Problem Session 4

Probability and Martingales, 1MS045

26 November 2024

Note: If not specified otherwise, all random variables are real-valued, with the usual σ -algebra of Borel sets.

Problems

- 1. Let X_1, X_2, \ldots be a sequence of independent uniformly distributed random variables on the interval [0,1]. Prove (directly from definition) that $\min(X_1, X_2, \ldots, X_n) \to_p 0$ as $n \to \infty$.
- 2. Let $\{X_1, X_2, \dots\}$ and $\{Y_1, Y_2, \dots\}$ be uniformly integrable sequences of random variables.
 - (a) Prove that the sequence $\{X_n + Y_n \mid n \geq 1\}$ is also uniformly integrable.
 - (b) Is $\{X_nY_n \mid n \geq 1\}$ also uniformly integrable?
- 3. For $n \in \mathbb{N}$, let X_n be normally distributed with mean μ_n and variance σ_n^2 . Prove that the family $\{X_n \mid n \geq 1\}$ is uniformly integrable if and only if both μ_n and σ_n^2 are uniformly bounded.
- 4. Let $X: \Omega \to \{0, 1, 2, ...\}$ be a random variable with mean $m = \mathbb{E}(X) > 1$ and variance $\sigma^2 = \text{Var}(X) < \infty$. We define the *Galton-Watson* process Z_n associated with X by,

$$Z_0 = 1$$
 and $Z_n = \sum_{j=1}^{Z_{n-1}} X_{j,n}$ for $n \ge 1$,

where $X_{j,n}$ are independent random variables with the same distribution as X.

- (a) Show that $\mathbb{E}(Z_n) = m^n$.
- (b) Prove that $M_n = m^{-n}Z_n$ is a martingale and that it converges to some random variable M_{∞} almost surely.
- (c) Show that $\mathbb{E}(M_n) \to \mathbb{E}(M_\infty) = 1$ (Hint show that the martingale is in L^2). Conclude that $\mathbb{P}(M_\infty \neq 0) > 0$.
- (d) Now let X=0 with probability $\frac{1}{2}$ and X=2 with probability $\frac{1}{2}$. Now $m=\mathbb{E}(X)=1$. What can we say about M_{∞} ?
- 5. Consider the following sequence of random variables: $X_0 = a$ for some $a \in (0,1)$, and

$$X_n = \begin{cases} X_{n-1}^2 & \text{with probability } \frac{1}{2}, \\ 2X_{n-1} - X_{n-1}^2 & \text{with probability } \frac{1}{2}, \end{cases}$$

for n > 0. Prove that the sequence X_0, X_1, \ldots converges almost surely. What are the possible limits? For each of the possible limits L, determine

$$\mathbb{P}(\lim_{n\to\infty} X_n = L).$$

- 6. Prove that if X_n is a non-negative, uniformly integrable submartingale for which $X_n \to 0$ holds almost surely, as $n \to \infty$, then $X_n = 0$ (a.s.) for all $n \in \mathbb{N}$.
- 7. Let $p \in (0,1)$ be fixed. We have an inexhaustible supply of red and green balls. In a bucket, there is initially one red ball. In each time step, we take a random ball from the bucket. With probability p, we replace it along with another ball of the same colour. With probability q = 1 p we replace it and add a ball of the other colour. Let X_n be the number of red balls in the n-th step. Prove that

$$Y_n = (X_n - n/2) \cdot \binom{n - 2q}{n - 1}^{-1}$$

is a martingale.

8. In this exercise we will prove Lévy's Upward Theorem and give an alternative proof to Kolmogorov's 0-1 law.

Theorem. Let $X \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ and let \mathcal{F}_n be a filtration. Define $M_n = \mathbb{E}(X) \mid \mathcal{F}_n$). Then M_n is a martingale and

$$M_n \to Y := \mathbb{E}(X \mid \mathcal{F}_{\infty}),$$

almost surely and in L^1 , where $\mathcal{F}_{\infty} = \sigma(\bigcup \mathcal{F}_n)$.

- (a) Show that M_n is a martingale.
- (b) Show that M_n is UI.
- (c) Define measure μ_1, μ_2 on $(\Omega, \mathcal{F}_{\infty})$ by

$$\mu_1(F) = \mathbb{E}(Y; F)$$
 and $\mu_2(F) = \mathbb{E}(M_{\infty}; F)$.

Show that $\mu_1 = \mu_2$.

(d) Show that, almost surely, $Y = M_{\infty}$. (Hint: consider the expectation of the difference)

Recall Kolmogorov's 0-1 law:

Theorem. Let X_1, X_2, \ldots be a sequence of independent random variables. Define

$$\mathcal{T}_n = \sigma(X_{n+1}, X_{n+2}, \dots)$$
 and $\mathcal{T} = \bigcap_n \mathcal{T}_n$.

Then, for all $E \in \mathcal{T}$, we have $\mathbb{P}(E)$ is either 0 or 1.

(a) Use Lévy's Upward Theorem with $Y = I_E$ and show that

$$X = \mathbb{E}(X \mid \mathcal{F}_{\infty}) = \lim_{n} \mathbb{E}(X \mid \mathcal{F}_{n}).$$

(b) Show that $Y = \mathbb{P}(E)$ and prove the theorem. (Hint: Use independence of \mathcal{F}_n and \mathcal{T}_n)