CODE No.: 19BT30202 SVEC-19

SREE VIDYANIKETHAN ENGINEERING COLLEGE

(An Autonomous Institution, Affiliated to JNTUA, Ananthapuramu)

II B.Tech I Semester (SVEC-19) Regular Examinations February – 2021

ELECTROMAGNETIC FIELDS

[Electrical and Electronics Engineering]

Time: 3 hours				Max. Marks: 60		
		Answer One Question from each Unit All questions carry equal marks				
UNIT-I						
1.	a)	State and explain Gauss's law and derive point form of Gauss's law also calculate E due to infinite surface charge distribution	6 Marks	L2	CO1	PO2
	b)	A Uniform volume charge density of $80\mu\text{C/m}^3$ is present throughout the region $8\text{mm} < r < 10\text{mm}$. Let $\rho_v = 0$ for $0 < r < 8\text{mm}$. i) Find the total charge inside the spherical surface $r = 10$ mm. ii) Find D_r at $r = 10\text{mm}$.	6 Marks	L3	CO1	PO2
2	۵)	(OR)	6 Marilea	1.2	CO1	DO 1
2.	a)	Derive an expression for Electric field intensity (E) due to infinite line charge distribution.	6 Marks	L2	CO1	PO1
	b)	Find electric field intensity at a point $(\mathbf{r}, \mathbf{\theta}, \mathbf{\phi})$, where r>>d, due to two pint charges Q and -Q are located at $(0, d/2, 0)$ and $(0, -d/2, 0)$.	6 Marks	L3	CO1	PO2
UNIT-II						
3.	a)	Why are there no free charge in the interior or a good conductor under static condition? Explain.	5 Marks	L2	CO1	PO2
	b)	Assume that two homogeneous isotropic dielectric media with dielectric constants $\mathbf{\varepsilon}_{r1} = 3$ and $\mathbf{\varepsilon}_{r2} = 2$ are separated by the	7 Marks	L3	CO1	PO2
		xy-plane. At a common point $E_1=a_x-5a_y-4a_z$. Find E_2 , D_2 , α_1 and				
		α_2 .				
4	-)	(OR)	(M1	1.0	CO1	DO1
4.	a)	Write the capacitance formula for a parallel-plate capacitor of area S whose plates are separated by a medium of dielectric constant $\mathbf{\varepsilon}$ and thickness \mathbf{d} .	6 Marks	L2	CO1	PO1
	b)	What are the boundary conditions for electrostatic fields at an	6 Marks	L2	CO1	PO1
		interface between a conductor and a dielectric with permittivity ϵ .				
5.	a)	An infinitely long straight, solid, nonmagnetic conductor with a circular cross section of radius b carries a steady current I . Determine the magnetic flux density both inside and outside the conductor.	6 Marks	L2	CO2	PO2
	b)	Which postulate of magnetostatics denies the existence of isolated magnetic charges? Explain.	6 Marks	L1	CO2	PO2
		(OR)			_	
6.	a)	Find the magnetic flux density at a point on the axis of a circular loop of radius b that carries a direct current I .	6 Marks	L2	CO2	PO2
	b)	A thin ring of radius 5cm is placed on plane $z = 1$ cm so that its	6 Marks	L2	CO2	PO2
		centre is at $(0, 0, 1)$ cm. If the ring carries 50mA along \mathbf{a}_{ϕ} , find \mathbf{H} at $(0, 0, -1)$ cm.				

UNIT-IV

- 7. a) A conducting filamentary triangle joins A (3, 1, 1), B (5, 4, 2) 6 Marks L2 CO2 PO2 and C (1, 2, 4). The segment AB carries a current of 0.2 A in the \mathbf{a}_{AB} direction. In the presence of magnetic field $B = 0.2a_x 0.1a_y + 0.3a_z T$.
 - i) i) Find the force on segment BC.
 - ii) Find the torque on the loop about an origin at A.
 - b) Derive the expression for torque on a current loop placed in a 6 Marks L2 CO2 PO2 magnetic field.

(OR)

- 8. a) Write a short note on Scalar magnetic potential and its properties. 5 Marks L2 CO2 PO2 b) A rectangular loop carrying current L2 is placed parallel to an 7 Marks L2 CO2 PO4
 - b) A rectangular loop carrying current I₂ is placed parallel to an infinitely long filamentary wire carrying current I₁ as shown below. Show that the force experienced by the loop is given by

$$F = -\frac{\mu_0 I_1 I_2 b}{2\pi} \left[\frac{1}{\rho_0} - \frac{1}{\rho_0 + a} \right] a_\rho N$$

UNIT-V

- 9. a) State and explain Maxwell's equations in differential and integral 6 Marks L2 CO3 PO2 form for time varying fields.
 - b) State and explain poynting theorem. 6 Marks L2 CO3 PO2

(OR)

- 10 a) In free space $E = 20\cos(\omega t 50_x)a_yV/m$, find 6 Marks L2 CO3 PO4
 - i) J_d ii) H iii) w
 - b) State and explain faraday's laws of electromagnetic induction. 6 Marks L2 CO3 PO2