(AU/ME/CM/FT/MI)

B.E. IV Semester

Examination, June 2017

Choice Based Credit System (CBCS)

Mathematics - III

Time: Three Hours] [Maximum Marks: 60

Note: i) Attempt any five questions.

ii) All questions carry equal marks.

Find the Fourier series of $f(x) = \frac{1}{x}(x-x)$ in the interval $(0,2\pi)$ Hence deduce that

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \dots$$

b) Find the half range cosine series of $f(x) = x(\pi - x)$ in the interval $(0, \pi)$ and hence deduce that

$$\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots$$

2. a) Find the Fourier transform of

$$f(x) = \begin{cases} 1 & |x| < 9 \\ 0 & |x| > 9 \end{cases}$$

Hence find the value of $\int_0^\infty \frac{\sin x}{x} dx$

b) Find the Fourier cosine transform of

$$f(x) = \begin{cases} x & 0 < x < 1 \\ 2 - x & 1 < x < 2 \\ 0 & -x > 2 \end{cases}$$

3. a) State and prove second shifting theorem.

(b) Show that
$$\int_0^\infty \frac{\cos 6t - \cos 4t}{t} = \log \frac{2}{3}$$

4. a) (i) Find the Inverse Laplace transform of the $\tan^{-1} \frac{2}{p}$

(ii) Find
$$L^{-1} \left\{ \frac{p+2}{p^2(p+3)} \right\}$$

b) Solve
$$(D^2 + 9)y = 18t$$
, $y(0) = 0$, $y(\frac{\pi}{2}) = 1$

5. a) Show that the function $e^{x}(\cos y + i \sin y)$ is Holomorphic and find its derivaties.

b) Evaluate the Integral

$$\int_0^{1+i} Z^2 dz$$

6. a) State and prove Cauchy's theorem.

b) Determine the pole of the function
$$f(z) = \frac{z^2}{(z+1)^2(z+2)}$$

and residue at each pole.

7. a) Use Picard's method of successive approximation obtain a solution upto third approximation of differential equation.

$$\frac{dy}{dx} = x + y^2$$
 where $y(0) = 0$

b) Employ Taylor's series method to obtain approximate value of y at x = 0.2 for the differential $\frac{dy}{dx} = x^2y - 1, y(0) = 1$ equation

8. a) Using Euler's method solve for y at x = 0.1 from
$$\frac{dy}{dx} = x + y + xy$$
, $y(0) = 1$ taking h = 0.025.

b) Apply Runge Kutta Fourth order method to find an approximate Value of y when x = 0.2 given that

$$\frac{dy}{dx} = x + y, y(0) = 1$$
