Formuleblad Statistiek 1 2020

Discreet	Kansfunctie	Verdelingsfunctie	$\mu = E(\underline{x})$	$\sigma^2 = Var(\underline{x})$ $\pi(1-\pi)$
Bernoulli/	$P(\underline{k} = k) = \pi^k (1 - \pi)^{1 - k},$		π	$\pi(1-\pi)$
alternatief	voor k = 0, 1			
Binomiaal	$P(\underline{k} = k) = \binom{n}{k} \pi^k (1 - \pi)^{n-k}$		$n\pi$	$n\pi(1-\pi)$
Hypergeometrisch	$P(\underline{k} = k) = \frac{\binom{M}{k} \binom{N-M}{n-k}}{\binom{N}{n}}$		$n\pi$ met $\pi = \frac{M}{N}$	$n\pi(1-\pi)\frac{N-n}{N-1}$
Poisson	$P(\underline{k} = k) = e^{-\mu} \frac{\pi^k}{k!}$		μ	μ
Continu	Kansdichtheidsfunctie			
Uniform	$f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0, & \text{elders} \end{cases}$		$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
Normaal	$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$		μ	σ^2
Exponentieel	$f(x) = \begin{cases} \lambda e^{-\lambda t}, & x \ge 0 \\ 0, & x < 0 \end{cases}$	$f(x) = \begin{cases} 1 - e^{-\lambda t}, & x \ge 0 \\ 0, & x < 0 \end{cases}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$

Verwachtingswaarde

$$\begin{cases} \mu = E(\underline{k}) = \sum_{k} k P(\underline{k} = k) & \text{(discreet)} \\ \mu = E(\underline{x}) = \int x f(x) dx & \text{(continu)} \end{cases}$$

Variantie

$$\sigma^{2} = Var(\underline{x}) = E\left(\left(\underline{x} - E(\underline{x})\right)^{2}\right) = E(\underline{x}^{2}) - E(\underline{x})^{2}$$

Covariantie en correlatiecoëfficiënt

$$Cov\left(\underline{x},\underline{y}\right) = E\left(\left(\underline{x} - E(\underline{x})\right) \cdot \left(\underline{y} - E\left(\underline{y}\right)\right)\right) = E\left(\underline{x} \cdot \underline{y}\right) - E(\underline{x}) \cdot E\left(\underline{y}\right)$$

$$\rho\left(\underline{x},\underline{y}\right) = \frac{Cov\left(\underline{x},\underline{y}\right)}{\sqrt{Var(\underline{x}) \cdot Var\left(\underline{y}\right)}}$$