Neural Nets, Deep-Learning and applications (NLP)

A. Allauzen

Université Paris-Sud / LIMSI-CNRS

08/01/2016

- Known issues and solutions
 - \bullet Regularization and Dropout
 - \bullet The vanishing gradient issue

- 1 Known issues and solutions
 - Regularization and Dropout
 - The vanishing gradient issue

- 1 Known issues and solutions
 - Regularization and Dropout
 - The vanishing gradient issue

Regularization l^2 or gaussian prior or weight decay

The basic way:

$$\mathcal{L}(oldsymbol{ heta}) = \sum_{i=1}^{N} l(oldsymbol{ heta}, oldsymbol{x}_{(i)}, c_{(i)}) + rac{\lambda}{2} ||oldsymbol{ heta}||^2$$

- The second term is the regularization term.
- Each parameter has a gaussian prior : $\mathcal{N}(0, 1/\lambda)$.
- λ is a hyperparameter.
- The update has the form:

$$\boldsymbol{\theta} = (1 + \eta_t \lambda) \boldsymbol{\theta} - \eta_t \nabla_{\boldsymbol{\theta}}$$

Dropout

A new regularization scheme (Srivastava and Salakhutdinov2014)

- For each training example : randomly turn-off the neurons of hidden units (with p = 0.5)
- At test time, use each neuron scaled down by p
- Dropout serves to separate effects from strongly correlated features and
- prevents co-adaptation between units
- It can be seen as averaging different models that share parameters.
- It acts as a powerful regularization scheme.

Dropout - implementation

The layer should keep:

- $oldsymbol{oldsymbol{w}} oldsymbol{W}^{(l)}: ext{the parameters}$
- $f^{(l)}$: its activation function
- \bullet $x^{(l)}$: its input
- ullet $a^{(l)}$: its pre-activation associated to the input
- $\boldsymbol{\delta}^{(l)}$: for the update and the back-propagation to the layer l-1
- $m^{(l)}$: the dropout mask, to be applied on $x^{(l)}$

Forward pass

For
$$l = 1$$
 to $(L - 1)$

- Compute $y^{(l)} = f^{(l)}(W^{(l)}x^{(l)})$

$$y^{(L)} = f^{(L)}(W^{(L)}x^{(L)})$$

- Known issues and solutions
 - Regularization and Dropout
 - The vanishing gradient issue

Experimental observations (MNIST task) - 1

The MNIST database

```
82944649709295159103
13591762822507497832
1/836/0310011273046526471899307102035465
```

Comparison of different depth for feed-forward architecture

- Hidden layers have a sigmoid activation function.
- The output layer is a softmax.

Experimental observations (MNIST task) - 2

Varying the depth

- Without hidden layer : $\approx 88\%$ accuracy
- 1 hidden layer (30): $\approx 96.5\%$ accuracy
- 2 hidden layer (30) : $\approx 96.9\%$ accuracy
- 3 hidden layer (30): $\approx 96.5\%$ accuracy
- 4 hidden layer (30): $\approx 96.5\%$ accuracy

Experimental observations (MNIST task) - 2

Varying the depth

- Without hidden layer : $\approx 88\%$ accuracy
- 1 hidden layer (30): $\approx 96.5\%$ accuracy
- 2 hidden layer (30) : $\approx 96.9\%$ accuracy
- 3 hidden layer (30): $\approx 96.5\%$ accuracy
- 4 hidden layer (30): $\approx 96.5\%$ accuracy

(From http://neuralnetworksanddeeplearning.com/chap5.html)

Intuitive explanation

Let consider the simplest deep neural network, with just a single neuron in each layer.

 w_i, b_i are resp. the weight and bias of neuron i and C some cost function.

Compute the gradient of C w.r.t the bias b_1

$$\frac{\partial C}{\partial b_1} = \frac{\partial C}{\partial y_4} \times \frac{\partial y_4}{\partial a_4} \times \frac{\partial a_4}{\partial y_3} \times \frac{\partial y_3}{\partial a_3} \times \frac{\partial a_3}{\partial y_2} \times \frac{\partial y_2}{\partial a_2} \times \frac{\partial a_2}{\partial y_1} \times \frac{\partial y_1}{\partial a_1} \times \frac{\partial a_1}{\partial b_1}$$
(1)

$$= \frac{\partial C}{\partial y_4} \times \sigma'(a_4) \times w_4 \times \sigma'(a_3) \times w_3 \times \sigma'(a_2) \times w_2 \times \sigma'(a_1)$$
 (2)

(3

Intuitive explanation - 2

The derivative of the activation function : σ'

$$\sigma'(x) = \sigma(x)(1 - \sigma(x))$$

But weights are initialize around 0.

The different layers in our deep network are learning at vastly different speeds :

- when later layers in the network are learning well,
- early layers often get stuck during training, learning almost nothing at all.

Solutions

Change the activation function (Rectified Linear Unit or ReLU)

- Avoid the vanishing gradient
- Some units can "die"

See (Glorot et al. 2011) for more details

Do pre-training when it is possible

See (Hinton et al.2006; Bengio et al.2007):

when you cannot really escape from the initial (random) point, find a good starting point.

More details

See (Hochreiter et al. 2001; Glorot and Bengio 2010; LeCun et al. 2012)

Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle.

2007.

Greedy layer-wise training of deep networks.

In B. Schölkopf, J.C. Platt, and T. Hoffman, editors, Advances in Neural Information Processing Systems 19, pages 153–160. MIT Press.

Xavier Glorot and Yoshua Bengio.

2010.

Understanding the difficulty of training deep feedforward neural networks.

In JMLR W&CP: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics (AISTATS 2010), volume 9, pages 249–256, May.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio.

2011.

Deep sparse rectifier neural networks.

In Geoffrey J. Gordon and David B. Dunson, editors, Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics (AISTATS-11), volume 15, pages 315–323. Journal of Machine Learning Research - Workshop and Conference Proceedings.

Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. 2006.

A fast learning algorithm for deep belief nets.

Neural Computation, 18(7):1527–1554, JUL.

S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber.

2001.

Gradient flow in recurrent nets: the difficulty of learning long-term dependencies. In Kremer and Kolen, editors, A Field Guide to Dunamical Recurrent Neural

Yann LeCun, Léon Bottou, Genevieve Orr, and Klaus-Robert Müller.

2012.

Efficient backprop.

Networks. IEEE Press.

In Grégoire Montavon, GenevièveB. Orr, and Klaus-Robert Müller, editors, Neural Networks: Tricks of the Trade, volume 7700 of Lecture Notes in Computer Science, pages 9-48. Springer Berlin Heidelberg.

Nitish Srivastava and Ruslan Salakhutdinov.

2014.

Multimodal learning with deep boltzmann machines.

Journal of Machine Learning Research, 15:2949–2980.