

瑞萨 RA 族微控制器 CPK-RA6M4 MCU 评估板

要点

本篇用户手册介绍了 CPK-RA6M4 MCU 评估板的组成和使用方法。

对象 MCU

RA6M4

本篇用户手册也适用于其他与上面所述的群具有相同 SFR(特殊功能寄存器)定义的产品。关于产品功能的改进,请参看 RA6M4 手册中的相关信息。

目 录

1.	概述	3
1.1	特点	3
1.2	CPK-RA6M4 MCU 评估板外观	3
2.	硬件	6
2.1	跳线设置	6
2.1	铜跳线	6
2.1	目标板默认配置	6
2.2	默认的跳线配置	6
3.	硬件说明	8
3.1	系统框图	8
3.2	电源条件	8
3.2	电源选项	9
3.2	目标板上电	11
3.2	供电配置	11
3.2	测量 MCU 的电流消耗	11
3.3	CPK-RA6M4 MCU 评估板上的主要部件	13
3.4	连接与设置	
3.4	USB 全速	14
3.4	DEBUG / POWER USB	15
3.4	DEBUG / RFP	16
3.4	LED	18
3.4		
3.4		
3.4	7.10.7 10.7 1 7 = 7 1 = 1 11 1 1 1 1 1 1 1 1 1 1 1	
3.4		
3.4		
	排针	
3.5		
3.5		
3.5		
3.5		
3.6	附加功能	
3.6		
3.6		
3.6		
	其他信号	
3.7		
3.7		
3.7		
3.7	P203 信号和 P205 信号	31
4.	CPK-RA6M4 MCU 评估板的设计与制造信息	32
5	<u> </u>	33
٦.	25.25 X FIV	

1. 概述

1.1 特点

基于瑞萨 RA6M4 MCU 开发的 CPK-RA6M4 MCU 评估板,通过灵活配置软件包和 IDE,可帮助用户对 RA6M4 MCU 群组的特性轻松进行评估,并对嵌入系统应用程序进行开发。

- CPK-RA6M4 MCU 评估板
- R7FA6M4AF3CFB
- 144 引脚 LQFP 封装
- 支持 TrustZone®的 200 MHz Arm® Cortex®-M33 内核
- 192KB 支持奇偶校验 SRAM 以及 64kb ECC SRAM
- 最大 1 MB 代码闪存
- 8 KB 数据闪存
- 连接
- 主 MCU 的 USB 连接器(主机侧/设备侧)
- SEGGERJ-Link®板上(OB)接口,用于调试和编程。提供了10引脚JTAG/SWD接口,用于连接可选的外部调试器和编程器。
 - 两个 PMOD 连接器,允许使用适当的 PMOD 兼容外围插件模块进行快速原型开发。
 - 用于访问主 MCU 电源和信号的引脚接头。
 - 多个时钟源
 - -振荡器晶体提供了精确的 24.000 MHz 和 32.768 Hz 外部参考时钟。
 - 主 MCU 内部提供了丰富的时钟源。
 - 两个 PMOD 连接器,允许使用适当的 PMOD 兼容外围插件模块进行快速原型开发。
 - 连接主 MCU 电源和信号的引脚接头。
 - MCU 复位按钮开关
 - 用于 MCU 模式配置的铜跳线
 - 通用 I / O 端口
 - 用于测量主 MCU 电流的跳线
 - 位于 PCB 底部的铜跳线,用于配置和访问选定的 MCU 信号
 - 工作电压
- 通过 DEBUG / POWER USB 连接器的 5 V 外部输入电压为板载电源稳压器提供电源,为板上的逻辑和接口供电。板上的备用位置可选用 5 V 或 3.3 V 电源。
 - 两个 LED(绿色和红色)指示可调节电源的可用性和 J-Link 接口的连接状态
 - 由主 MCU 固件控制的用户 LED (红色)
 - 由主 MCU 固件控制的用户按钮开关和可选的用户电位计
 - 通过 I2C 总线通信的光传感器(ISL29035)

1.2 CPK-RA6M4 MCU 评估板外观

CPK-RA6M4 MCU 评估板正面外观和背面外观,请参见"图 1.1"和"图 1.2"。

图 1.1 CPK-RA6M4 MCU 评估板正面外观

图 1.2 CPK-RA6M4 MCU 评估板背面外观

2. 硬件

2.1 跳线设置

2.1.1 铜跳线

铜跳线有两种:线切和焊桥。

线切跳线具有连接其焊盘的细铜线。线切跳线位于一丝印盒中。要隔离焊盘,需在相邻的焊盘之间切割走线,然后以机械或加热的方式除去连接的铜箔。去除蚀刻的铜走线后,线切切割的跳线变为焊桥式跳线,便于后续更改。

焊桥跳线有两个隔离的焊盘,可通过以下三种方法之一将其连接在一起:

- •为两个焊盘加焊料使焊盘凸出,然后使用烙铁使凸出部相连。
- •在两个焊盘之间放置一根细电线,并将其焊接到位。
- •在两个焊盘之间放置一个尺寸为 0805、0603 或 0402 的 SMT 电阻,并将其焊接到位。零欧姆电阻使焊盘 短路。

围绕焊料桥跳线的是个丝印盒,与焊盘之间的隔离区域相邻的线中有空隙。对于任何铜跳线,如果焊盘之间存在电气连接,则该连接被认为是短接的(线切跳线的默认设置)。如果焊盘之间没有电气连接,则认为该连接已断开(焊桥跳线的默认设置)。

图 2.1 铜跳线

2.1.2 目标板默认配置

CPK-RA6M4 MCU 评估板上每个跳线的默认设置如下表所示。包括传统的针形跳线(以 J 开头的名称)和铜制跳线(以 E 开头的名称)。每个跳线的电路组都与原理图中的名称相对应。有关所列诸多跳线的功能详情,请参见第 3.4 节 "连接与设置"和第 3.7 节 "其他信号"。

2.2 默认的跳线配置

表 2.1 默认的跳线配置

位置	电路	默认状态 (断开/短接)	功能
J8	MCU 模式配置	断开	设置 MCU 模式以从内部闪存启动
E14	24M XTAL	短接	将 P213 信号连接至 MCU
E15		短接	将 P212 信号连接至 MCU
E38	3.3 V 线性转换器	短接	切换 3.3V 电源 (+3V3JLOB)
E25	J-Link® OB USB	短接	将 J-Link OB USB 5V 输入连接至 5V->3.3V 初级稳压器
E24	JTAG 连接器	断开	JTAG 接地检测。将 JTAG 连接器的第 9 引脚接地。
E4	MCU VREF	短接	将 AVCC0 连接至+3V3MCU
E7		短接	将 AVSS0 接地
E5		短接	将 VREFH0 连接至+3V3MCU
E6		短接	将 VREFL0 接地
E3		短接	将 VREFH 连接至+3V3MCU
E8		短接	将 VREFL 接地

位置	电路	默认状态 (断开/短接)	功能
E12	P205 或 TSCAP-A	短接	将 MCU 的 43 引脚连接至 P205
E13		断开	将 MCU 的 43 引脚连接电容
E33	P203 或 TSCAP-A	断开	将 MCU 的 45 引脚连接至 P203
E34		短接	将 MCU 的 45 引脚连接至电容
E19	USB 设备接口	短接	将设备 USB 5V 输入连接 MCU
E21	USB FS	短接	将 MCU 的 38 引脚连接至 USB_N
E20		短接	将 MCU 的 39 引脚连接至 USB_P
E22		断开	将 MCU 的 39 引脚连接至 USBPH_P
E23		断开	将 MCU 的 38 引脚连接至 USBPH_N
E32	用户 LED	短接	允许/禁止使用用户 LED
E31	用户电位器	短接	允许/禁止使用用户电位计
E30	用户按键	短接	允许/禁止使用用户按键开关
E9	VBAT +3V3_MCU	短接	双跳线。
			引脚 1-3 连接+3V3 至+3V3MCU(测量+ 3V3 MCU 电源电流)
			引脚 2-4 连接+3V3 至 VBAT (测量 VBAT 电源电流)
	外部调试配置	短接	将 MCU 的 75 引脚(P110) 连接至 J10 引脚 8
E27		短接	将 MCU 引脚 74 (P109) 与 J10 引脚 6 相接
E28		短接	将 MCU 引脚 73 (P108/SWDIO) 与 J10 引脚 2 相接
E29		短接	将 MCU 引脚 72 (P300/SWCLK) 与 J10 引脚 4 相接
E35	调试配置	断开	将 MCU 引脚 55 (RESET#) 接地
E36		短接	将 MCU 引脚 55 (RESET#) 与 J10 引脚 10 相接
E37		断开	将 S124 引脚 25 接地

3. 硬件说明

3.1 系统框图

CPK-RA6M4 MCU 评估板的系统框图,请参见"图 3.1"。

图 3.1 系统框图

3.2 电源条件

CPK-RA6M4 MCU 评估板专为 3.3 V 运行而设计。这也意味着,除非单独供电,否则 5 V PMOD 设备无法用于与 CPK-RA6M4 MCU 评估板。LDO 稳压器可为连接电路提供的总电流为 500 mA 或更小(大小取决于所用的 5 V 电源)。

3.2.1 电源选项

CPK-RA6M4 MCU 评估板的电源选项请参见"图 3.2"。

图 3.2 电源选项

选项 1: DEBUG / POWER USB

默认电源为 5 V,由外部 USB 主设备向板部标有 POWER 的 USB 调试连接器提供电。低压差稳压器(LDO)用于将 5 V 信号转换为 3.3 V,然后用于为 MCU 和与它相连接的设备供电。

铜跳线 E25 为 LDO 稳压器的主要电源输入选择电源。 默认情况下,此跳线配置为通过 DEBUG / POWER USB 连接器供电。

选项 2: 排针

CPK-RA6M4 MCU评估板也可通过以下排针为其供电。

- •J1 (引脚 J1-15 提供+3.3 V, 引脚 J1-17 连接至 GND)
- •J2 (引脚 J2-10 提供+3.3 V, 引脚 J2-12 连接至 GND)
- •J4 (引脚 J4-37 提供+3.3 V, 引脚 J4-36 连接至 GND)

为配合以上配置,铜跳线 E25 必须保持断开状态。

CPK-RA6M4 MCU 评估板、S124 J-Link MCU 和其他板上电路都是直接通过插针进行供电。请注意以此种方式连接的电压需同时满足所有功能部件的电源要求。若采用运行范围之外的电源,可能会导致目标板损坏或性能下降。

有关引脚头的更多信息,请参见第3.5节"引脚排针"。

5 V 电源输入电路,请参见"图 3.3"。

图 3.3 5 V 电源输入电路

3.3 V 电源稳压器电路,请参见"图 3.4"。

图 3.4 3.3 V 电源稳压器电路

3.2.2 目标板上电

通电后,绿色 LED (LED1)点亮。

红色 LED(LED2)为板上 J-Link®On-Board(OB)调试接口的状态指示灯。

LED1 与 LED2 的电路、以及它们分别在目标板上的外观,请参见"图 3.5"和"图 3.6"。

图 3.5 LED1 电路 与 LED2 电路(正面)

图 3.6 目标板上的 LED1 和 LED2 (正面)

3.2.3 供电配置

如果外部电池满足最低电压和电流的要求,则可以根据第 3.2.1 节 "电源选项"中所述的方法连接至外部 电池。

3.2.4 测量 MCU 的电流消耗

E9 的焊盘 1 和 3 是双走线式跳线,可测定+ 3V3 MCU 电源电流。 E9 的焊盘 2 和 4 可测定 VBAT 电源电流。两条线默认相连,需切断连接方可进行功率测量。切断时务必小心,以免损坏位于走线下面的 PCB 层。

RA6M4 微控制器消耗的实际电流范围从 1 mA 以下到约 40 mA,而这取决于诸多因素,包括环境温度、内部时钟速度、输入电压水平和设备活动。有关 MCU 电气特性的更多信息,请参见 RA6M4 微控制器用户手册。

MCU 电流测量电路,请参见"图 3.7"; E9 在 CPK-RA6M4 MCU 评估板正面与背面上的外观,请分别参见"图 3.8"与"图 3.9"。

图 3.7 MCU 电流测量电路

图 3.8 CPK-RA6M4 MCU 评估板上的 E9 (正面)

图 3.9 CPK-RA6M4 MCU 评估板上的 E9 (背面)

将走线切除后,可使用以下几种方法来测量电流:

- 通过安装可连接精密万用表或台式仪表的引脚,或者通过使用带引线的分流器来连接示波器或数据记录器。这样便于在不测量电流时,使用易于安装和拆卸的分流器来短接跳线端。
- 另一个选择是在+3V3 MCU 的焊盘 1 和 3 之间安装电流检测电阻。建议在此应用中使用精密的无感薄膜或箔式电阻器,并且应仔细考虑每个电阻器的值。

实际值应根据不同的用户所使用的 MCU 的工作条件以及所用测量设备的灵敏度进行选择。

3.3 CPK-RA6M4 MCU 评估板上的主要部件

- 主 MCU
- 瑞萨电子 RA6M4 MCU 器件,产品编号 R7FA6M4AF3CFB(U1)
- JTAG 连接器(J10)
- 配置 10 针调试连接器
- J-Link MCU
- Renesas SynergyTMS124 MCU 器件,产品编号 R7FS124773A01CFM#AA0(U2)
- USB 连接器(J9, J11)
- Micro USB 2.0 母连接器
- 与主 MCU 和 J-Link MCU 的主要通信
- 按钮(S1, S2)
- 瞬时按钮开关
- 用于系统复位和用户定义的功能
- LDO 稳压器
- Diodes Inc., 产品编号 AP7215-33YG-13(U3)
- 低压差线性稳压器
- 瑞萨 ISL80505,零件编号 ISL80505IRAJZ(U3)
- 从 J-Link USB 5 V 输入生成系统 3.3 V
- PMOD A 连接器 (J7)
- 用于 PMOD A 的 12 针直角连接器
- PMOD B 连接器 (J6)
- 用于 PMOD B 的 12 针直角连接器
- 引脚接头(J1、J2、J3、J4)
- 40 位排针, 0.1 英寸间距
- 提供信号中断和对主 MCU 信号的访问
- 系统 LED
- 红/绿 LED
- 电源和 J-Link 状态的系统状态指示灯
- 用户 LED
- 用户自定义
- 用户环境所需的单色红色 LED
- 用户电位计 (POT1)
- 用户自定义
- 根据用户环境提供可变电阻
- ISL29035 光传感器
- 瑞萨 ISL29035, 零件编号 ISL29035 IROZ (U5)

3.4 连接与设置

本节描述铜跳线的功能配置。有关使用铜跳线的信息,请参见第2.1.1节"铜跳线"。

3.4.1 USB 全速

USB Micro-AB 连接插座将主 MCU 连接到具有全速功能的外部 USB 接口,从而进行通信以测试和使用主 MCU 固件。该连接可以配置为 USB 设备侧或 USB 主机侧。

对于 USB 设备侧配置,将跳线 J16 设置为 2-3 针,在 J21 的 1-2 上安装一个跳线,并将主 MCU 固件配置为在设备侧模式下使用 USB 全速端口。此连接上来自外部 USB 主机侧的电源可用于为目标板提供电源。

对于 USB 主机侧配置,请将跳线 J16 设置为 1-2 针,从 J21 上卸下跳线,并将主 MCU 固件配置为在主机侧模式下使用 USB 全速端口。在此配置中,从 U4 向 J9 供电。请注意,在主机侧模式下,必须为目标板和 USB 全速端口配置足够的输入电源。将随附的 Micro USB 电缆连接到 J9。USB 设备电缆或设备可以使用此电缆连接到 USB 全速端口。

		USB 设备连接器	CPK-RA6M4 MCU 评估板
	引脚	描述	信号/总线
1			+5VUSB P407/USB_VBUS = 2/3(5VUSB)
2		Data-	P915/USB_DM
3		Data+	P914/USB_DP
4		USB ID, 插孔内部开关,电缆插入	N.C.
5		接地	GND

表 3.1 USB 设备连接器 (J9)

USB 全速铜跳线 E21、E20、E22 和 E23 配置设备 USB 插孔和主 MCU 之间的连接。 若要允许使用设备 USB 插孔,必须短接铜跳线 E21 和 E20,并且必须断开铜跳线 E22 和 E23。

USB_VBUS 铜跳线 E19 将 P407 配置为 VBUS 功率检测器。 E19 默认短接以启用设备 USB 检测。要将 P407 用于其他目的,应断开 E19。

VCC USB 铜跳线 E10 和 E11 用于配置 VCC USB 电源。要从+ 3V3MCU 提供 VCC_USB,必须短接 E10。要将 VCC_USB 与+ 3V3MCU 隔离,必须断开 E10。要从 J1 提供+ 3V3MCU 电源,或从 J1 监视 VCC_USB 电压,必须短接 E11 焊盘,否则应将 E11 保持断开状态。

MCU上的 VCC_USB 引脚(40引脚)用于检测是否连接了 USB。

铜跳线	USB 信号源		
	USB 设备 Micro-B 连接器	MCU 排针	功能
E21	短接	断开	USB_N 信号接入 MCU
E20	短接	断开	USB_P信号接入 MCU
E10	短接	断开	连接+3V3 MCU 与 MCU VCC_USB
E19	短接	断开	将 USB 5V 与 MCU P407 相连
E22	断开	短接	USB_P 信号接入 MCU
E11	断开	短接	连接 USB Micro-B 3.3V 与 MCU VCC_USB
E23	断开	短接	USB_N 信号接入 MCU

表 3.2 USB 源铜跳线设置

3.4.2 **DEBUG / POWER USB**

目标板的电源(5V)可从J11的DEBUG/POWER USB接口获得。同时,该 Micro-B USB 连接插座用于将 S124 J-Link MCU 连接到具有全速功能(FS)的外部 USB 主机,从而可对主 MCU(RA6M4)进行固件更新和调试。

J-Link®OB 接口与 JTAG 接口复用, 称为编程接口。虽然 J-Link OB 接口和 JTAG 接口没有冲突,但是可以通过更改关联的线切跳线将 J-Link OB 信号与编程

J-Link 断开线切跳线 E26、E27、E27 和 E28,将 J-Link 信号连接到 MCU 编 程接口。E26、E27、E28 和 E29 默认是短接的,将 MCU 的调试信号连接到 JTAG

J-Link MCU 电源线切跳线 E38 将+3.3 V 主电源连接到 J-Link +3.3 V 电源。E38 默认是短接 的,它将 J-Link MCU 电源连接到主+3.3 V 电源。

表 3.3 DEBUG / POWER USB 连接器 (J11)

	DEBUG / POWER USB 连接	CPK-RA6M4 MCU 评估板
引脚描述		信号/总线
1	+5VDC	+5V_JUSB
2	Data-	U2 USB_DM (U2-18)
3	Data+	U2 USB_DP (U2-19)
4	USB ID, 插孔内部开关,电缆插入。	N.C.
5	接地	GND

J-Link 端口中的三个(P108、P109 和 P300)与引脚接头 J1 上的 SPI 固定功能引脚复用。 要将这些信号用 于 SPI 功能,必须禁用 J-Link 调试功能。下表中显示了多路复用信号的详细信息。

表 3.4 J-Link 接口冲突

	编程接口	冲突接口	
端口	用途	接口	用途
P108	SWDIO/JTAG TMS	SPI	SSLB0 固定功能, J1-13
P109	SWO/JTAG TDO	SPI	MOSIB 固定功能, J1-7
P300	SWCLK/JTAG TCK	GPT	GTIOC0A 固定功能, J1-31

3.4.3 DEBUG / RFP

J10上有一个10针调试连接器。

CPK-RA6M4 MCU 评估板 JTAG 连接器 引脚 JTAG 引脚名称 SWD 引脚名称 信号/总线 VTref VTref +3V3 U1 P108/SWDIO (U1-51) TMS SWDIO GND GND GND TCK SWCLK U1 P300/SWCLK (U1-50) GND GND GND 6 TDO SWO U1 P109 (U1-52) Key Key N.C. 8 TDI NC/EXTb U1 P110 (U1-53) 9 **GNDDetect GNDDetect** N.C. 10 nSRST nSRST U1 RESET# (U1-38)

表 3.5 JTAG 连接器 (J10)

为使 JTAG 接口正常工作,J-Link MCU 复位引脚焊桥跳线已断开,用以防止与 J-Link MCU 交互。有关详细信息,请参见第 3.4.2 节"DEBUG / POWER USB"。

标准 10 引脚 SWD 接口和 JTAG 接口和 MCU 的连接图,请参见图 3.10。

图 3.10 SWD 和 JTAG 接口和 MCU 连接图

CPK-RA6M4 MCU 评估板出厂时,E24 默认为断开状态,是否需要将其短接到地与适配器有关,请根据客户所选用的 JTAG 适配器来选择短接或断开 E24。

J-Link®OB接口与JTAG接口复用,统称为编程接口。 虽然 J-Link®OB接口和JTAG接口没有冲突,但可以按照第 3.4.3 节"DEBUG / POWER USB"中所述更改铜跳线,将 J-Link®OB 信号与编程接口隔离。

四个 JTAG 端口(P108、P109、P110 和 P300)与引脚接头 J1 上的 SPI 固定引脚功能复用。要将这些信号用于 SPI 功能,必须禁用 J-Link 调试功能。下表中显示了多路复用信号的详细信息。

表 3.6 JTAG 接口冲突

	编程接口	冲突接口	
端口	用途	接口	用途
P108	TMS/J-Link SWDIO	SPI	SSLB0_B 固定功能, J1-13
P109	TDO/J-Link SWO	SPI	MOSIB_B 固定功能, J1-7
P110	TDI	SPI	MISOB_B 固定功能, J1-9
P300	TCK/SWCLK	GPT	GTIOC0A_A 固定功能, J1-31

3.4.4 LED

CPK-RA6M4 MCU 评估板有三个 LED。U1 为主 MCU,直接控制 LED3。关于 LED1 和 LED2 电路,请参见图 3.5;关于 LED1 和 LED2 的位置,请参见图 3.6;关于 LED3 电路,请参见图 3.10;关于 LED3 的位置,请参见图 3.11。U2 是 J-Link MCU,它控制 LED2 中的红色 LED。

图 3.10 LED3 控制电路

图 3.11 目标板上的 LED3

下表描述了各 LED 的详情。

表 3.7 目标板上各 LED 的功能

名称	功能	MCU 控制端口	MCU 引脚	名称
LED1	绿	可用 3.3 V 电源	+3V3	N.A.
LED2	红	J-Link 指示灯	JLED (U2 P103)	U2-45
LED3	红	用户 LED	U1 P106	U1-102

要断开用户 LED 与 MCU 信号 P106 的连接,必须先断开铜跳线 E32。

3.4.5 开关

CPK-RA6M4 MCU 评估板上安装了两个小型的 SMT 机械瞬动按钮式开关。按下 MCU 复位开关即会产生一个复位信号,使主 MCU 复位。如要断开用户开关与 MCU 信号 P105 / IRQ0 的连接,必须断开铜跳线 E30。

表 3.8 目标板上的开关

名称	功能	MCU 控制端口	MCU 引脚
S1	用户开关	U1 P105/IRQ0	U1-103
S2	MCU 复位开关	RESET#	U1-55

图 3.12 用户开关电路

图 3.13 目标板上的用户开关(S1)

图 3.14 复位开关电路

图 3.15 目标板上的复位开关(S2)

3.4.6 集成数字光传感器

ISL29035 是瑞萨一个环境和红外光传感器,它内部集成的 ADC 可以直接将光照度的模拟信号直接转换成数字信号,并通过片上的 I2C (兼容 SMBUS)接口和系统处理器相连。

图 3.16 ISL29035 光传感器电路

图 3.17 目标板上的 ISL29035 光传感器

3.4.7 用户电位计

CPK-RA6M4 MCU 评估板提供用户电位计并与 A/D 转换通道相连接。ADC 提供高达 12 位的分辨率来测量电位计的位置。安装用户电位计后,必须短接铜跳线 E31 才能将用户电位计连接到 MCU。

图 3.18 用户电位计电路

图 3.19 目标板上的用户电位计(正面)

3.4.8 PMOD A

PMOD A 处有一个 12 针 PMOD 2A 型连接器。该接口仅为 3.3 V 模块供电。主 MCU 充 当 SPI 主设备,连接的模块充当 SPI 从设备。该接口可以另外在固件中重新配置为其他几种 PMOD 类型。

表 3.9 PMOD A 连接器 (J5)

	PMOD A 连接器	CPK-RA6M4 MCU 评估板
引脚	描述	信号/总线
1	SS(低电平用于选择从设备)	U1 P205, SSLB0_A_CTS9/RTS9 (U1-43)
2	MOSI	U1 P203, MOSIB_A_TXD9/SDA9 (U1-45)
3	MISO	U1 P202, MISOB_A_RXD9/SCL9 (U1-46)
4	SCK	U1 P204, RSPCKB_A (U1-44)
5	GND	GND
6	VCC	+3V3
7	INT (从到主)	U1 P006, IRQ11 (U1-134)
8	RESET(主到从)	U1 P008, GPIO (U1-132)
9	未指定	U1 P014, GPIO (U1-124)
10	未指定	U1 P015, GPIO (U1-123)
11	GND	GND
12	VCC	+3V3

在将模块连接到 PMOD 连接器之前,必须考虑 3.3 V 稳压器的限制、为该稳压器(尤其是 USB 主机设备)提供电源的限制,以及要连接的 PMOD 设备。

3.4.9 PMOD B

PMOD B 上有一个 12 针 PMOD 2A 型连接器。该接口仅为 3.3 V 模块供电。主 MCU 充 当 SPI 主设备,连接的模块充当 SPI 从设备。该接口还可以通过固件重新配置为其他种类的 PMOD 类型。

表 3.10 PMOD B 连接器(J6)

	PMOD B 连接器	CPK-RA6M4 MCU 评估板
引脚	描述	信号/总线
1	SS (低电平用于选择从设备)	U1 P413, SSLB0_B_CTS0/RTS0 (U1-30)
2	MOSI	U1 P411, MOSIB_B_TXD0/SDA0A (U1-32)
3	MISO	U1 P410, MISOB_B_RXD0/SCL0A (U1-33)
4	SCK	U1 P412, RSPCKB_B (U1-31)
5	GND	GND
6	VCC	+3V3
7	INT(从到主)	U1 P506, IRQ15 (U1-119)
8	RESET(主到从)	U1 P415, GPIO (U1-28)
9	未指定	U1 P503, GPIO (U1-116)
10	未指定	U1 P504, GPIO (U1-117)
11	GND	GND
12	VCC	+3V3

在将模块连接到 PMOD 连接器之前,必须考虑 3.3 V 稳压器的限制、为该稳压器(尤其是 USB 主机设备)提供电源的限制,以及要连接的 PMOD 设备。

3.5 排针

引脚接头 J1、J2、J3 和 J4 可以访问主 MCU 的所有接口信号以及所有电源端口的电压。

图 3.20 排针电路

3.5.1 排针 J1

排针 J1 为间距 2.54 mm 的双排(2×20)通孔插针。

表 3.11 排针 J1 的引脚配置

MCU 引脚	端口	,	J1 引脚	端口	MCU 引脚
108	P100	1	2	USBPH_N	28
42	P206	3	4	USBPH_P	27
44	P204	5	6	VCC_USB	29
74	P109/TDO	7	8	P207	NC
75	P110/TDI	9	10	P203	NC
71	P301	11	12	P202	34
73	P108/TMS/SWDIO	13	14	P313	35
90	VCC	15	16	未连接	41
91	VSS	17	18	未连接	NC
97	P601	19	20	P214	43
96	P602	21	22	P211	44
98	P600	23	24	未连接	45
95	P603	25	26	未连接	46
3	P402	27	28	P210	47
105	P103	29	30	P209	NC
72	P300/TCK/SWCLK	31	32	P208	NC
76	P111	33	34	RESET#	38
144	P511	35	36	P201/MD	39
103	P105	37	38	P200/NMI	40
123	P015	39	40	未连接	55

3.5.2 排针 J2

排针 J2 为间距 2.54 mm 的双排 (2×20) 通孔插针。

表 3.12 排针 J2 的引脚配置

MCU 引脚	端口	J2	引脚	端口	MCU 引脚
31	P412	1	2	P410	33
29	P414	3	4	P101	107
28	P415	5	6	P102	106
27	P708	7	8	P413	30
NC	未连接	9	10	VCC	21
26	P709	11	12	VSS	18
25	P710	13	14	P205	43
24	P711	15	16	P408	35
NC	未连接	17	18	P409	34
20	P212/EXTAL	19	20	P411	32
19	P213/XTAL	21	22	P407	36
NC	未连接	23	24	P004	136
16	未连接	25	26	P003	137
15	未连接	27	28	P001	139
14	VBAT	29	30	P000	140
23	P712	31	32	VREFH0	130
22	P713	33	34	VREFL0	129
NC	未连接	35	36	AVSS0	128
NC	未连接	37	38	AVCC0	127
13	P705	39	40	P014	124

3.5.3 排针 J3

排针 J3 为间距 2.54 mm 的双排(2×20)通孔插针。

表 3.13 排针 J3 的引脚配置

MCU 引脚	端口		J3 引脚	端口	MCU 引脚
NC	未连接	1	2	未连接	NC
NC	未连接	3	4	P312	58
59	P311	5	6	P310	60
61	P309	7	8	P308	62
63	P307	9	10	P306	64
65	P305	11	12	P304	66
69	P303	13	14	P302	70
77	P112	15	16	P113	78
79	P114	17	18	P115	80
83	P608	19	20	P609	84
85	P610	21	22	P611	86
87	P612	23	24	P613	88
89	P614	25	26	未连接	NC
NC	未连接	27	28	未连接	NC
NC	未连接	29	30	未连接	92
NC	未连接	31	32	未连接	NC
NC	未连接	33	34	未连接	NC
93	P605	35	36	P604	94
101	P107	37	38	P106	102
104	P104	39	40	未连接	NC

3.5.4 排针 J4

排针 J4 为间距 2.54 mm 的双排 (2×20) 通孔插针。

表 3.14 排针 J4 的引脚配置

MCU 引脚	端口		J4 引脚	端口	MCU 引脚
12	P704	1	2	P403	4
11	P703	3	4	P404	5
10	P702	5	6	P405	6
9	P701	7	8	P406	7
8	P700	9	10	P505	118
2	P401	11	12	P504	117
1	P400	13	14	P503	116
143	P512	15	16	P502	115
138	P002	17	18	P501	114
135	P005	19	20	P500	113
134	P006	21	22	P506	119
133	P007	23	24	P507	120
132	P008	25	26	P009	131
126	VREFH	27	28	VREFL	125
110	P801	29	30	P800	109
NC	未连接	31	32	未连接	NC
NC	未连接	33	34	未连接	NC
NC	未连接	35	36	VSS	122
121	VCC	37	38	未连接	NC
NC	未连接	39	40	未连接	NC

3.6 附加功能

3.6.1 模拟参考电压

CPK-RA6M4 MCU 评估板提供了用于安装 C42、C41 电容器的封装。这两个电容器可为端口 P010/P011 和 P012/P013 提供旁路噪声功能。

P010/P011 可分配为 GPIO,但该处的旁路电容器 C42 可能会降低信号质量。若将 P010/P011 分配为 VREFH0/VREFL0,安装电容器 C42 可以降低参考电压噪声并改善 ADC 的测量效果和 DAC 的输出质量。

P012/P013 可分配为 GPIO,但该处的旁路电容器 C41 可能会降低信号质量。若将 P012/P013 分配为 VREFH/VREFL,安装电容器 C41 可以降低参考电压噪声并改善 ADC 的测量效果和 DAC 的输出质量。

3.6.2 板载时钟晶振

CPK-RA6M4 MCU 评估板有两个高精度晶体时钟源。 X1 处安装有 24.000 MHz 的晶振(默认不焊接), X2 处安装有 32.768 kHz 的晶振。这些晶体时钟源默认连接到主 MCU。

24 MHz 晶振的 MCU 引脚可以连接到 P212 和 P213。

图 3.21 晶振时钟源

3.6.3 MCU 模式配置

作为 BOOT CONFIG 跳线的 J8 用于在启动时配置 RA6M4 MCU 的运行模式。

启动配置	J8 插针位置
正常启动 (默认)	未连接
SCI / USB BOOT	引脚2和3
DLM 配置	引脚 1 和 2

表 3.15 启动配置

图 3.22 MCU 模式配置

图 3.23 MCU 模式配置电路

3.7 其他信号

3.7.1 AVCC0/AVSS0

默认为 AVCC0 连接到+ 3V3 MCU,AVSS0 接地。若要断开这些与 AVCC0 和 AVSS0 线路的连接,则必须断开铜跳线 E4 和 E7。

默认为 VREFH 连接到+ 3V3MCU,VREFL 接地。若要断开这些与 VREFH 和 VREFL 线路的连接,则必须断开铜跳线 E3 和 E8。

默认为 VREFH0 连接到+ 3V3MCU,VREFL0 接地。若要断开这些与 VREFH0 和 VREFL0 线路的连接,则必须断开铜跳线 E5 和 E6。

图 3.24 模拟电压与参考电压

3.7.2 VCL和 VCL0

主 MCU VCL 引脚和 VCL0 引脚默认会连接到参考电容器 C20 和 C19。

图 3.25 VCL与 VCL 电容

图 3.26 VCL0 与 VCL0 电容

3.7.3 VCC USB

主 MCU 引脚 VCC_USB 默认会连接到+ 3V3 MCU 电源电压。而该引脚也可以连接到 MCU 引脚接头 J1。如要连接后者,需断开铜跳线 E10 并短接铜跳线 E11。

图 3.27 VCC_USB 电路

3.7.4 P203 信号和 P205 信号

主 MCU 引脚 P203 默认会连接到 MCU 引脚接头 J1。而该引脚也可以连接到 TSCAP-A 电容器。如要连接后者,需连接铜跳线 E34。另外还可以通过断开铜跳线 E33 来断开 MCU 引脚接头 J1。

主 MCU 引脚 P205 默认会连接到 MCU 引脚接头 J2。而该引脚也可以连接到 TSCAP-A 电容器。为此,如要连接后者,需断开铜跳线 E13。另外还可以通过断开铜跳线 E12 来断开 MCU 引脚接头 J2。

P203 和 P205 可以用作电容触摸按钮引脚,铜跳线 E13 和 E34 默认为断开的,将 P203 和 P205 用作普通 I/O。若要做电容触摸按钮引脚,请短接 E13 和 E34。

图 3.28 P203 和 P205 电路

4. CPK-RA6M4 MCU 评估板的设计与制造信息

- 设计包文件名: RA6M4 Local Promotion Board_v1.1.zip
- 设计包内容:

文件类型	内容	文件名/文件夹名
文件(PDF)	用户手册	r12uz0090cc0110-ra6m4-manual.pdf
文件(PDF)	原理图	r12uz0090cc0110-ra6m4-Schematics.pdf
文件(PDF)	3D 绘图	r12uz0090cc0110-ra6m4-3d.pdf
文件(PDF)	BOM	r12uz0090cc0110-ra6m4-BOM.pdf
文件夹	制造文件	Gerber Files
PACK 文件	BSP 文件	BSP File
样例程序	LED 闪烁样例程序	quick_start_ra6m4_lpb_led_blinky

5. 参考文献

RA6M4 Group User's Manual: Hardware (R01UH0890E)

(最新版本请从瑞萨电子网页上取得)

技术信息/技术更新

(最新信息请从瑞萨电子网页上取得)

公司主页和咨询窗口

瑞萨电子主页

• http://cn.renesas.com/

咨询

- http://cn.renesas.com/contact/
- contact.china@renesas.com

修订记录

		修订内容		
Rev.	发行日	页	要点	
1.00	2020.12	_	初版发行(为了和 CPK-RA6M2 MCU 评估板区别)	
1.10	2021.05	4, 5	更新 3D 图,修改 S124 封装(LQFP64 改为 QFN40)	
		24, 25, 27, 30	删除 E1、E2、E17、E18,删除排针上的 VCL、VCL0、XCIN	

所有商标及注册商标均归其各自拥有者所有。