

Global United Technology Services Co., Ltd.

Report No: GTSE11110088602

FCC REPORT

Applicant: SHENZHEN KENXINDA TECHNOLOGY CO.,LTD

Address of Applicant: 18TH FLOOR, FUCHUN ORIENT BUILDING, SHENNAN AV

7006, SHENZHEN, CHINA

Equipment Under Test (EUT)

Product Name: GSM MOBILE PHONE

Model No.: S-300

Trade mark: SEFTON

FCC ID: **ZSHS-300**

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247:2010

Date of sample receipt: Nov. 1, 2011

Date of Test: Nov. 1-14, 2011

Date of report issued: Nov. 18, 2011

Test Result: PASS *

In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Stephen Guo Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the GTS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of GTS International Electrical Approvals or testing done by GTS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by GTS International Electrical Approvals in writing.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Version

Version No.	Date	Description
00	Nov. 18, 2011	Original

Prepared By:		Date:	Nov. 18, 2011
	Project Engineer		
Check By:		Date:	Nov. 18, 2011
	Reviewer	_	

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

3 Contents

		Page
1	1 COVER PAGE	
2	2 VERSION	2
3	3 CONTENTS	
4		
5	5 GENERAL INFORMATION	5
	5.1 CLIENT INFORMATION	
	5.2 GENERAL DESCRIPTION OF E.U.T.	
	5.3 TEST MODE	
	5.4 TEST FACILITY	
	5.6 OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	5.7 TEST INSTRUMENTS LIST	
_		
6		
	6.1 Antenna requirement:	
	6.2 CONDUCTED EMISSIONS	
	6.3 CONDUCTED PEAK OUTPUT POWER	
	6.5 CARRIER FREQUENCIES SEPARATION	
	6.6 HOPPING CHANNEL NUMBER	
	6.7 DWELL TIME	
	6.8 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
	6.9 BAND EDGE	
	6.9.1 Conducted Emission Method	
	6.9.2 Radiated Emission Method	
	6.10 Spurious Emission	
	6.10.1 Conducted Emission Method	
7	7 TEST SETUP PHOTO	35
В	B FUT CONSTRUCTIONAL DETAILS	36

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)	Pass
Dwell Time	15.247 (a)(1)	Pass
Pseudorandom Frequency Hopping Sequence	15.247(b)(4)&TCB Exclusion List (7 July 2002)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	SHENZHEN KENXINDA TECHNOLOGY CO.,LTD
Address of Applicant:	18TH FLOOR,FUCHUN ORIENT BUILDING,SHENNAN AV 7006,SHENZHEN,CHINA
Manufacturer:	SHENZHEN KENXINDA TECHNOLOGY CO.,LTD BAO'AN BRANCH
Address of Manufacturer:	1-6 FLOOR,NO.105 WORK SHOP&1-5 FLOOR,NO.104 WORKSHOP,XINWEIHUANINGROAD,DALANG COMMUNITY, DALANGSTREET,BAO'AN DISTRICT,SHENZHEN, P.R.CHINA

5.2 General Description of E.U.T.

Product Name:	GSM MOBILE PHONE
Model No.:	S-300
Trade mark:	SEFTON
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK
Antenna Type:	Integral
Antenna gain:	2dBi
AC adapter:	Input: AC 100-240V 50/60Hz Output: DC 5V 500mA
Power supply:	Type: Li-ion Battery 3.7V 900mAh Voltage:DC 3.7V

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

5.3 Test mode

Bluetooth mode	Keep the EUT in communicating mode on Bluetooth function.
----------------	---

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, July 20, 2010.

Industry Canada (IC)

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-1.

5.5 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen,

China

Tel: 0755-2779 8480; Fax: 0755-27798960

5.6 Other Information Requested by the Customer

None.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 7 of 36

5.7 Test Instruments list

Radia	Radiated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	Mar. 30 2011	Mar. 29 2012
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	Jul. 04 2011	Jul. 03 2012
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	Feb. 26 2011	Feb. 25 2012
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	9120D-829	GTS208	June 30 2011	June 29 2012
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 30 2011	Mar. 29 2012
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
8	Coaxial Cable	GTS	N/A	GTS213	Apr. 01 2011	Mar. 31 2012
9	Coaxial Cable	GTS	N/A	GTS211	Apr. 01 2011	Mar. 31 2012
9	Coaxial cable	GTS	N/A	GTS210	Apr. 01 2011	Mar. 31 2012
11	Coaxial Cable	GTS	N/A	GTS212	Apr. 01 2011	Mar. 31 2012
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	Jul. 04 2011	Jul. 03 2012
13	Amplifier(2GHz-20GHz)	HP	8349B	GTS206	Jul. 04 2011	Jul. 03 2012
14	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	Apr. 01 2011	Mar. 31 2012
15	Band filter	Amindeon	82346	GTS219	Apr. 01 2011	Mar. 31 2012
16	Universal radio communication tester	Rohde & Schwarz	CMU200	GTS235	May 11 2011	May 11 2012
17	Signal Generator	Rohde & Schwarz	SML03	GTS236	May 11 2011	May 11 2012
18	Temp. Humidity/ Barometer	Oregon Scientific	BA-888	GTS248	May 11 2011	May 11 2012
19	D.C. Power Supply	Instek	PS-3030	GTS232	NA	NA
20	Splitter	Agilent	11636B	GTS237	May 11 2011	May 11 2012

Cond	Conducted Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Shielding Room	ZhongYu Electron	7.0(L)x3.0(W)x3.0(H)	GTS252	Jul. 04 2011	Jul. 03 2012
2	EMI Test Receiver	Rohde & Schwarz	ESCS30	GTS223	Jul. 04 2011	Jul. 03 2012
3	10dB Pulse Limita	Rohde & Schwarz	N/A	GTS224	Jul. 04 2011	Jul. 03 2012
4	LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	GTS226	Jul. 04 2011	Jul. 03 2012
5	Coaxial Cable	GTS	N/A	GTS227	Apr. 01 2011	Mar. 31 2012
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 2 dBi.

Global United Technology Services Co., Ltd. 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

6.2 Conducted Emissions

 Goriadotoa Elillociono				
Test Requirement:	FCC Part15 C Section 15.207			
Test Method:	ANSI C63.4:2009			
Test Frequency Range:	150KHz to 30MHz Class B			
Class / Severity:				
Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto			
Limit:	Limit (dBuV)			
	Frequency range (MHz) Quasi-peak Average			
	0.15-0.5 66 to 56* 56 to 46*			
	0.5-5 56 46			
	5-30 60 50			
Test procedure	 * Decreases with the logarithm of the frequency. 1. The E.U.T and simulators are connected to the main power through 			
	 a line impedance stabilization network(L.I.S.N.). The provide a 500hm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement. 			
Test setup:	Reference Plane			
	AUX Equipment E.U.T EMI Receiver Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m			
Test Instruments:	Refer to section 5.7 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Pass			

Measurement Data

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 10 of 36

Live line:

: FCC PART15 CLASSB QP LISN(2011) LINE : 886RF Condition

Job No.

Test Mode : Bluetooth mode

Test Engineer: Collin

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBuV	dB	d₿	dBu₹	dBuV	dB	
1	0.336	43.79	0.60	0.10	44.49	59.31	-14.82	QP
2 3 4 5 6 7 8 9	0.336	34.11	0.60	0.10	34.81	49.31	-14.50	Average
3	0.914	41.65	0.49	0.10	42.24	56.00	-13.76	QP
4	0.914	32.53	0.49	0.10	33.12	46.00	-12.88	Average
5	1.535	43.04	0.43	0.10	43.57	56.00	-12.43	QP
6	1.535	34.18	0.43	0.10	34.71	46.00	-11.29	Average
7	3.173	31.74	0.35	0.10	32.19	56.00	-23.81	QP
8	3.173	22.29	0.35	0.10	22.74	46.00	-23.26	Average
9	11.198	18.76	0.21	0.20	19.17	60.00	-40.83	QP
10	11.198	10.55	0.21	0.20	10.96	50.00	-39.04	Average
11	21.486	13.71	0.14	0.21	14.06	60.00	-45.94	QP
12	21.486	8.89	0.14	0.21	9.24	50.00	-40.76	Average

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Neutral line:

Condition : FCC PART15 CLASSB QP LISN(2011) NEUTRAL

Job No. : 886RF

Test Mode : Bluetooth mode

Test Engineer: Collin

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBuV	d₿	d₿	dBu₹	dBu₹	dB	
1	0.182	45.26	0.67	0.10	46.03		-18.39	
2	0. 182 0. 454	37. 18 39. 71	0.67 0.57	0.10 0.10	37. 95 40. 38		-16. 47 -16. 42	Average QP
	0.454 1.269	30.16 45.10	0.57 0.45	0.10	30.83 45.65			Average
4 5 6 7	1.269	36.17	0.45	0.10	36.72		-10.35 -9.28	Average
7	2. 077 2. 077	46.13 37.17	0.40 0.40	0.10 0.10	46.63 37.67		-9.37 -8.33	QP Average
9	5.031	37.39	0.30	0.10	37.79	60.00	-22.21	QP
10 11	5.031 17.018	29.96 19.62	0.30 0.16	0.10 0.20	30.36 19.98		-19.64 -40.02	Average QP
12	17.018	10.89	0.16	0.20	11.25			Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6.3 Conducted Peak Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)	
Test Method:	ANSI C63.4:2009 and KDB DA00-705	
Receiver setup:	RBW=3MHz, VBW=3MHz, Detector=Peak	
Limit:	30dBm	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Refer to section 5.3 for details	
Test results:	Pass	

Measurement Data

Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
Lowest	8.80	30.00	Pass
Middle	7.83	30.00	Pass
Highest	6.55	30.00	Pass

Test plot as follows:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 13 of 36

Lowest channel

Middle channel

Highest channel

6.4 20dB Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.4:2009 and KDB DA00-705		
Receiver setup:	RBW=30KHz, VBW=100KHz,detector=Peak		
Limit:	NA		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Pass		

Measurement Data

Test channel	20dB Occupy Bandwidth (KHz)
Lowest	1048
Middle	1048
Highest	1048

Test plot as follows:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 15 of 36

Lowest channel

Middle channel

Highest channel

6.5 Carrier Frequencies Separation

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.4:2009 and KDB DA00-705	
Receiver setup:	RBW=100KHz, VBW=300KHz, detector=Peak	
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Refer to section 5.3 for details	
Test results:	Pass	

Measurement Data

Test channel	Carrier Frequencies Separation (KHz)	Limit (KHz)	Result
Lowest	1004	698.7	Pass
Middle	1004	698.7	Pass
Highest	1004	698.7	Pass

Note: According to section 5.4,

20dB bandwidth (KHz)	Limit (KHz)
(worse case)	(Carrier Frequencies Separation)
1048	698.7
1048	698.7
1048	698.7

Test plot as follows:

Lowest channel

Middle channel

Highest channel

6.6 Hopping Channel Number

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.4:2009 and KDB DA00-705	
Receiver setup:	RBW=100KHz, VBW=300KHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak	
Limit:	75channels	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Refer to section 5.3 for details	
Test results:	Pass	

Measurement Data:

Hopping channel numbers	Limit	Result
79	15	Pass

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6.7 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.4:2009 and KDB DA00-705		
Receiver setup:	RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak		
Limit:	0.4 Second		
Test mode:	Hopping transmitting with all kind of modulation.		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Pass		

Measurement Data

Packet	Dwell time (second)	Limit (second)	Result	
DH1	0.127			
DH3	0.268	0.4	Pass	
DH5	0.311			

Test Result:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

The lowest channel (2402MHz), middle channel (2441MHz), highest channel (2480MHz) as blow

DH1 time slot=0.398(ms)*(1600/ (2*79))*31.6= 127.36 ms

DH3 time slot=1.675(ms)*(1600/ (4*79))*31.6=268.00 ms

DH5 time slot=2.919(ms)*(1600/ (6*79))*31.6=311.17 ms

Test plot as follows:

Modulation mode: GFSK

DH3

DH5

6.8 Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 2⁹ -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

Global United Technology Services Co., Ltd. 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 22 of 36

6.9 Band Edge

6.9.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	ANSI C63.4:2009 and KDB DA00-705					
Receiver setup:	RBW=100KHz, VBW=300KHz, Detector=Peak					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Hopping transmitting with all kind of modulation.					
Test results:	Pass					

Test plot as follows:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 23 of 36

6.9.2 Radiated Emission Method

Test Requirement:	FCC Part15 C S	Section 15.209	and 15.205				
Test Method:	ANSI C63.4: 20	09					
Test Frequency Range:	2.3GHz to 2.5G	Hz					
Test site:	Measurement D	istance: 3m					
Receiver setup:	Frequency	Detector Peak	RBW 1MHz	VBW 3MHz	Remark Peak Value		
	Above 1GHz	Average	1MHz	10Hz	Average Value		
Limit:	Freque		Limit (dBuV	/m @3m)	Remark		
	Above 1	GHz –	54.0 74.0		Average Value Peak Value		
Test Procedure:	the ground to determin 2. The EUT wantenna, watower. 3. The antenrathe ground Both horizon make the number of the test-re Specified Euther in the ground to find the number of the emission of the EUT have 10dB	at a 3 meter case the position was set 3 meter hich was mour has height is var to determine the total and vertice neasurement. Uspected emissionen the antennal the rota table maximum read ceiver system and width with sion level of the would be reported to the would be reported to the position of t	amber. The softhe highests away from ited on the tried from one he maximum al polarizations ion, the EU a was turned was turned ing. was set to P Maximum He EUT in peasiting could by the could be re-tested.	table was rest radiation. I the interference of a variation of the armount of the	rence-receiving able-height antenna our meters above he field strength. Intenna are set to haged to its worst from 1 meter to 4 rees to 360 degrees		
Test setup:	Sheet. Antenna Tower Horn Antenna Spectrum Analyzer Amplifier						
Test Instruments:	Refer to section	5.7 for details					
Test mode:	Refer to section	5.3 for details					
Test results:	Passed						

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test channe	Lowe	st	Le	vel:		Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	I I imit	Polarization
2390.00	50.62	29.76	6.02	39.75	46.65	74.00	-27.35	Horizontal
2400.00	52.29	30.03	6.34	38.87	49.79	74.00	-24.21	Horizontal
2390.00	51.96	29.76	6.02	39.75	47.99	74.00	-26.01	Vertical
2400.00	53.59	30.03	6.34	38.87	51.09	74.00	-22.91	Vertical

Test channel: Lowe		est Level:				Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Limit	Polarization
2390.00	30.11	29.76	6.02	39.75	26.14	54.00	-27.86	Horizontal
2400.00	33.63	30.03	6.34	38.87	31.13	54.00	-22.87	Horizontal
2390.00	31.35	29.76	6.02	39.75	27.38	54.00	-26.62	Vertical
2400.00	34.83	30.03	6.34	38.87	32.33	54.00	-21.67	Vertical

Test channe	el:	Highe	est	L	.evel:		Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)		Limit Line (dBuV/m)	I I imit	Polarization
2483.50	52.83	30.32	6.22	39.53	49.84	74.00	-24.16	Horizontal
2500.00	49.62	30.37	6.36	39.65	46.70	74.00	-27.30	Horizontal
2483.50	54.03	30.32	6.22	39.53	51.04	74.00	-22.96	Vertical
2500.00	50.78	30.37	6.36	39.65	47.86	74.00	-26.14	Vertical

Test channel: Highest			est	Level:			Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	I I imit	Polarization	
2483.50	35.22	30.32	6.22	39.53	32.23	54.00	-21.77	Horizontal	
2500.00	31.74	30.37	6.36	39.65	28.82	54.00	-25.18	Horizontal	
2483.50	36.26	30.32	6.22	39.53	33.27	54.00	-20.73	Vertical	
2500.00	32.79	30.37	6.36	39.65	29.87	54.00	-24.13	Vertical	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 26 of 36

6.10 Spurious Emission

6.10.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	ANSI C63.4:2009 and KDB DA00-705					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table					
	Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Pass					

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 27 of 36

30MHz~10GHz 10GHz~25GHz

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 29 of 36

6.11 Radiated Emission Method

Test Requirement:	FCC Part15 C S	Section 15.209	and 15.205				
Test Method:	ANSI C63.4: 20	09					
Test Frequency Range:	30MHz to 25GH	lz					
Test site:	Measurement D	istance: 3m					
Receiver setup:							
	Frequency	Detector	RBW	VBW	Remark		
	30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak Value		
	Above 1GHz Peak		1MHz	3MHz	Peak Value		
	Above IGIIZ	Peak	1MHz	10Hz	Average Value		
Limit:							
	Freque		Limit (dBuV		Remark		
	30MHz-8		40.0		Quasi-peak Value		
	88MHz-21		43.		Quasi-peak Value		
	216MHz-960MHz 46.0 Quasi-peak Va 960MHz-1GHz 54.0 Quasi-peak Va						
	960MHz-		Quasi-peak Value				
	Above 1	GHz	54.0		Average Value		
Test Procedure:	7. The EUT w		74.0		Peak Value e 0.8 meters above		
	to determin 8. The EUT wantenna, wanten hare south horizon make the number of each south of find the number of find the number of the emission of the EUT have 10dB	the position was set 3 meter hich was mount to determine to the and vertice neasurement. Uspected emisted the rota table maximum reactiver system and width with sion level of the would be reported to the position of the would be reported to the maximum would the rota table maximum reactiver system and width with sion level of the would be reported to the rotal table would be reported to the rotal table.	of the higheses away from the on the tried from one the maximum cal polarization, the EU awas turned was turned was set to P Maximum He EUT in peasesting could borted. Otherwobe re-tested	at radiation. If the interfer op of a variate meter to for a value of the ons of the art to heights of the decension of the control of the co	rence-receiving able-height antenna our meters above the field strength. Intenna are set to anged to its worst from 1 meter to 4 the ees to 360 degrees		

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 30 of 36

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

30MHz~1GHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
39.70	40.20	11.30	0.60	28.09	24.01	40.00	-15.99	Vertical
118.27	46.99	8.02	1.25	27.70	28.56	43.50	-14.94	Vertical
129.91	49.29	7.70	1.28	27.61	30.66	43.50	-12.84	Vertical
144.46	46.35	8.53	1.31	27.49	28.70	43.50	-14.80	Vertical
432.55	42.40	16.56	2.34	27.52	33.78	46.00	-12.22	Vertical
78.50	39.12	7.59	1.05	28.00	19.76	40.00	-20.24	Horizontal
118.27	43.50	8.02	1.25	27.70	25.07	43.50	-18.43	Horizontal
129.91	51.67	7.70	1.28	27.61	33.04	43.50	-10.46	Horizontal
144.46	41.60	8.53	1.31	27.49	23.95	43.50	-19.55	Horizontal
710.94	37.50	21.60	2.94	27.24	34.80	46.00	-11.20	Horizontal

Above 1GHz

Test channe	II.	L	owest		Levei:		Реак	
	•							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	49.91	34.25	9.36	41.53	51.99	74.00	-22.01	Vertical
7206.00	44.96	35.84	11.42	39.48	52.74	74.00	-21.26	Vertical
9608.00	41.60	37.99	13.39	37.56	55.42	74.00	-18.58	Vertical
12010.00	*					74.00		Vertical
14412.00	*					74.00		Vertical
4804.00	48.53	34.25	9.36	41.53	50.61	74.00	-23.39	Horizontal
7206.00	43.60	35.84	11.42	39.48	51.38	74.00	-22.62	Horizontal
9608.00	40.13	37.99	13.39	37.56	53.95	74.00	-20.05	Horizontal
12010.00	*					74.00		Horizontal
14412.00	*					74.00		Horizontal

Test channe	l:	L	owest		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	29.38	34.25	9.36	41.53	31.46	54.00	-22.02	Vertical
7206.00	26.08	35.84	11.42	39.48	33.86	54.00	-19.58	Vertical
9608.00	24.25	37.99	13.39	37.56	38.07	54.00	-15.42	Vertical
12010.00	*					54.00		Vertical
14412.00	*					54.00		Vertical
4804.00	27.85	34.25	9.36	41.53	29.93	54.00	-24.07	Horizontal
7206.00	24.59	35.84	11.42	39.48	32.37	54.00	-21.63	Horizontal
9608.00	22.62	37.99	13.39	37.56	36.44	54.00	-17.56	Horizontal
12010.00	*					54.00		Horizontal
14412.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Global United Technology Services Co., Ltd. 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 32 of 36

Project No.: GTSE111100886RF

Test channel:			Middle		Level:		Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4882.00	46.78	34.35	10.57	40.33	51.37	74.00	-22.63	Vertical	
7323.00	44.02	36.12	11.85	39.18	52.81	74.00	-21.19	Vertical	
9764.00	40.15	38.03	13.89	37.94	54.13	74.00	-19.87	Vertical	
12205.00	*					74.00		Vertical	
14480.00	*					74.00		Vertical	
4882.00	45.74	34.35	10.57	40.33	50.33	74.00	-23.67	Horizontal	
7323.00	43.14	36.12	11.85	39.18	51.93	74.00	-22.07	Horizontal	
9764.00	39.30	38.03	13.89	37.94	53.28	74.00	-20.72	Horizontal	
12205.00	*					74.00		Horizontal	
14480.00	*					74.00		Horizontal	

Test channel:			Middle		Level:		Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4882.00	28.69	34.35	10.57	40.33	33.28	54.00	-20.72	Vertical	
7323.00	26.14	36.12	11.85	39.18	34.93	54.00	-19.07	Vertical	
9764.00	24.43	38.03	13.89	37.94	38.41	54.00	-15.59	Vertical	
12205.00	*					54.00		Vertical	
14480.00	*					54.00		Vertical	
4882.00	27.79	34.35	10.57	40.33	32.38	54.00	-21.62	Horizontal	
7323.00	25.37	36.12	11.85	39.18	34.16	54.00	-19.84	Horizontal	
9764.00	23.66	38.03	13.89	37.94	37.64	54.00	-16.36	Horizontal	
12205.00	*					54.00		Horizontal	
14480.00	*					54.00		Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 33 of 36

Average

Project No.: GTSE111100886RF

Test channel:			Highest		Level:		Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	44.47	34.45	10.73	40.18	49.47	74.00	-24.53	Vertical
7440.00	43.24	36.68	12.35	38.85	53.42	74.00	-20.58	Vertical
9920.00	40.12	38.08	14.24	37.78	54.66	74.00	-19.34	Vertical
12400.00	*					74.00		Vertical
14646.00	*					74.00		Vertical
4960.00	43.23	34.45	10.73	40.18	48.23	74.00	-25.77	Horizontal
7440.00	42.02	36.68	12.35	38.85	52.20	74.00	-21.80	Horizontal
9920.00	38.79	38.08	14.24	37.78	53.33	74.00	-20.67	Horizontal
12400.00	*					74.00		Horizontal
14646.00	*					74.00		Horizontal

		g					7 11 5 1 alg 5	
		•						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	31.33	34.45	10.43	41.03	35.18	54.00	-18.82	Vertical
7440.00	25.87	37.37	12.72	40.01	35.95	54.00	-18.05	Vertical
9920.00	24.40	38.08	14.24	37.78	38.94	54.00	-15.06	Vertical
12400.00	*					54.00		Vertical
14646.00	*					54.00		Vertical
4960.00	10.43	34.45	10.43	41.03	33.98	54.00	-20.02	Horizontal
7440.00	12.72	37.37	12.72	40.01	34.54	54.00	-19.46	Horizontal
9920.00	14.24	38.08	14.24	37.78	37.45	54.00	-16.55	Horizontal
12400.00	*					54.00		Horizontal
14646.00	*					54.00		Horizontal

Level:

Remark:

Test channel:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.

Highest

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 34 of 36