Отчет по вычислительному практикуму

Шилов Максим

Дано уравнение в виде:

$$-a\frac{\partial^2 u}{\partial x^2} - b\frac{\partial^2 u}{\partial y^2} = f(x,y) \quad (x,y) \in D$$
$$u(x,y) = \psi(x,y), \quad (x,y) \in \partial D$$

5-точечная схема:

$$-a\frac{U_{i-1,j} - 2U_{i,j} + U_{i+1,j}}{h^2} - b\frac{U_{i,j-1} - 2U_{i,j} + U_{i,j+1}}{h^2} = f_{i,j}$$

$$a = 1, \quad b = 1.2$$

$$f(x,y) = 0.2e^x \cos y$$

$$\psi(x,y) = e^x \cos y$$

Область D

Методы

 $F=\{F_{i,j}\}=\{f(ih,jh)\}$ - проекция f на сетку. i, j - внутри области D $\Psi=\{\Psi_{i,j}\}=\{\psi(ih,jh)\}$ - проекция ψ на сетку. i, j - внутри и на границе области D $Y_{i,j}^0=1$, внутри области D $Y_{i,j}^0=\psi(x,y)$, на границе D $Y_{i,j}^0=0$, вне области

$$AY_{i,j}^{n} = -a \frac{Y_{i-1,j}^{n} - 2Y_{i,j}^{n} + Y_{i+1,j}^{n}}{h^{2}} - b \frac{Y_{i,j-1}^{n} - 2Y_{i,j}^{n} + Y_{i,j+1}^{n}}{h^{2}}$$

Метод Зейделя:

$$Y_{i,j}^{n} = \frac{1}{2(a+b)} (aY_{i-1,j}^{n} + bY_{i,j-1}^{n} + aY_{i+1,j}^{n-1} + bY_{i,j+1}^{n-1} + h^{2}f(ih, jh))$$

Метод верхней релаксации:

$$Y_{i,j}^{n} = (1 - \omega)Y_{i,j}^{n-1} + \frac{\omega}{2(a+b)}(aY_{i-1,j}^{n} + bY_{i,j-1}^{n} + aY_{i+1,j}^{n-1} + bY_{i,j+1}^{n-1} + h^{2}f(ih, jh))$$

Оптимальный параметр для верхней релаксации:

$$eta = rac{h^2}{2(a+b)} \lambda_{min}$$
 $\omega_0 = rac{2}{1+\sqrt{eta(2-eta))}}$

Остановка:

$$\xi_n = AY^n - F$$
$$\|\xi_{n+1} - \xi_n\| < \delta$$

Погрешность:

$$\varepsilon = \|Y^n - \Psi\|$$

Скалярное произведение двух матриц:

$$\langle A, B \rangle = \sum_{i,j=1}^{n} a_{ij} \cdot b_{ij}$$

Норма матрицы:

$$||A|| = \sqrt{\sum_{i,j=1}^{n} a_{i,j}^2 h^2}$$

Таблица значений (Метод Зейделя)

Таблица для ε :

$\delta \backslash h$	$\frac{1}{10}$	iter	$\frac{1}{20}$	iter	$\frac{1}{40}$	iter
10^{-4}	3.576e-05	51	2.924e-05		0.00016	615
10^{-6}	4.271e-05	72	1.051e-05	269	1.097e-06	977
10^{-8}	4.279 e - 05	94	1.092e-05	359	2.732e-06	1339
10^{-10}	4.279 e - 05	115	1.091e-05	449	2.749e-06	1701
10^{-12}	4.279 e-05	137	1.091e-05	539	2.749e-06	2381