Středoevropská olympiáda v informatice 2020

Šachovnice

Mýtický svět Šachovnice má podobu čtverečkové mřížky tvořené R řadami a C sloupci, kde R je větší nebo rovno C. Řady jsou očíslovány od 1 do R (zdola nahoru), sloupce od 1 do C (zleva doprava).

Obyvatele Šachovnice budeme nazývat *figurky*. Na Šachovnici žije jenom 5 typů figurek: pěšci, věže, střelci, dámy a králové. Na rozdíl od všeobecného přesvědčení tam nežijí žádní jezdci.

Každý typ figurek se pohybuje po Šachovnici svým vlastním způsobem: v jednom kroku

- pěšec se může posunout o jednu řadu dopředu (tj. z řady r na řadu r+1), aniž by změnil svůj sloupec;
- věž se může posunout o libovolný počet sloupců doleva nebo doprava, aniž by změnila svoji řadu, NEBO se může posunout o libovolný počet řad dopředu nebo dozadu, aniž by změnila svůj sloupec;
- střelec se může přemístit na libovolné políčko dvou diagonál protínajících se v místě, kde střelec právě stojí;
- dáma se může přemístit na libovolné políčko šachovnice, kam by se z její aktuální pozice mohla přemístit věž nebo střelec;
- král se může přesunout na kterékoliv z (nejvýše) 8 sousedních políček.

Na následujícím obrázku jsme znakem X označili všechna políčka na šachovnici, na která se může příslušná figurka přemístit v jednom kroku.

Nedávno se život na Šachovnici prudce zhoršil: procházející figurky mohou být nečekaně zajaty neznámými silami a jednoduše zmizí ze světa. Chtějí proto přecházet po šachovnici co nejrychleji (tj. nejmenším možným počtem kroků) a zajímá je také počet různých cest

1

v1

tvořených minimálním počtem kroků, které mohou použít - protože více možných cest pro ně znamená nižší nebezpečí. Dvě cesty považujeme za různé, pokud se liší alespoň v jednom navštíveném políčku.

V naší úloze budeme předpokládat, že figurky vstupují na Šachovnici v zadaném sloupci řady 1 a opouštějí Šachovnici v zadaném sloupci řady R (tzn. poslední řady). Vaším úkolem je zodpovědět Q takovýchto dotazů: Pro daný typ figurky, sloupec kde figurka vstupuje na řadu 1 a sloupec, kde figurka opouští šachovnici na řadě R, určete minimalní počet kroků, které musí figurka vykonat. Dále určete počet různých cest tvořených tímto minimálním počtem kroků, které může figurka použít.

Vstup

První řádek obsahuje tři celá čísla oddělená mezerou $R,\ C$ a $Q,\ která postupně znamenají počet řad, počet sloupců a počet dotazů. Následuje <math>Q$ řádků. Každý z těchto řádků obsahuje

- znak T určující typ figurky v dotazu ('P' pro pěšce (pawn), 'R' pro věž (rook), 'B' pro střelce (bishop), 'Q' pro dámu (qeen) a 'K' pro krále (king));
- dvě celá čísla c_1 a c_R , $1 \le c_1$, $c_R \le C$, která udávají, že figurka startuje ze sloupce c_1 řady 1 a má dojít na sloupec c_R řady R.

Výstup

Program vypíše Q řádků, kde i-tý z nich znamená odpověď na i-tý dotaz. Obsahuje dvě celá čísla oddělená mezerou. První z nich udává minimální potřebný počet kroků, druhé určuje počet různých cest tvořených tímto minimálním počtem kroků. Protože výsledná hodnota může být velmi velká, spočítejte ji modulo 10^9+7 . K tomu můžete využít knihovní funkce poskytované vyhodnocovačem.

Pokud cílového políčka nelze dosáhnout, vypište na výstup řádek "00 ".

Knihovna

Vyhodnocovač poskytuje následující knihovní funkce pro základní aritmetické výpočty modulo $10^9 + 7$. Ve všech případech vstupem mohou být libovolné korektní hodnoty typu **int** a výstupem je celé číslo z rozsahu hodnot $0, 1, 2, ..., 10^9 + 6$. Pro testování vašich řešení máte k dispozici ukázkovou implementaci popsanou v následujícím odstavci.

- int Add(int a, int b): sečte čísla a a b, vrátí výsledek modulo 10^9+7 .
- int Sub(int a, int b): odečte b od a, vrátí výsledek modulo $10^9 + 7$.
- int Mul(int a, int b): vynásobí čísla a a b, vrátí výsledek modulo $10^9 + 7$.
- int Div(int a, int b): spočítá podíl čísla a děleného číslem $b \neq 0$, vrátí výsledek modulo $10^9 + 7$; to znamená, že vrací hodnotu $0 \leq q < 10^9 + 7$ právě když výsledek volání Mul(b,q) je $(a \mod 10^9 + 7)$.

2

v1

Můžete předpokládat, že všechny výše uvedené operace se vykonávají v konstantním čase.

Pro přístup k těmto funkcím musíte přidat řádek **#include** "arithmetics.h" do seznamu include ve vašem programu.

Practice

Pomocný soubor sample.zip obsahuje hlavičkový soubor arithmetics.h s deklarací knižních funkcí a soubor arithmetics.cpp s ukázkovou implementací této knihovny, kterou můžete použít pro testování vašeho řešení.

Abyste je mohli použít, zkopírujte oba soubory do stejného adresáře, kde máte zdrojový kód svého řešení (např. soubor chessrush.cpp), a přidejte ve svém řešení do seznamu include řádek #include "arithmetics.h".

Poté jednoduše přeložte chessrush.cpp společně s arithmetics.cpp, například pomocí g++ -o chessrush arithmetics.cpp chessrush.cpp v příkazovém řádku. Nebo, pokud používáte project-based IDE, přidejte ručně všechny tyto soubory do vašeho projektu před sestavením řešení.

Správný výsledek pro ukázkové vstupy můžete nalézt v souborech output0.txt, output1.txt. Žádný z poskytnutých nástrojů a funkcí nekontroluje správnost vašich výsledků.

3

Při submitu svého řešení odevzdejte do vyhodnocovače pouze soubor chessrush.cpp.

Příklad

Vstup	$V\acute{y}stup$
8 8 5	0 0
P 1 2	2 2
R 4 8	2 5
Q 2 3	2 2
В 3 6	7 393
K 5 5	

Omezení

 $1 \le Q \le 1000$ $2 \le C \le 1000$ $C \le R \le 10^9$

Časový limit: 1.3 s

Paměťový limit: 64 MiB

v1

Bodování

Podúloha	Body	Omezení
1	0	příklad ze zadání
2	8	$T \in \{'P', 'R', 'Q'\},$ tj. všechny figurky jsou pěšci, věže a dámy
3	15	$T = 'B'$ a $C, R \le 100$
4	22	T = 'B'
5	5	$T = 'K'$ a $C, R \le 100$ a $Q \le 50$
6	8	$T = 'K'$ a $C, R \le 100$
7	15	$T = 'K'$ a $C \le 100$
8	20	T = 'K'
9	7	žádná další omezení

4