FGV EMAp João Pedro Jerônimo

Projeto e Análise de Algoritmos Revisão para A1

Conteúdo

1	Nota	ação Assintótica	3
2	Reco	orrência	6
	2.1	Método da substituição	7
		Método da árvore de recursão	
	2.3	Método da Recorrência	8
	2.4	Método mestre	9
3	Algo	oritmos de busca	11
	3.1	Busca em um vetor ordenado	12
	3.2	Árvores	12
		Árvores Binárias de Busca	
4	Tabe	ela Hash	. 18
	4.1	Um problema	. 20
		4.1.1 Primeira abordagem: Endereçamento Direto	
		4.1.2 Segunda abordagem: Lista Encadeada	
		Definição	
	4.3	Soluções para colisão	21
	4	4.3.1 Tabela hash com encadeamento	21
		4.3.2 Hash uniforme simples	. 23

Já vemos desde o começo do curso que um algoritmo é um conjunto de instruções feitas com o objetivo de resolver um determinado problema. Porém, certos problemas apresentam diversos tipos de solução!

Figura 1: Caminhos problema-solução

Então como podemos comparar eles? Como eu sei qual que é o melhor caminho até minha solução? De primeira a gente pode pensar: "Vê quanto tempo executou!", mas isso gera um problema... Se eu executo um algoritmo em um computador de hoje em dia e o mesmo algoritmo em um computador de 1980, com certeza eles vão levar tempos diferentes para executar, correto? Isso pode afetar na medição que eu estou fazendo do meu algoritmo!

Então o que fazer? O mais comum é analisarmos o quão bem meu algoritmo consegue funcionar de acordo com o quão grande meu problema fica!

Definição 1.1 (Função de Complexidade): A complexidade de um algoritmo é a função $T:U^+\to\mathbb{R}$ que leva do espaço do tamanho das entradas do problema até a quantidade de instruções feitas para realizá-lo

Exemplo:

```
1 def sum(numbers: list):
2   result = 0
3   for number in numbers:
4    result += 1
5   return result
```

Eu tenho que, para esse algoritmo, T(n)=n, pois, quanto maior é a quantidade de números na minha lista, maior é o tempo que a função vai ficar executando

Só que achar qual é essa função exatamente pode ser muito trabalhoso, além de que muitas funções são parecidas e podem gerar uma dificuldade na hora da análise. Então o que fazemos?

Faz sentido dizermos que, se a partir de algum ponto uma função T_1 cresce mais do que T_2 , então o algoritmo T_1 acaba sendo pior, então criamos a definição:

Definição 1.2 (Big O): Dizemos que T(n)=O(f(n)) se $\exists c,n_0>0$ tais que $T(n)\leq cf(n), \ \forall n\geq n_0 \eqno(1)$

Ou seja, dado algum c e n_0 qualquer, depois de n_0 , f(n) SEMPRE cresce mais que T(n)

Definição 1.3 (Big Ω): Dizemos que $T(n)=\Omega(f(n))$ se $\exists c,n_0>0$ tais que $T(n)\geq cf(n), \ \forall n\geq n_0$

Definição 1.4 (Big Θ): Dizemos que $T(n) = \Theta(f(n))$ se $T(n) = \Omega(f(n))$ e T(n) = O(f(n))

Alguns algoritmos são fáceis de terem suas complexidades calculadas, porém, na programação, existem casos onde uma função utiliza ela mesma dentro de sua chamada, as temidas **recursões**

```
1 def fatorial(n):
2   if n == 1:
3    return 1
4   return n*fatorial(n-1)
```

Então nós temos um T(n) que chama T(n-1), o que fazemos? Temos 4 métodos de resolver esse problema

- Método da substituição
- Método da árvore de recursão
- Método da iteração
- Método mestre

2.1 Método da substituição

Vamos provar por **indução** que T(n) é O de uma função **pressuposta**. Só posso usar quando eu tenho uma hipótese da solução. Precisamos provar exatamente a hipótese. Pode ser usado para limites superiores e inferiores

Exemplo:

$$T(n) = \begin{cases} \theta(1) \text{ se } n = 1\\ 2T(\frac{n}{2}) + n \text{ se } n > 1 \end{cases}$$

$$\tag{3}$$

Vamos pressupor que $T(n)=O(n^2)$. Queremos então provar $T(n)\leq cn^2$.

Caso base: $n=1\Rightarrow T(1)=1\leq cn^2$

Passo Indutivo: Vamos supor que vale para $\frac{n}{2}$, e ver se vale para n. Então temos:

$$T\left(\frac{n}{2}\right) \le c\frac{n^2}{4} \tag{4}$$

Vamos testar para T(n) então

$$T(n) = 2T\left(\frac{n}{2}\right) + n \Rightarrow T(n) \le 2c\frac{n^2}{4} + n$$

$$\Leftrightarrow T(n) \le \frac{cn^2}{2} + n$$

$$\Leftrightarrow \frac{cn^2}{2} + n \le cn^2$$

$$\Leftrightarrow 2n \le 2cn^2 - cn^2$$

$$\Leftrightarrow \frac{n}{2} \le c$$
(5)

Ou seja, conseguimos escolher um c e um n_0 de forma que $\forall n \geq n_0$, $T(n) \leq cn^2$, logo, $T(n) = O(n^2)$

2.2 Método da árvore de recursão

O método da árvore de recursão consiste em construir uma árvore definindo em cada nível os sub-problemas gerados pela iteração do nível anterior. A forma geral é encontrada ao somar o custo de todos os nós

- Cada nó representa um subproblema.
- Os filhos de cada nó representam as suas chamadas recursivas.
- O valor do nó representa o custo computacional do respectivo problema.

Esse método é útil para analisar algoritmos de divisão e conquista.

Exemplo:

$$T(n) = \begin{cases} \theta(1) \text{ se } n = 1\\ 2T(\frac{n}{2}) + n \text{ se } n > 1 \end{cases}$$
 (6)

Figura 2: Árvore de T(n)

Temos então que:

$$T(n) = \sum_{k=0}^{\log(n)} 2^k \frac{n}{2^k} = n \log(n) + n \tag{7}$$

Então temos que $T(n) = O(n \log(n))$

2.3 Método da Recorrência

O método da iteração consiste em expandir a relação de recorrência até o n-ésimo termo, de forma que seja possível compreender a sua forma geral

Exemplo:

$$T(n) = \begin{cases} \theta(1) \text{ se } n = 1\\ 2T(n-1) + n \text{ se } n > 1 \end{cases}$$
 (8)

Expandindo, temos:

$$T(n) = 2T(n-1) + n$$

$$T(n) = 2(2T(n-2) + n) + n$$

$$\vdots$$

$$T(n) = 2^{k}T(n-k) + (2^{k}-1)n - \sum_{j=1}^{k-1} 2^{j}j$$
(9)

Para chegar na última iteração, temos que k=n-1

$$T(n) = 2^{n-1} + (2^{n-1} - 1)n - \sum_{j=1}^{n-2} 2^{j}j$$
 (10)

Temos que: $\sum_{j=1}^{n-2} 2^j j = \frac{1}{2} (2^n n - 3 \cdot 2^n + 4)$, então podemos fazer:

$$T(n) = 2^{n-1} + 2^{n-1}n - n - 2^{n-1}n + 3 \cdot 2^{n-1} - 2$$

$$\Leftrightarrow T(n) = 2^{n-1} - n + 3 \cdot 2^{n-1} - 2$$

$$\Leftrightarrow T(n) = 4 \cdot 2^{n-1} - n - 2 = 2^{n+1} - n - 2$$

$$\Leftrightarrow T(n) = \Theta(2^n)$$
(11)

2.4 Método mestre

Esse teorema é uma decoreba. Ele te dá um caso geral e vários casos de resultado dependendo dos valores na estrutura de ${\cal T}(n)$

Teorema 2.4.1 (Teorema Mestre): Dada uma recorrência da forma

$$T(n) = aT\left(\frac{n}{b}\right) + f(n) \tag{12}$$

Considerando $a \ge 1$, b > 1 e f(n) assintoticamente positiva

- Se $f(n) = O(n^{\log_b(a) \varepsilon})$ para alguma constante $\varepsilon > 0$, então $T(n) = \Theta(n^{\log_b(a)})$
- Se $f(n) = \Theta(n^{\log_b(a)})$, então $T(n) = \Theta(f(n)\log(n))$
- Se $f(n) = \Omega(n^{\log_b(a)+\varepsilon})$ para alguma constante $\varepsilon > 0$ e atender a uma condição de regularidade $af\left(\frac{n}{b}\right) \leq cf(n)$ para alguma constante positiva c < 1 e para todo n suficientemente grande, então $T(n) = \Theta(f(n))$

Exemplo (Primeiro caso):

$$T(n) = 9T\left(\frac{n}{3}\right) + n\tag{13}$$

Então a=9, b=3 e f(n)=n, calculamos então:

$$n^{\log_b(a)} = n^{\log_3(9)} = n^2 \tag{14}$$

Ou seja, conseguimos escolher $\varepsilon = 1$ de forma que

$$f(n) = O(n^{2-1}) = O(n)$$
(15)

Ou seja, $T(n) = \Theta \left(n^2 \right)$

Exemplo (Segundo caso):

$$T(n) = T\left(\frac{2n}{3}\right) + 1\tag{16}$$

Então a=1, $b=\frac{3}{2}$ e f(n)=1, calculamos então:

$$n^{\log_b(a)} = n^{\log_3(1)} = 1 \tag{17}$$

Ou seja, $f(n) = \Theta\left(n^{\log_b(a)}\right)$, e isso quer dizer que $T(n) = \Theta\left(n^{\log_3(1)\log(n)}\right) = \Theta(\log(n))$

Exemplo (Terceiro caso):

$$T(n) = 3T\left(\frac{n}{4}\right) + n\log(n) \tag{18}$$

Então a=3, b=4 e $f(n)=n\log(n)$, calculamos então:

$$n^{\log_b(a)} = n^{\log_4 3} \approx n^{0.79} \tag{19}$$

Temos então que $f(n)=\Omega\big(n^{\log_4 3+\varepsilon}\big)$ para um $\varepsilon\approx 0.2$. Então agora vamos analisar a condição de regularidade:

$$af\left(\frac{n}{b}\right) \le cf(n)$$

$$3\left(\frac{n}{4}\log\left(\frac{n}{4}\right)\right) \le cn\log(n) \Rightarrow c \ge \frac{3}{4}$$
(20)

Ou seja, $T(n) = \Theta(n \log(n))$

Exemplo (Exemplo que não funciona):

$$T(n) = 2T\left(\frac{n}{2}\right) + n\log(n) \tag{21}$$

Para agilizar, isso se encaixa no caso em que $f(n)=\Omega\big(n^{\log_b(a)+\varepsilon}\big)$. Vamos então checar a regularidade:

$$af\left(\frac{n}{b}\right) \le cf(n)$$

$$2\frac{n}{2}\log\left(\frac{n}{2}\right) \le cn\log(n)$$

$$\Leftrightarrow c \ge 1 - \frac{1}{\log(n)}$$
(22)

Impossível! Já que c < 1

Esse método pode ser simplificado para uma categoria específica de funções

Teorema 2.4.2 (Teorema mestre simplificado): Dada uma recorrência do tipo:

$$T(n) = aT\left(\frac{n}{b}\right) + \Theta(n^k) \tag{23}$$

Considerando $a \ge 1$, b > 1 e $k \ge 0$:

- Se $a>b^k$, então $T(n)=\Theta(n^{\log_b a})$
- Se $a = b^k$, então $T(n) = \Theta(n^k \log n)$
- Se $a < b^k$, então $T(n) = \Theta(n^k)$

Vamos apresentar algoritmos de busca e suas complexidades

3.1 Busca em um vetor ordenado

Dado um vetor ordenado de inteiros:

```
1 int* v = { 2, 5, 9, 18, 23, 27, 32, 33, 37, 41, 43, 45 };
```

Queremos escrever um algoritmo que recebe o vetor v, um número x e retorna o índice de x no vetor v se $x \in v$. Temos dois algorimtos principais para esse problema

```
BUSCA LINEAR

1 int linear_search(const int v[], int size, int x) {
2  for (int i = 0; i < size; i++) {
3   if (v[i] == x) {
4    return i;
5   }
6  }
7  return -1;
8 }</pre>
```

No pior caso, esse algoritmo tem complexidade $\Theta(n^2)$

Porém, se considerarmos uma lista ordenada, podemos fazer algo mais inteligente. Comparamos do meio do vetor e dependendo se o valor atual é maior ou menor comparado ao avaliado, então eu ignoro uma parte do vetor. O algoritmo consiste em avaliar se o elemento buscado (x) é o elemento no meio do vetor (m), e caso não seja executar a mesma operação sucessivamente para a metade superior (caso x>m) ou inferior (caso x< m).

```
BUSCA BINÁRIA
                                                                                     G C++
  int search(int v[], int leftInx, int rightInx, int x) {
1
2
     int midInx = (leftInx + rightInx) / 2;
3
     int midValue = v[midInx];
4
     if (midValue == x) {
5
       return midInx;
6
     if (leftInx >= rightInx) {
7
8
       return -1;
9
     }
10
     if (x > midValue) {
11
       return search(v, midInx + 1, rightInx, x);
12
     } else {
13
       return search(v, leftInx, midInx - 1, x);
14
15 }
```

Podemos escrever a complexidade da função como:

$$T(n) = T\left(\frac{n}{2}\right) + c \tag{24}$$

Fazendo os cálculos, obtemos que $T(n) = \Theta(\log(n))$

3.2 Árvores

Uma árvore binária consiste em uma estrutura de dados capaz de armazenar um conjunto de nós.

Todo nó possui uma chave

- Opcionalmente um valor (dependendo da aplicação).
- Cada nó possui referências para dois filhos
- Sub-árvores da direita e da esquerda.
- Toda sub-árvore também é uma árvore.

Figura 3: Exemplo de árvore

Um nó sem pai é uma raíz, enquanto um nó sem filhos é um nó folha

Definição 3.2.1 (Altura do nó): Distância entre um nó e a folha mais afastada. A altura de uma árvore é a algura do nó raíz

Figura 4: Exemplificação de altura

Teorema 3.2.1: Dada uma árvore de altura h, a quantidade máxima de nós $n_{\rm max}$ e mínima $n_{\rm min}$ são:

$$\begin{split} n_{\min} &= h+1 \\ n_{\max} &= 2^{h+1}-1 \end{split} \tag{25}$$

Definição 3.2.2: Uma árvore está **balanceada** quando a altura das subárvores de um nó apresentem uma diferença de, no máximo, 1

Teorema 3.2.2: Dada uma árvore com n nós e balanceada, a sua altura h será, no máximo:

$$h = \log(n) \tag{26}$$

Para códigos posteriores, considere a seguinte estrutura:

```
1
   class Node {
                                                                                     ⊚ C++
2
     public:
3
       Node(int key, char data)
4
         : m key(key)
5
         , m_data(data)
6
         , m leftNode(nullptr)
7
         , m rightNode(nullptr)
8
          , m_parentNode(nullptr) {}
9
       Node & leftNode() const { return * m leftNode; }
10
       void setLeftNode(Node * node) { m_leftNode = node; }
11
12
       Node & rightNode() const { return * m_rightNode; }
13
       void setRightNode(Node * node) { m_rightNode = node; }
14
15
       Node & parentNode() const { return * m parentNode; }
       void setParentNode(Node * node) { m_parentNode = node; }
16
17
18
     private:
19
       int m_key;
20
       char m data;
       Node * m_leftNode;
21
22
       Node * m_rightNode;
23
       Node * m_parentNode;
24 };
```

Temos alguns tipos de problemas para trabalhar em cima das árvores e suas soluções:

Problema: Dada uma árvore binária A com n nós encontre a sua altura

```
1 int nodeHeight(Node * node) {
2  if (node == nullptr) {
3   return -1;
```

```
4
     }
5
     int leftHeight = nodeHeight(node->leftNode());
6
7
     int rightHeight = nodeHeight(node->rightNode());
8
9
     if (leftHeight < rightHeight) {</pre>
10
       return rightHeight + 1;
11
     } else {
12
       return leftHeight + 1;
13
14 }
```

A complexidade dessa solução é $\Theta(n)$

Problema: Dada uma árvore binária A imprima a chave de todos os nós através da busca em profundidade. Desenvolva o algoritmo para os 3 casos: Em ordem, pré-ordem, pós-ordem

```
EM ORDEM

1 void printTreeDFSInorder(class Node * node) {
2   if (node == nullptr) {
3     return;
4   }
5   printTreeDFSInorder(node->leftNode());
6   cout << node->key() << " ";
7   printTreeDFSInorder(node->rightNode());
8 }
```

```
PRÉ-ORDEM

1 void printTreeDFSPreorder(class Node * node) {
2   if (node == nullptr) {
3     return;
4   }
5   cout << node->key() << " ";
6   printTreeDFSPreorder(node->leftNode());
7   printTreeDFSPreorder(node->rightNode());
8 }
```

```
PÓS-ORDEM

1 void printTreeDFSPostorder(class Node * node) {
2   if (node == nullptr) {
3     return;
4   }
5   printTreeDFSPostorder(node->leftNode());
6   printTreeDFSPostorder(node->rightNode());
7   cout << node->key() << " ";
8 }</pre>
```

Problema: dada uma árvore binária A imprima a chave de todos os nós através da busca em largura.

```
1 void printTreeBFSWithQueue(Node * root) {
2   if (root == nullptr) {
3     return;
4  }
```

```
queue<Node*> queue;
6
     queue.push(root);
7
     while (!queue.empty()) {
8
       Node * node = queue.front();
9
       cout << node->key() << " ";</pre>
10
       queue.pop();
       Node * childNode = node->leftNode();
11
12
       if (childNode) {
         queue.push(childNode);
13
14
       }
15
       childNode = node->rightNode();
16
       if (childNode) {
17
         queue.push(childNode);
18
       }
19
     }
20 }
```

3.3 Árvores Binárias de Busca

Definição 3.3.1 (Árvores de busca): São uma classe específica de árvores que seguem algumas características:

- A chave de cada nó é maior ou igual a chave da raiz da sub-árvore esquerda.
- A chave de cada nó é menor ou igual a chave da raiz da sub-árvore direita

left.key <= key <= right.key</pre>

Figura 5: Exemplo de árvore binária

Então queremos utilizar essa árvore para poder procurar valores. Na verdade ela é bem parecida com o caso de aplicar uma busca binária em um vetor ordenado.

Problema: dada uma árvore binária de busca A com altura h encontre o nó cuja chave seja k.

```
BUSCA EM ÁRVORE BINÁRIA (RECURSÃO)

1 Node * binaryTreeSearchRecursive(Node * node, int key) {
2 if (node == nullptr || node->key() == key) {
3 return node;
4 }
5 if (node->key() > key) {
```

```
6    return binaryTreeSearchRecursive(node->leftNode(), key);
7    } else {
8     return binaryTreeSearchRecursive(node->rightNode(), key);
9    }
10 }
```

Esse algoritmo tem complexidade $\Theta(h)$

```
BUSCA EM ÁRVORE BINÁRIA (ITERATIVO)
                                                                                  ⊘ C++
   Node * binaryTreeSearchIterative(Node * node, int key) {
2
    while (node != nullptr && node->key() != key) {
3
       if (node->key() > key) {
4
         node = node->leftNode();
5
       } else {
6
         node = node->rightNode();
7
       }
8
9
     return node;
10 }
```


Famosos dicionários do python, nós a utilizamos para armazenar e pesquisar tuplas < chave, valor >.

Figura 6: Desenho de tabela hash

Nós queremos criar funções $\Theta(1)$ para executar funções de **inserção, busca** e **remoção**. Todas as chaves contidas na tabela são **únicas**, já que elas identificam os valores unicamente.

Figura 7: Estruturação da Hash Table

- Universo de Chaves (U): Conjunto de chaves possíveis
- Chaves em Uso(K): Conjunto de chaves utilizadas

Vamos idealizar um problema para motivar os nossos objetivos.

4.1 Um problema

Problema: Considere um programa que recebe eventos emitidos por veículos ao entrar em uma determinada região Cada evento é composto por um inteiro representando o ID do veículo. O programa deve contar o número de vezes que cada veículo entrou na região. Ocasionalmente o programa recebe uma requisição para exibir o número de ocorrências de um dado veículo. **Mandatório**: a contagem deve ser incremental, sem qualquer estratégia de cache. Uma requisição para exibir o resultado parcial da contagem deverá contemplar todos os eventos recebidos até o momento.

4.1.1 Primeira abordagem: Endereçamento Direto

```
1 int table[U];
                                                                                ⊚ C++
2
   for (int i = 0; i < U; i++) {
3
  table[i] = 0;
4
  }
5
  // Função de incrementação em cada elemento
7 void add(int key) {
  table[key]++;
8
9 }
10
11 // Função de busca
12 int search(int key) {
13
   return table[key]
14 }
```

- $\bullet \ \operatorname{add} = \Theta(1)$
- search $= \Theta(1)$

4.1.2 Segunda abordagem: Lista Encadeada

```
1 typedef struct LLNode CountNode;
                                                                                   G C++
2
  struct LLNode {
3
  int id;
4
    int count;
  CountNode * next;
5
6
  };
7
  void add(int key) {
8
9
    CountNode * node = m firstNode;
     while (node != nullptr && node->id != key) {
10
11
       node = node->next;
12
     }
13 if (node != nullptr) {
14
      node->count += 1;
15
     } else {
16
       CountNode * newNode = new CountNode;
17
       newNode->id = key;
18
       newNode->count = 1;
19
       newNode->next = m_firstNode;
20
       m firstNode = newNode;
21
     }
22 }
23 int search(int key) {
```

```
CountNode * node = m_firstNode;
while (node != nullptr && node->id != key) {
    node = node->next;
}
return node != nullptr ? node->count : 0;
}
```

Infelizmente nessa abordagem nós não atingimos o objetivo principal de realizar as operações em $\Theta(1)$, já que a função de busca é $\Theta(n)$

4.2 Definição

Agora que entendemos toda a ideia da hash table, podemos fazer uma definição melhor para ela

Definição 4.2.1 (Hash Table): A **tabela hash** é uma estrutura de dados baseada em um vetor de M posições acessado através de endereçamento direto

Definição 4.2.2 (Função de Espalhamento/Hashing): É uma função que mapeia uma chave em um índice [0,M-1] do vetor. O resultado dessa função é comumente chamado de **hash**. O objetivo da função de espalhamento é reduzir o intervalo de índices de forma que M seja muito menor que o tamanho do universo U.

Exemplo:

```
1 hash(key) = key % M
```

Definição 4.2.3 (Colisão): É quando a função de espalhamento gera os mesmos hashes para chaves diferentes. Existem várias abordagens para resolver esse problema

Uma função de hash é considerada **boa** quando minimiza as colisões (Mas elas são inevitáveis)

4.3 Soluções para colisão

Vamos ver algumas abordagens para resolver o problema de colisão

4.3.1 Tabela hash com encadeamento

O problema de colisão é solucionado armazenando os elementos com o mesmo hash em uma lista encadeada

Figura 8: Tabela hash com encadeamento

```
EXEMPLO DE IMPLEMENTAÇÃO
                                                                                     G C++
1
   typedef struct HashTableNode HTNode;
2
   struct HashTableNode {
3
     unsigned key;
4
   int value;
5
     HTNode * next;
    HTNode * previous;
6
7
  };
8
9
  class HashTable {
10 public:
11
     HashTable(int size)
12
       : m_table(nullptr)
13
       , m_size(size) {
14
       m table = new HTNode*[size];
15
         for (int i=0; i < m_size; i++) { m_table[i] = nullptr; }</pre>
16
       }
17
     ~HashTable() {
       for (int i=0; i < m_size; i++) {</pre>
18
         HTNode * node = m_table[i];
19
20
         while (node != nullptr) {
21
           HTNode * nextNode = node->next;
22
           delete node;
23
           node = nextNode;
24
         }
25
       }
26
       delete[] m_table;
27
     }
28
   . . . .
29
     private:
30
       unsigned hash(unsigned key) const { return key % m size; }
31
       HTNode ** m_table;
32
       int m_size;
33 };
34
35
36 void insert_or_update(unsigned key, int value) {
37
     unsigned h = hash(key);
38
     HTNode * node = m_table[h];
39
     while (node != nullptr && node->key != key) {
40
       node = node->next;
41
     }
42
     if (node == nullptr) {
43
       node = new HTNode;
44
       node->key = key;
45
       node->next = m table[h];
46
       node->previous = nullptr;
47
       HTNode * firstNode = m_table[h];
48
       if (firstNode != nullptr) {
49
         firstNode->previous = node;
50
       }
51
       m_table[h] = node;
```

```
52
53
     node->value = value;
54 }
55
56
57 HTNode * search(unsigned key) {
58
     unsigned h = hash(key);
59
     HTNode * node = m table[h];
     while (node != nullptr && node->key != key) {
60
61
       node = node->next;
62
63
     return node;
64 }
65
66
67 bool remove(unsigned key) {
     unsigned h = hash(key);
68
69
     HTNode * node = m table[h];
70
     while (node != nullptr && node->key != key) {
71
       node = node->next;
72
     }
73
     if (node == nullptr) {
74
      return false;
75
     }
76
    HTNode * nextNode = node->next;
77
     if (nextNode != nullptr) {
78
       nextNode->previous = node->previous;
79
     }
80
     HTNode * previousNode = node->previous;
81
     if (previousNode != nullptr) {
82
       node->previous->next = node->next;
83
     } else {
84
       m_table[h] = node->next;
85
     }
86
     delete node;
87
     return true;
88 }
```

O pior caso dessa implementação é quando todas as chaves são mapeadas em uma única posição

• Inserção/Atualização: $\Theta(n)$

 $\bullet \; \operatorname{Busca} : \Theta(n)$

• Remoção: $\Theta(n)$

4.3.2 Hash uniforme simples

Cada chave possui a mesma probabilidade de ser mapeada em qualquer índice [0,M). Essa é uma propriedade desejada para uma função de espalhamento a ser utilizada em uma tabela hash. Infelizmente esse resultado depende dos elementos a serem inseridos. Não sabemos à priori a distribuição das chaves ou mesmo a ordem em que serão inseridas. Heurísticas podem ser utilizadas para determinar uma função de espalhamento com bom desempenho

Alguns métodos mais comuns:

• Simples

- ► Se a chave for um número real entre [0, 1)
- hash(key) = $|\ker \cdot M|$

• Método da divisão

- ▶ Se a chave for um número inteiro
- hash(key) = key%M
- ► Costuma-se definir M como um número primo.

• Método da multiplicação

- hash(key) = $\lfloor \text{key} \cdot A\%1M \rfloor$
- A é uma constante no intervalo 0 < A < 1.

Observe que a chave pode assumir qualquer tipo suportado pela linguagem

```
Exemplo: countries["BR"]
```

A função de espalhamento é responsável por gerar um índice numérico com base no tipo de entrada

```
EXEMPLO DE HASH PARA STRINGS

1 int hashStr(const char * value, int size) {
2  unsigned hash = 0;
3  for (int i=0; value[i] != '\0'; i++) {
4   hash = (hash * 256 + value[i]) % size;
5  }
6  return hash;
7 }
```