Übungsblatt 2: Ideale, Faktorraüme; Körper und Integritätsringe

In den folgenden Übungen sind alle Ringe kommutativ mit Eins.

Übung 2.1. (wird benotet, auf 5 Punkten)

Für welche Zahlen n ist das Ideal $I_n = (n, X^2 + 1, 6X^3)$ im Polynomring $\mathbb{Z}[X]$ ein maximales Ideal, bzw. ein Primideal?

Übung 2.2. Sei k ein Körper. Beweisen Sie, dass die Charakterisk von k entweder Null oder eine Primzahl ist.

Übung 2.3. Sei $R \neq \{0\}$ ein Boolescher Ring, d.h. für jedes $x \in R$ gilt die Gleichung $x^2 = x$.

- 1) Prüfen Sie, dass R Charakterisk 2 hat.
- 2) (nach dem Video zum Thema Faktorräume zu lösen) Beweisen Sie, dass jedes Primideal $\mathfrak{p} \subset R$ maximal ist, und dass R/\mathfrak{p} dem Körper $\mathbb{Z}/2\mathbb{Z}$ isomorph ist.
- 3) Beweisen Sie, dass jedes endlich erzeugte Ideal von R ein Hauptideal ist.

Übung 2.4. Bestimmen Sie alle Einheiten des Ringes $\mathbb{Z}[i]$, wobei $i = \sqrt{-1} \in \mathbb{C}$.

Übung 2.5. (keine Hausaufgabe, wird mit der Übungsleiterin besprochen) Sei R ein Ring, \mathfrak{m} ein maximales Ideal in R. Für $i \in \mathbb{Z}_{>0}$ wird die Abbildung von \mathfrak{m}^i in den Faktorraum R/\mathfrak{m}^{i+1} als $\mathfrak{m}^i/\mathfrak{m}^{i+1}$ bezeichnet.

- 1) Beweisen Sie, dass das Ideal $V_i := \mathfrak{m}^i/\mathfrak{m}^{i+1}$ ein k-Vektorraum ist, wobei k der Körper R/\mathfrak{m} ist.
- 2) Nehmen Sie zusätzlich an, dass \mathfrak{m} ein Hauptideal von R ist. Beweisen Sie dann, dass die Dimension des k-Vektorraums V_i nicht so groß wie 1 ist.
- 3) Verallgemeinern Sie 2) in dem Fall, wenn m kein Hauptideal, sondern ein endlich erzeugtes Ideal ist.

Übung 2.6. (Anwendungsübung zum Thema Faktorräume) Sei R ein Ring und sei R[X] der entsprechende Polynomring. Beweisen Sie, dass der Faktorraum R[X]/(X) dem Ring R isomorph ist.