

# PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-056518

(43)Date of publication of application: 25.02.2000

(51)Int.Cl.

GO3G 9/097 GO3G 9/09 9/087 GO3G

(21)Application number: 10-225529

(71)Applicant : NIPPON ZEON CO LTD

(22)Date of filing:

10.08.1998

(72)Inventor: NIWA KAZU

MASUO KOJIRO SATO KAZUHIRO

(54) **TONER** 

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an excellent toner for developing electrostatic images, posing no problems regarding safety, being excellent in charge stability, well-balanced between preservability and a fixing property, and depending little on the environment. SOLUTION: In a toner for developing electrostatic images, containing at least a binding resin, a coloring agent, and a charge controlling resin, the charge controlling resin is a copolymer comprising a vinyl monomer and a (metha) acrylamide containing an SO3X (X=H, alkali metal) group, the glass transition temperature (Tg) of the charge controlling resin being 30 to 70° C inclusive.

## (19)日本国特許庁(JP)

# (12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-56518

(P2000-56518A)

(43)公開日 平成12年2月25日(2000.2.25)

| (51) Int.Cl.7 |       | 識別記号 | F I     |      | •     | テーマコード(参考) |
|---------------|-------|------|---------|------|-------|------------|
| G03G          | 9/097 |      | G 0 3 G | 9/08 | 3 4 4 | 2H005      |
|               | 9/09  |      |         |      | 361   |            |
|               | 9/087 |      |         |      | 384   |            |

|          |                       | 審査請求              | 未請求 請求項の数5 OL (全 14 頁)                              |  |  |
|----------|-----------------------|-------------------|-----------------------------------------------------|--|--|
| (21)出顧番号 | 特顧平10-225529          | (71)出顧人           | 000229117<br>日本ゼオン株式会社                              |  |  |
| (22)出顧日  | 平成10年8月10日(1998.8.10) | 東京都千代田区丸の内2丁目6番1号 |                                                     |  |  |
|          |                       | (72)発明者           | 丹羽 和<br>神奈川県川崎市川崎区夜光一丁目2番1号<br>日本ゼオン株式会社総合開発センター内   |  |  |
|          |                       | (72)発明者           | 増尾 好治郎<br>神奈川県川崎市川崎区夜光一丁目2番1号<br>日本ゼオン株式会社総合開発センター内 |  |  |
|          |                       | (72)発明者           | 佐藤 一宏<br>神奈川県川崎市川崎区夜光一丁目2番1号<br>日本ゼオン株式会社総合開発センター内  |  |  |
|          |                       |                   | and Advances, Auda, S                               |  |  |

最終頁に続く

#### (54) 【発明の名称】 トナー

# (57)【要約】

【課題】 安全上問題が無く、帯電安定性が優れ、保存性と定着性のバランスがよく、かつ、環境依存性が少ない優れた静電荷像現像用のトナーを提供する

#### 【特許請求の範囲】

【請求項1】 少なくとも結着樹脂と着色剤及び帯電制御樹脂を含有する静電荷像現像用トナーにおいて、前記帯電制御樹脂がビニル系単量体とSO。X(X=H、アルカリ金属)基含有(メタ)アクリルアミドとからなる共重合体であって、かつ、前記帯電制御樹脂のガラス転移温度(Tg)が30℃以上70℃以下であることを特徴とする静電荷像現像用トナー。

【請求項2】 分散安定剤を含有する水系分散媒体中で、少なくとも重合性単量体、着色剤及び帯電制御樹脂を含有する単量体等組成物を懸濁させ、重合開始剤を用いて重合することによって得られる重合トナーであることを特徴とする請求項1記載の静電荷像現像用トナー。

【請求項3】 分散安定剤を含有する水系分散媒体中で、少なくとも重合性単量体、着色剤及び帯電制御樹脂を含有するコア用単量体等組成物を懸濁させ、重合開始剤を用いて重合することによって得られるコア用着色微粒子を製造し、更に、シェル用単量体と重合開始剤を添加し、重合することによって得られるコア・シェル構造を有する重合トナーであることを特徴とする請求項1または2記載の静電荷像現像用トナー。

【請求項4】 前記帯電制御樹脂の重量平均分子量が 2,000~25,000であることを特徴とする請求 項1~3のいずれかに記載の静電荷像現像用トナー。

【請求項5】 前記着色剤がフルカラー用着色剤であることを特徴とする請求項 $1\sim4$ のいずれかに記載の静電荷像現像用トナー。

### 【発明の詳細な説明】

## [0001]

【発明の属する技術分野】本発明は、電子写真法、静電 記録法等によって形成される静電潜像を現像するための 静電荷像現像用トナーに関するものである。

## [0002]

【従来の技術】従来より、電子写真装置や静電記録装置 等の画像形成装置において形成される静電潜像は、先 ず、トナーからなる現像剤により現像され、次いで、形 成された現像剤像は、必要に応じて紙等の転写材上に転 写された後、加熱、加圧、溶剤蒸気など種々の方式によ り定着される。トナーとしては、一般に、熱可塑性樹脂 中に、着色剤、帯電制御剤、離型剤等を溶融混合して均 一に分散させて組成物とした後、該組成物を粉砕、分級 することによりトナーを得る粉砕法で、あるいは重合性 単量体中に着色剤、帯電制御剤、離型剤等を溶解あるい は分散させ、重合開始剤を添加後、重合温度に加温し、 重合する。その後、濾過、洗浄、脱水、乾燥することに よりトナーを得る重合法で、それぞれトナーを製造され てきた。ある程度優れた特性を有するトナーをそれぞれ 製造することができるが、種々の問題があった。従来用 いていた帯電制御剤、特に負の帯電制御剤には、金属錯 体化合物が主に用いられており、この金属の種類にはク

ロム、マンガン、コバルト等が使用されている。こうした点から、安全上の問題があった。

【0003】こうした安全上の問題を改善するために、特開昭63-184762号公報、特開平2-167565号公報、特開平3-243954号公報などで、スチレン系単量体とスルホン酸基含有アクリルアミド系化合物との共重合体を帯電制御剤として用いることが提案されていた。この帯電制御剤は負帯電性を示し、カラートナーにも使用できる利点もあった。

【0004】ところで、近年、トナーが使用される電子 写真方式の複写機、プリンター等において、消費電力の 低減化が図られている。電子写真方式の中で、特にエネ ルギーを消費する工程は、感光体から紙などの転写材上 にトナーを転写した後、定着する際のいわゆる定着工程 である。一般に、定着のために150℃以上の熱ロール が使用され、そのエネルギー源として電気が使われてい る。この熱ロール温度を下げることが、省エネルギーの 観点より求められている。また、複写枚数の高速化、印 字枚数の高速化が画像形成装置の複合化、パーソナルコ ンピューターのネットワーク化が進む中で強く要求され てきている。こうした高速複写機や高速プリンターにお いては、短時間定着が必要になっている。トナーの設計 において、こうした画像形成装置からの要求に応えるに は、トナーのガラス転移温度を低下させれば良いが、ガ ラス転移温度を低下させると、トナーの保存中、あるい はトナーボックス中でトナーがブロッキングを起して、 凝集体となり、いわゆる保存性の悪いトナーとなってし まう。

【0005】一方、電子写真方式によるカラートナーの場合、通常3から4色のカラートナーを現像し、転写材に一度に、あるいは3から4回分けて転写し、その後定着をしている。このことから、白黒画像に比べ定着するトナーの層厚が厚くなり、また、重なる色が均一に溶融することが要求される。そのために、トナーの定着温度付近で、従来のものと比べて溶融粘度を低く設計する必要がある。トナーの溶融粘度を低くする手法としては、従来のトナー用樹脂に比べて、分子量を低くしたり、ガラス転移温度を下げる等の手法があるが、いずれの手法を採る場合でも、ブロッキングを起し易く、保存性の悪いトナーになってしまう。このように、トナーの定着温度の低下(低温定着化)、印字速度の高速化およびカラー化に対応できる手法と保存性とは、逆の相関関係にある。

【0006】先に述べた、スチレン系単量体とスルホン酸基含有アクリルアミド系単量体との共重合体からなる帯電制御樹脂は、例えば特開昭63-184762号公報や特開平2-167565号公報においては、粉砕法トナーにおいてスチレン/2-アクリルアミドーメチルプロパンスルホン酸共重合体を用いている。粉砕法トナーの製造方法においてはある程度粉砕されやすい結着樹

脂に着色剤、帯電制御樹脂、離型剤等を混合、加熱溶融 混練、冷却後、粉砕、分級してトナー化している。この 方法においては、結着樹脂のガラス転移温度が低すぎる と帯電性の良好なトナーが得られないため、ガラス転移 温度は余り低くできない。実際、特開平2−16756 5号公報の実施例で用いられている帯電制御樹脂のガラ ス転移温度は82~94℃であった。

【0007】特開平3-15858号公報や特開平3-243954号公報においては、スチレン系単量体とスルホン酸基含有アクリルアミド系化合物との共重合体を帯電制御樹脂として重合法トナーに用いることが提案されている。これらの公報で用いられている帯電制御樹脂に関しても、計算されるガラス転移温度は90℃以上であり、これを用いたとトナーでは、現在要求されている130℃を下回る定着温度での十分な定着性は期待できない。

#### [0008]

【発明が解決しようとする課題】本発明の目的は、安全上問題が無く、帯電安定性が優れ、保存性と定着性のバランスがよく、かつ、環境依存性が少ない優れた静電荷像現像用のトナーを提供することにある。かかる従来技術の問題点を克服するために鋭意研究した結果、本発明者らは、静電荷像現像用トナー粒子において、少なくとも結着樹脂と着色剤及び帯電制御樹脂を含有し、前記帯電制御樹脂の組成とガラス転移温度(以下、Tgということがある。)を規定することによって、上記目的を達成することができることを見いだし、この知見に基づいて、本発明を完成するに到った。

# [0009]

【課題を解決するための手段】かくして本発明によれば、(1)少なくとも結着樹脂と着色剤及び帯電制御樹脂を含有する静電荷像現像用トナーにおいて、前記帯電制御樹脂がビニル系単量体と $SO_3X(X=H, アルカリ金属)$ 基含有(メタ)アクリルアミドとからなる共重合体であって、かつ、前記のガラス転移点(Tg)が30℃以上70℃以下であることを特徴とする静電荷像現像用トナーが提供される。

## [0010]

### 【発明の実施の形態】1. 帯電制御樹脂

本発明において用いられる帯電制御樹脂は、ビニル系単 40量体と $SO_3$  X (X=H、アルカリ金属)基含有(X タ)アクリルアミド(以下、スルホン酸アクリルアミドということがある)とからなる共重合体であって、かつ、前記帯電制御樹脂のガラス転移温度(Tg)が30 C以上70 C以下、好ましくは 40 C以上60 C以下であり、帯電制御性能を有するものである。本発明において、Tg は示差走査熱量計(DSC)によって測定される値である。このような帯電制御樹脂は、粉砕法トナー、重合法トナー何れのトナーにも用いることができる。

【0011】(ビニル系単量体)スルホン酸アクリルアミドと共重合されるビニル系単量体の代表例としては、ビニル芳香族炭化水素単量体及び(メタ)アクリレート単量体が挙げられる。

【0012】ビニル芳香族炭化水素単量体は、芳香族炭 化水素にビニル基が結合した構造を有する化合物であ り、具体例としては、スチレン、αーメチルスチレン、 2-メチルスチレン、3-メチルスチレン、4-メチル スチレン、2-エチルスチレン、3-エチルスチレン、 4-エチルスチレン、2-プロピルスチレン、3-プロ ピルスチレン、4ープロピルスチレン、2ーイソプロピ ルスチレン、3ーイソプロピルスチレン、4ーイソプロ ピルスチレン、2-クロロスチレン、3-クロロスチレ ン、4-クロロスチレン、2-メチル-α-メチルスチ レン、3-メチル-α-メチルスチレン、4-メチル-ン、3-エチル $-\alpha-$ メチルスチレン、4-エチル $-\alpha$ ーメチルスチレン、2ープロピルーαーメチルスチレ ン、3-プロピル-α-メチルスチレン、4-プロピル  $-\alpha$  -メチルスチレン、2 -イソプロピル  $-\alpha$  -メチル スチレン、3ーイソプロピルーαーメチルスチレン、4 -イソプロピル-α-メチルスチレン、2-クロロ-α ーメチルスチレン、3-クロロ-α-メチルスチレン、 4-クロロ-α-メチルスチレン、2, 3-ジメチルス チレン、3、4ージメチルスチレン、2、4ージメチル スチレン、2.6-ジメチルスチレン、2.3-ジエチ ルスチレン、3, 4ージエチルスチレン、2, 4ージエ チルスチレン、2,6-ジエチルスチレン、2-メチル -3-エチルスチレン、2-メチル-4-エチルスチレ ン、2-クロロー4-メチルスチレン、2,3-ジメチ ルスチレン、2、4-ジメチルスチレン、2、6-ジメ チルー $\alpha$ -メチルスチレン、2、3-ジエチルー $\alpha$ -メ チルスチレン、3,  $4-ジェチル-\alpha-メチルスチレ$ ン、2、4-ジエチル $-\alpha-$ メチルスチレン、2、6-ジエチルー $\alpha$ -メチルスチレン、2-エチルー3-メチ  $\alpha$  -メチルスチレン、2 - クロロー4 - エチルー $\alpha$  - メ チルスチレンなどが挙げられる。これらのビニル芳香族 炭化水素単量体は、単独であっても、二種以上を組み合 わせて用いてもよい。

【0013】また、(メタ) アクリレート単量体の具体例としては、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸イソプロピル、アクリル酸 n ー ブチル、アクリル酸イソブチル、アクリル酸 n ー マミル、アクリル酸イソアミル、アクリル酸 n ー へキシル、アクリル酸2ーエチルへキシル、アクリル酸ヒドロキシプロピル、アクリル酸ラウリル等のアクリル酸エステル類;メタクリル酸メチル、メタクリル酸プロピル、メタクリル酸イソプロピル、メタクリル酸プロピル、メタクリル酸イソプロピル、メタ

クリル酸 n ーブチル、メタクリル酸イソブチル、メタクリル酸 n ーアミル、メタクリル酸イソアミル、メタクリル酸 n ーヘキシル、メタクリル酸 2 ーエチルヘキシル、メタクリル酸ヒドロキシプロピル、メタクリル酸ラウリル等のメタクリル酸エステル類、などが挙げられる。これらの(メタ)アクリレート単量体は、単独であっても、二種以上を組み合わせて用いてもよい。

【0014】 (スルホン酸アクリルアミド) SO3 X (X=H、アルカリ金属)基含有(メタ)アクリルアミ ド、すなわち、スルホン酸基又はスルホン酸塩基含有 (メタ) アクリルアミドとしては、2-アクリルアミド -2-メチルプロパンスルホン酸、2-アクリルアミド - n - ブタンスルホン酸、2 - アクリルアミド - n - へ キサンスルホン酸、2-アクリルアミド-n-オクタン スルホン酸、2-アクリルアミド-n-ドデカンスルホ ン酸、2-アクリルアミド-n-テトラデカンスルホン 酸、2-アクリルアミド-2-メチルプロパンスルホン 酸、2-アクリルアミド-2-フェニルプロパンスルホ ン酸、2-アクリルアミド-2、2、4-トリメチルペ ンタンスルホン酸、2-アクリルアミド-2-メチルフ 20 ェニルエタンスルホン酸、2-アクリルアミド-2-(4-クロロフェニル)プロパンスルホン酸、2-アク リルアミドー2ーカルボキシメチルプロパンスルホン 酸、2-アクリルアミド-2-(2-ピリジン)プロパ ンスルホン酸、2-アクリルアミド-1-メチルプロパ ンスルホン酸、3-アクリルアミド-3-メチルブタン スルホン酸、2ーメタクリルアミドーnーデカンスルホ ン酸、4-メタクリルアミドベンゼンスルホン酸等の 酸、又はこれらの酸のナトリウム塩、カリウム塩等の金 属塩などが挙げられる。これらは、単独で用いても、二 種以上を組み合わせて用いてもよい。

【0015】(帯電制御樹脂の組成)本発明において用いられる帯電制御樹脂におけるビニル系単量体とスルホン酸アクリルアミドとの共重合割合は、前者99.9~90重量%、後者0.1~10重量%である。スルホン酸アクリルアミドの割合は、好ましくは0.2~9.0重量%、特に好ましくは0.3~8.0重量%である。この単位が0.1重量%未満では帯電制御能力および顔料分散が十分でなく、10重量%を超えると重合時の単量体組成物液滴の分散安定性が低下して、均一な粒径のトナーが得られなかったり、帯電が高くなりすぎる等の問題が生じる。なお、ビニル系単量体としては、ビニル芳香族炭化水素と(メタ)アクリレートとを、重量基準で90/10~60/40の割合で用いることが好ましい。

【0016】(重量平均分子量)帯電制御樹脂の、テトラヒドロフランを用いたゲル・パーミエーション・クロマトグラフィー(GPC)によって測定されるポリスチレン換算重量平均分子量(以下、Mwということがある)は、2,000~25,000、好ましくは10,

000~25,000、さらに好ましくは17,000~25,000である。重量平均分子量が大きすぎると、トナー粒子製造時のハンドリングが悪く、液滴の大きさがバラバラになるため均一なトナー粒子が得られない。逆に重量平均分子量が小さすぎると顔料の分散性と帯電性が不十分であり、印字サンプルがかぶるという問題がある。

6

【0017】(製造方法) 帯電制御樹脂の製造方法は、 乳化重合、分散重合、懸濁重合、溶液重合などいずれの 方法であってもよいが、目的とする重量平均分子量を得 られることから溶液重合が特に好ましい。

【0018】(重合開始剤) 帯電制御樹脂を製造する際に用いられる重合開始剤としては、2,2'ーアゾビスイソブチロニトリル、2,2'ーアゾビス(2,4ージメチルバレロニトリル)、2,2'ーアゾビスイソブチレート、4,4'ーアゾビス(4ーシアノペンタノイック酸)などのアゾ化合物;2,2'ーアゾビス(2ーアミジノノジプロパン)ジヒドロクロライド、2,2'ーアゾビス(N,N'ージメチレンイソブチルアミジン)、2,2'ーアゾビス(N,N'ージメチレンイソブチルアミジン)ジヒドロクロライドなどのジアミン化合物が用いられる。

【0019】また、過酸化物系のラジカル重合開始剤としては、4,4ーアゾビス(4ーシアノ吉草酸)、2,2ーアゾビス(2ーアミジノプロパン)二塩酸塩、2,2ーアゾビスー2ーメチルーN-1,1ービス(ヒドロキシメチル)ー2ーヒドロキシエチルプロピオアミド、2,2'ーアゾビス(2,4ージメチルバレロニトリル)、2,2'ーアゾビスイソブチロニトリル、1,1ーアゾビス(1ーシクロヘキサンカルボニトリル)等のアゾ化合物;メチルエチルパーオキシド、ジーtーブチルパーオキシド、アセチルパーオキシド、ジクミルパーオキシド、ラウロイルパーオキシド、ベンゾイルパーオキシド、ロブチルパーオキシド、マセチルペーオキシド、ボーブチルパーオキシド、ボーガチルパーオキシド、ボーブチルパーオキシド、ボーブチルパーオキシアの過酸化物類などを例示することができる。

【0020】アルカリ金属、ブチルリチウム、アルカリ金属とナフタレンとの反応物等のアニオン重合の開始剤による溶液重合は、分子量制御が容易なので好ましい。重合開始剤の使用量は、目的とする重量平均分子量に併せて任意に選択することができ、具体的には重合開始剤の使用量は、単量体総重量100重量部に対して、0.01~20重量部、好ましくは0.1~10重量部である。

【0021】(重合媒体)溶液重合等で用いる溶剤、分散剤は、適宜選択することができるが、具体的には炭化水素化合物としては、ベンゼン、トルエン、キシレン等の芳香族炭化水素系化合物; n-ヘキサン、シクロヘキ

サン、メチルシクロヘキサン、エチルシクロヘキサン、 ノナン、デカン、デカリン、ドデカンなどの飽和炭化水 素系有機化合物;が挙げられ、含酸素系有機化合物とし ては、メタノール、エタノール、nープロピルアルコー ル、イソプロピルアルコール、n-ブチルアルコール、 イソブチルアルコール、第二ブチルアルコール、アミル アルコール、イソアミルアルコール、メチルイソブチル カルビノール、2-エチルブタノール、2-エチルヘキ サノール、シクロヘキサノール、フルフリルアルコー ル、テトラヒドロフルフリルアルコール、エチレングリ コール、ヘキシレングリコール、グリセリンなどのヒド ロキシル基を有する化合物;プロピルエーテル、イソプ ロピルエーテル、ブチルエーテル、イソブチルエーテ ル、n-アミルエーテル、イソアミルエーテル、メチル ブチルエーテル、メチルイソブチルエーテル、メチルn -アミルエーテル、メチルイソアミルエーテル、エチル プロピルエーテル、エチルイソプロピルエーテル、エチ ルブチルエーテル、エチルイソブチルエーテル、エチル n-アミルエーテル、エチルイソアミルエーテルなどの 脂肪族飽和系エーテル類;

【0022】アリルエーテル、エチルアリルエーテルな どの脂肪族不飽和系エーテル類;アニソール、フェネト ール、フェニルエーテル、ベンジルエーテルなどの芳香 族エーテル類;テトラヒドロフラン、テトラヒドロピラ ン、ジオキサンなどの環状エーテル類;エチレングリコ ールモノメチルエーテル、エチレングリコールモノエチ ルエーテル、エチレングリコールモノブチルエーテル、 ジエチレングリコールモノメチルエーテル、ジエチレン グリコールモノエチルエーテル、ジエチレングリコール モノブチルエーテルなどのエチレングリコール類;ギ 酸、酢酸、無水酢酸、酪酸などの有機酸類;ギ酸ブチ ル、ギ酸アミル、酢酸プロピル、酢酸イソプロピル、酢 酸ブチル、酢酸第二ブチル、酢酸アミル、酢酸イソアミ ル、酢酸2-エチルヘキシル、酢酸シクロヘキシル、酢 酸ブチルシクロヘキシル、プロピオン酸エチル、プロピ オン酸ブチル、プロピオン酸アミル、酪酸ブチル、炭酸 ジエチル、シュウ酸ジエチル、乳酸メチル、乳酸エチ ル、乳酸ブチル、リン酸トリエチルなどの有機酸エステ ル類;メチルイソプロピルケトン、メチルイソブチルケ トン、メチルイソブチルケトン、ジイソブチルケトン、 アセチルアセトン、ジアセトンアルコール、シクロヘキ サノン、シクロペンタノン、メチルシクロヘキサノン、 シクロヘプタノンなどのケトン類; 1. 4 - ジオキサ ン、イソホロン、フルフラールなどのその他の含酸素有 機化合物が挙げられる。

【0023】(重合条件)重合温度および重合時間は、 重合法や使用する重合開始剤の種類などにより任意に選 択できるが、通常約10~200℃であり、重合時間は 0. 5~20時間程度である。更に、重合に際しては通 常知られている添加剤、例えばアミンなどの重合助剤を

併用することもできる。重合後の系から帯電制御樹脂を 回収する方法としては、貧溶剤に落とす方法、スチーム で溶剤を除去する方法、減圧で除去する方法、加熱溶融 で除去する方法、凍結乾燥する方法、高濃度で重合しそ のままトナー重合系に添加する方法等が用いられる。

## 【0024】2. トナー

(製造方法) 本発明のトナーは、粉砕法トナーあるいは 重合法トナー、いずれであってもよく、重合法トナーは カプセルトナーであってもよい。

【0025】2-1. 粉砕法トナー

10 粉砕法では、結着樹脂、着色剤、前記帯電制御樹脂、離 型剤等の処方を配合し、ヘンシェル等の混合機を用いて 混合し、配合物を得る。100~200℃に加温した2 本ロール、2軸押出機やブスコニーダー等の混練機を用 いて、配合物を溶融混練する。混練された配合物は冷却 し、粉砕、分級して、目標とする粒径のトナーを得る。 その後、必要に応じて外添剤を混合して現像剤にする。 【0026】(結着樹脂)結着樹脂は、スチレン系単量 体と(メタ)アクリル系単量体の共重合体やポリエステ ルが用いられるが、帯電制御樹脂との相溶性からスチレ 20 ン系単量体と(メタ)アクリル系単量体の共重合体が好 ましく用いられる。スチレン系単量体、 (メタ) アクリ ル系単量体の具体例は、それぞれ後述する重合法トナー 用重合性単量体の例と同様である。ガラス転移温度は6 0~70℃、好ましくは61~69℃、さらに好ましく は63~67℃である。Tgが低いと保存性が悪く、T gが高いと定着性が悪くなる。重量平均分子量は1万~ 50万、好ましくは2万~45万、更に好ましくは5万 ~40万である。1万に満たないとオフセット温度が低 下し、50万を超過すると定着性が低下する。

【0027】(着色剤)着色剤としては、黒色のカーボ ンブラックは、一次粒径が20~40nmであるものを 用いる。20nmより小さいとカーボンブラックの分散 が得られず、かぶりの多いトナーになる。一方、40 n mより大きいと、多価芳香族炭化水素化合物の量が多く なって、安全上の問題が起こる。その他の着色剤とし て、着色剤としては、カーボンブラック、チタンホワイ ト、ニグロシンベース、アニリンブルー、カルコオイル ブルー、クロムイエロー、ウルトラマリンブルー、オリ エントオイルレッド、フタロシアニンブルー、マラカイ トグリンオクサレート等の染顔料類;コバルト、ニッケ ル、三二酸化鉄、四三酸化鉄、酸化鉄マンガン、酸化鉄 亜鉛、酸化鉄ニッケル等の磁性粒子;などを挙げること ができる。さらに、磁性カラートナー用着色剤としての 染料は、C. I. ダイレクトレッド1、C. I. ダイレ クトレッド 4、 C. I. アシッドレッド 1、 C. I. ベ ーシックレッド1、C. I. モーダントレッド30、 C. I. ダイレクトブルー1、C. I. ダイレクトブル -2、C. I. アシッドブル-9、C. I. アシッドブ

ルー15、C. I. ベーシックブルー3、C. I. ベー

シックブルー 5、C. I. Eーダントブルー 7、C. I. ダイレクトグリン 6、C. I. ベーシックグリン 4、C. I. ベーシックグリン 6等が挙げられる。

【0028】顔料として黄鉛、カドミウムイエロ、ミネラルファーストイエロ、ネーブルイエロ、ネフトールイエロS、ハンザイエロG、パーマネントイエロNCG、タートラジンレーキ、赤口黄鉛、モリブデンオレンジ、パーマネントオレンジGTR、ピラゾロンオレンジ、ベンジジンオレンジG、カドミウムレッド、パーマネントレッド4R、ウオッチングレッドカルシウム塩、エオシンレーキ、ブリリアントカーミン3B、マンガン紫、ファストバイオレットB、メチルバイオレットレーキ、紺青、コバルトブルー、アルカリブルーレーキ、ビクトリアブルーレーキ、フタロシアニンブルー、ファストスカイブルー、インダスレンブルーBC、クロムグリン、酸化クロム、ピグメントグリンB、マラカイトグリンレーキ、ファイナルイエログリンG等が挙げられ、

【0029】フルカラートナー用マゼンタ着色顔料としては、C. I. ピグメントレッド1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、21、22、23、30、31、32、37、38、39、40、41、48、49、50、51、52、53、54、55、57、58、60、63、64、68、81、83、87、88、89、90、112、114、122、123、144、146、163、184、185、202、206、207および209、C. I. ピグメントバイオレット19、C. I. バットレッド1、2、10、13、15、23、29および35等が挙げられる。

【0030】マゼンタ染料としては、C. I. ソルベントレッド1、3、8、23、24、25、27、30、49、81、82、83、84、100、109および121、C. I. ディスパースレッド9、C. I. ソルベントバイオレット8、13、14、21および27、C. I. ディスパースバイオレット1などの油溶染料;C. I. ベーシックレッド1、2、9、12、13、14、15、17、18、22、23、24、27、29、32、34、35、36、37、38、39および40、C. I. ベーシックバイオレット1、3、7、10、14、15、21、25、26、27および28などの塩基性染料等が挙げられる。

【0031】フルカラートナー用シアン着色顔料としては、C.I. ピグメントブルー2.3.15.16 および17.C.I. バットブルー6.C.I. アシッドブルー45 およびフタロシアニン骨格にフタルイミドメチル基を $1\sim5$  個置換した銅フタロシアニン顔料等が挙げられる。フルカラートナー用イエロ着色顔料としては、C.I. ピグメントイエロ1.2.3.4.5.6.7

7、23、65、73、83、90、138、155、 および180、および185、C. I. バットイエロ 1、3および20等が挙げられる。

【0032】(離型剤)離型剤としては、例えば、ペンタエリスリトールテトラミリステート、ペンタエリスリトールテトラステアレートのごとき多官能エステル化合物;低分子量ポリエチレン、低分子量ポリプロピレン、低分子量ポリブチレンなどの低分子量ポリオレフィン類;天然由来のワックスであるパラフィンワックス類;フィッシャートロップシュワックスなどの合成ワックス;などを挙げることができる。なかでも示差走査熱量計により測定されるDSC曲線において、昇温時の吸熱ピーク温度が30~200℃、好ましくは50~180℃、60~160℃の範囲にあるものが特に好ましい。吸熱ピーク温度は、ASTM D3418-82によって測定された値である。離型剤は、単量体100重量部に対して、通常、0.1~30重量部、好ましくは0.5~20重量部の割合で使用される。

【0033】 (トナー粒径) 本発明のトナーの体積平均 粒径が、通常、 $1\sim10\mu$ m、好ましくは $3\sim8\mu$ mである。 $1\mu$ mより小さいと製造が困難であって、 $10\mu$ mより大きいと、解像度が低下する。また、粒径分布 (体積平均粒子径/個数平均粒子径) は、通常、1.7以下、好ましくは1.5以下、更に好ましくは1.3以下である。1.7より大きいと転写性が低下する。

【0034】2-2. 重合法トナー

重合法トナーは、乳化重合法、懸濁重合法、分散重合法 等種々の方法があるが、溶媒を使用しない、乳化剤を使 用しない、トナー形状が球形である等の優れた製造方法 である懸濁重合法が好ましい。 懸濁重合法にる重合トナ ーの製造方法は、分散安定剤を含有する水系分散媒体中 で、少なくとも重合性単量体、着色剤、帯電制御樹脂及 び離型剤を含有する単量体組成物を懸濁重合する方法で ある。

【0035】重合トナーの製造は、具体的には以下の方 法による。即ち、ビニル系単量体中に、着色剤、前記帯 電制御樹脂、離型剤、その他の添加剤等のトナー用原材 料をビーズミル等の混合分散機で均一に分散させた単量 体組成物を調整し、その後、分散安定剤を含有する水系 媒体中に分散させ、懸濁液を撹拌し、液滴粒子が均一に なってから油溶性重合開始剤を添加、混合して、さらに 高速回転せん断型撹拌機を用いて液滴をトナーの大きさ まで小さくなるように造粒しトナー用液滴粒子を得る。 造粒の方法は、特に限定されないが、高速回転する回転 子と、それを取り囲み且つ小孔または櫛歯を有する固定 子との間隙に流通させる方法が好適である。造粒した 後、5~120℃の温度で、好ましくは35~95℃の 温度で懸濁重合する。これより低い温度では、触媒活性 が高い重合開始剤を用いることになるので、重合反応の 50 管理が困難になる。逆にこれより高い温度では、離型剤

がトナー表面にブリードしやすくなるので、保存性が悪くなる。

11

【0036】単量体組成物分散液の分散状態は、単量体組成物の液滴の体積平均粒径が、 $2\sim6~\mu$  m、好ましくは、 $3\sim5~\mu$  mの状態である。液滴の粒径が大きすぎると、トナー粒子が大きくなり、画像の解像度が低下するようになる。液滴の体積平均粒径/数平均粒径は、 $1\sim3$ .0、好ましくは $1\sim2$ .0である。該液滴の粒径分布が広いと、得られるトナーに転写不良が生じ、かぶり、印字濃度低下などの不具合が生じるようになる。液滴は、好適には、その体積平均粒径 $\pm1~\mu$  mの範囲に30体積%以上、好ましくは50体積%以上存在する粒径分布のものである。

【0037】また、本発明においては、前記単量体組成物分散液を得た後、重合反応器に仕込み、重合することが好ましい。具体的には、分散液調製用の容器で単量体組成物を水性媒体に添加して単量体組成物分散液を調製し、当該単量体組成物を別の容器(重合反応用容器)に移送し、該容器に仕込み、重合する。従来の懸濁重合法のごとく、分散液を重合反応器で得、そのまま重合反応をさせる方法では、反応器内にスケールが生起し、粗大粒子が多量に生成しやすくなる。

【0038】 (トナー用重合性単量体) 本発明に用いる トナー用重合性単量体として、モノビニル系単量体を挙 げることができる。具体的にはスチレン、ビニルトルエ ン、αーメチルスチレン等のスチレン系単量体;アクリ ル酸、メタクリル酸;アクリル酸メチル、アクリル酸エ チル、アクリル酸プロピル、アクリル酸ブチル、アクリ ル酸2-エチルヘキシル、アクリル酸ジメチルアミノエ チル、メタクリル酸メチル、メタクリル酸エチル、メタ クリル酸プロピル、メタクリル酸ブチル、メタクリル酸 2-エチルヘキシル、メタクリル酸ジメチルアミノエチ ル、アクリロニトリル、メタクリロニトリル、アクリル アミド、メタクリルアミド等のアクリル酸またはメタク リル酸の誘導体;エチレン、プロピレン、ブチレン等の エチレン性不飽和モノオレフィン;塩化ビニル、塩化ビ ニリデン、フッ化ビニル等のハロゲン化ビニル;酢酸ビ ニル、プロピオン酸ビニル等のビニルエステル;ビニル メチルエーテル、ビニルエチルエーテル等のビニルエー テル;ビニルメチルケトン、メチルイソプロペニルケト ン等のビニルケトン;2ービニルピリジン、4ービニル ピリジン、Nービニルピロリドン等の含窒素ビニル化合 物;等のモノビニル系単量体が挙げられる。これらのモ ノビニル系単量体は、単独で用いてもよいし、複数の単 量体を組み合わせて用いてもよい。これらモノビニル系 単量体のうち、スチレン系単量体またはアクリル酸もし くはメタクリル酸の誘導体が、好適に用いられる。

【0039】重合法によりトナーを得る場合、好適に用いられるトナー用重合性単量体は、ガラス転移温度が、通常70℃以下、好ましくは、70~60℃の重合体を 50

形成しうるものである。ガラス転移温度が70℃より高いと定着温度が高くなり、60℃より低いと、保存性が低下する。通常、トナー用単量体は1種または2種以上を組み合わせて使用することができる。重合体のガラス転移温度(Tg)は、使用する単量体の種類と使用割合に応じて以下の式で算出される計算値(計算Tgという)である。

1/ $T g = W_1/T_1 + W_2/T_2 + W_3/T_3 + \cdots$  ただし、

Tg:共重合体のガラス転移温度(絶対温度) W<sub>1</sub>、W<sub>2</sub>、W<sub>3</sub>……:共重合体組成物中における特定 の単量体の重量分率

T<sub>1</sub>、T<sub>2</sub>、T<sub>3</sub>……:その単量体からなるホモポリマーのガラス転移温度(絶対温度)

【0040】使用する単量体が1種類の場合には、当該単量体から形成されるホモポリマーのTgを、本発明における重合体のTgと定義する。例えば、ポリスチレンのTgは、100℃であるから、スチレンを単独で使用する場合には、該単量体は、Tgが100℃の重合体を形成するという。使用する単量体が2種類以上あって、生成する重合体がコポリマーの場合には、使用する単量体の種類と使用割合に応じてコポリマーのTgを算出する。例えば、単量体として、スチレン80.5重量%をn-ブチルアクリレート19.5重量%を用いる場合には、この単量体比で生成するスチレンn-ブチルアクリレート共重合体のTgは55℃であるから、この単量体は、Tgが55℃の重合体を形成するという。

【0041】(架橋性単量体)架橋性単量体を用いることはホットオフセット改善に有効である。架橋性単量体は、2以上の重合可能な炭素ー炭素不飽和二重結合を有する単量体である。具体的には、ジビニルベンゼン、ジビニルナフタレン、およびこれらの誘導体等の芳香族ジビニル化合物;エチレングリコールジメタクリレート等のジエチレン性不飽和カルボン酸エステル;N,Nージビニルアニリン、ジビニルエーテル等のジビニル化合物;3個以上のビニル基を有する化合物;などの高分子量の架橋削;等を挙げることができる。これらの架橋性単量体は、それぞれ単独で、あるいは二種以上組み合わせて用いることができる。

【0042】このような架橋性単量体の使用量は、単量体 100 重量部に対して、通常  $0\sim5$ . 0 重量部、好ましくは 0.  $1\sim3$ . 0 重量部、より好ましくは 0.  $3\sim2$ . 0 重量部である。架橋性単量体の量が少な過ぎると十分なゲル量を得られず、逆に多すぎるとゲル含量が高くなり、定着が良好なトナー特性が得られなくなる。また一般に高分子量の架橋剤は、ゲル量の微調整が困難な傾向がある。

【0043】(分子量調整剤)分子量調整剤としては、 例えば、tードデシルメルカプタン、nードデシルメル カプタン、n-オクチルメルカプタン等のメルカプタン 類;四塩化炭素、四臭化炭素等のハロゲン化炭化水素 類;などを挙げることができる。これらの分子量調整剤 は、重合開始前、あるいは重合途中に添加することがで きる。分子量調整剤は、単量体100重量部に対して、 通常、0.01~10重量部、好ましくは0.1~5重 量部の割合で用いられる。

【0044】(マクロモノマー)また、本発明では、保存性、オフセット性と低温定着性とのバランスを良くするためにマクロモノマーを重合性単量体として用いることが好ましい。マクロモノマーは、分子鎖の末端にビニル重合性官能基を有するもので、数平均分子量が、通常、1,000~30,000のオリゴマーまたはポリマーである。数平均分子量が小さいものを用いると、重合体粒子の表面部分が柔らかくなり、保存性が低下するようになる。逆に数平均分子量が大きいものを用いると、マクロモノマーの溶融性が悪くなり、定着性が低下するようになる。

【0045】マクロモノマーは、前記重合性単量体(特 にモノビニル系単量体)を重合して得られる重合体のガ ラス転移温度よりも高いガラス転移温度を有するものが 好適である。なお、マクロモノマーのTgは、通常の示 差熱計(DSC)で測定される値である。マクロモノマ ーの具体例としては、スチレン、スチレン誘導体、メタ クリル酸エステル、アクリル酸エステル、アクリロニト リル、メタクリロニトリル等を単独でまたは二種以上を 重合して得られる重合体、ポリシロキサン骨格を有する マクロモノマー、特開平3-203746号公報の第4 頁~第7頁に開示されているものなどを挙げることがで これらマクロモノマーのうち、高いガラス転移 温度を有するもの、特にスチレン、メタクリル酸エステ ルまたはアクリル酸エステルを単独でまたはこれらを組 み合わせて重合して得られる重合体が、本発明に好適で ある。

【0046】マクロモノマーを使用する場合、その量は、ビニル系単量体100重量部に対して、通常、0.01~1重量部、好適には0.03~0.8重量部である。マクロモノマーの量が少ないと、保存性、オフセット性が向上しない。マクロモノマーの量が極端に多くなると定着性が低下するようになる。

【0047】(着色剤)着色剤としては、前記粉砕法トナーの製造方法で述べたものと同じものを用いる。

【0048】(滑剤・分散助剤)本発明においては、着色剤のトナー粒子中への均一分散等を目的として、オレイン酸、ステアリン酸等の脂肪酸あるいはNa、K、Ca、Mg、Zn等の金属からなる脂肪酸金属塩、シラン系またはチタン系カップリング剤等の分散助剤;などを使用してもよい。このような滑剤や分散剤は、着色剤の重量を基準として、通常、1/1000~1/1程度の割合で使用される。

【0049】(離型剤)離型剤は、粉砕法トナーの製造方法で述べたものと同じ物を用いる。本発明で用いられる離型剤は、重合性単量体に混合して直ちに重合しても良いが、更にトナー製造に用いる1以上の単量体(例えばスチレン単量体など)の、全部または一部と混合して、ビーズミルなどで粉砕し、SALD-2000J(島津製作所社製)によって測定される体積平均粒径が、 $5\mu$ m以下、好ましくは $3\mu$ m以下、更に好ましくは $2\mu$ m以下の、 $02\mu$ m以上になるまで粉砕するとよい。粉砕に際して用いる単量体の量は、離型剤の $5\sim15$ 倍(重量基準)、好ましくは $8\sim12$ 倍である。

14

【0050】また、離型剤の粒径分布が狭いと重合性単量体組成物の液滴が安定し、更にトナーの保存性も向上する。液滴の安定は、SALD-2000J(島津製作所社製)によって測定される体積平均粒径Dvと個数平均粒径Dpとの比Dv/Dpで表わされる粒径分布が1.0~12、好ましくは1.0~10、より好ましくは1.0~8である。離型剤は、トナー製造に用いるコア用重合性単量体100部に対して0.3~30重量部添加するのが好ましく、特に0.5~20重量部が適当である。離型剤の量が少なすぎると十分な離型性は得られず、逆に多すぎると保存性、流動性、フィルミング等の問題が起こり、好ましくない。

【0051】(分散安定剤)本発明に用いる分散安定剤は、難水溶性金属化合物のコロイドを含有するものが好適である。難水溶性金属化合物としては、硫酸バリウム、硫酸カルシウム、などの硫酸塩;炭酸バリウム、炭酸カルシウム、炭酸マグネシウム、などの炭酸塩;りん酸カルシウムなどのりん酸塩;酸化アルミニウム、酸化チタンなどの金属酸化物;水酸化アルミニウム、水酸化マグネシウム、水酸化第二鉄の金属水酸化物;等を挙げることができる。これらのうち、難水溶性の金属水酸化物のコロイドを含有する分散剤は、重合体粒子の粒径分布を狭くすることができ、画像の鮮明性向上するので好適である。

【0052】難水溶性金属水酸化物のコロイドを含有する分散剤は、その製法による制限はないが、水溶性多価金属化合物の水溶液のpHを7以上に調整することによって得られる難水溶性の金属水酸化物のコロイド、特に水溶性多価金属化合物と水酸化アルカリ金属塩との水相中の反応により生成する難水溶性の金属水酸化物のコロイドを用いることが好ましい。本発明に用いる難水溶性金属化合物のコロイドは、個数粒径分布D50(個数粒径分布の50%累積値)が0.5 $\mu$ m以下で、D90(個数粒径分布の90%累積値)が1 $\mu$ m以下であることが好ましい。分散剤は、前記の単量体組成物100重量部に対して、通常、0.1~20重量部の割合で使用する。この割合が0.1重量部より少ないと、充分な分散安定性を得ることが困難であり、重合時に凝集物が生

成し易くなる。逆に、20重量部を越えると、水溶液粘

50

40

度が大きくなって、分散安定性が低くなる。

【0053】本発明においては、必要に応じて、水溶性高分子を含有する分散剤を用いることができる。水溶性高分子としては、例えば、ポリビニルアルコール、メチルセルロース、ゼラチン等を例示することができる。本発明においては、界面活性剤を使用する必要は無いが、帯電特性の環境依存性が大きく成らない範囲で懸濁重合を安定に行うために使用することができる。

【0054】 (重合開始剤) ラジカル重合開始剤として は、過硫酸カリウム、過硫酸アンモニウム等の過硫酸 塩; 4、4ーアゾビス(4ーシアノ吉草酸)、2、2-アゾビス (2-アミジノプロパン) 二塩酸塩、2、2-アゾビス-2-メチル-N-1, 1-ビス(ヒドロキシ メチル) -2-ヒドロキシエチルプロピオアミド、2, 2'ーアゾビス(2,4-ジメチルバレロニトリル)、 2, 2'ーアゾビスイソブチロニトリル、1, 1'ーア ゾビス(1-シクロヘキサンカルボニトリル)等のアゾ 化合物;イソブチリルパーオキサイド、2, 4-ジーク ロロベンゾイルパーオキサイド、3,5,5ートリメチ ルヘキサノイルパーオキサイド;等のジアシルパーオキ サイド系、ビス (4-t-ブチルシクロヘキシル) パー オキシジーカーボネート、ジーnープロピルパーオキシ ジーカーボネート、ジーイソプロピルパーオキシジーカ ーボネート、ジー2ーエトキシエチルパーオキシジーカ ーボネート、ジ(2-エチルエチルパーオキシ)ジーカ ーボネート、ジーメトキシブチルパーオキシジーカーボ ネート、ジ(3-メチル-3-メトキシブチルパーオキ シ) ジーカーボネート;等のパーオキシジーカーボネー ト類、 (α, α-ビスーネオデカノイルパーオキシ) ジ イソプロピルベンゼン、クミルパーオキシネオデカノエ 30 ート、1,1,3,3ーテトラメチルブチルパーオキシ ネオデカノエート、1ーシクロヘキシルー1ーメチルエ チルパーオキシネオデカノエート、 t ーヘキシルパーオ キシネオデカノエート、t -ブチルパーオキシネオデカ ノエート、t ーヘキシルパーオキシピバレート、t ーブ チルパーオキシピバレート、メチルエチルパーオキシ ド、ジーtーブチルパーオキシド、アセチルパーオキシ ド、ジクミルパーオキシド、ラウロイルパーオキシド、 ベンゾイルパーオキシド、 t ーブチルパーオキシー2ー エチルヘキサノエート、ジーイソプロピルパーオキシジ カーボネート、ジー t ーブチルパーオキシイソフタレー ト等の過酸化物類などを例示することができる。

【0055】また、これら重合開始剤と還元剤とを組み合わせたレドックス開始剤を挙げることができる。これらのうち、油溶性ラジカル開始剤、特に、10時間半減期の温度が40~80℃、好ましくは45~80℃で且つ分子量が300以下の有機過酸化物から選択される油溶性ラジカル開始剤、特にtーブチルパーオキシー2~エチルへキサノエートやtーブチルパーオキシネオデカノエートが印字時の臭気が少ないこと、臭気などの揮発50

成分による環境破壊が少ないことから好適である。

【0056】トナー製造のための重合開始剤の使用量は、重合性単量体基準で通常、 $0.1\sim20$ 重量部である。0.1重量%未満では、重合速度が遅く、20重量部超過では、分子量が低くなるので好ましくない。本発明のトナーの重合法による製法によって、トナー粒子の体積平均粒径が、通常、 $1\sim10~\mu$  m、好ましくは3~8 $\mu$  mが得られる。また、体積平均粒径(dv)/個数平均粒径(dp)が、通常、1.7以下、好ましくは1.5以下、より好ましくは1.3以下のものが得られる。

【0057】本発明の帯電制御樹脂は、カプセルトナーにも用いることができる。カプセルトナーは、通常、Tgが60℃以下、好ましくは40~60℃となる重合体組成となるように選択された重合性単量体用いて前記の方法によって製造されるトナー粒子をコア粒子として用いる。

【0058】(シェル用単量体)シェル用単量体は、コア粒子を構成する重合体のガラス転移温度よりも高いガラス転移温度を有する重合体を得るものである。シェル用単量体の好ましい例として、スチレン、メチルメタクリレートなどの、ガラス転移温度が80℃を超える単独重合体を与える単量体をそれぞれ単独で、あるいは2種以上組み合わせて使用することができる。

【0059】シェル用単量体からなる重合体のガラス転移温度が少なくともコア粒子製造に用いた重合性単量体から得られる重合体のガラス転移温度よりも高くなるように設定する必要があり、その差は、通常、10 ℃以上、好ましくは20 ℃以上、より好ましくは30 ℃以上である。シェル用単量体により得られる重合体のガラス転移温度は、重合法トナーの保存安定性を向上させるために、通常、50 ℃超過120 ℃以下、好ましくは60 ℃超過110 ℃以下、より好ましくは80 ℃超過105 ℃以下である。

【0060】シェル用単量体は、コア粒子の存在下に重合する際に、コア粒子の数平均粒子径よりも小さい液滴とすることが好ましい。シェル用単量体の液滴の粒径が大きくなると、シェルが均一に付着できないので、保存性が低下傾向になる。シェル用単量体を小さな液滴とするには、シェル用単量体と水系分散媒体との混合物を、例えば、超音波乳化機などを用いて、微分散処理を行う。得られた水分散液をコア粒子の存在する反応系へ添加することが好ましい。

【0061】シェル用単量体は、20℃の水に対する溶解度により特に限定されないが、20℃の水に対する溶解度が0.1重量%以上の、水に対する溶解度の高い単量体はコア粒子に速やかに移行しやすくなるので、保存性のよい重合体粒子を得やすい。一方、20℃の水に対する溶解度が0.1重量%未満の単量体を用いた場合では、コア粒子へ移行が遅くなるので、前述のごとく、単

量体を微小な液滴にして重合することが好ましい。また、20℃の水に対する溶解度が0.1重量%未満の単量体を用いた場合でも、20℃の水に対する溶解度が5重量%以上の有機溶媒を反応系に加えることによりシェル用単量体がコア粒子にすばやく移行するようになり、保存性のよい重合体粒子が得やすくなる。

【0062】20℃の水に対する溶解度が0.1重量%未満のシェル用単量体としては、スチレン、ブチルアクリレート、2-エチルへキシルアクリレート、エチレン、プロピレンなどが挙げられる。20℃の水に対する溶解度が0.1重量%以上の単量体としては、メチルメタクリレート、メチルアクリレート等の(メタ)アクリル酸エステル;アクリルアミド、メタクリルアミド等のアミド;アクリロニトリル、メタクリロニトリル等のシアン化ビニル化合物;4-ビニルピリジン等の含窒素ビニル化合物;酢酸ビニル、アクロレインなどが挙げられる。

【0063】20℃の水に対する溶解度が0.1重量% 未満のシェル用単量体を用いた場合に好適に使用される 有機溶媒としては、メタノール、エタノール、イソプロ ピルアルコール、n-プロピルアルコール、ブチルアル コール等の低級アルコール;アセトン、メチルエチルケ トン等のケトン; テトラヒドロフラン、ジオキサン等の 環状エーテル;ジメチルエーテル、ジエチルエーテル等 のエーテル; ジメチルホルムアミド等のアミドなどを挙 げることができる。有機溶媒は、分散媒体(水と有機溶 媒との合計量)に対するシェル用単量体の溶解度が 0. 1重量%以上となる量を添加する。具体的な有機溶媒の 量は有機溶媒、シェル用単量体の種類及び量により異な るが、水系分散媒体100重量部に対して、通常、0. 1~50重量部、好ましくは0.1~40重量部、より 好ましくは0.1~30重量部である。有機溶媒とシェ ル用単量体とを反応系に添加する順序は特に限定されな いが、コア粒子へのシェル用単量体の移行を促進し保存 性のよい重合体粒子を得やすくするために、有機溶媒を 先に添加し、その後シェル用単量体を添加するのが好ま しい。

【0064】20℃の水に対する溶解度が0.1重量%未満の単量体と0.1重量%以上の単量体とを併用する場合には、先ず20℃の水に対する溶解度が0.1重量%以上の単量体を添加し重合し、次いで有機溶媒を添加し、20℃の水に対する溶解度が0.1重量%未満の単量体を添加し重合することが好ましい。この添加方法によれば、重合法トナーの定着温度を調整するためにコア粒子の存在下に重合する単量体から得られる重合体のTgや、単量体の添加量を適宜制御することができる。本発明においては、シェル用単量体に帯電制御樹脂を混合した後、反応系に添加して重合させることができる。

【0065】シェル用単量体をコア粒子の存在下に重合する具体的な方法としては、前記コア粒子を得るために

行った重合反応の反応系にシェル用単量体を添加して継続的に重合する方法、又は別の反応系で得たコア粒子を 仕込み、これにシェル用単量体を添加して段階的に重合 する方法などを挙げることができる。シェル用単量体は 反応系中に一括して添加するか、またはプランジャポン プなどのポンプを使用して連続的もしくは断続的に添加 することができる。

【0066】(シェル用ラジカル開始剤) 本発明の重合法トナーにおいて、シェル用単量体を添加する際に、水溶性のラジカル開始剤を添加することがコアーシェル型重合体粒子を得やすくするために好ましい。シェル用単量体の添加の際に水溶性ラジカル開始剤を添加すると、シェル用単量体が移行したコア粒子の外表面近傍に水溶性ラジカル開始剤が進入し、コア粒子表面に重合体(シェル)を形成しやすくなるからであると考えられる。

【0067】水溶性ラジカル開始剤としては、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩;4,4ーアゾビス(4ーシアノ吉草酸)、2,2ーアゾビス(2ーアミジノプロパン)二塩酸塩、2,2ーアゾビスー2ーメチルーN-1,1ービス(ヒドロキシメチル)-2ーヒドロキシエチルプロピオアミド等のアゾ系開始剤;クメンパーオキシド等の油溶性開始剤とレドックス触媒の組合せ;などを挙げることができる。水溶性ラジカル開始剤の量は、シェル用重合性単量体基準で、通常、0.1~20重量%である。

【0068】本発明の重合法トナーにおいて、コア粒子 用単量体(コア粒子を形成する重合体)とシェル用単量体との重量比率は、通常、80/20~99.9/0.1である。シェル用単量体の割合が過小であると、保存性改善効果が小さく、逆に、過大であると、定着温度が高くなる。本発明のコアーシェル構造の重合法トナーは、その重合体粒子の体積平均粒子径が、通常、 $1\sim10~\mu$ m、好ましくは3~8 $\mu$ mで、粒径分布(体積平均粒子径/個数平均粒子径)が、通常、1.7以下、好ましくは1.5以下、更に好ましくは1.3以下の粒径分布がシャープな球形の微粒子である。

【0069】本発明のコアーシェル構造の重合法トナーにおいて、シェルは、その平均厚みが、 $0.001\sim1.0\mu$ m、好ましくは $0.003\sim0.5\mu$ m更に好ましくは $0.005\sim0.2\mu$ mであると考えられる。厚みが大きくなると定着性が低下し、小さくなると保存性が低下する。なお、重合法トナーのコア粒子径、及びシェルの厚みは、コア粒子の粒径及びシェルを形成する単量体の量から算定するが、電子顕微鏡により観察できる場合は、その観察写真から無作為に選択した粒子の大きさ及びシェル厚みを直接測ることにより得ることもできる。なお、本発明においては電子顕微鏡によりコア粒子とシェルとが観察できる場合は、観察写真から測定された値を優先するものとする。

【0070】3.現像剤

本発明した粉砕法または重合法トナーを現像剤として用いるために、トナーに必要に応じて外添剤を混合することができる。

【0071】(外添剤)外添剤としては、無機粒子や有機樹脂粒子が挙げられる。無機粒子としては、二酸化ケイ素、酸化アルミニウム、酸化チタン、酸化亜鉛、酸化錫、チタン酸バリウム、チタン酸ストロシチウムなどが挙げられる。有機樹脂粒子としては、メタクリル酸エステル重合体粒子、アクリル酸エステル共重合体粒子、スチレンーメタクリル酸エステル共重合体粒子、スチレンーアクリル酸エステル共重合体粒子、コアがメタクリル酸エステル連合体で、シェルがスチレン重合体で形成されたコアシェル型粒子などが挙げられる。これらのうち、無機酸化物粒子、特に二酸化ケイ素粒子が好適である。また、これらの粒子表面を疎水化処理することができ、疎水化処理された二酸化ケイ素粒子が特に好適である。外添剤の量は、特に限定されないが、トナー粒子100重量部に対して、通常、0.1~6重量部である。

【0072】外添剤は2種以上を組み合わせて用いても良い。外添剤を組み合わせて用いる場合には、平均粒子径の異なる2種の無機酸化物粒子または有機樹脂粒子を組み合わせる方法が好適である。具体的には、平均粒子径5~20nm、好ましくは7~18nmの粒子(好適には無機酸化物粒子)と、平均粒子径20nm超過2 $\mu$ m以下、好ましくは30nm~1 $\mu$ mの粒子(好適には無機酸化物粒子)とを組み合わせて付着させることが好適である。なお、外添剤用の粒子の平均粒子径は、透過型電子顕微鏡で該粒子を観察し、無作為に100個選び粒子径を測定した値の平均値である。

【0073】前記 2種の外添剤(粒子)の量は、トナー粒子 100重量部に対して、平均粒子径  $5\sim20$  n mの粒子が、通常、 $0.1\sim3$ 重量部、好ましくは $0.2\sim2$ 重量部、平均粒子径 20 n m超過  $2\mu$  m以下の粒子が、通常、 $0.1\sim3$  重量部、好ましくは $0.2\sim2$  重量部である。平均粒子径  $5\sim20$  n m粒子と平均粒子径 20 n m超過  $2\mu$  m以下粒子との重量比は、通常、 $1:5\sim5:1$  の範囲、好ましくは  $3:10\sim10:3$  の範囲である。外添剤の付着は、通常、外添剤とトナー粒子とをヘンシェルミキサーなどの混合機に入れて撹拌して行う。

#### [0074]

【実施例】以下に、実施例および比較例を挙げて、本発明を更に具体的に説明するが、本発明は、これらの実施例のみに限定されるものではない。なお、部および%は、特に断りのない限り重量基準である。本実施例では、以下の方法で評価した。

#### 【0075】トナー特性

(トナーの球形度) 重合トナーの電子顕微鏡写真を撮り、その長径 r l と短径 r s との比 (r l / r s) を l サンプル 1 0 0 個算出し、その平均値を計算して、球形 50

度とした。

(トナー粒径) 重合体粒子の体積平均粒径(dv)及び粒径分布即ち体積平均粒径と平均粒径(dp)との比(dv/dp)はマルチサイザー(コールター社製)によりを測定した。このマルチサイザーによる測定は、アパーチャー径:  $100\mu$ m、媒体: イソトンII、濃度 10%、測定粒子個数: 5000 個の条件で行った。【0076】(シェル厚み)シェルの厚みが厚ければマルチサイザーや電子顕微鏡で測定が可能であるがシェルの厚みが薄い今回の場合には以下の式を用いて算定し

20

 $x = r (1 + s \cdot 100)^{1/3} - r (1)$  但し $r : シェル用単量体を添加前のコア粒径(マルチサイザーの体積粒径:<math>\mu m$ )の半径

x:シェル厚み (μm)

s:シェル用単量体の添加部数(コア単量体100重量 部に対し)

 $\rho$ :シェル樹脂の密度(g/cm $^3$ )=1.0

【0077】(流動性)目開きが各々 $150\mu$ m、 $75\mu$ m及び $45\mu$ mの3種の篩をこの順に上から重ね、一番上の篩上に測定する現像剤を4g精秤して乗せる。次いで、この重ねた3種の篩を、粉体測定機(細川ミクロン社製;商品名「REOSTAT」)を用いて、振動強度4の条件で、15秒間振動した後、各篩上に残った現像剤の重量を測定する。各測定値を以下の式 $\mathbf{O}$ 、 $\mathbf{O}$ 及び $\mathbf{O}$ に入れて、流動性の値を算出する。1 サンプルにつき3回測定し、その平均値を求めた。

(150μm篩に残った現像剤重量(g))/4g×1

 $(75\mu m$ 篩に残った現像剤重量(g)) $/4g \times 10$ 0×0.6

( $45\mu$ m篩に残った現像剤重量(g))/ $4g\times10$ 0×0.2

流動性(%) = 100 - (a + b + c)

【0078】(保存性)現像剤を密閉可能な容器に入れて、密閉した後、該容器を55℃の温度に保持した恒温水槽の中に沈める。8時間経過後、恒温水槽から容器を取り出し、容器内の現像剤を42メッシュの篩上に移す。この際、容器内での現像剤の凝集構造を破壊しないように、容器内から現像剤を静かに取り出し、かつ、注意深く篩上に移す。この篩を、前記の粉体測定機を用いて、振動強度4.5の条件で、30秒間振動した後、篩上に残った現像剤の重量を測定し、凝集現像剤の重量とした。最初に容器に入れた現像剤の重量に対する凝集現像剤の重量の割合(重量%)を算出した。1サンプルにつき3回測定し、その平均値を保存性の指標とした。

#### 【0079】印字品質

(トナーの定着温度) 市販の非磁性一成分現像方式のプリンター(8枚機)の定着ロール部の温度を変化できる

ように改造したプリンターを用いて、定着試験を行った。定着試験は、改造プリンターの定着ロールの温度を変化させて、それぞれの温度での現像剤の定着率を測定し、温度一定着率の関係を求めることにより行った。定着率は、改造プリンターで印刷した試験用紙における黒ベタ領域の、テープ剥離操作前後の画像濃度をID 計算した。すなわち、テープ剥離前の画像濃度をID 前、テープ剥離後の画像濃度をID後とすると、定着率は、次式から算出することができる。

定着率(%)= (ID後/ID前)×100 ここで、テープ剥離操作とは、試験用紙の測定部分に粘着テープ(住友スリーエム社製スコッチメンディングテープ810-3-18)を貼り、一定圧力で押圧して付着させ、その後、一定速度で紙に沿った方向に粘着テープを剥離する一連の操作である。また、画像濃度は、McBeth社製反射式画像濃度測定機を用いて測定した。この定着試験において、定着率80%の定着ロール温度を現像剤の定着温度と評価した。

【0080】(環境依存性)前述の改造プリンターを用いて、35℃×80RH%(H/H)環境および10℃×20RH%(L/L)の各環境下で初期から連続印字を行い、反射濃度計(マクベス製)で印字濃度が1.3以上で、かつ、白色度計(日本電色製)で測定した非画像部のカブリが10%以下の画質を維持できる連続印字枚数を調べ、以下の基準で現像剤による画質の環境依存性を評価した。

〇:上記画質を維持できる連続印字枚数が10000枚以上、

△:上記画質を維持できる連続印字枚数が5000以上、10000未満、

×:上記画質を維持できる連続印字枚数が5000未満。

【0081】(耐久性)前述の改造プリンターで、23 ℃×50RH%室温環境下で、初期から連続印字を行い、反射濃度計(マクベス製)で測定した印字濃度が1.3以上で、かつ、白色度計(日本電色製)で測定した非画像部のカブリが10%以下の画質を維持できる連続印字枚数を調べ、以下の基準で現像剤による画質の耐久性を評価した。

〇:上記画質を維持できる連続印字枚数が10000枚 40以上、

△:上記画質を維持できる連続印字枚数が5000以上、10000未満、

×:上記画質を維持できる連続印字枚数が5000未 満。

# 【0082】実施例1

(帯電制御樹脂Aの合成) 3リットルフラスコにトルエン900部、スチレン71部、ブチルアクリレート26部、2ーアクリルアミドー2ーメチルプロパンスルホン酸3部およびアゾビスジメチルバレロニトリル2部を仕 50

込み攪拌、90℃で8時間反応後減圧蒸留により溶剤を除去しMw=21, 000、Tg=42℃の帯電制御樹脂 Aを得た。

22

【0083】(トナーの製造)スチレン83部及びnー ブチルアクリレート17部からなる単量体と、イエロー 顔料(クラリアント社製、商品名「toner vel low HG VP2155」) 5部、前記帯電制御樹 脂A 3部を、通常の撹拌装置で撹拌、混合した後、メ ディア型分散機により、均一分散した。これに、ペンタ エリスリトールテトラミリステート 4部を添加、混合、 溶解して、重合性単量体組成物を得た。他方、イオン交 換水250部に塩化マグネシウム(水溶性多価金属塩) 9. 5部を溶解した水溶液に、イオン交換水50部に水 酸化ナトリウム(水酸化アルカリ金属) 5. 8部を溶解 した水溶液を撹拌下で徐々に添加して、水酸化マグネシ ウムコロイド(難水溶性の金属水酸化物コロイド)分散 液を調製した。上記により得られた水酸化マグネシウム コロイド分散液に、上記重合性単量体組成物を投入し、 液滴が安定するまで撹拌し、そこに重合開始剤 t ーブチ ルパーオキシー2ーエチルヘキサノエートを6部添加し た後、エバラマイルダー(荏原製作所社製 [MDN30 3 V型] )を用いて15,000rpmの回転数で30 分間高剪断撹拌して、単量体混合物の液滴を造粒した。 この造粒した単量体混合物の水分散液を、撹拌翼を装着 した10Lの反応器に入れ、90℃で重合反応を開始さ せ、8時間重合を継続した後、反応を停止し、pH9. 5の重合体粒子の水分散液を得た。上記により得た重合 体粒子の水分散液を撹拌しながら、硫酸により系のpH を約5.5にして酸洗浄(25℃、10分間)を行い、 次いで、濾過、脱水し、脱水後、洗浄水を振りかけて水 洗浄を行った。その後、乾燥器(45℃)で二昼夜乾燥 を行い、体積平均粒径 (d v) が 6. 7 μm、のトナー 粒子を得た。

【0084】(現像剤の製造及び評価)上記により得られた重合体粒子100部に、疎水化処理した平均粒子径14nmのシリカ(デグサ社製、商品名「R202」)0.8部を添加し、ヘンシェルミキサーを用いて混合し、非磁性一成分現像剤(イエロートナー)を製造した。得られた現像剤を評価したところ、定着性、保存性、流動性に優れ、高温高湿下及び低温低湿下のいずれにおいても、色調が良く、画像濃度が高く、カブリのない極めて良好な画像が得られた(評価=〇)。評価結果を表1に示す。

#### 【0085】実施例2

実施例1において、スチレン量71部を78部、ブチルアクリレート26部を2-エチルへキシルアクリレート19部に変更した以外は、実施例1と同様にして帯電制御樹脂樹脂Bを製造した。帯電制御樹脂を評価したところ、Mw=17,000、Tg=58°であった。実施例1と同様にして重合トナーを得た。得られた現像剤を

. \*

評価したところ、定着性、保存性、流動性に優れ、高温高湿下及び低温低湿下のいずれにおいても、色調が良く、画像濃度が高く、カブリのない極めて良好な画像が得られた。(評価=○)評価結果を表1に示す。

23

### 【0086】実施例3

スチレン78部及びnーブチルアクリレート22部から なるコア用単量体(得られる共重合体の計算Tg=50 °C)と、マゼンタ顔料(クラリアント社製、商品名「t oner magenta E-02」) 5部、前記帯 電制御樹脂(A)3部、ポリメタクリル酸エステルマク ロモノマー(東亜合成化学工業社製、商品名「AA 6」、Tg=94℃) O. 8部、ペンタエリスリトール =テトラミリステート10部とを通常の攪拌機で均一に なるまで攪拌し、そこに t ーブチルパーオキシー 2 ーエ チルヘキサノエート4部を溶解させ、コア用重合性単量 体組成物を得た。一方、イオン交換水250部に塩化マ グネシウム(水溶性多価金属塩) 9. 8部を溶解した水 溶液に、イオン交換水50部に水酸化ナトリウム(水酸 化アルカリ金属) 6. 9部を溶解した水溶液を攪拌下で 徐々に添加して、水酸化マグネシウムコロイド(難水溶 性の金属水酸化物コロイド)分散液を調製した。上記に より得られた水酸化マグネシウムコロイド分散液に、上 記コア用単量体組成物を投入し、エバラマイルダー(荏 原製作所社製 [MDN303V型]) を用いて15、0 00rpmの回転数で30分間高剪断攪拌、混合して、 均一分散し、コア用単量体組成物の液滴を造粒した。

【0087】この造粒したコア用単量体組成物を、攪拌翼を装着した反応器に入れ、90℃で重合反応を開始させ、重合転化率95%に達したときに、後記シェル用単量体の水分散液及び10%過硫酸アンモニウム水溶液25部を添加し、5時間反応を継続した後、反応を停止し、コアーシェル型重合体粒子の水分散液を得た。前記、シェル用単量体等組成物はメチルメタクリレート(計算Tg=105°)5部と水100部を超音波乳化機にて微分散化処理して、シェル用単量体の水分散液を得た。

【0088】シェル用単量体を添加する直前にコア粒子を取り出して測定した体積平均粒径(dv)は $5.7\mu$  mであり、体積平均粒径(dv)/個数平均粒径(dp)は1.32であった。またシェル用単量体量とコア粒径から算定したシェル厚は $0.06\mu$  mで、r1/rs は1.1であった。

【0089】上記により得たコアーシェル型重合体粒子の水分散液を攪拌しながら、硫酸により系のpHを6以下にして酸洗浄(<math>25  $\mathbb{C}$ 、10 分間)を行い、濾過により水を分離した後、新たにイオン交換水50 0 部を加えて再スラリー化し水洗浄を行った。その後、再度、脱水と水洗浄を数回繰り返し行って、固形分を濾過分離した後、乾燥機にて45  $\mathbb{C}$   $\mathbb{C$ 

【0090】上記により得られたコアーシェル型重合体 粒子100部に、疎水化処理したコロイダルシリカ(デグサ社製、商品名「R202」)0.8部を添加し、ヘンシェルミキサーを用いて混合してカプセルトナーを調製した。上記により得られた重合法トナーを用いて定着温度を測定したところ120℃であった。また、このトナーの保存性は、3%と非常に良好であった。結果を表1に示した。その他の画像評価では、画像濃度が高く、カブリ、ムラの無い、解像度の極めて良好な画像が得られた(評価=○)。

## 【0091】実施例4

実施例3において、帯電制御樹脂Aを帯電制御樹脂B、3部に代え、マゼンタ顔料を、シアン顔料(住化カラー社製、商品名「GN-X」)5部に代えた他は実施例3と同様にしてシアントナーを得た。実施例1と同様にして現像剤を調製し、評価したところ、定着性、保存性に優れ、高温高湿下および低温低湿下のいずれにおいても、色調が良く、画像濃度が高く、カブリのない極めて良好な画像が得られた(評価=○)。評価結果を表1に20 示す。

## 【0092】比較例1

#### 80 【0093】比較例2

実施例2の帯電制御樹脂の合成において、スチレン78部を87部、2-エチルへキシルアクリレート19部を10部使用した他は実施例1と同様にして合成し、Tg76℃、Mw21000の帯電制御樹脂Dを得た。実施例4と同様にして現像剤を調製し、評価したところ、定着性が不十分であった。評価結果を表1に示す。

# 【0094】比較例3

実施例1の帯電制御樹脂の合成において、スチレンの量を75部に、ブチルアクリレートの量を0部に、2ーアクリルアミドー2ーメチルプロパンスルホン酸の量を25部にして、その他は実施例1と同様にして合成し、Tg=92℃、Mw=18,000の帯電制御剤Eを得た。その他は実施例3のうち、マゼンタ顔料をイエロー顔料(クラリアント社製、商品名「toner yellow HG VP2155)に替えたこと以外は、実施例3と同様にして現像剤を調製し、評価したところ、定着性と高温高湿下の環境依存性が不十分であった。評価結果を表1に示す。

[0095]

50 【表1】

| × 20               |      |      | (表   | 1)   |      |      |      |
|--------------------|------|------|------|------|------|------|------|
|                    | 突施例  |      |      | 比較例  |      |      |      |
|                    | 1    | 2    | 3    | 4    | 1    | 2    | 3    |
| 帯電制御樹脂             | Α    | В    | A    | В    | С    | ۵    | E    |
| 重量平均分子<br>量 (×10⁴) | 2. 1 | 1.7  | 2. 1 | 1.8  | 2. 0 | 2. 1 | 1.8  |
| ガラス 転移点<br>(℃)     | 42   | 58   | 42   | 58   | 27   | 76   | 92   |
| 添加量(部)             | 3    | 3    | 3    | 3    | 3    | 3    | 3    |
| 顔料                 | イエロー | イエロー | マゼンタ | シアン  | マゼンタ | シアン  | イエロー |
| 添加量(部)             | 5    | 5    | 5    | 5    | 5    | 5    | 5    |
| トナー粒径<br>D v (μm)  | 6.7  | 6. 5 | 6. 9 | 7. 2 | 7.1  | 7. 3 | 6.8  |
| 粒径分布<br>D v / D p  | 1.3  | 1.2  | 1.3  | 1.3  | 1.3  | 1.3  | 1.3  |
| <b>球形</b> 度        | 1.1  | 1.1  | 1.2  | 1.1  | 1.2  | 1.1  | 1.1  |
| コア粒径μm             | _    | _    | 6.8  | 7.1  | 7.0  | 7. 2 | 6.9  |
| シェル厚μm             |      |      | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 |
| 環境依存性              |      |      |      |      |      |      |      |
| (H/H)              | 0    | 0    | 0    | 0    | 0    | Δ    | ×    |
| (L/L)              | 0    | 0    | 0    | 0    | Δ    | 0    | 0    |
| 耐久性                | 0    | 0    | 0    | 0    | ×    | Δ    | 0    |
| 保存性(%)             | 4    | 2    | 3    | 2    | 32   | 2    | 2    |
| rde Wil. Ad.       | A.E. |      | - 00 | 0.4  | 40   | 0.0  | 1 7A |

【0096】以上の結果から、のTgを40℃以上60℃以下に規制することによって、定着性、保存性に優れ、画像品質の耐久性、解像性の優れた現像剤を与える静電荷像現像用トナーが得られることが判る。

[0097]

\*【発明の効果】本発明の静電荷像現像用トナーは、帯電 安定性が優れる為、耐久性がよく、環境依存性が少な く、かつ、定着性、保存性に優れ、印字あるいは複写し ても色むらがない現像剤を与えるので、印刷機や複写機 に好適に使用できる。

170

フロントページの続き

F ターム(参考) 2HOO5 AAO1 AAO6 AAO8 AA11 AA21 ABO6 ABO7 CAO2 CAO4 DAO2 EAO3 EAO6