Mathématique - Corrigé DS n°6

Exercice 1

1. On transforme l'équation de $\mathcal{S}: \quad x^2+y^2+z^2-4x-2y+1=0 \iff (x-2)^2+(y-1)^2+z^2=2^2$ $M(x,y,z)\in\mathcal{S} \iff ||\overrightarrow{\Omega M}||=2 \text{ avec } \Omega(2,1,0).$

Alors, ${\cal S}$ est la sphère de centre $\Omega(2,1,0)$ et de rayon R=2

 $\text{2. On \'etudie la droite } \mathcal{D}: \quad \left\{ \begin{array}{ll} x & = & 2y+1 \\ z & = & y+4 \end{array} \right. \iff \exists \alpha \in \mathbb{R}: \left(\begin{array}{c} x \\ y \\ z \end{array} \right) = \left(\begin{array}{c} 1 \\ 0 \\ 4 \end{array} \right) + \alpha \left(\begin{array}{c} 2 \\ 1 \\ 1 \end{array} \right)$

Donc \mathcal{D} est la droite passant par A(1,0,4) et dirigée par $\overrightarrow{u}(2,1,1)$.

On étudie la droite \mathcal{D}' :

$$\left\{egin{array}{lll} x-y+z+1&=&0\ 2x-y+9&=&0 \end{array}
ight. \iff \left\{egin{array}{lll} z=8+x\ y=2x+9 \end{array}
ight. \iff \existseta\in\mathbb{R}: \left(egin{array}{c} x\ y\ z \end{array}
ight) = \left(egin{array}{c} 0\ 9\ 8 \end{array}
ight) +eta\left(egin{array}{c} 1\ 2\ 1 \end{array}
ight)$$

Donc \mathcal{D} est la droite passant par A(0,9,8) et dirigée par $\overrightarrow{v}(1,2,1)$.

3. On cherche un ou des plans \mathcal{P} qui sont parallèles à \mathcal{D} et \mathcal{D}' alors ce plan \mathcal{P} sera dirigé par \overrightarrow{u} et \overrightarrow{v} qui ne sont pas colinéaires.

Un vecteur normal à \mathcal{P} est $\overrightarrow{n} = \overrightarrow{u} \wedge \overrightarrow{v} : (2,1,1) \wedge (1,2,1) = (-1,-1,3)$ on trouve $\overrightarrow{n}(-1,-1,3)$.

Un plan est tangent au point K à une sphère de centre Ω si le rayon $\overrightarrow{\Omega K}$ est orthogonal au plan et si $||\overrightarrow{\Omega K}|| = R$.

On trouve deux points possibles :
$$K$$
 et K' tels que $\overrightarrow{\Omega K} = \frac{R}{||\overrightarrow{n}||} \overrightarrow{n}$ et $\overrightarrow{\Omega K'} = -\frac{R}{||\overrightarrow{n}||} \overrightarrow{n}$

On trouve
$$K\left(2-\frac{2}{\sqrt{11}},1-\frac{2}{\sqrt{11}},\frac{6}{\sqrt{11}}\right)$$
 et $K'\left(2+\frac{2}{\sqrt{11}},1+\frac{2}{\sqrt{11}},-\frac{6}{\sqrt{11}}\right)$

Ce qui donne les deux plans

$$x + y - 3z - 3 + 2\sqrt{11} = 0$$
 et $x + y - 3z - 3 - 2\sqrt{11} = 0$

 $\text{Les points de contact sont} \boxed{K\left(2-\frac{2}{\sqrt{11}},1-\frac{2}{\sqrt{11}},\frac{6}{\sqrt{11}}\right) \text{ et } K'\left(2+\frac{2}{\sqrt{11}},1+\frac{2}{\sqrt{11}},-\frac{6}{\sqrt{11}}\right)}$

Exercice 2

1. (a) La fonction f est continue sur \mathbb{R} . Elle admet donc des primitives sur \mathbb{R} . On note F l'une d'entre elles. On en déduit alors que pour tout $x \in \mathbb{R}$,

$$f(x)=\int_0^{ax}f(t)\;\mathrm{d}t=F(ax)-F(0)$$

(b) Puisque F est dérivable en tant que primitive d'une fonction continue, on en déduit à l'aide de l'égalité précédente que f est dérivable sur \mathbb{R} , et pour tout $x \in \mathbb{R}$, on a :

$$f'(x) = aF'(ax) = af(ax).$$

- (c) Montrons par récurrence que pour tout $n \in \mathbb{N}$, on a f de classe \mathcal{C}^n sur \mathbb{R} et que $f^{(n)}(x) = a^{n(n+1)/2}f(a^nx)$ pour tout $x \in \mathbb{R}$.
 - Initialisation : f est \mathcal{C}^0 sur \mathbb{R} par hypothèse, et on a bien $f(x) = a^0 f(a^0 x)$ pour tout $x \in \mathbb{R}$. Donc la propriété est vraie au rang n = 0.
 - Hérédité : soit $n \in \mathbb{N}$ et supposons que la propriété est vraie au rang n, c'est à dire f de classe \mathcal{C}^n sur \mathbb{R} et que $f^{(n)}(x) = a^{n(n+1)/2} f(a^n x)$ pour tout $x \in \mathbb{R}$.

Pour tout $x \in \mathbb{R}$, on a f'(x) = af(ax). Or $x \mapsto af(ax)$ est de classe \mathcal{C}^n comme composée de fonctions de classe \mathcal{C}^n sur \mathbb{R} . Donc f' est de classe \mathcal{C}^n sur \mathbb{R} et f est de classe \mathcal{C}^{n+1} sur \mathbb{R} . De plus, on a pour tout $x \in \mathbb{R}$:

$$f^{(n+1)}(x) = a^{n(n+1)/2}a^nf'(a^nx)$$

avec $f'(a^nx) = af(aa^nx) = af(a^{n+1}x)$

D'où
$$f^{(n+1)}(x) = a^{n(n+1)/2}a^{n+1}f(a^{n+1}x) = a^{n(n+1)/2+(n+1)}a^nf(a^{n+1}x)$$

$$f^{(n+1)}(x) = a^{(n+1)(n/2+1} f(a^{n+1}x) = a^{(n+2)(n+1)/2} f(a^{n+1}x)$$

D'où la propriété au rang n+1

- Conclusion : On conclut par le principe de récurrence que f de classe \mathcal{C}^n sur \mathbb{R} et que $f^{(n)}(x)=a^{n(n+1)/2}f(a^nx)$ pour tout $x\in\mathbb{R}$. En particulier, on obtient que f est de classe \mathcal{C}^∞ sur $\mathbb{R}+$.
- (d) En prenant x=0 dans l'égalité précédente, on obtient que $f^(n)(0)=a^{n(n+1)/2}f(0)=F(0)-F(0)=0$: $\forall n\in\mathbb{N},\quad f^{(n)}(0)=0$.
- 2. Soit $n \in \mathbb{N}$. On a montré que f est de classe C^{∞} sur \mathbb{R} donc f est de classe C^{n+1} sur \mathbb{R} . Alors, on peut appliquer la formule de Taylor à l'ordre n en tout point a de \mathbb{R} :

$$orall x \in \mathbb{R}, \quad f(x) = \sum\limits_{k=0}^n rac{f^{(k)}(a)}{k!} (x-a)^k + \int_a^x rac{(x-t)^n}{n!} f^{(n+1)}(t) \ \mathrm{d}t$$

Cette formule devient pour a = 0

$$orall x\in\mathbb{R}, \quad f(x)=\sum\limits_{k=0}^nrac{f^{(k)}(0)}{k!}x^k+\int_0^xrac{(x-t)^n}{n!}f^{(n+1)}(t)\,\mathrm{d}t$$

Mais pour tout entier k, on a $f^{(k)}(0) = 0$ ce qui simplifie la formule :

$$orall x \in \mathbb{R}, \quad f(x) = \int_0^x rac{(x-t)^n}{n!} f^{(n+1)}(t) \; \mathrm{d}t$$

3. (a) Toute fonction continue sur un segment est bornée sur ce segment (et y atteint ses bornes). Appliqué à f sur le segment [-A;A] où f est bien continue, ce théorème permet d'affirmer

que $\exists M \in \mathbb{R}+, \ \forall x \in [-A;A], \quad |f(x)| \leqslant M$

On sait, d'après 1.c, que l'on a : $\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \quad f^{(n)}(x) = a^{n(n+1)/2} f(a^n x).$

En prenant les valeurs absolues dans cette égalité et la restreignant au segment [-A; A], on obtient alors :

$$orall n \in \mathbb{N}, \, orall x \in [-A;A], \, |f^{(n)}(x)| = |a|^{n(n+1)/2}|f(a^nx)|.$$

D'une part, on a : $\forall n \in \mathbb{N}$, $|a|^{n(n+1)/2} \leqslant 1$ puisque $a \in [-1, 1]$.

D'autre part, pour tout $x \in [-A; A]$, on a $a^n x \in [-A; A]$ puisque $a \in [-1; 1]$.

Donc, on peut affirmer que :

$$orall n \in \mathbb{N}, \, orall x \in [-A;A], \quad |f(a^nx)| \leqslant M$$

La combinaison de tous ces résultats nous dit alors que

$$ig| \, orall n \in \mathbb{N}, \, orall x \in [-A;A], \quad |f^{(n)}(x)| \leqslant M$$

(b) Pour tout $n\in\mathbb{N}$, on a $|f(x)|=\left|\int_0^x rac{(x-t)^n}{n!}f^{(n+1)}(t)\,\mathrm{d}t
ight|\,\mathrm{d}$ 'aprés 2.

 $\underline{ ext{Pour }x\geqslant 0}, ext{ on a } |f(x)|\leqslant \int_0^x \left|rac{(x-t)^n}{n!}f^{(n+1)}(t)
ight| \,\mathrm{d}t ext{ car l'intégrale est croissante et }0\leqslant x.$

Or pour
$$t\in [0,x]$$
, on a $\left|rac{(x-t)^n}{n!}f^{(n+1)}(t)
ight|\leqslant Mrac{(x-t)^n}{n!}$

Alors,
$$|f(x)| \leqslant \int_0^x M \frac{(x-t)^n}{n!} \; \mathrm{d}t = \left[-M \frac{(x-t)^{n+1}}{(n+1)!} \right]_0^x = M \frac{x^{n+1}}{(n+1)!}$$

$$\underline{ ext{Pour } x < 0}, \qquad |f(x)| \leqslant \int_x^0 \left| \frac{(x-t)^n}{n!} f^{(n+1)}(t)
ight| \, \mathrm{d}t \, \operatorname{car} \, 1$$
'intégrale est croissante et $x \leqslant 0$.

Or pour
$$t\in [x,0]$$
, on a $\left|rac{(x-t)^n}{n!}f^{(n+1)}(t)
ight|\leqslant Mrac{(t-x)^n}{n!}$

$$|f(x)| \leqslant \int_x^0 M rac{(x-t)^n}{n!} \, \mathrm{d}t = \left[M rac{(t-x)^{n+1}}{(n+1)!}
ight]_x^0 = M rac{(-x)^{n+1}}{(n+1)!}$$

Il s'ensuit que : $orall n \in \mathbb{N} \;, \quad |f(x)| \leqslant M rac{|x|^{n+1}}{(n+1)!}$

Comme $x \in [-A; A]$, on a $|x| \leqslant A$, ce qui donne finalement :

$$orall n \in \mathbb{N}, \, orall x \in [-A;A], \hspace{0.5cm} |f(x)| \leqslant Mrac{A^n}{(n+1)!}$$

- (c) Soit $x \in [-A, A]$. En passant à la limite dans l'inégalité de la question 3.b, on obtient f(x) = 0. Ainsi, pour tout $x \in [-A, A]$, |f(x)| = 0. On a donc $\forall x \in \mathbb{R}$, f(x) = 0.
- 4. Le résultat de la question précédente nous dit que f est la fonction nulle sur [-A; A] pour tout $A \in \mathbb{R}_+^*$ et donc que f est la fonction nulle sur \mathbb{R} .

Exercice 3

1. (a) Tout d'abord, F ne contient que des vecteurs que de $\mathbb{R}^3:F\subset\mathbb{R}^3$.

Le vecteur nul $\overrightarrow{0}$ vérifie l'équation z=0 donc $\overrightarrow{0}\in F$.

Soit $\overrightarrow{v_1}=(x_1,y_1,z_1)$ et $\overrightarrow{v_2}=(x_2,y_2,z_2)$ deux vecteurs de F. On a donc $z_1=z_2=0$. Soit $\alpha\in\mathbb{R}$. On a $\alpha\overrightarrow{v_1}+\overrightarrow{v_2}=(\alpha x_1+x_2,\alpha y_1+y_2,\alpha z_1+z_2)=(\alpha x_1+x_2,\alpha y_1+y_2,0)$ donc $\alpha\overrightarrow{v_1}+\overrightarrow{v_2}\in F$. F est stable par combinaison linéaire.

F est non vide et stable par combinaison linéaire, alors F est un sous-espace vectoriel de \mathbb{R}^3 . Le système linéaire z=0 a trois inconnues et un pivot, donc on utilise deux inconnues secondaires pour paramétrer l'ensemble des solutions, alors une représentation paramétrique de F est $(x,y,z)=\alpha(1,0,0)+\beta(0,1,0)$ avec $(\alpha,\beta)\in\mathbb{R}^2$

Alors, F = Vect((1,0,0),(0,1,0)): F est le sev engendré par ces deux vecteurs.

(b) Soit $\overrightarrow{u_1}=(x_1,y_1)$ et $\overrightarrow{u_2}=(x_2,y_2)$ deux vecteurs de \mathbb{R}^2 .

On a
$$f(\overrightarrow{u_1}+\overrightarrow{u_2})=f(x_1+x_2,y_1+y_2)=(x_1+x_2,-x_1-x_2-y_1-y_2,0)$$

Et par ailleurs, $f(\overrightarrow{u_1})+f(\overrightarrow{u_2})=(x_1+x_2,-x_1-x_2-y_1-y_2,0)$

Ainsi, $\underline{f(\overrightarrow{u_1})} + \underline{f(\overrightarrow{u_2})} = \underline{f(\overrightarrow{u_1} + \overrightarrow{u_2})}.$

 $\text{Soit }\alpha\in\mathbb{R},\quad f(\alpha\overrightarrow{u_1})=(\alpha x_1,-\alpha x_1-\alpha y_1,0)=\alpha(x_1,-x_1-y_1,0)=\alpha f(\overrightarrow{u_1})$

On en déduit que pour tous $(\overrightarrow{u_1},\overrightarrow{u_2})\in (\mathbb{R}^2)^2$ et pour tout $\alpha\in\mathbb{R}$, $f(\alpha\overrightarrow{u_1})=\alpha f(\overrightarrow{u_1})$ et $f(\overrightarrow{u_1})+f(\overrightarrow{u_2})=f(\overrightarrow{u_1}+\overrightarrow{u_2})$. Donc f est linéaire de \mathbb{R}^2 dans \mathbb{R}^3 .

(c) On résout l'équation $f(x,y)=(0,0)\Longleftrightarrow x=0$ et y=0.

On en déduit que $\operatorname{Ker} f = \{(0,0)\}$ et donc f est injective.

(d) On détermine $\operatorname{Im} f$:

 $\overrightarrow{v}=(v_1,v_2,v_3)\in \operatorname{Im} f \Longleftrightarrow \exists (x,y)\in \mathbb{R}^2 ext{ tel que } f(x,y)=(v_1,v_2,v_3) ext{ soit } (x,-x-y,0)=(v_1,v_2,v_3).$

$$\iff \exists (x,y) \in \mathbb{R}^2: \left\{egin{array}{ll} x &=& v_1 \ y &=& -v_1 - v_2 \ 0 &=& v_3 \end{array}
ight. \ \left. egin{array}{ll} x &=& v_1 \ y &=& -v_1 - v_2 \ \end{array}
ight.
ight.$$

On obtient donc un vecteur $\overrightarrow{v} \in \operatorname{Im} f$ si et seulement si $\overrightarrow{v} \in F$. On en déduit $\boxed{\operatorname{Im} f = F}$

2. (a) On utilise la linéarité de g:

$$ext{pour } (x,y,z) \in \mathbb{R}^3, \ g(x,y,z) = xg(1,0,0) + yg(0,1,0) + zg(1,0,0) \ ext{D'où} \ \boxed{ ext{pour } (x,y,z) \in \mathbb{R}^3, \quad g(x,y,z) = (x+z,-x-y+z).}$$

(b) On résout le système $g(x,y,z)=(0,0)\Longleftrightarrow \left\{egin{array}{ccc} -x-y+z&=&0\ x&+z&=&0 \end{array}
ight.$

Le système a deux équations et deux pivots et trois inconnues, alors on a une inconnue secondaire qui paramètre l'ensemble des solutions :

$$\iff$$
 il existe $lpha\in\mathbb{R}$ tel que $\left\{egin{array}{ll} x &=& -lpha\ y &=& 2lpha\ z &=& lpha \end{array}
ight.$

(c) Soit $(a,b) \in \mathbb{R}^2$, on cherche $(x,y,z) \in \mathbb{R}^3$ tels que g(x,y,z) = (a,b). On résout le système correspondant :

$$\left\{ egin{array}{lll} -x-y+z&=&a\ x&+z&=&b \end{array}
ight. \iff \left\{ egin{array}{lll} -x-y+z&=&a\ -y+2z&=&a+b \end{array}
ight.$$

Ce système n'a pas d'équation de compatibilité alors il a toujours une solution.

On en déduit que tout vecteur (a,b) de \mathbb{R}^2 a au moins un antécédent donc $\overline{\mathrm{Im}\,g=\mathbb{R}^2}$.

(d) On remarque d'abord que Ker $g \subset \mathbb{R}^3$ et Im $f \subset \mathbb{R}^3$. Soit $(x, y, z) \in \mathbb{R}^3$.

On a
$$(x, y, z) = z(-1, 2, 1) + (x + z, y - 2z, 0)$$
. Or $z(-1, 2, 1) \in \text{Vect}((-1, 2, 1)) = \text{Ker } g$ et $(x + z, y - 2z, 0) \in \text{Im } f$ qui a pour équation $z = 0$. On a montré que

tout vecteur de \mathbb{R}^3 est la somme d'un vecteur de Ker g et d'un vecteur de Im f.

On montre que cette décomposition est unique : soit $\overrightarrow{v} \in \operatorname{Ker} g \cap \operatorname{Im} f$. Alors, $\overrightarrow{v} = \alpha(-1, 2, 1)$ et \overrightarrow{v} vérifie l'équation z = 0.

On en déduit que $\alpha=0$ donc $\overrightarrow{v}=\overrightarrow{0}$.

On a donc $\operatorname{Ker} g \cap \operatorname{Im} f \subset \{\overrightarrow{0}\}\$ et comme les deux sont des sous-espaces vectoriels, on a l'inclusion réciproque $\{\overrightarrow{0}\}\subset \operatorname{Ker} g \cap \operatorname{Im} f$.

Finalement, $\operatorname{Ker} g \cap \operatorname{Im} f = \{ \overrightarrow{0} \}$ On a prouvé que $\boxed{\operatorname{Ker} g \oplus \operatorname{Im} f = \mathbb{R}^3}$.

- 3. Soit $(x,y)\in\mathbb{R}^2$. On note (X,Y,0)=f(x,y) soit X=x,Y=-x-y. Puis, g(X,Y,0)=(X,-X-Y)=(x,-x-(-x-y))=(x,y). Soit $g\circ f(x,y)=(x,y)$ On en déduit que $g\circ f=id_{\mathbb{R}^2}$.
- 4. (a) Soit $u, v \in E$ tels que f(u) = f(v), alors g(f(u)) = g(f(v)) ce qui donne u = v. On en déduit que f est injective.
 - (b) f est linéaire et g est linéaire alors par composition, $g \circ f$ est linéaire.

On calcule, en utilisant l'associativité de la compositions des fonctions :

$$(f\circ g)\circ (f\circ g)=f\circ (g\circ f)\circ g=f\circ id_E\circ g=f\circ g$$
 où $f\circ id_E=f$. $f\circ g$ est linéaire et $(f\circ g)\circ (f\circ g)=f\circ g$ alors $f\circ g$ est un projecteur de E .

(c) Soit $u \in \operatorname{Ker} g$, alors $g(u) = \overrightarrow{0}$ donc $f(g(u)) = f(\overrightarrow{0}) = \overrightarrow{0}$ car f est linéaire. On en déduit que $u \in \operatorname{Ker}(f \circ g)$. On a prouvé $\operatorname{Ker} g \subset \operatorname{Ker}(f \circ g)$.

Si $u \in \operatorname{Ker}(f \circ g)$. On a produce $\operatorname{Rer}(g \circ g)$. $\operatorname{Si} u \in \operatorname{Ker}(f \circ g) \text{ alors } f \circ g(u) = \overrightarrow{0} \text{ donc } g(f \circ g(u)) = \overrightarrow{0} \text{ car } g \text{ est linéaire. On réécrit : } ((g \circ f) \circ g)(u) = \overrightarrow{0}.$

Mais $g\circ f=id_E$ et $id_E\circ g=g$ alors, on a $g(u)=\overrightarrow{0}$ donc $u\in \operatorname{Ker} g$. On a prouvé $\operatorname{Ker}(f\circ g)\subset \operatorname{Ker} g$.

On en déduit par double inclusion que $\overline{ \mathrm{Ker}(f \circ g) = \mathrm{Ker}\, g }$

Soit $v \in \operatorname{Im}(f \circ g)$ alors il existe $u \in E$ tel que v = f(g(u)) qui est l'image par f de g(u) donc $v \in \operatorname{Im} f$. On a montré $\operatorname{Im}(f \circ g) \subset \operatorname{Im} f$.

Réciproquement, soit $v \in \text{Im}(f)$, alors il existe $u \in E$ tel que f(u) = v. On a donc en composant par $g: (g \circ f)(u) = g(v)$ mais $g \circ f = id_E$ donc $id_E(u) = g(v)$ soit u = g(v).

on a donc v=f(g(v)) ce qui prouve que $v\in \mathrm{Im}(f\circ g)$. On a montré $\mathrm{Im}(f)\subset \mathrm{Im}(f\circ g)$. Par double inclusion, on en déduit que $\boxed{\mathrm{Im}(f)=\mathrm{Im}(f\circ g)}$.

(d) Comme $f \circ g$ est un projecteur, $f \circ g$ projette sur $\operatorname{Im}(f \circ g)$ parallèlement à $\operatorname{Ker}(f \circ g)$ donc $\operatorname{Im}(f \circ g)$ et $\operatorname{Ker}(f \circ g)$ sont supplémentaires dans E.

Il s'ensuit que $\lceil \operatorname{Ker}(g) \text{ et } \operatorname{Im}(f) \text{ sont supplémentaires dans } E : \operatorname{Ker}(g) \oplus \operatorname{Im}(f) \rceil$.

Exercice 4

1. Pour tout $x \in [0, +\infty[$, la fonction $t \mapsto e^{-x\sin(t)}$ est continue sur [0,] comme composée de fonctions continues.

Cela prouve que l'intégrale $\int_0^{\pi/2} \exp(-x\sin(t)) dt$ a bien un sens pour tout $x \in [0, +\infty[$.

Ainsi, F(x) a bien un sens pour tout $x \in [0, +\infty[$ et F est définie sur $[0, +\infty[$].

2. Considérons x et y deux réels tels que $0 \leqslant x < y$. On a $\forall t \in [0, \frac{\pi}{2}], \quad \sin(t) \geqslant 0$.

On peut donc multiplier terme à terme par $\sin(t)$ ce qui donne $\forall t \in [0, \frac{\pi}{2}], \quad 0 \leqslant x \sin(t) \leqslant y \sin(t)$. On obtient alors $\forall t \in [0, \frac{\pi}{2}], \quad -y \sin(t) \leqslant -x \sin(t) \leqslant 0$.

En composant par l'application exp qui est croissante et positive sur \mathbb{R} , on obtient

$$orall t \in [0, rac{\pi}{2}], \quad 0 \leqslant e^{-y\sin(t)} \leqslant e^{-x\sin(t)} \leqslant e^0 ext{ avec } e^0 = 1.$$

Comme $0 < \frac{\pi}{2}$, par croissance de l'intégrale, on obtient

$$\int_0^{\pi/2} 0 \; \mathrm{d}t \leqslant \int_0^{\pi/2} e^{-y \sin(t)} \; \mathrm{d}t \leqslant \int_0^{\pi/2} e^{-x \sin(t)} \; \mathrm{d}t \leqslant \int_0^{\pi/2} e^0 \; \mathrm{d}t$$

c'est-à-dire

$$0\leqslant \int_0^{\pi/2}e^{-y\sin(t)}\;\mathrm{d}t\leqslant \int_0^{\pi/2}e^{-x\sin(t)}\;\mathrm{d}t\leqslant rac{\pi}{2}$$

En divisant par 2>0, on obtient donc $0\leqslant F(y)\leqslant F(x)\leqslant \frac{\pi}{4}$.

On vient donc de prouver l'implication : $0 \le x < y \Longrightarrow F(y) \le F(x)$: l'application F est donc décroissante sur $[0, +\infty[$.

De plus, la relation $0\leqslant F(y)\leqslant F(x)\leqslant \frac{\pi}{4}$ permet aussi d'écrire $\forall x\in [0,+\infty[,\quad 0\leqslant F(x)\leqslant \frac{\pi}{4}].$

3. Posons pour tout $t \in \left[0, \frac{\pi}{2}\right]$, $\varphi(t) = \sin(t) - \frac{2}{\pi}t$. L'application φ est deux fois dérivable sur $\left[0, \frac{\pi}{2}\right]$ comme somme de fonctions deux fois dérivables et on a $\forall t \in \left[0, \frac{\pi}{2}\right]$,

$$arphi'(t)=\cos(t)-rac{2}{\pi}$$
 et $arphi''(t)=-\sin(t).$

On a $\forall t \in \left[0, \frac{\pi}{2}\right]$, $\varphi''(t) \leqslant 0$. On calcule $\varphi'(0) = 1 - \frac{2}{\pi}$ et $\varphi'(\frac{\pi}{2}) = -\frac{2}{\pi}$

Cela permet de tracer le tableau suivant :

	Λ.		<u> </u>
t	0		$\pi/_2$
arphi''(t)		_	
arphi'(t)	1 – 2/	π	$-2/\pi$

L'application φ' est continue (car dérivable) sur $\left[0,\frac{\pi}{2}\right]$ et $\varphi'(0).\varphi'(\frac{\pi}{2})=\left(1-\frac{2}{\pi}\right).\left(-\frac{2}{\pi}\right)<0$ car $\pi>3$ et donc $\frac{2}{\pi}<1$ et $1-\frac{2}{\pi}>0$.

Le théorème des valeurs intermédiaires nous dit qu'il existe $t_0 \in \left[0, \frac{\pi}{2}\right]$ tel que $\varphi'(t_0) = 0$.

On en déduit le signe de $\varphi'(t)$ sur $\left[0, \frac{\pi}{2}\right]$.

Avec les valeurs : $\varphi(0) = \sin(0) - \frac{2}{\pi}0 = 0$ et $\frac{\varphi\left[0, \frac{\pi}{2}\right] = \sin\left[0, \frac{\pi}{2}\right] - 1 = 0$, on peut écrire le tableau

de variations de φ sur $\left[0, \frac{\pi}{2}\right]$:

t	0		t_0	$\pi/_2$
arphi'(t)		+	0	_
arphi(t)		$ \qquad \qquad \varphi(t_0) $		
	0			0

Le tableau précédent montre donc que $\forall t \in \left[0, \frac{\pi}{2}\right], \qquad arphi(t) \geqslant 0.$

On a donc bien $\forall t \in \left[0, \frac{\pi}{2}\right], \quad \frac{2}{\pi}t \leqslant \sin(t)$

4. Soit $x\in]0,+\infty[$. On a $orall t\in \left[0,rac{\pi}{2}
ight], \quad rac{2}{\pi}t\leqslant \sin(t).$

On multiplie par x>0 ce qui donne $\forall t\in \left[0, \frac{\pi}{2}\right], \quad \frac{2}{\pi}xt\leqslant x\sin(t).$

On a donc $\forall t \in \left[0, \frac{\pi}{2}\right], \quad -x \sin(t) \leqslant -\frac{2}{\pi} x \, t.$

On compose par exp qui est croissante sur $\ensuremath{\mathbb{R}}$ ce qui donne :

$$orall t \in \left[0, rac{\pi}{2}
ight], \quad e^{-x\sin(t)} \leqslant \exp\left(-rac{2}{\pi}xt
ight).$$

Enfin, on intègre et par croissance de l'intégrale, avec $0 < \frac{\pi}{2}$, on obtient

$$orall x \in]0,+\infty[, \quad \int_0^{\pi/2} e^{-y\sin(t)} \; \mathrm{d}t \leqslant \int_0^{\pi/2} \exp\left(-rac{2}{\pi}xt
ight) \; \mathrm{d}t$$

En divisant par 2 > 0, on obtient donc

$$orall x \in]0,+\infty[, \quad F(x) \leqslant rac{1}{2} \int_0^{\pi/2} \exp\left(-rac{2}{\pi}xt
ight) \; \mathrm{d}t$$

Or, on a $\forall x \in]0, +\infty[$,

$$\int_0^{\pi/2} \exp\left(-rac{2}{\pi}xt
ight) \; \mathrm{d}t = \left[-rac{\pi}{2x}\exp\left(-rac{2}{\pi}xt
ight)
ight]_0^{\pi/2} = -rac{\pi}{2x}\left(\exp(-x) - \exp(0)
ight) = rac{\pi}{2x}\left(1 - e^{-x}
ight)$$

L'inégalité : $orall x \in]0,+\infty[, \quad F(x) \leqslant rac{1}{2} \int_0^{\pi/2} \exp\left(-rac{2}{\pi}xt
ight) \; \mathrm{d}t$

s'écrit donc
$$orall x \in]0, +\infty[, \quad F(x) \leqslant rac{\pi}{4x} \left(1-e^{-x}
ight)$$

On sait d'après 2°) que l'on a $\forall x \in]0, +\infty[, F(x) \geqslant 0,$

ce qui donne finalement $\forall x \in]0, +\infty[, \quad 0 \leqslant F(x) \leqslant rac{\pi}{4\, r} \left(1-e^{-x}
ight)$

Or, on a
$$\lim_{x \to +\infty} \left(1-e^{-x}\right) = 1$$
 et $\lim_{x \to +\infty} \frac{1}{x} = 0$, d'où $\lim_{x \to +\infty} \frac{\pi}{4x} \left(1-e^{-x}\right) = 0$.

Le théorème d'encadrement appliqué à l'encadrement donne donc $\lim_{x o +\infty} F(x) = 0$.

5. (a) Posons $\forall x \in [0, +\infty[, \psi(x) = e^{-x}]$. ψ est dérivable sur $[0, +\infty[$ et on a $\forall x \in [0, +\infty[, \psi'(x) = -e^{-x}]$. On a alors $\forall x \in [0, +\infty[, |\psi'(x)| = |-e^{-x}| = e^{-x}]$, d'où

 $orall x \in [0,+\infty[, \quad |\psi'(x)| \leqslant 1 ext{ car } -x \leqslant 0 ext{ et donc } e^{-x} \leqslant 1.$

L'inégalité des accroissements finis donne donc

$$orall (a,b)\in [0,+\infty[^2,\quad |\psi(a)-\psi(b)|\leqslant 1 imes |a-b| \ .$$
 On a donc $igl| orall (a,b)\in [0,+\infty[^2,\quad |e^{-a}-e^{-b}|\leqslant |a-b| \].$

(b) On a $\forall (x,y) \in [0,+\infty[^2]$

$$|F(x)-F(y)|=rac{1}{2}\left|\int_0^{\pi/2}e^{-x\sin(t)}-e^{-y\sin(t)}\;\mathrm{d}t
ight|$$
 par linéarité de l'intégrale.

Puis, comme l'intégrale est croissante avec $0 < \frac{\pi}{2}$:

$$|F(x)-F(y)|\leqslant rac{1}{2}\int_0^{\pi/2}\left|e^{-x\sin(t)}-e^{-y\sin(t)}
ight|\,\mathrm{d}t$$

Or on a $x\geqslant 0,\ y\geqslant 0$ et $t\in [0,\frac{\pi}{2}]$ donc $x\sin(t)\geqslant 0$ et $y\sin(t)\geqslant 0.$

On peut donc d'écrire

$$|e^{-x\sin(t)}-e^{-y\sin(t)}|\leqslant |x\sin(t)-y\sin(t)|=|(x-y)\sin(t)|.$$

c'est-à-dire $\forall t \in [0, \frac{\pi}{2}],$

$$|e^{-x\sin(t)}-e^{-y\sin(t)}|\leqslant |x-y|\sin(t)$$
 car $\sin(t)\geqslant 0$.

La croissance de l'intégrale avec $0<\frac{\pi}{2}$ et la linéarité donnent

$$\int_0^{\pi/2} \left| e^{-x \sin(t)} - e^{-y \sin(t)}
ight| \, \mathrm{d}t \leqslant |x-y| \int_0^{\pi/2} \sin(t) \, \mathrm{d}t$$

On a donc finalement $\forall (x,y) \in [0,+\infty[^2]$

$$|F(x)-F(y)|\leqslant rac{1}{2}|x-y|\int_0^{\pi/2}\sin(t)\;\mathrm{d}t.$$

Or,
$$\int_0^{\pi/2} \sin(t) \ \mathrm{d}t = \left[-\cos(t)
ight]_0^{\pi/2} = 1 - 0 = 1.$$

On a donc bien
$$oxed{ orall (x,y) \in [0,+\infty[^2, \quad |F(x)-F(y)| \leqslant rac{1}{2}|x-y| }$$
 .

(c) Fixons $x_0 \in [0,+\infty[$. La question précédente permet d'écrire

$$orall x \in [0,+\infty[, \quad 0 \leqslant |F(x)-F(x_0)| \leqslant rac{1}{2}|x-x_0|.$$

Faisons tendre x vers x_0 . On a $\lim_{x\to x_0} x - x_0 = 0$.

Alors, d'après le théorème d'encadrement, $\lim_{x o x_0} F(x) - F(x_0) = 0.$

On a donc, par opérations sur les limites, $\lim_{x\to x_0} F(x) = F(x_0)$ ce qui prouve que F est continue en x_0 .

Ceci étant vrai pour tout $x_0 \in [0, +\infty[$, l'application F est donc continue sur $[0, +\infty[$]

6. (a) (Note: cette question technique n'a pas d'utilité pour la suite)

Soit x et y deux réels tels que $0 \leqslant x < y$. On a montré $F(y) \leqslant F(x)$ car F décroissante. On a également $\forall t \in [0, \frac{\pi}{2}], \quad -y \sin(t) \leqslant x \sin(t)$ qui donne par croissance de $\exp: e^{-y \sin(t)} \leqslant e^{-x \sin(t)}$.

On a donc $\forall t \in [0, \frac{\pi}{2}], \quad 0 \leqslant e^{-x \sin(t)} - e^{-y \sin(t)}.$

Supposons que F(x)=F(y), alors $\int_0^{\pi/2}e^{-x\sin(t)}\;\mathrm{d}t=\int_0^{\pi/2}e^{-y\sin(t)}\;\mathrm{d}t$

$$\iff 0 = \int_0^{\pi/2} \left(e^{-y\sin(t)} - e^{-x\sin(t)} \right) dt.$$

 $\text{La fonction } t \mapsto e^{-x\sin(t)} - e^{-y\sin(t)} \text{ est continue sur } [0, \tfrac{\pi}{2}] \text{ et } \int_0^{\pi/2} \left(e^{-x\sin(t)} - e^{-y\sin(t)}\right) \, \mathrm{d}t = 0.$

Alors, par théorème, la fonction $t\mapsto e^{-x\sin(t)}-e^{-y\sin(t)}$ est nulle sur $[0,\frac{\pi}{2}]$. Il s'ensuit que : $\forall t\in[0,\frac{\pi}{2}],\quad e^{-x\sin(t)}=e^{-y\sin(t)}$. En particulier, on a $e^{-x\sin(\pi/6)}=e^{-y\sin(\pi/6)}$.

Mais on a -y < -x qui donne $-\frac{y}{2} < -\frac{x}{2}$ et par stricte croissance de exp : $e^{-y/2} < e^{-x/2}$ ce qui est une contradiction. Alors on $F(x) \neq F(y)$ donc F(y) < F(x) pour tout x < y. Cela prouve que F est strictement décroissante sur \mathbb{R}_+ .

(b) Posons $\forall x \in [0, +\infty[, G(x) = F(x) - x]$.

On sait que la fonction F est décroissante sur $[0, +\infty[$. La fonction $x \mapsto -x$ est strictement décroissante sur $[0, +\infty[$.

La fonction $G: x \mapsto F(x) - x$ est donc strictement décroissante sur $[0, +\infty[$ comme somme d'une fonction décroissante et d'une fonction strictement décroissante.

On a de plus $G(0) = F(0) - 0 = \int_0^{\pi/2} e^{-0\sin(t)} \; \mathrm{d}t = \int_0^{\pi/2} 1 \; \mathrm{d}t = rac{\pi}{4}$

On a enfin $\lim_{x\to +\infty}F(x)=0$ grâce à 4°) et $\lim_{x\to +\infty}(-x)=-\infty$ donc $\lim_{x\to +\infty}F(x)-x=-\infty$, c'est-à-dire $\lim_{x\to +\infty}G(x)=-\infty$.

On a donc G continue (somme de fonctions continues) et strictement décroissante sur $[0,+\infty[$ avec $G(0)=\frac{\pi}{4}$ et $\lim_{x\to+\infty}G(x)=+\infty.$

Le théorème de la bijection prouve que G réalise une bijection de $[0, +\infty[$ sur $]-\infty, \frac{\pi}{4}]$.

Comme $0 \in]-\infty, \frac{\pi}{4}]$, 0 admet un unique antécédent par G dans $[0, +\infty[$.

Il existe donc $\boxed{ \text{un unique } \alpha \in [0,+\infty[\text{ tel que } G(lpha)=0, \text{ c'est-\`a-dire tel que } F(lpha)=lpha }.$

(c) On sait que l'on a $\forall (x,y) \in [0,+\infty[^2,\quad |F(x)-F(y)| \leqslant \frac{1}{2}|x-y|$ grâce à la question 5°)b). Comme on a $\forall x \in [0,+\infty[,\quad F(x)\geqslant 0 \text{ et } u_0\geqslant 0, \text{ on a par récurrence immédiate } \forall n\in\mathbb{N}, u_n\in [0,+\infty[.$

En prenant $x=u_n$ et y=lpha, on a alors $orall n\in \mathbb{N}, \quad |F(u_n)-F(lpha)\leqslant rac{1}{2}|u_n-lpha|.$

Or, on sait que l'on a $F(u_n)=u_{n+1}$ et F(lpha)=lpha. On a donc $oxed{orange} n\in\mathbb{N}, \quad |u_{n+1}-lpha|\leqslant rac{1}{2}|u_n-lpha|.$

Posons pour tout $n\in\mathbb{N}$, l'hypothèse de récurrence $H_n:|u_n-lpha|\leqslant rac{1}{2^n}|u_0-lpha|.$

On a $|u_0-lpha|\leqslant rac{1}{2^0}|u_0-lpha|$, car $rac{1}{2^0}=1$ et donc H_0 est vérifiée.

Supposons H_n vérifiée pour un $n\in\mathbb{N}$. On suppose donc $|u_n-lpha\leqslant rac{1}{2^n}|u_0-lpha|$.

En multipliant par $rac{1}{2}>0$, cela donne $rac{1}{2}|u_n-lpha|\leqslant rac{1}{2^{n+1}}|u_0-lpha|.$

Or, on sait d'après 7°)a) que l'on a $|u_{n+1} - \alpha| \leqslant \frac{1}{2^n} |u_n - \alpha|$.

On peut donc écrire $|u_{n+1}-lpha|\leqslant rac{1}{2^{n+1}}|u_0-lpha|$

Ce qui prouve donc que H_{n+1} est vérifiée (ii) .

Conclusion : (i) et (ii) prouvent que H_n est vérifiée pour tout $n \in \mathbb{N}$. On a donc $\forall n \in \mathbb{N}, \quad |u_n - \alpha| \leqslant \frac{1}{2^n} |u_0 - \alpha|$.

(d) Comme $\frac{1}{2} \in]0,1[$, on peut écrire $\lim_{n \to +\infty} \frac{1}{2^n} = 0$.

Alors, d'après le théorème d'encadrement, $\lim_{n \to +\infty} u_n - \alpha = 0$ soit $(u_n)_{n \in \mathbb{N}}$ converge vers α