CMOS模拟集成电路补充

- ◆ MOS晶体管特征频率
- ◆ 共源放大电路高频响应
- ◆ 共栅放大电路
- ◆ 共漏放大电路
- ◆ 共源共栅放大电路

MOS晶体管的特征频率 f_T

输出交流短路时,电流增益为1的频率

$$f_T \approx \frac{g_m}{2\pi (C_{gs} + C_{gd})}$$

一般地,MOS管 C_{gs} 的典型值为0.1-0.5pF, C_{gd} 的典型值为0.01-0.04pF。随着纳米CMOS技术的进步,CMOS器件特征频率已达到几百GHz

注意,晶体管的特征频率 f_T 不是晶体管放大器的上限工作频率,但它可以用来估计晶体管放大电路的最高工作频率。

晶体管放大器设计时,最高工作频率一般选为晶体管特征频率的1/10,振荡器的工作频率 可达到特征频率的1/3。

所以特征频率越高,晶体管电路可以工作到更高的频率。晶体管特征频率 f_{τ} 为估计电路工作频率上界提供了依据

MOS晶体管的特征频率 f_T

$$I_g = s(C_{gs} + C_{gd})V_{gs}$$

$$I_d = g_m V_{gs} - s C_{gd} V_{gs} = (g_m - s C_{gd}) V_{gs}$$

联立解上2式,得到输出短路电流增益为

$$G_I = \frac{I_d}{I_g} = \frac{g_m - sC_{gd}}{s(C_{gs} + C_{gd})}$$

 $\diamondsuit s=j\omega$,上式成为

$$G_{I}\big|_{s=j\omega} = \frac{I_{d}}{I_{g}} = \frac{g_{m} - j\omega C_{gd}}{j\omega (C_{gs} + C_{gd})}$$

$$\left|G_{I}\right|_{s=j\omega}$$
 = 1 时的频率定义为特征频率 f_{T} ,

如果
$$g_m \gg \omega C_{gd}$$
 ,特征频率 f_T 为

$$f_T \approx \frac{g_m}{2\pi (C_{gs} + C_{gd})}$$

密勒定理

$$Z_1(s) = \frac{Z(s)}{1 - A(s)}$$

$$Z_2(s) = \frac{Z(s)}{1 - \frac{1}{A(s)}}$$

$$A(s) = \frac{V_o(s)}{V_i(s)}$$

密勒定理使输出与输入去耦,简化分析

共源放大电路高频响应

交流小信号等效电路

PMOS二极管负载

应用密勒定理化简

高频响应

围绕结点 G_1 、输出节点 V_0 列写KCL方程

$$\frac{V_{1}-V_{i}}{R_{s}}+sC_{i}V_{1}=0$$

$$g_{ds1}V_{o}+g_{ds2}V_{o}+sC_{o}V_{o}+g_{m1}V_{1}+g_{m2}V_{o}=0$$

$$G(s)=\frac{V_{o}(s)}{V_{i}(s)}=-\frac{g_{m1}}{g_{m2}+g_{ds1}+g_{ds2}}\frac{1}{(1+sC_{i}R_{s})}\frac{1}{\left(1+sC_{o}\frac{1}{g_{m2}+g_{ds1}+g_{ds2}}\right)}$$

高频响应

$$G(s) = \frac{V_o(s)}{V_i(s)} = -\frac{g_{m1}}{g_{m2} + g_{ds1} + g_{ds2}} \frac{1}{(1 + sC_iR_s)} \frac{1}{(1 + sC_o\frac{1}{g_{m2} + g_{ds1} + g_{ds2}})}$$

$$G(s) = -\frac{g_{m1}}{g_{m2} + g_{ds1} + g_{ds2}} \frac{1}{(1 + s\tau_i)} \frac{1}{(1 + s\tau_o)}$$

$$G(s) = -\frac{g_{m1}}{g_{m2} + g_{ds1} + g_{ds2}} \frac{1}{(1 + s\tau_i)} \frac{1}{(1 + s\tau_o)}$$

$$\tau_i = R_s C_i$$
 $\tau_o = \frac{1}{g_{m1} + g_{ds1} + g_{ds2}} C_o$

$$G(j\omega) = G(s)\Big|_{s=j\omega}$$

$$= -\frac{g_{m1}}{g_{m2} + g_{ds1} + g_{ds2}} \frac{1}{\left(1 + \frac{j\omega}{\omega_i}\right)} \frac{1}{\left(1 + \frac{j\omega}{\omega_o}\right)}$$

$$\omega_i = 1/\tau_i = 800 \times 10^6 \text{ rad/s}$$

$$\omega_o = 1/\tau_o = 1350 \times 10^6 \text{ rad/s}$$

共栅放大电路

以镜像电流源作负载为例

放大机理:

M1将信号电压转变为电流;

此电流流过作负载的镜像电流源,将电流 又转变为电压;

如果负载电阻足够大,此电压比输入信号电压大,就实现了信号的放大。

M₁起到中介作用。

直流大信号电压转移特性

输出摆幅 $V_{o,max}$ - $V_{o,min}$

或
$$(V_i \ge V_b - V_{TN1})$$
 时

 M_1 处于关断状态,而作为负载的镜像电流源, M_2 总处于导通状态,所以输出电压 V_{omax} = V_{DD} 。

当
$$V_i \leq V_b - V_{TN1}$$
 或 $(V_{GS1} \geq V_{TN1})$ 时

 M_1 导通,并进入饱和区,输出电压 V_o 为

$$V_o = V_{ds1} + V_i$$

如果 V_b 固定,随着 V_i 减小输出电压 V_o 也减小,最终 $V_{o,min}$ 接近 V_b - V_{TN1} 。

如果 V_i 进一步减小,M1将进入线性区。

交流小信号等效电路

低频小信号情况下镜像电流源作有源负载时, 其对 M_1 的影响可用 M_2 的输出电阻 r_{ds2} 等效。

增益,输入电阻,输出电阻

$$v_{gs1} = -v_i$$
 (当 R_s 很小可予略去时)
$$v_o = \left(-g_{meff}v_{gs1} + \frac{v_i - v_o}{r_{ds1}}\right)r_{ds2} + v_i$$

$$g_{m1,eff} = g_{m1} + g_{mb1}$$

$$g_{m1,eff} = g_{m1} + g_{mb1}$$

$$G_o = \frac{v_o}{v_i} = \frac{g_{m,eff} + g_{ds1}}{g_{ds1} + g_{ds2}} \quad \text{ } \sharp \psi g_{ds1} = 1/r_{ds1}, \ g_{ds2} = 1/r_{ds2}$$

$$R_i = \frac{1}{g_{m1,eff}}$$
 当 r_{ds1} 支路电流比流过受控源电流小得多时

$$R_o = r_{ds1} \| r_{ds2} \quad \triangleq (R_s \ll r_{ds1}) \quad \bowtie$$

共漏放大电路

以电流阱负载为例

放大机理:

M1将信号电压转变为电流;

此电流流过作负载的电流源**M2**,将 电流又转变为电压;

请注意共漏极放大器,输出电压小于输入电压,电压增益小于1,但电流远大于输入端,输出端功率大大提高了。

直流大信号电压转移特性

输出摆幅

$$V_{o,max}$$
- $V_{o,min}$

当 V_i < V_{TN1} 时, M_1 处于截止状态,输出电压 V_o =0,此即输出电压最小值

$$V_{o,\min} = 0$$

随着 V_i 增大并超过 V_{TN1} , M_1 导通进入饱和区(V_{DD} 典型值时), I_{D1} 流过有源负载。随 V_i 增大,输出电压 V_o 也增大,两者之差为 V_{GS1} 。输出电压最大值约为

$$V_{o,\text{max}} \approx V_{DD} - V_{TN1}$$

增益,输入电阻,输出电阻

$$R'_{L} = r_{ds1} \parallel r_{ds2}$$

$$V_{bs1} = -V_{0}$$

$$V_{s} = -V_{0}$$

$$V_{s}$$

$$V_{i} = V_{gs1} + V_{0}$$

$$V_{0} = (g_{m1}V_{gs1} + g_{mb1}V_{bs1})R'_{L} = (g_{m1}V_{bs1} - g_{mb1}V_{0})R'_{L}$$

$$G_0 = \frac{V_o}{V_i} = \frac{g_{m1}R_L'}{1 + (g_{m1} + g_{mb1})R_L'} = \frac{g_{m1}}{g_{ds1} + g_{ds2} + g_{m1} + g_{mb1}}$$

$$G_0 \approx \frac{g_{m1}}{g_{m1} + g_{mb1}} < 1$$

$$V_{i} \circ G_{1} \mid M_{1}$$
 $S_{1} \mid M_{2} \mid M_{2}$
 $S_{2} \mid M_{2} \mid M_{2}$
 $S_{2} \mid M_{2} \mid M_{2}$
 $R_{i} = \infty$

$$R_0 = r_{ds1} \| r_{ds2} \| \frac{1}{g_{m1}} \| \frac{1}{g_{mb1}} \approx \frac{1}{g_{m1}} + \frac{1}{g_{mb1}}$$

电流源输出电阻

为得出简单镜像电流源的输出电阻,第一步得出二极管连接的 M_1 的等效电阻,第二步将 M_1 用其等效电阻替代,得出整个电路的小信号等效电路,并由此计算其输出电阻 r_{out}

二极管连接的M1的等效电阻近似为 $1/g_m$

由于没有电流流过 $1/g_{m1}$ 电阻,无论施加于镜像电流源输出的

电压 v_x 为多少, v_{gs2} 恒等于零。

因而图中受控源 $g_{m2}v_{qs2}=0$,故输出电阻为

$$r_{out} = \frac{v_x}{i_x} = r_{ds2}$$

源极退化镜像电流源

栅极接直流电压,交流相当于接地

$$i_x = g_{m2}v_{gs} + \frac{v_x - v_s}{r_{ds2}}$$

栅极接直流电压,交流相当于接地
$$v_{gs} = -v_{s}$$
 $i_{x} = g_{m2}v_{gs} + \frac{v_{x} - v_{s}}{r_{ds2}}$ $i_{x} = -i_{x}g_{m2}R_{s} + \frac{v_{x} - i_{x}R_{s}}{r_{ds2}}$

$$r_{out} = \frac{v_x}{i_x} = r_{ds2} \left[1 + R_s (g_{m2} + g_{ds2}) \right]$$

$$r_{out} = \frac{v_x}{i_x} = r_{ds2} \left[1 + R_s (g_{m2} + g_{mb2} + g_{ds2}) \right] \approx r_{ds2} (1 + R_s (g_{m2} + g_{mb2}))$$

源极退化镜像电流源比简单MOS镜像电流输出电阻增大了约 $(1+R_sg_{m2})$ 倍

共源共栅镜像电流源

首先注意到从M2漏极看进去的输入电阻是 r_{ds2} 。这样,将 M_4 当作一个带 r_{ds2} 的源极退化电阻的电流源,就可很快得 出其输出电阻 r_{out} 。

$$r_{out} = r_{ds4} \left[1 + r_{ds2} (g_{m4} + g_{mb4} + g_{ds4}) \right]$$

$$\approx r_{ds4} \left[1 + r_{ds2} (g_{m4} + g_{mb4}) \right]$$

$$\approx r_{ds2} (g_{m4} r_{ds4})$$

因此输出电阻比简单CMOS镜像电流源输出电阻增大了 $(g_{m4}r_{ds2})$ 倍

共源共栅(cascode)放大电路

以PMOS电流源负载为例

在共源极放大器上层叠了M2,带来 两个优点:

米勒电容效应减小了,提高了工作 上限频率,从而增加带宽; 输出电阻提高了,从而提高增益。

直流大信号电压转移特性

电压转移特性定性说明:

当输入信号电压 V_i 小于 M_1 的 阈值电压 V_{TN1} ,即 V_i < V_{TN1} , M_1 截止,而 M_2 、 M_3 导通,故输出电压 V_o 等于电源电压 V_{DD} ,即 $V_{0,max}$ = V_{DD} 。

当输入信号电压 V_i 大于 M_1 的阈值电压 V_{TN1} ,晶体管 M_1 、 M_2 、 M_3 均导通,输出电压 V_o 等于 M_2 、 M_1 管压降之和($V_{DS2}+V_{DS1}$),或 V_{DD} 减去 M_3 的管压降($V_{DD}-V_{DS3}$)。

输出最小电压 $V_{0,min}$ 与 M_2 、 M_3 的偏置电压有关,可根据流经 M_1 、 M_2 、 M_3 的电流相等这一约束条件,通过求解直流非线性微分方程得出。

工程上一般通过仿真得出

 V_{DD} =5V, V_{G2} =3.3V, V_{G3} =2.2V,M1、M2、M3尺寸相同,栅长L=1 μ m,栅宽W=2 μ m,基于0.8 μ m工艺,

增益,输入电阻,输出电阻

$$g_{m1}V_{i} + g_{ds1}V_{1} + g_{m2eff}V_{1} + g_{ds2}(V_{1} - V_{2}) = 0$$

$$g_{ds3}V_{2} - g_{m2eff}V_{1} + g_{ds2}(V_{2} - V_{1}) = 0$$

$$G_0 = \frac{V_o}{V_i} = \frac{V_2}{V_i} = -\frac{g_{m1}(g_{ds2} + g_{m2eff})}{g_{ds1}g_{ds2} + g_{ds3}(g_{ds1} + g_{ds2} + g_{m2eff})}$$

$$V_{G3} = \begin{bmatrix} G_3 & V_{DD} & V_{DD} \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

$$R_i = \infty$$

当
$$g_{ds}$$
比 g_m 小得多时 $G_0 \approx -\frac{g_{m1}}{g_{ds}}$

輸出电阻
$$R_o = (r_{ds1} + r_{ds2} + g_{m2eff}r_{ds1}r_{ds2}) ||r_{ds3}||$$

共源共栅级的输出电阻与M3漏极看入电阻并联

增益公式的直观解释

$$v_{o} = -i_{out}(r_{out} || r_{ds3})$$

 $= -g_{m1}v_{i}(r_{out} || r_{ds3})$
 $G_{0} = -g_{m1}(r_{out} || r_{ds3}) = -\frac{g_{m1}(g_{ds2} + g_{ds1} + g_{m2eff})}{g_{ds1}g_{ds2} + g_{ds3}(g_{ds1} + g_{ds2} + g_{m2eff})} \approx -g_{m1}r_{ds3}$

$$r_{out} = r_{ds1} + r_{ds2} + g_{m2eff}r_{ds1}r_{ds2} \approx r_{ds1}g_{m2}r_{ds2}$$
 (忽略背栅效应)

共源共栅放大电路

◆ 输出电阻大

◆ 増益高

交流小信号等效电路

$$R_{out} \approx (r_{ds1}g_{m2}r_{ds2}) || (r_{ds4}g_{m3}r_{ds3})$$
 $A_{v} = -g_{m1}R_{out}$

共源极、共栅极、共漏极放大器的特点

(1)一般情况下,共源极放大器电压增益远大于1,

源极跟随器电压增益略小于1,共栅极电路的电压增益远大于1。

(2)输入信号频率较低时,共源极电路的输入电阻很大,共漏极放大器输入电阻更大。 而共栅极放大器的输入电阻基本上在几百欧姆以内。

(3)源极跟随器的输出电阻在几百欧姆或更小,

共源极电路和共栅极放大器输出电阻大,共栅极放大电路输出电阻最大。