Computación Bioinspirada

Dr. Edward Hinojosa Cárdenas ehinojosa@unsa.edu.pe

Otros Sistemas de Hormigas

- Sistemas de hormigas elitistas (AS_e)
- Sistemas de hormigas basadas en rankings (AS_{rank})
- Sistemas de hormigas max-min (MMAS)
- Sistemas de colonias de hormigas (ACS)
- Sistemas de hormigas mejor-peor (BWAS)
- Sistemas de hormigas con búsqueda local.

Sistemas de hormigas elitistas (AS_e)

- Primera mejora del AS propuesta en Dorigo (1992)
- Idea básica: proporcionar un peso adicional que refuercen los arcos que pertenecen al mejor camino encontrados desde el principio de la búsqueda, L^{mejor_global}. →Actualización de la feromonas.

Valor típico para e=n (donde n es la cantidad de nodos).

Sistemas de hormigas elitistas (AS_e)

$$\tau_{rs}(t) = (1 - \rho) \cdot \tau_{rs}(t - 1) + \sum_{k=1}^{m} \Delta \tau_{rs}^{k} + e \cdot \Delta \tau_{rs}^{mejor_global}$$

donde
$$\Delta \tau_{rs}^{mejor_global} = \begin{bmatrix} 1/C^{mejor_global} & \text{si arco } (i,j) \in L^{mejor_global} \\ 0 & \text{en el caso contrario.} \end{bmatrix}$$

• Consideremos las siguientes distancias entre ciudades. Consideremos como ciudad inicial D. Tenemos que recorrer todas las ciudades con el menor costo (recorrer la menor distancia).

Matriz	A B C D E 0.0 12.0 3.0 23.0 1.0 12.0 0.0 9.0 18.0 3.0 3.0 9.0 0.0 89.0 56.0 23.0 18.0 89.0 0.0 87.0 1.0 3.0 56.0 87.0 0.0				
	A	В	C	D	E
A	0.0	12.0	3.0	23.0	1.0
В	12.0	0.0	9.0	18.0	3.0
С	3.0	9.0	0.0	89.0	56.0
D	23.0	18.0	89.0	0.0	87.0
E	1.0	3.0	56.0	87.0	0.0

- Valores Iniciales:

 - $\beta = 1$
 - e=5
 - Q = 1
 - Feromona Inicial = 10.0
 - Cantidad de Hormigas: 3
 - Cantidad de Iteraciones: 50

Calculamos la matriz de Visibilidad:

Matriz Distancia:

	A	В	С	D	E
A	0.0	12.0	3.0	23.0	1.0
В	12.0	0.0	9.0	18.0	3.0
C	3.0	9.0	0.0	89.0	56.0
D	23.0	18.0	89.0	0.0	87.0
E	1.0	3.0	56.0	87.0	0.0

Matriz Visibilidad:

	A	В	C	D	E
A	0.0	0.083	0.333	0.043	1.0
В	0.083	0.0	0.111	0.056	0.333
C	0.333	0.111	0.0	0.011	0.018
D	0.043	0.056	0.011	0.0	0.011
E	1.0	0.333	0.018	0.011	0.0

$$p_{ij} = \begin{cases} \frac{[\tau_{ij}]^{\alpha} [\eta_{ij}]^{\beta}}{\sum_{h \in \Omega} [\tau_{ih}]^{\alpha} [\eta_{ih}]^{\beta}} & \text{if } j \in \Omega \\ 0 & \text{otherwise} \end{cases}$$

where
$$\eta_{ij} = \frac{1}{d_{ij}}$$

Definimos la feromona inicial:

Matriz Feromona:

	A	В	C	D	E
A	0.0	10.0	10.0	10.0	10.0
В	10.0	0.0	10.0	10.0	10.0
С	10.0	10.0	0.0	10.0	10.0
D	10.0	10.0	10.0	0.0	10.0
E	10.0	10.0	10.0	10.0	0.0

$$p_{ij} = \begin{cases} \frac{[\tau_{ij}]^{\alpha} [\eta_{ij}]^{\beta}}{\sum_{h \in \Omega} [\tau_{ih}]^{\alpha} [\eta_{ih}]^{\beta}} & \text{if } j \in \Omega \\ 0 & \text{otherwise} \end{cases}$$

where
$$\eta_{ij} = \frac{1}{d_{ij}}$$

Ciudad Siguiente: A

 Definimos el camino para la Hormiga 1 (2da Ciudad):

$$p_{ij} = \begin{cases} \frac{[\tau_{ij}]^{\alpha} [\eta_{ij}]^{\beta}}{\sum_{h \in \Omega} [\tau_{ih}]^{\alpha} [\eta_{ih}]^{\beta}} & \text{if } j \in \Omega \\ 0 & \text{otherwise} \end{cases}$$
where $\eta_{ij} = \frac{1}{d_{ij}}$

```
Hormiga 1
Ciudad Inicial: D
D-A: t = 10.0 \text{ n} = 0.043478260869565216 \text{ } t*n = 0.43478260869565216
D-C: t = 10.0 \text{ n} = 0.011235955056179775 \text{ } t*n = 0.11235955056179775
D-E: t = 10.0 \text{ n} = 0.011494252873563218 t*n = 0.11494252873563218
Suma: 1.2176402435486378
D-A: prob = 0.3570698414406382
D-B: prob = 0.45625590850748216
D-C: prob = 0.09227647587791774
D-E: prob = 0.09439777417396182
Numero aleatorio para la Probabilidad: 0.10294352514814276
```

 Definimos el camino para la Hormiga 1 (3ra Ciudad):

$$p_{ij} = \begin{cases} \frac{[\tau_{ij}]^{\alpha} [\eta_{ij}]^{\beta}}{\sum_{h \in \Omega} [\tau_{ih}]^{\alpha} [\eta_{ih}]^{\beta}} & \text{if } j \in \Omega \\ 0 & \text{otherwise} \end{cases}$$
where $\eta_{ij} = \frac{1}{d_{ij}}$

 Definimos el camino para la Hormiga 1 (4ta y 5ta Ciudad):

```
p_{ij} = \begin{cases} \frac{[\tau_{ij}]^{\alpha} [\eta_{ij}]^{\beta}}{\sum_{h \in \Omega} [\tau_{ih}]^{\alpha} [\eta_{ih}]^{\beta}} & \text{if } j \in \Omega \\ 0 & \text{otherwise} \end{cases}
```

```
where \eta_{ij} = \frac{1}{d_{ij}}
```

 Definimos el camino para la Hormiga 2 (2da Ciudad):

$$p_{ij} = \begin{cases} \frac{[\tau_{ij}]^{\alpha} [\eta_{ij}]^{\beta}}{\sum_{h \in \Omega} [\tau_{ih}]^{\alpha} [\eta_{ih}]^{\beta}} & \text{if } j \in \Omega \\ 0 & \text{otherwise} \end{cases}$$
where $\eta_{ij} = \frac{1}{d_{ij}}$

```
Hormiga 2
Ciudad Inicial: D
D-A: t = 10.0 \text{ n} = 0.043478260869565216  t*n = 0.43478260869565216
D-C: t = 10.0 \text{ n} = 0.011235955056179775 \text{ } t*n = 0.11235955056179775
D-E: t = 10.0 \text{ n} = 0.011494252873563218  t*n = 0.11494252873563218 
Suma: 1.2176402435486378
D-A: prob = 0.3570698414406382
D-B: prob = 0.45625590850748216
D-C: prob = 0.09227647587791774
D-E: prob = 0.09439777417396182
Numero aleatorio para la Probabilidad: 0.8115731187225752
Ciudad Siguiente: B
```

 Definimos el camino para la Hormiga 3 (2da Ciudad):

$$p_{ij} = \begin{cases} \frac{[\tau_{ij}]^{\alpha} [\eta_{ij}]^{\beta}}{\sum_{h \in \Omega} [\tau_{ih}]^{\alpha} [\eta_{ih}]^{\beta}} & \text{if } j \in \Omega \\ 0 & \text{otherwise} \end{cases}$$
where $\eta_{ij} = \frac{1}{d_{ij}}$

```
Hormiga 3
Ciudad Inicial: D
D-A: t = 10.0 \text{ n} = 0.043478260869565216  t*n = 0.43478260869565216
D-C: t = 10.0 \text{ n} = 0.011235955056179775 \text{ } t*n = 0.11235955056179775
D-E: t = 10.0 \text{ n} = 0.011494252873563218  t*n = 0.11494252873563218 
Suma: 1.2176402435486378
D-A: prob = 0.3570698414406382
D-B: prob = 0.45625590850748216
D-C: prob = 0.09227647587791774
D-E: prob = 0.09439777417396182
Numero aleatorio para la Probabilidad: 0.9717197754685619
Ciudad Siguiente: E
```

 Definimos el camino para la Hormiga 3 (4ta y 5ta Ciudad):

```
p_{ij} = \begin{cases} \frac{[\tau_{ij}]^{\alpha} [\eta_{ij}]^{\beta}}{\sum_{h \in \Omega} [\tau_{ih}]^{\alpha} [\eta_{ih}]^{\beta}} & \text{if } j \in \Omega \\ 0 & \text{otherwise} \end{cases}
```

```
where \eta_{ij} = \frac{1}{d_{ij}}
```

cada camino de cada hormiga:

• Definimos el costo para
$$\tau_{rs}(t) = (1-\rho) \cdot \tau_{rs}(t-1) + \sum_{k=1}^{m} \Delta \tau_{rs}^{k} + e \cdot \Delta \tau_{rs}^{mejor_global}$$
 cada camino de cada
$$\sum_{k=1}^{m} \Delta \tau_{ij}^{k} \text{ and } \Delta \tau_{ij}^{k} = \begin{cases} \frac{Q}{L_{k}} & \text{if ant } k \text{ travels on edge } (i,j) \\ 0 & \text{otherwise} \end{cases}$$

 $\Delta \tau_{rs}^{mejor_global} = \begin{bmatrix} 1/C^{mejor_global} & \text{si arco } (i,j) \in L^{mejor_global} \\ 0 & \text{en el caso contrario.} \end{bmatrix}$

```
Hormiga 1 (D-A-E-B-C) - Costo: 36.0
Hormiga 2 (D-B-A-C-E) - Costo: 89.0
Hormiga 3 (D-E-A-C-B) - Costo: 100.0
Mejor Hormiga Global: D-A-E-B-C - Costo: 36.0
```

 Definimos la feromona para cada camino:

$$\tau_{rs}(t) = (1 - \rho) \cdot \tau_{rs}(t - 1) + \sum_{k=1}^{m} \Delta \tau_{rs}^{k} + e \cdot \Delta \tau_{rs}^{mejor_global}$$

$$\sum_{k=1}^{m} \Delta \tau_{ij}^{k} \text{ and } \Delta \tau_{ij}^{k} = \begin{cases} \frac{Q}{L_{k}} & \text{if ant } k \text{ travels on edge } (i, j) \\ 0 & \text{otherwise} \end{cases}$$

 $\Delta \tau_{rs}^{\ mejor_global} = \begin{bmatrix} 1/C^{mejor_global} & \text{si arco } (i,j) \in L^{mejor_global} \\ 0 & \text{en el caso contrario.} \end{bmatrix}$

 Definimos la feromona para cada camino:

$$\tau_{rs}(t) = (1 - \rho) \cdot \tau_{rs}(t - 1) + \sum_{k=1}^{m} \Delta \tau_{rs}^{k} + e \cdot \Delta \tau_{rs}^{mejor_global}$$

$$\sum_{k=1}^{m} \Delta \tau_{ij}^{k} \text{ and } \Delta \tau_{ij}^{k} = \begin{cases} \frac{Q}{L_{k}} & \text{if ant } k \text{ travels on edge } (i, j) \\ 0 & \text{otherwise} \end{cases}$$

 $\Delta \tau_{rs}^{\ mejor_global} = \begin{bmatrix} 1/C^{mejor_global} & \text{si arco } (i,j) \in L^{mejor_global} \\ 0 & \text{en el caso contrario.} \end{bmatrix}$

 Definimos la feromona para cada camino:

$$\tau_{rs}(t) = (1 - \rho) \cdot \tau_{rs}(t - 1) + \sum_{k=1}^{m} \Delta \tau_{rs}^{k} + e \cdot \Delta \tau_{rs}^{mejor_global}$$

$$\sum_{k=1}^{m} \Delta \tau_{ij}^{k} \text{ and } \Delta \tau_{ij}^{k} = \begin{cases} \frac{Q}{L_{k}} & \text{if ant } k \text{ travels on edge } (i, j) \\ 0 & \text{otherwise} \end{cases}$$

 $\Delta \tau_{rs}^{\ mejor_global} = \begin{bmatrix} 1/C^{mejor_global} & \text{si arco } (i,j) \in L^{mejor_global} \\ 0 & \text{en el caso contrario.} \end{bmatrix}$

```
D-C: Feromona = 9.0 + 0.0 + 0.0 + 0.0 + 0.0 = 9.0

D-E: Feromona = 9.0 + 0.0 + 0.0 + 0.01 + 0.0 = 9.01

E-A: Feromona = 9.0 + 0.02777777777777777 + 0.0 + 0.01 + 0.13888888888888 = 9.17666666666668

E-B: Feromona = 9.0 + 0.02777777777777777 + 0.0 + 0.0 + 0.1388888888888 = 9.1666666666668

E-C: Feromona = 9.0 + 0.0 + 0.011235955056179775 + 0.0 + 0.0 = 9.01123595505618

E-D: Feromona = 9.0 + 0.0 + 0.0 + 0.01 + 0.0 = 9.01
```

Después de 50 iteraciones:

```
Matriz Feromona Final:

A B C D E

A 0.0 0.056 3.171 0.078 3.19

B 0.056 0.0 0.093 3.166 3.177

C 3.171 0.093 0.0 0.053 0.057

D 0.078 3.166 0.053 0.0 0.053

E 3.19 3.177 0.057 0.053 0.0

Iteraciones Totales: 50

-----

Mejor Hormiga Global: D-B-E-A-C - Costo: 25.0
```

El sistema de hormigas basado en rankings (AS_{rank})

- AS_{rank} fue propuesto por Bullnhemiern et al. (1999).
- Idea básica: cada hormiga deposita una cantidad de feromona que disminuye con su ranking. Además, como en AS_e, la hormiga que ha recorrido el mejor camino siempre deposita la mayor cantidad de feromona en cada iteración.
- Las hormigas se clasificación en función de la longitud de los caminos que han construido y la cantidad de feromona que depositan depende de su posición en el ranking.

El sistema de hormigas basado en rankings (AS_{rank})

- En cada iteración solo las w-1 hormigas mejor clasificadas y la hormiga que produjo el mejor camino visitado pueden depositar feromona.
- La cantidad de feromona que depositan estas hormigas se multiplican por el peso max {0, w-r}, si ocupan la posición r en el ranking. La hormiga que produjo el mejor camino visitado obtiene el peso máximo w.
- Valor típico para w=6.

El sistema de hormigas basado en rankings (AS_{rank})

- En cada iteración solo las w-1 hormigas mejor clasificadas y la hormiga que produjo el mejor camino visitado pueden depositar feromona.
- La cantidad de feromona que depositan estas hormigas se multiplican por el peso max {0, w-r}, si ocupan la posición r en el ranking. La hormiga que produjo el mejor camino visitado obtiene el peso máximo w. No se considera la evaporación. En caso dos caminos tengan el mismo valor, el ranking es aleatorio.
- Valor típico para w=6.

El sistema de hormigas basado en rankings (AS_{rank})

$$\tau_{rs}(t) = \tau_{rs}(t-1) + \sum_{r=1}^{w-1} (w-r) \Delta \tau_{rs}^{r} + w \Delta \tau_{rs}^{mejor_global}$$

donde
$$\Delta \tau_{rs}^{r} = 1/C^{r}$$
 y $\Delta \tau_{rs}^{mejor_global} = 1/C^{mejor_global}$

Consideremos las siguientes distancias entre ciudades.
 Consideremos como ciudad inicial D. Tenemos que recorrer todas las ciudades con el menor costo (recorrer la menor distancia).

Matriz	12.0 0.0 9.0 18.0 3.0 3.0 9.0 0.0 89.0 56.0 23.0 18.0 89.0 0.0 87.0				
	A	В	C	D	E
A	0.0	12.0	3.0	23.0	1.0
В	12.0	0.0	9.0	18.0	3.0
С	3.0	9.0	0.0	89.0	56.0
D	23.0	18.0	89.0	0.0	87.0
E	1.0	3.0	56.0	87.0	0.0

- Valores Iniciales:
 - $\alpha = 1$
 - \circ $\beta = 1$
 - w=6
 - Feromona Inicial = 10.0
 - Cantidad de Hormigas: 3
 - Cantidad de Iteraciones: 50

Calculamos la matriz de Visibilidad:

Matriz Distancia:

	A.	В	C	D	E
A	0.0	12.0	3.0	23.0	1.0
В	12.0	0.0	9.0	18.0	3.0
C	3.0	9.0	0.0	89.0	56.0
D	23.0	18.0	89.0	0.0	87.0
E	1.0	3.0	56.0	87.0	0.0

Matriz Visibilidad:

	A	В	C	D	E
A	0.0	0.083	0.333	0.043	1.0
В	0.083	0.0	0.111	0.056	0.333
C	0.333	0.111	0.0	0.011	0.018
D	0.043	0.056	0.011	0.0	0.011
E	1.0	0.333	0.018	0.011	0.0

$$p_{ij} = \begin{cases} \frac{[\tau_{ij}]^{\alpha} [\eta_{ij}]^{\beta}}{\sum_{h \in \Omega} [\tau_{ih}]^{\alpha} [\eta_{ih}]^{\beta}} & \text{if } j \in \Omega \\ 0 & \text{otherwise} \end{cases}$$

where
$$\eta_{ij} = \frac{1}{d_{ij}}$$

Definimos la feromona inicial:

Matriz Feromona:

	A	В	C	D	E
A	0.0	10.0	10.0	10.0	10.0
В	10.0	0.0	10.0	10.0	10.0
C	10.0	10.0	0.0	10.0	10.0
D	10.0	10.0	10.0	0.0	10.0
E	10.0	10.0	10.0	10.0	0.0

$$p_{ij} = \begin{cases} \frac{[\tau_{ij}]^{\alpha} [\eta_{ij}]^{\beta}}{\sum_{h \in \Omega} [\tau_{ih}]^{\alpha} [\eta_{ih}]^{\beta}} & \text{if } j \in \Omega \\ 0 & \text{otherwise} \end{cases}$$
where $\eta_{ij} = \frac{1}{d_{ij}}$

 Definimos el camino para la Hormiga 1 (2da Ciudad):

```
p_{ij} = \begin{cases} \frac{[\tau_{ij}]^{\alpha} [\eta_{ij}]^{\beta}}{\sum_{h \in \Omega} [\tau_{ih}]^{\alpha} [\eta_{ih}]^{\beta}} & \text{if } j \in \Omega \\ 0 & \text{otherwise} \end{cases}
where \eta_{ij} = \frac{1}{d_{ij}}
```

```
Hormiga 1
Ciudad Inicial: D
D-A: t = 10.0 \text{ n} = 0.043478260869565216  t*n = 0.43478260869565216
D-C: t = 10.0 \text{ n} = 0.011235955056179775 \text{ } t*n = 0.11235955056179775
D-E: t = 10.0 \text{ n} = 0.011494252873563218 \ t*n = 0.11494252873563218
Suma: 1 2176402435486378
D-A: prob = 0.3570698414406382
D-B: prob = 0.45625590850748216
D-C: prob = 0.09227647587791774
D-E: prob = 0.09439777417396182
Numero aleatorio para la Probabilidad: 0.1609504391199632
```

Ciudad Siguiente: A

 Definimos el camino para la Hormiga 1 (3ra Ciudad):

```
p_{ij} = \begin{cases} \frac{[\tau_{ij}]^{\alpha} [\eta_{ij}]^{\beta}}{\sum_{h \in \Omega} [\tau_{ih}]^{\alpha} [\eta_{ih}]^{\beta}} & \text{if } j \in \Omega \\ 0 & \text{otherwise} \end{cases}
where \eta_{ij} = \frac{1}{d_{ij}}
```

 Definimos el camino para la Hormiga 1 (4ta y 5ta Ciudad):

$$p_{ij} = \begin{cases} \frac{[\tau_{ij}]^{\alpha} [\eta_{ij}]^{\beta}}{\sum_{h \in \Omega} [\tau_{ih}]^{\alpha} [\eta_{ih}]^{\beta}} & \text{if } j \in \Omega \\ 0 & \text{otherwise} \end{cases}$$

where $\eta_{ij} = \frac{1}{d_{ij}}$

30

 Definimos el camino para la Hormiga 2 (2da Ciudad):

$$p_{ij} = \begin{cases} \frac{[\tau_{ij}]^{\alpha} [\eta_{ij}]^{\beta}}{\sum_{h \in \Omega} [\tau_{ih}]^{\alpha} [\eta_{ih}]^{\beta}} & \text{if } j \in \Omega \\ 0 & \text{otherwise} \end{cases}$$
where $\eta_{ij} = \frac{1}{d_{ij}}$

```
Hormiga 2
Ciudad Inicial: D
D-A: t = 10.0 \text{ n} = 0.043478260869565216 \text{ } t*n = 0.43478260869565216
D-C: t = 10.0 \text{ n} = 0.011235955056179775 \text{ } t*n = 0.11235955056179775
D-E: t = 10.0 \text{ n} = 0.011494252873563218 \ t*n = 0.11494252873563218
Suma: 1.2176402435486378
D-A: prob = 0.3570698414406382
D-B: prob = 0.45625590850748216
D-C: prob = 0.09227647587791774
D-E: prob = 0.09439777417396182
Numero aleatorio para la Probabilidad: 0.8809076901730281
Ciudad Siguiente: C
```

 Definimos el camino para la Hormiga 3 (2da Ciudad):

$$p_{ij} = \begin{cases} \frac{[\tau_{ij}]^{\alpha} [\eta_{ij}]^{\beta}}{\sum_{h \in \Omega} [\tau_{ih}]^{\alpha} [\eta_{ih}]^{\beta}} & \text{if } j \in \Omega \\ 0 & \text{otherwise} \end{cases}$$
where $\eta_{ij} = \frac{1}{d_{ij}}$

```
Hormiga 3
Ciudad Inicial: D
D-A: t = 10.0 \text{ n} = 0.043478260869565216  t*n = 0.43478260869565216
D-C: t = 10.0 \text{ n} = 0.011235955056179775 \text{ } t*n = 0.11235955056179775
D-E: t = 10.0 \text{ n} = 0.011494252873563218 \ t*n = 0.11494252873563218
Suma: 1 2176402435486378
D-A: prob = 0.3570698414406382
D-B: prob = 0.45625590850748216
D-C: prob = 0.09227647587791774
D-E: prob = 0.09439777417396182
```

Numero aleatorio para la Probabilidad: 0.8797483449625245 Ciudad Siguiente: C

 Definimos el camino para la Hormiga 3 (4ta y 5ta Ciudad):

$$p_{ij} = \begin{cases} \frac{[\tau_{ij}]^{\alpha} [\eta_{ij}]^{\beta}}{\sum_{h \in \Omega} [\tau_{ih}]^{\alpha} [\eta_{ih}]^{\beta}} & \text{if } j \in \Omega \\ 0 & \text{otherwise} \end{cases}$$

```
where \eta_{ij} = \frac{1}{d_{ij}}
```

 Definimos el costo y ranking para cada camino de cada hormiga:

$$\tau_{rs}(t) = \tau_{rs}(t-1) + \sum_{r=1}^{w-1} (w-r) \Delta \tau_{rs}^{r} + w \Delta \tau_{rs}^{mejor_global}$$

 $\Delta \tau_{rs}^{r} = 1/C^{r} \text{ y } \Delta \tau_{rs}^{mejor_global} = 1/C^{mejor_global}$

```
Hormiga 1 (D-A-E-B-C) - Costo: 36.0

Hormiga 2 (D-C-B-E-A) - Costo: 102.0

Hormiga 3 (D-C-A-E-B) - Costo: 96.0

Hormiga 1 - Rank(r) = 1

Hormiga 3 - Rank(r) = 2

Hormiga 2 - Rank(r) = 3

-----

Mejor Hormiga Global: D-A-E-B-C - Costo: 36.0
```

Definimos la feromona para cada camino:

$$\tau_{rs}(t) = \tau_{rs}(t-1) + \sum_{r=1}^{w-1} (w-r) \Delta \tau_{rs}^{r} + w \Delta \tau_{rs}^{mejor_global}$$
$$\Delta \tau_{rs}^{r} = 1/C^{r} y \Delta \tau_{rs}^{mejor_global} = 1/C^{mejor_global}$$

Definimos la feromona para cada camino:

$$\tau_{rs}(t) = \tau_{rs}(t-1) + \sum_{r=1}^{w-1} (w-r) \Delta \tau_{rs}^{r} + w \Delta \tau_{rs}^{mejor_global}$$
$$\Delta \tau_{rs}^{r} = 1/C^{r} \text{ y } \Delta \tau_{rs}^{mejor_global} = 1/C^{mejor_global}$$

Definimos la feromona para cada camino:

D-E: Feromona = 10.0 + 0.0 + 0.0 + 0.0 + 0.0 = 10.0

E-C: Feromona = 10.0 + 0.0 + 0.0 + 0.0 + 0.0 = 10.0

E-D: Feromona = 10.0 + 0.0 + 0.0 + 0.0 + 0.0 = 10.0

Después de 50 iteraciones:

```
Matriz Feromona Final:

A B C D E

A 0.0 10.333 32.12 12.57 33.435

B 10.333 0.0 13.831 31.166 32.848

C 32.12 13.831 0.0 10.301 10.389

D 12.57 31.166 10.301 0.0 10.282

E 33.435 32.848 10.389 10.282 0.0

Iteraciones Totales: 50

------

Mejor Hormiga Global: D-B-E-A-C - Costo: 25.0
```

Laboratorio 8 (0 a 20)

 Aplicar los algoritmo AS_e y AS_{rank} para encontrar la menor distancia para recorrer todas las ciudad (utilice por los menos 4 hormigas). Considerare como ciudad inicial A. Muestre los valores obtenidos como en los ejemplos. Pruebe con diferentes valores en los parámetros.

	Α	В	С	D	Е	F	G	Н	-1	J
Α	0	12	3	23	1	5	23	56	12	11
В	12	0	9	18	3	41	45	5	41	27
С	3	9	0	89	56	21	12	48	14	29
D	23	18	89	0	87	46	75	17	50	42
Е	1	3	56	87	0	55	22	86	14	33
F	5	41	21	46	55	0	21	76	54	81
G	23	45	12	75	22	21	0	11	57	48
Н	56	5	48	17	86	76	11	0	63	24
- 1	12	41	14	50	14	54	57	63	0	9
J	11	27	29	42	33	81	48	24	9	0

GRACIAS

Dr. Edward Hinojosa Cárdenas ehinojosa@unsa.edu.pe