

KT0646M 常见问题解答

1	KT0646M 和 KT0626M 相比有哪些不同和改进?	2
2	KT0646M 芯片上电后需要做什么?	2
3	KT0646M 如何选择晶体?	4
4	KT0646M 支持的频率范围是多少?	4
5	如何设定 KT0646M 的发射频率?	4
6	KT0646M 的频率分辨率是多少?	4
7	KT0646M 的预加重时间常数是多少?如何修改接收机电路与之匹配?	4
8	KT0646M 如何调整压缩器时间常数?	5
9	KT0646M 如何打开 PA 和配置发射功率?	5
10	KT0646M 如何进入待机状态并避免开关机噪声?	
11	KT0646M 切换频率时有什么需要注意的?	6
12	KT0646M 如何调整麦克风灵敏度?	7
13	KT0646M 如何开启静音功能?	7
14	KT0646M 如何使用设置导频信号?	7
15	KT0646M 的 SCL 和 SDA 两个引脚是否需要上拉电阻?	7
16	MCU 的 I2C 接口如何设置?	7
17	PCB 版图必须注意什么?	7
18	KT0646M 如何实现电池电压指示功能?	
19	如何使用 KT0646M 的辅助信道功能?	8
20	KT0646M 如何将电池电压信息发送出去?	
21	KT0646M 的参考设计是什么样的?	10

2017/06/28, Rev 1.2

1 KT0646M 和 KT0626M 相比有哪些不同和改进?

- a. 降低了功耗;
- b. 去掉了片外 VCO 电感;
- c. 降低了射频上的干扰杂波;
- d. 调频带宽可调;
- e. 增加了15段均衡器;
- f. 增加了 Echo 功能;
- g. 增加了音频 AGC 功能;
- h. 增加了音频 ALC 功能:
- i. 增加了麦克风音频信号检测功能,为实现无音频输入自动静音、关机提供了方案;
- j. 预加重滤波器,时间常数为75 μs 或50 μs;
- k. 优化了音频压缩器,配合 KT065x 系列产品可以有效优化尾音、失真和噪底。

2 KT0646M 芯片上电后需要做什么?

上电后先调用参考代码 KT_WirelessMicTxdrv.c 中的 KT_WirelessMicTx_PreInit (), 当返回值为 1 后再调用 KT_WirelessMicTx_Init (), 如果返回值为 1 说明启动正常可以继续操作。请按照图 1 所示调用参考代码中的函数:

2017/06/28, Rev 1.2

3 KT0646M 如何选择晶体?

KT0646M 支持同时使用 24MHz 和 24.576MHz 的晶体,将 24MHz 的晶体接到 XI 和 XO1 上,24.576MHz 的晶体接到 XI 和 XO2 上,并按照表格 1 进行将参考代码中 KT_WirelessMicTxdrv.h 文件 中 的 #define XTAL_DUAL 的 编 译 选 项 打 开 , 将 #define XTAL_24M_ONLY 和 #define XTAL_24P576M_ONLY 编译选项关闭。根据所用的晶体,调整 XI、XO1 和 XO2 引脚与地之间的电容(一般是 33pF),可以微调晶体的震荡频率。

如果只使用 24MHz 晶体,需将晶体接到 XI 和 XO1 上,XO2 悬空既可。并按照表格 1 进行将参考代码中 KT_WirelessMicTxdrv.h 文件中的#define XTAL_24M_ONLY 的编译选项打开,将##define XTAL_DUA 和#define XTAL_24P576M_ONLY 编译选项关闭。根据所用的晶体,调整 XI 和 XO1 引脚与地之间的电容(一般是 33pF),可以微调晶体的震荡频率。

如果只使用 24.576MHz 晶体,需将晶体接到 XI 和 XO1 上,XO2 悬空即可。并按照表格 1 进行 将参考代码中 KT_WirelessMicTxdrv.h 文件中的#define XTAL_24P576M_ONLY 的编译选项打开,将 ##define XTAL_DUA 和#define XTAL_24M_ONLY 编译选项关闭。根据所用的晶体,调整 XI 和 XO1 引脚与地之间的电容(一般是 33pF),可以微调晶体的震荡频率。

	#define XTAL_DUAL	#define XTAL_24M_ONLY	#define XTAL_24P576M_ONLY
同时使用 24MHz 和 24.576MHz 晶体	0	X	X
只使用 24MHz 晶体	X	0	X
只使用 24.576MHz 晶体	X	X	О

表格 1: 时钟配置表

4 KT0646M 支持的频率范围是多少?

KT0646M 具有支持 UHF 470MHz~960MHz 频率范围的能力,对于不同波段的设计需要配合不同的 Balun、天线以及匹配电路。

5 如何设定 KT0646M 的发射频率?

使用参考代码的 KT_WirelessMicTx_Tune(freq)函数设置 KT0646M 的发射频率,其中 freq 的单位是 KHz。例如发射频率为 770MHz 时,freq=770000。

6 KT0646M 的频率分辨率是多少?

KT0646M 支持 1KHz 的频率分辨率。可以通过函数 KT_WirelessMicTx_Tune(freq)设置精度到 1KHz 的发射频率。

7 KT0646M 的预加重时间常数是多少?如何修改接收机电路与之匹配?

KT0646M 内置预加重网络的时间常数是 75us 或 50us, KT Micro 系列的接收芯片使用的是时间常数为 75us 的去加重网络。

如果使用其他方案的接收机为了达到平坦的音频响应,接收机应相应修改去加重网络部门的元件。例如图 2 所示接收机电路,可修改为图 3 所示电路,去掉 C4,选择 R1' R2' C1' C2'值,以满足 R1'*C1'=R2'*C2'=75us,R1'+R2'=R1+R2,即可保证与原电路增益相同,同时与预加重曲线匹配。

8 KT0646M 如何调整压缩器时间常数?

传统无线麦克风接收机的压缩器时间常数通常由接在压扩芯片 C_{RECT} 引脚的电容决定,例如 NE571 和 NE575 的时间常数为: $\tau_R = \tau_A = 10K \times C_{RECT}$ 。为了达到最好的音频效果,应相应修改 KT0646M 的压缩时间常数使之与接收机相同。参考代码中函数 KT_WirelessMicTx_Init 会在初始化时配置压扩时间常数,选择不同的 COMPANDOR_TC_Xms 的宏定义可以修改 KT0646M 内置压缩器的时间常数。

宏定义表的时间常数分别为:

9 KT0646M 如何打开 PA 和配置发射功率?

KT0646M 上电后默认不自动打开 PA,需要首先使用函数 KT_WirelessMicTx_PAGAIN()配置 PA 输出功率,然后使用函数 KT_WirelessMicTx_PASW(PA_ON)打开 PA。PA 打开前应先配置发射频率,避免出现不必要的噪声。另外,建议 PAGAIN 不要设置 40 以上的档位。因为 40 到 63 发射功率增加不到 1dB,但电流将增加 60mA(差分模式)。

10 KT0646M 如何进入待机状态并避免开关机噪声?

使用参考代码中函数 KT_WirelessMicTx_Standby(), 芯片进入待机状态。待机状态下,芯片工作电流小于 10uA。使用函数 KT_WirelessMicTx_WakeUp(),芯片退出待机状态,进入工作状态,这时需要重新配置发射频率和 PA 开关,芯片才能正常发射。使用上述两个函数开关机均不会产生额外噪声。

11 KT0646M 切换频率时有什么需要注意的?

建议按照下图的流程进行操作。

2017/06/28, Rev 1.2

12 KT0646M 如何调整麦克风灵敏度?

麦克风灵敏度是指麦克风预防大器的放大倍数,它可以通过使用参考代码中 KT_WirelessMicTx_Mic_Sens(cMicSens)函数修改,cMicSens 常数可以从 0~15 中选择,0 表示增益最低(0dB),15 表示增益最高(46dB)。

13 KT0646M 如何开启静音功能?

通过调用参考代码里的 KT_WirelessMicTx_MuteSel(AUDIO_MUTE)函数可以启动静音功能; 通过调用参考代码里的 KT_WirelessMicTx_MuteSel(AUDIO_UNMUTE)函数可以退出静音功能。

14 KT0646M 如何使用设置导频信号?

KT_WirelessMicTxdrv.h 文件中有#define KT_RX 和#define OTHER_RX 两个预编译选项,当使用 KT Micro 的芯片作为接收机时需要打开#define KT_RX 并关闭#define OTHER_RX 预编译选项。使用其他厂商的接收机方案时则相反。

通过调用参考代码里的 KT_WirelessMicTx_Pilot (PILOT_ENABLE)函数可以启动发射导频信号:

通过调用参考代码里的 KT_WirelessMicTx_Pilot (PILOT_DISABLE)函数可以取消发射导频信号。

通过调用参考代码里的 KT_WirelessMicTx_Set_Pilot_Freq () 函数可以设置导频信号的频率。 需要注意的是如果使用 KT0616M、KT0655M 或 KT0656M 作为接收机是不能设置导频频率的,导频频率为固定值。

使用参考代码中 KT_WirelessMicTx_Pilot_Fdev(cPilot_Fdev)函数可以调整导频的发射频偏。参数 cPilot Fdev 与发射频偏的关系为:

cPilot_Fdev	频偏(KHz)
0	2.5
1	5
2	7.5
3	10

15 KT0646M的 SCL和 SDA两个引脚是否需要上拉电阻?

当 I2C 时钟工作在 200KHz 以下时,不需要在 SDA、SCL 两个引脚上接上拉电阻; 当 I2C 时钟工作在 200KHz-400KHz 时,需要在 SDA、SCL 两个引脚上接 10Kohm 上拉电阻。

16 MCU的 I2C 接口如何设置?

I2C 模式下应将 MCU 的 SDA, SCL 设置为漏极开路或集电极开路。当读取 ACK 信号和 Data 时 MCU 还需要将 SDA 配置为输入引脚。

17 PCB 版图必须注意什么?

- 1) 保证晶体的振荡电容的地与芯片的地连接良好。保证晶体放置在尽量靠近 KT0646M 的地方, 且走线尽量短。
- 2) 电源的去藕电容应该尽量靠近芯片的电源输入脚,并保证流入芯片的电流都先经过电容滤波
- 3) 不要将 RF 走线、数字走线、模拟走线平行放置,避免它们之间信号耦合,减少干扰。
- 4) 不要将 RF 输出线打断,或是穿过两层走线。

2017/06/28, Rev 1.2

- 5) RF 输出端在差分信号转化为单端信号前,应尽量保证 RF 的差分输出走线互相靠近并且保持对称。
- 6) RF输出端的走线要尽量的短,最好将 RF output 安排在 PCB 的板边处。
- 7) RF 输出脚及走线周围需要使用铺地将其包裹起来,避免受到其他信号的干扰,但是注意不要将地线与 RF 信号靠的太近,避免过大的分布电容衰减 RF 信号。
- 8) I2C接口走线不要横穿芯片,尽量不跨层。如有可能,在 I2C 走线的背面并排保持地线或地平面,直至主控芯片的地平面,以此降低 I2C接口对芯片的干扰。
- 9) 确保 AVSS 可以很好的共地。

18 KT0646M 如何实现电池电压指示功能?

KT0646M 集成了电池电压测量用 ADC, ADC 从 VBAT_DET 引脚检测电池电压,量化范围是 0~1.2V,如果电池电压高于这个范围,需要在片外对电池电压适当作电阻分压后送入 VBAT DET。

参考代码中函数 KT_WirelessMicTx_Init 会在初始化时使能或关闭电池电压检测功能。选择BATTERY_METER_ENABLE 的 宏 定 义 可 以 开 启 电 池 电 压 检 测 的 ADC , 选 择BATTERY METER DISABLE 的宏定义可以关闭电池电压检测的 ADC。

在使能电池电压检测 ADC 后,可以通过函数 KT_WirelessMicTx_BatteryMeter_Read()读取 ADC 的量化结果,函数返回值 C_{BAT} 的范围是 0~2047, 表示 VBAT_DET 引脚的电压为:

$$V = \frac{C_{BAT}}{2048} \times 1.2V$$

19 如何使用 KT0646M 的辅助信道功能?

KT0646M 支持突发和持续两种模式的辅助信道数据传输。

对于突发模式,将要发送的数据写到 BURST_DATA<15:0>寄存器中,此数据数据只发送一次,不管接收机是否接到数据都不会重复发送。为防止丢失数据,对于突发模式建议接收机使用中断方式。

突发模式举例:

将 KT0646M 地址为 0x02 的寄存器 BURST_DATA<15:0>中写入数据 0x1234。则接收芯片的 BURST_DATA<15:0>的寄存器的值将改变为 0x1234 了。

对于持续模式数据将反复发送。接收机既可以使用中断模式也可以使用查询模式。KT0646M 循环发送 AUX_ADDRA<7:0>、AUX_ADDRB<7:0>、AUX_ADDRC<7:0>、AUX_ADDRC<7:0>四个寄存器中指定的寄存器地址中存储的数据。其中 0x12、0x13、0x14、0x27 和 0x17 可以写入任何数据,再将寄存器 AUX_ADDRx<7:0>中的值写入上述寄存器的地址就可以实现厂商的 ID 识别或其他控制功能。

持续模式举例:

2017/06/28, Rev 1.2

将 KT0646M 地址为 0x12 的寄存器中写入 0x1234,地址为 0x13 的寄存器中写入 0x4567,地址为 0x27 的寄存器中写入 0x6789,再将寄存器地址 0x12、0x13、0x27 分别写到 AUX_ADDRA<7:0>,AUX_ADDRC<7:0>和 AUX_ADDRD<7:0>中,另外将寄存器地址 0x07 写到 AUX_ADDRB<7:0>中。则地址为 0x10、0x07、0x13、0x17 的寄存器中的数据将通过辅助信道功能发送到接收芯片对应的 AUX_DATAA<15:0>、AUX_DATAB<15:0>、AUX_DATAC<15:0>和 AUX_DATAD<15:0>寄存器中。其中 KT0646M 地址为 0x07 的寄存器是电池电压量化的寄存器,这样接收机就可以收到发射机实时的电压值了。

KT0646M 提供了比 KT0626M 更快的传输速度模式,但新模式只能配合 KT0655M 和 KT0656M 使用,所以当使用 KT0616M 作为接收时,请打开 RXISKT0616M_BPSK 宏定义,以保证可以正常通信。

20 KT0646M 如何将电池电压信息发送出去?

KT0646M 可以通过辅助信道将发射机的电压发送到使用 KT0616M、KT0655M 或 KT0656M 的接收机上。此功能是在辅助信道的功能基础上实现的,使用方法可以参见第 19 部分中的描述。

21 KT0646M 的参考设计是什么样的?

图 4: 典型应用电路

元件名	描述	数值	推荐供应商
C1,C2,C8	晶体负载电容	33pF	
C3,C6,C17	滤波电容	10uF	
C4,C5,C16	滤波电容	0.1uF	
C7,C15	滤波电容	47pF	
C9,C10	交流耦合电容	10uF	
C11,C13,C18	交流耦合电容	100pF	
C12,C14	LC 巴伦电容	与使用波段相关	
C19,C20	电源去耦电容	4.7uF	
D1	肖特基二极管		
E1	天线		
FB1,FB2,FB3,FB4	磁珠	331@100MHz	
L1,L2,L5	扼流电感	68nH	村田 LQG 系列
L6	绕线电感	2.2uH	
MK1	麦克风		

2017/06/28, Rev 1.2

RV1,RV2	可变电阻	100Kohm
R1, R2	电阻	15Kohm(3V 供电)
R2	电阻	10Kohm(3V 供电)
R3	电阻	1.02Mohm 1%
R4	电阻	604Kohm 1%
U1	无线麦克风发射芯片	KT0646M
U2	DCDC 电源	HX3002
Y1	晶体	24MHz
Y2	晶体	24.576MHz

与频段相关元件值:

频段	L3, L4	C12, C14
470~760MHz	12nH	3.3pF
760~960MHz	12nH	2.2pF

2017/06/28, Rev 1.2

版本信息:

V1.0 正式发布。

V1.1 修改了"19如何使用 KT0646M 的辅助信道功能?"部分的描述。

V1.2 修改"KT0646M芯片上电后需要做什么?"部分。

2017/06/28, Rev 1.2

联系方式:

昆腾微电子股份有限公司

北京市海淀区北坞村路23号北坞创新园中区4号楼

邮编: 100195

电话: +86-10-8889 1955 传真: +86-10-8889 1977 电子邮件: <u>sales@ktmicro.com</u> 网站: <u>http://www.ktmicro.com.cn</u>

KT Micro, Inc. (US Office)

999 Corporate Drive, Suite 170 Ladera Ranch, CA 92694

USA

Tel: 949-713-4000 Fax: 949-713-4004

Email: sales@ktmicro.com