Linker (mesclador de arquivos), Loader (carregador de arquivos)

Lucas

19 de setembro de 2015

142-147 Passos do Ligador:

- (a) Coloca códigos e módulos simbolicamente na memória.
- (b) Determina endereços de dados e labels de instruções.
- (c) Procura as bibliotecas dos programas para achar as rotinas contidas nelas e que são usadas pelo programa em sí, combina ambas referências internas e externas. Resolve referências entre os arquivos (B3 Patterson).

Quando todas as referências estão resolvidas, o ligador então vai determinar as localizações na memória que cada módulo deverá ocupar.

B18-B19 Passos do Carregador:

- (a) Lê o cabeçalho do executável, para determinar o tamanho do segmento de dados e texto.
- (b) Cria um novo espaço de endereços para o programa.
- (c) Copia instruções e dados para um novo espaço de endereços.
- (d) Copia para a pilha os argumentos passados pera o programa.
- (e) Inicializa registradores da máquina, em geral a maioria dos registradores são limpados.
- (f) Pula para uma rotina start-up que copia os argumentos do programa da pilha para registradores e chama a rotina principal (main). Se ela terminar o programa termina com o exit system call.

2.31.1a As tabelas abaixo tem as informações para o ligador, mesclar os objetos na memória, resolvendo os endereços internos e externos.

2.31.1 [5] **2.12** Ligue os objetos \rightarrow Procedure A com .text size de 0x140 e .data size de 0x40 \rightarrow Procedure B com .text size de 0x300 e .data size de 0x50.^a

Text Segment	Address	Instruction		Text Segment	Address	Instruction	
	400000	lbu \$a0, 8000(\$gp)			400140	sw \$a1, 8040(\$gp)	
	400004	jal 100050			400144	jal 100000	
Data Segment	10000000	(X)		Data Segment	10000040	(Y)	
Relocation Info	Address	Instruction Type	Dependency	Relocation Info	Address	Instruction Type	Dependency
	0	lbu (I type)	X		0	sw (I type)	Y
	4	jal (J type)	В		4	jal (J type)	A
Symbol Table	Address	Symbol		Symbol Table	Address	Symbol	
	_	X			_	Y	
	_	В			_	A	

2.31.1b Ligue os objetos \rightarrow Procedure A com .text size de 0x140 e .data size de 0x40 \rightarrow Procedure B com .text size de 0x300 e .data size de 0x50.

Text Segment	Address	Instruction		Text Segment	Address	Instruction	
	400000	lui \$at, 0x1000			400140	sw \$a0, 8050(\$gp)	
	400004	ori \$a0, \$at, 0x0000			400144	jmp 0x60	
	0x84	jr \$ra			0x180	jal 0x100000	
Data Segment	10000000	(X)		Data Segment	10000050	(Y)	
						•••	
Relocation Info	Address	Instruction Type	Dependency	Relocation Info	Address	Instruction Type	Dependency
	0	lui (I type)	X		0	sw (I type)	Y
	4	ori (I type)	X		4	jump (J type)	F00
					0x180	jal (J type)	A
Symbol Table	Address	Symbol		Symbol Table	Address	Symbol	
	_	X			_	Y	
					0x180	F00	
					_	A	

a Como você pode ver nunca haverá a possibilidade de um jal, j, concatenar alguma coisa além de PC+4[31-28] == 0000. Senão você estaria pulando para uma área de dados, no layout que estamos trabalhando aqui. É por isso que dá erro de acesso indevido a memória.