Question 2:

Let x be a simulated uniform random number, where, $0 \le x \le 1$ and n be the number of uniform random numbers simulated in a given game. For any given game,

Let $\frac{1}{n}$ be the lower bound and $1 - \frac{1}{n}$ be the upper bound for the range determining a "win".

A game would be considered a "win" if all the values of x simulated are within the bounds of $\frac{1}{n} < x < 1 - \frac{1}{n}$. If there exists a simulated number x outside this range, the game is considered a "loss".

A win gives a profit of ≤ 10 , and a loss gives a profit of ≤ -1 .

Monte Carlo Experiment:

Three individual monte carlo experiments were conducted for differing values of n, where n=10, n=100 and n=1000. For each experiment the no. Simulations=100000. A game was considered a success if the simulated game resulted in a "win", so the no. Successes = no. Wins.

Relative Frequency =
$$\frac{no.Wins}{no.Simulations}$$

No. Losses = No. Simulations — No. Wins

Expected Net Payoff (After 100000 games) = $(No.Wins \times €10) - (No.Losses \times €1)$

Results:

Table1:	N = 10	N = 100	N = 1000
Frequency (no. Wins)	10713	13136	13296
Relative Frequency	0.10713	0.13136	0.13296
Expected Payout	€17,843.00	€44,496.00	€46,256.00

Conclusion:

After simulating 100000 games for each proposed value of n, I have determined that Expected Net Payoff grows exponentially as the value of n increases, this growth with n begins to plateau for n=100 but nonetheless increases with n. To answer the question, for the proposed values I have found that n=1000 has the highest Expected Net Payoff.

Question 4

Using R, a simulated deck of cards with x values of 1 to 100 was shuffled using the "sample()" function, a vector of values 1 to 100 was used to represent the shuffled deck. Let i be a counter used in a for loop going from 1 to 100, if i ard in the deck then it was considered a "hit".

Interquartile Range = Quartile 3 – Quartile 1

Monte Carlo Experiment:

Let the results of the Monte Carlo Experiment be represented as a frequency table, with the score of the table being \mathbf{x} . (no. Hits in a game) and \mathbf{f} being the frequency of a specific value of \mathbf{x} . The built-in R statistical functions were used to obtain the Standard Deviation, Variance and Quartile-Ranges. The median and mode were manually calculated. The **no. Simulations** = 10000.

No. Hits (x)	0	1	2	3	4	5	6	7
Frequency (f)	3602	3785	1806	611	149	33	11	3

Statistic	Value			
Expected Value	1.0078			
Variation	1.01044			
Standard Deviation	1.0052			
Median	1			
Mode	1			
Minimum Value	0			
Maximum Value	7			

1st Quartile	2 nd Quartile	3 rd Quartile	Interquartile Range
0	1	2	2

Conclusion:

The expected no. hits in a game is 1, this is also the median and mode value. But it should be noted that while 37% of games had 1 hit, 36% of games had 0 hits. A variation of 1.0104 was obtained, with a standard deviation of 1.0052. From the frequency curve graph, we see a right skewed distribution. Since the graph is positively skewed, we see the line quickly fall as it reaches a no. hits of 7 which is the max no. hits after 10000 simulations.

Sources:

- 1. Understanding Probability, Author: Henk Tijms
- 2. Lecture Notes in Applied Probability
- 3. https://www.excel-university.com/create-a-simple-dot-plot-in-excel/