Flight Route Finder

Group member:

Zijing Ye

Yueqi Yan

Research Background

Shallow descriptive analyses

Most Kaggle projects stop at simple EDA (line charts, bar graphs) or basic network maps—few tackle true route optimization.

Fragmented flight search tools

Current platforms force travelers to juggle multiple services and fail to balance cost–time–convenience trade-offs in one unified optimizer.

Our passion for aviation data

We're eager to apply Data Science and NetworkX to make flight planning smarter and more efficient.

Research Questions

How can we recommend the best route based on different user needs? Given user input (origin, destination, current time):

- Find the **cheapest** route
- Find the fastest route
- Find the route with the fewest transfers

NetworkX-powered command-line interface (CLI) flight planner

Dataset Overview

Source: Kaggle - Airlines Dataset (Russia, 2017)

Time Range: 2017-07-16 to 2017-09-14

Geographic Scope: Domestic flights across Russia

Data Volume: 8 tables, 61,502 flight records

Flight Network Visualization

Nodes = Airports (colored by total flight volume) Edges = Direct flights

Dataset Overview

Dataset Structure & Preprocessing

		Name	Data type
Name	Data type	flight_id	integer
		flight_no	character (6)
airport_code	character (3)	scheduled_departure	timestamp with time zone
airport name	isonh	scheduled_arrival	timestamp with time zone
all pol t_name	JSOHO	departure_airport	character (3)
city	jsonb	arrival_airport	character (3)
coordinates	point	status	character varying (20)
timezone	text	aircraft_code	character (3)
		actual_departure	timestamp with time zone
		actual_arrival	timestamp with time zone

Name	Data type
ticket_no	character (13)
flight_id	integer
fare_conditions	character varying (10)
amount	numeric (10, 2)

- merge table
- extract city names
- convert time columns
- handle missing prices
- create city-to-airport mapping

#	Column	Non-Null Count	Dtype
0	flight_id	59671 non-null	int64
1	flight_no	59671 non-null	object
2	scheduled_departure	59671 non-null	datetime6
3	scheduled_arrival	59671 non-null	datetime6
4	departure_airport	59671 non-null	object
5	departure_city	59671 non-null	object
6	departure_coordinates	59671 non-null	object
7	arrival_airport	59671 non-null	object
8	arrival_city	59671 non-null	object
9	arrival_coordinates	59671 non-null	object
10	fare_conditions	50606 non-null	object
11	amount	56072 non-null	float64
12	ticket_count	50606 non-null	float64
13	departure_city_name	59671 non-null	object
14	arrival_city_name	59671 non-null	object
15	departure_longitude	59671 non-null	float64
16	departure_latitude	59671 non-null	float64
17	arrival_longitude	59671 non-null	float64
18	arrival_latitude	59671 non-null	float64
19	flight_duration_hours	59671 non-null	float64
20	route	59671 non-null	object
21	route_type	59671 non-null	object

Final Dataset After Preprocessing

Methodology

1. Flight Network Construction

Built a time-aware flight network using <u>NetworkX.MultiDiGraph</u>

- Nodes: Airports
- Edges: Individual flights between airports
- Attributes: Flight ID, Departure / Arrival Time, Duration, Ticket Price

- Supports multiple flights between the same airport pair
- > Filters out flights departing before the user's specified time

Methodology

2. Time-Aware Path Search (Modified BFS)

Implements a <u>custom breadth-first search (BFS) algorithm</u>

- Explores all airport paths starting from the user's origin city
- For each potential next flight:
 - Ensures its departure time is after the previous flight's arrival
 - O Requires a minimum layover buffer (e.g., 1 hour)

What Makes It "Time-Aware": This custom algorithm doesn't just follow airport connections —it checks whether the schedule is physically feasible

Project Structure

ight-route-finder

```
∨ □ data

   processed

    ≡ flight_ticket_summary.csv

     travel.sqlite
                                           build_flight_graph(flights_df, departure_time):...
  ima ima

✓ ☐ scripts

                                           find_all_paths(G, city_to_airports_map, departure_city, arrival_city, max_segments=3):...
     connect_and_merge_data.py

✓ o src

                                            _find_time_aware_paths(G, origin_airport, dest_airport, max_segments):...
     __init__.py
     flight_functions.py
                                           get_path_details(G, path, min_layover=timedelta(hours=1)):...
     preprocessing.py
   nain.py
   = requirements.txt
                                           select_best_routes(all_path_details):...
```

Results

Departure city: Moscow Arrival city: Novosibirsk

Departure date (YYYY-MM-DD, default: today): 2017-9-4

Departure time (HH:MM, default: now): 17:00

CHEAPEST ROUTE:

Total price: 28100.00

Total duration: 0 days 05:15:00

Transfers: 1

Flight segments:

1. DME \rightarrow KVX

Departure: 2017-09-12 15:50:00 Arrival: 2017-09-12 18:20:00

Price: 7700.00 2. KVX \rightarrow OVB

> Departure: 2017-09-14 11:40:00 Arrival: 2017-09-14 14:25:00

Price: 20400.00

FASTEST ROUTE:

Total price: 30700.00

Total duration: 0 days 03:25:00

Transfers: 0

Flight segments:

1. DME \rightarrow OVB

Departure: 2017-09-05 11:05:00 Arrival: 2017-09-05 14:30:00

Price: 30700.00

LEAST_TRANSFERS ROUTE:

Total price: 30700.00

Total duration: 0 days 03:25:00

Transfers: 0

Flight segments:

1. DME \rightarrow OVB

Departure: 2017-09-05 11:05:00 Arrival: 2017-09-05 14:30:00

Price: 30700.00

Results

Departure city: Kaliningrad Arrival city: Krasnoyarsk

Departure date (YYYY-MM-DD, default: today): 2017-8-10

Departure time (HH:MM, default: now): 08:00

CHEAPEST ROUTE:

Total price: 45200.00

Total duration: 0 days 07:00:00

Transfers: 2

Flight segments:

1. $KGD \rightarrow DME$

Departure: 2017-09-12 17:05:00 Arrival: 2017-09-12 18:35:00

Price: 11000.002. DME \rightarrow OVB

> Departure: 2017-09-13 11:05:00 Arrival: 2017-09-13 14:30:00

Price: 27900.00 3. OVB \rightarrow KJA

Departure: 2017-09-14 12:20:00 Arrival: 2017-09-14 14:25:00

Price: 6300.00

FASTEST ROUTE:

Total price: 48300.00

Total duration: 0 days 05:55:00

Transfers: 1

Flight segments:

1. KGD → SVO

Departure: 2017-08-17 12:00:00 Arrival: 2017-08-17 13:30:00

Price: 11700.00 2. SVO → KJA

Departure: 2017-08-21 10:25:00 Arrival: 2017-08-21 14:50:00

Price: 36600.00

LEAST_TRANSFERS ROUTE:

Total price: 48300.00

Total duration: 0 days 05:55:00

Transfers: 1

Flight segments:

1. $KGD \rightarrow SVO$

Departure: 2017-08-17 12:00:00 Arrival: 2017-08-17 13:30:00

Price: 11700.00 2. SVO → KJA

Departure: 2017-08-21 10:25:00 Arrival: 2017-08-21 14:50:00

Price: 36600.00

Limitations and Future Enhancement

	Limitation	Future Enhancement
Route Finder Criteria	Only supports shortest flight duration or lowest price	Customizable Multi-criteria OptimizationAdditional Optimization Criteria
Data sources	No real-time flight or gate data; relies solely on static schedules.	Real-time Flight Status IntegrationExpanded Travel Options
Connection Parameters	• Uses generic transfer time, ignores terminals and delays.	
Time Zones	Time shown in UTC format, not adjusted to user's time zone.	Enhanced Time Zone ManagementGeographic Route Visualization

THANKS!