6/12/25, 9:15 PM StackEdit

This problem continues the analysis of the Markov chain from the previous question. We will calculate the probability of specific sequences of states over multiple steps.

Problem Description Recap:

The Markov chain has three states (1, 2, 3).

The state transition matrix P (derived in the previous part) is:

$$P = egin{pmatrix} 1/4 & 1/2 & 1/4 \ 1/2 & 0 & 1/2 \ 3/4 & 1/4 & 0 \end{pmatrix}$$

Initial probabilities for X_1 : $P(X_1=1)=1/2$ and $P(X_1=2)=1/4$. From these, we can infer $P(X_1=3)=1-1/2-1/4=1/4$.

All answers should be irreducible fractions.

Part (b): Find
$$P(X_1 = 3, X_2 = 2, X_3 = 1)$$
.

This asks for the probability of a specific path in the Markov chain.

The probability of a sequence of states $X_1 = s_1, X_2 = s_2, \dots, X_n = s_n$ is given by:

$$P(X_1 = s_1, X_2 = s_2, \dots, X_n = s_n) = P(X_1 = s_1) imes P(s_1 o s_2) imes P(s_2 o s_3) imes \dots imes P(s_{n-1} o s_n)$$

We need to find $P(X_1 = 3, X_2 = 2, X_3 = 1)$.

This expands to:

$$P(X_1 = 3, X_2 = 2, X_3 = 1) = P(X_1 = 3) \times P(3 \rightarrow 2) \times P(2 \rightarrow 1)$$

• Step 1: Identify the initial probability $P(X_1=3)$.

We are given
$$P(X_1=1)=1/2$$
 and $P(X_1=2)=1/4$. $P(X_1=3)=1-P(X_1=1)-P(X_1=2)=1-1/2-1/4=1-2/4-1/4=1/4$.

• Step 2: Identify the transition probability P(3 o 2).

From the transition matrix P, $P_{32} = 1/4$.

- Step 3: Identify the transition probability P(2 o 1).

From the transition matrix P, $P_{21} = 1/2$.

• Step 4: Calculate the path probability.

$$egin{aligned} P(X_1=3,X_2=2,X_3=1) &= P(X_1=3) imes P(3 o 2) imes P(2 o 1) \ P(X_1=3,X_2=2,X_3=1) &= rac{1}{4} imes rac{1}{2} \ P(X_1=3,X_2=2,X_3=1) &= rac{1}{32}. \end{aligned}$$

The answer is an irreducible fraction: 1/32.

Problem Description Recap:

ullet The State Transition Matrix P to be used:

https://stackedit.io/app# 1/3

6/12/25, 9:15 PM Stack

$$P = \begin{pmatrix} 1/4 & 0 & 3/4 \\ 1/2 & 0 & 1/2 \\ 1/2 & 1/4 & 1/4 \end{pmatrix}$$

- Initial probabilities: $P(X_1=1)=1/2, P(X_1=2)=1/4.$ From these, we can infer $P(X_1=3)=1-P(X_1=1)-P(X_1=2)=1-1/2-1/4=1/4.$
- We need to find $P(X_1=3,X_3=1)$. All answers should be irreducible fractions.

Part ©: Find
$$P(X_1 = 3, X_3 = 1)$$
.

This asks for the joint probability of starting in State 3 at time X_1 and being in State 1 at time X_3 . This involves the initial probability $P(X_1=3)$ and the two-step transition probability from State 3 to State 1, which is denoted as $P_{31}^{(2)}$.

The formula for this joint probability is:

$$P(X_1=3,X_3=1)=P(X_1=3) imes P(X_3=1|X_1=3)$$
 And $P(X_3=1|X_1=3)$ is equivalent to the 2-step transition probability $P_{31}^{(2)}$.

So, the calculation becomes: $P(X_1=3,X_3=1)=P(X_1=3) imes P_{31}^{(2)}$.

- Step 1: Identify the initial probability $P(X_1=3)$. Given $P(X_1=1)=1/2$ and $P(X_1=2)=1/4$. Since the sum of initial probabilities for all states must be 1: $P(X_1=3)=1-P(X_1=1)-P(X_1=2)=1-1/2-1/4=1-2/4-1/4=1/4.$
- Step 2: Calculate the two-step transition probability $P_{31}^{(2)}$ using the provided matrix P. This probability is the element in the 3rd row and 1st column of the matrix P^2 . We obtain P^2 by multiplying P by itself:

$$P^2 = P imes P = egin{pmatrix} 1/4 & 0 & 3/4 \ 1/2 & 0 & 1/2 \ 1/2 & 1/4 & 1/4 \end{pmatrix} egin{pmatrix} 1/4 & 0 & 3/4 \ 1/2 & 0 & 1/2 \ 1/2 & 1/4 & 1/4 \end{pmatrix}$$

To find $P_{31}^{(2)}$, we multiply the 3rd row of the first matrix (P_{31}, P_{32}, P_{33}) by the 1st column of the second matrix (P_{11}, P_{21}, P_{31}) :

matrix
$$(P_{11}, P_{21}, P_{31})$$
:
$$P_{31}^{(2)} = (P_{31} \times P_{11}) + (P_{32} \times P_{21}) + (P_{33} \times P_{31})$$

$$P_{31}^{(2)} = (\frac{1}{2} \times \frac{1}{4}) + (\frac{1}{4} \times \frac{1}{2}) + (\frac{1}{4} \times \frac{1}{2})$$

$$P_{31}^{(2)} = \frac{1}{8} + \frac{1}{8} + \frac{1}{8}$$

$$P_{31}^{(2)} = \frac{3}{8}.$$

• Step 3: Calculate the final probability $P(X_1=3,X_3=1)$.

Multiply the initial probability by the two-step transition probability:

$$egin{aligned} P(X_1=3,X_3=1) &= P(X_1=3) imes P_{31}^{(2)} \ P(X_1=3,X_3=1) &= rac{1}{4} imes rac{3}{8} \ P(X_1=3,X_3=1) &= rac{3}{32}. \end{aligned}$$

The answer is an irreducible fraction: 3/32.

Topics Covered:

https://stackedit.io/app# 2/3

6/12/25, 9:15 PM StackEdit

- Markov Chains: Understanding state transitions over multiple steps.
- Transition Matrix (P): The core representation of one-step transition probabilities.
- Initial Probability Distribution: The probability of starting in a given state.
- Joint Probability: Calculating the probability of two events occurring together.
- Multi-step Transition Probabilities (P^n): Using matrix multiplication to find probabilities of transitioning between states over multiple steps.

WolframAlpha Check:

• To calculate the full P^2 matrix using the provided P and verify $P_{31}^{(2)}$: Input: $\{\{1/4,\ 0,\ 3/4\},\ \{1/2,\ 0,\ 1/2\},\ \{1/2,\ 1/4,\ 1/4\}\}^2$ WolframAlpha will return:

$$P^2 = egin{pmatrix} 7/16 & 3/16 & 3/8 \ 3/8 & 1/8 & 1/2 \ 3/8 & 3/16 & 7/16 \end{pmatrix}$$

You can visually confirm that $P_{31}^{(2)}$ (the element in the 3rd row, 1st column) is indeed 3/8.

• To verify the final probability calculation:

Input: (1/4) * (3/8)

WolframAlpha will return 3/32.

https://stackedit.io/app# 3/3