The Self-Amalgamation of Coronas and Generalized Crowns*

Thelma C. Montero-Galliguez
Department of Mathematics
Caraga State University
Butuan City

Abstract

Let G = (V(G), E(G)) be a finite, connected, simple graph. Let u and v be two vertices of G such that the distance between u and v is at least 3. A **self-amalgamation** of G, denoted by G* with *=(u,v), is the graph obtained by identifying u and v. A k^{th} self-amalgamation of G, denoted by $G*^k$, is a self-amalgamation of a $(k-1)^{st}$ self-amalgamation of G, that is, $G*^k = (G*^{k-1})^k$. A graph G is **self-amalgamation stable** (or **amalgamation-stable**) if a G* is not possible. If G is not amalgamation-stable, then the **stability number** of G is the minimum positive integer k such that there exists a $G*^k$ which is amalgamation-stable. The **self-amalgamation number** of G, denoted by G, is the minimum positive integer G such that all the G self-amalgamations of G are amalgamation-stable. Results on the stability number and self-amalgamation number of coronas and generalized crowns are presented.

^{*}Research is supported by the National Research Council of the Philippines (Research Report No. 2, NRCP Research Project B-104)