Labeling and gTruth

https://www.mathworks.com/help/vision/ug/get-started-with-the-image-labeler.html

- Download MATAB and run on your machine to get familiar with code the path problem we saw is the gTruth data paths, which are generated by imageLabler – I would load the "*session.mat" files and Export gTruth as a "table" in your environment
 - a. Perhaps there is a better solution to the gTruth pathing issue, but I do not know how to change this work-around has worked for the group so far
 - b. Otherwise, the data can just be unzipped in place as long as the paths in gTruth match where the files are
- 2) Had to recall how we made the cow gTruth we really somehow made "cowDatasetGroundTruth.mat", which can be imported by just double clicking and becomes "gTruth" as a MATLAB variable.
 - a. We repeated this for eleDatasetGroundTruth.mat and it works the same.
 - b. This was based on vehicleDatasetGroundTruth.mat, the starting example.
- 3) gTruth table should be loaded (or saved as a truth table)

Use the truth models in:

- 1) vehicleTruth
- 2) satVehicleTruth
- 3) satElephantTruth
- 4) satCowTruth
- 5) elephTruth
- 6) cowTruth

Satellite Locations of interest

Location	Lat, Long	Worldview-3		Google Earth		Google Maps	
CSU farm, Beef Unit	- 39.6956963,	nwLat =	C	39.6956963,	C	39.6956963,	C
	-121.8298722	39.73227800;		-121.8298722		-121.8298722	
		nwLong = -					
		121.86661600;		Pro: 8/1998 –		(cows visible)	
		seLat =		5/2021			
		39.68734000;				<u>Link</u>	
		seLong = -					
		121.80820000;					
Addo Elephant	-33.498693,	None	X	-33.5023548,	E	-33.4991619,	X
Reserve	25.734161			25.7381934		25.7330841	
Watering hole,	(-33.4834244,						
(Main), (Hapoor	25.7483911)			Pro: 11/2020,		<u>Link</u>	
Drinking Hole)	(-33.5025481,			1/2019,			
	25.7397333)			12/2018,			
	·			10/2018,			
				3/2018, 3/2016			
				Best Link			
Medikwe	-24.7604298,	nwLat = -	E	-24.7604528,	X	-24.7604528,	X
	26.2689526	24.73795899;		26.2745408		26.2745408	

		nwLong =					
		26.22669199;		Pro: 1/2020		Link	
		seLat = -					
		24.78291099;		<u>Link</u>			
		seLong =					
		26.27619499;					
Rietvlei	-25.882449,	nwLat = -	U	-25.8838398,	X	-25.882449,	X
	28.2616808	25.85860300;		28.26481284		28.2616808	
		nwLong =					
		28.26369800;		<u>Link</u>		<u>Link</u>	
		seLat = -					
		25.90355600;					
		seLong =					
		28.31366200;					
Prescott	34.841986,	nwLat =	?	34.841986,	X	34.8419904,	X
	-112.3790217	34.84198599;		-112.3790217		-112.4140406	
		nwLong = -					
		112.37683299;		<u>Link</u>		<u>Link</u>	
		seLat =					
		34.80400800;					
		seLong = -					
		112.31203099;					
Coleridge	-33.349866,	nwLat = -	V	-33.3516649,	V	-33.349866,	X
	26.6157291	33.33009800;		26.61389674		26.6135404	
		nwLong =					
		26.59009000;		(Look on		<u>Link</u>	
		seLat = -		paved road for			
		33.37182500;		vehicles)			
		seLong =					
		26.64802600;		<u>Link</u>			

C=cows, E=elephant, V=vehicles, U=Unknown large animals (Elephants?), X=no animals

MATLAB Deep Learning Examples

1. SSD - https://www.mathworks.com/help/vision/ug/object-detection-using-single-shot-detector.html

 $open Example (\verb|'deeplearning_shared/ObjectDetectionUsingSSDDeepLearningExample'|)$

2. RCNN - https://www.mathworks.com/help/vision/ug/object-detection-using-faster-r-cnn-deep-learning.html

openExample('deeplearning_shared/DeepLearningFasterRCNNObjectDetectionExample'
)

3. YOLO V2 - https://www.mathworks.com/help/vision/ug/train-yolo-v2-network-for-vehicle-detection.html

openExample('vision/TrainYOLOV2NetworkForVehicleDetectionExample')

4. YOLO V3 - https://www.mathworks.com/help/vision/ug/object-detection-using-yolo-v3deep-learning.html

openExample('deeplearning shared/ObjectDetectionUsingYOLOV3DeepLearningExample

```
doTraining = true;
```

C:\Program Files\MATLAB\R2020a\examples\deeplearning shared\data

vehicleDatasetGroundTruth.mat

1/7/2019 10:38 AM

Microsoft Access ...

5 KB

vehicleDatasetImages.zip

1/7/2019 10:38 AM

Compressed (zipp... 3,577 KB

We need new GroundTruth and new DatasetImages for our objects of interest.

https://www.mathworks.com/help/deeplearning/ug/data-sets-for-deep-learning.html

Vehicle

The Vehicle data set consists of 295 images containing one or two labeled instances of a vehicle. This small data set is useful for exploring the YOLO-v2 training procedure, but in practice, more labeled images are needed to train a robust detector.

The images are of size 720-by-960-by-3.

Extract the Vehicle data set. Set dataFolder to the location of the data.

```
'vehicleDatasetImages.zip';
dataFolder =
fullfile(tempdir,'vehicleImages');
if ~exist(dataFolder,'dir')
    unzip(filename, tempdir);
```

Load the data set as a table of file names and bounding boxes from the extracted MAT file and convert the file names to absolute file paths.

```
data =
load('vehicleDatasetGroundTruth.mat
');
vehicleDataset =
data.vehicleDataset;
```

```
vehicleDataset.imageFilename =
fullfile(tempdir,vehicleDataset.ima
geFilename);
```

Create an image datastore containing the images and a box label datastore containing the bounding boxes using the imageDatastore and boxLabelDatastore functions, respectively. Combine the resulting datastores using the combine function.

```
filenamesImages =
vehicleDataset.imageFilename;
tblBoxes =
vehicleDataset(:,'vehicle');
imds =
imageDatastore(filenamesImages);
blds = boxLabelDatastore(tblBoxes);
cds = combine(imds,blds);
```

For an example showing how to process this data for deep learning, see <u>Object</u> <u>Detection Using YOLO v2 Deep Learning</u>.

Images with just one target of interest - find a way to click on an object I see in an image, and then extract a bounding box sub-image of an exact size.

E.g., here's a bunch of cows, I want to click on the center of one, and extract a square area of say 30x30 pixels around it – adjustable, but generally nxn square.

11 cows, I want to separate into 11 images containing just one cow.

This is to create my training and validation sets for each animal type with "known" targets.

I see things like imcrop, but I don't want odd-sized images if possible, and I don't really want to draw rubber-band boxes over and over, I just want to click, extract, imshow, imwrite, over and over.

Google Earth Large Animal Images - References

- https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved= 2ahUKEwiQ0_m0punzAhXAGTQIHUuEBO0QFnoECAcQAQ&url=https%3A%2F%2Fearth.google.c om%2Fweb%2Fdata%3DCiQSIhIgNTk5NDhiMjMwYjQ2MTFINzhIMDQxNWY2OWQzNDJmYmY&u sg=AOvVaw2iDxih9-1_3ffdo2ps1DTf
- 2. <a href="https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiQ0_m0punzAhXAGTQIHUuEBO0QFnoECAYQAQ&url=https%3A%2F%2Fearth.google.com%2Fweb%2Fdata%3DCiQSIhIgMmFjODk3NzA3OGIzMTFIOTgyY2E0ZDFmNmYyMjAxNmE&usg=AOvVaw1140tnIG5Li4YdEAG0UJAn

3. <a href="https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiQ0_m0punzAhXAGTQIHUuEBO0QFnoECB4QAQ&url=https%3A%2F%2Fwww.gearthblog.com%2Fblog%2Farchives%2F2006%2F08%2Fsee_african_ani.html&usg=AOvVaw3rV2kmvsdlrCWVefa9J7Ek

MATLAB version and toolboxes used

>> ver

MATLAB Version: 9.8.0.1451342 (R2020a) Update 5

MATLAB License Number: 40937346

Operating System: Microsoft Windows 10 Pro Version 10.0 (Build 18362)

Java Version: Java 1.8.0 202-b08 with Oracle Corporation Java HotSpot(TM) 64-Bit

Server VM mixed mode

MATLAB Version 9.8 (R2020a) Version 10.1 Simulink (R2020a) Aerospace Blockset Version 4.3 (R2020a) Version 3.3 (R2020a) Aerospace Toolbox Automated Driving Toolbox Version 3.1 (R2020a) Computer Vision Toolbox Version 9.2 (R2020a) Control System Toolbox Version 10.8 (R2020a) DSP System Toolbox Version 9.10 (R2020a) Deep Learning Toolbox Version 14.0 (R2020a) Embedded Coder Version 7.4 (R2020a) GPU Coder Version 1.5 (R2020a) Image Acquisition Toolbox Version 6.2 (R2020a) Image Processing Toolbox Version 11.1 (R2020a) MATLAB Coder Version 5.0 (R2020a) Parallel Computing Toolbox Version 7.2 (R2020a) Partial Differential Equation Toolbox Version 3.4 (R2020a) ROS Toolbox Version 1.1 (R2020a) Robotics System Toolbox Version 3.1 (R2020a) Sensor Fusion and Tracking Toolbox Version 1.3 (R2020a)

Signal Processing Toolbox	Version 8.4	(R2020a)
Statistics and Machine Learning Toolbox	Version 11.7	(R2020a)
Symbolic Math Toolbox	Version 8.5	(R2020a)
Vehicle Dynamics Blockset	Version 1.4	(R2020a)

>>