Chapter 10 Variational Inference

Yue Yu

10.1 Variational Inference

$$(10.6) - (10.9)$$

If we focus on the factor $q_i(\mathbf{Z}_i)$,

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

$$= \int \prod_{i} q_{i} \left\{ \ln p(\mathbf{X}, \mathbf{Z}) - \sum_{i} \ln q_{i} \right\} d\mathbf{Z}$$

$$= \int q_{j} \left\{ \underbrace{\int \cdots \int \ln p(\mathbf{X}, \mathbf{Z}) \prod_{i \neq j} q_{i} d\mathbf{Z}_{i}}_{\mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})]} \right\} d\mathbf{Z}_{j} - \int q_{j} \ln q_{j} d\mathbf{Z}_{j} + \text{const}$$

$$= -\text{KL}(q_{j} || q_{j}^{*}) + \text{const}$$

where we defined a new distribution q_i^* that satisfies

$$\ln q_i^* = \mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})] + \text{const.}$$

Since KL divergence is non-negative, the lower bound $\mathcal{L}(q)$ reaches the maximum when $\mathrm{KL}(q_j \| q_j^*) = 0$. In other words, when the optimal value is just q_j^* .

(10.17)

$$KL(p||q) = -\int p(\mathbf{Z}) \ln \left\{ \frac{q(\mathbf{Z})}{p(\mathbf{Z})} \right\} d\mathbf{Z}$$

$$= -\int p(\mathbf{Z}) \left[\sum_{i=1}^{M} \ln q_i(\mathbf{Z}_i) \right] d\mathbf{Z} + \underbrace{\int p(\mathbf{Z}) \ln p(\mathbf{Z}) d\mathbf{Z}}_{\text{const}}$$

$$= -\int p(\mathbf{Z}) \left[\ln q_j(\mathbf{Z}_j) + \sum_{i \neq j}^{M} \ln q_i(\mathbf{Z}_i) \right] d\mathbf{Z} + \text{const}$$

$$= -\int p(\mathbf{Z}) \ln q_j(\mathbf{Z}_j) d\mathbf{Z} + \text{const}$$

$$= -\int \cdots \int p(\mathbf{Z}) \ln q_j(\mathbf{Z}_j) d\mathbf{Z}_1 \cdots d\mathbf{Z}_M + \text{const}$$

$$= -\int \left[\int p(\mathbf{Z}) \prod_{i \neq j} d\mathbf{Z}_i \right] \ln q_j(\mathbf{Z}_j) d\mathbf{Z}_j + \text{const}$$

$$= -\int F_j(\mathbf{Z}_j) \ln q_j(\mathbf{Z}_j) d\mathbf{Z}_j + \text{const}$$

where in the forth step, the sum term is absorbed into constant because we assume $q_i(\mathbf{Z}_i)$ is fixed for $i \neq j$ when focusing on $q_j(\mathbf{Z}_j)$. Also, we define

$$F_j(\mathbf{Z}_j) = \int p(\mathbf{Z}) \prod_{i \neq j} d\mathbf{Z}_i.$$

Then, the corresponding Lagrangian is given by

$$L(q_j(\mathbf{Z}_j)) = -\int F_j(\mathbf{Z}_j) \ln q_j(\mathbf{Z}_j) \, \mathrm{d}\mathbf{Z}_j + \lambda \bigg(\int q_j(\mathbf{Z}_j) \, \mathrm{d}\mathbf{Z}_j - 1 \bigg).$$

Identifying $F_j(\mathbf{Z}_j) \ln q_j(\mathbf{Z}_j)$ in the first term as $G_1(q_j(\mathbf{Z}_j))$, and $q_j(\mathbf{Z}_j)$ as $G_2(q_j(\mathbf{Z}_j))$ in the second term, according to the Euler-Lagrange equation, we have

$$-\frac{F_j(\mathbf{Z}_j)}{q_j(\mathbf{Z}_j)} + \lambda = 0,$$

which implies that

$$\lambda q_j(\mathbf{Z}_j) = F_j(\mathbf{Z}_j). \tag{*}$$

Integrating both sides over \mathbf{Z}_{j} , we have

$$\lambda = \int F_j(\mathbf{Z}_j) d\mathbf{Z}_j$$

$$= \int \left[\int p(\mathbf{Z}) \prod_{i \neq j} d\mathbf{Z}_i \right] d\mathbf{Z}_j$$

$$= \int p(\mathbf{Z}) d\mathbf{Z}$$

$$= 1$$

Substituting back into (*), we obtain the optimal value for $q_i(\mathbf{Z}_i)$, which is

$$q_j^*(\mathbf{Z}_j) = F_j(\mathbf{Z}_j) = \int p(\mathbf{Z}) \prod_{i \neq j} d\mathbf{Z}_i.$$