AVR-GCC ASSIGNMENT

R.Radhika r170234@rguktrkv.ac.in IITH - Future Wireless Communications (FWC)

19-09-2022

Contents

3 PIN Diagram

1	Introduction 1.1 7474 IC: 1.2 Arduino:	1 1 1
2	Components	1
3	PIN Diagram	1
4	Truth Table	1
5	Circuit Diagram	1
6	Implementation	2

Abstract

This manual shows that move the content of one register to another register :

1RD 1 1D 2 1CP 3 1SD 4 1Q 5 1Q 6 GND 7

Figure.a

1 Introduction

1.1 7474 IC:

This IC contains 2 D-flip flops.

For this section total of 4 flip-flops(2 ICs) are required since we need to design a 4-bit shift register.

1.2 Arduino:

In Arduino Uno we generate the clock pulse which is given to the each and every flip-flop by default.

We take 5 volts and Ground as the supply to the bread board from the Arduino board.

4 Truth Table

D1	Q1=D2	Q2=D3	Q3=D4	Q4
0	0	0	0	0
1	1	0	0	0
1	1	1	0	0
0	0	1	1	0
0	0	0	1	1
0	0	0	0	1
0	0	0	0	0

Truth table for 0110

2 Components

Component	Values	Quantity
Arduino	UNO	1
JumperWires	M-M	20
Breadboard		1
IC	7447	2

5 Circuit Diagram

Figure.b

4-bit shift register: 1.lt has 4 D-flip flops.

2. Verify the output for the sequence by changing the D1 pin

to Vcc and Ground for different clock cycles.

3.It has 4 outputs i.e Q1, Q2, Q3 and Q4.

4. We need to give the input from MSB to LSB.

6 Implementation

Connections

 $\begin{tabular}{ll} \textbf{Problem-1} & 1. & Connect the circuit as per the above diagram. \end{tabular}$

2. Execute the circuit using the below code.

https://github.com/Radhikarkv/fwcproject.git

Problem-2 1. Same circuit can be implemented by without IC display to the Q1, Q2, Q3 AND Q4 respectively.

2. Execute the circuit using the below code.

https://github.com/Radhikarkv/fwcproject.git