

實驗名稱:實驗六	穩態誤差	成績:_	
組別:			
班級:			
學號:			
姓名:			
日期: 年 月	日		

實驗六 穩態誤差

目的:練習 MATLAB 的方塊圖化簡操作及求轉移函數的應用,由方塊圖計算系統的穩態誤差、由穩態誤差的規格設計控制系統,由穩態誤差判斷控制器的 K 值範圍,應用於解控制相關的問題可作為日後控制系統設計及分析的參考。

使用設備:PC及MATLAB模擬軟體。

實驗步驟:1.開機後進入視窗,找 MATLAB 點兩下進入系統。

- 2.逐項做實驗項目,並記錄結果。
- 3.做完各實驗項目後關閉 MATLAB 系統,再按關機程序 關機,最後關電腦電源。

實驗項目如下(以 MATLAB 做即可) (題中的未知數 C 等於組別,例如:第5組則 C=5)

- 1. 請分別寫出下列單位負迴授系統,對應輸入的誤差常數及穩態誤差。(註:某些小題沒有對應輸入的誤差常數及穩態誤差,須註明 無此項目)
 - (a) 輸入為 $30t^2u(t)$ 其中 $G(S) = \frac{20(S+3)(S+C)(S+8)}{S^2(S+2)(S+15)}$
 - (b) 輸入分別為 40u(t)、 70tu(t)、 $80t^2u(t)$ 其中 $G(S) = \frac{500C}{(S+20)(S^2+4S+10)}$ 。
 - (c) 輸入為15u(t) 其中 $G(S) = \frac{1000(S+12)(S+C)(S+32)}{(S+61)(S+73)(S+87)}$

答:

- (a) 步階輸入 $K_p = ____ ` e_{ss} = ____ ;$ 斜坡輸入 $K_V = ___ `$ $e_{ss} = ____ ;$ 抛物線輸入 $K_a = ____ ` e_{ss} = ___ °$ (b) 步階輸入 $K_p = ____ ` e_{ss} = ___ ;$ 抖坡輸入 $K_V = ___ ` e_{ss} = ___ °$ (c) 步階輸入 $K_p = ___ ` e_{ss} = ___ ;$ 针坡輸入 $K_V = ___ ` e_{ss} = ___ ;$ 计坡輸入 $K_V = ___ ` e_{ss} = ___ ;$ 计坡輸入 $K_V = ___ ` e_{ss} = ___ ;$ 计均均線输入 $K_a = ___ ` e_{ss} = ___ °$
- 2. 如圖 1.的系統輸入為15u(t) ,穩態誤差為多少? 答:穩態誤差 $e_{ss} = ____$ 。

3. 輸入為 $5u(t)$ 、 $5tu(t)$ 到系統(a)圖 2. (b)圖 3.(c)圖 4. (d)圖 5.。的 穩態誤差分別為多少?			
答: (a) 輸入為 $5u(t)$ 穩態誤差 $e_{ss} = $ 、輸入為 $5tu(t)$ 穩態誤差 $e_{ss} = $ 。			
(b) 輸入為 $5u(t)$ 穩態誤差 $e_{ss} =$ 、輸入為 $5tu(t)$ 穩態誤差			
$e_{ss} = \underline{\hspace{1cm}} \circ$			
(c) 輸入為 $5u(t)$ 穩態誤差 $e_{ss} =$ 、輸入為 $5tu(t)$ 穩態誤差			
$e_{ss} = \underline{\hspace{1cm}}$ \circ			
(d) 輸入為 $5u(t)$ 穩態誤差 $e_{ss} = $ 、輸入為 $5tu(t)$ 穩態誤差			
$e_{ss} = \underline{\hspace{1cm}} \circ$			
4. 某系統如圖 $6.$ 所示, K_p 、 K_v 、 K_a 分別為多少?輸入分別為 $30u(t)$ 、 $30tu(t)$ 、 $30t^2u(t)$ 穩態誤差分別為多少?			
答:			
$K_p = \underline{\hspace{1cm}} \cdot K_V = \underline{\hspace{1cm}} \cdot K_a = \underline{\hspace{1cm}}$			
輸入為 $30u(t)$ 穩態誤差 $e_{ss} = $			
輸入為 $30tu(t)$ 穩態誤差 $e_{ss} =$			
輸入為 $30t^2u(t)$ 穩態誤差 $e_{ss} = $			
5. 請設計圖 $7.$ 系統 K_1 、 K_2 的值 ,使其符合:單位步階干擾的穩態誤			

OIT_C.P.Wu 2

差成分為 -0.000012,單位斜坡輸入的穩態誤差成分為 0.003。

答:
$$K_1 =$$
_____ 、 $K_2 =$ _____

圖 1

圖 2

圖 3

圖 4

圖 5

圖 6

