• Law of total probability: if $\{B_i: i \in I\}$ is a partition of the sample space, then

$$P(A) = \sum_{i \in I} P(A \mid B_i) P(B_i).$$

- Law of total expectation: $E[X] = E[E[X \mid Y]]$.
- Law of total variance: $Var(X) = E[Var(X \mid Y)] + Var(E[X \mid Y]).$
- Bayes's Theorem: $P(A \mid B) = \frac{P(B|A)P(A)}{P(B)}$.
- Markov chain: future is independent of the past, i.e., X_{n+1} is at most dependent on X_n .
- Transition probability: $p_{ij}^{n,m} = P(X_m = j \mid X_n = i)$.
- Transition probability matrix: if π_i is the distribution of X_i , then $\pi_t = \pi_0 \prod_{i=0}^{t-1} \mathbf{P}^{i,i+1}$.
- Stationary Markov chain: transition probability matrix is independent of the timestamp n.
- Stochastic matrix: non-negative matrix such that row sums are 1.
- Chapman-Kolmogorov Equations: $P^{(m)} = PP^{(m-1)} = P^{(m-1)}P$. If X is stationary, then for all $m, n \in \mathbb{N}$,

$$P_{ij}^{0,m+n} = \sum_{k \in S} P_{ik}^{0,m} P_{kj}^{0,n},$$

and $P(X_n = j \mid X_0 = i) = (\mathbf{P}^n)_{ij}$.

• if we have a column vector

$$\mu \coloneqq \begin{bmatrix} f(x_1) \\ f(x_2) \\ \vdots \\ f(x_s) \end{bmatrix}$$

for some function f on the state space, then

$$(\mathbf{P}^{n}\mu)_{i} = \sum_{j=1}^{s} \mathbf{P}_{ij}^{n}\mu_{j}$$

$$= \sum_{j=1}^{s} P(X_{n} = x_{j} \mid X_{0} = x_{i}) f(x_{j})$$

$$= E[f(X_{n}) \mid X_{0} = x_{i}].$$

Suppose $X_0 \sim \lambda$, then clearly

$$E[f(X_n)] = \sum_{i=1}^{s} E[f(X_n) \mid X_0 = x_i] \lambda_i$$
$$= \sum_{i=1}^{s} \lambda_i (\mathbf{P}^n \mu)_i$$
$$= \lambda \mathbf{P}^n \mu.$$

- Stationary distribution: $\pi = \pi P$.
- If λ is an eigenvalue of P, then $|\lambda| \leq 1$.
- Absorbing state: for all $j \neq i$, we have $P_{ij} = 0$.
- Intercommunicating states: $\exists m, n \in \mathbb{N}$ such that $P_{xy}^{(m)}, P_{yx}^{(n)} > 0$.
- Irreducible chain: all states intercommunicate, i.e., only one class.
- Return probability: $P_{ii}^{(n)} = P(X_n = i \mid X_0 = i)$.
- First return probability: $f_{ii}^{(n)} = P(X_1 \neq i, \dots X_{n-1} \neq i, X_n = i \mid X_0 = i).$ $f_{ii}^{(0)} = 0$ and $f_{ii}^{(n)} \leq P_{ii}^{(n)}$.
- $P_{ii}^{(n)} = \sum_{k=0}^{n} f_{ii}^{(k)} P_{ii}^{(n-k)}$.
- $f_{ii} = \sum_{n=0}^{\infty} f_{ii}^{(n)}$ is the probability of returning to i in finite time. i is **recurrent** if $f_{ii} = 1$ and **transient** if $f_{ii} < 1$.
- For any recurrent state $i, P(\sum_{n=1}^{\infty} I\{X_n=i\} = \infty \mid X_0=i) = 1$ and so

$$E\left[\sum_{n=0}^{\infty} I\{X_n = x\} \mid X_0 = x\right] = \sum_{n=0}^{\infty} \mathbf{P}^n(x, x) = \infty,$$

but $\mathbf{P}^{n}(x,x)$ may converge to 0.

- Number of revisits to i: $N_i \sim \text{Geo}(1 f_{ii})$. $E[N_i \mid X_0 = i] = \frac{f_{ii}}{1 f_{ii}}$ and expected number of visits including the initial one is $\frac{1}{1 f_{ii}}$.
- i is a transient state iff $\sum_{n=1}^{\infty} P_{ii}^{(n)}$ is finite.
- If i is transient, then $\lim_{m\to\infty}\sum_{n=m}^{\infty}P_{ii}^{(n)}=0$ by monotone convergence theorem.
- All finite-state irreducible chains are recurrent.
- Reducible chains will enter one of the recurrent classes in the long-run.
- **Period**: $d(i) := \gcd \left\{ n \in \mathbb{N}^+ : P_{ii}^{(n)} > 0 \right\}$. i is aperiodic iff d(i) = 1.
- If $i \leftrightarrow j$, then d(i) = d(j).

- $\forall i \in S, \exists N \in \mathbb{N} \text{ such that } \forall n \geq N, P_{ii}^{(n \cdot d(i))} > 0 \text{ and } P_{ji}^{(m+n \cdot d(i))} > 0 \text{ whenever } P_{ii}^{(m)} > 0.$
- If P is the TPM for a finite-state irreducible aperiodic chain, then $\exists N \in \mathbb{N}^+$ such that $P^{(N)}$ has all positive entries (definition for regular chain).
- Irreducible, aperiodic, finite-state \implies regular chain.
- Regular \implies irreducible.
- $P^{(k)}$ is regular $\implies P^{(n)}$ is regular $\forall n \geq k$.
- Let P be a regular transition probability matrix for some regular Markov chain with state space $S := \{1, 2, \dots, N\}$, then
 - 1. the limit $\pi_j := \lim_{n \to \infty} P_{ij}^{(n)}$ exists and is independent of i;
 - 2. $\sum_{i=1}^{N} \pi_i = 1$ and $\pi := (\pi_1, \pi_2, \dots, \pi_N)$ satisfies $\pi P = \pi$;
 - 3. π is unique.

 π_i is the marginal probability $P(X_n = j)$ in the long-run

- Stopping time: $T_A := \min \{ n \in \mathbb{N} : X_n \in A \}$ is the first time X enters A.
- If $f(x) = P(T_A < T_B \mid X_0 = x)$, then for all $x \notin A \cup B$,

$$f(x) = \sum_{y \in S} P(T_A < T_B \mid X_1 = y, X_0 = x) P(X_1 = y \mid X_0 = x)$$

$$= \sum_{y \in S} P(T_A < T_B \mid X_0 = y) P(X_1 = y \mid X_0 = x)$$

$$= \sum_{y \in S} P_{xy} f(y).$$

• First-step analysis:

- 1. Identify quantity of interest $a_i(T) = h(i, X_1, \dots, X_T \mid X_0 = i)$.
- 2. Consider $a_i(T) = \sum_{k \in S} h(\cdot \mid X_1 = k, X_0 = i) P(X_1 = k \mid X_0 = i)$.
- 3. Consider $Y_n = X_{n+1}$ and establish $h(\cdot \mid X_1 = k, X_0 = i) = g_i(a_k(T))$.
- 4. Solve the system.
- Gambler's ruin: $X_0 = k$ for 0 < k < N with winning probability p.

- Fair game:
$$P(X_T = 0 \mid X_0 = k) = 1 - \frac{k}{N}$$
 and $E[T \mid X_0 = k] = k(N - k)$.

- Otherwise:

$$P(X_T = 0 \mid X_0 = k) = 1 - \frac{1 - (q/p)^k}{1 - (q/p)^N},$$

$$E[T \mid X_0 = k] = \frac{1}{p - q} \left[\frac{N(1 - (q/p)^k)}{1 - (q/p)^N} - k \right]$$

• Random walk: $\frac{\xi_i+1}{2} \sim \text{Bernoulli}(p), \frac{X_n+n}{2} \mid X_0=0 \sim \text{Bin}(n,p).$