

2021/3/9

Levels Revealed

41

Levels revealed			
Hierarchy level	Abstraction	Supporting tools	
System	space-time behavior as instruction, timing & pin assignment specifications	flow-charts, diagrams, high-level languages	
Architecture	global organization of functional entities	HDLs, floor-planning block diagrams for clock cycle and area estimation	
Register transfer	binding data flow functional modules and microinstructions	synthesis, simulation, verification, test analysis, resource use evaluation	
Functional modules	primitive operations and control methods	libraries, module generators, sche- matic entry, test	
Logic	Boolean function of gate circuits	Schematic entry, synthesis and simulation, verification, PLA tools	
Switch	electrical properties of transistor circuits	RC extraction, timing verification, electrical analysis	
Layout	geometric constraints	layout editor/compactor, netlist extrac- tor, DRC, placement and routing	
Layout	geometric constraints		

Andy Yu-Guang Chen

Hardware Description Language

- ◆Structural description
 - ➤ Textual replacement for schematic
 - Hierarchical composition of modules from primitives
- ◆ Behavioral/functional description
 - Describe what module does, not how
 - > Synthesis generates circuit for module

2021/3/9

Andy Yu-Guang Chen

Miscellaneous HDLs

- ◆ Abel (circa 1983) developed by Data-I/O
 - Targeted to programmable logic devices
 - Not good for much more than state machines
- ◆ ISP (circa 1977) research project at CMU
 - Simulation, but no synthesis
- ◆ Verilog (circa 1985) developed by Gateway (absorbed by Cadence)
 - Similar to Pascal and C
 - Delays is only interaction with simulator
 - > Fairly efficient and easy to write
 - > IEEE standard
- ◆ VHDL (circa 1987) DoD sponsored standard
 - Similar to Ada (emphasis on re-use and maintainability)
 - Simulation semantics visible
 - Very general but verbose
 - > IEEE standard

2021/3/9

Andy Yu-Guang Chen

Register Transfer Level (RTL)

- ◆ A digital system is specified at the register transfer level (RTL) when it is specified by:
 - > The set of registers
 - > The operations performed on the data stored
 - The control that supervises the sequence of operations

2021/3/9

5

Verilog

- Supports structural and behavioral descriptions
- ◆Structural description
 - Explicit structure of the circuit
 - Ex: each logic gate instantiated and connected to others
- ◆ Behavioral description
 - ➤ Program describes input/output behavior
 - ➤ Many structural implementations could have same behavior
 - ➤ Ex: different implementation of one Boolean function (full-adder)

2021/3/9

Andy Yu-Guang Chen

Spiral SOC Design Flow

- ◆ Characteristics
 - > Parallel, concurrent development of hardware and software
 - Parallel verification and synthesis of modules
 - ➤ Floorplan, placement, and routing are included in the synthesis process
 - Modules developed only if a pre-designed hard or soft macro is not available – reusability
 - Planned iteration throughout
- ◆ The engineer are addressing all aspects of hardware and software design concurrently: functionality, timing physical design, and verification

2021/3/9

Andy Yu-Guang Chen

Waterfall vs. Spiral

- ◆ Traditional ASIC development follows so called waterfall model
 - Project transitions from phase to phase in step
 - ➤ Never returning to the activities of the previous phase
 - "Tossing" project over the wall from one team to the next
- ♦ However...
 - Complexity increases
 - Geometry shrinks
 - ➤ Time-to-market pressure increases
- ◆ In the spiral model, the design teams work on multiple aspects of the design simultaneously, incrementally improving in each area as the design converges on completion

2021/3/9

Andy Yu-Guang Chen

50

Summary

Levels revealed			
Hierarchy level	Abstraction	Supporting tools	
System	space-time behavior as instruction, timing & pin assignment specifications	flow-charts, diagrams, high-level languages	
Architecture	global organization of functional entities	HDLs, floor-planning block diagrams for clock cycle and area estimation	
Register transfer	binding data flow functional modules and microinstructions	synthesis, simulation, verification, test analysis, resource use evaluation	
Functional modules	primitive operations and control methods	libraries, module generators, sche- matic entry, test	
Logic	Boolean function of gate circuits	Schematic entry, synthesis and simu- lation, verification, PLA tools	
Switch	electrical properties of transistor circuits	RC extraction, timing verification, electrical analysis	
Layout	geometric constraints Andy Yu-Guang Chen	layout editor/compactor, netlist extrac- tor, DRC, placement and routing	
Andy 14-Guang Chell 00			

2021/3/9