FY2045 Quantum Mechanics I

Fall 2023

Henning Goa Hugdal

Week 4

Some information

- Important: Lecture Monday September 18th is cancelled.
- Office hour Tuesday September 12th and 19th cancelled. I will try to find new times, but feel free to send me an email if you have questions or drop by my office.
- Mandatory exercise will be posted before Monday September 18th. More practical information will be posted soon.
- Reference group meeting today. Last 10-15 minutes of second lecture for discussion without me present.

Harmonic oscillator

Why the harmonic oscillator again?

"Because an arbitrary smooth potential can usually be approximated as a harmonic potential at the vicinity of a stable equilibrium point, it is one of the most important model systems in quantum mechanics."

CC BY-NC; Ümit Kaya via LibreTexts

¹Wikipedia — Quantum Harmonic Oscillator.

Ladder operators

Hamiltonian

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2\hat{q}^2.$$

Introduce ladder operators

$$a = \frac{1}{\sqrt{2\hbar m\omega}} (i\hat{p} + m\omega\hat{q}),$$

$$a^{\dagger} = \frac{1}{\sqrt{2\hbar m\omega}} (-i\hat{p} + m\omega\hat{q}),$$

with $(a)^{\dagger} = a^{\dagger}$ — they are not Hermitian.

Commutation relations for a and a^{\dagger}

Since \hat{q} and \hat{p} do not commute $(\hat{q}\hat{p} - \hat{p}\hat{q} = i\hbar)$, neither do a and a^{\dagger} :

$$a^{\dagger}a = \frac{\hat{H}}{\hbar\omega} - \frac{1}{2},$$
$$aa^{\dagger} = \frac{\hat{H}}{\hbar\omega} + \frac{1}{2},$$

meaning we have

$$[a,a^{\dagger}]=aa^{\dagger}-a^{\dagger}a=1.$$

Number operator

Define the **number operator** $\hat{N} = a^{\dagger}a$, and write

$$\hat{H} = \hbar\omega \left(\hat{N} + \frac{1}{2}\right).$$

Eigenvectors of \hat{N} will also be eigenvectors of \hat{H} :

$$\hat{N}|n\rangle = n|n\rangle \quad \Rightarrow \quad \hat{H}|n\rangle = \hbar\omega \left(n + \frac{1}{2}\right)|n\rangle \equiv E_n|n\rangle.$$

with orthonormalized eigenvectors $|n\rangle$.

Commutation relations for \hat{N}

Commutators of \hat{N} with a and a^{\dagger} :

$$[\hat{N}, a] = -a,$$

$$[\hat{N}, a^{\dagger}] = a^{\dagger}.$$

Energy spectrum

What do the ladder operators do?

$$\hat{H}a|n\rangle = (E_n - \hbar\omega)a|n\rangle.$$

If $a|n\rangle \neq 0$, $a|n\rangle$ is an eigenvector of \hat{H} with eigenvalue $E_n - \hbar\omega$. a is a **lowering** or **annihilation operator**.

Can repeat this argument: If $a^k|n\rangle \neq 0$, $a^k|n\rangle$ is an eigenvector of \hat{H} with eigenvalue $E_n - k\hbar\omega$.

Energy spectrum

The norm of a vector must be positive:

$$0 \le ||a|n\rangle||^2 = \langle n|a^{\dagger}a|n\rangle = \langle n|\hat{N}|n\rangle = n\langle n|n\rangle = n.$$

We must require

$$a|0\rangle = 0.$$

Hence $|0\rangle$ is the ground state with energy $E_0 = \frac{1}{2}\hbar\omega$, and we get the energy eigenvalues

$$E_n = \hbar \omega \left(n + \frac{1}{2} \right)$$
, with $n = 0, 1, 2...$

Eigenstates

 $a|n\rangle$ is an eigenstate of \hat{H} with eigenvalue $E_n - \hbar\omega$:

$$a|n\rangle = e^{-i\omega t}\sqrt{n}|n-1\rangle \stackrel{t=0}{=} \sqrt{n}|n-1\rangle.$$

Similarity, $a^{\dagger}|n\rangle$ is an eigenstate of \hat{H} with eigenvalue $E_n + \hbar\omega$:

$$a^{\dagger}|n\rangle = e^{i\omega t}\sqrt{n+1}|n+1\rangle \stackrel{t=0}{=} \sqrt{n+1}|n+1\rangle.$$

 a^{\dagger} is called a **raising** or **creation operator**. Hence,

$$|n\rangle = \frac{1}{\sqrt{n!}}(a^{\dagger})^n|0\rangle.$$

Wavefunctions in position space

The wavefunctions for the n'th state in position space is given by $\langle q|n\rangle \propto \langle q|(a^{\dagger})^n|0\rangle$. What is $|0\rangle$?

We use $a|0\rangle = 0 \rightarrow \langle q|a|0\rangle = 0$, with

$$a = \frac{i\hat{p} + m\omega\hat{q}}{\sqrt{2\hbar m\omega}} = \sqrt{\frac{\hbar}{2m\omega}} \frac{d}{dq} + \sqrt{\frac{m\omega}{2\hbar}} q,$$

resulting in a differential equation with solution

$$\langle q|0\rangle = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} e^{-\frac{m\omega q^2}{2\hbar}}.$$

Excited states

$$\langle q|n\rangle = \frac{1}{\sqrt{n!}} \langle q|(a^{\dagger})^{n}|0\rangle$$

$$= \frac{1}{\sqrt{2^{n}n!}} \left(x - \frac{d}{dx}\right)^{n} \langle q|0\rangle$$

$$= \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} \frac{H_{n}(x)}{\sqrt{2^{n}n!}} e^{-x^{2}/2},$$

with $x = \sqrt{m\omega/\hbar} \cdot q$, and H_n the n'th Hermite polynomial.

Coherent states

Is it possible to find a state resembling the classical oscillating state?

Yes:

$$a|\alpha\rangle = e^{-i\omega t}\alpha|\alpha\rangle,$$

an eigenstate of the lowering operator!?

$$|\alpha\rangle = c_0 \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle.$$

This results in an oscillating expectation value

$$\langle q \rangle = q_0 \cos(\omega t - \Theta),$$

and an oscillating wavepacket,

$$|\langle q|\alpha\rangle|^2 = \sqrt{\frac{m\omega}{\pi\hbar}} e^{-\frac{m\omega}{\hbar}[q-q_0\cos(\omega t - \Theta)]^2},$$

with constant width. These states are called **coherent states**.

Quantization of Angular Momentum

Angular momentum operators

Define angular momentum operator J with components J_x , J_y , and J_z — Hermitian operators with commutation relations

$$[J_X, J_Y] = i\hbar J_Z,$$

$$[J_Y, J_Z] = i\hbar J_X,$$

$$[J_Z, J_X] = i\hbar J_Y.$$

Non-commutativity related to non-commutativity of rotations in 3D.¹

Picture source: Benjamin Crowell, General Relativity, p. 270.

Ø11.2, H8.1-8.2, G4.3

¹For more on this, see the lecture notes by Prof. Neil, on which today's lecture was based.

Angular momentum operators

Define angular momentum operator J with components J_x , J_y , and J_z — Hermitian operators with commutation relations

$$[J_X, J_Y] = i\hbar J_Z,$$

$$[J_Y, J_Z] = i\hbar J_X,$$

$$[J_Z, J_X] = i\hbar J_Y.$$

Non-commutativity related to non-commutativity of rotations in 3D.¹

Also define $J^2 = J_x^2 + J_y^2 + J_z^2$, which satisfies

$$[J^2, J_i] = 0, i = x, y, z.$$

Since they commute, we can find simultaneous eigenvectors of J^2 and e.g. J_z .

Assume orthonormalized eigenvectors $|a,b\rangle$ such that

$$J^2|a,b\rangle = a|a,b\rangle,$$

 $J_z|a,b\rangle = b|a,b\rangle.$

Ø11.2, H8.1-8.2, G4.3

¹For more on this, see the lecture notes by Prof. Neil, on which today's lecture was based.

Eigenvalues

Ladder operators

We again define ladder operators

$$J_{\pm}=J_{X}\pm iJ_{y},$$

with commutation relations

$$[J^2, J_{\pm}] = 0,$$

 $[J_x, J_{\pm}] = \pm \hbar J_{\pm}.$

 $J_{\pm}|a,b\rangle$ is an eigenvector of both J^2 and J_Z with eigenvalue a and $b\pm\hbar$, respectively:

$$J_{\pm}|a,b\rangle \propto |a,b\pm\hbar\rangle$$
.

What are a and b?

Since the norm of a vector must be positive, we must have:

$$a - b(b \pm \hbar) \ge 0$$
.

Must have a maximum and minimum eigenvalue of J_z such that

$$J_{+}|a,b_{\max}\rangle=0$$
 and $J_{-}|a,b_{\min}\rangle=0$.

We find (n = 0, 1, 2, ...)

$$b_{\text{max}} = -b_{\text{min}} = \frac{n\hbar}{2}$$
, and $a = \frac{\hbar^2}{4}n(n+2)$.

Eigenvalues

In standard notation, we get

$$J^{2}|j,m\rangle = \hbar^{2}j(j+1)|j,m\rangle,$$

$$J_{z}|j,m\rangle = \hbar m|j,m\rangle,$$

with

$$j = 0, \frac{1}{2}, 1, \frac{3}{2}, \dots,$$

 $m = -j, -j + 1, \dots, j - 2, j - 1, j.$

Example: j = 2

Orientation of **J** for different values of *m*:

Based on figure by Izaak Neutelings