Design Project EEE F377

Al in Renewable Energy Forecasting

Faculty: Dr. Shazia Hasan

Tejas Kambli 2021A7PS0157U

Yashwanth Karuparthi 2021A7PS0136U

4 November, 2024

Overview

- Introduction 4 Data
- 2 Problem Statement
 5 Model
- 3 Literature Review 6 Results

Introduction

Photovoltaic (PV) Energy Generation:

> The process of converting sunlight directly into electricity using photovoltaic cells

Importance of forecasting Photovoltaic Energy Generation:

- Grid Stability and Management
- Cost Efficiency and Profitability
- Enhanced Integration of Renewable Energy

Problem Statement

- > Accurately forecasting PV energy generation is challenging due to the variability of solar resources
- > To develop and analyze hybrid deep learning model that combines multiple forecasting techniques to improve the accuracy of short-term PV energy predictions
- > Leverage historical weather and solar data to later utilize the developed model on real-time data

Literature Review

Models used	Data Used	Benefits	Disadvantages	Results
Multi-level fusion and self- attention transformer- based model	 2 years data Power generation data toal consumption Key weather features 	 Can perform better even with missing data in most important features Can capture complex patterns and generalize well 	 100% probability dropout layer - constraint the model ability to generalize to anomalies in data 	RMSE: 0.0460MAE: 0.0245
WPD-LSTM-CNN	4 months dataPower gen. and wind speed	 Better generalizability to outliers 	 Random initialization could lead the model to converge to suboptimal solutions 	MAE: 40.6RMSE: 79.6MSE: 6336.4R2: 0.99
LSTM-Convolutional encoder	 1 year data Active power Temp, humidity, wind speed, GHI, DHI 	 Can process long durational input sequences High accuracy in all forecasting categories 	High computational complexity	MAE: 0.217RMSE: 0.602

GHI: Global Horizontal Irradiance; DHI: Diffuse Horizontal Irradiance

Literature Review

Models used	Data Used	Benefits	Disadvantages	Results
BiLSTM	 Battery Type Ambient Temperature Charge Cycles 	 Can perform better even with missing data in most important features Can capture complex patterns and generalize well 	• 100% probability dropout layer - constraint the model ability to generalize to anomalies in data	RMSE: 0.0460MAE: 0.0245
GBDT-BiLSTM	 Historical PV generation Total Irradiation Temp., humidity, pressure, precipitation, wind speed 	 Solves the problem of time scale limitations Reduces cumulative errors Solves vanishing gradient problem 	 May have difficulties with longer forecast horizons Hourly update constraint with Teacher Forcing 	MAE: 0.112MSE: 0.141MASE: 0.102

Data Used

- > 3 months historical energy + solar + weather data (May, June, July) is used for training and testing the models
- > Key features include:
 - Energy delta
 - Global Horizontal Irradiance
 - Temperature
 - Pressure
 - Humidity

	Energy delta[Wh]	GHI	temp	pressure	humidity
Time					
2021-05-01 00:00:00	0	0.0	1.9	1016	96
2021-05-01 00:15:00	0	0.0	1.9	1016	96
2021-05-01 00:30:00	0	0.0	1.9	1016	96
2021-05-01 00:45:00	0	0.0	1.9	1016	96
2021-05-01 01:00:00	0	0.0	2.6	1015	97

Models Used

BiLSTM model:

- 5 layers architecture (2 Bidirectional LSTM + 2 dropout layers + 1 dense layer)
- Each layer has 250 neurons, functioning on ReLU activation function
- Trained on 10 epochs with batch size of 64
- Mean Squared Error loss function
- Adam optimizer is used for hyperparameter tuning

Teacher Forcing mechanism on 4 hybrid gradient boosting models with BiLSTM:

- > GBDT-BiLSTM
- > XGBoost-BiLSTM
- > CatBoost-BiLSTM
- > LightGBM-BiLSTM

Results using only energy delta + GHI

Model	MAE	MSE	RMSE	R2
BiLSTM	179.264314	122170.675042	349.529219	0.899611
GBDT-BiLSTM	15.6850	669.6340	25.8772	0.9263
XGBoost_BiLSTM	10.8162	441.6858	21.0163	0.9514
CatBoost-BiLSTM	14.0843	610.8645	24.7156	0.9309
LightGBM-BiLSTM	11.0640	447.2854	21.1491	0.9510

Results after adding weather data

Model	MAE	MSE	RMSE	R2
BiLSTM	179.264314	122170.675042	349.529219	0.899611
GBDT-BiLSTM	14.455092	633.9615	25.178593	0.928841
XGBoost_BiLSTM	12.196121	537.4874	23.183773	0.940582
CatBoost-BiLSTM	11.279689	468.5298	21.645548	0.945520
LightGBM-BiLSTM	13.774397	564.8327	23.766210	0.937324

Learning Curves with all features

Results from CatBoost-BiLSTM

