## Table des matières

| A | vant-             | propos                                               | vii |  |  |  |  |
|---|-------------------|------------------------------------------------------|-----|--|--|--|--|
| 1 | Espaces métriques |                                                      |     |  |  |  |  |
|   | 1.1               | Topologie associée à une distance                    | 1   |  |  |  |  |
|   | 1.2               | Suites à valeurs dans un espace métrique             | 5   |  |  |  |  |
|   | 1.3               | Limites et continuité                                | 11  |  |  |  |  |
|   | 1.4               | Propriétés globales des fonctions continues          | 13  |  |  |  |  |
|   | 1.5               | Exercices                                            | 18  |  |  |  |  |
| 2 | Esp               | aces normés                                          | 25  |  |  |  |  |
|   | 2.1               | Semi-normes et normes                                | 25  |  |  |  |  |
|   | 2.2               | Applications linéaires continues                     | 30  |  |  |  |  |
|   | 2.3               | Espaces vectoriels normés de dimension finie         | 34  |  |  |  |  |
|   | 2.4               | Exercices                                            | 37  |  |  |  |  |
| 3 | Esp               | Espaces préhilbertiens 4                             |     |  |  |  |  |
|   | 3.1               | Inégalités de Cauchy-Schwarz et Minkowski            | 50  |  |  |  |  |
|   | 3.2               | Orthogonalité                                        | 53  |  |  |  |  |
|   | 3.3               | Orthogonalisation de Gram-Schmidt                    | 54  |  |  |  |  |
|   | 3.4               | Meilleure approximation dans un espace préhilbertien | 56  |  |  |  |  |
|   | 3.5               | Inégalité de Bessel et égalité de Parseval           | 60  |  |  |  |  |
|   | 3.6               | Déterminants de Gram                                 | 64  |  |  |  |  |
|   | 3.7               | Les théorèmes de Müntz                               | 69  |  |  |  |  |
|   | 3.8               | Exercices                                            | 75  |  |  |  |  |
| 4 | Suit              | tes numériques                                       | 87  |  |  |  |  |
|   | 4.1               | Suites numériques convergentes                       | 87  |  |  |  |  |
|   | 4.2               | Suites réelles monotones, adjacentes                 | 93  |  |  |  |  |
|   | 4.3               | Développement décimal d'un réel                      | 98  |  |  |  |  |
|   | 4.4               | Fractions continues                                  | 106 |  |  |  |  |
|   | 4.5               | Sous-groupes additifs de $\mathbb{R}$                | 114 |  |  |  |  |
|   | 4.6               | Moyennes de Cesàro                                   | 116 |  |  |  |  |
|   | 4.7               | Limites supérieure et inférieure                     | 120 |  |  |  |  |
|   | 4.8               | Evercices                                            | 122 |  |  |  |  |

| 5   | Vitesse et accélération de la convergence des suites réelles |                                                                   |            |  |  |  |  |
|-----|--------------------------------------------------------------|-------------------------------------------------------------------|------------|--|--|--|--|
|     | 5.1                                                          | Vitesse de convergence                                            | 139        |  |  |  |  |
|     | 5.2                                                          | Accélération de la convergence                                    | 143        |  |  |  |  |
|     | 5.3                                                          | Méthode d'accélération d'Aitken                                   | 144        |  |  |  |  |
|     | 5.4                                                          | Méthode d'accélération de Richardson                              | 146        |  |  |  |  |
|     | 5.5                                                          | Exercices                                                         | 151        |  |  |  |  |
| c   | T :                                                          | Limites et continuité des fonctions d'une variable réelle 1       |            |  |  |  |  |
| 6   | 6.1                                                          | Limite et continuité en un point                                  | 161<br>161 |  |  |  |  |
|     | -                                                            | •                                                                 |            |  |  |  |  |
|     | 6.2                                                          | Opérations sur les fonctions continues                            |            |  |  |  |  |
|     | 6.3                                                          | Fonctions périodiques continues                                   |            |  |  |  |  |
|     | 6.4                                                          | Propriétés globales des fonctions continues                       |            |  |  |  |  |
|     | 6.5                                                          | Le théorème des valeurs intermédiaires                            |            |  |  |  |  |
|     | 6.6                                                          | Fonctions réciproques                                             |            |  |  |  |  |
|     | 6.7                                                          | Prépondérance, domination et équivalents                          |            |  |  |  |  |
|     | 6.8                                                          | Exercices                                                         | 184        |  |  |  |  |
| 7   | Dér                                                          | ivées des fonctions d'une variable réelle                         | 197        |  |  |  |  |
|     | 7.1                                                          | Dérivée d'ordre 1 et dérivées d'ordre supérieur                   | 197        |  |  |  |  |
|     | 7.2                                                          | Opérations sur les fonctions dérivables                           | 201        |  |  |  |  |
|     | 7.3                                                          | Sens de variation d'une fonction                                  |            |  |  |  |  |
|     | 7.4                                                          | Dérivée logarithmique                                             |            |  |  |  |  |
|     | 7.5                                                          | Extrema et dérivation                                             | 209        |  |  |  |  |
|     | 7.6                                                          | Position d'une courbe par rapport aux sécantes et aux tangentes . |            |  |  |  |  |
|     | 7.7                                                          | Dérivation et intégration                                         | 214        |  |  |  |  |
|     | 7.8                                                          | Suites de fonctions dérivables                                    |            |  |  |  |  |
|     | 7.9                                                          | Fonctions différentiables                                         |            |  |  |  |  |
|     |                                                              | Exercices                                                         |            |  |  |  |  |
|     |                                                              |                                                                   |            |  |  |  |  |
| 8   |                                                              | ctions convexes                                                   | 225        |  |  |  |  |
|     | 8.1                                                          | Fonctions convexes                                                |            |  |  |  |  |
|     | 8.2                                                          | Régularité des fonctions convexes                                 |            |  |  |  |  |
|     | 8.3                                                          | Inégalités de convexité                                           |            |  |  |  |  |
|     | 8.4                                                          | Exercices                                                         | 245        |  |  |  |  |
| 9   | Théorèmes de Rolle et des accroissements finis 25            |                                                                   |            |  |  |  |  |
|     | 9.1                                                          | Le théorème de Rolle                                              |            |  |  |  |  |
|     | 9.2                                                          | Applications du théorème de Rolle                                 |            |  |  |  |  |
|     | 9.3                                                          | Théorème et inégalité des accroissements finis                    | 258        |  |  |  |  |
|     | 9.4                                                          | Applications des théorèmes et inégalités des accroissements finis | 261        |  |  |  |  |
|     | 9.5                                                          | Exercices                                                         | 279        |  |  |  |  |
| 1.0 | _                                                            | 6 l l m l                                                         | 00-        |  |  |  |  |
| 10  |                                                              | formules de Taylor                                                | 287        |  |  |  |  |
|     |                                                              | La formule de Taylor-Lagrange                                     | 287        |  |  |  |  |
|     |                                                              | Formule de Taylor avec reste intégral                             | 288        |  |  |  |  |
|     |                                                              | Cas des fonctions de plusieurs variables                          | 289        |  |  |  |  |
|     |                                                              | Applications des formules de Taylor                               | 292        |  |  |  |  |
|     | 10.5                                                         | Exercices                                                         | 303        |  |  |  |  |

| 11 Développements limités                                                                                                                                   | 307        |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|--|
| 11.1 Le théorème de Taylor-Young                                                                                                                            | 309        |  |  |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                       | 310        |  |  |
|                                                                                                                                                             | 315        |  |  |
|                                                                                                                                                             | 323        |  |  |
| IIII Zhereseeg                                                                                                                                              | 020        |  |  |
| 11                                                                                                                                                          | <b>329</b> |  |  |
| 1                                                                                                                                                           | 329        |  |  |
| 12.2 Cas des fonctions d'une variable réelle                                                                                                                | 334        |  |  |
| 12.3 Suites homographiques                                                                                                                                  | 337        |  |  |
| 12.4 Applications à la résolution d'équations numériques                                                                                                    | 342        |  |  |
| 12.5 Exercices                                                                                                                                              | 348        |  |  |
| 13 Équations fonctionnelles                                                                                                                                 | 355        |  |  |
|                                                                                                                                                             | 355        |  |  |
|                                                                                                                                                             | 357        |  |  |
|                                                                                                                                                             |            |  |  |
|                                                                                                                                                             | 358        |  |  |
|                                                                                                                                                             | 358        |  |  |
|                                                                                                                                                             | 360        |  |  |
| 13.6 L'équation fonctionnelle $f(xy) = f(x) f(y)$ sur $\mathbb{R}^{+,*}$                                                                                    | 361        |  |  |
|                                                                                                                                                             | 361        |  |  |
|                                                                                                                                                             | 363        |  |  |
|                                                                                                                                                             | 364        |  |  |
|                                                                                                                                                             | 367        |  |  |
| 13.11 Suites complexes définies par une relation de récurrence linéaire .                                                                                   | 371        |  |  |
| 13.12 Exercices                                                                                                                                             | 375        |  |  |
| 14 Équations différentielles linéaires                                                                                                                      | 381        |  |  |
| - ,                                                                                                                                                         | 381        |  |  |
|                                                                                                                                                             | 385        |  |  |
| , <del>-</del>                                                                                                                                              | 389        |  |  |
|                                                                                                                                                             | 392        |  |  |
|                                                                                                                                                             | 394        |  |  |
| 14.5 Racines des solutions d'une équation différentielle linéaire d'ordre 2<br>14.6 Équations différentielles linéaires à coefficients développables en sé- | 394        |  |  |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                       | 399        |  |  |
|                                                                                                                                                             | 402        |  |  |
| 15 Dalumâmas antha ganaur                                                                                                                                   | 417        |  |  |
|                                                                                                                                                             | 417        |  |  |
| 15.1 Produit scalaire associé à une fonction poids et polynômes orthogonaux                                                                                 | 417        |  |  |
|                                                                                                                                                             |            |  |  |
| v c                                                                                                                                                         | 425        |  |  |
| 1 0                                                                                                                                                         | 432        |  |  |
|                                                                                                                                                             | 440        |  |  |
| 15.5 Exercices                                                                                                                                              | 446        |  |  |
| Bibliographie                                                                                                                                               |            |  |  |
| Index                                                                                                                                                       | 455        |  |  |

## Avant-propos

Cet ouvrage destiné aux étudiants préparant l'agrégation de Mathématiques (interne ou externe) n'est pas organisé comme un cours suivant strictement les programmes. L'ouvrage de Guy Auliac et J. Y. Caby ou celui de Jean-François Dantzer indiqués en bibliographie répondent tout à fait à cet objectif. Je me suis efforcé de rédiger les chapitres de ce livre de manière indépendante en me concentrant sur les thèmes importants des programmes. Le chapitre 1 peut très bien utiliser un résultat classique exposé dans un chapitre suivant. Je pense que cette façon de procéder peut être utile pour construire des leçons d'oral de l'agrégation. J'ai également privilégié la recherche d'exemples d'applications et de contre-exemples illustrant la nécessité de certaines hypothèses dans l'énoncé d'un théorème, c'est ce travail de synthèse qu'il s'agit de faire dans l'élaboration d'un plan de leçon d'oral.

Chaque chapitre se termine par une série d'exercices tous corrigés en détails. On a un total de 166 exercices qui peuvent constituer un bon entraînement pour les épreuves écrites et fournir du matériel pour la deuxième épreuve orale de l'agrégation interne.

Les deux premiers chapitres sont consacrés aux espaces métriques et aux espaces normés. On y présente les principaux résultats topologiques en relation avec l'étude des suites et des fonctions continues. Le cas des espaces vectoriels normés de dimension fini est particulièrement étudié.

Le cas particulier des espaces préhilbertiens fait l'objet du chapitre 3. Les résultats de ce chapitre seront utiles pour l'étude des polynômes orthogonaux.

Le chapitre 4 est consacré à l'étude des suites réelles ou complexes et à l'approximation des nombres réels par des nombres décimaux ou par des fractions continues régulières limitées à coefficients entiers. On étudie en particulier les développements décimaux des réel, et les nombres rationnels sont caractérisés comme les réels admettant un développement décimal illimité propre périodique à partir d'un certain rang. Les fractions continues nous donnent un autre moyen d'approcher les nombres réels par des rationnels et ils permettent également de caractériser les nombres rationnels comme les réels admettant un développement en fraction continue régulière limité à coefficients entiers. Dans ce chapitre, on s'intéresse également aux sous-groupes additifs de  $\mathbb R$  avec pour applications, un important critère d'irrationalité et l'étude des fonctions continues périodiques. Les théorèmes de Cesàro y sont étudiés en détails.

Le chapitre 5 complète le précédent par une étude des méthodes d'accélération de la convergence de Aïtken et de Richardson.

viii Avant-propos

Avec le chapitre 6, on s'intéresse aux propriétés des fonctions continues d'une variable réelle à valeurs réelles. On s'intéresse aux notions propres à la droite réelle de continuité à gauche et à droite, ce qui permet de distinguer deux types de discontinuités : les discontinuités de première et de deuxième espèce. Le cas des fonctions monotones est particulièrement intéressant du fait qu'une fonction monotone sur un intervalle réel admet des limites à droite et à gauche en tout point, ce qui entraîne qu'elle ne peut avoir que des discontinuités de première espèce et que l'ensemble de ses points discontinuités est au plus dénombrable. Toujours dans le cadre des fonctions d'une variable réelle, le cas des fonctions périodiques est particulièrement intéressant. L'étude des sous-groupes additifs de  $\mathbb R$  nous permet de montrer que le groupe des périodes d'une fonction continue périodique non constante est discret, ce qui permet de définir la plus petite période strictement positive d'une telle fonction. Quelques conséquences de ce résultat sont proposées en exercice. L'étude des propriétés globales des fonctions continues a été faite au premier chapitre. En lien avec la connexité, on montre que les connexes (et les convexes) de  $\mathbb{R}$  sont les intervalles et que la continuité conserve la connexité. La version réelle de ce résultat est le théorème des valeurs intermédiaires. Dans le cadre des fonctions d'une variable réelle, on montre le résultat suivant : si  $f:I\to\mathbb{R}$ vérifie la propriété des valeurs intermédiaires, où I est un intervalle réel, alors elle est continue si, et seulement si,  $f^{-1}\{y\}$  est un fermé pour tout réel y. Dans le cas particulier des fonctions monotones, on montre que si  $f:I\to\mathbb{R}$  est monotone et si f(I) est un intervalle alors f est continue sur l'intervalle I. Ce résultat est utilisé pour montré le résultat suivant à la base des définitions des fonctions réciproques usuelles : si  $f:I\to\mathbb{R}$  est continue strictement monotone, elle réalise alors un homéomorphisme de I sur f(I), les intervalles I et f(I) étant de même nature.

L'étude de la dérivation des fonctions d'une variable réelle à valeurs réelles ou complexes arrive naturellement au chapitre 7. Dans un premier temps, on rappelle les définitions des dérivées d'ordre 1 et d'ordre supérieur. Si une fonction dérivable est continue, on peut construire un exemple de fonction continue nulle part dérivable. J'ai choisi de présenter l'exemple classique de Van der Waerden. Les résultats usuels concernant les opérations sur les fonctions dérivables sont complétés par l'énoncé de la formule de Faà di Bruno donnant la dérivée d'ordre n d'une composée de deux fonctions dérivables en renvoyant à [13] pour une démonstration. La définition de la dérivée logarithmique est suivie d'une application au théorème de relèvement utilisé pour montrer que l'indice d'un lacet dans le plan complexe est un entier.

Après avoir étudié le lien entre dérivation et extrema, on s'intéresse au théorème de Darboux qui nous dit qu'une fonction dérivée vérifie la propriété des valeurs intermédiaires. Ce théorème est suivi de quelques applications qu'il est bon de connaître pour des leçons d'oral.

La dérivation est également utilisée pour étudier les positions relatives d'une courbe par rapport aux sécantes et aux tangentes. L'étude de la position d'une courbe par rapport aux sécantes nous conduit naturellement à la notion de convexité qui sera étudiée de manière plus approfondie au chapitre 8.

On s'intéresse également dans ce chapitre au lien entre dérivation et intégration et aux suites de fonctions dérivables.

Avant-propos ix

La condition nécessaire d'extremum, f'(a) = 0 n'est qu'un cas particulier d'un résultat plus général portant sur les fonctions différentiables définies sur un ouvert de  $\mathbb{R}^n$  et à valeurs réelles.

Le chapitre 8 est consacré à l'étude des fonctions convexes d'une variable réelle. Après en avoir donné les principales propriétés, on s'intéresse à la régularité de ces fonctions, à savoir la continuité sur l'intérieur de l'intervalle de définition, la dérivabilité à droite et à gauche et la monotonie des dérivées. Dans le cas des fonctions dérivables, la convexité de la fonction f est équivalente à la croissance de sa dérivée f'. Ce résultat peut se généraliser au cas des fonctions définies sur un ouvert convexe d'un espace vectoriel normé et à valeurs réelles. L'étude des fonctions convexes est en particulier intéressant pour l'obtention d'inégalités de convexité. Ainsi à partir de la convexité de la fonction exp et de la concavité de la fonction ln, on déduit quelques inégalités classiques dont celle de Hölder. La concavité de la fonction ln peut être utilisée pour comparer les moyennes harmoniques, arithmétiques et géométriques. Les inégalités de Jensen sont montrées dans le cas des espaces vectoriels normés.

Le chapitre 9 est consacré au théorèmes de Rolle et des accroissements finis ainsi qu'aux nombreuses applications de ces théorèmes. Pour l'étude du théorème de Rolle on se place directement dans le cadre des espaces vectoriels normés dans la mesure où le raisonnement est identique à celui mené dans le cadre des fonctions d'une variable réelle. Dans le cadre des fonctions d'une variable réelle ce théorème est encore valable sur une demi-droite fermée ou sur  $\mathbb R$ . Le théorème de Rolle sur un intervalle compact de  $\mathbb R$  peut aussi se montrer en utilisant le principe de dichotomie. Parmi les nombreuses applications du théorème de Rolle, on s'intéresse au théorème de Darboux, à l'étude des racines des polynômes réels avec comme cas particulier celui des polynômes orthogonaux, à l'obtention d'une majoration de l'erreur dans la méthode d'interpolation de Lagrange et à un critère de convexité.

Le théorème des accroissements finis et sa généralisation peuvent se déduire du théorème de Rolle. Ce théorème n'est pas valable pour les fonctions à valeurs dans  $\mathbb{R}^p$  pour  $p \geq 2$ , mais on dispose toutefois d'une inégalité des accroissements finis. Parmi les nombreuses applications du théorème des accroissements finis, on s'intéresse à l'étude du sens de variation des fonctions, au lien entre limite et dérivation, à l'étude de la dérivabilité d'une fonction définie par une intégrale, à la longueur des arcs géométriques, à l'étude des points fixes attractifs et répulsifs, à l'obtention d'une majoration de l'erreur dans la méthode de Simpson, aux suites de fonctions dérivables, au lien entre l'existence de dérivées partielles et la différentiabilité, au théorème de Schwarz sur les dérivées partielles d'ordre 2, au théorème de Darboux et aux nombre de Liouville qui nous donnent un exemple d'ensemble infini de nombres transcendants.

Le théorème de Rolle permet également d'aboutir à la formule de Taylor-Lagrange. Les différentes formules de Taylor sont étudiées au chapitre 10. Dans ce chapitre on s'intéresse également au cas des fonctions de plusieurs variables avec pour application l'étude de problèmes d'extrema. Là encore l'accent est mis sur les applications avec l'introduction des développements limités à une et plusieurs variables, l'étude de problèmes d'extrema, l'obtention d'inégalités, les développements en série entière avec en particulier des théorèmes de Bernstein donnant des conditions suffisantes pour qu'une fonction de classe  $\mathcal{C}^{\infty}$  soit développable en série

x Avant-propos

entière, un théorème de Kolmogorov sur des majorations de dérivées, l'obtention de majorations d'erreurs dans les méthodes de Lagrange et de Newton ainsi que dans la méthode des rectangles.

La formule de Taylor-Young nous conduit naturellement à l'étude des développements limités. Cette étude est menée au chapitre 11. Dans ce chapitre on s'intéresse tout d'abord aux notions de prépondérance, de domination et d'équivalence en regroupant dans un premier paragraphe la plupart des résultats importants sur le sujet. Après avoir présenté les différentes techniques d'obtention des développements limités, on s'intéresse aux applications avec l'obtention d'équivalents pour les suites ou les séries, l'obtention de développements asymptotiques, l'étude de la position d'une courbe par rapport aux tangentes ou aux asymptotes.

Le chapitre 12 qui peut être vu comme une application à l'analyse numérique des chapitres précédents est consacré à l'étude des suites d'approximations successives définies par une relation de récurrence  $x_{n+1} = f\left(x_n\right)$ . Ces suites permettent d'obtenir des approximations des points fixes de la fonction continue f. Les suites homographiques représentent un cas intéressant de telles suites, elles sont étudiées en détail en s'intéressant à la façon de choisir le terme initial  $x_0$  pour que la suite soit bien définie (cette étude est souvent éludée dans les ouvrages de premier cycle). Pour f continue sur un intervalle compact, une première condition nécessaire et suffisante de convergence d'une telle suite est donnée par la condition  $\lim_{n\to+\infty} (x_{n+1}-x_n)=0$ . Le théorème du point fixe, qui nous donne une importante condition suffisante de convergence, est étudié dans le cadre des espaces métriques complets. Ce théorème peut être utilisé pour la recherche de solutions approchées d'une équation numérique  $f\left(x\right)=0$  et nous conduit naturellement aux méthodes de Lagrange et de Newton. Dans l'étude de ces méthodes on s'intéresse aux majorations des erreurs d'approximation.

Le chapitre 13 est consacré aux équations fonctionnelles. On étudie les équations classiques f(x+y)=f(x)+f(y) pour f définie sur  $\mathbb R$  ou  $\mathbb C$  et à valeurs réelles ou complexes; f(xy)=f(x)+f(y) sur  $\mathbb R^+$  et f(x+y)=f(x)f(y) sur  $\mathbb R$  qui nous conduisent aux fonctions logarithmes et exponentielles réelles ou complexes; f(xy)=f(x)f(y) sur  $\mathbb R^+$ , qui nous conduit aux fonctions puissances; f(x+y)+f(x-y)=2f(x)f(y) qui nous conduit aux fonctions cos et ch. Pour ces études on ne se limite pas seulement au cas des fonctions continues. On s'intéresse également à une caractérisation de la fonction  $\Gamma$  d'Euler par sa log-convexité et l'équation fonctionnelle f(x+1)=xf(x). Dans ce chapitre on ne se limite pas aux fonctions d'une variable réelle ou complexe. On donne une caractérisation des rotations vectorielles de  $\mathbb R^3$  par l'équation fonctionnelle  $f(x\wedge y)=f(x)\wedge f(y)$ , où  $\wedge$  désigne le produit vectoriel. Les suites définies par une récurrence linéaire d'ordre n sont également étudiées comme solutions d'équations fonctionnelles.

Le chapitre 14 est consacré à l'étude des équations différentielles linéaires. Dans un premier temps on étudie les équations différentielles linéaires d'ordre 1, ce qui permet de motiver l'introduction de l'équation caractéristique lors de l'étude des équations différentielles linéaires d'ordre 2 à coefficients constants et sans second membre. Cette étude est généralisée au cas des équations d'ordre n et c'est le lemme des noyaux qui permet de donner la forme générale des solutions. Le cas des équations différentielles linéaires d'ordre n à coefficients non constants est étudié en se ramenant à un système linéaire d'ordre 1 et en utilisant le théorème

Avant-propos xi

de Cauchy-Lipschitz linéaire. Ce chapitre se termine par une étude qualitative des solutions des équations différentielles linéaires d'ordre 2 en s'intéressant aux racines de ces solutions.

Enfin le chapitre 15 est consacré à une étude des polynômes orthogonaux. On y présente les principales propriétés (relations de récurrence, racines de ces polynômes, ...). Les polynômes orthogonaux classiques sont présentés comme vecteurs propres de certains opérateurs différentiels, ce qui nous conduit aux formules de Rodrigues. Les polynômes de Legendre sont étudiés de façon plus approfondie.

Cette deuxième édition contient pour l'essentiel ce qui était présent dans la première avec l'ajout des chapitres sur les espaces métriques, normés, préhilbertiens et le chapitre sur les polynômes orthogonaux.

Pour conclure, je tiens à remercier les éditions EDP Sciences pour la confiance qu'ils m'accordent en publiant cette deuxième édition.