CS & IT ENGINEERING

Minimization
BOOLEAN ALGEBRA
Lecture No. 1

By- CHANDAN SIR

TOPICS TO BE COVERED 01 XOR, XNOR gate, THEOREM

02 D-MORGAN'S Law

03 QUESTION PRACTICE

04 DUAL & SELF DUAL

05 DISCUSSION

XOR GATE

Symbol

$$A = B$$
 $y = 0$
 $A = B$ $y = 1$

 $\bar{A}B + A\bar{B} \rightarrow SOP$ A+B)(A+B) - POS O(b=1)when odd no

of 1's are connected in the inputs.

A	В	$y = A \oplus B$	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

XOR GATE

$$\{1,3,5\}$$
 $\{=\}$

4) Odd parity detector

Even parity generator

INVETER

XOR GATE

$$A \oplus A \oplus A \oplus A \cdots \oplus A = \begin{cases} A \oplus A \oplus A \oplus A \oplus A \oplus A & \oplus A$$

Find the output y.

Q.2

Find the output y.

Q.3

Find the output y.

7) X-OR follows the commutative as well as associative Law

 $A \oplus B = B \oplus A \Rightarrow commutative Law$ $A \oplus B \oplus C = (A \oplus B) \oplus C Associative Law$

	ABC	A⊕B⊕C	(A ⊕ B) ⊕ C
0	000	0	0
1	001	1	1
2	010	1	1
3 <	011	0	0
9	100	1	1
5	101	0	0
6 5	110	0	0
7)=+	111	1	1

AOBOC= Em (1,2,4,7)

X-NOR GATE

1) Symbol

2) Truth Table

A	В	y = A ⊙ B
0	0	1
0	1	0
1	0	0
1	1	

X-NOR GATE

3)
$$A = B$$

$$A \neq \overline{B}$$

$$y = 1$$
$$y = 0$$

$$A \odot A = 1$$

$$A \odot A = A$$

$$A \odot \overline{A} = 0$$

A	В	y = A ⊙ B
0	0	1
0	1	0
1	0	0
1	1	1 1

X-NOR GATE

4) Even parity detector

Odd parity generator <

Equivalence Logic <

Coincidence Logic <

A	B	y = A ⊙ B
0	0	1
0	1	0
1	0	0
1	1	1 1

Commutative Law

$$A \odot B = B \odot A$$

FOR EVEN NUMBER OF INPUTS. 8->

$$AOBOCOD = (AOB)OC)OD = (AOB)O(OD)$$

X-NOR follows the associative Law

Odd no of Variables

Associative Law

(AOB)OC = \(\int m \) (1,2,4,7)
= A \(\theta \) \(\theta \)

	ABC	A O B O C	(A ⊙ B) ⊙ C
0->	000		0
1->	001		1
2-	010	O	1
3→	011		0
4->	100	0	1
5->	101	1	0
6-	110	1	0
7-7	111	0	1

AOBOCOD = ABBECOD

Even no of Variables.

Odd no of Variables.

Of will be high when Even no.
of 15 are connected in the
laptes.

O/P will be high when (2) DD number of 1's are connected in the inputs.

even number of 1 in the entirely even number of 1 in the entirely

Alternate Symbol

A=4

ABTAB

The Boolean function given below: $f(A, B) = A \oplus B \oplus AB$ which statement is/are correct?

- It is a OR GATE
 - It is a NAND GATE
- (ABB)AB+(ABB)(A+B) (ABB)AB+(ABB)(A+B) (ABB)AB+(ABB)(A+B)

$$(A \oplus B) \oplus (A B)$$

$$(\overline{A} \oplus B) + (A \oplus B) + \overline{A} B = (A \oplus B) + \overline{A} B + (A \oplus B) + \overline{A} B + \overline{A} B$$

$$(\overline{A} \oplus B) + \overline{A} B + \overline{A} B = (\overline{A} \oplus B) + \overline{A} B + \overline{A}$$

