Q7: A Subset By Any Other Name

Given a set of n consecutive capital letters, "ABCDE..." and an integer $1 \le p \le n$, you are to output in alphabetic order all possible different subsets of size p. For example, given n=4 (i.e., "ABCD") and p=2, there are 6 possible different subsets as shown in the adjacent table.

It is known that the number of different subsets of size p drawn from a base set of size n is $\frac{n!}{p!(n-p)!}$. In this example, this computes as $\frac{4!}{2!2!}$ or 6.

Different Subsets for n=4 and p=2
AB
AC
AD
BC
BD
CD

Input

The first line of input will be an integer on a line by itself representing the number of letters in the set, n. The second line of input will be an integer on a line by itself representing the size of the subsets, p. You can be assured that $1 \le p \le n \le 10$.

Output

The output will contain a number of lines, each of which contains a string of *p* characters in alphabetic sorted order, representing a subset drawn from the *n* letters in the original set. In addition, the entire output must appear in alphabetic sorted order as shown in the Sample Input and Output below.

Sample Input and Output

Input	Output
4	A
1	В
	C
	D
5	ABC
3	ABD
	ABE
	ACD
	ACE
	ADE
	BCD
	BCE
	BDE
	CDE
3	AB
2	AC
	BC
5	ABCDE
5	