29 Слабка топологія

§29.1 Слабка топологія: означення і властивості

Означення 29.1. Нехай X — лінійний простір, X' — алгебраїчно спряжений до нього простір (тобто простір усіх лінійних функціоналів, заданих на X), $E \subset X'$ — деяка підмножина.

Слабкою топологією на X, породженою множиною функціоналів E, називається найслабкіша топологія, в якій функціонали з E є неперервними.

Зауваження 29.1 — Ця топологія є частковим випадком топології, породженою сім'єю відображень, тому для неї використовується те ж позначення $\sigma(X, E)$.

Для будь-якого скінченого набору функціоналів $G=(g_1,g_2,\ldots,g_n)$ і будь-якого $\varepsilon>0$ введемо позначення

$$U_{G,\varepsilon} = \bigcap_{g \in G} \{x \in X : |g(x)| < \varepsilon\} = \{x \in X : \max_{g \in G} |g(x)| < \varepsilon\}.$$

Сім'я множин вигляду $U_{G,\varepsilon}$, де $G=(g_1,g_2,\ldots,g_n)\subset E$ і $\varepsilon>0$, утворює базу околів нуля топології $\sigma(X,E)$. Базу околів будь-якого елемента $x_0\in X$ утворюють множини вигляду

$$\bigcap_{g \in G} \{x \in X : |g(x - x_0)| < \varepsilon\} = x_0 + U_{G,\varepsilon}.$$

Звідси випливає, що топологія $\sigma(X, E)$ — це локально-опукла топологія, що породжена сім'єю напівнорм $p_G(x) = \max_{g \in G} |g(x)|$, де G пробігає усі скінчені підмножини множини E. Для того щоб ця топологія була віддільною, необхідно і достатньо, щоб сім'я функціоналів E розділяла точки простору X.

Як зазначалося в попередніх лекціях, фільтр \mathfrak{F} на X збігається в топології $\sigma(X,E)$ до елемента x тоді і лише тоді, коли $\lim_{\mathfrak{F}} f = f(x)$ для всіх $f \in E$. Зокрема, цей критерій збіжності є слушним і для послідовностей: $x_n \to x$ в топології $\sigma(X,E)$, якщо $f(x_n) \to f(x)$ для всіх $f \in E$.

§29.2 Леми про перетин ядер і обмеженість на підпросторі

Лема 29.1

Нехай $f,\{f_k\}_{k=1}^n$ — лінійні функціонали на X і $\ker f\supset \bigcap_{k=1}^n\ker f_k$. Тоді $f\in \lim(f_1,f_2,\ldots,f_n)$.

Доведення. Застосуємо індукцію по n, поклавши як базу n=1.

Якщо $f_1 = 0$, то $\ker f \supset \ker f_1 = X$, тобто f = 0.

Якщо $f_1 \neq 0$, то $Y = \ker f_1$ — це гіперплощина в X. Отже, існує вектор $e \in X \setminus Y$ такий, що $\lim(e,Y) = X$. Позначимо a = f(e) і $b = f_1(e)$. Функціонал $f - ab^{-1}f_1$

дорівнює нулю як на Y, так і точці e. Отже, функціонал $f - ab^{-1}f_1$ дорівнює нулю на всьому просторі X = lin(e, Y), тобто $f \in \text{lin}(f_1)$.

Індукційний перехід $n \to n+1$. Розглянемо підпростір $Y = \bigcap_{k=1}^n \ker f_k$. Умова $\ker f \supset \bigcap_{k=1}^{n+1} \ker f_k$ означає, що ядро звуження функціонала f на Y містить ядро звуження функціонала f_{n+1} на Y. Отже (випадок n=1), існує такий скаляр α , що $f - \alpha f_{n+1}$ дорівнює нулю на всьому $Y = \bigcap_{k=1}^n \ker f_k$. Отже,

$$\ker(f - \alpha f_{n+1}) \supset Y = \bigcap_{k=1}^{n} \ker f_k.$$

За припущенням індукції, $f - \alpha f_{n+1} \in \lim(f_1, \dots, f_n)$, тобто $f \in \lim(f_1, \dots, f_{n+1})$.

Лема 29.2

Нехай Y — підпростір лінійного простору $X, f \in X'$ і існує таке a > 0, що $|f(y)| \le a$ на всьому підпросторі Y. Тоді f(y) = 0 для всіх $y \in Y$.

Доведення. Нехай існує $y_0 \in Y$ такий що $f(y_0) \neq 0$.

Тоді на елементі $y = 2af(y_0)^{-1}y_0 \in Y$ маємо |f(y)| = 2a > a.

§29.3 Неперервність функціоналів у слабкій топології

Теорема 29.1

Функціонал $f \in X'$ є неперервним в топології $\sigma(X, E)$, тоді і лише тоді, коли $f \in \text{lin}(E)$.

Зауваження 29.2 — Зокрема, якщо $E\subset X'$ — лінійний підпростір, множина $(X,\sigma(X,E))^\star$ усіх функціоналів, неперервних в топології $\sigma(X,E)$ на X, збігається з E.

Доведення. **Необхідність.** За означенням топології $\sigma(X, E)$, усі елементи множини E є функціоналами, неперервними в топології $\sigma(X, E)$. Отже, неперервними будуть і їх лінійні комбінації.

Достатність. Нехай функціонал $f \in X'$ є неперервним в $\sigma(X, E)$. Тоді існує скінчена множина функціоналів $G = \{g_1, g_2, \dots, g_n\} \subset E$ і таке $\varepsilon > 0$, що в околі

$$U_{G,\varepsilon} = \{x \in X : \max_{g \in G} |g(x)| < \varepsilon\}.$$

усі значення функціонала f є обмеженими за модулем деяким числом a>0. Цим же число будуть обмежені значення функціонала на підпросторі

$$Y = \bigcap_{k=1}^{n} \ker f_k \subset U_{G,\varepsilon}.$$

За лемм. 29.2 функціонал f обертається на нуль на просторі Y, що за лемм. 29.1 значить, що $f \in \text{lin}(g_1, g_2, \dots, g_n) \subset \text{lin}(E)$.

29 Слабка топологія 157

§29.4 Література

[1] **Кадец В. М.** Курс функционального анализа / В. М. Кадец — X.: XHУ им. В. Н. Каразина, 2006. (стр. 516–518).