Experimental Process

Computer Science

Isaac Griffith

CS 6620 Department of Informatics and Computer Science Idaho State University

Introduction

- Starting-Points for experimentation
 - An idea of a cause-effect relationship
 - A theory, or
 - Able to formulate a hypothesis
- Advantages of Experimentation
 - Control of subjects, objects, and instrumentation -> generalization of conclusions
 - Ability to perform statistical analysis
 - Opportunities for replication

Main Objectives

- Main objective of experimentation
 - to evaluate a hypothesis -> hypothesis testing
 - to evaluate a relationship -> relational model building (i.e., regression)
- Main objective of an experimental process
 - Provide support in setting up and conducting an experiment

Experimental Principles

Experimental Design

There are four components to any experimental design:

- Variables
- Treatments
- Objects
- Subjects

Variables

- In an experiment we study the outcome of the varying of input variables to a process
- There are two kinds of variables in an experiment
 - Dependent Variables (response variables) Those variables we wish to study (often there is only one)
 - Independent Variables (exploratory variables) The variables in a process that are manipulated and controlled

Features and Treatments

- The independent variables which are varied during an experiment are called factors
- The remaining variables are controlled at a fixed level, thus allowing us to evaluate cause and effect
- A treatment is one particular value of a factor

Treatments and Variables

Objects and Subjects

- Treatments are applied to combinations of objects and subjects
 - Object: An artifact to which a treatment (technique, took, process, etc.) is applied
 - Subject: The people that apply the treatment
- The characteristics of both objects and subjects may be encoded as independent variables

Experimental Error

- Experiments consist of **tests** (or trials)
- Each test is a combination of treatment, subject and object
- The number of tests affects experimental error and provides a mean effect of any experimental error
- Experimental error affects the confidence in the results of the experiment

Experimental Orientation

Human-Oriented Experiments

- Subjects: humans
- apply treatments to objects
- Limited control:
 - variability in skills and abilities
 - humans learn over time -> learning bias
 - influences and threats to experiments -> human's try to guess experimenter's motivation

Technology-Oriented Experiments

- Subject: The experimenter
- Easier to control -> technology may be made deterministic
- Independent variable may be the objects selected
- Tools or techniques may be program specific -> thus not applicable to all objects

Process

- Processes provide guidelines/checklists of
 - what to do
 - how to do it
- The process of an experiment is similar to all other empirical studies.
- Yet, unlike case studies, rather than an incremental approach experiments execute the process just once.

Process

- Starting Point: an insight or idea for an experiment as a means to evaluate what we are interested in
 - Experimentation must be an appropriate empirical method to address the question we are investigating
 - Unfortunately this is usually not obvious as empirical studies are not often used in SE/CS
- Upon having this insight, we must realize that the experiment must be carefully planned

Activities

- The process is not a "true" waterfall approach
 - Each activity need not finish before starting the next
- The order of activities indicates starting order
 - The process is partly iterative
 - You may need to go back and refine a previous activity before continuing
- The only exception to this is:
 - Once the experiment is started you cannot go back to scoping and planning

Scoping

- The first activity
- Hypothesis must be stated clearly but not necessarily formally
- Goal is formulated from the problem to be solved
- Scope capturing framework:
 - Object of Study (what is studied?)
 - Purpose (what is the intentions?)
 - Perspective (whose view?), and
 - Context (where is the study conducted?)

Planning

- lay down the foundation of the experiment
- context is determined in detail (including personnel and environment)
- hypotheses are stated formally (including both null and alternative hypotheses)
- Determine variables and the values they can take, identify scale of variables
 - Independent (inputs)
 - Dependent (outputs)
- Identify subjects

Planning

- Experiment is designed
 - Design type is selected
 - Preparations are made for instrumenting the experiment
 - Objects identified and prepared
 - Guidelines developed
 - Measurement procedures defined

Planning

- Considerations of validity
 - Internal: concerned with the validity of the given environment and reliability of results
 - External: a question of how general the findings are
 - Construct: does the treatment reflect the cause construct and does the outcome provide a true picture of the effect construct
 - Conclusion: concerned with the relationship between the treatment and the outcome

Operation

Three steps

- Preparation: prepare subjects and materials needed (e.g., data collection forms)
 - subjects must be informed about intention, consent must be obtained, they must be committed
- Execution: ensure experiment is conducted according to the plan and design, including data collection
- 3 Data Validation: ensure data collected is correct and provides a valid picture of the experiment

Analysis and Interpretation

- Input: data collected during operation
- Analysis steps
 - Data Visualization
 - Descriptive Statistics for informed understanding
 - Consider reducing the data set
 - reduce number of variables
 - evaluating variables to identify those which provide information
 - Perform hypothesis testing
- Interpretation
 - Decision Making
 - Conclusions

Presentation and Package

- Documentation of results
 - Research paper
 - Lab package (for replication purposes)

Are there any questions?

