Banking Loan

Importing Libraries and warnings

```
import warnings
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

Importing data

```
In [86]: warnings.filterwarnings("ignore")
loan = pd.read_csv(r"C:\Users\SURBDESA\Downloads\loan (1)\loan.csv")
In [87]: loan
```

Out[87]:		id	member_id	loan_amnt	funded_amnt	funded_amnt_inv	term	int_rate	installment	grade	sub_grade	•••	num_tl_90g_dpd_24m	nun
	0	1077501	1296599	5000	5000	4975.0	36 months	10.65%	162.87	В	B2		NaN	
	1	1077430	1314167	2500	2500	2500.0	60 months	15.27%	59.83	С	C4		NaN	
	2	1077175	1313524	2400	2400	2400.0	36 months	15.96%	84.33	С	C5		NaN	
	3	1076863	1277178	10000	10000	10000.0	36 months	13.49%	339.31	С	C1		NaN	
	4	1075358	1311748	3000	3000	3000.0	60 months	12.69%	67.79	В	B5		NaN	
	39712	92187	92174	2500	2500	1075.0	36 months	8.07%	78.42	А	A4		NaN	
	39713	90665	90607	8500	8500	875.0	36 months	10.28%	275.38	С	C1		NaN	
	39714	90395	90390	5000	5000	1325.0	36 months	8.07%	156.84	А	A4		NaN	
	39715	90376	89243	5000	5000	650.0	36 months	7.43%	155.38	А	A2		NaN	
	39716	87023	86999	7500	7500	800.0	36 months	13.75%	255.43	E	E2		NaN	
	39717 r	rows × 11	1 columns											
4														•

Dropping columns where data missing is greater than 90%

```
In [88]: missing_columns = loan.columns[100*(loan.isnull().sum()/len(loan.index)) > 90]
print(missing_columns)
```

```
Index(['mths_since_last_record', 'next_pymnt_d', 'mths_since_last_major_derog',
                 'annual inc joint', 'dti joint', 'verification status joint',
                'tot_coll_amt', 'tot_cur_bal', 'open_acc_6m', 'open_il_6m',
                'open il 12m', 'open il 24m', 'mths since rcnt il', 'total bal il',
                'il util', 'open rv 12m', 'open rv 24m', 'max bal bc', 'all util',
                'total rev hi lim', 'inq fi', 'total cu tl', 'inq last 12m',
                'acc open past 24mths', 'avg cur bal', 'bc open to buy', 'bc util',
                'mo sin old il acct', 'mo sin old rev tl op', 'mo sin rcnt rev tl op',
                'mo sin rcnt tl', 'mort acc', 'mths since recent bc',
                'mths since recent bc dlq', 'mths since recent inq',
                'mths since recent revol deling', 'num accts ever 120 pd',
                'num actv bc tl', 'num actv rev tl', 'num bc sats', 'num bc tl',
                'num il tl', 'num op rev tl', 'num rev accts', 'num rev tl bal gt 0',
                'num sats', 'num tl 120dpd 2m', 'num tl 30dpd', 'num tl 90g dpd 24m',
                'num tl op past 12m', 'pct tl nvr dlq', 'percent bc gt 75',
                'tot hi cred lim', 'total bal ex mort', 'total bc limit',
                'total il high credit limit'],
               dtvpe='object')
         loan.drop(missing columns , axis = 1, inplace = True)
In [90]: loan.isnull().sum()
```

, Z.ZJ I IVI		
Out[90]:	id	0
	member_id	0
	loan_amnt	0
	funded_amnt	0
	<pre>funded_amnt_inv</pre>	0
	term	0
	int_rate	0
	installment	0
	grade	0
	sub_grade	0
	emp_title	2459
	emp_length	1075
	home_ownership	0
	annual_inc	0
	verification_status	0
	issue_d	0
	loan_status	0
	pymnt_plan	0
	url	0
	desc	12940
	purpose	0
	title	11
	zip_code	0
	addr_state	0
	dti	0
	delinq_2yrs	0
	earliest_cr_line	0
	inq_last_6mths	0
	<pre>mths_since_last_delinq</pre>	25682
	open_acc	0
	pub_rec	0
	revol_bal	0
	revol_util	50
	total_acc	0
	initial_list_status	0
	out_prncp	0
	out_prncp_inv	0
	total_pymnt	0
	total_pymnt_inv	0
	total_rec_prncp	0
	total_rec_int	0
	total_rec_late_fee	0
	recoveries	0
	collection_recovery_fee	0
	- 	

```
last_pymnt_d
                                          71
         last_pymnt_amnt
                                           0
         last_credit_pull_d
                                           2
         collections_12_mths_ex_med
                                          56
         policy_code
         application type
                                           0
         acc_now_delinq
                                           0
         chargeoff_within_12_mths
                                          56
         deling amnt
                                           0
         pub rec bankruptcies
                                         697
         tax_liens
                                          39
         dtype: int64
In [91]: # dropping the two columns
         loan = loan.drop(['desc', 'mths_since_last_deling'], axis=1)
In [92]: loan.isnull().sum()
```

), Z.ZJ I IVI		
Out[92]:	id	0
	member_id	0
	loan_amnt	0
	funded_amnt	0
	<pre>funded_amnt_inv</pre>	0
	term	0
	int_rate	0
	installment	0
	grade	0
	sub_grade	0
	emp_title	2459
	emp_length	1075
	home_ownership	0
	annual_inc	0
	verification_status	0
	issue_d	0
	loan_status	0
	pymnt_plan	0
	url	0
	purpose	0
	title	11
	zip_code	0
	addr_state	0
	dti	0
	delinq_2yrs	0
	earliest_cr_line	0
	inq_last_6mths	0
	open_acc	0
	pub_rec	0
	revol_bal	0
	revol_util	50
	total_acc	0
	initial_list_status	0
	out_prncp	0
	out_prncp_inv	0
	total_pymnt	0
	total_pymnt_inv	0
	total_rec_prncp	0
	total rec int	0
	total_rec_late_fee	0
	recoveries	0
	collection_recovery_fee	0
	last pymnt d	71
	last_pymnt_amnt	0
		ŭ

```
last_credit_pull_d
                                 2
collections_12_mths_ex_med
                               56
policy_code
                                 0
application_type
acc_now_delinq
                                 0
chargeoff_within_12_mths
                               56
delinq_amnt
                                 0
pub_rec_bankruptcies
                              697
tax liens
                               39
dtype: int64
```

In [93]: loan.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 39717 entries, 0 to 39716
Data columns (total 53 columns):

Data #	columns (total 53 columns): Column		ull Count	Dtype
0	id		non-null	 int64
1	member_id	39717	non-null	int64
2	loan amnt		non-null	int64
3	funded_amnt		non-null	int64
4	funded_amnt_inv		non-null	float64
5	term	39717	non-null	object
6	int_rate		non-null	object
7	_ installment		non-null	float64
8	grade	39717	non-null	object
9	sub_grade	39717	non-null	object
10	emp_title	37258	non-null	object
11	emp_length	38642	non-null	object
12	home_ownership	39717	non-null	object
13	annual_inc	39717	non-null	float64
14	verification_status	39717	non-null	object
15	issue_d	39717	non-null	object
16	loan_status	39717	non-null	object
17	pymnt_plan	39717	non-null	object
18	url	39717	non-null	object
19	purpose	39717	non-null	object
20	title	39706	non-null	object
21	zip_code	39717	non-null	object
22	addr_state	39717	non-null	object
23	dti	39717	non-null	float64
24	delinq_2yrs	39717	non-null	int64
25	earliest_cr_line	39717	non-null	object
26	<pre>inq_last_6mths</pre>	39717	non-null	int64
27	open_acc	39717	non-null	int64
28	pub_rec	39717	non-null	int64
29	revol_bal	39717	non-null	int64
30	revol_util	39667	non-null	object
31	total_acc	39717	non-null	int64
32	initial_list_status	39717	non-null	object
33	out_prncp	39717	non-null	float64
34	out_prncp_inv	39717	non-null	float64
35	total_pymnt	39717	non-null	float64
36	total_pymnt_inv	39717	non-null	float64
37	total_rec_prncp	_	non-null	float64
38	total_rec_int	39717	non-null	float64

```
39 total rec late fee
                                39717 non-null float64
40 recoveries
                                39717 non-null float64
41 collection recovery fee
                                39717 non-null float64
 42 last pymnt d
                                39646 non-null object
43 last pymnt amnt
                                39717 non-null float64
44 last credit pull d
                                39715 non-null object
    collections 12 mths ex med 39661 non-null float64
    policy code
                                39717 non-null int64
    application type
                               39717 non-null object
    acc now deling
                               39717 non-null int64
49 chargeoff within 12 mths 39661 non-null float64
50 deling amnt
                                39717 non-null int64
51 pub rec bankruptcies
                                39020 non-null float64
52 tax liens
                                39678 non-null float64
dtypes: float64(18), int64(13), object(22)
memory usage: 16.1+ MB
```

We can clearly see that employee length that is how many years employee has worked has object data type

We can convert data to integer variable for better data quality

```
loan['emp length'].value counts()
In [94]:
          10+ years
                       8879
Out[94]:
          < 1 year
                       4583
          2 years
                       4388
          3 years
                       4095
          4 years
                       3436
                       3282
          5 years
          1 year
                       3240
                       2229
          6 years
          7 years
                       1773
          8 years
                       1479
                       1258
          9 years
          Name: emp length, dtype: int64
         loan['months'] = loan.term.apply(lambda x : x.split()[0])
         loan.drop(['term'],axis = 1,inplace = True)
```

```
In [97]: loan = loan[~loan.emp_length.isnull()]
 In [98]: loan.emp_length.isnull().sum()
Out[98]:
          loan.emp length.value counts()
 In [99]:
          10+ years
                        8879
Out[99]:
          < 1 year
                        4583
          2 years
                        4388
          3 years
                        4095
          4 years
                        3436
          5 years
                        3282
          1 year
                        3240
          6 years
                        2229
          7 years
                        1773
          8 years
                        1479
          9 years
                        1258
          Name: emp length, dtype: int64
          loan['emp_length'] = loan.emp_length.str.extract('(\d+)')
In [100...
          loan.emp_length.value_counts()
In [101...
                8879
          10
Out[101]:
                7823
          2
                4388
          3
                 4095
                 3436
          5
                 3282
                 2229
          7
                1773
          8
                1479
                1258
          Name: emp_length, dtype: int64
          loan['emp_length'] = loan['emp_length'].apply(lambda x: pd.to_numeric(x))
In [102...
          loan.info()
In [103...
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 38642 entries, 0 to 39716
Data columns (total 53 columns):

#	columns (total 53 columns): Column	Non-Null Count	Dtype
0	 id	38642 non-null	 int64
1	member_id	38642 non-null	int64
2	loan amnt	38642 non-null	int64
3	funded_amnt	38642 non-null	int64
4	funded_amnt_inv	38642 non-null	float64
5	int rate	38642 non-null	object
6	installment	38642 non-null	float64
7	grade	38642 non-null	object
8	sub_grade	38642 non-null	object
9	emp_title	37202 non-null	object
10	emp_length	38642 non-null	int64
11	home ownership	38642 non-null	object
12	annual_inc	38642 non-null	float64
13	verification status	38642 non-null	object
14	issue d	38642 non-null	object
15	loan status	38642 non-null	object
16	_ pymnt_plan	38642 non-null	object
17	url	38642 non-null	object
18	purpose	38642 non-null	object
19	title	38632 non-null	object
20	zip_code	38642 non-null	object
21	addr_state	38642 non-null	object
22	dti	38642 non-null	float64
23	delinq_2yrs	38642 non-null	int64
24	earliest_cr_line	38642 non-null	object
25	<pre>inq_last_6mths</pre>	38642 non-null	int64
26	open_acc	38642 non-null	int64
27	pub_rec	38642 non-null	int64
28	revol_bal	38642 non-null	int64
29	revol_util	38595 non-null	object
30	total_acc	38642 non-null	int64
31	<pre>initial_list_status</pre>	38642 non-null	object
32	out_prncp	38642 non-null	float64
33	out_prncp_inv	38642 non-null	float64
34	total_pymnt	38642 non-null	float64
35	total_pymnt_inv	38642 non-null	float64
36	total_rec_prncp	38642 non-null	
37	total_rec_int	38642 non-null	float64
38	total_rec_late_fee	38642 non-null	float64

```
40 collection_recovery fee
                                38642 non-null float64
41 last pymnt d
                                38576 non-null object
42 last pymnt amnt
                                38642 non-null float64
43 last credit pull d
                                38640 non-null object
44 collections 12 mths ex med 38586 non-null float64
    policy code
                                38642 non-null int64
46 application type
                                38642 non-null object
47 acc now deling
                                38642 non-null int64
    chargeoff within 12 mths
                                38586 non-null float64
49 deling amnt
                                38642 non-null int64
50 pub rec bankruptcies
                                37945 non-null float64
51 tax liens
                                38603 non-null float64
52 months
                                38642 non-null object
dtypes: float64(18), int64(14), object(21)
memory usage: 15.9+ MB
```

38642 non-null float64

Data analysis

39 recoveries

The objective is to identify predictors of default so that at the time of loan application, we can use those variables for approval/rejection of the loan

```
behaviour var = [
In [104...
             "deling 2yrs",
             "earliest cr line",
             "ing last 6mths",
             "open acc",
             "pub rec",
             "revol bal",
             "revol util",
             "total acc",
             "out prncp",
             "out prncp inv",
             "total pymnt",
             "total pymnt inv",
             "total rec prncp",
             "total rec int",
             "total rec late fee",
             "recoveries",
             "collection recovery fee",
             "last pymnt d",
```

```
"last_pymnt_amnt",
             "last_credit_pull_d",
             "application_type"]
           behaviour var
           ['deling 2yrs',
Out[104]:
            'earliest cr line',
            'inq last 6mths',
            'open acc',
            'pub rec',
            'revol bal',
            'revol util',
            'total acc',
            'out_prncp',
            'out prncp inv',
            'total pymnt',
            'total pymnt inv',
            'total rec prncp',
            'total rec int',
            'total rec late fee',
            'recoveries',
            'collection recovery fee',
            'last_pymnt_d',
            'last pymnt amnt',
            'last credit pull d',
            'application type']
In [105...
           loan.drop(behaviour var, axis = 1 , inplace = True)
In [106...
          loan.info()
```

<class 'pandas.core.frame.DataFrame'> Int64Index: 38642 entries, 0 to 39716 Data columns (total 32 columns): Column Non-Null Count Dtype _____ _____ id 0 38642 non-null int64 1 member id 38642 non-null int64 2 loan amnt 38642 non-null int64 3 funded amnt 38642 non-null int64 funded amnt inv 38642 non-null float64 5 int rate 38642 non-null object installment 38642 non-null float64 7 grade 38642 non-null object sub grade 38642 non-null object 9 emp title 37202 non-null object emp length 38642 non-null int64 11 home ownership 38642 non-null object 12 annual inc 38642 non-null float64 13 verification status 38642 non-null object 14 issue d 38642 non-null object 15 loan status 38642 non-null object 16 pymnt plan 38642 non-null object 17 url 38642 non-null object 18 purpose 38642 non-null object 19 title 38632 non-null object 20 zip code 38642 non-null object 21 addr state 38642 non-null object 22 dti 38642 non-null float64 23 initial list status 38642 non-null object collections 12 mths ex med 38586 non-null float64 policy code 38642 non-null int64 25 26 acc now deling 38642 non-null int64 27 chargeoff within 12 mths 38586 non-null float64 28 deling amnt 38642 non-null int64 pub rec bankruptcies 37945 non-null float64 30 tax liens 38603 non-null float64 31 months 38642 non-null object dtypes: float64(8), int64(8), object(16) memory usage: 9.7+ MB loan.drop(['title', 'url', 'zip_code', 'addr_state'], axis=1 , inplace = True) loan.loan_status.value_counts()

In [107...

In [108...

3/21/23, 2:29 PM

```
Out[108]: Fully Paid 32145
Charged Off 5399
Current 1098
Name: loan_status, dtype: int64
```

Loan status has 3 categories, there is no need of current category in data as we need to find defaulters based on historical loan application status.

loan

```
loan = loan[loan['loan status'] != 'Current']
In [109...
          loan['loan status'] = loan['loan status'].apply(lambda x: 'Non-Default' if x=='Fully Paid' else 'Default')
          loan['loan status categor'] = loan.loan status
In [110...
          loan.loan status categor.value counts()
In [111...
          Non-Default
                          32145
Out[111]:
          Default
                           5399
          Name: loan status categor, dtype: int64
          #Current loan status is not needed for analyzing
In [112...
          loan = loan[loan['loan status'] != 'Current']
          loan['loan status'] = loan['loan status'].apply(lambda x: 0 if x=='Non-Default' else 1)
          # converting loan status to integer type
          loan['loan status'] = loan['loan status'].apply(lambda x: pd.to numeric(x))
          # summarising the values
          loan['loan status'].value counts()
                32145
Out[112]:
                5399
          Name: loan status, dtype: int64
          Default rate
          round(np.mean(loan['loan status']==1), 2)
In [113...
          0.14
Out[113]:
```

Loan default rate is 14%.

In [114... loan.loan_status_categor.value_counts().plot.bar() <AxesSubplot:> Out[114]: 30000 25000 20000 15000 10000 5000 Default Non-Default In [115... loan

Out[115]:

:		id	member_id	loan_amnt	funded_amnt	funded_amnt_inv	int_rate	installment	grade	sub_grade	emp_title	 initial_list_status	col
	0	1077501	1296599	5000	5000	4975.0	10.65%	162.87	В	B2	NaN	 f	
	1	1077430	1314167	2500	2500	2500.0	15.27%	59.83	С	C4	Ryder	 f	
	2	1077175	1313524	2400	2400	2400.0	15.96%	84.33	С	C5	NaN	 f	
	3	1076863	1277178	10000	10000	10000.0	13.49%	339.31	С	C1	AIR RESOURCES BOARD	 f	
	5	1075269	1311441	5000	5000	5000.0	7.90%	156.46	А	A4	Veolia Transportaton	 f	
	•••											 	
	39712	92187	92174	2500	2500	1075.0	8.07%	78.42	А	A4	FiSite Research	 f	
	39713	90665	90607	8500	8500	875.0	10.28%	275.38	С	C1	Squarewave Solutions, Ltd.	 f	
	39714	90395	90390	5000	5000	1325.0	8.07%	156.84	Α	A4	NaN	 f	
	39715	90376	89243	5000	5000	650.0	7.43%	155.38	Α	A2	NaN	 f	
	39716	87023	86999	7500	7500	800.0	13.75%	255.43	Е	E2	Evergreen Center	 f	

37544 rows × 29 columns

4

In [116... sns.barplot(x='grade', y='loan_status', data=loan)
 plt.show()

Overall default rate is 14%

So let's plot against categorical variable to gain more insight

```
In [117... sns.barplot(x='grade', y='loan_status', data=loan)
plt.show()
```


In [120...

We can clearly figure out that grade E,F,D,G has higher default rate.
plot_data('grade')

In [121...

we can clearly see that 60 months term has higher default rate than 36 months.
plot_data('months')


```
In [122... # sub-grade: A1 is better than A2 better than A3 and so on
plt.figure(figsize=(16, 6))
plot_data('sub_grade')
```


In [123... plot_data('home_ownership')

In [125... # verification_status: Verified Loan has more default rate than not verified
plot_data('verification_status')


```
In [126... # purpose: small business loans defualt rate is the largest than compared to others.
plt.figure(figsize=(16, 6))
plot_data('purpose')
```



```
In [127...
           loan['issue d'].describe
           <bound method NDFrame.describe of 0</pre>
                                                        Dec-11
Out[127]:
                    Dec-11
           2
                    Dec-11
           3
                    Dec-11
           5
                    Dec-11
                     . . .
           39712
                    Jul-07
                    Jul-07
           39713
                    Jul-07
           39714
           39715
                    Jul-07
           39716
                    Jun-07
           Name: issue_d, Length: 37544, dtype: object>
           loan['Dates'] = pd.to_datetime(loan['issue_d'], format='%b-%y')
In [128...
           loan['month'] = loan['Dates'].apply(lambda x: x.month)
In [129...
```

```
loan['month'].describe
In [130...
           <bound method NDFrame.describe of 0</pre>
                                                       12
Out[130]:
                    12
           2
                    12
           3
                    12
           5
                    12
                    . .
                     7
           39712
           39713
                     7
                     7
           39714
           39715
                     7
           39716
          Name: month, Length: 37544, dtype: int64>
          loan['year'] = loan['Dates'].apply(lambda x: x.year)
In [131...
          loan['year'].value counts()
In [133...
          2011
                   19801
Out[133]:
           2010
                   11214
           2009
                    4716
           2008
                    1562
           2007
                     251
          Name: year, dtype: int64
          loan.groupby('year').year.count()
In [134...
           year
Out[134]:
           2007
                     251
           2008
                    1562
                    4716
           2009
          2010
                   11214
                   19801
           2011
          Name: year, dtype: int64
In [135...
          #the default rate was high in the year 2007 then gradually decreased but suddenly got increased in the year 2011
           plot data('year')
```


In [137... sns.barplot(x='year', y='id', data=loan)
Out[137]: <AxesSubplot:xlabel='year', ylabel='id'>

In [204... sns.distplot(loan['loan_amnt'])
 plt.show()


```
In [213... #Let's bin the loan amount variable into small, medium, high, very high.

def loan_amount(n):
    if n < 5000:
        return 'low'
    elif n >=5000 and n < 15000:
        return 'medium'
    elif n >= 15000 and n < 25000:
        return 'high'
    else:
        return 'very high'

loan['loan_amnt'] = loan['loan_amnt'].apply(lambda x: loan_amount(x))</pre>
In [214... loan['loan_amnt'].value_counts()
```

```
Out[214]: medium 20157
high 7572
low 7095
very high 2720
Name: loan_amnt, dtype: int64
```

In [216... # higher the loan amount, higher is the default rate
plot_data('loan_amnt')


```
In [227... loan['int_rate'] = loan['int_rate'].apply(lambda x: pd.to_numeric(x.split("%")[0]))
In [228... loan.int_rate.value_counts()
```

```
10.99
                   891
Out[228]:
          11.49
                   766
          7.51
                   756
          13.49
                   736
          7.88
                   701
                   . . .
          16.96
                     1
          18.36
                     1
          16.15
                     1
          16.01
                     1
          16.20
                     1
          Name: int rate, Length: 370, dtype: int64
In [229...
          def int_rate(n):
              if n <= 10:
                  return 'low'
              elif n > 10 and n <=15:
                  return 'medium'
              else:
                  return 'high'
          loan['int_rate'] = loan['int_rate'].apply(lambda x: int_rate(x))
          #Higher the rate of interest higher is the default rate
In [230...
          plot_data('int_rate')
```



```
In [233... def dti(n):
    if n <= 10:
        return 'low'
    elif n > 10 and n <=20:
        return 'medium'
    else:
        return 'high'

Ioan['dti'] = loan['dti'].apply(lambda x: dti(x))</pre>
In [234... loan['dti'].value_counts()
```

```
Out[234]: medium 18002
low 12545
high 6997
```

Name: dti, dtype: int64

In [238...

```
# comparing default rates across debt to income ratio
# higher debt to income ratio has higher default rates
plot_data('dti')
```



```
In [241... # funded amount
def funded_amount(n):
    if n <= 5000:
        return 'low'
    elif n > 5000 and n <=15000:
        return 'medium'
    else:</pre>
```

```
return 'high'
loan['funded_amnt'] = loan['funded_amnt'].apply(lambda x: funded_amount(x))
```

In [242...

#Higher funds are provided to customer higher is the default rate plot data('funded amnt')


```
# installment
In [243...
           def installment(n):
               if n <= 200:
                   return 'low'
               elif n > 200 and n <=400:
                   return 'medium'
               elif n > 400 and n <=600:
                   return 'high'
               else:
```

```
return 'very high'
loan['installment'] = loan['installment'].apply(lambda x: installment(x))
```

In [244...

the higher the installment amount, the higher the default rate
plot_data('installment')


```
In [245... # annual income
def annual_income(n):
    if n <= 50000:
        return 'low'
    elif n > 50000 and n <=100000:
        return 'medium'
    elif n > 100000 and n <=150000:
        return 'high'
    else:</pre>
```

3/21/23, 2:29 PM

```
loan
                   return 'very high'
           loan['annual_inc'] = loan['annual_inc'].apply(lambda x: annual_income(x))
           #lower the income of customer higher is the default rate
In [246...
           plot data('annual inc')
              0.175 -
              0.150
              0.125
           loan_status
              0.100
              0.075
              0.050
              0.025
              0.000 -
                                            medium
                            low
                                                                high
                                                                               very high
                                                    annual_inc
In [247...
           # Emp_length
           loan.emp_length.isnull().sum()
Out[247]:
```

```
# binning the variable
In [249...
           def emp_length(n):
               if n <= 1:
```

```
return 'fresher'
elif n > 1 and n <=3:
    return 'junior'
elif n > 3 and n <=7:
    return 'senior'
else:
    return 'expert'

loan['emp_length'] = loan['emp_length'].apply(lambda x: emp_length(x))</pre>
```

In [250...

#Suprisingly customers with highest level experience has higher default rate plot data('emp length')

We have now compared the default rates across various variables, and some of the important predictors are purpose of the loan, interest rate, annual income, grade etc.

let's again have a look at the default rates across the purpose of the loan.

In [255... # purpose: small business loans defualt the most then others plt.figure(figsize=(30, 10)) plot data('purpose') 0.25 0.20 loan_stati 0.10 0.05 debt_consolidation credit_card small_business wedding major_purchase medical moving vacation house renewable_energy home_improvement educational # lets first look at the number of loans for each type (purpose) of the loan In [257... # most loans are debt consolidation(to repay credit card bills or other loan payments), compared to others. plt.figure(figsize=(30, 10)) sns.countplot(x='purpose', data=loan) plt.show()


```
In [263...
          # filtering the loan for the 4 types of loans mentioned above
          main purposes = ["credit card", "debt consolidation", "home improvement", "major purchase"]
          loan = loan[loan['purpose'].isin(main purposes)]
          loan['purpose'].value counts()
          debt_consolidation
                                 17675
Out[263]:
          credit_card
                                  4899
          home improvement
                                  2785
          major purchase
                                  2080
          Name: purpose, dtype: int64
          # let's now compare the default rates across two types of categorical variables
In [265...
          # purpose of loan (constant) and another categorical variable (which changes)
          plt.figure(figsize=[10, 6])
          sns.barplot(x='months', y="loan_status", hue='purpose', data=loan)
          plt.show()
```


We can clearly see that whether it is 36 months term period or 60 months debt_consolidation has the highest default rate.

```
In [266...

def plot_segmented(cat_var):
    plt.figure(figsize=(10, 6))
    sns.barplot(x=cat_var, y='loan_status', hue='purpose', data=loan)
    plt.show()
```

plot_segmented('months')

In [267... # grade of loan
plot_segmented('grade')

In [268... # home ownership
plot_segmented('home_ownership')

In [269... # year
 plot_segmented('year')

In [270... # emp_length
 plot_segmented('emp_length')

In [271... # loan_amnt: same trend across loan purposes
 plot_segmented('loan_amnt')


```
In [272... # interest rate
plot_segmented('int_rate')
```


In [273... # installment
 plot_segmented('installment')

In [274... # debt to income ratio
 plot_segmented('dti')

In [275... # debt to income ratio
 plot_segmented('dti')

