Hardware Optimized OCI Images via MetaHub Registry Proxy

High Performance Container Workshop - ISC19

Image Lifecycle

Image Lifecycle needs Composability and Workflow

- Multiple phases in ML livecycle
- Modular Assembly of Software Stacks
- With drivers and growing set of hardware and software, curating these stacks is hard.

Image Lifecycle needs Composability and Workflow

• Multiple phases in ML livecycle

Modular Assembly of Software Stacks

source: https://thenewstack.io/an-introduction-to-the-machine-learning-platform-as-a-service/

Image Lifecycle needs Composability and Workflow

Hardware Optimization & Matching

Host-Agnostic vs. Host-Specific

Containers use Kernel-level isolation; being portable among many different systems as a result.

But the portability only guarantees executing, not performance.

Optimization for CPU architectures are only possible if they do not limit the execution. avx512 is not necessarily available everywhere.

Platform Definition within OCI

The platform object within the "OCI Image Spec" differentiate the architecture by using \$GOARCH.

But a container runtime can not pick a container tailored to a microarchitectures.

\$G00S	\$GOARCH	
linux	386	
linux	amd64	
linux	arm	
linux	arm64	
linux	ppc64	
linux	ppc64le	
linuv	mins	

o platform object

This OPTIONAL property describes the minimum runtime requirements of the image. This property SHOULD be present if its target is platform-specific.

architecture string

This REQUIRED property specifies the CPU architecture. Image indexes SHOULD use, and implementations SHOULD understand, values listed in the Go Language document for GOARCH.

os string

This REQUIRED property specifies the operating system. Image indexes SHOULD use, and implementations SHOULD understand, values listed in the Go Language document for GOOS.

https://qithub.com/opencontainers/image-spec/blob/master/image-index.md

Platform Definition within OCI

The platform object within the "OCI Image Spec" differentiate the architecture by using \$GOARCH.

\$G00S	\$GOARCH	
linux	386	
linux	amd64	
linux	arm	
linux	arm64	
linux	ppc64	
linux	ppc64le	
linuv	mine	

But a container runtime can not pick a container tailored to a

microarchitectures.

o platform object

This OPTIONAL property describes the minimum runtime requirements of the image. This property SHOULD be present if its target is platform-specific.

architecture string

This REQUIRED property specifies the CPU architecture. Image indexes SHOULD use, and implementations SHOULD understand, values listed in the Go Language document for GOARCH.

os string

This REQUIRED property specifies the operating system. Image indexes SHOULD use, and implementations SHOULD understand, values listed in the Go Language document for GOOS .

Year ▼	Micro-architecture +	Pipeline stages +	max. Clock	Tech process
2018	Cannon Lake	14 (16 with fetch/retire)	3200 MHz	10 nm
2018	Whiskey Lake	14 (16 with fetch/retire)	4600 MHz	14 nm
2018	Amber Lake	14 (16 with fetch/retire)	4200 MHz	14 nm
2017	Coffee Lake	14 (16 with fetch/retire)	5000 MHz	14 nm
2017	Goldmont Plus	? 20 unified with branch prediction ?	2800 MHz	14 nm
2016	Goldmont	20 unified with branch prediction	2600 MHz	14 nm
2016	Kaby Lake	14 (16 with fetch/retire)	4500 MHz	14 nm
2015	Airmont	14-17 (16-19 with fetch/retire)	2640 MHz	14 nm
2015	Skylake	14 (16 with fetch/retire)	4200 MHz	14 nm
2014	Broadwell	14 (16 with fetch/retire)	3700 MHz	14 nm

https://qithub.com/opencontainers/image-spec/blob/master/image-index.md

Current State of Affairs

For the container to be portable, it needs to fall back to the lowest common denominator of the target systems.

Worst case: amd64 (x86_64).

Some try to mitigate the problem by using an entrypoint, which chooses the appropriate binary at runtime.

But the image still needs to be changed every time a new hardware configuration is added. bench amd64

Current State of Affairs [cont]

Images optimized for different CPU μ-arch are picked by name.

As described in the previous slides.


```
$ docker run -ti --rm qnib/bench:cpu-broadwell
>> This container is optimized for: cpu:broadwell

$ docker run -ti --rm qnib/bench:cpu-skylake
>> This container is optimized for: cpu:skylake

$ docker run -ti --rm qnib/bench:generic
>> This container is not optimized for a specific microarchitecture

$ docker run -ti --rm qnib/bench:cpu_broadwell-nvcap_52
>> This container is optimized for: cpu:broadwell,nvcap:5.2
```

Thank you!