Fair Resource Allocation ORSuite

Christopher Archer, Sean Sinclair, Siddhartha Banerjee

Department of Operations Research and Information Engineering Cornell University

March 19, 2021

Overview

Introduction

The Model

Heuristic Agents

Conclusion

Motivating Example: Food Bank of the Southern Tier

- ► Serves six counties and nearly 4,000 square miles in New York
- ▶ Mobile Food Pantry provides food to clients a various distribution locations
- ▶ in 2019, serviced 70 regular sites, with 722 visits across all of them
- ▶ Often have to make decisions on what to stock for each location on the fly

Fair Resource Allocation

The Mobile Food Pantry also needs to make *fair* allocations. As measured by these three main desiderate

- Pareto Efficiency: for any location to benefit, another must be hurt
- Envy-freeness: no location prefers an allocation received by another
- Proportionality: each location prefers the allocation received versus equal allocation

The Model

- A principal wants to divide K commodities among n locations, with initial budget B, set of possible types (demands) Θ . Each customer has utility function u
- At each location, the principal makes an allocation $X \in \mathbb{R}^{|\Theta| \times K}$ where each row is how much of the budget he gives to each type
- ▶ Needs to make sure all customers are satisfied while maintaining a fair allocation

Offline Allocation

- ▶ In the *offline* allocation problem, the endowment (size) of each type is known at every location apriori
- ▶ In this scenario maximizing Nash Social Welfare yields a fair allocation

$$\text{maximize } \sum_{i=1}^{n} \sum_{\theta \in \Theta} N_{i,\theta} \log u(X_{i,\theta}, \theta)$$
 (1)

$$\operatorname{s.t} \sum_{i=1}^{n} \sum_{\theta \in \Theta} X_{i,\theta} \le B \tag{2}$$

Online Allocation

- In the *online* setting, the endowments are not known apriori, but are generated from known distributions $\{\mathcal{F}_i|i\in[n]\}$
- ► Can be shown that in the online case achieving an allocation that fully satisfies all three fairness conditions is *impossible*
- Approximate maximizers of the Nash Social Welfare can be wildly unfair allocations

Online Resource Allocation as an MDP

Our MDP is defined as a five tuple (S, A, R, T, H)

- State space $S := \{(b, N) | b \in \mathbb{R}_+^k, N \in \mathbb{R}_+^{|\Theta|} \}$ where b is a vector of the remaining budget, and N is a vector of the endowments. Our initial state $S_0 = (B, N_0)$, where B is the full pre-planned budget and $N_0 \sim \mathcal{F}_0$
- ► The action-space in state (b, N) is defined as $A_i := \{X \in \mathbb{R}_+^{|\Theta| \times K} | \sum_{\theta \in \Theta} N_{\theta} X_{\theta} \leq b \}$
- Our reward-space \mathcal{R} is the Nash Social Welfare: while in state s and taking action a, we have $R(s,a) = \sum_{\theta \in \Theta} N_{\theta} \log u(X_{\theta},\theta)$ where $u : \mathbb{R}^{|\Theta| \times K} \times \mathbb{R}^k \to \mathbb{R}_+$ is a utility function for the agents.
- ► Transitions. Given state $(b, N_i) \in \mathcal{S}$ and action $X \in \mathcal{A}$. we have our new state $s_{i+1} = (b \sum_{\theta} N_{\theta} X_{\theta}, N_{i+1})$ where $N_{i+1} \sim \mathcal{F}_{i+1}$
- lacktriangle Each episode will have the same number of steps as there are locations. Thus $\mathcal{H}=n$

Heuristic Agent: Equal Allocation

The equal allocation agent will make allocations proportional to the expected endowment size of each location.

$$X_{i, heta} = B\left(rac{\mathbb{E}\left[extsf{N}_{i, heta}
ight]}{\sum_{i, heta}\mathbb{E}\left[extsf{N}_{i, heta}
ight]}
ight)$$

Additional Fairness Metrics

- While our reward is still the Nash Social Welfare, we still want to know how fair our algorithm's allocation is
- We do this by comparing online allocation X^{alg} to offline (hindsight) allocation X^{opt} for our fairness criteria

$$\Delta_{envy} := \max_{i,\theta} ||X_{i,\theta}^{alg} - X_{i,\theta}^{opt}||_{\infty}$$
(3)

$$\Delta_{efficiency} := \sum_{k=1}^{K} \left(B_k - \sum_{i,\theta} N_{i,\theta} X_{i,\theta,k}^{alg} \right)$$
 (4)

(should i include proportionality as well?)

Conclusion

- Some stuff
- ► Reinforcement Learning could produce more fair allocations than our heuristics, etc...