Departamento de Física

Eletromagnetismo EE (MIEBiol+MIEBiom+MIEPol+MIEMat+MIETI)

Ficha de Problemas 3

ENERGIA POTENCIAL. POTENCIAL ELÉTRICO.

- 1. A distância média entre o eletrão e o protão no átomo de H é 5.3×10^{-11} m.
- a) Calcule o potencial elétrico à distância $r = 5.3 \times 10^{-11}$ m do protão. (R: V = 27.2 V)
- b) Calcule a energia potencial do sistema protão/eletrão do átomo de hidrogénio. (R: U = -4.35 \times 10⁻¹⁸ J = -27.2 eV)

Nota: se o eletrão do hidrogénio estivesse em repouso, a energia de ionização seria 27.2 eV. O eletrão move-se com uma energia cinética 13.6 eV, em consequência a sua energia total é -27.2 + 13.6 = -13.6 eV. Esta é a razão por que é necessária uma energia de 13.6 eV para ionizar um átomo de H.

2. Em reações de fissão nuclear, o 235 U capta um neutrão e divide-se em 2 núcleos mais leves. Por vezes os produtos são Ba (Z = 56) e Kr (Z = 36). Assuma que ambos os núcleos resultantes são cargas pontuais separadas por 14.6×10^{-15} m. Calcule a energia potencial deste sistema. (Sol: ~200 MeV)

Nota: A distância 14.6×10^{-15} m corresponde à soma dos raios dos 2 núcleos. Após a fissão os núcleos separam-se rapidamente devido à repulsão eletrostática. A energia potencial é transformada em energia cinética e térmica.

3. Na figura o ponto p encontra-se no centro do retângulo. Calcule o potencial elétrico em p devido às seis cargas representadas. Considere q=1 nC e d=10 cm.

- **4.** Considere duas cargas elétricas pontuais $q_1 = 12x10^{-9}$ C e $q_2 = -12x10^{-9}$ C que se encontram localizadas em dois vértices de um triângulo equilátero, conforme se ilustra na figura.
- A) Determine qual a direção, sentido e magnitude do campo elétrico no ponto A.
- B) Calcule o potencial elétrico no ponto A
- C) Considere que se coloca um eletrão, no ponto A. Determine qual a direção, sentido e magnitude da força a que o eletrão fica sujeito.

D) Existe alguma posição, no triângulo equilátero, onde se possa colocar o eletrão, para que a força elétrica exercida sobre o ele seja nula? **Justifique.**

Departamento de Física

Eletromagnetismo EE (MIEBiol+MIEBiom+MIEPol+MIEMat+MIETI)

Ficha de Problemas 3

5. Na figura estão representadas linhas de campo elétrico e linhas equipotenciais. Quando um eletrão se move de A até B o trabalho realizado pelo campo elétrico é 3.94×10^{-19} J. Calcule as diferenças de potencial V_B - V_A , V_C - V_B e V_C - V_A . (Sol: 2.5 V; 0; 2.5 V)

6. Um campo elétrico $\vec{E}=1000\,\hat{\imath}$ (V/m) está representado na figura por cinco linhas de campo paralelas e equidistantes. As linhas representadas a tracejado são perpendiculares às linhas de campo. A distância entre S e P e entre S e R é de 2 cm. Determine

- a) As diferenças de potencial V₀-V_S e V_P-V₀.
- b) Compare o trabalho realizado pelo campo elétrico para levar um protão de S a P com o trabalho realizado para levar um protão de R a Q.
- **7.** A figura ilustra superfícies equipotenciais entre dois condutores.
- **a)** Calcule a diferença de potencial entre um ponto situado em A e um ponto situado em H.
- **b)** Calcule o trabalho realizado pela força elétrica quando um eletrão se desloca de A para H.
- c) Caracterize o campo elétrico em B.

8. Um protão, com uma energia cinética igual a 2.1×10⁻¹⁷ J, move-se numa região onde existem placas paralelas carregadas. Em que região o protão atingirá velocidade nula?

- 9. Numa trovoada, a diferença de potencial entre uma nuvem e o solo é de 1.0×10^9 V, estando a nuvem a um potencial mais baixo. Numa descarga (relâmpago) a quantidade de carga transferida é de 30 C.
- a) Qual o sentido dos eletrões durante a descarga?
- b) Qual é a variação de energia potencial desses eletrões? (sol: -3 x 10¹⁰ J)
- c) Se toda essa energia pudesse ser utilizada para acelerar um carro, de massa 1000kg, a partir do repouso, qual seria a velocidade atingida pelo carro? (sol: \sim 7750 m/s)

Universidade do Minho

Departamento de Física

Eletromagnetismo EE (MIEBiol+MIEBiom+MIEPol+MIEMat+MIETI)

Ficha de Problemas 3

10. Os pontos R e T, encontram-se à mesma distância de duas partículas com carga \mathbf{Q} e $-\mathbf{Q}$, como se mostra na figura. Qual é o trabalho realizado, pelo campo elétrico, para deslocar uma partícula com carga $-\mathbf{q}$, desde o ponto R até ao ponto T.

- **11.**O positrão (antipartícula do eletrão) possui a mesma carga de um protão, mas a massa de um eletrão. Numa região onde existe um campo elétrico uniforme de 480 V/m, um positrão percorre uma distância de 5.2 cm, no sentido do campo elétrico.
- a) Calcule a variação de energia potencial que o positrão sofre. (sol: -25 eV)
- b) Calcule a variação de energia cinética do positrão. (sol: +25 eV)
- **12.**Considere três pontos, **A** (x_A = 1 m, y_A = 4 m), **B** (x_B = 1 m, y_B = 1 m) e **C** (x_C = 4 m, y_C = 4 m), situados numa região em que existe um campo elétrico uniforme $\vec{E} = -4 \times 10^4 \hat{\jmath}$ (N/C).
- a) Determine o trabalho realizado pelo campo elétrico no deslocamento de uma carga de 1C desde A até B e de B até C. (sol: -12×10^4 J)
- b) Determine as diferenças de potencial V_B - V_A , V_B - V_C e V_C - V_A .
- **13.**O potencial elétrico no exterior de uma célula viva é maior que no interior. A diferença de potencial entre o exterior e o interior da membrana é 70 mV. Calcule o trabalho realizado pelo campo elétrico para levar um ião Na⁺ do exterior para o interior da célula.
- **14.**Uma partícula entra numa região onde existe um campo elétrico e a sua energia cinética diminui de 9520 eV (ponto A) para 7060 eV (Ponto B). O potencial elétrico no ponto A e B é -35,0 V e +25.0 V, respetivamente. Qual a carga elétrica da partícula?
- **15.**Numa dada região do espaço atua um campo elétrico uniforme de (2 kN/C) na direção x. Uma carga puntiforme $Q = 3\mu\text{C}$ é solta, em repouso na origem.
- a) Calcule a energia cinética da carga quando passa na posição x = 4m. (sol: 2.4×10^{-2} J)
- b) Qual é a variação de energia potencial entre os pontos x = 0 e x = 4m? (sol: -2.4 ×10⁻² J)
- c) Qual é a diferença de potencial entre os pontos x = 0 e x = 4m? (sol: -8×10^3 V)

Universidade do Minh-

Departamento de Física

Eletromagnetismo EE (MIEBiol+MIEBiom+MIEPol+MIEMat+MIETI)

Ficha de Problemas 3

16.No gráfico está representado o potencial elétrico ao longo do eixo x, onde a escala vertical está definida de modo que $V_s = 10$ V. Um protão é lançado em x = 4 cm com energia cinética inicial de 3 eV.

- b) Se o protão se mover inicialmente para a esquerda, qual é a velocidade do protão em x = 2 cm? (sol: 0)
- c) Se o protão agora se deslocar para a direita, qual a sua velocidade em x = 7 cm? (sol: 1.4×10^4 m/s)

17.Um campo elétrico uniforme tem o sentido do semieixo negativo xx'. As coordenadas dos pontos a e b são respetivamente (2;0) m e (6;0) m.

- a) A diferença de potencial (V_b-V_a) é positiva ou negativa?
- b) Se o módulo de (V_b-V_a) for 10⁵V, qual é a magnitude do campo elétrico?

18. Sobre o "equador" duma esfera de raio 60 cm estão 6 cargas de +3 μ C, espaçadas angularmente entre si de um ângulo de 60° .

a) Calcule o potencial elétrico e o campo elétrico no centro da esfera devido a estas 6 cargas (sol: 2.7×10^5 V; 0 N/C)

b) Calcule o potencial elétrico e o campo elétrico no "polo norte" da esfera.

19. Calcular a energia potencial eletrostática de um sistema constituído por quatro cargas puntiformes de $+2\mu$ C, colocadas nos vértices de um quadrado de 4 m de lado, sendo uma das cargas negativa e as outras três positivas.

20. Duas cargas de 2 μ C estão colocadas em dois pontos, conforme se mostra na figura, e uma carga de prova positiva q = 1.28×10⁻¹⁸ C, na origem.

- a) Caracterize o campo elétrico, originado pelas duas cargas de 2 μ C, na origem? (R: 0)
- b) Qual é a força resultante exercida sobre q pelas duas cargas de 2 μC? (Sol: 0)
- c) Qual é o potencial V provocado pelas duas cargas de 2μC, na origem? (R: 4.5×10⁴ V)

21.Uma carga de $+10^{-8}$ C está uniformemente distribuída sobre uma casca esférica de raio 12cm.

- a) Qual é o módulo do campo elétrico na face interna e na face externa da superfície?
- b) Qual é o potencial elétrico na face interna e na face externa da superfície?
- c) Qual é o módulo do potencial elétrico no centro da casca? Qual é o campo elétrico nesse ponto?

Universidade do Minho

Departamento de Física

Eletromagnetismo EE (MIEBiol+MIEBiom+MIEPol+MIEMat+MIETI)

Ficha de Problemas 3

C

22. Duas cargas iguais q = 2.0μC estão separadas por uma distância d = 2cm como está indicado na figura seguinte.

b) O potencial elétrico no ponto C;

c) O trabalho a realizar para trazer uma terceira carga q (idêntica às anteriores) do infinito até C.

d) A energia potencial do sistema de três cargas.

23.Um plano infinito tem a densidade superficial de carga de 3.5μC/m². Qual é o afastamento entre duas superfícies equipotenciais cujos potenciais tenham 100V de diferença?

24. Em certa região do espaço o potencial elétrico é dado por: $V = 5x - 3x^2y + 2yz^2$.

a) Calcular as componentes x, y e z do campo elétrico nessa região.

b) Qual é o módulo do campo elétrico no ponto *P* de coordenadas (1, 0, -2)?

c) Calcule agora o campo elétrico.

25. As membranas celulares podem ser consideradas condensadores, nos quais duas soluções condutoras estão separadas por uma camada isolante (membrana celular). Por convenção, o potencial no exterior da membrana é considerado nulo. Considere uma célula típica, membrana celular tem uma espessura de 7 nm e o potencial no interior da célula tem o valor de -70 mV (ver figura).

a) Caracterize o campo elétrico (intensidade e sentido) no interior da membrana celular.

b) Considere um ião cloro (Cl^-) no interior da membrana celular. Calcule a intensidade e indique o sentido da força elétrica a que o ião está sujeito? Indique as diferenças se, em vez de um ião cloro, estivesse um ião cálcio (Ca^+) no interior da membrana.

26. Duas esferas condutoras, A e B, de raio 10 cm e 20 cm, respetivamente, estão muito afastadas. A esfera menor está carregada com uma carga +9 μC e a maior está neutra.

a) Calcule a carga de cada uma das esferas, depois de serem ligadas por um fio condutor.

b) Compare o campo elétrico à superfície da esfera A, com o campo elétrico à superfície da esfera B.

DFUM 2016/2017 5