To make a comprehensive comparison of educational data model performances
- To propose a new approach to assessing model fit

General hypothesis:

 Recognizing the ground truth based on the uniqueness of this comprehensive comparison

Our contribution

- To make a comprehensive comparison of educational data model performances
- To propose a new approach to assessing model fit

General hypothesis:

 Recognizing the ground truth based on the uniqueness of this comprehensive comparison

The proposed approach:

 Assessing the fit of the model to the underlying ground truth using a methodology based on synthetic data

• Performance of a model over a data set

- Performance of a model over a data set
- Model parameters

]	Parameters estin	nated from	
	Ski	lls Model	Tra	ining set	Observed items	
	Multiple	NMF Conj. NMF Add. DINA DINO	• Slip • Guess	• Q-matrix	• Students skills mastery matrix	
Contributed skills	Single	IRT Expected	• Item di • Item di • Item O	scrimination	• Student Ability • Student Odds	
3	Zero	POKS	Initial C Odds ra Partial			

- Performance of a model over a data set
- Model parameters
- Performance vector
- Performance signature

Model	Performace			
Expected	0.72%			
POKS	0.80%			
IRT	0.74%			
NMF.Conj	0.94%			
Dina	0.99%			
NMF.Add	0.60%			
Dino	0.65%			

- Performance of a model over a data set
- Model parameters
- Performance vector
- Performance signature
- Performance prototype

The *performance vector* associated with the synthetic data of a model class.

- Performance of a model over a data set
- Model parameters
- Performance vector
- Performance signature
- Performance prototype
- Target performance vector

The performance vector of the real data set to classify.

Vector space of accuracy performances

 Performance vectors of datasets in columns(Data points in a part of performance space)

Model	Synthetic data set									
iviouei	Random	POKS	IRT	DINA	DINO	L.Conj.	L.Comp.			
Expected	0.75	0.91	0.90	0.72	0.72	0.78	0.93			
POKS	0.75	0.94	0.94	0.81	0.81	0.90	0.94			
IRT	0.75	0.91	0.95	0.73	0.73	0.79	0.89			
DINA	0.75	0.77	0.81	1.00	0.65	0.98	0.89			
DINO	0.75	0.63	0.56	0.66	1.00	0.68	0.91			
NMF.Conj	0.75	0.59	0.53	0.95	0.65	0.97	0.58			
NMF.Comp	0.75	0.76	0.79	0.59	0.93	0.70	0.98			

The diagonal generally displays the best performance

Vector space of accuracy performances

 Given a target vector, we want to define which columns are the closest to the target column

Model	Synthetic data set							Towart
Model	Random	POKS	IRT	DINA	DINO	L.Conj.	L.Comp.	Target
Expected	0.75	0.91	0.90	0.72	0.72	0.78	0.93	0.43
POKS	0.75	0.94	0.94	0.81	0.81	0.90	0.94	0.75
IRT	0.75	0.91	0.95	0.73	0.73	0.79	0.89	0.68
DINA	0.75	0.77	0.81	1.00	0.65	0.98	0.89	0.93
DINO	0.75	0.63	0.56	0.66	1.00	0.68	0.91	0.60
NMF.Conj	0.75	0.59	0.53	0.95	0.65	0.97	0.58	0.80
NMF.Comp	0.75	0.76	0.79	0.59	0.93	0.70	0.98	0.70

- Our hypothesis: the similarity of vectors can indicate the nature of data
- The nearest neighbour in this space can be a candidate for the ground truth

 $\ \ \, \textbf{Experiment} \,\, 1: \,\, \textbf{Predictive performance} \\$

Experiment 2 : Sensitivity of the Model performance

Experiment 4 : Signature vs. best performer

Research questions

- What is the performance vector of student skills assessment models over real and over synthetic data created using the same models?
 - Experiment 1 : Predictive *performance vector* of models over real and synthetic data sets

 $\ \ \, \textbf{Experiment 1: Predictive performance} \\$

Experiment 2 : Sensitivity of the Model performance

Experiment 3 : Signature Approach
Experiment 4 : Signature vs. best performer

Datasets

Data set	61.11	Number	Mean Score	Q-matrix						
	Skills	Items	Students							
	Synthetic									
1.Random	7	30	700	0.75	Q_{01}					
2.POKS	7	20	500	0.50	Q_{02}					
3.IRT-2PL	5	20	600	0.50	Q_{03}					
4.DINA	7	28	500	0.31	Q_5					
5.DINO	7	28	500	0.69	\mathbf{Q}_6					
Linear (Matr	Linear (Matrix factorization)									
6. Conj.	8	20	500	0.24	\mathbf{Q}_1					
7. Comp.	8	20	500	0.57	\mathbf{Q}_1					
		F	Real							
8.Fraction	8	20	536	0.53	\mathbf{Q}_1					
9.Vomlel	6	20	149	0.61	\mathbf{Q}_4					
10.ECPE	3	28	2922	0.71	Q ₃					
Fraction subsets and variants of \mathbf{Q}_1										
11. 1	5	15	536	0.53	\mathbf{Q}_{10}					
12. 2/1	3	11	536	0.51	\mathbf{Q}_{11}					
13. 2/2	5	11	536	0.51	Q ₁₂					
14. 2/3	3	11	536	0.51	Q ₁₃					

Experiment 2 : Sensitivity of the Model performance

Experiment 4 : Signature vs. best performer

Predictive performance of models over synthetic datasets

The random data set has a flat performance across techniques

Experiment 2: Sensitivity of the Model performance

Experiment 4 : Signature vs. best performer

Predictive performance of models over synthetic datasets

The highest performance is for the generative model behind the dataset

Experiment 2: Sensitivity of the Model performance

Experiment 4 : Signature vs. best performer

Predictive performance of models over synthetic datasets

Motivation : Most of the models preform worse than simple expected prediction model

Experiment 2 : Sensitivity of the Model performance

Experiment 4 : Signature vs. best performer

Predictive performance of models over synthetic datasets

Data sets have discriminant pattern of performance vector across models

Experiment 2: Sensitivity of the Model performance

Experiment 4 : Signature vs. best performer

Predictive performance of models over synthetic datasets

The capacity of recognizing a data set's true model relies on this discriminant characteristic

Experiment 4 : Signature vs. best performer

Experiment 2: Sensitivity of the Model performance

Experiment 3: Signature Approach

Predictive performance of models over real datasets

In most cases, the best performer is close to the baseline

Experiment 2 : Sensitivity of the Model performance

Experiment 4 : Signature vs. best performer

Predictive performance of models over real datasets

The pattern of the Fraction performance data set repeats over its subsets

Experiment 2: Sensitivity of the Model performance

Experiment 4 : Signature vs. best performer

Predictive performance of models over real datasets

None of the real data sets show the large variance and the differences found in the synthetic data sets models

Experiment 1: Predictive performance
Experiment 2: Sensitivity of the Model performance
Experiment 3: Signature Approach

Experiment 4 : Signature vs. best performer

Research questions

- What is the performance vector of student skills assessment models over real and over synthetic data created using the same models?
 - Experiment 1 : Predictive performance of models over real and synthetic data sets
- ② Is the performance vector unique to each synthetic data type (data from the same ground truth model)?
 - Experiment 2 : Sensitivity of the Model performance over different data generation parameters

Are they stable in addition to be discriminant?

Experiment 1: Predictive performance
Experiment 2: Sensitivity of the Model performance
Experiment 3: Signature Approach

Experiment 4 : Signature vs. best performer

Variation of sample size over synthetic data sets

Obviously, the signature pattern did not change significantly for some parameters such as **Sample size**.

Experiment 1 : Predictive performance

Experiment 2 : Sensitivity of the Model performance

Experiment 3 : Signature Approach

Experiment 4 : Signature vs. best performer

Variation of number of items over synthetic data sets

Even for synthetic data the performance of the ground truth model should not necessarily be close to 100%.

Experiment 1: Predictive performance
Experiment 2: Sensitivity of the Model performance
Experiment 3: Signature Approach

Experiment 4 : Signature vs. best performer

Variation of number of items over synthetic data sets

The Performance signature shifts down once the number of items degrades.

Experiment 1: Predictive performance

Experiment 2: Sensitivity of the Model performance

Experiment 4 : Signature vs. best performer

Data parameters

- Sample size (Number of students)
- Number of items
- Number of latent skills
- Item score variance
- Student score variance
- O Average success rate

Experiment 1: Predictive performance
Experiment 2: Sensitivity of the Model performance

Experiment 4 : Signature vs. best performer

Data parameters

- Sample size (Number of students)
- Number of items
- Number of latent skills
- Item score variance
- Student score variance
- Average success rate

Conclusion:

- Data parameters can potentially influence the performance of a model
- For better comparison of the vectors, we also consider data characteristic parameters of the real data in the generation process

Experiment 1 : Predictive performance

Experiment 2 : Sensitivity of the Model performance

Experiment 3: Signature Approach
Experiment 4: Signature vs. best performer

Research questions

- What is the performance vector of student skills assessment models over real and over synthetic data created using the same models?
 - Experiment 1 : Predictive performance of models over real and synthetic data sets
- ② ✓ Is the performance vector unique to each synthetic data type (data from the same ground truth model)?
 - Experiment 2 : Sensitivity of the Model performance over different data generation parameters
- Oan the performance vector be used to define a method to reliably identify the ground truth behind the synthetic data?
 - Experiment 3 : Model selection based on performance vector classification

Experiment 2 : Sensitivity of the Model performance

Experiment 3: Signature Approach
Experiment 4: Signature vs. best performer

Signature framework

eriment $oldsymbol{1}$: Predictive performance

Experiment 2 : Sensitivity of the Model performance

Experiment 3: Signature Approach
Experiment 4: Signature vs. best performer

Signature framework

periment $oldsymbol{1}$: Predictive performance

Experiment 2 : Sensitivity of the Model performance

Experiment 3: Signature Approach
Experiment 4: Signature vs. best performer

Signature framework

 $ment \ 1: Predictive perform$

Experiment 2 : Sensitivity of the Model performance

Experiment 3: Signature Approach
Experiment 4: Signature vs. best performer

Signature framework

Experiment 3 : Signature Approach

Experiment 4 : Signature vs. best performer

Pool of synthetic datasets

There exists 6 skills assessment models

Experiment 3: Signature Approach
Experiment 4: Signature vs. best performer

Pool of synthetic datasets

There exists 6 skills assessment models X 6 data specific parameters

periment 1 : Predictive performance

Experiment 2 : Sensitivity of the Model performance Experiment 3 : Signature Approach

Experiment 4 : Signature vs. best performer

Pool of synthetic datasets

There exists 6 skills assessment models X 6 data specific parameters X 4 values

eriment 1 : Predictive performance

Experiment 2: Sensitivity of the Model performance Experiment 3: Signature Approach

Experiment 4 : Signature vs. best performer

Pool of synthetic datasets

There exists 6 skills assessment models X 6 data specific parameters X 4 values X 10 samples = 1440 samples in the pool (DB)

periment $1: \mathsf{Predictive}$ performanc

Experiment 2 : Sensitivity of the Model performance

Experiment 3: Signature Approach
Experiment 4: Signature vs. best performer

Pool of synthetic datasets

eriment 1 : Predictive performa

Experiment 2: Sensitivity of the Model performance Experiment 3: Signature Approach

Experiment 4 : Signature vs. best performer

Prototype definition

• Target performance vector : $\mathcal{T}_c^m t = P(D_c^m t \in DB)$ where : D_c is characterized with data parameter condition $c \in DC$

periment 1 : Predictive performance

Experiment 2 : Sensitivity of the Model performance

Experiment 3 : Signature Approach
Experiment 4 : Signature vs. best performer

- Target performance vector : $\mathcal{T}_c^m t = P(D_c^m t \in DB)$ where : D_c is characterized with data parameter condition $c \in DC$
- \mathcal{N}_c^m is a centroid performance prototype of models m with data parameter condition c

Experiment 1 : Predictive performa

Experiment 2 : Sensitivity of the Model performance

Experiment 3: Signature Approach
Experiment 4: Signature vs. best performer

- Target performance vector : $\mathcal{T}_c^m t = P(D_c^m t \in DB)$ where : D_c is characterized with data parameter condition $c \in DC$
- \mathcal{N}_c^m is a centroid performance prototype of models m with data parameter condition c
- $\mathcal{N}_c^m = AVG(\forall P(D_c^m)|D_c^m \in DB)$

periment 1 : Predictive performance

Experiment 2 : Sensitivity of the Model performance

Experiment 3 : Signature Approach
Experiment 4 : Signature vs. best performer

- Target performance vector : $\mathcal{T}_c^m t = P(D_c^m t \in DB)$ where : D_c is characterized with data parameter condition $c \in DC$
- \mathcal{N}_c^m is a centroid performance prototype of models m with data parameter condition c
- $\mathcal{N}_c^m = AVG(\forall P(D_c^m)|D_c^m \in DB)$
- In this study each centroid performance prototype is the average of 10 performances and |DC|=24

periment 1 : Predictive performa

Experiment 2 : Sensitivity of the Model performance

Experiment 3 : Signature Approach
Experiment 4 : Signature vs. best performer

- Target performance vector : $\mathcal{T}_c^m t = P(D_c^m t \in DB)$ where : D_c is characterized with data parameter condition $c \in DC$
- \mathcal{N}_c^m is a centroid performance prototype of models m with data parameter condition c
- $\mathcal{N}_c^m = AVG(\forall P(D_c^m)|D_c^m \in DB)$
- In this study each centroid performance prototype is the average of 10 performances and |DC| = 24
- Next slid shows the average of correlation between the target and prototype in all data parameter conditions

Experiment 4 : Signature vs. best performer

Degree of similarity between six synthetic performance vector based on the correlation

Synthetic performance vectors

Centroid synthetic

		POKS	IRT	NMF Conj.	DINA	NMF Add.	DINO
ce vectors	POKS	0.96					
	IRT	0.86	0.96				
	NMF Conj.	0.22	-0.20	0.96			
Jan	DINA	0.02	-0.40	0.94	0.96		
performance	NMF Add.	0.44	0.75	-0.62	-0.73	0.93	
perf	DINO	-0.15	0.20	-0.70	-0.69	0.63	0.95

- The diagonal shows high correlations because it compares performance vectors of the same model generated datasets.
- Performance vectors with similar ground truth also show a high correlation.

xperiment 1 : Predictive

Experiment 2: Sensitivity of the Model performance Experiment 3: Signature Approach

Experiment 4 : Signature vs. best performer

Degree of similarity between six synthetic performance vector based on the correlation

Synthetic performance vectors

Centroid synthetic

		POKS	IRT	NMF Conj.	DINA	NMF Add.	DINO
se vectors	POKS	0.96					
	IRT	0.86	0.96				
	NMF Conj.	0.22	-0.20	0.96			
Jan	DINA	0.02	-0.40	0.94	0.96		
performance	NMF Add.	0.44	0.75	-0.62	-0.73	0.93	
perf	DINO	-0.15	0.20	-0.70	-0.69	0.63	0.95

In general, correlation similarity provides a very good measure of model fit.

Experiment 3 : Signature Approach
Experiment 4 : Signature vs. best performer

Degree of similarity between six real datasets and the ground truth based on the correlation

Real Datasets

						Fraction	subsets	;
		Vomlel	ECPE	Fraction	1	21	22	23
Datasets	Random	0.58	0.73	0.61	0.43	0.24	0.61	0.57
	IRT	0.90	0.42	0.72	0.88	0.60	0.77	0.61
	DINA	-0.38	-0.09	0.23	0.30	0.56	0.06	0.38
	DINO	0.34	0.15	-0.18	-0.31	0.10	-0.08	0.38
Synthetic	POKS	0.75	0.40	0.83	0.95	0.70	0.83	0.80
	NMF Conj.	-0.05	0.54	0.51	0.55	0.66	0.33	0.57
Ω,	NMF Add.	0.39	0.06	-0.04	-0.19	-0.03	0.13	0.28

The centroid performance vector of each model is the average of performance vectors of 10 generated datasets

Experiment 3 : Signature Approach
Experiment 4 : Signature vs. best performer

Degree of similarity between six real datasets and the ground truth based on the correlation

Real Datasets

					F	Fraction	subsets	;
		Vomlel	ECPE	Fraction	1	21	22	23
ets	Random	0.58	0.73	0.61	0.43	0.24	0.61	0.57
Datasets	IRT	0.90	0.42	0.72	0.88	0.60	0.77	0.61
)at	DINA	-0.38	-0.09	0.23	0.30	0.56	0.06	0.38
	DINO	0.34	0.15	-0.18	-0.31	0.10	-0.08	0.38
Synthetic	POKS	0.75	0.40	0.83	0.95	0.70	0.83	0.80
	NMF Conj.	-0.05	0.54	0.51	0.55	0.66	0.33	0.57
Ω,	NMF Add.	0.39	0.06	-0.04	-0.19	-0.03	0.13	0.28

Vomlel dataset shows a high correlation with IRT model

Experiment 3 : Signature Approach
Experiment 4 : Signature vs. best performer

Degree of similarity between six real datasets and the ground truth based on the correlation

Real Datasets

					F	Fraction	subsets	,
		Vomlel	ECPE	Fraction	1	21	22	23
ets	Random	0.58	0.73	0.61	0.43	0.24	0.61	0.57
Datasets	IRT	0.90	0.42	0.72	0.88	0.60	0.77	0.61
)at	DINA	-0.38	-0.09	0.23	0.30	0.56	0.06	0.38
	DINO	0.34	0.15	-0.18	-0.31	0.10	-0.08	0.38
Synthetic	POKS	0.75	0.40	0.83	0.95	0.70	0.83	0.80
	NMF Conj.	-0.05	0.54	0.51	0.55	0.66	0.33	0.57
ω,	NMF Add.	0.39	0.06	-0.04	-0.19	-0.03	0.13	0.28

Fraction with its subset datasets show similarity with POKS model.

Experiment 3 : Signature Approach
Experiment 4 : Signature vs. best performer

Degree of similarity between six real datasets and the ground truth based on the correlation

Real Datasets

					F	Fraction	subsets	,
		Vomlel	ECPE	Fraction	1	21	22	23
ets	Random	0.58	0.73	0.61	0.43	0.24	0.61	0.57
Datasets	IRT	0.90	0.42	0.72	0.88	0.60	0.77	0.61
)at	DINA	-0.38	-0.09	0.23	0.30	0.56	0.06	0.38
	DINO	0.34	0.15	-0.18	-0.31	0.10	-0.08	0.38
Synthetic	POKS	0.75	0.40	0.83	0.95	0.70	0.83	0.80
	NMF Conj.	-0.05	0.54	0.51	0.55	0.66	0.33	0.57
ω,	NMF Add.	0.39	0.06	-0.04	-0.19	-0.03	0.13	0.28

As expected, ECPE has the highest correlation with random generated dataset.

Experiment 4 : Signature vs. best performer

- What is the performance vector of student skills assessment models over real and over synthetic data created using the same models?
 - Experiment 1 : Predictive performance of models over real and synthetic data sets
- ② ✓ Is the performance vector unique to each synthetic data type (data from the same ground truth model)?
 - Experiment 2 : Sensitivity of the Model performance over different data generation parameters
- Solution Series Ser
 - Experiment 3: Model selection based on performance vector classification
- How does the method compare with the standard practice of using the model with the best performance?
 - Experiment 4 : Signature vs. best performer classification

periment $1: \mathsf{Predictive}$ performance

Experiment 2 : Sensitivity of the Model performance

Experiment 4 : Signature vs. best performer

Problem specification

 What we did? to evaluate the ability of the Signature approach to identify the ground truth model

periment 1 : Predictive performanc

Experiment 2 : Sensitivity of the Model performance

Experiment 4: Signature vs. best performer

Problem specification

- What we did? to evaluate the ability of the Signature approach to identify the ground truth model
- What we want to do? to compare the results of classification based on signature approach with the best performer approach.

Experiment 4: Signature vs. best performer

Problem specification

- What we did? to evaluate the ability of the Signature approach to identify the ground truth model
- What we want to do? to compare the results of classification based on signature approach with the best performer approach.
- Reporting the accuracy of these classification in terms of F1and accuracy measures

		Prediction outcome			
		Positive	Negative		
Actual	Positive	TP	FN		
value	Negative	FP	TN		

$$Precision = rac{TP}{TP + FP}$$
 $Recall = rac{TP}{TP + FN}$

$$Accuracy = rac{TP + TN}{TP + TN + FP + FN}$$

$$F_1 = rac{Precision.Recall}{Precision + Recall}$$

Introduction Main contributions Conclusion periment 1 : Predictive performance

Experiment 2 : Sensitivity of the Model performance

Experiment 4 : Signature vs. best performer

Experiment 3 : Signature Approach
Experiment 4 : Signature vs. best performer

Results of signature vs. best performer classification

Performance

		Best Pe	Best Performer Signati		
		F-Measure	Accuracy	F-Measure	Accuracy
	POKS	0.719	0.871	0.847	0.945
els	IRT	0.625	0.908	0.856	0.951
Models	NMF Conj.	0.502	0.887	0.730	0.907
Σ	DINA	0.734	0.891	0.739	0.916
	NMF Add.	0.905	0.969	0.911	0.971
	DINO	0.963	0.988	0.970	0.990
Total accuracy		75	75% 84%		.%

 The F-measure increases when the signature approach is used for classification.

xperiment 1 : Predictive performance

Experiment 2 : Sensitivity of the Model performance

Experiment 4: Signature vs. best performer

Results of signature vs. best performer classification

Performance

		Best Pe	rformer	Signature	approach	
		F-Measure	Accuracy	F-Measure	Accuracy	
	POKS	0.719	0.871	0.847	0.945	
<u>8</u>	IRT	0.625	0.908	0.856	0.951	
Models	NMF Conj.	0.502	0.887	0.730	0.907	
Σ	DINA	0.734	0.891	0.739	0.916	
	NMF Add.	0.905	0.969	0.911	0.971	
	DINO	0.963	0.988	0.970	0.990	
Total accuracy		75%		84%		

- The F-measure increases when the signature approach is used for classification.
- In terms of individual scores per method, the accuracy increases when signature approach is used.

Experiment 1 : Predictive performance

Experiment 2: Sensitivity of the Model performance

23/26

Experiment 4: Signature vs. best performer

Results of signature vs. best performer classification

Performance

		Best Pe	rformer	Signature	approach	
		F-Measure	Accuracy	F-Measure	Accuracy	
	POKS	0.719	0.871	0.847	0.945	
els.	IRT	0.625	0.908	0.856	0.951	
Models	NMF Conj.	0.502	0.887	0.730	0.907	
≥	DINA	0.734	0.891	0.739	0.916	
	NMF Add.	0.905	0.969	0.911	0.971	
	DINO	0.963	0.988	0.970	0.990	
Total accuracy		75%		84%		

- The F-measure increases when the signature approach is used for classification.
- In terms of individual scores per method, the accuracy increases when signature approach is used.

The total accuracy considers true positive numbers ever

- What is the performance vector of student skills assessment models over real and over synthetic data created using the same models?
 - Experiment 1 : Predictive performance of models over real and synthetic data sets
 - In terms of signature pattern: it is unique for each generative model
 - In terms of data points in the performance vector space :
 They are data points in this space
 - For real data sets, the performances are not better than the expected performance
 - For synthetic data, datasets with different ground truths that share some concepts, show a high correlation.

- Predictive performance of models over real and synthetic data sets
- ② ✓ Is the performance vector unique to each synthetic data type (data from the same ground truth model)?
 - Experiment 2 : Sensitivity of the Model performance over different data generation parameters
 - Different parameters can create different points in the performance vector space
 - There would be a cloud of points for a particular model (Ground truth)
 - The cloud is not too dispersed

- Predictive performance of models over real and synthetic data sets
- Sensitivity of the Model performance over different data parameters
- Can the performance vector be used to define a method to reliably identify the ground truth behind the synthetic data?
 - Experiment 3: Model selection based on performance vector classification
 - A comparison between the target and the prototype signature
 - Datasets that share a common source have correlated performance vectors.

- $lue{1}$ Predictive performance of models over real and synthetic data sets
- ☑ ✓ Sensitivity of the Model performance over different data parameters
- Model selection based on performance vector classification
- How does the method compare with the standard practice of using the model with the best performance?
 - Experiment 4 : Signature vs. best performer classification
 - The ground truth model does not always correspond to the best performer and our approach provides a more reliable means

 to be extend over different models, different domains and more datasets

- to be extend over different models, different domains and more datasets
- generalize to dynamic data and skills assessment models

- to be extend over different models, different domains and more datasets
- generalize to dynamic data and skills assessment models
- Candidate models and their complexity where the data is created with a mixture of models)

- to be extend over different models, different domains and more datasets
- generalize to dynamic data and skills assessment models
- Candidate models and their complexity where the data is created with a mixture of models)
- Application in other fields of study

Thank you

