Medidas de Tendência Central e Variabilidade

Otaviano Francisco Neves

Medidas de tendência central

Média: É o valor que está no centro das distancias dos dados e é obtido pela soma de todos os valores, dividida pelo número de valores (tamanho da amostra n). $\bar{x} = \frac{\sum x}{n}$

Mediana: É o valor que está no centro do conjunto ordenado, assim tem a mesma quantidade de valores acima e abaixo de si.

Moda: O valor com a maior frequência no conjunto de dados.

Ponto Médio: O valor que está no centro da amplitude.

Pm = (Xmáx + Xmin)/2

Um instrutor registra a média de faltas de seus alunos em determinado semestre. Em uma amostra aleatória, os dados são:

Calcule a média, a mediana, a moda e o ponto médio.

Média:
$$\bar{x} = \frac{\sum x}{n}$$
 $\sum x = 63$ $n = 9$ $\bar{x} = \frac{63}{9} = 7$

Mediana: Ordene os dados.

O valor que fica no meio é 3 faltas, logo a mediana é 3.

Moda: A moda é 2 faltas, pois esse é o valor que ocorre mais vezes.

Ponto Médio:
$$Pm = (0+40)/2 = 20 \text{ faltas}$$

Suponha que o aluno com 40 faltas abandone o curso. Calcule a média, a mediana e a moda dos valores restantes. Compare o efeito da mudança para cada tipo de média.

2 4 2 0 2 4 3 6

Calcule a média, a mediana e a moda.

Média:
$$\bar{x} = \frac{\sum x}{n}$$
 $\sum x = 23$ $n = 8$ $\bar{x} = \frac{23}{8} = 2,875$

Mediana: Coloque os dados em ordem.

0 2 2 2 3 4 4 6

Os valores que ficaram no meio são 2 e 3, logo a mediana é 2,5.

Moda: A moda é 2, pois esse é o valor que ocorre mais vezes.

Ponto Médio: Pm = (0+6)/2 = 3 faltas

Medidas de Variabilidade

Para aprender a calcular medidas de variação que usem todo e qualquer valor do conjunto de dados, primeiro você precisa saber o que é um desvio.

O **desvio** de cada valor *x* é a diferença entre o valor de *x* e a média do conjunto de dados.

Em uma **amostra**, o desvio de cada valor x é: $x - \overline{x}$

Faltas Desvio

$$0 \qquad -7 \quad \longleftarrow \quad 0-7$$

$$-4$$

$$A = 3 \qquad X - \overline{X}$$

$$-1$$

Desvio Padrão

Desvio Padrão: Uma "quase média" dos desvios.

$\boldsymbol{\mathcal{X}}$	$x - \bar{x}$	$(\dot{x}-\bar{x})^2$	
0	-7	49	$S = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$
2	-5	25	$S = \sqrt{\frac{n-1}{n-1}}$
2	-5	25	1249
2	-5	25	$S = \sqrt{\frac{1248}{8}} = \sqrt{156} = 12,49$
3	-4	16	1248
4	-3	9	1240 t
4	-3	9	
6	– 1	1	। ——— Soma dos quadrados
40	33	1089	——— Soma dos quadrados

Desvio Padrão - Forma Abreviada

\mathcal{X}	x^2	
0	0	
2	4	$\sum x = 63$
2	4	$\sum x^2 = 1689$
2	4	$S = \sqrt{\frac{9(1689) - (63)^2}{9(9-1)}} = \sqrt{156} = 12,49$
3	9	$\sqrt{9(9-1)}$
4	16	
4	16	
6	36	
40	1600	

Coeficiente de Variação

$$CV = \frac{s}{\bar{x}} \cdot 100\%$$

- Coeficiente de variação é a medida de desvio em termos percentuais da media.
- ►Se Cv ≤ 20% o conjunto é dito homogêneo;
- ►Se Cv > 20% o conjunto é dito heterogêneo;

$$CV = \frac{12,49}{7} \cdot 100\% = 178,43\%$$

Escore Padronizado

►É a quantidade em desvio padrão que uma observação está afastada da média.

$$e = \frac{x - \bar{x}}{S}$$

$$e(\text{máximo}) = \frac{40-7}{12,49} = 2,64 \text{ desvios}$$

Dois conjuntos de dados

O tempo de espera em duas filas foi registrado em dez sextas-feiras consecutivas. Calcule a média, a mediana e a moda, Pm S e CV do tempo de cada fila.

T:La A	36	13	File D
Fila A	36	22	Fila B
	37	28	
Média =	38	32	Média =
Mediana =	41	37	Mediana =
Moda =	43	47	Moda =
Pm =	43	47	Pm =
S =	47	57	S =
CV =	47	62	CV =
	47	70	