AY: 2022-2023 M1-S1: Dept. of Electrical Engineering

RESIT | AI-ECUE122 Teacher: A. Mhamdi July 2023 Time Limit: $\mathbf{1}_{2}^{\eta}$ h

This document contains 5 pages numbered from 1/5 to 5/5. As soon as it is handed over to you, make sure that it is complete. The 4 tasks are independent and can be treated in the order that suits you.

The following rules apply:

- **No document** is allowed in the examination room.
- **2** Any electronic material, except basic calculator, is prohibited.
- **18 Mysterious or unsupported answers** will not receive full credit.
- **O Round results** to the nearest thousandth (i.e., third digit after the decimal point).
- **\bullet** Task N° 4: Each correct answer will grant a mark with no negative scoring.

		─	0	>>>C	5	
VIEW	Task	1	2	3	4	Total
SELF-REVIEW	Points	7½	5	4	3½	20
S	Score		7			

Task Nº1

 $30mn \mid (7\frac{1}{2} \text{ points})$

Given the following weight matrices and biases vectors. Draw the corresponding neural network architecture. (Place the values of the synaptic weights and biases on the arrows.)

$$\mathcal{W}^{(1)} = \begin{pmatrix} 0 & 7.14 & 8 & 4 \\ 1 & -5 & 5.12 & -1 \\ -1 & 0.35 & -2 & 0.15 \end{pmatrix} \quad \text{and} \quad b^{(1)} = \begin{pmatrix} -1.2 \\ 3 \\ 0.9 \end{pmatrix}$$

$$W^{(2)} = \begin{pmatrix} -1 & 0 & 1 \\ 1 & -2.5 & 0.41 \end{pmatrix}$$
 and $b^{(2)} = \begin{pmatrix} 0.58 \\ -2.4 \end{pmatrix}$

Task N⁰2

20mn | (5 points)

We consider the vastly simplified model of real neuron, also known as **Threshold Logic Unit**. The processing element sums the weighted inputs $w_1x_1 + w_2x_2$, add a bias b and then applies a non linear activation function. The output transmits +1 if and only if the input is positive. Otherwise, it transmits -1.

Consider the problem approximating an \forall (OR) gate. Use bipolar data instead of binary data for the inputs x_1 and x_2 , *i.e.* ± 1 . Weights and bias are all set initially to zero: $w_1 = w_2 = b = 0$.

On your answer sheet, reproduce and fill in, according to Rosenblatt learning rule, the following table. y and \hat{y} denote the target (i.e. the actual output of the gate) and the output of the perceptron. The factor α is set to 1.

x_1	x_2	b	ŷ	у	Δw_1	Δw_2	Δb	w_1	w_2	b
-1	-1	1	1	-1	1	1	-1	1	1	-1
-1	1	1	-1	1	-1	1	1	0	2	0
1	-1	1	-1	1	1	-1	1	1	1	1
1	1	1	1	1	0	0	0	1	1	1

Task Nº3

20mn | (4 points)

The code given by Fig. 1, p. 3 allows approximating a non-linear function, using a neural network. Provide the result of the approximation and highlight all intermediate steps.

```
~/appware/julia/julia-1.8/julia
julia> f
  nain(
Dense(2 => 2, relu), # ο parameters

Dense(2 => 1, σ), # 3 parameters

# Total: 4 arrays, 9 parameters, 292 bytes.
Chain(
julia> f.layers[1].weight
2×2 Matrix{Float32}:
 1.05509 0.0551044
0.467942 -0.951435
julia> f.layers[1].bias
2-element Vector{Float32}:
 0.0
 0.0
julia> f.layers[2].weight
1×2 Matrix{Float32}:
1.15204 -0.476447
julia> f.layers[2].bias
1-element Vector{Float32}:
0.0
julia> f([-1.3; 4.5]) # f([-1.3; 4.5])
```

FIG. 1. Julia REPL

Result is 1-element vectorFloat64: 0.5

AY: 2022-2023 M1-S1: Dept. of Electrical Engineering RESIT AI-ECUE122 July 2023	Full Name: ID: Class: Room:	
Teacher: A. Mhamdi	Time Limit:	1½ h
Answer	SHEET	
sk N <u>°</u> 4		$\sqrt{2}$ 20mn (3 $\frac{1}{2}$ points)
(a) $\binom{1}{2}$ point) What is the main motivation	on for using ac	ctivation functions in ANN?
 Transforming continuous va 		
 Help avoiding the vanishing 		dient problem.
√ Capturing complex non-line		
 Their ability to activate each 		
(b) $\binom{1}{2}$ point) You work for an insurance		nich machine learning projec
would add the most value for the co		111
 Create an artificial neural n 	etwork that w	ould host the company direc
tory. √ Use machine learning to be	tter predict rie	₽
Create an algorithm that con	•	
one data lake.	iisoiidates aii o	i your exect spreadsheets int
 Use machine learning and b 	oig data to rese	arch salary requirements.
(c) $\binom{1}{1}$ point) What is one reason not to	use the same d	lata for both your training se
and your testing set?		•
 You will almost certainly ur 	nderfit the mod	lel.
\bigcirc You will pick the wrong alg	orithm.	
 You might not have enough 	data for both.	
$\sqrt{\ ext{You will almost certainly ov}}$	erfit the mode	l.
(d) $\binom{1}{2}$ point) What is the form of fuzzy	logic?	
	ed logic OC	risp set logic

DO NOT WRITE ANYTHING HERE

(f) $\binom{1}{2}$ point) « The room temperature is <u>hot</u>. » The linguistic variable <u>hot</u> can be represented by "______".

√ fuzzy set

○ crisp set

 \bigcirc fuzzy and crisp set

O none of the mentioned

(g) (½ point) Fuzzy set theory defines fuzzy operators. Choose the fuzzy operators from the following. ✓! ✓ ✓ ✓ ∧

