Algèbre 1 pour les informaticiens

Année scolaire 2022-2023

Table des matières

1	\mathbf{Cal}	Calcul Algébrique						
	1.1	Point sur les ensembles de nombres	2					
		1.1.1 Axiomatique	2					
	1.2	Opérations sur les fractions	3					
	1.3	Sommes	5					
		1.3.1 Quelques sommes importantes	6					
		1.3.2 Sommes téléscopiques	7					
	1.4	Puissances	7					
2	Ensembles et applications							
	2.1	Ensembles	9					
	2.2		11					
3	Logique 1							
	3.1	Opérations sur les prédicats	13					
		3.1.1 Négation						
4	Nor	nbres complexes	15					
	4.1	Vision algébrique des nombres complexes	15					
	4.2	Vision géométrique des nombres complexes						
	4.3	Géométrie des nombres complexes						
		4.3.1 Equation d'une droite						

Calcul Algébrique

1.1 Point sur les ensembles de nombres

Définition 1 (Ensemble des nombres entiers naturels).

$$\mathbb{N} = \{0; 1; ...\}$$

Définition 2 (Ensemble des nombres entiers relatifs).

$$\mathbb{Z} = \{...; -1; 0; 1; ...\}$$

Définition 3 (Ensemble des nombres rationnels).

$$\mathbb{Q} = \left\{ \frac{a}{b} \mid a \in \mathbb{Z}, b \in \mathbb{N}^* \right\}$$

Définition 4. Ensemble des nombres réels

$$\mathbb{R} =]-\infty;+\infty[$$

1.1.1 Axiomatique

Ici \mathbb{K} désigne soit \mathbb{N} , soit \mathbb{Z} , soit \mathbb{Q} , soit \mathbb{R}

Proposition 1 (Loi de composition +).

1. Associativité:

$$\forall (a,b,c) \in \mathbb{K}^3, \ a + (b+c) = (a+b) + c$$

2. Commutativité:

$$\forall (a,b) \in \mathbb{K}^2, \ a+b=b+a$$

3. Existence d'un élément neutre :

$$\forall a \in \mathbb{K}, \ a+0=a$$

4. Symétrie:

$$\forall (a, a') \in \mathbb{K}^2, \ a + a' = 0 \text{ avec } a' = -a$$

Remarque : Cette propriété ne s'applique pas dans N

Proposition 2 (Loi de composition \cdot).

1. Associativité:

$$\forall (a, b, c) \in \mathbb{K}^3, (a \cdot b) \cdot c = a \cdot (b \cdot c)$$

2. Commutativité:

$$\forall (a,b) \in \mathbb{K}^3, \ a \cdot b = b \cdot a$$

3. Existence d'un élément neutre : $\forall a \in \mathbb{K}$

$$a \cdot 1 = a$$
$$a \cdot 0 = 0$$

4. Distributivité : $\forall (a, b, c) \in \mathbb{K}^3$

$$a \cdot (b+c) = a \cdot b + a \cdot c$$

 $(a+b) \cdot c = a \cdot c + b \cdot c$

1.2 Opérations sur les fractions

Proposition 3 (Addition sur les fractions).

$$\forall (a, b, c, d) \in \mathbb{Z}^4, \ \frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$

 $D\'{e}monstration.$

 $\forall (a, b, c, d, a', b', c', d') \in \mathbb{Z}^8$

D'après la proposition on a :

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$

et:

$$\frac{a'}{b'} + \frac{c'}{d'} = \frac{a'd' + b'c'}{b'd'}$$

Montrons que:

$$\frac{ad+bc}{bd} = \frac{a'd'+b'c'}{b'd'}$$

On suppose que:

$$\frac{a}{b} = \frac{a'}{b'} \iff a'b = ab'$$

$$\frac{c}{d} = \frac{c'}{d'} \iff c'd = cd'$$

On aurait donc:

$$\frac{ad+bc}{bd} = \frac{a'd'+b'c'}{b'd'}$$

$$\iff (ad+bc)b'd' = bd(a'd'+b'c')$$

$$\iff (ad+bc)b'd' - bd(a'd'+b'c') = 0$$

$$(ad+bc)b'd' - bd(a'd'+b'c') = (adb'd'+bcb'd') - (bda'd'+bdb'c')$$

$$= adb'd'+bcb'd'-bda'd'-bdb'c'$$

$$= adb'd'-a'd'bd+bcb'd'-b'c'bd$$

$$= ab'dd'-a'bdd'+cd'bb'-c'dbb'$$

$$= (ab'-a'b)dd'+(cd'-c'd)dd'$$

D'après l'hypothèse de départ :

$$ab' = a'b \iff ab' - a'b = 0$$

 $cd' = c'd \iff cd' - c'd = 0$

Donc:

$$(\underbrace{ab' - a'b}_{0})dd' + (\underbrace{cd' - c'd}_{0})dd' = 0$$

On obtient alors:

$$(ad + bc)b'd' - bd(a'd' + b'c') = 0$$

Proposition 4 (Multiplication sur les fractions).

$$\forall (a, b, c, d) \in \mathbb{Z}^4, \ \frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$$

 $D\'{e}monstration.$

 $\forall (a, b, c, d, a', b', c', d') \in \mathbb{Z}^8$

D'après la proposition on a :

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$$

et:

$$\frac{a'}{b'} \cdot \frac{c'}{d'} = \frac{a'c'}{b'd'}$$

Montrons que:

$$\frac{ac}{bd} = \frac{a'c'}{b'd'}$$

On suppose que:

$$\frac{a}{b} = \frac{a'}{b'} \iff a'b = ab'$$

$$\frac{c}{d} = \frac{c'}{d'} \iff c'd = cd'$$

On aurait donc:

$$\frac{ac}{bd} = \frac{a'c'}{b'd'}$$

$$\iff acb'd' = bda'c'$$

$$\iff acb'd' - bda'c' = 0$$

$$acb'd' - bda'c' = (ab')(cd') - (a'b)(c'd)$$

$$= (ab')(cd') - (a'b)(cd') + (a'b)(cd') - (a'b)(c'd)$$

$$= (ab' - a'b)(cd') + (cd' - c'd)(a'b)$$

D'après l'hypothèse de départ :

$$ab' = a'b \iff ab' - a'b = 0$$

 $cd' = c'd \iff cd' - c'd = 0$

Donc:

$$(\underbrace{ab'-a'b}_{0})(cd')+(\underbrace{cd'-c'd}_{0})(a'b)=0$$

On obtient alors:

$$acb'd' - bda'c' = 0$$

1.3 Sommes

Définition 5 (Définition de la somme). $\forall m, n \in \mathbb{N}$ avec $m \leqslant n$ et $a_k \in \mathbb{R}$, $m \leqslant k \leqslant n$

$$\sum_{k=m}^{n} a_k = a_m + a_{m+1} + \dots + a_n$$

Remarque 1. L'indice de sommation est important car :

$$\sum_{k=m}^{n} a_{l} = \underbrace{a_{l} + a_{l} + \dots + a_{l}}_{n-m+1 \text{ termes}} = (n-m+1)a_{l}$$

Proposition 5 (Linéarité de la somme). $\forall m, n \in \mathbb{N}$ avec $m \leqslant n$ et $a_k, b_k \in \mathbb{R}$, $m \leqslant k \leqslant n$

$$\sum_{k=m}^{n} (a_k + b_k) = \sum_{k=m}^{n} a_k + \sum_{k=m}^{n} b_k$$

Démonstration. $\forall m, n \in \mathbb{N} \text{ avec } m \leqslant n \text{ et } a_k, b_k \in \mathbb{R}, \ m \leqslant k \leqslant n$

$$\sum_{k=m}^{n} (a_k + b_k) = (a_m + b_m) + (a_{m+1} + b_{m+1}) + \dots + (a_n + b_n)$$

$$= (a_m + a_{m+1} + \dots + a_n) + (b_m + b_{m+1} + \dots + b_n)$$

$$= \sum_{k=m}^{n} a_k + \sum_{k=m}^{n} b_k$$

Proposition 6 (Linéarité de la multiplication de la somme par une constante). $\forall m, n \in \mathbb{N}$ avec $m \leq n$ et $a_k, \lambda \in \mathbb{R}$, $m \leq k \leq n$

$$\sum_{k=m}^{n} (\lambda a_k) = \lambda \sum_{k=m}^{n} a_k$$

Démonstration. $\forall m, n \in \mathbb{N}$ avec $m \leq n$ et $a_k, \lambda \in \mathbb{R}, m \leq k \leq n$

$$\sum_{k=m}^{n} (\lambda a_k) = \lambda a_m + \lambda a_{m+1} + \dots + \lambda a_n$$
$$= \lambda (a_m + a_{m+1} + \dots + a_n)$$

1.3.1 Quelques sommes importantes

1.
$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2} \text{ avec } n \in \mathbb{N}$$

2.
$$\sum_{k=1}^{n} (a + (k-1)d) = \frac{1}{2}n(2a + (n-1)d)$$
 avec $n \in \mathbb{N}$ et $a, d \in \mathbb{R}$

3.
$$\sum_{k=0}^{n-1} ar^k = \sum_{k=1}^n ar^{k-1} = a \cdot \frac{1-r^n}{1-r}$$
 avec $n \in \mathbb{N}$ et $a, r \in \mathbb{R}$

 $D\'{e}monstration$. 1 On pose $S = \sum_{k=1}^{n} k$ avec $n \in \mathbb{N}$

On a donc:

$$S = 1 + 2 + \dots + (n - 1) + n$$
$$n + (n - 1) + \dots + 2 + 1 = S$$

En additionnant les termes du "dessus" et du "dessous" on obtient :

$$2S = n \cdot (n+1)$$
$$S = \frac{n(n+1)}{2}$$

Démonstration. 2 On pose $S = \sum_{k=1}^{n} (a + (k-1)d)$ avec $n \in \mathbb{N}, a, d \in \mathbb{R}$

$$S = \sum_{k=1}^{n} (a + (k - 1) d) = \sum_{k=1}^{n} (a - d + dk)$$

$$= \sum_{k=1}^{n} (a - d) + \sum_{k=1}^{n} dk$$

$$= \sum_{k=1}^{n} (a - d) + d \sum_{k=1}^{n} k$$

$$= n(a - d) + d \frac{n(n+1)}{2}$$

$$= n \left((a - d) + \frac{d(n+1)}{2} \right)$$

$$= \frac{1}{2} n (2 (a - d)) + d(n+1)$$

$$= \frac{1}{2} n (2a - 2d + nd + d)$$

$$= \frac{1}{2} n (2a - d + nd)$$

$$= \frac{1}{2} n (2a + (n-1)d)$$

Démonstration. 3 On pose
$$S=\sum_{k=0}^{n-1}ar^k$$
 avec $n\in\mathbb{N},\ a,r\in\mathbb{R}$
$$S=a+ar+\cdots+ar^{n-1}$$

$$rS=ar+ar^2+\cdots+ar^n$$

$$S-rS=(a+ar+\cdots+ar^{n-1})$$

$$-(ar+\cdots+ar^{n-1}+ar^n)$$

$$(1-r)S=a-ar^n$$

$$S=a\cdot\frac{1-r^n}{1-r}$$

1.3.2 Sommes téléscopiques

Proposition 7 (Somme téléscopique). $\forall m, n \in \mathbb{N}$ avec $m \leqslant n, \ a_k \in \mathbb{R}$ avec $m \leqslant k \leqslant n$

$$\sum_{k=m}^{n} (a_k - a_{k-1}) = a_n - a_{m-1}$$

Démonstration. $\forall m, n \in \mathbb{N}$ avec $m \leqslant n, a_k \in \mathbb{R}$ avec $m \leqslant k \leqslant n$

$$\sum_{k=m}^{n} (a_k + a_{k-1}) = (\underline{a_m} - a_{m-1}) + (\underline{a_{m+1}} - \underline{a_m}) + (a_{m+2} - \underline{a_{m+1}}) + (a_{m+2} - \underline{a_{m+1}}) + (a_{n-1} - \underline{a_{n-2}}) + (a_n - \underline{a_{n-1}})$$

$$\sum_{k=m}^{n} (a_k + a_{k-1}) = a_n - a_{m-1}$$

1.4 Puissances

Définition 6 (Puissance d'un réel). $\forall a \in \mathbb{R}, \ \forall n \in \mathbb{N}$

$$a^n = \underbrace{a \times a \times \dots \times a}_{n \, fois}$$

Proposition 8 (Propriétés des puissances). $\forall a \in \mathbb{R}, \ \forall m, n \in \mathbb{N}$

1.
$$a^m \times a^n = a^{m+n}$$

2.
$$(a^m)^n = a^{mn}$$

3.
$$\frac{a^n}{a^m} = a^{n-m}, a \neq 0$$

4.
$$a^{-m} = \frac{1}{a^m}, a \neq 0$$

5.
$$a^0 = 1$$

Démonstration. $1 \ \forall a \in \mathbb{R}, \ \forall n, m \in \mathbb{N}$

$$a^{m} \times a^{n} = \underbrace{(a \times a \times \dots \times a)}_{mfois} \times \underbrace{(a \times a \times \dots \times a)}_{nfois}$$
$$= \underbrace{a \times a \times \dots \times a}_{m+nfois}$$

Démonstration. 2 $\forall a \in \mathbb{R}, \ \forall n, m \in \mathbb{N}$

$$(a^m)^n = \underbrace{\underbrace{(a \times a \times \dots \times a)}_{mfois} \times \underbrace{(a \times a \times \dots \times a)}_{mfois} \times \dots \times \underbrace{(a \times a \times \dots \times a)}_{mfois}}_{mfois} = \underbrace{a \times a \times \dots \times a}_{m \times nfois}$$

Démonstration. $3 \ \forall a \in \mathbb{R}^*, \ \forall n, m \in \mathbb{N}$

$$\frac{a^n}{a^m} = \underbrace{\frac{\overbrace{a \times a \cdots \times a}^{nfois}}{\underbrace{a \times a \cdots \times a}_{mfois}}}_{nfois} = \underbrace{a \times a \times \cdots \times a}_{n-mfois}$$

Démonstration. $4 \ \forall a \in \mathbb{R}^*, \ \forall m \in \mathbb{N}$

$$a^{-m} = a^{0-m}$$

$$= \frac{a^0}{a^m}$$

$$= \frac{1}{a^m}$$

Démonstration. $5 \ \forall a \in \mathbb{R}$

$$a^1 = a$$
$$a^0 = \frac{a}{a} = 1$$

Ensembles et applications

2.1 Ensembles

Définition 7 (Définition intuitive d'un ensemble). Un ensemble E est une collection d'objets appelés éléments. Si E contient un élément x, on dit que x appartient à E, noté $x \in E$

Définition 8 (Ensemble vide). L'ensemble vide noté \emptyset est l'ensemble ne contenant aucun élément.

Définition 9 (Inclusion).

Un ensemble F est inclus dans un ensemble E $\iff \forall x \in F, x \in E$.

On note : $F \subset E$ On dit aussi que F est un sous-ensemble, une partie de E

Définition 10 (Egalité d'ensembles).

Deux ensembles E et F sont égaux $\iff E \subset F$ et $F \subset E$

Définition 11 (Singleton). Un singleton est un ensemble de ne contenant qu'un seul élément (noté entre accolades).

Définition 12 (Réunion d'ensembles). Soient E et F deux ensembles.

$$E \cup F$$
 (lu E union F) = $\{ \forall x, x \in E \text{ ou } x \in F \}$

Définition 13 (Intersection d'ensembles). Soient E et F deux ensembles.

$$E \cap F$$
 (lu E inter F) = $\{ \forall x, x \in E \text{ et } x \in F \}$

Proposition 9 (Propriétés sur les ensembles). Soient A, B, C, E des ensembles

1. Associativité:

$$A \cup (B \cup C) = (A \cup B) \cup C$$
$$A \cap (B \cap C) = (A \cap B) \cap C$$

2. Elément neutre :

$$A \cup \emptyset = A$$
$$A \cap A = A$$

3. Intersection d'un ensemble et d'une partie :

$$A \subset E \iff A \cap E = E \cap A = A$$

4. Commutativité:

$$A \cup B = B \cup A$$
$$A \cap B = B \cap A$$

5. Distributivité:

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Définition 14 (Complémentaire d'un ensemble).

$$E \backslash F = \{ \forall x, \ x \in E \text{ et } x \notin F \}$$

Remarque 2. Soient E, F des ensembles.

$$- (E \backslash F) \subset E$$
$$- (E \backslash F) \cap F = \emptyset$$

$$--E\backslash F\neq F\backslash E$$

Remarque 3. Soient E et A des ensembles.

$$A \subset E$$
$$A^C = E \backslash A$$
$$(A^C)^C = A$$

Proposition 10 (Lois de Morgan). Soient A et B des ensembles.

1.
$$(A \cup B)^C = A^C \cap B^C$$

$$2. \ (A \cap B)^C = A^C \cup B^C$$

Démonstration. 1

Soient A et B des ensembles et x un élément quelconque.

Par définition du complémentaire :

$$x \in (A \cup B)^C \iff x \notin (A \cup B)$$

 $x \notin A$ car $A \subset (A \cup B)$ ce qui impliquerait que $x \in (A \cup B)$ et donc il y aurait une contradiction. On obtient une contradiction similaire si on suppose que $x \in B$. Ainsi on a $x \in A^C$ et $x \in B^C$, donc par la définition de l'intersection on a :

$$x \in (A^C \cap B^C)$$

d'où:

$$(A \cup B)^C \subset (A^C \cap B^C)$$

Dar définition de l'intersection :

$$x \in (A^C \cap B^C) \iff x \in A^C \text{ et } x \in B^C$$

 $\iff x \notin A \text{ et } x \notin B$
 $\iff x \in (A \cup B)^C$

d'où:

$$(A^C \cap B^C) \subset (A \cup B)^C$$

Ainsi:

$$(A \cup B)^C = A^C \cap B^C$$

Démonstration. 2

Soient A et B des ensembles et x un élément quelconque.

C Par définition du complémentaire :

$$x \in (A \cap B)^C \iff x \notin (A \cap B)$$

$$\iff x \notin A \text{ et } x \notin B$$

$$\iff x \in A^C \text{ et } x \in B^C$$

$$\iff x \in (A^C \cap B^C)$$

Sachant que:

$$(A^C \cap B^C) \subset (A^C \cup B^C)$$

On a:

$$x \in (A^C \cap B^C) \implies x \in (A^C \cup B^C)$$

d'où:

$$(A \cap B)^C \subset (A^C \cup B^C)$$

Dar définition de la réunion :

$$x \in (A^C \cup B^C) \iff x \in A^C \text{ ou } x \in B^C$$

 $\iff x \notin A \text{ ou } x \notin B$
 $\iff x \notin (A \cap B)$
 $\iff x \in (A \cap B)^C$

Ainsi:

$$(A^C \cap B^C) \subset (A \cup B)^C$$

Donc:

$$(A \cap B)^C = A^C \cup B^C$$

Définition 15 (Produit cartésien). Soient E et F des ensembles

- $-E \times F = \{(x, y), \ x \in E, \ y \in F\}$
- $-E \times E = E^2$
- $E \times E \times E = E^3$

2.2 Applications

Définition 16 (Application). Soient E et F deux ensembles. $f: E \to F$ est une application si pour chaque $x \in E$, on associe un élément de F noté f(x)

Définition 17 (Injectivité). Soit $f: E \to F$, on dit que f est injective si pour chaque élément de F, il y a au plus un élément de E qui y est associé. Autrement dit :

f injective
$$\iff \{\forall (x_1, x_2) \in E^2, f(x_1) = f(x_2) \implies x_1 = x_2\}$$

Définition 18 (Surjectivité). Soit $f: E \to F$, on dit que f est surjective si pour chaque élément de F, il y a au moins un élément de F qui y est associé. Autrement dit :

f surjective
$$\iff \{ \forall y \in F, \exists x \in E, y = f(x) \}$$

Définition 19 (Bijectivité). Soit $f: E \to F$, on dit que f est bijective si elle est injective et surjective, c'est-à-dire que pour chaque élément de F, il y a exactement un élément de E qui y est associé. Autrement dit :

f bijective
$$\iff \{ \forall y \in F, \exists ! x \in E, y = f(x) \}$$

Définition 20 (Ensemble fini). Un ensemble E est un ensemble fini non-vide si et seulement si pour tout entier $n \ge 1$, il existe une application bijective de $\{1, 2, ..., n\}$ dans E.

Définition 21 (Fonction réciproque). Soient E et F deux ensembles. Supposons que $f: E \to F$ est une application bijective. On peut définir l'application

$$f^{-1}: \begin{cases} F & \to E \\ y & \mapsto x \end{cases}$$

comme étant la réciproque de f.

Définition 22 (Composition). Soient f et g deux applications telles que : $f: E \to F$ et $g: F \to G$ on a l'application $g \circ f: E \to G$ qui est définie comme étant la composée de f et de g.

Définition 23 (Image directe et image réciproque). Soient $f: E \to F$ une application, A une partie de E et B une partie de F. Nous avons :

- $f(A) = \{f(x), x \in A\}$: image directe
- $-f^{-1}(B) = \{x \in E, f(x) \in B\}$: image réciproque

Proposition 11 (Propriétés sur les images directes et réciproques). Soient $f: E \to F$ une application et A, B des parties de F.

- 1. $f^{-1}(F \backslash A) = E \backslash f^{-1}(A)$
- 2. $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$
- 3. $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$
- 4. $f(A \cup B) = f(A) \cup f(B)$
- 5. $f(A \cap B) \subset f(A) \cap f(B)$

Démonstration. $5: f(A \cap B) \subset f(A) \cap f(B)$

Soit $y \in f(A \cap B) = \{f(x), x \in A \cap B\}$, par définition : $\exists x \in A \cap B, y = f(x)$

$$x \in A \cap B \iff x \in A \land x \in B$$
$$x \in A \implies y = f(x) \subset f(A)$$
$$x \in B \implies y = f(x) \subset f(B)$$

d'où $y \in f(A) \cap f(B)$

Remarque 4.

$$f(A \cap B) \neq f(A) \cap f(B)$$

Logique

Définition 24 (Assertion). Une **assertion** est une affirmation mathématique qui peut être vraie pou fausse.

Définition 25 (Prédicat). Un **prédicat** est une "assertion" dépendant d'une ou plusieurs variables.

Exemple 1.

- "Tous les entiers sont des nombres rationnels" est une assertion.
- "L'entier n est pair" est un prédicat.
- "Le réel x est le carré d'un nombre réel" est un prédicat.

3.1 Opérations sur les prédicats

Р	Q	P et Q	P ou Q	non(P)	$P \implies Q$
V	V	V	V	F	V
V	F	F	V	F	F
F	V	F	V	V	V
F	F	F	F	V	V

3.1.1 Négation

- 1. $P \implies Q$ est équivalent à non(P) ou Q
- 2. non(P ou Q) est équivalent à non(P) et non(Q)
- 3. non(P et Q) est équivalent à non(P) ou non(Q)

Remarque 5.

1. Pour contredire "tous les éléments de E ont une propriété P", il suffit de trouver un contre-exemple

$$non(\forall x \in E, P(x)) \iff \exists x \in E, non(P(x))$$

2. Pour contredire "il existe un élément de E vérifiant une propriété P", il faut montrer que tous les éléments de E ne vérifient pas la propriété P.

$$non(\exists x \in E, P(x)) \iff \forall x \in E, non(P(x))$$

3. Une affirmation de type :

$$\exists ! x \in E, P(x) \iff \begin{cases} \exists x \in E, P(x) \\ \text{Si } P(x) \text{ et } P(y) \text{ sont vrais, alors } x = y \end{cases}$$

Remarque 6.

$$\{(a_n)\}_{n\in\mathbb{N}}\subset\mathbb{R}, \lim_{n\to+\infty}a_n=\alpha\in\mathbb{R}$$

A. Cauchy:

$$\forall \varepsilon > 0, \exists N, |a_n - \alpha| < \varepsilon, \forall n \geqslant N$$

Nombres complexes

$$(\mathbb{N},+,\times)\subset (\mathbb{Z},+,\times)\subset (\mathbb{Q},+,\times)\subset (\mathbb{R},+,\times)\subset (\mathbb{C},+,\times)$$

L'ensemble des nombres complexes est adapté à la résolution des équations algébriques.

4.1 Vision algébrique des nombres complexes

Définition 26 (Forme algébrique des nombres complexes).

$$\mathbb{C} = \{a + ib \mid (a, b) \in \mathbb{R}^2\}, \text{ avec } i = \sqrt{-1}$$

Proposition 12 (Opérations sur les nombres complexes).

1. Somme: Soient $z = a + ib \in \mathbb{C}, w = c + id \in \mathbb{C}, (a, b, c, d) \in \mathbb{R}^4$

$$z + w = a + c + i(b+d)$$

- (a) Associativité: $(z_1+z_2)+z_3=z_1+(z_2+z_3), (z_1,z_2,z_3)\in\mathbb{C}^3$
- (b) Elément neutre : $0 = 0 + i0 \implies z + 0 = 0 + z = 0, z \in \mathbb{C}$
- (c) Symétrique : $\forall z \in \mathbb{C}, \exists z', z + z' = z' + z = 0, z' = -z$

$$z = a + ib \implies -z = -a + i(-b)$$

- (d) Commutativité : z + w = w + z
- 2. Produit : Soient $z = a + ib \in \mathbb{C}, w = c + id \in \mathbb{C}, (a, b, c, d) \in \mathbb{R}^4$

$$z \cdot w = (ac - bd) + i(ad + bc)$$

(a) Associativité:

$$(z_1 \cdot z_2) \cdot z_3 = z_1 \cdot (z_2 \cdot z_3), \forall (z_1, z_2, z_3) \in \mathbb{C}^3$$

(b) Elément neutre :

$$1 = 1 + i0 \implies z \times 1 = 1 \times z = z$$
$$\forall z \in \mathbb{C} \setminus \{0\}, \exists z' \in \mathbb{C}, z \cdot z' = z' \cdot z = 1$$

(c) Commutativité:

$$z \cdot w = w \cdot z, \forall (z, w) \in \mathbb{C}^2$$

(d) Distributivité:

$$(z_1 + z_2) \cdot w = z_1 \cdot w + z_2 \cdot w$$
$$z \cdot (w_1 + w_2) = z \cdot w_1 + z \cdot w_2$$
$$\forall (z, z_1, z_2, w, w_1, w_1) \in \mathbb{C}^6$$

Démonstration. Produit

$$\begin{split} z \cdot w &= (a+ib) \cdot (c+id) \\ \text{``=''} \ a \cdot (c+id) + ib \cdot (c+id) \\ \text{``=''} \ a \cdot c + a \cdot id + ib \cdot c + ib \cdot id \\ \text{``=''} \ ac + i(ad) + i(bc) + i^2bd \\ \text{``=''} \ ac - bd + i(ad+bc) \end{split}$$

Remarque 7. $(\mathbb{C}, +, \times)$ est un corps commutatif

Définition 27 (Conjugué d'un nombre complexe). Soit z = a + ib un nombre complexe, le nombre $\overline{z} = a - ib$ est dit le conjugué de z.

Proposition 13. Soient $z = a + ib, z' = a - ib, (a, b) \in \mathbb{R}^2, z \in \mathbb{C}$ $z \cdot z' = a^2 + b^2$

Démonstration.

$$z \cdot z' = (a+ib)(a-ib)$$
$$= a^2 - iab + iab - i^2b^2$$
$$= a^2 + b^2$$

Définition 28 (Module d'un nombre complexe). Soit z = a + ib un nombre complexe, on définit son module comme étant :

$$|z| = \sqrt{a^2 + b^2}$$

Proposition 14 (Propriétés des modules). Soient z = a + ib et z = a' + ib' des nombres complexes, on a les propriétés suivantes sur les modules :

$$\begin{aligned} & - |z \cdot z'| = |z| \cdot |z'| \\ & - \left| \frac{z}{z'} \right| = \frac{|z|}{|z'|} \\ & - |z + z'| \leqslant |z| + |z'| \\ & - |z|^2 = z \cdot \overline{z} = a^2 + b^2 \\ & - |z| \geqslant 0 \\ & - |z| = 0 \iff z = 0 \\ & - |z| = |\overline{z}| = |-z| = |-\overline{z}| \end{aligned}$$

Définition 29 (Partie réelle et partie imaginaire). Soit $z = a + ib \in \mathbb{C}, (a, b) \in \mathbb{R}^2$

$$\Re(z) = Re(z) = a \text{ (Partie r\'eelle)}$$

$$\Im(z) = Im(z) = b \text{ (Partie imaginaire)}$$

Proposition 15.

$$-z + \overline{z} = (a+ib) + (a-ib) = 2a \implies \Re(z) = \frac{z+\overline{z}}{2}$$
$$-z - \overline{z} = (a+ib) - (a-ib) = 2ib \implies \Im(z) = \frac{z-\overline{z}}{2i}$$

4.2Vision géométrique des nombres complexes

Définition 30 (Argument d'un nombre complexe). Soit z un nombre complexe, l'argument de z, noté arg (z) représente l'angle entre la droite des réels et celle issue de l'origine et passant par z.

Proposition 16 (Propriétés des arguments). Soient $z, z_1, z_2 \in \mathbb{C}^3, n \in \mathbb{N}$

$$- \operatorname{arg}(z_1 \cdot z_2) = \operatorname{arg} z_1 + \operatorname{arg} z_2$$

$$--\arg z^n = n\arg z$$

$$-\operatorname{arg} \frac{z_1}{z_2} = \operatorname{arg} z_1 - \operatorname{arg} z_2$$
$$-\operatorname{arg} \frac{1}{z} = -\operatorname{arg} z$$

$$-$$
 arg $\frac{1}{z} = -$ arg z

Définition 31 (Forme trigonométrique d'un nombre complexe). Soit z un nombre complexe, on peut l'écrire sous sa forme trigonométrique ainsi :

$$z = r(\cos(\theta) + i\sin(\theta))$$

Avec:

$$-r = |z|$$

$$-\theta = \arg(z)$$

Proposition 17. Soient $z_1 = r_1(\cos(\theta_1) + i\sin(\theta_1))$ et $z_2 = r_2(\cos(\theta_2) + i\sin(\theta_2))$, deux nombres complexes. Nous avons la propriété suivante :

$$z_1 z_2 = r_1 r_2 (\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2))$$

Démonstration.

$$\begin{split} z_1 z_2 &= (r_1(\cos{(\theta_1)} + i\sin{(\theta_1)})(r_2(\cos{(\theta_2)} + i\sin{(\theta_2)})) \\ &= (r_1\cos{\theta_1} + ir_1\sin{\theta_1})(r_2\cos{\theta_2} + ir_2\sin{\theta_2}) \\ &= (r_1\cos{\theta_1} \cdot r_2\cos{\theta_2}) + (r_1\cos{\theta_1} \cdot ir_2\sin{\theta_2}) + (ir_1\sin{\theta_1} \cdot r_2\cos{\theta_2}) + (ir_1\cos{\theta_1} + ir_2\sin{\theta_2}) \\ &= (r_1\cos{\theta_1})(r_2\cos{\theta_2}) - (r_1\sin{\theta_1})(r_2\sin{\theta_2}) + i((r_1\cos{\theta_1})(r_2\sin{\theta_2}) + (r_1\sin{\theta_1})(r_2\cos{\theta_2})) \\ &= r_1r_2((\cos{\theta_1}\cos{\theta_2} - \sin{\theta_1}\sin{\theta_2}) + i(\sin{\theta_1}\cos{\theta_2} + \cos{\theta_1}\sin{\theta_2})) \\ &= r_1r_2(\cos{(\theta_1 + \theta_2)} + i\sin{(\theta_1 + \theta_2)}) \end{split}$$

Proposition 18 (Formule de Moivre).

$$(\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta)$$

Définition 32 (Forme exponentielle d'un nombre complexe). On peut écrire un nombre complexe sous une forme exponentielle:

$$z = r(\cos\theta + i\sin\theta) = re^{i\theta}$$

Proposition 19 (Identité d'Euler).

$$e^{i\pi} = -1$$

Proposition 20 (Formules d'Euler).

$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$$
 $\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$

Démonstration.

$$e^{i\theta} + e^{-i\theta} = (\cos \theta + i \sin \theta) + (\cos \theta - i \sin \theta)$$
$$= 2 \cos \theta$$
$$\frac{e^{i\theta} + e^{-i\theta}}{2} = \cos \theta$$

$$e^{i\theta} - e^{-i\theta} = (\cos \theta + i \sin \theta) - (\cos \theta - i \sin \theta)$$
$$= 2i \sin \theta$$
$$\frac{e^{i\theta} - e^{-i\theta}}{2i} = \sin \theta$$

Remarque 8 (Passer de la forme algébrique à la forme trigonométrique).

Soit $z = a + ib, (a, b) \in \mathbb{R}^2$ un nombre complexe sous sa forme algébrique, on peut passer sous la forme trigonométrique ainsi:

$$\cos \theta = \frac{a}{|z|} \qquad \qquad \sin \theta = \frac{b}{|z|}$$

Exemple 2. z = 1 + iOn a : $|z| = \sqrt{1^2 + 1^2}$

On a donc:

$$\cos \theta = \frac{1}{\sqrt{2}}$$

$$= \frac{\sqrt{2}}{2}$$

$$= \frac{\sqrt{2}}{2}$$

$$= \frac{\sqrt{2}}{2}$$

On en déduit donc que $\theta = \frac{\pi}{4}$.

Ainsi $z = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right)$

Définition 33 (Racine n-ième d'un nombre complexe). Soit $z \in \mathbb{C}$. On appelle racine n-ième du nombre complexe z tout nombre complexe $w \in \mathbb{C}$ vérifiant :

$$w^n = z$$

Un complexe non nul $z=\rho e^{i\theta}$ admet n racines n-ièmes données par :

$$Z_k = \rho^{\frac{1}{n}} e^{i\left(\frac{\theta}{n} + \frac{2k\pi}{n}\right)}$$

Définition 34 (Racine n-ième de l'unité). On appelle racine n-ième de l'unité, une racine n-ième de 1, on notera \mathbb{U}_n l'ensemble des racines n-ièmes de l'unité :

$$\mathbb{U}_n = \{ z \in \mathbb{C} | z^n = 1 \}$$

Les racines n-ièmes de l'unité sont de la forme :

$$\omega_k = e^{\frac{2ik\pi}{n}}, k \in [0, n-1]$$

4.3 Géométrie des nombres complexes

- $-z \mapsto z + a, (a \in \mathbb{C})$: translation de vecteur \vec{u} d'affixe a
- $-z \mapsto az, (a \in \mathbb{R}^*)$: homothétie de rapport a
- $-z \mapsto e^{i\theta}z, (\theta \in \mathbb{R})$: rotation d'angle θ et de centre 0
- $-z \mapsto \overline{z}$: réflexion par rapport à l'axe des réels
- $z \mapsto a + e^{i\theta}(z a)$: rotation d'angle θ de centre a $z \mapsto e^{2i\theta} \cdot \overline{z}$: réflexion par rapport à la droite formant un angle θ avec l'axe des réels.

Equation d'une droite

- L'axe des réels : $\overline{z} = z$
- Un axe formant un angle θ avec l'axe des réels : $\overline{e^{-i\theta}z} = e^{-i\theta}z$
- L'asymptote verticale de partie réelle $a: z + \overline{z} = 2a$

Exemple 3. $z \mapsto \frac{1}{z}$

On pose : $w = \frac{1}{z}$

On a donc : $z = \frac{1}{w}$

 $z + \overline{z} = 2 \implies \frac{1}{w} + \frac{\overline{1}}{\overline{w}} = 2 \implies \frac{1}{w} + \frac{1}{\overline{w}} = 2$ $w\overline{w} \left(\frac{1}{w} + \frac{1}{\overline{w}}\right) = 2w\overline{w}$ On a donc: $\overline{w} + w = 2w\overline{w} \implies 2w\overline{w} - w - \overline{w} = 0$

C'est à dire : $w\overline{w} - \frac{1}{2}w - \frac{1}{2}\overline{w} = (w - \frac{1}{2})(\overline{w} - \frac{1}{2}) - \frac{1}{4} = 0$ Ce qui équivaut à $|w - \frac{1}{2}|^2 = (\frac{1}{2})^2 \iff |w - \frac{1}{2}| = (\frac{1}{2})$

Exemple 4. $P = \{z \in \mathbb{C}, \Im(z) > 0\}$: le demi-plan de Poincaré Déterminer l'image de P par la transformation $z \mapsto \frac{z-i}{z+i}$

1. $w = \frac{z-i}{z+i}$, exprimer z en fonction de w.

$$w = \frac{z - i}{z + i}$$

$$\iff w(z+i) = z-i$$

$$\iff w(z+i)+i=z$$

$$\iff wz + wi + i = z$$

$$\iff wz - z = -wi - i$$

$$\iff z(w+1) = -wi - i$$

$$\iff z = \frac{-wi - i}{w+1}$$

$$\iff z = \frac{-wi - i}{w + 1}$$

$$\iff z = \frac{-i(w + 1)}{w + 1}$$

$$2. \ z \in P \iff \Im(z) > 0$$

$$z=x+iy,\,\overline{z}=x-iy,\, {\rm on}\,\, {\rm a}$$
 ; $z-\overline{z}=2iy$

Si on a
$$\Im(z) = y > 0 \iff \frac{1}{2i}(z - \overline{z}) > 0$$

Si on a $\Im(z) = y > 0 \iff \frac{1}{2i}(z - \overline{z}) > 0$ A la fin on obtient : $w\overline{w} < 1 \implies |w| < 1$