

Foundation X: Integrating Classification, Localization, and Segmentation through Lock-Release Pretraining Strategy for Chest X-ray Analysis

WACV 2025
TUCSON, ARIZONA • FEB 28 - MAR 4

Nahid Ul Islam¹, DongAo Ma¹, Jiaxuan Pang¹, Shivasakthi Senthil Velan¹
Michael B. Gotway², and Jianming Liang¹

¹Arizona State University ²Mayo Clinic

Robust diagnostic models are crucial for improving medical imaging outcomes, but diverse annotations across tasks like classification, localization, and segmentation pose challenges for integration. Foundation X introduces a unified framework leveraging our proposed Lock-Release pretraining strategy to combine multi-task annotations effectively. By training on 11 chest X-ray datasets, Foundation X achieves superior multi-task performance, demonstrating significant advancements in cross-dataset learning for classification, localization, and segmentation.

Foundation X enhances performance when jointly trained for localization and segmentation and excels during finetuning

Dataset	Baseline	Baseline	Foundation X		
VinDr-CXR	Loc.	Seg.	Loc.	Seg.	-
Heart	80.17	95.82	88.41 1 8.24	96.15 1 _{0.33}	T.
Left Lung	90.72	97.46	95.58 1 _{4.86}	97.57 10.11	
Right Lung	92.42	98.03	96.78 14.36	98.13 10.10	T,

Dataset	Ark	POPAR	Foundation X
JSRT-Heart	94.62	94.64	95.42 1 0.78
JSRT-Lung	97.48	97.71	98.04
JSRT-Clavicle	90.05	90.18	91.17 10.99
NIH Montgomery	97.68	97.78	98.29 1 0.51
VinDr-RibCXR	63.96	61.17	71.12

Foundation X maximizes performance improvements by utilizing all available annotations for classification, localization, and segmentation

	Baseline	Baseline	Baseline Seg.	Foundation X		
Dataset	Cls.	Loc.		Cls.	Loc.	Seg.
1. CheXpert	90.03	-	-	90.64 1 0.61	-	-
2. NIH ChestX-ray14	83.05	-	-	83.35 1 _{0.30}	-	-
3. VinDr-CXR	95.07	-	-	95.85 10.78	-	-
4. NIH Shenzhen CXR	98.99	-	-	99.64 10.65	-	-
5. MIMIC-II	79.12	-	-	78.94 ↓ _{0.18}	-	-
6. TBX11K	99.89	78.08	-	99.95 10.06	81.80 1 6.72	-
7. NODE21	99.35	37.78	-	99.68 10.33	46.57 1 8.79	-
8. CANDID-PTX	72.61	50.51	86.36	73.86 1 7.25	54.14 1 3.63	89.81 1 3.45
9. RSNA Pneumonia	88.87	20.83	-	89.88 1.01	27.44 1 6.61	-
10. ChestX-Det	88.17	38.12	79.33	89.89 1.72	43.98 1 5.86	79.17 ↓ _{0.16}
11. SIIM-ACR	95.01	28.56	81.92	96.44 1.43	34.59 1 6.03	83.65 1.73

How can we integrate classification, localization, and segmentation tasks into a single model to enhance performance and generalization in Chest X-ray image analysis?

Foundation X excels in few-shot learning and shows strong performance across training samples

JSRT–Clavicle Training Samples	Ark	POPAR	Foundation X
24	86.32	86.14	88.81
20	84.87	86.27	88.23 1.96
15	84.73	83.23	86.65
12	80.82	<u>81.46</u>	85.89
6	82.71	79.03	83.03
3	<u>74.98</u>	70.68	78.18

Foundation X maximizes performance with crossdataset and cross-task learning

Foundation X full finetuning outperforms headonly finetuning and baseline models

