04 - Potenciação

Matemática

8° ano out/2021

Exercício 1. Em 15 minutos, alguém espalha um boato para 3 pessoas. Cada uma delas conta o boato a outras 3, no tempo médio de 15 minutos. Cada uma dessas outras pessoas difunde o boato da mesma maneira, no mesmo tempo médio, e assim por diante.

a) Faça uma tabela que relacione o **tempo decorrido** e o **número de pessoas informadas** do boato naquele período de tempo. Sua tabela deve ter no mínimo quatro linhas.

Tempo decorrido (min)	Novas pessoas informadas pelo boato
0 a 15	
16 a 30	
31 a 45	
46 a 60	
61 a 75	

- **b)** O que os números da coluna à direita da tabela têm em comum?
- **c)** Num determinado período, ao fim do dia, *n* pessoas foram informadas do boato. Quantas pessoas haviam sido informadas no período anterior? E no anterior ao anterior? Justifique.

Exercício 2.

a) Simplifique as seguintes expressões, de modo a restar apenas uma potência, como no exemplo.

Exemplo:

$$5^{4} \cdot 5^{3}$$

= $5 \cdot 5 \cdot 5 \cdot 5 \cdot 5^{3}$
= $5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5$
= 5^{7}

000

i)
$$2^{3} \cdot 2^{4}$$

ii) $171^{8} \cdot 171^{4}$
iii) $(-2)^{3} \cdot (-2)^{11}$
iv) $3^{10} \cdot 3^{3} \cdot 27$
v) $2021^{2020} \cdot 2021$
vi) $7^{3} \cdot 7^{4} \cdot 7^{5} \cdot 7^{6}$
vii) $a^{5} \cdot a^{4}$
viii) $a^{m} \cdot a^{n}$

b) Explique com suas palavras como simplificar uma multiplicação de potências de mesma base. Explique porque podemos fazer isso.

Exercício 3.

a) Calcule:

i)
$$\left(\frac{1}{2}\right)^3$$
ii) $\left(\frac{2}{3}\right)^2$
iii) $\left(\frac{11}{7}\right)^2$
iv) $\left(\frac{5}{3}\right)^4$
v) $\left(\frac{12}{3}\right)^3$

b) Explique com suas palavras como fazer para elevar uma fração a um número inteiro.

Notação científica

Observe alguns dados de comprimentos:

Distância da Terra ao Sol: 150.000.000.000 m

Distância do Sol à estrela mais próxima: 37.000.000.000.000.000 m

Superfície terrestre do Brasil: 8.510.000.000 m²

Esses números muito grandes são frequentemente escritos em **notação científica**. Veja como eles ficam:

Distância da Terra ao Sol: $1,5 \times 10^{11}$ Distância do Sol à estrela mais próxima: $3,7 \times 10^{16}$ m² Superfície terrestre do Brasil: $8,51 \times 10^{9}$ m²

Nesse tipo de notação, os números são escritos da seguinte forma:

Exercício 4. Escreva os seguintes números em notação científica. Use a mesma unidade de medida apresentada em cada item.

a) Diâmetro da terra: 12.000.000 m

b) Potência máxima da Usina Hidrelétrica de Itaipu: 14.000.000 W

c) Número de pessoas na terra: 7.594.000.000

d) Velocidade da luz: 299.000.000 m/s

Exercício 5.

a) Os seguintes números não estão em notação científica. Por que não? Explique e depois converta-os para notação científica.

i)
$$0.15 \times 10^4$$

ii
$$12 \times 10^7$$

iii)
$$100 \times 10^4$$

iv)
$$2.5 \times 100^4$$

b) Efetue os Cálculos. Escreva o resultado em notação científica.

i)
$$(1,2 \times 10^7) \times (3 \times 10^3)$$

ii
$$(2,5 \times 10^7) \times (5 \times 10^{55})$$

iii) O tempo que leva um raio de luz para chegar do sol até a terra, ou seja, $(3,6\times10^{16})\div(3\times10^{8})$ segundos.

iv) O tempo que demora para um raio de luz percorrer o diâmetro da terra, ou seja, $(1,2\times10^7)\div(3\times10^8)$ segundos

c) Você acha vantajoso usar a notação científica? Em que contextos? Por quê?

Exercício 6.

- a) Calcule o resultado:
 - i) 2⁰
 - ii) 5⁰
 - iii) $17^3 \div 17^3$
 - iv) 1848⁰

v)
$$[2,34^{-2}-2,75\cdot(13-7,5^5)]^0$$

b) Explique com suas palavras o que acontece quando elevamos um número a zero. Mostre por que isso faz sentido.

Potências com o expoente negativo

Nesse exercício vamos investigar o que acontece quando uma potência tem o expoente negativo. Veja a tabela:

х	$y = 2^x$	
3	2^3	8
2	2 ²	4
1	2 ¹	2
0	2 ⁰	1
-1	2^{-1}	?
-2	2 ⁻²	?
-3	2^{-3}	?

Veja que sempre que o expoente decresce uma unidade, o *y* é dividido por 2. Para entender como calcular potências de expoente negativo, tente entender o que acontece com o y nas últimas três linhas da tabela.

Outro jeito de pensar é o seguinte (tente entender o que vai no lugar dos ponto de interrogação):

$$2^3 = \frac{2^3}{2^0} = \frac{8}{1} = 8$$

$$2^2 = \frac{2^3}{2^1} = \frac{8}{2} = 4$$

$$2^2 = \frac{2^3}{2^2} = \frac{8}{4} = 2$$

$$2^1 = \frac{2^3}{2^1} = \frac{8}{2} = 4$$

$$2^0 = \frac{2^3}{2^3} = \frac{8}{8} = 1$$

$$2^{-1} = \frac{2^3}{2^4} = ?$$

$$2^{-2} = \frac{2^3}{2^5} = ?$$

Exercício 7.

- **a)** Escreva os seguintes números na forma decimal (tente não usar calculadora):
 - i) 5¹
 - ii) 5⁰
 - iii) 5^{-1}
 - iv) 5^{-2}
 - v) 5⁻⁴
- **b)** Calcule o resultado e apresente-o em forma de fração:
 - i) 7^{-3}
 - ii) 15⁻²
 - iii) 1^{-1}
 - iv) $\left(\frac{1}{123456}\right)^{-1}$
 - $V) \left[\left(\frac{2}{3} \right)^{-1} \right]^{-1}$

010

vi)
$$123456^{-1} \cdot 123456^{1}$$

$$vii) \left(\frac{3}{5}\right)^{-1}$$

viii)
$$\left(\frac{1}{3}\right)^{-4}$$

c) Explique com suas palavras o que acontece quando elevamos um número a número negativo. Mostre por que isso faz sentido.

Exercício 8.

- a) Calcule o resultado:
 - i) $(2^3)^2$
 - ii) $(2^2)^3$
 - iii) $(3^2)^2$
 - iv) $(4^{-2})^3$
 - $v) (5^{-1})^2$
- **b)** Explique com suas palavras o que acontece quando elevamos uma potência a um outro número. Mostre por que isso faz sentido.

Exercício 9.

Sem consultar fontes externas, tente adivinhar a qual ordem de grandeza corresponde cada número, ou seja, qual é a potência de dez mais próxima ao número em questão.

Exemplo: a ordem de grandeza do número 1, 5 \cdot 10^4 é 10^4 , logo, sua ordem de grandeza é 10^4 .

Se quiser, depois de fazer o exercício, consulte o link abaixo para ver o que você acertou! De qualquer forma, entregue o que você fez antes de verificar os resultados (e pode entregar o resultado corrigido *também*).

https://htwins.net/scale2/