Laboratório de Bases de Dados

Prof. José Fernando Rodrigues Júnior

Aula 5

Dicionário de dados e Desenvolvimento de Aplicações

- Informações (metadados) que descrevem os objetos do banco e sua estrutura
- Informações:
 - Usuários
 - Tabelas, colunas e seus tipos, restrições de integridade, índices, ...
 - Estatísticas sobre as tabelas e índices usadas pelo otimizador
 - Privilégios de uso dos objetos
 - Estruturas de armazenamento do banco

- SELECT * FROM DICT: todas as tabelas e visões que constituem o dicionário
- SELECT * FROM TAB: todas as tabelas pertencentes a um dado usuário
- SELECT * FROM COL: todas as colunas pertencentes a um dado usuário
- SELECT * FROM OBJ: todas os objetos pertencentes a um dado usuário
- SELECT * FROM USER_TAB_PRIVS: privilégios concedidos a outros usuários
- → O próprio SGBD Oracle realiza várias consultas a estes dados para resolver qualquer consulta de um dado usuário. Por exemplo, a consulta:

SELECT * FROM EMPREGADO WHERE SALARIO > 1000

- requer verificar: **(1)** se a tabela EMPREGADO existe; **(2)** se o usuário tem privilégio de uso desta tabela ou se é dono; **(3)** se a coluna SALARIO existe nesta tabela
- → Como estes dados são usados frequentemente, o SGBD faz cache destas informações mantendo-as na memória após o primeiro uso

- Existem mais de 500 tabelas e visões no nível externo do dicionário de dados, divididas em 3 grupos, USER_, ALL_, e DBA_:
 - USER_%: informações referentes apenas aos objetos pertencentes ao usuário que faz a consulta
 - USER_TABLES: dados completos de suas tabelas
 - USER_CATALOG: suas tabelas, visões, e sinônimos
 - USER_COL_COMMENTS: comentários sobre suas colunas
 - USER_TAB_COMMENTS: comentários sobre suas tabelas
 - USER_INDEXES: seus índices criados
 - USER_OBJECTS: seus objetos
 - USER_TAB_COLUMNS: suas colunas
 - USER_TRIGGERS: seus gatilhos
 - USER_VIEWS: suas visões
 - USER_USERS: informação sobre o próprio usuário
 - USER_CONSTRAINTS : constraints do usuário
 - USER_CONS_COLUMNS : colunas das constraints

- ALL_: informações referentes aos objetos pertencentes ao usuário que faz a consulta, e sobre os objetos para os quais tem privilégio de acesso
 - ALL_TABLES: dados completos de todas as tabelas
 - ALL_CATALOG: todas as tabelas, visões, e sinônimos
 - ALL_COL_COMMENTS: todos os comentários sobre as colunas
 - ALL_TAB_COMMENTS: todos os comentários sobre as tabelas
 - ALL INDEXES: todos os índices criados
 - ALL_OBJECTS: todos os objetos
 - ALL_TAB_COLUMNS: todas as colunas
 - ALL_TRIGGERS: todos os gatilhos
 - ALL_VIEWS: todas as visões
 - · ...

- DBA_: informações referentes a todos os objetos do banco, acessível apenas a usuários com privilégio de DBA
 - DBA_TABLES: dados completos de todas as tabelas do banco
 - DBA_CATALOG: todas as tabelas, visões, e sinônimos
 - DBA_COL_COMMENTS: todos os comentários sobre as colunas do banco
 - DBA_TAB_COMMENTS: todos os comentários sobre as tabelas do banco
 - DBA INDEXES: todos os índices criados no banco
 - DBA_OBJECTS: todos os objetos do banco
 - DBA_TAB_COLUMNS: todas as colunas do banco
 - DBA_TRIGGERS: todos os gatilhos do banco
 - DBA_VIEWS: todas as visões do banco
 - **...**

4

Dicionário de dados Oracle

Exemplo, dados de um objeto específico:

```
SELECT OBJECT_NAME, OBJECT_TYPE, CREATED, STATUS FROM OBJ

WHERE OBJECT_NAME = 'F08_CAMPEONATO'
```

4

Dicionário de dados Oracle

Exemplo, privilégios concedidos aos objetos de um usuário, não incluindo privilégios aos seus próprios objetos:

```
SELECT TABLE_NAME, GRANTEE, PRIVILEGE FROM USER TAB PRIVS
```


Desenvolvimento de aplicações

- A conexão com o Oracle se dá por meio de uma string de conexão
- Uma string de conexão é um parâmetro que indica de maneira estruturada, quais são os parâmetros necessários para se conectar a um banco de dados
- Para cada banco de dados, há uma string de conexão diferente cuja sintaxe varia de acordo com a linguagem de programação

C

Conectando-se ao Oracle

- Em PostgreSQL, por exemplo, a string é formada por: usuário, senha, host, porta, e nome do banco
- Em Oracle, a string de conexão é formada por: usuário, senha, host, porta, e nome do serviço (instância do banco). Exemplo em Java:

→ Mais exemplos em: http://www.connectionstrings.com/

Em Java, a conexão completa se dá da seguinte maneira:

A instância do objeto Connection passa a ser o canal de comunicação com o banco por meio da criação de instâncias de objetos Statement. Como no exemplo de seleção de dados:

Exemplo de inserção de dados:

```
PreparedStatement pstmt = connection.prepareStatement("INSERT INTO
    LE03ZONA VALUES(100, 50)";

try{
    pstmt.executeUpdate();
} catch (SQLException e) {
```

Exemplo completo em Tidia->Repositorio

- O Oracle armazena os metadados fornecidos por meio das instruções DDL usadas na definição dos objetos
- No entanto, as próprias instruções DDL não são armazenadas
- Estas instruções podem ser necessárias, caso:
 - deseje-se exportar o esquema;
 - as instruções DDL tenham sido perdidas;
 - as intruções DDL não tenham sido escritas, pois o esquema foi definido via interface gráfica.
- Ainda, pode ser necessário usar os dados em um modelo não relacional, como o XML

- Para este propósito o Oracle oferece o pacote de funções dbms_metadata, uma API que lê o dicionário de dados e reconstrói os comandos usados na definição do esquema
- O pacote permite a geração de comandos DDL e também a exportação do esquema segundo o modelo de dados semi-estruturado XML; seus principais comandos são:
 - GET_DDL
 - GET_XML
 - SET_TRANSFORM_PARAM: permite formatar a saída de dados

Sintax básica:

```
dbms_metadata.get_ddl(
    'tipo_objeto',
    'nome_objeto',
    'nome_esquema');
```

→ Os parâmetros são sensíveis ao caso!

Exemplo:

```
SELECT
dbms_metadata.get_ddl('TABLE','F08_CAMPEONATO','JUNIO')
FROM DUAL;
```

 A geração padrão inclui informações de segmentos e de armazenamento, nem sempre úteis; para uma saída de dados mais amigável, pode-se parametrizar o pacote dbms_metadata da seguinte maneira:

/*omitir metadados de armazenamento*/

nsform, 'SQLTERMINATOR', true);

```
EXEC
    dbms_metadata.set_transform_param(dbms_metadata.session_tra
    nsform,'STORAGE',false);

/*omitir metadados de segmentação*/

EXEC
    dbms_metadata.set_transform_param(dbms_metadata.session_tra
    nsform,'SEGMENT_ATTRIBUTES',false);

/*incluir ';' após cada chamada a get_ddl*/

EXEC
    dbms metadata.set transform param(dbms metadata.session tra
```

 A geração sempre úte pacote dbn

/*omitir me

Em Java, estes comandos podem ser executados com um preparedstament contendo o código "begin ... end;"

ento, nem netrizar o

on_tra

on tra

```
EXEC
    dbms_met
    nsform,'
/*omitir me
EXEC
    dbms_met
    nsform,'
```

/*incluir , apos cada chamada a get_dar

EXEC

dbms_metadata.set_transform_param(dbms_metadata.session_tra
nsform,'SQLTERMINATOR',true);

Comentários

 Recurso para armazenar informação documental sobre os objetos do banco

```
COMMENT ON object_type nome_objeto IS 'comentário';
```

→ Exemplo:

```
COMMENT ON TABLE F05_JOGADOR IS 'Lista de jogadores' COMMENT ON COLUMN F05_JOGADOR.CPFJ IS 'CPF do jogador'
```

→ Documentação do esquema no próprio banco SELECT * FROM USER_TAB_COMMENTS SELECT * FROM USER_COL_COMMENTS

Referências:

- http://www.mathcs.emory.edu/~cheung/Courses/377/Others/ tutorial.pdf
- http://docs.oracle.com/cd/B19306_01/appdev.102/b14258/d _metada.htm#BGBHHHBG
- http://www.optimaldba.com/papers/DBMS_METADATA_han dout.pdf

PRÁTICA 5