

EXAMENUL DE BACALAUREAT - 2007 Proba scrisă la MATEMATICĂ

PROBA D

Varianta092

Profilul: Filiera Teoretică: sp.: matematică-informatică, Filiera Vocațională, profil Militar, Specializarea: specializarea matematică-informatică Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore.

La toate subiectele se cer rezolvări cu soluții complete

SUBIECTUL I (20p)

- (4p)a) Să se determine $a \in \mathbb{R}$ astfel încât dreptele y = 2x + 1 și y = ax + 5 să fie paralele.
- (4p)**b)** Să se determine valoarea numărului $\cos^2 2007\pi - \sin^2 2007\pi$.
- c) Să se determine ecuația cercului care are pe AB diametru unde A(-4,0) și B(4,4). (4p)
- **d)** Să se determine numerele reale \vec{a} și \vec{b} astfel încât vectorii $\vec{v} = \vec{i} + \vec{a} \vec{j} + \vec{k}$ și $\vec{w} = \vec{b} \vec{i} + \vec{3} \vec{j} + \vec{k}$ (4p) să fie coliniari.
- e) Să se determine modulul numărului complex $(1+i)^8$. (2p)
- f) Să se determine aria triunghiului ABC cu lungimile laturilor de 5,6,7. (2p)

SUBIECTUL II (30p)

- (3p)a) Să se calculeze media aritmetică a elementelor mulțimii $P = \{11, 12, 13, ..., 18\}$.
- b) Să se determine câte progresii aritmetice de trei elemente cu rația strict pozitivă se pot (3p)forma cu elementele mulțimii $P = \{11, 12, 13, ..., 18\}.$
- (3p)c) Să se afle câte numere naturale satisfac relația $n^2 - 6n + 5 \le 0$.
- d) Să se determine câtul împărțirii polinomului $f = X^6 1$ la polinomul $g = X^2 + X + 1$. (3p)
- (3p)e) Să se determine probabilitatea ca un element $n \in \{1, 2, 3, 4\}$ să verifice relația $3^n > 4n + 5$.
 - **2.** Se consideră funcția $f: \mathbf{R} \to \mathbf{R}, f(x) = e^x + e^{-x}$.
- a) Să se calculeze f'(x), $x \in \mathbf{R}$. (3p)
- **b)** Să se determine $\lim_{x\to 0} \frac{f(x)-2}{x}$. (3p)
- (3p)c) Să se determine numărul punctelor de extrem local ale funcției f.
- d) Să se calculeze valoarea minimă a funcției f pe \mathbf{R} . (3p)
- e) Să se determine $\lim_{n\to\infty} \frac{1}{e^n} \int_{a}^{b} f(t) dt$.

SUBIECTUL III (20p)

Se consideră mulțimea $G = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \middle| a, b \in \mathbb{R}, a^2 + b^2 = 1 \right\}$, matricele

$$I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 și $M(x) = \begin{pmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{pmatrix}$, $x \in \mathbf{R}$.

- (4p) a) Să se arate că $I_2 \in G$ şi $M(x) \in G$, $\forall x \in \mathbf{R}$.
- **(4p) b)** Să se arate că dacă $A, B \in G$ atunci $A \cdot B \in G$.
- (4p) c) Să se arate că $\det A \cdot \det B = \det(A \cdot B)$ pentru orice $A, B \in G$.
- (2p) d) Să se arate că dacă $A = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \in G$, atunci matricea A este inversabilă şi $A^{-1} = 2aI_2 A$.
- (2p) e) Să se arate că dacă $A \in G$, atunci există $x \in [0,2\pi)$ astfel încât A = M(x).
- (2p) f) Utilizând formulele $\cos(a+b) = \cos a \cdot \cos b \sin a \cdot \sin b$ şi $\sin(a+b) = \sin a \cdot \cos b + \sin b \cdot \cos a$, $\forall a, b \in \mathbf{R}$, să se calculeze $M^n(x)$, $n \in \mathbf{N}^*$, $x \in \mathbf{R}$.
- (2p) g) Să se arate că există o matrice $A \in G$ astfel încât mulțimea $G(A) = \{A^n \mid n \in \mathbb{N}^* \}$ să fie infinită.

SUBIECTUL IV (20p)

Fie şirurile $(I_n)_{n\geq 0}$, $(a_n)_{n\geq 1}$, cu $I_0 = \int_0^{\frac{\pi}{4}} 1 \, dx$, $I_n = \int_0^{\frac{\pi}{4}} t g^{2n} x \, dx$,

$$a_n = 1 - \frac{1}{3} + \frac{1}{5} - \dots + \frac{(-1)^{n-1}}{2n-1}, \quad n \in \mathbb{N}^*.$$

- (4p) a) Să se calculeze I_0 și I_1 .
- **(4p) b)** Să se arate că $I_{n+1} + I_n = \frac{1}{2n+1}, n \in \mathbb{N}$.
- (4p) c) Să se arate că șirul $(I_n)_{n\geq 0}$ este monoton și mărginit.
- (2p) d) Să se calculeze $\lim_{n\to\infty} I_n$.
- (2p) e) Să se arate că $a_n = I_0 + (-1)^{n-1} I_n$, $\forall n \in \mathbb{N}^*$.
- (2p) **f**) Să se arate că $\lim_{n\to\infty} a_n = \frac{\pi}{4}$.
- (2p) g) Să se calculeze $\lim_{n\to\infty} (-1)^n n \cdot \left(\frac{\pi}{4} a_n\right)$.