Concavidad y Optimización

Abelardo Jordán Liza

Maestría en Matemáticas Aplicadas PUCP

Lima, Setiembre 09, 2023

Funciones cóncavas/ convexas

Definición

Sea $\emptyset \neq C \subset E$ un conjunto convexo y $f: C \to R$ una función. Se dice que:

(a) f es cóncava en C, si $\forall x,y \in C, \ \forall t \in [0,1]$, se cumple

$$f(tx + (1-t)y) \ge tf(x) + (1-t)f(y) \tag{1}$$

(b) f es estrictamente cóncava en C, si $\forall x,y \in C$,con $x \neq y$, $\forall t \in]0,1[$, se cumple

$$f(tx + (1-t)y) > tf(x) + (1-t)f(y)$$
(2)

(c) f es convexa en C, si $\forall x,y \in C, \ \forall t \in [0,1]$, se cumple

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y) \tag{3}$$

(d) f es estrictamente convexa en C, si $\forall x,y \in C$,con $x \neq y$, $\forall t \in]0,1[$, se cumple

$$f(tx + (1-t)y) < tf(x) + (1-t)f(y)$$
(4)

Casi-concavidad / Casi-convexidad

Las definiciones que siguen, se dan para funciones definidas en C un subconjunto convexo no vacío, en particular en $\mathbb{R}.$

Definición

Una función $f:C \to \mathbb{R}$, se llama:

(a) casicóncava, si

$$x, y \in C, t \in [0, 1] \Rightarrow f(tx + (1 - t)y) \ge \min\{f(x), f(y)\}$$
 (5)

(b) casiconvexa, si

$$x,y\in C,t\in [0,1]\Rightarrow f(tx+(1-t)y)\leq \max\{f(x),f(y)\} \tag{6}$$

(c) estrictamente casicóncava, si

$$x, y \in C, x \neq y, t \in]0, 1[\Rightarrow f(tx + (1 - t)y) > \min\{f(x), f(y)\}$$
 (7)

(d) estrictamente casiconvexa, si

$$x, y \in C, x \neq y, t \in]0, 1[\Rightarrow f(tx + (1 - t)y) < \max\{f(x), f(y)\}$$
 (8)

Particularmente, las funciones de $\mathbb R$ en $\mathbb R$ que son monótonas, son ejemplos de funciones que son tanto casicóncavas como casiconvexas. Es fácil probar que toda función cóncava es casicóncava y que toda función convexa es casiconvexa, mas lo recíproco en general no es cierto. Además, , si f es casicóncava, entonces -f es casiconvexa, y viceversa.

Conjuntos de nivel

Dados un subconjunto no vacío C de \mathbb{R}^n y una función $f:C\to\mathbb{R}$, y un número real λ . se definen los conjuntos:

Definición

$$L_{\lambda}(f) := \{ x \in C : f(x) = \lambda \} \tag{9}$$

"conjunto de nivel λ de f".

$$S_{\lambda}(f) := \{ x \in C : f(x) \le \lambda \} \tag{10}$$

"conjunto de nivel inferior λ de f".

$$S^{\lambda}(f) := \{ x \in C : f(x) \ge \lambda \}$$
(11)

"conjunto de nivel superior λ de f".

Casi-concavidad y conjuntos de nivel superior

Dado un conjunto no vacío C y una función $f:C\to\mathbb{R}.$ Se presentan las siguientes propiedades:

Proposición

- (i) f es casi-cóncava, si y solo si, para cada $\lambda \in \mathbb{R}$ se cumple que $S^{\lambda}(f)$ es un subconjunto convexo de C.
- (ii) f es casi-convexa, si y solo si, para cada $\lambda \in \mathbb{R}$ se cumple que $S_{\lambda}(f)$ es un subconjunto convexo de C.

Corolario

Sea C un conjunto convexo y $f:C\to\mathbb{R}$. Entonces:

- (i) $Si\ f$ es convexa, entonces sus conjuntos de nivel inferior, son conjuntos convexos.
- (ii) Si f es cóncava, entonces sus conjuntos de nivel superior, son conjuntos convexos.

Aspectos de diferenciabilidad

Para funciones diferenciables cóncavas y convexas, existe una caracterización. Como también cuando éstas son diferenciables de segundo orden.

Proposición

Sea f una función continuamente diferenciable en un conjunto abierto $\Omega \subset \mathbb{R}^n$ y C un subconjunto convexo no vacío de Ω . Entonces

(i) f es convexa en C, si y solo si

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle$$
, $\forall x, y \in C$. (12)

(ii) f es estrictamente convexa, si y solo si

$$f(y) > f(x) + \langle \nabla f(x), y - x \rangle$$
, $\forall x, y \in C, x \neq y$.

(iii) f es cóncava en C, si y solo si:

$$f(y) \le f(x) + \langle \nabla f(x), y - x \rangle$$
, $\forall x, y \in C$. (13)

(iv) f es estrictamente cóncava, si \cdots

Caracterización de segundo orden

Proposición

Sean $C \subset \mathbb{R}^n$ un conjunto abierto y convexo, y $f:C \to \mathbb{R}$ una función de clase $C^2.$

- (i) f es convexa si y solo si, Hf(x) es positiva semidefinida para cada $x \in C$.
- (ii) Si Hf(x) es positiva definida para cada $x \in C$ entonces f es estrictamente convexa.

Caracterización de segundo orden

Proposición

Sean $C \subset \mathbb{R}^n$ un conjunto abierto y convexo, y $f:C \to \mathbb{R}$ una función de clase $C^2.$

- (i) f es convexa si y solo si, Hf(x) es positiva semidefinida para cada $x \in C$.
- (ii) Si Hf(x) es positiva definida para cada $x \in C$ entonces f es estrictamente convexa.

Para(i): Si f es de clase C^2 en C, entonces para cada $x,y\in C$ existe $x_y\in [x\ y]$ tal que

$$f(x) = f(y) + \langle \nabla f(y), x - y \rangle + \frac{1}{2} \langle x - y, Hf(x_y)(x - y) \rangle (*)$$

y tomando como dato que $Hf(x_y)$ es positiva semidefinida:

$$f(x) \ge f(y) + \langle \nabla f(y), x - y \rangle.$$

Recíprocamente, suponga que para algún $x\in C$, existe $d\neq 0$ tal que (d,Hf(x)d<0, entonces en (*) por la continuidad de Hf se sigue que para $\epsilon>0$ suficientemente pequeño con $y=x+\epsilon d$, se obtiene una contradicción respecto a la convexidad de f.

Epigrafo e Hipografo

Dada un subconjunto no vacío C de un e.n. E y $f:C\to\mathbb{R}$ una función. Se definen:

(i) El **epigrafo** de f, es un subconjunto de $E \times \mathbb{R}$ dado por

$$epi(f) := \{(x, \alpha) \in C \times \mathbb{R} : f(x) \le \alpha\}$$

Epigrafo e Hipografo

Dada un subconjunto no vacío C de un e.n. E y $f:C\to\mathbb{R}$ una función. Se definen:

(i) El **epigrafo** de f, es un subconjunto de $E \times \mathbb{R}$ dado por

$$epi(f) := \{(x, \alpha) \in C \times \mathbb{R} : f(x) \le \alpha\}$$

(i) El **hipografo** de f, es un subconjunto de $E \times \mathbb{R}$ dado por

$$hip(f) := \{(x, \alpha) \in C \times \mathbb{R} : f(x) \ge \alpha\}$$

Epigrafo e Hipografo

Dada un subconjunto no vacío C de un e.n. E y $f:C\to\mathbb{R}$ una función. Se definen:

(i) El **epigrafo** de f, es un subconjunto de $E \times \mathbb{R}$ dado por

$$epi(f) := \{(x, \alpha) \in C \times \mathbb{R} : f(x) \le \alpha\}$$

(i) El **hipografo** de f, es un subconjunto de $E \times \mathbb{R}$ dado por

$$hip(f) := \{(x, \alpha) \in C \times \mathbb{R} : f(x) \ge \alpha\}$$

Propiedad: Si adicionalmente ${\cal C}$ es un conjunto convexo, entonces se cumple:

- (a) f es una función convexa si y solo si epi(f) es un subconjunto convexo de $E \times \mathbb{R}.$
- (b) f es una función cóncava si y solo si hip(f) es un subconjunto convexo de $E \times \mathbb{R}.$

Note que epi(f) es un conjunto convexo de \mathbb{R}^2 mas epi(g) no es un conjunto convexo de \mathbb{R}^2 .

En esta parte, sea C un subconjunto no vacío y convexo de un espacio normado (como puede ser \mathbb{R}^n)

• Si $f:C\to\mathbb{R}$ es una función convexa(cóncava), entonces para toda constante no negativa α , la función αf definida por $(\alpha f)(x)=\alpha f(x)$ para cada $x\in C$, también es convexa(cóncava).

En esta parte, sea C un subconjunto no vacío y convexo de un espacio normado (como puede ser \mathbb{R}^n)

- Si $f:C\to\mathbb{R}$ es una función convexa(cóncava), entonces para toda constante no negativa α , la función αf definida por $(\alpha f)(x)=\alpha f(x)$ para cada $x\in C$, también es convexa(cóncava).
- Si $f:C\to\mathbb{R}$ es una función convexa(cóncava), entonces la función -f es cóncava(convexa).

En esta parte, sea C un subconjunto no vacío y convexo de un espacio normado (como puede ser \mathbb{R}^n)

- Si $f:C\to\mathbb{R}$ es una función convexa(cóncava), entonces para toda constante no negativa α , la función αf definida por $(\alpha f)(x)=\alpha f(x)$ para cada $x\in C$, también es convexa(cóncava).
- Si $f:C\to\mathbb{R}$ es una función convexa(cóncava), entonces la función -f es cóncava(convexa).
- Si f_1, \dots, f_m son funciones convexas en C, entonces la función $f = f_1 + \dots + f_m$ es convexa.

En esta parte, sea C un subconjunto no vacío y convexo de un espacio normado (como puede ser \mathbb{R}^n)

- Si $f:C\to\mathbb{R}$ es una función convexa(cóncava), entonces para toda constante no negativa α , la función αf definida por $(\alpha f)(x)=\alpha f(x)$ para cada $x\in C$, también es convexa(cóncava).
- Si $f:C\to\mathbb{R}$ es una función convexa(cóncava), entonces la función -f es cóncava(convexa).
- Si f_1, \dots, f_m son funciones convexas en C, entonces la función $f = f_1 + \dots + f_m$ es convexa.
- Si f_1, \dots, f_m son funciones cóncavas en C, entonces la función $f = f_1 + \dots + f_m$ es cóncava.

En esta parte, sea C un subconjunto no vacío y convexo de un espacio normado (como puede ser \mathbb{R}^n)

- Si $f:C\to\mathbb{R}$ es una función convexa(cóncava), entonces para toda constante no negativa α , la función αf definida por $(\alpha f)(x)=\alpha f(x)$ para cada $x\in C$, también es convexa(cóncava).
- Si $f:C\to\mathbb{R}$ es una función convexa(cóncava), entonces la función -f es cóncava(convexa).
- Si f_1, \dots, f_m son funciones convexas en C, entonces la función $f = f_1 + \dots + f_m$ es convexa.
- Si f_1, \dots, f_m son funciones cóncavas en C, entonces la función $f = f_1 + \dots + f_m$ es cóncava.
- Si f_1, \cdots, f_m son funciones convexas en C, entonces la función $f = \max_{i=1,m} f_i$ definida por

$$f(x) = \max_{i=1,m} f_i(x) , \qquad x \in C$$

también es convexa.

En esta parte, sea C un subconjunto no vacío y convexo de un espacio normado (como puede ser \mathbb{R}^n)

- Si $f:C\to\mathbb{R}$ es una función convexa(cóncava), entonces para toda constante no negativa α , la función αf definida por $(\alpha f)(x)=\alpha f(x)$ para cada $x\in C$, también es convexa(cóncava).
- Si $f:C\to\mathbb{R}$ es una función convexa(cóncava), entonces la función -f es cóncava(convexa).
- Si f_1, \dots, f_m son funciones convexas en C, entonces la función $f = f_1 + \dots + f_m$ es convexa.
- Si f_1, \dots, f_m son funciones cóncavas en C, entonces la función $f = f_1 + \dots + f_m$ es cóncava.
- Si f_1, \dots, f_m son funciones convexas en C, entonces la función $f = \max_{i=1,m} f_i$ definida por

$$f(x) = \max_{i=1,m} f_i(x) , \qquad x \in C$$

también es convexa.

• Si f_1, \cdots, f_m son funciones cóncavas en C, entonces la función $f = \min_{i=1,m} f_i$ definida por

$$f(x) = \min_{i=1, m} f_i(x) , \qquad x \in C$$

también es cóncava.

Funciones fuertemente convexas

Sea $f:\mathbb{R}^n \to \mathbb{R}$ una función diferenciable 1 . Se dice que f es fuertemente convexa de módulo c>0 si satisface

$$f(x) \ge f(x_0) + \langle \nabla f(x_0), x - x_0 \rangle + \frac{1}{2}c||x - x_0||^2, \quad \forall x, x_0 \in \mathbb{R}^n.$$

 $^{{}^1\}mathbb{R}^n$ puede ser reemplazado por un convexo abierto

Funciones fuertemente convexas

Sea $f:\mathbb{R}^n \to \mathbb{R}$ una función diferenciable 1 . Se dice que f es fuertemente convexa de módulo c>0 si satisface

$$f(x) \ge f(x_0) + \langle \nabla f(x_0), x - x_0 \rangle + \frac{1}{2}c ||x - x_0||^2, \quad \forall x, x_0 \in \mathbb{R}^n.$$

¿Cómo se comportan las funciones del lado derecho de la inecuación previa?

 $^{{}^1\}mathbb{R}^n$ puede ser reemplazado por un convexo abierto

Observación

 $\cite{Locales}$ Cuál es la implicancia geométrica de la gráfica de f fuertemente convexa?

Si además f es de clase C^2 , entonces Hf(x) es positiva definida para cada $x\in\mathbb{R}^n$. En consecuencia, f es estrictamente convexa.

Proposición

f es fuertemente convexa de módulo c>0 si, y solo si, la función $f-\frac{1}{2}c\|\ \|^2$ es convexa.

Ejemplo:

Observación

¿Cuál es la implicancia geométrica de la gráfica de f fuertemente convexa?

Si además f es de clase C^2 , entonces Hf(x) es positiva definida para cada $x\in\mathbb{R}^n$. En consecuencia, f es estrictamente convexa.

Proposición

f es fuertemente convexa de módulo c>0 si, y solo si, la función $f-\frac{1}{2}c\|\ \|^2$ es convexa.

Ejemplo:Para cada $\alpha>0$, la función $f(x)=\alpha\|x\|^2$ es fuertemente convexa. En general toda función de la forma $f(x)=\alpha\|x-x_0\|^2$.

Sea C convexo abierto y $f:C\to\mathbb{R}$ fuertemente convexa de clase C^2 . Para cada $x_0\in C$, los conjuntos de nivel inferior $\{x\in C:f(x)\leq f(x_0)\}$ son convexos y compactos.

Sea C convexo abierto $y \ f: C \to \mathbb{R}$ fuertemente convexa de clase C^2 . Para cada $x_0 \in C$, los conjuntos de nivel inferior $\{x \in C: f(x) \le f(x_0)\}$ son convexos y compactos.

Dem: Fijamos $x_0\in C$, el conjunto $L:=\{x\in C: f(x)\leq f(x_0)\}$ es convexo y cerrado. Para cada $x\in L, \ f(x)-f(x_0)\leq 0.$

Sea C convexo abierto y $f: C \to \mathbb{R}$ fuertemente convexa de clase C^2 . Para cada $x_0 \in C$, los conjuntos de nivel inferior $\{x \in C: f(x) \le f(x_0)\}$ son convexos y compactos.

Dem: Fijamos $x_0 \in C$, el conjunto $L:=\{x \in C: f(x) \leq f(x_0)\}$ es convexo y cerrado. Para cada $x \in L$, $f(x)-f(x_0) \leq 0$. De la convexidad fuerte, existe c>0 tal que

$$f(x) - f(x_0) \ge \langle \nabla f(x_0), x - x_0 \rangle + \frac{1}{2}c||x - x_0||^2$$

$$\ge -||\nabla f(x_0)|| ||x - x_0|| + \frac{1}{2}c||x - x_0||^2$$

Para todo $x \neq x_0$, se sigue que $\|x-x_0\| \leq \frac{2}{c}\|\nabla f(x_0)\|$. De esto se concluye que para $x \in L$, $\|x\|$ es acotado.

Sea C convexo abierto y $f: C \to \mathbb{R}$ fuertemente convexa de clase C^2 . Para cada $x_0 \in C$, los conjuntos de nivel inferior $\{x \in C: f(x) \le f(x_0)\}$ son convexos y compactos.

Dem: Fijamos $x_0 \in C$, el conjunto $L:=\{x \in C: f(x) \leq f(x_0)\}$ es convexo y cerrado. Para cada $x \in L$, $f(x)-f(x_0) \leq 0$. De la convexidad fuerte, existe c>0 tal que

$$f(x) - f(x_0) \ge \langle \nabla f(x_0), x - x_0 \rangle + \frac{1}{2}c||x - x_0||^2$$

$$\ge -||\nabla f(x_0)|| ||x - x_0|| + \frac{1}{2}c||x - x_0||^2$$

Para todo $x \neq x_0$, se sigue que $||x - x_0|| \leq \frac{2}{c} ||\nabla f(x_0)||$. De esto se concluye que para $x \in L$, ||x|| es acotado.

Corolario

 $f: \mathbb{R}^n \to \mathbb{R}$ con las condiciones previas, entonces existe un único $\overline{x} \in \mathbb{R}^n$ donde f alcanza su valor mínimo global.

Observación

la función $f(x)=x^4, \ x\in\mathbb{R}$ es estrictamente convexa y tiene un único minimizante en $\overline{x}=0$, mas f no es fuertemente convexa, pues caso contrario debe existir un c>0 tal que la función $g(x)=f(x)-\frac{c}{2}x^2$ sea convexa en \mathbb{R} , y como $g''(x)=12x^2-c$ y esto no es no-positivo en \mathbb{R} , se sigue que g no es convexa y en consecuencia f no es fuertemente convexa.

Ejemplos en ℝ

- Toda función lineal $f: \mathbb{R} \to \mathbb{R}$ (f(x) = ax + b) es convexa y cóncava a la vez (no es estrictamente en ningún caso).
- Para constantes a>0 y $x_0\in\mathbb{R}$, la función $f(x)=a|x-x_0|$ es convexa, mientras que para a<0, la función $g(x)=a|x-x_0|$ es cóncava.
- Para $i=1,\cdots,m$, dados $a_i\in\mathbb{R},b_i\in\mathbb{R}$, la función $f(x)=\max_{i=1,m}(ax_i+b_i)$ es convexa.

- la función $f(x) = ax^2 + bx + c$ es estictamente convexa si a > 0 y es estrictamente cóncava si a < 0.
- La función $f(x) = e^{ax}$ es convexa para cualquier constante real a.
- La función $f(x) = \max\{0, x\}$ es convexa en \mathbb{R} .
- La función $f(x) = x^p$ es cóncava en $[0, +\infty)$ para 0 .
- \bullet La función f(x) = log(x) es cóncava en $(0,+\infty)$
- La función $f(x) = \left\{ \begin{array}{ll} x \log(x), & \text{ si } x > 0 \\ 0, & \text{ si } x = 0 \end{array} \right.$ es convexa en $[0, +\infty)$

Ejemplos con varias variables

- Para todo $a \in \mathbb{R}^n$ y $b \in \mathbb{R}$, la función F(x) = a'x + b es cóncava y convexa a la vez.
- Para constantes a_1, \cdots, a_n , la función $F(x) = \sum_{i=1}^n e^{a_i x_i}$ es convexa en \mathbb{R}^n .

Ejemplos con varias variables

- Para todo $a \in \mathbb{R}^n$ y $b \in \mathbb{R}$, la función F(x) = a'x + b es cóncava y convexa a la vez.
- Para constantes a_1, \cdots, a_n , la función $F(x) = \sum_{i=1}^n e^{a_i x_i}$ es convexa en \mathbb{R}^n .
- la función $F(x) = \log(\prod_{i=1}^n x_i)$ es cóncava en \mathbb{R}^n_{++}

Ejemplos con varias variables

- Para todo $a \in \mathbb{R}^n$ y $b \in \mathbb{R}$, la función F(x) = a'x + b es cóncava y convexa a la vez.
- Para constantes a_1, \cdots, a_n , la función $F(x) = \sum_{i=1}^n e^{a_i x_i}$ es convexa en \mathbb{R}^n .
- la función $F(x) = \log(\prod_{i=1}^n x_i)$ es cóncava en \mathbb{R}^n_{++}
- La función $F(x)=\sum_{i=1}^n (-x_i\log(x_i))=-\sum_{i=1}^n (x_i\log(x_i))$ es cóncava en \mathbb{R}^n_+ con el convenio $0.\infty=0$.

Subdiferenciabilidad

Definición

Sea $f:\mathbb{R}^n \to \overline{\mathbb{R}}$ una función convexa y propia, y $x \in dom(f).$ Un vector z tal que

$$f(y) \ge f(x) + \langle z, y - x \rangle, \qquad \forall y \in \mathbb{R}^n$$
 (14)

se llama un subgradiente de f en x.

Subdiferenciabilidad

Definición

Sea $f:\mathbb{R}^n \to \overline{\mathbb{R}}$ una función convexa y propia, y $x \in dom(f).$ Un vector z tal que

$$f(y) \ge f(x) + \langle z, y - x \rangle, \qquad \forall y \in \mathbb{R}^n$$
 (14)

se llama un subgradiente de f en x.El conjunto de los vectores subgradientes de f en x se llama el subdiferencial de f en x y se denota por $\partial f(x)$.

Subdiferenciabilidad

Definición

Sea $f:\mathbb{R}^n \to \overline{\mathbb{R}}$ una función convexa y propia, y $x \in dom(f).$ Un vector z tal que

$$f(y) \ge f(x) + \langle z, y - x \rangle, \qquad \forall y \in \mathbb{R}^n$$
 (14)

se llama un subgradiente de f en x.El conjunto de los vectores subgradientes de f en x se llama el subdiferencial de f en x y se denota por $\partial f(x)$. Si $x \notin dom(f)$, se define $\partial f(x) = \emptyset$.

Subdiferenciabilidad

Definición

Sea $f:\mathbb{R}^n o \overline{\mathbb{R}}$ una función convexa y propia, y $x \in dom(f).$ Un vector z tal que

$$f(y) \ge f(x) + \langle z, y - x \rangle, \qquad \forall y \in \mathbb{R}^n$$
 (14)

se llama un subgradiente de f en x.El conjunto de los vectores subgradientes de f en x se llama el subdiferencial de f en x y se denota por $\partial f(x)$. Si $x \notin dom(f)$, se define $\partial f(x) = \emptyset$.

NOTA: Si $x \in dom(f)$ esto no garantiza que $\partial f(x) \neq \emptyset$. Por ejemplo, considere la función $f(x) = \left\{ \begin{array}{ll} 1, & \text{si } x = 0 \\ x^2, & \text{si } 0 < x \leq 1 \end{array} \right.$ Si existe $z \in \mathbb{R}$ tal que $z \in \partial f(0)$, entonces $z \in \mathbb{R}$ tal que $z \in \partial f(0)$, entonces $z \in \mathbb{R}$ tal que $z \in \partial f(0)$. Esto genera una contradicción para z = 0.

Para la función $f(x) = \max\{-x + 1; 0.5x + 2; 2x - 4\}$

$$\partial f(-2/3) = \cdots,$$

$$\partial f(4) = \cdots$$

Lema

Sea $f: \mathbb{R}^n \to \mathbb{R}$ una función convexa y $x \in dom(f)$; entonces $z \in \partial f(x)$, si y solamente si,

$$f'(x,d) \ge \langle z, d \rangle, \ \forall d \in \mathbb{R}^n.$$

Teorema

Sea $f:\mathbb{R}^n \to \overline{\mathbb{R}}$ una función convexa. Asuma que $x \in int(dom(f))$, entonces $\partial f(x)$ es un conjunto convexo, compacto y no vacío. Además, para cada $d \in \mathbb{R}^n$ se cumple

$$f'(x,d) = \max_{z \in \partial f(x)} \langle z, d \rangle$$

(Teorema 2.74 del texto de Ruszczyński)

En un espacio normado E con norma $\|\ \|:E\to\mathbb{R}$, esta función es convexa, dado que por desigualdad triangular cumple

$$\|tx + (1-t)y\| \le t\|x\| + (1-t)\|y\|, \qquad \quad \text{para cada } t \in [0,1], x,y \in E$$

En particular en \mathbb{R}^n toda p-norma con $p\geq 1$ definida por

$$x(x_1, \dots, x_n) \Rightarrow ||x||_p := (\sum_{i=1}^n |x_i|^p)^{1/p}$$

En un espacio normado E con norma $\|\ \|:E\to\mathbb{R}$, esta función es convexa, dado que por desigualdad triangular cumple

$$\|tx + (1-t)y\| \le t\|x\| + (1-t)\|y\|, \qquad \quad \text{para cada } t \in [0,1], x,y \in E$$

En particular en \mathbb{R}^n toda p-norma con $p\geq 1$ definida por

$$x(x_1, \dots, x_n) \Rightarrow ||x||_p := (\sum_{i=1}^n |x_i|^p)^{1/p}$$

Consideremos la norma euclidiana $\|\ \|$ en \mathbb{R}^n y la función $f(x)=\|x\|, \forall x\in\mathbb{R}^n.$ Calcular $\partial f(0)$

En un espacio normado E con norma $\|\ \|:E\to\mathbb{R}$, esta función es convexa, dado que por desigualdad triangular cumple

$$\|tx + (1-t)y\| \le t\|x\| + (1-t)\|y\|, \qquad \quad \text{para cada } t \in [0,1], x,y \in E$$

En particular en \mathbb{R}^n toda p-norma con $p\geq 1$ definida por

$$x(x_1, \dots, x_n) \Rightarrow ||x||_p := (\sum_{i=1}^n |x_i|^p)^{1/p}$$

Consideremos la norma euclidiana $\|\ \|$ en \mathbb{R}^n y la función $f(x) = \|x\|, \forall x \in \mathbb{R}^n.$ Calcular $\partial f(0)$ Para cada $d \in \mathbb{R}^n$, se tiene $f'(0,d) = \lim_{t \downarrow 0} \frac{\|td\|}{t} = \|d\|$

En un espacio normado E con norma $\|\ \|:E\to\mathbb{R},$ esta función es convexa, dado que por desigualdad triangular cumple

$$\|tx + (1-t)y\| \le t\|x\| + (1-t)\|y\|, \qquad \quad \text{para cada } t \in [0,1], x,y \in E$$

En particular en \mathbb{R}^n toda p-norma con $p\geq 1$ definida por

$$x(x_1, \dots, x_n) \Rightarrow ||x||_p := (\sum_{i=1}^n |x_i|^p)^{1/p}$$

Consideremos la norma euclidiana $\| \ \|$ en \mathbb{R}^n y la función

$$f(x) = ||x||, \forall x \in \mathbb{R}^n.\mathsf{Calcular}\ \partial f(0)$$

Para cada $d \in \mathbb{R}^n$, se tiene

$$f'(0,d) = \lim_{t \downarrow 0} \frac{\|td\|}{t} = \|d\|$$

Por el lema previo, $z\in\partial f(0)$ si y solo si, $\|d\|\geq \langle z,d\rangle,\ \forall d\in\mathbb{R}^n$ y esto es válido si y solo si $\|z\|\leq 1.$ Es decir, $\partial f(0)=\{z\in\mathbb{R}^n:\|z\|\leq 1\}$

En un espacio normado E con norma $\|\ \|:E\to\mathbb{R}$, esta función es convexa, dado que por desigualdad triangular cumple

$$\|tx + (1-t)y\| \leq t\|x\| + (1-t)\|y\|, \qquad \quad \text{para cada } t \in [0,1], x,y \in E$$

En particular en \mathbb{R}^n toda p-norma con $p\geq 1$ definida por

$$x(x_1, \dots, x_n) \Rightarrow ||x||_p := (\sum_{i=1}^n |x_i|^p)^{1/p}$$

Consideremos la norma euclidiana $\| \|$ en \mathbb{R}^n y la función

$$f(x) = ||x||, \forall x \in \mathbb{R}^n. \mathsf{Calcular} \ \partial f(0)$$

Para cada $d \in \mathbb{R}^n$, se tiene

$$f'(0,d) = \lim_{t \downarrow 0} \frac{||td||}{t} = ||d||$$

Por el lema previo, $z\in\partial f(0)$ si y solo si, $\|d\|\geq \langle z,d\rangle,\ \forall d\in\mathbb{R}^n$ y esto es válido si y solo si $\|z\|\leq 1.$ Es decir, $\partial f(0)=\{z\in\mathbb{R}^n:\|z\|\leq 1\}$

Particularmente en \mathbb{R} , la función valor absoluto es tal que

$$\partial(\mid\mid)(x) = \left\{ \begin{array}{ll} \{1\}, & \text{si } x > 0 \\ \lceil -1, 1 \rceil, & \text{si } x = 0 \\ \{-1\}, & \text{si } x < 0 \end{array} \right.$$

Propiedad:

Sean A una matriz de orden $m\times n$, $b\in\mathbb{R}^m$ y $f:\mathbb{R}^m\to\mathbb{R}$ una función convexa(cóncava). Entonces la función g(x)=f(Ax-b) es convexa(cóncava) en \mathbb{R}^n .

Propiedad:

Sean A una matriz de orden $m\times n$, $b\in\mathbb{R}^m$ y $f:\mathbb{R}^m\to\mathbb{R}$ una función convexa(cóncava). Entonces la función g(x)=f(Ax-b) es convexa(cóncava) en \mathbb{R}^n .

Consecuentemente, para una norma $\| \|$ en \mathbb{R}^m , la función $g(x) = \|Ax - b\|$ es convexa en \mathbb{R}^n .

Propiedad:

Sean A una matriz de orden $m\times n$, $b\in\mathbb{R}^m$ y $f:\mathbb{R}^m\to\mathbb{R}$ una función convexa(cóncava). Entonces la función g(x)=f(Ax-b) es convexa(cóncava) en \mathbb{R}^n .

Consecuentemente, para una norma $\| \|$ en \mathbb{R}^m , la función $g(x) = \|Ax - b\|$ es convexa en \mathbb{R}^n .

Tarea: Hallar $\partial g(x)$.

Optimalidad con subdiferenciabilidad

Proposición

Sea $f:\mathbb{R}^n \to \overline{\mathbb{R}}$ una función convexa propia. Un punto \overline{x} es un mínimo global de f si y solo si,

$$0 \in \partial f(\overline{x}).$$

Optimalidad con subdiferenciabilidad

Proposición

Sea $f:\mathbb{R}^n \to \overline{\mathbb{R}}$ una función convexa propia. Un punto \overline{x} es un mínimo global de f si y solo si,

$$0 \in \partial f(\overline{x}).$$

Note que si f es diferenciable en un entorno de \overline{x} , entonces la última condición se reduce a $\nabla f(\overline{x})=0$.

Optimalidad con subdiferenciabilidad

Proposición

Sea $f:\mathbb{R}^n \to \overline{\mathbb{R}}$ una función convexa propia. Un punto \overline{x} es un mínimo global de f si y solo si,

$$0 \in \partial f(\overline{x}).$$

Note que si f es diferenciable en un entorno de \overline{x} , entonces la última condición se reduce a $\nabla f(\overline{x})=0$.

(Revisar el ejemplo 3.6 del texto de Ruszczyński)

Funciones cuadráticas

Sean $A=[a_{ij}]$ una matriz constante de orden n, $b=(b_1,\cdots,b_n)'$ un vector constante n-dimensional y c una constante real. Una función cuadrática en las variables x_1,x_2,\cdots,x_n es de la forma

$$f(x_1, x_2, \dots, x_n) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j + \sum_{i=1}^n b_i x_i + c$$
 (15)

Si x denota al vector $(x_1,\cdots,x_n)'$, entonces la función previa se puede escribir como

$$f(x) = x'Ax + b'x + c$$

Funciones cuadráticas

Sean $A=[a_{ij}]$ una matriz constante de orden n, $b=(b_1,\cdots,b_n)'$ un vector constante n-dimensional y c una constante real. Una función cuadrática en las variables x_1,x_2,\cdots,x_n es de la forma

$$f(x_1, x_2, \dots, x_n) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j + \sum_{i=1}^n b_i x_i + c$$
 (15)

Si x denota al vector $(x_1,\cdots,x_n)'$, entonces la función previa se puede escribir como

$$f(x) = x'Ax + b'x + c$$

Observación: En la práctica se asume que A es una matriz simétrica y que el primer término que describe a f está multiplicado por 1/2. Es decir f toma la forma:

$$f(x) = \frac{1}{2}x'Ax + b'x + c, \qquad x \in \mathbb{R}^n$$
 (16)

Note que en esta última situación, $\nabla f(x) = Ax + b$ y Hf(x) = A. ¿La ecuación Ax + b = 0 tiene solución? ¿Cómo es la matriz A en cuestión de definida-semidefinida?

Cómo es una función cuadrática (analíticamente)?

Veamos algunos casos:

$$f(x) = \frac{1}{2}x'Ax + b'x + 4$$

$$A = \begin{bmatrix} 2 & -2 \\ -2 & 4 \end{bmatrix}; b = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

$$\begin{bmatrix} x_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \end{bmatrix}$$

$$\begin{bmatrix} x_2 \\ y_7 \\ y_8 \\ y_{1} \\ y_{2} \\ y_{3} \\ y_{4} \\ y_{5} \\ y_{6} \end{bmatrix}$$

2)

3) ¿Qué ocurre con la función $f(x_1,x_2)=rac{1}{2}(2x_1^2-4x_1x_2+2x_2^2)+x_1$

3) ¿Qué ocurre con la función $f(x_1,x_2) = \frac{1}{2}(2x_1^2 - 4x_1x_2 + 2x_2^2) + x_1$

Observación:

Dada la función cuadrática $f(x) = \frac{1}{2}x'Ax + b'x + c$ con A una matriz simétrica, b un vector n-dimensional y c constante real.

- Si A es positiva semidefinida(así f es convexa) y $\nabla f(x^*) = 0$, entonces x^* es un mínimo global para f.
- Si A es negativa semidefinida(así f es cóncava) y $\nabla f(x^*) = 0$, entonces x^* es un máximo global para f.

3) ¿Qué ocurre con la función $f(x_1,x_2) = \frac{1}{2}(2x_1^2 - 4x_1x_2 + 2x_2^2) + x_1$

Observación:

Dada la función cuadrática $f(x) = \frac{1}{2}x'Ax + b'x + c$ con A una matriz simétrica, b un vector n-dimensional y c constante real.

- Si A es positiva semidefinida(así f es convexa) y $\nabla f(x^*) = 0$, entonces x^* es un mínimo global para f.
- Si A es negativa semidefinida(así f es cóncava) y $\nabla f(x^*)=0$, entonces x^* es un máximo global para f.

¿Tal x^* es único ?

Sean c_1, \dots, c_n constantes.

¿Es la función
$$F(x_1,x_2,\cdots,x_n)=\sum_{i=1}^n|x_i-c_i|^2$$
, una función cuadrática ?

Sean c_1, \dots, c_n constantes.

¿Es la función
$$F(x_1, x_2, \cdots, x_n) = \sum_{i=1}^n |x_i - c_i|^2$$
, una función cuadrática ?

Questions

 ¿Cuándo una función cuadrática es fuertemente convexa? ¿La función norma euclidiana al cuadrado es fuertemente convexa? Sean c_1, \dots, c_n constantes.

¿Es la función
$$F(x_1, x_2, \cdots, x_n) = \sum_{i=1}^n |x_i - c_i|^2$$
, una función cuadrática ?

Questions

- ¿Cuándo una función cuadrática es fuertemente convexa? ¿La función norma euclidiana al cuadrado es fuertemente convexa?
- Si a una función fuertemente convexa se le suma una función convexa ¿ el resultado sigue siendo fuertemente convexa?

Sea X un subconjunto no vacío de \mathbb{R}^n , el vector $d \in \mathbb{R}^n$ se llama dirección tangente al conjunto X en el punto $x \in X$, si existe una sucesión x^k en X tal que $x^k \to x$, y una sucesión de escalares t_k tal que $t_k \downarrow 0$ y

$$d = \lim_{k \to +\infty} \frac{x^k - x}{t_k} \tag{17}$$

Sea X un subconjunto no vacío de \mathbb{R}^n , el vector $d \in \mathbb{R}^n$ se llama dirección tangente al conjunto X en el punto $x \in X$, si existe una sucesión x^k en X tal que $x^k \to x$, y una sucesión de escalares t_k tal que $t_k \downarrow 0$ y

$$d = \lim_{k \to +\infty} \frac{x^k - x}{t_k} \tag{17}$$

El conjunto de las direcciones tangente a X en el punto x se denota por $T_X(x)$.

Sea X un subconjunto no vacío de \mathbb{R}^n , el vector $d \in \mathbb{R}^n$ se llama dirección tangente al conjunto X en el punto $x \in X$, si existe una sucesión x^k en X tal que $x^k \to x$, y una sucesión de escalares t_k tal que $t_k \downarrow 0$ y

$$d = \lim_{k \to +\infty} \frac{x^k - x}{t_k} \tag{17}$$

El conjunto de las direcciones tangente a X en el punto x se denota por $T_X(x)$. Equivalentemente, $d \in T_X(x)$ si y solo si: existe una sucesión d^k que converge a d y una sucesión de números reales positivos t_k con $t_k \downarrow 0$ y $x + t_k d^k \in X$.

Sea X un subconjunto no vacío de \mathbb{R}^n , el vector $d \in \mathbb{R}^n$ se llama dirección tangente al conjunto X en el punto $x \in X$, si existe una sucesión x^k en X tal que $x^k \to x$, y una sucesión de escalares t_k tal que $t_k \downarrow 0$ y

$$d = \lim_{k \to +\infty} \frac{x^k - x}{t_k} \tag{17}$$

El conjunto de las direcciones tangente a X en el punto x se denota por $T_X(x)$. Equivalentemente, $d \in T_X(x)$ si y solo si: existe una sucesión d^k que converge a d y una sucesión de números reales positivos t_k con $t_k \downarrow 0$ y $x + t_k d^k \in X$.

Proposición

 $T_X(x)$ es un cono cerrado.

Definición

El cono de direcciones factibles en $x \in X$ está dado por

$$K_X(x) := \{ d \in \mathbb{R}^n : d = \alpha(y - x), y \in X, \alpha \ge 0 \}$$

Definición

El cono de direcciones factibles en $x \in X$ está dado por

$$K_X(x) := \{ d \in \mathbb{R}^n : d = \alpha(y - x), y \in X, \alpha \ge 0 \}$$

Proposición

Sea X un subconjunto convexo no vacío de \mathbb{R}^n y $x \in X$, entonces

$$T_X(x) = \overline{K_X(x)} \tag{18}$$

Definición

El cono de direcciones factibles en $x \in X$ está dado por

$$K_X(x) := \{ d \in \mathbb{R}^n : d = \alpha(y - x), y \in X, \alpha \ge 0 \}$$

Proposición

Sea X un subconjunto convexo no vacío de \mathbb{R}^n y $x \in X$, entonces

$$T_X(x) = \overline{K_X(x)} \tag{18}$$

Dem: Sea $d\in K_X(x)$, si d=0 obviamente $d\in T_X(x)$, si $d\neq 0$, entonces existen $y\in X, \alpha>0$ tales que $d=\alpha(y-x)$. Sean $x^k:=x+\frac{1}{k}d\in X$ y cumple $\frac{x^k-x}{\frac{1}{k}}=d$, entonces $d\in T_X(x)$. Lo que significa que $K_X(x)\subset T_X(x)$ y así $\overline{K_X(x)}\subset T_X(x)$.

La otra inclusión (ejercicio).

