Lecture 21A & 21B

Energy Resources, Economics and Environment

Net Energy Analysis

Rangan Banerjee

Department of Energy Science and Engineering

IIT Bombay

INTERNATIONAL STANDARD

ISO 14040

> First edition 1997-06-15

Environmental management — Life cycle assessment — Principles and framework

Management environnemental — Analyse du cycle de vie — Principes et cadre

Figure 2 — Example of a product system for LCA

Goals and Scope

- Goal- intended application, reason for study, audience, comparative assessment
- Scope product system, functions, functional unit, system boundary, allocation procedures

Functional unit

- Functional unit related to the purpose of the process or system
- Should be consistent across options being assessed
- Quantified performance of a product system for use as a reference unit

Paper vs Polystyrene Cups

	Material Specific Embodied Cup Mass Energy Energy				
Cup type	g/cup	MJ/kg	MJ/cup		
Ceramic	292	48	14		
Plastic	59	107	6.3		
Glass	199	28	5.5		
Paper	8.3	66	0.55		
Foam	1.9	104	0.20		

www.ilea.org/lcas/hocking1994.html

Hocking, Martin B. "Reusable and Disposable Cups: An Energy-Based Evaluation." Environmental Management 18(6) pp. 889-899

Re-usable vs Disposable Cups

www.ilea.org/lcas/hocking1994.html

Net Energy Analysis

Source: www.oilanalytics.org/neteng/neteng.htm

Energy Return on Investment

Source: Cleveland, Energy (2005)

Energy Inputs and Outputs-Power Plant

Source: www.oilanalytics.org/neteng/neteng.htm

Levels of Net Energy analysis

Source: www.oilanalytics.org/neteng/neteng.htm

CO₂ emissions of Coal Based Power

Mining 28.5(3%)

Transport17.5(2%)

Construction 5

Operation 990.8(95%)

Total 1042g/kWh

Source: NREL LCA Study

CO₂ emissions of Biomass Based Power

Feedstock 28 production(62%)

Transport 6 (12%)

Construction 12 (26%)

CO₂ recycled:890g/kWh

Net CO2 emissions:

46 g/kWh

Source: Mann& Spath (1997)

Artide

Cite This: Environ. Sd. Technol. 2019, 53, 539-549

pubs.acs.org/est

Life Cycle Greenhouse Gas Impacts of Coal and Imported Gas-Based Power Generation in the Indian Context

Dharik S. Mallapragada, † Indraneel Naik, * Karthik Ganesan, * Rangan Banerjee, * and Ian J. Laurenzi** † *

Supporting Information

[†]Corporate Strategic Research, ExxonMobil Research and Engineering Company, Annandale, New Jersey 08801, United States

[‡]Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India

[§]Council on Energy, Environment and Water, New Delhi, Delhi 110016, India

Life Cycle GHG Emissions – Indian Coal plants

LNG based GHG emissions for Indian power sector

GHG emissions distribution Indian power sector

EROI- Calculation

EROI – Time series trends

EROI- Summary comparison

Energy source/carrier	Published EROI ratio (X:1) estimate					
	EROI _{PRIM}	EROI _{FIN}	Reference			
Coal	40-55 (mine mouth) 80 (mine mouth)		Hall et al. ¹⁵ Court and Fizaine ²⁵			
Oil	15 (well head) 18 (well head) 20 (well head)	4-5 (refined oil fuels)	Court and Fizaine ²⁵ Gagnon et al. ⁷ Hall et al. ¹⁵ Brandt ⁵⁴			
Gas	18 (well head) 20 (well head) 75 (well head)		Gagnon et al. ⁷ Hall et al. ¹⁵ Court and Fizaine ²⁵			
Electricity (gas)		6ª 8ª 11 ^b -14 ^b	Hall et al. ¹⁵ King and Van Den Bergh ¹⁰ Raugei and Leccisi ¹⁸			
Electricity (coal)		4 ^b 13ª-18ª 17ª	Raugei and Leccisi ¹⁸ Hall et al. ¹⁵ King and Van Den Bergh ¹⁰			
Electricity (photovoltaics)	19°-38°	6 ^b -12 ^b 10 ^a 4 ^b -20 ^b	Raugei et al. ⁵⁵ Hall et al. ¹⁵ Leccisi et al. ⁵⁶			
Electricity (wind)		14 ^b -26 ^b 15 ^b -30 ^b	Kubiszewski et al. ⁵⁷ Raugei and Leccisi ¹⁸			

alncludes power plant/transformational conversion efficiencies only. Includes power plant/transformational conversion efficiencies and supply chain energy investments. Primary energy equivalent value by Raugei et al. 55, estimated by dividing the EROI_{FIN} value for photovoltaics (6-12) by the EU-27 electric grid efficiency, η_{crid} = 0.31.

Energy Payback Period - PV

Energy Payback Period - PV

https://www.nrel.gov/docs/fy04osti/35489.pdf

LCA-PV Steps

Alsema analysis

GHG Emissions per kWh

EPBT – EU report

	۷\ ۱			N. C.		
Impact Category	Scale	Relevant LCI Data	Common Characterisation Factor	Description of Characterisation Factor		
Global Warming	Global	Carbon Dioxide (CO ₂)	Global Warming	Converts LCI data to carbon dioxide (CO 2) equivalents		
		Nitrous Oxide (N2O)	Potential			
		Methane (CH ₄)		Note: Global warming potentials		
		Chlorofluorocarbons (CFCs)]	can be 50, 100 or 500-year		
		Hydrochlorofluorocarbons (HCFCs)		potentials		
		Methyl Bromide (CH ₃ Br)				
	Global	Chlorofluorocarbons (CFCs)		Converts LCI data to		
Stratospheric Ozone Depletion		Hydrochlorofluorocarbons (HCFCs)	Ozone Depleting Potential	trichlorofluoromethane (CFC-11) equivalents		
		Halons				
		Methyl Bromide (CH ₃ Br)				
	Regional	Sulphur Oxides (SOx)		Converts LCI data to hydrogen		
Acidification	Local	Nitrogen Oxides (NOx)	Acidification	(H+) ion equivalents		
		Hydrochloric Acid (HCL)	Potential			
		Hydrofluoric Acid (HF)				
		Ammonia (NH ₄)	1			
	Local	Phosphate (PO ₄)		Converts LCI data to phosphate		
Eutrophication		Nitrogen Oxide (NO)	Eutrophication	(PO ₄) equivalents		
		Nitrogen Dioxide (NO ₂) Nitrates	Potential			
		Ammonia (NH ₄)	1			
Photochemical Smog	Local	Non-methane volatile organic compounds (NMVOC)	Photochemical Oxidant Creation Potential	Converts LCI data to ethane (C_2H_6) equivalents.		
Terrestrial Toxicity	Local	Toxic chemicals with a reported lethal concentration to rodents	Converts LC ₅₀ data to equivalents.			
Aquatic Toxicity	Local	Toxic chemicals with a reported lethal concentration to fish	LC ₅₀ Converts LC ₅₀ data to equa			
	Global	Total releases to air, water		Converts LC50 data to equivalents		
Human Health	Regional	and soil.	LC ₅₀	•		
	Local	1				
Resource	Global	Quantity of minerals used		Converts LCI data to a ratio of		
Depletion	Regional	Quantity of fossil fuels used	Resource Depletion	quantity of resource used versus		
	Local		Potential	quantity of resource left in reserve		
Land Use	Global	Quantity disposed of in a landfill	Solid Waste Converts mass of solid was volume using an estimate density			

Type of	(Combi	ıstion k	ased		Hydro	Wind	Solar
impact	Coal	Oil	Gas	Gas Biomass Nuclear	Nuclear			
Resource depletion	X	X	X		X			
Land use, visual impact	(X)			X		X	X	X
Watercourse regulation						X		
Thermal releases	X	X	X	X	X			
Noise							X	
Radiation					X			
Air quality	X	X	X	X				
Acidification	X	X	X	X				
Eutrophication	X	X	X	X				
Greenhouse effect	X	X	X	X				

BIOFUELS

Corn-Based Ethanol Flunks Key Test

In setting state rules for low-carbon fuels, California officials have calculated that corn ethanol is worse than gasoline

https://science.sciencemag.org/content/sci/324/5927/587.full.pdf

Primary energy analysis of RME

- Rapeseed Methyl Ester (RME)-Transport
- Plant Production(incl fertilisers) 9000 MJ/ha
- Harvesting, transport & oil extraction 5600 MJ/ha
- 60% to rapeseed oil (meal 40%) 8800 MJ/ha
- Refining & Esterification
 7900 MJ/ha
- 96% to RME (glycerine 4%) 16000 MJ/ha
- Final transport
 200 MJ/ha
- Total annual 16,200 MJ/ha (Kaltschmitt et al,1997)
- Diesel 4600 MJ (pre-chain) + 42500 (fuel) 47,100 MJ

Comparison of RME & Diesel

Parameter	RME	Diesel
PE (GJ)	16.2	47.1
CO ₂ equiv kg	1594	3752
CO ₂ kg	1037	3523
SO ₂ equiv g	12487	11813
SO ₂ g	1670	2857
No _x g	14274	12691
CO g	11689	11160

Annual values/ha from Kaltschmitt et al,1997 - Germany

Methodology for analysis

- Life cycle Approach
- NER = Eout/Ein

If NER > 1, Replacement viable

NER < 1, Replacement not viable

- CRF $(d, n)=[d *(1+d)^n]/[(1+d)^n-1]$
- ALCC = AC + C_0 *CRF (d, n)
- NER (Net Energy Ratio)
- ALCC (Annualized cost)
- CRF (Cash recovery factor)

Secondary
Energy
Primary
Energy
Renewable
Energy

Jatropha and Karanja Analysis results

Rs. 33-36/kg 2007 values Rs. 21-25/kg 38

References

- Spath PL, Mann MK. Life cycle assessment of hydrogen production via natural gas steam reforming. USA, NREL/TP-570-27637, 2001.
- Varadharajan, A., Venkateshwaran W. S., Banerjee, R., "Energy analysis of biodiesel from Jatropha." In Proceedings of 10th World Renewable Energy Congress (WRECX), Glasgow, Scotland, United Kingdom, July 19-25, 2008.
- Sarkar, A., Banerjee, R., "Net energy analysis of hydrogen storage options," *International Journal of Hydrogen Energy*, (30)8, 867-877, July 2005.
- Allwood et al, 2011