CS450 Computer Networks

The slides used in class are derived from the slides available on our text book companion website:

© 2012 Maharishi University of Management All additional course materials are copyright protected by international copyright laws and remain the property of the Maharishi University of Management. The materials are accessible only for the personal use of students enrolled in this course and only for the duration of the course. Any copying and distributing are not allowed and subject to legal action.

CS450 Computer Networks Lesson 12 Network Layer – Overview

The emergence of three from one – knower, known, and process of knowing.

<u>Lesson 12: Network Layer - Overview</u>

Our goals:

- understand principles behind network layer services and implementation of these principles in the Internet
 - network layer service models
 - forwarding versus routing
 - how a router works
 - routing (path selection)
 - Overview of ICMP

Network layer

- transport segment from sending to receiving host
- on sending side encapsulates segments into datagrams
- on rcving side, delivers segments to transport layer
- network layer protocols in every host, router
- router examines header fields in all IP datagrams passing through it

Two Key Network-Layer Functions

- forwarding: move packets from router's input to appropriate router output
- routing: determine route taken by packets from source to dest.
 - routing algorithms

analogy:

- forwarding: process of getting through single interchange
- routing: process of planning trip from source to dest

Interplay between routing and forwarding

routing algorithm determines end-end-path through network

forwarding table determines local forwarding at this router

Connection setup

- ❖ 3rd important function in some network architectures:
 - ATM, frame relay, X.25
- before datagrams flow, two end hosts and intervening routers establish virtual connection
 - routers get involved
- network vs transport layer connection service:
 - network: between two hosts (may also involve intervening routers in case of VCs)
 - transport: between two processes

Network service model

Q:What service model for "channel" transporting datagrams from sender to receiver?

<u>example services for</u> <u>individual datagrams:</u>

- guaranteed delivery
- guaranteed delivery with less than 40 msec delay

<u>example services for a flow</u> <u>of datagrams:</u>

- in-order datagram delivery
- guaranteed minimum bandwidth to flow
- restrictions on changes in inter-packet spacing

Network layer service models:

	Network chitecture	Service Model	Guarantees ?				Congestion
Ard			Bandwidth	Loss	Order	Timing	feedback
	Internet	best effort	none	no	no	no	no (inferred via loss)
	ATM	CBR	constant rate	yes	yes	yes	no congestion
	ATM	VBR	guaranteed rate	yes	yes	yes	no congestion
	ATM	ABR	guaranteed minimum	no	yes	no	yes
	ATM	UBR	none	no	yes	no	no

Network layer connection and connection-less service

- datagram network provides network-layer connectionless service
- VC network provides network-layer connection service
- analogous to the transport-layer services, but:
 - service: host-to-host
 - no choice: network provides one or the other
 - implementation: in network core

Virtual circuits

"source-to-dest path behaves much like telephone circuit"

- performance-wise
- network actions along source-to-dest path

- call setup, teardown for each call before data can flow
- each packet carries VC identifier (not destination host address)
- every router on source-dest path maintains "state" for each passing connection
- link, router resources (bandwidth, buffers) may be allocated to VC (dedicated resources = predictable service)

Not used in today's Internet.

Datagram networks

- no call setup at network layer
- routers: no state about end-to-end connections
 - no network-level concept of "connection"
- packets forwarded using destination host address

Datagram Forwarding

table

4 billion IPv4 addresses, so rather than list individual destination address list range of addresses (aggregate table entries)

Datagram Forwarding table

Destination Address Range				Link Interface
11001000 through	00010111	00010000	0000000	0
	00010111	00010111	11111111	O
11001000 through	00010111	00011000	0000000	I
11001000	00010111	00011000	11111111	•
11001000 through	00010111	00011001	0000000	2
11001000	00010111	00011111	11111111	
otherwise				3

Longest prefix matching

Longest prefix matching

when looking for forwarding table entry for given destination address, use *longest* address prefix that matches destination address.

Destination Address Range	Link interface
11001000 00010111 00010*** *****	0
11001000 00010111 00011000 *****	Ī
11001000 00010111 00011*** ******	2
otherwise	3

Examples:

DA: 11001000 00010111 00010110 10100001

DA: 11001000 00010111 00011000 10101010

Which interface? Which interface?

Datagram or VC network: why?

Internet (datagram)

- data exchange among computers
 - "elastic" service, no strict timing req.
- "smart" end systems (computers)
 - can adapt, perform control, error recovery
 - simple inside network, complexity at "edge"
- many link types
 - different characteristics
 - uniform service difficult

ATM (VC)

- evolved from telephony
- human conversation:
 - strict timing, reliability requirements
 - need for guaranteed service
- "dumb" end systems
 - telephones
 - complexity inside network

Router architecture overview

two key router functions:

- run routing algorithms/protocol (RIP, OSPF, BGP)
- forwarding datagrams from incoming to outgoing link

Input port functions

data link layer:

e.g., Ethernet see chapter 5

decentralizéd switching:

- given datagram dest., lookup output port using forwarding table in input port memory ("match plus action")
- goal: complete input port processing at 'line speed/wire speed'
- queuing: if datagrams arrive faster than forwarding rate into switch fabric

Switching fabrics

- transfer packet from input buffer to appropriate output buffer
- switching rate: rate at which packets can be transfer from inputs to outputs
 - often measured as multiple of input/output line rate
 - N inputs: switching rate N times line rate desirable
- three types of switching fabrics

Switching Via Memory

First generation routers:

- traditional computers with switching under direct control of CPU
- packet copied to system's memory
- speed limited by memory bandwidth (2 bus crossings per datagram)

Switching Via a Bus

- datagram from input port memory to output port memory via a shared bus
- bus contention: switching speed limited by bus bandwidth
- 32 Gbps bus, Cisco 5600: sufficient speed for access and enterprise routers

bus

Switching Via An Interconnection Network

- overcome bus bandwidth limitations
- Banyan networks, crossbar, other interconnection nets initially developed to connect processors in multiprocessor
- advanced design: fragmenting datagram into fixed length cells, switch cells through the fabric.
- Cisco 12000: switches 60 Gbps through the interconnection network

Output Ports

- buffering required when datagrams arrive from fabric faster than the transmission rate
- scheduling discipline chooses among queued datagrams for transmission

Output port queueing

- buffering when arrival rate via switch exceeds output line speed
- queueing (delay) and loss due to output port buffer overflow!

How much buffering?

- RFC 3439 rule of thumb: average buffering equal to "typical" RTT (say 250 msec) times link capacity C
 - e.g., C = 10 Gpbs link: 2.5 Gbit buffer

Input Port Queuing

- fabric slower than input ports combined -> queueing may occur at input queues
 - queueing delay and loss due to input buffer overflow!
- Head-of-the-Line (HOL) blocking: queued datagram at front of queue prevents others in queue from moving forward

output port contention:
only one red datagram can be
transferred.
lower red packet is blocked

one packet time later:
green packet
experiences HOL
blocking

ICMP: Internet Control Message Protocol

- used by hosts & routers to communicate network-level information
 - error reporting: unreachable host, network, port, protocol
 - echo request/reply (used by ping)
- network-layer "above" IP:
 - ICMP msgs carried in IP datagrams
- ICMP message: type, code plus first
 8 bytes of IP datagram causing
 error

Type	Code	description
0	0	echo reply (ping)
3	0	dest. network unreachable
3	1	dest host unreachable
3	2	dest protocol unreachable
3	3	dest port unreachable
3	6	dest network unknown
3	7	dest host unknown
4	0	source quench (congestion
		control - not used)
8	0	echo request (ping)
9	0	route advertisement
10	0	router discovery
11	0	TTL expired
12	0	bad IP header

Traceroute and ICMP

- Source sends series of UDP segments to dest
 - first has TTL = I
 - second has TTL=2, etc.
 - unlikely port number
- When nth datagram arrives to nth router:
 - router discards datagram
 - and sends to source an ICMP message (type 11, code 0)
 - ICMP message includes name of router & IP address

- when ICMP message arrives, source calculates RTT
- traceroute does this 3 times

Stopping criterion

- UDP segment eventually arrives at destination host
- destination returns ICMP "port unreachable" packet (type 3, code 3)
- when source gets this ICMP, stops.

Lesson 12: summary

- Introduction to Network Level
- Virtual circuit and datagram networks
- What's inside a router:
 - Forwarding via -
 - Routing algorithm by -
 - Switching
- ICMP and traceroute our tools to view core internet routing with wireshark