M11 Jádro procesoru

#technicke_vybaveni_pocitacu

- ovlivňuje výkon procesoru
- umožňuje paralelní zpracování sad instrukcí

- klasifikace procesorů
 - podle architektury
 - RISC
 - skromný soubor instrukcí
 - jedna instrukce jedna operace
 - např. ARM
 - CISC
 - rozsáhlý soubor instrukcí
 - instrukce jsou složité; dokážou provádět mnoho operací
 - např. x86
 - podle počtu jader
 - jednojádrové
 - vícejádrové
 - účel použití
 - běžné široké spektrum užití
 - specializované pro specifický účel; např: pro GPU, NPU (síťová komnunikace)
 - podle taktovací frekvence
 - podle výrobní technologie
 - velikost tranzistorů
 - méně nanometrů = víc tranzistorů = větší výkon 😃
 - podle spotřeby energie
 - podle <u>architektury paměti</u>

Výkon procesoru

- ovlivněn taktem kolik operací procesor provede za jednu sekundu; v Hz
- počet jader umožňuje paralelní zpracování více úloh současně
- architektura jak složité instrukce jsou
- cache paměť velikost a efektivní správa cache ovlivňuje rychlost přístupu k datům

Programátorský model procesoru

- práce na úrovni nízkého prog. jazyka
- abstraktní pohled na procesor umožňující psát software bez nutnosti znalosti architektury procesoru
- instrukční soubor definuje instrukce které procesor dokáže provádět
- registr je malá, rychlá paměť umístěná přímo na čipu procesoru; kolik registrů má takový procesor, jejich uspořádání a
 pojmenování
- nativní datové typy procesoru (8-bitový Byte; 16-bitový Word; atd.)
- procesor má mnoho režimů
 - uživatelský limituje přístup k některým registrům a instrukcím
 - jádra přístup ke všemu
- model popisuje, jak postupovat při výjimečný stavech
- jak pracovat se zásobníkem
- popisuje jak jsou adresy paměti generovány, jak k nim procesor přistupuje a jak jsou dlouhé
- může zahrnovat speciální instrukce nebo adresovací schémata pro komunikaci s periférií
- zahrnuje jak pracovat s více jádry procesoru

Kompatibilita na úrovni strojového kódu

- schopnost spustit stejný zdrojový kód na vícero architekturách
- pokud dva procesory mají stejný instrukční soubor, může být stejný kód spuštěn na obou procesorech
- kompatibilita nemusí být plně zachována mezi procesory s odlišnou architekturou → nemusí mít stejný počet jader nebo podporovat zpracování ve vláknech

Evoluce instrukční sady

- první generace se zaměřovala na jednoduché instrukce a zvýšení taktu procesoru
- s potřebou většího výkonu se začaly vyrábět vícejádrové RISC procesory
- vyvynuta pokročilejší technologie pipelinů
- přidány instrukce pro šifrování
- snaha vytvoření otevřené RISC architektury (RISC-V)

Vliv jader procesoru

na software

- správně navržený software může zpracovávat instrukce o mnoho rychleji díky paralelnímu zpracování
- databáze mohou využívat více jader k vyhledávání, třídění a filtrování
- vícejádrové procesory mají různé energetické profily a mohou dynamicky měnit počet aktivních jader v závislosti na aktuálních potřebách

na hardware

- architektura čipu musí umět pracovat s vícero jádry včetně sdílení paměti, atd.
- je lepší minimalizovat latenci přístupu k paměti
- procesory mohou generovat více tepla
- každé jádro má vlastní sadu registrů a frontu instrukcí

Jednočip

- elektronické zařízení integrující všechny nezbytné funkce a komponenty na jediný čip
- integrace všech klíčových prvků na jeden čip vede k fyzickému zmenšení a menší komplexitě; užitečné ve spotřební a mobilní elektronice
- může vést ke snížení nákladu a spotřebě
- vývoj s jednočipem je jednodušší protože vývojáři pracují již s uceleným kouskem namísto s několika komponentami

Kombinačni logika

- minimalizace složitosti instrukční sady a optimalizace provádění jednoduchých operací
- implementuje jednoduché operace, jako jsou aritmetické operace, logické operace a porovnávání
- každý stupeň pipelingu potřebuje vlastní kombinační logiku
- řídí tok instrukcí; provádí dekódování instrukcí a rozhoduje, která operace bude provedena v daném okamžiku; řeší otázky
 jako skoky (branching) a volání procedur

Paměťové prvky

- ukládání a přístup k datům v procesoru
- registry
 - malé a velmi rychlé paměťové prvky přímo vestavěné v jádrech procesoru
 - slouží k ukládání proměnných nebo mezivýsledků během vykonávání instrukcí
 - RISC architektura obvykle obsahuje omezený počet registrů
- cache
 - slouží k ukládání často používaných dat a instrukcí
 - snadno dostupné pro procesor
- RAM
 - slouží k ukládání programů a dat, která nejsou momentálně využívána procesorem
 - přístup prostřednictvím adresového a datového busu
- buffer slouží k dočasnému ukládání dat (např. při přenosu mezi různými částmi procesoru nebo mezi procesorem a periferními zařízeními)
- instrukční cache ukládá často používané instrukce programu
- datová cache ukládá často používaná data
- paměťově mapované registry speciální registry, jejichž hodnoty mohou ovlivňovat chování periferních zařízení nebo konfiguraci procesoru
- registry ukazatelů slouží k uchování adres v paměti, které jsou používány při práci s daty nebo skoky v programu

Synchronní stroj

- všechny operace v procesoru jsou řízeny hodinovým signálem; každá část obvodu provádí svou činnost v přesně definovaný čas
- snadnější synchronizace mezi různými částmi procesoru a periferními zařízeními
- hardware může být relativně jednoduchý a efektivní
- instrukce jsou prováděny v přesně stanovených taktových cyklech, které odpovídají hranám hodinového signálu
- chování synchronních strojů je předvídatelné a opakovatelné → snadnější návrh a analýza digitálních obvodů