Integración numérica

- Fórmulas de cuadratura
 - <u>Ejercicio 1 plot</u>
- Fórmulas de cuadratura de Newton-Cotes simples
 - Ejercicio 1a
 - <u>Ejercicio 1b</u>
 - Ejercicio 1c
- Fórmulas de cuadratura de Newton-Cotes compuestas
 - <u>Ejercicio 1d</u>
 - <u>Ejercicio 1e</u>
 - Ejercicio 1f
- Fórmulas de cuadratura gaussianas
 - Ejercicio 2
- Grado de precisión de las fórmulas de cuadratura
 - Ejercicio 3
- Ejercicios propuestos
 - Integración numérica con órdenes python
 - <u>Integración de Montecarlo</u>

Fórmulas de cuadratura

Las fórmulas de integración numérica o de cuadratura son de la forma:

$$\int_a^b f(x)\,dxpprox \omega_0\; f(x_0)+\omega_1\; f(x_1)+\cdots+\omega_N\; f(x_N)$$

donde x_0, x_1, \ldots, x_N (nodos) son N+1 puntos distintos pertenecientes al intervalo [a,b] y $\omega_0, \omega_1, \ldots, \omega_N$ (pesos) son números reales.

Fórmulas interpolatorias

Si P_N es el polinomio que interpola a f en los puntos distintos $x_0, x_1, \ldots, x_N \in [a,b]$ y

$$\int_a^b f(x)\,dxpprox \int_a^b P_N(x)\,dx = \omega_0\,f(x_0) + \omega_1\,f(x_1) + \cdots + \omega_N\,f(x_N)$$

decimos que la fórmula de cuadratura es de tipo interpolatorio.

Fórmulas de cuadratura simples y compuestas

Las fórmulas de cuadratura se llaman simples si la aproximación se hace en el intervalo completo [a,b], y compuestas si, antes de aplicar la fórmula, dividimos el intervalo [a,b], en n subintervalos.

Grado de precisión

Una fórmula de cuadratura tiene grado de precisión r si es exacta para

$$f\left(x
ight) =1,\quad f\left(x
ight) =x,\quad f\left(x
ight) =x^{2},\ldots ,\quad f\left(x
ight) =x^{r}$$

pero no es exacta para $f\left(x\right)=x^{r+1}$

Fórmulas de cuadratura de Newton-Cotes simples

Son fórmulas de cuadratura de tipo interpolatorio, eligiendo los puntos de interpolación (nodos de la fórmula) igualmente separados de una de las dos formas siguientes:

ullet Fórmulas cerradas Los límites de integración a y b son nodos de la fórmula.

Fórmulas abiertas Ninguno de los límites de integración es nodo de la fórmula.

Ejercicio 1 plot

Escribir la función dibujo(f,a,b,nodos) que tiene como argumentos de entrada la función lambda f a integrar, los extremos del intervalo de integración a y b, y los nodos con los que vamos a construir la fórmula interpolatoria en un array numpy nodos y que dibuja

- El área calculada por la integral exacta.
- · Los nodos.
- El área aproximada calculada por la fórmula interpolatoria que usa los nodos.

Probar la fórmula con los siguientes datos:

1.
$$f(x)=e^x$$
, $[a,b]=[0,3]$ y nodos = np.array([1,2,2.5])
2. $f(x)=\cos(x)+1.5$, $[a,b]=[-3,3]$ y nodos = np.array([-3.,-1,0,1,3])

Nota

• Si queremos dibujar una poligonal que une tres puntos $(x_0,y_0),\,(x_1,y_1)$ y (x_2,y_2) con una línea roja discontinua

%run Ejercicio1plot

Calculemos primero una integral de forma exacta (simbólica) para comparar los sucesivos resultados numéricos

Cargamos los paquetes numpy y sympy

```
import numpy as np
import sympy as sym
```

La integral

$$\int_{1}^{3} \ln(x) \, dx \qquad (1)$$

se calcula de forma exacta

```
x = sym.Symbol('x', real=True)
f_sim = sym.log(x)
I_exacta = sym.integrate(f_sim,(x,1,3))
print(I_exacta)
```

-2 + 3*log(3)

Que también podemos escribir

```
I_exacta = float(I_exacta)
print(I_exacta)
```

1.2958368660043291

Fórmula del punto medio

La fórmula del punto medio es

$$\int_a^b f(x)\,dx pprox (b-a)\; f\left(rac{a+b}{2}
ight)$$

Usar la fórmula del punto medio para integrar una función en un intervalo, equivale a sustituir, dentro de la integral, la función a integrar por el polinomio de interpolación de grado cero, es decir, una recta horizontal que pasa por el punto de la curva que corresponde al punto medio del intervalo [a,b]. Sustituimos la función por una recta e integramos. Estamos entonces calculando el área de un rectángulo.

Ejercicio 1a

Escribir la función **punto_medio(f,a,b)** que tiene como argumentos de entrada la función f a integrar y los extremos del intervalo de integración a y b, y que devuelve el valor aproximado de la integral utilizando la Regla del Punto Medio.

Calcular la integral

$$\int_{1}^{3} \ln(x) \, dx$$

Escribir el valor exacto (calculado antes) y el valor aproximado.

%run Ejercicio1a.py

El valor aproximado es 1.3862943611198906

El valor exacto es 1.2958368660043291

Fórmula de los trapecios

La fórmula de los trapecios simple es

$$\int_{a}^{b}f(x)dxpproxrac{b-a}{2}\left(f\left(a
ight) +f\left(b
ight)
ight) ext{.}$$

Usar la fórmula de los trapecios para integrar una función en un intervalo, equivale a sustituir, dentro de la integral, la función a integrar por el polinomio de interpolación de grado uno, que pasa por los puntos de la función de los extremos del intervalo. Es decir, sustituimos la función por una recta e integramos. Estamos entonces calculando el área de un trapecio.

Ejercicio 1b

Escribir la función trapecio(f,a,b) del ejemplo anterior que tiene como argumentos de entrada la función f a integrar y los extremos del intervalo de integración a y b, y que devuelve el valor aproximado de la integral utilizando la Regla del Trapecio.

Calcular la integral

$$\int_{1}^{3} \ln(x) \, dx$$

Escribir el valor exacto y el valor aproximado.

%run Ejercicio1b.py

El valor aproximado es 1.0986122886681098

El valor exacto es 1.2958368660043291

Fórmula de Simpson

La fórmula de Simpson simple es

$$\int_{a}^{b}f(x)dxpproxrac{b-a}{6}\,\left(f\left(a
ight)+4\,f\left(rac{a+b}{2}
ight)+f\left(b
ight)
ight)$$

Usar la fórmula de Simpson para integrar una función en un intervalo, equivale a sustituir, dentro de la integral, la función a integrar por el polinomio de interpolación de grado dos, que pasa por los puntos de la función de los extremos y el punto medio del intervalo. Es decir, sustituimos la función por una parábola e integramos.

Ejercicio 1c

Escribir la función **simpson(f,a,b)** del ejemplo anterior que tiene como argumentos de entrada la función **f** a integrar y los extremos del intervalo de integración **a** y **b**, y que devuelve el valor aproximado de la integral utilizando la Regla del Simpson.

Calcular la integral

$$\int_{1}^{3} \ln(x) \, dx$$

Escribir el valor exacto y el valor aproximado.

%run Ejercicio1c.py

El valor aproximado es 1.290400336969297

El valor exacto es 1.2958368660043291

Fórmulas de cuadratura de Newton-Cotes compuestas

Una forma de disminuir el error de las fórmulas anteriores es aumentar el número de nodos utilizando las fórmulas compuestas. Estas se obtienen dividiendo el intervalo [a,b] en n subintervalos y aplicando a cada uno de estos subintervalos una fórmula de cuadratura sencilla.

Si dividimos el intervalo [a,b] en n subintervalos de igual longitud usando los nodos x_0,x_1,\ldots,x_n

la longitud de un subintervalo es

$$h = \frac{b-a}{n}$$

los nodos son

$$x_i = a + ih$$
 $i = 0, 1, \ldots, n$

y el punto medio de un intervalo es

$$ar{x}_i = rac{x_{i-1} + x_i}{2}$$

entonces, las fórmulas compuestas se pueden escribir:

Fórmula del punto medio compuesta

$$\int_a^b f dx pprox h \sum_{i=1}^n f(ar{x}_i)$$

Ejercicio 1d

Escribir la función <code>punto_medio_comp(f,a,b,n)</code> que tiene como argumentos de entrada la función <code>f</code> a integrar, los extremos del intervalo de integración <code>a</code> y <code>b</code>, y el número de subintervalos que vamos a usar en la fórmula compuesta <code>n</code> y devuelve el valor aproximado utilizando la Regla del Trapecio compuesta.

Calcular, con n = 5 subintervalos, la integral

$$\int_{1}^{3} \ln(x) \, dx$$

%run Ejercicio1d.py

El valor aproximado es 1.3002242084538775

El valor exacto es 1.2958368660043291

Regla de los trapecios compuesta

$$\int_a^b f dx pprox rac{h}{2}(f(a)+f(b)) + h \sum_{i=1}^{n-1} f(x_i)$$

Ejercicio 1e

Escribir la función trapecio_comp(f,a,b,n) que tiene como argumentos de entrada la función f a integrar, los extremos del intervalo de integración a y b y el número de subintervalos que vamos a usar en la fórmula compuesta n y devuelve el valor aproximado utilizando la Regla del Trapecio compuesta.

Calcular, con n = 4 subintervalos, la integral

$$\int_{1}^{3} \ln(x) \, dx$$

%run Ejercicio1e.py

El valor aproximado es 1.2821045824381598

El valor exacto es 1.2958368660043291

Fórmula de Simpson Compuesta

$$\int_a^b f dx pprox rac{h}{6} \sum_{i=1}^n \left(f(x_{i-1}) + 4 f(ar{x}_i) + f(x_i)
ight)
ight)$$

Ejercicio 1f

Escribir la función simpson_comp(f,a,b,n) que tiene como argumentos de entrada la función f a integrar, los extremos del intervalo de integración a y b y el número de subintervalos que vamos a usar en la fórmula compuesta n y devuelve el valor aproximado utilizando la Regla del Punto Medio compuesta.

Calcular, con n = 4 subintervalos, la integral

$$\int_{1}^{3} \ln(x) \, dx$$

%run Ejercicio1f.py

El valor aproximado es 1.295798349860867

El valor exacto es 1.2958368660043291

Fórmulas de cuadratura gaussianas

En la fórmula de cuadratura:

$$\int_a^b f(x) dx pprox \omega_0 f(x_0) + \omega_1 f(x_1) + \dots + \omega_N f(x_N)$$

¿Es posible calcular los pesos ω_i y los nodos x_i de forma que la precisión de la fórmula sea lo mayor posible? Sí, pero entonces los nodos no estarán equiespaciados.

Si
$$[a,b]=[-1,1]$$
 los pesos y nodos son

n	w_i	x_i
1	2.000000	0.000000
2	1.000000	± 0.577350
3	0.555556	± 0.774597
	0.888889	0.000000
4	0.347855	± 0.861136
	0.652145	± 0.339981
5	0.236927	± 0.906180
	0.478629	± 0.538469
	0.568889	0.000000

Estos nodos y pesos de la fórmula de Gauss-Legendre con nodos se pueden obtener con np.polynomial.legendre.leggauss(n) . Por ejemplo, para n=1:

```
n = 1
[x, w] = np.polynomial.legendre.leggauss(n)
print('w\n',w)
print('x\n',x)
```

w [2.] x [0.]

Así, por ejemplo, la fórmula gaussiana para un punto es

$$\int_{-1}^1 f(x)\,dx pprox 2\;f(0)$$

Para dos puntos

```
n = 2
[x, w] = np.polynomial.legendre.leggauss(n)
print('w\n',w)
print('x\n',x)
```

w [1. 1.] x [-0.57735027 0.57735027]

$$\int_{-1}^1 f(x) \, dx pprox f(-0.57735027) + f(0.57735027)$$

Para tres puntos

```
n = 3
[x, w] = np.polynomial.legendre.leggauss(n)
print('w\n',w)
print('x\n',x)
```

```
w [0.55555556 0.88888889 0.55555556] x [-0.77459667 0. 0.77459667]
```

 $\int_{-1}^1 f(x) \, dx pprox 0.55555556 \ f(-0.77459667) + 0.88888889 \ f(0) + 0.55555556 \ f(0.77459667) + 0.88888889 \ f(0) + 0.55555556 \ f(0.77459667) + 0.888888889 \ f(0) + 0.55555556 \ f(0.77459667) + 0.88888889 \ f(0) + 0.555555556 \ f(0.77459667) + 0.88888889 \ f(0) + 0.55555556 \ f(0.77459667) + 0.88888889 \ f(0) + 0.555555556 \ f(0.77459667) + 0.88888889 \ f(0) + 0.55555556 \ f(0.77459667) + 0.8888889 \ f(0) + 0.555555556 \ f(0.77459667) + 0.88888889 \ f(0) + 0.555555556 \ f(0.77459667) + 0.88888889 \ f(0) + 0.55555555 \ f(0.77459667) + 0.88888889 \ f(0) + 0.55555555 \ f(0.77459667) + 0.88888889 \ f(0) + 0.55555555 \ f(0.77459667) + 0.88888889 \ f(0) + 0.8888889 \ f(0) + 0.88888889 \ f(0) + 0.8888889 \ f(0) + 0.8888889 \ f(0) + 0.88888889 \ f(0) + 0.88888889 \ f(0) + 0.88$

Y así sucesivamente.

Estos resultados se pueden generalizar a cualquier intervalo $\left[a,b\right]$ cambiando los x_i por y_i de acuerdo con la fórmula

$$y_i = rac{b-a}{2} x_i + rac{a+b}{2}$$

Y entonces la fórmula de cuadratura es

$$\int_a^b f(x) dx pprox rac{b-a}{2} (\omega_0 \; f(y_0) + \omega_1 \; f(y_1) + \cdots + \omega_n \; f(y_n))$$

Ejercicio 2

Escribir la función gauss(f,a,b,n) que tiene como argumentos de entrada la función f a integrar, los extremos del intervalo de integración a y b y el número de nodos n y devuelve el valor aproximado utilizando la fórmulas gaussianas con n = 1, n = 2 y n = 3 nodos la integral

$$\int_{1}^{3} \ln(x) \, dx$$

%run Ejercicio2.py

- El valor aproximado es 1.3862943611198906
- El valor exacto es
- 1.2958368660043291

- El valor aproximado es 1.2992829841302609
- El valor exacto es 1.295
- 1.2958368660043291

- El valor aproximado es 1.2960060669544604
- El valor exacto es
- 1.2958368660043291

Grado de precisión de las fórmulas de cuadratura

Grado de precisión

Una fórmula de cuadratura tiene grado de precisión r si es exacta para

$$f\left(x
ight) =1,\quad f\left(x
ight) =x,\quad f\left(x
ight) =x^{2},\ldots ,\quad f\left(x
ight) =x^{r}$$

pero no es exacta para $f\left(x
ight)=x^{r+1}$

Ejercicio 3

Escribir una función $newton_cotes(f,a,b,n)$ que devuelva el valor de la integral aproximada de f en el intervalo [a,b] con la función $punto_medio$ si n=1, trapecio si n=2 y simpson si n=3 donde n es el número de nodos usado en la fórmula.

Escribir la función <code>grado_de_precision(formula,n)</code> que tiene como argumento de entrada la función <code>formula</code> que puede ser la función <code>newton_cotes</code> o <code>gauss</code> y donde <code>n</code> es el número de nodos que se usa en la construcción de la fórmula, que estudia el grado de precisión de cada una de estas fórmulas calculando su error para las integrales

$$\int_1^3 x^i\,dx \quad i=0,1,2,\dots$$

y cuando el error es distinto de cero, para. Imprimir los errores para cada polinomio y el grado de precisión de la fórmula.

Notas:

• Debido a los errores de redondeo, considerar que el error es cero cuando es menor que $10^{-10}\,$.

%run Ejercicio3.py

```
---- Fórmula del punto medio (n = 1) ----
            error = 0.0
f(x) = x^0
f(x) = x^1
            error = 0.0
f(x) = x^2
            error = 0.66666666666661
El grado de precisión es 1
---- Fórmula del trapecio (n = 2) ----
f(x) = x^0
            error = 0.0
f(x) = x^1
            error = 0.0
            error = 1.333333333333334
f(x) = x^2
El grado de precisión es 1
---- Fórmula de Simpson (n = 3) ----
f(x) = x^0
            error = 0.0
f(x) = x^1
            error = 0.0
f(x) = x^2
            error = 0.0
f(x) = x^3
            error = 0.0
f(x) = x^4
            error = 0.26666666666657
El grado de precisión es 3
---- Fórmula Gauss n = 1 ----
            error = 0.0
f(x) = x^0
f(x) = x^1
            error = 0.0
f(x) = x^2
            error = 0.66666666666661
El grado de precisión es 1
---- Fórmula Gauss n = 2 ----
f(x) = x^0
            error = 0.0
f(x) = x^1
            error = 0.0
f(x) = x^2
            error = 0.0
f(x) = x^3
            error = 0.0
f(x) = x^4
            error = 0.1777777777775
El grado de precisión es 3
---- Fórmula Gauss n = 3 ----
            error = 4.440892098500626e-16
f(x) = x^0
f(x) = x^1
            error = 0.0
f(x) = x^2
            error = 1.7763568394002505e-15
f(x) = x^3
            error = 7.105427357601002e-15
f(x) = x^4
            error = 7.105427357601002e-15
f(x) = x^5
            error = 1.4210854715202004e-14
            error = 0.04571428571415481
f(x) = x^6
```

El grado de precisión es 5

```
Fórmula Gauss n = 4 ----

f(x) = x^0 error = 2.220446049250313e-16

f(x) = x^1 error = 4.440892098500626e-16

f(x) = x^2 error = 0.0

f(x) = x^3 error = 0.0

f(x) = x^4 error = 7.105427357601002e-15

f(x) = x^5 error = 0.0

f(x) = x^6 error = 5.684341886080802e-14

f(x) = x^7 error = 2.2737367544323206e-13

f(x) = x^8 error = 0.011609977324951615
```

Ejercicios propuestos

Integración numérica con órdenes python

El módulo <u>scipy.integrate (https://docs.scipy.org/doc/scipy/reference/integrate.html)</u> provee varias funciones con diferentes técnicas de integración. Entre sus funciones está la función de propósito general quad .

```
from scipy.integrate import quad

f = lambda x : np.log(x)
a = 1.; b = 3;

I = quad(f,a,b)

print('El valor aproximado es', I[0])
print('El valor exacto es ', I_exacta)

El valor aproximado es 1.2958368660043291
El valor exacto es 1.2958368660043291
```

Integración de Montecarlo

Podemos calcular integrales aproximadas usando números aleatorios.

Consideremos, de momento, que la función es positiva en el intervalo de integración $\left[a,b\right]$. El valor de la integral de la función es igual al área bajo la curva. Para aproximar este área:

- 1. Generamos puntos aleatorios dentro del rectángulo $[a,b] imes [0,\max(f)].$
- 2. Contamos el número de puntos por debajo de la curva.
- 3. La proporción del número de puntos por debajo de la curva relativa a los puntos totales, multiplicada por el área del anterior rectángulo nos da el área aproximada.

Ejercicio 4

Escribir la función montecarlo(f,a,b,n) que tiene como argumentos de entrada la función f a integrar, los extremos del intervalo de integración a y b y el número de puntos aleatorios n y devuelve el valor aproximado utilizando el método de Montecarlo.

$$\int_{-2}^{2} e^{-x^2} \, dx$$

Escribir el valor exacto y el valor aproximado.

Nota

Para calcular $\bf n$ puntos aleatorios distribuidos uniformemente en el intervalo [a,b] podemos usar $\bf np.random.rand(n)$ * $\bf (b-a)$ + $\bf a$.

%run Ejercicio4.py

El valor aproximado es 1.735972

El valor exacto es 1.764163

Ejercicio 5

Modificar la función anterior para que sea válida para funciones no positivas. Calcular la integral

$$\int_{-2}^{\,2} \left(10\,e^{-x^2} - 6 \right) \, dx$$

%run Ejercicio5.py

- El valor aproximado es -6.243487
- El valor exacto es -6.358372