Understanding Evaluation Metrics for regression models

Which distance?

- Whether absolute or relative; distance metric
- **SSR**: Residual is what **absolute metrics** are interested about.
- SST: Mean of actual y variables are set as the 'baseline' in order to achieve the relativeness.

Total Sum of Squares (SST)	Explained Sum of Squares (SSE)	Residual Sum of Squares (SSR)
$\sum_{i=1}^{n} (y_i - \bar{y}_i)^2$	$\sum_{i=1}^{n} (\hat{y}_i - \bar{y}_i)^2$	$\sum_{i=1}^{n} (\hat{y}_i - y_i)^2$

Absolute vs. Relative?

- How accurate is the model? vs. To which degree does the model explain?
- Aims **lower** vs. aims **higher**

	Absolute	Relative				
	0 to infinity		0 -1	0 -1 (always $\leq R^2$)		
Mean Absolute Error (MAE)	Mean Squared Error (MSE)	Root Mean Squared Error (RMSE)	R-square (Coefficient of determination)	Adjusted R-squared		
$\frac{1}{n}\sum y_j-\widehat{y_j} $	$\frac{1}{n}\sum_{j}(y_{j}-\widehat{y_{j}})^{2}$	$\sqrt{\frac{1}{n}\sum (y_j - \widehat{y_j})^2}$	$1 - \frac{\sum (y_j - \widehat{y_j})^2}{\sum (y_j - \overline{y_j})^2}$	$1 - \frac{(1 - R^2)(n - 1)}{n - k - 1}$		

Absolute in detail: MAE vs. MSE vs. RMSE

- Common confusion in metrics
- MAE derived the first, MSE derived in support (Actual usage depends on the dataset)
- Differentiability allows model optimization (i.e. Gradient descent)

Mean Absolute Error (MAE)	Mean Squared Error (MSE)	Root Mean Squared Error (RMSE)
Average magnitude of errors Average of residuals	Average of squared errors Average of squared residuals	Square root of average of squared errors
$\frac{1}{n}\sum y_j-\widehat{y}_j $	$\frac{1}{n}\sum (y_j - \widehat{y_j})^2$	$\sqrt{\frac{1}{n}\sum (y_j-\widehat{y_j})^2}$
*Mean Bias Error(MBE) $\frac{1}{n}\sum (y_j-\widehat{y_j})$	*MSE \neq Variance(y) $\frac{1}{n} \sum (y_j - \bar{y}_j)^2$	*RMSE \neq Standard Deviation(y) $\sqrt{\frac{1}{n} \sum (y_j - \bar{y}_j)^2}$
Intentionally canceling out positive and negative errors to measure model bias	he difference is how MSE focuses on the variability around	tue values (i.e. $LR(x) = \bar{y}$), Variance(y) would be the same. However, to the predicted regression line whereas the variance sees the
 MAE assigns identical weight for all residuals. Robust with outliers. Non differentiable. 	 Squaring penalizes the large prediction errors. Thus, affected by outliers. Yet, effective if large errors undesirable. Differentiable. 	 Square root doesn't prevent squaring from penalizing the large prediction errors. Thus, affected by outliers. Differentiable Has same units as dependent variable

Absolute in detail: MAE vs. RMSE

- While MAE is steady, RMSE increases as the variance increases. However, RMSE does not necessarily increases with the variance of the errors. **RMSE increase with the variance of the frequency distribution of error magnitude.**
- MAE ≤ RMSE : the RMSE result will always be larger or equal to the MAE. Equal when all of the errors have the same magnitude.
- RMSE ≤ MAE*sqrt(N): When all of the prediction error comes from a single sample, the squared error then equals to (MAE^2)*N.

CASE 1: E	CASE 1: Evenly distributed errors CASE 2: Small variance in errors			CASE 3: Large error outlier				CASE 4: Errors = 0 or 5				CASE 5: Errors = 3 or 4							
ID	Error	Error	Error^2	ID	Error	Error	Error^2	ID	Error	Error	Error^2	ID	Error	Error	Error^2	ID	Error	Error	Error^2
1	2	2	4	1	1	1	1	1	0	0	0	1	5	5	25	1	3	3	9
2	2	2	4	2	1	1	1	2	0	0	0	2	0	0	0	2	4	4	16
3	2	2	4	3	1	1	1	3	0	0	0	3	5	5	25	3	3	3	9
4	2	2	4	4	1	1	1	4	0	0	0	4	0	0	0	4	4	4	16
5	2	2	4	5	1	1	1	5	0	0	0	5	5	5	25	5	3	3	9
6	2	2	4	6	3	3	9	6	0	0	0	6	0	0	0	6	4	4	16
7	2	2	4	7	3	3	9	7	0	0	0	7	5	5	25	7	3	3	9
8	2	2	4	8	3	3	9	8	0	0	0	8	0	0	0	8	4	4	16
9	2	2	4	9	3	3	9	9	0	0	0	9	5	5	25	9	3	3	9
10	2	2	4	10	3	3	9	10	20	20	400	10	0	0	0	10	4	4	16
													· ·				_		
		MAE	RMSE			MAE	RMSE			MAE	RMSE		var	MAE	RMSE		var	MAE	RMSE
		2.000	2.000			2.000	2.236			2.000	6.325		6.944	2.500	3.536		0.278	3.500	3.536

Relative in detail

- Compare the portion of SST errors reduced, by taking independent variables into accounts.
- Think in terms of Variance as "Sum of Squares" are what remains in calculation.

$$R^2 = \frac{\text{Var(mean)} - \text{Var(fit)}}{\text{Var(mean)}} = \frac{\text{Variation in target explained by feature}}{\text{Variation in target without taking any feature into account.}}$$

$$R^2 = \frac{\text{SS(mean)} - \text{SS(fit)}}{\text{SS(mean)}}$$

Relative in detail : Negative R-Square

- The term "Square" often gives impression that R-square cannot be less than 0.
- Simply put, the model is clearly "underfitting", worse than the base model of "Mean" of y variable.

Relative in detail: R-Square vs. Adjusted R-Square

- Compare the portion of SST errors reduced, by taking independent variables into accounts,

R-square (Coefficient of determination)	Adjusted R-squared					
0 -1	0 -1 (always $\leq R^2$)					
$1 - \frac{\sum (y_j - \widehat{y_j})^2}{\sum (y_j - \overline{y_j})^2}$	$1 - \frac{(1 - R^2)(n - 1)}{n - k - 1}$					
$\frac{SST - SSE}{SST} = 1 - \frac{SSE}{SST} = \frac{SSR}{SST}$ *proportion of variation in the y-variable that is due to variation in the x-variables	Adjusted for the number of independent variables *n : number of observations in the data *k : number of independent variables in the data					
R Squared value always increases with the addition of the independent variables which might lead to the addition of the redundant variables in our model. However, the adjusted R -squared solves this problem.	The value of Adjusted R squared decreases if the increase in the R square by the additional variable isn't significant enough. *penalizes having a large number of parameters					

References

- [Link] What are RMSE and MAE?, towardsdatascience
- [Link] MAE and RMSE Which Metric is Better?, Medium
- [Link] MAE, MSE, RMSE, Coefficient of Determination, Adjusted R Squared Which Metric is Better, Analytics Vidhya
- [Link] RMSE or MAE? Arguments against avoiding RMSE in the literature, ResearchGate
- [Link] Art of Choosing Metrics in Supervised Models Part 1, towardsdatascience
- [Link] Which Evaluation Metric Should You Use in Machine Learning Regression Problems? towardsdatascience
- [Link] 회귀분석 결과에서 SST, SSE, SSR, R-Squared의 의미, igija tistory
- [Link] When is R Squared negative?, Cross Validated
- [Link] Ambiguities inherent in sums-of-squares based error statistics, ResearchGate

EOD