Internet of Things Security – Lecture 01: Introduction to IoT

Instructor: Mehmoona Jabeen

Department of Cyber Security, Air University

Course Outline

- Introduction to Internet of Things
- Hardware Architectures and Embedded Systems
- Embedded Operating Systems for IoT Devices
- Firmware Development and Management
- Communication Protocols for IoT
- IoT Attack Vectors and Threat Modelling
- IoT Security Analysis and Vulnerability Assessment
- IoT Application Security and Their Challenges
- IoT Data Security and Challenges
- Security Issues in Edge Computing Based IoT Architecture

Readings:

- Selected research articles with each lecture
- Selected chapters from specified textbooks

Lecture Outline

- What is IoT?
- Enabling Technologies
- Characteristics
- Growth and Challenges
- IoT Security Needs
- IoT Attack Surfaces and Vulnerabilities
- Common Vulnerabilities Reported
- Known Attacks in IoT

What is Internet?

- A global network of computers providing information and communication facilities
- Uses standardized communication protocols
- The Web (WWW) is one of many services of the Internet

What is IoT (Internet of Things)?

- Inter-networking of physical devices (smart devices) embedded with:
 - Electronics
 - Software
 - Sensors
 - Actuators
 - Network connectivity
- Enables data collection and exchange

Fundamental Building Blocks of IoT:

- 1. Identifiability (Recognizing Things)
- 2. Processing (Think and Decide)
- 3. Communication (Talk to Other Devices)
- 4. Interaction (Take Action Based on Data)

Key Terminologies

- M2M (Machine-to-Machine Communication)
- CPS (Cyber Physical Systems)
- IoE (Internet of Everything)

IoT Growth Path

- 1. Pre-Internet Human-to-Human, Fax, SMS, Fixed/Mobile Phones
- 2. Internet of Contents Web, Email, Entertainment
- Internet of Services Service-to-service comm using XML, JSON
- 4. Internet of People Social Networking (Facebook, Twitter, Skype)
- 5. Internet of Things Machine-to-Machine (Smart Metering, Smart City, Smart Home)

Enabling Technologies

- RFID Identification and tracking
- WSN (Wireless Sensor Networks) Sensing and monitoring
- IPv6 Addressing and networking
- WPAN Low-power communication

Pervasive Sensing/Computing

- Massive data generation from sensors
- Controlled and actuated remotely
- Stored in local/cloud with analytics

Aspect	Examples
Anytime	Driving, walking, sleeping, static
Anything	Healthcare sensors, jet engines, etc
Anyscale	Thousands of sensors in KM ²
Anyplace	Underground metros, drones, oceans, soil, implantable, underwater
Anywhere	Everywhere

IoT Evolution and History

- Already in use: Cars, Homes, Machines, Industrial Equipment
- First IoT Device: Coke Machine (1982) by Carnegie Mellon University

Why IoT is Growing Now

- 1. Low-cost, powerful microchips (e.g., STM32 F4 vs Pentium 1993)
- 2. Network improvements (e.g., Wi-Fi speeds)
- 3. IPv6 expansion (340 trillion addresses)
- 4. Wireless communication advances
- 5. Big data tools (e.g., Hadoop, Spark)
- 6. Affordable sensors
- 7. Technology convergence: Cloud, Data Analytics, Sensors, IP networks

IoT Technologies Overview

Sensors

- Types: Accelerometer, Gyroscope, Thermometer, etc.
- Factors: Size, Cost, Accuracy, Power Efficiency

Networking

- IP-based technology advantages
- IPv6 benefits with 6LoWPAN for IoT

Cloud Platforms

• AWS IoT, Microsoft Azure, Google Cloud, IBM Watson, etc.

OWASP IoT Attack Surfaces & Vulnerabilities

Attack Surface	Example Vulnerabilities
Ecosystem Access Control	Implicit trust, lost access, poor decommissioning
Device Memory	Cleartext passwords, credentials
Physical Interfaces	Privilege escalation, insecure reset
Web Interfaces	SQL injection, weak/default passwords
Firmware	Hardcoded credentials, unsigned updates
Network Services	DoS, unencrypted services, vulnerable UPnP
Administrative Interfaces	SQL injection, XSS, default credentials
Local Data Storage	Unencrypted or poorly encrypted data

IoT Security Introduction

- Attacks affect the CPS-physical interaction
- Surfaces: Cyber, Physical, Environmental, Human
- · Development of detection/mitigation/recovery technologies

IoT Vulnerability Reports (CVE Examples)

- CVE-2018-6932 DoS via system resource exhaustion
- CVE-2018-3619 Data recovery via physical access
- CVE-2018-9149 UART insecure interface
- CVE-2018-18653 Bypass secure boot
- CVE-2018-9919 Factory backdoor via SSH

IoT Exploitation and Abuse

ThingBots

Botnets of IoT devices used in spam, malware, and DDoS

Famous Cases

- Proofpoint: 100k+ household devices used in spam
- Linux.Darlloz: Worm using CVE-2012-1823
- Spike Botnet: Used 12k–15k IoT devices for DDoS
- Wearables: Bluetooth brute-force attacks
- Smart Meters: Can be used for billing fraud/blackouts
- Mirai Botnet, BrickerBot, Cold in Finland DDoS events

IoT Security Needs

- IPv6 expansion and DNS role
- Need for standardization
- Addressing vulnerabilities and DDoS threats

Applying Internet Security to IoT

- Mutual authentication (PKI-based)
- TLS/IPSec are complex for constrained IoT devices
- Context-aware IDS/IPS needed

IoT Security Challenges

Layer	Challenges
Perception Layer	Cloning, Eavesdropping, Spoofing, DoS
Network Layer	Sybil attack, DoS, Man-in-the-Middle
Middleware Layer	Unauthorized access, DoS, Malicious insider
Application Layer	Code injection, Phishing, Sniffing, DoS

ARM Platform Security Architecture (PSA)

- · End-to-end security
- Simplifies security evaluation of IoT devices

Traditional Security vs IoT

- IoT resource constraints make traditional methods impractical
- Need for:
 - o IoT tools
 - IoT-specific datasets

IoT Tools

1. IoT Traffic Generator Tool

- Open-source, real-time simulation, latest attack generation
- Link: <u>GitHub IoT-Advanced-Data-Generator</u>

2. IoT Healthcare System Dataset

- 200+ devices
- Protocol-specific features
- Includes both normal and malicious traffic

3. IoT Firewall

• Network-level security for constrained devices