Assignment 2

Varshini Jonnala (CS21BTECH11024)

Question:

If A and B are events such that $P(A)=\frac{1}{2}$, $P(B)=\frac{1}{3}$ and $P(A\cap B)=\frac{1}{4}$, then find:

- a) $P(A \mid B)$
- b) $P(B \mid A)$

Solution: If X and Y are two events in a sample space S, then The Conditional Probability of X given Y is defined as

$$\Pr(X \mid Y) = \frac{\Pr(X \cap Y)}{\Pr(Y)} \tag{1}$$

Given, A and B are the events such that :

Probability	Value
$\Pr\left(A\right)$	$\frac{1}{2}$
$\Pr\left(B\right)$	$\frac{1}{3}$
$\Pr(A \cap B)$	$\frac{1}{4}$
$Pr(A \mid B)$?
$Pr(B \mid A)$?

TABLE I GIVEN DATA

1) Using (1),

$$\Pr(A \mid B) = \frac{\Pr(A \cap B)}{\Pr(B)} \qquad (2)$$

$$\implies \Pr(A \mid B) = \frac{\frac{1}{4}}{\frac{1}{3}} \tag{3}$$

$$\implies \Pr(A \mid B) = \frac{3}{4} = 0.75 \tag{4}$$

2) Using (1),

$$\Pr(B \mid A) = \frac{\Pr(A \cap B)}{\Pr(A)}$$
 (5)

$$\implies \Pr(B \mid A) = \frac{\frac{1}{4}}{\frac{1}{2}} \tag{6}$$

$$\implies \Pr(B \mid A) = \frac{1}{2} = 0.50$$
 (7)