Climate Risk Hedging

Thomas Lorans

June 11, 2024

Contents

Introduction			\mathbf{v}
1		G Preferences and Climate Risk Premia Capital Asset Pricing Model (CAPM)	1 1
	1.2	ESG Preferences	1
	1.3	Climate Risk	6
2	Sources of ESG Factor and Climate Risk		
	2.1	Market Risk	7
	2.2	ESG Factor Risk	7
	2.3	Climate Risk	7

iv CONTENTS

Introduction

Chapter 1

ESG Preferences and Climate Risk Premia

1.1 Capital Asset Pricing Model (CAPM)

1.2 ESG Preferences

1.2.1 Expected Utility and Optimal Portfolio

Setting the Investor's Expected Utility

Let's assume a single period model, from t=0 to t=1. We have N stocks. We have a $N\times 1$ vector of returns \tilde{r}_1 at period 1, assumed to be normally distributed:

$$\tilde{r}_1 = \mu + \tilde{\epsilon}_1 \tag{1.1}$$

with μ the equilibrium expected excess returns and $\tilde{\epsilon}_1$ the random component of the returns $\tilde{\epsilon}_1 \sim N(0, \Sigma)$.

The investor i has an exponential CARA utility function, with $\tilde{W}_{1,i}$ the wealth at period 1, and X_i the $N \times 1$ vector of portfolio weights.

PLACEHOLDER

Figure 1.1: Efficient Frontier

$$V(\tilde{W}_{1,i}, X_i) = -\exp(-A_i \tilde{W}_{1,i} - b_i^T X_i)$$
(1.2)

with A_i agent's absolute risk aversion, b_i an $N \times 1$ vector of nonpecuniary benefits.

$$b_i = d_i g \tag{1.3}$$

with g an $N \times 1$ vector and $d_i \geq 0$ a scalar measuring the agent's taste for the nonpecuniary benefits.

The expectation of agent i's in period 0 are:

$$E_0(V(\tilde{W}_{1,i}, X_i)) = E_0(-\exp(-A_i \tilde{W}_{1,i} - b_i^T X_i))$$
(1.4)

We can replace $\tilde{W}_{1,i}$ by the relation $\tilde{W}_{1,i} = W_{0,i}(1 + r_f + X_i^T \tilde{r}_1)$ and define $a_i := A_i W_{0,i}$. The idea is to make out from the expectation the terms that we know about (in period 0), and reexpress the terms within the expectation as a function of the portfolio weights X_i . The last two steps use the fact that \tilde{r}_1 is normally distributed with mean μ and variance Σ .

$$E_{0}(V(\tilde{W}_{1,i}, X_{i})) = E_{0}(-\exp(-A_{i}W_{0,i}(1 + r_{f} + X_{i}^{T}\tilde{r}_{1}) - b_{i}^{T}X_{i}))$$

$$= E_{0}(-\exp(-a_{i}(1 + r_{f} + X_{i}^{T}\tilde{r}_{1}) - b_{i}^{T}X_{i}))$$

$$= E_{0}(-\exp(-a_{i}(1 + r_{f}) - a_{i}X_{i}^{T}\tilde{r}_{1} - b_{i}^{T}X_{i}))$$

$$= -\exp(-a_{i}(1 + r_{f}))E_{0}(-\exp(-a_{i}X_{i}^{T}\tilde{r}_{1} - b_{i}^{T}X_{i}))$$

$$= -\exp(-a_{i}(1 + r_{f}))E_{0}(-\exp(-a_{i}X_{i}^{T}(\tilde{r}_{1} + \frac{b_{i}}{a_{i}})))$$

$$= -\exp(-a_{i}(1 + r_{f}))\exp(-a_{i}X_{i}^{T}(E_{0}(\tilde{r}_{1}) + \frac{b_{i}}{a_{i}}) + \frac{1}{2}a_{i}^{2}X_{i}^{T}\operatorname{Var}(\tilde{r}_{1})X_{i})$$

$$= -\exp(-a_{i}(1 + r_{f}))\exp(-a_{i}X_{i}^{T}(\mu + \frac{b_{i}}{a_{i}}) + \frac{1}{2}a_{i}^{2}X_{i}^{T}\Sigma X_{i})$$

Solving for the Investor's Optimal Portfolio

The investors choose their optimal portfolios at time 0. The optimal portfolio X_i is the one that maximizes the expected utility. To find it, we differentiate the expected utility with respect to X_i and set it to zero, to obtain the first-order condition.

We are going to do it step by step:

3

1. Combine the Exponential Terms:

$$E_0(V(\tilde{W}_{1,i}, X_i)) = -\exp\left(-a_i(1+r_f) - a_i X_i^T (\mu + \frac{b_i}{a_i}) + \frac{1}{2} a_i^2 X_i^T \Sigma X_i\right)$$
(1.6)

and let $f(X_i)$ be the exponent:

$$E_0(V(\tilde{W}_{1,i}, X_i)) = -\exp f(X_i)$$
(1.7)

2. Differentiate $f(X_i)$ with respect to X_i . We have the chain rule:

$$\frac{\partial h}{\partial X_i} = \frac{\partial h}{\partial f} \frac{\partial f}{\partial X_i} \tag{1.8}$$

If $h = -\exp(f)$, then $\frac{\partial h}{\partial f} = -\exp(f)$. Therefore we have:

$$\frac{\partial h}{\partial X_i} = -\exp\left(f\right) \frac{\partial f}{\partial X_i} \tag{1.9}$$

To tackle the derivative of $f(X_i)$, we use two rules. First $\frac{\partial x^T b}{\partial x} = b$ and $\frac{\partial x^T A x}{\partial x} = 2Ax$ if A is symmetric. We have:

$$\frac{\partial f}{\partial X_i} = -a_i(\mu + \frac{b_i}{a_i}) + a_i^2 \Sigma X_i \tag{1.10}$$

Combining:

$$\frac{\partial h}{\partial X_i} = -\exp(f)(-a_i(\mu + \frac{b_i}{a_i}) + a_i^2 \Sigma X_i)$$
(1.11)

3. Set the derivative to zero:

$$-\exp(f)(-a_i(\mu + \frac{b_i}{a_i}) + a_i^2 \Sigma X_i) = 0$$

$$-a_i(\mu + \frac{b_i}{a_i}) + a_i^2 \Sigma X_i = 0$$
(1.12)

where the exponential term is always positive, so we can drop it.

4 CHAPTER 1. ESG PREFERENCES AND CLIMATE RISK PREMIA

PLACEHOLDER

Figure 1.2: Efficient Frontier with ESG Preferences

4. Rearrange and solve for X_i :

$$a_i^2 \Sigma X_i = a_i \left(\mu + \frac{b_i}{a_i}\right)$$

$$a_i \Sigma X_i = \mu + \frac{b_i}{a_i}$$

$$\Sigma X_i = \frac{1}{a_i} \left(\mu + \frac{b_i}{a_i}\right)$$

$$X_i = \frac{1}{a_i} \Sigma^{-1} \left(\mu + \frac{b_i}{a_i}\right)$$

$$(1.13)$$

For the sake of simplicity, we assume that $a_i = a$ for all investors. We now have:

$$X_{i} = \frac{1}{a} \Sigma^{-1} (\mu + \frac{b_{i}}{a})$$

$$= \frac{1}{a} \Sigma^{-1} (\mu + \frac{d_{i}}{a} g)$$
(1.14)

Therefore, the optimal portfolio differs across investors due to the ESG characteristics g of the stocks and the investors' taste for nonpecuniary benefits d_i .

1.2.2 Heterogeneous Investors and Expected Returns Heterogeneous Market

The *n*th element of investor *i*'s portfolio weight vector X_i is:

$$X_{i,n} = \frac{W_{0,i,n}}{W_{0,i}} \tag{1.15}$$

with $W_{0,i,n}$ the wealth invested in stock n by investor i at time 0. The total wealth invested in stock n at time 0 is:

$$W_{0,n} := \int_{i} W_{0,i,n} di \tag{1.16}$$

The *n*th element of the market-weight vector w_m is:

$$w_{m,n} = \frac{W_{0,n}}{W_0} \tag{1.17}$$

We can now express $W_{0,n}$ in terms of individual investors' wealths by using the definition of $W_{0,n}$:

$$w_{m,n} = \frac{1}{W_0} \int_i W_{0,i,n} di \tag{1.18}$$

We now that $W_{0,i,n} = W_{0,i}X_{i,n}$, so we can rewrite the equation:

$$w_{m,n} = \frac{1}{W_0} \int_i W_{0,i} X_{i,n} di \tag{1.19}$$

Defining $\omega_i = \frac{W_{0,i}}{W_0}$, we have:

$$w_{m,n} = \int_{i} \frac{W_{0,i}}{W_{0}} X_{i,n} di$$

$$= \int_{i} \omega_{i} X_{i,n} di$$
(1.20)

We can now plug in X_i to obtain w_m the vector of market weights:

$$w_{m} = \int_{i} \omega_{i} X_{i} di$$

$$= \int_{i} \omega_{i} \frac{1}{a} \Sigma^{-1} (\mu + \frac{d_{i}}{a} g)_{n} di$$

$$= \frac{1}{a} \sigma^{-1} \mu (\int_{i} \omega_{i} di) + \frac{1}{a^{2}} \Sigma^{-1} g(\int_{i} \omega_{i} d_{i} di)$$

$$(1.21)$$

We have $\int_i \omega_i di = 1$ and we define $\bar{d} := \int_i d_i di \ge 0$, the wealth-weighted mean of ESG tastes d_i across agents. Therefore:

$$w_m = \frac{1}{a} \Sigma^{-1} \mu + \frac{1}{a^2} \Sigma^{-1} g \bar{d}$$
 (1.22)

Expected Returns

Starting from the the vector of market weights w_m , we now can solve for μ the vector of expected returns. We have:

$$w_{m} = \frac{1}{a} \Sigma^{-1} \mu + \frac{1}{a^{2}} \Sigma^{-1} g \bar{d}$$

$$aw_{m} = \Sigma^{-1} \mu + \frac{1}{a} \Sigma^{-1} g \bar{d}$$

$$aw_{m} - \frac{1}{a} \Sigma^{-1} g \bar{d} = \Sigma^{-1} \mu$$

$$\Sigma (aw_{m} - \frac{1}{a} \Sigma^{-1} g \bar{d}) = \mu$$

$$\mu = a \Sigma w_{m} - \frac{1}{a} \Sigma \Sigma^{-1} g \bar{d}$$

$$\mu = a \Sigma w_{m} - \frac{1}{a} g \bar{d}$$

$$(1.23)$$

Multiplying by w_m , we find the market equity premium $\mu_m = w_m^T \mu$:

$$\mu_m = aw_m^T \Sigma w_m - \frac{\bar{d}}{a} w_m^T g$$

$$= a\sigma_m^2 - \frac{\bar{d}}{a} w_m^T g$$
(1.24)

where $\sigma_m^2 = w_m^T \Sigma w_m$ is the market return variance.

Expected Excess Returns

1.2.3 ESG Portfolio

Portfolio Tilts

Factor Pricing with the ESG Portfolio

1.3 Climate Risk

Chapter 2

Sources of ESG Factor and Climate Risk

- 2.1 Market Risk
- 2.2 ESG Factor Risk
- 2.3 Climate Risk