Соображения типа теоремы Безу

Для разложения на множители многочленов нескольких переменных часто оказывается полезной идея о том, что среди делителей многочлена нужно искать подстановки, зануляющие его.

- 1. Многочлен $p \in \mathbb{R}[x_1, \dots, x_n]$ зануляется во всех точках гиперплоскости $\ell(x_1,\ldots,x_n)=a_1x_1+\ldots+a_nx_n+b=0$. Докажите, что $\ell\mid p$.
- 2. Разложите на множители многочлен $a^3 + b^3 + c^3 3abc$.
- 3. Разложите на множители многочлен $(a+b+c)^3-a^3-b^3-c^3$. 4. Разложите на множители многочлен $x^3+3xy+y^3-1$.

Интерполяционный многочлен Лагранжа

Пусть x_0, x_1, \ldots, x_n – попарно различные, а y_0, y_1, \ldots, y_n – произвольные вещественные числа. Исследуем вопрос: существует ли многочлен pстепени не выше n такой, что $p(x_i) = y_i$ при всех i от 0 до n?

- 5. Докажите, что найдётся не больше одного такого многочлена p.
- 6. Придумайте формулу, в явном виде дающую искомый многочлен р.
- 7. На плоскости даны 2023 точки, любые четыре из которых лежат на параболе. Докажите, что они все лежат на одной и той же параболе.
- 8. Верно ли предыдущее утверждение, если слово «парабола» заменить на «график кубического многочлена»?

КТО для многочленов

Пусть $p_1(x), \ldots, p_n(x)$ – попарно взаимно простые, а $a_1(x), \ldots, a_n(x)$ – произвольные многочлены над некоторым полем.

9. Докажите, чт существует, притом один, многочлен p(x) такой, что $p(x) - a_i(x)$ делится на $p_i(x)$, $i = \overline{1, n}$, и $\deg p < \deg p_1 + \ldots + \deg p_n$.

Упражнения

- 10. Выразите многочлен $(x_1+x_2+1)(x_2+x_3+1)(x_3+x_1+1)$ через основные симметрические многочлены.
- 11. Вещественные числа a, b, c удовлетворяют равенству $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{1}{a+b+c}$. Докажите, что сумма каких-то двух из них равна нулю.
- 12. Вещественные числа a, b, c удовлетворяют равенствам a + b + c = $a^2+b^2+c^2=a^3+b^3+c^3$. Найдите все возможные значения выражения $\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)(a+b+c-2).$
- 13. Вещественные числа x, y, z удовлетворяют равенствам x + y + z =
- =xy+yz+xz=-1. Докажите, что $(xy-z^2)(yz-x^2)(zx-y^2)=xyz-1$. 14. Решите уравнение $c^2\cdot \frac{(x-a)(x-b)}{(c-a)(c-b)}+b^2\cdot \frac{(x-a)(x-c)}{(b-a)(b-c)}+a^2\cdot \frac{(x-b)(x-c)}{(a-b)(a-c)}=x^2$, где a, b, c — заданные различные вещественные числа.
- 15. Многочлен P(x) степени n удовлетворяет равенствам $P(k) = \frac{1}{C_{n+1}^k}$, $k=\overline{0,n}$. Найдите значение P(n+1).

Разложение на множители и интерполяция

- 16. Разложите на множители многочлен $(x-y)^4 + (y-z)^4 + (z-x)^4$.
- 17. Даны множество $M\subset\mathbb{R}$ и многочлен $p\in\mathbb{R}[x]$ и $\deg p< n<|M|$. Для каждого элемента $a\in M$ положим $\varphi(a)=\prod_{M\ni b\neq a}(a-b)$. Докажите

равенство
$$\sum_{a \in M} \frac{p(a)}{\varphi(a_i)} = 0.$$

Задачи

- 18. Заданы целые числа $x_0 < x_1 < \ldots < x_n$. Докажите, что среди значений многочлена $x^n + a_{n-1}x^{n-1} + \ldots + a_1x + a_0$ в точках x_0, x_1, \ldots, x_n , найдётся число, по модулю не меньшее $n!/2^n$.
- 19. Многочлен P(x) имеет степень, не большую 2n. Известно, что для каждого целого $k \in [-n,n]$ выполнено неравенство $|P(k)| \le 1$. Докажите, что для всех $x \in [-n,n]$ верно неравенство $|P(x)| \le 2^{2n}$.
- 20. Многочлен P(x) степени n удовлетворяет P(k) = k/(k+1) при всех $k = \overline{0,n}$. Найдите значение P(n+1).
- 21. Учитель загадал многочлен p(x) степени 2017 с целыми коэффициентами, старший коэффициент которого равен 1. Затем он сообщает ученикам k целых чисел n_1, \ldots, n_k и число $p(n_1) \cdot p(n_2) \cdot \ldots \cdot p(n_k)$. При каком наименьшем k можно подобрать многочлен p и числа n_i так, что дети однозначно определят задуманный многочлен.
- 22. Дана функция f(x) значение которой при любом целом x целое. Известно, что для любого простого числа p существует такой многочлен $Q_p(x)$ степени, не превышающей 2023, с целыми коэффициентами, что $f(n) Q_p(n)$ делится на p при любом целом n. Верно ли, что существует многочлен g(x) с вещественными коэффициентами такой, что g(n) = f(n) для любого целого n?
- 23. Фокусница готовится показать трюк. Она называет аудитории натуральное число n и 2n вещественных чисел $x_1 < x_2 < \ldots < x_{2n}$. После этого случайный зритель загадывает многочлен p(x) степени n с вещественными коэффициентами, вычисляет 2n значений: $p(x_1), \ldots, p(x_{2n})$, и записывает полученные 2n значений на доску в порядке неубывания. Глядя на числа, записанные на доске, фокусница должна назвать многочлен, задуманный зрителем. Может ли фокусница придумать стратегию, гарантирующую ей успешное выполнение трюка?