

A Hybrid Algorithm for the Partition Coloring Problem

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieurin

im Rahmen des Studiums

Computational Intelligence

eingereicht von

Gilbert Fritz

Matrikelnummer 0827276

an der Fakultät für Informatik der	Technischen Universität Wien	
	olIng. Dr.techn. Günther Raidl Ing. Dr.techn. Dr. Bin Hu	
Wien, 21.Oct.2013		
	(Unterschrift Verfasserin)	(Unterschrift Betreuung)

Erklärung zur Verfassung der Arbeit

Gilbert Fritz Schlosshofer Straße 49/18

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht habe.

(Ort, Datum)	(Unterschrift Verfasserin)

Danksagung

Ich danke meinen Betreuern, ao. Univ.-Prof. Dipl.-Ing. Dr.techn. Günther Raidl und Univ.Ass. Dipl.-Ing. Dr.techn. Bin Hu für ihre Unterstützung bei der Erstellung dieser Arbeit durch ihr konstruktives Feedback und ihre Ideen, welche es mir ermöglicht haben, immer neue Aspekte der Problemstellung zu erkennen.

Besonderer Dank gilt meinen Eltern, Franz und Justine Fritz, sowie meiner Partnerin Odnoo und meinen Freunden für Ihre Unterstützung.

Abstract

Todo

Kurzfassung

Todo

Contents

1	Intr	oduction	1
	1.1	Motivation	1
	1.2	Guide to the Thesis	2
2	Prel	iminaries	3
	2.1	Optimization Problems and Complexity	3
	2.2	Graph Theory Definitions	6
	2.3	Metaheuristics	8
	2.4	Basic Local Search	9
	2.5	Tabu Search	10
	2.6	Integer Linear Programming	11
3	Prol	blem Definition	13
	3.1	Standard Vertex Coloring Problem	13
	3.2	Partition Coloring Problem	13
	3.3	Wavelength Routing and Assignment Problem	14
	3.4	Complexity	16
4	Prev	vious Works	17
	4.1	Exact Approaches	17
	4.2	Heuristical Approaches	17
5	Prol	blem Solving Approach	19
	5.1	Constructional Heuristics	20
	5.2	Recoloring	20
	5.3	Tabu Search	22
	5.4	Variants	22
6	Con	nputational Results	25
	6.1	Implementation Details and Testing Environment	25
	6.2	Instances	25
	6.3	Results	26
7	Crit	ical Reflection and Outlook	51

Bi	bliogr	aphy	55
8	Sum	mary	53
	7.2	Future Works	51
	7.1	Critical Reflection	51

CHAPTER 1

Introduction

1.1 Motivation

In order to obey the emerging demand for advanced broadband Internet applications such as video-conferences, high performance computing and others, extensive networks capacities have to be achieved. Links in optical networks operate much faster than their currently available electronic counterparts. Combined with the technique of Wavelength Division Multiplexing (WDM), which permits the simultaneous transmission of different channels along the same fiber [24], these so called Wavelength Routed Optical Networks (WRON's) are promising candidates for providing a flexible transport backbone network [18]. They bring out new problems in coordination of wavelengths usage [6]. One of them is the Routing and Wavelength Assignment Problem (RWA), which consists in routing a set of light-paths and assigning a wavelength to each of them. The variant where all connection requirements are known beforehands and which aims to minimize the amount of used wavelength is called min-RWA and found to be \mathcal{NP} -hard [31].

Assigning wavelengths to one out of many paths for each connection requirement is equivalent to the \mathcal{NP} -hard **Partition Coloring Problem** (**PCP**) [21], also known as **Partition Graph Coloring Problem** (**PGCP**) which is subject of this thesis. Given a graph consisting of a clustered set of vertices and a set of edges, the aim is to select one vertex per cluster and for each vertex in the resulting subgraph assign a color in the way that the overall number of colors – which in this context is said to be the chromatic number – is minimized. If each cluster holds only one vertex, the problem reduces to the Standard Vertex Coloring Problem (VCP), which is used for a wide range of applications as scheduling, register allocation, pattern matching and others and has been studied extensively. In contrast, only a few papers have been published on PCP so far.

The aim of this thesis is to explore a solution method that has not been subject of publications on PCP yet, in order to achieve advanced approximization methods.

1.2 Guide to the Thesis

Definitions from graph theory and basic concepts which are required for the analysis of the Partition Coloring Problem are introduced in Chapter 2.Afterwards, Chapter 3 defines the PCP as well as the min-RWA formally and comments their computational complexity. Previous works and related research done so far is presented in Chapter 4. Chapter 5 provides details of the approach developed for the PCP and Chapter 6 presents its experimental results. Chapter 8 summarizes the knowledge achieved within this thesis, brings the considered approach into question and finally proposes a possible further work.

CHAPTER 2

Preliminaries

This chapter introduces theoretical fundamentals like definitions, terms and methods, that are necessary for analysing the Partition Coloring Problem. The presented notations will be used consistently in this thesis.

2.1 Optimization Problems and Complexity

Since this thesis deals with an optimization problem and the analysis of a solution to it needs to consider some complexity theory is an important field of computer science Some definition and explanations of optimization problems and complexity are given in this section. For a more detailed insight the reader is referred to [13, 19, 27].

In general an optimization problem is the problem of finding the best solution among all feasible solutions. Depending on weather the variables are continuous or discrete, the optimization problem is said to be a continuous optimization problem or a combinatorial optimization problem (COP). Since the PCP belongs to the latter category, this thesis will not cover further explanations on continuous optimization problems. For information on that topic, the reader is referred to [17, 26]. Most of the following the definitions have been introduced in [5, 10].

Definition 1 (Combinatorial Optimization Problem) A Combinatorial Optimization Problem P = (S, f) can be defined by:

- A set of variables $X = \{x_1, x_2, \dots x_n\}$;
- variable domains D_1, \ldots, D_n ;
- constraints among the variables;
- an objective function f to be minimized¹, where $f: D_1 \times D_2 \times \dots D_n \to \mathbb{R}^+$;

¹Maximizing an objective function f is the same as minimizing -f

The set of all feasible assignments is $S = \{s = \{(x_1, v_1), (x_2, v_2), \dots (x_n, v_n)\}\} \mid v_i \in D_i$, satisfies all the constraints $\}$

For each COP P there exists a corresponding decision problem D, i.e. a problem whose output is either YES or NO. The complexity of D determines the complexity of P.

Definition 2 (Decision Problem) The decision problem D for a Combinatorial Optimization Problem P asks if, for a given solution $s \in S$, there exists a solution $s' \in S$, such that f(s') is better than f(s): for a minimization problem this means f(s') < f(s) and for a maximization problem f(s) > f(s').

An important issue that comes up when considering combinatorial optimization problems is the classification problems by their difficulty . To categorize problems into easy and difficult ones, the class of problems that are solvable in polynomial time by a deterministic touring machine and problems that are solvable in polynomial time by a nondeterministic touring machine are considered. This thesis prefers to describe the characteristics of $\mathcal P$ and $\mathcal N\mathcal P$ at a more intuitive level, rather than formalizing the classes via Turing Machines. An examples for a problem in $\mathcal P$ is single source shortest path.

Definition 3 (Complexity class P) A problem is in P iff it can be solved by an algorithm in polynomial time.

The complexity class \mathcal{NP} is associated with hard problems. \mathcal{NP} stands for "nondeterministic polynomial time", where "nondeterministic" is a way to express that solutions are guessed. The class \mathcal{NP} is restricted to Decision Problems.

Definition 4 (Complexity class NP) A decision problem is in NP iff any given solution of the problem can be verified in polynomial time.

The above definition states, that the solutions for problems in \mathcal{NP} do not require to be calculated in polynomial time, but the solutions need to be verified in polynomial time. Therefore $\mathcal{P} \subseteq \mathcal{NP}$ holds (slightly abusing notation by restricting \mathcal{P} to decision problems) [10].

Definition 5 (\mathcal{NP} -optimization Problem) A COP is a \mathcal{NP} -optimization problem (NPO) if the corresponding decision problem is in \mathcal{NP} .

As an example the decision variant of the Standard Vertex Coloring Problem (VCP) is considered, which asks weather a graph G is colorable within k colors or not. An algorithm has to verify for each vertex v colored with color c_v , if all its neighbors are colored with a color different to c_v and further count the number of distinct colors to check weather the number of colors is lower or equal to k. This can be done in time $\mathcal{O}(|V^2|)$, where V is the set of vertices.

The VCP and many other optimization and decision problems are at least as difficult as any problem in \mathcal{NP} . These problems are said to be \mathcal{NP} -hard. Giving a polynomial-time reduction from an \mathcal{NP} -hard problem to a particular problem shows that this problem is \mathcal{NP} -hard, too. Such a reduction links the considered problem to the known \mathcal{NP} -hard problem in such a way that if and only if the considered problem can be solved in polynomial time also the \mathcal{NP} -hard problem to which it has been reduced can. [10] To gain a more detailed insight into that topic, the reader is referenced to [33].

Definition 6 (\mathcal{NP} -hard problems) A problem is called \mathcal{NP} -hard iff it is at least as difficult as any problem in \mathcal{NP} , i.e., each problem in \mathcal{NP} can be reduced to it.

A lot of optimization problems are \mathcal{NP} -hard but not in \mathcal{NP} . For example, the optimization variant of the VCP, which searches for the minimum chromatic number is clearly at least as hard at its decision variant described above. Since the output is a number rather than a decision, it is not in \mathcal{NP} . \mathcal{NP} -hard problems that are also in \mathcal{NP} are called \mathcal{NP} -complete. Many decision variants of \mathcal{NP} -hard problems like the VCP are \mathcal{NP} -complete.

Definition 7 (\mathcal{NP} -complete problems) A problem is \mathcal{NP} -complete iff it is \mathcal{NP} -hard and in \mathcal{NP} .

Informally, \mathcal{NP} -complete problems are the hardest problems in the class \mathcal{NP} . If there is an algorithm that solves any \mathcal{NP} -complete problem in polynomial time, then every problem in \mathcal{NP} can be solved in polynomial time. So far no polynomial time deterministic algorithm has been found to solve one of them.

Theorem 1 If any \mathcal{NP} -complete problem can be solved by a polynomial-time deterministic algorithm, then $\mathcal{NP} = \mathcal{NP}$. If any problem in \mathcal{NP} cannot be solved by a polynomial-time deterministic algorithm, then \mathcal{NP} -complete problems are not in \mathcal{P} .

Most computer scientists assume that $\mathcal{P} \neq \mathcal{NP}$, although it has not been proven yet. The question $\mathcal{P} = \mathcal{NP}$ is one of the most prominent unresolved questions in the field of complexity theory, since a proof would imply a huge impact on any other discipline in discrete mathematics and computer science.

Nevertheless, for some \mathcal{NP} -complete problems of this class it is possible develop algorithms that have an average-case polynomial time complexity, despite having exponential time complexity in worst case. For other problems in this class, approximation algorithms can be found that return solutions in polynomial time with a guarantee of a specific solution quality. The development and analysis of approximation algorithms is an important field of research. The following definitions are taken from [34].

Definition 8 (Approximation algorithm) An α -approximation algorithm for an optimization problem is a polynomial-time algorithm that for all instances of the problem produces a solution whose value is within a factor of α of the value of an optimal solution.

The α is called approximation ratio or performance guarantee of the α -approximation algorithm. For minimization problems $\alpha>1$ and for maximization problems $\alpha<1$ holds. For example, a 1/2-approximation algorithm for a maximization problem always returns a solution in polynomial time, that is at least half as good as the optimal solution. For some problems there even exist polynomial time algorithms, whose approximation ratio can be given as parameter. They have so called polynomial-time approximation schemes.

Definition 9 (Polynomial-time approximation scheme) A polynomial-time approximation scheme (PTAS) is a family of algorithms $\{A_{\epsilon}\}$, where there is an algorithm for each $\epsilon > 0$, such that A_{ϵ} is a $(1 + \epsilon)$ -approximation algorithm (for minimization problems) or a $(1 - \epsilon)$ -approximation algorithm (for maximization problems).

2.2 Graph Theory Definitions

Definition 10 (Graph) A graph is a tuple G = (V, E), where V denotes the set of nodes and $E \subseteq V \times V$ denotes the set of edges. An edge from node i to j is denoted by $\{i, j\}$. We call a graph simple, if it does not contain multiple edges, i.e. more than one edge between the same nodes, or loops, i.e. edges $\{i, i\}$.

Definition 11 (Directed graph) A directed graph or digraph is a tuple D = (V, A), where V denotes the set of nodes and $A \subseteq V \times V$ denotes the set of arcs or directed edges. An arc from node i to j is denoted by (i, j). We call a directed graph simple, if it does not contain multiple arcs, i.e. more than one arc between the same nodes, or loops, i.e. arcs (i, i).

Unless declared explicitly, this thesis considers only simple, undirected graphs G = (V, E).

Definition 12 (Directed graph) Given a graph G=(V,E), G'=(V',E') is called a subgraph if $V'\subseteq V$, $E'\subseteq E$ and $E'\subseteq V'\times V'$. If V'=V we call G a spanning subgraph or factor.

Definition 13 (Deletion of a node) Given a graph G = (V, E), $G - v = (V \setminus v, E \setminus \{e \mid v \in e\})$.

Definition 14 (Adjacency and incidence) Two nodes x and y are called adjacent, if they share an edge e, i.e. $\exists e = \{x, y\} \in E$. Two edges e and f are called adjacent, if they share a node x, i.e. $e \cap f = x$. A node v is called incident to an edge e, if $v \in e$.

Definition 15 (Node degree) The degree of a node v in an undirected graph G, denoted by d(v), is the number of edges, that are incident to the node v, i.e. in E there exists an edge $\{v, x\}$. The number of outgoing arcs (v, x) from a node v in a directed graph D is called out-degree and is denoted by $d^+(v)$, the number of ingoing arcs (x, v) to a node v is called in-degree and is denoted by $d^-(v)$.

Lemma 1 (Handshaking Lemma)

$$\sum_{v \in V} d(v) = 2|E|$$

Proof. As every edge $\{i, j\}$ is incident to exactly two nodes, namely i and j, it is counted one time at d(i) and one time at d(j). So the sum over all node degrees is exactly two times the number of edges.

Corollary 1 (Directed graph) The number of nodes with odd node degree is even.

Proof. This immediately follows from the handshaking lemma.

Lemma 2

$$\sum_{v \in V} d^+(v) = \sum_{v \in V} d^-(v) = 2|A|$$

Proof. As every arc (i, j) has exactly one "in-node" and one "out-node", it follows, that the sum of all out-degrees equals the sum of all in-degrees and hence the number of arcs.

Definition 16 (Maximum and minimum node degree) $\triangle(G) = max\{d(v) \mid v \in V\}$ denotes the maximum node degree in a graph. $\delta(G) = min\{d(v) \mid v \in V\}$ denotes the minimum node degree in a graph.

Definition 17 (Neighborhood of a node) The neighborhood of a node $v \in V$ is denoted by $N(v) = \{x \mid \{v, x\} \in E\}$. In the directed case the neighborhood consists of all nodes that are reachable from v, i.e. $N(v) = \{x \mid (v, x) \in A\}$.

Definition 18 (Walk) A sequence $v_0, e_1, v_1, e_2, \dots, e_n, v_n$ with $n \ge 0$ is called a walk, if for all v_i with $i \ne 0$ exists an $e_i = \{v_{i-1}, v_i\} \in E$.

Definition 19 (Directed walk) A sequence $v_0, a_1, v_1, a_2, \ldots, a_n, v_n$ with $n \ge 0$ is called a directed walk, if for all v_i with $i \ne 0$ exists an $a_i = (v_{i-1}, v_i) \in A$.

Definition 20 (Trail) A sequence $v_0, e_1, v_1, e_2, \dots, e_n, v_n$ with $n \ge 0$ is called a trail, if for all v_i with $i \ne 0$ exists an $e_i = \{v_{i-1}, v_i\} \in E$ and all e_i are distinct.

Definition 21 (Directed Trail) A sequence $v_0, a_1, v_1, a_2, \ldots, a_n, v_n$ with $n \ge 0$ is called a directed trail, if for all v_i with $i \ne 0$ exists an $a_i = (v_{i-1}, v_i) \in A$ and all a_i are distinct.

Definition 22 (Path) A sequence $v_0, e_1, v_1, e_2, \ldots, e_n, v_n$ with $n \ge 0$ is called a path, if for all v_i with $i \ne 0$ exists an $e_i = \{v_{i-1}, v_i\} \in E$ and all v_i are distinct.

Definition 23 (Directed path) A sequence $v_0, a_1, v_1, a_2, \ldots, a_n, v_n$ with $n \ge 0$ is called a directed path, if for all v_i with $i \ne 0$ exists an $a_i = (v_{i-1}, v_i) \in A$ and all v_i are distinct.

Definition 24 (Length of a path) Given a path $P = v_0, e_1, v_1, e_2, \dots, e_n, v_n = P(v_0, v_n)$, the length is the number of edges and denoted by l(P) = n, analogously for the directed case.

Definition 25 (Cycle) A cycle is a path, where $v_0 = v_n$.

Definition 26 (Acyclic graph) A graph is called acyclic if it does not contain a cycle.

Theorem 2 Let $W = W(v_0, v_n)$ be a walk, then there is a subsequence $P = P(v_0, v_n) \subseteq W(v_0, v_n)$ such that P is a path.

Proof. We know that for a path holds $v_i = v_j \forall i < j$. Suppose for W holds that $v_i = v_j$ for arbitrary i < j. Then $W = v_0, e_1, v_1, \ldots, v_i, e_{j+1}, v_{j+1}, \ldots, v_n$ is a walk with i - j less edges and W is a subsequence of W. Applying this until $\forall i, j : v_i = v_j$ yields a path from v_0 to v_n . This of course also holds for the directed case.

Definition 27 (Network) A network N = (G, c) consists of a graph G = (V, E) and a cost function $c : E(G) \longrightarrow \mathbb{R} \ge 0$, which assigns each edge e a nonnegative value c_e . Networks are also called weighted graphs.

Definition 28 (Costs of a graph) The cost c_G of a graph G is the sum of its edge costs, i.e. $c_G = \sum_{e \in E} c_e$.

Definition 29 (Coloring) A coloring is a mapping $v \to \mathbb{N}^+ \mid \forall v \in V$. Let c_v denote the color assigned to node v. The coloring is feasible, iff $c_x \neq c_y \mid \{x,y\} \in E, \forall \{x,y\} \in E$.

Definition 30 (chromatic number) Let G = (V, E) be a graph. We state that c is a (proper) k-coloring of G if all the vertices in V are colored using k colors such that no two adjacent vertices have the same color. The chromatic number is defined as the minimum k for which there exists a (proper) k-coloring of G.

2.3 Metaheuristics

As defined before, a COP consists of a set of feasible solutions. In almost every case this is of huge size compared to the size of the instance. Solving a COP exactly means finding the optimal solution out of that set. Since for \mathcal{NP} -complete problems no algorithm that performs in polynomial time could be found yet, scientists try to find algorithms that approximate optimal solutions.

In general there exist two classes of approximation methods: construction and improvement heuristics. As its name states, the former construct a solution from scratch by adding components until the solution is complete. Usually these algorithms perform fastest but often return a solution quality that is inferior to the ones returned by improvement heuristics. Used as initial solution for an improvement heuristic, the construction heuristic may return an infeasible solution. Afterwards an improvement heuristic iteratively tries to replace the solution by a better/feasible one that is derived from the current solution.

Improvement heuristics can be be divided into two groups, population based and local search based heuristics. [5] The former includes – but is not restricted to – Ant Colony Optimization (ACO), Evolutionary Computation (EC) including Genetic Algorithms (GA) and the second group consists of Iterated Local Search (ILS), Simulated Annealing (SA) and Tabu Search (TS). TS is described in more detail in section 2.5 and as this thesis does not deal with population based algorithms, it excludes further descriptions of this group. The reader is referred to [14]. All these methods form a relatively new group of heuristics and are summed up by the term *metaheuristics*, which was first introduced in [16]. In 1996 Osman and Laporte provided a formal definition of metaheuristics [25]:

Definition 31 (Metaheuristic) A metaheuristic is formally defined as an iterative generation process which guides a subordinate heuristic by combining intelligently different concepts for exploring and exploiting the search space, learning strategies are used to structure information in order to find efficiently near-optimal solutions.

Any COP can be solved by any kind of metaheuristic. The famous no free lunch theorem [35] states, that over all possible problems, there is no heuristic that performs better than any other heuristic including random search. According to the theorem, if a strategy performs better in one subarea, it performs worse in another. By acquiring and including problem specific knowledge, it is possible to develop strategies for classes of problems that perform better than others [8]. In that context, Gebhard defined in [28]:

Definition 32 Metaheuristic algorithms make no assumptions on the problem and (in theory) can be applied on any optimization problem. They define an abstract order of instructions which lead to improved or feasible solutions. In almost any case these instructions must be implemented using problem specific knowledge.

2.4 Basic Local Search

Basic local search (LS) is an improvement heuristic that iteratively tries to replace the solution by a better one that is located in an appropriately defined neighborhood structure of the current solution. [5] Algorithm 1 outlines the basic local search procedure.

```
Algorithm 1: Basic Local Search

Input: A COP P = (S, f)
Output: A feasible Solution s

1 s \leftarrow GenerateInitialSolution(S);

2 improved \leftarrow true;

3 while improved do

4 s' \leftarrow Improve(\mathcal{N}(s));

5 if f(s') NOT better than f(s) then

6 local improved \leftarrow false;

7 else

8 local Search
```

Definition 33 (Neighborhood structure) A neighborhood structure is a function $\mathcal{N}: S \to 2^S$ that assigns to every $s \in S$ a set of neighbors $\mathcal{N}(s) \subseteq S$. $\mathcal{N}(s)$ is called the neighborhood of s.

Iteratively improving the solution by choosing the first neighbor $s_f \in \mathcal{N}(s) \mid f(s_f) < f(s)$ for a minimization problem is called *First Fit* (FF), choosing the best neighbor $s_b \in \mathcal{N}(s) \mid f(s_b) < f(x), \forall x \in \mathcal{N}(s)$ is called *Best Fit* (BF). In the basic version of LS, both variants stop if no better solution can be found, which is called a local minimum. As this thesis is about the PCP which is a minimization problem, optimum and minimum are used equivalently.

Definition 34 (Local minimum) A locally minimal solution (or local minimum) with respect to a neighborhood structure \mathcal{N} is a solution \hat{s} such that $\forall s \in \mathcal{N}(\hat{s}) : f(\hat{s}) \leq f(s)$. We call \hat{s} a strict locally minimal solution if $\forall s \in \mathcal{N}(\hat{s}) : f(\hat{s}) < f(s)$.

Figure 2.1: Local and global optima

Definition 35 (Global minimum) A global minimum (optimum) of a minimizing combinatorial optimization problem is a solution, such that $f(\hat{s}) \leq f(s)$, $\forall x \in X$. Therefore a global optimum is a local optimum for all neighborhood structures \mathcal{N} .

Stopping at a local minimum results in quite unsatisfactory solutions, therefore methods have been developed to escape from such a local minimum in order to find the global minimum. Figure 9 intents to provide an idea of local and global minima to the reader. A simple technique is to start the LS from different initial solutions repeatedly, which is not very efficient, since the search information from preceding searches is not used. Instead of stopping at a local minimum, metaheuristic algorithms use more complex termination conditions including maximum number of iterations or CPU time.

2.5 Tabu Search

The Simple Tabu Search (TS) outlined in 2, chooses the best fitting solution out of the neighborhood $\mathcal{N}(s)$, which is not held in a short term memory, the so called tabu list. It holds recently visited solutions and is used to prevent cycles. Moreover, since the tabu list causes the algorithm to accept uphill moves, it can help to escape from local minima. Each chosen solution is added to the tabu list, which is of a specified size and therefore the algorithm has to remove solutions from it, which is usually done in a FIFO order. Most implementations of TS – like the one implemented in this thesis – do not store whole solutions, but solution attributes like moves or differences between solutions. The size of the list is a crucial parameter in TS and has to be chosen wisely, since if it is chosen too short the algorithm may stuck in cycles of higher order more likely and if it is chosen too long, the search space is restricted too much. The algorithm

terminates if a specified termination criterion is met.

```
Algorithm 2: Tabu Search
```

5 return s

```
Input: A COP P = (S, f)

Output: A feasible Solution s

1 s \leftarrow GenerateInitialSolution(S);

2 TabuList \leftarrow \emptyset while NOT termination criterion do

3 s' \leftarrow ChooseBestOf(\mathcal{N}(s) \setminus TabuList);

4 Update(TabuList);
```

2.6 Integer Linear Programming

Linear Programming (LP) or Mathematical Programming is an important field of operations research. Formulating a Linear Program (LP) is a mathematical way to define a COP and consists of defining the following inequations and equations: an objective function, a set of constraints on the variables x and a set of constraints on their domain, which are all inequations. All LPs can be written in the following form:

$$max. c^T x$$

$$s.t. Ax \le b$$

$$x \in \mathbb{R}^n$$

For each maximization problem there exists a minimization problem and vice versa, in the way that both problems are equivalent. The following set of equations defines the dual problem to the primal maximization problem:

$$min. b^T y$$

$$s.t. A^T y \ge c$$

$$y \in \mathbb{R}^n$$

Restrictions on the domain of the variables dedicates the LP into one of the following categories. Be x the set of variables:

- 1. Linear Program (LP): $x \in \mathbb{R}^n$
- 2. Integer Linear Program (ILP): $x \in \mathbb{Z}^n$
- 3. Binary Integer Linear Program (BIP): $x \in \{0, 1\}^n$
- 4. Mixed Integer Linear Program (MIP): variables can be restricted to different domains

Optimizing the objective function with respect to the constraints means to solve the problem exactly and is in general \mathcal{NP} -hard. It has to be considered that classifying the problem into complexity classes only gives a worst case analysis of the running time any algorithm would require. State-of-the-art solvers like CPLEX 1 , GUROBI 2 , XPRESS 3 use the simplex or the interior point algorithm combined with solution pruning methods as Branch and Bound or Branch and Cut, what makes them acquire relatively good average running times and makes LP a widely used method in operations research today. For example, for the TSP the optimal tour through 15112 Cities was calculated in 2001. [2]

¹http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

²http://www.gurobi.com/

³www.solver.com/xpress-solver-engine

Problem Definition

The Partition Coloring Problem is a generalization of the Standard Vertex Coloring Problem (VCP) and has initially been considered by Li and Simha in [21]. The problem arised from considering the join problem of routing and wavelength assignment in Wavelength Division Multiplexing optical networks. It is therefore a subproblem of a variant of the Wavelength Routing and Assignment Problem (RWA), namly the min-RWA problem. This chapter aims to give formal definitions and examples of both, PCP and min-RWA and reason about their computational complexity.

3.1 Standard Vertex Coloring Problem

3.2 Partition Coloring Problem

As many Network Design Problems (NDPs), the VCP can be generalized by partitioning the vertex set V into clusters $V_k, k \in K$, and expressing feasability constraints in terms of the clusters instead of individual nodes. [11] One resulting Generalized Network Design Problem (GNDP) is the PCP, which is due to Fereman's definition an "Exactly" GNDP, since it requires the solution to select exactly one vertex per each cluster. In contrast, "At Least" and "At Most" generalizations aim to select at least, respectively at most a given number of vertices per each cluster. A formal definition of PCP follows:

Let G=(V,E) be a non-directed graph and V partitioned into q mutually exclusive, nonempty subsets V_1,V_2,\ldots,V_q , where $V_i\cap V_j=\emptyset, \forall i,j=1,\ldots,q,\,i\neq j$. We refer to V_1,V_2,\ldots,V_q as the components of the partition. The PCP consists in finding a subset $V'\subset V$ such that $|V'\cap V_i|=1, \forall i=1,\ldots,q$ (i.e., V' contains one node of each component V_i), and the chromatic number of the graph induced in G by V' is minimum.

Figure 3.1: a) Shows a problem instance and b) its optimal solution with two colors.

Figure 3.1 shows an example of an instance with 5 clusters, each holding 2 nodes and its solution with a chromatic number of 2.

3.3 Wavelength Routing and Assignment Problem

Wavelength Division Multiplexing is a technique that allows a single optical link to transfer multiple datastreams simultaneously by using distinct wavelengths for each datastream. Data is transferred along a route of linked physical network routing devices (nodes). An all optical connection between two nodes is called lightpath. Assuming the so called wavelength continuity constraint [22] means to assume that the same wavelength has to be kept over all physical links along the route (i.e. it can not be converted by any node), so the lightpath has to be set up with one wavelength from the source to the destination node. It follows that any two paths, having at least one link in common, have to use different wavelengths, in order to enable the common link(s) to transfer data simultaneously. Figure 3.2 shows an extract of the European optical transport network.

In general, the Wavelength Routing and Assignment Problem (RWA) consists of an undirected network Graph N=(V,E), where nodes represent network routing devices and edges represent full duplex (optical) links, i.e. links supporting data transmission in both directions. Further, a set of source-destination pairs (or connection requests) $C=\{(s_1,d_2),\ldots,(s_k,d_k):s_i,d_i\in V\}$ and a set of wavelengths $\Lambda=\{\alpha_1,\ldots,\alpha_m\}$ is given. If all connection requests are known in advance, the RWA is said to be static, otherwise dynamic. [6] The static RWA can further be distinguished by characteristics of its objective. In the context of this thesis, only the min-RWA problem is relevant, which is a static version of RWA aiming to select exactly one

Figure 3.2: Instance of an optical network with 57 vertices and 85 edges. Extracted from the European optical transport network. [4]

path and one wavelength for each pair $(s,d) \in C$, in the way that the number of wavelength $|\Lambda|$ is minimized under the continuity constraint and its consequences, i.e. if any two paths have at least one edge in common, distinct wavelengths have to be assigned to them. The problem can be split into two subproblems:

- 1. routing: finding a set of paths $P_{s,d}$ for each source-destination pair $(s,d) \in C$
- 2. wavelength assignment: selecting exactly one path in $P_{s,d}$ and one wavelength α_i for each pair $(s,d) \in C$, in the way that the number of wavelength is minimized under the continuity constraint.

Considering the demands of real world instances, it is clear that the computed paths should be relatively short. The first subproblem can be solved in polynomial time by any single source shortest path algorithms like Dijkstra's- or the B*-algorithm. If $|P_{s,d}|=1, \forall (s,d)\in C$, i.e. there is exactly one path considered for each source-destination pair, the second subproblem can be transformed into VCP, in any other case $\exists (s,d)\in C:|P_{s,d}|>1$ into PCP. The transformation consists in considering each source-destination pair (s,d) as a cluster and and each path in $P_{s,d}$ as a node. In the case that two paths share at least one edge, the corresping nodes are adjacent. Selecting a node-color pair out of a cluster in PCP is equivalent to selecting a path out of a to a node in PCP is equivalent to Figure 3.3 demonstrates the transformation by example.

Figure 3.3: a) A graph with two source-destination pairs and two paths each. Since paths p2 and p3 share edge {4,6}, they are not allowed to use the same wavelength and therefore the corresponding nodes are adjacent in b) the resulting PCP.

3.4 Complexity

 $_{\text{HAPTER}}$

Previous Works

- 4.1 Exact Approaches
- **4.2** Heuristical Approaches

Problem Solving Approach

```
Algorithm 3: PCP Hybrid
   Input: An uncolored Graph G = (V, E), a recoloring-algorithm RECOLOR
   Output: A feasible Solution S
 1 Set S \leftarrow OneStepCD(G);
 2 Set cmax \leftarrow the chromatic number of S;
3 Set X \leftarrow \emptyset;
4 for c=1,\ldots,cmax do
       Let V_c be the set of nodes coloured by the colour c;
       Uncolor all nodes in V_c;
       S_c \leftarrow RECOLOR(V_c, cmax - 1);
       Let C be the set of all nodes involved in color conflicts of S_c;
       X \leftarrow X \cup (S_c, V_c, C_c)
10 Sort X ascendingly by |C_c|;
11 Set reduction \leftarrow false;
12 for (S_c, V_c, C_c) \in X do
       S'_c \leftarrow TabuSearch(S_c, V_c, C_c);
       if S'_c is free of conflicts then
           reduction \leftarrow true;
           break;
17 if reduction then
       S \leftarrow S_c;
18
       cmax = cmax - 1;
19
       goto line 3;
21 return S;
```

5.1 Constructional Heuristics

```
Algorithm 4: OneStepCD
     Input: An uncolored Graph G = (V, E)
     Output: A feasible Coloring V'
 1 Remove from G all edges (i, j) \in E : i, j \in V_k for some k = 1, \dots, q;
 2 Set V' \leftarrow \emptyset;
 3 while |V'| < q do
           Set X \leftarrow \emptyset;
            \begin{aligned} & \textbf{for } k = 1, \dots, q : V_k \cap V' = 0 \textbf{ do} \\ & \quad \big \lfloor \  \  \, \textbf{Set } X \leftarrow X \cup argmin\{CD(i) : i \in V_k\}; \end{aligned} 
 5
 6
           \begin{aligned} &\text{Set } x \leftarrow argmax\{CD(i): i \in X\};\\ &\text{Set } V' \leftarrow V' \cup \{x\}; \end{aligned}
 7
 8
           Assign the minimum possible colour to x;
           Remove from G all nodes in V_{c(x)} \setminus \{x\};
11 return V';
```

5.2 Recoloring

Random

OneStepCD

Algorithm 5: OneStepCD Recoloring

```
Input: A partial Solution P, a number of maximum colours cmax
   Output: A feasible Solution S
 1 Let U be the set of uncolored nodes in P;
2 Set S \leftarrow \emptyset;
3 while |U| > 0 do
       Set X \leftarrow \emptyset;
4
       \quad \text{for } u \in U \text{ do}
5
       6
       Set x \leftarrow argmax\{CD(i) : i \in X\};
7
       Set cmin \leftarrow the minimum possible colour that can be assigned to x;
8
       if cmin \ge cmax then
9
        cmin \leftarrow the color that produces the fewest conflicts.
10
       Assign cmin to x;
11
       S \leftarrow S \cup \{x\};
12
       U \leftarrow U \setminus V_{c(x)};
14 return V';
```

ILP minimizing conflicts

Let $Q = Q_1, \ldots, Q_q$ be the set of Clusters. Every cluster Q_p consists of a set of nodes. Let $C = \{1, \dots, cmax\}$ be the set of allowed colors. Let M be a 3-dimensional array of constants, storing for every cluster $p \in Q$, the number conflicts that would occur by selecting the pair $(v \in Q_p, c \in C)$. E denotes the set of edges and P[v] the cluster of node v.

$$\underset{X}{\text{minimize}} \quad \sum_{p \in Q} \sum_{v \in Q_p} \sum_{c \in C} X_{pvc} * M_{pvc} \tag{1}$$

$$[h] \begin{array}{ll} \text{subject to} & \displaystyle \sum_{v \in Q_p} \sum_{c \in C} X_{pvc} = 1, & \forall p \in Q \\ & X_{pvc} + X_{quc} \leq 1, & \forall ((p,v),(q,u)) \in E, \forall c \in C \end{array} \tag{2}$$

$$X_{pvc} + X_{quc} \le 1,$$
 $\forall ((p, v), (q, u)) \in E, \forall c \in C$ (3)

$$X_{pvc} \in \{0, 1\}, \qquad \forall p \in Q, \forall v \in Q_p, \forall c \in C$$
 (4)

ILP minimizing conflicting nodes

Let U be the set of uncolored nodes in uncolored clusters and color[(p, v)] the color of the node v in partition p.

$$\underset{Z}{\text{minimize}} \quad \sum_{p \in Q} \sum_{v \in Q_p} \sum_{c \in C} Z_{pvc} \tag{1}$$

$$\text{subject to} \quad Z_{pvc} \geq X_{quc}, \qquad \quad \forall ((p,v),(q,u)) \in E: (p,v) \notin U, (q,u) \in U, c = color[(p,v)] \quad (2)$$

subject to
$$Z_{pvc} \ge X_{quc}, \qquad \forall ((p,v),(q,u)) \in E : (p,v) \notin U, (q,u) \in U, c = color[(p,v)]$$
 (2)
$$[h] \qquad \sum_{v \in Q_p} \sum_{c \in C} X_{pvc} = 1, \quad \forall p \in Q$$
 (3)

$$X_{pvc} + X_{quc} \le 1, \quad \forall ((p, v), (q, u)) \in E, \forall c \in C$$

$$X_{pvc} \in \{0, 1\}, \quad \forall p \in Q, \forall v \in Q_p, \forall c \in C$$

$$(5)$$

$$X_{pvc} \in \{0, 1\}, \qquad \forall p \in Q, \forall v \in Q_p, \forall c \in C$$
 (5)

5.3 **Tabu Search**

5.4 Variants

Algorithm 6: TabuSearch

```
Input: An infeasible solution S, the set of previously recolored nodes R, the set of
             conflicting nodes C
   Output: A Solution \bar{S}
 1 Set C \leftarrow C \setminus R;
 2 Set cmax \leftarrow the chromatic number of S;
 3 Set iter \leftarrow 0;
 4 Set minConflicts \leftarrow \infty;
 5 Set \bar{S} \leftarrow S;
   while |C| > 0 and iter < maxiter do
         for V_{c(u)}: u \in C do
             for v \in V_{c(u)} and for c = 1, \dots, cmax do
                  Obtain a tentative solution S' by selecting and coloring node v with color c in
                   \bar{S};
                  if conflicts(S') = 0 then
10
                       \bar{S} \leftarrow S', \bar{v} \leftarrow v, \bar{c} \leftarrow c;
11
                       goto line 16;
12
                  else if the pair v, c is not in the tabu list then
13
                       if conflicts(S') < minConflicts then
14
                            minConflicts \leftarrow conflicts(S');
15
                            \bar{S} \leftarrow S', \bar{v} \leftarrow v, \bar{c} \leftarrow c;
16
        insert pair \bar{v}, \bar{c} in the tabu list for TabuTenure iterations;
17
         C \leftarrow C \setminus u;
18
        Let C_{\bar{v}} be the set of nodes conflicting with \bar{v};
19
        C \leftarrow C \cup C_{\bar{v}};
21 return \bar{S};
```

Computational Results

This chapter provides information about the implementation, testing environment, instances used for evaluation and the computational results. Different methods which have been presented in chapter 5 and various parameters are compared to each other and to results of [12, 21, 24].

6.1 Implementation Details and Testing Environment

The program has been implemented in Java and compiled with the JDK compiler version 1.7.0_25. For reasons of runtime comparability it has been designed to execute on a single thread, although the recoloring for each set of clusters of same color makes the program highly suitable to be processed in a parallel way. For the implementation of abstract data structures no other libraries than the ones provides by the JDK have been used. For solving the ILPs described in 5.4, ILOG CPLEX version 12.5 has been used, which is by now one of the fastest CP solvers available [3]. It is written in C++, provides facades to Java, Python, .NET, Matlab, Excel and supports comfortable usage of integer variables and a wide set of constraints and solving strategies. All tests have been performed on a Pentium i5 DualCore, 2.5 GHz, 8GB RAM, with Linux Mint 14 and OpenJDK Runtime Environment (IcedTea 2.3.9) installed.

6.2 Instances

Instances of different size, vertices per cluster ratio and density have been evaluated. Generated randomly and used by the authors of [12], the instances have also been evaluated in [29] and [9]. For reasons of better comparability to previous works, instances have been pooled to sets of same size respectively density. All of them contain 2 vertices per cluster. Furthermore four larger instances with constant density of 0.5, 500 clusters 1,2,3 and 4 vertices per cluster provided by the authors of [24] have been evaluated and compared.

6.3 Results

In the following section preliminarily and final results as well as comparison to results of previous works are presented. There have been preceding tests performed to select the most competitive ranges of parameters used in the tables.

Conflicting Vertices

As an intermediate result the numbers of conflicting vertices per each recoloring produced by the different recoloring algorithms have been recorded and compared to each other. Since for these experiments a constant length has been used for the tabu list, HYBRID-PCP is deterministic except the case when random recoloring is used. Therefore for random recoloring the average of ten runs per instance and recoloring has been calculated.

In tables 6.1 and 6.2 the results for sets of different size respectively density are presented. Each set contains five instances. Table 6.3 presents the results for the four larger instances. It can be seen that a large number of vertices and as well as a low density lead to a high amount of conflicts per recoloring. The difference between the results for RANDOM and ILP2 grows to a factor of over 7.5 on the larger instances.

Instance	set	Random (10 runs/inst)	OneStepCD	ILP1	ILP2
vertices	density	$\overline{cvertices/recoloring}$	cvertices/recoloring	cvertices/recoloring	cvertices/recoloring
20	0.5	3.69	2.25	1.60	1.36
40	0.5	7.33	3.85	3.21	2.29
60	0.5	10.21	4.99	4.21	2.83
70	0.5	11.30	5.84	4.56	3.27
80	0.5	12.69	6.04	4.97	3.41
90	0.5	12.32	5.93	4.64	3.38
100	0.5	14.91	7.16	5.23	3.92
120	0.5	15.53	6.44	5.07	3.38

Table 6.1: Sets of different size containing five instances each. *cvertices/recoloring* denotes the average amount of conflicting vertices per recoloring.

Instance	set	Random (10 runs/inst)	OneStepCD	ILP1	ILP2
vertices	density	$\overline{cvertices/recoloring}$	cvertices/recoloring	cvertices/recoloring	cvertices/recoloring
90	0.1	15.71	9.50	6.61	5.65
90	0.2	16.70	7.99	6.36	4.87
90	0.3	15.94	7.60	5.48	4.03
90	0.4	14.73	6.16	4.75	3.41
90	0.5	13.51	5.93	4.94	3.43
90	0.6	11.78	5.20	4.39	2.84
90	0.7	9.60	4.61	3.90	2.44
90	0.8	7.70	3.66	3.04	2.05
90	0.9	5.56	2.69	2.34	1.74

Table 6.2: Sets of different density containing five instances each.

Instance	set	Random (10 runs/inst)	OneStepCD	ILP1	ILP2
vertices	density	$\overline{cvertices/recoloring}$	cvertices/recoloring	cvertices/recoloring	cvertices/recoloring
500	0.5	35.13	7.89	7.88	5.02
1000	0.5	39.87	9.15	7.74	5.15
1500	0.5	44.67	11.52	8.12	6.02
2000	0.5	46.81	12.29	4.75	6.42

Table 6.3: Evaluation of the four larger instances. ILP2 produces about 7.5 times less conflicting vertices than RANDOM.

Final Results

For each set of instances experiments with various ranges of tabu list lengths as well as various boundaries for the maximum number of iterations have been performed. The size of the tabu list for each insertion is a random number between the lower and upper bound given as TabuTenure, where C' is the tentative number of colors. Because of that indeterminism 10 runs per instance have been performed. The maximum number of iterations used as stopping criterion is set as $maxIter = q * (C') * F_{end}$, where q is the amount of clusters. Tables 6.4 to 6.20 show the results of the instances provided in [12]. In tables 6.21 to 6.24 results of the large instances are shown, where the values of the parameters TabuTenure and F_{end} have been chosen similar to the ones used in [24].

The final results do not exhibit an improvement similar to the preliminary results or any significant improvement at all. Especially on larger instances the difference between the runtimes of the exact and non-exact methods becomes visible. For most instances except the four large ones a TabuTenure of U[1.0C', 4.0C'] and U[0.0C', 5.0C'] has shown to lead to best results. For the larger instances, a TabuTenure of U[0.0C', 0.5C'] fits best, which approves the results in [24].

Parame	ters	Rano	lom		Ones	StepCD		ILP1			ILP2	!	
ItMax	TabuTenure	\overline{obj}	sd	$\overline{time}(s)$	\overline{obj}	sd	$\overline{time}(s)$	\overline{obj}	sd	$\overline{time}(s)$	\overline{obj}	sd	$\overline{time}(s)$
	U[0.0C', 0.5C']	3.0	0.000	0.047	3.0	0.000	0.001	3.0	0.000	0.040	3.0	0.000	0.224
	U[0.5C', 1.0C']	3.0	0.000	0.016	3.0	0.000	0.001	3.0	0.000	0.029	3.0	0.000	0.211
1	U[1.0C', 4.0C']	3.0	0.000	0.010	3.0	0.000	0.001	3.0	0.000	0.033	3.0	0.000	0.197
1	U[0.0C', 5.0C']	3.0	0.000	0.006	3.0	0.000	0.001	3.0	0.000	0.028	3.0	0.000	0.204
	U[5.0C', 10.0C']	3.0	0.000	0.005	3.0	0.000	0.001	3.0	0.000	0.023	3.0	0.000	0.224
	U[10.0C', 20.0C']	3.0	0.000	0.004	3.0	0.000	0.001	3.0	0.000	0.025	3.0	0.000	0.188
	U[0.0C', 0.5C']	2.9	0.050	0.010	3.0	0.000	0.004	3.0	0.000	0.029	3.0	0.000	0.204
	U[0.5C', 1.0C']	2.9	0.050	0.007	2.9	0.050	0.005	3.0	0.000	0.030	2.9	0.050	0.186
10	U[1.0C', 4.0C']	2.9	0.050	0.005	2.9	0.050	0.005	3.0	0.000	0.030	3.0	0.000	0.198
10	U[0.0C', 5.0C']	3.0	0.000	0.005	2.9	0.050	0.005	3.0	0.000	0.029	2.8	0.000	0.183
	U[5.0C', 10.0C']	3.0	0.000	0.006	2.9	0.050	0.005	3.0	0.000	0.030	2.9	0.050	0.198
	U[10.0C', 20.0C']	3.0	0.000	0.005	2.9	0.050	0.005	3.0	0.000	0.027	3.0	0.000	0.209
	U[0.0C', 0.5C']	3.0	0.000	0.008	2.9	0.050	0.009	2.9	0.050	0.034	3.0	0.000	0.213
	U[0.5C', 1.0C']	3.0	0.000	0.008	2.9	0.050	0.008	3.0	0.000	0.031	3.0	0.000	0.194
20	U[1.0C', 4.0C']	3.0	0.000	0.008	3.0	0.000	0.009	3.0	0.000	0.030	3.0	0.000	0.240
20	U[0.0C', 5.0C']	3.0	0.000	0.008	3.0	0.000	0.008	2.9	0.050	0.030	3.0	0.000	0.215
	U[5.0C', 10.0C']	3.0	0.000	0.008	2.8	0.000	0.009	3.0	0.000	0.032	2.9	0.050	0.214
	U[10.0C', 20.0C']	2.9	0.050	0.009	3.0	0.000	0.008	3.0	0.000	0.031	3.0	0.000	0.202
	U[0.0C', 0.5C']	3.0	0.000	0.017	3.0	0.000	0.018	3.0	0.000	0.040	3.0	0.000	0.200
	U[0.5C', 1.0C']	3.0	0.000	0.021	3.0	0.000	0.018	2.9	0.050	0.042	3.0	0.000	0.213
50	U[1.0C', 4.0C']	3.0	0.000	0.018	3.0	0.000	0.018	3.0	0.000	0.038	2.9	0.050	0.225
50	U[0.0C', 5.0C']	2.9	0.050	0.019	3.0	0.000	0.018	2.9	0.050	0.041	3.0	0.000	0.235
	U[5.0C', 10.0C']	3.0	0.000	0.017	3.0	0.000	0.017	2.9	0.050	0.040	3.0	0.000	0.201
	U[10.0C', 20.0C']	2.8	0.000	0.021	2.9	0.050	0.020	2.9	0.050	0.041	2.9	0.050	0.223

Table 6.4: Results for a set of 5 instances of size 90 and density 0.1

Parame	eters	Ranc	lom		Ones	StepCD		ILP1			ILP2	2	
ItMax	TabuTenure	\overline{obj}	sd	$\overline{time}(s)$	\overline{obj}	sd	$\overline{time}(s)$	\overline{obj}	sd	$\overline{time}(s)$	\overline{obj}	sd	$\overline{time}(s)$
	U[0.0C', 0.5C']	4.0	0.000	0.007	3.9	0.050	0.004	3.8	0.000	0.070	4.0	0.000	0.377
	U[0.5C', 1.0C']	4.0	0.000	0.004	3.9	0.050	0.004	3.6	0.800	0.062	4.0	0.000	0.354
1	U[1.0C', 4.0C']	4.0	0.000	0.003	3.9	0.050	0.004	3.9	0.050	0.064	4.0	0.000	0.357
1	U[0.0C', 5.0C']	3.9	0.050	0.003	4.0	0.000	0.003	4.0	0.000	0.064	3.9	0.050	0.373
	U[5.0C', 10.0C']	4.0	0.000	0.003	3.9	0.050	0.004	4.0	0.000	0.067	4.0	0.000	0.354
	U[10.0C', 20.0C']	3.9	0.050	0.003	4.0	0.000	0.003	3.9	0.050	0.064	4.0	0.000	0.349
	U[0.0C', 0.5C']	3.9	0.050	0.015	3.8	0.000	0.016	3.9	0.050	0.075	3.9	0.050	0.364
	U[0.5C', 1.0C']	3.9	0.050	0.014	3.9	0.050	0.015	3.8	0.000	0.079	4.0	0.000	0.373
10	U[1.0C', 4.0C']	3.9	0.050	0.014	3.9	0.050	0.014	3.8	0.000	0.078	3.8	0.000	0.445
10	U[0.0C', 5.0C']	3.9	0.050	0.015	3.8	0.000	0.015	3.8	0.000	0.080	3.8	0.000	0.439
	U[5.0C', 10.0C']	3.9	0.050	0.015	3.8	0.000	0.015	3.8	0.000	0.080	3.8	0.000	0.446
	U[10.0C', 20.0C']	3.8	0.000	0.017	3.9	0.050	0.016	3.8	0.000	0.079	3.8	0.000	0.455
	U[0.0C', 0.5C']	4.0	0.000	0.025	3.8	0.000	0.028	3.9	0.050	0.091	3.8	0.000	0.436
	U[0.5C', 1.0C']	3.8	0.000	0.028	3.8	0.000	0.027	3.9	0.050	0.088	3.9	0.050	0.412
20	U[1.0C', 4.0C']	3.9	0.050	0.028	3.9	0.050	0.027	3.8	0.000	0.091	3.8	0.000	0.417
20	U[0.0C', 5.0C']	3.8	0.000	0.029	3.9	0.050	0.027	3.8	0.000	0.087	3.9	0.050	0.438
	U[5.0C', 10.0C']	3.8	0.000	0.028	3.8	0.000	0.028	3.8	0.000	0.090	3.8	0.000	0.460
	U[10.0C', 20.0C']	3.8	0.000	0.028	3.8	0.000	0.028	3.8	0.000	0.091	3.8	0.000	0.477
	U[0.0C', 0.5C']	3.8	0.000	0.062	4.0	0.000	0.058	3.8	0.000	0.130	3.9	0.050	0.438
	U[0.5C', 1.0C']	3.8	0.000	0.066	3.9	0.050	0.059	3.9	0.050	0.117	3.9	0.050	0.459
50	U[1.0C', 4.0C']	3.8	0.000	0.064	3.9	0.050	0.059	3.9	0.050	0.123	3.9	0.050	0.439
30	U[0.0C', 5.0C']	3.9	0.050	0.063	3.8	0.000	0.068	3.8	0.000	0.123	3.8	0.000	0.459
	U[5.0C', 10.0C']	3.8	0.000	0.066	3.8	0.000	0.065	3.8	0.000	0.132	3.8	0.000	0.431
	U[10.0C', 20.0C']	3.8	0.000	0.071	3.8	0.000	0.067	3.8	0.000	0.128	3.8	0.000	0.445

Table 6.5: Results for a set of 5 instances of size and density 0.2

Parame	ters	Rano	lom		Ones	StepCD		ILP1			ILP2	2	
ItMax	TabuTenure	\overline{obj}	sd	$\overline{time}(s)$	\overline{obj}	sd	$\overline{time}(s)$	\overline{obj}	sd	$\overline{time}(s)$	\overline{obj}	sd	$\overline{time}(s)$
	U[0.0C', 0.5C']	5.0	0.000	0.007	5.0	0.000	0.005	5.0	0.000	0.105	5.0	0.000	0.424
	U[0.5C', 1.0C']	5.0	0.000	0.005	5.0	0.000	0.006	5.0	0.000	0.098	5.0	0.000	0.430
1	U[1.0C', 4.0C']	5.0	0.000	0.005	5.0	0.000	0.005	5.0	0.000	0.099	5.0	0.000	0.426
1	U[0.0C', 5.0C']	5.0	0.000	0.006	5.0	0.000	0.007	5.0	0.000	0.095	5.0	0.000	0.417
	U[5.0C', 10.0C']	5.0	0.000	0.005	5.0	0.000	0.005	5.0	0.000	0.097	5.0	0.000	0.430
	U[10.0C', 20.0C']	5.0	0.000	0.005	5.0	0.000	0.005	5.0	0.000	0.091	5.0	0.000	0.373
	U[0.0C', 0.5C']	5.0	0.000	0.028	5.0	0.000	0.029	5.0	0.000	0.115	5.0	0.000	0.436
	U[0.5C', 1.0C']	5.0	0.000	0.029	5.0	0.000	0.030	5.0	0.000	0.119	5.0	0.000	0.465
10	U[1.0C', 4.0C']	5.0	0.000	0.029	5.0	0.000	0.029	5.0	0.000	0.115	5.0	0.000	0.436
10	U[0.0C', 5.0C']	5.0	0.000	0.029	5.0	0.000	0.029	5.0	0.000	0.115	5.0	0.000	0.449
	U[5.0C', 10.0C']	5.0	0.000	0.029	5.0	0.000	0.029	5.0	0.000	0.126	5.0	0.000	0.400
	U[10.0C', 20.0C']	5.0	0.000	0.030	5.0	0.000	0.030	5.0	0.000	0.118	5.0	0.000	0.378
	U[0.0C', 0.5C']	5.0	0.000	0.052	5.0	0.000	0.055	5.0	0.000	0.138	5.0	0.000	0.436
	U[0.5C', 1.0C']	5.0	0.000	0.052	5.0	0.000	0.053	5.0	0.000	0.141	5.0	0.000	0.431
20	U[1.0C', 4.0C']	5.0	0.000	0.055	5.0	0.000	0.055	5.0	0.000	0.137	5.0	0.000	0.439
20	U[0.0C', 5.0C']	5.0	0.000	0.055	5.0	0.000	0.055	5.0	0.000	0.149	5.0	0.000	0.435
	U[5.0C', 10.0C']	5.0	0.000	0.055	5.0	0.000	0.055	5.0	0.000	0.143	5.0	0.000	0.515
	U[10.0C', 20.0C']	5.0	0.000	0.056	5.0	0.000	0.059	5.0	0.000	0.150	5.0	0.000	0.447
	U[0.0C', 0.5C']	5.0	0.000	0.127	5.0	0.000	0.126	5.0	0.000	0.205	5.0	0.000	0.513
	U[0.5C', 1.0C']	5.0	0.000	0.125	5.0	0.000	0.128	5.0	0.000	0.212	5.0	0.000	0.525
50	U[1.0C', 4.0C']	5.0	0.000	0.128	5.0	0.000	0.129	5.0	0.000	0.217	5.0	0.000	0.526
30	U[0.0C', 5.0C']	5.0	0.000	0.128	5.0	0.000	0.133	5.0	0.000	0.215	5.0	0.000	0.481
	U[5.0C', 10.0C']	5.0	0.000	0.136	5.0	0.000	0.131	5.0	0.000	0.223	5.0	0.000	0.538
	U[10.0C', 20.0C']	5.0	0.000	0.139	5.0	0.000	0.139	5.0	0.000	0.223	5.0	0.000	0.532

Table 6.6: Results for a set of 5 instances of size and density 0.3

Parame	ters	Rano	lom		Ones	StepCD		ILP1			ILP2	;	
ItMax	TabuTenure	\overline{obj}	sd	$\overline{time}(s)$	\overline{obj}	sd	$\overline{time}(s)$	obj	sd	$\overline{time}(s)$	\overline{obj}	sd	$\overline{time}(s)$
	U[0.0C', 0.5C']	6.0	0.000	0.009	6.0	0.000	0.008	6.0	0.000	0.169	6.0	0.000	0.474
	U[0.5C', 1.0C']	6.0	0.000	0.010	6.0	0.000	0.009	6.0	0.000	0.167	6.0	0.000	0.492
1	U[1.0C', 4.0C']	6.0	0.000	0.009	6.0	0.000	0.008	6.0	0.000	0.168	6.0	0.000	0.484
1	U[0.0C', 5.0C']	6.0	0.000	0.008	6.0	0.000	0.008	6.0	0.000	0.164	6.0	0.000	0.467
	U[5.0C', 10.0C']	6.0	0.000	0.009	6.0	0.000	0.009	6.1	0.050	0.147	6.0	0.000	0.503
	U[10.0C', 20.0C']	6.0	0.000	0.009	6.0	0.000	0.009	6.0	0.000	0.159	6.0	0.000	0.474
	U[0.0C', 0.5C']	6.0	0.000	0.054	6.0	0.000	0.054	6.0	0.000	0.200	6.0	0.000	0.536
	U[0.5C', 1.0C']	6.0	0.000	0.052	6.0	0.000	0.050	6.0	0.000	0.196	6.0	0.000	0.512
10	U[1.0C', 4.0C']	6.0	0.000	0.052	6.0	0.000	0.052	6.0	0.000	0.204	6.0	0.000	0.534
10	U[0.0C', 5.0C']	6.0	0.000	0.053	6.0	0.000	0.052	6.0	0.000	0.196	6.0	0.000	0.523
	U[5.0C', 10.0C']	6.0	0.000	0.053	6.0	0.000	0.055	6.0	0.000	0.185	6.0	0.000	0.526
	U[10.0C', 20.0C']	6.0	0.000	0.055	6.0	0.000	0.054	6.0	0.000	0.193	6.0	0.000	0.519
	U[0.0C', 0.5C']	6.0	0.000	0.099	6.0	0.000	0.098	6.0	0.000	0.247	6.0	0.000	0.546
	U[0.5C', 1.0C']	6.0	0.000	0.097	6.0	0.000	0.095	6.0	0.000	0.243	6.0	0.000	0.562
20	U[1.0C', 4.0C']	6.0	0.000	0.100	6.0	0.000	0.102	6.0	0.000	0.243	6.0	0.000	0.578
20	U[0.0C', 5.0C']	6.0	0.000	0.100	6.0	0.000	0.101	6.0	0.000	0.247	6.0	0.000	0.567
	U[5.0C', 10.0C']	6.0	0.000	0.101	6.0	0.000	0.101	6.0	0.000	0.250	6.0	0.000	0.578
	U[10.0C', 20.0C']	6.0	0.000	0.103	6.0	0.000	0.103	6.0	0.000	0.252	6.0	0.000	0.605
	U[0.0C', 0.5C']	6.0	0.000	0.233	6.0	0.000	0.233	6.0	0.000	0.396	6.0	0.000	0.722
	U[0.5C', 1.0C']	6.0	0.000	0.238	6.0	0.000	0.230	6.0	0.000	0.384	6.0	0.000	0.706
50	U[1.0C', 4.0C']	6.0	0.000	0.240	6.0	0.000	0.237	6.0	0.000	0.384	6.0	0.000	0.714
30	U[0.0C', 5.0C']	6.0	0.000	0.244	6.0	0.000	0.243	6.0	0.000	0.384	6.0	0.000	0.725
	U[5.0C', 10.0C']	6.0	0.000	0.247	6.0	0.000	0.245	6.0	0.000	0.393	6.0	0.000	0.689
	U[10.0C', 20.0C']	6.0	0.000	0.256	6.0	0.000	0.254	6.0	0.000	0.395	6.0	0.000	0.721

Table 6.7: Results for a set of 5 instances of size and density 0.4

Parame	ters	Ranc	lom		Ones	StepCD		ILP1			ILP2	2	
ItMax	TabuTenure	\overline{obj}	sd	$\overline{time}(s)$	\overline{obj}	sd	$\overline{time}(s)$	\overline{obj}	sd	$\overline{time}(s)$	\overline{obj}	sd	$\overline{time}(s)$
	U[0.0C', 0.5C']	7.2	0.000	0.015	7.2	0.000	0.014	7.1	0.050	0.216	7.2	0.000	0.617
	U[0.5C', 1.0C']	7.2	0.000	0.017	7.2	0.100	0.014	7.2	0.000	0.204	7.4	0.000	0.560
1	U[1.0C', 4.0C']	7.0	0.000	0.014	7.1	0.050	0.015	7.2	0.100	0.199	7.1	0.050	0.632
1	U[0.0C', 5.0C']	7.1	0.050	0.014	7.2	0.000	0.014	7.1	0.050	0.211	7.1	0.050	0.606
	U[5.0C', 10.0C']	7.3	0.050	0.014	7.0	0.000	0.016	7.2	0.100	0.194	7.2	0.000	0.583
	U[10.0C', 20.0C']	7.2	0.100	0.015	7.5	0.050	0.014	7.4	0.100	0.193	7.4	0.100	0.567
	U[0.0C', 0.5C']	7.0	0.000	0.098	7.0	0.000	0.095	7.1	0.050	0.285	7.1	0.050	0.700
	U[0.5C', 1.0C']	7.0	0.000	0.108	7.2	0.000	0.086	7.0	0.000	0.278	7.1	0.050	0.709
10	U[1.0C', 4.0C']	7.0	0.000	0.089	7.0	0.000	0.090	7.0	0.000	0.288	7.0	0.000	0.719
10	U[0.0C', 5.0C']	7.0	0.000	0.088	7.0	0.000	0.089	7.0	0.000	0.300	7.0	0.000	0.716
	U[5.0C', 10.0C']	7.0	0.000	0.096	7.0	0.000	0.094	7.0	0.000	0.299	7.0	0.000	0.719
	U[10.0C', 20.0C']	7.1	0.050	0.097	7.1	0.050	0.097	7.0	0.000	0.313	7.0	0.000	0.709
	U[0.0C', 0.5C']	7.1	0.050	0.191	7.1	0.050	0.185	7.0	0.000	0.375	7.2	0.000	0.755
	U[0.5C', 1.0C']	7.1	0.050	0.193	7.0	0.000	0.178	7.1	0.050	0.363	7.1	0.050	0.789
20	U[1.0C', 4.0C']	7.0	0.000	0.172	7.0	0.000	0.173	7.0	0.000	0.367	7.0	0.000	0.763
20	U[0.0C', 5.0C']	7.0	0.000	0.172	7.0	0.000	0.174	7.0	0.000	0.369	7.0	0.000	0.787
	U[5.0C', 10.0C']	7.0	0.000	0.178	7.0	0.000	0.182	7.0	0.000	0.379	7.0	0.000	0.796
	U[10.0C', 20.0C']	7.0	0.000	0.205	7.1	0.050	0.185	7.1	0.050	0.386	7.1	0.050	0.792
	U[0.0C', 0.5C']	7.0	0.000	0.433	7.1	0.050	0.409	7.1	0.050	0.617	7.0	0.000	1.071
	U[0.5C', 1.0C']	7.2	0.000	0.436	7.0	0.000	0.459	7.2	0.000	0.577	7.0	0.000	1.073
50	U[1.0C', 4.0C']	7.0	0.000	0.412	7.0	0.000	0.418	7.0	0.000	0.597	7.0	0.000	1.015
30	U[0.0C', 5.0C']	7.0	0.000	0.408	7.0	0.000	0.419	7.0	0.000	0.600	7.0	0.000	1.018
	U[5.0C', 10.0C']	7.0	0.000	0.426	7.0	0.000	0.428	7.0	0.000	0.618	7.0	0.000	1.023
	U[10.0C', 20.0C']	7.0	0.000	0.478	7.0	0.000	0.442	7.0	0.000	0.681	7.0	0.000	1.039

Table 6.8: Results for a set of 5 instances of size and density 0.5

Parame	ters	Rano	lom		One	StepCD		ILP1			ILP2	ļ	
ItMax	TabuTenure	\overline{obj}	sd	$\overline{time}(s)$	obj	sd	$\overline{time}(s)$	obj	sd	$\overline{time}(s)$	\overline{obj}	sd	$\overline{time}(s)$
	U[0.0C', 0.5C']	8.8	0.100	0.022	9.0	0.000	0.021	8.8	0.100	0.264	8.8	0.100	0.729
	U[0.5C', 1.0C']	8.7	0.050	0.021	8.7	0.050	0.021	8.8	0.100	0.253	8.7	0.050	0.739
1	U[1.0C', 4.0C']	8.7	0.050	0.020	8.6	0.100	0.022	8.7	0.050	0.268	8.5	0.150	0.774
1	U[0.0C', 5.0C']	8.6	0.200	0.022	8.7	0.050	0.020	8.7	0.150	0.272	8.9	0.050	0.697
	U[5.0C', 10.0C']	8.8	0.100	0.021	8.8	0.100	0.021	8.7	0.050	0.256	8.9	0.050	0.708
	U[10.0C', 20.0C']	8.9	0.050	0.022	9.0	0.000	0.020	8.9	0.050	0.245	9.0	0.000	0.679
	U[0.0C', 0.5C']	8.6	0.100	0.160	8.8	0.100	0.146	8.6	0.100	0.392	8.5	0.050	0.943
	U[0.5C', 1.0C']	8.7	0.050	0.144	8.4	0.100	0.157	8.5	0.150	0.422	8.6	0.100	0.891
10	U[1.0C', 4.0C']	8.2	0.000	0.162	8.3	0.050	0.169	8.2	0.000	0.429	8.3	0.050	0.972
10	U[0.0C', 5.0C']	8.2	0.000	0.171	8.2	0.000	0.148	8.2	0.000	0.445	8.3	0.050	0.955
	U[5.0C', 10.0C']	8.4	0.100	0.187	8.4	0.100	0.169	8.5	0.050	0.422	8.6	0.100	0.916
	U[10.0C', 20.0C']	8.8	0.000	0.158	8.8	0.000	0.159	8.7	0.050	0.400	8.5	0.050	0.928
	U[0.0C', 0.5C']	8.8	0.100	0.297	8.8	0.100	0.287	8.6	0.100	0.552	8.6	0.000	1.053
	U[0.5C', 1.0C']	8.6	0.000	0.302	8.5	0.050	0.297	8.5	0.050	0.556	8.8	0.100	0.954
20	U[1.0C', 4.0C']	8.2	0.000	0.306	8.2	0.000	0.307	8.2	0.000	0.567	8.2	0.000	1.137
20	U[0.0C', 5.0C']	8.2	0.000	0.305	8.3	0.050	0.300	8.2	0.000	0.559	8.2	0.000	1.115
	U[5.0C', 10.0C']	8.3	0.050	0.325	8.3	0.050	0.326	8.2	0.000	0.600	8.4	0.100	1.110
	U[10.0C', 20.0C']	8.6	0.000	0.313	8.5	0.050	0.324	8.4	0.000	0.588	8.7	0.050	1.046
	U[0.0C', 0.5C']	8.8	0.000	0.728	8.8	0.100	0.682	8.7	0.050	0.980	8.8	0.100	1.377
	U[0.5C', 1.0C']	8.6	0.100	0.768	8.6	0.100	0.684	8.7	0.050	0.892	8.6	0.100	1.436
50	U[1.0C', 4.0C']	8.2	0.000	0.690	8.2	0.000	0.710	8.2	0.000	0.951	8.2	0.000	1.507
50	U[0.0C', 5.0C']	8.2	0.000	0.716	8.2	0.000	0.757	8.2	0.000	0.984	8.2	0.000	1.526
	U[5.0C', 10.0C']	8.3	0.050	0.745	8.2	0.000	0.833	8.2	0.000	1.056	8.2	0.000	1.630
	U[10.0C', 20.0C']	8.4	0.100	0.860	8.4	0.100	0.797	8.3	0.050	1.102	8.5	0.050	1.560

Table 6.9: Results for a set of 5 instances of size and density 0.6

Parame	ters	Rande	om		OneS	tepCD		ILP1			ILP2		
ItMax	TabuTenure	obj	sd	$\overline{time}(s)$	obj	sd	$\overline{time}(s)$	\overline{obj}	sd	$\overline{time}(s)$	obj	sd	$\overline{time}(s)$
	U[0.0C', 0.5C']	10.6	0.100	0.037	10.2	0.100	0.034	10.5	0.050	0.301	10.4	0.200	0.865
	U[0.5C', 1.0C']	10.2	0.100	0.037	10.5	0.050	0.032	10.4	0.100	0.310	10.2	0.000	0.906
1	U[1.0C', 4.0C']	10.1	0.050	0.038	10.1	0.050	0.034	10.3	0.050	0.340	10.1	0.050	0.927
1	U[0.0C', 5.0C']	10.0	0.000	0.037	10.1	0.050	0.031	10.4	0.100	0.317	10.1	0.050	0.904
	U[5.0C', 10.0C']	10.4	0.100	0.034	10.5	0.150	0.034	10.2	0.100	0.328	10.2	0.100	0.921
	U[10.0C', 20.0C']	10.6	0.100	0.035	10.5	0.050	0.034	10.8	0.100	0.287	10.5	0.050	0.809
	U[0.0C', 0.5C']	10.4	0.100	0.270	10.4	0.200	0.265	10.8	0.100	0.462	10.5	0.150	1.070
	U[0.5C', 1.0C']	10.0	0.000	0.309	10.0	0.000	0.264	10.2	0.000	0.556	10.2	0.100	1.113
10	U[1.0C', 4.0C']	10.0	0.000	0.233	10.0	0.000	0.231	10.0	0.000	0.523	10.0	0.000	1.120
10	U[0.0C', 5.0C']	10.0	0.000	0.229	10.0	0.000	0.230	10.0	0.000	0.536	10.0	0.000	1.129
	U[5.0C', 10.0C']	10.0	0.000	0.248	10.0	0.000	0.241	10.0	0.000	0.528	10.0	0.000	1.139
	U[10.0C', 20.0C']	10.0	0.000	0.311	10.0	0.000	0.300	10.0	0.000	0.588	10.0	0.000	1.230
	U[0.0C', 0.5C']	10.5	0.050	0.502	10.4	0.100	0.527	10.5	0.250	0.821	10.6	0.100	1.237
	U[0.5C', 1.0C']	10.0	0.000	0.462	10.1	0.050	0.517	10.2	0.100	0.805	10.0	0.000	1.464
20	U[1.0C', 4.0C']	10.0	0.000	0.445	10.0	0.000	0.446	10.0	0.000	0.726	10.0	0.000	1.336
20	U[0.0C', 5.0C']	10.0	0.000	0.446	10.0	0.000	0.443	10.0	0.000	0.741	10.0	0.000	1.338
	U[5.0C', 10.0C']	10.0	0.000	0.471	10.0	0.000	0.467	10.0	0.000	0.782	10.0	0.000	1.357
	U[10.0C', 20.0C']	10.0	0.000	0.493	10.0	0.000	0.532	10.0	0.000	0.824	10.0	0.000	1.432
	U[0.0C', 0.5C']	10.4	0.100	1.183	10.6	0.100	1.099	10.5	0.050	1.501	10.5	0.150	2.083
	U[0.5C', 1.0C']	10.1	0.050	1.215	10.1	0.050	1.338	10.2	0.000	1.554	10.0	0.000	2.200
50	U[1.0C', 4.0C']	10.0	0.000	1.077	10.0	0.000	1.098	10.0	0.000	1.377	10.0	0.000	1.973
30	U[0.0C', 5.0C']	10.0	0.000	1.078	10.0	0.000	1.086	10.0	0.000	1.403	10.0	0.000	1.990
	U[5.0C', 10.0C']	10.0	0.000	1.135	10.0	0.000	1.135	10.0	0.000	1.428	10.0	0.000	2.022
	U[10.0C', 20.0C']	10.0	0.000	1.197	10.0	0.000	1.193	10.0	0.000	1.471	10.0	0.000	2.066

Table 6.10: Results for a set of 5 instances of size 90 and density 0.7

Parame	ters	Rando	om		OneS	tepCD		ILP1			ILP2		
ItMax	TabuTenure	\overline{obj}	sd	$\overline{time}(s)$	\overline{obj}	sd	$\overline{time}(s)$	obj	sd	$\overline{time}(s)$	obj	sd	$\overline{time}(s)$
	U[0.0C', 0.5C']	12.6	0.100	0.058	12.8	0.000	0.056	13.0	0.000	0.464	13.1	0.150	1.040
	U[0.5C', 1.0C']	12.7	0.050	0.046	12.6	0.000	0.052	12.9	0.050	0.442	12.8	0.000	1.106
1	U[1.0C', 4.0C']	12.6	0.100	0.049	12.5	0.050	0.048	12.7	0.050	0.467	12.7	0.050	1.109
1	U[0.0C', 5.0C']	12.5	0.150	0.051	12.8	0.000	0.046	12.7	0.050	0.449	12.6	0.100	1.144
	U[5.0C', 10.0C']	12.7	0.050	0.051	12.5	0.050	0.058	12.6	0.100	0.457	12.8	0.000	1.100
	U[10.0C', 20.0C']	12.8	0.000	0.050	12.8	0.000	0.051	12.8	0.000	0.429	12.7	0.050	1.119
	U[0.0C', 0.5C']	12.7	0.150	0.491	12.9	0.050	0.443	13.1	0.050	0.752	12.9	0.250	1.450
	U[0.5C', 1.0C']	12.6	0.100	0.410	12.4	0.100	0.440	12.5	0.050	0.819	12.6	0.100	1.490
10	U[1.0C', 4.0C']	12.2	0.000	0.408	12.0	0.000	0.426	12.0	0.000	0.893	12.3	0.050	1.543
10	U[0.0C', 5.0C']	12.1	0.050	0.390	12.1	0.050	0.429	12.0	0.000	0.903	12.1	0.050	1.600
	U[5.0C', 10.0C']	12.2	0.000	0.451	12.3	0.050	0.452	12.3	0.050	0.862	12.3	0.050	1.549
	U[10.0C', 20.0C']	12.5	0.050	0.437	12.4	0.100	0.459	12.5	0.150	0.852	12.5	0.050	1.546
	U[0.0C', 0.5C']	12.9	0.050	0.750	12.9	0.050	0.907	12.8	0.100	1.173	12.9	0.050	1.885
	U[0.5C', 1.0C']	12.4	0.100	0.817	12.5	0.050	0.769	12.5	0.150	1.242	12.5	0.050	1.935
20	U[1.0C', 4.0C']	12.0	0.000	0.770	12.0	0.000	0.918	12.0	0.000	1.271	12.0	0.000	2.063
20	U[0.0C', 5.0C']	12.0	0.000	0.826	12.1	0.050	0.838	12.0	0.000	1.211	12.1	0.050	1.979
	U[5.0C', 10.0C']	12.1	0.050	0.828	12.2	0.100	0.820	12.1	0.050	1.344	12.2	0.000	2.034
	U[10.0C', 20.0C']	12.4	0.100	0.931	12.5	0.050	0.795	12.4	0.200	1.318	12.3	0.050	2.066
	U[0.0C', 0.5C']	13.0	0.100	2.108	13.0	0.100	2.076	12.7	0.050	2.560	13.0	0.100	2.841
	U[0.5C', 1.0C']	12.5	0.050	1.994	12.6	0.100	2.112	12.5	0.050	2.412	12.6	0.100	2.883
50	U[1.0C', 4.0C']	12.0	0.000	1.869	12.0	0.000	1.872	12.0	0.000	2.291	12.0	0.000	3.119
30	U[0.0C', 5.0C']	12.0	0.000	1.833	12.0	0.000	1.858	12.0	0.000	2.284	12.0	0.000	3.065
	U[5.0C', 10.0C']	12.1	0.050	2.030	12.1	0.050	2.243	12.1	0.050	2.536	12.0	0.000	3.217
	U[10.0C', 20.0C']	12.2	0.100	2.106	12.3	0.050	2.166	12.0	0.000	3.000	12.1	0.050	3.505

Table 6.11: Results for a set of 5 instances of size 90 and density 0.8

Parame	ters	Rando	om		OneS	tepCD		ILP1			ILP2		
ItMax	TabuTenure	\overline{obj}	sd	$\overline{time}(s)$									
	U[0.0C', 0.5C']	17.1	0.050	0.089	16.9	0.150	0.091	16.8	0.200	0.493	16.9	0.150	1.026
	U[0.5C', 1.0C']	16.4	0.100	0.084	16.2	0.100	0.076	16.4	0.000	0.505	16.2	0.000	1.179
1	U[1.0C', 4.0C']	16.1	0.050	0.081	16.0	0.100	0.078	16.1	0.050	0.523	16.3	0.050	1.141
1	U[0.0C', 5.0C']	16.3	0.050	0.077	16.1	0.050	0.078	16.3	0.150	0.493	16.0	0.100	1.218
	U[5.0C', 10.0C']	16.1	0.050	0.083	16.4	0.000	0.080	16.3	0.050	0.489	16.2	0.000	1.153
	U[10.0C', 20.0C']	16.1	0.050	0.085	16.2	0.100	0.085	16.1	0.050	0.536	16.3	0.050	1.179
	U[0.0C', 0.5C']	16.6	0.100	0.895	17.0	0.100	0.766	16.7	0.150	1.072	17.2	0.100	1.597
	U[0.5C', 1.0C']	16.1	0.050	0.656	16.3	0.350	0.648	16.2	0.000	1.119	16.2	0.100	1.723
10	U[1.0C', 4.0C']	15.9	0.050	0.682	15.8	0.000	0.696	15.8	0.000	1.122	15.8	0.000	1.848
10	U[0.0C', 5.0C']	15.8	0.000	0.679	15.8	0.000	0.652	15.8	0.000	1.083	15.8	0.000	1.867
	U[5.0C', 10.0C']	15.9	0.050	0.699	15.8	0.000	0.740	15.8	0.000	1.197	15.8	0.000	1.925
	U[10.0C', 20.0C']	16.0	0.100	0.735	16.0	0.000	0.737	16.1	0.050	1.158	15.9	0.050	1.852
	U[0.0C', 0.5C']	16.6	0.200	1.627	16.9	0.150	1.467	16.4	0.000	1.939	17.0	0.100	2.123
	U[0.5C', 1.0C']	16.4	0.100	1.283	16.2	0.100	1.412	16.3	0.050	1.643	16.2	0.100	2.317
20	U[1.0C', 4.0C']	15.8	0.000	1.308	15.9	0.050	1.235	15.8	0.000	1.742	15.8	0.000	2.422
20	U[0.0C', 5.0C']	15.8	0.000	1.302	15.9	0.050	1.378	15.8	0.000	1.715	15.8	0.000	2.406
	U[5.0C', 10.0C']	15.9	0.050	1.372	15.8	0.000	1.448	15.8	0.000	1.815	15.8	0.000	2.455
	U[10.0C', 20.0C']	16.0	0.000	1.413	15.8	0.000	1.478	15.8	0.000	1.880	15.9	0.050	2.513
	U[0.0C', 0.5C']	17.0	0.100	3.405	16.9	0.050	3.484	16.9	0.150	3.922	17.1	0.150	4.539
	U[0.5C', 1.0C']	16.2	0.100	3.441	16.4	0.100	3.133	16.1	0.050	3.523	16.1	0.050	4.228
50	U[1.0C', 4.0C']	15.8	0.000	3.019	15.8	0.000	3.062	15.8	0.000	3.485	15.8	0.000	4.214
30	U[0.0C', 5.0C']	15.8	0.000	3.173	15.8	0.000	3.071	15.8	0.000	3.459	15.8	0.000	4.229
	U[5.0C', 10.0C']	15.8	0.000	3.263	15.8	0.000	3.300	15.8	0.000	3.770	15.8	0.000	4.329
	U[10.0C', 20.0C']	15.8	0.000	3.451	15.9	0.050	3.436	15.9	0.050	3.800	15.8	0.000	4.562

Table 6.12: Results for a set of 5 instances of size and density 0.9

Parame	ters	Rano	lom		Ones	StepCD		ILP1			ILP2	2	
ItMax	TabuTenure	\overline{obj}	sd	$\overline{time}(s)$	\overline{obj}	sd	$\overline{time}(s)$	\overline{obj}	sd	$\overline{time}(s)$	\overline{obj}	sd	$\overline{time}(s)$
	U[0.0C', 0.5C']	3.0	0.000	0.001	3.0	0.000	0.001	3.0	0.000	0.023	3.0	0.000	0.034
	U[0.5C', 1.0C']	3.0	0.000	0.001	3.0	0.000	0.001	3.0	0.000	0.021	3.0	0.000	0.031
1	U[1.0C', 4.0C']	3.0	0.000	0.001	3.0	0.000	0.001	3.0	0.000	0.021	3.0	0.000	0.032
1	U[0.0C', 5.0C']	3.0	0.000	0.001	3.0	0.000	0.001	3.0	0.000	0.018	3.0	0.000	0.036
	U[5.0C', 10.0C']	3.0	0.000	0.001	3.0	0.000	0.001	3.0	0.000	0.029	3.0	0.000	0.035
	U[10.0C', 20.0C']	3.0	0.000	0.001	3.0	0.000	0.001	3.0	0.000	0.021	3.0	0.000	0.036
	U[0.0C', 0.5C']	3.0	0.000	0.001	3.0	0.000	0.001	3.0	0.000	0.026	3.0	0.000	0.031
	U[0.5C', 1.0C']	3.0	0.000	0.001	3.0	0.000	0.001	3.0	0.000	0.025	3.0	0.000	0.038
10	U[1.0C', 4.0C']	3.0	0.000	0.001	3.0	0.000	0.001	3.0	0.000	0.023	3.0	0.000	0.037
10	U[0.0C', 5.0C']	3.0	0.000	0.001	3.0	0.000	0.001	3.0	0.000	0.027	3.0	0.000	0.035
	U[5.0C', 10.0C']	3.0	0.000	0.001	3.0	0.000	0.001	3.0	0.000	0.026	3.0	0.000	0.034
	U[10.0C', 20.0C']	3.0	0.000	0.002	3.0	0.000	0.001	3.0	0.000	0.025	3.0	0.000	0.033
	U[0.0C', 0.5C']	3.0	0.000	0.009	3.0	0.000	0.001	3.0	0.000	0.029	3.0	0.000	0.036
	U[0.5C', 1.0C']	3.0	0.000	0.003	3.0	0.000	0.001	3.0	0.000	0.023	3.0	0.000	0.037
20	U[1.0C', 4.0C']	3.0	0.000	0.003	3.0	0.000	0.001	3.0	0.000	0.025	3.0	0.000	0.036
20	U[0.0C', 5.0C']	3.0	0.000	0.003	3.0	0.000	0.001	3.0	0.000	0.024	3.0	0.000	0.037
	U[5.0C', 10.0C']	3.0	0.000	0.003	3.0	0.000	0.001	3.0	0.000	0.022	3.0	0.000	0.034
	U[10.0C', 20.0C']	3.0	0.000	0.003	3.0	0.000	0.002	3.0	0.000	0.021	3.0	0.000	0.035
	U[0.0C', 0.5C']	3.0	0.000	0.005	3.0	0.000	0.003	3.0	0.000	0.030	3.0	0.000	0.038
	U[0.5C', 1.0C']	3.0	0.000	0.004	3.0	0.000	0.003	3.0	0.000	0.025	3.0	0.000	0.034
50	U[1.0C', 4.0C']	3.0	0.000	0.003	3.0	0.000	0.003	3.0	0.000	0.023	3.0	0.000	0.035
30	U[0.0C', 5.0C']	3.0	0.000	0.004	3.0	0.000	0.003	3.0	0.000	0.022	3.0	0.000	0.036
	U[5.0C', 10.0C']	3.0	0.000	0.004	3.0	0.000	0.003	3.0	0.000	0.030	3.0	0.000	0.036
	U[10.0C', 20.0C']	3.0	0.000	0.004	3.0	0.000	0.004	3.0	0.000	0.024	3.0	0.000	0.036

Table 6.13: Results for a set of 5 instances of size and density 0.5

Parame	ters	Rano	lom		Ones	StepCD		ILP1			ILP2	2	
ItMax	TabuTenure	\overline{obj}	sd	$\overline{time}(s)$	\overline{obj}	sd	$\overline{time}(s)$	\overline{obj}	sd	$\overline{time}(s)$	\overline{obj}	sd	$\overline{time}(s)$
	U[0.0C', 0.5C']	4.0	0.000	0.002	4.0	0.000	0.001	4.0	0.000	0.073	4.1	0.050	0.119
	U[0.5C', 1.0C']	4.0	0.000	0.002	4.0	0.000	0.001	4.0	0.000	0.075	4.0	0.000	0.128
1	U[1.0C', 4.0C']	4.0	0.000	0.001	4.0	0.000	0.001	4.0	0.000	0.076	4.0	0.000	0.127
1	U[0.0C', 5.0C']	4.0	0.000	0.001	4.0	0.000	0.001	4.0	0.000	0.069	4.0	0.000	0.128
	U[5.0C', 10.0C']	4.0	0.000	0.001	4.0	0.000	0.001	4.0	0.000	0.069	4.0	0.000	0.127
	U[10.0C', 20.0C']	4.0	0.000	0.001	4.0	0.000	0.001	4.0	0.000	0.070	4.0	0.000	0.136
	U[0.0C', 0.5C']	4.0	0.000	0.007	4.0	0.000	0.006	4.0	0.000	0.078	4.1	0.050	0.130
	U[0.5C', 1.0C']	4.0	0.000	0.006	4.0	0.000	0.007	4.0	0.000	0.076	4.0	0.000	0.136
10	U[1.0C', 4.0C']	4.0	0.000	0.006	4.0	0.000	0.006	4.0	0.000	0.078	4.0	0.000	0.137
10	U[0.0C', 5.0C']	4.0	0.000	0.006	4.0	0.000	0.006	4.0	0.000	0.077	4.0	0.000	0.139
	U[5.0C', 10.0C']	4.0	0.000	0.006	4.0	0.000	0.006	4.0	0.000	0.082	4.0	0.000	0.131
	U[10.0C', 20.0C']	4.0	0.000	0.007	4.0	0.000	0.007	4.0	0.000	0.076	4.0	0.000	0.133
	U[0.0C', 0.5C']	4.0	0.000	0.011	4.0	0.000	0.012	4.0	0.000	0.078	4.0	0.000	0.139
	U[0.5C', 1.0C']	4.0	0.000	0.012	4.0	0.000	0.012	4.0	0.000	0.089	4.0	0.000	0.144
20	U[1.0C', 4.0C']	4.0	0.000	0.012	4.0	0.000	0.013	4.0	0.000	0.082	4.0	0.000	0.138
20	U[0.0C', 5.0C']	4.0	0.000	0.011	4.0	0.000	0.011	4.0	0.000	0.079	4.0	0.000	0.137
	U[5.0C', 10.0C']	4.0	0.000	0.012	4.0	0.000	0.012	4.0	0.000	0.081	4.0	0.000	0.137
	U[10.0C', 20.0C']	4.0	0.000	0.013	4.0	0.000	0.012	4.0	0.000	0.081	4.0	0.000	0.144
	U[0.0C', 0.5C']	4.0	0.000	0.029	4.0	0.000	0.027	4.0	0.000	0.091	4.1	0.050	0.148
	U[0.5C', 1.0C']	4.0	0.000	0.028	4.0	0.000	0.027	4.0	0.000	0.098	4.0	0.000	0.154
50	U[1.0C', 4.0C']	4.0	0.000	0.026	4.0	0.000	0.026	4.0	0.000	0.088	4.0	0.000	0.156
30	U[0.0C', 5.0C']	4.0	0.000	0.026	4.0	0.000	0.026	4.0	0.000	0.100	4.0	0.000	0.156
	U[5.0C', 10.0C']	4.0	0.000	0.029	4.0	0.000	0.028	4.0	0.000	0.093	4.0	0.000	0.154
	U[10.0C', 20.0C']	4.0	0.000	0.030	4.0	0.000	0.030	4.0	0.000	0.101	4.0	0.000	0.153

Table 6.14: Results for a set of 5 instances of size and density 0.5

Parame	eters	Ranc	lom		Ones	StepCD		ILP1			ILP2	2	
ItMax	TabuTenure	\overline{obj}	sd	$\overline{time}(s)$	\overline{obj}	sd	$\overline{time}(s)$	\overline{obj}	sd	$\overline{time}(s)$	\overline{obj}	sd	$\overline{time}(s)$
	U[0.0C', 0.5C']	5.6	0.100	0.005	5.3	0.050	0.004	5.2	0.100	0.128	5.5	0.050	0.261
	U[0.5C', 1.0C']	5.6	0.100	0.006	5.4	0.100	0.004	5.4	0.000	0.117	5.4	0.100	0.266
1	U[1.0C', 4.0C']	5.7	0.050	0.004	5.3	0.150	0.004	5.2	0.100	0.122	5.4	0.100	0.265
1	U[0.0C', 5.0C']	5.3	0.150	0.004	5.3	0.050	0.004	5.2	0.100	0.125	5.6	0.100	0.248
	U[5.0C', 10.0C']	5.7	0.050	0.004	5.3	0.150	0.004	5.4	0.100	0.114	5.3	0.050	0.277
	U[10.0C', 20.0C']	5.9	0.050	0.004	5.8	0.100	0.004	5.4	0.100	0.110	5.8	0.000	0.220
	U[0.0C', 0.5C']	5.4	0.100	0.024	5.1	0.050	0.026	5.3	0.050	0.139	5.2	0.100	0.298
	U[0.5C', 1.0C']	5.1	0.050	0.026	5.2	0.100	0.024	5.1	0.050	0.142	5.1	0.050	0.323
10	U[1.0C', 4.0C']	5.0	0.000	0.024	5.0	0.000	0.024	5.0	0.000	0.148	5.0	0.000	0.306
10	U[0.0C', 5.0C']	5.0	0.000	0.023	5.0	0.000	0.023	5.0	0.000	0.144	5.0	0.000	0.323
	U[5.0C', 10.0C']	5.0	0.000	0.023	5.0	0.000	0.024	5.0	0.000	0.151	5.0	0.000	0.323
	U[10.0C', 20.0C']	5.0	0.000	0.028	5.2	0.100	0.027	5.0	0.000	0.157	5.2	0.100	0.309
	U[0.0C', 0.5C']	5.2	0.000	0.045	5.3	0.050	0.047	5.2	0.000	0.157	5.3	0.050	0.319
	U[0.5C', 1.0C']	5.1	0.050	0.052	5.3	0.150	0.042	5.2	0.100	0.156	5.3	0.050	0.324
20	U[1.0C', 4.0C']	5.0	0.000	0.043	5.0	0.000	0.042	5.0	0.000	0.164	5.0	0.000	0.341
20	U[0.0C', 5.0C']	5.0	0.000	0.044	5.0	0.000	0.043	5.0	0.000	0.167	5.0	0.000	0.339
	U[5.0C', 10.0C']	5.0	0.000	0.045	5.0	0.000	0.043	5.0	0.000	0.171	5.0	0.000	0.338
	U[10.0C', 20.0C']	5.0	0.000	0.046	5.0	0.000	0.051	5.0	0.000	0.168	5.0	0.000	0.358
	U[0.0C', 0.5C']	5.0	0.000	0.117	5.0	0.000	0.118	5.2	0.100	0.214	5.1	0.050	0.392
	U[0.5C', 1.0C']	5.2	0.100	0.115	5.1	0.050	0.118	5.1	0.050	0.228	5.3	0.050	0.374
50	U[1.0C', 4.0C']	5.0	0.000	0.096	5.0	0.000	0.097	5.0	0.000	0.218	5.0	0.000	0.401
30	U[0.0C', 5.0C']	5.0	0.000	0.099	5.0	0.000	0.101	5.0	0.000	0.216	5.0	0.000	0.394
	U[5.0C', 10.0C']	5.0	0.000	0.103	5.0	0.000	0.103	5.0	0.000	0.230	5.0	0.000	0.409
	U[10.0C', 20.0C']	5.0	0.000	0.119	5.0	0.000	0.114	5.0	0.000	0.229	5.0	0.000	0.403

Table 6.15: Results for a set of 5 instances of size and density 0.5

Parame	ters	Ranc	lom		Ones	StepCD		ILP1			ILP2	!	
ItMax	TabuTenure	\overline{obj}	sd	$\overline{time}(s)$	\overline{obj}	sd	$\overline{time}(s)$	\overline{obj}	sd	$\overline{time}(s)$	\overline{obj}	sd	$\overline{time}(s)$
	U[0.0C', 0.5C']	6.0	0.000	0.006	6.0	0.000	0.006	6.0	0.000	0.132	6.0	0.000	0.362
	U[0.5C', 1.0C']	6.0	0.000	0.006	6.0	0.000	0.006	6.1	0.050	0.127	6.1	0.050	0.338
1	U[1.0C', 4.0C']	6.0	0.000	0.006	6.0	0.000	0.006	6.0	0.000	0.134	6.1	0.050	0.347
1	U[0.0C', 5.0C']	6.0	0.000	0.007	6.1	0.050	0.006	6.0	0.000	0.130	6.0	0.000	0.348
	U[5.0C', 10.0C']	6.0	0.000	0.006	6.0	0.000	0.006	6.0	0.000	0.132	6.1	0.050	0.332
	U[10.0C', 20.0C']	6.2	0.000	0.006	6.0	0.000	0.006	6.1	0.050	0.120	6.0	0.000	0.356
	U[0.0C', 0.5C']	6.0	0.000	0.032	6.0	0.000	0.032	6.0	0.000	0.160	6.0	0.000	0.372
	U[0.5C', 1.0C']	6.0	0.000	0.033	6.0	0.000	0.032	6.0	0.000	0.154	6.0	0.000	0.379
10	U[1.0C', 4.0C']	6.0	0.000	0.032	6.0	0.000	0.033	6.0	0.000	0.150	6.0	0.000	0.379
10	U[0.0C', 5.0C']	6.0	0.000	0.032	6.0	0.000	0.031	6.0	0.000	0.155	6.0	0.000	0.381
	U[5.0C', 10.0C']	6.0	0.000	0.033	6.0	0.000	0.032	6.0	0.000	0.155	6.0	0.000	0.378
	U[10.0C', 20.0C']	6.0	0.000	0.034	6.0	0.000	0.034	6.0	0.000	0.153	6.0	0.000	0.370
	U[0.0C', 0.5C']	6.0	0.000	0.061	6.0	0.000	0.061	6.0	0.000	0.179	6.0	0.000	0.401
	U[0.5C', 1.0C']	6.0	0.000	0.059	6.0	0.000	0.058	6.0	0.000	0.179	6.0	0.000	0.400
20	U[1.0C', 4.0C']	6.0	0.000	0.062	6.0	0.000	0.060	6.0	0.000	0.185	6.0	0.000	0.417
20	U[0.0C', 5.0C']	6.0	0.000	0.060	6.0	0.000	0.060	6.0	0.000	0.187	6.0	0.000	0.417
	U[5.0C', 10.0C']	6.0	0.000	0.063	6.0	0.000	0.062	6.0	0.000	0.191	6.0	0.000	0.396
	U[10.0C', 20.0C']	6.0	0.000	0.065	6.0	0.000	0.065	6.0	0.000	0.196	6.0	0.000	0.412
	U[0.0C', 0.5C']	6.0	0.000	0.144	6.0	0.000	0.141	6.0	0.000	0.261	6.0	0.000	0.463
	U[0.5C', 1.0C']	6.0	0.000	0.139	6.0	0.000	0.136	6.0	0.000	0.267	6.0	0.000	0.493
50	U[1.0C', 4.0C']	6.0	0.000	0.142	6.0	0.000	0.141	6.0	0.000	0.271	6.0	0.000	0.487
30	U[0.0C', 5.0C']	6.0	0.000	0.147	6.0	0.000	0.144	6.0	0.000	0.273	6.0	0.000	0.476
	U[5.0C', 10.0C']	6.0	0.000	0.153	6.0	0.000	0.152	6.0	0.000	0.281	6.0	0.000	0.495
	U[10.0C', 20.0C']	6.0	0.000	0.157	6.0	0.000	0.156	6.0	0.000	0.282	6.0	0.000	0.492

Table 6.16: Results for a set of 5 instances of size and density 0.5

Parame	ters	Rano	lom		Ones	StepCD		ILP1			ILP2	2	
ItMax	TabuTenure	\overline{obj}	sd	$\overline{time}(s)$	\overline{obj}	sd	$\overline{time}(s)$	\overline{obj}	sd	$\overline{time}(s)$	\overline{obj}	sd	$\overline{time}(s)$
	U[0.0C', 0.5C']	6.7	0.050	0.009	6.7	0.050	0.009	7.0	0.000	0.148	6.8	0.100	0.423
	U[0.5C', 1.0C']	7.0	0.000	0.008	6.9	0.050	0.009	7.0	0.000	0.145	6.8	0.000	0.442
1	U[1.0C', 4.0C']	6.8	0.000	0.008	6.9	0.050	0.008	7.0	0.000	0.147	6.8	0.100	0.436
1	U[0.0C', 5.0C']	6.8	0.000	0.010	7.0	0.000	0.009	7.0	0.000	0.143	6.9	0.050	0.414
	U[5.0C', 10.0C']	6.9	0.050	0.008	6.7	0.050	0.009	6.9	0.050	0.157	6.8	0.000	0.443
	U[10.0C', 20.0C']	7.0	0.000	0.008	7.0	0.000	0.009	6.9	0.050	0.147	7.0	0.000	0.410
	U[0.0C', 0.5C']	6.7	0.050	0.053	6.8	0.100	0.051	6.5	0.050	0.217	6.6	0.100	0.515
	U[0.5C', 1.0C']	6.5	0.050	0.061	6.8	0.100	0.050	6.8	0.100	0.200	6.6	0.000	0.515
10	U[1.0C', 4.0C']	6.5	0.050	0.053	6.4	0.000	0.059	6.4	0.100	0.217	6.4	0.000	0.536
10	U[0.0C', 5.0C']	6.5	0.050	0.053	6.4	0.000	0.058	6.5	0.050	0.202	6.3	0.050	0.550
	U[5.0C', 10.0C']	6.4	0.000	0.063	6.6	0.100	0.055	6.4	0.100	0.218	6.4	0.000	0.536
	U[10.0C', 20.0C']	6.8	0.100	0.061	6.6	0.000	0.061	7.0	0.000	0.187	6.7	0.150	0.500
	U[0.0C', 0.5C']	6.8	0.100	0.090	6.7	0.050	0.096	6.6	0.100	0.255	6.7	0.150	0.564
	U[0.5C', 1.0C']	6.7	0.050	0.100	6.7	0.150	0.096	6.9	0.050	0.230	7.0	0.000	0.498
20	U[1.0C', 4.0C']	6.2	0.100	0.109	6.6	0.000	0.105	6.3	0.050	0.271	6.4	0.000	0.597
20	U[0.0C', 5.0C']	6.1	0.050	0.116	6.3	0.050	0.111	6.3	0.050	0.264	6.3	0.050	0.620
	U[5.0C', 10.0C']	6.5	0.050	0.109	6.4	0.000	0.113	6.4	0.000	0.272	6.3	0.050	0.634
	U[10.0C', 20.0C']	6.8	0.100	0.114	6.7	0.050	0.130	6.8	0.000	0.249	6.7	0.050	0.580
	U[0.0C', 0.5C']	6.7	0.150	0.240	6.9	0.050	0.219	6.6	0.000	0.404	6.6	0.000	0.677
	U[0.5C', 1.0C']	6.6	0.000	0.260	6.6	0.100	0.251	6.7	0.150	0.389	6.6	0.000	0.711
50	U[1.0C', 4.0C']	6.3	0.050	0.255	6.1	0.050	0.284	6.1	0.050	0.448	6.2	0.000	0.768
30	U[0.0C', 5.0C']	6.2	0.000	0.263	6.2	0.000	0.270	6.1	0.050	0.475	6.2	0.000	0.750
	U[5.0C', 10.0C']	6.3	0.050	0.270	6.3	0.050	0.279	6.4	0.000	0.414	6.2	0.000	0.795
	U[10.0C', 20.0C']	6.4	0.000	0.303	6.3	0.150	0.329	6.6	0.100	0.426	6.3	0.050	0.844

Table 6.17: Results for a set of 5 instances of size and density 0.5

Parame	ters	Ranc	lom		One	StepCD		ILP1			ILP2	2	
ItMax	TabuTenure	\overline{obj}	sd	$\overline{time}(s)$	\overline{obj}	sd	$\overline{time}(s)$	\overline{obj}	sd	$\overline{time}(s)$	\overline{obj}	sd	$\overline{time}(s)$
	U[0.0C', 0.5C']	8.2	0.027	0.021	8.2	0.038	0.023	8.2	0.055	0.225	8.3	0.044	0.613
	U[0.5C', 1.0C']	8.1	0.016	0.020	8.1	0.033	0.021	8.1	0.050	0.226	8.1	0.050	0.666
1	U[1.0C', 4.0C']	8.0	0.038	0.021	8.1	0.016	0.021	8.1	0.027	0.227	8.0	0.016	0.667
1	U[0.0C', 5.0C']	8.0	0.038	0.022	8.1	0.005	0.021	8.1	0.027	0.229	8.0	0.033	0.672
	U[5.0C', 10.0C']	8.1	0.033	0.021	8.1	0.038	0.022	8.1	0.016	0.222	8.1	0.022	0.641
	U[10.0C', 20.0C']	8.2	0.016	0.021	8.2	0.016	0.021	8.2	0.016	0.226	8.1	0.027	0.628
	U[0.0C', 0.5C']	8.1	0.038	0.165	8.2	0.055	0.150	8.2	0.033	0.347	8.2	0.027	0.776
	U[0.5C', 1.0C']	7.9	0.022	0.160	8.0	0.038	0.155	8.0	0.050	0.359	8.0	0.033	0.787
10	U[1.0C', 4.0C']	7.8	0.011	0.155	7.8	0.016	0.159	7.8	0.011	0.389	7.9	0.016	0.819
10	U[0.0C', 5.0C']	7.9	0.016	0.158	7.9	0.011	0.156	7.8	0.000	0.380	7.8	0.011	0.835
	U[5.0C', 10.0C']	7.9	0.022	0.159	7.9	0.022	0.165	7.9	0.022	0.376	7.9	0.016	0.832
	U[10.0C', 20.0C']	8.0	0.033	0.170	8.0	0.038	0.169	7.9	0.027	0.390	8.0	0.027	0.814
	U[0.0C', 0.5C']	8.1	0.050	0.332	8.2	0.044	0.319	8.2	0.077	0.525	8.2	0.038	0.892
	U[0.5C', 1.0C']	8.0	0.055	0.309	8.1	0.038	0.292	8.0	0.027	0.505	8.0	0.033	0.930
20	U[1.0C', 4.0C']	7.8	0.000	0.298	7.8	0.005	0.315	7.8	0.011	0.518	7.8	0.005	0.968
20	U[0.0C', 5.0C']	7.8	0.005	0.293	7.8	0.005	0.305	7.8	0.011	0.517	7.8	0.000	0.982
	U[5.0C', 10.0C']	7.8	0.005	0.320	7.8	0.005	0.332	7.8	0.000	0.530	7.9	0.016	0.994
	U[10.0C', 20.0C']	7.9	0.011	0.322	7.9	0.027	0.348	8.0	0.022	0.528	7.9	0.005	0.987
	U[0.0C', 0.5C']	8.1	0.044	0.834	8.2	0.050	0.767	8.2	0.072	0.932	8.2	0.050	1.324
	U[0.5C', 1.0C']	8.0	0.044	0.723	8.0	0.027	0.715	7.9	0.016	0.913	8.0	0.044	1.321
50	U[1.0C', 4.0C']	7.8	0.000	0.710	7.8	0.000	0.710	7.8	0.000	0.915	7.8	0.000	1.366
30	U[0.0C', 5.0C']	7.8	0.011	0.716	7.8	0.011	0.721	7.8	0.000	0.929	7.8	0.005	1.378
	U[5.0C', 10.0C']	7.8	0.000	0.764	7.8	0.005	0.784	7.8	0.011	0.963	7.8	0.011	1.432
	U[10.0C', 20.0C']	7.9	0.022	0.814	7.9	0.011	0.844	7.9	0.016	1.028	7.8	0.011	1.481

Table 6.18: Results for a set of 5 instances of size 90 and density 0.5

Parame	ters	Ranc	lom		Ones	StepCD		ILP1			ILP2	2	
ItMax	TabuTenure	\overline{obj}	sd	$\overline{time}(s)$	\overline{obj}	sd	$\overline{time}(s)$	obj	sd	$\overline{time}(s)$	\overline{obj}	sd	$\overline{time}(s)$
	U[0.0C', 0.5C']	7.6	0.100	0.018	7.8	0.000	0.017	7.6	0.100	0.240	7.8	0.100	0.735
	U[0.5C', 1.0C']	7.8	0.000	0.017	7.8	0.000	0.016	7.7	0.050	0.234	7.6	0.100	0.801
1	U[1.0C', 4.0C']	7.7	0.050	0.017	7.8	0.000	0.016	7.8	0.000	0.226	7.7	0.050	0.767
1	U[0.0C', 5.0C']	7.8	0.000	0.016	7.8	0.000	0.016	7.8	0.000	0.218	7.7	0.050	0.774
	U[5.0C', 10.0C']	7.9	0.050	0.016	7.8	0.000	0.017	7.7	0.050	0.223	7.8	0.000	0.716
	U[10.0C', 20.0C']	8.0	0.000	0.016	8.0	0.000	0.016	7.9	0.050	0.219	8.0	0.000	0.711
	U[0.0C', 0.5C']	7.8	0.100	0.104	7.6	0.100	0.111	7.6	0.100	0.325	7.7	0.050	0.834
	U[0.5C', 1.0C']	7.6	0.000	0.102	7.6	0.100	0.103	7.7	0.050	0.321	7.7	0.050	0.859
10	U[1.0C', 4.0C']	7.2	0.000	0.120	7.1	0.050	0.122	7.1	0.050	0.375	7.2	0.100	1.019
10	U[0.0C', 5.0C']	7.1	0.050	0.124	7.0	0.000	0.118	7.1	0.050	0.373	7.1	0.050	1.022
	U[5.0C', 10.0C']	7.4	0.100	0.138	7.3	0.050	0.136	7.4	0.200	0.357	7.4	0.200	0.929
	U[10.0C', 20.0C']	7.8	0.000	0.110	7.8	0.000	0.114	7.8	0.000	0.321	7.8	0.000	0.840
	U[0.0C', 0.5C']	7.6	0.100	0.210	7.8	0.000	0.196	7.3	0.050	0.466	7.6	0.100	0.963
	U[0.5C', 1.0C']	7.5	0.050	0.229	7.6	0.100	0.201	7.5	0.150	0.430	7.3	0.150	1.045
20	U[1.0C', 4.0C']	7.0	0.000	0.233	7.0	0.000	0.232	7.0	0.000	0.483	7.0	0.000	1.139
20	U[0.0C', 5.0C']	7.0	0.000	0.232	7.0	0.000	0.227	7.2	0.100	0.460	7.0	0.000	1.110
	U[5.0C', 10.0C']	7.3	0.050	0.259	7.1	0.050	0.261	7.3	0.050	0.471	7.3	0.050	1.061
	U[10.0C', 20.0C']	7.8	0.000	0.212	7.8	0.000	0.216	7.5	0.150	0.471	7.5	0.150	1.003
	U[0.0C', 0.5C']	7.8	0.100	0.478	7.7	0.050	0.502	7.5	0.150	0.729	7.6	0.100	1.272
	U[0.5C', 1.0C']	7.2	0.100	0.658	7.4	0.100	0.582	7.6	0.100	0.695	7.6	0.100	1.239
50	U[1.0C', 4.0C']	7.0	0.000	0.544	7.0	0.000	0.523	7.0	0.000	0.764	7.0	0.000	1.427
30	U[0.0C', 5.0C']	7.0	0.000	0.521	7.0	0.000	0.538	7.0	0.000	0.758	7.0	0.000	1.422
	U[5.0C', 10.0C']	7.0	0.000	0.622	7.1	0.050	0.582	7.0	0.000	0.827	7.1	0.050	1.455
	U[10.0C', 20.0C']	7.7	0.050	0.539	7.5	0.050	0.579	7.7	0.050	0.735	7.6	0.100	1.303

Table 6.19: Results for a set of 5 instances of size and density 0.5

Parame	eters	Ranc	lom		Ones	StepCD		ILP1			ILP2	!	
ItMax	TabuTenure	\overline{obj}	sd	$\overline{time}(s)$	\overline{obj}	sd	$\overline{time}(s)$	\overline{obj}	sd	$\overline{time}(s)$	\overline{obj}	sd	$\overline{time}(s)$
	U[0.0C', 0.5C']	8.7	0.050	0.032	9.0	0.000	0.029	8.9	0.050	0.349	8.9	0.050	1.201
	U[0.5C', 1.0C']	8.8	0.100	0.030	9.0	0.000	0.028	8.9	0.050	0.337	8.9	0.050	1.213
1	U[1.0C', 4.0C']	8.7	0.050	0.032	8.9	0.050	0.029	9.0	0.000	0.341	8.9	0.050	1.173
1	U[0.0C', 5.0C']	9.0	0.000	0.028	8.7	0.050	0.031	8.8	0.100	0.348	8.8	0.000	1.211
	U[5.0C', 10.0C']	9.0	0.000	0.029	8.9	0.050	0.029	9.0	0.000	0.337	9.0	0.000	1.139
	U[10.0C', 20.0C']	9.0	0.000	0.031	9.0	0.000	0.030	9.0	0.000	0.349	9.0	0.000	1.144
	U[0.0C', 0.5C']	8.9	0.050	0.202	8.6	0.000	0.242	8.8	0.000	0.513	8.8	0.100	1.412
	U[0.5C', 1.0C']	8.7	0.050	0.237	8.9	0.050	0.192	8.7	0.050	0.532	8.7	0.050	1.390
10	U[1.0C', 4.0C']	8.5	0.050	0.216	8.6	0.000	0.205	8.6	0.000	0.528	8.6	0.000	1.473
10	U[0.0C', 5.0C']	8.6	0.000	0.211	8.6	0.000	0.208	8.6	0.000	0.525	8.5	0.050	1.498
	U[5.0C', 10.0C']	8.6	0.000	0.218	8.6	0.000	0.213	8.6	0.000	0.554	8.7	0.050	1.433
	U[10.0C', 20.0C']	8.9	0.050	0.221	8.8	0.100	0.231	8.9	0.050	0.535	8.8	0.000	1.388
	U[0.0C', 0.5C']	8.7	0.050	0.436	8.8	0.100	0.388	8.8	0.000	0.718	8.6	0.000	1.677
	U[0.5C', 1.0C']	8.8	0.100	0.376	8.7	0.050	0.413	8.6	0.000	0.760	8.9	0.050	1.494
20	U[1.0C', 4.0C']	8.6	0.000	0.408	8.6	0.000	0.390	8.5	0.050	0.744	8.5	0.050	1.694
20	U[0.0C', 5.0C']	8.6	0.000	0.411	8.6	0.000	0.394	8.5	0.050	0.740	8.5	0.050	1.679
	U[5.0C', 10.0C']	8.6	0.000	0.438	8.6	0.000	0.434	8.6	0.000	0.750	8.6	0.000	1.667
	U[10.0C', 20.0C']	8.9	0.050	0.421	8.8	0.000	0.434	8.6	0.000	0.787	8.8	0.000	1.666
	U[0.0C', 0.5C']	8.8	0.100	0.944	8.6	0.000	0.977	8.6	0.000	1.342	8.7	0.050	2.152
	U[0.5C', 1.0C']	8.7	0.050	1.009	8.7	0.050	0.947	8.7	0.050	1.374	8.6	0.000	2.193
50	U[1.0C', 4.0C']	8.6	0.000	0.949	8.6	0.000	0.943	8.5	0.050	1.312	8.6	0.000	2.212
30	U[0.0C', 5.0C']	8.4	0.100	1.113	8.6	0.000	0.965	8.5	0.050	1.354	8.5	0.050	2.249
	U[5.0C', 10.0C']	8.6	0.000	0.998	8.5	0.050	1.047	8.6	0.000	1.300	8.6	0.000	2.232
	U[10.0C', 20.0C']	8.6	0.000	1.060	8.6	0.000	1.117	8.7	0.050	1.363	8.6	0.000	2.318

Table 6.20: Results for a set of 5 instances of size and density 0.5

Parame	eters	Rando	m		OneSte	epCD		ILP1			ILP2		
ItMax	TabuTenure	\overline{obj}	sd	$\overline{time}(s)$	\overline{obj}	sd	$\overline{time}(s)$	\overline{obj}	sd	$\overline{time}(s)$	obj	sd	$\overline{time}(s)$
	U[0.25C', 0.75C']	53.00	0.000	32.675	52.40	0.240	45.955	52.00	0.000	41.061	52.80	0.160	131.369
	U[0.0C', 1.0C']	53.00	0.000	31.822	53.00	0.000	31.307	52.60	0.240	38.698	53.00	0.000	124.405
1	U[0.0C', 0.5C']	52.00	0.000	49.998	52.60	0.240	40.508	52.00	0.000	47.886	52.80	0.160	133.227
1	U[0.5C', 1.0C']	52.60	0.240	34.443	52.40	0.240	34.702	53.00	0.000	34.162	52.00	0.000	151.490
	U[0.25C', 1.0C']	53.00	0.000	33.513	52.40	0.240	34.969	53.00	0.000	35.207	53.00	0.000	126.708
	U[0.0C', 0.75C']	52.40	0.240	37.164	52.40	0.240	42.677	52.40	0.240	43.436	52.40	0.20	137.571
	U[0.25C', 0.75C']	52.00	0.000	175.018	51.60	0.240	222.313	52.00	0.000	167.028	52.00	0.000	263.785
	U[0.0C', 1.0C']	51.40	0.240	192.997	52.00	0.000	166.878	52.00	0.000	168.842	52.00	0.000	270.638
5	U[0.0C', 0.5C']	51.40	0.240	188.598	51.40	0.240	194.900	51.40	0.240	234.086	52.00	0.000	267.352
3	U[0.5C', 1.0C']	52.00	0.000	167.531	51.40	0.240	197.548	51.40	0.250	191.290	51.40	0.250	301.400
	U[0.25C', 1.0C']	51.40	0.240	227.016	51.40	0.240	190.509	51.40	0.240	226.595	52.00	0.000	273.516
	U[0.0C', 0.75C']	52.00	0.000	166.399	51.00	0.000	243.717	51.80	0.160	188.605	51.80	0.160	323.258
	U[0.25C', 0.75C']	51.00	0.000	460.830	51.00	0.000	499.770	51.80	0.160	385.627	51.00	0.000	580.569
	U[0.0C', 1.0C']	51.00	0.000	445.430	51.00	0.000	441.279	51.00	0.000	556.089	51.00	0.000	1920.230
10	U[0.0C', 0.5C']	51.00	0.000	438.898	51.00	0.000	506.921	51.00	0.000	491.451	51.00	0.000	574.642
10	U[0.5C', 1.0C']	51.00	0.000	434.163	51.40	0.240	368.134	51.00	0.000	467.440	51.00	0.000	617.425
	U[0.25C', 1.0C']	51.80	0.160	365.680	51.00	0.000	424.486	51.60	0.240	365.924	51.40	0.240	441.895
	U[0.0C', 0.75C']	51.00	0.000	425.001	51.00	0.000	526.258	51.40	0.240	353.324	51.40	0.240	479.716

Table 6.21: Results for the instance dsjc500.5-1, 500 vertices, density 0.5

Parame	eters	Rando	m		OneSte	epCD		ILP1			ILP2		
ItMax	TabuTenure	obj	sd	$\overline{time}(s)$	obj	sd	$\overline{time}(s)$	obj	sd	$\overline{time}(s)$	\overline{obj}	sd	$\overline{time}(s)$
	U[0.25C', 0.75C']	47.60	0.240	72.492	47.00	0.000	69.580	47.00	0.000	121.744	48.00	0.000	702.030
	U[0.0C', 1.0C']	47.00	0.000	77.980	47.00	0.000	78.475	47.00	0.000	126.041	48.00	0.000	722.381
1	U[0.0C', 0.5C']	47.00	0.000	77.742	47.60	0.240	71.457	47.00	0.000	118.374	48.00	0.000	647.080
1	U[0.5C', 0.1C']	47.20	0.160	80.400	47.00	0.000	72.520	47.40	0.240	102.338	47.00	0.000	761.492
	U[0.25C', 1.0C']	47.20	0.160	66.099	47.00	0.000	85.592	47.00	0.000	118.374	47.40	0.240	752.992
	U[0.0C', 0.75C']	47.60	0.240	74.900	47.20	0.160	65.508	47.00	0.000	118.374	47.60	0.240	669.113
	U[0.25C', 0.75C']	47.00	0.000	329.858	47.00	0.000	322.690	47.00	0.000	341.401	47.00	0.000	911.078
	U[0.0C', 1.0C']	47.00	0.000	314.639	47.00	0.000	312.814	47.00	0.000	329.006	47.00	0.000	909.702
5	U[0.0C', 0.5C']	47.00	0.000	336.046	47.00	0.000	368.138	47.00	0.000	363.048	47.00	0.000	893.171
]	U[0.5C', 0.1C']	47.00	0.000	329.366	46.60	0.240	355.754	47.00	0.000	369.581	47.00	0.000	939.086
	U[0.25C', 1.0C']	47.00	0.000	320.355	46.60	0.240	504.976	47.00	0.000	312.525	47.00	0.000	888.474
	U[0.0C', 0.75C']	47.00	0.000	319.387	47.00	0.000	321.539	47.00	0.000	381.417	47.00	0.000	899.100
	U[0.25C', 0.75C']	47.00	0.000	650.358	47.00	0.000	600.810	47.00	0.000	782.341	47.00	0.000	1340.031
	U[0.0C', 1.0C']	46.40	0.240	657.860	46.40	0.240	771.054	47.00	0.000	842.114	47.00	0.000	1112.001
10	U[0.0C', 0.5C']	47.00	0.000	651.221	46.60	0.240	712.167	47.00	0.000	666.702	47.00	0.000	1260.525
10	U[0.5C', 0.1C']	47.00	0.000	610.881	46.40	0.240	655.999	46.00	0.000	1090.255	47.00	0.000	1332.405
	U[0.25C', 1.0C']	46.40	0.240	811.390	47.00	0.000	618.188	47.00	0.000	699.847	47.00	0.000	1201.992
	U[0.0C', 0.75C']	47.00	0.000	630.789	46.60	0.240	700.052	47.00	0.000	947.012	47.00	0.000	1417.935

Table 6.22: Results for the instance *dsjc500.5-2*, 1000 vertices, density 0.5

Parame	ters	Rando	m		OneSte	epCD		ILP1			ILP2		
ItMax	TabuTenure	\overline{obj}	sd	$\overline{time}(s)$	obj	sd	$\overline{time}(s)$	\overline{obj}	sd	$\overline{time}(s)$	\overline{obj}	sd	$\overline{time}(s)$
	U[0.25C', 0.75C']	45.00	0.000	115.018	45.00	0.000	115.547	45.00	0.000	205.556	45.00	0.000	3110.445
	U[0.0C', 1.0C']	45.00	0.000	124.909	45.00	0.000	119.600	45.00	0.000	245.091	45.00	0.000	3101.009
1	U[0.0C', 0.5C']	45.00	0.000	117.858	45.00	0.000	130.135	45.00	0.000	199.366	45.00	0.000	2960.582
1	U[0.5C', 1.0C']	45.00	0.000	115.410	45.00	0.000	113.664	45.00	0.00	210.217	44.60	0.240	3227.712
	U[0.25C', 1.0C']	45.00	0.000	113.382	45.00	0.000	119.870	45.00	0.000	182.176	45.00	0.000	3298.511
	U[0.0C', 0.75C']	45.00	0.000	113.593	45.00	0.000	114.424	45.40	0.240	224.569	45.00	0.000	3205.006
	U[0.25C', 0.75C']	44.00	0.000	775.920	44.20	0.160	644.067	44.00	0.000	712.253	44.00	0.000	3801.001
	U[0.0C', 1.0C']	44.00	0.000	692.584	44.40	0.240	590.315	44.00	0.000	736.866	44.00	0.000	3989.886
5	U[0.0C', 0.5C']	44.00	0.000	887.549	44.60	0.240	569.560	44.00	0.000	770.456	44.00	0.000	4252.012
3	U[0.5C', 1.0C']	44.40	0.240	535.744	44.00	0.000	981.468	44.80	0.160	631.256	44.60	0.240	3525.024
	U[0.25C', 1.0C']	44.80	0.160	623.681	44.60	0.240	547.132	44.00	0.000	705.102	44.00	0.000	3612.583
	U[0.0C', 0.75C']	44.60	0.240	716.675	44.40	0.240	564.862	44.00	0.000	681.207	44.00	0.000	4328.666
	U[0.25C', 0.75C']	44.00	0.000	1711.281	44.00	0.000	1284.477	44.00	0.000	991.903	44.00	0.000	4385.033
	U[0.0C', 1.0C']	44.00	0.000	1609.692	44.20	0.160	1398.949	44.00	0.000	1013.891	44.00	0.000	4441.113
10	U[0.0C', 0.5C']	44.00	0.000	1504.814	44.00	0.000	1624.962	44.00	0.000	1271.812	44.00	0.000	4641.228
10	U[0.5C', 1.0C']	44.60	0.240	1156.730	44.00	0.000	1739.053	44.40	0.240	1163.476	44.00	0.000	4935.751
	U[0.25C', 1.0C']	44.00	0.000	1282.196	44.00	0.000	1772.908	44.60	0.240	1351.233	44.00	0.000	5011.565
	U[0.0C', 0.75C']	44.00	0.000	1928.361	44.00	0.000	1792.404	44.40	0.240	1291.088	44.00	0.000	4505.852

Table 6.23: Results for the instance *dsjc500.5-3*, 1500 vertices, density 0.5

Parame	ters	Rando	m		OneSte	epCD		ILP1			ILP2		
ItMax	TabuTenure	\overline{obj}	sd	$\overline{time}(s)$	obj	sd	$\overline{time}(s)$	obj	sd	$\overline{time}(s)$	\overline{obj}	sd	$\overline{time}(s)$
	U[0.25C', 0.75C']	43.40	0.240	200.361	43.00	0.000	178.387	43.00	0.000	311.715	43.20	0.160	7530.236
	U[0.0C', 1.0C']	43.20	0.160	185.824	43.00	0.000	179.494	43.00	0.000	341.112	43.80	0.160	7012.431
1	U[0.0C', 0.5C']	44.00	0.000	143.937	43.60	0.240	186.869	43.00	0.000	333.319	43.80	0.160	7171.777
1	U[0.5C', 1.0C']	43.00	0.000	214.545	43.60	0.240	142.063	43.00	0.000	338.309	43.60	0.240	7439.572
	U[0.25C', 1.0C']	43.60	0.240	145.004	43.00	0.000	251.143	43.00	0.000	302.122	44.00	0.000	7621.502
	U[0.0C', 0.75C']	43.60	0.240	218.761	43.20	0.160	187.378	43.00	0.000	335.834	43.40	0.240	7478.121
	U[0.25C', 0.75C']	43.00	0.000	780.378	43.00	0.000	963.153	43.00	0.000	978.203	43.00	0.000	8956.555
	U[0.0C', 1.0C']	42.40	0.240	849.693	42.80	0.160	771.423	43.00	0.000	1122.429	42.80	0.160	8701.683
5	U[0.0C', 0.5C']	43.00	0.000	808.077	43.00	0.000	848.376	43.00	0.000	1006.318	43.00	0.000	8622.681
3	U[0.5C', 1.0C']	43.00	0.000	781.823	43.00	0.000	823.835	43.00	0.000	958.897	43.00	0.000	9115.008
	U[0.25C', 1.0C']	43.00	0.000	776.229	43.00	0.000	806.833	43.00	0.000	989.006	43.00	0.000	9012.904
	U[0.0C', 0.75C']	43.00	0.000	823.599	43.00	0.000	809.126	43.00	0.000	1007.065	43.00	0.000	8848.775
	U[0.25C', 0.75C']	43.00	0.000	1619.182	43.00	0.000	1711.629	43.00	0.000	1674.249	43.00	0.000	9246.012
	U[0.0C', 1.0C']	43.00	0.000	1570.523	43.00	0.000	1628.829	42.80	0.160	1569.004	43.00	0.000	9006.112
10	U[0.0C', 0.5C']	43.00	0.000	1532.691	42.40	0.240	2145.856	43.00	0.000	1762.306	43.00	0.000	9176.079
10	U[0.5C', 1.0C']	42.80	0.180	1554.850	43.00	0.000	1558.656	42.80	0.160	1710.961	43.00	0.000	9047.702
	U[0.25C', 1.0C']	43.00	0.000	1567.553	42.60	0.240	1799.667	43.00	0.000	1821.938	43.00	0.000	9312.528
	U[0.0C', 0.75C']	43.00	0.000	1529.261	43.00	0.000	1554.409	43.00	0.000	1701.039	43.00	0.000	9199.499

Table 6.24: Results for the instance dsjc500.5-4, 2000 vertices, density 0.5

Variants

As discussed in section 5.4, variants for both ILPs have been created by removing the inequation that restricts conflicts inside the recolored set of clusters. In tables 6.25 to 6.30 the standard ILPs marked as ILP1 and ILP2 are compared to their variants ILP1* and ILP2* by evaluating three instances of different size as well as three instances of different density. It can be seen that removing the aforementioned constraint does not increase the solution quality.

Furthermore experiments have been performed, placing the recently recolored set of clusters on the tabu list for a specified number of iterations. In tables 6.31 to 6.36 sets diversing in size and density have been evaluated using $F_{max}=5$. The parameter TTRecolored sets the number of iterations as Tabusize=TTRecolored*C' for all the vertex-color pairs of the recolored set of clusters to remain on the tabu list.

Parame	eters	ILP1			ILP1	k		ILP2			ILP2*	k	
ItMax	TabuTenure	\overline{obj}	sd	$\overline{time}(s)$	obj	sd	$\overline{time}(s)$	\overline{obj}	sd	$\overline{time}(s)$	\overline{obj}	sd	$\overline{time}(s)$
	U[0.0C', 0.5C']	10.3	0.150	0.312	10.6	0.100	0.135	10.5	0.150	0.823	10.4	0.100	0.602
	U[0.5C', 1.0C']	10.4	0.000	0.302	10.4	0.100	0.131	10.2	0.100	0.875	10.3	0.050	0.617
1	U[1.0C', 4.0C']	10.0	0.000	0.326	10.1	0.050	0.151	10.2	0.100	0.868	10.2	0.000	0.628
1	U[0.0C', 5.0C']	10.0	0.000	0.337	10.1	0.050	0.138	10.2	0.100	0.917	10.3	0.050	0.632
	U[5.0C', 10.0C']	10.3	0.150	0.308	10.2	0.000	0.142	10.4	0.100	0.820	10.3	0.050	0.610
	U[10.0C', 20.0C']	10.5	0.150	0.295	10.9	0.050	0.112	10.6	0.100	0.793	10.7	0.050	0.545
	U[0.0C', 0.5C']	10.2	0.100	0.542	10.7	0.050	0.295	10.7	0.150	0.952	10.3	0.050	0.799
	U[0.5C', 1.0C']	10.2	0.100	0.508	10.1	0.050	0.356	10.2	0.100	1.096	10.2	0.000	0.800
10	U[1.0C', 4.0C']	10.0	0.000	0.493	10.0	0.000	0.314	10.0	0.000	1.098	10.0	0.000	0.827
10	U[0.0C', 5.0C']	10.0	0.000	0.493	10.0	0.000	0.319	10.0	0.000	1.081	10.0	0.000	0.823
	U[5.0C', 10.0C']	10.0	0.000	0.500	10.0	0.000	0.322	10.0	0.000	1.109	10.0	0.000	0.828
	U[10.0C', 20.0C']	10.0	0.000	0.531	10.1	0.050	0.362	10.0	0.000	1.114	10.0	0.000	0.871
	U[0.0C', 0.5C']	10.4	0.100	0.738	10.7	0.150	0.491	10.3	0.150	1.327	10.4	0.200	0.991
	U[0.5C', 1.0C']	10.1	0.050	0.745	10.1	0.050	0.587	10.1	0.050	1.345	10.1	0.050	1.023
20	U[1.0C', 4.0C']	10.0	0.000	0.673	10.0	0.000	0.499	10.0	0.000	1.281	10.0	0.000	0.993
20	U[0.0C', 5.0C']	10.0	0.000	0.682	10.0	0.000	0.494	10.0	0.000	1.290	10.0	0.000	1.001
	U[5.0C', 10.0C']	10.0	0.000	0.690	10.0	0.000	0.517	10.0	0.000	1.289	10.0	0.000	1.013
	U[10.0C', 20.0C']	10.0	0.000	0.721	10.0	0.000	0.548	10.0	0.000	1.320	10.0	0.000	1.048
	U[0.0C', 0.5C']	10.3	0.150	1.386	10.6	0.100	1.105	10.7	0.150	1.694	10.2	0.000	1.709
	U[0.5C', 1.0C']	10.3	0.050	1.346	10.0	0.000	1.199	10.0	0.000	1.948	10.2	0.100	1.526
50	U[1.0C', 4.0C']	10.0	0.000	1.207	10.0	0.000	1.060	10.0	0.000	1.778	10.0	0.000	1.523
50	U[0.0C', 5.0C']	10.0	0.000	1.211	10.0	0.000	1.058	10.0	0.000	1.812	10.0	0.000	1.533
	U[5.0C', 10.0C']	10.0	0.000	1.231	10.0	0.000	1.093	10.0	0.000	1.837	10.0	0.000	1.553
	U[10.0C', 20.0C']	10.0	0.000	1.295	10.0	0.000	1.176	10.0	0.000	1.910	10.0	0.000	1.677

Table 6.25: ILP variants compared on a set of 5 instances with 90 vertices and a density of 0.7 each.

Parame	ters	ILP1			ILP1	k		ILP2			ILP2	k	
ItMax	TabuTenure	obj	sd	$\overline{time}(s)$	\overline{obj}	sd	$\overline{time}(s)$	obj	sd	$\overline{time}(s)$	obj	sd	$\overline{time}(s)$
	U[0.0C', 0.5C']	13.1	0.150	0.394	12.8	0.000	0.215	12.9	0.050	1.045	12.8	0.000	0.851
	U[0.5C', 1.0C']	12.7	0.050	0.439	12.8	0.100	0.204	12.7	0.050	1.088	12.7	0.050	0.848
1	U[1.0C', 4.0C']	12.7	0.050	0.426	12.8	0.000	0.213	12.6	0.000	1.081	12.7	0.050	0.870
1	U[0.0C', 5.0C']	12.7	0.050	0.446	12.7	0.050	0.221	12.8	0.000	1.048	12.5	0.050	0.882
	U[5.0C', 10.0C']	12.7	0.050	0.426	12.8	0.000	0.203	12.7	0.050	1.094	12.8	0.000	0.832
	U[10.0C', 20.0C']	12.8	0.000	0.426	12.8	0.000	0.195	12.8	0.100	1.069	12.8	0.000	0.850
	U[0.0C', 0.5C']	12.8	0.000	0.720	12.7	0.050	0.546	12.9	0.050	1.294	13.0	0.000	1.049
	U[0.5C', 1.0C']	12.7	0.050	0.691	12.5	0.150	0.556	12.5	0.050	1.417	12.4	0.000	1.208
10	U[1.0C', 4.0C']	12.2	0.100	0.746	12.1	0.050	0.543	12.2	0.100	1.508	12.0	0.000	1.321
10	U[0.0C', 5.0C']	12.2	0.100	0.765	12.1	0.050	0.521	12.2	0.100	1.522	12.2	0.000	1.218
	U[5.0C', 10.0C']	12.4	0.000	0.745	12.1	0.050	0.580	12.3	0.050	1.525	12.2	0.000	1.284
	U[10.0C', 20.0C']	12.4	0.000	0.779	12.4	0.100	0.529	12.5	0.050	1.439	12.5	0.150	1.208
	U[0.0C', 0.5C']	13.0	0.000	0.930	13.1	0.150	0.787	12.8	0.200	1.671	12.7	0.050	1.435
	U[0.5C', 1.0C']	12.5	0.050	1.068	12.7	0.050	0.779	12.8	0.000	1.571	12.6	0.000	1.398
20	U[1.0C', 4.0C']	12.1	0.050	1.101	12.0	0.000	0.949	12.2	0.000	1.778	12.0	0.000	1.620
20	U[0.0C', 5.0C']	12.0	0.000	1.178	12.0	0.000	0.848	12.1	0.050	1.876	12.0	0.000	1.634
	U[5.0C', 10.0C']	12.2	0.000	1.088	12.2	0.100	0.858	12.2	0.000	1.813	12.1	0.050	1.657
	U[10.0C', 20.0C']	12.2	0.100	1.170	12.5	0.050	0.899	12.6	0.100	1.771	12.2	0.000	1.692
	U[0.0C', 0.5C']	12.9	0.050	1.930	13.1	0.050	1.870	13.0	0.100	2.468	12.8	0.100	2.313
	U[0.5C', 1.0C']	12.8	0.000	1.716	12.6	0.100	1.776	12.7	0.050	2.487	12.7	0.050	2.294
50	U[1.0C', 4.0C']	12.0	0.000	2.094	12.0	0.000	1.753	12.0	0.000	2.765	12.0	0.000	2.463
30	U[0.0C', 5.0C']	12.0	0.000	2.054	12.0	0.000	1.824	12.0	0.000	2.791	12.0	0.000	2.687
	U[5.0C', 10.0C']	12.0	0.000	2.201	12.1	0.050	1.844	12.1	0.050	2.837	12.0	0.000	2.696
	U[10.0C', 20.0C']	12.3	0.150	2.140	12.2	0.100	2.080	12.3	0.050	2.962	12.2	0.100	2.676

Table 6.26: ILP variants compared on a set of 5 instances with 90 vertices and a density of 0.8 each.

Parame	ters	ILP1			ILP1	k		ILP2			ILP2	k	
ItMax	TabuTenure	\overline{obj}	sd	$\overline{time}(s)$									
	U[0.0C', 0.5C']	16.7	0.250	0.450	17.0	0.100	0.235	16.9	0.250	1.001	16.8	0.300	0.877
	U[0.5C', 1.0C']	16.4	0.100	0.477	16.3	0.050	0.279	16.2	0.000	1.139	16.6	0.100	0.909
1	U[1.0C', 4.0C']	16.1	0.050	0.513	16.3	0.050	0.266	16.2	0.000	1.125	16.3	0.050	0.996
1	U[0.0C', 5.0C']	16.0	0.000	0.534	16.1	0.050	0.300	16.2	0.000	1.112	16.2	0.000	0.990
	U[5.0C', 10.0C']	16.1	0.050	0.510	16.3	0.050	0.252	16.2	0.000	1.096	16.2	0.000	0.998
	U[10.0C', 20.0C']	16.4	0.000	0.473	16.1	0.050	0.294	16.2	0.000	1.101	16.2	0.000	0.994
	U[0.0C', 0.5C']	16.6	0.300	0.994	16.8	0.300	0.830	16.8	0.300	1.561	16.7	0.050	1.484
	U[0.5C', 1.0C']	16.1	0.050	0.938	16.2	0.300	0.790	16.3	0.050	1.584	16.2	0.000	1.474
10	U[1.0C', 4.0C']	15.8	0.000	1.019	15.8	0.000	0.758	15.8	0.000	1.731	15.8	0.000	1.571
10	U[0.0C', 5.0C']	15.8	0.000	1.005	15.9	0.050	0.763	15.8	0.000	1.694	16.0	0.100	1.517
	U[5.0C', 10.0C']	15.8	0.000	1.103	15.9	0.050	0.809	15.8	0.000	1.754	15.8	0.000	1.603
	U[10.0C', 20.0C']	16.1	0.050	1.003	15.8	0.000	0.949	16.0	0.000	1.701	16.0	0.000	1.563
	U[0.0C', 0.5C']	17.0	0.200	1.491	17.1	0.250	1.384	17.1	0.150	2.114	16.7	0.050	1.980
	U[0.5C', 1.0C']	16.2	0.000	1.430	16.2	0.100	1.361	16.0	0.000	2.203	16.3	0.150	1.877
20	U[1.0C', 4.0C']	15.8	0.000	1.499	15.8	0.000	1.289	15.8	0.000	2.181	15.8	0.000	2.039
20	U[0.0C', 5.0C']	15.8	0.000	1.532	15.8	0.000	1.328	15.8	0.000	2.177	15.8	0.000	2.127
	U[5.0C', 10.0C']	15.9	0.050	1.546	15.8	0.000	1.370	15.8	0.000	2.227	15.8	0.000	2.178
	U[10.0C', 20.0C']	16.0	0.000	1.585	16.0	0.000	1.337	15.8	0.000	2.273	16.0	0.000	2.105
	U[0.0C', 0.5C']	16.7	0.350	3.210	16.8	0.100	3.289	17.2	0.200	3.570	17.2	0.000	3.566
	U[0.5C', 1.0C']	16.2	0.000	2.842	16.1	0.050	2.740	16.3	0.250	3.523	16.0	0.000	3.637
50	U[1.0C', 4.0C']	15.8	0.000	2.937	15.8	0.000	2.775	15.8	0.000	3.617	15.8	0.000	3.526
30	U[0.0C', 5.0C']	15.8	0.000	2.948	15.8	0.000	2.766	15.8	0.000	3.688	15.8	0.000	3.526
	U[5.0C', 10.0C']	15.8	0.000	3.241	15.8	0.000	2.838	15.8	0.000	3.762	15.8	0.000	3.697
	U[10.0C', 20.0C']	15.8	0.000	3.457	15.8	0.000	3.065	15.8	0.000	3.903	15.8	0.000	3.831

Table 6.27: ILP variants compared on a set of 5 instances with 90 vertices and a density of 0.9 each.

Parame	eters	ILP1			ILP1	*		ILP2	,		ILP2	2*	
ItMax	TabuTenure	\overline{obj}	sd	$\overline{time}(s)$									
	U[0.0C', 0.5C']	8.2	0.055	0.216	8.2	0.050	0.100	8.3	0.044	0.604	8.1	0.050	0.459
	U[0.5C', 1.0C']	8.1	0.011	0.226	8.1	0.038	0.099	8.0	0.033	0.662	8.1	0.033	0.464
1	U[1.0C', 4.0C']	8.0	0.027	0.223	8.1	0.016	0.102	8.1	0.033	0.652	8.0	0.022	0.473
1	U[0.0C', 5.0C']	8.1	0.027	0.225	8.0	0.022	0.101	8.0	0.022	0.662	8.0	0.033	0.480
	U[5.0C', 10.0C']	8.1	0.033	0.221	8.1	0.050	0.102	8.1	0.027	0.646	8.1	0.033	0.467
	U[10.0C', 20.0C']	8.2	0.033	0.219	8.1	0.038	0.100	8.2	0.038	0.633	8.2	0.033	0.453
	U[0.0C', 0.5C']	8.2	0.033	0.354	8.2	0.061	0.238	8.1	0.072	0.780	8.1	0.061	0.592
	U[0.5C', 1.0C']	8.0	0.022	0.350	8.0	0.050	0.241	8.0	0.033	0.786	8.0	0.033	0.608
10	U[1.0C', 4.0C']	7.8	0.011	0.376	7.8	0.000	0.250	7.9	0.016	0.835	7.9	0.016	0.632
10	U[0.0C', 5.0C']	7.9	0.022	0.378	7.9	0.005	0.240	7.9	0.016	0.820	7.9	0.011	0.631
	U[5.0C', 10.0C']	7.9	0.016	0.378	7.9	0.005	0.252	7.9	0.022	0.830	7.9	0.011	0.632
	U[10.0C', 20.0C']	8.0	0.027	0.376	8.0	0.016	0.255	7.9	0.027	0.825	8.0	0.033	0.627
	U[0.0C', 0.5C']	8.1	0.050	0.508	8.2	0.050	0.412	8.2	0.066	0.933	8.2	0.027	0.711
	U[0.5C', 1.0C']	8.0	0.022	0.506	8.0	0.038	0.370	8.0	0.038	0.936	8.0	0.038	0.734
20	U[1.0C', 4.0C']	7.8	0.005	0.520	7.8	0.000	0.392	7.8	0.000	0.971	7.8	0.005	0.782
20	U[0.0C', 5.0C']	7.8	0.005	0.517	7.8	0.000	0.395	7.8	0.000	0.973	7.8	0.011	0.786
	U[5.0C', 10.0C']	7.9	0.005	0.533	7.9	0.011	0.408	7.9	0.011	0.976	7.9	0.000	0.778
	U[10.0C', 20.0C']	7.9	0.016	0.534	7.9	0.033	0.430	7.9	0.016	0.985	7.9	0.016	0.778
	U[0.0C', 0.5C']	8.1	0.038	0.973	8.2	0.094	0.825	8.2	0.033	1.393	8.1	0.072	1.208
	U[0.5C', 1.0C']	8.0	0.033	0.890	8.0	0.022	0.802	8.0	0.027	1.351	8.0	0.027	1.181
50	U[1.0C', 4.0C']	7.8	0.011	0.922	7.8	0.005	0.798	7.8	0.005	1.384	7.8	0.005	1.185
30	U[0.0C', 5.0C']	7.8	0.005	0.919	7.8	0.000	0.805	7.8	0.000	1.386	7.8	0.005	1.181
	U[5.0C', 10.0C']	7.8	0.005	0.958	7.8	0.000	0.848	7.8	0.000	1.440	7.8	0.005	1.242
	U[10.0C', 20.0C']	7.9	0.016	1.022	7.8	0.011	0.903	7.9	0.005	1.482	7.9	0.016	1.291

Table 6.28: ILP variants compared on a set of 5 instances with 90 vertices and a density of 0.5 each.

Parame	ters	ILP1			ILP1	*		ILP2	!		ILP2	<u>)</u> *	
ItMax	TabuTenure	\overline{obj}	sd	$\overline{time}(s)$	\overline{obj}	sd	$\overline{time}(s)$	\overline{obj}	sd	$\overline{time}(s)$	\overline{obj}	sd	$\overline{time}(s)$
	U[0.0C', 0.5C']	7.8	0.000	0.221	8.0	0.000	0.085	7.8	0.000	0.756	7.8	0.000	0.527
	U[0.5C', 1.0C']	7.7	0.050	0.216	7.8	0.100	0.105	7.8	0.000	0.744	7.8	0.000	0.531
1	U[1.0C', 4.0C']	7.8	0.000	0.232	7.9	0.050	0.088	7.8	0.000	0.744	7.8	0.000	0.529
1	U[0.0C', 5.0C']	7.8	0.100	0.223	7.8	0.000	0.087	7.8	0.100	0.735	7.7	0.050	0.577
	U[5.0C', 10.0C']	7.7	0.050	0.237	7.7	0.050	0.096	7.9	0.050	0.699	7.9	0.050	0.527
	U[10.0C', 20.0C']	8.0	0.000	0.216	7.9	0.050	0.087	7.8	0.100	0.733	7.9	0.050	0.490
	U[0.0C', 0.5C']	7.6	0.100	0.321	7.6	0.100	0.194	7.6	0.100	0.877	7.8	0.000	0.615
	U[0.5C', 1.0C']	7.6	0.000	0.324	7.5	0.150	0.181	7.7	0.150	0.858	7.5	0.150	0.700
10	U[1.0C', 4.0C']	7.1	0.050	0.359	7.0	0.000	0.214	7.0	0.000	1.034	7.1	0.050	0.789
10	U[0.0C', 5.0C']	7.2	0.100	0.376	7.0	0.000	0.206	7.0	0.000	1.050	7.2	0.100	0.747
	U[5.0C', 10.0C']	7.5	0.050	0.349	7.6	0.100	0.195	7.4	0.200	0.940	7.4	0.000	0.700
	U[10.0C', 20.0C']	7.8	0.000	0.320	7.8	0.000	0.181	7.8	0.000	0.831	7.7	0.050	0.631
	U[0.0C', 0.5C']	7.6	0.200	0.443	7.6	0.100	0.270	7.7	0.050	0.952	7.6	0.100	0.780
	U[0.5C', 1.0C']	7.6	0.100	0.414	7.5	0.150	0.299	7.8	0.000	0.923	7.7	0.050	0.727
20	U[1.0C', 4.0C']	7.0	0.000	0.483	7.0	0.000	0.331	7.1	0.050	1.128	7.0	0.000	0.861
20	U[0.0C', 5.0C']	7.0	0.000	0.492	7.0	0.000	0.342	7.0	0.000	1.138	7.0	0.000	0.885
	U[5.0C', 10.0C']	7.5	0.150	0.438	7.1	0.050	0.326	7.3	0.050	1.071	7.1	0.050	0.870
	U[10.0C', 20.0C']	7.7	0.050	0.429	7.7	0.050	0.311	7.7	0.050	0.949	7.7	0.050	0.760
	U[0.0C', 0.5C']	7.6	0.000	0.716	7.5	0.150	0.572	7.5	0.250	1.300	7.6	0.100	1.027
	U[0.5C', 1.0C']	7.4	0.100	0.758	7.5	0.050	0.642	7.6	0.100	1.269	7.6	0.100	1.043
50	U[1.0C', 4.0C']	7.0	0.000	0.803	7.0	0.000	0.627	7.0	0.000	1.402	7.0	0.000	1.206
30	U[0.0C', 5.0C']	7.0	0.000	0.774	7.0	0.000	0.672	7.0	0.000	1.418	7.0	0.000	1.188
	U[5.0C', 10.0C']	7.1	0.050	0.829	7.1	0.050	0.723	7.0	0.000	1.500	7.1	0.050	1.246
	U[10.0C', 20.0C']	7.3	0.150	0.816	7.3	0.150	0.756	7.5	0.050	1.399	7.5	0.050	1.169

Table 6.29: ILP variants compared on a set of 5 instances with vertices and a density of 0.5 each.

Parame	ters	ILP1			ILP1	*		ILP2	!		ILP2	<u></u> *	
ItMax	TabuTenure	\overline{obj}	sd	$\overline{time}(s)$	\overline{obj}	sd	$\overline{time}(s)$	\overline{obj}	sd	$\overline{time}(s)$	\overline{obj}	sd	$\overline{time}(s)$
	U[0.0C', 0.5C']	8.8	0.100	0.355	8.9	0.050	0.126	8.9	0.050	1.222	8.7	0.050	0.938
	U[0.5C', 1.0C']	8.8	0.000	0.360	8.8	0.000	0.150	8.9	0.050	1.192	8.8	0.100	0.923
1	U[1.0C', 4.0C']	8.7	0.050	0.366	8.9	0.050	0.132	8.9	0.050	1.149	8.9	0.050	0.875
1	U[0.0C', 5.0C']	8.8	0.000	0.356	8.9	0.050	0.126	9.0	0.000	1.183	8.8	0.100	0.934
	U[5.0C', 10.0C']	9.0	0.000	0.335	8.9	0.050	0.133	8.6	0.000	1.330	8.9	0.050	0.892
	U[10.0C', 20.0C']	9.0	0.000	0.326	9.0	0.000	0.121	9.0	0.000	1.172	9.0	0.000	0.831
	U[0.0C', 0.5C']	8.7	0.050	0.511	8.7	0.050	0.317	8.8	0.100	1.396	8.8	0.000	1.065
	U[0.5C', 1.0C']	8.6	0.000	0.565	8.7	0.050	0.326	8.6	0.000	1.497	8.7	0.050	1.140
10	U[1.0C', 4.0C']	8.6	0.000	0.541	8.6	0.000	0.326	8.6	0.000	1.447	8.6	0.000	1.129
10	U[0.0C', 5.0C']	8.6	0.000	0.541	8.6	0.000	0.319	8.5	0.050	1.486	8.6	0.000	1.136
	U[5.0C', 10.0C']	8.6	0.000	0.566	8.6	0.000	0.341	8.6	0.000	1.451	8.8	0.100	1.089
	U[10.0C', 20.0C']	8.9	0.050	0.538	8.8	0.000	0.355	8.9	0.050	1.361	8.9	0.050	1.111
	U[0.0C', 0.5C']	8.7	0.050	0.716	9.0	0.000	0.468	8.6	0.000	1.696	8.6	0.000	1.340
	U[0.5C', 1.0C']	8.6	0.000	0.726	8.6	0.000	0.576	8.5	0.050	1.670	8.6	0.000	1.325
20	U[1.0C', 4.0C']	8.6	0.000	0.714	8.5	0.050	0.532	8.5	0.050	1.697	8.6	0.000	1.367
20	U[0.0C', 5.0C']	8.6	0.000	0.728	8.6	0.000	0.513	8.5	0.050	1.699	8.6	0.000	1.356
	U[5.0C', 10.0C']	8.6	0.000	0.726	8.6	0.000	0.543	8.6	0.000	1.659	8.6	0.000	1.395
	U[10.0C', 20.0C']	8.6	0.000	0.787	8.9	0.050	0.533	8.8	0.000	1.675	8.9	0.050	1.262
	U[0.0C', 0.5C']	9.0	0.000	1.156	8.7	0.050	1.065	8.7	0.050	2.217	8.8	0.100	1.829
	U[0.5C', 1.0C']	8.8	0.000	1.213	8.7	0.050	1.081	8.8	0.000	2.165	8.6	0.000	1.958
50	U[1.0C', 4.0C']	8.3	0.050	1.405	8.5	0.050	1.111	8.5	0.050	2.289	8.6	0.000	1.872
30	U[0.0C', 5.0C']	8.6	0.000	1.282	8.5	0.050	1.154	8.6	0.000	2.169	8.6	0.000	1.928
	U[5.0C', 10.0C']	8.6	0.000	1.322	8.6	0.000	1.109	8.6	0.000	2.190	8.6	0.000	1.952
	U[10.0C', 20.0C']	8.6	0.000	1.480	8.7	0.050	1.179	8.6	0.000	2.350	8.7	0.050	1.947

Table 6.30: ILP variants compared on a set of 5 instances with vertices and a density of 0.5 each.

Parameters		OneS	tepCD		ILP1			ILP2		
RecoloredTT	TabuTenure	\overline{obj}	sd	\overline{time}	\overline{obj}	sd	\overline{time}	\overline{obj}	sd	\overline{time}
	U[0.0C', 0.5C']	10.3	0.050	0.222	10.4	0.000	0.479	10.3	0.150	1.081
	U[0.5C', 1.0C']	10.1	0.050	0.141	10.1	0.050	0.432	10.0	0.000	1.102
	U[1.0C', 4.0C']	10.0	0.000	0.113	10.0	0.000	0.410	10.0	0.000	1.042
0.0	U[0.0C', 5.0C']	10.0	0.000	0.114	10.0	0.000	0.414	10.0	0.000	1.056
	U[5.0C', 10.0C']	10.0	0.000	0.122	10.0	0.000	0.435	10.0	0.000	1.072
	U[10.0C', 20.0C']	10.2	0.100	0.142	10.1	0.050	0.425	10.2	0.100	1.020
	U[0.0C', 0.5C']	10.4	0.000	0.126	10.7	0.150	0.359	10.5	0.150	0.940
	U[0.5C', 1.0C']	10.0	0.000	0.122	10.2	0.000	0.410	10.2	0.100	1.032
0.2	U[1.0C', 4.0C']	10.0	0.000	0.110	10.0	0.000	0.434	10.0	0.000	1.032
0.3	U[0.0C', 5.0C']	10.0	0.000	0.121	10.0	0.000	0.411	10.0	0.000	1.046
	U[5.0C', 10.0C']	10.1	0.050	0.124	10.0	0.000	0.440	10.0	0.000	1.053
	U[10.0C', 20.0C']	10.2	0.100	0.133	10.0	0.000	0.446	10.0	0.000	1.070
	U[0.0C', 0.5C']	10.6	0.100	0.112	10.4	0.200	0.383	10.2	0.100	1.024
	U[0.5C', 1.0C']	10.2	0.000	0.119	10.0	0.000	0.419	10.3	0.050	0.983
0.5	U[1.0C', 4.0C']	10.0	0.000	0.114	10.0	0.000	0.404	10.0	0.000	1.020
0.5	U[0.0C', 5.0C']	10.0	0.000	0.131	10.0	0.000	0.414	10.0	0.000	1.057
	U[5.0C', 10.0C']	10.0	0.000	0.118	10.0	0.000	0.430	10.0	0.000	1.058
	U[10.0C', 20.0C']	10.2	0.100	0.134	10.1	0.050	0.416	10.2	0.000	1.009
	U[0.0C', 0.5C']	10.4	0.000	0.117	10.7	0.050	0.348	10.5	0.150	0.972
	U[0.5C', 1.0C']	10.2	0.000	0.114	10.1	0.050	0.418	10.0	0.000	1.081
1.0	U[1.0C', 4.0C']	10.0	0.000	0.113	10.0	0.000	0.413	10.0	0.000	1.050
1.0	U[0.0C', 5.0C']	10.0	0.000	0.112	10.0	0.000	0.400	10.0	0.000	1.058
	U[5.0C', 10.0C']	10.0	0.000	0.122	10.0	0.000	0.415	10.0	0.000	1.077
	U[10.0C', 20.0C']	10.0	0.000	0.161	10.1	0.050	0.421	10.1	0.050	1.117
	U[0.0C', 0.5C']	10.6	0.000	0.117	10.6	0.100	0.367	10.1	0.050	1.088
	U[0.5C', 1.0C']	10.1	0.050	0.132	10.1	0.050	0.407	10.3	0.050	0.997
2.0	U[1.0C', 4.0C']	10.0	0.000	0.109	10.0	0.000	0.414	10.0	0.000	1.061
2.0	U[0.0C', 5.0C']	10.0	0.000	0.116	10.0	0.000	0.415	10.0	0.000	1.132
	U[5.0C', 10.0C']	10.0	0.000	0.123	10.0	0.000	0.425	10.0	0.000	1.095
	U[10.0C', 20.0C']	10.0	0.000	0.140	10.2	0.100	0.394	10.2	0.100	1.013
	U[0.0C', 0.5C']	10.5	0.050	0.120	10.4	0.100	0.397	10.5	0.150	0.934
	U[0.5C', 1.0C']	10.0	0.000	0.112	10.1	0.050	0.414	10.2	0.100	1.031
5.0	U[1.0C', 4.0C']	10.0	0.000	0.110	10.0	0.000	0.411	10.0	0.000	1.043
3.0	U[0.0C', 5.0C']	10.1	0.050	0.111	10.0	0.000	0.421	10.0	0.000	1.040
	U[5.0C', 10.0C']	10.0	0.000	0.127	10.0	0.000	0.420	10.0	0.000	1.044
	U[10.0C', 20.0C']	10.0	0.000	0.137	10.1	0.050	0.431	10.0	0.000	1.088
	U[0.0C', 0.5C']	10.2	0.000	0.146	10.5	0.150	0.395	10.6	0.100	0.905
	U[0.5C', 1.0C']	10.1	0.050	0.128	10.1	0.050	0.439	10.2	0.100	1.027
10.0	U[1.0C', 4.0C']	10.0	0.000	0.114	10.0	0.000	0.416	10.0	0.000	1.060
10.0	U[0.0C', 5.0C']	10.0	0.000	0.111	10.0	0.000	0.415	10.0	0.000	1.045
	U[5.0C', 10.0C']	10.1	0.050	0.118	10.0	0.000	0.426	10.0	0.000	1.057
	U[10.0C', 20.0C']	10.0	0.000	0.145	10.2	0.100	0.414	10.1	0.050	1.053
					1					

Table 6.31: ILP variants compared on a set of 5 instances with 90 vertices and a density of 0.7 each.

Parameters		OneS	tepCD		ILP1			ILP2		
RecoloredTT	TabuTenure	\overline{obj}	sd	\overline{time}	\overline{obj}	sd	\overline{time}	\overline{obj}	sd	\overline{time}
	U[0.0C', 0.5C']	12.8	0.000	0.220	12.9	0.150	0.576	12.9	0.050	1.212
	U[0.5C', 1.0C']	12.3	0.050	0.207	12.4	0.100	0.646	12.6	0.000	1.328
0.0	U[1.0C', 4.0C']	12.3	0.050	0.195	12.2	0.100	0.623	12.4	0.000	1.362
0.0	U[0.0C', 5.0C']	12.1	0.050	0.224	12.3	0.050	0.616	12.3	0.050	1.386
	U[5.0C', 10.0C']	12.5	0.050	0.199	12.5	0.050	0.601	12.4	0.100	1.413
	U[10.0C', 20.0C']	12.8	0.000	0.182	12.6	0.100	0.610	12.7	0.050	1.284
	U[0.0C', 0.5C']	12.8	0.000	0.201	12.8	0.000	0.563	13.0	0.100	1.201
	U[0.5C', 1.0C']	12.7	0.050	0.184	12.6	0.000	0.588	12.6	0.100	1.319
0.2	U[1.0C', 4.0C']	12.3	0.050	0.192	12.4	0.000	0.597	12.2	0.000	1.413
0.3	U[0.0C', 5.0C']	12.2	0.100	0.195	12.2	0.100	0.641	12.2	0.000	1.415
	U[5.0C', 10.0C']	12.3	0.050	0.201	12.6	0.100	0.601	12.2	0.000	1.417
	U[10.0C', 20.0C']	12.6	0.100	0.194	12.4	0.100	0.651	12.5	0.050	1.332
	U[0.0C', 0.5C']	13.0	0.100	0.189	13.0	0.100	0.559	12.9	0.050	1.225
	U[0.5C', 1.0C']	12.5	0.150	0.200	12.5	0.050	0.609	12.5	0.050	1.329
0.5	U[1.0C', 4.0C']	12.2	0.000	0.195	12.2	0.000	0.639	12.3	0.050	1.437
0.5	U[0.0C', 5.0C']	12.3	0.050	0.202	12.2	0.100	0.632	12.3	0.050	1.396
	U[5.0C', 10.0C']	12.6	0.100	0.195	12.4	0.100	0.649	12.4	0.100	1.372
	U[10.0C', 20.0C']	12.8	0.000	0.181	12.7	0.050	0.602	12.7	0.050	1.273
	U[0.0C', 0.5C']	13.0	0.100	0.187	12.9	0.050	0.557	12.8	0.000	1.247
	U[0.5C', 1.0C']	12.8	0.000	0.164	12.6	0.000	0.604	12.5	0.050	1.375
1.0	U[1.0C', 4.0C']	12.3	0.050	0.185	12.2	0.100	0.628	12.4	0.000	1.368
1.0	U[0.0C', 5.0C']	12.2	0.000	0.196	12.2	0.000	0.646	12.4	0.000	1.353
	U[5.0C', 10.0C']	12.5	0.050	0.210	12.4	0.100	0.628	12.6	0.100	1.299
	U[10.0C', 20.0C']	12.7	0.050	0.186	12.7	0.050	0.594	12.6	0.100	1.307
	U[0.0C', 0.5C']	12.7	0.150	0.194	12.8	0.000	0.585	13.0	0.300	1.220
	U[0.5C', 1.0C']	12.8	0.000	0.159	12.5	0.050	0.602	12.6	0.000	1.306
2.0	U[1.0C', 4.0C']	12.3	0.050	0.179	12.2	0.100	0.662	12.4	0.000	1.364
2.0	U[0.0C', 5.0C']	12.1	0.050	0.198	12.2	0.100	0.645	12.4	0.000	1.375
	U[5.0C', 10.0C']	12.4	0.100	0.200	12.3	0.150	0.654	12.5	0.050	1.343
	U[10.0C', 20.0C']	12.6	0.100	0.187	12.6	0.100	0.597	12.7	0.050	1.267
	U[0.0C', 0.5C']	13.0	0.000	0.171	12.8	0.100	0.582	12.7	0.050	1.278
	U[0.5C', 1.0C']	12.4	0.000	0.187	12.8	0.000	0.564	12.6	0.100	1.288
5.0	U[1.0C', 4.0C']	12.1	0.050	0.210	12.4	0.100	0.617	12.4	0.000	1.351
5.0	U[0.0C', 5.0C']	12.3	0.050	0.196	12.3	0.050	0.637	12.4	0.000	1.359
	U[5.0C', 10.0C']	12.4	0.000	0.194	12.2	0.000	0.665	12.2	0.000	1.446
	U[10.0C', 20.0C']	12.7	0.050	0.195	12.7	0.050	0.614	12.7	0.050	1.262
	U[0.0C', 0.5C']	12.8	0.100	0.189	13.1	0.050	0.522	12.9	0.050	1.231
	U[0.5C', 1.0C']	12.4	0.100	0.188	12.6	0.100	0.567	12.7	0.050	1.243
10.0	U[1.0C', 4.0C']	12.1	0.050	0.195	12.2	0.000	0.610	12.1	0.050	1.445
10.0	U[0.0C', 5.0C']	12.3	0.050	0.204	12.3	0.050	0.574	12.3	0.050	1.403
	U[5.0C', 10.0C']	12.4	0.100	0.196	12.5	0.050	0.591	12.3	0.050	1.410
	U[10.0C', 20.0C']	12.7	0.050	0.182	12.7	0.050	0.575	12.6	0.100	1.355

Table 6.32: ILP variants compared on a set of 5 instances with 90 vertices and a density of 0.8 each.

Parameters		OneS	tepCD		ILP1			ILP2		
RecoloredTT	TabuTenure	\overline{obj}	sd	\overline{time}	\overline{obj}	sd	\overline{time}	\overline{obj}	sd	\overline{time}
	U[0.0C', 0.5C']	16.9	0.250	0.371	16.7	0.050	0.721	17.2	0.300	1.234
	U[0.5C', 1.0C']	16.3	0.050	0.309	16.1	0.050	0.731	16.3	0.050	1.365
0.0	U[1.0C', 4.0C']	16.0	0.000	0.297	15.8	0.000	0.774	15.9	0.050	1.518
0.0	U[0.0C', 5.0C']	16.0	0.100	0.294	15.9	0.050	0.737	16.0	0.100	1.482
	U[5.0C', 10.0C']	16.0	0.000	0.306	16.1	0.050	0.743	15.9	0.050	1.515
	U[10.0C', 20.0C']	16.0	0.100	0.336	16.0	0.000	0.781	16.1	0.050	1.424
	U[0.0C', 0.5C']	16.6	0.100	0.365	16.8	0.100	0.700	17.2	0.100	1.226
	U[0.5C', 1.0C']	16.5	0.050	0.296	16.3	0.050	0.683	16.2	0.000	1.387
0.2	U[1.0C', 4.0C']	15.8	0.000	0.299	15.9	0.050	0.773	15.9	0.050	1.515
0.3	U[0.0C', 5.0C']	15.8	0.000	0.337	15.9	0.050	0.757	16.0	0.100	1.463
	U[5.0C', 10.0C']	16.0	0.100	0.337	15.9	0.050	0.814	16.0	0.000	1.449
	U[10.0C', 20.0C']	16.1	0.050	0.330	16.1	0.050	0.836	16.0	0.100	1.477
	U[0.0C', 0.5C']	16.9	0.250	0.345	16.5	0.150	0.782	17.3	0.150	1.166
	U[0.5C', 1.0C']	16.2	0.100	0.310	16.1	0.050	0.721	16.2	0.100	1.402
0.5	U[1.0C', 4.0C']	16.1	0.050	0.313	15.9	0.050	0.774	15.8	0.000	1.532
0.5	U[0.0C', 5.0C']	16.1	0.150	0.300	15.8	0.000	0.788	15.8	0.000	1.492
	U[5.0C', 10.0C']	16.0	0.000	0.311	16.1	0.050	0.733	15.9	0.050	1.493
	U[10.0C', 20.0C']	16.2	0.000	0.332	16.1	0.050	0.784	16.1	0.050	1.450
	U[0.0C', 0.5C']	16.9	0.150	0.319	16.7	0.250	0.778	17.2	0.100	1.190
	U[0.5C', 1.0C']	16.3	0.050	0.293	16.1	0.050	0.679	16.0	0.100	1.482
	U[1.0C', 4.0C']	15.9	0.050	0.339	16.0	0.100	0.756	16.0	0.000	1.422
1.0	U[0.0C', 5.0C']	16.0	0.100	0.302	15.9	0.050	0.809	15.8	0.000	1.533
	U[5.0C', 10.0C']	15.9	0.050	0.336	15.9	0.050	0.776	15.9	0.050	1.481
	U[10.0C', 20.0C']	16.0	0.000	0.344	15.9	0.050	0.808	16.1	0.050	1.470
	U[0.0C', 0.5C']	16.9	0.150	0.327	17.0	0.100	0.659	16.7	0.050	1.357
	U[0.5C', 1.0C']	16.3	0.050	0.310	16.3	0.050	0.696	16.4	0.100	1.359
	U[1.0C', 4.0C']	15.9	0.050	0.319	16.0	0.100	0.756	15.9	0.050	1.486
2.0	U[0.0C', 5.0C']	15.9	0.050	0.323	15.9	0.050	0.772	15.9	0.050	1.485
	U[5.0C', 10.0C']	16.0	0.000	0.303	15.8	0.000	0.840	16.0	0.000	1.443
	U[10.0C', 20.0C']	16.0	0.000	0.329	16.1	0.050	0.752	16.0	0.100	1.519
	U[0.0C', 0.5C']	16.9	0.150	0.299	16.6	0.100	0.725	17.2	0.100	1.157
	U[0.5C', 1.0C']	16.1	0.050	0.295	16.2	0.000	0.676	16.3	0.050	1.311
	U[1.0C', 4.0C']	15.9	0.050	0.286	15.8	0.000	0.790	16.0	0.100	1.402
5.0	U[0.0C', 5.0C']	15.8	0.000	0.292	15.9	0.050	0.774	16.0	0.000	1.408
	U[5.0C', 10.0C']	16.0	0.100	0.333	15.9	0.050	0.797	16.0	0.000	1.424
	U[10.0C', 20.0C']	16.1	0.050	0.311	16.0	0.000	0.775	16.0	0.000	1.444
	U[0.0C', 0.5C']	16.8	0.100	0.314	16.5	0.250	0.790	17.1	0.150	1.161
	U[0.5C', 1.0C']	16.2	0.000	0.289	16.3	0.050	0.719	16.5	0.050	1.269
	U[1.0C', 4.0C']	16.0	0.100	0.279	15.9	0.050	0.779	15.8	0.000	1.469
10.0	U[0.0C', 5.0C']	15.8	0.000	0.301	15.9	0.050	0.803	15.8	0.000	1.523
	U[5.0C', 10.0C']	15.9	0.050	0.310	15.9	0.050	0.792	15.9	0.050	1.473
	U[10.0C', 20.0C']	16.1	0.050	0.319	15.9	0.050	0.820	16.0	0.100	1.450
	0 [10.00 , 20.00]	10.1	0.050	0.517	10.7	1 0.050	0.020	13.0	0.100	1.150

Table 6.33: ILP variants compared on a set of 5 instances with 90 vertices and a density of 0.9 each.

Parameters		Ones	StepCD		ILP1			ILP2	2	
RecoloredTT	TabuTenure	\overline{obj}	sd	\overline{time}	\overline{obj}	sd	\overline{time}	\overline{obj}	sd	\overline{time}
	U[0.0C', 0.5C']	8.2	0.027	0.095	8.3	0.055	0.247	8.2	0.027	0.678
	U[0.5C', 1.0C']	8.2	0.055	0.080	8.1	0.083	0.269	8.1	0.027	0.717
0.0	U[1.0C', 4.0C']	7.8	0.000	0.098	7.8	0.000	0.317	7.9	0.027	0.785
0.0	U[0.0C', 5.0C']	7.9	0.027	0.091	7.8	0.000	0.318	8.0	0.055	0.750
	U[5.0C', 10.0C']	8.0	0.000	0.092	8.0	0.055	0.300	7.9	0.027	0.771
	U[10.0C', 20.0C']	8.2	0.000	0.082	8.1	0.027	0.276	8.1	0.000	0.743
	U[0.0C', 0.5C']	8.2	0.055	0.083	8.2	0.027	0.259	8.2	0.083	0.677
	U[0.5C', 1.0C']	8.2	0.083	0.078	8.1	0.000	0.274	8.2	0.000	0.679
0.3	U[1.0C', 4.0C']	8.0	0.055	0.082	7.9	0.027	0.289	7.8	0.000	0.802
0.3	U[0.0C', 5.0C']	7.9	0.027	0.091	7.9	0.027	0.292	8.0	0.000	0.749
	U[5.0C', 10.0C']	8.0	0.027	0.090	8.0	0.027	0.286	8.0	0.083	0.762
	U[10.0C', 20.0C']	8.2	0.055	0.083	8.2	0.027	0.261	8.2	0.055	0.682
	U[0.0C', 0.5C']	8.2	0.027	0.080	8.2	0.083	0.273	8.3	0.027	0.667
	U[0.5C', 1.0C']	8.1	0.055	0.083	8.0	0.027	0.280	8.1	0.027	0.700
0.5	U[1.0C', 4.0C']	7.8	0.000	0.081	7.8	0.000	0.312	7.9	0.027	0.771
0.3	U[0.0C', 5.0C']	7.9	0.027	0.093	7.9	0.027	0.293	7.9	0.027	0.772
	U[5.0C', 10.0C']	8.0	0.055	0.094	8.0	0.055	0.289	8.1	0.055	0.717
	U[10.0C', 20.0C']	8.2	0.027	0.084	8.0	0.027	0.299	8.2	0.055	0.687
	U[0.0C', 0.5C']	8.2	0.027	0.081	8.3	0.000	0.261	8.2	0.027	0.675
	U[0.5C', 1.0C']	8.2	0.000	0.076	8.2	0.055	0.269	8.1	0.000	0.727
1.0	U[1.0C', 4.0C']	7.8	0.000	0.093	7.9	0.027	0.297	8.0	0.027	0.731
1.0	U[0.0C', 5.0C']	7.9	0.027	0.090	7.9	0.027	0.300	7.9	0.027	0.786
	U[5.0C', 10.0C']	7.8	0.000	0.097	7.9	0.027	0.310	8.0	0.000	0.738
	U[10.0C', 20.0C']	8.1	0.027	0.088	8.1	0.055	0.288	8.1	0.027	0.718
	U[0.0C', 0.5C']	8.2	0.027	0.079	8.3	0.055	0.251	8.3	0.055	0.666
	U[0.5C', 1.0C']	8.1	0.027	0.078	8.0	0.027	0.272	8.2	0.027	0.669
2.0	U[1.0C', 4.0C']	7.9	0.027	0.084	7.9	0.027	0.298	7.9	0.027	0.776
2.0	U[0.0C', 5.0C']	7.8	0.000	0.089	7.9	0.027	0.294	7.9	0.027	0.767
	U[5.0C', 10.0C']	7.9	0.027	0.092	7.9	0.027	0.310	8.1	0.055	0.735
	U[10.0C', 20.0C']	8.1	0.027	0.097	8.0	0.000	0.317	8.1	0.000	0.740
	U[0.0C', 0.5C']	8.2	0.055	0.083	8.3	0.055	0.247	8.2	0.027	0.685
	U[0.5C', 1.0C']	8.1	0.027	0.075	8.1	0.083	0.270	8.2	0.055	0.695
5.0	U[1.0C', 4.0C']	7.8	0.000	0.093	7.8	0.000	0.305	8.1	0.055	0.724
5.0	U[0.0C', 5.0C']	7.9	0.027	0.091	7.8	0.000	0.318	8.0	0.055	0.760
	U[5.0C', 10.0C']	8.0	0.055	0.093	8.1	0.055	0.289	7.8	0.000	0.785
	U[10.0C', 20.0C']	8.2	0.055	0.094	8.1	0.000	0.293	8.2	0.055	0.683
	U[0.0C', 0.5C']	8.2	0.083	0.080	8.2	0.055	0.271	8.2	0.083	0.700
	U[0.5C', 1.0C']	8.1	0.027	0.079	8.1	0.055	0.268	8.1	0.055	0.726
10.0	U[1.0C', 4.0C']	7.8	0.000	0.093	8.0	0.083	0.285	8.0	0.055	0.767
10.0	U[0.0C', 5.0C']	7.9	0.027	0.104	7.8	0.000	0.302	8.0	0.055	0.770
	U[5.0C', 10.0C']	8.0	0.027	0.086	8.0	0.055	0.293	7.9	0.027	0.758
	U[10.0C', 20.0C']	8.2	0.055	0.083	8.1	0.027	0.282	8.1	0.027	0.723

Table 6.34: ILP variants compared on a set of 5 instances with vertices and a density of 0.5 each.

Parameters		Ones	StepCD		ILP1			ILP2	2	
RecoloredTT	TabuTenure	\overline{obj}	sd	\overline{time}	\overline{obj}	sd	\overline{time}	\overline{obj}	sd	\overline{time}
	U[0.0C', 0.5C']	7.6	0.100	0.059	7.5	0.050	0.291	7.9	0.050	0.837
	U[0.5C', 1.0C']	7.6	0.100	0.062	7.7	0.050	0.273	7.7	0.150	0.880
0.0	U[1.0C', 4.0C']	7.1	0.050	0.073	7.1	0.050	0.326	7.2	0.000	0.958
0.0	U[0.0C', 5.0C']	7.1	0.050	0.070	7.2	0.100	0.310	7.3	0.150	0.955
	U[5.0C', 10.0C']	7.7	0.050	0.061	7.7	0.050	0.283	7.6	0.000	0.883
	U[10.0C', 20.0C']	7.8	0.000	0.059	7.8	0.000	0.263	7.8	0.000	0.840
	U[0.0C', 0.5C']	7.8	0.000	0.054	7.8	0.100	0.268	7.5	0.150	0.905
	U[0.5C', 1.0C']	7.4	0.100	0.065	7.6	0.100	0.289	7.8	0.000	0.836
0.3	U[1.0C', 4.0C']	7.2	0.100	0.080	7.2	0.100	0.307	7.3	0.050	1.002
0.3	U[0.0C', 5.0C']	7.4	0.100	0.064	7.4	0.100	0.298	7.4	0.100	0.945
	U[5.0C', 10.0C']	7.8	0.000	0.061	7.7	0.050	0.275	7.6	0.000	0.882
	U[10.0C', 20.0C']	7.8	0.000	0.059	7.7	0.050	0.279	7.8	0.000	0.811
	U[0.0C', 0.5C']	7.8	0.000	0.056	7.5	0.050	0.301	7.5	0.150	0.900
	U[0.5C', 1.0C']	7.6	0.100	0.058	7.5	0.150	0.291	7.6	0.100	0.854
0.5	U[1.0C', 4.0C']	7.4	0.100	0.071	7.5	0.050	0.293	7.2	0.000	0.993
0.5	U[0.0C', 5.0C']	7.2	0.100	0.067	7.2	0.000	0.317	7.2	0.100	0.975
	U[5.0C', 10.0C']	7.6	0.100	0.062	7.6	0.100	0.289	7.6	0.000	0.901
	U[10.0C', 20.0C']	7.8	0.000	0.062	7.8	0.000	0.280	7.8	0.000	0.881
	U[0.0C', 0.5C']	7.5	0.150	0.063	7.5	0.050	0.300	7.6	0.100	0.891
	U[0.5C', 1.0C']	7.6	0.100	0.060	7.5	0.150	0.290	7.6	0.100	0.880
1.0	U[1.0C', 4.0C']	7.3	0.050	0.072	7.3	0.050	0.311	7.2	0.100	0.974
1.0	U[0.0C', 5.0C']	7.3	0.050	0.069	7.3	0.050	0.309	7.3	0.050	0.952
	U[5.0C', 10.0C']	7.6	0.000	0.067	7.6	0.100	0.282	7.8	0.000	0.813
	U[10.0C', 20.0C']	7.8	0.000	0.062	7.8	0.000	0.276	7.8	0.100	0.822
	U[0.0C', 0.5C']	7.4	0.200	0.063	7.8	0.000	0.262	7.3	0.050	0.964
	U[0.5C', 1.0C']	7.6	0.100	0.061	7.5	0.150	0.295	7.7	0.050	0.900
2.0	U[1.0C', 4.0C']	7.3	0.050	0.069	7.2	0.000	0.331	7.3	0.050	0.931
2.0	U[0.0C', 5.0C']	7.1	0.050	0.073	7.4	0.100	0.295	7.1	0.050	1.017
	U[5.0C', 10.0C']	7.5	0.150	0.068	7.3	0.150	0.309	7.7	0.050	0.858
	U[10.0C', 20.0C']	7.8	0.000	0.062	7.8	0.000	0.259	7.7	0.050	0.857
	U[0.0C', 0.5C']	7.5	0.050	0.066	7.6	0.100	0.280	7.8	0.000	0.844
	U[0.5C', 1.0C']	7.6	0.100	0.060	7.5	0.150	0.287	7.5	0.150	0.931
5.0	U[1.0C', 4.0C']	7.2	0.100	0.068	7.4	0.100	0.293	7.2	0.000	0.946
5.0	U[0.0C', 5.0C']	7.6	0.000	0.062	7.4	0.100	0.302	7.2	0.100	0.959
	U[5.0C', 10.0C']	7.5	0.050	0.070	7.8	0.000	0.262	7.6	0.100	0.875
	U[10.0C', 20.0C']	7.8	0.000	0.063	7.8	0.000	0.275	7.7	0.050	0.863
	U[0.0C', 0.5C']	7.7	0.050	0.056	7.7	0.050	0.280	7.8	0.000	0.838
	U[0.5C', 1.0C']	7.7	0.050	0.055	7.6	0.100	0.286	7.6	0.100	0.888
10.0	U[1.0C', 4.0C']	7.5	0.050	0.063	7.3	0.150	0.306	7.3	0.050	0.963
10.0	U[0.0C', 5.0C']	7.2	0.100	0.070	7.3	0.050	0.321	7.0	0.000	1.008
	U[5.0C', 10.0C']	7.8	0.000	0.059	7.7	0.050	0.277	7.5	0.050	0.899
	U[10.0C', 20.0C']	7.9	0.050	0.061	7.6	0.100	0.288	7.9	0.050	0.822

Table 6.35: ILP variants compared on a set of 5 instances with vertices and a density of 0.5 each.

Parameters		Ones	StepCD		ILP1			ILP2	2	
RecoloredTT	TabuTenure	\overline{obj}	sd	\overline{time}	\overline{obj}	sd	\overline{time}	\overline{obj}	sd	\overline{time}
	U[0.0C', 0.5C']	8.8	0.000	0.119	8.6	0.000	0.462	8.9	0.050	1.328
	U[0.5C', 1.0C']	8.7	0.050	0.119	8.8	0.100	0.435	8.7	0.050	1.392
0.0	U[1.0C', 4.0C']	8.6	0.000	0.115	8.6	0.000	0.453	8.6	0.000	1.438
0.0	U[0.0C', 5.0C']	8.6	0.000	0.112	8.6	0.000	0.450	8.6	0.000	1.387
	U[5.0C', 10.0C']	8.8	0.000	0.116	8.7	0.050	0.448	8.7	0.050	1.400
	U[10.0C', 20.0C']	8.8	0.000	0.131	9.0	0.000	0.410	9.0	0.000	1.306
	U[0.0C', 0.5C']	8.7	0.050	0.113	8.8	0.100	0.432	8.6	0.000	1.440
	U[0.5C', 1.0C']	8.7	0.050	0.119	8.7	0.050	0.446	8.7	0.050	1.395
0.3	U[1.0C', 4.0C']	8.6	0.000	0.114	8.6	0.000	0.442	8.6	0.000	1.436
0.3	U[0.0C', 5.0C']	8.6	0.000	0.119	8.6	0.000	0.446	8.6	0.000	1.434
	U[5.0C', 10.0C']	8.7	0.050	0.127	8.7	0.050	0.452	8.6	0.000	1.438
	U[10.0C', 20.0C']	9.0	0.000	0.112	8.9	0.050	0.428	9.0	0.000	1.338
	U[0.0C', 0.5C']	9.0	0.000	0.105	8.7	0.050	0.445	8.7	0.050	1.371
	U[0.5C', 1.0C']	8.7	0.050	0.117	8.6	0.000	0.442	8.7	0.050	1.407
0.5	U[1.0C', 4.0C']	8.6	0.000	0.118	8.6	0.000	0.440	8.6	0.000	1.472
0.5	U[0.0C', 5.0C']	8.6	0.000	0.117	8.6	0.000	0.441	8.6	0.000	1.470
	U[5.0C', 10.0C']	8.7	0.050	0.125	8.7	0.050	0.442	8.7	0.050	1.421
	U[10.0C', 20.0C']	9.0	0.000	0.115	9.0	0.000	0.413	8.8	0.000	1.365
	U[0.0C', 0.5C']	8.8	0.000	0.113	8.6	0.000	0.466	8.8	0.000	1.356
	U[0.5C', 1.0C']	8.5	0.050	0.136	8.6	0.000	0.453	8.8	0.100	1.353
1.0	U[1.0C', 4.0C']	8.6	0.000	0.116	8.6	0.000	0.441	8.6	0.000	1.449
1.0	U[0.0C', 5.0C']	8.7	0.050	0.114	8.6	0.000	0.455	8.6	0.000	1.465
	U[5.0C', 10.0C']	8.6	0.000	0.126	8.8	0.100	0.436	8.6	0.000	1.417
	U[10.0C', 20.0C']	9.0	0.000	0.115	9.0	0.000	0.419	8.9	0.050	1.358
	U[0.0C', 0.5C']	8.6	0.000	0.127	8.8	0.100	0.430	8.9	0.050	1.318
	U[0.5C', 1.0C']	8.6	0.000	0.120	8.9	0.050	0.408	8.5	0.050	1.443
2.0	U[1.0C', 4.0C']	8.6	0.000	0.117	8.6	0.000	0.451	8.6	0.000	1.425
2.0	U[0.0C', 5.0C']	8.6	0.000	0.118	8.6	0.000	0.445	8.6	0.000	1.455
	U[5.0C', 10.0C']	8.7	0.050	0.121	8.8	0.100	0.428	8.8	0.000	1.349
	U[10.0C', 20.0C']	9.0	0.000	0.116	9.0	0.000	0.412	8.9	0.050	1.339
	U[0.0C', 0.5C']	8.7	0.050	0.117	8.8	0.100	0.437	8.7	0.050	1.421
	U[0.5C', 1.0C']	8.7	0.050	0.116	8.7	0.050	0.442	8.6	0.000	1.410
5.0	U[1.0C', 4.0C']	8.6	0.100	0.119	8.6	0.000	0.455	8.6	0.000	1.444
5.0	U[0.0C', 5.0C']	8.6	0.000	0.120	8.6	0.000	0.452	8.6	0.000	1.429
	U[5.0C', 10.0C']	8.6	0.000	0.125	8.6	0.000	0.464	8.8	0.100	1.394
	U[10.0C', 20.0C']	9.0	0.000	0.113	9.0	0.000	0.420	8.9	0.050	1.332
	U[0.0C', 0.5C']	8.7	0.050	0.115	8.8	0.100	0.423	8.8	0.000	1.343
	U[0.5C', 1.0C']	8.7	0.050	0.117	8.7	0.050	0.429	8.6	0.000	1.410
10.0	U[1.0C', 4.0C']	8.6	0.000	0.115	8.6	0.000	0.452	8.6	0.000	1.426
10.0	U[0.0C', 5.0C']	8.6	0.000	0.115	8.6	0.000	0.455	8.6	0.000	1.430
	U[5.0C', 10.0C']	8.6	0.000	0.132	8.8	0.000	0.434	8.6	0.000	1.439
	U[10.0C', 20.0C']	9.0	0.000	0.114	9.0	0.000	0.419	9.0	0.000	1.284

Table 6.36: ILP variants compared on a set of 5 instances with vertices and a density of 0.5 each.

Comparison to previous works

Since RANDOM performs best in terms of runtime and is not significantly inferior to other methods in terms of quality, its results are compared to those of [12] and [29] in tables 6.37 and 6.38. In 6.39 results are compared to [24].

Instance set		B & C		Random (10 runs/inst)			MA2		
vertices	density	LB	UB	\overline{obj}	sd	$\overline{time(s)}$	\overline{obj}	sd	$\overline{time(s)}$
20	0.5	3	3	3.00	0.00	0.01	3.00	0.00	0.14
40	0.5	4	4	4.00	0.00	0.02	4.00	0.00	0.60
60	0.5	5	5	5.00	0.00	0.06	5.63	0.49	2.00
70	0.5	6	6	6.00	0.00	0.08	6.06	0.24	3.33
80	0.5	6	6	6.27	0.13	0.15	6.94	0.29	4.90
90	0.5	6	7	7.88	0.17	0.36	7.55	0.50	7.49
100	0.5	6	7	7.12	0.01	0.32	7.93	0.30	11.04
120	0.5	7	8	8.64	0.19	0.52	9.22	0.43	21.05

Table 6.37: TODO

Instance set		B & C		Random (10 runs/inst)			MA2		
vertices	density	LB	UB	\overline{obj}	sd	$\overline{time(s)}$	\overline{obj}	sd	$\overline{time(s)}$
90	0.1	2	3	3.00	0.00	0.02	3.09	0.29	1.37
90	0.2	3	4	3.80	0.15	0.03	4.41	0.49	3.24
90	0.3	4	5	5.00	0.00	0.06	5.52	0.56	4.90
90	0.4	5	6	6.00	0.00	0.11	6.79	0.83	6.54
90	0.5	6	7	7.00	0.00	0.18	7.55	0.50	7.49
90	0.6	8	8	8.28	0.15	0.31	10.50	0.87	11.95
90	0.7	10	10	10.00	0.00	0.45	12.39	1.12	14.83
90	0.8	12	12	12.05	0.14	0.80	15.18	0.80	20.98
90	0.9	16	16	15.80	0.15	1.23	17.27	0.98	45.75

Table 6.38: pcpn120

Parameters		DSJC500.5-1		DSJC500.5-2		DSJC500.5-3		DSJC500.5-4	
ItMax	TabuTenure	Random	Noronha	Random	Noronha	Random	Noronha	Random	Noronha
1	U[0.25C', 0.75C']	53.0	53.5	47.6	47.8	45.0	44.8	43.4	43.5
	U[0.0C', 1.0C']	53.0	53.7	47.0	47.5	45.0	45.4	43.2	43.6
	U[0.0C', 0.5C']	52.0	53.1	47.0	47.3	45.0	44.6	44.0	42.8
	U[0.5C', 1.0C']	52.6	54.2	47.2	48.1	45.0	45.8	43.0	43.9
	U[0.25C', 1.0C']	53.0	53.8	47.2	47.9	45.0	45.5	43.6	43.6
	U[0.0C', 0.75C']	52.4	53.3	47.6	47.5	45.0	44.8	43.6	43.0
5	U[0.25C', 0.75C']	52.0	52.7	47.0	46.8	44.0	44.4	43.0	42.8
	U[0.0C', 1.0C']	51.4	52.9	47.0	46.8	44.0	44.7	42.4	42.7
	U[0.0C', 0.5C']	51.4	52.2	47.0	46.1	44.0	43.7	43.0	42.0
	U[0.5C', 1.0C']	52.0	53.3	47.0	47.7	44.4	44.9	43.0	43.0
	U[0.25C', 1.0C']	51.4	53.0	47.0	47.3	44.8	44.7	43.0	42.9
	U[0.0C', 0.75C']	52.0	52.5	47.0	46.6	44.6	44.0	43.0	42.4
10	U[0.25C', 0.75C']	51.0	52.5	47.0	46.7	44.0	44.0	43.0	42.4
	U[0.0C', 1.0C']	51.0	52.3	46.4	46.7	44.0	44.2	43.0	42.7
	U[0.0C', 0.5C']	51.0	51.3	47.0	45.9	44.0	43.3	43.0	42.0
	U[0.5C', 1.0C']	51.0	53.0	47.0	47.3	44.6	44.8	42.8	43.0
	U[0.25C', 1.0C']	51.8	52.8	46.4	46.9	44.0	44.2	43.0	42.8
	U[0.0C', 0.75C']	51.0	52.2	47.0	46.2	44.0	43.9	43.0	42.2

Table 6.39: in1

CHAPTER 7

Critical Reflection and Outlook

7.1 Critical Reflection

Selecting and optimizing the coloring of a subset of clusters regardless of their location in the graph does not tackle the problem in an efficient way. The selection does not take into account any features of the graph like regional density, although dense subgraphs involve the most danger of increasing the chromatic number by being colored with a suboptimal coloring. Considering graph features being crucial for a good selection of clusters, the selection presented in this thesis is done in a random way and therefore an optimal, partial recoloring can not be integrated in the solution by the tabu search more probably than any random coloring.

7.2 Future Works

Future works could consider a more suggestive selection of the clusters to be recolored. Rather than selecting all clusters of the same color, the set could be chosen by criteria of regional density. Putting effort in optimizing the coloring of these regions – e.g. by the use of exact methods – could lead to results of higher quality.

On finding dense subgraphs

Finding dense subgraphs is a intensively studied problem in graph theory and became more relevant in recent years because of its application to social network graphs. As long as there are no boundaries set on the size of the densest subgraph, it can be found in polynomial time, despite the fact that there are exponentially many subgraphs to consider [20, 37]. Additionally, Charikar [7] showed a 2 approximation to the densest subgraph problem in linear time using a very simple greedy algorithm which was previously studied by Asahiro et. al. [36]). The densest k-subgraph problem (DkS), which finds the densest subgraph of size k is shown to be \mathcal{NP} -hard [32, 37]. For the densest at-most-k-subgraph problem (DamkS), which searches for the densest subgraph of maximum size k (and therefore is a relaxation of DkS), Andersen

et.al. [1] showed that if there exists a α approximation for *DamkS*, then there exists a $\mathcal{O}(\alpha^2)$ approximisation for DkS, indicating that this problem is quite hard as well. Khuller and Saha showed that approximating DamkS is as hard as DkS within a constant factor [30], specifically an α approximation for *DamkS*, implies a 4α approximation for *DkS*. A number of polynomial time greedy heuristics for *DkS* are proposed in Asahiro et.al. [36].

Algorithm proposal

Algorithm 7 proposes a procedure for the discussed approach. The graph G, a recoloring algorithm RECOLOR like these presented in 5.2 and two integers used to parameterize the search for dense subgraphs are taken as input. In line 1 an initial solution is calculated and its chromatic number is assigned to cmax in line 2. In line 3 an algorithm is called that returns up to maxSubgraphs subgraphs with a maximum size of denseMaxSize. Line 4 to line 6 recolor all found subgraphs by applying RECOLOR and all remaining nodes colored with colors cmaxrandomly, all with cmax - 1 colors. In line 8 the tabusearch tries to eliminate all resulting conflicts and puts the recolored regions on the tabulist for a number of iterations as presented in [TODO]. Line 9 to 11 accept the new solution in case of feasablity and starts searching for dense regions again.

Algorithm 7: PCP HYBRID DENSERECOLORING

```
Input: An uncolored Graph G = (V, E), a recoloring-algorithm RECOLOR, two
          integers maxSubgraphs and denseMaxSize
   Output: A feasible Solution S
 1 Set S \leftarrow ONESTEPCD(G);
2 Set cmax \leftarrow the chromatic number of S;
3 Set D \leftarrow FINDDENSESUBGRAPHS(S, maxSubgraphs, denseMaxSize);
4 Let S' be the solution after recoloring all subgraphs in D with RECOLOR and
   cmax - 1 colors;
5 Let R be the set of all remaining nodes in V colored with cmax;
6 Let S' be the solution after recoloring R randomly with cmax - 1 colors;
7 Let C' be the set of nodes involved into color conflicts in S';
8 S' \leftarrow TABUSEARCH(S', D \cup R, C');
9 if S' is free of conflicts then
      S \leftarrow S':
10
      goto line 2;
12 return S;
```

CHAPTER 8

Summary

The PCP is a quite recently proposed COP which generalizes the classical VCP by considering the possibility to select subsets of vertices. While for the VCP much research has been done, only a few papers about the PCP has been published so far. In this work a strategy is presented that creates an initial solution by a heuristical algorithm and improves the solution quality by recoloring sets of vertices of same color before eliminating the resulting conflicts by applying a tabu search. It has been tried to enhance the algorithm presented in [24] by substituting the process of random recoloring by more sophisticated algorithms in order to minimize the number of resulting conflicts. Therefor a variation of the ONESTEPCD algorithm [21] and two ILPs were used. A local search algorithm then tries to eliminate all these conflicting vertices to create a feasible solution. Furthermore experiments with variations of the ILPs and a mechanism that puts the most recently recolored subgraph on the tabulist for an amount of iteration in order to protect the coloring of that subgraph from being overwritten have been done.

The results have shown that more sophisticated recoloring algorithms can reduce the number of conflicts dramatically. For the instances used, a random recoloring produces an amount of conflicting vertices up to 7.5 times higher than an optimized recoloring does. The fact that this gap is not reflected significantly in the final results leads to the conclusion that for the presented strategy the tabu search is much more relevant than the recoloring process. Finally an alternative strategy, that is suspected by the author to be more suitable for sophisticated recoloring methods has been proposed.

Bibliography

- [1] R. Andersen. Finding large and small dense subgraphs. *CoRR*, 0707032, 2007.
- [2] D. Applegate, R. Bixby, V. Chvátal, and W. Cook. Solution of a 15112-city traveling salesman problem. http://www.math.uwaterloo.ca/tsp/d15sol/index.html, 2001.
- [3] M. Templ B. Meindl. Analysis of commercial and free and open source solvers for linear optimization problems. 2012.
- [4] Lucile Belgacem, Irène Charon, and Olivier Hudry. A post-optimization method for the routing and wavelength assignment problem applied to scheduled lightpath demands. *European Journal of Operational Research*, 2013.
- [5] C. Blum and A. Roli. *Metaheuristics in combinatorial optimization: Overview and conceptual comparision*. ACM Computing Surveys, 2003.
- [6] M.Gurusamy C. S. Ram Murthy. Wdm optical networks concepts. *Design and Algorithms*, 2002.
- [7] M. Charikar. Greedy approximation algorithms for finding dense components in a graph. *APPROX*, (84-95), 2000.
- [8] Raymond Chiong. Nature-inspired algorithms for optimisation. *Studies in Computational Intelligence*, 193, 2009.
- [9] C.Volko. Selective graph coloring problem. 2012.
- [10] Bioinspired Computation F. Neumann, C. Witt. Bioinspired computation in combinatorial optimization. *Combinatorial Optimization, Natural Computing Series*, 2010.
- [11] C. Feremans. Generalized network design problems. *European Journal of Operational Research*, 148(1-3), 2003.
- [12] Yuri Frota, Nelson Maculan, Thiago F. Noronha, and Celso C. Ribeiro. A branch-and-cut algorithm for the partition coloring problem. *Networks*, 55(3):194–204, 2010.
- [13] M. R. Garey and D. S. Johnson. Computers and intractability: A guide to the theory of np-completeness. *Series of Books in the Mathematical Sciences*, 1, 1979.

- [14] M. Gendreau. Handbook of metaheuristics. Springer, 2010.
- [15] S.Pirkwieser G.Fritz, G.Raidl. Heuristic methods for the hop constrained survivable network design problem. 2011.
- [16] F. Glover. Future paths for integer programming and links to artificial intelligence. *Cambridge University Press*, 13(533–549), 1986.
- [17] S. Wright J. Nocedal. Numerical optimization. 2000.
- [18] R. M. Krishnaswamy and K. N. Sivarajan. Algorithms for routing and wavelength assignment based on solutions of lp-relaxations. *IEEE Communication Letters*, 5(10), 2001.
- [19] E. Lawler. Combinatorial optimization: Networks and matroids. 2002.
- [20] E.L. Lawler. Combinatorial optimization: Networks and matroids. 1976.
- [21] Guangzhi Li and Rahul Simha. The partition coloring problem and its application to wavelength routing and assignment. In *1st Workshop on Optical Networks*, 2000.
- [22] Goran Z. Marković and Vladanka S. Aćimović-Raspopović. Generalized network design problems. *Telfor Journal*, 2010.
- [23] B.Hu M.Leitner, G.Raidl. Solving two generalized network design problems with exact and heuristic methods. 2006.
- [24] Thiago F. Noronha and Celso C. Ribeiro. Routing and wavelength assignment by partition colouring. *European Journal of Operational Research*, 171(3):797–810, 2006.
- [25] I. H. Osman and G. Laporte. Metaheuristics: A bibliography. *Annals of Operations Research*, 63(513-623), 1996.
- [26] H.Romeijn P. Pardalos. Handbook of global optimization. 2, 2002.
- [27] C. M. Papadimitriou. Computational complexity. 1, 1994.
- [28] S.Pirkwieser P.Gebhard, G.Raidl. The vehicle routing problem with compartments based on solutions of lp-relaxations. 2012.
- [29] Petrica C. Pop, Bin Hu, and Günther R. Raidl. A memetic algorithm for the partition graph coloring problem. In *Extended Abstracts of the 14th International Conference on Computer Aided Systems Theory*, pages 167–169, Gran Canaria, Spain, 2013.
- [30] B. Saha S. Khuller. On finding dense subgraphs. 2009.
- [31] K. Jansen T. Erlebach. The complexity of path coloring and call scheduling. *Theoretical Computer Science*, 255, 2001.
- [32] G. Kortsarz U. Feige and D. Peleg. The dense k-subgraph problem. *Algorithmica*, 29(410-421), 1997.

- [33] Ingo Wegener. *Complexity Theory: Exploring the Limits of Efficient Algorithms*. Springer, 2005. Reflects recent developments in its emphasis on randomized and approximation algorithms and communication models.
- [34] David P. Williamson and David B. Shmoys. The design of approximation algorithms. *Cambridge University Press*, 2010.
- [35] D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization. *IEEE Transactions on Evolutionary Computation*, 1(67-82), 1997.
- [36] H. Tamakic T. Tokuyamad Y. Asahiroa, K. Iwamab. Greedily finding a dense subgraph. *Journal of Algorithms*, 34, 2000.
- [37] K.Iwama Y.Asahiro, R.Hassin. Complexity of ÿnding dense subgraphs. *Discrete Applied Mathematics*, 121(15–26), 2002.