Note Title 9/11/2007

Modeling Homework

Derive the differential equation model for the given physical situation. If you like, you are welcome to try to solve it, but you need not do so.

1. A bath tub is being filled using a cold water stream (Fc, Tc) and a hot water stream (Fh, Th). Fi is the mass flowrate of stream i and Ti is the temperature of stream i, both assumed to be constant. Assuming density ρ is constant, heat capacity, Cp is constant, and enthalpy (H) is conserved, develop a model for the volume of water in the tub as a function of time and the temperature in the tub as a function of time.

PFn YpTn + pFc4pTc = d (Vp4pT) Fit T + F T - d (V)

Frith the Tete d (VT) sys

(FnTn+FcTc)t = T(t)

(LZ) t = T (LZ) t + LZ

	e e e e e e e e e e e e e e e e e e e
	at a constant temperature of To. The heat capacity and density of the iron are assumed to be constant. Derive a model of the temperature of the iron block as a function of time.
	(Note: for those unfamiliar with heat transfer, $Qout = hA(T-To)$, where h is the Newton's
	law heat transfer coefficient {assumed constant} and A is the surface area of the block.)
	Qont 10
	1 T TOWA
	$O \cdot I \wedge I = I$
	Qout=hA(T-To)
	Energy balance Hsys = pVCpT
	is out = acc Itsys = pVCpT
	O-14- 0 (1-015)
	Qout = dt (Hsys)
	$-hA(T-G)=Q(\alpha V(\alpha T))$
	-hA(T-To)=d(pVCpT)
	$\left(-bA\right)$
	$\int \frac{-hA}{PVCP} dt = \int \frac{d(T)}{(T-T_0)}$
	PVCP
	1 1 1 1 10
	$(T-T_0)$
	$\frac{-hAt}{PVCp} = ln \frac{(T-T_0)}{(T_0)-T_0}$
	\overline{OVC} $\overline{(T(0)-T_0)}$
	- L N + (100) . 9
	$\left(\frac{1}{2}\right)^{2}$
	T= (Tco)-To) e PVCP + To
	Dimensiand check h(=), = T-t
	hAt co (F) (K)(K)
	hAt [=] (x-x-K)(C)(K)
	$PVCP = (M/3)(\frac{X}{M})$
J	(M_{13})

2. A cubic block of iron is being heated at a constant rate, Qin.. At the same time, the block is losing heat to the environment at a rate Qout. The environment is assumed to be

$$(\lambda - (a))e^{-\beta t} = \lambda - C$$

$$C(t) = \lambda - (\lambda - C(0))e^{-\beta t}$$

$$= \frac{Cin Fv}{(Fv + kc)} - \frac{(Fv + kc)}{(Fv + kc)} e^{-\beta t}$$

$$D_i mensimal duk$$

$$\frac{m_i}{2} \frac{k^2 L^3}{k^2 L^3} = \frac{m}{L^3}$$

$$\frac{m_i}{2} \frac{k^2 L^3}{k^2 L^3} = \frac{m}{L^3}$$