Q1: Let M be a metric space such that for a set is compact if and only if it compact. We define (a_n) to be a cauchy sequence in M. We first claim that (a_n) is a bounded sequence. Recalling the definition of a Cauchy Sequence, we choose $\varepsilon=1$. Then for some $N\in\mathbb{N}$, and for all $n,m\geq N$, we have that $|a_n-a_m|<1$. Setting $d=\max\{d(a_i,a_j):1\leq i,j\leq N\}$ and taking M=d+1, we see that $(a_n)\subset B_{M+1}(a_N)$ Thus, any cauchy sequence in this space is bounded. Let B be the closed ball containing (a_n) . This is a closed and bounded set and hence is compact by assumption. Thus, for our sequence (a_n) there must exist some convergent subsequence (a_{n_k}) . Let a be the limit of this subsequence. We claim that (a_n) converges to a. Let $\frac{\varepsilon}{2}>0$. By convergence, there exists some $N\in\mathbb{N}$ such that for all $n\geq N$, $d(a_{n_k},a)<\frac{\varepsilon}{2}$. Similarly, by Cauchy, for $\frac{\varepsilon}{2}>0$ there is some $K\in\mathbb{N}$ such that for all $m,n\geq K$, $d(a_n,a_m)<\frac{\varepsilon}{2}$. If we take $L=\max(N,K)$ and $n_k,n>L$ we see that by the triangle inequality

$$d(a, a_n) \le d(a_n, a_{n_k}) + d(a_{n_k}, a) < \varepsilon$$

And so our cauchy sequence converges. Thus this space M is complete.