Exercice 1. /3

Les deux questions sont indépendantes.

- 1. Démontrer que la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n=5-4\cos(n!)$ est bornée.
- 2. Démontrer que la suite $(v_n)_{n\in\mathbb{N}}$ définie par $v_n = \frac{3n^2}{n^2+1}$ est majorée par 3.

Exercice 2. /3

On considère la suite (u_n) définie sur \mathbb{N} par $u_0 = 5$ et pour tout entier naturel n,

$$u_{n+1} = \frac{1}{2} (u_n + n - 3).$$

- 1. Conjecturer la limite de la suite (u_n) à la calculatrice.
- 2. On considère le programme Python :

```
1  def seuil():
2     u=5;n=0
3     while u....:
4          u=.......
5          n=n+1
6     return .....
```

Compléter la fonction Python ci-dessus pour qu'elle retourne le premier terme de la suite strictement supérieur à $1\,000$.

3. Démontrer par récurrence que pour tout entier naturel $n, u_n = 10 \times \left(\frac{1}{2}\right)^n + n - 5$.

Exercice 3. /4

La cantine scolaire d'un fonctionne sous forme de self. Les élèves peuvent choisir entre quatre entrées, trois plats et cinq desserts.

- 1. Normalement, un élève choisit une entrée, un plat et un dessert. Sous ces conditions, montrer qu'il peut constituer $\binom{4}{1} \times \binom{3}{1} \times \binom{5}{1} = 60$ menus différents.
- 2. Un élève a un régime particulier et ne mange pas de dessert mais a le droit, pour compenser, de prendre deux entrées. Combien de possibilités a-t-il pour constituer son menu?
- 3. Deux élèves qui aiment gouter à tout décident de s'organiser ainsi : ils choisissent des entrées, plats et desserts différents et se les partagent ensuite. Combien ont-ils de menus possibles?

Exercice 4. /3

On rappelle la formule du binôme de Newton : a et b sont deux réels et n un entier naturel.

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}.$$

1. En utilisant cette formule, développer, réduire et ordonner $(1+2x)^4$.

2. Déterminer, en la justifiant, la valeur de $\sum_{k=0}^{n} \binom{n}{k} (-1)^k$.

Exercice 5. /7

On considère la suite (u_n) définie par $u_0 = \frac{1}{2}$ et telle que pour tout entier naturel n,

$$u_{n+1} = \frac{3u_n}{1 + 2u_n}$$

- 1. (a) Calculer u_1 .
 - (b) Démontrer, par récurrence, que pour tout entier naturel $n,\,u_n>0.$
 - (c) On admet que pour tout entier naturel $n, u_n < 1$.
 - i. Démontrer que pour tout entier naturel n on a $u_{n+1}-u_n=\frac{2u_n(1-u_n)}{1+2u_n}$.
 - ii. En déduire le sens de variation de la suite (u_n) .
- 2. Soit (v_n) la suite définie, pour tout entier naturel n, par $v_n = \frac{u_n}{1 u_n}$.
 - (a) Montrer que la suite (v_n) est une suite géométrique de raison 3.
 - (b) Exprimer pour tout entier naturel n, v_n en fonction de n.
 - (c) En déduire que, pour tout entier naturel n, $u_n = \frac{3^n}{3^n + 1}$.

« En Mathématiques, on ne comprend pas les choses, on s'y habitue. »

John Von Neumann