

Polska Akademia Nauk Instytut Biocybernetyki i Inżynierii Biomedycznej

Praca doktorska

Proces gojenia ścięgna Achillesa oceniany przez fuzję danych z wykorzystaniem głębokich sieci neuronowych

Autor: mgr inż. Norbert Kapiński

Kierujący pracą: dr hab. inż. Antoni Grzanka

Promotor pomocniczy: dr Jakub Zieliński

Warszawa, wrzesień 2018

Streszczenie The abstract will go here.... W tym miejscu można umieścić abstrakt pracy. W przeciwnym wypadku należy usunąć/zakomentować ninijeszy fragment kodu.

Spis treści

1	Wst	tęp	1						
2	Cel	l i przebieg pracy							
3 Monitorowanie procesu gojenia ścięgna Achillesa									
	3.1	Ścięgno Achillesa	3						
		3.1.1 Anatomia	4						
		3.1.2 Biomechanika	4						
		3.1.3 Urazy i czynniki im sprzyjające	5						
		3.1.4 Leczenie, fazy gojenia i rehabilitacja	5						
	3.2	Zastosowanie rezonansu magnetycznego	5						
	3.3	Zastosowanie ultrasonografii	5						
	3.4	Zastosowanie badań biomechanicznych							
	3.5	Inne metody	5						
4	Kor	Konwolucyjne sieci neuronowe							
	4.1	Zarys historyczny	6						
	4.2	Przykłady współczesnych topologii	6						
		4.2.1 AlexNet	6						
		4.2.2 GoogleNet	6						
		4 2 3 ResNet	6						

		4.2.4 Złożenia	6
	4.3	Zastosowania w medycynie	6
	4.4	Problem nadmiernego dopasowania	6
	4.5	Problem redukcji wymiarowości	6
5	Nov	va metoda oceny procesu gojenia ścięgna Achillesa	7
	5.1	Metodyka	7
	5.2	Rozróżnienie ścięgna zdrowego i po zerwaniu	7
	5.3	Obliczanie krzywych gojenia	7
		5.3.1 Topologia sieci	7
		5.3.2 Redukcja wymiarowości	7
		5.3.3 Miara wygojenia	7
6	$\mathbf{W}\mathbf{y}$	niki i walidacja	8
	6.1	Ocena procesu gojenia z użyciem nowej metody	8
	6.2	Porównanie z wynikami z rezonansu magnetycznego	8
	6.3	Porównanie z wynikami ultrasonografii	8
	6.4	Porównanie z wynikami badań biomechanicznych	8
7	Pod	lsumowanie	9
Bi	bliog	grafia	10
\mathbf{A}	Ach	nillesDL: System komputerowego wspomagania oceny gojenia ścię-	
	gjer	n i wiezadeł	11

Spis rysunków

3.1 Lokalizacja mięśnia trójgłowego łydki wraz ze ścięgnem Achillesa. 3

Spis tabel

Wstęp

Cel i przebieg pracy

Monitorowanie procesu gojenia ścięgna Achillesa

3.1 Ścięgno Achillesa

Ścięgno Achillesa, nazywane również ścięgnem piętowym, jest największym i najsilniejszym ścięgnem występującym w ciele ludzkim. Stanowi wspólne zakończenie mięśnia trójgłowego łydki, w którego skład wchodzą dwie głowy mięśnia brzuchatego i mięsień płaszczkowaty. Całość struktury zlokalizowana jest w tylnym, powierzchownym przedziale łydki, co zostało przedstawione na Rysunku 3.1. Z obu głów (brzuścców)

Rysunek 3.1: Lokalizacja mięśnia trójgłowego łydki wraz ze ścięgnem Achillesa.

mięśnia brzuchatego łydki wyrasta jedno szerokie, płaskie ścięgno, które jest początkiem części brzuchatej ścięgna Achillesa. Następnie ścięgno to łączy się z włóknami pochodzącymi od mięśnia płaszczkowatego, które układają się stycznie do wcześniej powstałej struktury. Wówczas kształt ulega stopniowemu zwężeniu i zaokrągleniu, aż do punktu o minimalnej szerokości (około 4 cm nad przyczepem dolnym [1]). W rejonie samego przyczepu dolnego znajdującego się na tylnej powierzchnia kości piętowej, ścięgno ponownie jest płaskie i szerokie.

W kolejnych podsekcjach szczegółowo omówiona została anatomia ścięgna Achillesa, jego biomechanika, potencjalne urazy wraz z czynnikami im sprzyjającymi oraz proces gojenia i możliwości jego wspomagania. Wszystkie te aspekty są istotne z uwagi na możliwości monitorowania procesów fizjologicznych występujących w ścięgnie.

3.1.1 Anatomia

Srednia długość ścięgna Achillesa to 15 cm (11 - 26 cm). Średnia szerokość w rejonie początku wynosi 6.8 cm (4,5 - 8, 6 cm). Następnie, stopniowo ścięgno ulega zwężeniu do punktu o minimalnej szerokości 1.8 cm (1,2 - 2,6 cm). W rejonie samego przyczepu struktura ponownie się rozszerza i jej szerokość wynosi średnio 3.4 cm (2,0 - 4,8 cm) [2-3]. Zewnętrzną część ścięgna Achillesa stanowi ościęgno utworzone z tkanki łącznej włóknistej. Achil -Histologia -Unaczynienie (krew, nerwy)

3.1.2 Biomechanika

Zadaniem ścięgien jest transfer siły mięśniowej do układu szkieletowego.

- 3.1.3 Urazy i czynniki im sprzyjające
- 3.1.4 Leczenie, fazy gojenia i rehabilitacja
- 3.2 Zastosowanie rezonansu magnetycznego
- 3.3 Zastosowanie ultrasonografii
- 3.4 Zastosowanie badań biomechanicznych
- 3.5 Inne metody

Konwolucyjne sieci neuronowe

Konwolucyjne sieci neuronowe (ang. Convolutional Neural Networks)

- 4.1 Zarys historyczny
- 4.2 Przykłady współczesnych topologii
- 4.2.1 AlexNet
- 4.2.2 GoogleNet
- **4.2.3** ResNet
- 4.2.4 Złożenia
- 4.3 Zastosowania w medycynie
- 4.4 Problem nadmiernego dopasowania
- 4.5 Problem redukcji wymiarowości

Nowa metoda oceny procesu gojenia ścięgna Achillesa

- 5.1 Metodyka
- 5.2 Rozróżnienie ścięgna zdrowego i po zerwaniu
- 5.3 Obliczanie krzywych gojenia
- 5.3.1 Topologia sieci
- 5.3.2 Redukcja wymiarowości
- 5.3.3 Miara wygojenia

Wyniki i walidacja

- 6.1 Ocena procesu gojenia z użyciem nowej metody
- 6.2 Porównanie z wynikami z rezonansu magnetycznego
- 6.3 Porównanie z wynikami ultrasonografii
- 6.4 Porównanie z wynikami badań biomechanicznych

Podsumowanie

Bibliografia

[1] Witold Pokorski and Graham G. Ross. Flat directions, string compactification and three generation models. 1998.

Dodatek A

AchillesDL: System komputerowego wspomagania oceny gojenia ścięgien i więzadeł