We claim:

1	1. An apparatus, comprising:
2	a first probe including a first probe body defining a proximal
3	portion and a distal portion and a loop structure associated with the distal
4	portion;
5	at least one operative element associated with the loop
6	structure; and
7	a second probe including a second probe body defining a
8	proximal portion and a distal portion and an expandable push structure
9	associated with the distal portion.
1	An apparatus as claimed in claim 1, wherein at least one of the
2	first and second probe bodies comprises a catheter body.
1	3. An apparatus as claimed in claim 1, wherein the first probe body
2	defines a distal end and the loop structure is associated with the distal end of
3	the first probe body.
1	4. An apparatus as claimed in claim 1, wherein the loop structure
2	defines an opening having a width, the expandable push structure defines a
3	maximum width and the maximum width of the expandable push structure is
4	greater than the width of the opening.
1	An apparatus as claimed in claim 1, wherein the at least one
2	operative element comprises a plurality of spaced electrodes.
1	6. An apparatus as claimed in claim 1, wherein the proximal
2 .	portion of the first probe body is less flexible than the distal portion of the first
3	probe body.

1	 An apparatus as claimed in claim 1, wherein the first probe body
2	defines a longitudinal axis and the loop structure defines a plane oriented at a
3	non-zero angle to the longitudinal axis.
1	8. An apparatus as claimed in claim 7, wherein the plane is
2	perpendicular to the longitudinal axis.
1	 An apparatus as claimed in claim 1, wherein the first probe body
2	defines a distal end and includes a pull wire extending distally from the distal
3	end.
1	10. An apparatus as claimed in claim 9, wherein the first probe body
2 .	defines an aperture located in spaced relation to the distal end and the pull
3	wire extends into the aperture and to the proximal portion of the first probe
4	body.
1	11. An apparatus as claimed in claim 9, wherein the first probe
2	includes a sheath, the first probe body is located at least partially within the
3	sheath and defines an exterior, and the pull wire extends into the sheath and
4	to the proximal portion of the first probe body along the exterior.
1	12. An apparatus as claimed in claim 1, wherein the loop structure
2	defines a closed loop.
1	13. An apparatus as claimed in claim 12, wherein the distal portion
2	of the first probe body defines an aperture and the closed loop passes
3	through the aperture.
1	14. An apparatus as claimed in claim 12, wherein the closed loop is
2	fixedly secured to the distal portion of the first probe body.

1	15. An apparatus as claimed in claim 1, wherein the expandable
2	push structure comprises a basket structure including a plurality of flexible
3	splines.
1	16. An apparatus as claimed in claim 15, wherein second probe
2	body defines a longitudinal axis and the splines are symmetrically spaced
3	about the longitudinal axis.
1	17. An apparatus as claimed in claim 15, wherein the basket
2	structure defines a generally ellipsoidal shape.
1	18. An apparatus as claimed in claim 15, wherein the basket
2	structure defines a generally spheroidal shape.
1	19. An apparatus as claimed in claim 15, wherein the basket
2	structure includes a conical portion and a flared portion.
1	20. An apparatus as claimed in claim 15, wherein the basket
2	structure defines a funnel shape.
1	21. An apparatus as claimed in claim 1, wherein the expandable
2	push structure comprises an inflatable structure.
1	22. An apparatus as claimed in claim 21, wherein the second probe
2	includes an infusion lumen operatively connected to the inflatable structure.
1	23. An apparatus as claimed in claim 21, wherein the inflatable
2	structure defines a spherical shape.
1	24. An apparatus as claimed in claim 21, wherein the inflatable
2	structure includes a plurality of radially extending members.

1	25. An apparatus as claimed in claim 21, wherein the inflatable
2	structure defines an ellipso-toroidal shape.
1	26. An apparatus as claimed in claim 1, wherein the second probe
2	body defines a longitudinally extending lumen and a distal opening
3	associated with the lumen.
1	27. An apparatus as claimed in claim 26, wherein the second probe
2	body defines a distal end and the expandable push structure comprises a
3	plurality of arms that bow outwardly when the proximal portion and distal end
4	of the second probe body are moved closer together.
1	28. An apparatus as claimed in claim 26, wherein the expandable
2	push structure comprises an inflatable push structure.
1	29. An apparatus as claimed in claim 1, wherein the second probe
2	includes an anchor distal of the expandable push structure.
1	30. An apparatus as claimed in claim 29, further comprising:
2	a diagnostic device carried by the anchor.
1	31. A method of forming a lesion in body tissue, comprising the
2	steps of:
3	positioning a first probe including a first probe body defining a
4	proximal portion and a distal portion, a loop structure associated with the
5	distal portion, and at least one operative element associated with the loop
6	structure such that the loop structure is at least adjacent the tissue;
7	positioning a second probe including a second probe body
.8	defining a proximal portion and a distal portion and an expandable push
9	structure associated with the distal portion such that the expandable push
10	structure is adjacent the loop structure; and
11	urging the loop structure in the direction of the tissue with the
12	evnandable nuch structure

1	32. A method as claimed in claim 31, further comprising the step of:
2	inserting a predetermined portion of the second probe through
3	the loop structure.
.1	33. A method as claimed in claim 32, further comprising the step of:
2	inserting the first and second probes into a sheath.
1	34. A method as claimed in claim 32, wherein the tissue is
2	associated with a body orifice, the method further comprising the step of:
3	inserting the predetermined portion of the second probe into
4	body orifice.
1	35. A method as claimed in claim 31, further comprising the step of:
2	inserting a predetermined portion of the second probe through
3	the loop structure prior to positioning the first probe adjacent the body tissue.
1	36. A method as claimed in claim 31, wherein the step of positioning
2	a first probe adjacent tissue comprises positioning the first probe adjacent
3	heart tissue.
1	36. A method as claimed in claim 31, wherein the step of positioning
2	a first probe adjacent tissue comprises positioning the first probe adjacent
3	pulmonary vein tissue.
1	37. A method as claimed in claim 31, wherein the step of positioning
2	a first probe adjacent tissue comprises passing the first probe through a
3	lumen in the second probe.
1	38. A sheath use with a probe including at least one operative
2	element, the sheath comprising:
3	an elongate body defining a probe lumen, a proximal portion, a
4	distal portion, and a distal opening; and
5	an expandable push structure associated with the distal portion.

1	39. A sheath as claimed in claim 38, wherein the elongate body
2	defines a distal end and the expandable push structure is located in spaced
3	relation to the distal end.
1	40. A sheath as claimed in claim 38, wherein the elongate body
2	includes an anchor distal of the expandable push structure.
1	41. A sheath as claimed in claim 40, further comprising:
2	a diagnostic device carried by the anchor.
1	42. A sheath as claimed in claim 38, wherein the expandable push
2	structure comprises a basket structure including a plurality of flexible splines.
1	43. A sheath as claimed in claim 42, wherein elongate body defines
2	a longitudinal axis and the splines are symmetrically spaced about the
3	longitudinal axis.
1	44. A sheath as claimed in claim 38, wherein the expandable push
2	structure comprises an inflatable structure.
1	45. A sheath as claimed in claim 44, wherein the elongate body
2	includes an infusion lumen operatively connected to the inflatable structure.
1	46. A sheath as claimed in claim 44, wherein the inflatable structure
2	defines an ellipso-toroidal shape.
1	47. A sheath as claimed in claim 38, wherein the elongate body
2	defines a distal end and the expandable push structure comprises a plurality
3.	of arms that bow outwardly when the proximal portion and distal end of the
4	second probe body are moved closer together.