1 Convergence of random variables, and limit theorems

Notation Let X_1, X_2, \ldots and X be random variables with cdfs F_1, F_2, \ldots and F. Note that

$$\{X_n \to X \text{ as } n \to \infty\}$$

is an event.

Convergence almost surely $X_n \xrightarrow{as} X$ almost surely if

$$P(X_n \to X \text{ as } n \to \infty) = 1.$$

Convergence in probability $X_n \xrightarrow{p} X$ in probability if, for any $\epsilon > 0$,

$$P(|X_n - X| < \epsilon) \to 1 \text{ as } n \to \infty.$$

Convergence in distribution $X_n \stackrel{d}{\longrightarrow} X$ in distribution if, for any x such that F is continuous at x,

$$F_n(x) \to F(x)$$
 as $n \to \infty$.

(Note that $X_n \xrightarrow{d} c$ means that X_n converges to a random variable with cdf F(x) = 0 for x < c and F(x) = 1 for $x \ge c$.)

Comparison of modes of convergence The following implications hold:

almost surely \Rightarrow in probability \Rightarrow in distribution.

The reverse implications do not hold in general.

Week law of large numbers (WLLN) Suppose that X_1, \ldots, X_n are iid random variables with finite mean μ . Let $S_n = X_1 + \ldots + X_n$. Then,

$$\frac{S_n}{n} \xrightarrow{p} \mu \text{ as } n \to \infty.$$

Strong law of large numbers (SLLN) Suppose that X_1, \ldots, X_n are iid random variables with mean μ . Let $S_n = X_1 + \ldots + X_n$. Then,

$$\frac{S_n}{n} \xrightarrow{as} \mu \text{ as } n \to \infty.$$

Central limit theorem (CLT) Let X_1, \ldots, X_n be a random sample of size n of any distribution with mean μ and finite variance σ^2 . Let $S_n = X_1 + \ldots + X_n$. Then,

$$\frac{S_n - n\mu}{\sigma\sqrt{n}} \xrightarrow{d} N(0,1)$$
 as $n \to \infty$.

2 Generating functions

Probability generating function (pgf) Let X be a nonnegative integer-valued random variable. The probability generating function of X is

$$G_X(s) = \mathcal{E}(s^X) = \sum_{k=0}^{\infty} s^k p_X(k).$$

If X and Y are non-negative integer-valued random variables with the same pgf, then they have the same pmf.

Properties of pgf

$$G_{aX+b}(s) = s^b G_X(s^a),$$

 $G_{X+Y}(s) = G_X(s) G_Y(s)$ (independent),
 $G_X^{(k)}(0) = k! \, p_X(k), \quad k \ge 0,$
 $G_X^{(k)}(1) = \mathrm{E}(X[X-1] \dots [X-k+1]), \quad k \ge 1.$

Sum of iid random variables Let X_1, X_2, \ldots be iid nonnegative integer-valued random variables with pgf G_X . Let N be another non-negative integer-valued random variable, independent of X_1, X_2, \ldots , and with pgf G_N . Then, the pgf of $\sum_{i=1}^N X_i$ is $G_N \circ G_X$.

Moment generating function (mgf) Let X be a random variable. The moment generating function of X is

$$M_X(t) = \mathrm{E}(e^{tX}).$$

If X and Y are random variables with the same mgf, which is finite on $[-t_0, t_0]$ for some $t_0 > 0$, then they have the same pmf/pdf.

Properties of mgf

$$M_{aX+b}(t) = e^{bt} M_X(at),$$

 $M_{X+Y}(t) = M_X(t) M_Y(t)$ (independent),
 $M_X(t) = \sum_{k=0}^{\infty} \frac{t^k E(X^k)}{k!}, \quad M_X^{(k)}(0) = E(X^k).$

Sum of iid random variables Let X_1, X_2, \ldots be iid random variables with mgf M_X . Let N be a nonnegative integer-valued random variable, independent of X_1, X_2, \ldots , and with pgf G_N . Then, the mgf of $\sum_{i=1}^N X_i$ is $G_N \circ M_X$.

Continuity result for mgf Suppose Y and X_1, X_2, \ldots are random variables whose moment generating functions M_Y and M_{X_1}, M_{X_2}, \ldots are all finite on $[-t_0, t_0]$ for some $t_0 > 0$. If

$$M_{X_n}(t) \to M_Y(t)$$
 as $n \to \infty$, for all $t \in [-t_0, t_0]$,
then $X_n \xrightarrow{d} Y$ as $n \to \infty$.

Characteristic function Let X be a random variable. The *characteristic function* of X is defined by

$$\phi_X(t) = \mathrm{E}(e^{itX}) = \mathrm{E}(\cos(tX)) + i\mathrm{E}(\sin(tX)).$$

3 Joint distribution of continuous random variables

Jacobian Suppose $T:(x,y)\mapsto (u,v)$ is a one-to-one mapping. The *Jacobian* is defined as

$$J(u,v) = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u}.$$

Change of variables If X, Y have joint pdf $f_{X,Y}$, then the random variables U, V defined by (U, V) = T(X, Y) are jointly continuous with joint pdf $f_{U,V}$ given by

$$f_{U,V}(u,v) = f_{X,Y}(x(u,v),y(u,v))|J(u,v)|.$$

Covariance matrix Let $Z_1 ..., Z_n$ be idd standard normal random variables. Define $X_1, ..., X_n$ by

$$\begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix} = A \begin{pmatrix} Z_1 \\ \vdots \\ Z_n \end{pmatrix} + \begin{pmatrix} \mu_1 \\ \vdots \\ \mu_n \end{pmatrix},$$

for some $n \times n$ invertible matrix A. The matrix $\Sigma = AA^T$ with entries $\Sigma_{i,j} = \text{cov}(X_i, X_j)$ is the covariance matrix.

Multivariate normal distribution $(n \ge 2)$ The multivariate normal distribution has pdf

$$f_{\boldsymbol{X}}(\boldsymbol{x}) = \frac{1}{(2\pi)^{n/2} \sqrt{\det \Sigma}} \exp \left(-\frac{1}{2} (\boldsymbol{x} - \boldsymbol{\mu})^T \Sigma^{-1} (\boldsymbol{x} - \boldsymbol{\mu}) \right).$$

Standard normal distribution (n = 2) In this case,

$$\Sigma = \begin{pmatrix} \sigma_X^2 & \rho \sigma_X \sigma_Y \\ \rho \sigma_X \sigma_Y & \sigma_Y^2 \end{pmatrix} = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix},$$

with $\rho = \text{cov}(X, Y)/(\sigma_X \sigma_Y) = \text{cov}(X, Y)$, which yields

$$f_{X,Y}(x,y) = \frac{1}{2\pi\sqrt{1-\rho^2}} \exp\left(-\frac{x^2 - 2\rho xy + y^2}{2(1-\rho^2)}\right).$$

Conditioning by an event Suppose that B is an event such that P(B) > 0. Then, the *conditional distribution function* (or *conditional cdf*) of X given B is

$$F_{X|B}(x) = \frac{P(\{X \le x\} \cap B)}{P(B)},$$

the conditional density function of X given B (or conditional pdf) is $f_{X|B}(x) = F'_{X|B}(x)$, and the conditional expectation of X given B is

$$E(X|B) = \int_{-\infty}^{\infty} x f_{X|B}(x) dx.$$

Conditioning by a continuous variable The conditional distribution function of X given Y = y is

$$F_{X|Y=y}(x) = \int_{-\infty}^{x} \frac{f_{X,Y}(u,y)}{f_{Y}(y)} du,$$

the conditional density function of X given Y = y is

$$f_{X|Y=y}(x) = \frac{f_{X,Y}(x,y)}{f_{Y}(y)},$$

and the *conditional expectation* of X given Y = y is

$$E(X|Y=y) = \int_{-\infty}^{\infty} x f_{X|Y=y}(x) dx.$$

Law of total expectation Suppose Y has pdf f_Y . Then,

$$E(X) = \int_{-\infty}^{\infty} E(X|Y=y) f_Y(y) dy.$$

4 Markov chains

Set-up Let I be finite or countably infinite. A probability distribution on I is a (possibly infinite) row vector $\lambda = (\lambda_i, i \in I)$ with $\lambda_i \geq 0$ for all i, and $\sum_{i \in I} \lambda_i = 1$. We will say that a random variable Y taking values in I has distribution λ if $P(Y = i) = \lambda_i$ for all i.

Markov chain Let $X = (X_n, n \ge 0)$ be a sequence of random variables taking values in I. The process X is called a *Markov chain* if, for any $n \ge 0$ and i_0, \ldots, i_{n+1} ,

$$P(X_{n+1} = i_{n+1} | X_n = i_n, ..., X_0 = i_0),$$

= $P(X_{n+1} = i_{n+1} | X_n = i_n).$

Homogeneous The Markov chain is called *homogeneous* if the *transition probability* $p_{ij} = P(X_{n+1} = j | X_n = i)$ depends only on i and j, not on n.

Transition matrix The transition matrix P is the (possible infinite) matrix $P = (p_{ij})_{i,j \in I}$. The ith row of P is the probability distribution of X_{n+1} given $X_n = i$.

Initial distribution Let λ be the distribution of X_0 , called the *initial distribution*. Then,

$$P(X_0 = i_0, \dots, X_n = i_n) = \lambda_{i_0} p_{i_0 i_1} \dots p_{i_{n-1} i_n}.$$

Chapman–Kolmogorov equations Consider the *n-step* transition probability $p_{ij}^{(n)} = P(X_{k+n}|X_k = i)$. Then,

$$p_{ij}^{(n+m)} = \sum_{k \in I} p_{ik}^{(n)} p_{kj}^{(m)}, \quad p_{ij}^{(n)} = (P^n)_{ij}.$$

As a consequence, the distribution of X_n is λP^n .

Function of a Markov chain Suppose that the random process $Y = (Y_n, n \ge 0)$ is such that $Y_{n+1} = f(Y_n, X_{n+1})$ for each n, where X_{n+1} is independent of Y_0, \ldots, Y_n . Then, Y is a Markov chain.

2 H. Montanelli

Closed class A class C is called *closed* if $p_{ij} = 0$, whenever $i \in C$ and $j \notin C$. A closed class cannot be escaped.

Absorbing class If $\{i\}$ is a closed class, then $p_{ii} = 1$, and i is called an *absorbing* state.

Irreducible chain A chain for which I consists of a single communicating class is called irreducible.

Period The greatest common divisor of $\{n: p_{ii}^{(n)} > 0\}$.

Hitting probability The hitting probability of A starting from i is $h_i^A = P(X_n \in A \text{ for some } n \geq 0 \mid X_0 = i)$, and is the minimal non-negative solution to

$$h_i^A = \begin{cases} 1, & \text{if } i \in A, \\ \sum_{j \in I} p_{ij} h_j^A, & \text{if } i \notin A. \end{cases}$$

Transience and recurrence The state i is called transient if

$$P(X_n = i \text{ for some } n \ge 1 \mid X_0 = i) = p < 1,$$

 $\Rightarrow P(\text{hit } i \text{ infinitely often } \mid X_0 = i) = 0.$

The state i is called recurrent if

$$P(X_n = i \text{ for some } n \ge 1 \mid X_0 = i) = 1,$$

 $\Rightarrow P(\text{hit } i \text{ infinitely often } \mid X_0 = i) = 1.$

Note that in a communicating class either all states are recurrent or all transient, that every recurrent class is closed, and that every finite closed class is recurrent.

Mean hitting time The mean hitting time of A starting from i is $k_i^A = \text{E}(\inf\{n : X_n \in A\} | X_0 = i)$, and is the minimal non-negative solution to

$$k_i^A = \left\{ \begin{array}{ll} 0, & \text{if } i \in A, \\ 1 + \sum_{j \in I} p_{ij} k_j^A, & \text{if } i \notin A. \end{array} \right.$$

Mean return time The mean return time to a state i is

$$m_i = \text{E}(\inf\{n \ge 1 : X_n = i\} | X_0 = i),$$

= $1 + \sum_{j \in I} p_{ij} k_j^{\{i\}}.$

Stationary distribution We say that $\pi = (\pi_i, i \in I)$ is a stationary distribution if $\pi P = \pi$.

Existence and uniqueness Let P be an irreducible transition matrix. Then, P has a stationary distribution if and only if P is positive recurrent, and the stationary distribution π is unique and given by $\pi_i = 1/m_i$ for all i.

Convergence to equilibrium Suppose P is irreducible and aperiodic, with stationary distribution π . If X_n is a Markov chain with transition matrix P and any initial distribution, then for all $j \in I$,

$$P(X_n = j) \to \pi_j \text{ as } n \to \infty.$$

In particular, $p_{ij}^{(n)} \to \pi_j$ as $n \to \infty$, for all i and j.

Ergodic theorem Let P be irreducible. Let $V_i(n)$ be the number of visits to state i before time n, that is

$$V_i(n) = \sum_{\ell=0}^{n-1} \mathbf{1}(X_{\ell} = i).$$

Then, for any initial distribution, and for all $i \in I$,

$$\frac{V_i(n)}{n} \xrightarrow{as} \frac{1}{m_i} \text{ as } n \to \infty.$$

5 Poisson process

Set-up Consider a random process $(N_t, t \geq 0)$ with a continuous time variable t. Such a process is called a counting process if N_t takes non-negative integer values, and $N_s \leq N_t$ whenever $s \leq t$.

Interarrival time If N_t describes an arrival process, then $N_t = k$ means that there have been k arrivals in the time interval [0,t]. Let $T_k = \inf\{t \geq 0 : N_t \geq k\}$ for $k \geq 0$. Then, $T_0 = 0$ and T_k is the k-th arrival time, for $k \geq 1$. We also define $Y_k = T_k - T_{k-1}$, for $k \geq 1$, the interarrival time between arrivals k-1 and k.

Increment For s < t, we write N(s,t] for $N_t - N_s$, which we can think of as the number of points of the process which occur in the time-interval (s,t]. This is also called the *increment* of the process N on the interval (s,t].

Poisson process $(N_t, t \geq 0)$ is a *Poisson process* of rate λ if its interarrival times $Y_1, Y_2, \ldots \stackrel{\text{iid}}{\sim} \operatorname{Exp}(\lambda)$.

Poisson process (increment) $(N_t, t \ge 0)$ is a *Poisson process* of rate λ if

- (i) $N_0 = 0$;
- (ii) if $(s_1, t_1), \ldots, (s_k, t_k)$ are disjoint intervals in \mathbb{R}_+ , then $N(s_1, t_1], \ldots, N(s_k, t_k]$ are independent;
- (iii) for any s < t, the increment N(s,t] has Poisson distribution with mean $\lambda(t-s)$.

Superposition Let L_t and M_t be independent Poisson processes of rate λ and μ respectively. Then, $L_t + M_t$ is a Poisson process of rate $\lambda + \mu$.

Thinning Let N_t be a Poisson process of rate λ . Mark independently each point of the process with probability p. Let M_t be the counting process of the marked points. Then, M_t is a Poisson process of rate $p\lambda$.

3 H. Montanelli