PH-1020

Problem Set - 4

Department of Physics, IIT Madras

Magnetostatics

March-June 2023 Semester

Notation:

- Notation throughout follows that of Griffiths, Electrodynamics.
- Bold face characters, such as \boldsymbol{v} , represent three-vectors.
- 1. Suppose that a hollow cylinder of length L and radius R has uniform surface current $K_0\hat{e}_{\phi}$. Calculate the axial magnetization. Discuss your results when L tends to infinity. Compare your results to that of a very long solenoid, consisting of n closely wound turns per unit length on a cylinder of radius R and carrying a steady current I.
- 2. A large parallel plate capacitor, aligned along the xy-plane, has uniform surface charge densities σ and $-\sigma$ on the upper and lower plates respectively. The capacitor is moving with a constant velocity $V_0\hat{e}_x$.
 - (a) Find the magnetic field everywhere.
 - (b) Find the magnetic force per unit area both on the upper and lower plates.
 - (c) For what value of V_0 , magnetic force balances the electric force.
- 3. A long cylindrical conductor with radius R has a cylindrical cavity of radius b (b < R). The axes of the conductor and cavity are parallel and are separated by distance d. The conductor carries a uniform current density J parallel to its axis. Show that the magnetic field in the cavity is constant.
- 4. Find the vector potential above and below the current sheet, lies in the xy-plane, with uniform current density $\mathbf{K} = K\mathbf{x}$ (See example 5.8 of Griffith 3^{rd} edition). Also, verify the magnetostatic boundary condition for the vector potential.
- 5. A circular loop of wire, with radius R, lies in the xy-plane, centered at the origin, and carries a current I running counterclockwise as viewed from the positive z-axis. Calculate the magnetic field of this loop assuming it to be a dipole.

Suggested Question

- 6. Just as $\nabla \cdot \mathbf{B} = 0$ allows us to express \mathbf{B} as the curl of a vector potential ($\mathbf{B} = \nabla \times \mathbf{A}$), so $\nabla \cdot \mathbf{A} = 0$ permits us to write \mathbf{A} itself as the curl of a "higher" potential: $\mathbf{A} = \nabla \times \mathbf{W}$. (And this hierarchy can be extended ad infinitum.)
 - (a) Find the general formula for W (as an integral over B), which holds when $B \to 0$ at ∞ .
 - (b) Determine W for the case of a uniform magnetic field B.
 - (c) Find \boldsymbol{W} inside and outside an infinite solenoid.