

CSC 36000: Modern Distributed Computing with Al Agents

By Saptarashmi Bandyopadhyay

Email: sbandyopadhyay@ccny.cuny.edu

Assistant Professor of Computer Science

City College of New York and Graduate Center at City University of New York

About Me

- PhD in Computer Science from the University of Maryland, College Park in Summer 2025
- Recent PhD Student Researcher at Google Al AR and Google DeepMind and as an Al Resident at Google X
- Lead PhD Researcher in a DoD LTS project
- Tenure-Track Assistant Professor of Computer Science at the City College of New York beginning Fall 2025

Research Interests

- Al Agents
 - Improving capabilities of Al Agents
 - Real World Applications in Climate Conservation, Supply Chain Orchestration, Multimodal Agents, LLM Agents, Recommender Systems, Economics, Al Privacy etc
- Distributed Training (we know it as Modern Distributed Computing)
- Multimodal Deep Learning
 - Interpretable Semantic Understanding across Image, Text,
 Video, Audio modes
- Al Alignment
 - Human-Al collaboration; Fixing Mistakes of Humans/other Al Agents; Explainable Al
- Al Agents Seminar Series: (go.umd.edu/marl)

About You

- What programming background do you have?
- What are you most excited to learn?
- What do you dream to do after graduation?
- What is your expectations from this course?

About this Course

- Website: https://saptab.github.io/modern-distributed-computing-with-Al-Agents/
- Programming Language: Python
- We will be learning about distributed computing architectures with a focus on real-world applications like AI Agents
 - Federated Learning
 - Decentralized Learning
 - Parallel Processing
 - LLM/VLM Agents
- At the end of the semester you will be able to understand these systems and implement them in a real-world context

Grading Structure

- Subject to changes to be confirmed by September 3!
- Four programming assignments (20%)
- Four written homework assignments (20%)
- Midterm Exam (15%)
- Group Project (25%)
- Final Exam (20%)

How to Reach Me

- Email: <u>sbandyopadhyay@ccny.cuny.edu</u>
- Office: NAC 7/244 (Being set up by CUNY Facilities right now)
- Office Hours: TBD

This Lecture

- Motivation of Distributed Computing
- Overview of Machine Learning, AI Agents, and their applications

Why Distributed Computing?

Why not use one GIANT computer?

- Every second, Google handles 100,000+ searches
- Netflix is streaming video to 270 million subscribers all over the world
- Using a single computer to this is IMPOSSIBLE

Physics and Money

- Putting that many transistors on a chip would literally cause them to melt
- The speed of light introduced delays that can't be overcome, no matter how clever we are
- It would cost way too much!

Al Agents: Overview and Applications

What is Machine Learning?

- Algorithms that help to automatically perform tasks
- Fundamental concepts involve High School Mathematics
 - \circ y = f(x)
- Data may be texts, images, videos, audios etc. So embeddings are used to convert them to numbers for numerical operations

Multi-Agent Reinforcement Learning

- Evolving area of Machine Learning (specially since 2018)
- Multiple autonomous agents can interact with each other to foster competition and cooperation among humans and autonomous agents
- These agents try to maximize their individual interests while optimizing the greater good.
- E.g. 2 or more self-driving cars would try to reach their respective destinations at the earliest but would want to stop allowing the other car to pass in order to avoid accidents.

Single-Agent vs. Multi-agent RL (DeepMind, 2019)

Traditional (Single-Agent) RL

Source: Wikipedia

Google DeepMind

Multiagent Reinforcement Learning

Source: Nowe, Vrancx & De Hauwere 2012

Motivation from Game Theory

- Studying strategic interaction of rational agents to achieve a goal(s)
- Stackelberg games: Attackers try to gain control of secure targets protected by defenders
- Interdiction games: Extension of Stackelberg security games where attacks are constrained by a path on a graph interdiction environment G = (V,E) where V = #V where V = #V and V = #V are V = #V are V = #V and V = #V are V = #V are V = #V and V = #V and V = #V are V = #V and V = #V are V = #V and V = #V are V = #V and V = #V and V = #V are V = #V and V = #V are V = #V and V = #V and V = #V are V = #V and V = #V and V = #V are V = #V and V = #V and V = #V are V = #V and V = W and V = W are V = W and V = W and V = W are V = W and V = W and V = W are V = W an
- V = S U T where S is a set of vertices for sources and T is a set of vertices for targets
- Nash Equilibrium: Each player knows the equilibrium strategies of the other player. Players have no incentives to deviate from their strategies unilaterally
- Multi-agent Reinforcement Learning research is inspired by Game Theory work

Some Applications

- Game theory problems
- Discovering, analyzing and disrupting illicit networks
 - Arms
 - Humans
 - Wildlife
 - Deforested trees
 - Drugs
 - Counterfeit goods
- War games and strategies (nuclear arms race, world wars)

- Equitable markets
- International relations like peace treaty negotiations
- Robust and Fair
 Management/Governance
- Fair tax policies
- Climate change
- Existential disasters like pandemics
- Swarm robotics
- Internet of Things (IoT)

Multi-agent RL for Hide-and-Seek (OpenAI, 2019)

Tax Policy with Multi-agent RL (Zheng et. al, 2020)

Data Science

If the only tool you have is a relational database, everything looks like a table.

- Data management is important with big data having different modalities like texts, images, videos
- <u>Relational Databases</u> are used prevalently to store data in tables with many attributes
- Data Analysis is critical to detect patterns that are useful to Al

Example: Graph based Data in Social Media

- A graph is denoted as G(V,E) where V is the set of vertices and E is the set of edges connecting vertices in V.
- •Social Networks involve users interactively engaging with other users as nodes and their interactions are edges.
- Learning paradigm also changes with graph based learning in many situations

Human Computer Interaction

 Website interfaces are developed for user interaction, recommendations with AI & Data Collection

Medical Imaging & Computer Vision

- Endoscopy:
 Visualization of airway
- Useful for early lung cancer detection and treatment

Medical Imaging & Computer Vision

ground truth

Jerman filter

Jerman segmentation

Proposal 1 filter

liberal segmentation

Proposal 2 filter

conservative segmentation

Blood vessel extraction from the airways of a cancer patient (Bandyopadhyay, et al, 2020)

Natural Language Processing

- 1. Machine Translation Google Translate/Siri
 - a. Multilinguality; Low Resource Languages
- 2. Question Answering IBM Watson
- 3. Summarization
- 4. Natural Language Generation
- 5. Fairness of NLP Systems

Multimodal Learning

- Learning from text, images, audios, videos (any mode of information)
- Prominent models like GPT, DALL-E (by OpenAI)
 <a href="https://huggingface.co/spaces/dalle-mini
- Use Hugging Face pretrained models which are open -access

Case Study: Multimodal AI Agents (in AR/VR)

Research Done during my PhD Student Researcher-ship at Google Al AR and Google DeepMind since June 2024 Arxiv PrePrint (under submission)

Research Question for Augmented Reality Agents

- How can AI Agents autonomously assist humans with Augmented Reality (AR)?
 - When should an AI Agent intervene while guiding plans for everyday tasks?
 - How can Al Agents autonomously intervene in our phones or AR devices efficiently?
- YETI is able to efficiently detect when the AI should step in to help the human

Features	Size (MB)	× SSIM	× CObj
Depth Estimation	137,408	6,543	6,870
Eye Gaze (E)	617	29	31
Hand Pose (H)	53,749	2,660	2,688
Head Pose	1,141	54	57
IMU (I)	1,132	54	57
SSIM (Ours)	21		
Alignment Cobj (Ours)	20		

YETI (YET to Intervene) Multimodal Proactive AI Agent

Demonstration for Proactive Multimodal Agent in AR

(a) Intervention - 3 seconds

(b) Intervention - 2 seconds

(c) Intervention - 1 second

(f) Changing Objects Alignment Signal

Proactive Multimodal Al Agent guiding how to make coffee with Augmented Reality (AR)

Multi-Agent Autonomous Orchestration of Global Supply Chains

Al Residency at Google X in Summer 2023 (Open Source Research) Under Submission with Open Source Data

Multi-agent Decision Making in Global Supply Chains

- Global supply chains involving multiple agents enable good movements worth trillions of \$s
- There are agents sailing ships carrying good from manufacturing zones to consumer markets
- Then agents drive vehicles or fly from the ports to warehouses to shops or last-mile deliveries
- Agents can also fly goods to remote locations or over difficult terrain
- It is vital to be resilient as seen during the COVID-19 pandemic which shut down supply chains globally

Orchestration with Multi-agent Reinforcement Learning

- <u>IPPO</u>: On-Policy Independent Learning scaling PPO to each Agent individually
 - <u>Stability challenges</u> as each agent has to scale up their actor & critic losses
- MAPPO: Applying On-Policy PPO to Multiple Agents with a Joint Reward
 - Stable rewards (profits) can help tide over supply chain instabilities
- QMIX: Factorizes the joint-action value function with an off-policy Multi-Agent RL algorithm with relaxed constraints over monotonic functions
- **QTRAN**: Off-policy Multi-Agent RL algorithm with constrained factorization of the joint action-value function to generalize better in comparison to QMIX
- Weighted QMIX (WQMIX) addresses challenges of convergence in QMIX by giving weights to agent's action-value functions to approximate joint Q value
- Base Stock Constraints to help address profit margins during market losses in SKUs

Results for Multi-Agent Supply Chains

Cold-chain SKUs with seasonality

Cold-chain SKUs with outliers

Algorithm	IPPO	IPPO Base Stock	QTRAN	QTRAN Base Stock	QMIX	Weighted QMIX	MAPPO
Mean Profit	1007	38797	33601	34427	45946	81089	9020
Time Taken	14h 24m	14h 51m	20h 36m	14h 50m	36h 22m	36h 52m	14h 21m

Outliers

Seasonality

	Algorithm	IPPO	IPPO Base Stock	QTRAN	QTRAN Base Stock	QMIX	Weighted QMIX	MAPPO
У	Mean Profit	8940	37352	38741	36937	123601	85720	11055
	Time Taken	14h 45m	14h 6m	20h 58m	9h 12m	36h 9m	36h 42m	14h 32m

Multi-Agent Decision Making for Climate Conservation: Learning Vulnerable Deforestation Hotspots

AAAI FSS 2022 AAAI 2022 AI2ASE Workshop

Motivation for Decision Making to Mitigate Deforestation

- There was minor tree cover loss in Indonesia just 20 years ago in the 2000s
- However deforestation drivers like farming and palm oil production in Indonesia led to rapid loss of tree cover from 2010-2020

Stackelberg Security Games (SSG) Deforestation Example

- <u>Coordinating drone patrols</u>: Three defender agents (forest rangers)
 operate cooperative drones to protect five targets (5 regions of
 vulnerable deforestation regions) from three attackers (loggers)
- The control policies operate at the level of sensor readings and flight-control actions for each individual drone
- Embedded within this high dimensional, continuous problem is the SSG of deciding which targets should be patrolled by the drones
- The goal is to decide how to allocate limited resources (drones) between patrolling targets (vulnerable deforestation regions with valuable trees)
- We don't need to consider the control problem of flying a drone here

Loggers

Agents Involved in the Deforestation Environment

- There are defender agents in deforestation like rangers in a national park, protecting trees
- There are attacker agents in deforestation like loggers cutting trees illegally in a dangerously large scale
- Defender agents and attacker agents have competing goals
- Multi-agent decision making is aimed to assist defender agents with policies to secure vulnerable assets (like trees) from attacker agents subject to resource constraints

Learning Vulnerable Deforestation Hotspots

- Attacks on tree cover, a green security asset, in subnational regions of Indonesia can be accurately predicted with AI (BoostIT Decision Tree)
- Finding vulnerable areas in Green Security Games for strategizing by defenders is a very important problem to solve
- We find that a boosted Decision Tree
 - doesn't use much computing power
 - is accurate in its predictions, and
 - is scalable for managing forest resources efficiently

Deforestation Vulnerability Prediction Results

Model	Accuracy	Vulnerable		Not Vulnerable	
Model		Precision	Recall	Precision	Recall
Base model	62%	72%	76%	27%	23%
Base model with BoostIT	67%	79%	77%	35%	32%
Base model with terrain features	69%	77%	79%	51%	48%
Base model with terrain features and BoostIT	73%	80%	83%	59%	55%

Table 1: Performance of different versions of our model on the test data.

Other emerging areas in Computer Science

- Multilingual Learning (specially Low Resource settings)
- Symbolic Learning and Logical Reasoning
- Explainable and Interpretable Machine Learning
- Adversarial learning (e.g. GANs)
- Quantum Computing (overlaps with AI like Optical Machine Learning)
- Internet of Things (overlaps with AI like Multiagent Learning)

Questions?