Detecting Bullying Traces in Tweets

Application of Natural Language Processing for social studies By Niti Mishra K.C.

Why are we interested?

- Many scholars interested in bullying studies are blocked due to data scarcity
- In general, social media such as Twitter afford a context for cyberbullying to take place.
- Thus it provides a unique vantage point for these scholars, as it's data can reveal how individuals are representing bullying online in real time.
- In recent years, the automatic detection of "aggressive behavior" in social media is gaining a lot of attention

Our Objective

Contribute to present evidences that social media, with appropriate natural language processing techniques, can be a valuable and abundant data source for the study of bullying in both digital and real world.

Data

- Twitter Streaming API
- Collecting tweets since August, 2019 July 2020
 - → 7712.200 mean tweets per day
 - 15.130 lexical diversity
- Keywords:
 - Primary: bullied, bully, bullying, cyberbullying, cyberbullied, cyberbully
 - Secondary: 95 words → Forced, exclusion, hitting, shove, harass, etc.
 - Additional: Trump, @realdonaldtrump, white house @whitehouse, white house @potus, potus @flotus flotus, president

- Full tweets (extended characters)
- 5000 tweets labelled
 - 2 human coders
 - Interrater agreement: 81%
 - 'no': 2838, 'yes': 2077

Pre-processing

During Collection

- Removed
 - Retweets
 - Non-English tweets
 - Quoted tweets
 - URLs
 - Tweets with >= 6 hashtags

During Modelling

- nltk's TweetTokenizer
- Anonymize user
- Hashtags compound words treated as single token
- No stop-words removal
- Emoticons treated as token
- Github Link

Classifiers

- LogisticRegression (TruncatedSVD)
- LogisticRegression
- SGDClassifier (TruncatedSVD)
- SGDClassifier
- MultinomialNB
- GaussianNB (TruncatedSVD)

RESULTS

nGrams

Unigram (1,1) g

Unigram + Bigram → (1,2)g

Mean scores over 12-fold CV

	name	ассигасу	precision	recall	f1	time
0	LogisticRegression (TruncatedSVD)	0.699277	0.697521	0.699277	0.693680	5.375905
1	LogisticRegression	0.705392	0.704359	0.705392	0.700845	0.981322
2	SGDClassifier (TruncatedSVD)	0.693996	0.693436	0.693996	0.690724	5.208292
3	SGDClassifier	0.684431	0.686420	0.684431	0.684394	0.981969
4	MultinomialNB	0.647431	0.670695	0.647431	0.600744	0.954380
5	GaussianNB (TruncatedSVD)	0.591661	0.616627	0.591661	0.592434	4.990253

	name	accuracy	precision	recall	f1	time
0	LogisticRegression (TruncatedSVD)	0.696644	0.695134	0.696644	0.692732	24.827597
1	LogisticRegression	0.708251	0.708811	0.708251	0.704358	1.502113
2	SGDClassifier (TruncatedSVD)	0.685256	0.698703	0.685256	0.682554	25.422912
3	SGDClassifier	0.695835	0.701849	0.695835	0.697216	1.523191
4	MultinomialNB	0.629895	0.694227	0.629895	0.549975	1.461503
5	GaussianNB (TruncatedSVD)	0.600608	0.603561	0.600608	0.525036	26.287931

Performance in CV mode

Discussions/Challenges

- File encoding problem with emojis
- Switching between csv and xlsx → build app for labelling tweet (spacy)
- Getting the code to preprocessor to run such that it includes rest of the items of the tweet dictionary instead of just the list of tokenized tweets.
- Github!!!!

Questions?