

Prof.:

Michele Nappi

Dott.ssa:

Lucia Cascone

Anno Accademico 2022/2023

Presentazione di:

Alessandro Aquino, Alberto Montefusco, Simone Tartaglia

CONTENUTI

INTRODUZIONE

Problema: Morph Attacks

03

IMPLEMENTAZIONE

Feature Extraction e Classificazione

05

WORKFLOW

Detection di MA

04

ANALISI DEI RISULTATI

Grafici e Conclusioni

O I INTRODUZIONE

Sistemi di riconoscimento facciale e Morph Attacks

INTRODUZIONE

L'utilizzo di sistemi di riconoscimento facciale volti alla tutela della sicurezza sta prendendo sempre più piede

Tuttavia, questo implica anche una maggior esposizione ad attacchi da parte di utenti malintenzionati

TIPOLOGIE DI ATTACCHI

FALSIFICAZIONE

Utilizzo di dati biometrici falsi per ingannare il sistema

ALTERAZIONE

Modifica di dati biometrici già acquisiti.

SPOOFING

Creazione di imitazioni dei tratti biometrici.

CASO DI STUDIO: MORPH ATTACKS

Un Morph Attack (MA) è un tipo di attacco che consente di associare un unico volto a più persone

Molteplici persone potrebbero identificarsi utilizzando lo stesso documento!

ESEMPIO DI MORPH ATTACK

SOLUZIONE: MORPH ATTACK DETECTOR

Un Morph Attack Detector (MAD) è un sistema in grado di rilevare automaticamente attacchi di Morphing

Sfruttando il ML, un MAD può distinguere automaticamente immagini reali da immagini "morphed"

STATO DELL'ARTE

Privacy-friendly Synthetic Data for the Development of Face Morphing Attack Detectors

Approccio geometrico

(Ossia, l'approccio basato sulla geometria dei volti)

OBIETTIVI

Combinazione migliore tra:

- Paper vs AoM
- Approccio Geometrico vs AoM
- Approccio Geometrico vs AoM vs Approccio Geometrico & AoM

O2 WORKFLOW

Sviluppo e utilizzo di Attack on Morphing

STEP I

DataSet: train, validation, test

STEP 2

Training e Testing della MixNet-S

	Bonafide	Attack
	25000	15000
سَ کی کی ا		0/00

Train

Validation

Attack							
facemorpher	stylegan	amsl	opencv	webmorph			
45	45	75	45	45			

Test									
	Bonafide								
facemorpher	stylegan	amsl	opencv	webmorph	smile	no smile			
1222	1222	2175	1229	1221	205	103			

O3 IMPLEMENTAZIONE

MixNet-s, Feature Extraction e Classificazione

MODELLO MIXNET-S

Unisce molteplici kernel, ognuno di dimensioni differenti, in un'unica operazione convoluzionale, così da ottenere facilmente diversi tipi di pattern dalle immagini ricevute in input

FEATURE EXTRACTION

rilevanti con lo scopo di effettuare un'analisi dettagliata; prendendo le features del penultimo layer e salvarle all'interno di un file csv

PRE-PROCESSING: PCA

CODE

pca = PCA(n_components='mle', copy=True)
pca_values = pca.fit_transform(x)

Permette di individuare le caratteristiche più informative dei dati e scartare quelle che contribuiscono meno alla varianza complessiva

Questo permette di ottenere una rappresentazione ridotta dei dati che preservano la maggior parte delle informazioni importanti

CLASSIFICATORI

DECISION TREE

model = DecisionTree()
model.fit(pca_values , y)

GAUSSIANNB

model = GaussianNB()
model.fit(pca_values , y

RANDOM FOREST

model = RandomForest()
model.fit(pca_values , y)

BPCER

Tasso di errore di classificazione delle presentazioni bonafide

. .

Indica la percentuale di casi in cui il sistema riconosce erroneamente una presentazione bonafide come un attacco

APCER

Tasso di errore di classificazione delle presentazioni attacco

. .

Indica la percentuale di casi in cui il sistema riconosce erroneamente una presentazione di attacco come bonafide

BPCER (%) APCER =

Calcolo dell'APCER in relazione ad una soglia fissata del BPCER

. .

```
1. BPCER = 0.10 %
```


EER

Punto di equilibrio in cui il tasso di FAR e il FRR sono uguali • •

L'obiettivo è stato di minimizzare il più possibile l'EER

O4 ANALISI DEI RISULTATI

Grafici e Conclusioni

VALIDATION TEST

AoM vs PAPER

ACCURACY

EQUAL ERROR RATE (EER)

BPCER (0.10 %) @ **APCER =**

BPCER (20.00 %) @ APCER =

05

Conclusioni e Implementazioni Future

Conclusioni

Il pre-processing ha migliorato la classificazione

Il merge in media ha portato dei miglioramenti al nostro AoM.

Approccio geometrico migliorato nel riconoscimento dei sorrisi.

Sviluppi futuri

Sviluppo futuro

Utilizzare un dataset contenente video per considerare ulteriori caratteristiche dovute al movimento

GRAZIE!

Alessandro Aquino Alberto Montefusco Simone Tartaglia

