

The Climate Absolute Radiance and Refractivity Observatory (CLARREO) Pathfinder Mission

- The CPF mission will demonstrate the ability to provide a high accurate, SI-traceable reference on orbit to inter-calibrate other orbiting instruments.
- A high accuracy reflected solar instrument will be sent to the ISS and take measurements starting in 2023.
- The the inter-calibration for the SW channel of CERES and RS bands of VIIRS will be first demonstrated.
- Algorithms have been developed to facilitate CPF-VIIRS and CPF-CERES inter-calibration data analysis.

Radiometric Uncertainty

Spectral Range	350 - 2300 nm
Spectral	3 nm/6 nm
Sampling/Resolution	
Polarization Sensitivity	<1%, 350-1800 nm
	<2%, 1800-2300 nm
Swath Width	10 degrees
Spatial Resolution (nadir)	0.5 km
Sampling Rate	15 Hz
Table 1: Key characteristics of the CPF instrument.	

0.3% (1-sigma)

Status," *IGARSS* 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium, 2020, pp. 3286-3289, doi: 10.1109/IGARSS39084. 2020.9323176.

Y. Shea et al., "Clarreo Pathfinder: Mission Overview and Current

Inter-calibration matching efforts

- Spatial-temporal matching
 - Orbit-modelling to predict inter-calibration events
 - Spatial convolution to match CPF pixel measurements to CERES footprints
 - Spatial convolution to match CPF and VIIRS pixel measurements to overlapping footprints
- Spectral matching
 - Spectral convolution to match CPF spectra to VIIRS RS bands
 - Spectral convolution and spectral gap filling to match CPF spectra to CERES broadband channels
- Angular matching
 - Angular correction for inconsistency between CPF and VIIRS/CERES measurements due to the difference in viewing geometry angles.

Inter-calibration can't be done on a detector-by detector basis. Sufficient inter-calibration sampling is needed to overcome the random errors from imperfect data matching and instrument noise.

CPF Angular Correction Algorithm

Use on axis-CPF spectra to predict collocated off-axis measurements by utilizing the correlation relationship between two sets of spectra

Angular Correction Algorithm –LUT based approach

Angular Correction Study using selected training samples

- Use spectral information to address the scene dependent relationship
- Systematic angular mismatch error can be effectively reduced; The error residue after angular correction becomes more random-like noise.

 θ =46.1°, φ =135.0°, θ_0 =40.0°, $\Delta\theta$ =2.9°, $\Delta\varphi$ =5.0°

Before A

CPF-VIIRS Angular Correction Scatter plots

SUMMARY

- The development of inter-calibration methods is well underway, and the implementation will be ready for the inter-calibration of CERES and VIIRS once real CPF data is available.
- The application of algorithms for CPF-CERES/VIIRS inter-calibration, once validated, paves a way for future applications on a wide range of Earth observing systems.
- Before high-accuracy on-orbit references like CPF become available, the methodology can be used for the inter-calibration study using hyper-spectral sensors (e.g. SCIAMACHY), which are valuable to serve as references to mitigate the spectral band difference between sensors.

