Variance Stabilization Transformations

David Allen University of Kentucky

January 22, 2013

1 Variance stabilization transformations

If the assumptions for a linear model are not satisfied, transformation of the data may help. Here we describe the variance stabilization transformation that is applied to the response variable.

Back

Methodology

Suppose we have a random variable Y with mean μ and variance $g(\mu)$. Our objective is to find a monotone function h(Y) such that Var(h(Y)) is nearly constant. We approximate h(Y) by

$$h(Y) \approx h(\mu) + h'(\mu)(Y - \mu)$$

where h' is the derivative of h.

Variance Approximation

The variance of the approximation is

$$(h'(\mu))^2 g(\mu)$$
.

Setting this equal to a constant c, rearranging the expression, and replacing μ with a more conventional variable t, gives the differential equation

$$h'(t) = \frac{c}{\sqrt{g(t)}}.$$

We now consider some specific g(t).

The square root transformation

Suppose g(t) = t as it is with the Poisson distribution. The differential equation is

$$h'(t) = ct^{-\frac{1}{2}}$$

with solution

$$h(t)=2ct^{\frac{1}{2}}.$$

For convenience, set c = 0.5 to yield the square root transformation.

The logarithmic transformation

Suppose $g(t) = t^2$ as it does when there are multiplicative errors. The differential equation is

$$h'(t) = \frac{c}{t}$$

and its solution is

$$h(t) = c \log(t)$$
.

For convenience, set c = 1 to yield the logarithmic transformation.

A generalized power transformation

Suppose we have a random variable Y with mean μ and variance μ^k . We have looked at this situation when k=1 and k=2; the same methodology can be applied for non-integer values of k. The differential equation is

$$h'(t) = \frac{c}{t^{k/2}}.$$

When k = 2 we have $h(t) = \log(t)$ as previously shown. The solution of the equation for $k \neq 2$ is

$$\frac{c}{-k/2+1}t^{-k/2+1} + a$$

where α is a constant of integration.

A Simplification

To simplify the expression, define $\lambda = -k/2 + 1$. Set c = 1 and $a = -1/\lambda$. The transformation is

$$h(t) = \begin{cases} (t^{\lambda} - 1)/\lambda & \text{if } \lambda \neq 0 \\ \log(t) & \text{if } \lambda = 0 \end{cases}$$

This transformation is due to Box and Cox [1].

As an exercise, show that $\lim_{\lambda\to 0} (t^{\lambda}-1)/\lambda = \log(t)$. Indeed, the constant a was chosen to provide this continuity.

The arc sine square root transformation

If \hat{p} is a sample binomial proportion, then

$$g(t) = \frac{t(1-t)}{n}$$

where n is the sample size. The differential equation is

$$h'(t) = \frac{c\sqrt{n}}{\sqrt{t(1-t)}}.$$

This equation is most easily solved using the trigonometric substitution $\sqrt{t} = \sin(\theta)$ and $\sqrt{1-t} = \cos(\theta)$.

Relationship between t and θ

The relationship between t and θ is emphasized in the triangle:

Diagram goes here

Back 10

Solving the Equations

The equation in terms of θ and the steps for solving the equation are

$$h'(\sin^2(\theta)) = \frac{c\sqrt{n}}{\sin(\theta)\cos(\theta)}$$
$$h'(\sin^2(\theta))2\sin(\theta)\cos(\theta) = 2c\sqrt{n}$$
$$h(\sin^2(\theta)) = 2c\sqrt{n}\theta + \alpha$$

where α is a constant of integration. For convenience we let c=0.5 and $\alpha=0.0$. Back substitute t for θ to obtain

$$h(t) = \sqrt{n} \arcsin\left(\sqrt{t}\right).$$

An exercise

Exercise 1.1. Suppose

$$y = \frac{1}{\theta + \epsilon}$$

where θ is a parameter and ϵ is a random variable with mean zero and variance one. Approximate y with a linear function of ϵ . (Hint: first two terms of Taylor series about zero) Give the mean and variance of the approximation. Give λ of the appropriate Box-Cox transformation on y.

References

[1] George E. P. Box and David R. Cox. An analysis of transformations. *Journal of the Royal Statistical Society, Series B*, 26:211–252, 1964.

Back 1.