Presentation for the Quantum Seminar

José Manuel Rodríguez Caballero

University of Tartu

Spring 2020

Subject

My presentation is about the paper¹:

Bouman, Niek J., and Serge Fehr. "Sampling in a quantum population, and applications." Annual Cryptology Conference. Springer, Berlin, Heidelberg, 2010.

My presentation will not follow the original approach of the authors in order to show that I am able to do more than merely repeat what they wrote. Also, I would like to express my personal way of looking at this subject.

Contributions of the paper

Contribution 1. The authors introduce a framework in for sampling quantum population.

Contribution 2. This framework is used in a new proof of the security of the *quantum key distribution protocol BB84* (entanglement-based version).

Contribution 3. This framework is used in a new proof of the security of the *quantum oblivious-transfer from bit-commitment*.

Presentation of Contribution 1.

The authors introduce a framework in for *sampling quantum* population.

Classical sampling strategy

Let \mathcal{A} be a finite alphabet. A classical sampling strategy is a triplet $\Psi = (P_T, P_S, f)$, where P_T is a distribution over $\mathcal{T} := 2^{[n]}$, P_S is a distribution over a finite set \mathcal{S} , P_T and P_S are assumed to be independent, and f is a function of type²

$$\mathcal{T} imes \mathcal{S} imes \mathcal{A}^* \longrightarrow \mathbb{R} \ (t,s,q) \mapsto f_{t,s}(q)$$

satisfying $f_{t,s}(q) = 0$ whenever $|t| \neq |q|$.

²Here \mathcal{A}^* is the free monoid over \mathcal{A} .

Presentation of Contribution 2.

This framework is used in a new proof of the security of the quantum key distribution protocol BB84 (entanglement-based version).

Presentation of Contribution 3.

This framework is used in a new proof of the security of the quantum oblivious-transfer from bit-commitment.

End of my presentation