1.3 Regular Expressions

- We can use the regular operations to
 - build up expressions describing languages,
 - which are called regular expressions.
- The value of a regular expression is a language.

- **Example**: (0∪1)0*
 - value: the language consisting of all strings starting with a 0 or a 1 followed by any number of 0s.

.

Shorthand for $({0}\cup{1}) = {0,1}$

Shorthand for the sets {0} and {1}.

Shorthand for $({0}\cup{1}) = {0,1}$

Shorthand for the sets {0} and {1}.

Shorthand for $(\{0\}\cup\{1\}) = \{0,1\}$

- R is a regular expression if R is
 - **1.** a for some a in the alphabet Σ ,
 - 2. ε ,
 - **3.** ∅,
 - **4.** $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,
 - **5.** $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions, or
 - **6.** (R_1^*) , where R_1 is a regular expression.

• R is a regular expression if R is

```
1. a for some a in the alphabet \Sigma, Language: \{a\}
```

- 2. ε , Language: $\{\varepsilon\}$
- 3. \emptyset , Language: $\{\}$
- **4.** $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,
- **5.** $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions, or
- **6.** (R_1^*) , where R_1 is a regular expression.

Regular Expression Precedence

- Star → concatenation → union.
- unless parentheses change the usual order.

Regular Expression Precedence

- Star → concatenation → union.
- unless parentheses change the usual order.
- Parentheses in an expression may be omitted.
 - If the evaluation is done in the precedence order
 - **Example:** $0^*1 \cup 0$

$$0^*10^* \cup 0^* = (0^*1) \cup 0^* \neq 0^*(1 \cup 0^*)$$

- For convenience, we let R⁺ be shorthand for RR^{*}.
 - R*: 0 or more concatenations of strings from R
 - R⁺: 1 or more concatenations of strings from R
 - $R^{+}U \epsilon = R^{*}$.
 - R^k be shorthand for the **concatenation of k R's** with each other.

- For convenience, we let R⁺ be shorthand for RR^{*}.
 - R*: 0 or more concatenations of strings from R
 - R⁺: 1 or more concatenations of strings from R
 - $R^{+}U \epsilon = R^{*}$.
 - R^k be shorthand for the **concatenation of k R's** with each other.
 - The language that describes regular expression R denoted by L(R).

Regular Expression: Examples

```
0*10* = ?
\Sigma*1\Sigma* = ?
\Sigma*001\Sigma* = ?
1*(01*)* = ?
(\Sigma\Sigma)* = ?
(\Sigma\Sigma\Sigma)* = ?
01 \cup 10 = ?
```

```
0*10* = \{w | w \text{ contains a single 1}\}.
\Sigma*1\Sigma* = ?
\Sigma*001\Sigma* = ?
1*(01*)* = ?
(\Sigma\Sigma)* = ?
(\Sigma\Sigma)* = ?
01 \cup 10 = ?
```



```
0*10* = \{w | w \text{ contains a single 1}\}.
```

$$\Sigma^* \mathbf{1} \Sigma^* = \{ w | w \text{ has at least one 1} \}.$$

$$\Sigma^*$$
001 Σ^* =?

$$1^*(01^+)^* = ?$$

$$(\Sigma\Sigma)^* = ?$$

$$(\Sigma\Sigma\Sigma)^* = ?$$

$$01 \cup 10 = ?$$

 $0*10* = \{w | w \text{ contains a single 1}\}.$

 $\Sigma^* \mathbf{1} \Sigma^* = \{ w | w \text{ has at least one 1} \}.$

 Σ^* 001 $\Sigma^* = \{w | w \text{ contains the string 001 as a substring}\}.$

$$1*(01*)* =?$$

$$(\Sigma\Sigma)^* = ?$$

$$(\Sigma\Sigma\Sigma)^* = ?$$

$$01 \cup 10 = ?$$


```
0*10* = \{w | w \text{ contains a single 1}\}.
\Sigma*1\Sigma* = \{w | w \text{ has at least one 1}\}.
\Sigma*001\Sigma* = \{w | w \text{ contains the string 001 as a substring}\}.
1*(01*)* = \{w | \text{ every 0 in } w \text{ is followed by at least one 1}\}.
```

$$(\Sigma\Sigma)^*$$
 =?
 $(\Sigma\Sigma\Sigma)^*$ =?
 $01 \cup 10$ =?


```
0*10* = \{w \mid w \text{ contains a single 1}\}.
\Sigma*1\Sigma* = \{w \mid w \text{ has at least one 1}\}.
\Sigma*001\Sigma* = \{w \mid w \text{ contains the string 001 as a substring}\}.
1*(01*)* = \{w \mid \text{ every 0 in } w \text{ is followed by at least one 1}\}.
(\Sigma\Sigma)* = \{w \mid w \text{ is a string of even length}\}.
(\Sigma\Sigma\Sigma)* = ?
01 \cup 10 = ?
```

^{*} The length of a string is the number of symbols that it contains.


```
0*10* = \{w \mid w \text{ contains a single 1}\}.
\Sigma*1\Sigma^* = \{w \mid w \text{ has at least one 1}\}.
\Sigma*001\Sigma^* = \{w \mid w \text{ contains the string 001 as a substring}\}.
1*(01^+)^* = \{w \mid \text{ every 0 in } w \text{ is followed by at least one 1}\}.
(\Sigma\Sigma)^* = \{w \mid w \text{ is a string of even length}\}.^5
(\Sigma\Sigma\Sigma)^* = \{w \mid \text{ the length of } w \text{ is a multiple of 3}\}.
01 \cup 10 = ?
```



```
0*10* = \{w | w \text{ contains a single 1}\}.
\Sigma*1\Sigma^* = \{w | w \text{ has at least one 1}\}.
\Sigma*001\Sigma^* = \{w | w \text{ contains the string 001 as a substring}\}.
1*(01^+)^* = \{w | \text{ every 0 in } w \text{ is followed by at least one 1}\}.
(\Sigma\Sigma)^* = \{w | w \text{ is a string of even length}\}.^5
(\Sigma\Sigma\Sigma)^* = \{w | \text{ the length of } w \text{ is a multiple of 3}\}.
01 \cup 10 = \{01, 10\}.
```


Regular Expression Definition

- If we let **R** be any **regular expression**, we have the following identities.
 - $R \cup \emptyset = R$
 - $R \circ \varepsilon = R$

Regular Expression Definition

- If we let **R** be any **regular expression**, we have the following identities.
 - $R \cup \emptyset = R$
 - $R \circ \varepsilon = R$
- But
 - R U ε may not equal R : R=0 \rightarrow L(R)={0} but L(RU ε)={0, ε }.
 - $R \circ \emptyset$ may not equal $R : R=0 \rightarrow L(R)=\{0\}$ but $L(R \circ \emptyset)=\emptyset$

Theorem: A language is regular if and only if some regular expression describes it.

- This theorem has two directions.
 - Part 1: A language is described by a regular expression, then it is regular.
 - Part 2: A language is regular, then some regular expression describes it.

Theorem: A language is regular if and only if some regular expression describes it.

- This theorem has two directions.
 - Part 1: A language is described by a regular expression, then it is regular.
 - Part 2: A language is regular, then some regular expression describes it.
- Proof Idea: (proof by construction)

Theorem: A language is regular if and only if some regular expression describes it.

- This theorem has two directions.
 - Part 1: A language is described by a regular expression, then it is regular.
 - Part 2: A language is regular, then some regular expression describes it.
- Proof Idea: (proof by construction)
 - A regular expression R describing some language A.
 - We show how to convert R into an NFA recognizing A.
 - By using this corollary: if an NFA recognizes A then A is regular.

Theorem: A language is regular if and only if some regular expression describes it.

- This theorem has two directions.
 - Part 1: A language is described by a regular expression, then it is regular.
 - Part 2: A language is regular, then some regular expression describes it.

Proof:

- Let's convert R into an NFA N.
- We consider the six cases in the formal definition of regular expressions.
 - 1. a for some a in the alphabet Σ ,
 - $2. \varepsilon$
 - **3.** ∅,
 - **4.** $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,
 - **5.** $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions, or
 - **6.** (R_1^*) , where R_1 is a regular expression.

- Part 1: A language is described by a regular expression, then it is regular.
- Proof (cont.):
- 1. R = a for some $a \in \Sigma$.
 - Then $L(R)=\{a\}$, and the following NF A recognizes L(R).

- Part 1: A language is described by a regular expression, then it is regular.
- Proof (cont.):
- 2. $R = \varepsilon$.
 - Then $L(R) = \{\epsilon\}$, and the following NFA recognizes L(R).

- Part 1: A language is described by a regular expression, then it is regular.
- Proof (cont.):
- 3. $R = \emptyset$.
 - Then $L(R)=\emptyset$, and the following NFA recognizes L(R).

- Part 1: A language is described by a regular expression, then it is regular.
- Proof (cont.):

4.
$$R = R_1 \cup R_2$$

5.
$$R = R_1 \circ R_2$$

- 6. $R = R_1^*$.
 - we use the constructions given in the proofs that the class of regular languages is closed under the regular operations.

• Example: convert the regular expression (ab \cup a)* to an NFA.

• Example: convert the regular expression (ab \cup a)* to an NFA.

• Example: convert the regular expression (ab \cup a)* to an NFA.

• Example: convert the regular expression (ab \cup a)* to an NFA.

ab

NFA Used for concertation of two regular languages.

• Example: convert the regular expression (ab \cup a)* to an NFA.

NFA Used for union of two regular languages.

• Example: convert the regular expression $(ab \cup a)^*$ to an NFA.

NFA Used for star of two regular languages.

$$b \rightarrow b \bigcirc$$

$$b \rightarrow b \bigcirc$$

Theorem: A language is regular if and only if some regular expression describes it.

- This theorem has two directions.
 - Part 1: A language is described by a regular expression, then it is regular.
 - Part 2: A language is regular, then some regular expression describes it.

Part 2: A language is regular, then some regular expression describes it.

- Proof Idea:
 - Because A is regular, it is accepted by a DFA.
 - We describe a procedure for converting DFAs into equivalent regular expressions.

Part 2: A language is regular, then some regular expression describes it.

- Proof Idea:
 - Because A is regular, it is accepted by a DFA.
 - We describe a procedure for converting DFAs into equivalent regular expressions.
 - We break this procedure into two parts,
 - using a new type of finite automaton called a generalized nondeterministic finite automaton, GNFA.

Part 2: A language is regular, then some regular expression describes it.

- Proof Idea:
 - Because A is regular, it is accepted by a DFA.
 - We describe a procedure for converting DFAs into equivalent regular expressions.
 - We break this procedure into two parts,
 - using a new type of finite automaton called a generalized nondeterministic finite automaton, GNFA.
 - First we show how to convert DFAs into GNFAs, and
 - then GNFAs into regular expressions.

• is a **nondeterministic finite automata** wherein **the transition arrows may have any regular expressions as labels**, instead of only members of the alphabet or ε.

- is a nondeterministic finite automata wherein the transition arrows may have any regular expressions as labels, instead of only members of the alphabet or ε.
- reads blocks of symbols from the input,
 - not necessarily just one symbol at a time as in an ordinary NFA.

- moves along a transition arrow connecting two states
 - by reading a block of symbols from the input,
 - a string described by the regular expression on that arrow.

- moves along a transition arrow connecting two states
 - by reading a block of symbols from the input,
 - a string described by the regular expression on that arrow.
- accepts its input if its processing can cause the GNFA to be in an accept state at the end of the input.

• For convenience, we require that GNFAs always have a special form that meets the following conditions.

- For convenience, we require that GNFAs always have a special form that meets the following conditions.
 - The start state has transition arrows going to every other state
 - but no arrows coming in from any other state.

- For convenience, we require that GNFAs always have a special form that meets the following conditions.
 - The start state has transition arrows going to every other state
 - but no arrows coming in from any other state.
 - There is only a single accept state,
 - and it has arrows coming in from every
 - but no arrows going to any other state.
 - the accept state is not the same as the start state.

- For convenience, we require that GNFAs always have a special form that meets the following conditions.
 - The start state has transition arrows going to every other state
 - but no arrows coming in from any other state.
 - There is only a single accept state,
 - and it has arrows coming in from every other state
 - but no arrows going to any other state.
 - the accept state is not the same as the start state.
 - Except for the start and accept states, one arrow goes
 - from every state to every other state
 - and also from each state to itself.

- 1. We simply add
 - a new start state with an ε arrow to the old start state and

- 1. We simply add
 - a new start state with an ε arrow to the old start state and
 - a new accept state with ε arrows from the old accept states.

- 1. We simply add
 - a new start state with an ε arrow to the old start state and
 - a new accept state with ε arrows from the old accept states.

- 2. If any arrows have multiple labels (or multiple arrows going between the same two states in the same direction),
 - We replace each with a single arrow whose label is the union of the previous labels.

- 3. Finally, we add arrows labeled Ø
 - between states that had no arrows.

The preceding algorithm to convert a DFA into a regular expression.

The preceding algorithm to convert a DFA into a regular expression.

the same language is still recognized.

The preceding algorithm to convert a DFA into a regular expression.

The preceding algorithm to convert a DFA into a regular expression.

- How can we rip a state out of the machine and repairing the remainder so that
- the same language is still recognized?

before

- How can we rip a state out of the machine and repairing the remainder so that
- the same language is still recognized?
- The new label going from a state q_i to a state q_j is a regular expression
 - that describes all strings that would take the machine from q_i to q_i
 - either directly or via q_{rip}.
- In the following DFA, R₁, R₂,R₃, and R₄ are regular expressions.

before

- How can we rip a state out of the machine and repairing the remainder so that
- the same language is still recognized?
- There are two paths from q_i to q_i.
 - Path 1: q_i , q_{rip} , and q_j .

before

- How can we rip a state out of the machine and repairing the remainder so that
- the same language is still recognized?
- There are two path from q_i to q_i.
 - Path 1: q_i, q_{rip}, and q_j.
 Path 2: q_i, and q_j.

before

- How can we rip a state out of the machine and repairing the remainder so that
- the same language is still recognized?
- We make this change for each arrow going from any state q_i to any state q_j, including the case where q_i = q_i.
- The new machine recognizes the original language.

after

before

- Part 2: A language is regular, then some regular expression describes it.
- Proof:
 - Definition of GNFA

A generalized nondeterministic finite automaton is a 5-tuple, $(Q, \Sigma, \delta, q_{\text{start}}, q_{\text{accept}})$, where

- **1.** Q is the finite set of states,
- **2.** Σ is the input alphabet,
- 3. δ : $(Q \{q_{\text{accept}}\}) \times (Q \{q_{\text{start}}\}) \longrightarrow \mathcal{R}$ is the transition function,
- **4.** q_{start} is the start state, and
- **5.** q_{accept} is the accept state.

The symbol R is the collection of all regular expressions over the alphabet Σ

- Part 2: A language is regular, then some regular expression describes it.
- Proof (cont.):
 - A GNFA accepts a string w in Σ*
 - If $w = w_1 w_2 \cdots w_k$, where each w_i is in Σ^* and a sequence of states $q_0, q_1, ..., q_k$ exists such that
 - 1. $q_0 = q_{\text{start}}$ is the start state,
 - **2.** $q_k = q_{\text{accept}}$ is the accept state, and
 - 3. for each i, we have $w_i \in L(R_i)$, where $R_i = \delta(q_{i-1}, q_i)$; in other words, R_i is the expression on the arrow from q_{i-1} to q_i .

- Part 2: A language is regular, then some regular expression describes it.
- Proof (cont.):
 - we let M be the DFA for language A.
 - Then we convert M to a GNFA G by adding a new start state and a new accept state and additional transition arrows as necessary.
 - We use the procedure CONVERT(G), which takes a GNFA and returns an equivalent regular expression.

- Part 2: A language is regular, then some regular expression describes it.
- Proof (cont.):

CONVERT(G):

1. Let k be the number of states of G.

- Part 2: A language is regular, then some regular expression describes it.
- Proof (cont.):

CONVERT(G):

- **1.** Let k be the number of states of G.
- 2. If k = 2, then G must consist of a start state, an accept state, and a single arrow connecting them and labeled with a regular expression R. Return the expression R.

- Part 2: A language is regular, then some regular expression describes it.
- Proof (cont.):

CONVERT(G):

- **1.** Let k be the number of states of G.
- 2. If k = 2, then G must consist of a start state, an accept state, and a single arrow connecting them and labeled with a regular expression R. Return the expression R.
- 3. If k > 2, we select any state $q_{\text{rip}} \in Q$ different from q_{start} and q_{accept} and let G' be the GNFA $(Q', \Sigma, \delta', q_{\text{start}}, q_{\text{accept}})$, where

$$Q' = Q - \{q_{\rm rip}\},\,$$

and for any $q_i \in Q' - \{q_{\text{accept}}\}\$ and any $q_j \in Q' - \{q_{\text{start}}\}\$, let

$$\delta'(q_i, q_j) = (R_1)(R_2)^*(R_3) \cup (R_4),$$

for
$$R_1 = \delta(q_i, q_{rip}), R_2 = \delta(q_{rip}, q_{rip}), R_3 = \delta(q_{rip}, q_j), \text{ and } R_4 = \delta(q_i, q_j).$$

$$q_{i} \qquad q_{j} \qquad \qquad q_{i} \qquad \qquad q_{i}$$

• Example: Convert the following DFA to a regular expression.

• Example: Convert the following DFA to a regular expression.

• Example: Convert the following DFA to a regular expression.

we remove state2 and update the remaining arrow labels

• Example: Convert the following DFA to a regular expression.

• Example: Convert the following DFA to a regular expression.

