EXHIBIT A71

INTERNATIONAL AGENCY FOR RESEARCH ON CANCER

IARC MONOGRAPHS on the EVALUATION OF CARCINOGENIC RISKS TO HUMANS

Chromium, Nickel and Welding

VOLUME 49

IARC, Lyon, France

1990

WORLD HEALTH ORGANIZATION

INTERNATIONAL AGENCY FOR RESEARCH ON CANCER

IARC MONOGRAPHS

ON THE

EVALUATION OF CARCINOGENIC RISKS TO HUMANS

Chromium, Nickel and Welding

VOLUME 49

This publication represents the views and expert opinions of an IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, which met in Lyon,

5-13 June 1989

1990

IARC MONOGRAPHS

In 1969, the International Agency for Research on Cancer (IARC) initiated a programme on the evaluation of the carcinogenic risk of chemicals to humans involving the production of critically evaluated monographs on individual chemicals. In 1980 and 1986, the programme was expanded to include the evaluation of the carcinogenic risk associated with exposures to complex mixtures and other agents.

The objective of the programme is to elaborate and publish in the form of monographs critical reviews of data on carcinogenicity for agents to which humans are known to be exposed, and on specific exposure situations; to evaluate these data in terms of human risk with the help of international working groups of experts in chemical carcinogenesis and related fields; and to indicate where additional research efforts are needed.

This project is supported by PHS Grant No. 5 UO1 CA33193-07 awarded by the US National Cancer Institute, Department of Health and Human Services. Additional support has been provided since 1986 by the Commission of the European Communities.

©International Agency for Research on Cancer 1990

ISBN 92 832 1249 5 ISSN 0250-9555

All rights reserved. Application for rights of reproduction or translation, in part or *in toto*, should be made to the International Agency for Research on Cancer.

Distributed for the International Agency for Research on Cancer by the Secretariat of the World Health Organization

PRINTED IN THE UK

NOTE TO THE READER	
LIST OF PARTICIPANTS	
PREAMBLE	
Background Objective and Scope Selection of Topics for Monographs Data for Monographs The Working Group Working Procedures Exposure Data Biological Data Relevant to the Evaluation of Carcin Humans Evidence for Carcinogenicity in Experimental Anima Other Relevant Data in Experimental Systems and in Evidence for Carcinogenicity in Humans Summary of Data Reported Evaluation References	
GENERAL REMARKS	41
THE MONOGRAPHS	
Chromium and chromium compounds	
 Chemical and physical data Synonyms, trade names and molecular formula and selected chromium-containing substances Chemical and physical properties of pure substances Technical products and impurities (a) Chromite ore 	e of chromium

		(b)	Metallic chromium and chromium alloys	
		(c)	Chromium[III] compounds	
		(<i>d</i>)	Chromium[VI] compounds	
2.	Prod	uctio	n, use, occurrence and analysis	66
	2.1		duction	
		(a)	Chromite ore	66
		(b)	Metallic chromium and chromium alloys	66
		(c)	Chromium[III] compounds	70
		(<i>d</i>)	Chromium[VI] compounds	72
		(e)	Other chromium compounds	78
	2.2	Use		78
		(a)	Chromite ore	78
		(b)	Metallic chromium and chromium alloys	7 9
		(c)	Chromium[III] compounds	80
		(d)	Chromium[VI] compounds	81
		(e)	Other chromium compounds	84
	2.3	Occ	currence	84
		(a)	Natural occurrence	84
		(b)	Occupational exposures	85
		(c)	Air	98
		(d)	Water	99
		(e)	Soil and plants	101
		<i>(f)</i>	Food	101
		(g)	Animal tissues	101
		(h)	Human tissues and secretions	104
		(i)	Regulatory status and guidelines	104
	2.4	Ana	alysis	107
3.	Biolo	ogical	data relevant to the evaluation of carcinogenic risk to	
	hur	nans		115
	3.1	Car	cinogenicity studies in animals	115
		(a)	Metallic chromium	115
		(b)	Chromium[III] compounds	118
		(c)	Chromium[VI] compounds	121
		(d)	Other chromium compounds	130
	3.2	Oth	ner relevant data in experimental systems	143
		(a)	Absorption, distribution, excretion and metabolism	143

		(b)	Toxic effects
		(c)	Effects on reproduction and prenatal toxicity
		(<i>d</i>)	Genetic and related effects
	3.3	Otl	her relevant data in humans
		(a)	Absorption, distribution, excretion and metabolism 181
		(b)	Toxic effects
		(c)	Effects on reproduction and prenatal toxicity
		(d)	Genetic and related effects
	3.4		se reports and epidemiological studies of carcinogenicity to
		nun	nans 187
		(a)	Chromate production 187
		(b)	Production of chromate pigments
		(c)	Chromium plating
		(d)	Production of ferrochromium alloys
		(e)	Other industrial exposures to chromium
	•	<i>(f)</i>	Environmental exposure to chromium
4.	Sum	ımary	of data reported and evaluation
	4.1	Exp	osure data 208
	4.2	Exp	erimental carcinogenicity data
	4.3	Hun	nan carcinogenicity data
	4.4	Otno	er relevant data
_	4.5	Eval	luation 213
5.	Rete	rences	s
Nic	kel a	nd nic	kel compounds
1.	Cher	nical :	and physical data
	1.1	Syno	onyms, trade names and molecular formulae of nickel and
		selec	eted nickel-containing compounds
	1.2	Cher	mical and physical properties of pure substances
	1.3	Tech	nical products and impurities
		(a)	Metallic nickel and nickel alloys
		(b)	Nickel oxides and hydroxides
		(c)	Nickel sulfides
		(d)	Nickel salts
		(e) (Other nickel compounds
			4

2.	Produ	uction	n, use, occurrence and analysis	270
	2.1	Proc	luction	270
		(a)	Metallic nickel and nickel alloys	270
		(b)	Nickel oxides and hydroxides	277
		(c)	Nickel sulfides	
		(d)	Nickel salts	278
		(e)	Other nickel compounds	
	2.2	Use		280
		(a)	Metallic nickel and nickel alloys	281
		(b)	Nickel oxides and hydroxides	282
		(c)	Nickel sulfides	
		(d)	Nickel salts	282
		(e)	Other nickel compounds	283
	2.3	Occ	urrence	
		(a)	Natural occurrence	283
		(b)	Occupational exposures	284
		(c)	Air	302
		(d)	Tobacco smoke	304
		(e)	Water and beverages	304
		(f)	Soil	305
		(g)	Food	306
		(h)	Human tissues and secretions	308
		<i>(i)</i>	Iatrogenic exposures	308
		(j)	Regulatory status and guidelines	
	2.4	Ana	alysis	314
3.	Biolo	ogical	data relevant to the evaluation of carcinogenic risk to	
	hur			
	3.1	Car	cinogenicity studies in animals	
		(a)	Metallic nickel and nickel alloys	
		(b)	Nickel oxides and hydroxides	324
		(c)	Nickel sulfides	328
		(<i>d</i>)	Nickel salts	336
		(e)	Other nickel compounds	340
	3.2	Oth	er relevant data in experimental systems	356
		(a)	Absorption, distribution, excretion and metabolism	356
		(b)	Dissolution and cellular uptake	. 360

		(c) Interactions
		(d) Toxic effects
		(e) Effects on reproduction and prenatal toxicity
		(f) Genetic and related effects
	3.3	Other relevant data in humans
		(a) Absorption, distribution, excretion and metabolism 383
		(b) Toxic effects
		(c) Effects on reproduction and prenatal toxicity
		(a) Genetic and related effects
	3.4	Epidemiological studies of carcinogenicity to humans
		(a) Introduction
		(b) Nickel mining, smelting and refining
		(c) Nickel alloy and stainless-steel production 397
		(a) Other industrial exposures to nickel
		(e) Other studies
4.	Sun	inary of data reported and evaluation
	4.1	Exposure data
	4.2	Experimental carcinogenicity data
	4.3	Human carcinogenicity data
	4.4	Other relevant data
	4.5	Evaluation
5.	Refe	rences
We	lding	
1.	•	
i.	1.1	orical perspectives and process description
	1.1	Introduction
	1.2	Development of welding in the twentieth century
	1.5	Description of major welding processes
		(a) Introduction
		(b) Manual metal arc welding
		(c) Metal inert gas welding
		(a) Flux-cored wire welding
		(e) lungsten mert gas welding
	1 4	(f) Submerged arc welding
	1.4	Number and distribution of welders

2.	Weld	ing fu	umes and gases	455
	2.1	Intro	oduction	455
	2.2	Che	mical composition and physical properties of welding fumes.	457
		(a)	Elemental composition	457
		(b)	Oxidation state of chromium	459
		(c)	Crystalline materials	460
		(d)	Physical properties	462
	2.3	Occ	cupational exposures of welders	463
		(a)	Exposures to welding fumes	463
		(b)	Biological monitoring of exposure	465
		(c)	Exposures to welding gases	
		(d)	Exposures to organic constituents of welding fumes	472
		(e)	Other exposures	472
		(f)	Regulatory status and guidelines	474
	2.4	Che	emical analysis of welding fumes and gases	
3.	Biolo		data relevant to the evaluation of carcinogenic risk to	
		_		476
	3.1	Car	cinogenicity studies in animals	
		(a)	Intratracheal instillation	
		(b)	Intrabronchial implantation	476
	3.2	Oth	ner relevant data in experimental systems	477
		(a)	Absorption, distribution, excretion and metabolism	477
		(b)	Toxic effects	479
		(c)	Effects on reproduction and prenatal toxicity	482
		(d)	Genetic and related effects	482
	3.3	Oth	ner relevant data in humans	484
		(a)	Absorption, distribution, excretion and metabolism	484
		(b)	Toxic effects	
		(c)	Effects on reproduction and prenatal toxicity	
		(d)	Genetic and related effects	
	3.4	Cas	se reports and epidemiological studies of carcinogenicity to	
			umans	. 489
		(a)	Case reports and descriptive epidemiology	. 489
		(b)	Cohort studies	. 491
		(c)	Case-control studies	
		` '		

4.	Sum	mary of data reported and evaluation	505
	4.1	Exposure data	505 505
	4.2	Experimental carcinogenicity data	. 505 505
	4.3	Human carcinogenicity data	. 505 505
	4.4	Other relevant data	506 506
	4.5	Evaluation	. 500 507
5.	Refe	rences	508
SU		RY OF FINAL EVALUATIONS	
AP EF	PENI FECT	OIX 1. SUMMARY TABLES OF GENETIC AND RELATED	529
AP EF	PENI FECT	DIX 2. ACTIVITY PROFILES FOR GENETIC AND RELATED	537
		ATIVE INDEX TO THE MONOGRAPHS SERIES	

NICKEL AND NICKEL COMPOUNDS

Nickel and nickel compounds were considered by previous IARC Working Groups, in 1972, 1975, 1979, 1982 and 1987 (IARC, 1973, 1976, 1979, 1982, 1987). Since that time, new data have become available, and these are included in the present monograph and have been taken into consideration in the evaluation.

1. Chemical and Physical Data

The list of nickel alloys and compounds given in Table 1 is not exhaustive, nor does it necessarily reflect the commercial importance of the various nickel-containing substances, but it is indicative of the range of nickel alloys and compounds available, including some compounds that are important commercially and those that have been tested in biological systems. A number of intermediary compounds occur in refineries which cannot be characterized and are not listed.

1.1 Synonyms, trade names and molecular formulae of nickel and selected nickel-containing compounds

Table 1. Synonyms (Chemical Abstracts Service names are given in bold), trade names and atomic or molecular formulae or compositions of nickel, nickel alloys and selected nickel compounds

Chemical name	Chem. Abstr. Serv. Reg. Number ^a	Synonyms and trade names	Formula	Oxida- tion state ^b
Metallic nic	kel and nickel allo	ys		***************************************
Nickel	7440-02-0 (8049-31-8; 17375-04-1; 39303-46-3; 53527-81-4; 112084-17-0)	C.I. 77775; N1; Ni 233; Ni 270; Nickel 270; Nickel element; NP 2	Ni	0

NICKEL AND NICKEL COMPOUNDS

Groups of 40 and 20 male Wistar rats, five weeks of age, were exposed by inhalation to 60 and 200 μ g/m³ nickel as nickel monoxide aerosol (particle size, <0.3 μ m) continuously for 18 months, followed by an observation period of one year under normal atmospheric conditions. At 24 months, 80% of animals in the treatment group had died, and at termination of the study (30 months) 62.5% of controls had died. No carcinogenic effect was observed (Glaser *et al.*, 1986). [The Working Group noted that the toxic effects, particularly alveolar proteinosis, were severe, that the survival of the animals was too short for carcinogenicity to be evaluated fully, and that nickel oxide aerosols were generated by atomization of aqueous nickel acetate solutions.]

Hamster: A group of 51 male Syrian golden hamsters, two months of age, was exposed by inhalation to a mean aerosol concentration of 53.2 mg/m³ nickel monoxide (mean particle diameter, $0.3 \mu m$) for 7 h per day on five days per week for life. Another group of 51 males was exposed to nickel monoxide plus cigarette smoke. Two control groups of 51 animals were exposed to smoke and sham dust or to sham smoke and sham dust. Massive pneumoconiosis with lung consolidation developed in the nickel monoxide-exposed animals but did not affect their lifespan. Mean lifespan was 19.6 ± 1.6 months for animals exposed to smoke and nickel monoxide, 16.1 ± 1.1 for sham-exposed nickel oxide-treated animals and 19.6 ± 1.4 and 15.3 ± 1.3 months for the respective controls. No significant increase in the incidence of respiratory tumours or any evidence of cocarcinogenic interaction with cigarette smoke was noted for nickel monoxide. One osteosarcoma occurred in the nickel monoxide-treated group and one osteosarcoma and one rhabdomyosarcoma in the muscle of the thorax were seen in the group given nickel monoxide plus cigarette smoke (Wehner et al., 1975, 1979).

(ii) Intratracheal instillation

Rat: Groups of female Wistar rats [numbers unspecified], 11 weeks of age, received ten weekly intratracheal instillations of 5 or 15 mg nickel as nickel monoxide (99.99% pure) in 0.3 ml saline to give total doses of 50 and 150 mg nickel, respectively. A control group of 40 rats received injections of saline only and were observed for 124 weeks. Lung tumour incidence in the two treated groups was 10/37 (27%) and 12/38 (31.6%), respectively; the tumours in the two groups consisted of four adenocarcinomas, two mixed tumours and 16 squamous-cell carcinomas. No lung tumour occurred in controls (Pott et al., 1987).

Hamster: In an experiment designed to study the effects of particulates on the carcinogenesis of N-nitrosodiethylamine, groups of 25 male and 25 female hamsters [strain unspecified], five weeks old, received intratracheal instillations of 0.2 ml of a suspension of 2 g nickel monoxide (particle size, 0.5-1.0 μ m) in 100 ml 0.5% w/v gelatin/saline once a week for 30 weeks. A group of 50 controls received injections

325

326

of carbon dust in the vehicle. Only three hamsters in each group survived beyond 48 weeks. One respiratory tract tumour [unspecified] was found in the 47 nickel monoxide-treated animals that were necropsied and four in controls. A high incidence of respiratory-tract tumours was observed in animals treated with *N*-nitrosodiethylamine alone (Farrell & Davis, 1974). [The Working Group noted the poor survival of treated and control animals.]

(iii) Intrapleural administration

Rat: A group of 32 male Wistar rats, three months of age, received a single intrapleural injection of 10 mg nickel monoxide in 0.4 ml saline suspension. A positive control group of 32 rats received a 10 mg injection of crocidolite, and a negative control group of 32 rats received saline alone. After 30 months, 31/32 rats in the nickel monoxide-treated group had developed injection-site tumours (mostly rhabdomyosarcomas). Median survival time was 224 days. Nine of 32 rats in the crocidolite-treated group had local tumours, but none of the saline controls developed local sarcomas (Skaug et al., 1985).

(iv) Intramuscular administration

Mouse: Two groups of 50 Swiss and 52 C3H mice, equally divided by sex, two to three months of age, received single intramuscular injections of 5 mg nickel monoxide in penicillin G procaine into each thigh muscle and were observed for up to 476 days. Local sarcomas (mainly fibrosarcomas) occurred in 33 Swiss and 23 C3H mice. No control was reported (Gilman, 1962).

Rat: A group of 32 Wistar rats [sex unspecified], two to three months of age, received single intramuscular injections of 20 mg nickel monoxide powder into each thigh muscle and were observed for up to 595 days. Twenty-one rats developed a total of 26 tumours at the site of injection; 80% of the tumours were rhabdomyosarcomas, and the average latent period was 302 days. No control was reported (Gilman, 1962).

Groups of 20 Fischer rats [sex and age unspecified] received single intramuscular injections at two sites of either nickel hydroxide or nickel monoxide [dose unspecified] in aqueous penicillin G procaine. Local sarcomas developed in 15/20(19 tumours at 40 sites) and 2/20 rats, respectively. Concurrent vehicle controls were not used. Seventeen of 20 animals given nickel subsulfide [dose unspecified] as positive controls developed local sarcomas. No tumour developed at the injection sites in two other groups of rats in the same experimental series injected intramuscularly with either nickel sulfate or nickel sulfide [presumed to be amorphous] (Gilman, 1966).

Ten male and ten female Wistar rats, weighing 150-170 g, received an intramuscular injection of 3 mg nickel trioxide powder. No control group was reported. No neoplasm developed at the injection site (Sosiński, 1975).