Python and AI for Modern Threat Intelligence

Cyber Threat Intelligence

Threat Intelligence Lifecycle

Direction involves identifying critical assets and processes requiring protection while determining specific intelligence needs for the organization.

Feedback gathers input from data consumers to continuously improve the value, accuracy, and actionability of the threat intelligence.

Collection accumulates relevant information from internal and external sources to address key intelligence requirements.

Dissemination distributes analyzed intelligence to appropriate stakeholders in optimal formats and frequencies.

Processing transforms raw collected data into a format that can be easily consumed throughout the organization.

Analysis converts processed information into actionable intelligence for decision-making with clear findings and recommendations.

Threat Intelligence with Security Teams

Security Operation Center

Enhances detection and response with threat context

Incident Response

Provides attack patterns and indicators for effective response

Vulnerability Management

Prioritizes patching based on active exploit information

Malware Analysis

Offers context on malware families and associated threat actors

Business Operations

Informs risk-based decisions and resource allocation

System Engineering & IT

Guides security control implementation against specific threats

Threat Intelligence Use Case (SOC)

Type of Threat Intelligence

The Pyramid of Pain

TTPs describe how threat actors conduct their operations, offering a broader context than IOCs.

All Source Intelligence

Communications intelligence, Electronic intelligence, ...

Interrogations, Agent networks, ...

Radar signatures, Nuclear intelligence, Materials analysis, ...

Weapons systems analysis, Military equipment capabilities, Technical specifications, ...

Double agent operations, Surveillance detection, Penetration testing, ... Satellite imagery, Aerial photography, Mapping/terrain data, ...

Pivoting

 Pivoting involves leveraging initial security discoveries to broaden investigative scope

Pivoting

Python for Threat Intelligence

Python automates security needs assessment through scripted tools that identify critical assets

Python builds interactive systems Python collects intelligence from for collecting stakeholder feedback 1. Direction diverse sources using APIs and on intelligence products web scraping libraries 6. Foodbart ×××× **Cyber Threat** Intelligence 5. Dissemination Lifecycle

Python generates and distributes visual intelligence reports through automated channels

> Python analyzes threats with data science libraries to uncover patterns and actionable insights

4. Analysis

Python transforms raw data into

structured formats using Pandas

and regex for analysis

STIX & TAXII

- STIX (Structured Threat Information Expression)
 - Standardized language for cyber threat intelligence representation
 - Enables organizations to share structured threat information using objects, relationships, and properties
- TAXII (Trusted Automated Exchange of Intelligence Information)
 - Transport mechanism for sharing cyber threat intelligence
 - Defines APIs for STIX content exchange between producers and consumers of threat information

STIX Producer: Company A

- Creates Indicator SDO with CryptoLocker hash pattern and Malware SDO with malware details
- Links objects with "indicates" Relationship SRO and shares bundle via TAXII server

STIX Consumer: Company B

- Receives Company A's intelligence and finds matching malware on their network
- Creates Sighting SRO to report detection and publishes back to community via TAXII

- · Contains detection info: name, pattern, type, validity timeframe
- Company A example: CryptoLocker SHA-256 hash marked as "malicious-activity"

Indicator Object

```
{
    "type": "indicator",
    "spec_version": "2.1",
    "id": "indicator--71312c48-925d-44b7-b10e-c11086995358",
    "created": "2017-02-06T09:13:07.243000Z",
    "modified": "2017-02-06T09:13:07.243000Z",
    "name": "CryptoLocker Hash",
    "description": "This file is a part of CryptoLocker",
    "pattern": "[file:hashes.'SHA-256' = '46afeb295883a5efd6639d4197eb18bcba3bff49125b810ca4b9509b9ce4dfbf']",
    "pattern_type": "stix",
    "indicator_types": ["malicious-activity"],
    "valid_from": "2017-01-01T09:00:00.000000Z"
}
```


- Contains required properties: type, spec_version, id, created
- Provides descriptive context about the malware

Malware Object

```
"type": "malware",
    "id": "malware--81be4588-96a8-4de2-9938-9e16130ce7e6",
    "spec_version": "2.1",
    "created": "2017-02-06T09:26:21.647000Z",
    "modified": "2017-02-06T09:26:21.647000Z",
    "name": "CryptoLocker",
    "description": "CryptoLocker is known to hold files hostage for ransom.",
    "malware_types": ["ransomware"]
}
```


- Links Indicator to Malware SDOs using source_ref, target_ref, and relationship_type
- Company A example: Indicator "indicates" Malware, connecting detection pattern to CryptoLocker

- Reports when an organization observes a previously shared threat indicator
- Company B example: Documents detection of Company A's CryptoLocker hash on their network

MITRE ATT&CK

- Free knowledge base of real-world adversary tactics and techniques
- Foundation for threat modeling across government and industry
- ATT&CK data is in STIX format for easy sharing and analysis

MITRE ATT&CK

ATT&CK concept	STIX object type	Custom type?
<u>Matrix</u>	x-mitre-matrix	yes
<u>Tactic</u>	x-mitre-tactic	yes
<u>Technique</u>	attack-pattern	no
Sub-technique	<pre>attack-pattern where x_mitre_is_subtechnique = true</pre>	no
<u>Procedure</u>	<u>relationship</u> where relationship_type = "uses" and target_ref is an attack-pattern	no
<u>Mitigation</u>	course-of-action	no
<u>Group</u>	intrusion-set	no
<u>Software</u>	malware or tool	no
Collection ¹	x-mitre-collection	yes
Data Source	x-mitre-data-source	yes
<u>Campaign</u>	<u>campaign</u>	no
<u>Asset</u>	x-mitre-asset	yes

MITRE ATT&CK

Source Type	Relationship Type	Target Type	Custom Type?	About
intrusion- set	uses	malware or	No	Group using a software.
intrusion- set	uses	attack- pattern	No	Group using a technique, which is also considered a procedure example.
malware or	uses	attack- pattern	No	Software using a technique, which is also considered a procedure example.
campaign	uses	malware or	No	Campaign using a software.
campaign	uses	attack- pattern	No	Campaign using a technique, which is also considered a procedure example.
campaign	attributed-to	intrusion- set	No	Campaign attributed to a group.
course-of- action	mitigates	attack- pattern	No	Mitigation mitigating technique.
attack- pattern	subtechnique- of	attack- pattern	Yes	Sub-technique of a technique, where the source_ref is the sub-technique and the target_ref is the parent technique.
x-mitre-data- component	detects	attack- pattern	Yes	Data component detecting a technique.
attack- pattern	targets	x-mitre- asset	Yes	Technique targets an asset.
any type	revoked-by	any type	Yes	The target object is a replacement for the source object. Only occurs where the objects are of the same type, and the source object will have the property revoked = true. See Working with deprecated and revoked objects for more information on revoked objects.

Data Collection

API Querying

- Uses Python scripts to retrieve structured data directly from providers
- Gathers threat intelligence efficiently via platform APIs

Web Scraping

- Extracts unstructured data from websites using tools like BeautifulSoup
- Collects IOCs from hacker forums and dark web sources

Open Source Intelligence (OSINT)

- Automates intelligence collection from feeds and unstructured sources
- Monitors dark web activities and analyzes threat reports

Offensive Threat Intelligence

- Scans and exploits vulnerabilities in attackers' infrastructure
- Analyzes malware commands to disable threats or infiltrate systems

API Providers

Free/Community

- MISP: Open-source threat intelligence platform for sharing, storing, and correlating indicators
- PhishTank: Community-driven database of verified phishing websites
- Validin: Historical DNS record lookup service for tracking domain changes
- Malware Bazaar: Repository for sharing and analyzing malware samples
- Pulsedive: Threat intelligence platform providing enriched IOC data
- DNSQuery: DNS lookup tool for analyzing domain information
- UrlScan: Website scanner that analyzes and detects suspicious websites
- OTX: AlienVault's Open Threat Exchange for community threat intelligence sharing

Enterprise

- VirusTotal: Multi-engine malware scanning and file reputation service
- Censys: Internet-wide scanning platform for attack surface management
- Flare: Threat intelligence platform focused on dark web monitoring
- Shodan: Search engine for internet-connected devices and vulnerabilities
- MS Defender for TI: Microsoft's threat intelligence offering within Defender suite
- Recorded Future: Al-powered threat intelligence platform with real-time risk assessment
- Mandiant Threat Intelligence: Advanced threat intelligence with actor profiling and vulnerability research

Data Processing

Structure Your Dataset

- Integrate multiple source formats (CSV, JSON) into a unified, organized collection
- Ensure field consistency through standardization processes for seamless analysis

Language Conversion

- Transform text between languages to enable global threat intelligence operations
- Maintain consistent encoding protocols across multilingual data to preserve integrity

Image Text Extraction

 Convert visual information to text using OCR for documents and screenshots containing threat indicators

Noise Elimination

- Remove irrelevant data points that don't contribute meaningful intelligence value
- Develop filtering parameters based on statistical methods and known benign patterns
- Pandas, NumPy, Elasticsearch, Apache Spark, SQLite, KQL, ···

Data Analysis

Statistics

- Identify threat behavior patterns through correlation and regression analysis
- Apply statistical testing to validate security event relationships

Visualization

- Create charts and diagrams to represent complex threat data clearly
- Display geographical attack distributions and malware propagation timelines

Enrich and Pivot

- Add contextual information to raw security data from external intelligence sources
- Examine multiple data attributes to discover hidden attack relationships

Intelligence Identification

- Distinguish meaningful threats from routine security alerts
- Filter out false positives to focus analysis on genuine security risks
- Matplotlib, Bokeh, Pyvis, NetworkX, Seaborn, ggplot, Pygal, …

Disseminating Threat Intelligence

Definition

 The delivery of critical security insights to relevant decision-makers and teams.

Tools

- VThunting.py: Python tool for automated VirusTotal hunting and intelligence gathering
- PyMISP: Python library for interacting with MISP threat intelligence platforms
- PySTIX: Python implementation for working with STIX threat intelligence format
- Discord: Messaging platform that can be leveraged for real-time threat intel distribution
- Slack: Collaboration tool with channels and integrations for sharing security alerts
- Jinja2: Template engine used to generate standardized threat intelligence reports
- MS Teams: Microsoft's collaboration platform with channels for threat intelligence distribution

Generative AI and Threat Intelligence

Definition

 Large Language Models are advanced AI systems trained on vast amounts of text data to understand, generate, and manipulate human language across diverse tasks and contexts

- Blue = pre-trained, Orange = instruction-tuned
- Top = open-source, Bottom = closed-source

Text in, Text out!

 LLMs were focused solely on processing and generating plain text, mainly used for tasks like summarization, translation, and classification

But with the advent of <u>function calling</u>, LLM now have the ability to interact with external tools and APIs—unlocking far more dynamic, real-world applications

Anything in, Anything out!

29/49

Limitations

- Produces hallucinations
- Lacks sufficient controllability
- High training and inference costs
- Difficulty maintaining context until maximum length
- Struggles to update rapidly changing knowledge (temporal, regional, cultural)
- Results difficult to interpret or verify without sources
- Risk of sensitive information exposure (confidential data, PII)

Agent

Definition

 LLM Agents are autonomous systems that use large language models as their reasoning engine to understand tasks, make decisions, and take actions through external tools to achieve user-defined goals

Agent

RAG

Definition

 RAG combines external information retrieval with language model generation to produce more accurate and knowledge-grounded responses

Knowledge Types

Structured Knowledge

📽 Un/Semi-structured Knowledge

a Parametric Knowledge

OpenAl GPTs

Knowledge Types

Structured Knowledge

- Vulnerability databases (CVE records with standardized fields)
- MITRE ATT&CK framework tactics and techniques
- Security event logs with defined fields and relationships

Un/Semi-structured Knowledge

- Threat intelligence reports and security blogs
- Malware analysis narratives and researcher notes
- Social media posts discussing emerging threats

Parametric Knowledge

- Microsoft Security Copilot
- Google Sec-Gemini

RAG with Different Knowledge Types

Other Terms

Transformers

Self-attention to analyze relationships between words, enabling a deeper understanding of sentences 5 Embedding

Represent words in numerical code and such that lets the LLM understand their relationships to each other. 9 Prompt Engineering

Art of crafting clear and concise instructions for the LLM to achieve the desired outcome

13 RAG

RAG teams up large language models with external knowledge bases for more accurate and up-to-date responses.

2 Token

Basic units of text an LLM processes, like words or sub-words.

6 Vector Search

Helps LLMs find similar information within their vast datasets using embeddings 10 Shot Learning

How much instruction an LLM needs to learn a new task. Zero-Shot, One-Shot, N-Shot 14 MoE

Allows an LLM to leverage multiple smaller expert models for improved performance on specific tasks

3 Chunking

Breaking down text into smaller, manageable segments for LLM to analyze. LLM Agent

Fine Tuning

Training a smaller model on top of a larger one, focusing on a specific task while keeping resource usage in check. 15 Lora

technique for compressing large LLM models, making them smaller and faster to run on devices

4 Indexing

catalog for the massive datasets for efficient retrieval Vector Database

Stores embeddings allowing for efficient vector search

In Agent LLM is the central processing

unit, orchestrating the sequence of

actions required to fulfill a task

12)

Artificial General Intelligence Machines that can think and learn like humans

AGI

@pvergadia

Follow for more!

They are fascinating topics worth exploring in more depth, but for this class, just remember that modern I I Ms can understand human instructions

Generative AI in Cybersecurity

Objective

- Al tool can automate threat report analysis by mapping human language descriptions to MITRE ATT&CK frameworks without STIX/TAXII expertise
- Five-step workflow: summarize materials, parse behaviors, map to techniques, verify results, and generate reports

MITRE CWE and ATT&CK

- CWE is a community-developed list of common software and hardware weaknesses, faults, and vulnerabilities
- ATT&CK is a knowledge base maintained by MITRE that documents the tactics, techniques, and procedures (TTPs) used by adversaries during cyberattacks

Use Case 2: Mapping SIEM Rules to TTPs

(Hands-on 1) Data Collection and Processing

Objectives

- Learn how to collect and process threat intelligence data from various sources such as webpages, RSS feeds, and DNS records
- Practice extracting indicators of compromise (IOCs) like IPs, domains, hashes, and filenames using web scraping and regular expressions
- Explore feed parsing and DNS record resolution to enrich the context of security events
- Gain experience with IP attribution by mapping IP addresses to autonomous systems using WHOIS data

Python Packages

requests, beatifulsoup4, re, feedparser, dnspython, ipwhois

(Hands-on 2) Prompt Engineering for LLM

Objectives

- Learn how to integrate OpenAI's GPT models for automated classification of cyber attack techniques based on MITRE ATT&CK
- Understand how to validate structured outputs using Pydantic models
- Practice extracting and translating text from images using multimodal prompts

Python Packages

pydantic, openai

(Hands-on 3) Embedding for Similarity Search

Objectives

- Learn to apply embedding models to transform textual threat group descriptions into numerical vectors
- Explore dimensionality reduction and visualization techniques using PCA
- Analyze and compare threat actor similarities using cosine similarity and query matching

Python Packages

 requests, sentence_transformers, stix2, pandas, matplotlib, sklearn

(Hands-on 4) Querying Data with LLM

Objectives

- Build a natural language interface for pandas DataFrames using LangChain agents
- Generate SQL queries from natural language questions using SQLCoder, and explore how LLMs can automate structured data access

Python Packages

kagglehub, langchain, transformers, sqlparse

(Hands-on 5) Multi Agents based Threat Research Team

Objectives

- Build an automated cybersecurity investigation system using multiple specialized Al agents working together to analyze security alerts
- Demonstrate how different security roles (SOC Analyst, Threat Intelligence, Reverse Engineering, and Phishing Analysis) can collaborate through a coordinated workflow

Python Packages

autogen

Thank you 😊

