$$\mu_{eff} = \frac{\mu_o}{1 + (U_a + U_c V_{bseff})(\frac{V_{gsteff} + 2V_{th}}{T_{ox}}) + U_b(\frac{V_{gsteff} + 2V_{th}}{T_{ox}})^2}$$
(3.2.1)

To account for depletion mode devices, another mobility model option is given by the following

(mobMod = 2)
$$\mu_{eff} = \frac{\mu_o}{1 + (U_a + U_c V_{bseff})(\frac{V_{gsteff}}{Tox}) + U_b(\frac{V_{gsteff}}{Tox})^2}$$

To consider the body bias dependence of Eq. 3.2.1 further, we have introduced the following expression

$$(For mobMod = 3) (3.2.3)$$

$$\mu_{eff} = \frac{\mu_o}{1 + \left[U_a\left(\frac{V_{gsteff} + 2V_{th}}{T_{OX}}\right) + U_b\left(\frac{V_{gsteff} + 2V_{th}}{T_{OX}}\right)^2\right](1 + U_cV_{bseff})}$$

3.3 Unified Linear Current Expression

3.3.1 Intrinsic case $(R_{ds}=0)$

Generally, the following expression [2] is used to account for both drift and diffusion current