MATLAB: Assignment 4

Instructions

- Work in **groups of 2 students**, both contributing to coding and writing.
- Explain steps by commenting on them.
- Once you have completed the problem, generate a pdf file with the results using the Publish option in matlab. Please give me a hard copy of the pdf file.
- Failure to follow these instructions will result in loss points (up to the full amount of the homework total).

Due on Friday, April 12th in class

In this exercise, you will write MATALB scripts to approximate an initial value problem using the **Runge-Kutta methods**.

Problem 1

Use **modified Euler method** with n = 20 to approximate the solution of the following IVP:

$$\frac{dy}{dt} = t^2 - y, \quad y(0) = 1, \quad 0 \le t \le 2.$$

Plot the points (t_i, y_i) obtained by the Modified Euler method for each n = 20 value. Also in the same figure, plot the actual solution (to solve the IVP analytically, please refer your MAT 239 notes). Explain steps by commenting on them.

Problem 2

Use 4th order Runge-Kutta method with n = 20 to approximate the solution of the following IVP:

$$\frac{dy}{dt} = t^2 - y, \quad y(0) = 1, \quad 0 \le t \le 2.$$

Plot the points (t_i, y_i) obtained by the Modified Euler method for each n = 20 value. Also in the same figure, plot the actual solution (to solve the IVP analytically, please refer your MAT 239 notes). Explain steps by commenting on them.