声明:本课程版权归华算科技所有,仅限个人学习,严禁任何形式的录制、传播和账号分享。一经发现,平台将依法保留追究权,情节严重者将承担法律责任。

Python与机器学习

——机器学习与高通量筛选

华算科技 黄老师 2022年1月20日

目录

- 1. 高通量筛选
- 2. 材料科学数据库
- 3. matminer导入数据
- 4. 材料数据可视化
- 5. 高通量筛选实操
- 6. 高通量筛选与机器学习

目录

- 1. 高通量筛选
- 2. 材料科学数据库
- 3. matminer导入数据
- 4. 材料数据可视化
- 5. 高通量筛选实操
- 6. 高通量筛选与机器学习

高通量筛选

Y. Xiao, G. Ceder et al. Joule. 2019, 3, 1-24.

高通量筛选

HER电极的筛选

- J. Greeley, J. K. Norskov et al. Nat. Mater 2006, 5, 909.
- K. Tran and Z. W. Ulissi. *Nat. Cata* **2018**, 1, 696.

高通量数据来源

数据库

DFT计算

文献数据挖掘

实验获取

目录

- 1. 高通量筛选
- 2. 材料科学数据库
- 3. matminer导入数据
- 4. 材料数据可视化
- 5. 高通量筛选实操
- 6. 高通量筛选与机器学习

The Materials Project

https://materialsproject.org

The Materials Project提供基于 Web 的开放式访问,可访问已知和预测材料的计算信息,以及用于激发和设计新颖材料的强大分析工具。

Citrine Informatics

CITRINE INFORMATICS

Al-Powered Materials Data Platform

材料学数据库 https://citrination.com

大量的理论与实验数据

Names: alumina, alumina Chemical Formula: Al₂O₃

Properties

Purity: 99.9 %

Elastic tensor

Data Type

EXPERIMENTAL

Methods

Resonant ultasound spectroscopy (RUS)

Elastic tensor

Data Type

COMPUTATIONAL

Methods

VASP 4.6 GGA/PBE

matminer

https://hackingmaterials.lbl.gov/matminer

Ward, L., Jain, A., et al. Comput. Mater. Sci. 2018, 152, 60-69.

matminer

https://hackingmaterials.lbl.gov/matminer

Ward, L., Jain, A., et al. Comput. Mater. Sci. 2018, 152, 60-69.

matminer简介

※ 可在线访问40多个现成的数据集 matminer.datasets

※ 从数据库中创建自己的数据集 matminer.data_retrieval

※ 将材料属性转换为描述符信息 matminer.featurizers

Table of Datasets

Find a table of all 42 datasets available in matminer here.

Name	Description	Entries
boltztrap_mp	Effective mass and thermoelectric properties of 8924 compounds in The Materials Project database that are calculated by the BoltzTraP software package run on the	8924
brgoch_superhard_training	GGA-PBE or GGA+U density functional theory calculation results 2574 materials used for training regressors that predict shear and bulk modulus.	2574
castelli_perovskites	18,928 perovskites generated with ABX combinatorics, calculating gllbsc band gap and pbe structure, and also reporting absolute band edge positions and heat of formation.	18928

bandstructure

Features derived from a material's electronic bandstructure.

matminer. featurizers. bandstructure

Name	Description				
BranchPointEnergy	Branch point energy and absolute band edge position.				
BandFeaturizer	Featurizes a pymatgen band structure object.				

base

matminer 0.7.4 documentation » matminer (Materials Data Mining)

modules | index

Table of Contents

matminer

- Related software
- Quick Links
- Installation
- Overview
- Featurizers generate descriptors for materials
- Data retrieval easily puts complex online data into dataframes
- Access readymade datasets in one line
- Data munging with Conversion Featurizers
- Examples
- Citations and Changelog
 - Citing matminer
 - Changelog
 - Contributions

matminer

matminer is a Python library for data mining the properties of materials.

Matminer contains routines for:

- one-line access to 40+ ready-made datasets (matminer. datasets)
 - Spans various domains of materials data
 - Full list of datasets here: Table of Datasets
- easily creating your own datasets from online repositories (matminer. data_retrieval)
 - such as The Materials Project and Citrination, among others
- transforming and featurizing complex materials attributes into numerical descriptors (matminer. featurizers)
 - 70+ featurizers adapted from scientific publications
 - o Feature generation routines for

modules: 介绍matminer 中的所有模块、 子模块以及模 块中包含的方 法

index: 以检索的形式 列出了 matminer中所 有的方法

目录

- 1. 高通量筛选
- 2. 材料科学数据库
- 3. matminer导入数据
- 4. 材料数据可视化
- 5. 高通量筛选实操
- 6. 高通量筛选与机器学习

数据载入

load_dataset()函数

用于导入matminer 集成的任一数据集

```
In [1]: from matminer.datasets import load_dataset
df = load_dataset('expt_gap')
```

In [2]: df

Out[2]:

	formula	gap expt
0	Hg0.7Cd0.3Te	0.35
1	CuBr	3.08
2	LuP	1.30
3	Cu3SbSe4	0.40
4	ZnO	3.44
6349	Tm2MgTI	0.00
6350	Nb5Ga4	0.00
6351	Tb2Sb5	0.00
6352	Lu2AlTc	0.00
6353	CeZnPO	0.00

数据载入

Submodules

matminer.datasets.convenience_loaders module

子模块介绍: convenience_loaders用于数据载入

matminer. datasets. convenience_loaders. load_expt_gap(data_home=None, download_if_missing=True)

Convenience function for loading the expt_gap dataset.me

方法介绍: 导入对应数据集的方法

Args:

data_home (str, None): Where to look for and store the loaded dataset

download_if_missing (bool): Whether or not to download the dataset if

it isn't on disk

参数介绍: 默认参数可完成

Returns: (pd.DataFrame)

返回值类型: DataFrame

数据载入

使用convenience_loaders 方法

```
In [3]: from matminer.datasets.convenience_loaders import load_expt_gap

df = load_expt_gap()
    df
```

Out[3]:

formula	gap expt
Hg0.7Cd0.3Te	0.35
CuBr	3.08
LuP	1.30
Cu3SbSe4	0.40
ZnO	3.44
Tm2MgTI	0.00
Nb5Ga4	0.00
Tb2Sb5	0.00
Lu2AlTc	0.00
CeZnPO	0.00
	Hg0.7Cd0.3Te CuBr LuP Cu3SbSe4 ZnO Tm2MgTl Nb5Ga4 Tb2Sb5 Lu2AlTc

查看数据集

查看数据集中不同列的含义

expt_gap

Experimental band gap of 6354 inorganic semiconductors.

Number of entries: 6354

Column	Description
formula	chemical formula
gap expt	band gap (in eV) measured experimentally

Reference

https://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.8b00124

查看单个数据

df.loc[0]

[12]: df. loc[0]

Out[12]: formula Hg0. 7Cd0. 3Te 0.35

gap expt Name: 0, dtype: object

字段查找

df.loc[df['formula']== 'CuBr']

In [14]: df.loc[df['formula'] == 'CuBr']

Out[14]:

	formula	gap expt
1	CuBr	3.08
16	CuBr	2.94
455	CuBr	3.08
457	CuBr	2.91
1705	CuBr	3.07
2783	CuBr	2.90
2789	CuBr	3.02
3774	CuBr	2.99

练习

练习:导入并查看 elastic_tensor_2015 数据集

导入其它数据库数据

以Materials Project为例

```
[25]: from matminer.data retrieval.retrieve MP import MPDataRetrieval
      mpd = MPDataRetrieval(api key="YOUR API KEY")
      data = mpd. get data('Fe203', ['formula', 'band gap'])
      df test = mpd. get dataframe(criteria='Si-0', properties=['formula', 'band gap'])
      for d1 in data:
          print(d)
      print(df test)
      for d2 in df test:
          print(dt)
       {'formula': {'Fe': 2.0, '0': 3.0}, 'band gap': 0.22019999999999, 'material id': 'mp-1244869'}
       {'formula': {'Fe': 2.0, '0': 3.0}, 'band_gap': 1.5673, 'material_id': 'mp-1456'}
       {'formula': {'Fe': 2.0, '0': 3.0}, 'band_gap': 1.42480000000003, 'material_id': 'mp-715276'}
       {'formula': {'Fe': 2.0, '0': 3.0}, 'band_gap': 0.379800000000014, 'material_id': 'mp-1245154'}
       {'formula': {'Fe': 2.0, '0': 3.0}, 'band_gap': 0.0, 'material_id': 'mp-1078361'}
       {'formula': {'Fe': 2.0, '0': 3.0}, 'band_gap': 1.1123, 'material_id': 'mp-1245078'}
       {'formula': {'Fe': 2.0, '0': 3.0}, 'band_gap': 0.0, 'material_id': 'mp-716814'}
       {'formula': {'Fe': 2.0, '0': 3.0}, 'band gap': 1.34649999999999, 'material id': 'mp-715572'}
       {'formula': {'Fe': 2.0, '0': 3.0}, 'band_gap': 0.0, 'material_id': 'mp-1068212'}
       {'formula': {'Fe': 2.0, '0': 3.0}, 'band_gap': 1.446400000000001, 'material_id': 'mp-510080'}
```

目录

- 1. 高通量筛选
- 2. 材料科学数据库
- 3. matminer导入数据
- 4. 材料数据可视化
- 5. 高通量筛选实操
- 6. 高通量筛选与机器学习

数据可视化——分布图

```
In [7]: import matplotlib.pyplot as plt
   plt.hist(df_el['K_VRH'])
   plt.show()
```


In [8]: plt.hist(df_el['K_VRH'], density = True)
 plt.show()

数据可视化——分布图

```
In [9]: plt.hist(df_el['K_VRH'], density = True, color = 'g', edgecolor = 'k', alpha = 0.75)
plt.show()
```


数据可视化——分布图

数据可视化——弹性模量

```
In [11]: import numpy as np
    x = np. array(df_e1['G_VRH'])
    y = np. array(df_e1['K_VRH'])
    plt. scatter(x, y)
    z = np. array(df_e1['poisson_ratio'])
    plt. xlim(0, 300)
    plt. scatter(x, y, c=z, cmap='bwr')
    plt. show()
```


数据可视化——弹性模量

目录

- 1. 高通量筛选
- 2. 材料科学数据库
- 3. matminer导入数据
- 4. 材料数据可视化
- 5. 高通量筛选实操
- 6. 高通量筛选与机器学习

数据导入

83989 rows × 9 columns

from matminer. datasets import load_dataset df mp = load_dataset('mp_nostruct_20181018') [2]df_mp In Out[2]: bulk modulus shear modulus e_hull mpid formula gap pbe mu b elastic anisotropy e form 0 mp-85 In 0.003319 0.0000 2.700000e-05 1.044699 33.154748 4.904836 0.003319 0.039182 mp-110 0.039182 -1.360000e-05 -11.326659 35.636106 1.830272 0.0000 Be 0.108143 0.0000 1.000000e-07 8.030000 124.000000 84.000000 0.108143 2 mp-20 mp-8640 Hf 0.071216 -2.050000e-05 101.242732 44.836516 0.071216 3 0.0000 0.881277 3.509988 4 mp-674158 P 3.509988 3.000042e+00 0.327165 -0.064038 2.0113 10.884643 ••• 0.000000e+00 NaN -2.832238 83984 mp-4446 Sr3(GaO3)2 0.000691 3.5262 NaN NaN mp-3393 Sr3Al2O6 0.000000 0.000000e+00 NaN NaN NaN -3.358646 83985 4.2046 MgSb2(H4O3)6 0.028109 -4.338000e-04 NaN -1.533338 83986 mp-24696 3.2827 NaN NaN 83987 mp-23984 GaH18C3(N3F2)3 0.000000 4.9759 2.460000e-05 NaN NaN NaN -1.066094 83988 mp-24554 AIH18C3(N3F2)3 0.000000 5.3705 5.312000e-04 NaN NaN NaN -1.161128

高通量筛选

预处理

```
In [3]: num = df_mp.isna().sum()
        num
Out[3]: mpid
                                                      包含nan数据
        formula
        e_hull
        gap pbe
        mu_b
        elastic anisotropy
                             76313
        bulk modulus
                             76313
        shear modulus
                             76313
        e_form
        dtype: int64
```

预处理

筛去nan数据 (83989 → 83987)

Out[5]:

	mpid	formula	e_hull	gap pbe	mu_b	elastic anisotropy	bulk modulus	shear modulus	e_form
0	mp-85	In	0.003319	0.0000	2.700000e-05	1.044699	33.154748	4.904836	0.003319
1	mp-110	Mg	0.039182	0.0000	-1.360000e-05	-11.326659	35.636106	1.830272	0.039182
2	mp-20	Ве	0.108143	0.0000	1.000000e-07	8.030000	124.000000	84.000000	0.108143
3	mp-8640	Hf	0.071216	0.0000	-2.050000e-05	0.881277	101.242732	44.836516	0.071216
4	mp-674158	Р	3.509988	2.0113	3.000042e+00	10.884643	0.327165	-0.064038	3.509988
83984	mp-4446	Sr3(GaO3)2	0.000691	3.5262	0.000000e+00	NaN	NaN	NaN	-2.832238
83985	mp-3393	Sr3Al2O6	0.000000	4.2046	0.000000e+00	NaN	NaN	NaN	-3.358646
83986	mp-24696	MgSb2(H4O3)6	0.028109	3.2827	-4.338000e-04	NaN	NaN	NaN	-1.533338
83987	mp-23984	GaH18C3(N3F2)3	0.000000	4.9759	2.460000e-05	NaN	NaN	NaN	-1.066094
83988	mp-24554	AIH18C3(N3F2)3	0.000000	5.3705	5.312000e-04	NaN	NaN	NaN	-1.161128

筛选1

是否含Li (83987 → 13943)

Out[6]:

	mpid	formula	e_hull	gap pbe	mu_b	elastic anisotropy	bulk modulus	shear modulus	e_form
15	mp-51	Li	0.002860	0.0000	0.000100	-4.976255	13.860513	15.128887	0.002860
29	mp-567337	Li	0.017123	0.0000	0.000390	1.890000	14.000000	7.000000	0.017123
143	mp-135	Li	0.000000	0.0000	0.000072	12.177018	14.012877	4.480159	0.000000
207	mp-2314	LiPb	0.000000	0.0000	0.000062	NaN	NaN	NaN	-0.273765
260	mp-934	LiTI	0.000000	0.0000	-0.000068	0.764436	31.438228	16.386834	-0.230930
83839	mp-601344	LiZr3H18N4F19	0.000000	6.0167	-0.033311	NaN	NaN	NaN	-2.311442
83862	mp-686484	LiCa9Mg(PO4)7	0.000000	4.7063	-0.000302	NaN	NaN	NaN	-3.286062
83946	mp-686230	Li20Nb19O60	0.055496	0.0000	6.630597	NaN	NaN	NaN	-2.777481
83968	mp-723059	Li3Nd2H6(N3O10)3	0.000000	3.5123	-0.007566	NaN	NaN	NaN	-1.506936
83970	mp-722330	Li3La2H6(N3O10)3	0.000000	3.5098	-0.006423	NaN	NaN	NaN	-1.526244

筛选2

是否是金属 (813943 → 8990)

In [9]: df_mp_Li_gp = df_mp_Li.loc[df_mp_Li['gap pbe'] > 0.5]
 df_mp_Li_gp

Out[9]:

	mpid	formula	e_hull	gap pbe	mu_b	elastic anisotropy	bulk modulus	shear modulus	e_form
333	mp-23259	LiBr	0.025492	4.9234	0.000000e+00	0.290976	21.062752	15.948641	-1.547844
942	mp-23703	LiH	0.000000	2.9737	0.000000e+00	0.096891	36.063260	42.924750	-0.489313
1355	mp-1138	LiF	0.000000	8.7161	-9.000000e-07	0.158661	69.881504	50.943440	-3.180880
1447	mp-22899	Lil	0.036396	4.2306	0.000000e+00	0.057074	20.634770	12.967352	-1.199312
1451	mp-22905	LiCl	0.000000	6.2500	0.000000e+00	0.206676	31.939069	21.114162	-2.107280
83837	mp-699932	Ba3Li2Mo4P6(CIO14)2	0.002449	2.1138	1.599965e+01	NaN	NaN	NaN	-2.688131
83839	mp-601344	LiZr3H18N4F19	0.000000	6.0167	-3.331140e-02	NaN	NaN	NaN	-2.311442
83862	mp-686484	LiCa9Mg(PO4)7	0.000000	4.7063	-3.017000e-04	NaN	NaN	NaN	-3.286062
83968	mp-723059	Li3Nd2H6(N3O10)3	0.000000	3.5123	-7.565500e-03	NaN	NaN	NaN	-1.506936
83970	mp-722330	Li3La2H6(N3O10)3	0.000000	3.5098	-6.423500e-03	NaN	NaN	NaN	-1.526244

筛选3

是否稳定 (8990 → 1482)

Out[7]:

	mpid	formula	e_hull	gap pbe	mu_b	elastic anisotropy	bulk modulus	shear modulus	e_form
942	mp-23703	LiH	0.000000	2.9737	0.000000e+00	0.096891	36.063260	42.924750	-0.489313
1355	mp-1138	LiF	0.000000	8.7161	-9.000000e-07	0.158661	69.881504	50.943440	-3.180880
1451	mp-22905	LiCl	0.000000	6.2500	0.000000e+00	0.206676	31.939069	21.114162	-2.107280
1587	mp-7575	LiZnN	0.000000	0.5083	0.000000e+00	0.345628	115.754088	84.897980	-0.389165
1700	mp-9124	LiZnAs	0.000000	0.5475	1.642000e-04	0.071256	54.738221	40.055683	-0.519940
83837	mp-699932	Ba3Li2Mo4P6(CIO14)2	0.002449	2.1138	1.599965e+01	NaN	NaN	NaN	-2.688131
83839	mp-601344	LiZr3H18N4F19	0.000000	6.0167	-3.331140e-02	NaN	NaN	NaN	-2.311442
83862	mp-686484	LiCa9Mg(PO4)7	0.000000	4.7063	-3.017000e-04	NaN	NaN	NaN	-3.286062
83968	mp-723059	Li3Nd2H6(N3O10)3	0.000000	3.5123	-7.565500e-03	NaN	NaN	NaN	-1.506936
83970	mp-722330	Li3La2H6(N3O10)3	0.000000	3.5098	-6.423500e-03	NaN	NaN	NaN	-1.526244

高通量筛选

目录

- 1. 高通量筛选
- 2. 材料科学数据库
- 3. matminer导入数据
- 4. 材料数据可视化
- 5. 高通量筛选实操
- 6. 高通量筛选与机器学习

高通量筛选中的机器学习

各节点的分类依据可借助机器学习方法进行判断

R. G. Bombarelli, A. A. Guzik et al. Nat. Mater. 2016, 15, 1120-1127.

高通量筛选

TD-DFT吸收光谱近 似为实验发射光谱

随机选择分子进行计算 回归获得机器学习模型

