Inteligência Artificial

Agentes Inteligentes

Sumário

- Agentes e Ambientes
 - Função do Agente
- Racionalidade
 - Medida de Desempenho
 - Obtenção de Informações
 - Autonomia
- Natureza dos Ambientes
 - PEAS
- Estrutura dos Agentes

Agentes Inteligentes

Agentes e Ambientes

Agente

- Um agente é qualquer coisa que:
 - Perceba o ambiente por meio de sensores; e
 - Atue sobre o ambiente por meio de atuadores

Agente Humano

Atuador (Membros)

Sensor (Nariz)

Agente Robô

Sensor (Câmeras)

> Atuador (Braço)

Agente de Software

Sequência de Percepções

- O termo *percepção* refere-se à percepção instantânea do ambiente pelo agente
- A Sequência de Percepções engloba a história de tudo o que o agente já percebeu
- Em geral, a escolha de uma ação apropriada pelo agente depende de toda sua Sequência de Percepções até o momento da ação

Função do Agente

 A Função do Agente mapeia sequências de percepções para uma ação

$$f:\mathcal{P}^*\longrightarrow\mathcal{A}$$

• O $Programa\ do\ Agente\ executa\ sobre\ a$ arquitetura física para produzir f

Entidade	Modelo Matemático	Representação
Função do Agente	Algoritmo	Programa

- Percepções: Lugar e Estado do Lugar
 - [*A*, *dirty*]
- Ações: Left, Right, Suck, NoOp

Tabela Percepção-Ação

Percept sequence	Action
[A, Clean]	Right
[A, Dirty]	Suck
[B, Clean]	Left
[B, Dirty]	Suck
[A, Clean], [A, Clean]	Right
[A, Clean], [A, Dirty]	Suck
į	:

Esta tabela é infinita, a menos que se defina um limite para a sequência de percepções do agente

Agentes Inteligentes

Racionalidade

O que torna um Agente inteligente ou estúpido?

- Um agente racional é aquele que faz a coisa certa
 - Todas as entradas da tabela para a função do agente estão corretas
- O que significa fazer a coisa certa?
 - A coisa certa é a que leva o agente a ser mais bem sucedido
 - Necessária uma medida de desempenho

• Qual medida de desempenho é indicada para este caso?

- Qual medida de desempenho é indicada para este caso?
 - Quantidade de sujeira aspirada em um turno de oito horas

- Qual medida de desempenho é indicada para este caso?
 - Um ponto para cada quadrado limpo a cada para cada instante de tempo
 - Penalidades por gasto de eletricidade, barulho, quando o número de quadrados sujos > k, etc.

Medida de Desempenho Regra Geral

É melhor definir a medida de desempenho a partir do que é realmente desejado do agente, em vez de defini-la de acordo com o que se pensa que o agente deva fazer

Medida de Desempenho

- A mesma medida de desempenho pode ser atingida por agentes empregando estratégias diferentes
 - Agente 1: Limpa os 2 quadrados e depois descansa por um período longo
 - Agente 2: Limpa 1 quadrado, descansa por um curto período, depois limpa o outro quadrado, descansa por um curto período de tempo,...
- A questão de decidir a estratégia, neste caso, é filosófica!

Racionalidade

- Racionalidade, em um determinado instante depende de 4 coisas:
 - A medida de desempenho que define o critério para o sucesso
 - O conhecimento prévio do agente sobre o ambiente
 - As *ações* que o agente pode efetuar
 - A sequência de percepções do agente até o momento

19

Um agente racional escolhe uma ação para a qual espera-se que seja maximizado o valor de sua medida de desempenho, dada a sequência de percepções até o momento e seu conhecimento prévio do ambiente.

O comportamento descrito abaixo é racional?

```
function Reflex-Vacuum-Agent([location, status]) returns an action if status = Dirty then return Suck else if location = A then return Right else if location = B then return Left
```


O comportamento descrito abaixo é racional?

```
function Reflex-Vacuum-Agent([location, status]) returns an action if status = Dirty then return Suck else if location = A then return Right else if location = B then return Left
```

Depende! Qual a medida de desempenho? O que se sabe sobre o ambiente? Quais os sensores e atuadores do agente?

- A medida de desempenho garante 1 ponto para cada quadrado limpo a cada instante de tempo
- A geografia do ambiente é conhecida a priori (2 quadrados A e B)
- A ação Suck limpa o quadrado. Quadrados limpos permanecem limpos
- As ações Left e Right movem o agente para a esquerda e para a direita, a menos que levem o agente para fora do ambiente
- As ações disponíveis são Left, Right, Suck e NoOp (não faz nada)
- O agente percebe sua localização (A ou B) e se o quadrado corrente está sujo (dirty)

 Dadas as circunstâncias anteriores, o agente que executa o algoritmo dado anteriormente, é racional

```
function Reflex-Vacuum-Agent([location, status]) returns an action if status = Dirty then return Suck else if location = A then return Right else if location = B then return Left
```

E se a medida de desempenho impusesse ao agente uma penalidade para cada movimentação?

Racionalidade

- Racionalidade ≠ Onisciência
 - Sensores podem n\u00e3o fornecer todas as informa\u00e7\u00f3es relevantes
- Racionalidade ≠ Clarevidência
 - Resultado das ações pode não ser conforme o esperado
- Racionalidade ≠ Perfeição
 - Racionalidade maximiza o desempenho esperado e perfeição maximiza o desempenho final

Obtenção de Informações

- Pode ser necessário executar ações para modificar percepções futuras
 - Olhar para os dois lados antes de atravessar a rua
- Em um ambiente desconhecido, pode ser necessário fazer uma *Exploração*
 - O Mundo do Aspirador de Pó pode não ser totalmente conhecido a priori

Aprendizagem Besouro do Estrume

 Se a bola de estrume for for retirada durante a rota, ele continua sua programação como se a bola ainda estivesse lá

Aprendizagem Vespa Cavadora

- Cava buraco
- Caça uma lagarta
- Arrasta a lagarta
- Confere o buraco
- Puxa a lagarta para dentro
- Bota seus ovos

Autonomia

- Um agente que utiliza somente o conhecimento prévio de seu projetista não possui autonomia
 - Não consegue compensar conhecimento prévio incorreto ou incompleto

Alair Dias Júnior

Agentes Inteligentes

Natureza dos Ambientes

PEAS (DAAS)

Descrição PEAS

- Performance (Desempenho)
- Environment (Ambiente)
- Actuators (Atuadores)
- Sensors (Sensores)

PEAS Taxi Automático

Medida de Desempenho	Ambiente	Atuadores	Sensores
Segurança, rapidez, conforto do passageiro, maximização de lucro	Estradas, ruas, avenidas, outros veículos, pedestres, clientes	Direção, acelerador, freio, setas, buzina, saída para comunicação com o cliente	Câmera, ultrassom, velocímetro, GPS, odômetro, teclado (microfone), sensores do motor

PEAS Controlador de Refinaria

Propriedades do Ambiente

- Totalmente Observável
 - Não é necessário guardar estados internamente
 - Ex: Mundo do Aspirador de Pó, com um sensor de sujeira em cada quadrado
- Parcialmente Observável
 - Pode ser causado por inexatidão dos sensores, ou por estados não captados pelos sensores
 - Necessário guardar estados internamente
 - Ex: Táxi automático

34

Propriedades do Ambiente

- Determinístico
 - Próximo estado é determinado completamente pelo estado atual e a ação do agente
 - Se determinístico, exceto pela ação de outros agentes, o ambiente é estratégico
 - Exemplo: O Mundo do Aspirador de Pó (como descrito anteriormente)
- Estocástico
 - Ambientes Parcialmente Observáveis podem parecer estocásticos
 - Exemplo: Táxi automático

Propriedades do Ambiente

- Episódico
 - Para atingir o sucesso, não é necessária uma cadeia de ações
 - Ações no presente não afetam ações no futuro
 - Exemplo: Separação de itens defeituosos em uma linha de montagem
- Sequencial
 - Ações passadas influenciam a tomada de decisão e o futuro
 - Exemplo: Xadrez

36

Propriedades do Ambiente

- Estático
 - O ambiente n\u00e3o se modifica enquanto o Agente est\u00e1 deliberando
 - Exemplo: Jogo de Pôquer
- Dinâmico
 - O ambiente se modifica enquanto o Agente está deliberando
 - Se o agente n\u00e3o se decidiu, conta como se tivesse decidido n\u00e3o fazer nada
 - Semidinâmico: O ambiente não modifica com o tempo, mas a medida de desempenho sim
 - Exemplo: Táxi automático (dinâmico)

Propriedades do Ambiente

- Discreto
 - Transição dos valores ocorre em saltos
 - Estado
 - Tempo
 - Percepções
 - Ações
 - Exemplo: Xadrez
- Contínuo
 - Transição dos valores ocorre suavemente
 - Exemplo: Piloto Automático de um Avião

Propriedades do Ambiente

- Único Agente
 - Um único agente age no ambiente
 - Exemplo: Jogo de Paciência
- Múltiplos Agentes
 - Múltiplos agentes agem no ambiente
 - Cooperativo
 - Competitivo
 - Parcialmente Competitivo
 - Exemplo: Táxi automático

Agentes Inteligentes

Estrutura dos Agentes

Tipos Básicos de Agentes

- Agente de Reflexo Simples
 - Escolha da ação baseada na percepção atual
- Agente de Reflexo Baseado em Modelo
 - Escolha da ação baseada na percepção atual aliada a um modelo de como o mundo evolui
- Agente Baseado em Objetivos
 - Escolha da ação é feita a partir de objetivos
- Agente Baseado em Utilidade
 - Escolha da ação é baseada no grau de satisfação atingido pelo agente

Agente Baseado em Tabela

- O programa é chamado a cada nova percepção e retorna uma ação
- A sequência de percepções é guardada internamente

anexe percepção ao final de percepções

ação ← LOOKUP (percepções, tabela)

retorne ação

Agentes de Reflexo Simples

Alair Dias Júnior

43

Agentes de Reflexo Simples

```
function AGENTE-DE-REFLEXO-SIMPLES(percepção) retorna uma ação
  entradas: percepção, uma percepção
  estático: regras, um conjunto de regras condição-ação

  estado ← INTERPRETA-ENTRADA(percepção)
  regra ← CASAMENTO-DE-REGRAS(estado, regras)
  ação ← REGRA-AÇÃO[regra]
  retorne ação
```


Agentes de Reflexo Baseados em Modelo

Alair Dias Júnior

45

Agentes de Reflexo Baseados em Modelo

Agentes Baseados em Objetivos

Agentes Baseados em Utilidade

Agentes que Aprendem

Agentes Inteligentes

Sugestões de Exercícios

Exercícios

- 1) Desenvolva a descrição PEAS para cada um dos ambientes a seguir:
 - Robô jogador de futebol
 - Agente de compras de livros pela Internet
 - Robô autônomo para exploração em Marte
 - Assistente para prova de teoremas
- Para cada um dos ambientes anteriores, indique o tipo (estático ou dinâmico, determinístico ou estocástico, etc) e selecione o tipo de agente mais adequado.

Exercícios

- 3) Na versão modificada do *Mundo do Aspirador de Pó*, onde cada movimento é penalizado em um ponto, pode ser utilizado um agente do tipo *Reflexo Simples*?
- 4) Executar os códigos de exemplo do Mundo do Aspirador de Pó, disponíveis no site do livro texto da disciplina.

