Lecture Notes for **Machine Learning in Python**

Professor Eric Larson

Visualization

Class Logistics and Agenda

- Finish Visualization Demo
- Town Hall
- Next Time:
 - Dimensionality Reduction
 - PCA
 - Sampling
 - Kernel Methods
 - Images

Class Overview, by topic

What is the difference in these plots?

ı	Passengerld	Survived	Polass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Embarked	2	3	male	Q	,
0	1	0	3	Braund, Mr. Owen Harns	male	22.0	1	0	A6 211/1	7.2500	S	0	1	1	0	
ı	2	1	1	Cunnings, Mrs. John Bradley (Florence Enggs 1h	female	0.90	1	0	PC 17599	71.2033	¢	0	0	0	0	1
!	3	1	3	Heikkinen, Miss I aina	temale	26.0	D	0	STON/02. 3101282	£ 9250	s	o	1	0	0	

Let's look at some graphs

You tell me what conclusions we are getting from

these graphs

- Histogram
- · KDE
- HeatMaps and Correlation
- Scatter and Scatter Matrix
- Box / Violin / Swarm

03.Data Visualization.ipynb

Matplotlib Seaborn Plotly

Now you have visualization building blocks

Lab One: Town Hall

Supplemental Slides

Visualization Techniques: Contour Plots

Contour plots

- Useful when a continuous attribute is measured on a spatial grid
- They partition the plane into regions of similar values
- The contour lines that form the boundaries of these regions connect points with equal values
- The most common example is contour maps of elevation
- Can also display temperature, rainfall, air pressure, etc.
 - An example for Sea Surface Temperature (SST) is provided on the next slide

Other Visualization Techniques

Star Plots

- Similar approach to parallel coordinates, but axes radiate from a central point
- The line connecting the values of an object is a polygon

Chernoff Faces

- Approach created by Herman Chernoff
- This approach associates each attribute with a characteristic of a face
- The values of each attribute determine the appearance of the corresponding facial characteristic
- Each object becomes a separate face
- Relies on human's ability to distinguish faces

Challenges of Data Mining

- Scalability
- Dimensionality
- Complex and Heterogeneous Data
- Data Quality
- Data Ownership and Distribution
- Privacy Preservation
- Streaming Data

Important Characteristics of Structured Data

- Dimensionality
 - Curse of Dimensionality
- Sparsity
 - Only presence counts
- Resolution
 - Patterns depend on the scale

Measurement of Length

 The way you measure an attribute is somewhat may not match the attributes properties.

Sampling

- Sampling is the main technique employed for data selection.
 - It is often used for both the preliminary investigation of the data and the final data analysis.
- Statisticians sample because obtaining the entire set of data of interest is too expensive or time consuming.
- Sampling is used in data mining because processing the entire set of data of interest is too expensive or time consuming.

Sampling ...

- The key principle for effective sampling is the following:
 - using a sample will work almost as well as using the entire data sets, if the sample is representative
 - A sample is representative if it has approximately the same property (of interest) as the original set of data

Types of Sampling

- Simple Random Sampling
 - There is an equal probability of selecting any particular item
- Sampling without replacement
 - As each item is selected, it is removed from the population
- Sampling with replacement
 - Objects are not removed from the population as they are selected for the sample.
 - In sampling with replacement, the same object can be picked up more than once
- Stratified sampling
 - Split the data into several partitions; then draw random samples from each partition

Sample Size

Sample Size

• What sample size is necessary to get at least one object from each of 10 groups.

Similarity and Dissimilarity

Similarity

- Numerical measure of how alike two data objects are.
- Is higher when objects are more alike.
- Often falls in the range [0,1]

Dissimilarity

- Numerical measure of how different are two data objects
- Lower when objects are more alike
- Minimum dissimilarity is often 0
- Upper limit varies
- Proximity refers to a similarity or dissimilarity

Similarity/Dissimilarity for Simple Attributes

p and q are the attribute values for two data objects.

$\Lambda { m ttribute}$	Dissimilarity	Similarity
Type		
Nominal		$s = \left\{egin{array}{ll} 1 & ext{if } p = q \ 0 & ext{if } p eq q \end{array} ight.$
Ordinal	$d = \frac{ p-q }{n-1}$ (values mapped to integers 0 to $n-1$, where n is the number of values)	$s = 1 - \frac{[p-q]}{n-1}$
Interval or Ratio	d = p - q	$s = -d, \ s = \frac{1}{1+d}$ or
		$s = -d$, $s = \frac{1}{1+d}$ or $s = 1$ $\frac{d-min_d}{max_d-min_d}$

Table 5.1. Similarity and dissimilarity for simple attributes

Euclidean Distance

Euclidean Distance

$$dist = \sqrt{\sum_{k=1}^{n} (p_k - q_k)^2}$$

Where n is the number of dimensions (attributes) and p_k and q_k are, respectively, the k^{th} attributes (components) or data objects p and q.

Standardization is necessary, if scales differ.

Euclidean Distance

point	X	y
p1	0	2
p2	2	0
р3	3	1
p4	5	1

	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
р4	5.099	3.162	2	0

Distance Matrix

Minkowski Distance

 Minkowski Distance is a generalization of Euclidean Distance

$$dist = \left(\sum_{k=0}^{n} |p_k - q_k|^r \right)^{\frac{1}{r}}$$

Where r is a parameter, n is the number of dimensions (attributes) and p_k and q_k are, respectively, the kth attributes (components) or data objects p and q.

Minkowski Distance: Examples

- r = 1. City block (Manhattan, taxicab, L₁ norm) distance.
 - A common example of this is the Hamming distance, which is just the number of bits that are different between two binary vectors
- r = 2. Euclidean distance
- $r \to \infty$. "supremum" (L_{max} norm, L_{∞} norm) distance.
 - This is the maximum difference between any component of the vectors
- Do not confuse r with n, i.e., all these distances are defined for all numbers of dimensions.

Minkowski Distance

point	X	y
p1	0	2
p2	2	0
р3	3	1
p4	5	1

L1	p1	p2	р3	p4
p1	0	4	4	6
p2	4	0	2	4
р3	4	2	0	2
р4	6	4	2	0

L2	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

L_{∞}	p1	p2	р3	p4
p1	0	2	3	5
p2	2	0	1	3
р3	3	1	0	2
p4	5	3	2	0

Distance Matrix

Mahalanobis Distance

mahalanobis
$$(p,q) = (p-q)\sum^{-1}(p-q)^T$$

 Σ is the covariance matrix of the input data X

$$\Sigma_{j,k} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{ij} - \overline{X}_{j})(X_{ik} - \overline{X}_{k})$$

For red points, the Euclidean distance is 14.7, Mahalanobis distance is 6.

Mahalanobis Distance

Covariance Matrix:

$$\Sigma = \begin{bmatrix} 0.3 & 0.2 \\ 0.2 & 0.3 \end{bmatrix}$$

A: (0.5, 0.5)

B: (0, 1)

C: (1.5, 1.5)

Mahal(A,B) = 5

Mahal(A,C) = 4

Common Properties of a Distance

- Distances, such as the Euclidean distance, have some well known properties.
 - $d(p, q) \ge 0$ for all p and q and d(p, q) = 0 only if p = q. (Positive definiteness)
 - d(p, q) = d(q, p) for all p and q. (Symmetry)
 - d(p, r) ≤ d(p, q) + d(q, r) for all points p, q, and r. (Triangle Inequality)

where d(p, q) is the distance (dissimilarity) between points (data objects), p and q.

 A distance that satisfies these properties is a metric

Common Properties of a Similarity

- Similarities, also have some well known properties.
 - s(p, q) = 1 (or maximum similarity) only if p = q.
 - s(p, q) = s(q, p) for all p and q. (Symmetry)

where s(p, q) is the similarity between points (data objects), p and q.

Similarity Between Binary Vectors

- Common situation is that objects, p and q, have only binary attributes
- Compute similarities using the following quantities M_{01} = the number of attributes where p was 0 and q was 1 M_{10} = the number of attributes where p was 1 and q was 0 M_{00} = the number of attributes where p was 0 and q was 0 M_{11} = the number of attributes where p was 1 and q was 1
- Simple Matching and Jaccard Coefficients

```
SMC = number of matches / number of attributes
= (M_{11} + M_{00}) / (M_{01} + M_{10} + M_{11} + M_{00})
```

J = number of 11 matches / number of not-both-zero attributes values = $(M_{11}) / (M_{01} + M_{10} + M_{11})$

SMC versus Jaccard: Example

$$p = 1000000000$$

 $q = 0000001001$

- $M_{01} = 2$ (the number of attributes where p was 0 and q was 1)
- $M_{10} = 1$ (the number of attributes where p was 1 and q was 0)
- $M_{00} = 7$ (the number of attributes where p was 0 and q was 0)
- $M_{11} = 0$ (the number of attributes where p was 1 and q was 1)

SMC =
$$(M_{11} + M_{00})/(M_{01} + M_{10} + M_{11} + M_{00}) = (0+7)/(2+1+0+7) = 0.7$$

$$J = (M_{11}) / (M_{01} + M_{10} + M_{11}) = 0 / (2 + 1 + 0) = 0$$

Cosine Similarity

• If d_1 and d_2 are two document vectors, then

$$cos(d_1, d_2) = (d_1 \cdot d_2) / ||d_1|| ||d_2||,$$

where \bullet indicates vector dot product and ||d|| is the length of vector d.

Example:

$$d_1 = 3205000200$$

 $d_2 = 1000000102$

$$\begin{aligned} d_1 & \bullet d_2 = 3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5 \\ ||d_1|| &= (3*3 + 2*2 + 0*0 + 5*5 + 0*0 + 0*0 + 0*0 + 2*2 + 0*0 + 0*0)^{0.5} = (42)^{0.5} = 6.481 \\ ||d_2|| &= (1*1 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 1*1 + 0*0 + 2*2)^{0.5} = (6)^{0.5} = 2.245 \end{aligned}$$

$$\cos(d_1, d_2) = .3150$$

Extended Jaccard Coefficient (Tanimoto)

- Variation of Jaccard for continuous or count attributes
 - Reduces to Jaccard for binary attributes

$$T(p,q) = \frac{p \bullet q}{\|p\|^2 + \|q\|^2 - p \bullet q}$$

Correlation

- Correlation measures the linear relationship between objects
- To compute correlation, we standardize data objects, p and q, and then take their dot product

$$p'_k = (p_k - mean(p)) / std(p)$$

$$q'_k = (q_k - mean(q)) / std(q)$$

$$correlation(p,q) = p' \cdot q'$$

Visually Evaluating Correlation

Scatter plots showing the similarity from -1 to 1.

General Approach for Combining Similarities

- Sometimes attributes are of many different types, but an overall similarity is needed.
- 1. For the k^{th} attribute, compute a similarity, s_k , in the range [0,1].
- 2. Define an indicator variable, δ_k , for the k_{th} attribute as follows:
 - $\delta_k = \left\{ \begin{array}{ll} 0 & \text{if the k^{lh} attribute is a binary asymmetric attribute and both objects have} \\ & \text{a value of 0, or if one of the objects has a missing values for the k^{lh} attribute} \\ & 1 & \text{otherwise} \end{array} \right.$
- 3. Compute the overall similarity between the two objects using the following formula:

$$similarity(p,q) = rac{\sum_{k=1}^{n} \delta_k s_k}{\sum_{k=1}^{n} \delta_k}$$

Using Weights to Combine Similarities

- May not want to treat all attributes the same.
 - Use weights w_k which are between 0 and 1 and sum to 1.

$$simitarity(p,q) = rac{\sum_{k=1}^{n} w_k \delta_k s_k}{\sum_{k=1}^{n} \delta_k}$$

$$distance(p,q) = \left(\sum_{k=1}^{n} w_k | p_k - q_k|^r\right)^{1/r}$$

Density

- Density-based clustering require a notion of density
- Examples:
 - Euclidean density
 - Euclidean density = number of points per unit volume
 - Probability density
 - Graph-based density

Euclidean Density - Cell-based

 Simplest approach is to divide region into a number of rectangular cells of equal volume and define density as # of points the cell contains

Figure 7.13. Cell-based density.

0	0	0	0	0	0	0
0	0	0	0	0	0	0
4	17	18	6	0	()	0
14	14	13	13	0	18	27
11	18	10	21	0	24	31
3	20	14	4	0	()	0
0	0	0	0	0	0	0

Table 7.6. Point counts for each grid cell.

Euclidean Density - Center-based

 Euclidean density is the number of points within a specified radius of the point

Figure 7.14. Illustration of center-based density.

Feature Subset Selection

Another way to reduce dimensionality of data

Redundant features

- duplicate much or all of the information contained in one or more other attributes
- Example: purchase price of a product and the amount of sales tax paid

Irrelevant features

- contain no information that is useful for the data mining task at hand
- Example: students' ID is often irrelevant to the task of predicting students' GPA

Feature Subset Selection

- Techniques:
 - Brute-force approch:
 - Try all possible feature subsets as input to data mining algorithm
 - Embedded approaches:
 - Feature selection occurs naturally as part of the data mining algorithm
 - Filter approaches:
 - Features are selected before data mining algorithm is run
 - Wrapper approaches:
 - Use the data mining algorithm as a black box to find best subset of attributes

Feature Creation

- Create new attributes that can capture the important information in a data set much more efficiently than the original attributes
- Three general methodologies:
 - Feature Extraction
 - domain-specific
 - Mapping Data to New Space
 - Feature Construction
 - combining features

Dimensionality Reduction: PCA

Visualization Techniques: Distributions

Histogram

- Usually shows the distribution of values of a single variable
- Divide the values into bins and show a bar plot of the number of objects in each bin.

KDE

- Add up Gaussian underneath each point value
- STD of gaussian is equivalent to number of bins in histogram

Two-Dimensional Distributions

- Estimate the joint distribution of the values of two attributes
- Example: petal width and petal length
 - What does this tell us?

Visualization Techniques: Scatter Plots

Scatter plots

- Two-dimensional scatter plots most common
- Additional attributes can be displayed by using the size, shape, and color of the markers that represent the objects
- Interactivity can add insight
- It is useful to have matrices of scatter plots to compactly summarize the relationships of several pairs of attributes
- Good for numeric data, but needs jitter for categorical data

Scatter Plot Matrix Colored by Class

Visually Evaluating Correlation

Scatter plots showing the similarity from -1 to 1.

Visualization Techniques: Box Plots

Box Plots

- Invented by J. Tukey
- Another way of displaying the distribution of data
- Following figure shows the basic part of a box plot

Visualization Techniques: Box Plots

Box Plots

Example: Comparing Attributes

Visualization Techniques: Matrix Plots

- Matrix plots (typically heatmaps)
 - Plot some data matrix
 - This can be useful when objects are sorted well
 - Typically, the attributes are normalized to prevent one attribute from dominating the plot
 - Plots of similarity or distance matrices can also be useful for visualizing the relationships between objects

Instance Correlation Matrix

Visualization Techniques: Matrix Plots

- Matrix plots (typically heatmaps)
 - Plot some data matrix
 - This can be useful when objects are sorted well
 - Typically, the attributes are normalized to prevent one attribute from dominating the plot
 - Plots of similarity or distance matrices can also be useful for visualizing the relationships between objects

Instance Correlation Matrix

Visualization Techniques: Parallel Coordinates

Parallel Coordinates

- Used to plot the attribute values of multi-dimensional data
- Instead of using perpendicular axes, use a set of parallel axes
- The attribute values of each object are plotted as a point on each corresponding coordinate axis and the points are connected by a line
- Thus, each object is represented as a line
- Often, the lines representing a distinct class of objects group together, at least for some attributes
- Ordering of attributes is important in seeing such groupings

Parallel Coordinates Plots for Iris Data

