Eigenvalues, Eigenvectors & Diagonalisation

Eigenvalues & Eigenvectors

Let A be a square matrix of order n.

A non-zero column vector $u \in \mathbb{R}^n$ is called an eigenvector of A if $Au = \lambda u$ for some scalar λ .

The scalar λ is called an eigenvalue of A and u is said to be an eigenvector of A associated with the eigenvalue λ .

Basic Properties

Let A be a square matrix.

- 1. If λ is an eigenvalue of A, λ^n is an eigenvalue of A^n .
- 2. If λ is an eigenvalue of A , $\frac{1}{\lambda}$ is an eigenvalue of A^{-1} .
- 3. A and A^T have the same eigenvalues.

Proofs

Prove that if λ is an eigenvalue of A , λ^n is an eigenvalue of A^n .

$$Au = \lambda u$$

Assume $A^k u = \lambda^k u$ is true. Then $A^{k+1} u = A A^k u = A \lambda^k u = \lambda^k A u = \lambda^k \lambda u = \lambda^{k+1} u$.

By mathematical induction, we proved that if λ is an eigenvalue of A , λ^n is an eigenvalue of A^n .

Prove that if λ is an eigenvalue of A, $\frac{1}{\lambda}$ is an eigenvalue of A^{-1} .

$$Au = \lambda u$$

$$u = \lambda A^{-1} u$$

$$\frac{1}{\lambda} u = A^{-1} u$$

$$A^{-1} u = \frac{1}{\lambda} u$$

Thus, $\frac{1}{\lambda}$ is an eigenvalue of A^{-1} .

Prove that A and A^T have the same eigenvalues.

$$det(\lambda I - A) = 0$$
$$det((\lambda I - A)^{T}) = 0$$
$$det(\lambda I - A^{T}) = 0$$

Thus, if λ is an eigenvalue of A , λ is also an eigenvalue of A^T .

Diagonalisation

All vectors in this explanation are column vectors.

Let A be a diagonalisable square matrix of order n.

Let $P=(p_1, p_2, ..., p_n)$ where $p_1, p_2, ..., p_n$ are basis vectors for the eigenspace of A.

Let
$$D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$
 where $\lambda_1, \lambda_2, \dots, \lambda_n$ are the eigenvalues associated with

 $p_1, p_2, ..., p_n$ respectively.

The goal of diagonalisation is to get a diagonal matrices due to the useful properties of diagonal matrices. We know that the product of A and its eigenvectors is a scalar of the eigenvectors.

$$AP = P \begin{vmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{vmatrix}$$
$$\begin{vmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{vmatrix} = P^{-1}AP$$
$$D = P^{-1}AP$$