CLAIMS:

Having thus described my invention, what I claim as new, and desire to secure by Letters Patent is:

1	1. An automatic flowcharting method for diagrammatically representing a
2	multi-nodal process comprising processing operations and decision operations, said
3	method comprising:
4	(a) converting processing operations and decision operations of said multi-
5	nodal process into a data structure;
6	(b) analyzing said data structure for identifying a first group of processing
7	operations that appear once in said data structure, and for identifying a second group of
8	processing operations that are associated with two or more decision operations in said
9	data structure;
0	(c) traversing said data structure to generate an ordered sequence of
11	processing operations for visual representation; and
12	(d) generating a diagrammatic representation of said ordered sequence
13	including orienting successive processing operations in a vertical dimension and
14	associating attributes to each processing operation of said processing operations
15	according to their identified group while offsetting each successive processing operation
16	in a horizontal dimension, and linking each processing operation of said second group to
17	a further processing step of said processing steps according to a decision operation of
18	said two or more decision operations.

1	2. The automatic flowcharting method according to Claim 1, said method
2	further comprising the step of:
3	associating a first visual attribute to said processing operations in said first
4	selected group and a second visual attribute to said processing operations in said second
5	selected group.
1	3. The automatic flowcharting method according to Claim 2, wherein said
2	first visual attribute is a first color.
1	4. The automatic flowcharting method according to Claim 2, wherein said
2	second visual attribute s a second color.
1	5. The automatic flowcharting method according to Claim 1, said
2	analyzing step further comprising:
3	identifying a third group of processing operations that repeatedly appear in
4	said data structure.
1	6. The automatic flowcharting method according to Claim 5, said
2	analyzing step further comprising:
3	associating a third visual attribute to said processing operations in said
4	third group.
1	7. The automatic flowcharting method according to Claim 6, wherein said
2	third visual attribute is a third color.

1	8. The automatic flowcharting method according to Claim 1, said method
2	further comprising a step of:
3	reading an input file containing said processing operations and said
4	decision operations for said multi-nodal process, said processing operations and said
5	decision operations being arranged into a plurality of records each of said plurality of
6	records containing a first processing operation, a second processing operation and a
7	decision operation.
1	9. The automatic flewcharting method according to Claim 8, said method
2	further comprising a step of:
3	automatically exporting said processing operations and said decision
4	operations for said multi-nodal process from a database into said input file.
1	10. The automatic flowcharting method according to Claim 1, said
2	analyzing step further comprising a step of:
3	detecting deadlock conditions in said sequence.
1	11. The automatic flowcharting method according to Claim 1, wherein the
2	linking of each processing operation of said second group includes aligning said
3	processing operation to said further processing step in said vertical dimension.
1	12. The automatic flowcharting method according to Claim 1, wherein
2	said each successive processing operation is offset in said horizontal dimension relative
3	to an immediate prior processing operation.
	FIS920000097US1 -25

1	13. The automatic flowcharting method according to Claim 1, said method
2	further comprising a step of:
3	writing an output file for said generated diagrammatic representation of
4	said multi-nodal process.
1	14. The automatic flowcharting method according to Claim 13, wherein
2	said output file is written in a markup language for presentation in a web-enabled
3	browser.
1 2	15. The automatic flowcharting method according to Claim 14 wherein said output file is transmitted over a communications network.
1	16. The automatic flowcharting method according to Claim 15 wherein
2	said communications network is one selected from the group comprising:
3	an Intranet, and
4	the Internet.
1	17. An automatic flowcharting system for diagrammatically representing a
2	multi-nodal process comprising processing operations and decision operations in a client-
3	server environment, said system comprising:
4	(a) a server interconnected via a communications network to a client, said
5	server including:
6	(i) a mechanism for converting processing operations and decision
7	operations of said multi-nodal process into a data structure;

8	(ii) a mechanism for analyzing said data structure for identifying a
9	first group of processing operations that appear once in said data structure, and for
10	identifying a second group of processing operations that are associated with two or more
11	decision operations in said data structure; and
12	(iii) a mechanism for traversing said data structure to generate and
13	ordered sequence of processing operations for visual representation;
14	(iv) a mechanism for generating a diagrammatic representation of
15	said ordered sequence including orienting said processing operations in a vertical
16	dimension and associating attributes to each processing operation of said processing
17	operations according to their identified group while offsetting each successive processing
18	operation in a horizontal dimension, and linking each processing operation of said second
19	group to a further processing step of said processing steps according to a decision
20	operation of said two or more decision operations;
21	(b) said client for receiving said generated diagrammatic representation of
22	said multi-nodal process via said communications network in a form for presentation by
23	said client.
l	18. The automatic flowcharting system according to Claim17, said server
2	further including:
3	a mechanism for associating a first visual attribute o said processing
4	operations in said first group and a second visual attribute to said processing operations
5	in said second group.
	-

1	19. The automatic flowcharting system according to Claim 18, wherein
2	said first visual attribute is a first color.
1	20. The automatic flowcharting system according to Claim 18, wherein
2	said second visual attribute is a second color.
1	21. The automatic flowcharting system according to Claim 17, said
2	mechanism for analyzing further comprising:
3	a mechanism for identifying a third group of processing operations that
4	repeatedly appear in said data structure.
1	22. The automatic flowcharting system according to Claim 21, said
2	mechanism for analyzing further comprising:
3	a mechanism for associating a third visual attribute to said third group of
4	processing operations.
1	23. The automatic flowcharting system according to Claim 22, wherein
2	said third visual attribute is a third color.
1	24. The automatic flowcharting system according to Claim 17, said server
2	further including:
3	a mechanism for reading an input file containing said processing
4	operations and said decision operations for said multi-nodal process, said processing
5	operations and said decision operations being arranged into a plurality of records each of

-28

- said plurality of records containing a first processing operation, a second processing
- 2 operation and a decision operation.
- 25. The automatic flowcharting system according to Claim 24, said server
- 2 further including:
- a mechanism for automatically exporting said processing operations and
- 4 said decision operations for said multi-nodal process from a database into said input file.
- 26. The automatic flowcharting system according to Claim 17, said
- 2 mechanism for analyzing further comprising:
- a mechanism for detecting deadlock conditions in said sequence.
- 27. The automatic flowcharting system according to Claim 17, wherein in
- 2 the mechanism for generating, each processing operation of said second selected group is
- 3 vertically linked to said further processing step of said processing steps.
- 28. The automatic flowcharting system according to Claim 17, said
- 2 mechanism for generating further comprising:
- a mechanism for determining a horizontal indentation for each successive
- 4 processing operation of said processing operations.
- 29. The automatic flowcharting system according to Claim 17, said server
- 2 further including:

1	a mechanism for writing an output file of said generated diagrammatic
2	representation of said multi-nodal process.
1	30. The automatic flowcharting system according to Claim 28, wherein
2	said output file is written in a markup language for presentation in a web-enabled
3	browser by said client.
1	31. The automatic flowcharting system according to Claim 30, wherein
2	said output file is transmitted over said communications network.
1	32. The automatic flowcharting method according to Claim 31, wherein
2	said communications network is one selected from the group comprising:
3	an Intranet, and
4	the Internet.
1	33. A program storage device readable by a machine, tangibly embodying
2	a program of instructions executable by the machine to perform an automatic
3	flowcharting method for diagrammatically representing a multi-nodal process comprising
4	processing operations and decision operations, said method comprising:
5	(a) converting processing operations and decision operations of said multi-
6	modal process into a data structure;
7	(b) analyzing said data structure for identifying a first group of processing
8	operations that appear once in said data structure, and for identifying a second group of

11

12

9	processing operations that are associated with two or more decision operations in said
10	data structure; and

- (c) traversing said data structure to generate an ordered sequence of processing operations for visual representation;
- including orienting said processing operations of in a vertical dimension and associating attributes to each processing operation of said processing operations according to their identified group while offsetting each successive processing operation of said in a horizontal dimension, and linking each processing operation of said second group to a further processing operation of said processing operations according to a decision operation of said two or more decision operations.
 - 34. The program storage device according to Claim 33, said method further comprising the step of:
 - associating a first visual attribute to said processing operations in said first group and a second visual attribute to said processing operations in said second group.
 - 35. The program storage device according to Claim 34, wherein said first visual attribute is a first color.
 - 36. The program storage device according to Claim 34, wherein said second visual attribute is a second color.

1	37. The program storage device according to Claim 33, said analyzing step
2	further comprising:
3	identifying a third group of processing operations that repeatedly appear in
4	said data structure.
1	38. The program storage device according to Claim 37, said analyzing
2	step further comprising:
3	associating a third visual attribute to said third group of processing
4	operations
1	39. The program storage device according to Claim 38, wherein said third
2	visual attribute is a third color
1	40. The program storage device according to Claim 33, said method
2	further comprising a step of:
3	reading an input file containing said processing operations and said
4	decision operations for said multi-nodal process, said processing operations and said
5	decision operations being arranged into a plurality of records each of said plurality of
6	records containing a first processing operation, a second processing operation and a
7	decision operation.
1	41. The program storage device according to Claim 40, said method
2	further comprising a step of:

1	automatically exporting said processing operations and said decision
2	operations for said multi-nodal process from a database into said input file.
1	42. The program storage device according to Claim 33, said analyzing
2	step for determining a sequence further comprising a step of:
3	detecting deadlock conditions in said sequence.
1	43. The program storage device according to Claim 33, wherein the
2	linking of each processing operation of said second group includes visually aligning said
3	processing operation in said vertical dimension to said further processing step.
1	44. The program storage device according to Claim 33, wherein said each
2	successive processing operation is offset in said horizontal dimension relative to an
3	immediate prior processing operation.
1	45. The program storage device according to Claim 33, said method
2	further comprising a step of:
3	writing an output file of said generated diagrammatic representation of
4	said multi-nodal process.
1	46. The program storage device according to Claim 45, wherein said
2	output file is written in a markup language for presentation in a web-enabled browser.
1	47. The program storage device according to Claim 46, wherein said
2	output file is transmitted over a communications network.
	FIS92000097US1 -33

- 1 48. The program storage device according to Claim 47, wherein said
- 2 communications network is one selected from the group comprising:
- an Intranet, and
- 4 the Internet.