Introdução à redes neurais

O que é uma Rede Neural?

Uma rede neural é um modelo computacional inspirado na estrutura e funcionamento dos neurônios biológicos. Em termos simples, uma rede neural tenta imitar a forma como o cérebro humano processa informações. Os neurônios biológicos recebem sinais através das dendrites, processam esses sinais no corpo celular e enviam o resultado através do axônio para outros neurônios. De forma análoga, uma unidade computacional ou "neurônio" em uma rede neural recebe entradas, processa essas entradas e produz uma saída.

Como Funciona um Neurônio Computacional?

Um neurônio em uma rede neural consiste em várias partes:

Camada de Entrada

Recebe os dados de entrada (features).

Pesos

 Cada entrada é multiplicada por um peso. Os pesos são ajustáveis e determinam a importância de cada entrada.

Função Soma

As entradas ponderadas são somadas para produzir um único valor.

Função de Ativação

 A soma ponderada é passada por uma função de ativação que decide se o neurônio deve ser ativado ou não. As funções de ativação comuns incluem ReLU (Rectified Linear Unit), sigmoid e tanh.

Exemplo de um Neurônio

Entrada (x) -> Pesos (w) -> Função Soma (Σ) -> Função de Ativação (f) -> Saída (y)

Perceptron e Limitações

O que é um Perceptron?

- Um perceptron é o tipo mais simples de rede neural, consistindo de uma única camada de neurônios.
- Representa uma função linear que divide o espaço de entrada em duas partes.

Função Soma no Espaço

 A função soma no perceptron pode ser vista como um hiperplano no espaço de entrada que separa duas classes.

Limitações de um Único Neurônio

 Um único neurônio não pode resolver problemas que não são linearmente separáveis, como o problema do XOR.

Correção do Neurônio

Predição Errada

 Quando a predição de um neurônio está errada, os pesos são ajustados para melhorar a predição futura.

Ajuste dos Pesos

 O ajuste dos pesos é feito usando um algoritmo de aprendizado, como o gradiente descendente. A fórmula básica de atualização dos pesos é:

$$w_i = w_i + \varDelta w_i$$

$$arDelta w_i = \eta * (y - \hat{y}) * x_i$$

Onde:

- w_i é o peso ajustado.
- Δw_i é a mudança no peso.
- η é a taxa de aprendizado.
- y é o valor alvo.
- ŷ é a predição do modelo.
- x_i é a entrada correspondente.

Redes Neurais Simples e Deep Learning

Redes Neurais Simples

- Consistem em uma camada de entrada, uma camada oculta e uma camada de saída.
- Usadas para problemas relativamente simples.

Redes Neurais de Deep Learning

- Consistem em várias camadas ocultas (Deep Learning).
- Capazes de capturar características complexas dos dados.

Tipos de Arquiteturas de Redes Neurais

Exemplos de Arquiteturas

- Redes Neurais Convolucionais (CNNs): Usadas principalmente para tarefas de visão computacional.
- Redes Neurais Recorrentes (RNNs): Usadas para processamento de sequências, como em NLP.
- Redes Adversariais Generativas (GANs): Usadas para gerar novos dados sintéticos.

Função de Perda (loss)

O que é Função de Perda?

 Uma função de perda mede o quão bem o modelo está se saindo. É uma medida de erro entre a predição do modelo e o valor real.

Exemplos de Funções de Perda

- Erro Quadrático Médio (MSE): Média dos quadrados das diferenças entre as predições e os valores reais.
- Erro Absoluto Médio (MAE): Média das diferenças absolutas entre as predições e os valores reais.
- Erro Logarítmico (Log Loss): Usado principalmente em classificações binárias.

Loss de Treinamento:

O que é:

 A loss de treinamento é a medida do erro do modelo nos dados de treinamento durante cada época do treinamento.

Propósito:

 Ela é usada pelo otimizador para ajustar os pesos da rede neural durante o treinamento, com o objetivo de minimizá-la.

Tendência:

 Espera-se que a loss de treinamento diminua ao longo das épocas. Isso indica que o modelo está aprendendo com sucesso os padrões nos dados de treinamento.

Possíveis Problemas:

 Se a loss de treinamento aumenta continuamente, pode indicar que o modelo não está sendo treinado corretamente ou que há problemas com o conjunto de dados ou a arquitetura do modelo.

Loss de Validação:

• O que é:

 A loss de validação é a medida do erro do modelo em um conjunto de dados de validação, que são dados que o modelo não viu durante o treinamento.

Propósito:

 Ela é usada para avaliar a capacidade do modelo de generalizar para dados não vistos e detectar overfitting.

Tendência:

 Idealmente, a loss de validação deve diminuir à medida que o modelo aprende com os dados de treinamento, mas depois pode começar a aumentar. Isso é normal e esperado, pois indica que o modelo está começando a se ajustar demais aos dados de treinamento e perdendo a capacidade de generalizar para novos dados.

Possíveis Problemas:

 Se a loss de validação continuar a diminuir, enquanto a loss de treinamento diminui, isso pode indicar que o modelo não está sendo treinado por tempo suficiente para alcançar sua capacidade máxima. No entanto, se a loss de validação começar a aumentar, pode indicar overfitting, sugerindo que o treinamento deve ser interrompido para evitar ajuste excessivo aos dados de treinamento.

Época

Uma época é uma passagem completa por todo o conjunto de dados de treinamento.
Durante uma época, o modelo de rede neural vê cada exemplo de treinamento exatamente uma vez e ajusta os pesos da rede com base nesses exemplos.

Interpretação:

Convergência:

 Se tanto a loss de treinamento quanto a loss de validação estiverem diminuindo, isso indica que o modelo está aprendendo efetivamente e não está sofrendo de overfitting significativo.

Overfitting:

 Se a loss de treinamento continuar a diminuir, mas a loss de validação começar a aumentar, isso indica overfitting e sugere que o treinamento deve ser interrompido para evitar piora do desempenho do modelo em dados não vistos.

Underfitting:

 Se tanto a loss de treinamento quanto a loss de validação estiverem altas e não estiverem diminuindo, isso pode indicar underfitting, onde o modelo não está sendo capaz de aprender efetivamente com os dados de treinamento.

Portanto, monitorar tanto a loss de treinamento quanto a loss de validação durante o treinamento é crucial para entender o comportamento do modelo e ajustar o treinamento conforme necessário para obter um modelo bem generalizado.

Gradiente de uma Rede Neural

O que é o Gradiente?

- O gradiente é uma medida de quanto a função de perda muda em relação a uma pequena mudança nos pesos.
- Usado no algoritmo de gradiente descendente para minimizar a função de perda ajustando os pesos.

Exemplo Prático simples com TensorFlow (TF)

Ex. Rede Neural simples com Tensor Flow

Exemplo mais complexo (Resnet50)

Ex. mais complexo (Resnet50)