Introduction to Machine Learning

Sidharth Baskaran

June 2021

Introduction

- Supervised learning right answers are given
 - Algorithm is given the correct/expected answer
 - Regression predict continuous valued output
 - Classification predict results to a discrete output
 - * Can have more than 2 classifications
 - * Models may require infinite number of attributes or features, is done with SVM (support vector machine)
- Unsupervised learning dataset is not classified, a structure must be predicted
 - Example cluster classification of news articles
 - Approach problems without an idea of the results or knowledge of effect of variables
 - Derived from clustering data based on variable relationships
 - No feedback

Model and Cost Function

- Linear regression algorithm
 - Fitting a line to data supervised learning
 - * Predicting a real-valued output
- Notation
 - -m is number of training examples
 - -x represents the input variable/features
 - y represents output/target variable
 - -(x,y) represents a single training example
 - $-(x_i, y_i)$ refers to ith training example

Linear Regression

- Process flow
 - Training set -> learning algorithm -> h
 - -h is the hypothesis, function which takes input x and outputs estimated y
 - * Maps $x \to y$
- $h_{\theta}(x) = \theta_0 + \theta_1 x$ is the cost function
 - $-\theta_i$ are parameters that correspond to the regression line
 - * Choose θ_0, θ_1 so $h_{\theta}(x)$ is close to y for examples in training data (x, y)
- Minimizing the average of training set residuals
- θ_0,θ_1 distance to true values which is minimizing

$$J\left(\theta_{0},\theta_{1}\right)=\frac{1}{2m}\sum_{i=1}^{m}\left(\hat{y}_{i}-y_{i}\right)^{2}=\frac{1}{2m}\sum_{i=1}^{m}\left(h_{\theta}\left(x_{i}\right)-y_{i}\right)^{2}$$

- m is the training set size
- Is the squared error cost function goal is to minimize
- Halving the mean is for convenience as derivative will cancel it
- Hypothesis is a function of x for some fixed θ_1 and $J(\theta_1)$ is a function of θ_1

Contour plots

- 2 parameters $\theta_0, \theta_1 \rightarrow$ 3D plot paraboloid
 - Height is J
- Can find minimum from contour plot
 - Closer to minimum on a contour plot means better fit

Gradient Descent Algorithm

- Outline
 - $\begin{array}{l} \text{ Want } \min_{\theta_0,\theta_1} J(\theta_0,\theta_1) \\ \text{ Start with some } \theta_0,\theta_1 \end{array}$

 - Keep changing θ_0, θ_1 to reduce J until a minimum is reached (for any cost function J)
- Gradient $-\nabla J$ points in direction of steepest descent

repeat until convergence {
$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J\left(\theta_0, \theta_1\right) \quad (\text{ for } j = 0 \text{ and } j = 1)$$
 }

- Assignment := is not same as =
 - Can do a := a + 1 but not a = a + 1
- Simulataneous update must be used

$$\begin{array}{l} \operatorname{temp} \; 0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J \left(\theta_0, \theta_1 \right) \\ \operatorname{temp} \; 1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J \left(\theta_0, \theta_1 \right) \\ \theta_0 := \; \operatorname{temp} \; 0 \\ \theta_1 := \; \operatorname{temp} \; 1 \end{array}$$

- $\alpha>0$ is the learning rate and $\frac{\partial}{\partial\theta_j}J(\theta_0,\theta_1$ is derivative in direction of θ_j
 - A large α means minimum can be overshot
 - * Fail to converge -> even diverge
 - Small α means slow descent
- Convergence can occur even with a fixed α since the partial derivative term decreases when minima is approached over time

Gradient Descent for linear regression

• Need to minimize square error cost function

$$\begin{array}{l} j = 0: \frac{\partial}{\partial \theta_0} J\left(\theta_0, \theta_1\right) = \frac{1}{m} \sum_{i=1}^m \left(h_\theta\left(x^{(i)}\right) - y^{(i)}\right) \\ j = 1: \frac{\partial}{\partial \theta_1} J\left(\theta_0, \theta_1\right) = \frac{1}{m} \sum_{i=1}^m \left(h_\theta\left(x^{(i)}\right) - y^{(i)}\right) \cdot x^{(1)} \end{array}$$

- Linear regression always results in a convex (bow) cost function J
 - Will always converge to the global minimum
- Batch gradient descent each step uses all training examples

Linear Algebra Review

- Dimension of a matrix is row \times col or $\mathbb{R}^{\mathrm{row} \times \mathrm{col}}$
- A_{ij} is ith row and jth column entry of matrix A
- A vector is a $n \times 1$ matrix of dimension n
 - $-y_i$ is the *i*th element in the vector \vec{y}
 - Can be 0 or 1-indexed
- Given $h_{\theta}(x) = \theta_0 + \theta_1 x$, can use $\vec{p} = D \times \vec{\theta}$ where \vec{p} is the predicted regression values vector of dimension 4, D is $n \times 2$ matrix with column $1 = \vec{1}$, and $\vec{\theta}$ is the parameter matrix of dimension 2
 - More computationally efficient
- If $C = A \times B$, the *i*th column of C is $A \times \vec{B}_i$ where B_i is the *i*th column of B
- If applying multiple hypotheses to a data set, use a $2 \times n$ matrix where there are n hypotheses and 2 parameters
- No commutative matrix/vector multiplication but associativity works
- Identity matrix: $A \times I = I \times A = A$ but $AB \neq BA$ if $B \neq A \neq I$
- If A is $m \times m$ and has inverse A^{-1} , then $AA^{-1} = A^{-1}A = I$
- A transpose makes the ith row the ith column and is reversible
 - If A is an $m \times n$ matrix and $B = A^T$, then B is an $n \times m$ matrix and $B_{ij} = A_{ji}$