Time complexity and Space Complexity Analysis

Definition

- An algorithm is a finite sequence of step by step, discrete, unambiguous instructions for solving a particular problem
 - has input data, and is expected to produce output data
 - each instruction can be carried out in a finite amount of time in a deterministic way

Definition

• In simple terms, an algorithm is a series of instructions to solve a problem (complete a task)

Problems can be in any form

Definition

 An algorithm is defined as a collection of unambiguous instructions occurring in some specific sequence and such an algorithm should produce output for given set of inputs in finite amount of time.

• Criteria:

- Input
- Output
- Definiteness
- Effectiveness
- Finiteness

Properties of Algorithm

- Non ambiguity:
 - Each instruction should be clear and precise.
- 2. Range of Input:
 - Input range should be specified
 - It should be finite
- 3. Multiplicity:
 - Same algorithm can be represented in several ways.
- 4. Speed:
 - Algorithm should be efficient
 - Should produce the output with fast speed
- 5. Finiteness:
 - Algorithm should be finite
 - it should terminate

Analysis of Algorithm

- Analyzing the algorithm means understanding the specification of the algorithm and conclude some useful information about its implementation.
 - Determine the running time of program(Time complexity)
 - Determine the space required for program data(Space Complexity)
 - Simplicity
 - Generality
 - Range of inputs

Performance Analysis

 Performance analysis is a process of measuring time and space required by a correct program for valid set of inputs

Performance Analysis

- Two criteria are used to judge algorithms:
 - (i) time complexity
 - (ii) space complexity.
- <u>Space Complexity</u> of an algorithm is the amount of memory it needs to run to completion.
- <u>Time Complexity</u> of an algorithm is the amount of CPU time it needs to run to completion.

Space Complexity

- Memory space S(P) needed by a program P, consists of two components:
 - A fixed part: needed for instruction space (byte code), simple variable space, constants space etc. → c
 - A variable part: dependent on a particular instance of input and output data. \rightarrow S_p(instance)
- $S(P) = c + S_p(instance)$

Space Complexity: Example 1

```
    Algorithm abc (a, b, c)
    feturn a+b+b*c+(a+b-c)/(a+b)+4.0;
    }
        For every instance 3 computer words required to store variables: a, b, and c. Therefore S<sub>p</sub>()= 3. S(P) = 3.
```

Space Complexity: Example 2

```
    Algorithm Sum(a[], n)
    {
    s:= 0.0;
    for i = 1 to n do
    s:= s + a[i];
    return s;
    }
```

Space Complexity: Example 2.

- Every instance needs to store array a[] & n.
 - Space needed to store n = 1 word.
 - Space needed to store a[] = n floating point words (or at least n words)
 - Space needed to store i and s = 2 words
- $S_p(n) = (n + 3)$. Hence S(P) = (n + 3).

Time Complexity

- Time required T(P) to run a program P also consists of two components:
 - A fixed part: compile time which is independent of the problem instance → c.
 - A variable part: run time which depends on the problem instance \rightarrow t_p (instance)
- $T(P) = c + t_p(instance)$

Time Complexity

- How to measure T(P)?
 - Measure experimentally, using a "stop watch"
 → T(P) obtained in secs, msecs.
 - Count program steps \rightarrow T(P) obtained as a <u>step count</u>.
- Fixed part is usually ignored; only the variable part t_p() is measured.

Time Complexity

• What is a <u>program step</u>?

- $a+b+b*c+(a+b)/(a-b) \rightarrow$ one step;
- comments → zero steps;
- while (⟨expr⟩) do → step count equal to the number of times <expr> is executed.
- for i=⟨expr⟩ to ⟨expr1⟩ do → step count equal to number of times <expr1> is checked.

Time Complexity: Example 1

	Statements		Freq.	Total
1	Algorithm Sum(a[],n)		<u></u>	0
2	{	0		0
3	S = 0.0;	1	1	1
4	for i=1 to n do	1	n+1	n+1
5	s = s+a[i];	1	n	n
6	return s;	1	1	1
7	}	0	<u></u>	0

2n+3

Time Complexity: Example 2

	Statements		Freq.	Total
1	Algorithm Sum(a[], n, m)	0	<u></u>	0
2	{	0	<u>-</u>	0
3	for i=1 to n do;	1	n+1	n+1
4	for j=1 to m do	1	n (m+1)	n (m+1)
5	s = s+a[i][j];	1	nm	nm
6	return s;	1	1	1
7	}	0		0

2nm+2n+2

Analysis of Algorithms

• When we analyze algorithms, we should employ mathematical techniques that analyze algorithms independently of *specific implementations, computers, or data.*

- To analyze algorithms:
 - First, we start to count the number of significant operations in a particular solution to assess its efficiency.
 - Then, we will express the efficiency of algorithms using growth functions.

The Execution Time of Algorithms

- Each operation in an algorithm (or a program) has a cost.
 - → Each operation takes a certain amount of time.

```
count = count + 1; \rightarrow take a certain amount of time, but it is constant
```

A sequence of operations:

count = count + 1;
$$Cost: c_1$$

sum = sum + count; $Cost: c_2$

$$\rightarrow$$
 Total Cost = $c_1 + c_2$

The Execution Time of Algorithms (cont.)

Example: Simple If-Statement

	<u>Cost</u>	<u>Times</u>
if (n < 0)	C 1	1
absval = -n	C2	1
else		
absval = n;	c3	1

Total Cost \leftarrow c1 + max(c2,c3)

The Execution Time of Algorithms (cont.)

Example: Simple Loop

	Cost	<u>Times</u>
i = 1;	C 1	1
sum = 0;	C2	1
while (i <= n) {	с3	n+1
i = i + 1;	C 4	n
sum = sum + i;	c5	n
}		

Total Cost =
$$c_1 + c_2 + (n+1)*c_3 + n*c_4 + n*c_5$$

→ The time required for this algorithm is proportional to n

The Execution Time of Algorithms (cont.)

Example: Nested Loop

	Cost	<u>Times</u>
i=1;	c1	1
sum = 0;	с2	1
while (i \leq n) {	с3	n+1
j=1 ;	С4	n
while $(j \le n)$ {	c5	n*(n+1)
sum = sum + i;	с6	n*n
j = j + 1;	с7	n*n
}		
i = i +1;	с8	n
}		

Total Cost = $c_1 + c_2 + (n+1)*c_3 + n*c_4 + n*(n+1)*c_5 + n*n*c_6 + n*n*c_7 + n*c_8$

→ The time required for this algorithm is proportional to n²

General Rules for Estimation

- **Loops**: The running time of a loop is at most the running time of the statements inside of that loop times the number of iterations.
- **Nested Loops**: Running time of a nested loop containing a statement in the inner most loop is the running time of statement multiplied by the product of the sized of all loops.
- **Consecutive Statements:** Just add the running times of those consecutive statements.
- **If**/**Else**: Never more than the running time of the test plus the larger of running times of S1 and S2.

Some Mathematical Facts

Some mathematical equalities are:

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + n = \frac{n*(n+1)}{2} \approx \frac{n^2}{2}$$

$$\sum_{i=1}^{n} i^2 = 1 + 4 + \dots + n^2 = \frac{n*(n+1)*(2n+1)}{6} \approx \frac{n^3}{3}$$

$$\sum_{i=0}^{n-1} 2^{i} = 0 + 1 + 2 + \dots + 2^{n-1} = 2^{n} - 1$$

Best Case

 If an algorithm takes minimum amount of time to run to completion for a specific set of input then it is called best case time complexity.

Worst Case

 If an algorithm takes maximum amount of time to run to completion for a specific set of input then it is called worst case time complexity.

Average Case

• The time complexity that we get for certain set of inputs is average, then for corresponding input such a time complexity is called average case.

Order of Growth

• Measuring the performance of an algorithm in relation with the input size n is called order of growth.

n	log n	n log n	n²	2 ⁿ
1	0	0	1	2
2	1	2	4	4
4	2	8	16	16
8	3	24	64	256
16	4	64	256	65536
32	5	160	1024	4,294,967,296

Growth of Functions

- To choose the best algorithm, we need to check efficiency of each algorithm.
- The efficiency can be measured by computing time complexity of each algorithm.
- Asymptotic notation is a shorthand way to represent the time complexity

Asymptotic Analysis

- To compare two algorithms with running times f(n) and g(n), we need a **rough measure** that characterizes **how fast each function grows**.
- *Hint:* use rate of growth
- Compare functions in the limit, that is, asymptotically!

(i.e., for large values of *n*)

Rate of Growth

• Consider the example of buying *elephants* and *goldfish*:

Cost: cost_of_elephants + cost_of_goldfish
Cost ~ cost_of_elephants (approximation)

• The low order terms in a function are relatively insignificant for **large** *n*

$$n^4 + 100n^2 + 10n + 50 \sim n^4$$

i.e., we say that $n^4 + 100n^2 + 10n + 50$ and n^4 have the same rate of growth

Asymptotic Notation

- O notation: asymptotic "less than":
 - f(n)=O(g(n)) implies: $f(n) \le g(n)$
- Ω notation: asymptotic "greater than":
 - $f(n) = \Omega(g(n))$ implies: $f(n) \ge g(n)$
- Θ notation: asymptotic "equality":
 - $f(n) = \Theta(g(n))$ implies: f(n) "=" g(n)

Big-O Notation

- Big-oh is the formal method of expressing the upper bound of an algorithm's running time.
- It is the measure of longest amount of time it could possibly take for the algorithm to complete.
- More formally,

For non negative functions, f(n) and g(n), if there exists an integer n_o and a constant c>o such that for all integers n> n_o .

$$f(n) \ll cg(n)$$
.

• Then f(n) is big-oh of g(n).

This is denoted as " $f(n) \in O(g(n))$ "

Asymptotic notations

O-notation

 $O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}$.

g(n) is an *asymptotic upper bound* for f(n).

Big-O Notation

- We say $f_A(n)$ =30n+8 is order n, or O (n) It is, at most, roughly proportional to n.
- $f_B(n)=n^2+1$ is order n^2 , or $O(n^2)$. It is, at most, roughly proportional to n^2 .
- In general, any $O(n^2)$ function is faster- growing than any O(n) function.

Big-O Notation

- We say $f_A(n)$ =30n+8 is order n, or O (n) It is, at most, roughly proportional to n.
- $f_B(n)=n^2+1$ is order n^2 , or $O(n^2)$. It is, at most, roughly proportional to n^2 .
- In general, any $O(n^2)$ function is faster- growing than any O(n) function.

Examples

•
$$2n^2 = O(n^3)$$
:
 $2n^2 \le cn^3 \Rightarrow 2 \le cn \Rightarrow c = 1 \text{ and } n_0 = 2$

- $n^2 = O(n^2)$: $n^2 \le cn^2 \Rightarrow c \ge 1 \Rightarrow c = 1$ and $n_0 = 1$
- $1000n^2+1000n = O(n^2)$:

 $1000n^2 + 1000n \le 1000n^2 + n^2 = 1001n^2 \Rightarrow c = 1001$ and $n_0 = 1000$

• $n = O(n^2)$: $n \le cn^2 \Rightarrow cn \ge 1 \Rightarrow c = 1 \text{ and } n_0 = 1$

No Uniqueness

- There is no unique set of values for n₀ and c in proving the asymptotic bounds
- Prove that $100n + 5 = O(n^2)$
 - $100n + 5 \le 100n + n = 101n \le 101n^2$

for all $n \ge 5$

 $n_0 = 5$ and c = 101 is a solution

• $100n + 5 \le 100n + 5n = 105n \le 105n^2$ for all $n \ge 1$

 $n_0 = 1$ and c = 105 is also a solution

Must find **SOME** constants c and n_o that satisfy the asymptotic notation relation

Big-Omega Notation

- For non-negative functions, f(n) and g(n), if there exists an integer n_o and a constant c>o such that for all integers n> n_o,f(n)>=cg(n) then f(n) is big omega of g(n).
- This is denoted as " $f(n) \in \Omega(g(n))$ "
- G(n) is a lower bound function.
- It describes the best that can happen for a given data size.

Big -Omega Notation

• Ω - notation

 $\Omega(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}$.

 $\Omega(g(n))$ is the set of functions with larger or same order of growth as g(n)

g(n) is an *asymptotic lower bound* for f(n).

Examples $\cdot 5n^2 = \Omega(n)$

 $\exists c, n_0 \text{ such that: } 0 \le cn \le 5n^2 \Rightarrow cn \le 5n^2 \Rightarrow c = 1 \text{ and } n_0 = 1$

• $100n + 5 \neq \Omega(n^2)$

 \exists c, n_0 such that: $0 \le cn^2 \le 100n + 5$

 $100n + 5 \le 100n + 5n \ (\forall n \ge 1) = 105n$

 $cn^2 \le 105n \Rightarrow n(cn - 105) \le 0$

Since n is positive \Rightarrow cn - $105 \le 0 \Rightarrow$ n $\le 105/c$

 \Rightarrow contradiction: *n* cannot be smaller than a constant

• $n = \Omega(2n), n^3 = \Omega(n^2), n = \Omega(logn)$

Big-Theta Notation

• For non negative functions, f(n) and g(n), if there exists an integer n_o and a constant c_1 and c_2 i.e., c_1 > o and c_2 > o such that for all integers $n > n_o$.

$$c_1g(n) \le f(n) \le c_2g(n)$$
.

- Then f(n) is big-oh of g(n).
- This is denoted as " $f(n) \in \Theta(g(n))$ "

Asymptotic notations (cont.)

 $\Theta(g(n)) = \{f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$.

 Θ (g(n)) is the set of functions with the same order of growth as g(n)

g(n) is an asymptotically tight bound for f(n).

Examples

- $n^2/2 n/2 = \Theta(n^2)$
 - $\frac{1}{2} n^2 \frac{1}{2} n \le \frac{1}{2} n^2 \forall n \ge 0 \implies c_2 = \frac{1}{2}$
 - $\frac{1}{2}$ $n^2 \frac{1}{2}$ $n \ge \frac{1}{2}$ $n^2 \frac{1}{2}$ $n * \frac{1}{2}$ $n (\forall n \ge 2) = \frac{1}{4}$ $n^2 \implies c_1 = \frac{1}{4}$
- $n \neq \Theta(n^2)$: $c_1 n^2 \le n \le c_2 n^2$
 - \Rightarrow only holds for: $n \le 1/c_1$

Examples

$$6n^3 \neq \Theta(n^2)$$
: $c_1 n^2 \leq 6n^3 \leq c_2 n^2$

 \Rightarrow only holds for: $n \le c_2 / 6$

• $n \neq \Theta(\log n)$: $c_1 \log n \leq n \leq c_2 \log n$

 \Rightarrow c₂ \ge n/logn, \forall n \ge n₀ - impossible

Common orders of magnitude

n	$f(n) = \lg n$	f(n) = n	$f(n) = n \lg n$	$f(n)=n^2$	$f(n)=n^3$	$f(n)=2^n$
10	0.003 μs*	0.01 µs	0.033 μs	0.1 µs	1 μs	μs
20	0.004 μs	0.02 µs	0.086 µs	0.4 µs	8 μs	l ms [†]
30	0.005 μs	0.03 µs	0.147 μs	0.9 µs	27 μs	l s
40	0.005 μs	$0.04 \mu s$	0.213 μs	1.6 µs	64 μs	18.3 mir
50	0.005 μs	0.05 µs	0.282 µs	2.5 µs	.25 μs	13 days
10^{2}	0.007 μs	$0.10 \ \mu s$	0.664 µs	10 μs	1 ms	4×10^{15} years
10^{3}	0.010 μs	1.00 µs	9.966 µs	1 ms	1 s	
10 ⁴	0.013 µs	.0 μs	130 µs	100 ms	16.7 min	
10 ⁵	0.017 µs	0.10 ms	1.67 ms	10 s	11.6 days	
10 ⁶	0.020 μs	1 ms	19.93 ms	16.7 min	31.7 years	
10^{7}	0.023 µs	0.01 s	0.23 s	1.16 days	31,709 years	
10^{8}	0.027 μs	0.10 s	2.66 s	115.7 days	3.17 × 10' years	
109	0.030 µs	1 s	29.90 s	31.7 years		

^{*}I $\mu s = 10^{-6}$ second.

 $^{^{\}dagger}1 \text{ ms} = 10^{-3} \text{ second.}$

Common orders of magnitude

