From Contingency Table To Logistic Regression

With the French Skiiers Data

Andy Grogan-Kaylor

2023-09-26

Table of contents

1	The Data	1
	Contingency Table2.1 Risk (R) and Risk Differences (RD)	
3	Logistic Regression	3

1 The Data

We use the French Skiiers data that we have used in other examples.

```
use "FrenchSkiiers.dta"
```

2 Contingency Table

```
tabulate Tx Outcome [fweight = Count]
```

	Outcome			
Tx	No Cold	Cold	•	
Placebo Ascorbic Acid	109	31 17	140	
Total	231	48	 279	

For the sake of teaching and exposition, I re-arrange the numbers slightly.

	Develop Outcome	Do Not Develop Outcome
Exposed	а	b
Not Exposed	С	d

	Cold	No Cold
Ascorbic Acid Placebo	17 (a) 31 (c)	122 (b) 109 (d)

2.1 Risk (R) and Risk Differences (RD)

$$R = \frac{a}{a+b}$$
 (in Exposed)

$$RD =$$

risk in exposed - risk in not exposed =

$$a/(a+b) - c/(c+d) =$$

$$(17/139) - (31/140) =$$

-.09912641

How do we talk about this risk difference?

2.2 Odds Ratios (OR)

	Develop Outcome	Do Not Develop Outcome
Exposed	a	b
Not Exposed	С	d

$$OR =$$

 $\frac{\rm odds\ that\ exposed\ person\ develops\ outcome}{\rm odds\ that\ unexposed\ person\ develops\ outcome}\,=\,$

$$\frac{\frac{a}{a+b}/\frac{b}{a+b}}{\frac{c}{c+d}/\frac{d}{c+d}} =$$

$$\frac{a/b}{c/d} =$$

$$\frac{ad}{bc} =$$

$$(17 * 109)/(122 * 31) =$$

.4899526

How do we talk about this odds ratio?

3 Logistic Regression

As discussed, the formula for logistic regression is:

$$\ln \left(\frac{p(\mathsf{outcome})}{1-p(\mathsf{outcome})}\right) = \beta_0 + \beta_1 x$$

Here p(outcome) is the probability of the outcome.

 $\frac{p(\text{outcome})}{1-p(\text{outcome})}$ is the odds of the outcome.

Hence, $\ln\left(\frac{p(\text{outcome})}{1-p(\text{outcome})}\right)^1$ is the $\log odds$ of the outcome.

The logistic regression equation has the desired functional form.

The logistic regression equation is appropriate to reflect changes in the probability of an outcome that can be either 1 or 0.

Figure 1: Logistic Curve

Logistic regression returns a β coefficient for each independent variable x.

These β coefficients can then be exponentiated to obtain odds ratios: $OR = e^{\beta}$

Exponentiation "undoes" the logarithmic transformation.

If
$$\ln(y)=x$$
, then $y=e^x$ So, if ... $\ln\left(\frac{p(\text{outcome})}{1-p(\text{outcome})}\right)=\beta_0+\beta_1x$ then $\frac{p(\text{outcome})}{1-p(\text{outcome})}=e^{\beta_0+\beta_1x}=e^{\beta_0}\times e^{\beta_1x}$

We see that the odds ratio given by logistic regression, .4899526, is the exact same as that given by manually calculating the odds ratio from a contingency table.

An advantage of logistic regression is that it can be extended to multiple independent variables.

¹It is sometimes useful to think of the *log odds* as a *transformed dependent variable*. We have transformed the dependent variable so that it can be expressed as a linear function of the independent variables, e.g.: $\beta_0 + \beta_1 x$

Iteration 0: Log likelihood = -128.09195
Iteration 1: Log likelihood = -125.68839
Iteration 2: Log likelihood = -125.65611
Iteration 3: Log likelihood = -125.6561

Logistic regression Number of obs = 279

LR chi2(1) = 4.87Prob > chi2 = 0.0273

Log likelihood = -125.6561 Pseudo R2 = 0.0190

Outcome Oc	dds ratio	Std. err.	z	P> z	[95% conf.	interval]
Tx	.4899526	.1613519	-2.17	0.030	. 256942	.9342712

_cons | .2844037 .0578902 -6.18 0.000 .1908418 .423835

Note: _cons estimates baseline odds.

How do we talk about this *odds ratio*? How would we talk about it if it was > 1.0? > 2.0