COMP 9602: Convex Optimization

Convex Programs (I)

Dr. C Wu

Department of Computer Science
The University of Hong Kong

Where we are

Theory	convex set convex function standard forms of optimization problems, quasi-convex optimization linear program quadratic program geometric program vector optimization integer program Duality
Algorithm	unconstrained optimization equality constrained optimization interior-point method localization methods subgradient method decomposition methods etc.

Optimization problem in standard form

Standard form

```
minimize f_0(x) subject to f_i(x) \leq 0, \quad i=1,\ldots,m h_i(x)=0, \quad i=1,\ldots,p
```

- $x \in \mathbb{R}^n$ is the optimization variable
- $f_0: \mathbb{R}^n \to \mathbb{R}$ is the objective or cost function
- $f_i: \mathbb{R}^n \to \mathbb{R}$, $i=1,\ldots,m$, are the inequality constraint functions
- $h_i: \mathbb{R}^n \to \mathbb{R}$ are the equality constraint functions

optimal value:

$$p^* = \inf\{f_0(x) \mid f_i(x) \le 0, \ i = 1, \dots, m, \ h_i(x) = 0, \ i = 1, \dots, p\}$$

- $p^* = \infty$ if problem is infeasible (no x satisfies the constraints)
- ullet $p^\star = -\infty$ if problem is unbounded below

Feasible and optimal points

x is **feasible** if $x \in \operatorname{\mathbf{dom}} f_0$ and it satisfies the constraints

optimal point: a feasible x is optimal if $f_0(x) = p^*$

x is **locally optimal** if there is an R>0 such that x is optimal for

minimize (over
$$z$$
) $f_0(z)$ subject to $f_i(z) \leq 0, \quad i=1,\ldots,m, \quad h_i(z)=0, \quad i=1,\ldots,p$ $\|z-x\|_2 \leq R$

Examples:

- $f_0(x) = 1/x$, $\mathbf{dom} \, f_0 = \mathbf{R}_{++}$
- $f_0(x) = -\log x$, $\operatorname{dom} f_0 = \mathbb{R}_{++}$
- $f_0(x) = x \log x$, $\operatorname{dom} f_0 = R_{++}$

Feasibility problem

find
$$x$$
 subject to $f_i(x) \leq 0, \quad i=1,\ldots,m$ $h_i(x)=0, \quad i=1,\ldots,p$

can be considered a special case of the general problem with $f_0(x) = 0$:

minimize
$$0$$
 subject to $f_i(x) \leq 0, \quad i=1,\ldots,m$ $h_i(x)=0, \quad i=1,\ldots,p$

Convex optimization problem

Standard form convex optimization problem

$$\begin{array}{lll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, & i=1,\dots,m \\ & a_i^T x = b_i, & i=1,\dots,p \end{array} \ \, <=> \ \, \begin{array}{lll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, & i=1,\dots,m \\ & Ax = b \end{array}$$

 f_0, f_1, \ldots, f_m are convex; equality constraints are affine

important property: feasible set of a convex optimization problem is convex

Generalized inequalities are also ok

$$e.g.$$
, $\min \mathbf{c}^T \mathbf{x}$

subject to:

$$A_0 + A_1 x_1 + A_2 x_2 + \ldots + A_n x_n \leq 0$$

Local and global optima

- ☐ Any locally optimal point of a convex program is (globally) optimal
 - proof:

Optimality criteria for differentiable fo

x is optimal if and only if it is feasible and

$$\nabla f_0(x)^T(y-x) \ge 0$$
 for all feasible y

unconstrained problem: x is optimal if and only if

$$x \in \mathbf{dom}\, f_0, \qquad \nabla f_0(x) = 0$$

equality constrained problem

minimize
$$f_0(x)$$
 subject to $Ax = b$

x is optimal if and only if there exists a u such that

$$x \in \operatorname{dom} f_0, \qquad Ax = b, \qquad \nabla f_0(x) + A^T \nu = 0$$

Optimality criteria for differentiable fo (cont'd)

minimization over nonnegative orthant

minimize
$$f_0(x)$$
 subject to $x \succeq 0$

x is optimal if and only if

$$x \in \operatorname{\mathbf{dom}} f_0, \qquad x \succeq 0, \qquad \left\{ \begin{array}{ll} \nabla f_0(x)_i \geq 0 & x_i = 0 \\ \nabla f_0(x)_i = 0 & x_i > 0 \end{array} \right.$$

two problems are (informally) equivalent if the solution of one is readily obtained from the solution of the other, and vice-versa

eliminating equality constraints

minimize
$$f_0(x)$$
 subject to $f_i(x) \leq 0, \quad i=1,\ldots,m$ $Ax=b$

find

- x₀: a particular solution of Ax=b
- matrix F: whose range is the nullspace of A, i.e. R(F)=N(A)

minimize (over
$$z$$
) $f_0(Fz+x_0)$ subject to $f_i(Fz+x_0) \leq 0, \quad i=1,\ldots,m$

introducing equality constraints

minimize
$$f_0(A_0x+b_0)$$

subject to $f_i(A_ix+b_i) \leq 0, \quad i=1,\ldots,m$

minimize (over
$$x, y_i$$
) $f_0(y_0)$ subject to $f_i(y_i) \leq 0, \quad i=1,\ldots,m$ $y_i = A_i x + b_i, \quad i=0,1,\ldots,m$

introducing slack variables for linear inequalities

minimize
$$f_0(x)$$

subject to $a_i^T x \leq b_i, \quad i = 1, \dots, m$

minimize (over
$$x, \, s$$
) $f_0(x)$ subject to $a_i^T x + s_i = b_i, \quad i = 1, \ldots, m$ $s_i \geq 0, \quad i = 1, \ldots m$

epigraph form: standard form convex problem is equivalent to

minimize (over
$$x, t$$
) t subject to $f_0(x) \leq t$ $f_i(x) \leq 0, \quad i=1,\ldots,m$ $Ax=b$

minimizing over some variables

minimize
$$f_0(x_1,x_2)$$

subject to $f_i(x_1) \leq 0, \quad i=1,\ldots,m$

minimize
$$ilde{f_0}(x_1)$$
 subject to $ilde{f_i}(x_1) \leq 0, \quad i=1,\ldots,m$

where
$$\widetilde{f}_0(x_1) = \inf_{x_2} f_0(x_1, x_2)$$

- □ Small perturbation of the problem makes it very hard (potentially)
 - max convex or minimize concave
 - non-convex constraints
 - convex equality constraints

Quasiconvex optimization

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & Ax = b \end{array}$$

with $f_0: \mathbf{R}^n \to \mathbf{R}$ quasiconvex, f_1, \ldots, f_m convex

can have locally optimal points that are not (globally) optimal

example

Quasiconvex optimization

Quasiconvex function $f_0(x)$ can be represented by a family of convex functions $\phi_t(x)$, indexed by $t \in R$

if f_0 is quasiconvex, there exists a family of functions ϕ_t such that:

- $\phi_t(x)$ is convex in x for fixed t
- t-sublevel set of f_0 is 0-sublevel set of ϕ_t , i.e., $f_0(x) \le t \iff \phi_t(x) \le 0$

Quasiconvex optimization

Such a representation always exists and not unique

e.g.:

(1)
$$\phi_t(x) = \begin{cases} 0, f_0(x) \le t, \\ \infty, otherwise, \end{cases}$$

(2)
$$\phi_t(x) = dist(x, \{z | f_0(z) \le t\})$$

(3) Convex over concave functions:

$$f_0(x) = rac{p(x)}{q(x)}$$

with p convex, q concave, and q(x)>0 on $\operatorname{dom} f_0$ can take $\phi_t(x)=p(x)-tq(x)$:

- for $t \geq 0$, ϕ_t convex in x
- $p(x)/q(x) \le t$ if and only if $\phi_t(x) \le 0$

Quasiconvex optimization via convex feasibility problems

Let p* denote the optimal value of the quasiconvex program

minimize
$$f_0(x)$$
 subject to $f_i(x) \leq 0, \quad i=1,\ldots,m$ $Ax=b$

Solve the feasibility problem:

find x subject to:
$$\phi_t(x) \leq 0$$
 $f_i(x) \leq 0, \quad i=1,\ldots,m,$ $Ax=b$

if feasible, $p^* \le t$; otherwise, $p^* > t$

=> solve the quasiconvex problem using bisection, solving a convex feasibility problem at each step

Quasiconvex optimization via convex feasibility problems

Start with an interval [1,u] known to contain p*

Bisection method for quasiconvex optimization

given $l \leq p^*$, $u \geq p^*$, tolerance $\epsilon > 0$. repeat

- 1. t := (l + u)/2.
- 2. Solve the convex feasibility problem (1).
- 3. if (1) is feasible, u:=t; else l:=t. until $u-l \leq \epsilon$.

requires exactly $\lceil \log_2((u-l)/\epsilon) \rceil$ iterations

- □ Reference
 - Chapter 4.1— 4.2, Convex Optimization.
- Acknowledgement
 - Some materials are extracted from the slides created by Prof. Stephen Boyd for the textbook
 - Some materials are extracted from the lecture notes of Convex Optimization by Prof. Wei Yu at the University of Toronto