Transdermal Drug Delivery System

Membrane Permeation Systems

Transdermal systems are defined as selfcontained, discrete dosage forms which, when applied to the intact skin, delivers the drug through the skin at a controlled rate to the systemic circulation

Advantages

- 1. Delivers a steady infusion of a drug over an extended period of time.
- 2. Less fluctuations
- 3. Increases the therapeutics value of many drugs by avoiding various problems like:
 - Gl irritation
 - Low absorption
 - First pass metabolism
 - Short half life
 - Formation of metabolites that cause side effects
- 4. Lower dose than oral dosing
- 5. Improved patient compliance
- 6. Termination of therapy possible
- 7. Self administration is possible

Limitations

- Drugs should penetrate the stratum corneum.
 Dose required if more than 10 mg/day –
 TDDS difficult
 - Required dose less than 5 mg/day
- 2. Skin irritation or contact dermatitis due to drug, excipients and permeation enhancers
- 3. The barrier function of skin changes from one site to another on the same person, from person to person and with age

Skin

- Most extensive organ in the body
- Covers an area is 2 m²
- Receives 1/3rd of all blood circulating
- Thickness 1 mm

Epidermis

- Outermost layer
- Thickness 150 μm
- Various layers
 - Stratum cornuem stratified and extremely resilient
 - Stratum lucidum
 - Stratum granulosum
 - Stratum spinosum
 - Stratum germinativum

Stratum corneum

- Horny layer
- Rate limiting barrier that restricts the entry and exit of chemical substances
- 15 25 layers of flattened polygonal cells
- Interiors of these cells is crisscrossed with densely packed bundles of keratin fibers
- 🎐 Thus it has 75 85% proteins (intracellular)
- Remaining is lipids (intercellular)

Dermis

- Thick 2000 μm
- 80% protein (collagen)
- On a matrix of muco-polysaccharide (ground material)
- A rich bed of capillaries 20 μm deep
- Also contains lymph capillaries, nerves, hair follicles, sebaceous glands and sweat glands

Percutaneous absorption				
Criteria	Transepidermal	Transfollicular		
Site for drug permeation	Stratum corneum	Pilosebaceous unit		
Diagrammatic representation	Intercellular routs B Congregates Sand Sand	Transpondages route Composter gland Composter gland Metablaceous Interchilder lipid matrix A lipidense is consent, in consent, or		
Importance of the route in drug permeation	Major route	Secondary route		
Classification	Intracellular and intercellular	Via hair follicles, sebaceous glands and ecrine sweat glands (negligible)		
Drugs have to partition through	Protein-lipid matrix of stratum corneum	Sebum		

Number of times the drug has to diffuse	Lot of times. It requires frequent crossings of cell membrane	Just once. Through the lipids in sebaceous pores
Thickness of barrier layer	Thicker. Almost 1 μm	Thinner. Approximately 10 ⁻³ μm
Fraction of surface area of skin available for drug permeation	1	0.001
Duration of drug permeation	Drugs are absorbed over a longer duration	Shows transient diffusion of drugs
Lag time for drug absorption	Small molecules gets absorbed in minutes whereas large molecules may even take days to get absorbed	The lag time ranges from seconds to a few minutes
Steady state flux	Higher. Flux observed by this route is 30 times as compared to transfollicular route	Lower flux
Dedicated pharmacokinetic models	Available	Not available

Equation describing kinetics of drug permeation	$R_{Transepidermal} = R_{stratumcorneum} +$	$R_{Transfollicular} = R_{sebum} + R_{viable tissue}$
	Rviable tissue-TransEpidermal	TransFollicular
	$R_{TE} = R_{SC} + R_{vt-TE}$	$R_{TF} = R_{Seb} + R_{vt-TF}$
	Where R = resistance offered	Where R = resistance offered
Preferred by type of drug	Both hydrophilic and lipophilic	Suitable for small hydrophilic
	drugs can pass through	non-electrolyte molecules
Examples of drugs known to	Clonidine, fentanyl, nicotine,	Nitroglycerine, estradiol etc
permeate via the route	nitroglycerine, estradiol,	
	scopolamine, testosterone etc	
Important characteristic of	HLB	Small size, uncharged and
drug which makes it a suitable		hydrophilic
candidate		
Preferred vehicles	Oily vehicles like oleic acid or	Polar vehicles like propylene
	petrolatums	glycol, ethanol etc
Preferred dosage forms	Topical semisolids likes	Liposomes and other small
	ointments, gels etc and	colloidal carriers
	transdermal patches	
Drug permeation affected by	Dry skin, psoriasis, UV rays etc	Alopecia, hirsutism,
		hypertrichosis etc
Beneficial for	Systemic drug delivery (major),	Systemic drug delivery (minor),
	skin infections etc	

Kinetics of transdermal permeation

Transdermal permeation of drug involves the following steps:

Sorption by stratum corneum

Penetration of drug through viable epidermis

Uptake of the drug by the capillary network in the dermal papillary layer

- Rate of permeation across the skin (dQ/dt) is given by:
- Where;
 - C_d conc of drug on stratum corneum (donor compartment)
 - C_r conc of drug in the systemic circulation (receptor compartment)
 - P_s overall permeability coefficient of skin tissues to the penetrant

- $P_S = \frac{K_S D_{SS}}{h_S} (2$
- Where;
 - K_s partition coefficient for the interfacial partitioning of the permeant
 - D_{ss} diffusivity for the steady-state diffusion of the penetrant
 - h_s overall thickness of skin
- As A_s, K_s, D_{ss} and h_s are constant under a given condition – hence Ps can be considered a constant

- Normally drug conc at stratum corneum (C_d) is substantially greater than drug conc in the body (C_r)
- Equation 1 becomes
- To keep rate of skin permeation constant, the magnitude of C_d should remain fairly constant
- For keeping C_d constant, the drug should be released from the device at a rate (R_r) that is either constant or greater than the rate of skin uptake (R_a)
- ightharpoonup R_r >> R_a

- Since R_r >> R_a
- C_d is maintained at a level equal to or greater than the equilibrium (saturation) solubility of the drug in the stratum corneum (C_s)
- $(\frac{dQ}{dt})_m = P_S C_S$
- Where;
 - (dQ/dt)_m maximum rate of skin permeation
 - P_s skin permeability coefficient
 - C_s equilibrium solubility in the stratum corneum

Polymer matrix - Ideal characteristics

- 1. Molecular weight, glass transition temperature and chemical functionality of the polymer should be such that the drug diffuses properly and gets released through it
- 2. Should be stable, non-reactive with the drug
- 3. Should be easily manufactured and fabricated into desired product
- 4. Inexpensive
- 5. Polymer and its degradation products must be non-toxic to the host
- Mechanical properties of the polymer should not deteriorate excessively when large amounts of drug is incorporated

Permeation enhancers

- They promote skin permeability by altering the skin as a barrier to the flux of a desired permeant
- The enhancement of flux across membrane reduces to considerations of:
 - Thermodynamics (lattice energies, distribution coefficients)
 - Molecular size and shape
 - Reducing the energy required to make a molecular hole in the membrane

Solvents

 Swell polar pathway or fluidize lipids
 Alcohols, DMSO, azone, PG

 Surfactants

 Enhance polar pathway transport
 Skin irritants

 Bile salts

 Relatively safe
 Sadium taurocholate, sodium deoxycholate, sodium tauroglycocholate

 Binary systems

 PG-oleic acid, 1,4-butanediol – linoleic acid

 Miscellaneous

 Urea, calcium thioglycolate

Other excipients

- Adhesives ideal properties:
 - Should not irritate or sensitize the skin
 - Should adhere to skin aggressively during the dosing interval without its position being disturbed by activities such as bathing, exercise etc
 - Should be easily removed
 - Should not leave an unwanted residue on the skin
 - Should have intimate contact with the skin
 - Physically and chemically stable with drugs and other excipients
 - Should not affect permeation of drug
- Examples polyisobutylene, acrylics and silicones

- Backing membrane
 - Should be flexible
 - Provide good bond to the drug reservoir
 - Prevent drug from leaving the dosage form from top
 - Accept printing
 - Impermeable
- Eg. Metallic plastic laminate, plastic backing with absorbent pad and aluminum foil, adhesive foam pad with aluminum foil

Intrinsic rate of drug release

- $\frac{dQ}{dt} = \frac{C_R}{\frac{1}{P_m} + \frac{1}{P_a}}$ -----(6)
- Where;
 - Cr drug conc in reservoir compartment
 - Pm permeability coefficient of the rate controlling membrane
 - Pa permeability coefficient of the adhesive layer

- $P_m = \frac{K_{m/r}D_m}{h_m} \dots$ (7)
- $P_a = \frac{K_{a/m}D_a}{h_a} \dots$ (8)
- Where;
 - K_{m/r} and K_{a/m} partition coefficients for the interfacial partitioning of drug from reservoir to the membrane and from the membrane to the adhesive respectively
 - D_m and D_a diffusion coefficients in the rate controlling membrane and adhesive layer respectively

- Substituting equations (7) and (8) for P_m and P_a in equation (6), we get:
- $\frac{dQ}{dt} = \frac{K_{m/r}K_{a/m}D_mD_a}{K_{m/r}D_mh_a + K_{a/m}D_ah_a} C_R$
- Where;
 - dQ/dt intrinsic rate of drug release from a membrane modulated drug delivery system

