A firm sells q_B mugs of beer at price p_B , and q_P slices of pizza at price p_P . The inverse demand for mugs of beer is p_B =5-0.25 q_B +0.1 q_P and the inverse demand for pizza slices is p_P =4-0.5 q_P +0.1 q_B . It costs \$1/mug to serve beer and \$2/slice to serve pizza. Find the prices and quantities that maximize profit and the maximum profit.

	Α	В	С	D	E	F	G
1	item	С	p	q	unit cost	profit	
2	beer		2.9	10	1	19	
3	pizza		3	4	2	4	
4						23	<- Solver

Hastey, Tray, and myself Count seem to arganically find a right answer without solver

$$T = (5 - .25q_3 + .1q_p)(q_g) + (4 - .5q_p + .1q_s)(q_p) - (1 \cdot q_g) - (2 \cdot q_p)$$

$$= -.25q_3 + .2q_g + 4q_g - .5q_j + 2q_p$$

$$\frac{dx}{dq_3} = -\frac{q_g}{2} + \frac{1}{5} + 4$$

$$\frac{q_g}{2} = \frac{q_g}{4} + 4 + 3q_g = \frac{2q_p}{5} + 7$$

$$Q = -\frac{(2q_p)(5 + 8)}{2} + \frac{q_g}{5} + 4 + 3q_p = 0$$

$$Q = -\frac{q_g}{4} + \frac{0}{5} + 4$$

$$-4 = -\frac{q_g}{4} + \frac{0}{5} + 4$$

$$-6 = -\frac{q_g}{4} + \frac{0}{5} + 4$$

$$-8 = -\frac{q_g}{4} + \frac{0}{5} + 4$$

$$-8 = -\frac{q_g}{4} + \frac{0}{5} + 4$$