Домашняя работа к занятию 1

Для каждого из уравнений 1.1-2.2

- 1) найдите формулу общего решения (или общего интеграла) уравнения,
- 2) решите поставленную задачу Коши и укажите максимальный интервал существования данного решения,
- 3) нарисуйте интегральные линии уравнения и выясните, является ли решение $y = \varphi(x)$ особым.

$$1.1\begin{cases} y' = \frac{\sqrt{y}}{x} \\ y(1) = 1 \end{cases}$$

$$1.3\begin{cases} y' = \frac{y^3}{x^2} \\ y(-1) = -1 \end{cases}$$

$$\varphi(x) \equiv 0$$

$$\varphi(x) \equiv 0$$

$$2.1\begin{cases} y' = \frac{y^2}{x} \\ y(1) = 1 \end{cases}$$

$$\varphi(x) \equiv 0$$

$$\varphi(x) = 0$$

$$\varphi(x) = 0$$

$$\varphi(x) = x$$

$$2.1\begin{cases} 2x^2y' = \cos 2y - 1 \\ y(1) = \frac{3\pi}{4} \end{cases}$$

$$\varphi(x) = \pi n, n \in Z$$

$$2.2\begin{cases} y' = \sqrt[3]{2x + y - 1} - 2 \\ y(0) = 0 \end{cases}$$

$$\varphi(x) = 1 - 2x$$

2.3 Согласно закону излучения тепла скорость охлаждения тела в воздухе пропорциональна разности между температурой тела и температурой окружающего воздуха, то есть изменение температуры тела описывается уравнением $\dot{x}=-k(x-a)$, где x=x(t) — температура тела в момент времени t,a — температура воздуха, k — положительный коэффициент.

Камень был нагрет до температуры $40^{o}C$, после чего в течение часа его температура снизилась до $30^{o}C$. Через сколько часов температура

камня снизится до $21^{\circ}C$, если температура окружающего воздуха равна $20^{\circ}C$?

- **2.4** Эффективность рекламной кампании можно оценить, используя уравнение $\dot{x} = kx(N-x)$, где x(t) число людей, знающих о товаре в момент времени t, N количество потенциальных покупателей, коэффициент k положителен. Обоснуйте расхожую сентенцию «если новость знают двое, то вскоре узнают все».
- **3.1** Приведите примеры уравнений первого порядка, для которых непродолжаемое решение задачи Коши с начальными данными y(1) = 1 определено на интервале а) $(0; +\infty)$ б) (0; a) в) (a; b).
- **3.2** В области (x>0;y>0) исследуйте поведение интегральных кривых уравнения $y'=-\frac{f(y)}{g(x)},$ если f(y) непрерывна при $y\geqslant 0,$ f(0)=0 и f(y)>0 при y>0, g(x) непрерывна при $x\geqslant 0,$ g(0)=0 и g(x)>0 при x>0.
- ${\bf 3.3}$ Докажите, что если функция f(y) непрерывна, то все решения уравнения y'=f(y) монотонны.

Ответы и указания

1.1 1) $y = \frac{1}{4} \ln^2 C x$ или $x = C e^{2\sqrt{y}}$; решение $y \equiv 0$ не описывается формулой общего решения

2)
$$y = \frac{(\ln x + 2)^2}{4}$$
, $x \in (e^{-2}; +\infty)$ 3) $y \equiv 0$ — особое

- **1.2** 1) $y = -\frac{1}{\ln Cx}$ или $x = Ce^{-1/y}$; решение $y \equiv 0$ не описывается формулой общего решения
- 2) $y = (1 \ln x)^{-1}$ или $x = e^{\frac{y-1}{y}}, x \in (0; e)$ 3 $y \equiv 0$ не особое
 - **1.3** 1) $\frac{1}{y^2} = \frac{2}{x} + C$; решение $y \equiv 0$ не описывается формулой общего

решения

2)
$$y=-\sqrt{\frac{x}{3x+2}}$$
 , $x\in(-\infty;-2/3)$ 3) $y\equiv0$ — не особое

1.4 1)
$$e^y = e^x + C$$
 2) $y = x, x \in (-\infty; +\infty)$

- 3) y=x не особое, получается из общего решения при C=0
- **2.1** 1) $\operatorname{ctg} y = -\frac{1}{x} + C$; решения $y = \pi n, n \in \mathbb{Z}$, не описываются формулой общего решения;
- 2) $y(1) = \frac{3\pi}{4} \Rightarrow C = 0$ и $x = -\operatorname{tg} y$. Разрешаем относительно y с учетом условия $y(1) = \frac{3\pi}{4} \Rightarrow y = \pi \operatorname{arctg} x, \, x \in (0; +\infty)$
- 3) $y = \pi n, n \in \mathbb{Z},$ не особые
- **2.2** 1) $(2x+y-1)^{2/3}=\frac{2}{3}x+C$; решение y=1-2x не описывается формулой общего решения

2)
$$y = 1 - 2x - (\frac{2}{3}x + 1)^{3/2}, x \in (-\infty; -\frac{3}{2})$$
 3) $y = 1 - 2x$ — особое

2.3 Указание: Решение уравнения $x-a=(x_0-a)e^{-kt}$. Подставим числовые значения: $10=20e^{-k}$, следовательно $k=\ln 2$.

Ответ: $t = \log_2 20$

2.4 Указание: Пусть в начальный момент времени о товаре знают N_0 человек $(N_0 < N)$. Решите задачу Коши $\begin{cases} \dot{x} = kx(N-x) \\ x(0) = N_0 \end{cases}$

Общее решение $\frac{x(t)}{N-x(t)}=Ce^{kNt}$. Из начальных условий $C=\frac{N_0}{N-N_0},$ следовательно $x(t)=\frac{N_0N}{N_0+(N-N_0)e^{-kNt}}$ и $\lim_{t\to+\infty}x(t)=N.$