Convex Optimization THL413 ETERNITY II

Asteri E., Chrysogelos P.

Technical University Of Crete ECE

Game Description

Attributes

- ightharpoonup M imes M board
- ► L colored symbols + grey

Game object

- ► Identical Adjacent Edges
- ► Grey edges on frame

$$P_i = [p_{i1}, p_{i2}, p_{i3}, p_{i4}]$$

$$P_i = [p_{i4}, p_{i1}, p_{i2}, p_{i3}]$$

$$P_i = [p_{i1}, p_{i2}, p_{i3}, p_{i4}]$$

$$P_i = [p_{i4}, p_{i1}, p_{i2}, p_{i3}]$$

lacktriangledown edge ightarrow $p_{ij} \in \mathbb{R}^L$

$$P_i = [p_{i1}, p_{i2}, p_{i3}, p_{i4}]$$

$$P_i = [p_{i4}, p_{i1}, p_{i2}, p_{i3}]$$

- lacktriangledown edge ightarrow $p_{ij} \in \mathbb{R}^L$
- piece $\rightarrow P_i \in \mathbb{R}^{4 \times L}$

$$P_i = [p_{i1}, p_{i2}, p_{i3}, p_{i4}]$$

$$P_i = [p_{i4}, p_{i1}, p_{i2}, p_{i3}]$$

- lacktriangledown edge ightarrow $ho_{ij} \in \mathbb{R}^L$
- ▶ piece $\rightarrow P_i \in \mathbb{R}^{4 \times L}$
- ▶ board $\rightarrow P \in \mathbb{R}^{4M^2 \times L}$

$$P_i = [p_{i1}, p_{i2}, p_{i3}, p_{i4}]$$

$$P_i = [p_{i4}, p_{i1}, p_{i2}, p_{i3}]$$

- ▶ edge $\rightarrow p_{ij} \in \mathbb{R}^L$
- ▶ piece $\rightarrow P_i \in \mathbb{R}^{4 \times L}$
- ▶ board $\rightarrow P \in \mathbb{R}^{4M^2 \times L}$

- ▶ Piece rotation:
 - 1. row circular shifting of P_i

2.
$$\Pi_i P_i$$
,
$$\begin{bmatrix} \Pi_1 P_1 \\ \vdots \\ \Pi_{M^2} P_{M^2} \end{bmatrix}$$

$$P_i = [p_{i1}, p_{i2}, p_{i3}, p_{i4}]$$

$$P_i = [p_{i4}, p_{i1}, p_{i2}, p_{i3}]$$

- ▶ edge $\rightarrow p_{ij} \in \mathbb{R}^L$
- ▶ piece $\rightarrow P_i \in \mathbb{R}^{4 \times L}$
- ▶ board $\rightarrow P \in \mathbb{R}^{4M^2 \times L}$

- ▶ Piece rotation:
 - 1. row circular shifting of P_i

2.
$$\Pi_i P_i$$
,
$$\begin{bmatrix} \Pi_1 P_1 \\ \vdots \\ \Pi_{M^2} P_{M^2} \end{bmatrix}$$

- Piece movement:
 - 1. permutation of P_i s on P
 - 2. $(\Xi \otimes I_4)P$

$$P_i = [p_{i1}, p_{i2}, p_{i3}, p_{i4}]$$

$$P_i = [p_{i4}, p_{i1}, p_{i2}, p_{i3}]$$

- lacktriangledown edge ightarrow $p_{ij} \in \mathbb{R}^L$
- ▶ piece $\rightarrow P_i \in \mathbb{R}^{4 \times L}$
- ▶ board $\rightarrow P \in \mathbb{R}^{4M^2 \times L}$

- ▶ Piece rotation:
 - 1. row circular shifting of P_i

2.
$$\Pi_i P_i$$
,
$$\begin{bmatrix} \Pi_1 P_1 \\ \vdots \\ \Pi_{M^2} P_{M^2} \end{bmatrix}$$

- Piece movement:
 - 1. permutation of P_i s on P
 - 2. $(\Xi \otimes I_4)P$
- Solution: $(\Xi \otimes I_4) \prod P$

* Touching edges constraints

$$\Delta(\Xi \otimes I_4)\Pi P = \mathbf{0} \in \mathbb{R}^{2M(M-1)\times L}$$
.

where each row $\Delta_{\it i}$ has the form $\left[0,-1\dots,0,1,0\right]\in {\it R}^{4M^2}$

* Touching edges constraints

$$\Delta(\Xi \otimes I_4)\Pi P = \mathbf{0} \in \mathbb{R}^{2M(M-1)\times L}$$
.

where each row $\Delta_{\it i}$ has the form $\left[0,-1\dots,0,1,0\right]\in {\it R}^{4M^2}$

Boundary constraints

$$\beta^T(\Xi\otimes I_4)\Pi P\mathbf{1}=0$$

At optimality

* Each row and column of Φ has a single non zero entry $\{1\}$.

$$\Phi 1 = \mathbf{1} \\
\Phi^T 1 = \mathbf{1}$$

 Φ has minimal cardinality $4M^2$

* Non zero blocks ϕ_{ij} are circulant

$$\Phi \triangleq \begin{bmatrix} \phi_{11} & \dots & \phi_{1M} \\ \vdots & \ddots & \vdots \\ \phi_{M1} & \dots & \phi_{MM} \end{bmatrix}$$

At optimality

* Each row and column of Φ has a single non zero entry $\{1\}$.

$$\Phi 1 = \mathbf{1} \\
\Phi^T 1 = \mathbf{1}$$

 Φ has minimal cardinality $4M^2$

* Non zero blocks ϕ_{ij} are circulant

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

4 degrees of freedom

$$\tilde{\boldsymbol{\Phi}} \triangleq [\boldsymbol{\Phi}(:,1),\boldsymbol{\Phi}(:,5),\dots\boldsymbol{\Phi}(:,4M^2-3)] \in \mathbb{R}^{4M^2\times M^2}$$

Reconstruction formula

$$\Phi = \sum_{i=1...4} (I \otimes \pi_i) (\tilde{\Phi} \otimes e_i^T) \in \mathbb{R}^{4M^2 \times 4M^2}$$

$$\tilde{\boldsymbol{\Phi}} \triangleq [\boldsymbol{\Phi}(:,1),\boldsymbol{\Phi}(:,5),\dots\boldsymbol{\Phi}(:,4M^2-3)] \in \mathbb{R}^{4M^2\times M^2}$$

$$vec\Phi = \left(\sum_{i=1...4} (I \otimes e_i \otimes I \otimes \pi_i)\right) vec\tilde{\Phi} \triangleq Yvec\tilde{\Phi}$$

$$\tilde{\boldsymbol{\Phi}} \triangleq [\boldsymbol{\Phi}(:,1),\boldsymbol{\Phi}(:,5),\ldots\boldsymbol{\Phi}(:,4M^2-3)] \in \mathbb{R}^{4M^2\times M^2}$$

$$vec\Phi = \left(\sum_{i=1...4} (I \otimes e_i \otimes I \otimes \pi_i)\right) vec\tilde{\Phi} \triangleq Yvec\tilde{\Phi}$$

$$\begin{array}{l} \textit{minimize} \\ \Phi \in 4M^2 \times 4M^2 \end{array} \parallel vec\Phi \parallel_0$$

$$s.t. \quad \Delta\Phi P = \mathbf{0}$$

$$\beta^T \Phi P \mathbf{1} = 0$$

$$\Phi 1 = \mathbf{1}$$

$$\Phi^T 1 = \mathbf{1}$$

$$(I \otimes R_d) \Phi (I \otimes R_d^T) = (I \otimes S_d) \Phi (I \otimes S_d^T)$$

$$(I \otimes R_\phi) \Phi (I \otimes S_\phi^T) = (I \otimes S_\phi) \Phi (I \otimes R_\phi^T)$$

$$\Phi > \mathbf{0}$$

$$\tilde{\boldsymbol{\Phi}} \triangleq [\boldsymbol{\Phi}(:,1),\boldsymbol{\Phi}(:,5),\ldots\boldsymbol{\Phi}(:,4M^2-3)] \in \mathbb{R}^{4M^2\times M^2}$$

$$vec\Phi = \left(\sum_{i=1...4} (I \otimes e_i \otimes I \otimes \pi_i)\right) vec\tilde{\Phi} \triangleq Yvec\tilde{\Phi}$$

$$\begin{array}{c} \textit{minimize} \\ \Phi \in 4M^2 \times 4M^2 \end{array} \| vec\Phi \|_0$$

$$s.t. \quad (P^T \otimes \Delta) vec\Phi = \mathbf{0}$$

$$(P\mathbf{1} \otimes \beta)^T vec\Phi = 0$$

$$(\mathbf{1}_{4M}^T \otimes I_{4M}) vec\Phi = \mathbf{1}_{4M}$$

$$(I_{4M}^T \otimes \mathbf{1}_{4M}) vec\Phi = \mathbf{1}_{4M}$$

$$vec\Phi \geq \mathbf{0}$$

$$\boldsymbol{\tilde{\Phi}} \triangleq [\boldsymbol{\Phi}(:,1),\boldsymbol{\Phi}(:,5),\ldots\boldsymbol{\Phi}(:,4M^2-3)] \in \mathbb{R}^{4M^2\times M^2}$$

$$egin{aligned} \mathit{vec}\Phi &= \left(\sum_{i=1...4} (\mathit{I} \otimes e_i \otimes \mathit{I} \otimes \pi_i)
ight) \mathit{vec} \tilde{\Phi} & riangleq \mathit{Yvec} \tilde{\Phi} \ & \underset{\tilde{\Phi} \in 4M^2 \times M^2}{\mathit{minimize}} & \parallel \mathit{vec} \tilde{\Phi} \parallel_0 \ & s.t. & (\mathit{P}^T \otimes \Delta) \mathit{Yvec} \tilde{\Phi} = \mathbf{0} \ & (\mathit{P} \mathbf{1} \otimes \beta)^T \mathit{Yvec} \tilde{\Phi} = \mathbf{0} \ & (\mathit{P} \mathbf{1} \otimes \beta)^T \mathit{Yvec} \tilde{\Phi} = \mathbf{0} \ & (\mathit{I}^T \otimes \mathit{I} \otimes \mathbf{1}_4^T) \mathit{vec} \tilde{\Phi} = \mathbf{1} \ & (\mathit{I} \otimes \mathbf{1}_{4M}^T) \mathit{vec} \tilde{\Phi} = \mathbf{1} \ & \mathit{vec} \tilde{\Phi} \geq \mathbf{0} \end{aligned}$$

$$E_{1} \triangleq (P^{T} \otimes \Delta)Y$$

$$E_{2} \triangleq (P\mathbf{1} \otimes \beta)^{T}Y$$

$$E_{3} \triangleq (\mathbf{1}^{T} \otimes I \otimes \mathbf{1}_{4}^{T})$$

$$E_{4} \triangleq (I \otimes \mathbf{1}_{4M^{2}}^{T})$$

$$\mathbf{d} \triangleq \begin{bmatrix} \mathbf{0}_{2LM(M-1)+1} \\ \mathbf{1}_{2M^{2}} \end{bmatrix}$$

$$\begin{split} E_1 &\triangleq (P^T \otimes \Delta)Y \\ E_2 &\triangleq (P\mathbf{1} \otimes \beta)^T Y \\ E_3 &\triangleq (\mathbf{1}^T \otimes I \otimes \mathbf{1}_4^T) \\ E_4 &\triangleq (I \otimes \mathbf{1}_{4M^2}^T) \\ \mathbf{d} &\triangleq \begin{bmatrix} \mathbf{0}_{2LM(M-1)+1} \\ \mathbf{1}_{2M^2} \end{bmatrix} \end{split} \qquad \begin{aligned} & \underset{\tilde{\Phi} \in 4M^2 \times M^2}{\text{minimize}} & \parallel \textit{vec} \tilde{\Phi} \parallel_0 \\ & \text{s.t.} & (P^T \otimes \Delta)Y & \textit{vec} \tilde{\Phi} = \mathbf{0} \\ & (P\mathbf{1} \otimes \beta)^T Y & \textit{vec} \tilde{\Phi} = \mathbf{0} \\ & (I^T \otimes I \otimes \mathbf{1}_4^T) & \textit{vec} \tilde{\Phi} = \mathbf{1} \\ & (I \otimes \mathbf{1}_{4M}^T) & \textit{vec} \tilde{\Phi} \geq \mathbf{0} \end{aligned}$$

1	M	L	Eq.s	Obj Vars	Entries of E	E's Mem
			$O(LM^2)$	$O(M^4)$	$O(LM^6)$	$O(LM^6)$
_	4	4	129	1 024	132 096	1 056 768
(6	4	313	5 184	1 622 592	12 980 736
(6	22	1 393	5 184	7 221 312	57 770 496
;	8	22	2 5 9 3	16 384	42 483 712	339 869 696
1	.0	22	4 161	40 000	166 440 000	1 331 520 000
1	6	22	11 073	262 144	2 902 720 512	23 221 764 096

$$\begin{split} E_1 &\triangleq (P^T \otimes \Delta)Y & \underset{\tilde{\Phi} \in 4M^2 \times M^2}{\textit{minimize}} & \parallel \textit{vec} \tilde{\Phi} \parallel_0 \\ E_2 &\triangleq (P\mathbf{1} \otimes \beta)^T Y & \textit{s.t.} & E_1 & \textit{vec} \tilde{\Phi} = \mathbf{0} \\ E_3 &\triangleq (\mathbf{1}^T \otimes I \otimes \mathbf{1}_4^T) & (P\mathbf{1} \otimes \beta)^T Y & \textit{vec} \tilde{\Phi} = \mathbf{0} \\ E_4 &\triangleq (I \otimes \mathbf{1}_{4M^2}^T) & (\mathbf{1}^T \otimes I \otimes \mathbf{1}_4^T) & \textit{vec} \tilde{\Phi} = \mathbf{1} \\ \mathbf{d} &\triangleq \begin{bmatrix} \mathbf{0}_{2LM(M-1)+1} \\ \mathbf{1}_{2M^2} \end{bmatrix} & (I \otimes \mathbf{1}_{4M}^T) & \textit{vec} \tilde{\Phi} = \mathbf{1} \\ & \textit{vec} \tilde{\Phi} \geq \mathbf{0} \end{split}$$

М	L	Eq.s	Obj Vars	Entries of E	E's Mem
		$O(LM^2)$	$O(M^4)$	$O(LM^6)$	$O(LM^6)$
4	4	129	1 024	132 096	1 056 768
6	4	313	5 184	1 622 592	12 980 736
6	22	1 393	5 184	7 221 312	57 770 496
8	22	2 5 9 3	16 384	42 483 712	339 869 696
10	22	4 161	40 000	166 440 000	1 331 520 000
16	22	11 073	262 144	2 902 720 512	23 221 764 096

$$\begin{array}{lll} E_1 \triangleq (P^T \otimes \Delta)Y & \underset{\tilde{\Phi} \in 4M^2 \times M^2}{\text{minimize}} & \parallel \textit{vec}\tilde{\Phi} \parallel_0 \\ E_2 \triangleq (P\mathbf{1} \otimes \beta)^T Y & s.t. & E_1 & \textit{vec}\tilde{\Phi} = \mathbf{0} \\ E_3 \triangleq (\mathbf{1}^T \otimes I \otimes \mathbf{1}_4^T) & E_2 & \textit{vec}\tilde{\Phi} = \mathbf{0} \\ \mathbf{1}_{2M^2} & \mathbf{1}_{2M^2} &$$

М	L	Eq.s O(LM ²)	Obj Vars $O(M^4)$	Entries of E $O(LM^6)$	E's Mem O(LM ⁶)
4	4	129	1024	132 096	1 056 768
6	4	313	5 184	1622592	12 980 736
6	22	1 393	5 184	7 221 312	57 770 496
8	22	2 5 9 3	16 384	42 483 712	339 869 696
10	22	4 161	40 000	166 440 000	1 331 520 000
16	22	11 073	262 144	2 902 720 512	23 221 764 096

$$\begin{array}{lll} E_1 \triangleq (P^T \otimes \Delta)Y & \underset{\tilde{\Phi} \in 4M^2 \times M^2}{\textit{minimize}} & \parallel \textit{vec}\tilde{\Phi} \parallel_0 \\ E_2 \triangleq (P\mathbf{1} \otimes \beta)^T Y & \text{s.t.} & E_1 & \textit{vec}\tilde{\Phi} = \mathbf{0} \\ E_3 \triangleq (\mathbf{1}^T \otimes \mathbf{I} \otimes \mathbf{1}_4^T) & E_2 & \textit{vec}\tilde{\Phi} = \mathbf{0} \\ \mathbf{d} \triangleq \begin{bmatrix} \mathbf{0}_{2LM(M-1)+1} \\ \mathbf{1}_{2M^2} \end{bmatrix} & E_3 & \textit{vec}\tilde{\Phi} = \mathbf{1} \\ & (\mathbf{I} \otimes \mathbf{1}_{4M}^T) & \textit{vec}\tilde{\Phi} = \mathbf{1} \\ & \textit{vec}\tilde{\Phi} > \mathbf{0} \end{array}$$

М	L	$O(LM^2)$	Obj Vars $O(M^4)$	Entries of E $O(LM^6)$	E's Mem <i>O(LM</i> ⁶)
4	4	129	1024	132 096	1 056 768
6	4	313	5 184	1 622 592	12 980 736
6	22	1 393	5 184	7 221 312	57 770 496
8	22	2 5 9 3	16 384	42 483 712	339 869 696
10	22	4 161	40 000	166 440 000	1 331 520 000
16	22	11 073	262 144	2902720512	23 221 764 096

$E_1 \triangleq (P^T \otimes \Delta)Y$	minimize Φ̃∈4M²×M²	$\parallel \textit{vec} \tilde{\Phi} \parallel_0$	
$E_2 \triangleq (P1 \otimes \beta)^T Y$	s.t.	E_1	$\emph{vec} ilde{\Phi}=0$
$E_3 \triangleq (1^T \otimes I \otimes 1_4^T)$		E_2	$vec ilde{\Phi}=0$
$E_4 \triangleq (I \otimes 1_{4M^2}^T)$		E_3	$\textit{vec} ilde{\Phi} = 1$
$\mathbf{d} riangleq egin{bmatrix} 0_{2LM(M-1)+1} \ 1_{2M^2} \end{bmatrix}$		E_4	$\emph{vec} ilde{\Phi}= extbf{1}$
[2///]			$vec\tilde{\Phi} > 0$

М	L	Eq.s O(LM ²)	Obj Vars $O(M^4)$	Entries of E $O(LM^6)$	E's Mem O(LM ⁶)
4	4	129	1024	132 096	1 056 768
6	4	313	5 184	1622592	12 980 736
6	22	1 393	5 184	7 221 312	57 770 496
8	22	2 5 9 3	16 384	42 483 712	339 869 696
10	22	4 161	40 000	166 440 000	1 331 520 000
16	22	11 073	262 144	2 902 720 512	23 221 764 096

$$\begin{split} E_1 &\triangleq (P^T \otimes \Delta)Y & \underset{\tilde{\Phi} \in 4M^2 \times M^2}{\textit{minimize}} \quad \parallel \textit{vec} \tilde{\Phi} \parallel_0 \\ E_2 &\triangleq (P\mathbf{1} \otimes \beta)^T Y \\ E_3 &\triangleq (\mathbf{1}^T \otimes I \otimes \mathbf{1}_4^T) \\ E_4 &\triangleq (I \otimes \mathbf{1}_{4M^2}^T) \\ \mathbf{d} &\triangleq \begin{bmatrix} \mathbf{0}_{2LM(M-1)+1} \\ \mathbf{1}_{2M^2} \end{bmatrix} & \textit{s.t.} \begin{bmatrix} E_1 \\ E_2 \\ E_3 \\ E_4 \end{bmatrix} & \textit{vec} \tilde{\Phi} = \mathbf{d} \end{split}$$

М	L	Eq.s	Obj Vars	Entries of E	E's Mem
		$O(LM^2)$	$O(M^4)$	$O(LM^6)$	$O(LM^6)$
4	4	129	1 024	132 096	1 056 768
6	4	313	5 184	1 622 592	12 980 736
6	22	1 393	5 184	7 221 312	57 770 496
8	22	2 593	16 384	42 483 712	339 869 696
10	22	4 161	40 000	166 440 000	1 331 520 000
16	22	11 073	262 144	2 902 720 512	23 221 764 096

$$E_{1} \triangleq (P^{T} \otimes \Delta)Y \qquad \qquad \underset{x \in 4M^{4}}{\text{minimize}} \quad \| \mathbf{x} \|_{0}$$

$$E_{2} \triangleq (P\mathbf{1} \otimes \beta)^{T}Y$$

$$E_{3} \triangleq (\mathbf{1}^{T} \otimes I \otimes \mathbf{1}_{4}^{T})$$

$$E_{4} \triangleq (I \otimes \mathbf{1}_{4M^{2}}^{T}) \qquad \qquad s.t. \begin{bmatrix} E_{1} \\ E_{2} \\ E_{3} \\ E_{4} \end{bmatrix} \quad \mathbf{x} = \mathbf{d}$$

$$\mathbf{d} \triangleq \begin{bmatrix} \mathbf{0}_{2LM(M-1)+1} \\ \mathbf{1}_{2M^{2}} \end{bmatrix} \qquad \qquad \mathbf{x} \geq \mathbf{0}$$

М	L	Eq.s	Obj Vars	Entries of E	E's Mem
		$O(LM^2)$	$O(M^4)$	$O(LM^6)$	$O(LM^6)$
4	4	129	1 024	132 096	1 056 768
6	4	313	5 184	1 622 592	12 980 736
6	22	1 393	5 184	7 221 312	57 770 496
8	22	2 593	16 384	42 483 712	339 869 696
10	22	4 161	40 000	166 440 000	1 331 520 000
16	22	11 073	262 144	2 902 720 512	23 221 764 096

М	L	Eq.s $O(LM^2)$	Obj Vars $O(M^4)$	Entries of E $O(LM^6)$	E's Mem <i>O(LM</i> ⁶)
4	4	129	1 024	132 096	1 056 768
6	4	313	5 184	1 622 592	12 980 736
6	22	1 393	5 184	7 221 312	57 770 496
8	22	2 593	16 384	42 483 712	339 869 696
10	22	4 161	40 000	166 440 000	1 331 520 000
16	22	11 073	262 144	2902720512	23 221 764 096

М	L	Eq.s $O(LM^2)$	Obj Vars $O(M^4)$	Entries of E $O(LM^6)$	E's Mem $O(LM^6)$
4	4	129	1 024	132 096	1 056 768
6	4	313	5 184	1 622 592	12 980 736
6	22	1 393	5 184	7 221 312	57 770 496
8	22	2593	16 384	42 483 712	339 869 696
10	22	4 161	40 000	166 440 000	1 331 520 000
16	22	11 073	262 144	2902720512	23 221 764 096

1. Original Problem: >24GB for constraints

М	L	Eq.s $O(LM^2)$	Obj Vars $O(M^4)$	Entries of E $O(LM^6)$	E's Mem <i>O(LM</i> ⁶)
4	4	129	1024	132 096	1 056 768
6	4	313	5 184	1 622 592	12 980 736
6	22	1 393	5 184	7 221 312	57 770 496
8	22	2 5 9 3	16 384	42 483 712	339 869 696
10	22	4 161	40 000	166 440 000	1 331 520 000
16	22	11 073	262 144	2902720512	23 221 764 096

- 1. Original Problem: >24GB for constraints
- 2. Use structure of constraints to reduce size!

Matrix	Values	Non	Zero Entr	ies (%)
(M,L)	"any"	(4,4)	(12,22)	(16,22)
E_1	$\{0,\pm 1\}$	2.34	0.05	0.03
E_2	$\{0, 1, 2\}$	60.9	28.2	22.0
E_3	$\{0, 1\}$	6.25	0.69	0.39
E_4	$\{0, 1\}$	6.25	0.69	0.39
Ε	$\{0,\pm 1,2\}$	3.77	0.09	0.05

- 1. Original Problem: >24GB for constraints
- 2. Use structure of constraints to reduce size!

Matrix	Values	Non Zero Entries (%)			
(M,L)	"any"	(4,4)	(12,22)	(16,22)	
$\overline{E_1}$	$\{0,\pm 1\}$	2.34	0.05	0.03	
E_2	$\{0, 1, 2\}$	60.9	28.2	22.0	
E_3	$\{0, 1\}$	6.25	0.69	0.39	
E_4	$\{0, 1\}$	6.25	0.69	0.39	
Ε	$\{0,\pm 1,2\}$	3.77	0.09	0.05	

- 1. Original Problem: >24GB for constraints
- 2. Use structure of constraints to reduce size!
 - All entries in $\{0, \pm 1, 2\}$

Matrix	Values	Non Zero Entries (%)		
(M,L)	"any"	(4,4)	(12,22)	(16,22)
$\overline{E_1}$	$\{0, \pm 1\}$	2.34	0.05	0.03
E_2	{0,1,2}	60.9	28.2	22.0
E_3	$\{0,1\}$	6.25	0.69	0.39
E_4	$\{0,1\}$	6.25	0.69	0.39
Ε	$\{0,\pm 1,2\}$	3.77	0.09	0.05

- 1. Original Problem: >24GB for constraints
- 2. Use structure of constraints to reduce size!
 - All entries in $\{0, \pm 1, 2\}$
 - Sparsity

Matrix	Values	Non Zero Entries (%)		
(M,L)	"any"	(4,4)	(12,22)	(16,22)
$\overline{E_1}$	$\{0, \pm 1\}$	2.34	0.05	0.03
E_2	{0,1,2}	60.9	28.2	22.0
E_3	$\{0, 1\}$	6.25	0.69	0.39
E_4	$\{0,1\}$	6.25	0.69	0.39
E	$\{0,\pm 1,2\}$	3.77	0.09	0.05

- 1. Original Problem: >24GB for constraints
- 2. Use structure of constraints to reduce size!
 - All entries in $\{0, \pm 1, 2\}$
 - i E_2 is the only constraint with entries "2"
 - Sparsity
 - i E_2 is has the lowest sparsity

Matrix	Values	Non Zero Entries (%)		
(M,L)	"any"	(4,4)	(12,22)	(16,22)
E_1	$\{0,\pm 1\}$	2.34	0.05	0.03
E_2	$\{0, 1, 2\}$	60.9	28.2	22.0
E_3	$\{0, 1\}$	6.25	0.69	0.39
E_4	$\{0, 1\}$	6.25	0.69	0.39
Ε	$\{0,\pm 1,2\}$	3.77	0.09	0.05

- 1. Original Problem: >24GB for constraints
- 2. Use structure of constraints to reduce size!
 - All entries in $\{0, \pm 1, 2\}$
 - i E_2 is the only constraint with entries "2"
 - Sparsity
 - i E_2 is has the lowest sparsity

But:
$$\begin{cases} E_2 \text{is a vector} \\ E_2 \geq \mathbf{0} \\ \text{Right hand side is 0 @ } E_2 \end{cases}$$

Matrix	Values	Non Zero Entries (%)		
(M,L)	"any"	(4,4)	(12,22)	(16,22)
E_1	$\{0, \pm 1\}$	2.34	0.05	0.03
E_2	{0,1,2}	60.9	28.2	22.0
E_3	$\{0, 1\}$	6.25	0.69	0.39
E_4	$\{0, 1\}$	6.25	0.69	0.39
Ε	$\{0,\pm 1,2\}$	3.77	0.09	0.05

- 1. Original Problem: >24GB for constraints
- 2. Use structure of constraints to reduce size!
 - All entries in $\{0, \pm 1, 2\}$
 - i E_2 is the only constraint with entries "2"
 - Sparsity
 - i E_2 is has the lowest sparsity

But:
$$\left\{ \begin{array}{c} E_2 \text{is a vector} \\ E_2 \geq \mathbf{0} \\ \text{Right hand side is 0 @ } E_2 \end{array} \right\} \implies E_2 \text{ can be eliminated}$$

Matrix	Values	Non Zero Entries (%)		
(M,L)	"any"	(4,4)	(12,22)	(16,22)
E_1	$\{0,\pm 1\}$	2.34	0.05	0.03
E_2	{0,1,2}	60.9	28.2	22.0
E_3	$\{0, 1\}$	6.25	0.69	0.39
E_4	$\{0, 1\}$	6.25	0.69	0.39
Ε	$\{0,\pm 1,2\}$	3.77	0.09	0.05

- 1. Original Problem: >24GB for constraints
- 2. Use structure of constraints to reduce size!
 - All entries in $\{0,\pm 1,2\}$

Sparsity

Matrix	Values	Non Zero Entries (%)		
(M,L)	"any"	(4,4)	(12,22)	(16,22)
E_1	$\{0,\pm 1\}$	2.34	0.05	0.03
E_3	$\{0, 1\}$	6.25	0.69	0.39
E_4	$\{0, 1\}$	6.25	0.69	0.39
Ε	$\{0,\pm 1\}$	3.33	0.08	0.05

- 1. Original Problem: >24GB for constraints
- 2. Use structure of constraints to reduce size!
 - All entries in $\{0,\pm 1\}$

Sparsity

Matrix	Values	Non Zero Entries (%)			
(M,L)	"any"	(4,4)	(12,22)	(16,22)	
$\overline{E_1}$	$\{0,\pm 1\}$	2.34	0.05	0.03	
E_3	$\{0, 1\}$	6.25	0.69	0.39	
E_4	$\{0, 1\}$	6.25	0.69	0.39	
Ε	$\{0,\pm 1\}$	3.33	0.08	0.05	

- 1. Original Problem: >24GB for constraints
- 2. Use structure of constraints to reduce size!
 - All entries in $\{0,\pm 1\}$
 - $E = E_+ E_-$ where $E_+ \triangleq E > 0$, $E_- \triangleq E < 0$
 - represent E_{\pm} as sparse
 - pack bits in words
 - bitwise operations
 - Sparsity

Matrix	Values	Non Zero Entries (%)		
(M,L)	"any"	(4,4)	(12,22)	(16,22)
$\overline{E_1}$	$\{0,\pm 1\}$	2.34	0.05	0.03
E_3	$\{0, 1\}$	6.25	0.69	0.39
E_4	$\{0, 1\}$	6.25	0.69	0.39
Ε	$\{0,\pm 1\}$	3.33	0.08	0.05

- 1. Original Problem: >24GB for constraints
- 2. Use structure of constraints to reduce size!
 - All entries in $\{0,\pm 1\}$
 - $E = E_+ E_-$ where $E_+ \triangleq E > 0$, $E_- \triangleq E < 0$
 - represent E_{\pm} as sparse
 - pack bits in words
 - bitwise operations
 - Sparsity
 - use sparse data types

Matrix	Values	Non Zero Entries (%)		
(M,L)	"any"	(4,4)	(12,22)	(16,22)
$\overline{E_1}$	$\{0,\pm 1\}$	2.34	0.05	0.03
E_3	$\{0, 1\}$	6.25	0.69	0.39
E_4	$\{0, 1\}$	6.25	0.69	0.39
Ε	$\{0,\pm 1\}$	3.33	0.08	0.05

- 1. Original Problem: >24GB for constraints
- 2. Use structure of constraints to reduce size!
 - All entries in $\{0,\pm 1\}$
 - $E = E_+ E_-$ where $E_+ \triangleq E > 0$, $E_- \triangleq E < 0$
 - represent E_{\pm} as sparse
 - pack bits in words
 - bitwise operations
 - Sparsity
 - lacktriangle use sparse data types ightarrow simplicity, compatibility

Matrix	Values	Non Zero Entries (%)			
(M,L)	"any"	(4,4) (12,22) (16,22		(16,22)	
E_1	$\{0, \pm 1\}$	2.34	0.05	0.03	
E_3	$\{0, 1\}$	6.25	0.69	0.39	
E_4	$\{0, 1\}$	6.25	0.69	0.39	
Ε	$\{0,\pm 1\}$	3.33	0.08	0.05	

- 1. Original Problem: >24GB for constraints
- 2. Use structure of constraints to reduce size! \rightarrow Sparse Matrices

М	L	Eq.s	Size x	Entries of E	Sprs. bytes	Used%
4	4	128	1 024	131 072	77 832	7,42
6	4	312	5 184	1 617 408	437 768	3,38
6	22	1 392	5 184	7 216 128	437 768	0,76
8	22	2 592	16 384	42 467 328	1 458 184	0,43
10	22	4 160	40 000	166 400 000	3 673 608	0,28
16	22	11 072	262 144	2 902 458 368	25 231 368	0,11

Matrix	Values	Non Zero Entries (%)			
(M,L)	"any"	(4,4) (12,22) (16,22			
$\overline{E_1}$	$\{0, \pm 1\}$	2.34	0.05	0.03	
E_3	$\{0, 1\}$	6.25	0.69	0.39	
E_4	$\{0, 1\}$	6.25	0.69	0.39	
Ε	$\{0,\pm 1\}$	3.33	0.08	0.05	

- 1. Original Problem: >24GB for constraints , Sparse: \sim 25MB
- 2. Use structure of constraints to reduce size! \rightarrow Sparse Matrices
- 3. Numerical Errors!!!

M	L	Eq.s	Size x	Entries of E	Sprs. bytes	Used%
4	4	128	1 024	131 072	77 832	7,42
6	4	312	5 184	1 617 408	437 768	3,38
6	22	1 392	5 184	7 216 128	437 768	0,76
8	22	2 592	16 384	42 467 328	1 458 184	0,43
10	22	4 160	40 000	166 400 000	3 673 608	0,28
16	22	11 072	262 144	2 902 458 368	25 231 368	0,11

$$E \triangleq \begin{bmatrix} E_1 \\ E_3 \\ E_4 \end{bmatrix} \quad \begin{array}{ll} P1: \text{minimize} & \parallel \mathbf{x} \parallel_0 & P2: \text{minimize} & \mathbf{y}^T \mathbf{x} \\ \text{s.t.} & E\mathbf{x} = \mathbf{d} & \text{s.t.} & E\mathbf{x} = \mathbf{d} \\ \mathbf{x} \geq \mathbf{0} & \mathbf{x} \geq \mathbf{0} \\ \mathbf{1} \geq \mathbf{y} \geq \mathbf{0} \\ \mathbf{1}^T \mathbf{y} = n - k \end{bmatrix}$$

 $\forall x, y \in \mathbb{R}^n_+, \theta \in [0, 1]:$

$$\| \theta \mathbf{x} + (1 - \theta) \mathbf{y} \|_{0} \ge \min \{ \| \mathbf{x} \|_{0}, \| \mathbf{y} \|_{0} \}$$
 (4)

- $\|\cdot\|_0$: quasiconcave function in \mathbb{R}^n_+
- k : minimum cardinality

$$E \triangleq \begin{bmatrix} E_1 \\ E_3 \\ E_4 \end{bmatrix} \quad \begin{array}{ll} P1: \mbox{minimize} & \parallel \mathbf{x} \parallel_0 & P2: \mbox{minimize} & \mathbf{y}^T \mathbf{x} \\ & \mathbf{x}$$

 $\forall x, y \in \mathbb{R}^n_+, \theta \in [0, 1]:$

$$\| \theta \mathbf{x} + (1 - \theta) \mathbf{y} \|_{0} \ge \min \{ \| \mathbf{x} \|_{0}, \| \mathbf{y} \|_{0} \}$$
 (4)

- $\|\cdot\|_0$: quasiconcave function in \mathbb{R}^n_+
- ▶ k : minimum cardinality
- ightharpoonup x minimizer of P1 \iff (x, y) minimizer of P2

$$E \triangleq \begin{bmatrix} E_1 \\ E_3 \\ E_4 \end{bmatrix} \quad \begin{array}{ll} P1: \mbox{minimize} & \parallel \mathbf{x} \parallel_0 & P2: \mbox{minimize} & \mathbf{y}^T \mathbf{x} \\ & \mathbf{x}$$

 $\forall x, y \in \mathbb{R}^n_+, \theta \in [0, 1]$:

$$\| \theta \mathbf{x} + (1 - \theta) \mathbf{y} \|_{0} \ge \min \{ \| \mathbf{x} \|_{0}, \| \mathbf{y} \|_{0} \}$$
 (4)

- $\|\cdot\|_0$: quasiconcave function in \mathbb{R}^n_+
- ▶ k : minimum cardinality
- ightharpoonup x minimizer of P1 \iff (x, y) minimizer of P2
- Solve P2 instead

P2: minimize
$$\mathbf{y}^T \mathbf{x}$$
 P3: minimize $\mathbf{y}^T \mathbf{x}$

s.t. $E\mathbf{x} = \mathbf{d}$ s.t. $E\mathbf{x} = \mathbf{d}$
 $\mathbf{x} \ge \mathbf{0}$ $\mathbf{x} \ge \mathbf{0}$
 $\mathbf{1} \ge \mathbf{y} \ge \mathbf{0}$
 $\mathbf{1}^T \mathbf{y} = n - k$ P4: minimize $\mathbf{y}^T \mathbf{x}$

s.t. $\mathbf{1} \ge \mathbf{y} \ge \mathbf{0}$
 $\mathbf{1}^T \mathbf{v} = n - k$

▶ P3, P4 linear (convex) problems

P2: minimize
$$\mathbf{y}^T \mathbf{x}$$
 P3: minimize $\mathbf{y}^T \mathbf{x}$

s.t. $E\mathbf{x} = \mathbf{d}$ s.t. $E\mathbf{x} = \mathbf{d}$
 $\mathbf{x} \ge \mathbf{0}$ $\mathbf{x} \ge \mathbf{0}$
 $\mathbf{1} \ge \mathbf{y} \ge \mathbf{0}$
 $\mathbf{1}^T \mathbf{y} = n - k$ P4: minimize $\mathbf{y}^T \mathbf{x}$

s.t. $\mathbf{1} \ge \mathbf{y} \ge \mathbf{0}$
 $\mathbf{1}^T \mathbf{v} = n - k$

- P3, P4 linear (convex) problems
- ► Solve sequence of P3, P4

P2: minimize
$$\mathbf{y}^T \mathbf{x}$$
 P3: minimize $\mathbf{y}^T \mathbf{x}$

s.t. $E\mathbf{x} = \mathbf{d}$ s.t. $E\mathbf{x} = \mathbf{d}$
 $\mathbf{x} \ge \mathbf{0}$ $\mathbf{x} \ge \mathbf{0}$
 $\mathbf{1} \ge \mathbf{y} \ge \mathbf{0}$
 $\mathbf{1}^T \mathbf{y} = n - k$ P4: minimize $\mathbf{y}^T \mathbf{x}$

s.t. $\mathbf{1} \ge \mathbf{y} \ge \mathbf{0}$
 $\mathbf{1}^T \mathbf{y} = n - k$

- ▶ P3, P4 linear (convex) problems
- Solve sequence of P3, P4
- Does not always converge

P2: minimize
$$\mathbf{y}^T \mathbf{x}$$
 P3: minimize $\mathbf{y}^T \mathbf{x}$

s.t. $E\mathbf{x} = \mathbf{d}$ s.t. $E\mathbf{x} = \mathbf{d}$
 $\mathbf{x} \ge \mathbf{0}$ $\mathbf{x} \ge \mathbf{0}$
 $\mathbf{1} \ge \mathbf{y} \ge \mathbf{0}$
 $\mathbf{1}^T \mathbf{y} = n - k$ P4: minimize $\mathbf{y}^T \mathbf{x}$

s.t. $\mathbf{1} \ge \mathbf{y} \ge \mathbf{0}$
 $\mathbf{1}^T \mathbf{y} = n - k$

- P3, P4 linear (convex) problems
- Solve sequence of P3, P4
- Does not always converge
 - Add noise to y
 - Or even randomize, when stationary and not optimal
 - For our problem, it is common to converge

Convergence for 10x10 random puzzle No randomization performed

No randomization performed

Convergence for 10x10 random puzzle No randomization performed

Convergence even for 16x16 original puzzle Disabled randomization

Polyhedral Cone Theory Elimination

Columns of E constitute a set of generators of

$$cone\mathcal{K} = \{Evec\tilde{\Phi}|\tilde{\Phi}\succeq 0\}$$

Vector d resides on polyhedral cone's boundary

▶ Proposition. If $\exists z \in \mathcal{K}^*$ for which $\langle z, d \rangle = 0$ and $\langle z, E_i \rangle \neq 0$ then E_i cannot belong to the smallest face.

▶ Proposition. If $\exists z \in \mathcal{K}^*$ for which $\langle z, d \rangle = 0$ and $\langle z, E_i \rangle \neq 0$ then E_i cannot belong to the smallest face.

find
$$z \in \mathbb{R}^n$$

s.t. $d^T z = 0$
 $E^T z \succeq 0$
 $E_i^T z = 1$

- ▶ Proposition. If $\exists z \in \mathcal{K}^*$ for which $\langle z, d \rangle = 0$ and $\langle z, E_i \rangle \neq 0$ then E_i cannot belong to the smallest face.
- Theorem of alternatives

$$egin{aligned} & ilde{find} & ilde{\Phi}, \mu \ & s.t. & \mu b - E_i = \textit{Evec} ilde{\Phi} \ & \textit{vec} \Phi \succeq 0 \end{aligned}$$

- ▶ Proposition. If $\exists z \in \mathcal{K}^*$ for which $\langle z, d \rangle = 0$ and $\langle z, E_i \rangle \neq 0$ then E_i cannot belong to the smallest face.
- Saunders transformation

$$egin{aligned} & ext{find} & ilde{\Phi}, \mu \ & s.t. & \mu b = E vec ilde{\Phi} \ & vec \Phi \succeq 0 \ & (vec \Phi)_i \geq 0 \end{aligned}$$

▶ Proposition. If $\exists z \in \mathcal{K}^*$ for which $\langle z, d \rangle = 0$ and $\langle z, E_i \rangle \neq 0$ then E_i cannot belong to the smallest face.

Þ

$$egin{aligned} & ext{find} & ilde{\Phi} \ & s.t. & b = Evec ilde{\Phi} \ & vec alpha \succeq 0 \ & (vec alpha)_i = 0 \end{aligned}$$