Week 2: Weakest Preconditions

86803889

2 Qniz

$$\begin{array}{c|c}
 & 3r70 = 720 \\
\hline
 & t = 3 * r \\
\hline
 & Z :\equiv t \ge 0
\end{array}$$

$$\mathbf{WP}\llbracket b \rrbracket (B_0, B_1) \equiv ((\neg b) \Rightarrow B_0) \land (b \Rightarrow B_1)$$

$$\equiv (\neg b \land B_0) \lor (b \land B_1)$$

Local Consistency

Local Consistency

A, B und c sind Locally Consistent, falls eine der folgenden Aussagen gilt:

1)
$$A \Rightarrow WPI=I(B)$$

2) $SPI=I(A) \Rightarrow B$

Beachte: 1) und 2) sind gleichbedeutend

Start $A :\equiv true$ x = 20B := x > 15n = read() $C :\equiv x > 10$ y = 42 $D :\equiv x > 10 \land y > 10$ yesnon < 0 $E :\equiv y > 5$ $F :\equiv x > 10$ x = y + 20x = x * x $G :\equiv x > 25$ x = x + 5 $H :\equiv x \neq 0$ Stop

Week 02 Tutorial 02 Local Consistency

Check whether the annotated assertions prove that the program computes an x = 0 and discuss why this is the case.

yesnob > ct = bb = cc = tyesnoa > bt = aa = bb = t $\mathbf{Z} :\equiv a \leq b \leq c$ Stop

Week 02 Tutorial 03 — Trouble Sort

Week 02 Tutorial 03 — Trouble Sort