Artificial Intelligence and Machine Learning Barbara Caputo

 $f: X \rightarrow Y$

- f might be non-linear function
- X (vector of) continuous and/or discrete vars
- Y (vector of) continuous and/or discrete vars

$f: X \rightarrow Y$

- f might be non-linear function
- X (vector of) continuous and/or discrete vars
- Y (vector of) continuous and/or discrete vars

$f: X \rightarrow Y$

- f might be non-linear function
- X (vector of) continuous and/or discrete vars
- Y (vector of) continuous and/or discrete vars

The XOR gate 1,1

Speech recognition

Our brain is very good at this ...

· Activation function:

$$X = \sum_{i=1}^{M} x_i w_i$$

$$X = \sum_{i=1}^{M} x_i w_i \qquad Y = \begin{cases} +1, & \text{if } X \ge \omega_0 \\ -1, & \text{if } X < \omega_0 \end{cases}$$

How a neuron works

Activation function:

$$X = \sum_{i=1}^{M} x_i w_i$$

$$X = \sum_{i=1}^{M} x_i w_i \qquad Y = \begin{cases} +1, & \text{if } X \ge \omega_0 \\ -1, & \text{if } X < \omega_0 \end{cases}$$

An mathematical expression

$$p(y=1 \mid x) = \frac{1}{1 + \exp\left\{-\sum_{i=1}^{M} w_i x_i - \theta_0\right\}} = \frac{1}{1 + e^{-w^T x}}$$

Activation function:

$$X = \sum_{i=1}^{M} x_i w_i$$

$$X = \sum_{i=1}^{M} x_i w_i$$

$$Y = \begin{cases} +1, & \text{if } X \ge \omega_0 \\ -1, & \text{if } X < \omega_0 \end{cases}$$

An mathematical expression

$$p(y=1|x) = \frac{1}{1 + \exp\left\{-\sum_{i=1}^{M} w_i x_i - \theta_0\right\}} = \frac{1}{1 + e^{-w^T x}}$$

• From biological neuron to artificial neuron (perceptron)

From biological neuron to artificial neuron (perceptron)

From biological neuron to artificial neuron (perceptron)

From biological neuron network to artificial neuron networks

From biological neuron to artificial neuron (perceptron)

From biological neuron network to artificial neuron networks

Jargon Pseudo-Correspondence

- Independent variable = input variable
- Dependent variable = output variable
- Coefficients = "weights"
- Estimates = "targets"

Jargon Pseudo-Correspondence

- Independent variable = input variable
- Dependent variable = output variable
- Coefficients = "weights"
- Estimates = "targets"

Logistic Regression Model (the sigmoid unit)

A perceptron learning algorithm

A perceptron learning algorithm

- Recall the nice property of sigmoid function $\ \, \frac{d\sigma}{dt} = \sigma(1-\sigma)$
- \bullet Consider regression problem f:X \rightarrow Y , for scalar Y: $y=f(x)+\epsilon$

- Recall the nice property of sigmoid function $\dfrac{d\sigma}{dt} = \sigma(1-\sigma)$
- \bullet Consider regression problem f:X \rightarrow Y , for scalar Y: $y=f(x)+\epsilon$
- We used to maximize the conditional data likelihood

$$\vec{w} = \arg\max_{\vec{w}} \ln \prod_i P(y_i|x_i; \vec{w})$$

A perceptron learning algorithm

- Recall the nice property of sigmoid function $\dfrac{d\sigma}{dt} = \sigma(1-\sigma)$
- \bullet Consider regression problem f:X \rightarrow Y , for scalar Y: $y=f(x)+\epsilon$
- We used to maximize the conditional data likelihood

$$\vec{w} = \arg\max_{\vec{w}} \ln\prod_{i} P(y_i|x_i; \vec{w})$$

Here ...

$$\vec{w} = \arg\min_{\vec{w}} \sum_{i} \frac{1}{2} (y_i - \hat{f}(x_i; \vec{w}))^2$$

x_d = input t_d = target output o_d = observed unit output w_i = weight i

x_d = input t_d = target output o_d =observed unit output w_i =weight i

$$\frac{\partial E[\vec{w}]}{\partial w_j} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum (t_d - o_d)^2$$

x_d = input t_d = target output o_d =observed unit output w_i =weight i

$$\frac{\partial E[\vec{w}]}{\partial w_j} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum (t_d - o_d)^2$$

x_d = input t_d = target output o_d =observed unit output w₁ =weight i

Gradient

$$\nabla E[\vec{w}] \equiv \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \cdots \frac{\partial E}{\partial w_n} \right]$$

Training rule:

$$\Delta \vec{w} = -\eta \nabla E[\vec{w}]$$

i.e.,

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i}$$

$$\frac{\partial E[\vec{w}]}{\partial w_j} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum (t_d - o_d)^2$$

x_d = input t_d = target output o_d = observed unit

output

w,=weight i

$$\frac{\partial E_D[\vec{w}])}{\partial w_j} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_d (t_d - o_d)^2$$

 $x_d = input$

t_d = target output

o_d =observed unit output

w_i =weight i

x_d = input t_d = target output o_d = observed unit

output

w_i =weight i

$$\frac{\partial E_D[\vec{w}])}{\partial w_j} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_d (t_d - o_d)^2$$

x_d = input t_d = target output o_d =observed unit output w_i =weight i

$$\begin{array}{lcl} \frac{\partial E_D[\vec{w}])}{\partial w_j} & = & \frac{\partial}{\partial w_i} \frac{1}{2} \sum_d (t_d - o_d)^2 \\ & = & \frac{1}{2} \sum_d 2(t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d) \end{array}$$

x_d = input t_d = target output o_d = observed unit output w_i = weight i

$$\frac{\partial E_D[\vec{w}])}{\partial w_j} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_d (t_d - o_d)^2$$

$$= \frac{1}{2} \sum_d 2(t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d)$$

$$= \sum_d (t_d - o_d) \left(-\frac{\partial o_d}{\partial w_i} \right)$$

x_d = input t_d = target output o_d =observed unit output w_i =weight i

$$\begin{split} \frac{\partial E_D[\vec{w}])}{\partial w_j} &= \frac{\partial}{\partial w_i} \frac{1}{2} \sum_d (t_d - o_d)^2 \\ &= \frac{1}{2} \sum_d 2(t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d) \\ &= \sum_d (t_d - o_d) \left(- \frac{\partial o_d}{\partial w_i} \right) \\ &= - \sum_d (t_d - o_d) \frac{\partial o_d}{\partial net_i} \frac{\partial net_d}{\partial w_i} \end{split}$$

x_d = input t_d = target output o_d = observed unit output w_i = weight i

$$\begin{split} \frac{\partial E_D[\vec{w}])}{\partial w_j} &= \frac{\partial}{\partial w_i} \frac{1}{2} \sum_d (t_d - o_d)^2 \\ &= \frac{1}{2} \sum_d 2(t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d) \\ &= \sum_d (t_d - o_d) \left(-\frac{\partial o_d}{\partial w_i} \right) \\ &= -\sum_d (t_d - o_d) \frac{\partial o_d}{\partial net_i} \frac{\partial net_d}{\partial w_i} \\ &= -\sum_d (t_d - o_d) o_d (1 - o_d) x_d^i \end{split}$$

 $x_d = input$ t, = target output on = observed unit output w, =weight i

$$\frac{\partial E_D[\vec{w}])}{\partial w_j} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_d (t_d - o_d)^2$$

$$= \frac{1}{2} \sum_d 2(t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d)$$

$$= \sum_d (t_d - o_d) \left(-\frac{\partial o_d}{\partial w_i} \right)$$

$$= -\sum_d (t_d - o_d) \frac{\partial o_d}{\partial net_i} \frac{\partial net_d}{\partial w_i}$$

$$= -\sum_d (t_d - o_d) o_d (1 - o_d) x_d^i$$

Batch mode:

Do until converge:

1. compute gradient
$$\nabla \mathbf{E}_{D}[\mathbf{w}]$$
2. $\vec{w} = \vec{w} - \eta \nabla E_{D}[\vec{w}]$

x_d = input t_d = target output o_d =observed unit output w_i =weight i

$$\frac{\partial E_D[\vec{w}])}{\partial w_j} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_d (t_d - o_d)^2$$

$$= \frac{1}{2} \sum_d 2(t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d)$$

$$= \sum_d (t_d - o_d) \left(-\frac{\partial o_d}{\partial w_i} \right)$$

$$= -\sum_d (t_d - o_d) \frac{\partial o_d}{\partial net_i} \frac{\partial net_d}{\partial w_i}$$

$$= -\sum_d (t_d - o_d) o_d (1 - o_d) x_d^i$$

Batch mode:

Do until converge:

1. compute gradient $\nabla E_D[w]$

$$\mathbf{v} = \vec{w} - \eta \nabla E_D[\vec{w}]$$

Incremental mode:

Do until converge:

- For each training example d in D
 - 1. compute gradient $\nabla \mathbf{E}_d[\mathbf{w}]$

$$\vec{w} = \vec{w} - \eta \nabla E_d[\vec{w}]$$

where

$$\nabla E_d[\vec{w}] = -(t_d - o_d)o_d(1 - o_d)\vec{x}_d$$

Maximum conditional likelihood estimate

$$\vec{w} = \arg\max_{\vec{w}} \ln \prod_{i} P(y_i|x_i; \vec{w})$$

Maximum conditional likelihood estimate

$$\vec{w} = \arg\max_{\vec{w}} \ln \prod_{i} P(y_i|x_i; \vec{w})$$

$$\vec{w} \leftarrow \vec{w} + \eta \sum_{d} (t_d - o_d) o_d (1 - o_d) \vec{x}_d$$

Maximum conditional likelihood estimate

$$\vec{w} = \arg \max_{\vec{w}} \ln \prod_{i} P(y_i|x_i; \vec{w})$$

$$\vec{w} \leftarrow \vec{w} + \eta \sum_{d} (t_d - o_d) o_d (1 - o_d) \vec{x}_d$$

Maximum a posteriori estimate

$$\vec{w} = \arg\max_{\vec{w}} \ln p(\vec{w}) \prod_{i} P(y_i|x_i; \vec{w})$$

Maximum conditional likelihood estimate

$$\vec{w} = \arg\max_{\vec{w}} \ln \prod_{i} P(y_i|x_i; \vec{w})$$

$$\vec{w} \leftarrow \vec{w} + \eta \sum_{d} (t_d - o_d) o_d (1 - o_d) \vec{x}_d$$

Maximum a posteriori estimate

$$\vec{w} = \arg \max_{\vec{w}} \ln p(\vec{w}) \prod_{i} P(y_i | x_i; \vec{w})$$

$$\vec{w} \leftarrow \vec{w} + \eta \left(\sum_{d} (t_d - o_d) o_d (1 - o_d) \vec{x}_d - \lambda \vec{w} \right)$$

Five mins break!

X	у	Z (color)
0	0	1
0	1	1
1	0	1
1	1	0

x	у	Z (color)
0	0	1
0	1	1
1	0	1
1	1	0

NAND

$$f(a) = \begin{cases} 1, \text{ for } a > \theta \\ 0, \text{ for } a \le \theta \end{cases}$$

X	у	Z (color)
0	0	0
0	1	1
1	0	1
1	1	0

NAND

some possible values for w_1 and w_2

W ₁	W ₂

X	у	Z (color)
0	0	1
0	1	1
1	0	1
1	1	0

some possible values for w₁ and w₂

W ₁	W ₂
0.20	0.35
0.20	0.40
0.25	0.30
0.40	0.20

x	у	Z (color)
0	0	0
0	1	1
1	0	1
1	1	0

X	у	Z (color)
0	0	0
0	1	1
1	0	1
1	1	0

NAND

x	у	Z (color)
0	0	0
0	1	1
1	0	1
1	1	0

NAND

a possible set of values for $(W_1, W_2, W_3, W_4, W_5, W_6)$: (0.6, -0.6, -0.7, 0.8, 1, 1)

Non Linear Separation

Neural Network Model

Independent variables

Weights

Hidden Layer

Weights

Dependent variable

Prediction

Independent variables

Weights

Hidden Layer

Weights

Dependent variable

Prediction

Not really, no target for hidden units...

Independent variables

Weights

Hidden Layer

Weights

Dependent variable

Prediction

Input units

∆ rule change weights to decrease the error

what we got what we wanted error

Hidden Units and Backpropagation

x_d = input t_d = target output o_d =observed unit output w_i =weight i

 $x_d = input$

 t_d = target output

o_d =observed unit output

w, =weight i

Initialize all weights to small random numbers
 Until convergence, Do

 Input the training example to the network and compute the network outputs $\vec{w} \leftarrow \vec{w} + \eta \sum_{d} (t_d - o_d)o_d(1 - o_d)\vec{x}_d$

 $x_d = input$

t_d = target output

o_d =observed unit output

w, =weight i

Initialize all weights to small random numbers
 Until convergence, Do

- Input the training example to the network and compute the network outputs
- For each output unit k

$$\delta_k \leftarrow o_k^2 (1 - o_k^2)(t - o_k^2)$$

 $x_d = input$

t_d = target output

o_d =observed unit output

w, =weight i

 $\vec{w} \leftarrow \vec{w} + \eta \sum (t_d - o_d) o_d (1 - o_d) \vec{x}_d$

- Initialize all weights to small random numbers
 Until convergence, Do
 - Input the training example to the network and compute the network outputs
 - For each output unit k

$$\delta_k \leftarrow o_k^2 (1 - o_k^2)(t - o_k^2)$$

For each hidden unit h

$$\delta_h \leftarrow o_h^1 (1 - o_h^1) \sum_{k \in outputs} w_{h,k} \delta_k$$

 $x_d = input$

t_d = target output

o_d =observed unit output

w_i =weight i

- $\vec{w} \leftarrow \vec{w} + \eta \sum_{d} (t_d o_d)o_d(1 o_d)\vec{x}_d$
- Initialize all weights to small random numbers
 Until convergence, Do
 - Input the training example to the network and compute the network outputs
 - For each output unit k

$$\delta_k \leftarrow o_k^2 (1 - o_k^2)(t - o_k^2)$$

For each hidden unit h

$$\delta_h \leftarrow o_h^1 (1 - o_h^1) \sum_{k \in outputs} w_{h,k} \delta_k$$

Undate each network weight w_{i,i}

$$w_{i,j} \leftarrow w_{i,j} + \Delta w_{i,j} \text{ where } \Delta w_{i,j} = \eta \delta_j x^j$$

Layer 0

Layer 1 (Hidden) Layer 2 (Output)

- It is doing gradient descent over entire network weight vector
- Easily generalized to arbitrary directed graphs
- Will find a local, not necessarily global error minimum
 - In practice, often works well (can run multiple times)

- It is doing gradient descent over entire network weight vector
- Easily generalized to arbitrary directed graphs
- Will find a local, not necessarily global error minimum
 - In practice, often works well (can run multiple times)
- Often include weight momentum α

$$\Delta w_{i,j}(t) = \eta \delta_j x_{i,j} + \alpha \Delta w_{i,j}(t-1)$$

- Minimizes error over training examples
 - Will it generalize well to subsequent testing examples?
- Training can take thousands of iterations, → very slow!
- Using network after training is very fast

Artificial neural networks – what you should know

- Highly expressive non-linear functions
- Highly parallel network of logistic function units
- Minimizing sum of squared training errors
 - Gives MLE estimates of network weights if we assume zero mean Gaussian noise on output values
- Minimizing sum of sq errors plus weight squared (regularization)
 - MAP estimates assuming weight priors are zero mean Gaussian
- Gradient descent as training procedure
 - How to derive your own gradient descent procedure
- Discover useful representations at hidden units
- Local minima is greatest problem
- Overfitting, regularization, early stopping

Five mins break!

Modern ANN topics: "Deep" Learning

Computer vision features

Spin image

- 1. Needs expert knowledge
 - 2. Time consuming hand-tuning

(e)

and Ng

Using ANN to hierarchical representation

Good Representations are hierarchical

- In Language: hierarchy in syntax and semantics
 - Words->Parts of Speech->Sentences->Text
 - Objects, Actions, Attributes...-> Phrases -> Statements -> Stories
- In Vision: part-whole hierarchy
 - Pixels->Edges->Textons->Parts->Objects->Scenes

"Deep" learning: learning hierarchical representations

Learned Internal Representation

- Deep Learning: learning a hierarchy of internal representations
- From low-level features to mid-level invariant representations, to object identities
- Representations are increasingly invariant as we go up the layers
- using multiple stages gets around the specificity/invariance dilemma

- Neural Networks: Feed-forward*
 - You have seen it
- Autoencoders (multilayer neural net with target output = input)
 - Probabilistic -- Directed: PCA, Sparse Coding
 - Probabilistic Undirected: MRFs and RBMs*
- Recursive Neural Networks*
- Convolutional Neural Nets

Filtering + NonLinearity + Pooling = 1 stage of a Convolutional Net

- [Hubel & Wiesel 1962]:
 - simple cells detect local features
 - complex cells "pool" the outputs of simple cells within a retinotopic neighborhood.
 "Simple cells"

Convolutional Network: Multi-Stage Trainable Architecture

- Hierarchical Architecture
 - Representations are more global, more invariant, and more abstract as we go up the layers
- Alternated Layers of Filtering and Spatial Pooling
 - Filtering detects conjunctions of features
 - Pooling computes local disjunctions of features
- Fully Trainable
 - All the layers are trainable

Convolutional Net Architecture for Hand-writing recognition

- Convolutional net for handwriting recognition (400,000 synapses)
 - Convolutional layers (simple cells): all units in a feature plane share the same weights
 - Pooling/subsampling layers (complex cells): for invariance to small distortions.
 - Supervised gradient-descent learning using back-propagation
 - The entire network is trained end-to-end. All the layers are trained simultaneously.
 - [LeCun et al. Proc IEEE, 1998]

Application: MNIST Handwritten Digit Dataset

3	4	8	1	7	9	b	6	4	١
6	7	5	7	8	6	3	4	8	5
2	ſ	7	9	7	1	a	정	4	5
4	8	ı	9	0	1	8	8	9	4
7	6	ł	8	6	4	/	5	b	0
7	5	9	2	6	5	જ	1	9	7
. 2	2	2	2	r	3	4	4	8	0
D	Ą	3	8	0	7	3	8	5	7
0	1	4	6	4	6	0	2	4	3
7	/	2	8	ኅ	6	9	8	6	1

0	0	0	0	0	0	0	Ô	0	0
1))))	J)))	J
2	2	a	2	2	2	a	2	Z	2
3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4
٤	S	S	S	2	2	S	S	2	2
4	4	۷	4	6	4	4	4	6	4
7	7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8	8
q	q	q	Ģ	9	Q	Q	9	q	q

Handwritten Digit Dataset MNIST: 60,000 training samples, 10,000 test samples

Results on MNIST Handwritten Digits

CLASSIFIER	DEFORMATION	PREPROCESSING	ERROR (%)	Reference
linear classifier (1-layer NN)		none	12.00	LeCun et al. 1998
linear classifier (1-layer NN)		deskewing	8.40	LeCun et al. 1998
pairwise linear classifier		deskewing	7.60	LeCun et al. 1998
K-nearest-neighbors, (L2)		none	3.09	Kenneth Wilder, U. Chicago
K-nearest-neighbors, (L2)		deskewing	2.40	LeCun et al. 1998
K-nearest-neighbors, (L2)		deskew, clean, blur	1.80	Kenneth Wilder, U. Chicago
K-NN L3, 2 pixel jitter		deskew, clean, blur	1.22	Kenneth Wilder, U. Chicago
K-NN, shape context matching		shape context feature	0.63	Belongie et al. IEEE PAMI 2002
40 PCA + quadratic classifier		none	3.30	LeCun et al. 1998
1000 RBF + linear classifier		none	3.60	LeCun et al. 1998
K-NN, Tangent Distance		subsamp 18x18 pixels	1.10	LeCun et al. 1998
SVM, Gaussian Kernel		none	1.40	
SVM deg 4 polynomial		deskewing	1.10	LeCun et al. 1998
Reduced Set SVM deg 5 poly		deskewing	1.00	LeCun et al. 1998
Virtual SVM deg-9 poly	Affine	none	0.80	LeCun et al. 1998
V-SVM, 2-pixel jittered		none	0.68	DeCoste and Scholkopf, MLJ2002
V-SVM, 2-pixel jittered		deskewing	0.56	DeCoste and Scholkopf, MLJ2002
2-layer NN, 300 HU, MSE		none	4.70	LeCun et al. 1998
2-layer NN, 300 HU, MSE,	Affine	none	3.60	LeCun et al. 1998
2-layer NN, 300 HU		deskewing	1.60	LeCun et al. 1998
3-layer NN, 500+ 150 HU		none	2.95	LeCun et al. 1998
3-layer NN, 500+ 150 HU	Affine	none	2.45	LeCun et al. 1998
3-layer NN, 500+300 HU, CE, reg		none	1.53	Hinton, unpublished, 2005
2-layer NN, 800 HU, CE		none	1.60	Simard et al., ICDAR 2003
2-layer NN, 800 HU, CE	Affine	none	1.10	Simard et al., ICDAR 2003
2-layer NN, 800 HU, MSE	Elastic	none	0.90	Simard et al., ICDAR 2003
2-layer NN, 800 HU, CE	Elastic	none	0.70	Simard et al., ICDAR 2003
Convolutional net LeNet-1		subsamp 16x16 pixels	1.70	LeCun et al. 1998
Convolutional net LeNet-4		none	1.10	LeCun et al. 1998
Convolutional net LeNet-5,		none	0.95	LeCun et al. 1998
Conv. net LeNet-5,	Affine	none	0.80	LeCun et al. 1998
Boosted LeNet-4	Affine	none	0.70	LeCun et al. 1998
Conv. net, CE	Affine	none	0.60	Simard et al., ICDAR 2003
Comv net, CE	Bastic	none © Eric Xing @ CMU, 2019	5 0.40	Simard et al., ICDAR 2003

Weaknesses & Criticisms

- Learning everything. Better to encode prior knowledge about structure of images.
- Not clear if an explicit global objective is indeed optimized, making theoretical analysis difficult
 - Many (arbitrary) approximations are introduced
 - Many different loss functions, gate functions, transformation functions are used
 - Many different implementation exist
- Comparison is based on the end empirical results on downstream task, not the actual direct task DNN is designed to compute, make verification and tuning of components of DNN very hard.

That's all!