IFCE - Campus Maracanaú Lógica para Computação

Ciência da Computação Prof. Thiago Alves

7^a Lista de Exercícios

Aluno(a):	Matrícula:	
0 0 _ 0 _ 0 _ 0 _ 0 _ 0 _ 0 _ 0		

- 1. Mostre que $\exists x \forall y R(x,y) \vdash \forall y \exists x R(x,y)$.
- 2. Prove que $\forall x (P(x) \land Q(x)) \vdash \forall x P(x) \land \forall x Q(x)$.
- 3. Usando dedução natural, mostre que $\forall x P(x) \lor \forall x Q(x) \vdash \forall x (P(x) \lor Q(x))$.
- 4. Prove que $\exists x P(x) \lor \exists x Q(x) \vdash \exists x (P(x) \lor Q(x))$, usando dedução natural.
- 5. Verifique se $\neg \forall x \neg P(x) \vdash \exists x P(x)$.
- 6. Sejam as premissas "Todo político mente" e "Nenhum cientista mente". Mostre que a afirmação "Nenhum cientista é político" pode ser concluída a partir das premissas, usando dedução natural.
- 7. Defina um contra-exemplo para mostrar que $\forall x (P(x) \to R(x)), \forall x (Q(x) \to R(x)) \not\vdash \exists x (P(x) \land Q(x)).$
- 8. Verifique se $P(y) \to \forall x Q(x) \vdash \forall x (P(y) \to Q(x))$.
- 9. Prove que $\forall x P(a, x, x), \forall x \forall y \forall z (P(x, y, z) \rightarrow P(f(x), y, f(z))) \vdash P(f(a), a, f(a)).$
- 10. Sejam as premissas "Todo atleta é determinado", "Toda pessoa determinada e inteligente não é perdedora", "Guga é atleta e amante do tênis", "Apenas pessoas inteligentes são amantes do tênis". Mostre que podemos concluir a afirmação "Guga não é perdedor" a partir das premissas, usando dedução natural.