Отчет по лабораторной работе №7

Модель распространения рекламы - вариант 48

Казаков Александр НПИбд-02-19

Содержание

1	Цель работы									
2	Задание	5								
3	Выполнение лабораторной работы 3.1 Теоретические сведения	6 6 8								
4	Выводы	12								
Сп	писок литературы	13								

List of Figures

3.1	График решения уравнения модели Мальтуса .						7
3.2	График логистической кривой						8
3.3	График распространения рекламы для случая 1						ç
3.4	График распространения рекламы для случая 2						10
3.5	График распространения рекламы для случая 3						11

1 Цель работы

Изучить модель эффективности рекламной кампании

2 Задание

- 1. Изучить модель эффективности рекламной кампании.
- 2. Построить графики распространения рекламы по заданным математическим моделям.
- 3. Определить для случая 2 момент времени, в который скорость распространения рекламы будет максимальной.

3 Выполнение лабораторной работы

3.1 Теоретические сведения

Организуется рекламная кампания нового товара или услуги. Необходимо, чтобы прибыль будущих продаж с избытком покрывала издержки на рекламу. Вначале расходы могут превышать прибыль, поскольку лишь малая часть потенциальных покупателей будет информирована о новинке. Затем, при увеличении числа продаж, возрастает и прибыль, и, наконец, наступит момент, когда рынок насытиться, и рекламировать товар станет бесполезным.

Предположим, что торговыми учреждениями реализуется некоторая продукция, о которой в момент времени t из числа потенциальных покупателей N знает лишь n покупателей. Для ускорения сбыта продукции запускается реклама по радио, телевидению и других средств массовой информации. После запуска рекламной кампании информация о продукции начнет распространяться среди потенциальных покупателей путем общения друг с другом. Таким образом, после запуска рекламных объявлений скорость изменения числа знающих о продукции людей пропорциональна как числу знающих о товаре покупателей, так и числу покупателей о нем не знающих

Модель рекламной кампании описывается следующими величинами. Считаем, что $\frac{dn}{dt}$ - скорость изменения со временем числа потребителей, узнавших о товаре и готовых его купить, t - время, прошедшее с начала рекламной кампании, N - общее число потенциальных платежеспособных покупателей, n(t) - число уже информированных клиентов. Эта величина пропорциональна чис-

лу покупателей, еще не знающих о нем, это описывается следующим образом $\alpha_1(t)(N-n(t))$, где $\alpha_1>0$ - характеризует интенсивность рекламной кампании (зависит от затрат на рекламу в данный момент времени). Помимо этого, узнавшие о товаре потребители также распространяют полученную информацию среди потенциальных покупателей, не знающих о нем (в этом случае работает т.н. сарафанное радио). Этот вклад в рекламу описывается величиной $\alpha_2(t)n(t)(N-n(t))$. эта величина увеличивается с увеличением потребителей узнавших о товаре.

Математическая модель распространения рекламы описывается уравнением:

$$\frac{dn}{dt} = (\alpha_1(t) + \alpha_2(t)n(t))(N - n(t))$$

При $\alpha_1(t) >> \alpha_2(t)$ получается модель типа модели Мальтуса, решение которой имеет вид

Figure 3.1: График решения уравнения модели Мальтуса

В обратном случае $\alpha_1(t) << \alpha_2(t)$ получаем уравнение логистической кривой

Figure 3.2: График логистической кривой

3.2 Задача

Постройте график распространения рекламы, математическая модель которой описывается следующим уравнением:

```
 \begin{aligned} &1. \ \ \frac{dn}{dt} = (0.766 + 0.000082n(t))(N-n(t)) \\ &2. \ \ \frac{dn}{dt} = (0.0000866 + 0.7n(t))(N-n(t)) \\ &3. \ \ \frac{dn}{dt} = (0.95\sin(t) + 0.32\cos(9t)n(t))(N-n(t)) \end{aligned}
```

При этом объем аудитории N = 1930, в начальный момент о товаре знает 27 человек.

Для случая 2 определите в какой момент времени скорость распространения рекламы будет иметь максимальное значение.

```
model lab7_1

parameter Real a = 0.766;

parameter Real b = 0.000082;

parameter Real N = 1930;

Real n(start = 27);
```

```
equation der(n) = (a + b * n) * (N - n);
```

```
annotation(experiment(StartTime = 0, StopTime = 10, Interval = 0.05));
end lab7_1;
```


Figure 3.3: График распространения рекламы для случая 1

```
model lab7_2

parameter Real a = 0.0000866;
parameter Real b = 0.7;
parameter Real N = 1930;

Real n(start = 27);

equation
der(n) = (a + b * n) * (N - n);

annotation(experiment(StartTime = 0, StopTime = 0.1, Interval = 0.05));
end lab7_2;
```


Figure 3.4: График распространения рекламы для случая 2

Vаксимальная скорость распространения рекламы достигается при t=0

```
model lab7_3

parameter Real a = 0.95;
parameter Real b = 0.95;
parameter Real N = 1930;

Real n(start = 27);

equation
der(n) = (a * sin (1 * time) + b * cos (9 * time) * n) * (N - n);

annotation(experiment(StartTime = 0, StopTime = 0.1, Interval = 0.05));
end lab7_3;
```


Figure 3.5: График распространения рекламы для случая 3

4 Выводы

Изучена модель эффективности рекламы, построены графики распространения рекламы.

Список литературы

- 1. Документация по системе Modelica Режим доступа: https://www.modelica.org/
- 2. Введение в математическое моделирование : учебное пособие / В.Н. Ашихмин, М.Б. Гитман, И.Э. Келлер [и др.]; Под ред. П.В. Трусова. Электронные текстовые данные. М. : Логос, 2015. 440 с. : ил. (Новая Университетская Библиотека). ISBN 978-5-98704-637-1.