Principe

Pour répérer sans ambiguité un point P dans l'espace, on sait qu'il suffit de donner son triplet de coordonnées cartésiennes (a_1, a_2, a_3) par rapport à un repère formé de quatre points non-coplanaires (P_0, P_1, P_2, P_3) . Ce repère n'a pas forcément à être orthonormé et droit, la condition de non-coplanairé suffit pour garantir que

$$\overrightarrow{P_0P_1}$$
, $\overrightarrow{P_0P_2}$ et $\overrightarrow{P_0P_3}$

forment une base de l'espace vectoriel des vecteurs algébriques, et on peut alors écrire de façon unique

$$\overrightarrow{P_0P} = a_1 \overrightarrow{P_0P_1} + a_2 \overrightarrow{P_0P_2} + a_3 \overrightarrow{P_0P_3}.$$

Une autre façon de repérer le point P est de spécifier les quatre distances

$$d_i = d(P, P_i) = \left\| \overrightarrow{PP_i} \right\|, \quad i \in [0, 3].$$

En effet:

- connaissant d_1 , on sait que P se trouve à la surface de la sphère de rayon d_1 centrée en P_1 ;
- connaissant d_2 , on sait que P se trouve également à la surface de la sphère de rayon d_2 centrée en P_2 , qui intersecte la sphère précédente en un *cercle*;
- connaissant d_3 , on sait que P se trouve aussi à la surface de la sphère de rayon d_3 centrée en P_3 , qui intersecte le cercle précédent en $deux\ points$;
- connaissant d_0 , on arrive à dire lequel de ces deux points est P.

C'est l'idée utilisée par la technologie GPS ($Global\ Positioning\ System$): on prend pour P_0 le centre de la Terre, et pour les autres P_i des satellites en orbite autour de celle-ci.

Implémentation

Une fois qu'on a nos trois satellites P_1 , P_2 , P_3 en orbite, et notre point P à la surface de la Terre, il faut pour que P puisse se localiser qu'il connaisse

- les positions précises (x_i, y_i, z_i) des 3 satellites par rapport à un repère conventionnel $(O, \mathbf{i}, \mathbf{j}, \mathbf{k})$;
- et les distances d_1 , d_2 , d_3 auxquelles il se trouve de ceux-ci.

Pour ce faire, les satellites émettent continuellement par ondes radio leurs éphémérides

$$(t_i, x_i, y_i, z_i)$$

qui se lisent : « À l'instant $t = t_i$, je suis (j'étais) à la position (x_i, y_i, z_i) . »

Le point P qui reçoit ce message peut alors calculer la distance qui le sépare du satellite P_i puisque les éphémérides se déplacent à la vitesse finie de la lumière

$$c = 299792,458 \text{ km/s}.$$

Il suffit à P de noter à quel instant t'_i l'éphéméride a été reçue pour en déduire la distance

$$d_i = c(t_i' - t_i). (1)$$

La distance entre P et le centre de la Terre peut raisonnablement être approximée par le rayon terrestre moyen

$$R \approx 6371 \text{ km},$$

de sorte que, d'après le principe ci-haut, P devrait arriver à calculer ses coordonnées (x, y, z).

Mais ...

Cela fonctionnerait parfaitement si:

- les satellites avaient une connaissance parfaite de leur position (x_i, y_i, z_i) et de l'heure universelle t_i ;
- le récepteur GPS connaissait lui aussi parfaitement l'heure, car c'est lui qui fournit t'_i .

Dans les faits, la première hypothèse est satisfaite, ou du moins des moyens considérables sont employés pour qu'elle le soit : stations terrestres de contrôle de position, horloge atomique embarquée, corrigée pour tenir compte des effets relativistes...

Il n'est cependant pas raisonnable d'imposer une telle précision au récepteur, que l'on souhaite petit et peu coûteux. On va donc supposer que les satellites sont parfaitement synchronisés entre eux, mais que l'horloge du récepteur peut être légèrement décalée avec l'heure réelle : lorsqu'elle dit qu'il est t_i' , il est réellement $t_i' - \delta$, où δ est son décalage (inconnu) avec l'heure officielle. On doit donc corriger l'équation (1) en :

$$d_i = c(t_i' - \delta - t_i). (2)$$

Mais alors on a maintenant 4 inconnues : les coordonnées (x, y, z) du point P, ainsi que le décalage δ de son horloge. Pour résoudre le système, on doit donc faire appel à l'information provenant d'un quatrième satellite P_4 .

Les équations

Pour formaliser le problème, introduisons les quantités (connues)

$$\Delta t_i := t'_i - t_i,$$

$$k_i := c^2 (\Delta t_i)^2 - x_i^2 - y_i^2 - z_i^2,$$

ainsi que la quantité (inconnue)

$$w = x^2 + y^2 + z^2 - c^2 \delta^2. (3)$$

Avec ces notations, on peut vérifier (exercice!) que l'équation (2) est équivalente à

$$-2x_i x - 2y_i y - 2z_i z + 2c^2 \Delta t_i \delta + w = k_i. \tag{4}$$

En prenant les quatre valeurs de i, on obtient un système de 4 équations linéaires à 5 inconnues. Puisqu'on sait a priori qu'il doit être compatible (le point P est bien en quelque part!) il y a donc toute une droite de solutions. L'intersection de cette droite avec l'hypersurface (3) consiste en deux points; en utilisant l'information de la distance approximative du point P au centre de la Terre (inutilisée jusqu'ici), on trouve les valeurs de

$$x, y, z, \delta \text{ et } w.$$

(Notez qu'en plus de localiser le point P, cela lui permet également de connaître l'heure exacte.)

En pratique

On se repère sur la Terre en coordonnées géographiques : un couple (L,ℓ) où L est la latitude et ℓ la longitude (habituellement exprimées en degrés) – pour avoir un système complet à trois coordonnées on peut y ajouter l'altitude h mesurée à partir du niveau de la mer. Celles-ci sont donc reliées aux coordonnées cartésiennes (x, y, z) centrées en $O = P_0$ par les formules

$$\begin{cases} x = (R+h)\cos L\cos \ell \\ y = (R+h)\cos L\sin \ell \\ z = (R+h)\sin L, \end{cases}$$

ou encore

$$\begin{cases} h = \sqrt{x^2 + y^2 + z^2} - R \\ L = \operatorname{atan2}(z, \sqrt{x^2 + y^2}) \\ \ell = \operatorname{atan2}(y, x). \end{cases}$$