Završni ispit iz Interaktivne računalne grafike

1.	(1 bod) Zadana je L-gramatika kojim je nakon druge iteracije dobiven rezultat ne slici. Početni simbol je F i korištene
	oznake su:

F crtanje ravne linije,

- skreni desno za 25°
- skreni lijevo za 25°
- stavi na stog
- skini sa stoga

Zadano produkcijsko pravilo je:

- a) $F \rightarrow FF[-F][-F]F$ (b) $F \rightarrow F[+F]F[-F]F$ c) $F \rightarrow [+F]FF[-F]F$ d) $F \rightarrow F[-F]F[+F]F$
- e) ništa od navedenog

- a) 5
- b) 9
- (c) 2
- d) 1
- e) ništa od navedenog

3. (1 bod) U Phongovom modelu osvjetljavanja o promatraču ovisi:

a) samo zrcalna komponenta

d) samo ambijentna komponenta

b) samo difuzna komponenta

e) ništa od navedenog

c) sve komponente

4. (1 bod) Zadane su točke A=(1, -1, 2), B=(2, 0, 2), C=(2, 1, 2), koje određuju trokut u 3D prostoru i točka P=(1, 1, 2). Odredite baricentrične koordinate (
$$t_1$$
, t_2 , t_3) točke P s obzirom na trokut ABC. Koliko iznosi izraz: t_1 - t_2 + t_3 ?

- b) 0.5
- c) 1 d) 3
- e) ništa od navedenoga

- a) 3, 15, 3
- b) 3, 6, 3
- d) 3, 12, 3
- e) ništa od navedenog

6. (1 bod) Odrediti moguće vrijednosti
$$a, b, c$$
 tako da matrica T predstavlja rotaciju u 2D prostoru. $T =$

$$T = \begin{bmatrix} a & b & 0 \\ -\sqrt{2} & c & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

a)
$$a_1 = c_1 = \sqrt{3}, b_1 = \sqrt{2}$$

 $a_2 = c_2 = -\sqrt{3}, b_2 = \sqrt{2}$

$$\begin{array}{lll} a_1=c_1=\sqrt{3}\,,\,b_1=\sqrt{2} & a_1=c_1=\sqrt{2}\,,\,b_1=\sqrt{2} \\ a_2=c_2=-\sqrt{3}\,,\,b_2=\sqrt{2} & column{2}{column{2}{column{2}{c}}} a_1=c_1=\sqrt{2}\,,\,b_1=\sqrt{2} \\ a_1=c_1=\sqrt{2}\,,\,b_1=\sqrt{2} & a_1=c_1=\sqrt{3}\,,\,b_1=\sqrt{2} \\ a_2=c_2=-\sqrt{2}\,,\,b_2=-\sqrt{2} & column{2}{column{2}{c}} a_1=c_1=\sqrt{3}\,,\,b_1=\sqrt{2} \\ a_2=c_2=-\sqrt{3}\,,\,b_2=-\sqrt{2} & column{2}{column{2}{c}} a_1=c_1=\sqrt{3}\,,\,b_2=-\sqrt{2} \end{array}$$

b)
$$a_1 = c_1 = \sqrt{2}$$
, $b_1 = \sqrt{2}$
 $a_2 = c_2 = -\sqrt{2}$, $b_2 = -\sqrt{2}$

a₁=
$$c_1 = \sqrt{3}$$
, $b_1 = \sqrt{2}$
a₂= $c_2 = -\sqrt{3}$, $b_2 = -\sqrt{2}$

7. (3 boda)

- a) Napišite IFS koji generira jednakostranični trokut Sierpinskog. Za svaki izraz objasnite kako ste do njega došli (odnosno što on radi).
- b) Formalno definirajte L-sustav.

c) Zadan je skup znakova:

F	korak naprijed, crtaj liniju. Inicijalna duljina linije je 2. Minimalna 1, maksimalna 4.
f	korak naprijed, ne crtaj liniju
+	rotiraj za +30°
-	rotiraj za -30°
>	množenje duljine linije faktorom skaliranja (iznosi 2)
<	dijeljenje duljine linije faktorom skaliranja (iznosi 2)

Napišite izraz kojim će se, korištenjem prethodno navedenih znakova, generirati objekt prikazan na slici. Raster na slici je jedinične duljine. Početna točka označena je crnim kružićem i početni smjer je prema desno.

- 8. (3 boda) Zadan je trokut s točkama $T_1 = (0,1,1)$, $T_2 = (0,2,1)$ i $T_3 = (3,0,1)$. Izvor svjetlosti se nalazi u točki S = (1,4,5) s intenzitetom 0.5. Ambijentalna komponenta ima intenzitet 0.1. Položaj promatrača je u točki P = (1,1,5). Koeficijent refleksije ambijentalne komponente je $k_a = 0.7$, difuzne $k_d = 0.9$ i zrcalne $k_s = 0.6$. Koeficijent kojim se određuje utjecaj blještavila je n = 10. Izračunajte ambijentalnu, difuznu i zrcalnu komponentu te ukupni intenzitet za poligon kada bi se koristilo konstantno sjenčanje (promatrati središte trokuta). Udaljenost od objekta do izvora svjetlosti i promatrača zanemarite.
- 9. (3 boda) Razmatramo crtanje Mandelbrotovog fraktala na rasteru ekrana širine 640 i visine 480 slikovnih elemenata uz ekranski koordinatni sustav (ishodište je gore lijevo). Preslikavamo točke rastera u točke kompleksne ravnine u rasponu umin = -2, umax = 2, vmin = -1.2, vmax = 1.2.
 - a) Odredite u koje točke kompleksne ravnine će se preslikati točke ekrana x = 320, y = 240, x = 400, y = 340 i x = 480, y = 440. Skicirajte ekran i njegov koordinatni sustav, te unutar ekrana naznačite koordinatni sustav kompleksne ravnine.
 - b) Odredite karakter triju točaka kompleksne ravnine koje ste izračunali u dijelu (a) uz maksimalni broj iteracija k=5 te prag ε=2 (zanima nas da li iterativno preslikavanje tih točaka divergira ili ne; raspišite što se dobiva u pojedinim iteracijama ispitivanja, te za svaku od te tri točke napišite konačnu odluku). Odredite brzinu divergencije za svaku točku.
 - c) Opišite vezu između brzine divergencije i boje pojedinog slikovnog elementa slike Mandelbrotovog fraktala.

10. (3 boda)

- a) Ukratko opisati algoritam Cyrus Beck.
- b) Zadana je kocka čija je dijagonala određene točkama u radnom prostoru V₁=(0, 0, 0) i V₂=(1, 1, 1). Normale svih šest poligona kocke usmjerene su prema van. Odrediti parametre t presjecišta segmenta pravca zadanog točkama u radom prostoru P₀=(5 6 4) i P₁=(-1 -2 -1) i šest stranica konveksnog tijela kocke. Napisati tablično rezultate.
- c) Razvrstati dobivena sjecišta na potencijalno ulazna i potencijalno izlazna. Odrediti segment pravca koji se nalazi unutar kocke.