MODERN CRYPTOGRAPHY

Bachelor Computer Science, University of Amsterdam, 2017/18 TEACHER: Christian Schaffner, TA: Jan Czajkowski, Christian Majenz

Problem Set 7

We will work on the following exercises together during the work sessions on Tuesday, 3 October 2017.

You are strongly encouraged to work together on the exercises, including the homework. You do not have to hand in solutions to these problem sets.

Problem 1: Exercise 4.1 from [KL]

Say $\Pi=(\mathsf{Gen},\mathsf{Mac},\mathsf{Vrfy})$ is a secure MAC, and for $k\in\{0,1\}^n$ the taggeneration algorithm Mac_k always outputs tags of length t(n). Prove that t must be super-logarithmic or, equivalently, that if $t(n)=O(\log n)$ then Π cannot be a secure MAC

Hint: Consider the probability of randomly guessing a valid tag.

Problem 2: Exercise 4.6 from [KL]

Consider the following MAC for messages of length $\ell(n)=2n-2$ using a pseudorandom function F: On input a message $m_0\|m_1$ (with $|m_0|=|m_1|=n-1$) and key $k\in\{0,1\}^n$, algorithm Mac outputs $t=F_k(0\|m_0)\|F_k(1\|m_1)$. Algorithm Vrfy is defined in the natural way. Is (Gen, Mac, Vrfy) secure? Prove your answer.

Problem 3: Exercise 4.14 from [KL]

Prove that the following modifications of basic CBC-MAC do not yield a secure MAC (even for fixed-length messages):

- 1. Mac outputs all blocks t_1, \ldots, t_ℓ , rather than just t_ℓ . (Verification only checks whether t_ℓ is correct.)
- 2. A random initial value is used each time a message is authenticated. That is, $t_0 \in \{0,1\}^n$ is chosen uniformly at random rather than being

fixed to 0^n , and the tag is $\langle t_0, t_\ell \rangle$. Verification is done in the natural way.

★ Problem 4: Exercise 4.15 from [KL]

Show that appending the message length to the *end* of the message before applying basic CBC-MAC does not result in a secure MAC for arbitrary-length messages.