Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Факультет інформатики та обчислювальної техніки Кафедра обчислювальної техніки

Лабораторна робота №5

з дисципліни « Методи оптимізації та планування » на тему «Проведення трьохфакторного експерименту при використанні рівняння регресії з урахуванням квадратичних членів (центральний ортогональний композиційний план)»

Виконав:

студент II курсу ФІОТ

групи ІО – 92

Грисюк Дмитро

Номер залікової книжки: ІО - 9207

Перевірив:

ст. вик. Регіда П.Г.

Мета роботи: провести трьохфакторний експеримент з урахуванням квадратичних членів, використовуючи центральний ортогональний композиційний план. Знайти рівняння регресії, яке буде адекватним для опису об'єкту.

Завдання на лабораторну роботу:

- 1. Взяти рівняння з урахуванням квадратичних членів.
- 2. Скласти матрицю планування для ОЦКП.
- 3. Провести експеримент у всіх точках факторного простору (знайти значення функції відгуку Y). Значення функції відгуку знайти у відповідності з варіантом діапазону, зазначеного далі. Варіанти вибираються по номеру в списку в журналі викладача.

$$y_{i\max} = 200 + x_{cp\max}$$
 $y_{i\min} = 200 + x_{cp\min}$ де $x_{cp\max} = \frac{x_{1\max} + x_{2\max} + x_{3\max}}{3}$, $x_{cp\min} = \frac{x_{1\min} + x_{2\min} + x_{3\min}}{3}$

- 4. Розрахувати коефіцієнти рівняння регресії і записати його.
- 5. Провести 3 статистичні перевірки.

Варіант завдання:

[№ _{варіанта}	Х	ζ ₁	Х	12	X ₃			
		min	max	min	max	min	max		
_ -	204	5	5	5	6	1	Q		
L	204	-3	3	-3	0	-4	0		

Роздруківка тексту програми:

```
from math import sqrt
from scipy.stats import f, t
from functools import partial
from random import randint
from numpy.linalg import solve
x_{avg} = [(max(x1) + max(x2) + max(x3)) / 3, (min(x1) + min(x2) + min(x3)) / 3] #
xo = [(min(x1) + max(x1)) / 2, (min(x2) + max(x2)) / 2, (min(x3) + max(x3)) / 2] #
delta_x = [max(x1) - xo[0], max(x1) - xo[1], max(x1) - xo[2]] # delta Xi
y_range = [200 + int(max(x_avg)), 200 + int(min(x_avg))] # Yi(max) & Yi(min)
[-1, -1, +1, +1, -1, -1, +1, +1, 0, 0, -1.215, 1.215, 0, 0, 0],
            [-1, +1, -1, +1, -1, +1, -1, +1, 0, 0, 0, 0, -1.215, 1.215, 0]
xx = \lceil \lceil int(x * y) \text{ for } x, y \text{ in } zip(xn[1], xn[2]) \rceil, # нормовані значення факторів для
            [int(x * y) for x, y in zip(xn[1], xn[3])],
             [int(x * y) for x, y in zip(xn[2], xn[3])]]
xxx = [int(x * y * z) for x, y, z in zip(xn[1], xn[2], xn[3])]
x_x = [[round(xn[j][i] ** 2, 3) for i in range(N)] for j in range(1, m+1)] #
x = [[min(x1), min(x1), min(x1), min(x1), max(x1), max(
1 * delta_x[0] + xo[0], 3),
            round(1 * delta_x[0] + xo[0], 3), xo[0], xo[0], xo[0], xo[0], xo[0]], #
натуральні значення факторів
          [\min(x2), \min(x2), \max(x2), \max(x2), \min(x2), \min(x2), \max(x2), \max(x2), xo[1],
            round(-1 * delta_x[1] + xo[1], 3), round(1 * delta_x[1] + xo[1], 3), xo[1],
xo[1], xo[1]],
          [min(x3), max(x3), min(x3), max(x3), max(x3), min(x3), max(x3), min(x3), xo[2],
xo[2], xo[2], xo[2],
            round(-1 * delta_x[2] + xo[2], 3), round(1 * delta_x[2] + xo[2], 3), xo[2]]
xx2 = [[round(x * y, 3) for x, y in zip(x[0], x[1])], # натуральні значення факторів
для ефекту взаємодії
              [round(x * y, 3) for x, y in zip(x[0], x[2])],
              [round(x * y, 3) for x, y in zip(x[1], x[2])]
xxx2 = [round(x * y * z, 3) for x, y, z in zip(x[0], x[1], x[2])]
x_x = [[round(x[j][i] ** 2, 3) for i in range(N)] for j in range(m)] # натуральні
значення факторів для квадрат. членів
while True:
```

```
y = [[round(randint(min(y_range), max(y_range)), 4) for i in range(m)] for j in
range(N)] # формування Y
    arr avg = lambda arr: round(sum(arr) / len(arr), 4)
    y_avg = list(map(arr_avg, y)) # середнє значення Y
    dispersions = [sum([((y[i][j] - y_avg[i]) ** 2) / m for j in range(m)]) for i in
range(N)] # дисперсії по рядках
    x_{matrix} = x + xx2 + [xxx2] + x_x # повна матриця з натуральними значеннями
   norm_matrix = xn + xx + [xxx] + x_xn # повна матриця з нормованими значеннями
   mx = list(map(arr_avg, x_matrix)) # середні значення х по колонкам
   my = sum(y_avg) / N # середне значення Y_avg
    # ======= Форматування таблиці
    table_factors_1 = ["X0", "X1", "X2", "X3"]
   table_factors_2 = ["X1X2", "X1X3", "X2X3", "X1X2X3", "X1^2", "X2^2", "X3^2"]
   table_y = ["Y1", "Y2", "Y3"]
other = ["#", "Y"]
   header_format = "+{0:=^3}" + "+{0:=^8}" * (len(table_factors_1)) + "+{0:=^8s}" *
        len(table_factors_2)) + "+{0:=^6s}" * (len(table_y)) + "+{0:=^8s}"
len(table_y)) + "|{:^8}"
    separator_format = "+\{0:-^3s\}" + "+\{0:-^8s\}" * (len(table_factors_1)) + "+\{0:-^8s\}" *
        len(table_factors_2)) + "+{0:-^6s}" * (len(table_y)) + "+{0:-^8s}"
    # ====== Нормальні значення
   print(header_format.format("=") + "+\n" + "|{:^132s}|\n".format("Матриця ПФЕ
         header format.format("=") + "+\n" + row_format.format(other[0],
*table_factors_1, *table_factors_2, *table_y,
                                                              other[1]) + "|\n" +
header_format.format("=") + "+")
    for i in range(N):
        print("|{:^3}|".format(i + 1), end="")
       for j in range(4): print("{:^+8}|".format(xn[j][i]), end="")
for j in range(3): print("{:^+8}|".format(xx[j][i]), end="")
       print("{:^+8}|".format(xxx[i]), end="")
       for j in range(m): print("{:^+8}|".format(x_xn[j][i]), end="")
       for j in range(m): print("{:^6}|".format(y[i][j]), end="")
       print("{:^8.2f}|".format(y_avg[i]))
    print(separator_format.format("-") + "+\n\n")
    print(header_format.format("=") + "+\n" + "|{:^132s}|\n".format("Матриця ПФЕ
         header_format.format("=") + "+\n" + row_format.format(other[0],
*table_factors_1, *table_factors_2, *table_y,
                                                              other[1]) + "|\n" +
header format.format("=") + "+")
```

```
for i in range(N):
        print("|\{0:^3\}|\{1:^+8\}|".format(i + 1, xn[0][i]), end="")
        for j in range(3): print("{:^ 8}|".format(x[j][i]), end="")
        for j in range(3): print("{:^ 8}|".format(xx2[j][i]), end="")
        print("{:^+8}|".format(xxx2[i]), end="")
        for j in range(m): print("{:^ 8}|".format(x_x[j][i]), end="")
for j in range(m): print("{:^ 6}|".format(y[i][j]), end="")
        print("{:^8.2f}|".format(y_avg[i]))
    def a(first, second): return sum([x_matrix[first - 1][j] * x_matrix[second -
1][j] / N for j in range(N)])
    def find_a(num): return sum([y_avg[j] * x_matrix[num - 1][j] / N for j in
range(N)])
    def check(b lst, k):
        return b_lst[0] + b_lst[1] * x_matrix[0][k] + b_lst[2] * x_matrix[1][k] +
b_lst[3] * x_matrix[2][k] + \
                b_lst[4] * x_matrix[3][k] + b_lst[5] * x_matrix[4][k] + b_lst[6] *
x_{matrix[5][k] + \
                b_lst[7] * x_matrix[6][k] + b_lst[8] * x_matrix[7][k] + b_lst[9] *
x matrix[8][k] + \
                b_lst[10] * x_matrix[9][k]
    unknown = [[1, mx[0], mx[1], mx[2], mx[3], mx[4], mx[5], mx[6], mx[7], mx[8],
mx[9]], # ліва частина рівнянь з невідомими для пошуку коефіцієнтів b (приклад в
                [mx[0], a(1, 1), a(1, 2), a(1, 3), a(1, 4), a(1, 5), a(1, 6), a(1, 7),
a(1, 8), a(1, 9), a(1, 10)],
                [mx[1], a(2, 1), a(2, 2), a(2, 3), a(2, 4), a(2, 5), a(2, 6), a(2, 7),
a(2, 8), a(2, 9), a(2, 10)],
[mx[2], a(3, 1), a(3, 2), a(3, 3), a(3, 4), a(3, 5), a(3, 6), a(3, 7), a(3, 8), a(3, 9), a(3, 10)],
                [mx[3], a(4, 1), a(4, 2), a(4, 3), a(4, 4), a(4, 5), a(4, 6), a(4, 7),
                [mx[4], a(5, 1), a(5, 2), a(5, 3), a(5, 4), a(5, 5), a(5, 6), a(5, 7),
a(5, 8), a(5, 9), a(5, 10)],
                [mx[5], a(6, 1), a(6, 2), a(6, 3), a(6, 4), a(6, 5), a(6, 6), a(6, 7),
a(6, 8), a(6, 9), a(6, 10)],
                [mx[6], a(7, 1), a(7, 2), a(7, 3), a(7, 4), a(7, 5), a(7, 6), a(7, 7),
a(7, 8), a(7, 9), a(7, 10)],
                [mx[7], a(8, 1), a(8, 2), a(8, 3), a(8, 4), a(8, 5), a(8, 6), a(8, 7),
a(8, 8), a(8, 9), a(8, 10)],
                [mx[8], a(9, 1), a(9, 2), a(9, 3), a(9, 4), a(9, 5), a(9, 6), a(9, 7),
a(9, 8), a(9, 9), a(9, 10)],
                [mx[9], a(10, 1), a(10, 2), a(10, 3), a(10, 4), a(10, 5), a(10, 6),
a(10, 7), a(10, 8), a(10, 9), a(10, 10)]]
    known = [my, find_a(1), find_a(2), find_a(3), find_a(4), find_a(5), find_a(6),
find_a(7), find_a(8), find_a(9), find_a(10)] # знаходення відомих значень a1, a2,
    b = solve(unknown, known)
    print(separator_format.format("-") + f"+\n\n\t0тримане рівняння регресії при
                                           f''\hat{y} = \{b[0]:.3f\} + \{b[1]:.3f\}*X1 +
{b[2]:.3f}*X2 + "
                                           f''\{b[3]:.3f\}*X3 + \{b[4]:.3f\}*X1X2 +
{b[5]:.3f}*X1X3 + "
                                           f''\{b[6]:.3f\}*X2X3 + \{b[7]:.3f\}*X1X2X3 +
{b[8]:.3f}*X11^2 + "
                                           f''\{b[9]:.3f\}*X22^2 +
{b[10]:.3f}*X33^2\n\n\tПеревірка:")
    for i in range(N): print("\hat{y}{} = {:.3f} \approx {:.3f}".format((i + 1), check(b, i),
```

```
y_avg[i]))
    def cochran(f1, f2, q=0.05):
         q1 = q / f1
         fisher = f.ppf(q=1 - q1, dfn=f2, dfd=(f1 - 1) * f2)
         return fisher / (fisher + f1 - 1)
    f1, f2 = m - 1, N
    f3 = f1 * f2
    Gp = max(dispersions) / sum(dispersions)
    Gt = cochran(f1, f2)
    print("\nOднорідність дисперсії (критерій Кохрена): ")
    print(f''Gp = \{Gp\} \setminus Gt = \{Gt\}'')
    if Gp < Gt:</pre>
         D beta = sum(dispersions) / (N * N * m)
         Sb = sqrt(abs(D_beta))
         beta = [sum([(y_avg[j] * norm_matrix[i][j]) / N for j in range(N)]) for i in
range(len(norm_matrix))]
         t_list = [abs(i) / Sb for i in beta]
         student = partial(t.ppf, q=1-0.025)
         d, T = 0, student(df = f3)
         print("\nt табличне = ", Т)
         for i in range(len(t_list)):
             if t_list[i] < T:</pre>
                 b[i] = 0
piв-ня perpecii".format(i, t_list[i]))
             else:
                  print("\tt{} = {} => коефіцієнт значимий".format(i, t_list[i]))
                  d += 1
урахуванням критерія Стьюдента:\n\hat{y} = ", end="") print("\{:.3f\}".format(b[0]), end="") if b[0] != 0 else None
         for i in range(1, 11):
print(" + {:.3f}*{}".format(b[i], (table_factors_1 +
table_factors_2)[i]), end="") if b[i] != 0 else None
         for i in range(N): print("y`{} = \{:.3f\} \approx \{:.3f\}".format((i + 1), check(b,
i), y_avg[i]))
         f4 = N - d
         fisher_sum = sum([(check(b, i) - y_avg[i]) ** 2 for i in range(N)])
         D_ad = (m / f4) * fisher_sum
         fisher = partial(f.ppf, q=1-0.05)
         Fp = D_ad / sum(dispersions) / N
         Ft = fisher(dfn=f4, dfd=f3)
         print("\nКритерій Фішера:")
         if Fp > Ft:
             print("\tPiвняння регресії неадекватне (Ft < Fp).")</pre>
             print("\tPiвняння регресії адекватне (Ft > Fp)!")
```

```
break
else:
print("Дисперсія неоднорідна (Gp > Gt), збільшуємо m, повторюємо операції")
m += 1
```

Результати роботи програми:

У протоколі наведено приклад результатів роботи програми від початку(лінійної форми) до останнього етапу(форми з квадратичними членами):

+===+=	=====	=+=====	+======	+======	·======	+======	+======	:+======	+======	+======	+======	+=====	+=====	+=====	+=====+
Матриця ПФЕ (нормальні значення факторів)															
#	X0	X1	X2	X3	X1X2	X1X3	X2X3	X1X2X3	X1^2	X2^2	X3^2	Y1	Y2	Y3	Y
		=+======													
1	+1	-1	-1	-1	+1	+1			+1	+1	+1	198	197	196	197.00
2	+1	-1	-1	+1		-1	-1		+1	+1		205	205	199	203.00
3	+1		+1	-1		+1		+1	+1	+1	+1	197	196	198	197.00
4				+1								198	206	202	202.00
5				-1								200	203	204	202.33
6				+1								203	206	201	203.33
7				-1								197	199	199	198.33
8				+1								203	199	205	202.33
9		-1.215	+0	+0	+0	+0	+0	+0	+1.476	+0	+0	199	204	202	201.67
10		+1.215	+0	+0	+0	+0	+0	+0	+1.476	+0	+0	197	204	197	199.33
11		+0	-1.215	+0	+0	+0	+0	+0	+0	+1.476	+0	203	203	197	201.00
12		+0	+1.215	+0	+0	+0	+0	+0	+0	+1.476	+0	206	198	204	202.67
13		+0	+0	-1.215	+0	+0	+0	+0	+0	+0	+1.476	200	203	199	200.67
14		+0	+0	+1.215	+0	+0	+0	+0	+0	+0	+1.476	196	197	205	199.33
15		+0	+0	+0	+0	+0	+0	+0	+0	+0	+0	205	204	196	201.67
++-		-+	+	+		+	+	+	+	+	+	+	+	+	++

+===			+======										+=====+		+======+
1					Матр	оиця ПФЕ	(натураль	ні значен	ня фактор	ів)					- 1
+===			+======	+=====+									+=====+		+=====+
#	X0	X1	X2	X3	X1X2	X1X3	X2X3	X1X2X3	X1^2	X2^2	X3^2	Y1	Y2	Y3	Y
+===			+======										+=====+		+=====+
1			-5	-4	25	20	20	-100	25	25	16	198	197	196	197.00
2			-5		25	-40	-40	+200	25	25	64	205	205	199	203.00
3			6		-30	20	-24	+120	25		16	197	196	198	197.00
4			6		-30	-40	48	-240	25		64	198	206	202	202.00
5			-5		-25	40	-40	-200	25	25	64	200	203	204	202.33
6			-5		-25	-20	20	+100	25	25	16	203	206	201	203.33
7			6		30	40	48	+240	25		64	197	199	199	198.33
8			6		30	-20	-24	-120	25		16	203	199	205	202.33
9		-6.075	0.5	2.0	-3.038	-12.15	1.0	-6.075	36.906	0.25	4.0	199	204	202	201.67
10		6.075	0.5	2.0	3.038	12.15	1.0	+6.075	36.906	0.25	4.0	197	204	197	199.33
11		0.0	-4.968	2.0	-0.0	0.0	-9.936	-0.0	0.0	24.681	4.0	203	203	197	201.00
12		0.0	5.968	2.0	0.0	0.0	11.936	+0.0	0.0	35.617	4.0	206	198	204	202.67
13		0.0	0.5	-1.645	0.0	-0.0	-0.823	-0.0	0.0	0.25	2.706	200	203	199	200.67
14		0.0	0.5	5.645	0.0	0.0	2.822	+0.0	0.0	0.25	31.866	196	197	205	199.33
15		0.0	0.5	2.0	0.0	0.0	1.0	+0.0	0.0	0.25	4.0	205	204	196	201.67
+															++

```
Отримане рівняння регресії при m=3:
\hat{v}4 = 202.633 \approx 202.000
\hat{y}10 = 201.088 \approx 199.333
\hat{y}11 = 202.396 \approx 201.000
Однорідність дисперсії (критерій Кохрена):
Gp = 0.15565031982349145
Gt = 0.7410730084501662
Дисперсія однорідна (Gp < Gt)
t табличне = 2.0422724563012373
    t0 = 510.9605321214276 => коефіцієнт значимий
    t1 = 0.7631526271153444 => коефіцієнт незначимий, його слід виключити з рів-ня регресії
    t2 = 0.6743931819282734 => коефіцієнт незначимий, його слід виключити з рів-ня регресії
    t3 = 2.4397026762866254 => коефіцієнт значимий
    t4 = 0.6786415629425063 => коефіцієнт незначимий, його слід виключити з рів-ня регресії
    t5 = 1.0179623444137438 => коефіцієнт незначимий, його слід виключити з рів-ня регресії
    t6 = 0.33932078147125094 => коефіцієнт незначимий, його слід виключити з рів-ня регресії
    t7 = 0.6786415629424973 => коефіцієнт незначимий, його слід виключити з рів-ня регресії
    t8 = 372.7793713999074 => коефіцієнт значимий
    t9 = 373.4471630451341 => коеФіцієнт значимий
    t10 = 372.5289526631817 => коефіцієнт значимий
Отже, кіл-ть значимих коеф. d = 5
    Рів-ня регресії з урахуванням критерія Стьюдента:
```

 $\hat{y} = 200.495 + 0.240*X3 + -0.006*X1^2 + 0.039*X2^2 + -0.033*X3^2$

```
Перевірка при підстановці в спрощене рів-ня регресії:
y^1 = 199.839 \approx 197.000
y^2 = 201.117 \approx 203.000
y^3 = 200.269 \approx 197.000
y^4 = 201.548 \approx 202.000
y^5 = 201.117 \approx 202.333
y^6 = 199.839 \approx 203.333
y^7 = 201.548 \approx 198.333
y^8 = 200.269 \approx 202.333
y^9 = 200.648 \approx 201.667
y^10 = 200.648 \approx 199.333
y^11 = 201.808 \approx 201.000
y^12 = 202.236 \approx 202.667
y^13 = 200.019 \approx 200.667
y^14 = 200.795 \approx 199.333
y^15 = 200.852 \approx 201.667
Критерій Фішера:
     Рівняння регресії адекватне (Ft > Fp)!
```

Висновки:

Під час виконання лабораторної роботи було змодельовано трьохфакторний експеримент при використанні лінійного рівняння регресії, рівняння регресії з ефектом взаємодії та рівняння регресії з квадратичними членами, складено матрицю планування експерименту, було визначено коефіцієнти рівнянь регресії (натуралізовані та нормовані), для форми з квадратичними членами натуралізовані, виконано перевірку правильності розрахунку коефіцієнтів регресії. 3 рівнянь Також було проведено статистичні перевірки(використання критеріїв Кохрена, Стьюдента та Фішера) для кожної форми рівняння регресії . При виявленні неадекватності лінійного рівняння регресії оригіналу було застосовано ефект взаємодії факторів, при неадекватності і такого рівняння регресії було затосовано рівняння регресії з квадратичними членами.