Linear Algebra

Deep Learning Pre-Work

What is linear algebra?

What is linear algebra?

Linear Algebra

Linear Algebra in Data Science

Transpose of
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$$

Transpose of
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$$
 \longrightarrow $\begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$ Inverse of a $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ X $\begin{bmatrix} ? \\ 9 \\ 0 & 1 \end{bmatrix}$

Trace of a matrix $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \longrightarrow 1+4$ Determinant of a matrix $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \longrightarrow 1*4-2*3$

 $\begin{array}{c|c} & \text{Matrix} & = \pi \\ & \text{Arithmetic} & \times + \end{array}$

Matrix Arithmetic in Deep Learning

X * Weight + Bias

*

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} + \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} =$$

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} + \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} = \begin{pmatrix} 6 \\ \end{pmatrix}$$

Matrix Subtraction

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} - \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} = \begin{bmatrix} -4 & -4 \\ -4 & -4 \end{bmatrix}$$

Matrix Multiplication (Hadamard Product)

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} X \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} = \begin{pmatrix} 5 & 12 \\ 21 & 32 \end{pmatrix}$$

Matrix Division

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} = \begin{bmatrix} 1/5 & 2/6 \\ 3/7 & 4/8 \end{bmatrix}$$

*

$$\left(\begin{array}{c}2\\.5\end{array}\right)$$

$$4 \left\{ \begin{pmatrix} 7,413 & 2011 \\ 10,926 & 2011 \\ 7,351 & 2011 \\ 11,613 & 2011 \end{pmatrix} * \begin{pmatrix} 2 \\ .5 \end{pmatrix} = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$$

 4×1

$$\begin{pmatrix}
7,413 & 2011 \\
10,926 & 2011 \\
7,351 & 2011 \\
11,613 & 2011
\end{pmatrix}$$

$$\star \begin{pmatrix}
2 \\
.5
\end{pmatrix}$$

$$= \begin{pmatrix}
(7,413*2) + (2011*.5) = 15,831.5 \\
2 \\
.5
\end{pmatrix}$$

$$4 \times 1$$

Matrix Scalar Addition

Matrix Scalar Addition

$$\begin{array}{c}
15,831 \\
22,875.6 \\
15,707.5 \\
24,231.5
\end{array}$$

$$\begin{array}{c}
15,831 + 7 = 15,838.5 \\
22,857.5 + 7 = 22,864.5 \\
15,707.5 + 7 = 15,714.5 \\
24,231.5 + 7 = 24,238.5
\end{array}$$

Matrix Scalar Addition

X * Weight + Bias

$$* \begin{pmatrix} 2 \\ .5 \end{pmatrix} + 7 = \begin{pmatrix} 15,839.5 \\ 22,865.5 \\ 15,714.5 \\ 24,239.5 \end{pmatrix}$$