1 Exercices de niveau 1

MPI/MPI*

902.1

cc-INP

On note $E = \mathcal{M}_{n1}(\mathbb{R})$. Pour $X, Y \in E$, on définit $\langle X, Y \rangle = X^{\top}Y$.

- (a) Montrer que $\langle \cdot, \cdot \rangle$ définit un produit scalaire.
- (b) Soit $A \in \mathcal{M}_n(\mathbb{R})$. Montrer que : $\operatorname{Im}(A)^{\perp} = \operatorname{Ker}(A^{\top})$.
- (c) Soit $Y \in E$. On note $f: E \to \mathbb{R}$ $X \mapsto \|AX - Y\|$ Montrer que $f(X) = \inf_{Z \in E} (f(Z))$ si et seulement si $A^{\top}(AX - Y) = 0$.

902.2

cc-INP

Pour $f, g \in E = \mathcal{C}^2([0,1], \mathbb{R})$, on note $\phi(f,g) = \int_0^1 fg + f'g'$.

- (a) Montrer que ϕ est un produit scalaire sur E.
- (b) On note $F = \{f \in E, \ f(1) = f(0) = 0\}$ et $G = \{f \in E, \ f'' = f\}$. Montrer que $F \bigoplus G = E$.
- (c) Pour $a, b \in [0, 1]$, on pose $E_{a,b} = \{ f \in E, f(0) = a \text{ et } f(1) = b \}$.
 - c1. Trouver un élément f_0 dans $E_{a,b}$, puis montrer que $E_{a,b} = \{f_0 + f, f \in F\}$.
 - c2. Trouver le projeté orthogonal de f_0 sur G.
- (d) et une autre question non traitée, Peut-être : En déduire $\displaystyle \inf_{h \in E_{a,b}} \int_0^1 h^2 + h'^2.$

Examinateur qui n'intervient que rarement et pose des questions sur le cours.

902.3

Mines-Télécom

Soit f un endomorphisme bijectif dans E euclidien, tel que :

$$\forall x, y \in E, \langle f(x), y \rangle = -\langle x, f(y) \rangle$$

- (a) Montrer que f(x) et x sont orthogonaux.
- (b) Montrer que $s = f \circ f$ est autoadjoint.
- (c) Soit a une valeur propre de s et V_a son espace propre associé. On fixe $x \in V_a \setminus \{0\}$.
 - c1. Montrer que : $\langle s(x), x \rangle = a||x||^2 = -||f(x)||^2$ et en déduire que a < 0.
 - c2. Montrer que F = Vect(x, f(x)) et F^{\perp} sont stables par f.
- (d) et dautres questions...

Examinateur assez maniaque qui n'hésite pas à couper pendant les explications, il veut aller vite. Lorsqu'on est bloqué, il nous fait passer à la question suivante.

902.4

cc-INP

 \mathbb{R}^3 est muni de son produit scalaire canonique $\langle \, | \, \rangle$ et de sa norme euclidienne associée $\| \, . \, \|$. On appelle endomorphisme stabilisant un endomorphisme f de \mathbb{R}^3 tel que $\forall x \in \mathbb{R}^3$, $\langle f(x) | x \rangle = \| x \|^2$.

(a) Soit $h \in \mathcal{L}(\mathbb{R}^3)$ dont la matrice dans la base canonique est $M = \begin{pmatrix} 1 & 1 & -1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix}$.

Montrer que h est stabilisant.

- (b) b1. Soit f un endomorphisme stabilisant différent de $\mathrm{Id}_{\mathbb{R}^3}$. On pose $g=f-\mathrm{Id}_{\mathbb{R}^3}$. Montrer que $\forall x\in\mathbb{R}^3,\ \langle g(x)|x\rangle=0$.
 - b2. Montrer que 0 est la seule valeur propre possible de g. En étudiant le degré de χ_q , montrer que 0 est valeur propre de g.
- (c) c1. Montrer que $\forall (x,y) \in (\mathbb{R}^3)^2, \ \langle x|g(y)\rangle + \langle g(x)|y\rangle = 0.$
 - c2. Monrer que Im(g) et Ker(g) sont orthogonaux.
- (d) Soit e_1 un vecteur unitaire de \mathbb{R}^3 associé à la valeur propre 0 pour g. Soit e_2 un vecteur unitaire tel que $e_2 \in \text{Im}(g)$.

Montrer que $g(e_2) \neq 0$.

On pose $e_3 = \frac{g(e_2)}{\|g(e_2)\|}$.

Montrer que $\mathcal{C} = (e_1, e_2, e_3)$ est une base de \mathbb{R}^3 .

(e) Écrire la matrice de f dans C.

2 Exercices de niveau 2

902.5

Mines-Ponts

On note $E = \mathcal{M}_{n1}(\mathbb{R})$ muni de son produit scalaire canonique $\langle \cdot, \cdot \rangle$. On considère $A \in \mathcal{S}_n(\mathbb{R})$ et $\lambda_1 \leqslant \cdots \leqslant \lambda_n$ ses valeurs propres.

- (a) Montrer que, pour tout $X \in E$, $\langle AX, X \rangle \leq \lambda_n ||X||^2$.
- (b) Autres questions du style :

Montrer que :

$$\lambda_k = \min_{F \in V_k} \left(\max_{\substack{X \in F \\ \|X\| = 1}} \langle AX, X \rangle \right)$$

où V_k est l'ensemble des sous-espaces vectoriels de E de dimension k.

902.6

Centrale

Soit
$$I_k = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} t^k e^{-\frac{t^2}{2}} dt$$
.

Soit
$$\varphi: (P,Q) \in \mathbb{R}_n[X]^2 \mapsto \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} P(t)Q(t) e^{-\frac{t^2}{2}} dt$$
.

- (a) Montrer que φ est un produit scalaire sur $\mathbb{R}_n[X]$.
- (b) On admet que $I_0 = I_2 = 1$ et $I_1 = 0$ et n = 2 dans cette question. Déterminer une b.o.n. (P_0, P_1, P_2) de $\mathbb{R}_2[X]$ pour φ .
- (c) Montrer qu'il existe une b.o.n. (P_0, \ldots, P_n) de $\mathbb{R}_n[X]$ pour φ , échelonnée en degrés.

902.7

Centrale

Soit $A, B \in \mathcal{M}_n(\mathbb{R})$. On veut montrer :

$$A^{\top}A = B^{\top}B \iff \exists U \in O_n(\mathbb{R}), \ B = UA$$

2/3 http://mpi.lamartin.fr 2024-2025

- (a) a1. On suppose B inversible. Montrer le résultat.
 - a2. Application : résoudre l'équation $X^{\top}X = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$ d'inconnue $X \in \mathcal{M}_2(\mathbb{R})$.
- (b) On suppose $A^{\top}A = B^{\top}B$.
 - b1. Montrer que Ker A = Ker B puis que rg(A) = rg(B). On note r ce nombre.
 - b2. Montrer que les valeurs propres de $A^{\top}A = B^{\top}B$ sont positives. On les note :

$$\lambda_1 \geqslant \cdots \geqslant \lambda_r > \lambda_{r+1} = \cdots = \lambda_n = 0$$

b3. Montrer qu'il existe une base orthonormée $(\epsilon_1, \ldots, \epsilon_n)$ de \mathbb{R}^n telle que :

$$\forall i \in \{1, \dots, n\}, \ A^{\top} A \epsilon_i = \lambda_i \epsilon_i$$

- b4. On pose, pour $i \in \{1, ..., r\}$, $e_i = \frac{1}{\sqrt{\lambda_i}} A \epsilon_i$. Montrer que $(e_1, ..., e_r)$ est une base orthonormée de $\operatorname{Im}(A)$.
- b5. Montrer qu'il existe $U \in O_n(\mathbb{R})$ telle que B = UA.

902.8

Mines-Ponts

Soit $A \in \mathcal{S}_n^{++}(\mathbb{R})$ et $B \in \mathcal{S}_n(\mathbb{R})$. On se propose de montrer qu'il existe $P \in GL_n(\mathbb{R})$ et D diagonale réelle telles que :

$$A = P^{\top}P \text{ et } B = P^{\top}DP$$

- (a) Montrer qu'il existe $R \in GL_n(\mathbb{R})$ telle que $A = R^{\top}R$.
- (b) Conclure qu'il existe P et D solutions du problème posé.

3 Exercices de niveau 3

902.9

X

Soit $S \in \mathcal{M}_n(\mathbb{R})$ une matrice symétrique de valeurs propres : $\lambda_1 \leqslant \cdots \leqslant \lambda_n$. On pose : $E = \{(X,Y) \in \mathbb{R}^n \times \mathbb{R}^n, \|X\| = \|Y\| = 1 \text{ et } \langle X,Y \rangle = 0\}$. Montrer que : $\lambda_n - \lambda_1 = 2 \sup_{(X,Y) \in E} |X^\top SY|$.

4 Exercices de la banque CC-INP

39, 63, 76 à 82, 92