Ordered Dictionary Implemented with Binary Search Trees

Operations

get(k)
smallest()
largest()
put(k,d)
remove(k)
successor(k)
predecessor(k)

O(height of tree) time complexity

Ordered Dictionary Implemented with Binary Search Trees

Operations

```
get(k)
smallest()
largest()
put(k,d)
remove(k)
successor(k)
predecessor(k)
```

O(height of tree) time complexity

What is the maximum height of a binary search tree?

Unbalanced tree

Unbalanced tree

Unbalanced tree

Balanced tree

AVL Trees

An AVL tree is a binary search tree in which for every internal node the heights of its two subtrees differ by at most 1.

hi - hj | 41

AVL Trees

An AVL tree is a binary search tree in which for every internal node the heights of its two subtrees differ by at most 1.

AVL Tree? Yes

AVL Tree? No

AVL Tree? No

AVL Tree = s a type of BST.

AVL Trees Adelson-Velkskii and Landis

An AVL tree is a binary search tree in which for every internal node the heights of its two subtrees differ by at most 1.

What is the Maximum Height of an AVL Tree?

What is the Maximum Height of an AVL Tree?

Let n(h) = minimum number of nodes in an AVL tree of height h.

$$n(0) = 1$$
 $n(1) = 3$ $n(2) = 5$ $n(3) = 9$ $n(4) = 15$ $n(5) = 25$ $n(6) = 4$
 $n(6) = 1$
 $n(6) = 3$