Всероссийский форум научной молодежи «Шаг в будущее»

Программа построения оптимального маршрута в здании с учетом различных возможностей для посетителя

Автор:

Худякова Марина Юрьевна Россия, Воронежская область, г. Воронеж МБОУ лицей №7, 10 класс

Научный руководитель: Саблина Ирина Вячеславовна, учитель информатики МБОУ лицей №7, г. Воронеж 1/18

Актуальность

- Сложность нахождения нужных кабинетов (мест) в незнакомых и больших зданиях проблема, которая растет в связи со строительством сложных сооружений, объединенных одной концепцией «под одной крышей» с системой переходов (ТРЦ: магазины, бизнес-центр, общественное питание, фитнес клубы, кинотеатры, аттракционы и тд)
- Существующие способы помощи посетителям разрабатывались для более простых сооружений и не всегда эффективны, не всегда не учитывают потребности посетителей с ограниченными возможностями
- Существующие разработки не имеют готового продукта
- Необходимость быстрого нахождения маршрута эвакуации в той точке здания, где оказался посетитель в момент ЧС

Цель и задачи проекта

Цель - разработка программы построения оптимального маршрута в здании (комплексе зданий) с учетом различных возможностей для посетителей (лифты, эскалаторы, при наличии).

Задачи:

- Провести сравнительный анализ алгоритмов построения оптимального пути на графе и выбрать наиболее соответствующий практической задаче.
- Описать выбранный алгоритм.
- Написать программу, реализующую задачу построения оптимального маршрута в здании с выбором посетителем различных вариантов перехода на этажи, существующих в здании.
- Реализовать в программе размещение информации об эвакуационных маршрутах при возникновении чрезвычайной ситуации.
- Провести апробацию программы на примере здания Лицея № 7 города Воронежа.
- Предложить пути развития данного программного продукта.

Сравнительный анализ существующих алгоритмов поиска кратчайшего пути на графе

	Взвешенный граф	Допустимость использования ребер с отрицательным весом	Время работы, мс (m — кол-во вершин, n — кол-во ребер)	Время работы алгоритма пилотного проекта, мс (m = 137; n = 148)
Алгоритм Флойда- Уоршелла	Да	Да	m ³	2 571 353
Алгоритм Форда- Беллмана	Да	Да	m ³	2 571 353
Метод обхода графа в ширину	Нет	-	-	-
Метод обхода графа в глубину	Нет	-	-	-
Алгоритм Дейкстры	Да	Нет	n ² + m	22 041

Алгоритм Дейкстры

- Этап 1 Нахождение длины кратчайшего пути.
- Шаг 1.1. Присвоение вершинам начальных меток.
- Шаг 1.2. Изменение меток.
- Шаг 1.3. Превращение временной метки в постоянную.
- Шаг 1.4. Проверка на завершение первого этапа.
- Этап 2 Построение кратчайшего пути.
- Шаг 2.1. Последовательный поиск ребер кратчайшего пути.
- Шаг 2.2. Проверка на завершение второго этапа.

- Язык программирования Python;
- Среда разработки PyCharm;
- Используемые библиотеки: PIL, xlrd, PyQt5, sys, csv, math, sqlite3;
- Используемые технологии: программное создание интерфейса, разработка части интерфейса средствами QT Designer, работа с диалоговыми окнами и изображениями, обработка нажатий клавиш, работа с файлами, использование технологии работы с БД (таблица SchoolCoords), обработка изображений (при построении пути).

Описание программы

Описание программы

Конец. Процедура «Расчет оптимального пути»

Использование программы при возникновении ЧС в здании

• При возникновении ЧС в здании, например, пожара администрация здания (информационная модель здания) исключает из графа вершины, опасные для прохождения ими человеком. В этом случае разработанная программа создает оптимальный маршрут, не используя «запрещенные» вершины.

черно-белом План эвакуации

Учительская

директора по УВР

Изменить пвет

Сделать план в

19 каб.

Спасибо за внимание!

