Martingales in Homogeneous spaces

Simão N. Stelmastchuk

Departamento de Matemática, Universidade Estadual do Paraná, 84600-000 - União da Vitória - PR, Brazil. e-mail: simnaos@gmail.com

Abstract

Let G/H be a reductive homogeneous space and $\nabla^{G/H}$ a G-invariant connection. Our interesse is to study $\nabla^{G/H}$ -martingales in G/H. In fact, we yields a correspondence between $\nabla^{G/H}$ -martingales and local martingales \mathfrak{m} , where \mathfrak{m} is the subspace of Lie algebra \mathfrak{g} such that $\mathfrak{g}=\mathfrak{h}\oplus\mathfrak{m}$ such that $Ad(H)(\mathfrak{m})\subset\mathfrak{m}$. Here \mathfrak{h} is the Lie subalgebra of H. As application we show that martingales in the sphere S^n are in 1-1 correspondence with local martingales in \mathbb{R}^n .

Key words: Homogeneous space; martingales; stochastic analysis on manifolds

MSC2010 subject classification: 22F30, 58J65, 60H30, 60G48

1 Introduction

Let G be a Lie Group and H closed Lie subgroup. In this work we consider the reductive homogeneous spaces. It means that $\mathfrak{g},\mathfrak{h}$ are Lie algebras of G and H, respectively, and there exists a subspace \mathfrak{m} of \mathfrak{g} such that $\mathfrak{g}=\mathfrak{h}\oplus\mathfrak{m}$ and $Ad(H)(\mathfrak{m})\subset\mathfrak{m}$. Our intention is to study the martingales in G/H with respect to G-invariant connections. A first study in this direction was done by M. Arnaudon in [3], where he characterized the martingales with respect the canonical connection in G/H in function of local martingales in \mathfrak{m} . The reader can be see that his strategy was used the stochastic exponential in the sense of Stratonovich (see for example [8]) to show this.

In our paper, being natural to see $\pi:G\to G/H$ as submersion, furthermore, as principal fiber bundle, our idea is given a G-invariant connection $\nabla^{G/H}$ on G/H and to construct a desirable connection ∇^G on G such that $\pi:G\to G/H$ is an affine submersion with horizontal distribution. It means that $\pi*(\nabla^G_{A^h}B^h)=\nabla^{G/H}_AB$, where X,Y are vector fields on G/H and A^h,B^h are their lifts to G, respectively. The last definition was introduced by N. Abe and K. Hasewaga in [1].

Take the connections $\nabla^{G/H}$ and ∇^G as above. Following the natural idea of projecting the horizontal geodesics of G in geodesics of G/H we wish to project horizontal ∇^G -martingales in $\nabla^{G/H}$ -martingales. To make the role of geodesics in G we will use the Itô exponential on G, which was introduced by author in [15]. Given a local martingale M in \mathfrak{g} the Itô exponential $X = e^G(M)$ with respect to ∇^G is the solution of the stochastic differential equation in Itô sense:

$$d^{\nabla^G} X_t = L_{(X_t)*}(e) dM, \quad X_0 = e.$$

In context proposed until here, our main Theorem says:

Theorem : Let G/H a reductive homogeneous space G/H. Let $\nabla^{G/H}$ and ∇^{G} connections on G/H and G, respectively, such that π is an affine submersion with horizontal distribution. If X_t is a $\nabla^{G/H}$ -martingale in G/H, then it is written as $\pi \circ e^G(M)$, where M is a local martingale in \mathfrak{m} .

The hypothesis of Theorem is satisfied in many examples of homogenous spaces, which we give in this work. However, a special application is the sphere. Viewing the sphere S^n as homogeneous space we show that the martingales in sphere are in 1-1 correspondence with local martingales in \mathbb{R}^n .

2 Stochastic calculus

In this work we use freely the concepts and notations of P. Protter [12], P. Meyer [10], M. Emery [6] and [7], S. Kobayashi and N. Nomizu [9] and J. Cheeger and D.G. Ebin [5]. We suggest the reading of [4] for a complete survey about the objects of this section. From now on the adjective smooth means C^{∞} .

Let $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P})$ be a probability space which satisfies the usual hypotheses (see for example [6]). Our basic assumption is that every stochastic process is continuous.

Let M be a smooth manifold and X_t a continuous stochastic process with values in M. We call X_t a semimartingale if, for all f smooth function, $f(X_t)$ is a real semimartingale.

Let M be a smooth manifold with connection ∇^M . Let X be a continuous semimartingale with values in M, θ a section of TM^* and b a section of $T^{(2,0)}M$. We denote by $\int \theta d^{\nabla}X$ the Itô integral of θ along X and by $\int b \ d(X,X)$ the quadratic integral of b along X. We recall that X is a ∇ -martingale if and only if $\int \theta \ d^{\nabla^M}X$ is a local martingale for any $\theta \in \Gamma(TM^*)$.

Let M and N be smooth manifolds endowed with connections ∇^M and ∇^N , respectively, and $F:M\to N$ a smooth map. P. Catuogno in [4] shows the following version for Itô formula in smooth manifolds, which will be said geometric Itô formula:

$$\int_{0}^{t} \theta \ d^{N} F(X) = \int_{0}^{t} F^{*} \theta \ d^{M} X + \frac{1}{2} \int_{0}^{t} \beta_{F}^{*} \theta \ (dX, dX), \tag{1}$$

where β_F is the second fundamental form of F and $\theta \in \Gamma(T^*N)$.

From the above formula, it follows that F is an affine map if it and only if sends ∇^M -martingales to ∇^N -martingales.

3 Connections on homogeneous spaces

Let H be a closed Lie subgroup of G. Let \mathfrak{g} and \mathfrak{h} denote the Lie algebras of G and H, respectively. We assume that the homogeneous space G/H is reductive, that is, there is a subspace \mathfrak{m} of \mathfrak{g} such that $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$ and $Ad(H)(\mathfrak{m}) \subset \mathfrak{m}$. Let π be the natural mapping of G onto the space G/H of the cosets gH, $g \in G$. Also, for each $a \in G$ we define $\tau_a : G/H \to G/H$ by $\tau_a(gH) = agH$, the left translation. If $a \in G$ and L_a are the left translation on G, then

$$\pi \circ L_a = \tau_a \circ \pi.$$

The differential of π at e shows that $\ker(d\pi)_e = \mathfrak{h}$. Since $d\pi$ is onto we get the canonical isomorphism $\mathfrak{m} \cong T_o(G/H)$.

As the left translation L_q is a diffeomorphism, for every $g \in G$, we have

$$T_qG = (L_q)_{*e}\mathfrak{h} \oplus (L_q)_{*e}\mathfrak{m}.$$

Thus, writing

$$TG_{\mathfrak{h}} := \{(L_q)_{*e}\mathfrak{h}; \forall g \in G\} \text{ and } TG_{\mathfrak{m}} := \{(L_q)_{*e}\mathfrak{m}; \forall g \in G\}$$

follows that $TG = TG_{\mathfrak{h}} \oplus TG_{\mathfrak{m}}$.

Let us denote the Maurer-Cartan form on G as ω . Theorem 11.1 in [9] shows that the principal fiber bundle G(G/H, H) has the vertical part of the Maurer-Cartan as a connection form with respect to decomposition $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$. In other words, $TG_{\mathfrak{m}}$ is a connection in G(G/H, H). The horizontal lift from G/H to G is denoted by \mathcal{H} and the horizontal projection of TG into $TG_{\mathfrak{m}}$ is written as \mathbf{h} .

Let $A \in \mathfrak{m}$. The left invariant vector field \tilde{A} on G is denoted by $\tilde{A}(g) = L_{g*}A$ and the G-invariant vector field A_* on G/H is defined by $A_* = \tau_{g*}A$. It is clear that \tilde{A} is a horizontal vector field on G.

It is well-known, see Theorem 8.1 in [11], that for each G-invariant connection $\nabla^{G/H}$ is associated to a unique Ad(H)-invariant bilinear map $\beta: \mathfrak{m} \times \mathfrak{m} \to \mathfrak{m}$, that is,

$$\beta(Ad(H)(A), Ad(H)(B)) = Ad(H)\beta(A, B), \quad A, B \in \mathfrak{m}.$$

This correspondence is given by

$$(\nabla_A^{G/H}B)_o = \beta(A, B), \quad A, B \in \mathfrak{m}.$$

Since we are interested on martingales in G/H, our idea is choose a good connection ∇^G such that it is horizontally projected over $\nabla^{G/H}$. In other words, we choose ∇^G in the way that $\pi:G\to G/H$ is an affine submersion with horizontal distribution. This definition was given by N. Abe and H. Hasegawa in [1] and it means the following. Taking $A,B\in\mathfrak{m}$ we yields the left invariant vectors fields \tilde{A},\tilde{B} on G and the G-invariant vector fields A_*,B_* on G/H. It is clear that \tilde{A},\tilde{B} are horizontal and $\pi_*(\tilde{A})=A_*$ and $\pi_*(\tilde{B})=B_*$. In other words, \tilde{A},A_* and \tilde{B},B_* are π - related. Furthermore, \tilde{A},\tilde{B} are horizontal lift of A_*,B_* , respectively. Therefore π is an affine submersion with horizontal distribution if

$$\mathbf{h}(\nabla_{\tilde{A}}^{G}\tilde{B}) = \mathcal{H}(\nabla_{A_{*}}^{G/H}B_{*}).$$

A natural way to construct a connection ∇^G from $\nabla^{G/H}$ such that π is affine submersion with horizontal distribution is to extend β to a bilinear map α to $\mathfrak{g} \times \mathfrak{g}$ into \mathfrak{g} such that $\alpha(A,B) = \beta(A,B)$ for $A,B \in \mathfrak{m}$. Thus, there exists a left invariant connection ∇^G on G such that

$$(\nabla_{\tilde{A}}^G \tilde{B})(e) = \alpha(A, B), \quad X, Y \in \mathfrak{g}.$$

We prove some geometric necessary facts.

Proposition 3.1 Let $\nabla^{G/H}$, ∇^{G} be connections such that π is an affine submersion with horizontal distribution.

1. If $f \in C^{\infty}(G/K)$ then

$$Hess^G(f \circ \pi)(g)(\tilde{A}, \tilde{B}) = Hess^{G/H}(f)(\pi(g))(A_*, B_*),$$

for $A, B \in \mathfrak{m}$.

2. If $A, B \in \mathfrak{m}$ then

$$\beta_{\pi}(\tilde{A}, \tilde{B}) = 0,$$

where β_{π} is the second fundamental form of π .

Proof: 1. For $A, B \in \mathfrak{m}$, $\pi_*(g)(\tilde{A}(g)) = A_*(\pi(g))$ and $\pi_*(g)(\tilde{B}(g)) = B_*(\pi(g))$ for all $g \in G$. By definition of hessiano, for every $f \in C^{\infty}(G/K)$,

$$Hess^{G/H}(f(\pi(g)))(A_*, B_*) = A_*(\pi(g))(B_*f) - df(\nabla_{A_*}^{G/H}B_*)(\pi(g))$$

= $\tilde{A}(g)\tilde{B}(f \circ \pi) - (f \circ \pi)_*(\nabla_{\tilde{A}}^G\tilde{B})(g)$
= $Hess^G(f \circ \pi)(g)(\tilde{A}, \tilde{B}).$

2. Given $A, B \in \mathfrak{m}$ we have, by definition of the second fundamental form,

$$\beta_{\pi}(\tilde{A}, \tilde{B}) = \nabla_{\pi_{*}\tilde{A}}^{G/H} \pi_{*}\tilde{B} - \pi_{*}\nabla_{\tilde{A}}^{G}\tilde{B}.$$

Being π an affine submersion with horizontal distribution, we obtain

$$\beta_{\pi}(\tilde{A}, \tilde{B}) = \nabla_{A_*}^{G/H} B_* - \nabla_{A_*}^{G/H} B_* = 0.$$

4 Martingales in homogeneous space

We endow G with a left invariant connection ∇^G and \mathfrak{g} with a flat connection $\nabla^{\mathfrak{g}}$. In [15], the author defines the Itô stochastic exponential with respect to ∇^G and $\nabla^{\mathfrak{g}}$ as the solution of the Itô stochastic differential equation

$$d^{\nabla^G} X_t = L_{(X_t)*}(e) dM, \quad X_0 = e, \tag{2}$$

where M is a semimartingale in \mathfrak{g} . For simplicity, we call $e^G(M)$ of Itô exponential. In [15], we have the following results about Itô exponential

Theorem 4.1 Given a semimartingale X in G, there exists a unique semimartingale M in \mathfrak{g} such that $X = e^G(M)$.

Theorem 4.2 Let ∇^G be a connection on G. The ∇^G -martingale in G are exactly the process $e^G(M)$ where M is a local martingale on \mathfrak{g} .

Before we work with martingales in G/H it is necessary to develop a result in the Lie group G. It is related with the left translate of semimartingales by a random variable with values in G. In consequence, we see that the set of martingales in G with respect to a left invariant connection do not change if we translate it to left by a random variable with values in G.

Proposition 4.3 Let G be a Lie group and ∇^G a left-invariant connection on G. If Y_t is a semimartingale on G and ξ is a random variable with values in G, then, for θ 1-form on G,

$$\int \theta d^{\nabla^G} \xi Y_t = \int (L_{\xi}^* \theta) d^{\nabla^G} Y_t.$$

Proof: We begin denoting the product on Lie group G by m. Let θ be a 1-form on G. As a function to m, the Itô integral along ξY_t is writing as

$$\int \theta d^{\nabla^G} \xi Y_t = \int \theta d^{\nabla^G} m(\xi, Y_t).$$

The geometric Itô formula (1) gives

$$\int \theta d^{\nabla^G} \xi Y_t = \int m^* \theta d^{\nabla^G \times \nabla^G} (\xi, Y_t) + \frac{1}{2} \int \beta_m^* \theta (d(\xi, Y_t), d(\xi, Y_t)).$$

From Proposition 3.15 in [7] we see that

$$\int \theta d^{\nabla^{G}} \xi Y_{t} = \int (R_{Y_{t}}^{*} \theta) d^{\nabla^{G}} \xi + \int (L_{\xi}^{*} \theta) d^{\nabla^{G}} Y_{t} + \frac{1}{2} \int \beta_{m}^{*} \theta (d(\xi, Y_{t}), d(\xi, Y_{t})).$$

 ξ is viewed a constant process, and consequently

$$\int \theta d^{\nabla^G} \xi Y_t = \int (L_{\xi}^* \theta) d^{\nabla^G} Y_t + \frac{1}{2} \int \beta_m^* \theta(d(\xi, Y_t), d(\xi, Y_t)).$$

We claim that the $\beta_m(d(\xi, Y_t), d(\xi, Y_t))$ is null. In fact, let $0 \in T_gG$ and Y a left invariant vector field on G. Here, 0 is the vector associated to the constant process ξ . Then

$$\begin{split} \beta_{m}(0,Y) &= \nabla^{G}_{m_{*}(0,Y)}m_{*}(0,Y) - m_{*}\nabla^{G\times G}(0,Y) \\ &= \nabla^{G}_{R_{h*}0 + L_{g*}(Y)}(R_{h*}0 + L_{g*}(Y)) - m_{*}\nabla^{G\times G}(0,Y) \\ &= \nabla^{G}_{L_{g*}Y}L_{g*}Y - L_{g*}(\nabla^{G}_{Y}Y) \\ &= L_{g*}(\nabla^{G}_{Y}Y) - L_{g*}(\nabla^{G}_{Y}Y) \\ &= 0, \end{split}$$

where in forth equality we use the fact that ∇^G is a left invariant connection. Thus we get

$$\int \theta d^{\nabla^G} \xi Y_t = \int (L_{\xi}^* \theta) d^{\nabla^G} Y_t.$$

Corollary 4.4 Let G be a Lie group and ∇^G a left-invariant connection on G. Let ξ be a random variable with values in G. A semimartingale Y_t in G is ∇^G -martingale if and only if ξY_t so is.

The way used to work with martingales in G/H is to see $\pi:G\to G/H$ as G-principal fiber bundle and to make use of the horizontal lift of semimartingale due to I. Shigegawa in [14]. The horizontal lift in our context is expressed as: if X_t is a $\nabla^{G/H}$ -martingale in G/H, it is clear that X_t is a semimartingale in G/H. As $\pi:G\to G/H$ is a H-principal fiber bundle there is a unique horizontal lifting Y_t in G such that $\pi(Y_t)=X_t$ and $\int \omega \delta X_t=0$ (see Theorem 2.1 in [14]), where ω is the vertical part of Maurer-Cartan form associated with horizontal distribution TG_m .

Proposition 4.5 Let G/H a reductive homogeneous space G/H. Let $\nabla^{G/H}$, ∇^{G} be connections such that π is an affine submersion with horizontal distribution. If X_t is a $\nabla^{G/H}$ -martingale in G/H such that $X_0 = \pi(Y_0)$, where Y_0 is random variable in G, then so is $Z_t = \tau_{Y_0^{-1}} X_t$.

Proof: Let X_t be a $\nabla^{G/H}$ -martingale and Y_t its horizontal lift to G. Taking a 1-form θ on G/H follows

$$\int \theta d^{G/H} Z_t = \int \theta d^{G/H} \tau_{Y_0^{-1}} X_t = \int \theta d^{G/H} \tau_{Y_0^{-1}} \pi(Y_t) = \int \theta d^{G/H} \pi(L_{Y_0^{-1}} Y_t).$$

From the geometric Itô formula (1) and Proposition 3.1 we see that

$$\int \theta d^{G/H} Z_t = \int \pi^* \theta d^{G/H} (L_{Y_0^{-1}} Y_t) + \int \pi_* \theta \beta_\pi (d(L_{Y_0^{-1}} Y_t), d(L_{Y_0^{-1}} Y_t))$$

$$= \int \pi^* \theta d^G (L_{Y_0^{-1}} Y_t).$$

Proposition 4.3 now assures that

$$\int \theta d^{G/H} Z_t = \int \theta \pi^* L_{Y_0^{-1}}^* d^G Y_t = \int \theta \tau_{Y_0^{-1}}^* \pi^* d^G Y_t.$$

Again, from geometric Itô formula (1) and Proposition 3.1 we conclude that

$$\int \theta d^{G/H} Z_t = \int \theta \tau_{Y_0^{-1}}^* d^{G/H} \pi(Y_t) = \int \theta \tau_{Y_0^{-1}}^* d^{G/H} X_t.$$

Since X_t is $\nabla^{G/H}$ -martingale, it follows that Z_t is a $\nabla^{G/H}$ -martingale. Proposition above allows considering $\nabla^{G/H}$ -martingales with initial condition o, that is, we can consider only the $\nabla^{G/H}$ -martingales X_t with $X_0 = o$, where o = H is the origin in G/H.

Lemma 4.6 Let G/H a reductive homogeneous space G/H. Let $\nabla^{G/H}$ and ∇^{G} connections on G/H and G, respectively, such that π is an affine submersion with horizontal distribution. If U_t is a horizontal parallel stochastic transport along X_t , then $\pi_*(U_t)$ is a parallel stochastic transport along the semimartingale $\pi(X_t)$ in G/K.

Proof: It is sufficient to show that $\pi_*(U_t)$ satisfies the formula of the parallel stochastic transport, see for instance (8.11) in [6]. Consider $f \in C^{\infty}(G/K)$. Applying this formula we obtain that

$$\begin{array}{rcl} (\pi_*U_t)f + (\pi_*U_0)f & = & U_t(f\circ\pi) + U_0(f\circ\pi_*) \\ \\ & = & \int Hess(f\circ\pi)(U_t,\delta X_t) \\ \\ & = & \int Hess(f)(\pi_*U_t,\delta\pi(X_t)), \end{array}$$

where we used the Proposition 3.1 in the later equality. It follows immediately that $\pi_*(U_t)$ is parallel stochastic transport along $\pi(X_t)$.

Theorem 4.7 Let G/H a reductive homogeneous space G/H. Let $\nabla^{G/H}$ and ∇^G connections on G/H and G, respectively, such that π is an affine submersion with horizontal distribution. If X_t is a $\nabla^{G/H}$ -martingale in G/H, then it is written as $\pi \circ e^G(M)$, where M is a local martingale in \mathfrak{m} .

Proof: Let X_t be a $\nabla^{G/H}$ -martingale in G/H and Y_t its horizontal lift in G. Consider a 1-form θ in $T^*(G/K)$. Since π is an affine submersion with horizontal distribution, from Proposition 3.1 and the geometric Itô formula (1) we obtain

$$\int \theta d^{G/H} X_t = \int \theta d^{G/H} \pi(Y_t) = \int (\pi^* \theta) d^G Y_t = \int \theta \pi_* d^G Y_t,$$

where we used that Y_t is a horizontal semimartingale in G. Hence

$$d^{G/H}X_t = \pi_* d^G Y_t$$

Let $\{H_1, \ldots, H_n\}$ be a basis on \mathfrak{g} . Choose $\{H_{\kappa}, \kappa = 1, \ldots, r\}$ such that it is a basis of \mathfrak{m} . By Theorem 4.1, there is a unique semimartingale N in \mathfrak{g} such that $d^G Y_t = L_{Y_t *} dN$. If we write $N = \sum_{\kappa=1}^r N^{\kappa} H_{\kappa} + \sum_{j=r+1}^n N^j H_j$, then $d^G Y_t = dN^{\kappa} U_t^{\kappa} + dN^j U_t^j$, where $U_t^i = L_{Y_t *} H_i$, $i = 1, \ldots, n$. It is obvious that $\sum_{\kappa=1}^r N^{\kappa} H_{\kappa}$ is a semimartingale in \mathfrak{m} and that

$$d^{G/H}X_t = \pi_*(dN_t^{\kappa}U_t^{\kappa}) = dN_t^{\kappa}\pi_*(U_t^{\kappa}). \tag{3}$$

The set $\{U^1,\ldots,U^n\}$ is a moving frame along Y_t (see [6] for the definition of moving frame). Hence $\{\pi_*(U^1),\ldots,\pi_*(U^r)\}$ is a moving frame along X_t , by Lemma above. Let us denote by $\{\eta_1,\ldots,\eta_r\}$ the dual basis of $\{\pi_*(U_t^\kappa),\kappa=1,\ldots,r\}$ along X_t . Define $M_t=\sum_{l=1}^r M_t^l H_l$ a semimartingale in \mathfrak{m} , where $M_t^l=\int \eta_l d^{G/H} X_t$. For every $l=1,\ldots,r$, we claim that $M_t^l=N_t^l$. In fact,

$$M_t^l = \int \eta_l d^{G/H} X_t = \int \eta_l dN_t^{\kappa} \pi_*(U_t^{\kappa}) = \int dN_t^{\kappa} \eta_l \pi^* U_t^{\kappa} = \int dN_t^l = N_t^l.$$

It follows that $N_t = M_t + \sum_{l=r+1}^n N^l H_l$. From this and (3) we conclude that $d^{G/H}X_t = \pi_*(L_{Y_{**}}dM_t)$, and also that

$$d^{G/H}X_t = \tau_{Y_{t,*}}dM_t. \tag{4}$$

The semimartingale M_t above is called the lifting of X_t in \mathfrak{m} (see [6] for this definition). From the stochastic differential equation (4) we conclude directly that X_t is a $\nabla^{G/H}$ -martingale if, and only if, M_t is a local martingale in \mathfrak{m} . Theorem is proved if we see that $Y_t = e^G(M)$.

Remark 1 In the proof of the Theorem above, we founded a semimartingale $Y_t = e^G(M_t)$. Since M is a local martingale in \mathfrak{m} , we can consider M as local martingale in \mathfrak{g} . Therefore Y_t is a ∇^G -martingale, which follows from Theorem 4.2. Furthermore, in terms of theory of connections, Y_t can be consider as a horizontal martingale in G.

Remark 2 From the proof of Theorem 4.7 we have that a semimartingale X_t in G/H satisfies the Itô stochastic differential equation

$$d^{G/H}X_t = \tau_{Y_t *} dM_t, X_0 = 0, (5)$$

where M_t is a semimartingale in \mathfrak{m} and o = H.

Example 4.1 K. Nomizu in [11] defined by canonical affine connection of the second kind the connection $\nabla^{G/H}$ which has the connection function $\beta: \mathfrak{m} \times \mathfrak{m} \to \mathfrak{m}$ given by $\beta(A,B) = 0$, for $A,B \in \mathfrak{m}$. We extend β for a connection function $\alpha(A,B) = 0$, for $A,B \in \mathfrak{g}$. Then, the connection ∇^G is given by $\nabla^G_{\tilde{A}}\tilde{B} = 0$. With these connections, it is clear that $\pi: G \to G/H$ is an affine submersion with horizontal distribution. Theorem 4.7 assures that for each $\nabla^{G/H}$ -martingale X there exists a local martingale in \mathfrak{m} such that $X_t = \pi \circ e^G(M)$. This result was first proved by M. Arnaudon in [3]. As a particular case of this example we have the Symmetric Spaces which admits a G-invariant metrics (see Theorem 3.3, chapter XI, in [9]).

Example 4.2 K. Nomizu in [11] called the canonical affine connection of the first kind the connection $\nabla^{G/H}$ which has the connection function $\beta:\mathfrak{m}\times\mathfrak{m}\to\mathfrak{m}$ defined as $\beta(A,B)=\frac{1}{2}[A,B]_{\mathfrak{m}}$. The natural way to extend β to α is to take $\alpha(A,B)=\frac{1}{2}[A,B]$, for $A,B\in\mathfrak{g}$. In according to correspondence between connections on G/H and G and connections functions β and α , respectively, $\nabla^{G/H}_AB=\frac{1}{2}[A,B]_{\mathfrak{m}}$ and $\nabla^G_AB=\frac{1}{2}[A,B]$. It follows directly that $\pi:G\to G/H$ is an affine submersion with distribution horizontal. Therefore every $\nabla^{G/H}_-$ martingale X_t is written as $X_t=\pi\circ e^G(M_t)$, where M_t is a local martingale in \mathfrak{m} , which follows from Theorem 4.7.

Example 4.3 A class of homogeneous space that satisfy the Example above are the normal homogeneous spaces. Following Definition 6.60 in [13], a Riemannian homogeneous space M = G/H is called normal homogeneous if there exists a bi-invariant metric on G such that $\pi_*|_e$ maps the orthogonal complement \mathfrak{h}^\perp of \mathfrak{h} in \mathfrak{g} isometrically to $M_{\pi(e)}$. It is know that Levi-Civita connection on G is given by $\nabla_A^G B = \frac{1}{2}[A,B]$, for A,B. In the other side, it is possible to show that the Levi-Civita connection on G/H is given by $\nabla_A^{G/H} B = \frac{1}{2}[A,B]_{\mathfrak{m}}$, for $A,B \in \mathfrak{m}$ (see proposition 6.62 in [13]). In fact, every normal homogenous space is naturally reductive (see page 220 in [13] or [2]).

Example 4.4 A example more general than above is the following. Let M = G/H be a homogeneous space. We admit that M has a G-invariant metric \ll, \gg . Using Theorem 3.36 in [5] we obtain a left invariant metric <,> on G such that $\pi: G \to G/H$ is a Riemannian submersion. Theorem 4.7 assures that every $\nabla^{G/H}$ -martingale X_t is written as $X_t = \pi \circ e^G(M)$, where M is a local martingale in \mathfrak{m} .

5 Martingales in sphere

Let S^n be a sphere n-dimensional in \mathbb{R}^n . We can write S^n as a normal homogeneous space in the following way. In [13], we found in Example 6.61(a) that if we define a bi-invariant metric on SO(n+1) by $< U, V >= \frac{1}{2} \mathrm{tr}(U^t V) = -B(U,V)/(2n-2), n \geq 2$, B is the Killing form, then $S^n = SO(n+1)/SO(n)$ is a normal homogeneous space. Furthermore, the normal homogeneous metric on $S^n = SO(n+1)/SO(n)$ is the usual metric on S^n . It directly follows that SO(n+1)/SO(n) is a reductive homogeneous space. The reductive decomposition is given by $\mathfrak{o}(n+1) = \mathfrak{o}(n) + \mathfrak{m}$, where \mathfrak{m} is the subspace of all $n \times n$

matrices of the form

$$\left(\begin{array}{cc} 0 & -x^t \\ x & 0_n \end{array}\right),\,$$

where $x = (x_1, ..., x_n)$ is a column vector in \mathbb{R}^n and 0_n the $n \times n$ zero matrix. It is clear that \mathfrak{m} is isomorph to \mathbb{R}^n . Let us denote such isomorphism by $\phi : \mathfrak{m} \to \mathbb{R}^n$. It is immediate that a semimartingale ξ in \mathbb{R}^n is a local martingale if and only if $\phi(\xi) = M$ is a local martingale in \mathfrak{m} .

Theorem 5.1 Let S^n be a sphere n-dimensional in \mathbb{R}^n with its usual metric induced of \mathbb{R}^{n+1} . There is a 1-1 correspondence between matingales in S^n and local martingales in \mathbb{R}^n .

Proof: Let X_t be a ∇^{S^n} -martingale in S^n , where ∇^{S^n} is the Levi-Civita connection. Theorem 4.7 yields a unique local martingale in \mathfrak{m} such that $X_t = \pi \circ e^G(M)$, where ∇^G is the Levi-Civita connection on SO(n+1). Using the isomorphism $\phi: \mathbb{R}^n \to \mathfrak{m}$ defined above we see that $M = \phi(\xi)$, where ξ is the unique local martingale in \mathbb{R}^n that satisfies such relation. It follows that X_t is unique related with ξ , and the proof is complete.

By Remark 2 we know that a ∇^{S^n} -martingale X_t satisfies the Itô stochastic differential equation

$$d^{S^n} X_t = \tau_{Y_t *} dM_t, X_0 = o^t,$$

where M_t is a local martingale in \mathfrak{m} and $o^t = (1, 0, ..., 0)$. In the other hand, there exists a unique local martingale ξ such that $M = \phi(\xi)$. So, for a 1-form θ we can compute

$$\int \theta d^{S^n} X_t = \int \theta \tau_{Y_t *} dM_t = \int \theta \tau_{Y_t *} d\phi(\xi)_t = \int \theta \tau_{Y_t *} \phi_* d\xi_t,$$

where we used the geometric Itô formula (1) in the last equality. Thus X_t satisfies the following Itô differential equation

$$d^{S^n} X_t = \tau_{Y_t *} \phi_* d\xi_t, \xi_0 = (0, 0, \dots, 0).$$

References

- [1] Abe, N., and Hasewaga, K., An affine submersion with horizontal distribution and applications, Differential Geometry and its Applications, 14,(2001) 235-250.
- [2] Arvanitoyeorgos, A. An introduction to Lie groups and the geometry of homogeneous spaces. Student Mathematical Library, 22. American Mathematical Society, Providence, RI, 2003.
- [3] Arnaudon, M., Semi-martingales dans les espaces homogènes, Ann. Inst. H. Poincaré Probab. Statist. 29 (1993), no. 2, 269–288.
- [4] Catuogno, P., A Geometric Itô formula, Matemática Contemporânea, 2007, vol. 33, p. 85-99.
- [5] Cheeger, J., Ebin, D.G. Comparsion theorems in Riemannian geometry, North-Holland Publishing Company (1975).

- [6] Emery, M., Stochastic Calculus in Manifolds, Springer, Berlin 1989.
- [7] Emery, M., Martingales continues dans les variétés différentiables, Lectures on probability theory and statistics (Saint-Flour, 1998), 1-84, Lecture Notes in Math., 1738, Springer, Berlin 2000.
- [8] Hakim-Dowek, M., and Lépingle, D., L'exponentielle Stochastique de Groupes de Lie, Lectures Notes in Mathematics, 1204, 1986, p. 352-374.
- [9] Kobayashi, S., and Nomizu, K., Foundations of Differential Geometry, vol I, Vol II, Interscience Publishers, New York, 1963, 1969.
- [10] Meyer, P.A., Géométrie stochastique sans larmes. (French) [Stochastic geometry without tears] Seminar on Probability, XV (Univ. Strasbourg, Strasbourg, 1979/1980) (French), pp. 44–102, Lecture Notes in Math., 850, Springer, Berlin-New York, 1981.
- [11] Nomizu K., Invariant affine connections on homogeneous spaces, Amer. J. Math., 76, (1954). 33–65.
- [12] Protter, P., Stochastic integration and differential equations. A new approach. Applications of Mathematics (New York), 21. Springer-Verlag, Berlin, 1990.
- [13] Poor, W.A., Differential geometric structures. McGraw-Hill Book Co., New York, 1981.
- [14] Shigekawa, I. On stochastic horizontal lifts. Z. Wahrsch. Verw. Gebiete 59 (1982), no. 2, 211–221.
- [15] Stelmastchuk, S. N., *Itô Exponential on Lie Groups*, http://arxiv.org/abs/1106.5637.