Best Arm Identification with Limited Precision Sampling

P. N. Karthik

Institute of Data Science National University of Singapore March 23, 2023

Joint Work With

Kota Srinivas Reddy IIT Chennai

Nikhil Karamchandani IIT Mumbai

Jayakrishnan Nair IIT Mumbai

■ *M* boxes, *K* arms per box

- *M* boxes, *K* arms per box
- Agent can only pick boxes

- *M* boxes, *K* arms per box
- Agent can only pick boxes
- $P(\mathsf{arm} = k | \mathsf{box} = m) = q_{m,k}$

- *M* boxes, *K* arms per box
- Agent can only pick boxes
- $P(\mathsf{arm} = k | \mathsf{box} = m) = q_{m,k}$
- Instance: $\boldsymbol{\nu} = (\nu_1, \dots, \nu_K)$

- *M* boxes, *K* arms per box
- Agent can only pick boxes
- $P(\mathsf{arm} = k | \mathsf{box} = m) = q_{m,k}$
- Instance: $\boldsymbol{\nu} = (\nu_1, \dots, \nu_K)$
- \blacksquare $\nu_k = \mathcal{N}(\mu_k, 1)$, $k \in [K]$

- *M* boxes, *K* arms per box
- Agent can only pick boxes
- $P(\mathsf{arm} = k | \mathsf{box} = m) = q_{m,k}$
- Instance: $\boldsymbol{\nu} = (\nu_1, \dots, \nu_K)$
- \blacksquare $\nu_k = \mathcal{N}(\mu_k, 1)$, $k \in [K]$
- Unknowns:

- *M* boxes, *K* arms per box
- Agent can only pick boxes

$$P(arm = k | box = m) = q_{m,k}$$

■ Instance:
$$\boldsymbol{\nu} = (\nu_1, \dots, \nu_K)$$

$$\blacksquare$$
 $\nu_k = \mathcal{N}(\mu_k, 1)$, $k \in [K]$

Unknowns:

$$\bullet \ \mathbf{q} = \{q_{m,k}\}_{m,k}$$

- *M* boxes, *K* arms per box
- Agent can only pick boxes

$$P(\mathsf{arm} = k | \mathsf{box} = m) = q_{m,k}$$

■ Instance:
$$\boldsymbol{\nu} = (\nu_1, \dots, \nu_K)$$

$$\blacksquare$$
 $\nu_k = \mathcal{N}(\mu_k, 1)$, $k \in [K]$

- Unknowns:
 - $\bullet \quad \boldsymbol{q} = \{q_{m,k}\}_{m,k}$
 - $\boldsymbol{\mu} = \{\mu_k\}_k$

- *M* boxes, *K* arms per box
- Agent can only pick boxes

$$P(\mathsf{arm} = k | \mathsf{box} = m) = q_{m,k}$$

■ Instance:
$$\boldsymbol{\nu} = (\nu_1, \dots, \nu_K)$$

$$\blacksquare$$
 $\nu_k = \mathcal{N}(\mu_k, 1)$, $k \in [K]$

- Unknowns:
 - $\bullet \quad \boldsymbol{q} = \{q_{m,k}\}_{m,k}$
 - $\boldsymbol{\mu} = \{\mu_k\}_k$
- Best arm: $k^* = \arg \max_k \mu_k$

- *M* boxes, *K* arms per box
- Agent can only pick boxes

$$P(\mathsf{arm} = k | \mathsf{box} = m) = q_{m,k}$$

■ Instance:
$$\boldsymbol{\nu} = (\nu_1, \dots, \nu_K)$$

$$\blacksquare$$
 $\nu_k = \mathcal{N}(\mu_k, 1)$, $k \in [K]$

- Unknowns:
 - $\bullet \quad \boldsymbol{q} = \{q_{m,k}\}_{m,k}$
 - $\bullet \ \boldsymbol{\mu} = \{\mu_k\}_k$
- Best arm: $k^* = \arg \max_k \mu_k$
- Goal: Fixed-confidence BAI

- *M* boxes, *K* arms per box
- Agent can only pick boxes

$$P(\mathsf{arm} = k | \mathsf{box} = m) = q_{m,k}$$

■ Instance:
$$\boldsymbol{\nu} = (\nu_1, \dots, \nu_K)$$

$$\blacksquare$$
 $\nu_k = \mathcal{N}(\mu_k, 1)$, $k \in [K]$

Unknowns:

$$\bullet \quad \boldsymbol{q} = \{q_{m,k}\}_{m,k}$$

$$\bullet \ \boldsymbol{\mu} = \{\mu_k\}_k$$

■ Best arm: $k^* = \arg \max_k \mu_k$

■ Goal: Fixed-confidence BAI

- *M* boxes, *K* arms per box
- Agent can only pick boxes

$$P(\mathsf{arm} = k | \mathsf{box} = m) = q_{m,k}$$

■ Instance:
$$\boldsymbol{\nu} = (\nu_1, \dots, \nu_K)$$

$$\blacksquare$$
 $\nu_k = \mathcal{N}(\mu_k, 1)$, $k \in [K]$

Unknowns:

$$\bullet \quad \boldsymbol{q} = \{q_{m,k}\}_{m,k}$$

$$\bullet \ \boldsymbol{\mu} = \{\mu_k\}_k$$

■ Best arm: $k^* = \arg \max_k \mu_k$

■ Goal: Fixed-confidence BAI

The key: determining the optimal box weight(s)

Agent sees the pulled arm and its reward at each time

- Agent sees the pulled arm and its reward at each time
- SE-type or LUCB-type algorithms cannot be applied verbatim

- Agent sees the pulled arm and its reward at each time
- SE-type or LUCB-type algorithms cannot be applied verbatim
- To pull a certain arm *k*:

- Agent sees the pulled arm and its reward at each time
- SE-type or LUCB-type algorithms cannot be applied verbatim
- To pull a certain arm *k*:
 - If $q = \{q_{m,k}\}_{m,k}$ is known, then choose box $m^* \in \arg\max_m q_{m,k}$

- Agent sees the pulled arm and its reward at each time
- SE-type or LUCB-type algorithms cannot be applied verbatim
- To pull a certain arm *k*:
 - If $q = \{q_{m,k}\}_{m,k}$ is known, then choose box $m^* \in \arg \max_m q_{m,k}$
 - If $q = \{q_{m,k}\}_{m,k}$ is unknown, then? If $\{q_{m,k}\}_k = \{q_{m'k}\}_k$ for all m, m', then every box weight is optimal

Outline

- 1 Asymptotic Analysis
 - Converse
 - Non-Uniqueness of Optimal Box Weights
 - Achievability: D-Tracking for Non-Unique Box Weights
- 2 Non-Asymptotic Analysis: Arms Partitioned Among Boxes
 - Non-Asymptotic Analysis : Converse
 - Achievability: Successive Elimination

ASYMPTOTIC ANALYSIS

CONVERSE

Fix a problem instance ${\pmb q}_0 = \{{\pmb q}_{{\pmb m},{\pmb k}}^0\}_{{\pmb m},{\pmb k}}, \;\; {\pmb \mu}_0 = \{\mu_{\pmb k}^0\}_{\pmb k}$

CONVERSE

Fix a problem instance ${m q}_0=\{{m q}_{{m m},{m k}}^0\}_{{m m},{m k}},\;\;{m \mu}_0=\{\mu_{{m k}}^0\}_{{m k}}$

Theorem

$$\liminf_{\delta \downarrow 0} \inf_{\pi} \inf_{\delta ext{-PC}} rac{\mathbb{E}[au_{\pi}]}{\log(1/\delta)} \geq rac{1}{ extsf{T}^*(oldsymbol{q}_0, oldsymbol{\mu}_0)},$$

where $T^*(\mathbf{q}_0, \boldsymbol{\mu}_0)$ is given by

$$\mathsf{T}^*(oldsymbol{q}_0,oldsymbol{\mu}_0) \ = \sup_{\mathbf{w}\in\Sigma_{\mathsf{M}}} \inf_{oldsymbol{\lambda}\in\mathsf{ALT}(oldsymbol{\mu}_0)} \sum_{m=1}^{\mathsf{M}} \sum_{k=1}^{\mathsf{K}} \mathsf{w}_m \ oldsymbol{q}_{\mathsf{m},k}^0 \ rac{(\mu_k^0-\lambda_k)^2}{2}.$$

The supremum is over $\Sigma_{M} = \{ \mathbf{w} = (\mathbf{w}_{1}, \dots, \mathbf{w}_{M}) : \mathbf{w}_{m} \geq 0 \quad \forall m, \quad \sum_{m=1}^{M} \mathbf{w}_{m} = 1 \}.$

■ From transportation Lemma 1 of Kaufmann et al. [2016],

$$\pi \; \delta\text{-PC} \implies \inf_{\pmb{\lambda} \in \mathsf{ALT}(\pmb{\mu}_0)} \; \sum_{k=1}^\mathsf{K} \; \underbrace{\mathbb{E}[\mathsf{N}_k(\tau_\pi)]}_{\mathsf{trulls} \; \mathsf{of} \; \mathsf{arm} \; k} \; \frac{(\mu_k^0 - \lambda_k)^2}{2} \geq \mathsf{D}_\mathsf{KL}(\mathsf{Ber}(\delta) \| \mathsf{Ber}(1-\delta)).$$

$$\mathcal{T}^*(oldsymbol{q}_0,oldsymbol{\mu}_0) = \sup_{oldsymbol{w}\in\Sigma_{oldsymbol{M}}} \inf_{oldsymbol{\lambda}\in\operatorname{ALT}(oldsymbol{\mu}_0)} \sum_{\mathit{m}=1}^{oldsymbol{M}} \sum_{\mathit{k}=1}^{oldsymbol{K}} oldsymbol{w}_{\mathit{m}} \, oldsymbol{q}_{\mathit{m},\mathit{k}}^0 \, rac{(\mu_{\mathit{k}}^0-\lambda_{\mathit{k}})^2}{2}$$

■ From transportation Lemma 1 of Kaufmann et al. [2016],

$$\pi \; \delta\text{-PC} \implies \inf_{\pmb{\lambda} \in \mathsf{ALT}(\pmb{\mu}_0)} \; \sum_{k=1}^{\mathsf{K}} \; \underbrace{\mathbb{E}[\mathbf{N}_k(\tau_\pi)]}_{\text{\# pulls of arm } k} \; \frac{(\mu_k^0 - \lambda_k)^2}{2} \geq D_{\mathsf{KL}}(\mathsf{Ber}(\delta) \| \mathsf{Ber}(1-\delta)).$$

■ For each $k \in [K]$,

$$\mathbb{E}[\mathsf{N}_k(\tau_\pi)] = \sum_{m=1}^{\mathsf{M}} q_{m,k}^0 \quad \mathbb{E}[\mathsf{N}(\tau_\pi, m)] \quad .$$
selections of box m

$$extstyle extstyle ag{7} ag{7} ag{7} ag{7} ag{7} ag{1} ag{1}$$

NON-UNIQUENESS OF OPTIMAL BOX WEIGHTS

Example (1)

 $\{q_{m,k}^0\}_k$ independent of m, i.e., $\{q_{m,k}^0\}_k=\{q_{m'k}^0\}_k=\{\alpha_k\}_k$ for all m,m'. In this case,

$$\sum_{m=1}^{M} w_m q_{m,k}^0 = \sum_{m=1}^{M} w_m \alpha_k = \alpha_k \quad \forall k \in [K], \ \mathbf{w} \in \Sigma_{M}.$$

Example (2)

$$M=2$$
, $K=4$, $\mu_0=\{0.5,0.4,0.3,0.3\}$, $\boldsymbol{q}_0=\begin{pmatrix}0.3&0.3&0.3&0.1\\0.3&0.3&0.1&0.3\end{pmatrix}$

For the above examples, every $\mathbf{w} \in \Sigma_{M}$ is optimal

ACHIEVABILITY: PRELIMINARIES

■ Set of optimal box weights under (q, μ) :

$$\mathcal{W}^{\star}(\boldsymbol{q},\boldsymbol{\mu}) = \arg\sup_{\boldsymbol{w} \in \Sigma_{M}} \inf_{\boldsymbol{\lambda} \in \mathsf{ALT}(\boldsymbol{\mu})} \sum_{m=1}^{M} \sum_{k=1}^{K} w_{m} \ q_{m,k} \ \frac{(\mu_{k} - \lambda_{k})^{2}}{2}$$

ACHIEVABILITY: PRELIMINARIES

■ Set of optimal box weights under (q, μ) :

$$\mathcal{W}^{\star}(\boldsymbol{q},\boldsymbol{\mu}) = \arg\sup_{\boldsymbol{w} \in \Sigma_{M}} \inf_{\boldsymbol{\lambda} \in \mathsf{ALT}(\boldsymbol{\mu})} \sum_{m=1}^{M} \sum_{k=1}^{K} w_{m} \; q_{m,k} \; \frac{(\mu_{k} - \lambda_{k})^{2}}{2}$$

 \blacksquare $(q, \mu) \mapsto \mathcal{W}^*(q, \mu)$ is compact-valued and upper hemicontinuous

ACHIEVABILITY: PRELIMINARIES

■ Set of optimal box weights under (q, μ) :

$$\mathcal{W}^{\star}(\boldsymbol{q},\boldsymbol{\mu}) = \arg\sup_{\boldsymbol{w} \in \Sigma_{M}} \inf_{\boldsymbol{\lambda} \in \mathsf{ALT}(\boldsymbol{\mu})} \sum_{m=1}^{M} \sum_{k=1}^{K} \boldsymbol{w}_{m} \; \boldsymbol{q}_{m,k} \; \frac{(\mu_{k} - \lambda_{k})^{2}}{2}$$

- \blacksquare $(q,\mu) \mapsto \mathcal{W}^{\star}(q,\mu)$ is compact-valued and upper hemicontinuous
- $\blacksquare \mathcal{W}^*(\boldsymbol{q}, \boldsymbol{\mu})$ is convex for each $(\boldsymbol{q}, \boldsymbol{\mu})$

■ Parameter estimates at time t:

$$\hat{q}_{m,k}(t) = \frac{\text{\# times box } m \text{ selected and arm } k \text{ pulled}}{N(t,m)}, \quad \hat{\mu}_k(t) = \frac{1}{N_k(t)} \sum_{s=1}^t \mathbb{1}_{\{A_s = k\}} X_s$$

■ Parameter estimates at time t:

$$\hat{q}_{m,k}(t) = \frac{\text{\# times box } m \text{ selected and arm } k \text{ pulled}}{N(t,m)}, \quad \hat{\mu}_k(t) = \frac{1}{N_k(t)} \sum_{s=1}^t \mathbf{1}_{\{A_s = k\}} \, X_s$$

$$\blacksquare f(t) = \frac{\sqrt{t}}{\sqrt{M}}, \quad N(0, m) = 0 \text{ for all } m$$

■ Parameter estimates at time t:

$$\hat{q}_{m,k}(t) = \frac{\text{\# times box } m \text{ selected and arm } k \text{ pulled}}{N(t,m)}, \quad \hat{\mu}_k(t) = \frac{1}{N_k(t)} \sum_{s=1}^t \mathbf{1}_{\{A_s = k\}} \, X_s$$

- $\blacksquare f(t) = \frac{\sqrt{t}}{\sqrt{M}}$, N(0, m) = 0 for all m
- $\mathbf{I}_0 = 0, \quad \mathbf{i}_{t+1} = (\mathbf{i}_t \mod M) + \mathbf{1}_{\{\min_{m \in [M]} N(t,m) < f(t)\}} \quad \text{for all } t \ge 0$

round-robin box selection counter

■ Parameter estimates at time t:

$$\hat{q}_{m,k}(t) = \frac{\text{\# times box } m \text{ selected and arm } k \text{ pulled}}{N(t,m)}, \quad \hat{\mu}_k(t) = \frac{1}{N_k(t)} \sum_{s=1}^t \mathbf{1}_{\{A_s = k\}} \, X_s$$

- $\blacksquare f(t) = \frac{\sqrt{t}}{\sqrt{M}}, \quad N(0, m) = 0 \text{ for all } m$
- $\blacksquare \ \, \underline{i_0 = 0, \quad i_{t+1} = (i_t \bmod M) + \mathbf{1}_{\left\{\min_{m \in [M]} N(t,m) < f(t)\right\}}} \quad \text{for all } t \geq 0$

round-robin box selection counter

■ Let $\{\mathbf{w}(t): t \geq 1\}$ be such that $\mathbf{w}(t+1) \in \mathcal{W}^{\star}(\hat{\boldsymbol{q}}(t), \hat{\boldsymbol{\mu}}(t))$ for all t

■ The modified D-Tracking rule:

$$B_{t+1} = egin{cases} i_t, & \min_{m \in [M]} \textit{N}(t,m) < \textit{f}(t), \ b_t, & ext{otherwise}, \end{cases}$$

where $\{b_t : t \ge 1\}$ is specified by

$$b_t = \arg\min_{m \in \mathsf{supp}(\sum_{s=1}^t w(s))} N(t,m) - \sum_{s=1}^t w_m(s).$$

■ The modified D-Tracking rule:

$$B_{t+1} = egin{cases} i_t, & \min_{m \in [M]} extstyle N(t,m) < f(t), \ b_t, & ext{otherwise}, \end{cases}$$

where $\{b_t : t > 1\}$ is specified by

$$b_t = \arg\min_{m \in \text{supp}(\sum_{s=1}^t w(s))} N(t, m) - \sum_{s=1}^t w_m(s).$$

■ Inspired from Jedra and Proutiere [2020]

TRACKING THE OPTIMAL SET

■ Define
$$d_{\infty}(\mathbf{x}, \mathbf{y}) = \max_{i} |x_i - y_i|$$
, $d_{\infty}(\mathbf{x}, C) = \min_{\mathbf{y} \in C} d_{\infty}(\mathbf{x}, \mathbf{y})$

■ Define
$$d_{\infty}(\mathbf{x}, \mathbf{y}) = \max_{i} |x_i - y_i|$$
, $d_{\infty}(\mathbf{x}, C) = \min_{\mathbf{y} \in C} d_{\infty}(\mathbf{x}, \mathbf{y})$

■ Define $d_{\infty}(\mathbf{x}, \mathbf{y}) = \max_{i} |x_i - y_i|$, $d_{\infty}(\mathbf{x}, C) = \min_{\mathbf{y} \in C} d_{\infty}(\mathbf{x}, \mathbf{y})$

Lemma

Under the modified D-tracking rule,

$$\lim_{t\to\infty} d_\infty((\mathbf{N}(t,m)/t)_{m\in[\mathbf{M}]},\ \mathcal{W}^\star(\boldsymbol{q}_0,\boldsymbol{\mu}_0))=0\quad \text{a.s.}.$$

■ Define $d_{\infty}(\mathbf{x}, \mathbf{y}) = \max_{i} |x_{i} - y_{i}|, \quad d_{\infty}(\mathbf{x}, C) = \min_{\mathbf{y} \in C} d_{\infty}(\mathbf{x}, \mathbf{y})$

Lemma

Under the modified D-tracking rule,

$$\lim_{t\to\infty} d_{\infty}((\mathbf{N}(t,m)/t)_{m\in[\mathbf{M}]},\ \mathcal{W}^{\star}(\boldsymbol{q}_0,\boldsymbol{\mu}_0))=0\quad \text{a.s.}$$

■ Inspired by Degenne and Koolen [2019], the key idea in the proof is to track the behaviour of $\bar{\mathbf{w}}(t) = \frac{1}{t} \sum_{s=1}^{t} \mathbf{w}(s) \in \mathcal{W}^{\star}(\hat{\boldsymbol{q}}(t-1), \hat{\boldsymbol{\mu}}(t-1))$

■ Define $d_{\infty}(\mathbf{x}, \mathbf{y}) = \max_{i} |x_{i} - y_{i}|, \quad d_{\infty}(\mathbf{x}, C) = \min_{\mathbf{y} \in C} d_{\infty}(\mathbf{x}, \mathbf{y})$

Lemma

Under the modified D-tracking rule,

$$\lim_{t\to\infty} d_{\infty}((\mathbf{N}(t,m)/t)_{m\in[\mathbf{M}]},\ \mathcal{W}^{\star}(\mathbf{q}_0,\boldsymbol{\mu}_0))=0\quad \text{a.s.}.$$

 \blacksquare When $\mathcal{W}^{\star}(\boldsymbol{q}_0, \boldsymbol{\mu}_0) = \{\mathbf{w}^{\star}\}$, we recover the classical tracking result

$$\frac{N(t,m)}{t} \stackrel{t\to\infty}{\longrightarrow} w_m^{\star} \quad \forall m, \text{ a.s..}$$

$$\begin{split} Z_{a,b}(t) \; &= \left\{ \begin{array}{ll} \mathsf{N}_a(t) \frac{\left(\hat{\mu}_a(t) - \hat{\mu}_{a,b}(t)\right)^2}{2} + \mathsf{N}_b(t) \frac{\left(\hat{\mu}_b(t) - \hat{\mu}_{a,b}(t)\right)^2}{2}, & \hat{\mu}_a(t) \geq \hat{\mu}_b(t), \\ -Z_{b,a}(t), & \text{otherwise}, \end{array} \right. \end{split}$$

where
$$\hat{\mu}_{a,b}(t) = \frac{N_a(t)}{N_a(t)+N_b(t)}\,\hat{\mu}_a(t) + \frac{N_b(t)}{N_a(t)+N_b(t)}\,\hat{\mu}_b(t)$$
.

■ The GLLR statistic between arms $a, b \in [K]$ at time t is

$$\begin{aligned} \textit{Z}_{a,b}(t) \ = \begin{cases} \textit{N}_a(t) \frac{\left(\hat{\mu}_a(t) - \hat{\mu}_{a,b}(t)\right)^2}{2} + \textit{N}_b(t) \frac{\left(\hat{\mu}_b(t) - \hat{\mu}_{a,b}(t)\right)^2}{2}, & \hat{\mu}_a(t) \geq \hat{\mu}_b(t), \\ -\textit{Z}_{b,a}(t), & \text{otherwise}, \end{cases} \end{aligned}$$

where
$$\hat{\mu}_{a,b}(t)=\frac{N_a(t)}{N_a(t)+N_b(t)}\,\hat{\mu}_a(t)+\frac{N_b(t)}{N_a(t)+N_b(t)}\,\hat{\mu}_b(t)$$
.

■ Let $Z(t) = \max_{a} \min_{b \neq a} Z_{a,b}(t)$

$$\begin{aligned} \textit{Z}_{a,b}(t) \ = \begin{cases} \textit{N}_a(t) \frac{\left(\hat{\mu}_a(t) - \hat{\mu}_{a,b}(t)\right)^2}{2} + \textit{N}_b(t) \frac{\left(\hat{\mu}_b(t) - \hat{\mu}_{a,b}(t)\right)^2}{2}, & \hat{\mu}_a(t) \geq \hat{\mu}_b(t), \\ -\textit{Z}_{b,a}(t), & \text{otherwise}, \end{cases} \end{aligned}$$

where
$$\hat{\mu}_{a,b}(t) = \frac{N_a(t)}{N_a(t)+N_b(t)}\,\hat{\mu}_a(t) + \frac{N_b(t)}{N_a(t)+N_b(t)}\,\hat{\mu}_b(t)$$
.

- Let $Z(t) = \max_{a} \min_{b \neq a} Z_{a,b}(t)$
- Given $\delta \in (0,1)$, let $\beta(t,\delta,\rho) = \log \frac{Ct^{1+\rho}}{\delta}$, where C is a predetermined constant

$$\begin{split} \textit{Z}_{\textit{a},\textit{b}}(t) \; = \begin{cases} \textit{N}_{\textit{a}}(t) \frac{\left(\hat{\mu}_{\textit{a}}(t) - \hat{\mu}_{\textit{a},\textit{b}}(t)\right)^2}{2} + \textit{N}_{\textit{b}}(t) \frac{\left(\hat{\mu}_{\textit{b}}(t) - \hat{\mu}_{\textit{a},\textit{b}}(t)\right)^2}{2}, & \hat{\mu}_{\textit{a}}(t) \geq \hat{\mu}_{\textit{b}}(t), \\ -\textit{Z}_{\textit{b},\textit{a}}(t), & \text{otherwise}, \end{cases} \end{split}$$

where
$$\hat{\mu}_{a,b}(t) = \frac{N_a(t)}{N_a(t)+N_b(t)}\,\hat{\mu}_a(t) + \frac{N_b(t)}{N_a(t)+N_b(t)}\,\hat{\mu}_b(t)$$
.

- Let $Z(t) = \max_a \min_{b \neq a} Z_{a,b}(t)$
- Given $\delta \in (0,1)$, let $\beta(t,\delta,\rho) = \log \frac{Ct^{1+\rho}}{\delta}$, where C is a predetermined constant
- Stopping rule: $\tau_{\delta,\rho} = \min\{t \geq 1 : Z(t) \geq \beta(t,\delta,\rho) \text{ and } \min_{k \in [K]} N_k(t) > 0\}$

$$\begin{split} \textit{Z}_{\textit{a},\textit{b}}(t) \; = \begin{cases} \textit{N}_{\textit{a}}(t) \frac{\left(\hat{\mu}_{\textit{a}}(t) - \hat{\mu}_{\textit{a},\textit{b}}(t)\right)^2}{2} + \textit{N}_{\textit{b}}(t) \frac{\left(\hat{\mu}_{\textit{b}}(t) - \hat{\mu}_{\textit{a},\textit{b}}(t)\right)^2}{2}, & \hat{\mu}_{\textit{a}}(t) \geq \hat{\mu}_{\textit{b}}(t), \\ -\textit{Z}_{\textit{b},\textit{a}}(t), & \text{otherwise}, \end{cases} \end{split}$$

where
$$\hat{\mu}_{a,b}(t) = \frac{N_a(t)}{N_a(t)+N_b(t)}\,\hat{\mu}_a(t) + \frac{N_b(t)}{N_a(t)+N_b(t)}\,\hat{\mu}_b(t)$$
.

- Let $Z(t) = \max_{a} \min_{b \neq a} Z_{a,b}(t)$
- lacksquare Given $\delta\in(0,1)$, let $eta(t,\delta,
 ho)=\lograc{C\,t^{1+
 ho}}{\delta}$, where C is a predetermined constant
- Stopping rule: $\tau_{\delta,\rho} = \min\{t \geq 1 : Z(t) \geq \beta(t,\delta,\rho) \text{ and } \min_{k \in [K]} N_k(t) > 0\}$
- Recommendation rule: $\hat{k} = \arg \max_{k} \hat{\mu}_{k}(\tau_{\delta,\rho})$

Under the box sampling, stopping, and recommendation rules stated before:

Theorem

$$\blacksquare P(\tau_{\delta,\rho} < \infty, \hat{k} \neq k^*) \leq \delta$$

Under the box sampling, stopping, and recommendation rules stated before:

Theorem

- $\blacksquare P(\tau_{\delta,\rho} < \infty, \hat{k} \neq k^*) \leq \delta$
- $\blacksquare \tau_{\delta,\rho}$ satisfies

$$au_{\delta,
ho} \leq rac{1+
ho}{\mathsf{T}^{\star}(oldsymbol{q}_0,oldsymbol{\mu}_0)} \, \log(1/\delta) + oldsymbol{o}(\log(1/\delta)) \quad extit{a.s.}.$$

Hence,
$$P(\tau_{\delta,\rho} < \infty) = 1$$
.

Under the box sampling, stopping, and recommendation rules stated before:

Theorem

- $\blacksquare P(\tau_{\delta,\rho} < \infty, \hat{k} \neq k^*) \leq \delta$
- $\blacksquare \tau_{\delta,\rho}$ satisfies

$$au_{\delta,
ho} \leq rac{1 +
ho}{\mathsf{T}^\star(oldsymbol{q}_0, oldsymbol{\mu_0})} \, \log(1/\delta) + oldsymbol{o}(\log(1/\delta)) \quad extit{a.s.}.$$

Hence,
$$P(\tau_{\delta,\rho} < \infty) = 1$$
.

■ Asymptotic upper bound on $\mathbb{E}[\tau_{\delta,\rho}]$:

$$\limsup_{\delta\downarrow 0} \frac{\mathbb{E}[\tau_{\delta,\rho}]}{\log(1/\delta)} \leq \frac{1+\rho}{\mathsf{T}^*(\boldsymbol{q}_0,\boldsymbol{\mu}_0)}.$$

NON-ASYMPTOTIC ANALYSIS:

■ In SE-type algorithms, multiple arms are pulled at each time instant; sub-optimal arms are eliminated on-the-fly

- In SE-type algorithms, multiple arms are pulled at each time instant; sub-optimal arms are eliminated on-the-fly
- In LUCB-type algorithms, two arms are pulled at each time instant

- In SE-type algorithms, multiple arms are pulled at each time instant; sub-optimal arms are eliminated on-the-fly
- In LUCB-type algorithms, two arms are pulled at each time instant
- In our setup, the learner cannot pull arms directly

- In SE-type algorithms, multiple arms are pulled at each time instant; sub-optimal arms are eliminated on-the-fly
- In LUCB-type algorithms, two arms are pulled at each time instant
- In our setup, the learner cannot pull arms directly
- To maximise the chances of pulling a given arm k:

- In SE-type algorithms, multiple arms are pulled at each time instant; sub-optimal arms are eliminated on-the-fly
- In LUCB-type algorithms, two arms are pulled at each time instant
- In our setup, the learner cannot pull arms directly
- To maximise the chances of pulling a given arm k:
 - When ${m q}_0$ is known: select box ${m m}^* \in rg \max_{{m m},{m k}} {m q}_{{m m},{m k}}^0$

- In SE-type algorithms, multiple arms are pulled at each time instant; sub-optimal arms are eliminated on-the-fly
- In LUCB-type algorithms, two arms are pulled at each time instant
- In our setup, the learner cannot pull arms directly
- \blacksquare To maximise the chances of pulling a given arm k:
 - When q_0 is known: select box $m^* \in \arg \max_m q_{m,k}^0$
 - When $oldsymbol{q}_0$ is unknown: select $m^* \in rg \max_m \hat{q}_{m,k}(t)$ at time t

- In SE-type algorithms, multiple arms are pulled at each time instant; sub-optimal arms are eliminated on-the-fly
- In LUCB-type algorithms, two arms are pulled at each time instant
- In our setup, the learner cannot pull arms directly
- To maximise the chances of pulling a given arm k:
 - When q_0 is known: select box $m^* \in \arg \max_m q_{m,k}^0$
 - When q_0 is unknown: select $m^* \in \arg \max_m \hat{q}_{m,k}(t)$ at time t
- Open question: Are the above strategies optimal?

- In SE-type algorithms, multiple arms are pulled at each time instant; sub-optimal arms are eliminated on-the-fly
- In LUCB-type algorithms, two arms are pulled at each time instant
- In our setup, the learner cannot pull arms directly
- \blacksquare To maximise the chances of pulling a given arm k:
 - When ${m q}_0$ is known: select box ${m m}^* \in rg \max_{{m m},{m k}} {m q}_{{m m},{m k}}^0$
 - When q_0 is unknown: select $m^* \in \arg\max_m \hat{q}_{m,k}(t)$ at time t
- Open question: Are the above strategies optimal?
- Simplified setting: arms partitioned across boxes

SIMPLIFIED PROBLEM SETUP: PARTITION

Goal: fixed-confidence BAI

- Arms partitioned across boxes
- Arm k of box m indexed as $A_{m,k}$ or simply as (m,k)
- A_m : set of arms in box m
- $\blacksquare \sum_{m=1}^{M} |\mathcal{A}_m| = K$
- Agent knows A_1, \ldots, A_M
- Unknowns:
 - $\mathbf{q}_0 = \{\mathbf{q}_{m,k}^0\}_{m,k}$
 - $\mu_0 = \{\mu_{m,k}^{0'}\}_{m,k}$
- Best arm: $(m^*, k^*) = \arg \max_{m,k} \mu^0_{m,k}$

CONVERSE

- \blacksquare WLOG, let (1,1) be the best arm
- Let $\Delta_{m,k} = \mu_{1,1}^0 \mu_{m,k}^0$ for all $(m,k) \neq (1,1)$, and $\Delta_{1,1} = \min_{(m,k)\neq (1,1)} \Delta_{m,k}$

CONVERSE

- \blacksquare WLOG, let (1,1) be the best arm
- Let $\Delta_{m,k} = \mu_{1,1}^0 \mu_{m,k}^0$ for all $(m,k) \neq (1,1)$, and $\Delta_{1,1} = \min_{(m,k)\neq (1,1)} \Delta_{m,k}$

Theorem

Under any δ -PC algorithm,

$$\mathbb{E}\left[\tau_{\pi}\right] \ge \log\left(\frac{1}{2.4\,\delta}\right) \cdot \sum_{m=1}^{M} \max_{k \in \mathcal{A}_{m}} \frac{1}{q_{m,k}^{0} \, \Delta_{m,k}^{2}}.$$

■ Technique: change-of-measure arguments of Garivier and Kaufmann [2016]

ACHIEVABILITY: SUCCESSIVE ELIMINATION

Notations:

- $t_{m,k}(n)$: # pulls of arm $A_{m,k}$ up to round n
- \blacksquare UCB_{m,k}(n) = $\hat{\mu}_{m,k}(n) + \alpha_{\delta}(t_{m,k}(n))$
- $LCB_{m,k}(n) = \hat{\mu}_{m,k}(n) \alpha_{\delta}(t_{m,k}(n))$

Select box until each active arm is pulled *n* times in round *n*

Algorithm 1 Successive Elimination

```
Input: K, M, \delta > 0, A_m for m \in [M]
Output: \hat{a} \in [K] (best arm).
        Initialization: S = [K], B = [M], S_m = [a_m], n = 0
        \hat{\mu}_{m,k}(n) = 0 \ \forall k, m, \ S_m = \mathcal{A}_m \ \forall m, t = 0.
   1: while |S| > 1 do
              For each m \in B, select box m until every active arm A_m, in box
              m is pulled at least n times.
              For every box selection, increment t by 1.
              Update t_{m,k}(n), \hat{\mu}_{m,k}(n), UCB<sub>m,k</sub>(n) and LCB<sub>m,k</sub>(n) for all
             the active arms.
              if \exists A_{m',b'} \in S such that UCB_{m,b}(n) < LCB_{m',b'}(n) then
                   S_m \leftarrow S_m \setminus A_{m,k}, \quad S \leftarrow \bigcup_{m \in [M]} S_m,
                   B \leftarrow \{m : S_m \neq \emptyset\}.
             end if
             if |S| = 1 then
                   \hat{a} \leftarrow a \in S, S \leftarrow \emptyset, B \leftarrow \emptyset.
              end if
        end while
        return â
```

Theorem

Fix $\delta \in (0,1)$. With probability greater than $1 - \delta$:

- The SE algorithm outputs the correct best arm
- The SE algorithm stops at time $\leq \sum_{m=1}^{M} U_m$, where U_m is a random variable with

$$P\left(U_m = \max_{k \in \mathcal{A}_m} O\left(\frac{\ln\left(\frac{K}{\delta \Delta_{m,k}}\right)}{q_{m,k}^0 \Delta_{m,k}^2}\right)\right) \geq 1 - \frac{\delta |\mathcal{A}_m|}{K}.$$

Theorem

Fix $\delta \in (0,1)$. With probability greater than $1-\delta$:

- The SE algorithm outputs the correct best arm
- The SE algorithm stops at time $\leq \sum_{m=1}^{M} U_m$, where U_m is a random variable with

$$P\left(U_{m} = \max_{k \in \mathcal{A}_{m}} O\left(\frac{\ln\left(\frac{K}{\delta \Delta_{m,k}}\right)}{q_{m,k}^{0} \Delta_{m,k}^{2}}\right)\right) \geq 1 - \frac{\delta |\mathcal{A}_{m}|}{K}.$$

■ Lower bound = $\Omega\left(\sum_{m=1}^{M} \max_{k \in \mathcal{A}_m} \frac{1}{q_{m,k}^0 \Delta_{m,k}^2}\right)$ (order-wise matching in problem unknowns)

In Summary

- Problem studied: BAI with limited precision sampling
- Modified D-tracking algorithm to handle non-unique optimal box weights
- Partition setting: SE algorithm that selects each box until each active arm is pulled n times in round n
- Non-partition setting: SE/LUCB-type algorithm design is an open question

Thank You!

Questions? Hit me up!

Email: karthik@nus.edu.sg

Web: https://karthikpn.com

REFERENCES

- Rémy Degenne and Wouter M Koolen. Pure exploration with multiple correct answers. Advances in Neural Information Processing Systems, 32, 2019.
- Aurélien Garivier and Emilie Kaufmann. Optimal best arm identification with fixed confidence. In *Conference on Learning Theory*, pages 998–1027. PMLR, 2016.
- Yassir Jedra and Alexandre Proutiere. Optimal best-arm identification in linear bandits. *Advances in Neural Information Processing Systems*, 33:10007–10017, 2020.
- Emilie Kaufmann, Olivier Cappé, and Aurélien Garivier. On the complexity of best-arm identification in multi-armed bandit models. *The Journal of Machine Learning Research*, 17(1):1–42, 2016.