PATENT ABSTRACTS OF JAPAN

(InPublication number:

04-277406

(43) Date of publication of application: 02.10.1992

(51)Int.CI.

H01B 1/16 C03C 17/04 C03C 17/06 C09D 5/24 H01L 23/12 H05K 1/09

(21)Application number : 03-037494

(71)Applicant :

SUMITOMO METAL IND LTD

(22)Date of filing:

04.03.1991

(72)Inventor:

NAKADA YOSHIKAZU

(54) COPPER CONDUCTOR PASTE

(57)Abstract:

PURPOSE: To enhance adhesion strength and enable formation of a micro circuit by containing copper powder of a predetermined particle size at a predetermined ratio.

CONSTITUTION: Copper powder of particle size ranging from 0.3 to 5μ m, of 70 to 90weight%, and copper powder of particle size ranging from 5 tp 10μ m, of 30 to 10weight% are contained in a conductor paste in which copper powder as a conducting particle is dispersed in a vehicle together with a glass frit. The added amount of the glass frit ranges from 2 to 5weight% in relation to 100 weight parts of copper powder. As the vehicle, a material in which a well known acrylic resin or cellulose resin is dissolved in a solvent such as terpineol or the like can be used. A metal oxide, e.g. copper oxide, may be contained in the copper conductor paste so as to prevent the decline of adhesion strength due to aging.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平4-277406

(43)公開日 平成4年(1992)10月2日

識別記号	庁内整理番号	FI	技術表示箇所
Α	7244-5G		
·A	7003-4G		
Α	7003-4G		
PQW	7211-4 J		
	7352-4M	H01L	23/12 Q
		審査請求 未請求	対 請求項の数2(全 4 頁) 最終頁に続く
特願平3-37494		(71)出願人	000002118
			住友金属工業株式会社
平成3年(1991)3月	4日		大阪府大阪市中央区北浜 4丁目 5番33号
		(72)発明者	中田 好和
			大阪市中央区北浜4丁目5番33号 住友金 属工業株式会社内
		(74)代理人	弁理士 広瀬 章一
	A A A PQW	A 7244-5G A 7003-4G A 7003-4G PQW 7211-4 J 7352-4M	A 7244-5G A 7003-4G A 7003-4G PQW 7211-4J 7352-4M H01L 審査請求 未請求 特願平3-37494 (71)出願人 平成3年(1991)3月4日 (72)発明者

(54) 【発明の名称】 銅導体ペースト

(57)【要約】

(目的) 基板との接着強度が大きい銅厚膜形成用導体ペーストを提供する。

〔構成〕粒径0.3 ~5 μm の銅粉末70~90重量%、粒径 5 ~10μm の銅粉末30~10重量%を含む銅導体ペースト。

〔効果〕接着強度が高く、微細回路の形成が可能となった。

【特許請求の範囲】

【請求項1】 導電粒子としての銅粉末を、ガラスフリ ットと共にビヒクル中に分散して成る導体ペーストであ って、該銅粉末が粒径0.3 μπ 以上5μπ 未満の銅粉末 が70重量%から90重量%と粒径 5 μ 回 以上10 μ 回 以下の **銅粉末が30重量%から10重量%とからなることを特徴と** する銅導体ペースト。

【請求項2】 銅粉末100 重量部に対し2重量部以下の 金属酸化物が添加された請求項1記載の銅導体ペース **!**.

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、セラミックス等の絶縁 性基板上に銅厚膜の電極および配線パターンを形成させ るための銅導体ペーストに関し、さらに詳しくはそのよ うな絶縁性基板に対する接着強度が極めて高い銅厚膜の 電極および配線を形成させるための銅導体ペーストに関 する。

[0002]

【従来の技術】ガラス、セラミックス等の絶縁性基板上 20 にスクリーン印刷法もしくは直接描画法などで導体ペー ストを塗布し焼成することで電極および配線を形成する 厚膜技術において、従来のAg/Pd 系導体ペーストに代わ り、抵抗・誘電率がともに低いため微細回路の配線が形 成可能な銅導体ペーストが用いられる傾向にあることは 周知の事実である。銅導体ペーストは銅粉末とガラスフ リットとをピヒクル中に分散させてなるものである。

【0003】ここに、銅粉末は焼成時に焼結することで **導体厚膜を形成するものであり、これまで導体ペースト** 用いられている。ガラスフリットはこの導体厚膜を基板 に接着させる作用があり、焼成時に溶融して銅粉末間か ら基板界面へ流動することで銅厚膜を基板に接合させて いる。すなわち、ガラスフリットが基板上に突起状に固 着することで銅厚膜と機械的な噛み合わせによるアンカ 一結合をしているのである。ヒヒクルは銅粉末とガラス フリットをペースト化して印刷可能にするための有機液 体媒体であり、樹脂を溶剤に溶解したものであるため焼 成時に揮発・燃焼して焼失する。

[0004]

【発明が解決しようとする課題】前述したように銅導体 ペーストの特徴は銅の優れた電気的特性から例えば線間 距離75μα という微細回路の形成が可能であることであ るが、得られる銅厚膜導体と基板との接着強度が充分で ないためにマウント工程でのチップの取り付け歩留りが 低く実用化には至っていない。すなわち、微細回路を形 成するにはチップをはんだ付けする銅導体のバッド部も 小さくする必要があるのであるが、パッド部の面積が減 少すると基板との接着力もそれだけ低下するのでマウン

事態が起こり易くなってしまいチップの取り付け歩留り が低下するのである。

【0005】したがって、銅厚膜導体による微細回路形 成時におけるマウント工程でのチップの取り付け歩留り の向上には単位面積当りの銅導体の基板に対する接着強 度を高くしなければならない。以上の点に鑑み、本発明 は基板に対する接着強度の高い銅厚膜導体が形成可能な 銅導体ペーストを提供することを目的とする。

[0006]

- 【課題を解決するための手段】前記目的を達成するた め、本発明者は鋭意研究の結果、チップのマウント工程 における歩留り低下原因を調べ、その際の銅厚膜の剝が れメカニズムについて次のような知見を得た。
 - (1) 銅導体ペーストを用いて基板上に形成された銅厚膜 は、基板上に固着したガラスフリットにより結合されて いる。つまり、基板からガラスの突起物が銅厚膜内に食 い込んだ構造になっており、銅厚膜はガラスにより基板 と機械的な噛み合わせによるアンカー接合をしている。
- 【0007】(2) 銅とガラスとでは熱膨張率が異なるの で、ガラスの突起は銅厚膜によりタイトに締め付けられ て、ガラス内には応力がかかっている。この結果、ガラ ス内にはクラックが発生・伝播しやすい状態になってい るためにかなり脆くなっている。このときに銅厚膜に垂 直上方の引張力が加わるとガラスは容易に破壊するので **銅厚膜が剥がれてしまう。**
 - (3) したがって、銅厚膜の基板に対する接着強度を改善 するには、ガラスに加わっている応力を緩和させること が有効である。
- 【0008】かくして、銅粉末の粒度分布を調整して、 用の銅粉末としては粒度0.3 μπから10μπ の銅粉末が 30 厚膜の結晶構造を制御することにより基板との接着強度 が向上することを見い出し、本発明を完成するに至っ た。
 - 【0009】なお、従来にあっても、基板に対する接着 強度を高めるため、2種類の粒度分布を持つ銅粉末を配 合した導体ペーストが提案されている(特開平1-1961 92号公報)。しかしながら、上記公報開示の方法では、 平均粒径1.2 μπ 以上である銅粉が30~60重量%と平均 粒径0.9 µm 以下である銅粉70~40重量%とを混合して 成るものであるが、実体的には平均粒径は高々3.4 μ回
 - 40 程度であって、しかも剥離強度(DuPont 法によるピール) 強度) も高々2.7 Kg/1mm² であって、本発明の目的を到 底満足することはなく、その他の特性においても微細回 路に使用するためには、充分な特性を有しているとはい えなかった。
- 【0010】また、特開昭60-70746 号公報には飼粒子 として10μm 以下の最大粒径および2 ~4 μm の平均粒 径を有するものを使用することが開示されているが、こ れは好適な焼結、有機媒質の完全な燃焼および好ましい スクリーン印刷性を得るためであり、特定粒度分布の銅 ト工程においてチップが基板からはがれてしまうという 50 粉を二種組み合わせて使用することと基板に対する接着

強度改善との相関については何らの認識もない。

【0011】ここに、本発明は、導電粒子としての銅粉 末を、ガラスフリットと共にビヒクル中に分散して成る 導体ペーストであって、該銅粉末が粒径0.3 μα 以上5 μπ未満の銅粉末が70重量%から90重量%と粒径5μπ 以上10 µm 以下の銅粉末が30重量%から10重量%とから なることを特徴とする銅導体ペーストである。本発明の 好適態様によれば、上記飼粉末100 重量部に対し2重量 部以下の金属酸化物が添加されてもよい。

[0012]

【作用】本発明の構成と作用をさらに具体的に説明す る。本発明にかかる銅導体ペーストを用いて基板上に形 成された銅厚膜は、基板上に固着したガラスフリットに より結合されている。つまり、基板からガラスの突起物 が銅厚膜内に食い込んだ構造になっており、銅厚膜はガ ラスにより基板と機械的な噛み合わせによるアンカー接 合をしているのである。しかしながら、すでに述べたよ うに、かかる形態の接合であるため、ガラス内には応力 がかかった状態となっている。そこで、本発明にあって はそのような応力を分散させるべく大径粒子と小径粒子 20 0 重量部に対して2重量%以下である。 との特定の組み合わせを採用するのである。

【0013】すなわち、本発明においては、銅粉末とし て粒径0.3 μα 以上5 μα 未満の銅粉末が70重量%から 90重量%および粒径 5 μm 以上10μm 以下の銅粉末が30. 重量%から10重量%となるから銅粉末を用いることによ り、銅厚膜内にポアを均一に分散させることによりガラ スに加わる応力が緩和されるので接着強度が改善される のである。粒径が0.3 μπ 未満の銅粉末は著しく焼結収 **縮するので厚膜内に大きなクラックが入ってしまい、他** 方、粒径が10μπを超える銅粉末は微細線の印刷ができ 30 ない欠点があるので、使用が制限される。

【0014】一方、粒径0.3 μm以上5μm未満の銅粉 末が90重量%を超え、あるいは粒径 5 μ 🛮 以上10 μ 🗈 以 下の銅粉末が10重量%未満の銅粉末配合では緻密に焼結 した厚膜になってしまうのでガラスに加わる応力が大き くなり上述の理由より接着強度は低下する。逆に、粒径 0.3 μπ 以上 5 μπ 未満の銅粉末が70重量%未満、もし くは粒径 5 μπ 以上10 μπ 以下の銅粉末が30重量%を超 える銅粉末配合では充分に焼結せずポアの存在率が多す ぎて導電抵抗が高い上にハンダ濡れ性も悪く、さらに、 銅厚膜上にハンダを濡らしてエージングした際にハンダ のSnが銅厚膜内のボアを通して拡散してCuーSn化合物を 形成するので接着強度が低下するので好ましくない。

【0015】本発明に用いられる銅粉末の粒子形状は特 に制限はないがスクリーン印刷性の点から球状に近いも のが好ましい。また、銅粉末の表面状態についても制限. はなく飼粉末の焼結を阻害しない程度に酸化していて も、あるいは保存中に酸化進行を防ぐために防錆処理を 施してあってもなんら差し支えない。

【0016】本発明では公知のガラスフリットが使用可 *50* 後の値(エージング強度)をそれぞれ測定した。

能である。たとえばPbO-B2O3-S1O2系ガラスに、亜鉛、 アルミニウム、カドミニウム等の金属を加えたガラス系 が使用可能である。なお、ガラスフリットの添加量が多 ければ接着強度は増大する傾向にあるが、過剰のガラス フリットの添加は銅厚膜のハンダに対する濡れ性を著し く低下させるので適量添加する。好ましくは飼粉末100 **重量部に対して2重量%から5重量%である。本発明に** 用いられるピヒクルとしては公知のピヒクルが使用可能 である。たとえば、アクリル樹脂もしくはセルロース樹 10 脂をテルビネオール等の溶剤に溶解させたものを使用す ればよい。

【0017】本発明にかかる銅導体ペーストにはエージ ングによる接着強度の低下を防ぐために金属酸化物を添 加してもよい。そのような目的で添加される代表的な金 **属酸化物としては、酸化銅が挙げられる。その他酸化亜** 鉛、酸化カドミニウムのようなものであってもよい。な お、金属酸化物の過剰量の添加は銅粉末の焼結を阻害 し、銅厚膜のハンダに対する濡れ性を著しく低下させる ので適量添加しなければならない。好ましくは飼粉末10

【0018】本発明の導体ペーストはアルミナ等の全て のセラミックス基板に適用可能である。本発明にかかる 飼導体ペーストの焼成温度は600 ℃から950 ℃であるこ とが好ましい。600 ℃未満では銅粉末が焼結せず、950 ℃を超えると銅粉末の焼結が進行し過ぎてポアが消滅し た緻密な厚膜になるからである。本発明の導体ペースト の焼成雰囲気は一般に行われている窒素雰囲気下で行う ことができる。

[0019]

【実施例】本発明を具体的に実施例により説明する。表 1の組成割合で調整した各導体ペーストを純度96%のア ルミナ基板上にスクリーン印刷機で適当なパターンに印 刷を行い、120 ℃で10分間乾燥した後、窒素雰囲気中 で、ベルト炉においてピーク 750℃×10分を含む1サイ クル70分の条件で焼成を行い膜厚20μmの銅厚膜導体を 得た。このようにして得られた各銅厚膜導体の導体特性 評価を行った。

【0020】まず、導電性については、導体特性値の測 定により評価した。具体的には4端子抵抗測定値および 40 銅厚膜の線幅・膜厚値よりシート抵抗値を求めた。接着 強度については、2㎜角の銅厚膜を230 ±3℃の温度に 維持した63%Sn-37%Pbハンダ槽に3±0.5 秒間浸漬し た後、その上に0.6 皿のスズメッキ導線をハンダゴテに てハンダ付けした。スズメッキ導線を被膜端部より1㎜ の位置で90度曲げて基板と垂直とし、基板を固定した状 盤で引張試験機により10cm/minの速度でスズメッキ導線 を引張り、スズメッキ導線が基板から剥がれたときの接 着強度を測定した。接着強度は、ハンダ付け直後の値 (初期強度)、および150 ℃で1000時間エージングした

【0021】次に、ハンダ濡れ性については、焼成部品 を230 ±3℃の温度に維持した63%Sn-37%Pbハンダ槽 に3±0.5 秒浸漬し、4㎜角の銅厚膜上に被着したハン ダの被覆率を目視で測

*まとめて示す。

[0022]

【表1】

則定した。	測定結果を同じく	(表1に*
		,

		7 2 9							比较例				
		. 1:	2	3	4	Б	6	7	8	1	2	3	4
10	前 粒径9.3±0~5±0 平均数径1.2±c	. 18	14	78	82	88	10	70	90	188	54	84	14
æ	京 - 数後 5μα~10μα 平均位後6.1μα	39	29	22	18	14	10	30	10 ·	34	•	Ж	•
	a"5279:p} Fb0-8:0:-\$10:系	3	. 3	,	3	. 1	- 3	3	3	3	3	3.	,
	數化解粉束	1	1	. 1	1	•	,	0	•	•	1	0	•
#	6,638 T2280-3-285,54-8	15	15	15	15	15	15	15	15	15	15	15	15'
	シート世代 (m0/ロ)	1.9-	1.8	1.8	1.4	1.3	1.2	1.3	1.1	2.3	1.1	1.9	1.0
*	转度	O	, o	0	0	O	0	0	0	×	0	0	0
(#	初知独庆(to/test)	4.1	4.5	4.8	4.7	4.3	4-2	4.0	4.2	3.2	3.3	3.1	3.1
*	1-5"29"强武 《均/4m²"》	2.1	3.2	3.3	2.3	3.1	3.2	2.0	2.3	2.6	2.5	1.9	2.0
Œ	罚 足	0	٥	0	n	O	n	က	0	*	×	×	×
PF	ハンダ素の性(米)	85	100	188	100	100	180	190	160	. 95	100	3.0	100
*	刊金	0	0	O	ဂ	ဂ	n	O	O	×	C	O	O
	ほ 会 評 傷	0	·a	0	0	0	0	O	0	×	×	×	ж

平電車 : 2. DmD/D 未満をO. それは上を× 扱物強度 : 物質強度4.0kg/km*以上をO. それ来摘を× ハンダ潜れ位 : MSI以上をO、それ未満を×

【0023】表1の結果からも分かるように、比較例 1、2のように銅粉末の組み合わせが本発明の範囲を外 れる場合には所期の特性は得られないことが分かる。特 に、比較例2は粒径5 μm 以下の銅粒子を使用してお り、これは前述の特開平1-196192号公報に開示された 導体ペーストに相当するものであって、接着強度が十分 でない。

[0024]

【発明の効果】本発明にかかる銅導体ベーストを用いて 形成した銅厚膜導体は基板との接着強度ならびに導電性 が高く、ハンダ濡れ性にもすぐれているので例えば75μ m という線間距離を持った微細回路の配線が可能とな り、産業上極めて有用である。

6

フロントページの続き

(51) Int. Cl. ⁵

識別記号 庁内整理番号 FI

技術表示箇所

H01L 23/12 H 0 5 K · 1/09

A 8727-4E