Exercise 6.1. Prove or disprove: If $v_0, \dots, v_{n-1} \in V$, then:

$$\sum_{j=0}^{n-1} \sum_{k=0}^{n-1} \langle v_j, v_k \rangle \ge 0$$

Proof. For any j, we have $\sum_{k=0}^{n-1} \langle v_j, v_k \rangle = \langle v_j, v_0 + \cdots + v_{n-1} \rangle$, thus the equation is now $\langle v_0 + \cdots + v_{n-1}, v_0 + \cdots + v_{n-1} \rangle \geq 0$, which is trivial by definition.

Exercise 6.2. Let $S \in \mathcal{L}(V)$. Define $\langle \cdot, \cdot \rangle_1$ by

$$\langle u, v \rangle_1 = \langle Su, Sv \rangle$$

for all $u, v \in V$. Show that $\langle \cdot, \cdot \rangle_1$ is an inner product over $V \iff S$ is injective.

Proof.

- Try to prove $\langle \cdot, \cdot \rangle_1$ is a inner product and see where we stuck without injective. We find that $\langle v, v \rangle_1 = 0 \iff v = 0$ stuck, as if S is not injective, then we have $\langle u-v, u-v \rangle_1 = \langle S(u-v), S(u-v) \rangle = \langle 0, 0 \rangle = 0$ where $u-v \neq 0$ and Su=Sv. Therefore S must be injective.
 - Although the proof is not *constructive*, it help us to find a constructive proof: Suppose Su = Sv, then $\langle u-v, u-v \rangle_1 = \langle Su-Sv, Su-Sv \rangle = 0$, thus u-v=0, therefore u=v.
- Positivity, Additivity, Homogeneity holds cause S is a linear map and $\langle \cdot, \cdot \rangle$ is an inner product, and Conjugate Symmetry holds cause $\langle \cdot, \cdot \rangle$ is an inner product. For Definiteness, $\langle v, v \rangle_1 = \langle Sv, Sv \rangle = 0$ implies v = 0 cause S injective, and $\langle 0, 0 \rangle_1 = \langle S0, S0 \rangle = \langle 0, 0 \rangle = 0$.

Exercise 6.3.

- Show that f((a,b),(c,d)) = |ac| + |bd| is not an inner product over \mathbb{R}^2 .
- Show that f((a, b, c), (x, y, z)) = ax + cz is not an inner product over \mathbb{R}^3 .

Proof.

• f((1,1),(1,1)) = 1 + 1 and f((-1,-1),(1,1)) = 1 + 1, then f((1,1) + (-1,-1),(1,1)) = f((0,0),(1,1)) = 0 + 0 = 0 while f((1,1)+(-1,-1),(1,1)) = f((1,1),(1,1)) + f((-1,-1),(1,1)) = 2 + 2 = 4.

• f((0,1,0),(0,1,0)) = 0 but $(0,1,0) \neq 0$.

Exercise 6.4. Let $T \in \mathcal{L}(V)$ and $||Tv|| \leq ||v||$ for all $v \in V$. Show that $T - \sqrt{2}I$ is injective.

Proof. Suppose $T - \sqrt{2}$ is not injective, then $Tv = \sqrt{2}v$ for some v, then $||Tv|| = ||\sqrt{2}v|| = |\sqrt{2}||v|| \ge ||v||$. Basically any eigenvalue with absolute value greater than 1 can make it.

Exercise 6.5. Let V an inner product space over \mathbb{R} .

- Show that $\langle u + v, u v \rangle = ||u||^2 ||v||^2$.
- Show that $u + v \perp u v$ if ||u|| = ||v||.
- Use last conclusion to show that the diagonal of 菱形 are orthogonal.

Proof.

- $\langle u+v, u-v \rangle = \langle u, u \rangle + \langle v, u \rangle \langle u, v \rangle \langle v, v \rangle$, note that $\langle v, u \rangle = \langle u, v \rangle$ since V over \mathbb{R} , thus $\langle u+v, u-v \rangle = \langle u, u \rangle \langle v, v \rangle = \|u\|^2 \|v\|^2$.
- By ↑.
- We know 菱形 is a parallelogram that four sides have same length, thus ||u|| = ||v|| and $u + v \perp u v$, where u + v and u v are two diagonal of 菱形.

Exercise 6.6. Let $u, v \in V$. Show that $\langle u, v \rangle = 0 \iff ||u|| \leq ||u + av||$ for any $a \in F$.

Proof.

• (\Rightarrow) We will show that $||u|| \le ||u + av||$ by $||u||^2 \le ||u + av||^2$ (recall that norm is always non-negative). $||u + av||^2 = ||u||^2 + (a||v||)^2$

• (\Leftarrow) If v = 0, then $0 \perp u$ and the proof is complete, we assume $v \neq 0$. Let $w \in V$ such that cv + w = u and $v \perp w$, then $||u||^2 = ||cv + w||^2 = ||cv||^2 + ||w||^2$ (see ??), thus $||u||^2 \ge ||w||^2$, therefore $||u|| \ge ||w||$ where w = u - cv, therefore $||w|| \le ||w||$, hence ||u|| = ||w||. Then $||u||^2 = ||cv||^2 = ||w||^2$ is now $||cv||^2 = 0$, therefore c = 0 or v = 0, but $v \neq 0$, thus $c = \frac{\langle u, v \rangle}{||v||^2} = 0$ then $\langle u, v \rangle = 0$ and $u \perp v$.