Copyright for test papers and marking guides remains with *West Australian Test Papers*. Test papers may only be reproduced within the purchasing school according to the advertised Conditions of Sale. Test papers should be withdrawn after use and stored securely in the school until Wednesday 11th October 2017.



# MATHEMATICS METHODS UNITS 3 & 4

**Semester Two** 

2017

**SOLUTIONS** 

## Calculator-free Solutions

$$\frac{d}{dx} (e^{\cos x} + 5)$$
1. (a)
$$= -\sin x e^{\cos x}$$

$$\int (\sin x \cdot e^{\cos x}) dx$$

$$-\int (-\sin x \cdot e^{\cos x}) dx$$

$$= -\int (-\sin x \cdot e^{\cos x}) dx$$

$$= -e^{\cos x} + c$$
[4]

2. (a) 
$$f'(x) = 2e^{2x} - \frac{1}{x}$$

For max/min,  $2e^{2x} - \frac{1}{x} = 0$ 
 $\therefore 2xe^{2x} - 1 = 0$ 
 $x = 0.5 e^{-2x}$ 

(b) 
$$f''(x) = 4e^{2x} + \overline{x^2}$$
  
Since expression > 0 for all x values,  
then stationary point is a minimum.

3. (a) 
$$A = \int_{0}^{k} (2 - e^{-x}) - x \, dx$$
  
(b)  $A = \left[ 2x - \frac{e^{-x}}{-1} - \frac{x^{2}}{2} \right]_{0}^{k}$   
 $= (2k + e^{-k} - \frac{k^{2}}{2}) - 1$ 

4. (a) 
$$\frac{5x^{2}}{2} - \frac{\sin 5x}{5} + c$$
(b) 
$$\left[\frac{e^{2x}}{2} - \frac{2x^{1.5}}{3}\right]_{0}^{4}$$

$$= \left[\frac{e^{8}}{2} - \frac{16}{3}\right] - \left[\frac{1}{2} - 0\right] = 0.5e^{8} - \frac{35}{6}$$
(c)  $2 \sin 2x$ 

5. (a) 
$$x = \sin 2t + e^{-2t} + c$$
  $\checkmark$   $x(0) = 0 + 1 + c = 1 : c = 0$   $\checkmark$   $x = \sin 2t + e^{-2t}$   $\checkmark$  (b)  $a = -4\sin 2t + 4e^{-2t}$   $\checkmark$ 

(c) Assume 
$$a = -k^2x$$
  
Then  $-4 \sin 2t + 4 e^{-2t} = -k^2(\sin 2t + e^{-2t})$   
This leads to the result that  $k^2 = 4$  and  $k^2 = -4$ .  
Hence, relationship is false.  
Or  $a = -4(\sin 2t - 4e^{-2t}) \neq -4(\sin 2t + 4e^{-2t}) = -2^2x$ 

**√** √ [7]

[7]

6. (a) 
$$\log (\frac{a}{b}) + \log (\frac{c}{c}) + \log (\frac{a}{a})$$

$$= \log (\frac{a}{b}) + \frac{c}{c} = \frac{c}{a}$$

$$= \log 1 = 0$$
(b)  $y = 1 - x$ 

$$2^x = 3^{1-x}$$

$$x \log 2 = (1 - x)\log 3$$

$$x \log 2 + x \log 3 = \log 3$$

$$\log 3$$

$$x = \frac{\log 2}{\log 3}$$

$$x = \frac{\log 3}{\log 6}$$

$$x = \log 6$$

 $\therefore$  sin 2x + x cos 2x > 0 as required

### 4

# Calculator-assumed Solutions

9. (a) Solve  $0.9 = e^{-2k}$ 

$$k = 0.05268 = 0.0527 \text{ (3 s.f.)}$$

(b) Solve  $0.5 = e^{-0.05268 t}$ t = 13.153

Half life is 13.153 years. dM

(c)  $\overline{dt} = M_0 e^{-kt} \cdot (-k)$ 

At t = 2, dt = 20.  $e^{-0.0527(2)}$ . (-0.0527)= -0.9486 units of mass per year.

10. (a) Only 2 results for each trial—single or married. ✓

(b) 0.6\_\_\_\_\_

- (c)  $\sqrt{(0.6)\frac{0.4}{40}} = \sqrt{0.006} = 0.07746$
- (d) We can be 95% confident that the true proportion is p where 0.6 –(1.96)( 0.07746) < p < 0.6 + (1.96)( 0.07746) ie 0.4482 < p < 0.7518  $\checkmark\checkmark$  (1.96) $^2$  x 0.6 x 0.4

(e)  $n = (0.05)^2$   $\checkmark$  n = 368.8  $\checkmark$  Sample size needs to be 369.  $\checkmark$  [9]

11. (a) From calculator, 0.142 ✓

(b)  $\sin x$  has a minimum of -1. So,  $2 + \sin x$  has a minimum of 1 So  $\log(2 + \sin x)$  has a minimum of 0.

So  $\log(2 + \sin x)$  has a minimum of 0.

(c)

y

0.5



(d) By inspecting the graph, all of this curve is above the *x* axis.  $\checkmark$   $\log \sqrt{2 + \sin x} = \frac{1}{2} \log(2 + \sin x)$ 

∴ since  $\log \sqrt{2 + \sin x} = \frac{1}{2} \log(2 + \sin x)$  Area = 0.5(0.142) = 0.071 
✓ [9]

[8]

12. Minimum when f'(x) = 0

$$\therefore 2 e^{2x} - 2ke^{-2x} = 0$$

$$e^{4x} = k$$

$$\therefore x = \frac{1}{4} \ln k$$

$$\therefore \text{ Minimum value is } e^{\frac{1}{2} \ln k} + k e^{-\frac{1}{2} \ln k}$$

$$\therefore \sqrt{k} + \frac{k}{\sqrt{k}}$$

$$\therefore \quad \text{Range is } y \ge 2\sqrt{k}$$

b) 
$$\delta y \approx \frac{dy}{dx} . \delta x = (2 e^{2x} - 6 e^{-2x})(0.01)$$

(b) 
$$dx$$
  $\checkmark \checkmark$  = 1.09 ( 2 decimal places)  $\checkmark$ 

(c) 
$$f(2) = 54.653$$
  
 $f(2.01) = 55.755$   
Change is 1.10 ( 2 decimal places)  $\checkmark$  [9]

(b) 
$$\overline{8}$$

(c) 
$$E(X) = 1.875$$
  $Var(X) = 1.0533^2 = 1.109$ 

(d) 
$$P(Y = 4) = {}^{5}C_{4} (0.25)^{4}(0.75) = \overline{4}^{5} = 0.0146$$

(d) 
$$P(Y = 4) = {}^{5}C_{4} (0.25)^{4}(0.75) = \frac{15}{4^{5}} = 0.0146$$
  
(e)  $P(\text{five 4s}) = {}^{5}\mathbf{C}_{5} \left(\frac{1}{8}\right)^{5} \left(\frac{7}{8}\right)^{0} = 0.00003$ 

### 14. (a)

| Z     | 1.1    | 1.3    | 1.7    | 2.0    | 2.4               |
|-------|--------|--------|--------|--------|-------------------|
| d     | 130    | 220    | 490    | 800    | 1400              |
| Log z | 0.0414 | 0.1139 | 0.2305 | 0.3010 | 0.3802            |
| Log d | 2.11   | 2.34   | 2.69   | 2.90   | <mark>3.15</mark> |





(c) 
$$\log d = 2 + 3\log z$$
  
(d)  $d = 100.z^3$ 

(d) 
$$d = 100.z^3$$

15. (a) 
$$A = \frac{1}{2} 3.5 \sin \theta = 7.5 \sin \theta$$
  
 $\frac{dA}{d\theta} = 7.5 \cos \theta$ 

(b) 
$$\frac{dA}{dt} = \frac{dA}{d\theta} \cdot \frac{d\theta}{dt}$$
$$\therefore \frac{dA}{dt} = \left(7.5 \cos \frac{\pi}{2}\right) \pi = 0$$

Area has reached a maximum value. (c)

[5]

[8]

5.44 standard deviations above the mean is very unlikely.

The testing method may need reviewing.

| (a) | Binomial ( 100, 0.02)                                               | $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | $\mu = np = 2$                                                      | $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | $\sigma = \sqrt{2(0.98)} = 1.4$                                     | ✓                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                            |
| (b) | $P(X \ge 5) = 1 - P(X \le 4) = 0.0508$                              | <b>√</b> √                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                            |
| (c) | n = 2000, p = 0.02, X = 40                                          |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | 90% interval is 0.0149 to 0.0251 from CAS                           | $\checkmark\checkmark$                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                            |
| (d) | $P(X = 2) = {}^{3}C_{2} (0.9)^{2}(0.1) = 0.243 \text{ or from CAS}$ | $\checkmark\checkmark$                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                            |
| (e) | 0.0149 x 2000 ≈ 30                                                  |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | 0.0251 x 2000 ≈ 50                                                  | $\checkmark\checkmark$                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                            |
| (f) | Interval is from 30 to 50.                                          |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | Sample 2 is outside. ( $57 > 50$ )                                  |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | Sample 3 is outside. ( 28 < 30 )                                    | $\checkmark\checkmark$                                                                                                                                                                                                                                                                                                                                                                                      | [13]                                                                                                                                                                                                                                                                                                                                                                                                       |
|     | (b)<br>(c)<br>(d)<br>(e)                                            | $\mu = np = 2$ $\sigma = \sqrt{2(0.98)} = 1.4$ (b) $P(X \ge 5) = 1 - P(X \le 4) = 0.0508$ (c) $n = 2000, p = 0.02, X = 40$ $90\% \text{ interval is } 0.0149 \text{ to } 0.0251 \text{ from CAS}$ (d) $P(X = 2) = {}^{3}C_{2} (0.9)^{2}(0.1) = 0.243 \text{ or from CAS}$ (e) $0.0149 \times 2000 \approx 30$ $0.0251 \times 2000 \approx 50$ (f) Interval is from 30 to 50. Sample 2 is outside. (57 > 50) | $\mu = np = 2$ $\sigma = \sqrt{2(0.98)} = 1.4$ (b) $P(X \ge 5) = 1 - P(X \le 4) = 0.0508$ (c) $n = 2000, p = 0.02, X = 40$ $90\% \text{ interval is } 0.0149 \text{ to } 0.0251 \text{ from CAS}$ (d) $P(X = 2) = {}^{3}C_{2}(0.9)^{2}(0.1) = 0.243 \text{ or from CAS}$ (e) $0.0149 \times 2000 \approx 30$ $0.0251 \times 2000 \approx 50$ (f) Interval is from 30 to 50. Sample 2 is outside. (57 > 50) |