

Carlos Alexandre Barros de Mello CIn/UFPE

 O Histograma de uma imagem provê uma descrição global da aparência da imagem em termos de distribuição de cores

>> I = imread('baboon.bmp') >> figure, imhist(I,256)

>> imshow(I)

Centro

Centro

de Informática

Imagem muito clara: histograma próximo do branco...

Histograma original

Processamento de Imagens – Prof. Carios Alexandre – capm@cin.urpe.br

Imagem muito escura: histograma próximo do preto...

Histograma e Contraste

Centro

Contraste: nível de separação entre as cores

Histograma e Contraste

Imagem de (mais) Baixo Contraste

Histograma e Contraste

Imagem de (mais) Alto Contraste

Histogram

Equalização

Aproximação para um histograma uniforme

Avg: 128

×

Equalização:

- Torna o pixel mais escuro mais próximo do preto e o mais claro mais próximo do branco
- Distribui o restante das cores mais uniformemente nesse intervalo

Equalização:

- Operação simples:
- Para cada nível de brilho j na imagem original (e seu histograma), um novo valor k é atribuído, onde:

$$k = \sum_{i=0}^{j} \frac{N_i}{T}$$

o onde T é o número de pixels na imagem e N_i é o total de pixels na posição *i* do histograma

Equalização:

Histograma Equalização - Exemplos

Stretch

- Tenta espalhar mais o histograma pelo espectro
- Não provoca muita diferença em imagens com um grande número de cores
 - Cores já espalhadas naturalmente

HistogramaStretch - Exemplo

Técnicas de modificação de histograma

- São técnicas utilizadas para processar a imagem através da modificação do histograma
- Exemplos
 - Negativo (Complemento)
 - Binarização
 - Brilho
 - Expansão
 - Compressão

Complemento

```
I = imread('baboon.bmp');
I = 255 - I;
imshow(I);
figure, imhist(I);
```


Complemento

Complemento em Imagens Coloridas

Complemento em Imagens Coloridas

Complemento em Imagens Coloridas

23

- Consiste em separar o histograma de uma imagem em regiões classificando-as como uma classe (0 – preto) ou outra (1 – branco)
- Em imagens preto e branco
 - quando o pixel apresentar um tom de cinza mais próximo do preto, ele é convertido para preto
 - quando apresentar um tom de cinza mais próximo do branco, ele é convertido para branco

Algoritmo de Recorte

Se cor(i) <= 127 Então cor(i) = Preto (0) Senão cor(i) = Branco (255)

Valor de Corte = 127 (Threshold, Limiar)

I = imread('baboon.bmp');
I = (I > corte) % 150
imshow(I);

Centro

Centro

Brilho

```
I = imread('baboon.bmp');
I = I + lum;
imshow(I);
figure, imhist(I);
```


Brilho

Contraste

```
I = imread('baboon.bmp');
I = contr*I;
imshow(I);
figure, imhist(I)
```


- Expansão de histograma: contr > 1
- Compressão de histograma: 0 < contr < 1

Expansão de histograma

Compressão de histograma

Contraste + Brilho

Dois Picos do Histograma

- Operação comum em histograma
 - Encontrar os dois maiores picos do histograma

Dois Picos do Histograma

- Dois maiores picos
 - Primeiro pico:
 - Maior amplitude do histograma (posição j)
 - Segundo pico:
 - Não pode ser a segunda maior amplitude
 - Geralmente, está próxima da maior amplitude
 - Solução:
 - Segundo pico em: max((k j)²h[k])
 - h é o histograma
 - 0 ≤ k ≤ 255 (para imagens com 256 tons de cinza)

Dois Picos do Histograma

Dois maiores picos

Dois Picos do Histograma

Dois maiores picos

Extração de Características

- A partir do histograma:
 - Média
 - Variância
 - Desvio Padrão
 - Entropia
 - Máximo/Mínimo
 - Maiores picos

Extração de Características

- Cálculo da Média
 - É a média do histograma, não a média dos valores (cores) que aparecem na imagem
 - Seja N o número de pixels da imagem
 - Seja h o histograma previamente calculado
 - Seja Prob a probabilidade de cada cor estar presente na imagem, ou seja, Prob = h[i]/N
 - Média = Σ Prob(i).Cor(i)

Limiarização - Thresholding

Carlos Alexandre Mello

Limiarização - Thresholding

 Conversão de uma imagem para dois tons a partir de um dado ponto de corte (limiar)

"Objeto"

Background

Algoritmo de Recorte

Se cor(i) <= 127 Então cor(i) = Preto Senão cor(i) = Branco

Valor de Corte = 127 (threshold, limiar)

Algoritmo de Recorte (faixa de corte)

Se 50 < cor(i) < 100 Então cor(i) = Branco Senão cor(i) = Preto

Branco entre 50 e 100

- Tipos de Limiarização
 - Global
 - Um único valor de corte é definido para toda a imagem
 - Vantagem: Velocidade
 - Desvantagem: Qualidade
 - Local
 - Diferentes pontos de corte são definidos para diferentes regiões da imagem
 - Vantagem: Qualidade
 - Desvantagem: Velocidade

Limiarização Ótima

Objetos formados por tons bem diferentes do background: Fácil redução de cores com qualidade

Limiarização Ótima

Imagem original com cores bem distintas no Histograma

Regiões bem separadas

Problemas na Limiarização

Problema: Imagem com baixo contraste

É possível, por exemplo, separar automaticamente a menina do background?

Problemas na Limiarização

Resultado da Limiarização

Problemas na Limiarização

Algoritmo de threshold com valor de corte padrão

Limiarização Local

- O valor de corte varia dentro de uma mesma imagem, dependendo de fatores da imagem
 - Exemplo: Imagem com diferentes focos de iluminação

Área iluminada

- Os algoritmos também se dividem de acordo com as características procuradas na imagem para gerar o ponto de corte:
 - Histograma
 - Entropia
 - Agrupamento
 - Maximização/Minimização de funções
 - Atributos de objetos
 - Métodos espaciais

Tom de Cinza Médio

- Mean Grey Level
- O ponto de corte é, simplesmente, o ponto médio entre a maior e a menor cor presentes no histograma
 - Não é a média do histograma como calculado antes

Porcentagem de Preto

- Define-se a priori a quantidade de tons pretos esperados na imagem final
- O ponto de corte é variado até que essa porcentagem seja encontrada
- Exemplo: Valor esperado para imagens de documentos é de 10% de preto
- Busca e análise feitas no histograma da imagem

Porcentagem de Preto

th = 119 (10% de preto)

Porcentagem de Preto

Dois Picos (Two Peaks)

- O ponto de corte é o ponto mais baixo entre dois picos
- Localização dos picos como apresentado anteriormente

• Exemplo anterior:

Seleção Iterativa (Thrussel)

- Um threshold inicial é atribuído e ajustado através de leituras sucessivas da imagem
 - Considera 2 classes: foreground e background
 - Threshold inicial (T₀): tom de cinza médio
 - Calcula então o tom de cinza médio abaixo e acima desse T₀: Tb e Tw
 - Um novo threshold é estimado como (Tb+Tw)/2
 - O processo continua até que nenhuma mudança ocorra no ponto de corte

- A operação de limiarização é considerada como sendo o particionamento dos pixels de uma imagem de L níveis de cinza em duas classes, C₀ e C₁, que podem representar o objeto e o fundo, ou vice-versa, sendo que esta partição se dará no nível de cinza t
 - Desta forma, teremos $C_0 = \{0,1, ..., t\}$ e $C_1 = \{t + 1, t + 2, ..., L\}$

 Seja σ²_W a variância inter-classe, σ²_B a variância entre classes e σ²_T a variância total:

$$\mu_{b} = \frac{\mu_{t}(t)}{w_{0}(t)} \qquad \mu_{w} = \frac{\mu_{t} - \mu_{t}(t)}{1 - w_{0}(t)}$$

$$\sigma_{b}^{2} = w_{0}(t)w_{1}(t)[\mu_{b} - \mu_{w}]^{2} \qquad \sigma_{t}^{2} = \sum_{i=0}^{255} (i - \mu_{t})^{2} p(i)$$

$$\sigma_{w}^{2}(t) = \sigma_{t}^{2} - \sigma_{b}^{2}$$

$$w_{0}(t) = \sum_{i=0}^{t} p(i) \qquad \mu_{t}(t) = \sum_{i=0}^{t} i.p(i) \qquad \mu_{T} = \sum_{i=t+1}^{255} i.p(i)$$

$$w_{1}(t) = 1 - w_{0}(t) \qquad p(i) = \frac{cor(i)}{N}$$

- O valor ótimo do limiar pode ser encontrado pela maximização da função η(t)=σ²_b(t)/σ²_T
- Ou seja, a relação entre a variância entre classes e a variância total
- O valor máximo de η, pode ser usado como medida para avaliar a separabilidade das classes C₀ e C₁ na imagem original ou a bimodalidade do histograma

- Esta é uma medida bastante significativa pois é invariante para transformações afins da escala de níveis de cinza, sendo unicamente determinada dentro do intervalo 0 ≤ η ≤ 1
 - O limite inferior (zero) é obtido quando e somente quando uma dada imagem tenha um único e constante nível de cinza, e o limite superior (um) é obtido quando e somente quando imagens de dois valores são dadas

- O método se caracteriza por sua natureza não paramétrica e não supervisionada de seleção de limiar e tem as seguintes vantagens:
 - O processo como um todo é muito simples;
 - Um limiar ótimo é selecionado de forma automática e estável, baseado em propriedades globais do histograma;
 - Viabiliza a análise de outros aspectos importantes, tais como estimativa dos níveis médios das classes, avaliação da separabilidade das classes, etc;

- O método se caracteriza por sua natureza não paramétrica e não supervisionada de seleção de limiar e tem as seguintes vantagens:
 - O método é extremamente genérico, podendo ser utilizado em outros casos de classificação não supervisionada no qual um histograma de alguma característica discriminativa que classifique objetos esteja disponibilizado.

Usando Pixels de Borda

Baseado no operador Laplaciano (Filtro Passa Alta)

0	1	0
1	-4	1
0	1	0

- Após a filtragem, a imagem é binarizada
- O histograma da imagem filtrada é calculado, considerando apenas aqueles pixels com "alto" valor de laplaciano
 - "alto" é um percentual pré-definido
 - A binarização é feita usando esse histograma

Usando Pixels de Borda

- Funciona como uma mistura de dois outros algoritmos
 - Como no algoritmo de porcentagem de preto, procura o ponto de corte que passaria para preto o percentual pré-definido da imagem
 - Mas, no caso, esse ponto definirá apenas a parte do histograma que será processada
 - Nesse pedaço de histograma, usa o algoritmo de dois picos para achar o ponto de corte

Média Móvel (*Moving Average*) P.Wellner

- Limiarização Local
- Define um ponto de corte para cada pixel
- Uma média móvel é apenas o tom de cinza médio dos últimos n pixels
- Nesse caso, a imagem pode ser considerada armazenada como um vetor
- Para o pixel i+1 com cor cinza_{i+1}:
 - $M_{i+1} = M_i M_i/n + cinza_{i+1}$

Niblack

- Limiarização Local
- Imagem dividida em janelas quadradas (NxN) e cada janela é avaliada em separado
- Calcula-se média (m) e desvio padrão (d) de cada janela
- O ponto de corte (th) é definido por:
 - th = m + bias*d
 - bias = peso atribuído
 - Não há definição de valor específico para esse bias

Niblack

Exemplo:

Janela = 31; Bias = -0.8

Sauvola

- Melhoria no algoritmo de Niblack para imagens com problemas de iluminação
- Nova variável para modificar o efeito do desvio padrão
 - R = 128
- O ponto de corte é definido como:
 - th = m + bias*(d/R)

White

- Compara o tom de cinza de cada pixel da imagem com a média dos valores dos seus vizinhos numa janela
- Para peso igual a 2, se o pixel for mais escuro que a média, ele é classificado como objeto, senão é background
 - Se média > cor_pixel*peso, então cor_pixel ← Preto
 - Senão cor_pixel ← Branco

Bernsen

- O limiar é escolhido como a média entre o mínimo e o máximo tom de cinza da vizinhança do pixel
- Se o contraste for menor que certo limiar dado, então o pixel é considerado da mesma classe que seus vizinhos, objeto ou background, dependendo do valor do limiar
 - O contraste é calculado como a diferença entre o máximo e o mínimo nível de cinza dado

Sugestões de Leitura

- A Novel Contrast Enhancement Technique using Gradient-Based Joint Histogram Equalization
 - Circuits, Systems, and Signal Processing, 2021
 - https://doi.org/10.1007/s00034-021-01655-3
- A novel equilibrium optimization algorithm for multi-thresholding image segmentation problems
 - Special Issue on Hybridization between Neural Computing and Nature Inspired Algorithms for Solving Multi-Criteria Decision-Making Problems, 2021
 - https://doi.org/10.1007/s00521-020-04820-y
- A novel Black Widow Optimization algorithm for multilevel thresholding image segmentation
 - Expert Systems with Applications, 2021
 - https://doi.org/10.1016/j.eswa.2020.114159
- An improved opposition-based marine predators algorithm for global optimization and multilevel thresholding image segmentation
 - Knowledge-Based Systems, 2021
 - https://doi.org/10.1016/j.knosys.2021.107348

Referência

- Imprescindível para qualquer trabalho que envolva limiarização:
 - Sezgin, M.; Sankur, B., "Survey over image thresholding techniques and quantitative performance evaluation". Journal of Eletronic Imaging, 2004. Vol.13, p.146-165, 2004.

Referência

- Histograma + Binarização no Colab
 - https://colab.research.google.com/drive/1tp_W6XKvC
 h5-

<u>a2KUaFtNnuVHCxpAFVz#scrollTo=5yzNrIUTVgQg</u>

