

# UNIVERSIDADE DO VALE DO ITAJAÍ ESCOLA DO MAR, CIÊNCIA E TECNOLOGIA CURSO DE BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO CC2165 – CÁLCULO NUMÉRICO

# RESOLUÇÃO DE SISTEMAS LINEARES E INTERPOLAÇÕES POLINOMIAIS

## RESOLUÇÃO DE SISTEMAS LINEARES E INTERPOLAÇÕES POLINOMIAIS

Israel Efraim de Oliveira José Carlos Zancanaro Outubro / 2018

Professor Dr.: Marcelo Gomes de Paoli.

Curso: Bacharelado em Ciência da Computação.

IDE, Linguagem: Qt Creator, C++.

Número de páginas: 7.

### Índice

| 1 Eliminação Gaussiana com Pivoteamento Parcial                       | 4 |
|-----------------------------------------------------------------------|---|
| 2 Resolução Iterativa de Sistema Linear (Gauss-Jacobi e Gauss-Seidel) | 5 |
| 3 Interpolação por Sistema Linear                                     |   |
| 4 Interpolação por Esquema Prático de Lagrange                        |   |
| 5 Interpolação por Esquema Prático de Newton                          |   |
| 6 Interpolação por Spline Cúbica                                      |   |

#### 1 Eliminação Gaussiana com Pivoteamento Parcial

#### **Matriz Inicial**

| X <sub>1</sub> | X <sub>2</sub> | <b>X</b> <sub>3</sub> | X <sub>4</sub> | <b>X</b> <sub>5</sub> | X <sub>6</sub> | X <sub>7</sub> | X <sub>8</sub> | X <sub>9</sub> | X <sub>10</sub> | R     |
|----------------|----------------|-----------------------|----------------|-----------------------|----------------|----------------|----------------|----------------|-----------------|-------|
| 2              | 1              | 7                     | 4              | -3                    | -1             | 4              | 4              | 7              | 0               | 86    |
| 4              | 2              | 2                     | 3              | -2                    | 0              | 3              | 3              | 4              | 1               | 45    |
| 3              | 4              | 4                     | 2              | 1                     | -2             | 2              | 1              | 9              | -3              | 52.5  |
| 9              | 3              | 5                     | 1              | 0                     | 5              | 6              | -5             | -3             | 4               | 108   |
| 2              | 0              | 7                     | 0              | -5                    | 7              | 1              | 0              | 1              | 6               | 66.5  |
| 1              | 9              | 8                     | 0              | 3                     | 9              | 9              | 0              | 0              | 5               | 90.5  |
| 4              | 1              | 9                     | 0              | 4                     | 3              | 7              | -4             | 1              | 3               | 139   |
| 6              | 3              | 1                     | 1              | 6                     | 8              | 3              | 3              | 0              | 2               | 61    |
| 6              | 5              | 0                     | -7             | 7                     | -7             | 6              | 2              | -6             | 1               | -43.5 |
| 1              | 6              | 3                     | 4              | 8                     | 3              | -5             | 0              | -6             | 0               | 31    |

#### **Matriz Escalonada**

| X <sub>1</sub> | X <sub>2</sub> | X <sub>3</sub> | X <sub>4</sub> | X <sub>5</sub> | X <sub>6</sub> | X <sub>7</sub> | X <sub>8</sub> | X <sub>9</sub> | X <sub>10</sub> | R    |
|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------------|------|
| 1              | 0              | 0              | 0              | 0              | 0              | 0              | 0              | 0              | 0               | 3    |
| 0              | 1              | 0              | 0              | 0              | 0              | 0              | 0              | 0              | 0               | -4.5 |
| 0              | 0              | 1              | 0              | 0              | 0              | 0              | 0              | 0              | 0               | 7    |
| 0              | 0              | 0              | 1              | 0              | 0              | 0              | 0              | 0              | 0               | 8    |
| 0              | 0              | 0              | 0              | 1              | 0              | 0              | 0              | 0              | 0               | 3.5  |
| 0              | 0              | 0              | 0              | 0              | 1              | 0              | 0              | 0              | 0               | 2    |
| 0              | 0              | 0              | 0              | 0              | 0              | 1              | 0              | 0              | 0               | 4    |
| 0              | 0              | 0              | 0              | 0              | 0              | 0              | 1              | 0              | 0               | -3.5 |
| 0              | 0              | 0              | 0              | 0              | 0              | 0              | 0              | 1              | 0               | 2    |
| 0              | 0              | 0              | 0              | 0              | 0              | 0              | 0              | 0              | 1               | 1.5  |

#### Vetor Solução

| <b>X</b> <sub>1</sub> | X <sub>2</sub> | X <sub>3</sub> | X <sub>4</sub> | X <sub>5</sub> | X <sub>6</sub> | <b>X</b> <sub>7</sub> | X <sub>8</sub> | X <sub>9</sub> | X <sub>10</sub> |
|-----------------------|----------------|----------------|----------------|----------------|----------------|-----------------------|----------------|----------------|-----------------|
| 3                     | -4.5           | 7              | 8              | 3.5            | 2              | 4                     | -3.5           | 2              | 1.5             |

#### 2 Resolução Iterativa de Sistema Linear (Gauss-Jacobi e Gauss-Seidel)

#### **Matriz Inicial**

| X <sub>1</sub> | $\mathbf{X}_{2}$ | X <sub>3</sub> | X <sub>4</sub> | X <sub>5</sub> | X <sub>6</sub> | <b>X</b> <sub>7</sub> | <b>X</b> <sub>8</sub> | X <sub>9</sub> | X <sub>10</sub> | R    |
|----------------|------------------|----------------|----------------|----------------|----------------|-----------------------|-----------------------|----------------|-----------------|------|
| 4              | -1               | 0              | -1             | 0              | 0              | 0                     | 0                     | 0              | 0               | -110 |
| -1             | 4                | -1             | 0              | -1             | 0              | 0                     | 0                     | 0              | 0               | -30  |
| 0              | -1               | 4              | 0              | 0              | -1             | 0                     | 0                     | 0              | 0               | -40  |
| -1             | 0                | 0              | 4              | -1             | 0              | 0                     | 0                     | 0              | 0               | -110 |
| 0              | -1               | 0              | -1             | 4              | -1             | -1                    | 0                     | 0              | 0               | 0    |
| 0              | 0                | -1             | 0              | -1             | 4              | 0                     | -1                    | 0              | 0               | -15  |
| 0              | 0                | 0              | 0              | -1             | 0              | 4                     | -1                    | 0              | 0               | -90  |
| 0              | 0                | 0              | 0              | 0              | -1             | -1                    | 4                     | -1             | 0               | -25  |
| 0              | 0                | 0              | 0              | 0              | 0              | 0                     | -1                    | 4              | -1              | -55  |
| 0              | 0                | 0              | 0              | 0              | 0              | 0                     | 0                     | -1             | 4               | -65  |

#### Gauss-Jacobi

| k                      | 0        | 1        | 2        | 26          | 27          | 28         |
|------------------------|----------|----------|----------|-------------|-------------|------------|
| <b>X</b> <sub>1</sub>  | -27.625  | -36.125  | -40.3477 | -48.6457    | -48.646     | -48.6461   |
| X <sub>2</sub>         | -7.25    | -16.9531 | -23.5156 | -35.4938    | -35.494     | -35.4943   |
| <b>X</b> <sub>3</sub>  | -10.0625 | -12.75   | -16.2031 | -25.6149    | -25.6152    | -25.6153   |
| X <sub>4</sub>         | -27.25   | -34.4375 | -40.3281 | -49.0901    | -49.0903    | -49.0905   |
| <b>X</b> <sub>5</sub>  | -0.125   | -15.1875 | -20.8359 | -37.7155    | -37.7161    | -37.7163   |
| <b>X</b> <sub>6</sub>  | -3.75    | -7.85938 | -14.7969 | -26.9671    | -26.9674    | -26.9677   |
| <b>X</b> <sub>7</sub>  | -22.5    | -24.0938 | -30.3594 | -39.3134    | -39.3136    | -39.3139   |
| <b>X</b> <sub>8</sub>  | -6.25    | -16.25   | -19.082  | -29.539     | -29.5394    | -29.5395   |
| X <sub>9</sub>         | -13.75   | -19.375  | -22.7344 | -26.877     | -26.877     | -26.8772   |
| <b>X</b> <sub>10</sub> | -16.25   | -19.6875 | -21.0938 | -22.9692    | -22.9692    | -22.9693   |
| 3                      | 1.0362   | 0.416955 | 0.171943 | 1.37509E-05 | 1.15201E-05 | 6.3177E-06 |

#### **Gauss-Seidel**

| k                     | 0        | 1        | 2        | 13          | 14          | 15          |
|-----------------------|----------|----------|----------|-------------|-------------|-------------|
| <b>X</b> <sub>1</sub> | -36.25   | -41.4062 | -44.9658 | -48.6454    | -48.646     | -48.6462    |
| X <sub>2</sub>        | -19.0625 | -26.8945 | -30.907  | -35.4938    | -35.4943    | -35.4946    |
| <b>X</b> <sub>3</sub> | -15.7031 | -20.3125 | -22.9913 | -25.6152    | -25.6155    | -25.6156    |
| X <sub>4</sub>        | -36.5625 | -42.9688 | -45.8289 | -49.0901    | -49.0905    | -49.0907    |
| X <sub>5</sub>        | -20.4688 | -28.3496 | -33.1311 | -37.7161    | -37.7166    | -37.7168    |
| X <sub>6</sub>        | -14.3555 | -21.0583 | -24.2646 | -26.9677    | -26.9679    | -26.9681    |
| <b>X</b> <sub>7</sub> | -29.1797 | -34.7302 | -37.2668 | -39.3139    | -39.3141    | -39.3142    |
| <b>X</b> <sub>8</sub> | -20.5713 | -25.936  | -28.0656 | -29.5397    | -29.5398    | -29.5399    |
| X <sub>9</sub>        | -22.9553 | -25.7312 | -26.4371 | -26.8772    | -26.8773    | -26.8773    |
| X <sub>10</sub>       | -21.9888 | -22.6828 | -22.8593 | -22.9693    | -22.9693    | -22.9693    |
| 3                     | 0.559829 | 0.183409 | 0.104334 | 2.47822E-05 | 1.13861E-05 | 5.23129E-06 |

#### 3 Interpolação por Sistema Linear

#### Vetor Solução

| <b>X</b> <sub>1</sub> | X <sub>2</sub> | X <sub>3</sub> | X <sub>4</sub> | <b>X</b> <sub>5</sub> |
|-----------------------|----------------|----------------|----------------|-----------------------|
| -45                   | 0.249333       | -0.000434667   | 3.30667E-07    | -8.53333E-11          |

#### Polinômio Interpolador

$$p_4(x) = -45 + 0.249333 x - 0.000434667 x^2 + 3.30667 e - 07 x^3 - 8.53333 e - 11 x^4$$

$$p_4(850) = 11.4128$$

#### 4 Interpolação por Esquema Prático de Lagrange

#### Esquema Prático

| $\mathbf{X}_{\mathbf{k}}$ |      |      |       | X <sub>k</sub> - |       | $\mathbf{D}_{k}$ | $f_k(x) / D_k$ |       |               |              |
|---------------------------|------|------|-------|------------------|-------|------------------|----------------|-------|---------------|--------------|
| 500                       | 1230 | -500 | -1000 | -1500            | -2000 | -2500            | -3000          | -3500 | -4.84313E+025 | -5.6575E-26  |
| 1000                      | 500  | 730  | -500  | -1000            | -1500 | -2000            | -2500          | -3000 | 4.10625E+024  | 1.33455E-24  |
| 1500                      | 1000 | 500  | 230   | -500             | -1000 | -1500            | -2000          | -2500 | -4.3125E+023  | -1.83188E-23 |
| 2000                      | 1500 | 1000 | 500   | -270             | -500  | -1000            | -1500          | -2000 | -3.0375E+023  | -3.6214E-23  |
| 2500                      | 2000 | 1500 | 1000  | 500              | -770  | -500             | -1000          | -1500 | 8.6625E+023   | 1.60808E-23  |
| 3000                      | 2500 | 2000 | 1500  | 1000             | 500   | -1270            | -500           | -1000 | -2.38125E+024 | -6.89974E-24 |
| 3500                      | 3000 | 2500 | 2000  | 1500             | 1000  | 500              | -1770          | -500  | 9.95625E+024  | 2.03289E-24  |
| 4000                      | 3500 | 3000 | 2500  | 2000             | 1500  | 1000             | 500            | -2270 | -8.93813E+025 | -2.63142E-25 |

#### Resolução

$$p_7(1730) = \Pi_{n+1}(1730) * S$$

$$p_7(1730) = -2.19085e + 23 * -4.2304e - 23 = 9.26819$$

#### 5 Interpolação por Esquema Prático de Newton

#### Tabela das Diferenças Divididas

| X <sub>i</sub> | f[x <sub>i</sub> ] | f[x <sub>i</sub> ,x <sub>j</sub> ] | $f[x_i, x_j, x_k]$ | $f[x_i, x_j, x_k, x_l]$ | $f[x_i, x_j, x_k, x_l, x_m]$ | $f[x_i, x_j, x_k, x_l, x_m, x_n]$ | $f[x_{i},x_{j},x_{k},x_{l},x_{m},x_{n},x_{o}]$ |
|----------------|--------------------|------------------------------------|--------------------|-------------------------|------------------------------|-----------------------------------|------------------------------------------------|
| 60             | 76                 |                                    |                    | -                       | -                            |                                   |                                                |
|                |                    | 0.95                               |                    |                         |                              |                                   |                                                |
| 80             | 95                 |                                    | -0.0025            |                         |                              |                                   |                                                |
|                |                    | 0.85                               |                    | 0.000229167             |                              |                                   |                                                |
| 100            | 112                |                                    | 0.01125            |                         | -8.59375E-06                 |                                   |                                                |
|                |                    | 1.3                                |                    | -0.000458333            |                              | 1.92708E-07                       |                                                |
| 120            | 138                |                                    | -0.01625           |                         | 1.06771E-05                  |                                   | -2.97309E-09                                   |
|                |                    | 0.65                               |                    | 0.000395833             |                              | -1.64062E-07                      |                                                |
| 140            | 151                |                                    | 0.0075             |                         | -5.72917E-06                 |                                   |                                                |
|                |                    | 0.95                               |                    | -6.25E-05               |                              |                                   |                                                |
| 160            | 170                |                                    | 0.00375            |                         |                              |                                   |                                                |
|                |                    | 1.1                                |                    |                         |                              |                                   |                                                |
| 180            | 192                |                                    |                    |                         |                              |                                   |                                                |

#### Polinômio Interpolador

$$p_6(x) = f[x_0] + (x - x_0) f[x_0, x_1] + \dots + (x - x_0)(x - x_1) \dots (x - x_6) f[x_0, x_1, x_2, x_3, x_4, x_5, x_6]$$

$$p_6(130) = 145.829$$

#### 6 Interpolação por Spline Cúbica

#### Tabela das Diferenças Divididas

| X,  | f[x <sub>i</sub> ] | f[x <sub>i</sub> ,x <sub>j</sub> ] | $f[x_i, x_j, x_k]$ | $f[x_i, x_j, x_k, x_l]$ |
|-----|--------------------|------------------------------------|--------------------|-------------------------|
| 2.8 | 16.44              |                                    |                    |                         |
|     |                    | 18.2                               |                    |                         |
| 3   | 20.08              |                                    | 10.125             |                         |
|     |                    | 22.25                              |                    | 3.54167                 |
| 3.2 | 24.53              |                                    | 12.25              |                         |
|     |                    | 27.15                              |                    |                         |
| 3.4 | 29.96              |                                    |                    |                         |

#### Polinômio Interpolador

$$p_3(x) = f[x_0] + (x - x_0) f[x_0, x_1] + ... + (x - x_0)(x - x_1)(x - x_2) f[x_0, x_1, x_2, x_3]$$

$$p_3(3.1) = 22.1931$$