

SEQUENCE LISTING

<110> Genentech, Inc.
Ashkenazi, Avi
Botstein, David
Desnoyers, Luc
Eaton, Dan L.
Ferrara, Napoleone
Filvaroff, Ellen
Fong, Sherman
Gao, Wei-Qiang
Gerber, Hanspeter
Gerritsen, Mary E.
Goddard, A.
Godowski, Paul J.
Grimaldi, Christopher J.
Gurney, Austin L.
Hillan, Kenneth, J.
Kljavin, Ivar J.
Mather, Jennie P.
Pan, James
Paoni, Nicholas F.
Roy, Margaret Ann
Stewart, Timothy A.
Tumas, Daniel
Williams, P. Mickey
Wood, William, I.

<120> Secreted and Transmembrane Polypeptides and Nucleic Acids Encoding the Same

<130> 10466-14

<140> 09/665,350
<141> 2000-09-18

<150> PCT/US00/04414
<151> 2000-02-22

<150> US 60/143,048
<151> 1999-07-07

<150> US 60/145,698
<151> 1999-07-26

<150> US 60/146,222
<151> 1999-07-28

<150> PCT/US99/20594
<151> 1999-09-08

<150> PCT/US99/20944
<151> 1999-09-13

<150> PCT/US99/21090
<151> 1999-09-15

<150> PCT/US99/21547
<151> 1999-09-15

<150> PCT/US99/23089
<151> 1999-10-05

<150> PCT/US99/28214
<151> 1999-11-29

<150> PCT/US99/28313
<151> 1999-11-30

<150> PCT/US99/28564
<151> 1999-12-02

<150> PCT/US99/28565
<151> 1999-12-02

<150> PCT/US99/30095
<151> 1999-12-16

<150> PCT/US99/30911
<151> 1999-12-20

<150> PCT/US99/30999
<151> 1999-12-20

<150> PCT/US00/00219
<151> 2000-01-05

<160> 423

<210> 1
<211> 1825
<212> DNA
<213> Homo sapiens

<400> 1

actgcacctc ggttctatcg attgaattcc ccggggatcc tctagagatc cctcgaccc 60
gaccacgcg tccgggcccc agcagcacgg ccgcaggacc tggagctccg gctgcgtctt 120
cccgccgcg taccggccat ggcctgccg cgccggccg cgctggggct cctgccgctt 180
ctgctgctgc tgccgcccc gccggaggcc gccaagaagc cgacgcccctg ccacccgtgc 240
cgggggctgg tggacaagtt taaccagggg atggtgaca ccgcaaagaa gaactttggc 300
ggcgaaaaaca cggcttgga ggaaaagacg ctgtccaagt acgagtccag cgagattcgc 360
ctgctggaga tcctggaggg gctgtgcgag agcagcgact tcaaatgcaa tcagatgcta 420
gaggcgccagg aggagcacct ggaggcctgg tggctgcgcg tgaagagcga atatcctgac 480
ttattcgagt ggtttgtgt gaagacactg aaagtgtgt gctctccagg aacctacgg 540
cccgactgtc tcgcatgcca gggcgatcc cagaggccct gcagcgggaa tggccactgc 600
agcggagatg ggagcagaca gggcgacggg tcctgccgt gacacatggg gtaccaggc 660

ccgctgtgca ctgactgcac ggacggctac ttcagctcgc tcggAACGA gaccCACAGC 720
 atctgcacag cctgtacga gtccgtcaag acgtgcTGGC gcctgACCAAG cagAGACTGC 780
 ggcgAGTGTG aagtgggCTG ggtgtggac gagggCCCT gtgtggatgt ggacgAGTGT 840
 cgcccggAGC cgcctccCTG cagcgtgcg cagttctgtA agaacGCCAA cggctccTAC 900
 acgtgcgaAG agtgtgACTC cagctgtgtg ggctgcACAG gggAAAGGCC aggaaACTGT 960
 aaagagtgtA tctctggCTA cgcgaggGGAG cacggACAGT gtgcAGATGT ggacgAGTGC 1020
 tcactAGCAG aaaaaACCTG tgtgaggAAA aacgAAAact gctacaatac tccaggAGC 1080
 tacgtctgtG tgtgtccTGA cggcttcGAA gaaacgGAAG atgcctgtGT gccGCCGGCA 1140
 gaggctgaAG ccacagaAGG agaaAGCCCG acacAGCTGC cctccCGCA agacCTGTA 1200
 tgtGCCGGAC ttaccCTTA aattattcAG aaggatgtCC cgtggAAAAT gtggCCCTGA 1260
 ggtatGCCGTC tcctgcAGTG gacagCggCG gggagaggCT gcctgcTCTC taacgttGA 1320
 ttctcatttG tcccttaAAC agctgcATT cttggTTGTT cttaaacAGA cttgtatATT 1380
 ttgatacAGT tctttgtAA aaaaattgACC attgttagtA atcaggAGGA aaaaaaaaaa 1440
 aaaaaaaaaa aaaggGCggC cgcgactcta gagtcgacCT gcagaAGCTT ggccGCCATG 1500
 gccccacttG tttattgcAG ctatATAAtGG ttacaAAAtAA agcaatAGCA tcacAAAtTT 1560
 cacaAAAtAA gcatttttC cactgcATT tagttgtGgt ttgtccAAAC tcatacaAtGT 1620
 atcttatcat gtctggatcG ggaatttAATT cggcgcAGCA ccatggCCTG aaataACCTC 1680
 tgaaagagGA acttggTAG gtaccttCTG aggCggAAAG aaccAGCTGT ggaatgtGTG 1740
 tcagttAGGG tgtggAAAGT cccaggCTC cccaggCAGGC agaagtATGC aagcatGCAT 1800
 ctcaattAGT cagcaacCCA gttt 1825

<210> 2

<211> 353

<212> PRT

<213> Homo sapiens

<400> 2

Met	Arg	Leu	Pro	Arg	Arg	Ala	Ala	Leu	Gly	Leu	Leu	Pro	Leu	Leu	Leu
1															15

Leu	Leu	Pro	Pro	Ala	Pro	Glu	Ala	Ala	Lys	Lys	Pro	Thr	Pro	Cys	His
															30
20									25						

Arg	Cys	Arg	Gly	Leu	Val	Asp	Lys	Phe	Asn	Gln	Gly	Met	Val	Asp	Thr
															45
35						40									

Ala	Lys	Lys	Asn	Phe	Gly	Gly	Asn	Thr	Ala	Trp	Glu	Glu	Lys	Thr
50						55				60				

Leu	Ser	Lys	Tyr	Glu	Ser	Ser	Glu	Ile	Arg	Leu	Leu	Glu	Ile	Leu	Glu
															80
65						70				75					

Gly	Leu	Cys	Glu	Ser	Ser	Asp	Phe	Glu	Cys	Asn	Gln	Met	Leu	Glu	Ala
															95
85									90						

Gln	Glu	Glu	His	Leu	Glu	Ala	Trp	Trp	Leu	Gln	Leu	Lys	Ser	Glu	Tyr
															110
100						105									

Pro	Asp	Leu	Phe	Glu	Trp	Phe	Cys	Val	Lys	Thr	Leu	Lys	Val	Cys	Cys
															125
115								120							

Ser	Pro	Gly	Thr	Tyr	Gly	Pro	Asp	Cys	Leu	Ala	Cys	Gln	Gly	Gly	Ser
															140
130								135							

Gln Arg Pro Cys Ser Gly Asn Gly His Cys Ser Gly Asp Gly Ser Arg
145 150 155 160

Gln Gly Asp Gly Ser Cys Arg Cys His Met Gly Tyr Gln Gly Pro Leu
165 170 175

Cys Thr Asp Cys Met Asp Gly Tyr Phe Ser Ser Leu Arg Asn Glu Thr
 180 185 190

His Ser Ile Cys Thr Ala Cys Asp Glu Ser Cys Lys Thr Cys Ser Gly
195 200 205

Leu Thr Asn Arg Asp Cys Gly Glu Cys Glu Val Gly Trp Val Leu Asp
210 215 220

Glu Gly Ala Cys Val Asp Val Asp Glu Cys Ala Ala Glu Pro Pro Pro
225 230 235 240

Cys Ser Ala Ala Gln Phe Cys Lys Asn Ala Asn Gly Ser Tyr Thr Cys
 245 250 255

Glu Glu Cys Asp Ser Ser Cys Val Gly Cys Thr Gly Glu Gly Pro Gly
260 265 270

Asn Cys Lys Glu Cys Ile Ser Gly Tyr Ala Arg Glu His Gly Gln Cys
 275 280 285

Ala Asp Val Asp Glu Cys Ser Leu Ala Glu Lys Thr Cys Val Arg Lys
290 295 300

Asn Glu Asn Cys Tyr Asn Thr Pro Gly Ser Tyr Val Cys Val Cys Pro
305 310 315 320

Asp Gly Phe Glu Glu Thr Glu Asp Ala Cys Val Pro Pro Ala Glu Ala
 325 330 335

Glu Ala Thr Glu Gly Glu Ser Pro Thr Gln Leu Pro Ser Arg Glu Asp
 340 345 350

Leu

<210> 3

<211> 2206

<212> DNA

<213> Homo sapiens

<400> 3

caggtccaaac tgcacctcggttctatcgat tgaattccccggggatcctctagagatccc 60
tcgacacctgacccacgcgtccgcaggccgggaggcgacgcgcggctctaaacggg 120
aacagccctggtctgagggagctgcagcgcagcagagtatctgacggcgccaggttgcgta 180
ggtgccggcacgaggagtttcccgccagcgaggaggtcctgagcagcatggcccgagga 240

<210> 4
<211> 379
<212> PRT
<213> *Homo sapiens*

<400> 4
Met Ala Arg Arg Ser Ala Phe Pro Ala Ala Ala Leu Trp Leu Trp Ser
1 5 10 15

Ile Leu Leu Cys Leu Leu Ala Leu Arg Ala Glu Ala Gly Pro Pro Gln
20 25 30

Glu Glu Ser Leu Tyr Leu Trp Ile Asp Ala His Gln Ala Arg Val Leu
35 40 45

Ile Gly Phe Glu Glu Asp Ile Leu Ile Val Ser Glu Gly Lys Met Ala
50 55 60

Pro Phe Thr His Asp Phe Arg Lys Ala Gln Gln Arg Met Pro Ala Ile

65	70	75	80
Pro Val Asn Ile His Ser Met Asn Phe Thr Trp Gln Ala Ala Gly Gln			
85	90	95	
Ala Glu Tyr Phe Tyr Glu Phe Leu Ser Leu Arg Ser Leu Asp Lys Gly			
100	105	110	
Ile Met Ala Asp Pro Thr Val Asn Val Pro Leu Leu Gly Thr Val Pro			
115	120	125	
His Lys Ala Ser Val Val Gln Val Gly Phe Pro Cys Leu Gly Lys Gln			
130	135	140	
Asp Gly Val Ala Ala Phe Glu Val Asp Val Ile Val Met Asn Ser Glu			
145	150	155	160
Gly Asn Thr Ile Leu Gln Thr Pro Gln Asn Ala Ile Phe Phe Lys Thr			
165	170	175	
Cys Gln Gln Ala Glu Cys Pro Gly Gly Cys Arg Asn Gly Gly Phe Cys			
180	185	190	
Asn Glu Arg Arg Ile Cys Glu Cys Pro Asp Gly Phe His Gly Pro His			
195	200	205	
Cys Glu Lys Ala Leu Cys Thr Pro Arg Cys Met Asn Gly Gly Leu Cys			
210	215	220	
Val Thr Pro Gly Phe Cys Ile Cys Pro Pro Gly Phe Tyr Gly Val Asn			
225	230	235	240
Cys Asp Lys Ala Asn Cys Ser Thr Thr Cys Phe Asn Gly Gly Thr Cys			
245	250	255	
Phe Tyr Pro Gly Lys Cys Ile Cys Pro Pro Gly Leu Glu Gly Glu Gln			
260	265	270	
Cys Glu Ile Ser Lys Cys Pro Gln Pro Cys Arg Asn Gly Gly Lys Cys			
275	280	285	
Ile Gly Lys Ser Lys Cys Ser Lys Gly Tyr Gln Gly Asp Leu			
290	295	300	
Cys Ser Lys Pro Val Cys Glu Pro Gly Cys Gly Ala His Gly Thr Cys			
305	310	315	320
His Glu Pro Asn Lys Cys Gln Cys Gln Glu Gly Trp His Gly Arg His			
325	330	335	
Cys Asn Lys Arg Tyr Glu Ala Ser Leu Ile His Ala Leu Arg Pro Ala			
340	345	350	

FID:20020000

Gly Ala Gln Leu Arg Gln His Thr Pro Ser Leu Lys Lys Ala Glu Glu
355 360 365

Arg Arg Asp Pro Pro Glu Ser Asn Tyr Ile Trp
370 375

<210> 5
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 5
agggagcacg gacagtgtgc agatgtggac gagtgctcac tagca 45

<210> 6
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 6
agagtgtatac tctggctacg c 21

<210> 7
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 7
taagtccggc acattacagg tc 22

<210> 8
<211> 49
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 8
cccacgatgt atgaatggtg gactttgtgt gactcctggc ttctgcac 49

<210> 9
 <211> 22
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 9
 aaagacgcat ctgcgagtgt cc 22

<210> 10
 <211> 23
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 10
 tgctgatttc acactgctct ccc 23

<210> 11
 <211> 2197
 <212> DNA
 <213> Homo sapiens

<400> 11
 cggaacgcgtg ggcgtccggc ggtcgcagag ccaggaggcg gaggcgcg ggcgcgcgt 60
 ggccccagcc cacaccttca ccagggccca ggagccacca tggccatggatc tccactgggg 120
 ctactgtgt tgctgcccgtt ggctggccac ttggctctgg gtgcccagca gggtcgtggg 180
 cgccggggc tagcacccggg tctgcacctg cggggcatcc gggacgcggg aggccggta 240
 tgccaggagc aggacactgtg ctggccggc cgtgccacg actgtgcctt gcccctacctg 300
 ggcgcacatct gttactgtga cctcttctgc aaccgcacgg tctccgactg ctgcctgac 360
 ttctgggact tctgcctcgg cgtgccaccc cctttttttt cgtatccaagg atgtatgcat 420
 ggaggtcgta tctatccagt cttggaaacg tactggaca actgtaaccc ttgcacactgc 480
 caggagaaca ggcagtggca tggggatcc agacatgatc aaagccatca accaggggcaa 540
 ctatggctgg caggctggg accacagcgc cttctggggc atgaccctgg atgaggggcat 600
 tcgcgtaccgc ctgggcacca tccgccttc ttccctggc atgaacatgc atgaaattta 660
 tacagtgtg aaccccgagggg aggtgcttc cacagccttc gagggctctg agaagtggcc 720
 caacctgatt catgagcctc ttgaccaagg caactgtgca ggctcctggg cttctccac 780
 agcagctgtg gcatccgatc gtgtctcaat ccattctctg ggacacatga cgcctgtcct 840
 gtcggcccaag aacctgtgtt cttgtgacac ccaccagcag cagggttgcc ggggtggcg 900
 ttcgtatggt gcctgggtt ttcgtgtcg ccgagggtg gtgtctgacc actgtaccc 960
 cttctgggc cgtgaacagc acgaggctgg ccctgcggcc cctgtatga tgcacagccg 1020
 agccatgggt cggggcaagc gccaggccac tgcccactgc cccaacagct atgttaataa 1080
 caatgacatc taccaggta ctcctgtcta ccgcctcgcc tccaacgcaca aggagatcat 1140
 gaaggagctg atggagaatg gccctgtcca agccctcatg gaggtgcatg aggacttctt 1200
 cctatacaag ggaggcatct acagccacac gccagtgagc cttggggaggc cagagagata 1260
 ccgcggcat gggacccact cagtcaagat cacaggatgg ggagaggaga cgctgccaga 1320

tggaaggacg ctcaaatact ggactgcggc caactcctgg gggccagcct gggcgagag 1380
 gggccacttc cgcacatgtgc cgccgtcaaa tgagtgcgac atcgagagct tcgtgctggg 1440
 cgtctgggc cgcgtggca tggaggacat gggtcatcac tgaggctgcg ggcaccacgc 1500
 ggggtccggc ctgggatcca ggctaagggc cggcgaaaga ggcggcaatg gggcggtgac 1560
 cccagcctcg cccgacagag cccggggcgc aggccggcgc caggcgcta atcccggcgc 1620
 gggttccgct gacgcagcgc cccgcctggg agccgcggc aggccgagact ggccggagccc 1680
 ccagacctcc cagtggggac gggcagggc ctggcctggg aagagcacag ctgcagatcc 1740
 caggcctctg ggcgcacccac tcaagactac caaagccagg acacctaag tctccagccc 1800
 caataccccca ccccaatccc gtattttttt tttttttttt ttagacaggg tcttgctccg 1860
 ttgcccaggt tggagtgcag tggcccatca gggctcactg taacctccga ctccctgggtt 1920
 caagtgaccc tcccacctca gcctctcaag tagctggac tacaggtgca ccaccacacc 1980
 tggctaattt ttgtatTTTT tgtaaaagagg ggggtctcac tgtgttgccc aggctggttt 2040
 cgaactcctg ggctcaagcg gtccacctgc ctccgcctcc caaagtctg ggattgcagg 2100
 catgagccac tgcacccagc cctgtattct tattcttag atatttattt ttctttcac 2160
 tgTTTaaa aaaaacccaa gtattgataa aaaaaaaa 2197

<210> 12
 <211> 164
 <212> PRT
 <213> Homo sapiens

<400> 12

Met Trp Arg Cys Pro Leu Gly Leu Leu Leu Leu Pro Leu Ala Gly
 1 5 10 15

His Leu Ala Leu Gly Ala Gln Gln Gly Arg Gly Arg Arg Glu Leu Ala
 20 25 30

Pro Gly Leu His Leu Arg Gly Ile Arg Asp Ala Gly Gly Arg Tyr Cys
 35 40 45

Gln Glu Gln Asp Leu Cys Cys Arg Gly Arg Ala Asp Asp Cys Ala Leu
 50 55 60

Pro Tyr Leu Gly Ala Ile Cys Tyr Cys Asp Leu Phe Cys Asn Arg Thr
 65 70 75 80

Val Ser Asp Cys Cys Pro Asp Phe Trp Asp Phe Cys Leu Gly Val Pro
 85 90 95

Pro Pro Phe Pro Pro Ile Gln Gly Cys Met His Gly Gly Arg Ile Tyr
 100 105 110

Pro Val Leu Gly Thr Tyr Trp Asp Asn Cys Asn Arg Cys Thr Cys Gln
 115 120 125

Glu Asn Arg Gln Trp His Gly Gly Ser Arg His Asp Gln Ser His Gln
 130 135 140

Pro Gly Gln Leu Trp Leu Ala Gly Trp Glu Pro Gln Arg Leu Leu Gly
 145 150 155 160

His Asp Pro Gly

F00720 - E0020000

```
<210> 13
<211> 533
<212> DNA
<213> Homo sapiens

<220>
<221> modified_base
<222> (33)
<223> a, t, c or g

<220>
<221> modified_base
<222> (80)
<223> a, t, c or g

<220>
<221> modified_base
<222> (94)
<223> a, t, c or g.

<220>
<221> modified_base
<222> (144)
<223> a, t, c or g

<220>
<221> modified_base
<222> (188)
<223> a, t, c or g

<400> 13
aggctccttg gcccttttc cacagcaagc ttntgcnatc ccgattcggt gtctcaaatc 60
caattcttctt gggacacatn acgcctgtcc tttnngccccaa gaacctgctg tcttgtacac 120
ccaccagcag cagggctgcc cggntggcg tctcgatggt gcctgggtgg tcctgcgtcg 180
ccgagggntg gtgtctgacc actgctaccc cttctcgggc cgtgaacgag acgaggctgg 240
ccctgcgccc ccctgtatga tgcacagccg agccatgggt cggggcaagc gccaggccac 300
tgcccactgc cccaacagct atgttaataa caatgacatc taccaggtca ctccctgtcta 360
ccgcctcggc tccaacgaca aggagatcat gaaggagctg atggagaatg gccctgtcca 420
agccctcatg gaggtgcattt aggacttctt cctataacaag ggaggcatct acagccacac 480
gccagtgagc cttgggaggc cagagagata ccggccggcat gggacccact cag 533

<210> 14
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 14
```

ttcgaggcct ctgagaagtgc gccc 24
<210> 15
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 15
ggcggtatct ctctggcctc cc 22

<210> 16
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 16
ttctccacag cagctgtggc atccgatcgt gtctcaatcc attctctggg 50

<210> 17
<211> 960
<212> DNA
<213> Homo sapiens

<400> 17
gctgcttgcc ctgttcatgg caggcttggc cctgcagcca ggcactgccc tgctgtgcta 60
ctcctgcaaa gcccaggta gcaacaggaa ctgcctgcag gtggagaact gcacccagct 120
gggggagcag tgctggaccg cgccatcccg cgcaggtaatggc tcctgaccg tcatcagcaa 180
aggctgcagc ttgaactgca tggatgactc acaggactac tacgtggca agaagaacat 240
cacgtgtgt gacaccgact tgtgcaacgc cagcggggcc catgccctgc agccggctgc 300
cgccatccctt gcgtgtcc ctgcactcgg cctgtgtc tggggacccg gccagctata 360
ggctctgggg gcccccgctg cagcccacac tgggtgttgtt gccccaggcc tctgtgcac 420
tcctcacaga cctggcccaag tgggagcctg tcctgtttcc tgaggcacat cctaacgcaa 480
gtctgaccat gtatgtctgc acccctgtcc cccaccctga ccctccatg gccctctcca 540
ggactccac ccggcagatc agctcttagtgc acacagatcc gcctgcagat ggccccctcca 600
accctctctg ctgtgtttc catggcccaag cattctccac ccttaaccct gtgtcagggc 660
acctcttccc ccaggaagcc ttccctgccc accccatcta tgacttgacg caggtctgg 720
ccgtgggttc ccccgaccc agcaggaaac aggcaactca gagggccca gaaaggctga 780
gatgaagtgg actgagtaga actggaggac aagagtgcac gtgagttctt gggagtcctcc 840
agagatgggg cctggaggcc tggaggaagg ggccaggcct cacattcgtg gggctccctg 900
aatggcagcc ttagcacagc gttagccctt aataaacacc tggtggataa gccaaaaaaa 960

<210> 18
<211> 189
<212> PRT
<213> Homo sapiens

<400> 18
 Met Thr His Arg Thr Thr Trp Ala Arg Arg Thr Ser Arg Ala Val
 1 5 10 15

Thr Pro Thr Cys Ala Thr Pro Ala Gly Pro Met Pro Cys Ser Arg Leu
 20 25 30

Pro Pro Ser Leu Arg Cys Ser Leu His Ser Ala Cys Cys Ser Gly Asp
 35 40 45

Pro Ala Ser Tyr Arg Leu Trp Gly Ala Pro Leu Gln Pro Thr Leu Gly
 50 55 60

Val Val Pro Gln Ala Ser Val Pro Leu Leu Thr Asp Leu Ala Gln Trp
 65 70 75 80

Glu Pro Val Leu Val Pro Glu Ala His Pro Asn Ala Ser Leu Thr Met
 85 90 95

Tyr Val Cys Thr Pro Val Pro His Pro Asp Pro Pro Met Ala Leu Ser
 100 105 110

Arg Thr Pro Thr Arg Gln Ile Ser Ser Ser Asp Thr Asp Pro Pro Ala
 115 120 125

Asp Gly Pro Ser Asn Pro Leu Cys Cys Cys Phe His Gly Pro Ala Phe
 130 135 140

Ser Thr Leu Asn Pro Val Leu Arg His Leu Phe Pro Gln Glu Ala Phe
 145 150 155 160

Pro Ala His Pro Ile Tyr Asp Leu Ser Gln Val Trp Ser Val Val Ser
 165 170 175

Pro Ala Pro Ser Arg Gly Gln Ala Leu Arg Arg Ala Gln
 180 185

<210> 19

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 19

tgctgtgcta ctcctgcaaa gccc

24

<210> 20

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 20
tgcacaagtc ggtgtcacag cacg 24

<210> 21
<211> 44
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 21
agcaacgagg actgcctgca ggtggagaac tgcaccacgc tggg 44

<210> 22
<211> 1200
<212> DNA
<213> Homo sapiens

<400> 22
cccacgcgtc cgaacctctc cagcgatggg agccgcccgc ctgctgccca acctcactct 60
gtgcttacag ctgctgattc tctgctgtca aactcagtac gtgagggacc agggcgccat 120
gaccgaccag ctgagcaggc ggcagatccg cgagtagccaa ctctacagca ggaccagtgg 180
caagcacgtg caggtcaccg ggctgtcgcat ctccgcacc gccgaggacg gcaacaagtt 240
tgccaagctc atagtggaga cggacacgtt tggcagccgg gttcgatca aaggggctga 300
gagtgagaag tacatctgta tgaacaagag gggcaagctc atcgggaagc ccagcggaa 360
gagcaaagac tgcgtgttca cggagatcgt gctggagaac aactatacgg ctttcagaa 420
cgcccgac gagggcttgtt tcattggcctt caegcggcag gggcgcccc gccaggcttc 480
ccgcagccgc cagaaccacgc gcgaggccca cttcatcaag cgcctctacc aaggccagct 540
gccctcccc aaccacgccc agaagcagaa gcagttcgag ttgtgggct ccgccccac 600
ccgcccggacc aagcgcacac ggcggccca gcccctcagc tagtctggga ggcaggggc 660
agcagccct gggccgcctc cccacccctt tcccttcta atccaaggac tgggctgggg 720
tggccggagg ggagccagat ccccgaggga ggaccctgag ggcgcgaag catccgagcc 780
cccagctggg aagggggcagg ccgtgcccc agggccgct ggacagtc ccccttcccg 840
gacgggtggc agggcttggg gagaactga gtgtcaccct gatctcaggc caccagcctc 900
tgccggcctc ccagccgggc tcctgaagcc cgctgaaagg tcagcgactg aaggcctgc 960
agacaaccgt ctggaggtgg ctgtcctcaa aatctgcttc tcggatctcc ctcagtctgc 1020
ccccagcccc caaactcctc ctggctagac tgttaggaagg gactttgtt tggttggg 1080
tttcaggaaa aaagaaaaggg agagagagga aaatagaggg ttgtccactc ctcacattcc 1140
acgacccagg cctgcacccc acccccaact cccagcccc gaataaaacc attttcctgc 1200

<210> 23
<211> 205
<212> PRT
<213> Homo sapiens

<400> 23

Met	Gly	Ala	Ala	Arg	Leu	Leu	Pro	Asn	Leu	Thr	Leu	Cys	Leu	Gln	Leu
1				5					10					15	

Leu	Ile	Leu	Cys	Cys	Gln	Thr	Gln	Tyr	Val	Arg	Asp	Gln	Gly	Ala	Met
			20					25					30		

Thr	Asp	Gln	Leu	Ser	Arg	Arg	Gln	Ile	Arg	Glu	Tyr	Gln	Leu	Tyr	Ser
				35				40					45		

Arg	Thr	Ser	Gly	Lys	His	Val	Gln	Val	Thr	Gly	Arg	Arg	Ile	Ser	Ala
				50			55					60			

Thr	Ala	Glu	Asp	Gly	Asn	Lys	Phe	Ala	Lys	Leu	Ile	Val	Glu	Thr	Asp
					65		70			75			80		

Thr	Phe	Gly	Ser	Arg	Val	Arg	Ile	Lys	Gly	Ala	Glu	Ser	Glu	Lys	Tyr
					85			90					95		

Ile	Cys	Met	Asn	Lys	Arg	Gly	Lys	Leu	Ile	Gly	Lys	Pro	Ser	Gly	Lys
				100				105				110			

Ser	Lys	Asp	Cys	Val	Phe	Thr	Glu	Ile	Val	Leu	Glu	Asn	Asn	Tyr	Thr
				115			120				125				

Ala	Phe	Gln	Asn	Ala	Arg	His	Glu	Gly	Trp	Phe	Met	Ala	Phe	Thr	Arg
				130			135				140				

Gln	Gly	Arg	Pro	Arg	Gln	Ala	Ser	Arg	Ser	Arg	Gln	Asn	Gln	Arg	Glu
					145		150			155			160		

Ala	His	Phe	Ile	Lys	Arg	Leu	Tyr	Gln	Gly	Gln	Leu	Pro	Phe	Pro	Asn
				165				170				175			

His	Ala	Glu	Lys	Gln	Lys	Gln	Phe	Glu	Phe	Val	Gly	Ser	Ala	Pro	Thr
				180				185				190			

Arg	Arg	Thr	Lys	Arg	Thr	Arg	Arg	Pro	Gln	Pro	Leu	Thr			
				195			200				205				

<210> 24

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 24

cagtacgtga gggaccaggg cgccatga

28

<210> 25

DDBJ
EMBL
GenBank

```

<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 25
ccggtgacct gcacgtgctt gccca                                         24

<210> 26
<211> 41
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<220>
<221> modified_base
<222> (21)
<223> a, t, c or g

<400> 26
gcggatctgc cgccctgctca nctggtcggt catggcgccc t                                         41

<210> 27
<211> 2479
<212> DNA
<213> Homo sapiens

<400> 27
acttgccatc acctgttgcc agtgtggaaa aattctccct gttgaatttt ttgcacatgg 60
aggacagcag caaagagggc aacacaggct gataagacca gagacagcag ggagattatt 120
ttaccatacg ccctcaggac gttccctcta gctggagttc tggacttcaa cagaacccca 180
tccagtcatt ttgattttgc tgtttatttt tttttcttt ttcttttcc caccacattg 240
tattttattt ccgtacttca gaaatgggcc tacagaccac aaagtggccc agccatgggg 300
ctttttcct gaagtcttgg cttatcatt ccctggggct ctactcacag gtgtccaaac 360
tcctggcctg ccctagtgtg tgccgctgcg acaggaactt tgtctactgt aatgagcga 420
gcttgacctc agtgcctctt gggatcccg aggccgtAAC cgtactctac ctccacaaca 480
acccaaattaa taatgctgga tttcctgcag aactgcacaa tgcacatggc gtgcacacgg 540
tctacctgtt tggcaaccaa ctggacgaat tccccatgaa ctttcccaag aatgtcagag 600
ttctccattt gcagaaaaac aatattcaga ccatttcacg ggctgtctt gcccagctct 660
tgaagcttga agagctgcac ctggatgaca actccatatc cacagtgggg gtggaaagacg 720
gggccttcgg ggaggctatt agcctcaaat tggatgtttt gtctaaagat cacctgagca 780
gtgtgcctgt tggccttcct gtggacttgc aagagctgag agtggatgaa aatcgaattt 840
ctgtcatatc cgacatggcc ttccagaatc tcacgagctt ggacgtctt attgtggacg 900
ggaacctcct gaccaacaag ggtatgcgg agggcacctt cagccatctc accaagctca 960
aggaattttc aattgtacgt aattcgctgt cccaccctcc tcccgatctc ccaggtacgc 1020
atctgatcag gctctatgg caggacaacc agataaaacca cattcctttg acagccttct 1080
caaatctgcg taagctggaa cggctggata tatccaacaa ccaactgcgg atgctgactc 1140

```

aagggttt tgataatctc tccaaacctga agcagctcac tgctcggaat aacccttggg 1200
 ttttgactg cagtattaaa tgggtcacag aatggctcaa atatatccct tcacatctca 1260
 acgtgcgggg ttcatgtgc caaggctctg aacaagtccg ggggatggcc gtcagggaat 1320
 taaatatgaa tcttttgc tggccacca cgacccccgg cctgcctctc ttcacccca 1380
 ccccaagtac agttctccg accactcagc ctcccacccct ctctattcca aacccttagca 1440
 gaagctacac gcctccaact cctaccacat cgaaaacttcc cacgattcct gactggatg 1500
 gcagagaaag agtgaccaca cctatttctg aacggatcca gctctctatc catttgtga 1560
 atgataacttc cattcaagtc agctggctct ctctcttcac cgtgatggca tacaaactca 1620
 catgggtgaa aatggggccac agtttagtag ggggcatcgt tcaggagcgc atagtcagcg 1680
 gtgagaagca acacctgagc ctgtttaact tagagccccg atccacctat cggatttgtt 1740
 tagtgcact ggatgcttt aactaccgcg cggtagaaga caccatttg tcaagaggcca 1800
 ccacccatgc ctcctatctg aacaacggca gcaacacagc gtccagccat gagcagacga 1860
 cgtcccacag catgggcctcc cccttctgc tggcggctt gatcgggggc gcggtgatat 1920
 ttgtgcttgtt ggtcttgctc agcgtcttt gctggcatat gcacaaaaag gggcgtaca 1980
 cctcccagaa gtggaaatac aaccggggcc ggcggaaaga tgattattgc gaggcaggca 2040
 ccaagaagga caactccatc ctggagatga cagaaaccag tttcagatc gtctcctaa 2100
 ataacgatca actccttaaa ggagattca gactgcagcc catttacacc ccaaatgggg 2160
 gcattaatta cacagactgc catatccccca acaacatgcg atactgcaac agcagcgtgc 2220
 cagacctgga gcactgccat acgtgacagc cagaggccca gctgttatcaa ggcggacaat 2280
 tagactcttg agaacacact cgtgtgtgca cataaaagaca cgcagattac atttgataaa 2340
 tgttacacag atgcatttgt gcatttgaat actctgtaat ttatacggtg tactatataa 2400
 tgggatttaa aaaaagtgtct atctttcta tttcaagtttta attacaaaca gttttgttaac 2460
 tcttgcttt ttaaatctt 2479

<210> 28

<211> 660

<212> PRT

<213> Homo sapiens

<400> 28

Met Gly Leu Gln Thr Thr Lys Trp Pro Ser His Gly Ala Phe Phe Leu

1	5	10	15
---	---	----	----

Lys Ser Trp Leu Ile Ile Ser Leu Gly Leu Tyr Ser Gln Val Ser Lys

20	25	30
----	----	----

Leu Leu Ala Cys Pro Ser Val Cys Arg Cys Asp Arg Asn Phe Val Tyr

35	40	45
----	----	----

Cys Asn Glu Arg Ser Leu Thr Ser Val Pro Leu Gly Ile Pro Glu Gly

50	55	60
----	----	----

Val Thr Val Leu Tyr Leu His Asn Asn Gln Ile Asn Asn Ala Gly Phe

65	70	75	80
----	----	----	----

Pro Ala Glu Leu His Asn Val Gln Ser Val His Thr Val Tyr Leu Tyr

85	90	95
----	----	----

Gly Asn Gln Leu Asp Glu Phe Pro Met Asn Leu Pro Lys Asn Val Arg

100	105	110
-----	-----	-----

Val Leu His Leu Gln Glu Asn Asn Ile Gln Thr Ile Ser Arg Ala Ala

115	120	125
-----	-----	-----

Leu Ala Gln Leu Leu Lys Leu Glu Glu Leu His Leu Asp Asp Asn Ser
 130 135 140
 Ile Ser Thr Val Gly Val Glu Asp Gly Ala Phe Arg Glu Ala Ile Ser
 145 150 155 160
 Leu Lys Leu Leu Phe Leu Ser Lys Asn His Leu Ser Ser Val Pro Val
 165 170 175
 Gly Leu Pro Val Asp Leu Gln Glu Leu Arg Val Asp Glu Asn Arg Ile
 180 185 190
 Ala Val Ile Ser Asp Met Ala Phe Gln Asn Leu Thr Ser Leu Glu Arg
 195 200 205
 Leu Ile Val Asp Gly Asn Leu Leu Thr Asn Lys Gly Ile Ala Glu Gly
 210 215 220
 Thr Phe Ser His Leu Thr Lys Leu Lys Glu Phe Ser Ile Val Arg Asn
 225 230 235 240
 Ser Leu Ser His Pro Pro Asp Leu Pro Gly Thr His Leu Ile Arg
 245 250 255
 Leu Tyr Leu Gln Asp Asn Gln Ile Asn His Ile Pro Leu Thr Ala Phe
 260 265 270
 Ser Asn Leu Arg Lys Leu Glu Arg Leu Asp Ile Ser Asn Asn Gln Leu
 275 280 285
 Arg Met Leu Thr Gln Gly Val Phe Asp Asn Leu Ser Asn Leu Lys Gln
 290 295 300
 Leu Thr Ala Arg Asn Asn Pro Trp Phe Cys Asp Cys Ser Ile Lys Trp
 305 310 315 320
 Val Thr Glu Trp Leu Lys Tyr Ile Pro Ser Ser Leu Asn Val Arg Gly
 325 330 335
 Phe Met Cys Gln Gly Pro Glu Gln Val Arg Gly Met Ala Val Arg Glu
 340 345 350
 Leu Asn Met Asn Leu Leu Ser Cys Pro Thr Thr Thr Pro Gly Leu Pro
 355 360 365
 Leu Phe Thr Pro Ala Pro Ser Thr Ala Ser Pro Thr Thr Gln Pro Pro
 370 375 380
 Thr Leu Ser Ile Pro Asn Pro Ser Arg Ser Tyr Thr Pro Pro Thr Pro
 385 390 395 400
 Thr Thr Ser Lys Leu Pro Thr Ile Pro Asp Trp Asp Gly Arg Glu Arg

405	410	415
Val Thr Pro Pro Ile Ser Glu Arg Ile Gln Leu Ser Ile His Phe Val		
420	425	430
Asn Asp Thr Ser Ile Gln Val Ser Trp Leu Ser Leu Phe Thr Val Met		
435	440	445
Ala Tyr Lys Leu Thr Trp Val Lys Met Gly His Ser Leu Val Gly Gly		
450	455	460
Ile Val Gln Glu Arg Ile Val Ser Gly Glu Lys Gln His Leu Ser Leu		
465	470	475
Val Asn Leu Glu Pro Arg Ser Thr Tyr Arg Ile Cys Leu Val Pro Leu		
485	490	495
Asp Ala Phe Asn Tyr Arg Ala Val Glu Asp Thr Ile Cys Ser Glu Ala		
500	505	510
Thr Thr His Ala Ser Tyr Leu Asn Asn Gly Ser Asn Thr Ala Ser Ser		
515	520	525
His Glu Gln Thr Thr Ser His Ser Met Gly Ser Pro Phe Leu Leu Ala		
530	535	540
Gly Leu Ile Gly Gly Ala Val Ile Phe Val Leu Val Val Leu Leu Ser		
545	550	555
Val Phe Cys Trp His Met His Lys Lys Gly Arg Tyr Thr Ser Gln Lys		
565	570	575
Trp Lys Tyr Asn Arg Gly Arg Arg Lys Asp Asp Tyr Cys Glu Ala Gly		
580	585	590
Thr Lys Lys Asp Asn Ser Ile Leu Glu Met Thr Glu Thr Ser Phe Gln		
595	600	605
Ile Val Ser Leu Asn Asn Asp Gln Leu Leu Lys Gly Asp Phe Arg Leu		
610	615	620
Gln Pro Ile Tyr Thr Pro Asn Gly Gly Ile Asn Tyr Thr Asp Cys His		
625	630	635
Ile Pro Asn Asn Met Arg Tyr Cys Asn Ser Ser Val Pro Asp Leu Glu		
645	650	655
His Cys His Thr		
660		
<210> 29		
<211> 21		
<212> DNA		

<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 29
cggtctacct gatatggcaac c 21

<210> 30
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 30
gcaggacaac cagataaacc ac 22

<210> 31
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 31
acgcagattt gagaaggctg tc 22

<210> 32
<211> 46
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 32
ttcacgggct gctcttgccc agctcttcaa gcttgaagag ctgcac 46

<210> 33
<211> 3449
<212> DNA
<213> Homo sapiens

<400> 33
acttggagca agcggcgccg gcgaggacag aggcagaggc agaagctggg gctccgtcct 60
cgccctccac gagcgatccc cgaggagacg cgccggccctc ggcgaggcga agaggccgac 120

TOMATO SMOOTHIE

ggagaagacc cgggctggctg cgccttgc tcgtttcca ggccccggcg gctcagcc 180
tgccttcctt gctcgccctt aaaatggaaa agatgctcg aggctgttt ctgctgatcc 240
tcggacagat cgtcctcctc cctgcccagg ccagggagcg gtcacgtgg aggtccatct 300
ctagggcag acacgctcg acccccccgc agacggccct tctggagagt tcctgtgaga 360
acaagcggc agacctgggtt ttcatcattg acagctctcg cagtgtaac acccatgact 420
atgcaaaaggta caaggagttc atcgtggaca tcttgcattt cttggacatt ggtctgtatg 480
tcacccgagt gggcctgctc caatatggca gcaactgtcaa gaatgagttc tccctcaaga 540
ccttcaagag gaagtcccgag gtggagcgtg ctgtcaagag gatgcggcat ctgtccacgg 600
gcaccatgac tggctggcc atccagtatg ccctgaacat cgcatctca gaagcagagg 660
gggccccggcc cctgagggag aatgtccac gggtcataat gatcgtgaca gatggagac 720
ctcaggactc cgtggcccgag gtggctgcta aggcacggga cacgggcatt ctaatcttg 780
ccattgggtt gggccaggta gacttcaaca cttgaagtc cattggaggt gagccccatg 840
aggaccatgt ctcccttgtt gccaatttca gccagattga gacgctgacc tccgtgttcc 900
agaagaagtt gtgcacggcc cacatgtgca gcaccctgga gcataactgt gcccacttct 960
gcatcaacat ccctggctca tacgtctgca ggtgcaaaca aggtacatt ctcaactcg 1020
atcagacgac ttgcagaatc caggatctgt gtgccatgga ggaccacaac tgtgagcagc 1080
tctgtgtgaa tggccgggc tccttcgtt gccagtgeta cagtggtac gcccctggctg 1140
aggatggaa gaggtgtgt gctgtggact actgtgcctc agaaaaccac ggatgtgaac 1200
atgagtgtgt aaatgtgtat ggtctctacc ttgcccagtg ccatgaagga ttgtcttta 1260
acccagatga aaaaacgtgc acaaggatca actactgtgc actgaacaaa cccggctgtg 1320
agcatgatgt cgtcaacatcg gaggagagct actactgccc ctgcaccgt ggctacactc 1380
tggaccccaa tgcaaaacc tgcaagccggag tggaccactg tgacacagcag gaccatggct 1440
gtgagcagct gtgtctgaac acggaggatt cttcgtctg ccagtgtca gaaggcttcc 1500
tcatcaacga ggacctcaag acctgctccc gggtgattt ctgcctgtg agtgcattt 1560
gttgtgaata ctccctgttca aacatggaca gatccttgc ctgtcagtgt cctgagggac 1620
acgtgctccg cagcgtatggg aagacgtgtg caaaattgga ctcttgtgt ctgggggacc 1680
acggttgtga acattcgtgt gtaaggactg aagattcggt tttgtgtccag tgcttgaag 1740
gttatatact ccgtgaagat ggaaaaaccc gcaagggaa agatgtctgc caagctatag 1800
accatggctg tgaacacatt tttgtgttca aatatggaa ttccctacatc tgcaaatgct 1860
aggattccg gtcgctgtg gatggaaac gtcgcccggaa gaaggatgtc tgcaaatcaa 1920
cccacccatgg ctgcgaacac atttgggtt aatatggaa ttccctacatc tgcaaatgct 1980
cagaggatt tttcttagct gaggacggaa gacgggtccaa gaaatgcact gaaggcccaa 2040
ttgaccttgtt ctgtgtgatc gatggatcca agagtcttgg agaagagaat ttgaggtcg 2100
tgaaggactt tttgtgttca aatatggaa ttcccttccaa gccgctcgag 2160
tggggctgtt ccagtattcc acacaggcttcc acacagagtt cactctgaga aacttcaact 2220
cagccaaaga catgaaaaaa gccgtggccc acatgaaata catggaaag ggctctatga 2280
ctgggctggc cttgttccaa atgtttgaga gaagtttac ccaaggagaa ggggcccaggc 2340
ccctttccac aagggtggcc agagcagcca ttgtgttccac cgacggacgg gctcaggatg 2400
acgttccga gtggggccagt aaagccaagg ccaatggat cactatgtat gctgttgggg 2460
tagaaaaaggc cattgaggag gaactacaag agattgcctc tgagccacaca aacaagcatc 2520
tcttctatgc cgaagacttc agcacaatgg atgagataag tgaaaaactc aagaaaggca 2580
tctgtgaagc tctagaagac tccgtggaa gacaggactc tccagcagggg gaactgccaa 2640
aaacggtcca acagccaaaca gaatctgagc cagtcacccat aaatatccaa gacctacttt 2700
cctgttctaa ttttgcgtt caacacagat atctgtttga agaagacaat cttttacggt 2760
ctacacaaaaa gctttccat tcaacaaaac cttcaggaaag ccctttggaa gaaaaacacg 2820
atcaatgcaa atgtgaaaac cttataatgt tccagaaccc tgcaaacgaa gaagtaagaa 2880
attaacaca ggcgtttagaa gaaatgacac agagaatggaa agccctggaa aatcgctgta 2940
gatacagatg aagatttagaa atcgcgacac atttgttagtc attgtatcac ggattacaat 3000
gaacgcagtg cagagccccca aagctcaggc tattgttaaa tcaataatgt tttgtgttcc 3060
aacaatcagt actgagaaac ctgggttgcc acagaacaaa gacaagaatg atacactaac 3120
ttgttataat ttatcttagga aaaaatctt tcagaattt aagatgaatt taccaggtga 3180
gaatgaataa gctatgcaag gtatggta atatactgtg gacacaactt gcttctgcct 3240
catctgcct tagtgtgcaatctcatttgcata tatactgcata aagtttgcac agtcttactt 3300

ctgtagaaca ctggccatag gaaatgctgt tttttgtac tggactttac cttgatata 3360
 gtatatggat gtatgcataa aatcatagga catatgtact tgtgaaaca gttggattt 3420
 ttatacaata taaaattca ccacttcag 3449

<210> 34
 <211> 915
 <212> PRT
 <213> Homo sapiens

<400> 34
 Met Glu Lys Met Leu Ala Gly Cys Phe Leu Leu Ile Leu Gly Gln Ile
 1 5 10 15
 Val Leu Leu Pro Ala Glu Ala Arg Glu Arg Ser Arg Gly Arg Ser Ile
 20 25 30
 Ser Arg Gly Arg His Ala Arg Thr His Pro Gln Thr Ala Leu Leu Glu
 35 40 45
 Ser Ser Cys Glu Asn Lys Arg Ala Asp Leu Val Phe Ile Ile Asp Ser
 50 55 60
 Ser Arg Ser Val Asn Thr His Asp Tyr Ala Lys Val Lys Glu Phe Ile
 65 70 75 80
 Val Asp Ile Leu Gln Phe Leu Asp Ile Gly Pro Asp Val Thr Arg Val
 85 90 95
 Gly Leu Leu Gln Tyr Gly Ser Thr Val Lys Asn Glu Phe Ser Leu Lys
 100 105 110
 Thr Phe Lys Arg Lys Ser Glu Val Glu Arg Ala Val Lys Arg Met Arg
 115 120 125
 His Leu Ser Thr Gly Thr Met Thr Gly Leu Ala Ile Gln Tyr Ala Leu
 130 135 140
 Asn Ile Ala Phe Ser Glu Ala Glu Gly Ala Arg Pro Leu Arg Glu Asn
 145 150 155 160
 Val Pro Arg Val Ile Met Ile Val Thr Asp Gly Arg Pro Gln Asp Ser
 165 170 175
 Val Ala Glu Val Ala Ala Lys Ala Arg Asp Thr Gly Ile Leu Ile Phe
 180 185 190
 Ala Ile Gly Val Gly Gln Val Asp Phe Asn Thr Leu Lys Ser Ile Gly
 195 200 205
 Ser Glu Pro His Glu Asp His Val Phe Leu Val Ala Asn Phe Ser Gln
 210 215 220
 Ile Glu Thr Leu Thr Ser Val Phe Gln Lys Lys Leu Cys Thr Ala His

225	230	235	240
Met Cys Ser Thr Leu Glu His Asn Cys Ala His Phe Cys Ile Asn Ile			
245		250	255
Pro Gly Ser Tyr Val Cys Arg Cys Lys Gln Gly Tyr Ile Leu Asn Ser			
260		265	270
Asp Gln Thr Thr Cys Arg Ile Gln Asp Leu Cys Ala Met Glu Asp His			
275		280	285
Asn Cys Glu Gln Leu Cys Val Asn Val Pro Gly Ser Phe Val Cys Gln			
290		295	300
Cys Tyr Ser Gly Tyr Ala Leu Ala Glu Asp Gly Lys Arg Cys Val Ala			
305		310	315
Val Asp Tyr Cys Ala Ser Glu Asn His Gly Cys Glu His Glu Cys Val			
325		330	335
Asn Ala Asp Gly Ser Tyr Leu Cys Gln Cys His Glu Gly Phe Ala Leu			
340		345	350
Asn Pro Asp Glu Lys Thr Cys Thr Arg Ile Asn Tyr Cys Ala Leu Asn			
355		360	365
Lys Pro Gly Cys Glu His Glu Cys Val Asn Met Glu Glu Ser Tyr Tyr			
370		375	380
Cys Arg Cys His Arg Gly Tyr Thr Leu Asp Pro Asn Gly Lys Thr Cys			
385		390	395
Ser Arg Val Asp His Cys Ala Gln Gln Asp His Gly Cys Glu Gln Leu			
405		410	415
Cys Leu Asn Thr Glu Asp Ser Phe Val Cys Gln Cys Ser Glu Gly Phe			
420		425	430
Leu Ile Asn Glu Asp Leu Lys Thr Cys Ser Arg Val Asp Tyr Cys Leu			
435		440	445
Leu Ser Asp His Gly Cys Glu Tyr Ser Cys Val Asn Met Asp Arg Ser			
450		455	460
Phe Ala Cys Gln Cys Pro Glu Gly His Val Leu Arg Ser Asp Gly Lys			
465		470	475
Thr Cys Ala Lys Leu Asp Ser Cys Ala Leu Gly Asp His Gly Cys Glu			
485		490	495
His Ser Cys Val Ser Ser Glu Asp Ser Phe Val Cys Gln Cys Phe Glu			
500		505	510

Gly Tyr Ile Leu Arg Glu Asp Gly Lys Thr Cys Arg Arg Lys Asp Val
 515 520 525

Cys Gln Ala Ile Asp His Gly Cys Glu His Ile Cys Val Asn Ser Asp
 530 535 540

Asp Ser Tyr Thr Cys Glu Cys Leu Glu Gly Phe Arg Leu Ala Glu Asp
 545 550 555 560

Gly Lys Arg Cys Arg Arg Lys Asp Val Cys Lys Ser Thr His His Gly
 565 570 575

Cys Glu His Ile Cys Val Asn Asn Gly Asn Ser Tyr Ile Cys Lys Cys
 580 585 590

Ser Glu Gly Phe Val Leu Ala Glu Asp Gly Arg Arg Cys Lys Lys Cys
 595 600 605

Thr Glu Gly Pro Ile Asp Leu Val Phe Val Ile Asp Gly Ser Lys Ser
 610 615 620

Leu Gly Glu Glu Asn Phe Glu Val Val Lys Gln Phe Val Thr Gly Ile
 625 630 635 640

Ile Asp Ser Leu Thr Ile Ser Pro Lys Ala Ala Arg Val Gly Leu Leu
 645 650 655

Gln Tyr Ser Thr Gln Val His Thr Glu Phe Thr Leu Arg Asn Phe Asn
 660 665 670

Ser Ala Lys Asp Met Lys Lys Ala Val Ala His Met Lys Tyr Met Gly
 675 680 685

Lys Gly Ser Met Thr Gly Leu Ala Leu Lys His Met Phe Glu Arg Ser
 690 695 700

Phe Thr Gln Gly Glu Gly Ala Arg Pro Leu Ser Thr Arg Val Pro Arg
 705 710 715 720

Ala Ala Ile Val Phe Thr Asp Gly Arg Ala Gln Asp Asp Val Ser Glu
 725 730 735

Trp Ala Ser Lys Ala Lys Ala Asn Gly Ile Thr Met Tyr Ala Val Gly
 740 745 750

Val Gly Lys Ala Ile Glu Glu Leu Gln Glu Ile Ala Ser Glu Pro
 755 760 765

Thr Asn Lys His Leu Phe Tyr Ala Glu Asp Phe Ser Thr Met Asp Glu
 770 775 780

Ile Ser Glu Lys Leu Lys Lys Gly Ile Cys Glu Ala Leu Glu Asp Ser
 785 790 795 800

Asp Gly Arg Gln Asp Ser Pro Ala Gly Glu Leu Pro Lys Thr Val Gln
 805 810 815

Gln Pro Thr Glu Ser Glu Pro Val Thr Ile Asn Ile Gln Asp Leu Leu
 820 825 830

Ser Cys Ser Asn Phe Ala Val Gln His Arg Tyr Leu Phe Glu Glu Asp
 835 840 845

Asn Leu Leu Arg Ser Thr Gln Lys Leu Ser His Ser Thr Lys Pro Ser
 850 855 860

Gly Ser Pro Leu Glu Glu Lys His Asp Gln Cys Lys Cys Glu Asn Leu
 865 870 875 880

Ile Met Phe Gln Asn Leu Ala Asn Glu Glu Val Arg Lys Leu Thr Gln
 885 890 895

Arg Leu Glu Glu Met Thr Gln Arg Met Glu Ala Leu Glu Asn Arg Leu
 900 905 910

Arg Tyr Arg
 915

<210> 35

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 35

gtgaccctgg ttgtgaatac tcc

23

<210> 36

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 36

acagccatgg tctatagtt gg

22

<210> 37

<211> 45

<212> DNA

<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 37
gcctgtcagt gtcctgaggg acacgtgctc cgcagcgatg ggaag 45

<210> 38
<211> 1813
<212> DNA
<213> Homo sapiens

<400> 38
ggagccgccc tgggtgtcag cggctcggtc cccgcgcacg ctccggccgt cgcgacgc 60
cggcacctgc aggtccgtgc gtccccggc tggegcacct gactccgtcc cggccaggga 120
ggccatgat ttccctcccg gggcccttgg tgaccactt gctgcggttt ttgttccctgg 180
ggctgagtgc cctcgcgcgc ccctcgcggg cccagctgca actgcacttg cccgccaacc 240
ggttcagggc ggtggagggg gggaaagtgg tgcttcagc gtggtaacacc ttgcacgggg 300
agggttcttc atcccagcca tggaggtgc cctttgtat gtggttcttc aaacagaaaag 360
aaaaggagga tcaggttttgc tcctacatca atggggtcac aacaagcaaa cctggaggat 420
ccttggtcta ctccatgccc tcccgaaacc tgcgtcccg gctggagggt ctccaggaga 480
aagactctgg cccctacagc tgctccgtga atgtcaaga caaacaaggc aaatcttaggg 540
gccacagcat caaaacccatc gaactcaatg tactggttcc tccagctcc ctatcctgcc 600
gtctccaggg tggccccat gtgggggcaa acgtgaccct gagctgccag tctccaagga 660
gtaagccgc tgcataac cagtggatc ggcagcttcc atccctccag actttcttg 720
caccagcatt agatgtcatc cgtgggtctt taagcctcac caacccatcg tcttccatgg 780
ctggagtcta tgtctgcaag gccacaatg aggtggcac tgcccaatgt aatgtgacgc 840
tggaaagttag cccaggccct ggagctgcag tgggtgttgc agctgttgtg ggtaccctgg 900
ttggactggg gttgtgttgc gggctgtcc tcttgcacca ccgcggggc aaggccctgg 960
aggagccagc caatgatatac aaggaggatg ccattgtcc cccgaccctgc ccctgccc 1020
agagctcaga cacaatctcc aagaatggga cccttccctc tgcacccctcc gcacgagccc 1080
tccggccacc ccatggccct cccaggccct gtcatttgc cccacgccc agtctctcca 1140
gccaggccct gcccctcacca agactgccc cgcacatgg gccccaccctt caaccaatat 1200
ccccatccc tgggtgggtt tcttccctgc gcttgcaccc catgggtgttgc tgccctgtga 1260
tgggcctgc ccagactcaa gctggctctc tggatgtatg accccaccac tcattggcta 1320
aaggatttgg ggtctctctt tcctataagg gtcacccatc gcacagaggc ctgagtcatg 1380
ggaaagagtc acactcttgc cccttagtac tctgccttcc cctctcttta ctgtggaaa 1440
accatctcag taagaccaa gtgtccagga gacagaagga gaagaggaaatggatctgg 1500
attggagga gctccaccc accctgact cctccttatg aagccagctg ctgaaatttag 1560
ctactcacca agagtgggg gcaagactt ccagtcaactg agtctcccttgc gcccccttgc 1620
tctgtacccc accccatcttcc aacaccaccc ttggctccca ctccagctcc ctgtattgtat 1680
ataacctgtc aggctggctt ggttaggttt tactggggca gaggataggaaatctttat 1740
taaaactaac atgaaatatg tggatgttttcc atttgcaaat ttaaataaaag atacataatg 1800
tttgcataatgaaa 1813

<210> 39
<211> 390
<212> PRT
<213> Homo sapiens

<400> 39
Met Ile Ser Leu Pro Gly Pro Leu Val Thr Asn Leu Leu Arg Phe Leu

1	5	10	15												
Phe	Leu	Gly	Leu	Ser	Ala	Leu	Ala	Pro	Pro	Ser	Arg	Ala	Gln	Leu	Gln
			20					25						30	
Leu	His	Leu	Pro	Ala	Asn	Arg	Leu	Gln	Ala	Val	Glu	Gly	Gly	Glu	Val
							35			40			45		
Val	Leu	Pro	Ala	Trp	Tyr	Thr	Leu	His	Gly	Glu	Val	Ser	Ser	Ser	Gln
							50			55			60		
Pro	Trp	Glu	Val	Pro	Phe	Val	Met	Trp	Phe	Phe	Lys	Gln	Lys	Glu	Lys
							65			70			75		80
Glu	Asp	Gln	Val	Leu	Ser	Tyr	Ile	Asn	Gly	Val	Thr	Thr	Ser	Lys	Pro
								85			90			95	
Gly	Val	Ser	Leu	Val	Tyr	Ser	Met	Pro	Ser	Arg	Asn	Leu	Ser	Leu	Arg
							100			105			110		
Leu	Glu	Gly	Leu	Gln	Glu	Lys	Asp	Ser	Gly	Pro	Tyr	Ser	Cys	Ser	Val
							115			120			125		
Asn	Val	Gln	Asp	Lys	Gln	Gly	Lys	Ser	Arg	Gly	His	Ser	Ile	Lys	Thr
							130			135			140		
Leu	Glu	Leu	Asn	Val	Leu	Val	Pro	Pro	Ala	Pro	Pro	Ser	Cys	Arg	Leu
							145			150			155		160
Gln	Gly	Val	Pro	His	Val	Gly	Ala	Asn	Val	Thr	Leu	Ser	Cys	Gln	Ser
							165			170			175		
Pro	Arg	Ser	Lys	Pro	Ala	Val	Gln	Tyr	Gln	Trp	Asp	Arg	Gln	Leu	Pro
							180			185			190		
Ser	Phe	Gln	Thr	Phe	Phe	Ala	Pro	Ala	Leu	Asp	Val	Ile	Arg	Gly	Ser
							195			200			205		
Leu	Ser	Leu	Thr	Asn	Leu	Ser	Ser	Ser	Met	Ala	Gly	Val	Tyr	Val	Cys
							210			215			220		
Lys	Ala	His	Asn	Glu	Val	Gly	Thr	Ala	Gln	Cys	Asn	Val	Thr	Leu	Glu
							225			230			235		240
Val	Ser	Thr	Gly	Pro	Gly	Ala	Ala	Val	Val	Ala	Gly	Ala	Val	Val	Gly
							245			250			255		
Thr	Leu	Val	Gly	Leu	Gly	Leu	Leu	Ala	Gly	Leu	Val	Leu	Leu	Tyr	His
							260			265			270		
Arg	Arg	Gly	Lys	Ala	Leu	Glu	Glu	Pro	Ala	Asn	Asp	Ile	Lys	Glu	Asp
							275			280			285		

Ala Ile Ala Pro Arg Thr Leu Pro Trp Pro Lys Ser Ser Asp Thr Ile
290 295 300

Ser Lys Asn Gly Thr Leu Ser Ser Val Thr Ser Ala Arg Ala Leu Arg
305 310 315 320

Pro Pro His Gly Pro Pro Arg Pro Gly Ala Leu Thr Pro Thr Pro Ser
325 330 335

Leu Ser Ser Gln Ala Leu Pro Ser Pro Arg Leu Pro Thr Thr Asp Gly
340 345 350

Ala His Pro Gln Pro Ile Ser Pro Ile Pro Gly Gly Val Ser Ser Ser
355 360 365

Gly Leu Ser Arg Met Gly Ala Val Pro Val Met Val Pro Ala Gln Ser
370 375 380

Gln Ala Gly Ser Leu Val
385 390

```
<210> 40
<211> 22
<212> DNA
<213> Artificial Sequence
```

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 40
aqqqtctcca qqaqaaaqac tc

22

```
<210> 41
<211> 24
<212> DNA
<213> Artificial Sequence
```

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 41
atttgtqqqcc ttqcaqacat aqac

24

```
<210> 42
<211> 50
<212> DNA
<213> Artificial Sequence
```

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

* * * * *

```

<400> 42
ggccacagca tcaaaaacctt agaactcaat gtactggttc ctccagctcc      50

<210> 43
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 43
gtgtgacaca gcgtgggc      18

<210> 44
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 44
gaccggcagg cttctgcg      18

<210> 45
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 45
cagcagcttc agccaccagg agtgg      25

<210> 46
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 46
ctgagccgtg ggctgcagtc tcgc      24

<210> 47

```

<211> 45
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

 <400> 47
 ccgactacga ctggttcttc atcatgcagg atgacacata tgtgc 45

 <210> 48
 <211> 2822
 <212> DNA
 <213> Homo sapiens

 <400> 48
 cgccaccact gcggccaccc ccaatgaaac gcctcccgct cctagtggtt ttttccactt 60
 tggtgaattt ttcctatact caaaaattgca ccaagacacc ttgtctccca aatgcaaaat 120
 gtgaaatacg caatggatt gaaggctgct attgcaacat ggatttca gaaaaatggtg 180
 tcacaattt tgaagatgtt aatgaatgtg gaaatttaac tcagtcctgt ggcgaaaatg 240
 ctaattgcac taacacagaa ggaagtttattt attgtatgtg tgtagctggc ttcagatcca 300
 gcagtaacca agacagggtt atcaactatg atgaaaccgt ctgtatagaa aatgtaatg 360
 ccaaactgcca tttagataat gtctgtatag ctgcaaatat taataaaaact ttaacaaaaa 420
 tcagatccat aaaagaacct gtggctttgc tacaagaagt ctatagaaat tctgtgacag 480
 atcttcacc aacagatata attacatata tagaaatattt agctgaatca tcttcattac 540
 tagttacaa gaacaacact atctcagcca aggacaccct ttctactca actcttactg 600
 aatttgtaaa aaccgtgaat aattttgttc aaaggatac atttgtatgtt tgggacaagt 660
 tatctgtgaa tcataggaga acacatcttta caaaaactcat gcacactgtt gaacaagcta 720
 cttaaggat atcccagagc ttccaaaaga ccacagatgtt tgatacaaat tcaacggata 780
 tagctctcaa agtttcttt tttgattcat ataacatgaa acatattcat cctcatatga 840
 atatggatgg agactacata aatatatttc caaaagaaaa agctgcataat gattcaaatg 900
 gcaatgttgc agttgcattt ttatattata agagtattgg tcctttgctt tcatcatctg 960
 acaacttctt attgaaacct caaaaattatg ataattctga agaggaggaa agagtcatat 1020
 cttcagtaat ttctactca atgagctcaa acccaccac attatatgaa cttgaaaaaa 1080
 taacatttac attaagtcat cgaaaggctca cagatagta taggagtcta tgtgcatttt 1140
 ggaattactc acctgatacc atgaatggca gctggcttc agagggctgt gagctgacat 1200
 actcaaatga gacccacacc tcatgccgt gtaatcacct gacacatttt gcaattttga 1260
 tgtcctctgg tccttcattt ggtattaaag attataatat tcttacaagg atcaactcaac 1320
 taggaataat tatttcactg atttgtcttgc ccatatgcattttt tggttttca 1380
 gtgaaattca aagcaccagg acaacaattc acaaaaatct ttgctgttagc ctatttctt 1440
 ctgaacttgtt ttttcttgc gggatcaata caaaactaa taagctttc tggtaatca 1500
 ttgcggact gctacactac ttcttttgc atggatgtgc attgaaggca 1560
 tacatctcta tctcatttgc ttgttaatct cttggctttt ggagtcatca 1620
 tttatattttt tggcttatcta agcccagccg tggtagttgg attttcggca gcactaggat 1680
 acagatatta tggcacaacc aaagtatgtt ggcttagcac cggaaaacaac ttttatttgg 1740
 gtttatagg accagcatgc ctaatcattt ttgttaatct cttggctttt ggagtcatca 1800
 tatacaaagt ttttcgtcac actgcagggt tgaaaccaga agtagttgc tttgagaaca 1860
 taaggcttgc tgcaagagga gcctcgctc ttctgttgc tctcggcacc acctggatct 1920
 ttgggttctt ccatgttgc cacgcattcag tggttacagc ttacctttc acagtcagca 1980
 atgcatttca gggatgttc attttttat ttctgttgc tttatctaga aagattcaag 2040
 aagaatatta cagattgttc aaaaatgtcc cctgttgc tggatgttta aggtaaacat 2100
 agagaatgggt ggataattac aactgcacaa aaataaaaat tccaaagctgtt ggtatgacca 2160

tgtataaaaa tgactcatca aattatccaa ttattaacta ctagacaaaa agtatttaa 2220
 atcagtttt ctgtttatgc tataggaact gtagataata aggtaaaatt atgtatcata 2280
 tagatatact atgttttct atgtgaaata gttctgtcaa aaatagtatt gcagatattt 2340
 ggaaagtaat tggttctca ggagtatat cactgcaccc aaggaaagat tttcttcta 2400
 acacgagaag tataatgaaatg tcctgaaggaa aaccactggc ttgatatttc tgtgactcgt 2460
 gttgccttg aaactagtc cctaccacct cggtaatgag ctccattaca gaaagtggaa 2520
 cataagagaa tgaaggggca gaatatcaaa cagtgaaaag ggaatgataa gatgtatttt 2580
 gaatgaactg tttttctgt agactagctg agaaattgtt gacataaaat aaagaattga 2640
 agaaacacat ttaccattt tgtgaattgt tctgaactta aatgtccact aaaacaactt 2700
 agacttctgt ttgctaaatc tggcttttctt tctaataattc taaaaaaaaaaa aaaaagggtt 2760
 acctccacaa attgaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa 2820
 aa 2822

<210> 49
 <211> 690
 <212> PRT
 <213> Homo sapiens

<400> 49
 Met Lys Arg Leu Pro Leu Leu Val Val Phe Ser Thr Leu Leu Asn Cys
 1 5 10 15
 Ser Tyr Thr Gln Asn Cys Thr Lys Thr Pro Cys Leu Pro Asn Ala Lys
 20 25 30
 Cys Glu Ile Arg Asn Gly Ile Glu Ala Cys Tyr Cys Asn Met Gly Phe
 35 40 45
 Ser Gly Asn Gly Val Thr Ile Cys Glu Asp Asp Asn Glu Cys Gly Asn
 50 55 60
 Leu Thr Gln Ser Cys Gly Glu Asn Ala Asn Cys Thr Asn Thr Glu Gly
 65 70 75 80
 Ser Tyr Tyr Cys Met Cys Val Pro Gly Phe Arg Ser Ser Ser Asn Gln
 85 90 95
 Asp Arg Phe Ile Thr Asn Asp Gly Thr Val Cys Ile Glu Asn Val Asn
 100 105 110
 Ala Asn Cys His Leu Asp Asn Val Cys Ile Ala Ala Asn Ile Asn Lys
 115 120 125
 Thr Leu Thr Lys Ile Arg Ser Ile Lys Glu Pro Val Ala Leu Leu Gln
 130 135 140
 Glu Val Tyr Arg Asn Ser Val Thr Asp Leu Ser Pro Thr Asp Ile Ile
 145 150 155 160
 Thr Tyr Ile Glu Ile Leu Ala Glu Ser Ser Ser Leu Leu Gly Tyr Lys
 165 170 175
 Asn Asn Thr Ile Ser Ala Lys Asp Thr Leu Ser Asn Ser Thr Leu Thr

180	185	190
Glu Phe Val Lys Thr Val Asn Asn Phe Val Gln Arg Asp Thr Phe Val		
195	200	205
Val Trp Asp Lys Leu Ser Val Asn His Arg Arg Thr His Leu Thr Lys		
210	215	220
Leu Met His Thr Val Glu Gln Ala Thr Leu Arg Ile Ser Gln Ser Phe		
225	230	235
Gln Lys Thr Thr Glu Phe Asp Thr Asn Ser Thr Asp Ile Ala Leu Lys		
245	250	255
Val Phe Phe Phe Asp Ser Tyr Asn Met Lys His Ile His Pro His Met		
260	265	270
Asn Met Asp Gly Asp Tyr Ile Asn Ile Phe Pro Lys Arg Lys Ala Ala		
275	280	285
Tyr Asp Ser Asn Gly Asn Val Ala Val Ala Phe Leu Tyr Tyr Lys Ser		
290	295	300
Ile Gly Pro Leu Leu Ser Ser Ser Asp Asn Phe Leu Leu Lys Pro Gln		
305	310	315
Asn Tyr Asp Asn Ser Glu Glu Glu Arg Val Ile Ser Ser Val Ile		
325	330	335
Ser Val Ser Met Ser Ser Asn Pro Pro Thr Leu Tyr Glu Leu Glu Lys		
340	345	350
Ile Thr Phe Thr Leu Ser His Arg Lys Val Thr Asp Arg Tyr Arg Ser		
355	360	365
Leu Cys Ala Phe Trp Asn Tyr Ser Pro Asp Thr Met Asn Gly Ser Trp		
370	375	380
Ser Ser Glu Gly Cys Glu Leu Thr Tyr Ser Asn Glu Thr His Thr Ser		
385	390	395
Cys Arg Cys Asn His Leu Thr His Phe Ala Ile Leu Met Ser Ser Gly		
405	410	415
Pro Ser Ile Gly Ile Lys Asp Tyr Asn Ile Leu Thr Arg Ile Thr Gln		
420	425	430
Leu Gly Ile Ile Ile Ser Leu Ile Cys Leu Ala Ile Cys Ile Phe Thr		
435	440	445
Phe Trp Phe Phe Ser Glu Ile Gln Ser Thr Arg Thr Thr Ile His Lys		
450	455	460

Asn Leu Cys Cys Ser Leu Phe Leu Ala Glu Leu Val Phe Leu Val Gly
 465 470 475 480

Ile Asn Thr Asn Thr Asn Lys Leu Phe Cys Ser Ile Ile Ala Gly Leu
 485 490 495

Leu His Tyr Phe Phe Leu Ala Ala Phe Ala Trp Met Cys Ile Glu Gly
 500 505 510

Ile His Leu Tyr Leu Ile Val Val Gly Val Ile Tyr Asn Lys Gly Phe
 515 520 525

Leu His Lys Asn Phe Tyr Ile Phe Gly Tyr Leu Ser Pro Ala Val Val
 530 535 540

Val Gly Phe Ser Ala Ala Leu Gly Tyr Arg Tyr Tyr Gly Thr Thr Lys
 545 550 555 560

Val Cys Trp Leu Ser Thr Glu Asn Asn Phe Ile Trp Ser Phe Ile Gly
 565 570 575

Pro Ala Cys Leu Ile Ile Leu Val Asn Leu Leu Ala Phe Gly Val Ile
 580 585 590

Ile Tyr Lys Val Phe Arg His Thr Ala Gly Leu Lys Pro Glu Val Ser
 595 600 605

Cys Phe Glu Asn Ile Arg Ser Cys Ala Arg Gly Ala Leu Ala Leu Leu
 610 615 620

Phe Leu Leu Gly Thr Thr Trp Ile Phe Gly Val Leu His Val Val His
 625 630 635 640

Ala Ser Val Val Thr Ala Tyr Leu Phe Thr Val Ser Asn Ala Phe Gln
 645 650 655

Gly Met Phe Ile Phe Leu Phe Leu Cys Val Leu Ser Arg Lys Ile Gln
 660 665 670

Glu Glu Tyr Tyr Arg Leu Phe Lys Asn Val Pro Cys Cys Phe Gly Cys
 675 680 685

Leu Arg
 690

<210> 50

<211> 589

<212> DNA

<213> Homo sapiens

<220>

<221> modified_base

<222> (61)

<223> a, t, c or g

<400> 50

tggaaacata tcctccctca tatgaatatg gatggagact acataaatat atttccaaag 60
 ngaaaagccg gcatatggat tcaaattggca atgttgcagt tgcattttta tattataaga 120
 gtattggtcc ct当地cttc atcatctgac aacttcttat taaaacctca aaattatgat 180
 aattctgaag aggaggaaag agtcatatct tcagtaattt cagtctcaat gagctcaa 240
 ccaccacat tataatgact tgaaaaata acatttacat taagtcatcg aaaggcaca 300
 gataggata ggagtctatg tggcattttg gaataactcac ctgataccat gaatggcago 360
 tggcttcag agggctgtga gctgacatac tcaaattgaga cccacacctc atgccgtgt 420
 aatcacctga cacattttgc aattttgatg tcctctggc cttccattgg tattaaagat 480
 tataatattc ttacaaggat cactcaacta ggaataatta tttcaactgat ttgtcttgcc 540
 atatgcattt ttaccttctg gttttcagt gaaattcaaa gcaccagga 589

<210> 51

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 51

ggtaatgagc tccattacag

20

<210> 52

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 52

ggagtagaaa gcgcattgg

18

<210> 53

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 53

cacctgatac catgaatggc ag

22

<210> 54

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 54
cgagctcgaa ttaattcg 18

<210> 55
<211> 18
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 55
ggatccctg agtcagg 18

<210> 56
<211> 23
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 56
cctagttgag tgatccttgt aag 23

<210> 57
<211> 50
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 57
atgagaccca cacctcatgc cgctgtaatc acctgacaca ttttgcatt 50

<210> 58
<211> 2137
<212> DNA
<213> Homo sapiens

<400> 58
gctcccagcc aagaacctcg gggccgctgc gcgggtgggg aaggttcccc gaaaccggc 60
cgctaagcga ggcctcctcc tcccgagat ccgaacggcc tgggcggggt caccggct 120

gggacaagaa gccgcccgcct gcctgccccgg gcccggggag ggggctgggg ctggggccgg 180
 aggcggggtg tgagtgggtg tggcgggggg gcggagacctt gatgcaatcc cgataagaaa 240
 tgctcggtg tcttgggcac ctaccgggtgg ggcccgttaag gcgtactat ataaggctgc 300
 cggcccgag ccggccgcgc gtcagagcag gagcgtcgctc tccaggatct agggccacga 360
 ccatcccaac ccggcactca cagccccgca ggcgcattcccg gtcggccgcggc agcctcccg 420
 acccccacatcg ccggagactgc gcccggagcc ccaggaggt gcatgcggg gcggtgtgt 480
 ggtggtccac gtatggatcc tggccggct ctggctggcc ttggccgggc gccccctcg 540
 cttctcgac gccccggcccc acgtgcacta cggctgggc gaccccatcc gcctgcggca 600
 cctgtacacc tccggcccccc acgggctctc cagctgcctc ctgcgcattcc gtgcggacgg 660
 cgtcggtggac tgcggcgccc gccagagcgc gcacagttt ctggagatca aggcagtcgc 720
 tctgcggacc gtggccatca agggcgtgca cagcgtgcgg tacctctgca ttggccggca 780
 cggcaagatg caggggctgc ttcaacttc cggaggaagac tgtgtttcg aggaggagat 840
 ccccccagat ggctacaatg tgtaccgatc cgagaagcac cgcctccgg tctccctgag 900
 cagtccaaa cagcggcgc gtcgtacaagaa cagaggctt ctccactct ctcatttcct 960
 gcccattgtg cccatggcc cagaggagcc tgaggaccc actggccact ttggatctga 1020
 catgttctct tcgccccctgg agaccgcacat cattggaccca ttgggcttg tcacccggact 1080
 ggaggccgtg aggagtccca gctttagaaaa gtaactgaga ccatgcccgg gcctttcac 1140
 tgctgccagg ggctgtggta cctgcagcgt gggggacgtg ctctacaag aacagtctg 1200
 agtccacgtt ctgttttagct ttaggaagaa acatctagaa gttgtacata ttcaagttt 1260
 tccattggca gtgccagtt ctagccaata gacttgtctg atcataacat tgtaagcctg 1320
 tagcttgcggc agctgtgc tggccccca ttctgtccc tcgagggtgc ttggacaagct 1380
 gctgcactgt ctcagttctg cttaatacc tccatcgatg ggaactcactc ttctttgga 1440
 aaaattctta tgtcaagctg aaattctcta atttttctc atcaattccc caggagcagc 1500
 cagaagacag gcagtagttt taatttcagg aacaggtgat ccactctgtaa acacagcagg 1560
 taaatttcac tcaaccccat gtggaaattt atctatatct ctacttccag ggaccattt 1620
 cccttcccaa atccctccag gccagaactg actggagcag gcatggccca ccaggcttca 1680
 ggagtagggg aagcctggag cccactcca gcccctggac aacttgagaa ttccccctga 1740
 ggcaggattct gtcatggatg ctgtcctgag aataacttgc tggccgggtg tcacctgctt 1800
 ccatctccca gcccaccaggc cctctgccc ctcacatgc ctcccatgg attggggcct 1860
 cccaggcccc ccaccttatg tcaacctgca ttctgttca aaaaatcagg aaaagaaaag 1920
 atttgaagac cccaagtctt gtcaataact tgctgtgtgg aagcagcggg ggaagaccta 1980
 gaacccttcc cccagcactt ggtttccaa catgatattt atgagtaatt tattttgata 2040
 tgtacatctc ttatatttctt acattattt tgcccccaaa ttatatttat gtatgtaaat 2100
 gaggttggtt ttgtatatta aaatggagtt tgtttgt 2137

<210> 59
 <211> 216
 <212> PRT
 <213> Homo sapiens

<400> 59
 Met Arg Ser Gly Cys Val Val Val His Val Trp Ile Leu Ala Gly Leu
 1 5 10 15

Trp Leu Ala Val Ala Gly Arg Pro Leu Ala Phe Ser Asp Ala Gly Pro
 20 25 30

His Val His Tyr Gly Trp Gly Asp Pro Ile Arg Leu Arg His Leu Tyr
 35 40 45

Thr Ser Gly Pro His Gly Leu Ser Ser Cys Phe Leu Arg Ile Arg Ala
 50 55 60

Asp Gly Val Val Asp Cys Ala Arg Gly Gln Ser Ala His Ser Leu Leu
 65 70 75 80

Glu Ile Lys Ala Val Ala Leu Arg Thr Val Ala Ile Lys Gly Val His
 85 90 95

Ser Val Arg Tyr Leu Cys Met Gly Ala Asp Gly Lys Met Gln Gly Leu
 100 105 110

Leu Gln Tyr Ser Glu Glu Asp Cys Ala Phe Glu Glu Glu Ile Arg Pro
 115 120 125

Asp Gly Tyr Asn Val Tyr Arg Ser Glu Lys His Arg Leu Pro Val Ser
 130 135 140

Leu Ser Ser Ala Lys Gln Arg Gln Leu Tyr Lys Asn Arg Gly Phe Leu
 145 150 155 160

Pro Leu Ser His Phe Leu Pro Met Leu Pro Met Val Pro Glu Glu Pro
 165 170 175

Glu Asp Leu Arg Gly His Leu Glu Ser Asp Met Phe Ser Ser Pro Leu
 180 185 190

Glu Thr Asp Ser Met Asp Pro Phe Gly Leu Val Thr Gly Leu Glu Ala
 195 200 205

Val Arg Ser Pro Ser Phe Glu Lys
 210 215

<210> 60

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 60

atccgcccag atggctacaa tgtgta

26

<210> 61

<211> 42

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 61

gcctcccggt ctccctgagc agtgccaaac agcggcagtg ta

42

<210> 62
 <211> 22
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 62
 ccagtccggc gacaagccca aa 22

<210> 63
 <211> 1295
 <212> DNA
 <213> Homo sapiens

<400> 63
 cccagaagtt caagggcccc cggcctcctg cgctccgtcc gccgggaccc tcgacctcct 60
 cagagcagcc ggctgccccc ccggaaagat ggcgaggagg agccgcacc gcctccctc 120
 gctgctgctg cgctacctgg tggcgcctt gggctatcat aaggcctatg gttttctgc 180
 cccaaaagac caacaagtag tcacagcagt agactaccaa gaggctattt tagcctgcaa 240
 aaccctaaag aagactgttt cttccagatt agactgaaag aaactgggtc ggagtgtctc 300
 ctttgtctac tatcaacaga ctcttcaagg tgattttaaa aatcgagctg agatgataga 360
 ttcaatatac cggatcaaaa atgtgacaag aagtgtatgc gggaaatatac gttgtgaagt 420
 tagtgccccca tctgagcaag gccaaaaccc ggaagaggat acactcactc tggaaagtatt 480
 agtggctcca gcagttccat catgtgaagt acccttcttct gctctgagtg gaactgtgg 540
 agagctacga tgtcaagaca aagaaggaa tccagctcct gaatacacat ggttaagga 600
 tggcatccgt ttgctagaaa atcccagact tggctccaa agcaccaaca gctcatacac 660
 aatgaataca aaaactgaa ctctgcaatt taatactgtt tccaaactgg acactggaga 720
 atattccctgt gaagcccgca attctgttgg atatcgccagg tgcctggaa aacgaatgca 780
 agtagatgat ctcaacataa gtggcatcat agcagccgtt gtagttgtgg ccttagtcat 840
 ttccgttgtt ggccttgggt tatgctatgc tcagaggaaa ggctactttt caaaaagaaac 900
 ctccctccag aagagtaatt cttcatctaa agccacgaca atgagtgaaa atgtgcagtg 960
 gtcacgcct gtaatcccg cactttggaa ggccgcggcg ggcggatcac gaggtcagga 1020
 gttctagacc agtctggcca atatggtaa accccatctc tactaaaata caaaaattag 1080
 ctggcatgg tggcatgtgc ctgcagttcc agctgcttgg gagacaggag aatcacttga 1140
 accggggagg cggaggttgc agtgagctga gatcacgcca ctgcagtcctt gcctggtaa 1200
 cagagcaaga ttccatctca aaaaataaaaa taaaataata aataaaataact ggttttacc 1260
 tgtagaattt ttacaataaaa tatagtttg tattc 1295

<210> 64
 <211> 312
 <212> PRT
 <213> Homo sapiens

<400> 64
 Met Ala Arg Arg Ser Arg His Arg Leu Leu Leu Leu Leu Arg Tyr
 1 5 10 15

Leu Val Val Ala Leu Gly Tyr His Lys Ala Tyr Gly Phe Ser Ala Pro
 20 25 30

Lys Asp Gln Gln Val Val Thr Ala Val Glu Tyr Gln Glu Ala Ile Leu
 35 40 45

Ala Cys Lys Thr Pro Lys Lys Thr Val Ser Ser Arg Leu Glu Trp Lys
 50 55 60

Lys Leu Gly Arg Ser Val Ser Phe Val Tyr Tyr Gln Gln Thr Leu Gln
 65 70 75 80

Gly Asp Phe Lys Asn Arg Ala Glu Met Ile Asp Phe Asn Ile Arg Ile
 85 90 95

Lys Asn Val Thr Arg Ser Asp Ala Gly Lys Tyr Arg Cys Glu Val Ser
 100 105 110

Ala Pro Ser Glu Gln Gly Gln Asn Leu Glu Glu Asp Thr Val Thr Leu
 115 120 125

Glu Val Leu Val Ala Pro Ala Val Pro Ser Cys Glu Val Pro Ser Ser
 130 135 140

Ala Leu Ser Gly Thr Val Val Glu Leu Arg Cys Gln Asp Lys Glu Gly
 145 150 155 160

Asn Pro Ala Pro Glu Tyr Thr Trp Phe Lys Asp Gly Ile Arg Leu Leu
 165 170 175

Glu Asn Pro Arg Leu Gly Ser Gln Ser Thr Asn Ser Ser Tyr Thr Met
 180 185 190

Asn Thr Lys Thr Gly Thr Leu Gln Phe Asn Thr Val Ser Lys Leu Asp
 195 200 205

Thr Gly Glu Tyr Ser Cys Glu Ala Arg Asn Ser Val Gly Tyr Arg Arg
 210 215 220

Cys Pro Gly Lys Arg Met Gln Val Asp Asp Leu Asn Ile Ser Gly Ile
 225 230 235 240

Ile Ala Ala Val Val Val Ala Leu Val Ile Ser Val Cys Gly Leu
 245 250 255

Gly Val Cys Tyr Ala Gln Arg Lys Gly Tyr Phe Ser Lys Glu Thr Ser
 260 265 270

Phe Gln Lys Ser Asn Ser Ser Lys Ala Thr Thr Met Ser Glu Asn
 275 280 285

Val Gln Trp Leu Thr Pro Val Ile Pro Ala Leu Trp Lys Ala Ala Ala
 290 295 300

Gly Gly Ser Arg Gly Gln Glu Phe

305	310	
-----	-----	--

```

<210> 65
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 65
atcgttgtga agtttagtgcc cc

```

22

<210> 66		
----------	--	--

```

<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 66
acctgcgata tccaaacagaaa ttg

```

23

<210> 67		
----------	--	--

```

<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 67
ggaagaggat acagtcactc tggaagtatt agtggctcca gcagttcc

```

48

<210> 68		
----------	--	--

```

<211> 2639
<212> DNA
<213> Homo sapiens

<400> 68
gacatcgagg gttggcttagc actgaaactg ctttcaaga cgaggaagag gaggagaaag 60
agaagaaga ggaagatgtt gggcaacatt tatttaacat gctccacagc ccggaccctg 120
gcacatcatgct gctattcctg caaatactga agaagcatgg gatttaaata ttttacttct 180
aaataaatga attactcaat ctcctatgac catctataca tactccacct tcaaaaaagta 240
catcaatatt atatcatcaa ggaatatgtt accttctt ctccaaatgtt catgacattt 300
ttggacaatg caattgtggc actggcactt atttcagtgtt agaaaaactt tgtggttcta 360
tggcattcat catttgcataa atgcaagcat cttccttatac aatcagctcc tattgaactt 420
actagcactg actgtggaaat ccttaagggc ccattacatt tctgaagaag aaagctaaga 480
tgaaggacat gccactccga attcatgtgc tacttggcct agctatcact acactagta 540

```

aagctgtaga taaaaaaagtg gattgtccac ggttatgtac gtgtgaaatc aggccttgg 600
 ttacacccag atccatttat atgaaagcat ctacagtgg a ttgtaatgat ttaggtctt 660
 taacttccc agccagattg ccagctaaca cacagattct ttcctcacag actaacaata 720
 ttgcaaaaat tgaatactcc acagacttcc cagtaaacct tactggcctg gatttatctc 780
 aaaacaattt atttcagtc accaatatta atgtaaaaaa gatgcctcag ctcccttctg 840
 tgtacctaga gaaaaacaaa cttactgaac tgcctgaaaa atgtctgtcc gaactgagca 900
 acttacaaga actctatatt aatcacaact tgcttctac aatttcaccc ggagcctta 960
 ttggcctaca taatcttctt cgacttcatc tcaattcaaa tagattgcag atgatcaaca 1020
 gtaagtggtt tgatgcttcc ccaaacttag agattctgat gattggggaa aatccaatta 1080
 tcagaatcaa agacatgaac tttaaggcctc ttatcaatct tcgcagcctg gttatagctg 1140
 gtataaacct cacagaataa ccagataacg cttgggtgg actggaaaac ttagaaagca 1200
 tctctttta cgataacagg cttattaaag taccatgt tgctcttcaa aaagttgtaa 1260
 atctcaaattt tttggatcta aataaaaatc ctattaaatag aatacgaagg ggtgatttt 1320
 gcaatatgct acactaaaaa gagttggggaa taaataatgc gcctgagctg atttccatcg 1380
 atagtcttgc tggataaac ctgccagatt taagaaaaat agaagctact aacaacccta 1440
 gattgtcttta cattcaccccc aatgcatttt tcagactccc caagctggaa tcactcatgc 1500
 tgaacagcaa tgctctcagt gccctgtacc atggtaccat tgagtctctg ccaaacctca 1560
 agggaaatcag catacacagt aaccccatca ggtgtgactg tgcattccgt tggatgaaca 1620
 tgaacaaaac caacattcga ttcatggagc cagattcact gtttgcgtg gaccacccctg 1680
 aatttcaagg tcagaatgtt cggcaagtgc atttcaggaa catgatggaa atttgctcc 1740
 ctcttatacg tcctgagagc tttcttctta atctaaatgtt agaagctgg agctatgttt 1800
 ccttcactg tagagctact gcagaaccac agcctgaaat ctactggata acacccctg 1860
 gtcaaaaactt cttgcctaat accctgacag acaagttcta tgccattctt gaggaaacac 1920
 tagatataaa tggcgttaact cccaaagaag ggggttata tacttgtata gcaactaacc 1980
 tagttggcgc tgacttgaag tctgttatga tcaaagtgg tgatctttt ccacaagata 2040
 acaatggctc tttgaatatt aaataaagag atattcaggc caattcagtt ttgggtgcct 2100
 gggaaagcaag ttctaaaattt ctcaaatactt gtgttaatg gacagcctt gtcaagactg 2160
 aaaattctca tgctgcgaa agtgcgtc taccatctga tgtcaaggta tataatctt 2220
 ctcatctgaa tccatcaact gagtataaaa tttgtattga tattccacc atctatcaga 2280
 aaaacagaaa aaaatgtgtt aatgtcacca ccaaaggtt gcaccctgtt caaaaagagt 2340
 atgaaaagaa taataccaca acacttatgg cctgtcttgg aggccctctg gggattattg 2400
 gtgtgatatg tcttatacagc tgctctctc cagaaatgaa ctgtgatgg ggacacagct 2460
 atgtgaggaa ttacttacag aaaccaaccc ttgcatttagg tgagctttat ctcctctga 2520
 taaatctctg ggaaggcagga aaagaaaaaa gtacatcact gaaagtaaaa gcaactgtta 2580
 tagtttacc aacaaatatg tcctaaaaac caccaaggaa acctactcca aaaatgaac 2639

<210> 69
 <211> 708
 <212> PRT
 <213> Homo sapiens

<400> 69
 Met Lys Asp Met Pro Leu Arg Ile His Val Leu Leu Gly Leu Ala Ile
 1 5 10 15

Thr Thr Leu Val Gln Ala Val Asp Lys Lys Val Asp Cys Pro Arg Leu
 20 25 30

Cys Thr Cys Glu Ile Arg Pro Trp Phe Thr Pro Arg Ser Ile Tyr Met
 35 40 45

Glu Ala Ser Thr Val Asp Cys Asn Asp Leu Gly Leu Leu Thr Phe Pro
 50 55 60

Ala Arg Leu Pro Ala Asn Thr Gln Ile Leu Leu Leu Gln Thr Asn Asn
 65 70 75 80

Ile Ala Lys Ile Glu Tyr Ser Thr Asp Phe Pro Val Asn Leu Thr Gly
 85 90 95

Leu Asp Leu Ser Gln Asn Asn Leu Ser Ser Val Thr Asn Ile Asn Val
 100 105 110

Lys Lys Met Pro Gln Leu Leu Ser Val Tyr Leu Glu Glu Asn Lys Leu
 115 120 125

Thr Glu Leu Pro Glu Lys Cys Leu Ser Glu Leu Ser Asn Leu Gln Glu
 130 135 140

Leu Tyr Ile Asn His Asn Leu Leu Ser Thr Ile Ser Pro Gly Ala Phe
 145 150 155 160

Ile Gly Leu His Asn Leu Leu Arg Leu His Leu Asn Ser Asn Arg Leu
 165 170 175

Gln Met Ile Asn Ser Lys Trp Phe Asp Ala Leu Pro Asn Leu Glu Ile
 180 185 190

Leu Met Ile Gly Glu Asn Pro Ile Ile Arg Ile Lys Asp Met Asn Phe
 195 200 205

Lys Pro Leu Ile Asn Leu Arg Ser Leu Val Ile Ala Gly Ile Asn Leu
 210 215 220

Thr Glu Ile Pro Asp Asn Ala Leu Val Gly Leu Glu Asn Leu Glu Ser
 225 230 235 240

Ile Ser Phe Tyr Asp Asn Arg Leu Ile Lys Val Pro His Val Ala Leu
 245 250 255

Gln Lys Val Val Asn Leu Lys Phe Leu Asp Leu Asn Lys Asn Pro Ile
 260 265 270

Asn Arg Ile Arg Arg Gly Asp Phe Ser Asn Met Leu His Leu Lys Glu
 275 280 285

Leu Gly Ile Asn Asn Met Pro Glu Leu Ile Ser Ile Asp Ser Leu Ala
 290 295 300

Val Asp Asn Leu Pro Asp Leu Arg Lys Ile Glu Ala Thr Asn Asn Pro
 305 310 315 320

Arg Leu Ser Tyr Ile His Pro Asn Ala Phe Phe Arg Leu Pro Lys Leu
 325 330 335

Glu Ser Leu Met Leu Asn Ser Asn Ala Leu Ser Ala Leu Tyr His Gly

T00720-20020610

340	345	350
Thr Ile Glu Ser Leu Pro Asn Leu Lys Glu Ile Ser Ile His Ser Asn		
355	360	365
Pro Ile Arg Cys Asp Cys Val Ile Arg Trp Met Asn Met Asn Lys Thr		
370	375	380
Asn Ile Arg Phe Met Glu Pro Asp Ser Leu Phe Cys Val Asp Pro Pro		
385	390	395
Glu Phe Gln Gly Gln Asn Val Arg Gln Val His Phe Arg Asp Met Met		
405	410	415
Glu Ile Cys Leu Pro Leu Ile Ala Pro Glu Ser Phe Pro Ser Asn Leu		
420	425	430
Asn Val Glu Ala Gly Ser Tyr Val Ser Phe His Cys Arg Ala Thr Ala		
435	440	445
Glu Pro Gln Pro Glu Ile Tyr Trp Ile Thr Pro Ser Gly Gln Lys Leu		
450	455	460
Leu Pro Asn Thr Leu Thr Asp Lys Phe Tyr Val His Ser Glu Gly Thr		
465	470	475
Leu Asp Ile Asn Gly Val Thr Pro Lys Glu Gly Gly Leu Tyr Thr Cys		
485	490	495
Ile Ala Thr Asn Leu Val Gly Ala Asp Leu Lys Ser Val Met Ile Lys		
500	505	510
Val Asp Gly Ser Phe Pro Gln Asp Asn Asn Gly Ser Leu Asn Ile Lys		
515	520	525
Ile Arg Asp Ile Gln Ala Asn Ser Val Leu Val Ser Trp Lys Ala Ser		
530	535	540
Ser Lys Ile Leu Lys Ser Ser Val Lys Trp Thr Ala Phe Val Lys Thr		
545	550	555
Glu Asn Ser His Ala Ala Gln Ser Ala Arg Ile Pro Ser Asp Val Lys		
565	570	575
Val Tyr Asn Leu Thr His Leu Asn Pro Ser Thr Glu Tyr Lys Ile Cys		
580	585	590
Ile Asp Ile Pro Thr Ile Tyr Gln Lys Asn Arg Lys Lys Cys Val Asn		
595	600	605
Val Thr Thr Lys Gly Leu His Pro Asp Gln Lys Glu Tyr Glu Lys Asn		
610	615	620

Thr Asn Met Ser
705

<210> 70
<211> 1305
<212> DNA
<213> Homo sapiens

<400> 70
 gcccgggact ggcccaaggaa gaaaaagaaaat aatgaagaga cacatgtgtt 60
 agctgcagcc tttgaaaca cgcaagaagg aaatcaatag tgtggacagg gctggAACCT 120
 ttaccacgt tttggagta gatgaggaat gggctcgta ttatgctgac attccagcat 180
 gaatctggta gacctgttgt taacccgttc cctctccatg tgtctccctc tacaaaagtt 240
 ttttttatg atactgtgt ttcatttgc cagatgtgt cccagggt gtcttggc 300
 ttcccttggg gtttaaatg tcacctgttag caatgcaat ctcaaggaaa tacctagaga 360
 tcttccttctt gaaacagtct tactgtatct ggactccaat cagatcacat ctattccaa 420
 tggaaatttt aaggacctcc atcaacttgag agttctcaac ctgtccaaaa atgcattga 480
 gtttatcgat gagcatgcct tcaaaggagt agctgaaacc ttgcagactc tggacttgc 540
 cgacaatcggtt attcaaagtg tgcacaaaaa tgccctcaat aacctgaagg ccaggGCCAG 600
 aattgcacac aacccctggc actgcgactg tactctacag caagttctga ggagcatggc 660
 gtccaaatcat gagacagccc acaacgtgat ctgtaaaacg tccgtgttgg atgaacatgc 720
 tggcagacca ttccctcaatg ctgccaacga cgctgacctt tgtaacctcc ctaaaaaaac 780
 taccgattat gcatgtctgg tcaccatgtt tgctgggtt actatggtga tctcatatgt 840
 ggttatattt gtgaggcaaa atcaggagga tgccccggaga cacctcgaaat acttggaaatc 900
 cctgccaagc aggcaaga aagcagatga acctgtatgat attagactg tggatagtg 960
 tccaaactga ctgtcatttga gaaagaaaaga aagttagttt cgattgcagt agaaataagt 1020
 ggtttacttc tcccatccat tgtaaaacatt tgaaaactttg tatttcagtt tttttgaat 1080
 tatgcactg ctgaaactttt aacaaacact acaacataaa taatttgagt ttaggtgatc 1140
 caccccttaa ttgtacccccc gatggatat ttctgagtaa gctactatct gaaacattttg 1200
 tagatccatc tcaactattta ataatgaaat ttatTTTTT aattttaaaag caaataaaaag 1260
 cttaaactttt aaccatgggaa aaaaaaaaaaa aaaca 1305

<210> 71
<211> 259
<212> PRT
<213> *Homo sapiens*

<400> 71

Met Asn Leu Val Asp Leu Trp Leu Thr Arg Ser Leu Ser Met Cys Leu
 1 5 10 15

Leu Leu Gln Ser Phe Val Leu Met Ile Leu Cys Phe His Ser Ala Ser
 20 25 30

Met Cys Pro Lys Gly Cys Leu Cys Ser Ser Ser Gly Gly Leu Asn Val
 35 40 45

Thr Cys Ser Asn Ala Asn Leu Lys Glu Ile Pro Arg Asp Leu Pro Pro
 50 55 60

Glu Thr Val Leu Leu Tyr Leu Asp Ser Asn Gln Ile Thr Ser Ile Pro
 65 70 75 80

Asn Glu Ile Phe Lys Asp Leu His Gln Leu Arg Val Leu Asn Leu Ser
 85 90 95

Lys Asn Gly Ile Glu Phe Ile Asp Glu His Ala Phe Lys Gly Val Ala
 100 105 110

Glu Thr Leu Gln Thr Leu Asp Leu Ser Asp Asn Arg Ile Gln Ser Val
 115 120 125

His Lys Asn Ala Phe Asn Asn Leu Lys Ala Arg Ala Arg Ile Ala Asn
 130 135 140

Asn Pro Trp His Cys Asp Cys Thr Leu Gln Gln Val Leu Arg Ser Met
 145 150 155 160

Ala Ser Asn His Glu Thr Ala His Asn Val Ile Cys Lys Thr Ser Val
 165 170 175

Leu Asp Glu His Ala Gly Arg Pro Phe Leu Asn Ala Ala Asn Asp Ala
 180 185 190

Asp Leu Cys Asn Leu Pro Lys Lys Thr Thr Asp Tyr Ala Met Leu Val
 195 200 205

Thr Met Phe Gly Trp Phe Thr Met Val Ile Ser Tyr Val Val Tyr Tyr
 210 215 220

Val Arg Gln Asn Gln Glu Asp Ala Arg Arg His Leu Glu Tyr Leu Lys
 225 230 235 240

Ser Leu Pro Ser Arg Gln Lys Lys Ala Asp Glu Pro Asp Asp Ile Ser
 245 250 255

Thr Val Val

<210> 72
 <211> 2290

<212> DNA

<213> Homo sapiens

<400> 72

accgagccga gcgaccgaa ggccgcggcc agatcagggt gagcaagagg atgctggcg 60
 gggcgtag gacatgccc agccccctcc tggcctgtg ctagccatc ctccctgtgg 120
 tgctgggctc agtgcgtca ggctggcca cgggctgccc gccccgtgc gagtgctccg 180
 cccaggaccg cgctgtgtc tgccaccgc a gtgcattgt ggcagtcccc gagggcatcc 240
 ccaccgagac ggcctgtg gacttaggca agaaccgcataaaaacgc aaccaggacg 300
 agttcgccag ctcccccac ctggaggagc tggagctcaa cgagaacatc gtgagcgccg 360
 tggagcccg cgccttcaac aacctttca acctccggac gctgggtctc cgcagcaacc 420
 gcctgaagct catcccccta ggcgtttca ctggcctcag caacctgacc aagcaggaca 480
 tcagcgagaa caagatcgat atcctactgg actacatgtt tcaggacatc tacaacctca 540
 agtcaactgga ggttggcgac aatgacactcg tctacatctc tcaccgcgc ttcagcgcc 600
 tcaacagcct ggagcagctg acgctggaga aatgcaacct gacctccatc cccaccgagg 660
 cgctgtccca cctgcacggc ctcatgtcc tgaggctccg gcacctaaccatcaatgc 720
 tccggacta ctccctcaag aggctgtacc gactcaaggt ctggagatc tcccactggc 780
 cctacttggc caccatgaca cccaaactgcc tctacggct caacctgacg tccctgtcca 840
 tcacacactg caatctgacc gctgtgcct acctggccgt ccgcaccta gtctatctcc 900
 gtttctcaaa cctctcttac aacccatca gcaccattga ggctccatg ttgcatgagc 960
 tgctccggct gcaggagatc cagctgggtgg gggggcagct gggcgtgggt gggccatcg 1020
 cttccggcg cctcaactac ctgcgcgtgc tcaatgtctc tggcaaccag ctgaccacac 1080
 tggaggaatc agtcttccac tcggtggca acctggagac actcatctg gactccaacc 1140
 cgctggctg cgactgtcgg ctctgtggg tttccggcg ccgctggcg ctcaacttca 1200
 accggcagca gccccacgtgc gccacgccc agtttgcctt gggcaaggag ttcaaggact 1260
 tccctgatgt gctactgccc aactacttca cctgcgcgcg cggccgcata cgggaccgca 1320
 aggcccagca ggtgttgtg gacgaggggcc acacggtgca gtttgtgtgc cgggccgatg 1380
 ggcacccggcc gccccccatc ctctggctt caccggaaa gcacctggtc tcagccaaga 1440
 gcaatggcg gtcacagtc ttccctgatg gcacgttgc ggtgcgtac gcccaggatc 1500
 aggacaacgg cacgtacctg tgcacatgcgg ccaacgcggg cggcaacgcac tccatgcgg 1560
 cccacctgca tgcacatgc tgcacatgcgg actggccca tcagcccaac aagacccatcg 1620
 ctttcatctc caaccaggcc ggcaggggag aggccaacag caccgcgc actgtgcctt 1680
 tcccttcga catcaagacc ctcatcatcg ccaccaccat gggcttcatc tctttctgg 1740
 gctcgtctt cttctgtgt gtgtgtgt ttctctggag cggggggcaag ggcacacaaa 1800
 agcacaacat cgagatcgat tatgtggccc gaaagtgcga cgcaggcatc agtcgcgg 1860
 acgcgcggccg caagttcaac atgaagatga tatgaggccg gggcggggggg cagggacccc 1920
 cggcgcccg ggcaggggaa gggccctggt cgcacatgc tcaatctca gtcctccca 1980
 cttcttcctt acccttctac acacgttctc ttctccctc cccctgtgc cccctgtgc 2040
 ccccgccag ccctcacac ctgcctctt tctaccagga cctcagaagc ccagacactgg 2100
 ggacccacc tacacagggg cattgacaga ctggaggta aagccgacga accgacacgc 2160
 ggcagagtca ataattcaat aaaaaagttt cgaacttctt ctgtacttgg ggttcaata 2220
 attatggatt ttatgaaaaa ctgaaataa taaaaagaga aaaaaactaa aaaaaaaaaa 2280
 aaaaaaaaaa 2290

<210> 73

<211> 620

<212> PRT

<213> Homo sapiens

<400> 73

Met Gln Val Ser Lys Arg Met Leu Ala Gly Gly Val Arg Ser Met Pro

1

5

10

15

TGTGCGCTTCATCAGCCCAAC

Ser Pro Leu Leu Ala Cys Trp Gln Pro Ile Leu Leu Leu Val Leu Gly
 20 25 30

Ser Val Leu Ser Gly Ser Ala Thr Gly Cys Pro Pro Arg Cys Glu Cys
 35 40 45

Ser Ala Gln Asp Arg Ala Val Leu Cys His Arg Lys Cys Phe Val Ala
 50 55 60

Val Pro Glu Gly Ile Pro Thr Glu Thr Arg Leu Leu Asp Leu Gly Lys
 65 70 75 80

Asn Arg Ile Lys Thr Leu Asn Gln Asp Glu Phe Ala Ser Phe Pro His
 85 90 95

Leu Glu Glu Leu Glu Leu Asn Glu Asn Ile Val Ser Ala Val Glu Pro
 100 105 110

Gly Ala Phe Asn Asn Leu Phe Asn Leu Arg Thr Leu Gly Leu Arg Ser
 115 120 125

Asn Arg Leu Lys Leu Ile Pro Leu Gly Val Phe Thr Gly Leu Ser Asn
 130 135 140

Leu Thr Lys Gln Asp Ile Ser Glu Asn Lys Ile Val Ile Leu Leu Asp
 145 150 155 160

Tyr Met Phe Gln Asp Leu Tyr Asn Leu Lys Ser Leu Glu Val Gly Asp
 165 170 175

Asn Asp Leu Val Tyr Ile Ser His Arg Ala Phe Ser Gly Leu Asn Ser
 180 185 190

Leu Glu Gln Leu Thr Leu Glu Lys Cys Asn Leu Thr Ser Ile Pro Thr
 195 200 205

Glu Ala Leu Ser His Leu His Gly Leu Ile Val Leu Arg Leu Arg His
 210 215 220

Leu Asn Ile Asn Ala Ile Arg Asp Tyr Ser Phe Lys Arg Leu Tyr Arg
 225 230 235 240

Leu Lys Val Leu Glu Ile Ser His Trp Pro Tyr Leu Asp Thr Met Thr
 245 250 255

Pro Asn Cys Leu Tyr Gly Leu Asn Leu Thr Ser Leu Ser Ile Thr His
 260 265 270

Cys Asn Leu Thr Ala Val Pro Tyr Leu Ala Val Arg His Leu Val Tyr
 275 280 285

Leu Arg Phe Leu Asn Leu Ser Tyr Asn Pro Ile Ser Thr Ile Glu Gly
 290 295 300

Ser Met Leu His Glu Leu Leu Arg Leu Gln Glu Ile Gln Leu Val Gly
 305 310 315 320

Gly Gln Leu Ala Val Val Glu Pro Tyr Ala Phe Arg Gly Leu Asn Tyr
 325 330 335

Leu Arg Val Leu Asn Val Ser Gly Asn Gln Leu Thr Thr Leu Glu Glu
 340 345 350

Ser Val Phe His Ser Val Gly Asn Leu Glu Thr Leu Ile Leu Asp Ser
 355 360 365

Asn Pro Leu Ala Cys Asp Cys Arg Leu Leu Trp Val Phe Arg Arg Arg
 370 375 380

Trp Arg Leu Asn Phe Asn Arg Gln Gln Pro Thr Cys Ala Thr Pro Glu
 385 390 395 400

Phe Val Gln Gly Lys Glu Phe Lys Asp Phe Pro Asp Val Leu Leu Pro
 405 410 415

Asn Tyr Phe Thr Cys Arg Arg Ala Arg Ile Arg Asp Arg Lys Ala Gln
 420 425 430

Gln Val Phe Val Asp Glu Gly His Thr Val Gln Phe Val Cys Arg Ala
 435 440 445

Asp Gly Asp Pro Pro Ala Ile Leu Trp Leu Ser Pro Arg Lys His
 450 455 460

Leu Val Ser Ala Lys Ser Asn Gly Arg Leu Thr Val Phe Pro Asp Gly
 465 470 475 480

Thr Leu Glu Val Arg Tyr Ala Gln Val Gln Asp Asn Gly Thr Tyr Leu
 485 490 495

Cys Ile Ala Ala Asn Ala Gly Gly Asn Asp Ser Met Pro Ala His Leu
 500 505 510

His Val Arg Ser Tyr Ser Pro Asp Trp Pro His Gln Pro Asn Lys Thr
 515 520 525

Phe Ala Phe Ile Ser Asn Gln Pro Gly Glu Gly Glu Ala Asn Ser Thr
 530 535 540

Arg Ala Thr Val Pro Phe Pro Phe Asp Ile Lys Thr Leu Ile Ile Ala
 545 550 555 560

Thr Thr Met Gly Phe Ile Ser Phe Leu Gly Val Val Leu Phe Cys Leu
 565 570 575

Val Leu Leu Phe Leu Trp Ser Arg Gly Lys Gly Asn Thr Lys His Asn

580	585	590
Ile Glu Ile Glu Tyr Val Pro Arg Lys Ser Asp Ala Gly Ile Ser Ser		
595	600	605

Ala Asp Ala Pro Arg Lys Phe Asn Met Lys Met Ile		
610	615	620

<210> 74
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 74		22
tcacacctggag cctttattgg cc		

<210> 75
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 75		23
ataccagcta taaccaggct gcg		

<210> 76
<211> 52
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 76		50
caacagtaag tggtttgatg ctcttccaaa tcttagagatt ctgatgatttg		
gg		52

<210> 77
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

DRAFT DRAFT DRAFT

<400> 77 ccatgtgtct cctcctacaa ag	22
<210> 78 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 78 gggaatagat gtgatctgat tgg	23
<210> 79 <211> 50 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 79 cacctgttagc aatgcaaatc tcaaggaaat acctagagat cttcctcctg	50
<210> 80 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 80 agcaaccgcc tgaagctcat cc	22
<210> 81 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 81 aaggcgcggt gaaagatgta gacg	24
<210> 82	

Met Gly Ala Pro Ala Ala Ser Leu Leu Leu Leu Leu Leu Phe Ala
 1 5 10 15
 Cys Cys Trp Ala Pro Gly Gly Ala Asn Leu Ser Gln Asp Asp Ser Gln
 20 25 30
 Pro Trp Thr Ser Asp Glu Thr Val Val Ala Gly Gly Thr Val Val Leu
 35 40 45
 Lys Cys Gln Val Lys Asp His Glu Asp Ser Ser Leu Gln Trp Ser Asn
 50 55 60
 Pro Ala Gln Gln Thr Leu Tyr Phe Gly Glu Lys Arg Ala Leu Arg Asp
 65 70 75 80
 Asn Arg Ile Gln Leu Val Thr Ser Thr Pro His Glu Leu Ser Ile Ser
 85 90 95
 Ile Ser Asn Val Ala Leu Ala Asp Glu Gly Glu Tyr Thr Cys Ser Ile
 100 105 110
 Phe Thr Met Pro Val Arg Thr Ala Lys Ser Leu Val Thr Val Leu Gly
 115 120 125
 Ile Pro Gln Lys Pro Ile Ile Thr Gly Tyr Lys Ser Ser Leu Arg Glu
 130 135 140
 Lys Asp Thr Ala Thr Leu Asn Cys Gln Ser Ser Gly Ser Lys Pro Ala
 145 150 155 160
 Ala Arg Leu Thr Trp Arg Lys Gly Asp Gln Glu Leu His Gly Glu Pro
 165 170 175
 Thr Arg Ile Gln Glu Asp Pro Asn Gly Lys Thr Phe Thr Val Ser Ser
 180 185 190
 Ser Val Thr Phe Gln Val Thr Arg Glu Asp Asp Gly Ala Ser Ile Val
 195 200 205
 Cys Ser Val Asn His Glu Ser Leu Lys Gly Ala Asp Arg Ser Thr Ser
 210 215 220
 Gln Arg Ile Glu Val Leu Tyr Thr Pro Thr Ala Met Ile Arg Pro Asp
 225 230 235 240
 Pro Pro His Pro Arg Glu Gly Gln Lys Leu Leu Leu His Cys Glu Gly
 245 250 255
 Arg Gly Asn Pro Val Pro Gln Gln Tyr Leu Trp Glu Lys Glu Gly Ser
 260 265 270
 Val Pro Pro Leu Lys Met Thr Gln Glu Ser Ala Leu Ile Phe Pro Phe
 275 280 285

Leu Asn Lys Ser Asp Ser Gly Thr Tyr Gly Cys Thr Ala Thr Ser Asn
 290 295 300

Met Gly Ser Tyr Lys Ala Tyr Tyr Thr Leu Asn Val Asn Asp Pro Ser
 305 310 315 320

Pro Val Pro Ser Ser Ser Thr Tyr His Ala Ile Ile Gly Gly Ile
 325 330 335

Val Ala Phe Ile Val Phe Leu Leu Leu Ile Met Leu Ile Phe Leu Gly
 340 345 350

His Tyr Leu Ile Arg His Lys Gly Thr Tyr Leu Thr His Glu Ala Lys
 355 360 365

Gly Ser Asp Asp Ala Pro Asp Ala Asp Thr Ala Ile Ile Asn Ala Glu
 370 375 380

Gly Gly Gln Ser Gly Gly Asp Asp Lys Lys Glu Tyr Phe Ile
 385 390 395

<210> 85

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 85

gcttaggaatt ccacagaagc cc

22

<210> 86

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 86

aacctggaat gtcaccgagc tg

22

<210> 87

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic

oligonucleotide probe

```

<400> 87
cctagcacag tgacgaggga cttggc 26

<210> 88
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 88
aagacacagc caccctaaac tgcgttctt ctgggagcaa gcctgcagcc 50

<210> 89
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 89
gccctggcag acgagggcga gtacacctgc tcaatcttca ctatgcctgt 50

<210> 90
<211> 2755
<212> DNA
<213> Homo sapiens

<400> 90
gggggttagg gaggaaggaa tccaccccca cccccccaaa ccctttctt ctccttcct 60
ggcttcggac attggagcac taaatgaact tgaatttgtt ctgtggcgag caggatggtc 120
gctgttactt tgtatgaga tcggggatga attgctcgct taaaaaatgc tgcttggat 180
tctgttgcgt gagacgtctc ttgtttgc cgctggaaac gtacagggg acgttgcaa 240
agagaagatc ttttcgtca atgagataga aggggaccta cacgttagact gtgaaaaaaaa 300
ggccttcaca agtctgcagc gttcaactgc cccgacttcc cagtttacc atttatttct 360
gcattggcaat tccctcactc gactttccc taatgagttc gctaactttt ataatgcgtt 420
tagtttgcac atggaaaaca atgcttgca tgaaatcggtt ccgggggctt ttctgggct 480
gcagctggtg aaaaggctgc acatcaacaa caacaagatc aagtctttc gaaagcagac 540
ttttctgggg ctggacgatc tggaaatatct ccaggctgat ttaatttat tacgagatat 600
agaccgggg gccttccagg acttgaacaa gctggaggtg ctatTTTaa atgacaatct 660
catcagcacc ctacctgcca acgtgttcca gtatgtcccc atcacccacc tcgaccccg 720
gggttaacagg ctgaaaaacgc tgccttatga ggaggcttg gagcaaatcc ctggattgc 780
ggagatctg cttagaggata acccttggga ctgcacctgt gatctgctct ccctgaaaga 840
atggctggaa aacattccca agaatgcctt gatggccga gtggctgcg aagccccac 900
cagactgcag ggttaaagacc tcaatgaaac caccgaacag gacttgcgtc ctttggaaaa 960
ccgagtggat tcttagtctcc cggcgccccc tgcccaagaa gagaccttgc ctcctggacc 1020
cctgccaact ctttcaaga caaatggcga agaggatcat gccacaccag ggtctgctcc 1080

```

aaacggaggt acaaagatcc caggcaactg gcagatcaa atcagaccca cagcagcgat 1140
 agcgaacgggt agctccagga acaaaccctt agctaacagt ttaccctgcc ctggggctg 1200
 cagctgcac cacatccag ggtcgggttt aaagatgaac tgcacaaca ggaacgttag 1260
 cagcttgct gatttgaagc ccaagctctc taacgtcag gagctttcc tacgagataa 1320
 caagatccac agcatccgaa aatcgcaatt tggtgattac aagaacctca ttctgttgg 1380
 tctggcaac aataacatcg ctactgtaga gaacaacact ttcaagaacc ttttgacact 1440
 caggtggcta tacatggata gcaattacct ggacacgctg tcccgggaga aattcgcggg 1500
 gctgaaaac ctagagtacc tgaacgtggta gtacaacgct atccagctca tcctccggg 1560
 cacttcaat gccatgcccc aactgaggat cctcatctc aacaacaacc tgctgaggc 1620
 cctgcctgtg gacgtgtcg ctggggctc gctctctaaa ctcagcctgc acaacaatta 1680
 cttcatgtac ctcccggtgg caggggtgtt ggaccagttt acctccatca tccagataga 1740
 cctccacggaa aacccttggg agtgcctctg cacaattgtg ccttcaagc agtggcaga 1800
 acgcttgggt tccgaagtgc tgatgagcga cctcaagtgt gagacgcccgg tgaacttctt 1860
 tagaaaggat ttcatgtccc tctccaatga cgagatctgc cctcagctgt acgctaggat 1920
 ctcgcccacg ttaacttcgc acagtaaaaa cagcactggg ttggcggaga ccgggacgca 1980
 ctccaaactcc tacctagaca ccagcagggt gtccatctcg gtgttggtcc cgggactgct 2040
 gctgggttt gtcacccctcg cttcacccgt ggtggcatg ctcgtgttta tcctgaggaa 2100
 ccgaaagccgg tccaagagac gagatgccaa ctccctcccg tccgagatattccataca 2160
 gacagtctgt gactttctt actggcacaa tgggccttac aacgcagatg gggcccacag 2220
 agtgtatgac tgggtcttc actcgctctc agactaagac cccaacccca atagggagg 2280
 gcagagggaa ggcatacat cttccccac cgcaggcacc cccggggctg gagggcgtg 2340
 taccCAAATC cccgcgcct catcggat gggcataagt agataaataa ctgtgagctc 2400
 gcacaaccga aaggggctga ccccttactt agctccctcc ttgaaacaaa gagcagactg 2460
 tggagagctg ggagagcga gccagctcg tctttgtga gagccccctt tgacagaaag 2520
 cccagcacga ccctgctggaa agaactgaca gtgcctcg cctcggcccc ggggcctgtg 2580
 ggggtggatg ccgcgggtct atacatatat acatatatcc acatctatat agagagatag 2640
 atatctattt ttccctgtg gattagcccc gtgtatgctc cctgttggct acgcaggat 2700
 gggcagttgc acgaaggcat gaatgtattt taaaataagta acttgactt ctgac 2755

<210> 91

<211> 696

<212> PRT

<213> Homo sapiens

<400> 91

Met Leu Leu Trp Ile Leu Leu Glu Thr Ser Leu Cys Phe Ala Ala
 1 5 10 15

Gly Asn Val Thr Gly Asp Val Cys Lys Glu Lys Ile Cys Ser Cys Asn
 20 25 30

Glu Ile Glu Gly Asp Leu His Val Asp Cys Glu Lys Lys Gly Phe Thr
 35 40 45

Ser Leu Gln Arg Phe Thr Ala Pro Thr Ser Gln Phe Tyr His Leu Phe
 50 55 60

Leu His Gly Asn Ser Leu Thr Arg Leu Phe Pro Asn Glu Phe Ala Asn
 65 70 75 80

Phe Tyr Asn Ala Val Ser Leu His Met Glu Asn Asn Gly Leu His Glu
 85 90 95

Ile Val Pro Gly Ala Phe Leu Gly Leu Gln Leu Val Lys Arg Leu His
 100 105 110

Ile Asn Asn Asn Lys Ile Lys Ser Phe Arg Lys Gln Thr Phe Leu Gly
 115 120 125

Leu Asp Asp Leu Glu Tyr Leu Gln Ala Asp Phe Asn Leu Leu Arg Asp
 130 135 140

Ile Asp Pro Gly Ala Phe Gln Asp Leu Asn Lys Leu Glu Val Leu Ile
 145 150 155 160

Leu Asn Asp Asn Leu Ile Ser Thr Leu Pro Ala Asn Val Phe Gln Tyr
 165 170 175

Val Pro Ile Thr His Leu Asp Leu Arg Gly Asn Arg Leu Lys Thr Leu
 180 185 190

Pro Tyr Glu Glu Val Leu Glu Gln Ile Pro Gly Ile Ala Glu Ile Leu
 195 200 205

Leu Glu Asp Asn Pro Trp Asp Cys Thr Cys Asp Leu Leu Ser Leu Lys
 210 215 220

Glu Trp Leu Glu Asn Ile Pro Lys Asn Ala Leu Ile Gly Arg Val Val
 225 230 235 240

Cys Glu Ala Pro Thr Arg Leu Gln Gly Lys Asp Leu Asn Glu Thr Thr
 245 250 255

Glu Gln Asp Leu Cys Pro Leu Lys Asn Arg Val Asp Ser Ser Leu Pro
 260 265 270

Ala Pro Pro Ala Gln Glu Glu Thr Phe Ala Pro Gly Pro Leu Pro Thr
 275 280 285

Pro Phe Lys Thr Asn Gly Gln Glu Asp His Ala Thr Pro Gly Ser Ala
 290 295 300

Pro Asn Gly Gly Thr Lys Ile Pro Gly Asn Trp Gln Ile Lys Ile Arg
 305 310 315 320

Pro Thr Ala Ala Ile Ala Thr Gly Ser Ser Arg Asn Lys Pro Leu Ala
 325 330 335

Asn Ser Leu Pro Cys Pro Gly Gly Cys Ser Cys Asp His Ile Pro Gly
 340 345 350

Ser Gly Leu Lys Met Asn Cys Asn Asn Arg Asn Val Ser Ser Leu Ala
 355 360 365

Asp Leu Lys Pro Lys Leu Ser Asn Val Gln Glu Leu Phe Leu Arg Asp
 370 375 380

Asn Lys Ile His Ser Ile Arg Lys Ser His Phe Val Asp Tyr Lys Asn
 385 390 395 400
 Leu Ile Leu Leu Asp Leu Gly Asn Asn Asn Ile Ala Thr Val Glu Asn
 405 410 415
 Asn Thr Phe Lys Asn Leu Leu Asp Leu Arg Trp Leu Tyr Met Asp Ser
 420 425 430
 Asn Tyr Leu Asp Thr Leu Ser Arg Glu Lys Phe Ala Gly Leu Gln Asn
 435 440 445
 Leu Glu Tyr Leu Asn Val Glu Tyr Asn Ala Ile Gln Leu Ile Leu Pro
 450 455 460
 Gly Thr Phe Asn Ala Met Pro Lys Leu Arg Ile Leu Ile Leu Asn Asn
 465 470 475 480
 Asn Leu Leu Arg Ser Leu Pro Val Asp Val Phe Ala Gly Val Ser Leu
 485 490 495
 Ser Lys Leu Ser Leu His Asn Asn Tyr Phe Met Tyr Leu Pro Val Ala
 500 505 510
 Gly Val Leu Asp Gln Leu Thr Ser Ile Ile Gln Ile Asp Leu His Gly
 515 520 525
 Asn Pro Trp Glu Cys Ser Cys Thr Ile Val Pro Phe Lys Gln Trp Ala
 530 535 540
 Glu Arg Leu Gly Ser Glu Val Leu Met Ser Asp Leu Lys Cys Glu Thr
 545 550 555 560
 Pro Val Asn Phe Phe Arg Lys Asp Phe Met Leu Leu Ser Asn Asp Glu
 565 570 575
 Ile Cys Pro Gln Leu Tyr Ala Arg Ile Ser Pro Thr Leu Thr Ser His
 580 585 590
 Ser Lys Asn Ser Thr Gly Leu Ala Glu Thr Gly Thr His Ser Asn Ser
 595 600 605
 Tyr Leu Asp Thr Ser Arg Val Ser Ile Ser Val Leu Val Pro Gly Leu
 610 615 620
 Leu Leu Val Phe Val Thr Ser Ala Phe Thr Val Val Gly Met Leu Val
 625 630 635 640
 Phe Ile Leu Arg Asn Arg Lys Arg Ser Lys Arg Arg Asp Ala Asn Ser
 645 650 655
 Ser Ala Ser Glu Ile Asn Ser Leu Gln Thr Val Cys Asp Ser Ser Tyr

660	665	670
Trp His Asn Gly Pro Tyr Asn Ala Asp Gly Ala His Arg Val Tyr Asp		
675	680	685
Cys Gly Ser His Ser Leu Ser Asp		
690	695	
<210> 92		
<211> 22		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe		
<400> 92		
gttggatctg ggcaacaata ac		22
<210> 93		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe		
<400> 93		
attgttgtgc aggctgagtt taag		24
<210> 94		
<211> 45		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe		
<400> 94		
ggtaggtata catggatagc aattacctgg acacgctgtc ccggg		45
<210> 95		
<211> 2226		
<212> DNA		
<213> Homo sapiens		
<400> 95		
agtgcactgc gtccccctgtta cccggcgcca gctgtgttcc tgaccccaga ataaactcagg		60
qctgcaccqg qcctggcagc gctccgcaca catttcctgt cgccggctaa gggaaaactgt		120
tggccactqq qcccgcqgggg qqattcttqq caqttqqqqq qtccqtcqqq aqcqaqqqcq		180

gaggggaagg gaggggaaac cgggttgggg aagccagctg tagagggcgg tgaccgcgt 240
 ccagacacag ctctgcgtcc tcgagcggga cagatccaag ttgggagcag ctctgcgtgc 300
 ggggcctcaag agaatgagggc cggcggtcgc cctgtgcctc ctctggcagg cgctctggcc 360
 cggggcgggc ggcggcgaac accccactgc cgaccgtgct ggctgctcgg cctcgggggc 420
 ctgctacagc ctgcaccacg ctaccatgaa gcggcaggcg gccgaggagg cctgcatact 480
 gcgaggtggg ggcgtcagca ccgtgcgtgc gggcgccgag ctgcgcgtg tgctgcgtc 540
 cctgcggca ggcccaggc cccgaggggg ctccaaagac ctgctgttct gggtegcact 600
 ggagcgcagg cgttcccact gcaccctgga gaacgagcct ttgcggggtt tctcctggct 660
 gtccctccgac cccggcggtc tgcggaaagcga cacgctgcag tgggtggagg agccccaaacg 720
 ctccctgcacc ggcggagat ggcggtaact ccaggccacc ggtggggtcg agccgcagg 780
 ctggaaggag atgcgatgcc acctgcgcgc caacggctac ctgtgcaagt accagttga 840
 ggtcttgtt cctgcgcgc gccccggggc cgcctctaact ttgagctatac ggcgcgcctt 900
 ccagctgcac agcggccgtc tggacttcag tccacctgg accgaggtga gtgcgtctg 960
 ccggggacag ctcccgatct cagttacttg catgcggac gaaatcgccg ctcgcgtgg 1020
 caaactctcg ggcgatgtgt tggccctcg ccccgagg tacctccgtg ctggcaaatg 1080
 cgcagagctc cctaactgccc tagacgactt gggaggctt gcgcgtcaat gtgcgtacgg 1140
 ctccgagctg gggaaaggacg ggcgtcttg tgtgaccagt gggaaaggac agccgaccct 1200
 tggggggacc ggggtgccc ccaggcgccc gccggccact gcaaccagcc cgcgtccgc 1260
 gagaacatgg ccaatcaggg tcgacgagaa gctggagag acaccacttg tccctgaaca 1320
 agacaattca gtaacatcta ttctcgatggat tcctcgatgg ggcgcgtcaat gtgcgtacgg 1380
 taccctcaa atgtccctc aagccgagtc aaaggccact atcaccccat caggagcgt 1440
 gatttccaag tttaaattcta cgacttcctc tgccactcct caggcttcg actcctcc 1500
 tgccgtggtc ttcatatgg tgacgacagc agtagtagtg ttggtgatct tgaccatgac 1560
 agtactgggg cttgtcaagc tctgccttca cggaaaggccc tttcccagc caaggaagga 1620
 gtctatgggc ccgcggggcc tggagagtga tcctgagccc gctgcttgg gctccagtcc 1680
 tgcacattgc acaaacaatg gggtaaaagt cggggactgt gatctgcggg acagagcaga 1740
 ggggtgccttgc ctggcgaggat ccccttctgg ctcttagtgat gcataaggaa acagggaca 1800
 tgggcactcc tggtaaacatg tttcaactt tgatgaaacg gggaaaccaag aggaacttac 1860
 ttgtgttaact gacaattctc gcagaaatcc cccttcctt aaattccctt tactccactg 1920
 aggagctaaa tcagaactgc acactccctc cctgtatgata gaggaagtgg aagtgcctt 1980
 aggtatggta tactggggca cgggttagtg ctggggagag atatttctt atgtttattc 2040
 ggagaatttg gagaagtgtat tgaactttc aagacattgg aaacaaatag aacacaatat 2100
 aatttacatt aaaaaataat ttctaccaaa atggaaagga aatgttctat gttgttcagg 2160
 cttaggat attggttcga aatcccaggg aaaaaaataa aaataaaaaa ttaaaggatt 2220
 gttgtat 2226

<210> 96
 <211> 490
 <212> PRT
 <213> Homo sapiens

<400> 96
 Met Arg Pro Ala Phe Ala Leu Cys Leu Leu Trp Gln Ala Leu Trp Pro
 1 5 10 15

Gly Pro Gly Gly Glu His Pro Thr Ala Asp Arg Ala Gly Cys Ser
 20 25 30

Ala Ser Gly Ala Cys Tyr Ser Leu His His Ala Thr Met Lys Arg Gln
 35 40 45

Ala Ala Glu Glu Ala Cys Ile Leu Arg Gly Gly Ala Leu Ser Thr Val
 50 55 60

Arg Ala Gly Ala Glu Leu Arg Ala Val Leu Ala Leu Leu Arg Ala Gly
 65 70 75 80

Pro Gly Pro Gly Gly Ser Lys Asp Leu Leu Phe Trp Val Ala Leu
 85 90 95

Glu Arg Arg Arg Ser His Cys Thr Leu Glu Asn Glu Pro Leu Arg Gly
 100 105 110

Phe Ser Trp Leu Ser Ser Asp Pro Gly Gly Leu Glu Ser Asp Thr Leu
 115 120 125

Gln Trp Val Glu Glu Pro Gln Arg Ser Cys Thr Ala Arg Arg Cys Ala
 130 135 140

Val Leu Gln Ala Thr Gly Gly Val Glu Pro Ala Gly Trp Lys Glu Met
 145 150 155 160

Arg Cys His Leu Arg Ala Asn Gly Tyr Leu Cys Lys Tyr Gln Phe Glu
 165 170 175

Val Leu Cys Pro Ala Pro Arg Pro Gly Ala Ala Ser Asn Leu Ser Tyr
 180 185 190

Arg Ala Pro Phe Gln Leu His Ser Ala Ala Leu Asp Phe Ser Pro Pro
 195 200 205

Gly Thr Glu Val Ser Ala Leu Cys Arg Gly Gln Leu Pro Ile Ser Val
 210 215 220

Thr Cys Ile Ala Asp Glu Ile Gly Ala Arg Trp Asp Lys Leu Ser Gly
 225 230 235 240

Asp Val Leu Cys Pro Cys Pro Gly Arg Tyr Leu Arg Ala Gly Lys Cys
 245 250 255

Ala Glu Leu Pro Asn Cys Leu Asp Asp Leu Gly Gly Phe Ala Cys Glu
 260 265 270

Cys Ala Thr Gly Phe Glu Leu Gly Lys Asp Gly Arg Ser Cys Val Thr
 275 280 285

Ser Gly Glu Gly Gln Pro Thr Leu Gly Gly Thr Gly Val Pro Thr Arg
 290 295 300

Arg Pro Pro Ala Thr Ala Thr Ser Pro Val Pro Gln Arg Thr Trp Pro
 305 310 315 320

Ile Arg Val Asp Glu Lys Leu Gly Glu Thr Pro Leu Val Pro Glu Gln
 325 330 335

Asp Asn Ser Val Thr Ser Ile Pro Glu Ile Pro Arg Trp Gly Ser Gln

340	345	350
Ser Thr Met Ser Thr Leu Gln Met Ser Leu Gln Ala Glu Ser Lys Ala		
355	360	365
Thr Ile Thr Pro Ser Gly Ser Val Ile Ser Lys Phe Asn Ser Thr Thr		
370	375	380
Ser Ser Ala Thr Pro Gln Ala Phe Asp Ser Ser Ser Ala Val Val Phe		
385	390	395
Ile Phe Val Ser Thr Ala Val Val Val Leu Val Ile Leu Thr Met Thr		
405	410	415
Val Leu Gly Leu Val Lys Leu Cys Phe His Glu Ser Pro Ser Ser Gln		
420	425	430
Pro Arg Lys Glu Ser Met Gly Pro Pro Gly Leu Glu Ser Asp Pro Glu		
435	440	445
Pro Ala Ala Leu Gly Ser Ser Ser Ala His Cys Thr Asn Asn Gly Val		
450	455	460
Lys Val Gly Asp Cys Asp Leu Arg Asp Arg Ala Glu Gly Ala Leu Leu		
465	470	475
Ala Glu Ser Pro Leu Gly Ser Ser Asp Ala		
485	490	

<210> 97

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 97

tggaaggaga tgcgatgcc a cctg

24

<210> 98

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 98

tgaccagtgg ggaaggacag

20

<210> 99
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 99
acagagcaga ggggccttg 20

<210> 100
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 100
tcagggacaa gtgggtctc tccc 24

<210> 101
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 101
tcagggagg agtgtgcagt tctg 24

<210> 102
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 102
acagccccg atctcaggta cttgcattcg gc ggacgaaatc ggcgctcgct 50

<210> 103
<211> 2026
<212> DNA
<213> Homo sapiens

<400> 103

cggacgcgtg ggattcagca gtggctgtg gctgccagag cagctcctca gggaaacta 60
 agcgtcgagt cagacggcac cataatcgcc tttaaaagtg cctccgcct gccggccgcg 120
 tatccccgg ctacctggc cgccccgcgg cggtgcgcg gtgagaggga gcgcgcggc 180
 agccgagcgc cggtgtgagc cagcgctgct gccagtgtga gcccgggtgt gagcgcggc 240
 ggtgcggagg ggcgtgtgt ccggcgcgcg cgccgtggg tgcaaacccc gagcgtctac 300
 gctccatga ggggcgcgaa cgctggcgc ccactctgcc tgctgctggc tgccgccacc 360
 cagctctcgcc ggcagcagtc cccagagaga cctgtttca catgtggtgg cattcttact 420
 ggagagtctg gatttattgg cagtgaaggt tttcctggag tgtaccctcc aaatagcaaa 480
 tgtacttgaa aaatcacagt tccccaagga aaagtagtgc ttctcaattt ccgattcata 540
 gacctcgaga gtgacaacct gtggcgttat gactttgtgg atgtgtacaa tggccatgcc 600
 aatggccagc gcattggccg ctctgtggc actttccggc ctggagccct tgcgtccagt 660
 ggcacaacaaga tgcgtgtca gatgatttct gatgccaaca cagctggcaa tggcttcatg 720
 gccatgttct ccgctgtga accaaacgaa agaggggatc agatattgtgg aggactcctt 780
 gacagacccctt ccggcttttaaaaacccccc aactggccag accgggatta ccctgcagga 840
 gtcacttggtg tgcgtggcacat tgcgtggccca aagaatcagc ttatagaatt aaagtttgag 900
 aagttttagtggagcaga taactactgc cgatatgatt atgtggctgt gtttaatggc 960
 gggaaagtca acgatgttag aagaatttggaa aagtattgtg gtgatagtc acctgcgc 1020
 attgtgtctg agagaaatgtacttcttatt cagttttat cagacttaag tttactgtca 1080
 gatgggttta ttggtcacta catattcagg ccaaaaaaac tgcctacaac tacagaacag 1140
 cctgtcacca ccacattccc tgtaaccacg gttttaaaac ccaccgtggc cttgtgtcaa 1200
 caaaaagtgttgcgacggg gactctggag ggcaattatt gttcaagtga ctttgttatta 1260
 gcccgcactgttacacac catcaactgcgatgggagtt tgacgcac agtctcgatc 1320
 atcaacatcttacaaagaggaaatttggcg attcagcagg cgggcaagaa catgagtgc 1380
 aggctgactgtcgctgca gcaactgccttccctcagaa gaggtctaaa ttacattatt 1440
 atgggccaag taggtgaaga tggcgagggc aaaatcatgc caaacagctt tatcatgtatg 1500
 ttcaagacca agaatcagaa gctcctggat gccttaaaaa ataagcaatg ttaacagtga 1560
 actgtgttca tttaagctgttattctgcattgcatttgaa agatctatgt tctctcagta 1620
 gaaaaaaaaacttataaaattacatatttctgaaagagg attccgaaag atgggactgg 1680
 ttgactcttc acatgtatggaa ggtatgaggc ctccgagata gctgagggaa gttcttgcc 1740
 tgctgtcaga ggagcagcta tctgattggaa aacctgccga cttagtgccgg tgataggaag 1800
 ctaaaagtgttgcgacggg cagcttggaa gcgtttatattt atacatctctt gtaaaaggat 1860
 attttagaat tgagttgtgt gaagatgtca aaaaaagatt tttagaagtgc aatattata 1920
 gtgttatttgcgttacaccccttgc aaggcatttgc cctgagggtgt tacaatcttgcgtt 1980
 tctaaatcaa tgcttaataaaatatttttaaaggaaaaaaa aaaaaaa 2026

<210> 104

<211> 415

<212> PRT

<213> Homo sapiens

<400> 104

Met	Arg	Gly	Ala	Asn	Ala	Trp	Ala	Pro	Leu	Cys	Leu	Leu	Leu	Ala	Ala
1															15

Ala	Thr	Gln	Leu	Ser	Arg	Gln	Gln	Ser	Pro	Glu	Arg	Pro	Val	Phe	Thr
															30
20															

Cys	Gly	Gly	Ile	Leu	Thr	Gly	Glu	Ser	Gly	Phe	Ile	Gly	Ser	Glu	Gly
															45
35															

Phe	Pro	Gly	Val	Tyr	Pro	Pro	Asn	Ser	Lys	Cys	Thr	Trp	Lys	Ile	Thr
															50
															55
															60

Val Pro Glu Gly Lys Val Val Val Leu Asn Phe Arg Phe Ile Asp Leu
 65 70 75 80

Glu Ser Asp Asn Leu Cys Arg Tyr Asp Phe Val Asp Val Tyr Asn Gly
 85 90 95

His Ala Asn Gly Gln Arg Ile Gly Arg Phe Cys Gly Thr Phe Arg Pro
 100 105 110

Gly Ala Leu Val Ser Ser Gly Asn Lys Met Met Val Gln Met Ile Ser
 115 120 125

Asp Ala Asn Thr Ala Gly Asn Gly Phe Met Ala Met Phe Ser Ala Ala
 130 135 140

Glu Pro Asn Glu Arg Gly Asp Gln Tyr Cys Gly Gly Leu Leu Asp Arg
 145 150 155 160

Pro Ser Gly Ser Phe Lys Thr Pro Asn Trp Pro Asp Arg Asp Tyr Pro
 165 170 175

Ala Gly Val Thr Cys Val Trp His Ile Val Ala Pro Lys Asn Gln Leu
 180 185 190

Ile Glu Leu Lys Phe Glu Lys Phe Asp Val Glu Arg Asp Asn Tyr Cys
 195 200 205

Arg Tyr Asp Tyr Val Ala Val Phe Asn Gly Gly Glu Val Asn Asp Ala
 210 215 220

Arg Arg Ile Gly Lys Tyr Cys Gly Asp Ser Pro Pro Ala Pro Ile Val
 225 230 235 240

Ser Glu Arg Asn Glu Leu Leu Ile Gln Phe Leu Ser Asp Leu Ser Leu
 245 250 255

Thr Ala Asp Gly Phe Ile Gly His Tyr Ile Phe Arg Pro Lys Lys Leu
 260 265 270

Pro Thr Thr Thr Glu Gln Pro Val Thr Thr Phe Pro Val Thr Thr
 275 280 285

Gly Leu Lys Pro Thr Val Ala Leu Cys Gln Gln Lys Cys Arg Arg Thr
 290 295 300

Gly Thr Leu Glu Gly Asn Tyr Cys Ser Ser Asp Phe Val Leu Ala Gly
 305 310 315 320

Thr Val Ile Thr Thr Ile Thr Arg Asp Gly Ser Leu His Ala Thr Val
 325 330 335

Ser Ile Ile Asn Ile Tyr Lys Glu Gly Asn Leu Ala Ile Gln Gln Ala

340	345	350
Gly Lys Asn Met Ser Ala Arg Leu Thr Val Val Cys Lys Gln Cys Pro		
355	360	365

Leu Leu Arg Arg Gly Leu Asn Tyr Ile Ile Met Gly Gln Val Gly Glu		
370	375	380

Asp Gly Arg Gly Lys Ile Met Pro Asn Ser Phe Ile Met Met Phe Lys			
385	390	395	400

Thr Lys Asn Gln Lys Leu Leu Asp Ala Leu Lys Asn Lys Gln Cys		
405	410	415

<210> 105

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 105

ccgattcata gacctcgaga gt

22

<210> 106

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 106

gtcaaggagt cctccacaat ac

22

<210> 107

<211> 45

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 107

gtgtacaatg gccatgccaa tggccagcgc attggccgct tctgt

45

<210> 108

<211> 1838

<212> DNA

<213> Homo sapiens

<400> 108

cggacgcgtg ggcggacgcg tggcgcccc acggcgcggc cgggctgggg cggtcgcttc 60
 ttcccttcac gttggctacg agggtccccca gcctggtaa agatggcccc atggccccc 120
 aagggcctag tcccaagctgt gctctgggc ctcagcctct tcctcaaacct cccaggac 180
 atctggctcc agccctctcc acctccccag ttttctcccc cgcctcagcc ccatccgtgt 240
 catacctgcc ggggacttgt tgacagctt aacaaggggcc tggagagaac catccggac 300
 aactttggag gtggaaacac tgcctggag gaagagaatt tgtccaaata caaagacagt 360
 gagaccgcgc tggtagaggt gctggagggt gtgtgcagca agtcagactt cgagtgcac 420
 cgcctgcgtt agctgagtga ggagctgggt gagagctggg gtttcacaa gcagcaggag 480
 gccccggacc tcttccagtg gctgtgctca gatcccctga agctctgctg ccccgccaggc 540
 accttcgggc cctcctgcct tccctgtcct gggggaaacag agaggccctg cggtgtgctac 600
 gggcagtgta aaggagaagg gacacgaggg ggcagcgggc actgtgactg ccaagccggc 660
 tacgggggtg aggcctgtgg ccagtgtggc cttggctact ttgaggcaga acgcaacgccc 720
 agccatctgg tatgttcggc ttgtttggc ccctgtgccc gatgctcagg acctgagggaa 780
 tcaaaactgtt tgcaatgcaa gaagggtctt gcccgtcattt acctcaagtg tgttagacatt 840
 gatgagtgta gacacagaggg agccaactgt ggagctgacc aattctgcgt gaacactgag 900
 ggctcctatg agtgcgcgaga ctgtgccaag gcctgcctag gctgcattttt ggcaggggcca 960
 ggtcgctgtt agaagtgttag ccctggctat cagcaggtgg gctccaagtg tctcgatgtg 1020
 gatgagtgta agacagaggt gtgtccggga gagaacaaggc agtgtgaaaaa caccggggc 1080
 gtttatcgct gcatctgtgc cgagggtctac aagcagatgg aaggcatctg tgtgaaggag 1140
 cagatcccgag agtcagcagg cttcttctca gagatgacaa aagacgagg tgggtgtctg 1200
 cagcagatgt tctttggcat catcatctgt gcaactggcca cgctggctgc taagggcgac 1260
 ttggtgttca ccgcctatctt cattggggct gtggcggcca tgactggcta ctgggtgtca 1320
 gagcgcagtg accgtgtgtt ggagggtctt atcaaggggca gataatcgcg gccaccac 1380
 gtaggacetc ctccccaccca cgctcccccc agagcttggg ctgcctctt gctggacact 1440
 caggacagct tggtttattt ttgagagttt ggtaaggcacc cctacgtgcc ttacagagca 1500
 gcccaggatcc ccaggccccgg gcagacaagg cccctggggaaa aaaaagttagc cctgaagggt 1560
 gataccatga gcttttcacc tggcggggac tggcaggctt cacaatgtgt gaatttcaaa 1620
 agtttttcct taatgggtggc tgcttagagct ttggccctt cttaggatta ggtggtcctc 1680
 acaggggtgg ggccatcaca gtccttcctt gccagctgca tgctgccagt tcctgttctg 1740
 tgttcaccac atccccacac cccattgcca cttattttt catctcaggaa aataaaagaaa 1800
 ggtcttgaa agttaaaaaa aaaaaaaaaa aaaaaaaaaa 1838

<210> 109

<211> 420

<212> PRT

<213> Homo sapiens

<400> 109

Met Ala Pro Trp Pro Pro Lys Gly Leu Val Pro Ala Val Leu Trp Gly
1 5 10 15

Leu Ser Leu Phe Leu Asn Leu Pro Gly Pro Ile Trp Leu Gln Pro Ser
 20 25 30

Pro Pro Pro Gln Ser Ser Pro Pro Pro Gln Pro His Pro Cys His Thr
35 40 45

Cys Arg Gly Leu Val Asp Ser Phe Asn Lys Gly Leu Glu Arg Thr Ile
 50 55 60

Arg Asp Asn Phe Gly Gly Asn Thr Ala Trp Glu Glu Glu Asn Leu
 65 70 75 80

Ser Lys Tyr Lys Asp Ser Glu Thr Arg Leu Val Glu Val Leu Glu Gly
 85 90 95

Val Cys Ser Lys Ser Asp Phe Glu Cys His Arg Leu Leu Glu Leu Ser
 100 105 110

Glu Glu Leu Val Glu Ser Trp Trp Phe His Lys Gln Gln Glu Ala Pro
 115 120 125

Asp Leu Phe Gln Trp Leu Cys Ser Asp Ser Leu Lys Leu Cys Cys Pro
 130 135 140

Ala Gly Thr Phe Gly Pro Ser Cys Leu Pro Cys Pro Gly Gly Thr Glu
 145 150 155 160

Arg Pro Cys Gly Gly Tyr Gly Gln Cys Glu Gly Glu Gly Thr Arg Gly
 165 170 175

Gly Ser Gly His Cys Asp Cys Gln Ala Gly Tyr Gly Gly Glu Ala Cys
 180 185 190

Gly Gln Cys Gly Leu Gly Tyr Phe Glu Ala Glu Arg Asn Ala Ser His
 195 200 205

Leu Val Cys Ser Ala Cys Phe Gly Pro Cys Ala Arg Cys Ser Gly Pro
 210 215 220

Glu Glu Ser Asn Cys Leu Gln Cys Lys Lys Gly Trp Ala Leu His His
 225 230 235 240

Leu Lys Cys Val Asp Ile Asp Glu Cys Gly Thr Glu Gly Ala Asn Cys
 245 250 255

Gly Ala Asp Gln Phe Cys Val Asn Thr Glu Gly Ser Tyr Glu Cys Arg
 260 265 270

Asp Cys Ala Lys Ala Cys Leu Gly Cys Met Gly Ala Gly Pro Gly Arg
 275 280 285

Cys Lys Lys Cys Ser Pro Gly Tyr Gln Gln Val Gly Ser Lys Cys Leu
 290 295 300

Asp Val Asp Glu Cys Glu Thr Glu Val Cys Pro Gly Glu Asn Lys Gln
 305 310 315 320

Cys Glu Asn Thr Glu Gly Gly Tyr Arg Cys Ile Cys Ala Glu Gly Tyr
 325 330 335

Lys Gln Met Glu Gly Ile Cys Val Lys Glu Gln Ile Pro Glu Ser Ala
 340 345 350

Gly Phe Phe Ser Glu Met Thr Glu Asp Glu Leu Val Val Leu Gln Gln
 355 360 365

Met Phe Phe Gly Ile Ile Ile Cys Ala Leu Ala Thr Leu Ala Ala Lys
 370 375 380

Gly Asp Leu Val Phe Thr Ala Ile Phe Ile Gly Ala Val Ala Ala Met
 385 390 395 400

Thr Gly Tyr Trp Leu Ser Glu Arg Ser Asp Arg Val Leu Glu Gly Phe
 405 410 415

Ile Lys Gly Arg
 420

<210> 110

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 110

cctggctatc agcaggtggg ctccaaagtgt ctcgatgtgg atgagtgtga 50

<210> 111

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 111

attctgcgtg aacactgagg gc 22

<210> 112

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 112

atctgcttgt agccctcgcc ac 22

<210> 113

<211> 1616

<212> DNA

<213> Homo sapiens

<220>

<221> modified_base

<222> (1461)

<223> a, t, c or g

<400> 113

tgagaccctc ctgcagccctt ctcaaggac agccccactc tgccctttgc tcctccaggg 60
 cagcaccatg cagccccgtg ggctctgtcg ggcactctgg gtgttgccccc tggccagccc 120
 cggggccgccc ctgaccgggg agcagctctt gggcagccctg ctgcggcagc tgcaactcaa 180
 agaggtgccc accctggaca gggccgacat ggaggagctg gtcatccccca cccacgttag 240
 gcccagtac gtggccctgc tgcaagcgcag ccacggggac cgctcccgcg gaaagagggtt 300
 cagccagac ttcccgagagg tggccggcag gttccctggcg ttggagggccaa gcacacaccc 360
 gctgggttgc ggcattggagc agccggctgcc gccaacacgc gagctgggtgc aggccgtgt 420
 gcggtcttc caggagccgg tcccaaggc cgccgtgcac aggcacgggc ggctgtcccc 480
 ggcacgcgc cggggccggg tgaccgtcgat gtggctgcgc gtccgcgcac acggctccaa 540
 cccacactcc ctcatcgact ccaggctgggt gtccgtccac gagagcggct ggaaggcctt 600
 cgacgtgacc gaggccgtga acttctggca gcaagctgac cgccccggc agccgtgt 660
 gtcacaggtg tcgggtcgaga gggagcatct gggcccgctg gctccggcg cccacaagct 720
 ggtccgctt gcctcgccagg gggccgcaccc cgggcttggg gagccccagc tggagctgca 780
 caccctggac cttggggact atggagctca gggcgactgt gaccctgaag caccaatgac 840
 cgagggcacc cgctgtgtcc gccaggagat gtacattgac ctgcaggggta tgaagtgggc 900
 cgagaactgg gtgtggagc ccccggttt cctggcttat gagtgtgtgg gcacctgccc 960
 gcagcccccg gaggccctgg cttcaagtg gccgttctg ggcctcgac agtgcac 1020
 ctcggagact gactcgctgc ccatgatcgat cagcatcaag gagggaggca ggaccaggcc 1080
 ccaggtggtc agcctgcca acatgagggt gcaagatgc agctgtgcct cggatgggtgc 1140
 gtcgtgcca aggaggctcc agccataggc gcctagtgtat gccatcgagg gacttgactt 1200
 gtgtgtgttt ctgaagtgtt cgagggtacc agagagctg gcatgtactg aactgtgtat 1260
 ggacaaatgc tctgtgtct cttagtggacc ctgaatttgc ttccctctgac aagttacctc 1320
 acctaatttt tgcttctcag gaatgagaat ctttggccac tggagagccc ttgctcagtt 1380
 ttctctattc ttattattca ctgcactata ttctaagcac ttacatgtgg agataactgta 1440
 acctggggc agaaagccca ntgtgtcatt gtttacttgt cctgtactg gatctggct 1500
 aaagtccctcc accaccactc tggacctaag acctgggtt aagtgtgggt tgtgcacccc 1560
 caatccagat aataaagact ttgtaaaaca tgaataaaac acattttattt ctaaaa 1616

<210> 114

<211> 366

<212> PRT

<213> Homo sapiens

<400> 114

Met Gln Pro Leu Trp Leu Cys Trp Ala Leu Trp Val Leu Pro Leu Ala

1

5

10

15

Ser Pro Gly Ala Ala Leu Thr Gly Glu Gln Leu Leu Gly Ser Leu Leu

20

25

30

Arg Gln Leu Gln Leu Lys Glu Val Pro Thr Leu Asp Arg Ala Asp Met

35

40

45

Glu Glu Leu Val Ile Pro Thr His Val Arg Ala Gln Tyr Val Ala Leu
 50 55 60

Leu Gln Arg Ser His Gly Asp Arg Ser Arg Gly Lys Arg Phe Ser Gln
 65 70 75 80

Ser Phe Arg Glu Val Ala Gly Arg Phe Leu Ala Leu Glu Ala Ser Thr
 85 90 95

His Leu Leu Val Phe Gly Met Glu Gln Arg Leu Pro Pro Asn Ser Glu
 100 105 110

Leu Val Gln Ala Val Leu Arg Leu Phe Gln Glu Pro Val Pro Lys Ala
 115 120 125

Ala Leu His Arg His Gly Arg Leu Ser Pro Arg Ser Ala Arg Ala Arg
 130 135 140

Val Thr Val Glu Trp Leu Arg Val Arg Asp Asp Gly Ser Asn Arg Thr
 145 150 155 160

Ser Leu Ile Asp Ser Arg Leu Val Ser Val His Glu Ser Gly Trp Lys
 165 170 175

Ala Phe Asp Val Thr Glu Ala Val Asn Phe Trp Gln Gln Leu Ser Arg
 180 185 190

Pro Arg Gln Pro Leu Leu Gln Val Ser Val Gln Arg Glu His Leu
 195 200 205

Gly Pro Leu Ala Ser Gly Ala His Lys Leu Val Arg Phe Ala Ser Gln
 210 215 220

Gly Ala Pro Ala Gly Leu Gly Glu Pro Gln Leu Glu Leu His Thr Leu
 225 230 235 240

Asp Leu Gly Asp Tyr Gly Ala Gln Gly Asp Cys Asp Pro Glu Ala Pro
 245 250 255

Met Thr Glu Gly Thr Arg Cys Cys Arg Gln Glu Met Tyr Ile Asp Leu
 260 265 270

Gln Gly Met Lys Trp Ala Glu Asn Trp Val Leu Glu Pro Pro Gly Phe
 275 280 285

Leu Ala Tyr Glu Cys Val Gly Thr Cys Arg Gln Pro Pro Glu Ala Leu
 290 295 300

Ala Phe Lys Trp Pro Phe Leu Gly Pro Arg Gln Cys Ile Ala Ser Glu
 305 310 315 320

Thr Asp Ser Leu Pro Met Ile Val Ser Ile Lys Glu Gly Gly Arg Thr
 325 330 335

Arg Pro Gln Val Val Ser Leu Pro Asn Met Arg Val Gln Lys Cys Ser
 340 345 350

Cys Ala Ser Asp Gly Ala Leu Val Pro Arg Arg Leu Gln Pro
 355 360 365

<210> 115

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 115

aggactgccat aacttgcct g

21

<210> 116

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 116

ataggagttg aagcagcgct gc

22

<210> 117

<211> 45

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 117

tgtgtggaca tagacgagtgc cgcttaccgc tactgccagc accgc

45

<210> 118

<211> 1857

<212> DNA

<213> Homo sapiens

<400> 118

gtctgttccc aggagtccctt cggcggtgtgt gctgtcactg gctgtatcgat gatggggaca 60
 aaggcgcaag tcgagagaa actgttgtgc ctcttcataat tgccatcct gttgtgtcc 120
 ctggcattgg gcaatgttac agtgcactt tctgaacctg aagtcaaat ttctgagaat 180

aatcctgtga agttgtcctg tgccactcg ggctttctt ctcgggtgt ggagtggaaag 240
 tttgaccaag gagacaccac cagactcggt tgctataata acaagatcac agttcctat 300
 gaggaccggg tgaccttctt gcacaactgggt atcacctca agtccgtgac acggaaagac 360
 actggacat acacttgat ggtctctgag gaaggcggca acagctatgg ggaggtcaag 420
 gtcaagctca tcgtgcttgt gcctccatcc aagcctacag ttaacatccc ctctctgcc 480
 accattggga accgggcagt gctgacatgc tcagaacaag atggttcccc accttctgaa 540
 tacacctggt tcaaagatgg gatagtatg cctacgaatc cccaaagcac ccgtgccttc 600
 agcaactt cctatgtcct gaatcccaca acaggagagc tggctttga tcccctgtca 660
 gcctctgata ctggagaata cagctgtgag gcacggaatg ggtatggac acccatgact 720
 tcaaattctg tgccatcgga agctgtggag cggaaatgtgg gggtcatcggt ggcagccgtc 780
 cttgtAACCC tgattctcctt gggaaatctt gttttggca tctggtttgc ctatagccga 840
 ggccactttg acagaacaaa gaaaggact tcgagtaaga agtgcattt cagccagcct 900
 agtgcggaa gtgaaggaga attcaaacag acctcgcat tcctgggtgt agcctggcg 960
 gctcaccggcc tatcatctgc atttgccta ctcagggtct accggactct ggccctgtat 1020
 gtctgttagtt tcacaggatg ctttacacc cccacaggcc ccctacttct 1080
 tcggatgtgt tttaataat gtcagctatg tgcccatcc tcctcatgc cctccctccc 1140
 tttcttacca ctgctgagtg gcctggaaact tgtttaaagt gtttattccc cattttttg 1200
 agggatcagg aaggaatctt gggatggcca ttgacttccc ttctaaatggtag acagcaaaaa 1260
 tggccgggggt cgccggaaatc tgcaactcaac tgcccacctg gctggcaggg atcttgaat 1320
 aggtatctt agcttgggtc tggctctt ctttgcgtac tgacgaccag ggccagctgt 1380
 tctagagcgg gaatttagagg ctagagcggc tgaaatgggtt gtttgggtat gacactgggg 1440
 tcctccatc tctggggggcc actctttctt gtcttccat gggaaatgtcc actggatcc 1500
 ctctggccctg tcctcctgaa tacaagctga ctgacattga ctgtgtctgt ggaaaatggg 1560
 agctttgtt gtggagagca tagtaaattt tcagagaact tgaagccaaa aggattaaa 1620
 accgctgtc taaagaaaag aaaactggag gctggccgcgca gtggctcacg cctgtaatcc 1680
 cagaggctga ggcaggccgaa tcacctgagg tcgggagttc gggatcagcc tgaccaacat 1740
 ggagaaaccc tactggaaat acaaagttt ccaggcatgg tgggtgcattc ctgttagtccc 1800
 agtgcgtcag gagcctggca acaagagcaa aactccagct caaaaaaaaaaaaaaaa 1857

<210> 119

<211> 299

<212> PRT

<213> Homo sapiens

<400> 119

Met	Gly	Thr	Lys	Ala	Gln	Val	Glu	Arg	Lys	Leu	Leu	Cys	Leu	Phe	Ile
1															

5

10

15

Leu	Ala	Ile	Leu	Leu	Cys	Ser	Leu	Ala	Leu	Gly	Ser	Val	Thr	Val	His
20															

25

30

Ser	Ser	Glu	Pro	Glu	Val	Arg	Ile	Pro	Glu	Asn	Asn	Pro	Val	Lys	Leu
35															

40

45

Ser	Cys	Ala	Tyr	Ser	Gly	Phe	Ser	Ser	Pro	Arg	Val	Glu	Trp	Lys	Phe
50															

55

60

Asp	Gln	Gly	Asp	Thr	Thr	Arg	Leu	Val	Cys	Tyr	Asn	Asn	Lys	Ile	Thr
65															

70

75

80

Ala	Ser	Tyr	Glu	Asp	Arg	Val	Thr	Phe	Leu	Pro	Thr	Gly	Ile	Thr	Phe
85															

90

95

Lys Ser Val Thr Arg Glu Asp Thr Gly Thr Tyr Thr Cys Met Val Ser
 100 105 110

Glu Glu Gly Gly Asn Ser Tyr Gly Glu Val Lys Val Lys Leu Ile Val
 115 120 125

Leu Val Pro Pro Ser Lys Pro Thr Val Asn Ile Pro Ser Ser Ala Thr
 130 135 140

Ile Gly Asn Arg Ala Val Leu Thr Cys Ser Glu Gln Asp Gly Ser Pro
 145 150 155 160

Pro Ser Glu Tyr Thr Trp Phe Lys Asp Gly Ile Val Met Pro Thr Asn
 165 170 175

Pro Lys Ser Thr Arg Ala Phe Ser Asn Ser Ser Tyr Val Leu Asn Pro
 180 185 190

Thr Thr Gly Glu Leu Val Phe Asp Pro Leu Ser Ala Ser Asp Thr Gly
 195 200 205

Glu Tyr Ser Cys Glu Ala Arg Asn Gly Tyr Gly Thr Pro Met Thr Ser
 210 215 220

Asn Ala Val Arg Met Glu Ala Val Glu Arg Asn Val Gly Val Ile Val
 225 230 235 240

Ala Ala Val Leu Val Thr Leu Ile Leu Leu Gly Ile Leu Val Phe Gly
 245 250 255

Ile Trp Phe Ala Tyr Ser Arg Gly His Phe Asp Arg Thr Lys Lys Gly
 260 265 270

Thr Ser Ser Lys Lys Val Ile Tyr Ser Gln Pro Ser Ala Arg Ser Glu
 275 280 285

Gly Glu Phe Lys Gln Thr Ser Ser Phe Leu Val
 290 295

<210> 120

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 120

tcggcgagct gtgttctgtt tccc

24

<210> 121

<211> 50

FOURTY EIGHT

```
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 121
tgatcgcgat ggggacaaaag gcgcaagctc gagagggaaac ttttgcct          50

<210> 122
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 122
acacctgggtt caaagatggg                                         20

<210> 123
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 123
taggaagagt tgctgaaggc acgg                                         24

<210> 124
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 124
ttgccttact caggtgctac                                         20

<210> 125
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
```

oligonucleotide probe

<400> 125
actcagcagt ggttaggaaag 20

<210> 126
<211> 1210
<212> DNA
<213> Homo sapiens

<400> 126
cagcgcgtgg ccggcgccgc tgggggaca gcatgagcgg cggttggatg ggcagggttg 60
gagcgtggcg aacaggggct ctgggcctgg cgctgcgtct gctgctggc ctcggactag 120
gcctggaggc cgccgcgagc cccgcttcca ccccacactc tgcccaggcc gcaggcccc 180
gctcaaggctc gtggccaccc accaagttcc agtgcgcac cagtggctta tgcgtgcccc 240
tcacctggcg ctgcgacagg gacttggact gcagcgatgg cagcgatgag gaggagtgca 300
ggattgagcc atgtaccagg aaagggcaat gcccacccgc ccctggcctc ccctggccct 360
gcaccggcgt cagtgaactgc tctggggaa ctgacaagaa actgcgcac ac tgcagccg 420
tggcctgcct agcaggcgag ctccgttgca cgctgagcga tgactgcatt ccactcacgt 480
ggcgcgtgcga cggccaccca gactgtcccg actccagcga cgagctcgcc tggaaacca 540
atgagatcct cccggaaggg gatgccacaa ccatggggcc ccctgtgacc ctggagagtg 600
tcacctctct caggaatgcc acaaccatgg ggccctgt gaccctggag agtgcctcc 660
ctgtcgggaa tgccacatcc tcctctggc gagaccagtc tggaaagccca actgcctatg 720
gggttattgc agctgctgct gtgtcagtg caagcctgtt caccgcacc ctccctttt 780
tgtcctggct ccgagcccgag gagcgcctcc gcccactggg gttactggg gccatgaagg 840
agtccctgtc gctgtcagaa cagaagaccc tgcgtccctg aggacaagca cttgcccacca 900
ccgtcactca gcccctggcg tagccggaca ggaggagagc agtgatgcgg atgggtaccc 960
gggcacacca gcccctcagag acctgagttc ttctggccac gtggaaacctc gaaccggc 1020
tcctgcagaa gtggccctgg agattgaggg tccctggaca ctccctatgg agatccgggg 1080
agcttaggatg gggAACCTGC cacagccaga actgaggggc tggcccccagg cagctcccag 1140
gggttagaac gggccctgtgc ttaagacact ccctgctgccc ccgtctgagg gtggcgatta 1200
aagttgcttc 1210

<210> 127
<211> 282
<212> PRT
<213> Homo sapiens

<400> 127
Met Ser Gly Gly Trp Met Ala Gln Val Gly Ala Trp Arg Thr Gly Ala
1 5 10 15

Leu Gly Leu Ala Leu Leu Leu Leu Gly Leu Gly Leu Gly Leu Glu
20 25 30

Ala Ala Ala Ser Pro Leu Ser Thr Pro Thr Ser Ala Gln Ala Ala Gly
35 40 45

Pro Ser Ser Gly Ser Cys Pro Pro Thr Lys Phe Gln Cys Arg Thr Ser
50 55 60

Gly Leu Cys Val Pro Leu Thr Trp Arg Cys Asp Arg Asp Leu Asp Cys
65 70 75 80

Ser Asp Gly Ser Asp Glu Glu Glu Cys Arg Ile Glu Pro Cys Thr Gln
 85 90 95

Lys Gly Gln Cys Pro Pro Pro Gly Leu Pro Cys Pro Cys Thr Gly
 100 105 110

Val Ser Asp Cys Ser Gly Gly Thr Asp Lys Lys Leu Arg Asn Cys Ser
 115 120 125

Arg Leu Ala Cys Leu Ala Gly Glu Leu Arg Cys Thr Leu Ser Asp Asp
 130 135 140

Cys Ile Pro Leu Thr Trp Arg Cys Asp Gly His Pro Asp Cys Pro Asp
 145 150 155 160

Ser Ser Asp Glu Leu Gly Cys Gly Thr Asn Glu Ile Leu Pro Glu Gly
 165 170 175

Asp Ala Thr Thr Met Gly Pro Pro Val Thr Leu Glu Ser Val Thr Ser
 180 185 190

Leu Arg Asn Ala Thr Thr Met Gly Pro Pro Val Thr Leu Glu Ser Val
 195 200 205

Pro Ser Val Gly Asn Ala Thr Ser Ser Ser Ala Gly Asp Gln Ser Gly
 210 215 220

Ser Pro Thr Ala Tyr Gly Val Ile Ala Ala Ala Ala Val Leu Ser Ala
 225 230 235 240

Ser Leu Val Thr Ala Thr Leu Leu Leu Ser Trp Leu Arg Ala Gln
 245 250 255

Glu Arg Leu Arg Pro Leu Gly Leu Leu Val Ala Met Lys Glu Ser Leu
 260 265 270

Leu Leu Ser Glu Gln Lys Thr Ser Leu Pro
 275 280

<210> 128

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 128

aagtccagt gccgcaccag tggc

24

<210> 129

6
5
4
3
2
1

<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 129
ttggttccac agccgagctc gtcg 24

<210> 130
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 130
gaggaggagt gcaggattga gccatgtacc cagaaaggc aatgccacc 50

<210> 131
<211> 1843
<212> DNA
<213> Homo sapiens

<220>
<221> modified_base
<222> (1837)
<223> a, t, c or g

<400> 131
cccacgcgtc cggtctcgct cgctcgcgca gcggcgccag cagaggtcgc gcacagatgc 60
gggttagact ggcgggggga ggaggcgag gagggaaagga agctgcattgc atgagaccca 120
cagactcttg caagctggat gccccttgtg gatgaaaagat gtatcatgga atgaacccga 180
gcaatggaga tggatttcta gagcagcagc agcagcagca gcaacctcag tccccccaga 240
gactcttgc cgtgatctg tggtttcagc tggcgctgtg cttcgccct gcacagctca 300
cggcggtt cgtgatctt caagtgtgtg ctgaccccg cattcccgag aatggcttc 360
ggaccccccag cggagggggtt ttctttgaag gctctgttagc ccgatttcac tgccaagacg 420
gattcaagct gaaggcgct acaaagagac tggatgttgc gcatatataat ggaaccttag 480
gctggatccc aagtgataat tccatctgtg tgcaagaaga ttgccgtatc cctcaaatcg 540
aagatgctga gattcataac aagacatata gacatggaga gaagctaatc atcactttgtc 600
atgaaggatt caagatccgg taccccgacc tacacaatat ggtttcatta tgtcgcgatg 660
atggAACGTG gaataatctg cccatctgtc aaggctgcct gagacctcta gcctttctta 720
atggctatgt aaacatctt gagctccaga cctccttccc ggtggggact gtgatctcct 780
atcgctgtt tcccgattt aaacttgatg ggtctcgta tcttgagtgc ttacaaaacc 840
ttatctggtc gtccagccca ccccggtgcc ttgctctggc agcccaagtc tgtccactac 900
ctccaaatggt gagtcacgga gattcgtct gccaccccg gcttggtag gctacaacc 960
acggaactgt ggtggagtt tactgcgtc ctggctacag cctcaccaggc gactacaagt 1020
acatcacctg ccagttatgaa gagtggttc cttcttatca agtctactgc atcaaatcg 1080
agcaaacgtg gcccagcacc catgagaccc tcctgaccac gtggaaaggatt gtggcgatc 1140

cgccaaccag tgtgctgctg gtgctgtgc tcgtcatcct ggcaggatg ttccagacca 1200
 agttcaaggc ccactttccc cccagggggc ctccccggag ttccagcagt gaccctgact 1260
 ttgtggtgtt agacggcgtg cccgtcatgc tcccgctcta tgacgaagct gtgagtgccg 1320
 gctttagtgc ctttaggcccc gggtacatgg cctctgtggg ccagggctgc cccttacccg 1380
 tggacgacca gagcccccca gcataccccg gtcagggga cacggacaca ggcccagggg 1440
 agtcagaaac ctgtgacagc gtctcaggtt cttctgagct gctccaaagt ctgtattcac 1500
 ctcccggtg ccaagagagc acccaccctg ctteggacaa ccctgacata attgccagca 1560
 cgccagagga ggtggcatcc accagcccag gcatccatca tgcccaactgg gtgttgc 1620
 taagaaaactg attgattaaa aaatttccca aagtgtctg aagtgtctct tcaaatacat 1680
 gttgatctgt ggagttgatt ccttccttc tcttggttt agacaaatgt aaacaaagct 1740
 ctgatcctta aaattgttat gctgatagag tggtagggc tggaaagctt atcaagtcct 1800
 gtttcttctt gacacagact gattaaaaat taaaagnaaa aaa 1843

<210> 132
 <211> 490
 <212> PRT
 <213> Homo sapiens

<400> 132
 Met Tyr His Gly Met Asn Pro Ser Asn Gly Asp Gly Phe Leu Glu Gln
 1 5 10 15

Gln Gln Gln Gln Gln Gln Pro Gln Ser Pro Gln Arg Leu Leu Ala Val
 20 25 30

Ile Leu Trp Phe Gln Leu Ala Leu Cys Phe Gly Pro Ala Gln Leu Thr
 35 40 45

Gly Gly Phe Asp Asp Leu Gln Val Cys Ala Asp Pro Gly Ile Pro Glu
 50 55 60

Asn Gly Phe Arg Thr Pro Ser Gly Gly Val Phe Phe Glu Gly Ser Val
 65 70 75 80

Ala Arg Phe His Cys Gln Asp Gly Phe Lys Leu Lys Gly Ala Thr Lys
 85 90 95

Arg Leu Cys Leu Lys His Phe Asn Gly Thr Leu Gly Trp Ile Pro Ser
 100 105 110

Asp Asn Ser Ile Cys Val Gln Glu Asp Cys Arg Ile Pro Gln Ile Glu
 115 120 125

Asp Ala Glu Ile His Asn Lys Thr Tyr Arg His Gly Glu Lys Leu Ile
 130 135 140

Ile Thr Cys His Glu Gly Phe Lys Ile Arg Tyr Pro Asp Leu His Asn
 145 150 155 160

Met Val Ser Leu Cys Arg Asp Asp Gly Thr Trp Asn Asn Leu Pro Ile
 165 170 175

Cys Gln Gly Cys Leu Arg Pro Leu Ala Ser Ser Asn Gly Tyr Val Asn

180	185	190	
Ile Ser Glu Leu Gln Thr Ser Phe Pro Val Gly Thr Val Ile Ser Tyr			
195	200	205	
Arg Cys Phe Pro Gly Phe Lys Leu Asp Gly Ser Ala Tyr Leu Glu Cys			
210	215	220	
Leu Gln Asn Leu Ile Trp Ser Ser Ser Pro Pro Arg Cys Leu Ala Leu			
225	230	235	240
Glu Ala Gln Val Cys Pro Leu Pro Pro Met Val Ser His Gly Asp Phe			
245	250	255	
Val Cys His Pro Arg Pro Cys Glu Arg Tyr Asn His Gly Thr Val Val			
260	265	270	
Glu Phe Tyr Cys Asp Pro Gly Tyr Ser Leu Thr Ser Asp Tyr Lys Tyr			
275	280	285	
Ile Thr Cys Gln Tyr Gly Glu Trp Phe Pro Ser Tyr Gln Val Tyr Cys			
290	295	300	
Ile Lys Ser Glu Gln Thr Trp Pro Ser Thr His Glu Thr Leu Leu Thr			
305	310	315	320
Thr Trp Lys Ile Val Ala Phe Thr Ala Thr Ser Val Leu Leu Val Leu			
325	330	335	
Leu Leu Val Ile Leu Ala Arg Met Phe Gln Thr Lys Phe Lys Ala His			
340	345	350	
Phe Pro Pro Arg Gly Pro Pro Arg Ser Ser Ser Ser Asp Pro Asp Phe			
355	360	365	
Val Val Val Asp Gly Val Pro Val Met Leu Pro Ser Tyr Asp Glu Ala			
370	375	380	
Val Ser Gly Gly Leu Ser Ala Leu Gly Pro Gly Tyr Met Ala Ser Val			
385	390	395	400
Gly Gln Gly Cys Pro Leu Pro Val Asp Asp Gln Ser Pro Pro Ala Tyr			
405	410	415	
Pro Gly Ser Gly Asp Thr Asp Thr Gly Pro Gly Glu Ser Glu Thr Cys			
420	425	430	
Asp Ser Val Ser Gly Ser Ser Glu Leu Leu Gln Ser Leu Tyr Ser Pro			
435	440	445	
Pro Arg Cys Gln Glu Ser Thr His Pro Ala Ser Asp Asn Pro Asp Ile			
450	455	460	

Ile Ala Ser Thr Ala Glu Glu Val Ala Ser Thr Ser Pro Gly Ile His
 465 470 475 480

His Ala His Trp Val Leu Phe Leu Arg Asn
 485 490

<210> 133
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 133
atctcctatac gctgctttcc cggt 23

<210> 134
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 134
agccaggatc gcagtaaaac tcc 23

<210> 135
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 135
atttaaactt gatgggtctg cgtatcttga gtgcttacaa aaccttatct 50

<210> 136
<211> 1815
<212> DNA
<213> Homo sapiens

<400> 136
ccccacgcgtc cgctccgcgc cctccccccc gcctcccgta cggtccgtcg gtggccataga 60
gatgctgtcg ccgcgggtgc agttgtcgcg cacgcctctg cccgccagcc cgctccaccg 120
ccgttagcgcc cgagtgtcgg ggggcgcacc cgagtccggc catgaggccg ggaaccgcgc 180
tacaggccgt gctgctgccc gtgctgtcg tggtggctgcg gggccgcacg ggtcgcctgc 240
tgagtgccctc ggatttggac ctcagaggag ggcagccagt ctgccgggaa gggacacaga 300

ggccttgtta taaagtcat tacttccatg atacttctcg aagactgaac tttgaggaag 360
 ccaaagaagc ctgcaggagg gatggaggcc agctagtcg catcgagtct gaagatgaac 420
 agaaaactgat agaaaagtcc attgaaaacc tcttgccatc tgatgggtac ttctggattg 480
 ggctcaggag gcgtgaggag aaacaaagca atagcacagc ctgccaggac ctttatgctt 540
 ggactgatgg cagcatatca caattttagga actggatgtt ggatgagccg tcctgcggca 600
 gcgaggctg cgtggatcatg taccatcagc catcgccacc cgctggcatc ggaggcccct 660
 acatgttcca gtggaatgat gaccgggtca acatgaagaa caatttcatt tgcaaataatt 720
 ctgatgagaa accagcagtt cttcttagag aagctgaagg tgaggaaaca gagctgacaa 780
 cacctgtact tccagaagaa acacaggaag aagatgccaa aaaaacattt aaagaaagta 840
 gagaagctgc cttgaatctg gcctacatcc taatccccag cattccctt ctcctcctcc 900
 ttgtggtcac cacagttgtt tttgggtttt ggatctgttag aaaaagaaaaa cgggagcagc 960
 cagaccctag cacaagaag caacacacca tctggccctc tcctcaccag gaaaaacagcc 1020
 cggacacctaga ggtctacaat gtcataagaa aacaaagcga agctgactta gctgagaccc 1080
 ggccagacct gaagaatatt tcattcccgag tgtgttcggg agaagccact cccgatgaca 1140
 tgtcttgtga ctatgacaac atggctgtga acccatcaga aagtgggtttt gtgactctgg 1200
 tgagcgtgga gagtggattt gtgaccaatg acatttatga gttctcccca gaccaatgg 1260
 ggaggagtaa ggagtctgga tgggtggaaa atgaaatata tggttattag gacatataaa 1320
 aaactgaaac tgacaacaat ggaaaagaaaa tgataagcaa aatcctctta ttttctataa 1380
 ggaaaataca cagaaggct atgaacaagc ttagatcagg tcctgtggat gagcatgtgg 1440
 tccccacgac ctccctgtgg acccccacgt tttggctgta tcctttatcc cagccagtca 1500
 tccagctcga ccttatgaga aggtaccttg cccaggtctg gcacatagta gagtctcaat 1560
 aaatgtcaact tgggtggttt tatctaactt ttaagggaca gagctttacc tggcagtgtat 1620
 aaagatgggc tggagacctt ggaaaaccac ctctgtttc ctgctctat acagcagcac 1680
 atattatcat acagacagaa aatccagaat ctttcaaag cccacatatg gtagcacagg 1740
 ttggcctgtg catcggaat tctcatatct gttttttca aagaataaaa tcaaataaaag 1800
 agcaggaaaa aaaaaa 1815

<210> 137

<211> 382

<212> PRT

<213> Homo sapiens

<400> 137

Met	Arg	Pro	Gly	Thr	Ala	Leu	Gln	Ala	Val	Leu	Leu	Ala	Val	Leu	Leu
1					5				10				15		

Val	Gly	Leu	Arg	Ala	Ala	Thr	Gly	Arg	Leu	Leu	Ser	Ala	Ser	Asp	Leu
					20				25				30		

Asp	Leu	Arg	Gly	Gly	Gln	Pro	Val	Cys	Arg	Gly	Gly	Thr	Gln	Arg	Pro
					35			40				45			

Cys	Tyr	Lys	Val	Ile	Tyr	Phe	His	Asp	Thr	Ser	Arg	Arg	Leu	Asn	Phe
					50			55			60				

Glu	Glu	Ala	Lys	Glu	Ala	Cys	Arg	Arg	Asp	Gly	Gly	Gln	Leu	Val	Ser
					65			70			75		80		

Ile	Glu	Ser	Glu	Asp	Glu	Gln	Lys	Leu	Ile	Glu	Lys	Phe	Ile	Glu	Asn
					85			90				95			

Leu	Leu	Pro	Ser	Asp	Gly	Asp	Phe	Trp	Ile	Gly	Leu	Arg	Arg	Arg	Glu
					100			105				110			

Glu Lys Gln Ser Asn Ser Thr Ala Cys Gln Asp Leu Tyr Ala Trp Thr
 115 120 125
 Asp Gly Ser Ile Ser Gln Phe Arg Asn Trp Tyr Val Asp Glu Pro Ser
 130 135 140
 Cys Gly Ser Gln Val Cys Val Val Met Tyr His Gln Pro Ser Ala Pro
 145 150 155 160
 Ala Gly Ile Gly Gly Pro Tyr Met Phe Gln Trp Asn Asp Asp Arg Cys
 165 170 175
 Asn Met Lys Asn Asn Phe Ile Cys Lys Tyr Ser Asp Glu Lys Pro Ala
 180 185 190
 Val Pro Ser Arg Glu Ala Glu Gly Glu Glu Thr Glu Leu Thr Thr Pro
 195 200 205
 Val Leu Pro Glu Glu Thr Gln Glu Glu Asp Ala Lys Lys Thr Phe Lys
 210 215 220
 Glu Ser Arg Glu Ala Ala Leu Asn Leu Ala Tyr Ile Leu Ile Pro Ser
 225 230 235 240
 Ile Pro Leu Leu Leu Leu Val Val Thr Thr Val Val Cys Trp Val
 245 250 255
 Trp Ile Cys Arg Lys Arg Lys Arg Glu Gln Pro Asp Pro Ser Thr Lys
 260 265 270
 Lys Gln His Thr Ile Trp Pro Ser Pro His Gln Gly Asn Ser Pro Asp
 275 280 285
 Leu Glu Val Tyr Asn Val Ile Arg Lys Gln Ser Glu Ala Asp Leu Ala
 290 295 300
 Glu Thr Arg Pro Asp Leu Lys Asn Ile Ser Phe Arg Val Cys Ser Gly
 305 310 315 320
 Glu Ala Thr Pro Asp Asp Met Ser Cys Asp Tyr Asp Asn Met Ala Val
 325 330 335
 Asn Pro Ser Glu Ser Gly Phe Val Thr Leu Val Ser Val Glu Ser Gly
 340 345 350
 Phe Val Thr Asn Asp Ile Tyr Glu Phe Ser Pro Asp Gln Met Gly Arg
 355 360 365
 Ser Lys Glu Ser Gly Trp Val Glu Asn Glu Ile Tyr Gly Tyr
 370 375 380

<211> 50
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 138
 gttcattgaa aacctcttgc catctgatgg tgacttctgg attgggctca 50

<210> 139
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 139
 aagccaaaga agcctgcagg aggg 24

<210> 140
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 140
 cagtccaagc ataaagggtcc tggc 24

<210> 141
 <211> 1514
 <212> DNA
 <213> Homo sapiens

<400> 141
 ggggtctccc tcagggccgg gaggcacagc ggtccctgct tgctgaaggg ctggatgtac 60
 gcatccgcag gttcccgccg acttgggggc gcccgttag ccccgccgcg cgcagaagac 120
 ttgtgtttgc ctcctgcagc ctaaacccgg agggcagcga gggcttacca ccatgatcac 180
 tgggtgttc agcatgcgtc tgtggacccc agtggcgctc ctgacactgc tggegtactg 240
 cctgcaccag cggcggtgg ccctggccga gctgcaggag gccgatggcc agtgtccgg 300
 cgaccgcagc ctgctgaagt taaaatggt gcaggtcgtg ttcgacacg gggctcggag 360
 tcctctcaag ccgcctccgc tggaggagca ggttagagtgg aacccccacg tattagaggt 420
 cccaccccaa actcagttt attacacagt caccaatcta gctgggtggtc cggaaaccata 480
 ttctccttac gactctcaat accatgagac caccctgaag gggggcatgt ttgctggca 540
 gctgaccaag gtgggcatgc agcaaatgtt tgccttgga gagagactga ggaagaacta 600
 tgtgaaagac attcccttgc tttcaccaac cttcaacccca caggaggtct ttattcggtc 660
 cactaacatt tttcggatc tggagtccac ccgttggc ctggctggc tttccagtg 720

tcagaaagaa ggacccatca tcatccacac tcatgaagca gattcagaag tcttgatcc 780
 caactaccaa agctgctgga gcctgaggca gagaaccaga gcccggaggc agactgcctc 840
 tttacagcca ggaatctcg aggattgaa aaaggtaag gacaggatgg gcattgacag 900
 tagtgataaa gtggacttct tcatcctcct ggacacaacgtg gctgccgagc aggcacacaa 960
 cctcccaagc tgccccatgc tgaagagatt tgcacggatg atcgaacaga gagctgtgga 1020
 cacatccttg tacatactgc ccaaggaaga cagggaaagt cttcagatgg cagtaggccc 1080
 attcctccac atcctagaga gcaacctgct gaaagccatg gactctgcca ctgccccga 1140
 caagatcaga aagctgtatc tctatgcggc tcatgatgtg accttcatac cgctcttaat 1200
 gaccctgggg attttgacc acaaatggcc accgtttgtt gttgacctga ccatgaaact 1260
 ttaccagcac ctgaaatcta aggagtggtt tgtcagctc tattaccacg ggaaggagca 1320
 ggtgccgaga ggttgcctg atggctctg cccgctggac atgttcttga atgccatgtc 1380
 agtttatacc ttaagccag aaaaatacca tgcactctgc tctcaaactc aggtgatgga 1440
 agttgaaat gaagagtaac tgatttataa aagcaggatg tttgatttt aaaataaaagt 1500
 gccttataac aatg 1514

<210> 142

<211> 428

<212> PRT

<213> Homo sapiens

<400> 142

Met	Ile	Thr	Gly	Val	Phe	Ser	Met	Arg	Leu	Trp	Thr	Pro	Val	Gly	Val
1							5				10				15

Leu	Thr	Ser	Leu	Ala	Tyr	Cys	Leu	His	Gln	Arg	Arg	Val	Ala	Leu	Ala
							20				25				30

Glu	Leu	Gln	Glu	Ala	Asp	Gly	Gln	Cys	Pro	Val	Asp	Arg	Ser	Leu	Leu
							35			40				45	

Lys	Leu	Lys	Met	Val	Gln	Val	Val	Phe	Arg	His	Gly	Ala	Arg	Ser	Pro
							50			55				60	

Leu	Lys	Pro	Leu	Pro	Leu	Glu	Glu	Gln	Val	Glu	Trp	Asn	Pro	Gln	Leu
							65			70				75	80

Leu	Glu	Val	Pro	Pro	Gln	Thr	Gln	Phe	Asp	Tyr	Thr	Val	Thr	Asn	Leu
							85			90				95	

Ala	Gly	Gly	Pro	Lys	Pro	Tyr	Ser	Pro	Tyr	Asp	Ser	Gln	Tyr	His	Glu
							100			105				110	

Thr	Thr	Leu	Lys	Gly	Gly	Met	Phe	Ala	Gly	Gln	Leu	Thr	Lys	Val	Gly
						115			120				125		

Met	Gln	Gln	Met	Phe	Ala	Leu	Gly	Glu	Arg	Leu	Arg	Lys	Asn	Tyr	Val
							130			135				140	

Glu	Asp	Ile	Pro	Phe	Leu	Ser	Pro	Thr	Phe	Asn	Pro	Gln	Glu	Val	Phe
							145			150				155	160

Ile	Arg	Ser	Thr	Asn	Ile	Phe	Arg	Asn	Leu	Glu	Ser	Thr	Arg	Cys	Leu
							165			170				175	

Leu Ala Gly Leu Phe Gln Cys Gln Lys Glu Gly Pro Ile Ile Ile His
 180 185 190

Thr Asp Glu Ala Asp Ser Glu Val Leu Tyr Pro Asn Tyr Gln Ser Cys
 195 200 205

Trp Ser Leu Arg Gln Arg Thr Arg Gly Arg Arg Gln Thr Ala Ser Leu
 210 215 220

Gln Pro Gly Ile Ser Glu Asp Leu Lys Lys Val Lys Asp Arg Met Gly
 225 230 235 240

Ile Asp Ser Ser Asp Lys Val Asp Phe Phe Ile Leu Leu Asp Asn Val
 245 250 255

Ala Ala Glu Gln Ala His Asn Leu Pro Ser Cys Pro Met Leu Lys Arg
 260 265 270

Phe Ala Arg Met Ile Glu Gln Arg Ala Val Asp Thr Ser Leu Tyr Ile
 275 280 285

Leu Pro Lys Glu Asp Arg Glu Ser Leu Gln Met Ala Val Gly Pro Phe
 290 295 300

Leu His Ile Leu Glu Ser Asn Leu Leu Lys Ala Met Asp Ser Ala Thr
 305 310 315 320

Ala Pro Asp Lys Ile Arg Lys Leu Tyr Leu Tyr Ala Ala His Asp Val
 325 330 335

Thr Phe Ile Pro Leu Leu Met Thr Leu Gly Ile Phe Asp His Lys Trp
 340 345 350

Pro Pro Phe Ala Val Asp Leu Thr Met Glu Leu Tyr Gln His Leu Glu
 355 360 365

Ser Lys Glu Trp Phe Val Gln Leu Tyr Tyr His Gly Lys Glu Gln Val
 370 375 380

Pro Arg Gly Cys Pro Asp Gly Leu Cys Pro Leu Asp Met Phe Leu Asn
 385 390 395 400

Ala Met Ser Val Tyr Thr Leu Ser Pro Glu Lys Tyr His Ala Leu Cys
 405 410 415

Ser Gln Thr Gln Val Met Glu Val Gly Asn Glu Glu
 420 425

<210> 143
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 143
ccaactacca aagctgctgg agcc 24

<210> 144
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 144
gcagctctat taccacggga agga 24

<210> 145
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 145
tccttcccgt ggtaatagag ctgc 24

<210> 146
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 146
ggcagagaac cagaggccgg aggagactgc ctctttacag ccagg 45

<210> 147
<211> 1686
<212> DNA
<213> Homo sapiens

<400> 147
ctcctcttaa catacttgca gctaaaacta aatattgctg cttggggacc tccttctagc 60
cttaaatttc agctcatcac cttcacctgc cttggtcatg gctctgctat ttccttgc 120
ccttgccatt tgcaccagac ctggattcct agcgtctcca tctggagtgc ggctgggtggg 180

Asp Cys Ser His Asp Glu Asp Ala Gly Ala Ser Cys Glu Asn Pro Glu
 115 120 125

Ser Ser Phe Ser Pro Val Pro Glu Gly Val Arg Leu Ala Asp Gly Pro
 130 135 140

Gly His Cys Lys Gly Arg Val Glu Val Lys His Gln Asn Gln Trp Tyr
 145 150 155 160

Thr Val Cys Gln Thr Gly Trp Ser Leu Arg Ala Ala Lys Val Val Cys
 165 170 175

Arg Gln Leu Gly Cys Gly Arg Ala Val Leu Thr Gln Lys Arg Cys Asn
 180 185 190

Lys His Ala Tyr Gly Arg Lys Pro Ile Trp Leu Ser Gln Met Ser Cys
 195 200 205

Ser Gly Arg Glu Ala Thr Leu Gln Asp Cys Pro Ser Gly Pro Trp Gly
 210 215 220

Lys Asn Thr Cys Asn His Asp Glu Asp Thr Trp Val Glu Cys Glu Asp
 225 230 235 240

Pro Phe Asp Leu Arg Leu Val Gly Gly Asp Asn Leu Cys Ser Gly Arg
 245 250 255

Leu Glu Val Leu His Lys Gly Val Trp Gly Ser Val Cys Asp Asp Asn
 260 265 270

Trp Gly Glu Lys Glu Asp Gln Val Val Cys Lys Gln Leu Gly Cys Gly
 275 280 285

Lys Ser Leu Ser Pro Ser Phe Arg Asp Arg Lys Cys Tyr Gly Pro Gly
 290 295 300

Val Gly Arg Ile Trp Leu Asp Asn Val Arg Cys Ser Gly Glu Glu Gln
 305 310 315 320

Ser Leu Glu Gln Cys Gln His Arg Phe Trp Gly Phe His Asp Cys Thr
 325 330 335

His Gln Glu Asp Val Ala Val Ile Cys Ser Val
 340 345

<210> 149
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic

FBI Laboratory

oligonucleotide probe

<400> 149		
ttcagctcat cacccatccc tgcc		24
<210> 150		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe		
<400> 150		
ggctcataca aaataaccact aggg		24
<210> 151		
<211> 50		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe		
<400> 151		
gggcctccac cgctgtgaag ggccgggtgaa ggtggaaacag aaaggccagt		50
<210> 152		
<211> 1427		
<212> DNA		
<213> Homo sapiens		
<400> 152		
actgcactcg gttctatcgta ttgaattccc cggggatccct cttagatcc ctcgaccccg 60		
acccacgcgt ccgcggacgc gtggggcgac gcgtggcccg gctaccagga agagtctgcc 120		
gaaggtgaag gccatggact tcatacaccc cacagccatc ctgcccctgc tggtcggtcg 180		
cctggcgctc ttccggctct tccggctgt gcagtgggtg cgccggaaagg cctacctcg 240		
aatgtctgtg gtgggtatca caggcgccac ctcaggctg ggcaaaagaat gtgaaaagg 300		
cttctatgtc gcgggtgtcta aactgggtgt ctgtggccgg aatgggtgggg ccctagaaga 360		
gctcatcaga gaacttaccg cttctcatgc caccaagggtg cagacacaca agccttactt 420		
ggtgacccctc gacccatcag actctggggc catagttgca gcagcagctg agatcctgca 480		
gtgccttggc tatgtcgaca tacttgtcaa caatgtctggg atcagactacc gtggtaccat 540		
catggacacc acagtggatg tggacaagag ggtcatggag acaaactact ttggcccaagt 600		
tgcctctaacc aaaggactcc tgcctccat gatcaagagg aggcaaggcc acattgtcg 660		
catcaggcgc atccaggcga agatgagcat tcctttcgatc tcagcatatcg cagccctccaa 720		
gcacgcacc caggctttct ttgactgtct gcgtggccag atggaaacagt atgaaattgaa 780		
ggtgaccgtc atcagccccg gctacatcca caccaacccctc tctgttaaatcg ccatcaccgc 840		
ggatggatct aggtatggag ttatggacac caccacagcc cagggccgaa gccctgtgaa 900		
ggtgcccaag gatgttcttgc ctgtgtggg gaagaagaag aaagatgtga tcctggctga 960		
cttactgcct tccttggctg ttatcttcg aactctggct cctggccctc tcttcagcc 1020		
catggcctcc aaggccagaa aagagcggaa atccaaagaac tccttagtact ctgaccagcc 1080		

agggccaggg cagagaagca gcactcttag gcttgcttac tctacaaggg acagttgcac 1140
 ttgttgagac ttaatggag atttgtctca caagtggaa agactgaaga aacacatctc 1200
 gtgcagatct gctggcagag gacaatcaa aacgacaaca agcttcttcc cagggtgagg 1260
 gaaaaacactt aaggaataaa tatggagctg gggtaaca ctaaaaacta gaaataaaca 1320
 tctcaaacag taaaaaaaaaaa aaaaaaggc ggccgcgact ctagagtcga cctgcagaag 1380
 cttggccgcc atggcccaac ttgttattt cagttataa tgttac 1427

<210> 153

<211> 310

<212> PRT

<213> Homo sapiens

<400> 153

Met	Asp	Phe	Ile	Thr	Ser	Thr	Ala	Ile	Leu	Pro	Leu	Leu	Phe	Gly	Cys
1															15

5

10

Leu	Gly	Val	Phe	Gly	Leu	Phe	Arg	Leu	Leu	Gln	Trp	Val	Arg	Gly	Lys
															30

20

25

Ala	Tyr	Leu	Arg	Asn	Ala	Val	Val	Val	Ile	Thr	Gly	Ala	Thr	Ser	Gly
															45

35

40

Leu	Gly	Lys	Glu	Cys	Ala	Lys	Val	Phe	Tyr	Ala	Ala	Gly	Ala	Lys	Leu
															60

50

55

Val	Leu	Cys	Gly	Arg	Asn	Gly	Gly	Ala	Leu	Glu	Glu	Leu	Ile	Arg	Glu
															80

65

70

75

80

Leu	Thr	Ala	Ser	His	Ala	Thr	Lys	Val	Gln	Thr	His	Lys	Pro	Tyr	Leu
															95

85

90

95

Val	Thr	Phe	Asp	Leu	Thr	Asp	Ser	Gly	Ala	Ile	Val	Ala	Ala	Ala	
															110

100

105

110

Glu	Ile	Leu	Gln	Cys	Phe	Gly	Tyr	Val	Asp	Ile	Leu	Val	Asn	Asn	Ala
															125

115

120

125

Gly	Ile	Ser	Tyr	Arg	Gly	Thr	Ile	Met	Asp	Thr	Thr	Val	Asp	Val	Asp
															130

130

135

140

Lys	Arg	Val	Met	Glu	Thr	Asn	Tyr	Phe	Gly	Pro	Val	Ala	Leu	Thr	Lys
															145

145

150

155

160

Ala	Leu	Leu	Pro	Ser	Met	Ile	Lys	Arg	Arg	Gln	Gly	His	Ile	Val	Ala
															165

165

170

175

Ile	Ser	Ser	Ile	Gln	Gly	Lys	Met	Ser	Ile	Pro	Phe	Arg	Ser	Ala	Tyr
															180

180

185

190

Ala	Ala	Ser	Lys	His	Ala	Thr	Gln	Ala	Phe	Phe	Asp	Cys	Leu	Arg	Ala
															195

195

200

205

Glu Met Glu Gln Tyr Glu Ile Glu Val Thr Val Ile Ser Pro Gly Tyr

210	215	220
Ile His Thr Asn Leu Ser Val Asn Ala Ile Thr Ala Asp Gly Ser Arg		
225	230	235
Tyr Gly Val Met Asp Thr Thr Ala Gln Gly Arg Ser Pro Val Glu		
245	250	255
Val Ala Gln Asp Val Leu Ala Ala Val Gly Lys Lys Lys Asp Val		
260	265	270
Ile Leu Ala Asp Leu Leu Pro Ser Leu Ala Val Tyr Leu Arg Thr Leu		
275	280	285
Ala Pro Gly Leu Phe Phe Ser Leu Met Ala Ser Arg Ala Arg Lys Glu		
290	295	300
Arg Lys Ser Lys Asn Ser		
305	310	

<210> 154
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 154
ggtgctaaac tggtgctctg tggc 24

<210> 155
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 155
cagggcaaga tgaggcatcc 20

<210> 156
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 156		
tcatactgtt ccatctcgcc acgc		24
<210> 157		
<211> 50		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe		
<400> 157		
aatgggtggg ccctagaaga gctcatcaga gaactcaccg cttctcatgc		50
<210> 158		
<211> 1771		
<212> DNA		
<213> Homo sapiens		
<400> 158		
ccccacgcgtc cgctgggtt agatcgagca accctctaaa agcagtttag agtggtaaaa 60 aaaaaaaaaa acacaccaaa cgctcgacg cacaaggatgaaatttc ttctggacat 120 cctcctgtt ctcccggttac tgatcgctg ctccctagag tccttcgtga agctttttat 180 tcctaagagg agaaaatcag tcaccggcga aatcgctg attacaggag ctgggcattgg 240 aattgggaga ctgactgcct atgaatttgc taaacttaaa agcaagctgg ttctctggga 300 tataaataag catggactgg agggaaacagc tgccaaatgc aaggactgg gtgccaaggt 360 tcataccctt gtggtagact gcagcaaccc agaagatatt tacagctctg caaagaaggt 420 gaaggcagaa attggagatg ttagtatttt agtaaataat gctggtagt tagtatacatc 480 agatttgtt gctacacaag atcctcagat tgaaaagact tttgaagttt atgtacttgc 540 acatttctgg actacaaagg catttctcc tgcaatgacg aagaataacc atggccatat 600 tgtcaactgtg gcttcggcag ctggacatgt ctcggcccc ttcttactgg cttactgttc 660 aagcaagttt gctgctgtt gattcataa aactttgaca gatgaactgg ctgccttaca 720 aataactgga gtcaaaacaa catgtctgtc tcctaatttc gtaaacactg gcttcatcaa 780 aaatccaagt acaagtttg gaccactct ggaacctgag gaagtggtaa acaggctgat 840 gcatgggatt ctgactgagc agaagatgat ttttattcca tcttctatag ctttttaac 900 aacattggaa aggatccttc ctgagcgtt cctggcagtt taaaacgaa aaatcagtgt 960 taagtttgc gcaattttt gatataaaat gaaagcgtaa taagcaccta gtttctgaa 1020 aactgattt ccaggtttt gtttgcgtca tctaattttt ccagaattttt aatgtttgaa 1080 cttctgttt ttcttaattt cccatttct tcaatatcat ttttggggct ttggcagtct 1140 tcatttacta ccacttggc ttttagccaa agctgattac atatgatata aacagagaaa 1200 tacctttaga ggtgacttta agaaaaatga agaaaaagaa ccaaaatgac tttttaaaaa 1260 taatttccaa gattattttt ggctcacctg aaggcttgc aaaatttgc ccataaccgt 1320 ttatttaaca tatattttt ttttgcgtt cacttaattt ttgttataatt tttttttttt 1380 tttctgtttt acataaaatc agaaaacttca agctctctaa ataaaatgaa ggactatatc 1440 tagtggattt tcacaatgaa tatcatgaac tctcaatggg tagtttcat cctaccatt 1500 gccactctgt ttcctgagag atacactaca ttccaaatgcc aaacatttct gcacagggaa 1560 gcttagaggtg gatacacgtt ttgcaagttt aaaagcatca ctgggattta aggagaattt 1620 agagaatgtt cccacaaatg gcagcaataa taaatggatc acacttaaaa aaaaaaaaaaa 1680 aaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa 1740 aaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa 1771		
<210> 159		

<211> 300

<212> PRT

<213> Homo sapiens

<400> 159

Met	Lys	Phe	Leu	Leu	Asp	Ile	Leu	Leu	Leu	Leu	Pro	Leu	Leu	Ile	Val
1						5					10				15

Cys	Ser	Leu	Glu	Ser	Phe	Val	Lys	Leu	Phe	Ile	Pro	Lys	Arg	Arg	Lys
							20			25				30	

Ser	Val	Thr	Gly	Glu	Ile	Val	Leu	Ile	Thr	Gly	Ala	Gly	His	Gly	Ile
							35			40				45	

Gly	Arg	Leu	Thr	Ala	Tyr	Glu	Phe	Ala	Lys	Leu	Lys	Ser	Lys	Leu	Val
						50			55		60				

Leu	Trp	Asp	Ile	Asn	Lys	His	Gly	Leu	Glu	Glu	Thr	Ala	Ala	Lys	Cys
						65		70		75				80	

Lys	Gly	Leu	Gly	Ala	Lys	Val	His	Thr	Phe	Val	Val	Asp	Cys	Ser	Asn
						85			90				95		

Arg	Glu	Asp	Ile	Tyr	Ser	Ser	Ala	Lys	Lys	Val	Lys	Ala	Glu	Ile	Gly
							100		105				110		

Asp	Val	Ser	Ile	Leu	Val	Asn	Asn	Ala	Gly	Val	Val	Tyr	Thr	Ser	Asp
						115			120			125			

Leu	Phe	Ala	Thr	Gln	Asp	Pro	Gln	Ile	Glu	Lys	Thr	Phe	Glu	Val	Asn
						130		135		140					

Val	Leu	Ala	His	Phe	Trp	Thr	Thr	Lys	Ala	Phe	Leu	Pro	Ala	Met	Thr
						145		150		155				160	

Lys	Asn	Asn	His	Gly	His	Ile	Val	Thr	Val	Ala	Ser	Ala	Ala	Gly	His
						165			170				175		

Val	Ser	Val	Pro	Phe	Leu	Leu	Ala	Tyr	Cys	Ser	Ser	Lys	Phe	Ala	Ala
						180		185				190			

Val	Gly	Phe	His	Lys	Thr	Leu	Thr	Asp	Glu	Leu	Ala	Ala	Leu	Gln	Ile
						195		200				205			

Thr	Gly	Val	Lys	Thr	Thr	Cys	Leu	Cys	Pro	Asn	Phe	Val	Asn	Thr	Gly
						210		215			220				

Phe	Ile	Lys	Asn	Pro	Ser	Thr	Ser	Leu	Gly	Pro	Thr	Leu	Glu	Pro	Glu
						225		230		235			240		

Glu	Val	Val	Asn	Arg	Leu	Met	His	Gly	Ile	Leu	Thr	Glu	Gln	Lys	Met
						245		250				255			

Ile Phe Ile Pro Ser Ser Ile Ala Phe Leu Thr Thr Leu Glu Arg Ile
 260 265 270

Leu Pro Glu Arg Phe Leu Ala Val Leu Lys Arg Lys Ile Ser Val Lys
 275 280 285

Phe Asp Ala Val Ile Gly Tyr Lys Met Lys Ala Gln
 290 295 300

<210> 160

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 160

ggtaaggca gaaattggag atg

23

<210> 161

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 161

atcccatgca tcagcctgtt tacc

24

<210> 162

<211> 48

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 162

gctggtag tctatacatc agatttgttt gctacacaag atcctcag

48

<210> 163

<211> 2076

<212> DNA

<213> Homo sapiens

<400> 163

ccccacgcgtc cgcggacgcg tgggtcgact agttctagat cgcgagcgcc cgcccgccgc 60
 tcagggagga gcaccgactg cgccgcaccc tgagagatgg ttgggtgccat gtggaaagg 120

tttgttcgc tggcctgtt gatgcctggc ccctgtgatg ggctgtttcg ctcccataac 180
agaagtgtt ccatgccacc taagggagac tcaggacagc cattatttct cacccttac 240
attgaagctg ggaagatcca aaaaggaaga gaattgagtt tggtcgcccc tttcccaagga 300
ctgaacatga agagttatgc cggcttcctc accgtgaata agacttacaa cagcaacctc 360
tttctcttgt tcttcccagc tcagatacag ccagaagatg ccccaagtatg tctctggcta 420
cagggtggc cgggaggtt atccatgtt ggactctttg tggaacatgg gccttatgtt 480
gtcacaagta acatgacctt gcgtgacaga gacttccccct ggaccacaac gctctccatg 540
ctttacattt acaatccagt gggcacaggc tttagtttta ctgatgatac ccacggat 600
gcagtcaatg aggacgatgt agcacggat ttatacagtg cactaattca gttttccag 660
atatttcctg aatataaaaa taatgacttt tatgtcactg gggagtctt tgcaaggaaa 720
tatgtgccag ccatgtcaca cctcatccat tccctcaacc ctgtgagaga ggtgaagatc 780
aacctgaacg gaattgctat tggagatgga tattctgatc ccgaatcaat tataggggc 840
tatgcagaat tcctgtacca aattggctt tggtatgaga agcaaaaaaaaaa gtacttccag 900
aagcagtgcc atgaatgcat agaacacatc aggaagcaga actgggttga ggccttggaa 960
atactggata aactactaga tggcgactta acaaagtatc cttcttactt ccagaatgtt 1020
acaggatgtt gtaattacta taacttttg cggtgacagg aacctgagga tcagtttac 1080
tatgtgaaat tttgtcaact cccagaggtg agacaagcca tccacgtggg gaatcagact 1140
ttaatgatg gaactatagt tggaaagtac ttgcgagaag atacagtaca gtcagttaa 1200
ccatggtaa ctgaaatcat gaataattat aagggttctga tctacaatgg ccaactggac 1260
atcatcggtt cagctgccct gacagagcgc tccttgatgg gcatggactg gaaaggatcc 1320
caggaataca agaaggcaga aaaaaaaaaatg tggaaagatct ttaaatctga cagtgaagtg 1380
gctggttaca tccggcaagc gggtgacttc catcaggtaa ttattcgagg tggaggacat 1440
attttacccct atgaccagcc tctgagagct ttgacatga ttaatcgatt catttatgga 1500
aaaggatggg atccttatgt tggataaaact accttcccaaa aagagaacat cagaggttt 1560
cattgctgaa aagaaaatcg taaaaacaga aaatgtcata ggaataaaaaa aattatctt 1620
tcatatctgc aagattttt tcatcaataa aaattatccct tgaaacaatg gagcttttgt 1680
ttttgggggg agatgtttac tacaaaatta acatgagttac atgagtaaga attacattat 1740
ttaacttaaa ggatgaaagg tatggatgtat gtgacactga gacaagatgt ataaatgaaa 1800
ttttagggtc ttgaatagga agtttaatt tcttctaaga gtaagtggaaa agtgcagttg 1860
taacaaacaa agctgtaaaca tcttttctg ccaataacag aagtttggca tgccgtgaag 1920
gtgtttggaa atattattgg ataagaatag ctcaattatc ccaaataaaat ggtgaagct 1980
ataatagttt tggggaaaag attctcaaattt gtataaagtc tttagaacaaa agaattctt 2040
qaaataaaaaa tattatataat aaaagtaaaa aaaaaaa 2076

<210> 164

<211> 476

<212> PRT

<213> Homo sapiens

<400> 164

Met Val Gly Ala Met Trp Lys Val Ile Val Ser Leu Val Leu Leu Met
1 5 10 15

Pro Gly Pro Cys Asp Gly Leu Phe Arg Ser Leu Tyr Arg Ser Val Ser
20 25 30

Met Pro Pro Lys Gly Asp Ser Gly Gln Pro Leu Phe Leu Thr Pro Tyr
 35 40 45

Ile Glu Ala Gly Lys Ile Gln Lys Gly Arg Glu Leu Ser Leu Val Gly
50 55 60

Pro Phe Pro Gly Leu Asn Met Lys Ser Tyr Ala Gly Phe Leu Thr Val

65	70	75	80
Asn Lys Thr Tyr Asn Ser Asn Leu Phe Phe Trp Phe Pro Ala Gln			
85		90	95
Ile Gln Pro Glu Asp Ala Pro Val Val Leu Trp Leu Gln Gly Gly Pro			
100		105	110
Gly Gly Ser Ser Met Phe Gly Leu Phe Val Glu His Gly Pro Tyr Val			
115		120	125
Val Thr Ser Asn Met Thr Leu Arg Asp Arg Asp Phe Pro Trp Thr Thr			
130		135	140
Thr Leu Ser Met Leu Tyr Ile Asp Asn Pro Val Gly Thr Gly Phe Ser			
145		150	155
Phe Thr Asp Asp Thr His Gly Tyr Ala Val Asn Glu Asp Asp Val Ala			
165		170	175
Arg Asp Leu Tyr Ser Ala Leu Ile Gln Phe Phe Gln Ile Phe Pro Glu			
180		185	190
Tyr Lys Asn Asn Asp Phe Tyr Val Thr Gly Glu Ser Tyr Ala Gly Lys			
195		200	205
Tyr Val Pro Ala Ile Ala His Leu Ile His Ser Leu Asn Pro Val Arg			
210		215	220
Glu Val Lys Ile Asn Leu Asn Gly Ile Ala Ile Gly Asp Gly Tyr Ser			
225		230	235
Asp Pro Glu Ser Ile Ile Gly Gly Tyr Ala Glu Phe Leu Tyr Gln Ile			
245		250	255
Gly Leu Leu Asp Glu Lys Gln Lys Tyr Phe Gln Lys Gln Cys His			
260		265	270
Glu Cys Ile Glu His Ile Arg Lys Gln Asn Trp Phe Glu Ala Phe Glu			
275		280	285
Ile Leu Asp Lys Leu Leu Asp Gly Asp Leu Thr Ser Asp Pro Ser Tyr			
290		295	300
Phe Gln Asn Val Thr Gly Cys Ser Asn Tyr Tyr Asn Phe Leu Arg Cys			
305		310	315
Thr Glu Pro Glu Asp Gln Leu Tyr Tyr Val Lys Phe Leu Ser Leu Pro			
325		330	335
Glu Val Arg Gln Ala Ile His Val Gly Asn Gln Thr Phe Asn Asp Gly			
340		345	350

Thr Ile Val Glu Lys Tyr Leu Arg Glu Asp Thr Val Gln Ser Val Lys
 355 360 365

Pro Trp Leu Thr Glu Ile Met Asn Asn Tyr Lys Val Leu Ile Tyr Asn
 370 375 380

Gly Gln Leu Asp Ile Ile Val Ala Ala Ala Leu Thr Glu Arg Ser Leu
 385 390 395 400

Met Gly Met Asp Trp Lys Gly Ser Gln Glu Tyr Lys Lys Ala Glu Lys
 405 410 415

Lys Val Trp Lys Ile Phe Lys Ser Asp Ser Glu Val Ala Gly Tyr Ile
 420 425 430

Arg Gln Ala Gly Asp Phe His Gln Val Ile Ile Arg Gly Gly His
 435 440 445

Ile Leu Pro Tyr Asp Gln Pro Leu Arg Ala Phe Asp Met Ile Asn Arg
 450 455 460

Phe Ile Tyr Gly Lys Gly Trp Asp Pro Tyr Val Gly
 465 470 475

<210> 165

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 165

ttccatgccca cctaaggag actc

24

<210> 166

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 166

tggatgaggt gtgcaatggc tggc

24

<210> 167

<211> 24

<212> DNA

<213> Artificial Sequence

```

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 167
agctctcaga ggctggtcat aggg

<210> 168
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 168
gtcggccctt tcccaggact gaacatgaag agttatgccc gcttcctcac      50

<210> 169
<211> 2477
<212> DNA
<213> Homo sapiens

<400> 169
cgaggcgttt tccggctccg qaatggcaca tggggaaatc ccagtcttgt tggctacaac 60
atttttccct ttcctaacaa gttctaacag ctgttctaac agcttagtgat caggggttct 120
tcttgctgga gaagaaaaggc ctgaggggcag agcagggcac tctcaactcag ggtgaccagc 180
tccttgccctc tctgtggata acagagcatg agaaaagtcaa gagatgcagc ggagtgaggt 240
gatggaaagtc taaaatagga aggaattttg tggcaataat cagactctgg gagcagttga 300
cctggagagc ctgggggagg gcctgcctaa caagcttca aaaaacagga gcgacttcca 360
ctgggctggg ataagacgtg ccggtaggat agggaaagact gggtttagtc ctaatatcaa 420
attgacttggc tgggtgaact tcaacagcct tttAACCTCT ctgggagatg aaaacgtatgg 480
cttaaggggc cagaaataga gatgcttgc tttaaaaaaa gcaagtattt 540
tatagcataa aggcttagaga cccaaataga taacaggatt ccctgaacat tcctaaagagg 600
gagaaagtat gttaaaaata gaaaaaccaa aatgcagaag gaggagactc acagagctaa 660
accaggatgg ggaccctggg tcaggccagc ctctttgctc ctccccggaaa ttatTTTGG 720
tctgaccact ctgccttgc tttgcagaa tcatgtgagg gccaaccggg gaagggtggag 780
cagatgagca cacacaggag ccgtctccctc accggccggcc ctctcagcat ggaacagagg 840
cagccctggc cccggggccct ggaggtggac agccgctctg tggctctgtc ctcagtggc 900
tgggtgtgc tgcccccccc agcagccggc atgcctcagt tcagcacctt ccactctgag 960
aatcgtgact ggaccttcaa ccacttgacc gtccaccaag ggacggggggc cgtctatgtg 1020
ggggccatca accgggtcta taagctgaca ggcaacctga ccattccaggt ggctcataag 1080
acagggccag aagaggacaa caagtctcgt taccggcccc tcatctgca gcccctgcagc 1140
gaagtgtca ccctcaccaa caatgtcaac aagctgtca tcattgacta ctctgagaac 1200
cgccctgtgg cctgtggag cctctaccag ggggtctgca agctgtgcg gctggatgac 1260
cttttcatecc tgggtggagcc atcccacaag aaggagcact acctgtccag tgtcaacaag 1320
acgggcacca tgcgtacgggtt gattgtgcgc tctgagggtg aggtatggcaa gtccttcatc 1380
ggcacggctg tggatggaa gcaggattac tttccgaccc tgcgtccaccc gaagctgc 1440
cgagaccctg agtcctcagc catgctcgac tatgagctac acagcgattt tgcgtccctc 1500
ctcatcaaga tcccttcaga caccctggcc ctggctccccc actttgacat ttctacatc 1560
tacggctttc ttagtggggg ctttgcgtac tttctcaactg tccagccgaa gaccctgag 1620
gggtgtggcca tcaactccgc tggagacctc ttctacaccc caccgtcgat gccggctctgc 1680

```

aaggatgacc ccaagttcca ctcatacgta tcctgcgcct tcggctgcac ccggccggg 1740
gttggaaatacc gcctcctgca ggctgtttac ctggccaagc ctggggactc actggcccag 1800
gccttcaata tcaccagcca ggacgtatgt cttttgccta ttttccaa agggcagaag 1860
cagtatcacc acccgccccga tgactctgcc ctgtgtgcct tccctatccg gccccatcaac 1920
ttgcagatca aggagcgcct gcagtcctgc taccaggcg aggcaacct ggagctcaac 1980
tggctgttgg ggaaggacgt ccagtgcacg aaggcgcctg tccccatcga tgataacttc 2040
tgtggacttgg acatcaacca gcccctggga ggctcaactc cagtggaggg cctgaccctg 2100
tacaccacca gcagggaccg catgacctct gtggcctccct acgttacaa cggctacagg 2160
gtgggttttg tggggactaa gagtgccaa ctggaaaaagg taagagtcta tgagttcaga 2220
tgctccaatg ccattcacct cctcagccaa gagtccctct tggaaaggtag ctattggtgg 2280
agatTTAact ataggcaact ttatTTTCTT ggggaacaaa ggtgaaatgg ggaggtaaga 2340
aggggtaat ttgtgactt agcttcttagc tacttcctcc agccatcagt cattgggtat 2400
gttggaaatg caagcgtatt tcaatatttc ccaaacttta agaaaaaaact ttaagaaggt 2460
acatctgcaa aagcaaa 2477

<210> 170

<211> 552

<212> PRT

<213> Homo sapiens

<400> 170

Met Gly Thr Leu Gly Gln Ala Ser Leu Phe Ala Pro Pro Gly Asn Tyr
 1 5 10 15

Phe Trp Ser Asp His Ser Ala Leu Cys Phe Ala Glu Ser Cys Glu Gly
20 25 30

Gln Pro Gly Lys Val Glu Gln Met Ser Thr His Arg Ser Arg Leu Leu
35 40 45

Thr Ala Ala Pro Leu Ser Met Glu Gln Arg Gln Pro Trp Pro Arg Ala
50 55 60

Leu Glu Val Asp Ser Arg Ser Val Val Leu Leu Ser Val Val Val Trp Val
65 70 75 80

Leu Leu Ala Pro Pro Ala Ala Gly Met Pro Gln Phe Ser Thr Phe His
85 90 95

Ser Glu Asn Arg Asp Trp Thr Phe Asn His Leu Thr Val His Gln Gly
 100 105 110

Thr Gly Ala Val Tyr Val Gly Ala Ile Asn Arg Val Tyr Lys Leu Thr
115 120 125

Gly Asn Leu Thr Ile Gln Val Ala His Lys Thr Gly Pro Glu Glu Asp
130 135 140

Asn	Lys	Ser	Arg	Tyr	Pro	Pro	Leu	Ile	Val	Gln	Pro	Cys	Ser	Glu	Val
145					150					155					160

Leu Thr Leu Thr Asn Asn Val Asn Lys Leu Leu Ile Ile Asp Tyr Ser
165 170 175

Glu Asn Arg Leu Leu Ala Cys Gly Ser Leu Tyr Gln Gly Val Cys Lys
 180 185 190

Leu Leu Arg Leu Asp Asp Leu Phe Ile Leu Val Glu Pro Ser His Lys
 195 200 205

Lys Glu His Tyr Leu Ser Ser Val Asn Lys Thr Gly Thr Met Tyr Gly
 210 215 220

Val Ile Val Arg Ser Glu Gly Glu Asp Gly Lys Leu Phe Ile Gly Thr
 225 230 235 240

Ala Val Asp Gly Lys Gln Asp Tyr Phe Pro Thr Leu Ser Ser Arg Lys
 245 250 255

Leu Pro Arg Asp Pro Glu Ser Ser Ala Met Leu Asp Tyr Glu Leu His
 260 265 270

Ser Asp Phe Val Ser Ser Leu Ile Lys Ile Pro Ser Asp Thr Leu Ala
 275 280 285

Leu Val Ser His Phe Asp Ile Phe Tyr Ile Tyr Gly Phe Ala Ser Gly
 290 295 300

Gly Phe Val Tyr Phe Leu Thr Val Gln Pro Glu Thr Pro Glu Gly Val
 305 310 315 320

Ala Ile Asn Ser Ala Gly Asp Leu Phe Tyr Thr Ser Arg Ile Val Arg
 325 330 335

Leu Cys Lys Asp Asp Pro Lys Phe His Ser Tyr Val Ser Leu Pro Phe
 340 345 350

Gly Cys Thr Arg Ala Gly Val Glu Tyr Arg Leu Leu Gln Ala Ala Tyr
 355 360 365

Leu Ala Lys Pro Gly Asp Ser Leu Ala Gln Ala Phe Asn Ile Thr Ser
 370 375 380

Gln Asp Asp Val Leu Phe Ala Ile Phe Ser Lys Gly Gln Lys Gln Tyr
 385 390 395 400

His His Pro Pro Asp Asp Ser Ala Leu Cys Ala Phe Pro Ile Arg Ala
 405 410 415

Ile Asn Leu Gln Ile Lys Glu Arg Leu Gln Ser Cys Tyr Gln Gly Glu
 420 425 430

Gly Asn Leu Glu Leu Asn Trp Leu Leu Gly Lys Asp Val Gln Cys Thr
 435 440 445

Lys Ala Pro Val Pro Ile Asp Asp Asn Phe Cys Gly Leu Asp Ile Asn

450	455	460
Gln Pro Leu Gly Gly Ser Thr Pro Val Glu Gly Leu Thr Leu Tyr Thr		
465	470	475
480		
Thr Ser Arg Asp Arg Met Thr Ser Val Ala Ser Tyr Val Tyr Asn Gly		
485	490	495
Tyr Ser Val Val Phe Val Gly Thr Lys Ser Gly Lys Leu Lys Lys Val		
500	505	510
Arg Val Tyr Glu Phe Arg Cys Ser Asn Ala Ile His Leu Leu Ser Lys		
515	520	525
Glu Ser Leu Leu Glu Gly Ser Tyr Trp Trp Arg Phe Asn Tyr Arg Gln		
530	535	540
Leu Tyr Phe Leu Gly Glu Gln Arg		
545	550	

<210> 171
 <211> 20
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 171
 tggaataccg cctcctgcag 20

<210> 172
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 172
 cttctgccct ttggagaaga tggc 24

<210> 173
 <211> 43
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 173
 ggactcactg gcccaggcct tcaatatcac cagccaggac gat 42

 <210> 174
 <211> 3106
 <212> DNA
 <213> Homo sapiens

 <220>
 <221> modified_base
 <222> (1683)
 <223> a, t, c or g

 <400> 174
 aggctccgc gcgcggctga gtgcggactg gagtggaaac ccgggtcccc gcgcttagag 60
 aacacgcgat gaccacgtgg agcctccggc ggaggccggc cccgacgctg ggactccctgc 120
 tgctggtcgt ctgggcttc ctggtgcctc gcaggctgga ctggagcacc ctggccctc 180
 tgcggctccg ccatcgacag ctggggctgc aggccaaggg ctggaacttc atgctggagg 240
 attccacccct ctggatcttc gggggctcca tccactattt ccgtgtgccc agggagtact 300
 ggagggaccg cctgctgaag atgaaggcct gtggctgaa caccctcacc acctatgttc 360
 cgtggAACCT gcatgagcca gaaagaggca aatttgactt ctctggaaac ctggacctgg 420
 aggcccttcgt cctgtatggcc gcagagatcg ggctgtgggt gattctgcgt ccaggccccct 480
 acatctgcag tgagatggac ctccggggct tgcccaactg gctactccaa gaccctggca 540
 tgaggctgag gacaacttac aagggcttca ccgaagcagt ggacctttat tttgaccacc 600
 ttagtgtccag ggtggtgcca ctcagttaca agcgtggggg acctatcatt gccgtgcagg 660
 tggagaatga atatggtcc tataataaaag accccgcata catgccctac gtcaagaagg 720
 cactggagga ccgtggcatt gtgaaactgc tcctgacttc agacaacaag gatgggctga 780
 gcaagggat tgtccaggg gtcttggcca ccatcaactt gcagtcaaca cacgagctgc 840
 agctactgac cacctttctc ttcaacgtcc aggggactca gcccaagatg gtgatggagt 900
 actggacggg gtggtttgac tcgtggggag gccctcacaa tatcttgat tcttctgagg 960
 ttttggaaaac cgtgtctgcc attgtggacg ccggctccct catcaaccc tacatgttcc 1020
 acggaggcac caactttggc ttcatgaatg gagccatgca cttccatgac tacaagtcag 1080
 atgtcaccag ctatgactat gatgctgtgc tgacagaagc cggcgattac acggccaagt 1140
 acatgaagct tcgagacttc ttccggctcca tctcaggcat ccctctccct ccccccacctg 1200
 accttcttcc caagatggcg tatgagccct taacgcagg tttgtacctg tctctgtggg 1260
 acgcctcaa gtacctgggg gagccaatca agtctgaaaa gcccacatcaac atggagaacc 1320
 tgccagtcaa tggggggaaat ggacagtctt tcgggtacat tctctatgag accagcatca 1380
 cctcgctctgg catcctcaatg ggcacacgtgc atgatcgggg gcaagggtttt gtgaacacag 1440
 tatccatagg attcttggac tacaagacaa cgaagattgc tttccctgt atccagggtt 1500
 acaccgtgtc gaggatctt gttggagaatc gtggggcaggt caactatggg gagaatattg 1560
 atgaccagcg caaaggctta attggaaatc tctatctgaa tgattcaccc ctgaaaaact 1620
 tcagaatcta tagcctggat atgaagaaga gtttcttca gaggttcggc ctggacaaat 1680
 ggnngtccct cccagaaaca cccacattac ctgctttctt ctggggtagc ttgtccatca 1740
 gctccacgcc ttgtgacacc tttctgaagc tggaggctg ggagaagggg gttgtattca 1800
 tcaatggcca gaaccttggc cgttactggc acattggacc ccagaagacg ctttacctcc 1860
 caggtccctg gttgagcagc ggaatcaacc aggtcatcgt ttttggggag acgatggcgg 1920
 gcccgtcatt acagttcaacg gaaacccccc acctggcagc gaaccagtac attaagttag 1980
 cggtggcacc ccctcctgtc ggtgccagtg ggagactgcc gcctccctt gacctgaagc 2040
 ctggtggctg ctggccacc cctcaactgca aaagcatctc cttaaatgtac aacctcagg 2100
 actggggctt acagtctgcc cctgtctcag ctcaaaaccc taagcctgca gggaaagggtg 2160
 ggatggctt gggcctggct ttgttgcata tggcttccct acagccctgc tcttgcgg 2220
 aggctgtcgg gctgtctcta gggtggggagc agctaattcag atcgcccagc ctttggccct 2280

cagaaaaaagt	gctgaaacgt	gcccttgcac	cggaacgtcac	agccctgcga	gcacatctgcgt	2340
gactcaggcg	tgtctttgc	tggttcctgg	gaggcgttggc	cacatccctc	atggccccat	2400
tttatccccg	aaatcctggg	tgtgtcacca	gtgttagaggg	tgggaaaggg	gtgtctcacc	2460
tgagctgact	ttgttcttc	ttcacaaacct	tctgagccctt	ctttgggatt	ctggaaggaa	2520
ctcggcgtga	gaaacatgtg	acttcccctt	tcccttccca	ctcgctgctt	cccacagggt	2580
gacaggctgg	gctggagaaa	cagaaatcct	caccctgcgt	cttccaagt	tagcaggtgt	2640
ctctggtgtt	cagtgaggag	gacatgtgag	tcctggcaga	agccatggcc	catgtctgca	2700
catccaggg	ggaggacaga	aggcccagct	cacatgtgag	tcctggcaga	agccatggcc	2760
catgtctgca	catccaggg	ggaggacaga	aggcccagct	cacatgtgag	tcctggcaga	2820
agccatggcc	catgtctgca	catccaggg	ggaggacaga	aggcccagct	cacatgtgag	2880
tcctggcaga	agccatggcc	catgtctgca	catccaggg	ggaggacaga	aggcccagct	2940
cagtggccc	cgtccccac	ccccacgccc	cgaacagcag	ggcagagca	gcctcttc	3000
gaagtgtgtc	caagtccgca	tttgagcctt	gttctggggc	ccagccaaac	acctgggtt	3060
qqctcaactgt	cctgagttgc	agtaaaagcta	taaccttga	tcacaa		3106

<210> 175

<211> 636

<212> PRT

<213> Homo sapiens

<220>

<221> MOD_RES

<222> (539)

<223> Any amino acid

<400> 175

Met	Thr	Thr	Trp	Ser	Leu	Arg	Arg	Arg	Pro	Ala	Arg	Thr	Leu	Gly	Leu
1				5					10				15		

Leu Leu Leu Val Val Leu Gly Phe Leu Val Leu Arg Arg Leu Asp Trp
20 25 30

Ser Thr Leu Val Pro Leu Arg Leu Arg His Arg Gln Leu Gly Leu Gln
35 40 45

Ala Lys Gly Trp Asn Phe Met Leu Glu Asp Ser Thr Phe Trp Ile Phe
50 55 60

Gly Gly Ser Ile His Tyr Phe Arg Val Pro Arg Glu Tyr Trp Arg Asp
65 70 75 80

Arg Leu Leu Lys Met Lys Ala Cys Gly Leu Asn Thr Leu Thr Thr Tyr
85 90 95

Val Pro Trp Asn Leu His Glu Pro Glu Arg Gly Lys Phe Asp Phe Ser
 100 105 110

Gly Asn Leu Asp Leu Glu Ala Phe Val Leu Met Ala Ala Glu Ile Gly
115 120 125

Leu Trp Val Ile Leu Arg Pro Gly Pro Tyr Ile Cys Ser Glu Met Asp
 130 135 140

Leu Gly Gly Leu Pro Ser Trp Leu Leu Gln Asp Pro Gly Met Arg Leu
 145 150 155 160

Arg Thr Thr Tyr Lys Gly Phe Thr Glu Ala Val Asp Leu Tyr Phe Asp
 165 170 175

His Leu Met Ser Arg Val Val Pro Leu Gln Tyr Lys Arg Gly Gly Pro
 180 185 190

Ile Ile Ala Val Gln Val Glu Asn Glu Tyr Gly Ser Tyr Asn Lys Asp
 195 200 205

Pro Ala Tyr Met Pro Tyr Val Lys Lys Ala Leu Glu Asp Arg Gly Ile
 210 215 220

Val Glu Leu Leu Leu Thr Ser Asp Asn Lys Asp Gly Leu Ser Lys Gly
 225 230 235 240

Ile Val Gln Gly Val Leu Ala Thr Ile Asn Leu Gln Ser Thr His Glu
 245 250 255

Leu Gln Leu Leu Thr Thr Phe Leu Phe Asn Val Gln Gly Thr Gln Pro
 260 265 270

Lys Met Val Met Glu Tyr Trp Thr Gly Trp Phe Asp Ser Trp Gly Gly
 275 280 285

Pro His Asn Ile Leu Asp Ser Ser Glu Val Leu Lys Thr Val Ser Ala
 290 295 300

Ile Val Asp Ala Gly Ser Ser Ile Asn Leu Tyr Met Phe His Gly Gly
 305 310 315 320

Thr Asn Phe Gly Phe Met Asn Gly Ala Met His Phe His Asp Tyr Lys
 325 330 335

Ser Asp Val Thr Ser Tyr Asp Tyr Asp Ala Val Leu Thr Glu Ala Gly
 340 345 350

Asp Tyr Thr Ala Lys Tyr Met Lys Leu Arg Asp Phe Phe Gly Ser Ile
 355 360 365

Ser Gly Ile Pro Leu Pro Pro Pro Asp Leu Leu Pro Lys Met Pro
 370 375 380

Tyr Glu Pro Leu Thr Pro Val Leu Tyr Leu Ser Leu Trp Asp Ala Leu
 385 390 395 400

Lys Tyr Leu Gly Glu Pro Ile Lys Ser Glu Lys Pro Ile Asn Met Glu
 405 410 415

Asn Leu Pro Val Asn Gly Gly Asn Gly Gln Ser Phe Gly Tyr Ile Leu
 420 425 430

Tyr Glu Thr Ser Ile Thr Ser Ser Gly Ile Leu Ser Gly His Val His
 435 440 445

Asp Arg Gly Gln Val Phe Val Asn Thr Val Ser Ile Gly Phe Leu Asp
 450 455 460

Tyr Lys Thr Thr Lys Ile Ala Val Pro Leu Ile Gln Gly Tyr Thr Val
 465 470 475 480

Leu Arg Ile Leu Val Glu Asn Arg Gly Arg Val Asn Tyr Gly Glu Asn
 485 490 495

Ile Asp Asp Gln Arg Lys Gly Leu Ile Gly Asn Leu Tyr Leu Asn Asp
 500 505 510

Ser Pro Leu Lys Asn Phe Arg Ile Tyr Ser Leu Asp Met Lys Lys Ser
 515 520 525

Phe Phe Gln Arg Phe Gly Leu Asp Lys Trp Xaa Ser Leu Pro Glu Thr
 530 535 540

Pro Thr Leu Pro Ala Phe Phe Leu Gly Ser Leu Ser Ile Ser Ser Thr
 545 550 555 560

Pro Cys Asp Thr Phe Leu Lys Leu Glu Gly Trp Glu Lys Gly Val Val
 565 570 575

Phe Ile Asn Gly Gln Asn Leu Gly Arg Tyr Trp Asn Ile Gly Pro Gln
 580 585 590

Lys Thr Leu Tyr Leu Pro Gly Pro Trp Leu Ser Ser Gly Ile Asn Gln
 595 600 605

Val Ile Val Phe Glu Glu Thr Met Ala Gly Pro Ala Leu Gln Phe Thr
 610 615 620

Glu Thr Pro His Leu Gly Arg Asn Gln Tyr Ile Lys
 625 630 635

<210> 176

<211> 2505

<212> DNA

<213> Homo sapiens

<400> 176

ggggacgcgg agctgagagg ctccgggcta gctaggtgta ggggtggacg ggtcccagga 60
 cccttgttag gtttctctac ttggccttcg gtgggggtca agacgcaggc acctacgc 120
 aaggggagca aagccgggct cggcccgagg cccccaggac ctccatctcc caatgttgg 180
 ggaatccgac acgtgacggt ctgtccgccc tctcagacta gaggagcgct gtaaaacgcca 240
 tggctcccaa gaagctgtcc tgcttcgtt ccctgctgct gccgctcagc ctgacgctac 300
 tgctccccca ggcagacact cggtcggtcg tagtgatag gggtcatgac cggttctcc 360
 tagacggggc cccgttccgc tatgtgtctg gcagcctgca ctacttcgg gtaccgcggg 420

tgctttgggc cgaccggctt ttgaagatgc gatggagcgg cctcaacgcc atacagttt 480
atgtgccctg gaactaccac gagccacagc ctggggtcta taacttaat ggcagccggg 540
acctcattgc ctttctaat gaggcagtc tagcaaccc gttggtcata ctgagaccag 600
gaccttacat ctgtcagag tggagatgg ggggtctccc atcctggttg cttcgaaaac 660
ctgaaattca tctaagaacc tcagatccag acttccttgc cgcagtggac tcctggttca 720
aggtcttgct gcccaagata tatccatggc ttatcacaa tggggcaac atcattagca 780
ttcaggtgga gaatgaatat ggtagctaca gagcctgtga cttagctac atgaggcact 840
tggctgggct ctccgtgca ctgcttaggag aaaagatctt gctctcacc acagatggc 900
ctgaaggact caagtgtggc tccctccgg gactctatac cactgttagat ttggcccaag 960
ctgacaacat gaccaaatac ttaccctgc ttcggaagta tgaacccat gggccattgg 1020
taaactctga gtactacaca ggctggctgg attactgggg ccagaatcac tccacacgg 1080
ctgtgtcagc tgtaaccaa ggactagaga acatgctaa gttggagcc agtgtgaaca 1140
tgtacatgtt ccatggaggt accaacttg gatattggaa tggtggcgat aagaaggac 1200
gcttccttcc gattactacc agctatgact atgatgcacc tatatctgaa gcaggggacc 1260
ccacacctaa gcttttgc ctgcagatg toatcagcaa gttccaggaa ttcttttg 1320
gaccttacc tcccccgagc cccaagatga tgcttgacc tgtgactctg cacctggttg 1380
ggcatttact ggcttccta gacttgctt gccccgtgg gcccattcat tcaatcttc 1440
caatgacctt tgaggctgca aagcaggacc atggcttcat gttgtaccga acctatatga 1500
ccataccat ttttggcca acaccattct gggtgccaaa taatggagtc catgaccgtg 1560
cctatgttat ggtggatggg gtgttccagg gtgttggaa gcaaataatg agagacaac 1620
tatttttgac gggaaaactg gggtccaaac tggatatctt ggtggagaac atggggagac 1680
tcagcttgg gtctaacagc agtgacttca agggcctgtt gaagccacca attctggggc 1740
aaacaatcct taccctgtgg atgatgtcc ctctgaaaat tgataacctt gtgaagtgg 1800
ggtttccctt ccagttgcca aaatggccat atcctcaagc tccttctggc cccacattt 1860
actccaaaac atttccaatt ttaggctcg ttggggacac atttctatat ctacctggat 1920
ggaccaaggg ccaagtctgg atcaatgggt ttaacttggg cggtaactgg acaaagcagg 1980
ggccacaaca gaccctctac gtgccaagat tcctgctgtt tccttagggg gccctcaaca 2040
aaattacatt gctggacta gaagatgtac ctctccagcc ccaagtccaa ttttggata 2100
agcctatcct caatagcact agtacttgc acaggacaca tatcaattcc ctccagctg 2160
atacactgag tgcctctgaa ccaatggagt taagtggga ctgaaaggta ggccgggcat 2220
ggtggtcat gcctgtatc ccagcactt gggaggctga gacgggtggta ttacctgagg 2280
tcaggactt aagaccagcc tggccaaat ggtgaaaccc cgtctccact aaaaatacaa 2340
aaattagccg ggcgtgatgg tggccaccc taatcccagc tacttgggag gctgaggc 2400
ggagaattgc ttgaatccag gaggcagagg ttgcagtggag tggaggtgt accactgcac 2460
tccagcttgg ctgacagtga qacactccat ctcaaaaaaaa aaaaa 2505

<210> 177

<211> 654

<212> PRT

<213> Homo sapiens

<400> 177

Met Ala Pro Lys Lys Leu Ser Cys Leu Arg Ser Leu Leu Leu Pro Leu
1 5 10 15

Ser Leu Thr Leu Leu Leu Pro Gln Ala Asp Thr Arg Ser Phe Val Val
20 25 30

Asp Arg Gly His Asp Arg Phe Leu Leu Asp Gly Ala Pro Phe Arg Tyr
35 40 45

Val Ser Gly Ser Leu His Tyr Phe Arg Val Pro Arg Val Leu Trp Ala
50 55 60

Asp Arg Leu Leu Lys Met Arg Trp Ser Gly Leu Asn Ala Ile Gln Phe
 65 70 75 80

Tyr Val Pro Trp Asn Tyr His Glu Pro Gln Pro Gly Val Tyr Asn Phe
 85 90 95

Asn Gly Ser Arg Asp Leu Ile Ala Phe Leu Asn Glu Ala Ala Leu Ala
 100 105 110

Asn Leu Leu Val Ile Leu Arg Pro Gly Pro Tyr Ile Cys Ala Glu Trp
 115 120 125

Glu Met Gly Gly Leu Pro Ser Trp Leu Leu Arg Lys Pro Glu Ile His
 130 135 140

Leu Arg Thr Ser Asp Pro Asp Phe Leu Ala Ala Val Asp Ser Trp Phe
 145 150 155 160

Lys Val Leu Leu Pro Lys Ile Tyr Pro Trp Leu Tyr His Asn Gly Gly
 165 170 175

Asn Ile Ile Ser Ile Gln Val Glu Asn Glu Tyr Gly Ser Tyr Arg Ala
 180 185 190

Cys Asp Phe Ser Tyr Met Arg His Leu Ala Gly Leu Phe Arg Ala Leu
 195 200 205

Leu Gly Glu Lys Ile Leu Leu Phe Thr Thr Asp Gly Pro Glu Gly Leu
 210 215 220

Lys Cys Gly Ser Leu Arg Gly Leu Tyr Thr Thr Val Asp Phe Gly Pro
 225 230 235 240

Ala Asp Asn Met Thr Lys Ile Phe Thr Leu Leu Arg Lys Tyr Glu Pro
 245 250 255

His Gly Pro Leu Val Asn Ser Glu Tyr Tyr Thr Gly Trp Leu Asp Tyr
 260 265 270

Trp Gly Gln Asn His Ser Thr Arg Ser Val Ser Ala Val Thr Lys Gly
 275 280 285

Leu Glu Asn Met Leu Lys Leu Gly Ala Ser Val Asn Met Tyr Met Phe
 290 295 300

His Gly Gly Thr Asn Phe Gly Tyr Trp Asn Gly Ala Asp Lys Lys Gly
 305 310 315 320

Arg Phe Leu Pro Ile Thr Thr Ser Tyr Asp Tyr Asp Ala Pro Ile Ser
 325 330 335

Glu Ala Gly Asp Pro Thr Pro Lys Leu Phe Ala Leu Arg Asp Val Ile

340	345	350
Ser Lys Phe Gln Glu Val Pro Leu Gly Pro Leu Pro Pro Pro Ser Pro		
355	360	365
Lys Met Met Leu Gly Pro Val Thr Leu His Leu Val Gly His Leu Leu		
370	375	380
Ala Phe Leu Asp Leu Leu Cys Pro Arg Gly Pro Ile His Ser Ile Leu		
385	390	395 400
Pro Met Thr Phe Glu Ala Val Lys Gln Asp His Gly Phe Met Leu Tyr		
405	410	415
Arg Thr Tyr Met Thr His Thr Ile Phe Glu Pro Thr Pro Phe Trp Val		
420	425	430
Pro Asn Asn Gly Val His Asp Arg Ala Tyr Val Met Val Asp Gly Val		
435	440	445
Phe Gln Gly Val Val Glu Arg Asn Met Arg Asp Lys Leu Phe Leu Thr		
450	455	460
Gly Lys Leu Gly Ser Lys Leu Asp Ile Leu Val Glu Asn Met Gly Arg		
465	470	475 480
Leu Ser Phe Gly Ser Asn Ser Ser Asp Phe Lys Gly Leu Leu Lys Pro		
485	490	495
Pro Ile Leu Gly Gln Thr Ile Leu Thr Gln Trp Met Met Phe Pro Leu		
500	505	510
Lys Ile Asp Asn Leu Val Lys Trp Trp Phe Pro Leu Gln Leu Pro Lys		
515	520	525
Trp Pro Tyr Pro Gln Ala Pro Ser Gly Pro Thr Phe Tyr Ser Lys Thr		
530	535	540
Phe Pro Ile Leu Gly Ser Val Gly Asp Thr Phe Leu Tyr Leu Pro Gly		
545	550	555 560
Trp Thr Lys Gly Gln Val Trp Ile Asn Gly Phe Asn Leu Gly Arg Tyr		
565	570	575
Trp Thr Lys Gln Gly Pro Gln Gln Thr Leu Tyr Val Pro Arg Phe Leu		
580	585	590
Leu Phe Pro Arg Gly Ala Leu Asn Lys Ile Thr Leu Leu Glu Leu Glu		
595	600	605
Asp Val Pro Leu Gln Pro Gln Val Gln Phe Leu Asp Lys Pro Ile Leu		
610	615	620

Asn Ser Thr Ser Thr Leu His Arg Thr His Ile Asn Ser Leu Ser Ala
 625 630 635 640

Asp Thr Leu Ser Ala Ser Glu Pro Met Glu Leu Ser Gly His
 645 650

<210> 178

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 178

tggctactcc aagaccctgg catg

24

<210> 179

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 179

tggacaaaatc cccttgctca gccc

24

<210> 180

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 180

gggcattcacc gaaggcagtgg acctttatcc tgaccacctg atgtccaggg

50

<210> 181

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 181

ccagctatga ctatgatgca cc

22

<210> 182
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 182
tggcacccag aatggtgttg gctc 24

<210> 183
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 183
cgagatgtca tcagcaagtt ccaggaagtt cctttggac ctttacctcc 50

<210> 184
<211> 1947
<212> DNA
<213> Homo sapiens

<400> 184
gctttgaaca cgtctgcaag cccaaagttg agcatctgat tggtagatgg gtatttgagt 60
gcaccaccaa tatggcttac atgtaaaaaa agcttctcat cagttacata tccattattt 120
gtgttatgg ctatctgc ctctacactc tcttctggtt attcaggata ccttgaagg 180
aatattctt cggaaaagtc agagaagaga gcagtttag tgacattcca gatgtcaaaa 240
acgattttgc gtccttctt cacatggtag accagttatga ccagctatat tccaagcggt 300
ttggtggtt ctgtcagaa gttagtgaaa ataaacttag ggaaatttagt ttgaaccatg 360
agtggacatt tgaaaaactc aggacgaca tttcacgcaa cgcccaggac aacgcaggagt 420
tgcattgtt catgtgtcg ggggtccccg atgctgtt tgacctcaca gacctggatg 480
tgctaaagct tgaactaatt ccagaagcta aaattctgc taagattct caaatgacta 540
acctccaaaga gtcacccctc tgccactgcc ctgcaaaagt tgaacagact gcttttagct 600
ttcttcgcga tcaacttgaga tgccttcacg tgaagttcac ttagtggct qaaattcctg 660
cctgggtgta ttgctcaaa aaccttcgag agttgtactt aataggcaat ttgaactctg 720
aaaacaataa gatgatagga cttgaatctc tccgagagtt gcggcacctt aagattctcc 780
acgtgaagag caatttgacc aaagttccct ccaacattac agatgtggct ccacatctta 840
caaagtttagt cattcataat gacggcacta aactcttggt actgaacagc cttaaagaaaa 900
ttagtgaatgt cgctgagctg gaactccaga actgtgagct agagagaatc ccacatgcta 960
ttttcagcct ctctaattta caggaactgg atttaaagtca aataaacatt cgcacaattg 1020
aggaaatcat cagttccag cattttaaac gactgacttg tttaaaatta tggcataaca 1080
aaattgttac tattcctccc tctattaccc atgtcaaaaaa cttggagtca ctttatttct 1140
ctaacaacaa gctcgaatcc ttaccagtgg cagttatgg tttacagaaa ctcagatgct 1200
tagatgtgag ctacaacaac attcaatga ttccaaataga aataggattg cttcagaacc 1260
tgcagcattt gcataatcact gggaaacaaag tggacattct gccaaaacaa ttgtttaat 1320

gcataaagtt gaggacttg aatctggac agaactgcat cacctcactc ccagagaaaag 1380
 ttggtcagct ctcccagtc actcagctgg agctgaaggg gaactgctt gaccgcctgc 1440
 cagcccagct gggccagtgt cgatgctca agaaaagcgg gcttgttggta gaagatcacc 1500
 ttttgatac cctgccactc gaagtcaaag aggcatgaa tcaagacata aatattccct 1560
 ttgcaaatgg gattttaact aagataatat atgcacagtg atgtgcagga acaacttcct 1620
 agattgcaag tgctcacgta caagttatta caagataatg catttttagga gtagatacat 1680
 cttttaaat aaaacagaga ggatgcatag aaggctgata gaagacataa ctgaatgttc 1740
 aatgtttgta gggtttaag tcattcattt ccaaattcatt ttttttttc ttttgggaa 1800
 agggaggaa aaattataat cactaatctt gttctttt aaattgtttg taactggat 1860
 gctgccgcta ctgaatgtt acaaattgct tgcctgctaa agtaaatgat taaattgaca 1920
 ttttctact aaaaaaaaaaaaaaa 1947

<210> 185

<211> 501

<212> PRT

<213> Homo sapiens

<400> 185

Met	Ala	Tyr	Met	Leu	Lys	Lys	Leu	Leu	Ile	Ser	Tyr	Ile	Ser	Ile	Ile
1				5				10					15		

Cys	Val	Tyr	Gly	Phe	Ile	Cys	Leu	Tyr	Thr	Leu	Phe	Trp	Leu	Phe	Arg
					20				25				30		

Ile	Pro	Leu	Lys	Glu	Tyr	Ser	Phe	Glu	Lys	Val	Arg	Glu	Glu	Ser	Ser
					35			40				45			

Phe	Ser	Asp	Ile	Pro	Asp	Val	Lys	Asn	Asp	Phe	Ala	Phe	Leu	Leu	His
					50			55			60				

Met	Val	Asp	Gln	Tyr	Asp	Gln	Leu	Tyr	Ser	Lys	Arg	Phe	Gly	Val	Phe
					65			70			75		80		

Leu	Ser	Glu	Val	Ser	Glu	Asn	Lys	Leu	Arg	Glu	Ile	Ser	Leu	Asn	His
					85				90			95			

Glu	Trp	Thr	Phe	Glu	Lys	Leu	Arg	Gln	His	Ile	Ser	Arg	Asn	Ala	Gln
					100			105			110				

Asp	Lys	Gln	Glu	Leu	His	Leu	Phe	Met	Leu	Ser	Gly	Val	Pro	Asp	Ala
					115			120			125				

Val	Phe	Asp	Leu	Thr	Asp	Leu	Asp	Val	Leu	Lys	Leu	Glu	Leu	Ile	Pro
					130			135			140				

Glu	Ala	Lys	Ile	Pro	Ala	Lys	Ile	Ser	Gln	Met	Thr	Asn	Leu	Gln	Glu
					145			150			155		160		

Leu	His	Leu	Cys	His	Cys	Pro	Ala	Lys	Val	Glu	Gln	Thr	Ala	Phe	Ser
					165			170			175				

Phe	Leu	Arg	Asp	His	Leu	Arg	Cys	Leu	His	Val	Lys	Phe	Thr	Asp	Val
					180			185			190				

Ala Glu Ile Pro Ala Trp Val Tyr Leu Leu Lys Asn Leu Arg Glu Leu
 195 200 205

Tyr Leu Ile Gly Asn Leu Asn Ser Glu Asn Asn Lys Met Ile Gly Leu
 210 215 220

Glu Ser Leu Arg Glu Leu Arg His Leu Lys Ile Leu His Val Lys Ser
 225 230 235 240

Asn Leu Thr Lys Val Pro Ser Asn Ile Thr Asp Val Ala Pro His Leu
 245 250 255

Thr Lys Leu Val Ile His Asn Asp Gly Thr Lys Leu Leu Val Leu Asn
 260 265 270

Ser Leu Lys Lys Met Met Asn Val Ala Glu Leu Glu Leu Gln Asn Cys
 275 280 285

Glu Leu Glu Arg Ile Pro His Ala Ile Phe Ser Leu Ser Asn Leu Gln
 290 295 300

Glu Leu Asp Leu Lys Ser Asn Asn Ile Arg Thr Ile Glu Glu Ile Ile
 305 310 315 320

Ser Phe Gln His Leu Lys Arg Leu Thr Cys Leu Lys Leu Trp His Asn
 325 330 335

Lys Ile Val Thr Ile Pro Pro Ser Ile Thr His Val Lys Asn Leu Glu
 340 345 350

Ser Leu Tyr Phe Ser Asn Asn Lys Leu Glu Ser Leu Pro Val Ala Val
 355 360 365

Phe Ser Leu Gln Lys Leu Arg Cys Leu Asp Val Ser Tyr Asn Asn Ile
 370 375 380

Ser Met Ile Pro Ile Glu Ile Gly Leu Leu Gln Asn Leu Gln His Leu
 385 390 395 400

His Ile Thr Gly Asn Lys Val Asp Ile Leu Pro Lys Gln Leu Phe Lys
 405 410 415

Cys Ile Lys Leu Arg Thr Leu Asn Leu Gly Gln Asn Cys Ile Thr Ser
 420 425 430

Leu Pro Glu Lys Val Gly Gln Leu Ser Gln Leu Thr Gln Leu Glu Leu
 435 440 445

Lys Gly Asn Cys Leu Asp Arg Leu Pro Ala Gln Leu Gly Gln Cys Arg
 450 455 460

Met Leu Lys Lys Ser Gly Leu Val Val Glu Asp His Leu Phe Asp Thr

465 470 475 480

Leu Pro Leu Glu Val Lys Glu Ala Leu Asn Gln Asp Ile Asn Ile Pro
485 490 495

Phe Ala Asn Gly Ile
500

<210> 186
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 186
cctccctcta ttacccatgt c 21

<210> 187
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 187
gaccaacttt ctctggag gagg 24

<210> 188
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 188
gtcactttat ttctctaaca acaagctcg atccttacca gtggcag 47

<210> 189
<211> 2917
<212> DNA
<213> Homo sapiens

<400> 189
ccccacgcgtc cggccttctc tctggacttt gcatttccat tcctttcat tgacaaaactg 60
actttttta ttttttttt tccatctctg ggccagcttg ggatccttagg ccgccttggg 120
aagacatttg tggtttacac acataaggat ctgtgtttgg ggtttcttct tcttcccctg 180

<210> 190
<211> 607
<212> PRT
<213> *Homo sapiens*

<400> 190

Met Glu Leu Val Arg Arg Leu Met Pro Leu Thr Leu Leu Ile Leu Ser
 1 5 10 15

Cys Leu Ala Glu Leu Thr Met Ala Glu Ala Glu Gly Asn Ala Ser Cys
 20 25 30

Thr Val Ser Leu Gly Gly Ala Asn Met Ala Glu Thr His Lys Ala Met
 35 40 45

Ile Leu Gln Leu Asn Pro Ser Glu Asn Cys Thr Trp Thr Ile Glu Arg
 50 55 60

Pro Glu Asn Lys Ser Ile Arg Ile Ile Phe Ser Tyr Val Gln Leu Asp
 65 70 75 80

Pro Asp Gly Ser Cys Glu Ser Glu Asn Ile Lys Val Phe Asp Gly Thr
 85 90 95

Ser Ser Asn Gly Pro Leu Leu Gly Gln Val Cys Ser Lys Asn Asp Tyr
 100 105 110

Val Pro Val Phe Glu Ser Ser Ser Thr Leu Thr Phe Gln Ile Val
 115 120 125

Thr Asp Ser Ala Arg Ile Gln Arg Thr Val Phe Val Phe Tyr Tyr Phe
 130 135 140

Phe Ser Pro Asn Ile Ser Ile Pro Asn Cys Gly Gly Tyr Leu Asp Thr
 145 150 155 160

Leu Glu Gly Ser Phe Thr Ser Pro Asn Tyr Pro Lys Pro His Pro Glu
 165 170 175

Leu Ala Tyr Cys Val Trp His Ile Gln Val Glu Lys Asp Tyr Lys Ile
 180 185 190

Lys Leu Asn Phe Lys Glu Ile Phe Leu Glu Ile Asp Lys Gln Cys Lys
 195 200 205

Phe Asp Phe Leu Ala Ile Tyr Asp Gly Pro Ser Thr Asn Ser Gly Leu
 210 215 220

Ile Gly Gln Val Cys Gly Arg Val Thr Pro Thr Phe Glu Ser Ser Ser
 225 230 235 240

Asn Ser Leu Thr Val Val Leu Ser Thr Asp Tyr Ala Asn Ser Tyr Arg
 245 250 255

Gly Phe Ser Ala Ser Tyr Thr Ser Ile Tyr Ala Glu Asn Ile Asn Thr
 260 265 270

Thr Ser Leu Thr Cys Ser Ser Asp Arg Met Arg Val Ile Ile Ser Lys
 275 280 285

Ser Tyr Leu Glu Ala Phe Asn Ser Asn Gly Asn Asn Leu Gln Leu Lys
 290 295 300

Asp Pro Thr Cys Arg Pro Lys Leu Ser Asn Val Val Glu Phe Ser Val
 305 310 315 320

Pro Leu Asn Gly Cys Gly Thr Ile Arg Lys Val Glu Asp Gln Ser Ile
 325 330 335

Thr Tyr Thr Asn Ile Ile Thr Phe Ser Ala Ser Ser Thr Ser Glu Val
 340 345 350

Ile Thr Arg Gln Lys Gln Leu Gln Ile Ile Val Lys Cys Glu Met Gly
 355 360 365

His Asn Ser Thr Val Glu Ile Ile Tyr Ile Thr Glu Asp Asp Val Ile
 370 375 380

Gln Ser Gln Asn Ala Leu Gly Lys Tyr Asn Thr Ser Met Ala Leu Phe
 385 390 395 400

Glu Ser Asn Ser Phe Glu Lys Thr Ile Leu Glu Ser Pro Tyr Tyr Val
 405 410 415

Asp Leu Asn Gln Thr Leu Phe Val Gln Val Ser Leu His Thr Ser Asp
 420 425 430

Pro Asn Leu Val Val Phe Leu Asp Thr Cys Arg Ala Ser Pro Thr Ser
 435 440 445

Asp Phe Ala Ser Pro Thr Tyr Asp Leu Ile Lys Ser Gly Cys Ser Arg
 450 455 460

Asp Glu Thr Cys Lys Val Tyr Pro Leu Phe Gly His Tyr Gly Arg Phe
 465 470 475 480

Gln Phe Asn Ala Phe Lys Phe Leu Arg Ser Met Ser Ser Val Tyr Leu
 485 490 495

Gln Cys Lys Val Leu Ile Cys Asp Ser Ser Asp His Gln Ser Arg Cys
 500 505 510

Asn Gln Gly Cys Val Ser Arg Ser Lys Arg Asp Ile Ser Ser Tyr Lys
 515 520 525

Trp Lys Thr Asp Ser Ile Ile Gly Pro Ile Arg Leu Lys Arg Asp Arg
 530 535 540

Ser Ala Ser Gly Asn Ser Gly Phe Gln His Glu Thr His Ala Glu Glu
 545 550 555 560

Thr Pro Asn Gln Pro Phe Asn Ser Val His Leu Phe Ser Phe Met Val

565

570

575

Leu Ala Leu Asn Val Val Thr Val Ala Thr Ile Thr Val Arg His Phe
580 585 590

Val Asn Gln Arg Ala Asp Tyr Lys Tyr Gln Lys Leu Gln Asn Tyr
595 600 605

```
<210> 191
<211> 21
<212> DNA
<213> Artificial Sequence
```

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 191
tctctattcc aaactgtggc g

21

<210> 192
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 192
tttgatgacg attcgaaggt gg

22

<210> 193
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 193
qqaaggatcc ttcaccaqcc ccaattaccc aaagccgcat cctgagc

47

```
<210> 194  
<211> 2362  
<212> DNA  
<213> Homo sapiens
```

<400> 194
gacggaaagaa cagcgctccc gaggccgcgg gagcctgcag agaggacagc cggcctgcgc 60
cgggacatgc ggccccagga gctccccagg ctgcgcgttcc cgttgctgtct gttgctgttg 120
ctqctqctqc cqccqccqcc qtqccctqcc cacagcqcca cqcgcttcga cccccacctgg 180

gagtcctgg acgcccccca gctgcccgcg tggtttgcacc aggccaagtt cggcatcttc 240
 atccactggg gagtgtttc cgtgcccagc ttccggtagcg agtggttctg gtggattgg 300
 caaaaaggaaa agatacccaa gtatgtggaa tttatgaaag ataattaccc tcctagttc 360
 aaatatgaag atttggacc actattaca gcaaaattt ttaatgccaa ccagtggca 420
 gatattttc aggccctctgg tgccaaatac attgtcttaa cttccaaaca tcatgaaggc 480
 tttaccttgc gggggtcaga atattcgtgg aactggaatg ccatagatga ggggc当地 540
 agggacattg tcaaggaact tgaggttagcc attaggaaca gaactgaccc gcgtttgga 600
 ctgtactatt cccttttga atggttcat ccgctttcc ttgaggatga atccagttca 660
 ttccataaggc ggcaatttcc agttctaag acattgccag agctctatga gttagtgAAC 720
 aactatcagc ctgagggtct gtggcggat ggtgacggag gacccacggg tcaatactgg 780
 aacagcacag gcttcttggc ctggttatataatgaaagcc cagttcgggg cacagtagtc 840
 accaatgatc gttggggagc tggtagcatc tgtaagcatg gtggcttcta tacctgcagt 900
 gatcgttata acccaggaca tctttgcca cataaaatggg aaaactgcat gacaatagac 960
 aaactgtcct ggggctatacg gaggaaagct ggaatctctg actatcttac aattgaagaa 1020
 ttggtaagc aacttgtaga gacagttca tggtagggaa atcttttgcgaaatatttggg 1080
 cccacactag atggcaccat ttctgttagtt tttgaggagc gactgaggca agtgggtcc 1140
 tggctaaaag tcaatggaga agctattat gaaacctata cctggcgtac ccagaatgac 1200
 actgtcaccct cagatgtgtg gtacacatcc aagcctaaag aaaaatttagt ctatgccatt 1260
 tttcttaat gggccacatc aggacagctg ttccctggcc atcccaaaggc tattctgggg 1320
 gcaacagagg taaaaactact gggccatggc cagccactta actggatttc tttggagcaa 1380
 aatggcatta tggtagaact gccacagcta accattcatc agatggcgtg taaaatgggc 1440
 tggctctag ccctaactaa tggatctaa agtgcacgag agtggctgtat gctcaagtt 1500
 atgtctaagg ctaggaacta tcaggtgtct ataatttgcgaaatatttgcgaa 1560
 aactggataa gaaaattatt tggcagttca gccccttccc ttttcccaat taaattttc 1620
 ttaaattacc catgtAACCA ttttaactct ccagtgcact ttgcattaa agtctttca 1680
 cattgatttgc tttccatgtg tgactcagag gtgagaattt ttccacatc tagtagcaag 1740
 gaattggtgg tattatggac cgaactgaaa attttatgtt gaagccatatacccccattat 1800
 tatatagtt tgcattactt aatatggggat tttttctgg gaaatgcatt gctagtcatt 1860
 tttttttgt gccaacatca tagagtgtat ttacaaaatc cttagatggca tagcctacta 1920
 cacacctaatttgtatgtatgactgttgc tccctaggct acagacatatacccccattat 1980
 actgaataact gtaggcataatacccccattatgactgttgc tccctaggct acagacatatacccccattat 2040
 gagaaggtac agtaaaaata ctgtaaaata aatggtcac ctgtataggc cacttaccac 2100
 gaatggagct tacaggactg gaagttgctc tgggtgagtc agtgagtgaa tgtgaaggcc 2160
 taggacatta ttgaacactg ccagacgttatacccccattatgactgttgc tccctaggct acagacatatacccccattat 2220
 ttataaaaaa aagttttctt ttcttcatt ataaattaaac ataaatgtac tgtaacttta 2280
 caaacgtttt aatttttaaa accttttgg ctctttgtataacacttac gcttaaaaaca 2340
 taaactcatt gtgcaatgt aa 2362

<210> 195

<211> 467

<212> PRT

<213> Homo sapiens

<400> 195

Met	Arg	Pro	Gln	Glu	Leu	Pro	Arg	Leu	Ala	Phe	Pro	Leu	Leu	Leu
1		5			10				15					

Leu	Leu	Leu	Leu	Pro	Pro	Pro	Cys	Pro	Ala	His	Ser	Ala	Thr
20				25					30				

Arg	Phe	Asp	Pro	Thr	Trp	Glu	Ser	Leu	Asp	Ala	Arg	Gln	Leu	Pro	Ala
35			40						45						

Trp Phe Asp Gln Ala Lys Phe Gly Ile Phe Ile His Trp Gly Val Phe
 50 55 60

Ser Val Pro Ser Phe Gly Ser Glu Trp Phe Trp Trp Tyr Trp Gln Lys
 65 70 75 80

Glu Lys Ile Pro Lys Tyr Val Glu Phe Met Lys Asp Asn Tyr Pro Pro
 85 90 95

Ser Phe Lys Tyr Glu Asp Phe Gly Pro Leu Phe Thr Ala Lys Phe Phe
 100 105 110

Asn Ala Asn Gln Trp Ala Asp Ile Phe Gln Ala Ser Gly Ala Lys Tyr
 115 120 125

Ile Val Leu Thr Ser Lys His His Glu Gly Phe Thr Leu Trp Gly Ser
 130 135 140

Glu Tyr Ser Trp Asn Trp Asn Ala Ile Asp Glu Gly Pro Lys Arg Asp
 145 150 155 160

Ile Val Lys Glu Leu Glu Val Ala Ile Arg Asn Arg Thr Asp Leu Arg
 165 170 175

Phe Gly Leu Tyr Tyr Ser Leu Phe Glu Trp Phe His Pro Leu Phe Leu
 180 185 190

Glu Asp Glu Ser Ser Ser Phe His Lys Arg Gln Phe Pro Val Ser Lys
 195 200 205

Thr Leu Pro Glu Leu Tyr Glu Leu Val Asn Asn Tyr Gln Pro Glu Val
 210 215 220

Leu Trp Ser Asp Gly Asp Gly Ala Pro Asp Gln Tyr Trp Asn Ser
 225 230 235 240

Thr Gly Phe Leu Ala Trp Leu Tyr Asn Glu Ser Pro Val Arg Gly Thr
 245 250 255

Val Val Thr Asn Asp Arg Trp Gly Ala Gly Ser Ile Cys Lys His Gly
 260 265 270

Gly Phe Tyr Thr Cys Ser Asp Arg Tyr Asn Pro Gly His Leu Leu Pro
 275 280 285

His Lys Trp Glu Asn Cys Met Thr Ile Asp Lys Leu Ser Trp Gly Tyr
 290 295 300

Arg Arg Glu Ala Gly Ile Ser Asp Tyr Leu Thr Ile Glu Glu Leu Val
 305 310 315 320

Lys Gln Leu Val Glu Thr Val Ser Cys Gly Gly Asn Leu Leu Met Asn
 325 330 335

PDB ID: 2D9C

Ile Gly Pro Thr Leu Asp Gly Thr Ile Ser Val Val Phe Glu Glu Arg
 340 345 350

Leu Arg Gln Val Gly Ser Trp Leu Lys Val Asn Gly Glu Ala Ile Tyr
 355 360 365

Glu Thr Tyr Thr Trp Arg Ser Gln Asn Asp Thr Val Thr Pro Asp Val
 370 375 380

Trp Tyr Thr Ser Lys Pro Lys Glu Lys Leu Val Tyr Ala Ile Phe Leu
 385 390 395 400

Lys Trp Pro Thr Ser Gly Gln Leu Phe Leu Gly His Pro Lys Ala Ile
 405 410 415

Leu Gly Ala Thr Glu Val Lys Leu Leu Gly His Gly Gln Pro Leu Asn
 420 425 430

Trp Ile Ser Leu Glu Gln Asn Gly Ile Met Val Glu Leu Pro Gln Leu
 435 440 445

Thr Ile His Gln Met Pro Cys Lys Trp Gly Trp Ala Leu Ala Leu Thr
 450 455 460

Asn Val Ile
 465

<210> 196

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 196

tggtttggacc aggcggaaat tt cggt

23

<210> 197

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 197

ggatttcatcc tcaaggaaaga gcgg

24

<210> 198

```

<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 198
aacttgcagc atcagccact ctgc          24

<210> 199
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 199
ttccgtgccc agcttcggta gcgagtggtt ctgggtggat tggca          45
                                         100
                                         200
                                         300
                                         400
                                         500
                                         600
                                         700
                                         800
                                         900
                                         1000
                                         1100
                                         1200
                                         1300
                                         1400
                                         1500
                                         1600
                                         1700
                                         1800
                                         1900
                                         2000
                                         2100
                                         2200
                                         2300
                                         2400
                                         2500
                                         2600
                                         2700
                                         2800
                                         2900
                                         3000
                                         3100
                                         3200
                                         3300
                                         3400
                                         3500
                                         3600
                                         3700
                                         3800
                                         3900
                                         4000
                                         4100
                                         4200
                                         4300
                                         4400
                                         4500
                                         4600
                                         4700
                                         4800
                                         4900
                                         5000
                                         5100
                                         5200
                                         5300
                                         5400
                                         5500
                                         5600
                                         5700
                                         5800
                                         5900
                                         6000
                                         6100
                                         6200
                                         6300
                                         6400
                                         6500
                                         6600
                                         6700
                                         6800
                                         6900
                                         7000
                                         7100
                                         7200
                                         7300
                                         7400
                                         7500
                                         7600
                                         7700
                                         7800
                                         7900
                                         8000
                                         8100
                                         8200
                                         8300
                                         8400
                                         8500
                                         8600
                                         8700
                                         8800
                                         8900
                                         9000
                                         9100
                                         9200
                                         9300
                                         9400
                                         9500
                                         9600
                                         9700
                                         9800
                                         9900
                                         10000
                                         10100
                                         10200
                                         10300
                                         10400
                                         10500
                                         10600
                                         10700
                                         10800
                                         10900
                                         11000
                                         11100
                                         11200
                                         11300
                                         11400
                                         11500
                                         11600
                                         11700
                                         11800
                                         11900
                                         12000
                                         12100
                                         12200
                                         12300
                                         12400
                                         12500
                                         12600
                                         12700
                                         12800
                                         12900
                                         13000
                                         13100
                                         13200
                                         13300
                                         13400
                                         13500
                                         13600
                                         13700
                                         13800
                                         13900
                                         14000
                                         14100
                                         14200
                                         14300
                                         14400
                                         14500
                                         14600
                                         14700
                                         14800
                                         14900
                                         15000
                                         15100
                                         15200
                                         15300
                                         15400
                                         15500
                                         15600
                                         15700
                                         15800
                                         15900
                                         16000
                                         16100
                                         16200
                                         16300
                                         16400
                                         16500
                                         16600
                                         16700
                                         16800
                                         16900
                                         17000
                                         17100
                                         17200
                                         17300
                                         17400
                                         17500
                                         17600
                                         17700
                                         17800
                                         17900
                                         18000
                                         18100
                                         18200
                                         18300
                                         18400
                                         18500
                                         18600
                                         18700
                                         18800
                                         18900
                                         19000
                                         19100
                                         19200
                                         19300
                                         19400
                                         19500
                                         19600
                                         19700
                                         19800
                                         19900
                                         20000
                                         20100
                                         20200
                                         20300
                                         20400
                                         20500
                                         20600
                                         20700
                                         20800
                                         20900
                                         21000
                                         21100
                                         21200
                                         21300
                                         21400
                                         21500
                                         21600
                                         21700
                                         21800
                                         21900
                                         22000
                                         22100
                                         22200
                                         22300
                                         22400
                                         22500
                                         22600
                                         22700
                                         22800
                                         22900
                                         23000
                                         23100
                                         23200
                                         23300
                                         23400
                                         23500
                                         23600
                                         23700
                                         23800
                                         23900
                                         24000
                                         24100
                                         24200
                                         24300
                                         24400
                                         24500
                                         24600
                                         24700
                                         24800
                                         24900
                                         25000
                                         25100
                                         25200
                                         25300
                                         25400
                                         25500
                                         25600
                                         25700
                                         25800
                                         25900
                                         26000
                                         26100
                                         26200
                                         26300
                                         26400
                                         26500
                                         26600
                                         26700
                                         26800
                                         26900
                                         27000
                                         27100
                                         27200
                                         27300
                                         27400
                                         27500
                                         27600
                                         27700
                                         27800
                                         27900
                                         28000
                                         28100
                                         28200
                                         28300
                                         28400
                                         28500
                                         28600
                                         28700
                                         28800
                                         28900
                                         29000
                                         29100
                                         29200
                                         29300
                                         29400
                                         29500
                                         29600
                                         29700
                                         29800
                                         29900
                                         30000
                                         30100
                                         30200
                                         30300
                                         30400
                                         30500
                                         30600
                                         30700
                                         30800
                                         30900
                                         31000
                                         31100
                                         31200
                                         31300
                                         31400
                                         31500
                                         31600
                                         31700
                                         31800
                                         31900
                                         32000
                                         32100
                                         32200
                                         32300
                                         32400
                                         32500
                                         32600
                                         32700
                                         32800
                                         32900
                                         33000
                                         33100
                                         33200
                                         33300
                                         33400
                                         33500
                                         33600
                                         33700
                                         33800
                                         33900
                                         34000
                                         34100
                                         34200
                                         34300
                                         34400
                                         34500
                                         34600
                                         34700
                                         34800
                                         34900
                                         35000
                                         35100
                                         35200
                                         35300
                                         35400
                                         35500
                                         35600
                                         35700
                                         35800
                                         35900
                                         36000
                                         36100
                                         36200
                                         36300
                                         36400
                                         36500
                                         36600
                                         36700
                                         36800
                                         36900
                                         37000
                                         37100
                                         37200
                                         37300
                                         37400
                                         37500
                                         37600
                                         37700
                                         37800
                                         37900
                                         38000
                                         38100
                                         38200
                                         38300
                                         38400
                                         38500
                                         38600
                                         38700
                                         38800
                                         38900
                                         39000
                                         39100
                                         39200
                                         39300
                                         39400
                                         39500
                                         39600
                                         39700
                                         39800
                                         39900
                                         40000
                                         40100
                                         40200
                                         40300
                                         40400
                                         40500
                                         40600
                                         40700
                                         40800
                                         40900
                                         41000
                                         41100
                                         41200
                                         41300
                                         41400
                                         41500
                                         41600
                                         41700
                                         41800
                                         41900
                                         42000
                                         42100
                                         42200
                                         42300
                                         42400
                                         42500
                                         42600
                                         42700
                                         42800
                                         42900
                                         43000
                                         43100
                                         43200
                                         43300
                                         43400
                                         43500
                                         43600
                                         43700
                                         43800
                                         43900
                                         44000
                                         44100
                                         44200
                                         44300
                                         44400
                                         44500
                                         44600
                                         44700
                                         44800
                                         44900
                                         45000
                                         45100
                                         45200
                                         45300
                                         45400
                                         45500
                                         45600
                                         45700
                                         45800
                                         45900
                                         46000
                                         46100
                                         46200
                                         46300
                                         46400
                                         46500
                                         46600
                                         46700
                                         46800
                                         46900
                                         47000
                                         47100
                                         47200
                                         47300
                                         47400
                                         47500
                                         47600
                                         47700
                                         47800
                                         47900
                                         48000
                                         48100
                                         48200
                                         48300
                                         48400
                                         48500
                                         48600
                                         48700
                                         48800
                                         48900
                                         49000
                                         49100
                                         49200
                                         49300
                                         49400
                                         49500
                                         49600
                                         49700
                                         49800
                                         49900
                                         50000
                                         50100
                                         50200
                                         50300
                                         50400
                                         50500
                                         50600
                                         50700
                                         50800
                                         50900
                                         51000
                                         51100
                                         51200
                                         51300
                                         51400
                                         51500
                                         51600
                                         51700
                                         51800
                                         51900
                                         52000
                                         52100
                                         52200
                                         52300
                                         52400
                                         52500
                                         52600
                                         52700
                                         52800
                                         52900
                                         53000
                                         53100
                                         53200
                                         53300
                                         53400
                                         53500
                                         53600
                                         53700
                                         53800
                                         53900
                                         54000
                                         54100
                                         54200
                                         54300
                                         54400
                                         54500
                                         54600
                                         54700
                                         54800
                                         54900
                                         55000
                                         55100
                                         55200
                                         55300
                                         55400
                                         55500
                                         55600
                                         55700
                                         55800
                                         55900
                                         56000
                                         56100
                                         56200
                                         56300
                                         56400
                                         56500
                                         56600
                                         56700
                                         56800
                                         56900
                                         57000
                                         57100
                                         57200
                                         57300
                                         57400
                                         57500
                                         57600
                                         57700
                                         57800
                                         57900
                                         58000
                                         58100
                                         58200
                                         58300
                                         58400
                                         58500
                                         58600
                                         58700
                                         58800
                                         58900
                                         59000
                                         59100
                                         59200
                                         59300
                                         59400
                                         59500
                                         59600
                                         59700
                                         59800
                                         59900
                                         60000
                                         60100
                                         60200
                                         60300
                                         60400
                                         60500
                                         60600
                                         60700
                                         60800
                                         60900
                                         61000
                                         61100
                                         61200
                                         61300
                                         61400
                                         61500
                                         61600
                                         61700
                                         61800
                                         61900
                                         62000
                                         62100
                                         62200
                                         62300
                                         62400
                                         62500
                                         62600
                                         62700
                                         62800
                                         62900
                                         63000
                                         63100
                                         63200
                                         63300
                                         63400
                                         63500
                                         63600
                                         63700
                                         63800
                                         63900
                                         64000
                                         64100
                                         64200
                                         64300
                                         64400
                                         64500
                                         64600
                                         64700
                                         64800
                                         64900
                                         65000
                                         65100
                                         65200
                                         65300
                                         65400
                                         65500
                                         65600
                                         65700
                                         65800
                                         65900
                                         66000
                                         66100
                                         66200
                                         66300
                                         66400
                                         66500
                                         66600
                                         66700
                                         66800
                                         66900
                                         67000
                                         67100
                                         67200
                                         67300
                                         67400
                                         67500
                                         67600
                                         67700
                                         67800
                                         67900
                                         68000
                                         68100
                                         68200
                                         68300
                                         68400
                                         68500
                                         68600
                                         68700
                                         68800
                                         68900
                                         69000
                                         69100
                                         69200
                                         69300
                                         69400
                                         69500
                                         69600
                                         69700
                                         69800
                                         69900
                                         70000
                                         70100
                                         70200
                                         70300
                                         70400
                                         70500
                                         70600
                                         70700
                                         70800
                                         70900
                                         71000
                                         71100
                                         71200
                                         71300
                                         71400
                                         71500
                                         71600
                                         71700
                                         71800
                                         71900
                                         72000
                                         72100
                                         72200
                                         72300
                                         72400
                                         72500
                                         72600
                                         72700
                                         72800
                                         72900
                                         73000
                                         73100
                                         73200
                                         73300
                                         73400
                                         73500
                                         73600
                                         73700
                                         73800
                                         73900
                                         74000
                                         74100
                                         74200
                                         74300
                                         74400
                                         74500
                                         74600
                                         74700
                                         74800
                                         74900
                                         75000
                                         75100
                                         75200
                                         75300
                                         75400
                                         75500
                                         75600
                                         75700
                                         75800
                                         75900
                                         76000
                                         76100
                                         76200
                                         76300
                                         76400
                                         76500
                                         76600
                                         76700
                                         76800
                                         76900
                                         77000
                                         77100
                                         77200
                                         77300
                                         77400
                                         77500
                                         77600
                                         77700
                                         77800
                                         77900
                                         78000
                                         78100
                                         78200
                                         78300
                                         78400
                                         78500
                                         78600
                                         78700
                                         78800
                                         78900
                                         79000
                                         79100
                                         79200
                                         79300
                                         79400
                                         79500
                                         79600
                                         79700
                                         79800
                                         79900
                                         80000
                                         80100
                                         80200
                                         80300
                                         80400
                                         80500
                                         80600
                                         80700
                                         80800
                                         80900
                                         81000
                                         81100
                                         81200
                                         81300
                                         81400
                                         81500
                                         81600
                                         81700
                                         81800
                                         81900
                                         82000
                                         82100
                                         82200
                                         82300
                                         82400
                                         82500
                                         82600
                                         82700
                                         82800
                                         82900
                                         83000
                                         83100
                                         83200
                                         83300
                                         83400
                                         83500
                                         83600
                                         83700
                                         83800
                                         83900
                                         84000
                                         84100
                                         84200
                                         84300
                                         84400
                                         84500
                                         84600
                                         84700
                                         84800
                                         84900
                                         85000
                                         85100
                                         85200
                                         85300
                                         85400
                                         85500
                                         85600
                                         85700
                                         85800
                                         85900
                                         86000
                                         86100
                                         86200
                                         86300
                                         86400
                                         86500
                                         86600
                                         86700
                                         86800
                                         86900
                                         87000
                                         87100
                                         87200
                                         87300
                                         87400
                                         87500
                                         87600
                                         87700
                                         87800
                                         87900
                                         88000
                                         88100
                                         88200
                                         88300
                                         88400
                                         88500
                                         88600
                                         88700
                                         88800
                                         88900
                                         89000
                                         89100
                                         89200
                                         89300
                                         89400
                                         89500
                                         89600
                                         89700
                                         89800
                                         89900
                                         90000
                                         90100
                                         90200
                                         90300
                                         90400
                                         90500
                                         90600
                                         90700
                                         90800
                                         90900
                                         91000
                                         91100
                                         91200
                                         91300
                                         91400
                                         91500
                                         91600
                                         91700
                                         91800
                                         91900
                                         92000
                                         92100
                                         92200
                                         92300
                                         92400
                                         92500
                                         92600
                                         92700
                                         92800
                                         92900
                                         93000
                                         93100
                                         93200
                                         93300
                                         93400
                                         93500
                                         93600
                                         93700
                                         93800
                                         93900
                                         94000
                                         94100
                                         94200
                                         94300
                                         94400
                                         94500
                                         94600
                                         94700
                                         94800
                                         94900
                                         95000
                                         95100
                                         95200
                                         95300
                                         95400
                                         95500
                                         95600
                                         95700
                                         95800
                                         95900
                                         96000
                                         96100
                                         96200
                                         96300
                                         96400
                                         96500
                                         96600
                                         96700
                                         96800
                                         96900
                                         97000
                                         97100
                                         97200
                                         97300
                                         97400
                                         97500
                                         97600
                                         97700
                                         97800
                                         97900
                                         98000
                                         98100
                                         98200
                                         98300
                                         98400
                                         98500
                                         98600
                                         98700
                                         98800
                                         98900
                                         99000
                                         99100
                                         99200
                                         99300
                                         99400
                                         99500
                                         99600
                                         99700
                                         99800
                                         99900
                                         100000
                                         100100
                                         100200
                                         100300
                                         100400
                                         100500
                                         100600
                                         100700
                                         100800
                                         100900
                                         101000
                                         101100
                                         101200
                                         101300
                                         101400
                                         101500
                                         101600
                                         101700
                                         101800
                                         101900
                                         102000
                                         102100
                                         102200
                                         102300
                                         102400
                                         102500
                                         102600
                                         102700
                                         102800
                                         102900
                                         103000
                                         103100
                                         103200
                                         103300
                                         103400
                                         103500
                                         103600
                                         103700
                                         103800
                                         103900
                                         104000
                                         104100
                                         104200
                                         104300
                                         104400
                                         104500
                                         104600
                                         104700
                                         104800
                                         104900
                                         105000
                                         105100
                                         105200
                                         105300
                                         105400
                                         105500
                                         105600
                                         105700
                                         105800
                                         105900
                                         106000
                                         106100
                                         106200
                                         106300
                                         106400
                                         106500
                                         106600
                                         106700
                                         106800
                                         106900
                                         107000
                                         107100
                                         107200
                                         107300
                                         107400
                                         107500
                                         107600
                                         107700
                                         107800
                                         107900
                                         108000
                                         108100
                                         108200
                                         108300
                                         108400
                                         108500
                                         108600
                                         108700
                                         108800
                                         108900
                                         109000
                                         109100
                                         109200
                                         109300
                                         109400
                                         109500
                                         109600
                                         109700
                                         109800
                                         109900
                                         110000
                                         110100
                                         110200
                                         110300
                                         110400
                                         110500
                                         110600
                                         110700
                                         110800
                                         110900
                                         111000
                                         111100
                                         111200
                                         111300
                                         111400
                                         111500
                                         111600
                                         111700
                                         111800
                                         111900
                                         112000
                                         112100
                                         112200
                                         112300
                                         112400
                                         112500
                                         112600
                                         112700
                                         112800
                                         112900
                                         113000
                                         113100
                                         113200
                                         113300
                                         113400
                                         113500
                                         113600
                                         113700
                                         113800
                                         113900
                                         114000
                                         114100
                                         114200
                                         114300
                                         114400
                                         114500
                                         114600
                                         114700
                                         114800
                                         114900
                                         115000
                                         115100
                                         115200
                                         115300
                                         115400
                                         115500
                                         115600
                                         115700
                                         115800
                                         115900
                                         116000
                                         116100
                                         116200
                                         116300
                                         116400
                                         116500
                                         116600
                                         116700
                                         116800
                                         116900
                                         117000
                                         117100
                                         117200
                                         117300
                                         117400
                                         117500
                                         117600
                                         117700
                                         117800
                                         117900
                                         118000
                                         118100
                                         118200
                                         118300
                                         118400
                                         118500
                                         118600
                                         118700
                                         118800
                                         118900
                                         119000
                                         119100
                                         119200
                                         119300
                                         119400
                                         119500
                                         119600
                                         119700
                                         119800
                                         119900
                                         120000
                                         120100
                                         120200
                                         120300
                                         120400
                                         120500
                                         120600
                                         120700
                                         120800
                                         120900
                                         121000
                                         121100
                                         121200
                                         121300
                                         121400
                                         121500
                                         121600
                                         121700
                                         121800
                                         121900
                                         122000
                                         122100
                                         122200
                                         122300
                                         122400
                                         122500
                                         122600
                                         122700
                                         122800
                                         122900
                                         123000
                                         123100
                                         123200
                                         123300
                                         123400
                                         123500
                                         123600
                                         123700
                                         123800
                                         123900
                                         124000
                                         124100
                                         124200
                                         124300
                                         124400
                                         124500
                                         124600
                                         124700
                                         124800
                                         124900
                                         125000
                                         125100
                                         125200
                                         125300
                                         125400
                                         125500
                                         125600
                                         125700
                                         125800
                                         125900
                                         126000
                                         126100
                                         126200
                                         126300
                                         126400
                                         126500
                                         126600
                                         126700
                                         126800
                                         126900
                                         127000
                                         127100
                                         127200
                                         127300
                                         127400
                                         127500
                                         127600
                                         127700
                                         127800
                                         127900
                                         128000
                                         128100
                                         128200
                                         128300
                                         128400
                                         128500
                                         128600
                                         128700
                                         128800
                                         128900
                                         129000
                                         129100
                                         129200
                                         129300
                                         129400
                                         129500
                                         129600
                                         129700
                                         129800
                                         129900
                                         130000
                                         130100
                                         130200
                                         130300
                                         130400
                                         130500
                                         130600
                                         130700
                                         130800
                                         130900
                                         131000
                                         131100
                                         131200
                                         131300
                                         131400
                                         131500
                                         131600
                                         131700
                                         131800
                                         131900
                                         132000
                                         132100
                                         132200
                                         132300
                                         132400
                                         132500
                                         132600
                                         132700
                                         132800
                                         132900
                                         133000
                                         133100
                                         133200
                                         133300
                                         133400
                                         133500
                                         133600
                                         133700
                                         133800
                                         133900
                                         134000
                                         134100
                                         134200
                                         134300
                                         134400
                                         134500
                                         134600
                                         134700
                                         134800
                                         134900
                                         135000
                                         135100
                                         135200
                                         135300
                                         135400
                                         135500
                                         135600
                                         135700
                                         135800
                                         135900
                                         136000
                                         136100
                                         136200
                                         136300
                                         136400
                                         136500
                                         136600
                                         136700
                                         136800
                                         136900
                                         137000
                                         137100
                                         137200
                                         137300
                                         137400
                                         137500
                                         137600
                                         137700
                                         137800
                                         137900
                                         138000
                                         138100
                                         138200
                                         138300
                                         138400
                                         138500
                                         138600
                                         138700
                                         138800
                                         138900
                                         139000
                                         139100
                                         139200
                                         139300
                                         139400
                                         139500
                                         139600
                                         139700
                                         139800
                                         139900
                                         140000
                                         140100
                                         140200
                                         140300
                                         140400
                                         140500
                                         140600
                                         140700
                                         140800
                                         140900
                                         141000
                                         141100
                                         141200
                                         141300
                                         141400
                                         141500
                                         141600
                                         141700
                                         141800
                                         141900
                                         142000
                                         142100
                                         142200
                                         142300
                                         142400
                                         142500
                                         142600
                                         142700
                                         142800
                                         142900
                                         143000
                                         143100
                                         143200
                                         143300
                                         143400
                                         143500
                                         143600
                                         143700
                                         143800
                                         143900
                                         144000
                                         144100
                                         144200
                                         144300
                                         144400
                                         144500
                                         144600
                                         144700
                                         144800
                                         144900
                                         145000
                                         145100
                                         145200
                                         145300
                                         145400
                                         145500
                                         145600
                                         145700
                                         145800
                                         145900
                                         146000
                                         146100
                                         146200
                                         146300
                                         146400
                                         146500
                                         146600
                                         146700
                                         146800
                                         146900
                                         147000
                                         147100
                                         147200
                                         147300
                                         147400
```

tcatcagtat ccagtggtaa aaaggcctcc tggctgtctg aggctaggtg gggtgaaagc 1500
 caaggagtca ctgagaccaa ggcttctct actgattccg cagctcagac cctttcttca 1560
 gctctgaaag agaaacacgt atcccacctg acatgtcctt ctgagccccgg taagagcaaa 1620
 agaatggcag aaaagtttag cccctgaaag ccatggagat ttcataact tgagacctaa 1680
 tctctgtaaa gctaaaataa agaaatagaa caaggctgag gatacgacag tacactgtca 1740
 gcagggactg taaacacaga cagggtaaaa gtgtttctc tgaacacatt gagttggaaat 1800
 cactgttag aacacacaca cttactttt ctggctctca ccactgctga tattttctct 1860
 agaaaaataa ctttacaag taacaaaaat aaaaactctt ataaatttctt attttatct 1920
 gagttacaga aatgattact aagaagatt actcagtaat ttgtttaaaa agtaataaaa 1980
 ttcaacaaac atttgctgaa tagtactat atgtcaagt ctgtgcaagg tattacactc 2040
 tgtaattgaa tattattcct caaaaaattt cacatagtag aacgctatct gggaaagctat 2100
 tttttcagt tttgatattt ctagcttac tacttccaa ctaatttttta ttttgctga 2160
 gactaatctt attcatttc tctaataatgg caaccattat aaccttaatt tattattaac 2220
 atacctaaga agtacattgt tacctctata taccaaagca cattttaaaa gtgccattaa 2280
 caaatgtatc actagccctc cttttccaa caagaaggaa ctgagagatg cagaatattt 2340
 tgtgacaaaa aattaaagca tttagaaaaac tt 2372

<210> 201

<211> 322

<212> PRT

<213> Artificial sequence

<220>

<223> Synthetic protein

<400> 201

Met	Ala	Arg	Cys	Phe	Ser	Leu	Val	Leu	Leu	Leu	Thr	Ser	Ile	Trp	Thr
1															15

Thr	Arg	Leu	Leu	Val	Gln	Gly	Ser	Leu	Arg	Ala	Glu	Glu	Leu	Ser	Ile
				20				25						30	

Gln	Val	Ser	Cys	Arg	Ile	Met	Gly	Ile	Thr	Leu	Val	Ser	Lys	Lys	Ala
					35			40					45		

Asn	Gln	Gln	Leu	Asn	Phe	Thr	Glu	Ala	Lys	Glu	Ala	Cys	Arg	Leu	Leu
				50			55			60					

Gly	Leu	Ser	Leu	Ala	Gly	Lys	Asp	Gln	Val	Glu	Thr	Ala	Leu	Lys	Ala
				65			70			75				80	

Ser	Phe	Glu	Thr	Cys	Ser	Tyr	Gly	Trp	Val	Gly	Asp	Gly	Phe	Val	Val
					85				90					95	

Ile	Ser	Arg	Ile	Ser	Pro	Asn	Pro	Lys	Cys	Gly	Lys	Asn	Gly	Val	Gly
					100			105					110		

Val	Leu	Ile	Trp	Lys	Val	Pro	Val	Ser	Arg	Gln	Phe	Ala	Ala	Tyr	Cys
					115			120					125		

Tyr	Asn	Ser	Ser	Asp	Thr	Trp	Thr	Asn	Ser	Cys	Ile	Pro	Glu	Ile	Ile
					130			135					140		

Thr Thr Lys Asp Pro Ile Phe Asn Thr Gln Thr Ala Thr Gln Thr Thr
 145 150 155 160
 Glu Phe Ile Val Ser Asp Ser Thr Tyr Ser Val Ala Ser Pro Tyr Ser
 165 170 175
 Thr Ile Pro Ala Pro Thr Thr Pro Pro Ala Pro Ala Ser Thr Ser
 180 185 190
 Ile Pro Arg Arg Lys Lys Leu Ile Cys Val Thr Glu Val Phe Met Glu
 195 200 205
 Thr Ser Thr Met Ser Thr Glu Thr Glu Pro Phe Val Glu Asn Lys Ala
 210 215 220
 Ala Phe Lys Asn Glu Ala Ala Gly Phe Gly Gly Val Pro Thr Ala Leu
 225 230 235 240
 Leu Val Leu Ala Leu Leu Phe Phe Gly Ala Ala Ala Gly Leu Gly Phe
 245 250 255
 Cys Tyr Val Lys Arg Tyr Val Lys Ala Phe Pro Phe Thr Asn Lys Asn
 260 265 270
 Gln Gln Lys Glu Met Ile Glu Thr Lys Val Val Lys Glu Glu Lys Ala
 275 280 285
 Asn Asp Ser Asn Pro Asn Glu Glu Ser Lys Lys Thr Asp Lys Asn Pro
 290 295 300
 Glu Glu Ser Lys Ser Pro Ser Lys Thr Thr Val Arg Cys Leu Glu Ala
 305 310 315 320
 Glu Val

<210> 202
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 202
 gagcttcca tccaggtgtc atgc 24
 <210> 203
 <211> 22
 <212> DNA
 <213> Artificial Sequence

```

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 203
gtcagtgaca gtacctactc gg                                22

<210> 204
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 204
tggagcagga ggagtagtag tagg                                24

<210> 205
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 205
aggaggccctg taggctgctg ggactaagtt tggccggcaa ggaccaagtt   50

<210> 206
<211> 1620
<212> DNA
<213> Homo sapiens

<220>
<221> modified_base
<222> (973)
<223> a, t, c or g

<220>
<221> modified_base
<222> (977)
<223> a, t, c or g

<220>
<221> modified_base
<222> (996)
<223> a, t, c or g

<220>
<221> modified_base

```

<222> (1003)
<223> a, t, c or g

<400> 206

atggcggtt cttggcacct ctaattgctc tgcgtgttatt ggtgcgcga cttcacat 60
ggctcgccca accttactac cttctgtcg ccctgctctc tgctgccctc ctactcgtga 120
ggaaaactgcc gcccgtctgc cacggctctgc ccacccaacg cgaagacggt aaccctgtg 180
actttgactg gagagaagtg gagatctga tggttctca gtcattgtg atgatgaaga 240
accgcagatc catcaactgtg gagcaacata taggcaacat ttcatgttt agtaaagtgg 300
ccaacacaat tctttcttc cgcttgata ttgcatggg cctactttac atcacactct 360
gcatactgtt cctgatgacg tgcaaaaccc ccctatataat gggccctgag tatataaagt 420
acttcaatga taaaaccatt gatgaggaac tagaacggga caagagggtc acttggattg 480
tggagtttt tgccaattgg tctaattgact gccaatcatt tgcccctatc tatgctgacc 540
tctcccttaa atacaactgt acagggtctaa attttggaa ggtggatgtt ggacgctata 600
ctgatgttag taegcggtac aaagttagca catcacccct caccaagcaa ctccctaccc 660
tgatcctgtt ccaagggtggc aaggaggca tgccggggcc acagattgac. aagaaaggac 720
gggctgtctc atggaccttc tctgaggaga atgtgatccg agaatttaac ttaaatgagc 780
tataccagcg ggccaagaaaa ctatcaaagg ctggagacaa tatccctgag gaggcgcctg 840
tggcttcaac cccccaccaca gtgtcagatg gggaaaacaa gaaggataaa taagatccctc 900
actttggcag tgcttcctct cctgtcaatt ccaggcttcc tccataacca caaggcttag 960
gctgcagcct ttnattnatg tttcccttt ggctngact ggntggggca gcatgcagct 1020
tctgatttt aagaggcatc tagggattt tcaggcaccc tacaggaagg octgccatgc 1080
tgtggccaaac tgtttcaactg gagcaagaaaa gagatctcat aggacggagg gggaaatgtt 1140
ttccctccaa gcttgggtca gtgtgttaac tgcttatcat ctattcagac atctccatgg 1200
tttctccatg aaactctgtg gtttcatcat tccttcttag ttgacctgca cagttgggtt 1260
agaccttagat ttaaccctaa ggtaagatgc tggggatata aacgctaaga atttcccccc 1320
aaggacttt gcttccttaa gcccttctgg cttcgttat ggtcttcatt aaaagtataa 1380
gcctaacttt gtgcgttagt ctaaggagaa acctttaacc acaaagtttt tattcattgaa 1440
gacaatattg aacaacccccc tattttgtgg ggattgagaa ggggtgaata gaggcttgag 1500
actttccctt gtgtggtagg acttggagga gaaatccccct ggactttcac taaccctctg 1560
acatactccc cacaccccaqt tqatqgctt ccqtaataaa aagattgggaa tttccctttg 1620

<210> 207

<211> 296

<212> PRT

<213> Homo sapiens

<400> 207

Met Ala Val Leu Ala Pro Leu Ile Ala Leu Val Tyr Ser Val Pro Arg
1 5 10 15

Leu Ser Arg Trp Leu Ala Gln Pro Tyr Tyr Leu Leu Ser Ala Leu Leu
20 25 30

Leu Pro Thr Gln Arg Glu Asp Gly Asn Pro Cys Asp Phe Asp Trp Arg
50 55 60

Glu Val Glu Ile Leu Met Phe Leu Ser Ala Ile Val Met Met Lys Asn
 65 70 75 80

Arg Arg Ser Ile Thr Val Glu Gln His Ile Gly Asn Ile Phe Met Phe
 85 90 95

Ser Lys Val Ala Asn Thr Ile Leu Phe Phe Arg Leu Asp Ile Arg Met
 100 105 110

Gly Leu Leu Tyr Ile Thr Leu Cys Ile Val Phe Leu Met Thr Cys Lys
 115 120 125

Pro Pro Leu Tyr Met Gly Pro Glu Tyr Ile Lys Tyr Phe Asn Asp Lys
 130 135 140

Thr Ile Asp Glu Glu Leu Glu Arg Asp Lys Arg Val Thr Trp Ile Val
 145 150 155 160

Glu Phe Phe Ala Asn Trp Ser Asn Asp Cys Gln Ser Phe Ala Pro Ile
 165 170 175

Tyr Ala Asp Leu Ser Leu Lys Tyr Asn Cys Thr Gly Leu Asn Phe Gly
 180 185 190

Lys Val Asp Val Gly Arg Tyr Thr Asp Val Ser Thr Arg Tyr Lys Val
 195 200 205

Ser Thr Ser Pro Leu Thr Lys Gln Leu Pro Thr Leu Ile Leu Phe Gln
 210 215 220

Gly Gly Lys Glu Ala Met Arg Arg Pro Gln Ile Asp Lys Lys Gly Arg
 225 230 235 240

Ala Val Ser Trp Thr Phe Ser Glu Glu Asn Val Ile Arg Glu Phe Asn
 245 250 255

Leu Asn Glu Leu Tyr Gln Arg Ala Lys Lys Leu Ser Lys Ala Gly Asp
 260 265 270

Asn Ile Pro Glu Glu Gln Pro Val Ala Ser Thr Pro Thr Thr Val Ser
 275 280 285

Asp Gly Glu Asn Lys Lys Asp Lys
 290 295

<210> 208

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 208

gcttggatat tcgcatggc ctac

<210> 209
 <211> 20
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 209
 tggagacaat atccctgagg 20

<210> 210
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 210
 aacagttggc cacagcatgg cagg 24

<210> 211
 <211> 50
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 211
 ccattgtatga ggaactagaa cgggacaaga gggtcacttg gattgtggag 50

<210> 212
 <211> 1985
 <212> DNA
 <213> Homo sapiens

<400> 212
 ggacagctcg cggccccca gagctctagc cgtcgaggag ctgcctgggg acgttgcgg 60
 tggggccccca gcctggcccg ggtcacccctg gcatgaggag atgggcctgt tgctcttgt 120
 cccattgtctc ctgtctggccg gctctacgg actgcccttc tacaacggct tctactactc 180
 caacagcgcc aacgaccaga acctaggcaa cggtcatggc aaagacctcc ttaatggagt 240
 gaagctggtg gtggagacac ccgaggagac cctgttccacc taccaagggg ccagtgtgat 300
 cctgccctgc cgctaccgct acgagccggc cctggcttcc ccgcggcggtg tgcgtgtcaa 360
 atggtggaaag ctgtcgagaa acggggcccc agagaaggac gtgctgggtgg ccattcggt 420
 gaggcaccgc tcctttgggg actaccaagg cccgcgtgcac ctgcggcagg acaaagagca 480
 tgacgtctcg ctggagatcc aggtatctgcg gctggaggac tatgggcgtt accgctgtga 540
 ggtcattgac gggctggagg atgaaagcgg tctggtagtgc ctggagctgc ggggtgttgt 600

ctttccttac cagtccccc acggggcgta ccagttcaac ttccacgagg gccagcagg 660
ctgtgcagag caggctgcgg tggtgccctc ctttgcacag ctcttccggg cctgggagga 720
gggcctggac tggtgcaacg cgggctggct gcaggatgt acgggcgact accccatcat 780
gttgcggccgg cagccctgcg gtggccagg cctggcacct ggctgcgaa gctacggccc 840
ccgccaccgc cgccctgcacc gctatgtatgt attctgcattc gctactgccc tcaagggcg 900
ggtgtactac ctggagcacc ctgagaagct gacgctgaca gagggcaaggg aggccgtcca 960
ggaagatgtat gccacgatcg ccaagggtggg acagctctt gccgcctgga agttccatgg 1020
cctggaccgc tgccgcgtg gctggctggc agatggcagc gtccgcgtacc ctgtgggtca 1080
cccgcatctt aactgtgggc ccccagagcc tggggctccga agcttggct tccccgaccc 1140
gcagagccgc ttgtacggtg tttactgcta cggccagcac taggacctgg ggccctcccc 1200
tgccgcattt cctcaactggc tgtgtattta ttgagtggtt cgtttccct tgggggttgg 1260
agccatttttta actgtttttta tacttctcaa tttaaattttt cttaaaacat ttttttacta 1320
ttttttgtaa agcaaacaga acccaatgc tccctttgtc cctggatgcc caactccagg 1380
aatcatgtttt gctcccccgg gccatttgcg gttttgtggg cttctggagg gttcccccggc 1440
atccaggctg gtctccctcc cttaaaggagg ttgggtccca gagtgccgg tggccgtct 1500
agaatgccgc cgggagtcgg ggcatttgtgg gcacagttct ccctggccct cagcctgggg 1560
gaagaagagg gcctcggggg cctccggagc tgggctttgg gcctctcctg cccacctcta 1620
cttctctgtg aagccgctga ccccagctg cccactgagg ggcttagggct ggaagccagt 1680
tctaggcttc caggcgaaat ctgagggaaag gaagaaaactc ccctccccgt tcccccgttccc 1740
ctctcggttc caaaagatct gttttgtgt catttgtttc tcctgtttcc ctgtgtgggg 1800
aggggcctc aggtgtgtgt actttggaca ataaatggtg ctatgactgc cttccgcctaa 1860
aaaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa 1920
aaaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa 1980
aaaaaaaa

<210> 213

<211> 360

<212> PBT

<213> Homo sapiens

<400> 213

Met Gly L

Met Gly Leu Leu Leu Leu Val Pro Leu Leu Leu Leu Leu Pro Gly Ser Tyr
1 5 10 15

Gly Leu Pro Phe Tyr Asn Gly Phe Tyr Tyr Ser Asn Ser Ala Asn Asp
20 25 30

Gln Asn Leu Gly Asn Gly His Gly Lys Asp Leu Leu Asn Gly Val Lys
35 40 45

Leu Val Val Glu Thr Pro Glu Glu Thr Leu Phe Thr Tyr Gln Gly Ala
50 55 60

Ser Val Ile Leu Pro Cys Arg Tyr Arg Tyr Glu Pro Ala Leu Val Ser
65 70 75 80

Pro Arg Arg Val Arg Val Lys Trp Trp Lys Leu Ser Glu Asn Gly Ala
85 90 95

Pro Glu Lys Asp Val Leu Val Ala Ile Gly Leu Arg His Arg Ser Phe
 100 105 110

Gly Asp Tyr Gln Gly Arg Val His Leu Arg Gln Asp Lys Glu His Asp

115	120	125
Val Ser Leu Glu Ile Gln Asp Leu Arg Leu Glu Asp Tyr Gly Arg Tyr		
130	135	140
Arg Cys Glu Val Ile Asp Gly Leu Glu Asp Glu Ser Gly Leu Val Glu		
145	150	155
Leu Glu Leu Arg Gly Val Val Phe Pro Tyr Gln Ser Pro Asn Gly Arg		
165	170	175
Tyr Gln Phe Asn Phe His Glu Gly Gln Gln Val Cys Ala Glu Gln Ala		
180	185	190
Ala Val Val Ala Ser Phe Glu Gln Leu Phe Arg Ala Trp Glu Glu Gly		
195	200	205
Leu Asp Trp Cys Asn Ala Gly Trp Leu Gln Asp Ala Thr Val Gln Tyr		
210	215	220
Pro Ile Met Leu Pro Arg Gln Pro Cys Gly Gly Pro Gly Leu Ala Pro		
225	230	235
Gly Val Arg Ser Tyr Gly Pro Arg His Arg Arg Leu His Arg Tyr Asp		
245	250	255
Val Phe Cys Phe Ala Thr Ala Leu Lys Gly Arg Val Tyr Tyr Leu Glu		
260	265	270
His Pro Glu Lys Leu Thr Leu Thr Glu Ala Arg Glu Ala Cys Gln Glu		
275	280	285
Asp Asp Ala Thr Ile Ala Lys Val Gly Gln Leu Phe Ala Ala Trp Lys		
290	295	300
Phe His Gly Leu Asp Arg Cys Asp Ala Gly Trp Leu Ala Asp Gly Ser		
305	310	315
Val Arg Tyr Pro Val Val His Pro His Pro Asn Cys Gly Pro Pro Glu		
325	330	335
Pro Gly Val Arg Ser Phe Gly Phe Pro Asp Pro Gln Ser Arg Leu Tyr		
340	345	350
Gly Val Tyr Cys Tyr Arg Gln His		
355	360	

<210> 214

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 214
tgcttcgcta ctgccctc

18

<210> 215
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 215
ttcccttgtg ggttggag

18

<210> 216
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 216
agggctggaa gccagttc

18

<210> 217
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 217
agccagttag gaaatgcg

18

<210> 218
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 218
tgtccaaagt acacacacct gagg

24

<210> 219
 <211> 45
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 219
 gatgccacga tcgccaagg gggacagctc tttgccgcct ggaag 45

<210> 220
 <211> 1503
 <212> DNA
 <213> Homo sapiens

<400> 220
 ggagagcgga gcgaaggctgg ataacagggg accgatgatg tggcgaccat cagttctgct 60
 gcttctgttg ctactgaggc acggggccca ggggaagcca tccccagacg caggccctca 120
 tggccagggg agggtgcacc aggccggccc cctgagcgac gctccccatg atgacgcccc 180
 cgggaacttc cagtagcacc atgaggctt cctgggacgg gaagtggcca aggaattcga 240
 ccaactcacc ccagaggaaa gccaggcccg tctggggcgg atcgtggacc gcatggaccg 300
 cgccggggac ggcgacggct gggtgtcgct ggccgagctt cgccgcgtgga tcgcgcacac 360
 gcagcagcgg cacatacggg actcgggtgag cgccgcctgg gacacgtacg acacggaccg 420
 cgacggcgt gtgggttggg aggagctgca caacgcacc tatggccact acgcgcccgg 480
 tgaagaattt catgacgtgg aggatgcaga gacctacaaa aagatgctgg ctcggacga 540
 gcggcggttc cgggtggccg accaggatgg ggactcgatg gccactcgag aggagctgac 600
 agccttcctg caccggcagg agtccctca catgcggac atcgtgattt ctgaaaccct 660
 ggaggacctg gacagaaaaca aagatggcta tgtccaggtg gaggagtaca tcgcggatct 720
 gtactcagcc gagcctgggg aggaggagcc ggctgggtg cagacggaga ggcagcagg 780
 ccgggacttc cgggatctga acaaggatgg gcacctggat gggagtgagg tggggcactg 840
 ggtgctgccc cctgcccagg accagccctt ggtggaaagcc aaccacctgc tgcaacgag 900
 cgacacggac aaggatggc ggctgagcaa agcggaaatc ctggtaatt ggaacatgtt 960
 tgtgggcagt caggccacca actatggcga ggacctgacc cgccaccacg atgagctgt 1020
 agcacccgcgc acctgcccaca gcctcagagg cccgcacaat gaccggagga gggccgcgt 1080
 tggtctggcc ccctccctgt ccaggccccg caggaggcag atgcagtcctc aggcatcctc 1140
 ctgccccctgg gctctcaggg accccctggg tcggctctg tccctgtcac acccccaacc 1200
 ccaggggaggg gctgtcatag tcccgagggtaa taagcaatac ctatttctga ctgagtcctc 1260
 cagcccagac ccaggggaccc ttggcccaa gctcagctt aagaaccgc ccaaccctc 1320
 cagctccaaa tctgagcctc caccacatag actgaaactc ccctggcccc agccctctcc 1380
 tgcctggcct ggcctggac acctcctctc tgccaggagg caataaaagc cagcggccgg 1440
 acctgaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1500
 aaa 1503

<210> 221
 <211> 328
 <212> PRT
 <213> Homo sapiens

<400> 221
 Met Met Trp Arg Pro Ser Val Leu Leu Leu Leu Leu Arg His

1	5	10	15													
Gly	Ala	Gln	Gly	Lys	Pro	Ser	Pro	Asp	Ala	Gly	Pro	His	Gly	Gln	Gly	
				20					25					30		
Arg	Val	His	Gln	Ala	Ala	Pro	Leu	Ser	Asp	Ala	Pro	His	Asp	Asp	Ala	
					35				40					45		
His	Gly	Asn	Phe	Gln	Tyr	Asp	His	Glu	Ala	Phe	Leu	Gly	Arg	Glu	Val	
					50			55				60				
Ala	Lys	Glu	Phe	Asp	Gln	Leu	Thr	Pro	Glu	Glu	Ser	Gln	Ala	Arg	Leu	
					65			70			75			80		
Gly	Arg	Ile	Val	Asp	Arg	Met	Asp	Arg	Ala	Gly	Asp	Gly	Asp	Gly	Trp	
					85				90					95		
Val	Ser	Leu	Ala	Glu	Leu	Arg	Ala	Trp	Ile	Ala	His	Thr	Gln	Gln	Arg	
					100				105					110		
His	Ile	Arg	Asp	Ser	Val	Ser	Ala	Ala	Trp	Asp	Thr	Tyr	Asp	Thr	Asp	
					115				120					125		
Arg	Asp	Gly	Arg	Val	Gly	Trp	Glu	Glu	Leu	Arg	Asn	Ala	Thr	Tyr	Gly	
					130			135					140			
His	Tyr	Ala	Pro	Gly	Glu	Glu	Phe	His	Asp	Val	Glu	Asp	Ala	Glu	Thr	
					145			150			155			160		
Tyr	Lys	Lys	Met	Leu	Ala	Arg	Asp	Glu	Arg	Arg	Phe	Arg	Val	Ala	Asp	
					165				170					175		
Gln	Asp	Gly	Asp	Ser	Met	Ala	Thr	Arg	Glu	Glu	Leu	Thr	Ala	Phe	Leu	
					180				185					190		
His	Pro	Glu	Glu	Phe	Pro	His	Met	Arg	Asp	Ile	Val	Ile	Ala	Glu	Thr	
					195				200					205		
Leu	Glu	Asp	Leu	Asp	Arg	Asn	Lys	Asp	Gly	Tyr	Val	Gln	Val	Glu	Glu	
					210			215			220					
Tyr	Ile	Ala	Asp	Leu	Tyr	Ser	Ala	Glu	Pro	Gly	Glu	Glu	Pro	Ala		
					225				230			235			240	
Trp	Val	Gln	Thr	Glu	Arg	Gln	Gln	Phe	Arg	Asp	Phe	Arg	Asp	Leu	Asn	
					245				250					255		
Lys	Asp	Gly	His	Leu	Asp	Gly	Ser	Glu	Val	Gly	His	Trp	Val	Leu	Pro	
					260				265					270		
Pro	Ala	Gln	Asp	Gln	Pro	Leu	Val	Glu	Ala	Asn	His	Leu	Leu	His	Glu	
					275				280					285		

Ser Asp Thr Asp Lys Asp Gly Arg Leu Ser Lys Ala Glu Ile Leu Gly
290 295 300

Asn Trp Asn Met Phe Val Gly Ser Gln Ala Thr Asn Tyr Gly Glu Asp
 305 310 315 320

Leu Thr Arg His His Asp Glu Leu
325

```
<210> 222  
<211> 20  
<212> DNA  
<213> Artificial Sequence
```

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 222
cgcaggccct catggccagg 20

```
<210> 223  
<211> 18  
<212> DNA  
<213> Artificial Sequence
```

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 223
gaaatccctgg gtaattgg 18

```
<210> 224
<211> 23
<212> DNA
<213> Artificial Sequence
```

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 224
gtgcgcggtg ctcacagctc atc 23

```
<210> 225
<211> 44
<212> DNA
<213> Artificial Sequence
```

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 225
 cccccctgag cgacgctccc ccatgatgac gcccacggga actt 44

 <210> 226
 <211> 2403
 <212> DNA
 <213> Homo sapiens

 <400> 226
 ggggccttgc ctccgcact cggcgcgcagc cgggtggatc tcgagcagggt gcggagcccc 60
 gggcgccggg cgccgggtgcg aggatccct gacgcctctg tccctgtttc tttgtcgctc 120
 ccagcctgtc tgctcgctt ttggcgcccc cgccctcccc cggtgcgggg ttgcacaccg 180
 atcctggct tcgctcgatt tgccgcgcag ggcctccca gacctagagg ggccgtggcc 240
 tggagcagcg ggtcgctgt gtccctcttc ctctgcgcgc cgcccgggga tccgaagggt 300
 gcggggctct gaggaggtga cgcgcggggc ctccgcacc ctggccttgc cgcattctc 360
 cctctctccc aggtgtgagc agcctatcag tcaccatgtc cgcagcctgg atcccgctc 420
 tcggcctcggt tggtgtctg ctgctgtgc cggggccgc gggcagcggag ggagccgctc 480
 ccattgctat cacatgttt accagaggct tggacatcag gaaagagaaaa gcagatgtcc 540
 tctgcccagg gggctgcctt cttaggaaat tctctgtgtt tggttaacata gtatatgttt 600
 ctgtatcgag catatgtgg gctgtgtcc acaggggagt aatcagcaac tcagggggac 660
 ctgtacgagt ctatagcta cctggtcgag aaaactattc ctcagtagat gccaatggca 720
 tccagtctca aatgctttt agatggctgt cttcttcac agtaactaaa ggccaaagta 780
 gtacacagga ggccacacgaa caagcagtgt ccacagcaca tccaccaaca ggtaaacgac 840
 taaagaaaaac acccgagaag aaaactggca ataaagattt taaagcagac attgcatttc 900
 tgattgtatgg aagctttat attgggcagc gccgatttaa ttacagaag aattttgttg 960
 gaaaagtggc tctaattttt ggaattttggaa cagaaggacc acatgtgggc cttgttcaag 1020
 ccagtgaaca tcccaaata gaattttact tgaaaaactt tacatcagcc aaagatgttt 1080
 tggttgcctt aaaggaagta gggttcagag ggggttaattt caatacagga aaagccttga 1140
 agcataactgc tcagaaattt ttacacggtag atgctggagt aagaaaaaggg atccccaaag 1200
 tggttgtgtt atttattttagt ggttggcctt ctgatgacat cgaggaagca ggcattgtgg 1260
 ccagagagtt tggtgtcaat gtattttatag tttctgtggc caagcctatc cctgaagaac 1320
 tggggatgtt tcaggatgtc acattttgtt acaaggctgt ctgtcgaaat aatggcttct 1380
 tcttttacca catgcccaac tggttttggca ccacaaaata cgtaaagcct ctggtacaga 1440
 agctgtgcac tcatgaacaa atgatgtgca gcaagacctg ttataactca gtgaacattt 1500
 ccttctaat tgatggctcc agcagtgtt gagaatgcaaa ttccgcctc atgctgaat 1560
 ttgttccaa catagccaa acttttggaaa tctcgacat tggtgccaag atagctgctg 1620
 tacagtttac ttatgatcag cgacacggagt tcagtttcac tgactatagc accaaagaga 1680
 atgtccttagc tgcacatcaga aacatccgc atatgagtgg tggaaacagct actggtgatg 1740
 ccatttcctt cactgtttaga aatgttttg gccctataag ggagagcccc aacaagaact 1800
 tccttagtaat tgcacatgat gggcagttt atgatgatgt ccaaggccct gcagctgctg 1860
 cacatgatgc aggaatcaat atttctctg ttgggtggc ttgggcaccc ctggatgacc 1920
 tggaaatgat ggtttctaaa cggaaaggagt ctcacgttt ctgcacaaga gagttcacag 1980
 gattagaacc aattttttt gatgtcatca gaggcatgg tagagattt ttagaatccc 2040
 agcaataatg gtaacattt gacaactgaa agaaaaagta caaggggatc cagtgtgtaa 2100
 attgtattct cataataactg aaatgcttta gcataactaga atcagataca aaactattaa 2160
 gtatgtcaac agccatttag gcaataaagc actcctttaa agccgtgc ttctgtttac 2220
 aatttacagt gtactttttt aaaaacactg ctgaggcttc ataatcatgg ctcttagaaa 2280
 ctcaggaaag aggagataat gtggattaaa accttaagag ttcttaaccat gcctactaaa 2340
 tgtacagata tgcaaattcc atagctcaat aaaagaatct gatacttaga caaaaaaaaa 2400
 aaa 2403

<210> 227

<211> 550
<212> PRT
<213> Homo sapiens

<400> 227
Met Ser Ala Ala Trp Ile Pro Ala Leu Gly Leu Gly Val Cys Leu Leu
1 5 10 15
Leu Leu Pro Gly Pro Ala Gly Ser Glu Gly Ala Ala Pro Ile Ala Ile
20 25 30
Thr Cys Phe Thr Arg Gly Leu Asp Ile Arg Lys Glu Lys Ala Asp Val
35 40 45
Leu Cys Pro Gly Gly Cys Pro Leu Glu Glu Phe Ser Val Tyr Gly Asn
50 55 60
Ile Val Tyr Ala Ser Val Ser Ser Ile Cys Gly Ala Ala Val His Arg
65 70 75 80
Gly Val Ile Ser Asn Ser Gly Gly Pro Val Arg Val Tyr Ser Leu Pro
85 90 95
Gly Arg Glu Asn Tyr Ser Ser Val Asp Ala Asn Gly Ile Gln Ser Gln
100 105 110
Met Leu Ser Arg Trp Ser Ala Ser Phe Thr Val Thr Lys Gly Lys Ser
115 120 125
Ser Thr Gln Glu Ala Thr Gly Gln Ala Val Ser Thr Ala His Pro Pro
130 135 140
Thr Gly Lys Arg Leu Lys Lys Thr Pro Glu Lys Lys Thr Gly Asn Lys
145 150 155 160
Asp Cys Lys Ala Asp Ile Ala Phe Leu Ile Asp Gly Ser Phe Asn Ile
165 170 175
Gly Gln Arg Arg Phe Asn Leu Gln Lys Asn Phe Val Gly Lys Val Ala
180 185 190
Leu Met Leu Gly Ile Gly Thr Glu Gly Pro His Val Gly Leu Val Gln
195 200 205
Ala Ser Glu His Pro Lys Ile Glu Phe Tyr Leu Lys Asn Phe Thr Ser
210 215 220
Ala Lys Asp Val Leu Phe Ala Ile Lys Glu Val Gly Phe Arg Gly Gly
225 230 235 240
Asn Ser Asn Thr Gly Lys Ala Leu Lys His Thr Ala Gln Lys Phe Phe
245 250 255

Thr Val Asp Ala Gly Val Arg Lys Gly Ile Pro Lys Val Val Val
 260 265 270

Phe Ile Asp Gly Trp Pro Ser Asp Asp Ile Glu Glu Ala Gly Ile Val
 275 280 285

Ala Arg Glu Phe Gly Val Asn Val Phe Ile Val Ser Val Ala Lys Pro
 290 295 300

Ile Pro Glu Glu Leu Gly Met Val Gln Asp Val Thr Phe Val Asp Lys
 305 310 315 320

Ala Val Cys Arg Asn Asn Gly Phe Phe Ser Tyr His Met Pro Asn Trp
 325 330 335

Phe Gly Thr Thr Lys Tyr Val Lys Pro Leu Val Gln Lys Leu Cys Thr
 340 345 350

His Glu Gln Met Met Cys Ser Lys Thr Cys Tyr Asn Ser Val Asn Ile
 355 360 365

Ala Phe Leu Ile Asp Gly Ser Ser Ser Val Gly Asp Ser Asn Phe Arg
 370 375 380

Leu Met Leu Glu Phe Val Ser Asn Ile Ala Lys Thr Phe Glu Ile Ser
 385 390 395 400

Asp Ile Gly Ala Lys Ile Ala Ala Val Gln Phe Thr Tyr Asp Gln Arg
 405 410 415

Thr Glu Phe Ser Phe Thr Asp Tyr Ser Thr Lys Glu Asn Val Leu Ala
 420 425 430

Val Ile Arg Asn Ile Arg Tyr Met Ser Gly Gly Thr Ala Thr Gly Asp
 435 440 445

Ala Ile Ser Phe Thr Val Arg Asn Val Phe Gly Pro Ile Arg Glu Ser
 450 455 460

Pro Asn Lys Asn Phe Leu Val Ile Val Thr Asp Gly Gln Ser Tyr Asp
 465 470 475 480

Asp Val Gln Gly Pro Ala Ala Ala His Asp Ala Gly Ile Thr Ile
 485 490 495

Phe Ser Val Gly Val Ala Trp Ala Pro Leu Asp Asp Leu Lys Asp Met
 500 505 510

Ala Ser Lys Pro Lys Glu Ser His Ala Phe Phe Thr Arg Glu Phe Thr
 515 520 525

Gly Leu Glu Pro Ile Val Ser Asp Val Ile Arg Gly Ile Cys Arg Asp
 530 535 540

Phe Leu Glu Ser Gln Gln
545 550

<210> 228
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 228
tggtctcgca caccgatc 18

<210> 229
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 229
ctgctgtcca caggggag 18

<210> 230
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 230
ccttgaagca tactgctc 18

<210> 231
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 231
gagatagcaa tttccgccc 18

<210> 232

<211> 18
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 232
 ttcctcaaga gggcagcc 18

<210> 233
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 233
 cttggcacca atgtccgaga ttcc 24

<210> 234
 <211> 45
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 234
 gctctgagga aggtgacgcg cggggcctcc gaacccttgg ccttg 45

<210> 235
 <211> 2586
 <212> DNA
 <213> Homo sapiens

<400> 235
 cggccgcgctc ccgcacccgc ggcccccca ccgcgcgcgt cccgcatctg caccgcagc 60
 cccggcgccct cccggcgaaa gcgagcagat ccagtccggc cccgcagcgca actcggtcca 120
 gtccggggcg 180
 gcctgtgtgt 240
 ctccagtcaa 300
 tgttccgcga 360
 aagagatgga 420
 tacctcccag 480
 atgtgcaccc 540
 agacagttat 600
 acgaggactg 660
 catgccgggg 720
 ccagaggatg ctctgcaccc gggacagtga gtgctgtgaa gaccagctgt

gtgtctgggg tcactgcacc aaaatggcca ccagggcag caatggacc atctgtgaca 780
 accagaggga ctgccagccg gggctgtgct gtgcctcca gagaggcctg ctgtccctg 840
 tgtgcacacc cctgcccgtg gagggcgagc tttgcctatga ccccgccagc cggcttctgg 900
 acctcatcac ctggagcta gagectgatg gagecttggc ccgatgcctc tgtgcctgtg 960
 gcctctctg ccagccccac agccacagcc tgggttatgt gtcaagccg accttcgtgg 1020
 ggagccgtga ccaagatggg gagatcctgc tgcccagaga ggtcccccgt gaggatgaag 1080
 ttggcagctt catggaggag gtgcgcagg agctggagga cctggagagg agcctgactg 1140
 aagagatggc gctggggag cctgcggctg ccgcgcgtgc actgctggg gggaaagaga 1200
 ttttagatctg gaccaggctg tggtagatg tgcaatagaa atagctaatt tattttccca 1260
 ggtgtgtctt ttaggcgtgg gctgaccagg cttcttcata catcttcttc ccagtaagt 1320
 tcccctctgg cttgacagca tgagggttt tgcatctt cagctcccc aggctgttct 1380
 ccaggctca cagtcgtgt cttggagag tcaggcagg taaaactgca ggagcagttt 1440
 gccacccctg tccagattat tggctgttt gcctctacca gtggcagac agccgtttgt 1500
 tctacatggc tttgataatt gtttgagggg aggagatgga aacaatgtgg agtctccctc 1560
 tgattggttt tggggaaatg tggagaagag tgccctgtt tgcaaacatc aacctggcaa 1620
 aaatcaaca aatgaattt ccacgcagtt cttccatgg gcataggtaa gctgtgcctt 1680
 cagctgtgc agatgaaatg ttctgttac cctgcattac atgtgtttat tcatcagca 1740
 gtgtgtctca gtccttacct ctgtgcagg gcagcattt catatccaag atcaattccc 1800
 tcttcagca cagcctgggg agggggcat tttcttcgtt gtccatcagg gatctcagag 1860
 gctcagagac tgcaagctgc ttgccaagt cacacagcta gtgaagacca gagcagttc 1920
 atctggttgt gactctaagc tcagtgtct ctccactacc ccacaccagg cttgggtgcca 1980
 cccaaagtgc tccccaaaag gaaggagaat gggatttttc ttgaggcatg cacatctgga 2040
 attaaggtca aactaatttccatccctc taaaagtaaa ctactgttag gaacagcagt 2100
 gtttcacag tggggcag ccgtccttctt aatgaagaca atgatattga cactgtccct 2160
 ctttggcagt tgcattagta actttgaaag gtatatgact gagcgttagca tacagttaa 2220
 cctgcagaaa cagtagttt gtaattgttag ggcgaggatt ataaatgaaa ttgcaaaat 2280
 cacttagcag caactgaaga caattatcaa ccacgtggag aaaaatcaaac cgagcagggc 2340
 tgtgtgaaac atggttgtt tatgcgactg cgaacactga actctacgccc actccacaaa 2400
 tgatgttttcc aggtgtcatg gactgttgcc accatgtatt catccagagt tcttaaagtt 2460
 taaagttgca catgattgtt taagcatgtt ttcttgagt tttaaattat gtataaacat 2520
 aagtgcatt tagaaatcaa gcataaatca cttcaactgc aaaaaaaaaa aaaaaaaaaa 2580
 aaaaaaa 2586

<210> 236

<211> 350

<212> PRT

<213> Homo sapiens

<400> 236

Met	Gln	Arg	Leu	Gly	Ala	Thr	Leu	Leu	Cys	Leu	Leu	Leu	Ala	Ala	Ala
1															

5

10

15

Val	Pro	Thr	Ala	Pro	Ala	Pro	Ala	Pro	Thr	Ala	Thr	Ser	Ala	Pro	Val
20															

25

30

Lys	Pro	Gly	Pro	Ala	Leu	Ser	Tyr	Pro	Gln	Glu	Glu	Ala	Thr	Leu	Asn
35															

35

40

45

Glu	Met	Phe	Arg	Glu	Val	Glu	Glu	Leu	Met	Glu	Asp	Thr	Gln	His	Lys
50															

55

60

Leu	Arg	Ser	Ala	Val	Glu	Glu	Met	Glu	Ala	Glu	Glu	Ala	Ala	Lys
65														

70

75

80

Ala Ser Ser Glu Val Asn Leu Ala Asn Leu Pro Pro Ser Tyr His Asn
 85 90 95

 Glu Thr Asn Thr Asp Thr Lys Val Gly Asn Asn Thr Ile His Val His
 100 105 110

 Arg Glu Ile His Lys Ile Thr Asn Asn Gln Thr Gly Gln Met Val Phe
 115 120 125

 Ser Glu Thr Val Ile Thr Ser Val Gly Asp Glu Glu Gly Arg Arg Ser
 130 135 140

 His Glu Cys Ile Ile Asp Glu Asp Cys Gly Pro Ser Met Tyr Cys Gln
 145 150 155 160

 Phe Ala Ser Phe Gln Tyr Thr Cys Gln Pro Cys Arg Gly Gln Arg Met
 165 170 175

 Leu Cys Thr Arg Asp Ser Glu Cys Cys Gly Asp Gln Leu Cys Val Trp
 180 185 190

 Gly His Cys Thr Lys Met Ala Thr Arg Gly Ser Asn Gly Thr Ile Cys
 195 200 205

 Asp Asn Gln Arg Asp Cys Gln Pro Gly Leu Cys Cys Ala Phe Gln Arg
 210 215 220

 Gly Leu Leu Phe Pro Val Cys Thr Pro Leu Pro Val Glu Gly Glu Leu
 225 230 235 240

 Cys His Asp Pro Ala Ser Arg Leu Leu Asp Leu Ile Thr Trp Glu Leu
 245 250 255

 Glu Pro Asp Gly Ala Leu Asp Arg Cys Pro Cys Ala Ser Gly Leu Leu
 260 265 270

 Cys Gln Pro His Ser His Ser Leu Val Tyr Val Cys Lys Pro Thr Phe
 275 280 285

 Val Gly Ser Arg Asp Gln Asp Gly Glu Ile Leu Leu Pro Arg Glu Val
 290 295 300

 Pro Asp Glu Tyr Glu Val Gly Ser Phe Met Glu Glu Val Arg Gln Glu
 305 310 315 320

 Leu Glu Asp Leu Glu Arg Ser Leu Thr Glu Glu Met Ala Leu Gly Glu
 325 330 335

 Pro Ala Ala Ala Ala Ala Leu Leu Gly Gly Glu Glu Ile
 340 345 350

<211> 17	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic oligonucleotide probe	
<400> 237	
ggagctgcac cccttgc	17
<210> 238	
<211> 49	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Oligonucleotide Probe	
<400> 238	
ggaggactgt gccaccatga gagactcttc aaacccaagg caaaattgg	49
<210> 239	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Oligonucleotide Probe	
<400> 239	
gcagagcgg a gatgcagcgg ct tg	24
<210> 240	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Oligonucleotide Probe	
<400> 240	
ttggcagtt catggagg	18
<210> 241	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Oligonucleotide Probe	
<400> 241	
cctggcaaa aatgcaac	18

<210> 242
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 242
ctccagctcc tggcgacact cctc

<210> 243
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 243
ggctctcagc taccgcgcag gagcgaggcc accctcaatg agatg

<210> 244
<211> 3679
<212> DNA
<213> Homo Sapien

<400> 244
aaggaggctg ggagggaaaga ggttaagaaag gtttagagaac ctacacctaca 50
tctctctggg ctcagaagga ctctgaagat aacaataatt tcagccccatc 100
cactctcctt ccctcccaa cacacatgtg catgtacaca cacacataca 150
cacacataca ctttcctctc cttcaactgaa gactcacagt cactcaactct 200
gtgagcaggt catagaaaag gacactaaag ccttaaggac aggccctggcc 250
attacctctg cagtccttt ggcttggta gtcaaaaaac atgggagggg 300
ccaggcacgg tgactcacac ctgtaatccc agcattttgg gagaccgagg 350
tgagcagatc acttgaggtc aggagttcga gaccagcctg gccaaacatgg 400
agaaacccccc atctctacta aaaataaaaa aattagccag gagtggtggc 450
aggtgcctgt aatcccagct actcaggtgg ctgagccagg agaatcgctt 500
gaatccagga ggcggaggat gcagtcagct gagtgcacccg ctgcactcca 550
gcctgggtga cagaatqaga ctctgtctca aacaaacaaa cacggggagga 600

gggtagata ctgcttcctc gcaacccctc taactctgca tccttttctt 650
 ccagggtgc ccctgatgg gcctggcaat gactgagcag gcccagcccc 700
 agaggacaag gaagagaagg catattgagg agggcaagaa gtgacgccc 750
 gtgtagaatg actgcctgg gagggtggtt cttggggccc tggcagggtt 800
 gctgaccctt accctgcaaa acacaaagag caggactcca gactctcctt 850
 gtgaatggtc ccctgcctg cagctccacc atgaggcttc tcgtggcccc 900
 actcttgcta gcttgggtgg ctggtgccac tgccactgtg cccgtggta 950
 cctggcatgt tccctgcccc cctcagtgtg cctgccagat ccggccctgg 1000
 tatacgcccc gctcgcccta ccgcgaggct accactgtgg actgcaatga 1050
 cctattcctg acggcagtcc ccccggaact ccccgccaggc acacagaccc 1100
 tgctcctgca gagcaacagc attgtccgtg tggaccagag tgagctggc 1150
 tacctggcca atctcacaga gctggacctg tcccagaaca gctttcgga 1200
 tgcccgagac tgtgattcc atgcctgccc ccagctgctg agcctgcacc 1250
 tagaggagaa ccagctgacc cggctggagg accacagctt tgcagggtcg 1300
 gccagcctac aggaactcta tctcaaccac aaccagctt accgcattcgc 1350
 ccccaggggcc ttttctggcc tcaagcaactt gctgcggctg cacctaact 1400
 ccaacccctc gagggccatt gacagccgct ggtttggaaat gctgcccaac 1450
 ttggagatac tcatgattgg cggcaacaag gtagatgcca tcctggacat 1500
 gaacttccgg cccctggcca acctgcgtag cctggtgcta gcaggcatga 1550
 acctgcggga gatctccgac tatgcctgg aggggctgca aagcctggag 1600
 agcctctcct tctatgacaa ccagctggcc cgggtggcca ggcggggact 1650
 ggaacaggtg cccgggtca agttcctaga cctcaacaag aacccgctcc 1700
 agcgggtagg gcccggggac tttgccaaca tgctgcaccc taaggagctg 1750
 ggactgaaca acatggagga gctggtctcc atcgacaagt ttgccttgt 1800
 gaacccccc gagctgacca agctggacat caccaataac ccacggctgt 1850
 cttcatcca ccccccgcgc ttccaccacc tgccccagat ggagaccctc 1900
 atgctcaaca acaacgctct cagtgccttg caccagcaga cggtggagtc 1950

cctgccccaac ctgcaggagg taggtctcca cgcaacccc atccgctgtg 2000
 actgtgtcat ccgctggcc aatgccacgg gcaccctgtt ccgttcatac 2050
 gagccgcaat ccaccctgtg tgccggaccc ctggacactcc agcgccccc 2100
 ggtccgtgag gtgccttcc gggagatgac ggaccactgt ttgccttca 2150
 tctccccacg aagcttcccc ccaagcctcc agtagccag tggagagagc 2200
 atggtgctgc attgcgggc actggccgaa cccgaacccg agatctactg 2250
 ggtcactcca gctgggcttc gactgacacc tgccatgca ggcaggaggt 2300
 accgggtgta ccccgagggg accctggagc tgccggaggt gacagcaga 2350
 gaggcagggc tatacacctg tgtggccag aacctggtgg gggctgacac 2400
 taagacggtt agtgtggttg tggccgtgc ttcctccag ccaggcagg 2450
 acgaaggaca ggggctggag ctccgggtgc aggagacca cccctatcac 2500
 atcctgctat cttgggtcac cccacccaaac acagtgtcca ccaacctcac 2550
 ctggtccagt gcctcctccc tccggggcca gggggccaca gctctggccc 2600
 gcctgcctcg gggAACCCAC agctacaaca ttaccgcct cttcaggcc 2650
 acggagtaact gggcctgcct gcaagtggcc tttgtgtatg cccacacca 2700
 gttggcttgt gtatgggcca ggaccaaaga ggccacttct tgccacagag 2750
 ccttagggga tcgtcctggg ctcattgcca tcctggctct cgctgtcctt 2800
 ctccctggcag ctgggcttagc ggcccaccc ggcacaggcc aacccaggaa 2850
 ggggtgggt gggaggcggc ctctccctcc agcctggct ttctgggct 2900
 ggagtgcggcc ttctgtccgg gttgtgtctg ctcccctcg tctggccctgg 2950
 aatccagggaa ggaagctgcc cagatcctca gaaggggaga cactgttgc 3000
 accattgtct caaaattctt gaagctcagc ctgttctcag cagtagagaa 3050
 atcaacttagga ctactttta ccaaaagaga agcagttctgg gccagatgcc 3100
 ctgccaggaa agggacatgg acccacgtgc ttgaggcctg gcagctgggc 3150
 caagacagat gggctttgt ggccctgggg gtgtttctgc agccttgaaa 3200
 aagttgcctt tacctccttag ggtcacctct gctgccatcc tgaggaacat 3250

ctccaaggaa caggaggggac tttggctaga gcctcctgcc tccccatctt 3300
ctctctgccc agaggctcct gggcctggct tggctgtccc ctacctgtgt 3350
ccccgggctg cacccttcc tcttctctt ctctgtacag tctcagttgc 3400
ttgctcttgt gcctcctggg caagggtctga aggaggccac tccatctcac 3450
ctcgaaaaaa tgccctcaat gtgggagtga ccccaagccag atctgaagga 3500
catttgggag agggatgccc aggaacgcct catctcagca gcctgggctc 3550
ggcattccga agctgacttt ctataggcaa ttttgtacct ttgtggagaa 3600
atgtgtcacc tcccccaacc cgattcactc ttttctcctg ttttgtaaaa 3650
aataaaaaata aataataaca ataaaaaaaa 3679

<210> 245

<211> 713

<212> PRT

<213> Homo Sapien

<400> 245

Met Arg Leu Leu Val Ala Pro Leu Leu Leu Ala Trp Val Ala Gly
1 5 10 15

Ala Thr Ala Thr Val Pro Val Val Pro Trp His Val Pro Cys Pro
20 25 30

Pro Gln Cys Ala Cys Gln Ile Arg Pro Trp Tyr Thr Pro Arg Ser
35 40 45

Ser Tyr Arg Glu Ala Thr Thr Val Asp Cys Asn Asp Leu Phe Leu
50 55 60

Thr Ala Val Pro Pro Ala Leu Pro Ala Gly Thr Gln Thr Leu Leu
65 70 75

Leu Gln Ser Asn Ser Ile Val Arg Val Asp Gln Ser Glu Leu Gly
80 85 90

Tyr Leu Ala Asn Leu Thr Glu Leu Asp Leu Ser Gln Asn Ser Phe
95 100 105

Ser Asp Ala Arg Asp Cys Asp Phe His Ala Leu Pro Gln Leu Leu
110 115 120

Ser Phe Ala Gly Leu Ala Ser Leu Gln Glu Leu Tyr Leu Asn His
140 145 150

Asn Gln Leu Tyr Arg Ile Ala Pro Arg Ala Phe Ser Gly Leu Ser
 155 160 165

 Asn Leu Leu Arg Leu His Leu Asn Ser Asn Leu Leu Arg Ala Ile
 170 175 180

 Asp Ser Arg Trp Phe Glu Met Leu Pro Asn Leu Glu Ile Leu Met
 185 190 195

 Ile Gly Gly Asn Lys Val Asp Ala Ile Leu Asp Met Asn Phe Arg
 200 205 210

 Pro Leu Ala Asn Leu Arg Ser Leu Val Leu Ala Gly Met Asn Leu
 215 220 225

 Arg Glu Ile Ser Asp Tyr Ala Leu Glu Gly Leu Gln Ser Leu Glu
 230 235 240

 Ser Leu Ser Phe Tyr Asp Asn Gln Leu Ala Arg Val Pro Arg Arg
 245 250 255

 Ala Leu Glu Gln Val Pro Gly Leu Lys Phe Leu Asp Leu Asn Lys
 260 265 270

 Asn Pro Leu Gln Arg Val Gly Pro Gly Asp Phe Ala Asn Met Leu
 275 280 285

 His Leu Lys Glu Leu Gly Leu Asn Asn Met Glu Glu Leu Val Ser
 290 295 300

 Ile Asp Lys Phe Ala Leu Val Asn Leu Pro Glu Leu Thr Lys Leu
 305 310 315

 Asp Ile Thr Asn Asn Pro Arg Leu Ser Phe Ile His Pro Arg Ala
 320 325 330

 Phe His His Leu Pro Gln Met Glu Thr Leu Met Leu Asn Asn Asn
 335 340 345

 Ala Leu Ser Ala Leu His Gln Gln Thr Val Glu Ser Leu Pro Asn
 350 355 360

 Leu Gln Glu Val Gly Leu His Gly Asn Pro Ile Arg Cys Asp Cys
 365 370 375

 Val Ile Arg Trp Ala Asn Ala Thr Gly Thr Arg Val Arg Phe Ile
 380 385 390

 Glu Pro Gln Ser Thr Leu Cys Ala Glu Pro Pro Asp Leu Gln Arg
 395 400 405

 Leu Pro Val Arg Glu Val Pro Phe Arg Glu Met Thr Asp His Cys

410	415	420
Leu Pro Leu Ile Ser Pro Arg Ser Phe Pro Pro Ser Leu Gln Val		
425	430	435
Ala Ser Gly Glu Ser Met Val Leu His Cys Arg Ala Leu Ala Glu		
440	445	450
Pro Glu Pro Glu Ile Tyr Trp Val Thr Pro Ala Gly Leu Arg Leu		
455	460	465
Thr Pro Ala His Ala Gly Arg Arg Tyr Arg Val Tyr Pro Glu Gly		
470	475	480
Thr Leu Glu Leu Arg Arg Val Thr Ala Glu Glu Ala Gly Leu Tyr		
485	490	495
Thr Cys Val Ala Gln Asn Leu Val Gly Ala Asp Thr Lys Thr Val		
500	505	510
Ser Val Val Val Gly Arg Ala Leu Leu Gln Pro Gly Arg Asp Glu		
515	520	525
Gly Gln Gly Leu Glu Leu Arg Val Gln Glu Thr His Pro Tyr His		
530	535	540
Ile Leu Leu Ser Trp Val Thr Pro Pro Asn Thr Val Ser Thr Asn		
545	550	555
Leu Thr Trp Ser Ser Ala Ser Ser Leu Arg Gly Gln Gly Ala Thr		
560	565	570
Ala Leu Ala Arg Leu Pro Arg Gly Thr His Ser Tyr Asn Ile Thr		
575	580	585
Arg Leu Leu Gln Ala Thr Glu Tyr Trp Ala Cys Leu Gln Val Ala		
590	595	600
Phe Ala Asp Ala His Thr Gln Leu Ala Cys Val Trp Ala Arg Thr		
605	610	615
Lys Glu Ala Thr Ser Cys His Arg Ala Leu Gly Asp Arg Pro Gly		
620	625	630
Leu Ile Ala Ile Leu Ala Leu Ala Val Leu Leu Leu Ala Ala Gly		
635	640	645
Leu Ala Ala His Leu Gly Thr Gly Gln Pro Arg Lys Gly Val Gly		
650	655	660
Gly Arg Arg Pro Leu Pro Pro Ala Trp Ala Phe Trp Gly Trp Ser		
665	670	675

Ala Pro Ser Val Arg Val Val Ser Ala Pro Leu Val Leu Pro Trp
680 685 690

Asn Pro Gly Arg Lys Leu Pro Arg Ser Ser Glu Gly Glu Thr Leu
695 700 705

Leu Pro Pro Leu Ser Gln Asn Ser
710

<210> 246

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 246

aacaaggtaa gatgccatcc tg 22

<210> 247

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 247

aaaccttgtcg atggagacca gctc 24

<210> 248

<211> 45

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 248

aggggctgca aagcctggag agccttcct tctatgacaa ccagc 45

<210> 249

<211> 3401

<212> DNA

<213> Homo Sapien

<400> 249

gcaagccaag gcgctgttg agaaggtaa gaagttccgg acccatgtgg 50

aggaggggga cattgtgtac cgcccttaca tgccgcagac catcatcaag 100

gtgatcaagt tcatcctcat catctgctac accgtctact acgtgcacaa 150

catcaaggta gacgtggact gcaccgtgga cattgagagc ctgacgggct 200
 accgcaccta ccgctgtgcc cacccccctgg ccacactttt caagatcctg 250
 gcgtccttct acatcagcct agtcatctt tacggcctca tctgcatgta 300
 cacactgtgg tggatgtac ggcgctccct caagaagtac tcgtttgagt 350
 cgatccgtga ggagagcagc tacagcgaca tccccgacgt caagaacgac 400
 ttgcgccttca tgctgcacct cattgaccaa tacgacccgc tctactccaa 450
 gcgcttcgccc gtcttcctgt cggaggtgag tgagaacaag ctgcggcagc 500
 tgaacctcaa caacgagtgg acgctggaca agctccggca gcggctcacc 550
 aagaacgcgc aggacaagct ggagctgcac ctgttcatgc tcagtggcat 600
 ccctgacact gtgtttgacc tgggtggagct ggaggtcctc aagctggagc 650
 ttagccccga cgtgaccatc ccgccccagca ttgcccagct cacgggcctc 700
 aaggagctgt ggctctacca cacagcggcc aagattgaag cgcctgcgt 750
 ggccttcctg cgcgagaacc tgcgccgcgt gcacatcaag ttcaccgaca 800
 tcaaggagat cccgctgtgg atctatagcc tgaagacact ggaggagctg 850
 cacctgacgg gcaacctgag cgccggagaac aaccgctaca tcgtcatcga 900
 cgggctgcgg gagctcaaacc gcctcaaggt gctgcggctc aagagcaacc 950
 taagcaagct gccacaggtg gtcacagatg tgggcgtgca cctgcagaag 1000
 ctgtccatca acaatgaggg caccaagctc atcgcttca acagcctcaa 1050
 gaagatggcg aacctgactg agctggagct gatccgctgc gacctggagc 1100
 gcatccccca ctccatcttc agcctccaca acctgcagga gattgacctc 1150
 aaggacaaca acctcaagac catcgaggag atcatcagct tccagcacct 1200
 gcaccgcctc acctgcctta agctgtggta caaccacatc gcctacatcc 1250
 ccatccagat cgccaacctc accaacctgg agcgctctca cctgaaccgc 1300
 aacaagatcg agaagatccc cacccagctc ttctactgcc gcaagctgcg 1350
 ctacctggac ctcagccaca acaacctgac cttccctccct gccgacatcg 1400
 gcctcctgca gaacctccag aacctagcca tcacggccaa ccggatcgag 1450

acgctccctc cgagactt ccagtgcggg aagctgcggg ccctgcacct 1500
 gggcaacaac gtgctgcagt cactgcctc cagggtggc gagctgacca 1550
 acctgacgca gatcgagctg cggggcaacc ggctggagtg cctgcctgtg 1600
 gagctggcg agtcccact gctcaagcgc agcggttgg tggggaggga 1650
 ggacctgttc aacacactgc cacccgaggt gaaggagcgg ctgtggagg 1700
 ctgacaagga gcaggcctga gcgaggccgg cccagcacag caagcagcag 1750
 gaccgctgcc cagtcctcag gcccgagggg gcaggcttag cttctccag 1800
 aactcccgga cagccaggac agcctcgccg ctggcagga gcctggggcc 1850
 gcttgtgagt caggccagag cgagaggaca gatatgtgg ggctggcccc 1900
 ttttctccct ctgagactca cgtccccag ggcaagtgt tggggaggag 1950
 agcaagtctc aagagcgcag tatttggata atcagggct cctccctgga 2000
 ggccagctct gccccagggg ctgagctgcc accagaggcc ctgggaccct 2050
 cacttagtt ctggatattt attttctcc atctcccacc tccttcatcc 2100
 agataactta tacattccca agaaagttca gcccagatgg aaggtgttca 2150
 gggaaagggtg ggctgcctt tcccttgtc cttattnagc gatgccgcgg 2200
 ggcatttaac acccacctgg acttcagcag agtggccgg ggcgaaccag 2250
 ccatgggacg gtcacccagc agtgcggggc tgggctctgc ggtgcgggtcc 2300
 acgggagagc aggccctccag ctggaaaggc caggcctggc gctgcctct 2350
 tcagtttttgc tggcagttt agttttttgt ttttttttt ttaatcaa 2400
 aaacaatttt tttaaaaaaa aagctttgaa aatggatggt ttgggtatta 2450
 aaaagaaaaaa aaaaacttaa aaaaaaaaaaag acactaacgg ccagtgagtt 2500
 ggagtctcag ggcagggtgg cagttccct tgagcaaagc agccagacgt 2550
 tgaactgtgt ttcccttccc tgggcgcagg gtgcagggtg tcttccggat 2600
 ctgggtgtac ctgggtccag gagttctatt tgccctggg gagggagggtt 2650
 tttttgtttgc tttttgggt tttttgggt tcttgggttcc tttctccctcc 2700
 atgtgtcttgc cagggcactc atttctgtgg ctgtcggcca gagggaatgt 2750
 tctggagctg ccaaggaggg aggagactcg ggttgctaa tccccggatg 2800

aacggtgctc cattcgacc tcccctcctc gtgcctgccc tgcccttc 2850
 cgcacagtgt taaggagcca agaggagcca ctgcggccag actttgttc 2900
 cccacccctcct gcggcatggg tgtgtccagt gccaccgctg gcctccgctg 2950
 cttccatcag ccctgtcgcc acctggtcct tcataaagag cagacactta 3000
 gagggctggtc gggaaatgggg aggtcgcccc tgggagggca ggcgttgggt 3050
 ccaagccgggt tcccgtccct ggccgcctgga gtgcacacag cccagtcggc 3100
 acctggtggc tggaaagccaa cctgcttttag atcactcggt tccccacctt 3150
 agaagggtcc ccgccttaga tcaatcacgt ggacactaag gcacgtttta 3200
 gagtctcttg tcttaatgat tatgtccatc cgtctgtccg tccatttgg 3250
 ttttctgcgt cgtgtcattg gatataatcc tcagaaataa tgcacactag 3300
 cctctgacaa ccatgaagca aaaatccgtt acatgtgggt ctgaacttgt 3350
 agactcggtc acagtatcaa ataaaaatcta taacagaaaa aaaaaaaaaa 3400
 a 3401
 <210> 250
 <211> 546
 <212> PRT
 <213> Homo Sapien
 <400> 250
 Met Arg Gln Thr Ile Ile Lys Val Ile Lys Phe Ile Leu Ile Ile
 1 5 10 15
 Cys Tyr Thr Val Tyr Tyr Val His Asn Ile Lys Phe Asp Val Asp
 20 25 30
 Cys Thr Val Asp Ile Glu Ser Leu Thr Gly Tyr Arg Thr Tyr Arg
 35 40 45
 Cys Ala His Pro Leu Ala Thr Leu Phe Lys Ile Leu Ala Ser Phe
 50 55 60
 Tyr Ile Ser Leu Val Ile Phe Tyr Gly Leu Ile Cys Met Tyr Thr
 65 70 75
 Leu Trp Trp Met Leu Arg Arg Ser Leu Lys Lys Tyr Ser Phe Glu
 80 85 90
 Ser Ile Arg Glu Glu Ser Ser Tyr Ser Asp Ile Pro Asp Val Lys

95	100	105
Asn Asp Phe Ala Phe Met Leu His Leu Ile Asp Gln Tyr Asp Pro		
110	115	120
Leu Tyr Ser Lys Arg Phe Ala Val Phe Leu Ser Glu Val Ser Glu		
125	130	135
Asn Lys Leu Arg Gln Leu Asn Leu Asn Asn Glu Trp Thr Leu Asp		
140	145	150
Lys Leu Arg Gln Arg Leu Thr Lys Asn Ala Gln Asp Lys Leu Glu		
155	160	165
Leu His Leu Phe Met Leu Ser Gly Ile Pro Asp Thr Val Phe Asp		
170	175	180
Leu Val Glu Leu Glu Val Leu Lys Leu Glu Leu Ile Pro Asp Val		
185	190	195
Thr Ile Pro Pro Ser Ile Ala Gln Leu Thr Gly Leu Lys Glu Leu		
200	205	210
Trp Leu Tyr His Thr Ala Ala Lys Ile Glu Ala Pro Ala Leu Ala		
215	220	225
Phe Leu Arg Glu Asn Leu Arg Ala Leu His Ile Lys Phe Thr Asp		
230	235	240
Ile Lys Glu Ile Pro Leu Trp Ile Tyr Ser Leu Lys Thr Leu Glu		
245	250	255
Glu Leu His Leu Thr Gly Asn Leu Ser Ala Glu Asn Asn Arg Tyr		
260	265	270
Ile Val Ile Asp Gly Leu Arg Glu Leu Lys Arg Leu Lys Val Leu		
275	280	285
Arg Leu Lys Ser Asn Leu Ser Lys Leu Pro Gln Val Val Thr Asp		
290	295	300
Val Gly Val His Leu Gln Lys Leu Ser Ile Asn Asn Glu Gly Thr		
305	310	315
Lys Leu Ile Val Leu Asn Ser Leu Lys Lys Met Ala Asn Leu Thr		
320	325	330
Glu Leu Glu Leu Ile Arg Cys Asp Leu Glu Arg Ile Pro His Ser		
335	340	345
Ile Phe Ser Leu His Asn Leu Gln Glu Ile Asp Leu Lys Asp Asn		
350	355	360

Asn Leu Lys Thr Ile Glu Glu Ile Ile Ser Phe Gln His Leu His
 365 370 375

 Arg Leu Thr Cys Leu Lys Leu Trp Tyr Asn His Ile Ala Tyr Ile
 380 385 390

 Pro Ile Gln Ile Gly Asn Leu Thr Asn Leu Glu Arg Leu Tyr Leu
 395 400 405

 Asn Arg Asn Lys Ile Glu Lys Ile Pro Thr Gln Leu Phe Tyr Cys
 410 415 420

 Arg Lys Leu Arg Tyr Leu Asp Leu Ser His Asn Asn Leu Thr Phe
 425 430 435

 Leu Pro Ala Asp Ile Gly Leu Leu Gln Asn Leu Gln Asn Leu Ala
 440 445 450

 Ile Thr Ala Asn Arg Ile Glu Thr Leu Pro Pro Glu Leu Phe Gln
 455 460 465

 Cys Arg Lys Leu Arg Ala Leu His Leu Gly Asn Asn Val Leu Gln
 470 475 480

 Ser Leu Pro Ser Arg Val Gly Glu Leu Thr Asn Leu Thr Gln Ile
 485 490 495

 Glu Leu Arg Gly Asn Arg Leu Glu Cys Leu Pro Val Glu Leu Gly
 500 505 510

 Glu Cys Pro Leu Leu Lys Arg Ser Gly Leu Val Val Glu Glu Asp
 515 520 525

 Leu Phe Asn Thr Leu Pro Pro Glu Val Lys Glu Arg Leu Trp Arg
 530 535 540

 Ala Asp Lys Glu Gln Ala
 545

 <210> 251
 <211> 20
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> Synthetic Oligonucleotide Probe

 <400> 251
 caacaatgag ggcaccaagc 20

 <210> 252
 <211> 24

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 252
gatggctagg ttctggaggt tctg 24

<210> 253
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 253
caacctgcag gagattgacc tcaaggacaa caacctaag accatcg 47

<210> 254
<211> 1650
<212> DNA
<213> Homo Sapien

<400> 254
gcctgttgct gatgctgcgg tgccgtactt gtcatggagc tggcactgcg 50
gcgcctctccc gtccccgggt ggttgcgtgc gtcgcgcgt ctgctggcc 100
tgaacgcagg agctgtcatt gactggccca cagaggaggg caaggaagta 150
tgggattatg tgacggtccg caaggatgcc tacatgttct ggtggctcta 200
ttatgccacc aactcctgca agaacttctc agaactgccc ctggtcatgt 250
ggcttcaggc cggtccaggc ggttctagca ctggatttgg aaacttttag 300
gaaattgggc cccttgacag tgatctcaaa ccacggaaaa ccacctggct 350
ccaggctgcc agtctcctat ttgtggataa tcccgtggc actgggttca 400
gttatgtgaa tggtagtggt gcctatgcca aggacctggc tatggtggt 450
tcagacatga tggttctctt gaagaccttc ttcaaggatgcc acaaagaatt 500
ccagacagtt ccatttaca ttttctcaga gtcctatgg aaaaaaaaaatgg 550
cagctggcat tggtctagag ctttataagg ccattcagcg agggaccatc 600
aagtgcact ttgcgggggt tgccttgggt gattcctggta tctcccttgt 650
tgattcggtg ctctcctggg gaccttacct gtacagcatg tctttctcg 700

aagacaaagg tctggcagag gtgtctaagg ttgcagagca agtactgaat 750
 gccgtaaata aggggctcta cagagaggcc acagagctgt gggggaaagc 800
 agaaaatgttc attgaacaga acacagatgg ggtgaacttc tataacatct 850
 taactaaaag cactcccacg tctacaatgg agtcgagtct agaattcaca 900
 cagagccacc tagttgtct ttgtcagcgc cacgtgagac acctacaacg 950
 agatgcctta agccagctca tgaatggccc catcagaaag aagctaaaa 1000
 ttattcctga gnatcaatcc tggggaggcc aggctaccaa cgtcttg 1050
 aacatggagg aggacttcat gaagccagtc attagcattg tggacgagtt 1100
 gctggaggca gggatcaacg tgacggtgta taatggacag ctggatctca 1150
 tcgtagatac catgggtcag gaggcctggg tgcggaaact gaagtggcca 1200
 gaactgccta aattcagtca gctgaagtgg aaggccctgt acagtgaccc 1250
 taaatctttg gaaacatctg ctttgtcaa gtcctacaag aaccttgctt 1300
 tctactggat tctgaaagct ggtcatatgg ttccttctga ccaagggac 1350
 atggctctga agatgatgag actggtgact cagcaagaat aggatggatg 1400
 gggctggaga tgagctggtt tggccttggg gcacagagct gagctgaggc 1450
 cgctgaagct gtaggaagcg ccattcttcc ctgtatctaa ctggggctgt 1500
 gatcaagaag gttctgacca gcttctgcag aggataaaat cattgtctct 1550
 ggaggcaatt tggaaattat ttctgcttct taaaaaaaaacc taagatttt 1600
 taaaaaaaaatg atttgtttt atcaaaaataa aggatgataa tagatattaa 1650

<210> 255
<211> 452
<212> PRT
<213> Homo Sapien

<400> 255
 Met Glu Leu Ala Leu Arg Arg Ser Pro Val Pro Arg Trp Leu Leu
 1 5 10 15

Leu	Leu	Pro	Leu	Leu	Gly	Leu	Asn	Ala	Gly	Ala	Val	Ile	Asp
20							25						30

Trp	Pro	Thr	Glu	Glu	Gly	Lys	Glu	Val	Trp	Asp	Tyr	Val	Thr	Val
35								40						45

Arg Lys Asp Ala Tyr Met Phe Trp Trp Leu Tyr Tyr Ala Thr Asn
 50 55 60

Ser Cys Lys Asn Phe Ser Glu Leu Pro Leu Val Met Trp Leu Gln
 65 70 75

Gly Gly Pro Gly Gly Ser Ser Thr Gly Phe Gly Asn Phe Glu Glu
 80 85 90

Ile Gly Pro Leu Asp Ser Asp Leu Lys Pro Arg Lys Thr Thr Trp
 95 100 105

Leu Gln Ala Ala Ser Leu Leu Phe Val Asp Asn Pro Val Gly Thr
 110 115 120

Gly Phe Ser Tyr Val Asn Gly Ser Gly Ala Tyr Ala Lys Asp Leu
 125 130 135

Ala Met Val Ala Ser Asp Met Met Val Leu Leu Lys Thr Phe Phe
 140 145 150

Ser Cys His Lys Glu Phe Gln Thr Val Pro Phe Tyr Ile Phe Ser
 155 160 165

Glu Ser Tyr Gly Gly Lys Met Ala Ala Gly Ile Gly Leu Glu Leu
 170 175 180

Tyr Lys Ala Ile Gln Arg Gly Thr Ile Lys Cys Asn Phe Ala Gly
 185 190 195

Val Ala Leu Gly Asp Ser Trp Ile Ser Pro Val Asp Ser Val Leu
 200 205 210

Ser Trp Gly Pro Tyr Leu Tyr Ser Met Ser Leu Leu Glu Asp Lys
 215 220 225

Gly Leu Ala Glu Val Ser Lys Val Ala Glu Gln Val Leu Asn Ala
 230 235 240

Val Asn Lys Gly Leu Tyr Arg Glu Ala Thr Glu Leu Trp Gly Lys
 245 250 255

Ala Glu Met Ile Ile Glu Gln Asn Thr Asp Gly Val Asn Phe Tyr
 260 265 270

Asn Ile Leu Thr Lys Ser Thr Pro Thr Ser Thr Met Glu Ser Ser
 275 280 285

Leu Glu Phe Thr Gln Ser His Leu Val Cys Leu Cys Gln Arg His
 290 295 300

Val Arg His Leu Gln Arg Asp Ala Leu Ser Gln Leu Met Asn Gly

305	310	315
Pro Ile Arg Lys Lys Leu Lys Ile Ile Pro Glu Asp Gln Ser Trp		
320	325	330
Gly Gly Gln Ala Thr Asn Val Phe Val Asn Met Glu Glu Asp Phe		
335	340	345
Met Lys Pro Val Ile Ser Ile Val Asp Glu Leu Leu Glu Ala Gly		
350	355	360
Ile Asn Val Thr Val Tyr Asn Gly Gln Leu Asp Leu Ile Val Asp		
365	370	375
Thr Met Gly Gln Glu Ala Trp Val Arg Lys Leu Lys Trp Pro Glu		
380	385	390
Leu Pro Lys Phe Ser Gln Leu Lys Trp Lys Ala Leu Tyr Ser Asp		
395	400	405
Pro Lys Ser Leu Glu Thr Ser Ala Phe Val Lys Ser Tyr Lys Asn		
410	415	420
Leu Ala Phe Tyr Trp Ile Leu Lys Ala Gly His Met Val Pro Ser		
425	430	435
Asp Gln Gly Asp Met Ala Leu Lys Met Met Arg Leu Val Thr Gln		
440	445	450
 Gln Glu		

<210> 256

<211> 1100

<212> DNA

<213> Homo Sapien

<400> 256

ggccgcggga gaggaggcca tgggcgcgctg ctgctggcgc 50

tgctgctggc tcgggctgga ctcaggaagc cggagtgcgc ggaggcggcg 100

ccgttatcag gaccatgcgg ccgacgggtc atcacgtcgc gcacgtggg 150

tggagaggac gccgaactcg ggcgttggcc gtggcagggg agcctgcgcc 200

tgtgggattc ccacgtatgc ggagtgagcc tgctcagcca ccgctggca 250

ctcacggcgg cgcaactgctt tgaaacctat agtacacctta gtgatccctc 300

cgggtggatg gtccagtttq gccagctgac ttccatgccca tccttctgga 350

gcctgcaggc ctactacacc cgttacttcg tatcgaatat ctatctgagc 400

cctcgctacc tgggaaattc accctatgac attgccttgg tgaagctgtc 450
tgcacctgtc acctacacta aacacatcca gcccacatgt ctccaggcct 500
ccacatttga gtttgagaac cgAACAGACT gctgggtgac tggctggggg 550
tacatcaaag aggatgaggg actgccatct ccccacaccc tccaggaagt 600
tcaggtcgcc atcataaaca actctatgtg caaccacctc ttccctcaagt 650
acagtttccg caaggacatc tttggagaca tggtttgtgc tggcaacgcc 700
caaggcggga aggatgcctg ctccggtgac tcaggtggac ccttggcctg 750
taacaagaat ggactgtggt atcagattgg agtcgtgagc tggggagtgg 800
gctgtggtcg gccaatcgg cccgggtgtct acaccaatat cagccaccac 850
ttttagtggc tccagaagct gatggcccag agtggcatgt cccagccaga 900
ccccctctgg ccactactct tttccctct tctctggct ctcccaactcc 950
tggggccggc ctgagcctac ctgagcccat gcagcctggg gccactgcca 1000
agtcaggccc tggttctctt ctgtcttgg tggtaataaaa cacattccag 1050
ttgatgcctt gcagggcatt cttcaaaaaa aaaaaaaaaa aaaaaaaaaa 1100

<210> 257
<211> 314
<212> PRT
<213> Homo Sapien

<400> 257

Met	Gly	Ala	Arg	Gly	Ala	Leu	Leu	Leu	Ala	Leu	Leu	Leu	Ala	Arg
1					5					10				15

Ala	Gly	Leu	Arg	Lys	Pro	Glu	Ser	Gln	Glu	Ala	Ala	Pro	Leu	Ser
					20				25					30

Gly	Pro	Cys	Gly	Arg	Arg	Val	Ile	Thr	Ser	Arg	Ile	Val	Gly	Gly
						35			40					45

Glu	Asp	Ala	Glu	Leu	Gly	Arg	Trp	Pro	Trp	Gln	Gly	Ser	Leu	Arg
						50			55					60

Leu	Trp	Asp	Ser	His	Val	Cys	Gly	Val	Ser	Leu	Leu	Ser	His	Arg
						65			70					75

Trp	Ala	Leu	Thr	Ala	Ala	His	Cys	Phe	Glu	Thr	Tyr	Ser	Asp	Leu
							80			85				90

Ser Asp Pro Ser Gly Trp Met Val Gln Phe Gly Gln Leu Thr Ser
 95 100 105
 Met Pro Ser Phe Trp Ser Leu Gln Ala Tyr Tyr Thr Arg Tyr Phe
 110 115 120
 Val Ser Asn Ile Tyr Leu Ser Pro Arg Tyr Leu Gly Asn Ser Pro
 125 130 135
 Tyr Asp Ile Ala Leu Val Lys Leu Ser Ala Pro Val Thr Tyr Thr
 140 145 150
 Lys His Ile Gln Pro Ile Cys Leu Gln Ala Ser Thr Phe Glu Phe
 155 160 165
 Glu Asn Arg Thr Asp Cys Trp Val Thr Gly Trp Gly Tyr Ile Lys
 170 175 180
 Glu Asp Glu Ala Leu Pro Ser Pro His Thr Leu Gln Glu Val Gln
 185 190 195
 Val Ala Ile Ile Asn Asn Ser Met Cys Asn His Leu Phe Leu Lys
 200 205 210
 Tyr Ser Phe Arg Lys Asp Ile Phe Gly Asp Met Val Cys Ala Gly
 215 220 225
 Asn Ala Gln Gly Gly Lys Asp Ala Cys Phe Gly Asp Ser Gly Gly
 230 235 240
 Pro Leu Ala Cys Asn Lys Asn Gly Leu Trp Tyr Gln Ile Gly Val
 245 250 255
 Val Ser Trp Gly Val Gly Cys Gly Arg Pro Asn Arg Pro Gly Val
 260 265 270
 Tyr Thr Asn Ile Ser His His Phe Glu Trp Ile Gln Lys Leu Met
 275 280 285
 Ala Gln Ser Gly Met Ser Gln Pro Asp Pro Ser Trp Pro Leu Leu
 290 295 300
 Phe Phe Pro Leu Leu Trp Ala Leu Pro Leu Leu Gly Pro Val
 305 310

<210> 258

<211> 2427

<212> DNA

<213> Homo Sapien

<400> 258

cccacgcgtc cgccggacgcg tggaaaggac tccaaggctg 50

cctcctaggg ctcttgc(ccc tcatccctc tggcaa atgc agttac agcc 100
 cgagccccga ccagcgagg acgctgcccc caggctgggt gtccctggc 150
 cgtcgccacc ctgaggaaga gctgagtctc accttgc(ccc tgagac agca 200
 gaatgtggaa agactctcg agctggtgca ggctgtgtcg gatcccagct 250
 ctccctcaata cgaaaaatac ctgaccctag agaatgtggc tcatctggc 300
 aggccatccc cactgaccct ccacacggtg caaaaatggc tcttggcagc 350
 cgagccccag aagtgcatt ctgtgatcac acaggactt ctgacttgc 400
 ggctgagcat ccgacaagca gagctgctgc tccctggggc tgagttcat 450
 cactatgtgg gaggacctac gaaacccat gtttaaggc cccacatcc 500
 ctaccagctt ccacaggcct tggccccca tgtggacttt gtggggggac 550
 tgcaccgtt tcccccaaca tcatccctga ggcaacgtcc tgagccgcag 600
 gtgacaggga ctgttaggcct gcatctggg gtaacccct ctgtgatccg 650
 taagcgatac aacttgcacct cacaagacgt gggctctggc accagcaata 700
 acagccaagc ctgtgcccag ttccctggagc agtatttcca tgactcagac 750
 ctggctcagt tcatgcgcct ctgcgggtgc aactttgcac atcaggcatac 800
 agtagcccggt gttggac aacaggcccg gggccgggac gggattgagg 850
 ccagtctaga tgtgcagtc ctgatgagtg ctggtgccaa catctccacc 900
 tggcttaca gtagccctgg cccggcatgag ggacaggagc cttccctgca 950
 gtggctcatg ctgctcagta atgagtcagc cctgccacat gtgcatactg 1000
 ttagctatgg agatgtgag gactccctca gcagcgccta catccagccg 1050
 gtcaacactg agctcatgaa ggctgcccgt cggggctca ccctgctctt 1100
 cgccctcagggt gacagtgggg cccgggtttg gtctgtctct ggaagacacc 1150
 agttccgccc tacctccct gcctccagcc cctatgtc(ac cacagtggga 1200
 ggcacatcct tccaggaacc tttccatc acaa atgaaa ttgttgacta 1250
 tatcagtgg ggtggctca gcaatgtgtt cccacggcct tcataccagg 1300
 aggaagctgt aacgaagttc ctgagctcta gcccccacct gccaccatcc 1350
 agttacttca atgccagtg ccgtgcctac ccagatgtgg ctgcacttac 1400

tcatggctac tgggtggtca gcaacagagt gcccattcca tgggtgtccg 1450
 gaacctcgcc ctctactcca gtgtttgggg ggatcctata cttgatcaat 1500
 gagcacagga tccttagtgg ccgcggccct cttggcttc tcaacccaag 1550
 gctctaccag cagcatgggg caggtctctt tcatgttaacc cgtggctgcc 1600
 atgagtcctg tctggatgaa gaggttagagg gccagggttt ctgctctggt 1650
 cctggctggg atcctgtaac aggctgggg aacccaactt cccagcttg 1700
 ctgaagactc tactcaaccc ctgaccctt cctatcagga gagatggctt 1750
 gtccccctgcc ctgaagctgg cagttcagtc ccttattctg ccctgttgg 1800
 agccctgctg aaccctcaac tattgactgc tgcagacagc ttatccct 1850
 aaccctgaaa tgctgtgagc ttgacttgac tcccaaccct accatgctcc 1900
 atcataactca ggtctcccta ctccctgcctt agattcctca ataagatgct 1950
 gtaacttagca tttttgaat gcctctccct ccgcacatctca tctttcttt 2000
 ttcaatcagg cttttccaaa gggttgtata cagactctgt gcactatttc 2050
 acttgatatt cattcccaa ttcactgcaa ggagacctct actgtcaccc 2100
 ttactcttt cctaccctga catccagaaa caatggcctc cagtgcatac 2150
 ttctcaatct ttgctttatg gcctttccat catagttgcc cactccctct 2200
 ccttacttag cttccagggtc ttaacttctc tgactactct tgtcttcctc 2250
 tctcatcaat ttctgcttct tcattggatg ctgacccctca ttgctccatt 2300
 ttagatttt tgctcttctc agtttactca ttgtccccctg gaacaaatca 2350
 ctgacatctca caaccattac catctacta aataagactt tctatccaat 2400
 aatgattgat acctcaaatg taaaaaa 2427

<210> 259

<211> 556

<212> PRT

<213> Homo Sapien

<400> 259

Met	Gly	Leu	Gln
Ala	Cys	Leu	Leu
Leu	Gly	Leu	Phe
		Ala	Leu
		Ile	Leu

1	5	10	15
---	---	----	----

Ser	Gly	Lys	Cys
Ser	Tyr	Ser	Pro
		Glu	Pro
		Asp	Gln
			Arg
			Thr

20	25	30
Leu Pro Pro Gly Trp Val Ser Leu Gly Arg Ala Asp Pro Glu Glu		
35	40	45
Glu Leu Ser Leu Thr Phe Ala Leu Arg Gln Gln Asn Val Glu Arg		
50	55	60
Leu Ser Glu Leu Val Gln Ala Val Ser Asp Pro Ser Ser Pro Gln		
65	70	75
Tyr Gly Lys Tyr Leu Thr Leu Glu Asn Val Ala Asp Leu Val Arg		
80	85	90
Pro Ser Pro Leu Thr Leu His Thr Val Gln Lys Trp Leu Leu Ala		
95	100	105
Ala Gly Ala Gln Lys Cys His Ser Val Ile Thr Gln Asp Phe Leu		
110	115	120
Thr Cys Trp Leu Ser Ile Arg Gln Ala Glu Leu Leu Leu Pro Gly		
125	130	135
Ala Glu Phe His His Tyr Val Gly Gly Pro Thr Glu Thr His Val		
140	145	150
Val Arg Ser Pro His Pro Tyr Gln Leu Pro Gln Ala Leu Ala Pro		
155	160	165
His Val Asp Phe Val Gly Gly Leu His Arg Phe Pro Pro Thr Ser		
170	175	180
Ser Leu Arg Gln Arg Pro Glu Pro Gln Val Thr Gly Thr Val Gly		
185	190	195
Leu His Leu Gly Val Thr Pro Ser Val Ile Arg Lys Arg Tyr Asn		
200	205	210
Leu Thr Ser Gln Asp Val Gly Ser Gly Thr Ser Asn Asn Ser Gln		
215	220	225
Ala Cys Ala Gln Phe Leu Glu Gln Tyr Phe His Asp Ser Asp Leu		
230	235	240
Ala Gln Phe Met Arg Leu Phe Gly Gly Asn Phe Ala His Gln Ala		
245	250	255
Ser Val Ala Arg Val Val Gly Gln Gln Gly Arg Gly Arg Ala Gly		
260	265	270
Ile Glu Ala Ser Leu Asp Val Gln Tyr Leu Met Ser Ala Gly Ala		
275	280	285

195 190 185 180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 1

Asn Ile Ser Thr Trp Val Tyr Ser Ser Pro Gly Arg His Glu Gly
 290 295 300
 Gln Glu Pro Phe Leu Gln Trp Leu Met Leu Leu Ser Asn Glu Ser
 305 310 315
 Ala Leu Pro His Val His Thr Val Ser Tyr Gly Asp Asp Glu Asp
 320 325 330
 Ser Leu Ser Ser Ala Tyr Ile Gln Arg Val Asn Thr Glu Leu Met
 335 340 345
 Lys Ala Ala Ala Arg Gly Leu Thr Leu Leu Phe Ala Ser Gly Asp
 350 355 360
 Ser Gly Ala Gly Cys Trp Ser Val Ser Gly Arg His Gln Phe Arg
 365 370 375
 Pro Thr Phe Pro Ala Ser Ser Pro Tyr Val Thr Thr Val Gly Gly
 380 385 390
 Thr Ser Phe Gln Glu Pro Phe Leu Ile Thr Asn Glu Ile Val Asp
 395 400 405
 Tyr Ile Ser Gly Gly Phe Ser Asn Val Phe Pro Arg Pro Ser
 410 415 420
 Tyr Gln Glu Glu Ala Val Thr Lys Phe Leu Ser Ser Ser Pro His
 425 430 435
 Leu Pro Pro Ser Ser Tyr Phe Asn Ala Ser Gly Arg Ala Tyr Pro
 440 445 450
 Asp Val Ala Ala Leu Ser Asp Gly Tyr Trp Val Val Ser Asn Arg
 455 460 465
 Val Pro Ile Pro Trp Val Ser Gly Thr Ser Ala Ser Thr Pro Val
 470 475 480
 Phe Gly Gly Ile Leu Ser Leu Ile Asn Glu His Arg Ile Leu Ser
 485 490 495
 Gly Arg Pro Pro Leu Gly Phe Leu Asn Pro Arg Leu Tyr Gln Gln
 500 505 510
 His Gly Ala Gly Leu Phe Asp Val Thr Arg Gly Cys His Glu Ser
 515 520 525
 Cys Leu Asp Glu Glu Val Glu Gly Gln Gly Phe Cys Ser Gly Pro
 530 535 540
 Gly Trp Asp Pro Val Thr Gly Trp Gly Thr Pro Thr Ser Gln Leu
 545 550 555

Cys

<210> 260
<211> 1638
<212> DNA
<213> Homo Sapien

<400> 260
gccgcgcgt ctctccggc gcccacacct gtctgagcgg cgcagcgagc 50
cgccggcccg gggggctgct cggcgcgaa cagtgcgtt catggcagg 100
attccagggc tcctcttcct tctttttt ctgctctgtt ctgttggca 150
agtgagccct tacagtgccc cctggaaacc cacttggct gcataaccgc 200
tccctgtcgt cttgccccag tctaccctca atttagccaa gccagacttt 250
ggagccgaag ccaaattaga agtatcttct tcatgtggac cccagtgtca 300
taaggaaact ccactgccc cttacgaaga ggccaagcaa tatctgttctt 350
atgaaacgct ctatgccaat ggcagccgca cagagacgca ggtgggcatc 400
tacatcctca gcagtagtgg agatggggcc caacaccgag actcagggtc 450
ttcaggaaag tctcgaagga agcggcagat ttatggctat gacagcagg 500
tcagcatttt tggaaaggac ttccctgctca actaccctt ctcaacatca 550
gtgaagttat ccacgggctg caccggcacc ctgggtggcag agaagcatgt 600
cctcacagct gcccactgca tacacgatgg aaaaacctat gtgaaaggaa 650
cccagaagct tcgagtgccc ttccctaaagc ccaagttaa agatgggttgt 700
cgaggggcca acgactccac ttccagccatg cccgagcaga tgaaattca 750
gtggatccgg gtgaaacgca cccatgtgcc caagggttgg atcaagggca 800
atgccaatga catcgccatg gattatgatt atgccccttc ggaactcaaa 850
aagccccaca agagaaaatt tatgaagatt ggggtgagcc ttccctgctaa 900
gcagctgcca gggggcagaa ttccattctc tggttatgac aatgaccgac 950
caggcaattt ggtgtatcgc ttctgtgacg tcaaagacga gacctatgac 1000
ttgctctacc agcaatgcga tgcccgccca ggggcccagcg ggtctggggt 1050
ctatgtgagg atgtggaaga gacagcagca gaagtgggag cgaaaaattha 1100

ttggcattt ttcagggcac cagtgggtgg acatgaatgg ttccccacag 1150
 gatttcaacg tggctgtcag aatcactcct ctcaaatacg cccagatttg 1200
 ctattggatt aaaggaaaact acctggattt tagggagggg tgacacagtg 1250
 ttccctcctg gcagcaatta agggtcttca tgttcttatt ttaggagagg 1300
 ccaaattgtt ttttgcatt ggcgtgcaca cgtgtgtgtg tgtgtgtgtg 1350
 tgtgtgttaag gtgtcttata atcttttacc tatttcttac aattgcaaga 1400
 tgactggctt tactatttga aaactggttt gtgtatcata tcatastatca 1450
 tttaaggcgt ttgaaggcat acttttgcatt agaaataaaaa aaaatactga 1500
 tttggggcaa tgaggaatat ttgacaatta agttaatctt cacgttttg 1550
 caaactttga tttttatttc atctgaacctt gtttcaaaga tttatattaa 1600
 atatttggca tacaagagat atgaaaaaaaaaaaaaaa 1638

<210> 261

<211> 383

<212> PRT

<213> Homo Sapien

<400> 261

Met	Ala	Gly	Ile	Pro	Gly	Leu	Leu	Phe	Leu	Leu	Phe	Leu	Leu
1													15

Cys	Ala	Val	Gly	Gln	Val	Ser	Pro	Tyr	Ser	Ala	Pro	Trp	Lys	Pro
														30
20														

Thr	Trp	Pro	Ala	Tyr	Arg	Leu	Pro	Val	Val	Leu	Pro	Gln	Ser	Thr
														45
35														

Leu	Asn	Leu	Ala	Lys	Pro	Asp	Phe	Gly	Ala	Glu	Ala	Lys	Leu	Glu
														60
50														

Val	Ser	Ser	Ser	Cys	Gly	Pro	Gln	Cys	His	Lys	Gly	Thr	Pro	Leu
														75
65														

Pro	Thr	Tyr	Glu	Glu	Ala	Lys	Gln	Tyr	Leu	Ser	Tyr	Glu	Thr	Leu
														90
80														

Tyr	Ala	Asn	Gly	Ser	Arg	Thr	Glu	Thr	Gln	Val	Gly	Ile	Tyr	Ile
														105
95														

Leu	Ser	Ser	Ser	Gly	Asp	Gly	Ala	Gln	His	Arg	Asp	Ser	Gly	Ser
														120
110														

Ser Gly Lys Ser Arg Arg Lys Arg Gln Ile Tyr Gly Tyr Asp Ser
 125 130 135
 Arg Phe Ser Ile Phe Gly Lys Asp Phe Leu Leu Asn Tyr Pro Phe
 140 145 150
 Ser Thr Ser Val Lys Leu Ser Thr Gly Cys Thr Gly Thr Leu Val
 155 160 165
 Ala Glu Lys His Val Leu Thr Ala Ala His Cys Ile His Asp Gly
 170 175 180
 Lys Thr Tyr Val Lys Gly Thr Gln Lys Leu Arg Val Gly Phe Leu
 185 190 195
 Lys Pro Lys Phe Lys Asp Gly Gly Arg Gly Ala Asn Asp Ser Thr
 200 205 210
 Ser Ala Met Pro Glu Gln Met Lys Phe Gln Trp Ile Arg Val Lys
 215 220 225
 Arg Thr His Val Pro Lys Gly Trp Ile Lys Gly Asn Ala Asn Asp
 230 235 240
 Ile Gly Met Asp Tyr Asp Tyr Ala Leu Leu Glu Leu Lys Lys Pro
 245 250 255
 His Lys Arg Lys Phe Met Lys Ile Gly Val Ser Pro Pro Ala Lys
 260 265 270
 Gln Leu Pro Gly Gly Arg Ile His Phe Ser Gly Tyr Asp Asn Asp
 275 280 285
 Arg Pro Gly Asn Leu Val Tyr Arg Phe Cys Asp Val Lys Asp Glu
 290 295 300
 Thr Tyr Asp Leu Leu Tyr Gln Gln Cys Asp Ala Gln Pro Gly Ala
 305 310 315
 Ser Gly Ser Gly Val Tyr Val Arg Met Trp Lys Arg Gln Gln Gln
 320 325 330
 Lys Trp Glu Arg Lys Ile Ile Gly Ile Phe Ser Gly His Gln Trp
 335 340 345
 Val Asp Met Asn Gly Ser Pro Gln Asp Phe Asn Val Ala Val Arg
 350 355 360
 Ile Thr Pro Leu Lys Tyr Ala Gln Ile Cys Tyr Trp Ile Lys Gly
 365 370 375
 Asn Tyr Leu Asp Cys Arg Glu Gly
 380

<210> 262
<211> 1378
<212> DNA
<213> Homo Sapien

<400> 262
gcacatcgccct gggtctctcg agcctgctgc ctgtctcccc gccccaccag 50
ccatggtggt ttctggagcg ccccccagccc tgggtggggg ctgtctcgcc 100
accttcacct ccctgctgct gctggcgctcg acagccatcc tcaatgcggc 150
caggataacct gttccccag cctgtggaa gccccagcag ctgaaccggg 200
ttgtggcgcc cgaggacacgc actgacacgcg agtggccctg gatcgtgagc 250
atccagaaga atgggaccca ccactgcgcga ggttctctgc tcaccagccg 300
ctgggtgatc actgctgccc actgtttcaa ggacaacctg aacaaaccat 350
acctgttctc tgtgctgctg ggggcctggc agctgggaa ccctggctct 400
cggtcccaga aggtgggtgt tgccctgggtg gagccccacc ctgtgtattc 450
ctggaaggaa ggtgcctgtg cagacattgc cctggtgctg ctcgagcgt 500
ccatacagtt ctcagagcgg gtcctgcccc tctgcctacc tgatgcctct 550
atccacactcc ctccaaacac ccactgctgg atctcaggct gggggagcat 600
ccaagatgga gttcccttgc cccaccctca gaccctgcag aagctgaagg 650
ttcctatcat cgactcgaa gtctgcagcc atctgtactg gcggggagca 700
ggacagggac ccatcactga ggacatgctg tgtgcggct acttggaggg 750
ggagcgggat gcttgtctgg gcgactccgg gggccccctc atgtgccagg 800
tggacggcgc ctggctgctg gccggcatca tcagctgggg cgagggctgt 850
gccgagcgcga acaggccccgg ggtctacatc agcctctctg cgcaccgctc 900
ctgggtggag aagatcgtgc aaggggtgca gctccgcggg cgcgctcagg 950
gggggtggggc cctcaggca ccgagccagg gctctggggc cgccgcgcgc 1000
tccttagggcg cagcgggacg cggggctcgg atctgaaagg cggccagatc 1050
cacatctgga tctggatctg cggcgccctc gggcggttcc ccccgccgta 1100
aataggctca tctacacctta cctctggggg cccggacggc tgctgcggaa 1150

agaaaaacccc ctccccgacc cgcccgacgg cctcaggccc ccctccaagg 1200
 catcaggccc cgcccaacgg cctcatgtcc cgcggccac gacttccggc 1250
 cccgcccccg ggccccagcg cttttgtgta tataaatgtt aatgattttt 1300
 ataggtattt gtaaccctgc ccacatatct tatttattcc tccaatttca 1350
 ataaaattttt tattctccaa aaaaaaaaa 1378

<210> 263
 <211> 317
 <212> PRT
 <213> Homo Sapien

<400> 263

Met	Val	Val	Ser	Gly	Ala	Pro	Pro	Ala	Leu	Gly	Gly	Gly	Cys	Leu	
1					5				10					15	
Gly	Thr	Phe	Thr	Ser	Leu	Leu	Leu	Leu	Ala	Ser	Thr	Ala	Ile	Leu	
					20				25					30	
Asn	Ala	Ala	Arg	Ile	Pro	Val	Pro	Pro	Ala	Cys	Gly	Lys	Pro	Gln	
					35				40					45	
Gln	Leu	Asn	Arg	Val	Val	Gly	Gly	Glu	Asp	Ser	Thr	Asp	Ser	Glu	
					50				55					60	
Trp	Pro	Trp	Ile	Val	Ser	Ile	Gln	Lys	Asn	Gly	Thr	His	His	Cys	
					65				70					75	
Ala	Gly	Ser	Leu	Leu	Thr	Ser	Arg	Trp	Val	Ile	Thr	Ala	Ala	His	
					80				85					90	
Cys	Phe	Lys	Asp	Asn	Leu	Asn	Lys	Pro	Tyr	Leu	Phe	Ser	Val	Leu	
					95				100					105	
Leu	Gly	Ala	Trp	Gln	Leu	Gly	Asn	Pro	Gly	Ser	Arg	Ser	Gln	Lys	
					110				115					120	
Val	Gly	Val	Ala	Trp	Val	Glu	Pro	His	Pro	Val	Tyr	Ser	Trp	Lys	
					125				130					135	
Glu	Gly	Ala	Cys	Ala	Asp	Ile	Ala	Leu	Val	Arg	Leu	Glu	Arg	Ser	
					140				145					150	
Ile	Gln	Phe	Ser	Glu	Arg	Val	Leu	Pro	Ile	Cys	Leu	Pro	Asp	Ala	
					155				160					165	
Ser	Ile	His	Leu	Pro	Pro	Asn	Thr	His	Cys	Trp	Ile	Ser	Gly	Trp	
					170				175					180	

Gly Ser Ile Gln Asp Gly Val Pro Leu Pro His Pro Gln Thr Leu
185 190 195
Gln Lys Leu Lys Val Pro Ile Ile Asp Ser Glu Val Cys Ser His
200 205 210
Leu Tyr Trp Arg Gly Ala Gly Gln Gly Pro Ile Thr Glu Asp Met
215 220 225
Leu Cys Ala Gly Tyr Leu Glu Gly Glu Arg Asp Ala Cys Leu Gly
230 235 240
Asp Ser Gly Gly Pro Leu Met Cys Gln Val Asp Gly Ala Trp Leu
245 250 255
Leu Ala Gly Ile Ile Ser Trp Gly Glu Gly Cys Ala Glu Arg Asn
260 265 270
Arg Pro Gly Val Tyr Ile Ser Leu Ser Ala His Arg Ser Trp Val
275 280 285
Glu Lys Ile Val Gln Gly Val Gln Leu Arg Gly Arg Ala Gln Gly
290 295 300
Gly Gly Ala Leu Arg Ala Pro Ser Gln Gly Ser Gly Ala Ala Ala
305 310 315

Arg Ser

<210> 264

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 264

gtccgcaagg atgcctacat gttc 24

<210> 265

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 265

gcagaggtgt ctaaggttg 19

<210> 266

<211> 24

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 266
agctctagac caatgccagc ttcc 24

<210> 267
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 267
gccaccaact cctgcaagaa cttctcagaa ctgcccctgg tcatg 45

<210> 268
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 268
gggaaattca ccctatgaca ttgcc 25

<210> 269
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 269
aatgccctg caagcatcaa ctgg 24

<210> 270
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 270
gcacctgtca cctacactaa acacatccag cccatctgtc tccaggcctc 50

<210> 271
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 271
gcggaagggc agaatggac tccaaag 26

<210> 272
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 272
cagccctgcc acatgtgc 18

<210> 273
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 273
tactgggtgg tcagcaac 18

<210> 274
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 274
ggcgaagagc agggtgagac cccg 24

<210> 275
<211> 45

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 275
gcctctatcc tctctggcaa atgcagttac agcccgagc ccgac 45

<210> 276
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 276
ggcaggat tccagggttc c 21

<210> 277
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 277
ggctatgaca gcaggttc 18

<210> 278
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 278
tgacaatgac cgaccagg 18

<210> 279
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 279
gcatcgcatt gctggtagag caag 24

<210> 280
<211> 45
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 280
ttacagtgcc ccctggaaac ccacttggcc tgcataaccgc ctccc 45

<210> 281

<211> 34

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 281
cgtctcgagc gtcataaca gttccattgc ccca 34

<210> 282

<211> 61

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 282

tggaggggga gcgggatgct tgtctggcg actccggggg cccccatcg 50

tgccagggtgg a 61

<210> 283

<211> 119

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 283

ccctcagacc ctgcagaagc tgaaggttcc tatcatcgac tcggaagtct 50

gcagccatct gtactggcg ggagcaggac agggacccat cactgaggac 100

atgctgtgtg ccggctact 119

<210> 284

<211> 1875

<212> DNA

<213> Homo Sapien

<400> 284

gacggctggc caccatgcac ggctcctgca gttccctgat gttctgctg 50

ccgctactgc tactgctggc ggccaccaca ggccccgttg gagccctcac 100

agatgaggag aaacgttga tggtgagct gcacaaccc taccgggccc 150
aggatatcccc gacggcctca gacatgctgc acatgagatg ggacgaggag 200
ctggccgcct tcgccaaggc ctacgcacgg cagtgcgtgt gggccacaa 250
caaggagcgc gggcgccgag gcgagaatct gttcgccatc acagacgagg 300
gcatggacgt gccgctggcc atggaggagt ggcaccacga gcgtgagcac 350
tacaacctca gcgcgcac 400
cacgcaggtg gtagggcca agacagagag gatcggctgt gttcccact 450
tctgtgagaa gctccagggt gttgaggaga ccaacatcga attactggtg 500
tgcaactatg agcctccggg gaacgtgaag gggaaacggc cttaccagga 550
ggggactccg tgctccaat gtccctctgg ctaccactgc aagaactccc 600
tctgtgaacc catcgaaagc ccgaaagatg ctcaggattt gccttacctg 650
gtaactgagg ccccatcctt ccggcgact gaagcatcag actctaggaa 700
aatgggtact ctttcttccc tagcaacggg gattccggct ttcttggtaa 750
cagaggctc aggctccctg gcaaccaagg ctctgcctgc tgtggaaacc 800
caggccccaa ctcccttagc aacgaaagac ccgcctcca tggcaacaga 850
ggctccaccc tgcgtaacaa ctgaggtccc ttccatccgc 900
gcctgcctc cttggatgag gagccagttt cttcccttccaa atcgacccat 950
gttccatcc caaaatcagc agacaaagtg acagacaaaa caaaagtgcc 1000
ctcttaggagc ccagagaact ctctggaccc caagatgtcc ctgacagggg 1050
caaggaaact cttcccttccaa gcccaggagg aggctgaggg tgaggctgag 1100
ttgccttccctt ccagtgaggt cttggcctca gttttccag cccaggacaa 1150
gccagggtgag ctgcaggcca cactggacca cacggggcac acctcctcca 1200
agtccctgccc caatttcccc aatacctctg ccacccgctaa tgccacgggt 1250
gggcgtgccc tggctctgca gtcgtccttgc ccaggtgcag agggccctga 1300
caaggcttagc gttgtgtcag ggctgaactc gggccctgggt catgtgtggg 1350
gccttccttccctt gggactactg ctctgcctc ctctgggtt ggctggaaatc 1400

ttctgaatgg gataccactc aaagggtgaa gaggtcagct gtcctcctgt 1450
 catttcccc accctgtccc cagcccctaa acaagatact tcttggtaa 1500
 ggccctccgg aaggaaagg ctacggggca tgtgcctcat cacaccatcc 1550
 atcctggagg cacaaggcct ggctggctgc gagtcagga ggccgcctga 1600
 ggactgcaca ccgggcccac acctctcctg cccctccctc ctgagtcctg 1650
 ggggtggag gatttggagg agctcactgc ctacctggcc tggggctgtc 1700
 tgcccacaca gcatgtgcgc tctccctgag tgcctgtgt a gctggggatg 1750
 gggattccta gggcagatg aaggacaagc cccactggag tggggttctt 1800
 tgagtgggg aggcaaggac gagggaaagga aagtaactcc tgactctcca 1850
 ataaaaaacct gtccaaacctg tgaaa 1875

<210> 285

<211> 463

<212> PRT

<213> Homo Sapien

<400> 285

Met His Gly Ser Cys Ser Phe Leu Met Leu Leu Leu Pro Leu Leu			
1	5	10	15

Leu Leu Leu Val Ala Thr Thr Gly Pro Val Gly Ala Leu Thr Asp			
20	25	30	

Glu Glu Lys Arg Leu Met Val Glu Leu His Asn Leu Tyr Arg Ala			
35	40	45	

Gln Val Ser Pro Thr Ala Ser Asp Met Leu His Met Arg Trp Asp			
50	55	60	

Glu Glu Leu Ala Ala Phe Ala Lys Ala Tyr Ala Arg Gln Cys Val			
65	70	75	

Trp Gly His Asn Lys Glu Arg Gly Arg Arg Gly Glu Asn Leu Phe			
80	85	90	

Ala Ile Thr Asp Glu Gly Met Asp Val Pro Leu Ala Met Glu Glu			
95	100	105	

Trp His His Glu Arg Glu His Tyr Asn Leu Ser Ala Ala Thr Cys			
110	115	120	

Ser Pro Gly Gln Met Cys Gly His Tyr Thr Gln Val Val Trp Ala			
125	130	135	

Ala Thr Ala Asn Ala Thr Gly Gly Arg Ala Leu Ala Leu Gln Ser
 410 415 420

Ser Leu Pro Gly Ala Glu Gly Pro Asp Lys Pro Ser Val Val Ser
 425 430 435

Gly Leu Asn Ser Gly Pro Gly His Val Trp Gly Pro Leu Leu Gly
 440 445 450

Leu Leu Leu Leu Pro Pro Leu Val Leu Ala Gly Ile Phe
 455 460

<210> 286

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 286

tcctgcagtt tcctgatgc 19

<210> 287

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 287

ctcatattgc acaccagtaa ttcg 24

<210> 288

<211> 45

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 288

atgaggagaa acgtttgatg gtggagctgc acaacctcta ccggg 45

<210> 289

<211> 3662

<212> DNA

<213> Homo Sapien

<400> 289

gtaactgaag tcaggcttt catttggaa gccccctcaa cagaattcgg 50

tcattctcca agttatggtg gacgtacttc tgggttctc cctctgctg 100
cttttcaca ttagcagacc ggacttaagt cacaacagat tatctttcat 150
caaggcaagt tccatgagcc accttcaaag cttcgagaa gtgaaaactga 200
acaacaatga attggagacc attccaaatc tgggaccagt ctggcaaat 250
attacacttc ttccttggc tgaaaacagg attgtgaaa tactccctga 300
acatctgaaa gagttcagt cccttgaaac ttggacacctt agcagcaaca 350
atattcaga gtcctaaact gcattccag ccctacagct caaatatctg 400
tatctcaaca gcaaccgagt cacatcaatg gaacctgggt atttgacaa 450
tttggccaac acactccttg tgttaaagct gaacaggaac cgaatctcag 500
ctatcccacc caagatgtt aaactgcacc aactgcaaca tctcgaattt 550
aaccgaaaca agattaaaaa tggatggc ctgacattcc aaggccttgg 600
tgctctgaag tctctgaaaa tgaaaagaaa tggagtaacg aaacttatgg 650
atggagctt ttggggctg agcaacatgg aaatttgca gctggaccat 700
aacaacctaa cagagattac caaaggctgg cttaacggct tgctgatgct 750
gcaggaactt catctcagcc aaaatgccat caacaggatc agccctgatg 800
cctggagtt ctgcagaag ctcagtgagc tggacctaac tttcaatcac 850
ttatcaaggt tagatgattc aagttccctt ggcctaagct tactaaatac 900
actgcacatt gggacaaca gagtcagcta cattgctgat tggccttcc 950
gggggcttcc cagttaaag actttggatc tgaagaacaa tgaaatttcc 1000
tggactattt aagacatgaa tggtgcttc tctggcttg acaaactgag 1050
gcgactgata ctccaaggaa atcggatccg ttcttattact aaaaaagcct 1100
tcactggttt ggtgcattt gggatcttag acctgagtga caacgcaatc 1150
atgtctttac aaggcaatgc atttcacaa atgaagaaac tgcaacaatt 1200
gcatttaat acatcaagcc ttttgtgcga ttgcccagta aaatggctcc 1250
cacagtgggt ggcggaaaac aactttcaga gctttgtaaa tgccagttgt 1300
gcccatcctc agctgataaa aggaagaagc attttgctg ttagcccaga 1350

tggcttgtg tgtgatgatt ttcccaaacc ccagatcacg gttcagccag 1400
 aaacacagtc ggcaataaaa ggttccaatt tgagttcat ctgctcagct 1450
 gccagcagca gtgattcccc aatgactttt gcttgaaaaa aagacaatga 1500
 actactgcat gatgctgaaa tggaaaatta tgcacacctc cgggcccaga 1550
 gtggcgaggt gatggagtat accaccatcc ttccgctgcg cgaggtggaa 1600
 tttgccagtg agggaaata tcagtgtgtc atctccaatc actttggttc 1650
 atctactct gtcaaagcca agcttacagt aaatatgctt ccctcattca 1700
 ccaagacccc catggatctc accatccgag ctggggccat ggcacgcttg 1750
 gagtgtgctg ctgtggggca cccagcccc cagatagcct ggcagaaggaa 1800
 tggggcaca gacttcccag ctgcacggga gagacgcattg catgtgatgc 1850
 ccgaggatga cgtgttcttt atcgtggatg tgaagataga ggacattggg 1900
 gtatacagct gcacagctca gaacagtgc ggaagtattt cagcaaatgc 1950
 aactctgact gtcctagaaa caccatcatt tttcgccca ctgttggacc 2000
 gaactgtaac caagggagaa acagccgtcc tacagtgcatt tgctggagga 2050
 agccctcccc ctaaactgaa ctggaccaaa gatgatagcc cattgggtggt 2100
 aaccgagagg cactttttg cagcaggcaa tcagcttctg attattgtgg 2150
 actcagatgt cagtgtatgc gggaaataca catgtgagat gtctaaccacc 2200
 cttggcactg agagaggaaa cgtgcgcctc agtgtgatcc ccactccaaac 2250
 ctgcgactcc cctcagatga cagccccatc gttagacgt gacggatggg 2300
 ccactgtggg tgcgtgatc atagccgtgg tttgctgtgt ggtggcacg 2350
 tcactcgtgt ggggtgtcat catataccac acaaggcgga ggaatgaaga 2400
 ttgcagcatt accaacacag atgagaccaa cttgccagca gatattccctt 2450
 gttatgttc atctcagggaa acgttagctg acaggcagga tgggtacgtg 2500
 tcttcagaaa gtggaagcca ccaccagttt gtcacatctt caggtgctgg 2550
 atttttctta ccacaacatg acagtagtgg gacctgccat attgacaata 2600
 gcagtgaagc tgatgtggaa gctgccacag atctgttctt ttgtccgttt 2650
 ttgggatcca caggccctat gtatgtaa ggaaatgtgt atggctcaga 2700

tcctttgaa acatatcata caggttgcag tcctgaccca agaacagtt 2750
 taatggacca ctatgagccc agttacataa agaaaaagga gtgctaccca 2800
 tggtcacatc cttcagaaga atccctgcgaa cggagcttca gtaatatac 2850
 gtggccttca catgtgagga agtacttaa cactagttac tctcacaatg 2900
 aaggacctgg aatgaaaaat ctgtgtctaa acaagtccctc ttttagattt 2950
 agtgcaaatc cagagccagc gtcgggtgcc tcgagtaatt ctttcatggg 3000
 tacctttgga aaagctctca ggagacctca cctagatgcc tattcaagct 3050
 ttggacagcc atcagattgt cagccaagag ctttttattt gaaagctcat 3100
 tctccccag acttggactc tgggtcagag gaagatggga aagaaaggac 3150
 agattttcag gaagaaaatc acatttgtac cttaaacacag acttttagaaa 3200
 actacaggac tccaaattt cagtcttatg acttggacac atagactgaa 3250
 tgagacccaa ggaaaagctt aacatactac ctcaagtgaa cttttattta 3300
 aaagagagag aatcttatgt ttttaaatg gagttatgaa ttttaaaagg 3350
 ataaaaatgc tttatttata cagatgaacc aaaattacaa aaagttatga 3400
 aaatttttat actggaaatg atgctcatat aagaatacct ttttaaacta 3450
 tttttaact ttgtttatg caaaaaagta tcttacgtaa attaatgata 3500
 taaatcatga ttatTTATG tattttata atgccagatt tcttttatg 3550
 gaaaatgagt tactaaagca ttttaataa tacctgcctt gtaccattt 3600
 ttAAATAGAA gttacttcat tatatttgc acattatatt taataaaatg 3650
 tgtcaatttgg aa 3662

<210> 290
 <211> 1059
 <212> PRT
 <213> Homo Sapien

<400> 290
 Met Val Asp Val Leu Leu Leu Phe Ser Leu Cys Leu Leu Phe His
 1 5 10 15
 Ile Ser Arg Pro Asp Leu Ser His Asn Arg Leu Ser Phe Ile Lys
 20 25 30

Ala Ser Ser Met Ser His Leu Gln Ser Leu Arg Glu Val Lys Leu
 35 40 45

Asn Asn Asn Glu Leu Glu Thr Ile Pro Asn Leu Gly Pro Val Ser
 50 55 60

Ala Asn Ile Thr Leu Leu Ser Leu Ala Gly Asn Arg Ile Val Glu
 65 70 75

Ile Leu Pro Glu His Leu Lys Glu Phe Gln Ser Leu Glu Thr Leu
 80 85 90

Asp Leu Ser Ser Asn Asn Ile Ser Glu Leu Gln Thr Ala Phe Pro
 95 100 105

Ala Leu Gln Leu Lys Tyr Leu Tyr Leu Asn Ser Asn Arg Val Thr
 110 115 120

Ser Met Glu Pro Gly Tyr Phe Asp Asn Leu Ala Asn Thr Leu Leu
 125 130 135

Val Leu Lys Leu Asn Arg Asn Arg Ile Ser Ala Ile Pro Pro Lys
 140 145 150

Met Phe Lys Leu Pro Gln Leu Gln His Leu Glu Leu Asn Arg Asn
 155 160 165

Lys Ile Lys Asn Val Asp Gly Leu Thr Phe Gln Gly Leu Gly Ala
 170 175 180

Leu Lys Ser Leu Lys Met Gln Arg Asn Gly Val Thr Lys Leu Met
 185 190 195

Asp Gly Ala Phe Trp Gly Leu Ser Asn Met Glu Ile Leu Gln Leu
 200 205 210

Asp His Asn Asn Leu Thr Glu Ile Thr Lys Gly Trp Leu Tyr Gly
 215 220 225

Leu Leu Met Leu Gln Glu Leu His Leu Ser Gln Asn Ala Ile Asn
 230 235 240

Arg Ile Ser Pro Asp Ala Trp Glu Phe Cys Gln Lys Leu Ser Glu
 245 250 255

Leu Asp Leu Thr Phe Asn His Leu Ser Arg Leu Asp Asp Ser Ser
 260 265 270

Phe Leu Gly Leu Ser Leu Leu Asn Thr Leu His Ile Gly Asn Asn
 275 280 285

Arg Val Ser Tyr Ile Ala Asp Cys Ala Phe Arg Gly Leu Ser Ser

290	295	300
Leu Lys Thr Leu Asp Leu Lys Asn Asn Glu Ile Ser Trp Thr Ile		
305	310	315
Glu Asp Met Asn Gly Ala Phe Ser Gly Leu Asp Lys Leu Arg Arg		
320	325	330
Leu Ile Leu Gln Gly Asn Arg Ile Arg Ser Ile Thr Lys Lys Ala		
335	340	345
Phe Thr Gly Leu Asp Ala Leu Glu His Leu Asp Leu Ser Asp Asn		
350	355	360
Ala Ile Met Ser Leu Gln Gly Asn Ala Phe Ser Gln Met Lys Lys		
365	370	375
Leu Gln Gln Leu His Leu Asn Thr Ser Ser Leu Leu Cys Asp Cys		
380	385	390
Gln Leu Lys Trp Leu Pro Gln Trp Val Ala Glu Asn Asn Phe Gln		
395	400	405
Ser Phe Val Asn Ala Ser Cys Ala His Pro Gln Leu Leu Lys Gly		
410	415	420
Arg Ser Ile Phe Ala Val Ser Pro Asp Gly Phe Val Cys Asp Asp		
425	430	435
Phe Pro Lys Pro Gln Ile Thr Val Gln Pro Glu Thr Gln Ser Ala		
440	445	450
Ile Lys Gly Ser Asn Leu Ser Phe Ile Cys Ser Ala Ala Ser Ser		
455	460	465
Ser Asp Ser Pro Met Thr Phe Ala Trp Lys Lys Asp Asn Glu Leu		
470	475	480
Leu His Asp Ala Glu Met Glu Asn Tyr Ala His Leu Arg Ala Gln		
485	490	495
Gly Gly Glu Val Met Glu Tyr Thr Thr Ile Leu Arg Leu Arg Glu		
500	505	510
Val Glu Phe Ala Ser Glu Gly Lys Tyr Gln Cys Val Ile Ser Asn		
515	520	525
His Phe Gly Ser Ser Tyr Ser Val Lys Ala Lys Leu Thr Val Asn		
530	535	540
Met Leu Pro Ser Phe Thr Lys Thr Pro Met Asp Leu Thr Ile Arg		
545	550	555

Ala Gly Ala Met Ala Arg Leu Glu Cys Ala Ala Val Gly His Pro
 560 565 570

 Ala Pro Gln Ile Ala Trp Gln Lys Asp Gly Gly Thr Asp Phe Pro
 575 580 585

 Ala Ala Arg Glu Arg Arg Met His Val Met Pro Glu Asp Asp Val
 590 595 600

 Phe Phe Ile Val Asp Val Lys Ile Glu Asp Ile Gly Val Tyr Ser
 605 610 615

 Cys Thr Ala Gln Asn Ser Ala Gly Ser Ile Ser Ala Asn Ala Thr
 620 625 630

 Leu Thr Val Leu Glu Thr Pro Ser Phe Leu Arg Pro Leu Leu Asp
 635 640 645

 Arg Thr Val Thr Lys Gly Glu Thr Ala Val Leu Gln Cys Ile Ala
 650 655 660

 Gly Gly Ser Pro Pro Pro Lys Leu Asn Trp Thr Lys Asp Asp Ser
 665 670 675

 Pro Leu Val Val Thr Glu Arg His Phe Phe Ala Ala Gly Asn Gln
 680 685 690

 Leu Leu Ile Ile Val Asp Ser Asp Val Ser Asp Ala Gly Lys Tyr
 695 700 705

 Thr Cys Glu Met Ser Asn Thr Leu Gly Thr Glu Arg Gly Asn Val
 710 715 720

 Arg Leu Ser Val Ile Pro Thr Pro Thr Cys Asp Ser Pro Gln Met
 725 730 735

 Thr Ala Pro Ser Leu Asp Asp Asp Gly Trp Ala Thr Val Gly Val
 740 745 750

 Val Ile Ile Ala Val Val Cys Cys Val Val Gly Thr Ser Leu Val
 755 760 765

 Trp Val Val Ile Ile Tyr His Thr Arg Arg Asn Glu Asp Cys
 770 775 780

 Ser Ile Thr Asn Thr Asp Glu Thr Asn Leu Pro Ala Asp Ile Pro
 785 790 795

 Ser Tyr Leu Ser Ser Gln Gly Thr Leu Ala Asp Arg Gln Asp Gly
 800 805 810

Tyr Val Ser Ser Glu Ser Gly Ser His His Gln Phe Val Thr Ser
 815 820 825
 Ser Gly Ala Gly Phe Phe Leu Pro Gln His Asp Ser Ser Gly Thr
 830 835 840
 Cys His Ile Asp Asn Ser Ser Glu Ala Asp Val Glu Ala Ala Thr
 845 850 855
 Asp Leu Phe Leu Cys Pro Phe Leu Gly Ser Thr Gly Pro Met Tyr
 860 865 870
 Leu Lys Gly Asn Val Tyr Gly Ser Asp Pro Phe Glu Thr Tyr His
 875 880 885
 Thr Gly Cys Ser Pro Asp Pro Arg Thr Val Leu Met Asp His Tyr
 890 895 900
 Glu Pro Ser Tyr Ile Lys Lys Lys Glu Cys Tyr Pro Cys Ser His
 905 910 915
 Pro Ser Glu Glu Ser Cys Glu Arg Ser Phe Ser Asn Ile Ser Trp
 920 925 930
 Pro Ser His Val Arg Lys Leu Leu Asn Thr Ser Tyr Ser His Asn
 935 940 945
 Glu Gly Pro Gly Met Lys Asn Leu Cys Leu Asn Lys Ser Ser Leu
 950 955 960
 Asp Phe Ser Ala Asn Pro Glu Pro Ala Ser Val Ala Ser Ser Asn
 965 970 975
 Ser Phe Met Gly Thr Phe Gly Lys Ala Leu Arg Arg Pro His Leu
 980 985 990
 Asp Ala Tyr Ser Ser Phe Gly Gln Pro Ser Asp Cys Gln Pro Arg
 995 1000 1005
 Ala Phe Tyr Leu Lys Ala His Ser Ser Pro Asp Leu Asp Ser Gly
 1010 1015 1020
 Ser Glu Glu Asp Gly Lys Glu Arg Thr Asp Phe Gln Glu Glu Asn
 1025 1030 1035
 His Ile Cys Thr Phe Lys Gln Thr Leu Glu Asn Tyr Arg Thr Pro
 1040 1045 1050
 Asn Phe Gln Ser Tyr Asp Leu Asp Thr
 1055

<210> 291

<211> 2906

<212> DNA

<213> Homo Sapien

<400> 291

gggagagaga attgaccatg taaaaggaga cttttttttt tggtggtggt 50
ggctgttggg tgccttgcaa aaatgaagga tgcaggacgc agcttctcc 100
tggAACGAA CGCAATGGAT AAACtGATTG TGCAAGAGAG AAGGAAGAAC 150
gaAGCTTTT CTTGTGAGCC CTGGATCTTA ACACAAATGT GTATATGTGC 200
ACACAGGGAG CATTCAAGAA TGAATAAAC CAGAGTTAGA CCCGCGGGGG 250
TTGGTGTGTT CTGACATAAA TAAATAATCT TAAAGCAGCT GTTCCCCTCC 300
CCACCCCCAA AAAAAGGAT GATTGGAAAT GAAGAACCGA GGATTCACAA 350
AGAAAAAAAGT ATGTTCATTT TTCTCTATAA AGGAGAAAGT GAGCCAAGGA 400
GATATTTTG GAATGAAAAG TTTGGGGCTT TTTTAGTAAA GTAAAGAAC 450
GGTGTGGTGG TGTTTCCTT TCCTTTGAA TTTCCACAA GAGGAGAGGA 500
AATTAATAAT ACATCTGCAA AGAAATTCA GAGAAGAAAA GTTGACCGCG 550
GCAGATTGAG GCATTGATTG GGGGAGAGAA ACCAGCAGAG CACAGTTGGA 600
TTTGTGCCTA TGTTGACTAA AATTGACGGA TAATTGAGT TGGATTTTC 650
TTCATCAACC TCCTTTTTT TAAATTTTA TTCCTTTGG TATCAAGATC 700
ATGCGTTTC TCTTGTTC TT AACCACCTGG ATTCCATCT GGATGTTGCT 750
GTGATCAGTC TGAAATAACAA CTGTTGAAT TCCAGAAGGA CCAACACCAAG 800
ATAAAATTATG AATGTTGAAC AAGATGACCT TACATCCACA GCAGATAATG 850
ATAGGTCTTA GGTTAACAG GGCCCTATT GACCCCTGC TTGTGGTGT 900
GCTGGCTCTT CAACTCTTG TGTTGGCTGG TCTGGTGCAG GCTCAGACCT 950
GCCCTCTGT GTGCTCCTGC AGCAACCAAGT TCAGCAAGGT GATTTGTGTT 1000
CGGAAAAAACC TGCGTGAGGT TCCGGATGGC ATCTCCACCA ACACACGGCT 1050
GCTGAACCTC CATGAGAACCC AAATCCAGAT CATCAAAGTG AACAGCTCA 1100
AGCACTTGAG GCACCTGGAA ATCCTACAGT TGAGTAGGAA CCATATCAGA 1150
ACCATTGAAA TTGGGGCTT CAATGGTCTG GCGAACCTCA ACACTCTGG 1200
ACTCTTGAC AATCGTCTTA CTACCATCCC GAATGGAGCT TTTGTATACT 1250

tgctaaact gaaggagctc tggttgcgaa acaacccat taaaagcatc 1300
 ctttcttatg cttaaacag aattccttct ttgcggcgac tagacttagg 1350
 ggaattgaaa agacttcat acatctcaga aggtgcctt gaaggctgt 1400
 ccaacttgag gtatggaaac cttgccatgt gcaacccatcg ggaaatccct 1450
 aacccacac cgctcataaa actagatgag ctggatctt ctggaaatca 1500
 tttatctgcc atcaggcctg gctttcca gggtttgatg cacccatcaa 1550
 aactgtggat gatacagtcc cagattcaag tgattgaacg gaatgcctt 1600
 gacaacccatc agtcactagt ggagatcaac ctggcacaca ataatcta 1650
 attactgcct catgacctct tcactccctt gcatcatcta gagcggatac 1700
 atttacatca caacccttgg aactgttaact gtgacatact gtggctcagc 1750
 tggggataa aagacatggc cccctcgaac acagcttggt gtggccggtg 1800
 taacactcct cccaatctaa aggggaggta cattggagag ctcgaccaga 1850
 attacttcac atgctatgct ccggtgattt tggagcccc tgcagaccc 1900
 aatgtcaactg aaggcatggc agctgagctg aaatgtcggg cctccacatc 1950
 cctgacatct gatatggta ttactccaaa tggAACAGTC atgacacatg 2000
 gggcgtacaa agtgcggata gctgtgctca gtgatggta gttaaatttc 2050
 acaaatgtaa ctgtgcaaga tacaggcatg tacacatgta tggtagttaa 2100
 ttccgttggg aatactactg cttcagccac cctgaatgtt actgcagcaa 2150
 ccactactcc tttctttac tttcaaccg tcacagttaga gactatggaa 2200
 ccgtctcagg atgaggcactg gaccacagat aacaatgtgg gtcccactcc 2250
 agtggtcgac tgggagacca ccaatgtgac cacctctctc acaccacaga 2300
 gcacaaggtc gacagagaaa acttcacca tcccagtgac tgatataaac 2350
 agtgggatcc caggaattga tgaggtcatg aagactacca aaatcatcat 2400
 tgggtttt gtggccatca cactcatggc tgcagtgtatg ctggtcattt 2450
 tctacaagat gaggaagcag caccatcgcc aaaaccatca cgccccaaaca 2500
 aggactgttggaaattttaa tgtggatgtatg gagattacgg gagacacacc 2550

catggaaagc cacctgccca tgcctgctat cgagcatgag cacctaaatc 2600
 actataactc atacaaatct cccttcaacc acacaacaac agttaacaca 2650
 ataaattcaa tacacagtcc agtgcattgaa ccgttattga tccgaatgaa 2700
 ctctaaagac aatgtacaag agactcaaat ctaaaacatt tacagagtta 2750
 caaaaaacaa acaatcaaaa aaaaagacag tttataaaaa atgacacaaa 2800
 tgactggct aaatctactg tttcaaaaaa gtgtcttac aaaaaaacaa 2850
 aaaagaaaag aaatttattt attaaaaattt ctattgtgat ctaaaggaga 2900
 caaaaa 2906

<210> 292

<211> 640

<212> PRT

<213> Homo Sapien

<400> 292

Met	Leu	Asn	Lys	Met	Thr	Leu	His	Pro	Gln	Gln	Ile	Met	Ile	Gly
1					5				10			15		
Pro	Arg	Phe	Asn	Arg	Ala	Leu	Phe	Asp	Pro	Leu	Leu	Val	Val	Leu
					20				25			30		
Leu	Ala	Leu	Gln	Leu	Leu	Val	Val	Ala	Gly	Leu	Val	Arg	Ala	Gln
					35				40			45		
Thr	Cys	Pro	Ser	Val	Cys	Ser	Cys	Ser	Asn	Gln	Phe	Ser	Lys	Val
					50				55			60		
Ile	Cys	Val	Arg	Lys	Asn	Leu	Arg	Glu	Val	Pro	Asp	Gly	Ile	Ser
					65				70			75		
Thr	Asn	Thr	Arg	Leu	Leu	Asn	Leu	His	Glu	Asn	Gln	Ile	Gln	Ile
					80				85			90		
Ile	Lys	Val	Asn	Ser	Phe	Lys	His	Leu	Arg	His	Leu	Glu	Ile	Leu
					95				100			105		
Gln	Leu	Ser	Arg	Asn	His	Ile	Arg	Thr	Ile	Glu	Ile	Gly	Ala	Phe
					110				115			120		
Asn	Gly	Leu	Ala	Asn	Leu	Asn	Thr	Leu	Glu	Leu	Phe	Asp	Asn	Arg
					125				130			135		
Leu	Thr	Thr	Ile	Pro	Asn	Gly	Ala	Phe	Val	Tyr	Leu	Ser	Lys	Leu
					140				145			150		
Lys	Glu	Leu	Trp	Leu	Arg	Asn	Asn	Pro	Ile	Glu	Ser	Ile	Pro	Ser

155	160	165
Tyr Ala Phe Asn Arg Ile Pro Ser Leu Arg Arg Leu Asp Leu Gly 170	175	180
Glu Leu Lys Arg Leu Ser Tyr Ile Ser Glu Gly Ala Phe Glu Gly 185	190	195
Leu Ser Asn Leu Arg Tyr Leu Asn Leu Ala Met Cys Asn Leu Arg 200	205	210
Glu Ile Pro Asn Leu Thr Pro Leu Ile Lys Leu Asp Glu Leu Asp 215	220	225
Leu Ser Gly Asn His Leu Ser Ala Ile Arg Pro Gly Ser Phe Gln 230	235	240
Gly Leu Met His Leu Gln Lys Leu Trp Met Ile Gln Ser Gln Ile 245	250	255
Gln Val Ile Glu Arg Asn Ala Phe Asp Asn Leu Gln Ser Leu Val 260	265	270
Glu Ile Asn Leu Ala His Asn Asn Leu Thr Leu Leu Pro His Asp 275	280	285
Leu Phe Thr Pro Leu His His Leu Glu Arg Ile His Leu His His 290	295	300
Asn Pro Trp Asn Cys Asn Cys Asp Ile Leu Trp Leu Ser Trp Trp 305	310	315
Ile Lys Asp Met Ala Pro Ser Asn Thr Ala Cys Cys Ala Arg Cys 320	325	330
Asn Thr Pro Pro Asn Leu Lys Gly Arg Tyr Ile Gly Glu Leu Asp 335	340	345
Gln Asn Tyr Phe Thr Cys Tyr Ala Pro Val Ile Val Glu Pro Pro 350	355	360
Ala Asp Leu Asn Val Thr Glu Gly Met Ala Ala Glu Leu Lys Cys 365	370	375
Arg Ala Ser Thr Ser Leu Thr Ser Val Ser Trp Ile Thr Pro Asn 380	385	390
Gly Thr Val Met Thr His Gly Ala Tyr Lys Val Arg Ile Ala Val 395	400	405
Leu Ser Asp Gly Thr Leu Asn Phe Thr Asn Val Thr Val Gln Asp 410	415	420

Thr Gly Met Tyr Thr Cys Met Val Ser Asn Ser Val Gly Asn Thr
 425 430 435
 Thr Ala Ser Ala Thr Leu Asn Val Thr Ala Ala Thr Thr Thr Pro
 440 445 450
 Phe Ser Tyr Phe Ser Thr Val Thr Val Glu Thr Met Glu Pro Ser
 455 460 465
 Gln Asp Glu Ala Arg Thr Thr Asp Asn Asn Val Gly Pro Thr Pro
 470 475 480
 Val Val Asp Trp Glu Thr Thr Asn Val Thr Thr Ser Leu Thr Pro
 485 490 495
 Gln Ser Thr Arg Ser Thr Glu Lys Thr Phe Thr Ile Pro Val Thr
 500 505 510
 Asp Ile Asn Ser Gly Ile Pro Gly Ile Asp Glu Val Met Lys Thr
 515 520 525
 Thr Lys Ile Ile Ile Gly Cys Phe Val Ala Ile Thr Leu Met Ala
 530 535 540
 Ala Val Met Leu Val Ile Phe Tyr Lys Met Arg Lys Gln His His
 545 550 555
 Arg Gln Asn His His Ala Pro Thr Arg Thr Val Glu Ile Ile Asn
 560 565 570
 Val Asp Asp Glu Ile Thr Gly Asp Thr Pro Met Glu Ser His Leu
 575 580 585
 Pro Met Pro Ala Ile Glu His Glu His Leu Asn His Tyr Asn Ser
 590 595 600
 Tyr Lys Ser Pro Phe Asn His Thr Thr Val Asn Thr Ile Asn
 605 610 615
 Ser Ile His Ser Ser Val His Glu Pro Leu Leu Ile Arg Met Asn
 620 625 630
 Ser Lys Asp Asn Val Gln Glu Thr Gln Ile
 635 640

 <210> 293
 <211> 4053
 <212> DNA

 <213> Homo Sapien

 <400> 293
 agccgacgct gctcaagctg caactctgtt gcagttggca gttctttcg 50

gttccctcc tgctgttgg gggcatgaaa gggcttcgcc gcccggagta 100
 aaagaaggaa ttgaccgggc agcgcgaggg aggagcgcbc acgcgaccgc 150
 gagggcgggc gtgcaccctc ggctggaagt ttgtgccggg ccccgagcgc 200
 gcgcggctg ggagcttcgg gtagagacct aggccgctgg accgcgatga 250
 gcgcgcggag cctccgtgcg cgccgcgggg ggttggggct gctgctgtgc 300
 gcggtgctgg ggccgcgtgg ccggtccgac agcggcggtc gcggggaaact 350
 cggcagccc tctgggttag ccggcagcgc cccatgcccc actacctgcc 400
 gctgcctcgg ggacctgctg gactgcagtc gtaagcggct agcgcgtctt 450
 cccgagccac tcccgtcctg ggtcgctcgg ctggacttaa gtcacaacag 500
 attatcttc atcaaggcaa gttccatgag ccaccccaa agccttcgag 550
 aagtgaaact gaacaacaat gaattggaga ccattccaaa tctgggacca 600
 gtctcggcaa atattacact tctctccttg gctggaaaca ggatttgta 650
 aatactccct gaacatctga aagagttca gtcccttcaa actttggacc 700
 ttagcagcaa caatattca gagctccaaa ctgcatttcc agccctacag 750
 ctcaaatac tgtatctcaa cagcaaccga gtcacatcaa tggAACCTGG 800
 gtattttgac aatttggcca acacactcct tgtgttaaag ctgaacagga 850
 accgaatctc agctatccca cccaagatgt ttaaactgcc ccaactgcaa 900
 catctcgaat tgaaccgaaa caagattaaa aatgttagatg gactgacatt 950
 ccaaggcctt ggtgctctga agtctctgaa aatgcaaaga aatggagtaa 1000
 cggaaacttat ggtggagct tttgggggc tgagcaacat ggaaattttg 1050
 cagctggacc ataacaacct aacagagatt accaaaggct ggctttacgg 1100
 cttgctgatg ctgcaggaac ttcatctcag cccaaatgcc atcaacagga 1150
 tcagccctga tgcctggag ttctgccaga agctcagtga gctggaccta 1200
 actttcaatc acttatcaag gtttagatgat tcaagcttcc ttggcctaag 1250
 cttactaaat acactgcaca ttgggaacaa cagagtcagc tacattgctg 1300
 attgtgcctt ccgggggctt tccagttaa agactttgga tctgaagaac 1350

aatgaaattt cctggactat tgaagacatg aatggtgctt tctctggct 1400
 tgacaaaactg aggcgactga tactccaagg aaatcgatc cgttctatta 1450
 ctaaaaaagc ct当地actggt ttggatgcat tggagcatct agacctgagt 1500
 gacaacgcaa tcatgtctt acaaggcaat gcatttcac aaatgaagaa 1550
 actgcaacaa ttgcatttaa atacatcaag cctttgtgc gattgccagc 1600
 taaaatggct cccacagtgg gtggcggaaa acaactttca gagctttgt 1650
 aatgccagtt gtgccatcc tcagctgcta aaaggaagaa gcattttgc 1700
 tgttagccca gatggcttg tgtgtatga tttccaaa cccagatca 1750
 cggttcagcc agaaacacag tcggcaataa aaggtccaa tttgagttc 1800
 atctgctcag ctgccagcag cagtgattcc ccaatgactt ttgcttggaa 1850
 aaaagacaat gaactactgc atgatgctga aatggaaaat tatgcacacc 1900
 tccggccca aggtggcgag gtgatggagt ataccaccat cttcggctg 1950
 cgcgagggtgg aatttgcag tgaggggaaa tatcagtgtg tcatctccaa 2000
 tcacttttgtt tcatcctact ctgtcaaagc caagcttaca gtaaatatgc 2050
 ttccctcatt caccaagacc cccatggatc tcaccatccg agctggggcc 2100
 atggcacgct tggagtgtgc tgctgtgggg cacccagccc cccagatagc 2150
 ctggcagaag gatggggca cagactcccc agctgcacgg gagagacgca 2200
 tgcatgtat gccccaggat gacgtgttct ttatcgtgga tgtgaagata 2250
 gaggacattt gggatacag ctgcacagct cagaacagt caggaagtat 2300
 ttcagcaaat gcaactctga ctgtcctaga aacaccatca ttttgcggc 2350
 cactgttggaa ccgaactgtt accaagggag aaacagccgt cctacagtgc 2400
 attgctggag gaagccctcc ccctaaactg aactggacca aagatgatag 2450
 cccattgggt gtaaccgaga ggcactttt tgcagcaggc aatcagcttc 2500
 tgattattgt ggactcagat gtcagtgtat ctggaaata cacatgttag 2550
 atgtctaaca cccttggcac tgagagagga aacgtgcggc tcagtgtat 2600
 ccccaactcca acctgcgact cccctcagat gacagcccc tgcgttagacg 2650
 atgacggatg ggccactgtg ggtgtcgtga tcatagccgt gtttgctgt 2700

gtggtggca cgtcactcggtggtc atcatataacc acacaaggcg 2750
gaggaatgaa gattgcagca ttaccaaacac agatgagacc aacttgccag 2800
cagatattcc tagttatgg tcacatctcagg gaacgttagc tgacaggcag 2850
gatgggtacg tgtcttcaga aagtggaaagc caccaccagt ttgtcacatc 2900
ttcaggtgct ggattttct taccacaaca tgacagtagt gggacctgcc 2950
atattgacaa tagcagtgaa gctgatgtgg aagctgccac agatctgttc 3000
cttgcgttccgt ttttggatc cacaggccct atgtatggta agggaaatgt 3050
gtatggctca gatccttttgc aaacatatca tacaggttgc agtcctgacc 3100
caagaacagt tttaatggac cactatgagc ccagttacat aaagaaaaag 3150
gagtgctacc catgttctca tccttcagaa gaatcctgcg aacggagctt 3200
cagtaatata tcgtggcctt cacatgttaga gaagctactt aacactagtt 3250
actctcacaa tgaaggacct ggaatgaaaa atctgtgtct aaacaagttcc 3300
tcttttagatt ttagtgcaaa tccagagcca gcgtcggttg cctcgagtaa 3350
ttcttcatg ggtaccccttgc gaaaagctct caggagacct cacctagatg 3400
cctattcaag ctggacag ccattcagatt gtcagccaag agccttttat 3450
ttgaaagctc attctcccc agacttggac tctgggtcag aggaagatgg 3500
gaaagaaaagg acagatttc aggaagaaaa tcacatttgt acctttaaac 3550
agactttaga aaactacagg actccaaatt ttcagtctta tgacttggac 3600
acatagactg aatgagacca aaggaaaagc ttaacataact acctaagtg 3650
aacttttatt taaaagagag agaatcttattt gtttttaaaa tggagttatg 3700
aattttaaaa ggataaaaaat gctttatata tacagatgaa ccaaaattac 3750
aaaaagttat gaaaattttt atactggaa tgatgctcat ataagaatac 3800
ctttttaaac tatttttaa ctttggatata tgcaaaaaag tatcttacgt 3850
aaattaatga tataaatcat gattattttta tgtatggta taatgccaga 3900
tttctttta tggaaaaatga gttactaaag cattttaaat aatacctgcc 3950
ttgtaccatt ttttaaatag aagttacttc attatatttgc acattata 4000

tttaataaaaa tgtgtcaatt tgaaaaaaaaaaaaaaaaaaaaaaa 4050

aaa 4053

<210> 294

<211> 1119

<212> PRT

<213> Homo Sapien

<400> 294

Met Ser Ala Pro Ser Leu Arg Ala Arg Ala Ala Gly Leu Gly Leu
1 5 10 15

Leu Leu Cys Ala Val Leu Gly Arg Ala Gly Arg Ser Asp Ser Gly
20 25 30

Gly Arg Gly Glu Leu Gly Gln Pro Ser Gly Val Ala Ala Glu Arg
35 40 45

Pro Cys Pro Thr Thr Cys Arg Cys Leu Gly Asp Leu Leu Asp Cys
50 55 60

Ser Arg Lys Arg Leu Ala Arg Leu Pro Glu Pro Leu Pro Ser Trp
65 70 75

Val Ala Arg Leu Asp Leu Ser His Asn Arg Leu Ser Phe Ile Lys
80 85 90

Ala Ser Ser Met Ser His Leu Gln Ser Leu Arg Glu Val Lys Leu
95 100 105

Asn Asn Asn Glu Leu Glu Thr Ile Pro Asn Leu Gly Pro Val Ser
110 115 120

Ala Asn Ile Thr Leu Leu Ser Leu Ala Gly Asn Arg Ile Val Glu
125 130 135

Ile Leu Pro Glu His Leu Lys Glu Phe Gln Ser Leu Glu Thr Leu
140 145 150

Asp Leu Ser Ser Asn Asn Ile Ser Glu Leu Gln Thr Ala Phe Pro
155 160 165

Ala Leu Gln Leu Lys Tyr Leu Tyr Leu Asn Ser Asn Arg Val Thr
170 175 180

Ser Met Glu Pro Gly Tyr Phe Asp Asn Leu Ala Asn Thr Leu Leu
185 190 195

Val Leu Lys Leu Asn Arg Asn Arg Ile Ser Ala Ile Pro Pro Lys
200 205 210

Met Phe Lys Leu Pro Gln Leu Gln His Leu Glu Leu Asn Arg Asn

215	220	225
Lys Ile Lys Asn Val Asp Gly Leu Thr Phe Gln Gly Leu Gly Ala		
230	235	240
Leu Lys Ser Leu Lys Met Gln Arg Asn Gly Val Thr Lys Leu Met		
245	250	255
Asp Gly Ala Phe Trp Gly Leu Ser Asn Met Glu Ile Leu Gln Leu		
260	265	270
Asp His Asn Asn Leu Thr Glu Ile Thr Lys Gly Trp Leu Tyr Gly		
275	280	285
Leu Leu Met Leu Gln Glu Leu His Leu Ser Gln Asn Ala Ile Asn		
290	295	300
Arg Ile Ser Pro Asp Ala Trp Glu Phe Cys Gln Lys Leu Ser Glu		
305	310	315
Leu Asp Leu Thr Phe Asn His Leu Ser Arg Leu Asp Asp Ser Ser		
320	325	330
Phe Leu Gly Leu Ser Leu Leu Asn Thr Leu His Ile Gly Asn Asn		
335	340	345
Arg Val Ser Tyr Ile Ala Asp Cys Ala Phe Arg Gly Leu Ser Ser		
350	355	360
Leu Lys Thr Leu Asp Leu Lys Asn Asn Glu Ile Ser Trp Thr Ile		
365	370	375
Glu Asp Met Asn Gly Ala Phe Ser Gly Leu Asp Lys Leu Arg Arg		
380	385	390
Leu Ile Leu Gln Gly Asn Arg Ile Arg Ser Ile Thr Lys Lys Ala		
395	400	405
Phe Thr Gly Leu Asp Ala Leu Glu His Leu Asp Leu Ser Asp Asn		
410	415	420
Ala Ile Met Ser Leu Gln Gly Asn Ala Phe Ser Gln Met Lys Lys		
425	430	435
Leu Gln Gln Leu His Leu Asn Thr Ser Ser Leu Leu Cys Asp Cys		
440	445	450
Gln Leu Lys Trp Leu Pro Gln Trp Val Ala Glu Asn Asn Phe Gln		
455	460	465
Ser Phe Val Asn Ala Ser Cys Ala His Pro Gln Leu Leu Lys Gly		
470	475	480

Arg Ser Ile Phe Ala Val Ser Pro Asp Gly Phe Val Cys Asp Asp
 485 490 495
 Phe Pro Lys Pro Gln Ile Thr Val Gln Pro Glu Thr Gln Ser Ala
 500 505 510
 Ile Lys Gly Ser Asn Leu Ser Phe Ile Cys Ser Ala Ala Ser Ser
 515 520 525
 Ser Asp Ser Pro Met Thr Phe Ala Trp Lys Lys Asp Asn Glu Leu
 530 535 540
 Leu His Asp Ala Glu Met Glu Asn Tyr Ala His Leu Arg Ala Gln
 545 550 555
 Gly Gly Glu Val Met Glu Tyr Thr Thr Ile Leu Arg Leu Arg Glu
 560 565 570
 Val Glu Phe Ala Ser Glu Gly Lys Tyr Gln Cys Val Ile Ser Asn
 575 580 585
 His Phe Gly Ser Ser Tyr Ser Val Lys Ala Lys Leu Thr Val Asn
 590 595 600
 Met Leu Pro Ser Phe Thr Lys Thr Pro Met Asp Leu Thr Ile Arg
 605 610 615
 Ala Gly Ala Met Ala Arg Leu Glu Cys Ala Ala Val Gly His Pro
 620 625 630
 Ala Pro Gln Ile Ala Trp Gln Lys Asp Gly Gly Thr Asp Phe Pro
 635 640 645
 Ala Ala Arg Glu Arg Arg Met His Val Met Pro Glu Asp Asp Val
 650 655 660
 Phe Phe Ile Val Asp Val Lys Ile Glu Asp Ile Gly Val Tyr Ser
 665 670 675
 Cys Thr Ala Gln Asn Ser Ala Gly Ser Ile Ser Ala Asn Ala Thr
 680 685 690
 Leu Thr Val Leu Glu Thr Pro Ser Phe Leu Arg Pro Leu Leu Asp
 695 700 705
 Arg Thr Val Thr Lys Gly Glu Thr Ala Val Leu Gln Cys Ile Ala
 710 715 720
 Gly Gly Ser Pro Pro Pro Lys Leu Asn Trp Thr Lys Asp Asp Ser
 725 730 735
 Pro Leu Val Val Thr Glu Arg His Phe Phe Ala Ala Gly Asn Gln
 740 745 750

Leu Leu Ile Ile Val Asp Ser Asp Val Ser Asp Ala Gly Lys Tyr
 755 760 765

Thr Cys Glu Met Ser Asn Thr Leu Gly Thr Glu Arg Gly Asn Val
 770 775 780

Arg Leu Ser Val Ile Pro Thr Pro Thr Cys Asp Ser Pro Gln Met
 785 790 795

Thr Ala Pro Ser Leu Asp Asp Asp Gly Trp Ala Thr Val Gly Val
 800 805 810

Val Ile Ile Ala Val Val Cys Cys Val Val Gly Thr Ser Leu Val
 815 820 825

Trp Val Val Ile Ile Tyr His Thr Arg Arg Arg Asn Glu Asp Cys
 830 835 840

Ser Ile Thr Asn Thr Asp Glu Thr Asn Leu Pro Ala Asp Ile Pro
 845 850 855

Ser Tyr Leu Ser Ser Gln Gly Thr Leu Ala Asp Arg Gln Asp Gly
 860 865 870

Tyr Val Ser Ser Glu Ser Gly Ser His His Gln Phe Val Thr Ser
 875 880 885

Ser Gly Ala Gly Phe Phe Leu Pro Gln His Asp Ser Ser Gly Thr
 890 895 900

Cys His Ile Asp Asn Ser Ser Glu Ala Asp Val Glu Ala Ala Thr
 905 910 915

Asp Leu Phe Leu Cys Pro Phe Leu Gly Ser Thr Gly Pro Met Tyr
 920 925 930

Leu Lys Gly Asn Val Tyr Gly Ser Asp Pro Phe Glu Thr Tyr His
 935 940 945

Thr Gly Cys Ser Pro Asp Pro Arg Thr Val Leu Met Asp His Tyr
 950 955 960

Glu Pro Ser Tyr Ile Lys Lys Lys Glu Cys Tyr Pro Cys Ser His
 965 970 975

Pro Ser Glu Glu Ser Cys Glu Arg Ser Phe Ser Asn Ile Ser Trp
 980 985 990

Pro Ser His Val Arg Lys Leu Leu Asn Thr Ser Tyr Ser His Asn
 995 1000 1005

Glu Gly Pro Gly Met Lys Asn Leu Cys Leu Asn Lys Ser Ser Leu

1010 1015 1020

Asp Phe Ser Ala Asn Pro Glu Pro Ala Ser Val Ala Ser Ser Asn
1025 1030 1035

Ser Phe Met Gly Thr Phe Gly Lys Ala Leu Arg Arg Pro His Leu
1040 1045 1050

Asp Ala Tyr Ser Ser Phe Gly Gln Pro Ser Asp Cys Gln Pro Arg
1055 1060 1065

Ala Phe Tyr Leu Lys Ala His Ser Ser Pro Asp Leu Asp Ser Gly
1070 1075 1080

Ser Glu Glu Asp Gly Lys Glu Arg Thr Asp Phe Gln Glu Glu Asn
1085 1090 1095

His Ile Cys Thr Phe Lys Gln Thr Leu Glu Asn Tyr Arg Thr Pro
1100 1105 1110

Asn Phe Gln Ser Tyr Asp Leu Asp Thr
1115

<210> 295
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 295
ggaaccgaat ctcagcta 18

<210> 296
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 296
cctaaactga actggacca 19

<210> 297
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 297
ggctggagac actgaacct 19

<210> 298
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 298
acagctgcac agctcagaac agtg 24

<210> 299

<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 299
catccccagt ataaaaattt tc 22

<210> 300
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 300
gggtcttggt gaatgagg 18

<210> 301
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 301
gtgcctctcg gttaccacca atgg 24

<210> 302
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 302
gcggccactg ttggaccgaa ctgtAACCAA gggagAAACA gccgtcctac 50

<210> 303
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 303
gccttgaca accttcagtc actagtgg 28

<210> 304
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 304
ccccatgtgt ccatgactgt tcgg 24

<210> 305
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 305
tactgcctca tgacctttc actcccttgc atcatcttag agcg 45

<210> 306
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 306
actccaagga aatcgatcc gttc 24

<210> 307
<211> 24

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 307
ttagcagctg aggatggca caac 24

<210> 308
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 308
actccaagga aatcggtatcc gttc 24

<210> 309
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 309
gccttcactg gtttggatgc attggagcat ctagacctga gtgacaacgc 50

<210> 310
<211> 3296
<212> DNA
<213> Homo Sapien

<400> 310

caaaaacttgc gtcgcggaga gcgcggcagct tgacttgaat ggaaggagcc 50
cgagccccgcg gagcgccagct gagactgggg gagcgccgttc ggcctgtggg 100
gcgcggctcg gcgcgggggc gcagcaggaa agggaaagct gtggtctgcc 150
ctgctccacg aggccgcact ggtgtgaacc gggagagccc ctgggtggtc 200
ccgtcccccta tccctcctt atatagaaac cttccacact ggaaaggcag 250
cggcgaggca ggagggctca tggtgagcaa ggaggccggc tgatctgcag 300
gcgcacagca ttcccgagttt acagattttt acagatacca aatggaaggc 350
gaggaggcag aacagcctgc ctgggtccat cagccctggc gcccaggcgc 400

atctgactcg gcaccccccgt cagggcaccat ggcccagagc cgggtgctgc 450
tgctcctgtc gctgctgccg ccacagctgc acctgggacc tgtgcttgc 500
gtgaggggccc caggattgg ccgaagtggc ggccacagcc tgagccccga 550
agagaacgaa tttgcggagg aggagccggt gctggtaactg agccctgagg 600
agcccgggcc tggcccagcc gcggtcagct gcccccgaga ctgtgcctgt 650
tcccaggagg gcgttgttgc ctgtggcggt attgacactgc gtgagttccc 700
gggggacctg cctgagcaca ccaaccaccc atctctgcag aacaaccagc 750
tggaaaagat ctaccctgag gagctctccc ggctgcacccg gctggagaca 800
ctgaacctgc aaaacaaccg cctgacttcc cgagggctcc cagagaaggc 850
gtttgagcat ctgaccaacc tcaattaccc ttaacttggcc aataacaagc 900
tgaccttggc accccgcttc ctgccaaacg ccctgatcag tgtggacttt 950
gctgccaact atctcaccaa gatctatggg otcaccccttgc gccagaagcc 1000
aaacttgagg tctgtgtacc tgacacaacaa caagctggca gacgcccggc 1050
tgccggacaa catgttcaac ggctccagca acgtcgaggt cctcatcctg 1100
tccagcaact tcctgcgcca cgtgcccag cacctgcccctgc ctgcccgtt 1150
caagctgcac ctcaagaaca acaagctggc gaagatcccc cgggggcct 1200
tcagcgagct gagcagccctg cgcgagctat acctgcagaa caactacctg 1250
actgacgagg gcctggacaa cgagaccccttc tggaaagctct ccagcctggc 1300
gtacctggat ctgtccagca acaacactgtc tcgggtccca gctgggtgc 1350
cgcgccgcct ggtgctgctg cacttggaga agaacgcctt ccggagcggt 1400
gacgcgaatg tgctgacccc catccgcagc ctggagtacc tgctgctgca 1450
cagcaaccag ctgcgggagc agggcatcca cccactggcc ttccaggggcc 1500
tcaagcggtt gcacacgggt cacctgtaca acaacgcgtt ggagcggt 1550
cccagtggcc tgcctcgccc cgtgcgcacc ctcatgatcc tgcacaacca 1600
gatcacagggc attggccgcg aagactttgc caccacccatc ttccctggagg 1650
agctcaaccc cagctacaac cgcacacccca gcccacaggt gcaccgcgac 1700

gccttcggca agctgcgcct gctgcgctcg ctggacctgt cgggcaacccg 1750
 gctgcacacg ctgccacctg ggctgcctcg aaatgtccat gtgctgaagg 1800
 tcaagcgc当地 tgagctggct gccttggcac gagggggcgct ggcgggcatg 1850
 gctcagctgc gtgagctgta cctcaccaggc aaccgactgc gcagccgagc 1900
 cctggggccc cgtgcctggg tggacctcgc ccatctgcag ctgctggaca 1950
 tcgcccggaa tcagctcaca gagatccccg aggggctccc cgagtcactt 2000
 gagtacctgt acctgcagaa caacaagatt agtgcgggtgc cgcgcataatgc 2050
 cttcgactcc acgccccacc tcaagggat ctttctcagg tttaacaagc 2100
 tggctgtggg ctccgtggg gacagtgcct tccggaggct gaagcacctg 2150
 caggtcttgg acattgaagg caacttagag tttggtgaca tttccaaggaa 2200
 ccgtggccgc ttggggaaagg aaaaggagga ggaggaagag gaggaggagg 2250
 aggaagagga aacaagatag tgacaagggtg atgcagatgt gacctaggat 2300
 gatggaccgc cggactctt tctgcagcac acgcctgtgt gctgtgagcc 2350
 ccccaactctg ccgtgctcac acagacacac ccagctgcac acatgaggca 2400
 tcccacatga cacgggctga cacagtctca tatccccacc cttcccaacg 2450
 gcgtgtccca cggccagaca catgcacacaca catcacaccc tcaaacaccc 2500
 agctcagcca cacacaacta ccctccaaac caccacagtc tctgtcacac 2550
 ccccaactacc gctgccacgc cctctgaatc atgcagggaa gggtctgccc 2600
 ctgccctggc acacacaggc acccattccc tccccctgct gacatgtgta 2650
 tgcgtatgca tacacaccac acacacacac atgcacaagt catgtgcgaa 2700
 cagccctcca aagcctatgc cacagacagc tcttggggca gccagaatca 2750
 gccatagcag ctgcgggtct gccctgtcca tctgtccgtc cgttccctgg 2800
 agaagacaca agggtatcca tgctctgtgg ccaggtgcct gccaccctct 2850
 ggaactcaca aaagctggct ttatttcctt tcccatccta tggggacagg 2900
 agccttcagg actgctggcc tggcctggcc caccctgctc ctccaggtgc 2950
 tggcagtca ctctgctaag agtccctccc tgccacgccc tggcaggaca 3000
 caggcacttt tccaatgggc aagccccagtg gaggcaggat gggagagccc 3050

cctgggtgct gctgggcct tggggcagga gtgaagcaga ggtgatgggg 3100
 ctgggctgag ccagggagga aggacccagc tgcacctagg agacaccttt 3150
 gttcttcagg cctgtgggg aagttccggg tgccttatt ttttattctt 3200
 ttctaaggaa aaaaatgata aaaatctcaa agctgatttt tcttgttata 3250
 gaaaaactaa tataaaagca ttatccctat ccctgcaaaa aaaaaaa 3296

<210> 311
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 311
gcattggcccg cgagactttg cc 22

<210> 312
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 312
gcggccacgg tccttgaaa tg 22

<210> 313
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 313
tggaggagct caacctcagc tacaaccgca tcaccagccc acagg 45

<210> 314
<211> 3003
<212> DNA
<213> Homo Sapien

<400> 314
gggagggggc tccggcgcc ggcgagcaga cctgctccgg cgcgcgcct 50
cgccgctgtc ctccggagc ggcagcagta gcccggcg 50
cgagggctgg 100

gggttcctcg agactctcag aggggcgcct cccatggcg cccaccaccc 150
 caacctgttc ctgcgcgc actgcgcgtgc gccccaggac ccgctgccc 200
 acatggattt tctcctggcg ctgggtgctgg tatcctcgct ctacctgcag 250
 gcggccgcgc agttcgacgg gaggtggccc aggcaaata tagtcatcgat 300
 tggcctatgt cggttatggtg ggaggattga ctgctgctgg ggctgggctc 350
 gccagtcttg gggacagtgt cagcctgtgt gccaaaccacg atgcaaacat 400
 ggtgaatgta tcgggc当地 caagtgc当地 tgc当地 gttatgctgg 450
 aaaaacctgt aatcaagatc taaatgagtg tggcctgaag ccccgccct 500
 gtaaggcacag gtgc当地 gacttacggca gctacaagtg ctactgtctc 550
 aacggatata tgctcatgcc ggatgggttcc tgctcaagtg ccctgacctg 600
 ctccatggca aactgtcagt atggctgtga tggctctga tgggaggacc 650
 ggtgccagtg cccatccc当地 ggctgc当地 tggctctga tgggaggacc 700
 tgtgttagatg ttgatgaatg tgctacagga agagcctctt gccctagatt 750
 taggcaatgt gtcaacactt ttgggagcta catctgc当地 tgc当地 800
 gcttc当地 catgtatatt ggaggcaat atcaatgtca tgacatagac 850
 gaatgctcac ttggtagta tcagtgccagc agctttgctc gatgttataa 900
 cgtacgtggg tcctacaagt gcaaata gaaaggatac cagggtgatg 950
 gactgacttg tgtgtatatac ccaaaagtta tgattgaacc ttcaggtcca 1000
 attcatgtac caaaggaaaa tggtagcatt taaagggtg acacaggaaa 1050
 taataattgg attcctgatg ttggaaagtac ttggtaggc当地 ccgaagacac 1100
 catatattcc tcctatcatt accaacaggc ctacttctaa gccaaacaaca 1150
 agacctacac caaagccaa accaattcct actccaccac caccaccacc 1200
 cctgccaaca gagctcagaa cacctctacc acctacaacc ccagaaaggc 1250
 caaccaccgg actgacaact atagcaccag ctgccc当地 acctccagga 1300
 gggattacag ttgacaacag ggtacagaca gaccctcaga aacccagagg 1350
 agatgtgttc agtgttctgg tacacagttg taatttgac catggacttt 1400

gtggatggat cagggagaaa gacaatgact tgcactggga accaattcagg 1450
gacccagcag gtggacaata tctgacagtgc tcggcagccaa aagccccagg 1500
gggaaaagct gcacgcttgg tgctacctct cggccgcctc atgcattcag 1550
gggacctgtg cctgtcattc aggccacaagg tgacggggat gcactctggc 1600
acactccagg tgtttgtgag aaaacacggt gcccacggag cagccctgtg 1650
gggaagaat ggtggccatg gctggaggca aacacagatc accttgcgag 1700
gggctgacat caagagcgaa tcacaaagat gattaaaggg ttggaaaaaaa 1750
agatctatga tggaaaatta aaggaactgg gattattgag cctggagaag 1800
agaagactga ggggcaaacc attgatggtt ttcaagtata tgaagggttg 1850
gcacagagag ggtggcgacc agctgttctc catatgcact aagaatagaa 1900
caagaggaaa ctggcttaga cttagtata agggagcatt tcttggcagg 1950
ggccattgtt agaatacttc ataaaaaaaaa aagtgtgaaa atctcagtat 2000
ctctctctct ttctaaaaaa ttagataaaa atttgcgtat ttaagatgg 2050
taaagatgtt cttacccaag gaaaagtaac aaattataga atttcccaaa 2100
agatgttttgc atcctacttag tagtatgcag tgaaaatctt tagaactaaa 2150
taatttggac aaggcttaat ttaggcattt ccctcttgcac ctcctaattgg 2200
agagggatttgc aaaggggaag agcccaccaa atgctgagct cactgaaata 2250
tctctccctt atggcaatcc tagcagtattt aaagaaaaaaa ggaaactattt 2300
tattccaaat gagagtatga tggacagata ttttagtattc tcagtaatgt 2350
cctagtggttgc cggtgggtttt caatgtttct tcatggtaaa ggtataagcc 2400
tttcatttgtt tcaatggatg atgtttcaga tttttttttt ttaagatgg 2450
ccttcaagga acacagttca gagagatttt catcgggtgc attctctctg 2500
cttcgtgtgt gacaagttat cttggctgct gagaaagagt gcccctcccc 2550
acaccggcag accttcctt cacctcatca gtatgattca gtttctctta 2600
tcaattggac tctccaggt tccacagaac agtaatattt tttgaacaat 2650
aggtaacaata gaaggtcttc tgtcatttaa cctggtaaaag gcagggctgg 2700
aqqqqqaaaaa taaatcatta agccttgag taacggcaga atatatggct 2750

gtagatccat ttttaatggc tcatttcctt tatggcata taactgcaca 2800
 gctgaagatg aaaggggaaa ataaatgaaa attttacttt tcgatgccaa 2850
 tgatacattg cactaaactg atgagaagaag ttatccaaag tactgtataa 2900
 catcttgaaa attatttaat gtttctaaa ataaaaaatg ttagtggttt 2950
 tccaaatggc ctaataaaaa caattatttg taaataaaaa cactgttagt 3000
 aat 3003

<210> 315
 <211> 509
 <212> PRT
 <213> Homo Sapien

<400> 315
 Met Asp Phe Leu Leu Ala Leu Val Leu Val Ser Ser Leu Tyr Leu
 1 5 10 15
 Gln Ala Ala Ala Glu Phe Asp Gly Arg Trp Pro Arg Gln Ile Val
 20 25 30
 Ser Ser Ile Gly Leu Cys Arg Tyr Gly Gly Arg Ile Asp Cys Cys
 35 40 45
 Trp Gly Trp Ala Arg Gln Ser Trp Gly Gln Cys Gln Pro Val Cys
 50 55 60
 Gln Pro Arg Cys Lys His Gly Glu Cys Ile Gly Pro Asn Lys Cys
 65 70 75
 Lys Cys His Pro Gly Tyr Ala Gly Lys Thr Cys Asn Gln Asp Leu
 80 85 90
 Asn Glu Cys Gly Leu Lys Pro Arg Pro Cys Lys His Arg Cys Met
 95 100 105
 Asn Thr Tyr Gly Ser Tyr Lys Cys Tyr Cys Leu Asn Gly Tyr Met
 110 115 120
 Leu Met Pro Asp Gly Ser Cys Ser Ser Ala Leu Thr Cys Ser Met
 125 130 135
 Ala Asn Cys Gln Tyr Gly Cys Asp Val Val Lys Gly Gln Ile Arg
 140 145 150
 Cys Gln Cys Pro Ser Pro Gly Leu His Leu Ala Pro Asp Gly Arg
 155 160 165

Thr Cys Val Asp Val Asp Glu Cys Ala Thr Gly Arg Ala Ser Cys
 170 175 180
 Pro Arg Phe Arg Gln Cys Val Asn Thr Phe Gly Ser Tyr Ile Cys
 185 190 195
 Lys Cys His Lys Gly Phe Asp Leu Met Tyr Ile Gly Gly Lys Tyr
 200 205 210
 Gln Cys His Asp Ile Asp Glu Cys Ser Leu Gly Gln Tyr Gln Cys
 215 220 225
 Ser Ser Phe Ala Arg Cys Tyr Asn Val Arg Gly Ser Tyr Lys Cys
 230 235 240
 Lys Cys Lys Glu Gly Tyr Gln Gly Asp Gly Leu Thr Cys Val Tyr
 245 250 255
 Ile Pro Lys Val Met Ile Glu Pro Ser Gly Pro Ile His Val Pro
 260 265 270
 Lys Gly Asn Gly Thr Ile Leu Lys Gly Asp Thr Gly Asn Asn Asn
 275 280 285
 Trp Ile Pro Asp Val Gly Ser Thr Trp Trp Pro Pro Lys Thr Pro
 290 295 300
 Tyr Ile Pro Pro Ile Ile Thr Asn Arg Pro Thr Ser Lys Pro Thr
 305 310 315
 Thr Arg Pro Thr Pro Lys Pro Thr Pro Ile Pro Thr Pro Pro Pro
 320 325 330
 Pro Pro Pro Leu Pro Thr Glu Leu Arg Thr Pro Leu Pro Pro Thr
 335 340 345
 Thr Pro Glu Arg Pro Thr Thr Gly Leu Thr Thr Ile Ala Pro Ala
 350 355 360
 Ala Ser Thr Pro Pro Gly Gly Ile Thr Val Asp Asn Arg Val Gln
 365 370 375
 Thr Asp Pro Gln Lys Pro Arg Gly Asp Val Phe Ser Val Leu Val
 380 385 390
 His Ser Cys Asn Phe Asp His Gly Leu Cys Gly Trp Ile Arg Glu
 395 400 405
 Lys Asp Asn Asp Leu His Trp Glu Pro Ile Arg Asp Pro Ala Gly
 410 415 420
 Gly Gln Tyr Leu Thr Val Ser Ala Ala Lys Ala Pro Gly Gly Lys

425	430	435
Ala Ala Arg Leu Val Leu Pro Leu Gly Arg Leu Met His Ser Gly		
440	445	450
Asp Leu Cys Leu Ser Phe Arg His Lys Val Thr Gly Leu His Ser		
455	460	465
Gly Thr Leu Gln Val Phe Val Arg Lys His Gly Ala His Gly Ala		
470	475	480
Ala Leu Trp Gly Arg Asn Gly Gly His Gly Trp Arg Gln Thr Gln		
485	490	495
Ile Thr Leu Arg Gly Ala Asp Ile Lys Ser Glu Ser Gln Arg		
500	505	

<210> 316
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 316
gatggttcct gctcaagtgc cctg 24

<210> 317
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 317
ttgcacttgt aggaccacg tacg 24

<210> 318
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 318
ctgatggag gacctgtgt aatgtgctac aggaagagcc 50

<210> 319
<211> 2110
<212> DNA

<213> Homo Sapien

<400> 319
cttcttgaa aaggattatc acctgatcag gttctctcg catttgc 50
tttagattgt gaaatgtggc tcaaggtctt cacaacttc cttcc 100
caacaggtgc ttgctcgggg ctgaaggtga cagtgccatc acacactgtc 150
catggcgtca gaggtcaggc cctctaccta cccgtccact atggcttcca 200
caactccagca tcagacatcc agatcatatg gctatttgag agaccccaca 250
caatgccccaa atacttactg ggctctgtga ataagtctgt ggtcctgac 300
tttggaaatacc aacacaagtt caccatgatg ccacccaatg catctctgct 350
tatcaaccca ctgcagttcc ctgatgaagg caattacatc gtgaaggta 400
acattcaggg aaatggaact ctatctgcca gtcagaagat acaagtcacg 450
gttcatgtatc ctgtcacaaa gccagtggtg cagattcatc ctccctctgg 500
ggctgtggag tatgtggggaa acatgaccct gacatgccat gtggaaagg 550
gcactcggct agcttaccaa tggctaaaaa atgggagacc tgtccacacc 600
agctccaccc actccttttc tccccaaaac aatacccttc atattgctcc 650
agtaaccaag gaagacattt ggaattacag ctgcctggtg aggaaccctg 700
tcagtgaaat ggaaagtgtatcattatgc ccatcatata ttatggac 750
tatggacttc aagtgaattt tgataaaggctt ctaaaagttagtgg 800
tactgttgc cttggagagg ccacccattt tgattgtct gctgattctc 850
atccccccaa cacctactcc tggatttagga ggactgacaa tactacatata 900
atcattaagc atgggcctcg cttagaagtt gcatctgaga aagtagcccc 950
gaagacaatg gactatgtgt gctgtgctt caacaacata accggcaggc 1000
aagatgaaac tcatttcaca gttatcatca cttccgtagg actggagaag 1050
cttgcacaga aaggaaaatc attgtcaccc tttagcaagta taactggaaat 1100
atcactatcc ttgatttatccatgtgtct tctcttcata tggaaaaaat 1150
atcaacccttca caaagttataa aacagaaac tagaaggcag gccagaaaca 1200
gaatacagga aagctcaaac attttcaggc catgaagatg ctctggatga 1250

cttcggaata tatgaatttg ttgccttcc agatgttct ggtgttcca 1300
 ggattccaag caggtctgtt ccagcctctg attgtgtatc gggcaagat 1350
 ttgcacagta cagtgtatga agttattcag cacatccctg cccagcagca 1400
 agaccatcca gagtgaactt tcatgggcta aacagtacat tcgagtgaaa 1450
 ttctgaagaa acatttaag gaaaaacagt ggaaaagtat attaatctgg 1500
 aatcagtgaa gaaaccagga ccaacacctc ttactcatta ttcctttaca 1550
 tgcagaatag aggcatattt gcaaattgaa ctgcaggaaa ttcagcatat 1600
 acacaatgtc ttgtgcaaca gaaaaacatg ttggggaaat attcctcagt 1650
 ggagagtcgt tctcatgctg acggggagaa cgaaagtgac aggggttcc 1700
 tcataagttt tgtatgaaat atctctacaa acctaattt gttctactct 1750
 acactttcac tatcatcaac actgagacta tcctgtctca octacaaatg 1800
 tgaaaaactt acattttcg attttcagc agactttgtt ttattaaatt 1850
 tttatttagt ttaagaatgc taaatttatg tttcaatttt atttccaaat 1900
 ttctatctt acattttgtac aacaaagtaa taaggatggt tgtcacaaaa 1950
 acaaaaactat gccttcctt tttttcaat caccagtagt atttttgaga 2000
 agacttgta acacttaagg aaatgactat taaagtctt ttttatttt 2050
 tttcaaggaa agatggattc aaataaaatta ttctgtttt gctttaaaa 2100
 aaaaaaaaaa 2110

<210> 320
 <211> 450
 <212> PRT
 <213> Homo Sapien

<400> 320			
Met Trp Leu Lys Val Phe Thr Thr Phe Leu Ser Phe Ala Thr Gly			
1	5	10	15
Ala Cys Ser Gly Leu Lys Val Thr Val Pro Ser His Thr Val His			
20	25	30	
Gly Val Arg Gly Gln Ala Leu Tyr Leu Pro Val His Tyr Gly Phe			
35	40	45	
His Thr Pro Ala Ser Asp Ile Gln Ile Ile Trp Leu Phe Glu Arg			
50	55	60	

Pro His Thr Met Pro Lys Tyr Leu Leu Gly Ser Val Asn Lys Ser
 65 70 75
 Val Val Pro Asp Leu Glu Tyr Gln His Lys Phe Thr Met Met Pro
 80 85 90
 Pro Asn Ala Ser Leu Leu Ile Asn Pro Leu Gln Phe Pro Asp Glu
 95 100 105
 Gly Asn Tyr Ile Val Lys Val Asn Ile Gln Gly Asn Gly Thr Leu
 110 115 120
 Ser Ala Ser Gln Lys Ile Gln Val Thr Val Asp Asp Pro Val Thr
 125 130 135
 Lys Pro Val Val Gln Ile His Pro Pro Ser Gly Ala Val Glu Tyr
 140 145 150
 Val Gly Asn Met Thr Leu Thr Cys His Val Glu Gly Gly Thr Arg
 155 160 165
 Leu Ala Tyr Gln Trp Leu Lys Asn Gly Arg Pro Val His Thr Ser
 170 175 180
 Ser Thr Tyr Ser Phe Ser Pro Gln Asn Asn Thr Leu His Ile Ala
 185 190 195
 Pro Val Thr Lys Glu Asp Ile Gly Asn Tyr Ser Cys Leu Val Arg
 200 205 210
 Asn Pro Val Ser Glu Met Glu Ser Asp Ile Ile Met Pro Ile Ile
 215 220 225
 Tyr Tyr Gly Pro Tyr Gly Leu Gln Val Asn Ser Asp Lys Gly Leu
 230 235 240
 Lys Val Gly Glu Val Phe Thr Val Asp Leu Gly Glu Ala Ile Leu
 245 250 255
 Phe Asp Cys Ser Ala Asp Ser His Pro Pro Asn Thr Tyr Ser Trp
 260 265 270
 Ile Arg Arg Thr Asp Asn Thr Thr Tyr Ile Ile Lys His Gly Pro
 275 280 285
 Arg Leu Glu Val Ala Ser Glu Lys Val Ala Gln Lys Thr Met Asp
 290 295 300
 Tyr Val Cys Cys Ala Tyr Asn Asn Ile Thr Gly Arg Gln Asp Glu
 305 310 315
 Thr His Phe Thr Val Ile Ile Thr Ser Val Gly Leu Glu Lys Leu

320	325	330
-----	-----	-----

Ala Gln Lys Gly Lys Ser Leu Ser Pro Leu Ala Ser Ile Thr Gly	340	345
335		

Ile Ser Leu Phe Leu Ile Ile Ser Met Cys Leu Leu Phe Leu Trp	355	360
350		

Lys Lys Tyr Gln Pro Tyr Lys Val Ile Lys Gln Lys Leu Glu Gly	370	375
365		

Arg Pro Glu Thr Glu Tyr Arg Lys Ala Gln Thr Phe Ser Gly His	385	390
380		

Glu Asp Ala Leu Asp Asp Phe Gly Ile Tyr Glu Phe Val Ala Phe	400	405
395		

Pro Asp Val Ser Gly Val Ser Arg Ile Pro Ser Arg Ser Val Pro	415	420
410		

Ala Ser Asp Cys Val Ser Gly Gln Asp Leu His Ser Thr Val Tyr.	430	435
425		

Glu Val Ile Gln His Ile Pro Ala Gln Gln Gln Asp His Pro Glu	445	450
440		

<210> 321

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 321

gatcctgtca caaagccagt ggtgc 25

<210> 322

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 322

cactgacagg gttcctcacc cagg 24

<210> 323

<211> 45

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 323

ctccctctgg gctgtggagt atgtgggaa catgaccctg acatg 45

<210> 324

<211> 2397

<212> DNA

<213> Homo Sapien

<400> 324

gcaagcggcg aaatggcgcc ctccgggagt cttgcagttc ccctggcagt 50

cctggtgctg ttgcttggg gtgctccctg gacgcacggg cggcggagca 100

acgttcgcgt catcacggac gagaactgga gagaactgct ggaaggagac 150

tggatgatag aatttatgc cccgtggtgc cctgcttgc aaaatcttca 200

accggaatgg gaaagtttg ctgaatgggg agaagatctt gaggttaata 250

ttgcgaaagt agatgtcaca gaggcagccag gactgagtgg acggtttatac 300

ataactgctc ttccctactat ttatcattgt aaagatggtg aatttaggcg 350

ctatcagggt ccaaggacta agaaggactt cataaacttt ataagtgata 400

aagagtggaa gagtattgag cccgtttcat catggttgg tccaggttct 450

gttctgatga gtagtatgtc agcactctt cagctatcta tgtggatcag 500

gacgtgccat aactactta ttgaagacct tggattgcca gtgtgggat 550

catatactgt ttttgctta gcaactctgt tttccggact gttattagga 600

ctctgtatga tatttgtggc agattgcctt tgcccttcaa aaaggcgcag 650

accacagcca tacccatacc cttcaaaaaa attattatca gaatctgcac 700

aacctttgaa aaaagtggag gaggaacaag aggccgatga agaagatgtt 750

tcagaagaag aagctgaaag taaagaagga acaaacaag actttccaca 800

gaatgccata agacaacgct ctctgggtcc atcattggcc acagataaat 850

cctagttaaa ttttatagtt atcttaatat tatgattttg ataaaaacag 900

aagattgatc attttgggg gtttgaagtg aactgtgact tttttgaata 950

ttgcagggtt cagtctagat tgcattaaa ttgaagagtc tacattcaga 1000

acataaaagc actaggata caagttgaa atatgattt agcacagtat 1050
gatggtttaa atagttctt aattttgaa aaatcggtt aagcaataag 1100
atttatgtat atttgtaa taataaccta tttcaagtct gagttttgaa 1150
aatttacatt tcccaagtat tgcattattt aggtatttaa gaagattt 1200
ttagagaaaa atatttctca tttgatataa tttttctctg ttcactgt 1250
tgaaaaaaag aagatatttcc cccataaatgg gaagtttgc cattgtctca 1300
agaaaatgtgt atttcagtga caatttcgtg gtcttttag aggtatattt 1350
caaaatttcc ttgtatttt agttatgca actaataaaaa actaccttac 1400
attaatttaat tacagtttc tacacatggt aatacaggat atgctactga 1450
tttaggaagt ttttaagttc atggatttct cttgattcca acaaagttg 1500
attttctctt gtattttct tacttactat gggttacatt ttttattttt 1550
caaattggat gataatttct tgaaacatt ttttatgttt tagtaaacag 1600
tattttttg ttgttcaaa ctgaagttt ctgagagatc catcaaattt 1650
aacaatctgt tgtaatttaa aattttggcc actttttca gattttacat 1700
cattcttgct gaacttcaac ttgaaattgt ttttttttcc tttttggatg 1750
tgaaggtgaa cattcctgat ttttgtctga tgtaaaaag cttggattt 1800
ttacattttg aaaattcaaa gaagcttaat ataaaagttt gcattctact 1850
cagaaaaaaag catcttcttgc tatatgtctt aaatgtattt ttgtcctcat 1900
atacagaaaag ttcttaatttgc attttacagt ctgtaatgct tgatgtttt 1950
aaataataac attttataat tttttaaaag acaaacttca tattatcctg 2000
tgttcttcc tgactggtaa tattgtgtgg gatttcacag gtaaaagtca 2050
gttaggatgga acattttagt gtattttac tccttaaaga gctagaatac 2100
atagtttca ccttaaaaaga agggggaaaa tcataaatac aatgaatcaa 2150
ctgaccatta cgttagtagac aatttctgtt atgtcccctt ctttcttaggc 2200
tctgttgctg tgtgaatcca ttagatttac agtacgtaa tatacaagtt 2250
ttctttaaag ccctctccctt tagaatttaa aatattgtac cattaaagag 2300
tttggatgtg taacttgtga tgccttagaa aaatatccta agcacaaaat 2350

aaacctttct aaccacctca ttaaagctga aaaaaaaaaa aaaaaaaa 2397

<210> 325
<211> 280
<212> PRT

<213> Homo Sapien

<400> 325

Met	Ala	Pro	Ser	Gly	Ser	Leu	Ala	Val	Pro	Leu	Ala	Val	Leu	Val
1														15
Leu Leu Leu Trp Gly Ala Pro Trp Thr His Gly Arg Arg Ser Asn														
20 25 30														
Val Arg Val Ile Thr Asp Glu Asn Trp Arg Glu Leu Leu Glu Gly														
35 40 45														
Asp Trp Met Ile Glu Phe Tyr Ala Pro Trp Cys Pro Ala Cys Gln														
50 55 60														
Asn Leu Gln Pro Glu Trp Glu Ser Phe Ala Glu Trp Gly Glu Asp														
65 70 75														
Leu Glu Val Asn Ile Ala Lys Val Asp Val Thr Glu Gln Pro Gly														
80 85 90														
Leu Ser Gly Arg Phe Ile Ile Thr Ala Leu Pro Thr Ile Tyr His														
95 100 105														
Cys Lys Asp Gly Glu Phe Arg Arg Tyr Gln Gly Pro Arg Thr Lys														
110 115 120														
Lys Asp Phe Ile Asn Phe Ile Ser Asp Lys Glu Trp Lys Ser Ile														
125 130 135														
Glu Pro Val Ser Ser Trp Phe Gly Pro Gly Ser Val Leu Met Ser														
140 145 150														
Ser Met Ser Ala Leu Phe Gln Leu Ser Met Trp Ile Arg Thr Cys														
155 160 165														
His Asn Tyr Phe Ile Glu Asp Leu Gly Leu Pro Val Trp Gly Ser														
170 175 180														
Tyr Thr Val Phe Ala Leu Ala Thr Leu Phe Ser Gly Leu Leu Leu														
185 190 195														
Gly Leu Cys Met Ile Phe Val Ala Asp Cys Leu Cys Pro Ser Lys														
200 205 210														
Arg Arg Arg Pro Gln Pro Tyr Pro Tyr Pro Ser Lys Lys Leu Leu														

215

220

225

Ser Glu Ser Ala Gln Pro Leu Lys Lys Val Glu Glu Glu Gln Glu
230 235 240

Ala Asp Glu Glu Asp Val Ser Glu Glu Ala Glu Ser Lys Glu
245 250 255

Gly Thr Asn Lys Asp Phe Pro Gln Asn Ala Ile Arg Gln Arg Ser
260 265 270

Leu Gly Pro Ser Leu Ala Thr Asp Lys Ser
275 280

<210> 326

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 326

ttaggtgggc aagcggcgaa atg 23

<210> 327

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 327

tatgtggatc aggacgtgcc 20

<210> 328

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 328

tgcagggttc agtctagatt g 21

<210> 329

<211> 25

<212> DNA

<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 329
ttgaaggaca aaggcaatct gccac 25

<210> 330
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 330
ggagtcttgc agttcccttg gcagtcctgg tgctgttgct ttggg 45

<210> 331
<211> 2168
<212> DNA
<213> Homo Sapien

<400> 331
gcgagtgtcc agctgcggag acccgtgata attcgtaac taattcaaca 50
aacgggaccc ttctgtgtgc cagaaaccgc aagcagttgc taacccagtg 100
ggacaggcgg attggaagag cggaaaggc ctggcccaga gcagtgtgac 150
acttccctct gtgaccatga aactctgggt gtctgcattg ctgatggcct 200
ggtttggtgt cctgagctgt gtgcaggccg aattttcac ctctattggg 250
cacatgactg acctgattta tgcagagaaa gagctggtgc agtctctgaa 300
agagtacatc cttgtggagg aagccaagct ttccaaagatt aagagctggg 350
ccaaacaaaat ggaagccttg actagcaagt cagctgctga tgctgagggc 400
tacctggctc accctgtgaa tgcctacaaa ctggtaagc ggctaaacac 450
agactggcct gcgctggagg accttgcct gcaggactca gctgcagggt 500
ttatcgccaa cctctctgtg cagcggcagt tcttccccac tgatgaggac 550
gagataggag ctgccaaagc cctgatgaga cttcaggaca catacaggct 600
ggacccaggc acaatttcca gaggggaact tccaggaacc aagtaccagg 650
caatgctgag tgtggatgac tgctttggga tggccgctc ggcctacaat 700
gaaggggact attatcatac ggtgttggg atggagcagg tgctaaagca 750

gcttgatgcc ggggaggagg ccaccacaac caagtcacag gtgctggact 800
 acctcagcta tgctgtctc cagttgggtg atctgcaccc tgccctggag 850
 ctcacccgcc gcctgctctc ccttgaccca agccacgaac gagctggagg 900
 gaatctgcgg tactttgagc agttatttggaa ggaagagaga gaaaaaacgt 950
 taacaaatca gacagaagct gagcttagcaa ccccaagaagg catctatgag 1000
 aggccctgtgg actacactgcc tgagagggat gtttacgaga gcctctgtcg 1050
 tggggagggt gtcaaactga caccccgtag acagaagagg cttttctgtta 1100
 ggtaccacca tggcaacagg gcccccacagg tgctcattgc ccccttcaaa 1150
 gagggaggacg agtgggacag cccgcacatc gtcaggtact acgatgtcat 1200
 gtctgatgag gaaatcgaga ggatcaagga gatcgaaaaa cctaaaacttg 1250
 cacgagccac cggtcgat cccaagacag gagtcctcac tgtcgcccagg 1300
 taccgggttt ccaaaagctc ctggcttagag gaagatgtatg accctgttgt 1350
 ggccccagta aatcgctcggaa tgcaagcatat cacagggta acagtaaaga 1400
 ctgcagaatt gttacaggtt gcaaattatg gagtgggagg acagtatgaa 1450
 ccgcacttcg acttctctag gcgacccccc gacagcggcc tcaaaacaga 1500
 gggaaatagg ttagcgacgt ttcttaacta catgagtgtat gtagaagctg 1550
 gtggtgccac cgtctccct gatctggggg ctgcaatttg gcctaagaag 1600
 ggtacagctg tggctctggta caacctcttg cggagcgggg aaggtgacta 1650
 ccgaacaaga catgctgcct gccctgtgct tgtggctgc aagtgggtct 1700
 ccaataagtg gttccatgaa cgaggacagg agttcttgag accttgtgga 1750
 tcaacagaag ttgactgaca tcctttctg tccttccct tcctggctc 1800
 tcagccccatg tcaacgtgac agacacccctt gtatgttct ttgtatgtc 1850
 ctatcaggct gatttttggaa gaaatgaatg tttgtctggaa gcagagggag 1900
 accatactag ggcgactcct gtgtgactga agtcccagcc cttccattca 1950
 gcctgtgcca tccctggccc caaggctagg atcaaagtgg ctgcagcaga 2000
 gtttagctgtc tagcgcttag caaggtgcct ttgtacctca ggtgttttag 2050
 gtgtgagatg tttcagtgaa ccaaagttct gataccttgtt ttacatgttt 2100

gtttttatgg catttctatc tattgtggct ttacccaaaa ataaaatgtc 2150
 cctaccagaa aaaaaaaaa 2168

<210> 332
 <211> 533
 <212> PRT
 <213> Homo Sapien

<400> 332
 Met Lys Leu Trp Val Ser Ala Leu Leu Met Ala Trp Phe Gly Val
 1 5 10 15

Leu Ser Cys Val Gln Ala Glu Phe Phe Thr Ser Ile Gly His Met
 20 25 30

Thr Asp Leu Ile Tyr Ala Glu Glu Leu Val Gln Ser Leu Lys
 35 40 45

Glu Tyr Ile Leu Val Glu Glu Ala Lys Leu Ser Lys Ile Lys Ser
 50 55 60

Trp Ala Asn Lys Met Glu Ala Leu Thr Ser Lys Ser Ala Ala Asp
 65 70 75

Ala Glu Gly Tyr Leu Ala His Pro Val Asn Ala Tyr Lys Leu Val
 80 85 90

Lys Arg Leu Asn Thr Asp Trp Pro Ala Leu Glu Asp Leu Val Leu
 95 100 105

Gln Asp Ser Ala Ala Gly Phe Ile Ala Asn Leu Ser Val Gln Arg
 110 115 120

Gln Phe Phe Pro Thr Asp Glu Asp Glu Ile Gly Ala Ala Lys Ala
 125 130 135

Leu Met Arg Leu Gln Asp Thr Tyr Arg Leu Asp Pro Gly Thr Ile
 140 145 150

Ser Arg Gly Glu Leu Pro Gly Thr Lys Tyr Gln Ala Met Leu Ser
 155 160 165

Val Asp Asp Cys Phe Gly Met Gly Arg Ser Ala Tyr Asn Glu Gly
 170 175 180

Asp Tyr Tyr His Thr Val Leu Trp Met Glu Gln Val Leu Lys Gln
 185 190 195

Leu Asp Ala Gly Glu Glu Ala Thr Thr Lys Ser Gln Val Leu
 200 205 210

Asp Tyr Leu Ser Tyr Ala Val Phe Gln Leu Gly Asp Leu His Arg
 215 220 225

 Ala Leu Glu Leu Thr Arg Arg Leu Leu Ser Leu Asp Pro Ser His
 230 235 240

 Glu Arg Ala Gly Gly Asn Leu Arg Tyr Phe Glu Gln Leu Leu Glu
 245 250 255

 Glu Glu Arg Glu Lys Thr Leu Thr Asn Gln Thr Glu Ala Glu Leu
 260 265 270

 Ala Thr Pro Glu Gly Ile Tyr Glu Arg Pro Val Asp Tyr Leu Pro
 275 280 285

 Glu Arg Asp Val Tyr Glu Ser Leu Cys Arg Gly Glu Gly Val Lys
 290 295 300

 Leu Thr Pro Arg Arg Gln Lys Arg Leu Phe Cys Arg Tyr His His
 305 310 315

 Gly Asn Arg Ala Pro Gln Leu Leu Ile Ala Pro Phe Lys Glu Glu
 320 325 330

 Asp Glu Trp Asp Ser Pro His Ile Val Arg Tyr Tyr Asp Val Met
 335 340 345

 Ser Asp Glu Glu Ile Glu Arg Ile Lys Glu Ile Ala Lys Pro Lys
 350 355 360

 Leu Ala Arg Ala Thr Val Arg Asp Pro Lys Thr Gly Val Leu Thr
 365 370 375

 Val Ala Ser Tyr Arg Val Ser Lys Ser Ser Trp Leu Glu Glu Asp
 380 385 390

 Asp Asp Pro Val Val Ala Arg Val Asn Arg Arg Met Gln His Ile
 395 400 405

 Thr Gly Leu Thr Val Lys Thr Ala Glu Leu Leu Gln Val Ala Asn
 410 415 420

 Tyr Gly Val Gly Gly Gln Tyr Glu Pro His Phe Asp Phe Ser Arg
 425 430 435

 Arg Pro Phe Asp Ser Gly Leu Lys Thr Glu Gly Asn Arg Leu Ala
 440 445 450

 Thr Phe Leu Asn Tyr Met Ser Asp Val Glu Ala Gly Gly Ala Thr
 455 460 465

 Val Phe Pro Asp Leu Gly Ala Ala Ile Trp Pro Lys Lys Gly Thr
 470 475 480

Ala Val Phe Trp Tyr Asn Leu Leu Arg Ser Gly Glu Gly Asp Tyr
485 490 495

Arg Thr Arg His Ala Ala Cys Pro Val Leu Val Gly Cys Lys Trp
500 505 510

Val Ser Asn Lys Trp Phe His Glu Arg Gly Gln Glu Phe Leu Arg
515 520 525

Pro Cys Gly Ser Thr Glu Val Asp
530

<210> 333

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 333

ccaggcacaa tttccaga 18

<210> 334

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 334

ggacccttct gtgtgccag 19

<210> 335

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 335

ggtctcaaga actcctgtc 19

<210> 336

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 336
 acactcagca ttgcctggta cttg 24

 <210> 337
 <211> 45
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> Synthetic Oligonucleotide Probe

 <400> 337
 gggcacatga ctgacacctgat ttatgcagag aaagagctgg tgcag 45

 <210> 338
 <211> 2789

 <212> DNA
 <213> Homo Sapien

 <400> 338
 gcagtattga gtttacttc ctccttttt tagtggaaaga cagaccataa 50
 tcccaagtgtg agtggaaattt attgtttcat ttattaccgt tttggctggg 100
 ggttagttcc gacaccccca cagttggaaaga gcaggcagaa ggagttgtga 150
 agacaggaca atcttcttgg ggatgctggt cctggaaagcc agcgggcctt 200
 gctctgtctt tggcctcatt gaccccagggt tctctggta aaactgaaag 250
 cctactactg gcctggtgcc catcaatcca ttgatccttg aggctgtgcc 300
 cctggggcac ccacccggca gggccctacca ccatgcgact gagctccctg 350
 ttggctctgc tgccggccagc gcttccccctc atcttagggc tgtctctggg 400
 gtgcagcctg agcctcctgc gggtttccctg gatccagggg gagggagaag 450
 atccctgtgt cgaggctgtt ggggagcgag gagggccaca gaatccagat 500
 tcgagagctc ggcttagacca aagtgtatgaa gacttcaaacc cccggattgt 550
 cccctactac agggacccca acaagcccta caagaaggtg ctcaggactc 600
 ggtacatcca gacagagctg ggctccctg agcgggttgc ggtggctgtc 650
 ctgacacctcc gagctacact gtccactttg gccgtggctg tgaaccgtac 700
 ggtggcccat cacttccctc ggttactcta cttcactggg cagcgggggg 750
 cccgggctcc agcaggatg caggtgggtt ctcatgggaa tgagcggccc 800

gcctggctca tgcagagac cctgcgccac cttcacacac actttgggc 850
 cgactacgac tggttttca tcatgcagga tgacacatat gtgcaggccc 900
 cccgcctggc agcccttgct ggcacacta gcatcaacca agacctgtac 950
 ttaggccggg cagaggagtt cattggcgca ggcgagcagg cccgtactg 1000
 tcatggggc tttggctacc tgggtcacg gagtctcctg cttcgtctgc 1050
 ggcacatct ggtggctgc cgaggagaca ttctcagtgc ccgtctgac 1100
 gagtggcttgc acgctgcct cattgactct ctggcgctg gctgtgtc 1150
 acagcaccag gggcagcagt atcgctcatt tgaactggcc aaaaataggg 1200
 accctgagaa ggaagggagc tcggcttcc tgagtgcctt cgccgtgcac 1250
 cctgtctccg aaggtaccct catgtaccgg ctccacaaac gtttcagcgc 1300
 tctggagttg gagcgggctt acagtgaat agaacaactg caggctcaga 1350
 tccggAACCT gaccgtgctg acccccgaag gggaggcagg gctgagctgg 1400
 cccgttggc tccctgctcc ttccacacca cactctcgct ttgaggtgct 1450
 gggctggac tactcacag agcagcacac cttctcctgt gcagatgggg 1500
 ctcccaagtgc cccactacag gggcttagca gggcggacgt gggtgatgcg 1550
 ttggagactg ccctggagca gctcaatcg cgttatcagc cccgcctgcg 1600
 cttccagaag cagcgactgc tcaacggcta tcggcgcttc gacccagcac 1650
 gggcatgga gtacaccctg gacctgctgt tggaatgtgt gacacagcgt 1700
 gggcaccggc gggccctggc tcgcagggtc agcctgctgc ggccactgag 1750
 ccgggtggaa atcctaccta tgccctatgt cactgaggcc acccgagtgc 1800
 agctggtgct gccactcctg gtggctgaag ctgctgcagc cccggcttcc 1850
 ctcgaggcgt ttgcagccaa tgtcctggag ccacgagaac atgcattgct 1900
 cacccctgttgc tgggtctacg ggcacgaga aggtggccgt ggagctccag 1950
 acccatttct tgggtgaag gtcagcagcag cggagttaga gtcacggta 2000
 cctggacga ggctggcctg gtcgctgtc cgagcagagg cccctccca 2050
 ggtgcgactc atggacgtgg ttcgaagaa gcaccctgtc gacactctct 2100

tcttccttac caccgtgtgg acaaggcctg ggcccgaagt cctcaaccgc 2150
tgtcgcatga atgccatctc tggctggcag gccttcttc cagtcattt 2200
ccaggagttc aatcctgccc tgtcaccaca gagatcaccc ccagggcccc 2250
cgggggctgg ccctgacccc ccctcccctc ctggtgctga cccctcccg 2300
ggggctccta tagggggag atttgaccgg caggctctg cggagggctg 2350
cttctacaac gctgactacc tggcggcccg agcccggtg gcaggtgaac 2400
tggcaggcca ggaagaggag gaagccctgg aggggctgga ggtgatggat 2450
gttttctcc ggttctcagg gctccacctc ttccggccg tagagccagg 2500
gctggtgcag aagttctccc tgcgagactg cagcccacgg ctcagtgaag 2550
aactctacca ccgctgccgc ctcagcaacc tggagggct agggggccgt 2600
gcccagctgg ctatggctct ctttgagcag gagcaggcca atagcactta 2650
gcccgcctgg gggccctaac ctcattacct ttcccttgtc tgccctcagcc 2700
ccaggaaggg caaggcaaga tggtgacag atagagaatt gttgctgtat 2750
tttttaataa taaaaatgtt attaaacatg tcttctgcc 2789

<210> 339
<211> 772
<212> PRT
<213> Homo Sapien

<400> 339

Met	Arg	Leu	Ser	Ser	Leu	Leu	Ala	Leu	Leu	Arg	Pro	Ala	Leu	Pro
1					5					10				15

Leu	Ile	Leu	Gly	Leu	Ser	Leu	Gly	Cys	Ser	Leu	Ser	Leu	Leu	Arg
										20			25	30

Val	Ser	Trp	Ile	Gln	Gly	Glu	Gly	Glu	Asp	Pro	Cys	Val	Glu	Ala
										35		40		45

Val	Gly	Glu	Arg	Gly	Gly	Pro	Gln	Asn	Pro	Asp	Ser	Arg	Ala	Arg
										50		55		60

Leu	Asp	Gln	Ser	Asp	Glu	Asp	Phe	Lys	Pro	Arg	Ile	Val	Pro	Tyr
										65		70		75

Tyr	Arg	Asp	Pro	Asn	Lys	Pro	Tyr	Lys	Lys	Val	Leu	Arg	Thr	Arg
										80		85		90

Tyr	Ile	Gln	Thr	Glu	Leu	Gly	Ser	Arg	Glu	Arg	Leu	Leu	Val	Ala
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

95	100	105
Val Leu Thr Ser Arg Ala Thr Leu Ser	Thr Leu Ala Val Ala Val	
110	115	120
Asn Arg Thr Val Ala His His Phe Pro	Arg Leu Leu Tyr Phe Thr	
125	130	135
Gly Gln Arg Gly Ala Arg Ala Pro Ala	Gly Met Gln Val Val Ser	
140	145	150
His Gly Asp Glu Arg Pro Ala Trp	Leu Met Ser Glu Thr Leu Arg	
155	160	165
His Leu His Thr His Phe Gly Ala Asp	Tyr Asp Trp Phe Phe Ile	
170	175	180
Met Gln Asp Asp Thr Tyr Val Gln Ala	Pro Arg Leu Ala Ala Leu	
185	190	195
Ala Gly His Leu Ser Ile Asn Gln Asp	Leu Tyr Leu Gly Arg Ala	
200	205	210
Glu Glu Phe Ile Gly Ala Gly Glu Gln Ala	Arg Tyr Cys His Gly	
215	220	225
Gly Phe Gly Tyr Leu Leu Ser Arg Ser	Leu Leu Leu Arg Leu Arg	
230	235	240
Pro His Leu Asp Gly Cys Arg Gly Asp	Ile Leu Ser Ala Arg Pro	
245	250	255
Asp Glu Trp Leu Gly Arg Cys Leu Ile Asp	Ser Leu Gly Val Gly	
260	265	270
Cys Val Ser Gln His Gln Gly Gln Gln	Tyr Arg Ser Phe Glu Leu	
275	280	285
Ala Lys Asn Arg Asp Pro Glu Lys Glu	Gly Ser Ser Ala Phe Leu	
290	295	300
Ser Ala Phe Ala Val His Pro Val Ser	Glu Gly Thr Leu Met Tyr	
305	310	315
Arg Leu His Lys Arg Phe Ser Ala Leu	Glu Leu Glu Arg Ala Tyr	
320	325	330
Ser Glu Ile Glu Gln Leu Gln Ala Gln	Ile Arg Asn Leu Thr Val	
335	340	345
Leu Thr Pro Glu Gly Glu Ala Gly Leu	Ser Trp Pro Val Gly Leu	
350	355	360

Pro Ala Pro Phe Thr Pro His Ser Arg Phe Glu Val Leu Gly Trp
 365 370 375

 Asp Tyr Phe Thr Glu Gln His Thr Phe Ser Cys Ala Asp Gly Ala
 380 385 390

 Pro Lys Cys Pro Leu Gln Gly Ala Ser Arg Ala Asp Val Gly Asp
 395 400 405

 Ala Leu Glu Thr Ala Leu Glu Gln Leu Asn Arg Arg Tyr Gln Pro
 410 415 420

 Arg Leu Arg Phe Gln Lys Gln Arg Leu Leu Asn Gly Tyr Arg Arg
 425 430 435

 Phe Asp Pro Ala Arg Gly Met Glu Tyr Thr Leu Asp Leu Leu Leu
 440 445 450

 Glu Cys Val Thr Gln Arg Gly His Arg Arg Ala Leu Ala Arg Arg
 455 460 465

 Val Ser Leu Leu Arg Pro Leu Ser Arg Val Glu Ile Leu Pro Met
 470 475 480

 Pro Tyr Val Thr Glu Ala Thr Arg Val Gln Leu Val Leu Pro Leu
 485 490 495

 Leu Val Ala Glu Ala Ala Ala Pro Ala Phe Leu Glu Ala Phe
 500 505 510

 Ala Ala Asn Val Leu Glu Pro Arg Glu His Ala Leu Leu Thr Leu
 515 520 525

 Leu Leu Val Tyr Gly Pro Arg Glu Gly Gly Arg Gly Ala Pro Asp
 530 535 540

 Pro Phe Leu Gly Val Lys Ala Ala Ala Ala Glu Leu Glu Arg Arg
 545 550 555

 Tyr Pro Gly Thr Arg Leu Ala Trp Leu Ala Val Arg Ala Glu Ala
 560 565 570

 Pro Ser Gln Val Arg Leu Met Asp Val Val Ser Lys Lys His Pro
 575 580 585

 Val Asp Thr Leu Phe Phe Leu Thr Thr Val Trp Thr Arg Pro Gly
 590 595 600

 Pro Glu Val Leu Asn Arg Cys Arg Met Asn Ala Ile Ser Gly Trp
 605 610 615

 Gln Ala Phe Phe Pro Val His Phe Gln Glu Phe Asn Pro Ala Leu
 620 625 630

Ser Pro Gln Arg Ser Pro Pro Gly Pro Pro Gly Ala Gly Pro Asp
 635 640 645
 Pro Pro Ser Pro Pro Gly Ala Asp Pro Ser Arg Gly Ala Pro Ile
 650 655 660
 Gly Gly Arg Phe Asp Arg Gln Ala Ser Ala Glu Gly Cys Phe Tyr
 665 670 675
 Asn Ala Asp Tyr Leu Ala Ala Arg Ala Arg Leu Ala Gly Glu Leu
 680 685 690
 Ala Gly Gln Glu Glu Glu Ala Leu Glu Gly Leu Glu Val Met
 695 700 705
 Asp Val Phe Leu Arg Phe Ser Gly Leu His Leu Phe Arg Ala Val
 710 715 720
 Glu Pro Gly Leu Val Gln Lys Phe Ser Leu Arg Asp Cys Ser Pro
 725 730 735
 Arg Leu Ser Glu Glu Leu Tyr His Arg Cys Arg Leu Ser Asn Leu
 740 745 750
 Glu Gly Leu Gly Gly Arg Ala Gln Leu Ala Met Ala Leu Phe Glu
 755 760 765
 Gln Glu Gln Ala Asn Ser Thr
 770

<210> 340
 <211> 1572
 <212> DNA
 <213> Homo Sapien

<400> 340
 cggagtggtg cgccaaacgtg agagggaaacc cgtgcgcggc tgcgctttcc 50
 tgtcccccaag ccgttctaga cgcgggaaaa atgcttcgt aaagcagctc 100
 cttttgaag ggtgtatgc ttggaagcat tttctgtgct ttgatcacta 150
 tgctaggaca cattaggatt ggtcatggaa atagaatgca ccaccatgag 200
 catcatcacc tacaagctcc taacaaagaa gatatctga aaatttcaga 250
 ggatgagcgc atggagctca gtaagagctt tcgagttatac tgtattatcc 300
 ttgtaaaacc caaagatgtg agtcttggg ctgcagtaaa ggagacttgg 350
 accaaacact gtgacaaaagc agagttcttc agttctgaaa atgttaaagt 400

gttttagtca attaatatgg acacaaatga catgtggta atgatgagaa 450
 aagcttacaa atacgcctt gataagtata gagaccaata caactggtc 500
 ttccttgcac gccccactac gtttgcatac attgaaaacc taaagtattt 550
 tttgttaaaa aaggatccat cacagcctt ctatctaggc cacactataa 600
 aatctggaga ctttgaatat gtgggtatgg aaggaggaat tgtcttaagt 650
 gtagaatcaa tgaaaagact taacagcctt ctcaatatcc cagaaaagtg 700
 tcctgaacag ggagggatga ttttggaaat atctgaagat aaacagctag 750
 cagtttgcct gaaaatatgct ggagtatttgc cagaaaatgc agaagatgct 800
 gatggaaaag atgtatttaa taccaaatctt gttggcctt ctattaaaga 850
 ggcaatgact tatcacccca accaggttgtt agaaggctgt ttttcagata 900
 tggctgttac ttttaatggc ctgactccaa atcagatgca tgtgtatgt 950
 tatgggtat accgccttag ggcatttggg catatttca atgatgcatt 1000
 ggtttctta cctccaaatg gttctgacaa tgactgagaa gtggtagaaa 1050
 agcgtgaata tgatcttgat ataggacgtg ttttgcattt atttgcattt 1100
 gtaactacat atccaataaca gctgtatgtt tcttttctt ttcttaatttgc 1150
 gtggcactgg tataaccaca cattaaagtc agtagtacat ttttaatggc 1200
 gggtggtttt tttttttttt acacatgaac attgtttttttt tttttttttt 1250
 aagtgtttta agaataataa ttttgcattt aaactattaa taaatattat 1300
 atgtgataaaa ttcttaatttgcattt tgaacattttttt ggcacatattt 1350
 ttttgcattt ggtttttttt tttttttttt tttttttttt tttttttttt 1400
 gcaaatgata tctcttagtttgcattt tttttttttt tttttttttt 1450
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1500
 gttccaaatggg atttgccttc tcaaaaatgttca actaaagca actaaagaaa 1550
 attaaagtga aagttggaaaa at 1572

<210> 341
 <211> 318
 <212> PRT
 <213> Homo Sapien

<400> 341

Met	Leu	Ser	Glu	Ser	Ser	Ser	Phe	Leu	Lys	Gly	Val	Met	Leu	Gly
1				5					10					15
Ser	Ile	Phe	Cys	Ala	Leu	Ile	Thr	Met	Leu	Gly	His	Ile	Arg	Ile
	20							25					30	
Gly	His	Gly	Asn	Arg	Met	His	His	His	Glu	His	His	His	Leu	Gln
	35							40					45	
Ala	Pro	Asn	Lys	Glu	Asp	Ile	Leu	Lys	Ile	Ser	Glu	Asp	Glu	Arg
	50							55					60	
Met	Glu	Leu	Ser	Lys	Ser	Phe	Arg	Val	Tyr	Cys	Ile	Ile	Leu	Val
	65							70					75	
Lys	Pro	Lys	Asp	Val	Ser	Leu	Trp	Ala	Ala	Val	Lys	Glu	Thr	Trp
	80							85					90	
Thr	Lys	His	Cys	Asp	Lys	Ala	Glu	Phe	Phe	Ser	Ser	Glu	Asn	Val
	95							100					105	
Lys	Val	Phe	Glu	Ser	Ile	Asn	Met	Asp	Thr	Asn	Asp	Met	Trp	Leu
	110							115					120	
Met	Met	Arg	Lys	Ala	Tyr	Lys	Tyr	Ala	Phe	Asp	Lys	Tyr	Arg	Asp
	125							130					135	
Gln	Tyr	Asn	Trp	Phe	Phe	Leu	Ala	Arg	Pro	Thr	Thr	Phe	Ala	Ile
	140							145					150	
Ile	Glu	Asn	Leu	Lys	Tyr	Phe	Leu	Leu	Lys	Lys	Asp	Pro	Ser	Gln
	155							160					165	
Pro	Phe	Tyr	Leu	Gly	His	Thr	Ile	Lys	Ser	Gly	Asp	Leu	Glu	Tyr
	170							175					180	
Val	Gly	Met	Glu	Gly	Gly	Ile	Val	Leu	Ser	Val	Glu	Ser	Met	Lys
	185							190					195	
Arg	Leu	Asn	Ser	Leu	Leu	Asn	Ile	Pro	Glu	Lys	Cys	Pro	Glu	Gln
	200							205					210	
Gly	Gly	Met	Ile	Trp	Lys	Ile	Ser	Glu	Asp	Lys	Gln	Leu	Ala	Val
	215							220					225	
Cys	Leu	Lys	Tyr	Ala	Gly	Val	Phe	Ala	Glu	Asn	Ala	Glu	Asp	Ala
	230							235					240	
Asp	Gly	Lys	Asp	Val	Phe	Asn	Thr	Lys	Ser	Val	Gly	Leu	Ser	Ile
	245							250					255	
Lys	Glu	Ala	Met	Thr	Tyr	His	Pro	Asn	Gln	Val	Val	Glu	Gly	Cys

260

265

270

Cys Ser Asp Met Ala Val Thr Phe Asn Gly Leu Thr Pro Asn Gln
275 280 285

Met His Val Met Met Tyr Gly Val Tyr Arg Leu Arg Ala Phe Gly
290 295 300

His Ile Phe Asn Asp Ala Leu Val Phe Leu Pro Pro Asn Gly Ser
305 310 315

Asp Asn Asp

<210> 342

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 342

tccccaaagcc gttcttagacg cg 23

<210> 343

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 343

ctggtttttc cttgcacg.18

<210> 344

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 344

gcccaaatgc cctaaggcg tataaccc 28

<210> 345

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 345
gggtgtgatg cttggaagca ttttctgtgc tttgatcact atgctaggac 50

<210> 346
<211> 25
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 346
gggatgcagg tggtgtctca tgggg 25

<210> 347
<211> 18
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 347
ccctcatgta ccggctcc 18

<210> 348
<211> 48
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 348
ggattctaat acgactcact ataggctca gaaaagcgca acagagaa 48

<210> 349
<211> 47
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 349
ctatgaaatt aaccctcact aaaggatgt cttccatgcc aaccttc 47

<210> 350
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 350
ggattctaat acgactcact atagggcggc gatgtccact ggggctac 48

<210> 351
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 351
ctatgaaatt aaccctcact aaagggacga ggaagatggg cggatgg 48

<210> 352
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 352
ggattctaat acgactcact atagggcacc cacgcgtccg gctgatt 47

<210> 353
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 353
ctatgaaatt aaccctcact aaagggacgg gggacaccac ggaccaga 48

<210> 354
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 354
ggattctaat acgactcact atagggcttg ctgcggttt ttttcctg 48

<210> 355
<211> 48

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 355
ctatgaaatt aaccctcact aaagggagct gccgatccca ctggatt 48

<210> 356
<211> 46
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 356
ggattctaat acgactcact atagggcgga tcctggccgg cctctg 46

<210> 357
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 357
ctatgaaatt aaccctcact aaagggagcc cggcatggt ctcagtta 48

<210> 358
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 358
ggattctaat acgactcact atagggcgga aagatggcga ggaggag 47

<210> 359
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 359
ctatgaaatt aaccctcact aaagggacca aggccacaaa cgaaaaatc 48

<210> 360
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 360
ggattctaat acgactcact atagggctgt gctttcattc tgccagta 48

<210> 361
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 361
ctatgaaatt aaccctcact aaagggaggg tacaattaag gggtgtggat 48

<210> 362
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 362
ggattctaat acgactcact atagggcccg ctcgcctcct gctcctg 47

<210> 363
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 363
ctatgaaatt aaccctcact aaagggagga ttgccgcgac cctcacag 48

<210> 364
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 364

ggattctaat acgactcact atagggccccc tcctgccttc cctgtcc 47

<210> 365

<211> 48

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 365

ctatgaaatt aaccctcact aaaggagtg gtggccgcga ttatctgc 48

<210> 366

<211> 48

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 366

ggattctaat acgactcact atagggcgca gcgatggcag cgatgagg 48

<210> 367

<211> 47

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 367

ctatgaaatt aaccctcact aaaggacag acggggcaga gggagtg 47

<210> 368

<211> 47

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 368

ggattctaat acgactcact atagggccag gaggcgtgag gagaaac 47

<210> 369

<211> 48

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 369
ctatgaaatt aaccctcact aaaggaaag acatgtcatc gggagtgg 48

<210> 370
<211> 48
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 370
ggattctaat acgactcact atagggccgg gtggaggtgg aacagaaa 48

<210> 371
<211> 48
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 371
ctatgaaatt aaccctcact aaaggacac agacagagcc ccatacgc 48

<210> 372
<211> 47
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 372
ggattctaat acgactcact atagggccag ggaaatccgg atgtctc 47

<210> 373
<211> 48
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 373
ctatgaaatt aaccctcact aaaggagta agggatgcc accgagta 48

<210> 374
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 374
ggattctaat acgactcact atagggccag ctacccgcag gaggagg 47

<210> 375
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 375
ctatgaaatt aaccctcact aaagggatcc caggtgatga ggtccaga 48

<210> 376
<211> 997
<212> DNA
<213> Homo Sapien

<400> 376
cccacgcgtc cgatcttacc aacaaaacac tcctgaggag aaagaaaagag 50
agggagggag agaaaaagag agagagagaa acaaaaaacc aaagagagag 100
aaaaaatgaa ttcatctaaa tcatctgaaa cacaatgcac agagagagga 150
tgcttccttt cccaaatgtt ctatggact gttgctggga tccccatcct 200
atttctcagt gcctgtttca tcaccagatg tggttgaca tttcgcatct 250
ttcaaaccctg tcatgagaaa aagtttcagc tacctgagaa tttcacagag 300
ctctcctgct acaatttatgg atcagggttca gtcaagaatt gttgtccatt 350
gaactggaa tatttcaat ccagctgcta cttctttct actgacacca 400
tttcctggc gttaagtttta aagaactgct cagccatgg ggctcacctg 450
gtggttatca actcacagga ggagcaggaa ttcccttcct acaagaaaacc 500
taaaatgaga gagttttta ttggactgtc agaccaggtt gtcgagggtc 550
agtggcaatg ggtggacggc acaccttga caaagtctct gagcttctgg 600
gatgttagggg agcccaacaa catagctacc ctggaggact gtgccaccat 650
gagagactct tcaaacccaa ggcaaaattt gaatgtatgtt acctgtttcc 700
tcaatttattt tcggatttgtt gaaatggtag gaataaatcc tttgaacaaa 750

ggaaaatctc tttaagaaca gaaggcacaa ctcaaatgtg taaagaagga 800
 agagcaagaa catggccaca cccaccgccc cacacgagaa atttgtgcgc 850
 tgaacttcaa aggacttcat aagtatttgc tactctgata caaataaaaa 900
 taagtagttt taaatgttaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 950
 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 997

<210> 377

<211> 219

<212> PRT

<213> Homo Sapien

<400> 377

Met	Asn	Ser	Ser	Lys	Ser	Ser	Glu	Thr	Gln	Cys	Thr	Glu	Arg	Gly
1														15

Cys	Phe	Ser	Ser	Gln	Met	Phe	Leu	Trp	Thr	Val	Ala	Gly	Ile	Pro
					20				25					30

Ile	Leu	Phe	Leu	Ser	Ala	Cys	Phe	Ile	Thr	Arg	Cys	Val	Val	Thr
					35				40					45

Phe	Arg	Ile	Phe	Gln	Thr	Cys	Asp	Glu	Lys	Lys	Phe	Gln	Leu	Pro
					50				55					60

Glu	Asn	Phe	Thr	Glu	Leu	Ser	Cys	Tyr	Asn	Tyr	Gly	Ser	Gly	Ser
					65				70					75

Val	Lys	Asn	Cys	Cys	Pro	Leu	Asn	Trp	Glu	Tyr	Phe	Gln	Ser	Ser
					80				85					90

Cys	Tyr	Phe	Phe	Ser	Thr	Asp	Thr	Ile	Ser	Trp	Ala	Leu	Ser	Leu
					95				100					105

Lys	Asn	Cys	Ser	Ala	Met	Gly	Ala	His	Leu	Val	Val	Ile	Asn	Ser
					110				115					120

Gln	Glu	Gln	Glu	Phe	Leu	Ser	Tyr	Lys	Lys	Pro	Lys	Met	Arg	
					125				130					135

Glu	Phe	Phe	Ile	Gly	Leu	Ser	Asp	Gln	Val	Val	Glu	Gly	Gln	Trp
					140				145					150

Gln	Trp	Val	Asp	Gly	Thr	Pro	Leu	Thr	Lys	Ser	Leu	Ser	Phe	Trp
									155					165

Asp	Val	Gly	Glu	Pro	Asn	Asn	Ile	Ala	Thr	Leu	Glu	Asp	Cys	Ala
									170					180

CDS/NCBI Protein Database

Thr Met Arg Asp Ser Ser Asn Pro Arg Gln Asn Trp Asn Asp Val
185 190 195

Thr Cys Phe Leu Asn Tyr Phe Arg Ile Cys Glu Met Val Gly Ile
200 205 210

Asn Pro Leu Asn Lys Gly Lys Ser Leu
215

<210> 378
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 378
ttcagcttct gggatgttagg g 21

<210> 379
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 379
tattcctacc atttcacaaa tccg 24

<210> 380
<211> 49
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 380
ggaggactgt gccaccatga gagactttc aaacccaagg caaaattgg 49

<210> 381
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 381
gcagatttg aggacagcca cctcca 26

<210> 382
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 382
ggccttgcag acaaccgt 18

<210> 383
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 383
cagactgagg gagatccgag a 21

<210> 384
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 384
cagctgccct tccccaaacca 20

<210> 385
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 385
catcaaggcgc ctctaccca 18

<210> 386
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 386

cacaaactcg aactgcttct g 21
<210> 387
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 387
gggccatcac agtccct 18

<210> 388
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 388
gggatgtggtaa gaacacagaa ca 22

<210> 389
<211> 22

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 389
tgccagctgc atgctgccag tt 22

<210> 390
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 390
cagaaggatg tcccgtggaa 20

<210> 391
<211> 17
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe
<400> 391
gcccgtgtcc actgcag 17

<210> 392
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 392
gacggcatcc tcagggccac a 21

<210> 393
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 393
atgtcctcca tgccccacg 20

<210> 394
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 394
gagtgcgaca tcgagagtt 20

<210> 395
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 395
ccgcagcctc agtgatga 18

<210> 396
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 396
gaagagcaca gctgcagatc c 21

<210> 397
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 397
gaggtgtcct ggctttggta gt 22

<210> 398
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 398
cctctggcgcc ccccaactcaa 20

<210> 399
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 399
ccaggagagc tggcgatg 18

<210> 400
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 400
gcaaattcag ggctcacttag aga 23

<210> 401
<211> 29

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 401
cacagagcat ttgtccatca gcagttcag 29

<210> 402
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 402
ggcagagact tccagtcact ga 22

<210> 403
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 403
gccaagggtg gtgttagata gg 22

<210> 404
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 404
caggccccct tgatctgtac ccca 24

<210> 405
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 405
gggacgtgct tctacaagaa cag 23

<210> 406
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 406
caggcttaca atgttatgat cagaca 26

<210> 407
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 407
tattcagagt tttccattgg cagtgccagt t 31

<210> 408
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 408
tctacatcag cctctctgcg c 21

<210> 409
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 409
cgatcttcacccaggag cg 23

<210> 410
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 410

gccaggcctc acattcgt 18
<210> 411
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 411
ctccctgaat ggcagcctga gca 23

<210> 412
<211> 24

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 412
agggttttat taagggccta cgct 24

<210> 413
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 413
cagagcagag ggtgccttg 19

<210> 414
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 414
tggcgagtc ccctcttggc t 21

<210> 415
<211> 22
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 415
ccctgtttcc ctagcatca ct 22

<210> 416
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 416
tcaacccctg acccttcct a 21

<210> 417
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 417
ggcaggggac aagccatctc tcct 24

<210> 418
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 418
gggactgaac tgccagttc 20

<210> 419
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 419
gggccttaac ctcattaccc tt 22

<210> 420
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 420
tgtctgcctc agccccagga agg 23

<210> 421
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 421
tctgtccacc atcttgccctt g 21

<210> 422
<211> 3554
<212> DNA
<213> Homo Sapien

<400> 422
gggactacaa gccgcgccgc gctgccgctg gcccctcagc aaccctcgac 50
atggcgctga ggccggccacc gcgactccgg ctctgcgcctc ggctgcctga 100
cttcttcctg ctgctgcttt tcaggggctg cctgataggg gctgtaaatc 150
tcaaatccag caatcgaacc ccagtggtagc aggaatttga aagtgtggaa 200
ctgtcttgca tcattacgga ttccgcagaca agtgacccca ggatcgagtg 250
gaagaaaaatt caagatgaac aaaccacata tgtgtttttt gacaacaaaa 300
ttcagggaga cttggcggt cgtgcagaaa tactggggaa gacatccctg 350
aagatctgga atgtgacacg gagagactca gccctttatc gctgtgaggt 400
cggtgctcga aatgaccgca agggaaatttga tgagattgtg atcgagttaa 450
ctgtgcaagt gaagccagtg acccctgtct gtagagtgcc gaaggctgta 500
ccagtaggca agatggcaac actgcactgc caggagagtg agggccaccc 550
ccggcctcac tacagctggc atcgcaatga tgtaccactg cccacggatt 600
ccagagccaa tcccagattt cgcaattctt ctttccactt aaactctgaa 650
acaggcactt tggtgttcac tgctgttcac aaggacgact ctggggcagta 700
ctactgcatt gcttccaatg acgcaggctc agccaggtgt gaggagcagg 750

agatggaagt ctatgacctg aacattggcg gaattattgg gggggttctg 800
gttgccttg ctgtactggc cctgatcacg ttggcatct gctgtgcata 850
cagacgtggc tacttcatca acaataaaca ggatggagaa agttacaaga 900
accaggaa accagatgga gttaactaca tccgcactga cgaggaggc 950
gacttcagac acaagtcatc gtttgtgatc tgagacccgc ggtgtggctg 1000
agagcgcaca gagcgcacgt gcacataacct ctgctagaaa ctctgtcaa 1050
ggcagcgaga gctgatgcac tcggacagag ctagacactc attcagaagc 1100
tttcgtttt gccaagtt gaccactact cttcttactc taacaagcca 1150
catgaataga agaattttcc tcaagatgga cccggtaaat ataaccacaa 1200
ggaagcgaaa ctgggtgcgt tcactgagtt gggttctaa tctgtttctg 1250
gcctgattcc cgcatgagta ttagggtgat cttaaagagt ttgctcacgt 1300
aaacgcccgt gctggccct gtgaagccag catgttcacc actggtcgtt 1350
cagcagccac gacagcacca tgtgagatgg cgaggtggct ggacagcacc 1400
agcagcgcat cccggcgga acccagaaaa ggcttcttac acagcagcct 1450
tacttcatcg gcccacagac accacccgcaag tttcttctta aaggctctgc 1500
tgatcggtgt tgcatgttcc attgtggaga agcttttgg atcagcattt 1550
tgtaaaaaca accaaaatca ggaaggtaaa ttgggtgctg gaagagggat 1600
cttgcctgag gaaccctgct tgtccaacag ggtgtcagga tttaaggaaa 1650
accttcgtct taggctaagt ctgaaatggt actgaaatat gctttctat 1700
gggtcttggtt tattttataa aattttacat ctaaattttt gctaaggatg 1750
tattttgatt attgaaaaga aaatttctat ttaaactgta aatatattgt 1800
catacaatgt taaataacct attttttaa aaaagttcaa cttaaggtag 1850
aagttccaag ctactagtgt taaattggaa aatataata attaagagta 1900
ttttacccaa ggaatcctct catggaagtt tactgtgatg ttcctttct 1950
cacacaagtt ttagcctttt tcacaaggaa actcatactg tctacacatc 2000
agaccatagt tgcttaggaa acctttaaaa attccagttt agcaatgtt 2050

aaatcagttt gcatctcttc aaaagaaaacc tctcaggta gctttgaact 2100
gcctcttcct gagatgacta ggacagtctg tacccagagg ccacccagaa 2150
gccctcagat gtacatacac agatgccagt cagctcctgg ggttgegcac 2200
ggcgcccccg ctctagctca ctgttgccctc gctgtctgcc aggaggccct 2250
gccatccttg ggccctggca gtggctgtgt cccagtgagc tttactcact 2300
tggcccttgc ttcatccagc acagctctca ggtggcact gcagggacac 2350
tgggtcttc catgttaggtt cccagctttg ggctcctgta acagacctct 2400
ttttggttat ggatggctca caaaataggg ccccaatgc tattttttt 2450
tttaagttt gtttaattat ttgttaagat tgtctaaggc caaaggcaat 2500
tgcgaaatca agtctgtcaa gtacaataac atttttaaaa gaaaatggat 2550
cccactgttc ctctttgcca cagagaaagc acccagacgc cacaggctct 2600
gtcgcatttc aaaacaaacc atgatggagt ggccggccagt ccagccttt 2650
aaagaacgtc aggtggagca gccaggtgaa aggcctggcg gggagggaaag 2700
tgaaacgcct gaatcaaaag cagtttctta attttgactt taaattttc 2750
atccgccccga gacactgctc ccatttgtgg ggggacatta gcaacatcac 2800
tcagaagcct gtgttcttca agagcagggtg ttctcagcct cacatgccct 2850
gccgtgtgg actcaggact gaagtgtgt aaagcaagga gctgctgaga 2900
aggagcactc cactgtgtgc ctggagaatg gctctacta ctcaccttgt 2950
ctttcagctt ccagtgtctt gggtttttta tactttgaca gctttttttt 3000
aattgcatac atgagactgt gttgactttt tttagttatg tgaaacactt 3050
tgccgcaggc cgcctggcag aggcaggaaa tgctccagca gtggctcagt 3100
gctccctgggt gtctgctgca tggcatcctg gatgcttagc atgcaagttc 3150
cctccatcat tgccaccttg gtagagaggg atggctcccc accctcagcg 3200
ttggggattc acgctccagc ctcccttctt gttgtcatag tgataggta 3250
gccttattgc cccctcttct tataccctaa aaccttctac actagtgcac 3300
tggaaaccag gtctgaaaaa gtagagagaa gtgaaagtag agtctggaa 3350
gtagctgcct ataactgaga ctagacggaa aaggaatact cgtgtattt 3400

aagatatgaa tgtgactcaa gactcgaggc cgatacgagg ctgtgattct 3450
 gcctttggat ggatgttgct gtacacagat gctacagact tgtactaaca 3500
 caccgtaatt tggcatttgtt ttaacctcat ttataaaaagc ttcaaaaaaa 3550
 ccca 3554

<210> 423

<211> 310

<212> PRT

<213> Homo Sapien

<400> 423

Met	Ala	Leu	Arg	Arg	Pro	Pro	Arg	Leu	Arg	Leu	Cys	Ala	Arg	Leu
1					5				10				15	

Pro	Asp	Phe	Phe	Leu	Leu	Leu	Phe	Arg	Gly	Cys	Leu	Ile	Gly
				20				25				30	

Ala	Val	Asn	Leu	Lys	Ser	Ser	Asn	Arg	Thr	Pro	Val	Val	Gln	Glu
				35				40				45		

Phe	Glu	Ser	Val	Glu	Leu	Ser	Cys	Ile	Ile	Thr	Asp	Ser	Gln	Thr
				50				55				60		

Ser	Asp	Pro	Arg	Ile	Glu	Trp	Lys	Ile	Gln	Asp	Glu	Gln	Thr
				65				70				75	

Thr	Tyr	Val	Phe	Phe	Asp	Asn	Lys	Ile	Gln	Gly	Asp	Leu	Ala	Gly
				80				85				90		

Arg	Ala	Glu	Ile	Leu	Gly	Lys	Thr	Ser	Leu	Lys	Ile	Trp	Asn	Val
				95					100			105		

Thr	Arg	Arg	Asp	Ser	Ala	Leu	Tyr	Arg	Cys	Glu	Val	Val	Ala	Arg
					110				115			120		

Asn	Asp	Arg	Lys	Glu	Ile	Asp	Glu	Ile	Val	Ile	Glu	Leu	Thr	Val
				125				130				135		

Gln	Val	Lys	Pro	Val	Thr	Pro	Val	Cys	Arg	Val	Pro	Lys	Ala	Val
				140				145				150		

Pro	Val	Gly	Lys	Met	Ala	Thr	Leu	His	Cys	Gln	Glu	Ser	Glu	Gly
				155				160				165		

His	Pro	Arg	Pro	His	Tyr	Ser	Trp	Tyr	Arg	Asn	Asp	Val	Pro	Leu
				170				175				180		

Pro	Thr	Asp	Ser	Arg	Ala	Asn	Pro	Arg	Phe	Arg	Asn	Ser	Ser	Phe
					185				190			195		

His Leu Asn Ser Glu Thr Gly Thr Leu Val Phe Thr Ala Val His
200 205 210

Lys Asp Asp Ser Gly Gln Tyr Tyr Cys Ile Ala Ser Asn Asp Ala
215 220 225

Gly Ser Ala Arg Cys Glu Glu Gln Glu Met Glu Val Tyr Asp Leu
230 235 240

Asn Ile Gly Gly Ile Ile Gly Gly Val Leu Val Val Leu Ala Val
245 250 255

Leu Ala Leu Ile Thr Leu Gly Ile Cys Cys Ala Tyr Arg Arg Gly
260 265 270

Tyr Phe Ile Asn Asn Lys Gln Asp Gly Glu Ser Tyr Lys Asn Pro
275 280 285

Gly Lys Pro Asp Gly Val Asn Tyr Ile Arg Thr Asp Glu Glu Gly
290 295 300

Asp Phe Arg His Lys Ser Ser Phe Val Ile
305 310