

Applied Cryptography CPEG 472/672 Lecture 4A

Instructor: Nektarios Tsoutsos

Cryptographic Security

- We want to quantify security
 - Not necessarily binary (secure, insecure)
 - What is the effort to break a cipher?
- Two types of security
 - Informational Security
 - E.g. One Time Pad (impossible to break)
 - Theoretical focus
 - Computational Security
 - ⊙ E.g. AES (can't break in reasonable time)
 - Practical focus

Computational Security

- Expressed using
 - t: number of operations
 - e: probability of attack success
- ⊙ We say (t, e)-secure cipher
 - Attacker that performs at most t operations has success probability at most e
- Ideal block cipher with n-bit key:
 - Here, the best attack is brute force
 - ⊙ (t, t/2^n)-secure cipher

Measure security level in bits

- Assume successful attack (e almost 1)
 - We can express security as the number of operations t required for the attack
 - t-bits of security == 2^t steps required
- Security level may differ from key size
 - E.g., RSA with 2048-bit secret key offers
 ~100 bits of security

Attack parameters

- Parallelism?
 - Sequentially dependent operations
 - Independent operations
- Memory cost?
 - How much memory is consumed?
 - How many memory lookups are needed?
- Precomputation (offline stage)
 - Time/memory tradeoff
- Number of targets

Achieving security

- How to ensure ciphers can't be broken?
- Provable security
 - Mathematical proofs that algorithms can't be broken
 - Security reductions: Any method to break the cipher also yields a method to solve a known hard problem
- Heuristic security
 - Evidence that highly skilled people tried and failed

Provable Security

- Proofs relative to a hard math problem
 - E.g., factorization of large integers
 - Breaking the cipher is as hard as solving a mathematical problem
- Proofs relative to another crypto problem
 - We can only break the given cipher if we can first break another crypto primitive
 - E.g., A Feistel network is secure as along as the underlying function F is a secure PRP

Heuristic Security

- Provable security does not apply to all cryptographic algorithms
 - Many symmetric ciphers don't have a proof
- Heuristic Security
 - AES can't be reduced to another problem
 - AES itself is the hard problem!
 - Experts try to break reduced versions of algorithms (e.g., cipher with fewer rounds)
 - Establish a security margin

Key generation

- Random keys (e.g., via PRNG)
 - Symmetric (e.g., AES)
 - Asymmetric (primes for RSA)
 - Requires a key generation algorithm
 - ⊙ openssl genrsa 4096
- Using a password
 - Requires a key derivation function
- Using a key agreement protocol
 - Two or more parties establish a shared a key

Protect generated keys

- Wrap keys using AES encryption
 - ⊙ openssl genrsa -aes128 4096
 - User provides a password to unlock
- Generate keys from password on the fly
 - Vulnerable if password is weak
 - Dictionary attacks
- Store key using secure hardware
 - USB dongle
 - User enters a password to unlock

Reading for next lecture

Aumasson: Chapter 5