MATH 273 Assignment 1

Instructor: Thi Ngoc Dinh UCID: 30063828

Fall 2018

- 1 For each true statement, give a proof. For each false statement, write out its negation and prove that.
- a For all sets A, B and C, if $A \setminus B = C$ then $A = B \cup C$.

This statement is False. Its negation: \exists sets A, B, C, such that $A \setminus B = C$ and $A \neq B \cup C$. Proof of negation by example: Choose $A = C = \emptyset, B = \{1\}$, where A, B, C are sets. Then $A \setminus B = \emptyset \setminus \{1\} = \emptyset = C$. And $A = \emptyset \neq \{1\} = \{1\} \cup \emptyset = B \cup C$. Therefore the negation is true and the statement is false.

b For all sets A, B and C, if $A \setminus (B \cap C) = \emptyset$ then $A \setminus C \subseteq B$.

This statement is True. Proof: Let A, B, C be sets, such that $A \setminus (B \cap C) = \emptyset$. This means that if $x \in A$ then $x \in B$ and $x \in C$. Thus $A \subseteq B$ and $A \subseteq C$. So $A \setminus C = \emptyset \subseteq B$. Therefore the statement is true.

c For all sets A, B and C, if $A \setminus C \subseteq B$ then $A \setminus (B \cap C) = \emptyset$.

This statement is False. Its negation: \exists sets A, B, C, such that $A \setminus C \subseteq B$ and $A \setminus (B \cap C) \neq \emptyset$. Proof of negation by example: Choose $A = B = \{1\}, C = \emptyset$, where A, B, C are sets. Then $A \setminus C = \{1\} \setminus \emptyset = \{1\} = B$. And $A \setminus (B \cap C) = \{1\} \setminus (\{1\} \cap \emptyset) = \{1\} \setminus \emptyset = \{1\} \neq \emptyset$. Therefore the negation is true and the statement is false.

- 2 Let $f:A\to B$ and $g:B\to C$ be functions. Prove or disprove each of the following.
- a If f and g are one-to-one then $g \circ f$ is one-to-one.

This statement is True. Proof: Let $f: A \to B$ and $g: B \to C$ be functions. Let f and g be one-to-one. Suppose $a, b \in A$, and $c, d \in B$. This means, if f(a) = f(b), then a = b. And, if g(c) = g(d), then c = d. I'm trying to prove that $g \circ f$ is one-to-one. Suppose $g \circ f(a) = g \circ f(b)$.

$$g(f(a)) = g(f(b))$$
 because g is one-to-one
$$a = b$$
 because f is one-to-one

Therefore $g \circ f$ is one-to-one, and the statement is true.

b If $g \circ f$ is one-to-one then f is one-to-one.

This statement is True. Proof: Let $f: A \to B$ and $g: B \to C$ be functions. Let $g \circ f$ be one-to-one. Suppose $a, b \in A$, such that f(a) = f(b). Because f(a) = f(b), $g \circ f(a) = g \circ f(b)$. Because $g \circ f$ is one-to-one, a = b. Therefore f is one-to-one, and the statement is true.

c If $g \circ f$ is one-to-one then g is one-to-one.

This statement is False. Its negation: \exists functions $f:A\to B$ and $g:B\to C$ such that, $g\circ f$ is one-to-one, and g is not one-to-one. Proof of negation by example: Let $f:A\to B$ and $g:B\to C$ be functions. Choose $A=C=\{1\}, B=\{1,2\}$. Choose $f=\{(1,1)\}, g=\{(1,1),(2,1)\}$. So $g\circ f=\{(1,1)\}$, and it is one-to-one. Choose a=1,b=2. g(a)=g(b) and $a\neq b$, thus g is not one-to-one. Therefore the negation is true and the statement is false.

d If $g \circ f$ is one-to-one and f is onto then g is one-to-one.

This statement is True. Proof: Let $f:A\to B$ and $g:B\to C$ be functions. Let $g\circ f$ be one-to-one, and f be onto. Suppose $a,b\in B$, and g(a)=g(b). Because f is onto, for every $y\in B,\exists x\in A$, such that y=f(x). Hence g(a)=g(b) can be rewritten as g(f(c))=g(f(d)), where $c,d\in A$ such that, a=f(c),b=f(d). Because $g\circ f$ is one-to-one, c=d. Because c=d, f(c)=f(d), which means a=b. Therefore g is one-to-one, and the statement is true.

- 3 Let $A = \{1, 2, 3, 4\}$. Prove or disprove each of the following statements.
- a For all functions $f: A \to A$, there exists a function $g: A \to A$ so that $g \circ f(1) = 2$. This statement is True. Proof: Let $f: A \to A$. Choose $g: A \to A$, such that $\forall x \in A, g(x) = 2$. Since $f(1) \in A, g \circ f(1) = 2$. Therefore the statement is true.
- **b** There exists a function $g:A\to A$ so that for all functions $f:A\to A, g\circ f(1)=2$. This statement is True. Proof: Choose $g=\{(1,2),(2,2),(3,2),(4,2)\}$. So that $\forall x\in A, g(x)=2$. Let $f:A\to A$ be a function. Since $1\in A$, and $f(1)\in A$, this means $g\circ f(1)=2, \forall f:A\to A$. Therefore the statement is true.
- c For all functions $f: A \to A$, there is a function $g: A \to A$ so that $g \circ f(1) = 2$ and $g \circ f(2) = 1$.

This statement is False. Its negation: $\exists f: A \to A$, such that $\forall g: A \to A$, $g \circ f(1) \neq 2$, or $g \circ f(2) \neq 1$. Proof of negation by contradiction: Choose $f = \{(1,1),(2,1),(3,1),(4,1)\}$. Let $g: A \to A$. Assume the negation to be false, so $g \circ f(1) = 2$ and $g \circ f(2) = 1$. It's true that f(2) = f(1) as 1 = 1. So $g \circ f(2) = g \circ f(1)$. However from assumption, $g \circ f(2) = 1 \neq 2 = g \circ f(1)$ leading to a contradiction. Therefore the negation can't be false, and the statement is false.

d There exists a function $g:A\to A$ so that for all functions $f:A\to A, g\circ f(1)=2$ and $g\circ f(2)=1$.

This statement is False. Its negation: $\forall g: A \to A, \exists f: A \to A, \text{ such that, } g \circ f(1) \neq 2, \text{ or } g \circ f(2) \neq 1.$ Proof of negation by contridiction: Let $g: A \to A$. Choose $f: A \to A$ such that, f(1) = f(2). Assume the negation to be false, so $g \circ f(1) = 2$ and $g \circ f(2) = 1$. Because f(1) = f(2), so $g \circ f(1) = g \circ f(2)$. However from assumption, $g \circ f(1) = 2 \neq 1 = g \circ f(2)$, which is a contridiction. Thus the negation can not be false, and the statement is false.