International Institute of Information Technology, Hyderabad. Principles of Information Security

Mid Semester Examination

February 25, 2020

Time: 90 mins. Max. Marks: 40.

There are eight questions, 5 marks each. Attempt all questions.

- \mathcal{X} . Consider an improved version of the Vigenere cipher, where instead of using multiple shift ciphers, multiple mono-alphabetic substitution ciphers are used. That is, the key consists of t random permutations of the alphabet, and the plaintext characters in positions i; t+i; 2t+i and so on are encrypted using the ith permutation. Show how to break this version of the cipher.
- A. Prove or refute: For every encryption scheme that is perfectly secret it holds that for every distribution over the message space \mathcal{M} every $m, m' \in \mathcal{M}$ and every $c \in \mathcal{C}$

$$\Pr[M=m|C=c] = \Pr[M=m'|C=c]$$

- 3. Let f, g be negligible functions. Decide whether (a) $H(n) = f(n) \times g(n)$ and (b) H(n) = f(n)/g(n) are necessarily negligible functions (for arbitrary f, g) or not. If it is, prove it. If not, give a counterexample. Moreover, let f, g be length preserving one-way function (so, e.g., |f(x)| = |x|). For each of the following functions h, decide whether it is necessarily a one-way function (for arbitrary f, g) or not. If it is, prove it. If not, show a counterexample.
 - $(e) h(x) \stackrel{def}{=} f(x) \oplus g(x).$
 - (b) $h(x) \stackrel{def}{=} f(f(x))$.
 - (a) $h(x_1 \parallel x_2) \stackrel{def}{=} f(x_1) \parallel g(x_2)$, (\parallel means concatenation)
 - (1) $h(x_1, x_2) = (f(x_1), x_2)$ where $|x_1| = |x_2|$.
 - 4/Given an efficiently-computable function $G: \{0,1\}^* \to \{0,1\}^*$ with |G(x)| = l(|x|) consider the following experiment defined for an algorithm A and parameter n:
 - (a) Choose random $s \in \{0,1\}^n$ and set $y_0 = G(s)$. Choose random $y_1 = \{0,1\}^{l(n)}$.
 - (b) Choose a random bit $b \in \{0, 1\}$.
 - (c) Give y_b to A, who outputs a bit b'.

say G is an indistinguishable PRG if for all probabilistic, polynomial-time algorithms A, there exists a negligible function ϵ such that

$$\Pr[b'=b] \le \frac{1}{2} + \epsilon(n)$$

in the experiment above.

Prove that this definition is equivalent to the definition of a pseudorandom generator.

5. Give complete details (and if possible present an example illustrating the methods you describe) of how to use an instance of X to design an instance of Y where:

(a) $X = \text{One-way permutation}$, Y	=	Pseudorandom	generator.
--------------------------------------	-----	---	--------------	------------

- (b) X = Pseudorandom generator, Y = Pseudorandom function.
- (c) X = Pseudorandom function, Y = Invertible pseudorandom function.
- (d) X = Pseudorandom function, Y = Message Authentication Code
- (e) X = MAC and PRF, Y = CCA-Secure Encryption Scheme
- Show that the basic CBC-MAC as described in class is insecure if the sender authenticates messages of different lengths.
- . Describe and prove an improved version (that starts off with a collision resistant hash function with lesser compression ratio) of Merkle-Damgard Transform.
 - If A and B are connected by *two* insecure channels, where the adversary may choose to actively corrupt any one among them and passively eavesdrop on the other, design a secure key establishment protocol using the DDH assumption (or argue its impossibility if you so think).

ALL THE BEST _____