Edge connectivity (Global minimum cut)

turn the graph into directed graph, set all edge capacities to $\boldsymbol{1}$

pick any node v

for all $u \in V \setminus \{v\}$

run max-flow algorithm with source \boldsymbol{v} and sink \boldsymbol{u} output the minimum flow obtained

Complexity: $O(n \cdot n^3) = O(n^4)$

Edge connectivity (Global minimum cut)

turn the graph into directed graph, set all edge capacities to $\boldsymbol{1}$

pick any node v

for all $u \in V \setminus \{v\}$

run max-flow algorithm with source \boldsymbol{v} and sink \boldsymbol{u} output the minimum flow obtained

Complexity: $O(n \cdot n^3) = O(n^4)$ Improvements:

 $O(m \cdot polylog(n))$ [Karger 1991] probabilistic algorithm

 $O\left(m + K^2 n \log \frac{n}{K}\right)$ where K is edge connectivity [Gabow 1995]

 $O(nm + n^2 \log n)$ [Stoer, Wagner 1997] (simple! weighted case)

 $O(m \cdot polylog(n))$ [Kawarabayashi, Thorup 2018]

Considerations

- Enumerating all $u \in V \setminus \{v\}$ in the previous algorithm seems inefficient and may be improved
- Computing edge connectivity may be simpler than computing maximal flow, as we don't have fixed s and t. (We only need to find some s and t in opposite sides of the cut)

[Stoer, Wagner 97]: first idea

- Consider some nodes s and t and assume we know mincut(s,t) (minimum cut which separates s and t)
- ightharpoonup Case I: mincut(s,t) is the global minimum cut
- ► Case 2: otherwise, s and t are on the same side of the global min cut \Rightarrow global min cut is not changed if s and t are **merged** (parallel edges allowed)

[Stoer, Wagner 97]: first idea

- Consider some nodes s and t and assume we know mincut(s,t) (minimum cut which separates s and t)
- ightharpoonup Case I: mincut(s,t) is the global minimum cut
- Case 2: otherwise, s and t are on the same side of the global min cut ⇒ global min cut is not changed if s and t are merged (parallel edges allowed)

```
function GlobalMinCut(G)

if V = \{u, v\} then

return nb of edges between u and v

else

(C_1, s, t) = stMinCut(G)
C_2 = GlobalMinCut(G/\{s, t\})
return \min\{C_1, C_2\}
```

G with merged *s*, *t*

[Stoer, Wagner 97]: second idea

- ▶ stMinCut(G) returns some nodes $s, t \in V$ with $C_1 = mincut(s, t)$
- can be done more efficiently than computing max flow!

[Stoer, Wagner 97]: second idea

- ▶ stMinCut(G) returns some nodes $s, t \in V$ with $C_1 = mincut(s, t)$
- can be done more efficiently than computing max flow!

```
function stMinCut(G) arbitrary node A = \{v\} while A \neq V pick u \in V \setminus A s.t. nb of edges bewteen A and u is maximized A = A \cup \{u\} let s, t be the last two nodes added to A and C the number of edges between t and t are t and t and t and t and t and t are t and t and t are t and t are t and t and t are t and t and t are t and t are t and t are t and t are t are t and t are t and t are t and t are t are t and t are t are t and t are t and t are t are t are t and t are t are t and t are t are t are t and t are t are t are t are t are t and t are t and t are t are t and t are t and t are t are t and t are t and t are t
```

[Stoer, Wagner 97]: second idea

- ▶ stMinCut(G) returns some nodes $s, t \in V$ with $C_1 = mincut(s, t)$
- can be done more efficiently than computing max flow!

```
function stMinCut(G) arbitrary node A = \{v\} while A \neq V pick u \in V \setminus A s.t. nb of edges bewteen A and u is maximized A = A \cup \{u\} let s, t be the last two nodes added to A and C the number of edges between t and t are t and t and t and t and t and t and t are t and t and t and t are t and t are t and t are t
```

Theorem: stMinCut is correct

Proof: cf [Stoer, Wagner 97] or

http://www.cs.tau.ac.il/~zwick/grad-algo-08/gmc.pdf

Example

Example

Example

[Stoer, Wagner 97]: resulting complexity

▶ how stMinCut(G) is implemented?

[Stoer, Wagner 97]: resulting complexity

- how stMinCut(G) is implemented?
- max-priority queue!
 - maintain all nodes outside A in a max-priority queue
 - when adding a node u to A, increment keys of all nodes $x \in V \setminus A$ by the number of edges $\{u, x\}$
- implementation with binary heaps:
 - ightharpoonup construction: $O(n \log n)$ (all keys set to 0)
 - n-1 extract-max: $O(n \log n)$
 - ightharpoonup m updates (increments): $O(m \log n)$
 - ▶ altogether, stMinCut(G) takes time $O((m + n) \log n)$
- resulting complexity of GlobalMinCut(G): $O(n(n+m)\log n)$
- with Fibonacci heaps: $O(nm + n^2 \log n)$