连续时间傅里叶级数性质

性质	周期信号	傅里叶级数系数
	$\left. egin{aligned} \mathbf{x}(\mathbf{t}) \ \mathbf{y}(\mathbf{t}) \end{aligned} ight.$ 周期为 T ,基本频率 $\omega_0 = rac{2\pi}{T}$	$egin{aligned} a_k \ b_k \end{aligned}$
线性	Ax(t)+By(t)	Aa_k+Bb_k
时移	$x(t-t_0)$	$a_k e^{jk\omega_0 t_0} = a_k e^{-jk(rac{2\pi}{T})t_0}$
频移	$e^{jM\omega_0 t}x(t)=e^{jM(rac{2\pi}{T})t}x(t)$	a_{k-M}
共轭	$x^*(t)$	a_{-k}^*
时间反转	x(-t)	a_{-k}
时间尺度变换	$x(lpha t)$, $lpha>0$ (周期为 $rac{T}{lpha}$)	a_k
周期卷积	$\int_T x(au)y(t- au)\mathrm{d} au$	Ta_kb_k
相乘	x(t)y(t)	$\sum_{l=-\infty}^{+\infty} a_l b_{k-l}$
微分	$rac{dx(t)}{dt}$	$jk\omega_0 a_k = jkrac{2\pi}{T}a_k$
积分	$\int_{-\infty}^t x(t) \mathrm{d}t$ (仅当 $a_0 = 0$ 才为有限值且为周期的)	$\left(rac{1}{jk\omega_0} ight)a_k=\left(rac{1}{jk(2\pi/T)} ight)a_k$
实信号的共轭对 称性	x(t)为实信号	$\left\{egin{aligned} a_k &= a_{-k}^* \ Re\{a_k\} &= Re\{a_{-k}\} \ Im\{a_k\} &= -Im\{a_{-k}\} \ a_k &= a_{-k} \ orall a_k &= - riangle a_{-k} \end{aligned} ight.$
实偶信号	x(t)为实偶信号	a_k 为实偶信号
实奇信号	x(t)为实奇信号	a_k 为纯虚奇函数
实信号的奇偶分 解	$\left\{egin{aligned} x_e(t) &= Ev\{x(t)\}, \; [x(t)$ 为实信号] $x_o(t) &= Od\{x(t)\}, \; [x(t)$ 为实信号]	$Re\{a_k\} \ jIm\{a_k\}$

周期信号的帕斯瓦尔定理
$rac{1}{T}\int_T x(t) ^2 \mathrm{d}t = \sum_{k=-\infty}^{+\infty} a_k ^2$

离散时间傅里叶级数性质

性质	周期信号	傅里叶级数系数
	$\left. egin{aligned} \mathbf{x}[\mathbf{n}] \ \mathbf{y}[\mathbf{n}] \end{aligned} ight\}$ 周期为 T ,基本频率 $\omega_0 = rac{2\pi}{N}$	$\left.egin{aligned} a_k\ b_k \end{aligned} ight\}$ 周期的,周期为 N
线性	Ax[n]+By[n]	Aa_k+Bb_k
时移	$x[n-n_0]$	$a_k e^{-jk(rac{2\pi}{N})n_0}$
频移	$e^{jM(rac{2\pi}{N})n}x[n]$	a_{k-M}
共轭	$x^*[n]$	a_{-k}^*
时间反转	x([-n]	a_{-k}
时间尺度 变换	$x_{(m)}[n] = \left\{ egin{aligned} x[n/m], & egin{aligned} \Xi & egin{aligned} n otin & egin{aligned} \Xi & egin{aligned} m otin & egin{aligned} \Xi & egin{aligned} m otin & egin{aligned} \Xi & egin{aligned} \pi otin & egin{aligned} \Xi & e$	$rac{1}{m}a_k$ (看成周期的,周期为 mN)
周期卷积	$\sum_{r=\langle N angle} x[r]y[n-r]$	Na_kb_k
相乘	x[n]y[n]	$\sum_{l=\langle N angle} a_l b_{k-l}$
一阶差分	x[n]-x[n-1]	$(1-e^{jk(2\pi/N)})a_k$
求和	$\sum_{k=-\infty}^n x[k]$ (仅当 $a_0=0$ 才为有限值且为周期的)	$\left(rac{1}{1-e^{jk(2\pi/N)}} ight)a_k$
实信号的 共轭对称 性	x[n]为实信号	$\left\{egin{aligned} a_k &= a_{-k}^* \ Re\{a_k\} &= Re\{a_{-k}\} \ Im\{a_k\} &= -Im\{a_{-k}\} \ a_k &= a_{-k} \ \sphericalangle a_k &= - \sphericalangle a_{-k} \end{aligned} ight.$
实偶信号	x[n]为实偶信号	a_k 为实偶信号
实奇信号	x[n]为实奇信号	a_k 为纯 虚奇函数
实信号的 奇偶分解	$egin{cases} x_e[n] = Ev\{x[n]\}, \; [x[n]$ 为实信号] $x_o[n] = Od\{x[n]\}, \; [x[n]$ 为实信号]	$Re\{a_k\} \ jIm\{a_k\}$

周期信号的帕斯瓦尔定理
$rac{1}{N} \sum_{n=\langle N angle} x[n] ^2 \mathrm{d}t = \sum_{n=\langle N angle} a_k ^2$

傅里叶变换性质

性质	非周期信号	傅里叶变换
	$egin{array}{c} x(t) \ y(t) \end{array}$	$X(j\omega) \ Y(j\omega)$
线性	ax(t)+by(t)	$aX(j\omega)+bY(j\omega)$
时移	$x(t-t_0)$	$e^{-j\omega t_0}X(j\omega)$
频移	$e^{j\omega_0t}x(t)$	$X(k(\omega-\omega_0))$
共轭	$x^*(t)$	$X^*(-j\omega)$
时间反转	x(-t)	$X(-j\omega)$
时间与频率尺度变换	x(at)	$rac{1}{ a }X(rac{j\omega}{a})$
卷积	x(t) * y(t)	$X(j\omega)Y(j\omega)$
相乘	x(t)y(t)	$rac{1}{2\pi}\int_{-\infty}^{+\infty}X(j heta)Y(j(\omega- heta))\mathrm{d} heta$
时域微分	$rac{d}{dt}x(t)$	$j\omega X(j\omega)$
积分	$\int_{-\infty}^t x(t) \mathrm{d}t$	$rac{1}{j\omega}X(j\omega)+\pi X(0)\sigma(\omega)$
频域微分	tx(t)	$rac{1}{j\omega} + \pi X(0) \sigma(\omega)$
实信号的共轭对称性	x(t)为实信号	$\begin{cases} X(j\omega) = X^*(-j\omega) \\ Re\{X(j\omega)\} = Re\{X(-j\omega)\} \\ Im\{X(j\omega)\} = -Im\{X(-j\omega)\} \\ X(j\omega) = X(-j\omega) \\ \triangleleft X(j\omega) = -\triangleleft X(j\omega) \end{cases}$
实偶信号的对称性	x(t)为实偶信号	$X(j\omega)$ 为实偶
实奇信号的对称性	x(t)为实奇信号	$X(j\omega)$ 为纯 虚数
实信号的奇偶分解	$x_e(t) = Ev\{x(t)\}$, $[x(t)$ 为实信号 $]$ $x_o(t) = Od\{x(t)\}$, $[x(t)$ 为实信号 $]$	$Re\{X(j\omega)\} \ jIm\{X(j\omega)\}$

非周期信号的帕斯瓦尔定理
$\int_{-\infty}^{+\infty} x(t) ^2 \; \mathrm{d}t = rac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) ^2 \; \mathrm{d}\omega$

基本傅里叶变换对

信号	傅里叶变换	傅里叶级数系数(若为周期的)
$\sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$	$2\pi\sum_{k=-\infty}^{+\infty}a_k\sigma(\omega-k\omega_0)$	a_k
$e^{jk\omega_0t}$	$2\pi\sigma(\omega-k\omega_0)$	$a_1=1 \ a_k=0$,其余 k
$\cos(\omega_0 t)$	$\pi[\sigma(\omega-\omega_0)+\sigma(\omega+\omega_0)]$	$a_1=a_{-1}=rac{1}{2}$ $a_k=0$,其余 k
$\sin(\omega_0 t)$	$rac{\pi}{j}[\sigma(\omega-\omega_0)-\sigma(\omega+\omega_0)]$	$a_1=a_{-1}=rac{1}{2j}$ $a_k=0$,其余 k
x(t)=1	$2\pi\sigma(\omega)$	$a_0=1$, $a_k=0$, $k eq 0$ 这是对任意 $T>0$ 选择的傅里叶级数表示
周期方波 $x(t) = egin{cases} 1, & \mid t \mid < T_1 \ 0, & T_1 < \mid t \mid \leq rac{T}{2} \ x(t+T) = x(t) \end{cases}$	$\sum_{k=-\infty}^{+\infty} rac{2\sin(k\omega_0 T_1)}{k} \sigma(\omega-k\omega_0)$	$rac{\omega_0 T_1}{\pi} sinc\left(rac{k\omega_0 T_1}{\pi} ight) = rac{\sin(k\omega_0 T_1)}{k\pi}$
$\sum_{n=-\infty}^{+\infty} \sigma(t-nT)$	$\frac{2\pi}{T}\sum_{k=-\infty}^{+\infty}\sigma\left(\omega-\frac{2\pi k}{T}\right)$	$a_k=rac{1}{T}$,对全部 k
$x(t) = \left\{egin{array}{ll} 1, & \mid t \mid < T_1 \ 0, & \mid t \mid > T_1 \end{array} ight.$	$\frac{2\sin(\omega T_1)}{\omega}$	_
$\frac{\sin(Wt)}{\pi t}$	$X(j\omega) = \left\{ egin{array}{ll} 1, & \mid \omega \mid < W \ 0, & \mid \omega \mid > W \end{array} ight.$	
$\sigma(t)$	1	
u(t)	$rac{1}{j\omega}+\pi\omega(\omega)$	_
$\sigma(t-t_0)$	$e^{-j\omega t_0}$	_
$e^{-at}u(t)$, $Re\{a\}>0$	$\frac{1}{a+j\omega}$	
$te^{-at}u(t)$, $Re\{a\}>0$	$rac{1}{\left(a+j\omega ight)^{2}}$	_
$rac{t^{n-1}}{(n-1)!}e^{-at}u(t)$, $Re\{a\}>0$	$\frac{1}{(a+j\omega)^n}$	_

拉普拉斯变换性质

性质	信号	拉普拉斯变换	收敛域
	$x(t) \ x_1(t) \ x_2(t)$	$X(s) \ X_1(s) \ X_2(s)$	$R \ R_1 \ R_2$
线性	$ax_1(t) + bx_2(t)$	$aX_1(s)+bX_2(s)$	至少 $R_1 \cap R_2$
时移	$x(t-t_0)$	$e^{-st_0}X(s)$	R
<i>s</i> 域 平移	$e^{s_0t}x(t)$	$X(s-s_0)$	R 的平移,即若 $\left(s-s_0 ight)$ 在 R 中,则 s 就位于收敛域中
时域尺度变换	x(at)	$rac{1}{ a }X\left(rac{s}{a} ight)$	R/a,即若 s/a 在 R 中,则 s 就位于收敛域中
共轭	$x^*(t)$	$X^*(s^*)$	R
卷积	$x_1(t) * x_2(t)$	$X_1(s) \ast X_2(s)$	至少 $R_1 \cap R_2$
时域微分	$rac{d}{dt}x(t)$	sX(s)	至少 R
时域微分(单边)	$rac{d}{dt}x(t)$	$sX(s)-x(0^-)$	
<i>s</i> 域 微 分	-tx(t)	$rac{d}{ds}X(s)$	R
时域积分	$\int_{-\infty}^t x(\tau) \mathrm{d}(\tau)$	$\frac{1}{s}X(s)$	至少 $R_1 \cap Re\{s\} > 0$

初值定理和终值定理

若t<0,x(t)=0且在t=0不包任何冲激或高阶奇异函数,则

$$x(0^+) = \lim_{s o\infty} sX(s)$$

 $\lim_{t o\infty}x(t)=\lim_{t o0}sX(s)$

基本函数的拉普拉斯变换对

信号	拉普拉斯变换	收敛域
$\sigma(t)$	1	全部 <i>s</i>
u(t)	$\frac{1}{s}$	$Re\{s\}>0$
-u(-t)	$\frac{1}{s}$	$Re\{s\} < 0$
$rac{t^{n-1}}{(n-1)!}u(t)$	$\frac{1}{s^n}$	$Re\{s\} > 0$
$-rac{t^{n-1}}{(n-1)!}u(-t)$	$\frac{1}{s^n}$	$Re\{s\} < 0$
$e^{-at}u(t)$	$\frac{1}{s+a}$	$Re\{s\} > -a$
$-e^{-at}u(-t)$	$\frac{1}{s+a}$	$Re\{s\} < -a$
$rac{t^{n-1}}{(n-1)!}e^{-at}u(t)$	$\frac{1}{(s+a)^n}$	$Re\{s\} > -a$
$-rac{t^{n-1}}{(n-1)!}e^{-at}u(-t)$	$\frac{1}{(s+a)^n}$	$Re\{s\} < -a$
$\sigma(t-T)$	e^{-sT}	全部 8
$[\cos(\omega_0 t)]u(t)$	$rac{s}{s^2+\omega_0^2}$	$Re\{s\}>0$
$[\sin(\omega_0 t)]u(t)$	$\frac{\omega_0}{s^2\!+\!\omega_0^2}$	$Re\{s\} > 0$
$[e^{-at}\cos(\omega_0 t)]u(t)$	$\frac{s+a}{(s+a)^2+\omega^2}$	$Re\{s\} > -a$
$[e^{-at}\cos(\omega_0 t)]u(t)$	$\frac{\omega_0}{\left(s{+}a\right)^2{+}\omega^2}$	$Re\{s\} > -a$
$u_n(t)=rac{d^n\sigma(t)}{dt^n}$	s^n	全部 <i>s</i>
$u_{-n}(t) = \underbrace{u(t) * \cdots * u(t)}_{ ext{n} abla}$	$\frac{1}{s^n}$	$Re\{s\}>0$