

人工智能技术及应用

Artificial Intelligence and Application

The science of making machines that:

Think like people

Think rationally

Act like people

Act rationally

Rational Decisions

- We'll use the term rational in a very specific, technical way:
 - Rational: maximally achieving pre-defined goals
 - Rationality only concerns what decisions are made (not the thought process behind them)
 - Goals are expressed in terms of the utility of outcomes
 - Being rational means maximizing your expected utility

A better title for this course would be:

Computational Rationality

Maximize Your Expected Utility

Designing Rational Agents

- o An **agent** is an entity that *perceives* and *acts*.
- A rational agent selects actions that maximize its (expected) utility.
- Characteristics of the percepts, environment, and action space dictate techniques for selecting rational actions
- o **This course** is about:
 - General AI techniques for a variety of problem types
 - Learning to recognize when and how a new problem can be solved with an existing technique

Pac-Man as an Agent

Agent and Environment

Intelligent agent refers to an autonomous entity which acts, learns or uses knowledge towards achieving goals, upon an environment using observation through sensors and consequent actuators.

Towards artificial general intelligence with hybrid Tianjic chip architecture. Nature. 2019.

Two Views

- Intelligence Agent
 - Think like human
 - Act like human

how can we create intelligence?

- AI Tools
 - Try to solve problems
 - Human cannot do well

how can we benefit society?

- Planning
- Scheduling
- Medical
- Image
- Topic Model
- Prediction

Intelligence Agent

Are We There Yet

Machines narrow tasks, millions of examples

Human diverse tasks, very few examples

AlphaGo

- Learn from 19.6 million games
- Only play one game Go

Human

- Learn from wide set of experiences
- Do lot of tasks

We are still very far away from Artificial General Intelligence (AGI).

Towards Al

Al Methods **Applications** CSP and **Uniform** Adversarial Early Al programs (1950s) Local Cost Games: AlphaGo(2016) Search Search Search Knowledge based First-Order **Propositio** systems(1970-1980s) nal Logic Logic **Statistical** Deep Widely used in recent applications(2010-) Learning Learning Sequential Probabilisti Causal Topic Model (2000s) Reasoning Weather Prediction c Reasoning Reasoning **Robotics** NLP **CV**

Search

Symbolic Al

Neural Al Learning

Statistical Al

Uncertain Reasoning

Communicating
Perceiving
Acting

什么是机器学习?

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

人类事先设定好的规则 (rule-based)

- E.g. You want to build a Chat-bot ...
 - If there is "turn off" in the input, then "turn off the music" (hand-crafted rules)
 - You can say "Please turn off the music" or "Can you turn off the music?". Smart?
 - What if someone says "Please don't turn off the music"
- Weakness of hand-crafted rules
 - Hard to consider all possibilities
 - 永远无法超越创造者
 - Lots of human efforts (not suitable for small industry)

人类事先设定好的规则

• AI?

CommitStrip.com

机器学习登场! (learning-based)

机器学习登场!

机器学习

≈ 找一个函数的能力 根据数据

Speech Recognition

)= "How are you"

Image Recognition

Playing Go

Dialogue System

$$f($$
 "How are you?" $)=$ "I am fine." (what the user said) (system response)

Learning Map

scenario

method

Step 0 你想找你想找什么样的函数?

Regression (回归)

Regression

The output of the target function *f* is "scalar".

Predict PM2.5

Training Data:

Input:

9/01 PM2.5 = 63 9/02 PM2.5 = 65

Output:

Input:

9/12 PM2.5 = 30 9/13 PM2.5 = 25

Output:

9/03 PM2.5 = 100

9/14 PM2.5 = 20

Learning Map

Classification (分类)

Binary Classification (二元分类) Multi-class Classification (多类别分类)

Class 1, Class 2, ... Class N

Function f

Input

二元分类

<u>Spam</u> filtering

多类别分类

Image Recognition

Training Data

多类别分类

Playing GO

Each position

Generation (生成)

产生有结构的复杂数据 (例如:文本、图片)

拟人化的讲法—创造

Learning Map

Structured Learning

- Beyond Classification

佐助

鸣人

人脸识别

Image Generation

https://papers.nips.cc/p aper/5423-generativeadversarial-nets.pdf

https://arxiv.org/abs/1809.11096

Generative Models: variational auto-encoder (VAE), generative adversarial network (GAN), Flow-based generative model, etc.

Different types of Functions

PM2.5 Prediction

Phoneme Classification

Image Classification

Speaker Classification

Machine Translation

Anime Face Generation

如何找到想要的函数?

Step 1

划定一个函数集 (确定一个模型)

Step 2

机器如何判断找 到的函数好不好? (教会机器的几 种方法)

Image Recognition:

Framework

$$f($$
 $)=$ "cat"

A set of function

Model

$$f_1, f_2 \cdots$$

$$f_1($$

$$f_2($$

$$)=$$
 "monkey"

$$f_1($$

 $f_2($

$$)=$$
 "snake"

Image Recognition:

Framework

$$f($$
 $)=$ "cat"

Goodness of function f

Training
Data

Supervised Learning (监督学习)

function input:

" "

"dog"

function output: "monkey"

"cat"

Image Recognition:

Framework

$$f($$
 $)=$ "cat"

Supervised Learning

Labelled Data

函数的 Loss

Labelled Data

函数的 Loss

接下来机器会自动找出 Loss 最低的函数

Labeled Data

Hard to collect a large amount of labelled data

Training Data: Semi-supervised Input/output Learning Regression pair of target function Linear **Function** Model output = label SVM, decision Deep Structured Learning tree, K-NN ... Learning Non-linear Model Classification **Supervised Learning**

Semi-supervised (半监督学习)

For example, recognizing cats and dogs

Labelled data

Unlabeled data

(Images of cats and dogs)

Transfer Learning (迁移学习)

For example, recognizing cats and dogs

Labelled data

Data not related to the task considered (can be either labeled or unlabeled)

Training AI without paired data

Supervised

 y_1 : Hello y_2 : Good y_3 : I am fine

Unsupervised

 Machine Reading: Machine learns the meaning of words from reading a lot of documents

http://top-breaking-news.com/

 Machine Reading: Machine learns the meaning of words from reading a lot of documents

Training data is a lot of text

https://garavato.files.wordpress.com/ 2011/11/stacksdocuments.jpg?w=490

Unsupervised Learning

http://ttic.uchicago.edu/~klivescu/MLSLP2016/ (slides of Ian Goodfellow)

Unsupervised Learning

Machine Drawing

- Machine Reading: Machine learns the meaning of words from reading a lot of documents
- ELMO/BERT

Reinforcement Learning (强化学习)

Supervised v.s. Reinforcement

Supervised v.s. Reinforcement

Supervised:

Next move: **"5-5"**

Next move: "3-3"

Reinforcement Learning

(Reward)

First move many moves

Alpha Go is supervised learning + reinforcement learning.

scenario

method

Step 3 如何找到 最好的函数?

如何找出最好的 function?

Enumerate all possible values

Today a network can have more than 100M parameters.

Gradient Descent

机器学习很简单

Step 0: What kind of function do you want to find?

Step 1: define a set of function

Step 2: goodness of function

Step 3: pick the best function

就好像把大象装进冰箱

机器学习很简单

Step 0: What kind of function do you want to find?

Regression, Classification, Generation

Step 1: define a set of function

Deep Learning SVM

Decision Tree

• • • • • •

Step 2: goodness of function

Supervised Transfer Reinforcement

.....

Step 3: pick the best function

Gradient Descent

• • • • •