

Python与金融数据挖掘(15)

文欣秀

wenxinxiu@ecust.edu.cn

机器学习分类

- > 有监督学习(分类、回归)
- ▶ 无监督学习(聚类、降维)
- > 强化学习
- > 半监督学习

分类算法

- ➤ K近邻算法(KNN)
- ▶ 朴素贝叶斯算法(NB)
- > 支持向量机(SVM)
- ▶ 决策树(DT)
- ➤ 逻辑回归(LR)

KNN算法流程

	A	В	С	D	Е	F
1	收入	年龄	性别	历史授信额度	历史违约次数	是否违约
2	503999	46	1	0	1	1
3	452766	36	0	13583	0	1
4	100000	33	1	0	1	1
5	100000	25	0	0	1	1
6	258000	35	1	0	0	1
7	933333	31	0	28000	3	1
8	665000	40	1	5000	1	1
9	291332	38	0	0	0	1
10	259000	45	1	0	1	1
11	3076666	39	1	71000	2	1
12	695000	40	1	5000	0	1
13	600000	35	1	18000	3	1
14	440000	36	1	0	2	1
15	511999	35	0	0	2	1
16	248000	31	0	0	2	1
17	471000	40	1	0	1	1

import pandas as pd

from sklearn.neighbors import KNeighbors Classifier

data=pd.read_csv('client.csv',encoding='gb2312')

model= KNeighborsClassifier()

X=data.iloc[:,0:5].values; y=data.iloc[:,5].values

model.fit(X, y)

income=int(input("您的收入:"));age=int(input("您的年龄:"))

sex=int(input("您的性别:"));limit=int(input("您的历史授信额度:"))

count=int(input("您的历史违约次数:"))

print('Type: ',model.predict([[income,age,sex,limit,count]]))

您的收入:100000

您的年龄:22

您的性别:1

您的历史授信额度:0

您的历史违约次数:(

Type: [1]

案例分析

	Α	В	С	D
1	Sex	Height	Weight	Type
2	1	180	75	normal
3	1	180	85	normal
4	1	180	90	overweight
5	1	180	100	overweight
6	1	175	90	overweight
7	1	175	80	overweight
8	1	175	65	normal
9	1	175	55	underweight
10	1	170	60	normal
11	1	170	70	normal
12	1	170	80	overweight
13	1	185	90	overweight
14	1	185	75	normal
15	1	175	60	underweight
16	1	180	65	underweight
17	1	160	75	overweight
18	1	160	60	normal
19	1	170	68	normal
20	1	165	62	normal
21	1	190	75	underweight


```
import pandas as pd
from sklearn.neighbors import KNeighbors Classifier
data=pd.read_csv('info.csv',encoding='gb2312')
model= KNeighbors Classifier()
X=data[['Sex','Height','Weight']].values
y= data['Type'].values
model.fit(X, y)
height=int(input("Your Height:"))
weight=int(input("Your Weight:"))
print('Type: ',model.predict([[1,height,weight]]))
```



```
import pandas as pd
from sklearn.naive_bayes import GaussianNB
data=pd.read_csv('info.csv',encoding='gb2312')
model= GaussianNB()
X=data[['Sex','Height','Weight']].values
y= data['Type'].values
model.fit(X, y)
height=int(input("Your Height:"))
weight=int(input("Your Weight:"))
print('Type: ',model.predict([[1,height,weight]]))
```



```
import pandas as pd
from sklearn.svm import SVC
data=pd.read_csv('info.csv',encoding='gb2312')
model= SVC()
X=data[['Sex','Height','Weight']].values
y= data['Type'].values
model.fit(X, y)
height=int(input("Your Height:"))
weight=int(input("Your Weight:"))
print('Type: ',model.predict([[1,height,weight]]))
```



```
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
data=pd.read_csv('info.csv',encoding='gb2312')
model = DecisionTreeClassifier()
X=data[['Sex','Height','Weight']].values
y= data['Type'].values
model.fit(X, y)
height=int(input("Your Height:"))
weight=int(input("Your Weight:"))
print('Type: ',model.predict([[1,height,weight]]))
```



```
import pandas as pd
from sklearn.linear_model import LogisticRegression
data=pd.read_csv('info.csv',encoding='gb2312')
model= LogisticRegression(max_iter=10000)
X=data[['Sex','Height','Weight']].values
y= data['Type'].values
model.fit(X, y)
height=int(input("Your Height:"))
weight=int(input("Your Weight:"))
```

print('Type: ',model.predict([[1,height,weight]]))

思考题

问题:如何比较以上算法的准确率从而选择有效的算法?

方案:使用相同的数据,相同的方法来评估不同的算法, 以便得到一个准确的结果。

	А	В	С	D	Е
1	Sepal_Length	Sepal_Width	Petal_Length	Petal_Width	Species
2	5.1	3.5	1.4	0.2	setosa
3	4.9	3	1.4	0.2	setosa
4	4.7	3.2	1.3	0.2	setosa
5	4.6	3.1	1.5	0.2	setosa
6	5	3.6	1.4	0.2	setosa
7	5.4	3.9	1.7	0.4	setosa
8	4.6	3.4	1.4	0.3	setosa
9	5	3.4	1.5	0.2	setosa
10	4.4	2.9	1.4	0.2	setosa
11	4.9	3.1	1.5	0.1	setosa

鸢尾花(iris)数据集分析

Iris 数据集: 是一个经典数据集,在统计学习和机器学习领域都经 常被用作示例。数据集内包含 3 类共 150 条记录,每类各 50 个数据, 每条记录都有 4 项特征: 花萼长度(Sepal Length)、花萼宽度(Sepal Width)、花瓣长度(Petal Length)、花瓣宽度(Petal Width),可以通过这 4个特征预测鸢尾花卉属于iris-setosa(山鸢尾), iris-versicolour(变色 鸢尾), iris-virginica(维吉尼鸢尾)中的哪一品种。

十折交叉验证

十折交叉验证(10-fold cross-validation): 用来测试算法准确性。 是常用的测试方法。将数据集分成10份,轮流将其中9份作为训练 数据,1份作为测试数据进行试验。每次试验都会得出相应的正 确率(或差错率)。10次的结果的正确率(或差错率)的平均值 作为对算法精度的估计,一般还需要进行多次10折交叉验证(例 如8次10折交叉验证),再求其均值,作为对算法准确性的估计。

K折交叉验证

Kfold()函数: sklearn 包中用于交叉验证的函数,一般情况将K折交叉验证用于模型调优。

函数功能: 在机器学习中,将数据集data分为训练集(training set)A和测试集(test set)B,在样本量不充足的情况下,为了充分利用数据集对算法效果进行测试,将数集data随机分为k个包,每次将其中1个包作为测试集,剩下k-1个包作为训练集进行训练。

K折交叉验证

KFold(n_splits=10, shuffle=False, random_state=None)

n_splits:整数,表示交叉验证的折数(即将数据集分为几份)。

shuffle: 布尔值,表示是否要将数据打乱顺序后再进行划分,若

为True时,每次划分的结果都不一样。

random_state:默认为None。当shuffle为True时, random_state的值影响标签的顺序。

K折交叉验证案例分析

```
from sklearn. model_selection import KFold
import numpy as np
X = ['a', b', c', d']
kf = KFold(n_splits=4)
for train, test in kf. split(X):
  print(train, test) #打印索引
  print("-"*50)
  print(np. array(X)[train], np. array(X)[test])
  print("*"*50)
```


K折交叉验证案例分析

```
from sklearn. model_selection import KFold
import numpy as np
X = ['a', b', c', d']
kf = KFold(n_splits=4, shuffle=True)
for train, test in kf. split(X):
  print(train, test) #打印索引
  print("-"*50)
  print(np. array(X)[train], np. array(X)[test])
  print("*"*50)
```


K折交叉验证案例分析

```
from sklearn. model_selection import KFold
import numpy as np
X = ['a', b', c', d']
kf = KFold(n_splits=4, shuffle=True, random_state=1)
for train, test in kf. split(X):
  print(train, test) #打印索引
  print("-"*50)
  print(np. array(X)[train], np. array(X)[test])
  print("*"*50)
```


计算得分

cross_val_score()函数: 函数用于评估模型的性能

cross_val_score(estimator, X, Y, cv=kfold, scoring='accuracy'):

- > estimator::估计器,也就是模型
- > X, Y: 数据值,标签值
- > cv: 交叉验证的折数,是一个整数或者是一个交叉验证迭代器
- > scoring: 评价指标(准确度)

算法比较(一)

import pandas as pd from sklearn.tree import DecisionTreeClassifier from sklearn.linear_model import LogisticRegression from sklearn.neighbors import KNeighborsClassifier from sklearn.naive_bayes import GaussianNB from sklearn.svm import SVC from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score

算法比较(二)

```
#导入数据
```

dataset = pd. read_csv('iris.csv')

#显示数据维度

数据维度: 行 150, 列 5

print('数据维度: 行%s, 列%s'% dataset. shape)

#查看数据的前10行

print(dataset. head(10))

Sepa	al Length	Sepal Width	Petal Length	Petal Width	Species
0	5. 1	3. 5	Ĭ. 4	0. 2	setos
1	4. 9	3. 0	1.4	0. 2	setos
2	4. 7	3. 2	1. 3	0. 2	setos
3	4.6	3. 1	1. 5	0. 2	setos
4	5. 0	3. 6	1. 4	0. 2	setos
5	5. 4	3. 9	1.7	0.4	setos
6	4.6	3. 4	1. 4	0.3	setos
7	5. 0	3. 4	1. 5	0. 2	setosa
8	4. 4	2. 9	1. 4	0. 2	setosa
9	4. 9	3. 1	1. 5	0. 1	setos

算法比较(三)

print(dataset. describe()) # 统计描述数据信息

#分离数据集

array = dataset. values

X = array[:, 0:4]

Y = array[:, 4]

	Sepal Length	Sepal_Width	Petal Length	Petal Width
count	150. 000000	$150.\overline{0}00000$	150. 000000	$150.\overline{0}00000$
mean	5.843333	3. 057333	3. 758000	1. 199333
std	0.828066	0. 435866	1. 765298	0. 762238
min	4. 300000	2. 000000	1. 000000	0. 100000
25%	5. 100000	2.800000	1. 600000	0.300000
50%	5.800000	3. 000000	4. 350000	1. 300000
75%	6. 400000	3. 300000	5. 100000	1.800000
max	7. 900000	4. 400000	6. 900000	2. 500000

kfold = **KFold**(n_splits=10, shuffle=True, random_state=1)

算法比较(四)

```
#算法审查
models = \{\}
models['LR'] = LogisticRegression(max_iter=10000)
models['DT'] = DecisionTreeClassifier()
models['KNN'] = KNeighborsClassifier()
models['NB'] = GaussianNB()
models['SVM'] = SVC()
```


算法比较(五)

```
#评估算法
                                           LR: 0.953333 (0.042687)
                                           DT: 0.940000 (0.062893)
                                           KNN: 0.960000 (0.044222)
results = []
                                           NB: 0.953333 (0.052068)
                                           SVM: 0.960000 (0.032660)
for key in models:
  #cross val score:得到K折验证中每一折的得分
  cv_results = cross_val_score(models[key], X, Y, cv=kfold)
  results. append(cv_results)
  print('%s: %f (%f)' %(key, cv_results.mean(), cv_results.std()))
```


波士顿房价问题

线性回归

线性回归(Linear Regression):利用数理统计中回归分析

来确定两种或两种以上变量间相互依赖的定量关系的一种统

计分析方法,运用十分广泛。

一元线性回归分析:分析中只包括一个自变量和一个因变量。

多元线性回归分析:分析中包括两个或两个以上自变量,且 因变量和自变量之间是线性关系。

波士顿房价

sklearn提供的波士顿房价数据集统计20世纪70年代中期 波士顿郊区房价。该数据集包含506条记录,13个特征 指标,第14列通常为目标列房价。试图能找到特征指标 与房价的关系。

波士顿房价

本例首先将506组数据的数据集划分为训练集和验证集, 其中404组数据是训练样本,剩下的102组数据作为验证 样本。然后构建回归模型并训练模型,查看模型的13个 特征的系数以及截距,获取模型的预测结果,最后绘制 折线图对比预测值和真实。

Python实现线性回归步骤

- > 导入对应库
- > 加载数据集并划分数据集
- > 在训练集上训练线性回归模型
- > 使用测试集实现预测
- > 绘图输出,结果可视化对比

(1) 导入库

from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression import matplotlib.pyplot as plt import pandas as pd


```
# (2) 加载数据集
boston=pd. read_csv("boston.csv",encoding="gb2312")
x=boston. iloc[:,0:13]
y=boston. iloc[:,13]
#分割数据为训练集和测试集
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size
=0.2,random_state=1)
print('x_train前3行数据为: ', x_train[0:3])
print('y_train前3行数据为: ',y_train[0:3])
```


(3) 创建线性回归模型对象

lr=LinearRegression()

#使用训练集训练模型

LinearRegression()

lr.fit(x_train,y_train)

#显示模型

print(lr)

print("13个系数:",lr.coef_) 预测结果:

13个系数: [-1.01199845e-01 4.67962110e-02 -2.06902678e-02 3.58072311e+00

-1. 71288922e+01 3. 92207267e+00 -5. 67997339e-03 -1. 54862273e+00

2. 97156958e-01 -1. 00709587e-02 -7. 78761318e-01 9. 87125185e-03

-5. 25319199e-01

模型截距: 32.42825286699119

预测结果: [27.99617259 31.37458822 21.16274236 32.97684211 19.85350998]

print("模型截距:",lr.intercept_)

(4) 使用测试集获取预测结果

print("预测结果:",lr.predict(x_test[:5]))


```
# (5) 绘图对比预测值和真实值
plt. rcParams['font.sans-serif']='SimHei'
fig=plt. figure(figsize=(10,6))
y_pred=lr. predict(x_test)
plt. plot(range(y_test.shape[0]),y_test,color="blue",linestyle="-")
plt. plot(range(y_test.shape[0]),y_pred,color="red",linestyle="-.")
plt. legend(['真实值','预测值'])
plt. show()
```


数据的归一化

归一化: 把每列数据都映射到0-1范围之内处理。scikit-learn 库提供preprocessing. MinMaxScaler类实现了将数据缩放到一个指定的最大值和最小值(通常是1-0)之间的功能。

fit_transform()函数: MinMaxScaler类的fit_transform()函数 用于把转换器实例应用到数据上,并返回转换后的数据。

波士顿房价数据归一化

对boston数据集的前5行5列数据进行归一化并打印显示。

```
import pandas as pd
from sklearn. preprocessing import MinMaxScaler
boston=pd. read_csv("boston.csv", encoding="gb2312")
X = boston. iloc[:5, :5]
                                              #转换器实例化
minmax_scaler = MinMaxScaler()
boston_minmax = minmax_scaler. fit_transform(X) # 数据归一化
print(boston_minmax)
```


波士顿房价数据归一化结果

	Α	В	С	D	E
1	犯罪率	区	产业	查尔斯河	氧化氮
2	0.00632	18	2.31	0	0.538
3	0.02731	0	7.07	0	0.469
4	0.02729	0	7.07	0	0.469
5	0.03237	0	2.18	0	0.458
6	0.06905	0	2.18	0	0.458

[[0.	1.	0.02658487	0.	1.	
[0. 33460864	0.	1.	0.	0. 1375]
[0. 33428981	0.	1.	0.	0. 1375]
[0.4152718	0.	0.	0.	0.	
[1.	0.	0.	0.	0.	
>>>					

数据的标准化

数据标准化: scikit-learn库提供了对数据进行标准化处理的函数,包括Z-score标准化、稀疏数据标准化和带离群值的标准化。

Z-Score标准化: scikit-learn库中preprocessing. StandardScaler类实现了Z-Score标准化。

Z-Score公式: z = (x-平均值) / 标准差

波士顿房价数据标准化

对boston数据集的前5行5列数据进行标准化并打印显示。

import pandas as pd

from sklearn.preprocessing import **StandardScaler**

boston=pd. read_csv("boston.csv", encoding="gb2312")

X = boston.iloc[:5, :5]

standerd_scaler = **StandardScaler()**

#转换器实例化

boston_standerd = standerd_scaler. fit_transform(X) # 数据标准化

print(boston_standerd)

波士顿房价数据标准化结果

	A B C		С	D	E	
1	犯罪率	区	产业	查尔斯河	氧化氮	
2	0.00632	18	2.31	0	0.538	
3	0.02731	0	7.07	0	0.469	
4	0.02729	0	7.07	0	0.469	
5	0.03237	0	2.18	0	0.458	
6	0.06905	0	2.18	0	0.458	

[[-1. 2834352 2.	-0.77983987	0.	1. 97329359]
[-0.25317266 -0.5]	1. 22450018	0.	-0. 31122416]
[-0.25415433 -0.5]	1. 22450018	0.	-0. 31122416]
[-0.00481018 -0.5]	-0.83458025	0.	-0.67542264]
[1.79557237 -0.5	-0.83458025	0.	-0.67542264]]
$\rangle\rangle\rangle$			

数据的正则化

数据正则化: scikit-learn库提供了对数据进行正则化处理的函数,

其中preprocessing. Normalizer类实现了将单个样本缩放到单位

范数的功能。

正则化应用: 在数据集之间各个指标有共同重要比率的关系时,

正则化处理有比较好的效果。

波士顿房价数据正则化

对boston数据集的前5行5列数据进行正则化并打印显示。

import pandas as pd

from sklearn.preprocessing import Normalizer

boston=pd. read_csv("boston.csv", encoding="gb2312")

X = boston. iloc[:5, :5]

normalizer_scaler = Normalizer()

#转换器实例化

boston_normalizer = normalizer_scaler. fit_transform(X) # 数据正则化 print(boston_normalizer)

波士顿房价数据正则化结果

	Α	В	С	D	E
1	犯罪率	区	产业	查尔斯河	氧化氮
2	0.00632	18	2.31	0	0.538
3	0.02731	0	7.07	0	0.469
4	0.02729	0	7.07	0	0.469
5	0.03237	0	2.18	0	0.458
6	0.06905	0	2.18	0	0.458

- [[3.48102083e-04 9.91429984e-01 1.27233515e-01 0.00000000e+00]
 - 2. 96327406e-02]
 - $\begin{bmatrix} 3.85430066e-03 & 0.00000000e+00 & 9.97799549e-01 & 0.00000000e+00 \end{bmatrix}$
 - 6. 61906632e-02]
 - [3.85147808e-03 0.00000000e+00 9.97799560e-01 0.00000000e+00]
 - 6. 61906639e-02]
- [1.45298555e-02] 0. 00000000e+00 9. 78532126e-01 0. 00000000e+00
- 2. 05581520e-01]
- [3. 09827227e-02 0. 00000000e+00 9. 78165612e-01 0. 00000000e+00]
- 2. 05504518e-01]]

>>>

标签二值化

标签二值化:可以把非数字化的数据标签转化为数字化形式的数据标签,例如可把"Yes"和"No"等文本标签转化为"1"和"0"的数字形式。scikit-learn库中preprocessing. LabelBinarizer类实现了标签二值化处理的功能,常用于文本类型的数据标签的处理。

标签二值化案例

构建数据集,进行标签二值化处理并打印显示。

```
from sklearn import preprocessing
label = ['Yes', 'No', 'Yes', 'No', 'No'] # 设置数据集
[0]
lb = preprocessing. LabelBinarizer() # 转换器实例化
label_bin = lb. fit_transform(label) # 标签数据二值化
print(label_bin)

[0]
]
```


机器学习分类

- > 有监督学习(分类、回归)
- > 无监督学习(聚类、降维)
- > 强化学习
- > 半监督学习

聚类

聚类(Clustering Approach): 是按一定的距离或相似性

系数将数据分成一系列相互区分的组,常用的经典聚类

方法有K-means, K-medoids, isodata等。

聚类算法的应用场景:市场分析、商业经营、图像处理、

决策支持、模式识别。

- ➤ K-Means算法属于聚类分析中划分方法里较为经典的一种,由于该算法的效率高,所以在对大规模数据进行聚类时被广泛应用。
- K-Means算法通过将样本划分k个簇类来实现数据聚类,该算法需要指定划分类的个数。

K- Means算法示例

例:对表中二维数据,使用k-means算法将其划分为2个簇,假设初始簇中心选为P7(4,5),P10(5,5)。

	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10
X	3	3	7	4	3	8	4	4	7	5
у	4	6	3	7	8	5	5	1	4	5

K- Means算法示例

- ▶ 根据题目,假设划分的两个簇分别为C1和C2,中心分别为(4,5)和(5,5),下面计算10个样本到这2个簇中心的距离,并将10个样本指派到与其最近的簇;
- ▶ 第一轮迭代结果如下: 属于簇C1的样本有:{P7,P1,P2,P4,P5,P8}; 属于簇C2的样本有:{P10,P3,P6,P9};
- ▶ 重新计算新的簇中心,有:C1的中心为(3.5,5.167),C2的中心为(6.75,4.25);

- 》继续计算10个样本到新的簇的中心的距离,重新分配到新的簇中, 第二轮迭代结果如下:
 - 属于簇C1的样本有:{P1,P2,P4,P5,P7,P10};

 **P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
 **X 3 3 7 4 3 8 4 4 7 5
 **Y 4 6 3 7 8 5 5 1 4 5
 **

 **

 **IRITIAL TOTAL TOTAL
- ▶ 重新计算新的簇的中心,有:C1的中心为(3.67,5.83), C2的中心为(6.5,3.25);
- 继续计算10个样本到新的簇的中心的距离,重新分配到新的簇中, 发现簇中心不再发生变化,算法终止。

Scikit-learn的Cluster类提供聚类分析的方法:

> 模型初始化

kmeans=Kmeans(n_clusters) #参数为簇的个数

> 模型学习

kmeans. fit(X)

#参数为样本二维数组

鸢尾花聚类问题

	Α	В	С	D
1	Sepal_Length	Sepal_Width	Petal_Length	Petal_Width
3	5.1	3.5	1.4	0.2
3	4.9	3	1.4	0.2
4	4.7	3.2	1.3	0.2
5	4.6	3.1	1.5	0.2
6	5	3.6	1.4	0.2
7	5.4	3.9	1.7	0.4
8	4.6	3.4	1.4	0.3
g	5	3.4	1.5	0.2
1)	4.4	2.9	1.4	0.2
1.	4.9	3.1	1.5	0.1
12	5.4	3.7	1.5	0.2
13	4.8	3.4	1.6	0.2

Scikit-learn的Cluster类提供聚类分析的方法:

> 模型初始化

kmeans=Kmeans(n_clusters) #参数为簇的个数

> 模型学习

kmeans. fit(X)

#参数为样本二维数组

鸢尾花问题K-Means模型(1)

import matplotlib.pyplot as plt
import numpy as np
from sklearn.cluster import KMeans
import pandas as pd #导入模块
iris = pd.read_csv("iris.csv")

X = iris.loc[:,['Petal_Length', 'Petal_Width']] #读出数据

plt.scatter(X['Petal_Length'], X['Petal_Width'], c = "red", marker='o', label='scatter')

plt.xlabel('Petal length')

plt.ylabel('Petal width')

plt.legend(loc=2)

plt.show()

鸢尾花问题K-Means模型(2)

```
estimator = KMeans(n_clusters=3)#模型初始化
estimator.fit(X) #模型学习
label_pred = estimator.labels_ #获取聚类标签
x0 = X[label\_pred == 0]
x1 = X[label\_pred == 1]
x2 = X[label\_pred == 2]
print(x0)
print(x1)
print(x2)
```


鸢尾花问题K-Means模型(3)

```
plt.scatter(x0['Petal_Length'], x0['Petal_Width'], c = "red", marker='o', label='label0')
plt.scatter(x1['Petal_Length'], x1['Petal_Width'], c = "green", marker='*', label='label1')
plt.scatter(x2['Petal_Length'], x2['Petal_Width'], c = "blue", marker='+', label='label2')
plt.xlabel('Petal length')
plt.ylabel('Petal width')
plt.legend(loc=2)
plt.show()
```

题型及分值

考试题型如下:

选择题: 2分*20题=40分,涵盖全部教学内容

程序填空题: 2分*3空*5题=30分,涵盖全部教学内容

编程题: 10分*3题=30分,涵盖重点、难点教学内容

复习重点:窗体设计、matplotlib图形绘制(散点图、折线图、 饼图、条形图等)、numpy数据处理、pandas数据分析、数据 清洗、文献词频统计、正则与MySQL数据库、机器学习算

法应用(分类、回归、聚类)

谢谢