CPSC 532P / LING 530A: Deep Learning for Natural Language Processing (DL-NLP)

Muhammad Abdul-Mageed

muhammad.mageed@ubc.ca
Natural Language Processing Lab

The University of British Columbia

Table of Contents

- Optimization
 - Definition
 - Calculus Refresher
 - Gradient-Based Optimization

Optimization

Optimization

- Optimization refers to the task of maximizing or minimizing a function, called objective function or criterion.
- When we are minimizing a function, we call it **cost function**, **loss function**, or **error function**.
- Usually denoted with a superscript *: $x* = \arg\min f(x)$

Calculus Refresher: Functions

Functions

• A function describes a relationship between an input and an output:

$$f(x) = 2x + 3$$

• A function can take another function as input:

$$f(x) = g(x)$$

$$f(x) = o(g(x))$$

Derivative of a Function

Derivative of f(x)

- The **derivative** of a function y = f(x), where x and y are real numbers is denoted as y = f'(x) or $\frac{dy}{dx}$.
- The derivative f'(x) gives the slope of f(x) at the point x.
- The derivative tells us how a small change in the input results in a corresponding change in the output.

Derivative of a Linear Function

Linear Function

A linear function has the same derivative everywhere

Figure: Positive and negative derivatives

Derivative of a Function at Point x

Changing x with amount Δx

• With a small change in x, we get a new point Δx

Figure: We have a new function $f(x + \Delta x)$

Derivative at x, with rise and run

Figure: Rise = $f(x + \Delta x) - f(x)$; run = Δx

Calculating derivative at x

Derivative at x

Derivative at x:

$$\approx \frac{\textit{rise}}{\textit{run}} = \frac{f(x + \Delta x) - f(x)}{(x + \Delta x) - x} = \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

Figure: Rise = $f(x + \Delta x) - f(x)$; run = Δx

Limit

Derivative at x

• As Δx gets smaller, the line connecting the two functions becomes better and better approximation of the actual derivative at x. (limit)

$$\frac{df}{dx} = f'(x) = \lim_{\Delta x \to 0} \left(\frac{f(x + \Delta x) - f(x)}{\Delta x} \right)$$

Derivative

Derivative & Gradient Descent

- We use the derivative to introduce changes in x to make small improvements in y.
- By moving x in small steps with the opposite side of the derivative, we can reduce f(x). This is gradient descent.

More on Derivative

Critical Points & Minima

- Critical Points (aka stationary points): Points where f'(x) = 0, and the derivative provides no information which direction to move
- Local minimum: a point where f(x) is lower than at all neighboring points, making it not possible to decrease the function by making infinitesimal steps
- Local maximum: a point where f(x) is higher than at all neighboring points, so it is not possible to increase the function by making infinitesimal steps
- Saddle points: Critical points that are neither maxima nor minima
- Global minimum: A point that obtains the absolute lowest value of f(x)

Gradient-Based Optimization

Figure: Gradient Descent. [From Goodfellow et al., 2016]

Critical Points

Figure: Different types of critical points. [From Goodfellow et al., 2016]

The Gradient

The Gradient: A Vector of Partial Derivatives

- **Gradient** generalizes the notion of derivative to the case of a function where the derivative is with respect to a **vector** $(f : \mathbb{R}^n \to \mathbb{R})$
- As such, the gradient of f is the vector containing all the partial derivatives, denoted $\nabla_x f(x)$.
- $\frac{\partial}{\partial_{x_i}} f(x)$: measures how f changes as only the variable x_i increases at point x
- Element i of the gradient is the partial derivative of f with respect to xi
- Critical points in multiple dimensions: Points where every element of the gradient is equal to zero.

Directional Derivative and Gradient Descent

Directional Derivative

- **Directional derivatives** tell us how a multivariable function changes as we move along some vector in its input space.
- The directional derivative in direction **u**: The slope of the function *f* in direction *u*. (**u** is a unit vector)
- To minimize f, we would like to find the direction in which f decreases the fastest
- This is minimized when u points in the opposite direction as the gradient: the gradient points directly uphill, and the negative gradient points directly downhill.
- So, we can decrease f by moving in the direction of the negative gradient
- This is known as the method of steepest descent, or gradient descent.

Directional Derivative and Gradient Descent

Directional Derivative

• Gradient descent: proposes a new point:

$$x' = x - \eta \nabla_x f(x)$$

- η : Known as the learning rate: a positive scalar determining the size of the step
- We can set η to a **small constant**, or **use line search**, among other methods.
- Line search: evaluate the function $f(x \eta \nabla_x f(x))$ for several values of η and chose the one resulting in the smallest objective function value. See Wikipedia on "line search" [link].
- Steepest descent **converges** when every element of the gradient is zero, or very close to zero
- Note: Book uses ϵ instead of η

Beyond the Gradient: Jacobian

Jacobian

- Sometimes we need to find all the partial derivatives of a function whose input and output are both vectors
- Jacobian matrix: the matrix containing all these partial derivatives
- For a function $f: \mathbb{R}^m \to \mathbb{R}^n$, then the Jacobian matrix $J \in \mathbb{R}^{n \times m}$ of f is defined such that:

$$J_{i,j} = \frac{\partial}{\partial_{xj}} f(\mathbf{x})_i$$

Beyond the Gradient: Hessian

Hessian

- We also make use of the derivative of the derivative, aka second derivative or the Hessian matrix.
- In a single dimension, we can denote $\frac{d^2}{d_{v^2}}$ by f''(x).
- The second derivative tells us how the first derivative will change as we vary the input
- This tells us whether a gradient step will cause as much of an improvement as we would expect based on the gradient alone.
- For more on the Hessian, see ch04 of Goodfellow et al. (2016).