PLAN

- 1. Introduction
- 2. Généralités sur les graphes
- 3. Représentation d'un graphe en machine
- 4. Parcours dans les graphes
- 5. Arbre recouvrant
- 6. Plus court chemin dans un graphe
- 7. Coloration d'un graphe
- 8. Graphes planaires
- 9. Flots et réseaux de transports
- 10. Réseaux d'interactions

Stéphane BONNEVAY – Polytech Lyon

Graphes et Applications

67

ARBRE RECOUVRANT

CONSTRUCTION D'UN RÉSEAU ÉLECTRIQUE

Construire un réseau électrique de manière à alimenter l'ensemble des maisons en électricité. Les coûts de construction des lignes sont proportionnels aux distances.

Comment construire le réseau éléctrique de manière à minimiser les coûts de fabrication ?

Stéphane BONNEVAY – Polytech Lyon

Graphes et Applications

CONSTRUCTION D'UN RÉSEAU ÉLECTRIQUE

Graphe de « voisinage » non orienté :

Recherche d'un arbre recouvrant de poids minimum

Stéphane BONNEVAY – Polytech Lyon

Graphes et Applications 69

ARBRE RECOUVRANT

CONSTRUCTION D'UN RÉSEAU ÉLECTRIQUE

Arbre recouvrant de poids minimum :

Stéphane BONNEVAY – Polytech Lyon

Graphes et Applications

ARBRE RECOUVRANT

Arbre et forêt

Un arbre est un graphe connexe sans cycle (orienté ou non)

On appelle forêt un graphe dont chaque composante connexe est un arbre

Stéphane BONNEVAY – Polytech Lyon

Graphes et Applications

ARBRE RECOUVRANT

ARBRE

Soit G=(X,U) un graphe (avec $n\geq 2$). Les propositions suivantes sont équivalentes :

- 1. G est un arbre
- 2. Il existe dans G une chaîne et une seule joignant tout couple de sommets
 3. G est sans cycle et maximal pour la propriété : « si on ajoute une arête, G possède un cycle »
- 4. G est connexe et minimal pour la propriété : « si on supprime une arête, G n'est plus connexe »
- 5. G est sans cycle et possède (n-1) arêtes
- 6. G est connexe et possède (n-1) arêtes

Stéphane BONNEVAY – Polytech Lyon

Graphes et Applications

ARBRE

Théorème

Tout graphe G connexe possède un graphe partiel qui est un arbre

Stéphane BONNEVAY – Polytech Lyon

Graphes et Applications

73

ARBRE RECOUVRANT

ARBORESCENCE

Un sommet s d'un graphe orienté G est une racine s'il existe dans G un chemin joignant s à tous les sommets de X

Un sommet s d'un graphe orienté G est une anti-racine s'il existe dans G un chemin joignant tous les sommets de X à s

Un graphe orienté G est une arborescence de racine s si G est un arbre et s une racine de G

Stéphane BONNEVAY – Polytech Lyon

Graphes et Applications

ARBRE RECOUVRANT DE POIDS MINIMUM (OU MAXIMUM)

Objectif

Trouver un graphe partiel d'un graphe valué G=(X,U,I) qui soit un arbre de poids minimum (ou maximum)

Stéphane BONNEVAY – Polytech Lyon

Graphes et Applications

75

ARBRE RECOUVRANT

ARBRE RECOUVRANT DE POIDS MINIMUM (OU MAXIMUM)

Le nombre d'arbres recouvrants peut être important, même sur des petits graphes.

Lister tous les graphes partiels du graphe non orienté complet à 4 sommets (K_4) qui sont des arbres :

3 4

Il y a 16 arbres recouvrants différents :

Stéphane BONNEVAY – Polytech Lyon

Graphes et Applications

ARBRE RECOUVRANT

ALGORITHME DE KRUSKAL - VERSION 1

```
Kruskal1(G=(X,U,I),T); // recherche d'un arbre recouvrant de poids minimum 
 { Numéroter les arêtes dans l'ordre des poids croissants (I(u_1) \le I(u_2) \le ... \le I(u_m)); 
 T = \emptyset; 
 i = 0; 
 tant que |T| < n-1 faire 
 { si (X,T \cup \{u_i\}) ne contient pas de cycle faire T = T \cup \{u_i\}; 
 i=i+1; 
 }
```


O(mlog(m))

Stéphane BONNEVAY – Polytech Lyon

Graphes et Applications

77

ARBRE RECOUVRANT

ALGORITHME DE KRUSKAL - VERSION 2

O(mlog(m))

Stéphane BONNEVAY – Polytech Lyon

Graphes et Applications

ARBRE RECOUVRANT

ALGORITHME DE PRIM

```
Prim(G=(X,U,I),T);

{ prendre un sommet x quelconque dans X;

R = \{x\};

T = \emptyset;

Tant que X \neq R faire

{ prendre (y,z) l'arête de poids minimum tel que y ∈ R et z ∈ X-R;

T = T \cup \{(y,z)\};

R = R \cup \{z\};

}

}
```

 $O(n^2)$

Stéphane BONNEVAY – Polytech Lyon

Graphes et Applications