

NATIONAL OPEN UNIVERSITY OF NIGERIA 14-16 AHMADU BELLO WAY, VICTORIA ISLAND, LAGOS SCHOOL OF SCIENCE AND TECHNOLOGY JANUARY/FEBRUARY 2013 EXAMINATION

CODE: MTH 402

TITLE: GENERAL TOPOLOGY II

CREDIT UNIT: 3

INSTRUCTION: COMPLETE ANSWERS TO TIME: 3 HOURS

ANY FIVE (5) QUESTIONS BEAR FULL MARKS TOTAL: 70%

- 1(a) Let Y be a subspace of X. If U is open in Y and Y is open in X.Show that U is open in X.-7marks
- 1(b) Show that the mapping $f:S \to S^+$ defined by $f(x) = e^x$ is a homeomorphism from R to S^+ -7marks
- 2(a) Let R be endowed with standard topology. Show that for all $x \in R$, $w = \{ (x \varepsilon, x + \varepsilon) \varepsilon > 0 \}$ is a neighbourhood basis of x.

 7marks
- 2(b) Let Y be a topological space and let $y_{\epsilon}Y$. Suppose Y is first countable, show that there exist a countable basis of y, say $V = \{ V_n \mid n \ge 1 \}$ such that $V_{n+1} \subset V_n$ -7marks
- 3(a) What does it mean to say that a topological space is Hausdorff? 2½marks
- 3(b) Give an example to show that every discrete space is Hausdorff. 2½marks
- 3(c) Let P be the Hausdorff space, then for all $p_{\epsilon}P$, show that the singleton set $\{x\}$ is closed. -9marks

- 4(a) State the properties under which d is a metric onS, given a function d: S x S \rightarrow R, for all x, y, z ϵ S.
 -6marks
- 4(b) Let S and T be two topological spaces. Let B be the collection of all sets of the form VxW, where V is an open subset of S andW is an open subset of Y i.e. B = { V x W: V is open in S and W is open in T}. Show that B is the basis for a for a topology on S x T. -8marks

intersect ta

- 5(a) Prove that the intersection $^{\tau} = ^{\tau}$ of topologies { τ_{α} } $\alpha\epsilon\Delta$ on X its itself a topology in X (where Δ is some indexing set)
 -7marks
- 5(b) Let X be a set, and let B be a basis for a topology on τ on X. Show τ equals the collection of all unions of elements of B.

 -7marks
- 6(a) Let X and Y be topological spaces. When is a function $f: X \to Y$ said to be continuous?

 -7marks
- 6(b) Let S be the subspace of R given by $X = [0,1] \cup [2,4]$, Define $f: S \rightarrow R$ by f(s) = . Prove that f is continuous.
- 7(a) Let d be a metric on the set X. show that the collection of all ϵ balls $B_d(x, \epsilon)$ for x ϵ X and ϵ > 0 is a basis for a topology on X, called the metric topology induced by d. -7marks
- 7(b) Let B and B' be bases for the topology τ and τ' respectively on X. Show that the following are equivalent.
 - i) τ' is finer than τ
 - ii) For each $x \in X$ and each basis element $BE \cap B$ such that $x \in B$, we know that BET by definition and that $T \subset T'$, by condition (i) therefore BET' -7marks