In the first video on decision trees, we calculated impurity for blocked arteries...

		Blocked Arteries	Heart Disease
No	No	No	No
Yes	Yes	Yes	Yes
Yes	Yes	No	No
Yes	No	???	Yes
etc	etc	etc	etc

	Good Blood	Blocked Arteries	Heart Disease
No	Circulation	No	No
Yes	Yes	Yes	Yes
Yes	Yes	No	No
Yes	No	???	Yes
etc	etc	etc	etc

	Good Blood Circulation	Blocked Arteries	Heart Disease
No	No	No	No
Yes	Yes	Yes	Yes
Yes	Yes	No	No
Yes	No	???	Yes
etc	etc	etc	etc

We could pick the most common option...

	Good Blood Circulation	Blocked Arteries	Heart Disease
No	No	No	No
Yes	Yes	Yes	Yes
Yes	Yes	No	No
Yes	No	???	Yes
etc	etc	etc	etc

Alternatively, we could find another column that has the highest correlation with blocked arteries and use that as a guide.

Chest Pain	Good Blood Circulation	Blocked Arteries	Heart Disease
No	No	No	No
Yes	Yes	Yes	Yes
No	Yes	No	No
Yes	No	???	Yes
etc	etc	etc	etc

In this case, Chest Pain and Blocked Arteries are often very similar.

In this case, Chest Pain and Blocked Arteries are often very similar.

In this case, Chest Pain and Blocked Arteries are often very similar.

Now imagine we had weight data instead of Blocked Artery data...

	Good Blood Circulation	Weight	Heart Disease
5'7"	No	155	No
6'	Yes	180	Yes
5'4"	Yes	120	No
5'8"	No	???	Yes
etc	etc	etc	etc

Alternatively, we could find another column that has the highest correlation with weight...

Height	Good Blood Circulation	Weight	Heart Disease
5'7"	No	155	No
6'	Yes	180	Yes
5'4"	Yes	120	No
5'8"	No	???	Yes
etc	etc	etc	etc

In this case, height is highly correlated with weight...

Height	Good Blood Circulation	Weight	Heart Disease
5'7"	No	155	No
6'	Yes	180	Yes
5'4"	Yes	120	No
5'8"	No	???	Yes
etc	etc	etc	etc

...and do a linear regression on the two columns...

Height	Good Blood Circulation	Weight	Heart Disease
5'7"	No	155	No
6'	Yes	180	Yes
5'4"	Yes	120	No
5'8"	No	???	Yes
etc	etc	etc	etc

Height	Good Blood Circulation	Weight	Heart Disease
5'7"	No	155	No
6'	Yes	180	Yes
5'4"	Yes	120	No
5'8"	No	???	Yes
etc	etc	etc	etc

...and use the least squares line to predict the value for weight.

So, you can see that if we're missing some data, there are a lot of ways to guess at what it might be.

Height	Good Blood Circulation	Weight	Heart Disease
5'7"	No	155	No
6'	Yes	180	Yes
5'4"	Yes	120	No
5'8"	No	168	Yes
etc	etc	etc	etc

