Crible d'Eratosthène

I] Description de la méthode et mise en œuvre

On dispose ci-contre d'une grille donnant les 101 premiers nombres entiers. Le but est de barrer tous les nombres de la grille qui ne sont pas premiers. On considère l'algorithme ci-dessous :

- ▶ On dispose de la liste des nombres entiers de 0 à 100.
- ▶ Barrer 0 et 1.
- ▶ Parcourir dans l'ordre tous les entiers k de 2 à 100 :

Si le nombre k n'est pas barré :

Entourer k

Barrer tous les multiples stricts de k dans la liste

► Renvoyer la liste des nombres qui ont été entourés.

0	1	2	3	4	5	6	7	8	9
10	11	12	13	14	15	16	17	18	19
20	21	22	23	24	25	26	27	28	29
30	31	32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47	48	49
50	51	52	53	54	55	56	57	58	59
60	61	62	63	64	65	66	67	68	69
70	71	72	73	74	75	76	77	78	79
80	81	82	83	84	85	86	87	88	89
90	91	92	93	94	95	96	97	98	99
100									

- 1) Appliquer cet algorithme à la grille ci-contre.
- 2) Justifier brièvement pourquoi, après exécution de l'algorithme :
 - les nombres barrés ne sont pas premiers ;
 - les nombres entourés sont premiers.

Cette méthode de détermination des premiers nombres premiers est appelée Crible d'Eratosthène.

II] Implémentation en langage Python

1) Ecrire une instruction Python qui génère une liste Python L de longueur 101 telle que L[k] = k, c'est-à-dire L = [0,1,2,3,...,100].

Le but est de remplacer tous les nombres non premiers d'une telle liste par des 0 à l'aide du crible d'Eratosthene. (0 correspondra ainsi à un nombre barré de la grille vue dans la partie I)

2) Tester le script Python ci-dessous pour différentes valeurs entières non nulles de k.

for j in range(2*k,101,k):
print(j)

Dans chaque cas, que représentent les valeurs affichées ? Justifier.

3) a) A l'aide des questions précédentes, écrire une fonction Python **Crible_Eratosthene** qui applique l'algorithme de la partie I :

La fonction renverra la liste L = [0,0,2,3,0,...,0], telle que $L[k] = \left\{ \begin{array}{ll} 0 & si \ k \ n'est \ pas \ premier \\ k & si \ k \ est \ premier \end{array} \right.$

- **b)** Modifier la fonction **Crible_Eratosthene** pour qu'elle renvoie la liste des nombres premiers [2,3,5, ...,97].
- c) Modifier la fonction **Crible_Eratosthene** pour qu'elle reçoive en argument un entier N et renvoie la liste de tous les nombres premiers inférieurs à N.
- 4) Calculer la fréquence des nombres premiers parmi les nombres inférieurs à N pour $N=100,\,N=10000$ puis N=1000000 .

Dans chaque cas, comparer cette fréquence avec $\frac{1}{\ln(N)}$, où ln est la fonction logarithme népérien.

Remarque : Il a été prouvé que, pour de grandes valeurs de n, la fréquence d'apparitions des nombres premiers entre 1 et n, est proche de $\frac{1}{\ln(n)}$ où ln est la fonction logarithme népérien (Théorème des nombres premiers). Cette fréquence étant décroissante, on dit qu'il y a raréfaction des nombres premiers.

Pour aller plus loin: http://python.jpvweb.com/python/mesrecettespython/doku.php?id=liste des nombres premiers