King Mongkut's Institute of Technology Ladkrabang Computer Engineering International Program 01276112 Digital System Fundamentals

Lab 4 - Boolean Minimization Using Quine-McCluskey Method

Learning Outcomes

- 1. Minimize Boolean expression using Quine-McCluskey method.
- 2. Construct more complicated digital circuit.

1. Experiment

1. The following Boolean expression detects odd prime numbers.

$$f(A,B,C,D,E) = \sum m(1,3,5,7,11,13,17,19,23,29,31)$$

1.1. Use Quine-McCluskey method to find prime implicants.

Lab 4 - Boolean Minimization Using Quine-McCluskey Method

Learning Outcomes

- 1. Minimize Boolean expression using Quine-McCluskey method.
- 2. Construct more complicated digital circuit.

1. Experiment

1. The following Boolean expression detects odd prime numbers.

$$f(A,B,C,D,E) = \sum m(1,3,5,7,11,13,17,19,23,29,31)$$

1.1. Use Quine-McCluskey method to find prime implicants.

Minterms	A	В	С	D	E	group	Minterns	A	В	С	D	E		Minterns	Α	В	С	D	E	
1	0	0	0	0	1	1	1,3	0	0	0	_	1	/	1,3,5,7	0	0	_	-	1	
3	0	0	0	1	1	2	1,5	0	0	1	0	1	/	1,3,17,19		0	0		1	
5	0	0	1	0	1	2	1,17	_	0	0	0	1	/	3,7,19,23	-	0	_	1	1	
17	1	0	0	0	1	2	3,7	0	0	=	1	1	/							Т
7	0	0	1	1	1	3	3,11	0	_	0	1	1	PI4							
11	0	1	0	1	1	3	3,19	_	0	0	1	1	/							
13	0	1	1	0	1	3	5,7	0	0	1	_	1	/							
19	1	0	0	1	1	3	5,13	0	_	1	0	1	PI5							
23	1	0	1	1	1	4	17,19	1	0	0	_	1	/							
29	1	1	1	0	1	4	7,23	20	0	1	1	1	/							
31	1	1	1	1	1	5	13,29		1	1	0	1	PI6							
							19,23	1	0	828	1	1	/							
							23,31	1		1	1	1	PI7							
							29,31	1	1	1		1	PI8							

Minterm	List of prime Implicants
3,11	ÁĆDE
5,13	A'CD'E
13,29	BCD'E
23,31	ACDE
29,31	ABCE
1,3,5,7	A'B'E
1,3,17,19	B'C'E
3,7,19,23	B'DE

.....

.....

1.4. Draw logic diagram and specify IC pin No. for all input and output pins of each gate.

$$= E \left[D(A \oplus C)' + B'(A'+C') + BCD' \right]$$

ปาก เข็กให้ ดำยว่า พรง รีเปล่า

2. Construct the circuit from Experiment 1.4 and record the output.

1 0 0 0 0 1 2 0 0 1 2 0 0 0 1 0 0 1 0 0 0 0		Α	В	С	D	E	Output
2 0 0 0 1 0 1 0 3 0 0 0 1 1 1 1 4 0 0 0 1 0 0 0 0 0 0 0 0	Ð	0	0	0	0	0	
3 0 0 0 1 1 1 4 0 0 0 9 0 1 1 0 0 0 9 0 1 0 0 0 0 0 0 0	1	0	0	0	0	1	
4 0 0 1 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0	2	0	0	0	1	0	
9 0 0 1 0 1 6 0 0 1 1 0 7 0 0 1 1 1 8 0 1 0 0 0 9 0 1 0 0 1 0×1 10 0 1 0 1 0 11 0 1 1 1 12 0 1 1 0 0 13 0 1 1 0 0 14 0 1 1 0 0	3	0	0	0	1	1	
6 0 0 1 1 0 0 7 0 0 0 9 0 1 0 0 1 0 1 0 1 1 1 1 1 1 1 1	4	0	0	1	0	0	
7 0 0 1 1 1 1 9 0 0 9 0 1 0 0 0 0 1 0 0 1 0 0 1 0 1	9	0	0	1	0	1	
3 0 1 0 0 0 9 0 1 0 0 1 0×1 10 0 1 0 1 0 11 0 1 1 1 12 0 1 1 0 0 13 0 1 1 0 1 14 0 1 1 1 0	6	0	0	1	1	0	
9 0 1 0 0 1 0×1 10 0 1 0 1 0 11 0 1 1 1 12 0 1 1 0 0 13 0 1 1 0 1 14 0 1 1 1 0	7	0	0	1	1	1	
10 0 1 0 1 0 11 0 1 0 1 1 12 0 1 1 0 0 13 0 1 1 0 1 14 0 1 1 1 0	8	0	1	0	0	0	
11 0 1 0 1 1 12 0 1 1 0 0 13 0 1 1 0 1 14 0 1 1 1 0	9	0	1	0	0	1	0×1
12 0 1 1 0 0 13 0 1 1 0 1 14 0 1 1 1 0	10	0	1	0	1	0	
13 0 1 1 0 1 14 0 1 1 1 0	11	0	1	0	1	1	
14 0 1 1 1 0	12	0	1	1	0	0	
	13	0	1	1	0	1	
10 0 1 0 0 1	14	0	1	1	1	0	
19 0 1 1 1 1 0 × 1	15	0	1	1	1	1	0 × 1

	Α	В	С	D	Е	Output
16	1	0	0	0	0	
17	1	0	0	0	1	
8	1	0	0	1	0	
19	1	0	0	1	1	
20	1	0	1	0	0	
21	1	0 (1	0	1	0 ×1
92	1	0	1	1	0	
23	1	0	1	1	1	
24	1	1	0	0	0	
29	1	1	0	0	1	0×1
26	1	1	0	1	0	
27	1	1	0	1	1	0×1
28	1	1	1	0	0	
29	1	1	1	0	1	
30	1	1	1	1	0	
31	1	1	1	1	1	

	·		Ü	J	complicate		

Lab 4 Submission

Date 7 January 2025 Group No. 13

- 1. Student ID 67011590 Name Watcharathorn krachan non
- 2. Student ID 67011594 Name Chythathip Termohaiky)
- 3. Student ID 67011385 Name Worawalun Sombutphotiudom

Checkpoint

Experiment 1 (10 pts)

Experiment 2 (10 pts)

Questions

1. Can you minimize the following Boolean expression using K-Map method. If you can, do the demonstration. Or specify the reason if you cannot.

$$f(A,B,C,D,E) = \sum m(1,3,5,7,11,13,17,19,23,29,31)$$

.....

2. Compare Quine McClusky and K-Map methods for minimization five or more variables.

Quine - McCluskey Method is suited for large numbers of variables which can handles function with five or more variables. However, it requires a lot of manual calculations if not automated. For accuracy it minimizes errors in manual operations compared to K-Maps. For the K-Map methods is become impractical when there are five or more variable due to the map's size.

.....

fcA,B,C,D,E): BCE + BDE + BCDE + ABDE + ABCE+ ACDE+ ABCE + ABCOE

f(A,B,C,D)= BCD'E + ABCE + A'B'R+B'C'E
