Co-prime pairs in C++ Dry Run Table for n = 10#include <iostream> using namespace std; i | 2*i + 1 | 2*i + 2 | Output class CoPrimePairs { public: $\overline{1}$ 2 0 1 static void main() { 1 3 int n = 10; 4 3 4 2 5 for (int i = 0; i < n / 2; i++) { 6 5 6 cout << 2 * i + 1 << " " << 2 * i + 2 << endl; 3 7 8 7 8 4 9 9 10 10 **}**; int main() { CoPrimePairs::main(); return 0; **■** Output 12 3 4 56 78 9 10 12 3 4

56

78

 $9\ 10$

GCD array in C++

```
#include <iostream>
#include <vector>
using namespace std;
// Function to compute GCD of two numbers using
Euclidean algorithm
int gcd(int a, int b) {
  while (b != 0) {
    int temp = b;
    b = a \% b;
    a = temp;
  return a;
// Function to compute GCD of an array of integers
int gcdArray(vector<int>& arr) {
  int result = arr[0];
  for (int i = 1; i < arr.size(); i++) {
    result = gcd(result, arr[i]);
    if (result == 1) { // If result becomes 1, further
GCD will also be 1
       return 1;
  }
  return result;
int main() {
  vector<int> arr = \{12, 24, 36, 48\};
  cout << "GCD of the array elements: " <<
gcdArray(arr) << endl;
  return 0;
```

GCD of the array elements: 12

Step-by-Step Dry Run (Tabular Form)

We'll use this table to track the intermediate GCD results:

Step	result (previous GCD)	arr[i]	gcd(result, arr[i])
1	12	24	gcd(12, 24) = 12
2	12	36	gcd(12, 36) = 12
3	12	48	gcd(12, 48) = 12

Since the GCD never drops to 1, we never hit the if (result == 1) shortcut.

★ Final Output:

GCD of the array elements: 12

NumberofSubArrayswithGCDequaltoK in C++ #include <iostream> #include <vector> using namespace std; class NumberofSubArrayswithGCDequaltoK { public: int subarrayGCD(vector<int>& nums, int k) { int count = 0; int n = nums.size();for (int sp = 0; sp < n; sp++) { int ans = 0; for (int ep = sp; ep < n; ep++) { ans = gcd(ans, nums[ep]);if (ans < k) { break; if (ans == k) { count++; return count; int gcd(int a, int b) { if (a == 0) { return b; return gcd(b % a, a); **}**; int main() { Number of SubArrays with GCD equal to K solution; // Hard-coded input vector<int> nums = $\{2, 4, 6, 8, 3, 9\};$ int k = 3; int result = solution.subarrayGCD(nums, k); cout << "Number of subarrays with GCD equal to" << k << ": " << result << endl; return 0;

}

Input:

```
nums = \{2, 4, 6, 8, 3, 9\}
k = 3
```

We'll check all subarrays and see how many have GCD = 3.

Dry Run Table

\mathbf{sp}	Subarray	ans (GCD)	Matches k?
0	[2]	2	×
0	[2, 4]	2	×
0	[2, 4, 6]	2	×
0	[2, 4, 6, 8]	2	×
0	[2, 4, 6, 8, 3]	1	X (GCD < k) − break
1	[4]	4	×
1	[4, 6]	2	×
1	[4, 6, 8]	2	×
1	[4, 6, 8, 3]	1	X (GCD < k) − break
2	[6]	6	×
2	[6, 8]	2	×
2	[6, 8, 3]	1	\mathbf{X} (GCD < k) – break
3	[8]	8	×
3	[8, 3]	1	\mathbf{X} (GCD < k) – break
4	[3]	3	$ \checkmark $
4	[3, 9]	3	$ \checkmark $
5	[9]	9	×

♥ Final Count

We found 2 subarrays where the GCD is exactly

- [3]
- [3, 9]

Explanation of Logic

You're using a **nested loop**:

- Outer loop: start point sp
- Inner loop: end point ep
- You maintain a running GCD of the subarray
- If GCD < k, you break early (smart optimization)
- If GCD == k, increment the counter

	And your GCD function is correct, based on the Euclidean algorithm.
	Output: Number of subarrays with GCD equal to 3: 2
Number of subarrays with GCD equal to 3: 2	

Subsequence with GCD in C++

```
#include <iostream>
using namespace std;
class SubsequencewithGCD {
public:
  static void main() {
     int arr[] = \{1, 2, 3, 4\};
     int n = sizeof(arr) / sizeof(arr[0]);
     int ans = 0;
     for (int i = 0; i < n; i++) {
       ans = gcd(ans, arr[i]);
     if (ans == 1) {
       cout << "true" << endl;</pre>
     } else {
       cout << "false" << endl;
  static int gcd(int a, int b) {
     if (b == 0) {
       return a;
     } else {
       return gcd(b, a % b);
};
int main() {
  SubsequencewithGCD::main();
  return 0;
```

true

Dry Run on Given Input

$$arr[] = \{1, 2, 3, 4\}$$

Let's compute:

Step	i	arr[i]	Current GCD (ans)
1	0	1	$\gcd(0,\ 1)=1$
2	1	2	$\gcd(1, 2) = 1$
3	2	3	gcd(1, 3) = 1
4	3	4	gcd(1, 4) = 1

 \checkmark Final GCD = 1 \rightarrow So the output will be:

true

Output

true