微分几何-曲线论

2024年7月23日

目录

- ① 概述
- 2 回顾
 - 内积和外积
 - 曲线的表达
- ③ 曲线论
 - 参数曲线
 - 局部性质
 - 全局性质
- 4 总结

- ① 概述
- - 内积和外积
 - 曲线的表达
- ③ 曲线论
 - 参数曲线
 - 局部性质
 - 全局性质
- 4 总结

概述

曲线论的关注点

● 表达:参数化

② 描述: 局部坐标系与变化趋势

3 量化: 弧长, 曲率与挠率──不变量 (与参数化无关)

① 概述

概述

- 2 回顾
 - 内积和外积
 - 曲线的表达
- - 参数曲线
 - 局部性质
 - 全局性质
- 4 总结

- ① 概述
- 2 回顾
 - 内积和外积
 - 曲线的表达
- ③ 曲线论
 - 参数曲线
 - 局部性质
 - 全局性质
- 4 总结

内积

定义 (内积, Inner Product)

设 X 为数域 \mathbb{K} 上的线性空间, 如果函数 $<\cdot,\cdot>: X\times X\to \mathbb{K}$ 满足:

- $\langle x, x \rangle \geqslant 0, \forall x \in X$, 且等号成立当且仅当 x = 0;
- \bullet < x, y >= $\overline{\langle y, x \rangle}$, $\forall x, y \in X$:
- $\bullet < ax + by, z >= a < x, z > +b < y, z >, \forall a, b \in \mathbb{K}, \forall x, y, z \in X,$

则称 $<\cdot,\cdot>$ 为 X 上的一个内积, 称 X 为内积空间.

内积和外积

ℝ"上的内积

<u>R"</u>上的内积

- \mathbb{R}^n 中的一个内积为: $\langle x, y \rangle = x^T y, x, y \in \mathbb{R}^n$
- \bullet < x, x >= $x^T x = ||x||_2^2$
- $\langle x, y \rangle = ||x||_2 ||y||_2 \cos \theta$, θ 为 x, y 的夹角

内积的导数

设 x, y 为 t 的函数, 则

$$\frac{\mathrm{d}}{\mathrm{d}t} \langle x, y \rangle = \frac{\mathrm{d}}{\mathrm{d}t} \left(\sum_{i=1}^{n} x_{i} y_{i} \right)$$

$$= \sum_{i=1}^{n} \left(y_{i} \frac{\mathrm{d}x_{i}}{\mathrm{d}t} + x_{i} \frac{\mathrm{d}y_{i}}{\mathrm{d}t} \right)$$

$$= \langle \frac{\mathrm{d}x_{i}}{\mathrm{d}t}, y \rangle + \langle x, \frac{\mathrm{d}y}{\mathrm{d}t} \rangle$$
(1)

外积和混合积

ℝ3 上的外积

- $\bullet \cdot \times \cdot : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^3$
- $||x \times y||_2 = ||x||_2 ||y||_2 \sin \theta$, θ 为 x, y 的夹角
- {x, y, x × y} 成右手系 (如果 x, y 不共线)

外积的导数

设 x, y 为 t 的函数, 与内积的导数类似, 有

$$\frac{\mathrm{d}}{\mathrm{d}t}(x \times y) = \frac{\mathrm{d}x}{\mathrm{d}t} \times y + x \times \frac{\mathrm{d}y}{\mathrm{d}t}$$
 (2)

\mathbb{R}^3 上的混合积

- \bullet $(\cdot, \cdot, \cdot) : \mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$
- $(x, y, z) = \langle x \times y, z \rangle$
- |(x, y, z)| 的几何意义为以 x, y, z 为边的平行六面体的体积

① 概述

概述

- 2 回顾
 - 内积和外积
 - 曲线的表达
- - 参数曲线
 - 局部性质
 - 全局性质
- 4 总结

表达方法

曲线的表达方法

- □ 隐式表达
 - 隐式代数表达 (F(x) = 0, F 是一个多项式函数)
 - **.**..
- ② 参数表达 (其形式为 x = x(t))
 - 贝塞尔样条表达
 - B 样条/非均匀有理 B 样条 (Nurbs) 表达
 - 3 ...

单位圆的隐式代数表达和参数表达

$$\begin{cases} x^2 + y^2 + z^2 - 1 = 0 \\ z = 0 \end{cases}$$

$$\begin{cases} x(t) = \cos t \\ y(t) = \sin t \end{cases}$$

表达方法对比

求值和位置关系

- 求值问题
 - 隐式代数表达下, 几何上的点是代数方程的解, 一般而言较难获取;
 - 参数表达下,给定参数域上一点,可以自然地获得几何上对应的点.
- 位置关系判断
 - 隐式代数表达下,位置判断是比较容易的;
 - 参数表达下, 位置判断可能需要借助距离/投影的方法.

单位圆的隐式代数表达和参数表达

$$\begin{cases} x^2 + y^2 + z^2 - 1 = 0 \\ z = 0 \end{cases}$$

$$\begin{cases} x(t) = \cos t \\ y(t) = \sin t \end{cases}$$

- ① 概述
- - 内积和外积
 - 曲线的表达
- ③ 曲线论
 - 参数曲线
 - 局部性质
 - 全局性质
- 4 总结

- ① 概述
- - 内积和外积
 - 曲线的表达
- ③ 曲线论
 - 参数曲线
 - 局部性质
 - 全局性质
- 4 总结

定义 (参数曲线, Parameterization Curve)

设 $\mathcal{I} \subset \mathbb{R}$ 是一个区间. \mathbb{R}^n 中的参数曲线是一个连续函数 $\mathbb{C}: \mathcal{I} \to \mathbb{R}^n$. n=2时, C 称为平面曲线: n=3 时, C 称为空间曲线.

定义 (正则曲线, Regular Curve)

设 $\mathbf{C}: \mathcal{I} \to \mathbb{R}^n$ 为一条参数曲线. 设 $t_0 \in \mathcal{I}$, 如果 $\mathbf{C}'(t_0) \neq 0$, 则称 t_0 为参数曲 线的正则点. 如果 $\mathbf{C}'(t) \neq 0, \forall t \in \mathcal{I}$ 成立, 则称参数曲线 \mathbf{C} 为正则参数曲线.

(a)
$$C(t) = (t^3 - 4t, t^2 - 4)$$
 (b) $C(t) = (t^3, t^2)$

(b)
$$C(t) = (t^3, t^2)$$

(c)
$$C(t) = (t, |t|)$$

切线

参数曲线 C 在 $C'(t_0) \neq 0$, $t_0 \in \mathcal{I}$ 处的 切线为:

$$\ell(t) := \mathbf{C}(t_0) + t\mathbf{C}'(t_0). \tag{3}$$

弧长

正则参数曲线 C(t) 从点 $t_0 \in \mathcal{I}$ 到点 $t \in \mathcal{I}$ 处的弧长为:

$$s(t) := \int_{t}^{t} \|\mathbf{C}'(t)\|_{2} dt.$$
 (4)

(a) 割线与切线

(b) 弧长

定义 (重参数化, Reparameterization)

设 $\mathbf{C}:\mathcal{I}\to\mathbb{R}^n$ 为一条参数曲线, $g:\mathcal{J}\to\mathcal{I}$ 为连续的满射, 称 $\xi=\mathbf{C}\circ g$ 为参数曲线 \mathbf{C} 的一个重参数化.

命题 (弧长重参数化, Reparametrization by Arc Length)

设 $C: \mathcal{I} \to \mathbb{R}^n$ 为一正则参数曲线, 则 C 可以 弧长重参数化, 且重参数化的曲线也是正则 的. 此外, 若 C 是 C^k 的, 重参数化的曲线也 是 C^k 的.

$$\alpha(t) = (\cos t, \sin t),$$

$$\beta(t) = (\cos 2t, \sin 2t).$$

① 概述

概述

- - 内积和外积
 - 曲线的表达
- ③ 曲线论
 - 参数曲线日前性医
 - 局部性质
 - 全局性质
- 4 总结

定理 (空间曲线基本定理)

设 $\mathcal{J} \subset \mathbb{R}$, 且 $0 \in \mathcal{J}$. 给定连续可微的函数 $\kappa : \mathcal{J} \to \mathbb{R}^+$ 和 $\tau : \mathcal{J} \to \mathbb{R}$, 存在 开区间 $\mathcal{I} \subset \mathbb{R}, 0 \in \mathcal{I}$, 以及正则向量函数 $\mathbf{C} : \mathcal{I} \to \mathbb{R}^3$, 使 \mathbf{C} 为弧长参数化的曲 线, 且分别以 κ , τ 为曲率, 挠率. 进一步, 任意两条以 κ 为曲率, 以 τ 为挠率的 曲线可以通过刚体运动从一条映射到另一条.

单位切向量

定义 (单位切向量, Unit Tangent Vector)

设 $\mathbf{C}: \mathcal{I} \to \mathbb{R}^3$ 为一条正则参数曲线. \mathbf{C} 在 $t \in \mathcal{I}$ 处的单位切向量定义为:

$$\mathbf{T}(t) = \frac{\mathbf{C}'(t)}{\|\mathbf{C}'(t)\|_2}.$$
 (5)

注

① 在弧长参数化下, $\|\mathbf{C}'(t)\|_2 = 1$, 因此,

$$\mathbf{T}(t) = \mathbf{C}'(t). \tag{6}$$

② 当 $\|\mathbf{C}'(t)\|_2$ 为常数时, 曲线在该参数化下弧长的变化时均匀的.

主法向量

定义 (主法向量, Principal Normal Vector)

设 $C: \mathcal{I} \to \mathbb{R}^3$ 为一条正则参数曲线, 且 $C \in C^2(\mathcal{I})$, T(t) 为 C 在 $t \in \mathcal{I}$ 处的 单位切向量. C 在 $t \in \mathcal{I}$ 处的主法向量定义为:

$$N(t) = \frac{T'(t)}{\|T'(t)\|_2}.$$
 (7)

注

在弧长参数化下,

$$\mathbf{N}(t) = \frac{\mathbf{C}''(t)}{\|\mathbf{C}''(t)\|_2}.$$
 (8)

(a) α 为曲线的弧长参数化.

定义 (从法向量, Binormal Vector)

设 $\mathbf{C}:\mathcal{I}\to\mathbb{R}^3$ 为一条正则参数曲线,且 $\mathbf{C}\in\mathrm{C}^2(\mathcal{I})$, $\mathbf{T}(t)$ 为 \mathbf{C} 在 $t\in\mathcal{I}$ 处的单位切向量, $\mathbf{N}(t)$ 为 \mathbf{C} 在 $t\in\mathcal{I}$ 处的主法向量。 \mathbf{C} 在 $t\in\mathcal{I}$ 处的从法向量定义为:

$$\mathbf{B}(t) = \mathbf{T}(t) \times \mathbf{N}(t). \tag{9}$$

注

在弧长参数化下,

$$\mathbf{B}(t) = \frac{\mathbf{C}'(t) \times \mathbf{C}''(t)}{\|\mathbf{C}''(t)\|_2}.$$
 (10)

概述

定义 (Frenet 标架, Frenet Frame)

设 $\mathbf{C}: \mathcal{I} \to \mathbb{R}^3$ 为一条正则参数曲线, 且 $C \in C^2(\mathcal{I})$. 设 T(t), N(t), B(t) 分别为 C在 $t \in \mathcal{I}$ 处的单位切向量, 主法向量和从法 向量, 称 $\{C(t); T(t), N(t), B(t)\}$ 为曲线 C 在 t 处的 Frenet 标架. 平面 $\{C(t); T(t), N(t)\}$ 称为密切平面 (Osculating Plane).

定义 (曲率, Curvature)

设 $\mathbf{C}:\mathcal{I}\to\mathbb{R}^3$ 为一条正则参数曲线, 且 $\mathbf{C}\in\mathrm{C}^2(\mathcal{I})$. \mathbf{C} 的曲率 $\kappa:\mathcal{I}\to\mathbb{R}^+\cup\{0\}$ 定义为:

$$\kappa(t) = \frac{\|\mathbf{T}'(t)\|_2}{\|\mathbf{C}'(t)\|_2}.$$
 (11)

注

● 当 N(t) 良定义时,

$$\mathbf{T}'(t) = \|\mathbf{T}'(t)\|_{2}\mathbf{N}(t) = \kappa(t)\|\mathbf{C}'(t)\|_{2}\mathbf{N}(t).$$
(12)

② $\kappa(t) \equiv 0 \iff \mathbf{C}(t)$ 是一条直线 (段).

定义 (挠率, Torsion)

设 $C: \mathcal{I} \to \mathbb{R}^3$ 为一条正则参数曲线, 且其 Frenet 标架在 \mathcal{I} 上处处存在. C 的 挠率 $\tau: \mathcal{I} \to \mathbb{R}$ 由下式唯一确定:

$$\mathbf{B}'(t) = -\tau(t) \| \mathbf{C}'(t) \|_2 \mathbf{N}(t). \tag{13}$$

$$\mathbf{B'} = \mathbf{T'} \times \mathbf{N} + \mathbf{T} \times \mathbf{N'}$$

$$= \mathbf{T} \times (c_1 \mathbf{T} + c_2 \mathbf{N} + c_3 \mathbf{B})$$

$$= c_2 \mathbf{B} - c_3 \mathbf{N}.$$

而 $B' \perp B$, 故 $B' \parallel N$, 即(13)是合理的.

注

 $\tau \equiv 0 \iff$ 曲线 C 为 (落在密切平面里的) 平面曲线.

性质 (Frenet 公式)

记 $s' = \|\mathbf{C}'(t)\|_2$, 则

$$\frac{\mathrm{d}}{\mathrm{d}t}(\mathbf{T}, \mathbf{N}, \mathbf{B}) = (\mathbf{T}, \mathbf{N}, \mathbf{B}) \begin{pmatrix} 0 & -s'\kappa & 0 \\ s'\kappa & 0 & -s'\tau \\ 0 & s'\tau & 0 \end{pmatrix}. \tag{14}$$

有关 T', B' 的部分可由(12), (13)得到, 下面计算 N'. 由 Frenet 标架,

$$\langle \mathbf{T}, \mathbf{N} \rangle = 0, \langle \mathbf{N}, \mathbf{B} \rangle = 0.$$
 (15)

$$< \mathbf{T}', \mathbf{N} > + < \mathbf{T}, \mathbf{N}' > = 0, < \mathbf{N}', \mathbf{B} > + < \mathbf{N}, \mathbf{B}' > = 0.$$
 (16)

$$\begin{cases} \langle \mathbf{N}', \mathbf{T} \rangle = -\langle \mathbf{T}', \mathbf{N} \rangle = -\|\mathbf{T}'\|_{2} \langle \mathbf{N}, \mathbf{N} \rangle = -s'\kappa, \\ \langle \mathbf{N}', \mathbf{B} \rangle = -\langle \mathbf{B}', \mathbf{N} \rangle = -\tau\|\mathbf{C}'\|_{2} \langle \mathbf{N}, \mathbf{N} \rangle = -s'\tau. \end{cases}$$
(17)

一般参数化

$$\kappa = \frac{\|\mathbf{C}' \times \mathbf{C}''\|_2}{\|\mathbf{C}'\|_2^3} \tag{18a}$$

$$\tau = \frac{\langle \mathbf{C}' \times \mathbf{C}'', \mathbf{C}''' \rangle}{\|\mathbf{C}' \times \mathbf{C}''\|_2^2}$$
 (18b)

$$\mathbf{T} = \frac{\mathbf{C}'}{\|\mathbf{C}'\|_2} \tag{18c}$$

$$\mathbf{N} = \frac{\mathbf{C}' \times \mathbf{C}'' \times \mathbf{C}'}{\|\mathbf{C}'\|_2 \|\mathbf{C}' \times \mathbf{C}''\|_2}$$
 (18d)

$$\mathbf{B} = \frac{\mathbf{C}' \times \mathbf{C}''}{\|\mathbf{C}' \times \mathbf{C}''\|_2} \tag{18e}$$

弧长参数化

$$\kappa = \|\mathbf{C}''\|_2 \tag{19a}$$

$$\tau = \frac{\langle \mathbf{C}' \times \mathbf{C}'', \mathbf{C}''' \rangle}{\|\mathbf{C}''\|_2^2}$$
 (19b)

$$\mathbf{T} = \mathbf{C}' \tag{19c}$$

$$\mathbf{N} = \frac{\mathbf{C''}}{\|\mathbf{C''}\|_2} \tag{19d}$$

$$\mathbf{B} = \frac{\mathbf{C}' \times \mathbf{C}''}{\|\mathbf{C}''\|_2} \tag{19e}$$

概述

曲线的局部二阶近似

定义 (曲率圆)

正则曲线 C(t) 在点 $t = t_0$ 处的曲率圆为

$$\mathbf{C}_{circle}(\theta) = \left(\mathbf{C} + \frac{1}{\kappa}\mathbf{N}\right) + \frac{1}{\kappa}\left(\mathbf{T}\sin\theta - \mathbf{N}\cos\theta\right). \tag{20}$$

其中, 圆心 $C + \frac{1}{2}N$ 称为曲率中心, 半径 $\frac{1}{2}$ 称为曲率半径.

在点 $C(t_0)$ 处, 曲线 C(t) 与其曲率圆有相同的切向量和有向密切平面.

① 概述

概述

- - 内积和外积
 - 曲线的表达
- ③ 曲线论
 - 参数曲线
 - 局部性质
 - 全局性质
- 4 总结

概述

基本性质

闭曲线, 自交, 简单曲线

定义(闭曲线, Closed)

称一条空间参数曲线是闭曲线 (闭的), 如果存在该参数 曲线的参数化 $C: [a, b] \to \mathbb{R}^3$, 使得 C(a) = C(b). 进一 步, 如果 $\mathbf{C} \in \mathbb{C}^k$, 且 $\mathbf{C}^{(i)}(a) = \mathbf{C}^{(i)}(b), i = 0, 1, \dots, k$, 则称该闭曲线是 C^k 的.

(a)

定义(简单曲线, Simple)

如果一条空间参数曲线不是闭的, 且是 1-1 的, 则称其 是简单曲线 (简单的); 如果一条空间参数曲线是闭的, 且限制在端点外是 1-1 的则称其为简单的.

定义 (自交, Self-intersection)

一条参数曲线被称为在点 P 是自交的, 如果该参数曲 线不是简单的.

(b)

- ① 概述
- - 内积和外积
 - 曲线的表达
- ③ 曲线论
 - 参数曲线
 - 局部性质会局性质
 - 全局性质
- 4 总结

- 研究对象——正则曲线
- ② 几何不变量——曲率和挠率
- ③ 研究曲线局部性质的工具──Frenet 标架
- 曲线的局部二阶近似——曲率圆

概述

谢谢!