Exercise2.1

Proof.

(i) (epic \Rightarrow surjective)

For epic arrow $f:A\to B$ we use the proof by contradiction.

Assuming that f is not surjective, then there exists $b \in B$ such that for all $a \in A, f(a) \neq b$.

Let $i, j: B \to D$ such that i(x) = j(x) for all $x \neq b \in B$ and $i(b) \neq j(b)$. Then for all $a \in A$, if(a) = jf(a) but $i \neq j$. Therefore, f is not epic which is a contradiction.

Therefore f is epic implies f is surjective.

(ii) (surjective \Rightarrow epic)

For surjective mapping $f:A\to B$. If if=jf, then $\forall b\in B$. $\exists a\in A.\ i(b)=if(a)=jf(a)=j(b)$. Therefore f is also epic. \Box