Sprawozdanie z Laboratorium 1

Hubert Rotkiewicz 193421 Paweł Dolak 193582

24listopada2023

CHARAKTERYSTYKI	STATYCZNE DIOD P	-N	
Skład grupy	Nr. Indeksu	Data odrabiania:	Grupa (dzień, godzina)
1. AUBERT ROTKIEWO 2. PAWEŁ DOLAK	183421	17.11.2023	pt-8:15

- Z1. Pomierzyć charakterystyki (analizator prądowo napięciowy) zapisać na pendrive pliki. Ustalić diody: 1~N4004~,~BAVP14, CZERWONELED
- Z2. Pomierzyć charakterystyki (oscyloskop) zapisać na pendrive pliki.
- Z3. Wykonać pomiary w kierunku przewodzenia diody metodą punkt po punkcie. LE 000A

I [mA]	Lzak	UA	BAVP17	
			U _V	U
100 nA	AM AMA	10 mV	1,119V	1,18 N
300 nA	1 M A	30 nV	1,271	1,24 V
1 μΑ	COM A	10 mV	1,310	1,30 V
3μΑ	10 M A	30 mV	1,38 V	1,35 V
10 μΑ	100 M A	10mV	1,43 V	1,42 V
30 μΑ	100M A	30 m V	1192 V	1,49 V
100 μΑ	1m A	10 mV	1,56 V	1,55V
300 μΑ	1mA	30 mV	1,67 V	1,64 V
1 mA	10 mf	10 mV	1,88 V	1,60#87 V
3 mA	10 m A	30 mV	2,3 V	\$2,27 V
10 mA	100 m A	10 mV	4 V	3,39 V
20 mA	100 m A	20 mV	5,7 V	5,68 V
30 mA	100 m A	30 mV	6, 4 V	6,87 V
~60 mA =	100 m A	>60 mV	>10V	710V
	· ·			

Z4. Wykonać pomiary w kierunku zaporowym metodą punkt po punkcie.

$U_R[V]$	I _R
0.5	218 4A
1	2,8 m.A
2	218 hA
5	3, 15 nA
7,5	4 nA
10	544

LEDOUA

Wzory używane do obliczeń 1

Korzystając ze wzoru można policzyć prąd nasycenia diody

$$I = I_s \cdot e^{\frac{U}{nV_t}} \Rightarrow I_s = \frac{I}{e^{\frac{U}{nV_t}}}$$

Obliczenia dla poszczególnych diod:

Współczynnik nieidealności - n można wyznaczyć z następującego wzoru

$$n = \frac{\Delta U}{V_t \Delta \ln(I)}$$

Obliczenia dla poszczególnych diod: Współczynnik $r_s=\frac{U^*}{\Gamma}$ - rezystancji szeregowej, został wyznaczony dla jak największej wartości zmierzonego prądu diody. Odczytując z wykresu otrzymano następujący wynik:

Obliczenia dla poszczególnych diod:

Oznaczenia we wzorach:

U - napiecie na diodzie

n - współczynnik nieidealności

 V_t - napięcie termiczne, założono wartość 26mV

 I_s - prąd nasycenia diody

I - prąd płynący przez diodę

 r_s - rezystancja szeregowa

 Γ - największa wartość zmierzonego prądu diody

U' - różnica pomiędzy wartością napiecia obserwowaną na diodze, a napięciem, które panowałoby na tej diodzie, gdyby r_s było równe 0

2 Zadanie 1

2.1 a)

Dostaliśmy polecenie od prowadzącej laboratoria, aby nie wykonywać zadania Z1. Więc nie posiadamy potrzebnych danych do wykonania tego zadania.

2.2 b)

Rysunek 1: Charakterystyki prądowo-napięciowe badanych diod

Jak widać na załączonym wykresie, Dioda czerwona LED ma największe napięcie progowe wynoszące około $U\approx 1.65$. Diody BAVP17 i 1N4004 mają zbliżone do siebie charakterystyki, jednakże dioda 1N4004 ma mniejsze napięcie progowe.

2.3 c)

Rożnice wartości spadków napięć jak i w prądzie przewodzenia wynikają w głównej mierze z rożnicy w budowie diody tzn. diody krzemowe są wykonane z pierwiastków o innych wartościach przewodzenia niż pierwiastki z któych zbudowana jest dioda LED. Dodatkowo istotna jest również przerwa energetyczna, którą dioda LED posiada większą. Miedzy diodami krzemowymi nie ma aż tak znaczących różnic i wynikają one głownie z ich specyfikacji.

3 Zadanie 2

Dostaliśmy polecenie od prowadzącej laboratoria, aby nie wykonywać zadania Z1. Więc nie posiadamy potrzebnych danych do wykonania tego zadania.

4 Zadanie 3

Rysunek 2: Wykres prądu w funkcji napięcia dla diody czerwonej LED. Przedstawiony w skali logarytmiczno-liniowej

Korzystając z wcześniej przedstawionych wzorów i wartości odczytanych z wykresu lub tabeli, można wyznaczyć parametry diody: Rezystancja szeregowa, obliczona dla $\Gamma=60mA$, czyli największego zmierzonego prądu płynącego przez diodę. $r_s=\frac{U'}{\Gamma}=\frac{10-9.94}{60\cdot 10^{-3}}=1$ współczynnik nieidealności diody:

$$n = \frac{1.49 - 1.42}{26 \cdot 10^{-3} \cdot \left(\ln\left(30 \cdot 10^{-6}\right) - \ln\left(10 \cdot 10^{-6}\right)\right)} \approx 2.45$$

Prąd nasycenia diody, obliczony dla punktu $(1.64,300 \cdot 10^{-6})$:

$$I_s = \frac{300 \cdot 10^{-6}}{e^{\frac{1.64}{2.45 \cdot 26 \cdot 10^{-3}}}} \approx 1.97657... \cdot 10^{-15}$$

5 Zadanie 4

Rysunek 3: Wykres prądu w funkcji napięcia dla diody czerwonej LED. Przedstawiony w skali logarytmiczno-liniowej

Z danych wynika, że dla $U_r=-5$ prąd płynący przez diodę wynosi $I_r=3.15nA.$ W złączu idealnym, przy polaryzacji zaporowej $J\approx J_s\cdot [\exp\left(\frac{qV}{k_BT}\right)-1] \to I\approx -I_s$ w zmierzonym przypadku prąd $I_s=1.97fA,$ a więc jest on znacznie mniejszy niż $I_r.$ Prąd na diodzie był mierzony używając miernika U726 firmy Meratronik. Mierniki te były produkowane w 1976 roku, więc można przypuszczać, że ich dokładność jest wątpliwa. Jedyną note katalogową jaką udało się znaleźć była napisana w języku niemieckim, a więc niezrozumiała dla autorów tego sprawozdania. Jednakże obydwa prądy są bardzo małe, w zwykłej analizie obwodu można je pominąć.