

SILICIUM

Le silicium (symbole Si, numéro atomique 14) ne se trouve pas à l'état natif, mais constitue, sous forme de <u>silice</u> et de <u>silicates</u>, l'élément le plus abondant (environ 28 p. 100), après l'oxygène, à la surface du globe (cf. <u>SILICATES</u>, <u>SILICE</u>). Son nom vient du latin *silex*: caillou. Antoine-Laurent Lavoisier avait soupçonné son existence en 1787, mais ce n'est qu'en 1823 que <u>Jöns Jacob Berzelius</u> l'isola dans un état de pureté suffisant pour pouvoir en aborder l'étude.

Le silicium cristallisé a un aspect métallique ; en raison de sa dureté, il polit le <u>verre</u>, mais il est poli par l'émeri. Sa densité est de 2,33 à 25 0 C ; il fond à 1 410 0 C et bout à 2 680 0 C. On l'utilise de plus en plus pour l'obtention de semiconducteurs. En métallurgie, c'est un désoxydant des aciers et un élément d'<u>alliages</u> (fontes, aciers et alliages légers).

En raison des analogies des éléments silicium et <u>carbone</u> (C), on a très tôt (dès le XIX^e siècle et surtout au début du XX^e siècle) songé à bâtir une <u>chimie</u> <u>organique</u> du silicium (chimie organosilicique). En fait, le silicium, plus volumineux et plus électropositif que le carbone, a donné naissance à une chimie organique spécifique, où son affinité pour l'oxygène tient une place prépondérante.

Le corps simple silicium

Compte tenu de la réactivité du silicium avec l'oxygène et de la grande stabilité des oxydes formés, on ne le trouve pas à l'état de corps simple dans la nature. Il est obtenu à partir de la silice, par réduction au four à arc utilisant des électrodes de graphite, généralement selon un procédé en continu et à des températures variant entre 1 600 et 1 800 °C. Il est récupéré par coulée. Une variante de ce procédé travaillant à plus basse température fait appel à l'aluminothermie. On peut estimer entre 500 000 et 1 million de tonnes la production mondiale annuelle de silicium. Selon ses applications,

– une pureté « électronique », nécessitant des processus successifs de