Krigagem em Bloco

Rachid Muleia & Mauro Langa

Considere os seguintes dados e a figura abaixo

	X	у	z(s)
s1	61	139	477
s2	63	140	696
s3	64	129	227
s4	68	128	646
s5	71	140	606
s6	73	141	791
s7	75	128	783

Considere um semivariograma exponencial com os seguintes parâmetros $c_0 = 0$, $c_1 = 10$, a = 3.33, $\gamma(h) = 10(1 - \exp(-\frac{h}{3.33})$. Suponha que queremos estimar a média do bloco definido pelas coordenadas (64, 132), (64, 138), (70, 132), (70, 138)

Uma das maneiras de krigar a média do bloco definido pelos pontos (64, 132), (64, 138), (70, 132), (70, 138), é krigar cada um dos pontos definidos no bloco e achar a média aritmética das estimativas da krigagem. Para tal vamos usar os 4 pontos definidos no bloco A(66, 134), B(66, 136), C(68, 134), D(68, 136), e vamos estimar o valor de $z(s_i)$ para cada um desses pontos.

Krigagem para o Ponto A

$$\mathbf{\Lambda} = \begin{pmatrix} 10 & 5.103 & 0.435 & 0.199 & 0.489 & 0.259 & 0.048 & 1 \\ 5.103 & 10 & 0.362 & 0.202 & 0.905 & 0.489 & 0.061 & 1 \\ 0.435 & 0.362 & 10 & 2.902 & 0.199 & 0.111 & 0.362 & 1 \\ 0.199 & 0.202 & 2.902 & 10 & 0.244 & 0.152 & 1.222 & 1 \\ 0.489 & 0.905 & 0.199 & 0.244 & 10 & 5.103 & 0.224 & 1 \\ 0.259 & 0.489 & 0.111 & 0.152 & 5.103 & 10 & 0.193 & 1 \\ 0.048 & 0.061 & 0.362 & 1.222 & 0.224 & 0.193 & 10 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1.196 \\ 1.334 \\ 1.985 \\ 1.497 \\ 0.958 \\ 0.512 \\ 0.388 \\ 1 \end{pmatrix} = \begin{pmatrix} 0.130 \\ 0.146 \\ 0.240 \\ 0.164 \\ 0.136 \\ 0.072 \\ 0.112 \\ -1.077 \end{pmatrix}$$

Portanto,

 $\hat{z}(s_A) = 0.130(477) + 0.146(696) + 0.240(227) + 0.164(646) + 0.136(606) + 0.072(791) + 0.112(783) \Rightarrow \hat{z}(s_A) = 551.036.$

Krigagem para o Ponto B

$$\boldsymbol{\Lambda} = \begin{pmatrix} 10 & 5.103 & 0.435 & 0.199 & 0.489 & 0.259 & 0.048 & 1 \\ 5.103 & 10 & 0.362 & 0.202 & 0.905 & 0.489 & 0.061 & 1 \\ 0.435 & 0.362 & 10 & 2.902 & 0.199 & 0.111 & 0.362 & 1 \\ 0.199 & 0.202 & 2.902 & 10 & 0.244 & 0.152 & 1.222 & 1 \\ 0.489 & 0.905 & 0.199 & 0.244 & 10 & 5.103 & 0.224 & 1 \\ 0.259 & 0.489 & 0.111 & 0.152 & 5.103 & 10 & 0.193 & 1 \\ 0.048 & 0.061 & 0.362 & 1.222 & 0.224 & 0.193 & 10 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1.196 \\ 1.334 \\ 1.985 \\ 1.497 \\ 0.958 \\ 0.512 \\ 0.388 \\ 1 \end{pmatrix} = \begin{pmatrix} 0.143 \\ 0.227 \\ 0.161 \\ 0.117 \\ 0.958 \\ 0.512 \\ 0.388 \\ 1 \end{pmatrix}$$

Portanto, $\hat{z}(s_B) = 0.143(477) + 0.227(696) + 0.161(227) + 0.117(646) + 0.181(606) + 0.068(791) + 0.104(783) \Rightarrow \hat{z}(s_B) = 582.733.$

Krigagem para o Ponto C

$$\mathbf{\Lambda} = \begin{pmatrix} 10 & 5.103 & 0.435 & 0.199 & 0.489 & 0.259 & 0.048 & 1 \\ 5.103 & 10 & 0.362 & 0.202 & 0.905 & 0.489 & 0.061 & 1 \\ 0.435 & 0.362 & 10 & 2.902 & 0.199 & 0.111 & 0.362 & 1 \\ 0.199 & 0.202 & 2.902 & 10 & 0.244 & 0.152 & 1.222 & 1 \\ 0.489 & 0.905 & 0.199 & 0.244 & 10 & 5.103 & 0.224 & 1 \\ 0.259 & 0.489 & 0.111 & 0.152 & 5.103 & 10 & 0.193 & 1 \\ 0.048 & 0.061 & 0.362 & 1.222 & 0.224 & 0.193 & 10 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0.755 \\ 0.958 \\ 1.462 \\ 1.650 \\ 1.334 \\ 0.755 \\ 0.627 \\ 1 \end{pmatrix} = \begin{pmatrix} 0.100 \\ 0.125 \\ 0.183 \\ 0.197 \\ 0.176 \\ 0.081 \\ 0.137 \\ -1.120 \end{pmatrix}$$

Portanto, $\hat{z}(s_C) = 0.100(477) + 0.125(696) + 0.183(227) + 0.197(646) + 0.176(606) + 0.081(791) + 0.137(783) \Rightarrow \hat{z}(s_C) = 582.293.$

Krigagem para o Ponto D

$$\boldsymbol{\Lambda} = \begin{pmatrix} 10 & 5.103 & 0.435 & 0.199 & 0.489 & 0.259 & 0.048 & 1 \\ 5.103 & 10 & 0.362 & 0.202 & 0.905 & 0.489 & 0.061 & 1 \\ 0.435 & 0.362 & 10 & 2.902 & 0.199 & 0.111 & 0.362 & 1 \\ 0.199 & 0.202 & 2.902 & 10 & 0.244 & 0.152 & 1.222 & 1 \\ 0.489 & 0.905 & 0.199 & 0.244 & 10 & 5.103 & 0.224 & 1 \\ 0.259 & 0.489 & 0.111 & 0.152 & 5.103 & 10 & 0.193 & 1 \\ 0.048 & 0.061 & 0.362 & 1.222 & 0.224 & 0.193 & 10 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1.016 \\ 1.462 \\ 0.888 \\ 0.905 \\ 2.228 \\ 1.196 \\ 0.411 \\ 1 \end{pmatrix} = \begin{pmatrix} 0.101 \\ 0.168 \\ 0.139 \\ 0.263 \\ 0.078 \\ 0.120 \\ -1.090 \end{pmatrix}$$

Portanto, $\hat{z}(s_D) = 0.101(477) + 0.168(696) + 0.139(227) + 0.132(646) + 0.263(606) + 0.078(791) + 0.120(783) \Rightarrow \hat{z}(s_D) = 596.347$

Agora é so calcular a média

$$\hat{Z}_{BLOCK} = \frac{551.036 + 582.733 + 582.293 + 596.347}{4} = 578.102.$$

Este processo é muito tedioso, visto que devemos resolver vários sistemas de equações. Como forma de contornar este exercício, vamos fazer o uso da krigagem em bloco, que nos permitirá apenas resolver um e único sistema de equação. Importa referir que a matriz de covariância Σ que será construida para a krigagem em bloco é a mesma para krigagem ordinária pontual.

Matrix das distâncias

$$D = \begin{pmatrix} A & B & C & D & s_1 & s_2 & s_3 & s_4 & s_5 & s_6 & s_7 \\ A & 0.000 & 2.000 & 2.000 & 2.828 & 7.071 & 6.708 & 5.385 & 6.325 & 7.810 & 9.899 & 10.817 \\ B & 2.000 & 0.000 & 2.828 & 2.000 & 5.831 & 5.000 & 7.280 & 8.246 & 6.403 & 8.602 & 12.042 \\ C & 2.000 & 2.828 & 0.000 & 2.000 & 8.602 & 7.810 & 6.403 & 6.000 & 6.708 & 8.602 & 9.220 \\ D & 2.828 & 2.000 & 2.000 & 0.000 & 7.616 & 6.403 & 8.062 & 8.000 & 5.000 & 7.071 & 10.630 \\ s_1 & 7.071 & 5.831 & 8.602 & 7.616 & 0.000 & 2.236 & 10.440 & 13.038 & 710.050 & 12.166 & 17.804 \\ s_2 & 6.708 & 5.000 & 7.810 & 6.403 & 2.236 & 0.000 & 11.045 & 13.000 & 8.000 & 10.050 & 16.971 \\ s_3 & 5.385 & 7.280 & 6.403 & 8.062 & 10.440 & 11.045 & 0.000 & 4.123 & 13.038 & 15.000 & 11.045 \\ s_4 & 6.325 & 8.246 & 6.000 & 8.000 & 13.038 & 13.000 & 4.123 & 0.000 & 12.369 & 13.928 & 7.000 \\ s_5 & 7.810 & 6.403 & 6.708 & 5.000 & 10.050 & 8.000 & 13.038 & 12.369 & 0.000 & 2.236 & 12.649 \\ s_6 & 9.899 & 8.602 & 8.602 & 7.071 & 12.166 & 10.050 & 15.000 & 13.928 & 2.236 & 0.000 & 653.547 \\ s_7 & 10.817 & 12.042 & 9.220 & 10.630 & 17.804 & 16.971 & 11.045 & 7.000 & 12.649 & 13.153 & 0.000 \end{pmatrix}$$

Matrix de covariância para todos os pontos

$$\boldsymbol{\Sigma} = \begin{pmatrix} A & B & C & D & s1 & s2 & s3 & s4 & s5 & s6 & s7 \\ A & 10 & 5.485 & 5.485 & 4.277 & 1.196 & 1.334 & 1.985 & 1.497 & 0.958 & 0.512 & 0.388 \\ B & 5.485 & 10 & 4.277 & 5.485 & 1.736 & 2.228 & 1.123 & 0.841 & 1.462 & 0.755 & 0.269 \\ C & 5.485 & 4.277 & 10 & 5.485 & 0.755 & 0.958 & 1.462 & 1.65 & 1.334 & 0.755 & 0.627 \\ D & 4.277 & 5.485 & 5.485 & 10 & 1.016 & 1.462 & 0.888 & 0.905 & 2.228 & 1.196 & 0.411 \\ s1 & 1.196 & 1.736 & 0.755 & 1.016 & 10 & 5.109 & 0.435 & 0.199 & 0.489 & 0.259 & 0.048 \\ s2 & 1.334 & 2.228 & 0.958 & 1.462 & 5.109 & 10 & 0.363 & 0.202 & 0.905 & 0.489 & 0.061 \\ s3 & 1.985 & 1.123 & 1.462 & 0.888 & 0.435 & 0.363 & 10 & 2.899 & 0.199 & 0.111 & 0.363 \\ s4 & 1.497 & 0.841 & 1.65 & 0.905 & 0.199 & 0.202 & 2.899 & 10 & 0.244 & 0.153 & 1.222 \\ s5 & 0.958 & 1.462 & 1.334 & 2.228 & 0.489 & 0.905 & 0.199 & 0.244 & 10 & 5.109 & 0.224 \\ s6 & 0.512 & 0.755 & 0.755 & 1.196 & 0.259 & 0.489 & 0.111 & 0.153 & 5.109 & 10 & 0 \\ s7 & 0.388 & 0.269 & 0.627 & 0.411 & 0.048 & 0.061 & 0.363 & 1.222 & 0.224 & 0.193 & 10 \end{pmatrix}$$

$$\bar{C}(s_1, V) \simeq \frac{1}{m} \sum_{j=1}^{n} C(s_1 - s'_j) = \frac{1.196 + 1.736 + 0.755 + 1.016}{4} = 1.176$$

$$\bar{C}(s_2, V) \simeq \frac{1}{m} \sum_{j=1}^{n} C(s_2 - s'_j) = \frac{1.334 + 2.228 + 0.958 + 1.462}{4} = 1.495$$

$$\vdots$$

$$\bar{C}(s_7, V) \simeq \frac{1}{m} \sum_{j=1}^{n} C(s_7 - s'_j) = \frac{0.388 + 0.269 + 0.627 + 0.411}{4} = 0.424$$

Sistema de krigagem em bloco

$$\begin{pmatrix} c(s_1, s_1) & c(s_1, s_2) & c(s_1, s_3) & \cdots & c(s_1, s_n) & 1 \\ c(s_2, s_1) & c(s_2, s_2) & c(s_2, s_3) & \cdots & c(s_2, s_n) & 1 \\ \cdots & \cdots & \cdots & \cdots & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \cdots & 1 \\ c(s_n, s_1) & c(s_n, s_2) & c(s_n, s_3) & \cdots & c(s_n, s_n) & 1 \\ 1 & 1 & 1 \cdots & \cdots & \cdots & 0 \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \vdots \\ \lambda_n \\ -\alpha \end{pmatrix} = \begin{pmatrix} \bar{C}(s_1, V) \\ \bar{C}(s_2, V) \\ \vdots \\ \bar{C}(s_n, V) \\ 1 \end{pmatrix}$$

$$\mathbf{\Lambda} = \begin{pmatrix} 10 & 5.103 & 0.435 & 0.199 & 0.489 & 0.259 & 0.048 & 1 \\ 5.103 & 10 & 0.362 & 0.202 & 0.905 & 0.489 & 0.061 & 1 \\ 0.435 & 0.362 & 10 & 2.902 & 0.199 & 0.111 & 0.362 & 1 \\ 0.199 & 0.202 & 2.902 & 10 & 0.244 & 0.152 & 1.222 & 1 \\ 0.489 & 0.905 & 0.199 & 0.244 & 10 & 5.103 & 0.224 & 1 \\ 0.259 & 0.489 & 0.111 & 0.152 & 5.103 & 10 & 0.193 & 1 \\ 0.048 & 0.061 & 0.362 & 1.222 & 0.224 & 0.193 & 10 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0.118 \\ 1.495 \\ 1.365 \\ 1.223 \\ 1.495 \\ 0.805 \\ 0.424 \\ 1 \end{pmatrix} = \begin{pmatrix} 0.118 \\ 0.166 \\ 0.181 \\ 0.152 \\ 0.189 \\ 0.075 \\ 0.118 \\ -1.084 \end{pmatrix}$$

 $\hat{z}_{Bloco} = 0.118(477) + 0.166(696) + 0.181(227) + 0.152(646) + 0.189(606) + 0.075(791) + 0.118(783) \Rightarrow \hat{z}_{Bloco} = 578.102.$

- Calcule a variância da estimativa
- \bullet Refaça o o exemplo usando semivariograma.