

Implémentez un modèle de scoring

# Quelle société nous travaillons avec ??



Nous travaillons avec Prêt à dépenser, une société financière qui propose des crédits à la consommation pour des personnes ayant peu ou pas du tout d'historique de prêt.

#### **Notre mission**



Suite au données bancaires de 307511 clients, nous allons:

- Construire un modèle de scoring qui donnera une prédiction d'une façon automatique.
- Construire un dashboard interactif permettant l'interprétation des résultats.

## **TABLE OF CONTENTS**



- Data train/test & classification baseline
- 2 Ajout de données avec les prêts précédents
- 3 Amélioration du modèle
- 4 Dashboard LIME
- 5 Conclusion & perspectives



- Data train/test & classification baseline
- 2 Ajout de données avec les prêts précédents
- 3 Amélioration du modèle
- 4 Dashboard LIME
- 5 Conclusion & perspectives

# Analyse exploratoire & Nettoyage des données



# Analyse exploratoire & Nettoyage des données:

Des analyses approfondies ont été effectuées pour nettoyer les deux dataframes, les données ont été nettoyées et sont prêtes pour le traitement.

### La correlation



Nous avons implémenté une fonction qui supprime les colonnes corrélées automatiquement.



# Variables catégorielle



## Traitement des variables catégorielles:

Afin de non pas surchargé nos dataframes, nous utiliserons le **LabelEncoder()** pour les variables catégorielles qui ont plus de deux valeurs différentes.

Et nous utiliserons **get\_dummies()** pour celle qui ont deux valeurs differentes ou moins.

### Classification



#### Classification baseline:

Nous utilisons la méthode logistique regression pour la classification de notre baseline.

Les scores métriques sont comme suivant:

| Score  | ROC-AUC | Accuracy | F1   | Precision | Recall |
|--------|---------|----------|------|-----------|--------|
| Valeur | 0.5     | 0.92     | 0.02 | 0.08      | 0.001  |



- 1 Data train/test & classification baseline
- 2 Ajout de données avec les prêts précédents
- 3 Amélioration du modèle
- 4 Dashboard LIME
- 5 Conclusion & perspectives

# Ajout des data



Afin d'améliorer le score de notre modèle, nous avons décidé d'inclure toutes les données des 6 dataframes restants dans notre data train et test.

Ceci a conduit à un dataframe très chargé avec beaucoup de données, d'où l'obligation d'étudier et d'évaluer l'importance de chaque variable en utilisant **Light Gradient Boosting Machine (Light-GBM)**.





- 1 Data train/test & classification baseline
- 2 Ajout de données avec les prêts précédents
- 3 Amélioration du modèle
- 4 Dashboard LIME
- 5 Conclusion & perspectives



#### Nous utilisons la méthode Light-GBM pour la classification

```
In [6]: fit params={"early stopping rounds":30,
                     "eval_metric" : 'auc',
                     "eval_set" : [(X_test,y_test)],
                     'eval names': ['valid'].
                    #'callbacks': [lab.reset parameter(learning rate=learning rate 010 decay power 099)].
                     'verbose': 100,
                     'categorical feature': 'auto'}
In [7]: param_test ={'num_leaves': sp_randint(6, 50),
                     'min child samples': sp randint(100, 500),
                      'min child weight': [1e-5, 1e-3, 1e-2, 1e-1, 1, 1e1, 1e2, 1e3, 1e4],
                     'subsample': sp uniform(loc=0.2, scale=0.8),
                     'colsample_bytree': sp_uniform(loc=0.4, scale=0.6),
                      'reg_alpha': [0, 1e-1, 1, 2, 5, 7, 10, 50, 100],
                     'reg_lambda': [0, 1e-1, 1, 5, 10, 20, 50, 100]}
In [8]: n_HP_points_to_test = 100
        clf = lgb.LGBMClassifier(max_depth=-1, random_state=314, silent=True, metric='None', n_jobs=4, n_estimators=5000)
        gs = RandomizedSearchCV(
             estimator=clf. param distributions=param test.
             n iter=n HP points to test.
             scoring='roc auc'.
             cv=3,
            refit=True,
            random_state=314,
             verbose=True)
```

AUC score :

0.7795

0.7797 0.7800

0.7801

In [12]: gs sample weight = GridSearchCV(estimator=clf sw.

Parameters

: {'scale\_pos\_weight': 6} : {'scale pos weight': 1}

: {'scale\_pos\_weight': 12}

: {'scale pos weight': 2}



#### Nous utilisons la méthode Light-GBM pour la classification

param\_grid={'scale\_pos\_weight':[1,2,6,12]},

## Résultats du modèle



Les scores métriques de notre nouvelle méthode avec **Light-GBM** sont comme suivant:

|   | Score  | ROC-AUC | Accuracy | F1   | Precision | Recall |
|---|--------|---------|----------|------|-----------|--------|
| _ | Valeur | 0.5     | 0.93     | 0.95 | 0.92      | 0.99   |

## Résultats du modèle







### Le scoring

- FN → Perte d'argent pour la banque : 100
- TP → Refus de prêt, la banque ne perd pas d'argent : +10
- TN → Prêt accordé, gain d'argent pour la banque : + 10
- FP → Client potentiel perdu, perte d'argent pour la banque : 1

Tot = FN\*-100+TP\*10+TN\*10+FP\*-1 gain<sub>max</sub> = (TN+FP)\*10 + (TP+FN)\*0 gain<sub>min</sub> = (TN+FP)\*-1 + (TP+FN)\*-100  $gain = \frac{(Tot - gain_{min})}{(gain_{Max} - gain_{min})}$ 

|                 |         | Actual Value |        |  |
|-----------------|---------|--------------|--------|--|
|                 |         | Present      | Absent |  |
| Predicted Value | Present | TP           | FP     |  |
| Predicte        | Absent  | FN           | TN     |  |

| /             |   |  |  |
|---------------|---|--|--|
| $\overline{}$ | / |  |  |
|               |   |  |  |





- 1 Data train/test & classification baseline
- 2 Ajout de données avec les prêts précédents
- 3 Amélioration du modèle
- 4 Dashboard LIME
- 5 Conclusion & perspectives







### Introduction du LIME:

Lime permet d'observer l'évolution des prédictions en fonction de l'importance de certains critères. Grâce à Lime nous pouvons expliquer facilement les raisons pour lesquels chaque individu a été scoré ou pas.



#### **Frame Title**





# **Dashboard - LIME**



# Profile globale



# Dashboard - LIME



# **Profile similaires**





- 1 Data train/test & classification baseline
- 2 Ajout de données avec les prêts précédents
- 3 Amélioration du modèle
- 4 Dashboard LIME
- 5 Conclusion & perspectives

## **Conclusion & perspectives**



#### Dans un premier temps, nous avons:

- introduit un modèle qui met en place une métrique bancaire.
- modélisé la probabilité de solvabilité d'un client à un prêt de consommation.
- crée un dashboard interactif.

#### Dans un deuxième temps, nous pouvons:

- introduire un autre modèle d'échantillonnage sur les données déséquilibrés (Over-Sampling ou/et Under-sampling).
- améliorer les fonctions de gain présenté.
- améliorer les Dashboard selon la demande de la société.

