Automated Glaucoma Diagnosis using Deep Learning Approach

By - Baidaa Al-Bander

Architecture: Transfer Leanring

Pretrained Alexnet as Feature Extractor

SVM as classifier

Preprocessing: Resize image to 227*227

DataSet: RIM-ONE V2

Total Image Count: 455

Normal Images: 255

Author: Gyanendar Manohar (R00207241)

Date: 26/02/2022

=====

Set Random Seed

```
rng(50)
```

Load Dataset

Load RIM-ONE R2 dataset and split it in train and test set. The split ration is 70:30

Alexnet Model

Get pre-trained AlexNet Model

Model input size

```
input_Size = alexnet_model.Layers(1).InputSize;
```

Resize Image to match the input size

```
aug_train = augmentedImageDatastore(input_Size(1:2),x_train_ds);
aug_test = augmentedImageDatastore(input_Size(1:2),x_test_ds);
```

Train and Test labels

```
y_train = double(categorical(x_train_ds.Labels));
y_test = double(categorical(x_test_ds.Labels));
```

Extract Feature from images

```
layer = 'relu6';
feature_train = activations(alexnet_model,aug_train,layer,'OutputAs','rows');
feature_test = activations(alexnet_model,aug_test,layer,'OutputAs','rows');
```

Pass Extracted features to SVM classifier

```
classifier = fitcecoc(feature_train,y_train);
```

Result

Do prediction

```
y_predicted = predict(classifier,feature_test);
```

Accuracy

```
accuracy = mean(y_predicted == y_test)
```

accuracy = 0.8897

Confusion Matrix

confusionchart(y_test,y_predicted)

[conf_matrix,order] = confusionmat(y_test,y_predicted)

```
conf_matrix = 2×2
    53     7
    8     68
order = 2×1
    1
    2
```

tp = 53

tn = conf_matrix(2,2)

```
tn = 68
```

```
fn = conf_matrix(1,2)
```

fn = 7

```
fp = conf_matrix(2,1)
```

fp = 8

Sensitivity

```
sensitivity = tp/(tp+fn)
sensitivity = 0.8833
```

Specificity

```
specificity = tn/(tn+fp)
```

specificity = 0.8947

RIM-ONE-DL

Load Dataset

Resize Image to match the input size

```
rim_one_dl_aug_train = augmentedImageDatastore(input_Size(1:2),rimone_dl_data_store_train);
rim_one_dl_aug_test = augmentedImageDatastore(input_Size(1:2),rimone_dl_data_store_test);
```

Train and Test labels

```
rimone_dl_y_train = double(categorical(rimone_dl_data_store_train.Labels));
rimone_dl_y_test = double(categorical(rimone_dl_data_store_test.Labels));
```

Extract Feature from images

```
layer = 'relu6';
rimone_dl_feature_train = activations(alexnet_model,rim_one_dl_aug_train,layer,'OutputAs','rows')
rimone_dl_feature_test = activations(alexnet_model,rim_one_dl_aug_test,layer,'OutputAs','rows')
rimone_dl_classifier = fitcecoc(rimone_dl_feature_train,rimone_dl_y_train);
```

Result

Do prediction

```
rimone_dl_y_predicted = predict(rimone_dl_classifier,rimone_dl_feature_test);
rimone_dl_accuracy = mean(rimone_dl_y_predicted == rimone_dl_y_test)
```

rimone_dl_accuracy = 0.8904

Confusion Matrix

confusionchart(rimone_dl_y_test,rimone_dl_y_predicted)


```
[rimone_dl_conf_matrix,rimone_dl_order] = confusionmat(rimone_dl_y_test,rimone_dl_y_predicted)

rimone_dl_conf_matrix = 2×2
    45     7
    9     85

rimone_dl_order = 2×1
    1
    2
```

```
r1dl_tp = rimone_dl_conf_matrix(1,1)
```

 $r1dl_tp = 45$

```
r1dl_tn = rimone_dl_conf_matrix(2,2)
```

r1dl tn = 85

```
r1dl_fn = rimone_dl_conf_matrix(1,2)
```

 $r1dl_fn = 7$

```
r1dl_fp = rimone_dl_conf_matrix(2,1)
r1dl_fp = 9
```

Sensitivity

```
r1dl_sensitivity = r1dl_tp/(r1dl_tp+r1dl_fn)
r1dl sensitivity = 0.8654
```

Specificity

```
r1dl_specificity = r1dl_tn/(r1dl_tn+r1dl_fp)
r1dl_specificity = 0.9043
```

ACRIMA Dataset

Load Dataset

Load ACRIMA dataset and split it in train and test set. The split ration is 70:30

```
acrima_image_data_store = ...
   imageDatastore('C:\gyani\Projects_MS\code\dataset\ACRIMA_dataset\Database',...
   'IncludeSubfolders',true,'LabelSource','foldernames');

[acrima_x_train_ds,acrima_x_test_ds] = splitEachLabel(acrima_image_data_store,0.7,'randomized');
```

Resize Image to match the input size

```
acrima_aug_train = augmentedImageDatastore(input_Size(1:2),acrima_x_train_ds);
acrima_aug_test = augmentedImageDatastore(input_Size(1:2),acrima_x_test_ds);
```

Train and Test labels

```
acrima_y_train = double(categorical(acrima_x_train_ds.Labels));
acrima_y_test = double(categorical(acrima_x_test_ds.Labels));
```

Extract Feature from images

```
layer = 'relu6';
acrima_feature_train = activations(alexnet_model,acrima_aug_train,layer,'OutputAs','rows');
acrima_feature_test = activations(alexnet_model,acrima_aug_test,layer,'OutputAs','rows');
acrima_classifier = fitcecoc(acrima_feature_train,acrima_y_train);
```

Result

Do prediction

```
acrima_y_predicted = predict(acrima_classifier,acrima_feature_test);
acrima_accuracy = mean(acrima_y_predicted == acrima_y_test)
```

 $acrima_accuracy = 0.9434$

Confusion Matrix

confusionchart(acrima_y_test,acrima_y_predicted)

[acrima_conf_matrix,acrima_order] = confusionmat(acrima_y_test,acrima_y_predicted)

```
acrima_conf_matrix = 2×2
    115     4
        8     85
acrima_order = 2×1
        1
        2
```

acrima_tp = acrima_conf_matrix(1,1)

 $acrima_tp = 115$

acrima_tn = acrima_conf_matrix(2,2)

 $acrima_tn = 85$

acrima_fn = acrima_conf_matrix(1,2)

 $acrima_fn = 4$

```
acrima_fp = acrima_conf_matrix(2,1)
acrima fp = 8
```

Sensitivity

```
acrima_sensitivity = acrima_tp/(acrima_tp+acrima_fn)
```

acrima_sensitivity = 0.9664

Specificity

```
acrima_specificity = acrima_tn/(acrima_tn+acrima_fp)
```

acrima specificity = 0.9140

Cross Dataset Prediction

RIMONE V2 RIMONE DL

```
RONE_r2_DL_y_predicted = predict(classifier,rimone_dl_feature_test);
RONE_r2_DL_accuracy = mean(RONE_r2_DL_y_predicted == rimone_dl_y_test)
```

RONE r2 DL accuracy = 0.8288

RIMONE_V2_ACRIMA

```
RONE_r2_ACRIMA_y_predicted = predict(classifier,acrima_feature_test);
RONE_r2_ACRIMA_accuracy = mean(RONE_r2_ACRIMA_y_predicted == acrima_y_test)
```

 $RONE_r2_ACRIMA_accuracy = 0.4953$

RIMONE_DL_RIMONE_V2

```
RONE_DL_r2_y_predicted = predict(rimone_dl_classifier,feature_test);
RONE_DL_r2_accuracy = mean(RONE_DL_r2_y_predicted == y_test)
```

 $RONE_DL_r2_accuracy = 0.9044$

RIMONE DL ACRIMA

```
RONE_DL_ACRIMA_y_predicted = predict(rimone_dl_classifier,acrima_feature_test);
RONE_DL_ACRIMA_accuracy = mean(RONE_DL_ACRIMA_y_predicted == acrima_y_test)
```

RONE_DL_ACRIMA_accuracy = 0.5755

ACRIMA_RIMONE_V2

```
ACRIMA_RONE_r2_y_predicted = predict(acrima_classifier,feature_test);
ACRIMA_RONE_r2_ACRIMA_accuracy = mean(ACRIMA_RONE_r2_y_predicted == y_test)
```

ACRIMA_RONE_r2_ACRIMA_accuracy = 0.4412

ACRIMA_RIMONE_DL

ACRIMA_RONE_dl_y_predicted = predict(acrima_classifier, rimone_dl_feature_test);

ACRIMA_RONE_dl_ACRIMA_accuracy = mean(ACRIMA_RONE_dl_y_predicted == rimone_dl_y_test)

ACRIMA_RONE_dl_ACRIMA_accuracy = 0.3973