Finite State Machines

Contents

- Mealy Machine
- Moore Machine
- Mixed Machine

State Machine Design

Sequential logic, circuits, or machines:

- 1. Have internal memory
- 2. Types:
 - Synchronous (clocked) memory elements controlled by an external signal can change only at specific times
 - Asynchronous less frequently used but more interesting memory elements change state whenever 1 or more inputs change – no clock

State Machine Design

- 3. VERY IMPORTANT: Control conditions under which state changes
 - Otherwise single input change causes many state changes, due to relative logic delays
- 4. Asynchronous Logic:
 - Faster than synchronous for small circuits
 - Slower than synchronous for large circuits
 - REASON: Vastly more logic is required due to absence of CLOCK

Mealy Machines

Moore Machines

Mealy Machines

- Nasty to design reliably and debug
- WHY?
 - Real circuits have hazards:
 - Undesirable: You expect c to be 0, and run it as input to a flip-flop which catches the short logic 1 pulse on c (called *one's catching*)
 - Flip-flop gets set, but you expected it to be cleared

Hazards

- Unavoidable
- Different signals have different propagation delays
 - Different paths through circuit
 - Different logic gates have different delay times determined by:
 - 1. Gate type
 - 2. Number of inputs
- Mealy machines do not filter out hazards, from inputs to outputs
 - WHY? Output decoder is a function of inputs as well as of state

Moore Machine

- Output is stable:
 - Filters out hazards in primary outputs, since they cannot propagate from inputs to outputs
- Rule: Never design a Mealy Machine unless you really have to
 - Unfortunately, you often have to do it to satisfy the circuit functional specification

State Machine Design Process

- 1. Identify State Variables S
- 2. Identify Output Decoder & Next State Decoder
- 3. Build State Transition Diagram
- 4. Minimize States
- 5. Choose appropriate type of flip-flops
- 6. Choose State Assignment
 - Assignment of binary codes to machine states
- 7. Design next state decoder & output decoder use combinational logic structured design methods K-maps, Variable-Entered Map, Verilog

Mealy Machine Sequence Detector Recognizing 110₂

• Double circle shows reset state

	Present Input X/Z	
Present State	0	1
S ₁ S ₂ S ₃	S ₁ /0 S ₁ /0 S ₁ /1	S ₂ /0 S ₃ /0 S ₃ /0

Moore Machine Sequence Detector Recognizing 110₂

 Pay for better behavior of Moore machine with extra flip-flop

	Present Input		Present Output
Present State	0	1	Z
S ₁ S ₂ S ₃ S ₄	S ₁ S ₁ S ₄ S ₁	S ₂ S ₃ S ₃ S ₂	0 0 0 1

Mixed Machine

- Demonstrate combined FSMs
 - (Ex: 101 and 1001)

FSM Optimization

- More number of states leads to more area
- If next states for 2 state are same
- If output of 2 states is same

FSM Optimization

A and B equivalent

PS	NS,Z	
	X=0	X=1
A	C,1	E, 1
В	C, 1	E , 1
С	B,0	A,1
D	D, 0	E,1
E	D,1	A,0

FSM Optimization

PS	NS,Z	
	X=0	X=1
A	C,1	E,1
С	A,0	A,1
D	D ,0	E,1
Е	D,1	A,0

FSM Optimization - Implication

Present State	Next State X=0	Next State X=1	Output
Α	D	С	0
В	F	Н	0
С	Е	D	1
D	А	E	0
E	С	А	1
F	F	В	1
G	В	Н	0
Н	С	G	1

					C	L	D	
Б	X				D	Α	Е	0
В	D-F, C-H				E	С	Α	1
С	Х	Х			F	F	В	1
					G	В	Н	0
D	A-D, C-E	A-F, A-H <mark>X</mark>	X		Н	С	G	1
Е	Х	Х	C-E, A-D	Х				
F	Х	X	E-F, B-D X	X	C-F, A-B X			
G	В-D, С-Н <mark>Х</mark>	B-F X	X	A-B, E-H <mark>X</mark>	X	Х		
Н	Х	Х	C-E, D-G X	X	A-G X	C-F, B-G X	X	
			,			,		

FSM Optimization - Implication

A=D C=E

Present State	Next State X=0	Next State X=1	Output
А	А	С	0
В	F	Н	0
С	С	А	1
D	A		0-
- +	c	A	1 -
F	F	В	1
G	В	Н	0
Н	С	G	1

Assignment

Optimize the following using implication method

PS	I1	I2
A	E,0	B,0
В	F,0	A,0
С	E,1	C, 0
D	F,1	D, 0
E	C,1	C, 0
F	D,1	B,0

Assignment

Optimize the following using implication method

PS	I1	I2
A	E,0	B,0
В	F,0	A,0
С	E,0	C, 0
D	F,1	D, 0
Е	C,1	C, 0
F	D, 0	B,0