MODULE 1:

Introduction: Concept of Operating Systems, Generations of Operating systems, Types of Operating Systems, OS Services, System Calls, Structure of an OS-Layered, Monolithic, Microkernel Operating Systems, Concept of Virtual Machine, Case study on UNIX and WINDOWS Operating System.

MODULE 2:

Processes: Definition, Process Relationship, Different states of a Process, Process State transitions, Process Control Block (PCB), Context switching Thread: Definition, Various states, Benefits of threads, Types of threads, Concept of multithreads

Process Scheduling: Foundation and Scheduling objectives, Types of Schedulers, Scheduling criteria: CPU utilization, Throughput, Turnaround Time, Waiting Time, Response Time; Scheduling algorithms: Pre-emptive and Non pre-emptive, FCFS, SJF, RR; Multiprocessor scheduling: Real Time scheduling: RM and EDF, Process management in UNIX

MODULE 3:

Inter-process Communication: Critical Section, Race Conditions, Mutual Exclusion, Hardware Solution, Strict Alternation, Peterson's Solution, The Producer-Consumer Problem, Semaphores, Event Counters, Monitors, Message Passing, Classical IPC Problems: Reader's & Writer Problem, Dinning Philosopher Problem etc., System V IPC

MODULE 4:

Deadlocks: Definition, Necessary and sufficient conditions for Deadlock, Deadlock Prevention, Deadlock Avoidance: Banker's algorithm, Deadlock detection and Recovery.

MODULE 5:

Memory Management: Basic concept, Logical and Physical address map, Memory allocation: Contiguous Memory allocation – Fixed and variable partition—Internal and External fragmentation and Compaction; Paging: Principle of operation – Page allocation –Hardware support for paging, Protection and sharing, Disadvantages of paging.

Virtual Memory: Basics of Virtual Memory – Hardware and control structures –Locality of reference, Page fault, Working Set, Dirty page/Dirty bit – Demand paging, Page Replacement algorithms: Optimal, first in First Out (FIFO), Second Chance (SC), Not recently used (NRU) and Least Recently used (LRU), Memory Management in UNIX

MODULE 6:

I/O Hardware: I/O devices, Device controllers, Direct memory access Principles of I/O Software: Goals of Interrupt handlers, Device drivers, Device independent I/O software, Secondary-Storage Structure: Disk structure, Disk scheduling algorithms File Management: Concept of File, Access methods, File types, File operation, Directory structure, File System structure, Allocation methods (contiguous, linked, indexed), Free-space management (bit vector, linked list, grouping), directory implementation (linear list, hash table), efficiency and performance. Disk Management: Disk structure, Disk scheduling - FCFS, SSTF, SCAN, C-SCAN, Disk reliability, Disk formatting, Bootblock, Bad blocks

Books

Operating System by P.B. Galvin

G.Gagne

A. Silberschatz

Operating System by Prof. D. M. Dhamdhere

1.1 General Definition

- An OS is a program which acts as an *interface* between computer system users and the computer hardware.
- It provides a user-friendly environment in which a user may easily develop and execute programs.
- Otherwise, hardware knowledge would be mandatory for computer programming.
- So, it can be said that an OS hides the complexity of hardware from uninterested users.

Introduction

Banking system	Airline reservation	Web browser	Application programs
Compilers	Editors	Command interpreter	System
Operating system			programs
Machine language			
Microarchitecture			Hardware
Physical devices			

- A computer system consists of
 - -hardware
 - -system programs
 - application programs

Structure of Operating System:

(Contd...)

Structure of Operating System (Contd...):

- The structure of OS consists of 4 layers:
 - 1. Hardware

Hardware consists of CPU, Main memory, I/O Devices, etc,

2. Software (Operating System)

Software includes process management routines, memory management routines, I/O control routines, file management routines.

(Contd...)

Structure of Operating System (Contd...):

3. System programs

This layer consists of compilers, Assemblers, linker etc.

4. Application programs

This is dependent on users need. Ex. Railway reservation system, Bank database management etc.,

- We buy the computer hardware.
- Then we ask the vendor to install the operating system (Windows, Linux, MAC....etc).
- Then we install the device drivers and anti virus.
- Then we can install the application software(MS word, VIC playeretc)
- Then we start working on it.

History of Operating Systems

- First generation 1945 1955
 - -vacuum tubes, plug boards
- Second generation 1955 1965
 - -transistors, batch systems
- Third generation 1965 1980
 - -ICs and multiprogramming
- Fourth generation 1980 present
 - -personal computers

History

- Pre 1950 : the very first electronic computers
 - -valves and relays
 - -no OS
 - -single program (written with 0 and 1) with dedicated function
- Pre 1960 : stored program valve machines
 - -single job at a time
 - -Still program written with 0 and 1.
 - -OS just consists of a program loader

Early Systems

Structure

- Single user system.
- Programmer/User as operator (Open Shop).
- Large machines run from console.

