Requested Patent:

DE19953667A1

Title:

Abstracted Patent:

DE19953667;

Publication Date:

2001-05-17;

Inventor(s):

KLAGES CLAUS-PETER [DE]; THYEN RUDOLF [DE];

Applicant(s):

FRAUNHOFER GES FORSCHUNG [DE];

Application Number:

DE19991053667 19991108;

Priority Number(s):

DE19991053667 19991108;

IPC Classification:

C23C14/06; C23C14/58; B05D5/00;

Equivalents:

EP1230042 (WO0134313), A3, B1, WO0134313;

ABSTRACT:

The invention relates to a layer that has been deposited on a substrate by means of a plasma-supported method and whose surface is selectively functionalised by grafting-on monomers. The invention also relates to a method for producing a layer of this type and to its use.

(f) Int. Cl.⁷:

C 23 C 14/06

C 23 C 14/58 B 05 D 5/00

(19) BUNDESREPUBLIK **DEUTSCHLAND**

DEUTSCHES PATENT- UND MARKENAMT

® Offenlegungsschrift

_® DE 199 53 667 A 1

(a) Aktenzeichen: ② Anmeldetag:

199 53 667.8 8.11.1999

(43) Offenlegungstag:

17. 5. 2001

(7) Anmelder:

Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 80636 München, DE

(74) Vertreter:

Einsel, M., Dipl.-Phys., Pat.-Anw., 38102 Braunschweig

② Erfinder:

Klages, Claus-Peter, Dipl.-Chem. Dr., 38102 Braunschweig, DE; Thyen, Rudolf, Dipl.-Ing., 38100 Braunschweig, DE

56 Entgegenhaltungen:

DE 195 05 449 C2 **DE-PS** 18 09 906 DE 198 02 740 A1 US 53 50 605 EP 06 22 399 A1 wo 93 10 283 A1

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

- (54) Schicht mit selektiv funktionalisierter Oberfläche
- Die vorliegende Erfindung betrifft eine Schicht, die mittels eines plasmagestützten Verfahrens auf einem Substrat abgeschieden worden ist, deren Oberfläche durch Aufpfropfen von Monomeren selektiv funktionalisiert ist sowie ein Verfahren zur Herstellung einer derartigen Schicht und deren Verwendung.

Beschreibung

Die vorliegende Erfindung betrifft eine Schicht, die mittels einem plasmagestützten Verfahren erhalten worden ist, wobei die Oberfläche dieser Schicht selektiv funktionalisiert worden ist, ein Verfahren zur Herstellung einer derartigen Schicht und deren Verwendung.

Die Beschichtung von Substraten mittels plasmagestützter Verfahren ist an sich bekannt. Hierbei werden in einem Plasma aus den Beschichtungsvorläufermaterialien (nachfolgend Precursor genannt) reaktive Spezies erhalten, die sich auf einem Substrat, meistens einem Metall, unter Schichtausbildung abscheiden. Die einzelnen Verfahren unterscheiden sich hierbei in der Art der Plasmaerzeugung und in der Wahl der Prozessbedingungen, insbesondere des 15 Druckes.

So wird zum Beispiel in der WO 93 102 83 mittels Plasmatechnologie eine dünne Plasmapolymerschicht auf einem vorbehandelten Substrat abgeschieden, wobei als Precursor für die Polymerschicht eine organische Verbindung wie Methylsilan, Trimethylsilan etc. eingesetzt wird. Im Anschluss an die Plasmaabscheidung wird auf dieser dünnen Polymerschicht mittels kathodischer Schichtabscheidung eine Überzugsschicht aus einem Epoxyamin oder Epoxy-Polyestermelamin aufgetragen. Das so erhaltene Schichtsystem wird 25 als korrosionsfeste Schutzschicht für ungalvanisierte Metalloberflächen eingesetzt.

Bekannt ist weiter aus DE 195 05 449 C2 und R. Thyen, A. Weber, C.-P. Klages, Surf. Coat. Technol. 97 (1997) 426-434, mittels Korona- oder Barrierenentladung Schichten bei hohen Drucken von 0,1 bis 1,5 bar (10-150 kPa) abzuscheiden

Mit solchen Verfahren können Schichten abgeschieden werden, die im Allgemeinen eine haftfeste und/oder korrosionsfeste Anbindung nachfolgend aufgebrachter organischer 35 Beschichtungen ermöglichen. Als Precursor können hierbei zum Beispiel Kohlenwasserstoffe, Silizium enthaltende Verbindungen, Bor- oder Phosphor enthaltende Verbindungen oder Metallverbindungen in Frage kommen. Von Vorteil ist, dass bei diesen Verfahren die Schichtabscheidung bei hohen 40 Drucken, zum Beispiel bei Normaldruck, erfolgen kann, und auf eine aufwendige Vakuumapparatur verzichtet werden kann, wie sie bei Niederdruckverfahren unerlässlich sind.

Plasmaabgeschiedene Schichten können vielfältige Aufgaben erfüllen. Sie können als Korrosionsschutzschichten den Durchgang korrosiver Medien, insbesondere Sauerstoff und Wasser, verhindern und/oder als elektrische Isolationsschichten wirken. Zudem können sie Haftvermittler zwischen dem Substrat und weiteren auf der plasmaabgeschiedenen Schicht aufzutragenden Schichten wie Lackschichten, Klebstoffschichten, Primerschichten oder für Aufdrucke bilden. Häufig wird, falls eine Kombination von verschiedenen Eigenschaften gewünscht ist, nicht eine Einzelschicht sondern ein Schichtsystem vorgeschlagen, das als 55 Gradienten- bzw. Mehrfachschichtsystem ausgebildet sein kann

Nachteil der plasmaabgeschiedenen Schichten bzw. Schichtsysteme ist es jedoch, dass es bisher nicht möglich war, die Oberfläche dieser Schichten selektiv chemisch zu 60 funktionalisieren, wobei je nach Wunsch und Anwendungszweck die Oberfläche mit ausgewählten chemisch funktionellen Gruppen modifiziert werden kann. Zwar erfolgt auch beim Plasmaabscheideverfahren je nach Art der gewählten Precursoren in einem gewissen Maße Funktionalisierung 65 der Oberfläche, diese Funktionalisierung erfolgt jedoch ungesteuert und unkontrolliert, indem statistisch funktionelle Gruppen wie sie im Precursor vorhanden waren oder wäh-

rend der Plasmareaktion entstehen, an Oberflächenatome der Schicht gebunden werden bzw. indem in die Oberfläche funktionelle Gruppen enthaltende Precursorfragmente eingebaut werden.

Gewöhnlich enthält eine derart erhaltene Schichtoberfläche ein Gemisch vieler funktioneller Gruppen, wie sie durch Reaktion während der Plasmaentladung gebildet werden. So hat sich gezeigt, dass im Fall von hydroxylgruppenhaltigen Precursoren die Oberfläche Sauerstoff nicht nur in der Oxidationsstufe der Hydroxylgruppe aufweist, sondern auch in anderen Oxidationsstufen. Auch ist es nicht möglich, mittels Plasmaabscheideverfahren empfindliche Gruppen wie Epoxydgruppen auf der Oberfläche aufzubringen, da diese Gruppen bei den Bedingungen des Verfahrens üblicherweise zerstört werden. Darüber hinaus hat sich gezeigt, dass die Belegung der Oberfläche mit funktionellen Gruppen nur gering ist. Das heißt, es ist mit den herkömmlichen Plasmaverfahren nicht möglich, gesteuert eine Oberflächenmodifizierung mit funktionellen Gruppen an der Schicht vorzunehmen, wobei die Art der funktionellen Gruppen selektiv ausgewählt werden kann und zudem eine ausreichend dichte Oberflächenbelegung erzielt werden kann.

Es war daher Aufgabe der vorliegenden Erfindung, eine plasmaabgeschiedene Schicht zur Verfügung zu stellen, deren Oberfläche selektiv chemisch funktionalisiert ist, wobei insbesondere eine dichte Oberflächenbelegung mit funktionellen Gruppen erreicht werden kann sowie ein Verfahren zur Herstellung einer derartigen Schicht.

Insbesondere sollen diese Schichten derart funktionalisiert sein, dass sie aufgrund einer geeigneten Auswahl an funktionellen Gruppen, die auf der Oberfläche aufgebracht sind, eine optimale Anbindung/Anhaftung von weiteren darauf aufzubringenden Schichten, insbesondere organischen Schichten, gewährleisten.

Diese Aufgabe wird gelöst durch eine Schicht, die mittels eines plasmaunterstützten Verfahrens auf einem Substrat abgeschieden worden ist, wobei die Oberfläche der Schicht mittels Aufpfropfen von Monomeren selektiv funktionalisiert worden ist.

Weiter betrifft die vorliegende Erfindung ein Verfahren zur Herstellung einer Schicht mit selektiv funktionalisierter Oberfläche auf einem Substrat, dadurch gekennzeichnet, dass die Schicht auf dem Substrat mittels eines plasmagestützten Abscheidungsverfahrens erzeugt und die Oberfläche der Schicht durch Aufpfropfen von Monomeren selektiv funktionalisiert wird.

Im Sinne der Erfindung bedeutet der Ausdruck "selektiv funktionalisiert", dass durch geeignete Wahl der Monomeren auf die Oberfläche einer plasmaabgeschiedenen Schicht je nach Wunsch und Anwendungszweck funktionelle Gruppen aufgebracht werden können. Die Art der Monomere unterliegt hierbei keiner Beschränkung so dass auch insbesondere funktionelle Gruppen, die bei den Bedingungen der Abscheidung der Schicht im Plasma zerstört werden würden oder anderweitig reagieren würden auf die Oberfläche der abgeschiedenen Schicht aufgebracht werden können.

Die Funktionalisierung von Oberflächen durch Pfropfen ist aus der organischen Polymerchemie bekannt (siehe zum Beispiel J. Jaguar-Grodzinski, Heterogeneous Modification of Polymers, S. 221–234, John Wiley & Sons, Chichester 1997 sowie Y. Uyama, K. Kato und Y. Ikada, Advances in Polymer Science, 137 (1998) 1–40). Dabei werden zunächst auf der Oberfläche eines Polymers wie zum Beispiel Polyethylen, Polystyrol oder Polyethylenterephthalat als reaktive Zentren kohlenstoffbasierte Radikale, zum Beispiel Alkylradikale, erzeugt. Diese sehr reaktiven Radikalzentren können dann direkt in Kontakt mit polymerisationsfähigen Monomeren M gebracht werden, die in flüssiger oder gasförmi-

ger Phase in Kontakt mit der Polymeroberfläche kommen, so dass auf der Polymeroberfläche an den Radikalzentren Polymerketten – $(M)_n$ – aufwachsen. Die Radikalzentren können chemisch, photochemisch, durch Bestrahlung oder durch plasmachemische Oberflächenbehandlungen, zum Beispiel in einem Argonplasma, erzeugt werden, wie zum Beispiel nachstehend schematisch skizziert:

$$C_p - H \rightarrow Plasma \rightarrow C_p^*$$
 (I)

$$C_p^* + mM \longrightarrow C_p - (M)_n^* \longrightarrow C_p - (M)_n - E$$
 (II)

 C_p ein Kohlenstoffatom an einer Polymeroberfläche C_p^* ein Radikalzentrum

M ein Monomer

m Anzahl der Monomeren

n Anzahl der Monomeren einer Polymerkette und E eine Endgruppe darstellen

Bei der Endgruppe E kann es sich um eine beliebige 20 Komponente handeln, die zu einer Kettenabbruchreaktion führt. Beispielsweise kann E Wasserstoff H sein.

Die Kettenlänge bzw. Monomerenanzahl n der aufgepfropften Monomerenkette kann durch geeignete Auswahl der Prozessparameter wie Temperatur, Prozessdauer, Bestrahlungsintensität, Partialdruck des Monomers bei Gasphasenpolymerisation bzw. Volumenanteil und Anwesenheit von Inhibitoren bei Flüssigphasenpolymerisation beeinflusst werden. Auf diese Weise kann durch Wahl eines Monomers M mit geeigneten funktionellen Gruppen bewirkt werden, dass eine Vielzahl dieser funktionellen Gruppen kovalent an der Polymeroberfläche angekoppelt wird und so die Eigenschaften der Polymeroberfläche je nach Bedarf variiert werden.

So kann zum Beispiel die Oberfläche optimal für die Haftung einer weiteren Schicht, eines Lackes, eines Primers, Klebstoff oder anderen vorzugsweise organischen Materials angepasst werden. Das ist insbesondere dann der Fall, wenn eine funktionelle Gruppe F der Monomeren wiederum mit entsprechenden funktionellen Gruppen F der nachfolgend 40 aufgebrachten Schicht reagieren kann.

Bisher wurde angenommen, dass diese Art der Funktionalisierung der Oberfläche durch Aufpfropfung von Monomeren ein Polymer voraussetzt. Überraschenderweise wurde erfindungsgemäß festgestellt, dass der oben dargestellte Pfropfprozess nicht notwendigerweise eine organische kohlenstoffhaltige Polymeroberfläche voraussetzt, sondern zum Beispiel auch für Metall- oder Keramikoberflächen anwendbar ist.

Voraussetzung hierfür ist, dass zunächst mittels eines 50 plasmagestützten Verfahrens eine dünne Schicht auf der Substratoberfläche abgeschieden wird.

Es kann sich hierbei um eine beliebige Schicht handeln, wie sie nach herkömmlichen plasmagestützten Verfahren erhältlich ist. Es können sich um wenige Atomlagen einer 55 Kohlenwasserstoffschicht handeln, um eine aus Silizium, Kohlenstoff und Wasserstoff bestehende Schicht, die Schichten können Sauerstoff, Stickstoff, Schwefel, Bor, Phosphor, Halogene enthalten, beispielsweise kann es sich um eine Siliziumoxidschicht handeln.

Als Precusoren für die Schicht können alle dafür bekannten Verbindungen aus dem Bereich der Gasphasenabscheidung eingesetzt werden, wie zum Beispiel Kohlenwasserstoffe, gegebenenfalls mit funktionellen Gruppen, siliziumenthaltende Verbindungen, sauerstoff-, stickstoff-, bor-, 65 schwefel-, halogen- und/oder phosphorenthaltende Verbindungen oder Metallverbindungen. Bevorzugte Precusoren sind organische Verbindungen.

Geeignete Beispiele sind Propargylalkohol, Tetramethylsilan, Hexamethyldisiloxan, Vinyltrimethoxysilan, Phenyltrimethoxysilan, Aminopropyltrimethoxysilan, Mercaptopropyltrimethoxysilan, Dimethyldichlorsilan, Trimethylphosphit, Trimethylborat sowie insbesondere Methan, Ethen und Ethin.

Die Schichtdicke liegt hierfür typischerweise in einem Bereich von 1 nm bis 1 µm, vorzugsweise 5 nm bis 100 nm.

Auch das Substratmaterial kann prinzipiell beliebig gewählt werden. Das erfindungsgemäße Verfahren eignet sich insbesondere zur Aufbringung einer selektiv funktionalisierten Oberflächenschicht auf ein metallisches Substrat. Das zu beschichtende Substrat kann zum Beispiel Aluminium, Stahl oder ein verzinktes Stahlblech sein. Das Substrat kann eine beliebige Form haben. Es kann ein Profil, ein Profilrohr, ein Draht oder eine Platte oder ein Bestandteil eines elektronischen Bauteils sein.

Durch das erfindungsgemäße Verfahren zur selektiven Funktionalisierung der Substratoberfläche kann die Oberfläche spezifisch für die Anbindung/Anhaftung einer weiteren Überzugsschicht konditioniert werden, wobei die funktionellen Gruppen bzw. das Monomer in Abhängigkeit des Schichtmaterials der noch aufzubringenden Überzugsschicht ausgewählt wird, so dass eine feste Verbindung zwischen Untergrund und Überzug gewährleistet wird. Derartige weitere Schichten können Überzüge sein, zum Beispiel Schutzlacke, Lacke mit Dekorationsfunktion, Farben, Druckfarben, Klebstoffe, Primer etc.

Vorzugsweise bestehen diese weiteren Schichten aus einem organischen Material.

Die Art der Monomeren richtet sich nach der gewünschten Funktionalisierung. Das erfindungsgemäße Verfahren eignet sich insbesondere auch dazu, funktionelle Gruppen, die in einem Plasmaprozess zerstört oder umgebildet werden würden, an die Oberfläche einer plasmaabgeschiedenen Schicht anzubinden. Beispiele für geeignete Monomerenverbindungen sind Vinylverbindungen, insbesondere Acrylsäure, Methacrylsäure und deren Derivate wie zum Beispiel Ester wie Glycidylmethacrylat.

Die Monomerenverbindungen können einzeln oder in Kombination eingesetzt werden.

Die plasmaabgeschiedene Schicht kann mittels eines beliebigen dafür bekannten plasmagestützten Verfahrens zur Schichtabscheidung erzeugt werden. Es kann ein Niederdruck- oder Hochdruckverfahren sein. Es kann ein sogenanntes kaltes Plasmaverfahren sein.

Niederdruckverfahren arbeiten üblicherweise bei Drukken im Bereich von 0,01 Pa bis 10 kPa. Hierfür eignen sich besonders gut Glimmentladungen, die durch Gleichspannungen, Wechselspannungen oder Mikrowellen aufrecht erhalten werden können.

Geeignete Druckbereiche für das Hochdruckverfahren liegen in der Größenordnung von 10⁴ Pa bis 1,5 × 10⁵ Pa. Hochdruckverfahren sind zum Beispiel die Barrierenentladung oder die Plasmaerzeugung mittels gepulster Hochspannungsbogenentladung.

Besonders bevorzugt ist aus Gründen der einfachen technischen Durchführung und des vergleichsweise geringen Kostenaufwands ein Hochdruck- oder Atmosphärendruckverfahren, wobei die Schichtabscheidung aus einer Barrierenentladung bevorzugt ist.

Die Schichtabscheidung aus einer Barrierenentladung ist an sich bekannt und beispielsweise detailliert in DE 195 05 449 C2 oder bei R. Thyen, A. Weber, C.-P. Klages, Surf. Cost. Technol. 97 (1997) 426–434 im Einzelnen vorbeschrieben, auf die hier für die Zwecke der vorliegenden Erfindung ausdrücklich Bezug genommen wird.

Zur Aufpfropfung der Monomeren genügt es im Allge-

meinen, die frisch plasmaabgeschiedene Schicht für einige Sekunden bis zu einigen Minuten in Kontakt mit den gewünschten Monomeren zu bringen. Die Monomeren reagieren mit den reaktiven Zentren, die sich auf der Oberfläche der frisch ausgebildeten Schichten befinden.

Die Kettenlänge, das heißt die Anzahl der Monomeren n, die an einem einzelnen reaktiven Zentrum der Oberfläche aufgepfropft werden, kann durch die Reaktionsbedingungen wie der Anzahl der Endgruppen, gesteuert werden. Von der Erfindung werden somit auch funktionalisierte Oberflächen 10 mit Pfropfmolekülketten n > 1 umfasst.

Die Monomeren können flüssig, gasförmig, als Aerosol, mit oder ohne Inhibitoren und/oder mit Inertgas wie Argon, Stickstoff verdünnt vorliegen. Die Konzentration kann sich nach dem Dampfdruck bestimmen. Bei Bedarf kann mit 15 Wasser verdünnt werden.

Vorzugsweise erfolgt die Funktionalisierung ohne zwischenzeitliche Exposition der plasmaabgeschiedenen Schicht an die Umgebungsatmosphäre, um ein vorzeitiges Abreagieren der reaktiven Zentren zu verhindern.

Die Schichtabscheidung (auch Plasmadeposition genannt) und die Pfropfung können räumlich und/oder zeitlich getrennt voneinander erfolgen. Dies bedeutet, die Pfropfung kann in der selben Vorrichtung wie die Plasmadeposition erfolgen oder das Substrat mit plasmaabgeschiedener Schicht 25 kann in eine separate Vorrichtung oder Kammer, die für die Pfropfung eingerichtet worden ist, gebracht werden. Die Pfropfung kann im Anschluss an die Plasmadeposition, aber auch während, das heißt parallel, zur Plasmadeposition erfolgen, wobei die Plasmadeposition während der Pfropfungsreaktion unterbrochen wird, um ein Zerstören der Monomeren zu verhindern.

Mit dem erfindungsgemäßen Verfahren lässt sich eine hohe Belegung der Oberfläche der plasmaabgeschiedenen Schicht mit funktionellen Gruppen erzielen (Anzahl der 35 funktionellen Gruppen pro Oberflächeneinheit).

So können mit der vorliegenden Erfindung Belegungsdichten im Bereich von 10¹⁵–10¹⁷ pro cm² erreicht werden. Dagegen lassen sich für das vorstehend erwähnte Plasmapolymer im Allgemeinen lediglich Belegungsdichten von ◀ 10¹⁵/cm² erzielen.

In Abhängigkeit von der Belegungsdichte können die funktionellen Gruppen bzw. die Pfropfmoleküle auf der Oberfläche der plasmaabgeschiedenen Schicht einen dünnen Film ähnlich den Langmuir-Blodgett-Filmen ausbilden. 45

Bei der plasmaabgeschiedenen Schicht kann es sich um eine Einzelschicht handeln mit homogener Komponentenzusammensetzung oder mit einer graduierten Komponentenzusammensetzung, wobei der Gehalt und/oder die Art der Komponenten über die Schichtdicke variieren können. 50

Es kann ein Schichtsystem sein, das aus mehreren Einzelschichten besteht, wobei auch hier gegebenenfalls eine Graduierung vorgesehen sein kann.

Nachstehend wird die Erfindung anhand eines bevorzugten Verfahrens, der Schichtabscheidung aus einer Barrieren-55 entladung, im Einzelnen erläutert.

Die Figur zeigt schematisch eine Vorrichtung zur Schichtabscheidung mittels Barrierenentladung.

Die beispielhafte Vorrichtung zur Durchführung der Schichtdeposition mittels Barrierenentladung gemäß der Figur besteht prinzipiell aus einer Elektrode oder Elektrodenanordnung 2 sowie einer Gegenelektrode 6 auf der das Substrat 5 gelagert ist.

Die Elektrode 2 kann aus einer Elektrodenanordnung mit mehreren Einzelelektroden bestehen, wobei in der Figur 65 eine Elektrodenanordnung mit zwei Einzelelektroden 2 gezeigt ist.

Die Elektrode 2 bzw. die Einzelelektroden 2 sind jeweils

mit einer dielektrischen Barrierenschicht 3 umgeben.

Die dielektrische Barrierenschicht 3 kann zum Beispiel aus Aluminiumoxidkeramik bestehen. Die Barrierenentladung brennt im Entladungsraum zwischen den stabförmigen Elektroden 2 auf der einen und der Gegenelektrode 6 auf der anderen Seite, wobei die Precusoren zur Schichtausbildung durch den Gaseinlass 1 eingeleitet werden. Bei der Entladung entstehen Mikroentladungen sehr kurzer Dauer, sogenannte Filamente 4, die mit der Substratoberfläche in Wechselwirkung stehen und im Allgemeinen einen Durchmesser von 0,1 mm haben. Die Aktivierung und Abscheidung der Precusoren erfolgt vorwiegend in den Fußpunkten der Filamenten 4.

Bei Bedarf kann auf der Gegenelektrode 6 noch eine dielektrische Zwischenschicht aufgebracht sein.

Die Lücke zwischen Elektroden 2 und Gegenelektrode 6 beträgt üblicherweise zwischen 1 und 5 mm und entspricht der Länge der Filamente.

Üblicherweise erfolgen die Entladungen immer an der gleichen Stelle, das heißt die Filamente bilden sich immer an der gleichen Stelle aus, da die Zeit zwischen den Entladungen nicht ausreicht, um die Ladungsträger, die sich in den Entladungskanälen ausgebildet haben, neutralisieren zu lassen. Die noch existierenden Ladungsträger bewirken, dass sich die nächsten Entladungen wieder in den gleichen Entladungskanälen ausbilden wie die vorhergehenden.

Um dennoch eine homogene Oberflächenbedeckung zu erhalten, wird das Substrat vorzugsweise hin und her bewegt, in der Figur durch die Pfeile 7 angedeutet.

Darüber hinaus kann die Schichtabscheidung durch eine geeignete Pulsung der Versorgungsspannung für die Entladung gesteuert werden, wobei die einzelnen Pulse in Zeitabständen erfolgen, die ausreichen, dass die gebildeten Ladungsträgern im Gasraum neutralisiert werden, wodurch verhindert wird, dass sich die folgende Mikroentladung an der gleichen Stelle wie die vorhergehende ausbildet.

Wie bereits vorstehend erwähnt, wird die Schichtabscheidung mittels Barrierenentladung üblicherweise in einem Druckbereich von 0,1 bis 1,5 bar und einem Spannungsbereich von vorzugsweise mindestens 3 kV durchgeführt. Die Höhe der Spannung richtet sich dabei nach der Art und Größe der verwendeten Anlage sowie nach der Prozessgaszusammensetzung. Die Frequenz des Wechselfeldes kann im Bereich von 0,05 bis 100 kHz liegen.

Für die Oberflächenfunktionalisierung werden die Monomere M unmittelbar nach der Schichtabscheidung in der Barrierenentladung außerhalb des Bereichs der Barrierenentladung auf das Substrat gasförmig, flüssig oder als Aerosol einwirken gelassen.

Überraschenderweise hat sich gezeigt, dass die Monomeren sowohl zur Bildung der dünnen Schicht und somit als Precusoren und gleichzeitig als Monomer für die Pfropfreaktion eingesetzt werden können. Hierbei lagern sich die Monomeren an die während der Barrierenentladung gebildeten geeigneten reaktiven Zentren an. Die Pfropfreaktion erfolgt hierbei in den Bereichen des Substrats, die zwischen den einzelnen Filamenten oder Entladungskanälen liegen. In den Entladungskanälen erfolgt eine starke Zersetzung der Monomere und auf diese Weise Aktivierung der Monomeren zur Schichtabscheidung. Außerhalb der Filamente verbleibt jedoch genügend Monomer unbeeinflusst von der Barrierenentladung und steht für die Pfropfung zur Verfügung.

Sowohl die Uniformität als auch die Effizienz der Pfropfung kann durch geeignete Pulsung der Versorgungsspannung für die Entladung gesteuert werden.

Die Pulsung sollte dabei so ausgerichtet werden, dass die aufgepfropften funktionellen Gruppen (Monomere) auf der Oberfläche erhalten bleiben und nicht im Zuge weiterer Barrierenentladungen an dieser Stelle gegebenenfalls zerstört werden.

Ausführungsbeispiele

 Prozess in einer Niederdruck-HF-Glimmentladung, zeitliche Trennung von Schichtdeposition und Pfropfung.

Schichtabscheidung: Verzinktes Stahlblech in einer 10 HF-Glimmentladung (13,5 MHz) bei 5 Pa Druck. Atmosphäre: 1 sccm TMS (Tetramethylsilan) in 10

Prozessdauer 10 s bei 50°C.

sccm Argon.

Pfropfung: Abschalten der Gasentladung, Abpumpen 15 auf 1 mPa, Auffüllen mit dem Dampf von Methacrylsäure-[2,3-epoxy-propylester] (Glycidyl-methacrylat) auf 10 Pa, 100 s Exposition bei 50°C, dann belüften.

Haftungstest mit einem Epoxykleber. Kohäsives Versa- 20 gen in der Klebstoffschicht, das heißt nicht an der Grenzschicht zwischen Klebstoff und Substrat.

Ein verzinktes Stahlblech wird in einer Hochfrequenz-Glimmentladung (13,65 MHz) mit Parallelplattenanordnung bei einem Druck von 5 Pa und einer Temperatur von 25 50°C für eine Prozessdauer von 10 s in einer plasmaaktivierten Atmosphäre aus 10 sccm Argon und 1 sccm Tetramethylsilan (TMS) beschichtet. Die Schichtdicke beträgt ungefähr 10 nm. Anschließend wird die Prozesskammer auf 1 mPa evakuiert und mit dem Dampf von Methacrylsäure-[2,3-epoxy-propylester] (Glycidyl-methacrylat) auf einen Druck von 10 Pa aufgefüllt. Das beschichtete verzinkte Stahlblech wird dieser Atmosphäre für 100 s bei einer Temperatur von 50°C ausgesetzt. Danach wird erneut abgepumpt und anschließend belüftet.

Auf die so beschichtete Oberfläche wird ein Lack auf Epoxidharzbasis mit einer Nassschichtdicke von 20 µm aufgerakelt. Ein anschließender Haftungstest mittels Gitterschicht nach DIN 53151 wird mit "0" (sehr gut) bewertet. Beim Verformen des Bleches um 180°, wobei der Biegeradius ungefähr der Blechdicke von 1 mm entspricht, tritt keine Enthaftung des Lackes an der Beschichtungskante auf. Die Unterwanderung nach einem Salzsprühtest (DIN 53167) beträgt nach 1000 Stunden < 1 mm. Diese Ergebnisse entsprechen den Werten von verzinkten Stahlblechen, die vor der 45 Lackierung gemäß dem Stand der Technik einem nasschemischen Chromatierungsprozess unterzogen werden.

2. Prozess in einer Barrierenentladung, Schichtabscheidung und Pfropfung in der Entladung

Barrieren-Entladung: 1 mm Spalt zwischen silikonisolierter Al-Grundplatte und 2 keramikisolierten Hochspannungselektroden, Breite jeweils 1,5 cm. Oszillatorische Bewegung des Substrattisches mit 0,5 cm/s, 50

Läufe. Softalgenerator 6320; 100 V Zwischenkreisspannung, 55 kHz, Pulsung 1 ms Puls, 20 Hz Pulsfrequenz.

Gas: 2 slm Argon, gesättigt mit Acrylsäuredampf.

Erfolgte Pfropfung wird durch starke Hydrophilisierung, 60 Oberflächenspannung > 66 mN/m, stabil in KOH, nachgewiesen.

Durch Anlegen einer mittelfrequenten Hochspannung (8 kV, 50 kHz), getaktet mit 1 ms Pulsen bei einer Pulsfrequenz von 20 Hz, an eine Anordnung aus 2 keramikisolierten Hochspannungselektroden, die im Abstand von 1 mm über einer geerdeten Gegenelektrode aus Aluminium (Substrat) angebracht sind, wird eine dielektrische Barrierenent-

ladung im Gasspalt zwischen den Hochspannungselektroden und der Gegenelektrode gezündet. Über eine Gasdusche
wird eine Atmosphäre aus 2 slm (Standardliter pro Minute)
Argon, gesättigt mit Acrylsäuredampf, in die Entladungsbereiche eingebracht. Um eine lateral uniforme Beschichtung
zu erzielen, wird die Gegenelektrode oszillatorisch mit einer
Geschwindigkeit von 0,5 cm/s durch die Entladung bewegt.
Nach 50 Läufen hat sich durch Codeposition ein Plasmapfropfpolymer als dünne Schicht auf der Aluminiumoberfläthe abgeschieden.

Die beschichtete Oberfläche ist sehr hydrophil, die Oberflächenspannung ist > 66 mN/m. Sie ist nach einer zehnminütigen Exposition der beschichteten Oberfläche in konzentrierte Kalilauge unverändert.

Bezugszeichenliste

- 1 Gaszufuhr
- 2 Hochspannungselektrode
- 3 dielektrische Barriere
- 4 Entladungskanäle
- 5 Substrat
- 6 geerdete Gegenelektrode
- 7 Substratbewegungsrichtung

Patentansprüche

- 1. Verfahren zur Herstellung einer Schicht mit selektiv funktionalisierter Oberfläche, **dadurch gekennzeichnet**, dass durch Plasmadeposition auf einem Substrat eine Schicht erzeugt wird und die Oberfläche der Schicht durch Aufpfropfen von Monomeren an reaktiven Zentren auf der Schichtoberfläche chemisch selektiv funktionalisiert wird.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Anzahl n der Monomeren M, die an einem reaktiven Zentrum aufgepfropft werden, größer 1 ist.
 Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass das Beschichtungsvorläufermaterial für die Plasmadeposition mindestens eine Verbindung ist, die ausgewählt ist unter Verbindungen, die neben Kohlenstoff und/oder Silizium gegebenenfalls mindestens ein weiteres Element ausgewählt unter Sauerstoff, Stickstoff, Schwefel, Bor, Phosphor, Halogen und Wasserstoff enthalten.
- 4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass für die Plasmadeposition mindestens eine Kohlenwasserstoffverbindung und/oder eine Kohlenwasserstoffverbindung mit funktioneller Gruppe verwendet wird.
- 5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die mindestens eine Kohlenwasserstoffverbindung ausgewählt ist unter Propargylalkohol, Tetramethylsilan, Hexamethyldisiloxan, Vinyltrimethoxysilan, Phenyltrimethoxysilan, Aminopropyltrimethoxysilan, Mercaptopropyltrimethoxysilan, Dimethyldichlorsilan, Trimethylphosphit, Trimethylborat, Methan, Ethen und Ethin.
- 6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das mindestens eine Monomer für die Pfropfreaktion ausgewählt ist unter Acrylsäure, Methacrylsäure, einem Derivat davon oder einer Vinylverbindung.
- 7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass das Derivat ein Ester, vorzugsweise Glycidylmethacrylat, ist.
- 8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Plasmadepos-

DE 199 53 667 A 1

9

ition und die Pfropfung räumlich und/oder zeitlich getrennt voneinander vorgenommen werden.

- 9. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Schichtdeposition gepulst ausgeführt wird und die Pfropfung gleichzeitig und räumlich innerhalb des Entladungsbereiches durchgeführt wird.
- 10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Plasmadeposition und gegebenenfalls die Pfropfung bei Drukken zwischen 0,01 Pa und 10 kPa durchgeführt werden
- 11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass das Plasma einer durch Gleichspannung, Wechselspannung oder Mikrowellen unterhaltenen 15 Gasentladung für die Plasmadeposition eingesetzt wird.
- 12. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Plasmadeposition und gegebenenfalls die Pfropfung bei Drucken zwischen 20 10 kPa und 150 kPa durchgeführt werden.
- 13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass das Plasma in einer dielektrischen Barrierenentladung oder einer gepulsten Bogenentladung erzeugt wird.
- 14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass die Schichtdeposition gepulst ausgeführt wird und die Pfropfung gleichzeitig und räumlich innerhalb des Entladungsbereiches durchgeführt wird.
- 15. Schicht mit selektiv funktionalisierter Oberfläche, 30 dadurch gekennzeichnet, dass die Schicht mittels eines plasmagestützten Verfahrens auf einem Substrat abgeschieden worden ist, und auf der Oberfläche der Schicht Monomere M aufgepfropft sind.
- 16. Schicht nach Anspruch 15, dadurch gekennzeichnet, dass die Anzahl n der Monomere M, die an ein reaktives Zentrum der Schichtoberfläche gebunden sind, größer 1 ist.
- 17. Schicht nach einem der Ansprüche 15 oder 16, dadurch gekennzeichnet, dass das Monomer M ausgewählt ist unter mindestens einer Verbindung ausgewählt unter Acrylsäure, Methacrylsäure und einem Derivat davon.
- 18. Schicht nach Anspruch 17, dadurch gekennzeichnet, dass das Derivat ein Ester, vorzugsweise Glycidyl- 45 methacrylat, ist.
- 19. Schicht nach einem der Ansprüche 15 bis 18, dadurch gekennzeichnet, dass das Substrat ein Metall oder eine Keramik ist.
- 20. Schicht nach einem der Ansprüche 15 bis 19, da- 50 durch gekennzeichnet, dass das Substrat Stahl, verzinkter Stahl, Aluminium oder Magnesium ist.
- 21. Schicht nach einem der Ansprüche 15 bis 20, dadurch gekennzeichnet, dass die Schicht erhältlich ist durch Plasmadeposition von mindestens einer Precursorverbindung auf einem Substrat und selektiver Funktionalisierung der Oberfläche der Schicht durch Aufpfropfen von Monomeren M an auf der Schichtoberfläche gebildeten reaktiven Zentren.
- 22. Verwendung einer Schicht nach einem der Ansprüche 15 bis 21 für die haftfeste und/oder korrosionsfeste Anbindung nachfolgend aufgebrachter weiterer Schichten auf einem Substrat.
- 23. Verwendung nach Anspruch 22, dadurch gekennzeichnet, dass die nachfolgend aufgebrachte Schicht 65 ein Lack, eine Klebemasse, eine Druckfarbe oder ein

Primer ist.

Hierzu 1 Seite(n) Zeichnungen

- Leerseite -

•,

Nummer: Int. Cl.⁷: Offenlegungstag:

DE 199 53 667 A1 C 23 C 14/06 17. Mai 2001

Fig.

Best Available Copy