$\mathcal{D}$ 

Which statement using prefixes of the base unit metre (m) is not correct?

- **A** 1 pm =  $10^{-12}$  m
- **B**  $1 \text{ nm} = 10^{-9} \text{ m}$
- **C**  $1 \text{ Mm} = 10^6 \text{ m}$
- **D**  $1 \text{Gm} = 10^{12} \text{m}$

A cylindrical tube rolling down a slope of inclination  $\theta$  moves a distance L in time T. The equation relating these quantities is

$$L\left(3+\frac{a^2}{P}\right) = QT^2\sin\theta$$

Where a is the internal radius of the tube and P and Q are constants.

Which line gives the correct units for P and Q?

|   | P              | Q                 |
|---|----------------|-------------------|
| A | m <sup>2</sup> | $m^2s^{-2}$       |
| В | m <sup>2</sup> | m s <sup>-2</sup> |
| С | m²             | $m^3 s^{-2}$      |
| D | m <sup>3</sup> | ms <sup>-2</sup>  |



Which quantity can be measured in electronvolts (eV)?

- A electric charge
- B electric potential
- C energy
- **D** power



4 What is the ratio  $\frac{10^{-3} \text{ THz}}{10^{3} \text{ kHz}}$ ?

- A 10<sup>-9</sup>
- **B** 10<sup>-6</sup>
- C 10°
- $D 10^3$

6

What is the unit of weight in terms of SI base unit(s)?

- A kg m s<sup>-1</sup>
- B kams-2
- CN
- **D** J m<sup>-1</sup>



Which quantity has the same base units as momentum?

- A density × energy
- B density × volume × velocity
- C pressure x area
- D weight + area



The units of all physical quantities can be expressed in terms of SI base units.

Which pair contains quantities with the same base units?

- A force and momentum
- B pressure and Young modulus
- C power and kinetic energy
- D mass and weight



8 Three of these quantities have the same unit.

Which quantity has a different unit?

- A energy
- distance
- B force
- C power x time
- D rate of change of momentum

X



9 Which row shows an SI base quantity with its correct unit?

|   | SI base quantity     | unit           |   |
|---|----------------------|----------------|---|
| Α | charge               | coulomb        | V |
| В | current              | ampere         | V |
| С | potential difference | volt           | 1 |
| D | temperature          | degree Celsius |   |

10 The drag coefficient  $C_d$  is a number with no units. It is used to compare the drag on different cars at different speeds. It is given by the equation

$$C_d = \frac{2F}{\rho v^n A}$$

where F is the drag force on the car,  $\rho$  is the density of the air, A is the cross-sectional area of the car and v is the speed of the car.

What is the value of n?

- A 1
- **B** 2
- C
- D 4

| 11                                                                                                                                                                                                                                                                      | Which estimate is realistic?                                                                                                                                                                      |                                                                      |               |                             |            |                              |         |                   |              |              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------|-----------------------------|------------|------------------------------|---------|-------------------|--------------|--------------|
|                                                                                                                                                                                                                                                                         | Α                                                                                                                                                                                                 | The kinetic energy of a bus travelling on an expressway is 30 000 J. |               |                             |            |                              |         |                   |              |              |
|                                                                                                                                                                                                                                                                         | В                                                                                                                                                                                                 | The power of a domestic light is 300 W.                              |               |                             |            |                              |         |                   |              |              |
|                                                                                                                                                                                                                                                                         | С                                                                                                                                                                                                 | The temperate                                                        | ure o         | f a hot oven                | is 300 K   |                              |         |                   |              |              |
|                                                                                                                                                                                                                                                                         | D                                                                                                                                                                                                 | The volume of                                                        | f air i       | n a car tyre                | is 0.03 n  | 1 <sup>3</sup> .             |         |                   |              |              |
| 4                                                                                                                                                                                                                                                                       | 2 14/                                                                                                                                                                                             | high unit is so                                                      | u ivo         | lant to the                 | ooulom     | h2                           |         |                   |              |              |
| 1.                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                   | hich unit is ed                                                      |               |                             | Coulom     | υr                           |         |                   |              |              |
|                                                                                                                                                                                                                                                                         | A<br>B                                                                                                                                                                                            | joule per vo                                                         |               | ona                         |            |                              |         |                   |              |              |
|                                                                                                                                                                                                                                                                         | С                                                                                                                                                                                                 | watt per am                                                          |               |                             |            |                              |         |                   |              |              |
|                                                                                                                                                                                                                                                                         | D                                                                                                                                                                                                 | watt per vo                                                          |               | •                           |            |                              |         |                   |              |              |
|                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                   |                                                                      |               |                             |            |                              |         |                   |              |              |
| 13                                                                                                                                                                                                                                                                      | The                                                                                                                                                                                               | spring constar                                                       | nt <i>K</i> o | f a coiled wi               | re sprin   | g is giver                   | by the  | equa              | ation        |              |
|                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                   |                                                                      |               |                             | k          | $= \frac{Gr^4}{4nR^3}$       |         |                   |              |              |
|                                                                                                                                                                                                                                                                         | where $r$ is the radius of the wire, $n$ is the number of turns of wire and $R$ is the radius of each of the turns of wire. The quantity $G$ depends on the material from which the wire is made. |                                                                      |               |                             |            |                              |         |                   |              |              |
|                                                                                                                                                                                                                                                                         | Wha                                                                                                                                                                                               | at is a suitable                                                     | unit f        | or G?                       |            |                              |         |                   |              |              |
|                                                                                                                                                                                                                                                                         | Α                                                                                                                                                                                                 | $\mathrm{N}\mathrm{m}^{-2}$                                          | В             | $\mathrm{N}\mathrm{m}^{-1}$ | С          | Nm                           |         | D                 | $Nm^2$       |              |
| 14                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                   | en the brakes a                                                      |               |                             |            |                              | speed v | , the             | distance d r | noved by the |
|                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                   |                                                                      |               |                             | d =        | kv²                          |         |                   |              |              |
|                                                                                                                                                                                                                                                                         | wh                                                                                                                                                                                                | ere k is a consta                                                    | nt.           |                             |            |                              |         |                   |              |              |
|                                                                                                                                                                                                                                                                         | What is the unit of <i>k</i> expressed in SI base units?                                                                                                                                          |                                                                      |               |                             |            |                              |         |                   |              |              |
|                                                                                                                                                                                                                                                                         | Α                                                                                                                                                                                                 | $m^{-1}s^2$                                                          | В             | m s <sup>-2</sup>           | <b>C</b> m | <sup>2</sup> s <sup>-2</sup> | D       | m <sup>-1</sup> s |              |              |
| At temperatures close to 0 K, the specific heat capacity $c$ of a particular solid is given by $c = bT^3$ , where $T$ is the thermodynamic temperature and $b$ is a constant characteristic of the solid. The SI unit of specific heat capacity is $J kg^{-1} K^{-1}$ . |                                                                                                                                                                                                   |                                                                      |               |                             |            |                              |         |                   |              |              |
|                                                                                                                                                                                                                                                                         | What is the unit of constant b, expressed in SI base units?                                                                                                                                       |                                                                      |               |                             |            |                              |         |                   |              |              |
|                                                                                                                                                                                                                                                                         | A                                                                                                                                                                                                 | ${\rm m^2 s^{-2} K^{-3}}$                                            |               |                             |            |                              |         |                   |              |              |
|                                                                                                                                                                                                                                                                         | В                                                                                                                                                                                                 | ${\rm m^2s^{-2}K^{-4}}$                                              |               |                             |            |                              |         |                   |              |              |
|                                                                                                                                                                                                                                                                         | C                                                                                                                                                                                                 | $kg  m^2  s^{-2}  K^{-3}$                                            |               |                             |            |                              |         |                   |              |              |
|                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                   | $kgm^2s^{-2}K^{-4}$                                                  |               |                             |            |                              |         |                   |              |              |

Which list shows increasing lengths from beginning to end?

A 1 cm 1 nm 1 mm 1 µm

В 1 µm 1 mm 1 nm 1 cm

C 1 nm 1 µm 1 mm 1 cm

D 1 mm 1 cm 1 µm 1 nm

17 The time T taken for a satellite to orbit the Earth on a circular path is given by the equation

$$T^2 = \frac{kr^3}{M}$$

where r is the radius of the orbit, M is the mass of the Earth and k is a constant.

What are the SI base units of k?

 $A kg^{-1} m^{-3} s^2$ 

**B**  $kg^{-1}m^3s^2$  **C**  $kg m^{-3}s^2$  **D**  $kg m^3s^2$ 

Which row gives reasonable estimates for the mass and the speed of an adult running?

|   | mass/kg           | speed/ms <sup>-1</sup> |  |  |
|---|-------------------|------------------------|--|--|
| Α | 6 × 10°           | 5 × 10 <sup>1</sup>    |  |  |
| В | $6 \times 10^{1}$ | 5 × 10°                |  |  |
| С | $6 \times 10^{1}$ | 5 × 10 <sup>1</sup>    |  |  |
| D | $6 \times 10^{2}$ | 5 × 10°                |  |  |

19 The Reynolds number R is a constant used in the study of liquids flowing through pipes. R is a pure number with no unit.

$$R = \frac{\rho vD}{\mu}$$

where  $\rho$  is the density of the liquid, v is the speed of the liquid and D is the diameter of the pipe through which the liquid flows.

What are the SI base units of  $\mu$ ?

A kgms

The force F between two point charges  $q_1$  and  $q_2$ , a distance r apart, is given by the equation

$$F = \frac{kq_1q_2}{r^2}$$

where k is a constant.

What are the SI base units of k?