

Variant Calling - SNPs and short indels petr.danecek@sanger.ac.uk

HTS workflow

Library preparation

- ▶ DNA extraction
- ► fragmentation
- adapter ligation
- amplification

Sequencing

- ▶ base calling
- ► de-multiplexing

Data processing

- read mapping
- ▶ variant calling
- variant filtering

Analysis

- ▶ Variant annotation
- **.**...

Variant types

 $SNPs/SNVs \quad \dots \ Single \ Nucleotide \ Polymorphism/Variation$

ACGTTTAGCAT ACGTTCAGCAT

MNPs ... Multi-Nucleotide Polymorphism

ACGTCCAGCAT ACGTTTAGCAT

Indels ... short insertions and deletions

ACGTTTAGCA-TT ACGTT-AGCAGTT

SVs ... Structural Variation

Some terminology

The goal is to determine the genotype at each position in the genome

Genotype

- ▶ in the broad sense . . . genetic makeup of an organism
- ▶ in the narrow sense . . . the combination of alleles at a position

Reference and alternate alleles - R and A

Diploid organism

- two chromosomal copies, three possible genotypes
 - ▶ RR .. homozygous reference genotype
 - ► RA .. heterozygous
 - ► AA .. homozygous alternate

Reference genome:	AGACTTGGCCC	CCTCCCCATTCA	AGGTCTTC
Sequenced genome:		CATCCCCATTC	
	1	↑	†
	C/C R R	A/C A R	C/C A A
VCF notation Alternate allele dosage	0/0 0	1/0 1	1/1 2

Germline vs somatic mutation

Germline mutation

heritable variation in the germ cells

Somatic mutation

variation in non-germline tissue, tumors. . .

Germline variant calling

- expect the following fractions of alternate alleles in the pileup:
 - 0.0 for RR genotype (plus sequencing errors)
 - 1.0 for AA (plus sequencing errors)
 - 0.5 for RA (random variation of binomial sampling)

Somatic

any fraction of alt AF possible - subclonal variation, admixture of normal cells in tumor sample

Naive variant calling

Use fixed allele frequency threshold to determine the genotype

alt AF	genotype		
$ \begin{bmatrix} 0, 0.2 \\ 0.2, 0.8 \\ 0.8, 1 \end{bmatrix} $	RR homozygous reference RA herezogyous AA homozygous variant		

Naive variant calling

Use fixed allele frequency threshold to determine the genotype

1) Filter base calls by quality e.g. ignore bases Q < 20

Phred quality score

 $\mathbf{Q} = -10\log_{10}P_{\mathsf{err}}$

Quality	Error probability	Accuracy
10 (Q10)	1 in 10	90%
20 (Q20)	1 in 100	99%
30 (Q30)	1 in 1000	99.9%
40 (Q40)	1 in 10000	99.99%

Naive variant calling

Use fixed allele frequency threshold to determine the genotype

1) Filter base calls by quality e.g. ignore bases Q < 20

- 2) Filter reads with low mapping quality

Problems:

- ▶ undercalls hets in low-coverage data
- ▶ throws away information due to hard quality thresholds
- gives no measure of confidence

Real life calling models

More sophisticated models apply a statistical framework

$$P(G|D) = rac{P(D|G)\,P(G)}{P(D)}$$
Posterior

to determine:

1. the most likely genotype $g \in \{ \mathsf{RR}, \mathsf{RA}, \mathsf{AA} \}$ given the observed data D

$$g = \operatorname*{argmax}_{G} P(G|D)$$

2. and the genotype quality

$$Q = -10\log_{10}[1 - P(G|D)]$$

Important terms you may encounter

Genotype likelihoods

- which of the three genotypes RR, RA, AA is the data most consistent with?
- calculated from the alignments, the basis for calling
- takes into account:
 - base calling errors
 - mapping errors
 - statistical fluctuations of random sampling
 - local indel realignment (base alignment quality, BAQ)

Prior probability

- how likely it is to encounter a variant base in the genome?
- some assumptions are made
 - ▶ allele frequencies are in Hardy-Weinberg equilibrium

$$P(RA) = 2f(1-f), P(RR) = (1-f)^2, P(AA) = f^2$$

▶ can take into account genetic diversity in a population

$$P(G|D) = \frac{P(D|G) \frac{P(G)}{P(D)}}{P(D)}$$

Variant calling example

Inputs

- alignment file
- reference sequence

Outputs

▶ VCF or BCF file

Example

```
bcftools mpileup -f ref.fa aln.bam | bcftools call -mv
```

Tips

bcftools mpileup

- increase/decrease the required number (-m) and the fraction (-F) of supporting reads for indel calling
- the -Q option controls the minimum required base quality (30)
- BAQ realignment is applied by default and can be disabled with -B
- streaming the uncompressed binary BCF (-0u) is much faster than the default text VCF

bcftools call

- decrease/increase the prior probability (-P) to decrease/increase sensitivity

General advice

- take time to understand the options
- play with the parameters, see how the calls change

Factors to consider in calling

Many calls are not real, a filtering step is necessary

False calls can have many causes

- contamination
- PCR errors
- sequencing errors
 - homopolymer runs
- mapping errors
 - repetitive sequence
 - structural variation
- ▶ alignment errors
 - ▶ false SNPs in proximity of indels
 - ► ambiguous indel alignment

Callable genome

Large parts of the genome are still inaccessible

- ▶ the Genome in a Bottle high-confidence regions:
 - cover 89% of the reference genome
 - ▶ are short intervals scattered across the genome

If possible, include only "nice" regions: for many analyses (e.g. population genetics studies) difficult regions can be ignored

Maximum depth

Q: Why is the sequencing depth thousandfold the average in some regions?

Mapping errors

Q: RNA-seq (top) and DNA data (bottom) from the same sample has been mapped onto the reference genome. Can you explain the novel SNVs?

Mapping errors

Different mapping algorithm can lead to different results

Mapping errors

Different mapping algorithm can lead to different results

Variant distance bias

Q: Can you explain what happened here?

Strand bias

Q: Is this a valid call?

Strand bias

Q: Is this a valid call?

A: No, it is a mapping artefact, the call is supported by forward reads only.

Filter extremely biased calls using annotations generated by your caller (e.g. Fisher or rank-sum test)

Change the display in IGV to reveal artefacts

Display soft-clipped bases...

Too many soft-clipped reads in a region suggest mapping errors, beware!

Reproducibility

Mind the biological variability. If possible, validate and replicate.

False de novo variant

False SNPs caused by incorrect alignment

Pairwise alignemnt artefacts can lead to false SNPs

- multiple sequence alignment is better, but very expensive
- ▶ instead: base alignment quality (BAQ) to lower quality of misaligned bases

Q: How many SNPs are real?
A: None.

Be careful when looking at SNPs close to indels.

Indel calling challenges

The sequencing error rate is elevated in microsatellites

Low reproducibility across callers

 37.1% agreement between HapCaller, SOAPindel and Scalpel Narzisi et al. (2014) Nat Methods, 11(10):1033

Reads with indels are more difficult to map and align

- ▶ the aligner can prefer multiple mismatches rather than a gap
- indel representation can be ambiguous

CTTTAATTCAGACATTAGATTTCTTCTC
CTTTAATTCAGACATTAGATTTCTTCTCTTA
CTTTAATTCAGACA---------TTAGATTTCTTCTCTTAACTGCTT
CTTTAATTCAGACA----------TTAGATTTCTTCTCTTAACTGCTT

CTTTAATTCAGACATTAGATTTCTTCTCTTAGATTTCTTCTCTTAACTGCTT

Indel calling challenges

The sequencing error rate is elevated in microsatellites

Low reproducibility across callers

 37.1% agreement between HapCaller, SOAPindel and Scalpel Narzisi et al. (2014) Nat Methods, 11(10):1033

Reads with indels are more difficult to map and align

- ▶ the aligner can prefer multiple mismatches rather than a gap
- indel representation can be ambiguous

CTTTAATTCAGACA------TTAGATTTCTTCTC
CTTTAATTCAGACA------TTAGATTTCTCTCTTA
CTTTAATTCAGACA------TTAGATTTCTCTCTAACTGCTT
CTTTAATTCAGACA-----TTAGATTTCTCTATTAACTGCTT

CTTTAATTCAGACATTAGATTTCTTCTCTTAGATTTCTTCTCTTAACTGCTT

What good SNPs look like?

Change the view IGV to inspect possible biases. Here the reads were squished and grouped by read strand to confirm two clean unbiased calls.

What good SNPs look like?

Change the view IGV to inspect possible biases. Here the reads were colord by read strand to confirm another two clean unbiased calls.

What good SNPs look like?

Q: Is this call real? There are many reads with MQ=0.

Sorting the reads by MQ reveals the variant is also supported by many high-quality reads.

Detour: Some causes of SNPs

Spontaneous chemical processes which lead to base modification or loss

- Deamination
 - ▶ methylated CpG dinucleotides: 5-methylcytosine → T
 - ightharpoonup hydrolytic deamination of C ightharpoonup (400 cytosines daily in each cell)
 - ► A → hypoxanthine (pairs with C, A-to-G mutation)
- ► Depurination (loss of A or G)
 - ightharpoonup purines are cleaved from the backbone (10^2 - 10^3 daily in each cell)
 - ▶ if base excision repair fails, random base is inserted

DNA damage by mutagens

- base analogs
 - incorporation of chemicals with different properties
- base-modifying agents

$$\bigvee_{N=1}^{N+2} \bigvee_{N=1}^{N+2} \bigvee_{N=1}^{N+2} \bigvee_{N=1}^{N+1} \bigvee_{N=1}^{N+1}$$

Adenine nucleotide in DNA

Apurinic site in DN.

Radiation

Some causes of MNPs

UV-induced mutations (CC \rightarrow TT in skin cells)

How to estimate the quality of called SNPs?

Transitions vs transversions ratio, known as ts/tv

► transitions are 2-3× more likely than transversions

Example: false C>A transversions due to a failed library prep

Cause unknown, likely oxidative damage

Example: false C>A transversions due to a failed library prep

ts/tv by size

Ts/tv is a convenient metric to compare callsets

- sort calls by a quality metric
- calculate ts/tv at various thresholds
- bigger ts/tv indicates fewer false positives in the callset

VAF by size

VAF = variant allele frequency (fraction of reads with the alternate allele)

VAF distribution of the final callset

Fraction of sites with VAF<40% at various quality cutoffs

Sensitivity vs Specificity

Figure 4: A summary of True Positive vs False Negative rates of GATK HaplotypeCaller, Bcftools and Freebayes at multiple quality thresholds, with and without filtering.

Future of variant calling

Current approaches

- rely heavily on the supplied alignment, but aligners see one read at a time
- ▶ largely site based, do not examine local haplotype and linked sites

Local de novo assembly based variant callers

- ► call SNPs, indels, MNPs and small SV simultaneously
- ► can remove alignment artefacts
- ▶ eg GATK haplotype caller, Scalpel, Octopus

Variation graphs

▶ align to a graph rather than a linear sequence

Iqbal et al. (2012) Nat Gen 44(2):226

Functional annotation

VCF can store arbitrary INFO tags (per site) and FORMAT tags (per sample)

- describe genomic context of the variant (e.g. coding, intronic, UTR)
- ▶ predict functional consequence (e.g. synonymous, missense, start lost)

Several tools for annotating a VCF, only few are haplotype-aware

BCFtools/csq http://github.com/samtools/bcftools

VEP Haplosaurus http://github.com/willmclaren/ensembl-vep

