

FIGURE 1

GGGGCTCGGCGCCAGCGGCCAGCGCTAGCGGTCTGGTAAGGATTACAAAAGGTGCAGGTATG
AGCAGGTCTGAAGACTAACATTGTGAAGTTGTAACAGAAAACCTGTTAGAAATGTGGTGGT
TTCAGCAAGGCCTCAGTTCTTCTTGAGCCCTTGTAAATTGGACATCTGCTGCTTTCATATT
TCATACATTACTGCAGTAACACTCCACCATATAGACCCGGTTACCTTATATCAGTGACACTGG
TACAGTAGCTCCAGAAAAATGCTTATTGGGCAATGCTAAATATTGCGGCAGTTATGCAATTG
CTACCATTATGTTGTTATAAGCAAGTTCATGCTCTGAGTCCTGAAGAGAACGTTATCATCAA
TTAAACAAGGCTGGCCTTGTACTTGAATACTGAGTTGTTAGGACTTCTATTGTCATGGCAAACCTT
CCAGAAAACAACCCTTTTGCTGCACATGTAAGTGGAGCTGCTTACCTTGGTATGGCCTCAT
TATATATGTTGTTCAGACCATCCTTCTACCAAATGCAGCCCCAAATCCATTGCAAACAGTC
TTCTGGATCAGACTGTTGTTATCTGGTGTGGAGTAAGTGCACCTAGCATGCTGACTTGCTC
ATCAGTTTGCACAGTGGCAATTGGACTGATTAGAACAGAAACTCCATTGGAACCCCGAGG
ACAAAGGTTATGTGCTCACATGACTACTGCAGCAGAATGGTCTATGTCATTTCCTTCTT
GGTTTTCTGACTTACATTGTTGATTTCTGAAATTTCTTACGGGTGGAAGCCAATTACA
TGGATTAACCCCTATGACACTGCACCTTGCCTATTAAACAATGAACGAACACGGCTACTTCCA
GAGATATTGATGAAAGGATAAAATATTCTGTAATGATTGATTCTCAGGGATTGGGAAAGG
TTCACAGAAAGTTGCTTATTCTCTGAAATTTCACCACTTAATCAAGGCTGACAGTAACACT
GATGAATGCTGATAATCAGGAAACATGAAAGAAGCCATTGATAGATTATTCTAAAGGATATCAT
CAAGAAGACTATTAAAAACACCTATGCCTATACTTTTATCTCAGAAAATAAAGTCAAAAGACT
ATG

FIGURE 2

<subunit 1 of 1, 266 aa, 1 stop

<MW: 29766, pI: 8.39, NX(S/T): 0

MWWFQQGLSFLPSALVIWTSAAFIFSYITAVTLHHIDPALPYISDTGTVAPEKCLFGAMLNIAAV
LCIATIYVRYKQVHALSPEENVIILKLNKAGLVLGILSCLGLSIVANFQKTTLFAAHVSGAVLTFG
MGSLYMFVQTILSYQMOPKIHGKQVFIRLLLVIWCGVSALSMLTCSSVLHSGNFGTDLEQKLHW
NPEDKGYVLHMITTAAEWSMSFSFFGFLTYIRDQKISLRVEANLHGLTLYDTAPCPINNERTR
LLSRDI

Important features:

Type II transmembrane domain:

amino acids 13-33

Other Transmembrane domains:

amino acids 54-73, 94-113, 160-180, 122-141

N-myristoylation sites.

amino acids 57-63, 95-101, 99-105, 124-130, 183-189

FIGURE 3

CGGACCGCTGGCGGACCGTGGGGAGAGCCGCAGTCGGCTGCAGCACCTGGGAGAAGGCAGACC
GTGTGAGGGGGCTGTGGCCCCAGCGTGTGGCTCGGGAGTGGAAAGTGGAGGCAGGAGCCTTC
CTTACACTTCGCCTGAGTTCCTCATCGACTCCAGCATCATGATTACCTCCAGATACTATTTTG
GATTTGGGTGGCTTCTTCATGCCAATTGTTAAAGACTATGAGATACTGTCAGTATGTTGACAG
GTGATCTCTCCGTGACGTTGCATTTCTGCACCATGTTGAGCTCATCATCTTGAATCTTAGG
AGTATTGAATAGCAGCTCCGTTATTTCACTGGAAAATGAACCTGTGTGTAATTCTGCTGATCCTGG
TTTCATGGTGCCTTTTACATGGCTATTTATTGTGAGCAATATCCGACTACTGCATAAACACGA
CTGCTTTTCCTGCTCTTATGGCTGACCTTATGTATTCTCTGGAAACTAGGAGATCCCTTCC
CATTCTCAGCCAAAACATGGATCTTACATAGAACAGCTCATCAGCCGGTTGGTGTGATTGGAG
TGACTCTCATGGCTCTTCTGGATTGGCTGTCAACTGCCATACACTACATGTCTTACTTC
CTCAGGAATGTGACTGACACGGATATTCTAGGCCGGACTGCTGCAAACCATGGATATGAT
CATAAAGAAAAAGAAAAGGATGCAATGGCACGGAGAACATGTCAGAAGGGGAAGTGCATAACA
AACCATCAGGTTCTGGGAATGATAAAAAGTGTACCACCTCAGCATCAGGAAGTGAAAATCTTACT
CTTATTCAACAGGAAGTGGATGCTTGGAAAGAATTAAGCAGGCAGCTTTCTGGAAACAGCTGATCT
ATATGCTACCAAGGAGAGAATAGAATACTCCAAAACCTCAAGGGAAATATTTAATTCTGGTT
ACTTTCTCTATTACTGTGTTGGAAAATTTCATGGTACCATCAATATTGTTGATCGAGTT
GGGAAAACGGATCCTGTACAAGAGGCATTGAGATCACTGTGAATTATCTGGGAATCCAATTGATGT
GAAGTTTGGTCCAACACATTCTTCATTCTGTTGGAATAATCATCGTCACATCCATCAGGGAT
TGCTGATCACTTACCAAGTTCTTATGCCATCTCTAGCAGTAAGTCCCAATGTCATTGCTCG
CTATTAGCACAGATAATGGCATGTACTTGTCTCTGTGCTGATCGAATGAGTATGCCCTT
AGAATACCGCACCATAACTGAAGTCCTGGAGAACTGCAGTTCAACTCTATCACCGTTGGTTG
ATGTGATCTCCTGGTCAGCGCTCTCTAGCATACTCTTCTCTATTGGCTCACAAACAGGCACCA
GAGAAGCAAATGGCACTTGAACTTAAGCCTACTACAGACTGTTAGAGGCCAGTGGTTCAAATTAA
GATATAAGAGGGGGAAAATGAAACCAGGGCTGACATTATAAACAAACAAATGCTATGGTAGC
ATTTTCACCTCATAGCATACTCTTCCCGTCAGGTGATACTATGACCATGAGTAGCATCAGCCAG
AACATGAGAGGGAGAACTAACTCAAGACAATACTCAGCAGAGAGCATCCGTGGATATGAGGCTGG
TGTAGAGGCCAGAGGGAGGCCAAGAAACTAAAGGTGAAAATACACTGGAACCTGGGAAGACATGT
CTATGGTAGCTGAGCCAACACGTAGGATTCCGTTAAGGTTACATGGAAAGGTTAGCTTGC
CCTTGAGATTGACTCATTAAATCAGAGACTGTAACAAAAAAAAAAAGGGCGGCCCG
ACTCTAGAGTCGACCTGCAGAAGCTGGCCGCATGGCCCAACTGTTATTGCAGCTTATAATG

FIGURE 4

MSFLIDSSIMITSQLFFGFGWLFFMRQLFKDYEIRQYVQVIFSUTFAFSCTMFELIIFEILGV
LNSSSRYFHWKMNLCVILLILVFMVPFYIGYFIVSNIRLLHKQRLLFSCLLWLTMYFFWKLGD
FPILSPKHGILSIEQLISRVGVIGVTIMALLSGFGAVNCPTYMSYFLRNVTDTDILALERRLLQ
TMDMIISKKRMAMARRTMFQKGEVHNKPSGFWMIKSVTTSASGSENLTLIQQEVDALEELSRQ
LFLETADLYATKERIEYSKTFKGKYFNFLGYFFSIYCVWKIFMATINIVFDRVGKTDPVTRGIEI
TVNYLGIQFDVKFWSQHISFILVGIIIVTSIRGLLITLTKFFYAISSSKSSNVIVLLAQMIMGMY
FVSSVLLIRMSMPLYRTIITEVLGELQFNFYHRWFDVIFLVSALSSILFLYLAHKQAPEKQMAP

Important features:

Signal peptide:

amino acids 1-23

Potential transmembrane domains:

amino acids 37-55, 81-102, 150-168, 288-311, 338-356, 375-398,
425-444

N-glycosylation sites.

amino acids 67-70, 180-183 and 243-246

Eukaryotic cobalamin-binding proteins

amino acids 151-160

FIGURE 5

AGCAGGGAAATCCGATGTCTCGTTATGAAGTGGAGCAGTGAGTGTGAGCCTAACATAGTTCC
AGAACTCTCATCCGACTAGTTATTGAGCATCTGCCTCTCATATCACCACTGGCCATCTGAGGT
GTTTCCCTGGCTCTGAAGGGTAGGCAGTGGCCAGGTGCTTCAGCCTGGTGTGCTTCTCACT
TCCATCTGGACCACGAGGCTCTGGCCAAGGCTTTGCGTGCAGAAGAGCTTCCATCCAGGT
GTCATGCAGAATTATGGGATCACCCCTGTGAGCAAAGGCGAACAGCAGCTGAATTCACAG
AAGCTAAGGAGGCCGTAGGCTGCTGGACTAAGTTGCCGGCAAGGACCAAGTTGAAACAGCC
TTGAAAGCTAGCTTGAACCTTGCACTATGGCTGGGTTGGAGATGGATTGTCATCTCTAG
GATTAGCCCCAAACCCCAAGTGTGGGAAAAATGGGGTGGGTGCTGTGATTGAAAGGTTCCAGTGA
GCCGACAGTTGCACTTACACTCATCTGATACTTGGACTAACCTGCAATTCCAGAA
ATTATCACCAACAAAGATCCCATTCAACACTCAAAACTGCAACACAAACAGAATTATG
CAGTGACAGTACCTACTCGTGGCATTCCCCTACTCTACAATACCTGCCCCACTACTCTC
CTGCTCCAGCTCCATTCTATTCACGGAGAAAAAATGATTGTCAGAGTTTATG
GAAACTGACCATGTCTACAGAAACTGAACCAATTGTTGAAATAAAAGCAGCATCAAGAATGA
AGCTGCTGGGTTGGAGGTGTCACCGCCTGCTAGTGCTTCTCTCTTGGTGTG
CAGCTGGCTTGGATTTCGCTATGTCAAAAGGTATGTGAAGGCCCTCCCTTACAAACAAGAAT
CAGCAGAAGGAAATGATGAAACCAAAGTAGTAAGGAGGAGAAGGCCAATGATAGCAACCTAA
TGAGGAATCAAAGAAAATGATAAAAACCCAGAAGAGTCAAGAGTCAAGCAAACACTACCGTGC
GATGCCAGCTGAAGTTTAGATGAGACAGAAATGAGGAGACACACCTGAGGCTGGTTCTT
CATGCTCTTACCCGCCCCAGCTGGGAAATCAAAGGCCAAAGAACCAAAGAAGAAAGTCCA
CCCTGGTTCTAACTGGAATCAGCTCAGGACTGCCATTGACTATGGAGTGCACCAAAGAGAAT
GCCCTTCTCCTTATTGTAACCCGTCTGGATCCTATCCTCCTACCTCAAAGCTCCCACGCC
TTCTAGCCTGGCTATGTCTTAATAATATCCACTGGGAGAAAGGAGTTTCAAAGTGCAGGAC
CTAAAACATCTCATCAGTATCCAGTGGTAAAAGGCCCTCTGGCTGTGAGGCTAGGTGGTTG
AAAGCCAAGGAGTCAGTGAGACCAAGGCTTCTACTGATTCCGAGCTCAGACCCCTTCTCA
GCTCTGAAAGAGAACACGTATCCCACCTGACATGCTCTCTGAGCCGGTAAGAGCAAAGAAT
GGCAGAAAAGTTAGCCCCCTGAAGCCATGGAGATTCTATAACTTGAGACCTAATCTGTAAA
GCTAAAATAAGAAATAGAACAGGCTGAGGATACGACAGTACACTGTCAGCAGGGACTGAAAC
ACAGACAGGGTCAAAGTGTCTCTGAACACATTGAGTTGAATCACTGTTAGAACACACACA
CTTACTTTCTGGCTCTACCACTGCTGATATTTCTCTAGAAATATACTTTACAAGTAACA
AAAATAAAACTCTTATAAATTCTATTGAGTTACAGAAATGATTACTAAGGAAGATT
ACTCAGTAATTGTTAAAAGTAATAAAATTCAACAAACATTGCTGAATAGCTACTATATGTC
AAAGTGTGCAAGTATTACACTCTGTAATTGAATATTATCCTCAAAAATTGCACATAGTAG
AACGCTATCTGGAGCTATTTCTCAGTTGATATTCTAGCTATCTACTTCCAAACTAAT
TTTATTTGCTGAGACTAATCTTATTCTAATATGGCAACCATTATAACCTTAATT
TATTATTAACATACCTAAGAAGTACATTGTTACCTCTATATACCAAGCACATTAAAAGTGC
ATTAACAAATGATCACTAGCCCTCTTTTCCAACAAGAAGGACTGAGAGATGCAGAAATT
TGTGACAAAAAATTAAAGCATTAGAAAATT

FIGURE 6

MARCFSLVLLTSIWTTTRLLVQGSLRAEELS IQVSCRIMGITLVSKKANQQLNFTEAKEACRLLG
LSLAGKDQVETALKASFETCSYGVGDGFVVISRISPNSPKCGKNGVGVLIWKPVSRQFAAYCYN
SSDTWTNSCIPEIITTKDPIFNTQTATQTTEFIVSDSTYSVASPYSTIPAPTPPAPASTSIPR
RKKLICVTEVFMETSTMSTETEPFVENKAAFKNEAAGFGGVPTALLVLALLFFGAAAGLGFCYVK
RYVKAFFPTNKNQQKEMIETKVVKEEKANDSNPNEESKTDKNPEESKSPSKTTVRCLEAEV

Signal sequence:

amino acids 1-16

Transmembrane domain:

amino acids 235-254

N-glycosylation site.

amino acids 53-57, 130-134, 289-293

Casein kinase II phosphorylation site.

amino acids 145-149, 214-218

Tyrosine kinase phosphorylation site.

amino acids 79-88

N-myristoylation site.

amino acids 23-29, 65-71, 234-240, 235-239, 249-255, 253-259

FIGURE 7

CGCCGCGCTCCCGCACCGCGGGCCGCCACCGCGCCGCTCCGCATCTGCACCCGCAGCCCCGC
GGCCTCCCGCGGGAGCGAGCATCCAGTCCGGCCCGAGCGCAACTCGGTCCAGTCGGGGCG
CGGCTGCGGGCGCAGAGCGGAGATGCAGCGCTTGGGGCCACCCTGCTGTGCCTGCTGCG
CGGCGGTCCCCACGGCCCCCGGCCGCTCCGACGGCACCTCGGCTCCAGTCAAGCCGGCC
GCTCTCAGTACCCGAGGAGGCCACCCCTAATGAGATGTTCCGAGGGTTGAGGAACGTGAT
GGAGGACACGCAGCACAAATTGCGCAGCGCGGTGGAAGAGATGGAGGCAGAAGAAGCTGCTGTA
AAGCATCATCAGAAGTGAACCTGGCAAACCTACCTCCCAGCTATACAATGAGACCAACACAGAC
ACGAAGGTTGAAATAATACCATCCATGTGACCGAGAAATTACAAGATAACCAACAACCAGAC
TGGACAAATGGTCTTTCAGAGACAGTTACATCTGTGGGAGACGAAGAAGGCAGAAGGG
ACGAGTGCATCATCGACGAGGACTGTGGGCCAGCATGTACTGCCAGTTGCCAGCTCCAGTAC
ACCTGCCAGCCATGCCGGGCCAGGGATGCTCTGCACCCGGGACAGTGAGTGTGGAGACCA
GCTGTGTCTGGGTCACTGCACCAAAATGCCACCAAGGGGAGCAATGGGACCATCTGTGACA
ACCAAGAGGGACTGCCAGCCGGGCTGTGCTGTGCCATTCCAGAGAGGCCAGCTGTCCCTGTG
ACACCCCTGCCGTGGAGGGCGAGCTTGCATGACCCCGCCAGCCGGCTCTGGACCTCATCAC
CTGGGAGCTAGAGCTGTGGAGCCTTGGACCGATGCCCTGTGCCAGTGGCCTCCTCTGCCAGC
CCCACAGCCACAGCCTGGTGTATGTGCAAGCCGACCTCGTGGGAGCCGTGACCAAGATGG
GAGATCCTGCTGCCAGAGAGGTCCCCGATGAGTATGAAGTTGCCAGCTTCATGGAGGAGGTGCG
CCAGGAGCTGGAGGACCTGGAGGGAGCCTGACTGAAGAGATGCCGTGGGGAGCCTGCCAGT
CCGCCGCTGCACTGCTGGAGGGGAAGAGATTAGATCTGGACCAGGCTGTGGTAGATGTGCAA
TAGAAATAGCTAATTATTCAGGTGTGCTTAGCGTGGGTGACCAAGGCTTCTCCTA
CATCTCTCCAGTAAGTTCCCCTGGCTGACAGCATGAGGTGTTGCAATTGTCAGCT
CCCCCAGGCTTCTCCAGGCTTCACAGTCTGGTGTGGAGAGTCAGGCAGGGTTAAACTGCA
GGAGCAGTTGCCACCCCTGTCCAGATTATGGCTGCTTGCCCTACAGTTGCCAGACAGCG
TTTGTCTACATGGCTTGATAATTGTTGAGGGAGGAGATGAAACAATGTGGAGTCTCCCT
TGATTGGTTTGGGAAATGTGAGAAGAGTGCCTGCTTGCAACATCAACCTGGAAAAATG
CAACAAATGAATTTCACGCAGTTCTTCATGGCATAGGTAAGCTGTGCCCTCAGCTGTG
AGATGAAATGTTCTGTCACCTGCAATTACATGTGTTATTCACTCCAGCAGTGTGCTCAGCTCC
TACCTCTGTGCCAGGGAGCATTTCATATCCAAGATCAATTCCCTCTCTCAGCACAGCCTGGG
AGGGGTCAATTGTTCTCCTCGTCCATCAGGGATCTCAGAGGCTCAGAGACTGCAAGCTGCTGCC
CAAGTCACACAGCTAGTGAAGACCAGAGCAGTTCATCTGGTGTGACTCTAACGCTCAGTGTCT
CTCCCACTACCCACACCCAGCCTGGTGCACCAAAAGTGTCCCCAAAAGGAAGGAGAATGGGAT
TTTCTTGAGGCATGCACATGTGAATTAAAGTCACAAACTAATTCTCACATCCCTCTAAAGTAAA
CTACTGTTAGGAACAGCAGTGTCTCACAGTGTGGGGCAGCGTCCTCTAATGAAGACAATGAT
ATTGACACTGTCCCTTTGGCAGTTGCATTAGTAACCTTGAAAGGTATATGACTGAGCGTAGCA
TACAGGTTAACCTGCAAAACAGTACTTAGTAATTGAGGGCGAGGATTATAATGAAATTG
AAAATCACTTAGCAGCAACTGAAGACAATTATCAACCACGTGGAGAAAATCAAACCGAGCAGGGC
TGTGTGAAACATGGTTGAATATGCACTGCGAACACTGAACCTACGCCACTCCACAAATGATG
TTTCAGGTGTATGGACTGTTGCCACCATGTATTCACTCCAGGTTCTAAAGTTAAAGTTGCA
CATGATTGATAAGCATGCTTCTTGAGTTAAATTATGTATAAACATAAGTGCATTAGAA
ATCAAGCATAAAATCACTCAACTGCAAAAAAAAAAAAAAA

FIGURE 8

MQRLGATLLCLLAAAVPTAPAPAPTATSAPVKPGPALSYPQEEATLNEMFREVEELMEDTQHKL
RSAVEEMEAEEAAKASSEVNLANLPPSYHNETNTDKVGNNTIHVHREIHKITNNQTGQMVFSE
TVITSVGDEEGRRSHECIIDEDCGPSMYCQFASFQYTCQPCRGQRMLCTRSECCGDQLCVWGHC
TKMATRGNSNGTICDNQRDCQPGLCCAFQRGLLFPVCTPLPVEGELCHDPASRLLDLITWELEPDG
ALDRCPCASGLLCQPHSHSLVYVCKPTFVGSRDQDGEILLPREVPDEYEVGSFMEEVRQELEDLE
RSLTEEMALGEPAAAAALLGGEEI

Signal sequence:

amino acids 1-19

N-glycosylation site.

amino acids 96-100, 106-110, 121-125, 204-208

Casein kinase II phosphorylation site.

amino acids 46-50, 67-71, 98-102, 135-139, 206-210, 312-316,
327-331

N-myristoylation site.

amino acids 202-208, 217-223

Amidation site.

amino acids 140-144

FIGURE 9

CGGACGCGTGGCGGACGCGTGGGGCTGTGAGAAAGTCCAATAAATACATCATGCAACCCAC
GGCCCACCTTGTGAACTCCTCGTGCCAGGGCTGATGTGCGTCTTCAGGGCTACTCATCCAAAG
GCCTAATCCAACGTTCTGTCTCAATCTGCAAATCTATGGGTCTGGGCTTTCTGGACCTT
AACTGGGTACTGGCCTGGCCAATGCGTCTCGTGGAGCCTTGCCCTTACTGGCCTT
CCACAAGCCCCAGGACATCCCTACCTTCCCCTTAATCTGCTTCATCCGACACTCCGTTACC
ACACTGGGTCAATTGGCATTGGAGCCCTACCTGACCCCTGTGCAAGATAGCCCCGGTCATCTTG
GAGTATATTGACCACAAGCTCAGAGGAGTGCAGAACCTGTAGCCCGCTGCATCATGTGCTGTTT
CAAGTGCTGCCTCTGGTGTCTGGAAAAATTATCAAGTCTAAACCGCAATGCATACATCATGA
TCGCCATCTACGGGAAGAATTCTGTCTCAGCCAAAATGCGTTCATGCTACTCATGCGAAC
ATTGTCAGGGTGGTCGTCTGGACAAAGTCACAGACCTGCTGCTTCTGGGAAGGCTGCTGGT
GGTCGGAGGCGTGGGGCTCTGCTCTTTCTCCGGTCGCATCCGGGCTGGTAAAG
ACTTTAAGAGCCCCCACCTCAACTATTACTGGCTGCCCATGACCTCCATCCTGGGGCCTAT
GTCATGCCAGCGGCTTCTCAGCTTCCGGCATGTGTGACACGCTTCCCTGCTTCCT
GGAAGACCTGGAGCGGAACAACGGCTCCCTGGACCGGCCCTACTACATGTCCAAGAGCCTCTAA
AGATTCTGGGCAAGAAGAACGAGGCGCCCCCGACAACAAGAAGAGGAAGAAGTGACAGCTCCG
CCCTGATCCAGGACTGCACCCACCCCAACCGTCCAGCCATCCAACCTCACTTCCCTACAGGT
CTCCATTGTGGTAAAAAAAGTTTAGGCCAGGCGCCGTGGCTCACGCTGTAATCCAACACT
TTGAGAGGCTGAGGCCGGGATCACCTGAGTCAGGAGTTCGAGACCAAGCCTGGCAACATGGTG
AAACCTCCGTCTATTAAAAATACAAAAATTAGCCGAGAGTGGTGGCATGCACCTGTCACTCCA
GCTACTCGGAGGCTGAGGCAGGAGAATCGCTGAACCCGGAGGCAGAGGTTGCAGTGAGCCGA
GATCGGCCACTGCACCTGGGTGACAGACTCTGTCTCCAAAACAAACAAACAAA
AAGATTTTATTAAAGATATTGTAACTC

FIGURE 10

RTRGRTRGGCEKVPINTSCNPTAHLVNSSCPGLMCVFQGYSSKGLIQRSVFNLQIYGVGLFWTL
NWVLALGQCVLAGAFASFYWAFHKPQDIPTFPLISAFIRTLRYHTGSLAFGALILTLVQIARVIL
EYIDHKLRGVQNPVARCIMCCFKCCLWCLEKFIKFLNRNAYIMIAIYGKNFCVSAKNAFMLLMRN
IVRVVVLDKVTDLLLFFGKLLVVGVGVLSSSSSGRIPLGKDFKSPHLNYYWLPIMTSILGAY
VIASGFFSVFGMCVDTLFLCFLEDLERNNGSLDRPYYMSKSLLKILGKKNEAPPDNKKRKK

Important features:

Transmembrane domains:

amino acids 57-80 (type II), 110-126, 215-231, 254-274

N-glycosylation sites.

amino acids 16-20, 27-31, 289-293

Hypothetical YBR002c family proteins.

amino acids 276-288

Ammonium transporters proteins.

amino acids 204-231

N-myristoylation sites.

amino acids 60-66, 78-84

Amidation site.

amino acids 306-310

FIGURE 11

GCCCCCGCCGCCGGCGCCGGGCGCCCGAAGCCGGGAGCCACCGCTGGGGCCTGCCTGGGAGCCCTGC
TCCCTGCTCAGCTGCCGTCTGCCCTGCGGCTCTGCCCTGCATCTGTGCAGCTGCTGCCCGC
CAGCCGCAACTCCACCGTGAGCCGCTCATCTCACGTTCTCCTCTTCTGGGGTGCTGGTGTCCA
TCATTATGCTGAGCCGGCGTGGAGAGTCAGCTTACAAGCTGCCCTGGGTGTGAGGAGGGGCC
GGGATCCCCACCGTCTGCAGGGCACATCGACTGTGGCTCCCTGCTGGCTACCGCCTGTCTACCG
CATGTGCTTCGCCACGGCGGCCCTCTTCTTCTTCTACCCCTGCTCATGCTCGCGTGAGCAGCA
GCCGGGACCCCCGGCTGCCATCCAGAATGGGTTGGTTCTTAAGTCCGTATCCTGGTGGCCTC
ACCGTGGGTGCCCTCTACATCCCTGACGGCTCTCACCAACATCTGGTCTACTTCGGCGTGTGG
CTCCTCTCTCATCCTCATCCAGCTGGTGTGCTCATCGACTTGCACACTCCTGGAACCGAGGGT
GGCTGGGAAGGCCGAGGAGTGCATTCCCGTGCCTGGTACGCAGGCCCTTCTTCACTCTCCTC
TTCTACTTGCTGTCGATCGCGCCGTGGCGCTGATGTTCATGTACTACTACACTGAGGCCAGCGGCTGCCA
CGAGGGCAAGGTCTCATCAGCCTAACCTCACCTCTGTGTCTGCCTGCCATCGCTGTCTGC
CCAAGGTCCAGGACGCCAGCCAACTCGGGCTGCTGCAGGCCCTGGTCATACCCTACACCAGT
TTTGTACCTGGTCAGCCCTATCCAGTATCCCTGAACAGAAATGCAACCCCCATTGCCAACCCAGCT
GGGCAACGAGACAGTTGTGGCAGGCCAGGGCTATGAGACCCAGTGTGGGATGCCAGGCCATTG
TGGGCCTCATCATCTCCCTGTGCACCCCTTCTCATCAGTCTGCCTCCTCAGACCACCGGCAGGTG
AACAGCCTGATGCAGACCGAGGAGTGCCACCTATGCTAGACGCCACACAGCAGCAGCAGCAG
GGCAGCCTGTGAGGGCGGGCTTGACAACCGAGCAGGCCAGGGCTCACCTACAGTACTCCTCTCC
ACTTCTGCCCTGGTGTGGCTGCCACTGCACGTATGATGACGCTACCAACTGGTACAAGCCGGTGA
ACCCGGAAAGATGATCAGCACGTGGACGCCGTGGGTGAAGATCTGTGCCAGCTGGCAGGGCTGC
CCTCTACCTGTGGACCCCTGGTAGGCCACTCCTGCCACCGCAGCTGGCAGGCCCTCA
CAGCCTGCCATCTGGTGCCTCTGCCACCTGGTGCCTCTGGCTCGGTGACAGCCACCTGCCCTC
CCCACACCAATGCCAGGCTGAGCCCCACCCCTGCCAGCTCCAGGACCTGCCCTGAGCCGGG
CTTCTAGTCGTAGTGCCTCAGGGTCCGAGGAGCATCAGGCTCTGCAGAGCCCCATCCCCCGCCAC
ACCCACACGGTGGAGCTGCCCTTCCCTCCCTGTTGCCATAACTCAGCATCTGGATGAA
AGGGCTCCCTGTCTCAGGCTCCAGGGAGCGGGGCTGCTGGAGAGAGCGGGGAACTCCACACAG
TGGGGCATCCGGCACTGAAGCCCTGGTGTCCCTGGTACGTCCCCCAGGGACCCGTCCCCCTTCTG
GACTTCGTGCCTTACTGAGTCTAAGACTTTCTAAAACAAGCCAGTGCCTGAAAAAAA

FIGURE 12

MGACLGACSLLSCASCLCGSAPCILCSCCPASRNSTVSRLIFTFFLFLGVLVSIIMLSPGVESQL
YKLPWVCEEGAGIPTVLQGHIDCGSLLGYRAVYRMCFATAAFFFFFTLLMLCVSSSRDPRAAIQ
NGFWFFKFLILVGLTVGAFYIPDGSFTNIWFYFGVVGSFLFILIQVLVLLIDFAHAWNQRWLGKAE
ECDSRAWYAGLFFFITLLFYLLSIAAVALMFYYTEPSGCHEGKVFISLNLTFCVCVSIAAVLPKV
QDAQPNSGLLQASVITLYTMFVTWSALSSIPEQKCNPHLPTQLGNETVVAGPEGYETQWWDAPS
VGLIIIFILLCTLFISLRSSDHRQVNSLMQTEECPPMLDATQQQQQQVAACEGRAFDNEQDGVTYSY
SFFHFCLVLASLHVMMTLTNWYKPGETRKMISTWTAVWVKICASWAGLLLWTLVAPLLLNRD
FS

Signal sequence:

amino acids 1-20

Transmembrane domains:

amino acids 40-58, 101-116, 134-150, 162-178, 206-223, 240-257,
272-283, 324-340, 391-406, 428-444

FIGURE 13

CGGGCCAGCCTGGGGCGGCCGCCCCAGGAACCACCCGTTAAGGTGTCTTCTCTTAGGGATGGTGA
GGTTGAAAAAGACTCCTGTAACCCTCCTCCAGGATGAACCACCTGCCAGAAGACATGGAGAACG
CTCTCACCGGGAGCCAGAGCTCCCATGCTTCCTGCGCAATATCCATTCCATCAACCCCCACACAA
CTCATGGCCAGGATTGAGTCCTATGAAGGAAGGGAAAAGAAAGGCATATCTGATGTCAGGAGGAC
TTTCTGTTGTTGTCACCTTGACCTCTTATTGTAACATTACTGTGGATAATAGAGTTAAATG
TGAATGGAGGCATTGAGAACACATTAGAGAAGGGAGGTGATGCAGTATGACTACTATTCTCATAT
TTTGATATATTTCTCTGGCAGTTTCGATTTAAAGTGTAAACTTGCATATGCTGTGTCAG
ACTGCGCCATTGGTGGCAATAGCGTTGACAACGGCAGTGACCAGTGCCTTTACTAGCAAAG
TGATCCTTCGAAGCTTCTCAAGGGGCTTGGCTATGTGCTGCCATCATTCATTCACTC
CTTGCCTGGATTGAGACGTTCTGGATTCAAAGTGTACCTCAAGAAGCAGAAGAAGAAAA
CAGACTCCTGATAGTTCAAGGATGCTTCAGAGAGGGCAGCACTTACCTGGTGGCTTCTGATG
GTCAGTTTATTCCCCCTCTGAATCCGAAGCAGGATCTGAAGAAGCTGAAGAAAAACAGGACAGT
GAGAAACCACTTAGAACTATGAGTACTACTTTGTTAAATGTGAAAAACCTCACAGAAAGTC
ATCGAGGCAAAAGAGGCAGGCAGTGAGTCTCCCTGTCGACAGTAAAGTGAATGGTACGTC
CACTGCTGGCTTATTGAACAGCTAATAAGATTATTGTAAACCTCACAAACGTTGAC
CATATCCATGCACATTAGTGCCTGCCTGAGCTGGTAAGGTAAATGTCATGATTCACTCTCT
TCAGTGAGACTGAGCCTGATGTGTTACAAATAGGTGAAGAAAGTCTTGCTGTATTCTAATC
AAAAGACTTAATATATTGAAGTAACACTTTTAGTAAGCAAGATAACCTTTTATTCAATTCA
AGAATGGAATTTTGTTCATGTCAGATTATTTGTATTCTTTAACACTCTACATT
TCCCTGTTTTAACTCATGCACATGTGCTTTGTCAGTTAAAAGTGTAAATAAATCTG
ACATGTCAATGTTGCTAGTTTATTCTGTTGCATTATGTGTATGGCCTGAAGTGTGGA
CTTGCAAAAGGGAAAGAAAGGAATTGCGAATACATGTAATGTCACCAGACATTGTATTATT
TTATCATGAAATCATGTTCTGATTGTTCTGAAATGTTCTAAATACTCTTATTGAAATGC
ACAAAATGACTAAACCATTCATGTTCTTGCCTGCGTCAGCCAATTCAATTAAAATGAA
CTAAATTAAAAA

FIGURE 14

MNHLPEDMENALTGSQSSHASLRNIHSINPTQLMARIESYEGREKKGISDVRRTFCLFVTFDLLF
VTLLWIIELNVNGGIENTLEKEVMQYDYYSSYFDIFLLAVFRFKVLILAYAVCRLRHWWAIALTT
AVTSAFLLAKVILSKLFSQGAFGYVLPIISFILAWIETWFLDFKVLPOEAEEENRLLIVQDASER
AALIPGGLSDGQFYSPPESEAGSEEAEEKQDSEKPLLEL

Important features of the protein:

Signal peptide:

amino acids 1-20

Transmembrane domains:

amino acids 54-72, 100-118, 130-144, 146-166

N-myristoylation sites.

amino acids 14-20, 78-84, 79-85, 202-208, 217-223

FIGURE 15

ACTCGAACGCAGTTGCTTCGGGACCCAGGACCCCCCTGGGCCGACCCGCCAGGAAAGACTGAGG
CCGC GG CCT GCCC CG CC GG CT CC TG CG CC GG CC GG CT CC CG GG AC AGA AG AT GT G CT CC AG
GGT CCC CT TG CT TG CT GG CG CT GT CT CT G T ACT GG CC CT GG GG CT GG GG TG CA GG G CT G CC CAT
CCGG CT GC CAG TG CAG CC AG CC AC AG AC AG T CT TG C ACT G C CC GG CC AG GG G ACC AC GG TG CC
CGAGACGTGCCACCCGACACGGTGGGGCTGTACGTCTTGAGAACGGCATCACCATGCTGACGC
AGGCAGCTTGCGGCCTGCCGGGCTGCAGCTCCTGGACCTGTACAGAACAGATGCCAGCC
TGCCCAGCGGGGTCTTCCAGCCACTGCCAACCTCAGCAACCTGGACCTGACGCCAACAGGCTG
CATGAAATACCAATGAGACCTCCGTGGCTGCGGCCCTCGAGGCCCTACTGGCAAGAA
CCGCATCCGCCACATCCAGCCTGGTGCCCTCGACAGCCTGACCCTCTGGAGCTCAAGCTGC
AGGACAACAGAGCTGCCGGCACTGCCCGCTGCCGCTGCCCGCCCTGCTGCTGGACCTCAGC
CACAACAGCCTCTGGCCCTGGAGGCCGATCCTGGACACTGCCAACCTGGAGGCGCTGCCG
GGCTGGTCTGGGCTGCAAGCTGGACGGGGCTCTCAGCCGCTTGCGCAACCTCCACGACC
TGGATGTGTCCGACAACCAGCTGGAGCGAGTGGCACCTGTATCCGAGGCCCTGGAGCTGACG
CGCCCTGCCGGCTGGCCGGCAACACCCGCAATTGCCAGCTGCCGGGGAGGACCTGCCGGGCTGGC
TGCCCTGCAAGCTGGATGTGAGCAACCTAAGCTGCAAGGCCCTGGCTGGCGACCTCTGGGCC
TCTTCCCCCGCCTGCGCTGCTGGCAGCTGCCGCCAACCCCTTCACACTGCGTGTGCCCCCTGAGC
TGGTTTGGCCCTGGGTGCGCAGAGCCACGTACACTGGCAGGCCCTGAGGAGACGCCGCTGCCA
CTTCCCCCCAAGAACGCTGCCGGCTGCTCTGGAGCTTGACTACGCCACTTTGGCTCCCCAG
CCACCACCACACAGCCACAGTGCCAACACAGCAGGCCGAGGCCACTGAGGCCACGCCCTGTCT
TCTAGCTTGGCTCTTACCTGGCTTAGCCCCACAGCAGGCCACTGAGGCCACCGTCCACCTGCCCTCA
CACTGCCAACCGACTGTAGGGCTGTCCCCAGGCCAGGACTGCCCACCGTCCACCTGCCCTCA
ATGGGGCACATGCCACCTGGGACACGGCACCCACTGGCGTGTGCTTGCCCCGAAGGCTTACG
GGCCTGACTGTGAGAGCCAGATGGGGCAGGGGACACGCCAGGCCCTACACCAGTCAGCCGAG
GCCACCACGGTCCCTGACCCCTGGCATCGAGCCGGTGAAGCCCCACCTCCCTGCCGTGGGCTGC
AGCGTACCTCCAGGGAGCTCCGTGCAAGCTCAGGAGCCTCCGTCAACCTATCGAACCTATCG
GGCCCTGATAAGCGCTGGTGACGCTGCGACTGCCCTGCCCTCGCTCGTGAAGTACACGGTACCCA
GCTGCCGCCAACGCCACTTACTCCGTCTGTGTCATGCCCTGGGGCCGGGGCTGGGGAGG
GCGAGGAGGCCTGGGGAGGCCATACACCCCAAGCCGCTCCACTCCAACACGCCAGTCACC
CAGGCCCGAGGGCAACCTGCCCTCCTCATGGCCCGCCCTGGCGGGTGTCCCTGGCCG
GCTGGCTGCCGTGGGGCAGCTACTGTGTGCGGCCGGGCCATGGCAGCAGCGCTCAGG
ACAAAGGGCAGGTGGGCCAGGGCTGGCCCTGGAACCTGGAGGGAGTGAAGGCTCCCTGGAG
CCAGGCCGAAGGCAACAGAGGGCGGTGGAGAGGCCCTGCCAGCGGGTGTGAGTGTGAGGTGCC
ACTCATGGCTTCCCAGGGCTGCCCTCCAGTCACCCCTCCACGCAAAGCCCTACATCTAAGCCA
GAGAGAGACAGGGCAGCTGGGCCGGCTCTCAGCCAGTGAGATGCCAGGCCCTCTGCTGCC
ACACCAACGTAAGTCTCAGTCCAACCTGGGATGTGTCAGACAGGGCTGTGACCAAGCT
GGGCCCTGTTCCCTGCGACCTGGCTCGGTCTCCATCTGTGAGATGCTGGCCAGCTGACGAGCC
CTAACGTCCTCCAGAACCGAGTGCTCATGAGGACAGTGCTCCGCTGCCCTCCGCAACGTGCA
CCTGGGCACGGCGGGCCCTGCCATGTGCTGGTAACGCACTGCCCTGGGTCTGCTGGCTCTCCAC
TCCAGGGCGGCCCTGGGGCCAGTGAGGAAGCTCCCGAAAGAGCAGAGGGAGAGCGGGTAGGC
GGCTGTGTGACTCTAGTCTTGGCCCGAGGAAGCGAAGGAACAAAAGAAAAGTGGAAAGGAAGATGC
TTTAGGAACATGTTTGTCTTTAAAATATATATTATAAGAGATCCTTCCCATTATCT
GGGAAGATGTTTCAAACTCAGAGACAAGGACTTGGTTTGTAAGACAAACGATGATATGAA
GGCTTTGTAAGAAAAATAAAAGATGAAGTGTGAAA

FIGURE 16

MCSRVPILLPLLLLALGPGVQGCPSGCQCSQPQTVFCTARQTTVPRDVPPDTVGLYVFENGIT
MLDAGSFAGLPGLQLLDSQNQIASLPSGVQPLANLSNLDLTANRLHEITNETFRGLRRLERLY
LGKNRIRHIQPGAFDTLDRLLELKLDNELRALPPLRLPRLLLLDLSHNSLLALEPGILDGTANVE
ALRLAGLGLQQLDEGLFSRLRNLDLHDLDVSDNQLERVPPVIRGLRGLTRLRLAGNTRIAQLRPEDL
AGLAALQELDVSNLSQLPGDLSGLFPRLLAARNPFCNCVCPLSWFGPWVRESHVTLASPEE
TRCHFPPKNAGRLLLEDYADFGCPATTTATVPTTRPVVREPTALSSSLAPTWLSPTAPATEAP
SPPSTAPPTVGPVPQPQDCPPSTCLNGGTCHLGTRHHLACLCPEGFTGLYCESQMGQGTRPSPTP
VTPRPPRSLTGLIEPVSPSTSRLVGLQRYLQGSSVQLRSRLTYRNLSGPDKRLVTLRLPASLA
TGTQLRPNATYSVCVMPLGPGRVPEGEAACGEAHTPPAVHSNHAPVTQAREGNLPLLIAPALAA
LLAALAAVGAAAYCVRGRAMAQAQDKGQVPGPAGPLELEGVKVPLEPGPKATEGGEALPSGSE
CEVPLIMGFPGPGLQSPLHAKPYI

Important features:

Signal peptide:

amino acids 1-23

Transmembrane domain:

amino acids 579-599

EGF-like domain cysteine pattern signature.

amino acids 430-442

Leucine zipper pattern.

amino acids 197-219, 269-291

N-glycosylation sites.

amino acids 101-105, 117-121, 273-277, 500-504, 528-532

Tyrosine kinase phosphorylation sites.

amino acids 124-131, 337-345

N-myristoylation sites.

amino acids 23-29, 27-33, 70-76, 142-148, 187-193, 348-354,
594-600, 640-646

FIGURE 17

GCAGCGCGAGGC GGCGGTGGTGGCTGAGTCCTGGTGGCAGAGGCAGAGCTCATGCG
GGTCCGGATAGGGCTGACGCTGCTGCTGTGCGGTGCTGAGCTTGGCTCGCGTCCTCGG
ATGAAGAAGGCAGCCAGGATGAATCCTTAGATTCCAAGACTACTTGACATCAGATGAGTCAGTA
AAGGACCATACTACTGCAGGCAGAGTAGTTGCTGGTCAAATATTCTTGATTCAAAGAAATCTGA
ATTAGAACCTCTATTCAAGAACAGGAGAACAGCCTCAAGAGCCAAGAGGGGGAAAGTGTACAG
AAGATATCAGCTTCTAGAGTCAGAACTCAGAAAACAAGGACTATGAAGAGCCAAGAAAGTA
CGGAAACCAGCTTGACGCCATTGAAGGCACAGCACATGGGGAGCCCTGCCACTCCCTTTCT
TTTCCTAGATAAGGAGTATGATGAATGTACATCAGATGGGAGGGAAAGATGGCAGACTGTGGTGTG
CTACAAACCTATGACTACAAAGCAGATGAAAAGTGGGCTTTGTGAAACTGAAGAACAGGCTGCT
AAGAGACGGCAGATGCAGGAAGCAGAAATGATGTACACTGAAATGAAAATCCTTAATGAAAG
CAATAAGAAAAGCCAAAAAGAGAACATCGGTATCTCCAAAAGGCAGCAAGCATGAACCATA
CCAAAGCCCTGGAGAGAGTGTCAATGCTCTTTATTGGTGAATTACTGCCACAGAATATCCAG
GCAGCGAGAGAGATTTGAGAAGCTGACTGAGGAAGGCCTCCCAAGGGACAGACTGCTTTGG
CTTTCTGTATGCCTCTGGACTTGGTGTAAATTCAAGTCAGGCAAAGGCTCTGTATATTACAT
TTGGAGCTCTGGGGCAATCTAATAGCCCACATGGTTTGTAAAGTAGACTTTAGTGGAAAGGCT
AATAATATTAACATCAGAAGAATTGTGGTTATAGCGGCCACAACCTTTCAGCTTCATGATC
CAGATTGCTGTATTAAGACCAAATTCAGTTGAACCTCCTCAAATTCTGTAAATGGATAT
AACACATGGAATCTACATGTAATGAAAGTGGTGGAGTCCACAATTTCCTTAAATTTCTGTAGTTG
TTGGCTGATTGCCCTAAAAAGAGAGATCTGATAAATGGCTCTTTAAATTTCTGTAGTTCA
AAATTTGTAAATGGTGGTATAGAAAACACATGAAATATTATACAAATTTGCAACAATGC
CCTAAGAATTGTTAAATTCTGGAGTTATTGTGCAAGACTCCAGAGAGCTCTACTTCG
TTTTTACTTTCATGATTGGCTGTCTCCATTCTGGTCAATTATTGCTAGTGACACTGT
GCCTGCTTCCAGTAGTCTCATTTCCATTGGCTAATTGTTACTTTCTTGCTAATTGG
AAGATTAACTCATTTAATAAAATTATGCTAAGATTAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

FIGURE 18

MRVRIGLTLLLCAVLLSLASASSDEEGSQDESLSKTTLTSDESVKDHTAGRVVAGQIFLDSEEESEL
ESSIQEEEDSLKSQEGERVTEDISFLESPNPNENKDYEPPKKVRKPALTAIEGTAHGEPCHPFLFLDK
EYDECTS DGDREDGRLWCATTYDYKADEKWGFCETEEEAKRRQMQEAEMMYQTGMKILNGSNKKSQKR
EAYRYLQKAASMNHTKALERVSYALLFGDYLQPQNIQAAREMFEKLTEEGSPKGQTALGFLYASGLGVN
SSQAKALVYYTFGALGGNLIAHMVLVSRL

Important features:

Signal peptide:

amino acids 1-21

N-glycosylation sites.

amino acids 195-199, 217-221, 272-276

Tyrosine kinase phosphorylation site.

amino acids 220-228

N-myristoylation sites.

amino acids 120-126, 253-259, 268-274, 270-274, 285-291, 289-295

Glycosaminoglycan attachment site.

amino acids 267-271

Microbodies C-terminal targeting signal.

amino acids 299-303

Type II fibronectin collagen-binding domain protein.

amino acids 127-169

Fructose-bisphosphate aldolase class-II protein.

amino acids 101-119

FIGURE 19

AATTCAAGATTTAAGCCCATTCTGCAGTGGAAATTCACTGAACTAGCAAGAGGACACCATCTTCTT
GTATTATAACAAGAAGGAGTGTACCTATCACACACAGGGGGAAAAATGCTCTTTGGGTGCTAGG
CCTCCTAACCTCTGTGGTTCTGTGGACTCGTAAAGGAAAACTAAAGATTGAAGACATCACTG
ATAAGTACATTTTATCACTGGATGTGACTCGGCTTGGAAACTTGGCAGCCAGAAACTTTGAT
AAAAAGGGATTCATGTAATCGCTGCCTGTGACTGAATCAGGATCAACAGCTTAAAGGAGA
AACCTCAGAGAGACTCGTACTGTGCTTCTGGATGTGACCGACCCAGAGAATGTCAAGAGGACTG
CCCAGTGGGTGAAGAACCAAGTGGGGAGAAAGGTCTCTGGGTCTGATCAATAATGCTGGTGT
CCCAGCGTGCTGGCTCCCACTGACTGGCTGACACTAGAGGACTACAGAGAACCTATTGAAGTGAA
CCTGTTGGACTCATCAGTGTGACACTAAATGCTTCCTTGGCAAGAAAGCTCAAGGGAGAG
TTATTAAATGTCTCCAGTGTGAGGTCGCCTGCAATCGTGGAGGGGGCTATACTCCATCCAAA
TATGCAGTGGAAAGGTTCAATGACAGCTTAAGACGGGACATGAAAGCTTGGGTGCACGTCTC
ATGCATTGAACCAGGATTGTTCAAAAACAAACTGGCAGATCCAGTAAAGGTTAATTGAAAAAAAC
TCGCCATTGGAGCAGCTGTCTCCAGACATCAAACAACAAATATGGAGAAGGTACATTGAAAAAA
AGTCTAGACAAACTGAAAGGCAATAACCTATGTGAACATGGACCTCTCCGGTGGTAGAGTG
CATGGACCACGCTCAACAAAGTCTCTCCTAAGACTCATTATGCCGCTGGAAAAGATGCCAAA
TTTCTGGATACCTCTGTCTCACATGCCAGCAGCTTGCAAGACTTTTATTGTTGAAACAGAAA
GCAGAGCTGGCTAACCCCAAGGCAGTGTGACTCAGCTAACACACAAATGTCTCCCCAGGCTATGA
AATTGGCCGATTCAAGAACACATCTCCTTCAACCCATTCCTTATCTGCTCAACCTGGACT
CATTTAGATCGTGCTTATTGGATTGCAAAGGGAGTCCCACCATCGCTGGTGGTATCCAGGG
CCCTGCTCAAGTTTCTTGAAAGGAGGGCTGGATGGTACATCACATAGGCAAGTCCTCGCCT
GTATTTAGGCTTGCCTGCTTGGTGTGATGTTAAGGAAATTGAAAGGACTTGCCCATTCAAAATG
TCTTACCGTGGCTGCCCCATGCTTGGTCCAGCATTTACAGTAACTTGGAATGTTAAGT
ATCATCTCTTATCAAATTAAAAGATAAGTCAACCCAAAAAAAAAAAAAA
AAAAAAAAAAAA

FIGURE 20

MLFWVLGLLILCGFLWTRKGKLKIEDITDKYIFITGCDSGFGNLAARTFDKKGFHVIAACLTESG
STALKAETSERLRTVLLDVTDPENVKRTAQWVKNQVGEKGLWGLINNAGVPGVLAPTDWLTLEDY
REPIEVNLFGGLISVTLNMLPLVKKAQGRVINSSVGGRLAIVGGGYTPSKYAVEGFNDSLRRDMK
AFGVHVSCIEPGLFKTNLADPVKVIKEKKLAIWEQLSPDIKQQYGEFYIEKSLDKLGNKSYVNMD
LSPVVECMDHALTSIFPKTHYAAAGKDAKIFWIPLSHMPAALQDFLLLKQKAELANPKAV

Important features of the protein:

Signal peptide:

amino acids 1-17

Transmembrane domain:

amino acids 136-152

N-glycosylation sites.

amino acids 161-163, 187-190 and 253-256

Glycosaminoglycan attachment site.

amino acids 39-42

N-myristoylation sites.

amino acids 36-41, 42-47, 108-113, 166-171, 198-203 and 207-212

FIGURE 21

CTGAGGC GGCGGTAGCATGGAGGGGAGAGTACGTCGGCGGTGCTCTCGGGCTTGCTCGGC
CACTCGTTCCAGCACCTAACACCGACTCGGACACGGAAGGTTCTTCTGGGAAGTAAA
GGTGAAGCCAAGAACAGCATTACTGATTCCAAATGGATGATGTTGAAGTTGTTATAACATTGA
CATTCAGAAATATATTCCATGCTATCAGTTTAGCTTTATAATTCTTCAGGCGAAGTAAATG
AGCAAGCACTGAAGAAAATATTCAAATGTCAAAAAGAATGTGGTAGGTTGGTACAAATTCCGT
CGTCATTCA GATCAGATCATGACGTTAGAGAGAGGCTGCTTCACAAAAC TTGCAGGAGCATT
TTCAAACCAAGACCTGTTCTGCTATTAAACACCAAGTATAACA GAAAGCTGCTACTC
ATCGACTGGAACATTCCCTATATAAA CCTCAAAAAGGACTTTTCACAGGGTACCTTAGTGGTT
GCCAATCTGGGATGTCTGAACA ACTGGTTATAAAACTGTATCAGGTTCTGTATGTCCACTGG
TTTAGCCGAGCAGTACAAACACAGCTCTAAATTTTGAAGAAGATGGATCCTAAAGGAGG
TACATAAGATAAAATGAAATGTATGCTTCATTACAAGAGGAATTAAAGAGTATATGCAAAAAGTG
GAAGACAGTGAACAAGCAGTAGATAAACTAGTAAAGGATGTAACAGATTAAAACGAGAAATTGA
GAAAAGGAGAGGAGCACAGATT CAGG CAGCAAGAGAGAAGAACATCCAAAAGACCCTCAGGAGA
ACATTTTCTTGTCAGGCATTACGGACCTTTTCCAAATTCTGAATTCTCATT CATGTGTT
ATGTCTTAAAAAAATAGACATGTTCTAAAAGTAGCTGTA ACTACAACCACATCTGATGTAGT
AGACAATCTGACCTTAATGGTAGAACACACTGACATTCTGAAGCTAGTCCAGCTAGTACACCAC
AAATCATTAAGCATAAAAGCCTAGACTTAGATGACAGATGGCAATTCAAGAGATCTGGTTGTTA
GATACACAAGACAAACGATCTAAAGCAAATACTGGTAGTAGTAACCAAGATAAACGATCCAAAAT
GAGCAGCCCAGAAACAGATGAAGAAAAGATGAAGGGTTGGTGAATATTACCGGTCTC
CTACATTTGATCTTTAACCTTACAAGGAGATTTTTATTGGCTGATGGTAAAGCCAAAC
ATTC TATTGTTTACTATGTTGAGCTACTGCAGTAAGTCATTGTTTACTATGTTCA
TGTTGCAGTAATACACAGATACTCTTAGTGCATTACTCACAAAGTACTTTCAAACATCA
GATGCTTTATTCCAAACCTTTTACCTTCACTAAGTTGTTGAGGGAAAGGCTTACACAG
ACACATTCTTAGAATTGGAAAAGTGAGACCAGGCACAGTGGCTCACACCTGTAATCCCAGCACT
TAGGGAAGACAAGTCAGGAGGATTGATTGAAGCTAGGAGTTAGAGACCAGCCTGGCAACGTATT
GAGACCATGTCTATTAAAAAATGGAAAAGCAAGAA TAGCCTATTTCAAAATATGGAAA
GAAATTATATGAAAATTATCTGAGTCATTAAAATTCTCCTTAAGTGATACTTTTAGAAGTA
CATTATGGCTAGAGTTGCCAGATAAAATGCTGGATATCATGCAATAATTGCAAAACATCATCT
AAAATTAAAAAAAAAAAAAAAAAAAAA

FIGURE 22

MEGESTSAVLSGFVLGALAFQHLNTSDTEGFLLGEVKGEAKNSITDSQMDDVEVVYTIDIQKYI
PCYQLFSFYNSSGEVNEQALKKILSNVKNNVGWYKFRRHSDQIMTFRERLLHKNLQEHSNQDL
VFLLLTPSIITESCSTHRLEHSLYKPQKGLFHRVPLVVANLGMSEQLGYKTVSGSCMSTGFSRAV
QTHSSKKFEEDGSILKEVHKINEMYASLQEELKSICKVEDSEQAVDKLVKDVNRLKREIEKRRGA
QIQAAREKNIQKDPQENIFLCQALRTFFPNSEFLHSCVMSLKNRHSVSKSSCNYNHHLDVVDNLTL
MVEHTDIPEASPARTPQIIKHKALDDLDRWQFKRSRLLDTQDKRSKANTGSSNQDKASKMSSPET
DEEIEKMKGFGEYSRSPTF

Important features:

Signal peptide:

amino acids 1-19

N-glycosylation sites.

amino acids 75-79, 322-326

N-myristoylation site.

amino acids 184-154

Growth factor and cytokines receptors family.

amino acids 134-150

FIGURE 23

FIGURE 24

MARFGLPALLCTLAVLSAALLAAELKSKCSEVRRLYVSKGFKNDAPLHEINGDHLKICPQGST
CCSQEMEEKYSLQSKDDFKSVVSEQCNHLQAVFASRYKKFDEFFKELLENAEKSNDMFVKTYGH
LYMQNSELFKDLFVELKRYYVGPNLNEEMLNDFWARLLERMFRVLVNSQYHFTDEYLECVSKYTE
QLKPFGDVPRKLQLQVTRAFVAARTFAQGLAVAGDVVSKVSVNPTAQCTHALLKMIYCSHCRLG
VTVKPCYNYCSNIMRGCLANQGDLDFEWNNFIDAMLMVAERLEGPFNIESVMDPIDVKISDAIMN
MQDNSVQVSQKVFQGCGPPKPLPAGRISRSISESAFSARFRPHHPEERPTTAAGTSLDRLVTDVK
EKLKQAKKFWSLPSNVNCNDERMAAGNGNEDDCWNGKGKSRYLFATGNGLANQGNPENVQDTS
KPDILILRQIMALRVMTSKMKNAYNGNDVFFFDISDESSGEGSGSGCEYQQCPSEFDYNATDHAG
KSANEKADSAGVRPGAQAYLLTVFCILFLVMQREWR

Important features:

Signal peptide:

amino acids 1-22

ATP/GTP-binding site motif A (P-loop).

amino acids 515-524

N-glycosylation site.

amino acids 514-518

Glycosaminoglycan attachment sites.

amino acids 494-498, 498-502

N-myristoylation sites.

amino acids 63-69, 224-230, 276-282, 438-444, 497-503, 531-537

Glypicans proteins.

amino acids 54-75, 105-157, 238-280, 309-346, 423-460, 468-506

FIGURE 25

CTCGCCCTCAAATGGGAACGCTGGCCTGGGACTAAAGCATAGACCACCAGGCTGAGTATCCTGAC
CTGAGTCATCCCCAGGGATCAGGAGCCTCCAGCAGGGAACCTCCATTATATTCTTCAGCAACT
TACAGCTGCACCGACAGTTGCGGATGAAAGTTCTAATCTCTCCCTCCTGTTGCTGCCACTAA
TGCTGATGTCCATGGTCTCTAGCAGCCTGAATCCAGGGGTGCCAGAGGCCACAGGGACCGAGGC
CAGGCTCTAGGAGATGGCTCCAGGAAGGCGCCAAGAATGTGAGTGCAAAGATTGGTTCCGTGAG
AGCCCCGAGAAGAAAATTCACTGACAGTGTCTGGGCTGCCAAAGAACAGTGCCTGATCATT
TCAAGGGCAATGTGAAGAAAACAAGACACCAAAGGCACACAGAAAGCCAACAAGCATTCCAGA
GCCTGCCAGCAATTCTCAAACAAATGTCAGCTAAGAAGCTTGCTCTGCCCTTGTAGGAGCTCTG
AGCGCCCACCTTCCAATTAAACATTCTCAGCCAAGAACAGTGAGCACACCTACCAGACACTC
TTCTTCTCCCACCTCACTCTCCACTGTACCCACCCCTAAATCATTCCAGTGCTCTCAAAAGCA
TGTTTTCAAGATCATTGTTGCTCTCTAGTGTCTCTCGTCAGTCTTAGCCT
GTGCCCTCCCCTAACCCAGGCTTAGGCTTAATTACCTGAAAGATTCCAGGAAACTGTAGCTTCC
AGCTAGTGTCAATTAAACCTTAAATGCAATCAGGAAAGTAGCAAACAGAACGTCAATAAATATTTT
AAATGTCAAAAAAAAAAAAAAA

FIGURE 26

MKVLISSLLLLPIMLMSMVSSSLNPGVARGHRDRGQASRRWLQEGGQECECKDWFLRAPRRKFM
TVSGLPKKKQCPKCDHFKGKTRHQRHHRKPNKHSRACQQFLKQCQLRSFALPL

Important features:

Signal peptide:

amino acids 1-22

N-myristoylation sites.

amino acids 27-33, 46-52

FIGURE 27

GGACGCCAGCGCCTGCAGAGGCTGAGCAGGGAAAAAGCCAGTCCCCAGCGGAAGCACAGCTCAG
AGCTGGTCTGCCATGGACATCCTGGTCCCACCTCTGCAGCTGCTGGTGTGCTTCTTACCCCTGCC
CCTGCACCTCATGGCTCTGCTGGCTGCTGGCAGCCCTGTGCAAAGCTACTTCCCTACCTGA
TGGCCGTGCTGACTCCCAAGAGCAACCGAAGATGGAGAGCAAGAAACGGGAGCTTCAGCCAG
ATAAAGGGCTTACAGGAGCCTCGGGAAAGTGGCCCTACTGGAGCTGGCTGCGGAACCGGAGC
CAACTTCCAGTTCTACCCACCGGGCTGCAGGTCACTGCCTAGACCCAAATCCCACTTGAGA
AGTTCTGACAAAGAGCATGGCTGAGAACAGGCACCTCCAATATGAGCGGTTGTGGCTCCT
GGAGAGGACATGAGACAGCTGGCTGATGGCTCCATGGATGTGGTGGTCTGCACTCTGGTGTG
CTCTGTGCAGAGCCAAGGAAGGTCTGCAGGAGGTCCGGAGAGTACTGAGACCCGGAGGTGTG
TCTTTTCTGGGAGCATGTGGCAGAACCATATGGAAGCTGGGCCTTCATGTGGCAGCAAGTTTC
GAGCCCACCTGAAACACATTGGGATGGCTGCTGCCTCACAGAGAGACCTGGAAGGATCTGA
GAACGCCAGTTCTCGAAATCCAATGGAACGACAGCCCCCTCCCTGAAGTGGCTACCTGTTG
GGCCCCACATCATGGAAAGGCTGTCAAACAATCTTCCAAGCTCCAAGGCACTCATTGCTCC
TTCCCCAGCCTCAATTAGAACAGCCACCCACCAGCCTATCTATCTTCACTGAGAGGGACTA
GCAGAAATGAGAGAACATTCATGTACCACTACTAGTCCCTCTCCCAACCTTGCCAGGG
AATCTCTAACTCAATCCGCCTCGACAGTGAAAAGCTTACTTCTACGCTGACCCAGGGAGG
AAACACTAGGACCCGTGTATCCTCAACTGCAAGTTCTGGACTAGTCTCCAACGTTGCCTC
CCAATGTTGTCCCTTCCCTCGTCCATGGTAAAGCTCTCGCTTCCCTGGCTACAC
CCATGCCCTCTAGGAACTGGTCAAAAAGCTGGTGCCTGCATCCCTGCCAAGGCCCTGAC
CCTCTCTCCCACTACCACCTTTCCCTGAGCTGGGGACCCAGGGAGAATCAGAGATGCTGGG
ATGCCAGAGCAAGACTCAAAGAGGCAGGGTTTGTTCTCAAATTTTTTAAAATAGACGAA
ACCACG

FIGURE 28

MDILVPLLQLLVLLTLPLHIMALLGCWQPLCKSYFPYIMAVLTPKSNRKMESKKRELFSQIKGL
TGASGKVALLELGCGTGANFQFYPPGCRVTCLDPNPHFEKFLTKSMAENRHLQYERFVVAPGEDM
RQLADGSMDVVVCTLVLCSVQSPRKVLQEVRVRLPFGVLFFWEHVAEPYGSWAFMWQQVFEPTW
KHIGDGCLTRETWKDLENAQFSEIQMERQPPPLKWLPGPHIMGKAVKQSFPSSKALICSFPSL
QLEQATHQPIYLPLRGT

Important features:

Signal peptide:

amino acids 1-23

Leucine zipper pattern.

amino acids 10-32

N-myristoylation sites.

amino acids 64-70, 78-84, 80-86, 91-97, 201-207

FIGURE 29

CAATGTTGCCTATCCACCTCCCCAAGCCCTTACCTATGCTGCTGCTAACGCTGCTGCTGCT
GCTGCTGCTGCTAAAGGCTCATGCTGGAGTGGGACTGGTCGGGCCAGAAAGTCTCTCTG
CCACTGACGCCCATCAGGGATTGGGCCTCTTCCCCCTTCCTTCTGTGTCTCCTGCCTCAT
CGGCCTGCCATGACCTGCAGCCAAGCCCAGCCCCGTGGGAAGGGGAGAAAGTGGGGATGGCTA
AAGAAAGCTGGGAGATAGGGAACAGAACAGAGGGTAGTGGGTGGCTAGGGGGCTGCCTTATTTAAA
GTGGTTGTTTATGTTCTTATACTAATTTATACAAAGATATTAAGGCCCTGTTCATTAAGAAATT
GTTCCCTCCCTGTGTTCAATGTTGTAAGATTGTTCTGTGTAATATGTCTTATAAAC
AGTTAAAAGCTGAAAAAAAAAAAAAAA

FIGURE 30

MLLLTLLLLLKGSCLEWGLVGAQKVSSATDAPIRDWAFFPPSFLCLLPHRPAMTC SQAQPRG
EGEKVGDG

Important features:

Signal peptide:

amino acids 1-15

Growth factor and cytokines receptors family:

amino acids 3-18

FIGURE 31

TTTGTGAAATTCCCTCAACTATACCCACAGTCAAAAGCAGACTCACTGTGTCCCAGGCTACCAAGT
CCTCCAAGCAAGTCATTTCCCTTATTAACCGATGTGTCCCTCAAACACCTGAGTGCTACTCCCT
ATTTCGATCTGTTGATAAATGATGTTGACACCCTCACCGAATTCTAAGTGGATCATGTCGG
GAAGAGAGATAACAATCCTGGCCTGTGTATCCTCGCATTAGCCTGTCTTGGCATGATGTTACC
TTCAGATTCATCACCAACCCCTCTGGTTCACATTTCATTGGTATTGGGATTGTTGTT
TGTCTGGGTGTTTATGGTGGCTGATTATGACTATACCAACGACCTCAGCATAGAATTGGACA
CAGAAAGGAAAATATGAAGTGCCTGCTGGGTTGCTATCGTATCCACAGGCATCACGGCAGT
CTGCTCGTCTTGATTGGTCTCAGAAAGAGAATAAAATTGACAGTTGAGCTTCCAAATCAC
AAATAAAGCCATCAGCAGTGCCTCCCTGCTGTTCCAGCCACTGTGGACATTGCCATCCTCA
TTTCTCTGGGTCCCTGGGTGGCTGCTGCTGAGCCTGGAACTGCAGGAGCTGCCAGGTT
ATGGAAGGCAGGCAAGTGGATATAAGCCCCTTCGGGCATTGGTACATGTGGCGTACCATTT
AATTGGCCTCATCTGGACTAGTGAATTCATCCTGCGTGCAGCAAATGACTATAGCTGGGAG
TGGTTACTTGTATTCAACAGAAGTAAAATGATCCTCTGATCATCCCATCCTCGTCTCTC
TCCATTCTCTTCTTACCATCAAGGAACGTTGTGAAAGGGTCAATTAACTCTGTGGTGA
GATTCCGAGAACATTGTATGTACATGCAAACGCAGTGAAGAACAGCAGCATGGTCATTGT
CCAGGTACCTGTTCCGATGCTGCTACTGCTGTTCTGGTGTCTGACAAATACCTGCTCCATCTC
AACCGAGATGCATATACTACAACGTCTATTAACTGGACAGATTCTGTACATCAGAAAAGATGC
ATTCAAATCTGTCCAAGAACACTCAAGTCACTTACATCTATTAACTGCTTGAGACTTCATAA
TTTTCTAGGAAAGGTGTTAGTGGTGTTCACTGTTGGAGGACTCATGGCTTTAACTAC
AATCGGGCATTCCAGGTGTTGGCAGTCCCTGTTATTGGTAGCTTTGGCTACTTAGTAGC
CCATAGTTTTTATCTGTGTTGAAACTGTGCTGGATGCACCTTCTGTGTTGGCTGATC
TGGAAACAAATGATGGATCGTCAGAAAAGCCCTACTTATGGATCAAGAATTCTGAGTTCGTA
AAAAGGAGCAACAAATTAAACATGCAAGGGCACAGCAGGACAAGCAGTCAATTAGGAATGAGGA
GGGAACAGAACTCCAGGCCATTGTGAGATAGATACCCATTAGGTATCTGTACCTGGAAAACATT
TCCTTCTAAGAGCCATTACAGAATAGAAGATGAGACCCTAGAGAAAAGTTAGTGAATT
TTAAAAGACCTAATAACCCATTCTCTCAAAA

FIGURE 32

MSGRDTILGLCILALALSLAMMFTFRFITTLLVHIFISLVLGILFVCGVLWWLYDYTNDSLIE
LDTERENMKCVLGFAIVSTGITAVLLVLIFVLRKRIKLTVELFQITNKAISSAPFLLFQPLWTFA
ILIFFWVLWVAVLLSLGTAGAAQVMEGGQVEYKPLSGIRYMWSYHLIGLIWTSEFILACQOMTIA
GAVVTCYFNRSKNDDPDHPILSSLSILFFYHQGTVVKGSFLISVVRIPRIIVMMQNALKEQQHG
ALSRYLFRCYCFCWCLDKYLLHLNQNAYTTAINGTDFCTSAKDAFKILSKNSSHFTSINCFGD
IIIFLGKVLVVCFVGGLMAFNYNRAFQVWAVPLLVAFFAYLVAHSFLSVFETVLDALFLCFA
VDLETNDGSSEKPYFMDQEFLSFVKRSNKLNNAQAQQDKHSLRNEEGTELQAIKR

Important features:

Signal peptide:

amino acids 1-20

Putative transmembrane domains:

amino acids 35-54, 75-97, 126-146, 185-204, 333-350, 352-371

N-glycosylation sites.

amino acids 204-208, 295-299, 313-317

N-myristoylation sites.

amino acids 147-153, 178-184, 196-202, 296-275, 342-348

FIGURE 33

GTTCGATTAGCTCCCTGAGAAGAAGAGAAAAGGTTTGGACCTCCTGTTCTTCCTTAGA
ATAATTTGTATGGGATTGTGATGCAGGAAGCCTAAGGAAAAAGAAATTCAATTCTGTGTTGGT
GAAAATTTTGAAAAAAAATTGCCTTCTCAAACAAGGGTGTCAATTCTGATATTATGAGGAC
TGTTGTTCTCACTATGAAGGCATCTGTTATTGAAATGTCCTGTTGCTGGTACTGGAGTAC
ATTCAAACAAAGAAACGCAAAGAAGATTAAAAGGCCAAGTTCACTGTGCCTCAGATCAACTGC
GATGTCAAAGCCGAAAGATCATGATCCTGAGTTCAATTGTGAAATGTCAGCAGGATGCCAAGA
CCCCAAATACCATGTTATGGCACTGACGTGATGCATCCTACTCCAGTGTGTGGCGCTGCCG
TACACAGTGGTGTGTTGATAATTCAAGGAGGAAAATACTTGTGCGAAGGTTGCTGGACAGTCT
GGTTACAAAGGGAGTTATTCCAACGGTGTCCAATCGTTATCCCTACCACGATGGAGAGAAATCCTT
TATCGTCTTAGAAAGTAAACCCAAAAGGGTGTAACTTACCCATCAGCTCTTACATACTCATCAT
CGAAAAGTCCAGTGCCAAGCAGGTGAGACCAACAAAGCTATCAGAGGGCACCTATTCCAGGG
ACAACGTGCAAGCAGGGTCACTCTGATGCACTGCTGGCTGTCACTGTAGCTGTGGCCACCCCCAC
CACCTTGCCAAGGCCATCCCCCTCTGCTGCTCTAACCCAGCATCCCCAGACCACAATCAGTGG
GCCACAGGAGCCAGGGAGATGGATCTCTGGTCCACTGCCAACCTACACAAGCAGCCAAAACAGGGCC
AGAGCTGATCCAGGTATCCAAGGCAGATCCTTCAGGAGCTGCCTCCAGAAAACCTGTTGGAGC
GGATGTCAGCCTGGACTTGTCCAAAAGAAGAATTGAGCACACAGTCTTGGAGCCAGTATCCC
TGGGAGATCAAACGTCAAATTGACTTGTGTTTTAATTGATGGGAGCACCAGCATTGGCAAA
CGGCGATTCCAATCCAGAACAGCAGCTCTGCTGATGTTGCCAAGCTTGTGACATTGGCCCTGC
CGGTCCACTGATGGGTGTTGTCAGTATGGAGACAACCTGTCACTACTTAACTCAAGACAC
ACACGAATTCTCGAGATCTGAAGACAGCCATAGAGAAAATTACTCAGAGAGGAGACTTCTAAT
GTAGGTCGGGCCATCTCTTGTGACCAAGAACCTTCCAAAGCAATGGAAACAGAACGG
GGCTCCAAATGTGGTGGTGGTGTGGGGATGGCTGGCCACGGACAAAGTGGAGGGAGGCTCAA
GACTTGGAGAGAGTCAGGAATCAACATTCTCATCACCATTGAAGGTGCTGCTGAAAATGAG
AAGCAGTATGTGGTGGAGCCAACTTGTCAAACAAGGCCGTGTCAGAACAAACGGCTCTACTC
GCTCCACGTGCAGAGCTGGTTGGCCCTCCACAAGACCCGTGAGCCTCTGGTGAAGCGGGCTGCG
ACACTGACCGCCTGCCCTGCAGCAAGACCTGCTGAACCTGGCTGACATTGGCTCGTCATCGAC
GGCTCCAGCAGTGGGGACGGCAACTCCGCACCGTCTCCAGTTGTGACCAACCTCACCAA
AGAGTTGAGATTCGACACGGACACGCGCATCGGGGGCGTGCAGTACACCTACGAACAGCGGC
TGGAGTTGGGTTGACAAGTACAGCAGCAAGCCTGACATCCTCAACGCCATCAAGAGGGTGGG
TACTGGAGTGGTGGACCAAGCACGGGGCTGCCATCAACTCGCCCTGGAGCAGCTTCAAGAA
GTCCAAGCCAACAAGAGGAAGTTAATGATCCTCATCACCAGCAGGGAGGTCTACGACGACGCC
GGATCCCAGCCATGCTGCCATCTGAAGGGAGTGTACACCTATGCGATAGGCCTGCTGGCT
GCCCAAGAGGAGCTAGAAGTCATTGCACTACCCCGCAGAGACCACCTCTTGTGGACGA
GTTTGACAACCTCATCAGTATGTCCTCAGGATCATCAGAACATTGTACAGAGTTCAACTCAC
AGCCTCGGAACCTGAATTCAAGAGCAGGGCAGAGCACCAGCAAGTGTGCTTACTAATGACGTGTT
GGACCAACCCACCGCTTAATGGGCACGCCAGGGCATCAAGTCTGGCAGGGCATGGAGAAC
AAATGTCCTGTTATTCTTGCATCATGTTTCAATTCCAAAAGTGGAGTTACAAGA
TGATCACAAACGTATAAGATGAGCCAAGGCTACATCATGTTGAGGGTGTGGAGATTTCAT
TTTGACAATTGTTTCAAAATAATGTCGGAATACAGTGCAGGCCCTACGACAGGCTTACGTAG
AGCTTTGTGAGATTAAAGTGTGTTATTCTGATTTGAACCTGTAAACCTCAGCAAGTTCAT
TTTGTCATGACAATGTAGGAATTGCTGAATTAAATGTTAGAAGGATGAAAAAATAAAAAAAAA
AAG

FIGURE 34

MRTVVLTMKASVIEMFLVLLVTGVHSNKETAKKIKRPKFTVPQINCDVKAGKIIDPEFIVKCPAG
CQDPKYHVGTDVYASYSSVCGAAVHSGVLDNSGGKILVRKVAGQSGYKGSYSNGVQSLSPRWR
ESFIVLESKPCKKGVTYPSSKSPAAQAGETTKAYQRPIPPTTAQPVTLMQLLAVTVAVA
TPPTTLPRPSPSAASTTSIPRPQSVDGHRSQEMDLWSTATYTSSQRPRADPGIQRQDPSGAAFQKP
VGADVSLGLVPKEELSTQSLEPVSLGDPNCKIDLSFLIDGSTSIGKRRFRIQKQOLLADVAQALDI
GPAGPLMGVVQYGDNPATHFNLKHTNSRDLKTAIEKITQRGGLSNVGRAISFVTKNFFSKANGN
RSGAPNVVVVMVDGWPTDKVEEASRLARESGINIFFITIEGAAENEKQYVVEPNFANKAVCRTNG
FYSLHVQSWFGLHKTLQPLVKRVCDTDRACSKTCLNSADIGFVIDGSSSVGTGNFRTVLQFVTN
LTKEFEIISDTDTRIGAVQYTYEQRLEFGFDKYSSKPDILNAIKRVGWWSGGTSTGAINFOALEQL
FKKSCKPNKRKLMILITDGRSYDDVRIPAMAAHLKGVITYAIGVAWAQQEELEVIATHPARDHSFF
VDEFDNLHQYVPRIIQNICTEFNSQPRN

Important features:

Signal peptide:

amino acids 1-26

Transmembrane domain:

amino acids 181-200

N-glycosylation sites.

amino acids 390-394, 520-524

N-myristoylation sites.

amino acids 23-29, 93-99, 115-121, 262-268, 367-373, 389-395,
431-437, 466-472, 509-515, 570-576, 571-577, 575-581, 627-633

Amidation site.

amino acids 304-308

FIGURE 35

CCGAGCACAGGAGATTGCCTGCCTTAGGAGGTGGCTCGCTGTGGAAAAGCTATCAAGGAAGAAATTGC
CAAACCATGTCTTTTCTGTTTCAGAGTAGTTACAACAGATCTGAGTGTTAATTAAGCATGGAAT
ACAGAAAACAACAAAAACTTAAGCTTAATTCATCTGGAATTCCACAGTTCTAGCTCCCTGGACCC
GGTGACCTGTTGGCTTCCCGCTGGCTCTATCACGTGGTCTCCGACTACTCACCCCGAGTGA
AAGAACCTTCGGCTCCGCTGCTTGAGCTGCTGGATGGCCTGGCTCTGGACTGTCCTCCGAGTA
GGATGTCAGTGAGATCCCTCAAATGGAGCCTCGCTGCTGTCACTCCTGAGTTCTTGATGTGGTAC
CTCAGCCTCCCCACTACAATGTGATAAGAACCGGTGAACGGTACTGAGTTCTATGAGTATGAGCCGATT
CAGACAAGACTTCACTTCACACTTCAGATGTGAAAGCCAGGCAGGCCATTAGAGTTACTTGGGGTGA
GGTGGACCTCCCACCCCTCAGATGTGAAAGCCAGGCAGGCCATTAGAGTTACTTGGGGTGA
TGGTGGGGATATGAGGTCTTACATTTCTTATTAGGCCAAGAGGCTGAAAGAGACAAAATGTTGG
ATTGTCCTTAGGGATGAACACCTCTTATGGTGAACATAATCCGACAAGATTTTAGACACATATAATA
ACCTGACCTGAAAACCATTATGGCAATTCAAGGTGGTAACTGAGTTGCCCCATGCCAAGTACGTAATG
AAGACAGACACTGATGTTTCAACTGGCAATTAGTGAAGTATTTAAACCTAAACCACTCAGA
GAAGTTTCACAGGTTACCTCTAAATTGATAATTATTCCCTAGAGGATTTACCAAAAAACCCATATT
CTTACCAAGGAGTATCCTTCAAGGTGTTCCCTCATACTGCAGTGGGTTGGGTATATAATGTCAGAGAT
TTGGTGCCAAGGATCTATGAAATGATGGTCACGTAACCTGAGTTGAAGATTTATGTCGGGAT
CTGTTGAATTATTAAAAGTGAACATTCAATTCCAGAAGACACAAATCTTCTTCTATATAGAATCC
ATTGGATGTCTGTCAACTGAGACGTGATTGCAGCCCAGGCTTCTCCAAGGAGATCATCACTTT
TGGCAGGTCACTGCAAGGAACACCACATGCCATTTAACTTCACATTCTACAAAAGCCTAGAAGGACAG
GATACCTGTGAAAGTGTAAATAAAAGTAGGTAAGTGTGTTGAGGACACAAATCTTCTTCTATAGAATCC
ACACTGAACACTCATGAAAACCCAGACTGGAGACTGGAGGGTTACACTTGTGATTATTAGTCAGG
CCCTTCAAGATGATGTGGAGGAATTAAATATAAGGAATTGGAGGTTTGCTAAAGAAATTAAATAGG
ACCAAACAATTGGACATGTCATTCTGTAGACTAGAATTCTTAAAGGGTGTACTGAGTTATAAGCTCA
CTAGGCTGAAAAACAAACATGTAGAGTTATTGAAACATGTAGTCAGTGAAGGTTTGCTA
TATCTTATGTGGATTACCAATTAAATATATGTAGTTCTGTGTCAAAAACCTTCACTGAAGTTATA
CTGAACAAAATTTCACCTGTTGGTCATTATAAGTACTTCAGAATGTGCACTGAGTTTGTGTT
ATTATTAAAATTACTCAACTTGTGTTTAAATGTTTGACGATTCAATACAAGATAAAAGGATAG
TGAATCATTCTTACATGCAAACATTCCAGTTACTTAACATGCACTGAGTTTATTGATACATCACTCCA
TTAATGTAAGTCAGGTCAATTGCAATTCAGTAATCTTGTGACTTTGTTAAATATTACTGTGGT
AATATAGAGAAGAATTAAAGCAAGAAAATCTGAAAA

FIGURE 36

MASALWTVLPSRMSLRSLKWSLLLLSLLSFVMMWYLSLPHYNVIERVNWMYFYEYEPIYRQDFHF
TLREHSNC SHQNPFLVILVTSHPSDVKARQAIRVTWGEKKSWWGYEVLTFFLLGQEAEKDMLA
LSLEDEHLLYGDII RQDFLDTNNNLKTTIMAFRWVTEFCPNAKYVMKTDTDVFINTGNLVKYLL
NLNHSEKFFTGYPLIDNYSYRGFYQKTHISYQEYPFKVFPPYCSGLGYIMSRLVPRIYEMMGHV
KPIKFEDVYVGICLNLLKVNIHIPEDTNLFFLYRIHLDVCQLRRVIAAHGFSSKEIITFWQVMLR
NTTCHY

Important features:

Type II transmembrane domain:

amino acids 20-39

N-glycosylation sites.

amino acids 72-76, 154-158, 198-202, 212-216, 326-330

Glycosaminoglycan attachment site.

amino acids 239-243

Ly-6 / u-PAR domain proteins.

amino acids 23-37

N-myristoylation site.

amino acids 271-277

FIGURE 37

CGCTGGGGCACCGCCGCCAAGGGATGGAGCTGGCTGGACGAGTGGGGCTCACTTTCTCAGCTCCTCTCATC
TCGTCTTCCAAGAGAGTACACAGTCATAATGAAGCTGCCCTGGAGCAGAGTGGAAATATCATGTCGGAGTG
AATATGATCAGATTGAGTGCCTGCCCGAAGAGGAAGTCTGGTTATACCATCCCTGCTGCAGGAATGAGGAGAA
TGAGTGTGACTCTGCCATCCACCCAGTTGACCATCTTGAAAAGTCAAGAGCTGCCAAATGGCTATGGGGGGT
ACCTGGATGACTCTATGTGAAGGGGTTCTACTGTGCAAGAGTGCAGGCCAGGGCTGGTACGGAGGAGACTGCATGCATGTG
GCCAGGGTCTGCCAGCCCCAAAGGGTCAGATTGTTGAGGAAAGTATCCCCTAAATGTCAGTGTGAATGGACCATTGATGC
TAAACCTGGGGTTGTCATCCAACTAAGATTGTCATGTTGAGTCTGGAGTTGACTACATGTCCAGTATGACTATGTGAG
GTTCTGATGGAGACAACCGCGATGGCCAGATCATCAACCGTGTCTGGCAACGAGCGGCCAGCTCTATCCAGAGCATAG
GATCCTCAGTCACGCCCTTCCACTCCGATGGCTCCAAGAAATTGACGGTTCCATGCCATTATGAGGAGATCACAGC
ATGCTCCATCCCTGTTCCATGACGGCACGTGCGCTTGACAAGGCTGGATCTACAAGTGTGCCCTGCTGGCAGGC
TAACTGGCAGCGCTGAAAATCTCTGAAAGAAAGAACCTGCTCAGACCCCTGGGGGCCAGTCATGGTACCAAGAAA
TAACAGGGGCCCTGGGCTATCAACGGAGCCATGCTAAAATTGGCACCGTGGTGTCTTCTTTGTAACACTCCTATGT
TCTTAGTGGCAATGAGAAAAGAACCTGCCAGCAGAATGGAGAGTGGTCAGGGAAACAGCCCCTGCTCAAAGCCTGCCGA
GAACCAAAGATTTCAGACCTGGTGAGAAGGGAGAGTTCTCCGATGCAAGGTTCAAGGGAGACACCAATTACACCAAGCTAT
ACTCAGCGGCCCTCAGCAAGCAGAAAAGTCAAGAGTGCAGGCCCTACCAAGAAGGCCAGCCCTCCCTTGGAGATCTGCCCTGG
ATACCAACATCTGCATACCAGCTCCAGTATGAGTGCATCTACCCCTCTACCGCCGCTGGCAGCAGCAGGAGACATGT
CTGAGGACTGGGAAGTGGAGTGGCGGGCACCATCTGATCCCTATCTGGGAAAATTGAGAACATCACTGCTCCAAAGA
CCAAGGGTGGCTGGCGTGGCAGGCCATCTACAGGAGGACCAGCGGGGTCATGCGGCACCTACACAAGGGAGC
GTGGTCTCTAGTCTGCAGCGGTGCCCTGGTAATGAGCGCAGTGTGGTGTGGCTGCCACTGTGTACTGACCTGGGGAG
GTCACCATGATCAAGACAGCAGACCTGAAAGTTGGGAAATTCTACCGGGATGATGACCGGGATGAGAACGACCATCC
AGAGCCTACAGATTCTGCTATCATTCTGCATCCAACTATGACCCCATCTGCTGTGACATGCCATCTGAAGCT
CTTAGACAAGGCCGTATCAGCACCCGAGTCCAGGCCATCTGCCCTGCTGCCAGTCGGGATCTCAGCACCTCCCTCAGGAG
TCCACATCACTGTGGCTGGCTGGAAATGCTGGCAGACGTGAGGAGCCCTGGCTCAAGAACGACACACTGCGCTCTGGGG
TGGTCAGTGTGGGGACTCGCTGCTGTGAGGAGCAGCATGAGGACCATGGCATCCAGTGTGACTGTACTGATAACATGTT
CTGTGCCAGCTGGGAAACCACTGCCCTCTGATATCTEACTGCAGAGACAGGAGCATGCCCTGTCCTTCCCCGGG
CGAGCATCTCTGAGCCACGCTGGCATCTGATGGGACTGGTCAAGCTGGAGCTATGATAAAACATGCAGCCACAGGCTCTCCA
CTGCCCTCAGGAGTGCCTTAAAGACTGGATTGAAAGAAATATGAAATGAACCATGTCATGCCACTCCCTGAGAAG
TGTGTTCTGTATATCGTCTGTCAGCTGTGTCATGCCGTAAGCAGTGTGGGCTGAAGTGTGATTGGCTGTGAACCTGGCT
GTGCCAGGGCTCTGACTTCAGGGACAAAACCTCAGTGAAGGGTGAAGTGAACCTCCATTGCTGGTAGGCTGATGCCGCTCCA
CTACTAGGACAGCCAATTGGAAGATGCCAGGGCTTGCAGAACAGTAAGTTCTCAAGAACGACCATATACAAAACCTCTCCA
CTCCACTGACCTGGTGGCTTCCCAACTTCAGTTATGCAATGCCCATCAGCTTGACCAAGGGAGATCTGGCTTCTGAG
GCCCTTGGAGGCTCTCAAGTCTAGAGAGCTGCCCTGTGGAGCACCCAGGGCAGCAGAGCTGGGATGTGGCTCATGCC
TGTGACATGGGCCAGTACAGTCTGGCTTTCTCCCATCTTGTACACATTAAATAAAATAAGGGTGGCTTCT
GAACTACAA
AA

FIGURE 38

MELGCWTQLGLTFLQLLISSLPREYTVINEACPGAEWNIMCRECCYEVDQIECVCPGKREVVGYT
IPCCRNEENECDSCLIHPGCTIFENCKSCRNGSWGGTLDDFYVKGFYCAECRAGWGGDCMRCGQ
VLRAPKGQILLESYPLNAHCEWTIHAKPGFVIQLRFVMLSLEFDYMCQYDYVEVRDGDNRDGQII
KRCVGNERPAPIQSIGSSLHVLFHSDGSKNFDGFHAIYEEITACSSSPCFHDGTCVLDKAGSYKC
ACLAGYTQRCENLLEERNCSDPGGPVNGYQKITGGPGILINGRHAKIGTVVSFFCNNSYVLSGNE
KRTCQQNGEWSGKQPICIKACREPDKISDLVRRRLPMQVQSRETPHLQLYSAAFSKQKLQSAPTK
KPALPFGLPMGYQHLHTQLQYECISPFYRRLGSSRTCLRTGKWSGRAPSCIPICGKIENITAP
KTQGLRLWPWQAAIYRRRTSGVHDGSLHKGAFLVCGALVNERTVVVAHCVTDLGKVTMIKTADL
KVVLGKFYRDDRDEKTIQSLQISAIILHPNYDPILLADIAILKLLDKARISTRVQPICLAASR
DLSTSFQESHITVAGWNVLADVSPGFKNDSLRSGVSVVDSLLCEEQHEDHGIPVSVDNMFCA
SWEPTAPSIDIETGGIAAVSFGRASPEPRWHLMGLVWSYDKTCSHRLSTAFTKVLPKDWI
ERNMK

Important features of the protein:

Signal peptide:

amino acids 1-23

EGF-like domain cysteine pattern signature.

amino acids 260-272

N-glycosylation sites.

amino acids 96-100, 279-283, 316-320, 451-455, 614-618

N-myristoylation sites.

amino acids 35-41, 97-103, 256-262, 284-290, 298-304, 308-314,
474-480, 491-497, 638-644, 666-672

Amidation site.

amino acids 56-60

Serine proteases, trypsin family.

amino acids 489-506

CUB domain proteins profile.

amino acids 150-167

FIGURE 39

GGTCTCTACATCCTCTCATCTGAGAATCAGAGAGCATAATCTTCTACGGGCCGTGATTATTAACGTGGCTTAATC
TGAAGGTTCTCAGTCAAATTCTTGTGATCTACTGATTGTTGGGGCATGGCAAGGTTGCCTAAAGGAGCTGGCTG
TTTGGGCCCTGTAGCTGACAGAAGGTGCCAGGGAGAATGCAGCACACTGCTCGAGAATGAAGGCGCTCTGTTG
TGGTCTTGCTGGCTCAGTCCTGCTAATCATTGACAATGTGGCAACCTGCACITCCTGTATTCAAACTCTGTA
AAGGTGCCCTCCACTACGGCCTGACCAAAGATAGGAAGAGGCCCTACAAGATGGCTGCCAGACGGCTGTGAGGCC
TCACAGGCCAGGGCTCCCTCCCCAGAGGTTCTGCAGTGCCACCATCTCTTAATGACAGACGAGCCTGGCTAGAC
ACCCCTGCCCTACGTGCTCGGAGGGACGGGAGCCAGCAATCAGCCCAGTGACTCTGGCCAGGCAACCGA
GGGCACGGCCCTTGAGAGATCCACTATTAGAACGAGATCATTAAAAAAATAAATCGAGCTTGAGTGTCTCGA
GGACAAAGAGCGGGAGTGCAGTTGCAACCATGCCGACCAGGGCAGGGAAATTCTGAAAACACCAACTGCCCTGAAG
TCTTCCAAGGTTGACACCTGATTCCAGATGGTGAATTACAGCATCAAGATCAATCGAGTAGATCCAGTGA
GCCTCTCTATTAGGCTGGGGAGGTAGCAGAACCCACTGGTCCATATCATTATCAACACATTATCGTGA
TGATGCCAGAGACGCCGCTACTGCCAGGAGACATCATTCTAAAGGTCAACGGATGGACATCAGCAATGCTC
ACAACACTACCGCTGCGTCCCGCCAGGCTGCCAGGTGCTGACTGTGATCGTGAACAGAAGTCCCGA
GCAGGAACATGGACAGGCCCGATGCCATCACAGACCCAGATGACAGCTTCATGTGATTCTAACAAAAGTAGCC
CCGAGGAGCAGCTGGAAATAAACTGGTGCAGGAGACATCATTCTAAAGGTCAACGGATGGACATCAGCAATGCTC
GTGTGGCATATCGACATGGTCAGCTGAGGAGAATGACCGTGTGTTAGCCATCAATGGACATGATCTCGATATGGCA
GCCAGAAAGTGCCTCATCTGATTCAAGGCCAGTGAAGACGCTTCACCTCGTGTGCCAGGTGGCAGC
GGAGCCCTGACATCTTCAGGAACCCGCTGGAACAGCAATGGCAGCTGGTCCCCAGGGCAGGGAGAGGCA
CTCCCAAGCCCTCCATCTACAATTACTGTGATGAGAAGGTGTAATACCAAAAGACCCGGTGAATCTCTG
GCATGACCGTGCAGGGAGCATTACAGAGAATGGGATTTGCATCTATGTCATCAGTGTGAGCCGGAGGAG
TCATAAGCAGAGATGGAAGAATAAAACAGGTGACATTGTTGAATGTGGATGGGCGAACTGACAGAGGTGAGCC
GGAGTGAGGCGAGTGGCATTATTGAAAAAGAACATCATCCTCGATAGTACTCAAAGCTTGGAAAGTCAAAGAGTATGAGC
CCCAGGAAGACTGCAGCAGGCCAGCAGGCCCTGGACTCCAACCACACATGGCCCAACCCAGTGA
CTGGTCCCACATGGTGAATGGGCTGGCATATTACCGGTGCTGTATAACTGTAAGAGTATTGTTACAGA
TGGGCTCTGCATTGTAGGAGGTTATGAGAAGAATACAATGGAAACAAACCTTTTCACTCAATCATTGTTGA
CACCAGCATACAATGATGAGAAGAATTAGATGTGGTGAATTCTCTGCTGCAATGGTAGAAGTACATCAGGA
TACATGCTTGTGAGACTGCTGAAAGAACCTAAAGGAGAAATTACTCTAACATTTGTTCTGGCTGGCA
TTTTTAGAATCAATGATGGGTCAGAGGAAACAGAAAAATCACAATAGGCTAAGAAGTGAAAACACTATATTATC
TTGTGAGTTTATATTAAAGGAGAATACATTGAAAAATGTCAAGGAAAGTATGATCATCTAACATGAA
ACACCTCAGAAAATATGATTCCAAAAAAATTAAACACTAGTTTTTCAGTGTGGAGGATTCTCATTACTCTAC
AACATTGTTTATATTCTATTCAATAAAAAGCCCTAAACAAACTAAATGATTGATTTGTATACCCACTGA
CAAGCTGATTAAATTAAAATTGGTATATGCTGAAGTCTGCCAAGGGTACATTATGCCATTAA
AAAAATTTTAAATGCTGAGAAACGTTGCTTTCATCAAACAAAGAATAAATTTTCAAGGTTAA

FIGURE 40

MKALLLLVLPWLSPANYIDNVGNLHFLYSELCKGASHYGLTKDRKRRSQDGCPDGCASLTATAPS
PEVSAATISLMTDEPGLDNPAYVSSAEDGQPAISPVDGRSNRTRARPFERSTIRSRSFKKINR
ALSVLRRTKSGSAVANHADQGRENSENTTAPEVFPRLYHLIPDGEITSIKINRVPSESLSIRLV
GGSETPLVHIIIQHIYRDGVIARDGRLLPGDIILKVNGMDISNVPHNYAVRLLRQPCQVLWLTVM
REQKFRSRNNGQAPDAYPRDDSFHVILNKSSPEEQLGIKLVRKVDEPGVIFNVLDGGVAYRHG
QLEENDRVLALINGHDLRYGSPEAAHLIQASERRVHLVSRQRSPDIFQEAGWNSNGSWSPG
PGERSNTPKPLHPTTCHEKVVNICKDPGESLGMTVAGGASHREWDLPIYVISVEPGGVISRDRGR
IKTGDILLNVDGVELTEVSERSEAVALLKRTSSIVLKALEVKYEPOQEDCSSPAALDSNHNMAPP
SDWSPSWMWLELPRCLYNCKDIVLRRNTAGSLGFCIVGGYEEYNGNKPFFIKSIVEGTPAYNDG
RIRCQDILLAVNGRSTSGMIHACLRLLKELKGRITLTIVSWPGTFL

Important features:

Signal peptide:

amino acids 1-15

N-glycosylation sites.

amino acids 108-112, 157-161, 289-293, 384-388

Tyrosine kinase phosphorylation sites.

amino acids 433-441, 492-500

N-myristoylation sites.

amino acids 51-57, 141-147, 233-239, 344-350, 423-429, 447-453,
467-473, 603-609

FIGURE 41

ACCAAGGCATTGTATCTCAGTTGTCATCAAGTTCGAATCAGATTGGAAAAGCTCAACTGAAGCTT
CTTGCCCTGCAGTGAAGCAGAGAGATAGATAATTACAGTAATAAAACATGGGCTCAACTGACT
TTCCACCTTCTACAAATTCCGATTACTGTTGCTGTTGACTTGTGCTGACAGTGGTTGGGTGGC
CACCAAGTAACACTTCGTGGGTGCCATTCAAGAGATTCTAAAGCAAAGGAGTTCATGGCTAATTCC
ATAAGACCCCTCATTGGGAAGGGAAAAACTCTGACTAATGAAGCATCCACGAAGAAGGTAGAACCT
GACAACGTCCCTGTGTCTCCTTACCTCAGAGGCCAGAGCAAGCTCATTTCAAACCAGATCTCAC
TTTGGAAAGAGGTACAGGCAGAAAATCCAAAGTGTCCAGAGGCCGTATGCCCTCAGGAATGTAAG
CTTACAGAGGGTCGCCATCCTCGTTCCCCACCGAACAGAGAGAAACACTGTACCTGCTGGAA
CATCTGCATCCCTCCTGCAGAGGCAGCAGCTGGATTATGGCATCTACGTCTACCCAGGCTGAAGG
TAAAAAGTTAATCGAGCAAACCTTGAATGTGGCTATCTAGAACGCCCTCAAGGAAGAAAATTGGG
ACTGCTTATATTCCACGATGTGGACCTGGTACCCGAGAACTGACTTTAACCTTACAAGTGTGAGGAG
CATCCCAAGCATCTGGTGGTGGCAGGAACAGCACTGGTACAGGTTACAGTGGATATTGG
GGGTGTTACTGCCCTAACGAGAGCAGTTTCAGGTGAATGGATTCTCTAACAAACTACTGGGAT
GGGGAGGCGAACAGCATGACCTCAGACTCAGGGTTGAGCTCCAAAGAACATGAAAATTCCCGCCCCCTG
CCTGAAGTGGTAAATATAACATGGCTTCCACACTAGAGACAAAGGCAATGAGGTGAACGCAGAACG
GATGAAGCTTACACCAAGTGTACGAGTCTGGAGAACAGATGGTTGAGTAGTTCTTGTATTAAT
TAGTATCTGTGGAACACAATCCTTATATATCACACATCACAGTGGATTCTGGTTGGTGCATGACCC
TGGATCTTGGTGTGTTGGAAGAACTGATTCTTGCAATAATTGGCCTAGAGACTTCAA
ATAGTAGCACACATTAAGAACCTGTTACAGCTATTGTGAGCTGAATTTCCTTTGTATTTCT
TAGCAGAGCTCTGGTGTGAGTAAACAGTTGTAACAAGACAGCTTCTTAGTCATTGAT
CATGAGGGTTAAATATTGTAATATGGATACTTGAAGGACTTATATAAAAGGATGACTCAAAGGATAA
AATGAACGCATTTGAGGACTCTGGTGAAGGAGATTATTAAATTGAGTAATATATTGGGAT
AAAAGGCCACAGGAATAAGACTGCTGAATGCTGAGAGAACAGAGTTGTTCTCGTCCAAGGTAGAA
AGGTACGAAGATAACAAACTGTTATTCAATTCTGTACAATCATCTGTGAAGTGGTGGTGTAGGT
GAGAAGGGTCCACAAAAGAGGGAGAAAAGGCAGAACAGGACACAGTGAACCTGGGATGAAGA
GGTAGCAGGAGGGTGGAGTGTGGCTGCAAAGGCAGCAGTAGCTGAGCTGGTTGCAGGTGCTGATAGC
CTTCAGGGGAGGACCTGCCAGGTATGCCCTCAGTGTGAGCTGGTGCAGGTGCTGATAGC
TTTAAAGAGTTTGAAAATGATTGTACAAGTAGGATATGAATTAGCAGTTACAAGTTACAT
ATTAACATAATAATATGTCTACAAACCTCTGTAGTAAAGTGAAGCAAA

FIGURE 42

MGFNLTFHLSYKFRLLLLLTLCLTVVGWATSNYFVGAIQEIPKAKEFMANFHKTLLGKGKTLTN
EASTKKVELDNCPSVSPYLRGQSKLIFKPDLTLEEVQAENPKVSRGRYRPQECKALQRVAILVPH
RNREKHILMYLLEHLHPFLQRQQLDYGIYVIHQAEKKFNRAKLLNVGYLEALKEENWDCFIFHDV
DLVPENDFNLYKCEEHPKHLVVGRNSTGYRLRYSGYFGGTALSREQFFKVNGFSNNYWGWGGED
DDLRLRVELQRMKISRPLPEVGKYTMVFHTRDKGNEVNAERMKLLHQSVRVRTDGLSSCSYKLV
SVEHNPLYINITVDFWFGA

Important features:

Signal peptide:

amino acids 1-27

N-glycosylation sites.

amino acids 4-8, 220-224, 335-339

Xylose isomerase proteins.

amino acids 191-202

FIGURE 43

GCTCAAGACCCAGCAGTGGGACAGCCAGACAGACGGCACGATGGCATGAGCTCCAGATCTGGG
CCGCTTGCCTCCTGCTCCTCCTCCTGCCAGCCTGACCAGTGGCTCTGTTCCCACAACAG
ACGGGACAACTTGCAGAGCTGCAACCCCAGGACAGAGCTGGAGCCAGGGCCAGCTGGATGCCCAT
GTTCCAGAGGCGAAGGAGGCAGACACCCACTCCCCATCTGCATTTCGCTGCGGCTGCTGTC
ATCGATCAAAGTGTGGGATGTGCTGCAAGACGTAGAACCTACCTGCCCTGCCCGTCCCCTCCC
TTCCTTATTATTCTGCTGCCAGAACATAGGTCTTGAATAAAATGGCTGGTTCTTGTT
TCCAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

FIGURE 44

MALSSQIWAACLLLLLLASLTSGSVFPQQTGQLAELOPQDRAGARASWMPMFQRRRRDTHFPI
CIFCCGCCHRSKCGMCKT

Important features:

Signal peptide:

amino acids 1-24

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 58-59

N-myristoylation site.

amino acids 44-50

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 1-12

FIGURE 45

GTGGCTTCATTCAGTGGCTGACTCCAGAGAGCAATATGGCTGGTCCCCAACATGCCTCACCC
TCATCTATATCCTTGCGAGCTCACAGGGTCAGCAGCCTCTGGACCCGTGAAAGAGCTGGTCGGT
TCCGTTGGTGGGCCGTGACTTCCCCCTGAAGTCAAAGTAAAGCAAGTTGACTCTATTGTCTG
GACCTCAACACAACCCCTCTTGTACCATAACGCCAGAAGGGGGCACTATCATAGTGACCCAAA
ATCGTAATAGGGAGAGAGTAGACTTCCCAGATGGAGGCTACTCCCTGAAGCTCAGCAAACGTGAAG
AAGAATGACTCAGGGATCTACTATGTGGGATATAACAGCTCATCACTCCAGCAGCCCTCCACCCA
GGAGTACGTGCTGCATGTCTACGAGCACCTGCTCAAAGCTAAAGTCACCATGGTCTGCAGAGCA
ATAAGAATGGCACCTGTGTGACCAATCTGACATGCTGCATGGAACATGGGAAGAGGATGTGATT
TATACCTGGAAGGCCCTGGGCAAGCAGCCAATGAGTCCCATAATGGTCCATCTCCCCATCTC
CTGGAGATGGGAGAAAGTGATATGACCTTCATCTGCCTGCCAGGAACCTGTCAGCAGAAACT
TCTCAAGCCCCATCCTGCCAGGAAGCTCTGTGAAGGTGCTGCTGATGACCCAGATTCTCCATG
GTCCTCTGTGTCTCCTGTTGGTCCCCCTCTGCTCAGTCTCTTGTACTGGGGCTATTCTTG
GTTTCTGAAGAGAGAGAGACAAGAAGAGTACATTGAAGAGAAGAAGAGAGTGGACATTGTCGGG
AAACTCTAACATATGCCCTATTCTGGAGAGAACACAGAGTACGACACAATCCCTCACACTAAT
AGAACAACTCTAACAGAACATCCCTGCTCACGATGCCAGACACACCAAGGCTATTGCCTATGAGAATGTTA
TCTAGACAGCAGTGCACTCCCCTAAGTCTCTGCTCA

FIGURE 46

MAGSPTCLTLIYILWQLTGSAASGPVKELVGSVGGAVTFPLSKVKQVDSIVWTFTTPLVTIQP
EGGTIIVTQNRNRERVDFPDGGYSLKLSKLKKNDSGIYYVGIYSSSLQQPSTQEYVLHVYEHLSK
PKVTMGLQSNKNGTCVTNLTCMEHGEEDVIYTWKALGQAANESHNGSILPISWRWGESDMTFIC
VARNPVSRNFSSPIILARKLCEGAADDPDSSMVLLCLLLVPLLLFLVGLFLWFLKRERQEEYIE
EKKRVDICRETPNICPHSGENTEYDTIPHTNRTILKEDPANTVYSTVEIPKKMENPHSLLTMPDT
PRLFAYENVI

Important features:

Signal peptide:

amino acids 1-22

Transmembrane domain:

amino acids 224-250

Leucine zipper pattern.

amino acids 229-251

N-glycosylation sites.

amino acids 98-102, 142-146, 148-152, 172-176, 176-180, 204-208,
291-295

FIGURE 47

GGCTCGAGCGTTCTGAGCCAGGGGTGACCATGACCTGCTGCGAAGGATGGACATCCTGCAATGG
ATTCAGCCTGCTGGTCTACTGCTGTTAGGAGTAGTTCTCAATGCGATAACCTCTAATTGTCAGCT
TAGTTGAGGAAGACCAATTTCTCAAAACCCCATCTTGCTTGAGTGGTGGTCCCAGGAATT
ATAGGAGCAGGTCTGATGCCATTCCAGCAACAACAATGCTTGACAGCAAGAAAAAGAGCGTG
CTGCAACAAACAGAACTGGAATGTTCTTCATCATTTTCAGTGTGATCACAGTCATTGGTGCTC
TGTATTGCATGCTGATATCCATCCAGGCTCTCTTAAAGGTCTCATGTGTAATTCTCCAAGC
AACAGTAATGCCAATTGTGAATTTCATTGAAAAACATCAGTGACATTCATCCAGAATCCTCAA
CTTGCAGTGGTTTCAATGACTCTTGTGCACCTCCTACTGGTTCAATAAACCCACCAGTAACG
ACACCATGGCGAGTGGCTGGAGAGCATCTAGTTCCACTCGATTCTGAAGAAAACAAACATAGG
CTTATCCACTCTCAGTATTTAGGTCTATTGCTTGGAATTCTGGAGGTCTGTTGGC
CAGTCAGATAGTCATCGGTTCCCTGGCTGTGTGGAGTCTCTAAGCGAAGAAGTCAAATTG
TGTAGTTAATGGGAATAAAATGTAAGTATCAGTAGTTGAAAAAAAAAA

FIGURE 48

MTCCEGWTSCNGFSLLVLLLGVVVLNAIPLIVSLVEEDQFSQNPISCFEWWFPGIIGAGLMAIPA
TTMSLTARKRACCNRTGMFLSSFFSVITVIGALYCMLISIQALLKGPLMCNSPSNSNANCEFSL
KNISDIHPESFNLQWFFNDSCAPPTGFNKPTSNDTMASGWRASSFHFDSEENKHRLIHFSVFLGL
LLVGILEVLFGLSQIVIGFLGCLCGVSKRRSQIV

Important features:

Transmembrane domains:

amino acids 10-31 (type II), 50-72, 87-110, 191-213

N-glycosylation sites.

amino acids 80-84, 132-136, 148-152, 163-167

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 223-227

N-myristoylation sites.

amino acids 22-28, 54-60, 83-89, 97-103, 216-222

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 207-218

TNFR/NGFR family cysteine-rich region protein.

amino acids 4-12

FIGURE 49

ATCCGTTCTCTGCGCTGCCAGCTCAGGTGAGCCCTGCCAAGGTGACCTCGCAGGACACTGGTGA
AGGAGCAGTGAGGAACCTGCAGAGTCACACAGTTGCTGACCAATTGAGCTGTGAGCCTGGAGCAG
ATCCGTGGGCTGCAGACCCCCGCCAGTGCCTCTCCCCCTGCAGCCTGCCCTCGAACTGTGA
CATGGAGAGAGTGACCCCTGGCCCTCTCCTACTGGCAGGCCTGACTGCCTTGGAGCCAATGACC
CATTTGCCAATAAACGATCCCTTCTACTATGACTGGAAAAACCTGCAGCTGAGCGGACTGATC
TGCAGGGCTCCTGGCATTGCTGGATCGCGCAGTTCTGAGTGGCAAATGCAAATACAAGAG
CAGCCAGAACGAGCACAGTCCTGTACCTGAGAAGGCCATCCCACTCATCACTCCAGGCTCTGCCA
CTACTTGCTGAGCACAGGACTGCCCTCCAGGGATGCCCTGAAGCCTAACACTGCCAGCACC
TCCTCCCCCTGGAGGCCTTATCTCAAGGAAGGACTTCTCTCCAAGGGCAGGCTGTTAGGCCCT
TTCTGATCAGGAGGCTTCTTATGAATTAAACTCGCCCCACCACCCCTCA

FIGURE 50

MERVTLALLLLAGLTALLEANDPFANKDDPYYDWKNLQLSGLICGGLLAIAGIAAVLSGKCKYKS
SQKQHSPVPEKAIPPLITPGSATTC

Important features:

Signal peptide:

amino acids 1-16

Transmembrane domain:

amino acids 36-59

N-myristoylation sites.

amino acids 41-47, 45-51, 84-90

Extracellular proteins SCP/Tpx-1/Ag5/PR-1/Sc7.

amino acids 54-67

FIGURE 51

GTGGACTCTGAGAAGCCCAGGCAGTTGAGGACAGGGAGAGAGAAGGCTGCAGACCCAGAGGGAGGG
AGGACAGGGAGTCGAAGGAGGAGCACAGAGGAGGGCACAGAGACGCAGAGCAAGGGCGCAAGG
AGGAGACCTGGTGGGAGGAAGACACTCTGGAGAGAGAGAGGGGCTGGCAGAGAATGAATTCCAG
GGGCCCTGGCCTGCCTCCTGCTGGCCCTCTGCTGGCAGTGGGAGGCTGGCCCTGCAGAG
CGGAGAGGAAAGCACTGGACAAATATTGGGAGGCCCTGGACATGGCCTGGAGACGCCCTGA
GCGAAGGGTGGAAAGGCCATTGGCAAAGAGGCCGGAGGGCAGCTGGCTCTAAAGTCAGTGAG
GCCCTGGCCAAGGGACCAGAGAACAGCTGGCACTGGAGTCAGGCAGGTTCCAGGTTGGCGC
AGCAGATGCTTGGCAACAGGGTGGGAAGCAGCCCAGTCTGGAAACACTGGGACAGAGA
TTGGCAGACAGGCAGAAGATGTCATTGACACGGAGCAGATGCTGTCGGCTCCTGGCAGGG
GTGCCTGGCCACAGTGGTCTGGAAACTCTGGAGGCCATGGCATCTTGGCTCTCAAGGTGG
CCTTGGAGGCCAGGGCAATCCTGGAGGTCTGGGACTCCGTGGTCCACGGATAACCCCG
GAAACTCAGCAGGCCAGTGGAAATGAATCCTCAGGGAGCTCCCTGGGTCAGGAGGCAATGG
GGGCCACCAAACCTTGGACCAACACTCAGGGAGCTGGCCCAGCCTGGCTATGGTCAGTGAG
AGCCAGCAACCAGAATGAAGGGTGCACGAATCCCCCACCCTGGCTCAGGTGGAGGCTCCAGCA
ACTCTGGGGAGGCAGCGCTCACAGTCGGCAGCAGTGGCAGCAGCAGTGGCAGCAGTGGCGCAGCAG
AATGGCAGCAGCAGTGGTGGCAGCAGCAGTGGCAGCAGTGGCAGCAGCAGTGGCAGCAGTGG
TGGCGCAGCAGTGGTGGCAGCAGTGGCAGCAGTGGCAGCAGGAGGTGACAGCGCAGTGA
CCTCCTGGGATCCAGCACCGGCTCCTCCGGCAACCACGGTGGAGCGGGAGGAAATGG
CATAAACCCGGGTGTGAAAGCCAGGGAAATGAAGCCCGGGAGCAGGGAAATCTGGGATTCA
CTTCAGAGGACAGGGAGTTCCAGCAACATGAGGGAAATAAGCAAAGAGGGCAATGCCCTTG
GAGGCTCTGGAGACAATTATCGGGGCAAGGGTCGAGCTGGGAGTGGAGGAGGTGACGCTTT
GGTGGAGTCATACTGTGAACCTCTGAGACGTCTGGATGTTAACCTTGACACTTCTGGAA
GAATTTAAATCCAAGCTGGTTTCATCAACTGGGATGCCATAAACAAAGGACCAGAGAAGCTC
GCATCCCGTGACCTCCAGACAAGGAGCCACAGATTGGATGGAGGCCACACTCCCTCTAA
AACACCAACCCCTCTCATCACTAACTCAGCCCTGGGATGAAATAACCTTAGCTGCCCAACAAA
AA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

FIGURE 52

MKFQGPLACLLLALCLGSGEAGPLQSGEESTGTNIGEALGHGLGDALSEGVGKAIGKEAGGAAGSKVS
EALGQGTREAVGTGVRQVPGFAADALGNRVGEAAHALGNTGHEIGRQAEDVIRHGADAVRGSWQGVP
GHSGAWETSGGHGIFGSQGGLGGQQGQGNPGLGTPWVHGYPGNSAGSFGMNPQGAPWGQGGNGPPNF
GTNTQGAVAQPGYGSVRASNQNEGCTNPPSGSGGGSSNSGGSGSQSGSSGSGSNGDNNNGSSSGS
SSGSSSSGSSGGSSGGSSGSSGSGSRGDSGSESSWGSSTGSSSGNHGGSGGGNGHPGCEKPGNE
ARGSGESGIQGFRGQGVSSNMREISKEGNRLIGGSGDNYRGQGSSWGSGGDAVGGVNTVSETSPGM
FNFDTFWKNFKSKLGFINWDAINKDQRSSRIP

Signal peptide:

amino acids 1-21

N-glycosylation site.

amino acids 265-269

Glycosaminoglycan attachment site.

amino acids 235-239, 237-241, 244-248, 255-259, 324-328, 388-392

Casein kinase II phosphorylation site.

amino acids 26-30, 109-113, 259-263, 300-304, 304-308

N-myristoylation site.

amino acids 17-23, 32-38, 42-48, 50-56, 60-66, 61-67, 64-70, 74-80,
90-96, 96-102, 130-136, 140-146, 149-155, 152-158, 155-161,
159-165, 163-169, 178-184, 190-196, 194-200, 199-205, 218-224,
236-242, 238-244, 239-245, 240-246, 245-251, 246-252, 249-252,
253-259, 256-262, 266-272, 270-276, 271-277, 275-281, 279-285,
283-289, 284-290, 287-293, 288-294, 291-297, 292-298, 295-301,
298-304, 305-311, 311-317, 315-321, 319-325, 322-328, 323-329,
325-331, 343-349, 354-360, 356-362, 374-380, 381-387, 383-389,
387-393, 389-395, 395-401

Cell attachment sequence.

amino acids 301-304

FIGURE 53

GGAGAAAGAGGTTGTGGGACAAGCTGCTCCGACAGAAGGATGTCGCTGCTGAGCCTGCCCTGG
CTGGGCCTCAGACCGGTGGCAATGTCCCCATGGCTACTCCTGCTGCTGGTTGTGGCTCCTGGCT
ACTCGCCCGCATCCTGGCTTGGACCTATGCCCTCTATAACAACTGCCGCCGGCTCCAGTGTTCC
CACAGCCCCAAAACGGAACTGGTTTGGGGTACCTGGGCTGATCACTCCTACAGAGGAGGGC
TTGAAGGACTCGACCAGATGTCGGCCACCTATTCCAGGGCTTACGGTATGGCTGGTCCCCAT
CATCCCCTCATCGTTTATGCCACCCTGACACCATCCGGTCTATCACCAATGCCTCAGCTGCCA
TTGCACCAAGGATAATCTCTTCATCAGGTTCCTAAGGCCCTGGCTGGAGAAGGGATACTGCTG
AGTGGGGTGACAAGTGAGGCCACCGTCGGATGCTGACGCCGGCTTCCATTCAACATCCT
GAAGTCCTATATAACGATCTCAACAAAGAGTGCAAACATCATGCTTGACAAGTGGCAGCACCTGG
CCTCAGAGGGCAGCAGTCGCTGGACATGTTGAGCACATCAGCCTCATGACCTGGACAGTCTA
CAGAAATGCATCTCAGCTTGACAGCCATTGTCAGGAGGGCCAGTGAATATATTGCCACC
CTTGGAGCTCAGTGCCCTGTAGAGAAAAGAACGCAAGCATATCTCCAGCACATGGACTTCTGT
ATTACCTCTCCCATGACGGGCGGCCTTCCACAGGGCTGCCCTGGTGCATGACTCACAGAC
GCTGTCATCCGGAGCGGCGTCGCACCCCTCCCCACTCAGGGTATTGATGATTTTCAAAGACAA
AGCCAAGTCCAAGACTTGGATTCATTGATGTGCTGCTGAGCAAGGATGAAGAGATGGAGG
CATTGTCAGATGAGGATATAAGAGCAGAGGCTGACACCTTCATGTTGGAGGCCATGACACCACG
GCCAGTGGCCTCTCTGGTCTGTACAAACCTTGCGAGGCACCCAAGAATACCAGGAGCGCTGCCG
ACAGGAGGTGCAAGAGCTCTGAAGGACCGCGATCCTAAAGAGATGAATGGACGACCTGGCC
AGCTGCCCTCCTGACCATGTGCGTGAAGGAGAGCCTGAGGTTACATCCCCCAGCTCCTTCATC
TCCCGATGCTGCACCCCAGGACATTGTTCTCCAGATGGCGAGTCATCCCCAAAGCATTACCTG
CCTCATCGATATTAGGGTCCATCACAACCCAACTGTGTTGGCCGGATCCTGAGGTCTACGACC
CCTTCCGCTTGACCCCAGAGAACAGCAAGGGAGGTCACCTCTGGCTTTATTCCCTTCTCGCA
GGGCCCAGGAACTGCATCGGGCAGGCTTCGCCATGGGGAGATGAAAGTGGTCTGGCGTTGAT
GCTGCTGCACTTCCGGTCTGCCAGACCACACTGAGCCCCGCAGGAAGCTGGAATTGATCATGC
GCGCCGAGGGCGGGCTTGGCTGCGGGTGGAGCCCTGAATGTAGGCTTGCAGTGACTTCTGAC
CCATCCACCTGTTTTTGCAGATTGTCATGAATAAAACGGTGCTGTCAAA

FIGURE 54

MSLLSLPWLGRLRPVAMSPWLLLLVVGSWLLARI LAW TYAFYNNCRRLQCFPQPPKRNWFWGHLG
LITPTEEGLKDSTQMSATYSQGFTVWLGPPIIPFIVLCHPDTIRSITNASAAIAPKDNL FIRFLKP
WLGEGLLSGGDKWSRHRMLTPAFHFNILKSYITIFNKSAANIMLDKWQHLASEGSSRLDMFEHI
SLMTLDSLQKCIFSFDSHCQERPSEYIATILELSALVEKRSQHILQHMDFLYYLSDGRRFHRC
RLVHDFTDAVIRERRTLPTQGIDDFFKDKAKSKTLDFIDVLLSKDEDGKALSDEDIRAEADTF
MFGGHDTTASGLSWVLYNLRHPEYQERCRCQEVQELLKDRDPKEIEWDDLAQLPFLTMCVKESLR
LHPPAPFISRCCTQDIVLPDGRVIPKGITCLIDIIGVHNPTVWPDPPEVYDPFRDPENSKGRSP
LAFIPFSAGPRNCIGQAFAMAEMKVVLALMLLHFRFLPDHTEPRRKLELIMRAEGGLWLRVEPLN
VGLQ

Important features:

Transmembrane domains:

amino acids 13-32 (type II), 77-102

Cytochrome P450 cysteine heme-iron ligand signature.

amino acids 461-471

N-glycosylation sites.

amino acids 112-116, 168-172

FIGURE 55

ATCGCATCAATTGGGAGTACCATCTTCCTCATGGGACCAGTGAAACAGCTGAAGCGAATGTTGA
GCCTACTCGTTGATTGCAACTATCATGGTGTGTTGCACTTACCCGTGTTCTGCCT
TTTGGTGGCATAACAAGGGACTTGCACTTATCTCTGCATTTGCAGTCTTGCATTGACGTGG
TACAGCCTTCCTTCATACCATTGCAAGGGATGCTGTGAAGAAGTGTGTTGCCGTGCTTGC
ATAATTCATGGCCAGTTTATGAAGCCTTGAAGGCACATGGACAGAAGCTGGTGGACAGTTT
GTAACTATCTCGAACCTCTGTCTTACAGACATGTGCCTTTATCTTGCAGCAATGTGTTGCTT
GTGATTGAAACATTGAGGGTTACTTTGAAAGCAACAATACATTCTCGAACCTGAATGTCAGTA
GCACAGGATGAGAAGTGGTTCTGTATCTTGTGGAGTGAATCTTCTCATGTACCTGTTCTC
TCTGGATGTTGTCCCAGTAATTCCCATGAATACAAACCTATTCAAGAACAGCAAAAAAAAAAAAA
AAA

FIGURE 56

MGPVKQLKRMFEPTRLIATIMVLLCFALTLCASFWWHNKGALIFCIOSLALTWYSLSFIPFAR
DAVKKCFAVCLA

Important features:

Signal peptide:

amino acids 1-33

Type II fibronectin collagen-binding domain protein.

amino acids 30-72

FIGURE 57

CGGCTCGAGCTCGAGCCGAATGGCTCGAGGGGCAGTGGAGCACCCAGCAGGCCAACATGCTCTGTGCCCTG
TACGTGCCGTCACTGGGAAGCCCAGACCGAGTCAGACTTTAGTCAGAAGGGCTCCCTGCCAGCTGAAAGTCC
ATTTCAGCTCATGTCCTCATCCCCCTCCAGGAATTCTCACCTACCGCCAGTGGAGCAGAAAATTGTACAAGCT
GGAGATAAGGACCTTGATGGCAGCTAGACTTTGAAGAATTGTCATTATCTCAAAGATCATGAGAAGAGCTGAGG
CTGGTGTAAAGATTGGAAAAAAGAATGATGGACGATTGACCCGAGGAGATCATGCAGTCCCTGCCGGACTTG
GGAGTCAGATATCTGAAACAGCAGGAGAAAAATTCTCAAGAGCATGGATAAAAACGGCACGATGACCATGACTGG
AACGAGTGGAGAGACTACCACCTCCACCCCGTGAAAACATCCCGAGATCATCCTACTTGAAGCATTCCACG
ATCTTGATGTTGGTGAAGAATCTAACGGTCCGGATGAGTTACAGTGGAGGAGGGAGACGGGGATGTGGTGGAGA
CACCTGGTGGCAGGAGGGGGCAGGGGGTATCCAGAACCTGCACGGCCCCCTGGACGGCTCAAGGTGCTCATG
CAGGTCCATGCCCTCCCGAGAACAAACATGGGATCGTTGGTGGCTACTCAGATGATTGAGAAGGGAGGGCCAGG
TCACTCTGGCGGGCAATGGCATCAACGTCCTCAAATTGCCCGAATCAGCCATCAAATTGCGCTATGAGCAG
ATCAAGGCCCTGTTGGTAGTGGCAGGAGACTCTGAGGATTCAAGAGAGGCTGTGGCAGGGCTTGGCAGGGCC
ATCGCCCAAGCAGCATCTACCAATGGAGGTCTGTGAAAGACCCGGATGGCGCTGCCAGACGGCAGTACTCAGGA
ATGCTGGACTGCCAGGAGGATCTGGCCAGAGGGGGTGGCCCTTACAAAGGCTATGCCCCAACATGCTG
GCCATCATCCCTATGCCGATCGACCTTGCACTACAGAGACGCTCAAGAATGCCCTGCCGACTATGCACTG
AACAGCCGGACCCGGCTGTTGCTCTGCCCTGTGGCACCAGTCCAGTACCTGTGGCAGCTGCCAGCTAC
CCCCCTGGCCCTAGTCAGGACCCGGATGCGAGCGCAAGCCTTATTGAGGGCGCTCCGGAGGTGACCATGAGCAGCCTC
TTCAAAACATATCTCGGACCCAGGGGCTTCCGGCTGTACAGGGGCTGCCAACCTTCAATGAGGTCACTCCA
GCTGTGAGCAGCATCGACTGGTCTACAGAGAACCTGAGAAGATCACCTGGCGTGCAGTGGCTGAGGGGGGG
GCCCGGAGTGGACTCGCTATCTGGCCCGCAGCTGGGGTGTGGCAGCCATCTATTGTGAATGTGCCAACACT
AACAGTGTCTCGAGCCAAGCTGTGAAAACCTAGACGCAACCGCAGGGAGGGTGGGAGAGCTGGCAGGCCAGGGCTT
GTCCCTGCTGACCCAGCAGACCCCTCTGTTGGTCCAGCGAAGACCAACAGGCACTCTTAGGGTCCAGGGTCA
CTCGGGGCTCACATGTAAGGACAGGACATTTCGCACTGCTGCCAATAGTGGAGCTGGAGGCTGGAGGGGG
TAGTTCTTCATCTGGCTGAGCAGCTGGGGCCCTGCCCTCTGGCTGTGGCTGCACTCTGGCTGTGCATCT
CCTCTGCTGCCCTGCTGAGGTAAGGTGGAGGGGCTCAGGCCACATCCCCACCTCGTCAATCCC
ATAATCCATGATGAAAGGTGAGGTACGTTGGCTCCAGCCTGACTTCCAACTACAGCAATTGACGCCACTGGC
TGTGAAGGAAGAGGAAGGGATGCGCTTGTGGTCACTGGCATCTGAGCCCTGCTGATGGCTGGGCTCTGGG
CTTGGGAGTGCAGGGGCTCGGGCTGCCCTGGCTGACAGAAGGCAAGTGCCTGGGCTCATGGCTCTGAGCT
GCCCTGGACCCCTGTCAGGATGGGCCCCACCTCAGAACAAACTCACTGTCCCCTGTCATGGGAGTGGAGCA
CCATGTTGAGGGCAAGGGCAGAGCGTTGTGTTCTGGGGAGGGAGGGAGGGCTTGGAGGCTTAATTATGG
ACTGTTGGAAAAGGGTTTGTCCAGAAGGACAAGCCGACAATGAGCAGTCTGTGCTTCCAGAGGAAGACGAGG
GAGCAGGAGCTGGTCACTGCTCAGACTGTTCTGACGCCCTGGGGTCTGCAACCCAGCAGGGGCCAGC
GGGACCAAGCCACATTCCACTGTCAGCTGGCACTTATTGTTGTTATTGAAACAGAGTTATGCT
AACTATTATGATGTTAATTAAATGCTTCAAGTCTGCTATTGTTATTGATATTGTTCAATTGTT
GATTGTACCTTCCAAGCCGCCAGTGGATGGGAGGGAGGAGGAGAAGGGGGCCTTGGCCGCTGCACTCACATCT
GTCCAGAGAAATTCTTGGACTGGAGGCAGAAAAGCCGCCAGAGGCAACGCCCTGGCTCTTCTGGCAG
GTTGGGAGGGCTGCCCTAGCCTAGGATTTCAGGGTTGACTGGGGCGTGGAGAGAGAGGGAGGAACCTCAAT
AACCTTGAAAGGTGGAATCCAGTTATTCTGCGCTGCCAGGGTTCTTATTCACTCTTCTGAATGTCAGGGCAG
TGAGGTGCTCTCACTGTAATTGTTGTTGGGAGGGGGCTGGAGGGAGGGGGCTGGCTCCGCTCCGCCAGC
CTTCTGCTGCCCTGCTTAACAAATGCCGCCAACCTGGCACCTCACGGTTGCACTTCCATTCCACCAAAATGACCTGA
TGAGGAATCTCAATAGGATCAGAACATCAATGAAAATTGTTATATGAAACATATACTGGAGTCGTC
CAAATTAAGAAGAATTGGACGTTAGAAGGTGTCATTAAAGCAGCTTAATAAGTTGTTCAAAGCTGAAAAAA
AA

FIGURE 58

MLCLCLYVPVIGEAQTEFQYFESKGLPAELKSIFKLSVIFPSQEFSTYRQWKQKIVQAGDKDLDG
QLDFEEFVHYLQDHKKLRLVFKILDKKNDGRIDAQEIMQSLRDLGVKISEQQAEKILKSMDKNG
TMTIDWNEWRDYHLLHPVENIPEIIILYWKHSTIFDVGENLTVPDEFTVEERQTGMWWRHLVAGGG
AGAVSRTCTAPLDRLKVLMQVHASRSNNMGIVGGFTQMIREGGARSLWRGNGINVLKIAPESAIK
FMAYEQIKRLVGSDQETLRIHERLVAGSLAGAIAQSSIYPMEVLKTRMALRKTGQYSGMLDCARR
ILAREGVAAFYKGYVPNMLGIIPYAGIDLAVYETLKNAWLQHYAVNSADPGVFVLLACGTMSSTC
GQLASYPLALVRTRMQAQASIEGAPEVTMSSLFKHILRTEGAFGLYRGLAPNFMKVIPAVSISYV
VYENLKITLGVQSR

Important features:

Signal peptide:

amino acids 1-16

Putative transmembrane domains:

amino acids 284-304, 339-360, 376-394

Mitochondrial energy transfer proteins signature.

amino acids 206-215, 300-309

N-glycosylation sites.

amino acids 129-133, 169-173

Elongation Factor-hand calcium-binding protein.

amino acids 54-73, 85-104, 121-140

FIGURE 59

GGAAGGCAGCGGCACTCAGGCCAGTACCCAGATAACGCTGGAAACCTCCCCAGCCATGGC
TTCCCTGGGGCAGATCCTCTGGAGCATAATTAGCATCATCATTATTCTGGCTGGAGCAATTG
CACTCATATTGGCTTGGTATTCAGGGAGACACTCCATCACAGTCACTACTGTGCCTCAGCT
GGGAACATTGGGAGGATGGAATCCTGAGCTGACTTTGAACCTGACATCAAACCTTCTGATAT
CGTGATACAATGGCTGAAGGAAGGTGTTAGGCTTGGCATGAGTCAGGAAAGGCAAAGATG
AGCTGTCGGAGCAGGATGAAATGTTAGGCGGACAGCAGTGTGCTGATCAAAGTGTAGTT
GGCAATGCCCTTTGCGGCTGAAAACGTGCAACTCACAGATGCTGGCACCTACAAATGTTATAT
CATCACTCTAAAGCAAGGGGATGCTAACCTTGAGTATAAAACTGGAGCCTCAGCATGCCGG
AAGTGAATGTGGACTATAATGCCAGCTCAGAGACCTTGCAGGTGAGGCTCCCGATGGTCCCC
CAGCCCACAGTGGTCTGGGCATCCAAAGTGTGACCAGGGAGCCAACCTCTCGGAAGTCTCCAATAC
CAGCTTGAGCTGAACCTGAGAATGTGACCATGAAGGTTGTCTGTGCTCTACAATGTTACGA
TCAACAACACATACTCCTGTATGATTGAAAATGACATTGCCAAAGCAACAGGGGATATCAAAGTG
ACAGAACATGGAGATCAAAAGGGAGTCACCTACAGCTGCTAAACTCAAAGGCTCTGTGTT
CTCTTCTTCTTGCATCAGCTGGCACTCTGCCTCTCAGCCCTACCTGATGCTAAATAAAT
GTGCCCTGGCCACAAAAAGCATGCAAAGTCATTGTTACAACAGGGATCTACAGAACTATTCAC
CACCAGATATGACCTAGTTTATATTCTGGGAGGAAATGAATTCATATCTAGAAGTCTGGAGTG
AGCAAACAAAGAGCAAGAACAAAAAGAAGCAGAACAGGCTCCAATATGAACAAAGATAAA
CTATCTCAAAGACATATTAGAAGTTGGGAAAATAATTGATGTGAACTAGACAAGTGTGTTAAGA
GTGATAAGTAAAATGCACGTGGAGACAAGTGCATCCCAAGATCTCAGGGACCTCCCCCTGCCTGT
CACCTGGGAGTGAAGAGGACAGGATAGTGCATGTTCTGTCTGAAATTAGTTATATGTGC
TGTAATGTTGCTCTGAGGAAGCCCCTGAAAGTCTATCCAAACATATCCACATCTTATATTCCAC
AAATTAAAGCTGTAGTATGTACCCCTAAGACGCTGCTAATTGACTGCCACTCGCAACTCAGGGCG
GCTGCATTTAGTAATGGGTCAAATGATTCACTTTTATGATGCTTCAAAGGTGCCTGGCTTC
TCTTCCCAACTGACAAATGCCAAAGTTGAGAAAAATGATCATAATTAGCATAAACAGAGCAGT
CGGGGACACCGATTATAAAACTGAGCACCTTCTTTAAACAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

FIGURE 6o

MASLGQILFWSIISIIILAGAIALIIGFGISGRHSITVTTVASAGNIGEDGILSCTFEPDIKLS
DIVIQWLKEGVGLVHEFKEGKDELSEQDEMFRGRTAVFADQVIVGNASLRLKNVQLTDAGTYKC
YIITSKGKGNANLEYKTGAFSMPEVNVDYNASSETLRCEAPRWFQPTVVVASQVDQGANFSEVS
NTSFELNSENVTMKVSVLYNVTINNTYSCMIENDIAKATGDIKVTSEIIRRSHLQLLNSKASL
CVSSFFAISWALLPLSPYIMLK

Important features:

Signal peptide:

amino acids 1-28

Transmembrane domain:

amino acids 258-281

N-glycosylation sites.

amino acids 112-116, 160-164, 190-194, 196-200, 205-209, 216-220,
220-224

N-myristoylation sites.

amino acids 52-58, 126-132, 188-194

FIGURE 61

TGACGTCAGAATCACCAATGGCCAGCTATCCTTACCGGCAGGGCTGCCAGGAGCTGCAGGACAAG
CACCAAGGAGCCCCTCCGGGTAGCTACTACCCCTGGACCCCCAATAGTGGAGGGCAGTATGGTAGT
GGGCTACCCCCCTGGGTGGTTATGGGGTCTGCCCTGGAGGGCCTATGGACCACAGCTGG
TGGAGGGCCCTATGGACACCCCAATCCTGGATGTTCCCTCTGGAACCTCCAGGAGGACCATATG
GCGGTGCAGCTCCCCGGGGCCCTATGGTCAGCCACCTCCAAGTCCCTACGGTGCCAGCAGCCT
GGGCTTATGGACAGGGTGGGCCCTCCCAATGTGGATCCTGAGGCCTACTCCTGGTTCCAGTC
GGTGGACTCAGATCACAGTGGCTATATCTCCATGAAGGAGCTAAAGCAGGCCCTGGTCAACTGCA
ATTGGTCTCATTCAATGATGAGACCTGCCTCATGATGATAAACATGTTGACAAGACCAAGTCA
GGCCGCATCGATGTCTACGGCTTCTCAGCCCTGTGGAAATTCATCCAGCAGTGGAAAGAACCTT
CCAGCAGTTATGACCGGGACCGCTCGGGCTCATTAGCTACACAGAGCTGCAGCAAGCTCTGCC
AAATGGGCTACAACTGAGCCCCAGTTCACCCAGCTTCTGGTCTCCGCTACTGCCACGCTCT
GCCAATCTGCCATGCAGCTTGACCGCTTCATCCAGGTGTGCACCCAGCTGCAGGTGCTGACAGA
GGCCTTCCGGGAGAAGGACACAGCTGTACAAGCAACATCCGGCTCAGCTCGAGGACTCGTCA
CCATGACAGCTTCTCGGATGCTATGACCCAACCATCTGTGGAGAGTGGAGTGCACCAGGGACCTT
TCCTGGCTCTTAGAGTGAGAGAAAGTATGTGGACATCTCTTTCCGTCCCTCTAGAAGAAC
ATTCTCCCTTGCTTGATGCAACACTGTTCAAAAAGAGGGTGGAGAGTCCTGCATCATAGCCACCA
AAATGTGAGGACCGGGCTGAGGCCACACAGATAGGGGCTGATGGAGGAGAGGATAGAAGTTGA
ATGTCTGTATGGCCATGAGCAGTTGAGTGGCACAGCCTGGCACCAGGAGCAGGTCTTGTAATTGG
AGTTAGTGTCCCAGTCAGCTGAGCTCCACCCCTGATGCCAGTGGTGAGAGTGTTCATCGGCCTGT
TACCTGTGTTTAACTTCTAGCTGCCTGGGCTGGCCCTGCTCAGACAAATCTGCTCCCTGGC
ATCTTGCCAGGCTTCTGCCCCCTGCAGCTGGACCCCTCATTGCCTGCCATGCTCTGCTCGG
CTCAGTCTCCAGGAGACAGTGGTACCTCTCCCTGCCAATACTTTTAATTGCATTTTTC
ATTGGGGCAAAAGTCCAGTGAAATTGTAAGCTCAAAAAGGATGAAACTCTGA

FIGURE 62

MASYPYRQGCPGAAGQAPGAPPGSYPGPPNSGGQYGSGLPPGGGYGGPAPGGPYGPPAGGGPYG
HPNPGMFPSTPGGPYGGAAPGGPYGQPPPSSYGAQQPGLYQGGAPPNVDPPEAYSWFQSVDSDH
SGYISMKELKQALVNCNWSSFNDETCLMMINMFDKTKSGRIDVYGFSAWKFIQQWKNLFQQYDR
DRSGSISYTELQQALSQMGYNLSPQFTQLLVSRYCPRSANPAMQLDRFIQVCTQLQLTEAFREK
DTAVQGNIRLSFEDFVTMTASRML

Important features of the protein:

Signal peptide:

amino acids 1-19

N-glycosylation site.

amino acids 147-150

Casein kinase II phosphorylation sites.

amino acids 135-138, 150-153, 202-205, 271-274

N-myristoylation sites.

amino acids 9-14, 15-20, 19-24, 33-38, 34-39, 39-44, 43-48, 61-
66, 70-75, 78-83, 83-88, 87-92, 110-115

FIGURE 63

CAGGATGCAGGGCCCGTGGCAGGGAGCTGCGCTCCTCTGGGCCTGCTCCTGGCTGTCTTCATC
TCCCAGGCCTTTGCCCGGAGCATCGGTGTTGGAGGAGAAAGTTCCAAAATTCGGGACC
AACTTGCCCTCAGCTCGGACAACCTCCTCACTGGCCCCCTAACTCTGAACATCCGAGCCCCGC
TCTGGACCCTAGGTCTAACGTGGCAAGGGTTCTGCAGTCAGAGTGGCCCTCCATCGTGGGGCTGCCTGCCATG
GCTTCCCACCTGCAGGAGGTTCTGCAGTCAGAGTGGCCCTCCATCGTGGGGCTGCCTGCCATG
GATTCCCTGGCCCCCTGAGGATCCTGGCAGATGATGGCTGCTGCAGGACGCCCTGGGGGA
AGCGCTGCCTGAAGAACTCTTACCTCTCAGTGCCTGCCAGGCCCCCTCGCTCCGGGAGTGGCCCTT
TGCCTGGGAGTCTCTCCCGATGCCACAGGCCTCTCACCTGAGGCTTCACCTCCACCAGGAC
TCGGAGTCCAGACGACTGCCCGTTCTAACACTGGGAGCCGGGGAAAAATCCTTCCAAACG
CCCTCCCTGGTCTCATCCACAGGGTTCTGCCTGATCACCCCTGGGTACCCCTGAATCCCAGTG
TGCCTGGGAGGTTGGAGGCCCTGGACTGGTGGGAACGAGGCCATGCCACACCCTGAGGGA
ATCTGGGTATCAATAATCAACCCCCAGGTACCACTGGGAAATATTAATCGGTATCCAGGAGG
CAGCTGGGAAATATTAATCGGTATCCAGGAGGAGCTGGGAAATATTAATCGGTATCCAGGAG
GCAGCTGGGAAATATTCACTATACCCAGGTATCAATAACCCATTCCCTGGAGTTCTCCGC
CCTCCTGGCTTCTGGAACATCCCAGCTGGCTCCCTAATCCTCCAAGCCCTAGGTTGCAGTG
GGGTAGAGCACGATAGAGGGAAACCCAACATTGGGAGTTAGAGTCTGCTCCGCCCTTGCTG
TGTGGGCTCAATCCAGGCCCTGTTAACATGTTCCAGCACTATCCCCACTTTCAGTGCCTCCCC
TGCTCATCTCCAATAAAATAAAGCACTTATGAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAA

FIGURE 64

MQGRVAGSCAPLGLLLVCLHLPGLFARSIGVVEEKVSQNFGTNLPQLGQPSSTGPSNSEHPQPAL
DPRSNDLARVPLKLSVPPSDGFPPAGGSAVQRWPPSWGLPAMDSWPEDPWQMMAAAEDRLGEA
LPEELSYLSSAAALAPGSGPLPGESSPDATGLSPEASLLHQDSESRRLPRNSNLGAGGKILSQRP
PWSLIHRVLPDHPWGTLNPSVSWGGGPCTGWGTRPMHPPEGIWGGINNQPPGTSGNINRYPGGS
WGNINRYPGGSWGNINRYPGGSWGNIHLYPGINNPFPVGVLRPPGSSWNIPAGFPNPPSPRLQWG

Important features of the protein:

Signal peptide:

amino acids 1-26

Casein kinase II phosphorylation sites.

amino acids 56-59, 155-158

N-myristoylation sites.

amino acids 48-53, 220-225, 221-226, 224-229, 247-252, 258-263,
259-264, 269-274, 270-275, 280-285, 281-286, 305-310

FIGURE 65

AAGGAGAGGCCACCGGGACTTCAGTGTCTCCATCCCAGGAGCGCAGTGGCCACTATGGGTC
TGGGCTGCCCTTGCTCCTCTTGACCCCTTGGCAGCTCACATGGAACAGGGCCGGGTATGA
CTTGCAACTGAAGCTGAAGGAGTCTTGACAAATTCCCTCATGAGTCCAGCCTGGAA
TTGCTTGAAAAGCTGCCTCCCTCCATCTCCCTCAGGGACCAGCGTCACCCCTCCACCATGC
AAGATCTCAACACCATGTTGTCTGCAACACATGACAGCCATTGAAGCCTGTGTCTTGGCCC
GGGCTTTGGGCCGGGATGCAGGAGGCAGGCCCCGACCCGTCTTCAGCAGGGCCCCACCCTC
CTGAGTGGCAATAATAAAATTCGGTATGCTG

FIGURE 66

MGSGLPLVLLLTLGGSSHGTGPGMTLQLKLKESFLTNSSYESSFLELLEKLCLLLHLPSGTSVTL
HHARSQHHVVCNT

Important features:

Signal peptide:

amino acids 1-19

N-glycosylation site.

amino acids 37-41

N-myristoylation sites.

amino acids 15-21, 19-25, 60-66

FIGURE 67

ACGGACCGAGGGTTCGAGGGAGGGACACGGACCAGGAACCTGAGCTAGGTCAAAGACGCCCGGGC
CAGGTGCCCGTCGCAGGTGCCCTGGCCGGAGATGCGGTAGGAGGGCGAGCGCGAGAACCCCC
TTCCTCGCGCTGCCAACCGCCACCCAGCCCATGGCGAACCCCGGGCTGGGCTGCTTCTGGCG
CTGGGCCTGCCGTTCTGCTGGCCGCTGGGCGAGCCTGGGGCAAATACAGACCACCTCTGC
AAATGAGAATAGCACTGTTTGCCCTCATCCACCAGCTCCAGCTCCAGTGGCAACCTGCGTCCGG
AAGCCATCACTGCTATCATCGTGGTCTTCTCCCTTTGGCTGCCTTGCTCCTGGCTGTGGGCTG
GCACTGTTGGTGCAGCTTCGGAGAAGCGGCAGACGGAGGGCACCTACCGGCCAGTAGCGA
GGAGCAGTTCTCCCCATGCAGCCGAGGCCCGGGCCCTCAGGACTCCAAGGAGACGGTGCAGGGCT
GCCTGCCCATCTAGTCCCCCTCCTGCATCTGTCTCCATTGCTGTGACCTTGGGAAA
GGCAGTGCCCTCTGGGCAGTCAGATCCACCCAGTGCTTAATAGCAGGAAGAAGGTACTCAA
AGACTCTGCCCTGAGGTCAAGAGAGGATGGGCTATTCACTTTATATTTATATAAAATTAG
TAGTGAGATGTAAAAAAAAAAAAAA

FIGURE 68

MANPGLLLLALGLPFLARWGRAWGQIQTTSANENSTVLPSSSSDGTLRPEAITAIIVVFS
LLAALLLAVGLALLVRKLREKRQTEGTYRPSSEEQFSHAAEARAPQDSKETVQGCLPI

Important features:

Signal peptide:

amino acids 1-19

Transmembrane domain:

amino acids 56-80

N-glycosylation site.

amino acids 36-40

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 86-90

Tyrosine kinase phosphorylation site.

amino acids 86-94

N-myristoylation sites.

amino acids 7-13, 26-32

FIGURE 69

FIGURE 70

MGLFRGFVFLVLCLLHQSNSTSFIKLNNGFEDIVIVIDPSVPEDEKIIEQIEDMVTTASTYLFE
ATEKRFFFKNVSILIPENWKENPQYKRPKHENKHADVIVAPPTLPGRDEPYTKQFTECGEKGEY
IHFTPDLGGKKQNEYGPPGKLHVHEWAHLRGVFDEYNEDQPFYRAKSKKIEATRC SAGISGRN
RVYKCQGGSCLSACRIDSTTKLYGKDCQFPDKVQTEKASIMFMQSIDS VVEFCNEKTHNQEAP
SLQNIKCNFRSTWEVISNSEDFKNTIPMVT PPPPVFSLLKISQRIVCLVLDKGSMGGKDRLNR
MNQAAKHFLQLQTENG SWGMVHF DSTATIVNKLIQIKSSDERNTLMAGLPTYPLGGTSICSGIK
YAFQVIGELHSQDGSEVLLTDGEDNTASSCIDEVKQSGAIVHFI ALGRAADEAVIEMSKITGG
SHFYVSDEAQNNGLIDAFGALTSGNTDLSQKSLQLESKGTLNSNAWMNDTVIIDSTVGKDTFFL
ITWNSLPPSISLWDPSGTIMENFTVDATSKMAYLSIPGTAKVGTWAYNLQAKANPETLTITVTSR
AANSSVPPITVNAMNKDVNSFPSPMIVYAEILQGYVPVLGANVTAFIESQNGHTEVLELLDNA
GADSFKNDGVYSRYFTAYTENGRYSLKVRAHGGANTARLKL RPPLNRAAYIPGWWVNGEIEANPP
RPE IDEDTQTTLED FSRTASGGAFVVSQVPSLPLPDQYPPSQITDLDATVHEDKII LTWTAPGDN
FDVGKVQRYIIRISASILDLRDSFDDALQVNTTDLSPKEANSKESFAFKPENISEENATHIFIAI
KSIDKSNLTSKVSNIAQVTLFIPQANPDDIDPTPTPTPTPKSHNSGVNISTLVLSIGSVVI
VN FILSTTI

Signal peptide:

amino acids 1-21

Putative transmembrane domains:

amino acids 284-300, 617-633

Leucine zipper pattern.

amino acids 469-491, 476-498

N-glycosylation site.

amino acids 20-24, 75-79, 340-344, 504-508, 542-546, 588-592,
628-632, 811-815, 832-836, 837-841, 852-856, 896-900

FIGURE 71

CTCCCTAGGTGGAAACCTGGGAGTAGACTGACAGCAAAGACCGGGAAAGACCATACTGCCCCGGCAGGGTGA
CAACAGGTGTCATTTGATCTCGTGTGCTGCCCTCCATTTCAGGAAAGACGCCAAGGTAAATTGACCCA
GAGGAGCAATGATGTAGGCCACCTCCATACTTCCCTTGAAACCCAGTTATGCCAGGATTACTAGAGAGTGTCA
ACTCAACCAAGCAAGCGGCCTTCGGCTTAACCTGTGGTGGAGGAGAACCTTGTGGGGCTCGTTCTTAGCA
GTGCTCAAGTGAACCTGGCTGAGGGTGGACAGAAGAAAGGAAAGTCCCTCTGCTGTTGGCTGCACATCAGGA
GGCTGTGATGGAATGAAGTGAAGGAAACTTGGAGATTCACTCAGTCATTGCTCTGCTGCAAGATCATCCTTAA
AGTAGAGAAGCTGCTGTGGTGGTTAACTCCAAGAGGCAGAACCTGTTCTAGAAGGAAATGGATGCAAGCAGCTC
CGGGGGCCCAAACCCATGCTCTGGTCTAGGCCAGGGAGCCCTGGGGGGCGCTTGAGGGATGCCC
ACCGGTTCTGGACGATGGCTGAATCTGATGGTCTGCGGGGGCTGCTGGTGGATTTCGGGGTGGT
GTTTGCTGCTGCTCTGCTGTATCTGCTGATCATGTTGGCTGCAACCCAAAAGGTGACGAGGAGCAG
CTGGCACTGCCAGGGCAACAGCCCCAGGGAGGGTACCAAGGCCGTCCTCAGGAGTGGAGGAGCAGCAC
CGCAACTACGTGAGCAGCCTGAAGCGCAGATCGCACAGCTCAAGGAGGAGCTGCAGGAGAGGTGAGCACCTCAGG
AATGGGCACTAACAGCAGGGATGCTGCTGGCTGGTCTGGACAGGCCAGGGAGCCCTCAGGAGAAAACCCAGGCCACCTC
CTGGCCTCTGCACTGGCAGGAGCAAGGAGGGTGAATGCTGGCTCAAGCTGGCCAGAGTATGCAAGCAGTG
CCTTCGATGCTTACTCTACAGAAGGTGACCTGGAGACTGGCTTACCCGCCACCCGAGGAGAACCTG
AGGAAGGACAAGCGGGATGAGTTGGTGAAGGCAATTGAATCAGCCTGGAGACCCGTAACAATCTGCAAGAGAACAGC
CCCAATCACCGTCTTACACGGCTCTGATTTCATAGAAGGATCTACCGAACAGAAAGGACAAGGGACATTGTAT
GAGCTCACCTTCAAAGGGCACACACAGAATTCAAGGCTCATCTTATTCGACCAATTCAACCCCATCATGAAA
GTGAAAAATCAAAGGCTAACATGGCCAACACGCTTATCAATGTTATCGTGCCTCTAGCAAAAAGGGTGGACAAGTTC
CGGCAGTTCATGCAAGATTCAAGGGAGATGTCATTGAGCAGGATGGAGACTTCATCTCACTGTTTACTTGG
AAAGAAGAATAATGAAGTCAAAGGAATACTGAAAACACTTCAAAGCTGCCAACTTCAGGAATTTCATC
CAGCTGAATGGAGAATTCTCGGGGAAAGGGACTTGTGTTGGAGCCGCTCTGGAAAGGAAAGCAACGCTTCTC
TTTTCTGCTGATGTCAGTACTTACATCTGAATTCTCAATACGTTGAGGCTGAATACACAGCCAGGGAAAGAAG
GTATTTTATCCAGTTCTTCACTGCTGATACAATCCGGATAATATAACGGCCACCATGATGCACTCCCTCCCTGG
CAGCAGCTCATGCAAAAGGAAACTGGATTGGAGAGACTTGGATTGGGATGACCTGTCAGTATCGTCAGAC
TTCATCAATAGTGGTTGATCTGGACATCAAAGGCTGGGGGGAGAGGATGTCACCTTATCGCAAGTATCTC
CACAGCAACCTCATAGTGGTACGGACGCCGTGCGAGGACTCTCCACCTCTGGCATGAGAACGCTGCATGGACGAG
CTGACCCCCGAGCACTACAAGATGTCATGCACTCCAAAGGCAATGACAGGAGCATCCACGGCCAGCTGGGATGCTG
GTGTTCAAGGAGCAGGATAGAGGCTCACCTCGAAACAGAAAGAGACAAGTAGCAGGAAACATGAACCTCCAGA
GAAGGATTGGGAGACACTTTCTTTCGCAATTACTGAAAGTGGCTGCAACAGAGAAAAGACTCCATAAA
GGACGACAAAAGAATTGGACTGATGGTCAAGAGATGAGAAAGCCTCGATTCTCTGTTGGGTTTACAACAGA
AATCAAATCTCCGTTGCTGCAAAGTAACCCAGTTGACCCCTGTGAAGTGTGACAAAGGAGAACATGCTGT
AGATTATAAGCCTAATGGTGGAGGTTTGATGGTTTACAATACACTGAGACCTGTTGTTGCTCATG
AATATTCTGATGTTAAAGAGCAGTTGAAAGGAAATTCTAGGATGAAAGGCAAGCATATTCTCTCATATGATG
GCCTATCAGCAGGGCTCTAGTTCTAGGAATGCTAAATATCAGAAGGAGGAGGAGATAGGCTTATTATGATG
AGTGAAGTACATTAAGTAAAATAATGGACCAGAAAAGAAAAGAACATAATATCGTCATATTCCCCAAGAT
TAACCAAAAATCTGTTATCTTGGTTGTCCTTTAACTGTCCTGTTTCTTATTTAAAATGCACT
TTTTCTGCTTGTGACTTATGCTGTTATTTAATACCAACTTCTGCAAGCTTACAAGAGAGACAAGTGGCTAC
ATTTTATATTCTGAGGAAAGGAAACTTGTGAGGATGCTTATGAGAAACTTCTGCTTCAAGGATCAATTGATGCCATAT
CCAAGGACATGCCAATGCTGTTCTGAGGACTGAATGTCAGGCAATTGAGACATAGGGAGGAAATGGTTGACT
AATACAGACGATACAGATACTTCTGCAAGAGTATTGCAAGAGGAGCAACTGAAACACTGGAGGAAAAGAAAATGAC
ACTTCTGCTTACAGAAAAGGAAACTCATTGAGCTGGTATCTGATGTCACCTAAAGTCAGAACCCACATT
CTCCTCAGAAGTAGGGACCGCTTCTACCTGTTAAATAACCAAGTACCGTGTGAACCAAAACATCTTTT
AAAACAGGGTGTCTCTGGCTTCTGGCTTCCATAAGAAGAAAATGGAGAAAATATATATATATATATATTGT
GAAAGATCAATCCATGCCAATCTGAGGATGGAAGTTTGCTACATGTTATCCACCCAGGGCAGGTGGAAG
TAAGTGAATTATTTTAAATTAAAGCAGTTCTACTCAATCACCAAGATGCTCTGAAAATTGCAATTAC
CAAACATTGTTAAATAACAGTTAACATAGAGTGGTTCTCATTGATGAAAATTATTAGCCAGCAC
ATGCAAGCTGTTGGTGTGTTAAAAATGCAATTGATTTGACTGGTAGTTGAAATTAAATTAAACACAGG
CCATGAATGGAAGGTGGTATTGCAAGCTAATAATTATGATTTGTTGAA

FIGURE 72

MMMVRRGLLAWISRVVVLVLLCAISVLYMLACTPKGDEEQLALPRANSPTGKEGYQAVLQEWE
EQHRNYVSSLKRQIAQLKEELQERSEQLRNGQYQASDAAGLGLDRSPPEKTQADLLAFLHSQVDK
AEVNAGVKLATEYAAVPFDSFTLQKVYQLETGLTRHPEEKPVRKDKRDELVEAIESALETLNNPA
ENSPNHRPYTASDFIEGIYRTERDKGTLYELTFKGDHKHEFKRLILFRPFSPIMKVNEKLMAN
TLINIVPLAKRVDKFRQFMQNFRREMTCIEQDGRVHLTVVYFGKEEINEVKGILENTSKAANFRNF
TFIQLNGEFSRGKGLDVGARFWKGSNVLLFFCDVDIYFTSEFLNTCRLNTQPGKKVFYPVLFQSQY
NPGIIYGHHDAVPPLQQQLVIKETGFWRDFGFGMTQCYSDFINIGGFDL DIKGWGGEDVHLYR
KYLHSNLIVV RTPVRGLFHLWHEKRCMDEL TPEQYKCMQSKAMNEASHGQLGMLVFRHEIEAHL
RKQKQKTSSKKT

Important features:

Signal peptide:

amino acids 1-27

N-glycosylation sites.

amino acids 315-319, 324-328

N-myristoylation sites.

amino acids 96-102, 136-142, 212-218, 311-317, 339-345, 393-399

Amidation site.

amino acids 377-381

FIGURE 73

GAGACTGCAGAGGGAGATAAAGAGAGAGGGCAAAGAGGCAGCAAGAGAGTTGCTCTGGGATCCA
GAAACCCATGATAACCCTACTGAACACCGAATCCCCTGGAAGGCCACAGAGACAGAGACAGCAAGA
GAAGCAGAGATAAAATACACTCACGCCAGGAGCTCGCTCGCTCTCTCTCTCTCACTCCTC
CCTCCCTCTCTCGCTGTCTAGTCCTCTAGTCCTCAAATTCCAGTCCCTGCACCCCTTC
CTGGGACACTATGTTGTTCTCCGCCCTCCTGCTGGAGGTGATTGGATCCTGGCTGCAGATGGG
GTCAACACTGGACGTATGAGGGCCCACATGGTCAGGACCATGGCCAGCCTTACCTGAGTGT
GGAAACAATGCCAGTCGCCATCGATATTGACAGACAGCAGTGTGACATTGACCTGATTGCC
TGCTCTGCAGCCCCACGGATATGACCAGCCTGGCACCGAGCCTTGGACCTGCACAACAATGCC
ACACAGTGCAACTCTCTGCCCTACCCGTATCTGGTGGACTCCCCGAAAATATGTAGCT
GCCAGCTCCACCTGCACTGGGTGAGAAAGGATCCCCAGGGGGTCAAGAACACCAGATCAACAG
TGAAGCCACATTGAGAGCTCACATTGTACATTATGACTCTGATTCTATGACAGCTGAGTG
AGGCTGCTGAGAGGCCCTCAGGGCCTGGCTGTCCTGGCATCCTAATTGAGGTGGTGGACTAAG
AATATAGCTTATGAAACACATTCTGAGTCACCTGCATGAAGTCAGGCATAAAGATCAGAAGACCTC
AGTGCCTCCCTTAACCTAACAGAGAGCTGCTCCCCAACAGCTGGGAGTACTCCGCTACAATG
GCTCGCTCACAACTCCCCCTGCTACCAGAGTGTGCTGGACAGTTTTATAGAAGGTCCAG
ATTTCATGAAACAGCTGGAAAAGCTTCAGGGACATTGTTCTCCACAGAAGAGGAGCCCTCTAA
GCTTCTGGTACAGAACTACCGAGCCCTCAGCCTCTCAATCAGCGCATGGCTTGCTTCA
TCCAAGCAGGATCCTCGTATACCACAGGTGAAATGCTGAGTCTAGGTGAGGAATCTGGTTGGC
TGTCTGCTTCTCCTGGCTGTTATTCATTGCTAGAAAGATTCGGAAGAAGAGGCTGGAAAA
CCGAAAGAGTGTGGCTTCACCTCAGCACAAGCCACGACTGAGGCATAAATTCCCTCAGATAC
CATGGATGTGGATGACTTCCCTCATGCCTATCAGGAAGCCTCTAAATGGGTGAGGATCTGG
CCAGAAACACTGTAGGAGTAGTAAGCAGATGTCCTCCCTGGACATCTTAGAGAGGAAT
GGACCCAGGCTGTCATTCCAGGAAGAAGCTGCAGAGCCTCAGCCTCTCCAAACATGTAGGAGGAA
ATGAGGAAATCGCTGTTGTTAATGCAGAGANCAAACCTGTTAGTGCAGGGGAAGTTGGG
ATATACCCAAAGTCCCTACCCCTCACTTTATGCCCTTCCCTAGATATACTGCAGGATCT
CTCCTAGGATAAAAGAGTTGCTGTTGAAGTGTATATTGATCAATATATTGAAATTAAAG
TTCTGACTTT

FIGURE 74

MLFSALLLEVIWILAADGGQHWTYEGPHGQDHWPASYPECGNNAQSPIDIQTDSTFDPLPALQ
PHGYDQPGTEPLDLHNNGHTVQLSLPSTLYLGGLPRKYVAAQLHLHWGQKGSPGGSEHQINSEAT
FAELHIVHYDSDSYDSLSEAAERPQGLAVLGILIEVGETKNIAYEHILSHLHEVRHKDQKTSVPP
FNLRELLPKQLGQYFRYNGSLTPPCYQSVLWTVFYRRSQISMEQLEKLQGTLFSTEEEPSKLLV
QNYRALQPLNQRMVFASFIQAGSSYTTGEMLSLGVGILVGCLCLLLAVYFIARKIRKKRLENRKS
VVFTSAQATTEA

Important features of the protein:

Signal peptide:

amino acids 1-15

Transmembrane domain:

amino acids 291-310

N-glycosylation site.

amino acids 213-216

Eukaryotic-type carbonic anhydrases proteins

amino acids 197-245, 104-140, 22-69

FIGURE 75

TGCCGCTGCCGCCGCTGCTGCTGTTGCTCCTGGCGGCCCTGGGACGGCAGTCCCTGTGTC
TCTGGTGGTTGCCTAACCTGCAAACATCACCTTATCCATCAACATGAAGAATGTCCTACA
ATGGACTCCACCAGAGGTCTCAAGGAGTTAAAGTTACTTACACTGTGCAGTATTCATCACAA
ATTGGCCCACCAGAGGTGGCACTGACTACAGATGAGAAGTCCATTCTGTTGCTGACAGCTCC
AGAGAAGTGAAGAGAAATCCAGAAGACCTCCTGTTCCATGCAACAAATATACTCCAATCTGA
AGTATAACGTGCTGTGTTGAATACTAAACAGAACGTGGTCCAGTGTGACCAACCAC
ACGCTGGTGCACCTGGCTGGAGCCGAACACTCTTACTGCGTACACGTGGAGTCCTCGTCCC
AGGGCCCCCTCGCCGTGCTCAGCCTCTGAGAAGCAGTGTGCCAGGACTTGAAAGATCAATCAT
CAGAGTCAAGGCTAAAATCATCTCTGGTATGTTGCCATATCTATTACCGTGTCTTT
TCTGTGATGGGCTATTCCATCTACCGATATATCCACGTTGCAAAGAGAAACACCCAGCAAATTT
GATTTGATTATGAAATGAATTGACAAAAGATTCTTGTGCCTGCTGAAAAAAATCGTGATTA
ACTTTATCACCCCTCAATATCTCGGATGATTCTAAATTCTCATCAGGATATGAGTTACTGGGA
AAAAGCAGTGTATCCAGCCTTAATGATCCTCAGCCCAGCGGGAACCTGAGGCCCCCTCAGGA
GGAAGAGGAGGTGAAACATTAGGGTATGCTTCGCAATTGATGAAATTGGACTCTGAAG
AAAACACCGAAGGTACTTCTCACCCAGCAAGAGTCCCTCAGCAGAACAAACACCCCCGGATAAA
ACAGTCATTGAATATGAATATGATGTCAGAACCACTGACATTGCGGGGCCTGAAGAGCAGGA
GCTCAGTTGCAGGAGGAGGTGTCACACAAGGAACATTGGAGTCGCAGGCAGCGTGGCAG
TCTTGGGCCGCAAACGTTACAGTACTCATACACCCCTCAGCTCCAGACTTAGACCCCTGGCG
CAGGAGCACACAGACTCGGAGGAGGGCCGGAGGAAGAGCCATCGACGACCCCTGGTCACTGGGA
TCCCCAAACTGGCAGGCTGTGATTCCCTCGCTGTCAGCTCGACCAAGGATTAGAGGCTGCG
AGCCTCTGAGGGGGATGGCTGGAGAGGAGGGCTTCTATCTAGACTCTATGAGGAGCCGCT
CCAGACAGGCCACCAGGAGAAAATGAAACCTATCTCATGCAATTGAGGAATGGGGTTATA
TGTGCAGATGGAAAACTGGCCAACACTTCCTTTGCCTTGTGAAACAAGTGA
TCACCCCTTGATCCCAGCCATAAAAGTACCTGGATGAAAGAAGTTTCCAGTTGTCAGTGT
CTGTGAGAATTACTTATTCTTCTATTCTCATAGCACGTGTGATTGGTTCATGCATGTA
GGTCTCTAACATGATGGTGGCCTCTGGAGTCCAGGGGCTGGCCGGTTGTTCTATGCAGAGAA
AGCAGTCAATAATGTTGCCAGACTGGGTGCAGAATTATTCAAGGTGGGTGT

FIGURE 76

MSYNGLHQRFKELKLLTLCISISSQIGPPEVALTTDEKSISVVLTAPEKWKRNPEDLPVSMQQIY
SNLKYNVSLNTKSNRTWSQCVTNHTLVLWLEPNLTYCVHVESFVPGPPRRAQPSEKQCARTLK
DQSSEFKAKIIFWYVLPISITVFLFSVMGYSIYRYIHVGKEKHPANLILYGYNEFDKRFFVPAEK
IVINFITLNISDDSKISHQDMILLGKSSDVSSLNDPQPSGNLRPPQEEEVKHLGYASHLMEIFC
DSEENTEGTSLTQQESLSRTIPPDKTVIEYEYDVRTTDICAGPEEQELSLQEEVSTQGTLESQA
ALAVLGQPQLQYSYTPQLQDLDPLAQEHTDSEEGPEEPSTTLVDWDWPQTGRLCIPSLSSFDQDS
EGCEPSEGDSLGEGLSRLYEEPAPDRPPGENETYLMQFMEEWGLYVQMN

Important features:

Signal peptide:

amino acids 1-28

Transmembrane domain:

amino acids 140-163

N-glycosylation sites.

amino acids 71-74, 80-83, 89-92, 204-207, 423-426

FIGURE 77

GAGGAGCGGGCCGAGGACTCCAGCGTGCCAGGTCTGGCATCCTGCAC TTGCTGCCCTTGACAC
CTGGGAAGATGGCGGGCCGTGGACCTTCACCCCTCTCTGTGGTTGCTGGCAGCCACCTTGATC
CAAGCCACCCCTCAGTCCCCTGCAGTTCTCATCCTCGGCCAAAAGTCATCAAAGAAAAGCTGAC
ACAGGGAGCTGAAGGACCACAACGCCACCAGCATTGCAGCTGCCCTGCTCAGTGCCATGC
GGGAAAAGCCAGCGGGAGGCATCCCTGTGCTGGCAGCCTGGTGAACACCGTCTGAAGCACATC
ATCTGGCTGAAGGTCACTCACAGCTAACATCCTCCAGTCAGGTGAAGCCCTGGCCAATGACCA
GGAGCTGCTAGTCAAGATCCCCCTGGACATGGTGGCTGGATTCAACACGCCCTGGTCAAGACCA
TCGTGGAGTTCCACATGACGACTGAGGCCAAGGCCACCATCCGCATGGACACCAGTGAAGTGGC
CCCACCCGCCTGGTCTCAGTGA C TGTGCCACCAGCCATGGAGCCTGCGCATCCA ACTGCTGTA
TAAGCTCCTCCCTGGTGAACGCCCTAGCTAACAGCAGGTCAAGCAGGCTCATGGACCTCC
CCAATCTAGTGA AAA ACCAGCTGTGCTCCCGT GATCGAGGCTTCAATGGCATGTATGCAGAC
CTCCTGCAGCTGGTGAAGGTGCCCTTCCCTCAGCATTGACCGTCTGGAGTTGACCTCTGTA
TCCTGCCATCAAGGGT GACACCATT CAGCTCACCTGGGGCCAAGTTGTTGGACTCACAGGGAA
AGGTGACCAAGTGGTCAATAACTCTGCAGCTCCCTGACAATGCCACCCCTGGACAACATCCCG
TTCAGCCTCATCGTAGTCAAGGACGTGGTGAAGAGCTGCAGTGGCTGCTGTGCTCTCCAGAAGA
ATTCAATGGTCTGTGGACTCTGTGCTTCCTGAGAGTGCCCATGGCTGAAGTCAAGCATGGGC
TGATCAATGAAAAGGCTGCAGATAAGCTGGATCTACCCAGATCGTGAAGATCTTAACACTCAGGAC
ACTCCCGAGTTTTTATAGACCAAGGCCATGCCAAGGTGGCCCAACTGATCGTGTGGAGTT
TCCCTCCAGTGAAGCCCTCCGCCCTTGTCAACCTGGCATCGAACGCCAGCTCGGAAGCTCAGT
TTTACACCAAAGGTGACCAACTTAACTCAACTTGAATAACATCAGCTCTGATGGATCCAGCTG
ATGAACCTCTGGGATTGGCTGGTCCAACCTGATGTTGAAAAACATCATCACTGAGATCATCCA
CTCCATCCTGCTGCCGAACCAGAAATGGCAAATTAAAGATCTGGGTCCCAGTGTCAATTGGTGAAGG
CCTTGGGATTGAGGCAGCTGAGTCCTCACTGACCAAGGATGCCCTGTGCTTACTCCAGCCTCC
TTGTGGAAACCCAGCTCTCCTGTCTCCAGTGAAGACTGGATGGCAGCCATCAGGGAAAGGCTGG
GTCCCAAGCTGGAGTATGGGTGTGAGCTATAGACCATCCCTCTGCAATCAATAAACACTTG
CCTGTGAAAAA

FIGURE 78

MAGPWTFTLLCGLLAATLIQATLSPTAVLILGPVKIKEKLTQELKDHNATSILQQPLLSAMREK
PAGGIPLVGLSLVNTVLKHIIWLKVITANILQLQVKPSANDQELLVKIPLDMVAGFNTPLVKTIVE
FHMTTEAQATIRMDTSASGPTRLVLSDCATSHGSLRIQLLYKLSFLVNALAKQVMNLLVPSLPNL
VKNQLCPVIEASFNGMYADLLQLVKVPISLSIDRLEFDLLYPAIKGDTIQLYLGAKLDSQGKVT
KWFNNSAASLTMPTLDNIPFSLIVSQDVVKAAAVAVLSPEEFMVLLDSVLPESAHLRKSSIGLIN
EKAADKLGSTQIVKILTQDTPEFFIDQGHAKVAQLIVLEVFPSSEALRPLFTLGIEASSEAQFYT
KGDQLILNLNNISSLRIQLMNSGIGWFQPDVLKNIITEIIHSILLPNQNGKLRSGVPVSLVKALG
FEAAESSLTKDALVLTPASLWKPSSPVSQ

Important features of the protein:

Signal peptide:

amino acids 1-21

N-glycosylation sites.

amino acids 48-51, 264-267, 401-404

Glycosaminoglycan attachment site.

amino acids 412-415

LBP / BPI / CETP family proteins.

amino acids 407-457

FIGURE 79

GAGAGAAGTCAGCCTGGCAGAGAGACTCTGAAATGAGGGATTAGAGGTGTTCAAGGAGCAAGAGC
TTCAGCCTGAAGACAAGGGAGCAGTCCCTGAAGACGCTCTACTGAGAGGTCTGCCATGGCCTCT
CTTGGCCTCCAACTTGTGGGCTACATCCTAGGCCTTCTGGGCTTGGGACACTGGTGCCAT
GCTGCTCCCCAGCTGGAAAACAAGTTCTATGCGGTGCCAGCATTGTGACAGCAGTGGCTCT
CCAAGGGCCTCTGGATGGAATGTGCCACACACAGCACAGGCATCACCCAGTGTGACATCTATAGC
ACCCTCTGGGCCTGCCGCTGACATCCAGGCTGCCAGGCCATGATGGTGACATCCAGTGCAAT
CTCCTCCCTGGCCTGCATTATCTCTGTGGTGGCATGAGATGCACAGTCTCTGCCAGGAATCCC
GAGCCAAAGACAGAGTGGCGGTAGCAGGTGGAGTCTTTTATCCTTGAGGCCCTGGGATTC
ATTCCCTGTTGCCTGGAATCTTCATGGGATCCTACGGGACTTCTACTCACCACCTGGTGCTGACAG
CATGAAATTGAGATTGGAGAGGCTCTTACTGGGCATTATTCTCCCTGTTCTCCCTGATAG
CTGGAATCATCCTCTGCTTTCTGCTCATCCAGAGAAATCGCTCCAACACTACGATGCCAAC
CAAGCCCAACCTCTGCCACAAGGAGCTCCAAGGCCTGGTCAACCTCCAAAGTCAAGAGTGA
GTTCAATTCTACAGCCTGACAGGTATGTGTGAAGAACCAGGGCCAGAGCTGGGGGTGGCTG
GGTCTGTGAAAAACAGTGGACAGCACCCGAGGGCCACAGGTGAGGGACACTACCAACTGGATCGT
GTCAGAAGGTGCTGCTGAGGATAGACTGACTTTGCCATTGGATTGACCAAAGGCAGAAATGGGG
GCTAGTGTAACAGCATGCAGGTTGAATTGCAAGGATGCTGCCATGCCAGCCTTCTGTTTCC
TCACCTGCTGCTCCCTGCCCTAAGTCCCCAACCTCAACTGAAACCCATTCCCTTAAGCCA
GGACTCAGAGGATCCCTTGCCCTCTGGTTACCTGGACTCCATCCCCAACCCACTAATCACA
TCCCACGTGACTGACCCCTCTGTGATCAAAGACCCCTCTCTGGCTGAGGTTGGCTCTAGCTCATT
GCTGGGGATGGGAAGGAGAAGCAGTGGCTTGTGGCATTGCTCTAACCTACTTCTCAAGCTTC
CCTCCAAAGAAACTGATTGCCCTGGAACCTCCATCCACTCTGTATGACTCCACAGTGTCCA
GACTAATTGTGCACTGAAATAAAACCATCCTACGGTATCCAGGGAACAGAAAGCAGGATG
CAGGATGGGAGGACAGGAAGGCAGCCTGGGACATTAAAAAAATA

FIGURE 8o

MASLGLQLVGYILGLLGLLGLTLVAMLLPSWKTSSYVGASIVTAVGFSKGLWMECATHSTGITQCD
IYSTLLGLPADIQAAQAMMVTSIASSLACIISVVGMRCTVFCQESRAKDRVAVAGGVFFILGGL
LGFIPVAWNLHGLRLDFYSPLVPSMKFEIGEALYLGISSLFSLIAGIILCFSCSSQRNRSNYY
DAYQAQPLATRSSPRPGQPPKVSEFNSYSLTGYV

Important features of the protein:

Signal peptide:

amino acids 1-24

Transmembrane domains:

amino acids 82-102, 117-140, 163-182

N-glycosylation site.

amino acids 190-193

PMP-22 / EMP / MP20 family proteins.

amino acids 46-59

FIGURE 81

CCACACCGTCCGCCCTCCTCCCTCTGGACCTTCCTCGTCTCCATCTCTCCCTCTTC
CCCGCGTTCTTTCCACCTTCTTCTTCCACCTTAGACCTCCCTGCCCTCTTCCT
GCCCACCGCTGCTTCCCTGGCCCTCTCCGACCCCGCTCTAGCAGCAGACCTCCCTGGGTCTGTGG
GTTGATCTGTGGCCCTGTGCCCTCCGTGTCTTCTCCCTCCGACTCCGCTCCGG
ACCAGCGGCCTGACCCCTGGGGAAAGGATGGTCCCGAGGGTGGAGGGTCTCTCCCTGCTGGGA
CTCGCGCTGCTCTGGTTCCCCCTGGACTCCCACGCTCGAGCCGCCAGACATGTTCTGCCTTT
CCATGGGAAGAGATACTCCCCCGCGAGAGCTGGCACCCCTACTTGAGGCCACAAGGCTGATGT
ACTGCCCTGCGCTGTACCTGCTCAGAGGGGCCATGTGAGTTGTTACCGCCTCCACTGTCCGCCT
GTCCACTGCCCTGACGGAGCCACAGCAATGCTGTCCCAAGTGTGTGGAACCTCACAC
TCCCTCTGGACTCCGGGCCCCACCAAAGTCTGCCAGCACAACGGGACCATGTACCAACACGGAG
AGATCTTCAGTGCCCATGAGCTGTTCCCTCCGCCCTGCCAACCAAGTGTGTCCCTGCAAGCTGC
ACAGAGGGCCAGATCTACTGCGGCCTCACAAACCTGCCCGAACAGGCTGCCAGCACCCCTCCC
ACTGCCAGACTCCTGCTGCCAAGCCTGCAAAGATGAGGAAGTGAAGCAATGGATGAAGAGGACA
GTGTGCAGTCGCTCCATGGGGTGGAGACATCCTCAGGATCCATGTTCCAGTGTGTGGAGAAAG
AGAGGCCCGGGCACCCAGCCCCACTGGCCTCAGGCCCTCTGAGCTTACCCCTGCCACTT
CAGACCCAAGGGAGCAGGCAGCACAACGTCAAGATGTCCTGAAGGAGAAACATAAGAAAGCCT
GTGTGCATGGCGGGAAAGACGTACTCCACGGGGAGGTGTGGCACCCGGCTTCCGTGCCTCGC
CCCTTGCCTGCATCCTATGCACCTGTGAGGATGGCCGCCAGGACTGCCAGCGTGTGACCTGTCC
CACCGAGTACCCCTGCCGTACCCCGAGAAAGTGGCTGGGAAGTGTGCAAGATTGCCAGAGG
ACAAAGCAGACCCCTGCCACAGTGAGATCAGTTCTACCAGGTGTCCCAAGGCACCGGGCGGGTC
CTCGTCCACACATCGGTATCCCCAAGCCCAGACAACCTGCGTCGCTTGCCTGGAACACGAGGC
CTCGGACTTGGTGGAGATCTACCTCTGGAAGCTGGTAAAAGATGAGGAAACTGAGGCTCAGAGAG
GTGAAGTACCTGGCCAAGGCCACACAGCCAGAACTTCCACTTGACTCAGATCAAGAAAGTCAG
GAAGCAAGACTTCCAGAAAGAGGCACAGCACTCCGACTGCTCGCTGGCCCCACGAAGGTCACT
GGAACGTCTTCCCTAGCCCAGACCCCTGGAGCTGAAGGTACGGCAGTCCAGACAAAGTACCAAG
ACATAACAAAGACCTAACAGTTGCAGATATGAGCTGTATAATTGTTGTTATTATATATTAATAAA
TAAGAAGTTGCATTACCCCTCAAAAAAAAAAAAAAA

FIGURE 82

MVPEVRVLSSLLGLALLWFPLDSHARARPDMFCLFHGKRYSPGESWHPYLEPQGLMYCLRCTCSE
GAHVSCYRLHCPPVHCPQPVTEPQQCCPKCVEHTPSGLRAPPKSCQHNGTMYQHGEIFSAHELP
PSRLPNQCVLCSCTEGQIYCGLTTCPPEPGCPAPLPLPDSCCQACKDEASEQSDEEDSVQSLHGVR
HQDPCSSDAGRKRGPGBTAPTGLSAPLSFIPRHFRPKGAGSTTVKIVLKEKKKACVHGGKTYS
HGEVWHPAFRAFGPLCILCTCEDGRQDCQRVTCPTEYPCRHPEKVAGKCKKICCPEDKADPGHSE
ISSTRCPKAPGRVLVHTSVSPSPDNLRRFALEHEASDLVEIYLWKLVKDEETEAQRGEVPGPRPH
SQNLPLSDQESQEARNPERGTALPTARWPPRRSLERLPSPDPGAEGHGQSRQSDQDITKT

Signal peptide:

amino acids 1-25

FIGURE 83

GACAGCTGTCTCGATGGAGTAGACTCTCAGAACAGCGCAGTTGCCCTCCGCTCACGCAGAGCCTCTCC
GTGGCTTCCGCACCTTGAGCATTAGGCCAGTTCTCCTCTCTAATCCATCCGTACCTCTCCTGTCA
TCCGTTCCATGCCGTGAGGTCCATTACAGAACACATCCTGGCTCTCATGCTCAGTTGGTCTGAGTC
TCCTCAAGCTGGGATCAGGGCAGTGGCAGGTGTTGGGCCAGACAAGCCTGTCCAGGCCTGGTGGGGAG
GACGCAGCATTCTCTGTTCTGCTCTAAGACCAATGCAGAGGCCATGGAAGTGCAGTTCTCAGGGG
CCAGTTCTCTAGCGTGGTCCACCTCTACAGGGACGGGAAGGACCAGCATTATGCAGATGCCACAGTATC
AAGGCAGGACAAAATGGTGAAGGATTCTATTGCGGAGGGGCGATCTCTGAGGCTGGAAAACATTACT
GTGTTGGATGCTGCCCTATGGGTGCAGGATTAGTTCCCAGTCTTACTACCAGAACGGCATCTGGAGCT
ACAGGTGTCAGCACTGGCTCAGTTCTCTCATTTCCATCACGGATATGTTGATAGAGACATCCAGCTAC
TCTGTCAGTCCTCGGGCTGGTCCCCGGCCACAGCGAAGTGGAAAGGTCACAAGGACAGGATTGTCC
ACAGACTCCAGGACAAACAGAGACATGCATGCCGTGTTGATGTGGAGATCTCTGACCGTCCAAGAGAA
CCCGGGAGCATATCCTGTTCCATGCCATGCTCATCTGAGCCGAGAGGTGGAATCCAGGGTACAGATAG
GAGATACCTTTTCGAGCCTATATCGTGGCACCTGGCTACCAAAGTACTGGAATACTCTGCTGTGGCCTA
TTTTTGGCATTGTTGACTGAAGATTTCTCCTCCAAATTCCAGTGGAAATCCAGGCCAACTGGACTG
GAGAAGAACGACGGACAGGCAGAATTGAGAGACGCCGAAACACGCAGTGGAGGTGACTCTGGATCCAG
AGACGGCTCACCCGAAGCTCTGCCGTTCTGATCTGAAACTGTAACCCATAGAAAAGCTCCCAGGAGGTG
CCTCACTCTGAGAAGAGATTACAAGGAAGAGTGTGGCTCTCAGAGTTCCAAGCAGGGAAACATTA
CTGGGAGGTGGACGGAGGACACAATAAAAGGTGGCGCTGGAGTGTGCCGGATGATGTGGACAGGAGGA
AGGAGTACGTGACTTTGCTCCGATCATGGTACTGGGTCTCAGACTGAATGGAGAACATTGTATTTC
ACATTAATCCCGTTTATCAGCGTCTCCCCAGGACCCCACCTACAAAAAATAGGGTCTCCTGGACTA
TGAGTGTGGACCATCTCTTCTTCACATAAATGACCAGTCCCTTATTATACCCCTGACATGTCGGTTG
AAGGCTTATTGAGGCCCTACATTGAGTATCCGCTCTAATGAGAAAATGAAACTCCATAGTCATG
CCAGTCACCCAGGAATCAGAGAAAAGAGGCCCTCTGGCAAAGGCCCTCTGCAATCCCAGAGACAAGCAACAG
TGAGTCCTCCTCACAGGCAACCACGCCCTCTCCCCAGGGTGAATGTAGGATGAATCACATCCCACAT
TCTCTTTAGGGATATTAAAGGTCTCTCTCCAGATCCAAAGTCCCGCAGCAGCGGCCAAGGTGGCTTCCA
GATGAAGGGGACTGCCGTGTCACATGGGAGTCAGGTGTCAGGCTGCCCTGAGCTGGAGGGAAAGAAGG
CTGACATTACATTAGTTGCTCTCACTCCATCTGGCTAAGTGAATCTGAATACCACCTCTCAGGTGAAG
AACCGTCAGGAATTCCCATCTCACAGGCTGTGGTAGATTAAGTAGACAAGGAATGTGAATAATGCTTAG
ATCTTATTGATGACAGAGTGTATCCTAATGGTTGTTCAATTACACTTCACTGTTAGAAAAAA

FIGURE 84

MAALMLSIVLSSLKLGSQWQVFGPDKPVQALVGEDAASFCLSPKTNAEAMEVRFFRGQFSSVVH
LYRDGKDQPFMOMPQYQGRTKLVKDSIAEGRISLRLENITVLDAGLYGCRISSQSYYQKAIWELO
VSALGSVPLISITGYVDRDIQLCQSSGWPRPTAKWKGPGQGDLSTDRTNRDMHGLFDVEISL
TVQENAGSISCSMRRAHLSREVESRVQIGDTFFEPISWHLATKVLGILCCGLFFGIVGLKIFFSK
FQWKIQAELDWRRKHGQAELRDARKHAVEVTLDPETAHPKLCVSDLKTVTHRKAPQEVPHSEKRF
TRKSVVASQSFQAGKHYWEVDGGHNKRWRVGVCRDDVDRRKEYVTLSPDHGYWVRLNGEHLYFT
LNPRFISVFPPPTKIGVFLDYECGTISFNINDQSLIYTLTCRFEGLLRPYIEYPSYNEQNGT
PIVICPVTQESEKEASWQRASAIPETSNSESSSQATTPFLPRGEM

Signal peptide:

amino acids 1-17

Transmembrane domain:

amino acids 239-255

FIGURE 85

AACAGACGTTCCCTCGGGCCCTGGCACCTAACCCCAGACATGCTGCTGCTGCTGCCCT
GCTCTGGGGAGGGAGAGGGCGGAAGGACAGACAAGTAAACTGCTGACGATGCAGAGTTCCGTGA
CGGTGCAGGAAGGCCTGTGTGCCATGTGCCCTGCTCCTCTCCTACCCCTCGCATGGCTGGATT
TACCCCTGGCCCAAGTAGTCATGGCTACTGGTCCGGGAAGGGGCCAATACAGACCAGGATGCTCC
AGTGGCCACAAACAACCCAGCTCGGGCAGTGTGGGAGGAGACTCGGGACCGATTCCACCTCCTTG
GGGACCCACATACCAAGAATTGCACCCCTGAGCATCAGAGATGCCAGAAGAAGTGTGCGGGGAGA
TACTTCTTCGTATGGAGAAAGGAAGTATAAAATGAAATTATAAACATCACC GGCTCTGTGAA
TGTGACAGCCTTGACCCACAGGCCAACATCCTCATCCAGGCACCCCTGGAGTCGGCTGCC
AGAATCTGACCTGCTCTGTGCCCTGGCCTGTGAGCAGGGACACCCCTATGATCTCCTGGATA
GGGACCTCCGTGTCCCCCTGGACCCCTCCACCACCCGCTCCTCGGTGCTCACCCCTATCCCACA
GCCCCAGGACCATGGCACCAGCCTCACCTGTCAGGTGACCTTCCCTGGGCCAGCGTGACCA
ACAAGACCGTCCATCTCAACGTGCTCACCGCCTCAGAACATTGACCATGACTGTCTCCAAGGA
GACGGCACAGTATCCACAGTCTGGAAATGGCTCATCTGTCACTCCCAGAGGGCAGTCT
GCGCCTGGTCTGTGCAAGTTGATGCACTTGACAGCAATCCCCCTGCCAGGCTGAGCCTGAGCTGGA
GAGGCTGACCCCTGTGCCCTCACAGCCCTAAACCCGGGGTGCTGGAGCTGCCCTGGGTGCAC
CTGAGGGATGCAGCTGAATTCACCTGCAGAGCTCAGAACCCCTCGGCTCTCAGCAGGTCTACCT
GAACGTCCTCCCTGCAGAGCAAAGCCACATCAGGAGTGA
CTCAGGGGGTGGTCGGGGAGCTGGAG
CCACAGCCCTGGTCTTCCCTGTCCTCTGCGTCATCTCGTTGAGGTCTGCAGGAAGAAA
TCGGCAAGGCCAGCAGCGGGCGTGGGAGATACGGG
CATAGAGGATGCAAACGCTGTCAAGGGTT
AGCCTCTCAGGGGCCCTGACTGAACCTGGCAGAAGACAGTCCCCAGACCAGCCTCCCCAG
CTTCTGCCGCTCTCAGTGGGAAAGGAGAGCTCAGTATGCATCCCTCAGCTCCAGATGGT
AAGCCTTGGACTCGCGGGACAGGAGGCCACTGACACCGAGTACTCGGAGATCAAGATCCACAG
ATGAGAAACTGCAGAGACTCACCTGATTGAGGATCACAGCCCTCCAGGCAAGGGAGAAGTCA
GAGGCTGATTCTGTAGAATTAAACAGCCCTAACGTGAGCTATGATAACACTATGAATTATG
TGCAGAGTGAAGAACACAGGCTTAGAGTCAAAGTATCTCAAACCTGAATCCACACTGTGCC
TCCCTTTATTTTTAACTAAAAGACAGACAAATTCCA

FIGURE 86

MLLLLLPLLWGRERAEGQTSKLLTMQSSVTVQEGLCVHVPFSYPSHGWIYPGPVVHGYWFREG
ANTDQDAPVATNNPARAVWEETRDRFHLLGDPHTKNCTLISRARRSDAGRYFFRMKEGSIKWNY
KHHRLSVNVTALTHRPNILIPGTLESGCPQNLTCSVPWACEQGTPPMISWIGTSVSPLDPSTTRS
SVLTLIPQPQDHGTSLTCQVTFPGASVTTNKTVHLNVSYPPQNLMTVFQGDGTVSTVLNGSSL
SLPEGQSLRLVCAVDADSNPPARLSLSWRGLTLCPSQPSNPGVLELPWVHLRDAAEFTCRAQNP
LGSQQVYLNVSLQSKATSGVTQGVVGGAGATALVFLSFCVIFVVVRSCRKKSARPAAGVGDTGIE
DANAVRGSAQGPLTEPWAEDSPPDQPPPASARSSVGEHELQYASLSFQMVKPWDSRGQEATDTE
YSEIKIHR

Signal peptide:

amino acids 1-15

Transmembrane domain:

amino acids 351-370

FIGURE 87

AGAAAGCTGCACTCTGTTGAGCTCCAGGGCGCAGTGGAGGGAGGGAGTGAAGGGAGCTCTGTAC
CCAAGGAAAGTGCAGCTGAGACTCAGACAAGATTACAAATGAACCAACTCAGCTTCCTGCTGTTTC
TCATAGCGACCACCAGAGGATGGAGTACAGATGAGGCTAATACTTACTTCAAGGAATGGACCTGT
TCTTCGTCTCCATCTCTGCCAGAAGCTGCAAGGAAATCAAAGACGAATGTCTAGTCATTGA
TGGCCTGTATTTCTCCGCAGTGAGAATGGTGTATCTACCAGACCTCTGTGACATGACCTCTG
GGGGTGGCGGCTGGACCCCTGGTGGCCAGCGTGCATGAGAATGACATGCGTGGAGTGCACGGT
GGCGATCGCTGGTCCAGTCAGCAGGGCAGCAAAGCAGACTACCCAGAGGGGACGGCAACTGGC
CAACTACAACACCTTGGATCTGAGAGGCGGCCAGAGCGATGACTACAAGAACCTGGCTACT
ACGACATCCAGGCCAAGGACCTGGCATCTGGCACGTGCCAATAAGTCCCCATGCAGCACTGG
AGAAACAGCTCCCTGCTGAGGTACCGCACGGACACTGGCTCCTCCAGACACTGGGACATAATCT
GTTTGGCATCTACCAGAAATATCCAGTGAATATGGAGAAGGAAAGTGTGGACTGACAACGGCC
CGGTGATCCCTGTGGTCTATGATTTGGCAGCAGCCCAGAAAACAGCATCTTATTACTCACCTAT
GGCCAGCGGAATTCACTGCGGATTGTTCAAGTTCAGGTATTAATAACGAGAGAGCAGCCAA
CGCCTTGTGCTGGAATGAGGGTACCGGATGTAACACTGAGCATCACTGCATTGGAGGAG
GATACTTCCAGAGGCCAGTCCCAGCAGTGTGGAGATTTCTGGTTGATTGGAGTGGATAT
GGAACTCATGTTGGTTACAGCAGCAGCCGTGAGATAACTGAGGCAGCTGTGCTTCTATTCTATCG
TTGAGAGTTTGTGGAGGGAACCCAGACCTCTCCACCACATGAGATCCAAAGGATGGAGAA
CAACTACCCAGTAGCTAGAATGTTAATGGCAGAAGAGAAAACAATAATCATATTGACTCAAGA
AAAAAA

FIGURE 88

MNQLSFLLFLIATTRGWSTDEANTYFKEWTCSSSPSLPRSCKEIKDECPSAFDGLYFLRTENGVI
YQTFCDMTSGGGGWTLVASVHENDMRGKCTVGDRSSQQGSKADYPEGDGNWANYNTFGSAAAT
SDDYKNPGYYDIQAKDLGIWHVPNKSPMQHWRNSSLRYRTDTGFLQTLGHNLFGIYQKYPVKYG
EGKCWTNDGPVIPVYDFGDAQKTASYYSPYQREFTAGFVQFRVFNNERAANALCAGMRVTGCN
TEHHCIGGGGYFPEASPQQCGDFSGFDWSGYGTHVGYSSEITEAAVLLFYR

Important features:

Signal peptide:

amino acids 1-16

N-glycosylation site.

amino acids 163-167

Glycosaminoglycan attachment sites.

amino acids 74-78, 289-293

N-myristoylation sites.

amino acids 76-82, 115-121, 124-130, 253-259, 292-298

FIGURE 89

CTAGATTGTCGGCTTGC~~GGGG~~GACTTCAGGAGTCGCTGTCTGAAC~~TCCAGCCTCAGAGAC~~
CGCCGCCCTTGTC~~CCC~~GAGGCCATGGGCCGGTCTCAGGGCTTGTGCCCTCGCTTCTGACG
CTCCTGGCGCATCTGGTGGTCGTCACCTTATTCTGGTCCCGGACAGCAACATACAGGCCGT
CCTGCCCTCACGTCACCCCCGAGGAGTATGACAAGCAGGACATTCAGCTGGTGGCCCGCGTCT
CTGTCACCCTGGGCCTTTGCAGTGGAGCTGGCCGGTTCCTCTCAGGAGTCTCCATGTTAAC
AGCACCCAGAGCCTCATCTCCATTGGGCTCACTGTAGTGCATCCGTGGCCCTGTCCCTTCA
ATTCGAGCGTTGGGAGTGCACTACGTATTGGTACATTTGTCTTCGCAGTGCCCCTCCAGCTG
TCACTGAAATGGCTTATTCGTACCGTCTTGGCGTGAAAAAGAAACCCTTCTGATTACCTCA
TGACGGAACCTAAGGACGAAGCCTACAGGGCAAGGGCGCTTCGTATTCCGTGAAGAAGGAAG
GCATAGGCTTCGGTTTCCCCTCGGAAACTGCTCTGCTGGAGGATATGTTGAATAATTACG
TCTTGAGTCTGGATTATCCGATTGTATTAGTGCTTGTAATAAAATGTTTAGTAACA
TTAAGACTTATACAGTTTAGGGACAATTAAAAAAAAAAA

FIGURE 90

MGRVSGLVPSRFLTLAHLVVVITLFWSRDSNIQACLPLTPEEYDKQDIQLVAALSVTLGLFA
VELAGFLSGVSMFNSTQSLISIGAHCSASVALSFFIFERWECTTYWYIFVFCSALPAVTEMALFV
TVFGLKKKPF

Transmembrane domain:

amino acids 12-28 (type II), 51-66, 107-124

FIGURE 91

CTGGGACCCCGAAAAGAGAAGGGGAGAGCGAGGGGACGAGAGCGGGAGGAAGATGCAACTGAC
TCGCTGCTGCTCGTGTTCCTGGTGAGGGTAGCCTATCTGGTCATCTGTGCCAGGATGATG
GTCCTCCGGCTCAGAGGACCCGTAGCGTGATGACCACGAGGGCCAGCCCCGGCCCCGGGTGCCT
CGGAAGGGGGCCACATCTCACCTAACGTCACAGTCCCAGGGCATGGCAATTCCACTCTCCTAGGGCTGCT
GGCCCCGCCCTGGGGAGGCTTGGGCATTCTGGGCAGCCCCCAACGCCGAACCACAGCCCC
CACCCCTAGCCAAGGTGAAGAAAATCTTGGCTGGGCAGTTCTACTCCAACATCAAGACGGTG
GCCCTGAACCTGCTCGTCACAGGGAAAGATTGTGGACCATGGCAATGGACCTTCAGCGTCCACTT
CCAACACAATGCCACAGGCCAGGGAAACATCTCATCAGCCTCGTGCCTCCAGTAAAGCTGTAG
AGTTCCACCAGGAACAGCAGATCTCATCGAAGCCAAGGCCTCCAAAATCTCAACTGCCGGATG
GAGTGGGAGAAGGTAGAACGGGGCCGCCGGACCTCGTTGCACCCACGCCAGCCAAGATCTG
CTCCCGAGACCACGCTCAGAGCTCAGCCACCTGGAGCTGCTCCAGCCCTCAAAGTCGTGTG
TCTACATCGCCTTCTACAGCACGGACTATCGGCTGGTCCAGAAGGTGTGCCAGATTACAACATAC
CATAGTGATAACCCCTACTACCCATCTGGGTGACCCGGGGCAGGCCACAGAGGCCAGGGC
TGGAAGGACAGGCCCTGCCCATGCAGGAGACCATCTGGACACCGGGCAGGGAAAGGGTTGGCCTC
AGGCAGGGAGGGGGTGGAGACGAGGAGATGCCAAGTGGGCCAGGGCAAGTCTCAAGTGGCAG
AGAAAGGGTCCAAGTGTGGTCCAAACCTGAAGCTGTGGAGTGACTAGATCACAGGAGCACTGG
AGGAGGAGTGGCTCTGTGCAGCCTCACAGGGCTTGCACGGGAGCCACAGAGAGATGCTGG
TCCCCGAGGCCCTGGGCAGGCCGATCAGTGTGGCCCAGATCAAGTCATGGAGGAAGCTAAGC
CCTGGTTCTGCCATCCTGAGGAAAGATAGCAACAGGGAGGGGAGATTTCATCAGTGTGGACA
GCCTGTCAACTTAGGATGGATGGCTGAGAGGGCTTCCTAGGAGCCAGTCAGCAGGGTGGGTGG
GCCAGAGGAGCTCCAGCCCTGCCCTAGTGGCGCCCTGAGCCCTGTGCTGAGCATGG
CATGAGGCTGAAGTGGCAACCCCTGGGTCTTGATGTCTTGACAGATTGACCATCTGTCTCCAGC
CAGGCCACCCCTTCCAAAATCCCTCTGCCAGTACTCCCCCTGTACCACCCATTGCTGATG
GCACACCCATCCTTAAGCTAACGACAGGACGATTGTGGCTCCACACTAACGGCCACAGCCCATC
CGCGTGTGTGTGTCCTCTGCCACCCCTGCTGGCTCTGGAGCATCCATGTCCCG
GAGAGGGGTCCCTCAACAGTCAGCCTCACCTGTAGACCCGGGTTCTCCGGATCTGGATGGC
CGCCCTCTCAGCAGCGGGCACGGGTGGGGCGGGCCGGCAGAGCATGTGCTGGATCTGTT
TGTGTGTCTGTGTGGGTGGGGAGGGGAGGGAAAGTCTGTGAAACCGCTGATTGCTGACTTT
TGTGTGAAGAATCGTGTCTGGAGCAGGAATAAGCTTGCCCCGGGCA

FIGURE 92

MQLTRCCFVFLVQGSILYLVICGQDDGPPGSEDPERDDHEGQPRPRVPRKRGHISPKSRPMANSTL
LGLLAPPGEAWGILGQPPNRPNHSPPPSAKKKIFGWGDFYSNIKTVALNLLVTGKIVDHGNNGTF
SVHFQHNATGQGNISISLVPPSKAVEFHQEQQIFIEAKASKIFNCRMEWEKVERGRRTSLCTHDP
AKICSRDHAQSSATWSCSQPFKVVCVYIAFYSTDYRLVQKCPDNYHSDTPYYPSG

Important features of the protein:

Signal peptide:

amino acids 1-14

N-glycosylation sites.

amino acids 62-65, 127-130, 137-140, 143-146

2-oxo acid dehydrogenases acyltransferase

amino acids 61-71

FIGURE 93

CGGTGGCC**A**TGACTGCGGCCGTGTTCTCGGCTGCGCCTTCATTGCCTCGGGCTGCGCTGCC
CTTTATGTCTTACCATGCCATCGAGCCGTTGCGTATCATCTTCCTCATGCCGGAGCTTCTT
CTGGTTGGTGTCTACTGATTGCTCCCTGTTGGTTCATGGCAAGAGTCATTATTGACAACA
AAGATGGACCAACACAGAAATATCTGCTGATCTTGGAGCGTTGCTCTGTCTATATCCAAGAA
ATGTTCCGATTGCATATTATAAAACTCTTAAAAAAAGCCAGTGAAGGTTGAAGAGTATAAACCC
AGGTGAGACAGCACCCCTATGCGACTGCTGGCTATGTTCTGGCTGGCTTGGATCATGA
GTGGAGTATTTCCCTTGTAATACCCATCTGACTCCTGGGCCAGGCACAGTGGCATTCA
GGAGATTCTCCTCAATTCTCCTTATTCACTGGCTGACGCTGGCATTATCTTGCTGCATGT
ATTCTGGGCATTGTATTTGATGGCTGTGAGAAGAAAAGTGGGCATCCTCCTATCGTC
TCCTGACCCACCTGCTGGTGTCAAGCCCAGACCTTCATAAGTTCTTATTATGGAATAAACCTGGCG
TCAGCATTATAATCCTGGTGCTCATGGCACCTGGCATTCTAGCTGCGGGAGGCAGCTGCCG
AAGCCTGAAACTCTGCCTGCTCGCCAAGACAAGAACCTTCTTACAACCAGCGCTCCAGAT
AACCTCAGGGAACCAGCACTCCCCAACCGCAGACTACATCTTAGAGGAAGCACAACGTGCCT
TTTCTGAAAATCCCTTTCTGGTGGATTGAGAAAGAAATAAAACTATGCAGATA

FIGURE 94

MTAAVFFGCAFIAFGPALALYVFTIAIEPLRIIFLIAGAFFWLVSLLISSLVWFMARVIIDNKDG
PTQKYLLIFGAFVSVIQEMFRFAYYKLLKASEGLKSINPGETAPSMRLLAYVSGLGFMSGV
FSFVNNTLSDSLGP GTVG I HGDSPQFFLYSAFMTLVII LLHVFWGIVFFDGCEKKW GILLIVLLT
HLLVSAQTFI SYYGINLASAFI ILVLMGTWAFLAAGGSCRSLKLCLLCQDKNFLYNQR SR

Important features of the protein:

Signal peptide:

amino acids 1-19

Transmembrane domains:

amino acids 32-51, 119-138, 152-169, 216-235

Glycosaminoglycan attachment site.

amino acids 120-123

Sodium:neurotransmitter symporter family protein

amino acids 31-65

FIGURE 95

AATTTTCACCAAGAGTAAACTTGAGAAACCAACTGGACCTTGAGTATTGTACATTTGCCTCGTG
GACCCAAAGGTAGCAATCTGAAACATGAGGAGTACGATTCTACTGTTGTCTTAGGATCAAC
TCGGTCATTACCACAGCTAAACCTGTTGGACTCCCTCCCACAAAACTGGCTCCGGATCAGG
GAACACTACCAAAACCAACAGCAGTCAAATCAGGTCTTCCTTCTTAAGTCTGATACCATTAAACA
CAGATGCTCACACTGGGCCAGATCTGCATCTGTTAAATCCTGCTGCAGGAATGACACCTGGTAC
CCAGACCCACCCATTGACCCCTGGGAGGGTTGAATGTACAACAGCAACTGCACCCACATGTGTTAC
CAATTTGTACACAACTTGAGGCCAGGGCACTATCTAAGCTCAGAGGAATTGCCACAAATC
TTCACGAGCCTCATCATCCATTCTGTTCCGGGAGGCATCCTGCCACCAGTCAGGCAGGGC
TAATCCAGATGTCCAGGATGGAAGCCTCCAGCAGGAGGAGCAGGTGTAATCCTGCCACCCAGG
GAACCCAGCAGGCCCTCCCAACTCCAGTGGCACAGATGACGACTTGCAGAGTCACCACCCCT
GCAGGCATCAAAGGAGCACACATGCCATCGAGGAAGCCACCACAGAATCAGCAAATGGAATTCA
GTAAGCTGTTCAAATTTCAAACTAAGCTGCCTCGAATTGGTGATACTGTGAATCTTATC
ATTGATTATATTATGGAATAGATTGAGACACATTGGATAGTCTTAGAAGAAATTAAATTCTTAATT
TACCTGAAATATTCTGAAATTTCAGAAATATGTTCTATGTAGAGAATCCAACTTTAAAAAA
CAATAATTCAATGGATAAAATCTGTCTTGAATATAACATTATGCTGCCTGGATGATATGCATAT
TAAAACATATTGGAAAACTGGAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAA

FIGURE 96

MRSTILLFCLLGSTRSLPQLKPALGLPPTKLAPDQGTLPNQQQSNQVFPSLSLIPLTQM
LTLGPDLHLLNPAAGMTPGTQTHPLTLGGLNVQQQLHPHVLPIFVTQLGAQGTILSSEE
LPQIFTSLIIHSLFPGGILPTSQAGANPDVQDGSLPAGGAGVNPATQGTPAGRLPTPSG
TDDDFAVTTPAGIQRSTHAIEEATTESANGIQ

Signal peptide:

amino acids 1-16

FIGURE 97

FIGURE 98

MVPAWLWLLCVSVPQALPKAQPAELSVEVPENYGGNFPLYLTKLPLPREGAEGQIVLSGDSGKAT
EGPFAMDPDSGFLLVTRALDREEQAELYQLQVTLEMQDGHVLWGPQPVLHVKDENDQVPHFSQAI
YRARLSRGTRPGIPFLFLEASDRDEPGTANSDLRFHILSQAPAQPSPDMFQLEPRLGALALSPKG
STSLLDHALERTYQLLVQVKDMGDQASGHQATATVEVSIIESTWVSLEPIHLAENLKLYPHHMAQ
VHWSSGGDVHYHLESHPGPFEVNAEGNLYVTRELDREAQEYLLQVRAQNSHGEDYAAPPLELHVL
VMDENDNVPICPPRDPTVSIPELSPPGTEVTRLSAEDADAPGSPNSHVYQLLSPEPEDGVGRA
FQVDPTSGSVTLGVPLRAGQNILLVLAMDLAGAEGGSSTCEVEAVTDINDHAPEFITSQIG
PISLPEDVEPGTLVAMLTAIDADLEPAFRIMDFAIERGDTETGTFGLDWEPDGHVRLRLCKNLSY
EAAPSHEVVVVVQSVAKLVGPGPGPATATTVLVERVMPPPQLDQESYEASVPISAPAGSFLLT
IQPSDPISRTRLFSLVNDSEGWLCLIEKFSGEVHTAQSLQGAQPGDTYTVLVEAQDTALTTLAPVPS
QYLCTPRQDHGLIVSGPSKDPDIASGHGPYSFTLGPNPVQRDWRLQTLNGSHAYLTLLAHWVEP
REHIIPVVVSHNAQMWWQLLVRVIVCRCNVQCMRKVGRMKGMPTKLSAVGILVGTVAIGIFLI
LIFTHWTMSRKDKDPQPADSVPLKATV

Signal peptide:

amino acids 1-18

Transmembrane domain:

amino acids 762-784

FIGURE 99

GGCTGACCGTGCTACATTGCCCTGGAGGAAGCCTAAGGAACCCAGGCATCCAGCTGCCACGCC
AGTCCAAGATTCTTCCCAGGAACACAAACGTAGGAGACCACGCTCTGGAAAGCACCGCCTTA
TCTCTCACCTCAAGTCCCCTTCTCAAGAACATCCTCTGTTCTTGCCTCTAAAGTCTGGTAC
ATCTAGGACCCAGGCATCTTGCTTCCAGCCACAAAGAGACAGATGAAGATGCAGAAAGGAATG
TTCTCCTTATGTTGGTCTACTATTGCATTAGAAGCTGCAACAAATTCAATGAGACTAGCACC
TCTGCCAACACTGGATCCAGTGTGATCTCAGTGGAGGCCAGCACAGCCACCAACTCTGGGTCCAG
TGTGACCTCCAGTGGGTCAAGCACGCCACCATCTCAGGGTCCAGCGTACCTCCAATGGGTCA
GCATAGTCACCAACTCTGAGTCCATACAACCTCCAGTGGGATCAGCACAGCCACCAACTCTGAG
TTCAGCACAGCGTCCAGTGGGATCAGCATAGCCACCAACTCTGAGTCCAGCACAACCTCCAGTGG
GGCCAGCACGCCACCAACTCTGAGTCCAGCACACCCCTCAGTGGGCCAGCACAGTCACCAACT
CTGGGTCCAGTGTGACCTCCAGTGGAGGCCAGCAGTGCACCAACTCTGAGTCCAGCACAGTGTCC
AGTAGGGCCAGCAGTGCACCAACTCTGAGTCTAGCACACTCTCAGTGGGCCAGCACAGCCAC
CAACTCTGACTCCAGCACAAACCTCCAGTGGGCTAGCACAGCCACCAACTCTGAGTCCAGCACAA
CCTCCAGTGGGCCAGCACAGCCACCAACTCTGAGTCCAGCACAGTGTCCAGTAGGGCCAGCAGT
GCCACCAACTCTGAGTCCAGCACAAACCTCCAGTGGGCCAGCACAGCCACCAACTCTGAGTCCAG
AACGACCTCCAATGGGCTGGCACAGCCACCAACTCTGAGTCCAGCACAGCACCTCAGTGGGCCA
GCACAGGCCACCAACTCTGACTCCAGCACAGTGTCCAGTGGGCCAGCACACTGCCACCAACTCTGAG
TCCAGCACGACCTCCAGTGGGCCAGCACAGCCACCAACTCTGAGTCCAGCACGACCTCCAGTGG
GGCTAGCACGCCACCAACTCTGACTCCAGCACAAACCTCCAGTGGGCCAGCACAGCCACCAACT
CTGAGTCCAGCACAGTGTCCAGTGGGATCAGCACAGTCACCAATTCTGAGTCCAGCACACCCCTCC
AGTGGGCCAACACAGCCACCAACTCTGAGTCCAGTACGACCTCCAGTGGGCCAACACAGCCAC
CAACTCTGAGTCCAGCACAGTGTCCAGTGGGCCAGCACGCCACCAACTCTGAGTCCAGCACAA
CCTCCAGTGGGTCAAGCACGCCACCAACTCTGAGTCCAGCACAAACCTCCAGTGGGCCAGCAC
GCCACCAACTCTGACTCCAGCACAAACCTCCAGTGGGCCAGCACAGCCACCAACTCTGAGTCTAG
CACAGTGTCCAGTGGGATCAGCACAGTCACCAATTCTGAGTCCAGCACACAACCTCCAGTGGGCCA
ACACAGGCCACCAACTCTGGGTCCAGTGTGACCTCTGCAGGCTCTGAAACAGCAGCTGACTGG
ATGCACACAACCTCCATAGTCATCTACTGCAGTGAGTGAGGCAAAGCCTGGTGGGTCCCTGGT
GCCGTGGAAATCTCCTCATCACCCCTGGTCTCGGTTGTCGGCGGGCGTGGGCTTTGCTGGC
TCTTCTCTGTGTGAGAACAGGCTGTCCCTGAGAACACCTTAAACACAGCTGTCTACCACCT
CATGGCCTCAACCATGGCTTGGTCCAGGCCCTGGAGGGAAATCATGGAGCCCCCACAGGCCAG
GTGGAGCTAACTGGTCTGGAGGAGACCAGTATCATCGATGCCATGGAGATGAGCGGGAGGA
ACAGCGGGCCCTGAGCAGCCCCGAAGCAAGTGCCGATTCTCAGGAAGGAAGAGACCTGGCA
CCCAAGACCTGGTTCTTCATTCATCCCAGGAGACCCCTCCAGTTGTTGAGATCTGAA
AATCTGAAGAAGGTATTCTCACCTTCTGCCTTACAGACACTGGAAAGAGAATACTATAT
TGCTCATTTAGCTAAGAACATAACATCTCATCTAACACACAGCACAAAGAGAAGCTGTGCTTG
CCCCGGGTGGGTATCTAGCTGAGATGAACCTAGTTATAGGAGAAAACCTCCATGCTGGACTC
CATCTGGCATTCAAAATCTCCACAGTAAAATCCAAAGACCTCAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA

FIGURE 100

MKMQKGNVLLMFGLLLHLEATNSNETSTSANTGSSVISSGASTATNGSSVTSSGVSTATISGS
SVTSNGVSIVTNSEFHTTSSGISTATNSEFSTASSGISIATNSESSTTSGASTATNSESSTPSS
GASTVTNSGSSVTSSGASTATNSESSTVSSRSTATNSESSTLSSGASTATNSDSSTTSSGASTA
TNSESSTSSGASTATNSESSTVSSRSTATNSESSTTSSGASTATNSESRTTNGAGTATNSES
STTSSGASTATNSDSTSSTVSSGASTATNSESSTTSSGASTATNSESSTTSSGASTATNSDSSTTSS
GAGTATNSESSTVSSGISTVTNSESSTPSSGANTATNSESSTTSSGANTATNSESSTVSSGASTA
TNSESSTTSSGVSTATNSESSTTSSGASTATNSDSTSSEASTATNSESSTVSSGISTVTNSES
STTSSGANTATNSGSSVTSAGSGTAALTGMHTTSHSASTAVSEAKPGGSLVPWEIFLITLVVVA
AVGLFAGLFFCVRNSLSRNTFNTAVYHPHGLNHGLGPAGGGNHGAPHRPRWSPNWFWRPVSSI
AMEMSGRNSGP

Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 510-532

FIGURE 101

GGCCGGACGCCCTCCCGTTACGGGATGAATTAAACGGGGTCCGCACGGAGGTGTGACCCCTA
CGGAGCCCCAGCTGCCAACGCACCCCACTCGGCGTCGCGCGCGTGCCTGCTGTACAGGTG
GGAGGCTGGAACTATCAGGCTAAAAACAGAGTGGGTACTCTCTGGGAAGCTGGCAACAAAT
GGATGATGTGATATGCATTCCAGGGGAAGGGAAATTGTGGTGCTCTGAACCCTGGTCAATT
AACGAGGCAGTTCTAGCTACTGCACGTACTTCATAAAGCAGGACTCTAAAGCTTGGAATCAT
GGTGTCAAGGAAAGGGATTTACTTATACTGACTCTGTTGGGAAGCTTTGGAAGCATT
TCATGCTGAGTCCTTACCTTGATGTTGTAACCCATCTGGTATCGCTGGATCAACAAAC
CGCCTTGTGGCAACATGGCTACCCCTACCTGTGGCATTATTGGAGACCATGTTGGTGTAAAAGT
GATTATAACTGGGATGCATTGTTCTGGAGAAAGAAGTGTCAATTATCATGAACCCTGGACAA
GAATGGACTGGATGTTCTGTGAAATTGCCTGATGCGATATAGCTACCTCAGATTGGAGAAAATT
TGCCTCAAAGCGAGTCTCAAAGGTGTTCTGGATTGGTGGCCATGCAGGCTGCTGCCTATAT
CTTCATTCA TAGGAAATGGAAGGATGACAAGAGCCATTGCAAGACATGATTGATTACTTTGTG
ATATTCA CGAACCACTCACTCCTCATATCCCAGAAGGGACTGATCTCACAGAAAACAGCAAG
TCTCGAAGTAATGCATTGCTGAAAAAAATGGACTTCAGAAATATGAATATGTTTACATCCAAG
AACTACAGGCTTACTTTGTGGTAGACCGTCTAAGAGAAGGTAAAGAACCTTGATGCTGTCCATG
ATATCACTGTGGCGTATCCTACAACATT CCTCAATCAGAGAAGCACCTCCTCCAAGGAGACTTT
CCCAGGAAATCCACTTACG TCCACCGGTATCCAATAGACACCCCTCCCCACATCCAAGGAGGA
CCTTCAACTCTGGGCCACAAACGGTGGAGAGAAAGAAGAGAGGCTGCGTTCTTCTATCAAG
GGGAGAAGAATT TTTACCGGACAGAGTGTCAATTCCACCTGCAAGTCTGAACTCAGGGTC
CTTGTGGCAAATTGCTCTATACTGTATTGGACCTGTTCA GGCCTGCAATGTGCCTACTCAT
ATATTGTACAGTCTGTTAAGGGTATT TATAATCACCATTGTAATCTTGCTGCAAGAGA
GAATATTGGTGGACTGGAGATCATAGAACTTGCATGTTACCGACTTTACACAAACAGCCACAT
TTAAATTCAAAGAAAATGAGTAAGATTATAAGGTTGCCATGTGAAAACCTAGAGCATATTG
GAAATGTTCTAAACCTTCTAAGCTCAGATGCATTTGCATGACTATGTCGAATATTCTTACT
GCCATCATTATTGTTAAAGATATTGCACTTAATTGTGGAAAAAATTGCTACAATT
TTAATCTCTGAATGTAATTGATACTGTGTACATAGCAGGGAGTGTACGGGGTGAATAACTT
GGGCCAGAATATTAAACAATCATCAGGCTTTAAA

FIGURE 102

MHSRGREIVVLLNPWSINEAVSSYCTYFIKQDSKSFGIMVSWKGIYFILTLFWGSFFGSIFMLSP
FLPLMFVNPSWYRWINNRLVATWLTPVALLETMFGVKVIITGDAFVPGERSVIIMNHRTRMDWM
FLWNCLMRYSYLRLKEKICLKLASILKGVPFGWAMQAAAYIFIHRWKDDKSHFEDMIDYFCDIHEP
LQLLIFPEGTDLTENSRSNAFAEKNGLQKYEYVLHPRTTGFTVVDRREGKNLDLVHDITVA
YPHNIPQSEKHLLQGDFPREIHFHVRYPIDLPLTSKEDLQLWCHKRWEEKERLRSFYQGEKNF
YFTGQSVIPPKSELRLVVKLLSILYWTLFSPAMCLLIYLYSLVKWYFIITIVIFVLQERIFGG
LEIIIELACYRLLHKQPHLNNSKKNE

Important features of the protein:

Signal peptide:

amino acids 1-22

Transmembrane domains:

amino acids 44-63, 90-108, 354-377

FIGURE 103

CGGCTCGAGCGGCTCGAGTGAAGAGCCTCCACGGCTCCTGCGCTGAGACAGCTGGCCTGACC
TCCAAATCATCCATCCACCCCTGCTGTCACTGTTTCATAGTGTGAGATCAACCCACAGGAATA
TCCATGGCTTTGTGCTCATTTGGTTCTCAGTTCTACGAGCTGGTGTAGGACAGTGGCAAGT
CACTGGACCGGGCAAGTTGTCCAGGCCTGGTGGGGAGGACGCCGTGTTCTCTGCTCCCTCT
TTCTGAGACCAGTGCAAGAGGCTATGGAAGTGCAGGTTCTCAGGAATCAGTTCCATGCTGTGGTC
CACCTCTACAGAGATGGGAAGACTGGGAATCTAACGAGATGCCACAGTATCGAGGGAGAAGTGA
GTTGTGAAGGACTCCATTGCAGGGGGCGTGTCTCTCAAGGCTAAAAACATCACTCCCTCGG
ACATGGCCTGTATGGGTGCTGGTTCAAGTCCCAGATTACGATGAGGAGGCCACCTGGGAGCTG
CGGGTGGCAGCACTGGGCTCACTCCTCTCATTCCATCGTGGGATATGTTGACGGAGGTATCCA
GTTACTCTGCCGTGCTCAGGCTGGTCCCCAGGCCACAGCCAAGTGGAAAGGTCCACAAGGAC
AGGATTGTCTCAGACTCCAGAGCAAATGCAGATGGTACAGCCTGTATGATGTGGAGATCTCC
ATTATAGTCAGGAAAATGCTGGGAGCATATTGTGTTCCATCCACCTGCTGAGCAGAGTCATGA
GGTGAATCCAAGGTATTGATAGGGAGAGCAGTTTCCAGGCCACCTGGCGCTGGCTCTA
TTTACTCGGGTTACTCTGTGGTGCCTGTGTTGATGGGATGATAATTGTTTCTTC
AAATCCAAGGGAAAATCCAGGGGAACTGGACTGGAGAAAGCACGGACAGGAGAATTGAG
AGACGCCCGAAACACGCACTGGAGGTGACTCTGGATCCAGAGACGCCACCCGAAGCTCTGCG
TTTCTGATCTGAAAATGTAACCCATAGAAAAGCTCCCAGGAGGTGCTCACTTGAGAAGAGA
TTTACAAGGAAGAGTGTGGTGCCTCTCAGGGTTTCCAAGCAGGGAGACATTACTGGGAGGTGGA
CGTGGGACAAAATGTAGGGTGGTATGTGGGAGTGTGTCGGATGACGTAGACAGGGGAAGAACAA
ATGTGACTTTGTCTCCAAACAATGGGTATTGGTCTCAGACTGACAACAGAACATTGTATTC
ACATTCAATCCCCATTATCAGCCTCCCCCAGCACCCCTCCTACACGAGTAGGGTCTCCT
GGACTATGAGGGTGGGACCATCTCTTCTCAATACAATGACCAGTCCCTTATTATACCTGC
TGACATGTCAGTTGAAGGCTTGTGAGACCTATATCAGCATGCGATGTATGACGAGGAAAG
GGGACTCCCATATTCAATGTCAGTGTCTGGGATGAGACAGAGAACCCTGCTTAAAGGGC
CCCACACCACAGACCCAGACACAGCCAAGGGAGAGTGTCCCGACAGGTGGCCCCAGCTCCCT
CCGGAGCCTGCGCACAGAGAGTCACGCCCAACTCTCTTAGGGAGCTGAGGTCTCTGCC
TGAGCCCTGCAAGCGGCAGTCACAGCTCCAGATGAGGGGGGATTGGCCTGACCTGTGGGAG
TCAGAACCATGGCTGCCCTGAAGTGGGAGCGGAATAGACTCACATTAGGTTAGTTGTAAAA
CTCCATCCAGTAAGCATTGAAACAAGTCACAACCTCCAGGCTCTCATTGCTAGTCACGG
ACAGTGATTCTGCTCACAGGTGAAGATTAAAGAGAACAGAACATGTGAATCATGCTGCAGTT
TGAGGGACAGTGTGTTCTAATGATGTGTTTATATTACATTTCACCATAAAACTCTGTT
TGCTTATTCCACATTAATTACTTTCTCTACCAATCACCATGGAATAGTTATTGAACACC
TGCTTGAGGCTCAAAGAATAAAGAGGAGGTAGGATTTCACTGATTCTATAAGCCCAGCAT
TACCTGATAACAAAACCAGGCAAAGAAAACAGAAGAAGAGGAAAGAAACTACAGGTCCATATCC
CTCATTAACACAGACACAAAAATTCTAAATAAAATTAAACAAATTAAACTAAACAATATTTA
AAGATGATATATAACTACTGAGTGTGGTTGTCCCACAAATGCAGAGTTGGTTAATATTTAAAT
ATCAACCAGTGAATTCACTGACATTAATAAGTAAAAAGAAAACCATAAAAAAAAAAAAAA

FIGURE 104

MAFVLILVLSFYELVSGQWQVTGPGKFWQALVGEDAVFSCSLFPETSAEAMEVRRFRNQFHAVVH
LYRDGEDWESKQMPQYRGRTEFKDSIAGGRVSLRLKNITPSDIGLYGCWFSSQIYDEEATWELR
VAALGSLPLISIVGYVDGGIQLLCISSLGWFPQPTAKWKGPQGQDLSSDSRANADGYSLYDVEISI
IVQENAGSILCSIHLAEQSHEVESKVVLIGETFFQPSPWRLASILLGLLCALCGVVMGMIIVFFK
SKGKIQAELDWRRKHGQAEELRDAKHAVEVTLDPETAHPKLCVSDLKTVTHRKPQEVPHSEKRF
TRKSVVASQGFQAGRHYWEVDVGQNVGWYVGCRDDVRGKNNVTLSPNNGYWVRLTTEHLYFT
FNPHFISLPPSTPPTRGVFLDYEGGTISFFNTNDQSLIYTLLTCQFEGLLRPYIQHAMYDEEKKG
TPIFICPVSWG

Signal peptide:

amino acids 1-17

Transmembrane domains:

amino acids 131-150, 235-259

FIGURE 105

CCTTCACAGGACTCTCATTGCTGGTGGCAATGATGTATCGCCAGATGTGGTGAGGGCTAGGAAAAGAG
TTTGGTGGAAACCCTGGTTATCGCCTCGTCATCTCATATCCCTGATTGTCCTGGCAGTGTGCATTGGA
CTCACTGTTCAATTATGTGAGATATAATCAAAGAACCTACAATTACTATAGCACATTGTCATTACAC
TGACAAACTATATGCTGAGTTGGCAGAGAGGCTCTAACATTACAGAAATGAGCCAGAGACTTGAAT
CAATGGTAAAAATGCATTTATAAATCTCCATTAAAGGAAGAATTGTCAAGTCTCAGGTTATCAAGTTC
AGTCAACAGAACGATGGAGTGTGGCTCATATGCTGTTGATTGTAGATTCACTCACTGAGGATCCTGA
AACTGTAGATAAAATTGTCACATTGTTTACATGAAAGCTCAAGATGCTTAGGACCCCCCTAAAGTAG
ATCCTCACTCAGTTAAAATTAAAAAAATCAACAAGAACAGAACAGCTATCTAAACCATGCTGCCGA
ACACGAAGAAGTAAAACCTAGGTCAAGTCTCAGGATCGTGGTGGACAGAAAGTAGAAGAGGGTGAATG
GCCCTGGCAGGCTAGCCTGCAGTGGGATGGAGTCATCGCTGGAGCAACCTTAATTAAATGCCACATGGC
TTGTGAGTGCTGCTCACTGTTTACAACATATAAGAACCTGCCAGATGGACTGCTCCCTGGAGTAACA
ATAAAACCTCGAAAATGAAACGGGTCTCGGAGAATAATTGTCATGAAAATACAAACACCCATCACA
TGACTATGATATTCTCTTGAGAGCTTCTAGCCCTGTTCCCTACACAAATGCACTAGATAGAGTTGTC
TCCCTGATGCATCCTATGAGTTCAACCAGGTGATGTGATGTTGTGACAGGATTGGAGCACTGAAAAAT
GATGGTTACAGTCAAACATCTCGACAAGCACAGGTGACTCTCATAGACGCTACAACCTGCAATGAACC
TCAAGCTTACAATGACGCCATAACTCTAGAATGTTATGTCAGGCTCCCTAGAAGGAAAACAGATGCA
GCCAGGGTCACTGGAGGACCACTGGTAGGTTAGTCAGATGCTAGAGATATCTGGTACCTGCTGGAATAGTG
AGCTGGGGAGATGAATGTGCGAAACCCAACAAGCCTGGTGTAACTAGAGTTACGGCCTGGGACTG
GATTACTCAAAAATGGTATCTAAGAGACAAAGCCTCATGGAACAGATAACATTGTTGGTTGTTG
GGTGTGGAGGCCATTAGAGATAACAGAATTGGAGAAGACTGCAAAACAGCTAGATTGACTGATCTCA
ATAAAACTGTTGCTGATGCATGTATTCTTCCAGCTCTGTCAGTAAGCATCCTGCTTGTGCCA
GATCAACTCTGTCTGTGAGCAATAGTTATGTCATAGAGAAATAGATAATACAATATTAC
ATTACAGCCTGTATTCTAGAAGTTGTCAGAATTGACTTGTGACATAAATTGTAAT
GCATATATACAATTGAAGCACTCCTTCTCAGTCCTCAGCTCCTCTCATTCAGCAAAATATCCATT
TCAAGGTGCAAGAACAGGAGTGAAAGAAAATATAAGAAGAAAAATCCCCTACATTATTGGCACAGAA
AAAGTATTAGGTGTTCTTAGTGGAAATTAGAAATGATCATATTCAATTGAAAGGTCAAGCAAAGACA
GCAGAATACCAATCACTCATCTAGAAGTATGGAACTAAGTTAAGGAAGTCCAGAAAGAACCAAG
ATATATCCTTATTTCATTTCAAACAAACTACTATGATAATGTGAAGAAGATTCTGTTTTGTGACCT
ATAATAATTATAACAACTTCATGCAATGTACTTGTCTAACGAAATTAAAGCAAATTATTAAACATTG
TTACTGAGGATGTCAACATATAACAAATAAAATATAACCCCA

FIGURE 106

MMYRPDVVRARKRVCWEPWVIGLVIFISLIVLAVCIGLTvhYvRynQKKTNYYSTLSFTTDKLY
AEFGREASNNFTEMSQRLESMVKNAYKSPLREEFVKSQVIKFQQKHGVLAHMLLICRFHSTED
PETVDKIVQLVLHEKLQDAVGPPKVDPHSVKIKKINKTETDSYLNHCCGTRRSKTLGQSLRIVGG
TEVEEGEWPWQASLQWDGSHRCGATLINATWLVSAAHCFTTYKNPARWTASFGVTIKPSKMKGRL
RRIIVHEKYKHPHSDYDISLAELSSPVPTNAVHRVCLPDASYEFQPGDVMFVTGFGALKNDGYS
QNHLRQAQVTLIDATTNEPQAYNDAITPRMLCAGSLEGKTDACQGDGGPLVSSDARDIWYLAG
IVSWGDECAKPNKPGVYTRVTALRDWITSKTGI

Transmembrane domain:

amino acids 21-40 (type II)

FIGURE 107

AGAGAAAGAAGCGCTCCAGCTGAAGCCAATGCAGCCCTCCGGCTCTCGCGAAGAAGTTCCCTG
CCCCGATGAGCCCCCGCGTGCCTCCCGACTATCCCCAGGCAGGCGTGGGGCACCGGGCCCAGC
GCCGACGATCGCTGCCGTTTGCCTTGGGAGTAGGATGTGGTGAAGGATGGGGCTTCTCCCT
ACGGGGCTCACAAATGGCCAGAGAAGATTCCGTGAAGTGTCTGCGCTGCCTGCTCACGCCCTCAA
TCGCTCTTGGTTAATGTCATCAGTGTGGCAGTTCTGCTGGATGAGGGACTACCTAA
ATAATGTTCACTTTAACGAGGGTAGAGGAAGCAGTCATTTGACTTACTTTCT
GTGGTTATCCGGTCATGATTGCTGTTGCTGTTCTTATCATTGTTGGGATGTTAGGATATTG
TGGACGGTAAAAGAAATCTGTTGCTTGCATGGTACTTGGAGTTGCTGTCAATTCT
GTGTAGAACTGGCTTGTGGCAGGGACATATGAACAGGAACCTTATGGTCCAGTACAATGGTCA
GATATGGTCACTTGAAAGCCAGGGATGACAAATTATGGATTACCTAGATATCGGTGGCTTACTCA
TGGTGAATTTTTTCAGAGAGAGTTAACGAGTAGTGTGGAGTAGTATATTCACTGACTGGTGG
AAATGACAGAGATGGACTGGCCCCCAGATTCTGCTGTTAGAGAATTCCAGGATGTTCCAAA
CAGGCCACCCAGGAAGATCTCAGTGACCTTATCAAGAGGGTTGTGGAAGAAAATGTTACCTT
TTTGAGAGGAACCAAACAACTGCAGGTGCTGAGGTTCTGGGAATCTCCATTGGGGTGACACAAA
TCCCTGGCCATGATTCTCACCATTACTCTGCTCTGGGCTCTGTTATTATGATAGAAGGGAGCCTGGG
ACAGACCAAATGATGTCCTTGAAGAATGACAACCTCAGCACCTGTCATGTCCTCAGTAGAACT
GTTGAAACCAAGCCTGTCAAGAATCTTGACACACATCCATGGCAACAGCTTAATACACACT
TTGAGATGGGGAGTTAAAAAGAAAATGTCACAGAAGAAAACCACAAAACTTGTGTTATTGGACT
TGTGAATTGGAGTACATACTATGTTTCAAGAAATATGAGAAATAAAATGTTGCCATAAAA
TAACACCTAACGATACATACTATTCTATGCTTAAATGAGGATGGAAAAGTTCATGTCATAAGTC
ACCACCTGGACAATAATTGATGCCCTAAATGCTGAAGACAGATGTCATACCCACTGTGTAGCC
TGTGATGACTTTACTGAACACAGTTATGTTTGGCAGCATGGTTGATTAGCATTCCGCA
TCCATGCAAACGAGTCACATATGGGGACTGGAGCCATAGTAAAGGTTGATTACTTACCAA
CTAGTATATAAAGTACTAATTAAATGCTAACATAGGAAGTTAGAAAATACTAATAACTTTATTA
CTCAGCGATCTATTCTCTGATGCTAAATAATTATATCAGAAAACCTTCAATATTGGTGA
ACCTAAATGTTGATTTTGCTGGTTACTAAATATTCTTACCACTAAAGAGCAAGCTAACACAT
TGTCTTAAGCTGATCAGGGATTGGTATATAAGCTGTGTTAAATCTGTATAATTCACTGAT
TTCAGTTCTGATAATGTTAAGAATAACCATTATGAAAAGGAAATTGTCCTGTATAGCATCATT
ATTTTACGCTTCTGTTAATAAAGCTTACTATTCTGCTCTGGGCTTATATTACACATATAAC
TGTATTTAAATCTAACACTAATTGGAAAATTACCACTGATGATACATAGGAATCATTAC
AGAATGTTAGTCTGGCTTTAGGAAGTATAAAGAAAATTGCACATAACTTAGTTGATTCA
AAGGACTGTATGCTGTTTCTCCAAATGAAGACTCTTTGACACTAAACACTTTAAAAA
GCTTATTTGCCTCTCCAAACAAGAAGCAATAGTCTCAAGTCATATAAATCTACAGAAAA
TAGTGTCTTTCTCCAGAAAATGTTGAGAATCATTAAACATGTGACAATTAGAGATT
CTTTGTTTATTCTACTGATTAATATACTGTGGCAAATTACACAGATTATAAATTTTACAA
GAGTATAGTATATTGAAATGGAAAAGTGCATTACTGTATTGTTGATTTGTTAT
TTCTCAGAATATGAAAGAAAATTAAATGTCATAAAATATTCTAGAGAGTAA

FIGURE 108

MAREDSVKCLRCLLYALNLLFWLMSISVLAVSAWMRDYLNNVLTATAETRVEEAVILTYFPVVHP
VMIAVCCFLIIVGMLGYCGTVKRNLLLLAWYFGSLLVIFCVELACGVWTYEQELMVPVQWSDMVT
LKARMTNYGLPRYRWLTHAWNFFQREFKCCGVVYFTDWLEMTEMDWPPDSCCVREFPGCSKQAHQ
EDLSDLYQEGCGKKMYSFLRGTKQLQVLRFLGISIGVTQILAMILTLLWALYYDRREPGTDQM
MSLKNDNSQHLSCPSVELLKPSLSRIFEHTSMANSFNTHFEMEEL

Signal peptide:

amino acids 1-33

Transmembrane domains:

amino acids 12-35, 57-86, 94-114, 226-248

FIGURE 109

CCAAGGCCAGAGCTGTGGACACCTTATCCCACCTCATCCTCATCCCTCTGATAAAGCCCCTACCAAGTGCT
GATAAAAGTCTTCTCGTAGAGGCCTAGAGGCCTAAAAAAAAAAAGTGCCTGAAAGAGAAGGGGACAAGGAACA
CCAGTATTAAGAGGATTTCAGTGTCTGGCAGTTGGTCCAGAAGGGATGCCTCCATTCTGCTTCTCACCTG
CCTCTTCATCACAGGCACCTCCGTGTCAACCGTGGCCCTAGATCCTGTTCTGTTACATCAGCCTGAATGAGC
CCTGGAGGAACACTGACCACCAAGTGGATGAGTCTCAAGGCTCCTCTATGTGACAACCAGTGAATGGGAG
TGGTACCACTTCACGGCATGGCGGGAGATGCCATGCCTACCTCTGCATACCAAGAAAACACTGTGGAACCCA
CGCACCTGTCTGGCTCAATGGCAGCCACCCCTAGAAGGCGACGGCATTGTGCAACGCCAGGTTGTGCCAGCT
TCAATGGAACTGCTGTCTGGAACACCACGGTGGAAAGTCAGGCTTGCCCTGGAGGCTACTATGTGTATCGT
CTGACCAAGCCCAGCGTCTGCTTCCACGCTACTGTGGTCAATTATGACATCTGCGACGGAGACTGCCATGG
CAGCTGCTCAGATACCAGCGAGTGACATGCGCTCAGGAACGTGCTAGGCCCTGACAGGAGACATGCTTG
ATGAAAATGAATGTGAGCAAACAGGTGGCTGAGTGAGATCTGTGTGAACCTCAAAACTCCTACCGCTGT
GAGTGTGGGTTGGCCCTGTGCTAAGAACAGTGTGAAGACGTTGAAGGATGCCACAATAACAA
TGGTGGCTGCAGCCACTCTGCTTGGATCTGAGAAAGGCTACCAAGTGTGAATGTCCCCGGGCCTGGTGTGT
CTGAGGATAACCACACTTCCAAGTCCCTGTGTTGCAAATGCCATTGAACTGAACATCCCCAGGGAG
CTGGTTGGTGGCCTGGACCTCTTCCGACCAACACCTCCTGCCGAGGAGTGTCCAACGGCACCCATGTCAACAT
CCTCTCTCTCAAGACATGTGGTACAGTGGTCATGTGGTGAATGACAAGATTGTGGCCAGCAACCTCGTGA
CAGGTCTACCCAAGCAGACCCGGGGAGCAGCGGGGACTTCATCATCGAACAGCAAGCTGCTGATCCCAGGT
ACCTGCGAGTTCCACCCCTGTACACCAATTCTGAAGGATACGTTCCAACCTTCGAAACTCCCCACTGGAAAT
CATGAGCCGAAATCATGGATCTTCCATTCACTCTGGAGATCTCAAGGAAATGAGTTGAAGAGCCTTACC
GGGAAGCTCTGCCACCCCTCAAGCTTGTGACTCCCTACTTGGCATTGAGCCCTGGTGCACGTGAGCCG
TTGGAAAGCTTGGTGGAGAGCTGTTGCCACCCACCTCCAAGATCGACGAGGTCTGAAATACTACCTCAT
CCGGGATGGCTGTGTTAGATGACTCGTAAAGCAGTACACATCCGGATCACCTAGCAAAGCACTTCCAGG
TCCCTGTCTCAAGTTGTGGCAAAGACCACAAGGAAGTGTCTGACTGCCGGTCTTGTGTGGAGTG
TTGGACGAGCTTCCCGCTGTGCCAGGGTTGCCACCCGGCGAATGCGTGTGGGAGGAGGACTCAGC
CGGTCTACAGGCCAGCGCTAACAGCGGCCGATCCGATCGACTGGAGGACTTAGTTGTAGCCATACCTC
GAGTCCCTGCATTGGACGGCTGCTTTGGAGCTTCTCCCCCACCAGCCCTCTAAGAACATCTGCCAACAGC
TGGGTTCAAGACTCACACTGTGAGTTAGCTCCACCAACTCACTCTGATTCTGGTCCATTCAAGTGGCA
CAGGTCTACAGCACTGCTGAACAATGTGGCTGGGTGGGTTCTTCTAGGGTTGAAACTAAACTGTCCA
CCCAGAAAGACACTCACCCATTCCCTATTCTTCACTTAAACACCTCGTGTATGGTCAACAGAC
CACAAAATCAGAAGCTGGGTATAATATTCAAGTACAAACCTAGAAAAATTAAACACTTACTGAAATTATGA
CTTAAATACCAATGACTCCTAAATATGTAATTAGTTACCTTGAATTCAATTCAAATGCAGACTAA
TTATAGGGAATTGGAAGTGTATCAATAAAACAGTATATAATT

FIGURE 110

MPPFLLLTCLFITGTSVSPVALDPCSAYISLNEPWRNTDHQLDESQGPPLCDNHVNGEWYHFTGMAGDAMP
TFCIPEHCGTHAPWLNGSHPLEGDGIVQRQACASFNGNCCLWNNTTVEVKACPGGYYVYRLTKPSVCFHV
YCGHFYDICDEDCHGCSDTSECTCAPGTVLGPDRQTCFDENECEQNNGGCSEICVNLKNSYRCECGVGRV
LRSRGKTCEDVEGCHNNNGGCSHSLGSEKGYQCECPRLVLSEDNHTCQPVVLCKSNAIEVNIPRELVGG
LELFLTNTSCRGVSNGLTHVNILFSIKTCGTVVVDVNDKIVASNLVTGLPKQTGSSGDFIIRTSKLLIPVT
CEFPRLYTISEGYVPNLRNSPLEIMSRNHGIFPFTLEIFKDNEFEEPYREALPTLKLRSLSYFGIEPVVHV
SGLESLVESCFATPTSKIDEVLKYLIIRDGCVSDDSVKQYTSRDHLAKHFQVVFVFKVGKDHEVFLHCRV
LVCGVLDERSRCAQGCHRRMRRGAGGEDSAGLQGQTLTGGPIRIDWED

Important features of the protein:

Signal peptide:

amino acids 1-16

N-glycosylation sites.

amino acids 89-93, 116-120, 259-263, 291-295, 299-303

Tyrosine kinase phosphorylation sites.

amino acids 411-418, 443-451

N-myristoylation sites.

amino acids 226-232, 233-239, 240-246, 252-258, 296-302, 300-306,
522-528, 531-537

Aspartic acid and asparagine hydroxylation site.

amino acids 197-209

ZP domain proteins.

amino acids 431-457

Calcium-binding EGF-like proteins.

amino acids 191-212, 232-253

FIGURE 111

GAGAGAGGCAGCAGCTGCTCAGCGGACAAGGATGCTGGCGTGAGGGACCAAGGCCTGCCCTGCACTCGG
GCCTCCTCCAGCCAGTGTGACCAGGGACTTCTGACCTGCTGCCAGCCAGGACCTGTGTGGGAGGCCCT
CCTGCTGCCCTGGGTGACAATCTCAGCTCCAGGCTACAGGGAGACCGGGAGGATCACAGGCCAGC**ATGT**
TACAGGATCCTGACAGTGATCAACCTCTGAACAGCCTCGATGTCAAACCCCTGCGAAACCCGTATCCCC
ATGGAGACCTTCAGAAAGGTGGGATCCCCATCATCATAGCACTACTGAGCCTGGCAGGTATCATATTGT
GGTTGTCCATCAAGGTGATTCTGGATAAATACTACTTCCTCTGCGGGCAGCCTCTCCACTTCATCCGA
GGAAGCAGCTGTGTGACGGAGAGCTGGACTGTCCCTGGGAGGACGAGGAGCACTGTGTCAAGAGCTTC
CCCAGGGCCTGCAGTGGCAGTCCGCCTCTCCAAGGACCGATCCACACTGCAGGTGCTGGACTGGCAC
AGGGAACTGGTCTGCCTGTTGACAACCTCACAGAACGCTCTCGTGAGACAGCCTGTAGGCAGATGG
GCTACAGCAGAGCTGTGGAGATTGGCCAGACCAGGATCTGGATGTTGAAATCACAGAAAACAGCCAG
GAGCTTCGCATGCGGAACCTCAAGTGGCCCTGTCCTCAGGCTCCCTGGTCTCCCTGCACTGTCTTGCCTG
TGGGAAGAGCCTGAAGACCCCCCGTGTGGTGGGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGG
TCAGCATCCAGTACGACAAACAGCACGTCTGTGGAGGGAGCATCCTGGACCCCCACTGGGCTCTACGGCA
GCCCACTGCTCAGGAAACATACCGATGTGTTCAACTGGAAGGTGCGGGCAGGCTCAGACAAACTGGCAG
CTTCCCATCCCTGGCTGTGGCCAAGATCATCATATTGAATTCAACCCATGTACCCAAAGACAATGACA
TCGCCCTCATGAAGCTGCAGTCCCACACTTTCTCAGGCACAGTCAGGCCATCTGCTGCCCTCTT
GATGAGGAGCTCACTCCAGCCACCCACTCTGGATCATGGATGGGCTTACGAAGCAGAATGGAGGAA
GATGTCTGACATACTGCTGCAGGCGTCAGTCCAGGTATTGACAGCACACGGTGAATGCAGACGATGCGT
ACCAGGGGAAGTCACCGAGAAGATGATGTGTGAGGCATCCCGAAGGGGTGTGGACACCTGCCAGGGT
GACAGTGGTGGGCCCTGATGTACCAATCTGACCAGTGGCATGTGGTGGCATCGTAGCTGGCTATGG
CTGCGGGGGCCCGAGCACCCCAGGAGTATACACCAAGGTCTCAGCCTATCTCAACTGGATCTACAATGTCT
GGAAGGCTGAGCTG**TAAT**GCTGCTGCCCTTGTGAGCTGCTGGAGGCCCTCCCTGCCACCT
GGGATCCCCAAAGTCAGACACAGAGCAAGAGTCCCCCTGGTACACCCCTCTGCCACAGCCTCAGCAT
TTCTGGAGCAGCAAAGGGCTCAATTCTGTAAGAGACCCCTCGCAGCCAGGGCGCCAGAGGAAGTCA
GCAGCCCTAGCTCGGCCACACTTGGTGTCTCCAGCATCCCAGGGAGAGACAGCCCAGTGAACAAGGTCT
CAGGGTATTGCTAAGCCAAGAAGGAACCTTCCCACACTACTGAATGGAAGCAGGCTGTCTGTAAAAGCC
CAGATCACTGTGGCTGGAGAGGAGAAGGAAGGGCTGCGCCAGCCCTGTCGTCTCACCCATCCCCAA
GCCTACTAGAGCAAGAAACCAAGTGTAAATATAAAATGCACTGCCCTACTGTGGTATGACTACCGTTACCT
ACTGTTGTCATTGTTATTACAGCTATGCCACTATTATAAGAGCTGTGTAACATCTCTGGCAAAAAAAA
AAAA

FIGURE 112

MLQDPDSDQPLNSLDVKPLRKPRIPMETFRKVGIP III ALLSLASIIIVVVLIKVILDKYFLCG
QPLHFIPRKQLCDGELDCPLGEDEEHCVKS FPEGPAVAVRLSKDRSTLQVLDSATGNWFSACFDN
FTEALAEATACRQMGSRAVEIGPDQDLDVVEITENSQEIRMRNSSGPCLSGSLVSLHCLACGKSL
KTPRVVGEEASVDSWPWQVSIQYDKQHVCGGSILDPHWVLTAAHCFRKHTDVFNWKVRAGSDKL
GSFPSLAVAKIIIIIFNPMPKDNDIALMKLQFPLTFSGTVRPICLPFFDEELTPATPLWIIGWG
FTKQNGGKMSDILLQASVQVIDSTRCNADDAYQGEVTEKMMCAGIPEGGVDTQCQGDGGPLMYQS
DQWHVVVGIVSWGYZGCZGPSTPGVYTKVSAYLNWIYNVWKEL

Transmembrane domain:

amino acids 32-53 (typeII)

FIGURE 113

GGCTGGACTGGAACCTCTGGTCCAAGTGATCCACCCGCCCTCAGCCTCCCAAGGTGCTGTGATTA
TAGGTGTAAGCCACCGTGTGGCCTCTGAACAACCTTTTCACTAAGCAACTAAAAAGCCACAGGAGT
TGAAC TGCTAGGATTCTGACTATGCTGTGGCTAGTGCTCCTACTCCTACCTACATTAAAATC
TGTTTTTGTCTCTGTAACTAGCCTTACCTCCTAACACAGAGGATCTGTACTGTGGCTCT
GGCCCAAACCTGACCTTCACTCTGGAACGAGAACAGAGGTTCTACCACACCGTCCCCTCGAAG
CCGGGGACAGCCTCACCTGCTGGCCTCTCGCTGGAGCAGTGCCCTACCAACTGTCTACGTCT
GGAGGCAGTGACTCGGGCAGTGAGCTGAGCCTCTGGTAGCTGCGGCTTCAGGTGGC
CTTGCCCTGGCGTAGAAGGGATTTGACAAGCCCCGAAGATTTCATAGGCGATGGCTCCCACTGCC
AGGCATCAGCCTTGCTGTAGTCAATCACTGCCCTGGGCCAGGACGGCCGTGGACACCTGCTCA
GAAGCAGTGGGTGAGACATCACCGCTGCCGCCATCTAACCTTTCATGTCCTGCACATCACCTG
ATCCATGGGCTAATCTGAACTCTGCTCCAAAGGAACCCAGAGCTTGAGTGAGCTGTGGCTCAGACC
CAGAAGGGGTCTGCTTAGACCACCTGGTTATGTGACAGGACTTGCAATTCTCTGGAACATGAGG
GAACGCCGAGGAAAGCAAAGTGGCAGGGAAAGGAACCTTGCCAAATTATGGGTAGAAAAGATG
GAGGTGGGGTTATCACAAGGCATCGAGTCTCCTGCATTCACTGAGCTGAGCTGTGGCTCAGACC
CCGATGGCGCATGACACACTCGGACTCACCTCTGGGCCATCAGACAGCCGTTCCGCCCGAT
CCACGTACCAGCTGCTGAAGGGCAACTGCAGGCCGATGCTCTCATCAGCCAGGCAGCAGCCAAAA
TCTGCGATCACCAGCCAGGGCAGCGTCTGGGAAGGAGCAAGCAAAGTGACCTTCTCTCCC
CTCCTCCCTCTGAGAGGCCCTCTATGTCCTACTAAAGCCACAGCAAGACATAGCTGACAGG
GGCTAATGGCTCAGTGTGGCCAGGAGGTAGCAAGGCCCTGAGAGCTGATCAGAACAGGCTGCT
GTGCGAACACGGAAATGCCCTCAGTAAGCACAGGCTGCAAATCCCCAGGCAAAGGACTGTGTGG
CTCAATTAAATCATGTTAGTAATTGGAGCTGTCCCCAAGACCAAGGAGCTAGAGCTTGGTT
CAAATGATCTCCAAGGGCCCTATAACCCAGGAGACTTTGATTGAAATTGAAACCCCCAAATCCA
AACCTAAGAACCGAGGTGCAATTAGAACATCAGTTATTGCCGGGTGTGGCTGTAATGCCAACAT
TTTGGGAGGCCAGGCCGGTAGATCACCTGAGGTAGGAGTTCAAGACCAAGGCCCTGGCAACATGG
TGAAACCCCTGTCTACTAAAAAATACAAAAAAACTAGCCAGGCATGGTGGTGTGCCTGTATC
CCAGCTACTCGGGAGGCTGAGACAGGAGAATTACTTGAAACCTGGGAGGTGAAGGAGGCTGAGACA
GGAGAACATTCAGCCTGAGCAACACAGCGAGACTCTGTCTCAGAAAAAATAAAAAAGAATTA
TGGTTATTTGTAA

FIGURE 114

MLWWLVLLLLPTLKVFCSLVTSLYLPNTEDSLWLWPKPDLHSGTRTEVSTHTVPSKPGTASPC
WPLAGAVPSPTVSRLEALTRAVQVAEPLGSCGFQGGPCPGRRD

Signal peptide:

amino acids 1-15

FIGURE 115

CAGCAGTGGCTCTCAGCCTCTAAAGCAAGGAAAGACTGTGTGCTGAGAGACCATGGCAA
AGAATCCTCCAGAGAATTGTGAAGACTGTCACATTCTAAATGCAGAACGCTTTAAATCCAAGAAA
ATATGTAAATCACTTAAGATTGTGGACTGGTGTGGTATCCTGGCCCTAACTCTAATTGTCC
GTTTGCCCCAGCAAGCAACTCTGGCCGGAGGTACCCAAAAAGCCTATGACATGGAGCACACTT
TCTACAGCAATGGAGAGAAGAAGAAGATTTACATGGAAATTGATCCTGTGACCAGAACTGAAATA
TTCAGAAGCGGAAATGGCATGATGAAACATTGGAAGTGCACGACTTAAACGGATAACTGG
CATCTACTTCGTGGGTCTC**AAAATGTTTATC**AAACTCAGATTAAAGTGATTCTGAATTTT
CTGAACCAGAAGAGGAATAGATGAGAATGAAGAAATTACCAACTTCTTGAACAGTCAGTG
ATTTGGGTCCCAGCAGAAAAGCCTATTGAAACCGAGATTTCCTTAAAAATTCCAAATTCTGGA
GATTGGTGATAACGTGACCATGTATTGGATCAATCCCACTCTAATATCAGTTCTGAGTTACAG
ACTTGAGGAGGAGGGAGAAGATCTCACTTCCTGCCAACGAAAAAAAAGGGATTGAACAAAAT
GAACAGTGGGTGGTCCCTCAAGTGAAAGTAGAGAAGACCCGTCACGCCAGACAAGCAAGTGAGGA
AGAAACTTCAATAAATGACTATACTGAAATAGAATTGATCCCATGCTGGATGAGAGAG
GTTATTGTTGTATTACTGCCGTGAGGCAACCGCTATTGCCGCCGCTGTGAACTTACTA
GGCTACTACCCATATCCATACTGCTACCAAGGGAGGACGAGTCATCTGCGTGTCATATGCCTT
TAACTGGTGGGTGGCCCGCATGCTGGGAGGGCTAAATAGGAGGTTGAGCTCAAATGCTTAAAC
TGCTGGCAACATATAAAATGCATGCTATTCAATGAATTTCTGCCCTATGAGGCATCTGCCCT
GGTAGCCAGCTCTCCAGAATTACTGTAGGTAATTCCTCTTCATGTTCTTAAAAACTTCTACA
TTATCACCAAAAAAAAAAAAAAAAAAAAAAAAA

FIGURE 116

MAKNPPENCEDCHILNAEAFSKKICKSLKICGLVFGILALTLLIVLFWGSKHFWPEVPKKAYDME
HTFYSNGEKKKIYMEIDPVTRTEIFRSGNGTDETLEVHDFKNGYTGIYFVGLQKCFIKTQIKVIP
EFSEPEEEIDENEETTTFFEQSVIWVPAEKPIENRDFLKNSKILEICDNVTMYWINPTLISVSE
LQDFEEEEDLHFPAKEKKGIEQNEQWVVPQVKVEKTRHARQASEEEELPINDYTENGIEFDPMED
ERGYCCIYCRRGNRYCRRVCEPLLGYYPYPCYQGGRVICRVIMPCNWWVARMLGRV

Important features of the protein:

Signal peptide:

amino acids 1-40

Transmembrane domain:

amino acids 25-47 (type II)

N-glycosylation sites.

amino acids 94-97, 180-183

Glycosaminoglycan attachment sites.

amino acids 92-95, 70-73, 85-88, 133-136, 148-151, 192-195, 239-
242

N-myristoylation sites.

amino acids 33-38, 95-100, 116-121, 215-220, 272-277

Microbodies C-terminal targeting signal.

amino acids 315-317

Cytochrome c family heme-binding site signature.

amino acids 9-14

FIGURE 117

GAGCTCCCTCAGGAGCGCGTTAGCTTCACACCTCGGCAGCAGGAGGGCGGCAGCTTCTCGCAGGCAGCA
GGCGGGCGGCCAGGATCATGTCACCACACCACATGCCAAGTGGTGGCGTCCCTGTCCATCCTGGGCT
GGCGGCTGCATCGCGCCACCGGGATGGACATGTGGAGCACCAGGACCTGTACGACAACCCGTACCT
CCGTGTTCCAGTACGAAGGGCTGAGGAGCTGCGTGAGGCAGAGTTCAGGCTCACCGAATGCAGGCC
TATTCACCATCCTGGACTTCAGCCATGCTGCAGGCAGTGCAGGCCGTATGATCGTAGGCATCGTCC
GGGTGCCATTGGCCTCTGGTATCCATCTTGCCTGAAATGCATCCGATTGGCAGCATGGAGGACTCTG
CCAAAGCCAACATGACACTGACCTCCGGATCATGTTCAATTGCTCAGGCTTGTGCAATTGCTGGAGTG
TCTGTGTTGCCAACATGCTGGTACTAACCTGGATGTCACAGCTAACATGTACACCGGCATGGTGG
GATGGTGCAGACTGTTAGACCCAGGTACACATTGGTGCAGGCTCTGTTGCTGGCTGGCTGGAGGCC
TCACACTAATTGGGGGTGTGATGATGTGCATCGCCTGCCGGGCTGGCACAGAAGAAACCAACTACAAA
GCCGTTCTTATCATGCCCTCAGGCCACAGTGGTGCCTACAAGCCTGGAGGCTCAAGGCCAGCACTGGCTT
TGGGTCCAACACCAAAACAAGAAGATAACGATGGAGGTGCCGCACAGAGGACGAGGTACAATCTTATC
CTTCCAAGCAGCACTATGTTAATGCTTAAGACCTCTCAGCACGGCGGAAGAAACTCCGGAGAGCTCA
CCCCAAAAACAGGAGATCCCCTAGATTCTCTTGCTTTGACTCACAGCTGGAAAGTTAGAAAAGCCT
CGATTTCATCTTGGAGAGGCCAAATGGTCTAGCCTCAGTCTGTCTAAATATTCCACCATAAAACA
GCTGAGTTATTTATGAATTAGAGGTATAGCTCACATTTCATCCTCTATTCTTTAAATAACT
TTCTACTCTGATGAGAGAATGTGGTTAATCTCTCTCACATTGATGATTTAGACAGACTCCCCCTC
TTCCTCTAGTCAATAAACCCATTGATGATCTATTCCAGCTTACCCCAAGAAAACCTTGAAGGAAA
GAGTAGACCCAAAGATGTTATTTCTGCTGTTGAATTGCTCCCCACCCCAACTTGGCTAGTAATAA
ACACTTACTGAAGAAGAAGCAATAAGAGAAAGATATTGTAATCTCTCCAGCCCATGATCTGGTTTCTT
ACACTGTGATCTTAAAGTTACCAAACCAAAAGTCATTTCAGTTGAGGCAACCAACCTTCTACTGCTG
TTGACATCTCTTATTACAGCAACACCATTCTAGGAGTTCTGAGCTCTCCACTGGAGTCTTCTGT
CCGGGGTCAGAAATTGCTCTAGATGAATGAGAAAATTATTTTTAATTAAAGTCCTAAATATAGTTAA
AATAAATAATGTTTAGTAAATGATAACTATCTCTGTGAAATAGCCTCACCCCTACATGTGGATAGAAG
GAAATGAAAAATAATTGCTTGAATTGACTATGTCTATATGGTACTTGTAAAGTCATGCTTAAGTACAATTCC
ATGAAAAGCTCACACCTGTAATCTAGCATTGGAGGCTGAGGAGGAAGGATCACTTGAGGCCAGAAGT
TCGAGACTAGCCTGGCAACATGGAGAAGCCCTGTCTCACAAATACAGAGAGAAAATCAGCCAGTCA
TGGTGGCATAACACTGTAGTCCCAGCATTCCGGAGGCTGAGGTGGGAGGATCACTTGAGGCCAGGGAGGT
TGGGGCTGCAGTGACCCATGATCACACCACTGCACCTCCAGCCAGGTGACATAGCGAGATCCTGTCTAAAAA
AATAAAAAATAATGGAACACAGCAAGTCCTAGGAAGTAGGTTAAACTAATTCTTAA

FIGURE 118

MSTTCQVVAFLLSILGLAGCIAATGMDMWSTQDLYDNPVTSVFQYEGLWRSCVRQSSGFTECRP
YFTILGLPAMLQAVRALMIVGIVLGAIGLLVSI FALKCIRIGSMEDSAKANMTLTSGIMFIVSGL
CAIAGVSVFANMLVTNFWMSTANMYTGMGGMVQTVQTRYTFGAALFVGVWVAGGLTLIGGVMMCIA
CRGLAPEETNYKAVSYHASGHHSVAYKPGGFCASTGFGSNTKNKKIYDGGARTEDEVQSYP SKHDY
V

Signal peptide:

amino acids 1-23

Transmembrane domains:

amino acids 81-100, 121-141, 173-194

FIGURE 119

GGAAAAACTGTTCTCTCTGTGGCACAGAGAACCTGCTCAAAGCAGAAGTAGCAGTCCGGAGTCC
AGCTGGCTAAACTCATCCCAGAGGATAATGGCAACCCATGCCTAGAAATCGCTGGCTGTTCTTG
GTGGTGTGGAATGGTGGCACAGTGGCTGTCACTGTCATGCCTCAGTGGAGAGTGTGGCCTTCATT
GAAAACAACATCGTGGTTTGAAACTTCTGGAAAGGACTGTGGATGAATTGCGTGAGGCAGGCTAA
CATCAGGATGCAGTCAAATCTATGATTCCCTGCTGGCTTTCTCCGGACCTACAGGCAGGCCAGAG
GACTGATGTGCTGCTCCGTGATGCTCTTGGCTTCATGATGGCCATCCTGGCATGAAATGC
ACCAGGTGCACGGGGACAATGAGAAGGTGAAGGCTCACATTCTGCTGACGGCTGGAATCATCTTCAT
CATCACGGGCATGGTGGTGCTCATCCCTGTGAGCTGGGTTGCCAATGCCATCATCAGAGATTCTATA
ACTCAATAGTGAATGTTGCCAAACAGTGAGCTGGAGAAGCTCTACTTAGGATGGACCACGGCA
CTGGTGCTGATTGTTGGAGGAGCTGTTCTGCGTTTTGCAACGAAAGAGCAGTAGCTA
CAGATACTCGATACACCTTCCCATCGACAACCCAAAAAGTTATCACACCGAAAGAAGTCACCGAGCG
TCTACTCCAGAAGTCAGTATGTGTAGTTGTATGTTTAACTTACTATAAACCCATGCAAATG
ACAAAAATCTATATTACTTCTCAAATGGACCCAAAGAAACTTGAATTACTGTTCTTAACTGCCT
AATCTTAATTACAGGAACTGTGCATCAGCTATTGATTCTATAAGCTATTCAGCAGAAATGAGATA
TTAAACCAATGCTTGATTGTTCTAGAAAGTATAGTAATTGTTCTAAGGTGGTCAAGCATACTA
CTCTTTTATCATTACTTCAAATGACATTGCTAAAGACTGCATTATTTACTACTGTAATTCTCC
ACGACATAGCATTATGTACATAGATGAGTGTAAACATTATCTCACATAGAGACATGCTTATATGGT
TTTATTTTAAAATGAAATGCCAGTCCATTACACTGAATAAATAGAACTCAACTATTGCTTTAGGGAA
ATCATGGATAGGGTTGAAGAAGGTTACTATTAAATTGTTAAAACAGCTTAGGGATTATGCTCCA
TTTATAATGAAGATTAAGGTTAAATGAAGGCTTAATCAGCATTGTAAGGAAATTGAATGGCTTCTGATAT
GCTGTTTTAGCCTAGGAGTTAGAAATCCTAACTTCTTATCCTCTCCAGAGGCTTTTT
CTTGTGTTAAATTAACATTGTTAAACAGCAGATATTGTCAGGGCTTTGCATTCAAACGCTT
TTCCAGGGCTATACTCAGAAGAAAGATAAAAGTGTGATCTAAGAAAAGTGTGTTAGGAAAGTG
AAAATATTTTGTTGTATTGAGAAGAAGATGATGCATTGACAAGAAATCATATATGTATGGAT
ATATTTTAATAAGTATTGAGTACAGACTTGAAGGTTCATCAATATAAAAGAGCAGAAAATA
TGTCTGGTTTCATTGCTTACCAAAAAACAAACAAAAAGTTGCTCTTGAAGAAACTCACCT
GCTCCTATGTGGGTACCTGAGTCAAATTGTCATTGTTCTGTGAAAATAAATTCCCTCTGTA
CCATTTGTTAGTTACTAAATCTGAAATACTGTATTGTTCTGTTATTCAAATTGATGAA
ACTGACAATCCAATTGAAAGTTGTGTCGACGTCTGTCTAGCTAAATGAATGTGTTATTGCTT
TATACATTTATTAATAAAATTGTACATTGTTCTAATT

FIGURE 120

MATHALEIAGLFLLGGVGMVGTVAVTVMPOWRVSIFIENNIVVFENFWEGLWMNCVRQANIRMOCK
IYDSLLALSPDLQAARGLMCAASVMSFLAFMMAILGMMKCTRCTGDNEKVKAHILLTAGIIFIITG
MVVLIPVSWVANAIIRDFYNSIVNVAQKRELGEALYLGWTTALVLIVGGALFCCVFCCNEKSSSY
RYSIPSHRTTQKSYHTGKKSPSVYRSQYV

Signal peptide:

amino acids 1-17

Transmembrane domains:

amino acids 82-101, 118-145, 164-188

FIGURE 121

GGAGAGAGGCGCGCGGGTGAAAGGCGCATTGATGCAGCCCTGCCGCGCCTCGGAGCGCGGCGAG
CCAGACGCTGACCACGTTCCCTCCTCGGTCTCCTCCGCCCTCCAGCTCCGCGCTGCCCGCAGCC
GGGAGCCATGCGACCCCAGGGCCCCGCCGCCCTCCCGCAGCGGCTCCGCCCTCGCTGCTCC
TGCTGCTGCAGCTGCCCGCCGTCAGCGCCTCTGAGATCCCCAAGGGGAAGCAAAGGCGCAG
CTCCGGCAGAGGGAGGTGGTGGACCTGTATAATGGAATGTGCTTACAAGGGCCAGCAGGAGTGCC
TGGTCGAGACGGGAGCCCTGGGCCAATGTTATTCCGGTACACCTGGATCCCAGGTGGATG
GATTCAAAGGAGAAAAGGGGAATGCTGAGGGAAAGCTTGAGGAGTCCTGGACACCCAAC
AACAGCTGTTCATGGAGTTCAATTGAATTATGGCATAGATCTGGAAAATTGCGGAGTG
TACATTACAAGATGCGTTCAAATAGTGCCTAAGAGTTTGTTCACTGGCTACTCGCTAAAATGCA
GAAATGCATGCTGTCAGCGTTGGTATTCACATTCAATGGAGCTGAATGTTCA
GGACCTCTTCCCATTGAAGCTATAATTATTGGACCAAGGAAGCCCTGAAATGAATTCA
ACAATTAAATTATCGCACTTCTCTGTGGAAGGACTTGTGAAGGAATTGGTGTGGATTAGTGG
ATGTTGCTATCTGGTTGGCACTTGGTCAAGATTACCCAAAAGGAGATGCTTCA
CTGGATGGAATTCACTGGTCTACTGGATGGAATTCACTGGTCTACTGG
ATTATTGAAGAACTACCAAAATAATGCTTAATTTCATTTGCTACCTCTTTTATTATGCC
TTGGAATGGTCACTAAATGACATTAAAGTTATGTATACTGAATGAAAAGCAAAG
CTAAATATGTTACAGACCAAAGTGTGATTCACACTGTTAAATCTAGCATT
ATTGCTCAATCAAAAGTGGTTCAATATTTTTAGTTGTTAGAATACTTCTTCA
TAGTCACATTCTCTCAACCTATAATTGGAATTGTTGTTAGTCTTCTTCT
AAAAAAATATAAAAAGCTACCAATCTTGACAATTGTAAATGTTAAGAATT
TTTTTATATCTGTTAAATAAAATTATTCCAACA

FIGURE 122

MRPQGPAAASPQRRLGLLLLLLQLPAPSSASEIPKGKQKAQLRQREVVDLYNGMCLQGPAGVPGR
DGSPGANVIPGTPGIPGRDGFKGEKGECLRESFEESWTPNYKQCSWSSLNYGIDLGKIAECTFTK
MRSNSALRVLFSGSIRLKCRNACCQRWYFTFNGAECSGPLPIEAIYLDQGSPEMNSTINIHRTS
SVEGLCEGIGAGLVDVAIWVGTCSDYPKGDASTGWNSVSRIIIIEELPK

Signal peptide:

amino acids 1-30

Transmembrane domain:

amino acids 195-217

FIGURE 123

GCTGAGCGTGTGCGCGGTACGGGGCTCTCCCTGCCCTGGGCTCCAACGCAGCTGTGGCTGAA
CTGGGTGCTCATCACGGGAACGTGGCTATGGAATACAGATGTGGCAGCTCAGGTAGCCCCAA
ATTGCCTGGAAGAATACATCATGTTTCGATAAGAAGAAAATTGTAAGGATCCAGTTTTTTTA
ACCGCCCCCTCCCCACCCCCCAAAAAACTGAAAGATGCAAAACGTAATATCCATGAAGATCC
TATTACCTAGGAAGATTGATGTTGCTGCGAATGCCGTGTTGGATTATTTGTTCTTGAG
TGGTCTGCGTGGCTGGCAAAGAATAATGTTCAAATCGGTCCATCTCCAAGGGTCCAATT
TCTTCTGGGTGTCAGCAGCCCTGACTCACTACAGTCAGCTGACAGGGCTGTCATGCAACTG
GCCCTAAGCAAAGCAAAAGACCTAAGGACGACCTTGAACAATACAAAGGATGGGTTCAATG
TAATTAGGCTACTGAGCGGATCAGCTGTAGCACTGGTTAGGCCCACTGCTTACTGACAATG
CTTCTCTGCCGAACGAGGATGCCCTAACGGCTGAGGTGAGGCAAATGGTATATTGTGA
ATCTCAGAAATTACAGGAGATACCCCTCAAGTATATCTGCTGGTTGCTTAGGTTGCCCCTCGCT
ATAACAGCCTCAAAACTTAAGTATAATCAATTAAAGGGCTAACCGAGCTCACCTGGCTATAC
CTTGACCATAACCATATCAGCAATTGACGAAATGCTTTAATGGAATACGCAGACTCAAAGA
GCTGATTCTAGTTCCAATAGAATCTCTATTCTTAACAAATACCTCAGACCTGTGACAAATT
TACGGAACCTGGATCTGCTCTATAATCAGCTGCATTCTGGGATCTGAACAGTTGGGGCTTG
CGGAAGCTGCTGAGTTACATTACGGCTAACTCCCTGAGAACCATCCCTGTGCGAATATTCCA
AGACTGCCGCAACCTGGAACCTTGGACCTGGGATATAACCGGATCCGAAGTTAGCCAGGAATG
TCTTGCTGGCATGTCAGACTCAAAGAACCTCACCTGGAGCACAACTCAATTTCAGCTAAC
CTGGCCCTTTTCCAAGGGTGGTCAGCCTCAGAACCTTACTTGCACTGGAATAAAATCAGTGT
CATAGGACAGACCATGTCCTGGACCTGGAGCTCCCTAACAAAGGCTGATTTATCAGGCAATGAGA
TCGAAGCTTCAGTGGACCCAGTGTGTTCCAGTGTGTCCCAGTCTGAGCTGAGGTTAGCCAG
TCCAACAAAGCTCACATTATGGTCAAGAGATTGGATTCTGGATATCCCTCAATGACATCAG
TCTTGCTGGGAATATATGGGAATGCAAGCAGAAATATTGCTCCCTGTAAACTGGCTGAAAGTT
TTAAAGGCTAAAGGAGAATACAATTATCTGCACTGCCCAGAGCTGCAAGGAGTAAATGTG
ATCGATGCAAGAAACTACAGCATCTGGCAAAGTACTACAGAGAGGTTGATCTGGCAG
GGCTCTCCAAAGCCGACGTTAACGCCAACGCTCCCCAGGCCAGACATGAGAGCAAACCCCTT
TGCCCCCGCGTGGGAGGCCAACAGAGCCGCCAGAGACCGATGCTGACGCCGAGCACATCT
TTCCATAAAATCATCGCGGGCAGCGTGGCGTTTCTGTCGTCATCCTGCTGGTTAT
CTACGTTCATGGAAGCGGTACCTGCGAGCATGAAGCAGCTGCAGCAGCGCTCCCTCATGGAA
GGCACAGGAAAAGAAAAGACAGTCCCTAACGAAATGACTCCCAGCACCCAGGAATTATGTA
GATTATAAAACCCACCAACCGGAGACCAGCGAGATGCTGCTGAATGGGACGGGACCCCTGCACCTA
TAACAAATGGGCTCAGGGAGTGTGAGGTATGAACCTTGTGATAAAAAGAGCTTAAAGCT
GGGAAATAAGTGGTCTTATTGAACTCTGTAAGTCAAGGGAACCGCGATGCCCTCCCC
TTCCCTCTCCCTCACTTTGGCAAGATCCTCTGTCCGTTTAGTGCATTATAACT
GGTCATTTCCTCTACATAATCAACCCATTGAAATTAAACACAAATCAATGTGAAGCTT
GAACCTCCGGTTAATATAACCTATTGTATAAGACCCCTTACTGATTCCATTATGTCGCA
GTTTAAGATAAAACTTCTTCATAGTAAAAAAAAAA

FIGURE 124

MGFNVIRLLSGSAVALVIAPTVLITMLSSAERGCPKGCRCEGKMYCESQKLQEIPSSISAGCLG
LSLRYNSLQKLKYNQFKGLNQLTWLYLDHNNHISNIDENAFNGIRRLKELILSSNRISYFLNNTR
PVTNLRNLDLSYNQLHSLGSEQFRGLRKLLSLHRSNSLRTIPVRIFQDCRNLELLDLGYNRIRS
LARNVFAGMIRLKEHLHEHNQFSKLNLAFFPLVSLQNLQWNKISVIGQTMSTWSSLQRLDL
SGNEIEAFSGPSVFQCVPNLQRNLDSNKLFIGQEILDWSISLNDISLAGNIWECSRNICSLVN
WLKSFKGLRENTIICASPKELQGVNVIDAVKNYSICGKSTTERFDLARALPKPTFKPKLPRPKHE
SKPPLPPPTVGATEPGPETDADAEHISFHKIIAGSVALFLSVLILLVIYVSWKRYPASMKQLQQR
SLMRRHRKKKRQSLKQMTPSTQEFYVDYKPTNTETSEMLLNGTGPCTYNKSGSRECEV

Important features of the protein:

Signal peptide:

amino acids 1-33

Transmembrane domain:

amino acids 420-442

N-glycosylation sites.

amino acids 126-129, 357-360, 496-499, 504-507

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 465-468

Tyrosine kinase phosphorylation site.

amino acids 136-142

N-myristoylation sites.

amino acids 11-16, 33-38, 245-250, 332-337, 497-502, 507-512

FIGURE 125

CCGTTATCGTCTTGCCTACTGCTGAATGTCCGTCCCGGAGGAGGGAGGGCTTTGCCGCTG
ACCCAGAGATGGCCCCGAGCGAGCAAATTCTACTGTCCGGCTGCGGGCTACCGTGGCGAGCT
AGCAACCTTCCCCTGGATCTCACAAAACTCGACTCCAATGCAAGGAGAACGAGCTTGTCTC
GGTGGGAGACGGTGCAAGAGAACTGCCCCTAGGGGAATGGTGCGCACAGCCCTAGGGATC
ATTGAAGAGGAAGGCTTCTAAGCTTGGCAAGGAGTGACACCCGCCATTTACAGACACGTAGT
GTATTCTGGAGGT~~CGA~~ATGGTCACATATGAACATCTCCGAGAGGTTGTGTTGGAAAGTGAAG
ATGAGCATTATCCCCTTGGAAATCAGTCATTGGAGGGGATGGCTGGTGTATTGGCCAGTT
TTAGCCAATCCAACTGACCTAGTGAAGGTT~~CAGATG~~CAATGGAAGGAAAAGGAAACTGGAAGG
AAAACCATTGCGATT~~CGTGGT~~GTACATCATGCATTGCAAAATCTTAGCTGAAGGAGGAATAC
GAGGGCTTGGGCAGGGCTGGGTACCCAATATAACAAAGAGCAGCACTGGTGAATATGGGAGATT
ATACCACTTATGATACAAGTTTATGTTCTGGACTGGTAGCTTCTATTCTGGGAACACCAGCCGATGTCA
TCACGGTTTATCAAGTTTATGTTCTGGACTGGTAGCTTCTATTCTGGGAACACCAGCCGATGTCA
TCAAAAGCAGAATAATGAATCAACCACGAGATAAACAGGAAGGGACTTTGTATAAATCATCG
ACTGACTGCTTGATT~~CAGGCT~~GTTCAAGGT~~GAAGGATT~~CATGAGTCTATATAAAAGGCTTTTACC
ATCTTGCTGAGAATGACCCCTGGTCAATGGTGTCTGGCTTACTTATGAAAAATCAGAGAGA
TGAGTGGAGTCAGTCCATTTAA

FIGURE 126

MSVPEEEERLLPLTQRWPRASKFLLSGCAATVAELATFPPLDLTKTRIQLMQGEAALARLGDGARES
APYRGMVRTALGIIEEGFLKLWQGVTPAIYRHVVYSGGRMVTYEHLREVVFGKSEDEHYPLWKS
VIGGMMAGVIGQFLANPTDLVKVQMOMEGKRKLEGKPLRFRGVHHAFAKILAEGGIRGLWAGWVP
NIQRAALVNMGDLTTYDTVKHYLVLNTPLEDNIMTHGLSSLCGLVASILGTPADVIKSRI MNQP
RDKQGRGLLYKSSTDCLIQAVQGEGFMSLYKGFLPSWLRMTPWSMVFWLTYEKIREMSGVSPF

Transmembrane domains:

amino acids 25-38, 130-147, 233-248

FIGURE 127

CGCGGATCGGACCCAAAGCAGGTGGCGGCCGGCAGGAGAGCAGGCCGGCGTCAGCTCTCGAC
CCCCGTGTCGGGCTAGTCCAGCGAGGCAGGGCGCTGGGCCATGCCAGGCCGGCATGG
AGCGGTGGCGCAGCCGGCTGGCGCTGGTGACGGGGCCTCGGGGGCATCGGCGCGCGTGGCC
CGGGCCCTGGTCCAGCAGGGACTGAAGGTGGTGGCTGCGCCCGACTGTGGCAACATCGAGGA
GCTGGCTGCTGAATGTAAGAGTCAGGCTACCCCGGACTTGATCCCCTACAGATGTGACCTAT
CAAATGAAGAGGACATCCTCTCCATGTTCTCAGCTATCCGTTCTCAGCACAGCGGTGAGACATC
TGCATCAACAATGCTGGCTGGCCGGCCTGACACCCTGCTCTCAGCAGCACCAGTGGTTGGAA
GGACATGTTCAATGTGAACGTGCTGGCCCTCAGCATTGACACAGGGCTACCAAGTCCATGA
AGGAGCAGAATGTGGACGATGGCACATCATTAACATCAATAGCATGTCAGGCCACCGAGTGTAA
CCCCCTGTCGTGACCCACTTCTATAGTGCACCAAGTATGCCGTCAGTGCCTGACAGAGGGACT
GAGGCAAGAGCTCGGGAGGCCAGACCCACATCCGAGCCACGTGCATCTCCAGGTGTGGTGG
AGACACAAATTGCGCTTCAAACCTCCACGACAAGGACCTGAGAAGGAGCTGCCACCTATGAGCAA
ATGAAGTGTCTCAAACCGAGGATGTGGCCGAGGCTGTTATCTACGTCCAGCACCCCCGCACA
CATCCAGATTGGAGACATCCAGATGAGGCCACGGAGCAGGTGACACTGTGACTGTGGGAGCTCC
TCCTTCCTCCCCACCCCTCATGGCTGCCCTGCCTCTGGATTAGGTGTTGATTTCTGGAT
CACGGGATAACCACTCCCTGTCCACACCCCGACCAGGGCTAGAAAATTGTTGAGATTTTATA
TCATCTGTCAAATTGCTTCAGTTGAAATGTGAAAAATGGGCTGGGAAAGGAGGTGGTGTCCC
TAATTGTTTACTTGTAACTTGTCTTGCCCTGGCACTTGGCTTGTCTGCTCTCAGTG
TCTTCCCTTGACATGGGAAAGGAGTTGTGCCAAAATCCCCATCTTGCACCTCAACGCTG
TGGCTCAGGGCTGGGTGGCAGAGGGAGGCCTCACCTTATATCTGTGTTATCCAGGGCTCC
AGACTTCCCTCTGCCTGCCCACTGCACCCCTCCCCCTATCTATCTCCTCTCGGCTCCCC
AGCCCAAGTCTGGCTTGTCCCCCTGGGTATCCCTCACTGACTCTGACTATGGCAG
CAGAACACCAGGGCTGGCCAGTGGATTTCATGGTATCATTAAAAAGAAAATCGCAACCAA
AAAAAAAAAA

FIGURE 128

MARPGMERWRDRRLALVTGASGGIGAAVARALVQQGLKVVGCARTVGNIIEELAAECKSAGYPGTLLI
PYRCDLSNEEDILSMFSAIRSQHSGVDICINNAGLARPDTLLSGSTSGWKDMFNVLALSICTR
EAYQSMKERNVDDGHIININMSGHRLPLSVTHFYSATKYAVTALTEGLRQELREAQTHIRATC
ISPGVVETQFAFKLHDKDPEKAAATYEQMCKLPEDVAEAVIYVLSTPAHIQIGDIQMRPTEQVT

Important features of the protein:

Signal peptide:

amino acids 1-17

N-myristoylation sites.

amino acids 18-24, 21-27, 22-28, 24-30, 40-46, 90-96, 109-115,
199-205

Short-chain alcohol dehydrogenase.

amino acids 30-42, 104-114

FIGURE 129

AACTTCTACATGGGCCTCCTGCTGGTGCTCTTCAGCCTCTGCCGGTGCCTACACCAT
CATGTCCCTCCCACCCCTCTTGACTGCGGCCGTTCAAGGTGCAGAGTCTCAGTTGCCGGAGC
ACCTCCCCCTCCCGAGGCAGTCTGCTCAGAGGGCTCGGCCAGAATTCCAGTTCTGGTTCATGC
CAGCCTGTAAGGGCATGGAACTTGGTGAAATCACCGATGCCATTAAAGAGGGTTTCTGCCA
GGATGGAAATGTTAGGTCGTTCTGTCTGCCTGTTCAATTTCAGTAGCCACCAGCCACCTGTGG
CCGTTGAGTGCTGAAATGAGAACTGAGAAAATTAAATTCTCATGTATTTCTCATTTATTAA
TTAATTAACTGATAGTTGTACATATTGGGGTACATGTGATAATTGGATACTGTATAACAA
TATATAATGATCAAATCAGGGTAACGGGATATCCATCACATCAAACATTATTTTATTCTTT
TTAGACAGAGTCTCACTGTCAACCAGGCTGGAGTGCAGTGGGCCATCTCAGCTTACTGCAAC
CTCTGCCTGCCAGGTTCAAGCGATTCTCATGCCTCACCTCCAAAGTAGCTGGGACTACAGGCAT
GCACCACAATGCCCAACTAATTGTATTTAGAGACGGGGTTTGCCATGTTGCCAGG
CTGGCCTGAACTCCTGGCCTCAAACAATCCACTGCCTCGGCCTCCCAAAGTGTATGATTACA
GGCGTGAGCCACCGTGCCTGGCTAACATTTATCTTGTGTTGGAACTTGAAATTAT
ACAATGAATTATTGTTAACTGTCATCTCCCTGCTGTGCTATGGAACACTGGACTTCTCCCTCT
ATCTAACTGTATATTGTACCAAGTTAACCAACCGTACTTCATCCCCACTCCTCTATCCTCCC
AACCTCTGATCACCTCATTCTACTCTACCTCCATGAGATCCACTTTTAGCTCCCACATGTG
AGTAAGAAAATGCAATATTGTCTTCTGTGCCTGGCTTAACTAACATAATGACTCCTG
TTCCATCCATGTTGGCTGCAAATGACAGGATTCGTTCTTAATTCAATTAAAATAACCACACATG
GCAAAAA

FIGURE 130

MGLLLLVLFLSLLPVAYTIMSLPPSFDCGPFRCRVSVAREHLPSRGSSLRGPRPRIPLVSCOPV
KGHGTLGESPMPFKRVFCQDGTVRSFCVCAVFSSHQPPVAVECLK

Important features of the protein:

Signal peptide:

amino acids 1-18

N-myristoylation site.

amino acids 86-92

Zinc carboxypeptidases, zinc-binding region 2 signature.

amino acids 68-79

FIGURE 131

TTCTGAAGTAACGGAAGCTACCTTGATAAAGACCTCAACACTGCTGACCATGATCAGCGCAGCCTGGAGC
ATCTTCCTCATCGGGACTAAAATTGGGCTTCTCAAGTAGCACCTCATCAGTTATGGCTAAATCCTG
TCCATCTGTGTGCGCTGCGATGCGGTTTCATTACTGTAATGATCGTTCTGACATCCATTCAAACAG
GAATACCAGAGGATGCTACAACCTCTACCTCAGAACACCAAATAAAATAATGCTGGGATTCCCTTCAGAT
TTGAAAAAACTTGTGAAAGTAGAAAGAATATACTATACCAACACAGTTAGATGAATTTCCTACCAACCT
CCCAGGAACTATGTAAGAGTTACATTGCAAGAAAATAACATAAGGACTATCACTTATGATTCACTTCAA
AAATTCCCTATCTGAAAGAATTACATTTAGATGACAACCTGTCTCTGCAGTTAGCATAGAAGAGGGAGCA
TTCCGAGACAGCAACTATCTCGACTGCTTTCTGTCCCGTAATCACCTAGCACAATTCCCTGGGTTT
GCCAGGACTATAGAAGAACTACGCTGGATGATAATCGCATATCCACTATTCATCACCCTCTTCAAG
GTCTCACTAGTCTAAACGCCTGGTTAGATGAAACCTGTGAAACAATCATGGTTAGGTGACAAAGTT
TTCTTCAACCTAGTTAATTGACAGAGCTGTCCTGGTGCAGAATTCCCTGACTGCTGCACAGTAAACCT
TCCAGGCACAAACCTGAGGAAGCTTATCTCAAGATAACCACATCAATGGGTGCCCAATGCTTTT
CTTATCTAAGGCAGCTCTACGACTGGATATGTCATAATAAACCTAAGTAATTACCTCAGGGTATCTT
GATGATTGGACAATATAACACAACGTTCTCGCAACAATCCCTGGTATTGCGGGTGCAGATGAAATG
GGTACGTGACTGGTTACAATCACTACCTGTGAAGGTCAACGTGCGTGGGCTATGTGCCAAGCCCCAGAAA
AGGTTCGTGGGATGGCTATTAGGATCTCAATGCAAGACTGTTGATTGTAAGGACAGTGGGATTGTAAGC
ACCATTCAAGATAACCACGCAATAACCCACACAGTGTATCCTGCCAAGGACAGTGGCCAGCTCCAGTGAC
CAAACAGCCAGATATTAAGAACCCCAAGCTCAACTAAGGATCAACAAACCAAGGGAGTCCCTCAAGAAAAAA
CAATTACAATTACTGTGAAGTCTGTCACCTCTGATACCATTCTATCTTGGAAACTTGCTCTACCTATG
ACTGCTTGGACTCAGCTGGCTTAAACTGGGCATAGCCGGCATTTGGATCTATAACAGAAACAATTGT
AACAGGGGAACGCACTGAGTACTGGTCACAGCCCTGGAGCCTGATTCACCTATAAAGTATGCATGGTC
CCATGGAAACCAGCAACCTCTACCTATTGATGAAACTCCTGTTGATTGAGACTGAAACTGCACCCCT
CGAATGTACAACCCCTACAACCACCCCTCAATCGAGAGCAAGAGAAAGAACCTTACAAAAACCCCAATTAC
TTGGCTGCCATATTGGTGGGCTGTGGCCCTGGTTACCATGGCTTCTGCTTAGTGTGTTGGTATG
TTCATAGGAATGGATGCTCTTCTCAAGGAACGTGTGCAATAGCAAAGGGAGGAGAAGAAAGGATGACTAT
GCAGAAGCTGGCACTAAGAAGGACAACACTATCCTGGAAATCAGGGAAACTTCTTTCAAGATGTTACCAAT
AAGCAATGAACCCATCTGAAGGAGGAGTTGTAATACACACCATATTCTCTTAATGGAATGAATCTGT
ACAAAAACAATCACAGTGAAAGCAGTAGTAACCGAAGCTACAGAGACAGTGGTATTCCAGACTCAGATCAC
TCACACTCATGATGCTGAAGGACTCACAGCAGACTTGTGTTGGTTTAAACCTAAGGGAGGTGATG
GT

FIGURE 132

MISAAWSIFLIGTKIGLFLQVAPLSVMAKSCPSVCRCDAAGFIYCNDRFLTSIPTGIPEDATTLYL
QNNQINNAGIPSIDLKNLLKVERIYLYHNSLDEFPTNLPKYVKELHLQENNIRTITYDSLSKIPYL
EELHLDNSVSAVSIEEGAFRDSNYLRLLFLSRNHLSIIPWGLPRTIEELRLDDNRISTISSPSL
QGLTSLKRLVLDGNLLNNHGLGDVKFFNLVNLTELSVRNSLTAAPVNLPGTNLRKLYLQDNHIN
RVPPNAFSYLRQLYRLDMSNNNLSNPQGIFDDLDNITQLILRNNPWYCGCKMKWVRDWLQSLPV
KVNVRGILMCQAPEKVRGMAIKDLNAELFDCKDSGIVSTIQITTAIPNTVYPAQGQWPAPVTKQPD
IKNPKLTDQQTTGPSRKTITITVKSVTSDTIHISWKALPMTALRLSWLKLGHSPAFGSITET
IVTGERSEYLVTALEPDSPYKVMVPMETSNLYLFDETPVCIETETAPLRMYNPTTLNREQEKE
PYKNPNLPLAAIIGGAVALVTIALLAVCWYVHRNGSLFSRNCAYSKGRRRKDDYAEAGTKKDNS
ILEIRETSFQMLPISNEPISKEEFVIHTIFFPNGMNLYKNNHSESSSNRSYRDSGIPDSDHSHS

Important features of the protein:

Signal peptide:

amino acids 1-28

Transmembrane domain:

amino acids 531-552

N-glycosylation sites.

amino acids 226-229, 282-285, 296-299, 555-558, 626-629, 633-636

Tyrosine kinase phosphorylation site.

amino acids 515-522

N-myristoylation sites.

amino acids 12-17, 172-177, 208-213, 359-364, 534-539, 556-561,
640-645

Amidation site.

amino acids 567-570

Leucine zipper pattern.

amino acids 159-180

Phospholipase A2 aspartic acid active site.

amino acids 34-44

FIGURE 133

CCGTCATCCCCCTGCAGCCACCCCTCCCAGAGTCCTTGCCTGCCAGGCCACCCAGGCTTCTGGCA
GCCCTGCCGGGCCACTTGTCTTCCATGTCTGCCAGGGGAGGTGGGAAGGAGGTGGAGGAGGGCG
TGCAGAGGCAGTCTGGGCTTGGCCAGAGCTCAGGGTGTGAGCGTGACCAGCAGTGAGCAGAG
GCCGGCCATGGCCAGCCTGGGCTGCTGCTCTGCTTAAGTACGACAGCACTGCCACCGCTGTGGT
CCTCTCACTGCCCTGGCTGGACACTGCTGAAAGTAAAGCCACCATGCAAGACCTGATCCTGTCT
GCGCTGGAGAGAGCCACCGTCTCCTAGAACAGAGGCTGCCTGAAATCAACCTGGATGGATGGT
GGGGTCCGAGTGTGGAAGAGCAGCTAAAAAGTGTCCGGAGAAGTGGGCCAGGAGCCCTGC
TGCAGCCGCTGAGCTGCGCGTGGGATGCTGGGGAGAAGCTGGAGGCTGCCATCCAGAGATCC
CTCCACTACCTCAAGCTGAGTGATCCAAAGTACCTAACAGAGAGTTCCAGCTGACCCTCCAGCCCG
GTTTGGAAAGCTCCACATGCCCTGGATCCACACTGATGCCCTTGGTGTACCCACGTTGGC
CCCAGGACTCATTCTCAGAGGAGAGAAGTGAAGTGCAGCTGCGCTGGTGCAGCTGCTGGAAACCGGACG
GACAGCAGCGAGCCCTGCGGCCTCTCAGACCTCTGCAGGAGCCTCATGACCAAGCCGGCTGCTC
AGGCTACTGCCCTGCCCACCAACTGCTCTTCTCTGGCCAGAATGAGGGATGCACACAGG
GACCACTCCAACAGAGCCAGGACTATATCAACCTTCTGCGCAACATGATGGACTTGAACCGC
AGAGCTGAGGCCATCGGATAACGCCAACCTACCCGGACATCTTATGGAAAACATCATGTTCTG
TGGAAATGGGCGCTCTCCGACTTCTACAAGCTCCGGTGGCTGGAGGCCATTCTCAGCTGGCAGA
AACAGCAGGAAGGATGCTCGGGAGCCTGATGCTGAAGATGAAGAATTATCTAAAGCTATTCAA
TATCAGCAGCATTTTCGAGGAGAGTGAAGAGGCGAGAAAAACAATTCCAGATTCTCGCTCTGT
TGCTCAGGCTGGAGTACAGTGGCGCAATCTGGCTCACTGCAACCTTGCCTCTGGGTTCAAGC
AATTCTCTGCCCTCATCCTCCCGAGTAGCTGGACTACAGGAGCGTGCCACCACCTGGCTAAT
TTTATATTTTTAGTAGAGACAGGGTTCATCATGTTGCTCATGCTGGTCTCGAACCTCTGAT
CTCAAGAGATCCGCCACCTCAGGCTCCAAAGTGTGGATTTAGGTGTGAGCCACCGTGTCTG
GCTGAAAAGCATTCAAAGAGACTGTGTTGAATAAAGGGCAAGGTTCTGCCACCCAGCACTC
ATGGGGCTCTCTCCCTAGATGGCTGCTCTCCACAAACACAGCCACAGCAGTGGCAGCCCTGG
GTGGCTCTATACATCCTGGCAGAACACCCCCCAGCAAACAGAGAGGCCACACCCATCCACACCG
CCACCAAGCAGCGCTGAGACGGACGGTCCATGCCAGCTGCCAGGAGGAACAGACCC
TTAGTCCTCATCCCTAGATCCTGGAGGGCACGGATCACATCCTGGAAAGAAGGCATCTGGAGG
ATAAGCAAAGCCACCCGACACCAATCTTGAAGCCCTGAGTAGGCAGGGCCAGGGTAGGTGGG
GGCGGGAGGGACCCAGGTGTGAACGGATGAATAAAGTCAACTGCAACTGAAAAAAAAAAA

FIGURE 134

MSARGRWEGGGRRACRGSGLARAQGAERVTSSEQRPMASLGLLLLLLTALPPLWSSLPGLD
TAESKATIADLILSALERATVFLQRLPEINLDGMGVVRVLEEQLKSVREKWAQEPLLQPLSLRV
GMLGEKLEAAIQRSILHYLKLSDPKYLREFQLTLQPGFWKLPHAWIHTDASLVYPTFGPQDSFSEE
RSDVCLVQLLGTGTDSEPCGLSDLCRSLMTKPGCSGYCLSHQLLFFLWARMRGCTQGPLQQSQD
YINLFCANMMDLNRAEAIGYAYPTRDIFMENIMFCGMGGFSDFYKLRWLEAILSWQKQQEGCFG
EPDAEDEELSKAIQYQQHFSRRVKRREKQFPDSRSVAQAGVQWRNL GSLQPLPPGFQFSCLILP
SSWDYRSVPYLANFYIFLVETGFHHVAHAGLELLISRDPPTSGSQSVGL

Important features of the protein:

Signal peptide:

amino acids 1-26

Transmembrane domain:

amino acids 39-56

Tyrosine kinase phosphorylation sites.

amino acids 149-156, 274-282

N-myristoylation sites.

amino acids 10-16, 20-26, 63-69, 208-214

Amidation site.

amino acids 10-14

Glycoprotein hormones beta chain signature 1.

amino acids 230-237

FIGURE 135

GGTCTGAGTGCAGAGCTGCTGTCATGGCGGCCGCTCTGTGGGGCTTCTTCCCGTCTGCTGCTG
CTGCTGCTATCGGGGGATGTCCAGAGCTGGAGGTGCCCGGGCTGCTGCTGAGGGATCGGGAGG
GAGTGGGGTCGGCATAGGAGATCGCTCAAGATTGAGGGCGTGCAGTTGTTCCAGGGGTGAAGC
CTCAGGACTGGATCTGGCGGCCGAGTGTGGTAGACGGAGAAGAGCACGTCGGTTCTTAAG
ACAGATGGGAGTTGTGGTTCATGATATACTTCTGGATTTATGTAGTGGAAAGTTGTATCTCC
AGCTTACAGATTGATCCC GTT CGAGTGGATATCACTTCGAAAGGAAAATGAGAGCAAGATATG
TGAATTACATCAAAACATCAGAGGTTGTCAACTGCCCTATCCTCTCAAATGAAATCTCAGGT
CCACCTTCTTACTTTATTAAAAGGGAAATCGTGGGGCTGGACAGACTTCTAAATGAACCCAATGGT
TATGATGATGGTCTTCCTTATTGATATTGTGCTCTGCCTAAAGTGGTCAACACAAGTGATC
CTGACATGAGACGGAAATGGAGCAGTCATGAATATGCTGAATTCCAACCAGTTGCCTGAT
GTTTCTGAGTTCATGACAAGACTCTCTCTCAAATCATCTGGCAAATCTAGCAGCGGCAGCAG
TAAAACAGGCAAAAGTGGGCTGGAAAAGGAGGTAGTCAGGCCGTCCAGAGCTGGCATTGCAC
AAACACGGCAACACTGGGTGGCATCCAAGTCTGGAAAACCGTGTGAAGCAACTACTATAAAACTT
GAGTCATCCCGACGTTGATCTTACAACGTGTATGTT
AACTTTTAGCACATGTTTGACTTGGTACACGAGAAAACCCAGCTTCATCTTGCTGTAT
GAGGTCAATATTGATGTCACTGAATTAAATTACAGTGTCTATAGAAAATGCCATTAATAAAATTAT
ATGAACTACTATAACATTATGTATTAATTAATTAACATCTTAATCCAGAAATCAAAAAAAA
AAAAAAAAAAAAAAA

FIGURE 136

MAAALWGFFPVLLLLLSDVQSSSEVPGAAEGSGGSGVGIGDRFKIEGRAVPGVKPQDWISAA
RVLVDGEEHVGFLLKTDGSFVVHDIPSGSYVVEVVSPAYRFDPVRVDITSKGKMRARYVNYYIKTSE
VVRLPYPLQMKSSGPPSYFIKRESWGWTDFLMNPMVMMMLPPLLIFVLLPKVVNTSDPDMRREME
QSMMNLNSNHELPDVSEFMTRLFSSKSSGKSSGSSKTGKSGAGKRR

Important features of the protein:

Signal sequence:

amino acids 1-23

Transmembrane domain:

amino acids 161-182

N-glycosylation site.

amino acids 184-187

Glycosaminoglycan attachment sites.

amino acids 37-40, 236-239

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 151-154

N-myristoylation sites.

amino acids 33-38, 36-41, 38-44, 229-234

Amidation site.

amino acids 238-241

ATP/GTP-binding site motif A (P-loop).

amino acids 229-236

FIGURE 137

GATGGCGCAGCCACAGCTTCTGTGAGATTGATTCTCCCCAGTTCCCCTGTGGGTCTGAGGGGA
CCAGAAGGGTGAGCTACGTTGGCTTCTGGAAGGGGAGGCTATATGGTCAATTCCCCAAACAA
GTTTGACATTCCCCCTGAAATGTCATTCTATCTATTCACTGCAAGTGCCTGCTGTTCCAGGC
CTTACCTGCTGGCACTAACGGCGAGCCAGGATGGGACAGAATAAAGGAGCCACGACCTGTGC
CACCAACTCGCACTCAGACTCTGAACTCAGACCTGAAATCTCTTCACGGGAGGCTTGGCAGT
TTTCTTAACCTCTGTGGCTCCAGATTCAGGCCTAAGATGAAAGCCTTAGTCTTGCTTCAGC
CTTCTCTGCTGCCCTTATCTCCTATGGACTCCTCACTGGACTGAAGACACTCAATTGGG
AAGCTGTGTGATGCCACAAACCTCAGGAAATACGAAATGGATTCTGAGATAACGGGCAGTG
TGCAAGCCAAGATGAAACATTGACATCAGAATCTAAGGAGGACTGAGTCTTGCAAGACACA
AAGCCTGCGAATCGATGCTGCCCTGCCATTGCTAAAGACTCTATCTGGACAGGGTATTAA
AAACTACCAGACCCCTGACCATTATACTCTCCGGAAAGATCAGCAGCCTGCCAATTCTTCTTA
CCATCAAGAAGGACCTCCGGCTCTCATGCCACATGACATGCCATTGTGGGAGGAAGCAATG
AAGAAATACAGCCAGATTCTGAGTCACTTGAAAAGCTGGAACCTCAGGCAGCAGTGTGAAGGC
TTTGGGGAACTAGACATTCTCTGCAATGGATGGAGGAGACAGAATAGGAGGAAAGTGTGATGCTG
CTGCTAAGAATATTGAGGTCAAGAGCTCCAGTCTTCATAACCTGCAAGAGGAGCATGACCCAA
ACCACCATCTTTACTGTACTAGTCTTGTGCTGGTCACAGTGTATCTTATTTATGCATTACTG
CTTCCTGCTGATGTTGCTTATGCATCCCCAATCTAATTGAGACCATACTGTATAAGATTT
TGTAATATCTTCTGCTATTGGATATATTATTAGTTAATATATTATTTATTTGCTATTAA
ATGTATTATTTTACTTGGACATGAAACTTAAAAAAATTCACAGATTATTTATAACCTG
ACTAGAGCAGGTGATGTATTATACAGTAAAAAAAAACCTGTAAATTCTAGAAGAGTGG
CTAGGGGGTTATTCAACTAAGGACATATTACTCATGCTGATGCTGTGAGAT
ATTGAAATTGAACCAATGACTACTTAGGATGGGTTGGAATAAGTTGATGTGGAATTGCAC
ATCTACCTTACAATTACTGACCATCCCCAGTAGACTCCCCAGTCCCATATTGTATCTCAG
CCAGGAATCCTACACGGCCAGCATGTATTCTACAAATAAGTTCTTGATACCAAAAAAAA
AAAAAAAAAAA

FIGURE 138

MRQFPKTSFDISPEMSFSIYSLQVPAVPGLTCWALTAEPGWGQNKGATTCATNSHSDSELRPEIF
SSREAWQFFLLLWSPDFRPKMKASSLAFSLLSAAFYLLWTPSTGLKTLNLGSCVIATNLQEIRNG
FSEIRGSVQAKDGNIDIRILRRTESLQDTKPANRCCLRHLLRLYLDRVFKNYQTPDHYTLRKIS
SLANSFLTIKKDLRLSHAHMTCHCCEEAMKKYSQILSHFEKLEPQAAVVKALGELDILLQWMEET
E

Important features of the protein:

Signal peptide:

amino acids 1-42

cAMP- and cGMP-dependent protein kinase phosphorylation sites.

amino acids 192-195, 225-228

N-myristoylation sites.

amino acids 42-47, 46-51, 136-141

FIGURE 139

CCTGGAGCCGGAAGCGCGGCTGCAGCAGGGCGAGGCTCAGGTGGGGTCGGTCCGCATCCAGCC
TAGCGTGTCCACGATCGGCTGGGTCGGGACTTCTGCTACCTGTGCGTAGCGATCGAGGTGC
TAGGGATCGGGCTTCCTCGGGATTCTCCCGCTCCGTTCTGCCTCTGCCAGAGCGGAA
CACGGAGCGGAGCCCCAGCGCCGAACCTCGGCTGGAGCCAGTTCAACTGGACCACGCTGCC
ACCACCTCTTCAGTAAAGTTTATGTCTGATAGATGCCTTGAGAGATGATTTGTGTTG
GGTCAAAGGGTGTGAAATTATGCCCTACACAACCTTACGGAAAAGGAGCATCTCACAGT
TTTGTGGCTGAAGCAAAGCCACCTACAGTTACTATGCCCTGAATCAAGGCATTGATGACGGGGAG
CCTTCCTGGCTTGTGACGTATCAGGAACCTCAATTCTCCTGCACTGCTGGAAGACAGTGTGA
TAAGACAAGCAAAGCAGCTGGAAAAGAAATAGTCTTTATGGAGATGAAACCTGGGTTAAATTA
TTCCCAAAGCATTGTGAAATGATGGAACACCTCATTTCTGTGTCAGATTACACAGAGGT
GGATAATAATGTCACGAGGCATTGGATAAAGTATTAAAAAGAGGAGATTGGGACATATTAATCC
TCCACTACCTGGGCTGGACCACATTGGCACATTCCAGGGCCAACAGCCCCCTGATTGGGAG
AAGCTGAGCGAGATGGACAGCGTGTGATGAAGATCCACACCTCACTGCACTGAGTCGAAGGAGAGA
GACGCCCTAACCAATTGCTGTTCTTGCTGACCATGGCATGTCAGAACAGGAAGTCACG
GGGCCTCCCTCACCGAGGAGGTGAATACACCTCTGATTAAATCAGTCTGCGTTGAAAGGAAA
CCCGGTGATATCCGACATCCAAGCAGTCCAATAGACGGATGTGGCTGCGACACTGGCGATAGC
ACTTGGCTTACCGATTCCAAGAACAGTGTAGGGAGCCTCTATTCCAGTTGTTGGAAGGAAGAC
CAATGAGAGAGCAGTGTGAGATTACATTGAATACAGTGCAGCTAGTAAACTGTTGCAAGAG
AATGTGCCGTCATATGAAAAGATCCTGGGTTGAGCAGTTAAATGTCAGAAAGATTGCATGG
GAACCTGGATCAGACTGTACTTGGAGGAAAGCATTCAAGTCTCTATTCAACCTGGGCTCCAAGG
TTCTCAGGCACTGGATGCTCTGAAGACGCTGAGCTTGTCCCTGAGTGCACAAGTGGCCAG
TTCTCACCTGCTCTGCTCAGCTCCCACAGGCACTGCACAGAAAGGCTGAGCTGGAAGTCCA
CTGTCATCTCCTGGGTTCTCTGCTCTTATTGGTGTACCTGGGCTCTCGTGGCTGGCGAGGCT
CAATTGTGTCACCTCAGCTGAAAGTCTGCTACTTGTGGCTCTGCAAGTGTGGCTGGCAGTGC
GCCCTTCGTTTACCAAGACTCTGGTTGAAACACCTGGTGTGCAAGTGTGGCTGGCAGTGC
AGGGGCTCAGGGAGGACGTTGAGCAGCCTTATCCAGGCCTGGGTGTCCGACACAGGTG
TTCACATCTGTGCTGAGGTCAAGATGCCCTAGTTCTGGAAAGCTAGGTTCTGCGACTGTAC
CAAGGTGATTGTAAGAGCTGGGGTCACAGAGGAACAAGCCCCCAGCTGAGGGGGTGTGAA
TCGGACAGCCTCCCAGCAGAGGTGTGGGAGCTGCACTGAGCTGAGGGAAAGAGACAAATGGCCTGGA
CACTCAGGAGGGTCAAAAGGAGACTTGGTGCACCACTCATCCTGCCACCCCCAGAATGCATCCT
GCCTCATCAGGTCCAGATTCTCAAGGGGACGTTCTGTAATTCTAGTCCTGGCC
TCGGACACCTTCATTGTTAGCTGGGAGTGGTGGTGAGGCAGTGAAGAAGAGGGGGATGGTCAC
ACTCAGATCCACAGAGCCCAGGATCAAGGGACCCACTGCAGTGGCAGCAGGACTGTGGGCCCC
ACCCCAACCCCTGCACAGCCCTCATCCCTCTGGCTGAGCCGTCAAGAGGCCCTGTGCTGAGTGT
CTGACCGAGACACTCACAGCTTGTCACTAGGGCACAGGCTTCCCTGGAGCCAGGATGATCTGTG
CCACGCTTGCACCTGGGCCATCTGGCTCATGCTCTCTCTGCTATTGAATTAGTACCTAG
CTGCACACAGTATGTAGTTACCAAAAGAATAACGGCAATAATTGAGAAAAAAA

FIGURE 140

MRLGSGTFATCCVAIEVLGIAVFLRGFFPAPVRSSARAEHGAEPPEPSAGASSNWTLLPPPLF
SKVVIVILIDALRDDFVFGSKGVKFMPYTTYLVEKGASHSFVAEAKPPTVTMPRIKALMTGSLPGF
VDVIRNLNSPALLEDSVIRQAKAAGKRIVFYGDETWVKLFPKHFVEYDGTTFFFSDYTEVDNNV
TRHLDKVLKRGDWDLILHLHYLGLDHIGHISGPNSPLIGQKLSEMDSVLMKIHTSLQSKERETPLP
NLLVLCGDHGMSETGSHGASSTEEVNTPLILISSAFERKPGDIRHPKHVQ

Important features of the protein:

Signal peptide:

amino acids 1-34

Transmembrane domain:

amino acids 58-76

N-glycosylation sites.

amino acids 56-60, 194-198

N-myristoylation sites.

amino acids 6-12, 52-58, 100-106, 125-131, 233-239, 270-276,
275-281, 278-284

Amidation site.

amino acids 154-158

Cell attachment sequence.

amino acids 205-208

FIGURE 141

GGCACGAGGAAGCCTTCCAGGTTATCGTGACGCACCTTGAAAGTCAGAGCTACTGCCCTACA
GAAAGTTACTAGTGCCCTAAAGCTGGCGCTGGCACTGATGTTACTGCTGCTGTTGGAGTACAACT
TCCCTATAGAAAACAACTGCCAGCACCTTAAGACCACTACACACCTCAGAGTGAAGAACTTAAC
CCGAAGAAATTCAGCATTCATGACCAGGATCACAAAGTACTGGTCCTGGACTCTGGGAATCTCAT
AGCAGTTCCAGATAAAAACTACATCGCCCAGAGATCTTGCATTAGCCTCATCCTGAGCT
CAGCCTCTGCGGAGAAAGGAAGTCCGATTCTCCTGGGGTCTCAAAGGGAGTTGTCTAC
TGTGACAAGGATAAAGGACAAAGTCATCCATCCCTTCAGCTGAAGAAGGAGAAACTGATGAAGCT
GGCTGCCAAAAGGAATCAGCACGCCGGCCCTTCATCTTGTAGGGCTCAGGTGGCTCCTGGA
ACATGCTGGAGTCGGCGCTCACCCGGATGGTCATCTGCACCTCCTGCAATTGTAATGACCT
GTTGGGGTGACAGATAAAATTGAGAACAGGAAACACATTGAATTTCAACCAGTTGCAA
AGCTGAAATGAGCCCCAGTGAGGTCAGCGATTAGGAAACTGCCCAATTGAACGCCTTCTCGCTA
ATTGAACTAATTGTATAAAAACCAAAACCTGCTCACT

FIGURE 142

MLLLLLEYNFPIENNQHLKTTHTFRVKNLNPKKFSIHQDHKVLVLDGNLIAVPDKNYIRPEI
FFALASSLSSASAEGSPILLGVSKGEFCLYCDKDKGQSHPSLQLKKEKLMKLAQKESARRPFI
FYRAQVGWSNMLESAAHPGWFICTSCNCNEPVGVTDKFENRKHIEFSFQPVCKAEMSPSEVSD

cAMP- and cGMP-dependent protein kinase phosphorylation site.
amino acids 33-36

N-myristoylation site.
amino acids 50-55, 87-92

Interleukin-1
amino acids 37-182

FIGURE 14.3

CTAGAGAGTATAGGGCAGAAGGATGGCAGATGAGTGACTCCACATCCAGAGCTGCCTCCCTTAA
TCCAGGATCCTGTCTTCTGTCTGTAGGAGTGCCTGTTGCCAGTGTGGGTGAGACAAGTTG
TCCCACAGGGCTGTCGAGCAGATAAGGATAAGGGCTGGGTCTGTGCTCAATTAACTCCTGTGGG
CACGGGGCTGGGAAGAGCAAAGTCAGCGGTGCCTACAGTCAGCACCATGCTGGCCTGCCGTGG
AAGGGAGGTCTGTCTGGCGCTGCTGCTGTTCTCTTAGGCTCCCAGATCCTGCTGATCTATGC
CTGGCATTCCACGAGCAAAGGGACTGTGATGAACACAATGTCATGGCTCGTTACCTCCCTGCCA
CAGTGGAGTTGCTGCCACACATTCAACCAACAGAGCAAGGACTACTATGCCTACAGACTGGGG
CACATCTTGAATTCTGGAAAGGAGCAGGTGGAGTCCAAGACTGTATTCTCAATGGAGCTACTGCT
GGGGAGAACTAGGTGTGGAAATTGAAGACGACATTGACAACGCCATTCCAAGAAAGCACAG
AGCTGAACAATACTTACCTGCTTCTTCACCACAGCACCAGGCCCTGGATGACTCAGTTCAGC
CTCCTGAACAAGACCTGCTGGAGGGATTCCACTGAGTGAAACCCACTCACAGGCTGTCCATGT
GCTGCTCCACATTCCGTGGACATCAGCACTACTCTCCTGAGGACTCTCAGTGGCTGAGCAGCT
TTGGACTTGTGTTATCCTATTTGATGTGTTGAGATCTCAGATCAGTGTGTTAGAAAATCC
ACACATCTTGAGCCTAATCATGTAGTAGCATTAACATCAGCATTAAAGAAAAAAA
AAA

FIGURE 144

MLGLPWKGGLSWALLLLLLGSQILLIYAWHFHEQRDCDEHNMARYLPATVEFAVHTFNQQSKDY
YAYRLGHILNSWKEQVESKTVFSMELLGRTRCGKFEDDIDNCHFQUESTELNNFTCFFTISTRP
WMTQFSLLNKTCLEGFH

Important features of the protein:

Signal peptide:

amino acids 1-25

N-glycosylation sites.

amino acids 117-121, 139-143

N-myristoylation site.

amino acids 9-15

FIGURE 145

CTGTGCAGCTGAGGCTCCAGAGGCACACTCCAGAGAGGCCAAGGTTCTGACGCG**AATGAGGAAG**
CACCTGAGCTGGTGGCTGGCACTGTCTGCATGCTGCTCTCAGCCACCTCTGCGGTCCA
GACGAGGGGCATCAAGCACAGAACAACTCAAGTGGAACCGGAAGGCCCTGCCAGCAGCTGCCAGATCA
CTGAGGCCAGGTGGCTGAGAACCGCCGGAGCCTCATCAAGCAAGGCCAGCAGCTGACATT
GACTTCGGAGCCGAGGGCAACAGGTACTACCGAGGCCAACTACTGGCAGTTCCCAGTGGCATCCA
CTACAACGGCTGCTCTGAGGCTAATGTGACCAAGGAGGCATTGTCAACGGCTGCATCAATGCCA
CCCAGGGCGAACCAAGGGGGAGTTCCAGAACAGCAGAACAAAGCTCCACCAGCAGGTGCTCTGG
CGGCTGGTCCAGGAGCTCTGCTCCCTCAAGCATTGCGAGTTTGTTGGAGAGGGCGCAGGACT
TCGGGTACCATGCACCAAGCCAGTGCTCCTGCCTCTGGCTTGATCTGGCTCATGGT**GAAAT**
AAGCTTGCCAGGAGGCTGGCAGTACAGAGGCCAGCAGCAGCAAATCCTGGCAAGTGACCCAGCT
CTTCTCCCCAAACCCACGCGTGTCTGAAGGTGCCAGGAGCGGCATGCACTCGCACTGCAA
TGCGCTCCCACTGATGCGCCCTGGTATGTGCCTCGCTCTGATAGATGGGGACTGTGGCTTCT
CCGTCACTCCATTCTCAGCCCCTAGCAGAGCGTCTGGCACACTAGATTAGTAGATAATGCTTGAT
GAGAAGAACACATCAGGCAGTGCGCCACCTGCTTCACAGTACTTCCAACAACTCTAGAGGTAG
GTGTATTCCGTTTACAGATAAGGAAACTGAGGCCAGAGAGCTGAAGTACTGCACCCAGCATC
ACCAGCTAGAAAGTGGCAGAGCCAGGATTCAACCCCTGGTTGTCTAACCCAGGTTTCTGCTCT
GTCCAATTCCAGAGCTGTCTGGTGAATCACTTATGTCTCACAGGGACCCACATCAAACATGTAT
CTCTAAATGAAATTGTGAAAGCTCCATGTTAGAAATAATGAAAACACCTGA

FIGURE 146

MRKHLSSWWLATVCMLLFSHLSAVQTRGIKHRIKWNRKALPSTAQITEAQVAENRPGAFIKOGRK
LDIDFGAEGNRYYEANYWQFPDGIHYNGCSEANVTKEAFVTGCINATQAANQGEFQKPDNLHQQ
VLWRLVQELCSLKHCFFWLERGAGLRTMHQPVLLCLLALIWLVMVK

Important features of the protein:

Signal peptide:

amino acids 1-26

Transmembrane domain:

amino acids 157-171

N-glycosylation sites.

amino acids 98-102, 110-114

Tyrosine kinase phosphorylation site.

amino acids 76-83

N-myristoylation sites.

amino acids 71-77, 88-94, 93-99, 107-113, 154-160

Amidation site.

amino acids 62-66

FIGURE 147

GCCTTGGCCTCCAAAGGGCTGGGATTATAGCGTGACCAACATGTCGGTCCAGAGTCTCATTT
CCTGATGATTTATAGACTCAAAGAAAACTCATGTTCAGAAGCTCTCTCTGGCCTCCCT
CTGTCTTCTTCCCTTTCTTCTTATTAAATTAGTAGCATCTACTCAGAGTCATGCAAGCTGG
AAATCTTCATTTGCTTGTCAAGTGGGTAGGTCACTGAGTCTTAGTTTTATTGGAAATTT
CAACTTCAGATTCAAGGGGTACATGTGAAGGTTGTTTATGAGTATATTGCATGATGCTGAGG
TTTGGGGT

FIGURE 148

MFRSSLLFWPPLCLLSLFLLLILISSIYSESCKLEIFHFACQWGRSLSLSFYFLKFQLSDSGGTCE
GLFYEYIA

Important features of the protein:

Signal peptide:

amino acids 1-25

N-myristoylation site.

amino acids 62-68

FIGURE 149

GTCTCCGCGTCACAGGAACCTCAGCACCCACAGGGCGGACAGCGCTCCCTCTACCTGGAGACTTGAC
TCCC CGCGCCCCAACCTGCTTATCCCTGACCGTCGAGTGTCAAGAGATCCTGCAGCCGCCAGTCC
CGGCCCCCTCTCCCGCCCCACACCCACCCCTCTGGCTTTCTCTGTTTACTCCTCCTTTCATTATA
ACAAAAGCTACAGCTCCAGGAGCCAGCGGGGCTGTGACCCAAGCCAGCGTGGAAAGAATGGGTT
CCTCGGGACCGGCACCTGGATTCTGGTGTAGTGCTCCGATTCAAGCTTCCCCAACCTGGAGGAA
GCCAAGACAAATCTCTACATAATAGAGAATTAAAGTGCAGAAAGACCTTGAATGAACAGATTGCTGAA
GCAGAAGAAGACAAGATTAAAAAAACATATCCTCCAGAAAACAAGCCAGGTCAAGAGCAACTATTCTT
TGTGATAACCTGAACTGCTAAAGGAATAACAGAAAAGAAAAATTGAGAAAGAAAGACAATCTA
TAAGAAGCTCCCCACTTGATAATAAGTTGAATGTGGAAAGATGTTGATTCAACCAAGAAATCGAAAATG
ATCGATGATTATGACTCTACTAAGAGTGGATTGGATCATAAATTCAAGATGATCCAGATGGTCTCA
TCAACTAGACGGGACTCCTTAACCGCTGAAGACATTGTCCATAAAATCGCTGCCAGGATTATGAAG
AAAATGACAGAGCCGTGTTGACAAGATTGTTCTAAACTACTTAATCTGGCCTTATCACAGAAAGC
CAAGCACATACACTGGAAGATGAAGTAGCAGAGGTTACAAAATTAATCTCAAAGGAAGCCAACAA
TTATGAGGAGGATCCAATAAGCCCACAAGCTGGACTGAGAAATCAGGCTGGAAAATACCAAGAGAAAG
TGACTCCAATGGCAGCAATTCAAGATGGTCTGCTAAGGGAGAAACGATGAAACAGTATCTAACACA
TTAACCTGACAAATGGCTTGGAAAGGAGAAACTAAAACCTACAGTGAAGACAACCTTGAGGAACCTCA
ATATTCCTAAATTCTATGCGCTACTGAAAAGTATTGATTCAAGAAAAGAAGCAAAGAGAAAGAAA
CACTGATTACTATCATGAAAACACTGATTGACTTGTGAAGATGATGGTGAATATGGAACAATATCT
CCAGAAGAAGGTGTTCTACCTGAAAACCTGGATGAAATGATTGCTCTCAGACCAAAACAAGCT
AGAAAAAAATGCTACTGACAATATAAGCAAGTTTCCCAGCACCATCAGAGAAGAGTCATGAAGAAA
CAGACAGTACCAAGGAAGAAGCAGCTAAGATGAAAAGGAATATGGAAGCTTGAAGGATTCCACAAAA
GATGATAACTCCAACCCAGGAGGAAAGACAGATGAACCCAAAGGAAAACAGAAGCCTATTTGGAAGC
CATCAGAAAAAAATATTGAATGGTGAAGAAACATGACAAAAGGAAATAAGAAGATTATGACCTT
CAAAGATGAGAGACTTCATCAATAAACAAAGCTGATGTTATGTGGAGAAAGGCATCCTTGACAAGGAA
GAAGCCGAGGCCATCAAGCGCATTATAGCAGCCTGTAAAATGGCAAAGATCCAGGAGTCTTCAA
CTGTTTCAGAAAACATAATATAGCTTAAACACTTCTAATTCTGTGATTAAAATTTTGACCCAAGG
GTTATTAGAAAAGTGTGAATTACAGTAGTTAACCTTTACAAGTGGTTAAAACATAGCTTCTTCCC
GTAAAAAACTATCTGAAAGTAAAGTTGTATGTAAGCTGAAAAAAAAAAAAAAA

FIGURE 150

MGFLGTGTWILVLVLPQAFPKPGGSQDKSLHNRELSAERPLNEQIAEAEEDKIKKTYPPENKPG
QSNYSFVDNLNLLKAITEKEKIEKERQSIRSSPLDNKLNVEDVDSTKNRKLIDDYDSTKSGLDHK
FQDDPDGLHQLDGTPPLTAEDIVHKIAARIYEENDRAVFDFKIVSKLLNLGLITESQAHTLEDEVAE
VLQKLISKEANNYEEDPNKPPTSWTENQAGKIKEVKTPMAAIQDGLAKGENDETVSNTLTLTNGLE
RRTKTYSEDNFEELQYFPNFYALLKSIDSEKEAKEKETLITIMKTLIDFVKMMVKYGTISPEEGV
SYLENLDEMIALQTKNKLEKNATDNISKLFPAPSEKSHEETDSTKEAAKMEKEYGSLKDSTKDD
NSNPGGKTDEPKGTEAYLEAIRKNIEWLKKHDKGKGNKEDYDLSKMRDFINKQADAYVEKGILDK
EEAEAIIKRIYSSL

N-glycosylation sites:

amino acids 68-71, 346-349, 350-353

Casein kinase II phosphorylation site:

amino acids 70-73, 82-85, 97-100, 125-128, 147-150, 188-191, 217-
220, 265-268, 289-292, 305-308, 320-323, 326-329, 362-365, 368-
341, 369-372, 382-385, 386-389, 387-390

N-myristoylation sites:

amino acids 143-148, 239-244

FIGURE 151

CGGCTCGAGGCTCCGCCAGGAGAAAGGAACATTCTGAGGGGAGTCTACACCCGTGGAGCTCAA
GATGGCTCTGACTGGGGCCTGTGCTTCGAATGAAGGACTCGGCATTGAAGGTGCTTTATCTGC
ATAATAACCACTCTAGCTGGAGGGCTGCATGCAGGGAAAGGTCAATTAAAGGTGAAGAGATCAGC
GTGGTCCCCATGGTGGCTGGATGCCAGCTGTCCCCCTCATCCTGGGTGTCAGGGTGGAAAG
CCAGTGCTGTCATGTGGGTGGGCAGGAGCCACTAACAAGTAGAGCCAGTGAACATCATGG
AGCTCTATCTGGTCCAAGGAATCCAAGAGCTTCACCTCTACCAGGGGACATGGGGCTCACC
TCCAGCTCGAGTCGGCTGCCTACCCGGCTGGTCTGTGCACGGCTGAAGCCGATCAGCC
TGTCAAGACTCACCCAGCTCCCGAGAATGGTGGCTGGAATGCCCCCATCACAGACTTCTACTCC
AGCAGTGTGACTAGGGCAACGTCCCCCAGAACCTCCCTGGGAGAGCCAGCTGGGTGAGGGT
GAGTGGAGGAGACCCATGGCGGACAATCACTCTCTGCTCAGGACCCCACGTCTGACTTAG
TGGGCACCTGACCACTTGTCTCTGGTCCAGTTGGATAAAATTCTGAGATTGGAGCTCAGT
CCACGGCTCTCCCCACTGGATGGTACTGCTGTGAAACCTTGTAAAAACCATGTGGGTAAA
CTGGGAATAACATGAAAAGATTCTGTGGGGTGGGGAGTGGTGGGAATCATTCTGCT
TAATGGTAAGTGTACCTGAGCCCCGAGGCCAACCCATCCCCAGTGTGAGCCTTATA
GGGTCAAGTAGCTCCACATGAAGTCTGTCACTCACCACTGTGCAGGAGAGGGAGGTGGTCATA
GAGTCAGGGATCTATGGCCCTGGCCCAGCCCCACCCCCCTTAACTCTGCCACTGTCTATA
TGCTACCTTCTCTATCTCTCCCTCATCATCTTGTGGCATGAGGAGGTGGTGTGAGAA
GAAATGGCTCGAGCTCAGAAGATAAAAGATAAGTAGGGTATGCTGATCTCTTTAAAAACCAA
GATAACAATCAAATCCCAGATGCTGGTCTCTATTCCCATGAAAAGTGTCTGACATATTGAGA
AGACCTACTTACAAGTGGCATATATTGCAATTATTAAATTAAAGATAACCTATTATATT
TCTTTATAGAAAAAGTCTGGAAGAGTTACTTCATTTGCAATTGTAGCAATGTCAGGGTGGCAGT
AGGTGATTTCTTTAATTCTGTTAATTATCTGTTCTCTTAATTCTACAAATGAAGATGA
ATTCTTGTATAAAAATAAGAAAAGAAATTAAATCTTGTGAGGTTCTCTTAATTCTACAAATGAAGATGA
TTGCTCTCAGCCTCCACTTCCCAGAGTAATTCAAATTGAAATGAGCTCTGCTGCTCTGGTTGG
TTGTTAGTAGTGTGATCAGGAAACAGATCTCAGCAAAGCCACTGAGGAGGGCTGTGCTGAGTTGT
GTGGCTGGAATCTGGGTAGGAACCTTAAAGAACAAAATCATCTGGTAATTCTTCTAGAAG
GATCACAGCCCCGGATTCCAAGGCATTGGATCCAGTCTAAGAAGGCTGCTGACTGGTGA
ATTGTGCCCCCTCAAATTCACATCTTCTGGAATCTCAGTGTGAGTTATTGGAGATAAG
GTCTCTGAGATGTAGTTAGTTAAGACAAGGTATGCTGGATGAAGGTAGACCTAAATTCAATAT
GACTGGTTCTGTATGAAAAGGAGGGACACAGAGACAGAGGAGACGCCGGGAAGACTATGTA
AAGATGAAGGCAGAGATCGGAGTTTGCAAGGCCACAAGCTAAGAAACCCAAGGATTGGCAACC
ATCAGAAAGCTTGGAGAGGCAAAGAAGAATTCTCCCTAGAGGCTTAGAGGGATAACGGCTCTG
CTGAAACCTTAATCTCAGACTTCCAGCCTCTGAACGAAGAAAGAATAATTGGCTTTAA
GCCACCAAGGATAATTGGTACAGCAGCTCTAGGAAACTAATACAGTGTCTAAATGATCCCTGT
CTCCTCGTGTTCATTCTGTGTGTCCTCCCACAATGTACCAAGTTGTCTTGTGACCAA
TAGAATATGGCAGAAGTGTGATGGCATGCCACTTCAAGATTAGGTTATAAAAGACACTGCAGCTTC
TACTTGAGCCCTCTCTCTGCCACCCACGGCCCCAATCTATCTGGCTACTCGCTCTGGGG
AAGCTAGCTGCCATGCTATGAGCAGGCTATAAGAGACTTACGTGTTAAAAAGTGAAGTCTCCT
GCCACAGCCACATTAGTGAACCTAGAAGCAGAGACTCTGTGAGATAATCGATTTGTTTT
AAGTTGCTCAGTTGGTCAACTTGTATGCAGCAATAGATAAATAATGCAAGAGAAAGAG

FIGURE 152

MVLSGALCFRMKDSALKVLYLHNNQLLAGGLHAGKVIKGEIISVVPNRWLDASLSPVILGVQGGS
QCLSCGVGQEPTLTLEPVNIMELYLGAKESKSFTFYRRDMGLTSSFESAAYPGWFLCTVPEADQP
VRLTQLPENGGWNAPITDFYFQQCD

N-myristoylation sites.

amino acids 29-34, 30-35, 60-65, 63-68, 73-78, 91-96, 106-111

Interleukin-1 signature.

amino acids 111-131

Interleukin-1 proteins.

amino acids 8-29, 83-120, 95-134, 64-103

FIGURE 153

CTTCAGAACAGGTTCTCCTCCCCAGTCACCAGTGCTCGAGTTAGAATTGTCTGCAATGGCCGC
CCTGCAGAAATCTGTGAGCTTTCCCTATGGGGACCCCTGGCCACCAGCTGCCTCCCTCTGG
CCCTCTGGTACAGGGAGGAGCAGCTGCGCCCCATCAGCTCCCACTGCAGGCTTAGCAGTCAAAC
TTCCAGCAGCCTATATCACCAACCGCACCTCATGCTGGCTAAGGAGGCTAGCTGGCTGATAA
CAACACAGCAGTCCGCTCATTGGGAGAAACTGTTCCACGGAGTCAGTATGAGTGAGCGCTGCT
ATCTGATGAAGCAGGTGCTGAACTTCACCCTGAAGAAGTGCTGTTCCCTCAATCTGATAGGTC
CAGCCTTATATGCAGGAGGTGGTGCCCCTTCCCTGGCCAGGCTCAGCAACAGGCTAAGCACATGTCA
TATTGAAGGTGATGACCTGCATATCCAGAGGAATGTGCAAAGCTGAAGGACACAGTGAAAAGC
TTGGAGAGAGTGGAGAGATCAAAGCAATTGGAGAACTGGATTGCTGTTATGCTCTGAGAAAT
GCCTGCATTTGACCAGAGCAAAGCTGAAAATGAATAACTAACCCCTTCCCTGCTAGAAATAA
CAATTAGATGCCCAAAGCGATTTTTAACCAAAAGGAAGATGGAGCCAAACTCCATCATG
ATGGGTGGATTCCAAATGAACCCCTGC GTTAGTTACAAGGAAACCAATGCCACTTTGTTATA
AGACCAGAAGGTAGACTTCTAACGCATAGATATTGATAACATTCAATTGTAACTGGTGTTC
TATACACAGAAAACAATTTATTAAATAATTGTCTTTCCATAAAAAAGATTACTTTCCAT
TCCTTAGGGAAAAAAACCCCTAAATAGCTCATGTTCCATAATCAGTACTTTATATTATAAA
TGTATTTATTATTATAAGACTGCATTTATTTATCATTATTAATATGGATTATTAT
AGAAACATCATTGATATTGCTACTTGAGTGTAAGGCTAATATTGATATTATGACAATAATTAT
AGAGCTTATAACATGTTATTGACCTCAATAAACACTTGGATATCCC

FIGURE 154

MAALQKS VSSFLMGT LATSCLLL ALLVQGGAA APISSH CRLDKS NFQQPY ITNRT FMLAKEASL
ADNNNTDV RLIGEKL FHGVSM SERCYLMK QVILNFT LEEVLFPQS DRFQP YMQEV VPFLARLSNRLS
TCHIEGDDLHIQRNVQKLKD TVKKLGE SGEIKAIGEL DLLFMSLRNACI

Important features of the protein:

Signal peptide:

amino acids 1-33

N-glycosylation sites.

amino acids 54-58, 68-72, 97-101

N-myristoylation sites.

amino acids 14-20, 82-88

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 10-21

FIGURE 155

GGCTTGCTGAAAATAAAATCAGGACTCCTAACCTGCTCCAGTCAGCCTGCTTCCACGAGGCCTGT
CAGTCAGTGCCCGACTTGTGACTGAGTGTGCAGTGCCCAGCATGTACCAGGTCACTGCAGAGGGC
TGCCTGAGGGCTGTGCTGAGAGGGAGAGGAGCAGAGATGCTGCTGAGGGTGGAGGGAGGCCAAGC
TGCCAGGTTGGGCTGGGGCCAAGTGGAGTGAAGAAACTGGATCCAGGGGAGGGTGCAGAT
GAGGGAGCGACCCAGATTAGGTGAGGACAGTTCTCATTAGCCTTTCCACAGGTGGTTGCAT
TCTTGGCAATGGTCATGGGAACCCACACCTACAGCCACTGGCCAGCTGCTGCCAGCAAAGGG
CAGGACACCTCTGAGGGAGCTGCTGAGGTGGAGCACTGTGCCTGTGCCTCCCTAGAGCCTGCTAG
GCCCAACCGCCACCCAGAGTCCTGTAGGGCCAGTGAAGATGGACCCCTAACAGCAGGGCCATCT
CCCCCTGGAGATATGAGTTGGACAGAGACTTGAACCGGCTCCCCCAGGACCTGTACACGCCGT
TGCCTGTGCCCGACTCGTCAGCCTACAGACAGGCTCCCACATGGACCCCGGGCAACTCGGA
GCTGCTCTACCACAACCAGACTGTCTTCTACAGGCGGCCATGCCATGGCGAGAAGGGCACCCACA
AGGGCTACTGCCTGGAGCGCAGGCTGTACCGTGTTCCTTAGCTGTGTGTGCAGGGCCGT
GTGATGGGCTAGCGGACCTGCTGGAGGCTGGTCCCTTTGGAAACCTGGAGCCAGGTGTACA
ACCACTTGCCATGAAGGGCAGGATGCCAGATGCTTGCCTGTGAAGTGTCTGGAGCAG
CAGGATCCGGGACAGGATGGGGCTTGGAAAACCTGCACTTCTGCACATTTGAAAAGAG
CAGCTGCTGCTTAGGGCCGCCGAAGCTGGTGTCTGTCACTTCTCAGGAAAGGTTTCAA
GTTCTGCCCTTCTGGAGGCCACCACTCCTGTCTTCCCTTTCCATCCCTGCTACCCCTG
GCCCAAGCACAGGCACCTCTAGATAATTCCCCCTGCTGGAGAAGAAAGGCCCTGGTTTATT
TGTTTGTGTTACTCATCACTCAGTGAGCATCTACTTGGGTGCATTCTAGTGTAGTTACTAGTCTT
TTGACATGGATGATTCTGAGGAGGAAGCTGTTATTGAATGTATAGAGATTATCAAATAAATAT
CTTTATTAATAAATGAAAAAA

FIGURE 156

MRERPRILGEDSSLISLFLQVVAFLAMVMGTHTYSHWPSCCPSPKGQDTSEELLRWSTVPVPPLEPA
RPNRHPESCRASEDGPLNSRAISPWRYELDRDLNRLPQDLYHARCLCPHCVSLQTGSHMDPRGNS
ELLYHNQTVFYRRPCHGEKGTHKGYCLERRLYRVSLACVCVRPRVMG

Important features of the protein:

Signal peptide:

amino acids 1-32

N-glycosylation site.

amino acids 136-140

Tyrosine kinase phosphorylation site.

amino acids 127-135

N-myristoylation sites.

amino acids 44-50, 150-156

FIGURE 157

CCGGCG**A**TGTCGCTCGTGCTGCTAAGCCTGGCCGCGTGTGCAGGAGCGCCGTACCCCGAGAGCC
GACC**G**TTCAATGTGGCTCTGAAACTGGGCCATCTCCAGAGTGGATGCTACAACATGATCTAACCC
CCGGAGACTTGAGGGACCTCCGAGTAGAACCTGTTACAACACTAGTGTGCAACAGGGGACTATTCA
ATTTGATGAATGTAAGCTGGGACTCCGGCAGATGCCAGCATCCGTTGTTGAAGGCCACCAA
GATTGAGTGTGACGGCAAAAGCAACTTCCAGTCCTACAGCTGTGAGGTGCAATTACACAGAGG
CCTTCCAGACTCAGACCAGACCCCTGGTGGTAAATGGACATTTCTACATCGGCTTCCCTGTA
GAGCTGAACACAGTCTATTTCATTGGGCCATAATTCCTAATGCAAATATGAATGAAGATGG
CCCTTCATGTCTGTGAATTTCACCTCACCAGGCTGCCTAGACCACATAATGAAATATAAAAAAA
AGTGTGTCAAGGCCGAAGCCTGTGGGATCGAACATCACTGTTGTAAGAAGAATGAGGAGACA
GTTAGAAGTGAACCTCACACCCTCCCCTGGGAAACAGATACTGGCTTATCCAACACAGCAC
TATCATCGGGTTTCTCAGGTGTTGAGCCACACCAGAAGAAACAAACGCGAGCCTCAGTGGTGA
TTCCAGTGACTGGGAGATGTGAAGGTGCTACGGTGCAGCTGACTCCATATTTCCTACTTGTGGC
AGCGACTGCATCCGACATAAGAACAGTTGTGCTCTGCCACAAACAGGCCTTCCCT
GGATAACAAACAAAAGCAAGCCGGAGGCTGGCTGCCTCTCCTCTGCTGTCTGCTGGTGGCA
CATGGGTGCTGGTGCAGGGATCTATCTAAAGGACAGTTGTGCTCTGCCACAAACAGGCCTTCCCT
TCTACCACCAACTACTGCCCTTAAGGTTCTTGTGGTTTACCATCTGAAATATGTTCCA
TCACACAATTGTTACTTCACTGAATTCTCAAAACCATTGCAGAAGTGAGGTATCCTTGAA
AGTGGCAGAAAAGAAAATAGCAGAGATGGGTCCAGTGCAGTGGCTGCCACTCAAAGAGCA
GCAGACAAAGTCGCTTCCCTTCCAATGACGTCAACAGTGTGCGATGGTACCTGTGGCAA
GAGCGAGGGCAGTCCCAGTGAGAACTCTCAAGACCTTCCCCCTGCCCTTAACCTTGCA
GTGATCTAAGAACGCCAGATTCTGACAAATACGTGGTGTACTTAGAGAGATTGATACA
AAAGACGATTACAATGCTCTCAGTGTCTGCCCAAGTACCACTCATGAAGGATGCCACTGCTT
CTGTGCAGAACTTCTCCATGTCAAGCAGCAGGTGTCAGCAGGAAAAGATCACAAAGCCTGCCACG
ATGGCTGCTGCCCTG**TAG**

FIGURE 158

MSLVLLSLAALCRSAVPREPTVQCGSETGPSPEWMLQHDLIPGDLRDLRVEPVITSVATGDYSILMNWSVL
LRADASIRLLKATKICVTGKSNFQSYSCVRCNYTEAFQTQTRPSGGKWTFSYIGFPVELNTVYFIGAHNIP
NANMNEGPGSMSVNFTSPGCLDHIMKYKKKCVKAGSLWDPNITACKNEETVEVNFTTTPLGNRYMALIQH
STIIGFSQVFEPHQKKQTRASVVIPVTGDSEGATVQLTPYFPTCGSDCIRHKGTVVLCPQTGVPFPLDNNK
SKPGGWLPLLLLSLLVATWVLVAGIYLMWRHERIKKTSFSTTLLPPIKVLIVVYPSEICFHHTICYFTEFL
QNHCRCSEVILEKWQKKKIAEMGPVQWLATQKKAADKVVFLSNDVNSVCDGTCGKSEGSPSENSQDLFPLA
FNLFCSDLRSQIHLHKYVVVYFREIDTKDDYNALSVCPKYHLMKDATAFCAELLHVQQVSAGKRSQACHD
GCCSL

Important features of the protein:

Signal peptide:

amino acids 1-14

Transmembrane domain:

amino acids 290-309

N-glycosylation sites.

amino acids 67 - 71, 103 - 107, 156 - 160, 183 - 187, 197 - 201 and 283
- 287

cAMP- and cGMP-dependent protein kinase phosphorylation sites.

amino acids 228 - 232 and 319 - 323

Casein kinase II phosphorylation sites.

amino acids 178 - 182, 402 - 406, 414 - 418 and 453 - 457

N-myristoylation site.

amino acids 116-122

Amidation site.

amino acids 488-452

FIGURE 159

AGCCACCAGCGCAACATGACAGTGAAGACCCTGCATGGCCCAGCCATGGTCAGTACTTGCTGCT
GTCGATATTGGGGCTTGCCTTCTGAGTGAGGCGGCAGCTCGGAAAATCCCCAAAGTAGGACATA
CTTTTTCCAAAAGCCTGAGAGTTGCCCGCCTGTGCCAGGAGGTAGTATGAAGCTTGACATTGGC
ATCATCAATGAAAACCAGCGCGTTCCATGTCACGTAACATCGAGAGCCGCTCCACCTCCCCCTG
GAATTACACTGTCACTTGGGACCCAACCGTACCCCTCGGAAGTTGTACAGGCCAGTGTAGGA
ACTTGGGCTGCATCAATGCTCAAGGAAAGGAAGACATCTCCATGAATTCCGTTCCATCCAGCAA
GAGACCCTGGTCGTCGGAGGAAGCACCAAGGCTGCTCTGTTCTTCCAGTTGGAGAAGGTGCT
GGTGACTGTTGGCTGCACCTGCGTCACCCCTGTCATCCACCATGTGCAGTAAGAGGTGCATATCC
ACTCAGCTGAAGAAG

FIGURE 160

MTVKTLHGPAMVKYLLSILGLAFLSEAAARKIPKVGHFFQKPESCPVPGGSMKLDIGIINEN
QRVSMSRNIESRSTSPWNYTVTWDPNRYPSEVVQAQCRLGCINAQGKEDISMNSVPIQQETLVV
RRKHQGCSVSFQLEKVLVTVGCTCVTPVIHHVQ

Signal sequence:

amino acids 1-30

N-glycosylation site.

amino acids 83-87

N-myristoylation sites.

amino acids 106-111, 136-141

FIGURE 161

ACACTGGCAAACAAAAACGAAAGCACTCCGTCTGGAAGTAGGAGGAGTCAGGACTCCCAGG
ACAGAGAGTGCACAAACTACCCAGCACAGCCCCCTCCGCCCTCTGGAGGCTGAAGAGGGATTC
CAGCCCCCTGCCACCCACAGACACAGGCTGACTGGGTGCTGCCCTCTGGGGGGGGCAGCAC
AGGGCCTCAGGCCTGGTGCCACCTGGCACCTAGAAGATGCTGTGCCCTGGTTCTGCTGTCT
TGGCACTGGGCCAGGCCAGTGGCTTCTCTGGAGAGGCTTGTTGGGCCCTCAGGACGCTACC
CACTGCTCTCCGGGCTCTCCGCGCTCTGGGACAGTGACATACTCTGCCTGCCCTGGGACAT
CGTGCCTGCTCCGGCCCCGTGCTGGGCCCTACGCACCTGCAGACAGAGCTGGTGCTGAGGTGCC
AGAAGGAGACCGACTGTGACCTCTGTCTCGGTGTTGCACTTGGCGTGCATGGGACTGG
GAAGAGCCTGAAGATGAGGAAAAGTTGGAGGAGCAGCTGACTCAGGGTGGAGGAGCCTAGGAA
TGCCTCTCCAGGCCAAGTCGTCTCTCCAGGCCAACCTACTGCCGCTGCGTCTGC
TGGAGGTGCAAGTGCCTGCTGCCCTTGTCAGTTGGTCAGTCTGTTGGCTCTGTTATATGAC
TGCTTCGAGGCTGCCCTAGGGAGTGAGGTACGAATCTGTCCTATAACTCAGGCCAGGTACGAGAA
GGAACATCAACCACACACAGCAGTCGCTGCCCTGGCTAACGTGTCAGCAGATGGTGACA
ACGTGCATCTGGTTCTGAATGTCCTGAGGAGCAGCATTGGCCTCTCCCTGTA
CTGGGAATCAG
GTCCAGGGCCCCAAAACCCGGTGGCACAAAAACCTGACTGGACCGCAGATCATTACCTTGA
CCACACAGACCTGGTCCCTGCTGTATTCAAGGTGTCGCTCTGGAACCTGACTCCGTTAGGA
CGAACATCTGCCCTTCAGGGAGGACCCCCCGCAGACACCAGAACCTCTGGCAAGCCGCCGACTG
CGACTGCTGACCCCTGAGAGCTGGCTGCTGGACGCCACCGTCTCGCTGCCGAGAACGGGCA
CTGCTGGGGCTCCGGTGGGACCCCTGCCAGCCACTGGTCCCACCGCTTCTGGAGAACG
TCACTGTGGACAAGTTCTCGAGTCCCATTGCTGAAAGGCCACCTAACCTCTGTTAGGTG
AACAGCTGGAGAACGCTGCAAGCTGAGGAGTGCTGTGGCTGACTCCCTGGGCCCTCTCAAAGA
CGATGTGCTACTGTGGAGAACGAGGCCAGGACACAGATCCCTGTCCTTGA
CTGGCTGACTTCACTACCCAGAAAGCCTCACAGGGCAGCTGCCCTGGAGAGTACTTACTA
CAAGACCTGCAGTCAGGCCAGTGTCTGCAGCTATGGGACGATGACTTGGAGCCTATGGCCTG
CCCCATGGACAAATACATCCACAAGCGCTGGCCCTGCTGTGGCTGCCCTACTCTTGGC
CTGCGCTTCCCTCATCCTCTCTCAAAAAGGATCACCGCAAAGGGTGGCTGAGGCTTGTAAA
CAGGACGTCCGCTGGGGCGGGCGCAGGGCCGCGCGCTCTGCTCCCTACTCAGCGATGA
CTCGGGTTTCGAGGCCCTGGTGGCGCCCTGGCGTGGCCCTGTGCCAGCTGCCGCTGCGCTGG
CCGTAGACCTGTGGAGGCCGTCGTAAGTGAAGCGCGCAGGGGCCGTTGGCTTACCGCAG
CGGCAGACCCCTGCAAGGAGGGCGCGTGGTGGCTTGTCTTCTCTCCGGTGGCTGGGCG
GTGCAGCGAGTGGCTACAGGATGGGTGTCGGGCCGGCGCAGGCCCGCACGACGCCCTCC
GCGCCTCGCTCAGCTGCGTGCTGCCGACTTCTGCAAGGCCGGCGCCGGCAGCTACGTGGGG
GCCCTGCTTCGACAGGCTGCTCCACCGGACGCCGTACCCGCCCTTCCGCACCGTGCCGCTT
CACACTGCCCTCCCAACTGCCAGACTTCTGGGGCCCTGCAGCAGCCTCGCGCCCCCGTCC
GGCGGCTCCAAGAGAGAGCGGAGCAAGTGTCCGGGCCCTCAGCAGCCCTGGATAGCTACTTC
CATCCCCGGGACTCCCGCAGGGACGCGGGTGGGACCGAGGGCGGGACCTGGGGGGGG
CGGGACTTTAAATAAAGGCAAGCGCTGTTTCTAAAAAAA

FIGURE 162

MPVPWFLLSLALGRSPVVLSLERLVPQDATHCSPGLSCRILWSDILCLPGDIVPAPGPVLAPTHLQTELVL
LRCQKETDCDLCLRVAVHLAVHGHWEPEDEEKFGGAADSGVEEPRNASLQAQVVLFSQAYPTARCVLLEV
QVPAALVQFGQSVGSVYDCFEAALGSEVRIWSYTQPRYEKELNHTQQLPALPWLNVSADGDNVHLVLNVS
EEQHFGLSLYWNQVQGPPKPRWHKNLTGPQIITLNHTDLPCLCIQVWPLEPDVRTNICPFREDPRAHQN
LWQAARLRLTLQSWLLDAPCSLPAEAALCWRAPIGGDPQCPLVPPLSWENVTVDKVLEFPLLKGHPNLCVQ
VNSSEKLQLQECLWADSLGPLKDDVLLLETRGPQDNRSILCALEPSGCTSLEPKASTRAARLGEYLLQDLQS
GQCLQLWDDDLGALWACPMDKYIHKRWALVWLACLLFAAALSLLLLKKDHAKGWLRLLKQDVRSAGAAARG
RAALLLYSADDGFERLVGALASALCQLPLRVAVDLWSRRELQAQGPVAWFHAQRQTLQEGGVVLLFSP
GAVALCSEWLQDGVSGPGAHGPHDAFRASLSCVLPDFLQGRAPGSYVGACFDRLLHPDAVPALFRTVPVFT
LPSQLPDFL GALQQPAPRSGRLQERAEQVSRALQPALDSYFHPPGT PAPGRGVGPAGPGAGDGT

Signal sequence:

amino acids 1-20

Transmembrane domain.

amino acids 453-475

N-glycosylation sites.

amino acids 118-121, 186-189, 198-201, 211-214, 238-241, 248-251,
334-337, 357-360, 391-394

Glycosaminoglycan attachment site.

amino acids 583-586

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 552-555

N-myristoylation sites.

amino acids 107-112, 152-157, 319-324, 438-443, 516-521, 612-617,
692-697, 696-701, 700-705

FIGURE 163

GGGAGGGCTCTGTGCCAGCCCCGATGAGGACGCTGCTGACCATCTGACTGTGGATCCCTGGCT
GCTCACGCCCCCTGAGGGACCCCTCGATCTGCTCCAGCACGTGAAATTCCAGTCCAGCAACTTTGA
AAACATCCTGACGTGGGACAGCGGGCAGAGGGCACCCAGACACGGTCTACAGCATCGAGTATA
AGACGTACGGAGAGAGGGACTGGGTGGCAAAGAAGGGCTGTCAGCGATCACCCGAAAGTCCTGC
AACCTGACGGTGGAGACGGCAACCTCACGGAGCTACTATGCCAGGGTCACCGCT
GTCAGTGCAGGGAGGGCGGTCAGGCCACCAAGATGACTGACAGGTTAGCTCTGCAGCACACTAC
CCTCAAGCCACCTGATGTGACCTGTATCTCAAAGTGAGATGATTAGCTCATCCTA
CCCCCAGCCAATCCGTGCAGGGATGGCCACCGGCTAACCCCTGGAAGACATCTCCATGACCTG
TTCTACCAACTAGAGCTCCAGGTCAACCGCACCTACCAAATGCACCTGGAGGGAAAGCAGAGAGA
ATATGAGTTCTCGGCCCTGACCCCTGACACAGAGTTCCCTGGCACCATCATGATTGCGTTCCA
CCTGGCCAAGGAGAGTGCCCCCTACATGTGCCAGTGAAAGACACTGCCAGACGGGACATGGACC
TACTCCTCTCCGGAGCCTCCCTGTTCTCATGGGCTTCTCGTCGAGTACTGCTACCTGAG
CTACAGATATGTCACCAAGCCGCTGCACCTCCAACTCCCTGAACGTCCAGCGAGTCCGTACTT
TCCAGCCGCTGCCTCATCCAGGAGCACGCTCTGATCCCTGTTGACCTCAGCGGCCCCAGC
AGTCTGGCCCAGCCTGTCAGTACTCCAGATCAGGGTGTCTGGACCAGGGAGCCGAGGAGC
TCCACAGCGGCATAGCCTGTCCAGATCACCTACTTAGGGCAGCCAGACATCTCCATCCAGC
CCTCAAACGTGCCACCTCCCCAGATCCTCTCCCTGCTCTATGCCCTAACGCTGCCCCCTGAG
GTCGGGCCCCCATCTTATGCACCTCAGGTGACCCCGAAGCTCAATTCCCATCTACGCCCCACA
GGCCATCTCAAGGCCAGCCTCTCTATGCCCTCAAGCCACTCCGGACAGCTGGCCTCCCT
CCTATGGGTATGCATGGAAAGGTCTGGCAAAGACTCCCCACTGGACACTTTCTAGTCCTAAA
CACCTTAGGGTCAAAGGTCAGCTTCAGAAAGAGCCACCAAGCTGGAAAGCTGCATGTTAGGTGGCCT
TTCTCTGCAGGAGGTGACCTCTGGCTATGGAGGAATCCAAGAAGCAAATCATTGCACCAAGC
CCCTGGGATTGCAAGACAGAACATCTGACCCAAATGTGCTACACAGTGGGAGGAAGGGACA
CCACAGTACCTAAAGGCCAGCTCCCCCTCCTCTCAGTCCAGATGAGGGCACCCCATGTC
CCTCCCTTGCAACCTCCTCCGGTCCATGTTCCCCCTGGACCAAGGTCCAAGTCCCTGGGCC
TGCTGGAGTCCCTTGCTGTGCTCCAGGATGAAGCCAAGAGCCAGCCCCCTGAGACCTCAGACCTG
GAGCAGCCCACAGAACCTGGATTCTTCAAGAGCCTGGCCCTGACTGTGCA
GAGTGGGAGTCTG
AGGGAAATGGGAAAGGCTTGGTCTTCCCTGTCCTACCCAGTGT
CACATCCTGGCTGTCA
ATCCCCATGCCTGCCATGCCACACTCTGGCATCTGGCTCAGACGGGTGCCCTGAGAGAAC
AGAGGGAGTGGCATGCAGGGCCCTGCCATGGGTGCGCTCCTCACCGGAACAAAGCAGCATGATA
AGGACTGCAGGGGGAGCTCTGGGGAGCAGCTTGTAGACAAGCCGTGCTGGCTGAGCCCTG
CAAGGCAGAAATGACAGTGCAAGGAGGAATGCAGGGAAACTCCCGAGGTCCAGAGCCCCACCTC
CTAACACCATGGATTCAAAGTGCTCAGGGAAATTGCTCTCCTTGCCCCATTCTGGCCAGTTTC
ACAATCTAGCTCGACAGAGCATGAGGCCCTGCCCTTCTGTGATTGTCAAAGGTGGGAAGAGA
GCCTGGAAAAGAACCAAGGCCAGGGAAAGAACCAAGAGGAGGCTGGCAGAACAGAACAC
ACTTCTGCCAAGGCCAGGGCAGCAGGACGCGAGACTCTAGGGAGGGTGTGGCTGCAGCTCA
TTCCCAGCCAGGGCAACTGCCAGCTGACGTTGCACTGATTCAGCTCATTCCTGATAGAACAAAGC
GAAATGCAGGTCCACCAAGGGAGGGAGACACACAAGCCTTCTGAGGCAGGAGTTCAAGACCC
ATCCCTGAGAATGGGGTTGAAAGGAAGGTGAGGGCTGIGGCCCTGACGGGTACAATAACAC
TGTACTGATGTCACAACCTTGCAAGCTCTGCCCTGGGTTCAAGCCCATCTGGGCTCAAATTCCAGC
CTCACCAACTCACAAGCTGTGACTCAAACAAATGAAATCAGTGCCAGAACCTCGGTTCTC
ATCTGTAATGTGGGATCATAACACCTACCTCATGGAGTTGTGGTGAAGATGAAATGAAGTCATG
TCTTTAAAGTGCTTAATAGTGCCCTGGTACATGGCAGTGCCCAATAACGGTAGCTATTTAAAAA
AAAAAAAA

FIGURE 164

MRTLLTILTGVSLAAHAPEDPSDLLQHVKFQSSNFENILTWDSGPEGTPDTVYSIEYKTYGERDW
VAKKGCQRITRKSCNLTVEGNLTELYYARVTAVSAGGRSATKMTDRFSSLQHTTLKPPDVT CIS
KVRSIQMIVHPTPTPIRAGDGHRLTLEDIFHDLFYHLELQVNRTYQMHLGGKQREYEFFGLTPDT
EFLGTIMICVPTWAKESAPYMCRVKTLPDRWTYSFSGAFLFSMGFLVAVLCYLSYRYVTKPPAP
PNSLNQVRVLTFQPLRFIQEHVLIPIVFDLSGPSSLAQPVQYSQIRVSGPREPAGAPQRHSLSEIT
YLGQPDISILQPSNVPPPQILSPLSYAPNAAPEVGPPSYAPQVTPEAQFPFYAPQAISKVQPSSY
APQATPDSWPPSYGVCMEGSGKDSPTGTLSSPKHLRPKGQLQKEPPAGSCMLGGLSLQEVTSLAM
EESQEAKSLHQPLGICTDRTSDPNVLHSGEEGTPQYLKGQLPLLSSVQIEGHPMSLPLQPPSGPC
SPSDQGPSPWGLLESVCPKDEAKSPAPETSDLEQPTELDSLFRGLALTQWES

Signal sequence.

amino acids 1-17

Transmembrane domain.

amino acids 233-250

N-glycosylation sites.

amino acids 80-83, 87-90, 172-175

N-myristoylation sites.

amino acids 11-16, 47-52, 102-107, 531-536, 565-570

FIGURE 165

TGGCCTACTGGAAAAAAAAAAAAAAAGTCACCCGGGCCCGCGTGGCCACAACATGG
CTGCGGCCGGGCTGCTCTCTGGCTGTCGTGCTGGGGCGCTCTGGTGGTCCCAGGCCAG
TCGGATCTCAGCCACGGACGGCGTTCTGACCTCAAAGTGTGCAGGGACGAAGAGTGCAGCAT
GTTAATGTACCGTGGAAAGCTCTTGAAAGACTTCACGGCCCTGATTGCGTTTGAAATTAA
AAAAAGGTGACGATGTATATGTCTACTACAAACTGGCAGGGGATCCCTGAACCTTGGCTGGA
AGTGTGAACACAGTTGGATATTTCAAAAGATTGATCAAGGTACTTCATAAAACACGGA
AGAAGAGCTACATATTCCAGCAGATGAGACAGACTTTGCTGCTTGAAGGAGGAAGAGATGATT
TTAATAGTTATAATGTAGAAGAGCTTTAGGATCTTGAACTGGAGGACTCTGTACCTGAAGAG
TCGAAGAAAGCTGAAGAAGTTCTCAGCACAGAGAGAAATCTCCTGAGGAGTCTGGGGCGTGA
ACTTGACCCCTGTGCCTGAGCCCCAGGCATTCAAGAGCTGATTCAAGAGGATGGAGAAGGTGCTTCT
CAGAGAGCACCAGGGGCTGCAGGGACAGCCCTCAGCTCAGGAGAGCCACCCACACCAGCGGT
CCTGCAGCTAACGCTCAGGGAGTGCAGTCTCGTTGGACACTTGAAGAAATTCTGCACGATAA
ATTGAAAGTGCCGGAAAGCGAAAGCAGAACTGGCAATAGTTCTCCTGCCTGGAGCAGGGAGA
AGACAGATGCTTACAAAGTCTGAAAACAGAAATGAGTCAGAGAGGAAGTGGACAGTGCCTTATT
CATTACAGCAAAGGATTCGTTGGCATAAAATCTAAGTTGTTTACAAAGATTGTTTTAGTA
CTAAGCTGCCTTGGCAGTTGCATTTGAGCCAACAAAATATTATTTCCCTTAAGTA
AAAAAAAAAAAAAA

FIGURE 166

MAAAPGLLFWLFWLGA LWVWVPGQSDLSHGRRFSDLKVC GDEEC SMLMYRGKALEDFTGPDCRFVN
FKKGDDVYVYYKLAGGSLELWAGSVEHSFGYFPKDLIKVLHKYTEEELHIPADETDFVC FEGGRD
DFNSYNVEELLGSLELEDSPVEESKKAAEVSQHREKSPPEESRGRELDPVPEPEAFRADSEDEGA
FSESTEGLQGQPSAQESHPHTSGPAANAQGVQSSLDTFEEILHDKLKVPGSESRTGNSSPASVER
EKTDAYKVLKTEMSQRGSGQCVIHYSKGFRWHQNLSLFYKDCF

Important features of the protein:

Signal peptide:

amino acids 1-22

N-glycosylation site.

amino acids 294-298

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 30-34

Tyrosine kinase phosphorylation site.

amino acids 67-76

N-myristoylation sites.

amino acids 205-211, 225-231, 277-283

Amidation site.

amino acids 28-32

FIGURE 167

CCAGGACCAGGGCGCACCGGCTCAGCCTCTCACTTGTCAAGAGGCCGGGAAGAGAAGCAAAGCGC
AACGGTGTGGTCCAAGCCGGGCTTCGCTCGCCTCTAGGACATAACACGGGACCCCCTAACCTTC
AGTCCCCAAACGCGCACCTCGAAGTCTTGAACTCCAGCCCCGCACATCCACGCGCGGCACAGG
CGCGGCAGGCAGGCGCAGGTCGGCGAAGGCAGTCGCGCAGGGGTCGGGCAGCTGGGCTGGG
GGCAGGGAGTAGGGCCCGCAGGGAGGCAGGGAGGCTGCATATTCAAGAGTCGCGGCTGCGCCCTG
GGCAGAGGCCGCCCTCGCTCACGCAACACCTGCTGCTGCCACCGCGCCGCGATGAGCCGCGTGG
TCTCGCTGCTGCTGGCGCCGCGTGCCTGCGGCCACGGAGCCTCTGCCGCCGCGTGGTCAGC
GCCAAAAGGTGTGTTTGCTGACTCAAGCATCCCTGCTACAAAATGGCCTACTTCCATGAAC
GTCCAGCCGAGTGAAGCTTCAGGAGGCACGCCTGGCTGTGAGAGTGAGGGAGGAGTCCTCCTCA
GCCTTGAGAATGAAGCAGAACAGAACAGTAATAGAGAGCATGTTGAAAACCTGACAAAACCCGG
ACAGGGATTCTGATGGTATTCTGGATAGGGCTTGAGGAATGGAGATGGCAAACATCTGG
TGCCTGCCAGATCTTACCAAGTGGCTGATGGAAGCAATTCCCAGTACGAAACTGGTACACAG
ATGAACCTCCTGCGGAAGTGAAGAAAGTGTGTTGATGTATCACCAACCAACTGCCAACCTGGC
CTTGGGGGTCCTACCTTACCAAGTGGATGATGACAGGTGTAACATGAAGCACAATTATATTG
CAAGTATGAACCAGAGATTAATCCAACAGCCCTGAGAAAAGCCTTATCTTACAAATCAACCAG
GAGACACCCATCAGAATGTGTTACTGAAGCAGGTATAATTCCAATCTAATTATGTTGTT
ATACCAACAATACCCCTGCTTACTGATACTGGTTGCTTTGGAACCTGTTGTTCCAGATGCT
GCATAAAAGTAAAGGAAGAACAAAAACTAGTCAAACACCAGTCTACACTGTGGATTCAAAGAGTA
CCAGAAAAGAAAGTGGCATGGAAGTATAAAACTCATGACTGGTTCCAGAATTGTAATTCT
GGATCTGTATAAGGAATGGCATCAGAACAAATAGCTTGGGAATGGCTGAAATCACAAGGATCTGC
AAGATGAACTGTAAGCTCCCTTGAGGCAAATTAAAGTAATTGTTATATGTCTATTATTCA
TTTAAAGAATATGCTGTGCTAATAATGGAGTGAACATGCTTATTTGCTAAAGGATGCCACCAA
ACTTCAAACCTCAAGCAAATGAAATGGACAATGCAGATAAAGTGTATCAACACGTGGGAGTA
TGTGTGTTAGAAGCAATTCTTTATTCTTACCTTCATAAGTGTATCTAGTCAATGTA
TGTATATTGTTGAAATTACAGTGTGCAAAGTATTACCTTGCATAAGTGTGTTGATAAAA
ATGAACCTGTTCTAATATTATTATGGCATCTCATTTCAATACATGCTTTGATTAAAG
AAACTTATTACTGTTGTCACGTGAATTCACACACACAAATATAGTACCATAGAAAAGTTGT
TTCTCGAAATAATTCAATTGTCAGCTCTGCTTGGTCAATGTCTAGGAAATCTTCAGA
ATAAGAAGCTATTCAATTGTCAGCTTGTGAAACACTATGCAATTGAAACAAAAGAAG
TGTCTAATTCAATTGTCAGCTTGTGAAACACTATGCAATTGCAATTGAAACAAAAGAAG
TGACATACACAATATAAATCATATGCTTCACACGTTGCCTATATAATGAGAAGCAGCTCTGA
GGGTTCTGAAATCAATGTGGCCCTCTTGCCCACTAAACAAAGATGGTTGTTGGGGTTGG
ATTGACACTGGAGGCAGATAGTGCAGGAAAGTGTCTAAGGTTCCCTAGCTGTATTAAGCCTCTG
ACTATATTAGTATAAAAGAGGTATGTGGTTGAGACCAGGTGAATAGTCACATCAGTGTGGAG
ACAAGCACAGCACACAGACATTAGGAAGGAAAGGAACATCGAAATCGTGTGAAAATGGGTGG
AACCCATCAGTGCATATTCAATTGATGAGGGTTGCTTGAGATAGAAAATGGTGGCTCCTT
CTGCTTATCTCTAGTTCTCAATGCTTACGCCCTGTTAACCAAATAAAGAGTTCTGTTCTGGGGAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

FIGURE 168

MSRVVSLLGALLCGHGFCCR VVSGQKVC FADF KHP CYK MAYF H E LSS RVS F QEAR LACE SE
GGVLLSLENEAEQKLIESMLQNLTKPGTG ISDGDFWIGLWRNGDQTSGACP DLYQ WSDGSNSQ
YRNWYTDEPSCGSEKCVV MYHQPTANPGLGGPYLYQWNDDRCNMKHNYICKYEPEINPTAPVEK
PYLTNQP GDTHQN VVVTEAGIIPNLI YVVIPTIPLLLLILVAFGTCCFQMLHKS KGRTKTSPNQ
STLWISKSTRKESGM EV

Important features of the protein:

Signal peptide:

amino acids 1-21

Transmembrane domain:

amino acids 214-235

N-glycosylation sites.

amino acids 86-89, 255-258

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 266-269

N-myristoylation sites.

amino acids 27-32, 66-71, 91-96, 93-98, 102-107, 109-114, 140-145, 212-217