

Plano de Ensino para o Ano Letivo de 2020

	IDENTIFICAÇÃO			
Disciplina:			Código da Disciplina:	
Simulação Computacional de Processos Químicos			EQM985	
Course:				
Process Simulation				
Materia:				
Simulation de Processos				
Periodicidade: Anual	Carga horária total: 80	Carga horária semana	al: 00 - 00 - 04	
Curso/Habilitação/Ênfase:		Série:	Período:	
Engenharia Química		6	Noturno	
Engenharia Química		5	Diurno	
Professor Responsável:	Titulação - Graduaç	ção	Pós-Graduação	
Efraim Cekinski	Engenheiro Qu	ímico	Doutor	
Professores:	Titulação - Graduaç	 ção	Pós-Graduação	
Armando Zanone	Engenheiro Qu		Mestre	
Efraim Cekinski	Engenheiro Qu		Doutor	
OBJE	ΓΙVOS - Conhecimentos, Habili			
	aos alunos dois dos sof	,	a comorginia maia	
-				
importantes utilizados na indústria química, ASPEN e ANSYS (CFD). O primeiro já é bastante difundido e utilizado em diversas empresas do setor. O segundo, é				
	n, com um potencial de			
próximos anos.	ii, com um potenciai de	ucilização	marco grande nos	
	EMENTA			
Estudo e simulação de	 processos industriais at	ravés do uso	de simuladores de	
processo				
	SYLLABUS			
Study and simulation	of industrial processes	s through the	e use of process	
simulators				
	TEMARIO			
Estudio y simulación de	procesos industriales me	ediante el uso	de simuladores	
ESTRA	ATÉGIAS ATIVAS PARA APREI	NDIZAGEM - EAA		
Aulas de Laboratório -	Sim			

2020-EQM985 página 1 de 8

LISTA DE ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM

- Peer Instruction (Ensino por pares)

METODOLOGIA DIDÁTICA

As aulas terão uma parte expositiva, porém, a maior parte do tempo será dedicado à resolução de problemas reais de engenharia com a utilização dos softwares.

No caso do ASPEN, os problemas propostos serão aqueles que levam em conta as operações unitárias já estudadas durante o curso como bombas, destilação, extração, reação, etc. No caso do ANSYS, os problemas propostos terão o objetivo de resolver as equações de conservação de massa, energia e quantidade de movimento num sistema real.

CONHECIMENTOS PRÉVIOS NECESSÁRIOS PARA O ACOMPANHAMENTO DA DISCIPLINA

O aluno deve conhecer as principais operações unitárias da engenharia química e conhecer as equações de conservação na forma diferencial.

CONTRIBUIÇÃO DA DISCIPLINA

foi utilizada na indústria, simulação de processos sempre recentemente, essa utilização é cada vez mais exigida, pois é a forma mais eficiente, fácil e de menor custo para otimizar o processo. Atualmente, o engenheiro químico tem que ter um conhecimento pelo menos básico de simulação e, essa disciplina irá fornecer ao aluno uma noção intermediária a avançada sobre o assunto. Será uma continuação das ferramentas básicas que foram apresentadas na disciplina EQM304 - Laboratório para a Engenharia Química I. Dessa forma, a disciplina irá contribuir na formação do aluno em dois aspectos importantes: Primeiramente, no melhor entendimento dos fenômenos de transporte e operações unitárias vistas nos anos anteriores e segundo, refere-se ao futuro profissional do aluno. Como não se tem conhecimento de faculdades de engenharia que ensinem esses softwares no nível de graduação de maneira como é visto na Mauá, o aluno terá uma vantagem competitiva em relação aos alunos de outras instituições, pois poderá utilizar a simulação para melhorar ou desenvolver projetos e processos em seu ramo de atuação.

BIBLIOGRAFIA

Bibliografia Básica:

ADAMS II, Thomas A. Learn Aspen Plus® in 24 hours. Hoboken, N.J: Wiley, c2018. 188 p. ISBN 9781260116458.

AL-MALAH, Kamal I.M. Aspen Plus®: chemical engineering applications. Hoboken, N.J: Wiley, c2017. 602 p. ISBN 9781119131236.

GHASEM, Nayef. Computer methods in chemical engineering. Hoboken, N.J: Wiley, c2012. 504 p. ISBN 9781439849996.

INCROPERA, Frank P; DEWITT, David P. Fundamentos de transferência de calor e de massa. Trad. de Eduardo Mach Queiroz e Fernando Luiz Pellegrino Pessoa. 7. ed. Rio de Janeiro, RJ: LTC, 2008. 643 p. ISBN 9788521625049.

2020-EQM985 página 2 de 8

ÇENGEL, Yunus A. Transferência de calor e massa: uma abordagem prática. Trad. de Luiz Felipe mendes de Moura ; rev. téc. de Kamal A. R. Ismail. 3. ed. Boston: McGraw-Hill, 2009. 902 p. (McGraw-Hill Series in Mechanical Engineering). ISBN 9788577260751.

Bibliografia Complementar:

BIRD, R. Byron; STEWART, Warren E; LIGHTFOOT, Edwin N. Transport phenomena. 2. ed. New York: John Wiley, 2002. 895 p. ISBN 0-471-41077-2.

FOUST, Alan S. Princípios das operações unitárias. Trad. de Horácio Macedo. 2. ed. Rio de Janeiro, RJ: Guanabara Dois, 1982. 670 p.

AVALIAÇÃO (conforme Resolução RN CEPE 16/2014)

Disciplina anual, com trabalhos.

Pesos dos trabalhos:

 $k_1: 1,0 \quad k_2: 1,0 \quad k_3: 1,0 \quad k_4: 1,0$

INFORMAÇÕES SOBRE PROVAS E TRABALHOS

2020-EQM985 página 3 de 8

OUTRAS INFORMAÇÕES

Eato diaginl	ina á gampa	ata non doia	tinos do	goftwarea	ıım om CE	D 0 011+100		
Esta discipl							em	um
simulador de	processos.	Cada soitwa	re sera u	tilizado p	or um seme	stre.		

2020-EQM985 página 4 de 8

SOFTWARES NECESSÁRIOS PARA A DISCIPLINA ANSYS versão 19.0 ou superior ASPEN versão 10 ou superior

2020-EQM985 página 5 de 8

2020-EQM985 página 6 de 8

INSTITUTO MAUÁ DE TECNOLOGIA

	PROGRAMA DA DISCIPLINA	
Nº da	Conteúdo	EAA
semana		
2 L	Apresentação da disciplina e revisão	0
3 L	Revisão e apresentação das ferramentas básicas	1% a 10%
4 L	carnaval	0
5 L	Simulação de colunas de absorção/destilação reativa	11% a 40%
6 L	Simulação de utilidades (vapor, água de resfriamento)	11% a 40%
7 L	Análise energética	11% a 40%
8 L	Análise de custos	11% a 40%
9 L	provas P1	0
10 L	Aplicações em Termodinâmica: ciclos refrigeração	11% a 40%
11 L	Simulação Estudo de Caso	41% a 60%
12 L	Simulação Estudo de Caso	41% a 60%
13 L	Simulação Estudo de Caso	41% a 60%
14 L	Simulação Estudo de Caso	41% a 60%
15 L	semana inovação	0
16 L	Simulação Estudo de Caso	41% a 60%
17 L	Simulação Estudo de Caso	41% a 60%
18 L	Simulação Estudo de Caso	41% a 60%
19 L	semana provas P2	0
20 L	semana provas P2	0
21 L	revisão	0
22 L	semana provas Sub1	0
23 L	semana provas Sub1	0
24 L	Apresentação do pacote de fluidodinâmica computacional FLUENT	0
	(ANSYS)	
25 L	utilização do FLUENT para resolução de problemas de condução de	1% a 10%
	calor	
26 L	utilização do FLUENT para resolver problemas de transporte calor:	11% a 40%
	projeto de dissipadores de calor	
27 L	utilização do FLUENT para resolver problemas de transporte calor:	11% a 40%
	projeto de dissipadores de calor	
28 L	utilização do FLUENT para resolver problemas de transporte calor:	41% a 60%
	projeto de dissipadores de calor	
29 L	introdução ao transporte de quantidade de movimento	1% a 10%
30 L	semana provas P3	0
31 L	utilização do FLUENT para resolver problemas de transporte de	41% a 60%
	quantidadede movimento - projeto tubulações	
32 L	utilização do FLUENT para resolver problemas de transporte de	41% a 60%
	quantidadede movimento - projeto tubulações	
33 L	utilização do FLUENT para resolver problemas de transporte de	41% a 60%
	quantidadede movimento - projeto tubulações	
34 L	utilização do FLUENT para resolver problemas de transporte de	41% a 60%
	quantidadede movimento e calor conjugados	
35 L	utilização do FLUENT para resolver problemas de transporte de	41% a 60%
	quantidadede movimento e calor conjugados	

2020-EQM985 página 7 de 8

INSTITUTO MAUÁ DE TECNOLOGIA

36 L	utilização do FLUENT para resolver problemas de transporte de	41% a 60%	
	quantidadede movimento e calor conjugados		
37 L	utilização do FLUENT para resolver problemas de transporte de	41% a 60%	
	quantidadede movimento e calor conjugados		
38 L	semana provas P4	0	
39 L	semana provas P4	0	
40 L	revisão	0	
41 L	semana provas sub2	0	
Legenda: T = Teoria, E = Exercício, L = Laboratório			

2020-EQM985 página 8 de 8