Partiel

[Durée une heure et demi. Aucun document n'est autorisé. Tous les exercices sont independantes. Seule les reponses soigneusement justifiées seront prise en compte.]

Exercice 1. Soient T, S des temps d'arrêt pour une filtration $(\mathcal{F}_n)_{n \geq 0}$.

- a) Montrer que $U = \min(T, S)$ est un temps d'arrêt .
- b) Montrer que si $S(\omega) \leq T(\omega)$ pour tout $\omega \in \Omega$ alors $\mathcal{F}_S \subseteq \mathcal{F}_T$.

Exercice 2. Soit $(X_n)_{n\geqslant 1}$ une suite iid à valeurs dans \mathbb{R} et $g(\theta)=\mathbb{E}[e^{\theta X_1}]<+\infty$ pour tout $\theta\in\mathbb{R}$. Soit $(\mathcal{F}_n)_{n\geqslant 0}$ la filtration naturelle de la suite $(X_n)_{n\geqslant 1}$ (c-à-d $\mathcal{F}_0=\{\emptyset,\Omega\},\ \mathcal{F}_n=\sigma(X_1,...,X_n)$ pour $n\geqslant 1$) et soit $S_0=0,\ S_n=X_1+\cdots+X_n$ la marche aléatoire engendrée par les $(X_n)_{n\geqslant 1}$.

a) Montrer que pour tout t.a. T borné associé à la filtration naturelle on a que

$$\mathbb{E}[e^{\lambda S_T}g(\lambda)^{-T}] = 1, \qquad \lambda \in \mathbb{R}.$$

- b) Soit a < 0 < b et $T = \inf\{n > 0 : S_n \notin (a, b)\}$. Utiliser le résultat de la question a) pour montrer que si $\hat{\theta}$ est tel que $g(\hat{\theta}) = 1$ alors $\mathbb{P}(S_T \leqslant a) \leqslant e^{\hat{\theta}a}$.
- c) Soit $X_k = 1$ avec probabilité p et $X_k = -1$ avec probabilité q = 1 p et p > 1/2. Soit $T = \inf\{n > 0: S_n = 1\}$. On suppose que $\mathbb{P}(T < +\infty) = 1$. Montrer que

$$1 = e^{\theta} \mathbb{E}[g(\theta)^{-T}]$$

pour tout $\theta > 0$ et utiliser cet équation pour obtenir la fonction génératrice de T $\varphi(s) = \mathbb{E}[s^T]$ pour |s| < 1.

Exercice 3. Une chaîne de Markov contrôlée $(X_n)_{n\geqslant 0}$ à valeurs dans $\mathbb R$ évolue selon la récurrence aléatoire contrôlée

$$X_{n+1} = \lambda X_n + U_n + \varepsilon_{n+1}$$

où $U_n = u_n(X_k, ..., X_n)$, u un contrôle à valeurs dans \mathbb{R} et où $(\varepsilon_n)_{n\geqslant 1}$ est une suite des v.a. iid de moyenne nulle et variance $\sigma^2>0$. On se fixe un horizon fini T>0 et une constante $\beta\in]0,1[$. On veut trouver un contrôle u qui minimise le coût moyen (actualisé)

$$W_T^u(t,x) = \mathbb{E}_{(t,x)}^u[\sum_{k=t}^{T-1} \beta^{k-t} C(X_k, U_k) + \beta^{T-t} R(X_T)]$$

où $C(x, u) = (u^2 + ax^2)/2$ et $R(x) = a_0x^2/2 + b_0$ avec a, a_0, b_0 constantes fixées.

a) Montrer que la fonction $W_T(t,x) = \inf_{u \in \mathcal{C}_t} W_T^u(t,x)$ satisfait l'équation

$$W_T(t,x) = \inf_{u \in \mathbb{R}} \{ c(x,u) + \beta \mathbb{E}[W_T(t+1,\lambda x + u + \varepsilon_1)] \}.$$

- b) Montrer par récurrence rétrograde que $W_T(t)$ est de la forme $W_T(t) = \frac{1}{2}a_{T-t}x^2 + b_{T-t}$ avec $(a_j)_{j\geqslant 0}$ et $(b_j)_{j\geqslant 0}$ des constantes à déterminer.
- c) Montrer que le contrôle optimal u^* est Markovien et tel que $u_t^*(x) = k_{T-t} x$ pour une certaine suite $(k_j)_{j\geqslant 0}$ de constantes.
- d) Calculer les constantes a_j, b_j, k_j pour $j \ge 0$.