Qubits

Marcio Woitek

Problem 1

- \triangleright Measuring it yields 0 and 1 with equal probabilities $(\frac{1}{2})$.
- \triangleright Upon measurement the super position collapses to one of the pure states $|0\rangle$ or $|1\rangle$.

Problem 2

$$> \frac{\sqrt{3}}{2} |0\rangle + \frac{1}{2} |1\rangle$$

$$> 0$$

Problem 3

The general form of $|-\rangle$ is

$$|-\rangle = c_0 |0\rangle + c_1 |1\rangle, \tag{1}$$

where $|c_0|^2 + |c_1|^2 = 1$. Since we want $|+\rangle$ and $|-\rangle$ to be orthogonal, the following must hold:

$$\langle +|-\rangle = 0 \qquad \Rightarrow \qquad \frac{1}{\sqrt{2}}c_0 + \frac{1}{\sqrt{2}}c_1 = 0 \qquad \Rightarrow \qquad c_0 + c_1 = 0.$$
 (2)

Then we have $c_1 = -c_0$. Assuming these constants are real numbers, we can write the other condition as follows:

$$2c_0^2 = 1 \qquad \Rightarrow \qquad c_0 = \frac{1}{\sqrt{2}}.\tag{3}$$

Hence:

$$|-\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle - |1\rangle \right). \tag{4}$$