GPS Trajectory Analysis for Health Quality Insights

- **Marios Gravias**
- **Tilemachos Tragakis**

Koios Care

Empowering care with clinically meaningful insights from everyday devices, unobtrusively.

Little things about ourselves

Marios Gravias
Data Scientist/Analyst
Mathematics

Tilemachos Tragakis

Data Scientist/Analyst

Mechanical Engineering

Scope

Enabling combined measures of Lifespace and Environment to approximate Quality of Life.

Objectives

- Within Subject metrics modelling movement, social life and behavioral patterns across time.
- Fusion of external knowledge (e.g. socioeconomic) to model environmental factors of micro-macro scale.

Product development process

Data Transformation

Trackintel Library (7)

GPS data

Method: **DBSCAN Clustering**

Staypoints

Home location

Data exploration

Working on all user's coordinates data

Home - Duration

Homes are matched to the corresponding **Duration** in the area

Sleeping Hours

From 22:00 to 05:00 a person is mostly expected to be at home

Handling Errors

Functional even if the person stays away from home for 2 nights.

Dynamic Home Features

Change of House

Moving to a new home in the same City.

Vacations

Identifying a 3-day trip to the UK.

Duration

Tracking the first and last date of the "event".

Weighting Results

Based on main residency the number and duration of trips.

Example Output I of a User

		LifeSpace Metrics							
Home	Duration	Walking time (h)	Time away from home (h)	Avg Distance from home (km)	Area (km²)	Perimeter (km)			
Athens	2 months	1.5	9	2.2	6	22			
Paris	1 week	6	13.5	8	52	32			
Berlin	6 months	3	5	3.5	4	8			

Example Output II of a user

		Socioeconomic & Environmental features						
Home	Duration	Country's Quality of life index	Green area percentage	Type of Home Area	Retail & Shopping	Other Types of Places Visited		
Athens	2 months	116	5%	Urban	0.4			
Paris	1 week	123	12%	Urban	3.4			
Berlin	6 months	158	31%	Suburban	0.2			

Categorising types from Google Places API

Retail & Shopping

Professional & Public Services

■ Sports

Transportation & Travel

Country's Quality of Life Index

Reverse Geocoding API

Identifying country based on home location

Numbeo Platform

Web-Scraping data for every country

Extract Quality of Life factors per country

- Healthcare Index
- Pollution Index
- Climate Index
- etc.

- Maps Static [Google API]
 - Acquire **satellite images** of Home area
 - Automated adjustments based on latitude

- OpenCV [Machine Vision]
 - Extract percentage of **Green**, representing environmental features

- CLIP [NLP and Deep Learning for Image-Text Pairing]
 - Probabilistic classification of Area's Category
 - Urban, Suburban, Rural

⑤ OpenAI CLIP & OpenCV

500x500m² Satellite Image of the User's Home 1

Green Area Percentage

CLIP & OpenCV

500x500m² Satellite Image of the User's Home 2

Green Area Percentage

Moving Forward

Up-to-date data

Update existing metrics using additional **recent** datasets

Expand insights

Include alternative types of metrics to extract bonus insights

We are glad to set the foundations of Koios Care's goals! We look forward to following any further developments.

References

- 1. Trackintel: An open-source Python library for human mobility analysis. Computers, Environment and Urban Systems, Volume 101, 2023, 101938, ISSN 0198-9715. DOI: 10.1016/j.compenvurbsys.2023.101938.
- 2. Assessing Quality of Life Inequalities. A Geographical Approach. ISPRS International Journal of Geo-Information, 2020, 9(10), 600. DOI: 10.3390/ijgi9100600.
- 3. GPS Performance & Accuracy. GPS.gov.
- 4. Numbeo Quality of Life Indices Explained. Numbeo.com.
- 5. Predicting restriction of life-space mobility: a machine learning analysis of the IMIAS study. DOI: 10.1007/s40520-022-02227-4.
- Comparisons Between GPS-based and Self-reported Life-space Mobility in Older Adults. PMID: 37128363; PMCID: PMC10148377.
- 7. Measuring Life Space in Older Adults with Mild-to-Moderate Alzheimer's Disease Using Mobile Phone GPS. DOI: 10.1159/000355669.
- 8. Learning Transferable Visual Models From Natural Language Supervision. DOI: 9.48550/arXiv.2103.00020.
- 10. OpenCV. OpenCV.org.

Tilemachos Tragakis

Marios Gravias

