Exercises on Hyperbolic Functions

Trevour Jim

December 4, 2024

Instructions

Answer all the questions. Show all necessary steps and calculations.

Exercise 1: Proving Hyperbolic Identities

- 1. Use the definitions of $\sinh x$ and $\cosh x$ in terms of exponential functions to prove that;
 - (a) $\cosh x + \sinh x = e^x$
 - (b) $\cosh 2x = 2 \cosh^2 x 1$
 - (c) $\cosh 2x = 1 + 2\sinh^2 x$
 - (d) $\cosh^2 x + \sinh^2 x = \cosh 2x$
 - (e) $\sinh(x+y) = \sinh(x)\cosh(y) + \cosh(x)\sinh(y)$
 - (f) $\cosh(x+y) = \cosh(x)\cosh(y) + \sinh(x)\sinh(y)$

Exercise 2: Osborn's Rule

1. Given the following trigonometric formulae, use Osborn's rule to write down the corresponding hyperbolic function formulae;

(a)
$$\sin A - \sin B = 2\cos\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right)$$

- (b) $\sin 3A = 3\sin A 4\sin^3 A$
- (c) $\cos^2 \theta + \sin^2 \theta = 1$
- (d) $\sin 2A = 2\sin A\cos A$
- (e) $\cos 2A = 1 2\sin^2 A$

Exercise 2: Differentiation of Hyperbolic Functions

- 1. Differentiate the following:
 - (a) $y = \cosh 3x$

- (b) $y = \sinh^2 x$
- (c) $y = \sinh(e^x)$
- (d) $y = \tanh(\sinh x)$
- (e) $y = x \sinh x$
- (f) $y = \sinh^3 4x$
- (g) $y = \sqrt{(\cosh 4x)}$
- (h) $y = e^x \cosh x$
- (i) $y = \sinh^{-1}(3x)$
- (j) $y = \cosh^{-1}(2x+4)$
- (k) $y = x \sinh(x) + \cosh(x)$
- (l) $y = \cosh^2(x) \sinh^2(x)$
- 2. Prove that:
 - (a) $\frac{d}{dx}(\sinh(x)) = \cosh(x)$
 - (b) $\frac{d}{dx}(\cosh(x)) = \sinh(x)$

Exercise 3: Integration Involving Hyperbolic Functions

- 1. Evaluate:
 - (a) $\int \sinh(4x) dx$
 - (b) $\int \cosh(4x+6) dx$
 - (c) $\int x \sinh(x) dx$
 - (d) $\int \cosh^2(x) dx$
 - (e) $\int e^{2x} \sin 4x \, dx$
 - (f) $\int x^2 \cosh x^3 + 4 \, dx$
 - (g) $\int \cosh 2x \sinh 3x \, dx$
 - (h) $\int \sinh^4 x \, dx$
 - (i) $\int \cosh^3 7x \, dx$

Exercise 4: Differentiation of Inverse Hyperbolic Functions

- 1. Differentiate
 - (a) $\cosh^{-1}(2x+4)$
 - (b) $\sinh^{-1}(\sqrt{x})$
 - (c) $\tanh^{-1}(3x+1)$

(d)
$$x^2 \sinh^{-1} 2x$$

(e)
$$\cosh^{-1}\left(\frac{1}{x}\right)$$

(f)
$$\sinh^{-1}(\cosh 2x)$$

Exercise 5: Solving Equations Involving Hyperbolic Functions

1. Solve the following equations, leaving your answers as natural logarithms:

(a)
$$4\sinh(x) + 3\cosh(x) = 7$$

(b)
$$2\cosh^2(x) - 5\sinh(x) = 3$$

(c)
$$3\sinh(x) - \cosh(x) = 1$$

2. Prove that $\cosh^2(x) + \sinh^2(x) = \cosh(2x)$.

Exercise 6: Use of Hyperbolic Functions In Integration

NOTE: The following integrals can be used as hints.

(a)
$$\int \frac{1}{\sqrt{(ax)^2 + b^2}} dx = \sinh^{-1} \left(\frac{ax}{b}\right) + C$$

(b)
$$\int \frac{1}{\sqrt{((ax)^2 - b^2)}} dx = \cosh^{-1} \left(\frac{ax}{b}\right) + C$$

1. Evaluate the following integrals

(a)
$$\int \frac{1}{\sqrt{(x^2+1)}} \, dx$$

(b)
$$\int \frac{1}{\sqrt{(x^2 - 4)}} \, dx$$

(c)
$$\int \frac{1}{\sqrt{(4x^2-9)}} dx$$

(d)
$$\int \frac{1}{\sqrt{(16x^2 + 25)}} dx$$

(e)
$$\int \frac{1}{\sqrt{(x^2 + 6x + 8)}} dx$$

(f)
$$\int \frac{1}{\sqrt{(x^2+2x5)}} dx$$

(g)
$$\int \frac{1}{\sqrt{4x^2 + 8x - 5}} dx$$

END OF QUESTIONS