AMP Sheet 7

Tips

Holomorphic \equiv Analytic \equiv Differentiable

Cauchy-Riemann Equations to test for Differentiability For a complex function defined as:

$$f(z) = u(x,y) + jv(x,y)$$

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$

1. Find the values of a and b such that f is analytic

$$f(z) = 3x - 2y^2 + j(2ax + 5by)$$

- 2. Prove that $\sin^2(z) + \cos^2(z) = 1$ holds for the complex variable z
- 3. Find the following to 4 decimal places and represent in cartesian form.

(a)
$$\sin(2\pi - j3)$$
 (b) $\cos^2(j2)$ (c) j^{-j2}

4. For the complex number z=x+jy evaluate the function f(z) with the given points:

$$f(z) = 3x^2 + 2x^2 - 2xy + y^2$$

(a)
$$-j3$$
 (b) $1+j2$ (c) $2+j\sqrt{2}$