

(19) RU (11) 2 073 913 (13) C1

(51) MIK⁶ G 11 B 27/00

РОССИЙСКОЕ АГЕНТСТВО ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ

- (21), (22) Заявка: 5052442/28, 18.09.1991
- (30) Приоритет: 19.09.1990 GB 90202487.6 27.09.1990 NL 9002108
- (46) Дата публикации: 20.02.1997
- (56) Ссылки: 1. Патент США N 4914515, кл. Н 04 N 7/04, 1990. 2. Заявка ЕПВ N 0288571, кл. G 11 В 27/00, 1988.
- (86) Заявка РСТ: NL 91/00175 (18.09.91)

- (71) Заявитель: Н.В.Филипс Глоэлампенфабрикен (NL)
- (72) Изобретатель: Жозеф Мария Карел Тиммерманс[BE]
- (73) Патентообладатель: Н.В.Филипс Глоэлампенфабрикен (NL)

(54) НОСИТЕЛЬ ЗАПИСИ, СПОСОБ И УСТРОЙСТВО ДЛЯ ЗАПИСИ ИНФОРМАЦИОННЫХ ФАЙЛОВ И УСТРОЙСТВО ДЛЯ ВОСПРОИЗВЕДЕНИЯ ИНФОРМАЦИИ С ТАКОГО НОСИТЕЛЯ ЗАПИСИ

(57) Реферат:

Изобретение относится к области накопления информации, в частности, к носителю записи, на который записаны файл основных данных и файл управления, способу и устройству для записи файла основных данных и файла управления, и устройству для считывания носителя записи. Сущность изобретения: описан носитель записи содержит файлы основных данных и файл управления, причем данные управления в файле управления предназначены для управления воспроизведением представлений основных данных в файле основных данных во время или после считывания файла основных данных. Файл основных данных и файл управления получены из сигнала основных данных и сигнала данных управления получены соответственно по одним и тем же правилам форматирования и кодирования. Сигнал данных управления содержит пакеты из идентичных групп битов данных управления, причем - целое число большее или равное двум. Кроме того, описаны способ и устройство для записи основных данных и данных управления и дополнительно раскрыто устройство для считывания носителя записи. 4 с. и 7 э.п. ф-лы, 8 ил.

(19) RU (11) 2 073 913 (13) C1

(51) Int. Cl.6 G 11 B 27/00

RUSSIAN AGENCY FOR PATENTS AND TRADEMARKS

(12) ABSTRACT OF INVENTION

(21), (22) Application: 5052442/28, 18.09.1991

(30) Priority: 19.09.1990 GB 90202487.6 27.09.1990 NL 9002108

(46) Date of publication: 20.02.1997

(86) PCT application: NL 91/00175 (18.09.91) (71) Applicant: N.V.Filips Gloehlampenfabriken (NL)

Zhozef Marija Karel Timmermans[BE]

ത

(73) Proprietor: N.V. Filips Gloehlampenfabriken (NL)

(54) INFORMATION CARRIER, METHOD AND DEVICE FOR WRITING DATA FILES AND DEVICE FOR READING DATA FROM SUCH INFORMATION CARRIER

(57) Abstract:

FIELD: data storage devices. SUBSTANCE: information carrier stores data file and control data file. Control data in control data file are designed for control of reading of data representations from data file during or after reading of data file. Data file and control data file generated using identical rules of format and encoding. Control data signal contains packets of at least two identical groups of control data bits. In addition invention specification describes method and device for writing data and control data and device for reading data from such information carrier. EFFECT: increased functional capabilities. 11 cl, 8 dwg

Puz.1

Изобретение относится к области накопления информации, в частности, к носителю записи, на который записаны файл основных данных и файл управления, причем данные управления в файле управления предназначены для управления воспроизведением основных данных в файле основных данных, к способу записи файла основных данных и данных управления на носителе записи, к устройству для записи файлов на носителе записи и к устройству для воспроизведения с такого носителя.

Известен носитель записи, на дорожках которого записаны файлы основных и управляющих данных, и соответствующее устройство для воспроизведения информации с такого носителя, содержащее блок воспроизведения, блок декодирования и восстановления данных, блок обработки и управляющий блок (1), а также способ и устройство для записи информационных файлов в виде последовательных кадров на носителе (2).

Если система используется исключительно для хранения на носителе записи специфичной информации, например, как изображения с фотонегативов или слайдов, может оказаться желательным использовать специальное считывающее устройство только для этого, для считывания информации. Для обработки информации файла основных данных тогда предпочитают использовать специальный, и значит, более дешевый блок обработки, а не компьютерную систему.

Однако при этом возникает проблема в что нужно использовать TOM. который может считывать управления. С информацию управления файла управления, которая выдается с высокой скоростью. Однако функции управления, выполняемые блоком управления, не требуют использования такой высокой скорости, а это значит, что приходится использовать дорогой блок управления с высокой скоростью обработки всего лишь для ввода данных управления.

Целью изобретения является дать средства, позволяющие использовать сравнительно дешевое специальное устройство для считывания носителя записи.

刀

Касательно носителя записи эта цель достигается за счет того, что сигнал данных управления содержит пакеты из п идентичных групп битов данных управления, причем п целое число, большее или равное двум.

Касательно способа указанная цель достигается тем, что для получения файла управления используют сигнал данных управления который содержит пакеты из п идентичных групп битов данных управления, причем п целое число, большее или равное двум.

Касательно устройства записи, указанная цель достигается за счет того, что устройство содержит средства для выдачи сигнала управления, содержащего п последовательных идентичных групп битов данных управления, причем п являются целым числом, большим или равным двум.

Касательно устройства для воспроизведения, эта цель достигается за счет того, что блок управления содержит средства селекции для выбора m групп битов данных управления для каждого принятого

пакета, причем т меньше п.

Запись данных управления в файл в виде пакетов идентичных групп битов данных управления значительно снижает количество данных управления за единицу времени при считывании. Селекция одной групп битов для каждого пакета, или ограниченного количества групп битов для каждого пакета значительно снижает потребную скорость обработки блока управления при вводе данных управления, что позволяет использовать блок управления, имеющий малую скорость обработки, а значит, дешевый блок.

Предпочтительный пример выполнения устройства для считывания носителя записи отличается тем, что средства селекции содержат средства извлечения синхронизации для получения сигнала синхронизации, имеющего частоту, связанную с частотой повторения пакетов, на основе одного из восстановленных сигналов, средства синхронизации для синхронизации сигнализации со считываемыми пакетами, и средства для ввода по меньшей мере одной группы битов данных управления на пакет синхронно с сигналом синхронизации.

Надежная синхронизация сигнала синхронизации с пакетами может быть получена за счет использования воплощения носителя записи которое отличается тем, что пакеты расположены в кадрах в сигнале управления, а кадры расположены в блоках данных заранее заданной длины, каждыблок содержит секцию синхронизацию блока, каждый кадр начинается в заранее заданном положении относительно секции синхронизации блока.

Пример выполнения устройства для считывания этого носителя записи отличается тем, что средства синхронизации содержат детектор синхронизации блока для обнаружения секций синхронизации блоков в блоках данных, содержащих данные кадров.

Если используется последнее упомянутое выполнение носителя записи. предпочтительно располагать группы битов, не содержащие данных управления для управления воспроизведением, в начале каждого кадра. Это дает то преимущество, что во время ввода данных управления после обнаруживания секции синхронизации блока, некоторое время проходит до того, как данные управления, подлежащие вводу, фактически оказываются в распоряжении. Это позволяет осуществить ввод данных управления С ·управлением микрокомпьютера, который также может использоваться для других операций управления. С таким микрокомпьютером обыкновенно опрашивают программу ввода в ответ на обнаружение секции синхронизации блока. Такой опрос требует некоторого времени. Однако, это не является недостатком, потому что информация появляется в наличии лишь после времени ожидания.

Надежная синхронизация может также быть получена посредством выполнения носителя записи, который отличается тем, что пакеты расположены в кадрах, причем множество последовательных групп битов синхронизации кадра расположено в начале каждого кадра, каковые группы образуют узор битов, который отличается от узоров битов,

60

образованных группами битов данных управления кадра.

Воплощение для считывания носителя записи отличается тем, что средства синхронизации содержат детектор синхронизации кадров для обнаружения групп битов синхронизации кадров, расположенных в начале каждого кадра.

Очень простое выделение сигнала синхронизации получают, когда используют носитель записи, отличающийся тем, что бит каждая группа битов содержит синхронизации, имеющий логическую величину, И логические вепичины последовательных групп битов данных очередуются с узором повторения, частота которого связана с частотой, с которой повторяются пакеты.

Использование битов синхронизации делает возможным использовать сигнал синхронизации с величиной сигнала, соответствующей логической величине битов синхронизации, что в результате дает очень простую генерацию сигналов синхронизации.

Следующие выполнение носителя записи отличается тем, что каждому кадру приданы группы битов для целей исправления ошибок, причем группы битов находятся в заранее заданном соотношении с группами битов данных управления в кадре, содержащем данные управления для воспроизведения.

Использование такого носителя записи делает возможным обнаружение, были ли полностью введены данные управления в особенно управления. Это предпочтительного, если используется блок который содержит управления, микрокомпьютер, который дополнительно к вводу данных управления служит для выполнения других функций управления. В этом случае ввод данных управления может быть прерван для выполнения другой функции с большим приоритетом. Однако это значит, что данные управления не введены просто полностью, но это может быть обнаружено на основе групп добавленных для обнаружения ошибок. После такого обнаружения может быть инициирован новый ввод неполносты неполностью введенных данных управления.

изобретение подробнее Ниже описывается со ссылкой на чертежи, где показано: фиг. система хранения изображений, система поиска воспроизведения изображений, и упрощенная поиска и воспроизведения изображений, соответственно, фиг. 2 пример поиска выполнения системы воспроизведения изображений, способное воспроизводить информацию изображения соответственно предпочтительными установками воспроизведения, фиг. 3 более упрощенного подробное изображение системы поиска воспроизведения изображений, фиг. 4 схема извлечение данных для использования в системе поиска и воспроизведения изображений по фиг. 3, фиг. 5 более подробное изображение выполнения системы хранения изображений, фиг. 6 пример блока обработки изображения, фиг. 7 выполнение считывающего устройства, фиг. выполнения примера блок-схема упрощенного блока обработки изображений. Фиг. 1 показывает систему хранения

которой может изображений, Система изобретение. использоваться содержит блок 1 сканирование изображения с носителя 2 изображений, например, с ленты, несущей фотонегативы или слайды. Блок 1 содержит блок кодирования для кодирования информации, полученной при сканировании. Закодированная информация изображения записывается на носитель 3 записи посредством блока 4 записи при управлении от блока 5 управления. Перед записью блок 5 может при желании производить обработку изображения, например, повысить исправить контрастность. отредактировать изображение, имеющее вид закодированной информации изображения. Блок 4 записи может содержать, например, оптическое, магнитное или магнитооптическое записывающее устройство. В виде высокой емкости хранимой информации оптических и носителей магнитооптических предпочтительно использовать оптическое или магнитооптическое устройство записи. Блок 5 управления может содержать компьютерную систему, например, называемый "персональный компьютер" или рабочее место называемое аппаратурой соответствующей 25 программным обеспечением.

Фиг. 1 показывает систему поиска и воспроизведения изображений И воспроизведения отыскивания закодированных изображений, хранимых на носителе 3. Система содержит считывающий блок 6 при управлении от блока 7 управления. Воспроизведение считанных, таким образом, кодированных изображений может производиться на блоке дисплея, экран 8 которого, например, является частью блока 7 управления или электронным принтером 9 изображений для получения бумажной копии кодированного воспроизводимого изображения. Система может содержать добавочное устройство 4а, посредством которого закодированная информация изображения проходит обработку в блоке 7 управления с целью повышения контраста, исправляя или редактирования. Устройство управления в системе поиска изображений может воспроизведения содержать компьютерную систему, например, "персональный компьютер", или рабочее место с соответствующей аппаратурой и программным обеспечением.

Вообще желательно иметь такую дорогую компьютерную систему для блока управления в сочетании с электронным печатным устройством 9 изображения вследствие сложности функций управления и обработки изображений. Однако, если желают лишь воспроизводить выбранные кодированные экране дисплея. изображения на компьютерная производительность и емкость памяти персонального компьютера или рабочего места высока по сравнению с функциями управления, которые нужно выполнять. В таком случае предпочитают использовать упрощенный блок управления с ограниченной компьютерной производительностью и емкостью памяти и ограниченной скоростью обработки данных.

Фиг. 1 показывает такую упрощенную систему поиска и воспроизведения изображения. Это упрощенная система содержит дисплей 11 и блок 12 поиска и

50

считывания, содержащий блок 6 считывания. Блок управления поиском и операцией считывания может быть размещен в одном из блоков 11 или 12, но удобнее в блоке 12, тогда можно среди прочих вы качестве дисплея использовать стандартный телевизор или монитор.

Для записи закодированной информации изображения предпочитают записывать информацию на носителе записи в заранее определенном формате и порядке. Файлы, содержащие закодированную информацию изображению, названы файлами изображения. Кроме того, записаны несколько файлов управления, которые используются для управления считыванием закодированной информации изображений, для целей обработки при необходимости, считываемой информации и с целью воспроизведения закодированной информации изображения. Следует заметить, что часть данных управления может быть включена в файлы изображения. Предпочтительно эта часть данных управления является частью. специально предназначенной для управления воспроизведением считыванием, обработкой закодированной информации изображения содержащейся В соответствующем файле изображения. Преимущество здесь то, что требуемые данные управления имеются в распоряжении тогда, когда они нужны, т.е. тогда, когда считывается файл изображения.

Отдельно от файлов изображения и связанных с ними файлов управления может быть желательным в ряде случаев файлы записывать С добавочной информацией, например, звуковой информацией или текстовой информацией. Такая звуковая и/или текстовая информация относиться, например, закодированной информации изображения и может воспроизводиться одновременно с воспроизведением соответствующей информации изображения. Файлы добавочной информацией могут быть записаны, например, после закодированной информации изображения.

Для каждого хранимого изображения файлы изображения содержат несколько субфайлов, каждый из которых определяет представление одной и той же сканированной картинки, но разрешение этих представлений Предпочтительно субфайлы различное. расположены таким образом, что разрешения определяемых представлений, последовательными кодированными изображениями, увеличиваются (линейно) ступенями в два раза. При воспроизведения, последовательно расположенные когда субфайлы и считываются друг с другом, относительно просто сначала воспроизвести изображение с малой разрешающей способностью, а затем заменять изображение полностью или частично тем изображением, каждый раз увеличивая разрешение. Эта дает то преимущество, что время ожидания до появления изображения на экране уменьшается. Действительно, ограниченного вследствие количества информации, которое для этого нужно, время считывания закодированного изображения представления с низким разрешением является коротким по сравнению с временем считывания закодированных изображений,

имеющих большее разрешение.

Общеизвестно представление изображений в таком виде, что изображение состоит из матрицы малых площадей постоянной яркости и/или постоянной цветности. В этом представлении обычно выбирают площади с постоянной величиной плотности, которые больше, чем площади с постоянной величиной яркости.

Площадь с постоянной величиной цветности далее будет называться пикселем цветности, а площадь с постоянной величиной яркости будет называться пикселем яркости. Ряд пикселей цвета с равной полной изображения далее будет называться цветной строкой изображения. Ряд пикселей яркости с шириной, равной полной ширине изображения далее будет называться строкой изображения. яркостной Изображение, представленной яркостными строками изображения и цветными строками изображениями может быть просто определено кодированным изображением, если назначить каждому пикселю яркости и каждому пикселю цветности цифровой код, указывающий соответствующую величину яркости и величины цветности.

Подходящим кодированием изображения является такое, когда цифровой код или цифровые коды приписаны каждому пикселю яркости и каждому пикселю цветности, причем коды определяют абсолютную величину составляющей яркости и абсолютные величины цветоразностных составляющих. Такое кодирование далее будет называться абсолютным кодированием изображения. Предпочтительно представления нескольких изображений с низким разрешением записываются в виде абсолютно закодированных изображений. Это позволяет просто восстановить информацию изображения. Это особенно выгодно для поиска изображения упрощенного воспроизведения, потому что это позволяет такой системы. СНИЗИТЬ стоимость предназначенной для широкого потребителя, за счет использования простых систем декодирования.

Использование файла изображения с несколькими абсолютно кодированными изображениями с различным разрешением упрощает воспроизведение составных изображений, где представление малого изображения с низким разрешением изображается внутри представления изображения более высокого разрешения. Воспроизведение такого представления составного изображения называется "Картинка в картинке" (Р1Р). Кроме того, запись нескольких абсолютно кодированных изображений, представляющих одно и тоже изображение с различным разрешением, упрощает воспроизведение увеличенных представлений деталей закодированного изображения. Такая функция называется функцией ТЕЛЕ (или ЗУМ). абсолютно закодированных изображений с различным разрешением предполагает, что для некоторых ТЕЛЕ функций или Р1Р функций нужная информация изображения прямо доступна и не должна получаться за счет дополнительных обработки изображения с помощью сложных схем.

При записи принято записывать

закодированные пиксели рядами (или строками), или иногда столбцами. Запись в строки предпочтительна потому что в обычно используемых дисплеях информация изображения должна быть в форме строк.

абсолютно кодированное изображение записывается в субфайлах, предпочтительно не записывать последовательные кодированные строки изображения. Способы расположения записанной информации часто называются "тасовкой", "чересстрочными". или Преимущество такого способа заключается в том, что сравнительно большая часть информация не может быть использована вследствие дефектов диска или других причин, при таком способе снижается вероятность неправильного воспроизведения двух соседних строк изображения. Изображения с дефектами в соседних строках сравнительно трудно восстановить. Другое дело, когда неправильно считанные пиксели или строки изображения. Дефектная строка просто может быть заменена на соседнюю. Нужно отметить, что неправильно считанные пиксели также могут быть легко восстановлены использованием: кодов коррекции ошибок. называемых Коррекция ошибок на основе таких кодов сравнительно сложна, и поэтому менее пригодна для использования упрощенной системе поиска и воспроизведения, в которой использование сложных схем следует избегать для снижения стоимости.

В случае, когда информация изображения записывается на дисковом носителе записи со спиральной дорожкой, часть дорожки, нужная для записи кодированного изображения, занимает несколько витков спиральной дорожки. Ввиду простоты восстановления неправильно считанных строк изображения тогда желательно, чтобы кодированные строки изображения, относящиеся к соседним строкам в самом изображении не были бы соседними друг с другом на носителе записи ни в продольном дорожки), направлении (вдоль называемом тангенциальным, касательным направлением, ни в направлении полерек дорожки (также называемом радиальным направлением).

Для высоких разрешений хранение абсолютно закодированной информации изображения имеет недостаток в том, что количество подлежащей записи информации очень велико. Для таких изображений высокого разрешения очень подходит остаточное кодирование. В таком остаточном кодировании определяют разности величины сигнала пикселей изображения высокого разрешения и величины сигнала соответствующей части изображения с меньшим разрешением и затем кодируют их.

Остаточные величины всего изображения могут быть определены как для яркостной, так и для цветностной информации. Так как количество остаточных величин равных или близких к нулю велико по сравнению с количеством больших остаточных величин. можно получить значительное сокращение информации применением объема добавочного кодирования, при котором остаточные величины нелинейно квантизируют и затем подвергают, например, кодированию по Хаффману.

Остаточно закодированное изображение может использоваться в качестве основы для остаточного кодирования для изображения с еще более высоким разрешением. Таким образом. абсолютно записав одно низкого изображение закодированное остаточно разрешения серию закодированных изображений увеличивающегося разрешения записать сокращенной форме можно множество закодированных изображений, представляющих то же изображение с увеличивающимся разрешением.

Информация цветности также кодируется остаточно подобно информации яркости. Однако горизонтальное и вертикальное разрешение последовательных остаточно закодированных изображений увеличивается в четыре раза, а не в два раза, как это делается с информацией яркости.

Обычно записывают кодированные пиксели строка за строкой.

Когда используется остаточное кодирование с использованием нелинейной квантизации и кодирования Хаффмана, остаточные величины представлены посредством кодов переменной длины. Это значит, что место, требуемое для записи остаточно закодированного изображения, не определено началом записи кодированной строки изображения. Это усложняет селективное считывание кодированных строк изображения, например, только тех строк изображения, которые необходимы для осуществления функции ТЕЛЕ.

Очень быстрое отыскание выбранных строк изображения может быть достигнуто за счет того, что адреса, под которыми начинаются записи кодированных строк изображения, записаны на носителе записи в отдельном файле управления, предпочтительно в начале каждого субфайла.

Вообще, при поиске начальных точек строк изображения на носителе записи в процессе грубого поиска считывающий элемент передвигают относительно носителя записи в положение на малом расстоянии перед начальной точкой, где начинается запись кодированной строки изображения. Затем производится точный процесс поиска, в котором при сканировании носителя записи со скоростью, соответствующей нормальной скорости считывания, ожидают начала выбранной кодированной записи строки, после чего начинают считывание выбранной кодированной строки изображения. Точность, с которой считывающий элемент может позиционироваться относительно носителя грубого поиска. В процессе ограничена, и в системах оптического хранения данных она в общем случае гораздо больше расстояний между положениями, в которых . начинаются записи последовательных кодированных изображения на носителе записи. Поэтому предпочитают хранить только стартовые ограниченного количества кодированного строк изображения, начальные точки которых разнесены друг от друга на расстояние практически равное точности, с которой считывающий элемент может быть установлен в процессе грубого поиска. Это позволяет найти информацию выбранных кодированных строк изображения

60

50

запомненной кодированной картине и быстро считать ее без расходования слишком большого места для хранения адресных данных. В случае дискового носителя записи средняя точность поиска в процессе грубого поиска, при котором считывающий элемент движется над диском в радиальном направлении, по определению равно половине длины одного оборота диска, что обозначает, что расстояния между положениями, указанными адресами практически соответствуют половине длины одного оборота диска при использовании дискового носителя записи.

Запомненные кодированные изображения в общем случае определяют несколько изображений ландшафтного формата (т. е. для правильного воспроизведения изображение должно индицироваться в ориентации, когда ширина изображения превышает его высоту) и несколько изображений портретного формата (т.е. для правильного воспроизведения ориентации должна быть такой, что высота изображения больше его ширины).

На фиг. 1 для примера показаны носитель изображений с несколькими изображениями в ландшафтном формате (13а, 13в, 13с, 13о) и одно изображение в портретном формате (13e). На носителе все кодированные изображения записаны, как если бы они представляли изображения в ландшафтном формате, для того, чтобы позволить одинаковое сканирование изображений без необходимости различать, какого изображение на самом деле сканировании и/или обработке изображения. Однако. это обозначает, что воспроизведении все изображения будут одинаковые портретные форматы будут представлены лежащими на боку. Это можно предотвратить, если предусмотреть возможность назначения кода поворота при записи, который обозначает, нужно ли повернуть изображение при воспроизведении на угол 90, 180 или 270 градусов. Этот код поворота может присутствовать в каждом файле изображения. Также возможно записывать коды поворота в файле управления или хранить эти коды поворота в не теряющей информацию памяти, находящейся в блоке считывания или соединенной с ним.

При воспроизведении тогда можно на основе кода поворота определить, нужно ли поворачивать воспроизводимое изображение, и если нужно, то произвести поворот на нужный угол до воспроизведения. Недостаток размещения кода поворота в файлах изображения заключается в том, что эти коды поворота приходится определять уже в процессе считывания изображений. На практике это обозначает, что необходимость поворота приходится определять и вводить оператору, потому что известные устройства воспроизведения не всегда в состоянии что определить, нужно делать изображением, чтобы оно получилось в правильной ориентации. Это нежелательно, в особенности потому, что при этом оператору всегда нужно находиться на рабочем месте при записи, что затрудняет реализацию полностью автоматизированной системы хранения изображений.

Если коды поворота уже имеются при

информации записи кодированной изображения, предпочтительно записывать эти коды на носителе записи. Для удобства потребителя желательно указывать, кроме необходимости поворота, также небольшого сдвига необходимость воспроизведении (влево, вправо, вверх или вниз). Это особенно желательно, если площадь дисплея меньше размеров изображений, так как при этом важная деталь изображения может оказаться за краем экрана. Желаемый сдвиг может быть задан сдвига В назначение кода закодированном изображении.

Фиг. 2 показывает блок-схему выполнения системы поиска и воспроизведения посредством изображений, закодированные изображения могут быть воспроизведены соответственно выбранному набору предпочтительных установок. Для выдачи считываемой информации блок 14 воспроизведения соединен с блоком 15 управления и обработки сигнала. Из полученной информации блок 15 выбирает файл, содержащий набор или наборы предпочтительных установок и запоминает их в памяти 16 управления. Посредством блока устройства например, ввода, дистанционного управления, пользователь может выбрать набор из памяти и затем включить блок 15 в режим цикла считывания, в котором закодированная информация изображения считывается последовательности, заданной выбранном набором предпочтительных установок при управлении от блока 15. После того, как кодированная информация изображения была считана, эта информация обрабатывается соответственно выбранному набору предпочтительных установок выдается на блок 18 дисплея.

Через некоторое время может оказаться, что предпочтительные установки, записанные на носителе записи, уже не очень удовлетворяют нуждам пользователя, или же на носителе записи нет этих установок, или они неправильные. Возникает проблема, особенно, если носитель записи не может быть переписан на нем ничего изменить нельзя. Проблема может быть сглажена, если в системе поиска и воспроизведения предусмотрена не теряющая информации память 19, в которую вместе с кодом идентификации носителя записи записывают новый набор предпочтительных установок, или информацию с желательных изменениях предпочтительных установок

воспроизведения относительно записанных на носителе записи для данного носителя с определенным кодом идентификации. Ввиду ограниченной емкости памяти 19 желательно записывать на ней информацию в максимально компактной форме, поэтому предпочтительной является запись лишь изменений имеющихся предпочтительных установок воспроизведения.

Вместо или дополнительно к не теряющей информацию памяти 19 может применяться сменная память 20, например, в форме магнитной карточки, стираемой постоянной памяти типа EPROM, EEPROM или NVRAM для хранения предпочтительных установок в системе поиска и воспроизведения.

Это дает то преимущество, что пользователь может воспроизводить

информацию изображений на носителе записи соответственно с одними и теми же предпочтительными установками различных системах поиска воспроизведения изображений, с которыми может быть соединена сменная память 20. используется для хранения предпочтительных установок воспроизведения одна из двух или обе памяти 19, 20, желательно производить выбор из различных наборов предпочтительных установок, определяемых набором предпочтительных установок, записанным на носителе и модификациями запомненных установок. Для этой цели блок 15 должен содержать средства выбора. Эти средства могут быть типа, управляемого пользователем для выбора из различных наборов установок для одного конкретного носителя записи и номера выбора информации установок, записанной носителе записи и в устройствах памяти. Однако альтернативно эти средства выбора быть типа, который воспроизведением на основании содержимого наборов устройства памяти И предпочтительных установок на носителе определяют наборы предпочтительных установок, подходящие для соответствующих носителей и заложить, например, в память 16. Затем один из имеющихся наборов предпочтительных установок в памяти 16 выбирают соответственно заранее заданному критерию выбора. Предпочтительно критерий выбора таков, что высший приоритет назначается информации предпочтительных установок в сменной памяти 20, средний приоритет информации в не теряющей информации а низший приоритет предпочтительным установкам, записанным на носителе записи. Если блок 15 содержит компьютер, то автоматический выбор может производиться посредством загрузки в него подходящей программы выбора.

Фиг. 3 показывает воплощение системы поиска и считывания изображений по фиг. 1 более подробно, в данной системе блок 21 поиска и считывания содержит блок 6 считывания, блок 22 управления и блок 23 обработки изображения. Блок считывания 6 выдает информацию, считанную с носителя записи, в блок 22 управления и в блок 23 обработки изображения. Блок 22 управления затем выбирает специфичную информацию, содержащуюся в файлах управления. Блок 23 обработки изображения из считанной выбирает информацию информации изображения и преобразует эту информацию изображения в форму, подходящую для блока 11 дисплея. Блок считывания 6 и блок 23 обработки информации управляются блоком основе данных, введенных пользователем, например, через блок 24 ввода данных, и на основе данных управления в файлах управления.

ス

Ввиду большого количества информации для каждого записанного изображения предпочтительно считывать файлы, содержащие информацию изображения, с высокой скоростью, т. е. количеством битов в единицу времени, чтобы уменьшить время считывания изображения. Однако, это значит, данные в файле управления также считываются с высокой скоростью. Функции

управления выполняются блоком 22 управления. Эти функции требуют лишь невысокой скорости обработки данных позволяющей использовать для этого дешевый и простой микрокомпьютер с малой скоростью обработки. Однако в общем случае такой дешевый микрокомпьютер не способен обрабатывать информацию управления, подаваемую с высокой скоростью считывания файлов управления, потому что скорость, с которой данные управления подаются (которая практически равна скорости информации изображения) слишком высока для обработки дешевым микропроцессором, работающим с малой скоростью. проблема может быть сглажена за счет того, что каждая группа битов, содержащая данные управления записывается n раз (n целое большее или равное чиспо последовательно на носителе записи. Группа, повторно записанная п раз на носителе, далее будет называться пакетом. Пакеты с п идентичными группами выдаются считывании информации управления.

Посредством повторения идентичных групп п раз достигают того, что скорость подачи данных управления с блока считывания уменьшается в n раз без использования добавочных функций. Соответствующим выбором величины n, таким образом, можно снизить скорость выдачи данных управления к медленно работающей микрокомпьютерной системе блока 23 управления до такой степени, что они могут обрабатываться медленно действующим микрокомпьютером 25. Между сигнальной шиной 26 и микрокомпьютерной системой 25 может быть установлена схема 27 извлечения данных, чтобы выдавать каждый из пакетов данных управления на микрокомпьютер в виде одной группы битов со скоростью, равной скорости повторения групл битов, деленной на.

Такая схема 27 извлечения данных может, например, содержать регистр 28 (см. фиг. 4А, В), который загружается с частотой синхронизации, равной частоте повторения групп битов, деленной на Биту синхронизации последовательных групп битов может быть назначена логическая величина, которая меняется с частотой, связанной с частотой повторения пакетов групп битов. Частота чередования может быть равна половине частоты повторения пакетов или в целое Это число раз больше. имеет преимущество, последовательность синхронизации получается прямо из битов синхронизации.

Схема 72 извлечения данных содержит схему 29 извлечения синхронизации, которая подает чередующийся сигнал синхронизации, соответствующей чередующимся логическим величинам битов синхронизации, на вход управления загрузкой регистра 28. Регистр 28 загружается группой битов каждого пакета под управлением сигнала синхронизации. 29 также переносит Схема микрокомпьютерную синхронизации на систему 25. Предпочтительно группы битов в файле управления размещены в так называемых кадрах. Очень простое обнаружение начала кадра может быть достигнуто вставлением в начале кадров нескольких групп синхронизации кадров с битами синхронизации, которые составляют

определенный рисунок логических величин, которые явно отличаются от возможного рисунка логических величин битов синхронизации, которые могут встретиться в других пакетах.

Каждый кадр имеет часть, содержащую избыточную информацию, С целью обнаружения, правильно ли был считан кадр микрокомпьютерной системой. Неправильный ввод может быть следствием, например, прерывания программы, на время которого прерывается считывание данных управления, выполнить другую программу управления. Такая программа управления может быть, например, вызвана в результате ввода данных в блок ввода данных 143, чтобы получить данные из блока 24 ввода. Так как неправильный ввод данных из файлов управления обычно вызывается прерыванием программы, то требуется, чтобы исправление ошибок на основе части кадра производилось бы самим микрокомпьютером. Схема 27 содержит детектор 30 синхронизации кадров, который обнаруживает начало каждого кадра на основе битов синхронизации в группах синхронизации кадров. обнаружения начала кадра детектор 30 выдает сигнал синхронизации микрокомпьютер, который вводит данные управления, имеющиеся на регистре 28 в принципе обычно образом. Следует отметить, что в принципе функции детектора 30 и/или регистра 27 и/или схемы 29 могут также выполняться и самим микрокомпьютером.

В описанном выше процессе считывания данных управления из файлов управления сигнал синхронизации для регистра 28 получают из битов синхронизации. Однако, также возможно получать сигналы синхронизации для загрузки регистра 28 от синхронизации информации сигнала изображения, который : обычно вырабатывается в блоке 23 обработки изображения для ввода кодированной информации изображения. синхронизации информации изображения имеет жесткую связь с частотой повторения групп при считывании файлов изображения и, следовательно, с частотой повторения групп в файлах управления. Это потому, что файлы управления и файлы изображения форматируются и кодируются одинаковым образом. Поэтому сигнал синхронизации для загрузки регистра 28 может быть получен простым делением частоты сигнала синхронизации изображения соответствующей схеме.

Z

Фиг. 4 показывает пример схемы 27 извлечения данных, которая использует делитель 31 частоты для получения сигнала синхронизации для регистра 28. Сигнал синхронизации для загрузки регистра 28 должен быть привязан к началу кадров. Это реализовано может быть простым использованием счетчика качестве делителя частоты: счетчик обнуляется каждый раз сигналом обнуления обнаружении начала кадров.

Если информация в файлах управления расположена блоками, например так, как обычно делают в устройствах памяти типа CD-ROM и CD-ROM XA, сигнал обнуления для счетчика может быть получен на основе секций блочной синхронизации, расположенных в начале каждого блока.

Однако, это требует, чтобы начало каждого кадра всегда находилось в фиксированном положении относительно секций блочной синхронизации. Это может быть достигнуто просто селектированием начала каждого в начале блока. В последнем иллюстрированном способе синхронизации сигнала синхронизации для регистра 28 не использовали группы синхронизации кадров, находящихся в начале каждого кадра. Однако в этом случае также желательно, чтобы начало каждого кадра содержало некоторое количество групп битов, не содержащих данных управления. Действительно, при начала обнаружении каждого микрокомпьютер вызывает программу вводя для управления вводом имеющихся данных управления. Однако, в этот момент микрокомпьютер может быть выполнением другой задачи управления. Такая задача должна быть прервана, прежде чем будет вызвана программа ввода. Это прерывание активной задачи управления и последующей вызов программы ввода требует некоторого времени. Расположив несколько групп битов без данных управления начале каждого кадра, с высокой обеспечивают, что при вероятностью считывании первого пакета полезных данных управления в каждом кадре микрокомпьютер будет готов ввести данные управления при управлении программой ввода. вышеуказанного следует, что группа битов синхронизации в начале каждого кадра могут служить двум целям, т.е. давать синхронизацию и создавать время ожидания до поступления первых полезных данных управления.

Если группы битов также используются для целей синхронизации, то важно, чтобы группы битов имели бы логический рисунок, который не встречается в других группах битов кадра. Для этой цели годятся разные например, использование способы, неидентичных групп битов в пакете, или вставление добавочных пакетов без полезной информации управления между пакетами данных управления. Например, вставлять пакеты, состоящие только из логических нулей после каждых десяти пакетов. Если, например, используется группа из тридцати двух групп битов синхронизации кадров только из логических единиц, это обеспечит, что узор, образованный группами битов синхронизации кадров не встретится в других пакетах кадра.

Фиг. 5 показывает воплощение системы хранения изображений более подробно. Блок 1 сканирования содержит сканирующий элемент 32 для сканирования носителя 2 изображений и для преобразования информации изображения в обычные сигналы информации, например, изображения. Сигналы изображения с выхода сканирующего элемента определяют самое высокое возможное разрешение в количестве изображение. пикселей на Сигналы информации сканирующего элемента преобразуются в сигнал яркости и два посредством цветоразностных сигнала обычной матричной схемы 33. Схема 34 кодирования преобразует сигналы обычным образом в абсолютно закодированные сигналы (для изображений с низким разрешением) и остаточно кодированные

сигналы изображения (для более высоких Сканирующий элемент. разрешений). матричная схема и схема кодирования управляются с помощью обычной схемы 35 управления на основе команд управления, подаваемых схему управления с блока 5 управления через интерфейс 36. Блок 5 управления может содержать компьютерную систему из блока 36 дисплея, блока 37 компьютера и памяти и блока 38 ввода, например, клавиатуры, для ввода данных пользователем. Обычным образом блок дисплея и блок ввода данных соединены с блоком компьютера и памяти, и далее соединен с блоком 1 сканирования изображения и блоком 4 записи через схему 39, 40 интерфейса 3 соответственно. Блок содержит форматирующий кодирующий блок 41, который преобразует подлежащую записи информацию (которая получается с блока управления через интерфейс 42), в коды, которые подходят для записи и которые расположены в формате, подходящем для записи. Данные, которые таким образом закодированы заформатированы, подаются 43, записывающую головку записывает соответствующий информационный узор на носителе записи 44. Процесс записи управляется схемой 45 на основе команд, получаемых с блока управления 4 и, если применимо, адресной показывающей положение информацией. относительно записывающей головки носителя записи.

Блок 37 управления и памяти загружается подходящим программным материалом для расположения остаточно закодированной информации изображения с блока 1 сканирования обычным образом в соответствии с упомянутыми выше правилами форматирования. Кроме того блок 37 компьютера памяти загружен программой для вставления в файл управления, обычным образом и в соответствии с указанными выше правилами форматирования, предпочтительных установок

воспроизведения от оператора вместе с другими автоматически генерируемыми данными управления, такими, например, как список адресов, под которыми были записаны различные файлы на носителе записи.

Блок 37 может далее иметь программу обработки сигнала изображения, позволяющую обрабатывать информацию со сканирующего устройства, например, с целью исправления ошибок, например, ошибок фокусировки и устранения зернистости, или с целью коррекции цвета или яркости изображения.

файлы, составленные посредством блока 37 подаются на блок 4 записи в желаемой последовательности их записи.

Устройство записи файлов содержит схему 46 форматирования, которая собирает подлежащую записи информацию, поданную через интерфейс 42 в соответствии со схемой форматирования, например, как обычно в так называемых системах CD-ROM или CD-ROM XA (фиг. 6).

Блок записи, показанный на фиг. 5, содержит схему 47 кодирования для создания "тасовки" или чересстрочной структуры и для добавления кодов четкости для обнаружения ошибок и исправления их (далее называемых

кодами коррекции ошибок).

После выполнения этих операций информация подается на модулятор 48, в котором информации придается форма, которая лучше подходит для записи на носителе записи. Кроме того модулятор 48 добавляет субкодовую информацию, которая среди прочего содержит код абсолютного времени в качестве адресной информации в так называемом субкодовом канале.

Фиг. 6 показывает блок 23 обработки изображения более подробно. Блок 23 содержит первую схему 49 детектора для обнаружения кодов синхронизации и номеров строк изображения, показывающих начало каждой остаточной закодированной строки изображения. Вторая схема 50 детектора служит для обнаружения начала каждого субфайла в каждом файле изображения с остаточно закодированным изображением для индикации начала секции, содержащей адреса некоторого количества кодированных строк изображения. Следует заметить, что схемы детекторов нужны только для закодированных обработки остаточно изображений, а не для обработки абсолютно закодированных изображений. Схема 51 для остаточно декодирования закодированной информации изображения и схема 52 управления для управления операцией также соединены с сигнальной шиной 26. Эта шина и выходы схемы

декодирования соединены на входы данных памяти 53 изображения через мультиплексную схему 54. Выходы данных памяти изображения соединены со входами схемы декодирования и со входами мультиплексной схемы. Схема 52 управления содержит генератор 55 адреса адресования ячеек памяти изображения. Блок обработки изображения далее содержит второй генератор 56 адреса для адресования ячеек памяти, чтобы выдать содержимое памяти изображения на преобразователь 57 сигнала. Схема 51 декодирования может содержать, например, декодирующее устройство 58 для кодов Хаффмана с управлением от блока 52 управления и сумматор 59. Другой вход сумматора соединен с выходами данных памяти 55 Результат операции изображения. суммирования подается на схему 54 Схема 52 управления мультиплекса. соединена с блоком 22 управления шиной управляющих сигналов. Схема управления 4

содержать, например, программируемый блок управления и компьютера. Такой блок может содержать, жестко смонтированную например, логическую схему или микропроцессорную загруженную подходящей программой, посредством которой, на основе команд управления принятых через шину 26 управления, генератор 55 адреса и схема 54 мультиплексора управляются таким образом, выбранная часть информации изображения, подаваемая на шине 26, загружается в память изображения. Хранимая таким образом информация в памяти изображения считывается с помощью генератора 56 адреса и затем подается на

Фиг. 7 показывает пример выполнения блока 6 считывания. Блок считывания

блок 11 дисплея через преобразователь 57

сигнала.

содержит обычную считывающую головку 60, которая считывает узоры информации на носителе 44 Обычный блок позиционирования обеспечивает движение головки в направлении поперек дорожек к части дорожки, заданной выбранным адресом под контролем блоке 62 управления. преобразованные головкой, Сигналы декодируются схемой 63 EFM и затем подаются на декодирующую схему 64, который восстанавливает первоначальную структуру информации, которая была "перетасована" перед записью, и которая обнаруживает, и если возможно, исправляет, После считанные неправильно кода. обнаружения неисправимых ошибок блок декодирования выдает сигнал флажка новой ошибки. Информация, которая была и исправлена схемой восстановлена декодирования, подается на схему 65 деформатирования, которая удаляет добавочную информацию, добавленную схемой форматирования перед записью. Схема 63 EFM демодулирования, схема декодирования C1RC 64 и деформатирования управляются обычным 62. Информация, блоком выдаваемая схемой деформатирования, подается через схему 66 интерфейса. Схема деформатирования может содержать схему исправления ошибок, посредством которой могут исправляться ошибки, которые не могут быть исправлены схемой 64 декодирования. Это осуществляется посредством избыточной добавленной схемой информации, форматирования.

Емкость памяти 53 изображения велика, так что стоимость такой памяти сравнительно высока. Емкость памяти может быть уменьшена посредством установки между мультиплексором 54 и памятью 53 изображения простого преобразователя 67 частоты выборок обычного типа, что снижает количество пикселей в строке с 786 до 512.

фиг. 8 показывает пример преобразователя частоты выборок. Данный пример содержит последовательное включение воспроизводящей и интерполирующей схемы 68, фильтра 69 нижних частот и формирующей выборки и уменьшающей их количество схемы 70.

Использование преобразователя 67 частоты выборок позволяет использовать память изображения емкостью 512x512 ячеек. Так как для практических целей количество рядов и столбцов памяти предпочтительно является степенью двойки, это дает память особенно подходящих размеров. Кроме того, в результате уменьшения количества ячеек памяти до 512 в ряду, снижается требуемая скорость считывания, так что менее строгие требования ставятся на скорость считывания из памяти.

Обычно используемые трубки-преобразователи изображения имеют максимальное разрешение приблизительно соответствующее 5 МГц, что соответствует примерно 500 пикселям в строке, так что уменьшение количества ячеек памяти в ряду не имеет видимого влияния на качество изображения при воспроизведении.

При использовании преобразователя 67 частоты выборок достигают того кодированные строки изображения из 768 пикселей преобразуются в кодированные

строки изображения, состоящие из 512 кодированных пикселей, так что кодированная строка изображения в одном столбце памяти. Это значит, что при воспроизведении изображения, хранимого в памяти 53, его высота в основном будет соответствовать высота кадров изображения по телевизионным стандартам ПАЛ и НТСЦ.

Чтобы обеспечить, что отношение между высотой и шириной представления закодированного изображения, хранимого в 53, соответствовало памяти первоначальному отношению, информация изображения должна заполнить только 256 из 512 столбцов памяти изображения. Это можно, например, осуществить запоминанием только четных или только нечетных закодированных строк изображения в памяти. Однако могут использоваться и другие применением техники способы C интерполяции.

15

20

25

30

Способ уменьшения количества столбцов в памяти изображения с использованием интерполяции дает удовлетворительное качество изображения. Оно лучше, чем при использовании лишь части кодированных строк изображения для подачи их в столбцы памяти изображения.

Недостаток интерполяции заключается в том, что она сравнительно сложна и расходует время, так что она меньше подходит для упрощенной системы поиска и воспроизведения изображений.

Использование преобразователя частоты выборок позволяет использовать память изображения с равным количеством рядов и столбцов и соответствующей в основном количеству используемых строк изображения по стандарту ПАЛ или НТСЦ. Это означает, что как в случае портретного, так и ландшафтного формате воспроизведения кодированных изображений, высота картинок практически соответствует количеству используемых строк изображения, так что экран дисплея будет правильно заполнен для изображений обоих типов.

Формула изобретения:

- 1. Носитель записи, содержащий информационные дорожки, на которых записаны файлы основных и управляющих данных, полученные в соответствии с аналогичными правилами форматирования и кодирования, отличающийся тем, что файл управляющих данных, записанный на информационных дорожках носителя записи, содержит пакеты в виде п идентичных групп бит управляющих данных в каждом пакете, где п ≥2 целое число.
- 2. Носитель записи по п. 1, отличающийся тем, что последовательные группы бит синхронизации кадров, расположенные на информационных дорожках в начале каждого кадра, образуют образец бит, отличающийся от образца бит, образованного группами бит управляющих данных этого кадра.
- 3. Носитель записи по п. 1, отличающийся тем, что каждая группа бит управляющих данных на информационных дорожках носителя записи содержит бит синхронизации с чередованием логических значений бит синхронизации последовательных групп бит управляющих данных с образцом повторения, частота которого связана с частотой повторения идентичных пакетов данных, расположенных на информационных

60

- дорожках носителя записи.

- 4. Способ записи информационных файлов на носителе записи, заключающийся в формировании перед записью файлов основных и управляющих данных в соответствии с аналогичными правилами форматирования и кодирования и записи полученных сигналов основных управляющих данных последовательно в кадров на носителе записи. отличающийся тем, что файл управляющих данных перед записью формируют из пакетов в виде п идентичных групп бит управляющих данных в каждом пакете, где n ≥2 целое число.
- 5. Способ по п. 4, отличающийся тем, что последовательные группы бит синхронизации записывают в виде образца бит, отличающегося от образца бит, сформированного группами бит управляющих данных кадра.
- 6. Способ по п. 4, отличающийся тем, что для каждой группы бит управляющих данных записывают бит синхронизации последовательных групп бит управляющих данных с образцом повторения, частота которого связана с частотой повторения одинаковых пакетов данных.
- 7. Устройство для записи информации на носителе записи, содержащее блок обработки записываемой информации, выход которого соединен с записывающей головкой. сопряженной с носителем записи, а выход с входной шиной и с управляющим блоком. выполненным с возможностью формирования из подлежащих записи файла основных управления данных И файла соответствующих сигналов с заданными правилами форматирования и кодирования, отличающееся тем, что управляющий блок выполнен с возможностью формирования сигналов управляющих данных в виде п последовательных идентичных групп бит, где п ≥2 целое число.
- 8. Устройство для воспроизведения информации с носителя записи, содержащее последовательно соединенные блок воспроизведения записанных файлов, блок декодирования и восстановления сигналов основных данных и данных управления и блок

обработки, а также управляющий блок, связанный с блоком декодирования и восстановления и с блоком обработки, отличающееся тем, что в него введен блок выделения пакетов управляющих данных из m групп бит управляющих данных, где m < n, n > 2 количество записанных последовательных идентичных групп управляющих данных, включенный между выходом блока воспроизведения и дополнительным входом управляющего блока

9. Устройство по п. 8, отличающееся тем, что m 1.

10. Устройство по п. 8 или отличающееся тем, что блок выделения пакетов управляющих данных выполнен в виде блока формирования чередующихся синхросигналов с частотой, связанной с частотой повторения пакетов на основе восстановленных сигналов. одного из синхронизации детектора определяющего группы бит синхронизации кадров, находящиеся в начале каждого кадра, и делителя частоты, формирующего синхросигнал на основе бит синхронизации, входящих в группы бит управляющих данных, при этом выход блока формирования чередующихся синхросигналов соединен с управляющим входом делителя частоты, а информационные входы и выходы блока формирования чередующихся синхросигналов детектора синхронизации кадров и делителя частоты являются соответственно входами и выходами блока выделения пакетов управляющих данных.

11. Устройство по п. 8 или 9, отличающееся тем, что блок выделения пакетов управляющих данных выполнен в виде детектора синхронизации кадров, делителя частоты, управляющий вход которого соединен с выходом детектора синхронизации кадров, и регистра, управляющий вход которого соединен с выходом делителя частоты, при этом входы детектора синхронизации кадров, делителя частоты и регистра, а также выходы детектора синхронизации кадров и делителя частоты являются входом, а также выходами блока выделения пакетов управляющих данных соответственно.

50

55

R □

ယ

-13-

R ∪

20739

ယ

모

ယ

ℤ

N

ဖ

ယ