plain text (0.95)

The generalized advantage estimator $GAE(\gamma, \lambda)$ is defined as the exponentially-weighted averagorial of these kistep estimators;

$$\hat{A}_{t}^{\text{GAE}(\gamma,\lambda)} := (1-\lambda) \left(\hat{A}_{t}^{(1)} + \lambda \hat{A}_{t}^{(2)} + \lambda^{2} \hat{A}_{t}^{(3)} + \ldots \right)
= (1-\lambda) \left(\delta_{t}^{V} + \lambda (\delta_{t}^{V} + \gamma \delta_{t+1}^{V}) + \lambda^{2} (\delta_{t}^{V} + \gamma \delta_{t+1}^{V} + \gamma^{2} \delta_{t+2}^{V}) + \ldots \right)
= (1-\lambda) \left(\delta_{t}^{V} (1+\lambda+\lambda^{2}+\ldots) + \gamma \delta_{t+1}^{V} (\lambda+\lambda^{2}+\lambda^{3}+\ldots) + \gamma^{2} \delta_{t+2}^{V} (\lambda^{2}+\lambda^{3}+\lambda^{4}+\ldots) + \ldots \right)
= (1-\lambda) \left(\delta_{t}^{V} \left(\frac{1}{1-\lambda} \right) + \gamma \delta_{t+1}^{V} \left(\frac{\lambda}{1-\lambda} \right) + \gamma^{2} \delta_{t+2}^{V} \left(\frac{\lambda^{2}}{1-\lambda} \right) + \ldots \right)
= \sum_{l=0}^{\infty} (\gamma \lambda)^{l} \delta_{t+l}^{V} \tag{16}$$

plain text (0.98)

From Equation (16), we see that the advantage estimator has a remarkably simple formula involving a discounted sum of Bellman residual terms. Section 4 discusses an interpretation of this formula as the returns in an MDP with a modified reward function. The construction we used above is closely analogous to the one used to define $TD(\lambda)$ (Sutton & Barto, 1998), however $TD(\lambda)$ is an estimator of the value function, whereas here we are estimating the advantage function.

There are two notable special cases of this formula, obtained by setting $\lambda = 0$ and $\lambda = 3$

$$\widehat{\text{GAE}}(\widehat{n}_{t}, 0) = \widehat{n}_{t} \widehat{$$

$$\frac{\text{GAE}(\gamma, 0)}{\text{GAE}(\gamma, 1)} : \hat{A}_t := \sum_{l=0}^{\infty} \gamma^l \delta_{t+l} = \sum_{l=0}^{\infty} \gamma^l r_{t+l} - V(s_t) \tag{17}$$

plain_text (0.98)

 $GAE(\gamma, 1)$ is γ -just regardless of the accuracy of V, but it has high variance due to the sum 6 terms. $\widehat{GAE}(\gamma,0)$ is γ -just for $V=V^{\pi,\gamma}$ and otherwise induces bias, but it typically has much lower variance. The generalized advantage estimator for $0 < \lambda < 1$ makes a compromise between bias and variance, controlled by parameter λ .

We've described an advantage estimator with two separate parameters γ and λ , both of which co 7 tribute to the bias-variance tradeoff when using an approximate value function. However, they serve different purposes and work best with different ranges of values. γ most importantly determines the scale of the value function $V^{\pi,\gamma}$, which does not depend on λ . Taking $\gamma < 1$ introduces bias into the policy gradient estimate, regardless of the value function's accuracy. On the other hand, $\lambda < 1$ introduces bias only when the value function is inaccurate. Empirically, we find that the best value of λ is much lower than the best value of γ , likely because λ introduces far less bias than γ for a reasonably accurate value function.

Using the generalized advantage estimator, we can construct a biased estimator of g^{γ} , the discount 8 policy gradient from Equation (6):

$$g^{\gamma} \approx \mathbb{E}\left[\sum_{t=0}^{\infty} \nabla_{\theta} \log \pi_{\theta}(a_t \mid s_t) \hat{A}_t^{\text{GAE}(\gamma, \lambda)}\right] = \mathbb{E}\left[\sum_{t=0}^{\infty} \nabla_{\theta} \log \pi_{\theta}(a_t \mid s_t) \sum_{l=0}^{\infty} (\gamma \lambda)^l \delta_{t+l}^V\right], \tag{19}$$

where equality holds when $\lambda = 10$

title (0.93)

4 INTERPRETATION AS REWARD SHAPE 11

plain_text (0.98)

In this section, we discuss how one can interpret λ as an extra discount factor applied after 112 forming a reward shaping transformation on the MDP. We also introduce the notion of a response function to help understand the bias introduced by γ and λ .

Reward shaping (Ng et al., 1999) refers to the following transformation of the reward function 13 an MDP: let $\Phi: \mathcal{S} \to \mathbb{R}$ be an arbitrary scalar-valued function on state space, and define the transformed reward function \tilde{r} by

$$\tilde{r}(s, a, s') = r(s, a, s') + \gamma \Phi(s') - \Phi \boxed{14}$$
(20)