April 22, 2021

• Raw SNP data **X**; x_{ij}

- Raw SNP data **X**; x_{ij}
- Centering $\mathbf{Y} = \mathbf{CX}$; $y_{ij} = x_{ij} \mu_j$

- Raw SNP data **X**; x_{ij}
- Centering $\mathbf{Y} = \mathbf{CX}$; $y_{ij} = x_{ij} \mu_j$
- Rotation $\mathbf{Y} = \underbrace{\mathbf{P}}_{\mathsf{PCs}} \underbrace{\mathbf{L}}_{\mathsf{Rotation}}$

- Raw SNP data X; x_{ij}
- Centering $\mathbf{Y} = \mathbf{CX}$; $y_{ij} = x_{ij} \mu_j$
- Rotation $\mathbf{Y} = \mathbf{PL}$

- Raw SNP data X; x_{ij}
- Centering $\mathbf{Y} = \mathbf{CX}$; $y_{ij} = x_{ij} \mu_j$
- \bullet Rotation $\mathbf{Y} = \mathbf{PL}$

• Truncation
$$\hat{\mathbf{P}} = \begin{pmatrix} \mathbf{p}_1 \\ \mathbf{p}_2 \\ \vdots \\ \mathbf{p}_n \end{pmatrix}$$

- Raw SNP data X; x_{ij}
- Centering $\mathbf{Y} = \mathbf{CX}$; $y_{ij} = x_{ij} \mu_j$
- Rotation $\mathbf{Y} = \mathbf{PL}$

• Truncation
$$\hat{\mathbf{P}} = \begin{bmatrix} \mathbf{p}_1 \\ \mathbf{p}_2 \\ \vdots \\ \mathbf{p}_n \end{bmatrix}$$

• Approximation $\hat{\mathbf{Y}} = \hat{\mathbf{P}}\hat{\mathbf{L}}$

• Singular Value Decomposition: Y = (UD)L = PL

- Singular Value Decomposition: Y = (UD)L = PL
- Eigendecomposition of \mathbf{YY}^T : $\mathbf{YY}^T = \mathbf{UD}^2\mathbf{U}^T = \mathbf{PP}^T$

- Singular Value Decomposition: Y = (UD)L = PL
- Eigendecomposition of \mathbf{YY}^T : $\mathbf{YY}^T = \mathbf{UD}^2\mathbf{U}^T = \mathbf{PP}^T$
- y_{ij}

- Singular Value Decomposition:Y = (UD)L = PL
- Eigendecomposition of \mathbf{YY}^T : $\mathbf{YY}^T = \mathbf{UD}^2\mathbf{U}^T = \mathbf{PP}^T$

•
$$y_{ij} = \sum_{l} (x_{il} - \mu_l)(x_{jl} - \mu_l)$$

- Singular Value Decomposition:Y = (UD)L = PL
- Eigendecomposition of \mathbf{YY}^T : $\mathbf{YY}^T = \mathbf{UD}^2\mathbf{U}^T = \mathbf{PP}^T$

•
$$y_{ij} = \sum_{l} (x_{il} - \mu_l)(x_{jl} - \mu_l)$$

•
$$y_{ij} = F_3(\mu; \mathbf{X}_i, \mathbf{X}_j)$$

- Singular Value Decomposition:Y = (UD)L = PL
- Eigendecomposition of \mathbf{YY}^T : $\mathbf{YY}^T = \mathbf{UD}^2\mathbf{U}^T = \mathbf{PP}^T$
- $y_{ij} = \sum_{l} (x_{il} \mu_l)(x_{jl} \mu_l)$
- $\bullet \ y_{ij} = F_3(\mu; \mathbf{X}_i, \mathbf{X}_j)$

Observation

PCA is equivalent to outgroup- F_3 -analysis with sample mean as outgroup

ullet PCA is decomposition of Covariance matrix: $\mathbf{Y}\mathbf{Y}^T$

- ullet PCA is decomposition of Covariance matrix: \mathbf{YY}^{T}
- Consider \mathbf{F}_2 ; $f_{ij} = F_2(X_i, X_j) = X_i^2 + X_j^2 2X_iX_j$

- ullet PCA is decomposition of Covariance matrix: $\mathbf{Y}\mathbf{Y}^T$
- Consider \mathbf{F}_2 ; $f_{ij} = F_2(X_i, X_j) = X_i^2 + X_j^2 2X_iX_j$
- \bullet MDS is Eigendecomposition of $-\frac{1}{2}\textbf{C}\textbf{F}_{2}\textbf{C}$

- PCA is decomposition of Covariance matrix: $\mathbf{Y}\mathbf{Y}^T$
- Consider \mathbf{F}_2 ; $f_{ij} = F_2(X_i, X_j) = X_i^2 + X_j^2 2X_iX_j$
- MDS is Eigendecomposition of $-\frac{1}{2}\mathbf{CF}_2\mathbf{C}$

$$\bullet \ \mathbf{CF}_2\mathbf{C} = \underbrace{\mathbf{CX}_i^2\mathbf{C}}_0 + \underbrace{\mathbf{CX}_i^2\mathbf{C}}_0 - 2\underbrace{\mathbf{CXX}^T\mathbf{C}}_{\mathbf{YY}^T}$$

- ullet PCA is decomposition of Covariance matrix: $\mathbf{Y}\mathbf{Y}^T$
- Consider \mathbf{F}_2 ; $f_{ij} = F_2(X_i, X_j) = X_i^2 + X_j^2 2X_iX_j$
- MDS is Eigendecomposition of $-\frac{1}{2}\mathbf{CF}_2\mathbf{C}$

•
$$\mathbf{CF_2C} = \underbrace{\mathbf{CX_i^2C}}_{0} + \underbrace{\mathbf{CX_i^2C}}_{0} - 2\underbrace{\mathbf{CXX}^T\mathbf{C}}_{\mathbf{YY}^T}$$

Observation

PCA is equivalent to MDS on \mathbf{F}_2

ullet PCA is decomposition of Covariance matrix: $\mathbf{Y}\mathbf{Y}^{T}$

- ullet PCA is decomposition of Covariance matrix: $\mathbf{Y}\mathbf{Y}^{T}$
- Consider $\mathbf{F}_3(O)$; $f_{ij} = F_3(O; X_i, X_j) = O^2 OX_i OX_j + X_iX_j$

- ullet PCA is decomposition of Covariance matrix: $\mathbf{Y}\mathbf{Y}^{T}$
- Consider $\mathbf{F}_3(O)$; $f_{ij} = F_3(O; X_i, X_j) = O^2 OX_i OX_j + X_iX_j$

- PCA is decomposition of Covariance matrix: YY^T
- Consider $\mathbf{F}_3(O)$; $f_{ij} = F_3(O; X_i, X_j) = O^2 OX_i OX_j + X_iX_j$

$$\bullet \ \mathbf{CF_3C} = \underbrace{\mathbf{C}\mathcal{O}^2\mathbf{C}}_0 - \underbrace{\mathbf{C}\mathcal{O}\mathbf{X_iC}}_0 - \underbrace{\mathbf{C}\mathcal{O}\mathbf{X_jC}}_0 + \underbrace{\mathbf{C}\mathbf{X}\mathbf{X}^T\mathbf{C}}_{\mathbf{Y}\mathbf{Y}^T}$$

- ullet PCA is decomposition of Covariance matrix: $\mathbf{Y}\mathbf{Y}^T$
- Consider $\mathbf{F}_3(O)$; $f_{ij} = F_3(O; X_i, X_j) = O^2 OX_i OX_j + X_iX_j$

$$\bullet \ \ \text{CF}_3\text{C} = \underbrace{\text{C}\mathcal{O}^2\text{C}}_0 - \underbrace{\text{C}\mathcal{O}\text{X}_i\text{C}}_0 - \underbrace{\text{C}\mathcal{O}\text{X}_j\text{C}}_0 + \underbrace{\text{C}\text{X}\text{X}^T\text{C}}_{\text{YY}^T}$$

Observation

Decomposition of any centered F_3 -matrix is equivalent to PCA.

0-diagonal MDS