COL215 DIGITAL LOGIC AND SYSTEM DESIGN

Design of asynchronous FSMs 08 November 2017

Asynchronous FSM (Mealy)

Set-Reset (SR) Latch

R: Reset

S:Set

Present		Next	state Y		Output
state y	SR = 00	SR = 01	SR = 10	SR = 11	Q
Α	Α	А	В	А	0
В	В	А	В	А	1

Analysis

```
Circuit =>
```

Excitation table =>

Flow table =>

State diagram

Synthesis

State diagram =>

Flow table =>

Excitation table =>

Circuit

Gated D Latch

Gated D Latch

$$Y = ((C.D)'.((C.D')'.y)')' = C.D + (C.D')'.y$$

= $C.D + (C' + D).y = C.D + C'.y + D.y$
= $C.D + C'.y$

State assigned table (excitation table)

$$Y = C.D + C'.y$$

Present		Next s	state Y		Output
state y	CD = 00	CD = 01	CD = 10	CD = 11	Q
0	0	0	0	1	0
1	1	1	0	1	1

State transition table (flow table)

Present		Output			
state y	CD = 00	CD = 01	CD = 10	CD = 11	Q
А	A	A	A	В	0
В	В	В	А	В	1

State transition diagram

Present		Output			
state y	CD = 00	CD = 01	CD = 10	CD = 11	Q
Α	A	A	A	В	0
В	В	B	A	B	1

State transition diagram

Present		Output			
state y	CD = 00	CD = 01	CD = 10	CD = 11	Q
А	A	A	A	В	0
В	В	В	А	В	1

Comparing SR latch and D latch

Master-Slave D Flip-FLop

$$Y_m = C.D + C'.y_m$$

 $Y_s = C'.y_m + C.y_s$

Excitation table

$$Y_m = C.D + C'.y_m$$

 $Y_s = C'.y_m + C.y_s$

Present		Output			
state y _m y _s	CD = 00	CD = 01	CD = 10	CD = 11	Q
00	00	00	00	10	0
01	00	00	01	11	1
10	11	11	00	10	0
11	11	11	01	11	1

Flow table

Present		Next	state		Output
state	CD = 00	CD = 01	CD = 10	CD = 11	Q
S0	SO	SO	SO)	S2	0
S1	S0	S0	<u>S1</u>	S3	1
S2	S 3	S 3	S0	<u>\$2</u>	0
S3	<u>S3</u>	<u>S3</u>	S1	<u>S3</u>	1

Flow table with single input change

Present	Present Next state					
state	CD = 00	CD = 01	CD = 10	CD = 11	Q	
S0	SO	SO)	SO)	S2	0	
S1	S0	-	<u>S1</u>	S 3	1	
S2	-	S 3	S0	<u>\$2</u>	0	
S3	<u>S3</u>	S 3	S1	<u>S3</u>	1	

State transition diagram

Excitation table again

$$Y_m = C.D + C'.y_m$$

 $Y_s = C'.y_m + C.y_s$

Present		Output			
state y _m y _s	CD = 00	CD = 01	CD = 10	CD = 11	Q
00	00	00	8	10	0
01	00	00	01	11	1
10	11	11	00	10	0
11	11	11	01	11	1

M-S DFF circuit from excitation table

$$Y_m = C.D + C'.y_m$$

 $Y_s = C'.y_m + C.y_s$

Problems with asynchronous circuits

Hazards

 Concurrent changes in signal values can lead to glitches in output

Races

 Concurrent changes in state signals can lead to undesired state transitions