DataFrame Operations

Background on the weather data

- AWND: average wind speed
- PRCP: precipitation in millimeters
- SNOW: snowfall in millimeters
- SNWD: snow depth in millimeters
- TMAX: maximum daily temperature in Celsius
- TMIN: minimum daily temperature in Celsius

Setup

```
import numpy as np
import pandas as pd
```

weather = pd.read_csv('nyc_weather_2018.csv', parse_dates=['date'])

weather.head()

	attributes	datatype	date	station	value
0	"N,	PRCP	2018-01-01	GHCND:US1CTFR0039	0.0
1	"N,	PRCP	2018-01-01	GHCND:US1NJBG0015	0.0
2	"N,	SNOW	2018-01-01	GHCND:US1NJBG0015	0.0
3	"N,	PRCP	2018-01-01	GHCND:US1NJBG0017	0.0
4	"N,	SNOW	2018-01-01	GHCND:US1NJBG0017	0.0

index_col='date' and parse_dates=True is vital for this section fb = pd.read_csv('fb_2018.csv', index_col='date', parse_dates=True) fb.head()

```
high
                            low close volume
     date
2018-01-02 177.68 181.58 177.5500 181.42 18151903
2018-01-03 181.88 184.78 181.3300 184.67 16886563
2018-01-04 184.90 186.21 184.0996 184.33 13880896
2018-01-05 185.59 186.90 184.9300 186.85 13574535
2018-01-08 187.20 188.90 186.3300 188.28 17994726
```

Arithmetic and statistics

z score formula - (x - mean) / standard deviation

```
# using .assign() would configure all the columns
# in this case, we implement the formula of z score and included .abs() for absolute value
fb.assign(
```

abs_z_score_volume=lambda x: x.volume.sub(x.volume.mean()).div(x.volume.std()).abs()).query('abs_z_score_volume > 3') # showcases only z score above 3

	open	high	low	close	volume	abs_z_score_volume
date						
2018-03-19	177.01	177.17	170.06	172.56	88140060	3.145078
2018-03-20	167.47	170.20	161.95	168.15	129851768	5.315169
2018-03-21	164.80	173.40	163.30	169.39	106598834	4.105413
2018-03-26	160.82	161.10	149.02	160.06	126116634	5.120845
2018-07-26	174.89	180.13	173.75	176.26	169803668	7.393705

We can use rank() and pct_change() to see which days had the largest change in volume traded from the day before:`

```
fb.assign(
```

```
volume_pct_change=fb.volume.pct_change(), # get pct_change of the volume
pct_change_rank=lambda x: x.volume_pct_change.abs().rank( # using rank(), rank the pct_change
ascending=False # ascending = False while using nsmallest would yield the highest to lowest
```

).nsmallest(5, 'pct_change_rank')

	open	high	low	close	volume	volume_pct_change	pct_change_rank	
date								
2018-01-12	178.06	181.48	177.40	179.37	77551299	7.087876	1.0	
2018-03-19	177.01	177.17	170.06	172.56	88140060	2.611789	2.0	
2018-07-26	174.89	180.13	173.75	176.26	169803668	1.628841	3.0	
2018-09-21	166.64	167.25	162.81	162.93	45994800	1.428956	4.0	
2018-03-26	160.82	161.10	149.02	160.06	126116634	1.352496	5.0	

January 12th was when the news that Facebook changed its news feed product to focus more on content from a users' friends over the brands they follow. Given that Facebook's advertising is a key component of its business (nearly 89% in 2017), many shares were sold and the price dropped in panic:

```
fb['2018-01-11':'2018-01-12']
```

```
open high low close volume
     date
2018-01-11 188.40 188.40 187.38 187.77 9588587
2018-01-12 178.06 181.48 177.40 179.37 77551299
```

(fb > 215).any()

```
True
high
         True
low
        False
close
        True
volume
         True
dtype: bool
```

(fb > 215).all()

```
False
high
       False
       False
low
       False
close
volume True
dtype: bool
```

Binning and thresholds

```
(fb.volume.value_counts() > 1).sum()
    0
```

We can use pd.cut() to create 3 bins of even an even range in volume traded and name them. Then we can work with low, medium, and high volume traded categories:

```
#.cut() is frequently used when binning, label them into 3
volume_binned = pd.cut(fb.volume, bins=3, labels=['low', 'med', 'high'])
volume_binned.value_counts()
    low
            240
```

https://colab.research.google.com/drive/1vmtmbBOYxiQzbJXnhucII7CLqYVSFAFz#printMode=true

July 25th Facebook announced disappointing user growth and the stock tanked in the after hours:

```
      fb['2018-07-25':'2018-07-26']

      open
      high
      low
      close
      volume

      date
      2018-07-25
      215.715
      218.62
      214.27
      217.50
      64592585

      2018-07-26
      174.890
      180.13
      173.75
      176.26
      169803668
```

Cambridge Analytica scandal broke on Saturday March 17th, so we look to the Monday for the numbers:

```
fb['2018-03-16':'2018-03-20']
```

```
        open date
        high
        low
        close
        volume

        2018-03-16
        184.49
        185.33
        183.41
        185.09
        24403438

        2018-03-19
        177.01
        177.17
        170.06
        172.56
        88140060

        2018-03-20
        167.47
        170.20
        161.95
        168.15
        129851768
```

import matplotlib.pyplot as plt

plt.show()

```
fb.plot(y='volume', figsize=(15, 3), title='Daily Volume Traded of Facebook Stock in 2018 (with bins)')
for bin_name, alpha, bounds in zip(
   ['low', 'med', 'high'], [0.1, 0.2, 0.3], pd.cut(fb.volume, bins=3).unique().categories.values
):
   plt.axhspan(bounds.left, bounds.right, alpha=alpha, label=bin_name, color='mediumturquoise')
   plt.annotate(bin_name, xy=('2017-12-17', (bounds.left + bounds.right)/2.1))

plt.ylabel('volume traded')
plt.legend()
```


qcut() brings out quantiles, in this case, we use quartiles
volume_qbinned = pd.qcut(fb.volume, q=4, labels=['q1', 'q2', 'q3', 'q4'])
volume_qbinned.value_counts()

```
q1 63
q2 63
q4 63
q3 62
Name: volume, dtype: int64
```

fb.plot(y='volume', figsize=(15, 8), title='Daily Volume Traded of Facebook Stock in 2018 (with quartile bins)')
for bin_name, alpha, bounds in zip(
 ['q1', 'q2', 'q3', 'q4'], [0.1, 0.35, 0.2, 0.3], pd.qcut(fb.volume, q=4).unique().categories.values

plt.axhspan(bounds.left, bounds.right, alpha=alpha, label=bin_name, color='mediumturquoise')
plt.annotate(bin_name, xy=('2017-12-17', (bounds.left + bounds.right)/2.1))

plt.ylabel('volume traded')
plt.legend()
plt.show()

central_park_weather = weather.query(
 'station == "GHCND:USW00094728"'

).pivot(index='date', columns='datatype', values='value')
#.pivot() for setting the index, columns, and values in wh

#.pivot() for setting the index, columns, and values in which are not specified so it showed all the data central_park_weather

 datatype date
 AWND
 PRCP
 SNOW
 SNWD
 TMAX
 TMIN
 WDF2
 WDF5
 WSF2
 WSF5
 WT01
 WT02
 WT03
 WT06
 WT08

 2018-01-01
 3.5
 0.0
 0.0
 0.0
 -7.1
 -13.8
 300.0
 30.0
 6.7
 11.2
 NaN
 NaN

central_park_weather.SNOW.clip(0, 1).value_counts()
#.clip(0,1).value_counts() shows teh number of days it snowed

0.0 354 1.0 11 Name: SNOW, dtype: int64

Applying Functions

We can use the apply() method to run the same operation on all columns (or rows) of the dataframe. Let's calculate the z-scores of the TMIN, TMAX, and PRCP observations in Central Park in October 2018:

https://colab.research.google.com/drive/1vmtmbBOYxiQzbJXnhucll7CLqYVSFAFz#printMode=true

```
4/1/24, 11:06 PM

oct_weather_z_scores = central_park_weather.loc[
    '2018-10', ['TMIN', 'TMAX', 'PRCP']
].apply(lambda x: x.sub(x.mean()).div(x.std()))
oct_weather_z_scores.describe().T
```

 count
 mean
 std
 min
 25%
 50%
 75%
 max

 TMIN
 31.0
 -1.790682e-16
 1.0
 -1.339112
 -0.751019
 -0.474269
 1.065152
 1.843511

 TMAX
 31.0
 1.951844e-16
 1.0
 -1.305582
 -0.870013
 -0.138258
 1.011643
 1.604016

 PRCP
 31.0
 4.655774e-17
 1.0
 -0.394438
 -0.394438
 -0.394438
 -0.240253
 3.936167

October 27th rained much more than the rest of the days:

datatype TMIN TMAX PRCP

date

2018-10-27 -0.740976 -1.170397 3.983866

Indeed, this day was much higher than the rest:

central_park_weather.loc['2018-10', 'PRCP'].describe()

```
count 30.000000
mean 2.676667
std 7.435826
min 0.0000000
25% 0.0000000
50% 0.0000000
75% 0.950000
max 32.300000
Name: PRCP, dtype: float64
```

- use np.vectorize() to vectorize it (similar to how map() works) and then use it with apply()
- use applymap() and pass it the non-vectorized function directly

```
import numpy as np
fb.apply(
    lambda x: np.vectorize(lambda y: len(str(np.ceil(y))))(x)
).astype('int64').equals(
    fb.applymap(lambda x: len(str(np.ceil(x))))
)
True
```

A simple operation of addition to each element in a series grows linearly in time complexity when using iteritems(), but stays near 0 when using vectorized operations.

iteritems() and related methods should only be used if there is no vectorized solution

```
import time
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
np.random.seed(0)
vectorized_results = {}
iteritems_results = {}
for size in [10, 100, 1000, 10000, 100000, 5000000, 5000000, 5000000, 10000000]:
  test = pd.Series(np.random.uniform(size=size))
  start = time.time()
  x = test + 10
  end = time.time()
  vectorized_results[size] = end - start
  start = time.time()
  X = []
  for i, v in test.iteritems():
      x.append(v + 10)
  x = pd.Series(x)
  end = time.time()
  iteritems_results[size] = end - start
pd.DataFrame(
  [pd.Series(vectorized_results, name='vectorized'), pd.Series(iteritems_results, name='iteritems')]
).T.plot(title='Time Complexity of Vectorized Operations vs. iteritems()')
plt.xlabel('item size (rows)')
plt.ylabel('time')
plt.show()
```

<ipython-input-67-025648b545d9>:18: FutureWarning: iteritems is deprecated and will be removed in a future version. Use .items instead.
for i, v in test.iteritems():

Window Calculations

The rolling() method allows us to perform rolling window calculations. We simply specify the window size (3 days here) and follow it with a call to an aggregation function (sum here)

```
central_park_weather['2018-10'].assign( # use assign() for window calculations
  rolling_PRCP=lambda x: x.PRCP.rolling('3D').sum() # set window size to 3 days (3D) then get the sumd
)[['PRCP', 'rolling_PRCP']].head(7).T
```

<ipython-input-82-04280828d53d>:1: FutureWarning: Indexing a DataFrame with a datetimelike index using a single string]`, is deprecated and will be removed in a future version. Use `frame.loc[string]` instead.
central_park_weather['2018-10'].assign(

date 2018-10-01 2018-10-02 2018-10-03 2018-10-04 2018-10-05 2018-10-06 2018-10-07

	datatype											
	PRCP	0.0	17.5	0.0	1.0	0.0	0.0	0.0				
ro	olling_PRCP	0.0	17.5	17.5	18.5	1.0	1.0	0.0				

We can also perform the rolling calculations on the entire dataframe at once. This will apply the same aggregation function to each column:

central_park_weather['2018-10'].rolling('3D').mean().head(7).iloc[:,:6] #gets the mean while using .rolling()

<ipython-input-15-2abb37634d3b>:1: FutureWarning: Indexing a DataFrame with a datetimelike index using a single string]`, is deprecated and will be removed in a future version. Use `frame.loc[string]` instead. central_park_weather['2018-10'].rolling('3D').mean().head(7).iloc[:,:6]

```
datatype
            AWND
                   PRCP SNOW SNWD
                                      TMAX
                                                  TMIN
     date
2018-10-01 0.900000 0.000000 0.0 0.0 24.400000 17.200000
2018-10-02 0.900000 8.750000 0.0 0.0 24.700000 17.750000
2018-10-03 0.966667 5.833333 0.0 0.0 24.233333 17.566667
2018-10-04 0.800000 6.166667 0.0 0.0 24.233333 17.200000
2018-10-05 1.033333 0.333333 0.0 0.0 23.133333 16.300000
2018-10-06 0.833333 0.333333 0.0 0.0 22.033333 16.300000
2018-10-07 1.066667 0.000000 0.0 0.0 22.600000 17.400000
```

We can use different aggregation functions per column if we use agg() instead. We pass in a dictionary mapping the column to the aggregation to perform on it

```
central_park_weather['2018-10-01':'2018-10-07'].rolling('3D').agg(
 {'TMAX': 'max', 'TMIN': 'min', 'AWND': 'mean', 'PRCP': 'sum'}
).join( # join with original data for comparison
   central_park_weather[['TMAX', 'TMIN', 'AWND', 'PRCP']],
   lsuffix='_rolling'
```

).sort_index(axis=1) # sort columns so rolling calcs are next to originals

datatype AWND AWND_rolling PRCP PRCP_rolling TMAX TMAX_rolling TMIN TMIN_rolling date 0.9 0.900000 0.0 0.0 24.4 24.4 17.2 17.2 2018-10-01 17.2 2018-10-02 0.9 0.900000 17.5 17.5 25.0 25.0 18.3 17.2 2018-10-03 1.1 0.966667 0.0 17.5 23.3 25.0 17.2 2018-10-04 0.4 0.800000 1.0 18.5 24.4 25.0 16.1 16.1 2018-10-05 1.033333 0.0 1.0 21.7 24.4 15.6 15.6 1.6 2018-10-06 0.5 0.833333 0.0 1.0 20.0 24.4 17.2 15.6 **2018-10-07** 1.1 1.066667 0.0 0.0 26.1 26.1 19.4 15.6

Rolling calculations (rolling()) use a sliding window. Expanding calculations (expanding()) however grow in size. These are equivalent to cumulative aggregations like cumsum(); however, we can specify the minimum number of periods required to start calculating (default is 1):

```
central_park_weather.PRCP.expanding().sum().equals(central_park_weather.PRCP.cumsum())
    False
```

Separate expanding aggregations per column. Note that agg() will accept numpy functions too

```
central_park_weather['2018-10-01':'2018-10-07'].expanding().agg(
  {'TMAX': np.max, 'TMIN': np.min, 'AWND': np.mean, 'PRCP': np.sum}
).join( # the expanding aggregations are separated and is joined with the original
 central_park_weather[['TMAX', 'TMIN', 'AWND', 'PRCP']],
 lsuffix='_expanding'
).sort_index(axis=1)
```

0.928571 0.0

datatype	AWND	AWND_expanding	PRCP	PRCP_expanding	TMAX	TMAX_expanding	TMIN	TMIN_expanding
date								
2018-10-01	0.9	0.900000	0.0	0.0	24.4	24.4	17.2	17.2
2018-10-02	0.9	0.900000	17.5	17.5	25.0	25.0	18.3	17.2
2018-10-03	1.1	0.966667	0.0	17.5	23.3	25.0	17.2	17.2
2018-10-04	0.4	0.825000	1.0	18.5	24.4	25.0	16.1	16.1
2018-10-05	1.6	0.980000	0.0	18.5	21.7	25.0	15.6	15.6
2018-10-06	0.5	0.900000	0.0	18.5	20.0	25.0	17.2	15.6

18.5 26.1

26.1 19.4

15.6

We can calculate the exponentially weighted moving average as follows. Note that span here is the periods to use

```
fb.assign(
   close_ewma=lambda x: x.close.ewm(span=5).mean()
).tail(10)[['close', 'close_ewma']]
```

2018-10-07 1.1

```
close close_ewma
     date
2018-12-17 140.19 142.235433
2018-12-18 143.66 142.710289
2018-12-19 133.24 139.553526
2018-12-20 133.40 137.502350
2018-12-21 124.95 133.318234
2018-12-24 124.06 130.232156
2018-12-26 134.18 131.548104
2018-12-27 134.52 132.538736
2018-12-28 133.20 132.759157
2018-12-31 131.09 132.202772
```

Pipes

True

```
def get_info(df):
 return '%d rows and %d columns and max closing z-score was %d' % (*df.shape, df.close.max())
fb['2018-Q1'].apply(lambda x: (x - x.mean())/x.std()).pipe(get_info)
 == get_info(fb['2018-Q1'].apply(lambda x: (x - x.mean())/x.std()))
```

<ipython-input-74-195e192b92c3>:3: FutureWarning: Indexing a DataFrame with a datetimelike index using a single string]`, is deprecated and will be removed in a future version. Use `frame.loc[string]` instead. fb['2018-Q1'].apply(lambda x: (x - x.mean())/x.std()).pipe(get_info)\ <ipython-input-74-195e192b92c3>:4: FutureWarning: Indexing a DataFrame with a datetimelike index using a single string]`, is deprecated and will be removed in a future version. Use `frame.loc[string]` instead. == $get_info(fb['2018-Q1'].apply(lambda x: (x - x.mean())/x.std()))$

For example, passing pd.DataFrame.rolling to pipe() is equivalent to calling rolling() directly on the dataframe, except we have more flexiblity to change this:

```
fb.pipe(pd.DataFrame.rolling, '20D').mean().equals(fb.rolling('20D').mean()) #.pipe is a flexible version of .rolling()
# equality with rolling is checked
```

```
pd.DataFrame.rolling(fb, '20D').mean().equals(fb.rolling('20D').mean())
# equality with rolling is checked
    True
```

```
def window_calc(df, func, agg_dict, *args, **kwargs):
```

return df.pipe(func, *args, **kwargs).agg(agg_dict)

```
Run a window calculation of your choice on a DataFrame.
Parameters:- df: The DataFrame to run the calculation on.- func: The window calculation method that takes df
as the first argument.- agg_dict: Information to pass to `agg()`, could be a
dictionary mapping the columns to the aggregation
function to use, a string name for the function,
or the function itself.- args: Positional arguments to pass to `func`.- kwargs: Keyword arguments to pass to `func`.
Returns:- A new DataFrame object.
```

We can use the same interface to calculate various window calculations now. Let's find the expanding median for the Facebook data:

```
window_calc(fb, pd.DataFrame.expanding, np.median).head()
# window_calc function is used to check the expanding median for facebook data
```

```
        open date
        high low close
        volume volume

        2018-01-02
        177.68
        181.580
        177.5500
        181.420
        18151903.0

        2018-01-03
        179.78
        183.180
        179.4400
        183.045
        17519233.0

        2018-01-04
        181.88
        184.780
        181.3300
        184.330
        16886563.0

        2018-01-05
        183.39
        185.495
        182.7148
        184.500
        15383729.5

        2018-01-08
        184.90
        186.210
        184.0996
        184.670
        16886563.0
```

Using the exponentially weighted moving average requires we pass in a keyword argument:

window_calc(fb, pd.DataFrame.ewm, 'mean', span=3).head()

 date
 high
 low
 close
 volume

 2018-01-02
 177.680000
 181.580000
 177.550000
 181.420000
 1.815190e+07

 2018-01-03
 180.480000
 183.713333
 180.070000
 183.586667
 1.730834e+07

 2018-01-04
 183.005714
 185.140000
 182.372629
 184.011429
 1.534980e+07

 2018-01-05
 184.384000
 186.078667
 183.736560
 185.525333
 1.440299e+07

 2018-01-08
 185.837419
 187.534839
 185.075110
 186.947097
 1.625679e+07

With rolling calculations, we can pass in a positional argument for the window size:

```
window_calc(
  central_park_weather['2018-10'],
  pd.DataFrame.rolling,
  {'TMAX': 'max', 'TMIN': 'min', 'AWND': 'mean', 'PRCP': 'sum'},
  '3D'
).head()
# in this case, rolling calculations are done to get the max, min, mean, and sum of certain columns for 3D
```

ipython-input-27-f68a24f53b38>:2: FutureWarning: Indexing a DataFrame with a datetimelike index using a single string] instead.
central_park_weather['2018-10'],

 datatype
 TMAX
 TMIN
 AWND
 PRCP

 date
 2018-10-01
 24.4
 17.2
 0.900000
 0.0

 2018-10-02
 25.0
 17.2
 0.900000
 17.5

 2018-10-03
 25.0
 17.2
 0.966667
 17.5

2018-10-04 25.0 16.1 0.800000 18.5

2018-10-05 24.4 15.6 1.033333 1.0