Today

- Miscellaneous
 - portfolio checklist
 - Marktext application (withdraw my recommendation; silent edits)
- Diagnostics
 - ants example

Diagnostics: model checking

- Systematic departures of the process (biological) model from the data
- Poor error distribution
- Mistakes in data
- Outliers
- Influential data points

Tools

- Plot the fitted model with the data
- Residuals vs fitted values
- QQ plot, histogram of residuals
- Leave one out (LOO) influence algorithm
- What should these diagnostics look like (on average and variation)?
 - make plots of them from simulated data of the fitted model

Ants: diagnostics

Write model Assumptions?

Degrees north latitude

Write the model

$$y_i \sim \text{Normal}(\mu_i, \sigma)$$

 $\mu_i = \beta_{0,b} + \beta_{1,b} x_i : \text{bog}$
 $\beta_{0,f} + \beta_{1,f} x_i : \text{forest}$

y is richness x is latitude

Assumptions

Normal linear model

- Linearity! (of richness vs latitude)
- 2. y (richness) is continuous $-\infty$ to $+\infty$ (richness can be negative)
- 3. x (latitude) is measured without error
- 4. Normality of y (richness) given $\mu_i = \beta_0 + \beta_1 x_i$ (or normality of errors in $y_i = \beta_0 + \beta_1 x_i + e_i$)
- 5. Errors are identically distributed (i.e. same σ , AKA homoscedastic)
- 6. Independence of errors (e.g. in space and time)

Factor

```
ant$habitat <- factor(ant$habitat)

print(ant$habitat)

[1] forest forest forest forest forest ...
[14] forest forest forest forest forest ...
[27] bog bog bog bog bog bog ...
[40] bog bog bog bog bog</pre>
Levels: bog forest
```

R data structure for categorical variables; ?factor Attribute: levels (sorted alphabetically by default)