Mathematical and Logical Foundations of Computer Science

Lecture 11 - Predicate Logic (Syntax)

Vincent Rahli

(some slides were adapted from Rajesh Chitnis' slides)

University of Birmingham

Where are we?

- Symbolic logic
- Propositional logic
- ► Predicate logic

Today

Syntax of Predicate Logic

Further reading:

Chapter 7 of http://leanprover.github.io/logic_and_proof/

Recap: Propositional Logic

Propositions: Facts (that can in principle be true or false)

- 2 is an even number
- ▶ 2 is an odd number
- $P = \mathcal{NP}$
- Mind the gap! (not a proposition)

Grammar: $P := a \mid P \land P \mid P \lor P \mid P \rightarrow P \mid \neg P$ where a ranges over **atomic propositions**.

Two special atoms: \top stands for True, \bot stands for False

Four connectives:

- ▶ $P \land Q$: we have a proof of both P and Q
- ▶ $P \lor Q$: we have a proof of at least one of P and Q
- ▶ $P \rightarrow Q$: if we have a proof of P then we have a proof of Q
- ▶ $\neg P$: stands for $P \rightarrow \bot$

Recap: Proofs

Natural Deduction

introduction/elimination rules

natural proofs

$$\begin{array}{c} \overline{A}^{1} \\ \vdots \\ \overline{B} \\ \overline{A \to B}^{1} \end{array} [\to I]$$

Expressiveness of Propositional Logic

Famous derivation in logic:

- ▶ All men are mortal
- Socrates is a man
- ▶ Therefore, Socrates is mortal

Can we express this in propositional logic?

Another example:

- Every even natural number is not odd
- ightharpoonup x is even
- ightharpoonup x is not odd

Can we express this in propositional logic?

Beyond Propositional Logic

Propositional logic allows us to state facts

- does not allow stating properties of and relations between "objects"
- e.g., the property of numbers of being even, or odd

This brings us to a richer logic called predicate logic

- contains propositional logic
- also known as first-order logic
- Predicate logic allows us to reason about members of a (non-empty) domain

Beyond Propositional Logic

For example, the argument:

- ▶ All men are mortal
- Socrates is a man
- ▶ Therefore, Socrates is mortal

includes the following components:

- ▶ Domain = Men
- Socrates is one member of this domain
- Predicates are "being a man" and "being mortal"

Beyond Propositional Logic

Another example: consider a database with 3 tables

Student	
sid	name
0	Alice
1	Bob

Module	
mid	name
0	Math
1	OOP

Enroll		
sid	mid	
0	0	
1	1	

These 3 tables can be seen as 3 relations:

- Student(sid, name): predicate Student relates student ids and names
- ightharpoonup Module(mid, name): predicate Module relates module ids and names
- ightharpoonup Enroll(sid, mid): predicate Enroll relates student and module ids

Domain = all possible values

A formula can be seen as a query

For example: find the Students x enrolled in the Math module

 $ightharpoonup \exists y. \exists z. Student(y, x) \land Module(z, Math) \land Enroll(y, z)$

The key ingredients of predicate logic are

predicates, quantifiers, variables, functions, and constants

Famous derivation in logic:

- ▶ All men are mortal
- Socrates is a man
- ▶ Therefore, Socrates is mortal

We can write this argument as $\forall x.(p(x) \rightarrow q(x)), p(s) \vdash q(s)$

- Predicates:
 - p(x) which states that x is a man
 - q(x) which states that x is mortal
- ▶ Quantifier: The "for all" symbol ∀
- Variable: x to denote an element of the domain
- Constant: s which stands for Socrates

Domain (also called universe)

- Non-empty set of objects/entities (individuals) to reason about
- Example: set of 1st year students

Variables

- Symbols to represent (as yet unknown) objects in the domain
- Usually denoted by x, y, z, \dots
- Similar to variables from programming languages

Quantifiers

- universal quantifier
 - $\forall x. \cdots$: "for all elements x of the domain"
- existential quantifier
 - $\exists x.\cdots$: "there exists an element x of the domain such that"
- quantify over elements of the domain
- precedence: lower than the other connectives

Functions

- Build an element of the domain from elements of the domain
- ▶ Usually denoted by f, g, h, ...
- ▶ Different functions can have different numbers of arguments
- The number of arguments of a function is called its arity
- A function symbol of arity 1 can only be applied to 1 argument, A function symbol of arity 2 can only be applied to 2 arguments, etc.
- **Notation**: We sometimes write f^k when we want to indicate that the function symbol f has arity k

Constants

- Specific objects in the domain
- ▶ Functions of arity 0
- Usually denoted by a, b, c, \ldots

Let the domain be N.

Provide examples of function symbols, along with their arities

- \triangleright 0, 1, 2, ... are constant symbols (nullary function symbols)
- add: the binary addition function
- ▶ add(m, n): addition applied to the two expressions m and n
- square: the unary square function
- square(m): square applied to the expression m

Predicates

- Propositions are facts/statements, which may be true or false
- ▶ A predicate evaluates to true/false depending on its arguments
- Predicates can be seen as functions from elements of the domain to propositions
- **Example**: p(x) means "predicate p is true for variable x"
- **Example**: p(a) means "predicate p is true for constant a"

Examples of formulas in predicate logic

- $\blacktriangleright \forall x.(p(x) \land q(x))$
 - for all x it is true that p(x) and q(x)
- $(\forall x. p(x)) \to \neg \forall x. q(x)$
 - if p(x) is true for all x, then q(x) is not true for all x
- $ightharpoonup \exists x.(p(x) \lor \neg q(x))$
 - there is some x for which p(x) is true or q(x) is not true

More examples in predicate calculus

Domain is cars, and we have 3 predicate symbols

- f(x) = "x is fast"
- r(x) = x is red"
- p(x) = x is purple

How to express the following sentences in predicate logic?

- ▶ All cars are fast: $\forall x.f(x)$
- ▶ All red cars are fast: $\forall x.r(x) \rightarrow f(x)$
- ▶ Some red cars are fast: $\exists x.r(x) \land f(x)$
 - ▶ Wrong answer: $\exists x.r(x) \rightarrow f(x)$
- ▶ There are no red cars: $\neg \exists x.r(x)$
 - ▶ Alternative answer: $\forall x. \neg r(x)$
- ▶ No fast cars are purple: $\neg \exists x. f(x) \land p(x)$
 - ▶ Alternative answer: $\forall x. f(x) \rightarrow \neg p(x)$

Connections between \exists and \forall

To disprove a "for all" proposition, we need to find an x for which the predicate is false

▶ $\neg(\forall x.p(x))$ is the same as $\exists x.\neg p(x)$

To disprove a "there exists" proposition, we need to show that the predicate is false for all \boldsymbol{x}

• $\neg(\exists x.p(x))$ is the same as $\forall x.\neg p(x)$

Arity of predicates

The arity of a predicate is the number of arguments it takes

Unary predicates (arity 1) represent facts about individuals

p(x) = x is prime

Binary predicates (arity 2) represent relationships between individuals, i.e., they represent relations

- Example: m(a, b) = "a is married to b"
- Doesn't have to be symmetric!
- Example: l(a,b) = "a likes b"

What are **nullary** predicates (arity 0)?

Atomic propositions!

Notation: We sometimes write p^k when we want to indicate that the predicate symbol p has arity k

Syntax

The syntax of predicate logic is defined by the following grammar:

$$t ::= x \mid f(t, \dots, t)$$

$$P ::= p(t, \dots, t) \mid \neg P \mid P \land P \mid P \lor P \mid P \to P \mid \forall x.P \mid \exists x.P$$

where:

- x ranges over variables
- f ranges over function symbols
- $f(t_1, \ldots, t_n)$ is a well-formed term only if f has arity n
- p ranges over predicate symbols
- $p(t_1,\ldots,t_n)$ is a well-formed formula only if p has arity n

The pair of a collection of function symbols, and a collection of predicate symbols, along with their arities, is called a **signature**.

The scope of a quantifier extends as far right as possible. E.g., $P \wedge \forall x.p(x) \vee q(x)$ is read as $P \wedge \forall x.(p(x) \vee q(x))$

Examples

Consider the following domain and signature:

- ▶ Domain: N
- Functions: $0, 1, 2, \ldots$ (arity 0); + (arity 2)
- Predicates: prime, even, odd (arity 1); =, >, ≥ (arity 2)

Express the following sentences in predicate logic

- ▶ All prime numbers are either 2 or odd.
 - $\forall x. \mathtt{prime}(x) \to x = 2 \lor \mathtt{odd}(x)$
- Every even number is equal to the sum of two primes.

$$\forall x.\mathtt{even}(x) \to \exists y.\exists z.\mathtt{prime}(y) \land \mathtt{prime}(z) \land x = y + z$$

There is no number greater than all numbers.

$$\neg \exists x. \forall y. x > y$$

▶ All numbers have a number greater than them.

$$\forall x. \exists y. y > x$$

Natural Deduction rules for \forall and \exists ?

Propositional logic: Each connective has two inference rules

- One for introduction
- One for elimination

Introduction and elimination rules for \forall and \exists ?

$$\frac{?}{\forall x.P} \quad [\forall I] \qquad \qquad \frac{\forall y.P}{?} \quad [\forall E]$$

$$\frac{?}{\exists x.P} \ [\exists I] \qquad \frac{\exists y.P}{?} \ [\exists E]$$

Conclusion

What did we cover today?

Predicate logic (syntax)

Next time?

Predicate logic (Natural Deduction)