TITLE

AP CALCULUS NOTES

EDITED BY
TREVOR BUSHNELL

Contents

1	Limits and Continuity	
	1.1	Introducing Calculus: Can Change Occur at an Instant?
	1.2	Defining Limits and Using Limit Notation
	1.3	Estimating Limits From Graphs
	1.4	Estimating Limit Values From Tables
	1.5	Determining Limits Using Algebraic Properties of Limits

Chapter 1

Limits and Continuity

§1.1 Introducing Calculus: Can Change Occur at an Instant?

- Traditional algebra uses relationships such as $\frac{\Delta y}{\Delta x}$ to model relationships
 - However, this model falls apart because if $\Delta y = 0$ and $\Delta x = 0$, then the result is $\frac{0}{0}$ which is indeterminant
 - * **indeterminant** means that there might be a possible solution, but we cannot determine what that possible solution could be based on the current problem solving method
- We can use the **limit** to allow us to define change that occurs instantaneously in terms of incredibly small average rates in change (for example, doing $\Delta x = 0.000001$ instead of $\Delta x = 0$)
- Calculus uses limits to understand and model more precise/instantaneous change that algebra cannot answer

§1.2 Defining Limits and Using Limit Notation

Definition 1.2.1

Given a function f, the limit of f(x) as x approaches c is a real number R if f(x) can be made arbitrarily close to R by taking x extremely close to c (but not equal to c).

If the limit exists and is a real number, then:

$$\lim_{x \to c} f(x) = R$$

• A limit can be expressed graphically, numerically, or analytically

§1.3 Estimating Limits From Graphs

- ONE SIDED LIMIT: A limit where you approach from a specific direction (either the left or the right)
 - LHL (Left Hand Limit): $\lim_{x\to c^-} f(x) = L$
 - RHL (Right Hand Limit): $\lim_{x\to c^+} f(x) = L$
 - A limit exists if the left hand limit equals the right hand limit (LHL = RHL)
- Using the information provided on a graph can help you interpret the limit of a function

- In the example above, the limit is 4 because the function output as you approach 2 from the left is equal to the function output as you approach 2 from the right
- Because there can be possible issues with scale, graphical representations of limits can possibly be inaccurate and can miss important behaviors of functions if you're too far zoomed out
- A limit can fail to exist at particular values of x if LHL \neq RHL, the function oscillates near x, or if the function is unbounded

§1.4 Estimating Limit Values From Tables

- Numerical information from tables can be used to estimate Limits
- As seen in the table, the output values for 1.75 and below all seem to be getting closer to 4 while x gets larger, while the output values for 2.25 and greater all have values approaching 4 as x gets smaller. Since the LHL is equal to the RHL, we can conclude that the limit as x approaches 2 is indeed 4

§1.5 Determining Limits Using Algebraic Properties of Limits

• To evaluate a limit, simply substitute the desired value that you wish to find the limit at