CSP-S 模拟赛

题目名称	涂色	排序	翻转	自闭
题目类型	传统型	传统型	传统型	传统型
输入文件名	color.in	sort.in	rev.in	closure.in
输出文件名	color.out	sort.out	rev.out	closure.out
测试点时限	1.0 秒	3.0 秒	1.0 秒	1.0 秒
内存限制	256 MiB	512 MiB	512 MiB	256 MiB
提交程序名	color.cpp	sort.cpp	rev.cpp	closure.cpp
测试点是否等分	是	是	是	是

编译选项 -O2 -1m -std=c++14 -W1,--stack=2147483647。

注意事项

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. C/C++ 中函数 main() 的返回值类型必须是 int ,程序正常结束时的返回值必须是 0。
- 3. 若无特殊说明, 结果的比较方式为全文比较(过滤行末空格及文末回车)。
- 4. 程序可使用的栈空问内存限制与题目的内存限制一致。
- 5. 只有一次提交机会, 提交后不可重复提交。
- 6. 提交时将代码文件打包为压缩文件且文件名为自己姓名并且上发。
- 7. 确认题面描述有问题的情况下可举手问老师, 禁止线上或线下讨论。
- 8. 题目比较简单,不一定按照难度排序,AK 后请不要大声喧哗。

A、涂色

1s,256M

题目描述

小 A 想给一个栅栏上色。栅栏由 n 个一米长的小段组成,他可以使用 26 种不同的颜料,并且这些颜料的颜色从浅到深由字母 A 到 $\mathbb Z$ 编号。小 A 希望自己的栅栏上只有这 26 种颜色,并且他会用一个长为 n 的字符串 S 来表示自己希望给每个小段涂上的颜色。

初始时,整个栅栏都没有被上色。每次小 A 可以一笔给任意长的**连续**子段涂上同一种颜色,但是她不能在较深的颜色上涂上较浅的颜色(但是她可以用较深的颜色覆盖较浅的颜色)。

由于时间紧迫,小 A 决定放弃给栅栏的某个连续区间上色。现在,她正在考虑 q 个候选的区间,每个区间由 a,b 表示,表示不需要上色的区间的左右两个端点。

小 A 想知道,对于每个候选的区间,将所有区间外的栅栏小段都涂上小 A 希望的颜色,并且区间内的位置都不上色,至少需要涂多少笔?

输入格式

第一行两个整数 n,q 。

下一行包含一行一个长为n的字符串,表示每个栅栏小段所希望的颜色。

接下来 q 行,每行两个整数 a,b。

输出格式

输出 q 行,每行一个整数表示答案。

样例 1

输入

```
1 | 8 2
2 | ABBAABCB
3 | 3 6
4 | 1 4
```

输出

```
1 | 4
2 | 3
```

解释

在这个样例中,除去目标颜色 BAAB 所对应的区间,涂上颜色需要四笔,而除去 ABBA 仅需三笔。

数据范围

对于前 40% 的测试点保证 $n, q \leq 100$ 。

对于前 70% 的测试点保证 $n, q \leq 5000$ 。

对于所有测试点,保证 $1 \le n, q \le 10^5, 1 \le a \le b \le n$,且 S 中只包含 A 到 Z 的字母。

B、排序

3s,512M

题目描述

小 B 想要对一个长为 n 的序列 A 排序。已知 A 中只包含 $0,1,\ldots,n-1$ 且对任意 $i\neq j$ 有 $A_i\neq A_j$ 且 n 为 2 的次幂。

为了排序, 小 B 只想用以下两种操作:

- 交换相邻的两个位置,也就是说选择 1 < i < n-1 并且交换 A_i, A_{i+1} 。
- 选择一个整数 $0 \leq x \leq n-1$,将每个 A_i 都替换为 $A_i \oplus x$,这里 \oplus 为二进制按位异或操作。

请问最少需要多少次操作才能给整个序列排序?

输入格式

第一行一个整数 n 。

第二行 n 个整数表示初始的 A_1, A_2, \ldots, A_n 。

输出格式

一行一个整数表示答案。

样例 1

输入

```
1 | 8
2 | 0 1 3 2 5 4 7 6
```

输出

1 2

解释

可以先交换 A_1, A_2 ,再给所有数异或 1 ,即可得到 [0, 1, 2, 3, 4, 5, 6, 7] 。

数据范围与提示

在数据范围中,我们假设 $n=2^k$ 。

对于前 20% 的数据 $k \leq 4$ 。

对于前 30% 的数据 $k \leq 8$ 。

对于前 40% 的数据 $k \le 12$ 。

对于前 60% 的数据 $k \le 18$ 。

对于前 80% 的数据 $k \leq 20$ 。

对于所有数据 $1 \le k \le 22$, A 为一个 [0, n-1] 的排列。

由于读入量较大,推荐使用较快的读入方式。

C、翻转

1s,512M

题目描述

小 C 有一个长为 n 的数列 A , 数列中的每个位置是 0 或 1 。

我们定义一个长为 s 数列 S 为**交替序列**, 当且仅当 $S_1 \neq S_2 \neq \cdots \neq S_s$ 。

现在小 $C \in q$ 次询问,每次询问可能是:

• 11 r 表示对于每个 $i \in [l,r]$,将 A[i] 修改为 1-A[i] 。

• 2 1 r 表示小 A 想询问有多少对 (x,y) 满足 $l \le x \le y \le r$ 且 $A[x], A[x+1], \ldots, A[y]$ 是一个交替序列。

请你对每个2操作输出结果。

输入格式

第一行两个整数 n,q 。

第二行 n 个整数,表示序列 A 。

接下来 q 行,每行三个整数 t,l,r,表示一次询问。

输出格式

对每个2操作,输出一行一个整数表示答案。

样例 1

输入

```
1 | 3 1
2 | 1 1 0
3 | 2 1 3
```

输出

```
1 | 4
```

样例 2

输入

```
1 20 20
2 0 0 1 0 1 0 0 1 1 1 0 1 0 0 0 1 1 1 0 0
3 1 1 10
4 2 2 7
5 1 3 15
6 2 1 9
7 1 4 9
8 2 1 13
9 1 13 15
10 2 10 20
11 1 1 5
12 2 2 10
13 1 15 17
14 2 15 18
15 1 1 3
16 2 4 6
17 | 1 15 19
18 2 1 6
19 | 1 15 15
20 2 10 17
21 1 1 8
22 2 15 19
```

输出

```
      1
      16

      2
      16

      3
      21

      4
      14

      5
      12

      6
      6

      7
      4

      8
      9

      9
      10

      10
      8
```

数据规模与提示

对于前 20% 的数据,保证 $1 \le n, q \le 100$ 。

对于前 30% 的数据,保证 $1 \le n, q \le 1000$ 。

对于前 50% 的数据,保证 $1 \le n, q \le 5000$ 。

另有 20% 的数据,保证 t=2 。

对于所有数据,保证 $1 \le n, q \le 2 \times 10^5, A_i \in \{0,1\}, t \in \{1,2\}, 1 \le l \le r \le n$ 。

D、自闭

1s,512M

题目描述

小 D 认为一个集合 S 是自闭的,当且仅当如果 $x,y\in S$,那么 $(x\wedge y)\in S, (x\vee y)\in S$,其中 \wedge 为按位与操作, \vee 为按位或操作。

现在小 D 有一个初始集合 A ,他想知道最小的集合 B 使得 A 是 B 的子集且 B 是自闭的。

你只需要输出最小的 B 的大小即可。

输入格式

第一行一个整数 n 。

第二行一行 n 个不同的整数,表示初始的 A 集合。

输出格式

输出一行一个整数表示答案。

样例 1

输入

```
1 | 4
2 | 0 1 3 5
```

输出

1 | 5

解释

在样例中 $B = \{0, 1, 3, 5, 7\}$ 。

数据范围与提示

测试点	特殊限制	分数
1, 2	$A_i<2^{10}$	20
3	$A_i < 2^{20}$	10
4, 5	$A_i < 2^{30}$	20
6	$n \leq 20$	10
7	$n \le 40$	10
8, 9, 10	无特殊限制。	30

对于所有数据,保证 $1 \leq n \leq 2 imes 10^5, 0 \leq A_i < 2^{40}$ 。