

Hyper Log Log

How many different types of monkeys are

there?

Monkey Stack (sorted list, linked array, etc.)

- 1) Grabs monkey
- 2) Checks stack for identical monkeys
- 3) If no identical monkeys adds monkey to stack

Takes too long

Monkey Shelf (HashMap)

- 1) monkeys placed on the shelf are instantly sorted.
- 2) Slots for each monkey need to be configured beforehand

Takes too much storage

coinflips

Probility of all heads in

1 tosses
$$-\frac{1}{2^1}$$
2 tosses $-\frac{1}{2^2}$
3 tosses $-\frac{1}{2^3}$
4 tosses $-\frac{1}{2^4}$
5 tosses $-\frac{1}{2^5}$
Etc...

Magic Monkey Meatgrinder(Hash Function)

- 1) Generates random binary sequence for each monkey
- 2) Will generate same set for same monkey

Magic Monkey Meatgrinder(Hash Function)

- 1) Run monkey through meat grinder
- 2) Count amount of zeros in a row
- 3) Repeat for every monkey and Keep track of highest amount of zeros on scorecard

Using scorecard to estimate monkeys scanned

We can aproximate that we scanned 128 different types of monkeys

We can aproximate that we scanned 1024 different types of monkeys

What if we just get unlucky?

Take harmonic mean of all scorecards

$$\frac{4}{\frac{1}{15} + \frac{1}{2} + \frac{1}{3} + \frac{1}{3}} = 3.252$$

Real world application

redis

TIMESCALE

(a) influxdb

