

第3章 关联分析/频繁模式挖掘

- ■最原始的推荐系统
- 数据中频繁出现的模式:
 - 什么商品经常被一起购买?— Beer and diapers?!
 - 购买PC后消费者经常还会买什么?
 - 网站用户的行为模式分析——点击行为的模式
 - · DNA片段的关联:通常同时出现的序列组合
- 应用
 - 篮子数据分析, 交叉市场营销, 分类设计, 销售分析, WEB记录流量分析, and DNA 序列分析.

3.1 Apriori 基本概念:频繁模式与支持度

Tid	Items bought				
1	Beer, Nuts, Diaper				
2	Beer, Coffee, Diaper				
3	Beer, Diaper, Eggs				
4	Nuts, Eggs, Milk				
5	Nuts, Coffee, Diaper, Eggs, Milk				

● 项集: 物品的集合

● *支持度 support count* of X: 项集X 出现的次数

● 相对支持度, 项集X 出现的频率

■问题形式化: 寻找支持度大于 minsup 最小阈值的项集

3.1 Apriori 基本概念:推荐准则

Tid	Items bought			
1	Beer, Nuts, Diaper			
2	Beer, Coffee, Diaper			
3	Beer, Diaper, Eggs			
4	Nuts, Eggs, Milk			
5	Nuts, Coffee, Diaper, Eggs, Milk			

- 由项集得到规则(推荐准则)
 - rules $X \rightarrow Y$
 - 推荐准则的相对支持度,
 - 推荐准则的置信度,

举例: 5条记录,商品出现次数: Beer:3, Nuts:3, Diaper:4, Eggs:3, {Beer, Diaper}:3

- Association rules关联规则
 - Beer \rightarrow Diaper (60%, 100%)
 - $Diaper \rightarrow Beer$ (60%, 75%)

3.1 Apriori 一个例子

3.1 Apriori: k+1项集的构造和剪枝

- Assume the items in L_k are listed in an order (e.g., alphabetical)
- Step 1: self-joining L_k (IN SQL)

```
insert into C_{k+1}

select p.item_1, p.item_2, ..., p.item_k, q.item_k

from L_k p, L_k q

where p.item_1=q.item_1, ..., p.item_{k-1}=q.item_{k-1}, p.item_k < q.item_k
```

Step 2: pruning

```
forall itemsets c in C_{k+1} do
forall k-subsets s of c do
if (s is not in L_k) then delete c from C_{k+1}
```


3.1 Apriori: 速度问题

□加速方法

- 事务压缩: 不包含频繁k项集的事务, 一定不包含频繁k+1项集;
- 分区:将数据集划分成小数据集(列),分别统计局部频繁项集,最终合并;
- 采样: 牺牲一部分精度, 行的方向让数据更小;

□缺点

- 仍然有大量候选项集
- 多次扫描数据库

3.2 FP-Grows: 频繁模式树

TID	Items bought	(ordered) frequent items	
1	$\{f, a, c, d, g, i, m, p\}$	$\{f, c, a, m, p\}$	
2	$\{a, b, c, f, l, m, o\}$	$\{f, c, a, b, m\}$	•
3	$\{b, f, h, j, o, w\}$	$\{f, b\}$	min_support = 3
4	$\{b, c, k, s, p\}$	$\{c, b, p\}$	
5	$\{a, f, c, e, l, p, m, n\}$	$\{f, c, a, m, p\}$	
			{

- 1. 扫描一次数据库找到1频繁项集
- 2. 按频繁程度排序
- 3. 再次扫描数据,构造频繁模式树

F-list = f-c-a-b-m-p

3.2 FP-Grows:与Apriori方法比较

FP-Growth vs. Apriori

3.3 等价类变换方法

商品	交易号					
A	{T1, T4, T5, T7, T8}					
В	{T1, T2, T3, T4, T6, T8, T9}					
С	{T3, T5, T6, T7, T8, T9}					
D	{T2, T4}					
E	{T1, T8}					

{A,B} suport=3 {A,B,C} suport=1

3.4 结果的理解

- 高置信度高支持度一定是有意义的关联规则吗?
- 举例: 10000次交易记录,6000次包含计算机设备,7500次包含游戏软件,4000次同时包含计算机设备与游戏软件,那么"购买计算机--->购买游戏软件"规则的支持度是40%,置信度是66%。

	购买计算机	没有购买计算机
购买游戏	4000	3500
没有购买游戏	2000	500

3.4 结果的理解: 关联规则的评价准则

• Lift: 提升

$$lift(A,B) = P(A \cup B)/(P(A)P(B))$$

3.4 结果的理解: 与列相似性计算的关系

Tid	Items bought				
1	Beer, Nuts, Diaper				
2	Beer, Coffee, Diaper				
3	Beer, Diaper, Eggs				
4	Nuts, Eggs, Milk				
5	Nuts, Coffee, Diaper, Eggs, Milk				

- ✓ 列的相似性计算可以用来做关联规则分析
- ✓ 更多的时候:关联规则方法作为一种特征相 似性挖掘方法存在

	Beer	Nuts	Diaper	Coffee	Eggs	Milk
1	1	1	1	0	0	0
2	1	0	1	1	0	0
3	1		1	0	1	0
4	0	1	0	0	1	1
5	0	1	1	1	1	1

关联规则挖掘(平时小)实验

- 1.运行代码
- 2.阅读代码与Apriori算法对应,将伪代码描述对应到代码,写清注释;
- 3.更换较大的数据集income.csv,
- ✓以最小支持度为0.1,最小置信度为0.5建立Apriori关联规则
- ✓以最小支持度为0.1,最小置信度为0.6建立Apriori关联规则
- ✓以最小支持度为0.2,最小置信度为0.5建立Apriori关联规则
- 比较三个关联规则的数目。