

Ferienkurs

${\bf Experimental physik} \ {\bf 2}$

SS 2018

Aufgabenblatt 1

Hagen Übele Maximilian Ries

Aufgabe 1 (Coulomb Gesetz)

- a) An den Ecken eines zwölfseitiges Polygon sitzen Ladungen mit der Ladung $q=1\,\mathrm{C}$. Welche Kraft resultiert auf eine Probeladung gleicher Ladung im Zentrum der Anordnung. (Sie können sich die Anordnung wie die Zahlen eines Uhrenblattes vorstellen, der Durchmesser sei $30\,\mathrm{cm}$)
- b) Welche Kraft wirkt auf die Probeladung, wenn eine Ladung entfernt wird? (Beispielsweise die 6 Uhr Ladung)
- c) Nun seien 13 Ladungen mit $q=1\,\mathrm{C}$ auf den Ecken eines 13-seitigen Polygons verteilt. Welche Kraft wirkt nun auf die Probeladung? (Der Durchmesser sei der selbe).
- d) Welche Kraft wirkt auf die Probeladung, wenn eine der 13 Probeladungen entfernt wird?

Aufgabe 2 (Gausscher Satz Differentiell)

Das elektrische Feld einer Region sei $\vec{E} = kr^3\hat{r}$ in sphärischen Koordinaten.

- a) Bestimmen Sie die Ladungsdichte ρ
- b) Bestimmen Sie die Ladung einer Kugel mit Radius R um den Ursprung.

Aufgabe 3 (Fluss durch Fläche)

Eine Punktladung q sitze in der Ecke eines Quaders (siehe Abbildung). Bestimmen Sie den Fluss von \vec{E} durch die geschwärzte Seite.

Aufgabe 4 (Unendliche geladene Flächen

Es befinden sich zwei unendliche ausgedehnte Platten parallel zueinander (siehe Abbildung). Die Platten sind gegengleich geladen mit $\pm \sigma$, bestimmen Sie das elek-

trische Feld in den Regionen (i), (ii) und (iii).

Aufgabe 5 (Maxwell Gleichung)

Eines der folgenden Felder kann kein elektrostatisches Feld sein, welches?

a)
$$\vec{E} = k[xy\hat{x} + 2yz\hat{y} + 3xz\hat{z}]$$

b)
$$\vec{E} = k[y^2\hat{x} + (2xy + z^2)\hat{y} + 2yz\hat{z}]$$

Bestimmen Sie das Potential des korrekten Feldes.

Aufgabe 6 (Energie einer Anordnung)

- a) Drei Ladungen liegen in den Ecken eines Quadrates. (Siehe Abbildung). Welche Arbeit muss aufgewandt werden um eine Weiter Ladung +q aus der Ferne in die vierte Ecke zu bewegen?
- b) Wie viel Energie befindet sich in der ganzen Anordnung?

Aufgabe 7 (Plattenkondensator)

Die beiden Platten eines Plattenkondensators (Plattenabstand $d=1\,\mathrm{cm}$, Spannung zwischen den Platten $U=5\,\mathrm{kV}$) haben die Fläche $A=0.1\,\mathrm{m}^2$.

- a) Wie groß sind die Kapazität des Kondensators und die Ladung auf den Platten? Berechnen Sie außerdem das resultierende elektrische Feld.
- b) Leiten Sie her, dass die im Kondensator gespeicherte Energie $W_{\rm Feld}$ über Gleichung (1) ausgedrückt werden kann.

$$W_{\text{Feld}} = \frac{1}{2}CU^2 \tag{1}$$

c) Im Feld des Plattenkondensators sei ein atomarer Dipol ($q=\pm e$, Ladungsabstand $d=5\cdot 10^{-11}\,\mathrm{m}$). Wie groß ist das Drehmoment, das auf den Dipol wirkt, wenn die Dipolachse parallel zu den **Platten** steht? Welche Energie gewinnt man bzw. muss man aufwenden, wenn die Dipolachse parallel bzw. antiparallel zur **Feldrichtung** gestellt wird?

Aufgabe 8 (Anordnung von Kondensatoren)

Wie groß ist die Gesamtkapazität der in Abbildung gezeigten Schaltung?

