Disciplinas:

MAP 5706 - Introdução à Análise Real (DINTER)

MAP 0216 - Introdução à Análise Real

MAT 0206 - Análise Real

Semestre: 2020/2

Professor: Rodrigo Bissacot - Sala 147A - IME-USP

mail: rodrigo.bissacot@gmail.com

Listas de exercícios e informações sobre o curso em:

https://sites.google.com/site/matbissacot/Home/teaching/analise2020

Monitores:

João Maia - mail: joao.vitor.maia@usp.br Rafael Severiano - mail: rafaelseveriano@usp.br Thiago Alexandre - mail: thiago2.alexandre@usp.br Thiago Raszeja - mail: tcraszeja@gmail.com

Monitorias:

João Maia - Segundas 14h-15h - Link: FÓRUM DE DISCUSSÃO Thiago Alexandre - Terças 17h-18h - Link: FÓRUM DE DISCUSSÃO Rafael Severiano - Quintas 14h-15h - Link: FÓRUM DE DISCUSSÃO Thiago Raszeja - Sexta 19h-20h - Link: FÓRUM DE DISCUSSÃO.

Avaliação:

3 provas + Listas.

Em cada uma das avaliações o estudante pode somar $at\acute{e}$ 3,0 pontos através das listas de exercícios e as provas valerão no mínimo 7,0 cada uma. A média final M_f é calculada através da média aritmética das avaliações. Ou seja, $M_f = \frac{A_1 + A_2 + A_3}{3}$ onde, $A_i = P_i + L_i$ sendo P_i a nota obtida na prova i e L_i a nota das listas referente àquela prova (i=1,2,3). Os alunos que não atingirem 5,0 mas que ficarem com média entre 3,0 e 4,9 poderão fazer recuperação.

Para ser aprovado na REC precisa obter $\frac{M_f + REC}{2} \geq 5$.

Um comentário importante: As listas de exercícios fazem parte do conteúdo do curso, ou seja, resultados importantes serão trabalhados através das listas e estes resultados podem ser usados nas provas sem a necessidade de prová-los novamente. Mesmo os que não pretendem entregar as listas de exercícios devem estar a par do conteúdo destas.

Lista 1

Conjuntos e Funções

DATA DA ENTREGA: 14.09.2020 - SEGUNDA - ATÉ 23:59

Como entregar/enviar sua lista:

- ENVIE **UM ÚNICO PDF** PARA O ENDEREÇO

prova.analise.2020@qmail.com

. COM O TÍTULO/ASSUNTO: (NÃO ESQUEÇA ISSO!!!)

LISTA 1 - NOME COMPLETO - NUSP

Lembre que se A e B são conjuntos temos que:

$$A \cup B = \{x; \ x \in A \text{ ou } \ x \in B\}$$

$$A \cap B = \{x; \ x \in A \in x \in B\}$$

Muitas vezes vamos precisar lidar com uniões e intersecções de muitos conjuntos. Seja \mathcal{I} um conjunto de índices (que pode ser infinito), então:

$$\bigcup_{i \in \mathcal{I}} A_i = \{x; \ \exists \ j \in \mathcal{I} \ \text{tal que } x \in A_j\}$$

$$\bigcup_{i \in \mathcal{I}} A_i = \{x; \ \exists \ j \in \mathcal{I} \text{ tal que } x \in A_j\}$$
$$\bigcap_{i \in \mathcal{I}} A_i = \{x; \ \forall \ i \in \mathcal{I} \text{ temos que } x \in A_i\}$$

1. Sejam $A \in B$ conjuntos.

Mostre que as seguintes afirmações são equivalentes:

- (i) $A \subseteq B$
- (ii) $A \cap B = A$
- (iii) $A \cup B = B$.
- **2.** Sejam A um conjunto e $(A_i)_{i\in\mathcal{I}}$ uma família de conjuntos.

Mostre que
$$A \cup \left(\bigcap_{i \in \mathcal{I}} A_i\right) = \bigcap_{i \in \mathcal{I}} (A \cup A_i).$$

3. Seja $f: \{1, 2, 3, 4\} \to \{1, 2\}$ uma função definida por f(1) = f(2) = 1e f(3) = f(4) = 2. Como vimos em aula, sendo f sobrejetora, f possui uma inversa à direita. Exiba explicitamente uma inversa à direita de f. Esta inversa à direita de f é única? Se o for, prove. Caso contrário, encontre todas as funções que são inversas à direita de f.

Dado um conjunto X denotamos por P(X) o conjunto das partes de X, ou seja, $P(X) = \{Y; Y \subseteq X\}.$

4. Sejam $A \in B$ conjuntos.

Mostre que:

- (a) $A \subseteq B \Leftrightarrow P(A) \subseteq P(B)$
- (b) $P(A) \cup P(B) \subseteq P(A \cup B)$ e dê um exemplo onde a contenção é estrita.
- (c) $P(A) \cap P(B) = P(A \cap B)$
- **5.** Sejam $f: X \to Y$ e $g: Y \to Z$ funções. Mostre que:
- (a) Se f e g são injetoras, então $g \circ f$ é injetora.
- (b) Se $g \circ f$ é injetora, então f é injetora.
- (c) Se $g \circ f$ é injetora e f é sobrejetora, então g é injetora.
- (d) Se $g \circ f$ é sobrejetora e g é injetora, então f é sobrejetora.
- **6.** Seja $f: X \to Y$ uma função. Mostre que f é injetora se, e somente se, para todo $A \subseteq X, f^{-1}(f(A)) = A$.

Obs: Lembro que $f(A) = \{y \in Y; \exists x \in A \text{ tal que } f(x) = y\}$ e se $Z \subseteq Y$ então $f^{-1}(Z) = \{x \in X; \text{tal que } f(x) \in Z\}.$

- 7. Seja $f: X \to Y$ uma função. Prove que f é sobrejetora se, e somente se, para todo conjunto Z e todo par de funções $g: Y \to Z$ e $h: Y \to Z$, $g \circ f = h \circ f$ então temos que g = h.
- 8. Seja $f: X \to Y$ uma função. Mostre que f é injetora se, e somente se, para todo par de subconjuntos A e B de X, vale $f(A \setminus B) = f(A) \setminus f(B)$.
- **9.** Seja $f: A \to B$ uma função, $(A_{\lambda})_{{\lambda} \in L}$ uma família de subconjuntos de A e $(B_{\mu})_{\mu \in M}$ uma família de subconjuntos de B. Mostre que:

(a)
$$f(\bigcap_{\lambda \in L} A_{\lambda}) \subseteq \bigcap_{\lambda \in L} f(A_{\lambda})$$

(b)
$$f(\bigcup_{\lambda \in L} A_{\lambda}) = \bigcup_{\lambda \in L} f(A_{\lambda})$$

(a)
$$f(\bigcap_{\lambda \in L} A_{\lambda}) \subseteq \bigcap_{\lambda \in L} f(A_{\lambda})$$

(b) $f(\bigcup_{\lambda \in L} A_{\lambda}) = \bigcup_{\lambda \in L} f(A_{\lambda})$
(c) $f^{-1}(\bigcup_{\mu \in M} B_{\mu}) = \bigcup_{\mu \in M} f^{-1}(B_{\mu})$

(d)
$$f^{-1}(\bigcap_{\mu \in M} B_{\mu}) = \bigcap_{\mu \in M} f^{-1}(B_{\mu})$$

- **10.** Exiba uma função $f: X \to Y$ e dois subconjuntos A, B do conjunto X tais que $f(A \cap B) \neq f(A) \cap f(B)$.
- 11. Muitas vezes trabalhamos em um conjunto ambiente maior que contém todos os demais conjuntos com os quais estamos lidando. Seja X o conjunto ambiente e $A \subseteq X$. O conjunto $A^c = X \setminus A = \{x \in X; x \notin A\}$ é dito o complementar de A. Mostre que $f: X \to Y$ é uma função injetora se, e somente se, para todo $A \subseteq X$ temos $f(A^c) \subseteq f(A)^c$.

Obs: Note que o complementar de f(A) é em relação ao conjunto Y pois $f(A) \subseteq Y$, ou seja, $f(A)^c = Y \setminus f(A)$.

12. Mostre que $f: X \to Y$ é uma função injetora se, e somente se, para qualquer família $(A_{\lambda})_{\lambda \in L}$ de subconjuntos de X temos:

$$f(\bigcap_{\lambda \in L} A_{\lambda}) = \bigcap_{\lambda \in L} f(A_{\lambda})$$

Obs. Vamos usar o exercício 12 na prova do Cantor-Bernstein.