412: Predicting Bankruptcy

By: David Contento, John Macke, Pujan Thakrar, and Mark Vandre

Objective and Data

- 10503 observation dataset, consists of
 64 balance sheet variables
- Data is from 2010
- Indicator variable signifying bankruptcy
- Classification problem
- Wanted to fit different models and compare accuracy
- Unbalanced dataset

SMOTE: Synthetic Minority Oversampling Technique

- Only 5% of observations resulted in bankruptcy
- Reduces model prediction performance
- Generate synthetic samples (KNN)
- Undersample overrepresented class and remove excess
- rebalance

Multicollinearity in Our Dataset

- Some variables are combinations of others.
- Extreme amount of collinearity
- Looked at VIF
- Ended up with 38 variables out of 64

Logistic Regression

Ridge Regression

LASSO

Single Decision Tree vs. Pruned Decision Tree

Cp = 0

Minsplit = 200

nsplit = 31

Cp = 0.001

Minsplit = 200

nsplit = 23

Figure 10: Default Classification Tree

Figure 13: Pruned Tree

Accuracy: 77%

Precision: 69%

Recall = 58%

Accuracy: 77%

Precision: 69%

Recall = 60%

Best Pruned Decision Tree

Figure 12: Complexity Parameters Associated with Tree Errors

```
CP nsplit rel error xerror
                                            xstd
  0.05242718
                       1.00000 1.00000 0.018076
   0.03446602
                       0.89515 0.90534 0.017590
   0.03179612
                       0.86068 0.87087 0.017390
  0.02184466
                       0.79709 0.82233 0.017085
  0.01359223
                       0.77524 0.81117 0.017011
   0.01286408
                       0.74806 0.78155 0.016807
   0.01262136
                       0.72233 0.77718 0.016776
                  10
                       0.70971 0.76602 0.016696
  0.00825243
  0.00752427
                       0.70146 0.76311 0.016674
10 0.00728155
                       0.68641 0.76068 0.016657
11 0.00631068
                       0.67913 0.75825 0.016639
12 0.00606796
                       0.67282 0.75631 0.016625
13 0.00485437
                  18
                       0.66068 0.75631 0.016625
14 0.00303398
                       0.65583 0.75340 0.016603
                       0.64369 0.74757 0.016560
15 0.00097087
16 0.00072816
                       0.64272 0.75922 0.016646
17 0.00001000
                       0.63835 0.76068 0.016657
```

Figure 15: Best Pruned Tree

Xerror = $0.76413 (0.74757 + 0.016560) \rightarrow Cp = 0.0075$

Accuracy: 76% Precision : 68% Recall = 58%

Random Forest

Results

Model	Accuracy(%)	Precision(%)	Recall(%)
Logistic Regression	71	58	50
Ridge Regression	70	69	28
Lasso Regression	69	62	19
Decision Tree	77	69	58
Pruned Tree	77	69	60
Best Pruned Tree	76	68	58
Random Forest	92	91	82

Results

Worst Predictive Model

Lasso

Model	Accuracy(%)	Precision(%)	Recall(%)
Logistic Regression	71	58	50
Ridge Regression	70	69	28
Lasso Regression	69	62	19
Decision Tree	77	69	58
Pruned Tree	77	69	60
Best Pruned Tree	76	68	58
Random Forest	92	91	82

Results

Best Predictive Model

Random Forest

Model	Accuracy(%)	Precision(%)	Recall(%)
Logistic Regression	71	58	50
Ridge Regression	70	69	28
Lasso Regression	69	62	19
Decision Tree	77	69	58
Pruned Tree	77	69	60
Best Pruned Tree	76	68	58
Random Forest	92	91	82

Future Work

Additional Machine Learning Algorithms

- Support Vector Machine (SVM)
- Neural Network
- Boosted Trees/XG Boost

Different Settings

- United States
- Western Europe
- China & India