

Stuart Russell Peter Norvia Artificial Intelligence A Modern Approach Third Edition

Artificial Intelligence

A Modern Approach

Third Edition

FORSYTH & PONCE Computer Vision: A Modern Approach

GRAHAM ANSI Common Lisp

JURAFSKY & MARTIN Speech and Language Processing, 2nd ed.

NEAPOLITAN Learning Bayesian Networks

RUSSELL & NORVIG Artificial Intelligence: A Modern Approach, 3rd ed.

Artificial Intelligence

A Modern Approach

Third Edition

Stuart J. Russell and Peter Norvig

Contributing writers:
Ernest Davis
Douglas D. Edwards
David Forsyth
Nicholas J. Hay
Jitendra M. Malik
Vibhu Mittal
Mehran Sahami
Sebastian Thrun

Prentice Hall

Columbus Upper Saddle River San Francisco New York Boston Indianapolis London Toronto Sydney Singapore Tokyo Montreal Dubai Madrid Hong Kong Mexico City Munich Paris Amsterdam Cape Town Vice President and Editorial Director, ECS: Marcia J. Horton

Editor-in-Chief: Michael Hirsch Executive Editor: Tracy Dunkelberger Assistant Editor: Melinda Haggerty Editorial Assistant: Allison Michael Vice President, Production: Vince O'Brien Senior Managing Editor: Scott Disanno Production Editor: Jane Bonnell

Senior Operations Supervisor: Alan Fischer Operations Specialist: Lisa McDowell Marketing Manager: Erin Davis Marketing Assistant: Mack Patterson

Cover Designers: Kirsten Sims and Geoffrey Cassar

Cover Images: Stan Honda/Getty, Library of Congress, NASA, National Museum of Rome,

Peter Norvig, Ian Parker, Shutterstock, Time Life/Getty

Interior Designers: Stuart Russell and Peter Norvig

Copy Editor: Mary Lou Nohr Art Editor: Greg Dulles Media Editor: Daniel Sandin

Media Project Manager: Danielle Leone

Copyright © 2010, 2003, 1995 by Pearson Education, Inc., Upper Saddle River, New Jersey 07458.

All rights reserved. Manufactured in the United States of America. This publication is protected by Copyright and permissions should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to use materials from this work, please submit a written request to Pearson Higher Education, Permissions Department, 1 Lake Street, Upper Saddle River, NJ 07458.

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the development, research, and testing of the theories and programs to determine their effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained in this book. The author and publisher shall not be liable in any event for incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use of these programs.

Library of Congress Cataloging-in-Publication Data on File

Prentice Hall is an imprint of

10 9 8 7 6 5 4 3 2 1 ISBN-13: 978-0-13-604259-4 ISBN-10: 0-13-604259-7 For Loy, Gordon, Lucy, George, and Isaac — S.J.R.

For Kris, Isabella, and Juliet — P.N.

Preface

Artificial Intelligence (AI) is a big field, and this is a big book. We have tried to explore the full breadth of the field, which encompasses logic, probability, and continuous mathematics; perception, reasoning, learning, and action; and everything from microelectronic devices to robotic planetary explorers. The book is also big because we go into some depth.

The subtitle of this book is "A Modern Approach." The intended meaning of this rather empty phrase is that we have tried to synthesize what is now known into a common framework, rather than trying to explain each subfield of AI in its own historical context. We apologize to those whose subfields are, as a result, less recognizable.

New to this edition

This edition captures the changes in AI that have taken place since the last edition in 2003. There have been important applications of AI technology, such as the widespread deployment of practical speech recognition, machine translation, autonomous vehicles, and household robotics. There have been algorithmic landmarks, such as the solution of the game of checkers. And there has been a great deal of theoretical progress, particularly in areas such as probabilistic reasoning, machine learning, and computer vision. Most important from our point of view is the continued evolution in how we think about the field, and thus how we organize the book. The major changes are as follows:

- We place more emphasis on partially observable and nondeterministic environments, especially in the nonprobabilistic settings of search and planning. The concepts of *belief state* (a set of possible worlds) and *state estimation* (maintaining the belief state) are introduced in these settings; later in the book, we add probabilities.
- In addition to discussing the types of environments and types of agents, we now cover in more depth the types of *representations* that an agent can use. We distinguish among *atomic* representations (in which each state of the world is treated as a black box), *factored* representations (in which a state is a set of attribute/value pairs), and *structured* representations (in which the world consists of objects and relations between them).
- Our coverage of planning goes into more depth on contingent planning in partially observable environments and includes a new approach to hierarchical planning.
- We have added new material on first-order probabilistic models, including *open-universe* models for cases where there is uncertainty as to what objects exist.
- We have completely rewritten the introductory machine-learning chapter, stressing a
 wider variety of more modern learning algorithms and placing them on a firmer theoretical footing.
- We have expanded coverage of Web search and information extraction, and of techniques for learning from very large data sets.
- 20% of the citations in this edition are to works published after 2003.
- We estimate that about 20% of the material is brand new. The remaining 80% reflects older work but has been largely rewritten to present a more unified picture of the field.

viii Preface

Overview of the book

The main unifying theme is the idea of an **intelligent agent**. We define AI as the study of agents that receive percepts from the environment and perform actions. Each such agent implements a function that maps percept sequences to actions, and we cover different ways to represent these functions, such as reactive agents, real-time planners, and decision-theoretic systems. We explain the role of learning as extending the reach of the designer into unknown environments, and we show how that role constrains agent design, favoring explicit knowledge representation and reasoning. We treat robotics and vision not as independently defined problems, but as occurring in the service of achieving goals. We stress the importance of the task environment in determining the appropriate agent design.

Our primary aim is to convey the *ideas* that have emerged over the past fifty years of AI research and the past two millennia of related work. We have tried to avoid excessive formality in the presentation of these ideas while retaining precision. We have included pseudocode algorithms to make the key ideas concrete; our pseudocode is described in Appendix B.

This book is primarily intended for use in an undergraduate course or course sequence. The book has 27 chapters, each requiring about a week's worth of lectures, so working through the whole book requires a two-semester sequence. A one-semester course can use selected chapters to suit the interests of the instructor and students. The book can also be used in a graduate-level course (perhaps with the addition of some of the primary sources suggested in the bibliographical notes). Sample syllabi are available at the book's Web site, aima.cs.berkeley.edu. The only prerequisite is familiarity with basic concepts of computer science (algorithms, data structures, complexity) at a sophomore level. Freshman calculus and linear algebra are useful for some of the topics; the required mathematical background is supplied in Appendix A.

Exercises are given at the end of each chapter. Exercises requiring significant programming are marked with a **keyboard** icon. These exercises can best be solved by taking advantage of the code repository at aima.cs.berkeley.edu. Some of them are large enough to be considered term projects. A number of exercises require some investigation of the literature; these are marked with a **book** icon.

Throughout the book, important points are marked with a *pointing* icon. We have included an extensive index of around 6,000 items to make it easy to find things in the book. Wherever a **new term** is first defined, it is also marked in the margin.

About the Web site

aima.cs.berkeley.edu, the Web site for the book, contains

- implementations of the algorithms in the book in several programming languages,
- a list of over 1000 schools that have used the book, many with links to online course materials and syllabi,
- an annotated list of over 800 links to sites around the Web with useful AI content,
- a chapter-by-chapter list of supplementary material and links,
- instructions on how to join a discussion group for the book,

NEW TERM

Preface ix

- instructions on how to contact the authors with questions or comments,
- instructions on how to report errors in the book, in the likely event that some exist, and
- slides and other materials for instructors.

About the cover

The cover depicts the final position from the decisive game 6 of the 1997 match between chess champion Garry Kasparov and program DEEP BLUE. Kasparov, playing Black, was forced to resign, making this the first time a computer had beaten a world champion in a chess match. Kasparov is shown at the top. To his left is the Asimo humanoid robot and to his right is Thomas Bayes (1702–1761), whose ideas about probability as a measure of belief underlie much of modern AI technology. Below that we see a Mars Exploration Rover, a robot that landed on Mars in 2004 and has been exploring the planet ever since. To the right is Alan Turing (1912–1954), whose fundamental work defined the fields of computer science in general and artificial intelligence in particular. At the bottom is Shakey (1966– 1972), the first robot to combine perception, world-modeling, planning, and learning. With Shakey is project leader Charles Rosen (1917–2002). At the bottom right is Aristotle (384 B.C.–322 B.C.), who pioneered the study of logic; his work was state of the art until the 19th century (copy of a bust by Lysippos). At the bottom left, lightly screened behind the authors' names, is a planning algorithm by Aristotle from *De Motu Animalium* in the original Greek. Behind the title is a portion of the CPSC Bayesian network for medical diagnosis (Pradhan et al., 1994). Behind the chess board is part of a Bayesian logic model for detecting nuclear explosions from seismic signals.

Credits: Stan Honda/Getty (Kasparaov), Library of Congress (Bayes), NASA (Mars rover), National Museum of Rome (Aristotle), Peter Norvig (book), Ian Parker (Berkeley skyline), Shutterstock (Asimo, Chess pieces), Time Life/Getty (Shakey, Turing).

Acknowledgments

This book would not have been possible without the many contributors whose names did not make it to the cover. Jitendra Malik and David Forsyth wrote Chapter 24 (computer vision) and Sebastian Thrun wrote Chapter 25 (robotics). Vibhu Mittal wrote part of Chapter 22 (natural language). Nick Hay, Mehran Sahami, and Ernest Davis wrote some of the exercises. Zoran Duric (George Mason), Thomas C. Henderson (Utah), Leon Reznik (RIT), Michael Gourley (Central Oklahoma) and Ernest Davis (NYU) reviewed the manuscript and made helpful suggestions. We thank Ernie Davis in particular for his tireless ability to read multiple drafts and help improve the book. Nick Hay whipped the bibliography into shape and on deadline stayed up to 5:30 AM writing code to make the book better. Jon Barron formatted and improved the diagrams in this edition, while Tim Huang, Mark Paskin, and Cynthia Bruyns helped with diagrams and algorithms in previous editions. Ravi Mohan and Ciaran O'Reilly wrote and maintain the Java code examples on the Web site. John Canny wrote the robotics chapter for the first edition and Douglas Edwards researched the historical notes. Tracy Dunkelberger, Allison Michael, Scott Disanno, and Jane Bonnell at Pearson tried their best to keep us on schedule and made many helpful suggestions. Most helpful of all has

x Preface

been Julie Sussman, P.P.A., who read every chapter and provided extensive improvements. In previous editions we had proofreaders who would tell us when we left out a comma and said which when we meant that; Julie told us when we left out a minus sign and said x_i when we meant x_j . For every typo or confusing explanation that remains in the book, rest assured that Julie has fixed at least five. She persevered even when a power failure forced her to work by lantern light rather than LCD glow.

Stuart would like to thank his parents for their support and encouragement and his wife, Loy Sheflott, for her endless patience and boundless wisdom. He hopes that Gordon, Lucy, George, and Isaac will soon be reading this book after they have forgiven him for working so long on it. RUGS (Russell's Unusual Group of Students) have been unusually helpful, as always.

Peter would like to thank his parents (Torsten and Gerda) for getting him started, and his wife (Kris), children (Bella and Juliet), colleagues, and friends for encouraging and tolerating him through the long hours of writing and longer hours of rewriting.

We both thank the librarians at Berkeley, Stanford, and NASA and the developers of CiteSeer, Wikipedia, and Google, who have revolutionized the way we do research. We can't acknowledge all the people who have used the book and made suggestions, but we would like to note the especially helpful comments of Gagan Aggarwal, Eyal Amir, Ion Androutsopoulos, Krzysztof Apt, Warren Haley Armstrong, Ellery Aziel, Jeff Van Baalen, Darius Bacon, Brian Baker, Shumeet Baluja, Don Barker, Tony Barrett, James Newton Bass, Don Beal, Howard Beck, Wolfgang Bibel, John Binder, Larry Bookman, David R. Boxall, Ronen Brafman, John Bresina, Gerhard Brewka, Selmer Bringsjord, Carla Brodley, Chris Brown, Emma Brunskill, Wilhelm Burger, Lauren Burka, Carlos Bustamante, Joao Cachopo, Murray Campbell, Norman Carver, Emmanuel Castro, Anil Chakravarthy, Dan Chisarick, Berthe Choueiry, Roberto Cipolla, David Cohen, James Coleman, Julie Ann Comparini, Corinna Cortes, Gary Cottrell, Ernest Davis, Tom Dean, Rina Dechter, Tom Dietterich, Peter Drake, Chuck Dyer, Doug Edwards, Robert Egginton, Asma'a El-Budrawy, Barbara Engelhardt, Kutluhan Erol, Oren Etzioni, Hana Filip, Douglas Fisher, Jeffrey Forbes, Ken Ford, Eric Fosler-Lussier, John Fosler, Jeremy Frank, Alex Franz, Bob Futrelle, Marek Galecki, Stefan Gerberding, Stuart Gill, Sabine Glesner, Seth Golub, Gosta Grahne, Russ Greiner, Eric Grimson, Barbara Grosz, Larry Hall, Steve Hanks, Othar Hansson, Ernst Heinz, Jim Hendler, Christoph Herrmann, Paul Hilfinger, Robert Holte, Vasant Honavar, Tim Huang, Seth Hutchinson, Joost Jacob, Mark Jelasity, Magnus Johansson, Istvan Jonyer, Dan Jurafsky, Leslie Kaelbling, Keiji Kanazawa, Surekha Kasibhatla, Simon Kasif, Henry Kautz, Gernot Kerschbaumer, Max Khesin, Richard Kirby, Dan Klein, Kevin Knight, Roland Koenig, Sven Koenig, Daphne Koller, Rich Korf, Benjamin Kuipers, James Kurien, John Lafferty, John Laird, Gus Larsson, John Lazzaro, Jon LeBlanc, Jason Leatherman, Frank Lee, Jon Lehto, Edward Lim, Phil Long, Pierre Louveaux, Don Loveland, Sridhar Mahadevan, Tony Mancill, Jim Martin, Andy Mayer, John McCarthy, David McGrane, Jay Mendelsohn, Risto Miikkulanien, Brian Milch, Steve Minton, Vibhu Mittal, Mehryar Mohri, Leora Morgenstern, Stephen Muggleton, Kevin Murphy, Ron Musick, Sung Myaeng, Eric Nadeau, Lee Naish, Pandu Nayak, Bernhard Nebel, Stuart Nelson, XuanLong Nguyen, Nils Nilsson, Illah Nourbakhsh, Ali Nouri, Arthur Nunes-Harwitt, Steve Omohundro, David Page, David Palmer, David Parkes, Ron Parr, Mark Preface xi

Paskin, Tony Passera, Amit Patel, Michael Pazzani, Fernando Pereira, Joseph Perla, Wim Pijls, Ira Pohl, Martha Pollack, David Poole, Bruce Porter, Malcolm Pradhan, Bill Pringle, Lorraine Prior, Greg Provan, William Rapaport, Deepak Ravichandran, Ioannis Refanidis, Philip Resnik, Francesca Rossi, Sam Roweis, Richard Russell, Jonathan Schaeffer, Richard Scherl, Hinrich Schuetze, Lars Schuster, Bart Selman, Soheil Shams, Stuart Shapiro, Jude Shavlik, Yoram Singer, Satinder Singh, Daniel Sleator, David Smith, Bryan So, Robert Sproull, Lynn Stein, Larry Stephens, Andreas Stolcke, Paul Stradling, Devika Subramanian, Marek Suchenek, Rich Sutton, Jonathan Tash, Austin Tate, Bas Terwijn, Olivier Teytaud, Michael Thielscher, William Thompson, Sebastian Thrun, Eric Tiedemann, Mark Torrance, Randall Upham, Paul Utgoff, Peter van Beek, Hal Varian, Paulina Varshavskaya, Sunil Vemuri, Vandi Verma, Ubbo Visser, Jim Waldo, Toby Walsh, Bonnie Webber, Dan Weld, Michael Wellman, Kamin Whitehouse, Michael Dean White, Brian Williams, David Wolfe, Jason Wolfe, Bill Woods, Alden Wright, Jay Yagnik, Mark Yasuda, Richard Yen, Eliezer Yudkowsky, Weixiong Zhang, Ming Zhao, Shlomo Zilberstein, and our esteemed colleague Anonymous Reviewer.

About the Authors

Stuart Russell was born in 1962 in Portsmouth, England. He received his B.A. with first-class honours in physics from Oxford University in 1982, and his Ph.D. in computer science from Stanford in 1986. He then joined the faculty of the University of California at Berkeley, where he is a professor of computer science, director of the Center for Intelligent Systems, and holder of the Smith–Zadeh Chair in Engineering. In 1990, he received the Presidential Young Investigator Award of the National Science Foundation, and in 1995 he was cowinner of the Computers and Thought Award. He was a 1996 Miller Professor of the University of California and was appointed to a Chancellor's Professorship in 2000. In 1998, he gave the Forsythe Memorial Lectures at Stanford University. He is a Fellow and former Executive Council member of the American Association for Artificial Intelligence. He has published over 100 papers on a wide range of topics in artificial intelligence. His other books include *The Use of Knowledge in Analogy and Induction* and (with Eric Wefald) *Do the Right Thing: Studies in Limited Rationality*.

Peter Norvig is currently Director of Research at Google, Inc., and was the director responsible for the core Web search algorithms from 2002 to 2005. He is a Fellow of the American Association for Artificial Intelligence and the Association for Computing Machinery. Previously, he was head of the Computational Sciences Division at NASA Ames Research Center, where he oversaw NASA's research and development in artificial intelligence and robotics, and chief scientist at Junglee, where he helped develop one of the first Internet information extraction services. He received a B.S. in applied mathematics from Brown University and a Ph.D. in computer science from the University of California at Berkeley. He received the Distinguished Alumni and Engineering Innovation awards from Berkeley and the Exceptional Achievement Medal from NASA. He has been a professor at the University of Southern California and a research faculty member at Berkeley. His other books are *Paradigms of AI Programming: Case Studies in Common Lisp* and *Verbmobil: A Translation System for Face-to-Face Dialog* and *Intelligent Help Systems for UNIX*.

Contents

5.5

I	Artificial Intelligence	
1	Introduction 1.1 What Is AI?	1 5 16 28 29
2	Intelligent Agents 2.1 Agents and Environments	34 36 40 46 59
II	Problem-solving	
3		64 69 75 81 92 102
4	4.1 Local Search Algorithms and Optimization Problems 4.2 Local Search in Continuous Spaces 4.3 Searching with Nondeterministic Actions 4.4 Searching with Partial Observations 4.5 Online Search Agents and Unknown Environments	120 129 133 138 147 153
5	5.1 Games	161 161 163 167

177

xiv Contents

	5.6	Partially Observable Games	180
	5.7	State-of-the-Art Game Programs	185
	5.8	Alternative Approaches	187
	5.9	Summary, Bibliographical and Historical Notes, Exercises	189
6	Cons	straint Satisfaction Problems	202
	6.1	Defining Constraint Satisfaction Problems	202
	6.2	Constraint Propagation: Inference in CSPs	208
	6.3	Backtracking Search for CSPs	214
	6.4	Local Search for CSPs	220
	6.5	The Structure of Problems	222
	6.6	Summary, Bibliographical and Historical Notes, Exercises	227
II	I Kr	nowledge, reasoning, and planning	
7	Logic	cal Agents	234
	7.1	Knowledge-Based Agents	235
	7.2	The Wumpus World	236
	7.3	Logic	240
	7.4	Propositional Logic: A Very Simple Logic	243
	7.5	Propositional Theorem Proving	249
	7.6	Effective Propositional Model Checking	259
	7.7	Agents Based on Propositional Logic	265
	7.8	Summary, Bibliographical and Historical Notes, Exercises	274
8	First	-Order Logic	285
	8.1	Representation Revisited	285
	8.2	Syntax and Semantics of First-Order Logic	290
	8.3	Using First-Order Logic	300
	8.4	Knowledge Engineering in First-Order Logic	307
	8.5	Summary, Bibliographical and Historical Notes, Exercises	313
9	Infer	rence in First-Order Logic	322
	9.1	Propositional vs. First-Order Inference	322
	9.2	Unification and Lifting	325
	9.3	Forward Chaining	330
	9.4	Backward Chaining	337
	9.5	Resolution	345
	9.6	Summary, Bibliographical and Historical Notes, Exercises	357
10		sical Planning	366
	10.1	Definition of Classical Planning	366
	10.2	Algorithms for Planning as State-Space Search	373
	10.3	Planning Graphs	379

Contents xv

	10.4	Other Classical Planning Approaches	387
	10.5	Analysis of Planning Approaches	392
	10.6	Summary, Bibliographical and Historical Notes, Exercises	393
11	Planr	ning and Acting in the Real World	401
	11.1	Time, Schedules, and Resources	401
	11.2	Hierarchical Planning	406
	11.3	Planning and Acting in Nondeterministic Domains	415
	11.4	Multiagent Planning	425
	11.5	Summary, Bibliographical and Historical Notes, Exercises	430
12	Knov	vledge Representation	437
	12.1	Ontological Engineering	437
	12.2	Categories and Objects	440
	12.3	Events	446
	12.4	Mental Events and Mental Objects	450
	12.5	Reasoning Systems for Categories	453
	12.6	Reasoning with Default Information	458
	12.7	The Internet Shopping World	462
	12.8	Summary, Bibliographical and Historical Notes, Exercises	467
IV	Un	certain knowledge and reasoning	
13	Quan	ntifying Uncertainty	480
	13.1	Acting under Uncertainty	480
	13.2	Basic Probability Notation	483
	13.3	Inference Using Full Joint Distributions	490
	13.4	Independence	494
	13.5	Bayes' Rule and Its Use	495
	13.6	The Wumpus World Revisited	499
	13.7	Summary, Bibliographical and Historical Notes, Exercises	503
14	Proba	abilistic Reasoning	510
	14.1	Representing Knowledge in an Uncertain Domain	510
	14.2	The Semantics of Bayesian Networks	513
	14.3	Efficient Representation of Conditional Distributions	518
	14.4	Exact Inference in Bayesian Networks	522
	14.5	Approximate Inference in Bayesian Networks	530
	14.6	Relational and First-Order Probability Models	539
	14.7	Other Approaches to Uncertain Reasoning	546
	14.8	Summary, Bibliographical and Historical Notes, Exercises	551
15	Prob	abilistic Reasoning over Time	566
	15.1	Time and Uncertainty	566

xvi Contents

	15.2	Inference in Temporal Models	570
	15.3	Hidden Markov Models	578
	15.4	Kalman Filters	584
	15.5	Dynamic Bayesian Networks	590
	15.6	Keeping Track of Many Objects	599
	15.7	Summary, Bibliographical and Historical Notes, Exercises	603
16	Makii	ng Simple Decisions	610
	16.1	Combining Beliefs and Desires under Uncertainty	610
	16.2	The Basis of Utility Theory	611
	16.3	Utility Functions	615
	16.4	Multiattribute Utility Functions	622
	16.5	Decision Networks	626
	16.6	The Value of Information	628
	16.7	Decision-Theoretic Expert Systems	633
	16.8	Summary, Bibliographical and Historical Notes, Exercises	636
17	Makii	ng Complex Decisions	645
	17.1	Sequential Decision Problems	645
	17.2	Value Iteration	652
	17.3	Policy Iteration	656
	17.4	Partially Observable MDPs	658
	17.5	Decisions with Multiple Agents: Game Theory	666
	17.6	Mechanism Design	679
	17.7	Summary, Bibliographical and Historical Notes, Exercises	684
V	Lear	ning	
18	Learn	ning from Examples	693
	18.1	Forms of Learning	693
	18.2	Supervised Learning	695
	18.3	Learning Decision Trees	697
	18.4	Evaluating and Choosing the Best Hypothesis	708
	18.5	The Theory of Learning	713
	18.6	Regression and Classification with Linear Models	717
	18.7	Artificial Neural Networks	727
	18.8	Nonparametric Models	737
	18.9	Support Vector Machines	744
		Ensemble Learning	748
	18.11	Practical Machine Learning	753
		Summary, Bibliographical and Historical Notes, Exercises	757
19	Know	ledge in Learning	768
	19.1	A Logical Formulation of Learning	768

Contents xvii

	19.2	Knowledge in Learning	777
	19.3	Explanation-Based Learning	780
	19.4	Learning Using Relevance Information	784
	19.5	Inductive Logic Programming	788
	19.6	Summary, Bibliographical and Historical Notes, Exercises	797
20	Lear	ning Probabilistic Models	802
	20.1	Statistical Learning	802
	20.2	Learning with Complete Data	806
	20.3	Learning with Hidden Variables: The EM Algorithm	816
	20.4	Summary, Bibliographical and Historical Notes, Exercises	825
21	Reinf	forcement Learning	830
	21.1	Introduction	830
	21.2	Passive Reinforcement Learning	832
	21.3	Active Reinforcement Learning	839
	21.4	Generalization in Reinforcement Learning	845
	21.5	Policy Search	848
	21.6	Applications of Reinforcement Learning	850
	21.7	Summary, Bibliographical and Historical Notes, Exercises	853
\mathbf{V}	[Co	mmunicating, perceiving, and acting	
22		ral Language Processing	860
22		G, 1	
22	Natu	ral Language Processing	860 865
22	Natur 22.1	ral Language Processing Language Models	860 865
22	Natu 22.1 22.2	ral Language Processing Language Models	860 865 867
22	Natu 22.1 22.2 22.3	ral Language Processing Language Models	860 860 865 867 873 882
	Natur 22.1 22.2 22.3 22.4 22.5	ral Language Processing Language Models	860 865 867 873
	Natur 22.1 22.2 22.3 22.4 22.5	ral Language Processing Language Models Text Classification Information Retrieval Information Extraction Summary, Bibliographical and Historical Notes, Exercises ral Language for Communication Phrase Structure Grammars	860 865 867 873 882 888
	Natur 22.1 22.2 22.3 22.4 22.5 Natur 23.1 23.2	ral Language Processing Language Models Text Classification Information Retrieval Information Extraction Summary, Bibliographical and Historical Notes, Exercises ral Language for Communication Phrase Structure Grammars Syntactic Analysis (Parsing)	860 865 867 873 882 888 888 892
	Natur 22.1 22.2 22.3 22.4 22.5 Natur 23.1	ral Language Processing Language Models Text Classification Information Retrieval Information Extraction Summary, Bibliographical and Historical Notes, Exercises ral Language for Communication Phrase Structure Grammars Syntactic Analysis (Parsing) Augmented Grammars and Semantic Interpretation	860 865 867 873 882 888 888 892 897
	Natur 22.1 22.2 22.3 22.4 22.5 Natur 23.1 23.2 23.3 23.4	ral Language Processing Language Models Text Classification Information Retrieval Information Extraction Summary, Bibliographical and Historical Notes, Exercises ral Language for Communication Phrase Structure Grammars Syntactic Analysis (Parsing) Augmented Grammars and Semantic Interpretation Machine Translation	860 865 867 873 882 888 888 892 897
	Natur 22.1 22.2 22.3 22.4 22.5 Natur 23.1 23.2 23.3	ral Language Processing Language Models Text Classification Information Retrieval Information Extraction Summary, Bibliographical and Historical Notes, Exercises ral Language for Communication Phrase Structure Grammars Syntactic Analysis (Parsing) Augmented Grammars and Semantic Interpretation Machine Translation Speech Recognition	860 865 867 873 882 888 888 892 897 907 912
	Natur 22.1 22.2 22.3 22.4 22.5 Natur 23.1 23.2 23.3 23.4	ral Language Processing Language Models Text Classification Information Retrieval Information Extraction Summary, Bibliographical and Historical Notes, Exercises ral Language for Communication Phrase Structure Grammars Syntactic Analysis (Parsing) Augmented Grammars and Semantic Interpretation Machine Translation	860 865 867 873 882 888 888 892 897
23	Natur 22.1 22.2 22.3 22.4 22.5 Natur 23.1 23.2 23.3 23.4 23.5	ral Language Processing Language Models Text Classification Information Retrieval Information Extraction Summary, Bibliographical and Historical Notes, Exercises ral Language for Communication Phrase Structure Grammars Syntactic Analysis (Parsing) Augmented Grammars and Semantic Interpretation Machine Translation Speech Recognition Summary, Bibliographical and Historical Notes, Exercises	860 865 867 873 882 888 892 897 907 912 918
23	Natur 22.1 22.2 22.3 22.4 22.5 Natur 23.1 23.2 23.3 23.4 23.5 23.6	ral Language Processing Language Models Text Classification Information Retrieval Information Extraction Summary, Bibliographical and Historical Notes, Exercises ral Language for Communication Phrase Structure Grammars Syntactic Analysis (Parsing) Augmented Grammars and Semantic Interpretation Machine Translation Speech Recognition Summary, Bibliographical and Historical Notes, Exercises	860 865 867 873 882 888 892 897 907 912 918
23	Natur 22.1 22.2 22.3 22.4 22.5 Natur 23.1 23.2 23.3 23.4 23.5 23.6	ral Language Processing Language Models Text Classification Information Retrieval Information Extraction Summary, Bibliographical and Historical Notes, Exercises ral Language for Communication Phrase Structure Grammars Syntactic Analysis (Parsing) Augmented Grammars and Semantic Interpretation Machine Translation Speech Recognition Summary, Bibliographical and Historical Notes, Exercises eption Image Formation Early Image-Processing Operations	860 865 867 873 882 888 892 897 907 912 918
23	Natur 22.1 22.2 22.3 22.4 22.5 Natur 23.1 23.2 23.3 23.4 23.5 23.6 Perce 24.1	ral Language Processing Language Models Text Classification Information Retrieval Information Extraction Summary, Bibliographical and Historical Notes, Exercises ral Language for Communication Phrase Structure Grammars Syntactic Analysis (Parsing) Augmented Grammars and Semantic Interpretation Machine Translation Speech Recognition Summary, Bibliographical and Historical Notes, Exercises eption Image Formation Early Image-Processing Operations Object Recognition by Appearance	860 865 867 873 882 888 892 897 907 912 918 928 929
23	Natur 22.1 22.2 22.3 22.4 22.5 Natur 23.1 23.2 23.3 23.4 23.5 23.6 Perce 24.1 24.2	ral Language Processing Language Models Text Classification Information Retrieval Information Extraction Summary, Bibliographical and Historical Notes, Exercises ral Language for Communication Phrase Structure Grammars Syntactic Analysis (Parsing) Augmented Grammars and Semantic Interpretation Machine Translation Speech Recognition Summary, Bibliographical and Historical Notes, Exercises eption Image Formation Early Image-Processing Operations	860 865 867 873 882 888 892 897 907 912 918 928 929 935

xviii Contents

24.6	Using Vision	961
24.7	Summary, Bibliographical and Historical Notes, Exercises	965
25 Rob	otics	971
25.1	Introduction	971
25.2	Robot Hardware	973
25.3	Robotic Perception	978
25.4	Planning to Move	. 986
25.5	Planning Uncertain Movements	993
25.6	Moving	. 997
25.7	Robotic Software Architectures	1003
25.8	Application Domains	1006
25.9	Summary, Bibliographical and Historical Notes, Exercises	1010
VII (Conclusions	
26 Phil	osophical Foundations	1020
26.1	-	1020
26.2	• •	
26.3		
26.4	Summary, Bibliographical and Historical Notes, Exercises	1040
27 AI:	The Present and Future	1044
27.1	Agent Components	1044
27.2	Agent Architectures	1047
27.3	Are We Going in the Right Direction?	1049
27.4	What If AI Does Succeed?	. 1051
A Mad	homotical hashanaund	1053
	hematical background	
A.1 A.2	Complexity Analysis and O() Notation	
A.2 A.3	Vectors, Matrices, and Linear Algebra	
	Probability Distributions	
	es on Languages and Algorithms	1060
B.1	Defining Languages with Backus–Naur Form (BNF)	
B.2	Describing Algorithms with Pseudocode	
B.3	Online Help	. 1062
Bibliography 1		
Index		1095

Exercises 157

for belief-state search; these were refined by Bryce *et al.* (2006). The incremental approach to belief-state search, in which solutions are constructed incrementally for subsets of states within each belief state, was studied in the planning literature by Kurien *et al.* (2002); several new incremental algorithms were introduced for nondeterministic, partially observable problems by Russell and Wolfe (2005). Additional references for planning in stochastic, partially observable environments appear in Chapter 17.

FIII FRIAN GRAPH

Algorithms for exploring unknown state spaces have been of interest for many centuries. Depth-first search in a maze can be implemented by keeping one's left hand on the wall; loops can be avoided by marking each junction. Depth-first search fails with irreversible actions; the more general problem of exploring **Eulerian graphs** (i.e., graphs in which each node has equal numbers of incoming and outgoing edges) was solved by an algorithm due to Hierholzer (1873). The first thorough algorithmic study of the exploration problem for arbitrary graphs was carried out by Deng and Papadimitriou (1990), who developed a completely general algorithm but showed that no bounded competitive ratio is possible for exploring a general graph. Papadimitriou and Yannakakis (1991) examined the question of finding paths to a goal in geometric path-planning environments (where all actions are reversible). They showed that a small competitive ratio is achievable with square obstacles, but with general rectangular obstacles no bounded ratio can be achieved. (See Figure 4.20.)

REAL-TIME SEARCH

The LRTA* algorithm was developed by Korf (1990) as part of an investigation into **real-time search** for environments in which the agent must act after searching for only a fixed amount of time (a common situation in two-player games). LRTA* is in fact a special case of reinforcement learning algorithms for stochastic environments (Barto *et al.*, 1995). Its policy of optimism under uncertainty—always head for the closest unvisited state—can result in an exploration pattern that is less efficient in the uninformed case than simple depth-first search (Koenig, 2000). Dasgupta *et al.* (1994) show that online iterative deepening search is optimally efficient for finding a goal in a uniform tree with no heuristic information. Several informed variants on the LRTA* theme have been developed with different methods for searching and updating within the known portion of the graph (Pemberton and Korf, 1992). As yet, there is no good understanding of how to find goals with optimal efficiency when using heuristic information.

EXERCISES

- **4.1** Give the name of the algorithm that results from each of the following special cases:
 - **a**. Local beam search with k = 1.
 - b. Local beam search with one initial state and no limit on the number of states retained.
 - c. Simulated annealing with T=0 at all times (and omitting the termination test).
 - **d**. Simulated annealing with $T = \infty$ at all times.
 - **e**. Genetic algorithm with population size N=1.

4.2 Exercise 3.16 considers the problem of building railway tracks under the assumption that pieces fit exactly with no slack. Now consider the real problem, in which pieces don't fit exactly but allow for up to 10 degrees of rotation to either side of the "proper" alignment. Explain how to formulate the problem so it could be solved by simulated annealing.

- **4.3** In this exercise, we explore the use of local search methods to solve TSPs of the type defined in Exercise 3.30.
 - **a.** Implement and test a hill-climbing method to solve TSPs. Compare the results with optimal solutions obtained from the A* algorithm with the MST heuristic (Exercise 3.30).
 - **b.** Repeat part (a) using a genetic algorithm instead of hill climbing. You may want to consult Larrañaga *et al.* (1999) for some suggestions for representations.

- **4.4** Generate a large number of 8-puzzle and 8-queens instances and solve them (where possible) by hill climbing (steepest-ascent and first-choice variants), hill climbing with random restart, and simulated annealing. Measure the search cost and percentage of solved problems and graph these against the optimal solution cost. Comment on your results.
- **4.5** The AND-OR-GRAPH-SEARCH algorithm in Figure 4.11 checks for repeated states only on the path from the root to the current state. Suppose that, in addition, the algorithm were to store *every* visited state and check against that list. (See BREADTH-FIRST-SEARCH in Figure 3.11 for an example.) Determine the information that should be stored and how the algorithm should use that information when a repeated state is found. (*Hint*: You will need to distinguish at least between states for which a successful subplan was constructed previously and states for which no subplan could be found.) Explain how to use labels, as defined in Section 4.3.3, to avoid having multiple copies of subplans.

- **4.6** Explain precisely how to modify the AND-OR-GRAPH-SEARCH algorithm to generate a cyclic plan if no acyclic plan exists. You will need to deal with three issues: labeling the plan steps so that a cyclic plan can point back to an earlier part of the plan, modifying OR-SEARCH so that it continues to look for acyclic plans after finding a cyclic plan, and augmenting the plan representation to indicate whether a plan is cyclic. Show how your algorithm works on (a) the slippery vacuum world, and (b) the slippery, erratic vacuum world. You might wish to use a computer implementation to check your results.
- **4.7** In Section 4.4.1 we introduced belief states to solve sensorless search problems. A sequence of actions solves a sensorless problem if it maps every physical state in the initial belief state b to a goal state. Suppose the agent knows $h^*(s)$, the true optimal cost of solving the physical state s in the fully observable problem, for every state s in b. Find an admissible heuristic h(b) for the sensorless problem in terms of these costs, and prove its admissibilty. Comment on the accuracy of this heuristic on the sensorless vacuum problem of Figure 4.14. How well does A^* perform?
- **4.8** This exercise explores subset–superset relations between belief states in sensorless or partially observable environments.
 - **a.** Prove that if an action sequence is a solution for a belief state b, it is also a solution for any subset of b. Can anything be said about supersets of b?

Exercises 159

b. Explain in detail how to modify graph search for sensorless problems to take advantage of your answers in (a).

- **c**. Explain in detail how to modify AND–OR search for partially observable problems, beyond the modifications you describe in (b).
- **4.9** On page 139 it was assumed that a given action would have the same cost when executed in any physical state within a given belief state. (This leads to a belief-state search problem with well-defined step costs.) Now consider what happens when the assumption does not hold. Does the notion of optimality still make sense in this context, or does it require modification? Consider also various possible definitions of the "cost" of executing an action in a belief state; for example, we could use the *minimum* of the physical costs; or the *maximum*; or a cost *interval* with the lower bound being the minimum cost and the upper bound being the maximum; or just keep the set of all possible costs for that action. For each of these, explore whether A* (with modifications if necessary) can return optimal solutions.
- **4.10** Consider the sensorless version of the erratic vacuum world. Draw the belief-state space reachable from the initial belief state $\{1, 2, 3, 4, 5, 6, 7, 8\}$, and explain why the problem is unsolvable.

- **4.11** We can turn the navigation problem in Exercise 3.7 into an environment as follows:
 - The percept will be a list of the positions, *relative to the agent*, of the visible vertices. The percept does *not* include the position of the robot! The robot must learn its own position from the map; for now, you can assume that each location has a different "view."
 - Each action will be a vector describing a straight-line path to follow. If the path is unobstructed, the action succeeds; otherwise, the robot stops at the point where its path first intersects an obstacle. If the agent returns a zero motion vector and is at the goal (which is fixed and known), then the environment teleports the agent to a *random location* (not inside an obstacle).
 - The performance measure charges the agent 1 point for each unit of distance traversed and awards 1000 points each time the goal is reached.
 - **a.** Implement this environment and a problem-solving agent for it. After each teleportation, the agent will need to formulate a new problem, which will involve discovering its current location.
 - **b.** Document your agent's performance (by having the agent generate suitable commentary as it moves around) and report its performance over 100 episodes.
 - c. Modify the environment so that 30% of the time the agent ends up at an unintended destination (chosen randomly from the other visible vertices if any; otherwise, no move at all). This is a crude model of the motion errors of a real robot. Modify the agent so that when such an error is detected, it finds out where it is and then constructs a plan to get back to where it was and resume the old plan. Remember that sometimes getting back to where it was might also fail! Show an example of the agent successfully overcoming two successive motion errors and still reaching the goal.

- **d.** Now try two different recovery schemes after an error: (1) head for the closest vertex on the original route; and (2) replan a route to the goal from the new location. Compare the performance of the three recovery schemes. Would the inclusion of search costs affect the comparison?
- e. Now suppose that there are locations from which the view is identical. (For example, suppose the world is a grid with square obstacles.) What kind of problem does the agent now face? What do solutions look like?
- **4.12** Suppose that an agent is in a 3×3 maze environment like the one shown in Figure 4.19. The agent knows that its initial location is (1,1), that the goal is at (3,3), and that the actions Up, Down, Left, Right have their usual effects unless blocked by a wall. The agent does *not* know where the internal walls are. In any given state, the agent perceives the set of legal actions; it can also tell whether the state is one it has visited before.
 - **a.** Explain how this online search problem can be viewed as an offline search in belief-state space, where the initial belief state includes all possible environment configurations. How large is the initial belief state? How large is the space of belief states?
 - **b**. How many distinct percepts are possible in the initial state?
 - **c.** Describe the first few branches of a contingency plan for this problem. How large (roughly) is the complete plan?

Notice that this contingency plan is a solution for *every possible environment* fitting the given description. Therefore, interleaving of search and execution is not strictly necessary even in unknown environments.

- **4.13** In this exercise, we examine hill climbing in the context of robot navigation, using the environment in Figure 3.31 as an example.
 - **a.** Repeat Exercise 4.11 using hill climbing. Does your agent ever get stuck in a local minimum? Is it *possible* for it to get stuck with convex obstacles?
 - **b**. Construct a nonconvex polygonal environment in which the agent gets stuck.
 - c. Modify the hill-climbing algorithm so that, instead of doing a depth-1 search to decide where to go next, it does a depth-k search. It should find the best k-step path and do one step along it, and then repeat the process.
 - **d**. Is there some k for which the new algorithm is guaranteed to escape from local minima?
 - e. Explain how LRTA* enables the agent to escape from local minima in this case.
- **4.14** Like DFS, online DFS is incomplete for reversible state spaces with infinite paths. For example, suppose that states are points on the infinite two-dimensional grid and actions are unit vectors (1,0), (0,1), (-1,0), (0,-1), tried in that order. Show that online DFS starting at (0,0) will not reach (1,-1). Suppose the agent can observe, in addition to its current state, all successor states and the actions that would lead to them. Write an algorithm that is complete even for bidirected state spaces with infinite paths. What states does it visit in reaching (1,-1)?