

Inteligencia Artificial con Python y scikit-learn

1.6.1 (stable) ▼

scikit-learn

Machine Learning in Python

Getting Started

Release Highlights for 1.6

- Simple and efficient tools for predictive data analysis
- Accessible to everybody, and reusable in various contexts
- Built on NumPy, SciPy, and matplotlib
- Open source, commercially usable BSD license

Classification

Identifying which category an object belongs to.

Applications: Spam detection, image recognition. Algorithms: Gradient boosting, nearest neighbors, random forest, logistic regression, and more...

Regression

Predicting a continuous-valued attribute associated with an object.

Applications: Drug response, stock prices.

Algorithms: Gradient boosting, nearest neighbors, random forest, ridge, and more...

Clustering

Automatic grouping of similar objects into sets.

Applications: Customer segmentation, grouping experiment outcomes.

Algorithms: k-Means, HDBSCAN, hierarchical clustering, and more...

Aprendizaje automático aplicado

K-Nearest Neighbors: Classification and Regression

K-Vecinos más cercanos: Clasificación y regresión

K-Nearest Neighbors (KNN)

- El K-Nearest Neighbors (KNN) es un algoritmo de aprendizaje supervisado basado en la similitud de datos.
- Se utiliza tanto para tareas de clasificación como de regresión, y su principio fundamental radica en identificar los k vecinos más cercanos de una instancia para tomar una decisión.
- Es un método lazy learning que no aprende un modelo explícito, sino que almacena los datos para consultarlos directamente.

K-Nearest Neighbors (KNN)

Predicción basada en vecinos:

- Para predecir el valor de una nueva instancia, KNN identifica las k instancias más cercanas en el conjunto de entrenamiento y utiliza sus valores o etiquetas para determinar la salida.
- En clasificación, asigna la clase más frecuente entre los k vecinos.
- En **regresión**, **calcula el promedio de los valores** de los **k** vecinos.

K-Nearest Neighbors (KNN)

Elección de k:

- El número de vecinos k es un hiperparámetro clave que afecta el rendimiento del modelo.
- Valores pequeños de k pueden hacer que el modelo sea más sensible al ruido (sobreajuste).
- Valores grandes de *k* pueden diluir las características locales y hacer que el modelo pierda precisión (subajuste).

K-Nearest Neighbors (KNN)

Similitud (distancia):

 La proximidad entre las instancias se mide mediante una métrica de distancia.

Las más comunes son:

Distancia Euclidiana:

$$d(x,y) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$$

Distancia Manhattan:

$$d(x,y) = \sum_{i=1}^n |x_i - y_i|$$

Distancia de Minkowski (generalización de las anteriores):

$$d(x,y) = \left(\sum_{i=1}^n |x_i-y_i|^p
ight)^{1/p}$$

Algoritmo clasificador del k-vecinos más cercano (k-NN)

Dado un conjunto de entrenamiento X_train con etiquetas y_train y dada una nueva instancia x_test se va a clasificar:

- 1. Encuentre las instancias más similares (llamémoslas X_NN) a x_test que están en X_train.
- 2. Obtenga las etiquetas y_NN para las instancias de X_NN
- 3. Prediga la etiqueta para x_test combinando las etiquetas y_NN por ejemplo, mayoría simple de votos
 - Normalización de características: Es crucial normalizar o estandarizar las variables para garantizar que tengan igual impacto en las métricas de distancia.

Un algoritmo de K-vecinos más cercanos necesita cuatro cosas especificadas

- 1. Una métrica de distancia
- 2. ¿Cuántos vecinos "más cercanos" hay que mirar?
- 3. Función de ponderación opcional en los puntos vecinos
- 4. Método para agregar las clases de puntos vecinos

Un algoritmo de K-vecinos más cercanos necesita cuatro cosas especificadas

- 1. Una métrica de distancia
 - Típicamente euclidiano (Minkowski con p = 2)
- 2. ¿Cuántos vecinos "más cercanos" hay que mirar?
 - Por ejemplo, cinco
- 3. Función de ponderación opcional en los puntos vecinos
 - Ignorar
- 4. Cómo agregar las clases de puntos de vecinos: Voto por mayoría simple
 - (Clase con más representantes entre los vecinos más cercanos)

Aplicaciones

1. Clasificación:

- Reconocimiento facial.
- Clasificación de texto y detección de spam.
- Diagnóstico médico.

2. Regresión:

- Predicción de precios (inmuebles, productos).
- Modelado de tendencias de mercado.

The Fruit Dataset

	fruit_label	fruit_name	fruit_subtype	mass	width	height	color_score
0	1	apple	granny_smith	192	8.4	7.3	0.55
1	1:	apple	granny_smith	180	8.0	6.8	0.59
2	1	apple	granny_smith	176	7,4	7.2	0.60
3	2	mandarin	mandarin	86	6.2	4.7	0.80
4	2	mandarin	mandarin	84	6.0	4.6	0.79
5	2	mandarin	mandarin	80	5.8	4.3	0.77
6	2	mandarin	mandarin	80	5.9	4.3	0.81
7	2	mandarin	mandarin	76	5.8	4.0	0.81
8	1	apple	braeburn	178	7.1	7.8	0.92
9	1	apple	braeburn	172	7.4	7.0	0.89
10	1	apple	braebum	166	6.9	7.3	0.93
11	1	apple	braebum	172	7.1	7.6	0.92
12	1	apple	braebum	154	7.0	7.1	0.88
13	1	apple	golden_delicious	164	7.3	7.7	0.70
14	1	apple	golden_delicious	152	7.6	7.3	0.69
15	1	apple	golden_delicious	156	7.7	7.1	0.69
16	1	apple	golden delicious	156	7.6	7.5	0.67

fruit_data_with_colors.txt

Créditos: Versión original del conjunto de datos de frutas creado por el Dr. Iain Murray, Univ. de Edimburgo

TECNOLÓGICO NACIONAL DE MÉXICO INSTITUTO TECNOLÓGICO DE DURANGO

In [27]: fruits

Out[27]:		fruit_label	fruit_name	fruit_subtype	mass	width	height	color_score
	0	1	apple	granny_smith	192	8.4	7.3	0.55
	1	1	apple	granny_smith	180	8.0	6.8	0.59
	2	1	apple	granny_smith	176	7.4	7.2	0.60
	3	2	mandarin	mandarin	86	6.2	4.7	0.80
	4	2	mandarin	mandarin	84	6.0	4.6	0.79
	5	2	mandarin	mandarin	80	5.8	4.3	0.77
	6	2	mandarin	mandarin	80	5.9	4.3	0.81
	7	2	mandarin	mandarin	76	5.8	4.0	0.81
	8	1	apple	braeburn	178	7.1	7.8	0.92
	9	1	apple	braeburn	172	7.4	7.0	0.89

braeburn

braeburn

braeburn

golden_delicious

golden_delicious

golden delicious

golden_delicious

166

154

164

152

156

156

6.9

7.6

7.3

7.3

0.93

0.92

0.88

0.70

0.69

0.69

0.67

Train Test Split (Scikit-Learn + Python)

[96]:	X_t	rain			
[96]:		height	width	mass	color_score
	42	7.2	7.2	154	0.82
	48	10.1	7.3	174	0.72
	7	4.0	5.8	76	0.81
	14	7.3	7.6	152	0.69
	32	7.0	7.2	164	0.80
	49	8.7	5.8	132	0.73
	29	7.4	7.0	160	0.81
	37	7.3	7.3	154	0.79
	56	8.1	5.9	116	0.73
	18	7.1	7.5	162	0.83
	55	7.7	6.3	116	0.72
	27	9.2	7.5	204	0.77
	15	7.1	7.7	156	0.69
	5	4.3	5.8	80	0.77
	31	8.0	7.8	210	0.82
	16	7.5	7.6	156	0.67

[98]:	y_tr	ain	In [97]
t[98]:	42	3	Out[97]
	48	4	
	7	2	
	14	1	
	32	3	
	49	4	
	29	3	
	37	3	
	56	4	
	18	1	
	55	4	
	27	3	
	15	1	
	5	2	
	31	3	
	16	1	
	50	4	
	20	1	
	51	4	
	8	1	
	13	1	
	25	3	
	17	1	
	58	4	
	57	4	
	52	4	
	38	3	
	1	1	
	12	1	
	45	4	
	2.4	-	

(_test					In [9	9]:	y_tes	t
	height	width	mass	color_score	Out[9	9]:	26	3
26	9.2	9.6	362	0.74			35 43	3 4
35	7.9	7.1	150	0.75			28	3
43	10.3	7.2	194	0.70			11	1
28	7.1	6.7	140	0.72			2 34	1
11	7.6	7.1	172	0.92			46	4
2	7.2	7.4	176	0.60			40 22	3 1
34	7.8	7.6	142	0.75			4	2
46	10.2	7.3	216	0.71			10 30	1
40	7.5	7.1	154	0.78			41	3
22	7.1	7.3	140	0.87			33	3
4	4.6	6.0	84	0.79				
10	7.3	6.9	166	0.93				
30	7.5	7.1	158	0.79				
41	8.2	7.6	180	0.79				
33	8.1	7.5	190	0.74				

10 1

11 1

12 1

13 1

14 1

15 1

16 1

apple

apple

apple

apple

apple

apple

33 3

Un diagrama de dispersión de características por pares visualiza los datos utilizando todos los pares posibles de características, con un diagrama de dispersión por par de características e histogramas para cada característica

Un diagrama de dispersión de características tridimensionales

K-vecinos más cercanos (k=1) para el conjunto de datos

de frutas

K-vecinos más cercanos (k=5) para el conjunto de datos de frutas

K-vecinos más cercanos (k=1) para el conjunto de datos de frutas

Referencias

Python Intermedio

https://python-intermedio.readthedocs.io/es/latest/

Pandas_Cheat_Sheet.

https://pandas.pydata.org/Pandas Cheat Sheet.pdf

NearestNeighborsClassification

https://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html

Confusionmatrix

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html

