ЛАБОРАТОРНАЯ РАБОТА МИНИМИЗАЦИЯ ФУНКЦИЙ

Цель работы: сформировать практические навыки анализа возможностей построения и выделения наиболее важных свойств объектов моделей для моделирования и использования специализированных программных пакетов и библиотек для решения задачи минимизации функции и визуализации результатов решения.

Задачи: найти минимум функции, указанной в варианте предложенным методом, сравнить результаты, выдвинуть и обосновать гипотезу целесообразности использования того или иного метода в зависимости от предложенной задачи и ее вариаций, точности результата, трудоемкости, сложности алгоритма, сложности обоснования применимости метода, вычислительной эффективности алгоритма. Визуализировать результаты.

Задача 1 Методом Ньютона найти минимум и максимум унимодальной на отрезке [a,b] функции f(x) с точностью $\varepsilon = 10^{-6}$. Предусмотреть подсчет числа итераций, потребовавшихся для достижения заданной точности.

Задача 2. Указанным в индивидуальном варианте методом найти минимумы и максимумы функции f(x) на отрезке $[x_1, x_2]$ с точностью $\varepsilon = 10^{-6}$.

Предусмотреть подсчет числа итераций, потребовавшихся для достижения заданной точности.

Задача 3. Функция x(t) задана неявно уравнением F(x,t) = 0, $t_1 \le t \le t_2$, $x_1 \le x \le x_2$. Построить график зависимости функции x(t) на заданном отрезке $[t_1,t_2]$ и найти ее минимум и максимум с точностью $\varepsilon = 10^{-6}$.

Задача 4. Функция f(x) представлена частичной суммой ряда $f(x) = \sum_{i=1}^{n} u_i(x)$.

Построить график функции на заданном отрезке $[x_1, x_2]$ и найти ее минимумы и максимумы с указанной точностью ε .

Задача 5. Найти минимум функции 2-х переменных f(x,y) с точностью $\varepsilon = 10^{-6}$ на прямоугольнике $[x_1,x_2] \times [y_1,y_2]$.

ПОРЯДОК РЕШЕНИЯ ЗАДАЧИ:

- 1. Задать указанную в варианте функцию f(x, y).
- 2. Построить графики функции и поверхностей уровня f(x,y).
- 3. По графикам найти точки начального приближения к точкам экстремума.
- 4. Найти экстремумы функции с заданной точностью.

Задача 6. Указанным в индивидуальном варианте методом найти минимум квадратичной функции $f(x,y) = a_{11}x^2 + 2a_{12}xy + a_{22}y^2 + 2a_{13}x + 2a_{23}y$ с точностью $\varepsilon = 10^{-6}$. Для решения задачи многомерной минимизации использовать метод Ньютона. Построить график функции f. Предусмотреть подсчет числа итераций, потребовавшихся для достижения заданной точности.

ПРИЛОЖЕНИЕ

Схема вариантов к лабораторной работе

№	Выполняемые задачи	№	Выполняемые задачи	№	Выполняемые задачи
1	1.1, 2.1, 5.1, 6.1	11	1.11, 3.4, 5.11, 6.11	21	1.21, 4.7, 5.21, 6.21
2	1.2, 3.1, 5.2, 6.2	12	1.12, 4.4, 5.12, 6.12	22	1.22, 2.8, 5.22, 6.22
3	1.3, 4.1, 5.3, 6.3	13	1.13, 2.5, 5.13, 6.13	23	1.23, 3.8, 5.23, 6.23
4	1.4, 2.2, 5.4, 6.4	14	1.14, 3.5, 5.14, 6.14	24	1.24, 4.8, 5.24, 6.24
5	1.5, 3.2, 5.5, 6.5	15	1.15, 4.5, 5.15, 6.15	25	1.25, 2.9, 5.25, 6.25

6	1.6, 4.2, 5.6, 6.6	16	1.16, 2.6, 5.16, 6.16	26	1.26, 3.9, 5.26, 6.26
7	1.7, 2.3, 5.7, 6.7	17	1.17, 3.6, 5.17, 6.17	27	1.27, 4.9, 5.27, 6.27
8	1.8, 3.3, 5.8, 6.8	18	1.18, 4.6, 5.18, 6.18	28	1.28, 2.10, 5.28, 6.28
9	1.9, 4.3, 5.9, 6.9	19	1.19, 2.7,5.19, 6.19	29	1.29, 3.10, 5.29, 6.29
10	1.10, 2.4, 5.10, 6.10	20	1.20, 3.7, 5.20, 6.20	30	1.30, 4.10, 5.30, 6.30

ЗАДАНИЕ НА ЛАБОРАТОРНУЮ РАБОТУ

Таблица к задаче 1

No॒	f(x)	a	b	$N_{\underline{0}}$	f(x)	a	b
1.1	$x^2 + 2e^x$	-2	2	1.16	$3\cos^2 x - \sqrt{x}$	0	3
1.2	$e^x \sin x$	0	4	1.17	$\frac{3\cos^2 x}{4\sqrt{x} - \tan x}$	0	1.5
1.3	$2x + e^{4-x}$	1	7	1.18	$\sin^3 x + \cos^2 x$	0	1.5
1.4	$e^x - 2\sin x$	0	2	1.19	$x^2 \cos x$	0	2
1.5	$x^{2}-2^{x}$	0	2	1.20	$4^x - 8x$	0	2
1.6	$2^x - \ln x$	0.1	3	1.21	$x^{5}-5^{x}$	0.5	1.5
1.7	x^3-e^x	0	3	1.22	$\ln(x) - 5\sin(x)$	1	2
1.8	$\sin x - 2\cos x$	1	4	1.23	$x^3 - e^x$	-1	0
1.9	$x^2 - 2\sin x$	0	3	1.24	$\sin x + e^{-x^2}$	-1	2
1.10	$e^x \cos x$	0	1.5	1.25	$\sin^2 x - \sqrt{x}$	0	1
1.11	$-3x + e^{x-1}$	0	4	1.26	$2^x \cos x$	-2	2
1.12	$x^3 - 3^x$	2	3.5	1.27	$e^{x-4}-4x$	3	8
1.13	$e^x - \ln x$	0.1	2	1.28	$ln(x) - 4^x$	0.1	1
1.14	$3\cos x - \sin x$	0	5	1.29	$2\sin x - 3\cos x$	-1	1
1.15	$x^4 - e^x$	0	2	1.30	$x^6 - e^x$	0	1

Таблица к задаче 2

No	f(t)	X ₁	X ₂	Метод минимизации
2.1	$\sin t^2$	0	2	Золотого сечения
2.2	$(t+1)\cos t$	0	4	Деления отрезка пополам
2.3	$\cos e^t$	1	2	Фибоначчи
2.4	$\left(t^2-t-1\right)/\left(t^2+t+5\right)$	-1	2	Золотого сечения
2.5	$(\sin t)/(t^2+1)$	1	4	Деления отрезка пополам
2.6	$\left(t^2-3\right)/\left(t^2+2\right)$	-1	4	Фибоначчи
2.7	$(t^2-2)/(e^t)$	0	4	Золотого сечения
2.8	$\sin e^t$	0	1.5	Деления отрезка пополам
2.9	$t\sin t$	0	5	Фибоначчи
2.10	$\cos t^2$	0	2	Золотого сечения

Таблица к задаче 3

						1 и от при по от ди 10
№	F(x,t)	t_1	t_2	\mathbf{x}_1	\mathbf{x}_2	Метод минимизации
3.1	$\cos x - x + \sin t$	-1	4	0	2	Золотого сечения
3.2	$x^2 + 3\cos t \ln x - t$	2	5	1	3	Деления отрезка пополам
3.3	$e^{2x+t}-e^{t^2}-2\cos x$	0	2	0	2	Фибоначчи

Окончание таблицы к задаче 3

						ине таолицы к зада те з
3.4	$\cos(x^2) - t^2 + x \sin t$	0	1	1	1.5	Золотого сечения
3.5	$e^{x+t} - e^{t^2} - 3\cos x$	0	2	0	2	Деления отрезка пополам
3.6	$x^3+x+6\sin t-t$	0	3	-2	-0.5	Фибоначчи
3.7	$x^2 + 5t\sin t - t^2$	4	7	2	8	Золотого сечения
3.8	$\cos(x) - (x-2)\sin(xt)$	0	2	0	2	Деления отрезка пополам
3.9	$1-x^2-(x-4)\sin(xt)$	0	2	0	2	Фибоначчи
3.10	$x^4 - 10\sin t + 5x$	0	2	0	2	Золотого сечения

Таблица к задаче 4

						т аолица к зада те
№	$u_n(x)$	\mathbf{x}_1	X 2	n	\mathcal{E}	Метод минимизации
4.1	$\left(-1\right)^{n+1}\frac{\cos(nx)}{n^2}$	-1	3	300	0.001	Золотого сечения
4.2	$\left(-1\right)^n \frac{\cos(2nx)}{n^3}$	0	3	250	0.0001	Деления отрезка пополам
4.3	$\left(-1\right)^{n+1} \frac{\cos(nx)}{n^2 - 2.5^2}$	0	3	200	0.01	Фибоначчи
4.4	$(-1)^n \frac{\sin(nx)}{n^2 - 1.5^2}$	0	6	350	0.001	Золотого сечения
4.5	$\frac{\sin(3nx)}{n^3 - 0.5}$	0	3	300	0.0001	Деления отрезка пополам
4.6	$\frac{\sin(2nx)}{n^{4/3}}$	0	4	200	0.001	Фибоначчи
4.7	$\left(-1\right)^n \frac{\cos(2nx)}{n^{5/2}}$	0	4	350	0.0001	Золотого сечения
4.8	$\frac{\sin(2nx)}{n^3 - 0.4^2}$	0	4	250	0.001	Деления отрезка пополам
4.9	$\left(-1\right)^n \frac{\sin(3nx)}{n^2}$	0	2	200	0.001	Фибоначчи
4.10	$\left(-1\right)^n \frac{10\sin(nx)}{n^{3/2}}$	0	8	300	0.0001	Золотого сечения

Таблица к задаче 5

h				иолици .	
$N_{\underline{0}}$	f(x,y)	\mathbf{x}_1	\mathbf{X}_2	\mathbf{y}_1	y_2
5.1	$x^2 + 2y^2 - 4x - 4\sin y$	-2	3	-2	4
5.2	$x^4 + 3y^2 + \sin y \cdot e^{-x}$	-1	1	-0.5	0.5
5.3	$x^2 + 2y^2 + 4\sin x \cos(y-1)$	-2	0	0	2
5.4	$x^2 + 2y^2 + \sin x - \cos(y+5)$	-2	2	-2	2
5.5	$x^2 + y^2 + xe^{\sin y}$	-2	0	0	2
5.6	$4x^2 + y^2 + 3\sin x - \cos(y+1)$	-2	0	-1	1
5.7	$3x^2 + y^2 + \ln(x^2 + y^2 + 2x - 2y + 3)$	-2	2	-2	2
5.8	$x^2 + 2y^2 + e^x \cos(y - 1)$	-2	1	-1	1
5.9	$x^2 + 3y^2 - 7\sin x - y$	-2	4	-4	4

		Окончан	ше табі	<u>тицы к</u> за	адаче 5
5.10	$x^2 + y^2 + x + e^{-y}$	-2	1	-2	1
5.11	$x^2 + 3y^2 + ye^{\sin x}$	-1	1	-2	1
5.12	$x^2 + 4y^2 - 3\sin(x^2 + e^{-y})$	0	2	-2	2
5.13	$2x^2 + y^2 - \cos(x - 1 + y)$	0	2	-2	2
5.14	$3x^2 + 2y^4 + y\cos(e^{2x})$	-1	1	-1	1
5.15	$2x^2 + y^2 + \cos(x + y - 2)$	-2	2	-2	2
5.16	$x^2 + 2y^2 - 4\sin x - \sin y$	-2	4	-2	4
5.17	$2x^2 + y^4 + x\cos(e^y)$	-1	1	-1	1
5.18	$6x^2 + y^2 + 3x + \sin(x + y)$	-2	2	-2	2
5.19	$x^4 + 3y^2 - 2xy - \sin x$	-2	2	-2	2
5.20	$x^4 + 3y^2 + y + e^{-x}$	-1	1	-1	1
5.21	$x^2 + 3y^2 + \sin(x - y + 3)$	-2	2	-2	2
5.22	$x^2 + 2y^2 - 3\sin x - xy$	-2	2	-2	2
5.23	$2x^2 + y^2 + (x+y)e^{\cos x}$	-2	0	-2	0
5.24	$5x^2 + y^2 + 3x\cos(2y - x)$	-1	1	-1	1
5.25	$2x^2 + y^2 - 3x + e^{-y}$	0	2	0	2
5.26	$x^2 + 2y^2 - 7\sin x + \cos(x+2)$	1	3	0	2
5.27	$x^2 + 3y^2 - 5\sin x + xy$	-2	2	-2	2
5.28	$x^2 + 3y^2 + \cos(x + y - 5)$	-2	2	-2	2
5.29	$5x^2 + y^2 + e^{x+1}\sin y$	-2	2	-2	2
5.30	$5x^2 + 2y^2 + ye^{\sin 3x}$	-1	1	-1	1

Таблица к задаче 6

		_	1	_	_	Tuomiqui k suga ie
№	a_{11}	$2a_{12}$	a_{22}	$2a_{13}$	$2a_{23}$	Метод
6.1	2.5	1	2	-13	-4.5	Покоординатный спуск
6.2	3	1	1	-5	-10.5	Наискорейший спуск
6.3	3	1	1	-5.5	-6.5	Сопряженных направлений
6.4	4	1	0.5	-4.5	-3.5	Сопряженных градиентов
6.5	4	0.5	0.5	-9.3	-3.5	Покоординатный спуск
6.6	2.5	1	2	-5	-10.5	Наискорейший спуск
6.7	1	0.5	2.5	-2	-10.5	Сопряженных направлений
6.8	1	0.5	2.5	-3.5	-6.5	Сопряженных градиентов
6.9	2.5	-1	2	-12	0.5	Покоординатный спуск
6.10	2.5	-1	2	0	-9.5	Наискорейший спуск
6.11	3	-1	1	-6.5	-3.5	Сопряженных направлений
6.12	3	-1	1	-1.5	-2.5	Сопряженных градиентов
6.13	4	-0.5	0.5	-6.5	-2.5	Покоординатный спуск
6.14	4	-0.5	0.5	-2.2	-1.8	Наискорейший спуск
6.15	0.5	-0.5	2.5	0	-9.5	Сопряженных направлений
6.16	0.5	-0.5	2.5	-2.5	-3.5	Сопряженных градиентов
6.17	2.5	1	2	12	0.5	Покоординатный спуск

6.18	2.5	1	2	0	-10	Наискорейший спуск
6.19	3	1	1	6.5	-2.5	Сопряженных направлений
6.20	3	1	1	-1.5	-2.5	Сопряженных градиентов
6.21	4	0.5	0.5	6.5	-2.5	Покоординатный спуск
6.22	4	0.5	0.5	2.2	-1.8	Наискорейший спуск
6.23	0.5	0.5	2.5	0	-9.5	Сопряженных направлений
6.24	0.5	0.5	2.5	2.5	-3.5	Сопряженных градиентов
6.25	2.5	-1.0	2.0	7.0	4.0	Покоординатный спуск
6.26	3.5	1.5	0.5	-1.5	-2.5	Наискорейший спуск
6.27	4.5	-1.5	2	3.5	7	Сопряженных направлений
6.28	0.5	-0.5	3.5	-2.5	5	Сопряженных градиентов
6.29	1.5	1	2.5	4	-7	Покоординатный спуск
6.30	0.5	0.5	2	2	-2	Наискорейший спуск

ФОРМА ОТЧЕТА ПО ЛАБОРАТОРНОЙ РАБОТЕ

На выполнение лабораторной работы отводится 2 занятия (4 академических часа: 3 часа на выполнение и сдачу лабораторной работы и 1 час на подготовку отчета).

Номер варианта студенту выдается преподавателем.

Отчет на защиту предоставляется в печатном виде.

Структура отчета (на отдельном листе(-ах)): титульный лист, постановка задачи; необходимый теоретический материал; решение поставленной задачи; анализ полученных результатов; графический материал (если необходимо); тексты программ, выводы.