# Campagne d'étalonnage des thermocouples et des capteurs de pression du banc expérimental "ébullition convective" 2024



# Sommaire

| 1 Le banc d'essai                                                | 3  |
|------------------------------------------------------------------|----|
| 2 Les thermocouples                                              | 5  |
| 2.1 Liste du matériel                                            |    |
| 2.2 Protocole d'étalonnage                                       | 6  |
| 2.2.1 Méthodologie d'étalonnage                                  | 6  |
| 2.2.2 Application du protocole d'étalonnage au banc d'essai      | 7  |
| 2.2.2.a Formalisation mathématique de la mesure                  | 7  |
| 2.3 Résulats                                                     | 8  |
| 3 Les capteurs de pression                                       | 9  |
| 3.1 Liste du matériel                                            |    |
| 3.2 Protocole expérimental                                       |    |
| 3.3 Résulats                                                     | 9  |
| 4 Autres matériels                                               | 9  |
| 4.1 Liste du matériel                                            |    |
| Annexe                                                           | 10 |
| Annexe A : Fonctions de conversion pour thermocouple de type K¹  | 10 |
| Annexe B : Fonctions de conversion pour sonde PT100 <sup>2</sup> |    |

¹Source : NIST.gov ²Source : Keithley 27XX User Manual

#### 1 Le banc d'essai

Le schéma de principe du banc d'essai est donné en Figure 1. La section de test est quant à elle détaillée en Figure 2. Elle comprend : Le pré-chauffeur³, l'évaporateur, le tube de visualisation, ainsi que les appareils de mesures (thermocouples, transmetteurs de pression, caméra à image rapide). Les indices utilisés pour identifier ces derniers servent de référence tout au long du document. Tout autre document technique rédigé dans le cadre de ma thèse y fera référence. On distingue :

- $A_i$ : Auxiliary (Thermocouples)
- $T_i$ : Test section (Thermocouples)
- $\mathrm{TP}_i$ : Test section (Pressure sensors)
- $O_i$ : Others



Figure 1: Schéma de principe du banc d'essai "Ebullition Convective"

<sup>&</sup>lt;sup>3</sup>Dénomminé preheater dans ce document



Figure 2: Schéma de principe de la section d'essai (Auteur : Daniel Marchetto, modifié)

Ce document a plusieurs objectifs :

- 1. Identifier clairement l'instrumentation du banc,
- 2. Définir une méthodologie pour étalonner les capteurs :
  - Par soucis de répétabilité,
  - Par soucis de traçabilité des évolutions du banc.
- 3. Afin de sauvegarder les résultats obtenus.

# 2 Les thermocouples

## 2.1 Liste du matériel

Tableau 1: Inventaire des thermocouples (type K)

| Indice | Canal <sup>4</sup> | Référence         | Localisation        | Immergé     | Calibré     |
|--------|--------------------|-------------------|---------------------|-------------|-------------|
| A1     | 202                | K405 (Prosensor®) | Preheater inlet     | $\boxtimes$ | $\boxtimes$ |
| A2     | 234                | Homemade (Omega®) | Preheater inlet     |             | $\boxtimes$ |
| T1     | 219                | Homemade (Omega®) | Preheater surface 1 |             |             |
| T2     | 208                | Homemade (Omega®) | Preheater surface 2 |             |             |
| Т3     | 220                | Homemade (Omega®) | Preheater surface 3 |             |             |
| T4     | 218                | Homemade (Omega®) | Preheater surface 4 |             |             |
| T5     | 212                | K405 (Prosensor®) | Preheater outlet    | $\boxtimes$ |             |
| T6     | 216, 237, 238      | Homemade (Omega®) | Evaporator inlet    |             | ×           |
| T7     | 225                | K405 (Prosensor®) | Evaporator inlet    | $\boxtimes$ | $\boxtimes$ |
| Т8     | 212                | Homemade (Omega®) | Tube wall 1 top     |             | $\boxtimes$ |
| Т9     | 239                | Homemade (Omega®) | Tube wall 1 middle  |             | $\boxtimes$ |
| T10    | 223                | Homemade (Omega®) | Tube wall 1 bottom  |             | $\boxtimes$ |
| T11    | 209                | Homemade (Omega®) | Tube wall 2 top     |             | $\boxtimes$ |
| T12    | 224                | Homemade (Omega®) | Tube wall 2 middle  |             | $\boxtimes$ |
| T13    | 233                | Homemade (Omega®) | Tube wall 2 bottom  |             | $\boxtimes$ |
| T14    | 203                | Homemade (Omega®) | Tube wall 3 top     |             | $\boxtimes$ |
| T15    | 228                | Homemade (Omega®) | Tube wall 3 middle  |             | $\boxtimes$ |
| T16    | 235                | Homemade (Omega®) | Tube wall 3 bottom  |             | ×           |
| T17    | 217                | Homemade (Omega®) | CHF⁵ top            |             | $\boxtimes$ |
| T18    | 222                | Homemade (Omega®) | CHF bottom          |             | $\boxtimes$ |
| T19.1  | 207, 226, 232      | Homemade (Omega®) | Evaporator outlet   |             | $\boxtimes$ |
| T19.2  | 230                | K405 (Prosensor®) | Evaporator outlet   | $\boxtimes$ | ×           |
| A3     | 240                | Homemade (Omega®) | Pump inlet          |             |             |
| A4     | 206                | Homemade (Omega®) | Tank up             |             |             |
| A5     | 205                | Homemade (Omega®) | Tank Down           |             |             |
| O1     | 204                | Homemade (Omega®) | Ambient             |             | $\boxtimes$ |
| O2.1   | 201                | PT100             | Cold junction       |             |             |
| O2.2   | 211                | PT100             | Cold junction       |             |             |
| O2.3   | 221                | PT100             | Cold junction       |             |             |
| O2.3   | 231                | PT100             | Cold junction       |             |             |

Les capteurs surlignés en bleu sont situés dans la section test du banc Les indices du type  $X_{i,j}$  font référence à un des capteurs j qui réalisent une mesure au même point matériel i.

⁴Fait références aux canaux du Keithley

⁵Critical Heat Flux

#### 2.2 Protocole d'étalonnage

Le protocole d'étalonnage proposé répond aux normes et documents techniques en vigueur telles que :

- l'ISO 17025,
- Le guide technique COFRAC d'accréditation en température (LAB GTA08).

Cette liste est non exhaustive.

L'objectif de l'étalonnage est de proposer pour chaque thermocouple une loi de correction permettant de réduire au maximum l'incertitude sur la mesure. Cette incertitude peut être déterminée :

- A partir des incertitudes aléatoires (type A),
- A partir des incertitudes induites par l'instrumentation, la nature de la mesure et la propagation d'incertitude (type B),
- A partir de la méthode de Monte Carlo.

La Figure 3 propose une schématisation de la chaîne d'acquisition du banc.



Figure 3: Schéma de la chaîne d'étalonnage

La mesure de la température  $T_c$  à l'aide d'un thermocouple est indirecte. Le fonctionnement de ce type de thermomètre n'est pas détaillé, le lecteur pourra se référer à Citer un article d'explication du fonctionnement des thermocouples la littérature. Elle provient de la mesure de deux tensions  $U_{\rm PT100}$  et  $U_{\rm ref}$  puis d'un traitement mathématique en 3 étapes via deux tables de polynômes. Ces opérations sont briévement décrites dans l'encart de la figure. On détaille la méthodologie ci-après.

#### 2.2.1 Méthodologie d'étalonnage

Soit Y la mesurande, y son estimation et u(y) l'écart-type de la mesure. Les étapes de l'étalonnage des thermocouples sont listées ci-dessous :

0. Au choix une méthode de calcul d'incertitude :

<sup>&</sup>lt;sup>6</sup>Vérifier si c'est pas trois vu que polynôme non inversible, le citer

1. Calcul de l'incertitude de type A :

$$u(\bar{y}) = s(\bar{y}) = \sqrt{\frac{1}{n \cdot (n-1)} \cdot \sum_{i=1}^{n} (y_i - \bar{y})^2} = \frac{s(y)}{\sqrt{n}}$$
 (1)

Cette incertitude peut être étendue pour obtenir un intervalle d'incertitude (à 95% par exemple). Notamment, la loi Student peut être utilisée (Se réféfer à la méthode GUM). Elle est utilisée lorsque les mesures sont directes et nombreuses (Environ  $n > 30^{7}$ ).

2. Calcul de l'incertitude de type B :

Dans le cas où la mesure ne peut être réalisée de nombreuses fois et/ou qu'elle est indirecte, l'incertitude de type B est déterminée :

- 2.1. Formalisation mathématique de la mesure  $y=f(x_1,x_2,[...],x_n)$  avec  $x_{i\in[1;n]}$  une mesure directe. On se ramene donc à un problème fonction des mesurandes "fondamentales" de la mesure.
- 2.1.1. Détermination de la distribution des incertitudes (normale, uniforme/rectangulaire, étalée).
  - 2.1.2. Recensement des incertitudes des appareils de mesure et des tables polynomiales utilisées.
  - 2.1.3. Propagation de l'incertitude :

$$u(y)^{2} = \sum_{i=1}^{n} \left( u(x_{i})^{2} \cdot \left( \frac{\partial f}{\partial x_{i}} \right)^{2} \right) + 2 \cdot \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \left( u(x_{i}, x_{j}) \cdot \left( \frac{\partial f}{\partial x_{i}} \right) \cdot \left( \frac{\partial f}{\partial x_{j}} \right) \right)$$
(2)

- 3. Calcul de l'incertitude par la méthode de Monte-Carlo (solution de référence)
  - 3.1. Reprendre les étapes 2.1.1 et 2.1.2
  - 3.2. Potasser le gros de la doc de UDMT

#### 2.2.2 Application du protocole d'étalonnage au banc d'essai

La détermination d'incertitude par Monte-Carlo a été choisi pour l'étalonnage des thermocouples. Ce choix s'explique par la nature indirecte de la mesure malgré le nombre élevé de mesures.

#### 2.2.2.a Formalisation mathématique de la mesure

Soit TC' la mesure de la température chaude TC.

En se référant à la Figure 3, exprimons TC en fonction des mesures directes réalisées sur le banc (en gras dans l'image) :

$$\begin{split} &U_{\rm tot} = U_{\rm correction} + \boldsymbol{U}_{\rm thermocouple} \\ \Rightarrow &U_{\rm tot} = P_{\rm K,E} (T_0{\,}' - T_{\rm ref}) + \boldsymbol{U}_{\rm thermocouple} \end{split}$$

Avec:

- $P_{K,E}$  le polynôme de conversion Fem Température des thermocouples type K (Voire l'équation 3 en annexe A),
- $T_0{}^\prime$  la mesure de la température de référence de la bôite de jonction,
- $T_{\rm ref}$  la température de référence du multimètre (Keithley 27XX).

<sup>&</sup>lt;sup>7</sup>Citer les travaux de JLBK

La température de la soudure froide,  $T_0{}'$ , est lue à partir de la sonde PT100 de la boîte de jonction. Elle est également une mesure indirecte, la mesure intermédiaire étant la résistance électrique de la sonde (fonction de la température, voir équation 5 de Callendar-Van Dusen).

#### Egalement, des tables existent

On estime la température en évaluant la tension "totale" obtenue par le polynôme de équation 4.

$$T_{c}{'} = P_{\rm K,T} \big( P_{\rm K,E} (\boldsymbol{T_0} - T_{\rm ref}) + \boldsymbol{U_{\rm thermocouple}} \big)$$

#### 2.3 Résulats

# 3 Les capteurs de pression

## 3.1 Liste du matériel

Tableau 2: Liste des transmetteurs de pression

| Indice | Canal | Référence               | Localisation      | Type       | Plage de<br>fonctionnemer | Calibré<br>1t |
|--------|-------|-------------------------|-------------------|------------|---------------------------|---------------|
| TP1    | 118   | Keller PA23             | Evaporator inlet  | $P_{abs}$  | 0-30 bars                 |               |
| TP2    | 102   | Keller PD-23            | Evaporator        | $\Delta P$ | 0-5 bars                  |               |
| TP3    | 112   | Emmerson Rosemount 3051 | Evaporator        | $\Delta P$ | 0-2 bars                  |               |
| TP4    | 114   | Emmerson Rosemount 3051 | Evaporator        | $\Delta P$ | 0-50 mbars                |               |
| TP5    | 113   | Keller PA23             | Evaporator outlet | $P_{abs}$  | 0-35 bars                 |               |
| AP1    | 120   | Keller PA23             | Pump inlet        | $P_{abs}$  | 0-35 bars                 |               |
| AP2    | 115   | Keller PA23             | Tank              | $P_{abs}$  | 0-35 bars                 |               |

Les transmetteurs de pression Keller admettent une limite maximale de température de  $100^{\circ}$ C, limitant l'utilisation du banc au-delà de cette valeur.

# 3.2 Protocole expérimental

#### 3.3 Résulats

# 4 Autres matériels

#### 4.1 Liste du matériel

Tableau 3: Liste du matériel auxillaire

| Indice | Canal | Référence                      | Localisation | Type f                         | Plage de<br>fonctionnement | Calibré     |
|--------|-------|--------------------------------|--------------|--------------------------------|----------------------------|-------------|
| TOX2   | 117   | N/A                            | Preheater    | U correction                   | N/A                        | $\boxtimes$ |
| OX1    | 109   | N/A                            | Preheater    | U<br>correction                | N/A                        | ×           |
| OX2    | 105   | Micromotion<br>1700<br>Emerson | Auxilliaire  | Coriolis<br>Mass flow<br>meter | 0 - 108 kg/h               | ×           |

## **Annexe**

# Annexe A : Fonctions de conversion pour thermocouple de type K<sup>8</sup>

<u>Equation Température [ $^{\circ}$ C]  $\rightarrow$  Fem [mV]:</u>

$$T \in [-270; 0]^{\circ}C : P_{K,E}(T) = \sum_{i=0}^{n} (c_{i}.T^{i})$$

$$T \in [0; 1372]^{\circ}C : P_{K,E(T)} = \sum_{i=0}^{n} (c_{i}.T^{i}) + a_{0}.\exp(a_{1}.(T - a_{2})^{2})$$

$$(3)$$

Tableau 4: Tableau des coefficients du polynôme T  $\rightarrow$  Fem

| Coefficients | [-270;0]°C          | [0; 1372] °C        |
|--------------|---------------------|---------------------|
| $c_0$        | 0.00000000000E-0    | -0.176004136860E-1  |
| $c_1$        | 0.394501280250E-01  | 0.389212049750E-01  |
| $c_2$        | 0.236223735980E-04  | 0.185587700320E-04  |
| $c_3$        | -0.328589067840E-06 | -0.994575928740E-07 |
| $c_4$        | -0.499048287770E-08 | 0.318409457190E-09  |
| $c_5$        | -0.675090591730E-10 | -0.560728448890E-12 |
| $c_6$        | -0.574103274280E-12 | 0.560750590590E-15  |
| $c_7$        | -0.310888728940E-14 | -0.320207200030E-18 |
| $c_8$        | -0.104516093650E-16 | 0.971511471520E-22  |
| $c_9$        | -0.198892668780E-19 | -0.121047212750E-25 |
| $c_{10}$     | -0.163226974860E-22 |                     |
| $a_0$        |                     | 0.118597600000E+00  |
| $a_1$        |                     | -0.118343200000E-03 |
| $a_2$        |                     | -0.118343200000E-03 |

 $<sup>{}^8</sup>Source:NIST.gov$ 

$$P_{\mathrm{K,T}}(E) = \sum_{i=0}^{n} (d_i.E^i) \tag{4}$$

Tableau 5: Tableau des coefficients du polynôme inversé Fem  $\rightarrow$  T

| Coefficients | [-5.891; 0] mV<br>[-200; 0] °C | [0; 20.644] mV<br>[0; 500] °C | [20.644; 54.886] mV<br>[500; 1372] °C |
|--------------|--------------------------------|-------------------------------|---------------------------------------|
| $d_0$        | 0.0000000E+00                  | 0.000000E+00                  | -1.318058E+02                         |
| $d_1$        | 2.5173462E+01                  | 2.508355E+01                  | 4.830222E+01                          |
| $d_2$        | -1.1662878E+00                 | 7.860106E-02                  | -1.646031E+00                         |
| $d_3$        | -1.0833638E+00                 | -2.503131E-01                 | 5.464731E-02                          |
| $d_4$        | -8.9773540E-01                 | 8.315270E-02                  | -9.650715E-04                         |
| $d_5$        | -3.7342377E-01                 | -1.228034E-02                 | 8.802193E-06                          |
| $d_6$        | -8.6632643E-02                 | 9.804036E-04                  | -3.110810E-08                         |
| $d_7$        | -1.0450598E-02                 | -4.413030E-05                 |                                       |
| $d_8$        | -5.1920577E-04                 | 1.057734E-06                  |                                       |
| $d_9$        |                                | -1.052755E-08                 |                                       |
| Erreur [°C]  | [-0.02; 0.04]                  | [-0.05; 0.04]                 | [-0.05; 0.06]                         |

# Annexe B: Fonctions de conversion pour sonde PT1009

<u>Callendar-Van Dusen équations Température [ $^{\circ}$ C]  $\rightarrow$  Résistance [Ohm] :</u>

$$T \in [-200; 0] \circ C : R(T) = R_0 \cdot (1 + A \cdot T + B \cdot T^2 + C \cdot T^3 \cdot (T - 100))$$

$$T \in [0; 630] \circ C : R(T) = R_0 \cdot (1 + A \cdot T + B \cdot T^2)$$
(5)

Avec  $A,B,C\in\mathbb{R}$  définies comme suit:

- $A = \alpha \cdot \left(1 + \left(\frac{\delta}{100}\right)\right)$   $B = -\alpha \cdot \delta \cdot (1e 4)$
- $C = -\alpha . \beta . (1e 8)$

Tableau 6: Tableau des coefficients du polynôme  $T \rightarrow Fem$ 

| Type         | Standard                | Référence                                  | $lpha \ [^{\circ}C]$ | $eta \left[ {^{\circ}C^{-2}}  ight]$ | $\delta \ [^{\circ}C^{-4}]$ | $\Omega$ à $0^{\circ}C$ [Ohm] |
|--------------|-------------------------|--------------------------------------------|----------------------|--------------------------------------|-----------------------------|-------------------------------|
| PT100 ITS-90 | ITC 00                  | Keithley 27XX<br>user manual <sup>10</sup> | 0.003850             | 0.10863                              | 1.49990                     | 100                           |
|              | Valeurs du<br>LabView¹¹ | 0.003850                                   | 0.111                | 1.507                                | 100                         |                               |
| Erreur [°C]  | 0.06                    |                                            |                      |                                      |                             |                               |

<sup>°</sup>Source : Keithley 27XX User Manual

<sup>&</sup>lt;sup>10</sup>Source : NIST

<sup>&</sup>lt;sup>11</sup>D'origine inconnue, elles étaient enregistrées tel quel dans la dernière version en la possession de l'auteur