CycleGAN

Pattern Recognition & Machine Learning Laboratory

Geon-jun Yang

Aug. 12th, 2021

Unpaired Image-to-Image Translation using Cycle- Consistent Adversarial Networks [J. Zhu et al., 2017] (1/5)

Goal

Image-to-image translation without paired train data

Motivation

- Obtaining paired training data is difficult and expensive
- > Assume there is underlying relationship between the domains

Method

- > Translation should be cycle consistent
- Add a cycle consistency loss
- Combine with adversarial losses

Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks [J. Zhu et al., 2017] (2/5)

Formulation

- Learn mapping functions between two domains
 - $G: X \to Y$
 - $F: Y \rightarrow X$
- Adversarial loss
 - G: generator, D_V : discriminator
 - $L_{GAN}(G, D_Y, X, Y) = E_{y \sim P_{data}(y)}[log D_Y(y)] + E_{x \sim P_{data}(x)}[log (1 D_Y(G(x))]$
 - G tries to minimize the function, while D_V tries to maximize it
- Cycle consistency loss
 - Adversarial losses alone can't guarantee a desired output
 - Learned mapping functions should be cycle-consistent

•
$$L_{GAN}(G, F) = E_{y \sim P_{data}(y)} [\|F(G(x)) - x\|_{1}] + E_{x \sim P_{data}(x)} [\|G(F(y)) - y\|_{1}]$$

Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks [J. Zhu et al., 2017] (3/5)

Implementation

- Network architecture
 - Three conv layers, several residual blocks, two conv layer with stride ½
 - Instance normalization, PatchGANs

Results

- Amazon Mechanical Turk (AMT)
 - Real vs fake test on maps
 →aerial photos
 - CycleGAN fooled participants on around quarter of trials
 - All other methods almost never fooled participants
- Fully Convolutional Network (FCN) score
 - Cityscapes labels → photos
 - CycleGAN outperforms the baselines

Table 1 Real vs fake test

Table 2 FCN-scores on cityscapes

T	Map → Photo	Photo → Map	Loss	Per-pixel acc.	Per-class acc.	Class IOU
Loss	% Turkers labeled real	% Turkers labeled real	LUSS	rer-pixer acc.	rer-class acc.	Class IOU
CoGAN [32]	$0.6\% \pm 0.5\%$	$0.9\% \pm 0.5\%$	CoGAN [32]	0.40	0.10	0.06
BiGAN/ALI [9, 7]	$2.1\% \pm 1.0\%$	$1.9\% \pm 0.9\%$	BiGAN/ALI [9, 7]	0.19	0.06	0.02
SimGAN [46]	$0.7\% \pm 0.5\%$	$2.6\% \pm 1.1\%$	SimGAN [46]	0.20	0.10	0.04
Feature loss + GAl	$1.2\% \pm 0.6\%$	$0.3\% \pm 0.2\%$	Feature loss + GAN	0.06	0.04	0.01
CycleGAN (ours)	$26.8\% \pm 2.8\%$	$23.2\% \pm 3.4\%$	CycleGAN (ours)	0.52	0.17	0.11

Unpaired Image-to-Image Translation using Cycle- Consistent Adversarial Networks [J. Zhu et al., 2017] (4/5)

Paintings to photographic style

Unpaired Image-to-Image Translation using Cycle- Consistent Adversarial Networks [J. Zhu et al., 2017] (5/5)

Limitations and Discussion

- Tasks that require geometric changes
 - dog→cat transfiguration
 - Caused by generator architectures
- Distribution characteristics of training datasets
 - ImageNet dataset doesn't contain images of a person riding a horse
- Lingering gap between the results
 - Paired training data and unpaired datasets

dog → cat

horse → zebra