Lý thuyết Điều khiển tự động 1

Thiết kế bộ điều khiển phản hồi trạng thái

ThS. Đỗ Tú Anh

Bộ môn Điều khiển tự động Khoa Điện, Trường ĐHBK HN

Điều khiển phản hồi trạng thái

Xét hệ thống liên tục tuyến tính một tín hiệu vào được mô tả bởi

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}u \tag{1}$$

Giả thiết tất cả các biến trạng thái đều đo được. Chọn luật điều khiển phản hồi trạng thái sau

$$u = -\mathbf{K}\mathbf{x}$$

Khi đó mô hình trạng thái của hệ kín là:

$$\dot{\mathbf{x}}(t) = (\mathbf{A} - \mathbf{B}\mathbf{K})\mathbf{x}(t)$$

Bài toán thiết kế

Tìm ma trận phản hồi trạng thái K của bộ điều khiển sao cho hệ kín có được chất lượng như mong muốn

Điều khiển phản hồi trạng thái (tiếp)

Nguyên lý đặt điểm cực

Là phương pháp xác định ma trận **K** sao cho hệ kín có các điểm cực mong muốn

Điều kiện cần và đủ

Hệ (1) là điều khiển được hoàn toàn

Phương pháp sử dụng mô hình dạng chuẩn điều khiến

• Đưa mô hình trạng thái của hệ thống về dạng chuẩn điều khiển Định nghĩa ma trận chuyển đổi **T** như sau

$$\mathbf{T} = \mathbf{MW}$$
 (2)
$$\mathbf{W} = \begin{bmatrix} a_1 & a_2 & \dots & a_{n-1} & 1 \\ a_2 & a_3 & \dots & 1 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_1 & 1 & \dots & 0 & 0 \\ 1 & 0 & \dots & 0 & 0 \end{bmatrix}$$
Ma trận điều khiển được

Nguyên lý đặt điểm cực

Phương pháp sử dụng mô hình dạng chuẩn điều khiển (tiếp)

trong đó các a_i là các hệ số của đa thức đặc tính

$$|s\mathbf{I} - \mathbf{A}| = s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0$$

Sử dụng phép đổi biến

$$\mathbf{x} = \mathbf{T}\hat{\mathbf{x}}$$

Do hệ điều khiển được nên tồn tại T-1, ta có

$$\dot{\hat{\mathbf{x}}} = \mathbf{T}^{-1} \mathbf{A} \mathbf{T} \hat{\mathbf{x}} + \mathbf{T}^{-1} \mathbf{B} u \tag{3}$$

trong đó

$$\mathbf{T}^{-1}\mathbf{A}\mathbf{T} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -a_{i_0} - a_{i_1} & -a_{i_2} & \cdots & -a_{n-1} \end{bmatrix} \qquad \mathbf{T}^{-1}\mathbf{B} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$

 $\qquad \qquad \Box \rangle$

Mô hình (2) là mô hình trạng thái dạng chuẩn điều khiển

Phương pháp sử dụng mô hình dạng chuẩn điều khiển (tiếp)

• Chọn các điểm cực mong muốn của hệ thống là $\mu_1, \mu_2, \ldots, \mu_n$. Khi đó phương trình đặc tính mong muốn sẽ là

$$(s - \mu_1)(s - \mu_2) \dots (s - \mu_n) = s^n + \alpha_{n-1} s^{n-1} + \dots + \alpha_1 s + \alpha_0$$
 (4)

Ta hãy viết

$$\hat{\mathbf{K}} = \mathbf{KT} = \begin{bmatrix} \hat{k}_0 & \hat{k}_1 & \dots & \hat{k}_{n-1} \end{bmatrix}$$

Khi $u = -\hat{\mathbf{K}}\hat{\mathbf{x}} = -\mathbf{K}\mathbf{T}\hat{\mathbf{x}}$ được sử dụng để điều khiển hệ (3), hệ trở thành

$$\dot{\hat{\mathbf{x}}} = \mathbf{T}^{-1}\mathbf{A}\mathbf{T}\hat{\mathbf{x}} - \mathbf{T}^{-1}\mathbf{B}\mathbf{K}\mathbf{T}\hat{\mathbf{x}}$$

với phương trình đặc tính

$$\left| \mathbf{s} \mathbf{I} - \mathbf{T}^{-1} \mathbf{A} \mathbf{T} + \mathbf{T}^{-1} \mathbf{B} \mathbf{K} \mathbf{T} \right| = 0$$

$$|s\mathbf{I} - \mathbf{T}^{-1}\mathbf{A}\mathbf{T} + \mathbf{T}^{-1}\mathbf{B}\mathbf{K}\mathbf{T}|$$

$$= \begin{bmatrix} s & -1 & \dots & 0 \\ 0 & s & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{0} + \hat{k}_{0} & a_{1} + \hat{k}_{1} & \dots & s + a_{n-1} + \hat{k}_{n-1} \end{bmatrix}$$

$$= s^{n} + (a_{n-1} + \hat{k}_{n-1})s^{n-1} + \dots + (a_{1} + \hat{k}_{1})s + (a_{0} + \hat{k}_{0})$$
(5)

Phương trình (5) phải tương đương với phương trình đặc tính mong muốn (4),

tức là

$$a_{n-1} + k_{n-1} = \alpha_{n-1},$$
 $a_{n-2} + \hat{k}_{n-2} = \alpha_{n-2}$
 \vdots
 $a_0 + \hat{k}_0 = \alpha_0$

Vậy

$$\mathbf{K} = \hat{\mathbf{K}} \mathbf{T}^{-1} = \begin{bmatrix} \hat{k}_0 & \hat{k}_1 & \dots & \hat{k}_{n-1} \end{bmatrix} \mathbf{T}^{-1}$$
$$= \begin{bmatrix} \alpha_0 - a_0 & \alpha_1 - a_1 & \dots & \alpha_{n-1} - a_{n-1} \end{bmatrix} \mathbf{T}^{-1}$$

(6)

Phương pháp sử dụng mô hình dạng chuẩn điều khiển-Các bước thiết kế

- Bước 1 Kiểm tra tính điều khiển được của hệ thống. Nếu hệ đk được thì thực hiện tiếp các bước sau đây
- Bước 2 Xác định các hệ số a_i từ đa thức đặc tính của hệ

$$|s\mathbf{I} - \mathbf{A}| = s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0$$

- Bước 3 Xác định ma trận chuyển đổi **T** để chuyển mô hình hệ thống sang mô hình dạng chuẩn điều khiển theo (2)
- Bước 4 Từ các điểm cực mong muốn, viết phương trình đặc tính mong muốn của hệ

$$(s - \mu_1)(s - \mu_2) \dots (s - \mu_n) = s^n + \alpha_{n-1}s^{n-1} + \dots + \alpha_1s + \alpha_0$$

và xác định các hệ số α_i

Bước 5 Ma trận phản hồi trạng thái cần tìm K được xác định từ (6), tức là

$$\mathbf{K} = \begin{bmatrix} \alpha_0 - a_0 & \alpha_1 - a_1 & \dots & \alpha_{n-1} - a_{n-1} \end{bmatrix} \mathbf{T}^{-1}$$

Phương pháp Ackermann

Ma trận phản hồi trạng thái K được xác định như sau

$$\mathbf{K} = \begin{bmatrix} 0 & 0 & \cdots & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{B} & | \mathbf{A}\mathbf{B} & | \cdots & | \mathbf{A}^{n-1}\mathbf{B} \end{bmatrix}^{-1} \phi(\mathbf{A})$$
trong đó
$$\phi(\mathbf{A}) = \mathbf{A}^n + \alpha_{n-1}\mathbf{A}^{n-1} + \cdots + \alpha_1\mathbf{A} + \alpha_0$$

với α_i là các hệ số của đa thức đặc tính mong muốn (4) được xác định từ các điểm cực mong muốn của hệ $s = \mu_1, s = \mu_2, \dots, s = \mu_n$.

Quỹ đạo trạng thái

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}u$$

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -5 & -6 \end{bmatrix}, \qquad \mathbf{B} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Hãy tìm ma trận phản hồi trạng thái K sao cho hệ kín có được các điểm cực mong muốn là $s = -2 \pm j4$ và s = -10.