8. előadás

Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu

Komputeralgebra Tanszék

2016. tavasz

Definíció

Legyen $I\subset\mathbb{R}$. Az $f:I\to\mathbb{R}$ függvényt konvexnek nevezzük, ha bármely $x_1,x_2\in I$ és $0\leq t\leq 1$ esetén

$$f(tx_1+(1-t)x_2) \leq tf(x_1)+(1-t)f(x_2).$$

f szigorúan konvex, ha egyenlőség csak t=0 vagy t=1 esetén lehetséges.

Lemma (Jensen-egyenlőtlenség, NB)

Legyen p_1, p_2, \ldots, p_k egy eloszlás, $f: I \to \mathbb{R}$ pedig egy szigorúan konvex függvény az $I \subset \mathbb{R}$ intervallumon. Ekkor $q_1, q_2, \ldots, q_k \in I$ esetén

$$f\left(\sum_{j=1}^k p_j q_j
ight) \leq \sum_{j=1}^k p_j f(q_j),$$

és egyenlőség pontosan akkor áll fenn, ha $q_1 = q_2 = \ldots = q_k$.

Tétel

Bármilyen eloszláshoz tartozó entrópiára

$$H_r(p_1, p_2, \ldots, p_k) \leq \log_r k,$$

és egyenlőség pontosan akkor teljesül, ha $p_1=p_2=\ldots=p_k=\frac{1}{k}$.

Bizonyítás

r>1esetén a $-\log_r(x)$ függvény szigorúan konvex, ezért használhatjuk a lemmát $q_j=\frac{1}{p_j}$ választással:

$$-H_r(p_1,p_2,\ldots,p_k) = \sum_{j=1}^k p_j \log_r p_j =$$

$$=\sum_{j=1}^k p_j\left(-\log_r\frac{1}{p_j}\right)\geq -\log_r\left(\sum_{j=1}^k p_j\frac{1}{p_j}\right)=-\log_r k.$$

Definíció

A kódolás alatt a legáltalánosabb értelemben az üzenetek halmazának egy másik halmazba való leképezését értjük.

Ha a leképezés injektív, akkor azt mondjuk, hogy a kódolás felbontható, egyértelműen dekódolható, vagy veszteségmentes, egyébként veszteségesnek nevezzük, mert információvesztéssel jár.

A betűnkénti kódolás során az üzenetet meghatározott módon egymáshoz átfedés nélkül csatlakozó részekre bontjuk, egy-egy ilyen részt egy szótár alapján kódolunk, és az így kapott kódokat az eredeti sorrendnek megfelelően egymáshoz láncoljuk.

Az általánosság csorbítása nélkül feltehetjük, hogy a szótár alapján kódolandó elemi üzenetek egy A ábécé (a kódolandó ábécé) betűi, és egy-egy ilyen betű kódja egy másik (az előbbitől nem feltétlenül különböző) B ábécé (kódoló ábécé vagy kódábécé) betűivel felírt szó, vagyis ezen ábécéből vett betűk véges sorozata, a sorozat elemeit egyszerűen egymás mellé írva. Az ábécékről feltesszük, hogy nem-üresek és végesek.

Definíció

Az A ábécé betűivel felírható összes (legalább egy betűt tartalmazó) szó halmazát A^+ jelöli, míg az egyetlen betűt sem tartalmazó üres szóval (jele: \emptyset vagy λ) kibővített halmazt A^* .

Definíció

A betűnkénti kódolást egy $\varphi:A\to B^*$ leképezés határozza meg, amelyet természetes módon terjesztünk ki egy $\psi:A^*\to B^*$ leképezéssé: $a_1a_2\ldots a_n=\alpha\in A^*$ esetén $\psi(\alpha)=\varphi(a_1)\varphi(a_2)\ldots\varphi(a_n)$. rng (ψ) -t kódnak nevezzük, elemei a kódszavak.

Megjegyzés

Ha φ nem injektív, vagy az üres szó benne van az értékkészletében, akkor a kapott ψ kódolás nem injektív (Miért?), tehát nem felbontható, ezért betűnkénti kódolásnál feltesszük, hogy φ injektív, és B^+ -ba képez.

Definíció

Tekintsünk egy A ábécét, és legyen $\alpha,\beta,\gamma\in A^*$. Ekkor α prefixe (előtagja), míg γ szuffixe (utótagja) $\alpha\gamma$ -nak, β pedig infixe (belső tagja) $\alpha\beta\gamma$ -nak.

Definíció

Prefixmentes halmaznak nevezzük szavak egy halmazát, ha nincs benne két különböző szó, hogy egyik a másik prefixe.

Definíció

Az üres szó és α prefixe, szuffixe és infixe is α -nak, ezeket α triviális prefixeinek, triviális szuffixeinek és triviális infixeinek nevezzük.

Definíció

 α egy prefixét, szuffixét, illetve infixét valódi prefixnek, valódi szuffixnek, illetve valódi infixnek nevezzük, ha nem egyezik meg α -val.

Definíció

Tekintsük az injektív $\varphi:A\to B^+$ leképezést, illetve az általa meghatározott ψ betűnkénti kódolást.

Ha $rrg(\varphi)$ prefixmentes halmaz, akkor prefix kódról beszélünk.

Ha $\mathrm{rng}(\varphi)$ elemei azonos hosszúságúak, akkor egyenletes kódról, fix hosszúságú kódról, esetleg blokk-kódról beszélünk.

Vesszős kódról beszélünk, ha van egy olyan $\vartheta \in B^+$ szó (a vessző), amely minden kódszónak szuffixe, de egyetlen kódszó sem áll elő $\alpha\vartheta\beta$ alakban nem üres β szóval.

Állítás

Prefix kód felbontható

Bizonyítás

Konstruktív: nézzük az eddig beérkezett betűkből összeálló szót. Amint ez kiadja a kódolandó ábécé valamely betűjéhez tartozó kódszót, azonnal dekódolhatunk a megfelelő betűre, mert a folytatásával kapott jelsorozat egyetlen betűhöz rendelt kódszó sem lehet.

Állítás

Kódolás

Egyenletes kód prefix (így nyilván felbontható is).

Bizonyítás

Mivel a kódszavak hossza azonos, ezért csak úgy lehet egy kódszó prefixe egy másiknak, ha megegyeznek.

Állítás

Vesszős kód prefix (így nyilván felbontható is).

Bizonyítás

A vessző egyértelműen jelzi egy kódszó végét, hiszen ha folytatva kódszót kapnánk, abban a vessző tiltott módon szerepelne.

2016. tavasz

Betűnkénti kódolás

Példák

Legyen $A=\{a,b,c\},\ B=\{0,1\},\ \varphi:A\to B^+$ pedig az alábbi módon definiált.

	1.	2.	3.	4.	5.	6.
$\varphi(a)$	01	1	01	0	00	01
$\varphi(b)$	1101	01	011	10	10	001
$\varphi(c)$	01	10	11	11	11	0001

- 1. $\varphi(a) = \varphi(c) \Longrightarrow \varphi$ nem injektív
- 2. $\psi(ab)$ =101= $\psi(ca)$ \Longrightarrow nem felbontható
- 3. nem prefix, de felbontható
- 4. prefix
- 5. egyenletes
- 6. vesszős

Betűnkénti kódolás

Tétel (McMillan-egyenlőtlenség, NB)

Legyen $A = \{a_1, a_2, \dots, a_n\}$ és B két ábécé, B elemeinek száma $r \ge 2$, és $\varphi : A \to B^+$ injektív leképezés.

Ha a φ által meghatározott betűnkénti kódolás felbontható, akkor $\mathit{l_j} = |\varphi(\mathit{a_j})|$ jelöléssel

$$\sum_{j=1}^n r^{-l_j} \le 1.$$

Tétel (McMillan-egyenlőtlenség megfordítása, NB)

Az előző tétel jelöléseit használva, ha l_1, l_2, \ldots, l_n olyan pozitív egész számok, hogy $\sum_{j=1}^n r^{-l_j} \leq 1$, akkor van az A-nak a B elemeivel való olyan felbontható (sőt prefix) kódolása, hogy az a_j betűhöz rendelt kódszó hossza l_i .

Betűnkénti kódolás

Definíció

Legyen $A = \{a_1, a_2, \dots, a_n\}$ a kódolandó ábécé, p_1, p_2, \dots, p_n a betűk eloszlása, $\varphi : A \to B^+$ injektív leképezés, továbbá $l_j = |\varphi(a_j)|$. Ekkor $\bar{l} = \sum_{i=1}^n p_i l_i$ a kód átlagos szóhossza.

Ha adott elemszámú ábécével és eloszlással egy felbontható betűnkénti kód átlagos szóhosszúsága minimális, akkor optimális kódnak nevezzük.

Megjegyzés

Az átlagos kódhossz valós szám, és valós számok halmazában nem feltétlenül van minimális elem (ld. $\{\frac{1}{n}|n\in\mathbb{N}\}$), ezért optimális kód létezése nem triviális.

Betűnkénti kódolás

Állítás

Adott ábécé és eloszlás esetén létezik optimális kód.

Bizonyítás

Válasszunk egy tetszőleges felbontható kódot (Miért van ilyen?), ennek átlagos szóhosszúsága legyen I. Mivel $p_j l_j > I$ esetén a kód nem lehet optimális (Miért?), ezért elég azokat a kódokat tekinteni, amelyekre $l_j \leq \frac{I}{p_j}$, ha $j=1,2,\ldots,n$. Ilyen kód csak véges sok van, így van köztük minimális átlagos hosszúságú.

Betűnkénti kódolás

Tétel (Shannon tétele zajmentes csatornára)

Legyen $A = \{a_1, a_2, \dots, a_n\}$ a kódolandó ábécé, p_1, p_2, \dots, p_n a betűk eloszlása, $\varphi : A \to B^+$ injektív leképezés, B elemeinek a száma $r \ge 2$, továbbá $I_i = |\varphi(a_i)|$.

Ha a φ által meghatározott betűnkénti kódolás felbontható, akkor $H_r(p_1, p_2, \dots, p_n) \leq \overline{I}$.

Bizonvítás

$$\bar{l} - H_r(p_1, p_2, \dots, p_n) = \sum_{j=1}^n p_j l_j + \sum_{j=1}^n p_j \log_r p_j =$$

$$= -\sum_{j=1}^n p_j \log_r r^{-l_j} - \sum_{j=1}^n p_j \log_r \frac{1}{p_j} = -\sum_{j=1}^n p_j \log_r \frac{r^{-l_j}}{p_j} \ge$$

$$\ge -\log_r \left(\sum_{j=1}^n r^{-l_j}\right) \ge -\log_r 1 = 0$$

Betűnkénti kódolás

Tétel (Shannon kód létezése)

Az előző tétel jelöléseivel, ha n>1, akkor van olyan prefix kód, amire $\bar{l}< H_r(p_1,p_2,\ldots,p_n)+1$.

Bizonyítás

Válasszunk olyan l_1, l_2, \ldots, l_n természetes számokat, amelyekre $r^{-l_j} \leq p_j < r^{-l_j+1}$, ha $j=1,2,\ldots,n$ (Miért tudunk ilyeneket választani?). Ekkor $\sum_{j=1}^n r^{-l_j} \leq \sum_{j=1}^n p_j = 1$, így a McMillan-egyenlőtlenség megfordítása miatt létezik prefix kód az adott l_j hosszakkal. Mivel $l_j < 1 - \log_r p_j$ (Miért?), ezért

$$ar{l} = \sum_{j=1}^n p_j l_j < \sum_{j=1}^n p_j (1 - \log_r p_j) = 1 + H_r(p_1, p_2, \dots, p_n).$$

16.

Optimális kódkonstrukció: Huffman-kód

Legyen $\{a_1, a_2, \dots, a_n\}$ az üzenetek halmaza, a hozzájuk tartozó eloszlás pedig p_1, p_2, \dots, p_n , a kódábécé elemszáma r.

Rendezzük relatív gyakoriság szerint csökkenő sorrendbe a betűket.

Osszuk el maradékosan n-2-t r-1-gyel:

$$n-2 = q(r-1) + m$$
 $0 \le m < r-1$, és legyen $t = m+2$.

Helyettesítsük az utolsó t betűt egy új betűvel, amihez az elhagyott betűk relatív gyakoriságainak összegét rendeljük, és az így kapott gyakoriságoknak megfelelően helyezzük el az új betűt a sorozatban. Ezek után ismételjük meg az előző redukciót, de most már minden lépésben r betűvel csökkentve a kódolandó halmazt, mígnem már csak r betű marad.

Most a redukált ábécé legfeljebb r betűt tartalmaz, és ha volt redukció, akkor pontosan r-et.

Ezeket a kódoló ábécé elemeivel kódoljuk, majd a redukciónak megfelelően visszafelé haladva, az összevont betűk kódját az összevonásként kapott betű már meglévő kódjának a kódoló ábécé különböző betűivel való kiegészítésével kapjuk.

0,22

Példa Huffman-kódra

Legyen $A = \{a, b, \dots, i\}$, a relatív gyakoriságok 0, 17; 0, 02; 0, 13; 0, 02; 0, 01; 0, 31; 0, 02; 0, 17; 0, 06; 0, 09, a kódoló ábécé pedig $\{0,1,2\}$. $10-2=4\cdot(3-1)+0$, így t=0+2=2.

```
0,31
                                                      0,31
             0.17
                                                      0.17
                                                                                                      0.31
             0.17
                                                      0.17
                                                                                                      0.17
             0,13
                                                      0.13
                                                                                                      0.17
             0.09
                                                      0.09
                                                                                                      0.13
             0,06
                                                                            j
((g,e),b,d)
:
                                                      0.06
                                                                                                      0,09
             0.02
                                                                                                      0,07
                                                      0,03
             0.02
                                                      0,02
             0.02
                                                      0,02
             0.01
                          0,31
(j,((g,e),b,d),i)
                          0,22
                                                \begin{matrix} (a,h,c) \\ f \\ (j,((g,e),b,d),i) \end{matrix}
                                                                         0,47
                         0,17
0,17
                                                                      0,31
```

Példa Huffman-kódra folyt.

Entrópia: $\approx 1,73$. Átlagos szóhossz: 1,79.

```
(a,h,c)
                         0.47
                         0.31
 (j,((g,e),b,d),i)
                         0,22
Kódolás:
    (a,h,c)\mapsto 0
                              a → 00
                              h → 01
                              c → 02
        f \mapsto 1
(j,((g,e),b,d),i)\mapsto 2
                         ((g,e),b,d)\mapsto 21
                                                    (g,e) → 210
                                                                          g→2100
                                                                          e \mapsto 2101
                                                        b → 211
                                                        d→212
                              i→22
```

Betűnkénti kódolás

Tétel (NB)

A Huffman-kód optimális.

Példa Shannon-kódra

Az előző példában használt ábécét és eloszlást fogjuk használni. Rendezzük sorba az ábécét relatív gyakoriságok szerinti csökkenő sorrendben:

- f 0,31
- a 0,17
- h 0,17
- c 0,13
- j 0,09
- i 0,06
- b 0,02
- d 0,02
- g 0,02
- e 0,01

Példa Shannon-kódra folyt.

Határozzuk meg a szükséges szóhosszúságokat:

```
\begin{array}{l} \frac{1}{9} \leq 0,31;0,17;0,13 < \frac{1}{3}\text{, ezért f, a, h és c kódhossza 2.} \\ \frac{1}{27} \leq 0,09;0,06 < \frac{1}{9}\text{, ezért j és i kódhossza 3.} \\ \frac{1}{81} \leq 0,02 < \frac{1}{27}\text{, ezért b, d és g kódhossza 4.} \\ \frac{1}{243} \leq 0,01 < \frac{1}{81}\text{, ezért e kódhossza 5.} \end{array}
```

Az f kódja 00, az a kódja 01, a h kódja 02, és ez utóbbihoz 1-et adva hármas alapú számrendszerben kapjuk c kódját, ami 10. Ehhez 1-et adva 11-et kapunk, de j kódjának hossza 3, ezért ezt még ki kell egészíteni jobbról egy 0-val, tehát j kódja 110. Hasonlóan folytatva megkapjuk a teljes kódot:

```
f 00
a 01
h 02
c 10
j 110
i 111
b 1120
d 1121
g 1122
```

12000

Átlagos szóhossz: 2, 3 < 1, 73 + 1.