2018-2019

Examen du 19 février 2019

Durée: 2 heures

Les exercices sont indépendants.

A. Signature

Soit $\mathbf{cK}_{\mathrm{rsa}}$ l'algorithme de génération des clés RSA associé au paramètre de sécurité λ (λ est la longueur du module RSA N). Soit $H:\{0,1\}^* \to \{0,1\}^{\lambda-1}$ une fonction de hachage. Considérons l'algorithme de signature suivant :

[Algorithme cK:]

$$\mathbf{cK}_{\mathrm{rsa}}(1^{\lambda}) \to (N, p, q, e, d)$$

Retourner (N, e) comme clé publique et (N, d) comme clé secrète.

[Algorithme Sig((N, d), M):]

Réécrire M (M est supposé de longueur paire) en deux parties de la même longueur :

$$M = M_0 || M_1$$

Calculer

$$y = H(0||M_0) \times H(1||M_1) \mod N$$

- Retourner la signature $s = y^d \mod N$.
- 1. Décrire l'algorithme de vérification.
- 2. Déterminer si ce schéma de signature est sûr face aux attaques à messages choisis (UF-CMA), lorsque la fonction H est considérée comme un oracle aléatoire.

B. Construction théorique d'un chiffrement asymétrique

3. — Supposons qu'il existe un chiffrement asymétrique IND-CPA sûr $\pi = (\mathcal{G}, \mathcal{E}, \mathcal{D})$. Montrer qu'il existe un chiffrement $\pi' = (\mathcal{G}', \mathcal{E}', \mathcal{D}')$ qui est IND-CPA sûr mais pas IND-CCA sûr.

Indication: Il peut être judicieux de modifier très légèrement le schéma π pour obtenir π' tel que π' reste IND-CPA (comme π) mais qu'il existe un attaquant de type CCA qui peut exploiter quelques propriétés particulières introduites dans la construction de π' pour casser le schéma π' .

C. Cryptosystème de Paillier

Soit N=pq un entier RSA (donc p,q deux nombres premiers impairs distincts). On supposera de plus que

$$pgcd(pq, (p-1)(q-1)) = 1.$$

- 4. Quel est l'ordre du groupe $(\mathbb{Z}/N^2\mathbb{Z})^*$?
- 5. Montrer que $(\mathbb{Z}/N^2\mathbb{Z})^*$ contient un élément g d'ordre N.
- 6. Montrer qu'on définit bien une application E de $\mathbb{Z}/N\mathbb{Z} \times (\mathbb{Z}/N\mathbb{Z})^*$ dans $(\mathbb{Z}/N^2\mathbb{Z})^*$ en posant

$$E(m,r)=g^m r^N$$
.

- 7. Montrer que, si $E(m_1, r_1) = E(m_2, r_2)$ alors $g^{(p-1)(q-1)(m_1-m_2)} = 1$ (dans le groupe $(\mathbb{Z}/N^2\mathbb{Z})^*$).
- 8. = En déduire que E est une bijection.

D. Méthode ρ

Soit E un ensemble fini, $a \in E$ et f une application de E dans lui-même. On considère la suite (u_n) suivante d'éléments de E:

$$u_0 = a$$
 $u_{n+1} = f(u_n)$ pour $n \in \mathbb{N}$.

- 9. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est ultimement périodique (i.e. périodique à partir d'un certain rang).
- 10. Soit q le plus petit entier tel que la sous-suite $(u_n)_{n\geqslant q}$ soit périodique et c sa période. Pour $e\in\mathbb{N}$, montrer que les conditions (i) et (ii) suivantes sont équivalentes :
- (a) $c \mid e \text{ et } e \geqslant q$.
- (b) $u_e = u_{2e}$.

On rappelle que le plus petit entier vérifiant ces conditions est appelé l'épacte de la suite (u_n) .

- 11. Pour $E = \mathbb{Z}/53\mathbb{Z}$, a = 2 et $f: x \mapsto x^2 + 1$, quel est l'épacte de la suite (u_n) ?
- 12. Factoriser 4399 avec la méthode ρ de Pollard, en utilisant cette suite (u_n) .