

Bounds

Name: Chong-kwon Kim

SCONE Lab.

Example - Coupon Collection

- Let X: Time to collect all n types of coupon
- \bullet X = X₁ + X₂ +···· + X_n (Xi is time to collect i-th coupon types after (i-1) coupon types are collected)

E[Xi] = (n-i+1)/n

 $Var[Xi] = \frac{(1-p_i)}{p_i^2} \le \frac{1}{p_i^2}$

- Xi: Geometric r. v. with pi = (1 (i-1)/n)
 - \rightarrow E[X] = $n \cdot H_n$
 - \rightarrow Var[X] = $\sum_{i=1}^{n} Var[Xi]$

$$\leq \sum_{i=1}^{n} (n/(n-i+1))^2$$

$$\pi^2 \cdot n^2$$

$$\sum_{i=1}^{n} (1/i)^2 = \frac{\pi^2}{6}$$

$$\leq \frac{\pi^2 \cdot n^2}{6}$$
 $\sum_{i=1}^n (1/i)^2 = \frac{\pi^2}{6}$

• Find Markov and Chebyshev bounds of $Pr(X \ge 2n \cdot H_n)$

Example - Coin Flips Revisited

• We proved that, for $0 < \delta \le 1$, $\Pr(X \ge (1 + \delta)\mu) \le e^{-\frac{\mu \cdot \delta^2}{3}}$

X should be sum of Poisson trials

- Also, it can be shown that $\Pr(X \le (1-\delta)\mu) \le e^{-\frac{\mu \cdot \delta^2}{3}}$
- $\Rightarrow \Pr(|X \mu| \ge \delta \cdot \mu) \le 2e^{-\frac{\mu \cdot \delta^2}{3}}$

Refer to Theorem 4.5 & Corollary 4.6

- X: # heads in n coin flip
- Find bounds of Pr ($|X-n/2| \ge n/4$)
 - Markov: $Pr((X-n/2) \ge n/4) =$
 - Chebyshev: Pr $(|X-n/2| \ge n/4) =$
 - Chernoff: Pr $(|X-n/2| \ge n/4) =$

Selection Problem

- Problem: Given an input of N distinct numbers, find i-th largest number
- Median: $\lceil N/2 \rceil$ th or $\lceil (N+1)/2 \rceil$ th largest number
- Complexity of find minimum (or maximum) number
 - $\rightarrow \Theta(N)$

- What is the complexity of finding the median?
 - Obviously, we can do in $\Theta(N | InN)$
- \bullet Any selection algorithm with $\Theta(N)$?

Randomized Selection

Similar to randomized QuickSort

- Pick a pivot number randomly
- Partition the input into two subsets, S1 and S2, such that all in S1 are smaller than the pivot and all in S2 are larger than the pivot
- Pick S1 or S2 and repeat the procedure recursively
- $\rightarrow \Theta(N)$?

- Let T(N): # comparison to find the median
 - Then $T(N) \leq 1/N \cdot (\sum_{k=1}^{n-1} T(\max(k, N-k)))$
 - -T(N) = O(N)

Refer to CLRS

Randomized Median Algorithm

• Sketch of the algorithm

- Given an original set S (size: n objects)
- Generate a random sample (say R) of a properly small size, say \sqrt{n} , or n^k (k < 1)
 - Sort R (Complexity = $O(n^k \cdot log n^k)$
 - Fix an short interval (say I) that contains the median of R
- Now, collects the objects that belong to the interval (Complexity??)
- Sort the selected objects

Original S

Random sample of size= n^k

Sorted S (Imaginary)

Sorted R

Interval

Example

- S = {17, 7, 14, 6, 1,19, 3, 4, 7, 11, 18, 12, 21, 9, 5, 10, 2, 19, 8, 13, 16}
- Let R1 = {17, 7, 14, 6, 1,19, 3}, R2 = {17, 14, 19, 7, 18, 12, 21}
- Sorted S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21}
- Sorted $R1 = \{1,$

3, 6, 7,

14,

19}

• Sorted R2 = {

7,

12,

14,

17, 18, 19,

21}

Randomized Median Algorithm

Input: A set S of n elements

Output: Median (m) of S

- Construct a multi-set R of $\Gamma n^{3/4}$ 7 elements from S, each element chosen independently and uniformly at random with replacement
- 2. Sort R
- Let d and u be the $L^{\frac{1}{2}}n^{3/4} \sqrt{n}J$ and $\Gamma^{\frac{1}{2}}n^{3/4} + \sqrt{n}J$ -th elements, respectively, in sorted R
- 4. Compare every element in S to d and u. Construct a set C with elements in [d, u] and count l_d and l_u , the number of elements smaller than d and greater than u, respectively
- 5. If $l_d > n/2$ or $l_u > n/2 \Rightarrow \text{FAIL}$ M is $(\lfloor \frac{n}{2} \rfloor l_d + 1)$ -th element in sorted C
- 6. If $|C| \le 4 n^{3/4}$, then sort C,

OW FAIL

Randomized Median Algorithm

- With high probability
 - Probability at least $1-O(1/n^c)$ for some c>0 m is between d and u Condition of step 5 SUCCESS |C| is not greater than $4\,n^{3/4}$ Condition of step 6 SUCCESS
- Easy to prove that
 - If the algorithm does not FAIL, then it finds the median of S
- Need to prove
 - 1. Randomized median algorithm terminates in linear time O(N)
 - 2. SUCCESS with high probability
- The algorithm FAILs if any one of following events occur
 - E1: Y1 = $|\{r \in R \mid r \le m\}| < \frac{1}{2} n^{3/4} \sqrt{n}$ - E2: Y2 = $|\{r \in R \mid r \ge m\}| < \frac{1}{2} n^{3/4} - \sqrt{n}$
 - E3: $|C| > 4 n^{3/4}$

 $l_d > n/2 \rightarrow d$ is larger than m

→ Less than $(\frac{1}{2} n^{3/4} - \sqrt{n})$ elements in R are smaller than or equal to m

Randomized Median Algorithm

Sorted S (Imaginary)

Sorted R

Less than $\frac{1}{2} n^{3/4} - \sqrt{n}$ objects that are $\leq m$

$$\frac{1}{2} n^{3/4} - \sqrt{n}$$

Median of R

$$\frac{1}{2} n^{3/4} + \sqrt{n}$$

Randomized Median Algorithm

• Lemma: $Pr(E1) \le (1/4) \cdot n^{-1/4}$

Probability at least $1-O(1/n^c)$ for some c>0

Proof

- Consider random sampling of i-th element and let Xi be a Bernoulli random variable such that

$$-Xi = \begin{cases} 1, & if the sample \leq m \\ 0, & o.w \end{cases}$$

$$C_{n}(Xi = 1) \quad (n-1)/2+1$$

$$Pr(Xi=1) = \frac{(n-1)/2+1}{n} = \frac{1}{2} + 1/2n$$

- Define Binomial random variable Y1 = $\sum_{i=1}^{n^{3/4}} X_i$ E[Y1] = ? Var[Y1] = ?

→ B(n, p) where n= $n^{3/4}$ and p = $\frac{1}{2}$ + 1/2n

- Event E1 is equivalent to Y1 =
$$\sum_{i=1}^{n^{3/4}} X_i < \frac{1}{2} n^{3/4} - \sqrt{n}$$

$$\Pr(Y1) = \Pr(Y1 < \frac{1}{2} n^{3/4} - \sqrt{n})$$

$$\leq \Pr(|Y1 - E[Y1]| > \sqrt{n})$$

$$\leq \frac{Var[Y1]}{n}$$

Randomized Median Algorithm

- Now prove $Pr(E3=|C| > 4 n^{3/4}) \le (1/2) \cdot n^{-1/4}$
- Proof
 - Note that if E3 occur, then at least one of following two events occurs

E3a: at least $2 n^{3/4}$ elements of C are greater than the median

E3b: at least $2 n^{3/4}$ elements of C are smaller than the median

Sorted S (Imaginary)

 $\frac{1}{2} n^{3/4} - \sqrt{n}$

- $[n/2 + 2n^{3/4}, n]$
- $\frac{1}{2} n^{3/4} + \sqrt{n}$

- Focus on E3a
- There are at least $2 n^{3/4}$ elements in C that are greater than the median
 - \rightarrow order of u in S is at least n/2 + $2\pi^{3/4}$
 - \rightarrow R has at least $(1/2) \cdot n^{3/4} \sqrt{n}$ elements in $[n/2 + 2n^{3/4}, n]$

Randomized Median A)Igorithm

- Again define Bernoulli r. v. Xi such that

$$- Xi = \begin{cases} 1, & \text{if the sample is in } [n/2 + 2n^{3/4}, n] \\ 0, & \text{o.w} \end{cases}$$

- Let Y3a =
$$\sum_{i=1}^{n^{3/4}} X_i$$

- Pr(E3a) = Pr(Y3a $\geq (1/2) \cdot n^{3/4} - \sqrt{n}$
 $\leq \Pr(|Y3a - E[Y3a]| \geq \sqrt{n})$
 $\leq \frac{Var[X]}{n} < \frac{1}{4} n^{-1/4}$

→
$$Pr(E1)+Pr(E2)+Pr(E3a)+Pr(E3b) \le n^{-1/4}$$

$$Pr(X_i = 1) = \frac{n - \frac{n}{2} - 2n^{3/4}}{n} = \frac{1}{2} - 2n^{-1/4}$$

$$E[Y3a] = \frac{1}{2}n^{3/4} - 2\sqrt{n}$$

$$Var[Y3a] = n^{3/4}(\frac{1}{2} - 2n^{-1/4})(\frac{1}{2} + 2n^{-1/4})$$

$$= \frac{1}{4}n^{3/4} - 4n^{-1/4} < \frac{1}{4}n^{3/4}$$

Example - Parameter Estimation

- We are trying to estimate the parameters of a certain distribution
- For example, judge if a coin is fair or biased
- Suspect that Pr(heads) = p
- \bullet Perform n coin flips and let X=n· \tilde{p} be # heads
- Definition: $1-\gamma$ Confidence Interval (CI) for a parameter p is an interval $[\tilde{p}-\delta, \tilde{p}+\delta]$ such that

$$\Pr(p \in [\tilde{p} - \delta, \tilde{p} + \delta]) \ge 1 - \gamma$$
.

Trade-off between n, δ , and γ

"전국 19세 이상 성인 남녀 1000명을 대상으로 한 설문조사 결과 X, Y 정당 지지율은 각각 40%, 30% 이다. 이번 조사는 신뢰수준 95%, 오차는 ±3.1%포인트다."

Example - Parameter Estimation

 \bullet X=n· \tilde{p} is a binomial distribution with n and p

op
$$\notin [\tilde{p}-\delta, \tilde{p}+\delta] \iff$$
 either $p < \tilde{p}-\delta \implies n\tilde{p} > n(p+\delta) = \mathbf{E}[X](1+\delta/p);$ $p > \tilde{p}+\delta \implies n\tilde{p} < n(p-\delta) = \mathbf{E}[X](1-\delta/p).$

• From Chernoff bound,

$$\Pr(p \notin [\tilde{p} - \delta, \tilde{p} + \delta]) = \Pr\left(X < np\left(1 - \frac{\delta}{p}\right)\right) + \Pr\left(X > np\left(1 + \frac{\delta}{p}\right)\right)$$

$$< e^{-np(\delta/p)^2/2} + e^{-np(\delta/p)^2/3}$$

$$= e^{-n\delta^2/2p} + e^{-n\delta^2/3p}.$$

Tighter Bounds for Special Cases

- Case 1: Each trial assumes value 1 or −1 with equal probability
- Theorem: Let X_1, X_2, \dots, X_n be independent r.v. such that $Pr(Xi=1) = Pr(Xi=-1) = \frac{1}{2}$. Let $X = \sum_{i=1}^{n} X_i$
- For any a > 0, $Pr(X > a) < e^{-a^2/2n}$

• MGF of Xi:
$$\mathbf{E}[e^{tX_i}] = \frac{1}{2}e^t + \frac{1}{2}e^{-t}.$$
$$= \sum_{i \ge 0} \frac{t^{2i}}{(2i)!}$$
$$\leq \sum_{i \ge 0} \frac{(t^2/2)^i}{i!}$$

• MGF of X:

$$= e^{t^2/2}.$$

$$\mathbf{E}[e^{tX}] = \prod_{i=1}^{n} \mathbf{E}[e^{tX_i}] \le e^{t^2n/2}$$

•
$$\Pr(X \ge a) \le e^{\frac{t^2n}{2} - ta} = e^{-a^2/2n}$$

Min. at t=a/n

$$e^{t} = 1 + t + \frac{t^{2}}{2!} + \dots + \frac{t^{i}}{i!} + \dots$$

$$e^{-t} = 1 - t + \frac{t^{2}}{2!} + \dots + (-1)^{i} \frac{t^{i}}{i!} + \dots$$

$$\frac{\exp\left\{\left(e^{t}-1\right)\cdot\mu\right\}}{e^{t(1+\delta)\mu}}$$

Tighter Bounds for Special Cases

- Case 2: Bernoulli trials with p = 1/2
- \bullet Corollary: Let Y_1, Y_2, \dots, Y_n be independent r.v. such that

$$Pr(Yi=1) = Pr(Yi=0) = \frac{1}{2}$$
. Let $Y = \sum_{i=1}^{n} Y_i$

1. For
$$a > 0$$
, $\Pr(Y \ge \mu + a) \le e^{-2a^2/n}$

2. For
$$\delta > 0$$
, $\Pr(Y \ge (1 + \delta)\mu) \le e^{-\delta^2 \mu}$.

• Proof:

- Let
$$Y_i = (X_i + 1)/2$$
, $Y = \sum Y_i = \frac{X}{2} + n/2$

$$-\mu = E[Y] = \frac{n}{2}$$

$$-\Pr(Y \ge \mu + a) = \Pr(X \ge 2a) \le e^{-4a^2/2n}$$