Manipulation: Strategic Voting

Example

Consider the Borda election with candidates a, b, and c and the following votes:

	Sincere				Strategic			
	Votes				Votes			
points :	2	1	0		2	1	0	
5 votes :	а	b	С		а	b	С	
5 votes :	b	а	С	\Rightarrow	b	C	а	
1 vote:	С	а	b	_	С	а	b	
	Borda				Borda			
	winner a				winner b			

Variants of the Manipulation Problem

Definition (Constructive Coalitional Manipulation)

Let \mathcal{E} be some voting system.

Name: \mathcal{E} -Constructive Coalitional Manipulation (\mathcal{E} -CCM).

Given: • A set C of candidates,

- a list V of nonmanipulative voters over C,
- a list S of manipulative voters (whose votes over C are still unspecified) with V ∩ S = ∅, and
- a distinguished candidate $c \in C$.

Question: Is there a way to set the preferences of the voters in S such that, under election system \mathcal{E} , c is a winner of election $(C, V \cup S)$?

Variants of the Manipulation Problem

Remark: Variants:

- \mathcal{E} -DESTRUCTIVE COALITIONAL MANIPULATION (\mathcal{E} -DCM) is the same with "c is not a winner of (C, $V \cup S$)."
- If ||S|| = 1, we obtain the single-manipulator problems:
 - \mathcal{E} -Constructive Manipulation (\mathcal{E} -CM) and
 - \mathcal{E} -DESTRUCTIVE MANIPULATION (\mathcal{E} -DM).
- Voters can also be weighted (see next slide).
- These problems can also be defined in the "unique-winner" model.

Variants of the Manipulation Problem

Definition (Constructive Coalitional Weighted Manipulation) Let \mathcal{E} be some voting system.

Name: \mathcal{E} -Constructive (Destructive) Coalitional Weighted Manipulation (\mathcal{E} -CCWM / \mathcal{E} -DCWM).

- Given: A set C of candidates,
 - a list V of nonmanipulative voters over C each having a nonnegative integer weight,
 - a list of the weights of the manipulators in S (whose votes over C are still unspecified) with $V \cap S = \emptyset$, and
 - a distinguished candidate $c \in C$.

Question: Can the preferences of the voters in S be set such that c is a \mathcal{E} -winner (is not an \mathcal{E} -winner) of $(C, V \cup S)$?

Some Basic Complexity Classes

Definition

- FP denotes the class of polynomial-time computable total functions mapping from Σ^* to Σ^* .
- P denotes the class of problems that can be decided in polynomial time (i.e., via a deterministic polynomial-time Turing machine).
- NP denotes the *class of problems that can be accepted in polynomial time* (i.e., via a nondeterministic polynomial-time Turing machine).

Some Basic Complexity Classes

Remark:

- Intuitively, FP and P, respectively, capture feasibility/efficiency of computing functions and solving decision problems.
- $A \in NP$ if and only if there exist a set $B \in P$ and a polynomial p such that for each $x \in \Sigma^*$.

$$x \in A \iff (\exists w) [|w| \le p(|x|) \text{ and } (x, w) \in B].$$

That is, NP is the class of problems whose YES instances can be easily checked.

- Central open question of TCS: P ≠ NP
- Examples of problems in NP: SAT, TRAVELING SALESPERSON PROBLEM, VERTEX COVER, CLIQUE, HAMILTON CIRCUIT,

NP in Ancient Times

Figure: Nondeterministic Guessing and Deterministic Checking

Pol-Time Many-One Reducibility and Completeness

Definition

Let Σ be an alphabet and $A, B \subseteq \Sigma^*$. Let \mathcal{C} be any complexity class.

- ① Define the *polynomial-time many-one reducibility*, denoted by \leq_m^p , as follows: $A \leq_m^p B$ if there is a function $f \in FP$ such that $(\forall x \in \Sigma^*) [x \in A \iff f(x) \in B]$.
- 2 A set B is \leq_m^p -hard for C (or C-hard) if $A \leq_m^p B$ for each $A \in C$.
- **3** A set *B* is \leq_m^p -complete for \mathcal{C} (or \mathcal{C} -complete) if
 - **1** B is \leq_m^p -hard for $\mathcal C$ (lower bound) and
 - $B \in \mathcal{C}$ (upper bound).
- ② $\mathcal C$ is closed under the \leq_m^p -reducibility (\leq_m^p -closed, for short) if $(A \leq_m^p B \text{ and } B \in \mathcal C) \implies A \in \mathcal C.$

Properties of \leq_m^p

- $A \leq_{\mathrm{m}}^{\mathrm{p}} B$ implies $\overline{A} \leq_{\mathrm{m}}^{\mathrm{p}} \overline{B}$, yet in general it is not true that $A \leq_{\mathrm{m}}^{\mathrm{p}} \overline{A}$.
- $\mathbf{Q} \leq_{\mathrm{m}}^{\mathrm{p}}$ is a reflexive and transitive, yet not antisymmetric relation.
- P and NP are $≤_m^p$ -closed.
 That is, upper bounds are inherited downward with respect to $≤_m^p$.
- - That is, lower bounds are inherited upward with respect to \leq^p_m
- **Solution Solution Solution**

$$P = NP \iff B \in P$$
.

Plurality and Regular Cup are Easy to Manipulate

Theorem (Conitzer, Sandholm, and Lang (2007))

Plurality-CCWM and Regular-Cup-CCWM are in P (for any number of candidates, in both the unique-winner and nonunique-winner model).

Proof:

- For plurality, the manipulators simply check if c wins when they all rank c first.
 - If so, they have found a successful strategy.
 - If not, no strategy can make c win.
- ② For the regular cup protocol (given the assignment of candidates to the leaves of the binary balanced tree), see blackboard.

Copeland with three Candidates is Easy to Manipulate

Copeland voting: For each $c, d \in C$, $c \neq d$,

- let N(c, d) be the number of voters who prefer c to d,
- let C(c, d) = 1 if N(c, d) > N(d, c) and
- C(c, d) = 1/2 if N(c, d) = N(d, c).
- The Copeland score of c is $CScore(c) = \sum_{d \neq c} C(c, d)$.
- Whoever has the maximum Copeland score wins.

Theorem (Conitzer, Sandholm, and Lang (2007))

Copeland-CCWM for three candidates is in P (in both the unique-winner and nonunique-winner model).

Proof: We show that: If Copeland with three candidates has a CCWM, then it has a CCWM where all manipulators vote identically.

And now...see blackboard.

Maximin with three Candidates is Easy to Manipulate

Maximin (a.k.a. Simpson) voting: For each $c, d \in C$, $c \neq d$, let again N(c, d) be the number of voters who prefer c to d.

• The maximin score of c is

$$MScore(c) = \min_{d \neq c} N(c, d).$$

Whoever has the maximum MScore wins.

Theorem (Conitzer, Sandholm, and Lang (2007))

Maximin-CCWM for three candidates is in P

(in both the unique-winner and nonunique-winner model).

Proof: We show that: If Maximin with three candidates has a CCWM, then it has a CCWM where all manipulators vote identically.

And now...see blackboard.

Upper bounds are inherited downward w.r.t. \leq_m^p

Corollary

All more restrictive variants of the manipulation problem are in P for:

- plurality (for any number of candidates).
- regular cup (for any number of candidates),
- Copeland (for at most three candidates), and
- maximin (for at most three candidates).

STV-CM is NP-complete

Single Transferable Vote (STV) for m candidates proceeds in m-1 rounds. In each round:

- A candidate with lowest plurality score is eliminated (using some tie-breaking rule if needed) and
- all votes for this candidate transfer to the next remaining candidate in this vote's order.

The last remaining candidate wins.

Theorem (Bartholdi and Orlin (1991))

STV-CONSTRUCTIVE MANIPULATION is NP-complete.

STV-CM is NP-complete: Reduction from X3C

Proof: Membership in NP is clear.

To prove NP-hardness of STV-Constructive Manipulation, we reduce from the following NP-complete problem:

Name: Exact Cover by Three-Sets (X3C).

- Given: A set $B = \{b_1, b_2, ..., b_{3m}\}, m \ge 1$, and
 - a collection $S = \{S_1, S_2, \dots, S_n\}$ of subsets $S_i \subseteq B$ with $||S_i|| = 3$ for each i, 1 < i < n.

Question: Is there a subcollection $S' \subseteq S$ such that each element of B occurs in exactly one set in S'?

In other words, does there exist an index set

$$I \subseteq \{1, 2, \dots, n\}$$
 with $||I|| = m$ such that $\bigcup S_i = B$?

STV-CM is NP-complete: The Candidates

Given an instance (B, S) of X3C with

$$B = \{b_1, b_2, \dots, b_{3m}\}\$$

 $S = \{S_1, S_2, \dots, S_n\}$

where $m \ge 1$, $S_i \subseteq B$ with $||S_i|| = 3$ for each i, $1 \le i \le n$, construct an election $(C, V \cup \{s\})$ with manipulator s and 5n + 3(m+1) candidates:

- "possible winners": c and w;
- **1** "first losers": a_1, a_2, \ldots, a_n and $\overline{a}_1, \overline{a}_2, \ldots, \overline{a}_n$;
- **3** "w-bloc": b_0, b_1, \ldots, b_{3m} ;
- **4** "second line": d_1, d_2, \ldots, d_n and $\overline{d}_1, \overline{d}_2, \ldots, \overline{d}_n$;
- \bullet "garbage collectors": g_1, g_2, \ldots, g_n .

STV-CM is NP-complete: The Properties

- Property 1: a_1, a_2, \ldots, a_n and $\overline{a}_1, \overline{a}_2, \ldots, \overline{a}_n$ are among the first 3n candidates to be eliminated.
- Property 2: Let $I = \{i \mid \overline{a}_i \text{ is eliminated prior to } a_i\}$. Then c can be made win $(C, V \cup \{s\}) \iff I$ is a 3-cover.

 \overline{a}_i is eliminated prior to $a_i \iff i \in I$.

- Such a preference for s is constructed as follows:
 - If $i \in I$ then place a_i in the ith position of s.
 - If $i \notin I$ then place \overline{a}_i in the *i*th position of s.

STV-CM is NP-complete: The Nonmanipulative Voters

(1)		12 <i>n</i>	votes:	С				
(2)		12 <i>n</i> – 1	votes:	W	С			
(3)		10 <i>n</i> + 2 <i>m</i>	votes:	b_0	W	С		
(4)	For each $i \in \{1, 2,, 3m\}$,	12 <i>n</i> – 2	votes:	b i	W	С		
(5)	For each $j \in \{1, 2,, n\}$,	12 <i>n</i>	votes:	g_i	W	С		
(6)	For each $j \in \{1, 2,, n\}$,	6n + 4j - 5	votes:	d_j	\overline{d}_{j}	W	С	
	and if $S_j = \{b_x, b_y, b_z\}$ then	2	votes:	d_j	b_x	W	С	
		2	votes:	d_j	b_y	W	С	
		2	votes:	d_i	bz	W	С	
(7)	For each $j \in \{1, 2,, n\}$,	6 <i>n</i> + 4 <i>j</i> − 1	votes:	\overline{d}_{j}	d_j	W	С	
		2	votes:	\overline{d}_{i}	b_0	W	С	
(8)	For each $j \in \{1, 2, \dots, n\}$,	6n + 4j - 3	votes:	a_{j}	g_{j}	W	С	
		1	vote:	a_{j}	d_j	g j	W	С
		2	votes:	a_i	\overline{a}_i	g i	W	С
(9)	For each $j \in \{1, 2,, n\}$,	6n + 4j - 3	votes:	\overline{a}_{j}	g_{j}	W	С	
		1	vote:	\overline{a}_{j}	\overline{d}_{j}	g j	W	С
		2	votes:	ā	a _j	g_{i}	W_	C

STV-CM is NP-complete:

Elimination Sequence Encodes a 3-Cover

Lemma (Bartholdi and Orlin (1991))

- **1** Exactly one of d_j and \overline{d}_j will be among the first 3n candidates to be eliminated.
- Candidate c will win if and only if

 $J = \{j \mid d_j \text{ is among the first 3n candidates to be eliminated}\}$

is the index set of an exact 3-cover for S.

Proof: See blackboard.

STV-CM is NP-complete: The Manipulor's Preference

Lemma (Bartholdi and Orlin (1991))

Let $I \subseteq \{1, 2, ..., n\}$ and consider the strategic preference of manipulator s in which the ith candidate is a_i if $i \in I$ and $\overline{a_i}$ if $i \notin I$.

Then the order in which the first 3n candidates are eliminated is:

- The (3i 2)nd candidate to be eliminated is
- $\overline{\mathbf{a}}_i$ if $i \in I$ and
- a_i if $i \notin I$.
- ② The (3i-1)st candidate to be eliminated is
- d_i if $i \in I$ and
 - \overline{d}_i if $i \notin I$.

- The 3ith candidate to be eliminated is
- a_i if $i \in I$ and
- \overline{a}_i if $i \notin I$.

{Scoring-Protocols without Plurality}-CCWM

Theorem (Conitzer, Sandholm, and Lang (2007))

{ Scoring-Protocols without Plurality}-Constructive Coalitional Weighted Manipulation for three candidates is NP-complete.

Remark:

- For two candidates every scoring protocol is easy to manipulate.
- Plurality is easy to manipulate for any number of candidates.
- In particular, Veto-CCWM and Borda-CCWM for three candidates are NP-complete.
- The above theorem was independently proven by Hemaspaandra & Hemaspaandra (2007) and Procaccia & Rosenschein (2006).

{Scoring-Protocols without Plurality}-CCWM: Reduction from Partition

Proof: Membership in NP is clear.

Let $\alpha = (\alpha_1, \alpha_2, \alpha_3)$ be a scoring protocol other than plurality.

To prove NP-hardness of α -CCWM, we reduce from the following NP-complete problem:

Name: Partition.

Given: A nonempty sequence $(k_1, k_2, ..., k_n)$ of positive integers such that $\sum_{i=1}^{n} k_i$ is an even number.

 $\overline{i=1}$

Question: Does there exist a subset $A \subseteq \{1, 2, ..., n\}$ such that

$$\sum_{i \in A} k_i = \sum_{i \in \{1,2,...,n\} - A} k_i ?$$

{Scoring-Protocols without Plurality}-CCWM: Reduction from PARTITION

Given an instance (k_1,k_2,\ldots,k_n) of PARTITION with $\sum_{i=1}^{n}k_i=2K$ for some integer K, construct an election $(C,V\cup S)$ with $C=\{a,b,p\}$ and

V :

Vote Weight Preference
$$\frac{(2\alpha_1 - \alpha_2)K - 1}{(2\alpha_1 - \alpha_2)K - 1} \quad \begin{array}{c} a \quad b \quad p \\ b \quad a \quad p \end{array}$$

S: For each
$$i \in \{1, 2, ..., n\}$$
, $(\alpha_1 + \alpha_2)k_i$

See blackbord for the proof of:

$$(k_1,k_2,\ldots,k_n)\in \mathsf{PARTITION} \iff p \ \mathsf{can} \ \mathsf{be} \ \mathsf{made} \ \mathsf{win} \ (C,V\cup S). \ \square$$

Copeland-CCWM for four Candidates is Hard

Theorem (Conitzer, Sandholm, and Lang (2007))

Copeland-Constructive Coalitional Weighted Manipulation for four candidates is NP-complete.

Proof: Membership in NP is clear. To prove NP-hardness of Copeland-CCWM, we again reduce from PARTITION.

Given an instance $(k_1, k_2, ..., k_n)$ of PARTITION with $\sum_{i=1}^{n} k_i = 2K$ for some integer K, construct an election

$$(C, V \cup S)$$

with $C = \{a, b, c, p\}$ and the following votes in $V \cup S$.

Copeland-CCWM for four Candidates is Hard

V :

Vote WeightPreference
$$2K+2$$
 p a b c $2K+2$ c p b a $K+1$ a b c p $K+1$ b a c p

S: For each
$$i \in \{1, 2, ..., n\}$$
,

k_i

See blackbord for the proof of:

 $(k_1,k_2,\ldots,k_n)\in \mathsf{PARTITION} \iff p \ \mathsf{can} \ \mathsf{be} \ \mathsf{made} \ \mathsf{win} \ (C,V\cup S). \ \square$

Maximin-CCWM for four Candidates is Hard

Theorem (Conitzer, Sandholm, and Lang (2007))

Maximin-Constructive Coalitional Weighted Manipulation for four candidates is NP-complete.

Proof: Membership in NP is clear. To prove NP-hardness of Maximin-CCWM, we again reduce from Partition.

Given an instance $(k_1, k_2, ..., k_n)$ of PARTITION with $\sum_{i=1}^{n} k_i = 2K$ for some integer K, construct an election

$$(C, V \cup S)$$

with $C = \{a, b, c, p\}$ and the following votes in $V \cup S$.

Maximin-CCWM for four Candidates is Hard

V :

Vote Weight	Pr	Preference				
7 <i>K</i> – 1	а	b	С	p		
7 <i>K</i> – 1	b	С	а	p		
4 <i>K</i> – 1	С	а	b	p		
5 <i>K</i>	р	С	а	b		

S: For each
$$i \in \{1, 2, ..., n\}$$
,

$$2k_i$$

See blackbord for the proof of:

$$(k_1,k_2,\ldots,k_n)\in \mathsf{PARTITION} \iff p \ \mathsf{can} \ \mathsf{be} \ \mathsf{made} \ \mathsf{win} \ (C,V\cup S). \ \ \square$$

STV-CCWM for three Candidates is Hard

Theorem (Conitzer, Sandholm, and Lang (2007))

STV-CONSTRUCTIVE COALITIONAL WEIGHTED MANIPULATION for three candidates is NP-complete.

Proof: Membership in NP is clear. To prove NP-hardness of STV-CCWM, we again reduce from Partition.

Given an instance $(k_1, k_2, ..., k_n)$ of PARTITION with $\sum_{i=1}^{n} k_i = 2K$ for some integer K, construct an election

$$(C, V \cup S)$$

with $C = \{a, b, p\}$ and the following votes in $V \cup S$.

STV-CCWM for three Candidates is Hard

V :

Vote WeightPreference
$$6K-1$$
 b p $4K$ a b $4K$ p a b p a

S: For each
$$i \in \{1, 2, ..., n\}$$
,

 $2k_i$

See blackbord for the proof of:

$$(k_1, k_2, \ldots, k_n) \in \mathsf{PARTITION}$$

 $(k_1, k_2, \dots, k_n) \in \mathsf{PARTITION} \iff p \mathsf{ can be made win } (C, V \cup S). \ \Box$