Задача 02.

Да се докаже, че $\forall A, B, C$ е в сила, че $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$.

Док-во:

(\subseteq) Нека x е произволен елемент и $x \in (A \cup B) \cap C \Rightarrow x \in A \cup B$ и $x \in C$.

I случай:

 $x \in A \Rightarrow x \in A \cap C$. Но $\cap C \subseteq (A \cap C) \cup (B \cap C)$ следователно $x \in (A \cap C) \cup (B \cap C)$.

II случай:

 $x \notin A \Rightarrow x \in B$ (Защото $x \in (A \cup B) \Rightarrow x \in B \cap C \subseteq (A \cap C) \cup (B \cap C)$).

(\supseteq) Нека y е произволен елемент и $y \in (A \cap C) \cup (B \cap C)$.

I случай:

 $y \in A \cap C \Rightarrow y \in A$ и $y \in C$. Тогава $y \in A \cup B$ и $y \in C$, т.е. $y \in (A \cup B) \cap C$.

II случай:

 $y \notin A \cap C \Rightarrow y \in B \cap C$ (защото $y \in (A \cap C) \cup (B \cap C)$). Тогава $y \in B \subseteq A \cup B$ и $y \in C$. Следователно $y \in (A \cup B) \cap C$. Стигаме до извода, че $(A \cap C) \cup (B \cap C) \subseteq (A \cup B) \cap C$, тъй като избрахме y произволно.

От (\subseteq) и (\supseteq) следва, че $\forall A,B,C$ е в сила, че $(A\cup B)\cap C=(A\cap C)\cup (B\cap C)$.

github.com/andy489