Find the inverses of
$$A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 5 \\ 1 & 3 & 7 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & -1 \\ 1 & 3 & -2 \end{bmatrix}$

- Suppose A is invertible. Show that if AB = AC, then B = C. Give an example of a nonzero matrix A such that AB = AC but $B \neq C$.
- Find 2×2 invertible matrices A and B such that $A + B \neq 0$ and A + B is not invertible.

Find
$$x, y, z$$
 such that A is symmetric, where

(a) $A = \begin{bmatrix} 2 & x & 3 \\ 4 & 5 & y \\ z & 1 & 7 \end{bmatrix}$, (b) $A = \begin{bmatrix} 7 & -6 & 2x \\ y & z & -2 \\ x & -2 & 5 \end{bmatrix}$.

- Suppose A is a square matrix. Show (a) $A + A^{T}$ is symmetric, (b) $A A^{T}$ is skew-symmetric, (c) A = B + C, where B is symmetric and C is skew-symmetric.
- Write $A = \begin{bmatrix} 4 & 5 \\ 1 & 3 \end{bmatrix}$ as the sum of a symmetric matrix B and a skew-symmetric matrix C.

(a)
$$2x - y - 4z = 2$$

 $4x - 2y - 6z = 5$
 $6x - 3y - 8z = 8$
(b) $x + 2y - z + 3t = 3$
 $2x + 4y + 4z + 3t = 9$
 $3x + 6y - z + 8t = 10$

Write v as a linear combination of u_1, u_2, u_3 , where

(a)
$$v = (4, -9, 2), u_1 = (1, 2, -1), u_2 = (1, 4, 2), u_3 = (1, -3, 2);$$

(b)
$$v = (1,3,2), u_1 = (1,2,1), u_2 = (2,6,5), u_3 = (1,7,8);$$

Reduce each of the following matrices to echelon form and then to row canonical form:

(a)
$$\begin{bmatrix} 1 & 2 & 1 & 2 & 1 & 2 \\ 2 & 4 & 3 & 5 & 5 & 7 \\ 3 & 6 & 4 & 9 & 10 & 11 \\ 1 & 2 & 4 & 3 & 6 & 9 \end{bmatrix}$$
, (b)
$$\begin{bmatrix} 0 & 1 & 2 & 3 \\ 0 & 3 & 8 & 12 \\ 0 & 0 & 4 & 6 \\ 0 & 2 & 7 & 10 \end{bmatrix}$$
, (c)
$$\begin{bmatrix} 1 & 3 & 1 & 3 \\ 2 & 8 & 5 & 10 \\ 1 & 7 & 7 & 11 \\ 3 & 11 & 7 & 15 \end{bmatrix}$$

Find the inverse of each of the following matrices (if it exists):

$$A = \begin{bmatrix} 1 & -2 & -1 \\ 2 & -3 & 1 \\ 3 & -4 & 4 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 6 & 1 \\ 3 & 10 & -1 \end{bmatrix}, \qquad C = \begin{bmatrix} 1 & 3 & -2 \\ 2 & 8 & -3 \\ 1 & 7 & 1 \end{bmatrix},$$

. Find the LU factorization of each of the following matrices:

(a)
$$\begin{bmatrix} 1 & -1 & -1 \\ 3 & -4 & -2 \\ 2 & -3 & -2 \end{bmatrix}$$
, (b) $\begin{bmatrix} 1 & 3 & -1 \\ 2 & 5 & 1 \\ 3 & 4 & 2 \end{bmatrix}$, (c) $\begin{bmatrix} 2 & 3 & 6 \\ 4 & 7 & 9 \\ 3 & 5 & 4 \end{bmatrix}$

- Determine whether or not W is a subspace of \mathbb{R}^3 where W consists of all vectors (a, b, c) in \mathbb{R}^3 such that (a) a = 3b, (b) $a \le b \le c$, (c) ab = 0, (d) a + b + c = 0, (e) $b = a^2$, (f) a = 2b = 3c.
- 13) Let V be the vector space of n-square matrices over a field K. Show that W is a subspace of V if W consists of all matrices $A = [a_{ij}]$ that are
 - (a) symmetric ($A^T = A$ or $a_{ij} = a_{ji}$), (b) (upper) triangular, (c) diagonal, (d) scalar.
- Let AX = B be a nonhomogeneous system of linear equations in n unknowns; that is, $B \neq 0$. Show that the solution set is not a subspace of K^n .

- Show that the following functions f, g, h are linearly independent:
 - (a) $f(t) = e^t$, $g(t) = \sin t$, $h(t) = t^2$; (b) $f(t) = e^t$, $g(t) = e^{2t}$, h(t) = t.
- Show that u = (a, b) and v = (c, d) in K^2 are linearly dependent if and only if ad bc = 0.
- Suppose u, v, w are linearly independent vectors. Prove that S is linearly independent where $S = \{u + v 2w, u v w, u + w\};$
- Find a subset of u_1 , u_2 , u_3 , u_4 that gives a basis for $W = \text{span}(u_i)$ of \mathbb{R}^5 , where
 - (a) $u_1 = (1, 1, 1, 2, 3), \quad u_2 = (1, 2, -1, -2, 1), \quad u_3 = (3, 5, -1, -2, 5), \quad u_4 = (1, 2, 1, -1, 4)$
 - (b) $u_1 = (1, -2, 1, 3, -1), \quad u_2 = (-2, 4, -2, -6, 2), \quad u_3 = (1, -3, 1, 2, 1), \quad u_4 = (3, -7, 3, 8, -1)$

Find a basis and the dimension of the solution space W of each of the following homogeneous systems:

$$x + 2y - 2z + 2s - t = 0$$

$$x + 2y - z + 3s - 2t = 0$$

$$2x + 4y - 7z + s + t = 0$$

Find the rank of each of the following matrices:

(a)
$$\begin{bmatrix} 1 & 3 & -2 & 5 & 4 \\ 1 & 4 & 1 & 3 & 5 \\ 1 & 4 & 2 & 4 & 3 \\ 2 & 7 & -3 & 6 & 13 \end{bmatrix}$$
, (b)
$$\begin{bmatrix} 1 & 2 & -3 & -2 \\ 1 & 3 & -2 & 0 \\ 3 & 8 & -7 & -2 \\ 2 & 1 & -9 & -10 \end{bmatrix}$$

Determine which of the following subspaces of \mathbb{R}^3 are identical:

$$U_1 = \text{span}[(1, 1, -1), (2, 3, -1), (3, 1, -5)],$$
 $U_2 = \text{span}[(1, -1, -3), (3, -2, -8), (2, 1, -3)]$ $U_3 = \text{span}[(1, 1, 1), (1, -1, 3), (3, -1, 7)]$

II) Find a basis for (i) the row space and (ii) the column space of each matrix M:

(a)
$$M = \begin{bmatrix} 0 & 0 & 3 & 1 & 4 \\ 1 & 3 & 1 & 2 & 1 \\ 3 & 9 & 4 & 5 & 2 \\ 4 & 12 & 8 & 8 & 7 \end{bmatrix}$$
, (b) $M = \begin{bmatrix} 1 & 2 & 1 & 0 & 1 \\ 1 & 2 & 2 & 1 & 3 \\ 3 & 6 & 5 & 2 & 7 \\ 2 & 4 & 1 & -1 & 0 \end{bmatrix}$.

Let A and B be arbitrary $m \times n$ matrices. Show that $rank(A + B) \le rank(A) + rank(B)$.

24)

The vectors $u_1 = (1, 2, 0)$, $u_2 = (1, 3, 2)$, $u_3 = (0, 1, 3)$ form a basis S of \mathbb{R}^3 . Find the coordinate vector [v] of v relative to S where (a) v = (2, 7, -4), (b) v = (a, b, c).

25)

Let $V = \mathbf{M}_{2,2}$. Find the coordinate vector [A] of A relative to S where

$$S = \left\{ \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \right\} \text{ and (a) } A = \begin{bmatrix} 3 & -5 \\ 6 & 7 \end{bmatrix}, \text{ (b) } A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

26)

Find the dimension and a basis of the subspace W of $P_3(t)$ spanned by

$$u = t^3 + 2t^2 - 3t + 4$$
, $v = 2t^3 + 5t^2 - 4t + 7$, $w = t^3 + 4t^2 + t + 2$

- Show that the following mappings are linear:
 - (a) $F: \mathbb{R}^3 \to \mathbb{R}^2$ defined by F(x, y, z) = (x + 2y 3z, 4x 5y + 6z).
 - (b) $F: \mathbb{R}^2 \to \mathbb{R}^2$ defined by F(x,y) = (ax + by, cx + dy), where a, b, c, d belong to **R**.
- 28) Show that the following mappings are not linear:
 - (a) $F: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $F(x, y) = (x^2, y^2)$.
 - (b) $F: \mathbb{R}^3 \to \mathbb{R}^2$ defined by F(x, y, z) = (x + 1, y + z).
- Find a linear mapping $F: \mathbb{R}^3 \to \mathbb{R}^3$ whose image is spanned by (1, 2, 3) and (4, 5, 6).

- Let $F: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by F(x, y) = (4x + 5y, 2x y).
 - (a) Find the matrix A representing F in the usual basis E.
 - (b) Find the matrix B representing F in the basis $S = \{u_1, u_2\} = \{(1, 4), (2, 9)\}.$
 - (c) Find P such that $B = P^{-1}AP$.

- Let **D** denote the differential operator; that is, $\mathbf{D}(f(t)) = df/dt$. Each of the following sets is a basis of a vector space V of functions. Find the matrix representing **D** in each basis:
 - (a) $\{e^t, e^{2t}, te^{2t}\}$. (b) $\{1, t, \sin 3t, \cos 3t\}$.
- Verify that the following is an inner product on \mathbb{R}^2 , where $u = (x_1, x_2)$ and $v = (y_1, y_2)$: $f(u, v) = x_1 y_1 2x_1 y_2 2x_2 y_1 + 5x_2 y_2$
- Show that each of the following is not an inner product on \mathbb{R}^3 , where $u=(x_1,x_2,x_3)$ and $v=(y_1,y_2,y_3)$:
- (a) $\langle u, v \rangle = x_1 y_1 + x_2 y_2$, (b) $\langle u, v \rangle = x_1 y_2 x_3 + y_1 x_2 y_3$.

Find a basis for the subspace W of \mathbb{R}^5 orthogonal to the vectors $u_1 = (1, 1, 3, 4, 1)$ and $u_2 = (1, 2, 1, 2, 1)$.

Let U be the subspace of \mathbb{R}^4 spanned by

$$v_1 = (1, 1, 1, 1),$$
 $v_2 = (1, -1, 2, 2),$ $v_3 = (1, 2, -3, -4)$

- (a) Apply the Gram-Schmidt algorithm to find an orthogonal and an orthonormal basis for U.
- (b) Find the projection of v = (1, 2, -3, 4) onto U.
- Suppose v = (1, 2, 3, 4, 6). Find the projection of v onto W, or, in other words, find $w \in W$ that minimizes ||v w||, where W is the subspace of \mathbb{R}^5 spanned by
 - (a) $u_1 = (1, 2, 1, 2, 1)$ and $u_2 = (1, -1, 2, -1, 1)$, (b) $v_1 = (1, 2, 1, 2, 1)$ and $v_2 = (1, 0, 1, 5, -1)$.

Evaluate each of the following determinants:

(a)
$$\begin{vmatrix} 1 & 2 & -1 & 3 & 1 \\ 2 & -1 & 1 & -2 & 3 \\ 3 & 1 & 0 & 2 & -1 \\ 5 & 1 & 2 & -3 & 4 \\ -2 & 3 & -1 & 1 & -2 \end{vmatrix}$$
, (b)
$$\begin{vmatrix} 1 & 3 & 5 & 7 & 9 \\ 2 & 4 & 2 & 4 & 2 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 5 & 6 & 2 \\ 0 & 0 & 2 & 3 & 1 \end{vmatrix}$$
, (c)
$$\begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 3 & 2 & 1 \\ 0 & 0 & 6 & 5 & 1 \\ 0 & 0 & 0 & 7 & 4 \\ 0 & 0 & 0 & 2 & 3 \end{vmatrix}$$

Find the determinant of each of the following linear transformations:

(a)
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 defined by $T(x, y) = (2x - 9y, 3x - 5y)$,

(b)
$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
 defined by $T(x, y, z) = (3x - 2z, 5y + 7z, x + y + z),$

Find the volume V(S) of the parallelopiped S in \mathbb{R}^3 determined by the following vectors:

$$u_1 = (1, 2, -3), u_2 = (3, 4, -1), u_3 = (2, -1, 5),$$

Solve the following systems by determinants:

(a)
$$\begin{cases} 2x - 5y + 2z = 2 \\ x + 2y - 4z = 5, \\ 3x - 4y - 6z = 1 \end{cases}$$
 (b)
$$\begin{cases} 2z + 3 = y + 3x \\ x - 3z = 2y + 1 \\ 3y + z = 2 - 2x \end{cases}$$

Let
$$A = \begin{bmatrix} 2 & -1 \\ -2 & 3 \end{bmatrix}$$
.

- (a) Find eigenvalues and corresponding eigenvectors.
- (b) Find a nonsingular matrix P such that $D = P^{-1}AP$ is diagonal.
- (c) Find A^8 and f(A) where $f(t) = t^4 5t^3 + 7t^2 2t + 5$.
- (d) Find a matrix B such that $B^2 = A$.
- Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ be a real matrix. Find necessary and sufficient conditions on a, b, c, d so that A is diagonalizable—that is, so that A has two (real) linearly independent eigenvectors.
 - For each of the following symmetric matrices B, find its eigenvalues, a maximal orthogonal set S of eigenvectors, and an orthogonal matrix P such that $D = P^{-1}BP$ is diagonal:

(a)
$$B = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
, (b) $B = \begin{bmatrix} 2 & 2 & 4 \\ 2 & 5 & 8 \\ 4 & 8 & 17 \end{bmatrix}$