HASZNÁLAT JE IST IS

TYPE TR-4805

"CHARACTERISCOPE-Z" FÉLYEZETŐ KARAKTERISZTIKA ÁBRÁZOLÓ

TYPE TR-4805

"CHARACTERISCOPE-Z" FÉLVEZETŐ KARAKTERISZTIKA ÁBRÁZOLÓ

Gyártja:

ELEKTROPHYTT, MEROKÉSZÜLÉKEK GYÁRA 1163, Buddimar, Cziráky u. 26-32. Telefon: 837-950 Telex: 22-45-35

Forgalomba hoz za;

MIGÉRT
MÜSZER- É: IRCDAGÉPÉRTÉKESITŐ VÁLLALAT
1065 Budapasi, Bajasy-Zsilinszky ut 37.

1981.
F.k. Kiss Jovák József

TARTALOUJEGYZÉK

	Oldal
1. A KESZÜLÉK RENDELTETÉRE IS ALIALMAZÁSI TERÜLETE	3
2. HUSZAKI ADATOK	• 4
3. A MUSIER ÖSSZEALLITASA	7
4. A MUSZER ÉS FOBB RÍSZLINEK MUZÖDÉSE ÉS FELÉPITESE	9
4.1. Működési elv	9
4.2. A készülék működése	9
4.3. készletes működési leirás	9
4.4. Mechanikai felépités	15
5. ALTALANCS ÜZERELTETESI UTASITASOK	16
5.1. á készülék ki- és visszacsomagolása	16
5.2. Üsszeallitási utasitás	16
6. BIZTONSAGTECHNICAI UTASIT DOK	i 7
7. UZEMBEHELYEZÁS ELCTESZITTES	18
7.1. Zezelőszervek és csatlakozók	18
7.2. űvő rendszabályok	20
8. A KESZÜLEK HASZNALATA	2 2
5.1. Üzembehelyezés	22
8.2. Üzemeltetés 60 Hz-es hálósatról	23
8.3. Na _b yaramu mérési összeállítás	23
8.4. Gérések	23
9. JELLEGZETES HGHIBÁSODASOK ÉS LEGS ZUMPETÉSÜK	25
9.1. Ovórendszabalyok a javitás előtt, alatt és után	26
9.2. Funkcionalis ellenőrzés, hibajavitás	26
10. MUSZAKI KARBANTARTÁS	29
11. A MULZAKI ÁHLAPOT ELLENÖRZÉSE	3 0
ll.l. A müszaki állapot ellemőrzésének gyakorisága és	
körülményei	30
11.2. à vizszintes erősitő ellenőrzése	30
11.3. A függőleges erősitő ellenőrzése	31
11.4. A léposõgenerator ellenörzése	31
12. TAROLÁCI SZABALYOK	35
MELLÉKTETEK	3 6

1. A KÉSZÜLÉK RENDELTETÉSE ÉS ALKALMAZÁSI TERÜLETE

A TYPE 1575 CHARACTERISCOPE-Z /TR-4805/ általános használatu félvezető karakterisztika vizsgáló műszer.

A készülék elsősorban félvezető alkatrészek szemléletes vizsgálatára alkalmas, segítségével kis- és nagyteljesítményű tranzisztorok; FET-ek, diódák, Zener-diódák, tunnel-diódák, tirisztorok etb. vizsgálhatók. Laborstóriumban és gyártásban egyaránt egyszerű és gyors alkatrészmérést biztosít. Az alapkészülékkel két alkatrész összehasonlító vizsgálata végezhető, kézi átkapcsolással, O-1000 V ill. 5 nA- 2 A tartományban, max. 200 mA bázisárammal. Az 1576-3 /TR-4806-3/ tipusu Nagyaramu Betétegység és az 1575-3 /TR-4805-3/ tipusu Nagyáramu Adapter, mint tartozékok felhasználásával a méréstartomány 200 A kollektor- és 20 A bázisáramis terjeszthető ki /impulzusüzemen/. A készülék passziv alkatrészek, pl. jelfogók, kapcsolók, csatlakozók kis- és nagyaramu mérésére is alkalmas, szintén 200 A csúcsáramig.

A karakterisztika ábrázoló teljesen félvezetős felépitésű, a korszerű integrált áramkörök alkalmazása a készülék megbizhatóságát növeli. A sokféle mérés elvégzését a készülék könnyű kezelhetősége biztositja.

2. MUSZAKI ADATOK

2.1. Altalanos adatok

2.1.1. Vizsgálható eszközök száma

2.1.2. Alapkapcsolás

2 /kési átkapcsolással/ földelt emitteres

2.2. Kollektor táplálás

2.2.1. Peszültség

O-1 kV /terheletlenül, 10 átkapcsolható sávban, a sávokon belül folyamatosan szabályozható/

2.2.2. Polaritás

2.2.3. Usemmod

+ és -

AC /egyenirányitott szinusz-

feszültség/

DC

2.2.4. Max. áram

2.2.5. Teljesitményhatárok

2 A

0,1 - 0,5 - 2 - 10 W, automati-

kus kijelzéssel

2.2.6. Soros ellenállások

0 - 1,7 M Ω 11 lépésben

/0; 25; 10; 65; 250 Ω, 1; 6,5; 25; 85; 500 αΩ,

1,7 и Ω /

2.2.7. Életvédelem

a mérőbefogóba helyezett félvezető eszközökre csak a védőbura zárt állapotában adható

feszültség

2.3. Lépcsőgenerátor

2.3.2. Léposőszám

2.3.1. Uzemmód

agyes lépcső

ciklikusan ismétlődő lépcső sor

2-10

0,2 /uA - 20 mA /1-2-5 lépé-

sekben/

0,1 V - 2 V /1-2-5 lépésekben/

2.3.4. Feszültséglépcső értéke

2.3.3. Aramiéposő értéke

1575

. #

2.3.5. Polaritás + és -2.3.6. Pontosság /O eltolás esetén/ ±5 % 2.3.7. Eltolás /offset/ min. +1 lépcső 2.3.8. FET gate áram ellenőrzés 100 kn soros ellenállással 2.4. Vizszintes erősítő 2.4.1. Üzemmód UCE vagy Uak mérés 2.4.2. Érzékenység 0,1 V - 100 V/osztás /1-2-5 lépésekben/ 2.4.3. Fontosság /10 osztásra vonatkoztatva/ ±5 % 2.5. Függőleges erősitő 2.5.1. Üzemmód Ic mérés 2.5.2. Érzékenység 5 nA - 0,2 A/osztás /1-2-5 lépésekben/ 2.5.6. Pontosság /10 osztásra vonatkoztatva/ +5 % +10 nA 2.6. Merjelenités 2.5.1. Képméret 80 x 80 mm /10 x 10 osztás/ 2.6.2. Képhelyzet konvencionális mind NPN, mind PNP eszköz mérése esetén 2.7. Hálózati adatok 2.7.1. Feszültség 110, 127, 220 V +10 % /atkapcsolható/ 2.7.2. Frekvencia 50/60 Hz 2.7.3. Fogyasztás kb. 50 VA /kisteljesitményű eszközök mérése esetén/

kb. 70 VA /nagyteljesitményű eszkő-

zök mérése esetén/

2.c. Ménetek

252 mm wagas

262 mm széles

343 mm mély

2.3. Tömeg

kb. 12,5 kg

2.10. Klima adatok

- 2.10.1. Normál és névleges üzemi feltételek
- 2.10.1.1. Környezeti hömérséklet +10°C ... +35°C
- 2.10.1.2. Relativ légnedvesség max. 85 %
- 2.10.1.3. Légnyomas

0,6-1,06 bar

2.10.2. Üzemeltetési határfeltételek

- 2.10.2.1. Eörnyezeti hőnérséklet +5°C ... +40°C
- 2.10.2.2. Relativ légnedvesség max. 85 %
- 2.10.2.3. Légnyomás

0,6-1,06 bar

2.10.3. Szállitási és tárolási feltételek

- 2.10.3.1. Környezeti hőmérséklet -25°C ... +55°C
- 2.10.3.2. Relativ légnedvesség
- 2.10.3.3. Légnyomas

0,6-1,05 bar

max. 98 %

2.11. Periodikus ütésvizsgálat

2.11.1. Az ütés időtartama

12 ms

2.11.2. A max. gyorsulás értéke

5 g

2.11.3. Az ütések száma

1000

2.12. A készülék alapvetően az alábbi szabványoknak tesz eleget:

- 2.12.1. MSZ 94-70
- 2.12.2. KGET REZ 2657-73, RSZ 3824-73, RSZ 3825-73, RSZ 4492-74.

3. A MÜSZER ÖSEZEÁLLITÁSA

3.1. Type 1575 /TR-4805/ "CHARACTERISCOPE-Z" félvezető karakterisztika ábrázoló

3.2. Tartozékok

3.2.1. "A" tertozékok /a készülék árában bennfoglalt/

1 db Hálózsti csatlakozó vezeték csatlakozó dugókkal 1004

l db Használati utasitás

3.2.2. "B" tertozékok /a készülékkel együtt szállított, az ár külön felszámítása mellett/

1 db	TR-4805-1 mérő be	efogó TC-5	£ TO-18	foglalatokkal	1575-1
1 db	Tk-4805-2 mérő be	efogó TO-3	& 1°0~66	foglalatokkal	1575-2

3.2.3. "C" tartozékok /külön rendelésre szállitott, az ár külön felszámítása mellett/

1	db	TR-4805-3 Nagyaramu adapter /HIGH CURRENT ADAPTE	R/ i	1575-3
1	ďδ	TR-4806-3 Nagyaramu betétegység /HIGH CURRENT		
		FIXTURE/		1576-3

A két nagyáramu tartozék csak együtt rendelhető.

3.3. Csöves olvadóbiztositó betétek

3.5.1. "A" tartozék

Hálózsti	220 V -	400 mA /Go	20/5,2 - 400 mA/	1 db
	110/127 V -	800 mA /Go	20/5,2 - 800 mA/	2 db
		315 mA /Go	20/5,2 - 315 mA/	db E
		2.5 A /Go	20/5,2 - 2,5 1/	1 db

3.4. Nagyáramu mérési összeállítás műszaki adatei

A 3.2.3. pontbon feltüntetett TR-4805-3 /1575-3/ tipusu Nagyaramu Adapter és TR-4806-3 /1576-3/ tipusu Nagyáramu Betétegység felhasznúlásával a méréstartomány 200 A kollektor- és 20 A bázísáramig ter-

jeszthető ki /impulzusüzemben/. A részletes műszaki adatokat fenti tartozékok használati utasítása tartalmazza.

A MUSZER ÉS FÖBB RÉSZEIMEK MUNÖDÉSE ÉS FELÉPITÉSE

1. <u>Müködési elv</u>

cészülék tömbvázlata az l. ábrán látható. Büszer villamos felépités szempontjából három nagy funkcionális Jségre bontható.

1. Vezérlő árazkörök:

lépsső generátor kollektor tápegység

2. Mérő áramkörök:

vizszintes erősitő függőleges erősitő

3. Kijelző egység:

katódsugárcső és a tápegységek

2. A készülék működése

nüködést célszerű egy földelt emitteres kapcsolásu tranzisztor résével tárgyalni.

pérendő függvény az $I_C = f / U_{CE} / I_B$. Az I_C áramot az R_E ellenálláson ri a függőleges erősitő.

 ${\rm U_{CE}}$ tápfeszültséget a kollektor tápegység szolgáltatja / ${\rm U_{C}}$ /, és a szintes erősítő méri.

IB vezérlő bázisáramot a lépcső generátor /Ug/ szolgáltatja: tétoldalasan egyenirányitott hálózati feszültségből lépcsőnként 5 ms éles feszültséget állit elő.

 $I_{\rm C}-U_{\rm C}$ karakterisztika horizontális eltéritő feszültsége ugyancsak zétoldalasan egyenirányitott hálózati feszültség. Ennek a két jelnek ymással – a helyes $I_{\rm C}-U_{\rm C}$ görbesereg ábrázolása érdekében – pontosan zisban kell lennie, ahogy azt a 10. ábra szemlélteti.

 RÉSZIETES MUNÖDÉSI LEIRÁS /az áramkörök ismertetése a kapcsolási rajzok alapján/

4.j.l. Lépcső generator

Az árankör kapcsolási rajza a 11. ábrán, nyomtatott áramköri rajza pedig a 17. ábrán látható.

Az áramkör feladata lápcsőfeszültség előállítása. A hálózattal szinkro. működő vezérlőjeleket a TR107- 110 tranzisztor állítja elő. A T1/15 ponthoz, mint 0-fázishoz képest a T1/19 ponton 180°-os, a P101-C102 csstlakozási pontján pedig 90°-os szinuszos feszültség von. Ezen három fázishelyzetnek megfelelő négyszöghullámot a T107-109 tranzisztor állítja elő, a negyediket a "90°-os" négyszögjel fázisfordításával nyerjük a TR110 kollektorán. A P101 potenciométerrel a 90° as fázistolást lehet beállítani, a P104 pedig a 0-átmenetnek megfelelő négyszög-élek kismértékű szabályozására szolgál.

A négy /0°, 90°, 180° és 270° fázisu/ négyszögjel negativ élét C-R tagokkal differenciálva, majd a négy differenciált jelet /négy impulzust/ VAGY-kapcsolatban összegezve, az IC102/11 ponton a hálózati feszültség nulla- és csúcsértékeivel fázisban levő 200 Hz-es impulzussorozataráll elő.

A hálózati szinuszfeszültség rájut a TR106 bázisára is, és az E03 csatlakozó a7 és c7 pontjait összekötve /ez az összekötés csak a nagyáramu máréseknél valósul meg/ az IC102a bemeneten /1. pont/ 50 Hz-es jellel a 200 Hz-es impulzussorozatból a hálózati szinusz egyik csúcsával fázisban lévő 50 Hz-es jelet kapuz ki. Az impulzussorozat kétszeres invertálás után az IC102b kimenetére jut /IC102/6 pont/.

Ezen 200 Hz-es impulzussorozat vezérli az IC104 számlálót.

A BCD kódolt jeleket C-9 decimális értékre az IC105 áramkör alakítja át. R115-R124 referencia osztót decimálisan vezérli az IC105, és a 0-9 számok közül S101 kapcsolóval választható ki a kivánt lépcsőszám. Az S101-gyel kiválasztott lépcsőszámhoz tartozó ellenálláson keletkező feszültségugris vezérli a TR102 tranzisztort, mely nullázó /reset/ jelként kerül a számlálóba /IC104/, és a számlálási ciklus kezdődik előlről.

Egy diszkrét lépcsőfeszültség beállitása ugy történik, hogy az S IO4 ONE CURVE kapcsoló benyomott állásban az SIOI kapcsoló által beállitott kódot kapcsoljuk az IC IO5 dekódolóra. A referencia osztó kimeneti pontja az IC108 erősítöre, majd a TR1C4 emitterkövetőről a STEP AMPLITUDE /S103/ osztára kerül. A lépcsőfeszültség kalibrált értékét az erősítős beállitásával lehet elérni, ezt a P102 povenciométer szabályozza. Az OFFEET feszültség eltolást a P103 potenciometer végzi. A + vagy - polaritásu feszültséget az S102 kapcsoló valtja. A lépcső generator max. 200 mA-es áramot szolgáltat, túlterhelés ellen az F101 biztosíték védi az áramotoszolgáltat, túlterhelés ellen az F101 biztosíték védi az áramotot.

Negyáramu mérési összeállitás esetén az S103 kapcsoló helyzetét /C,5 - 20 mA állasokban/ az S03 csatlakozón keresztül érzikélik a negyáramu tertolékok áramörei. A kapcsolási szlatból /O. abra/ láthatóan a lépcső generátor földfüggetlenül kapcsolodik a csatlakozó áramöröknöz, erre a 11. abra "föld" jelölése is felnivya a figyelmet. A tápfeszültségeket az TC107 és a TR101, TR104-ből álló tápegység állítja elő. Az egyenírinyítást a D101-102, D103-104 diódak végzik. A lépcső-generator működése szemléletesebb a 10. ábra segítségével.

4.3.2. Kollektor tápenysés

A tapegység kapcsolási rajza a 12. ábráu, nyomtatott áramköri rajza a 18. abrán lútható.

Az áramkör felenata, hogy a vizsgált tranzisztor számára kollektor-feszültságet állitson elő. Az S202 kapcsoló DC állásaiban egyenfeszültséget, aC állásaiban pedig kétoldalasan egyenírányított hálósati
feszültséget szolgáltat. hivel az ábrázolt karakterisztika vizszintes
eltéritő feszültségét szolgáltatja az áramkör, DC állásban a feszültség
nagyságának megfelelő helyen minden báziszépcsőhöz egyetlen pontot
rajzol a katódaugárcsőre.

A tápfeszültség nagysagat folyamatosan a T2 toroid transzformátorral lehet szabályozni, 1-2-5 feszültség-lépésenként pedig az S301 kapcsollóvel. A T2 anto-transzformátor a T3 transzformatort táplalja, melynek szekunder leáganasait az S301 kapcsoló a D201-D204 diódákbol álló kétutas egyenírányító egységre kapcsolja. Az S202 kapcsolóval az egyenirányítás előjelét és a pufferkondenzátorokat lehet kapcsolni. A C201-C203 bekapcsolasskor egyenfeszültséget szolgáltat az aramaör.

A kivánt nagyságu és előjelű AC vagy DC feszültség az R206-R220 soros ellenállásokon keresztül az S201 kapcsolóval adható egyrészt a vizsgáló tranzisztorra, másrészt az $U_{\rm C}$ feszültséget mérő vizszintes erősitóre. A TEST ADAPTER-re a feszültség az S204 háromállásu kapcsoló valamely szélső állásában jut, a vizszinces erősitőre pedig az S203 kapcsoló $V_{\rm CR}$ állásában.

A soros ellenállások a kollektoráram korlátozását szolgálják, és a rajtuk eső feszültség értékével kevesebb jut a vizsgált tranzisztorra. Ezért a vizsgált tranzisztor kollektorfeszültségét nemcsak a f2 és az S301 kapcsoló szabályozza, hanem a kollektoráramtól függő mertékben a soros ellenállások értéke is az S201 kapcsolón keresztül. Mivel a vizsgált alkatrészre jutó teljesítményt a soros ellenállások befolyásolják, a J201-J203 teljesítményhatárokat jelző lámpák vezérlését is az S201 kapcsoló végzi együtt az S301 kapcsoloval, mely a másik tényező, a kollektorfeszültség kapcsolását végzi. Az alábbi táblázat tartalmazza az egyes teljesítményhatárokac tartozó soros ellenállások értékét a kollektorfeszültség függvényében.

HOR. VOLTS/DIV	10 W	6ER 2 W	RIES RESIST		< 0,1	W
0,1	'O	_	_	>	2,5	
0,2	0	_	2,5	>	10	
0,5	Ó	2,5	10	>	65	
1	2,5	10	65	>	250	
2 -	10	65	250	>	1 K	
5 .	65	250	1	>	6,5	k
10	250	l k	6,5	>	25	ic
20	1 k	6,5 k	25 k	>	85	k
50	6,5 k	25 k	85 k	>	500	Ħ
100	25 k	85 k	500 k		1,7	M

Ha $R_s=0$ érték van beállítva, a feszültségtől füszetlenül a 10 W teljesítményhatár jelző izzó világit.

A < 0,1 W állapotban egyik jelzőizzó sem világit.

A SERIES RESISTOR kapasoló benyomott állapotában lehet teljesítményhatárt váltani. A beállitott teljesítményhatárból sem a HCR.VOIMS/DIV, sem a SERIES RESISTOR kezelőszervek kapasolásával nem lép ki a kollektor tapegység.

A szórt kapacitások hatását a P201 potenciométerrel lehet kompenzalni, A kompenzalás a ICC V/div állás kivételével mindenhol hatásos.

4.3.3. Vizszintes erösitő

A vizszintes erősítő kapcsolási rajza a 13. ábrán, nyomtatott áramköri rajza a 15. ábrán latható.

Az áramkör felsdata a képcső számára vizszintes eltéritő feszültséget szolgáltatni, mely erányos a vizsgalt tranzisztor kollektor-emitter feszültségevel. Ha a vizsgált bázis-exitter feszültségre vonatkozik, akkor 5203 V_{SZ} allásban van, és az IC301 erősítő az U_{BE} feszültséggel vezérli a katódsugárcsövet.

A kollektorfeszültséget az S203 kapcsoló az R317-R327 bemeneti osztora kapcsolja. Az osztót az S301 kapcsolja az IC301 nem invertáló bemenetére. Az erősítő invertáló bemenetét - az R328-R339 osztón keresztül - a vizsgált tranzisztor emitterén lévő feszültség vezérli: a nagyobb áramu állásokban közvetlenül az emitterről az R401 ellenálláson keresztül, kis munkaponti áramu beállításban - 5 juá - 5 ná torcomány-ban - az IC401 kimenetéről leosztott feszültség kerül az R401 ellenálláson keresztül a vizszintes erősítőre. Igy az IC301 az UCE feszültséget erősíti. A műveleti erősítő erősítését a P304 potenciomáterrel lehet beallitani. A P303 potenciomáterrel az IC301 /741PC/bemenő iranát kompenzaljuk, a P301/a potenciomáter a horizontális poziciót allitja be.

Az R301 ellenállas iz erősítő nem invertáló bemenetén 600 kolm-on bemeneti ellenállást állit be. A katódsugárcsövet a TR301-TR302 végfokozat vezérli, melynek áramát a TR303 állitja elő a P305 segítségével. Ennek beállítása ugy történik, hogy a fénypontot a NOR.FOST /F301/a potenciométerrel előzőleg középre állitva, a TR301-TR302 kollektorán a tápfeszültség fele jelenjen meg.

Ha az erősítő vezérlő feszültsége polaritást vált a PNP és NPN vizsgálatoknak megfelelően, az S202 kapcsoló az erősítő kimenetén is polaritást fordit, igy elérhető, hogy a rajzolt kép zindig szonos helyen és azonos /konvencionalis/ helyzetben maran, függetlenül a vizsgált elemre adott feszültségek előjeletől.

A nagyáramu mérési összeállításban az erősítő az RY1 jelfogón keresztül az SO3 csatlakozóról kapja a vezérlő feszültséget.

4.3.4. Függőleges erősitő

Az erősitő kapcsolási rajza a 14. abran, nyomtatott aramköri rajza a 16. ábrán látható.

Feladata a vizsgált eszközön átfolyó áramasl arányos eltérítő feszültség előállítása. Az I_C kollektoráram az R4C2-R425 ellenállásokon folyik át, melyeket az S4C1 kapcsol az F4C1 biztosítón keresztül az emitterre. A kollektorárammal arányos feszültség kis munkaponti áramu /5 nA - 5 /uA/div/ beállításban közvetlenül, nagyobb /1C /uA - 0,2 A/div/ úramoknál 1:100 osztás után az IC4C1 /7C9 FC/ műveleti erősítő nem invertáló bemenetére jut.

A függőleges erősítő hasonló felépítésű, mint a vizszintes erősítő. Az erősítés a P404 potenciométerrel allitható be, a P403-mal az IC401 bemeneti áramát kompenzáljuk, a P301/b potenciométer a vertikalis poziciót állitja be, a P405-tel a TR401-TR402 kollektorán a tápfeszültség felét kell beállitani. A L401-C402, C403 szürő a 40 küz-es transzverter jelre van hangolva.

Az R426 ellenállás az erősítő bemenetén 1 Monm bemeneti ellenallást állit be. Az R445 ellenállás az IC401 eltolási /offset/ feszültségét kompenzálja, az adott árankörtől függéen vagy a +15 V-hoz, vagy a -15 V-hoz van kötve.

A nagyáramu mérési összeállításban az erősítő az RY1 jelfogón keresztül az 803 csatlakozóról kapja a vezérlő feszültséget, ugyanakkor az 8401 kapcsoló D tárcsa hátsó lapjarol /Dr/ poziciójelsés megy a nagyáramu tertozékok áramköreibe /5 må - 0,2 A/div állásokban/.

4.3.5. Tápezység

A tápegység kapcsolási rajza a 15. ábrán, nyomtatott áramköri rajza pedig a 16. ábrán látható.

Az áramkör feladatu, hogy tápfeszültzégét szolgáltasson in egyes fokozatoknak és a katódsugárcsőnek. Az alacsony feszültségű tápegység felépítése, a szokásos. A nagyfeszültséget egy transzverter állítja elő. zcillátor fő elemei a TR501 tranzisztor és a T501 transzformátor.
501 áramkör végzi a C osztályu oszcillátor folyási-szög szabályo. A rezgési frekvencia kb. 40 kHz. A transzformátor /T501/ E-alaku
magos. A F505 potenciométerrel állitható be a kimeneti feszültség:
V a D508 katódján /min. 100 M n bemenő ellenállásu müszerrel
'. A TR503 tranzisztor csak a nagyaramu méréseknél lép müködésbe,
is kivilágosító impulzust ad a katódsugárcsőre, a T502 transztoron érkező vezérlés hatására.

echanikai felépités

ülék mechanikai szilárdságát merevitő rudakkal összefogott alukeret biztositja.

lőszervek az előlapon /2. ábra/ nyertek elhelyezést, a Tl és a nszformátor a hátlapon /3. ábra/ van felerősitve. A katódsugár, a T2 transzformátort és a nyomtatott áramköri lemezeket alutartórudak, illetve szegletek erősitik a kerethez.

ábrán látnató az előlapon felerősitett kezelőszervek egy része észüleket hosszában mechanikusan kettéosztó nyomtatott áramköri melyet a 16. ábrán mutatunk be. Ezen a nyomtatott áramköri lenelyezkedik el a vizszintes és a fügzőleges erősítő, a tápegyés a katódsugárcső tápellenállását biztosító áramkör. Ugyancsak ábrán látható a Tl hálózati transzformátor hátlaphoz való erősi-

ilék fenéklapja közelében van felerősitve a 17. ábrán látható tott áramköri lemez, amelyen a lépcsőgenerátor áramkör helyezel. A nyomtatott lemez elhelyezkedése a 6. ábrán látható.
Fra szemlélteti a hátlapon felerősitett T3 és a tartószegleten ezett T2 transzformátort.

brán látható nyomtatott áramköri lemez a középső merevitő rudra erősitve. A katódsugárcső tartó szegletekkel van a hátlapra és itő rúdra szerelve. A katódsugárcsövet a hátlapon található a eltávolitása után lehet kiemelni a helyéről.

lék hordfogantyuja a középső merevitő rudra csatlakozik, betó pozicióju. Szükség esetén a készülék alá hajtható és feló állványként szerepelhet.

5. ÁLTALÁNOS ÜZELELTETÉSI UTASITÁSOK

5.1. A készülék ki- és visszacsonezolása

A többrétegű burkolatba cscnagolt készülék külső burkolata a hullámpapir doboz, melyet a ragasztások mentén kell felbontani. A készülék-ről - a hullámpapir dobozból történt kiemelés után - a légmentesen zárt műanyag burkolat is eltávolitható és a készülék a belső papir boritásból kibontható. A krómozott vagy nikkelezett alkatrészekről a parafinpapir védőboritást le kell göngyölni és a vékony vazelinréteget puha textilanyaggal vagy vattával letörölni. Mindezek elvégzése után a készülék üzembehelyezhető. Amennyiben a készülék újbóli szállitásra kerül, becsomagolása a fent ismertetett mód fordított sorrendjében történjék, lehetőleg minden cscmagolási anyag felhasználásával, nehogy a készülék az újabb szállitás során kárcsodást szenvedjen.

5.2. Összeállitási utasitás

A vizsgálandó alkatrész tipusának megfelelő mérő befogót /TEST ADAPTER/ a rögzitő csavarok segitségével a készülékhez kell csatlakoztatni.

6. BIZTONS AGTECHNILAI UTASITASOK

A hálózati feszültrég átkapcsolara és a biztosítok esetleges cseréje a készülék hátoldalán /3. ábra/ könnyen elvégezhető, de ezek végrehájtása előtt a hálozati csatlarozó dugót az aljastbol ki kell huzni. A biztosítókat kielvadás esetén drótszállal, vagy átkötéssel helyettesíteni veszélyes és tilos! A biztosítók kizárolag a gyar által előfirttel azonos villaros értékű és külméretű biztosítoksal pótolastók.

A nalózati biztositék cseréje csak feszültségmentes állapotnan végezhető el, és utána a biztosito fejet szerszámmal / pl. csavarhuzó/ rögziteni kell!

a készülek csak védőföldeléssel ellátott hálózati aljzathoz csatlakoztatható. A készüléket a hálózattal a tartozékként mellékelt hálózati csatlakozó vezetékkel kell összekötni.

Eltérő hálózeti csatlakozó vezeték hasznulata esetén csak földelő érrel /3 eres kábel/ ellátott vezetéket szabad használni.

A hálózati csatlakozó vezetéket először a készülékhez kell csatlakoztatni és csak azután a hálózathoz. A csatlakozás megszüntetése esetén
a vezetéket kell először a hálózati csatlakozó aljzatból kihuzni.
A mérő befogó /TEST ADAFTER/ eltávolitása esetén a "C" jelü csatlakozo
pontokra az GFF /8204/ kapcsoloval nagy feszültség kapcsolható, ezért
fokozott figyelemmel kell eljárni. TEST ADAFTER használata nélkül a
készüléket TILOS bekapcsolni!

7. UZHUBEHELYEZÉS ELŐKÉSZITÉSE

7.1. Kezelőszervek és csatlakozók

Az előlapon található kezelőszervek a 2. ábrán lathatok.

Felirat a készülékben	Poziciószám	Rendeltetés
MAINS OFF	Sl	hálózati kapezoló
SCALE ILLUM	P507	a hálózati kapcsolóval egybeépitett
		kezelőszerv, mellyel a képernyő
		raszter kivilágitása szabályozható
Intensity	P501	a katódsugárcsövön megjelenő kép
		fényerejét szabályozza
FOCUS	P502	a megjelenő kép élességét szaba-
	•	lyozza
ASTIGM.	P503	a kép egyenletes élességét sza-
		bályozza
HOR. POS.	P301/a	a kép vizszintes helyzetét állitja
		be
VERT.POS.	Р301/Ъ	a kép függőleges helyzetét állitja
		be
VERT.CURRENT/DIV.	S401	a katódsugárcső függőlemes eltéri-
		tésének érzékenységét kapcsolja.
	89	NO BASE STEPS teréshatarokban a
		vizsgálandó eszközre nem kapcsol
		bázisjelet a STEP generator felől
HOR. VOLTS/DIV	S301	egyrészt a katódsugárcső vizszintes
		eltéritésének érzékenységét kap-
		csolja, másrészt a vizsgálandó al-
		katrész tápfeszültségét. Ugyanakkor
		a teljesitményhatárokat jelző FEAK
		WATTS jelzőlámpak vezérlését is
		biztositja
SERIES RESISTOR	S201	a vizsgálandó alkatrész védelmét
		szolgáló soros ellenállások be-
		állitására szolgál. A SERIES RECISTOR
		és a HCR. VOLTS/DIV kapcsolók a
н.		vizsgált alkatrész disszipációját

		együtteses állitják be, ezért mecha-
		nikus kényezerkapcsolatban állnak
		egymassal, és együttesen vezérlik a
		FLAX WATTS jelzőlámpákat
COLLECTOR SUPPLY V.	RIABLE T2	a vizsgált alkatrész tápfeszültségét
	2	szabályozza folyamatosan O értékről
COLLECTOR SUPPLY		
± DC ± LC	S202	a vizsgált alkatrész tápfeszültsé-
		gének polaritását és a mérés üzem-
		módját kapcsolja. A mérés történhet
		egyenfeszültséggel vagy kétutasan
		egyenirányitott hálózati tápfeszült-
		séggel.
V _{CE} - V _{BE}	\$203	a vizsgalt alkatrész kollektor-emit-
CD DD		ter, vagy bázis-emitter pontjai kö-
		zött levő feszültséget kapcsolja a
		katódsugárcső vizszintes eltéritő
		aramkörére
STEP AMPLITUDE	\$103	a vizsgált alkatrész bázisfeszült-
		ség, ill. bázisáram vezérlőjel egy
		lépcsőjének amplitudóját állitja be
ETEP FOL.	S102	a bázis vezérlőjelek polaritását
		kapcsolja
BASE STEPS	S101 .	a vizsgált alkatrész bázis vezérlő-
·		jeleinek számit /lépcsőszám/ állitja
		be
OFFSET	P103	a vizsgált alkatrész karakteriszti-
		kájának nulla bázisáramu vagy nulla
		bázisfeszültségű munkapontba való
		eltolását teszi lehetővé
ONE CURVE	S104	üzemmód kapcsoló: görbe sereg, vagy
		egyetlen kiválasztott görbe megje-
		lenitését teszi lehetővé
GATE CHECK	£105	kapcsoló, a FET tranzisztorok ve-
		zérlő elektróda /gate/ áramának el-
		lenőrzésére szolgál .
	•	× ×

	(A)	
LCCPING	P201	a potenciométerrel az esetleges szórt kapacitások hatása kompen- zálható a kis munkaponti árammal táplált alkatrész karakterisztikáján
OPF .	S204	háromállásu kapcsoló, a mérő befogóban elhelyezett vizsgálandó
		alkatrészekre kapcsolja a beállitott paramétereket. Ugyanakkor felépi- tésénél fogva megakadályozza a fe- szültség alatt lévő mérő befogó kinyitását, ezáltal védelmet nyujt a kezelő személynek.
B E B	802	a mérő befogó csatlakozója

A hátlapon található kezelőszervek a 3. ábrán láthatók.

FUSE	Fl	hálózati biztositó
(8)	52	feszültségválasztó
	SOI	hálózati csatlakozó
	S03	26 pólusu csatlakozó a nagyáramu
		méréseket biztositó tartozékok
		csatlakoztatására

7.2. Óvó rendszabályok

7.2.1. A hálózati feszültségválasztó átkapcsolása

A készülék üzembehelyezése előtt ellenőrizni kell a hálózati feszültségválasztó állását. A gyár a készüléket 220 V feszültségre állitva
szállitja. 110 vagy 127 V-ra való átkapcsolás a készülék hátlapján
lévő feszültségválasztó /S2/ átdugaszolásával lehetséges.
Átkapcsolás után a készülékhez mellékelt 110/127 V-hoz tartozó olvadó
biztczitó betéteket kell a FUSE feliratu biztositék-tartóba helyezni.

7.2.2. A készülék és a vizsgált alkatrész védelme

Először is hangsulyozni kell, hogy a készüléket rendeltetésétől eltérő

on használni, pl. átütésvizsgálatra, vagy hosszúidejű alkatrésznelésre /"égetésre"/ szigoruan tilos, mivel az ilyen üzem jelenen növeli a meghibásodás valószinűségét, ill. nagy áram, vagy
y disszipáció esetén termikus károsodást is eredményezhet. A kélék tartós és megbizható működése megköveteli, hogy - különösen
máram, feszültség vagy disszipáció esetén - a kezelőszervek beltesa, a kollektorfeszültség kivánt értékre való növelése után
ljart megtörténjék a karakterisztika kiértékelése, majd a kollekleszültség C-ra való csökkentése.

ELECTOR SUPPLY VARIABLE kezelőszervet /T2/ csak a mérés alkalmácélszerű felcsavarni, a kapcsolók kimélése érdekében. A HOR. 3/DIV. /S301/ és a COLLECTOR SUPPLY + AC ± DC /S302/ kapcsolókat LIECTOR SUPPLY VARIABLE /T2/ kez-lőszerv lecsavart állapotában ad átkapcsolni.

-nál nagyodb kollektoráramot nem szabad beállitani a készüléken!

setül a készülek és a vizsgált alkatrész védelme érdekében cél
negjegyezni, hogy a munkaponti feszültséget a következő kezelővek változtatják meg: COLLEGGOR SUPPLY VARIABLE és HOR.VOLTS/DIV;

skaponti áramot pedig: STRP AMPLITUDE, BASE STEPS, SERIES RESISTOR.
sivül ügyelni kell a két polaritáskapcsoló állására /COLLECTOR

II ± AC ± DC és STRP FOL./, mivel helytelen polaritás a vizsgált
la töndremenetelet okozhatja.

19 ALI LITUDE /8103/ kapcsoló feszültség-kalibrált állássiban ajáncsak FET transisztorokat vizsgální. A 2 V-os állásban a forrásallas negyon kis értékü, az áramot csak az FlOl olvadóbiztosító cossa. 8. A KÉSZÜLÉK HASZNÁLATA 8.1. Üzembehelyezés

A készülék hálózati kapcsoló segitségével történő bekapcsolásával egyidejüleg maximális fényerővel bekapcsolódik a képernyő raszter kivilágitása is, jelezve a készülék bekapcsolt állapotát.

A raszter kivilágitás csökkentése a hálózati kapcsolóval egybeépített potenciométer jobbraforgatásával történik.

A készülék a bezapcsolás után 2-3 perccel üzemzépes, de érzékenyebb vegy pontosább meréseknél ajánlatos kivárni a 30 perc bemelegedési időt. A készülék általánosságban az I = f /U/ függvénykapcsolat megjelenítésére alkalmas. A vinsgálható alkatrészek: ellenállások, diódák, Zenerdiódák, thyrisztorok, kis- és nagy teljesítményű tranzisztorok. A mérések a leggyakrabban használatos földelt emitteres kapcsolásban történnek:

$$I_C = f / U_{CE} / I_{E}$$

Az üzembehelyezéssel kapcsolatos kezelőszervek a készülék előlepján /2. ábra/ találhatók.

A készülék bekspcsolását a MAINS OFF kapcsolóval kell elvégezni. A COLIECTOR SUPPLY VARIABLE /T2/ teljesen lecsavært állásban legyen, az OFF kapcsoló pedig középállásban.

A képernyőn megjelenő fénypontot az INTENSITY, a FCCUS, az ASTIGM., a dCR.POS. és a VERT.POS. kezelőszervekkel kell beállitani.

Első vagy hosszabb tárolás utáni újbóli üzembehelyezésnél célszerű a következő beállításokat elvégezni.

A V_{CE}-V_{BE} kapcsoló V_{BE} állásában a STEP AMPLITUDE kapcsolóval 2 V-os jelet lehet a vizszintes erősítőre kapcsolni. A BASE STEPS kapcsolót célszerű 10 lépcső állásba kapcsolni, a HCR. VOLTS/DIV kapcsoló 2 V/DIV. állásban legyen. Ekkor a képernyőn vizszintesen 10 fénypent rajzolódik ki. Ha ez megjelenik, akkor mind a lépcső generátor, mind a vizszintes erősítő működik. A STEP AMPLITUDE /S103/, HCR. VCLTS/DIV /S301/, BASE STEPS /S101/, STEP POL /S102/, OFFSET /P103/, ONE CURVE /S104/ kezelőszervek működtetésével azok funkciója szerint változnia kell az ábrának. A ONE CURVE kezelőszerv csak 2-nél nagyobb lépcsőszámok beállítása mellett hatásos.

A kollektor tápegység műküdése ellenőrizhető, ha az S203 kapcsolót V_{CE} állásba kapcsolva a T2 toroiddal feszültséget adunk a vizszintes erősitőre. Ekkor a képernyőn vizszintes vonal látható, ha az S202 \pm AC állásban van, mig \pm DC állásban fénypont tolható el a T2-vel.

8.2. Uzemeltetés 60 Hz-es halózetról

A készülék 60 Hz-es hálózatról is üzemel, de mivel 50 Hz-es hálózatra lett beállitva, esetleg szükség lehet a Flúl és Fl04 potenciométer állitására /lásd a 4.3.1. pontot/.

8.3. Negyáramu mérési összeállitás

A külön tertozésként, rendelnető TR-4805-3 /Type 1575-3/ Nagyáramu Adapter és TR-4806-3 /Type 1576-3/ Nagyáramu Betétegysés segítségével megvalósuló nagyáramu méresi összeállítás teljes leírása a fenti tertozékok hásznalati utasításában talalható.

8.4. Mérések

A TEST ADAPTER-be belyezett tranzisztor tipusától függően kell beállitani a COLLECTOR SUEPLY \pm AC \pm DC és STEP POL. kapcsolókat. Az S203 kapcsoló $V_{\rm CE}$ állasban legyen. A STEP AMPLITUDE kapcsolot célszerű a legkisebb bázisáranu értékre beállitani.

A vizsgált tranzisztortól függően kell beállitani a VERT. CURRENT/DIV. és HOR. VOLTS/DIV. kapcsolókat, valamint a SERTES RESISTOR értékét. A vizszintes eltáritő feszültség és a sorcs korlátozó ellenállás együttesen meghatározzák a meximális disszipációt, amit a FEAK WATTS jelzőlámpák mutatnak. /O,l W max. disszipáció esetén egyik jelzőlámpa sem világit./ Valamely beállitott maximális disszipáció értékhez öszszetertozó feszültség és ellenállás értékek tartoznak, ezért a HOR. VOLTS/DIV és a SERIES RELISTOR kapcsoló 10 W, 2 W és 0,5 W max. diszszipáció értéknél együtt fut.

Egy:mástól független beállitás - más disszipáció értékre való lépés - a SARIES RESISTOR kapcsoló benyomott állapotában lehetséges. /0,1 W max. disszipáció esetén nincs együttfutás. /

Letörési feszültség alatti mérés esetén célszerű a SERIES RESISTOR értékét mindig a teljesítmény által megengedhető legkisebb értékre állitani, hogy a kollektor tápfeszültség keveset változzon. Letörési feszültség mérése esetén a vizsgált eszköz védelmét a SERIES RESISTOR látja el, igy értékét a vizsgált eszközre megengedett maximális áram szabja meg.

Az S204 CFF kapcsolóval a vizsgalandó tronzisztor feszültség alá helyezhető. A COLLECTOR SUPPLY VARIABLE gombbal a HCR. VCLLS/DIV. állásnak megfelelően O-tól növelhető feszültséget lehet a tranzisztor kollektorára kapcsolni. A tranzisztor sollektoráramát a STEP ALPLITUDE kapcsolóval lehet változtatni, és a kollektoráramót a VERT.CURRENT/DIV. méréshatárváltóval kell a képernyőn a kivánt léptékben megjeleníteni. A BASE STEPS kapcsolóval az abrázolt karakterisztika görbélnek száma állithető be. A CME CURVE gozó benyemett állapotában a görbesereg helyett a BASE STEPS kapcsolóval beallitott egyetlen görbe rejdolódik fel. Az OME CURVE kezelőszerv csak 2-nél több lépcső beállitása esetén működik, két lépcső beállitásánál mindig két görbe láthato. A görbesereg legalsó görbéje az OFFSET potenciométer nelyes beállitásanor az alapvonalat jelzi. A zérus bázisaramhoz tartozó görbe úgy állithato be, hogy az OFFSET potenciométerrel az első görbét addig kell lefelé szabályozni, amig a görbe követi a szabályozást.

A VERT. CURRENT/DIV. méréshatárváltó NC BASE ETERS állassiban a vizsgált elem nem kap bázis vezérlő feszültséget. Ezen méréshaturok dibdák
záróirányu áramának vizsgálatára, egyéb kis szivargasi, záróiranyu áramok mérésére szolgálnak. Kis kollektoráramu beállitás esetén a ICCPING
/P201/ potenciométerrel szükség esetén kompenzálni lehet a szórt jelek
hatását.

PNP és NFN tranzisztorok mérése között a különöség czupán a COLLECTOR SUPPLY kapcsolóval beállitható kollektorfeszültseg előjele és a ETAP POL. kapcsolóval beállitható bázis vezérlőjel előjele között van. FET mérése hasonlóan történik, csupán a ETEP AMPLITUDE kapcsolóval feszültség lépcsőket kell a gate elektrodára kapcsolni. A gate áran ellenőrzésére szolgál a GATE CHECK nyomógomb. Jó minőségű FET esetén nagyon kicsi a gate áram, ílyenkor a nyomógomb benyomásával a rajzelt karakterisztika nem változik. Magy gate áram esetén a gomb benyomásakkor a rajzolt karakterisztika függőleges méreteiben csökken.

Tranzisztorok, FET-ek vizsgálatakor a STEP AMPLITUDE kapcsolóval beállitható a bázis-emitter ill. gate-source rövidrezárt állapot az S.C. állásban, az O.C. állásban pedig szabadon marad a bázis ill. gate elektróda. Párválogstás esetén az OFF kapcsolóval a TEST ADAPTER-be helyezett két tranzisztor karakterisztikája összehasonlitható.

A COLLECTOR SUPPLY kapcsolót + DC vagy - DC állásba kapcsolva /a vizsgált tranzisztortol függően/ a mérések kollektor egyenfeszültséggel történnek. Ez esetben a rajzolt görtesereg csak a karakterisztikának

- . VCITS/DIV. és a COLLECTOR SUPPLY VARIABLE Rezelüszervekkel bestt $\hat{\nu}_{C}$ kollektorfeszültséghez tartozó pontjaiból áll /7. ábra/. üzenmód különösen kis áramok esetén ajánlott.
- elepvetőbb mérés a transisztor áramerősítési tényező mérése. Ekterisztikaseregről könnyen leolvasható, hogy az adott $\mathbf{U}_{\mathbf{C}}$ és $\mathbf{I}_{\mathbf{C}}$ pontok környezetében a STEP AMPLITUDE által beállított $\mathbf{I}_{\mathbf{B}}$ lépcsőlés hatására mekkora A $\mathbf{I}_{\mathbf{C}}$ változás lép fel. $\mathbf{I}_{\mathbf{C}}$ értétét a VERT. MYDIV. méréshatárváltóval lehet könnyen beállítani és a képernyő rén leolvasni /8. ábra/.
- ezt /kiértékelést/ zaverhatja az ábra vibrálása. Ennek egyik előle a hálózati szinuszos feszültség torzitása.
- vibralas lecsökken vegy megszünik, ha párosszámu, de leginkább, ha 8 görbet /lépcsőszámot/ állitunk be.
- ob léposöszámmál /S-10/ a képernyő véges utánvilágítása miatt inető bizonyos vibralás. Kis áramoknál /tranzisztorok esetében pl. /uA/osztás érzékenységnél/ a műszaki adatok által megengedett értelüli, de mégis zovaró hálózati frekvenciáju szorás jelentkezik rán. Ilyenbor, pl. áramerősítési tényező mérésnél, célszerű két b olozua kétszeres A I változás leolvasásával kiszámitani a remerősítési tényezőt.
- ob feszültség ráadásakor a vizsgált eszközre a felrajzolt ábra abli /kisfeszültségü/ részének megváltozása észlelhető. Az ábra t ilyenkor a kiértékelésnél nem kell figyelembe venni, mig ha az 1-5 V-os szakaszra vagyunk kiváncsiak, megfelelő /0,1-0,5 V/cszerzékenységre kell állitani a vizszintes erősítőt.
- lépcsöváltáskor a katodsugárcső árama változatlan, /nincs sugártás/ az abra jobb oldalán az egyes vonalszakaszok vége egymással sze van kötve, ami főleg nagyobb fényerőnél látható. Ezt a kitelésnél természetesen figyelmen kivül kell hagyni, mivel nem a alt eszköz tulajdonsága.

9. JELLEGZETES HEGHTBÁSODÁSOZ ÉS MEGSZÜNYETÉSÜK

9.1. Ovór mászabályok a javitás előtt, alatt és után

A 6. és 7. pontoan leirtak maradéktalanul érvényesek. Amennyiben a készülék bekapcsolása szükséges mérő befogó nélkül, külön figyelmet kell fordítani a "C" pontokon megjelenő feszültségre, melynek nagyságát S301 /HOR. VOI®S/DIV./ és T2 /COLL., SUFFLY VARIABLE/ szabályozza.

A készülék kidobozolása esetén bekapcsolt állapotban a következő alkatrészeken van mindig veszélyes feszültség: T1, T2, T3 transz-formátor, S301 kapcsoló és a hozzátartozó áramköri elemek, C5C1, 5C5, 5C7, 508, TR3O1, 3O2, 4O1, 4C2 és a hozzátartozó egyéb áramköri elemek, valamint a katódsugárcső és annok feszültségét előállitó elemek /T5O1, T5O2, TR5O3, D5O7, 5O8, 511, 512, P5O1, 5C2, 5C3, 5O4 stb./

Egyes alkatrészeken csak akkor van veszélyes feszültség, ha ez 5301 kapcsolóval és a T2 toroid transzformátorral nagy feszültséget állítunk be /5201, 202, 203, 204, P201, stb./. Természetesen figyelembe kell venni, hogy a meghibásodás révén egyébként veszélytelen ponton is veszélyes feszültség jelenhet meg.

9.2. Funkcionális ellenőrzés, hibajavitás

Célszerű egy gyors méréssel ellenőrizni, hogy a készülék minden áramköre működik-e, és a megfelelő kapcsolatban vannak-e egymással. Ezt egy ábra beállitásával lehet a legkönnyebben és leggyorsabban elvégezni a kapcsolók következő beállitásában:

S301	2 V/div
S201	65 Ω
S203	${f v}_{ m CE}$
\$202	+AC
S204	ON
S101	10 lépcsőszám
S103	1 mA
£401	l mA/div

erő befogót eltávolitva és a föld - B pontok közé rövidzarat mezve a T2-vel vizszintes eltéritő feszültséget kell beállitani. er 10 gorbéből álló "karakterisztika"-sereg látható. Ezután minden előszervet maködtetni kell és az ábra alapján kiértékelhető a ödés helyessége.

yelem! Az S103-st 2 V állásba kapcsolni nem szabad! /Az F101 biztositék kiéghet./

utinszerű vizsgálattul könnyen és gyorsan behatárolható a hibarás helye:

öld- B rövidzárat meg kell szüntetni, majd sz £203 /V_{CE}-V_{BE}/ kapló V_{BE} állásában sz £103 /£TEP AMPLITUDE/ kapcsolóvál 2 V-os jelet
let a vizszintes erősítőre kapcsolni. Az S101 /BASE £TELS/ kapcsocélszerű 10 lépcsőállásba kapcsolni, az S301 /HOR. VOLTS/DIV.
pcsoló 2 V/DIV. állásban legyen. Ekkor a képernyőn vizszintesen
fénypont rajzolódik ki. Ha ez rendben ven, akkor mind a lépcső gecátor, mind a vizszintes erősítő működik. Az £103, £301, £101, £102,
13, £104 /£TEP AMPLITUDE, HOR.VOLTS/DIV, BASE £TEPS, £TEP PGL,
fS£T, CNE CURVE/kezelőszervek működtetésével további részletesebb
lvilágosítast lehet kapni a kérdéses árankörökről, a kezelőszervek
ködését a képernyőn ellenőrízve.

függőleges erősítő is hasonlóan ellenőrizhető, ha a TEST ADAPTER távolitása után a B és 1/föld/ jelü csatlakozási pontoka összekötez S204 /OFF/ kapcsolóval az előzőekhez hasonlóan 10 lépcsőjelet atolunk a függőleges erősítőre. Az S401 /VERT.CURRENT/DIV./ kapcsoló zölése a képernyőn ellenőrizhető.

kollektor tápegység működése ellenőrizhető, ha az S203 / V_{CE} - V_{BE} /pcsolót V_{CE} állásba kapcsolva a T2 /COLLECTOR SUPPLY VARIABLE/ toiddal feszültséget adunk a vizszintes erősítőre. Ekkor a képernyőn zszintes vonal látható, ha az S202 /COLLECTOR SUPPLY \pm LC \pm AC/ AC állásban van, \pm DC állásban fénypont tolható el a T2-vel. A TEST APTER eltávolitása után, a föld-C csatlakozási pontok között oszlloszkóppal kivülről is megmérhető a kollektorfeszültség, éspedig DC állásban egyenfeszültség, \pm AC állásban a kétoldalasan egyenírátott hálózati feszültség.

vel az áramkörök legfontosabb pontjai egy-egy kezelőszervvel az előpon elérhetők, a hiba behatárolása minden külső műszer nelkül nagyon innyű.

jól behatárolt hiba a működés ismeretében egyszerűen és könnyen avitható.

Amennyiben valemelyik biztosító betét égett ki, czeréje előtt meg kell vizsgálni, mi okcata a kiégést, és meg kell szüntetni az okot. Az FIC1, F4C1 kiégését legtöbbször helytelen mérési beállitás okozza, mig a többi biztosító betét kiégése valószinüleg belső meghibásodás eredménye.

10. MUSZAKI KARBANTARTÁS

Rendeltetésszerű használat esetén a készülék külön karpantartást nom igényel.

Javitás illetve egyes elemek cseréje után esetleg szükséges beállitások leirása a 11. fejezetben található.

11. A MUSZAKI ALIAPOT ELLENČRZĖSE

11.1. a műszaki állapot ellenőrzésének gyakorisága és körülbényei

A múszaki állapot ellenőrzésére évente egyszerinél gyakrabban nincs szükség. Clyan javítások után, amelyek a műszaki állapot megvalto-zását okozhatták /pl. amelyek az egyes szabályozó elemek új beállitását igényelték/ szintén szükséges az adott részegység műszaki állapotanak ellenőrzése.

A műszski állapot ellenőrzése során a készüléket 220 V ± 1 %, 50 Hz ± 1 %, kistorzitásu /max. 5 %/ hálózatról 23 $\pm 2^{\circ}$ C hőmérsékleten kellűzemeltetní.

11.2. A vizszintes erősitő ellenőrzése

11.2.1. Szükséges műszerek

M-1 Digitális voltmérő 0,2 V-1000 V méréshatárral, 10 M 0 bemeno ellenállással, ±0,2 % pontossággal pl. TR-1657 /Type 1464/

11.2.2. A mérés menete

10 W-os méréshatárokban az S301 összes állásában a fenypentet lecsavert T2 mellett 1P301/a-val /HCR.POS./ a katódsugárcső közepvenelában az 1. raszterra /0-ra/ kell állitani, majd T2-vel végkitérésre.
A C-E pontok között M-el kell mérni a feszültséget. S202 +DC,
S401 0,2 A állásban legyen. A leolvasott feszültség feleljen meg az
S301 kapcsoló állasából adódónak /pl. 0,5 V/osztás állásban 5 V/.
Megengedett eltérés ± 5 %.

11.2.3. Esetleges beállitások

Ha 2 V vagy l V/osztás állásban a pontosság nem megfelelő, beállitása P304-el történik. Ha ezek után 0,1 V/osztás állásban nem megfelelő a pontosság, R301 ellenállás cseréje szükséges.

3. A függőleges erősitő ellenőrzése

5.1. Szükséges műszerek:

/lasd s 11.2.1. pontot/ /0,1; 1; 10; 100. 1000 Ω \pm 0,5 % süntök, pl. U-1 sönvjei/ 10, 101; 1111 & Ω +C,5 % ellenállások, mint söntök h-l-hoz Folyamatosan saubalyozható egyenfeszültmégű tapegység 2 A , terhelhetűséggel, pl. TR-9162/B Sparabelem vogy akkumulator /1 rells/, ellemailas, kondenuator, potenciométer, kaposoló a 22. ábra sperint.

3.2. A mérés menete

1. ábra szerinti összekötést kell megyalósitani. 8202 +AC, 8301 Vosztás, T2 lecsavort állapotban legjen. Az S4Cl összes állásában 2 A/osztás-sal kezdve/ M4/M5 O kimenő feszültség értékénél "O"-ru katódsugárcsó középvonalában a legalsó raszterra/ kell állitani 1/B-vel /VERP.FCD/ a fény-pontot, majd M4/M5-tel végkitérésre. Ill-goel a magfelelő $R_{\rm g}$ söntellenálláson mért áramérték feleljen j a kapcsoló állásából adódónak /pl. 5 mA/osztás állásban 50 mA/. engedett eltérés ± 5 % ± 10 nA. l A - 0,5 mA/osztás állásban az M4, 0,2 mA-10 /uA/osztás állásban

N5 "1" Kaposoló helyzetben, 5 /uA- 5 nA/osatás állásban az M5 ' kapcsoló helyzetben alkalmazandó.

3.3. Esetleres beallitások

10 /uA vagy 20 /uA/osztás állásban a pontosság nem megfelelő, Elitása P4C4-gyel történik. Ha ezek után 5 nA/csztás állásban i megfelelő a pontosság, R426 ellenállás cseréje szükséges.

.4. A léposogenerator ellenorzése

.4.1. Szükséges műszerek

/lásd a 11.2.1. pontot/ /lásd a 11.5.1. pontot/ 3/a /10 k Ω \pm 0,5 % ellenállás/

M-6 Cszcilloszkóp, DC csatolásu, 50 mV/cm érzékenységü, pl. TR-4653 /Type 1555/

11.4.2. A mérés menete

11.4.2.1. Nullazás /M-1, M-6/

A kezelőszervek az alábbi állásban legyenek:

S101	2
\$102	11_11
\$103	2 V
S104	ONE CURVE
S203	$\mathtt{v}_\mathtt{BE}$
S301	0,1 V

M-l és M-6 a B-E pontokra kapcsolandó /E a "hideg" pont/. Pl03-mal /CFFSET/ addig a határhelyzetig kell szabályozni, amig a készülék képernyőjén a két fénypont eggyé olvad össze, az oszcilloszkópon pedig a négyszög amplitudója közel 0-ra csökken /egyenes vonallá válik/.

11.4.2.2. Lépcsőfeszültség-linearitás ellenőrzése /M-1/

Helyes nullázás után /11.4.2.1. pont/ az S101 különböző állásaiban a következő értékeket kell mérni M-1-gyel; annak 20 V állásában:

S101	M-1 /V/
3	02,00
4	04,00
5	06,00
6	08,00
7	10,00
8	12,00
9	14,00
10	16,00

A megengedett eltérés +2 % +4 digit.

11.4.2.3. A feszültségosztó ellenőrzése / 11-1/

S101-et "3" állásba kapcsolva P103-mal /CFFSET/ 2,000 V-ot kell beállitani M-1-en.

S103 különböző feszültség-állásaiban a következő értékeket kell mérni M-1-gyel:

£103	M-1 /	Megengedett	eltérés	/digit/
2 V	2,000	1.00		
1 V	1,000	<u>-</u> 15		
C,5 V	0,500	±7		
0,2 V	0,2000	±30		
0,1 V	0,1000	<u>+</u> 15		

11.4.2.3. Az áramlépcső amplitudo pontosságának mérése /M-1,M-2,M-3/a/

S101-et "10" állásba kapcsolva P103-mal 20,00 V-ot kell beállítani L-1-en, S103 20 má állásában.

S103 különböző áram-állássiban a következő értékeket kell mérni M-1-gyel, az M-2 ill. M-3/a söntellenállásokon:

s103	M-2, M3/a / Ω /	M-1	Megengedett eltérés /digit/	_
20 mA		198,0 mA	± 30	
10 EA	1	099,5 mA	<u>+</u> 15	
5 mA	'	050.0 mA	<u> </u>	_
2 mA		19,80 mA	± 30	
1 mA	10	09,95 mA	± 15	
0,5		05,00 mA	± 7	
0,2	n à	1,980 mA	+ 50	-
C,1 r	300	CENTRAL DESIGNATION OF THE PERSON OF THE PER	± 50	
		С,995 шА	± 15	
50 mA	<u></u>	0,500 mA	+ 7	_
20 Jul	4	198,0 /uA	± 30	
10 /4		099,5 JuA		
5 /4		050,0 JuA		
2 /4	A	19,80 /uA	<u>+</u> 30	_
1 / u	10 k	09,95 JuA		
0,5	ıA.	0,500 JuA	± 7	
0,2	1Å	02,00 JuA		
		02,00 Jun	± 4 ′	_
1575			55	

11.4.3. Esetleges beallitások

Amennyiben a lépcsőfeszültség linearitása nem megfelelő /ll.4.2.2. pont/, PlO2 potenciométerrel állitható be az 5101 "lo" állásában a 16.00 V érték /nullázás után/. Ha a linearitás igy sem kielégitő, meg kell mérni a +24 V tápfeszültséget. Ha annak értéke a névlegesnél kisebb, a DlO5 pozicióba sziliciumdiódát helyezve kb. 0,4 V feszültségnövekedést érhetünk el. Ha nagyobb a feszültség, DlO5 diódát rövidzárral helyettesítve kb. 0,3 V-tal csökken a kimenő feszültség. Ezután PlO2-vel újra be kell állíteni /nullázás után/ a 16.00 V értéket.

12. TÁROLÁSI SZABÁLYOK

A készüléket az 5.1. pontnak megfelelően becsomagolt és leragasztott állapotban olyan raktárhelyiségben, ill. olyan külső körülmények között kell raktározni és szállitani, melyek az alanti előirásoktól nem térnek el:

Környezeti hömérséalet:

-25°C ... +55°C

Relativ légnedvesség:

max. 98 %

Légnyomástartomány:

0,6-1,06 bar

A készülék hosszú idejű raktarozása különleges óvintézkedést nem tesz szükségessé.

Raktározás után a készülék kicsomagolva és hálózatra csatlakoztatva üzemi körülmények között azonnal üzemképes.

O°(alatti hömérsékleten történt roktarozás után, használatba vétel előtt a készüléket célszerű állandósitó légtérbe helyezni és ott tartani, mindaddig, mig hőmérséklet-egyensulyba jut, és csak ezután üzembehelyezni.

MELLEKIETEK

Tömbvázlat	/1. utra/
Előlap a kezelőszervekkel	/2. abra/
Hátlap a kezelőszervekkel	.3. ábra/
Belső elrendezés	/4, 5, 6. ábra/
Karakterisztika kiértékelés	/7, d. ábra/
Funkcionális tömbvázlat	/9. abra/
Idődiagram	/10. ábra/
Lépcsőgenerátor kapcsolási rajza	/11. ábra/
Kollektor tápegység kapcsolási rajza	/12. ábra/
Vizszintes erősitő kapcsolási rajza	/13. ábra/
Függőleges erősitő kapcsolási rajza	/14. ábra/
Tápegység kapcsolási rajza	/15. abrs/
Vizszintes erősitő, függőleges erősitő és a táp-	**
egység nyomtatott áramköri rajza	/16. ábrs/
Lépcsőgenerátor nyomtatott áramköri rajza	/17. ábrs/
Kollektor tápegység nyomtatott áramköri rajza	/18. ábra/
1575-1 nyomtatott áramköri rajza	/19. ábra/
1575-2 nyomtatott áramköri rajza	/20. ábra/
Mérési összeállitás	/21, 22. ábra/
Tekercselési adatok /T1, T3, T501, T5021, L401/	

ETEX

elési adatok

álózsti transzformátor

:zetés -2 :-21	Huzal Ø /wm/ 0,45 0,45	Menetszám 270 63	Uresjárási 1892. 55 13	\ A \
1-3	0,45	207	_ 42	
- 5	0,45	540	110	
:-6	0,6	84	17	
7	folis 0.05	1	-	
3-9	0,12	1100	220	
-11	C,45	110	22	
1-13	0,15	100	20	
14	fólis 0.05	1	-	
5-16	0,35	90	18	
3-17	0, 45	40	8	
7 -1 6	0,45	40	8	
3-19	0,35	90	18	
20	fólia 0,05	1	-	

lok szigetelése zománc

ranszformátor

ezetés 1-2	0,5	ienetsaam 175	Üresjárási fesz. /V/ 42
2-17	9,5	55 1	13
3	folis 0.05	_	-
- -5	0,14	768	183
<i>5</i> −6	0,1	1100	267
7-8	0,1	1100	267
5-9	O,14	<u> 3</u> 84	91.5
) -1 0	Ü , 2	192	45,7
D-11	0,3	96	22,9
1-12	0,6	48	11,4
2-13	. 0,3	24	5,7
5-14	0,8	12	2,85
4-15	0,8	12	2,85
16	folis 0.05	1	
	etelése zománc		
75			131

3/ T501 Transzformátor /40 Miz/

Kivezetés	Huzel Ø /mm/	Menetszám	Uresjárási fesz. /Y/	Legjogyzás
1-2	0,2	4,5	11	
3-4	0,2	2	4,7	
5-6	0,1	400	930	kereszttekercselés
7-8	sodrat 0,5 m2	3,5	8,2	

A huzalok szigetelése zománc és 2 x selyem, kivéve a sodratét, amelynek \emptyset 1 mm polietilén szigetelése van.

4/ T5G2 Transzformátor /impulzus/

Kivezetés	Huzal Ø /mm/	Menetszám	Induktivitás +30 % -20 %	/mii/
1-2	0,12	170	110	
3-4	0,12	170	110	

5/ L401 Tekercs

Kivezetés Huzal
$$\sqrt[g]{\text{mm}}$$
 Menetszám Induktivitás /mH/ ± 10 % 3-4 0,08 600 150

A T502 és L401 huzal-szigetelése zománc.

MELLÉKLETEK APPENDICES ANHANG ПРИЛОЖЕНИЯ

ALKATRÉSZJEGYZÉK PARTS LIST SCHALTTEILLISTE LISTE DU MATERIEL СПЕЦИФИКАЦИЯ ДЕТАЛЕЙ

		1	
RF	fémrétegellenáliás	metal-film resistor	Metallscnichtwiderstand
ХS	szénrétegellenállás	crystal-carbon resistor	Kohlenschichtwiderstand
RT	tárcsaellenáilás	disc resistor	Scheibenwiderstand
RH	huzaiellenállás	wire-wound resistor	Drahtwiderstand
RPH	preciziós huzaleilenállás	precision wire-wound fesistor	Prazisions-Drahtwiderstand
RZ	zománchevonatu huzalellen-	wire-wound resistor	Drahtwiderstand
	Allie	(enamelled)	
	N K-sl // W		Durchtmarant and attack
PH	huzalpotenciométer	wire-wound potentiometer	Drahtpotentiometer
PR	réteg potenciométer	film-type poventiometer	Schichpotentiometer
CP	:-ba-d:	paper capacitor	Papierkondensator
CC	papirkondenzátor csillárnkondenzátor	mica capacitor	Glimmerkondensator
CK	kerimia kondenzator	ceramic capacitor	Keramikkondensator
CE	elektrolit kondenzator	electrolytic capacitor	Elektrolytkondensator
CS	styroflex kondenzitor	styroflex capacitor	Styroflexkondensator
CMP	fémezett papirkondenzátor	metallized paper capacitor	Metallpapierkondensator
CMF	fémezett müanyagióliás	metallized plastic foil	Metalikunstoff-Folien-
C.H.	kondenzátor	capacitor	kondensator
CML	férnezett lakkfilm kondenzátor	metallized lacquered capacitor	Metallisierte-Kunststoffkon- densator mit Lackfolien
CMS	fémezett styroflex kondenzátor	metallized styroflex capacitor	Metailstyroflexkondensator
CT	trimmer kondenzátor	trimmer capacitor	Trimmerkondensator
CME	férnezett poliészter kondenzátor	metallized polyester capacitor	Metalipolyesterkondensator
CET	tantál elektrolit kondenzátor	tantal electrolytic capacitor	Tantalelektrolytkondensator
CFE	poliészter kondenzátor	polyester capacitor	Polyesterfolienkondensator
			_100
V	elektroncsó	tube	Röhren
NJ	számjelző eszközők	numerical indicators	Ziffernanzeigen
D	dióda	diode	Dioden
Se	szelén egyenirányitó	selenium rectifler	Selen
TR	tranzisztor	transistor thermistor	Transistoren
Th	termisztor		Termistor
IC	integrált áramkör	integrated circuit	Integrierte Stromkreise
XL	kristály	crystal	Schwingquarz
So Di	csatlakozó aljzat	socket	Buchse Stecker
Pl T	csatlakozó dugó transzformátor	plug connector transformer	Transformatoren/Übertrager
L		inductivity, coil	Spulen
A	induktivitäs akkumulätor	rechargeable battery	Sputen Batterie
REG	regisztráló	recorder	Schreiber
, and	r eganori alu		wass wowell
8			6
F	biztositó betét	fuse	Sicherungseinsatz
н	hallgató	headphone	Kopfhörer/Ohrhörer
Hx	hangszóró	loudspeaker	Lautsprecher
RY	jelfogó	relay	Relais
J	jelzőlámpa	pilot lamp	Signallampe
G	parázsfénylámpa	glow discharge lamp	Glimmlampe
s	kapcsoló	switch	Schalter
мот	motor	motor	Motor
MOI			
В	telep	battery	Batterie

...

sistance à couche métallique	резистор метадиизированный	RF
sistance à couche de carbone	резистор углеродистый поверхностный	RK
sistance à disque	резистор дисковый	RT
sistance bobinée	резистор проволочный	RH
sistance bobinée de précision	резистор прецизионный проволочный	RPH
sistance émaillée	резистор проголочими с эмалевым покрытием	RZ
tentiomètre bobiné	резистор переменный проволочный	РН
tentiomètre à couche	резистор переменный углеродистый	PR
ondensateur au papier	конденсатор бумажный	CP
ndensateur au mica	конденсатор сдрдяной	cc
endensateur céramique	конденсатор керамический	CK
endensateur électrolytique	конденсатор электролитический	CE
endensateur au styroflex	конденсатор полистирольный	CS
ndensateur au papier métallisé	конденсатор металлизированный бумажный	СМР
endensateur à feuille en matière synthétique metallisé	конденсатор металлизированый с пластмассо- вой фольгой	CMF
métallisé	металлизированным конденсатор на лакопле- ночной основе	CML
endensateur au styroflex métallisé	конденсатор полистирольный металлизированный	CMS
indensateur trimmer indensateur au polyester métallisé	конденсатор подстроечный металлизированный полизфирам2 конденсатор	CT
indensateur au polyester metallise	эдектродитический танталовый конденсатор	CET
ondensateur au polyester	подирими конденсатор	CFE
and Alexander		
.pe électronique dicateur numérique	электронная дампа	V L
ode	цифровой индикатор диод	D
edresseur au sélénium	выпрямитель селеновый	Se
ansiator	транзистор	TR
ermistor	термистор	Th
reuit intégré	интегральная схема	ic
ristal	кварцевый резонатор	XL
puille	разъем	So
che	mtenceab	Pi
cansformateur	трансформатор	T
obine	катушка индуктивности	L
ccumulateur	аккумудаторная батарея	A
nregistreur	регистратор	REG
ssible à tube en verre	предохранительная вставка	F
couter	наушних	Н
aut-parleur	громкоговоритель	Hx
elais	реде	RY
impe-témoin	сигнальная дампа	J
impe à effluves	лампа тлеющего разряда	G
ster. upteur, selecteur, commutateur	de la	S
oteur	мотор	мот
atterie	батарея	В
idicateur	стредочный прибор	м

Minden mérőkészülék - a megbizhatóság és a müszaki adatokban előirt határértéken belüli nagyobb pontosság érdekében - gondos egyedi méréssel és beszabályozással készül. Ennek következtében előfordulhat, hogy a készülékek a mellékelt alkatrészjegyzéktől eltérő értékü alkatelemeket is tartalmaznak.

With a view to reliability and increased accuracy within the specifications, each unit has been subjected to careful individual control measurement and alignment. Therefore, it may occur that an instrument includes components with ratings slightly different from those given in the Parts List below.

Jedes Gerät wird im Interesse einer höchstmöglichen Genauigkeit und Verlässlichkeit einer sorgfältigen individuellen Messung und Eichung unterzogen. Demzufolge kann es verkommen, dass die Geräte auch Teile enthalten, deren Werte von den in der vorliegenden Schaltteilliste angeführten Werten abweichen.

Chaque appareil de mesure a été fabriqué avec des mesaures et des réglages individuels soignés dans l'intérêt de la fiabilitée et d'une plus grande précision, en-dedans des valeurs limites prescrites dans les caractéristiques téchniques. En raison de ceci il peut arriver que l'appareil contienne des éléments dont la valeur est autre que celle spécifiée dans la Liste du matériel ci-jointe.

Каждый прибор — в интересах достижения более высокой точности в пределах величин, приведенных в технических данных, а также с целью повышения надёжности — подвергается тщательной индивидуальной настройке и наладке. В результате этого может случиться, что приборы содержат и детали, величина которых отличается от величины, приведенной в спецификации деталей прибора.

. 400	´ R →											
No		Ω	%	W	No		Ω	%	¥			
Rici	RF	33 k	5	C,25	R141	RF	100 k	1	0,25			
R102	RF	36 k	5	C,25	F142	RF	60,4k	1	0,25			
E103	RF	8,2 k	5	0,25	R143	EF	20 k	1	0,25			
R104	RF	27 k	5	0,25	2144	RF	10 k	1	0,25			
P105	RF	10k	5	7	R145	RF	€,04 k	<u> </u>	C,25			
R106	RF	100 k	5	C,25	R146	RF	2 k	1	C,25			
R107	RF	100 k	5	C,25	R147	RF	1 k	1	C,25			
R108	RF	33 k	5	C,25	R148	RF	60 4	1	0,25			
R109	RF	100 k	5	C,25	R149	RF	100 k	5	0,25			
R110	RF	47C	5	C,25	R150	RF	mt k	5	0,25			
Rill	RF	4,7 k	5	C,25	R151	R F	220 k	עז עז עז עז אז	0,25			
7.112	RF	4 70	5	C,25	R152	RF	220 k		0,25			
R113	RF	33 k	5	C,25	R153	RF	220	5	0,25			
R114	RF	6,8k	3	C,25	R154	æ	6,8 k	5	0,25			
2115	হুদ	24 k	1	C,25	R155	RF	1 M	5	0,5			
R116	RF	2,15 k	1	C,25	R156	RF	10 k	5	0,25			
2117	RF	4,75 k	1	C,25	R157	RF	10 k	5	0,25			
R118	RF	5,06 k	1	C,25	R158	RF	10 k	5 5 5	C,25			
R119	RF	12,3 k	1	C,25	R159	RF	10 k	5	C,25			
R120	RF	17,8 k	1	C,25	R160	RF	220 k		0,25			
R121	RF	25,5 k	1	C,25	R151	EF	3,3 k	5	0,25			
R122	RF	35,5k	1	C,25	R162	RF	3,5 k	5	0,25			
R123	RF	53,6 k	1	C,25	R154	RF	680	5	C,25			
R124	RF	85,8 k	1	C,25		1						
R125	RF	3,9 k	5	0,25	R201	RF	1 M	5	1			
R126	RF .	3,9 E	5	C,25	E202	RF	1 M	5	1			
R127	RF	1,5 =	2	c,5	R203	a.P	1,5 k	5	0,25			
R128	KF	1,43	1	C.5	R204	RF	100 k	5	C,5			
£129	RF	2,7 k	5	C,5	E205	RF	2,7 M	5	1			
R130	RF	100	1	2	R206	RF	1,2 K	5	1			
R131	HF	100	1	C,5	R207	RF	470 k	5	1			
3132	T.F	100	1	0,25	3208	RF	65 k	5	2			
a133	AF	6C,4	1.	c,25	R209	RZ	15 k	5 5 5	16			
3134	RF	20	1	c,25	R210	RZ	5, € k	5	8			
£135	RF	20	1	C,25	R211	RZ	750	5	8			
R136	RF	6,04 L	1	1	R212	RZ	15C	5	8			
R137	hF	2 1	1	C,5	R213	RZ	56	5	8			
R138	RF	1 1	1	C,5	R214	RF	22	5 5	2			
R139	RF	604 z	1	C,25	R215	RF	22	5	2			
R140	RF	200 k	1	0,25	R216	RF	22	5	2			
		<u> </u>	<u> </u>		<u> </u>	<u></u>		<u>L</u>	/4			

	R											
	Ω	я	W	No		Ω	*	y				
2	10	5	2	R337	RF	3,22 k	1	0,25				
7	10	5	2	R338	RF	69,5	1	0,25				
	10	5	2	R339	RF	3,3 k	1	0,25				
3	10	5	2									
- 1				R401	R F	46,4 k	1	0,25				
3	620 k	5	0,5	R402	RF	5€,4 k	1	0,25				
-	10 M	5	1	R403	RF	32,4 k	1	0,25				
ž.	220 k	5	0,25	R404	RF	10,2 k	1	0,25				
•	9,1 k	1	0,125	R405	RF	5,1 k	1	0,25				
1	2,2 M	5	0,5	R406	RF	3 k	1	0,25				
- 1	100 k	5	0,25	R407	RF	1 k	1	0,25				
	470 k	1	0,5	R408	RF	499	1	0,25				
1			1	R409	RF	3CC	1	0,25				
1	51 k	5	1	R410	RF	2CC	1	0,25				
0.00	51 k	5	1	R411	RF	7,5 k	1	0,25				
	1 k	5	0,25	R412	RF	2,4 k	1	0,25				
10	1 k	5	0,25	R413	RF	590	1	0,25				
40	1,5 k	5	0,25	R414	RF	324	1	0,25				
19.	2,7 k	5	0,25	R415	RF	102	1	0,25				
-	3,3 k	5	0,25	R416	RF	51	1	0,25				
	42,2 k	1	0,25	R417	RF	30	1	0,25				
963	23,2 k	1	0,25	R418	RF	10	0,1 0am	0,5				
	7,32 k	1	0,25	R419	RF	4,99	1	0,5				
	3,57 k	1	0,25	R420	RF	3	1	1				
	2,15 k	1	0,25	R421	RF	1	1	2				
	715	1	0,25	R422	RH	0,5	1					
	715	1	0,25	R423	RH	0,5	1					
	931 k	1	0,5	R424	RF	13 K	1	0,25				
	1 14	1	0,5	R425	RF	130	1	0,25				
	3 №	1	0,5	R426	RF	2,2 M	5	0,5				
	4,99 ₭	1	1	R427	RF	1C M	5	1				
	1,75 k	1	0,25	R428	RF	220 k	5	0,25				
	1,6 k	1	0,25	R429	RF	1,5 k	5	0,25				
	1,04 k	1	0,25	R430	RF	1 k	1	0,25				
	2,61 k	1	0,25	R431	RF	1,2 %	5	0,5				
	348	1	0,25	R432	RF	1,5 k	1	0,25				
	2,93 k	1	0,25	R433	RF	100 k	1	0,25				
	175	1	0,25	R434	RF	51 k	5	1				
	3,1 k	1	0,25	R435	RF	51 k	5	1				
	104	1	0,25	R436	RF	1 k	5	0,25				
_		<u>L</u>	,	<u> </u>			<u> </u>	/4				

R												
No		Ω	%	W	No		Ω	*	T			
R437	RF	1,5 k	5	C,25								
R438	RF	16 k	5	0,25	R513	RF	6,2 k	5	0,25			
R439	kF	100	5	0,25	R514	RF	100	5	0,25			
R440	RF	139 k	ì	0,25	R515	RF	300	5	0,25			
R441	RF	1 k	5	0,25	R516	RZ	2,2	20	1			
R442	RF	2,7 k	5	0,25	R517	RF	10 k	5	0,25			
R443	RF	3,3 k	5	0,25	R518	RF	10 k	5	0,25			
R444	RF	1 k	5	0,25	R519	PF	3,3 H	5	1			
R445	RF	6,8 1	5	1	R520	RF	3,3 M	5	1			
R446	RF	47	5 5	0,25	R521	RF	3,3 M	5	ı			
	16-24 T				R522	RF	3,3 M	5	1			
R501	RF	390	5	1	R523	RF	3,3 M	5	1			
R502	RF	2,7 k	5	0,25	R524	RF	5,1 M	5	2			
R503	RF	2,7 k	5	0,25	R525	RF	1,2 M	5	0,5			
£504	RF	2,7 k	5	0,25	R526	RF	200 k	5	0,25			
R505	RF	240 k	5	0,25	R527	RF	100 k	5	0,25			
R506	RF	100 k	5	C,25	R528	RF	100 k	5	0,25			
3507	RF	240 k	5	0,25	R529	RF	150 k	5	0,25			
R509	RF	15 k	5	0,25	R530	RF	150 k	5	0,25			
R510	RF	20 k	5	0,25	R531	RF	2,2 k	5	0,25			
R512	RF	560	5	0,25	R532	RF	47	5	0,25			
					according out of							
		- '		P -	Z -		I					
No		Ω	%	W	No		Ω	*	¥			
P101	PR	l k	10	0,5	P403	PR	100 k	10	0,5			
P102	PR	100 k	10	0,5	P404	PR	1 k	10	0,5			
P103	PR	2,2 k	20	2	P405	PR	l k	10	0,5			
2104	PR	10 k	10	0,5				10	,,,			
		1740/28X ME TA		,	P501	PR	1 M	3 0	2			
P201	PR	1 11	30	2	P502	PR	1 M	<i>3</i> 0	2			
			-		P503	PR	220 k	20	2			
P301	FR	10k+10k	20	0,25	P504	PR	220 k	20	0,5			
P303	PR	100 k	10	0,5	P505	PR	10 k	10	0,5			
P304	PR	100 k	10	0,5	P507	PŘ	10 k	20	0,25			
P305	PR	l k	10	0,5		10000000			-,-,			
		1		1	[]	1		1	1			

				C	-11-				
No		F	*	V	No		P	*	٧
C101	CK	100 n	+8020	40	C404	CK	3 p	0,5 p	500
C102	CME	220/u	10	63	C405	CFE	470 p	20	400
C103	CFE	22 p	10	100	1		-		
C104	CFE	22 n	10	100	C501	CE	22+22 ju	+50-10	450
C105	CFE	22 n	10	100	C502	CE	4700 /u	+100-10	25
C106	CFE	6,8 n	20	100	C503	CE	220 /u	+100-10	25
					C504	CE	100 /a	+100-10	16
					C505	CE	100 ju	+100-10	16
					C506	CE	10 /u	+50-10	350
C110	CFE	ln	20	400	C507	CE	10 /u	+50-10	350
C111	CFE	4,7 5	20	250	C508	CE	10 /u	+50-10	350
C112	CK	10 n	20	50	C509	CE	220 /u	+100-10	25
C113	CE	2200 Ju	+100-10	40	C510	CME	470 n	10	63
C114	CE	4,7/4	+100-10	40	C511	CME	100 n	10	160
C115	CE	470 /u	+100-10	6,3	C514	CFE	47 p	+10	100
C117	CK	150 p	5	500	C515	CE	22 /u	+100-10	25
					C516	CK	10 n	+50-20	3 8
C118	CE	1000 Ju	+100-10	16	C517	CX	10 n	+50-20	3 %
0119	CK	5 p	0,5 p	500	C518	CX	10 n	+50-20	3 K
C201	CitP	1,4	10	1600	C519	CK	10 в	+50-20	3 4
C202	CE	22 ju	+50-10	250	C520	CK	10 n	+50-20	3 %
C203	CE	2200 u	+100-10	25	H				
C204	CK	100 p	5	500	C521	CFE	47 n	10	400
					C522	CFE	100 p	10	400
C301	CK	100 p	5	500	C523	CME	470 n	10	63
C302	CK	100 p	5	500	C512	CME	1 /0	10	63
					C513	CX	220 p	5	500
C4C1	CŁ	270 p	5	500	C524	CZ	220 p	5	500
C402	C£	100 p	5	630	C525	CK	390 p	5	500
C4C3	CX	10 p	0,5 p	500	C512	CME	1 /4	10	63
				Supplement	C513	СК	220 p	5	500

	V -(3)	D -	 	TR -	Ŋ
acewarance.					
D101	D	SY320/2			
D102	D	£Y320/2			
D103	D	£Y320/2	D204	D	1N4007
D104	D	EY320/2			
D105	D	OA1182	D401	D	1N4148
D106	D	1N4148	D402	D	1N4148
5107	D	1N4148			
D108	D	1N4148	D501	D	BY133
D109	D	1N4148	D505	D	SY320/2
Dlic	D	1N4148	D506	D	0A1182
Dill	D	lN4148	D507	D	BY409
			⊇508	D	BY409
D201	D	1N4007	D509	D -	IN4148
D202	D	1N4007	D510	D	1N4148
D203	D	1N4007	0511	D	ZPY68
			D512	D	1N4148
		1			
TRIOI	TR	BC303			
TR102	TR	BC109C	IR301	<u>TR</u>	BF259
TR103	TR	301090	TR302	TR	BF259
TR104	TR	BC1094	TR303	TR	BC109C
TR105	TR	BC109C		~~	101030
TR106	TR	BC1C7A	TR401	TR	BF259
TR107	TR	BC107A	TR401	TR	BF259
TR107	TR	BC107A	2R403	TR	BC1090
TR109	TR	BC107A		+44	101070
TRIIO	TR	3C107A	IR501	TE	BD241A
TRILL	· TR	Manager and Manager	· TR502	TR	BD242A
NO. 10. 11. 11. 11. 11. 11. 11. 11. 11. 11		BD242A	IR502	TR	
TR112	TR	BC10 7 A	-8705	I III	BF259
					4

•••	3	ar Ø	O		
IC102	IC	SN7400N	J201	J	12V-50mA
	St.		J202	J	12V-50mA
IC104	IC	SM7493AN	J203	J	12V-50mA
10105	IC	SN74141N		ł	
j			J501	J	247-1,27
10107	IC	/uA7824UC	J <i>5</i> 02	J	24V-1,2%
10108	IC	JUA741FC			
		1	Fl	F	FST250mA
10301	IC	/uA741PC			
		1	F101	F	Go20/5,2 315mA
IC401	IC	/uA709FC			
			F201	F	Go20/5,2 315mA
IC501	IC	JUA741PC	F401	F	Go20/5,2 2,5A
10502	IC	/uA781500	F501	F	Go20/5, 2 315mA
10503	IC	uA7815UC		i	
			V501	v	D13-27GH
S201	S				
S202	S	1	Tl	Ψ.	
\$203	ક	%bm-26	T2	Ţ	SST 42/1,6E
S204	s	8821/K5	T3	T	
S 3 01	٤				
S401	S	1	T501	T	
	9	1	T502	T	
RY1	RY	.3115110GDC12V		_	
28			Th501	T	4NTTC,015
L101	L	1			
1401	Ļ	1	S1 S1	\$ £	4143-18
		1	1	I)	4147-10
]	£102	<u>د</u> ٤	:Com-26
		1	£102 £103	£	
Sol	So	4145-303	\$105	ء 2	
502	So	4143-119	£105	٤	
503	ఓ ం	DS2112~126.1	1100	1	
<u></u>					/4

1575

18(A-B) 1575

