

# Aircraft Design

Project 1: Business Jet

The complete step-by-step medium business jet project

Exercise 2021

-This is a practical exercise designed specifically for the Aircraft Design course-



## **Contents**

| Con   | tents                                              | 2  |
|-------|----------------------------------------------------|----|
| 1.    | Preparation for statistical analysis               | 4  |
| 2.    | Types of flight mission                            | 4  |
| 3.    | Determination of the main aircraft parameters      | 5  |
| 3.1.  | Initial estimations of the aircraft mass           | 5  |
| 3.1.1 | 1. Estimating the mass of the empty aircraft.      | 5  |
| 3.1.2 | 2. Estimating the fuel mass                        | 6  |
| 3.1.3 | 3. Estimating the mass of the cabin crew           | 6  |
| 3.1.4 | 4. Estimating the mass of the aircraft loading     | 7  |
| 3.2.  | Determination of the wing loading                  | 7  |
| 3.3.  | Aircraft traction and qualities                    | 8  |
| 4.    | Aerodynamic scheme                                 | 9  |
| 4.1.  | Choosing the aerodynamic scheme                    | 10 |
| 4.2.  | Wing airfoil and geometry                          | 10 |
| 4.3.  | Horizontal surface geometry                        | 12 |
| 4.4.  | Vertical surface geometry                          | 13 |
| 4.5.  | Elevator and rudder design                         | 13 |
| 5.    | Cabin design                                       | 14 |
| 5.1.  | Estimating the fuselage width                      | 14 |
| 5.2.  | Estimating cabin length                            | 15 |
| 5.3.  | Estimating cabin height                            | 15 |
| 5.4.  | Estimating the body length                         | 16 |
| 6.    | Re-estimation of aircraft masses                   | 17 |
| 6.1.  | Estimating the masses of aircraft construction     | 17 |
| 6.1.1 | 1. Estimating final relative wing mass             | 17 |
| 6.1.2 | 2. Estimating final relative fuselage mass         | 17 |
| 6.1.3 | 3. Estimating the final control surfaces mass      | 18 |
| 6.1.4 | 4. Estimating the final landing gear mass          | 18 |
| 6.2.  | Powerplant, fuel and equipment final relative mass | 18 |
| 7.    | Aircraft mass balance characteristics              | 20 |



## **Project 1:**

Design a civil transport aircraft for business needs. The type of the aircraft is airplane also called Business Jet. The airplane shall be allowed increased cabin space for its passengers. The only class available shall be business class standard.

The aircraft should meet the following requirements:

- Be able to transport at least 12 passengers excluding the cabin crew.
- Hs maximum wing span of 20 meters.
- Be transonic aircraft to meet the noise standards. Its cruise speed should not exceed 980 km/h.
- Maximum flight level should not exceed F500 or 15000 meters.
- The aircraft shall allow overflying a range of at least 3000 kilometres with a single fuel tank.
- The engines shall allow take-off distance of no more than 2000 meters.



## 1. Preparation for statistical analysis

| Nº | Parameters and<br>Characteristics                  | Dassault<br>Falcon<br>900<br>(France) | Learjet<br>45<br>(USA &<br>Canada) | Embraer<br>Legacy<br>500<br>(Brasil) | Business<br>Fly        |
|----|----------------------------------------------------|---------------------------------------|------------------------------------|--------------------------------------|------------------------|
|    | Mass                                               |                                       |                                    |                                      |                        |
| 1  | Take Off Mass, kg                                  | 20640                                 | 9750                               | 17400                                | 13500                  |
| 2  | Number of Passengers                               | 19                                    | 9                                  | 12                                   | 12                     |
| 3  | Mass of the Empty Aircraft, kg (Approximate mass*) | 10255                                 | 5830                               | 12750                                | 7900                   |
| 4  | Fuel Mass, kg (Approximate mass*)                  | 9482                                  | 2610                               | 5963                                 | 4000                   |
| 5  | Wing loading, daN/m2                               | -                                     | -                                  | 430                                  | 380                    |
|    | Geometry                                           |                                       |                                    |                                      |                        |
| 6  | Wingspan, m                                        | 20                                    | 14.58                              | 20.25                                | 17                     |
| 7  | Wing Area, m2                                      | 50                                    | 28.95                              | 40.1                                 | 34                     |
| 8  | Aspect Ratio                                       | 8                                     | 7.34                               | 10.22                                | 8.5                    |
| 9  | Aircraft Length, m                                 | 20                                    | 17.68                              | 20.47                                | 17                     |
| 10 | Fuselage Diameter, m                               | 2.5                                   | 1.8                                | 1.8                                  | 2.15                   |
|    | Flying Capabilities                                |                                       |                                    |                                      |                        |
| 11 | Minimum Speed, km/h                                | 158                                   |                                    | 193                                  | 170                    |
| 12 | Maximum Speed, km/h                                | 950                                   | 804                                | 863                                  | 800                    |
| 13 | Range, km                                          | 7400                                  | 3519                               | 5788                                 | 3000                   |
| 14 | Max Flight Height, km                              | -                                     | 13                                 | 13.7                                 | 13                     |
| 15 | Take Off Distance, m                               | 1560                                  | 1536                               | 1245                                 | 1510                   |
| 16 | Landing Distance, m                                | 715                                   | 811                                | 647                                  | 750                    |
|    | Powerplant                                         |                                       |                                    |                                      |                        |
| 17 | Engine Make                                        | Honeywell<br>TFE731-<br>60            | Honeywell<br>TFE731-<br>20         | Honeywell<br>HTF7500E                | Honeywell<br>TFE731-60 |
| 18 | Number of Engines                                  | 3                                     | 2                                  | 2                                    | 2                      |
| 19 | Thrust, daN                                        | 6672                                  | 3114                               | 6260                                 | 4448                   |
| 20 | Take Off Relative Thrust,<br>kW/daN                | 0.32                                  | 0.32                               | 0.36                                 | 0.34                   |
| 21 | Specific Fuel Consumption, kg/kNh                  | 397                                   |                                    |                                      |                        |

## 2. Types of flight mission

The aircraft will be designed for civil peruses only. The flight segments are: Take-off, climb, cruise flight, descent, land.





## 3. Determination of the main aircraft parameters

#### 3.1. Initial estimations of the aircraft mass

The take-off mass is the mass with which the aircraft starts its mission. This is not necessary the maximum possible pass for the aircraft. Some aircrafts include military equipment and could be overloaded, this reduces their manoeuvrability. At this stage you shouldn't aim for accuracy, but to include the main components of the mass:

$$m0 = m_{cw} + m_{ld} + m_{fl} + m_{ey} \tag{1}$$

- Crew mass- m<sub>cw</sub>
- Loading mass (passengers, luggage, armoury, ect) mld
- Fuel mass m<sub>fl</sub>
- Empty mass mey
- Take off mass  $-m_0$

| No | Variable         | Paraeter | Value    |
|----|------------------|----------|----------|
| 1  | Crew mass        | mcw      | 270      |
| 2  | Loading<br>mass  | mld      | 1320     |
| 3  | Fuel mass        | mfl      | 4246.004 |
| 3  | Empty<br>mass    | Mey      | 7663.996 |
| 4  | Take off<br>mass | mo       | 13500    |
| 5  | Relative ey      | m*ey     | 0.567703 |

#### 3.1.1. Estimating the mass of the empty aircraft.

At that stage the empty mass can be calculated based on the statistical analysis. It is usually from 0.3 to 0.7 of the whole mass, depending on the aircraft size and mission. The Figure 2 shows the relative empty mass depending on the type and the take off mass of the aircraft. Table 3 shows summarized statistical analysis to determine  $m^*_{ey}$ .



$$\mathbf{m}_{\text{ev}}^* = \mathbf{A}(2.2\mathbf{m}_0)^{\text{C}}\mathbf{K}_{\text{p}} = 7664 \text{ kg}$$
 (4)

- A, C Coefficients;
- $m_0$  Take-off mass (from the statistics), kg;
- K<sub>p</sub> Coefficient of the propeller type.

#### **3.1.2.** Estimating the fuel mass

The fuel needed and basically its mass can be estimated from all segments of the flight that require significant fuel consumption: take-off, climbing, cruise flight, descending, landing, manoeuvring. Once you determine the segments of your flight by choosing its mission, the sum of the fuel used in each segment will give you the final fuel volume and mass for the mission.

If you the number of segments is denoted with i then the fuel in the end of this segment will be  $m_i$ . So the difference between the starting point and the final point is due to the fuel burn. To determine the change in the mass due to fuel burn depending on the number of segments, you can use the following equation:

$$\mathbf{m_{fl}}^* = \mathbf{m_{fl}}/\mathbf{m_0} = 1.06(1 - (\mathbf{m_2}/\mathbf{m_1})(\mathbf{m_3}/\mathbf{m_2}) \dots \mathbf{m_n}/\mathbf{m_{n-1}})$$
 (5)

| No | Regio, mi | Take-<br>off | Climb      | Cruise     | Reserve  |
|----|-----------|--------------|------------|------------|----------|
| 1  | mi        | 13095        | 12477.9581 | 7902.92519 | 7665.837 |
| 2  | mi-1      | 13500        | 13095      | 12477.9581 | 7902.925 |
| 3  | mi/mi-1   | 0.97         | 0.95287958 | 0.63335083 | 0.97     |

| dH          | 10   |
|-------------|------|
| L           | 3000 |
| С           | 1.9  |
| Vcr         | 780  |
| Kcr         | 16   |
| <b>n</b> cr | 3    |

#### 3.1.3. Estimating the mass of the cabin crew

The mass of the cabin crew is usually approximated taking for each bomber of the cabin crew a weight of 90kg.

$$m_{cr} = 90n_{cr} = 270 \text{ kg}$$
 (9)

, where  $n_{cr}$  is the number of the cabin crew members.



#### 3.1.4. Estimating the mass of the aircraft loading

The mass of the aircraft load includes the passengers and their luggage.

$$m_{ld} = 90n_{pas} + 180V_l = 1320 \text{ kg}$$
 (10)

, where  $n_{\text{pas}}$  – number of passengers

 $V_1$  – volume of the baggage aera,  $m^3$ .

### 3.2. Determination of the wing loading

The wing loading p = G/S is determined from one of three estimation cases: from the landing conditions, from the conditions for maintaining the cruise flight and from the maneuvering conditions. From the three cases you have to choose the minimum wing loading.

• Landing conditions

$$P_0^{I} = (c_{\text{land}_{\text{vmax}}} (V_{\text{min}} * 1.3)^2) / (30, 2(1 - m_{\text{fl,hf}})) = 588, \, daN/m^2$$
(11)

where:  $c^{land}_{max} = 2.5...3.2$  -max lift coefficient when landing for effective wing mechanization

 $V_{\text{min}}$  – landing velocity

 $m^*_{fl.hf}$  – relative horizontal flight fuel mass (  $m^*_{fl.hf} = 1 - m_i/m_{i-1}$ )

• Cruise flight conditions

$$P_0^{II} = (c_{vcr} \rho_{cr} V_{cr}^2) / (20(1 - 0.6 m_{fl.hf}^*) = 491.8, daN/m^2$$
(12)

where:  $c_{ycr}$  - lift coefficient for cruise flight

 $\rho_{cr}$  - air density at flight altitude

V<sub>cr</sub> – cruise flight velocity

• Manoeuvring conditions

$$P^{III}_{0} = 0.1(c_{vman}/n_{vmax})q_{max} = 965, daN/m^{2}$$
(13)

where: c<sub>yman</sub> - lift coefficient for manoeuvring

 $\rho_{max}-maximal \ structure \ loading \ coefficient$ 

q<sub>max</sub> – dynamic pressure, Pa

Once the estimation of the above coefficients is completed, you can take the once having the minimum value.



| No | Varible                      | Coefficient   | Value    |
|----|------------------------------|---------------|----------|
| 1  | Max landing lift coefficient | Cy max land   | 3        |
| 2  | Cruise lift coefficient      | <b>C</b> y cr | 0.53     |
| 3  | Maneuvering lift coefficient | Cy man        | 2        |
| 4  | Cruise velocity              | Vcr           | 216.1    |
| 5  | Minimum Velocity             | Vmin          | 47.1     |
| 6  | Relative fuel mass           | m*fl          | 0.366649 |
| 7  | Air density at 10km          | ρ             | 0.31     |
| 8  | Overloading coefficient      | Nmax          | 1.5      |
| 9  | Dynamic pressure             | <b>q</b> max  | 7238.378 |
| 10 | Landing Overload             | P1            | 588.0286 |
| 10 | Cruise Overload              | P2            | 491.8319 |
| 11 | Maneuvering Overload         | P3            | 965.117  |

## 3.3. Aircraft traction and qualities

There are certain factors that ensure the aircraft has enough thrust and lift to overtake climb, descend, flying with one engine out of order and so on. Here you will consider again three cases: from the conditions for climbing with failed engine, from the condition for a cruise flight and from the condition for take off distance condition.

• climbing with one failed engine

$$P^{I_0} = k_v(n_{eg}/(n_{eg}-1)(1/K_{cb}+tg\theta) = 0.351,$$
(14)

where:  $k_v = 1.5$ - coefficient

K<sub>cb</sub> – aerodynamic quality when climbing

 $n_{\text{eg}}-number\ of\ engines$ 

 $tg\theta =$  climbing gradient

horizontal flight

$$P^{II}_0 = 1/(K_{cr} \delta^{0.85} \phi) = 0.211, \tag{15}$$

where:  $\varphi = 0.8$  – throttling coefficient

 $\delta$  – relative density at cruise altitude

take-off condition

$$P^{III}_{0} = 1.05[520/(C_{ymaxto}I_{to}) + 0.5(3f_{to} + 1/K_{to}) = 0.232,$$
(16)



where: C<sub>ymaxto</sub>=1,7...2.3 – Lift coefficient for take-off

f<sub>to</sub> – friction coefficient of the landing gear (*Table 4*)

| No | Airport Surface | fto  |
|----|-----------------|------|
| 1  | Snow and ice    | 0.02 |
| 2  | Dry concrete    | 0.02 |
| 3  | Wet concrete    | 0.03 |
| 4  | Solid primer    | 0.07 |
| 5  | Wet grass       | 0.06 |
| 6  | Grass           | 0.08 |

Table 1: Friction coefficient values

Once the estimation of the above coefficients is completed, you can take the once having the maximum value.

| No | Varible                          | Coefficient | Value    |
|----|----------------------------------|-------------|----------|
| 1  | Climb coefficient                | kv          | 1.5      |
| 2  | Aerodynamic quality for climbing | Kcb         | 10       |
| 3  | Number of engines                | neg         | 2        |
| 4  | Climbing gradient                | tgθ         | 0.017    |
| 5  | Cruise flight density            | <b>ρ</b> cr | 0.31     |
| 6  | Take off lift                    | Cymaxto     | 2.3      |
| 7  | Rolling friction coefficient     | fto         | 0.02     |
| 8  | Take-off distance                | Ito         | 1510     |
| 9  | Aerodynamic quality for take-off | Kto         | 12       |
| 10 | Engine Failure                   | P*1         | 0.351    |
| 11 | Cruise Condition                 | P*2         | 0.021141 |
| 12 | Take off Condition               | P*3         | 0.232463 |

## 4. Aerodynamic scheme

The term "Aerodynamic Scheme" describes some scheme that includes all surfaces on the aircraft, regardless whether they are control surfaces or static. This scheme determines the shape, position and dimensions of those surfaces. A typical aircraft scheme consists of main surfaces, such as wing, that provide most of the total lift and supporting surfaces such as horizontal and vertical surfaces that help for the stabilization and control of the aircraft.

Depending the position of the supporting surfaces to the wing, we can divide the aerodynamic schemes to the following:

- Standard Scheme: Horizontal surfaces are positioned behind the wing
- Foreplane: Horizontal surfaces are positioned in from of the wing



- Flying wing: There is only a single surface

## 4.1. Choosing the aerodynamic scheme

When designing a new aircraft there has always been the problem for designing its general scheme. The general scheme is something more than the typical aerodynamic scheme and depends on the applications for which the machine will be used for. Once we know the tasks that the aircraft will perform, we can determine the components of the general aircraft scheme as:

- Positioning the crew and the load
- Choosing the take off and landing mechanization and the aerodynamic scheme
- Choosing the powerplant scheme, such as number, type of the engines and their position on the aircraft.
- Aircraft sections and armoury

We can organize all elements from the general scheme in a table for simplicity. We can use the values in that table later on, when determining the dimensions of each component in the aerodynamic scheme. The table is called features matrix and is provided on *Table 5*.

| Aerodynamic scheme | standard    |
|--------------------|-------------|
| Wing position      | low wing    |
| Wing shape         | trapezoidal |
| Wing sweep         | standard    |
| Control surfaces   | T-shaped    |
| Cabin shape        | circular    |
| Lending gear       | front wheel |
| Engine type        | turbofan    |
| Number of engines  | 2           |
| Engines position   | tail        |

Table 2: Features Matrix

## 4.2. Wing airfoil and geometry

Based on the loading and traction coefficients, we can estimate the wing area (S) and re-estimate the required thrust produced by the engines:

$$S = \frac{0.1m_0^I g}{P_0}$$

$$T_0 = 0.1 P_0^* m_o^l g$$

With the date from the previous section, we can find the wing span (1):

• S – wing area, m<sup>2</sup>



•  $\lambda$  - aspect ratio (from the statistics and the scheme)

$$l = \sqrt{S\lambda} \tag{17}$$

Then based on the statistical analysis we can now choose the inner and outer chords of the whing and find the taper ratio.

$$\eta = \frac{b_0}{b_r},\tag{18}$$

where  $\eta$  - the taper ration,  $b_0-inner\ chord,\, b_r-outer\ chord.$ 

We can now estimate the geometric and the aerodynamic chords of the wing:

$$b_m = \frac{b_0 b_r}{2} = \frac{s}{l}$$
, where  $b_m$  is the median geometric chord (19)

$$b_A = \frac{2}{3} b_0 \frac{1+\eta+\eta^2}{\eta(1+\eta)}$$
, where  $b_A$  is the median aerodynamic chord (20)

Once we choose the front wing sweep  $X_{fe}$ , we can now estimate:

$$X_{re} = arctg \left[ \frac{2}{l} (b_r - b_0 + \frac{l}{2} t g X_{fe}) \right], \text{ rear sweep}$$
 (21)

$$X_{0.25} = arctg \left[ \frac{2}{l} \left( \frac{b_k - b_0}{4} + \frac{l}{2} tg X_{fe} \right] \right]$$
, crank sweep at 0.25 from the inner chord (22)

We can finally choose dihedral angle  $(\Psi)$ 

| No | Variable                 | Coefficient       | Value      |
|----|--------------------------|-------------------|------------|
| 1  | Wing area                | S, m <sup>2</sup> | 29.9187617 |
| 2  | Take off thrust          | To, daN           | 5164.965   |
| 3  | Aspect ratio             | λ                 | 8.5        |
| 4  | Wing span                | L, m              | 15.9470836 |
| 5  | Taper Ratio              | η                 | 3          |
| 6  | Inner chord              | <b>b</b> 0,m      | 2.81419122 |
| 7  | Outer chord              | Br, m             | 0.93806374 |
| 8  | Median geometric chord   | Bm, m             | 1.87612748 |
| 9  | Median aerodynamic chord | <b>b</b> A, m     | 2.03247143 |



| 10 | Sweep angle             | Xfe, deg           | 10 |
|----|-------------------------|--------------------|----|
| 11 | Rear sweep              | Xre,deg            | 21 |
| 12 | Crank sweep             | <b>X</b> 0.25, deg | 28 |
| 13 | Dihedral angle          | Ψ, deg             | 5  |
|    |                         | Honeywell F124-GA- |    |
|    | New Engine Make         | 100                |    |
|    |                         | 5220daN / 0.36     |    |
|    | Thrust/ Relative Thrust | kg/daN             |    |

## 4.3. Horizontal surface geometry

The following parameters related to the geometry of the horizontal pane have to be chosen:

- $A_{hs} = [0.8...1.1] static moment$
- $L_{hs}/b_A = [2.0...3.0]$ ,  $L_{hs}$  distance from the center of gravity to the aerodynamic center of the horizontal surface
- $\lambda_{hs} = [3.4...4.5] HS$  aspect ratio
- $\eta_{hs} = [2.0...3.5] HS$  taper ratio
- $X_{hs}$  HS sweep angle
- $\Psi_{hs}$  HS dihedral angle

We can find A<sub>hs</sub> with the following equation:

$$A_{hs} = \frac{S_{hs}L_{hs}}{Sb_A} \tag{23}$$

The rest of the parameters for the horizontal surface ( $L_{hs}$ ,  $S_{hs}$ ,  $l_{hs}$ ,  $b_{0hs}$ ,  $b_{rhs}$ ,  $b_{Ahs}$ ,  $X_{rehs}$ ) are estimated with the equations from the wing geometry section (17) – (22).

| No | Variable                                                  | Coefficient  | Value |
|----|-----------------------------------------------------------|--------------|-------|
| 1  | Static moment                                             | Ahs          | 0.91  |
| 2  | Distance from center of gravity to the aerodynamic center | Lhs/bAhs     | 2.2   |
| 3  | HS span                                                   | lhs          | 7.21  |
| 4  | HS aspect ratio                                           | λhs          | 4     |
| 5  | HS taper ratio                                            | ηhs          | 3     |
| 6  | HS sweep angle                                            | Xhs          | 35.1  |
| 7  | HS dihedral angle                                         | ψhs          | 0     |
| 8  | HS area                                                   | Shs          | 13    |
| 9  | Inner chord                                               | <b>b</b> 0hs | 2.70  |
| 10 | Outer chord                                               | <b>b</b> rhs | 0.90  |
| 11 | Median aerodynamic chord                                  | <b>b</b> Ahs | 1.95  |
| 12 | Rear sweep                                                | Xrehs        | 6     |



## 4.4. Vertical surface geometry

The following parameters related to the geometry of the vertical pane have to be chosen:

- $A_{vs} = [0.05...0.08] static moment$
- $L_{vs}/b_A = [2.0...3.0]$ ,  $L_{vs}$  distance from the center of gravity to the aerodynamic center of the vertical surface
- $\lambda_{vs} = [0.8...1.2] VS$  aspect ratio
- $\eta_{vs} = [2.0...3.5] VS$  taper ratio
- $X_{vs} VS$  sweep angle

We can find  $A_{vs}$  with the following equation:

$$A_{vs} = \frac{S_{vs}L_{vs}}{sl} \tag{24}$$

The rest of the parameters for the vertical surface ( $L_{vs}$ ,  $S_{vs}$ ,  $l_{vs}$ ,  $b_{0vs}$ ,  $b_{kvs}$ ,  $b_{avs}$ ,  $X_{revs}$ ) are estimated with the equations from the wing geometry section (17) – (22).

| No | Variable                                                  | Coefficient  | Value |
|----|-----------------------------------------------------------|--------------|-------|
| 1  | Static moment                                             | Avs          | 0.075 |
| 2  | Distance from center of gravity to the aerodynamic center | Lvs/bA       | 2     |
| 3  | VS span                                                   | lvs          | 2.549 |
| 4  | VS aspect ratio                                           | λvs          | 1     |
| 5  | VS taper ratio                                            | ηvs          | 3     |
| 6  | VS sweep angle                                            | Xvs          | 39    |
| 7  | VS dihedral angle                                         | ψ            | 0     |
| 8  | VS area                                                   | Svs          | 6.5   |
| 9  | Inner chord                                               | <b>b</b> 0vs | 3.824 |
| 10 | Outer chord                                               | brvs         | 1.274 |
| 11 | Median aerodynamyc chord                                  | bAvs         | 2.761 |
| 12 | Rear sweep                                                | Xrevs        | 45    |

## 4.5. Elevator and rudder design

The parameters typically used for the design of the control surfaces are:

- Elevator area  $S_{el}$ ,  $m^2 S_{el}/S_{hs} = [0.3...0.4]$
- Rudder area  $S_{rd}$ ,  $m^2 S_{rd}/S_{vs} = [0.35..0.45]$
- Aileron area  $S_{ai}$ ,  $m^2 S_{ai}/S = [0.05...0.07]$
- Aileron span  $l_{ai}$ ,  $m l_{ai}/l = [0.3...0.4]$
- Aileron chord  $b_{ai}$ , m  $b_{ai}/b = [0.20..0.25]$



| No | Variable      | Coefficient | Value |
|----|---------------|-------------|-------|
| 1  | Elevator Area | Sel         | 4.55  |
| 2  | Rudder Area   | Srd         | 2.6   |
| 3  | Aileron area  | Sai         | 1.79  |
| 4  | Aileron span  | lai         | 5.58  |
| 5  | Aileron chord | bai         | 0.467 |

## 5. Cabin design

## 5.1. Estimating the fuselage width

The width of the fuselage can be estimated based on the design of the passenger cabin. In this case the width of the body shall be about 635..650 mm above the cabin floor and can be estimated using the following equation:

$$B_m = B_2 n_2 + B_3 n_3 + c_n n_n + 2\delta_1 + 2\delta_2, \tag{25}$$

where:

 $B_2$  and  $n_2$ ,  $B_3$  and  $n_3$  – width and quantity of the double and triple blocks of seats respectively. They are shown on *Figure 3*.

 $c_n$  and  $n_n$  – width of the cabin corridors ( $c_n > 509mm$ )

 $\delta_1 = 30...50 \text{mm} - \text{distance}$  between the seats and the inner wall of the cabin

 $\delta_2 = 120...130 mm - cabin$  wall thickness



Figure 1: Transport aircraft seat dimensions

We can use *Table 6* to determine each of the cabin dimensions.

| Class | Forearm<br>distance B, mm | Forearm        | Seat length L, | Seat<br>height, h | Seat and backrest | Backrest shift angle, deg | Seat bloo | ck width |
|-------|---------------------------|----------------|----------------|-------------------|-------------------|---------------------------|-----------|----------|
|       | uistance b, iiiiii        | Size D, IIIIII | 111111         | neight, n         | height H, mm      |                           | B2        | В3       |
| I     | 500                       | 70             | 500            | 445               | 1140              | 45                        | 1260      | -        |
| П     | 440                       | 50             | 470            | 445               | 1120              | 36                        | 1030      | 1520     |

Figure 2: Transport aircraft cabin dimensions

## 5.2. Estimating cabin length

The cabin length can be determined with the following equation:

$$L_c = l_1 + (i_r - 1)t + l_2, (26)$$

where:

 $l_1$  – minimum distance between the front compartment to the front row (*Figure 4*). I<sup>st</sup> class = 630mm, II<sup>nd</sup> class = 615mm, III<sup>rd</sup> class = 585mm;

 $l_2$  – minimum distance between the rear compartment to the back row (*Figure 4*). I<sup>st</sup> class = 1000mm, II<sup>nd</sup> class = 800mm, III<sup>rd</sup> class = 750mm;

 $i_r$  – number of rows;

t – distance between two seat blocks.  $I^{st}$  class = 980...1080mm,  $II^{nd}$  class = 840...870mm,  $III^{rd}$  class = 780...810mm;

## 5.3. Estimating cabin height

The height of the cabin  $H_{cab}$  shall be between 1900mm and 2500mm. The ratio between the cabin width and cabin length is represented by the coefficient  $k_{\phi} = 0.2...0.5$ .

The relative volume in the cabin for each passenger shall be 0.84...1.2 m<sub>3</sub>/passenger





Figure 3: Scheme for mounting the passenger seats in the aircraft

## 5.4. Estimating the body length

The length of the aircraft body is estimated by choosing the extensions of the front and rear compartments of the body with the equation:

$$L_m = L_c + \lambda_f D_m + \lambda_b D_m, \tag{27}$$

where:

 $\lambda_f = 1.2...2$  and  $\lambda_b = 2...3$  – extensions of the front and rear compartment respectively.

 $D_{\mu}$  – diameter of the median section estimated with  $D_{\mu} = \sqrt{4S_{\mu}/\pi}$ , where  $S_{\mu}$  is section area.

| No | Variable                          |   | Coefficient           | Value,<br>mm |
|----|-----------------------------------|---|-----------------------|--------------|
|    | Fuselage Width                    |   | <b>B</b> m            | 2070         |
| 1  | Width of the double seat blocks   |   | <b>B</b> <sub>2</sub> | 1260         |
| 2  | N₀ of double seat blocks per row  |   | n <sub>2</sub>        | 1            |
| 3  | Width of the cabin corridors      |   | <b>C</b> n            | 510          |
| 4  | Number of corridors               |   | nn                    | 1            |
| 5  | Seat to inner wall distance       |   | δ1                    | 30           |
| 6  | Cabin wall thickness              |   | δ2                    | 120          |
|    | Cabin Length                      |   | Lc                    | 6580         |
| 1  | Front compartment to row distance | 9 | l <sub>1</sub>        | 630          |
| 2  | Back compartment to row distance  |   | l <sub>2</sub>        | 1000         |
| 3  | number of rows                    |   | İr                    | 6            |
| 4  | Seat blocks distance              |   | t                     | 990          |
|    | Cabin Height                      |   | Hcab                  | 2100         |
|    | Body Length                       |   | Lm                    | 14980        |
| 1  | Front extension                   |   | λf                    | 1.5          |



| 2 | Rear extension          | λь        | 2.5  |
|---|-------------------------|-----------|------|
| 3 | Median section diameter | $D_{\mu}$ | 2100 |

### 6. Re-estimation of aircraft masses

### 6.1. Estimating the masses of aircraft construction

#### **6.1.1.** Estimating final relative wing mass

$$m_w^* = 1,15.10^{-4}.K_{mec}K_{con}K_{mat}\varphi \frac{\lambda n_e \sqrt{S}}{\sqrt{\theta c_0} cos^{1.5} X} \frac{\eta + 4}{\eta + 1} \left(1 - \frac{\mu - 1}{\eta + 3}\right), \tag{29}$$

where:

- $K_{con}$  Coefficient related to the type of construction.  $K_{con}$  = 0.9 for wings with honey comb structure.  $K_{con}$  = 0.95 for riveted + glued wing.  $K_{con}$  = 1 for riveted wing.
- $K_{mec}$  Mechanization coefficient.  $K_{mec} = 0.9$  for wing without mechanization.  $K_{mec} = 1$  for wing with flaps.  $K_{mec} = 1.15$  for full mechanization.
- $K_{mat}$  Wing material coefficient.  $K_{mat} = 1$  for material D16,  $K_{mat} = 1.2$  for material AMG6.
- $\Theta = 0.9$  coefficient determining the construction strength
- λ Aspect ration
- η Taper ration
- c<sub>0</sub> Core wing thickness
- c<sub>t</sub> Tip wing thickness
- $\mu$ =  $c_0/c_k$  thickness ratio
- $\phi = 0.68$  Unloading coefficient
- $n_e = 5.5...6 Overloading$

#### **6.1.2.** Estimating final relative fuselage mass

$$m_m^* = 1,14K_{ep}(1 - 0,4p_{cab}^e)l_m^{1,5}m_{0,}^{-0.75},$$
(30)

where:



- $K_{ep} = 1.14$  for engines mounted inside the fuselage.  $K_{ep} = 1$  for engines mounted outside the fuselage.
- l<sub>m</sub> body length, m
- $m_0$  take off mass, kg
- p<sub>cab</sub> cabin pressure, atm

#### 6.1.3. Estimating the final control surfaces mass

$$m_{tail}^* = \frac{K_v K_m}{m_0} (4.4 + 0.8 * 10^{-3} m_0) S_{tail},$$
 (31)

where:

- $K_v$  velocity coefficient,  $Kv = 0.643 + 1,02.10^{-3}V_{cr}$
- $K_m 1$  for low manoeuvrability aircrafts,  $K_m = 1.5$  for hight manoeuvrability aircrafts
- V<sub>cr</sub> cruse speed, km/h
- $S_{tail} = S_{hs} + S_{vs}$ ,  $m^2$

#### 6.1.4. Estimating the final landing gear mass

$$m_{ld}^* = K_{mt}K_{fl}(6.H_{hl} + 11.3)10^{-3} + 0.0625K_{tr} \frac{\sqrt{p_{tr}}}{1 + p_{tr}} + 0.005,$$
(32)

- $K_{mt} = 0.65..0.7 landing gear material coefficient$
- $K_{\rm fl}$  aerodynamic coefficient of the landing gear.  $K_{\rm fl}$  = 1.2 aerodynamic shape,  $K_{\rm fl}$  = 1 for unshaped landing gears
- $K_{tr} = 1$  for cambered tires,  $K_{tr} = 0.93$  for uncambered tires
- H<sub>lh</sub> landing gear height, m
- $P_{tr}$  pressure in the tires, atm

#### 6.1.5. Estimating the final landing gear mass

$$m_c^* = m_w^* m_{fs}^* m_{tl}^* m_{ld}^*, (33)$$

## 6.2. Powerplant, fuel and equipment final relative mass

The powerplant mass denoted by  $m_{pp}^* = 0.05...0.1m_0$ , or between 0.5 and 1 % of the aircraft take off mass.



The equipment mass includes also the aircraft loading mass and can be found with the following equation:

$$m_c^* = \frac{200}{m_0} + 0.02 m_{lm}^* (1 + 0.1 \frac{L}{v_{cr}}) + 0.08,$$
 (34)

where:

- $m^*_{ld} = m_{ld}/m_0$  the relative loading mass
- L range, km
- V<sub>cr</sub> cruise velocity, km/h

Finally the fuel relative mass is simply the ratio between the actual fuel mass and the take-off mass:

$$m_{fl}^* = \frac{m_{fl}}{m_0},\tag{35}$$

| No | Variable                             | Coefficient       | Value,<br>mm |
|----|--------------------------------------|-------------------|--------------|
|    | Relative wing mass                   | m*w               | 0.139        |
| 1  | Construction type coefficient        | Kcon              | 0.950        |
| 2  | Mechanization coefficient            | Kmec              | 1.150        |
| 3  | Material coefficient                 | K <sub>mat</sub>  | 1.000        |
| 4  | Unloading coefficient                | ф                 | 0.684        |
| 5  | Overloading                          | ne                | 5.500        |
| 6  | Wing aspect ratio                    | λ                 | 8.500        |
| 7  | Wing aera                            | S                 | 29.919       |
| 8  | Wing structure coefficient           | θ                 | 0.900        |
| 9  | Core wing thickness                  | <b>C</b> 0        | 0.120        |
| 10 | Crank sweep                          | X <sub>0.25</sub> | 0.489        |
| 11 | Taper ratio                          | η                 | 3.000        |
| 12 | Core to tip thickness ratio          | μ                 | 1.091        |
|    | Fuselage relative mass               | m*m               | 0.041        |
| 1  | Powerplant position coefficient      | Kep               | 1.140        |
| 2  | Cabin pressure coefficient           | <b>p</b> cab      | 0.800        |
| 3  | Body length                          | lm                | 15.000       |
| 4  | Initial aircraft mass                | m <sub>0</sub>    | 13500.000    |
|    | Control surfaces relative mass       | m*tail            | 0.032        |
| 1  | Velocity coefficient                 | Κv                | 1.439        |
| 2  | Maneuvering coefficient              | Km                | 1.000        |
| 3  | Tail area                            | Stail             | 19.500       |
|    | Landing gear relative mass           | m*ld              | 0.039        |
| 1  | Landing gear material coefficient    | Kmt               | 0.700        |
| 2  | Landing gear aerodynamic coefficient | Kfl               | 1.200        |
| 3  | Landing gear height                  | Hih               | 1.500        |
| 4  | Tire clatch                          | Ktr               | 1.000        |
| 5  | Tire pressure                        | Ptr               | 12.000       |
|    | Construction relative mass           | m*c               | 0.250        |



|   | Powerplant relative mass         | m* <sub>pp</sub> | 0.077    |
|---|----------------------------------|------------------|----------|
|   | Aircraft Equipment relative mass | m* <sub>eq</sub> | 0.098    |
| 1 | Aircraft loading relative mass   | m*lm             | 0.118    |
| 2 | Range                            | L                | 3000.000 |
| 3 | Cruise velocity                  | Vcr              | 780.000  |
|   | Relative fuel mass               | m*fl             | 0.315    |

### 7. Aircraft mass balance characteristics

The balancing characteristics are important for the relative positioning of the wing, tail, fuselage, passengers, engines etc.

One of the most important tasks of the engineers in determining the center of masses of the aircraft. The relative position of the center of masses and the median aerodynamic chord is of significant importance for its dynamic and balancing characteristics. The aircraft changes its mass during flight is this relative distance has to ensure that when the center of masses is moving back (tailwise), there is enough longitudinal stability. Also, in case the center of masses moves forward, there is enough lever displacement to balance the aircraft for take-off and landing.

Here we are going to center the horizontal axis of the aircraft as since it is symmetric, the vertical axis moments can be neglected. The origin of the coordinate system can be either taken at the nose of the aircraft or at the tip of the coot wing chord.

We first need to estimate the sum of static horizontal moments with the equation:

$$x_m = \frac{\sum (mgx)i}{\sum (mg)i'},\tag{36}$$

where:

- x is the distance of the element from the chosen coordinate system origin.
- m is the mass of the element

Then we can estimate the balancing characteristics with the equation:

$$x_m^* = \frac{x_m - x_A}{b_A},\tag{37}$$

where:

- $x_m$  coordinates of the center of masses
- x\*<sub>m</sub> longitudinal balancing
- $x_A$  coordinate of the tip of the median aerodynamic chord.

The coordinates of the elements are taken from a simplified aircraft blueprint, showing their relative positions.

The balancing characteristics of the aircraft have to be estimated in all of those cases:

- Maximum take-off mass
- Fully equipped aircraft without fuel.
- Full fuel tank without any load.
- Empty aircraft without fuel and load.

-



| No | Component        | Relative mass    |       | Actual I        | mass, kg |
|----|------------------|------------------|-------|-----------------|----------|
|    |                  | m*               | Value | m               | Value    |
| 1  | Wing             | m*w              | 0.139 | mw              | 1875.56  |
| 2  | Fuselage         | m*m              | 0.041 | m <sub>m</sub>  | 553.40   |
| 3  | Landing gear     | m*ld             | 0.039 | mld             | 522.54   |
| 4  | Construction     | m*c              | 0.250 | mc              | 3377.90  |
| 5  | Powerplant       | m* <sub>pp</sub> | 0.077 | m <sub>pp</sub> | 1039.50  |
| 6  | Equipment        | m* <sub>eq</sub> | 0.098 | Meq             | 1324.03  |
| 7  | Aircraft loading | m*lm             | 0.118 | m <sub>lm</sub> | 1590.00  |
| 8  | Fuel             | m*fl             | 0.315 | mfl             | 4246.00  |
| 9  | Control surfaces | <b>m</b> tail    | 0.032 | Mtail           | 426.40   |

The moving masses such a passengers and cabin crew have to be positioned near the center of masses of the aircraft.

|                        | Aircraft Balancing |          |             |  |  |  |
|------------------------|--------------------|----------|-------------|--|--|--|
| Component              | Moment             | Distance | Force       |  |  |  |
|                        | mgx, daNm          | x, m     | mg, daN     |  |  |  |
| 1.1 Wing               | 13799.4621         | 7.5      | 1839.928281 |  |  |  |
| 1.2 Fuselage           | 4071.63854         | 7.5      | 542.8851391 |  |  |  |
| 1.3 Horizontal surface | 2342.47675         | 14       | 167.3197681 |  |  |  |
| 1.4 Vertical surface   | 3388.2253          | 13.5     | 250.9796521 |  |  |  |
| 1.5 Front landing gear | 322.942626         | 2.1      | 153.782203  |  |  |  |
| 1.6 Main landing gear  | 2583.54101         | 7.2      | 358.8251404 |  |  |  |
| 2. Powerplant          | 9942.55763         | 9.75     | 1019.7495   |  |  |  |
| 3. Equipment           | 9871.4438          | 7.6      | 1298.874185 |  |  |  |
| 3.1 Front              |                    |          |             |  |  |  |
| compartment            | 1818.42386         | 2.8      | 649.4370923 |  |  |  |
| 3.2 Back               |                    |          |             |  |  |  |
| compartment            | 7923.13253         | 12.2     | 649.4370923 |  |  |  |
| 4. Cabin crew          | 768.123            | 2.9      | 264.87      |  |  |  |
| 4.1 Pilots             |                    | 2.4      |             |  |  |  |
| 4.2 Flight attendants  |                    | 7.5      |             |  |  |  |
| 4.3 Crew luggage       |                    | 2.5      |             |  |  |  |
| 5. Fuel                | 32906.1093         | 7.9      | 4165.330297 |  |  |  |
| 6. Load                | 11698.425          | 7.5      | 1559.79     |  |  |  |
| 7. Passengers          | 7063.2             | 7.5      | 941.76      |  |  |  |
| Σ(mgi x)               | 108499.701         | Σ(mg)i   | 13862.96835 |  |  |  |
| Σ(mgi x) No Load       | 96801.2765         | Σ(mg)i   | 12303.17835 |  |  |  |
| Σ(mgi x) No Fuel       | 75593.5922         | Σ(mg)i   | 9697.638053 |  |  |  |
| Σ(mgi x) Empty         | 56063.8442         | Σ(mg)i   | 6931.218053 |  |  |  |





Standard positions of the aircraft components are:

- Wing center of mass position 40...42% b<sub>A</sub>
- Tail center of mass position 45...50% b<sub>Ahot</sub>
- Fuselage center of mass position 50% of fuselage length
- Re-estimating passenger and cabin crew mass: 80kg for a pilot, 70kg for cabin crew, 75kg for passenger and 15kg for luggage per passenger.

The balance characteristic of the aircraft in each case shall be between  $x_m^* = 0.2...0.3$ .



|                                            |                                            | Full           | No Load            | No Fuel         | Empty           |
|--------------------------------------------|--------------------------------------------|----------------|--------------------|-----------------|-----------------|
| Coordinates of the mass center             | $Xm = \sum_{k=0}^{n} \frac{(mgx)}{(mg)^k}$ | 7.9991928<br>7 | 7.9357008<br>2     | 7.95589418<br>1 | 8.08859910<br>8 |
|                                            |                                            |                |                    |                 |                 |
| Final aircraft centering                   | coefficient                                | 0.2459078<br>2 | <b>0.2146309</b> 5 | 0.22457841<br>4 | 0.28995029<br>9 |
| Final aircraft centering  Median aerodynam |                                            |                |                    | 0.22457841<br>4 | _               |
|                                            | ic chord                                   | 2              |                    | 0.22457841<br>4 | _               |