$$p(heta|X=x)=rac{p(x| heta)p(heta)}{p(x)}$$

$$p(heta|X=x) = \frac{p(x| heta)p(heta)}{\int p(x, heta)d heta}$$
 Numerically expensive

"Likelihood-free" approach to parameter estimation

"Likelihood-free" approach to parameter estimation

JTSA VERY NICE

"Simulation-based" approach to parameter estimation

(redefined)

$$p(heta|X=x)=rac{p(x| heta)p(heta)}{p(x)}$$

$$p(heta|X=x)=rac{p(x| heta)p(heta)}{\int p(x, heta)d heta}$$

$$p(heta|X=x) = rac{p(x| heta)p(heta)}{p(x)}$$

"Likelihood-free" approach to parameter estimation

"Likelihood-free" approach to parameter estimation

→ Numerically expensive

"Simulation-based" approach to parameter estimation

(redefined)

SBI Toolbox: overview

0. Basic ingredients 🚖

1. Simulate data

2. Pass the simulated data to the inference object

3. Build the posterior object from trained density

3. Build the posterior object from trained density

3. Build the posterior object from trained density

4. Multiround

Documentation

(**) https://github.com/sbi-dev/sbi

