Introducción al microcontrolador LPC4088 Diseño Basado en Microprocesadores

Víctor Manuel Sánchez Corbacho

Dpto. de Automática, Electrónica, Arquitectura y Redes de Computadores

2016

Contenido

- ① Características
- 2 Encapsulados
- 3 Diagrama de boques
- 4 La CPU Cortex-M4
- **6** Mapa de memoria
- **6** Conexiones simplificadas
- 7 Señales de reloj

Características del microcontrolador LPC4088 (I)

- Fabricado por NXP.
- Encapsulado LQFP208 o TFBGA208.
- Alimentación: 3.3 V.
- CPU:
 - CPU ARM Cortex-M4 con unidad de punto flotante.
 - Frecuencia máxima de trabajo de 120 MHz.
- Memorias internas:
 - 512 KBytes de Flash.
 - 96 KBytes RAM.
 - 4032 bytes EEPROM.
- Posibilidad de acceso a memorias externas:
 - Controlador para memorias externas estáticas y SDRAM.

Características del microcontrolador LPC4088 (II)

Periféricos internos:

- 6 puertos de E/S. Total de 165 pines de E/S.
- 4 Timers.
- Convertidor A/D de 12 bits y 8 canales.
- Convertidor D/A de 10 bits.
- Dos comparadores analógicos
- Controlador de pantallas LCD.
- Controlador tarjetas de memoria SD.
- Controlador DMA de 8 canales.
- Dos generadores PWM de 6 canales cada uno.
- Controlador de motores de hasta tres fases.
- Interfaz para encoder en cuadratura.
- Reloj RTC.
- Watchdog.
- Calculador CRC.
- Monitor/capturador de eventos.

Características del microcontrolador LPC4088 (III)

- Interfaces de comunicación integradas:
 - Cinco UARTS.
 - Tres interfaces SSP (Modos SPI, TI SSI y Microwire).
 - Tres interfaces I²C.
 - Interfaz I²S.
 - Interfaz CAN de dos canales.
 - Interfaz SPIFI para memorias Flash SPI.
 - Interfaz USB Full-speed device/host/OTG con DMA propio.
 - MAC Ethernet 10/100 Mb/s con DMA propio.

Encapsulado LQFP208

Encapsulado TFBGA208

4 0 5 4 4 5 5 4 5 5 5

Diagrama de bloques

La CPU Cortex-M4

- La CPU Cortex-M4 del LPC4088 está diseñada por ARM.
- ARM sólo diseña CPUs, procesadores gráficos y otros subsistemas, no los fabrica.
- Otras empresas compran los diseños de ARM para incorporarlos en sus productos.
- ARM tiene tres series de procesadores: Cortex-A, Cortex-M y Cortex-R.

Serie de procesadores Cortex-A

Cortex-A

- Altas prestaciones para aplicaciones y sistemas operativos complejos (Linux, Windows).
- Smartphones, ordenadores portátiles, SmartTV, servidores.

Serie de procesadores Cortex-M

Cortex-M

- CPUs para microcontroladores y dispositivos de señal mixta.
- Equilibrio entre prestaciones, consumo y coste.
- Control industrial, automoción, instrumentación, electrodomésticos, conectividad, periféricos de ordenador.

Cortex-M0	Cortex-M0+	Cortex-M3	Cortex-M4	Cortex-M7	
Lowest cost, low power	Highest energy efficiency	Performance efficiency	Mainstream control & DSP	Maximum performence control & DSP	C ortex-M

Serie de procesadores Cortex-R

Cortex-R

- CPUs de altas prestaciones para aplicaciones de alta fiabilidad, tolerancia a fallos y respuesta de tiempo real determinista.
- Discos duros, automoción, comunicaciones.

Cortex-R4 Real-time performance	Cortex-R5 Real-time performance with functional safety	Cortex-R7 High performance 4G modem and storage	Cortex-R8 Highest performance 5G modemand storage	Cortex-R
		Carlo		

Mapa de memoria

Conexiones simplificadas

Descripción de las conexiones

- **VDD**: alimentación de +3.3V (13 pines en total).
- VDD: masa (13 pines en total).
- **VDDA**: alimentación de +3.3V para el ADC.
- VDDS: masa para el ADC.
- VREFP: tensión de referencia para el ADC.
- **RESET**: entrada de reset.
- **RSTOUT**: salida de reset.
- XTAL1, XTAL2: conexiones del oscilador de reloj principal.
- VBAT: tensión de batería para respaldar el RTC.
- RTC_ALARM: salida de alarma del RTC.
- RTCX1, RTCX2: conexiones del oscilador del RTC.
- PUERTO E/S 0-5: pines de los puertos de entrada/salida.

Obtención de la señal de reloj primaria

 Inyección de una señal de reloj externa.

- Oscilador de cristal interno.
- Oscilador RC interno
 - No necesita ningún componente externo.
 - Frecuencia de 12 MHz \pm 1%.
 - Seleccionado tras RESET.

PLLs y divisores de reloj internos

