

Chimie des Biomolécules

PACES UE1

Pr. Nicolas Willand

Chapitre 1: les Lipides

Partie 1.2: les cyclanes

Partie 1.2.1: Généralités

Alcanes de structure cyclique

(CH₂)_n, or C_nH_{2n} $n \geq 3$ H₂C CH₂ cyclobutane cyclopropane cyclopentane cyclohexane

Partie 1.2.2: Nomenclature

1. Il n'est pas nécessaire d'indiquer la place d'un substituant unique

2. Dans le cas de deux substituants: les nommer par ordre alphabétique et le premier substituant portera l'indice 1

Partie 1.2.3: Structure du cyclohexane

Le cyclohexane. 1

Partie 1.2.3: Structure du cyclohexane

Le cyclohexane

Conformation chaise

Partie 1.2.3: Structure du cyclohexane

Le cyclohexane en conformation chaise

Les 12 atomes d'Hydrogène ne semblent pas être équivalents

Partie 1.2.3: Structure du cyclohexane

Le cyclohexane en conformation chaise

Toutes les liaisons sont décalées

Les 12 atomes d'Hydrogène ne semblent pas être équivalents

Partie 1.2.3: Structure du cyclohexane

Partie 1.2.3: Structure du cyclohexane

Il existe une interconversion entre les conformations "chaise" Cette interconversion est rapide

(énergie d'activation = 45 kJ/mol correspondant à 2 x 105 s-1 à 25 °C)

Tous les hydrogènes axiaux deviennent équatoriaux et inversement

Partie 1.2.4: Structure du cyclohexane monosubstitué

Cas du méthylcyclohexane

PNotePrend Wind Programme Programme

Partie 1.2.4: Structure du cyclohexane monosubstitué

Cas du méthylcyclohexane

Ces deux **conformères** sont-ils équivalents? Conformère équatorial plus stable de 7 kJ Rapport 95/5 à 25°C Équilibre rapide à 25°C OUI

Partie 1.2.4: Structure du cyclohexane monosubstitué

Cas du méthylcyclohexane

Distc, H1 - H3: distce très courte

Conformère axial

Répulsion entre méthyle et H axiaux interaction diaxiale-1,3

Distce bcp + longues

Conformère équatorial

Distances interatomiques maximales

Partie 1.2.4: Structure du cyclohexane monosubstitué

Cas du *tert*-butylcyclohexane

La forme axiale est d'autant plus défavorisée que le substituant est volumineux

Partie 1.2.5: Structure du cyclohexane disubstitué

Cas du 1,2-diméthylcyclohexane

Position axiale Po axia - équa Pr. Nicolas Willand PACES UE1

Les diastéréoisomères sont des molécules qui ont le même enchaînement d'atomes, mais qui ne sont ni superposables, ni image l'un de l'autre dans un miroir.

Partie 1.2.5: Structure du cyclohexane disubstitué

Cas du 1,2-diméthylcyclohexane

Partie 1.2.5: Structure du cyclohexane disubstitué

Cas du cis-1,2-diméthylcyclohexane

deux conformations équivalentes: chacune possède un méthyle axial et un méthyle équatorial : E équivalente

Partie 1.2.5: Structure du cyclohexane disubstitué

Cas du trans-1,2-diméthylcyclohexane

2 substituants axiaux : moins stable 2 substituants équatoriaux : plus stable

Partie 1.2.5: Structure du cyclohexane disubstitué

IL N'EST PAS POSSIBLE de passer par interconversion d'un stéréoisomère cis à un stéréoisomère trans

Partie 1.2.6: Structure de la décaline

Partie 1.2.6: Structure de la décaline

Cas de la cis et trans décaline

Jonction cis

cis-décaline

Jonction trans

Partie 1.2.6: Structure de la décaline

Cas de la cis et trans décaline

24

Partie 1.2.7: Structure des stéroïdes

Hydrophobes

Un substituant situé: **Au dessus** du plan est dit β **Au dessous** du plan est dit α

19 toujours au dessus du plan (β)

3 jonctions de cycle : A/B Peut être cis ou trans $\begin{array}{c}
B/C \\
C/D
\end{array}$ sont toujours de type trans

La molécule toute entière est donc totalement rigide

25

Partie 1.2.7: Structure des stéroïdes

Partie 1.2.7: Structure des stéroïdes

Trans. Trans.

HO HH H

Épiandrostérone

Trans

Jonction trans : série 5a

Cis. Trans. Trans

Acide cholique

Jonction cis : série 5β