Imitation Learning

Saurabh Gupta

Convert into a Supervised Training Problem

Most General Case

Behavior Cloning

Train Time

Assume an expert e can solve this MDP.

- 1. Ask the expert e to solve this MDP.
- 2. Collect labeled dataset D from expert.
- 3. Train a function $\pi(o_t)$ that mimics $\pi_e(o_t)$ on D. $\pi(o_t)$ Go Forward

 Go Backward

 Sit Down

 Train with back-propagation

Test Time

Supervision from Human Expert

Train Time

Assume an expert e can solve this MDP.

- 1. Ask the expert e to solve this MDP.
- 2. Collect labeled dataset D from expert.
- 3. Train a function $\pi(o_t)$ that mimics $\pi_e(o_t)$ on D. $\pi(o_t)$ $\pi_e(o_t)$ Go Forward

 Go Backward

 Sit Down

 Train with back-propagation

Test Time

Supervision from Human Algorithmic Expert

Train Time

I. Instrument the environment such that it becomes a known MDP.

nown MDP. Fully Observed System
Known or Learned Transition Function
Known Reward Function

$$o_t = s_t$$

$$s_{t+1} \sim \hat{T}(s_t, a_t)$$

$$R(s_{t+1}, s_t, a_t)$$

2. Train a function $\hat{\pi}(o_t)$ that mimics $\pi(o_t, T, R)$

Test Time

Fully Observed System $o_t = s_t$ Known or Learned Transition $s_{t+1} \sim \hat{T}(s_t, a_t)$ Known Product Function $R(s_{t+1}, a_t)$

Supervision from Human Algorithmic Expert

Deep Sensorimotor Learning

rll.berkeley.edu/deeplearningrobotics

Department of Electrical Engineering and Computer Sciences University of California, Berkeley

Supervision from Human Algorithmic Expert

S. Gupta et al. Cognitive Mapping and Planning for Visual Navigation. CVPR 2017.

ALVINN: An Autonomous Land Vehicle in a Neural Network. Pomerleau. NeurlPS 1988.

Behavior Cloning

Does it always work?

No, data mis-match problem

Fix Data Mis-Match Problem

DAgger: Dataset Aggregation

Collect labels on states visited by $\pi(o_t)$ instead of $\pi_e(o_t)$.

- 1. train $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{a}_1, \dots, \mathbf{o}_N, \mathbf{a}_N\}$
- 2. run $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$
- 3. Ask human to label \mathcal{D}_{π} with actions \mathbf{a}_t
- 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

S. Ross et al. A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning. AISTAT 2011.

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning

Stéphane Ross

Robotics Institute Carnegie Mellon University Pittsburgh, PA 15213, USA stephaneross@cmu.edu

Geoffrey J. Gordon

Machine Learning Department Carnegie Mellon University Pittsburgh, PA 15213, USA ggordon@cs.cmu.edu

J. Andrew Bagnell

Robotics Institute Carnegie Mellon University Pittsburgh, PA 15213, USA dbagnell@ri.cmu.edu

Execute current policy and Query Expert

Forward Training and SMILe Algorithm

```
Initialize \pi_1^0, \dots, \pi_T^0 to query and execute \pi^*.

for i=1 to T do

Sample T-step trajectories by following \pi^{i-1}.

Get dataset \mathcal{D} = \{(s_i, \pi^*(s_i))\} of states, actions taken by expert at step i.

Train classifier \pi_i^i = \operatorname{argmin}_{\pi \in \Pi} \mathbb{E}_{s \sim \mathcal{D}}(e_\pi(s)).

\pi_j^i = \pi_j^{i-1} for all j \neq i

end for

Return \pi_1^T, \dots, \pi_T^T
```

Algorithm 3.1: Forward Training Algorithm.

```
Initialize \pi^0 \leftarrow \pi^* to query and execute expert. 

for i=1 to N do

Execute \pi^{i-1} to get \mathcal{D}=\{(s,\pi^*(s))\}.

Train classifier \hat{\pi}^{*i}= \mathop{\rm argmin}_{\pi\in\Pi} \mathbb{E}_{s\sim\mathcal{D}}(e_\pi(s)).

\pi^i=(1-\alpha)^i\pi^*+\alpha\sum_{j=1}^i(1-\alpha)^{j-1}\hat{\pi}^{*j}.

end for

Remove expert queries: \tilde{\pi}^N=\frac{\pi^N-(1-\alpha)^N\pi^*}{1-(1-\alpha)^N}

Return \tilde{\pi}^N
```

Algorithm 4.1: The SMILe Algorithm.

DAgger

```
Initialize \mathcal{D} \leftarrow \emptyset.
Initialize \hat{\pi}_1 to any policy in \Pi.
for i = 1 to N do
   Let \pi_i = \beta_i \pi^* + (1 - \beta_i) \hat{\pi}_i.
   Sample T-step trajectories using \pi_i.
   Get dataset \mathcal{D}_i = \{(s, \pi^*(s))\}\ of visited states by \pi_i
   and actions given by expert.
   Aggregate datasets: \mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_i.
   Train classifier \hat{\pi}_{i+1} on \mathcal{D}.
end for
Return best \hat{\pi}_i on validation.
```

Algorithm 3.1: DAGGER Algorithm.

Super Tux Kart

Figure 2: Average falls/lap as a function of training data.

Super Mario Bros.

Figure 4: Average distance/stage as a function of data.

Structured Prediction

Figure 5: Character accuracy as a function of iteration.

Thank you