Teorema della formula di Taylor con resto di Lagrange

Problema: Data f(x) regolare, $x_0 \in dom(f)$, $n \in \mathbb{N}$, vogliamo trovare il polinomio $P_n(x)$ di grado n che approssima meglio f(x) vicino x_0 .

Il teorema della formula di Taylor con resto di Lagrange è un teorema fondamentale dell'analisi matematica che fornisce un'approssimazione locale di una funzione derivabile con un polinomio di Taylor.

Enunciato:

Sia f (x) una funzione derivabile n volte in un intervallo I contenente il punto x_0 . Allora, per ogni x in I, esiste un punto c tra x_0 e x tale che:

$$f(x) = P_n(x) + R_n(x)$$

dove:

• P_n (x) è il polinomio di Taylor di ordine n di f (x) centrato in x_0 :

$$P_n(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^n(x_0)}{n!}(x - x_0)^n$$

• R_n (x) è il resto di Lagrange, dato da:

$$R_n(x) = \frac{f^{n+1}(c)(x - x_0)^{n+1}}{(n+1)!}$$

Interpretazione:

- Il teorema afferma che, in un intorno di un punto x_0 , una funzione derivabile n volte può essere approssimata con un polinomio di Taylor di grado n.
- L'errore di approssimazione è dato dal resto di Lagrange, che tende a zero all'aumentare di n.

Sia
$$f(x) = e^x$$
, ed $x_0 = 0$

Calcoliamo
$$f(0) = e^0 = 1$$
 $f'(x) = e^x$, $f'(0) = e^0 = 1$, $f'''(0) = e^0 = 1$, $f'''(0) = e^0 = 1$

$$P_0(x) = f(0) = 1$$

$$P_1(x) = f(0) + (x - 0)f'(x) = 1 + x$$

$$P_2(x) = f(0) + (x - 0)f'(0) + f(0) + \frac{(x - 0)^2}{2!} f''(0) = 1 + x + \frac{1}{2}x^2$$

$$P_3(x) = f(0) + (x - 0)f'(0) + f(0) + \frac{(x - 0)^2}{2!} f''(0) + \frac{(x - 0)^3}{3!} f''(0)$$
$$= 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3$$

in un intorno di un punto x_0 , una funzione derivabile n volte può essere approssimata con un polinomio di grado n.

Se interessa un'approssimazione in $x + \delta$, è possibile utilizzare il teorema della formula di Taylor con resto di Lagrange sostituendo x_0 con x. In questo caso, il polinomio di Taylor di ordine x0 di x1 centrato in x2 e:

$$P_n(x + \delta) = f(x) + f'(x)(x + \delta - x) + \frac{f''(x)(x + \delta - x)^2}{2!} + \dots + \frac{f^{(n)}(x)\delta(x + \delta - x)^n}{n!}$$

Il resto di Peano è dato da:

$$R_{n(x+\delta)} = \frac{f^{n+1}(c)(x+\delta-x)^{n+1}}{(n+1)!}$$

dove c è un punto tra x e $x + \delta$.

$$P_n(x + \delta) = f(x) + f'(x)(\delta) + \frac{f''(x)(\delta)^2}{2!} + \dots + \frac{f^{(n)}(x)\delta(\delta)^n}{n!}$$

$$R_{n(x+\delta)} = \frac{f^{n+1}(c)(\delta)^{n+1}}{(n+1)!}$$

Nel caso consideriamo uno sviluppo del 1° ordine , il polinomio di Taylor $\,$ di $\,$ f (x) centrato in x è:

$$P_1(x + \delta) = f(x) + f'(x)\delta$$
$$f(x + \delta) = f(x) + f'(x)\delta + \frac{f''(c)\delta^2}{2}$$

$$f(x + \delta) \approx f(x) + f'(x)\delta$$

Consideriamo la funzione $f(x) = e^x$, ed $x_0 = x = 0$. Supponiamo $\delta = 0.1$

Vogliamo approssimare $f(x + \delta) = f(0.1) \approx f(0) + f'(0)\delta = 1 + 1 * 0.1 = 1.1$

Mentre $e^{0.1} = 1.1052$