Provas e Exercícios

Ref. A Mathematical Introduction to Logic - H. B. Enderton Verão 2023

Xenônio

Discord: xennonio

Contents

1	Lógica Sentencial		
	1.1	A Linguagem da Lógica Sentencial	2
2 Lógica de Primeira-Ordem		ica de Primeira-Ordem	2
	2.2	Verdade e Modelos	2
	2.3	Um Algoritmo de Análise	16
	2.4	Um Cálculo Dedutivo	17
	2.5	Teorema da Correção e Completude	18
	2.6	Modelos de Teorias	20
	2.7	Interpretações entre Teorias	24
	2.8	Análise não Padrão	25
3	Ind	ecidibilidade	27
	3.1	Números Naturais com Sucessor	27
	3.2	Outras Reduções da Teoria dos Números	29
	3.3	Uma Subteoria da Teoria dos Números	30
	3.4	Aritmetização da Sintaxe	33
	3.5	Incompletude e Indecidibilidade	34

1 Lógica Sentencial

1.1 A Linguagem da Lógica Sentencial

PENDENTE

2 Lógica de Primeira-Ordem

2.2 Verdade e Modelos

```
Exercício 1. Mostre que:

a) \Gamma \cup \{\alpha\} \models \varphi \text{ sse } \Gamma \models (\alpha \to \varphi);

b) \varphi \models \exists \psi \text{ sse } \models (\varphi \leftrightarrow \psi).
```

Proof. a) (\Rightarrow) Seja (\mathfrak{A}, s) uma estrutura tq $\models_{\mathfrak{A}} \gamma[s], \gamma \in \Gamma$, sabemos que $\models_{\mathfrak{A}} \alpha[s]$ ou $\not\models_{\mathfrak{A}} \alpha[s]$, no último caso é claro que $\models_{\mathfrak{A}} (\alpha \to \varphi)[s]$ por definição. No primeiro, como $\Gamma \cup \{\alpha\} \models \varphi$ e \mathfrak{A} é um modelo de cada sentença em $\Gamma \cup \{\alpha\}$, então $\models_{\mathfrak{A}} \varphi[s]$, portanto $\models_{\mathfrak{A}} (\alpha \to \varphi)[s]$.

(\Leftarrow) Dado $\Gamma \vDash (\alpha \to \varphi)$, sabemos que se (\mathfrak{A}, s) é tq $\vDash_{\mathfrak{A}} \gamma, \gamma \in \Gamma$, portanto $\vDash_{\mathfrak{A}} (\alpha \to \varphi)[s]$, logo, se \mathfrak{A} é um modelo de Γ e α , então $\vDash_{\mathfrak{A}} \varphi[s]$, portanto $\Gamma \cup \{\alpha\} \vDash \varphi$.

b) (\Rightarrow) Dado $\varphi \vDash \exists \psi$, se (\mathfrak{A}, s) é tq $\vDash_{\mathfrak{A}} \varphi[s]$, então $\vDash_{\mathfrak{A}} \psi[s]$, portanto $\vDash_{\mathfrak{A}} (\varphi \leftrightarrow \psi)[s]$, para o caso que $\not\vDash_{\mathfrak{A}} \varphi[s]$ temos $\not\vDash_{\mathfrak{A}} \psi[s]$, portanto $\vDash_{\mathfrak{A}} (\varphi \leftrightarrow \psi)[s]$, i.e., $\vDash (\varphi \leftrightarrow \psi)$;

 (\Leftarrow) Se $\vDash (\varphi \leftrightarrow \psi)$, então para um (\mathfrak{A}, s) arbitrário se $\vDash_{\mathfrak{A}} \varphi$, então $\vDash_{\mathfrak{A}} \psi$, i.e., $\varphi \vDash \psi$, e caso $\vDash_{\mathfrak{A}} \psi$, então $\vDash_{\mathfrak{A}} \varphi$, portanto $\varphi \vDash \vDash \psi$.

Exercício 2. Mostre que nenhuma das sentenças a seguir é logicamente implicada pelas outras duas:

```
\begin{array}{l} \alpha := \forall x \forall y \forall z (Pxy \rightarrow (Pyz \rightarrow Pxz)); \\ \beta := \forall x \forall y (Pxy \rightarrow (Pyx \rightarrow x = y)); \\ \gamma := \forall x \exists y Pxy \rightarrow \exists y \forall x Pxy. \end{array}
```

Proof. Sabemos que se $\varphi, \psi \models \chi$, então qualquer modelo de φ, ψ é também de χ , para mostrar que nenhuma das sentenças é logicamente implicada pelas outras basta criarmos um modelo que satisfaz cada combinação de duas fórmulas e a negação da outra. α diz que P é transitiva, β que P é antissimétrica e γ que se P for total, então ela colapsa todos os pontos no $\mathsf{Dom}(P)$ em um só. Com isso em mente sejam x, y, z elementos distintos:

$$\models_{\mathfrak{A}} (\alpha \wedge \beta \wedge \neg \gamma):$$

$$|\mathfrak{A}| = \{x, y\}, P^{\mathfrak{A}} = \{(x, x), (y, y)\}$$

$$\models_{\mathfrak{B}} (\alpha \wedge \neg \beta \wedge \gamma):$$

$$|\mathfrak{B}| = \{x, y\}, P^{\mathfrak{B}} = \{(x, y), (y, y)\}$$

$$\models_{\mathfrak{C}} (\neg \alpha \land \beta \land \gamma): |\mathfrak{C}| = \{x, y, z\}, P^{\mathfrak{C}} = \{(x, y), (y, z)\}$$

Exercício 3. Mostre que

$$\{ \forall x (\alpha \to \beta), \forall x \alpha \} \models \forall x \beta$$

Proof. Seja (\mathfrak{A}, s) tq $\models_{\mathfrak{A}} \forall x(\alpha \to \beta)[s]$ e $\models_{\mathfrak{A}} \forall x\alpha[s]$, logo $\models_{\mathfrak{A}} (\alpha \to \beta)[s\frac{d}{x}]$ e $\models_{\mathfrak{A}} \alpha[s\frac{d}{x}]$ para todo $d \in |\mathfrak{A}|$, i.e., se $\models_{\mathfrak{A}} \alpha[s\frac{d}{x}]$, então $\models_{\mathfrak{A}} \beta[s\frac{d}{x}]$, visto que $\models_{\mathfrak{A}} \alpha[s\frac{d}{x}]$, então $\models_{\mathfrak{A}} \beta[s\frac{d}{x}]$, para todo $d \in |\mathfrak{A}|$, i.e., $\models_{\mathfrak{A}} \forall x\beta$.

Exercício 4. Mostre que se $x \notin free(\alpha)$, então $\alpha \models \forall x \alpha$.

Proof. Seja (\mathfrak{A},s) tq $\models_{\mathfrak{A}} \alpha[s]$, visto que para todo $d \in |\mathfrak{A}|$ temos que $s\frac{d}{x},s:V \to |\mathfrak{A}|$ discordam apenas em x que não ocorre livre em α , portanto concordam em todas as variáveis que ocorrem em α . Pelo **Teorema 22A** temos então que se $\models_{\mathfrak{A}} \alpha[s]$, então $\models_{\mathfrak{A}} \alpha[s\frac{d}{x}]$, para todo $d \in |\mathfrak{A}|$, i.e., $\models_{\mathfrak{A}} \forall x\alpha$.

Exercício 5. Mostre que a fórmula $x = y \to (Pzfx \to Pzfy)$ (onde f é um símbolo de função unário e P um símbolo de relação binário) é válida.

Proof. Assuma por contradição que $\varphi(x,y,z) := (x = y \to (Pzfx \to Pzfy))$ não seja válida, logo existe (\mathfrak{A},s) tq $\not\models_{\mathfrak{A}} \varphi(x,y,z)[s]$, i.e., $\models_{\mathfrak{A}} (x = y)[s]$, $\models_{\mathfrak{A}} Pzfx$ e $\not\models_{\mathfrak{A}} Pzfy$, portanto $\overline{s}(x) = \overline{s}(y)$, $(\overline{s}(z),\overline{s}(fx)) \in P^{\mathfrak{A}} = (\overline{s}(z),\overline{s}(fy)) \notin P^{\mathfrak{A}}$, mas $\overline{s}(fx) = f^{\mathfrak{A}}(\overline{s}(x)) = f^{\mathfrak{A}}(\overline{s}(y)) = \overline{s}(fy)$, contradição. \dashv

Exercício 6. Mostre que uma fórmula θ é válida sse $\forall x\theta$ é válida.

Proof. (\Rightarrow) Se $\models_{\mathfrak{A}} \theta[s]$, para todo (\mathfrak{A}, s) , em particular $\models_{\mathfrak{A}} \theta\left[s\frac{d}{x}\right]$, para todo $d \in |\mathfrak{A}|$, visto que s é arbitrário, portanto $\models_{\mathfrak{A}} \forall x\theta$; (\Leftarrow) Se $\models_{\mathfrak{A}} \forall x\theta$, então $\models_{\mathfrak{A}} \theta\left[s\frac{d}{x}\right]$, para todo (\mathfrak{A}, s) com $d \in |\mathfrak{A}|$, logo, em particular, vale para d = s(x). Visto que $s\frac{s(x)}{x} = s$, então $\models_{\mathfrak{A}} \theta[s]$.

Exercício 7. Redefina " $\mathfrak A$ satisfaz φ com s" por meio de uma função recursiva \overline{h} tq $\mathfrak A$ satisfaz φ com s sse $s \in \overline{h}(\varphi)$.

Proof. Fixando \mathfrak{A} e utilizando a definição de \overline{s} usual para cada termo τ , sejam: $(\wedge): \mathcal{L}^{\mathcal{S}} \times \mathcal{L}^{\mathcal{S}} \to \mathcal{L}^{\mathcal{S}}, (\neg): \mathcal{L}^{\mathcal{S}} \to \mathcal{L}^{\mathcal{S}}, (\forall v_n): \mathcal{L}^{\mathcal{S}} \to \mathcal{L}^{\mathcal{S}} \text{ e } h: \mathsf{At} \to |\mathfrak{A}|^V \text{ (com At sendo o conjunto } \mathcal{A})$

de fórmulas atômicas) definido como:

$$h(t_1 = t_2) = \{ s \in |\mathfrak{A}|^V \mid \overline{s}(t_1) = \overline{s}(t_2) \};$$

$$h(Pt_1 \dots t_n) = \{ s \in |\mathfrak{A}|^V \mid (\overline{s}(t_1), \dots, \overline{s}(t_n)) \in P^{\mathfrak{A}} \}$$

É fácil ver que $\mathcal{L}^{\mathcal{S}}$ é livremente gerado de At por $(\land), (\lnot), (\forall v_n)$, pra cada $v_n \in V$. Logo o Teorema da Recursão garante que existe um único $\overline{h} : \mathcal{L}^{\mathcal{S}} \to |\mathfrak{A}|^V$ satisfazendo:

$$\overline{h}(\varphi) = h(\varphi), \text{ para } \varphi \in \mathsf{At};$$

$$\overline{h}((\wedge)(\varphi, \psi)) = \{ s \in |\mathfrak{A}|^V \mid s \in \overline{h}(\varphi) \land s \in \overline{h}(\psi) \}$$

$$\overline{h}((\neg)(\varphi)) = \{ s \in |\mathfrak{A}|^V \mid s \notin \overline{h}(\varphi) \}$$

$$\overline{h}((\forall v_n)(\varphi)) = \{ s \in |\mathfrak{A}|^V \mid \forall d \left(d \in \mathfrak{A} \to s \frac{d}{x} \in \overline{h}(\varphi) \right) \}$$

Bastando agora verificar que $\models_{\mathfrak{A}} \varphi[s]$ sse $s \in \overline{h}(\varphi)$, o que é trivial por indução em fórmulas.

Exercício 8. Seja $\Sigma \subseteq \mathcal{L}_0^{\mathcal{S}}$ completo e \mathfrak{A} um modelo de Σ , prove que para qualquer $\tau \in \mathcal{L}_0^{\mathcal{S}}$ temos $\models_{\mathfrak{A}} \tau$ sse $\Sigma \models \tau$.

Proof. (←) Se $\Sigma \models \tau$, como \mathfrak{A} é um modelo de Σ , então $\models_{\mathfrak{A}} \tau$ por definição; (⇒) Se $\Sigma \not\models \tau$, como Σ é completo, então $\Sigma \models \neg \tau$, i.e., $\models_{\mathfrak{A}} \neg \tau$, portanto $\not\models_{\mathfrak{A}} \tau$. Por contraposição temos que se $\models_{\mathfrak{A}} \tau$, então $\Sigma \models \tau$.

Exercício 9. Seja $S = \{P\}$ sendo P um símbolo de relação binário. Para cada uma das condições abaixo, construa uma sentença σ tq $\models_{\mathfrak{A}} \sigma[s]$ sse a condição é satisfeita:

- a) |21| tem exatamente dois elementos;
- b) $P^{\mathfrak{A}}$ é uma função de $|\mathfrak{A}|$ em $|\mathfrak{A}|$
- c) $P^{\mathfrak{A}}$ é uma permutação em $|\mathfrak{A}|$.

Proof. a)
$$\exists v_1 \exists v_2 (\neg (v_1 = v_2) \land \forall x (x = v_1 \lor x = v_2));$$

b) $\mathsf{Fun}(P) := \forall x \exists y (Pxy \land \forall z (Pxz \to z = y));$
c) $\mathsf{Fun}(P) \land \forall y \exists x (Pxy \land \forall z (Pzy \to x = z)).$

Obs. Para um $n \in \mathbb{N}$ qualquer podemos formalizar " $|\mathfrak{A}|$ tem exatamente n elementos" como:

$$\varphi_{=n} := \exists v_1 \dots v_n \left(\varphi_{\geqslant n} \wedge \forall v \left(\bigwedge_{i=1}^n v = v_i \right) \right)$$

onde $\varphi_{\geqslant n}$ é a formalização de há no mínimo n elementos, dada por:

$$\varphi_{\geqslant n} := \bigwedge_{i,j \in \{1,\dots,n\}} \neg (v_i = v_j).$$

Exercício 10. Mostre que, para Q um símbolo de relação binário e c um símbolo de constante:

$$\models_{\mathfrak{A}} \forall v_2 Q v_1 v_2 \llbracket c^{\mathfrak{A}} \rrbracket$$
 sse $\models_{\mathfrak{A}} \forall v_2 Q c v_2$.

Proof.

$$\models_{\mathfrak{A}} \forall v_2 Q v_1 v_2 \llbracket c^{\mathfrak{A}} \rrbracket \text{ sse } \models_{\mathfrak{A}} Q v_1 v_2 \left[s \frac{d}{v_2} \right], \text{ com } s(v_1) = c^{\mathfrak{A}}, \text{ para todo } d \in |\mathfrak{A}|$$

$$\text{sse } \left(c^{\mathfrak{A}}, d \right) \in Q^{\mathfrak{A}}, \text{ para todo } d \in |\mathfrak{A}|$$

$$\text{sse } \models_{\mathfrak{A}} Q c v_2 \left[s \frac{d}{v_2} \right], \text{ para todo } d \in |\mathfrak{A}|$$

$$\text{sse } \forall v_2 Q c v_2.$$

Exercício 11. Para cada uma das relações a seguir, dê uma fórmula que a defina em $(\mathbb{N}, +, \cdot)$.

- a) $\{0\}$;
- b) {1};
- c) $\{(m,n) \mid n \text{ \'e o sucessor de } m \text{ em } \mathbb{N}\};$
- d) $\{(m, n) | m < n \text{ em } \mathbb{N}\}.$

Proof. Para cada uma das relações X definiremos φ to $X = \{x \in \mathbb{N} \mid \varphi(x)\}$:

- a) $\varphi_1(x) = \forall y(y = x + y);$
- b) $\varphi_2(x) = \forall y(y \cdot x = y);$
- c) $\varphi_3(n,m) = \exists y \forall x (xy = x \land n = m + y);$
- d) $\varphi_4(n,m) = \exists y (\neg \forall x (x=y+x) \land n=m+y) \text{ ou } \exists x \exists y (\varphi_3(x,y) \land n=x+m).$

Exercício 12. Seja $\mathfrak{R} = (\mathbb{R}, +, \cdot)$:

- a) Dê uma fórmula que defina em \Re o intervalo $[0,\infty)$;
- b) Dê uma fórmula que defina em \Re o conjunto $\{2\}$;
- c) Mostre que $\bigcup_{1 \leq i \leq n} I_n$, para quaisquer intervalos I_1, \ldots, I_n cujos extremos são números algébricos ou $\pm \infty$, é definível em \mathfrak{R} .

Proof. a) $\psi_1(x) = \exists y(y \cdot y = x)$ garante que $x \ge 0$, visto que $y \cdot y = y^2 \ge 0$;

- b) $\psi_2(x) = \exists y (\forall z (y \cdot z = z) \land x = y + y);$
- c) Sabemos que $\alpha \in \mathbb{R}$ é algébrico sse existe $p \in \mathbb{Z}[x]$ tq $p(\alpha) = 0$, equivalentemente, podemos descrever p(x) = 0 como $p_1(x) = p_2(x)$ onde $p_1, p_2 \in \mathbb{N}[x]$ (basta somar os termos negativos em p(x)), analogamente seria fácil descrever um inteiro negativo $x = -n \in \mathbb{N}$ como x + n = 0, o que nos permitiria descrever p(x) = 0 direto. Com isso em mãos, e sabendo que a relação de < é definível em \mathbb{R} como $(x \leq y \land x \neq y)$, sendo $x \leq y := \exists z(y + z \cdot z = x)$, podemos definir os números algébricos das seguintes formas:

1. Seja $p \in \mathbb{Z}[x]$ um polinômio com raízes de multiplicidade no máximo 1 tq $p = a_0 + a_1 x + \cdots + a_n x^n$ cujas raízes, em ordem, são $\alpha_1, \ldots, \alpha_{k-1}, x, \alpha_k, \ldots, \alpha_{n-1}$, defina:

$$\varphi_{v_i} := \underbrace{(1 + \dots + 1)}_{a_0 \text{ vezes}} + \dots + \underbrace{(1 + \dots + 1)}_{a_n \text{ vezes}} \underbrace{(v_i \cdot \dots \cdot v_i)}_{n \text{ vezes}} = 0$$

Portanto o número algébrico x pode ser definido por

$$\psi(x) := \exists v_1 \dots v_{n-1} \left(\bigwedge_{1 \leqslant i < n} \varphi_i \right) \land \varphi_x \land (v_1 < \dots < v_{k-1} < x < v_k < \dots < v_{n-1});$$

2. Podemos também utilizar o fato de que $\mathbb Q$ é denso em $\mathbb R$ e tomar $\frac{p}{q},\frac{r}{s}\in\mathbb Q$ tq

$$\alpha_{k-1} < \frac{p}{q} < x < \frac{r}{s} < \alpha_k$$

portanto x pode ser definido como:

$$\psi(x) := \varphi_x \wedge (p < q \cdot x) \wedge (s \cdot x < r)$$

visto que tanto inteiros quanto naturais podem ser definidos em R.

De volta ao resultado inicial, para um intervalo meio aberto (a,b], com a,b algébricos podemos definir $(a,b] := \{x \in \mathbb{R} \mid \exists ab(\psi(a) \land \psi(b) \land a < x \land a \leq b)\}$, o caso para (a,b), [a,b] e [a,b) é análogo, se $b = \infty$ podemos definir (a,∞) por $\exists a(\psi(a) \land a < x)$, os outros casos para $\pm \infty$ também são análogos. Sejam agora I_1, I_2 intervalos definidos por φ, ψ , portanto $I_1 \cup I_2$ pode ser definido como $\varphi \lor \psi$, o que termina a prova.

Obs. De uma forma mais geral, uma estrutura infinita (M, <, ...) que é totalmente ordenada por <, é dita ser o-mínima sse todo subconjunto definível $X \subseteq M$ é a união finita de pontos e intervalos abertos (ou, equivalentemente, intervalos quaisquer). Provamos que a união finita de intervalos cujos pontos extremos são algébricos são definíveis em \mathfrak{R} , mostrar que esses são os únicos é provar que \mathfrak{R} é uma estrutura o-mínima. Um exemplo clássico de teoria o-mínima são os corpos reais fechados, portanto em particular \mathfrak{R} é uma estrutura o-mínima, a teoria dos corpos reais fechados é particularmente importante para teóricos dos modelos, visto que Tarski provou que ela é decidível (em um tempo de complexidade terrível, mas teoricamente é).

Exercício 13. Prove que se h é um homomorfismo de \mathfrak{A} em \mathfrak{B} e $s:V\to |\mathfrak{A}|$, então para qualquer termo t, $h(\overline{s}(t))=\overline{h\circ s}(t)$, onde \overline{s} é calculado em \mathfrak{A} e $\overline{h\circ s}$ em \mathfrak{B} .

<u>Proof.</u> É fácil provar por indução, obviamente para $v \in V$ temos $\overline{s}(v) = s(v)$, portanto $h(\overline{s}(v)) = \overline{h \circ s}(v)$. Se c é um símbolo de constante $h(\overline{s}(c)) = h(c^{\mathfrak{A}}) = c^{\mathfrak{B}}$, por definição de homomorfismo. $\overline{h \circ s}(c) = c^{\mathfrak{B}}$ por definição da extensão da valoração $h \circ s : V \to |\mathfrak{B}|$.

Como hipótese indutiva temos $h(\overline{s}(t_i)) = \overline{h \circ s}(t_i)$, para $1 \leq i \leq n$. Para o passo indutivo seja f

um símbolo de função n-ária, logo

$$h(\overline{s}(ft_1 \dots t_n)) = h\left(f^{\mathfrak{A}}(\overline{s}(t_1), \dots, \overline{s}(t_n))\right);$$

$$= f^{\mathfrak{B}}\left(h(\overline{s}(t_1)), \dots, h(\overline{s}(t_n))\right);$$

$$= f^{\mathfrak{B}}\left(\overline{h \circ s}(t_1), \dots, \overline{h \circ s}(t_n)\right) \text{ (Pela hipótese de indução)};$$

$$= \overline{h \circ s}(ft_1 \dots t_n).$$

Exercício 14. Liste os subconjuntos de \mathbb{R} que são definíveis em $\mathfrak{R} = (\mathbb{R}, <)$. Faça o mesmo para os em $\mathbb{R} \times \mathbb{R}$.

 \dashv

Proof. Seja $A \subseteq \mathbb{R}$ limitado superiormente, se $A \neq \emptyset$, então existe $x \in A$ e $\varepsilon > 0$ tal que $x = \sup(A) - \varepsilon$. Caso A seja definível, o **Teorema do Homomorfismo** garante que, o automorfismo $h(x) = x + 2\varepsilon$ (que é estritamente crescente, portanto é um homomorfismo) é tq se $x \in A$, então $h(x) = \sup(A) + \varepsilon > \sup(A)$ está em A, contradição. O caso em que A é limitado inferior é análogo. Portanto nenhum subconjunto não-vazio limitado é definível em \mathbb{R} , logo só nos resta \mathbb{R} e \emptyset , que de fato são definíveis por x = x e $x \neq x$, respectivamente.

Analogamente, se $A \subseteq \mathbb{R} \times \mathbb{R}$ for definível, então $\mathsf{Dom}(A) = \{x \in \mathbb{R} \mid \exists y(Axy)\}$ (e $\mathsf{Ran}(A)$, respectivamente), também é definível, logo se A é definível, seu domínio e imagem tem necessariamente de ser \emptyset ou \mathbb{R} . É intuitivo ver após algumas tentativas que os casos triviais são definíveis:

$$\mathbb{R} \times \mathbb{R} = \{(x,y) \mid x = x \land y = y\};$$

$$\varnothing = \{(x,y) \mid x \neq x \land y \neq y\};$$

$$< = \{(x,y) \mid x < y\};$$

$$\equiv = \{(x,y) \mid x = y\};$$

$$> = \{(x,y) \mid \neg(x = y) \land \neg(x < y)\};$$

$$\leqslant = \{(x,y) \mid x < y \lor x = y\};$$

$$\geqslant = \{(x,y) \mid \neg(x < y)\};$$

$$\mathbb{R} \times \mathbb{R} \setminus \equiv = \{(x,y) \mid x = x \land y = y \land \neg(x = y)\}$$

mas a priori não temos nenhuma condição forte o suficiente para saber se esses são os únicos subconjuntos definíveis, mas um pouco mais será explorado nas observações a seguir.

Obs. O Teorema do Homomorfismo garante que se h é um automorfismo em M, então se $A \subseteq M^n$ é definível temos $(a_1,\ldots,a_n) \in A$ sse $(h(a_1),\ldots,h(a_n)) \in A$, em um outro sentido, se definirmos a relação \sim tq $a \sim b$ sse existe um automorfismo h em M onde h(a) = b, é fácil ver que \sim é uma relação de equivalência. Além disso, se $a \in A$ e $a \sim b$, então $h(a) = b \in A$ e, portanto, todo conjunto definível em M^n vai ser a união dos conjuntos do conjunto quociente M^n / \sim . Vamos aplicar isso a \mathbb{R} , sabemos que os automorfismo são funções estritamente crescentes, logo se $a \in A$, então existe um h tal que h(a) = b, para todo $a \in A$ (basta pegar h(x) = x + (b - a)), logo $\mathbb{R} / \sim = \mathbb{R}$, sendo as únicas combinações de uniões possíveis para o conjunto quociente \mathbb{R} próprio e \emptyset (a união de nenhum elemento).

Vamos repetir o processo para $\mathbb{R} \times \mathbb{R}$ que é mais interessante, se $(a,b) \in A \subseteq \mathbb{R} \times \mathbb{R}$ e A é definível, caso a=b, como h é um automorfismo, temos que $(a,a) \in A$ sse $(h(a),h(a))=(x,x) \in A$, equivalentemente, como h tem de ser estritamente crescente e sempre existe um h que mapeia a pra algum real então $[\equiv]=\{(x,x)\in\mathbb{R}\times\mathbb{R}\mid x=x\}$ é uma classe de equivalência. Se a< b, então $(h(a),h(b))\in A$ e h(a)< h(b), portanto é fácil ver que as outras duas classes são $[<]=\{(x,y)\in\mathbb{R}\times\mathbb{R}\mid x< y\}$ e $[>]=\{(x,y)\in\mathbb{R}\times\mathbb{R}\mid x\nmid y\wedge x\neq y\}$, logo se um conjunto é definível, ele é uma das possíveis uniões de $\mathbb{R}\times\mathbb{R}/_{\sim}=\{[\equiv],[<],[>]\}$, que são exatamente os conjuntos descritos! Portanto provamos que eles são os únicos:

```
\emptyset = união de nenhum elemento;

< = [<];

\equiv = [\equiv];

> = [>]

\leq = [<] \cup [\equiv];

\geqslant = [>] \cup [\equiv];

\mathbb{R} \times \mathbb{R} \setminus \equiv = [<] \cup [>];

\mathbb{R} \times \mathbb{R} = [\equiv] \cup [<] \cup [>].
```

Exercício 15. Mostre que a relação $R = \{(m, n, p) \mid p = m + n\}$ não é definível em (\mathbb{N}, \cdot) .

Proof. Defina um automorfismo $h: \mathbb{N} \to \mathbb{N}$ tq h(0) = 0, h(1) = 1, h(2) = 3, h(3) = 2, se x = y o Teorema Fundamental da Aritmética garante que ambos possuem a mesma fatoração em primos $2^{\alpha_1} \cdot 3^{\alpha_2} \dots p_n^{\alpha_n}$, portanto $h(x) = 2^{\alpha_2} \cdot 3^{\alpha_1} \dots p_n^{\alpha_n} = h(y)$, logo h é injetora, além disso, para todo $n = 2^{\beta_1} \cdot 3^{\beta_2} \dots q_m^{\beta_m}$, temos que $k = 2^{\beta_2} \cdot 3^{\beta_1} \dots q_m^{\beta_m}$ é tq h(k) = n, logo h é bijetora e, portanto, é um automorfismo em (\mathbb{N}, \cdot) , entretanto, se + fosse definível em (\mathbb{N}, \cdot) , então $(1, 1, 2) \in R$ sse $(h(1), h(1), h(2)) = (1, 1, 3) \in R$, contradição.

Exercício 16. Construa uma sentença φ que possua modelos de tamanho exatamente 2n, para qualquer inteiro positivo n.

Proof. Seja $S = \{R\}$ onde R é um símbolo de relação binário, defina

$$\varphi = \bigwedge \Phi_{\text{eq}} \wedge \exists v_1 v_2 \left(\varphi_{\geqslant 2} \wedge \forall v \left(Rvv_1 \vee Rvv_2 \right) \right)$$

onde $\varphi_{\geq n}$ é a formalização de "há no mínimo n elementos" definida na **Obs.** do **Exercício 9.** e $\bigwedge \Phi_{\rm eq}$ é a conjunção dos axiomas da relação de equivalência definidos por:

$$\Phi_{\mathrm{eq}} := \{ \underbrace{\forall v_0 R v_0 v_0}_{\mathrm{Reflexiva}}, \underbrace{\forall v_0 v_1 (R v_0 v_1 \to R v_1 v_0)}_{\mathrm{Sim\acute{e}trica}}, \underbrace{\forall v_0 v_1 v_2 ((R v_0 v_1 \land R v_1 v_2) \to R v_0 v_2)}_{\mathrm{Transitiva}} \}$$

Isso garante não só que R seja uma relação de equivalência como também que o conjunto quociente $|\mathfrak{A}|/R$ de qualquer modelo de φ terá exatamente 2 classes de equivalência, como todas possuem a mesma cardinalidade tem de ser possível particionar o domínio em 2 conjuntos diferentes, i.e., ser um múltiplo de 2.

Obs. Podemos estender o raciocínio e, utilizando o termo modelo-teórico usual, definir o *spectrum* $\{n \in \mathbb{N} \setminus \{0\} \mid n \equiv 0 \pmod{m}\}$, para $m \ge 1$ da seguinte forma:

$$\varphi = \bigwedge \Phi_{\text{eq}} \wedge \exists v_1 \dots v_m \left(\varphi_{\geqslant m} \wedge \forall v \left(\bigvee_{i=1}^m Rvv_i \right) \right)$$

o raciocínio é o mesmo, garantimos que R é uma relação de equivalência e que o conjunto quociente de qualquer modelo sobre R terá exatamente m classes, i.e., pode ser particionado em m conjuntos de mesmo tamanho.

Exercício 17. a) Considere $S = \{P\}$ um símbolo de relação binário. Mostre que se \mathfrak{A} é finito e $\mathfrak{A} \equiv \mathfrak{B}$, então $\mathfrak{A} \cong \mathfrak{B}$;

b) Mostre que o resultado em a) vale independente de \mathcal{S} .

Proof. a) Assuma que \mathfrak{A} possua n elementos, logo $\models_{\mathfrak{A}} \varphi_{=n}$. Seja agora s tq $s(v_1) \neq \cdots \neq s(v_n)$ e

$$\psi_{i,j}^{P} = \begin{cases} Pv_i v_j, \text{ se } \models_{\mathfrak{A}} Pv_i v_j[s]; \\ \neg Pv_i v_j, \text{ caso contrário.} \end{cases}$$

Obviamente $\models_{\mathfrak{A}} \bigwedge_{i,j \in \{1,\dots,n\}} \psi_{i,j}^{P}[s]$ por definição, logo $\models_{\mathfrak{A}} \chi := \varphi_{=n} \land \bigwedge_{i,j \in \{1,\dots,n\}} \psi_{i,j}^{P}[s]$. Visto que $\mathfrak{A} \equiv \mathfrak{B}$, então $\models_{\mathfrak{B}} \chi$, logo \mathfrak{B} tem exatamente n elementos, existe uma valoração $s' : V \to |\mathfrak{B}|$ tq $s(v_1) \neq \dots \neq s(v_n)$ e há uma única interpretação possível para $P^{\mathfrak{B}}$, visto que cada elemento de $|\mathfrak{A}|$ pode ser determinado unicamente por $s(v_i)$ e os em $|\mathfrak{B}|$ por $s'(v_i)$, portanto $h : |\mathfrak{A}| \to |\mathfrak{B}|$ tq $h(s(v_i)) = s'(v_i)$ é um isomorfismo, garantido pelas propriedades acima.

b) O caso em que possuímos $\{P_1,\ldots,P_n\}$ símbolos de relação de diversas aridades é trivial, basta, para P_i m-ário, tomar $\bigwedge_{i_1,\ldots,i_m\in\{1,\ldots,n\}}\psi^P_{i_1,\ldots,i_m}$, a conjunção de cada qual garante que toda estrutura elementarmente equivalente a $\mathfrak A$ também será isomórfica pelo mesmo h. Para o caso que possuímos um símbolo de função m-ária f construimos

$$\alpha_{i_1,\dots,i_m}^f = \begin{cases} fv_{i_1}\dots v_{i_{m-1}} = v_{i_m}, \text{ se } f^{\mathfrak{A}}(\overline{s}(v_{i_1}),\dots,\overline{s}(v_{i_{m-1}})) = \overline{s}(v_{i_m}); \\ \neg fv_{i_1}\dots v_{i_{m-1}} = v_{i_m}, \text{ caso contrário.} \end{cases}$$

e, analogamente

$$\beta_i^c = \begin{cases} c = v_i, \text{ se } c^{\mathfrak{A}} = \overline{s}(v_i); \\ \neg c = v_i, \text{ caso contrário.} \end{cases}$$

logo, defina

$$\gamma = \varphi_{=n} \wedge \bigwedge \psi^{P_{i_1}} \wedge \dots \wedge \bigwedge \psi^{P_{i_p}} \wedge \bigwedge \alpha^{f_{i_1}} \wedge \dots \wedge \bigwedge \alpha^{f_{i_q}} \wedge \bigwedge \beta^{c_{i_1}} \wedge \dots \wedge \bigwedge \beta^{c_{i_r}}$$

é fácil ver, pelo mesmo argumento, que a função h que identifica cada elemento de $\mathfrak A$ pela sua interpretação na valoração s define um isomorfismo entre $\mathfrak A$ e $\mathfrak B$, dado que $\models_{\mathfrak B} \gamma$.

Obs. Um resultado mais forte diz respeito a transformar uma S-estrutura $\mathfrak A$ arbitrária em uma S^r -estrutura $relacional \mathfrak A^r$, i.e., contendo apenas símbolos de relação, basta definirmos $|\mathfrak A| = |\mathfrak A^r|$; para cada $P \in S$, $P^{\mathfrak A^r} = P^{\mathfrak A}$; para cada símbolo P-ário de função $P \in S$, adicione $P \in S^r$ como o grafo de P, i.e., $P^{\mathfrak A^r} = P^{\mathfrak A} = P^{$

$$\models_{\mathfrak{A}} \psi[s] \text{ sse } \models_{\mathfrak{A}^r} \psi^r[s]$$

Analogamente, para todo $\psi \in \mathcal{L}^{\mathcal{S}^r}$, existe um $\psi^{-r} \in \mathcal{L}^{\mathcal{S}}$ tq para todo \mathcal{S} -estrutura (\mathfrak{A}, s) vale

$$\models_{\mathfrak{A}} \psi^{-r}[s] \text{ sse } \models_{\mathfrak{A}^r} \psi[s]$$

Em outras palavras, toda sentença em \mathfrak{A}^r possui um análogo em \mathfrak{A} , e vice-versa, um corolário direto é que $\mathfrak{A} \equiv \mathfrak{B}$ sse $\mathfrak{A}^r \equiv \mathfrak{A}^r$. A prova do teorema é fácil e feita da forma esperada, definindo $[fy_1 \dots y_n = x]^r := Fy_1 \dots y_n x$, $[c = x]^r := Cx$, $[\psi_1 \vee \psi_2]^r := \psi_1^r \vee \psi_2^r$ e os outros conectivos de forma análoga, sendo o caso contrário também trivial, $[Ft_1 \dots t_n t]^{-r} := ft_1 \dots t_n = t$, etc. A prova da equivalência sai de forma direta.

Exercício 18. Uma fórmula universal (Π_1) é uma da forma $\forall x_1 \dots x_n \theta$, onde θ é livre de quantificadores. Analogamente, uma existencial (Σ_1) é da forma $\exists x_1 \dots x_n \theta$. Seja $\mathfrak{A} \subseteq \mathfrak{B}$ e $s: V \to |\mathfrak{A}|$.

- a) Teorema da Preservação de Łoś–Tarski: Mostre que se $\models_{\mathfrak{A}} \psi[s]$, com $\psi \in \Sigma_1$, então $\models_{\mathfrak{B}} \psi[s]$. E se $\models_{\mathfrak{B}} \varphi[s]$, com $\varphi \in \Pi_1$, então $\models_{\mathfrak{A}} \varphi[s]$;
- b) Conclua que a sentença $\exists x P x$ não é logicamente válida a nenhuma sentença Π_1 , nem $\forall x P x$ a uma Σ_1 .

Proof. a) Se $\models_{\mathfrak{A}} \exists \overline{x} \psi(\overline{x}, \overline{y})[s]$, então existe $\overline{a} \in |\mathfrak{A}|^n$ tq $\models_{\mathfrak{A}} \psi(\overline{x}, \overline{y})[s\frac{\overline{a}}{\overline{x}}]$, logo o **Teorema do Homomorfismo** garante que $\models_{\mathfrak{B}} \psi(\overline{x}, \overline{y})[h \circ s\frac{\overline{a}}{\overline{x}}]$, mas como $h : |\mathfrak{A}| \to |\mathfrak{B}|$ é uma inclusão definida como h(a) = a, então $h \circ s\frac{\overline{a}}{\overline{x}} = s\frac{\overline{a}}{\overline{x}} : V \to |\mathfrak{B}|$, além disso, como $|\mathfrak{A}|^n \subseteq |\mathfrak{B}|^n$, então $\overline{a} \in |\mathfrak{B}|^n$, logo $\models_{\mathfrak{B}} \psi(\overline{x}, \overline{y})[s\frac{\overline{a}}{\overline{x}}]$, para $\overline{a} \in |\mathfrak{B}|^n$, portanto $\models_{\mathfrak{B}} \exists \overline{x} \psi(\overline{x}, \overline{y})[s]$.

O outro caso é análogo, se $\models_{\mathfrak{B}} \forall \overline{x} \varphi(\overline{x}, \overline{y})[s]$, então $\models_{\mathfrak{B}} \varphi(\overline{x}, \overline{y}) \left[s \frac{\overline{b}}{\overline{x}} \right]$, para todo $\overline{b} \in |\mathfrak{B}|^n$, por hipótese $v : V \to |\mathfrak{A}|$, e se vale para todo $\overline{b} \in |\mathfrak{B}|^n$ em particular vale para todo $\overline{a} \in |\mathfrak{A}|^n$, logo $\models_{\mathfrak{A}} \forall \overline{x} \varphi(\overline{x}, \overline{y})[s]$; b) Seja $|\mathfrak{A}| = \{a\}$, $|\mathfrak{B}| = \{a,b\}$ e defina $P^{\mathfrak{A}} = \emptyset$, $P^{\mathfrak{B}} = \{b\}$, logo $\mathfrak{A} \subseteq \mathfrak{B}$, visto que $|\mathfrak{A}| \subseteq |\mathfrak{B}|$ e $P^{\mathfrak{A}} = P^{\mathfrak{B}}|_{|\mathfrak{A}|}$. Assuma por contradição que exista $\varphi \in \Pi_1$ tq $\exists x Px \models \exists \varphi$, como $\models_{\mathfrak{B}} \exists x Px$ (em particular Pb), então $\models_{\mathfrak{B}} \varphi$, o **Teorema da Preservação de Loś-Tarski** garante que $\models_{\mathfrak{A}} \varphi$, logo $\models_{\mathfrak{A}} \exists x Px$, contradição.

Exercício 19. Uma fórmula Σ_2 é da forma $\exists x_1 \dots x_n \theta$, com $\theta \in \Pi_1$.

- a) Mostre para toda sentença $\varphi \in \Sigma_2$ em uma assinatura sem símbolos de constante e função, se $\models_{\mathfrak{B}} \varphi$, então existe $\mathfrak{A} \subseteq \mathfrak{B}$ finita tq $\models_{\mathfrak{A}} \varphi$;
- b) Conclua que $\forall x \exists y Pxy$ não é logicamente equivalente a nenhuma sentença em Σ_2 .

Proof. a) Se $\models_{\mathfrak{B}} \exists x_1 \dots x_n \theta[s]$, então existem $d_1, \dots, d_n \in |\mathfrak{B}|$ tq $\models_{\mathfrak{B}} \theta\left[s \frac{d_1 \dots d_n}{x_1 \dots x_n}\right]$, defina $|\mathfrak{A}| = 0$

 $\{d_1,\ldots,d_n\}\subseteq |\mathfrak{B}|$ e, para cada P_i defina $P_i^{\mathfrak{A}}=P_i^{\mathfrak{B}}|_{|\mathfrak{A}|}$, portanto $\mathfrak{A}\subseteq\mathfrak{B}$ e, como $\theta\in\Pi_1$, o **Teorema da Preservação de Łoś–Tarski** garante que $\models_{\mathfrak{A}}\theta\left[s\frac{d_1...d_n}{x_1...x_n}\right]$, com $d_1,\ldots,d_n\in|\mathfrak{A}|$, portanto $\models_{\mathfrak{A}}\exists x_1\ldots x_n\theta[s]$;

b) Assuma por contradição que exista $\varphi \in \Sigma_2$ tq $\forall x \exists y Pxy \models \exists \varphi$, portanto, como $\mathfrak{N} = (\mathbb{N}, <)$ é tq $\models_{\mathfrak{N}} \forall x \exists y Pxy$, i.e., para todo $n \in \mathbb{N}$, existe um $m \in \mathbb{N}$ tq n < m, então $\models_{\mathfrak{N}} \varphi$ e, por a), temos que existe um $\mathfrak{A} \subseteq \mathfrak{N}$ finito tq $\models_{\mathfrak{A}} \varphi$, logo $\models_{\mathfrak{A}} \forall x \exists y Pxy$, o que é obviamente uma contradição em qualquer conjunto com finitos naturais, em particular, uma instância é que $\exists y (\max(|\mathfrak{A}|) < y)$, o que é claramente falso.

Exercício 20. Seja $S = \{P\}$, sendo R um símbolo de relação binária. Considere as S-estruturas $\mathfrak{N} = (\mathbb{N}, <)$ e $\mathfrak{R} = (\mathbb{R}, <)$.

- a) Encontre uma sentença verdadeira em uma e falsa na outra;
- b) Mostre que para qualquer sentença $\varphi \in \Sigma_2$ se $\models_{\Re} \varphi$, então $\models_{\Re} \varphi$.

Proof. a) $\models_{\mathfrak{N}} \varphi := \exists x \forall y (x \neq y \rightarrow Pxy)$, mas $\not\models_{\mathfrak{N}} \varphi$, uma vez que \mathbb{N} é limitado inferiormente e \mathbb{R} não. Ademais $\models_{\mathfrak{N}} \psi := \forall xy \exists z (Pxy \rightarrow (Pxz \land Pzy))$, mas $\not\models_{\mathfrak{N}} \psi$, visto que \mathbb{R} é denso em si mesmo e \mathbb{N} não.

b) Se $\models_{\mathfrak{R}} \exists \overline{x} \varphi(\overline{x})$ então existem $\overline{d} = d_1, \ldots, d_n \in \mathbb{R}$ tq $\models_{\mathfrak{R}} \varphi(\overline{x}) \left[s \frac{\overline{d}}{\overline{x}} \right]$, considere o automorfismo $h: \mathfrak{R} \to \mathfrak{R}$ que envia \overline{d} para os naturais $\overline{m} = m_1, \ldots, m_n$ (basta tomar $h([d_i, d_{i+1}]) = [i, i+1]$, para 1 < i < n-1 e $h((-\infty, d_1]) = (-\infty, 1]$ e $h([d_n, \infty)) = [n, \infty)$, é obviamente uma bijeção que é estritamente crescente), portanto $h \circ s \frac{\overline{d}}{\overline{x}} = h \circ s \frac{h(\overline{d})}{\overline{x}} = h \circ s \frac{\overline{m}}{\overline{x}}$, como $\exists \overline{x} \varphi(\overline{x})$ é uma sentença, então as únicas variáveis livres em φ são \overline{x} , portanto a função $s \frac{\overline{m}}{\overline{x}} : V \to \mathbb{N}$ concorda com $h \circ s \frac{\overline{m}}{\overline{x}}$ em todas variáveis livres de φ , logo $\models_{\mathfrak{R}} \varphi(\overline{x}) \left[s \frac{\overline{m}}{\overline{x}} \right]$. Pelo **Teorema da Preservação de Łoś-Tarski**, como $\varphi \in \Pi_1$ e $\mathfrak{N} \subseteq \mathfrak{R}$ ($\mathbb{N} \subseteq \mathbb{R}$ e $<^{\mathfrak{N}} = <^{\mathfrak{N}} \mid_{\mathbb{N}}$), então $\models_{\mathfrak{N}} \varphi(\overline{x}) \left[s \frac{\overline{d}}{\overline{x}} \right]$, i.e., $\models_{\mathfrak{N}} \exists \overline{x} \varphi(\overline{x})$.

Exercício 21. Podemos enriquecer a linguagem adicionando um quantificador adicional. A fórmula $\exists!x\alpha$ (lê-se "há um único x tq α) tem (\mathfrak{A},s) como modelo sse existe um único $a \in |\mathfrak{A}|$ tq $\models_{\mathfrak{A}} \alpha \left[s\frac{a}{x}\right]$. Prove que esse aparentem enriquecimento é, na verdade, redundante, no sentido de que podemos encontrar uma fórmula ordinária na lógica equivalente a $\exists!x\alpha$.

Proof. Considere $\varphi = \exists x (\alpha(x) \land \forall y (\alpha(y) \to x = y))$, é fácil ver que $\models_{\mathfrak{A}} \varphi$ sse existe um $a \in |\mathfrak{A}|$ tq $\models_{\mathfrak{A}} \alpha(x) \left[s \frac{a}{x}\right]$ e, para todo $d \in |\mathfrak{A}|$ tq $\models_{\mathfrak{A}} \alpha(x) \left[s \frac{d}{x}\right]$ temos d = a, portanto há um único a que satisfaz α .

Obs. Para $n \ge 1$ podemos definir, analogamente, "existem no máximo n tq φ " $(\exists^{\le n})$ e "existem exatamente n tq φ " $(\exists^{=n})$ como:

$$\exists^{\leq n} v \varphi(v) := \exists v_1 \dots v_n \left(\bigwedge_{1 \leq i \leq n} \varphi(v_i) \wedge \forall v \left(\varphi(v) \to \bigvee_{1 \leq j \leq n} v = v_j \right) \right)$$

$$\exists^{=n} v \varphi(v) := \exists v_1 \dots v_n \left(\bigwedge_{x,y \in \{1,\dots,n\}} v_x \neq v_y \wedge \bigwedge_{1 \leq i \leq n} \varphi(v_i) \wedge \forall v \left(\varphi(v) \to \bigvee_{1 \leq j \leq n} v = v_j \right) \right)$$

Exercício 22. Seja $\mathfrak A$ uma estrutura e h uma função tq $\operatorname{ran}(h) = |\mathfrak A|$, mostre que existe uma estrutura $\mathfrak B$ tq h é um homomorfismo sobrejetor de $\mathfrak B$ em $\mathfrak A$.

Proof. Tomando uma das formas de AC, em particular a que para qualquer relação R, existe uma função $H \subseteq R$ tq dom(H) = dom(R), tome $R = h^{-1}$, portanto existe $H \subseteq h^{-1}$ com dom $(H) = \text{dom}(h^{-1}) = |\mathfrak{A}|$, logo dado qualquer $a \in |\mathfrak{A}|$, $(a, H(a)) \in h^{-1}$, i.e., $(H(a), a) \in h$, portanto h(H(a)) = a. Defina $|\mathfrak{B}| := \text{dom}(h)$ e

$$c^{\mathfrak{B}} := H(c^{\mathfrak{A}});$$

$$P^{\mathfrak{B}} := \{(x_1, \dots, x_n) \in |\mathfrak{B}|^n \mid (h(x_1), \dots, h(x_n)) \in P^{\mathfrak{A}}\};$$

$$f^{\mathfrak{B}} := \underbrace{\{(H(x_m), \dots, H(x_m)) \in |\mathfrak{B}|^m \mid (x_1, \dots, x_m) \in f^{\mathfrak{A}}\}}_{f_1} \cup f_2.$$

onde $f_2 = \{(x,y) \in |\mathfrak{B}|^2 \mid (H(h(x)),y) \in f_1\}$. Obviamente f_1 é uma função em ran(H), visto que H também é, entretanto f_1 não é necessariamente uma função em $|\mathfrak{B}|$, visto que H nem sempre é sobrejetora, portanto f_2 cobre os pontos restantes, associando cada ponto $x \in |\mathfrak{B}|$, a um único ponto y tq f(H(h(x))) = y, i.e., envia x ao mesmo ponto único escolhido por H na fibra que x pertence.

Basta agora provarmos que \mathfrak{B} é definido de tal forma que $h: |\mathfrak{B}| \to |\mathfrak{A}|$ é um homomorfismo: $h(c^{\mathfrak{B}}) = h(H(c^{\mathfrak{A}})) = c^{\mathfrak{A}}$; se $(b_1, \ldots, b_n) \in P^{\mathfrak{B}}$, por def. $(h(b_1), \ldots, h(b_n)) \in P^{\mathfrak{A}}$, para $(a_1, \ldots, a_n) \in P^{\mathfrak{A}}$, como h é sobrejetora existem $x_1, \ldots, x_n \in |\mathfrak{B}|$ tq $h(x_i) = a_i$, logo, como $(h(x_1), \ldots, h(x_n)) \in P^{\mathfrak{A}}$, por def. $(x_1, \ldots, x_n) \in P^{\mathfrak{B}}$; Seja $\bar{b} \in |\mathfrak{B}|^n$, considere $X = \{\bar{x} \in |\mathfrak{B}|^n \mid h(\bar{x}) = h(\bar{b})\}$ (onde $h(\bar{x}) = (h(x_1), \ldots, h(x_n))$, como $h(\bar{b}) \in |\mathfrak{A}|^n$, existe $y \in X$ tq $H(h(\bar{b})) = y$, logo se $f^{\mathfrak{A}}(h(\bar{b})) = m$, então por def. $(H(h(\bar{b})), H(m)) \in f_1$, e f_2 garante que para todo $h \in X$ temos $(H(h(\bar{b})), H(m)) = (H(h(\bar{b})), H(m)) \in f_1$, logo $(\bar{k}, H(m)) \in f_2$ e, portanto, todo elemento em K (uma das fibras de h^{-1}) está definido em $f^{\mathfrak{B}}$, portanto $f^{\mathfrak{B}}$ é uma função em \mathfrak{B}

Obs. É interessante notar que se $F: A \to B$, com $A \neq \emptyset$, então ZF prova que:

- a) Existe uma função $G: B \to A$ tq $G \circ F = \mathrm{id}_A$ sse F é injetora;
- b) Se existe uma função $H: B \to A$ tq $F \circ H = \mathrm{id}_B$, então F é sobrejetora.

Mas, talvez não surpreendentemente, precisamos de AC para provar a conversa de b). Uma vez que F não é necessariamente injetiva, F^{-1} não será uma função, portanto AC nos garante que podemos escolher, para cada $y \in B$, um $x \in A$ tq f(x) = y, é por isso que o exercício acima, sobre a hipótese de que h é sobrejetora, não garante sem AC que existe uma função inversa à direita de h.

Ademais, o resultado do Exercício anterior garante que, como h é um homomorfismo sobrejetor, então o **Teorema do Homomorfismo** garante que $\models_{\mathfrak{A}} \varphi[s]$ sse $\models_{\mathfrak{B}} \varphi[h \circ s]$ onde φ não contém o símbolo de igualdade, i.e., para qualquer estrutura (\mathfrak{A}, s) , existe uma extensão elementarmente equivalente para fórmulas sem igualdade para uma estrutura $(\mathfrak{B}, h \circ s)$ com qualquer cardinalidade, que seria um caso mais fraco do **Teorema de Löwenheim-Skolem Ascendente**.

Deixaremos uma pequena prova da volta de a), i.e., se $g:A\to B$ é injetora, então existe $G:B\to A$ tq $G\circ g=\mathrm{id}_A$, visto que a utilizaremos nos próximos exercícios:

Seja g uma função injetora, então g^{-1} : ran $(g) \to |\mathfrak{A}|$ é uma função. A ideia é extendê-la a uma G definida em $|\mathfrak{B}|$. Como $|\mathfrak{A}| \neq \emptyset$ existe um $a \in |\mathfrak{A}|$, logo $G := g^{-1} \cup (|\mathfrak{B}| \operatorname{ran}(g)) \times \{a\}$ satisfaz o que queremos, visto que associa cada ponto fora ran(g) a a.

Exercício 23. Seja $\mathfrak A$ uma estrutura e g uma função injetora com $dom(g) = |\mathfrak A|$, mostre que há uma única estrutura $\mathfrak B$ tq g é um isomorfismo de $\mathfrak A$ em $\mathfrak B$.

Proof. Pela observação anterior sabemos que, por $g: |\mathfrak{A}| \to \operatorname{ran}(g)$ ser injetora, existe uma função G tq $G \circ g = \operatorname{id}_{|\mathfrak{A}|}$, portanto basta, de forma análoga ao exercício anterior, definir \mathfrak{B} tq $|\mathfrak{B}| = \operatorname{ran}(g)$ da seguinte forma:

$$c^{\mathfrak{B}} := g(c^{\mathfrak{A}});$$

$$f^{\mathfrak{B}}(b_1, \dots, b_n) := g\left(f^{\mathfrak{A}}(G(b_1), \dots, G(b_n))\right);$$

$$(b_1, \dots, b_n) \in P^{\mathfrak{B}} \text{ sse } (G(b_1), \dots, G(b_n)) \in P^{\mathfrak{A}}.$$

As verificações de que g é um homomorfismo são triviais, por definição $g(c^{\mathfrak{A}}) = c^{\mathfrak{B}}$; temos que $(g(a_1), \ldots, g(a_n)) \in P^{\mathfrak{B}}$ sse $(G \circ g(a_1), \ldots, G \circ g(a_n)) = (a_1, \ldots, a_n) \in P^{\mathfrak{A}}$ e, por fim

$$f^{\mathfrak{B}}(g(a_1),\ldots,g(a_n)) = g\left(f^{\mathfrak{A}}(G\circ g(a_1),\ldots,G\circ g(a_n))\right)$$
$$= g\left(f^{\mathfrak{A}}(a_1,\ldots,a_n)\right)$$

como g é injetora e $\operatorname{ran}(g) = |\mathfrak{B}|$, então ela é também sobrejetora, logo é um isomorfismo. O fato de que g é um isomorfismo implica que $G = g^{-1}$ é uma função e é única, portanto a estrutura \mathfrak{B} definida por ela também é, diferente do exercício anterior que depende da escolha que fazemos para H. As verificações adicionais como o fato de que $f^{\mathfrak{B}}$ é uma função em $|\mathfrak{B}|$ são triviais e serão omitidas.

Exercício 24. Seja h um homomorfismo injetor de $\mathfrak A$ em $\mathfrak B$, mostre que existe uma estrutura $\mathfrak C$ com $\mathfrak C \cong \mathfrak B$ e tq $\mathfrak A \subseteq \mathfrak C$.

Proof. Utilizando como base a ideia da prova da conversa de a) da observação do **Exercício 22.**, se h é injetora, então $h: |\mathfrak{A}| \to \operatorname{ran}(h)$ é uma função bijetora, logo $h^{-1}: \operatorname{ran}(h) \to |\mathfrak{A}|$ é também uma bijeção, vamos expandir h^{-1} para G, mas de forma que, para cada $x \in |\mathfrak{B}| \operatorname{ran}(h)$, G vai associar x a um único $y \notin A$ de forma que G será também injetora. Metateoricamente essa é uma tarefa fácil, conjunto-teoréticamente isso pode ser feito definindo $A_0 := \{|\mathfrak{A}|\}$, $A_n := A_{n-1} \cup \{A_{n-1}\}$, e repetindo o mesmo processo da construção dos ordinais, mas com A_0 no lugar de \emptyset como nosso urelemento. O fato é que o Axioma da Fundação garante que $|\mathfrak{A}|$ é diferente de qualquer ordinal definido dessa forma. Além disso, ele junto com o Axioma da Substituição garantem que todo conjunto é isomorfo a um ordinal, em particular existe uma bijeção $f: |\mathfrak{B}| \operatorname{ran}(h) \to X$, onde $X \neq |\mathfrak{A}|$ é um dos novos ordinais, portanto a função $h^{-1} \cup f: |\mathfrak{B}| \to X \cup \{|\mathfrak{A}|\}$ é injetora e o **Exercício 23.** garante que existe uma única estrutura $\mathfrak{C} \cong \mathfrak{B}$ tq $|\mathfrak{C}| = X \cup \{|\mathfrak{A}|\} \supseteq |\mathfrak{A}|$, é fácil ver, portanto, que $\mathfrak{A} \subseteq \mathfrak{C}$.

PENDENTE (Provavelmente tem um jeito mais fácil de resolver)

Exercício 25. Considere uma S-estrutura fixa \mathfrak{A} . Expanda S para $S^+ := S \cup \{c_a \mid a \in |\mathfrak{A}|\}$ e seja \mathfrak{A}^+ uma S^+ -estrutura tq $c_a^{\mathfrak{A}^+} = a$ e concorde com a interpretação em \mathfrak{A} dos outros símbolos em S. Uma relação R é dita ser definível com parâmetros em \mathfrak{A} sse R é definível em \mathfrak{A}^+ . Seja $\mathfrak{R} = (\mathbb{R}, <, +, \cdot)$:

- a) Mostre que se $A \subseteq \mathbb{R}$ é a união finita de intervalos, então A é definível com parâmetros em \mathfrak{R} ;
- b) Assuma que $\mathfrak{A} \equiv \mathfrak{R}$, mostre que qualquer subconjunto de \mathfrak{A} não-vazio, limitado (utilizando $<^{\mathfrak{A}}$) e definível com parâmetros em \mathfrak{A} possui um supremo em $|\mathfrak{A}|$.

Proof. a) Para I = (a, b], como $a, b \in \mathbb{R}$, então existem $c_a, c_b \in \mathcal{S}$, portanto:

$$\varphi_I(x) := c_a < x \land (x < c_b \lor x = c_b)$$

define I. O caso para (a,b), [a,b) e [a,b] é análogo, portanto se $A = I_1 \cup \cdots \cup I_n$, então a fórmula $\varphi = \bigvee_{1 \le i \le n} \varphi_{I_i}(x)$ define A.

b) Se $A \subseteq \mathfrak{A}$ (\mathfrak{A}) (\mathfrak{A}) é não-vazio e limitado superiormente, e se A for definível por $A = \{x \in |\mathfrak{A}| \mid \models_{\mathfrak{A}} \varphi[\![x]\!]\}$, então, se $\psi(x) = x \in B(B \neq \emptyset)$ e B é limitado superiormente e $\chi(x) = x \in B(B)$, então $\models_{\mathfrak{A}} \psi(a)$, para algum $a \in |\mathfrak{A}|$. Visto que \mathfrak{R} satisfaz completude, então

$$\models_{\mathfrak{R}} \forall x(\psi(x) \to \exists y(\chi(y)))$$

i.e., se B é não-vazio e limitado superiormente, o supremo existe. Como $\mathfrak{A} \equiv \mathfrak{R}$, então

$$\models_{\mathfrak{A}} \forall x(\psi(x) \to \exists y(\chi(y)))$$

em particular $\models_{\mathfrak{A}} (\psi(a) \to \exists y(\chi(y)))$, uma instância em a, logo $\models_{\mathfrak{A}} \exists y(\chi(y))$.

As fórmulas $\psi(x)$ e $\chi(x)$ podem ser formuladas como:

$$\psi(x) := \exists x (\varphi(x)) \land \exists y \forall x (\varphi(x) \rightarrow x \leqslant y)$$

$$\chi(s) := \forall y x ((\varphi(x) \to x \leqslant y) \to s \leqslant y) \land \forall y (\varphi(y) \to y \leqslant s)$$

onde, intuitivamente ψ expressa que há no mínimo um x em B e que há um y tq para todo $x \in B$, y é uma cota superior de B ($x \leq y$). χ por sua vez expressa que para todo y que é uma cota superior de B temos $s \leq y$ e, além disso, que s é uma cota superior de B, portanto é claro que $\chi(s)$ expressa que s é a menor das cotas.

Exercício 26. a) Seja $\mathfrak A$ uma estrutura fixa, defina seu *tipo elementar* como $\mathfrak t(\mathfrak A):=\{\mathfrak B\mid \mathfrak B\equiv \mathfrak A\}.$ Mostre que $\mathcal K=\mathfrak t(\mathfrak A)$ é $EC_\Delta;$

- b) Uma classe \mathcal{K} é dita ser elementarmente fechada ou ECL se, sempre que $\mathfrak{A} \in \mathcal{K}$, $\mathfrak{t}(\mathfrak{A}) \subseteq \mathcal{K}$. Mostre que toda classe ECL é a união de classes EC_{Δ} ;
- c) Conversamente, mostre que toda classe que é a união de classes EC_{Δ} é ECL.

Proof. a) Considere $\operatorname{Th}(\mathfrak{A}) = \{ \varphi \in \mathcal{L}^{\mathcal{S}} \mid \models_{\mathfrak{A}} \varphi \}$, portanto $\mathfrak{B} \in \mathfrak{t}(\mathfrak{A})$ sse $(\models_{\mathfrak{A}} \varphi \text{ sse } \models_{\mathfrak{B}} \varphi)$, i.e., $\operatorname{Th}(\mathfrak{A}) = \operatorname{Th}(\mathfrak{B})$, que é equivalente a $\mathfrak{B} \in \operatorname{Mod}^{\mathcal{S}}(\operatorname{Th}(\mathfrak{A}))$, visto que $\models_{\mathfrak{B}} \operatorname{Th}(\mathfrak{B}) = \operatorname{Th}(\mathfrak{A})$. Logo $\mathfrak{t}(\mathfrak{A}) = \operatorname{Mod}^{\mathcal{S}}(\operatorname{Th}(\mathfrak{A}))$

b) Como \equiv é uma relação de equivalência entre estruturas, considere o conjunto quociente $\mathcal{K}/_{\equiv}$, obviamente se temos $[\mathfrak{A}] \in \mathcal{K}/_{\equiv}$, então $\mathfrak{B} \in [\mathfrak{A}]$ sse $\mathfrak{B} \equiv \mathfrak{A}$, como \mathcal{K} é ECL, então em particular todo $\mathfrak{B} \equiv \mathfrak{A}$ está em \mathcal{K} , i.e., $\mathfrak{t}(\mathfrak{A}) \subseteq \mathcal{K}$, portanto $\mathfrak{B} \in \mathfrak{t}(\mathfrak{A})$ sse $\mathfrak{B} \equiv \mathfrak{A}$ sse $\mathfrak{B} \in [\mathfrak{A}]$, logo $\mathfrak{t}(\mathfrak{A}) = [\mathfrak{A}]$. Sob posse de AC, considere a função $h : \mathcal{K} \to \mathcal{K}/_{\equiv}$ definida como $h(\mathfrak{A}) = [\mathfrak{A}]$, sabemos portanto que existe uma função $f \subseteq h^{-1}$ tq dom $(f) = \mathcal{K}/_{\equiv}$, uma função de escolha, portanto

$$\mathcal{K} = \bigcup_{\mathfrak{A} \in \operatorname{ran}(f)} \mathfrak{t}(\mathfrak{A}) = \bigcup_{\mathfrak{A} \in \operatorname{ran}(f)} \operatorname{Mod}^{\mathcal{S}} (\operatorname{Th}(\mathfrak{A}))$$

onde cada $\mathfrak{t}(\mathfrak{A})$ é EC_{Δ} .

c) Se $\mathcal{K} = \bigcup_{\Sigma \in X} \operatorname{Mod}(\Sigma)$, então $\mathfrak{A} \in \mathcal{K}$ implica que $\models_{\mathfrak{A}} \Sigma$, para algum $\Sigma \in X$, obviamente se $\mathfrak{B} \equiv \mathfrak{A}$, então, por def. $\models_{\mathfrak{B}} \Sigma$, logo $\mathfrak{B} \in \operatorname{Mod}^{\mathcal{S}}(\Sigma)$, i.e., $\mathfrak{B} \in \mathcal{K}$, o que prova que $\mathfrak{t}(\mathfrak{A}) \subseteq \mathcal{K}$. Em particular, b) e c) juntos provam que $EC_{\Delta\Sigma} = ECL$.

Exercício 27. Seja $S = \{P\}$ com P um símbolo de relação binária. Liste todas as estruturas não-isomórficas de tamanho 2.

Proof. Como $P^{\mathfrak{A}}\subseteq |\mathfrak{A}|^2$, e $|\mathfrak{A}|$ contém 2 elementos, então basta testar todos $P\in \mathcal{P}(|\mathfrak{A}|^2)$, i.e., $2^4=16$ possibilidades, e listar as que são não-isomórficas.

PENDENTE (Trivial)

Exercício 28. Para cada par de estruturas a seguir, mostre que eles não são elementarmente equivalentes:

- a) $\mathfrak{R} = (\mathbb{R}, \times)$ e $\mathfrak{R}^* = (\mathbb{R}^*, \times^*)$;
- b) $\mathfrak{N} = (\mathbb{N}, +) \in \mathfrak{Z} = (\mathbb{Z}^+, +^*);$
- c) Para cada uma das quatro estruturas aprensetadas, construa uma sentença verdadeira em uma e falsa nas outras três.

Proof. a) Se $\varphi := \exists x \forall y (x \cdot y = x)$, então $\models_{\mathfrak{R}} \varphi$, mas $\not\models_{\mathfrak{R}^*} \varphi$, intuitivamente φ expressa que 0 existe; Se $\psi := \neg \varphi$, então $\models_{\mathfrak{R}^*}$, mas $\not\models_{\mathfrak{R}} \varphi$, intuitivamente ψ expressa que 0 não existe;

- b) Se $\chi := \exists x \forall y (x + y = y)$, então $\models_{\mathfrak{N}} \chi$, mas $\not\models_{\mathfrak{J}} \chi$, intuitivamente χ expressa que 0 existe;
- Se $\gamma := \neg \chi$, então $\models_3 \gamma$, mas $\not\models_{\mathfrak{N}} \gamma$, intuitivamente γ expressa que 0 não existe.
- c) \mathfrak{R} : Note que φ se interpretada em \mathfrak{N} diz que existe um x tq x+y=x para todo $y\in\mathbb{N}$, o que é claramente falso, é fácil ver que em \mathfrak{Z} também;
- \mathfrak{R}^* : A estrutura (\mathbb{R}^* , \times^* , 1) é a única das 4 que é um grupo, todas \mathfrak{N} , \mathfrak{Z} , \mathfrak{R} falham em ter inversa, portanto $\psi' := \forall x \exists y (x \cdot y = x)$ só é verdadeira em \mathfrak{R}^* ;
- \mathfrak{N} : Algumas propriedades algébricas apresentadas por \mathfrak{R} e \mathfrak{R}^* que \mathfrak{N} não possui é a de que todo elemento da última possui inversa, e um único elemento da primeira não, portanto:

$$\varphi := \exists x (\forall y (x \cdot y = y) \land \exists ! y \not\exists z (y \cdot z = x))$$

é t
q $\models_{\mathfrak{R},\mathfrak{R}^*,\mathfrak{Z}} (\varphi \vee \psi' \vee \gamma),$ mas $\not\models_{\mathfrak{N}} (\varphi \vee \psi' \vee \gamma).$

3: γ se interpretada em $\mathfrak R$ diz que não existe x tq $x \times y = y$ para todo $y \in \mathbb R$, o que é claramente falso, x = 1 satisfaz, o mesmo raciocínio se aplica a $\mathfrak R^*$, logo γ só é verdadeira em $\mathfrak Z$.

Exercício Bônus. Para cada $n \in \mathbb{N}$, construa um modelo \mathfrak{A}_n em uma linguagem $\mathcal{L}^{\mathcal{S}}$ tq \mathcal{S} é finito, onde exatamente n elementos de $|\mathfrak{A}|$ não são definíveis, i.e., existem $a_1, \ldots, a_n \in |\mathfrak{A}|$ tq, para cada $1 \leq i \leq n$, não existe φ tq $\{a_i\} = \{x \in |\mathfrak{A}| \mid \varphi(x)\}$.

Proof. Para n=0 basta tomar $|\mathfrak{A}_0|=\varnothing$, portanto todo subconjunto é definível por vacuidade, caso não seja permitido estruturas com domínio vazio basta tomarmos $|\mathfrak{A}_0|=\{a\}$ e $c\in S$ tq $c^{\mathfrak{A}_0}=a$, logo $\{a\}=\{x\in |\mathfrak{A}_0|\mid x=c\}$. Para n>1 note que $|\mathfrak{A}_n|=\{x_1,\ldots,x_n\}$ não possui nenhum elemento definível, assuma por contradição que x_i é definível por φ , logo o teorema do homomorfismo garante que qualquer permutação $h: |\mathfrak{A}_n| \to |\mathfrak{A}_n|$ é tq se $\{x_i\}$ é definível, para todo $x\in \{x_i\}$ temos $h(x)\in \{x_i\}$, portanto se $R\neq\varnothing$ é definível, então $R=|\mathfrak{A}_n|$, portanto em \mathfrak{A}_n é impossível definir todos seus elementos, i.e., possui exatamente n elementos indefiníveis.

Note que o raciocínio anterior não vale para n=1, visto que o único automorfismo de $\{x\}$ em $\{x\}$ é a identidade, considere portanto $\mathfrak{A}_1=(\omega+1,0,R,<)$, onde $0^{\mathfrak{A}_1}=0$ e $R=\{(i,i+1)\mid i\in\mathbb{N}\}$, portanto podemos definir $\{0\}=\{x\mid x=0\}, \{1\}=\{x\mid R0x\}, \{2\}=\{x\mid \exists y(R0y\wedge Ryx)\}, \dots$ Em geral, temos $\{n\}=\{x\mid \exists x_1(R0x_1\wedge\exists x_2(Rx_1x_2\wedge\ldots\exists x_{n-1}(Rx_{n-1}x)\ldots)\}$, portanto todo $n\in\omega$ é definível, mas $\omega\in\omega+1$ não é.

2.3 Um Algoritmo de Análise

Exercício 1. Mostre que para qualquer segmento inicial próprio α' de uma wff α , temos $K(\alpha') < 1$.

Proof. Lema. 1. Para qualquer wff α , $K(\alpha) = 1$. Proof. Caso base: se $\alpha = (t_1 = t_2)$, por def.

$$K(\alpha) = K(() + K(t_1) + K(=) + K(t_2) + K())$$

$$= -1 + 1 - 1 + 1 + 1$$

$$= 1$$

se $\alpha = (Pt_1 \dots t_n)$, temos também por def.

$$K(\alpha) = K(() + K(P) + K(t_1) + \dots + K(t_n) + K())$$

= -1 + (1 - n) + n + 1
= 1.

Assuma como hipótese indutiva que para cada wff α temos $K(\alpha)=1$, logo, como passo indutivo: Se $\alpha=(\varphi \wedge \psi)$, então

$$K(\alpha) = K(() + K(\varphi) + K(\wedge) + K(\psi) + K())$$

= -1 + 1 - 1 + 1 + 1
= 1.

Para $\alpha = (\neg \varphi)$

$$K(\alpha) = K(() + K(\neg) + K(\varphi) + K())$$

= -1 + 0 + 1 + 1
= 1.

Por fim, se $\alpha = (\forall x \varphi)$, então

$$K(\alpha) = K(() + K(\forall) + K(x) + K(\varphi) + K())$$

= -1 - 1 + 1 + 1 + 1
= 1.

Agora é fácil mostrar que para todo segmento inicial próprio α' de α temos $K(\alpha') < 1$. Se α for $(t_1 = t_2)$ ou $(Pt_1 \dots t_n)$ é fácil ver que para qualquer segmento inicial α' temos $K(\alpha') < 1$, assuma portanto como hipótese indutiva que vale para qualquer wff, logo se $\alpha = (\varphi \wedge \psi)$, basta testarmos seus possíveis segmentos iniciais próprios: $(, (\varphi', (\varphi, (\varphi \wedge \psi', (\varphi \wedge \psi', (\varphi \wedge \psi, onde \varphi' e \psi'$ são segmentos iniciais próprios de φ e ψ , respectivamente, é fácil ver, utilizando a hipótese indutiva, que cada qual é tq $K(\alpha') < 1$, o caso para os outros símbolo lógicos é análogo.

Exercício 2. Seja ε uma expressão consistindo de variáveis, símbolos de constantes e funções. Mostre que ε é um termo see $K(\varepsilon) = 1$ e que para todo segmento terminal próprio ε' de ε temos $K(\varepsilon') > 0$.

Proof. Se ε for um termo, sabemos que $K(\varepsilon)=1$, assuma portanto que $K(\varepsilon)=1$, teríamos que mostrar que ε é um termo, entretanto $\varepsilon=v_1\dots v_n f$ satisfaz $K(\varepsilon)=1$, mas não é um termo (wtf). Seja agora ε' um segmento terminal próprio de ε , logo $\varepsilon=\varepsilon_1+\varepsilon'$ com ε_1 um segmento inicial próprio de ε , queremos mostrar que $K(\varepsilon')>0$, se ε for uma concatenção de símbolos quaisquer como no caso anterior, então isso não é necessariamente verdade, tome $\varepsilon=v_1\dots v_n f$ novamente, então f é um segmento terminal próprio de ε e, se for n-ária, com n>1, então K(f)<0. Assuma portanto que ε seja um termo, logo sabemos que $K(\varepsilon_1)<1$, visto que é um segmento inicial próprio, logo $K(\varepsilon')=K(\varepsilon)-K(\varepsilon_1)>0$.

2.4 Um Cálculo Dedutivo

PENDENTE

Exercício 3. a) Seja $\mathfrak A$ uma estrutura e $s:V\to |\mathfrak A|$. Defina v no conjunto de fórmulas primas por

$$v(\alpha) = \top \text{ sse } \models_{\mathfrak{A}} \alpha[s]$$

e prove que para qualquer wff α , $\overline{v}(\alpha) = \top$ sse $\models_{\mathfrak{A}} \alpha[s]$;

b) Correção Fraca. Conclua que se $\Gamma \vDash_S \varphi$ (implica tautologicamente), então $\Gamma \vDash_F \varphi$ (implica logicamente).

Proof. a) Obviamente para cada fórmula prima α temos que $\overline{v}(\alpha) = v(\alpha) = \top$ por hipótese, provando portanto o caso base. Assuma agora que valha para φ e ψ , portanto $\overline{v}(\varphi \to \psi) = \top$ see se $\overline{v}(\varphi) = \top$, então $\overline{v}(\psi) = \top$, pela hipótese indutiva isso é equivalente a se $\models_{\mathfrak{A}} \varphi[s]$, então $\models_{\mathfrak{A}} \psi[s]$, i.e., $\models_{\mathfrak{A}} (\varphi \to \psi)[s]$.

b) Com isso é fácil concluir que se existe um v que satisfaz cada fórmula em Γ , no sentido da lógica sentencial, então ele satisfaz também φ no mesmo sentido, podemos concluir que isso também vale no sentido da lógica de primeira ordem.

Exercício 12. Teorema de Lindenbaum. Prove que todo conjunto consistente de fórmulas Γ pode ser estendido a um conjunto consistente e completo (ou maximal) Δ .

Proof. Seja Γ consistente, como a linguagem é contável, enumere as wffs em $\varphi_1, \varphi_2, \ldots$ e defina $\Delta_0 := \Gamma$ e

$$\Delta_n := \begin{cases} \Delta_{n-1} \cup \{\varphi_n\} \text{ se } \operatorname{Con}(\Delta_{n-1} \cup \{\varphi_n\}); \\ \Delta_{n-1} \cup \{\neg \varphi_n\} \text{ caso contrário.} \end{cases}$$

logo $\Delta := \bigcup_{i \geqslant 0} \Delta_i$, obviamente para cada φ_i teremos $\varphi_i \in \Delta_i \subseteq \Delta$ ou $\neg \varphi_i \in \Delta_i \subseteq \Delta$, portanto Δ é completo. Assuma por contradição que $\operatorname{Inc}(\Delta)$, logo $\Delta \vdash \beta \land \neg \beta$, i.e., existe uma sequência finita de fórmulas $(\psi_1, \ldots, \psi_n, \beta \land \neg \beta)$ tq cada $\psi_i \in \Delta \cup \Lambda$ ou foi obtida por MP de fórmulas anteriores, seja Ψ o conjunto de $\psi_i \in \Delta \cup \Lambda$, portanto existe Δ_i tq $\Psi \subseteq \Delta_i \cup \Gamma$, bastando, portanto, repetir a prova de $\beta \land \neg \beta$, logo $\Delta_i \vdash \beta \land \neg \beta$, i.e., $\operatorname{Inc}(\Delta_i)$, contradição.

2.5 Teorema da Correção e Completude

Exercício 1. (Regra Semântica El) Assuma que o símbolo de constante c não ocorra em φ, ψ ou Γ , e que $\Gamma \cup \{\varphi \frac{c}{x}\} \models \psi$. Prove, sem utilizar Correção e Completude, que $\Gamma \cup \{\exists x \varphi\} \models \psi$.

Proof. Sabemos pelo Teorema da Dedução em $\vDash \text{que } \Gamma \cup \{\varphi \frac{c}{x}\} \vDash \psi \text{ sse } \Gamma \vDash \varphi \frac{c}{x} \to \psi, \text{ i.e., se } \mathfrak{A}$ é tq $\vDash_{\mathfrak{A}} \gamma[s], \gamma \in \Gamma$, então $\vDash_{\mathfrak{A}} (\varphi \frac{c}{x} \to \psi)[s]$, sendo este último equivalente a: se $\vDash_{\mathfrak{A}} \varphi \frac{c}{x}[s]$, então $\vDash_{\mathfrak{A}} \psi[s]$, basta mostrarmos que $\vDash_{\mathfrak{A}} \varphi \frac{c}{x}[s]$ é equivalente a $\vDash_{\mathfrak{A}} \exists x \varphi[s]$. O Lema da Substituição garante, portanto, que $\vDash_{\mathfrak{A}} \varphi \frac{c}{x}[s]$ sse $\vDash_{\mathfrak{A}} \varphi \left[s \frac{\overline{s}(c)}{x}\right]$, i.e., $\vDash_{\mathfrak{A}} \varphi \left[s \frac{c^{\mathfrak{A}}}{x}\right]$, logo existe um $d = c^{\mathfrak{A}} \in |\mathfrak{A}|$ tq $\vDash_{\mathfrak{A}} \varphi \left[s \frac{d}{x}\right]$, logo, por definição, $\vDash_{\mathfrak{A}} \exists x \varphi[s]$, o que termina a prova.

Exercício 2. Prove que $Con(\Phi) \Rightarrow Sat(\Phi)$ é equivalente a $\Phi \models \varphi \Rightarrow \Phi \vdash \varphi$.

Proof. (⇐) Se Con(Φ), por definição $\Phi \not\vdash \beta \land \neg \beta$, portanto a conversa do Teorema da Completude garante que $\Phi \not\models \beta \land \neg \beta$, que é equivalente a Sat(Φ ∪ {β ∨ ¬β}), uma vez que $\models \beta \lor \neg \beta$, então Φ ∪ {β ∨ ¬β} é satisfatível sse Φ também é.

(\Rightarrow) Se $\Phi \models \varphi$, então $\neg \mathsf{Sat}(\Phi \cup \{\neg \varphi\})$, portanto $\neg \mathsf{Con}(\Phi \cup \{\neg \varphi\})$, i.e., $\Phi \cup \{\neg \varphi\} \vdash \beta \land \neg \beta$, logo, por contrapositiva, $\Phi \cup \{\beta \lor \neg \beta\} \vdash \varphi$, pelo teorema da dedução $\Phi \vdash (\beta \lor \neg \beta) \to \varphi$, obviamente $\beta \lor \neg \beta$ é uma tautologia, logo $\Phi \vdash \beta \lor \neg \beta$, por modus ponens temos $\Phi \vdash \varphi$.

Exercício 3. Assuma que $\Gamma \vdash \varphi$, e seja P um símbolo de relação que não ocorre nem em Γ , nem em φ , prove que existe uma dedução de φ por Γ em que P não ocorre em nenhum passo.

Proof. Se $\Gamma \vdash \varphi$, Correção garante que $\Gamma \vDash \varphi$, basta provar o fato trivial de que se em uma assinatura \mathcal{S} tq $P \in \mathcal{S}$ temos $\Gamma \vDash \varphi$, então o mesmo vale em $\mathcal{S}' = \mathcal{S} \setminus \{P\}$, i.e., as estruturas concordam nas sentenças que não possuem P.

PENDENTE (Trivial)

Exercício 4. Seja $\Gamma = \{ \neg \forall v_1 P v_1, P v_2, P v_3, \dots \}$, prove que Con(Γ).

Proof. Seja $|\mathfrak{A}| = V$, o conjunto de variáveis e $P^{\mathfrak{A}} = V \setminus \{v_1\}$, se $\beta(v_i) = v_i, 1 \leq i$, então obviamente todo subconjunto finito de Γ é satisfatível por (\mathfrak{A}, β) , portanto compacidade garante que $\mathsf{Sat}(\Gamma)$ e Correção e Completude que $\mathsf{Con}(\Gamma)$.

Exercício 5. Mostre que um mapa infinito pode ser colorido com 4 cores sse todo submapa finito também pode.

Proof. A prova é análoga a do caso sentencial, basta tomar $S = \{R, B, G, Y, c_1, c_2, \dots\}$, onde R, B, G, Y são símbolos de relação unários e $c_i, 1 \leq i$ símbolos de constante, e repetir os mesmos axiomas, mas com c_i no lugar dos símbolos sentenciais. O Teorema das Quatro Cores garante que para o caso finito sempre é possível colorir o mapa, portanto compacidade garante que também vale para o caso infinito.

Exercício 6. Prove que classes EC_Δ disjuntas podem ser separadas em classes EC , i.e., se Φ, Ψ são tq $\mathsf{Mod}(\Phi) \cap \mathsf{Mod}(\Psi) = \emptyset$, então existe τ tq $\mathsf{Mod}(\Phi) \subseteq \mathsf{Mod}(\tau)$ e $\mathsf{Mod}(\Psi) \subseteq \mathsf{Mod}(\neg \tau)$.

Proof. Se $\operatorname{Mod}(\Phi) \cap \operatorname{Mod}(\Psi) = \emptyset$, então $\neg \operatorname{Sat}(\Phi \cup \Psi)$, portanto Compacidade garante que existe $\Phi_0 \cup \Psi_0 \subseteq \Phi \cup \Psi$ tq $\neg \operatorname{Sat}(\Phi_0 \cup \Psi_0)$, seja $\varphi = \bigwedge \Phi_0$ e $\psi = \bigwedge \Psi_0$, que estão bem definidas, visto que Φ_0, Ψ_0 são finitas. Como $\neg \operatorname{Sat}(\varphi \wedge \psi)$, i.e., $\neg \operatorname{Con}(\varphi \wedge \psi)$, então $\neg (\varphi \wedge \psi) = \varphi \rightarrow \neg \psi$ é uma tautologia, como $\Phi_0 \models \varphi$, então $\Phi_0 \models \neg \psi$. Como este é consistente, então $\Phi_0 \not\models \neg \psi$, além disso $\Psi_0 \models \psi$, logo $\Phi \models \Phi_0 \models \neg \psi$ e $\Psi \models \Psi_0 \models \psi$, i.e., $\tau = \neg \psi$ satisfaz.

Exercício 8. Seja $S = \{P\}$, onde P é um símbolo de relação binário, e seja $|\mathfrak{A}| = \mathbb{Z}$ com $P^{\mathfrak{A}} := \{(a,b) \in \mathbb{Z}^2 \mid |a-b| = 1\}$. Prove que existe $\mathfrak{B} \equiv \mathfrak{A}$ que não é conexa, i.e., existem $a,b \in |\mathfrak{B}|$ tq não existe (p_0,\ldots,p_n) , com $a=p_0,b=p_n$ e $(p_i,p_{i+1}) \in P^{\mathfrak{A}}, 0 \leq i < n$.

Proof. Considere

$$\Phi := \operatorname{Th}(\mathbb{Z}) \cup \left\{ \nexists x_1 \dots x_n \left(Pax_1 \wedge \bigwedge_{1 \leq i < n} Px_i x_{i+1} \wedge Pbx_n \right) : n \in \mathbb{N} \right\}$$

Para todo $\Phi_0 \subseteq \Phi$ finito temos $\models_{\mathfrak{A}} \Phi_0$, seja m a maior quantidade de variáveis nas fórmulas de Φ , basta tomar $\overline{s}(a) = 0, \overline{s}(b) = n + 1$, portanto compacidade garante que existe \mathfrak{B} tq $\models_{\mathfrak{B}} \Phi$, o que

garante que $\models_{\mathfrak{B}} \operatorname{Th}(\mathbb{Z})$, i.e., $\mathfrak{B} \in \operatorname{Mod}(\operatorname{Th}(\mathfrak{A})) = \mathfrak{t}(\mathfrak{A})$, logo $\mathfrak{A} \equiv \mathfrak{B}$, mas \mathfrak{B} contém dois elementos $\overline{s}(a), \overline{s}(b)$ que não são conectados por nenhuma sequência finita de elementos em $|\mathfrak{B}|$.

Exercício 9. a) Mostre que se adicionarmos $\psi \in \Lambda$ tq $\not\models \psi$, então o Teorema da Correção falha;

- b) Mostre que se $\Lambda = \emptyset$, então o Teorema da Completude falha;
- c) Suponha que modifiquemos Λ para incluir uma nova fórmula válida, mostre porque ambos Correção e Completude ainda valem.

Proof. a) Se $\not\models \psi$, então existe \mathfrak{A} tq $\not\models_{\mathfrak{A}} \psi$, entretanto, como $\psi \in \Lambda$, então Th(\mathfrak{A}) $\vdash \psi$, mas Th(\mathfrak{A}) $\not\models \psi$;

- b) Sabemos que $\{\varphi \land \psi\} \models \varphi$, mas $\{\varphi \land \psi\} \not\models \varphi$, visto que as únicas deduções possíveis incluem $\varphi \land \psi$ e modus ponens, que nada pode fazer nesse caso;
- c) Sendo $\Gamma' = \Gamma \cup \{\psi\}$ tq $\models \psi$, temos $\Gamma \vdash \varphi$, i.e., $\Gamma \cup \Lambda \models \varphi$, sse $\Gamma \cup \Lambda' \models \varphi$, visto que $\Gamma \cup \Lambda \models \exists \Gamma \cup \Lambda'$.

2.6 Modelos de Teorias

Exercício 1. Mostre que $\varphi, \psi \notin \Phi_{\text{fv}}$, onde

$$\varphi = \exists xyz((Pxf(x) \to Pxx) \lor (Pxy \land Pyz \land \neg Pxz));$$

$$\psi = \exists x \forall y \exists z((Qzx \to Qzy) \to (Qxy \to Qxx)).$$

Proof. Se $\varphi, \psi \in \Phi_{\text{fv}}$, então para todo \mathfrak{A} finito temos $\models_{\mathfrak{A}} \varphi, \psi$, portanto $\varphi, \psi \notin \Phi_{\text{fv}}$ sse os modelos de $\neg \varphi, \neg \psi$ são infinitos.

$$\neg \varphi = \exists xyz((Pxf(x) \to Pxx) \lor (Pxy \land Pyz \land \neg Pxz))$$

$$= \forall xyz(\neg (Pxf(x) \to Pxx) \land \neg (Pxy \land Pyz \land \neg Pxz))$$

$$= \forall xyz((Pxf(x) \land \neg Pxx) \land (Pxy \land Pyz \to Pxz))$$

i.e., P é transitivo, não reflexivo e para cada x, Pxf(x). Assuma por contradição que $\models_{\mathfrak{A}} \neg \varphi$ onde $|\mathfrak{A}| = \{a_1, \ldots, a_n\}$, $f(a_1) \neq a_1$, caso contrário $Pa_1f(a_1) = Pa_1a_1$, contradição, portanto $f(a_1) = a_{i_1}, i_1 \neq 1$, se $f(a_{i_1}) = a_{i_2}$, não podemos ter $a_{i_2} = a_{i_1}, a_{i_2}$, caso contrário a transitividade de P garante que Pxx, em geral é fácil ver por indução que $f(a_{i_k}) \neq a_{i_1}, \ldots, a_{i_k}$, entretanto, para a_{i_n} teremos $f(a_{i_n}) \notin \{a_{i_1}, \ldots, a_{i_n}\} = |\mathfrak{A}|$, contradição, visto que f é uma função, portanto \mathfrak{A} precisa ser infinito.

Analogamente, temos

$$\neg \psi = \neg \exists x \forall y \exists z ((Qzx \to Qzy) \to (Qxy \to Qxx))$$
$$= \forall x \exists y \forall z ((Qzx \to Qzy) \land Qxy \land \neg Qxx)$$

 $\neg \psi$ expressa que existe um y tq para todo z em que zQx, temos zQy, que sempre existe um y tq Qxy e e que Q é não reflexiva. Assuma $\models_{\mathfrak{A}} \neg \psi$, com $|\mathfrak{A}| = \{a_1, \ldots, a_n\}$, como para todo x_1 existe

 x_2 tq Qx_1x_2 , visto que Q é não-reflexivo $x_1 \neq x_2$, analogamente existe x_3 tq Qx_2x_3 , com $x_3 \neq x_2$, se $x_3 = x_1$, como Qx_1x_2 e Qx_2x_1 , então Qx_1x_1 , contradição, é fácil ver por indução, portanto, que isso forma uma sequência (x_i) tq Qx_ix_{i+1} e $x_i \neq x_j, i \neq j$, entretanto, se $Qx_1x_2, \ldots, Qx_{n-1}x_n$, então tem de existir um $x_{n+1} \neq x_i, i \leq n+1$ tq Qx_nx_{n+1} , o que é impossível, visto que $|\mathfrak{A}|$ só possui n elementos distintos, contradição, logo \mathfrak{A} é infinito.

Exercício 2. Sejam T_1, T_2 teorias na mesma linguagem tq $T_1 \subseteq T_2, T_1$ é completa e $Sat(T_2)$, prove que $T_1 = T_2$.

Proof. Seja $\varphi \in T_2$, como T_1 é completa, φ ou $\neg \varphi$ está em T_1 , no último caso, como $T_1 \subseteq T_2$, temos $\varphi, \neg \varphi \in T_2$, logo $T_2 \vdash \varphi, \neg \varphi$, i.e., $\neg \text{Con}(T_2)$ que, por Correção, implica em $\neg \text{Sat}(T_2)$, contradição, logo $\varphi \in T_1$, i.e., $T_2 \subseteq T_1$, como por hipótese $T_1 \subseteq T_2$, então $T_1 = T_2$.

```
Exercício 3. Prove que:

a) \Sigma_1 \subseteq \Sigma_2 \Rightarrow \operatorname{Mod}(\Sigma_2) \subseteq \operatorname{Mod}(\Sigma_1);

b) \mathcal{K}_1 \subseteq \mathcal{K}_2 \Rightarrow \operatorname{Th}(\mathcal{K}_2) \subseteq \operatorname{Th}(\mathcal{K}_1);

c) \operatorname{Mod}(\Sigma) = \operatorname{Mod}(\operatorname{Th}(\operatorname{Mod}(\Sigma))) e \operatorname{Th}(\mathcal{K}) = \operatorname{Th}(\operatorname{Mod}(\operatorname{Th}(\mathcal{K}))).
```

Proof. a) Se $\models_{\mathfrak{A}} \Sigma_2$, então $\models_{\mathfrak{A}} \sigma, \sigma \in \Sigma_2$, como $\Sigma_1 \subseteq \Sigma_2$, então também $\models_{\mathfrak{A}} \sigma, \sigma \in \Sigma_1$, i.e., $\models_{\mathfrak{A}} \Sigma_1$, portanto todo modelo de Σ_2 é também modelo de Σ_1 : Mod $(\Sigma_2) \subseteq \operatorname{Mod}(\Sigma_1)$; b) Analogamente, se $\models_{\mathfrak{A}} \varphi$ para toda $\mathfrak{A} \in \mathcal{K}_2$, visto que $\mathcal{K}_2 \subseteq \mathcal{K}_1$, então $\models_{\mathfrak{A}} \varphi$ para toda $\mathfrak{A} \in \mathcal{K}_1$; c) Se $\varphi \in \Sigma$, então $\Sigma \models \varphi$, i.e., todos os modelos \mathfrak{A} de Σ são modelos de φ , portanto $\varphi \in \operatorname{Th}(\operatorname{Mod}(\Sigma))$,

c) Se $\varphi \in \Sigma$, então $\Sigma \models \varphi$, i.e., todos os modelos \mathfrak{A} de Σ são modelos de φ , portanto $\varphi \in \operatorname{Th}(\operatorname{Mod}(\Sigma))$, por a) temos então que $\operatorname{Mod}(\operatorname{Th}(\operatorname{Mod}(\Sigma))) \subseteq \operatorname{Mod}(\Sigma)$. Para a conversa, se \mathfrak{A} é um modelos de Σ , sabemos que $\varphi \in \operatorname{Th}(\operatorname{Mod}(\Sigma))$ sse todo modelo de Σ é modelos de φ , em particular $\models_{\mathfrak{A}} \varphi$, logo $\operatorname{Mod}(\Sigma) \subseteq \operatorname{Mod}(\operatorname{Th}(\operatorname{Mod}(\Sigma)))$;

Se $\varphi \in \operatorname{Th}(\mathcal{K})$, então $\models_{\mathfrak{A}} \varphi$ para todo $\mathfrak{A} \in \mathcal{K}$, então em particular $\mathfrak{A} \in \operatorname{Mod}(\operatorname{Th}(\mathcal{K}))$ para todo $\mathfrak{A} \in \mathcal{K}$, i.e., $\mathcal{K} \subseteq \operatorname{Mod}(\operatorname{Th}(\mathcal{K}))$, por b) temos $\operatorname{Th}(\operatorname{Mod}(\operatorname{Th}(\mathcal{K}))) \subseteq \operatorname{Th}(\mathcal{K})$. Seja $\varphi \in \operatorname{Th}(\mathcal{K})$, logo para todo $\mathfrak{A} \in \operatorname{Mod}(\operatorname{Th}(\mathcal{K}))$ temos $\models_{\mathfrak{A}} \varphi$, portanto $\varphi \in \operatorname{Th}(\operatorname{Mod}(\operatorname{Th}(\mathcal{K})))$, i.e., $\operatorname{Th}(\mathcal{K}) \subseteq \operatorname{Th}(\operatorname{Mod}(\operatorname{Th}(\mathcal{K})))$. \dashv

Exercício 4. Prove que a teoria das ordenações lineares densas sem pontos limites é \aleph_0 -categórica.

Proof. Sejam $\mathfrak{A}, \mathfrak{B}$ estruturas contáveis tq $\models_{\mathfrak{A},\mathfrak{B}} \delta$, enumere $|\mathfrak{A}| = \{a_0, a_1, \dots\}, |\mathfrak{B}| = \{b_0, b_1, \dots\}$, defina $f(a_0) = b_0$ e siga o procedimento: para o menor $a_i \in |\mathfrak{A}|$ que ainda não foi associado a nenhum elemento por f, escolha o menor $b_j \in |\mathfrak{B}|$ tq f preserve a ordem, i.e., se $a_{i_0} < \dots < a_i < \dots < a_{i_n}$, então $f(a_{i_0}) < \dots < b_j < \dots < f(a_{i_n})$, onde cada $a_{i_k}, 0 \leq k \leq n$ já foi associado, após isso, escolha o menor $b_i \in |\mathfrak{B}|$ que ainda nenhum $a \in |\mathfrak{A}|$ se associou e escolha o menor $a_j \in |\mathfrak{A}|$ para associar tq f preserve a ordem, e repita o procedimento. Para provar que f é um isomorfismo e que o procedimento anterior é válido, basta notar que para todo a_i , podemos encontrar um b_j que preserva a ordem, se a_i estiver entre os pontos já associados, densidade garante que existe um b_j entre os pontos de $|\mathfrak{B}|$ que preserve a ordem, se a_i estiver a direita ou a esquerda de todos os pontos, a propriedade de não haver pontos limites garante que vai existir um b_j maior ou menor

que todos os outros, e tricotomia permite que testemos em cada passo qual a relação de a_i com os pontos anteriormente associados para garantir que f preserva a ordem.

Obs. O processo descrito acima é uma das técnicas modelo-teóricas mais comuns para provar que duas estruturas são isomórficas, é conhecida como **ir-e-vir** (ou back-and-forth), e reside no fato de que se $\mathfrak{A} \cong_p \mathfrak{B}$ (são parcialmente isomórficas), com $|\mathfrak{A}|, |\mathfrak{B}| \leq \aleph_0$, então $\mathfrak{A} \cong \mathfrak{B}$. Isomorfismos parciais são, além de técnicas importantes, fatos essenciais nas provas do **Teorema de Fraïssé** e no **Jogo de Ehrenfeucht-Fraïssé**, que por sua vez são usados nas provas dos **Teoremas de Lindström**, então vamos dar um sketch do teorema acima, um mapeamento p de \mathfrak{A} em \mathfrak{B} é denominado isomorfismo parcial se $\mathrm{Dom}(p) \subseteq |\mathfrak{A}|, \mathrm{Ran}(p) \subseteq |\mathfrak{B}|$ e

- a) $p \in injetor;$
- b) para todo $a_1, \ldots, a_n, a \in \text{Dom}(p)$ e símbolos $P, f, c \in \mathcal{S}$:

$$P^{\mathfrak{A}}a_1 \dots a_n \text{ sse } P^{\mathfrak{B}}p(a_1) \dots p(a_n);$$

 $f^{\mathfrak{A}}(a_1, \dots, a_n) = a \text{ sse } f^{\mathfrak{B}}(p(a_1), \dots, p(a_n)) = p(a);$
 $c^{\mathfrak{A}} = a \text{ sse } c^{\mathfrak{B}} = p(a).$

O ponto principal é que isomorfismos parciais, embora em geral não preservem fórmulas com quantificadores, se puderem ser extendidos podem preservar, o que é capturado pela definição de estruturas parcialmente isomórficas ($\mathfrak{A} \cong_p \mathfrak{B}$): se existe I tq

- a) $I \neq \emptyset$ é um conjunto de isomorfismos parciais de \mathfrak{A} em \mathfrak{B} ;
- b) (propriedade de ir) Para todo $p \in I$ e $a \in |\mathfrak{A}|$, existe $q \in I$ to $p \subseteq q$ e $a \in Dom(p)$;
- c) (propriedade de vir) Para todo $p \in I$ e $b \in |\mathfrak{B}|$, existe $q \in I$ to $p \subseteq q$ e $a \in \text{Ran}(p)$.

Vamos agora a prova do teorema enunciado no início, suponha que $I: \mathfrak{A} \cong_p \mathfrak{B}, A = \{a_0, a_1, \ldots\}$, $B = \{b_0, b_1, \ldots\}$. Inicie com um $p_0 \in I$ e, aplicando repetidamente as propriedades de ir e vir, obtemos extensões $p_1, p_2, \cdots \in I$ tq $a_0 \in \mathrm{Dom}(p_1), b_0 \in \mathrm{Ran}(p_2), a_1 \in \mathrm{Dom}(p_3), b_1 \in \mathrm{Ran}(p_4), \ldots$, portanto $p = \bigcup_{n \in \mathbb{N}} p_n$ é um isomorfismo parcial de \mathfrak{A} em \mathfrak{B} tq $\mathrm{Dom}(p) = |\mathfrak{A}|$ e $\mathrm{Ran}(p) = |\mathfrak{B}|$, logo $p: \mathfrak{A} \cong \mathfrak{B}$. Com isso em mãos, a prova de que a teoria das ordenações lineares densas sem pontos limites é \aleph_0 -categórica se resume a encontrar um conjunto I de isomorfismo parciais entre quaisquer estruturas no máximo contáveis $\mathfrak{A}, \mathfrak{B}$ que as torna parcialmente isomórficas. Com algumas definições adicionais como finitamente isomórficas ($\mathfrak{A} \cong_f \mathfrak{B}$) que não será explicada em detalhes aqui, conseguimos provar o **Teorema de Fraïssé**, que diz que $\mathfrak{A} \cong \mathfrak{B}$ sse $\mathfrak{A} \cong_f \mathfrak{B}$, para S-estruturas com S finito, sabendo que $\mathfrak{A} \cong_p \mathfrak{B} \Rightarrow \mathfrak{A} \cong_f \mathfrak{B}$ é fácil mostrar que $(\mathbb{R}, <^R) \equiv (\mathbb{Q}, <^Q)$ e que a teoria é completa e R-decidível.

Exercício 5. Encontre a forma normal prenex de:

- a) $(\exists xAx \land \exists xBx) \rightarrow Cx$;
- b) $\forall xAx \leftrightarrow \exists xBx$.

Proof. a)
$$\exists x \exists y ((Ax \land By) \rightarrow Cz);$$

b) $\forall x \exists y (Ax \leftrightarrow By).$

Exercício 6. Prove que uma teoria R-enumerável (em uma linguagem razoável) é axiomatizável.

Proof. Se T é uma teoria R-enumerável seja $\{\sigma_0, \sigma_1, \dots\}$ uma enumeração, considere

$$\Sigma := \left\{ \bigwedge_{0 \leqslant i \leqslant n} \sigma_i : n \in \mathbb{N} \right\} = \left\{ \sigma_0, \sigma_0 \land \sigma_1, \sigma_0 \land \sigma_1 \land \sigma_2, \dots \right\}$$

é fácil ver que o n-ésimo elemento de Σ satisfaz σ_n e que, equivalentemente, pra todo $\bigwedge_{0 \leq i \leq k} \sigma_k$ temos que T satisfaz, portanto $T \models \exists \Sigma$, i.e., $\operatorname{Mod}(T) = \operatorname{Mod}(\Sigma)$, do Exercício 3. dessa seção sabemos que $\operatorname{Th}(T) = \operatorname{Th}(\operatorname{Mod}(\operatorname{Th}(T)))$, visto que T é uma teoria, $\operatorname{Th}(T) = T$, portanto

$$T = \operatorname{Th}(\operatorname{Mod}(T))$$
$$= \operatorname{Th}(\operatorname{Mod}(\Sigma))$$
$$= \operatorname{Cn}(\Sigma)$$

para provar que T é axiomatizável basta, portanto, provar que Σ é decidível.

Como T é enumerável, basta, para um $\varphi \in \Sigma$ qualquer, verificar se o segmento inicial de φ é igual a σ_0 , visto que todas as sentenças em Σ assim começam, caso não combine, então não pertence a Σ , se combinar e a string não tiver acabado teste para $\wedge \sigma_1$, e assim por diante.

Exercício 7. Seja $\mathfrak{N} = (\mathbb{N}, <)$, mostre que existe $\mathfrak{A} \equiv \mathfrak{N}$ tq $<^{\mathfrak{A}}$ tem uma cadeia descendente, i.e., existem $a_0, a_1, \dots \in |\mathfrak{A}|$ tq $(a_{i+1}, a_i) \in <^{\mathfrak{A}}, i \geq 0$.

Proof. Seja

$$\sigma_n := \exists x_1 \dots x_n \left(\bigwedge_{r,s \in \{1,\dots,n\}} v_r \neq v_s \land \bigwedge_{0 \leqslant i < n} <^{\mathfrak{A}} x_{i+1} x_i \right)$$

considere $\Sigma = \text{Th}(\mathfrak{N}) \cup \{\sigma_1, \sigma_2, \dots\}$, obviamente todo subconjunto finito $\Sigma_0 \subseteq \Sigma$ é t $q \models_{\mathfrak{N}} \Sigma_0$, por compacidade existe $\mathfrak{B} \equiv \mathfrak{A}$ t $q \models_{\mathfrak{B}} \Sigma$.

Exercício 8. Assuma que $\models_{\mathfrak{A}} \sigma$ para todo modelo infinito \mathfrak{A} de uma teoria T. Mostre que existe $k \in \mathbb{N}$ tq σ é verdade em todos os modelos \mathfrak{B} de T que possuem k ou mais elementos no domínio.

Proof. Se $\models_{\mathfrak{A}} \sigma$ para todo modelo infinito de T, então $\models_{\mathfrak{B}} \neg \sigma$ se \mathfrak{B} é um modelo finito, considere

$$\Sigma := T \cup \{\neg \sigma\} \cup \{\varphi_{\geqslant i} \mid i \geqslant 0\}$$

onde $\varphi_{\geq n}$ expressa "há no mínimo n elementos" (veja a Observação do Exercício 9. da Seção 2.2.), Assuma por contradição que para cada $\Sigma_0 \subseteq \Sigma$ existe \mathfrak{A} tq $\models_{\mathfrak{A}} \Sigma_0$, portanto compacidade garante que existe um modelo \mathfrak{B} de Σ , contradição, visto que \mathfrak{B} tem de ser infinito para satisfazer Σ , e $\models_{\mathfrak{B}} \neg \sigma$, portanto existe um Σ_0 tq $\neg \operatorname{Sat}(\Sigma_0)$, seja $\varphi_{\geq k}$ a fórmula com maior k que esteja em Σ_0 , como Σ_0 não é satisfatível, nenhum outro modelo que contém mais de k elementos pode satisfazer $\neg \sigma$, portanto σ é verdadeiro para todo modelo que possui k ou mais elementos. Exercício 9. Dizemos que um conjunto de sentenças Σ possui a propriedade de modelo finito sse para cada $\sigma \in \Sigma$, se $\operatorname{Sat}(\sigma)$, então σ possui um modelo finito. Assuma que Σ é um conjunto de sentenças em uma linguagem finita e que possui a propriedade de modelo finito. Crie um procedimento que decida se, dado um $\sigma \in \Sigma$, este é ou não satisfatível.

Proof. Pelo Teorema de Kleene, basta provarmos que $\Phi := \{\sigma \in \Sigma \mid \operatorname{Sat}(\sigma)\}\ e \ \Sigma \setminus \Phi$ são ambos R-enumeráveis, o que implica que Σ por si só é R-enumerável, algo que não foi dado como hipótese no enunciado, portanto assumiremos que Σ é R-enumerável. Se $\sigma \in \Sigma$, pela propriedade do modelo finito, se σ for satisfatível, então possui um modelo finito, portanto basta utilizarmos o procedimento que testa, para cada $\sigma \in \Sigma$, se a estrutura $|\mathfrak{A}_n| = \{1, \ldots, n\}$ de tamanho n é tq $\models_{\mathfrak{A}_n} \sigma$, utilizando o algoritmo descrito no livro. Portanto enumeramos Σ e testamos se \mathfrak{A}_1 é modelo de σ_1 , depois se \mathfrak{A}_1 , \mathfrak{A}_2 são modelos de $\sigma_1, \sigma_2, \ldots$, se algum σ_i for satisfeito, printamos, caso contrário não, visto que cada sentença satisfatível possui um modelo finito ela eventualmente será printada, logo Φ é R-enumerável pelo procedimento \mathfrak{P}_1 . Se σ , por outro lado, não for satisfatível, então ele prova uma contradição, sabemos que $\{\sigma\}$ é decidível, portanto seus teoremas são enumeráveis, se este for uma contradição, printamos, caso contrário não, portanto o procedimento \mathfrak{P}_2 enumera fórmulas não satisfatíveis, visto que a contradição que σ prova tem de ser finita, logo eventualmente será um teorema que aparecerá na enumeração.

Exercício 10. Assuma que temos uma linguagem finita sem símbolos de função:

- a) Prove que o conjunto de sentenças Σ_2 satisfatíveis é decidível;
- b) Prove que o conjunto de sentenças Π_2 válidas é decidível.

Proof. a) Devido ao Exercício 19. da seção 2.2. sabemos que uma sentença Σ_2 , se satisfatível, possui um modelo finito, i.e., o conjunto Φ de sentenças Σ_2 satisfatíveis goza da propriedade de modelo finito, logo, pelo exercício anterior, Φ é decidível;

b) Se $\varphi \in \Pi_2$, então $\varphi = \forall x_1 \dots x_n \exists y_1 \dots y_m \theta$, onde θ é livre de quantificadores. Se φ é válida, então $\neg \varphi$ não é satisfatível, note que $\neg \varphi = \exists x_1 \dots x_n \forall y_1 \dots y_m \neg \theta$, i.e., $\neg \varphi \in \Sigma_2$, de a) sabemos que o conjunto de sentenças Σ_2 satisfatíveis é decidível, portanto seu complementar em Σ_2 também é, logo, dado $\varphi \in \Pi_2$, para saber se φ é válida basta determinar se $\neg \sigma$ é não satisfatível utilizando o processo de decisão de a).

2.7 Interpretações entre Teorias

PENDENTE. Ambos os exercícios 1. e 2. são corolários diretos do fato maçante de que toda linguagem L_0 pode ser reduzida a uma linguagem relacional L_1 , i.e., uma linguagem somente com símbolos de relação.

Exercício 3. Prove que uma interpretação π de uma teoria completa T_0 em uma teoria satisfatível T_1 é sempre fiel.

Proof. Assuma por contradição que existe $\pi: L_0 \to T_1$ tq $T_0 \subset \pi^{-1}[T_1]$, logo existe $\varphi \in \pi^{-1}[T_1] \setminus T_0$, mas como T_0 é completo, então $\neg \varphi \in T_0 \subseteq \pi^{-1}[T_1]$, i.e., $\varphi, \neg \varphi \in \pi^{-1}[T_1]$, por definição existe \mathfrak{B} tq $\models_{\mathfrak{B}} T_1$ e $\models_{\pi\mathfrak{B}} \varphi, \neg \varphi$, contradição, logo não existe tal π .

2.8 Análise não Padrão

Exercício 1. (\mathbb{Q} é denso em \mathbb{R}). Mostre que para todo $x \in \mathbb{R}^*$ existe $y \in \mathbb{Q}^*$ to $x \cong y$.

Proof. Como

$$\models_{\mathfrak{R}} \forall xy (x \neq y \rightarrow \exists p (Qp \land x$$

então

$$\models_{\Re^*} \forall xy(x \neq y \to \exists p(\mathbb{Q}^*p \land x <^* p <^* y))$$

portanto, em particular, para $y = x + \varpi$, com $\varpi \in \mathcal{I}$, temos que existe $p \in \mathbb{Q}^*$ tq $x <^* p <^* x + \varpi$, i.e., $0 <^* p - x <^* \varpi$, por definição $|\varpi| < y$, para todo $y \in \mathbb{R}$, visto que $0 <^* |p - x| <^* |\varpi| < y$, então obviamente $p - x \in \mathcal{I}$, i.e., $p \cong x$.

Exercício 2. a) Seja $A \subseteq \mathbb{R}$ e $F : A \to \mathbb{R}$, mostre que $F^* : A^* \to \mathbb{R}^*$;

- b) Seja $S: \mathbb{N} \to \mathbb{R}$. Mostre que $\lim_{n\to\infty} S(n) = b$ sse $S^*(x) \cong b$ para todo $x \in \mathbb{N}^*$ infinito;
- c) Se $S_i : \mathbb{N} \to \mathbb{R}$ converge para b_i , com i = 1, 2. Mostre que $(S_1 + S_2) \to (b_1 + b_2)$ e $(S_1 \cdot S_2) \to (b_1 \cdot b_2)$.

Proof. a) Como $F \subseteq \mathbb{R}^2$, então $F : A \to \mathbb{R}$ sse $\models_{\mathfrak{R}} \forall x (Ax \to \exists! y (Fxy))$, portanto em \mathfrak{R}^* temos que $\models_{\mathfrak{R}^*} \forall x (A^*x \to \exists! y (Fxy))$, i.e., $F^* : A^* \to \mathbb{R}^*$;

b) $\lim S(n) = b$ sse para todo $\varepsilon > 0$, existe k tq para todo n > k temos $|S(n) - k| < \varepsilon$. Portanto em \Re^* sabemos que $|S^*(n) - k| < \varepsilon$, para todo $\varepsilon > 0$ sse $S^*(n) - k \in \mathcal{I}$, i.e., $S^*(n) \cong k$, para todo n > k, portanto em particular para todo $x \in \mathbb{N}^*$ infinito. Analogamente, se para todo $x \in \mathbb{N}^*$ infinito, $S^*(x) \cong b$, então para todo x tq para todo $x \in \mathbb{N}^*$ infinito obviamente existe um k tq se x > k, temos $|S^*(x) - b| < \varepsilon$, para todo $\varepsilon > 0$.

PENDENTE (prova feia :c, refazer mais elegantemente)

c) Do resultado anterior para todo $x \in \mathbb{N}^*$ infinito temos $S_1^*(x) \cong b_1$ e $S_2^*(x) \cong b_2$, logo segue-se diretamente do **Teorema 28B** b) e c) que $(S_1 + S_2) \cong (b_1 + b_2)$ e $(S_1 \cdot S_2) \cong (b_1 \cdot b_2)$.

Exercício 3. Seja $F: A \to \mathbb{R}$ injetora, com $A \subseteq \mathbb{R}$, mostre que se $x \in A^* \backslash A$, então $F^*(x) \notin \mathbb{R}$.

Exercício 4. Seja $A \subseteq \mathbb{R}$. Mostre que $A = A^*$ sse A é finito.

Proof. (\Leftarrow) Se $A = \{x_1, \dots, x_n\}$ é finito, então

$$\models_{\mathfrak{R}} \varphi(A) := \bigwedge_{1 \leqslant i \leqslant n} A_{x_i} \wedge \forall x \left(Ax \to \bigvee_{1 \leqslant j \leqslant n} x = x_j \right)$$

como cada $x_i \in \mathbb{R}$, então $x_i^* = x_i$, logo $\models_{\mathfrak{R}^*} \varphi(A^*)$ com os mesmos x_i , i.e., $A = A^*$. (\Rightarrow) Assuma que A é ilimitado em \mathbb{R} , como A é infinito então $\models_{\mathfrak{R}} \forall n(n \in \mathbb{N} \to \exists x(x \in A \land x > n))$, logo $\models_{\mathfrak{R}^*} \forall n(n \in \mathbb{N}^* \to \exists x(x \in A^* \land x >^* n))$, em particular $\models_{\mathfrak{R}^*} \exists x(x \in A^* \land x > \omega)$, com $\omega \in \mathbb{N}^*$ infinito, e portanto A^* possui um hiperreal infinito que não tem como estar em A, logo $A \neq A^*$; Assuma agora que A é limitado e infinito, pelo exercício seguinte existe $p \in \mathbb{R}$ tq $p \cong a$ e $p \neq a$ para algum $a \in A^*$, mas se $p, a \in \mathbb{R}$ e $p \cong a$, então p = a, logo $a \notin \mathbb{R}$, i.e., $A \neq A^*$.

Exercício 5. (Teorema de Bolzano-Weierstrass) Seja $A \subseteq \mathbb{R}$ limitado e infinito. Mostre que existe $p \in \mathbb{R}$ tq $p \cong a$, mas $p \neq a$, para algum $a \in A^*$.

Proof. Se A é infinito existe $S: \mathbb{N} \to A$ injetora, uma vez que A é limitado em \mathbb{R} , então Bolzano-Weierstrass garante que existe uma subsequência $(s_n)_{n\in\mathbb{N}}$ de $(S(n))_{n\in\mathbb{N}}$ convergente, digamos para $p \in \mathbb{R}$. Do **Exercício 2. b)** $\lim s_n = p$ sse $s_x^* \cong p$, para todo $x \in \mathbb{N}^*$ infinito, como $S^* : \mathbb{N}^* \to A^*$, em particular existe um $\omega \in \mathbb{N}^*$ infinito tq $\omega \in \mathrm{Dom}(s^*)$, $S^*(\omega) \in A^*$ e $S^*(\omega) = s_\omega^* = a \cong p$, para garantir que existe ω tq $s_\omega^* = a \neq p$, i.e., $a \notin \mathbb{R}$ assuma por contradição que $s_x^* = s_y^* = a$ para todo $x, y \in \mathbb{N}^*$ infinito, isso contradiz o fato de que S^* é injetora (visto que S é), para completar, é óbvio que não podemos ter s_x^* , $s_y^* \in \mathbb{R}$ e $s_x^* \neq s_y^*$, visto que nesse caso $s_x^* \ncong s_y^*$.

Exercício 6. a) Mostre que $|\mathbb{Q}^*| \geq 2^{\aleph_0}$; b) Mostre que $|\mathbb{N}^*| \geq 2^{\aleph_0}$.

Proof. a) Do **Exercício 1.** sabemos que para todo $x \in \mathbb{R}^*$ existe $y \in \mathbb{Q}^*$ tal que $x \cong y$. Como para todo $x, y \in \mathbb{R}$ se $x \neq y$, então $x \not\cong y$, logo st $|_{\mathbb{R}} : \mathbb{R} \to \mathbb{Q}^*$ é injetora, portanto $\mathbb{Q}^* \geq 2^{\aleph_0}$; b) como $|\mathbb{Q}| = |\mathbb{N}|$, então existe $f : \mathbb{Q} \to \mathbb{N}$ bijetora, em particular

$$\models_{\mathfrak{R}} \forall xy (P_{\mathbb{Q}}x \land P_{\mathbb{Q}}y \land x \neq y \to F_f(x) \neq F_f(y)) \land \forall y (P_{\mathbb{N}}y \to \exists x (P_{\mathbb{Q}}x \land F_f(x) = y))$$

 \dashv

i.e., f é uma bijeção de \mathbb{Q} em \mathbb{N} , portanto \mathfrak{R}^* prova o mesmo para $f^*:\mathbb{Q}^*\to\mathbb{N}^*$.

Exercício 7, Seja $A \subseteq \mathbb{R}$ sem máximo, logo, com respeito a \mathbb{R}^* e $<^*$, A terá um limite superior em \mathbb{R}^* , mas prove que $\sup(A)$ não existe.

Proof. Assuma que $\sup(A)$ exista, como A não possui máximo obviamente $\sup(A) \notin A$. Seja $\varpi \in \mathcal{I}$ positivo, logo para todo $y \in A$ temos que $0 < \varpi < \sup(A) - y$, uma vez que $\sup(A) > y$, $\forall y \in A$, i.e., $\sup(A) - y > 0$. Logo $y - \sup(A) < -\varpi < 0$ e $y < \sup(A) - \varpi < \sup(A)$, $\forall y \in A$, i.e., $\sup(A) - \varpi$ é um limite superior menor que o supremo, contradição, logo $\sup(A)$ não existe (< é interpretado como <* na prova).

¬

3 Indecidibilidade

3.1 Números Naturais com Sucessor

Exercício 1. Seja $A_S^* = \{S_1, S_2\} \cup \{ \forall \overline{x} (\varphi(0, \overline{x}) \land \forall y (\varphi(y, \overline{x}) \to \varphi(Sy, \overline{x})) \to \forall z \varphi(z, \overline{x})) \mid \varphi \in \mathcal{L}^S \}.$ Mostre que $A_S \subseteq \operatorname{Cn}(A_S^*)$ e conclua que $\operatorname{Cn}(A_S^*) = \operatorname{Th}(\mathfrak{N}_S).$

Proof. Obviamente $S_1, S_2 \in \operatorname{Cn}(A_S^*)$, como $\operatorname{Cn}(A_S^*)$ é uma teoria basta, portanto, provarmos que $\operatorname{Cn}(A_S^*) \vdash S_3, S_{4n}$, para cada n. Para S_3 seja $\varphi(y) := y \neq 0 \to \exists x(y = Sx)$, obviamente vale $\varphi(0)$ e é fácil mostrar que se vale para y, por S_1 temos que $Sy \neq 0$ e obviamente $\operatorname{Cn}(A_S^*) \vdash \exists x(Sy = Sx)$, basta tomar x = y, portanto vale $\varphi(Sy)$, indução garante, portanto, que $\forall y \varphi(y) = S_3$. O caso para $S_4.n$ é análogo, seja $\varphi_1(x) := Sx \neq x$, S_1 garante que vale $\varphi_1(0)$ e se vale $\varphi_1(y) = Sy \neq y$, então a contrapositiva de S_2 garante que $SSy \neq Sy$, i.e., $\varphi_1(Sy)$, logo por indução em φ_1 temos $\forall y \varphi_1(y)$. Em geral, para um n qualquer temos que $\varphi_n(0)$ obviamente, e se $\varphi_n(y)$, então a contrapositiva de S_2 garante que $\varphi_n(Sy) = SS^n y \neq Sy$, por indução $\forall y \varphi_n(y)$.

Exercício 2. Complete a prova do Teorema 31F.

Proof. PENDENTE (Boring)

Exercício 3. Prove que para todo $\varphi \in \mathcal{L}^{\mathcal{S}}$, existe ψ livre de quantificadores tq $A_S \models (\varphi \leftrightarrow \psi)$, sem utilizar a completude de $Cn(A_S)$.

Proof. Para isso basta provarmos que cada fórmula obtida nos passos de eliminação de quantificadores é válido, i.e., se φ_1 é nossa fórmula inicial com $A_S \models \varphi$, então as fórmula $\varphi_2, \varphi_3, \ldots, \psi$ obtidas para se chegar a ψ são tq $A_S \models (\varphi_i \leftrightarrow \varphi_{i+1})$. Os primeiros passos são triviais, obviamente se θ é uma fórmula livre de quantificadores, então sua forma disjuntiva normal θ' é tq $A_S \models (\theta \leftrightarrow \theta')$, o caso para distribuição e eliminação de quantificadores também é trivial devido as regras de inferência desenvolvidas no capítulo de dedução. Para cada literal α_i restante, ele é da forma $S^m x = S^n x$ o uso iterado de S_2 garante que $A_S \vdash (S^m x = S^x \leftrightarrow 0 = 0)$ sse n = m, caso contrário S_1 garante que isso é equivalente a $0 \neq 0$. Para o caso 1 assuma que cada α_i é da forma $S^n x \neq S^m u$, como a quantidade de fórmulas é finita obviamente sempre podemos encontrar x, u e as demais variáveis que ocorrem por números tq $S^n x \neq S^m u$, portanto $A_S \models (\exists x_1 \ldots x_n \theta \leftrightarrow 0 = 0)$. Para o segundo caso, se existe um α_i da forma $S^m x = t$, então a substituição de α_i pela fórmula descrita na eliminação de quantificadores garante que podemos eliminar x de todas as fórmulas, garantir que x é não-negativo, e, com algumas regras de inferência básicas provar que $S^k x = u$ é equivalente a $S^k t = S^m u$.

Obs. O execício anterior fornece uma prova distinta de que $\operatorname{Cn}(A_S)$ é completa, como para todo φ existe uma ψ decidível tq A_S satisfaz ψ sse satisfaz φ , então é fácil ver $\operatorname{Cn}(A_S)$ sempre satisfaz φ ou sua negação.

Exercício 4. Mostre que $A \subseteq \mathbb{N}$ é definível em \mathfrak{N}_S sse ou A ou $\mathbb{N} \backslash A$ é finito.

Proof. Para todo $\varphi'(x)$ eliminação de quantificadores garante que este pode ser reduzido a um $\varphi(x)$ da forma $\bigvee_{i \leq n} \bigwedge_{j \leq m} \alpha_{i,j}(x)$, onde $\alpha_{i,j}(x)$ é um literal, obviamente $A = \{x \in \mathbb{N} \mid \exists \mathfrak{g} \varphi(x)[s]\}$ pode ser escrito como $\bigcup_{i \leq n} \{x \in \mathbb{N} \mid \exists \mathfrak{g} \gamma(x)[s]\}$, se $\alpha_{i,j}(x)[s]\}$, se $\alpha_{i,j}(x)[s]\}$, se $\alpha_{i,j}(x)[s]\}$, defina $A_{i,j} := \{x \in \mathbb{N} \mid S^m x = S^n u\}^c$, e para α_i da forma $S^m x = S^n u$ como $\{x \in \mathbb{N} \mid S^m x = S^n u\}$, logo

$$A = \bigcup_{i \le n} \bigcap_{j \le m} A_{i,j}$$

Obviamente cada $A_{i,j}$ é ou finito, ou o complementar de um conjunto finiito, portanto sua intersecção e união finitas também.

PENDENTE (na verdade eu posso melhorar a prova utilizando o fato de que conjuntos definíveis são fechados sobre intersecção, união e complementação, bastando provar apenas que cada $A_{i,j}$ é definível, mas preguiça.)

Exercício 5. Mostre que $<^{\mathfrak{N}_S} = \{(m,n) \mid m <^{\mathbb{N}} n\}$ não é definível em \mathfrak{N}_S .

Proof. Seja $R \subseteq \mathbb{N} \times \mathbb{N}$ uma relação definível em \mathfrak{N}_S , mostramos no **Exercício 4.** que R ou $\mathbb{N} \times \mathbb{N} \setminus R$ é finito, no primeiro caso para cada $(a,b) \in R$ basta tomar $y_{(a,b)} = \frac{b}{a}x$, logo o conjunto $A = \{y_{(m,n)} \mid (m,n) \in R\}$ cobre R e portanto ela é linear, para o segundo caso basta considerar $A = \{y_{(m,n)} \mid (m,n) \in \mathbb{N} \times \mathbb{N} \setminus R\}$, portanto R, se for cofinito, é o complementar da relação linear $\mathbb{N} \times \mathbb{N} \setminus R$, e portanto é colinear. À vista disso, toda relação R definível em \mathfrak{N}_S é ou linear ou colinear, portanto se $<^{\mathfrak{N}_S}$ for defível, também tem de ser. Se assumirmos por contradição que existem y_1, \ldots, y_n que cobrem $<^{\mathfrak{N}_S}$, é fácil ver que é sempre possível encontrar (m,n) entre as retas tq m < n, contradição, como $\mathbb{N} \times \mathbb{N} \setminus <^{\mathfrak{N}_S} = \geqslant$ o mesmo argumento pode ser utilizado.

Exercício 6. Mostre que $Th(\mathfrak{N}_S)$ não é finitamente axiomatizável.

Proof. Sabemos que se uma teoria $T = \operatorname{Cn}(\Sigma)$ é finitamente axiomatizável, então existe $\Sigma_0 \subseteq \Sigma$ finito tq $\operatorname{Cn}(\Sigma) = \operatorname{Cn}(\Sigma_0)$. Portanto basta provarmos que nenhum conjunto finito de A_S é suficiente para axiomatizar $\operatorname{Th}(\mathfrak{N}_S)$. Para isso considere $\Sigma_0 \subseteq A_S$, portanto Σ_0 contém finitos $S_{4,n}$, digamos $S_{4,n_0}, S_{4,n_1}, \ldots, S_{4,n_m}$, com $n_0 < \cdots < n_m$. Seja $\mathfrak{N}'_i := (\mathbb{N} \cup A_i, S, 0)$, onde A_i é um conjunto disjunto de \mathbb{N} contendo i elementos x_1, \ldots, x_i tq $S(x_j) = x_{j+1}$. Obviamente \mathfrak{N}'_{n_m+1} satisfaz cada S_{4,n_i} , assim como S_1, S_2, S_3 , portanto $\vDash_{\mathfrak{N}'_{n_m+1}} \Sigma_0$, mas $\nvDash_{\mathfrak{N}'_{n_m+1}} A_S$, visto que possui um (n_m+1) -ciclo, portanto nenhum subconjunto finito de A_S axiomatiza $\operatorname{Th}(\mathfrak{N}_S)$.

3.2 Outras Reduções da Teoria dos Números

Exercício 1. Prove que todo conjunto eventualmente periódico de números naturais é definível em \mathfrak{N}_A .

Proof. Seja A um conjunto eventualmente periódico arbitrário, logo existe M, p tq para todo a > M, $a \in A$ sse $a + p \in A$. Portanto para os finitos pontos n_1, \ldots, n_m menores que M em A defina $\varphi(x) = \bigvee_{1 \le i \le m} (x = \mathbf{S^{n_i}0})$, como todo ponto restante em A é da forma $a_0 + p$, onde a_0 é o menor natural maior que M que está em A, então $\psi(x) := \varphi(x) \vee (x > \mathbf{S^M0} \wedge x \equiv_p \mathbf{S^{a_0}0})$ define A.

Exercício 2. Mostre que $<^{\mathbb{N}}$, $\{0\}$ e $S^{\mathbb{N}}$ são definíveis em $(\mathbb{N}, +)$.

Proof.

$$<^{\mathbb{N}} = \{(x, y) \in \mathbb{N}^2 \mid \exists w (\forall k (w + k = k) \land \exists z (z \neq w \land y = x + z))\}$$

$$\{0\} = \{x \in \mathbb{N} \mid \forall y (y + x = y)\}$$

$$S^{\mathbb{N}} = \{(x, y) \in \mathbb{N}^2 \mid \exists z (0 < z \land \forall w (w \neq z \land 0 < w \to z < w \land y = x + z))\}$$

onde na última definição x < y é uma abreviação da fórmula utilizada em $<^{\mathbb{N}}$.

Exercício 3. Seja \mathfrak{A} um modelo de Th (\mathfrak{N}_L) . Defina em $|\mathfrak{A}|$ a relação de equivalência:

$$a \sim b \Leftrightarrow (\mathbf{S}^{\mathfrak{A}})^n a = b \text{ ou } (\mathbf{S}^{\mathfrak{A}})^n b = a \text{ para algum } n \in \mathbb{N}$$

Defina uma relação de ordem < em $|\mathfrak{A}|/_{\sim}$ como

$$[a] < [b]$$
 sse $a <^{\mathfrak{A}} b$ e $a \not\sim b$

prove que < é uma relação de ordem bem definida.

Proof. Para isso provaremos que $(|\mathfrak{A}|/_{\sim}, <)$ forma uma ordenação linear. Transitividade é garantida pelo fato de que < é uma relação de equivalência, assuma que [a] < [b], portanto $a <^{\mathfrak{A}} b$ e $a \not\sim b$, logo $b \not<^{\mathfrak{A}} a$, o que implica que $b \not<^{\mathfrak{A}} a$ ou $a \sim b$, i.e., $b \not< a$. Para tricotomia, como \sim é uma relação de equivalência, então $a \sim b$ ou $a \not\sim b$, no primeiro caso [a] = [b], no segundo $[a] \neq [b]$, portanto a, b estão em cadeias Z diferentes, logo $a <^{\mathfrak{A}} b$ ou $b <^{\mathfrak{A}} a$, i.e., [a] < [b] ou [b] < [a], o que termina a prova.

Obs. Utilizando o exercício anterior, como todo modelo de \mathfrak{N}_A é um modelo de \mathfrak{N}_L , provaremos a asserção mais forte de que em \mathfrak{N}_A a ordenação linear definida no exercício é densa. Para provarmos isso note que em \mathfrak{N}_A vale $\forall x \exists y ((y+y=x) \lor (y+y=Sx))$ (embora seja trivial é fácil mostrar sua validez em \mathfrak{N}_A por eliminação de quantificadores). Portanto, em particular, para $a_1, a_2 \in |\mathfrak{A}|$ tq $[a_1] < [a_2]$, existe um b tq $b+b=a_1+a_2$ ou $b+b=a_1+a_2+1$, obviamente $b \not\sim a_1, a_2$, caso

contrário em ambas as equações acima a_1 e a_2 seriam somas finitas um do outro, portanto estariam na mesma classe de equivalência, contradição, para provarmos que $[a_1] < [b] < [a_2]$, por dicotomia basta assumir que $[a_1] \not \in [b]$ ou $[b] \not \in [a_2]$, no primeiro caso $b <^{\mathfrak{A}} a_1$, se $b + b = a_1 + a_2$, então $b + b = a_1 + a_2 <^{\mathfrak{A}} a_1 + b$, i.e., $a_2 <^{\mathfrak{A}} b$, contradição, visto que, como $[b] < [a_1]$, por transitividade $[b] < [a_2]$, o caso em que $b + b = a_1 + a_2 + 1$ e o segundo caso são análogos.

Exercício 4. Mostre que $Th(\mathbb{R}, <)$ admite eliminação de quantificadores.

3.3 Uma Subteoria da Teoria dos Números

Exercício 1. Mostre que + é definível em (\mathbb{N}, \cdot, E) .

Proof.

$$+(x,y,z) := \forall w(\neg \forall u(w \cdot u = w) \to wEz = wEx \cdot wEy).$$

 \dashv

Exercício 2. Prove que para toda sentença τ livre de quantificadores tq $\models_{\mathfrak{N}} \tau$ temos $A_E \vdash \tau$.

Proof. Sejam t_1, t_2 termos sem variáveis livres, o **Lema 33B** garante que existe um único n tal que $A_E \vdash t = \mathbf{S^n0}$. Sejam $n, m \in \mathbb{N}$ tq $A_E \vdash (t_1 = \mathbf{S^n0}), (t_2 = \mathbf{S^m0})$, uma fórmula atômica φ é da forma $t_1 = t_2$ ou $t_1 < t_2$, no primeiro caso, se $\models_{\mathfrak{N}} t_1 = t_2$, então n = m e $A_E \vdash t_1 = t_2$ sse $A_E \vdash \mathbf{S^n0} = \mathbf{S^m0}$, i.e., $A_E \vdash n = m$, portanto $A_E \vdash t_1 = t_2$, o segundo caso é análogo. Provado para fórmulas sentenciais atômicas é fácil ver que se $\models_{\mathfrak{N}} \tau$ para uma fórmula sentencial τ qualquer livre de quantificadores, então $A_E \vdash \tau$.

Exercício 3. Uma $\{0, S\}$ -teoria T é denominada ω -completa sse para toda fórmula φ e variável x, se $\varphi \frac{\mathbf{S}^{\mathbf{n}\mathbf{0}}}{x} \in T$, para todo $n \in \mathbb{N}$, então $\forall x \varphi \in T$. Mostre que se T é ω -completa e se $A_E \subseteq T$, então $T = \mathrm{Th}(\mathfrak{N})$.

Proof. Defina o rank do quantificador para uma fórmula φ (qr(φ)) como o número máximo de quantificadores aninhados que ocorrem em φ :

$$\begin{aligned} \operatorname{qr}(\varphi) &:= 0, \text{ se } \varphi \text{ \'e at\^omica;} \\ \operatorname{qr}(\neg \varphi) &:= \operatorname{qr}(\varphi); \\ \operatorname{qr}(\varphi \vee \psi) &:= \max\{\operatorname{qr}(\varphi), \operatorname{qr}(\psi)\}; \\ \operatorname{qr}(\forall x \varphi) &:= \operatorname{qr}(\varphi) + 1. \end{aligned}$$

Provaremos utilizando indução em qr de φ que se $\models_{\mathfrak{N}} \varphi$, então $\varphi \in T$. O caso em que $\operatorname{qr}(\varphi) = 0$ é o exercício anterior, assuma portanto que vale para $\operatorname{qr}(\varphi) = n$, o caso em que φ é da forma $\neg \psi$ ou $\psi \vee \chi$ é trivial, seja portanto $\varphi = \forall x\psi$, logo se $\models_{\mathfrak{N}} \forall x\psi$, então $\models_{\mathfrak{N}} \psi \frac{m}{x}$, para todo $m \in \mathbb{N}$, como $\operatorname{qr}(\psi \frac{m}{x}) = n$, pela hipótese de indução $\psi \frac{m}{x} \in T$, para todo $m \in \mathbb{N}$, como T é ω -completo, então $\forall x\psi \in T$, o que termina a prova.

Exercício 4. Mostre que na prova que precede o Teorema 33L, a fórmula (4) é logicamente implicada por (1), (2) e (3).

Proof. Assuma que $\varphi(\mathbf{S^a0}, v_2)$, portanto se $\theta_1(\mathbf{S^a0}, y_1)$ e $\theta_2(\mathbf{S^a0}, y_2)$, então $\psi(y_1, y_2, v_2)$, em particular (2) e (3) garantem que, equivalentemente, $\psi(\mathbf{S^{h_1(a)}0}, \mathbf{S^{h_2(a)}0}, v_2)$ e (1) garante portanto que $v_2 = \mathbf{S^{f(a)}0}$. Analogamente, assuma que $v_2 = \mathbf{S^{f(a)}0}$, portanto se $\theta_1(\mathbf{S^a0}, y_1)$ e $\theta_2(\mathbf{S^a0}, y_2)$, então (2) e (3) garantem que $y_1 = \mathbf{S^{h_1(a)}0}$ e $y_2 = \mathbf{S^{h_2(a)}0}$, da mesma forma (1) garante que $\psi(\mathbf{S^{h_1(a)}0}, \mathbf{S^{h_2(a)}0}, v_2)$, i.e., $\psi(y_1, y_2, v_2)$ e, portanto, $\varphi(\mathbf{S^a0}, v_2)$.

Exercício 5. Mostre que o conjunto de números de sequência (item 10 do catálogo) é representável.

Proof. PENDENTE

Exercício 6. 3 é um número de sequência? O que é lh(3)? Encontre (1*3)*6 e 1*(3*6).

Proof. $3 = 2^0 \cdot 3^1$, portanto 3 teria de representar $\langle -1, 0 \rangle$, mas como as sequências tem de ser positivas então 3 não é um número de sequência, por definição lh pode ser aplicado a 3, visto que, como $3 \neq 0$ e $p_0 = 2 \nmid 3$, temos lh(3) = 0. Logo

$$1 * 3 = 1 \cdot \prod_{i < \text{lh}(3)} p_{i+\text{lh}(1)}^{(3)_{i+1}} = 0$$

Como $6 = \langle 0, 0 \rangle$, temos

$$0 * 6 = \prod_{i < 2} p_i^{(6)_i + 1} = 2^{(6)_0 + 1} 3^{(6)_1 + 1}$$

Por definição $(a)_b := \mu n[\langle a, b, n \rangle \in R]$, com $(a, b, n) \in R$ sse a = 0 ou $p_b^{n+2} \nmid a$, visto que $a = 6 \neq 0$, então o menor n tq $p_i^{n+2} \nmid 6$, para i = 0, 1, é, em ambos os casos, 0, portanto $0*6 = 2 \cdot 3 = 6 = \langle 0, 0 \rangle$. Para 3*6, como lh(3) = lh(1) = 0, então 3*6 = 1*6 = 6, portanto $1*6 = \langle \rangle *\langle 0, 0 \rangle = 6 = \langle 0, 0 \rangle$.

Exercício 7. Prove que:

- a) $a + 1 < p_a$;
- b) $(b)_k \leq b$; igualdade vale sse b = 0.
- c) $lh(a) \leq a$; igualdade vale sse a = 0;
- d) $a \upharpoonright i \leqslant a$;
- e) $lh(a \upharpoonright i) = min(lh(a), i)$.

Proof. a) Provaremos por indução em a, como caso base se a=0, então $0+1=1< p_0=2$, assuma como hipótese indutiva que $n+1< p_n$, sabemos que se $p\neq 2$ é primo, então $p\equiv 1 \pmod 2$, portanto $p_{n+1}-p_n\geqslant 2,\ n>0$, logo $(n+1)+1< p_n+1< p_n+2\leqslant p_{n+1}$;

b) O caso que b=0 é trivial, seja portanto $b=p_{\alpha_1}^{\beta_1}\cdot\ldots\cdot p_{\alpha_m}^{\beta_m}\neq 0$, se $k=\alpha_i,\ 1\leqslant i\leqslant m$, então $(b)_k=\mu n[p_{\alpha_i}^{n+2}\nmid b]$, i.e., $n+2=\beta_i+1$, logo $n=\beta_i-1$, basta provar que n< b, uma vez que o caso em que $k\neq\alpha_i,\ 1\leqslant i\leqslant m$ é trivial, visto que n=0< b. Para provar que $\beta_i-1< b$, assuma que $\alpha_i=0$, logo

$$b = p_{\alpha_1}^{\beta_1} \cdot \dots \cdot p_{\alpha_m}^{\beta_m}$$

$$\geqslant p_0^{\beta_i} \qquad (\alpha_i = 0)$$

$$= 2^{\beta_i} = (1+1)^{\beta_i}$$

$$\geqslant 1 + \beta_i \qquad (Bernoulli)$$

$$> \beta_i - 1$$

onde (Bernoulli) refere-se a Desigualdade de Bernoulli: $(1+x)^n \ge 1 + nx$, para x > -1 e $n \in \mathbb{N}$. Seja agora $\alpha_i > 0$, logo

$$b = p_{\alpha_1}^{\beta_1} \cdot \dots \cdot p_{\alpha_m}^{\beta_m}$$

$$> (\alpha_1 + 1)^{\beta_1} \cdot \dots \cdot (\alpha_m + 1)^{\beta_m}$$

$$\ge (\alpha_1 \beta_1 + 1) \cdot \dots \cdot (\alpha_m \beta_m + 1)$$

$$> \alpha_i \beta_i + 1$$

$$\ge \beta_i + 1$$

$$> \beta_i + 1$$

$$> \beta_i + 1$$

$$(\alpha_i > 0)$$

 \dashv

- c) Os casos que a=0,1 são triviais, visto que lh(a)=0. Seja portanto $a=p_{\alpha_1}^{\beta_1}\cdot\ldots\cdot p_{\alpha_n}^{\beta_n}>1$, com $\alpha_1<\cdots<\alpha_n$. Como todos os α_i são consecutivos, então $lh(a)=\beta_m+1$, $1\leq m\leq n$, logo basta utilizar o mesmo argumento que em b);
- d) Da mesma forma que os anteriores o caso em que a=0 é trivial, visto que $a \upharpoonright i=0$. Seja portanto $a=p_{\alpha_1}^{\beta_1} \cdot \ldots \cdot p_{\alpha_m}^{\beta_m}>0$, logo $a\upharpoonright i=p_{\alpha_1}^{\beta_1} \cdot \ldots \cdot p_{\alpha_{i-1}}^{\beta_{i-1}}\leqslant a$;
- e) Seja $a = p_{\alpha_1}^{\beta_1} \cdot \ldots \cdot p_{\alpha_m}^{\beta_m}$, se $0 \le i \le m+1$, então $\text{lh}(a \upharpoonright i) = \text{lh}(p_{\alpha_1}^{\beta_1} \cdot \ldots \cdot p_{\alpha_{i-1}}^{\beta_{i-1}}) = i$, caso i > m, então $\text{lh}(a \upharpoonright i) = m+1$.

Exercício 8. Sejam q e h funções representáveis, e assuma que

$$f(0,b) = g(b);$$

 $f(a+1,b) = h(f(a,b), a, b).$

Mostre que f é representável.

Proof. PENDENTE

Exercício 9. Mostre que existe uma função representável f to para todo n, a_0, \ldots, a_n

$$f(\langle a_0,\ldots,a_n\rangle)=a_n.$$

Proof. Basta tomar

$$f(a) := \mu n \left[a = 0 \lor p_{\mathrm{lh}(a)-1}^{n+1} \nmid a \right]$$

ou, mais formalmente, seja $R = \{\langle a,n \rangle \mid a = 0 \vee p_{\mathrm{lh}(a)-1}^{n+1} \nmid a \},$ portanto

$$f(a) = \mu n \left[K_{\overline{R}}(a, n) = 0 \right]$$

 \dashv

 \dashv

onde \overline{R} é o complemento de R.

Exercício 10. Seja R uma relação representável e g,h funções representáveis, prove que

$$f(\vec{a}) = \begin{cases} g(\vec{a}), \text{ se } \vec{a} \in R; \\ h(\vec{a}), \text{ se } \vec{a} \notin R. \end{cases}$$

é representável.

Proof. PENDENTE

Exercício 11. (Recursão Monótona) Seja R uma relação binária representável em $\mathbb N$. Seja C o

$$(\langle a_0, \dots, a_{n-1} \rangle, b) \in R \in a_i \in C, \ \forall i < n \Rightarrow b \in C.$$

Assuma também que: (1), para todo $n, a_0, \ldots, a_{n-1}, b$,

menor subconjunto de \mathbb{N} tq para todo $n, a_0, \ldots, a_{n-1}, b$,

$$(\langle a_0, \dots, a_{n-1} \rangle, b) \in R \Rightarrow a_i < b, \ \forall i < n$$

e (2), existe uma função representável f to para todo $n, a_0, \ldots, a_{n-1}, b$,

$$(\langle a_0, \dots, a_{n-1} \rangle, b) \in R \Rightarrow n < f(b)$$

Mostre que C é representável.

Proof. PENDENTE

3.4 Aritmetização da Sintaxe

PENDENTE

3.5 Incompletude e Indecidibilidade

Exercício 1. Mostre que não existe R recursivo tq $\#\operatorname{Cn}(A_E) \subseteq R$ e $\#\{\sigma \mid \neg \sigma \in \operatorname{Cn}(A_E)\} \subseteq \overline{R}$.

Proof. Como R é recursivo sse R é representável em $\operatorname{Cn}(A_E)$, então existe $\beta \in \mathcal{L}_1^{\mathcal{S}}$ que representa R, pelo **Teorema do Ponto Fixo** existe $\sigma \in \mathcal{L}_0^{\mathcal{S}}$ tq $A_E \vdash (\sigma \leftrightarrow \neg \beta(\mathbf{S}^{\#\sigma}\mathbf{0}))$. Assuma por contradição que R satisfaz as hipóteses do enunciado, então

$$\#\sigma \notin R \Leftrightarrow A_E \vdash \neg \beta(\mathbf{S}^{\#\sigma}\mathbf{0})$$

$$\Leftrightarrow A_E \vdash \sigma$$

$$\Leftrightarrow \sigma \in \operatorname{Cn}(A_E)$$

$$\Leftrightarrow \#\sigma \in \#\operatorname{Cn}(A_E)$$

$$\Leftrightarrow \#\sigma \in R$$

Contradição, entretanto

$$\#\sigma \in R \Leftrightarrow A_E \vdash \beta(\mathbf{S}^{\#\sigma}\mathbf{0})$$

$$\Leftrightarrow A_E \vdash \neg \sigma$$

$$\Leftrightarrow \neg \sigma \in \operatorname{Cn}(A_E)$$

$$\Leftrightarrow \#\sigma \in \overline{R}$$

$$\Leftrightarrow \#\sigma \notin R$$

Contradição, portanto não existe tal R.

Exercício 2. Seja $A \subseteq \mathcal{L}_0^{\mathcal{S}}$ recursivo, com $\mathbf{S}, \mathbf{0} \in \mathcal{S}$, e assuma que toda relação recursiva é representável em $\operatorname{Cn}(A)$ e que A é ω -consistente, i.e., não existe φ tq $A \vdash \exists x \varphi(x)$ e para todo $a \in \mathbb{N}, A \vdash \neg \varphi(\mathbf{S^a}\mathbf{0})$. Prove que $\operatorname{Cn}(A)$ é incompleta.

 \dashv

Proof. Utilizaremos o fato de que o **Lema do Ponto Fixo** pode ser aplicado em uma teoria A qualquer que permite representabilidade, a prova é feita nas observações.

Como A é recursivo, então $\operatorname{Cn}(A)$ é axiomatizável, com isso a relação $\operatorname{Prov}(x,\varphi)$ de "x é uma prova de φ " é obviamente recursiva, portanto existe $\operatorname{Prf}_A(x,y)$ que representa Prov em A. Defina o predicado de provabilidade $\operatorname{Prov}_A(y) := \exists x (\operatorname{Prf}_A(x,y))$. Pelo **Lema do Ponto Fixo** existe φ tq $A \vdash \varphi \leftrightarrow \neg \operatorname{Prov}_A(\#\varphi)$, mostraremos que φ é indecidível e, portanto, $\operatorname{Cn}(A)$ é incompleta:

- Se $A \vdash \varphi$, então $A \vdash \operatorname{Prf}_A(y, \#\varphi)$, em que y é o número de Gödel da prova de φ , portanto $A \vdash \exists x (\operatorname{Prf}_A(x, \#\varphi))$, i.e., $A \vdash \operatorname{Prov}_A(\#\varphi)$. Mas, pelo Lema do Ponto Fixo $A \vdash \neg \operatorname{Prov}_A(\#\varphi)$, contradição com a consistência de A.
- Se $A \vdash \neg \varphi$, então, pela consistência de A temos $A \not\vdash \varphi$, i.e., para todo $n, A \vdash \neg Prf_A(n, \#\varphi)$, como $A \in \omega$ -consistente, então $A \vdash \neg \exists x (Prf(n, \#\varphi))$, i.e., $A \vdash \neg Prov_A(\#\varphi)$. Mas, pelo Lema do Ponto Fixo $A \vdash Prov_A(\#\varphi)$, contradição com a consistência de A.

 \dashv

 \dashv

Obs. Essa versão do Teorema da Incompletude é uma que se aproxima bastante da versão original feita pelo Gödel em 1931. Note que a hipótese de que A é ω -consistente é desnecessária, de fato podemos tomar A apenas consistente utilizando o Truque de Rosser ou uma prova mais direta. Poderíamos também ter assumido A como sendo Σ_1^0 -consistente, as provas de cada qual, assim como as generalizações do Lema do Ponto Fixo e do Teorema da Indefinibilidade de Tarski como prometido:

Lema do Ponto Fixo: Se Φ admite representação, então para todo $\psi \in \mathcal{L}_1^{\mathcal{S}}$, existe $\varphi \in \mathcal{L}_0^{\mathcal{S}}$ tq

$$\Phi \vdash \varphi \leftrightarrow \psi(\mathbf{S}^{\#\varphi}\mathbf{0})$$

Proof. Abreviando $\mathbf{S}^{\#\varphi}\mathbf{0}$ por $\#\varphi$, defina $f: \mathbb{N} \to \mathbb{N}$ tq $f(\#\varphi) = \#\varphi(\#\varphi)$ para $\varphi \in \mathcal{L}_1^{\mathcal{S}}$ e f(n) = 0 se n não for o número de Gödel de uma fórmula em $\mathcal{L}_1^{\mathcal{S}}$. Como f é obviamente recursivo, então existe uma fórmula θ que representa f em Φ , defina portanto $\alpha(y) := \exists x(\theta(y, x) \land \psi(x))$ e $\varphi := \alpha(\#\alpha)$, com isso temos que:

$$\Phi \vdash \varphi \leftrightarrow \alpha(\#\alpha)
\leftrightarrow \exists x (\theta(\#\alpha, x) \land \psi(x))
\leftrightarrow \exists x (x = \#\alpha(\#\alpha) \land \psi(x))
\leftrightarrow \psi(\#\alpha(\#\alpha))
\leftrightarrow \psi(\#\varphi).$$

As equivalências são enfadonhamente provadas utilizando a representabilidade de f por θ .

Teorema da Indefinibilidade de Tarski: Se Φ é consistente e admite representação, então $\#Cn(\Phi)$ não é representável em Φ .

Proof. Assuma por contradição que $\#\operatorname{Cn}(\Phi)$ é representável em Φ por $\beta(x)$, pelo **Lema do Ponto Fixo** existe φ tq $\Phi \vdash \varphi \leftrightarrow \neg \beta(\#\varphi)$, se $\Phi \vdash \varphi$, então $\Phi \vdash \neg \beta(\#\varphi)$, como Φ é consistente $\Phi \not\vdash \beta(\#\varphi)$, portanto $\varphi \notin \operatorname{Cn}(\Phi)$, i.e., $\Phi \not\vdash \varphi$, contradição, a volta é análoga, portanto $\#\operatorname{Cn}(\Phi)$ não é representável em Φ .

Assumindo que Φ é Σ_1^0 -consistente: Como a hipótese de que Φ é ω -consistente é utilizada somente à fórmula que representa o predicado de provabilidade podemos reduzir esta hipótese para uma mais fraca dependendo de como formalizamos o predicado, em particular a de que ω -consistencia vale somente pra fórmula Σ_1^0 , i.e., que Φ é Σ_1^0 -consistente. Tal redução pode ser feita visto que $Prov_{\Phi}(x) := \exists y(\Prf_{\Phi}(y,x))$ onde \Prf é uma fórmula que representa o predicado de provabilidade, como este último é recursivo então $Prov_{\Phi}$ é enumerável, i.e., pertence a Σ_1^0 na hierarquia aritmética.

Assumindo que Φ é consistente: Assuma por contradição que $Cn(\Phi)$ é completa, portanto, como Φ é recursiva, então $Cn(\Phi)$ também o é. Uma vez que Φ admite representabilidade, $\#Cn(\Phi)$ é representável em Φ , contradizendo o **Teorema da Indefinibilidade de Tarski**.

Embora simples, a prova acima não constrói de fato uma fórmula independente da teoria, que é o que o caso a seguir cobre:

Assumindo que Φ é consistente (Truque de Rosser) e Teorias consistentes que provam sua própria inconsistência: O fato citado sobre a hipótese adicional de que Φ é ω -consistente ou Σ_1^0 -consistente nos diz que existem modelos tq $\Phi \vdash \exists x \varphi(x)$ e $\Phi \vdash \varphi(n)$, $\forall n \in \mathbb{N}$, tais modelos são conhecidos como ω -inconsistente. Um ótimo exemplo de um sistema que só possui modelos ω -inconsistentes é $A_E + \neg \operatorname{Con}(A_E)$, o Segundo Teorema da Incompletude garante que $\operatorname{Con}(A_E)$ é independente de A_E , portanto $\operatorname{Con}(A_E + \neg \operatorname{Con}(A_E))$, mesmo que

$$A_E + \neg \operatorname{Con}(A_E) \vdash \neg \operatorname{Con}(A_E + \neg \operatorname{Con}(A_E))$$

portanto temos uma teoria consistente que prova sua própria inconsistência, o paradoxo surge a partir do momento que confundimos a asserção metateórica $\operatorname{Cons}(A_E)$ com a asserção teórica $\operatorname{Cons}(A_E) := \operatorname{Prov}_{A_E}(\#0=1)$, logo o que realmente está ocorrendo é que $A_E + \neg \operatorname{Cons}(A_E)$ prova $\neg \operatorname{Cons}(A_E + \neg \operatorname{Cons}(A_E))$, mas metateoricamente $\operatorname{Con}(A_E + \neg \operatorname{Cons}(A_E))$, i.e., a interpretação teórica (Cons) e metateórica (Con) divergem. Tal efeito ocorre porque, como vimos, um modelo não padrão de A_E contém Z-chains, cujos elementos são naturais não-padrão, a existência de um número infinito como ω em alguma Z-chain pode ser usado para satisfazer $\operatorname{Prf}_{A_E}(\omega, \#0=1)$, o ponto é justamente que ω não é o número de Gödel de nenhuma fórmula, portanto ele não tem nenhuma interpretação metateórica, embora a teoria **acredite** que existe uma prova de #0=1. Baseado nessa informação, construiremos um predicado de provabilidade Pvbl que garante que a existência ou não existência de números padrão (hipóteses metateóricas), garantam a existência ou não de um elemento na teoria. Em particular o predicado de Rosser:

$$Pvbl_{\Phi}(\#\varphi) := \exists y (Prf_{\Phi}(y, \#\varphi) \land \forall z < y(\neg Prf_{\Phi}(z, \#\neg\varphi)))$$

o primeiro termo garante que existe uma prova, tal qual no predicado anterior, mas a segunda parte garante que para todo z < y este não encode uma prova para a negação de φ . Seja portanto φ a sentença do **Lema do Ponto Fixo** aplicado em $\neg Pvbl_{\Phi}$, a ida é análoga: se $\Phi \vdash \varphi$, então $\Phi \vdash \Prf(y, \#\varphi)$, onde y é o código da prova de φ , da consistência de Φ temos $\Phi \not\vdash \neg \varphi$, logo, $\Phi \vdash \neg \Prf_{\Phi}(n, \#\neg \varphi)$, para todo n < y e, portanto, $\Phi \vdash Pvbl_{\Phi}(\#\varphi)$ ao mesmo tempo que o Lema do Ponto Fixo garante que $\Phi \vdash \neg Pvbl_{\Phi}(\#\varphi)$, contradição. A particular importância da estrutura do predicado ocorre ao assumir $\Phi \vdash \neg \varphi$, nesse caso o Ponto Fixo garante que $\Phi \vdash Pvbl_{\Phi}(\#\varphi)$, queremos, portanto, provar que $\Phi \vdash \neg Pvbl_{\Phi}(\#\varphi) = \forall y(\neg \Prf_{\Phi}(y, \#\varphi) \lor \exists z < y(\Prf_{\Phi}(z, \#\neg\varphi))$, como $\Phi \vdash \neg \varphi$, então $\Phi \vdash \Prf_{\Phi}(k, \#\neg\varphi)$, onde k é o número de Gödel da prova de $\neg \varphi$. Pela consistência de Φ , $\Phi \not\vdash \varphi$, logo $\Phi \vdash \neg \Prf_{\Phi}(n, \#\varphi)$, para todo $n \in \mathbb{N}$. Portanto se y varia sobre o segmento inicial \mathbb{N} contido em todos os modelos, o primeiro termo é verdadeiro. Se y varia em alguma z-chain, então obviamente k, estando em \mathbb{N} , é tq k < y e $\Prf_{\Phi}(k, \#\neg\varphi)$, portanto o segundo termo é verdadeiro, mesmo que exista uma prova não padrão de $\#\varphi$, logo $\Phi \vdash \neg Pvbl_{\Phi}(\#\varphi)$.

Exercício 3. Seja T uma teoria recursiva, com $\mathbf{S}, \mathbf{0} \in \mathcal{S}$, e assuma que todo subconjunto recursivo de \mathbb{N} é fracamente representável em T. Mostre que #T não é recursivo.

Proof. Defina $P \subseteq \#\mathcal{L}_1^{\mathcal{S}} \times \mathbb{N}$ por $(\#\varphi, b) \in P$ sse $T \vdash \varphi(b)$, portanto se $A \subseteq \mathbb{N}$ é fracamente

representável por $\psi(x)$, então $T \vdash \psi(a)$ sse $a \in A$ sse $(\#\psi, a) \in P$, portanto $P(\#\psi) = A$, enumerando $P(1), P(2), \ldots$ temos que $H := \{x \mid (x, x) \notin P\}$ não é igual a nenhum P(n). Assuma por contradição que exista n tq H = P(n), portanto $n \in H$ sse $(n, n) \notin P$ sse $n \notin P(n)$, logo n é um elemento que está em um, mas não em outro, como H não aparece na sequência de conjuntos fracamente representáveis, então H não é fracamente representável. Assuma por contradição que #T é recursivo, portanto é fracamente representável em T por θ , logo podemos definir H como $x \in H$ sse $(x, x) \notin P$ sse $L(x) \vee \theta(x)$, onde L(x) sse $x \in \mathcal{L}_1^{\mathcal{S}}$ que é obviamente recursivo, contradição, visto que H não é fracamente representável, logo #T não é recursivo.

Exercício 4. Prove que $I(\operatorname{Th}(\mathfrak{N}),\aleph_0)=2^{\aleph_0}$.

Proof. Se $M \models \operatorname{Th}(\mathfrak{N})$ com $M \cong \aleph_0$, então existem no máximo $|\mathcal{P}(\aleph_0)| = 2^{\aleph_0}$ modelos contáveis de $\operatorname{Th}(\mathfrak{N})$. Seja $Q \subseteq \mathbb{P}$, onde \mathbb{P} é o conjunto dos primos. Como $Q \leq \aleph_0$, enumere-o em $Q = \{q_1, q_2, \dots\}$. Note que $a \mid b := \exists c(b = c \cdot a)$ define divisibilidade em \mathfrak{N} . Seja portanto

$$\Gamma_Q := \operatorname{Th}(\mathfrak{N}) \cup \{p \mid v_0 : p \in Q\} \cup \{\neg (p \mid v_0) : p \in \mathbb{N} \setminus Q\}$$

compacidade garante que, como todo $\Gamma_0 \subseteq \Gamma_Q$ é satisfatível pelo próprio modelo padrão, então existe $M_Q' \models \Gamma_Q$, como M_Q' é infinito, então por Löwenheim-Skolem existe um $M_Q \models \Gamma_Q$ contável. Defina a relação de equivalência \sim em $\mathcal{P}(\mathbb{P})$ como $Q \sim P$ sse $M_Q \cong M_P$. Se provarmos que $\mathcal{P}(\mathbb{P}) / \sim$ é incontável, então $\{M_S\}_{S \in \mathcal{P}(\mathbb{P}) / \sim}$ é uma família incontável de modelos contáveis não isomórficos de $\mathrm{Th}(\mathfrak{N})$. Note que para cada $Q \subseteq \mathbb{P}$, existem no máximo contáveis muitos $P \subseteq \mathbb{P}$ tq $P \sim Q$, visto que cada P será associado a um $c_P \in M_Q$, e como M_Q é contável existem no máximo contáveis escolhas de c_p para P, portanto [S] é no máximo contável, para todo $S \in \mathcal{P}(\mathbb{P})$, assuma que $\mathcal{P}(\mathbb{P}) / \sim$ é contável, enumere-o em $\{[S_0], [S_1], \dots\}$, portanto $\bigcup_{i \in \mathbb{N}} [S_i] = \mathcal{P}(\mathbb{P})$, contradição, visto que o LHS é contável e o RHS incontável, portanto o conjunto quociente é incontável, o que termina a prova. \dashv

Obs. Outra forma de provar, em um caso mais geral, que $I(T,\aleph_0)=2^{\aleph_0}$, sempre que T for consistente e admitir representabilidade, é através do **Segundo Teorema da Incompletude**. Sendo T consistente e admitindo representabilidade, sabemos que $T \not\vdash \operatorname{Con}(T)$ e $T \not\vdash \neg \operatorname{Con}(T)$, portanto ambas as teorias $T_0 = T + \neg \operatorname{Con}(T)$ e $T_1 = T + \neg \operatorname{Con}(T)$ são consistentes e admitem representabilidade. Repetindo esse processo podemos construir uma árvore binária infinita:

Sendo $\operatorname{Con}_0(T) = \neg \operatorname{Con}(T)$ e $\operatorname{Con}_1(T) = \operatorname{Con}(T)$, então os nós podem ser definidos recursivamente como: $T_{a_1...a_{n+1}} = T_{a_1...a_n} + \operatorname{Con}_{a_{n+1}}(T_{a_1...a_n})$. Dessa forma, podemos associar a cada real $c \in \mathbb{R}$, um ramo T^c da teoria T correspodente a união das teorias de índice igual aos segmentos inciais da expansão binária de c. Por compacidade existe um modelo contável M_c da união de todos os nós, e como cada ramo possui uma sentença, ou a negação dela, ambos são não isomórficos, logo existem 2^{\aleph_0} modelos contáveis não isomórficos de T.

Execício 5. Teorema Recursivo de Lindenbaum Seja T uma teoria recursiva e consistente. Mostre que T pode ser extendida para uma teoria completa, recursiva e consistente T'.

Proof. Seja $\{\varphi_0, \varphi_1, \dots\}$ uma enumeração de $\mathcal{L}^{\mathcal{S}}$, defina

$$\Psi_0 := T$$

$$\Psi_n := \Psi_{n-1} \cup \big\{ \bigwedge_{i \leqslant n-1} \Box \psi_i \big\}$$

com $\psi_i = \varphi_i$ se $\operatorname{Con}(\Psi_{n-1} \cup \{\varphi_i\})$ e $\psi_i = \neg \varphi_i$ caso contrário. Defina $T' := \bigcup_{i \in \mathbb{N}} \Psi_i$, note que $T' = T \cup \{\psi_1, \psi_1 \wedge \psi_2, \dots\}$. Por definição T' é completa e consistente, além disso, para todo χ , para decidir se $\chi \in T'$ ou não basta, primeiro, determinar se $\chi \in T$, o que pode ser feito em um tempo finito, uma vez que T é recursivo, se $\chi \in T$, então obviamente $\chi \in T'$, caso contrário $\chi \notin T'$. Visto que o segmento inicial de todo $\chi \in T' \setminus T$ é igual, comparar χ com uma fórmula de mesmo comprimento que ela, caso elas sejam iguais então $\chi \in T'$, caso contrário não.

Exercício 6. Considere $S \subseteq \mathcal{L}^{\emptyset}$ o conjunto de fórmulas simples, definida como:

$$\begin{split} At & \cup \{\varphi_{\geqslant n}: n \in \mathbb{N}\} \subseteq S \\ \text{se } \varphi, \psi \in S, \text{ então } \varphi \wedge \psi \in S \\ \text{se } \varphi \in S, \text{ então } \neg \varphi \in S \end{split}$$

(c.f. Observação do Exercício 9. da seção 2.2.). Prove que para todo $\varphi \in \mathcal{L}^{\emptyset}$ existe $\psi \in S$ to $\varphi \models \exists \psi$.

Proof. Note que a prova deste Teorema pode ser feita como um caso particular de eliminação de quantificadores onde as fórmulas da forma $\varphi_{\geqslant n}$ seriam livres de quantificadores, i.e., para todo $\varphi \in \mathcal{L}^{\varnothing}$ existe uma fórmula $\psi \in S$ ("livre de quantificadores") tal que $\varphi \models \exists \psi$. Portanto, pelo **Teorema 31F** basta provar que as fórmulas da forma $\varphi = \exists x(\alpha_1 \land \cdots \land \alpha_n)$ admitem eliminação de quantificadores, onde cada α_i é um literal. Se α_i é da forma $v_i = v_j$ onde v_i ocorre no escopo do quantificador, substitua todas as instância de v_j em φ por v_i , analogamente se nenhum ocorre no escopo. Todas ocorrências da forma v = v podem ser retiradas, a não ser que haja só esse literal, nesse caso substituímos φ por v = v. Após isso todas igualdades serão eliminadas, se houver algo da forma $v \neq v$ substitua φ por $v \neq v$, caso contrário se x ocorre em m fórmulas, substitua-as por $\varphi_{\geqslant m}$ e pegue uma valoração s tq $s(v_i) \neq v_j$ para cada literal da forma $v_i \neq v_j$.

Exercício 7. a) Sejam $A, B \in \Sigma_k$ (Π_k resp.). Mostre que $A \cup B, A \cap B \in \Sigma_k$ (Π_k resp.); b) Sejam f_1, \ldots, f_m funções recursivas. Mostre que

$$\{\vec{a}: \langle f_1(\vec{a}), \dots, f_m(\vec{a}) \rangle \in A\} \in \Sigma_k \ (\Pi_k \text{ resp.})$$

Proof. a) Se $A, B \in \Sigma_k$, então $A = \{\vec{a} : \exists \forall \vec{b}(\vec{a}, \vec{b}) \in R_1\}$ e $B = \{\vec{a} : \exists \forall \vec{b}(\vec{a}, \vec{b}) \in R_2\}$, portanto $A \cap B = \{\vec{a} : \exists \forall \vec{b}(\vec{a}, \vec{b}) \in R_1 \cap R_2\}$ e $A \cup B = \{\vec{a} : \exists \forall \vec{b}(\vec{a}, \vec{b}) \in R_1 \cup R_2\}$, portanto basta provarmos que $R_1 \cap R_2$ e $R_1 \cup R_2$ são recursivos, o para Π_k é análogo. Como R_1, R_2 são recursivos sejam K_{R_1}, K_{R_2} suas funções características, logo $K_{R_1 \cap R_2} = K_{R_1} \cdot K_{R_2}$, ou, mais formalmente, ·(K_{R_1}, K_{R_2}), como multiplicação é recursiva, pela composição de funções recursivas temos que $K_{R_1 \cap R_2}$ também é. Analogamente $K_{R_1 \cup R_2} = K_{R_1} + K_{R_2}$ (mod 2).

b) PENDENTE

Exercício 8. Seja $T \subseteq \mathcal{L}^{\mathcal{S}}$ uma teoria, com $\mathbf{0}, \mathbf{S} \in \mathcal{S}$, e seja $n \ge 0$ fixo. Assuma que todo $A \in \Sigma_n$ é fracamente representável em T. Mostre que $\#T \notin \Pi_n$.

Proof. PENDENTE

Exercício 9. Mostre que

 $\{\#\sigma:A_E\cup\{\sigma\}\ \text{\'e}\ \omega\text{-consistente}\}\in\Pi_3$

Proof. PENDENTE

Exercício 10. Qual a cardinalidade do conjunto de teorias completas que extendem A_E ?

Proof. PENDENTE