Computational Complexity of Inference

Sargur Srihari srihari@cedar.buffalo.edu

Topics

- 1. What is Inference?
- 2. Complexity Classes
- 3. Exact Inference
 - 1. Variable Elimination
 - Sum-Product Algorithm
 - 2. Factor Graphs
 - 3. Exact Inference for Tree graphs
 - 4. Exact inference in general graphs

Common BN Inference Problem

- Assume set of variables x
 - *E*: evidence variables, whose known value is *e*
 - Y: query variables, whose distrib. we wish to know
- Conditional probability query P(Y|E=e)

$$P(Y | E = e) = \frac{P(Y, e)}{P(e)}$$
 From product rule

- Evaluation of Numerator P(Y,e)
 - If $W=\chi Y E$

$$P(\mathbf{y},e) = \sum_{w} P(\mathbf{y},e,w)$$
 an entry in the distribution

(1) Each term in summation is simply

Evaluation of Denominator P(e)

$$P(e) = \sum_{y} P(y, e)$$

Rather than marginalizing over P(y,e,w) this allows reusing computation of (1)

Ex: Inference with Cancer BN

- Lung Cancer BN is given
 - If Serum Calcium is known, what is P(C)?
- We can evaluate it as:

$$P(C \mid Se) = \frac{P(C, Se)}{P(Se)}$$

- where

$$P(C,Se) = \sum_{A,Ge,E,Sm,L,Gd} P(A,Ge,E,Sm,Se,C,L,Gd)$$

$$= \sum_{A,Ge,E,Sm,L,Gd} P(A)P(Ge)P(Gd)P(E\mid A), P(Sm\mid A,G)P(Se\mid C)P(C\mid E,Sm)P(L\mid C,Gd)$$

$$P(Se) = \sum_{G} P(C,Se)$$

Analysis of Complexity

- Approach of summing out the variables in the joint distribution is unsatisfactory $P(y,e) = \sum P(y,e,w)$
 - Returns us to exponential blow-up
 - PGM was precisely designed to avoid this!
- We now show that problem of inference in PGMs is \mathcal{NP} -hard
 - Requires exponential time in the worst case except if $\mathcal{P}=\mathcal{NP}$
 - Even worse, approximate inference is \mathcal{NP} hard
- Discussion for BNs applies to MNs also

What is a decision problem?

- Subset sum decision problem
 - Given a set of integers, is there a subset that sums to zero?
 - No polynomial time algorithm to decide this
 - Given an instance, say set $\omega = \{-2, -3, 15, 14, 7, -10\}$
 - The guess $\{-2, -3, -10, 15\}$ can be *verified* in poly time
- Definition of Decision Problem Π:
 - L_{Π} defines a precise set of instances
 - L_{Π} consists of integer sets which have a subset that sums to zero
 - Decision problem Π : Is instance ω in L_{Π} ?
 - Is ω a set of integers with a subset that sums to zero?

Probabilistic Phical Models \mathcal{N} decision problems

- Definition of Decision Problem Π:
 - L_{Π} defines a precise set of instances
 - Decision problem: Is instance ω in L_{Π} ?

- Decision problem Π is in
 - -P if there is an algorithm that decides in poly time
 - $-\mathcal{NP}$ if a guess can be verified in poly time
 - Guess is produced non-deterministically
 - Hence the name non-deterministic polynomial time
 - Subset sum problem is in \mathcal{NP}
 - Whether a given subset sums to zero verified in poly time
 - But not in \mathcal{P}
 - No poly algorithm to determine whether there exists any subset that sums to zero

3-SAT (Satisfiability) decision problem

- 3-SAT formula over binary variables $q_1,...,q_n$
 - has the form $C_1 \wedge C_2 \wedge ... C_m$

 C_i is a clause of form $l_{i,1} \vee l_{i,2} \vee l_{i,3}$; $l_{i,j}$ i=1,...,m; j=1,2,3 are literals which are either q_k or $\sim q_k$

e.g., with n=3 m=2 and clauses $(q_1 \lor \neg q_2 \lor \neg q_3) \land (\neg q_1 \lor q_2 \lor \neg q_3)$ there is a satisfying assignment (assigns true to formula): $q_1=q_2=q_3=$ true with clauses $(\neg q_1 \lor q_2) \land (q_2 \lor q_3) \land (\neg q_1 \lor q_3)$ there is no satisfying assignment

Each assignment verified in polynomial time

- Decision problem Π : Given a 3-SAT formula of size n, is there a satisfying assignment?
 - To answer this we need to check n binary variables with 2^n assignments
 - L_{Π} is the set of 3-SAT formulas that have a satisfying assignment⁸

What is $\mathcal{P}=\mathcal{NP}$?

- Input is a formula of size n
 - A particular assignment γ can be verified in polynomial time, e.g., $q_1 = q_2 = q_3 = \text{true}$
 - Suppose generate guess γ and verify if it satisfies
 - Since guess verified in polynomial time, decision problem Π is in \mathcal{NP}
- Deterministic problems are subset of nondeterministic ones. So $P \subseteq NP$.

- Converse is biggest problem in complexity
 - If you can verify in polynomial time, can you decide in polynomial time?
 - Eg., is there a prime greater than n?

$\mathcal{P} = \mathcal{NP}$ intuition

- Creating great art
 - Complexity is \mathcal{NP}
- Appreciating art:
 - Complexity is \mathcal{P}
- Is $\mathcal{P} = \mathcal{N} \mathcal{P}$?

- Most mathematicians don't think so

$\mathcal{N}P$ -hard and $\mathcal{N}P$ -complete

- Hardest problems in \mathcal{NP} are called \mathcal{NP} -complete
 - If poly time solution exists, can solve any in \mathcal{NP}
 - NP-hard problems need not have polynomial time verification
- If Π is \mathcal{NP} -hard it can be transformed into Π ' in \mathcal{NP}
- 3-SAT is \mathcal{NP} -complete

BN for 3-SAT

- Propositional variables $q_1,...,q_n$
 - Return *true* if $C_1 \wedge C_2 \wedge ... C_m$, where C_i is a DNF of 3 binary variables q_k , has a satisfying assignment,
 - e.g., return true for 3-SAT formula $(q_1 \lor \neg q_2 \lor \neg q_3) \land (\neg q_1 \lor q_2 \lor \neg q_3)$ since $q_1 = q_2 = q_3 = \text{true}$ is a satisfying assignment and return false for $(\neg q_1 \lor q_2 \lor \neg q_3) \land (q_2 \lor q_3) \land (\neg q_1 \lor q_3)$ which has no satisfying assignments

BN to infer this:

 $P(q_k^1)$ =0.5 C_i are deterministic OR

 A_i are deterministic AND

X is output (has value 1 iff all of the $C_{\rm i}$'s are 1

#P-complete Problem

- Counting the no. of satisfying assignments
 - E.g., Propositional variables $q_1,...,q_n$

Return true if $C_1 \land C_2 \land ... C_m$,

where C_i is a DNF of 3 binary variables q_k , has a satisfying assignment,

Analysis of Exact Inference

Worst case: CPD is a table of size

$$|Val(\{X_i\} \ \ V \ Pa_{Xi})|$$

- Most analyses of complexity are stated as decision-problems
 - Consider decision problem first, then numerical one
- Natural version of conditional probability task:
 - − BN-Pr-DP: Bayesian Network Decision Problem
 - Given a BN $\mathcal B$ over χ , a variable $X \in \chi$, and a value $x \in Val(X)$ decide $P_{\rm B}(X=x)>0$
 - This decision problem can be shown to be \mathcal{NP} complete

Proof of BN-Pr-DP is \mathcal{NP} -complete

- Whether in \mathcal{NP} :
 - Guess assignment ξ to network variables. Check whether X=x and $P(\xi)>0$
 - One such guess succeeds iff P(X=x)>0.
 - Done in linear time
- Is \mathcal{NP} -hard:
 - Answer for instances in BN-Pr-DP can be used to answer an \mathcal{NP} -hard problem
 - Show a reduction from 3-SAT problem

Reduction of 3-SAT to BN inference

- Given a 3-SAT formula ϕ create BN \mathcal{B}_{ϕ} with variable X such that ϕ is satisfiable iff $P_{\mathcal{B}\phi}(X=x_1)>0$
- If BN inference is solved in poly time we can also solve 3-SAT in poly time

BN to infer this:

 $P(q_k^{-1})=0.5$ C_i are deterministic OR A_i are deterministic AND X is output

Original Inference Problem

$$p(y) = \sum_{x} p(y/x)p(x)$$

- It is a numerical problem
 - rather than a decision problem
- Define BN-Pr
 - Given a BN \mathcal{B} over χ , a variable $X \in \chi$, and a value $x \in Val(X)$ compute $P_{\mathcal{B}}(X=x)$
 - Task is to compute the total probability of instantiations that are consistent with X=x
 - Weighted count of instantiations, with weight being the probability
 - This problem is #P-complete

Probabilistic Graphical Models

Analysis of Approximate Inference

- Metrics for quality of approximation
- Absolute Error
 - Estimate ρ has absolute error ε for P(y|e) if

$$|P(y|e)-\rho| \leq \varepsilon$$

- A weak definition of error. If a rare disease has probability 0.0001 then error of 0.0001 is unacceptable. If the probability is 0.3 then error of 0.0001 is fine

Relative Error

- Estimate ρ has *relative error* ε for P(y|e) if

$$\rho/(1+\varepsilon) \leq P(y|e) \leq \rho(1+\varepsilon)$$

• ε =4 means P(y|e) is at least 20% of ρ and at most 600% of ρ . For low values much better than absolute error

Approximate Inference is NP-hard

- The following problem is \mathcal{NP} -hard
 - Given a BN \mathcal{B} over χ , a variable $X \in \chi$ and a value $x \in Val(X)$, find a number ρ that has relative error ε for $P_{\mathcal{B}}(X=x)$
- Proof:
 - It is NP-hard to decide if $P_{\mathcal{B}}(x^l) > 0$
 - Assume algorithm returns estimate ρ to $P_{\mathcal{B}}(x^1)$ which has relative error ε for some $\varepsilon > 0$
 - $-\rho > 0$ if and only if $P_{\mathcal{B}}(x^1) > 0$
 - This achieving relative error is $\mathcal{N}P$ -hard

Inference Algorithms

- Worst case is exponential
- Two types of inference algorithms
 - -Exact
 - Variable Elimination
 - Clique trees
 - Approximate
 - Optimization
 - Propagation with approximate messages
 - Variational (analytical approximations)
 - Particle-based (sampling)