Computability and Complexity

Lecture 7

Computable functions Mapping reducibility Results and examples

given by Jiri Srba

Proof Template for Showing Undecidability by Reduction

We know that language A is undecidable. By reducing A to B we want to show that the language B too.

Proof Template for Showing Undecidability by Reduction

We know that language A is undecidable. By reducing A to B we want to show that the language B too.

- **1** By contradiction assume that we have a decider M_B for B.
- ② Using M_B we construct a decider M_A for the language A:

```
M_A = "On input \langle I_A \rangle:
```

1. Algorithmically construct an input $\langle I_B \rangle$ for M_B s.t.:

```
a) if \langle I_A \rangle \in A then \langle I_B \rangle \in B if \langle I_A \rangle \notin A then \langle I_B \rangle \notin B
```

2. Run the decider M_B on $\langle I_B \rangle$: Case a): M_A accepts iff M_B accepted.

- **1** We know that M_A cannot exist, so M_B cannot exist either.
- Conclusion: the language *B* is undecidable.

Proof Template for Showing Undecidability by Reduction

We know that language A is undecidable. By reducing A to B we want to show that the language B too.

- **1** By contradiction assume that we have a decider M_B for B.
- ② Using M_B we construct a decider M_A for the language A:

```
M_A = "On input \langle I_A \rangle:
```

1. Algorithmically construct an input $\langle I_B \rangle$ for M_B s.t.:

```
a) if \langle I_A \rangle \in A then \langle I_B \rangle \in B if \langle I_A \rangle \notin A then \langle I_B \rangle \notin B
```

```
b) if \langle I_A \rangle \in A then \langle I_B \rangle \notin B if \langle I_A \rangle \notin A then \langle I_B \rangle \in B
```

- 2. Run the decider M_B on $\langle I_B \rangle$: Case a): M_A accepts iff M_B accepted. Case b): M_A accepts iff M_B rejected."
- **3** We know that M_A cannot exist, so M_B cannot exist either.
- ullet Conclusion: the language B is undecidable.

Computable Function

Idea: Turing machines can also compute functions $f: \Sigma^* \to \Sigma^*$.

Computable Function

Idea: Turing machines can also compute functions $f: \Sigma^* \to \Sigma^*$.

Definition (Computable Function)

A function $f: \Sigma^* \to \Sigma^*$ is a computable function iff there exists a TM M_f which on any given input $w \in \Sigma^*$

- always halts, and
- leaves just f(w) on its tape.

Computable Function

Idea: Turing machines can also compute functions $f: \Sigma^* \to \Sigma^*$.

Definition (Computable Function)

A function $f: \Sigma^* \to \Sigma^*$ is a computable function iff there exists a TM M_f which on any given input $w \in \Sigma^*$

- always halts, and
- leaves just f(w) on its tape.

Examples:

- Let $f(w) \stackrel{\text{def}}{=} ww$ be a function. Then f is computable.
- Let $f(\langle n_1, n_2 \rangle) \stackrel{\text{def}}{=} \langle n \rangle$ where n_1 and n_2 are integers and $n = n_1 * n_2$. Then f is computable.

Example of a Computable Function

$$f(w) \stackrel{\text{def}}{=} \left\{ \begin{array}{l} \langle M' \rangle & \text{if } w = \langle M \rangle \text{ and } M \text{ is a TM, and } M' \text{ is} \\ & \text{a never rejecting TM s.t. } L(M) = L(M') \end{array} \right.$$

$$\epsilon \qquad \text{if } w \text{ is not an encoding of a TM}$$

Example of a Computable Function

$$f(w) \stackrel{\text{def}}{=} \left\{ \begin{array}{l} \langle M' \rangle & \text{if } w = \langle M \rangle \text{ and } M \text{ is a TM, and } M' \text{ is} \\ & \text{a never rejecting TM s.t. } L(M) = L(M') \end{array} \right.$$

$$\epsilon \qquad \text{if } w \text{ is not an encoding of a TM}$$

Function f is computable by the following TM M_f :

"On input w:

- 1. If w is not an encoding of a TM, erase the tape and accept.
- 2. If $w = \langle M \rangle$ for some TM M then replace every occurrence of q_{reject} in $\langle M \rangle$ (which is on the tape) with a newly added state q_{loop} , and add the transitions $\delta(q_{loop}, a) = (q_{loop}, a, R)$ for all tape symbols a.
- 3. Accept."

Mapping Reducibility

Definition (Mapping Reducibility, $A \leq_m B$)

Let $A, B \subseteq \Sigma^*$. We say that language A is mapping reducible to language B, written $A \leq_m B$, iff

- **①** there is a computable function $f: \Sigma^* \to \Sigma^*$ such that
- **2** for every $w \in \Sigma^*$:

$$w \in A$$
 if and only if $f(w) \in B$

or equivalently:

- if $w \in A$ then $f(w) \in B$, and
- if $w \notin A$ then $f(w) \notin B$.

Remark:

This kind of reducibility is also called many-one reducibility.

Example: $A_{TM} \leq_m HALT_{TM}$

Theorem

 $A_{TM} \leq_m HALT_{TM}$

Proof: Construct a computable function f which on input $\langle M, w \rangle$ returns $\langle M', w' \rangle$ such that

 $\langle M, w \rangle \in A_{TM}$ if and only if $\langle M', w' \rangle \in HALT_{TM}$.

Example: $A_{TM} \leq_m HALT_{TM}$

Theorem

$A_{TM} \leq_m HALT_{TM}$

Proof: Construct a computable function f which on input $\langle M, w \rangle$ returns $\langle M', w' \rangle$ such that

$$\langle M, w \rangle \in A_{TM}$$
 if and only if $\langle M', w' \rangle \in HALT_{TM}$.

$$M_f$$
 = "On input $\langle M, w \rangle$:

1. Construct the following machine M':

$$M' =$$
 "On input x :

- 1. Run *M* on *x*.
- 2. If M accepted, M' accepts.
- 3. If M rejected, \overline{M}' loops."
- 2. Output $\langle M', w \rangle$."

Other Examples

In previous lecture we showed that:

- $A_{TM} \leq_m MPCP$
- $MPCP <_m PCP$

Main Theorem

Assume that $A \leq_m B$. Then:

• If *B* is decidable then *A* is decidable.

Main Theorem

- If *B* is decidable then *A* is decidable.
- ② If A is undecidable then B is undecidable.

Main Theorem

- If *B* is decidable then *A* is decidable.
- ② If A is undecidable then B is undecidable.
- **1** If *B* is recognizable then *A* is recognizable.

Main Theorem

- If B is decidable then A is decidable.
- ② If A is undecidable then B is undecidable.
- \odot If B is recognizable then A is recognizable.
- \bullet If A is not recognizable then B is not recognizable.

Main Theorem

- If *B* is decidable then *A* is decidable.
- ② If A is undecidable then B is undecidable.
- \odot If B is recognizable then A is recognizable.
- $oldsymbol{0}$ If A is not recognizable then B is not recognizable.
- \bullet $\overline{A} \leq_m \overline{B}$

Main Theorem

Assume that $A \leq_m B$. Then:

- If *B* is decidable then *A* is decidable.
- ② If A is undecidable then B is undecidable.
- \odot If B is recognizable then A is recognizable.
- $oldsymbol{0}$ If A is not recognizable then B is not recognizable.
- **③** \overline{A} ≤_m \overline{B}

Useful observation:

- Let us take some non-recognizable language, like e.g. $\overline{A_{TM}}$.
- If for some language B we show that $\overline{A_{TM}} \leq_m B$ and $\overline{A_{TM}} \leq_m \overline{B}$ then B is not recognizable, neither co-recognizable.

Example of Use

$$\mathit{EQ}_{\mathit{TM}} \stackrel{\mathrm{def}}{=} \{\langle \mathit{M}_1, \mathit{M}_2 \rangle \mid \mathit{M}_1 \text{ and } \mathit{M}_2 \text{ are TMs s.t. } \mathit{L}(\mathit{M}_1) = \mathit{L}(\mathit{M}_2) \ \}$$

Theorem

The language EQ_{TM} is neither recognizable nor co-recognizable.

Proof:

We show that

- $\overline{A_{TM}} \leq_m EQ_{TM}$, and
- $\overline{A_{TM}} \leq_m \overline{EQ_{TM}}$.

Proof: $\overline{A_{TM}} \leq_m EQ_{TM}$

We prove that $\overline{A_{TM}} \leq_m EQ_{TM}$ by showing that

$$A_{TM} \leq_m \overline{EQ_{TM}}$$
.

Proof: $\overline{A_{TM}} \leq_m EQ_{TM}$

We prove that $\overline{A_{TM}} \leq_m EQ_{TM}$ by showing that

$$A_{TM} \leq_m \overline{EQ_{TM}}$$
.

- $M_f =$ "On input $\langle M, w \rangle$ where M is a TM:
 - 1. Construct the following machines M_1 and M_2 :

 $M_1 =$ "On input x: reject"

 M_2 = "On input x: erase x; Run M on w and M_2 accepts iff M accepted."

2. Output $\langle \overline{M_1, M_2} \rangle$."

Proof: $\overline{A_{TM}} \leq_m EQ_{TM}$

We prove that $\overline{A_{TM}} \leq_m EQ_{TM}$ by showing that

$$A_{TM} \leq_m \overline{EQ_{TM}}$$
.

 $M_f =$ "On input $\langle M, w \rangle$ where M is a TM:

1. Construct the following machines M_1 and M_2 :

 $M_1 =$ "On input x: reject"

 M_2 = "On input x: erase x; Run M on w and M_2 accepts iff M accepted."

2. Output $\langle \overline{M_1, M_2} \rangle$."

Note: M_f halts for any given input.

Observe:

- If M accepts w then $L(M_1) \neq L(M_2)$.
- If M does not accept w then $L(M_1) = L(M_2)$.

Hence f is a mapping reduction from A_{TM} to $\overline{EQ_{TM}}$.

Proof: $\overline{A_{TM}} \leq_m \overline{EQ_{TM}}$

We prove that $\overline{A_{TM}} \leq_m \overline{EQ_{TM}}$ by showing that

$$A_{TM} \leq_m EQ_{TM}$$
.

Proof: $\overline{A_{TM}} \leq_m \overline{EQ_{TM}}$

We prove that $\overline{A_{TM}} \leq_m \overline{EQ_{TM}}$ by showing that

$$A_{TM} \leq_m EQ_{TM}$$
.

- M_f = "On input $\langle M, w \rangle$ where M is a TM:
 - 1. Construct the following machines M_1 and M_2 :

 $M_1 =$ "On input x: accept"

 M_2 = "On input x: erase x; Run M on w and M_2 accepts iff M accepted."

2. Output $\langle \overline{M_1, M_2} \rangle$."

Proof: $\overline{A_{TM}} \leq_m \overline{EQ_{TM}}$

We prove that $\overline{A_{TM}} \leq_m \overline{EQ_{TM}}$ by showing that

$$A_{TM} \leq_m EQ_{TM}$$
.

- $M_f =$ "On input $\langle M, w \rangle$ where M is a TM:
 - 1. Construct the following machines M_1 and M_2 :

$$M_1 =$$
 "On input x : accept"

- M_2 = "On input x: erase x; Run M on w and M_2 accepts iff M accepted."
- 2. Output $\langle \overline{M_1, M_2} \rangle$."

Note: M_f halts for any given input.

Observe:

- If M accepts w then $L(M_1) = L(M_2)$.
- If M does not accept w then $L(M_1) \neq L(M_2)$.

Hence f is a mapping reduction from A_{TM} to EQ_{TM} .

Exam Questions

- Definitions of computable function and mapping reducibility.
- Examples of mapping reducibility.
- Main theorem (5 parts).
- Technique to show that a language is not recognizable nor co-recognizable.