\square Exercice 1 : Parcours de graphes

On considère le graphe G représenté ci-dessous :

- 1. Donner le résultat d'un parcours en largeur de ce graphe en démarrant du sommet x_1 .
- 2. Même question en démarrant du sommet x_2 .
- 3. Donner le résultat d'un parcours en profondeur de ce graphe en démarrant du sommet x_1 .
- 4. Même question en démarrant du sommet x_2 .

□ Exercice 2 : Parcours et graphe complet ou cylique

- 1. Quel est résultat du parcours en largeur d'un graphe complet à n sommets $\{x0, \ldots x_{n-1}\}$ qui démarrer au sommet x_i ?
- 2. Même question pour un parcours en profondeur.
- 3. Reprendre les questions précédentes pour un graphe cyclique à n sommets. C'est à dire ayant comme arc $x_i \to x_{i+1}$ pour $i \in [0; n-2]$ et $x_{n-1} \to x_0$.

☐ Exercice 3 : Recherche de cycle

1. Ecrire une fonction contient_cycle: digraphe -> int -> bool qui teste s'il existe un cycle dans le graphe orienté donnée en argument accessible à partir du sommet donnée. On utilisera un parcours en profondeur en marquant les sommets en trois couleurs : non visité/ en cours de visite/ déjà visité. Si le parcours revient sur un sommet en cours de visite, on a trouvé un cycle. On pourra alors lever l'exception prédéfinie Exit afin de renvoyer true

☐ Exercice 4 : Chemin Hamiltonien

Soit G = (S, A) un graphe orienté, on suppose pour pour tout $(s, t) \in S^2$, on a $s \to t \in A$ ou $t \to s \in A$ mais pas les deux à la fois.

- 1. Montrer qu'il existe un chemin dans G qui passe une et une seule fois par chaque sommet (un tel chemin est dit Hamiltonien).
 - 🔇 On pourra procéder par récurrence
- 2. On suppose les graphes représentés en OCaml par matrices d'adjacence à l'aide d'un type digraphe. Ecrire une fonction de signature chemin : digraphe -> int list qui prend en argument un graphe respectant les hypothèses de l'énoncé et renvoie un chemin hamiltonien de ce graphe.

☐ Exercice 5 : Algorithme de Dijkstra

Dérouler les étapes de l'algorithme de Djikstra sur ce graphe en partant du sommet x_4 et en utilisant un tableau tel que celui vu dans l'exemple du cours.