Movie Finder

Group: 08

Patrick Eckel: Design Document, Frontend, Data Transfer

Marcus Gugacs: Design Document, Frontend, Recommender, CLI, Evaluation, Questionnaire, Report, Presentation

Martin Tobias Klug: Design Document, Subtitle Fetching, Summarization Pipeline, Report

Lukas Leitner: Design Document, Data Preprocessing, Report, Presentation

https://www.github.com/llmpaq/movie-finder

Introduction

Motivation

- Lot's of video content online
- Many different streaming providers
- Central place for content curation
- Value users time
- Personalized recommendations

Introduction

Research Question

 Can we build a central system which provides recommendations of various streaming services to effectively reduce the users effort of finding content?

Data Movie Dataset

• Original Columns:

 id, title, genres, original language, overview, popularity, production companies, release date, budget, revenue, runtime, status, tagline, vote average, vote count, credits, keywords, poster path, backdrop path, recommendations

Reduced to:

- id, title, genres, original language, overview, popularity, vote average, credits, keywords, poster path, release year
- Added column: rich features

Data Subtitles

- Subtitles provided by API (Key required)
- Download / processed on demand
- Raw subtitles
- Preprocessed by removing:
 - timestamps, ids, html tags/entities, parentheses, brackets, braces, musical notes, metadata, speakers, empty lines

Methods

Sequence Transformer

- Model: sentence-transformers/all-mpnet-base-v2
- Semantic text embedding
 - Used to similarity between user query and movie features
- MPNet allows for dense vector representation
 - optimal for semantic sentence similarity
- Processing chunks of max 512 Tokens

Methods

Emotion Classifier

- Model: j-hartmann/emotion-english-distilroberta-base
- Based on DistilRoBERTa
- Classify emotions in english text
 - Supports: Anger, disgust, fear, joy, neutral, sadness, surprise
- Mapping user mood preference to support emotions
- Measure alignment

Methods TF-IDF Vectorization

- Generate vector representation of text (scikit)
- Enable similarity matching
- Required text preprocessing:
 - Lemmatization (WordNetLemmatizer)
 - Stop word removal (StopWords)
 - Special character cleaning
 - Case normalization
 - Minimum token length

Methods

Movie Introduction Summarization

- Model: facebook/bart-large-cnn
 - Summarization pipeline
 - Based on BART
- Purpose:
 - Creates introductory summary from pre-processed movie subtitles
 - Uses first chunk (1024 tokens) of subtitles for better performance and to avoid spoilers

Methods Keyword Extraction

- Model: KeyBERT
 - Based on BERT embeddings (unsupervised)
 - Semantic similarity for ranking
- Purpose:
 - Extracts key themes from cleaned movie subtitles
 - Returns top 3 keywords / key themes

System

Overview

- 1. Initial Filtering
 - 1.1. Language
 - 1.2. Era (release year timespan)
 - 1.3. Genre
 - 1.4. Minimum popularity
 - 1.5. Minimum vote average

System

Overview

- 2. Feature Processing
 - 2.1. Load cached semantic embeddings or compute them
 - 2.2. Generate TF-IDF Matrix
 - 2.3. Encode query text (combined user input)
 - 2.4. Calculate emotion alignment score

System

Overview

- 3. Semantic Computation
 - 3.1. Cosine similarity of semantic
 - 3.2. TF-IDF cosine similarity
 - 3.3. Emotional <-> Mood alignment score
 - 3.4. Weighted score computation

Questionnaire: Analysis

- Internal team evaluation
- Standardized questionnaire
- Repeated evaluation:
 - 3 Runs
 - Over multiple days
- Data: averaged over all runs (per evaluator)

Questionnaire: Results

	User Interface (school grade)	Recommendation Quality (school grade)	Response Time (seconds)	Confidence (percent)	Overall Rating (school grade)
Patrick Eckel	1	1	26,33	74,83	1,33
Marcus Gugacs	1	1,07	28,67	72,42	1,67
Martin Klug	1,07	1	27,67	67,67	2
Lukas Leitner	1	1,07	15,67	45,25	2
Average	1,02	1,04	24,59	65,04	1,75

Evaluation: Analysis

- Automated python script: "objective" evaluation
- Test cases for each possible input
- Random test cases sampling (600 test cases)
- Running each test 2 times (1200 tests)
- Using 40% of dataset (approx. 583k movies)
- Storing measured data
- Calculating statistical measurements

	Average	Standard Deviation	Min	Max	Median
Response Time (in seconds)	6.69	7.32	0.06	29.92	3.60
Genre Diversity	3.8	0.51	1	4	4
Confidence (in %)	46.55	12.94	0.00	95.13	43.36
Rating	6.84	0.81	3.00	9.75	9.60

- High Precision: good recommendations for user
- Low Recall:
 - System may miss out on other movies
 - Could be due to sampling subset
- Low F1-Score: drag-down due to low recall

	Average	
Average Precision (in %)	99.08	
Average Recall (in %)	10.10	
Average F1-Score (in %)	14.38	

Showcase

Movie Finder

Discover your next cinematic experience through the power of AI, where personalized recommendations are tailored just for you.

Get Started

No account required Private & Free

Conclusion

- Usable and efficient recommendations
- Tweaking and fine-tuning
- Minor tweaks lead to significant changes

Questions?