Grundbegriffe der Informatik Musterlösung zur Klausur am 7.3.2013

Lösungsvorschlag:

- a) Für alle Relationen $R_1, R_2 \subseteq M \times M$ gilt: $R_1 \circ R_2 = R_2 \circ R_1$. falsch
- b) Gegeben seien zwei Relationen $R_1, R_2 \subseteq M \times M$. R_1 ist reflexiv $\Rightarrow R_1 \cup R_2$ ist reflexiv. wahr
- c) Gegeben seien zwei Relationen $R_1, R_2 \subseteq M \times M$. Wenn R_1 und R_2 antisymmetrisch sind, dann ist $R_1 \cup R_2$ antisymmetrisch. falsch
- $\mathrm{d})\ (\{\mathtt{a}\}\cup\{\mathtt{b}\})^*=\{\mathtt{a}\}^*\cup\{\mathtt{b}\}^*$ falsch
- e) Besitzt die Menge der oberen Schranken einer Teilmenge T ein größtes Element, so heisst dies das Supremum von T. falsch
- f) Für einen wie in der Vorlesung definierten Akzeptor $A=(Z,z_0,X,f,F)$ mit F=Z gilt: $L(A)=X^*$ wahr
- g) Es gibt 256 Sprachen L mit $L \subseteq \{w \in \{a, b\}^* \mid |w| = 3\}$ wahr
- h) $n^{\frac{42}{41}} \in O(n(\log n)^2)$ falsch
- i) Sei A die Adjazenzmatrix zu einem Graphen mit n Knoten. Es gilt: $\forall m>n: \mathrm{sgn}(\sum_{i=1}^n A^i)=\mathrm{sgn}(\sum_{i=1}^m A^i)$ wahr

$L\"{o}sungsvorschlag$

a) Die linke Codierung ist eine gültige Huffman-Codierung. Die rechte Codierung ist zwar präfixfrei, sie ist jedoch unter den präfixfreien Codierungen nicht minimal, bzw es gibt keinen gültigen Huffman-Baum zur rechten Codierung, da h(c)=001 zu lang ist.

b)

c) Die gültigen Paare sind: (2, 2), (2, 3), (3, 2), (3, 3) und (4, 4).

Lösungsvorschlag:

1. Wir führen Induktion über die Wortlänge $|w| = |w_1 w_2|$.

Induktionsanfang: Für $w = \epsilon$ gilt $w_1 = w_2 = \epsilon$ und daher: $f(\epsilon \epsilon) = f(\epsilon) = \epsilon = \epsilon \epsilon = f(\epsilon) f(\epsilon) \sqrt{.}$

Induktionsvoraussetzung:

Für alle Wörter w' mit beliebiger, aber fester Länge $n \in \mathbb{N}_0$ gelte: $\forall w' \in X^*$ mit $w' = w_1 w_2 : f(w') = f(w_1 w_2) = f(w_1) f(w_2)$.

Induktionsschritt: Gezeigt wird, dass die Behauptung auch für Wörter w der Länge n+1 gilt. Es gibt zwei Möglichkeiten für das erste Zeichen

- \bullet a: $f(w) = f(\mathtt{a}w') = f(\mathtt{a}w_1w_2) = \mathtt{b}f(w_1w_2) \overset{\mathrm{IV}}{=} \mathtt{b}f(w_1)f(w_2) \overset{\mathrm{nach\ Def.}}{=} f(\mathtt{a}w_1)f(w_2)$
- \bullet b: $f(w) = f(\mathtt{b}w') = f(\mathtt{b}w_1w_2) = \mathtt{a}f(w_1w_2) \overset{\mathrm{IV}}{=} \mathtt{a}f(w_1)f(w_2) \overset{\mathrm{nach\ Def.}}{=} f(\mathtt{b}w_1)f(w_2)$

zur Vollständigkeit: dritte Möglichkeit für das "erste Zeichen" wäre ϵ : Da $f(\epsilon w) = f(w)$, muss nichts zusätzliches gezeigt werden.

Hinweis: Alternativ wäre auch ein Induktion über $n = |w_1|$ möglich.

2.

$$\forall w \in X^* : f(w,0) = w$$
$$\forall n \in \mathbb{N}_0 : f(\epsilon, n) = \epsilon$$
$$\forall w \in X^* : \forall x \in A : f(xw, n+1) = f(w, n)$$

$L\"{o}sungsvorschlag:$

- c) $r_0 = 0$ $w_0 = 00$
 - $r_1 = 00$ $w_1 = 0$
 - $r_2 = 000$ $w_2 = \epsilon$

$L\"{o}sungsvorschlag:$

- $\mathrm{a})\ (\mathtt{a}\mid\mathtt{b}\mid\varnothing\ast)(\mathtt{ab}\mid\mathtt{ba})\ast$
- b) R ist nicht reflexiv: Gegenbeispiel: $(\mathtt{a},\mathtt{a}) \notin R$ R ist nicht symmetrisch: Gegenbeispiel: $(\mathtt{a},\mathtt{ba}) \in R$, aber $(\mathtt{ba},\mathtt{a}) \notin R$ R ist nicht transitiv: Gegenbeispiel: $(\mathtt{a},\mathtt{b}) \in R \land (\mathtt{b},\mathtt{a}) \in R$, aber $(\mathtt{a},\mathtt{a}) \notin R$

Lösungsvorschlag:

1. Es gibt folgende 6 Möglichkeiten:

- 2.
 - (b) G_5 besitzt 15 Kanten.

Begründung (nicht verlangt): G_5 besitzt $\frac{5\cdot 4}{2}=10$ Knoten, von denen jeder Grad 3 besitzt. Die Kantenzahl ist folglich $\frac{10\cdot 3}{2}=15$.

(c)
$$W = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Lösungsvorschlag:

a) Anfangskonfiguration: $s11\sharp111$

Zwischenkonfigurationen:

 $1Xz_2 \sharp 111$

 $1Xz_4 \sharp X11$

 $Xz_2X\sharp X11$

 $XX\sharp z_4XX1$

Endkonfiguration: $z_1 \square XX \sharp XX1$

- b) 1.) T hält in Zustand z_3
 - 2.) T hält in Zustand z_1

d) Eine formale Sprache, die von einer Turingmaschine akzeptiert werden kann, heißt aufzählbare Sprache, was dabei in den nicht akzeptierten Fällen passiert, ist unbekannt.

7

Wenn es eine Turingmaschine gibt, die eine Sprache L akzeptiert und dabei für **jede** Eingabe hält, dann heißt L entscheidbar.