

Maximum Likelihood Estimation-II

Dr. A. Ramesh

DEPARTMENT OF MANAGEMENT STUDIES

Agenda

This lecture will provide understanding intuition behind the MLE using Theory and examples.

Example1: Estimation of parameters of normal distribution

- Let us explain basic idea of MLE using simple problems.
- Let us make assumption that variable x follows normal distributed
- Density function of normal distribution with mean μ and variance σ^2 is given by:

Id	X
1	1
2	4
3	5
4	6
35	9

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/2\sigma^2}$$
 for $-\infty < x < \infty$

Example 1: Estimation of parameters of normal distribution

- The data is plotted on a horizontal line
- Think which distribution, either A or B, is more likely to have generated the data?

Interpretation

- Answer to this question is A, because the data are cluster around the center of the distribution A, but not around the center of the distribution
- This example illustrate that, by looking at the data, it is possible to find the distribution that is most likely to have generated the data
- Now, I will explain exactly how to find the distribution in practice

- MLE starts with computing the likelihood contribution of each observation
- The likelihood contribution is the height of the density function.
- We use L_i to denote the likelihood contribution of ith observation.

Graphical illustration of likelihood contribution

Then, you multiply the likelihood contributions of all the observations. this
is called the likelihood function. We use the notation L

• Likelihood function L= $\prod_{i=1}^{n} L_i$ This notation means you multiply from i= 1 through n

• In our example, n= 5

• In our example, the likelihood function looks like:

$$L(\mu, \sigma) = \prod_{i=1}^{5} L_{i} = L_{1} \times L_{2} \times L_{3} \times L_{4} \times L_{5}$$

$$= \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-(1-\mu)^{2}/\sigma^{2}} \times \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-(4-\mu)^{2}/\sigma^{2}}$$

$$\times \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-(5-\mu)^{2}/\sigma^{2}} \times \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-(6-\mu)^{2}/\sigma^{2}}$$

$$\times \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-(9-\mu)^{2}/\sigma^{2}}$$

• The likelihood function depends on mean μ and variance σ^2

- The value of mean μ and σ that maximise the likelihood function is found.
- The values of mean μ and σ which are obtained this way are called the maximum likelihood estimators of mean μ and σ
- Most of the MLE cannot be solved 'by hand'. Thus, you need to write an iterative procedure to solve it on computer

Method of Least-squares vs MLE

Model for the expectation (fixed part of the model):

$$E[Y_i] = \beta_0 + \beta_1 x_i$$

Residuals: $r_i = y_i - E[Y_i]$

The method of least-squares:

Find the values for the parameters (β_0 and β_I) that makes the sum of the squared residuals (Σr_j^2) as small as possible.

Can only be used when the error term is normal (residuals are assumed to be drawn from a normal distribution)

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$
, where $\varepsilon_i \sim N(0, \sigma)$

Method of Least-squares vs MLE

Model for the expectation (fixed part of the model):

$$E[Y_i] = \beta_0 + \beta_1 x_i$$

Residuals: $r_i = y_i - E[Y_i]$

The maximum likelihood method is more general!

- Can be applied to models with any probability distribution

We are interested in estimating a model like this:

$$y=\beta_0+\beta_1x+u$$

Estimating such a model can be done using MLE

- Suppose that we have the following data and we are interested in estimating the model: $y=\beta_0+\beta_1x+u$
- Let us make an assumption that u follows the normal distribution with mean 0 and variance σ^2

Id	Y	Х
1	2	1
2	6	4
3	7	5
4	9	6
5	15	9

We can write the model as:

$$u = y - (\beta_0 + \beta_1 x)$$

- This means that $y-(\beta_0+\beta_1x)$ follows the normal distribution with mean 0 and variance σ^2
- The likelihood contribution of each data point is the height of the density function at the data points $(y-\beta_0-\beta_1x)$

• The likelihood contribution in this example, of the 2nd observation is given by: $\frac{1}{1-(6-\beta_0-4\beta_0)^2/2\sigma^2}$

$$L_2 = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(6-\beta_0 - 4\beta_1)^2/2\sigma^2}$$
Data point

The likelihood contribution of the

Then the likelihood function is given by

Id	Υ	Х
1	2	1
2	6	4
3	7	5
4	9	6
5	15	9

L(
$$\beta_0$$
, β_1 , σ) = $\prod_{i=1}^n L_i = L_1 \times L_2 \times L_3 \times L_4 \times L_5$
= $\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(2-\beta_0-\beta_1)^2}{\sigma^2}} / \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(6-\beta_0-4\beta_1)^2}{\sigma^2}} / \frac{1}{\sigma^2}$
 $\times \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(7-\beta_0-5\beta_1)^2}{\sigma^2}} / \frac{1}{\sigma^2} \times \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(9-\beta_0-6\beta_1)^2}{\sigma^2}} / \frac{1}{\sigma^2}$
 $\times \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(15-\beta_0-9\beta_1)^2}{\sigma^2}} / \frac{1}{\sigma^2}$

• The likelihood function is a function of β_0 , β_1 and σ .

• You choose the values of eta_0 , eta_1 and σ that maximizes the likelihood function.

Python Demo for MLE

```
In [1]: import numpy as np
        from scipy.optimize import minimize
        import scipy.stats as stats
In [2]: import pandas as pd
        tbl = pd.read_excel('mle.xlsx')
        tbl
Out[2]:
           ld Y X
           5 15 9
```



```
In [3]: import statsmodels.api as sm
        x= tbl['X']
       y =tbl['Y']
        x2 = sm.add constant(x)
        modl = sm.OLS(y,x2)
        modl2 = modl.fit()
        print(modl2.summary())
       C:\Users\HP\Anaconda3\lib\site-packages\statsmodels\compat\pandas.py:56: FutureWarning: The
       recated and will be removed in a future version. Please use the pandas.tseries module inste
         from pandas.core import datetools
                                 OLS Regression Results
       Dep. Variable:
                                            R-squared:
                                                                           0.980
       Model:
                                            Adj. R-squared:
                                                                           0.973
                                       OLS
                            Least Squares F-statistic:
       Method:
                                                                           145.9
        Date:
                           Wed, 11 Sep 2019
                                            Prob (F-statistic):
                                                                         0.00122
                                            Log-Likelihood:
       Time:
                                  10:05:16
                                                                         -4.5811
       No. Observations:
                                            AIC:
                                                                           13.16
       Df Residuals:
                                            BIC:
                                                                           12.38
       Df Model:
       Covariance Type:
                                 nonrobust
                       coef
                               std err
                                                     P>|t|
                                                                          0.9751
        const
                     -0.2882
                                 0.755
                                          -0.382
                                                     0.728
                                                               -2.692
                                                                           2.115
                     1,6176
                                 0.134
                                          12.079
                                                     0.001
                                                                1,191
        _____
       Omnibus:
                                       nan Durbin-Watson:
                                                                           1.405
       Prob(Omnibus):
                                            Jarque-Bera (JB):
                                                                           0.551
                                      nan
       Skew:
                                            Prob(JB):
                                                                           0.759
                                     0.089
        Kurtosis:
                                            Cond. No.
                                                                            12.5
                                     1.384
```


$$b0 = -0.2882$$
 and $b1 = 1.6176$

Parameter estimation by MLE

```
e=modl2.resid
 In [9]:
In [10]:
Out[10]:
             0.670588
             -0.182353
             -0.800000
             -0.417647
              0.729412
         dtype: float64
         np.std(e)
 In [6]:
 Out[6]: 0.6048820983804831
```


Parameter estimation by MLE

```
In [11]: import numpy as np
         from scipy.optimize import minimize
         import matplotlib.pyplot as plt
         def lik(parameters):
             m = parameters[0]
             b = parameters[1]
             sigma = parameters[2]
             for i in np.arange(0, len(x)):
                 y \exp = m * x + b
             L = (len(x)/2 * np.log(2 * np.pi) + len(x)/2 * np.log(sigma ** 2) + 1 /
                  (2 * sigma ** 2) * sum((y - y exp) ** 2))
             return L
         x = np.array([1,4,5,6,9])
         y = np.array([2,6,7,9,15])
         lik model = minimize(lik, np.array([2,2,2]), method='L-BFGS-B')
In [12]: lik model
Out[12]:
               fun: 4.581084072762135
          hess_inv: <3x3 LbfgsInvHessProduct with dtype=float64>
               jac: array([1.24344979e-06, 2.84217094e-06, 1.33226763e-06])
           message: b'CONVERGENCE: NORM OF PROJECTED GRADIENT <= PGTOL'
              nfev: 108
               nit: 17
             status: 0
            success: True
                 x: array([ 1.61764689, -0.28823426, 0.60488214])
```


Example 2

```
In [1]:
        import numpy as np
        from scipy.optimize import minimize
        import scipy.stats as stats
In [2]: import pandas as pd
        tbl = pd.read excel('regcar.xlsx')
        tbl
Out[2]:
            TV Ads car Sold
                        14
                3
                       24
                2
                        18
                        17
                3
                       27
```



```
In [3]: import statsmodels.api as sm
        x= tbl['TV Ads']
        y =tbl['car Sold']
        x2 = sm.add constant(x)
        modl = sm.OLS(y,x2)
        modl2 = modl.fit()
        print(modl2.summary())
                                    OLS Regression Results
        Dep. Variable:
                                     car Sold R-squared:
                                                                                 0.877
        Model:
                                          OLS Adj. R-squared:
                                                                                 0.836
                                Least Squares F-statistic:
        Method:
                                                                                 21.43
                             Wed, 11 Sep 2019
                                                Prob (F-statistic):
        Date:
                                                                                0.0190
        Time:
                                     11:11:23
                                                Log-Likelihood:
                                                                               -9.6687
        No. Observations:
                                                                                 23.34
                                                AIC:
        Df Residuals:
                                                BIC:
                                                                                 22.56
        Df Model:
        Covariance Type:
                                    nonrobust
                         coef
                                 std err
                                                         P>|t|
                                                                    [0.025
                                                                                0.975]
        const
                      10,0000
                                   2.366
                                              4.226
                                                         0.024
                                                                     2.469
                                                                                17,531
        TV Ads
                       5.0000
                                   1.080
                                              4.629
                                                         0.019
                                                                     1.563
                                                                                 8.437
        Omnibus:
                                                Durbin-Watson:
                                                                                 1.214
                                          nan
        Prob(Omnibus):
                                                Jarque-Bera (JB):
                                                                                 0.674
                                          nan
        Skew:
                                                Prob(JB):
                                        0.256
                                                                                 0.714
        Kurtosis:
                                        1.276
                                                Cond. No.
                                                                                  6.33
```



```
## b0 = 10 and b1 = 5
In [4]: e=modl2.resid
In [5]: e
Out[5]: 0 -1.0
       1 -1.0
       2 -2.0
       3 2.0
       4 2.0
       dtype: float64
In [9]: np.std(e)
Out[9]: 1.6733200530681507
```



```
In [10]: import numpy as np
         from scipy.optimize import minimize
         import matplotlib.pyplot as plt
         def lik(parameters):
            m = parameters[0]
            b = parameters[1]
            sigma = parameters[2]
            for i in np.arange(0, len(x)):
                y \exp = m * x + b
            L = (len(x)/2 * np.log(2 * np.pi) + len(x)/2 * np.log(sigma ** 2) + 1 /
                 (2 * sigma ** 2) * sum((y - y exp) ** 2))
            return L
         x = np.array([1,3,2,1,3])
         y = np.array([14,24,18,17,27])
         lik model = minimize(lik, np.array([2,2,2]), method='L-BFGS-B')
In [11]: lik model
Out[11]:
              fun: 9.668741208976929
         hess inv: <3x3 LbfgsInvHessProduct with dtype=float64>
              jac: array([-5.32907052e-07, -1.77635684e-07, -2.30926389e-06])
          message: b'CONVERGENCE: NORM OF PROJECTED GRADIENT <= PGTOL'
             nfev: 104
              nit: 22
           status: 0
          success: True
```


Thank you

