STATS 551

Hierarchical Models

Yang Chen

Department of Statistics
University of Michigan
ychenang@umich.edu

February 10, 2020

Overview

- Hierarchical Models
- 2 Exchangeability
- 3 Conjugate Hierarchical Models
- 4 Examples and Applications
 - Rat Tumor Example
 - Gaussian Example
 - Eight Schools Example

Plan

- 1 Hierarchical Models
- Exchangeability
- Conjugate Hierarchical Models
- Examples and Applications
 - Rat Tumor Example
 - Gaussian Example
 - Eight Schools Example

Hierarchical Models

- Structure of multiple parameters
- Common population distribution prior
- Hyperparameters
- Fit 'well' without overfitting
- Example: analyze an experiment in the context of historical data

• Estimate θ , the probability of tumor in a population of female laboratory rate of type 'F344' in control group.

- Estimate θ , the probability of tumor in a population of female laboratory rate of type 'F344' in control group.
- Observation: 4 out of 14 rats develop cancer.

- Estimate θ , the probability of tumor in a population of female laboratory rate of type 'F344' in control group.
- Observation: 4 out of 14 rats develop cancer.
- Prior: $Beta(\alpha, \beta)$ from historical data.

- Estimate θ , the probability of tumor in a population of female laboratory rate of type 'F344' in control group.
- Observation: 4 out of 14 rats develop cancer.
- Prior: $Beta(\alpha, \beta)$ from historical data.
- Historical data: 70 groups of rats.
 - for jth experiment, $y_j \sim \text{Binomial}(n_j, \theta_j)$.

- Estimate θ , the probability of tumor in a population of female laboratory rate of type 'F344' in control group.
- Observation: 4 out of 14 rats develop cancer.
- Prior: $Beta(\alpha, \beta)$ from historical data.
- Historical data: 70 groups of rats.
 - for jth experiment, $y_j \sim \text{Binomial}(n_j, \theta_j)$.
 - Set (α, β) based on mean and sd of historical data.

- Data used twice?
 - Data used to construct prior
 - Data used to estimate θ

- Data used twice?
 - Data used to construct prior
 - ullet Data used to estimate heta
- Point estimate for (α, β) is arbitrary.

- Data used twice?
 - Data used to construct prior
 - ullet Data used to estimate heta
- Point estimate for (α, β) is arbitrary.
- Does it make sense to 'estimate prior' from data?

Plan

- Hierarchical Models
- Exchangeability
- Conjugate Hierarchical Models
- Examples and Applications
 - Rat Tumor Example
 - Gaussian Example
 - Eight Schools Example

• No information other than data is available to distinguish θ_i .

- No information other than data is available to distinguish θ_j .
- The parameters $(\theta_1, \dots, \theta_J)$ are exchangeable if
 - $p(\theta_1, \ldots, \theta_J)$ is invariant to permutations of the indexes $(1, \ldots, J)$.

- No information other than data is available to distinguish θ_j .
- The parameters $(\theta_1, \ldots, \theta_J)$ are exchangeable if
 - $p(\theta_1, \dots, \theta_J)$ is invariant to permutations of the indexes $(1, \dots, J)$.
- Simple form

$$p(\theta) = \int \left(\prod_{j=1}^{J} p(\theta_j | \phi)\right) p(\phi) d\phi.$$
 (1)

- No information other than data is available to distinguish θ_j .
- The parameters $(\theta_1, \ldots, \theta_J)$ are exchangeable if
 - $p(\theta_1, \ldots, \theta_J)$ is invariant to permutations of the indexes $(1, \ldots, J)$.
- Simple form

$$p(\theta) = \int \left(\prod_{j=1}^{J} p(\theta_j | \phi)\right) p(\phi) d\phi.$$
 (1)

• **de Finetti's theorem**: as $J \to \infty$, any suitably well-behaved exchangeable distribution on $(\theta_1, \dots, \theta_J)$ can be expressed as a mixture of independent and identical distributions as (1).

Positive correlation

Suppose the distribution of $\theta = (\theta_1, \dots, \theta_J)$ can be written as a mixture of i.i.d. components,

$$p(\theta) = \int \prod_{j=1}^{J} p(\theta_j | \phi) p(\phi) d\phi.$$

Then the covariances $Cov(\theta_i, \theta_i)$ are all nonnegative.

Positive correlation

Suppose the distribution of $\theta = (\theta_1, \dots, \theta_J)$ can be written as a mixture of i.i.d. components,

$$p(\theta) = \int \prod_{j=1}^{J} p(\theta_j | \phi) p(\phi) d\phi.$$

Then the covariances $Cov(\theta_i, \theta_i)$ are all nonnegative.

Let $\mu(\phi) = E(\theta_i | \phi)$ for all j, then for all i, j,

$$cov(\theta_i, \theta_j) = E(cov(\theta_i, \theta_j | \phi)) + cov(E(\theta_i | \phi), E(\theta_j | \phi)) = Var(\mu(\phi)) \ge 0.$$

Suppose it is known a priori that 2J parameters $\theta_1, \ldots, \theta_{2J}$ are clustered into two groups, with exactly half drawn from N(1,1) and the other half from N(-1,1). But we do not know which.

- **1** Are $\theta_1, \ldots, \theta_{2J}$ exchangeable under the prior distribution?
- 2 Can this distribution be written as a mixture of i.i.d.s?
- **3** As $J \to \infty$ is it a counter example to de-Finetti's theorem?

• The joint density $p(\theta_1, \ldots, \theta_{2l})$ is

$$\left(\begin{array}{c}2J\\J\end{array}\right)^{-1}\sum_{\sigma(1,\ldots,2J)}\left[\prod_{j=1}^JN(\theta_{\sigma(j)};1,1)\prod_{j=J+1}^{2J}N(\theta_{\sigma(j)};-1,1)\right],$$

where the sum is over all permutations.

• The joint density $p(\theta_1, \ldots, \theta_{2J})$ is

$$\left(\begin{array}{c} 2J \\ J \end{array}\right)^{-1} \sum_{\sigma(1,\ldots,2J)} \left[\prod_{j=1}^J N(\theta_{\sigma(j)};1,1) \prod_{j=J+1}^{2J} N(\theta_{\sigma(j)};-1,1) \right],$$

where the sum is over all permutations.

 \bigcirc $Cov(\theta_i, \theta_i) < 0.$

• The joint density $p(\theta_1, \ldots, \theta_{2l})$ is

$$\left(\begin{array}{c}2J\\J\end{array}\right)^{-1}\sum_{\sigma(1,\ldots,2J)}\left[\prod_{j=1}^JN(\theta_{\sigma(j)};1,1)\prod_{j=J+1}^{2J}N(\theta_{\sigma(j)};-1,1)\right],$$

where the sum is over all permutations.

- \bigcirc $Cov(\theta_i, \theta_i) < 0.$
- **3** Correlation \to 0. As $J \to \infty$, the distinction disappears between (1) independently assigning each i to one of two groups, and (2) picking exactly half of the *i*'s for each group.

Plan

- Hierarchical Models
- Exchangeability
- 3 Conjugate Hierarchical Models
- Examples and Applications
 - Rat Tumor Example
 - Gaussian Example
 - Eight Schools Example

• Calculate $p(\phi|y)$ as

$$p(\phi|y) = \int p(\theta, \phi|y) d\theta = \frac{p(\theta, \phi|y)}{p(\theta|\phi, y)}.$$

• Calculate $p(\phi|y)$ as

$$p(\phi|y) = \int p(\theta, \phi|y) d\theta = \frac{p(\theta, \phi|y)}{p(\theta|\phi, y)}.$$

• Draw ϕ_1, \ldots, ϕ_M from $p(\phi|y)$.

• Calculate $p(\phi|y)$ as

$$p(\phi|y) = \int p(\theta, \phi|y) d\theta = \frac{p(\theta, \phi|y)}{p(\theta|\phi, y)}.$$

- Draw ϕ_1, \ldots, ϕ_M from $p(\phi|y)$.
- Draw θ from $p(\theta|\phi, y)$ for each ϕ_i .

• Calculate $p(\phi|y)$ as

$$p(\phi|y) = \int p(\theta, \phi|y) d\theta = \frac{p(\theta, \phi|y)}{p(\theta|\phi, y)}.$$

- Draw ϕ_1, \ldots, ϕ_M from $p(\phi|y)$.
- Draw θ from $p(\theta|\phi, y)$ for each ϕ_i .
- Draw predictive values y.

Plan

- 1 Hierarchical Models
- 2 Exchangeability
- Conjugate Hierarchical Models
- 4 Examples and Applications
 - Rat Tumor Example
 - Gaussian Example
 - Eight Schools Example

$$y_j \sim \mathsf{Binomial}(n_j, \theta_j), \theta_j \sim \mathsf{Beta}(\alpha, \beta).$$

- Joint posterior distribution $p(\theta, \alpha, \beta|y)$.
- Conditional posterior distribution $p(\theta | \alpha, \beta, y)$.
- Marginal posterior distribution $p(\alpha, \beta|y)$.

Setting up priors

Reparametrize (α, β) as $(logit(\frac{\alpha}{\alpha+\beta}), log(\alpha+\beta))$.

• Flat priors give improper posterior: $\alpha + \beta \to \infty$.

Setting up priors

Reparametrize (α, β) as $(\log it(\frac{\alpha}{\alpha+\beta}), \log(\alpha+\beta))$.

- Flat priors give improper posterior: $\alpha + \beta \to \infty$.
- Uniform on $(\frac{\alpha}{\alpha+\beta}, (\alpha+\beta)^{-1/2})$,

$$p(\alpha,\beta) \propto (\alpha+\beta)^{-5/2}$$
,

which corresponds to

$$p\left(\log(\frac{\alpha}{\beta}),\log(\alpha+\beta)\right)\propto \alpha\beta(\alpha+\beta)^{-5/2}.$$

Setting up priors

- Alternatives
 - $p(\frac{\alpha}{\alpha+\beta}, \alpha+\beta) \propto 1$
 - $p(\alpha, \beta) \propto 1$

Setting up priors

- Alternatives
 - $p(\frac{\alpha}{\alpha+\beta}, \alpha+\beta) \propto 1$
 - $p(\alpha, \beta) \propto 1$
- Flat prior for $(\log(\frac{\alpha}{\beta}), \log(\alpha + \beta))$ on a vague but finite range e.g. $[-10^{10}, 10^{10}]^2$ is not an acceptable solution.

In general, when a likelihood is not integrable, setting a faraway finite cutoff to a uniform prior does not necessarily eliminate the problem.

- R Demon.
- Estimate $E(\alpha|y)$.
- Sample from $p(\theta|y)$ through
 - **1** Sample $(\log(\frac{\alpha}{\beta}), \log(\alpha + \beta))$ from grid.
 - 2 Sample θ_j from $p(\theta_j | \alpha, \beta, y)$.

$$y_{ij}|\theta_j \sim N(\theta_j, \sigma^2); i = 1, \ldots, n_j; j = 1, \ldots, J.$$

$$y_{ij}|\theta_j \sim N(\theta_j, \sigma^2); i = 1, \ldots, n_j; j = 1, \ldots, J.$$

• Estimate θ_j with $\bar{y}_{.j}$ or $\bar{y}_{..}$, or linear combination?

$$y_{ij}|\theta_j \sim N(\theta_j, \sigma^2); i = 1, \ldots, n_j; j = 1, \ldots, J.$$

- Estimate θ_i with \bar{y}_{i} or \bar{y}_{i} , or linear combination?
- Hierarchical model

$$p(\theta_1,\ldots,\theta_J) = \prod_{j=1}^J N(\theta_j;\mu,\tau^2);$$

 $p(\mu,\tau) = p(\mu|\tau)p(\tau).$

• Conditional posterior $\theta_j | \mu, \tau, y$.

- Conditional posterior $\theta_j | \mu, \tau, y$.
- Marginal posterior of hyperparameters

$$\bar{y}_{\cdot j} \sim N(\mu, \frac{\sigma^2}{n_j} + \tau^2).$$

- Conditional posterior $\theta_j | \mu, \tau, y$.
- Marginal posterior of hyperparameters

$$\bar{y}_{\cdot j} \sim N(\mu, \frac{\sigma^2}{n_j} + \tau^2).$$

• Posterior distribution of μ given τ .

- Conditional posterior $\theta_j | \mu, \tau, y$.
- Marginal posterior of hyperparameters

$$\bar{y}_{.j} \sim N(\mu, \frac{\sigma^2}{n_j} + \tau^2).$$

- Posterior distribution of μ given τ .
- Posterior distribution of au

$$p(\tau|y) = \frac{p(\mu, \tau|y)}{p(\mu|\tau, y)}$$

• Prior distribution for τ .

- Prior distribution for τ .
- Non-Bayesian estimate of hyper parameters

$$\hat{\mu} = \bar{y}_{\cdot\cdot\cdot}, \hat{\tau}^2 = (MS_B - MS_W)/n.$$

- Prior distribution for τ .
- Non-Bayesian estimate of hyper parameters

$$\hat{\mu} = \bar{y}_{..}, \hat{\tau}^2 = (MS_B - MS_W)/n.$$

Main problem:

- Ignore uncertainty of (μ, τ^2)
- Numerically $\hat{\tau}^2$ might not be positive.

Eight Schools Example

- Separate Estimates.
- Pooled Estimates.
- Hierarchical Model.
- R Demon.

Weakly informative priors for variance parameters

- Uniform prior distributions.
- Inverse Gamma (ϵ, ϵ) prior distributions.
- Half Cauchy prior distributions.
- Application to 8-school example.