MATH 271, WORKSHEET 10

Inverse and similar matrices. Eigenvalue problem and diagonalization. Hermitian matrices.

Problem 1. Consider the two matrices

$$[A] = \begin{pmatrix} 3 & 1 \\ 6 & 2 \end{pmatrix} \quad \text{and} \quad [B] = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}.$$

- (a) Argue why the matrix [A] cannot be invertible. Hint: you can use ideas from Problem 9 to show this.
- (b) Compute the inverse matrix $[B]^{-1}$ for [B].
- (c) Solve the system of equations $[B]\vec{x} = \vec{y}$ for the following vectors.

i.
$$\vec{\boldsymbol{y}} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$
.

ii.
$$\vec{\boldsymbol{y}} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
.

iii.
$$\vec{\boldsymbol{y}} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
.

Problem 2. Consider the matrices

$$[A] = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad [B] = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}.$$

- (a) Show that [A] and [B] are both invertible.
- (b) Find $[A]^{-1}$ and $[B]^{-1}$.
- (c) Show that $([A][B])^{-1} = [B]^{-1}[A]^{-1}$.

Problem 3. Simplify the following expressions.

- (a) $([A][B])^{-1}[A][B]$.
- (b) $[A]^2[B]^3[A]([A][B])^{-1}$.
- (c) $([A][B][C]^{-1})^{-1}[A][B][C]^{-1}$.

Problem 4. Show that for any invertible matrix [A] that $\det([A]^{-1}) = \frac{1}{\det([A])}$.

Problem 5. Let [B] be similar to [A] by the relationship $[B] = [P]^{-1}[A][P]$.

(a) Given that [P] is invertible, show that [P] transforms the standard basis $\hat{\boldsymbol{x}}_1, \hat{\boldsymbol{x}}_2, \dots, \hat{\boldsymbol{x}}_n$ into a new basis given by the columns of [P].

1

- (b) Show that $[P]^{-1}$ transforms the basis given by the columns of [P] into the standard basis.
- (c) Explain why [B] performs the same transformation as [A] but just on a different basis (e.g., different choices of coordinates).

Problem 6. Let [B] be similar to [A] by the relationship $[B] = [P]^{-1}[A][P]$.

- (a) Show that the trace is invariant under similarity. That is, show tr(A) = tr(B).
- (b) Show that the determinant is invariant under similarity. Hint: you will need to use the result from Problem 4.
- (c) Show that [A] and [B] have the same eigenvalues. It may help to think that if we have \vec{v} as an eigenvector for [A], then what is the corresponding eigenvector for [B]?

Problem 7. Compute the eigenvalues and eigenvectors for the following matrices.

(a)
$$[A] = \begin{pmatrix} 2 & 1 \\ 0 & 3 \end{pmatrix}$$
.

(b)
$$[B] = \begin{pmatrix} 1 & 3 \\ 5 & 1 \end{pmatrix}$$
.

(c)
$$[C] = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$
.

Problem 8. Diagonalize the above matrices (if possible).

Problem 9. Argue why the eigenvectors corresponding to a zero eigenvalue are elements of the nullspace.

Problem 10. Show that there must be at least one zero eigenvalue if the determinant of a matrix is zero. Explain what this means geometrically and relate it beck to the geometric interpretation of the determinant.

Problem 11. Given the matrix

$$[A] = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}.$$

- (a) Using the definition of the adjoint and hermitian (self-adjoint), show that [A] is not hermitian.
- (b) Show that there exists only one eigenvector for [A] (e.g., one linearly independent vector in Null($[A] \lambda[I]$).
- (c) Show that there exists two linearly independent vectors in Null(([A] $\lambda[I]$)²).