角动量算符对易关系

艾鑫

三峡大学 理学院

2016年1月3日

经典力学中的角动量

在经典力学中, 角动量的定义为

$$L = r \times p \tag{1}$$

展开为

$$L_x = yp_z - zp_y, \quad L_y = zp_x - xp_z, \quad L_z = xp_y - yp_x \tag{2}$$

在量子力学中只需将动量换成动量算符,即为轨道角动量的定义

角动量的一般定义

角动量的一般定义是通过对易关系定义的

$$\mathbf{J} \times \mathbf{J} = i\hbar \mathbf{J} \tag{3}$$

展开为

$$[J_x, J_y] = i\hbar J_z, \quad [J_y, J_z] = i\hbar J_x, \quad [J_z, J_x] = i\hbar J_y \tag{4}$$

角动量平方算符

由于 J_x, J_y, J_z 相互之间不对易,因此没有共同的本征态.而角动量平方 算符

$$J^2 = J_x^2 + J_y^2 + J_z^2 (5)$$

却与 J_x, J_y, J_z 都对易, 即

$$[J^2, J_x] = 0, \quad [J^2, J_y] = 0, \quad [J^2, J_z] = 0$$
 (6)

我们可以找到 J^2 和 J_z 的共同的本征态 $|\psi\rangle$:

$$J^{2} |\psi\rangle = \lambda |\psi\rangle, J_{z} |\psi\rangle = \mu |\psi\rangle. \tag{7}$$

升降算符

定义升降算符

$$J_{\pm} \equiv J_x \pm i J_y \tag{8}$$

升降算符有下列性质:

- $[J_+, J_-] = 2\hbar J_z$
- $[J_{\pm}, J^2] = 0$
- $\bullet \ [J_{\pm},J_z] = \mp \hbar J_{\pm}$
- $J_{\pm}J_{\mp} = J^2 J_z^2 \pm \hbar J_z$

升降算符

如果 $|\psi\rangle$ 是 J^2 和 J_z 的共同本征态, 那么 $L_{\pm} |\psi\rangle$ 也是它们的本征态.

$$J^{2}(J_{\pm}|\psi\rangle) = J_{\pm}(J^{2}|\psi\rangle) = J_{\pm}(\lambda|\psi\rangle) = \lambda(J_{\pm}|\psi\rangle)$$

$$J_{z}(L_{\pm}|\psi\rangle) = (J_{z}J_{\pm} - J_{\pm}J_{z})|\psi\rangle + J_{\pm}J_{z}|\psi\rangle$$

$$= \pm \hbar J_{\pm}|\psi\rangle + J_{\pm}(\mu|\psi\rangle)$$

$$= (\mu \pm \hbar)(J_{\pm}|\psi\rangle)$$

$$(10)$$

由上式可知, J^2 的本征值不变, J_z 的本征值加 (减) 一个 \hbar

升降算符

对于给定的 λ , 不断的施加一个升算符, J_z 的本征值将不断增加. 但是增加到一程度就会到顶, 我们令这个态为 $|\psi_t\rangle$, 有

$$J_{+}\left|\psi_{t}\right\rangle = 0\tag{11}$$

设此时 J_z 的本征值为 $\hbar j$:

$$J_z |\psi_t\rangle = \hbar j |\psi_t\rangle , \quad J^2 |\psi_t\rangle = \lambda |\psi_t\rangle$$
 (12)