

中国软件技术大会

BytelR: 迈向端到端的AI编译

字节跳动机器学习系统工程师刘渊强

2023.12

- 1. What is BytelR and advantages of BytelR
- 2. Design and technical details
- 3. LLM training example and performance

What is BytelR

BYTEIR is our solution for framework-to-hardware compilation

Al Compilation: NN graph to HW

Al Workloads

AI Compilation

Graph Compiler (Frontend)

Internediate Representation (IR)

Codegen (Backend)

Al Hardware

BytelR Architecture

Advantages of BytelR

1. Embrace open source, upstream first

Contribute to Ilvm, tensorflow, pytorch, torch-mlir, onnx-mlir, stablehlo

- 2. Well support for PyTorch, both inference and training
- 3. Friendly to new hardware (ASIC/NPU)
- 4. Flexible, extensible, high performance

1. What is BytelR and advantages of BytelR

2. Design and technical details

3. LLM training example and performance

BytelR Torch Frontend – Torch MLIR

Github: https://github.com/llvm/torch-mlir

Torch MLIR Lowering

torch

```
class Module(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.linear = nn.Linear(10, 20)
    def forward(self, x):
        return self.linear(x)
```

torch dialect

```
func.func @forward(%arg0: !torch.vtensor<[20, 10], f32>, %arg1: !torch.vtensor<[10, 20], f32>) - > !torch.vtensor<[20, 20], f32> {
    %0 = torch.aten.mm %arg0,
%arg1: !torch.vtensor<[20, 10],
f32>, !torch.vtensor<[10, 20], f32> - > !torch.vtensor<[20, 20], f32> return %0: !torch.vtensor<[20, 20], f32> }
```

torch dialect

```
func.func @forward(%arg0: !torch.tensor,
    %arg1: !torch.tensor) -> !torch.tensor {
        %0 = torch.aten.mm %arg0,
    %arg1 : !torch.tensor, !torch.tensor -> !torch.tensor
        return %0 : !torch.tensor
}
```

torch.jit.scirpt

MLIR importer

alue semantilo

Lowering

Sharelathbe

stablehlo dialect

```
func.func @forward(%arg0: tensor<20x10xf32>,
    %arg1: tensor<10x20xf32>) ->
    tensor<20x20xf32> {
        %0 = "stablehlo.dot"(%arg0, %arg1):
    tensor<20x10xf32>, tensor<10x20xf32> ->
    tensor<20x20xf32>
        return %0: tensor<20x20xf32>
}
```


BytelR Torch Frontend

Able to provide coarse-grained operators

Corner Cases

```
def forward(self, x):
x += 1
return x
```

Success, but no effect on input

```
def forward(self, x):
    y = torch.as_strided(x, size, stride)
    return y
```

```
def forward(self, x, y):
    x += y
    z = x.view(-1, 4)
    x += 1
    return x, z
```

Failed, really overwrite same memory

Don't support dynamic if/for/while

Failed, no abstraction of pointer/storage

BytelR Compiler Overview

NVVM/LLVM

CUDA

Stablehlo/Mhlo Opt. passes Lowering Lowering Lowering Linalg (tensor) CAT* Opt. passes ByRE **AITemplate Bufferization** Serialization backend for **Nvidia GPU** Linalg (memref) Opt. passes Lowering Opt. passes scf/affine/vec/... Hybrid Upstream **GPU Lowering C** Emitter Lowering BytelR **GPU LLVM** C IR or file **CUDA Emitter** Lowering

I ByteDance字节跳动

Integrating AlTemplate

We introduce CAT (Composable Algebra Template) dialect

Mhlo-2-CAT Passes

Mhlo-2-CAT:

- Convert Mhlo ops to CAT ops (one CAT op corresponds to one AIT op)
- Eleminate redundant transpose/permuate ops

Linalg Tiling and Fusion

```
func.func @fuse element(%arg0 ..., %arg1 ...)
Mhlo op:
               %0 = mhlo.some elemwise binary 1(%arg0, %arg1)
               %1 = mhlo.some elemwise binary 2(%0, %arg1)
               return %1
                              Linalg transformation
           func.func @fuse element(%arg0 ..., %arg1 ...)
Linalg op:
               %1 = linalg.generic {indexing maps = ...,
                       iterator types = ...} ins(%arg0, %arg1) outs... {
               ^bb0(%in0, %in1, %out)
                   %2 = arith.some elemwise binary 1(%in0, %in1)
                   %3 = arith.some elemwise binary 2(%2, %in1)
                   linalg.yield %3 ...
               return %1
```

ByetIR's Linalg Extension

More ops:

- Alias, Diag, Scan, Scatter, Softmax, TopK
- support transformations of extended ops

Enhanced fusion transformations:

- producer-consumer & input-sharing fusion
- tiling along reduction axis correction
- intermediates as outputs within fusion
- intermediate tensor dim simplification
- map ops to generic ops conversion
- •

Other introduced transformations:

- Collapse dims transformation
- Fuse operands transformation

•

Benefits:

- Extreme IO-bound op fusion
- Lower overhead for fused ops (Exploit GPU DRAM bandwidth)

BytelR Runtime (BRT) Overview

BRT Interface for Hardware

Provider

A collection of op implementation

• e.g., mm, d2h/h2d memcpy

Work Queue

Abstraction(like CUDAStream) for execution order

Allocator

Memory Allocate/Free

1. What is BytelR and advantages of BytelR

2. Design and technical details

3. LLM training example and performance

BytelR LLM Training Compilation Pipeline

Optimization in FW/BW Partition

One case of our partition strategy

BytelR PyTorch Compile Example

```
from byteir import byteir compile fx
model = make model (model name)
# 1, compile with byteir
optimized model = torch.compile(model, backend=byteir compile fx)
# 2, execution as usual
data = make data(optimized model, model name, device)
model.zero grad(set to none=True)
with torch.cuda.amp.autocast(enabled=True, dtype=torch.float16):
    # forward compile
    loss = compute loss(optimized model, data)
    # backward compile
    loss.backward()
```

BytelR Runtime Example

```
import brt
session = brt.Session()
session.load(byre model path)
req = session.new request context(torch.cuda.current stream())
inputs, outputs = [], []
# init input/output data
for offset in session.get input arg offsets():
    inputs.append(torch.randn(session.get static shape(offset),
              dtype=dtype, device="cuda"))
    req.bind arg(offset, inputs[-1].data ptr())
req.finish io binding()
req.run()
req.sync()
```

Performance

- Flash Attention 2
- Elementwise Fusion
- AlTemplate
- Reduce Codegen

Conclusion & Future Work

We introduce BytelR: a framework-to-hardware compiler solution

- Friendly to PyTorch and GPU/ASIC
- PyTorch 2.0 training/inference demo on LLM

Future Work:

- Distributed support
- TensorCore MMA Codegen

Website: https://byteir.ai

Github: https://github.com/bytedance/byteir

THANKS

https://byteir.ai

ByteIR Github: https://github.com/bytedance/byteir

Personal Github: https://github.com/qingyunqu

Appendix 1: Reduce Op Optimization (Fusion)

Optimization 1: Fusing reduce op with producer ops

Appendix 2: Reduce Op Optimization (Tiling)

Optimization 2: Parallelizing reduce dimension

We use utilize our LinalgExt transformations to achieve best tiling efficiency