COMPUTER GRAPHICS REALISM

CONTENT

- TILING THE PLANE
- RECURSIVELY DEFINED CURVES
- KOCH CURVES
- C CURVES
- DRAGONS
- SPACE FILLING CURVES
- FRACTALS
- GRAMMAR BASED MODELS
- TURTLE GRAPHICS
- RAY TRACING

Computer Graphics Realism

Image is a visual representation of scene, it represent selected properties of scene to viewer with varying degree of realism.

- Use one or more geometric shapes
- Tessellation(without gaps) of flat surface
- Shape repeated
- Moving infinity
- Covering entire plane
- Used arts, mosaics, wall papers, tiled floor

Types of tiling

- Monohedral tiling
- Dihedral tiling
- Drawing tiling
- Reptiles

Monohedral tiling

- Based on single polygon
- Types
- Regular tiling
- 2. Patterns
- 3. Cario tiling
- 4. Polymino
- 5. Polyiamond

Regular Tiling

Patterns

Shifting the tessellation in particular direction

Cairo tiling

- Four pentagon fit together to form hexagon
- Used to tile the plane
- Many street in cairo, Egypt in this pattern

Polymino

Polyaimonds

Dihedral Tiling

Drawing Tiling

- Large window setup
- Tiles grouped together into single figure
- Single figure drawn again and again
- Non periodic figure include
- Small to large and large to small

Reptiles

- Non periodic tiling
- Based on square, equilateral triangle

Application of tiles

Fractals

- A fractal is a never-ending pattern.
- Fractals are infinitely complex patterns that are self-similar across different scales.
- They are created by repeating a simple process over and over in an on-going feedback loop.

Types of Fractals

- Self Similar fractals
- Self Affine fractals
- Invariant fractals

Self Similar fractals

- Geometric figure is self similar
- Fractals appear identical at different scales

Self similar fractal usage

Model trees, shrubs, plants

Self Affine fractals

- Fractal appear approximately identical at different scales
- Model water, clouds, terrain

Invariant fractals

Non linear transformation

Recursively defined curves

- Curves created by iterations
- Formulas repeated with slightly different values over and over again

Types

- Hilberts Curve
- Koch Curve
- Dragon Curve
- Space filling Curve/Piano Curve
- C Curve

Hilberts Curve

- It was described by the German mathematician David Hilbert in 1891.
- The Hilbert curve is a space filling curve.
- It visits every point in a square grid with a size of 2×2 , 4×4 , 8×8 , 16×16 , or any other power of 2.

The Hilbert curve: geometric generation

The Hilbert curve: geometric generation

6th iteration

Koch Curve

Developed by Helga von Koch in 1904

C Curves

- Self similar fractals
- Described by Ernesto cesaro and Georg Faber in the year 1910

Dragon Curves

Self similar fractal curves

Space filling curve/Peano curve

- Developed by Italian mathematician Guiseppe peano in 1890
- Space filling curve

Grammar based models

- Structure defined by language
- Languages described by a collection of productions
- example, A->AA creates results of A, AA, AAAA,
- ▶ B->A[B] creates results of B, A[B], AA[B], etc.

Graftals

- Grammar based models...
 - [] for left branches
 - () for right branches
 - \circ A -> AA and B -> A[B]AA(B)
 - create a 2nd generation of:
 AA[A[B]AA(B)]AAAA(A[B]AA(B))

First Generation

- Grammar based models...
 - ...use biological productions to simulate plants in development
 - ...describe the topology of plants
 - ...also describe the shape including the directions of branches and the arrangement of leaves

- To simulate the growth of plants using languages include information on...
 - ...the current age
 - ...the growth rate of each segment
 - ...the probabilities of death, dormancy, growth
 - ...the shape (depending on type and age)
 - ...the branch angles (depending on type and age)
 - ...the color and texture of each segment

Graftals

- Pseudo code simulates the growth of plants using graftals:
 - For (each moment in time)
 - For (each bud that is still alive)
 - Determine whether the bud dies, is dormant, or grow
 - If (the bud does not die)
 - If (the bud is not dormant)
 - Create a portion of a stem, determining its direction, position, color, texture;
 Create a new bud;

Particle Systems

- Particle systems...
 - ...can be used to simulate fire, clouds, water, fog, smoke, fireworks, trees, and grass
 - ...are particularly useful for animating objects instead of just simulating static objects

Turtle Graphics

- Logo programming language
- Developed by feurzig & seymour papert in 1966
- Popular graphics language for kids

@ 2000 Logo Foundation

