$$\Theta_{(a)} = -0 \cdot 32' 40"$$
 $\Theta_{(b)} = -0 \cdot 18' 35"$
 $R_{DS} \approx R_{D} = 6364730.7 \text{ m}$
 $\omega_{1} = 256.09' 18"$
 $\Theta_{1} = 88 \cdot 09' 34"$

der Wurzel vereinfacht. Des weiteren soll vereinfachend angenommen werden , unter der Berücksichtigungsgrenze, sodaß sich (46F) um den ersten Term unter Näherung $R_{P_S} \approx R_P$ und damit $\Delta R_{P_S} \approx \Delta R_P$ wer. Dieser Fehler war nach \blacksquare 2.1. in (46F) und (48F) eingesetzt. Dabei ist zu berücksichtigen , daß in erster Fehlern Δh ' und ΔR_{Ps} sowie dem in 11.2.2. berechneten absoluten Fehler $\Delta \Theta$ Diese Werte werden jetzt zusammen mit den in M.2.1. berechneten absoluten

: nneb biw m P.8 = 'A Δ IIM .1zi "O = $\Theta\Delta$ \approx (e $\Theta\Delta$ \approx (e $\Theta\Delta$

die Angaben des nautischen Jahrbuches testgelegt. Dabei soll die letzte angege-1.2.4. Die Genauigkeiten von Sonnendeklination 8 und Zeitgleichung Z sind durch "61 = W. 43A

Dene Stelle als sicher angenommen werden. Durch diese Forderung ergibt sich:

$$\cos \mathcal{G} = \mathbf{Z} \nabla$$
$$\mathbf{E} = \mathbf{S} \nabla$$

und der Zeitpunkt ${\rm UTI}_{\rm P}$ durch (36) bestimmt. Mit Hille von (51) ergibt sich 12.5. Es war der Stundenwinkel der Sonne in P zum Zeitpunkt UTl_p durch (33)

 $\frac{1}{\sqrt{q}\phi \pi i s - \delta \pi i s \cdot w, q^2 s \infty} + \frac{s}{\sqrt{q}\sqrt{q}} \cdot w, q^2 \Delta \cdot w, q^2 \pi i s} + \frac{1}{\delta s \infty \cdot q \phi s \infty \cdot q^4 \pi i s} = q^4 \Delta$ für die absoluten Fehler:

$$\Delta UTI_p = \Delta t_p + \Delta \lambda_p + \Delta Z$$
 (36F)

Es waren die in 11.2.4. berechneten Werte mit ihren in 11.2.1. bis 11.2.4. bestimmten

: (405) bruu (455) doruch tstej brinw tirmed 1^b = 110 .00, 18, = 1_y 29_{win} 01_{ecc} DesG'0 = ZV $Z = -0_{\text{tr}} 09_{\text{tr}} 09_{\text{cec}}$ $\nabla y^{\mathbf{b}} = 0.1S^{\mathbf{a}} = 0.01^{\mathbf{sec}}$ $y^{b} = 13$. 13. 04. Oaff Figure = - Oy $2S_{untru} 2S_{sec}$