Systems of Linear Equations

CH7

econMath.namun+2016sp@gmail.com

2016년 3월 21일

Table of Contents

- Gaussian and Gauss-Jordan Elimination
- Elementary Row Operations (EROs)
- Systems with Many or No Solutions
 - Systems with No Solution
 - Systems with Many Solutions
- 4 Rank The Fundamental Criterion
- 5 The Linear Implicit Function Theorem

General Linear System

General Linear System

$$\bar{a}_{11}x_1 + \bar{a}_{12}x_2 + \dots + \bar{a}_{1n}x_n = \bar{b}_1$$

$$\bar{a}_{21}x_1 + \bar{a}_{22}x_2 + \dots + \bar{a}_{2n}x_n = \bar{b}_2$$

$$\vdots$$

$$\bar{a}_{m1}x_1 + \bar{a}_{m2}x_2 + \dots + \bar{a}_{mn}x_n = \bar{b}_m$$

More elegantly,

$$\bar{A}\mathbf{x} = \bar{\mathbf{b}}$$

(Compare with one-var version: $\bar{a}x = \bar{b}$)

Solution of Linear System: $\mathbf{x} = (x_1, x_2, \dots, x_n)$

- Solution of linear system is $\mathbf{x}=(x_1,x_2,\cdots,x_n)$ satisfies all equations in equation system
- Main considerations:
 - Existance of Solution
 - # of Solutions
 - Efficient deriving methods
 - Substitution
 - Elimination of variables
 - Matrix methods

Elementary Row Operations (EROs)

Solving Procedure: Big Picture

$$(A|\mathbf{b}) \xrightarrow{EROs} (A_{REF}|\mathbf{b}^*) \xrightarrow{EROs} (A_{RREF}|\mathbf{b}^{**}) \xrightarrow{EROs} (I|\mathbf{b}^{***})$$

Solution: $\mathbf{x} = \mathbf{b}^{***}$

General linear system

We should solve

$$\bar{a}_{11}x_1 + \bar{a}_{12}x_2 + \dots + \bar{a}_{1n}x_n = \bar{b}_1$$

$$\bar{a}_{21}x_1 + \bar{a}_{22}x_2 + \dots + \bar{a}_{2n}x_n = \bar{b}_2$$

$$\vdots$$

$$\bar{a}_{m1}x_1 + \bar{a}_{m2}x_2 + \dots + \bar{a}_{mn}x_n = \bar{b}_m$$

Coefficient Matrix, Augment Matrix

Definition (Coefficient Matrix)

A is a coefficient matrix for general linear system

$$A := \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{mn} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

Definition (Augment Matrix)

 \hat{A} is a augment matrix for general linear system

$$\hat{A} := (A|\mathbf{b})$$

Elementary Row Operations (EROs)

Definition

Let R_i be the *i*th row matrix of A, then,

$$R_i \leftrightarrow R_j$$
 (ERO₁(i, j))
 $R_i \leftarrow \bar{k}R_j + R_i$ (ERO₂(k, j, i))
 $R_i \leftarrow \bar{k}R_i$ (ERO₃(k, i))

Above operations do not change solution

- Notations
 - R_i : ith row (of A)
 - C_i : ith column (of A)
 - a_{ij} : Element of ith row, jth column (of A)

Row Echelon Form

Definition (k-leading zeros, pivot, Row Echelon Form (REF))

 R_i has k-leading zeros if:

$$a_{ij} = \begin{cases} 0, & \forall j \le k \\ \text{not } 0, & j = k+1 \end{cases}$$

Above $a_{i,k+1}$ is a pivot of R_i

Let k_i be # of leading zeros of R_i . Then \hat{A}_{REF} is <u>row echelon form</u> (REF) of \hat{A} if:

- $k_i > k_j \quad \forall i > j$
- Zero rows are placed on the bottom of A

Reduced Row Echelon Form (RREF)

Definition (Reduced Row Echelon Form (RREF))

 A_{RREF} is a reduced row echelon form (RREF) of A if:

- A_{RREF} is REF
- ullet If C_i has pivot, only pivot is non-zero element in C_i
- *Pivot* = 1

Solving Procedure: Gauss-Jordan Elimination

$$(A|\mathbf{b}) \xrightarrow{EROs} (A_{REF}|\mathbf{b}^*) \xrightarrow{EROs} (A_{RREF}|\mathbf{b}^{**}) \xrightarrow{EROs} (I|\mathbf{b}^{***})$$

Solution: If the liear system $Ax = \mathbf{b}$ has an unique solution (A is $m \times n$ matrix), $A_{RREF} = I$ (m = n) or, $R_i = I_i$ ($i \le n$) and $R_i = \mathbf{O}$ (i > n)

Systems with No Solution

During EROs for $\hat{A}=A|\mathbf{b}$, if you encounter with $\mathbf{O}|k\neq 0$, i.e.,

 $(000\cdots 0|k\neq 0)$, this system has no solution

Meaning:

$$0x_1 + 0x_2 + \dots + 0x_n = 0 = k \neq 0$$
 (contradiction!)

No ${f x}$ can satisfy this equation

Theorem (Fact7.2)

 \hat{A} has a solution iff

$$rank\hat{A} = rankA$$

Systems with Many Solutions

Here, w stands for independent zero or non-zero element (can have any values) and * is nonzero pivot.

REF of systems with many solutions

Systems with many solutions have following form of RREF (blank means zero)

(REF)

RREF of Systems with many solutions

Important note: This is just an example of systems with many solutions.

RREF of systems with many solutions

Systems with many solutions have following form of RREF (blank means zero)

$$\begin{pmatrix} 1 & w & w & 0 & w & 0 & 0 & 0 & | & w \\ & & 1 & w & 0 & 0 & 0 & | & w \\ & & & 1 & 0 & 0 & | & w \\ & & & & 1 & 0 & | & w \\ & & & & & 1 & | & w \end{pmatrix}$$

(RREF)

In systems with many solutions, there exist \mathcal{C}_i with no pivot (in our

Solutions of linear systems with many solutions

- Two types of solutions
 - Basic variables are dependent on free variables or, fixed value:
 - Dependent on free variables: x_1, x_4 (in our example)
 - Fixed value: x_6, x_7, x_8 (in our example)
 - **2** Free variables can have any value: x_2, x_3, x_5 (in our example)
 - If C_i has no pivot, x_i is free variable
- In solving systems with many solutions, above types should be addressed explicitly

Rank

Definition (Rank)

The \underline{Rank} of a matrix is # of the nonzero rows in its REF (or RREF)

Property of Rank

Rank = # of pivots = # of nonzero rows of REF (or RREF)

 Implication: Rank means the number of effective (meaningful) equations

Theorem (Fact7.11)

A system of m equations and n unknowns (its coefficient matrix is $m \times n$ matrix)

$$A\mathbf{x} = \mathbf{b}$$

m < n	# of solutions
$\mathbf{b} = 0$	∞
$orall \mathbf{b}$	$0 \lor \infty$
rankA = m	$\infty(\forall \mathbf{b})$
m > n	
$\mathbf{b} = 0$	$1 \lor \infty$
$orall \mathbf{b}$	$0 \lor 1 \lor \infty$
rankA = n	$0 \lor 1(\forall \mathbf{b})$
m = n	
$\mathbf{b} = 0$	$1 \lor \infty$
$orall \mathbf{b}$	$0 \lor 1 \lor \infty$
rankA=n=m	$1(\forall \mathbf{b})$

Example: IS-LM model

IS-LM Model

$$sY + ar = I^0 + G (IS)$$

$$mY - hr = M_s + M^0 (LM)$$

- ullet Endogenous variables: Y, r
- Exogenous parameters: s,a,m,h,I^0,G,M_s,M^0
 - Policy variables: G, M_s
 - Behavioral variables: s, a, m, h, I^0, M^0
- Coefficient matrix:

$$A = \begin{pmatrix} s & a \\ m & -h \end{pmatrix}$$

Linear Implicit Function Theorem

Theorem (Linear Implicit Function Theorem)

A general linear model with m equations and n knowns can have an unique solution (and suppose x_i are arranged by endogeneity) iff:

- x_1, \cdots, x_k are endogenous variables
- x_{k+1}, \cdots, x_n are exogenous variables (i.e., constant in this system)
- \bullet k=m
- rankA = k

Linear IFT

Implication of Linear IFT: treat exogenous variables as constant.

$$\bar{a}_{11}x_1 + \bar{a}_{12}x_2 + \dots + \bar{a}_{1n}x_n = \bar{b}_1$$

$$\vdots$$

$$\bar{a}_{m1}x_1 + \bar{a}_{m2}x_2 + \dots + \bar{a}_{mn}x_n = \bar{b}_m$$

Above system can be solvable iff $rank\tilde{A} = k = m$

$$\tilde{A} := \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \\ \vdots & \vdots & & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kk} \end{pmatrix}, \tilde{\mathbf{b}} = \begin{pmatrix} b_1 - a_{1,k+1}x_{k+1} - \cdots - a_{1n}x_n \\ b_2 - a_{2,k+1}x_{k+1} - \cdots - a_{2n}x_n \\ \vdots \\ b_k - a_{k,k+1}x_{k+1} - \cdots - a_{kn}x_n \end{pmatrix}$$