ANALIZA ELEKTROENERGETSKOG SUSTAVA

Predavanje br. 8.

METODA GAUSS-SEIDEL POMOĆU Y MATRICE

– Mreža od n čvorišta – jedno čvorište referentno

$$\left| \vec{I} \right| = \left| \vec{Y} \right| \cdot \left| \vec{U} \right|$$

$$\begin{split} \vec{I}_1 &= \vec{Y}_{11} \cdot \vec{U}_1 + \vec{Y}_{12} \cdot \vec{U}_2 + \ldots + \vec{Y}_{1n} \cdot \vec{U}_n \\ \vec{I}_2 &= \vec{Y}_{21} \cdot \vec{U}_1 + \vec{Y}_{22} \cdot \vec{U}_2 + \ldots + \vec{Y}_{2n} \cdot \vec{U}_n \\ \vdots \\ \vec{I}_{(n-1)} &= \vec{Y}_{(n-1)1} \cdot \vec{U}_1 + \vec{Y}_{(n-1)2} \cdot \vec{U}_2 + \ldots + \vec{Y}_{(n-1)n} \cdot \vec{U}_n \end{split}$$

$$\vec{U}_{1} = \frac{1}{\vec{Y}_{11}} \cdot \left[\vec{I}_{1} - \vec{Y}_{12} \cdot \vec{U}_{2} - \vec{Y}_{13} \cdot \vec{U}_{3} - \dots - \vec{Y}_{1n} \cdot \vec{U}_{n} \right]$$

$$\vec{U}_{2} = \frac{1}{\vec{Y}_{22}} \cdot \left[\vec{I}_{2} - \vec{Y}_{21} \cdot \vec{U}_{1} - \vec{Y}_{23} \cdot \vec{U}_{3} - \dots - \vec{Y}_{2n} \cdot \vec{U}_{n} \right]$$

:

$$\vec{U}_{n-1} = \frac{1}{\vec{Y}_{(n-1)(n-1)}} \cdot \left[\vec{I}_{n-1} - \vec{Y}_{(n-1)1} \cdot \vec{U}_1 - \vec{Y}_{(n-1)3} \cdot \vec{U}_3 - \dots - \vec{Y}_{(n-1)n} \cdot \vec{U}_n \right]$$

• Za čvorište i:

$$\vec{I}_i = \frac{\vec{S}_i^*}{\vec{U}_i^*}$$

$$\vec{U}_{i}^{(1)} = \frac{1}{\vec{Y}_{ii}} \cdot \left[\frac{\vec{S}_{i}^{*}}{\vec{U}_{i}^{*(0)}} - \vec{Y}_{i1} \cdot \vec{U}_{1}^{(0)} - \vec{Y}_{i2} \cdot \vec{U}_{2}^{(0)} - \dots - \vec{Y}_{in} \cdot \vec{U}_{n}^{(0)} \right]$$

• Za neku iteraciju **k+1** i čvorište **i**:

$$\vec{U}_{i}^{(k+1)} = \frac{1}{\vec{Y}_{ii}} \cdot \left[\frac{\vec{S}_{i}^{*}}{\vec{U}_{i}^{*(k)}} - \vec{Y}_{i1} \cdot \vec{U}_{1}^{(k)} - \vec{Y}_{i2} \cdot \vec{U}_{2}^{(k)} - \dots - \vec{Y}_{in} \cdot \vec{U}_{n}^{(k)} \right]$$

$$\vec{U}_{i}^{(k+1)} = \frac{\vec{S}_{i}^{*}}{\vec{Y}_{ii} \cdot \vec{U}_{i}^{*(k)}} - \frac{\vec{Y}_{i1}}{\vec{Y}_{ii}} \cdot \vec{U}_{1}^{(k)} - \dots - \frac{\vec{Y}_{in}}{\vec{Y}_{ii}} \cdot \vec{U}_{n}^{(k)}$$

$$\vec{U}_{i}^{(k+1)} = \frac{\vec{S}_{i}^{*}}{\vec{Y}_{ii} \cdot \vec{U}_{i}^{*(k)}} - \sum_{\substack{j=1 \ j \neq i}}^{n} \frac{Y_{ij}}{\vec{Y}_{ii}} \cdot \vec{U}_{j}^{(k)}$$

$$KL_{i} = \frac{\vec{S}_{i}^{*}}{\vec{Y}_{ii}}$$

$$YL_{i,j} = \frac{\vec{Y}_{ij}}{\vec{Y}_{ii}}$$

$$\vec{U}_{i}^{(k+1)} = KL_{i} \cdot \frac{1}{\vec{U}_{i}^{*(k)}} - \sum_{j=1}^{i-1} YL_{i,j} \cdot \vec{U}_{j}^{(k+1)} - \sum_{j=i+1}^{n} YL_{i,j} \cdot \vec{U}_{j}^{(k)}$$

Uvjet točnosti:

$$\left| \vec{U}_i^{(k+1)} - \vec{U}_i^{(k)} \right| < \varepsilon$$

• PRIMJER:

• Zadano:

i	j	$\vec{Z}_{i-j}(p.u.)$	$y'_{i-j}/2$ (p.u.)	$\vec{\mathcal{Y}}_{i-j}$
1	2	0.02+j0.06	j0.03	5-j15
1	3	0.08+j0.24	j0.025	1.25-j3.75
2	3	0.06+j0.18	j0.02	1.66-j5
2	4	0.06+j0.18	j0.02	1.66-j5
2	5	0.04+j0.12	j0.015	2.5-j4.5
3	4	0.01+j0.03	j0.01	10-j30
4	5	0.08+j0.24	j0.025	1.25-j3.75

• Čvorište 1 je referentno

• Zadano:

Čv.	Generator			Te	$ec{Y}_{i}^{\prime}$		
	U	MW	Mvar	MW	Mvar	i	
1.	1.06+j0	/	/	/	/	j0.055	
2.		40	30	20	10	j0.085	
3.				45	15	j0.055	
4.				40	5	j0.055	
5.				60	10	j0.04	

• Bazna snaga: $S_B = 100 \, MVA$

• Tražena točnost: $\varepsilon = 0.001$

Matrica Y:

$$\vec{Y} = \begin{bmatrix}
6.25 - j18.695 & -5 + j15 & -1.25 + j3.75 & 0 & 0 \\
-5 + j15 & 10.833 - j32.415 & -1.66 + j5 & -1.66 + j5 & -2.5 + j7.5 \\
-1.25 + j3.75 & -1.66 + j5 & 12.916 - j38.695 & -10 + j30 & 0 \\
0 & -1.66 + j5 & -10 + j30 & 12.916 - j38.695 & -1.25 + j3.75 \\
0 & -2.5 + j7.5 & 0 & -1.25 + j3.75 & 3.75 - j11.21$$

$$\vec{Y}_{ij} = -\vec{y}_{i-j}$$

$$\vec{Y}_{ii} = \sum_{j=1}^{n} \vec{y}_{i-j} + \vec{Y}_{i}'$$

• Nulta iteracija: $\vec{U}_i^{(0)} = 1 + j0$ i = 2, 3, 4, 5

$$\vec{U}_{2}^{(k+1)} = \frac{\mathit{KL}_{2}}{\vec{U}_{2}^{*(k)}} - \mathit{YL}_{2,1} \cdot \vec{U}_{1} - \mathit{YL}_{2,3} \cdot \vec{U}_{3}^{(k)} - \mathit{YL}_{2,4} \cdot \vec{U}_{4}^{(k)} - \mathit{YL}_{2,5} \cdot \vec{U}_{5}^{(k)}$$

$$\vec{U}_{3}^{(k+1)} = \frac{KL_{3}}{\vec{U}_{2}^{*(k)}} - YL_{3,1} \cdot \vec{U}_{1} - YL_{3,2} \cdot \vec{U}_{2}^{(k+1)} - YL_{3,4} \cdot \vec{U}_{4}^{(k)}$$

$$\vec{U}_{4}^{(k+1)} = \frac{\mathit{KL}_{4}}{\vec{U}_{4}^{*(k)}} - \mathit{YL}_{4,2} \cdot \vec{U}_{2}^{(k+1)} - \mathit{YL}_{4,3} \cdot \vec{U}_{3}^{(k+1)} - \mathit{YL}_{4,5} \cdot \vec{U}_{5}^{(k)}$$

$$\vec{U}_{5}^{(k+1)} = \frac{KL_{5}}{\vec{U}_{5}^{*(k)}} - YL_{5,2} \cdot \vec{U}_{2}^{(k+1)} - YL_{5,4} \cdot \vec{U}_{4}^{(k+1)}$$

$$KL_2 = \frac{P_2 - jQ_2}{\vec{Y}_{22}} = \frac{0.2 - j0.2}{10.833 - j32.415} = 0.0074 + j0.0037$$

$$KL_3 = \frac{P_3 - jQ_3}{\vec{Y}_{33}} = -0.00698 - j0.0093$$

$$KL_4 = \frac{P_4 - jQ_4}{\vec{Y}_{44}} = -0.00427 - j0.00891$$

$$KL_5 = \frac{P_5 - jQ_5}{\vec{Y}_{55}} = -0.002413 - j0.004545$$

$$YL_{2,1} = \frac{\vec{Y}_{21}}{\vec{Y}_{22}} = \frac{-5 + j15}{10.833 - j32.415} = -0.46263 + j0.000177$$

$$YL_{2,3} = \frac{\vec{Y}_{23}}{\vec{Y}_{22}} = \frac{-1.66 + j5}{10.833 - j32.415} = -0.15421 + j0.00012$$

$$YL_{2,4} = \frac{\overline{Y}_{24}}{\overline{Y}_{22}} = -0.15421 + j0.00012$$

$$YL_{2,5} = \frac{\bar{Y}_{25}}{\bar{Y}_{22}} = -0.23131 + j0.00018$$

$$YL_{3.1} = -0.0969 + j0.00004$$

$$YL_{3,2} = -0.12920 + j0.00006$$

$$YL_{3,4} = -0.77518 + j0.00033$$

$$YL_{4,2} = -0.1292 + j0.00006$$

 $YL_{4,3} = -0.77518 + j0.000033$
 $YL_{4,5} = -0.0969 + j0.00004$
 $YL_{5,2} = -0.66881 + j0.00072$
 $YL_{5,4} = -0.3344 + j0.00036$

$$\vec{U}_2^{(1)} = 1.03752 + j0.0029$$

• Postupak se ubrzava uvođenjem faktora ubrzanja lpha :

$$\alpha = 1.4$$

$$\Delta \vec{\mathbf{U}}_{2}^{(1)} = \vec{\mathbf{U}}_{2}^{(1)} - \vec{\mathbf{U}}_{2}^{(0)} = 0.03752 + \mathbf{j}0.0029$$

$$\vec{U}_{\text{2ubrzani}}^{(1)} = \vec{U}_{\text{2}}^{(0)} + \alpha \cdot \Delta \vec{U}_{\text{2}}^{(1)} = 1 + j0 + 0.05253 + j0.00406$$

$$\vec{U}_{\text{2ubrzani}}^{(1)} = \vec{U}_{2}^{(0)} + \alpha \cdot \Delta \vec{U}_{2}^{(1)} = 1 + j0 + 0.05253 + j0.00406$$

$$\vec{\mathbf{U}}_{2ubrzani}^{(1)} = 1.05253 + j0.00406$$

$$\vec{\mathbf{U}}_{3}^{(1)} = 1.00690 - \mathbf{j}0.00921$$

$$\Delta \vec{\mathbf{U}}_{3}^{(1)} = 0.069 - \mathbf{j}0.00021$$

$$\vec{U}_{\text{3ubrz}}^{(1)} = \vec{U}_{\text{3}}^{(0)} + \alpha \cdot \Delta \vec{U}_{\text{3}}^{(1)} = 1.00966 - j0.01289$$

$$\vec{U}_{\text{4ubrz}}^{(1)} = \vec{U}_{\text{4}}^{(0)} + \alpha \cdot \Delta \vec{U}_{\text{4}}^{(1)} = 1.01579 - j0.02635$$

$$\vec{U}_{\text{5ubrz}}^{(1)} = \vec{U}_{\text{5}}^{(0)} + \alpha \cdot \Delta \vec{U}_{\text{5}}^{(1)} = 1.02728 - j0.07374$$

• 2. iteracija

$$\begin{split} \vec{U}_{2}^{(2)} &= \frac{\mathit{KL}_{2}}{\vec{U}_{2\mathit{ubrz}}^{*(1)}} - \mathit{YL}_{2,1} \cdot \vec{U}_{1} - \mathit{YL}_{2,3} \cdot \vec{U}_{3\mathit{ubrz}}^{(1)} - \mathit{YL}_{2,4} \cdot \vec{U}_{4\mathit{ubrz}}^{(1)} - \mathit{YL}_{2,5} \cdot \vec{U}_{5\mathit{ubrz}}^{(1)} \\ \Delta \vec{U}_{2}^{(2)} &= \vec{U}_{2}^{(2)} - \vec{U}_{2\mathit{ubrzani}}^{(1)} \\ \vec{U}_{2\mathit{ubrz}}^{(2)} &= \vec{U}_{2\mathit{ubrzani}}^{(1)} + \alpha \cdot \Delta \vec{U}_{2}^{(2)} \end{split}$$

$$\vec{U}_{3}^{(2)} = \frac{KL_{3}}{\vec{U}_{3ubrz}^{*(1)}} - YL_{3,1} \cdot \vec{U}_{1} - YL_{3,2} \cdot \vec{U}_{2ubrz}^{(2)} - YL_{3,4} \cdot \vec{U}_{4ubrz}^{(1)}$$

•

• Rješenje:

Iteracija	Čv. 2	Čv. 3	Čv. 4	Čv. 5	
1.	1.05253+j	1.00966-	1.01579-	1.02727-	
	0.00406	j0.01289	j0.02635	j0.07374	
2.	1.04528-	1.02154-	1.02451-	1.01025-	
	j0.03015	j0.04227	j0.06353	j0.08032	
:	÷	÷	÷	÷	
10.	1.04623-	1.02036-	1.0192-	1.01211-	
	j0.05126	j0.08917	j0.09504	j0.10904	

Tokovi snaga:

$$P_{12} + jQ_{12} = \vec{U}_1 \cdot (\vec{U}_1^* - \vec{U}_2^*) \cdot y_{1-2}^* + \vec{U}_1 \cdot \vec{U}_1^* \cdot \frac{y_{1-2}'^*}{2}$$
$$= 88.8 - j8.6 \, MVA$$

$$P_{21} + jQ_{21} = \vec{U}_2 \cdot (\vec{U}_2^* - \vec{U}_1^*) \cdot y_{1-2}^* + \vec{U}_2 \cdot \vec{U}_2^* \cdot \frac{y_{1-2}'}{2}$$
$$= -87.4 + j6.2 \, MVA$$

$$\Delta P_{1-2} + j\Delta Q_{1-2} = P_{12} + P_{21} + j(Q_{12} + Q_{21})$$
$$= 1.4 MW - j2.4 Mvar$$

• Tokovi snaga:

Vod	P [MW]	Q [Mvar]	ΔP [MW]	ΔQ [Mvar]
1-2	88.8	-8.6	1.4	-2.4
2-1	-87.4	6.2		
1-3	40.7	1.1	1.2	-1.9
3-1	-39.5	-3		
2-3	24.7	3.5	0.4	-3.3
3-2	-24.3	-6.8		
2-4	27.9	3.0	0.4	-2.9
4-2	-27.5	-5.9		
2-5	54.8	7.4	1.1	0.2
5-2	-53.7	-7.2		
3-4	18.9	-5.1	≈ 0	-1.9
4-3	-18.9	3.2		
4-5	6.3	-2.3	≈ 0	-5.1
5-4	-6.3	-2.8		

METODA NEWTON-RAPHSON

$$f'(x_{0}) = \frac{\Delta y}{\Delta x}$$

$$f'(x_{0}) = \frac{f(x_{0}) - f(x_{1})}{x_{0} - x_{1}}$$

$$y_{0}$$

$$f'(x_{0}) = \frac{y_{0} - y_{zadano}}{x_{0} - x_{1}}$$

$$y_{zadano}$$

$$x_{1} = x_{0} - \frac{y_{0} - y_{zadano}}{f'(x_{0})}$$

Približavanje rješenju (x) od nekog početnog,
 pretpostavljenog rješenja (x0) pomoću tangenti

METODA NEWTON-RAPHSON

- Mreža od n čvorišta jedno čvorište referentno (čvorište n)
- Poznate snage u čvorištima:
 - Generatorska i čvorišta tereta

$$P_{i} = U_{i} \cdot \sum_{j=1}^{n} U_{j} \cdot Y_{ij} \cdot cos(\delta_{i} - \delta_{j} - \Theta_{ij}) \qquad i = 1, 2, ..., n-1$$

Čvorišta tereta

$$Q_{i} = U_{i} \cdot \sum_{j=1}^{n} U_{j} \cdot Y_{ij} \cdot sin(\delta_{i} - \delta_{j} - \Theta_{ij}) \qquad i = 1, 2, ..., n - g - 1$$

– Potrebno izračunati:
$$U_i$$
 $i=1,2,...,n-g-1$
$$\delta_i$$
 $i=1,2,...,n-1$

POSTUPAK PRORAČUNA

1. korak

- Učitavanje podataka o mreži (konfiguracija, admitancije grana)
- Učitavanje podataka o injekcijama snage u čvorištima

2. korak

– Početne vrijednosti napona čvorišta (pretpostavljeno rješenje) $\vec{\mathbf{U}}_{i}^{(0)} = 1 + \mathbf{j}0 \; \mathbf{p.u.} = 1 \angle 0^{\circ} \; \mathbf{p.u.}$

3. korak

Formiranje matrice Y

4. korak

Računanje snaga u čvorištima:

$$P_{ira\check{c}}^{(0)} = \sum_{j=1}^{n} U_{i}^{(0)} \cdot U_{j}^{(0)} \cdot Y_{ij} \cdot cos(\delta_{i}^{(0)} - \delta_{j}^{(0)} - \Theta_{ij}) \qquad i = 1, 2, ..., n-1$$

$$Q_{ira\check{c}}^{(0)} = \sum_{i=1}^{n} U_{i}^{(0)} \cdot U_{j}^{(0)} \cdot Y_{ij} \cdot sin(\delta_{i}^{(0)} - \delta_{j}^{(0)} - \Theta_{ij}) \qquad i = 1, 2, ..., n-1-g$$

5. korak

$$\Delta P_i^{(0)} = P_{izad} - P_{irač}^{(0)} \qquad i = 1, 2, ..., n-1$$

$$\Delta Q_i^{(0)} = Q_{izad} - Q_{irač}^{(0)} \qquad i = 1, 2, ..., n-1-g$$

6. korak

Provjera kriterija točnosti:

$$\Delta P_i^{(0)} < \varepsilon$$

$$\Delta Q_i^{(0)} < \varepsilon$$

- Uvjet ispunjen KRAJ PRORAČUNA
- Uvjet nije ispunjen računanje Jakobijeve matrice J

7. korak

– Računanje $\varDelta \delta_i^{(0)}, \varDelta U_i^{(0)}$ pomoću $\varDelta P_i^{(0)}, \varDelta Q_i^{(0)}$ i Jakobijeve matrice

Jakobijeva matrica:

$$\begin{vmatrix} \Delta P \\ \Delta Q \end{vmatrix} = |J| \cdot \begin{vmatrix} \Delta \delta \\ \Delta U \end{vmatrix} = \begin{vmatrix} J_1 & J_2 \\ J_3 & J_4 \end{vmatrix} \cdot \begin{vmatrix} \Delta \delta \\ \Delta U \end{vmatrix} = \begin{vmatrix} \left(\frac{\partial P}{\partial \delta} \right) & \left(\frac{\partial P}{\partial U} \right) \\ \left(\frac{\partial Q}{\partial \delta} \right) & \left(\frac{\partial Q}{\partial U} \right) \end{vmatrix} \cdot \begin{vmatrix} \Delta \delta \\ \Delta U \end{vmatrix}$$

$$\begin{vmatrix} \Delta P_{1} \\ \vdots \\ \Delta P_{n-1} \\ \vdots \\ \Delta Q_{1} \\ \vdots \\ \Delta Q_{n-1-g} \end{vmatrix} = \begin{vmatrix} \frac{\partial P_{1}}{\partial \delta_{1}} & \cdots & \frac{\partial P_{1}}{\partial \delta_{n-1}} & \frac{\partial P_{1}}{\partial U_{1}} & \cdots & \frac{\partial P_{1}}{\partial U_{n-1-g}} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial P_{n-1}}{\partial \delta_{1}} & \cdots & \frac{\partial P_{n-1}}{\partial \delta_{n-1}} & \frac{\partial P_{n-1}}{\partial U_{1}} & \cdots & \frac{\partial P_{n-1}}{\partial U_{n-1-g}} \\ \frac{\partial Q_{1}}{\partial \delta_{1}} & \cdots & \frac{\partial Q_{1}}{\partial \delta_{n-1}} & \frac{\partial Q_{1}}{\partial U_{1}} & \cdots & \frac{\partial Q_{1}}{\partial U_{n-1-g}} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial Q_{n-1-g}}{\partial \delta_{1}} & \cdots & \frac{\partial Q_{n-1-g}}{\partial \delta_{n-1}} & \frac{\partial Q_{n-1-g}}{\partial U_{1}} & \cdots & \frac{\partial Q_{n-1-g}}{\partial U_{n-1-g}} \\ \frac{\partial Q_{n-1-g}}{\partial \delta_{1}} & \cdots & \frac{\partial Q_{n-1-g}}{\partial \delta_{n-1}} & \frac{\partial Q_{n-1-g}}{\partial U_{1}} & \cdots & \frac{\partial Q_{n-1-g}}{\partial U_{n-1-g}} \\ \frac{\partial Q_{n-1-g}}{\partial U_{n-1-g}} & \cdots & \frac{\partial Q_{n-1-g}}{\partial U_{1}} & \cdots & \frac{\partial Q_{n-1-g}}{\partial U_{n-1-g}} \\ \frac{\partial Q_{n-1-g}}{\partial U_{1}} & \cdots & \frac{\partial Q_{n-1-g}}{\partial U_{1}} & \cdots & \frac{\partial Q_{n-1-g}}{\partial U_{n-1-g}} \\ \frac{\partial Q_{n-1-g}}{\partial U_{1}} & \cdots & \frac{\partial Q_{n-1-g}}{\partial U_{1}} & \cdots & \frac{\partial Q_{n-1-g}}{\partial U_{n-1-g}} \\ \frac{\partial Q_{n-1-g}}{\partial U_{1}} & \cdots & \frac{\partial Q_{n-1-g}}{\partial U_{1}} & \cdots & \frac{\partial Q_{n-1-g}}{\partial U_{1}} \\ \frac{\partial Q_{n-1-g}}{\partial U_{1}} & \cdots & \frac{\partial Q_{n-1-g}}{\partial U_{1}} & \cdots & \frac{\partial Q_{n-1-g}}{\partial U_{1}} \\ \frac{\partial Q_{n-1-g}}{\partial U_{1}} & \cdots & \frac{\partial Q_{n-1-g}}{\partial U_{1}} & \cdots & \frac{\partial Q_{n-1-g}}{\partial U_{1}} \\ \frac{\partial Q_{n-1-g}}{\partial U_{1}} & \cdots & \frac{\partial Q_{n-1-g}}{\partial U_{1}} & \cdots & \frac{\partial Q_{n-1-g}}{\partial U_{1}} \\ \frac{\partial Q_{n-1-g}}{\partial U_{1}} & \cdots & \frac{\partial Q_{n-1-g}}{\partial U_{1}} & \cdots & \frac{\partial Q_{n-1-g}}{\partial U_{1}} \\ \frac{\partial Q_{n-1-g}}{\partial U_{1}} & \cdots & \frac{\partial Q_{n-1-g}}{\partial U_{1}} & \cdots & \frac{\partial Q_{n-1-g}}{\partial U_{1}} \\ \frac{\partial Q_{n-1-g}}{\partial U_{1}} & \cdots & \frac{\partial Q_{n-1-g}}{\partial U_{1}} & \cdots & \frac{\partial Q_{n-1-g}}{\partial U_{1}} \\ \frac{\partial Q_{n-1-g}}{\partial U_{1}} & \cdots & \frac{\partial Q_{n-1-g}}{\partial U_{1}} & \cdots & \frac{\partial Q_{n-1-g}}{\partial U_{1}} \\ \frac{\partial Q_{n-1-g}}{\partial U_{1}} & \cdots & \frac{\partial Q_{n-1-g}}{\partial U_{1}} & \cdots & \frac{\partial Q_{n-1-g}}{\partial U_{1}} \\ \frac{\partial Q_{n-1-g}}{\partial U_{1}} & \cdots & \frac{\partial Q_{n-1-g}}{\partial U_{1}} & \cdots & \frac{\partial Q_{n-1-g}}{\partial U_{1}} \\ \frac{\partial Q_{n-1-g}}{\partial U_{1}} & \cdots & \frac{\partial Q_{n-1-g}}{\partial U_{1}} & \cdots & \frac{\partial Q_{n-1-g}}{\partial U_{1}} \\ \frac{\partial Q_{n-1-g}}{\partial U_{1}} & \cdots & \frac{\partial Q_{n-1-g}}{\partial U_{1}} & \cdots & \frac{\partial Q_{n-1-g}}{\partial U_{1}} \\ \frac{\partial Q_{n-1-g}}{\partial U_{1}} & \cdots & \frac{\partial Q_{n-1-g}}{\partial U_{1}} & \cdots & \frac{\partial Q_{n-1-g}}{\partial$$

- J Jakobijeva matrica
- J1, J2, J3, J4 Jakobijeve podmatrice

$$\begin{split} J_{1} &= \frac{\partial P}{\partial \delta} \\ &\frac{\partial P_{i}}{\partial \delta_{i}} = -U_{i} \cdot \sum_{\substack{j=1 \\ j \neq i}}^{n} U_{j} \cdot Y_{ij} \cdot sin(\delta_{i} - \delta_{j} - \Theta_{ij}) \\ &\frac{\partial P_{i}}{\partial \delta_{i}} = U_{i} \cdot U_{j} \cdot Y_{ij} \cdot sin(\delta_{i} - \delta_{j} - \Theta_{ij}) \end{split}$$

$$J_2 = \frac{\partial P}{\partial U}$$

$$\frac{\partial P_i}{\partial U_i} = 2 \cdot U_i \cdot Y_{ii} \cdot \cos(-\Theta_{ii}) + \sum_{\substack{j=1 \ j \neq i}}^n U_j \cdot Y_{ij} \cdot \cos(\delta_i - \delta_j - \Theta_{ij})$$

$$\frac{\partial P_i}{\partial U_i} = U_i \cdot Y_{ij} \cdot \cos(\delta_i - \delta_j - \Theta_{ij})$$

$$J_3 = \frac{\partial Q}{\partial \delta}$$

$$\frac{\partial Q_i}{\partial \delta_i} = U_i \cdot \sum_{\substack{j=1 \\ j \neq i}}^n U_j \cdot Y_{ij} \cdot \cos(\delta_i - \delta_j - \Theta_{ij})$$

$$\frac{\partial Q_i}{\partial \delta_i} = -U_i \cdot U_j \cdot Y_{ij} \cdot \cos(\delta_i - \delta_j - \Theta_{ij})$$

$$\begin{split} J_{4} &= \frac{\partial Q}{\partial U} \\ \frac{\partial Q_{i}}{\partial U_{i}} &= 2 \cdot U_{i} \cdot Y_{ii} \cdot sin(-\Theta_{ii}) + \sum_{i=1}^{n} U_{j} \cdot Y_{ij} \cdot sin(\delta_{i} - \delta_{j} - \Theta_{ij}) \end{split}$$

$$\frac{\partial Q_{i}}{\partial U_{i}} = U_{i} \cdot Y_{ij} \cdot sin(\delta_{i} - \delta_{j} - \Theta_{ij})$$

$$\begin{vmatrix} \Delta P \\ \Delta Q \end{vmatrix} = \begin{vmatrix} J_1 & J_2 \\ J_3 & J_4 \end{vmatrix} \cdot \begin{vmatrix} \Delta \delta \\ \Delta U \end{vmatrix}$$

$$\begin{vmatrix} \Delta \delta \\ \Delta U \end{vmatrix} = \begin{vmatrix} J_1 & J_2 \\ J_3 & J_4 \end{vmatrix}^{-1} \cdot \begin{vmatrix} \Delta P \\ \Delta Q \end{vmatrix}$$

• Uz zanemarenje J2 i J3 vrijedi:

$$\begin{vmatrix} \Delta P \\ \Delta Q \end{vmatrix} = \begin{vmatrix} J_1 & 0 \\ 0 & J_4 \end{vmatrix} \cdot \begin{vmatrix} \Delta \delta \\ \Delta U \end{vmatrix}$$
$$|\Delta \delta| = |J_1|^{-1} \cdot |\Delta P|$$
$$|\Delta U| = |J_4|^{-1} \cdot |\Delta Q|$$

Općenito za k-tu iteraciju vrijedi:

$$\begin{split} P_{ira\check{c}}^{(k)} &= \sum_{j=1}^{n} U_{i}^{(k)} \cdot U_{j}^{(k)} \cdot Y_{ij} \cdot cos\left(\delta_{i}^{(k)} - \delta_{j}^{(k)} - \Theta_{ij}\right) \quad i = 1, 2, ..., n-1 \\ Q_{ira\check{c}}^{(k)} &= \sum_{j=1}^{n} U_{i}^{(k)} \cdot U_{j}^{(k)} \cdot Y_{ij} \cdot sin\left(\delta_{i}^{(k)} - \delta_{j}^{(k)} - \Theta_{ij}\right) \quad i = 1, 2, ..., n-1 - g \\ \Delta P_{i}^{(k)} &= P_{izad} - P_{ira\check{c}}^{(k)} \quad i = 1, 2, ..., n-1 \\ \Delta Q_{i}^{(k)} &= Q_{izad} - Q_{ira\check{c}}^{(k)} \quad i = 1, 2, ..., n-1 - g \end{split}$$

Jakobijeva podmatrica J1

$$\left(\frac{\partial P_i}{\partial \delta_i}\right)^{(k)} = -U_i^{(k)} \cdot \sum_{\substack{j=1\\j\neq i}}^n U_j^{(k)} \cdot Y_{ij} \cdot \sin\left(\delta_i^{(k)} - \delta_j^{(k)} - \Theta_{ij}\right) \quad i = 1, 2, ..., n-1$$

$$\left(\frac{\partial P_{i}}{\partial S_{j}}\right)^{(k)} = U_{i}^{(k)} \cdot U_{j}^{(k)} \cdot Y_{ij} \cdot \sin(S_{i}^{(k)} - S_{j}^{(k)} - \Theta_{ij}) \qquad i = 1, 2, ..., n-1; \ j = 1, 2, ..., n-1$$

Jakobijeva podmatrica J4

$$\left(\frac{\partial Q_{i}}{\partial U_{i}}\right)^{(k)} = 2 \cdot U_{i}^{(k)} \cdot Y_{ii} \cdot \sin\left(-\Theta_{ii}\right) + \sum_{\substack{j=1 \ j \neq i}}^{n} U_{j}^{(k)} \cdot Y_{ij} \cdot \sin\left(\delta_{i}^{(k)} - \delta_{j}^{(k)} - \Theta_{ij}\right) \quad i = 1, 2, \dots, n-1-g$$

$$\left(\frac{\partial Q_{i}}{\partial U_{i}}\right)^{(k)} = U_{i}^{(k)} \cdot Y_{ij} \cdot \sin\left(\delta_{i}^{(k)} - \delta_{j}^{(k)} - \Theta_{ij}\right) \quad i = 1, 2, \dots, n-1-g \quad ; j = 1, 2, \dots, n-1-g$$

$$\begin{aligned} \left| \Delta \delta \right|^{(k)} &= \left| J_1^{(k)} \right|^{-1} \cdot \left| \Delta P \right|^{(k)} \\ \left| \Delta U \right|^{(k)} &= \left| J_4^{(k)} \right|^{-1} \cdot \left| \Delta Q \right|^{(k)} \\ U_i^{(k+1)} &= U_i^{(k)} + \Delta U_i^{(k)} \end{aligned}$$

 $\delta_{i}^{(k+1)} = \delta_{i}^{(k)} + \Delta \delta_{i}^{(k)}$

8. korak

$$U_{i}^{(1)} = U_{i}^{(0)} + \Delta U_{i}^{(0)}$$
$$S_{i}^{(1)} = S_{i}^{(0)} + \Delta S_{i}^{(0)}$$

9. korak

Obavljanje iteracijskog postupka ponavljanjem koraka 4, 5, 6, 7 i
 8 (i korištenjem rezultata iz prethodne iteracije) dok nije ispunjen postavljeni kriterij točnosti

• PRIMJER (prethodni):

• Zadano:

i	j	$\vec{Z}_{i-j}(p.u.)$	$y'_{i-j}/2$ (p.u.)	$\vec{\mathcal{Y}}_{i-j}$
1	2	0.02+j0.06	j0.03	5-j15
1	3	0.08+j0.24	j0.025	1.25-j3.75
2	3	0.06+j0.18	j0.02	1.66-j5
2	4	0.06+j0.18	j0.02	1.66-j5
2	5	0.04+j0.12	j0.015	2.5-j4.5
3	4	0.01+j0.03	j0.01	10-j30
4	5	0.08+j0.24	j0.025	1.25-j3.75

• Čvorište 1 je referentno

• Zadano:

Čv.	Generator			Te	$ec{Y}_{i}^{\prime}$		
	U	MW	Mvar	MW	Mvar	i	
1.	1.06+j0	/	/	/	/	j0.055	
2.		40	30	20	10	j0.085	
3.				45	15	j0.055	
4.				40	5	j0.055	
5.				60	10	j0.04	

• Bazna snaga: $S_B = 100 \, MVA$

• Tražena točnost: $\varepsilon = 0.001$

• Matrica Y:

	6.25-j18.695	-5+j15	-1.25+j3.75	0	0	
_	-5+j15	10.833-j32.415	-1.66+j5	-1.66+j5	-2.5+j7.5	
Y =	-1.25+j3.75	-1.66+j5	12.916-j38.695	-10+j30	0	
	0	-1.66+j5	-10+j30	12.916-j38.695	-1.25+j3.75	
	0	-2.5+j7.5	0	-1.25+j3.75	3.75-j11.21	
					-	
	19.712 ∠-71.5145°	15.81 ∠ 108.435	3.95 ∠ 108.435	0	0	
	15.81 ∠ 108.435	34.18 ∠ -71.52	5.27 ∠ 108.435	5.27 ∠ 108.435	7.9 ∠ 108.435	
$\vec{Y} =$	3.95 ∠ 108.435	5.27 ∠ 108.435	40.79 ∠ -71.54	31.62 ∠ 108.435	0	
	0	5.27 ∠ 108.435	31.62 ∠ 108.435	40.79 ∠ -71.54	3.95 ∠ 108.435	
	0	7.9 ∠ 108.435	0	3.95 ∠ 108.435	11.82 ∠ -71.52	

• Nulta iteracija: $\vec{U}_i^{(0)} = 1 + j0$ i = 2, 3, 4, 5

$$P_{2izr}^{(0)} = -0.3$$
 $P_{4izr}^{(0)} = 0$ $Q_{2izr}^{(0)} = -0.985$ $Q_{4izr}^{(0)} = -0.055$

$$P_{3izr}^{(0)} = -0.075$$
 $P_{5izr}^{(0)} = 0$ $Q_{5izr}^{(0)} = -0.04$

$$\Delta P_{2}^{(0)} = P_{2zad} - P_{2izr}^{(0)} = 0.5 \qquad \Delta Q_{2}^{(0)} = 1.185$$

$$\Delta P_{3}^{(0)} = -0.375 \qquad \Delta Q_{3}^{(0)} = 0.13$$

$$\Delta P_{4}^{(0)} = -0.4 \qquad \Delta Q_{4}^{(0)} = 0.005$$

$$\Delta P_{5}^{(0)} = -0.6 \qquad \Delta Q_{5}^{(0)} = -0.06$$

$$\begin{vmatrix} \Delta P_{2}^{(0)} \\ \vdots \\ \Delta P_{5}^{(0)} \\ \Delta Q_{2}^{(0)} \end{vmatrix} = \begin{vmatrix} J1 & J2 \\ J3 & J4 \end{vmatrix} \cdot \begin{vmatrix} \Delta \delta_{5}^{(0)} \\ \Delta \delta_{5}^{(0)} \\ \Delta U_{2}^{(0)} \\ \vdots \\ \Delta U_{5}^{(0)} \end{vmatrix}$$

	33.4	-5	-5	-7.5	10.533	-1.66	-1.66	-2.5
	-5	38.975	-30	0	-1.66	12.84	-10	0
	-5	-30	38.75	-3.75	-1.66	-10	12.916	-1.25
_	-7.5	0	-3.75 1.66	11.25	-2.5	0	-1.25	3.75
	-11.338	1.66	1.66	2.5	31.43	-5	-5	-7.5
	1.66	-12.991	10	0	-5	38.415	-30	0
	1.66	10	-12.916	1.25	-5	-30	38.64	-3.75
	2.5	0	1.25	-3.75	-7.5	0	-3.75	11.17

Napomena: najčešće se zbog lakšeg proračuna zanemaruju podmatrice J2 i J3, te se proračun obavlja samo pomoću podmatrica J1 i J4

$$\Delta \delta_2^{(0)} = -0.05068$$
 $\Delta U_2^{(0)} = 0.05494$ $\Delta \delta_3^{(0)} = -0.0911$ $\Delta U_3^{(0)} = 0.03134$ $\Delta \delta_4^{(0)} = -0.9733$ $\Delta U_4^{(0)} = 0.03091$ $\Delta \delta_5^{(0)} = -0.11268$ $\Delta U_5^{(0)} = 0.026$

$$\delta_2^{(1)} = \delta_2^{(0)} + \Delta \delta_2^{(0)} = -0.05068 \ rad$$

$$\delta_3^{(1)} = -0.0911 \ rad$$

$$\delta_4^{(1)} = -0.09733 \ rad$$

$$\delta_5^{(1)} = -0.11288 \ rad$$

$$U_2^{(1)} = U_2^{(0)} + \Delta U_2^{(0)} = 1.05449$$
 $U_3^{(1)} = 1.03134$
 $U_4^{(1)} = 1.03091$
 $U_5^{(1)} = 1.026$

$$P_{2izr}^{(1)} = U_2^{(1)} \sum_{j=1}^{5} U_j^{(1)} \cdot Y_{ij} \cdot cos(\delta_i^{(1)} - \delta_j^{(1)} - \Theta_{ij})$$

•

$$P_{5izr}^{(1)} = U_5^{(1)} \sum_{j=1}^5 U_j^{(1)} \cdot Y_{ij} \cdot cos(\delta_i^{(1)} - \delta_j^{(1)} - \Theta_{ij})$$

$$Q_{2izr}^{(1)} = U_2^{(1)} \sum_{i=1}^{5} U_j^{(1)} \cdot Y_{ij} \cdot sin(\delta_i^{(1)} - \delta_j^{(1)} - \Theta_{ij})$$

•

$$Q_{5izr}^{(1)} = U_5^{(1)} \sum_{i=1}^5 U_j^{(1)} \cdot Y_{ij} \cdot sin(\delta_i^{(1)} - \delta_j^{(1)} - \Theta_{ij})$$

$$\Delta P_2^{(1)} = P_{2zad} - P_{2izr}^{(1)}$$
 $\Delta Q_2^{(1)} = Q_{2zad} - Q_{2izr}^{(1)}$
 \vdots

$$\Delta P_5^{(1)} = P_{5zad} - P_{5izr}^{(1)} \qquad \Delta Q_5^{(1)} = Q_{5zad} - Q_{5izr}^{(1)}$$

•