Asymptotické vlastnosti statistické rigidity v částicových systémech s balanční vlastností

Daniel Wohlrath

Katedra matematiky Fakulta jaderná a fyzikálně inženýrská ČVUT v Praze

Vedoucí práce: Doc. Mgr. Milan Krbálek, Ph.D.

Obsah prezentace

- Motivace a matematický model
- Třída balancovaných hustot
- Zpracování dat a regresní analýza
- Shrnutí výsledků

Motivace a matematický model

- Vehicle Headway Modeling
- Částicový systém
- Asymptotika balancovaných částicových systémů

Obrázek: Dálnice v Aucklandu, Nový Zéland

Obrázek: Uvažovaný matematický model [1]

Třída balancovaných hustot

- $g: \mathbb{R} \to \mathbb{R}$ má balanční chvost právě tehdy, když $\exists \omega \in \mathbb{R}^+$:
 - $\forall \alpha > \omega : \lim_{x \to \infty} g(x)e^{\alpha x} = +\infty$
 - $\forall \alpha < \omega : \lim_{x \to \infty} g(x)e^{\alpha x} = 0$
- Nutné a postačující podmínky:
 - $\lim_{x \to \infty} \frac{\ln (g(x))}{x} + \omega = 0$
 - $g(x) = f(x)e^{-\omega x}$, kde f má balanční index 0

Balancovaný částicový systém

•
$$f_{GIG}(x; a, b, p) = \Theta(x) \frac{\left(\frac{a}{b}\right)^{p/2}}{2K_p(\sqrt{ab})} x^{p-1} \exp\left(-\frac{ax + \frac{b}{x}}{2}\right)$$

Obrázek: Ukázka statistické rigidity pro Gamma BČS

Obrázek: Ukázka trendové funkce pro GIG BČS

Zpracování dat

- Delft University of Technology
- ullet Naměřené veličiny v i-tém vzorku: $S_i = \left\{ (au_k^{(in)}, au_k^{(out)}, au_k, extstyle{l}_k)
 ight\}$

•
$$I = \frac{M}{\tau_M^{(out)} - \tau_1^{(in)}}, \quad V = \frac{\sum_{k=1}^M v_k}{M}, \quad \rho = \frac{I}{V}$$

Reálná data

Obrázek: VD diagram pro předjížděcí pruh

Obrázek: ID diagram pro předjížděcí pruh

Reálná data

Obrázek: FD pro předjížděcí pruh

Obrázek: FD pro hlavní pruh

Unifikační procedura

- Časová světlost $z_k = au_k^{in} au_{k-1}^{out}$
- Škálovaný tvar $y_k := \frac{z_k \cdot (M-1)}{\sum_k z_k} = \frac{z_k}{\langle Z_i \rangle}$

Obrázek: Rozdělení FD na segmenty

Analýza v segmentech

Segment	SSE	R-square	RMSE
$\overline{\Psi_2}$	0.004	0.9993	0.0336

Tabulka: Tabulka statistik vyjadřující dobrou shodu dat s příslušným lineárním modelem

Obrázek: Histogram škálovaných světlostí v segmentu

Shrnutí

- Ucelené zavedení částicového systému
- Podrobná analýza třídy balancovaných hustot
- Asymptotika BČS
- Ověření balančního chvostu v reálných datech

Děkuji za pozornost!

• zdroje: [1] M. Kovanda, FJFI ČVUT.

