Bank of questions 20	025 Calculus
----------------------	--------------

2

1	Find the slope of the tangent to the curve of the function f where $f(x) =$
	$x^2 - x + 1$ at the point (-2, 7)

- Find the measure of the angle which the tangent to the curve $y = 2x^3 + 3x$ makes with the positive direction of X-axis at the point (-1, 0).
- Find the first derivative of the function $y = (3x^2 2x + 1)(x^4 5x^2 + 2)$ when x = 0

Find the slope of the tangent to the curve of the function $y = (2x + 5)(3x^2 - 1)$ at x = -1

5	Find the first derivative of :
	a) $y = (x^5 - 3x)(5x - 9)$
	b) $y = (x^2 + 5)(x^2 - 3)$
6	Find the slope of the tangent to the curve $y = x^2(5x - 1)$ at $x = 1$
7	Find the first derivative of the function $y = \frac{3x-2}{2x+3}$ when $x = 1$
8	Find the first derivative of the function $y = \frac{2x+3}{x-2}$ when $x = 3$
9	If $y = (x^3 + 3x^2 - 1)^7$ then, find $\frac{dy}{dx}$ at $x = 0$

If $y = z^3$, $z = 2x^2 - 3x + 1$ find $\frac{dy}{dx}$ at $x = 2$
If $y = z^2$, $z = x^2 + 1$, then find $\frac{dy}{dx}$ at $x = -1$
Find the first derivative of the function $y = sin4x$
Find the first derivative of the function $y = \cos (2x + 5)$
Find $y' = \tan (3x + 2)$

Find the first derivative of the function $y = 2\cos x - \tan 5x$
find y , $y = \cos 2x + \sin 5x$
If $y = Cosx.sinx$, find $\frac{dy}{dx}$ at $x = \frac{\pi}{4}$
¹⁸ Find the equation of the tangent to the curve
$y = x^2(5x - 1)$ at $x = 3$
Find the equation of the normal to the curve
$y = 2x^3 - 4x^2$ at the point (2,0) which lies on the curve

	
20	Find the equation of the normal to the curve $y = (2x + 5)(3x^2 - 1)$
	at $x = 0$.
21	Find: (a) $\int 5x \ dx$ (b) $\int (3x^2 - x + 1) \ dx$
22	Find: $\int (7x - 3)^8 dx$
23	Find
	$1. \int x(x+3) dx$
	2. $\int x^2 (4x+2) dx$
	3. $\int (x-4)(x+4) dx$
24	1. $\int \sin x \ dx = -$
	2. $\int cosx \ dx =$
	3. $\int sec^2x \ dx =$
25	Find the slope of the tangent to the curve of the function f where $f(x)=x^2-x+1$ at the point (-2 , 7)

26 Find 1. $\int (7\sin x - 2\cos x) dx$ 2. $\int (\sin 2x - 5\cos x) dx$ 3. $\int (\sin x + \sec^2 x) dx$ 4. $\int \sin (7x + 3) dx$ Prove that the tangent to the curve of the function $y=3x^2-5x$ at the point (1, -2) makes an angle of measure 450 with the positive direction of X-axis Find the slope of the tangent to the curve $y=x-\frac{2}{x}$ at x=128

29	Find the points on the curve $y=x^3-4x+2$ at which the slope of the tangent = -1
30	Find the points on the curve $y=2x^3-x+3$ at which the slope of the tangent = 5
31	Find the first derivative of the function $y=(3x^2-2x+1)(x^4-5x^2+2)$ when $x=0$
32	Find the points on the curve $y=(x^2+5)(x-1)$ at which the slope of the tangent is equal to - 2.
33	Find the first derivative of the function $y = \frac{5x+11}{x+2}$ when $x=0$
34	If $y=(x^3+3x^2-1)^7$ then, find $dy dx$ at $x=0$

35	If $y=z^2$, $z=2x^2-3x+1$ find $\frac{dy}{dx}$ at $x=2$
36	If $y=z^3+z$, $z=x^2-x$ then, find $\frac{dy}{dx}$ at $x=2$
37	Find the first derivative of the function $y=sin4x$
38	Find the first derivative of the function $y=\cos(2x+5)$
39	Find the first derivative of each of the following functions: 1. $y=tan2x$
	2. y=sin2x+sin3x
	3. $y=x\sin x-x^2$
	$4. y = \sin 2x + \cos 3x$
	5. $y=2x+sin2x$ at $x=0$ 6. $y=cos 2x+sin 5x$
	7. $y=tan (3x+2)$

40	Find the equation of the tangent to the curve y=2x ³ -4x ² +3 at the point (2,3) which lies on the curve.
41	Find the equation of the tangent to the curve y=x²(5x-1) at x=3
42	Find the equation of the normal to the curve $y=(2x+5)(3x^2-1)$ at $x=0$.
43	Find the equation of the normal to the curve y=x²(5x-1) at x=1

	Dynamics
1	A body moved 12m due east then 5m due north. Calculate the distance and the displacement covered.
2	If the position vector r of a moving particle is given as a function of time (t) in terms of the fundamental unit vectors by the relation $r(t)=(3t+2)i+(4t-1)j$ then, find the magnitude of the displacement vector after 5 seconds.
3	A cyclist covered a distance of 40km on a straight road with velocity 20 km/hr then, covered 15km in the opposite direction with velocity 15 km/hr. Find the average velocity vector for the whole trip.
4	A particle moved 10m from a certain point due east, then returned back to the same point. Calculate the covered distance and the displacement.

\ s	A body starts its motion in a constant direction with velocity 12m/sec and uniform acceleration 7 m/sec2 in the same direction of motion. Find the velocity of the body after 10 seconds from the starting motion.
	A body moves in a straight line, changed its velocity from 72km/hr to 12m/sec in10 seconds. Find the acceleration. can this body stop its motion?
ι	A particle moves with an initial velocity 50 cm/sec and a uniform acceleration 8cm/sec2. Find the covered distance after 10 seconds from the starting point of its motion.
r	The velocity of a car is 25m/sec decreased at a constant rate till the car stopped after 10seconds. Calculate the acceleration of motion and the distance covered before coming to rest.

9	A particle moves with an initial velocity 18km/hr and a uniform acceleration. After covering a distance of 300m its velocity becomes 126km/hr. Find: a) The acceleration of motion. b) The time needed to cover the distance. c) The distance covered during the first 5 seconds

10	A body fell from a window. Calculate its velocity after one minute.
11	A body is projected upward with velocity 49 m/sec. Calculate the time needed to reach maximum height.
12	A body is projected upward with velocity 24.5 m/sec. Calculate the maximum height.
13	A body fell from the top of a tower 122.5 m high. Calculate the time to reach the ground.
14	A body is projected upward with a velocity of 28 m/sec. Calculate the time needed to return to projection point.

15	A body is projected upward with a velocity of 28 m/sec. Calculate the maximum height.
16	A body fell from the top of a tower 122.5 m high. Calculate the velocity of reaching the ground.

19	The velocity of a particle increased uniformly from 10 m/sec to 20m/sec After covering a distance of 150 m, find the time needed?
20	Calculate the distance covered by a body moving in a constant direction from rest with a uniform acceleration 5 m /sec ² for 4 seconds.
21	A body projected upward with velocity 49m/sec Calculate the time needed to reach the maximum height.
22	From a point 490m high, a body fell to the ground, find: (a)The time needed to reach the ground. (b) the velocity after 5 seconds from the start.
23	A body is projected upward with velocity 28 m /sec, calculate the maximum height.

24	A car moves with a velocity of 44m/sec then decreased its velocity at a constant rate till it became 22m/sec in 11seconds. Calculate the covered distance during this time.
25	A car moves with a velocity of 44m/sec then decreased its velocity at a constant rate till it became 22m/sec in 11seconds. Calculate the covered distance during this time.
26	Calculate the gravitational force between the Sun and Jupiter assuming that the mass of the Sun is $2x10^{30}$ kg and that of Jupiter is $1.89x10^{27}$ kg and the distance between their centers is $7.73x10^{11}$ m. (G=6.67x10 ⁻¹¹)

A body moved 8 m due east then 6 m due north
Then the distance = m.
The displacement = m.
A body moves in a straight line, changed its velocity from 72km/hr
to 12m/sec in10 seconds. Find the acceleration.
Can this body stop its motion?
A particle moves with an initial velocity 50 cm/sec and a uniform
acceleration 8cm/sec2 Find the covered distance after 10 seconds
from the starting point of its motion.
A particle moves with an initial velocity 18km/hr and a uniform
acceleration. After covering a distance of 300m its velocity becomes 126km/hr. Find:
a) The acceleration of motion.
b) The time needed to cover the distance.
c) The distance covered during the first 5 seconds.

31	A body is projected upward with velocity 49 m/sec. Calculate the time needed to reach maximum height.
32	A body is projected upward with velocity 24.5 m/sec. Calculate the maximum height.
33	From the top of a tower 80.5 m high a body was projected upward with velocity 8.4 m/sec. Find: a) The maximum height. b) Time to reach max. height.

test

FIRST QUESTION:

- 1. Find the measure of the angle which the tangent to the curve $y=2x^3+3x$ makes with the positive direction of X-axis at the point (-1,0).
- 2. Find the slope of the tangent to the curve of the function

$$y = x^2(5x - 1)$$
 at $x = 1$.

SECOND QUESTION:

- 1. Find the first derivative of the function $y = \frac{2x+3}{x-2}$ when x = 3
- 2. If y = z + 2, $z = x^2 + 2x$ then, find $\frac{dy}{dx}$ at x = 2

THIRD QUESTION:

- 1. Find the first derivative of the function $y = x \sin x x^2$
- 2. Find the equation of the tangent to the curve

 $y = 2x^3 - 4x^2 + 3$ at the point (2,3) which lies on the curve.

FOURTH QUESTION:

Find

1.
$$\int x^2 (4x + 2) dx$$

2. $\int \cos (5 - 2x) dx$

$$2. \int \cos (5-2x) dx$$