الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

دورة: 2017

امتحان بكالوريا التعليم الثانوي

الشعبة: تقني رياضي

المدة: 04 سا و30د

اختبار في مادة: التكنولوجيا (هندسة الطرائق)

على المترشح أن يختار أحد الموضوعين الآتيين:

الموضوع الأول

يحتوي الموضوع الأول على (03) صفحات (من الصفحة 1 من 6 إلى الصفحة 3 من 6)

التمرين الأول: (08 نقاط)

- منه أعطى (X) منه أعطى $C_nH_{2n}O_2$ عند إحراق (X) منه أعطى (X) منه أعطى (X) منه أعطى (X) منه أعطى أدريون (X) منه أدريون أدريون (X) منه أدريون أدر
 - n اكتب معادلة تفاعل الاحتراق التام للمركب (X) بدلالة (X)
 - ب) جد الصيغة المجملة للمركب (X).
 - ج) عين الصيغ نصف المفصلة الممكنة لهذا المركب.

يعطى:

$$H = 1 \text{ g/mol}$$
 $C = 12 \text{ g/mol}$ $O = 16 \text{ g/mol}$

2) لمعرفة صيغة المركب (X) نجري سلسلة التفاعلات الأتية:

1)
$$C_2H_2 + H_2 \longrightarrow A$$

2) A +
$$O_3$$
 \longrightarrow B

3) B +
$$H_2O$$
 \longrightarrow 2C + H_2O_2

4)
$$C + CH_3-MgCl \longrightarrow D$$

5) D +
$$H_2O$$
 \longrightarrow E + $MgCl(OH)$

6) E
$$\frac{\text{KMnO}_4}{\text{H}_2\text{SO}_4} \rightarrow \text{F}$$

7)
$$F + CH_3-OH \xrightarrow{H_2SO_4} X + H_2O$$

- اكتب الصيغ نصف المفصلة للمركبات: (A) ، (B) ، (C) ، (B) ، (C) ، (B) ، (A)

اختبار في مادة: التكنولوجيا (هندسة الطرائق) / الشعبة: تقنى رياضي / بكالوريا 2017

 N_2O_5 الدراسة الحركية لتفاعل تفكك المركب N_2O_5 الحي NO_2 و NO_3 و NO_3 الرتبة الأولى. N_2O_5 الدراسة الحركية لتفاعل من الرتبة الأولى. N_2O_5 الدراسة الحركية لتفاعل تفكك المركب N_2O_5 المركب ال

- 1) اكتب معادلة التفاعل الحادث.
- $(t_{1/2})$ احسب زمن نصف التفاعل (2
- 3) احسب سرعة التفاعل (V) بعد مرور زمن قدره ساعة واحدة.

التمرين الثانى: (06 نقاط)

-I لتحديد قرينة الحموضة (I_a) لزيت الزيتون استخدمنا:

الأدوات	المواد
- سحاحة سعتها (10 cm ³)	- كحول إيثيلي (°95)
$-$ أرلن ماير (250 cm 3)	- محلول البوتاس KOH (0,1 mol/L)
– ماصة (10 cm ³)	 كاشف فينول فتالين
– میزان حساس	– ماء مقطر

باعتبار أنّ كتلة العيّنة (زيت الزيتون) $m_E=5g$ قد تفاعلت مع 1,5ml من محلول $m_E=5g$ (زيت الزيتون) المطلوب:

- 1) ما دور الكحول الإيثيلي في التجربة؟
 - 2) جد عبارة قرينة الحموضة (I_a).

 $I_a = (0,6-2)$ احسب قيمة (I_a) و هل هي متطابقة مع المواصفات الدولية حيث: (I_a) عطي:

$$H = 1 \text{ g/mol}$$
 \cdot $O = 16 \text{ g/mol}$ \cdot $K = 39 \text{ g/mol}$

II- ثلاثي ببتيد Glu-Cys-Ala ذو الصيغة الكيميائية الآتية:

$$\begin{array}{cccc} O & O \\ \parallel & \parallel \\ \text{H}_2\text{N-CH-C-NH-CH-C-NH-CH-COOH} \\ (\text{CH}_2)_2 & \text{CH}_2 & \text{CH}_3 \\ \text{COOH} & \text{SH} \end{array}$$

اختبار في مادة: التكنولوجيا (هندسة الطرائق) / الشعبة: تقنى رياضي / بكالوريا 2017

1) أعط الصيغ الكيميائية للأحماض الأمينية المكونة لثلاثي الببتيد، ثم صنفها.

2) اكتب الصيغ الأيونية للحمض الأميني الغلوتاميك (Glu) عند تغير الـ pH من 1 إلى 12 ،

ثم أحسب قيمة pH_i له.

تعطى قيم pKa للحمض الأميني الغلوتاميك (Glu):

$$pKa_1 = 2,19$$
 $\rho Ka_R = 4,25$ $pKa_2 = 9,67$

3) أكمل التفاعلات الأتية:

2) 2Cys $\frac{-2H^+}{+2H^+}$

3) Glu + HNO₂ ----- +

التمرين الثالث: (06 نقاط)

: وفق التفاعل الأتي الصلب عند 25° C وفق التفاعل الأتي المتراق

$${^{C}_{6}}^{H_{5}}\text{-COOH}_{(s)} + {^{O}_{2(g)}} \longrightarrow {^{CO}_{2(g)}} + {^{H}_{2}}^{O}_{(\ell)}$$

- أ) وازن معادلة التفاعل.
- $m{\varphi}$ احسب الأنطالبي المعياري ($\Delta H_{
 m f}^0$) لتشكل حمض البنزويك الصلب.

يعظى:

$$\Delta H_{comb}^{0} = -3227 \text{ kJ/mol}$$

$$\Delta H_{f}^{0}(CO_{2(g)}) = -393 \text{ kJ/mol}$$

$$\Delta H_{f}^{0}(H_{2}O_{(\ell)}) = -286 \text{ kJ/mol}$$

احسب أنطالبي احتراق (ΔH_{comb}^0) حمض البنزويك الصلب عند 50° C حيث:

المركب	C_6H_5 -COOH (g)	$\text{CO}_{2(g)}$	$^{\mathrm{H}_2\mathrm{O}}_{(\ell)}$	$\mathrm{O}_{2(g)}$
$C_p (J.mol^{-1}.K^{-1})$	146,7	37,58	75,29	29,36

. (ΔH_{fus}) احسب أنطالبي انصهار حمض البنزويك (3

$$\Delta H_{\rm f}^{0}({\rm C_6H_5\text{-}COOH}_{(\ell)}) = -362,4 \ {\rm kJ/mol}$$
 علما أنّ:

للزمة لانصهار (Q) اللازمة المناويك. ((Q) اللازمة المناويك.

يعظى:

$$H = 1 \text{ g/mol}$$
 $C = 12 \text{ g/mol}$ $O = 16 \text{ g/mol}$

انتهى الموضوع الأول

الموضوع الثانى

يحتوي الموضوع الثاني على (03) صفحات (من الصفحة 4 من 6 إلى الصفحة 6 من 6) التمرين الأول: (08 نقاط)

مركب عضوي مغنزيومي (A) صيغته R-MgCl ، كتلته المولية 74,5 g/mol ، حيث (R) جذر ألكيلي.

1)جد الصيغة نصف المفصلة للمركب (A).

يعظى:

Cl = 35,5 g/mol , Mg = 24 g/mol , H=1 g/mol , C=12 g/mol . (A) انطلاقا من الميثانول وكواشف أخرى . (2) اكتب التفاعلات الكيميائية التي تسمح بالحصول على المركب (3) انطلاقا من الميثانول وكواشف أخرى .

3) نجرى انطلاقا من المركب (A) سلسلة التفاعلات الكيميائية الأتية:

1) A +
$$H_3C-C\equiv N \longrightarrow B$$

2) B +
$$2H_2O$$
 \longrightarrow C + $MgCl(OH)$ + NH_3

3) C +
$$H_2$$
 \longrightarrow D

4) D +
$$SOCI_2$$
 \longrightarrow E + SO_2 + HCI

5) E + Mg
$$\rightarrow$$
 F

6) F +
$$CO_2$$
 $\xrightarrow{H_2O}$ G + MgCl(OH)

7) G + D
$$\frac{H_2SO_4}{CH_3 \ O}$$
 $H_3C-CH-C-O-CH-CH_3 + H_2O$

- أ) جد الصيغ نصف المفصلة للمركبات: (B) ، (C) ، (B) ، (C) ، (B) . (أ)
 - ب) استنتج مردود التفاعل (7) علما أن المزيج الابتدائي متساوي المولات.
 - ج) يتشكل عند التوازن 0,3mol من الأستر .
 - احسب عدد المولات الابتدائية لكل من المركبين (G) و (D)
 - (H) المتبوع بالإماهة يؤدي إلى مركب ال(G) بواسطة المتبوع بالإماهة يؤدي إلى مركب المتبوع بالإماهة يؤدي المركب المتبوع بالإماهة يؤدي المركب (G)
 - (I) عند 170° C عند $H_{2}SO_{4}$ عند (H) يعطي مركب نزع الماء من المركب
 - بلمرة المركب (I) تؤدي إلى بوليمير (J
 - أ) اكتب الصيغة نصف المفصلة لكل من المركبين (H) و (I) .
 - ب) أعط الصيغة العامة للبوليمير (J) .

التمرين الثاني: (06 نقاط)

 \mathbf{C} 16 : 1 Δ^9 : مره (A) د شني غليسريد متجانس (TG) يدخل في تركيبه حمض دهني (A) رمزه \mathbf{I}

1) اكتب الصيغة نصف المفصلة لثلاثي الغليسريد المتجانس (TG).

له. (I_i) مع اليود (I_2) ، ثم أحسب قرينة اليود (TG) له.

يعظى:

II- لديك الأحماض الأمينية الأتية:

Arg أرغنين	Phe فنيل ألانين	Glu حمض الغلوتاميك	الحمض الأميني
$(\overset{I}{CH_2})_3$ $\overset{I}{NH}$ $\overset{I}{C}=NH$ $\overset{I}{NH_2}$	CH ₂	(CH ₂) ₂ COOH	السلسلة الجانبية(R-)

- 1) صنّف هذه الأحماض الأمينية.
- $pKa_2 = 9,13$ ، $pKa_1 = 1,83$ إذا علمت أنّ pH_i الميني فينيل الانين pH_i الحسب $pKa_2 = 9,13$
 - 3) اكتب الصيغ الأيونية للحمض الأميني فينيل الانين Phe عند تغير الـ pH من 1 إلى 12.
 - pH= 5,48 نضع مزيج الأحماض الأمينية السابقة في جهاز الهجرة الكهربائية عند
 وضّح بالرسم مواقع هذه الأحماض الأمينية على شريط الهجرة الكهربائية.

يعظى:

$$pH_{i \text{ (Arg)}} = 10,76$$
 $pH_{i \text{ (Glu)}} = 3,22$

اختبار في مادة: التكنولوجيا (هندسة الطرائق) / الشعبة: تقنى رياضي / بكالوريا 2017

التمرين الثالث: (06 نقاط)

ا احتراقا تاما. 1atm عند درجة حرارة $C_4H_{8(g)}$ عند درجة حرارة -1 وضغط -1 احتراقا تاما.

. اكتب معادلة تفاعل احتراق البوت -1 ن الغازي (1

2) احسب أنطالبي احتراق البوت -1 ن الغازي.

يعظى:

المركب	${\rm CO}_{2(g)}$	$H_2O_{(\ell)}$	$C_4H_{8(g)}$
$\Delta H_{\rm f}^0({ m kJ.mol^{-1}})$	-393	-286	-0,4

3) أ) مثّل مخطط تشكل البوت -1- ن الغازي.

. $\Delta H^0_{sub}(C_{(s)})$ احسب أنطالبي التصعيد للكربون الصلب

يعطى:

الرابطة	Н-Н	С-Н	C-C	C=C
$\Delta H_{diss}^{0}(kJ.mol^{-1})$	436	413	348	612

: ② الذي يمثل انتقال غاز مثالى من الحالة الابتدائية P = f(V) الذي يمثل انتقال غاز مثالى من الحالة الابتدائية

- (a) ما نوع كل من التحولين (a) و (b) ؟
 - 2) احسب العمل W لكل تحوّل.

يعطى:

$$1atm = 1,013.10^5 Pa$$

انتهى الموضوع الثاني

	العلاد	عناصر الإجابة (الموضوع الأول)
مجموع	مجزأة	التمرين الأول: (08 نقاط)
		, , , , ,
2,25		(1 -I
2,25		أ) كتابة معادلة الاحتراق التام بدلالة n
	0,5	$C_nH_{2n}O_2 + \frac{3n-2}{2}O_2 \longrightarrow nCO_2 + nH_2O$
		ب) إيجاد الصيغة المجملة للمركب X:
		من المعادلة لدينا:
	0,5	$1 \text{mol } (x) \rightarrow \text{n mol } (CO_2)$
	0,3	$M_X = (14n+32) g \rightarrow n \times 44 g$
	0,25	$0.7 \text{ g} \rightarrow 1.25 \text{ g}$
	·	$1,25 \times (14n+32) = 0,70 \times 44 \times n \implies n = 3$
	0,25	ومنه المركب X : C ₃ H ₆ O ₂
	0,20	3 0 2
		ج) الصيغ الممكنة للمركب X:
	0,25×3	CH_3-CH_2-C-OH $CH_3-C-O-CH_3$ $H-C-O-CH_2-CH_3$
		2) كتابة الصيغ نصف المفصلة للمركبات :
<u>3,25</u>		A: $H_2C = CH_2$ B: $H_2C \cap CH_2$
		O-O
	0,5×6	$C: H-C-H$ $D: CH_3-CH_2-OMgCl$
		$E: CH_3-CH_2-OH$ $F: CH_3-C-OH$
	0,25	$X : CH_3 - \overset{\circ}{C} - O - CH_3$
0,25		$(1-\mathbf{II})$ کتابة معادلة التفاعل :
	0,25	$N_2O_5 \longrightarrow 2NO_2 + \frac{1}{2}O_2$
		11205 - 21102 - 202
0,75	0.5	$t_{1/2} = \frac{\ln 2}{t}$:($t_{1/2}$) حساب زمن نصف التفاعل (2
	0,5	k (1/2) b 41. (2)

1,5	0,25	$t_{1/2} = \frac{0.69}{5 \times 10^{-3}} = 138 \text{ min}$
1, 3		3)حساب سرعة التفاعل V:
	0,5	$V=k\times[N_2O_5]$
		- حساب [N ₂ O ₅]:
	0,5	$\ln \frac{\left[N_2 O_5\right]}{\left[N_2 O_5\right]_0} = -kt$
		$[\mathbf{N}_2\mathbf{O}_5] = [\mathbf{N}_2\mathbf{O}_5]_0 \times e^{-\mathbf{k}t}$
		$[N_2O_5] = 0.1 \times e^{-5 \times 10^{-3} \times 60}$
	0,25	$[N_2O_5] = 0.074 \text{ mol/L}$
		تطبيق عددي:
	0.25	$V = 5 \times 10^{-3} \times 0.074$
	0,25	$V = 0.37 \times 10^{-3} \text{ mol.L}^{-1}.\text{min}^{-1}$
0,25		التمرين الثاني: (06 نقاط)
	0,25	1-I) دور الكحول الإيثيلي: مذيب عضوي للمادة الدهنية.
<u>1</u>		يجاد عبارة قرينة الحموضة I_a :
	0,25	$RCOOH + KOH \longrightarrow RCOO^-, K^+ + H_2O$
		1mol → 1mol
	0.25	$m_E(g) \longrightarrow m_{KOH}. 10^{+3} (mg)$
	0,25	$I(g) \longrightarrow I_a$
		$I_a = \frac{m_{KOH}. \ 10^{+3}}{m_E}$
	0,25	$m_{KOH} = C.V(\ell).M_{KOH}$
		$C.V(\ell).M_{KOH}.10^{+3}$
	0,25	$I_a = \frac{\text{C.V}(\ell).\text{M}_{\text{KOH}}.10^{+3}}{\text{m}_{\text{E}}}$
<u>0,5</u>		3) تطبيق عددي
		<u>ي</u> <u>ن ن ن ن ن ن ن ن ن ن ن ن ن ن ن ن ن ن ن</u>

0,25	$I_a = \frac{0.1.1.5.10^{-3}.56.10^{+3}}{5}$	
	$I_a=1,68$	
0 ,25	حسب المقاييس الدولية نستنتج أن هذه القيمة $I_a=1,68$ مطابقة للمواصفات المعمول بها.	-
		II
	1) كتابة الصيغ الكيميائية لكل حمض أميني مع التصنيف:	
	الحمض الأميني	
	H ₂ N-CH-COOH	
0,25×6		-
	حمض أميني كبريتي $^{ ext{CH}_2}$	
	SH	_
	H ₂ N-CH-COOH حمض أميني ذو سلسلة كربونية بسيطة	
	CH ₃	
	2) كتابة الصيغ الأيونية للحمض الأميني (Glu) عند تغير الـ pH من 1 إلى 12	2
	$pka_1=2.19$ pH_1 $pka_R=4.25$ $pka_2=9.67$	H
0.25×4	-	
	$\begin{array}{c cccc} (CH_2)_2 & & & & (CH_2)_2 & & & \\ \hline & +H & & (CH_2)_2 & & & +H & & (CH_2)_2 & & \\ \hline COOH & & & & & COO^- & & & COO^- & & \\ \end{array}$	
		-
0,25×2	$pH_i = \frac{pKa_1 + pKa_R}{2} = \frac{2,19 + 4,25}{2} = 3,22$	
	0,25×6 0,25×4	ال كتابة الصيغ الكيميائية لكل حمض أميني مع التصنيف : ال كتابة الصيغ الكيميائية لكل حمض أميني مع التصنيف : ال كتابة الصيغ الكيميائية لكل حمض أميني مع التصنيف : ال كتابة الصيغ الكيميائية لكل حمض أميني مع التصنيف ال

<u>1,25</u>		3) إتمام التفاعلات:
	0,5	1) H_2N -CH-COOH \longrightarrow H_2N -CH $_2$ -CH $_3$ + CO_2
		CH ₃ H ₂ N-CH-COOH
		$ ho_{2M^{+}}$
	0,25	2) $2 H_2 N$ -CH-COOH $\frac{-2 H^+}{+2 H^+}$ $\frac{S}{S}$
		$\begin{array}{c} \text{SH} \\ \text{H}_2\text{N-CH-COOH} \end{array}$
	0,5	3) H_2N -CH-COOH + HNO_2 \longrightarrow HO-CH-COOH + N_2 + H_2O
	0,3	$(CH_2)_2$ $(CH_2)_2$
		СООН
		التمرين الثالث: (06 نقاط)
<u>2,25</u>		1) أ) موازنة معادلة التفاعل:
	0,25×3	C_6H_5 -COOH _(S) + $\frac{15}{2}$ O_2 _(g) \longrightarrow 7 CO_2 _(g) + $3H_2O$ _(ℓ)
		ب) حساب الأنطالبي المعياري لتشكل حمض البنزويك الصلب:
	0,5	$\Delta H_{\text{comb}}^{0} = \sum \Delta H_{\text{f}}^{0}(\text{produits}) - \sum \Delta H_{\text{f}}^{0}(\text{réactifs})$
	0,5	$\Delta H_{\text{comb}}^{0} = 7\Delta H_{\text{f}}^{0}(\text{CO}_{2(g)}) + 3\Delta H_{\text{f}}^{0}(\text{H}_{2}\text{O}_{(\ell)}) - \Delta H_{\text{f}}^{0}(\text{C}_{6}\text{H}_{5}\text{COOH}_{(s)}) - \frac{15}{2}\Delta H_{\text{f}}^{0}(\Theta_{2(g)})$
	0,5	$2 \frac{\Delta \Pi_{\text{comb}}}{2} \frac{1}{2} \frac{\Delta \Pi_{\text{f}}(CO_{2(g)}) + 3\Delta \Pi_{\text{f}}(\Pi_{\text{2}}O_{(\ell)}) - \Delta \Pi_{\text{f}}(C_{6}\Pi_{\text{5}}COO\Pi_{(s)})}{2}$
	0,25	$\Delta H_{f}^{0}(C_{6}H_{5}COOH_{(s)}) = 7\Delta H_{f}^{0}(CO_{2(g)}) + 3\Delta H_{f}^{0}(H_{2}O_{(\ell)}) - \Delta H_{comb}^{0}$
		$\Delta H_f^0(C_6H_5COOH_{(s)}) = 7(-393) + 3(-286) - (-3227)$
	0,25	$\Delta H_f^0(C_6 H_5 COOH_{(s)}) = -382 \text{ kJ.mol}^{-1}$
1,75		حساب أنطالبي احتراق حمض البنزويك الصلب عند $^{\circ}\mathrm{C}$: بتطبيق علاقة كيرشوف $^{\mathrm{T}}$
2	0,5	$\Delta H_{T}^{0} = \Delta H_{T_{0}}^{0} + \int_{T_{0}}^{1} \Delta C_{p}.dT$
	0,25	$\Delta H_{T}^{0} = \Delta H_{T_{0}}^{0} + \Delta C_{p} (T-T_{0})$

	0,25	$\Delta C_p = \sum_{p} C_p(\text{produits}) - \sum_{p} C_p(\text{réactifs})$
	U,43	
	0,25	$\Delta C_{p} = 7C_{p}(CO_{2(g)}) + 3C_{p}(H_{2}O_{(\ell)}) - C_{p}(C_{6}H_{5}COOH_{(s)}) - \frac{15}{2}C_{p}(O_{2(g)})$
	0,25	$\Delta C_p = 7(37,58) + 3(75,29) - (146,7) - \frac{15}{2}(29,36) = 122,03 \text{ J.mol}^{-1}.\text{K}^{-1}$
		$\Delta H_{323}^0 = \Delta H_{298}^0 + \Delta C_p (323-298)$
	0,25	$\Delta H_{323}^0 = (-3227) + 122,03 \times 10^{-3} (25)$
		$\Delta H_{323}^0 = -3223,95 \text{ kJ.mol}^{-1}$
<u>1</u>		(3 حساب انطالبي انصهار حمض البنزويك $(\Delta H_{\mathrm{fus}})$
	0,25	$C_6H_5COOH_{(s)} \xrightarrow{\Delta H_{fus}^0(C_6H_5COOH)} C_6H_5COOH_{(\ell)}$
	0,5	$\Delta H_{\text{fus}}^0 = \Delta H_{\text{f}}^0(C_6 H_5 \text{COOH}_{(\ell)}) - \Delta H_{\text{f}}^0(C_6 H_5 \text{COOH}_{(\text{s})})$
		$\Delta H_{\text{fus}}^0 = (-362,4) - (-382)$
	0,25	$\Delta H_{\text{fus}}^0 = 19,6 \text{ kJ.mol}$
1		4) حساب كمية الحرارة اللازمة لانصهار g 24.4 من حمض البنزويك:
		$C_6H_5 ext{-}COOH$ - الكتلة المولية لحمض البنزويك
		$\mathbf{M} = (7 \times 12) + (2 \times 16) + (6 \times 1)$
	0,25	M = 122 g/mol
	0,43	$1 \text{mol} (C_6 \text{H}_5\text{-COOH}) \rightarrow 19,6 \text{ kJ}$
	0,5	$122 g \rightarrow 19.6 \text{ kJ} \qquad \boxed{} \qquad 19.6 \times 24.4$
	0,25	Q = 3,92 kJ

العلامة		/ Mitter and and Maria Maria
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
		التمرين الأول: (08 نقاط)
<u>1</u>		1- إيجاد الصيغة نصف المفصلة للمركب A:
	0,5	$\begin{split} M \; (C_n H_{2n+1} MgCl) &= 14n+1+24+35, 5=74, 5 \\ 14 \; n=74, 5-60, 5=14 \\ n=1 \end{split}$
	0,5	A : CH ₃ -MgCl
<u>1</u>		2-كتابة التفاعلات الكيميائية :
	0,5	CH_3 OH + PCl_5 \longrightarrow CH_3 Cl + $POCl_3$ + HCl
	0,5	CH_3 $Cl + Mg$ ROR CH_3 $MgCl$
4,5	0,5x6	(المرحلة الأولى) المرحلة الأولى) ملاحظة : تقبل إجابة أخرى (استعمال SOCl2 في المرحلة الأولى) المرحلة الأولى) المرحلة الأولى) المرحلة المركبات : O O
	0,5	$R = \frac{n_{\text{ester}}}{n_0} \times 100$ $n_0 = \frac{n_{\text{ester}}}{R} \times 100$ $n_0 = n_D = n_G$

صفحة 3 من 5

صفحة 4 من 5

		ب - حساب أنطالبي التصعيد للكربون الصلب:
	0,5	$\Delta H_{f(C_4H_{8(g)})}^{\circ} = 4\Delta H_{sub(C_{(S)})}^{\circ} + 4\Delta H_{diss(H-H)}^{\circ} - 8\Delta H_{diss(C-H)}^{\circ} - 2\Delta H_{diss(C-C)}^{\circ} - \Delta H_{diss(C-C)}^{\circ}$
	0,25	$\Delta H_{\text{sub}(C_{(S)})}^{\circ} = \frac{\Delta H_{\text{f}(C_4H_{8(g)})}^{\circ} + 8\Delta H_{\text{diss}(C-H)}^{\circ} + 2\Delta H_{\text{diss}(C-C)}^{\circ} + \Delta H_{\text{diss}(C-C)}^{\circ} - 4\Delta H_{\text{diss}(H-H)}^{\circ}}{4}$
		4
		$\Delta H_{\text{sub}(C_{(S)})}^{\circ} = \frac{-0.4 + 8 \times 413 + 2 \times 348 + 612 - 4 \times 436}{4}$
	0,25	T
	0,23	$\Delta H_{sub(C_{(S)})}^{\circ} = 716.9 \text{ kJ/mol}$
1		
_		II — I — نوع التحولين :
	0,5	- التحول (a): تحول الحجم الثابت (isochore)
	0,5	- التحول (b): تحول الضغط الثابت (isobare)
1		2 - حساب العمل عند كل تحول:
	0,25	$\mathbf{W}_{(a)} = 0$
	0,5	$W_{(b)} = -p\Delta V = -p(V_2 - V_1)$
		$W_{(b)} = -10 \times 1,013 \times 10^5 \times (2,4-12) \times 10^{-3}$
	0,25	$W_{(b)} = 9724.8 \text{ J} = 9.7248 \text{ kJ}$