Sustainability of 'live electronic' music in the Integra project

James Bullock¹ Henrik Frisk² Lamberto Coccioli¹

¹Music Technology Department at Birmingham Conservatoire Birmingham City University

²Composition Department at Malmö Academy of Music Lund University

Melecon 08

- "A European Composition and Performance Environment for Sharing Live Music Technologies"
- 3-year project led by Birmingham Conservatoire in the UK
- Attempts to address the problems of persistent storage, portability and standardised intercommunication between systems for electronic music.
- All data relating to a musical work should be stored.
- The data should be transferable to a variety of useful targets.

- "A European Composition and Performance Environment for Sharing Live Music Technologies"
- 3-year project led by Birmingham Conservatoire in the UK
- Attempts to address the problems of persistent storage, portability and standardised intercommunication between systems for electronic music.
- All data relating to a musical work should be stored.
- The data should be transferable to a variety of useful targets.

- "A European Composition and Performance Environment for Sharing Live Music Technologies"
- 3-year project led by Birmingham Conservatoire in the UK
- Attempts to address the problems of persistent storage, portability and standardised intercommunication between systems for electronic music.
- All data relating to a musical work should be stored.
- The data should be transferable to a variety of useful targets.

- "A European Composition and Performance Environment for Sharing Live Music Technologies"
- 3-year project led by Birmingham Conservatoire in the UK
- Attempts to address the problems of persistent storage, portability and standardised intercommunication between systems for electronic music.
- All data relating to a musical work should be stored.
- The data should be transferable to a variety of useful targets.

- "A European Composition and Performance Environment for Sharing Live Music Technologies"
- 3-year project led by Birmingham Conservatoire in the UK
- Attempts to address the problems of persistent storage, portability and standardised intercommunication between systems for electronic music.
- All data relating to a musical work should be stored.
- The data should be transferable to a variety of useful targets.

- A software library: libIntegra
- A database
- An XML file format: IXD (Integra eXtensible Data)

The Integra module

- A software library: libIntegra
- A database
- An XML file format: IXD (Integra eXtensible Data)

The Integra module

- A software library: libIntegra
- A database
- An XML file format: IXD (Integra eXtensible Data)

The Integra module

- A software library: libIntegra
- A database
- An XML file format: IXD (Integra eXtensible Data)

The Integra module

- Standardized DSP module construction, providing a generalized namespace:
 - Jamoma http://www.jamoma.org/
 - Jade http://www.electrotap.com/jade
- Emphasis on software independence:
 - Faust http://faust.grame.fr
 - NASPRO
 - http://sourceforge.net/projects/naspro/
- Music documentation and migration efforts:
 - PD Repertory Project
 - Mustica
 - CASPAR project http://www.casparpreserves.eu/

- Standardized DSP module construction, providing a generalized namespace:
 - Jamoma http://www.jamoma.org/
 - Jade http://www.electrotap.com/jade
- Emphasis on software independence:
 - Faust http://faust.grame.fr
 - NASPRO
 - http://sourceforge.net/projects/naspro/
- Music documentation and migration efforts:
 - PD Repertory Project
 - Mustica
 - CASPAR project http://www.casparpreserves.eu/

- Standardized DSP module construction, providing a generalized namespace:
 - Jamoma http://www.jamoma.org/
 - Jade http://www.electrotap.com/jade
- Emphasis on software independence:
 - Faust http://faust.grame.fr
 - NASPRO
 - http://sourceforge.net/projects/naspro/
- Music documentation and migration efforts:
 - PD Repertory Project
 - Mustica
 - CASPAR project http://www.casparpreserves.eu/

- Standardized DSP module construction, providing a generalized namespace:
 - Jamoma http://www.jamoma.org/
 - Jade http://www.electrotap.com/jade
- Emphasis on software independence:
 - Faust http://faust.grame.fr
 - NASPRO
 - http://sourceforge.net/projects/naspro/
- Music documentation and migration efforts:
 - PD Repertory Project
 - Mustica
 - CASPAR project http://www.casparpreserves.eu/

- Standardized DSP module construction, providing a generalized namespace:
 - Jamoma http://www.jamoma.org/
 - Jade http://www.electrotap.com/jade
- Emphasis on software independence:
 - Faust http://faust.grame.fr
 - NASPRO
 - http://sourceforge.net/projects/naspro/
- Music documentation and migration efforts:
 - PD Repertory Project
 - Mustica
 - CASPAR project http://www.casparpreserves.eu/

- Standardized DSP module construction, providing a generalized namespace:
 - Jamoma http://www.jamoma.org/
 - Jade http://www.electrotap.com/jade
- Emphasis on software independence:
 - Faust http://faust.grame.fr
 - NASPRO

http://sourceforge.net/projects/naspro/

- Music documentation and migration efforts:
 - PD Repertory Project
 - Mustica
 - CASPAR project http://www.casparpreserves.eu/

- Standardized DSP module construction, providing a generalized namespace:
 - Jamoma http://www.jamoma.org/
 - Jade http://www.electrotap.com/jade
- Emphasis on software independence:
 - Faust http://faust.grame.fr
 - NASPRO

http://sourceforge.net/projects/naspro/

- Music documentation and migration efforts:
 - PD Repertory Project
 - Mustica
 - CASPAR project http://www.casparpreserves.eu/

- Standardized DSP module construction, providing a generalized namespace:
 - Jamoma http://www.jamoma.org/
 - Jade http://www.electrotap.com/jade
- Emphasis on software independence:
 - Faust http://faust.grame.fr
 - NASPRO

http://sourceforge.net/projects/naspro/

- Music documentation and migration efforts:
 - PD Repertory Project
 - Mustica
 - CASPAR project http://www.casparpreserves.eu/

- Standardized DSP module construction, providing a generalized namespace:
 - Jamoma http://www.jamoma.org/
 - Jade http://www.electrotap.com/jade
- Emphasis on software independence:
 - Faust http://faust.grame.fr
 - NASPRO

```
http://sourceforge.net/projects/naspro/
```

- Music documentation and migration efforts:
 - PD Repertory Project
 - Mustica
 - CASPAR project http://www.casparpreserves.eu/

- Standardized DSP module construction, providing a generalized namespace:
 - Jamoma http://www.jamoma.org/
 - Jade http://www.electrotap.com/jade
- Emphasis on software independence:
 - Faust http://faust.grame.fr
 - NASPRO

```
http://sourceforge.net/projects/naspro/
```

- Music documentation and migration efforts:
 - PD Repertory Project
 - Mustica
 - CASPAR project http://www.casparpreserves.eu/

- An Integra module encapsulates a specific piece of message or signal processing functionality (e.g. a waveform generator or digital filter).
- A module
 - must have an interface definition
 - may have an implementation
 - may be associated with instance data.
- A module may inherit the interface from any other module.
- A module definition can be thought of as an abstract class.

- An Integra module encapsulates a specific piece of message or signal processing functionality (e.g. a waveform generator or digital filter).
- A module
 - must have an interface definition
 - may have an implementation
 - may be associated with instance data.
- A module may inherit the interface from any other module.
- A module definition can be thought of as an abstract class.

- An Integra module encapsulates a specific piece of message or signal processing functionality (e.g. a waveform generator or digital filter).
- A module
 - must have an interface definition
 - may have an implementation
 - may be associated with instance data.
- A module may inherit the interface from any other module.
- A module definition can be thought of as an abstract class.

- An Integra module encapsulates a specific piece of message or signal processing functionality (e.g. a waveform generator or digital filter).
- A module
 - must have an interface definition
 - may have an implementation
 - may be associated with instance data.
- A module may inherit the interface from any other module.
- A module definition can be thought of as an abstract class.

- An Integra module encapsulates a specific piece of message or signal processing functionality (e.g. a waveform generator or digital filter).
- A module
 - must have an interface definition
 - may have an implementation
 - may be associated with instance data.
- A module may inherit the interface from any other module.
- A module definition can be thought of as an abstract class.

- An Integra module encapsulates a specific piece of message or signal processing functionality (e.g. a waveform generator or digital filter).
- A module
 - must have an interface definition
 - may have an implementation
 - may be associated with instance data.
- A module may inherit the interface from any other module.
- A module definition can be thought of as an abstract class.

- An Integra module encapsulates a specific piece of message or signal processing functionality (e.g. a waveform generator or digital filter).
- A module
 - must have an interface definition
 - may have an implementation
 - may be associated with instance data.
- A module may inherit the interface from any other module.
- A module definition can be thought of as an abstract class.

- An Integra module encapsulates a specific piece of message or signal processing functionality (e.g. a waveform generator or digital filter).
- A module
 - must have an interface definition
 - may have an implementation
 - may be associated with instance data.
- A module may inherit the interface from any other module.
- A module definition can be thought of as an abstract class.

Field	Value
Name	Oscillator
Parent	Module
Attributes	freq, phase
Attribute Unit Codes	1, 2
Attribute Minima	0, 0
Attribute Maxima	inf, 6.2831853071795862
Attribute Defaults	440, 0

Field	Value
Name	Oscillator
Parent	Module
Attributes	freq, phase
Attribute Unit Codes	1, 2
Attribute Minima	0, 0
Attribute Maxima	inf, 6.2831853071795862
Attribute Defaults	440, 0

Field	Value
Name	Oscillator
Parent	Module
Attributes	freq, phase
Attribute Unit Codes	1, 2
Attribute Minima	0, 0
Attribute Maxima	inf, 6.2831853071795862
Attribute Defaults	440, 0

Field	Value
Name	Oscillator
Parent	Module
Attributes	freq, phase
Attribute Unit Codes	1, 2
Attribute Minima	0, 0
Attribute Maxima	inf, 6.2831853071795862
Attribute Defaults	440, 0

Field	Value
Name	Oscillator
Parent	Module
Attributes	freq, phase
Attribute Unit Codes	1, 2
Attribute Minima	0, 0
Attribute Maxima	inf, 6.2831853071795862
Attribute Defaults	440, 0

Field	Value
Name	Oscillator
Parent	Module
Attributes	freq, phase
Attribute Unit Codes	1, 2
Attribute Minima	0, 0
Attribute Maxima	inf, 6.2831853071795862
Attribute Defaults	440, 0

Field	Value
Name	Oscillator
Parent	Module
Attributes	freq, phase
Attribute Unit Codes	1, 2
Attribute Minima	0, 0
Attribute Maxima	inf, 6.2831853071795862
Attribute Defaults	440, 0

The module namespace

- The namespace is derived from the definition.
- As an OSC (Open Sound Control) address space:

OSC address	Purpose
/oscillator/freq <value></value>	Set the value of the 'freq' attribute
/oscillator/phase <value></value>	Set the value of the 'phase' attribute
/module/active <value></value>	Set whether or not the module is active

The module namespace

- The namespace is derived from the definition.
- As an OSC (Open Sound Control) address space:

OSC address	Purpose
/oscillator/freq <value></value>	Set the value of the
	'freq' attribute
/oscillator/phase <value></value>	Set the value of the
	'phase' attribute
/module/active <value></value>	Set whether or not the
	module is active

- The only software-specific data stored by Integra.
- Each supported target has its own implementation protocol, a bridge.
- Bridges have been developed for Pd and Max/MSP.
- Pd implementation of Sinus module:

- The only software-specific data stored by Integra.
- Each supported target has its own implementation protocol, a bridge.
- Bridges have been developed for Pd and Max/MSP.
- Pd implementation of Sinus module:

- The only software-specific data stored by Integra.
- Each supported target has its own implementation protocol, a bridge.
- Bridges have been developed for Pd and Max/MSP.
- Pd implementation of Sinus module:

- The only software-specific data stored by Integra.
- Each supported target has its own implementation protocol, a bridge.
- Bridges have been developed for Pd and Max/MSP.
- Pd implementation of Sinus module:

Module instance data

- The run-time state of each module is recorded by the library.
- May be written to XML on demand.
- The run-time state of an instance is stored in its instance table in the database.

Module instance data

- The run-time state of each module is recorded by the library.
- May be written to XML on demand.
- The run-time state of an instance is stored in its instance table in the database.

Module instance data

- The run-time state of each module is recorded by the library.
- May be written to XML on demand.
- The run-time state of an instance is stored in its instance table in the database.

- A module collection is one or more interconnected module instances.
- A Collection can
 - contain other collections
 - 'hide' some of its parameters
 - store the current state of each of its instantiated modules
 - be written to XML and stored along with its current state

- A module collection is one or more interconnected module instances.
- A Collection can
 - contain other collections
 - 'hide' some of its parameters
 - store the current state of each of its instantiated modules
 - be written to XML and stored along with its current state.

- A module collection is one or more interconnected module instances.
- A Collection can
 - · contain other collections
 - 'hide' some of its parameters
 - store the current state of each of its instantiated modules
 - be written to XML and stored along with its current state.

- A module collection is one or more interconnected module instances.
- A Collection can
 - contain other collections
 - 'hide' some of its parameters
 - store the current state of each of its instantiated modules
 - be written to XML and stored along with its current state.

- A module collection is one or more interconnected module instances.
- A Collection can
 - contain other collections
 - 'hide' some of its parameters
 - store the current state of each of its instantiated modules
 - be written to XML and stored along with its current state.

- A module collection is one or more interconnected module instances.
- A Collection can
 - contain other collections
 - 'hide' some of its parameters
 - store the current state of each of its instantiated modules
 - be written to XML and stored along with its current state.

- Modules are connected using ports.
- A port is an address identified by either
 - a symbolic name ('freq'
 - a numeric identifier
- Each module instance may be identified by either
 - a symbolic name ('sinus1')
 - a globally unique numeric id
- A port may be addressed by
 - its symbolic name
 - /sinus1/freq
 - or by its UID/Port ID combination:
 - 123

- Modules are connected using ports.
- A port is an address identified by either
 - 1 a symbolic name ('freq')
 - 2 a numeric identifier
- Each module instance may be identified by either
 - a symbolic name ('sinus1')
 - a globally unique numeric id
- A port may be addressed by
 - its symbolic name:
 - /sinus1/freq
 - or by its UID/Port ID combination:
 - 123 1

- Modules are connected using ports.
- A port is an address identified by either
 - 1 a symbolic name ('freq')
 - a numeric identifier
- Each module instance may be identified by either
 - a symbolic name ('sinus1')
 - a globally unique numeric id
- A port may be addressed by
 - its symbolic name:
 - /sinus1/freq
 - or by its UID/Port ID combination:
 - 123 1

- Modules are connected using ports.
- A port is an address identified by either
 - 1 a symbolic name ('freq')
 - 2 a numeric identifier
- Each module instance may be identified by either
 - a symbolic name ('sinus1')
 - ② a globally unique numeric id
- A port may be addressed by
 - its symbolic name
 - /sinus1/freq
 - or by its UID/Port ID combination:
 - 123 1

- Modules are connected using ports.
- A port is an address identified by either
 - 1 a symbolic name ('freq')
 - 2 a numeric identifier
- Each module instance may be identified by either
 - 1 a symbolic name ('sinus1')
 - a globally unique numeric id
- A port may be addressed by
 - its symbolic name:
 - /sinus1/freq
 - or by its UID/Port ID combination:
 - 123 1

- Modules are connected using ports.
- A port is an address identified by either
 - 1 a symbolic name ('freq')
 - 2 a numeric identifier
- Each module instance may be identified by either
 - 1 a symbolic name ('sinus1')
 - a globally unique numeric id
- A port may be addressed by
 - its symbolic name:
 - /sinus1/freq
 - or by its UID/Port ID combination:
 - 123 1

- Modules are connected using ports.
- A port is an address identified by either
 - 1 a symbolic name ('freq')
 - 2 a numeric identifier
- Each module instance may be identified by either
 - 1 a symbolic name ('sinus1')
 - 2 a globally unique numeric id
- A port may be addressed by
 - its symbolic name:
 - /sinus1/freq
 - ar by ita I IID/Part ID comb
 - ② or by its UID/Port ID combination:

- Modules are connected using ports.
- A port is an address identified by either
 - 1 a symbolic name ('freq')
 - 2 a numeric identifier
- Each module instance may be identified by either
 - 1 a symbolic name ('sinus1')
 - a globally unique numeric id
- A port may be addressed by
 - 1 its symbolic name:

```
/sinus1/freq
```

2 or by its UID/Port ID combination:

```
123 1
```


- Modules are connected using ports.
- A port is an address identified by either
 - 1 a symbolic name ('freq')
 - 2 a numeric identifier
- Each module instance may be identified by either
 - 1 a symbolic name ('sinus1')
 - a globally unique numeric id
- A port may be addressed by
 - 1 its symbolic name:

/sinus1/freq

2 or by its UID/Port ID combination:

123

- Modules are connected using ports.
- A port is an address identified by either
 - 1 a symbolic name ('freq')
 - 2 a numeric identifier
- Each module instance may be identified by either
 - 1 a symbolic name ('sinus1')
 - a globally unique numeric id
- A port may be addressed by
 - 1 its symbolic name:

```
/sinus1/freq
```

2 or by its UID/Port ID combination:

123 1

Command	Purpose
/load <module-name></module-name>	Instantiate a module in a given target
/remove <module id=""></module>	Remove a module instance
/connect <module id=""> <port number=""> <module id=""> <port number=""></port></module></port></module>	Connect two ports
/disconnect <module id=""> <port num-<br="">ber> <module id=""> <port number=""></port></module></port></module>	Disconnect two ports
/send <module id=""> <port number=""> <value></value></port></module>	Send a value to a port

Command	Purpose
/load <module-name></module-name>	Instantiate a module in a given target
/remove <module id=""></module>	Remove a module instance
/connect <module id=""> <port number=""> <module id=""> <port number=""></port></module></port></module>	Connect two ports
/disconnect <module id=""> <port num-<br="">ber> <module id=""> <port number=""></port></module></port></module>	Disconnect two ports
/send <module id=""> <port number=""> <value></value></port></module>	Send a value to a port

Command	Purpose
/load <module-name></module-name>	Instantiate a module in a given target
/remove <module id=""></module>	Remove a module instance
/connect <module id=""> <port number=""> <module id=""> <port number=""></port></module></port></module>	Connect two ports
/disconnect <module id=""> <port num-<br="">ber> <module id=""> <port number=""></port></module></port></module>	Disconnect two ports
/send <module id=""> <port number=""> <value></value></port></module>	Send a value to a port

Command	Purpose
/load <module-name></module-name>	Instantiate a module in a given target
/remove <module id=""></module>	Remove a module instance
/connect <module id=""> <port number=""> <module id=""> <port number=""></port></module></port></module>	Connect two ports
/disconnect <module id=""> <port num-<br="">ber> <module id=""> <port number=""></port></module></port></module>	Disconnect two ports
/send <module id=""> <port number=""> <value></value></port></module>	Send a value to a port

Command	Purpose
/load <module-name></module-name>	Instantiate a module in a given target
/remove <module id=""></module>	Remove a module instance
/connect <module id=""> <port number=""> <module id=""> <port number=""></port></module></port></module>	Connect two ports
/disconnect <module id=""> <port num-<br="">ber> <module id=""> <port number=""></port></module></port></module>	Disconnect two ports
/send <module id=""> <port number=""> <value></value></port></module>	Send a value to a port

- No distinction between audio and control rate ports—the rate is defined for the connection
- No distinction between input and output ports
- Automatic data mapping between connected ports:
 - Unit conversion: midi note nr -> frequency
 - Type conversion
- A port is an address

- No distinction between audio and control rate ports—the rate is defined for the connection
- No distinction between input and output ports
- Automatic data mapping between connected ports:
 - Unit conversion: midi note nr -> frequency
 - Type conversion
- A port is an address

- No distinction between audio and control rate ports—the rate is defined for the connection
- No distinction between input and output ports
- Automatic data mapping between connected ports:
 - Unit conversion: midi note nr -> frequency
 - Type conversion
- A port is an address

- No distinction between audio and control rate ports—the rate is defined for the connection
- No distinction between input and output ports
- Automatic data mapping between connected ports:
 - Unit conversion: midi note nr -> frequency
 - Type conversion
- A port is an address

- No distinction between audio and control rate ports—the rate is defined for the connection
- No distinction between input and output ports
- Automatic data mapping between connected ports:
 - Unit conversion: midi note nr -> frequency
 - Type conversion
- A port is an address

- No distinction between audio and control rate ports—the rate is defined for the connection
- No distinction between input and output ports
- Automatic data mapping between connected ports:
 - Unit conversion: midi note nr -> frequency
 - Type conversion
- A port is an address

Interfacing Integra

A cross platform shared library

libIntegra provides application developers with the functionality to read, write and validate Integra compliant XML. Provides bindings to a variety of languages e.g. Python.

Integra database

Provides persistent storage
Postgresql ORDMS retaining module inheritance.

Database UI

Provides online access to the DB

Users may browse, add, edit, and download modules through the DBUI.

Interfacing Integra

A cross platform shared library

libIntegra provides application developers with the functionality to read, write and validate Integra compliant XML. Provides bindings to a variety of languages e.g. Python.

Integra database

Provides persistent storage Postgresql ORDMS retaining module inheritance.

Database UI

Provides online access to the DB.

Users may browse, add, edit, and download modules through the DBIII

Interfacing Integra

A cross platform shared library

libIntegra provides application developers with the functionality to read, write and validate Integra compliant XML. Provides bindings to a variety of languages e.g. Python.

Integra database

Provides persistent storage
Postgresql ORDMS retaining module inheritance.

Database UI

Provides online access to the DB.

Users may browse, add, edit, and download modules through the DBUI.

Integra projects

Migrated works

Works migrated within the Integra project serve as support for continuing development of the framework.

Madonna of Winter and Spring by Jonathan Harvey, ported to Integra.

- Development of Pd based DSSI plugin host
- Hexter: A DX7 emulation plugin.
- Allows emulation of the TX816, DX1 and DX7 and makes these addressable via the Integra framework.

The Integra GUI

Integra projects

Migrated works

Works migrated within the Integra project serve as support for continuing development of the framework.

Madonna of Winter and Spring

by Jonathan Harvey, ported to Integra.

- Development of Pd based DSSI plugin host
- Hexter: A DX7 emulation plugin.
- Allows emulation of the TX816, DX1 and DX7 and makes these addressable via the Integra framework.

The Integra GUI

Integra projects

Migrated works

Works migrated within the Integra project serve as support for continuing development of the framework.

Madonna of Winter and Spring

by Jonathan Harvey, ported to Integra.

- Development of Pd based DSSI plugin host
- Hexter: A DX7 emulation plugin.
- Allows emulation of the TX816, DX1 and DX7 and makes these addressable via the Integra framework.

The Integra GUI

Integra projects

Migrated works

Works migrated within the Integra project serve as support for continuing development of the framework.

Madonna of Winter and Spring

by Jonathan Harvey, ported to Integra.

- Development of Pd based DSSI plugin host
- Hexter: A DX7 emulation plugin.
- Allows emulation of the TX816, DX1 and DX7 and makes these addressable via the Integra framework.

The Integra GUI

Integra projects

Migrated works

Works migrated within the Integra project serve as support for continuing development of the framework.

Madonna of Winter and Spring

by Jonathan Harvey, ported to Integra.

- Development of Pd based DSSI plugin host
- Hexter: A DX7 emulation plugin.
- Allows emulation of the TX816, DX1 and DX7 and makes these addressable via the Integra framework.

The Integra GUI

Integra projects

Migrated works

Works migrated within the Integra project serve as support for continuing development of the framework.

Madonna of Winter and Spring

by Jonathan Harvey, ported to Integra.

- Development of Pd based DSSI plugin host
- Hexter: A DX7 emulation plugin.
- Allows emulation of the TX816, DX1 and DX7 and makes these addressable via the Integra framework.

The Integra GUI

Auxiliary projects

Sonar 2D

libIntegra forms the back end for the Sonar 2D application by Bullock.

The annotated score

libIntegra, the Integra XML file format and a web app under development forms the basis for the *annotated score*: A user adaptable, versioned, "open-sourced" musical score documenting all versions of a musical work, including meta-information.

Auxiliary projects

Sonar 2D

libIntegra forms the back end for the Sonar 2D application by Bullock.

The annotated score

libIntegra, the Integra XML file format and a web app under development forms the basis for the *annotated score*: A user adaptable, versioned, "open-sourced" musical score documenting all versions of a musical work, including meta-information.

- Hosted on Sourceforge: http://sourceforge.net
- Small but active developer community
- libIntegra is in pre-alpha development

- Populate the database
- Explore ways of storing implementation specific data in a software neutral manner.
 - By creating a set of implementation primitives.
 Costle a syrighm language vertexis almost de-
 - Create a scripting language, perhaps alongside FAUSTING

- Hosted on Sourceforge: http://sourceforge.net
- Small but active developer community
- libIntegra is in pre-alpha development

- Populate the database
- Explore ways of storing implementation specific data in a software neutral manner.
 - By creating a set of implementation primitives.
 - Create a scripting language, perhaps alongside FAUS representations.

- Hosted on Sourceforge: http://sourceforge.net
- Small but active developer community
- libIntegra is in pre-alpha development

- Populate the database
- Explore ways of storing implementation specific data in a software neutral manner.
 - Create a scripting language, partiags alongside FAUSTT

- Hosted on Sourceforge: http://sourceforge.net
- Small but active developer community
- libIntegra is in pre-alpha development

- Populate the database
- Explore ways of storing implementation specific data in a software neutral manner.
 - By creating a set of implementation primitives.
 - Create a scripting language, perhaps alongside FAUS

- Hosted on Sourceforge: http://sourceforge.net
- Small but active developer community
- libIntegra is in pre-alpha development

- Populate the database
- Explore ways of storing implementation specific data in a software neutral manner.
 - By creating a set of implementation primitives.
 - Create a scripting language, perhaps alongside FAUST

- Hosted on Sourceforge: http://sourceforge.net
- Small but active developer community
- libIntegra is in pre-alpha development

- Populate the database
- Explore ways of storing implementation specific data in a software neutral manner.
 - By creating a set of implementation primitives.
 - Create a scripting language, perhaps alongside FAUST.

- Hosted on Sourceforge: http://sourceforge.net
- Small but active developer community
- libIntegra is in pre-alpha development

- Populate the database
- Explore ways of storing implementation specific data in a software neutral manner.
 - By creating a set of implementation primitives.
 - Create a scripting language, perhaps alongside FAUST.

- Hosted on Sourceforge: http://sourceforge.net
- Small but active developer community
- libIntegra is in pre-alpha development

- Populate the database
- Explore ways of storing implementation specific data in a software neutral manner.
 - By creating a set of implementation primitives.
 - Create a scripting language, perhaps alongside FAUST.

XML format: IXD

A new XML-based format for persistently storing data relating to musical works, in particular works including live electronics.

libIntegra

A library allowing users to access data in the XML.

Database

An object-relational database used for storing and versioning of IXD data.

Usability

XML format: IXD

A new XML-based format for persistently storing data relating to musical works, in particular works including live electronics.

libIntegra

A library allowing users to access data in the XML.

Database

An object-relational database used for storing and versioning of IXD data

Usability

XML format: IXD

A new XML-based format for persistently storing data relating to musical works, in particular works including live electronics.

libIntegra

A library allowing users to access data in the XML.

Database

An object-relational database used for storing and versioning of IXD data.

Usability

XML format: IXD

A new XML-based format for persistently storing data relating to musical works, in particular works including live electronics.

libIntegra

A library allowing users to access data in the XML.

Database

An object-relational database used for storing and versioning of IXD data.

Usability

Thank you!

We wish to thank the organizers of the Melecon 2008 Conference for giving us this opportunity to present part of the Integra project.

Funding

The Integra project is funded by the EC Culture 2000 and is a collaboration between Universities, research centers and New Music Ensembles in Europe.

Culture 2000

