Analysis of electrical power and energy systems

Practical session 1

16 September 2021

$1 \quad \text{Exercises}^1$

- 1. Express the following voltages as phasors:
 - (a) $v_1(t) = \sqrt{2} \times 100 \cos(\omega t 30^{\circ}) \text{ V}$
 - (b) $v_2(t) = \sqrt{2} \times 100 \cos(\omega t + 30^\circ) \text{ V}$
- 2. The following series R-L-C circuit (Figure 1) is in a sinusoidal steady state at a frequency of 60 Hz. $V=120\mathrm{V},~R=1.5\Omega,L=20\mathrm{mH}$ and $C=100\mu\mathrm{F}$. Calculate i(t) in this circuit by using the phasor-domain analysis.

Figure 1: RLC series circuit.

- 3. In a linear circuit in sinusoidal steady state with only one active source $\overline{V} = 90 \angle 30^{\circ} \text{ V}$, the current in a branch is $\overline{I} = 5 \angle 15^{\circ} \text{ A}$. Calculate the current in the same branch if the source voltage were to be $100 \angle 0^{\circ} \text{V}$.
- 4. To the circuit of Figure 2, if a voltage of $100\angle 0^\circ$ V is applied, calculate P, Q and the power factor. Show that $Q = \sum_k I_k^2 X_k$.
- 5. In the circuit (Figure 3) the complex power drawn by the load impedance was calculated as $P_L + jQ_L = (1858.4 + j1031.3)$ VA, calculate the capacitive reactance in parallel, necessary to make the overall power factor to 0.9 (leading) if the applied voltage has an rms value of 120 V.

¹Exercises 2.1, 2.2, 2.4, 2.5 and 2.9 from Ned Mohan's book "Electric power systems, a first course"

Figure 2: Ex 4 circuit.

Figure 3: Power factor correction.

2 Solutions

Link to the python notebook shown during the session: Python Notebook TP1.

- 1. (a) $\overline{V}_1 = 100 \angle -30^\circ$ V (b) $\overline{V}_2 = 100 \angle 30^\circ$ V
- 2. $i(t) = 6.3\sqrt{2}\cos(376.99t + 1.49)$ A
- 3. $\overline{I} = 5.556 \angle 0.262 \text{ A}$
- 4. P=5192.64 W, Q=-1775.89 var, $\cos\phi=0.946,\,Q_R=0$ var, $Q_L=301.17$ var, $Q_C=-2077.06$ var
- 5. $X_C = -7.46 \ \Omega, \ C = 0.356 \ \mathrm{mF}$