Propagation of an Earth-Directed CME Front in Three-Dimensions

J. P. Byrne, S. A. Maloney, R. T. J. McAteer & P. T. Gallagher

Astrophysics Research Group, School of Physics, Trinity College Dublin.

Funded by SFI's Research Frontiers Programme

Overview

1) CME Theory

- Dynamics morphology POS
- CME models & analysis

2) The STEREO Mission

- Tie-pointing
- Forward modeling
- Multiscale edges + ellipse fits

3) Results

- Reconstruction: 12-Dec-2008
- Kinematics & morphology
- Drag model
- Arrival time (ACE)
- 3D visualization

STEREO illustration

CME Dynamics

Equation of motion:

$$\sum F = F_B + F_P + F_G + F_D$$

$$\rho \frac{\overrightarrow{Dv}}{Dt} = \overrightarrow{j} \times \overrightarrow{B} - \nabla P - \rho \overrightarrow{g} - \frac{1}{2} \rho \overrightarrow{v}^2$$

SOHO

Limb CME

partial halo CME angular span >1200

full halo CME 3600

1) 3D Flux Rope (Krall & Chen)

2) Cylindrical Model(Cremades & Bothmer)

3) CME Flattening (Russell & Milligan)

Near the Sun the CME has a circular cross section but the spreading of the solar wind flow lines stretches the ICME.

4) Polarization Analysis ^A (Moran & Davilla)

"The line-of-sight averaged distances from the plane of the sky are computed from measurements of the ratio of polarized-to-unpolarized brightness"

The STEREO Mission

- Launched Oct. 2006
- Separation ± 22°/yr.
- SECCHI
 - EUVI
 - COR1/2
 - HI1 / 2

Two of STEREO's scientific objectives:

"Understand the causes and mechanisms of CME initiation."

"Characterize the propagation of CMEs through the Heliosphere."

1) Tie-pointing techniques

Liewer et al., 2009

Srivastava, 2009

Temmer et al., 2009

Mierla et al., 2008

COR2 - SC B at -20° COR2 - SC A at +20°

2) Forward-modeling techniques

Thernisien et al., 2009

Boursier et al., 2009

Antunes et al., 2009

- COR2 (STEREO-A)
- FOV 2-15 R_{Sun}
- Multiscale edge detection
- Ellipse fit
- Plane-of-sky
 - Velocity
 - Acceleration
 - Expansion

(Byrne et al, A&A 2009)

- COR2 (STEREO-A)
- FOV 2-15 R_{Sun}
- Multiscale edge detection
- Ellipse fit
- Plane-of-sky
 - Velocity
 - Acceleration
 - Expansion

(Byrne et al, A&A 2009)

Theorem:

Let T_1 , T_2 , T_3 , T_4 be four given lines in the plane, such that no three of the T_j are parallel or have a common intersection point. Then there is an ellipse E which is tangent to each of the T_j .

(Horwitz, 1999)

Heliospheric Imager (HI-1)

Bulk speed [km s⁻¹]

Density [cm⁻³]

Ion temperature [K]

B-field components (normalised)

B-field magnitude [nT]

Bulk speed [km s⁻¹]

Density [cm⁻³]

Ion temperature [K]

B-field components (normalised)

B-field magnitude [nT]

3D Visualization

Conclusions

"True" properties of CMEs:

- 1. Kinematics correcting for projection effects.
- 2. Morphology 3D structure, expansion, deflection.
- 3. Space weather forecast arrival times.
- 4. 3D visualization suite.

⇒ Satisfying some of the main objectives of STEREO.