目录

目录

第	等一部分 什么是导数?	3
第	9二部分 导数公式	4
1	1.1 (常数 C)' = 0 1.2 $(x^n)' = nx^{n-1}$. 1.3 $(a^x)' = a^x \ln a$. 1.4 $(e^x)' = e^x \ln e = e^x$. 1.5 $(\log_a x)' = \frac{1}{x \ln a}$. 1.6 $(\ln x)' = \frac{1}{x}$.	. 4 . 4 . 5
	反函数的导数: $ [f^{-1}(y)]' = \frac{1}{ 原函数的导数f'(x)} $	
	3.1 $(\sin x)' = \cos x$ 3.2 $(\cos x)' = -\sin x$ 3.3 $(\tan x)' = \sec^2 x$ 3.4 $(\cot x)' = -\csc^2 x$ 3.5 $(\sec x)' = \sec x \cdot \tan x$ 3.6 $(\csc x)' = -\csc x \cdot \cot x$	6. 66. 66. 66. 66. 66.
第	9三部分 求导的各种方法,方法论	6
5	求导法则: 和差积商 $5.1 (a+b)' = a' + b' \qquad \\ 5.2 (a+b)' = a' + b' \qquad \\ 5.3 (a+b+c)' = a' + b' + c' \qquad \\ 5.4 (a-b)' = a' - b' \qquad \\ 5.5 (ab)' = a'b + ab' \qquad \\ 5.6 (abc)' = a'bc + ab'c + abc' \qquad $. 7 . 7 . 7

	5.7 (常数 $C \cdot a$)' = $C \cdot a$ '	7
	$5.8 \left(\frac{a}{b}\right)' = \frac{a'b - ab'}{b^2} \dots \dots \dots$	7
	对"复合函数"求导的方法:链式法则 / 剥洋葱法	7
7	对"参数方程"求导的方法	8
8	对"隐函数"求导的方法	8

导数 Derivative

2022年12月9日

第一部分 什么是导数?

某点处的"导数", 就是该点处"切线的斜率".

导数, 就是一个"极限值", 比如, y 在点 x_0 处的导数, 就是: $f'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$

可导, 就意味着图像很"光滑". 即图像没有"尖角"存在 (因为尖角处的左右导数不相等). 并且, 切线不能垂直于 x 轴. 如果切线是垂直于 x 轴的, 它的斜率就会是 $+\infty$ 或 $-\infty$ 了.

 x_0 点处的导数, 其实可以有下面 4 种写法来表示:

- $(1) y'|_{x=x_0}$
- (2) $f'(x_0)$
- $(3) \frac{dy}{dx}|_{x=x_0}$
- $(4) \ \frac{\widetilde{df}(x)}{dx}|_{x=x_0}$

"位置"的瞬时变化率 (变换趋势, 能预测未来), 就是"速度". 所以速度是位置的导数.

"速度"的瞬时变化率, 就是"加速度". 所以"加速度"是"速度"的导数. "加速度"就是"位置"的二阶导.

单侧导数, 就是从"某一侧"逼近某一 x 点时, 该点的切斜斜率.

所以, 左导数, 就是"从左侧向右"逼近了. 右导数, 就是"从右边向左"逼近了.

- 左导数: $f_{-}(x_{0}) = \lim_{x \to x_{0}^{+}} \frac{f(x) f(x_{0})}{x x_{0}}$ 右导数: $f_{+}(x_{0}) = \lim_{x \to x_{0}^{+}} \frac{f(x) f(x_{0})}{x x_{0}}$

第二部分 导数公式

1 常用的导数

1.1 (常数C)' = 0

常数不会变化, 自然没有"瞬时变化率"存在, 所以常数的导数就 =0.

- 1.2 $(x^n)' = nx^{n-1}$
- (1) 当指数 n=1 时, 其导数 =1.
- (2) 当 n > 1 时, 其导数是 $(x^n)' = nx^{n-1}$

例

求 $y = \frac{1}{x}$ 在点 (1/2, 2) 处的切线的斜率 (即导数), 并求出该切线的方程.

其导数是: $y' = (x^{-1})' = -1x^{-1-1} = -1x^{-2}$

然后把点 (x=1/2, y=2) 代入进去,得到: $y'|_{x=\frac{1}{2}} = -1\left(\frac{1}{2}\right)^{-2} = -4 \leftarrow$ 这个数值,就是函数在点 (1/2, 2) 处的 切线的斜率.

然后再套用直线的"点斜式方程" $y-y_1=k(x-x_1)$

本例的切线即:
$$y - \underbrace{y_1}_{=2} = \underbrace{k}_{\text{pr}y'=-4} \left(x - \underbrace{x_1}_{=\frac{1}{2}} \right)$$

1.3
$$(a^x)' = a^x \ln a$$

即直接后面跟个尾巴: ln a

例如, $(2^x)' = 2^x \ln 2$

1 常用的导数 5

1.4
$$(e^x)' = e^x \ln e = e^x$$

1.5
$$(\log_a x)' = \frac{1}{x \ln a}$$

即把 x 提到前面去, 把 log 变成 ln, 整体再放在分母上. 分子为 1.

1.6
$$(\ln x)' = \frac{1}{x}$$

例如:
$$(\log_e x)' = \frac{1}{x \cdot \ln e} = \frac{1}{x}$$

对"对数函数"求导,有一种技巧:换底成 ln 后再来做. 因为转成 ln 后,操作会变得简单.

$$y=x^x$$
,求 y' $\ln(y)=\ln(x^x)$ ← 两边同时取 $\ln(y)=x\ln x$ $(\ln y)'=(x\ln x)'$ ← 两边同时对 x 求导,注意 y 是个复合函数,要用剥洋葱法 $\ln'y\cdot y'=x'\ln x+x(\ln x)'$ $\frac{1}{y}\cdot y'=1\cdot \ln x+x\frac{1}{x}$ $y'=(\ln x+1)y$ ← 再把 y 这个复合函数的具体内容 $=x^x$ 代进去 $y'=(\ln x+1)x^x$

2 反函数的导数:
$$[F^{-1}(Y)]' = \frac{1}{$$
原函数的导数 $F'(X)$

2 反函数的导数:
$$[f^{-1}(y)]' = \frac{1}{原函数的导数f'(x)}$$

反函数的导数, 和其原函数的导数, 呈"倒数关系".

原函数是 y=f(x), 其反函数是 x=f(y), 则, 反函数的导数, 就是"原函数导数"的倒数.

换言之, 原函数的导数是 $\frac{\Delta y}{\Delta x}$, 则其反函数的导数就是 $\frac{1}{\frac{\Delta y}{\Delta x}}$.

"原函数"和"反函数",它们"导数"的乘积 =1.

"原函数"与其"反函数"的图像, 是关于 y=x 对称的.

3 三角函数的导数

3.1
$$(\sin x)' = \cos x$$

3.2
$$(\cos x)' = -\sin x$$

3.3
$$(\tan x)' = \sec^2 x$$

3.4
$$(\cot x)' = -\csc^2 x$$

$$3.5 \quad (\sec x)' = \sec x \cdot \tan x$$

$$3.6 \quad (\csc x)' = -\csc x \cdot \cot x$$

4 反三角函数的导数

4.1
$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$$

4.2
$$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$$

4.3
$$(\arctan x)' = \frac{1}{1+x^2}$$

4.4
$$(\operatorname{arccot} x)' = -\frac{1}{1+x^2}$$

第三部分 求导的各种方法,方法论

5 求导法则: 和差积商

5.1
$$(a+b)' = a' + b'$$

例:
$$(x^2 + \sin x)' = (x^2)' + (\sin x)' = 2x + \cos x$$

5.2
$$(a+b)' = a' + b'$$

5.3
$$(a+b+c)' = a'+b'+c'$$

5.4
$$(a-b)' = a' - b'$$

5.5
$$(ab)' = a'b + ab'$$

例:
$$(x^3e^x)' = (x^3)'e^x + x^3(e^x)' = 3x^2e^x + x_3e^x$$

5.6
$$(abc)' = a'bc + ab'c + abc'$$

5.7 (常数
$$\mathbf{C} \cdot a$$
)' = $C \cdot a$ '

← 直接把常数提到外面去就行了

例:
$$(5sinx)' = 5(sinx)' = 5cosx$$

5.8
$$(\frac{a}{b})' = \frac{a'b - ab'}{b^2}$$

$$\mathbb{P} \colon \left(\frac{\mathbb{E}}{\mathbb{F}}\right)' = \frac{\mathbb{E}' \cdot \mathbb{F} - \mathbb{E} \cdot \mathbb{F}'}{\mathbb{F}^2}$$

6 对"复合函数"求导的方法:链式法则 / 剥洋葱法

例

我们用"剥洋葱法"(从外向内一层层求导),来求下面的复合函数的导数

$$y = (1 - 2x^{2})^{\frac{1}{3}}$$

$$y' = \left[(1 - 2x^{2})^{\frac{1}{3}} \right]' \cdot (1 - 2x^{2})' = \frac{1}{3} (1 - 2x^{2})^{\frac{1}{3} - 1} \cdot (-2 \cdot 2x)$$

7 对"参数方程"求导的方法

比如, 有这个参数方程, t 是参数:

$$d(x) = \begin{cases} x = f(t) \\ y = g(t) \end{cases}$$

要求 "v 对 x 求导". 则:

其"一阶导数"是:
$$\frac{dy}{dx} = \frac{g'(t)}{f'(t)} = \frac{y \to t}{x \to t}$$
的导数
$$= \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$$
 其"二阶导数"是:
$$\frac{d^2(y)}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx}\right) = \frac{\frac{dy}{dx}}{x \to t}$$
 的导数
$$= \frac{\frac{d}{dt} \left(\frac{dy}{dx}\right)}{\frac{dx}{dt}}$$

8 对"隐函数"求导的方法

- 显函数: 能清晰的写成 v= ...x 的形式.
- 而隐函数: 虽然 x 和 y 之间有关系, 但无法写成清晰的 y = f(x) 的形式. 即无法变换成 "能把 y 单独提取出来, 放 在等号左边" 的这种形式.

对"隐函数"求导的方法是: 等号两边同时对 x 求导.

例

有隐函数
$$e^y + xy - e = 0$$
, 求 y'
 $(e^y + xy - e)' = 0'$
 $(e^y)'y' + (xy)' - e' = 0 \leftarrow 常数e$ 的导数也 = 0
 $e^yy' + (x'y + xy') = 0$
 $e^yy' + y + xy' = 0$
 $(e^y + x)y' = -y$
 $y' = -\frac{y}{(e^y + x)}$

因为是隐函数, y 无法写成...x 的形式, 所以我们就会发现, y'的结果里面, 也无法只有纯粹的 x, 会带着 y.