		. #1	. #2	. #2	ш1	#2	#2	шл	д г	#C	#1
		$\Delta_{1}^{\#1}{}_{lphaeta}$	$\Delta_{1}^{\#2}{}_{lphaeta}$	$\Delta_{1}^{\#3}{}_{lphaeta}$	$\Delta_{1^{-}}^{\#1}{}_{lpha}$	$\Delta_{1-lpha}^{\#2}$	$\Delta_{1}^{#3}{}_{\alpha}$	$\Delta_{1-lpha}^{\#4}$	$\Delta_{1}^{#5}{}_{\alpha}$	$\Delta_{1}^{\#6}{}_{lpha}$	$\mathcal{T}_{1-\alpha}^{\sharp 1}$
$\Delta_{1}^{#1} + \alpha$	$\frac{4}{3}\left(-\frac{1}{a}\right)$	$\frac{1}{a_0+4a_1-4a_2} + \frac{2a_1+a_2-2a_5-6a_7+2a_9}{2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9)}) \boxed{3}$	$\frac{2}{3} \sqrt{2} \left(-\frac{1}{a_0 + 4a_1 - 4a_2} - \frac{2(2a_1 + a_2 - 2a_5 - 6a_7 + 2a_9)}{2(2a_1 + a_2)(a_5 + 3a_7) + a_9^2 + a_0(2a_1 + a_2 - 2a_5 - 6a_7 + 2a_9)} \right)$	$-\frac{4(2a_1+a_2+a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	0	0	0	0	0	0	0
$\Delta_{1+}^{#2} + \alpha_{1+}^{a}$		$(2a_1+a_2-2a_5-6a_7+2a_9)$	2 8 (2 a ₁ +a ₂ -2 a ₅ -6 a ₇ +2 a ₉)	$4\sqrt{2}(2a_1+a_2+a_9)$	0	0	0	0	0	0	
-1''	3 '		$3(a_0+4a_1-4a_2) 3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))$		Ğ	J T	g .	<u> </u>	G		4
$\Delta_{1}^{#3} + \alpha$	αβ	$-\frac{4(2a_1+a_2+a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	$\frac{4\sqrt{2}(2a_1+a_2+a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	$-\frac{4 \left(a_{0}-2 a_{1}-a_{2}\right)}{3 \left(2 \left(2 a_{1}+a_{2}\right) \left(a_{5}+3 a_{7}\right)+a_{9}^{2}+a_{0} \left(2 a_{1}+a_{2}-2 a_{5}-6 a_{7}+2 a_{9}\right)\right)}$	0	0	0	0	0	0	0
$\Delta_1^{\#_1}$ †	_α	0	0	0	$\frac{4(2a_1+a_2-2a_5-6a_7+2a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	$\frac{4\sqrt{2}(2a_1+a_2-2a_5-6a_7+2a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	0	0	$-\frac{4\sqrt{\frac{2}{3}}(2a_1+a_2+a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	$\frac{4(2a_1+a_2+a_9)}{3\sqrt{3}(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	0
$\Delta_1^{#2}$ †	_α	0	0	0	$\frac{4\sqrt{2}(2a_1+a_2-2a_5-6a_7+2a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	$\frac{8(2a_1+a_2-2a_5-6a_7+2a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	0	0	$-\frac{8 (2 a_1+a_2+a_9)}{3 \sqrt{3} (2 (2 a_1+a_2) (a_5+3 a_7)+a_9^2+a_0 (2 a_1+a_2-2 a_5-6 a_7+2 a_9))}$	$\frac{4\sqrt{\frac{2}{3}}(2a_1+a_2+a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	0
$\Delta_1^{#3}$ †	_α	0	0	0	0	0	$-\frac{10}{9(a_0+2a_5-6a_7)}-\frac{1}{6(3a_0-2(a_5-8a_6+5a_7-4c_{13}k^2))}$	$\frac{1}{18} \sqrt{5} \left(\frac{4}{a_0 + 2a_5 - 6a_7} - \frac{3}{3a_0 - 2a_5 + 16a_6 - 10a_7 + 8c_{13}k^2} \right)$	$-\frac{1}{\sqrt{2} (9 a_0 - 6 (a_5 - 8 a_6 + 5 a_7 - 4 c_{13} k^2))}$	$-\frac{1}{9 a_0 - 6 (a_5 - 8 a_6 + 5 a_7 - 4 c_{13} k^2)}$	0
$\Delta_1^{\#4}$ †	_α	0	0	0	0	0	$\frac{1}{18} \sqrt{5} \left(\frac{4}{a_0 + 2a_5 - 6a_7} - \frac{3}{3a_0 - 2a_5 + 16a_6 - 10a_7 + 8c_{13}k^2} \right)$	$-\frac{2}{9(a_0+2a_5-6a_7)}-\frac{5}{6(3a_0-2(a_5-8a_6+5a_7-4c_{13}k^2))}$	$-\frac{\sqrt{\frac{5}{2}}}{9 a_0 - 6 (a_5 - 8 a_6 + 5 a_7 - 4 c_{13} k^2)}$	$-\frac{\sqrt{5}}{9 a_0 - 6 (a_5 - 8 a_6 + 5 a_7 - 4 c_{13} k^2)}$	0
$\Delta_1^{\#5}$ †	_α	0	O	0	$-\frac{4\sqrt{\frac{2}{3}}(2a_1+a_2+a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	$-\frac{8(2a_1+a_2+a_9)}{3\sqrt{3}(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	$-\frac{1}{\sqrt{2} (9a_0-6(a_5-8a_6+5a_7-4c_{13}k^2))}$	$-\frac{\sqrt{\frac{5}{2}}}{9 a_0-6 (a_5-8 a_6+5 a_7-4 c_{13} k^2)}$	$\frac{8(-a_0+2a_1+a_2)}{9(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))} - \frac{1}{9a_0-6(a_5-8a_6+5a_7-4c_{13}k^2)}$	$(\sqrt{2} (12a_0^2 - 3a_9^2 - a_0 (30a_1 + 15a_2 + 2a_5 - 64a_6 + 22a_7 + 6a_9 - 32c_{13}k^2) + 2(2a_1 + a_2) (a_5 - 32a_6 + 11a_7 - 16c_{13}k^2)))/$ $(9(2(2a_1 + a_2) (a_5 + 3a_7) + a_9^2 + a_0 (2a_1 + a_2 - 2a_5 - 6a_7 + 2a_9))$ $(3a_0 - 2(a_5 - 8a_6 + 5a_7 - 4c_{13}k^2)))$	+ 0
$\Delta_1^{\#6}$ †	_α	0	0	0	$\frac{4(2a_1+a_2+a_9)}{3\sqrt{3}(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	$\frac{4\sqrt{\frac{2}{3}}(2a_1+a_2+a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	$-\frac{1}{9 a_0-6 (a_5-8 a_6+5 a_7-4 c_{13} k^2)}$	$-\frac{\sqrt{5}}{9 a_0-6 (a_5-8 a_6+5 a_7-4 c_{13} k^2)}$	$(\sqrt{2} (12a_0^2 - 3a_9^2 - a_0 (30a_1 + 15a_2 + 2a_5 - 64a_6 + 22a_7 + 6a_9 - 32c_{13}k^2) + 2(2a_1 + a_2)(a_5 - 32a_6 + 11a_7 - 16c_{13}k^2)))/$ $(9(2(2a_1 + a_2)(a_5 + 3a_7) + a_9^2 + a_0(2a_1 + a_2 - 2a_5 - 6a_7 + 2a_9))$ $(3a_0 - 2(a_5 - 8a_6 + 5a_7 - 4c_{13}k^2)))$	$\frac{-4a_0 + 8a_1 + 4a_2}{9(2(2a_1 + a_2)(a_5 + 3a_7) + a_9^2 + a_0(2a_1 + a_2 - 2a_5 - 6a_7 + 2a_9))} - \frac{2}{9a_0 - 6(a_5 - 8a_6 + 5a_7 - 4c_{13}k^2)}$	0
${\mathcal T}_1^{\sharp 1}$ †	α	0	0	0	0	0	0	0	0	0	0

		$\Gamma_{1}^{\#1}{}_{lphaeta}$	$\Gamma_{1}^{\#2}{}_{\alpha\beta}$	$\Gamma_{1}^{\#3}{}_{\alpha\beta}$	$\Gamma_{1}^{\#1}$ α	$\Gamma_{1}^{\#2}$ α	Γ ₁ ^{#3} α	$\Gamma_{1^{-}\alpha}^{\#4}$	$\Gamma_{1}^{\#5}{}_{lpha}$	$\Gamma_{1}^{\#6}{}_{\alpha}$	$h_{1}^{\#1}\alpha$
Γ ₁ +	$\pm + \frac{\alpha\beta}{4}$	$\frac{1}{4} \left(-a_0 - 6 a_1 + 5 a_2 \right)$	$-\frac{a_0+2a_1-3a_2}{2\sqrt{2}}$	$\frac{1}{4} \left(-2 a_1 - a_2 - a_9 \right)$	0	0	0	0	0	0	0
Γ ₁ +2	$^{2} + ^{\alpha \beta}$	$-\frac{a_0+2a_1-3a_2}{2\sqrt{2}}$	$\frac{1}{2}\left(-2a_1+a_2\right)$	$\frac{2a_1 + a_2 + a_9}{2\sqrt{2}}$	0	0	0	0	0	0	0
Γ ₁ +3	3 † $^{\alpha\beta}$	$\frac{1}{4} \left(-2 a_1 - a_2 - a_9 \right)$	$\frac{2 a_1 + a_2 + a_9}{2 \sqrt{2}}$	$-\frac{3}{4} (2 a_1 + a_2 - 2 a_5 - 6 a_7 + 2 a_9)$	0	0	0	0	0	0	0
Γ ₁	¹ † ^α	0	0	0	$\frac{1}{12}(a_0-2a_1-a_2)$	$\frac{a_0 - 2a_1 - a_2}{6\sqrt{2}}$	0	0	$-\frac{2a_1+a_2+a_9}{2\sqrt{6}}$	$\frac{2a_1 + a_2 + a_9}{4\sqrt{3}}$	0
Γ ₁	² † ^α	0	0	0	$\frac{a_0 - 2a_1 - a_2}{6\sqrt{2}}$	$\frac{1}{6}$ $(a_0 - 2 a_1 - a_2)$	0	0	$-\frac{2a_1+a_2+a_9}{2\sqrt{3}}$	$\frac{2 a_1 + a_2 + a_9}{2 \sqrt{6}}$	0
Γ ₁	⁴³ † ^α	0	0	0	0	0	$\frac{1}{12} \left(-9 a_0 - 14 a_5 - 8 a_6 + 50 a_7 - 4 c_{13} k^2 \right)$	$\frac{1}{3} \sqrt{5} (a_5 - 2 a_6 - a_7 - c_{13} k^2)$	$\frac{-3a_0+2(a_5-8a_6+5a_7-4c_{13}k^2)}{12\sqrt{2}}$	$-\frac{a_0}{4} + \frac{1}{6} (a_5 - 8 a_6 + 5 a_7 - 4 c_{13} k^2)$	0
Γ ₁	±4 †α	0	0	0	0	0	$\frac{1}{3} \sqrt{5} (a_5 - 2a_6 - a_7 - c_{13} k^2)$	$\frac{1}{12} \left(-9 a_0 + 2 a_5 - 40 a_6 + 34 a_7 - 20 c_{13} k^2 \right)$	$\frac{1}{12} \sqrt{\frac{5}{2}} \left(-3 a_0 + 2 \left(a_5 - 8 a_6 + 5 a_7 - 4 c_{13} k^2 \right) \right)$	$\frac{1}{12} \sqrt{5} \left(-3 a_0 + 2 \left(a_5 - 8 a_6 + 5 a_7 - 4 c_{13} k^2 \right) \right)$	0
Γ ₁	±5 †α	0	0	0	$-\frac{2a_1+a_2+a_9}{2\sqrt{6}}$	$-\frac{2a_1+a_2+a_9}{2\sqrt{3}}$	$\frac{-3a_0+2(a_5-8a_6+5a_7-4c_{13}k^2)}{12\sqrt{2}}$	$\frac{1}{12} \sqrt{\frac{5}{2}} \left(-3 a_0 + 2 \left(a_5 - 8 a_6 + 5 a_7 - 4 c_{13} k^2 \right) \right)$	$\frac{1}{12} \left(-3 a_0 - 2 \left(6 a_1 + 3 a_2 - 7 a_5 + 8 a_6 - 23 a_7 + 6 a_9 + 4 c_{13} k^2 \right) \right)$	$-\frac{3 a_0 - 6 a_1 - 3 a_2 + 4 a_5 + 16 a_6 + 8 a_7 - 6 a_9 + 8 c_{13} k^2}{6 \sqrt{2}}$	0
Γ ₁	⁴ 6 † ^α	0	0	0	$\frac{2a_1 + a_2 + a_9}{4\sqrt{3}}$	$\frac{2a_1+a_2+a_9}{2\sqrt{6}}$	$-\frac{a_0}{4} + \frac{1}{6} (a_5 - 8 a_6 + 5 a_7 - 4 c_{13} k^2)$	$\frac{1}{12} \sqrt{5} \left(-3 a_0 + 2 \left(a_5 - 8 a_6 + 5 a_7 - 4 c_{13} k^2 \right) \right)$	$-\frac{3 a_0 - 6 a_1 - 3 a_2 + 4 a_5 + 16 a_6 + 8 a_7 - 6 a_9 + 8 c_{13} k^2}{6 \sqrt{2}}$	$\frac{1}{12} \left(-6 a_0 - 6 a_1 - 3 a_2 + 10 a_5 - 32 a_6 + 38 a_7 - 6 a_9 - 16 c_{13} k^2 \right)$	0
$h_1^{\#}$	¹ † ^α	0	0	0	0	0	0	0	0	0	0

Lagrangian density
$-\frac{1}{3} a_0 \Gamma_{\alpha \mu}^{\mu} \Gamma_{\beta}^{\alpha\beta} + \frac{1}{3} a_1 \Gamma_{\alpha \mu}^{\mu} \Gamma_{\beta}^{\alpha\beta} + \frac{1}{6} a_2 \Gamma_{\alpha \mu}^{\mu} \Gamma_{\beta}^{\alpha\beta} -$
$2 a_6 \Gamma_{\alpha \mu}^{\mu} \Gamma_{\beta}^{\alpha\beta} + \frac{1}{3} a_9 \Gamma_{\alpha \mu}^{\mu} \Gamma_{\beta}^{\alpha\beta} - \frac{1}{8} a_0 \Gamma_{\alpha\beta\mu} \Gamma^{\alpha\beta\mu} - a_1 \Gamma_{\alpha\beta\mu} \Gamma^{\alpha\beta\mu} +$
$\frac{1}{4} a_5 \Gamma_{\alpha\beta\mu} \Gamma^{\alpha\beta\mu} + \frac{9}{4} a_7 \Gamma_{\alpha\beta\mu} \Gamma^{\alpha\beta\mu} - \frac{1}{2} a_9 \Gamma_{\alpha\beta\mu} \Gamma^{\alpha\beta\mu} - \frac{1}{8} a_0 \Gamma_{\alpha\mu\beta} \Gamma^{\alpha\beta\mu} -$
$\frac{1}{2} a_2 \Gamma_{\alpha\mu\beta} \Gamma^{\alpha\beta\mu} + \frac{1}{4} a_5 \Gamma_{\alpha\mu\beta} \Gamma^{\alpha\beta\mu} + \frac{9}{4} a_7 \Gamma_{\alpha\mu\beta} \Gamma^{\alpha\beta\mu} - \frac{1}{2} a_9 \Gamma_{\alpha\mu\beta} \Gamma^{\alpha\beta\mu} - \frac{1}{2} \alpha_9 \Gamma^{\alpha\beta\mu} - $
$\frac{1}{2} a_2 \Gamma^{\alpha\beta\mu} \Gamma_{\beta\alpha\mu} - \frac{1}{2} a_5 \Gamma^{\alpha\beta\mu} \Gamma_{\beta\alpha\mu} - \frac{1}{2} a_0 \Gamma^{\alpha\beta\mu} \Gamma_{\beta\mu\alpha} + a_2 \Gamma^{\alpha\beta\mu} \Gamma_{\beta\mu\alpha} -$
$a_5 \Gamma^{\alpha\beta\mu} \Gamma_{\beta\mu\alpha} + \frac{1}{2} a_9 \Gamma^{\alpha\beta\mu} \Gamma_{\beta\mu\alpha} + \frac{1}{12} a_0 \Gamma^{\alpha\beta}_{\alpha} \Gamma^{\mu}_{\beta\mu} - \frac{2}{3} a_1 \Gamma^{\alpha\beta}_{\alpha} \Gamma^{\mu}_{\beta\mu} -$
$\frac{1}{3} a_2 \Gamma^{\alpha \beta}_{\alpha} \Gamma^{\mu}_{\beta \mu} + \frac{1}{2} a_5 \Gamma^{\alpha \beta}_{\alpha} \Gamma^{\mu}_{\beta \mu} + \frac{1}{2} a_7 \Gamma^{\alpha \beta}_{\alpha} \Gamma^{\mu}_{\beta \mu} - \frac{1}{2} a_9 \Gamma^{\alpha \beta}_{\alpha} \Gamma^{\mu}_{\beta \mu} +$
$\frac{1}{12} a_0 \Gamma^{\alpha\beta}_{\alpha} \Gamma^{\mu}_{\beta \mu} + \frac{1}{2} a_5 \Gamma^{\alpha\beta}_{\alpha} \Gamma^{\mu}_{\beta \mu} + \frac{1}{2} a_7 \Gamma^{\alpha\beta}_{\alpha} \Gamma^{\mu}_{\beta \mu} - \frac{1}{6} a_9 \Gamma^{\alpha\beta}_{\alpha} \Gamma^{\mu}_{\beta \mu} +$
$a_1 \Gamma^{\alpha\beta\mu} \Gamma_{\mu\beta\alpha} - \frac{1}{2} a_5 \Gamma^{\alpha\beta\mu} \Gamma_{\mu\beta\alpha} + \frac{1}{2} a_9 \Gamma^{\alpha\beta\mu} \Gamma_{\mu\beta\alpha} + \frac{1}{6} a_0 \Gamma^{\alpha\beta}_{\alpha} \Gamma^{\mu}_{\beta\mu} -$
$a_7 \Gamma^{\alpha \beta}_{\alpha} \Gamma^{\mu}_{\beta\mu} + \tfrac{1}{6} a_9 \Gamma^{\alpha \beta}_{\alpha} \Gamma^{\mu}_{\beta\mu} - \tfrac{1}{2} a_7 \Gamma^{\alpha\beta}_{\alpha} \Gamma^{\mu}_{\beta\mu} + \tfrac{1}{3} a_1 \Gamma^{\alpha \beta}_{\alpha} \Gamma^{\mu}_{\mu\beta} +$
$\frac{1}{6} a_2 \Gamma^{\alpha \beta}_{\alpha} \Gamma^{\mu}_{\mu\beta} - \frac{1}{2} a_7 \Gamma^{\alpha \beta}_{\alpha} \Gamma^{\mu}_{\mu\beta} + \frac{1}{6} a_9 \Gamma^{\alpha \beta}_{\alpha} \Gamma^{\mu}_{\mu\beta} - \frac{1}{2} a_0 \Gamma^{\alpha\beta\mu}_{\alpha\beta} \partial_{\beta}h_{\alpha\mu} -$
$\frac{1}{4} a_0 \Gamma^{\alpha}_{\alpha}{}^{\beta} \partial_{\beta} h^{\mu}_{\mu} + \frac{1}{4} a_0 \Gamma^{\alpha\beta}_{\alpha} \partial_{\beta} h^{\mu}_{\mu} - \frac{1}{4} a_0 h^{\mu}_{\mu} \partial_{\beta} \Gamma^{\alpha}_{\alpha}{}^{\beta} +$
$\frac{1}{4} a_0 h^{\mu}_{\ \mu} \partial_{\beta} \Gamma^{\alpha\beta}_{\ \alpha} - \frac{1}{2} a_0 h_{\alpha\mu} \partial_{\beta} \Gamma^{\alpha\beta\mu} + \frac{1}{4} a_0 h^{\alpha\beta} \partial_{\beta} \partial_{\alpha} h^{\mu}_{\ \mu} -$
$\frac{1}{8} a_0 \partial_{\beta} h^{\mu}_{\ \mu} \partial^{\beta} h^{\alpha}_{\ \alpha} + \frac{1}{2} a_0 \Gamma^{\alpha}_{\ \alpha}{}^{\beta} \partial_{\mu} h^{\mu}_{\beta}{}^{\mu} + \frac{1}{4} a_0 \partial^{\beta} h^{\alpha}_{\ \alpha} \partial_{\mu} h^{\mu}_{\beta}{}^{\mu} -$
$\frac{1}{2} a_0 h^{\alpha\beta} \partial_{\mu} \partial_{\beta} h_{\alpha}^{\ \mu} + \frac{1}{4} a_0 h^{\alpha}_{\ \alpha} \partial_{\mu} \partial_{\beta} h^{\beta\mu} + \frac{1}{4} a_0 h^{\alpha\beta} \partial_{\mu} \partial^{\mu} h_{\alpha\beta} -$
$\frac{1}{4} a_0 h^{\alpha}_{\alpha} \partial_{\mu} \partial^{\mu} h^{\beta}_{\beta} - \frac{1}{4} a_0 \partial_{\beta} h_{\alpha\mu} \partial^{\mu} h^{\alpha\beta} + \frac{1}{8} a_0 \partial_{\mu} h_{\alpha\beta} \partial^{\mu} h^{\alpha\beta} +$
$\frac{1}{2} a_0 h_{\beta\mu} \partial^{\mu} \Gamma^{\alpha}_{\alpha}{}^{\beta} + c_{13} \partial_{\alpha} \Gamma^{\nu}_{\mu\nu} \partial^{\mu} \Gamma^{\alpha\beta}_{\beta} - c_{13} \partial_{\mu} \Gamma^{\nu}_{\alpha\nu} \partial^{\mu} \Gamma^{\alpha\beta}_{\beta}$
Added source term: $h^{\alpha\beta} \mathcal{T}_{\alpha\beta} + \Gamma^{\alpha\beta\chi} \Delta_{\alpha\beta\chi}$

$\Gamma_{2}^{#2} + \alpha \beta \chi$	$\Gamma_{2}^{#1} + \alpha \beta \chi$	$h_{2+}^{#1} + \alpha \beta$	$\Gamma_{2+}^{#3} + \alpha \beta$	$\Gamma_{2+}^{\#2} + \alpha\beta$	$\Gamma_{2+}^{#1} + \alpha \beta$			Γ ₀ -1 + 0	
0	0	0	$-\frac{1}{4}\sqrt{3}(2a_1+a_2+a_9)$	0	$\frac{1}{4}(a_0-2a_1-a_2)$	$\Gamma^{\#1}_{2^+lphaeta}$	İ	0	
0	0	0	0	$-\frac{3}{4}(a_0+2a_5-6a_7)$	0	$\Gamma_{2}^{\#2}\alpha \beta$			
0	0	0	$-\frac{3}{4}\left(2a_1+a_2-2a_5-6a_7+2a_9\right)$	0	$-\frac{1}{4}\sqrt{3}(2a_1+a_2+a_9)$	Γ#3 2+αβ		0 0	
0	0	$-\frac{a_0 k^2}{8}$	0	0	0	$h_{2}^{\#1}{}_{lphaeta}$			
$-\frac{1}{4}\sqrt{3}(2a_1+a_2+a_9)$	$\frac{1}{4}(a_0 - 2a_1 - a_2)$	0	0	0	0	Γ#1 2 ⁻ αβχ		$0 0 -\frac{a_0}{2} - 2$	
$\left -\frac{1}{4} \sqrt{3} (2a_1 + a_2 + a_9) \right -\frac{3}{4} (2a_1 + a_2 - 2a_5 - 6a_7 + 2a_7 + 2$	$-\frac{1}{4}\sqrt{3}(2a_1+a_2+a_9)$	0	0	0	0	$\Gamma_{2^-}^{\#2} lpha eta_X$		$-\frac{a_0}{2} - 2a_1 + 2a_2$ $-\frac{\mu_1}{2} + \alpha \beta \chi$ - 3	

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		n								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0				0		0	0	$h_{0+}^{#2}$ †
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0				0		0	0	$h_{0+}^{#1}$ +
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0		$+2(a_5-8a_6+5a_7))$	$\frac{1}{4}(-3a_0$	$\frac{-3a_0+2(a_5-8a_6+5a_7)}{4\sqrt{2}}$		$\frac{-3a_0+2(a_5-8a_6+5a_7)}{4\sqrt{2}}$	0	0 ^{#4} +
	0	0				$(a_0 - 2(a_5 + 4a_6 - 7a_7))$	1 ₄ (-3	$a_5 - 2 a_6 - a_7$	0	Γ ₀ ^{#3} †
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0			<u>-3 a,</u>	$a_5 - 2 a_6 - a_7$)	$(-3 a_0 - 2 (a_5 + 4 a_6 - 7 a_7)$	0 1/4	Γ ₀ ^{#2} †
	0	0				0		0	0	「#1 +
$ \frac{3(a_0+2a_5-6a_7)}{3(a_0+2a_5-6a_7)} \frac{1}{6a_0-4(a_5-8a_6+5a_7)} - \frac{1}{\sqrt{2}(3a_0-2(a_5-8a_6+5a_7))} - \frac{1}{\sqrt{2}(3a_0-2(a_5-8a_6+5a_7)$	Γ# ¹	#2)+				Γ ₀ +3		Γ#2 0+	Γ#1 0 ⁺	
$\frac{1}{3(a_0+2a_5-6a_7)} - \frac{1}{6a_0-4(a_5-8a_6+5a_7)} - \frac{1}{3(a_0+2a_5-6a_7)} - \frac{1}{6a_0-4(a_5-8a_6+5a_7)} - \frac{1}{\sqrt{2}(3a_0-2(a_5-8a_6+5a_7))} - \frac{1}{\sqrt{2}(3a_0-2(a_5-8a_6+$										
$\frac{1}{3(a_0+2a_5-6a_7)} - \frac{1}{6a_0-4(a_5-8a_6+5a_7)} - \frac{1}{3(a_0+2a_5-6a_7)} - \frac{1}{6a_0-4(a_5-8a_6+5a_7)} - \frac{1}{\sqrt{2}(3a_0-2(a_5-8a_6+5a_7))} - \frac{1}{\sqrt{2}(3a_0-2(a_5-8a_6+$	$-\frac{2}{a_0+4a_1-4a_2}$	0	0	0		0		0	0	$\Delta_{0^{-}}^{\#1}$ †
$\frac{1}{3(a_0+2a_5-6a_7)} - \frac{1}{6a_0-4(a_5-8a_6+5a_7)} - \frac{1}{3(a_0+2a_5-6a_7)} - \frac{1}{6a_0-4(a_5-8a_6+5a_7)} - \frac{1}{\sqrt{2}(3a_0-2(a_5-8a_6+5a_7))} - \frac{1}{\sqrt{2}(3a_0-2(a_5-8a_6+5a_7))} - \frac{1}{\sqrt{2}(3a_0-2(a_5-8a_6+5a_7))} - \frac{1}{\sqrt{2}(3a_0-2(a_5-8a_6+5a_7))} - \frac{1}{3a_0+2(a_5-8a_6+5a_7)} - \frac{1}{3a_0+2(a_5-8a_6$	0	0	0	0		0		0	0	$\mathcal{T}_{0^{+}}^{#2}$ †
$\frac{1}{\sqrt{2}(3a_0-2(a_5-8a_6+5a_7))} - \frac{1}{\sqrt{2}(3a_0-2(a_5-8a_6+5a_7))} - \frac{1}{\sqrt{2}(3a_0-2(a_5-8a_6+5a_7)} - \frac{1}{\sqrt{2}(3a_0-2(a_5-8a_6+5a_7))} - \frac{1}{\sqrt{2}(3a_0-2(a_5-8a_6+5a_7)} - \frac{1}{\sqrt{2}(3a_0-2(a_5-8a_6+5a_7))} - \frac{1}{\sqrt{2}(3a_0-2(a_5-8a_6+5a_7)} - \frac{1}{\sqrt{2}(3a_0-2(a_5-8a_6+5a_7)} - \frac{1}{\sqrt{2}(3a_0-2(a_5-8a_6+5a_7)} - \frac{1}{\sqrt{2}(3a_0-2(a_5-8a_6+5a_7)} - \frac{1}{\sqrt{2}(3a_0-2(a_5-8a_6+5a_7)} - \frac{1}{\sqrt{2}(3a_0-2(a_5-8a_6+5a_7)} - $	0	0	$\frac{4}{a_0 k^2}$	0		0		0	0	$\mathcal{T}_{0^{+}}^{#1}$ †
$\frac{1}{3(a_0+2a_5-6a_7)} - \frac{1}{6a_0-4(a_5-8a_6+5a_7)} - \frac{1}{3(a_0+2a_5-6a_7)} - \frac{1}{6a_0-4(a_5-8a_6+5a_7)} - \frac{1}{\sqrt{2}(3a_0-2(a_5-8a_6+5a_7))} - \frac{1}{\sqrt{2}(3a_0-2(a_5-2a_5+5a_7)} - \frac{1}{\sqrt{2}(3a_0-2a_5+5a_7)} - \frac{1}{\sqrt{2}(3a_0-2a_5+5a_7)} - \frac{1}{\sqrt{2}(3a_0-2a_5+5a_7)} - \frac{1}{\sqrt{2}(3a$	0	0	0	$\frac{1}{-3 a_0 + 2 (a_5 - 8 a_6 + 5 a_7)}$	5 47))	$-\frac{1}{\sqrt{2}(3x_0-2(a_5-8a_6+5))}$)	$-\frac{1}{\sqrt{2}(3a_0-2(a_5-8a_6+5a_7))}$	0	$\Delta_{0+}^{#4}$ †
	0	0	0	$-\frac{1}{\sqrt{2}(3a_0-2(a_5-8a_6+5a_7))}$	$\frac{1}{3-8a_6+5a_7}$	1	;+5 <i>a</i> 7)	1	0	$\Delta_{0}^{#3}$ †

	$\Delta_{2}^{\#1}{}_{\alpha\beta}$	$\Delta_{2}^{\#2}{}_{lphaeta}$	$\Delta_{2}^{\#3}{}_{lphaeta}$	${\mathcal T}_{{\mathtt 2}^+ {lpha} {eta}}^{{\sharp} 1}$	$\Delta_{2^{-}lphaeta\chi}^{\#1}$	$\Delta_{2^{-}lphaeta\chi}^{\#2}$
$\Delta_{2}^{#1} \dagger^{lphaeta}$	$\frac{4 (2 a_1 + a_2 - 2 a_5 - 6 a_7 + 2 a_9)}{2 (2 a_1 + a_2) (a_5 + 3 a_7) + a_9^2 + a_0 (2 a_1 + a_2 - 2 a_5 - 6 a_7 + 2 a_9)}$	0	$-\frac{4 \left(2 a_{1}+a_{2}+a_{9}\right)}{\sqrt{3} \left(2 \left(2 a_{1}+a_{2}\right) \left(a_{5}+3 a_{7}\right)+a_{9}^{2}+a_{0} \left(2 a_{1}+a_{2}-2 a_{5}-6 a_{7}+2 a_{9}\right)\right)}$	0	0	0
$\Delta_{2}^{\#2} \dagger^{\alpha\beta}$	0	$-\frac{4}{3(a_0+2a_5-6a_7)}$	0	0	0	0
$\Delta_{2}^{#3} \dagger^{\alpha\beta}$	$-\frac{4 \left(2 a_{1}+a_{2}+a_{9}\right)}{\sqrt{3} \left(2 \left(2 a_{1}+a_{2}\right) \left(a_{5}+3 a_{7}\right)+a_{9}^{2}+a_{0} \left(2 a_{1}+a_{2}-2 a_{5}-6 a_{7}+2 a_{9}\right)\right)}$	0	$-\frac{4 (a_0-2 a_1-a_2)}{3 (2 (2 a_1+a_2) (a_5+3 a_7)+a_9^2+a_0 (2 a_1+a_2-2 a_5-6 a_7+2 a_9))}$	0	0	0
${\mathcal T}_{2}^{\sharp 1}\dagger^{lphaeta}$	0	0	0	$-\frac{8}{a_0 k^2}$	0	0
$\Delta_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	0	0	$\frac{4(2a_1+a_2-2a_5-6a_7+2a_9)}{2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9)}$	$-\frac{4 \left(2 a_{1}+a_{2}+a_{9}\right)}{\sqrt{3} \left(2 \left(2 a_{1}+a_{2}\right) \left(a_{5}+3 a_{7}\right)+a_{9}^{ 2}+a_{0} \left(2 a_{1}+a_{2}-2 a_{5}-6 a_{7}+2 a_{9}\right)\right)}$
$\Delta_2^{\#2} \dagger^{\alpha\beta\chi}$	0	0	0	0	$-\frac{4 \left(2 a_{1}+a_{2}+a_{9}\right)}{\sqrt{3} \left(2 \left(2 a_{1}+a_{2}\right) \left(a_{5}+3 a_{7}\right)+a_{9}^{2}+a_{0} \left(2 a_{1}+a_{2}-2 a_{5}-6 a_{7}+2 a_{9}\right)\right)}$	$-\frac{4 (a_0-2 a_1-a_2)}{3 (2 (2 a_1+a_2) (a_5+3 a_7)+a_9^2+a_0 (2 a_1+a_2-2 a_5-6 a_7+2 a_9))}$

	Massive partic	le
? /	Pole residue:	$\left \frac{1}{4c_{13}} > 0 \right $
$J^P = 1$	Polarisations:	3
k^{μ}	Square mass:	$\frac{-3a_0 + 2(a_5 - 8a_6 + 5a_7)}{8c_{13}} > 0$
?	Spin:	1
	Parity:	Odd

Unitarity conditions $a_0 < 0 \&\& a_7 > \frac{1}{10} (3 a_0 - 2 a_5 + 16 a_6) \&\& c_{13} > 0$