# Очень краткое введение в математический анализ для оценщиков

# К. А. Мурашев

# 31 октября 2021 г.

Какую бы работу не выполнял оценщик, во всех случаях он имеет дело с информацией и данными. Часто эти данные представляют собой числа либо могут быть формализованы иным образом. В любом случае требуется алгоритмическая обработка входных данных и преобразование их в информацию, а в некоторых случаях — в знания. Целью данного фрагмента является формирование общих представлений об основных понятиях и методах математического анализа, необходимых современному оценщику. Материал построен таким образом, при котором существует возможность ссылаться на него при решении практически всех математических задач, возникающих у оценщиков, начиная со школьной программы 5-класса, заканчивая математическим анализом, в объёме преподаваемом на нематематических специальностях вузов. Специфические вопросы, касающиеся частотного подхода в математической статистике, байесовского подхода, а также математических методов, применяемых в машинном обучении, а также иных специфических методов, выходящих за рамки программы нематематических специальностей, рассмотрены в отдельных материалах. Автор постарался прибегать к минимальному числу формул и сложных определений, хотя это и не вполне получилось. Поскольку конечной целью всей работы является цифровизация оценочной деятельности, в тексте приводятся короткие листинги на языках R и Python, позволяющие реализовать то, о чём говорится в тексте.

# Содержание

| 1. | Некоторые особенности материала                  |   |  |  |  |  |
|----|--------------------------------------------------|---|--|--|--|--|
|    | 1.1. Список обозначений                          | 2 |  |  |  |  |
| 2. | Основные понятия                                 |   |  |  |  |  |
|    | 2.1. Виды чисел                                  | 4 |  |  |  |  |
|    | 2.2. Элементарные формулы, уравнения и пропорции | ( |  |  |  |  |

| 3. Последовательности |                         |                              |    |  |  |
|-----------------------|-------------------------|------------------------------|----|--|--|
|                       | 3.1.                    | Понятие множества            | 7  |  |  |
|                       | 3.2.                    | Понятие отображения множеств | 8  |  |  |
|                       | 3.3.                    | Примеры последовательностей  | 9  |  |  |
|                       | 3.4.                    | Пределы последовательностей  | 10 |  |  |
| 4.                    | Лога                    | рифмы                        | 11 |  |  |
| 5.                    | Функции и непрерывность |                              |    |  |  |
| 6.                    | Производные             |                              |    |  |  |
| 7.                    | Инте                    | гралы                        | 11 |  |  |

# 1. Некоторые особенности материала

#### 1.1. Список обозначений

Все обозначения, используемые в материале, соответствуют общепринятым в математике. Далее приводится краткая шпаргалка [2].

- № множество натуральных чисел, т.е. таких чисел, которые получаются при счёте объектов: 1, 2, 3, 4, 5 . . .. Наименьшее натуральное число 1. Наибольшего натурального числа не существует. Натуральный ряд это последовательность всех натуральных чисел. В натуральном ряду каждое число больше предыдущего на 1. Натуральный ряд бесконечен, наибольшего натурального числа в нём не существует.
- $\mathbb{Z}$  множество **целых чисел**, включающее в себя *натуральные числа*, все числа противоположные им по знаку, а также число ноль.
- $\mathbb{Q}$  множество рациональных чисел, т.е. дробей вида  $\frac{m}{n}$ , где  $m \in \mathbb{Z}$  и  $n \in \mathbb{N}$ . [
- множество **иррациональных чисел**, т.е. , бесконечных непериодических дробей. Примерами являются  $\sqrt{2}$ , число  $\pi \approx 3.15159$ , число  $e \approx 2.718281828459$  и т.д.
- $\mathbb{R}$  множество **вещественных (действительных) чисел**, содержащее в себе все рациональные и иррациональные числа.
- $\in$  оператор принадлежности. Запись  $x \in \mathbb{Z}$  означает «х принадлежит к множеству *целых чисел*» либо «х является *целым числом*».
- $x \in X : a$  означает подмножество множества X, состоящее из элементов, удовлетворяющих условию a.
- $A \bigcup B$  объединение множеств A и B.
- $A \cap B$  пересечение множеств A и B.
- $A\subset B$  множество A является подмножеством множества B.

- $A \backslash B$  разность множеств A и B.
- $A\triangle B$  симметричная разность множеств A и B.
- A' Дополнение к множеству <math>A.
- $\bigcup\limits_{k=1}^{n}A_{k}$  объединение всех множеств  $A_{1},A_{2},\ldots,n.$
- $\bigcap_{k=1}^n A_k$  пересечение всех множеств  $A_1, A_2, \dots, n$ .
- $\mathbf{E}$  пустое множество.
- $M_{A}$  множество всех подмножеств множества A.
- [a,b] **отрезок** между числами a и b т. е. множество вещественных чисел, лежащих между числами a и b, включая сами числа a и b. На математическом языке это можно записать как  $[a,b]=x\in\mathbb{R}:a\leq x\leq b$ . При a=b отрезок состоит из одной точки и называется вырожеденным отрезком.
- (a,b) **интервал** между числами a и b т. е. множество вещественных чисел, лежащих строго между a и b, не включая их самих. На математическом языке это можно записать как  $(a,b)=x\in\mathbb{R}:a< x< b$ .
- [a,b),(a,b] полуинтервалы между числами a и b:  $[a,b) = \{x \in \mathbb{R} : a \le x < b\},$   $(a,b] = \{x \in \mathbb{R} : a < x \le b\}.$
- $[a, +\infty)$  луч:  $[a, +\infty)$ ] =  $\{x \in \mathbb{R} : a \le x\}$ .
- $(a, +\infty)$  луч:  $(a, +\infty)$ ] =  $\{x \in \mathbb{R} : a < x\}$ .
- $(-\infty, b] \text{луч: } (-\infty, b] = \{x \in \mathbb{R} : x \le b\}.$
- $(-\infty, b)$  луч:  $(-\infty, b) = \{x \in \mathbb{R} : x < b\}.$
- **Промежуток** *отрезок*, *интервал* либо *полуинтервал*. Промежуток любого из четырех типов обозначается  $\langle a,b \rangle$ . В рамках одного утверждения запись  $\langle a,b \rangle$  всегда обозначает один и тот же подвид промежутка.
- $\langle a,b \rangle$  любой из двух промежутков (a,b) и [a,b).
- ∀ квантор всеобщности, используется для сокращённой записи вместо понятий «каждый», «любой», или «для всякого», «для любого» и т.п.
- ∃ квантор существования, используется для сокращённой записи вместо слов «найдётся», «существует» и т. п.
- $\sum\limits_{k=n}^n a_k$  сумма чисел  $a_k$  по k от m до n, т. е.  $a_m+a_{m+1}+a_{m+1}+\ldots+a_n$ .
- $f: X \to Y$  функция, заданная на множестве X, множество значений которой лежит в Y (но необязательно с ним совпадает).
- : в формулах означает выражение «при условии», например  $x^3 > 0 : x > 0$ .

## 2. Основные понятия

#### 2.1. Виды чисел

Натуральными числами называются такие числа, которые используются для подсчёта количества объектов. Например, количество входов торгово-развлекательного комплекса выражается натуральным числом. Множество натуральных чисел обозначается символом № (понятие множества рассмотрено в 3.1). Примерами натуральных чисел являются: 1, 2, 3, 4, 5 . . .. Наименьшее натуральное число — 1. Наибольшего натурального числа не существует. Натуральный ряд — это последовательность всех натуральных чисел. В натуральном ряду каждое число больше предыдущего на 1. Натуральный ряд бесконечен, наибольшего натурального числа в нём не существует. О не является натуральным числом.

**Целыми числами** являются все *натуральные числа*, все числа противоположные им по знаку, а также число ноль. Множество целых чисел обозначается символом  $\mathbb{Z}$ .

**Рациональными числами** являются дроби вида  $\frac{m}{n}$ , где  $m \in \mathbb{Z}$  и  $n \in \mathbb{N}$ . Множество рациональных чисел обозначается символом  $\mathbb{Q}$ .

**Иррациональными числами** называют бесконечные непериодические дроби, например  $\sqrt{2}$ , число  $\pi \approx 3.15159$ , число  $e \approx 2.718281828459$  и т. д. Множество иррациональных чисел обозначается символом  $\mathbb{I}$ .

Вещественными (действительными) числами называют множество чисел включающее в себя множества рациональных и иррациональных чисел. Множество вещественных чисел обозначается символом  $\mathbb{R}$ .

**Комплексными числами) числами** называют расширение множества вещественных чисел. Такие числа могут быть записаны в виде z=x+iy, где i—мнимая единица, для которой выполняется равенство  $i^2=-1$ . Множество комплексных чисел обозначается символом  $\mathbb C$ .

Помимо вышеперечисленных видов чисел также существуют **кватернионы** ( $\mathbb{I}$ ), **октонионы** ( $\mathbb{O}$ ), **седенионы** ( $\mathbb{S}$ ), **адели** и **идели**. Однако их рассмотрение в данном материале является избыточным.

Общая иерархия чисел может быть записана выражением

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C} \subset \mathbb{H} \subset \mathbb{O} \subset \mathbb{S}. \tag{1}$$

На естественном языке это звучит как «все натуральные числа являются целыми числами, но не все целые — натуральными, все целые числе являются рациональными, но не все рациональные — целыми и т. д.». На математическом языке это звучит как «множество натуральных чисел является подмножеством целых чисел, множество целых — подмножеством рациональных и т. д.». Данная иерархия показана

графически на рисунке 1. Как правило, в практике оценки стоимости работа осуществляется с *вещественными числами* и их подмножествами.

В отношении натуральных чисел допустимыми являются все 4 арифметические операции.



Рис. 1. Иерархия типов чисел [5]

#### 2.2. Элементарные формулы, уравнения и пропорции

Две величины npsmo nponopuuoнальны друг другу, если изменение значения одной из них в m раз влечёт за собой такое же изменение другой.

$$\frac{a}{b} = \frac{c}{x}$$

$$xa = bc$$

$$x = \frac{bc}{a}$$
(2)

Две величины *обратно пропорциональны* друг другу, если увеличение (уменьшение) значения одной из них в m раз влечёт за собой уменьшение (увеличение) значения другой также в m раз.

$$\frac{a}{b} = \frac{c}{x}$$

$$xb = ac$$

$$x = \frac{ac}{b}$$
(3)

Пример 2.1. Для отопления здания строительным объёмом 2000 куб. м необходима отопительная система мощностью 68 кВт. Какова потребная мощность отопительной системы для здания строительным объёмом 2000 куб. м?

$$\frac{68}{2000} = \frac{x}{2500}$$

$$2000x = 68 \times 2500$$

$$2000x = 170000$$

$$x = \frac{170000}{2000}$$

$$x = 85$$

Ответ: для здания строительным объёмом  $2500~{\rm ky}$ б. м необходима система мощностью  $85~{\rm kBr}$ .

Пример~2.2. Резец токарного станка утрачивает свои свойства и нуждается в обслуживании после 30 дней эксплуатации при ежедневном односменном использовании (1 смена — 8 часов). Через сколько дней потребуется обслуживание резца при трёхсменной работе?

$$\frac{1}{3} = \frac{30}{x}$$
$$3x = 30$$
$$x = \frac{30}{3}$$
$$x = 10$$

Ответ: при трёхсменной работе обслуживание резца потребуется через 10 дней.

# 3. Последовательности

#### 3.1. Понятие множества

Под множеством понимают совокупность, класс или собрание объектов безразлично какой природы. Согласно определению основоположника теории множеств Г. Кантора [4], множество — это собрание предметов одинаковых или различных между собой, мыслимое как единое целое. Собрание предметов рассматривается как один предмет. Не следует понимать множество как совокупность действительно существующих предметов, принадлежность предметов одному множества не требует от них сосуществования во времени и пространстве. В логике множество понимается как абстрактный объект, в котором каждый предмет рассматривается с точки зрения признаков, по которым данный предмет принадлежит данному множеству. В множестве предметы становятся неразличимыми друг от друга по признакам и их только по именам.

Объект, принадлежащий данному множеству, называется его **элементом**. Множество обозначается заглавными латинскими буквами A, B, C... Элементы, входящие в множество, обозначаются строчными латинскими буквами и заключаются в фигурные скобки:  $\{a,b,c\}$ .

Множество, содержащее конечное число элементов, называется **конечным**, а бесконечное число элементов—**бесконечным**.

Два множества называются **равными**, если содержат одинаковые элементы (A=2,4,8=B=2,2,4,8).

Элементами множества могут быть другие множества A=2,3,4,5. При этом  $A=2,3,4,5\neq B=2,3,4,5$ .

*Множесство*, не содержащее ни одного элемента, называется **пустым множеством**.

*Пустое множество* и само множество называются **несобственными** подмножествами множества, все остальные подмножества— **собственными**.

*Множество* называется **заданным**, если перечислены все входящие в него элементы либо определены признаки, по которым данный объект можно отнести к данному множеству:

 $A = \{x, P(x)\}$  — x — элементы множества, P(x) — свойства элементов данного множества.

$$B = \{x, x = 2n, n \in \mathbb{N}\}$$
 — множество чётных чисел.

Если *множеество* задано своим свойством, то нельзя заранее сказать, будут ли в нём элементы.

Если множество A содержит n элементов, количество его подмножеств составляет

$$|M_a| = 2^n, (4)$$

где *n* — число элементов множества.

Пример 3.1. Дано:

```
A = \{a, b, c, d, e, f, g\}
B = \{f, g, v, w, x, y, z\}
C = \{a, b\}
Тогда:
C \subset A
A \bigcup B = \{a, b, c, d, e, f, g, v, w, x, y, z\}
A \cap B = \{f, g\}
A \setminus B = \{a, b, c, d, e\}
B \setminus A = \{v, w, x, y, z\}
A \triangle B = \{a, b, c, d, e, v, w, x, y, z\}
A \triangle B = \{a, b, c, d, e, v, w, x, y, z\}
A \cap B = \{a, b, c, d, e\}
A \cap B = \{a, b, c, d, e\}
A \cap B = \{a, b, c, d, e\}
A \cap B = \{a, b, c, d, e\}
A \cap B = \{a, b, c, d, e\}
A \cap B = \{a, b, c, d, e\}
A \cap B = \{a, b, c, d, e\}
A \cap B = \{a, b, c, d, e\}
A \cap B = \{a, b, c, \{ab\}, \{ac\}, \{bc\}, \{a, b, c\}\}
A \cap B = \{a, b, c, \{ab\}, \{ac\}, \{bc\}, \{a, b, c\}\}
A \cap B = \{a, b, c, d, e\}
```

**Теорема 3.3.** Пустое множество является подмножеством любого множества. End.[3]

## 3.2. Понятие отображения множеств

Большую роль в математике имеет установление связей между двумя множествами X и Y, связанное с рассмотрением пар объектов, образованных из элементов первого множества и соответствующих им элементов второго множества. Особое значение при этом имеет *отображение множеств*.

Пусть X и Y — произвольные множества. Отображением множества X на множество Y называется  $\forall$  правило f, по которому каждому элементу множества X сопоставляется вполне определённый (единственный) элемент множества Y. Тот факт, что f есть отображение X в Y, кратко записывают в виде: f: X - > Y.

Таким образом, для того чтобы задать отображение f множества в множество Y, надо каждому элементу  $x \in X$  поставить в соответствие один и только один элемент  $y \in Y$ . Если при этом элементу  $\in$  сопоставлен элемент  $y \in Y$ , то y называют **образом элемента**, а — **прообразом элемента** у при отображении f, что записывается в виде f(x) = y.

Из определения отображения f следует, что у каждого элемента x из есть только один образ в Y, однако для элемента y из Y может быть несколько прообразов. Множество всех прообразов элемента y из Y называется его полным прообразом и обозначается через  $f^{-1}(y)$ . Таким образом,  $f^{-1}(y) = x \in X | f(x) \in y$ .

Если множества и Y числовые, то f называется функцией.

На первый взгляд может показаться, что всё вышеизложенное не имеет отношения к оценочной деятельности и не имеет практического применения в ней. Однако данное мнение является заблуждением. Оценщики очень часто сталкиваются с понятием функции. Например, замена исходных значений признака на его квадрат либо

логарифм являются типичными примерами отображения множеств. Так, например в [1] утверждается, что использование логарифмов значений цен позволяет избежать систематического завышения результатов оценки. В таблицах  $1,\,2$  показаны примеры отображения при которых f представляет собой операцию возведения числа в квадрат и операцию логарифмирования соответственно.

Таблица 1. Отображение множества при  $f=^2$ 

| X  | f | У  |
|----|---|----|
| -5 | 2 | 25 |
| -2 | 2 | 4  |
| -1 | 2 | 1  |
| 0  | 2 | 0  |
| 1  | 2 | 1  |
| 2  | 2 | 4  |
| 5  | 2 | 25 |

Таблица 2. Отображение множества при f = log

| X  | f      | У     |
|----|--------|-------|
| 1  | log    | 0.000 |
| 2  | $\log$ | 0.693 |
| 3  | $\log$ | 1.099 |
| 5  | $\log$ | 1.609 |
| 8  | $\log$ | 2.079 |
| 13 | $\log$ | 2.565 |
| 21 | $\log$ | 3.045 |

# 3.3. Примеры последовательностей

Последовательностью называется отображение множества натуральных числе во множество вещественных чисел, т.е.  $\mathbb{N}->\mathbb{R}$ . Наиболее простым и очевидным способом задания последовательности явным образом путём перечисления её членов, например  $x_1, x_2, x_3, x_4, \ldots, x_n$ . Можно также использовать задание последовательности с помощью формул либо словесных описаний. Например, последовательность квадратов натуральных чисел можно задать с помощью формулы

$$x_n = x^2. (5)$$

Последовательность десятичных знаков числа  $\pi$  может быть задана формулой

$$x_n = \frac{[10^{n-1}\pi]}{10^{n-1}} \tag{6}$$

В ряде случаев задание последовательности может быть выполнено графически. Например для задания последовательности  $1,0,-1,0,1,0,-1,0,1,\ldots$  можно использовать функцию

 $x_n = \sin \frac{\pi n}{2}. (7)$ 

Графически такое отображение показано на рисунке 2, на котором заглавными латинскими буквами показаны элементы последовательности.



Рис. 2. Графическое отображение последовательности  $1, 0, -1, 0, 1, 0, -1, 0, 1, \dots$ 

#### 3.4. Пределы последовательностей

Рассмотрим для примера уже знакомую ранее последовательность  $1,0,-1,0,1,0,-1,0,1,\ldots$ , а затем другую:  $1,1.5,1,41666,1.41421566862\ldots,1.4142135623\ldots$ , задаваемую рекуррентно с помощью формулы

$$y_{n+1} = \frac{1}{2}(y_n + \frac{2}{y_n}), y_1 = 1.$$
 (8)

Как видно, данные последовательности имеют принципиальное отличие: члены первой последовательности чередуются, второй — приближаются к некоторому числу (квадратному корню из числа 2). Предел последовательности имеет форму записи

$$\lim_{n \to \infty} x_n = l. \tag{9}$$

Данную запись можно описать как:

- l есть предел последовательности  $x_n$  либо
- ullet последовательность  $x_n$  сходится к n, либо
- последовательность  $x_n$  стремится к n.

Из этого следует, что для любого интервала, содержащего точку l, вне его находится лишь конечное число последовательности. При этом неважно, является данный интервал произвольным либо симметричным относительно этой точки, поскольку любой интервал может быть уменьшен либо увеличен для симметричного. Таким образом во всех случаях можно вести речь о симметричных интервалах. Из этого следует:

- при любом  $\epsilon > 0$  вне интервала  $(l \epsilon, l + \epsilon)$  находится лишь конечное число членов последовательности;
- для любого  $\epsilon>0$  найдётся такой номер N, что  $|x_n-l|<\epsilon,$  при всех  $n\geq N;$
- с помощью кванторов, описанных в 1.1, два вышеуказанных утверждения можно записать кратко:  $\forall \epsilon > 0 \;\; \exists \;\; N \;\;\; \forall n \geq N \;\;\; |x_n l| < \epsilon.$

Рассмотрим пример. Возьмём последовательность

$$\lim_{n \to \infty} \frac{n^2}{n^2 + 1} = 1 \tag{10}$$

и покажем, что она стремится к 1. Для этого оценим модуль разности и найти такое n, при котором он будет меньше 1.

$$\left|\frac{n^2}{n^2+1}-1\right| = \frac{1}{n^2+1} < \frac{1}{n^2} < \epsilon \quad \text{при } n \ge \left[\epsilon^{\left(-\frac{1}{2}\right)}+1\right]. \tag{11}$$

- 4. Логарифмы
- 5. Функции и непрерывность
- 6. Производные
- 7. Интегралы

# Источники информации

[1] М. Б. Ласкин и С. В. Пупенцова. «Логарифмическоераспределение цен на объекты недвижимости». В: Имущественные отношения в Российской Федерации 5(15) (2014), с. 52—59.

#### Искусственный интеллект в оценке стоимости

- [2] Computer Science Center. Введение в математический анализ. 2021. URL: https://stepik.org/course/95/info (дата обр. 22.10.2021).
- [3] studopedia.ru. Основные определения: множеество. URL: https://studopedia.ru/11\_34535\_osnovnie-opredeleniya.html (дата обр. 22.10.2021).
- [4] Wikipedia. *Kahmop*, *Teops*. URL: https://ru.wikipedia.org/wiki/%D0%9A%D0% B0%D0%BD%D1%82%D0%BE%D1%80,\_%D0%93%D0%B5%D0%BE%D1%80%D0%B3 (дата обр. 23.10.2021).
- [5] Wikipedia. *Число*. URL: https://ru.wikipedia.org/wiki/%D0%A7%D0%B8%D1% 81%D0%BB%D0%BE (дата обр. 28.10.2021).