Zadania z Analizy Matematycznej I.1 - seria IV

Zadanie 1. Policzyć granice poniższych ciągów:

- $\sqrt[n]{18^n + 7^n + 19^n}$
- $\sqrt[n]{n^7+13n^6+9n^5+8n^4+3n^3+1}$
- $\sqrt[n]{3^n 2^n}$

Zadanie 2. Niech $(a_n)_{n\geqslant 0}$ będzie ciągiem liczb rzeczywistych zbieżnym do 1 i $a_n\neq 1$ dla $n\geqslant 1$. Znajdź granicę

$$\lim_{n \to \infty} \frac{a_n + a_n^2 + \ldots + a_n^{2013} - 2013}{a_n - 1}.$$

Zadanie 3. Zbadać monotoniczność ciągu o wyrazach

- 1. $a_n = \frac{n!}{(2n+1)!!}, n \geqslant 1$
- 2. $b_n = \frac{(2n)!!}{(2n+1)!!}, n \geqslant 1.$

i obliczyć jego granicę (jeśli istnieje).

Zadanie 4. 1. Pokazać, że nie istnieje granica

$$\lim_{n\to\infty}\sin n$$

2. Czy istnieje taka α - dowolna liczba wymierna, że istnieje granica

$$\lim_{n\to\infty}\sin(n!\alpha\pi)?$$

3. Czy istnieje taka α - dowolna liczba wymierna, że istnieje granica

$$\lim_{n\to\infty}\sin(n\alpha\pi)?$$

Zadanie 5. Ciągi $\{a_n\}$ i $\{b_n\}$ określamy w następujący sposób:

$$\begin{cases} a_1 = a \\ a_{n+1} = \frac{a_n + b_n}{2} \\ \text{Pokazać, } \text{że } \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n. \end{cases}$$