Dhaka International University

Department of Computer Science and Engineering

Course Code: CSE-310	Course Title: Operating System Lab					
Course Type (Core Course/Electives/ GED): C	ore Course					
Year /Semester: 9th Semester	Academic Session: 2021-2022					
Course Teacher: Md. Shariful Islam	Credit Value: 1					
Contact Hours: 2 hours	Total Marks: 50					

Rationale: This lab complements the operating systems course. Students will gain practical experience with designing and implementing concepts of operating systems such as system calls, CPU scheduling, process management, memory management, file systems and deadlock handling using C language in a Linux environment.

Course Objectives: The objectives of this course are-

- 1. To provide an understanding of the design aspects of operating system concepts through simulation
- 2. To simulate and implement operating system concepts such as scheduling, deadlock management, file management and memory management
- 3. To introduce basic Unix commands, system call interface for process management, interprocess communication and I/O in Unix

Course Content:

Overview of Operating Systems (OS): Functionalities and Characteristics of OS, Hardware Concepts Related To OS, CPU States, I/O Channels, Memory Hierarchy, Microprogramming.

The Concept of a Process: Operations on Processes, Process States, Concurrent Processes, Process Control Block, Process Context, UNIX Process Control and Management, PCB, Signals, Forks and Pipes. Interrupt Processing, Operating System Organization, OS Kernel FLIH, Dispatcher.

CPU Scheduling: I/O Burst Cycle, Context Switching, Scheduling, Short Term, Long Term, Scheduling Criteria, Algorithms, First Come First Serve, Shortest Job First, Priority Scheduling, Round Robin.

Process Synchronization: Critical Section Problem, Mutual Exclusion, Races, Two Process Solutions, Bakery Algorithm, Synchronization Hardware, Test and Set, Swap, Semaphores, Deadlocks and Starvation, Classic Synchronization Problems, Readers/Writers, Dining Philosophers.

Deadlocks: System Model, Necessary Conditions for A Deadlock, Mutual Exclusion, Hold and Wait, No Preemption, Circular Wait, Resource Allocation Graphs, Handling Deadlocks, Prevention, Avoidance, Bankers Algorithm.

Memory Management: Address Binding, Compile Time, Load Time, Execution Time, Logical Versus Physical Address Space, Swapping, Contiguous Allocation, Single Partition, Multiple Partition, First Fit, Best Fit, Worst Fit, Internal and External Fragmentation, Paging and Virtual Memory, Demand Paging, Page Replacement, Page Replacement Algorithms, FIFO, Belady's Anomaly, LRU, MFU, Thrashing.

File Organization: Blocking and Buffering, File Descriptor, Directory Structure, File and Directory Structures, Blocks and Fragments, Directory Tree, File Descriptors, UNIX File Structure.

Course Learning Outcomes (CLOs): After learning this course, students will be able to-

- 1. Design solutions for overcoming the problem of limited resources (software/ hardware) using various algorithms and synchronization libraries.
- 2. Create shell program for process and file system management
- 3. Apply synchronized programs using multithreading concepts and simulate CPU Scheduling Algorithms like FCFS, Round Robin, SJF, etc.
- 4. Implement operating system functionalities using modern tools.

Mapping of Course Learning Outcomes with Program Learning Outcomes:

CLOs	PLOs	Bloom's Taxonomy	Teaching-Learning	Assessment Strategy
		(Domain/Level)	Strategy	
CLO1	PLO-C	Cognitive/Apply	Lecture, Demonstration	Q/A, Lab Report
CLO2	PLO-C	Psychomotor/Manipula tion	Lecture, Demonstration, Rapport Building, Group Work	Q/A, Lab Report
CLO3	PLO-A	Psychomotor/Precision	Lecture, Demonstration, Group Work	Q/A, Project Work/Report
CLO4	PLO-E	Affective/Responding	Lecture, Demonstration, Group Work	Presentation, Project Work/Report

Mapping of Course – PLO – K – EP/EA																																
Course	Program Learning Outcomes (PLOs)												Knowledge Profiles								Complex Eng. Problems (EP)							Complex Eng. Activity (EA)				
	B Problem Analysis C Design Investigation		d Investigation	E C P	E F G		H Ethics	Teamwork	T Communication	A Proj. Manage. & Fin.	T Life-long learning	Natural Sciences	Mathematics	Eng. Fundamentals	Eng. Specialist	Eng. Design	Eng. Practice	Comprehension	Research Literature	Depth of knowledge (K3-K6, K8)	Range of conflicting requirements	Depth of analysis (no obvious solution)	Familiarity (infrequent issues)	Applicable codes (outside problem)	Stakeholder invol. (Outside group)	Interdependence (many components)	Range of resources	Level of interaction	u	nces for society & envir.	у	
	K	1 – 54	K 5	K 8	K 6		K 7						1	K 2	K	K 4	K 5	6	K 7	K 8	Depth of	Range of	Depth of	Familiari	Applicab)	Stakeholc	Interdepe	Range of	Level of i	Innovation	Consequences for	Familiarity
				EP	<u> </u>																P	P	P	P	P	P	P	A	A	A	A	A
	(F	P1 +	two	or m	ore l	P2-P	7)			A											1	2	3	4	5	6	7	1	2	3	4	5
CSE-310 (Operating System Lab)	×		×		×										×	×	×	×			×	×	×	×								

Mapping Course Learning Outcomes (CLOs) with the Teaching-Learning and Assessment Strategy:

Week	Торіс	Teaching Learning Strategy	Assessment Strategy	Corresponding CLOs
1.	Write a C program to simulate the following non-preemptive CPU scheduling algorithms to find turnaround time and waiting time FCFS	DemonstrationDiscussion	DemonstrationLab reports	CLO3 CLO4
2.	Write a C program to simulate the following non-preemptive CPU scheduling algorithms to find turnaround time and waiting time SJF	DemonstrationDiscussion	DemonstrationLab reports	CLO3 CLO4
3.	Write a C program to simulate the following non-preemptive CPU scheduling algorithms to find turnaround time and waiting time RR	DemonstrationDiscussion	DemonstrationLab reports	CLO3 CLO4
4.	Write a C program to simulate a multi-level queue scheduling algorithm considering the following scenario All the processes in the system are divided into two categories – system processes and user processes System processes are to be given higher priority than user processes	• Case study • Group work	Lab reportsViva	CLO1 CLO2
5.	Write a C program to simulate the following file allocation strategies Sequential Indexed	DemonstrationCase study	DemonstrationQuiz tests	CLO1 CLO3

6.	Write a C program to simulate	• Rapport building	Lab reports	CLO2
	the MVT and MFT memory	• MMP	∙Viva	CLO3
	management techniques	(Multimedia Projector)		
		• Discussion		
7.	Write a C program to simulate	• Group work	Demonstration	CLO2
	the following contiguous memory allocation techniques	• Case study	Quiz testsViva	CLO3
	Worst-fit			
	Best-fit			
8.	Write a C program to simulate	• MMP	• Quiz tests	CLO1
	the paging technique of memory management.	(Multimedia Projector)	• Lab reports	CLO2
	memory management.	• Rapport building		
9.	Write a C program to simulate	• Demonstration	Demonstration	CLO1
	the following file organization	• Case study	∙Viva	CLO2
	techniques	• Group work		
	Single level directory			
	Two-level directories			
10.	Write a C program to simulate	• Rapport building	Lab reports	CLO2
	Banker's algorithm for deadlock avoidance.	• MMP	• Viva	CLO3
	deadlock avoldance.	(Multimedia Projector)	• Quiz tests	
11.	Write a C program to simulate	• Demonstration	Demonstration	CLO3
	disk scheduling algorithms	 Discussion 	Lab reports	
	FCFS and SCAN			
12.	Write a C program to simulate	• Group work	• Quiz tests	CLO3
	page replacement algorithms	Rapport building	• Viva	CLO4
	FIFO			
	LRU			

References:

- 1. Tanenbaum, A., "Operating Systems Design and implementation", Prentice-Hall, 3rd Edition 2006.
- 2. Crowley, C., "Operating Systems: A Design-Oriented Approach", Irwin, 2002.
- 3. Abraham Silberschatz, Peter B. Galvin, Greg Gagne, "Operating System Concepts", Addison-Wesley, 6th Edition, 2001.