પ્રશ્ન 1(અ) [3 ગુણ]

સંજ્ઞા દોરો(૧)એસ.સી.આર(૨)ડાયેક(૩)ટ્રાયેક

જવાબ:

આકૃતિ:

- SCR (સિલિકોન કંટ્રોલ્ડ રેક્ટિફાયર): ત્રણ-ટર્મિનલવાળું ઉપકરણ એનોડ, કેથોડ અને ગેટ
- DIAC (ડાયોડ AC સ્વિય): બે-ટર્મિનલવાળું બાયડાયરેક્શનલ ઉપકરણ A1 અને A2
- TRIAC (ટ્રાયોડ AC સ્વિચ): ત્રણ-ટર્મિનલવાળું બાયડાયરેક્શનલ ઉપકરણ MT1, MT2 અને ગેટ

મેમરી ટ્રીક: "AGK for SCR, AA for DIAC, MMG for TRIAC"

પ્રશ્ન 1(બ) [4 ગુણ]

પદો સમજાવો(૧)સી.એમ.આર.આર.(૨)સ્લૂરેટ્.

જવાબ:

કોષ્ટક: ઓપ-એમ્પ પેરામીટર્સ

પેરામીટર	વ્યાખ્યા	મહત્વ
CMRR (કોમન મોડ રિજેક્શન રેશિયો)	ડિફરેન્શિઅલ ગેઈન અને કોમન મોડ ગેઈનનો ગુણોત્તર dB માં	ઊંથો CMRR એટલે કોમન ઇનપુટ સિગ્નલ્સનો વધુ સારો રિજેક્શન
Slew Rate (સ્લૂ રેટ)	આઉટપુટ વોલ્ટેજનો મહત્તમ પરિવર્તન દર (V/µs)	ઓપ-એમ્પ ઝડપથી બદલાતા ઇનપુટ્સને કેવી ઝડપે પ્રતિસાદ આપી શકે છે તે નક્કી કરે છે

- **CMRR इंभ्युंदा**: CMRR = 20 log₁₀(Ad/Acm) dB
- Slew Rate મહત્વ: ઊંચી ફ્રીક્વન્સી પરફોર્મન્સને અસર કરે છે અને વિકૃતિ અટકાવે છે

મેમરી ટ્રીક: "Common Mode Rejected Rapidly, Slew shows Signal Speed"

પ્રશ્ન 1(ક) [7 ગુણ]

સમીન્ગ એમ્પલીફાયર દોરો અને સમજાવો.

જવાબ:

आहृति:

સમિંગ એમ્પ્લિફાયરની કાર્યપ્રણાલી:

- સર્કિટ કાર્ય: મલ્ટિપલ ઇનપુટ વોલ્ટેજને સ્કેલિંગ સાથે જોડે છે
- આઉટપુટ સમીકરણ: Vout = -(Rf/R1 × V1 + Rf/R2 × V2 + Rf/R3 × V3)
- **ઇન્વર્ટિંગ કન્ફિગરેશન**: ઇનપુટ સિગ્નલ્સ 180° ફેઝ શિફ્ટ અનુભવે છે
- **ગેઈન કંટ્રોલ**: Rf/Rn દરેક ઇનપુટ સિગ્નલનું વજન નક્કી કરે છે
- ઉપયોગો: ઓડિયો મિક્સિંગ, એનાલોગ કમ્પ્યુટેશન, સિગ્નલ પ્રોસેસિંગ
- મુખ્ય વિશેષતા: ઇન્વર્ટિંગ ઇનપુટ પર વર્ચ્યુઅલ ગ્રાઉન્ડ વિશ્લેષણને સરળ બનાવે છે

ਮੇਮਰੀ ਟ੍ਰੀਡ: "Sum with Weights: Vout = -Rf(V1/R1 + V2/R2 + V3/R3)"

પ્રશ્ન 1(ક OR) [7 ગુણ]

ડીએ કન્વટ્ટર દોરો અને સમજાવો.

જવાબ:

आहृति:

R-2R લેડર DAC કાર્યપ્રણાલી:

- કાર્ય: ડિજિટલ બાઇનરી ઇનપુટને એનાલોગ આઉટપુટ વોલ્ટેજમાં રૂપાંતરિત કરે છે
- **કાર્યસિદ્ધાંત**: વેઇટેડ રેસિસ્ટર નેટવર્ક સ્કેલ્ડ કરંટ બનાવે છે
- **બાઇનરી વેઇટિંગ**: દરેક બિટ તેના સ્થાન (2ⁿ) ના પ્રમાણમાં વોલ્ટેજમાં યોગદાન આપે છે
- **રિઝોલ્યુશન**: બિટ્સની સંખ્યા (N) દ્વારા 1/2^N કુલ સ્કેલ તરીકે નક્કી થાય છે
- **ફાયદા**: સરળ ડિઝાઇન, સારી ચોકસાઈ, ઝડપી રૂપાંતરણ
- ઉપયોગો: ઓડિયો ઉપકરણો, સિગ્નલ જનરેશન, કંટ્રોલ સિસ્ટમ્સ

મેમરી ટ્રીક: "Digital Bits to Analog Steps - R-2R makes the magic"

પ્રશ્ન 2(અ) [3 ગુણ]

ટ્રાન્જીસ્ટર નુ થર્મલ રન અવે વર્ણવો.

જવાબ:

થર્મલ રનઅવે પ્રક્રિયા:

• વ્યાખ્યા: સ્વ-ત્વરણની પ્રક્રિયા જ્યાં ટ્રાન્ઝિસ્ટર ગરમ થાય છે અને વધુ કરંટ ખેંચે છે

- કારણ: બેઝ-એમિટર વોલ્ટેજનો નેગેટિવ તાપમાન કોએફિશિયન્ટ
- નિવારણ: યોગ્ય હીટ સિંક અને સ્ટેબિલાઈઝેશન સર્કિટનો ઉપયોગ

મેમરી ટ્રીક: "Heat feeds Current feeds Heat - a dangerous loop"

પ્રશ્ન 2(બ) [4 ગુણ]

વૉલ્ટેજ સીરીજ નેગેટીવ ફીડબેક દોરો અને સમજાવો.

જવાબ:

આકૃતિ:

વોલ્ટેજ સીરીઝ નેગેટિવ ફીડબેક:

પેરામીટર	નેગેટિવ ફીડબેકની અસર		
ગેઈન સ્ટેબિલિટી	સુધારો, એમ્પ્લિફાયર પેરામીટર્સ પર ઓછો આધાર		
બેન્ડવિડ્થ ફીડબેક ફેક્ટરના પ્રમાણમાં વધારો			
ડિસ્ટોર્શન	નોંધપાત્ર રીતે ઘટાડો		
ઇનપુટ ઇમ્પેડન્સ	વદ્યારો		

- **કાર્યસિદ્ધાંત**: આઉટપુટ વોલ્ટેજ સેમ્પલ કરીને ઇનપુટમાં પાછો ફીડ કરવામાં આવે છે
- **ગેઈન ફોર્મ્યુલા**: ક્લોઝ્ડ-લૂપ ગેઈન = ઓપન-લૂપ ગેઈન/(1 + βA)

મેમરી ટ્રીક: "Series says Sample Voltage, Stabilize Gain"

પ્રશ્ન 2(ક) [7 ગુણ]

કોમન એમીટર એમ્પલીફાયર માટે ડીસી લોડ લાઈન દોરો અને સમજાવો.

જવાબ:

આકૃતિ:

DC લોડ લાઈનની વિશેષતાઓ:

- વ્યાખ્યા: બધા સંભવિત ઓપરેટિંગ પોઇન્ટ્સની ગ્રાફિકલ રજૂઆત
- સમીકરણ: IC = VCC/RC VCE/RC
- યાવીરૂપ બિંદુઓ:
 - ૦ સેચ્યુરેશન પોઇન્ટ (VCE ≈ 0V, IC = VCC/RC)
 - o કટ-ઓફ પોઇન્ટ (IC ≈ 0mA, VCE = VCC)
 - Q-પોઇન્ટ (એમ્પ્લિફિકેશન માટે પસંદ કરેલ ઓપરેટિંગ પોઇન્ટ)
- મહત્વ: બાયસિંગ સ્ટેબિલિટી અને આઉટપુટ સિગ્નલની મર્યાદા નક્કી કરે છે
- **સંબંધ**: DC લોડ લાઈન સર્કિટ કોમ્પોનન્ટ્સ (VCC અને RC) દ્વારા નિશ્ચિત થાય છે

મેમરી ટ્રીક: "Connect Cutoff to Saturation for DC Load Line"

પ્રશ્ન 2(અ OR) [3 ગુણ]

ટ્રાન્જીસ્ટર મા ઓપરેટીન્ગ પોઈન્ટ(ક્યુ પોઈન્ટ) સમજાવો.

જવાબ:

Q-પોઇન્ટ (ઓપરેટિંગ પોઇન્ટ):

- વ્યાખ્યા: એકટિવ રીજનમાં ટ્રાન્ઝિસ્ટર ઓપરેટ કરે તે માટેનો ચોક્કસ DC બાયસ પોઇન્ટ
- મહત્વ: વિકૃતિ વિના આઉટપુટ સિગ્નલની રેન્જ નક્કી કરે છે
- પસંદગીના માપદંડ: મહત્તમ સ્વિંગ માટે લોડ લાઈનનું મધ્ય બિંદુ

મેમરી ટ્રીક: "Quality amplification needs Quiet bias at Q-point"

પ્રશ્ન 2(બ OR) [4 ગુણ]

હાટટલે ઓસ્સીલેટર દોરો અને સમજાવો.

જવાબ:

આકૃતિ:

હાર્ટલે ઓસિલેટર:

- કન્ફિંગરેશન: ટેપ્ડ ઇન્ડક્ટર ફીડબેક સાથે કોમન એમિટર
- ફ્રીક્વન્સી ફોર્મ્યુલા: f = 1/[2π√(C×(L1+L2))]
- ફેઝ શિફ્ટ: ઓસિલેશન માટે 360° કુલ ફેઝ શિફ્ટની ખાતરી કરે છે
- ફ્રીડબેક: ઇન્ડક્ટિવ વોલ્ટેજ ડિવાઇડર પોઝિટિવ ફીડબેક પ્રદાન કરે છે

મેમરી ટ્રીક: "Hartley Has two coils with inductance for LC oscillation"

પ્રશ્ન 2(ક OR) [7 ગુણ]

કોમન એમીટર એમ્પલીકાયર માટે એસી લોડ લાઈન દોરો અને સમજાવો.

જવાબ:

આકૃતિ:

AC લોડ લાઈનની વિશેષતાઓ:

- વ્યાખ્યા: સિગ્નલ એમ્પ્લિફિકેશન દરમિયાન ડાયનેમિક ઓપરેશનનું પ્રતિનિધિત્વ કરે છે
- સમીકરણ: ic = (VCC-VCEQ)/R'c vce/R'c જ્યાં R'c = RC||RL
- DC લોડ લાઈન સાથે તુલના:
 - AC લોડ લાઈન DC લોડ લાઈન કરતા વધુ તીવ્ર ઢાળવાળી હોય છે
 - ૦ ૦-પોઇન્ટ પરથી પસાર થાય છે
 - ૦ વોલ્ટેજ અને કરંટ સિગ્નલ સ્વિંગ નક્કી કરે છે
- મહત્વ: વિકૃતિ વગરનો મહત્તમ આઉટપુટ સિગ્નલ વ્યાખ્યાયિત કરે છે
- મર્ચાદા પરિબળ: સેચ્યુરેશન અને કટ-ઓફ ક્ષેત્રોને ટાળવું

મેમરી ટ્રીક: "AC Amplitude Controlled by Load line Angle"

પ્રશ્ન 3(અ) [3 ગુણ]

ફીક્સડ બાયાસ સર્કટટ દોરો અને તેનું કાયટ સમજાવો.

જવાબ:

આકૃતિ:

- **સ્ટ્રક્ચર**: VCC સાથે જોડાયેલ બેઝ રેઝિસ્ટર, લોડ માટે કલેક્ટર રેઝિસ્ટર
- ઓપરેશન: ફિક્સ્ડ બેઝ કરંટ ટ્રાન્ઝિસ્ટરને બાયસ કરે છે
- ગેરફાયદો: તાપમાન પરિવર્તન સામે નબળી સ્થિરતા

મેમરી ટ્રીક: "Fixed Bias Feeds Base from power supply"

પ્રશ્ન 3(બ) [4 ગુણ]

હાટલે ઓસ્સીલેટરમા L1=5mH, L2=10mH, C=0.01µF. ઓસ્સીલેશન ની ફ્રીક્વન્સીની ગણતરી કરો.

જવાબ:

ઉકેલ:

- **આપેલું**: L1=5mH, L2=10mH, C=0.01µF
- **ફીક્વન્સી ફોર્મ્યુલા**: f = 1/[2π√(C×(L1+L2))]
- ગણતરી:
 - ∘ કુલ ઈન્ડક્ટન્સ LT = L1 + L2 = 5mH + 10mH = 15mH = 15×10⁻³ H
 - \circ C = 0.01 μ F = 1×10⁻⁸ F
 - o $f = 1/[2\pi\sqrt{(15\times10^{-3}\times1\times10^{-8})}]$
 - o $f = 1/[2\pi\sqrt{(15\times10^{-11})}]$
 - o $f = 1/[2\pi \times 3.873 \times 10^{-6}]$
 - \circ f = 1/[24.33×10⁻⁶]
 - o $f = 41,101 \text{ Hz} \approx 41.1 \text{ kHz}$

મેમરી ટ્રીક: "For Hartley's frequency, add coils then take square root"

પ્રશ્ન 3(ક) [7 ગુણ]

બે સ્ટેજ આર.સી. કપલ્ડ એમ્પલીફાયરનો ફ્રીક્વન્સી રીસપોન્સ કવટ દોરો અને સમજાવો.

જવાબ:

આકૃતિ:

બે-સ્ટેજ RC કપલ્ડ એમ્પ્લિફાયર ફ્રીક્વન્સી રિસ્પોન્સ:

- **લો-ફ્રીક્વન્સી રીજન**: ફ્રીક્વન્સી સાથે ગેઈન વધે છે (< 50Hz)
 - ૦ કપલિંગ અને બાયપાસ કેપેસિટર્સથી મર્યાદિત
- **મિડ-ફ્રીક્વન્સી રીજન**: સતત મહત્તમ ગોઈન (50Hz-20kHz)
 - ૦ ફ્લેટ રિસ્પોન્સ, આદર્શ ઓપરેટિંગ રીજન
- **હાઈ-ફ્રીક્વન્સી રીજન**: ફ્રીક્વન્સી સાથે ગેઈન ઘટે છે (> 20kHz)
 - ૦ ટ્રાન્ઝિસ્ટર કેપેસિટન્સ અને મિલર ઇફેક્ટથી મર્યાદિત
- **બેન્ડવિડ્ય**: મહત્તમ ગેઈનના ≥ 70.7% ગેઈન સાથેની ફ્રીક્વન્સીની રેન્જ
- **કટ-ઓફ ફ્રીક્વન્સી**: એ બિંદુઓ જ્યાં ગેઈન 3dB (0.707 ગણો મહત્તમ ગેઈન) ઘટે છે

મેમરી ટ્રીક: "Low-flat-high: capacitors block, amplify well, then roll off"

પ્રશ્ન 3(અ OR) [3 ગુણ]

ઓસ્સીલેશન માટેનો બાખૌસેન ક્રાઈટીરીયા વિગતવાર સમજાવો.

જવાબ:

બાર્ખોસેન ક્રાઈટેરિયન:

શરત	આવશ્ચકતા	
લૂપ ગેઈન	ચોક્કસ 1 (Aβ = 1) હોવો જરૂરી	
ફેઝ શિફ્ટ	લૂપની આસપાસ 0° અથવા 360° હોવો જરૂરી	

- હેતુ: ડેમ્પિંગ વિના સતત ઓસિલેશન સુનિશ્ચિત કરે છે
- પરિણામો:
 - ૦ જો Aβ < 1: ઓસિલેશન ધીમે ધીમે ઓછા થાય છે

- ૦ જો Αβ > 1: ઓસિલેશન વધતા રહે છે, નોન-લિનિયારિટી દ્વારા મર્યાદિત થાય ત્યાં સુધી
- ૦ જો Αβ = 1: સ્થિર ઓસિલેશન જાળવી રાખવામાં આવે છે

ਮੇਮਰੀ ਟ੍ਰੀs: "Barkhausen's Balance: Loop Gain=1, Phase=360°"

પ્રશ્ન 3(બ OR) [4 ગુણ]

એમ્પલીફાયરના ગેઈન પર નેગેટીવ ફીડબેકની અસર સમજાવો.

જવાબ:

એમ્પ્લિફાયર ગેઈન પર નેગેટિવ ફીડબેકની અસર:

પેરામીટર	ફીડબેક વિના	ફીડબેક સાથે
વોલ્ટેજ ગેઈન	A	Α/(1+Αβ)
સ્ટેબિલિટી	ઓછી સ્થિર	વધુ સ્થિર
બેન્કવિડ્થ	નીચી	ઉંચી
ડિસ્ટોર્શન	વધારે	ઓછું

- **ગેઈન ઘટાડો**: ગેઈન (1+Aβ) ફેક્ટર દ્વારા ઘટે છે
- ગેઈન-બેન્ડવિડ્થ ટ્રેડઓફ: ગેઈન ઘટતાં બેન્ડવિડ્થ વધે છે
- ગેઈન સ્ટેબિલાઈઝેશન: તાપમાન અને કોમ્પોનન્ટ વેરિએશન દ્વારા ઓછી અસરગ્રસ્ત

મેમરી ટ્રીક: "Negative Feedback: Less Gain, More Stability"

પ્રશ્ન 3(ક OR) [7 ગુણ]

ફેન રેગ્યુલેટરની સરકીટ દોરો અને તે ફેનની સ્પીડ કેવી રીતે કંટ્રોલ કરે છે તે સમજાવો

જવાબ:

आङ्गति:

ફ્રેન રેગ્યુલેટર ઓપરેશન:

- કંટ્રોલ પદ્ધતિ: TRIAC અને DIAC વાપરીને ફેઝ એંગલ કંટ્રોલ
- કાર્યસિદ્ધાંત: RC નેટવર્ક વેરિએબલ ફેઝ શિફ્ટ બનાવે છે
- સ્પીડ કંટ્રોલ: વેરિએબલ રેઝિસ્ટર RC ટાઈમ કોન્સ્ટન્ટ એડજસ્ટ કરે છે

• ઓપરેશન સિક્વન્સ:

- RC નેટવર્ક DIAC ફાયરિંગમાં વિલંબ કરે છે
- o DIAC ટ્રાયકને AC સાઇકલમાં એડજસ્ટેબલ પોઇન્ટ પર ટ્રિગર કરે છે
- TRIAC AC હાક-સાઇકલના બાકીના ભાગ માટે કન્ડક્ટ કરે છે
- ૦ ઓછો કન્ડક્શન સમય = ફેન પર ઓછી પાવર = ધીમી ગતિ
- ફાયદા: સરળ ડિઝાઇન, સુંવાળું નિયંત્રણ, ઊર્જા કાર્યક્ષમ
- ઉપયોગો: સિલિંગ ફેન, એક્ઝોસ્ટ ફેન, કૂલિંગ સિસ્ટમ્સ

મેમરી ટ્રીક: "Delay the TRIAC firing, control fan's speed"

પ્રશ્ન 4(અ) [3 ગુણ]

નેચરલ કોમ્યુટેશન પર ટૂંક નોંધ લખો.

જવાબ:

નેચરલ કોમ્યુટેશન:

• વ્યાખ્યા: SCR જ્યારે કરંટ હોલ્ડિંગ કરંટ કરતાં નીચે પડે ત્યારે આપોઆપ બંધ થાય છે

• પ્રક્રિયા: AC સર્કિટમાં દરેક ઝીરો-ક્રોસિંગ પોઇન્ટ પર થાય છે

• **જરૂરિયાતો**: કોઈ બાહ્ય ઘટકોની જરૂર નથી, AC ઓપરેશનમાં સ્વાભાવિક છે

મેમરી ટ્રીક: "Natural Commutation: Zero Current Crossings Turn Off Thyristors"

પ્રશ્ન 4(બ) [4 ગુણ]

એમ્પલીફાયરના પેરામીટર ગેઈન અને બેન્ડવીડ્થ સમજાવો.

જવાબ:

એમ્પ્લિફાયર પેરામીટર્સ:

પેરામીટર	વ્યાખ્યા	ફોર્મ્યુલા	
ગેઈન (A)	આઉટપુટનો ઇનપુટ સિગ્નલ સાથેનો ગુણોત્તર	A = Vout/Vin	
બેન્ડવિડ્થ (BW)	ફ્રીક્વન્સી રેન્જ જ્યાં ગેઈન ≥ 70.7% મહત્તમ	BW = fH - fL	

- **ગેઈન-બેન્ડવિડ્થ પ્રોડક્ર્ટ**: અચળ રહે છે (GBP = ગેઈન × બેન્ડવિડ્થ)
- **કટ-ઓફ ફ્રીક્વન્સી**: લોઅર (fL) અને હાયર (fH) ફ્રીક્વન્સી જ્યાં ગેઈન 3dB ઘટે છે
- મહત્વ: એમ્પ્લિફાયરની વિવિધ ફ્રીક્વન્સી સંભાળવાની ક્ષમતા નક્કી કરે છે

મેમરી ટ્રીક: "Good Amplifiers Balance Width and Magnitude"

પ્રશ્ન 4(ક) [7 ગુણ]

ટ્રાયેકનું કન્સ્ટ્રકશન અને લાક્ષણિકતા દોરો તેનું કાર્ય સમજાવો. ટ્રાયેકના ઉપયોગો લખો.

જવાબ:

TRIAC કન્સ્ટ્રક્શન અને લાક્ષણિકતા:

I-V લાક્ષણિકતા:

TRIAC ઓપરેશન:

• **સ્ટ્રક્ચર**: પાંચ-લેયર PNPN બાયડાયરેક્શનલ ડિવાઇસ

• સ્વિચિંગ: ટ્રિગર થયા પછી બંને દિશામાં કન્ડક્ટ કરે છે

• ટ્રિંગરિંગ મોડ્સ: ફોર ક્વોડ્રન્ટ ઓપરેશન શક્ય

• ટર્ન-ઓફ: કરંટ ઝીરો-ક્રોસિંગ પર નેચરલ કોમ્યુટેશન

ઉપયોગો:

• ตเย่ว ริหล์

• ફેન સ્પીડ કંટ્રોલર્સ

• હીટર કંટ્રોલ્સ

• મોટર સ્પીડ રેગ્યુલેશન

• AC પાવર સ્વિચિંગ

મેમરી ટ્રીક: "TRIAC Takes AC Control in Both Directions"

પ્રશ્ન 4(અ OR) [3 ગુણ]

એસ.સી.આર ના કોઈપણ ત્રણ ઉપયોગો લખો

જવાબ:

SCR ના ઉપયોગો:

ઉપયોગ	รเช้
DC મોટર સ્પીડ કંટ્રોલ	મોટર્સને વેરિએબલ DC પ્રદાન કરે છે
બેટરી ચાર્જર્સ	યાર્જિંગ કરંટને નિયંત્રિત કરે છે
પાવર ઈન્વર્ટર્સ	DC ને AC માં કાર્યક્ષમતાથી રૂપાંતરિત કરે છે

• ફાયદા: ઉચ્ચ પાવર હેન્ડલિંગ, કાર્યક્ષમ નિયંત્રણ, મજબૂત ઓપરેશન

• મર્યાદાઓ: DC સર્કિટ્સમાં ફોર્સ્ડ કોમ્યુટેશનની જરૂર પડે છે

મેમરી ટ્રીક: "SCR Controls DC - Motors, Batteries, Inverters"

પ્રશ્ન 4(બ OR) [4 ગુણ]

એસ.સી.આર ના સંદર્ભમાં હોલ્ડીંગ કરન્ટ અને લેચીંગ કરન્ટ સમજાવો

જવાબ:

SCR કરંટ પેરામીટર્સ:

પેરામીટર	વ્યાખ્યા	સામાન્ય મૂલ્યો	
હોલ્કિંગ કરંટ (IH)	કન્ડક્શન જાળવવા માટેનો લઘુત્તમ કરંટ	5-40 mA	
લેચિંગ કરંટ (IL)	કન્ડક્શન સ્થાપિત કરવા માટેનો લઘુત્તમ કરંટ	10-100 mA	

• **લેચિંગ કરંટ**: SCR લેચ થાય તે માટે ટ્રિગરિંગ પછી ટૂંક સમય માટે આટલો કરંટ વહેવો જોઈએ

• **હોલ્કિંગ કરંટ**: SCR ને કન્ડક્શનમાં રાખવા માટે જાળવવો જોઈએ

• સંબંધ: સામાન્ય રીતે IL > IH

• મહત્વ: વિશ્વસનીય સ્વિચિંગ ઓપરેશન માટે મહત્વપૂર્ણ

મેમરી ટ્રીક: "Latch with more, Hold with less, both keep SCR conducting"

પ્રશ્ન 4(ક OR) [7 ગુણ]

ઓપરેશનલ એમ્પલીકાયરનો બ્લોક ડાયગ્રામ દોરો અને વિગતવાર સમજાવો

જવાબ:

ઓપરેશનલ એમ્પ્લિકાયર બ્લોક ડાયાગ્રામ:

ઓપ-એમ્પ બ્લોક્સ અને ફંક્શન્સ:

- ઇનપુટ ડિફરેન્શિયલ સ્ટેજ:
 - ૦ ઉચ્ચ ઇનપુટ ઇમ્પેડન્સ
 - ૦ કોમન-મોડ સિગ્નલ્સને રિજેક્ટ કરે છે
 - ૦ ડિફરેન્શિયલ વોલ્ટેજ ગેઈન પ્રદાન કરે છે
- ઇન્ટરમીડિએટ સ્ટેજ:
 - ૦ વધારાનો વોલ્ટેજ ગેઈન
 - ૦ લેવલ શિફ્ટિંગ
 - ૦ ફ્રીક્વન્સી કોમ્પેન્સેશન
- આઉટપુટ સ્ટેજ:
 - ૦ ઓછી આઉટપુટ ઇમ્પેડન્સ
 - ૦ કરંટ એમ્પ્લિફિકેશન
 - ૦ લોડ્સ ચલાવવા માટે પાવર કેપેબિલિટી
- બાયસ સર્કિટ:
 - ૦ યોગ્ય ઓપરેટિંગ પોઇન્ટ્સ સ્થાપિત કરે છે
 - ૦ તાપમાન સ્થિરતા
- ફ્રીક્વન્સી કોમ્પેન્સેશન:
 - ૦ ઓસિલેશન અટકાવે છે
 - ૦ ફ્રીક્વન્સી રિસ્પોન્સ નિયંત્રિત કરે છે

મેમરી ટ્રીક: "Differential Input, Gain in Middle, Power at Output"

પ્રશ્ન 5(અ) [3 ગુણ]

ઇનવરટિંગ એમ્પલીફાયર દોરો અને ટૂંકમાં સમજાવો

જવાબ:

ઇન્વર્ટિંગ એમ્પ્લિફાયર સર્કિટ:

Rf				

- ઓપરેશન: ઇનપુટ સિગ્નલ એમ્પ્લિફિકેશન સાથે ઇન્વર્ટ થાય છે
- **વર્ચ્યુઅલ ગ્રાઉન્ડ**: ઇન્વર્ટિંગ ઇનપુટ 0V પર જાળવવામાં આવે છે

મેમરી ટ્રીક: "Inverting means Negative Gain equals -Rf/Rin"

પ્રશ્ન 5(બ) [4 ગુણ]

રેગ્યુલેટેડ પાવર સપ્લાયનો બ્લોક ડાયગ્રામ દોરો અને સમજાવો

જવાબ:

રેગ્યુલેટેડ પાવર સપ્લાય બ્લોક ડાયાગ્રામ:

રેગ્યુલેટેડ પાવર સપ્લાય સ્ટેજેસ:

- ટ્રાન્સફોર્મર: AC વોલ્ટેજને જરૂરી લેવલ સુધી નીચે લાવે છે
- **રેક્ટિફાયર**: AC ને પલ્સેટિંગ DC માં રૂપાંતરિત કરે છે (ડાયોડ બ્રિજ)
- ફિલ્ટર: પલ્સેટિંગ DC ને સુંવાળો બનાવે છે (કેપેસિટર્સ)
- રેગ્યુલેટર: વેરિએશન હોવા છતાં સ્થિર આઉટપુટ જાળવે છે
- રેફરન્સ: સ્થિર તુલના વોલ્ટેજ પ્રદાન કરે છે
- ફ્રીડબેક: આઉટપુટનું મોનિટરિંગ કરે છે અને રેગ્યુલેશન એડજસ્ટ કરે છે

મેમરી ટ્રીક: "Transform, Rectify, Filter, Regulate for Stable DC"

પ્રશ્ન 5(ક) [7 ગુણ]

એસ્ટેબલ મલ્ટીવાયબ્રેટર દોરો અને સમજાવો

જવાબ:

555 ટાઇમર વાપરીને એસ્ટેબલ મલ્ટીવાયબ્રેટર:

એસ્ટેબલ મલ્ટીવાયબ્રેટરનું ઓપરેશન:

- કન્ફિગરેશન: ફ્રી-રનિંગ ઓસિલેટર જેમાં કોઈ સ્ટેબલ સ્ટેટ્સ નથી
- ટાઇમિંગ કોમ્પોનન્ટ્સ: બાહ્ય R1, R2, અને C
- ઓસિલેશન પ્રક્રિયા:
 - ૦ કેપેસિટર R1+R2 દ્વારા ચાર્જ થાય છે
 - o કેપેસિટર R2 દ્વારા ડિસ્ચાર્જ થાય છે
 - ૦ સતત ચાર્જિંગ/ડિસ્ચાર્જિંગ સાયકલ
- **આઉટપુટ વેવફોર્મ**: R1/R2 રેશિયો પર આધારિત ક્યુટી સાયકલ સાથે રેક્ટેંગ્યુલર
- ફ્રીક્વન્સી ફોર્મ્યુલા: f = 1.44/((R1+2R2)×C)
- **ઉપયોગો**: ક્લોક જનરેશન, LED ફ્લેશર્સ, ટોન જનરેટર્સ
- ફાયદા: સરળ ડિઝાઇન, સ્ટેબલ ફ્રીક્વન્સી, એડજસ્ટેબલ ડ્યુટી સાયકલ

મેમરી ટ્રીક: "Always Switching, Time set by RC, Both states Least stable"

પ્રશ્ન 5(અ OR) [3 ગુણ]

ઓપી. એએમપી. નોનઇનવરટિંગ એમ્પલીફાયરમા R1=2kΩ અને Rf=200kΩ છે. નોનઇનવરટિંગ એમ્પલીફાયરનો ગેઈન શોધો.

જવાબ:

ઉકેલ:

- આપેલું: R1 = 2kΩ, Rf = 200kΩ
- નોન-ઇન્વર્ટિંગ એમ્પ્લિફાયર ગેઈન ફોર્મ્યુલા: A = 1 + (Rf/R1)
- ગણતરી:
 - A = 1 + (200kΩ/2kΩ)
 - \circ A = 1 + 100
 - o A = 101
- પરિણામ: નોન-ઇન્વર્ટિંગ એમ્પ્લિકાયરનો વોલ્ટેજ ગેઈન 101 છે
- મહત્વ: આઉટપુટ વોલ્ટેજ ઇનપુટ વોલ્ટેજના 101 ગણો હશે

મેમરી ટ્રીક: "Non-inverting amplifier gain: One plus Feedback over Ground"

પ્રશ્ન 5(બ OR) [4 ગુણ]

-5V રેગ્યુલેટેડ ડીસી આઉટપુટ વૉલ્ટેજ મેળવવા માટેની સરકીટ દોરો અને ટૂંકમાં સમજાવો.

જવાબ:

નેગેટિવ વોલ્ટેજ રેગ્યુલેટર સર્કિટ:

સર્કિટ ઓપરેશન:

- મુખ્ય ઘટક: 7905 નેગેટિવ વોલ્ટેજ રેગ્યુલેટર IC
- ઇનપુર આવશ્યકતા: નેગેટિવ DC વોલ્ટેજ (સામાન્ય રીતે -7V થી -25V)
- ફિલ્ટરિંગ: સ્થિરતા માટે ઇનપુટ અને આઉટપુટ કેપેસિટર્સ
- રેગ્યુલેશન પદ્ધતિ: ફીડબેક કંટ્રોલ સાથે સીરીઝ પાસ એલિમેન્ટ
- **આઉટપુટ લાક્ષણિકતાઓ**: 1A સુધીના કરંટ સાથે ફિક્સ્ડ -5V

મેમરી ટ્રીક: "79XX for Negative, 78XX for Positive regulated voltage"

પ્રશ્ન 5(ક OR) [7 ગુણ]

એસ.એમ.પી.એસ. નો બ્લોક ડાયગ્રામ દોરો અને સમજાવો

જવાબ:

SMPS બ્લોક ડાયાગ્રામ:

SMPS ઓપરેશન:

- **ઇનપુર સ્ટેજ**: EMI ફિલ્ટર કરે છે, AC ને હાઈ-વોલ્ટેજ DC માં રેક્ટિફાય કરે છે
- સ્વિ**ચિંગ સ્ટેજ**: DC ને હાઈ-ફ્રીક્વન્સી AC માં રૂપાંતરિત કરે છે (20-100 kHz)
- ટ્રાન્સફોર્મર: આઇસોલેશન અને વોલ્ટેજ ટ્રાન્સફોર્મેશન પ્રદાન કરે છે
- **આઉટપુટ સ્ટેજ**: ક્લીન DC ઉત્પન્ન કરવા માટે રેક્ટિફાય અને ફિલ્ટર કરે છે
- **ફીડબેક કંટ્રોલ**: સ્વિચિંગ ક્યુટી સાયકલ એડજસ્ટ કરીને આઉટપુટ રેગ્યુલેટ કરે છે

SMPS ના કાયદા:

- ઉચ્ચ કાર્યક્ષમતા (80-90%) સ્વિચિંગ ઓપરેશનને કારણે
- નાનું કદ અને વજન હાઈ-ફ્રીક્વન્સી ટ્રાન્સફોર્મરથી
- વિસ્તૃત ઇનપુટ વોલ્ટેજ રેન્જ સ્થિર આઉટપુટ સાથે
- **સિંગલ ટ્રાન્સફોર્મરથી મલ્ટિપલ આઉટપુટ વોલ્ટેજ** શક્ય

ઉપયોગો:

- કમ્પ્યુટર પાવર સપ્લાય
- ઇલેક્ટ્રોનિક ડિવાઇસ ચાર્જર્સ
- ઔદ્યોગિક પાવર સિસ્ટમ્સ

મેમરી ટ્રીક: "Switch More Power Smartly: High frequency saves size and energy"