Solving Linear Systems over Cyclotomic Fields

Michael Monagan

Centre for Experimental and Constructive Mathematics

This is joint work with Liang Chen

The Problem

Let $\beta \in \mathbb{C}$ be a primitive k'th root of unity. Solve Ax = b where $A_{i,j}, b_i \in \mathbb{Q}(\beta)$.

The minimial polynomial $m(z) \in \mathbb{Q}[z]$ for β is $\Phi_k(z)$.

$$egin{array}{|c|c|c|c|c|} \hline k & \Phi_k(z) & eta & \hline 3 & z^2+z+1 & rac{-1\pm\sqrt{3}i}{2} \ 4 & z^2+1 & i \ 5 & z^4+z^3+z^2+z+1 & 0.308+0.951i \ 6 & z^2-z+1 & rac{1\pm\sqrt{3}i}{2} \ \hline \end{array}$$

Table 1: cyclotomic polynomials of order 3-6

Example

$$M = z^2 + z + 1$$

$$A^{196 \times 196} = \begin{bmatrix} \frac{109}{91}z - \frac{121}{182}z^2 & \frac{545}{182}z - \frac{549}{182}z^2 & \dots \\ \frac{423}{182}z + \frac{239}{182}z^2 & \frac{109}{182}z + \frac{41}{182}z^2 & \dots \\ \vdots & \vdots & \ddots \end{bmatrix} \qquad b^{196} = \begin{bmatrix} 0 \\ -1 \\ \vdots \end{bmatrix}$$

Solution vector:

$$x = \begin{bmatrix} -\frac{1930284204975579779630929442118373}{83763713406852792427853711712285} + \frac{293530015437001131689173724428409}{167527426813705584855707423424570}z \\ \frac{12571286321434144031398874118677591}{2345383975391878187979903927943980} + \frac{170534906127849498440359300473108931}{2345383975391878187979903927943980}z \\ \vdots \\ \vdots$$

A Modular Algorithm

(z-5)(z-4)(z-3)(z+2)

Theorem

Let $m(z) = \Phi_k(z)$ and $d = \deg m = \phi(k)$. Let p be a randomly chosen prime. Then

Prob(m(z) splits modulo p) $\sim 1/d$. Moreover, m(z) splits iff p=kq+1.

Example

> m := numtheory[cyclotomic](5,z); $m := z^4 + z^3 + z^2 + 1$ > mods(Factor(m), 11);

```
Input: A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^n, m \in \mathbb{R}, R = \mathbb{Z}[z]
Output: x \in \mathbb{Q}^n[z] satisfying Ax \equiv b \mod m(z)
 1: Set X = 0, P = 1 and x = \text{FAIL}.
 2: for j = 1, 2, 3, ... do
 3:
        Find a new machine prime p_j = kq + 1.
        Compute the roots \alpha_1, ..., \alpha_d of m(z) \mod p_i.
 4:
        Reduce the integers in A and b \mod p_i
 5:
 6:
        for i = 1, 2, 3, ..., d do
 7:
           Evaluate A and b at z = \alpha_i
 8:
           Solve A(\alpha_i)x_{i,j} = b(\alpha_i) for x_{i,j} \in \mathbb{Z}_{p_i}^n
           If A(\alpha_i) is singular GOTO Step 3.
 9:
10:
        end for
11:
        Interpolate x_i(z) \in \mathbb{Z}p_i[z] from (\alpha_1, x_{1,i}), ..., (\alpha_d, x_{d,i})
        Set X = CRT([X, x_i], [P, p_i]) and P = P \times p_i
12:
        If j \in \{1, 2, 4, 8, \dots\} set x = RR(X \mod P)
13:
        If x \neq FAIL and m|Ax - b output x.
14:
15: end for
```

```
Input: A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^n, m \in \mathbb{R}, R = \mathbb{Z}[z]
Output: x \in \mathbb{Q}^n[z] satisfying Ax \equiv b \mod m(z)
 1: Set X = 0, P = 1 and x = \text{FAIL}.
 2: for j = 1, 2, 3, ... do
        Find a new machine prime p_j = kq + 1.
        Compute the roots \alpha_1, ..., \alpha_d of m(z) \mod p_i.
 4:
        Reduce the integers in A and b \mod p_i
 5:
 6:
        for i = 1, 2, 3, ..., d do
 7:
           Evaluate A and b at z = \alpha_i
 8:
           Solve A(\alpha_i)x_{i,j} = b(\alpha_i) for x_{i,j} \in \mathbb{Z}_{p_i}^n
           If A(\alpha_i) is singular GOTO Step 3.
 9:
10:
        end for
11:
        Interpolate x_i(z) \in \mathbb{Z}p_i[z] from (\alpha_1, x_{1,i}), ..., (\alpha_d, x_{d,i})
        Set X = CRT([X, x_i], [P, p_i]) and P = P \times p_i
12:
13:
        If j \in \{1, 2, 4, 8, \dots\} set x = RR(X \mod P)
        If x \neq FAIL and m|Ax - b output x.
14:
15: end for
```

```
Input: A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^n, m \in \mathbb{R}, R = \mathbb{Z}[z]
Output: x \in \mathbb{Q}^n[z] satisfying Ax \equiv b \mod m(z)
 1: Set X = 0, P = 1 and x = \text{FAIL}.
 2: for j = 1, 2, 3, ... do
 3:
        Find a new machine prime p_j = kq + 1.
        Compute the roots \alpha_1, ..., \alpha_d of m(z) \mod p_i.
        Reduce the integers in A and b \mod p_i
 5:
 6:
        for i = 1, 2, 3, ..., d do
 7:
           Evaluate A and b at z = \alpha_i
 8:
           Solve A(\alpha_i)x_{i,j} = b(\alpha_i) for x_{i,j} \in \mathbb{Z}_{p_i}^n
           If A(\alpha_i) is singular GOTO Step 3.
 9:
10:
        end for
11:
        Interpolate x_i(z) \in \mathbb{Z}p_i[z] from (\alpha_1, x_{1,i}), ..., (\alpha_d, x_{d,i})
        Set X = CRT([X, x_i], [P, p_i]) and P = P \times p_i
12:
13:
        If j \in \{1, 2, 4, 8, \dots\} set x = RR(X \mod P)
        If x \neq FAIL and m|Ax - b output x.
14:
15: end for
```

```
Input: A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^n, m \in \mathbb{R}, R = \mathbb{Z}[z]
Output: x \in \mathbb{Q}^n[z] satisfying Ax \equiv b \mod m(z)
 1: Set X = 0, P = 1 and x = \text{FAIL}.
 2: for j = 1, 2, 3, ... do
 3:
        Find a new machine prime p_j = kq + 1.
        Compute the roots \alpha_1, ..., \alpha_d of m(z) \mod p_i.
 4:
        Reduce the integers in A and b \mod p_i
 5:
 6:
        for i = 1, 2, 3, ..., d do
 7:
           Evaluate A and b at z = \alpha_i
 8:
           Solve A(\alpha_i)x_{i,j} = b(\alpha_i) for x_{i,j} \in \mathbb{Z}_{p_i}^n
           If A(\alpha_i) is singular GOTO Step 3.
 9:
10:
        end for
11:
        Interpolate x_i(z) \in \mathbb{Z}p_i[z] from (\alpha_1, x_{1,i}), ..., (\alpha_d, x_{d,i})
        Set X = CRT([X, x_i], [P, p_i]) and P = P \times p_i
12:
13:
        If j \in \{1, 2, 4, 8, \dots\} set x = RR(X \mod P)
14:
        If x \neq FAIL and m|Ax - b output x.
15: end for
```

```
Input: A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^n, m \in \mathbb{R}, R = \mathbb{Z}[z]
Output: x \in \mathbb{Q}^n[z] satisfying Ax \equiv b \mod m(z)
 1: Set X = 0, P = 1 and x = \text{FAIL}.
 2: for j = 1, 2, 3, ... do
 3:
        Find a new machine prime p_j = kq + 1.
        Compute the roots \alpha_1, ..., \alpha_d of m(z) \mod p_i.
 4:
        Reduce the integers in A and b \mod p_i
 5:
 6:
        for i = 1, 2, 3, ..., d do
 7:
           Evaluate A and b at z = \alpha_i
 8:
           Solve A(\alpha_i)x_{i,j} = b(\alpha_i) for x_{i,j} \in \mathbb{Z}_{p_i}^n
           If A(\alpha_i) is singular GOTO Step 3.
 9:
10:
        end for
11:
        Interpolate x_i(z) \in \mathbb{Z}p_i[z] from (\alpha_1, x_{1,i}), ..., (\alpha_d, x_{d,i})
        Set X = CRT([X, x_i], [P, p_i]) and P = P \times p_i
12:
       If j \in \{1, 2, 4, 8, \dots\} set x = RR(X \mod P)
13:
14:
        If x \neq FAIL and m|Ax - b output x.
15: end for
```

```
Input: A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^n, m \in \mathbb{R}, R = \mathbb{Z}[z]
Output: x \in \mathbb{Q}^n[z] satisfying Ax \equiv b \mod m(z)
 1: Set X = 0, P = 1 and x = FAIL.
 2: for j = 1, 2, 3, ... do
 3:
        Find a new machine prime p_j = kq + 1.
        Compute the roots \alpha_1, ..., \alpha_d of m(z) \mod p_i.
        Reduce the integers in A and b \mod p_i
 5:
 6:
        for i = 1, 2, 3, ..., d do
 7:
           Evaluate A and b at z = \alpha_i
 8:
           Solve A(\alpha_i)x_{i,j} = b(\alpha_i) for x_{i,j} \in \mathbb{Z}_{p_i}^n
           If A(\alpha_i) is singular GOTO Step 3.
 9:
10:
        end for
11:
        Interpolate x_i(z) \in \mathbb{Z}p_i[z] from (\alpha_1, x_{1,i}), ..., (\alpha_d, x_{d,i})
        Set X = CRT([X, x_i], [P, p_i]) and P = P \times p_i
12:
        If j \in \{1, 2, 4, 8, \dots\} set x = RR(X \mod P)
13:
        If x \neq FAIL and m \mid Ax - b output x.
14:
15: end for
```

```
Input: A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^n, m \in \mathbb{R}, R = \mathbb{Z}[z]
Output: x \in \mathbb{Q}^n[z] satisfying Ax \equiv b \mod m(z)
     \dots \dots \dots \dots n = \dim A, d = \deg m, c = \log ||Ab||, L = \# primes.
 1: Set X = 0, P = 1 and x = \text{FAIL}.
 2: for j = 1, 2, 3, ... do
      Find a new machine prime p_i = kq + 1.
      Compute the roots \alpha_1, ..., \alpha_d of m(z) \mod p_i.
 4:
      Reduce the integers in A and b mod p_j .....O(n^2dcL)
 5:
 6:
      for i = 1, 2, 3, ..., d do
 7:
        Evaluate A and b at z = \alpha_i ......O(n^2 d^2 L)
        8:
 9:
        If A(\alpha_i) is singular GOTO Step 3.
10:
      end for
      Interpolate x_j(z) \in \mathbb{Z}p_j[z] from (\alpha_1, x_{1,j}), ..., (\alpha_d, x_{d,j}) ..... O(nd^2L)
11:
      Set X = CRT([X, x_j], [P, p_j]) and P = P \times p_j \dots O(ndL^2)
12:
      If j \in \{1, 2, 4, 8, \dots\} set x = RR(x \mod P) \dots O(ndL^2)
13:
14:
      If x \neq FAIL and m|Ax - b output x.
```

Splitting $m(z) = \Phi_k(z) \bmod p = qk+1$

Lemma: Let $\alpha \in \mathbb{Z}_p$ be a prim. elem. and let $\beta = \alpha^q$. Then $m(\beta^i) = 0$ for 0 < i < k with $\gcd(i, k) = 1$.

How fast can we compute α ?

Pick $\alpha \in \mathbb{Z}_p$ at random and compute

$$g := \gcd((x+\alpha)^{(p-1)/2} - 1, \ m(z)) \text{ in } \mathbb{Z}_p[z].$$

If $g \notin \{1, m\}$ split the smaller of g, m/g until we get $x - \beta$.

Theorem:
$$O(\log p\ M(d)) + \log d\ M(d)$$
) arith. ops. in \mathbb{Z}_p . = $O(\log pd^2 + d^2)$ using classical poly. arith.

Those trial divisions m|Ax-b|

Let $D = LCM_{i=1}^n denom(x_i)$. Test if m|A(Dx) - Db over \mathbb{Z} .

Lemma: Let $N = \max_{i=1}^{n} ||Dx_i||_{\infty}$ and $P = \prod p_j$. Then $P > 2(1 + ||m||_{\infty})^{d-1}(D||b|| + ndN||A|| \implies m|Ax - b$.

Proof (idea). We know $m|Ax-b \bmod P$. Thus if $\underline{||A(Dx)-(Db) \bmod m(z)||} < 2P$ then m|Ax-b. bound this

How big can the integers in x be?

For random input, integers in x are nd times longer than those in A, b. Here $n = \dim A, d = \deg m(z)$.

Lemma: Let $D = LCM_{i=1}^n denom(x_i)$. Then

$$D \le \parallel m \parallel_{\infty}^{d-1} (1 + \parallel m \parallel_{\infty})^{(n-1)(d-1)d} d^{nd+d} n^{nd/2} \parallel \mathbf{A} \parallel^{\mathbf{nd}}$$

For $||m||_{\infty} = 1$, $\log D \in O(nd(\log ||A|| + d \log 2 + \log nd))$.

For
$$L \in O(ndc)$$
 where $c = \log \max(\parallel A \parallel, \parallel b \parallel)$
Cost of Algorithm 1 is $O(\underbrace{n^4d^2c}_{\text{solves}} + \underbrace{n^3d^3c^2}_{\text{CRT+RR}})$.

Asymptotically fast reconstruction

Given u satisfying $A\mathbf{u}=b$ modulo $P=p_1p_2\times ...\times p_j$ next solve $A\mathbf{v}=b$ modulo $Q=p_{j+1}p_{j+2}\times ...\times p_{2j}.$ for v.

To solve $x \equiv u \mod P$ and $x \equiv v \mod Q$ compute

1:
$$\mathbf{w} = (\mathbf{v} - \mathbf{u})P^{-1} \mod Q$$
.

2:
$$x = u + wP$$
.

If we compute ${\bf v}$ recursively, using the same method then using only fast integer \times and \div for scalar arithmetic

$$O(ndj^2) \longrightarrow O(nd M(j) + j^2).$$

Cramer's Rule

$$x_i = \frac{\det A^{(j)}}{\det A} \bmod m(z)$$

The factor of d increase in size is due to inverting $\det A$ modulo m(z). But

$$x_i = \boxed{\frac{\det A^{(j)} \bmod m(z)}{\det A \bmod m(z)}} \bmod m(z).$$

Compute

$$N = \det(A^{(j)} \mod m(z) \in \mathbb{Z}[z]$$
 and $D = \det A \mod m(z) \in \mathbb{Z}[z]$

using Chinese remaindering and interpolation.

Bounds and costs

Lemma (bounds the number of primes needed)

$$N_{\infty} \le d^{n} (1 + \| m \|_{\infty})^{(n-1)(d-1)} \| b \| \| A \|^{n-1}$$
$$D_{\infty} \le d^{n} (1 + \| m \|_{\infty})^{(n-1)(d-1)} \| A \|^{n-1}.$$

Size of
$$x$$
 goes from $O(n^2d^2c+...)$ to $O(n^2dc+...)$. Number of primes L goes from $O(ndc+...)$ to $O(nc+...)$. Cost : $O(\underline{n^3dL} + \underline{n^2dcL} + \underline{n^2d^2L} + \underline{ndL^2})$. solves $\mod p$ eval CRT+RR

OLD(
$$L \in O(ndc)$$
) : $O(n^3dc(nd+d^2c))$
NEW($L \in O(nc)$) : $O(n^3dc(n+d+c))$.

Timing on Random Systems

$$M := e^6 + e^5 + e^4 + e^3 + e^2 + e + 1$$

n	Coefficient Length $\it c$								
	2 digits	4 digits	8 digits	16 digits	32 digits	64 digits	128 digits		
	1.947	2.185	2.375	2.744	3.623	6.210	15.317	GE	
10	.050	.097	.183	.418	1.019	2.359	5.685	CRT	
	.058	.091	.152	.309	.803	2.084	6.384	p-adic	
	.009	.011	.016	.021	.037	0.070	0.148	Cramer	
	16.041	17.927	20.759	26.141	37.817	71.288	186	GE	
20	.167	.347	.727	1.616	4.759	12.149	30.983	CRT	
	.158	.276	.521	1.054	3.005	8.219	26.581	p-adic	
	.028	.040	.053	0.093	0.182	0.371	0.711	Cramer	
	148	181	207	291	476	1033	2829	GE	
40	.797	1.795	3.899	8.756	31.120	85.780	234	CRT	
	.500	.973	1.932	3.998	11.891	33.412	113	p-adic	
	.149	.222	0.309	0.447	1.121	2.282	4.68	Cramer	

Timing on Real Systems

n	49	100	100	144	196	225	256	576	900	900
k	5	24	8	4	3	5	12	7	24	4
d	4	8	4	2	2	4	4	6	8	2
A	10	5	2	4	11	2	3	3	2	5
x	45	14	1	1	229	875	2	1	2	1
CRT	.144	.788	.029	.036	3.344	3.056	.155	.842	2.358	1.458
L	4	1	1	1	9	36	1	1	1	1
Lift 1	.109	.443	.030	.029	1.183	2.374	.174	.612	2.761	.462
Lift 2	.111	.294	.100	.163	1.973	1.678	.640	3.022	7.627	5.711
Cramer	.293	4.159	.305	.147	6.206	4.644	3.748	53.69	338	25.74
GE	109	3080	30.15	10.49	4419	769	848	2055	2265	1195

Questions

Can p-adic lifting be used to construct

 $\det A^{(j)} \mod m(z)$ and $\det A \mod m(z)$?

For what other number fields is this approach feasible?