Приклад дослідження рівняння парної лінійної регресії

Приклад 6.1. Для аналізу залежності об'єма споживання Y (у.о.) домогосподарств від доходу X (у.о.) відібрана вибірка об'єму n=12 (помісячно протягом року), результати якої наведені в таблиці.

i	1	2	3	4	5	6	7	8	9	10	11	12
x_i	107	109	110	113	120	122	123	128	136	140	145	150
y_i	102	105	108	110	115	117	119	125	132	130	141	144

Вивчається залежність між випадковими величинами X і Y.

Необхідно:

- 1) побудувати діаграму розсіювання;
- 2) визначити тип залежності;
- 3) оцінити параметри рівняння регресії Y на X;
- 4) нанести на діаграму розсіювання графік функції регресії;
- 5) оцінити силу лінійної залежності між X і Y;
- 6) оцінити статистичну значущість коефіцієнтів регресії при рівні значущості $\alpha = 0.05$;
- 7) розрахувати 95%-ті довірчі інтервали для теоретичних коефіцієнтів регресії;
- 8) спрогнозувати результативну ознаку $X = x_p \ (x_p = 160)$; визначити 95%-ті довірчі інтервали для цього прогнозу.

Розв'язання:

1) побудувати діаграму розсіювання;

2) визначити тип залежності;

За розташуванням точок на кореляційному полі припускаємо, що залежність між X та Y лінійна: $y = b_0 + b_1 \cdot x$.

3) оцінити параметри рівняння регресії Y на X;

Для побудови вибіркових ліній регресії Y на X використовується метод найменших квадратів, для реалізації якого обирається співвідношення вигляду:

$$\begin{cases} n \cdot b_0 + b_1 \cdot \sum_{i=1}^n x_i = \sum_{i=1}^n y_i \\ b_0 \cdot \sum_{i=1}^n x_i + b_1 \cdot \sum_{i=1}^n x_i^2 = \sum_{i=1}^n x_i \cdot y_i \end{cases}$$

де
$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
, $\overline{y} = \frac{1}{n} \sum_{j=1}^{n} y_j$, $\overline{x^2} = \frac{1}{n} \sum_{i=1}^{n} x_i^2$, $\overline{y^2} = \frac{1}{n} \sum_{i=1}^{n} y_i^2$, $\overline{xy} = \frac{1}{n} \sum_{i=1}^{n} x_i \cdot y_i$, n - число

вимірювань.

Для наочності обчислень за МНК побудуємо таблицю 46.
 Таблиця 46

i	x_i	y_i	x_i^2	$x_i y_i$	y_i^2	\hat{y}_i	e_i	e_i^2
1	107	102	11449	10914	10404	103,63	-1,63	2,66
2	109	105	11881	11445	11025	105,49	-0,49	0,24
3	110	108	12100	11880	11664	106,43	1,57	2,46
4	113	110	12769	12430	12100	109,23	0,77	0,59
5	120	115	14400	13800	13225	115,77	-0,77	0,59
6	122	117	14884	14274	13689	117,63	-0,63	0,40
7	123	119	15129	14637	14161	118,57	0,43	0,18
8	128	125	16384	16000	15625	123,24	1,76	3,10
9	136	132	18496	17952	17424	130,71	1,29	1,66
10	140	130	19600	18200	16900	134,45	-4,45	19,8
11	145	141	21025	20445	19881	139,11	1,89	3,57
12	150	144	22500	21600	20736	143,78	0,22	0,05
Сума	1503	1448	190617	183577	176834	-	0	35,3
Середнє	125,25	120,67	15884,75	15298,08	14736,17	-	-	-

Розв'язавши систему відносно параметрів b_0 і b_1 , знайдемо:

$$b_1 = \frac{\overline{xy} - \overline{x} \cdot \overline{y}}{\overline{x^2} \cdot (\overline{x})^2} = \frac{15298,08 - 125,25 \cdot 120,67}{15884,75 - (125,25)^2} = 0,9339;$$

$$b_0 = \overline{y} - b_1 \cdot \overline{x} = 120,67 - 0,9339 \cdot 125,25 = 3,699.$$

Отже, рівняння парної лінійної регресії має наступний вигляд: $y_i = 3,699 + 0,9339 \cdot x_i \,.$

4) Нанести на діаграму розсіювання графік функції регресії;

5) оцінити силу лінійної залежності між X і Y;

$$r_{xy} = \frac{\overline{x \cdot y} - \overline{x} \cdot \overline{y}}{S_x \cdot S_y},$$
де $S_x^2 = (\overline{x^2}) - (\overline{x})^2$, $S_y^2 = (\overline{y^2}) - (\overline{y})^2$.
$$r_{xy} = \frac{\overline{x \cdot y} - \overline{x} \cdot \overline{y}}{\sqrt{(\overline{x^2}) - (\overline{x})^2} \cdot \sqrt{(\overline{y^2}) - (\overline{y})^2}} = \frac{15298,08 - 125,25 \cdot 120,67}{\sqrt{15884,75 - (125,25)^2} \cdot \sqrt{14736,17 - (120,67)^2}} = 0,9916.$$

Знайдене значення коефіцієнта кореляції дозволяє зробити висновок про сильну лінійну залежність між змінними X і Y.

Оцінимо якість рівняння регресії:

Нехай нульова гіпотеза $H_0: b_0 = b_1 = 0$ проти альтернативної $H_1: b_0 \neq b_1 \neq 0 \, .$

$$F_{\phi a \kappa m} = r_{xy}^2 \cdot \frac{n-2}{1-r_{xy}^2} = 0.9916^2 \cdot \frac{12-2}{1-0.9916^2} = 587.75.$$

За заданим рівнем значущості $\alpha=0,05$ та по числу степенів свободи $k_1=1$ та $k_2=n-2=12-2=10$, за дод. 7. $F_{maon}=4,96\approx5,0$. Оскільки $F_{\phi\alpha\kappa m}>F_{maon}$, то H_0 гіпотеза про випадкову природу оцінюваних характеристик відхиляється і визнається їх статистична значимість і надійність. Модель якісна.

6) оцінити статистичну значущість коефіцієнтів регресії та коефіцієнта кореляції при рівні значущості $\alpha = 0.05$.

Для цього потрібно оцінити похибки окремих параметрів та коефіцієнта кореляції згідно формул:

$$S_{r_{xy}} = \sqrt{\frac{1 - r_{xy}^2}{n - 2}} = \sqrt{\frac{1 - 0.9916^2}{12 - 2}} = 0.041,$$

$$S_{3anuu}^{2} = \frac{\sum_{i=1}^{n} (\hat{y}_{i} - y_{i})^{2}}{n-2} = \frac{\sum_{i=1}^{n} e_{i}^{2}}{n-2} = \frac{35,3}{10} = 3,526;$$

$$S_{3anuu} = \sqrt{S_{3anuu}^{2}} = 1,8778$$

$$S_{b_{1}} = \sqrt{\frac{S_{3anuu}^{2}}{n \cdot \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}} = \sqrt{\frac{3,526}{12 \cdot 2366,2}} = 0,0111;$$

$$S_{b_0} = \sqrt{\frac{S_{3anuu}^2}{\sum_{i=1}^n (x_i - \overline{x})^2}} = \sqrt{\frac{3,526}{2366,2}} = 0,0386.$$

Отже, спостережувані значення:

$$\begin{split} t_{cnocm}^{b_1} &= \frac{b_1}{S_{b_1}} = \frac{0,9339}{0,0111} = 83,8067; \\ t_{cnocm}^{b_0} &= \frac{b_0}{S_{b_0}} = \frac{3,699}{0,0386} = 95,8236; \\ t_{cnocm}^{r_{xy}} &= \frac{r_{xy}}{S_{r_{xy}}} = \frac{0,9916}{0,041} = 24,1854. \end{split}$$

Критичне значення для рівняння $t_{kp}(0,05; k=n-2=10)=2,23$.

Нехай нульові гіпотези $H_0:b_0=0;b_1=0;r_{xy}=0$ та альтернативна гіпотеза $H_1:b_0\neq 0;b_1\neq 0;r_{xy}\neq 0$.

Порівняємо модуль спостережуваного значення з критичним. Усі спостережувані значення більші ніж критичне, то нульові гіпотези відхиляються на користь альтернативних. Отже, це підтверджує статистичну значущість як коефіцієнтів рівняння так і кореляції.

7) розрахувати 95%-ті довірчі інтервали для теоретичних коефіцієнтів регресії;

$$\begin{aligned} b_0 - t_{kp} \cdot S_{b_0} &= 3,699 - 2,23 \cdot 0,0386 = 3,6129; \\ b_0 + t_{kp} \cdot S_{b_0} &= 3,699 + 2,23 \cdot 0,0386 = 3,7851; \\ b_1 - t_{kp} \cdot S_{b_1} &= 0,9339 - 2,23 \cdot 0,0111 = 0,9091; \\ b_1 + t_{kp} \cdot S_{b_1} &= 0,9339 + 2,23 \cdot 0,0111 = 0,9587. \end{aligned}$$

Довірчий інтервал для коефіцієнта регресії береться в вигляді:

$$b_0^* \in (3,6129;3,7851)$$
 та $b_1^* \in (0,9091;0,9587)$,

де b_0^* і b_1^* коефіцієнти теоретичного рівняння для всієї генеральної сукупності.

Побудуємо довірчий інтервал для лінійної парної функції регресії, а саме нижня та верхня границі довірчої області будуть знаходитися:

$$y_{i}^{*} = y_{i} \pm t_{ma6\pi} \cdot S_{3a\pi uu} \cdot \sqrt{\frac{1}{n} + \frac{\left(x_{i} - \overline{x}\right)^{2}}{\sum_{i=1}^{n} \left(x_{i} - \overline{x}\right)^{2}}} =$$

$$= y_{i} \pm 2,23 \cdot 1,8778 \cdot \sqrt{\frac{1}{12} + \frac{\left(x_{i} - 125,25\right)^{2}}{2366,2}};$$

ліва межа	X	права межа
101.6441	107.0000	105.6085
103.6453	109.0000	107.3429
104.6435	110.0000	108.2125
107.6256	113.0000	110.8338
114.4765	120.0000	117.0575
116.3940	122.0000	118.8756
117.3445	123.0000	119.7929
122.0064	128.0000	124.4700
129.1870	136.0000	132.2318
132.6919	140.0000	136.1981
137.0284	145.0000	141.2006
141.3344	150.0000	146.2336

8) спрогнозувати результативну ознаку $X = x_p \ (x_p = 160)$; визначити 95%-ті довірчі інтервали для цього прогнозу.

Прогнозоване споживання при доході у 160 складатиме $y_{|x=160} = 3,699 + 0,9339 \cdot 160 = 153,12 \, .$

Розрахуємо 95%-ті довірчий інтервал для умовного математичного сподівання $M\left(Y\middle|X=x_p\right)$ при $X=x_p=160$. Скориставшись формулою

$$\begin{split} y_p^* &= y_p \pm t_{ma6\pi} \cdot S_{3a\pi uu} \cdot \sqrt{1 + \frac{1}{n} + \frac{\left(x_p - \overline{x}\right)^2}{\sum_{i=1}^n \left(x_i - \overline{x}\right)^2}} = \\ &= 153,12 \pm 2,23 \cdot 1,8778 \cdot \sqrt{1 + \frac{1}{12} + \frac{\left(160 - 125,25\right)^2}{2366,2}} = 153,12 \pm 5,2863. \\ y_p^* &\in \left(147,8337;158,4063\right). \end{split}$$

Множинна регресія

Приклад 6.2. Ознака Y — лінійно залежна від x_{i1}, x_{i2}, x_{i3} . Результати спостережень наведено в таблиці:

i	y_i	x_{i1}	x_{i2}	x_{i3}
1	6	1	1	2
2	8	2	2	1
3	14	1	0	0
4	20	3	2	1
5	26	5	2	2

Необхідно:

1. Знайти компоненти вектора і побудувати лінійну

$$oldsymbol{eta}^* = egin{pmatrix} oldsymbol{eta}_0^* \ oldsymbol{eta}_1^* \ oldsymbol{eta}_2^* \ oldsymbol{eta}_3^* \end{pmatrix}$$

функцію регресії $y_i = \beta_0^* + \beta_1^* x_{i1} + \beta_2^* x_{i2} + \beta_3^* x_{i3}$.

- 2. Обчислити коефіцієнт множинної регресії R .
- 3. Побудувати довірчий інтервал із надійністю $\gamma = 0.95$ для множинної лінійної функції регресії та визначення дисперсії для $\beta_0^*, \beta_1^*, \beta_2^*, \beta_3^*$ і оцінити ефективність впливу на ознаку Y незалежних змінних x_{i1}, x_{i2}, x_{i3} .

Розв'язання

1. За умовою задачі маємо:

$$X = egin{pmatrix} 1 & 1 & 1 & 2 \\ 1 & 2 & 2 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 3 & 2 & 1 \\ 1 & 5 & 2 & 2 \end{pmatrix}, \ Y = egin{pmatrix} 6 \\ 8 \\ 14 \\ 20 \\ 26 \end{pmatrix}.$$
 Оскільки

$$B = \begin{pmatrix} \beta_0^* \\ \beta_1^* \\ \beta_2^* \\ \beta_3^* \end{pmatrix} = (X' \cdot X)^{-1} \cdot X' \cdot Y =$$

$$= \frac{1}{178} \begin{pmatrix} 173 & -14 & -39 & -41 \\ -14 & 32 & -38 & -8 \\ -39 & -38 & 123 & -35 \\ -41 & -8 & -35 & 91 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 1 & 3 & 5 \\ 1 & 2 & 0 & 2 & 2 \\ 2 & 1 & 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 6 \\ 8 \\ 14 \\ 20 \\ 26 \end{pmatrix} = \begin{pmatrix} 7,98 \\ 6,34 \\ -3,78 \\ -2,58 \end{pmatrix}$$

Отже, маємо $\beta_0^* = 7.98$; $\beta_1^* = 6.34$; $\beta_2^* = -3.78$; $\beta_3^* = -2.58$.

Рівняння регресії $\hat{y}_x = y_i^* = 7,98 + 6,34x_{i1} - 3,78x_{i2} - 2,58x_{i3} + \varepsilon_i^*$.

2. Знайдемо коефіцієнт регресії *R*. Для цього скористуємося формулою

$$R = \frac{B^T X^T Y - n \cdot \overline{y}^2}{Y^T Y - n \cdot \overline{v}^2},$$

де
$$B = \begin{pmatrix} 7,98 \\ 6,34 \\ -3,78 \\ -2,58 \end{pmatrix}$$
, n - кількість спостережень; \overline{y} - вибіркове середнє y :

$$\overline{y} = \frac{\sum y_i}{n} = \frac{6 + 8 + 14 + 20 + 26}{5} = 14,8$$
. $n \cdot \overline{y}^2 = 5 \cdot 14,8^2 = 1095,2$, тоді $R = 0,968$.

Коефіцієнт детермінації показує, що приблизно 96,8% розкиду залежної змінної у пояснюється рівнянням регресії.

3. Для побудови довірчого інтервалу для множинної лінійної функції регресії необхідно обчислити точкову незміщену квадратичну оцінку

випадкового фактора ε_i : $S_{\varepsilon}^2 = S_{3an}^2 = \frac{\sum \left(\varepsilon_i^*\right)^2}{n-m-1}$, то в цьому разі результати обчислення зручно подати у вигляді таблиці:

i	y_i	<i>x</i> _{i1}	<i>x</i> _{<i>i</i>2}	<i>x</i> _{i3}	$y_{i}^{*} = 7,98 + $ $+6,34x_{i1} - 3,78x_{i2} - 2,58x_{i3}$	$y_i - y_i^*$	$\left(\varepsilon_{i}^{*}\right)^{2}$
1	6	1	1	2	5,38	0,62	0,3844
2	8	2	2	1	10,52	-2,52	6,3504
3	14	1	0	0	14,32	-0,32	0,1024
4	20	3	2	1	16,86	3,14	9,8596
5	26	5	2	2	26,96	-0,96	0,9216
		$\sum \varepsilon_i^2 = 17,618$					

Таким чином $S_{3an}^2=\frac{17,618}{5-3-1}=17,618$, тоді вибіркові дисперсії емпіричних коефіцієнтів регресії визначаємо за формулою: $S_{b_{j-1}}^2=S_{3an}^2\cdot z_{jj},\ j=\overline{1,m+1}$, де z_{jj} - діагональний елемент матриці $Z=\left(X^TX\right)^{-1}$, а стандартні помилки коефіцієнтів регресії визначимо як $S_{b_j}=\sqrt{S_{b_j}^2}$.

$$\begin{split} S_{b_0}^2 &= 17,618 \cdot \frac{173}{178} = 17,123; \quad S_{b_{3anuu}} = 4,138; \\ S_{b_1}^2 &= 17,618 \cdot \frac{32}{178} = 3,167; \quad S_{b_1} = 1,78; \\ S_{b_2}^2 &= 17,618 \cdot \frac{123}{178} = 12,17; \quad S_{b_2} = 3,489; \\ S_{b_3}^2 &= 17,618 \cdot \frac{91}{178} = 9,007; \quad S_{b_3} = 3,001. \end{split}$$

Знаходимо t - статистики за формулою: $t_{b_j} = \frac{b_j}{S_{b_j}}, \ j = \overline{0,m}$:

$$t_{b_0} = \frac{b_0}{S_{b_0}} = \frac{7,98}{4,138} = 1,9285; t_{b_1} = \frac{b_1}{S_{b_1}} = \frac{6,34}{1,78} = 3,5618;$$

$$t_{b_2} = \frac{b_2}{S_{b_2}} = -\frac{3,78}{3,489} = -1,083; t_{b_3} = \frac{b_3}{S_{b_3}} = -\frac{2,58}{3,001} = -0,8597.$$

За таблицею розподілу критичних точок Стьюдента визначимо критичну точку (додаток 6), де $\alpha = 1 - \gamma = 1 - 0.95 = 0.05$.

 $t_{\kappa pum} = t(\alpha, n-m-1) = t(0,05;1) = 12,7$. Оскільки $\left|t_{b_j}\right| > t_{\kappa pum}$, то коефіцієнт статистично не значимий. У нашому випадку усі коефіцієнти статистично значимі, тому відповідні змінні при яких вони знаходяться не можуть бути виключені із рівняння нашої моделі.

Побудуємо 95% довірчі інтервали для коефіцієнтів множинної регресії. Для побудови застосуємо формулу $b_j - t_{\kappa pum} \cdot S_{b_j} < b_j^0 < b_j + t_{\kappa pum} \cdot S_{b_j}, \ j = \overline{0,m}$.

$$\begin{split} b_0 - t_{\kappa pum} \cdot S_{b_0} &= 7,98 - 12,7 \cdot 4,138 = -44,573; \\ b_0 + t_{\kappa pum} \cdot S_{b_0} &= 7,98 + 12,7 \cdot 4,138 = 60,533; \\ b_1 - t_{\kappa pum} \cdot S_{b_1} &= 6,34 - 12,7 \cdot 1,78 = -16,266; \\ b_1 + t_{\kappa pum} \cdot S_{b_1} &= 6,34 + 12,7 \cdot 1,78 = 28,946; \\ b_2 - t_{\kappa pum} \cdot S_{b_2} &= -3,78 - 12,7 \cdot 3,489 = -48,0903; \\ b_2 + t_{\kappa pum} \cdot S_{b_2} &= -3,78 + 12,7 \cdot 3,489 = 40,5303; \\ b_3 - t_{\kappa pum} \cdot S_{b_3} &= -2,58 - 12,7 \cdot 3,001 = -40,6927; \\ b_3 + t_{\kappa pum} \cdot S_{b_3} &= -2,58 + 12,7 \cdot 3,001 = 35,5327. \end{split}$$

Тоді з надійністю у 95% можна стверджувати, що коефіцієнти теоретичного рівняння належать інтервалам:

$$b_0^0 \in (-44,573;60,533); b_1^0 \in (-16,266;28,946);$$

 $b_2^0 \in (-48,0903;40,5303); b_3^0 \in (-40,6927;35,5327).$

Тепер побудуємо довірчій інтервал для множинної лінійної функції регресії, для цього скористуємося формулою:

$$y_{i} \in \left(\hat{y}_{i} \pm t_{\kappa pum} \cdot S_{iy}\right), \qquad \text{де} \qquad S_{y} = \sqrt{S_{3a\pi}^{2} \left(1 + x_{i}^{T} \left(X'X'\right)\right)^{-1} x_{i}}, \qquad x_{i} = \begin{pmatrix} 1 \\ x_{i1} \\ x_{i2} \\ x_{i3} \end{pmatrix},$$

$$x_j^T = (1, x_{i1}, x_{i2}, x_{i3})$$

Якщо
$$x_1^T = (1, 1, 1, 2)$$
, то $\hat{y}_1 \in (-47, 3493; 58, 109)$;

Якщо
$$x_2^T = (1, 2, 2, 1)$$
, то $\hat{y}_2 \in (-32, 161; 53, 201)$;

Якщо
$$x_3^T = (1,1,0,0)$$
, то $\hat{y}_3 \in (-38,862;67,502)$;

Якщо
$$x_4^T = (1,3,2,1)$$
, то $\hat{y}_4 \in (-18,444;52,164)$;

Якщо
$$x_5^T = (1; 5; 2; 2)$$
, то $\hat{y}_5 \in (-25,006; 78,926)$.