fo/u fopkjr Hkh# tu] ugha vkjEHks dke] foifr n\{k NkWs rijer e/; e eu dj '; keA i\fundami'k flg ledYi dj] lgrs foifr vusd] ^cuk^ u NkWs /; \$ dk\fundami j?kqj jk[ks VsdAA jfpr%ekuo /keZ izksk Inx\fundami Jh j.KVKWaki th egkjkt

STUDY PACKAGE

Subject: Mathematics Topic: DIFFRENTIATION

Available Online: www.MathsBySuhag.com

<u>Index</u>

- 1. Theory
- 2. Short Revision
- 3. Exercise (Ex. 1 + 5 = 6)
- 4. Assertion & Reason
- 5. Que. from Compt. Exams
- 6. 38 Yrs. Que. from IIT-JEE(Advanced)
- 7. 14 Yrs. Que. from AIEEE (JEE Main)

Student's Name	:
Class	:
Roll No.	:

Address: Plot No. 27, III- Floor, Near Patidar Studio, Above Bond Classes, Zone-2, M.P. NAGAR, Bhopal : (0755) 32 00 000, 98930 58881, WhatsApp 9009 260 559 www.TekoClasses.com www.MathsBySuhag.com

Differentiation

Α.

First Principle Of Differentiation The derivative of a given function f at a point x=a on its domain is defined as: 1.

 $\underset{h\to 0}{\text{Limit}}\ \frac{f(a+h)-f(a)}{h}\ ,\ \text{provided the limit exists \& is denoted by }\ f'(a).$

i.e. $f'(a) = \underset{x \to a}{\text{Limit}} \frac{f(x) - f(a)}{x - a}$, provided the limit exists.

If x and x + h belong to the domain of a function f defined by y = f(x), then 2

 $\underset{h\to 0}{\text{Limit}} \frac{f(x+h)-f(x)}{h} \text{ if it exists, is called the Derivative of f at x \& is denoted by f } (x) \text{ or } \frac{dy}{dx} \text{ . i.e., f } (x) = \underset{h\to 0}{\text{Limit}}$

This method of differentiation is also called ab-initio method or first principle.

(i)
$$f(x) = x^2$$
 (ii) $f(x) = \tan x$ (iii) $f(x) = \tan x$

This method of differentiation is also called ab-initio method or **Solved Example # 1** Find derivative of following functions by first principle (i)
$$f(x) = x^2$$
 (ii) $f(x) = \tan x$ (iii) $f(x) = e^{\sin x}$
Solution (i) $f'(x) = \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} = \lim_{h \to 0} \frac{2xh + h^2}{h} = 2x$.

(ii)
$$f'(x) = \lim_{h \to 0} \frac{\tan(x+h) - \tan x}{h}$$
$$= \lim_{h \to 0} \frac{\tan(x+h-x)[1 + \tan x \tan(x+h)]}{h} = \lim_{h \to 0} \frac{\tan h}{h} \cdot (1 + \tan^2 x) = \sec^2 x.$$

$$(iii) \quad f(x) = h \to 0 \qquad h$$

$$= \lim_{h \to 0} \frac{\tan(x+h-x)[1+\tan x\tan(x+h)]}{h} \qquad = \lim_{h \to 0} \frac{\tan h}{h} . (1 + 1)$$

$$= \lim_{h \to 0} \frac{e^{\sin(x+h)} - e^{\sin x}}{h}$$

$$= \lim_{h \to 0} e^{\sin x} \frac{\left[e^{\sin(x+h) - \sin x} - 1\right]}{\sin(x+h) - \sin x} \left(\frac{\sin(x+h) - \sin x}{h}\right)$$

$$= e^{\sin x} \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h} \qquad = e^{\sin x} \cos x$$
Differentiation of some elementary functions
$$f(x)$$

3.

nx^{n - 1} 1. \mathbf{x}^{n} $(x \in R, n \in R)$

2. ax a^x ℓn a

3. $\ell n |x|$ х

1 4. logax x ℓn a

5. sin x cos x

6. cos x - sin x

7. sec x sec x tan x

8. cosec x - cosec x cot x

9. tan x sec2 x

10. cot x - cosec x

4. **Basic Theorems**

> $\frac{d}{dx} (f \pm g) = f'(x) \pm g'(x)$ 1.

 $\frac{d}{dx}(k f(x)) = k \frac{d}{dx} f(x)$ 2.

 $\frac{d}{dx} (f(x) \cdot g(x)) = f(x) g'(x) + g(x) f'(x)$ 3.

 $\frac{d}{dx} \left(\frac{f(x)}{g(x)} \right) = \frac{g(x) f'(x) - f(x) g'(x)}{g^2(x)}$ 4.

 $\frac{d}{dx}$ (f(g(x))) = f'(g(x)) g'(x) 5.

This rule is also called the chain rule of differentiation and can be written as

Note that an important inference obtained from the chain rule is that

 $\frac{dy}{dy} = 1 = \frac{dy}{dx} \cdot \frac{dx}{dy}$

$$\Rightarrow \qquad \frac{dy}{dx} = \frac{1}{dx/dy}$$

$$\frac{dx}{dy} = g'(y)$$

$$\Rightarrow$$
 g'

$$f(x) = \sqrt{\sin(2x + 3)}$$

(iii)
$$f(x) = \frac{x}{1+x}$$

(iv)

page 18

(i)
$$f(x) = e^{\sin x}$$

$$f'(x) = e^{\sin x} \frac{d}{dx} (\sin x)$$

(ii)
$$f(x) = \sqrt{\sin(2x)}$$

$$=\frac{1}{2\sqrt{\sin{(2x+3)}}}\cdot\frac{d}{dx}(\sin{(2x+3)})$$

$$= \frac{\cos(2x+3)}{\sqrt{\sin(2x+3)}}$$

(iii)
$$f(x) = \frac{x}{1+x^2}$$

$$f'(x) = \frac{(1+x^2)-x(2x)}{(1+x^2)^2}$$

$$= \frac{1 - x^2}{(1 + x^2)^2}$$

$$\lim_{t \to 0} \frac{f(5+t) - f(5-t)}{2t}$$

7. Ans.

(i)
$$(1 + 3x^2)(2x^3 - 1)$$

(ii)
$$\frac{(x-1)}{(x-2)(x-3)}$$

(iii)
$$\sqrt{1+x^2}$$

$$(iv) \qquad \sqrt{\frac{1+x}{1-x}}$$

(v)
$$\cos^3 x \sin x$$

(vii)
$$\frac{\sin x}{1 + \cos x}$$

(viii)
$$\ell n (\sin x - \cos x)$$

Ans. (i)
$$6x (5x^3 + x^3)$$

(ii)
$$\frac{-x^2+2x+1}{(x-2)^2(x-3)^2}$$

(iii)
$$\frac{x}{\sqrt{1+x^2}}$$
 (iv) $\frac{1}{(1+x)^{1/2}(1-x)^{3/2}}$

$$\cos^4 x - 3 \cos^2 x \sin^2 x$$

(vi)
$$e^x$$
 (($\sin x + \cos x$) $x + \sin x$) (vii)

$$\frac{1}{2} \sec^2 \frac{x}{2}$$

(viii)
$$\frac{\cos x + \sin x}{\sin x - \cos x}$$

Of Inverse Trigonometric Functions

$$-\frac{\pi}{2} \le y \le \frac{\pi}{2} \implies$$

$$x = \sin$$

$$\frac{dx}{dy} = \cos y$$

$$\frac{dy}{dx} = \frac{1}{\cos y} = \frac{1}{\sqrt{1 - \sin^2 y}}$$

$$\frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}} - 1 < x < 1.$$

General content was processed and the same concept is by virged processing other. $\frac{dy}{dx} = f'(x) \quad \text{and} \quad \frac{dx}{dy} = g'(y) \quad \Rightarrow \quad g'(y) = \frac{1}{f}$ $\frac{dy}{dx} = f'(x) \quad \text{and} \quad \frac{dx}{dy} = g'(y) \quad \Rightarrow \quad g'(y) = \frac{1}{f}$ $\frac{dy}{dx} = f'(x) \quad \text{and} \quad \frac{dx}{dy} = g'(y) \quad \Rightarrow \quad g'(y) = \frac{1}{f}$ $\frac{dy}{dx} = f'(x) \quad \text{and} \quad \frac{dx}{dy} = g'(y) \quad \Rightarrow \quad g'(y) = \frac{1}{f}$ $\frac{dy}{dx} = f'(x) \quad \text{and} \quad \frac{dx}{dy} = g'(y) \quad \Rightarrow \quad g'(y) = \frac{1}{f}$ $\frac{dy}{dx} = f'(x) \quad \text{and} \quad \frac{dx}{dy} = g'(y) \quad \Rightarrow \quad g'(y) = \frac{1}{f}$ $\frac{dy}{dx} = f'(x) \quad \text{and} \quad \frac{dx}{dy} = g'(y) \quad \Rightarrow \quad g'(y) = \frac{1}{f}$ $\frac{dy}{dx} = f'(x) \quad \text{and} \quad \frac{dx}{dy} = g'(y) \quad \Rightarrow \quad g'(y) = \frac{1}{f}$ $\frac{dy}{dx} = f'(x) \quad \text{and} \quad \frac{dx}{dx} \quad \text{sin} \quad x$ $\frac{dx}{dx} = f'(x) \quad \text{and} \quad \frac{dx}{dx} \quad \text{sin} \quad x$ $\frac{dx}{dx} = g'(x) \quad \text{div} \quad \text{iiii} \quad f(x) = \frac{1}{f}$ $\frac{dx}{dx} = g'(x) \quad \text{div} \quad \text{div}$ reformation of the control of the co Note here that $\cos y \neq \sqrt{1-\sin^2 y}$, rather $\cos y = \pm \sqrt{1-\sin^2 y}$ but for values of $y \in \left[-\frac{1}{2}\right]$ positive and hence the result. similarly let us find derivative of other inverse trigonometric functions

$$\frac{dx}{dy} = \sec^2 y = 1 + \tan^2 y$$

$$\frac{dx}{dy} = 1 + x^2$$

$$\frac{dy}{dx} = \frac{1}{1+x^2}$$

$$y = sec^{-1}x$$

$$\Rightarrow \frac{dy}{dx} = \frac{1}{\sqrt{2}}$$

$$\Rightarrow \frac{dy}{dx} = \frac{1}{x.\tan y}$$

$$\Rightarrow \frac{dy}{dx}$$

$$\frac{1}{\sqrt{1-x^2}} \quad ; \qquad |x| < 1$$

$$\frac{-1}{\sqrt{1-x^2}} \quad ; \qquad |x| < 2$$

$$\frac{1}{1+\mathbf{v}^2} \quad ; \qquad \mathbf{x} \in \mathsf{F}$$

$$\frac{-1}{1+x^2} \quad ; \quad X \in F$$

$$\frac{1}{|x|\sqrt{x^2-1}}$$
 ; $|x| > 1$

$$\frac{-1}{1 + \sqrt{2}}$$
; $|x| > 1$

If
$$f(x) = \ell n (\sin^{-1} x^2)$$
 find $f'(x)$

$$= \frac{1}{(\sin^{-1} x^2)} \cdot \frac{1}{\sqrt{1 - (x^2)^2}} \cdot 2x = \frac{2x}{(\sin^{-1} x^2)\sqrt{1 - x^4}}$$
If $f(x) = 2x \sec^{-1} x - \csc^{-1}(x)$ then find $f'(-2)$

$$f'(x) = 2 \sec^{-1}(x) - \frac{2x}{\mid x \mid \sqrt{x^2 - 1}} + \frac{1}{\mid x \mid \sqrt{x^2 - 1}}$$

$$f'(-2) = 2.\sec^{-1}(-2) + \frac{2}{\sqrt{3}} + \frac{1}{2\sqrt{3}}$$

Tesults for the of f(x) sin-1x sin-1x cos-1x tan-1x cot-1x sec-1 x sec-1 x sec-1 x cosec-1x solved Example # 4 cosec-1 x cosec-1x solved Example # 5 solved Example # 5 Solved Example # 6 Solved Example # 6 Solved Example # 7 Solved Example # 7 Solved Example # 8 Solved Example # 9 Solved Exampl

If
$$y = x^x$$
 find $\frac{dy}{dx}$

$$\ell n y = x \ell n x \Rightarrow$$

$$\frac{1}{y} \cdot \frac{dy}{dx} = x \cdot \frac{1}{x} + \ln x \qquad \Rightarrow$$

If
$$y = (\sin x)^{\ln x}$$
, find $\frac{dy}{dx}$

$$\ell$$
n y = ℓ n x . ℓ n (sin x)

$$\frac{dy}{dx} = \frac{1}{x\sqrt{x^2-1}} \frac{1}{\sec y < -1} \Rightarrow \frac{dy}{dx} = \frac{1}{|x|\sqrt{x^2-1}} x < c(-\infty, -1) \cup (1, \infty)$$
 so
$$\frac{dy}{dx} = \frac{1}{|x|\sqrt{x^2-1}} x < c(-\infty, -1) \cup (1, \infty)$$
 so
$$\frac{dy}{dx} = \frac{1}{|x|\sqrt{x^2-1}} x < c(-\infty, -1) \cup (1, \infty)$$
 so
$$\frac{dy}{dx} = \frac{1}{|x|\sqrt{x^2-1}} x < c(-\infty, -1) \cup (1, \infty)$$
 so
$$\frac{dy}{dx} = \frac{1}{|x|\sqrt{x^2-1}} x < c(-\infty, -1) \cup (1, \infty)$$
 so
$$\frac{dy}{dx} = \frac{1}{|x|\sqrt{x^2-1}} x < c(-\infty, -1) \cup (1, \infty)$$
 so
$$\frac{dy}{dx} = \frac{1}{|x|\sqrt{x^2-1}} x < c(-\infty, -1) \cup (1, \infty)$$
 so
$$\frac{dy}{dx} = \frac{1}{|x|\sqrt{x^2-1}} x < c(-\infty, -1) \cup (1, \infty)$$
 so
$$\frac{dy}{dx} = \frac{1}{|x|\sqrt{x^2-1}} x < c(-\infty, -1) \cup (1, \infty)$$
 so
$$\frac{dy}{dx} = \frac{1}{|x|\sqrt{x^2-1}} x < c(-\infty, -1) \cup (1, \infty)$$
 so
$$\frac{dy}{dx} = \frac{1}{|x|\sqrt{x^2-1}} x < c(-\infty, -1) \cup (1, \infty)$$
 so
$$\frac{dy}{dx} = \frac{1}{|x|\sqrt{x^2-1}} x < c(-\infty, -1) \cup (1, \infty)$$
 so
$$\frac{dy}{dx} = \frac{1}{|x|\sqrt{x^2-1}} x < c(-\infty, -1) \cup (1, \infty)$$
 so
$$\frac{dy}{dx} = \frac{1}{|x|\sqrt{x^2-1}} x < c(-\infty, -1) \cup (1, \infty)$$
 so
$$\frac{dy}{dx} = \frac{1}{|x|\sqrt{x^2-1}} x < c(-\infty, -1) \cup (1, \infty)$$
 so
$$\frac{dy}{dx} = \frac{1}{|x|\sqrt{x^2-1}} x < c(-\infty, -1) \cup (1, \infty)$$
 so
$$\frac{dy}{dx} = \frac{1}{|x|\sqrt{x^2-1}} x < c(-\infty, -1) \cup (1, \infty)$$
 so
$$\frac{dy}{dx} = \frac{1}{|x|\sqrt{x^2-1}} x < c(-\infty, -1) \cup (1, \infty)$$
 so
$$\frac{dy}{dx} = \frac{1}{|x|\sqrt{x^2-1}} x < c(-\infty, -1) \cup (1, \infty)$$
 so
$$\frac{dy}{dx} = \frac{1}{|x|\sqrt{x^2-1}} x < c(-\infty, -1) \cup (1, \infty)$$
 so
$$\frac{dy}{dx} = \frac{1}{|x|\sqrt{x^2-1}} x < c(-\infty, -1) \cup (1, \infty)$$
 so
$$\frac{dy}{dx} = \frac{1}{|x|\sqrt{x^2-1}} x < c(-\infty, -1) \cup (1, \infty)$$
 so
$$\frac{dy}{dx} = \frac{1}{|x|\sqrt{x^2-1}} x < c(-\infty, -1) \cup (1, \infty)$$
 so
$$\frac{dy}{dx} = \frac{1}{|x|\sqrt{x^2-1}} x < c(-\infty, -1) \cup (1, \infty)$$
 so
$$\frac{dy}{dx} = \frac{1}{|x|\sqrt{x^2-1}} x < c(-\infty, -1) \cup (1, \infty)$$
 so
$$\frac{dy}{dx} = \frac{1}{|x|\sqrt{x^2-1}} x < c(-\infty, -1) \cup (1, \infty)$$
 so
$$\frac{dy}{dx} = \frac{1}{|x|\sqrt{x^2-1}} x < c(-\infty, -1) \cup (1, \infty)$$
 so
$$\frac{dy}{dx} = \frac{1}{|x|\sqrt{x^2-1}} x < c(-\infty, -1) \cup (1, \infty)$$
 so
$$\frac{dy}{dx} = \frac{1}{|x|\sqrt{x^2-1}} x < c(-\infty, -1) \cup (1, \infty)$$
 so
$$\frac{dy}{dx} = \frac{1}{|x|\sqrt{x^2-1}} x > c(-\infty, -1) \cup (1, \infty)$$
 so
$$\frac{dy}{dx} = \frac{1}{|x|\sqrt{x^2-1}} x > c(-\infty, -1) \cup (1, \infty)$$
 so
$$\frac{dy}{dx} = \frac{1}{|x|\sqrt{x^2-1}} x > c(-\infty, -1) \cup (1, \infty)$$
 so
$$\frac{dy}{dx} = \frac{dy}{dx} = \frac{dy}{dx} = \frac{dy}{dx} = \frac{dy}{dx} = \frac{dy}{dx} = \frac{dy}{$$

If
$$y = \frac{x^{1/2}(1-2x)^{2/3}}{(2-3x)^{3/4}(3-4x)^{4/5}}$$
 find $\frac{dy}{dx}$

$$\ln y = \frac{1}{2} \ln x + \frac{2}{3} \ln (1 - 2x) - \frac{3}{4} \ln (2 - 3x) - \frac{4}{5} \ln (3 - 4x)$$

$$\frac{1}{y} \frac{dy}{dx} = \frac{1}{2x} - \frac{4}{3(1-2x)} + \frac{9}{4(2-3x)} + \frac{16}{5(3-4x)}$$

$$\frac{dy}{dx} = y \left(\frac{1}{2x} - \frac{4}{3(1-2x)} + \frac{9}{4(2-3x)} + \frac{16}{5(3-4x)} \right)$$

If
$$x^3 + y^3 = 3xy$$
 find $\frac{dy}{dx}$

Solution.

$$3x^2 + 3y^2 \frac{dy}{dx} = 3x \frac{dy}{dx} + 3y$$

$$\frac{dy}{dx} = \frac{y - x^2}{v^2 - x}$$

 $3x^2 + 3y^2 \frac{dy}{dx} = 3x \frac{dy}{dx} + 3y \qquad \qquad \frac{dy}{dx} = \frac{y - x^2}{y^2 - x}$ Note that above result holds only for points where $y^2 - x \neq 0$

Solution.

$$\frac{y}{x} + \ln x \frac{dy}{dx} = 1 - \frac{dy}{dx}$$

$$\frac{y}{x} + \ln x \frac{dy}{dx} = 1 - \frac{dy}{dx}$$
 \Rightarrow $\frac{dy}{dx} = \frac{1 - \frac{y}{x}}{1 + \ln x}$ \Rightarrow $\frac{dy}{dx} = \frac{x - y}{x(1 + \ln x)}$

$$u + v = 2$$
 \Rightarrow $\frac{du}{dx} +$

where
$$u = x^y$$

 $\Rightarrow \ell n u = v \ell n$

$$dx + dx = 0$$

$$& v = y^{x}$$

$$& \ln v = x \ln v$$

$$\Rightarrow \qquad \ell n u = y \ell n x$$

$$1 \quad du \quad y$$

$$\ell n \ v' = x \ \ell n \ y$$
1 dv

$$\Rightarrow \qquad \frac{1}{u} \frac{du}{dx} = \frac{y}{x}$$

$$\frac{1}{u} \frac{du}{dx} = \frac{y}{x} + \ln x \frac{dy}{dx} & \frac{1}{v} \frac{dv}{dx} = \ln y + \frac{x}{y} \frac{dy}{dx}$$

$$\Rightarrow \frac{du}{dx} = x^y \left(\frac{y}{x} + \ln x \frac{dy}{dx} \right) & \frac{dv}{dx} = y^x \left(\ln y + \frac{x}{y} \frac{dy}{dx} \right)$$

$$\frac{dv}{dx} = y^x \left(\ell n \ y + \frac{x}{y} \frac{dy}{dx} \right)$$

$$\Rightarrow$$
 x^{y}

$$x^{y}\left(\frac{y}{x} + \ln x \frac{dy}{dx}\right) + y^{x}\left(\ln y + \frac{x}{y} \frac{dy}{dx}\right) = 0. \qquad \Rightarrow \qquad \frac{dy}{dx} = -\frac{\left(y^{x} \ln y + x^{y} \cdot \frac{y}{x}\right)}{\left(x^{y} \ln x + y^{x} \cdot \frac{x}{y}\right)}$$

$$\frac{dy}{dx} = -\frac{\left(y^{x} \ln y + x^{y} \cdot \frac{y}{x}\right)}{\left(x^{y} \ln x + y^{x} \cdot \frac{x}{y}\right)}$$

$$y = sec^{-1}(x^2)$$

(ii)
$$y = \tan^{-1} \left(\frac{1+x}{1-x} \right)$$

(iii)
$$y = \left(1 + \frac{1}{x}\right)^x$$

(iv)
$$y = e^{x^2}$$

(v)
$$y = (\ln x)^x + (x)^{\sin x}$$

(i)
$$dx$$
 $y = cos(x + y)$

(ii)
$$x^{2/3} + y^{2/3} = a^{2/3}$$

(iii)
$$x = y \ln (x - y)$$

Solved Example # 10 If
$$x^y = e^{x-y}$$
, then find Solution.

Taking log on both sides $y \ln x = (x-y)$ differentiating w.r.t x, we get

$$\frac{y}{x} + \ln x \frac{dy}{dx} = 1 - \frac{dy}{dx}$$

$$\frac{y}{dx} + \frac{dy}{dx} + \frac{dy}{dx} = 1 - \frac{dy}{dx}$$

$$\frac{y}{dx} + \frac{dy}{dx} + \frac{dy}{dx} = 1 - \frac{dy}{dx}$$

$$\frac{y}{dx} + \frac{dy}{dx} + \frac{dy}{dx} = 1 - \frac{dy}{dx}$$

$$\frac{y}{dx} + \frac{dy}{dx} + \frac{dy}{dx} = 1 - \frac{dy}{dx}$$

$$\frac{y}{dx} + \frac{dy}{dx} + \frac{dy}{dx} = 1 - \frac{dy}{dx}$$

$$\frac{y}{dx} + \frac{dy}{dx} + \frac{dy}{dx} = 1 - \frac{dy}{dx}$$

$$\frac{y}{dx} + \frac{dy}{dx} + \frac{dy}{dx} = 1 - \frac{dy}{dx}$$

$$\frac{y}{dx} + \frac{dy}{dx} + \frac{dy}{dx} = 1 - \frac{dy}{dx}$$

$$\frac{y}{dx} + \frac{dy}{dx} + \frac{dy}{dx} = 1 - \frac{dy}{dx}$$

$$\frac{y}{dx} + \frac{dy}{dx} + \frac{dy}{dx} = 1 - \frac{dy}{dx}$$

$$\frac{y}{dx} + \frac{dy}{dx} + \frac{dy}{dx} + \frac{dy}{dx} = 1 - \frac{dy}{dx}$$

$$\frac{y}{dx} + \frac{dy}{dx} + \frac{dy}{dx} + \frac{dy}{dx} + \frac{dy}{dx} = 1 - \frac{dy}{dx}$$

$$\frac{y}{dx} + \frac{dy}{dx} +$$

1. (i)
$$\frac{2}{x\sqrt{x^4-1}}$$
 (ii) $\frac{1}{1+x^2}$

(iii)
$$\left(1+\frac{1}{x}\right)^x \left[\ell n\left(1+\frac{1}{x}\right)+\frac{1}{1+x}\right]$$

$$(v) \left(\ln (\ln x) + \left(\frac{1}{\ln x} \right) \right) (\ln x)^x + x^{\sin x} \left(\frac{\sin x}{x} + \cos x \ln x \right)$$

(i)
$$\frac{-\sin(x+y)}{1+\sin(x+y)}$$

(ii)
$$-\left(\frac{y}{x}\right)^{1/3}$$

or

(iii)
$$\frac{y(x-y)}{x(x+y)}$$

Following substitutions are normally used to sumplify these expression.

(i)
$$\sqrt{x^2 + a^2}$$

$$\Rightarrow$$
 x = a tan θ

$$\Rightarrow$$
 $x = a s$

(iii)
$$\sqrt{x^2-a^2}$$

$$x = a \sec \theta$$

a cosec
$$\theta$$

$$\sqrt{\frac{x+a}{a-x}}$$

Differentiate y = $tan^{-1} \left(\frac{\sqrt{1 + x^2 - 1}}{x} \right)$

出。 出 公 上_{Solution}.

Let
$$x = \tan \theta$$

$$\Rightarrow \theta = \tan^{-1}x \quad ; \quad \theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

$$y = tan^{-1} \left(\frac{|\sec \theta| - 1}{\tan \theta} \right)$$

$$[|\sec \theta | = \sec \theta \, \forall \, \theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2} \right)]$$

$$\Rightarrow y = \tan^{-1}\left(\frac{1-\cos\theta}{\sin\theta}\right) \Rightarrow y = \tan^{-1}\left(\tan\frac{\theta}{2}\right)$$

$$\Rightarrow y = \frac{\theta}{2} \qquad [\tan^{-1}(\tan x) = x \text{ for } x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)]$$

$$\Rightarrow \qquad y = \frac{1}{2} \tan^{-1} x \qquad \qquad \Rightarrow \qquad \frac{dy}{dx} = \frac{1}{2(1+x)^{-1}}$$

Solved Example # 13 : Find
$$\frac{dy}{dx}$$
 where $y = tan^{-1} \left(\frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}} \right)$

Solution.
$$x = \cos \theta$$

 $\theta = \cos^{-1}(x)$; $\theta \in [0, \pi]$

$$\Rightarrow \qquad y = \tan^{-1} \left(\frac{\sqrt{1 + \cos \theta} - \sqrt{1 - \cos \theta}}{\sqrt{1 + \cos \theta} + \sqrt{1 - \cos \theta}} \right) \qquad \Rightarrow \qquad y = \tan^{-1} \left(\frac{\sqrt{2} \cos \frac{\theta}{2} - \sqrt{2} \sin \frac{\theta}{2}}{\sqrt{2} \cos \frac{\theta}{2} + \sqrt{2} \sin \frac{\theta}{2}} \right)$$

$$\Rightarrow y = \tan^{-1} \left(\frac{1 - \tan \frac{\theta}{2}}{1 + \tan \frac{\theta}{2}} \right) \qquad \Rightarrow \qquad y = \frac{\pi}{4} - \frac{\theta}{2}$$

$$\Rightarrow \qquad y = \frac{\pi}{4} - \frac{1}{2} \cos^{-1}x \qquad \qquad \Rightarrow \qquad \frac{dy}{dx} = \frac{1}{2\sqrt{1 - x^2}}$$

Note that
$$\sqrt{1+\cos\theta} = \left| \sqrt{2}\cos\frac{\theta}{2} \right|$$
 but for $\frac{\theta}{2} \in \left(0, \frac{\pi}{2}\right)$, $\left| \sqrt{2}\cos\frac{\theta}{2} \right| = \sqrt{2}\cos\frac{\theta}{2}$

Also
$$\tan^{-1}(\tan x) = x$$
 for $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

(i)
$$f'(2)$$
 (ii) $f'\left(\frac{1}{2}\right)$ (iii) $f'(1)$

Solution.
$$x = \tan \theta$$

$$\Rightarrow \qquad \theta = \tan^{-1}(x) \qquad ; \qquad -\frac{\pi}{2} < \theta < \frac{\pi}{2} \qquad \Rightarrow \qquad y = \sin^{-1}(\sin 2\theta)$$

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com
$$\Rightarrow y = \tan^{-1}\left(\frac{1-\cos 0}{\sin 0}\right) \Rightarrow y = \tan^{-1}\left(\tan \frac{0}{2}\right)$$

From the packages $\Rightarrow y = \tan^{-1}\left(\tan \frac{1}{2}\right)$
 $\Rightarrow y = \frac{\theta}{2}$ [$\tan^{-4}(\tan x) = x \text{ for } x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$]

 $\Rightarrow y = \frac{\theta}{2}$ [$\tan^{-4}(\tan x) = x \text{ for } x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$]

Solution. $x = \cos \theta$
 $\theta = \cos^{-1}(x)$; $\theta = [0, \pi]$
 $\Rightarrow y = \tan^{-1}\left(\frac{\sqrt{1-\cos \theta} - \sqrt{1-\cos \theta}}{\sqrt{1-\cos \theta} + \sqrt{1-\cos \theta}}\right) \Rightarrow y = \tan^{-1}\left(\frac{\sqrt{2}\cos \frac{\theta}{2} - \sqrt{2}\sin \frac{\theta}{2}}{\sqrt{2}\cos \frac{\theta}{2} + \sqrt{2}\sin \frac{\theta}{2}}\right)$
 $\Rightarrow y = \tan^{-1}\left(\frac{1}{\sqrt{1-\cos \theta} + \sqrt{1-\cos \theta}}\right) \Rightarrow y = \tan^{-1}\left(\frac{\sqrt{2}\cos \frac{\theta}{2} - \sqrt{2}\sin \frac{\theta}{2}}{\sqrt{2\cos \frac{\theta}{2} + \sqrt{2}\sin \frac{\theta}{2}}}\right)$
 $\Rightarrow y = \tan^{-1}\left(\frac{1}{\sqrt{1-\cos \theta} + \sqrt{1-\cos \theta}}\right) \Rightarrow y = \frac{\pi}{4} - \frac{\theta}{2}$
 $\Rightarrow y = \frac{\pi}{4} - \frac{1}{2}\cos^{-1}x \Rightarrow \frac{dy}{dx} = \frac{1}{2\sqrt{1-x^2}}$

Note that $\sqrt{1+\cos \theta} = \left|\sqrt{2}\cos \frac{\theta}{2}\right|$ but for $\frac{\theta}{2} \in \left(0, \frac{\pi}{2}\right)$, $\left|\sqrt{2}\cos \frac{\theta}{2}\right| = \sqrt{2}\cos \frac{\theta}{2}$

Also $\tan^{-1}(\tan x) = x$ for $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Solution. $x = \tan \theta$
 $\theta = 0 = \tan^{-1}(x)$; $-\frac{\pi}{2} < 0 < \frac{\pi}{2} \Rightarrow y = \sin^{-1}(\sin 2\theta)$
 $\theta = 0 = \tan^{-1}(x)$; $-\frac{\pi}{2} < 0 < \frac{\pi}{2} \Rightarrow y = \sin^{-1}(\sin 2\theta)$
 $\theta = 0 = \tan^{-1}(x)$; $-\frac{\pi}{2} < 0 < \frac{\pi}{2} \Rightarrow y = \sin^{-1}(\sin 2\theta)$
 $\theta = 0 = \tan^{-1}(x)$; $-\frac{\pi}{2} < 0 < \frac{\pi}{2} \Rightarrow y = \sin^{-1}(\sin 2\theta)$
 $\theta = 0 = \tan^{-1}(x)$; $-\frac{\pi}{2} < 0 < \frac{\pi}{2} \Rightarrow y = \sin^{-1}(\sin 2\theta)$
 $\theta = 0 = \tan^{-1}(x)$; $-\frac{\pi}{2} < 0 < \frac{\pi}{2} \Rightarrow y = \sin^{-1}(\sin 2\theta)$
 $\theta = 0 = \tan^{-1}(x)$; $-\frac{\pi}{2} < 0 < \frac{\pi}{2} \Rightarrow y = \sin^{-1}(\sin 2\theta)$
 $\theta = 0 = \tan^{-1}(x)$; $-\frac{\pi}{2} < 0 < \frac{\pi}{2} \Rightarrow y = \sin^{-1}(\sin 2\theta)$
 $\theta = 0 = \tan^{-1}(x)$; $-\frac{\pi}{2} < 0 < \frac{\pi}{2} \Rightarrow y = \sin^{-1}(\sin 2\theta)$
 $\theta = 0 = \tan^{-1}(x)$; $-\frac{\pi}{2} < 0 < \frac{\pi}{2} \Rightarrow y = \sin^{-1}(\sin 2\theta)$
 $\theta = 0 = \tan^{-1}(x)$; $-\frac{\pi}{2} < 0 < \frac{\pi}{2} \Rightarrow y = \sin^{-1}(x)$
 $\theta = 0 = \tan^{-1}(x)$; $-\frac{\pi}{2} < 0 < \frac{\pi}{2} \Rightarrow y = \sin^{-1}(x)$
 $\theta = 0 = \tan^{-1}(x)$; $-\frac{\pi}{2} < 0 < \frac{\pi}{2} \Rightarrow y = \sin^{-1}(x)$
 $\theta = 0 = \tan^{-1}(x)$; $-\frac{\pi}{2} < 0 < \frac{\pi}{2} \Rightarrow y = \sin^{-1}(x)$
 $\theta = 0 = \tan^{-1}(x)$; $-\frac{\pi}{2} < 0 < \frac{\pi}{2} \Rightarrow y = \sin^{-1}(x)$
 $\theta = 0 = \tan^{-1}(x)$; $-\frac{\pi}{2} < 0 < \frac{\pi}{2} \Rightarrow y = \sin^{-1}(x)$
 $\theta = 0 = \tan^{-1}(x)$; $-\frac{\pi}{2} <$

Teko Classes, Maths: Suhag R. Kariya (S. R. K. Sir), Bhopa. I Phone: (0755) 32 00 000, 0 98930 58881, WhatsApp Number 9009 260 559.

(i)
$$f'(2) = -\frac{2}{5}$$
 (ii) $f'\left(\frac{1}{2}\right) = \frac{3}{5}$ (iii) $f'(1^+) = -1$ & $f'(1^-) = +$

$$f(x) = \sin^{-1}\left(\frac{2x}{1+x^2}\right)$$

$$f'(x) = \frac{1}{\sqrt{1 - \frac{4x^2}{(1+x^2)^2}}} \cdot \frac{2\{(1+x^2) - 2x^2\}}{(1+x^2)^2}$$

$$= \frac{(1+x^2)}{\sqrt{(1-x^2)^2}} \cdot \frac{2(1-x^2)}{(1+x^2)^2}$$

$$f'(x) = \frac{2}{(1+x^2)} \cdot \frac{(1-x^2)}{|1-x^2|} \qquad \text{thus} \qquad f'(x) = \begin{cases} \frac{2}{1+x^2} & |x| < 1 \\ \frac{-2}{1+x^2} & |x| > 1 \end{cases}$$

Solved Example # 15 If $\sqrt{1-x^2} + \sqrt{1-y^2} = a(x-y)$, then prove that $\frac{dy}{dx} = \sqrt{\frac{1-y^2}{1-x^2}}$.

Solution. Put
$$x = \sin \alpha$$
 $\Rightarrow \alpha = \sin^{-1}(x)$
 $y = \sin \beta$ $\Rightarrow \beta = \sin^{-1}(y)$
 $\Rightarrow \cos \alpha + \cos \beta = a (\sin \alpha - \sin \beta)$

$$\frac{1}{\sqrt{1-x^2}} - \frac{1}{\sqrt{1-y^2}} \frac{dy}{dx} = 0 \quad \Rightarrow \quad \frac{dy}{dx} = \sqrt{\frac{1-y^2}{1-x^2}}$$

$$\frac{-x}{\sqrt{1-x^2}} - \frac{y}{\sqrt{1-y^2}} \frac{dy}{dx} = a \left(1 - \frac{dy}{dx}\right)$$

$$\Rightarrow \frac{dy}{dx} = \frac{\frac{\sqrt{1-x^2 + \sqrt{1-y^2}} + \frac{x}{\sqrt{1-x^2}}}{\frac{\sqrt{1-x^2} + \sqrt{1-y^2}}{x-y} - \frac{y}{\sqrt{1-y^2}}}$$

$$\frac{dy}{dx} = \frac{(1-x^2) + \sqrt{(1-x^2)(1-y^2)} + x^2 - xy}{\sqrt{(1-x^2)(1-y^2)} + (1-y^2) - xy + y^2} \cdot \frac{\sqrt{1-y^2}}{\sqrt{1-x^2}} = \frac{1+\sqrt{(1-x^2)(1-y^2)} - xy}{1+\sqrt{(1-x^2)(1-y^2)} - xy} \cdot \frac{\sqrt{1-y^2}}{\sqrt{1-x^2}} = \frac{1+\sqrt{(1-x^2)(1-y^2)} - xy}{1+\sqrt{(1-x^2)(1-y^2)} - xy}} \cdot \frac{\sqrt{1-y^2}}{\sqrt{1-x^2}} = \frac{1+\sqrt{(1-x^2)(1-y^2)} - xy}{1+\sqrt{(1-x^2)(1-y^2)}} = \frac{1+\sqrt{(1-x^2)(1-y^2)} - xy}{1+\sqrt{(1-x^2)(1-y^2)}} = \frac{1+\sqrt{(1-x^2)(1-y^2)} - xy}{1+\sqrt{(1-x^2)(1-y^2)}} = \frac{1+\sqrt{(1-x^2)(1-y^2)}}{\sqrt{1-x^2}} = \frac{1+\sqrt{(1-x^2)(1-y^2)}} - \frac{xy}{1+\sqrt{(1-x^2)}} = \frac{1+\sqrt{(1-x^2)(1-y^2)}}{\sqrt{1-x^2}} = \frac{1+\sqrt{(1-$$

$$\Rightarrow \frac{dy}{dx} = \sqrt{\frac{1 - y^2}{1 - x^2}}$$
 Hence proved

Parametric Differentiation If $y = f(\theta)$ & $x = g(\theta)$ where θ is a parameter, then $\frac{dy}{dx}$

$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{-3a \sin^2 t \cos t}{3a \cos^2 t \sin t} = -\tan t$$

$$\frac{dy}{dx} = \frac{-a \sin t}{a(1 - \cos t)}$$

$$\frac{dy}{dx}\bigg|_{t=\frac{\pi}{2}}=-1.$$

Let y = f(x); z = g(x) then
$$\frac{dy}{dz} = \frac{dy / dx}{dz / dx} = \frac{f'(x)}{g'(x)}$$

$$\frac{dy}{dz} = \frac{dy/dx}{dz/dx} = \frac{1}{xe^x}$$

(i)
$$x = a (\cos t + t \sin t)$$
 & $y = a (\sin t - t \cos t)$

(ii)
$$x = a \left(\frac{1 - t^2}{1 + t^2} \right)$$
 & $y = b \cdot \left(\frac{2t}{1 + t^2} \right)$

Ans. (i)
$$\tan t$$
 (ii) $\frac{(t^2 - 1)b}{2at}$

If
$$y = \sin^{-1} \left(\frac{x^2}{\sqrt{x^4 + a^4}} \right)$$
 then prove that $\frac{dy}{dx} = \frac{2xa^2}{x^4 + a^4}$

3. If
$$y = \tan^{-1}\left(\frac{2x}{1-x^2}\right)$$
 then prove that $\frac{dy}{dx} = \frac{2}{1+x^2}$ ($|x| \neq 1$)

Derivatives of Higher Order

Let a function y = f(x) be defined on an open interval (a, b). It's derivative, if it exists on (a, b) is a certain function of f'(x) for (dy/dx) or y' 1.8 is called the first derivative of the

Solution.
$$y' = 3x^2 \ln x + x^3 \frac{1}{x}$$

 $y' = 3x^2 \ln x + x^2$

$$y'' = 6x \ln x + 3x^2 \cdot \frac{1}{x} + 2x$$

$$y'' = 6x \ \ell n \ x + 5x$$

 $y''' = 6 \ \ell n \ x + 11$

If
$$y = \left(\frac{1}{x}\right)^x$$
 then find $y''(1)$

$$\ell n \ y = -x \ \ell n \ x$$
 when $x = 1 \Rightarrow y = 1$

$$\Rightarrow \qquad \frac{y'}{y} = - (1 + \ell n x)$$

$$\Rightarrow y' = -y (1 + \ell n x) \qquad \dots ($$

$$y'' = -y'(1 + \ln x) - y$$
. $\frac{1}{x}$ \Rightarrow $y'' = y(1 + \ln x)^2 - \frac{y}{x}$ (using (i)) \Rightarrow $y''(1) = 0$

although
$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt}$$
 but $\frac{d^2y}{dx^2} \neq \frac{d^2y/dt^2}{dx^2/dt^2}$ rather $\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy/dt}{dx/dt}\right)$

Get Solution of These Packages & Learn by Video Tutorials on www.MathsbySuhag.com

4. If
$$u = \sin (m \cos^{-1}x)$$
 and $v = \cos (m \sin^{-1}x)$ then prove that $\frac{du}{dv} = \frac{1}{\sqrt{1-v^2}}$.

B. Derivatives of Higher Order
Let a function $y = (15)$ be defined on an open interval (a, b) . It's derivative, if it exists on (a, b) is a certain function $\frac{du}{dv} = \frac{1}{\sqrt{1-v^2}}$.

B. Derivatives of Higher Order
Let a function $y = (15)$ be defined on an open interval (a, b) . It's derivative, if it exists on (a, b) is a certain function $\frac{du}{dv} = \frac{1}{\sqrt{1-v^2}}$.

B. Derivatives of Higher Order
Let a function $y = (15)$ be defined on an open interval (a, b) . It's derivative is called the second derivative of $\frac{du}{dv} = \frac{du}{dv} = \frac{du}{dv}$

$$\frac{d^2y}{dx^2} = \frac{\left[\frac{dx}{dt} \cdot \frac{d^2y}{dt^2} - \frac{dy}{dt} \cdot \frac{d^2x}{dt^2}\right]}{\left(\frac{dx}{dt}\right)^3}$$

If
$$x = t + 1$$
 and $y = t^2 + t^3$ then find $\frac{d^2y}{dx^2}$

$$\frac{dy}{dt} = 2t + 3t^2 \quad ; \qquad \frac{dx}{dt} = 1$$

$$\Rightarrow \frac{dy}{dx} = 2t + 3t^2 \qquad \Rightarrow \frac{d^2y}{dx^2} = \frac{d}{dt}(2t + 3t^2) \cdot \frac{d^2y}{dx^2}$$

$$\frac{d^2y}{dx^2} = 2 + 6t$$

$$\frac{dy}{dt} = 2 \cos t - 2 \cos 2t \qquad \frac{dx}{dt} = 2 \sin 2t - 2 \sin t$$

$$\frac{dy}{dx} = \frac{\cos t - \cos 2t}{\sin 2t - \sin t} = \frac{2\sin\frac{3t}{2} \cdot \sin\frac{t}{2}}{2\cos\frac{3t}{2} \cdot \sin\frac{t}{2}}$$

$$\Rightarrow \frac{dy}{dx} = \tan \frac{3t}{2} \qquad \Rightarrow \frac{d^2y}{dx^2} = \frac{d}{dx} \left(\tan \frac{3t}{2} \right) \qquad \Rightarrow \frac{d^2y}{dx^2} = \frac{d}{dt} \left(\tan \frac{3t}{2} \right).$$

$$\Rightarrow \qquad \frac{dy}{dz} = \frac{dy/dx}{dz/dx} = \frac{\cos x}{e^x}$$

$$\Rightarrow \qquad \frac{d^2y}{dz^2} = \frac{d}{dz} \left(\frac{\cos x}{e^x} \right)$$

$$\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{\cos x}{e^x} \right). \frac{d}{dx}$$

$$= \frac{-e^x \sin x - \cos x e^x}{(e^x)^2} \cdot -\frac{1}{e^x}$$

$$\frac{d^2y}{dz^2} = -\frac{(\sin x + \cos x)}{e^{2x}}$$

Get Solution of These Packages & Learn by Video Tutorials on www.MathsbySuhag.com $\frac{d^2y}{dx^2} = \frac{3}{2 \cdot \sec^2} \frac{3}{2 \cdot \sec^2} = \frac{d^2y}{dx^2} = \frac{3}{2} \frac{2}{2 \cdot \sec^2} = \frac{3}{2} \frac{d^2y}{dx^2} = \frac{3}$

$$\frac{dy}{dx} = f'(x)$$
 and $\frac{dx}{dy} = g'(y)$

$$\Rightarrow g'(y) = \frac{1}{f'(x)}$$

$$g''(y) = \frac{d}{dy} \left(\frac{1}{f'(x)} \right)$$
$$= \frac{d}{dx} \left(\frac{1}{f'(x)} \right) \cdot \frac{d}{dx}$$

$$=-\frac{f''(x)}{f'(x)^2} \cdot g'(y)$$

$$\Rightarrow \qquad g''(y) = -\frac{f''(x)}{f'(x)^3}$$

$$\frac{d^2x}{dy^2} = -\frac{\frac{d^2y}{dx^2}}{\left(\frac{dy}{dx}\right)^3}.$$

$$y = \sin(\sin x)$$
 then prove that $y'' + (\tan x) y' + y \cos^2 x = 0$

$$\frac{1}{\sec x} y'' + y' \sec x \tan x = -\sin(\sin x) \cos x$$

$$secx y'' + y' sec x tan x = -sin (sin x) cos x$$

$$tanx y' = -y \cdot cos^2 x \Rightarrow y'' + (tanx) y' + y cos^2 x = 0$$

If
$$y = \frac{\ln x}{x}$$
 ther

f y =
$$\frac{\ln x}{x}$$
 then find $\frac{d^2y}{dx^2}$ Ans. $\frac{2\ln x - 3}{x^3}$

$$\cos^2 x \, \frac{d^2 y}{dx^2} - 2y + 2x = 0.$$

If
$$x = a (\cos \theta + \theta \sin \theta)$$
 and $y = a(\sin \theta - \theta \cos \theta)$

If
$$x = a (\cos \theta + \theta \sin \theta)$$
 and $y = a(\sin \theta - \theta \cos \theta)$ then find $\frac{d}{d}$

Ans.
$$\frac{\sec}{a\theta}$$

$$\mathbf{Ans.} \qquad \frac{x \sin x - \cos}{x^2 \cos^3 x}$$

$$\frac{d^2y}{dx^2} + 2 \cdot \frac{dy}{dx} + 2y = 0.$$

If
$$y = (\tan^{-1}x)^2$$
 then prove that $(1 + x^2)^2 \frac{d^2y}{dx^2} + 2x(1 + x^2) \frac{dy}{dx} = 2$

$$\frac{dy}{dx} = \frac{2 \tan^{-1} x}{1 + x^2}$$

$$\Rightarrow (1 + x^2) \frac{dy}{dx} = 2 \tan^{-1}(x)$$

$$(1 + x^2) \frac{d^2y}{dx^2} + 2x \frac{dy}{dx} = \frac{2}{(1 + x^2)^2}$$

$$\Rightarrow$$
 $(1 + x^2) \frac{d^2y}{dx^2} + 2x (1 + x^2) \frac{dy}{dx} = 2$

 $(1 + x^2) \frac{d^2y}{dx^2} + 2x (1 + x^2) \frac{dy}{dx} = 2$ Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com $\begin{vmatrix} f(x) & g(x) & h(x) \end{vmatrix}$

If $F(x) = \begin{vmatrix} I(x) & m(x) & n(x) \\ u(x) & v(x) & w(x) \end{vmatrix}$, where f, g, h, I, m, n, u, v, w are differentiable functions of x then $F'(x) = \begin{pmatrix} \infty & \infty \\ 0 & 0 \end{pmatrix}$

$$= \begin{vmatrix} f'(x) & g'(x) & h'(x) \\ I(x) & m(x) & n(x) \\ u(x) & v(x) & w(x) \end{vmatrix} + \begin{vmatrix} f(x) & g(x) & h(x) \\ I'(x) & m'(x) & n'(x) \\ u(x) & v(x) & w(x) \end{vmatrix} + \begin{vmatrix} f(x) & g(x) & h(x) \\ I'(x) & m'(x) & n'(x) \\ u(x) & v(x) & w'(x) \end{vmatrix}$$

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag f(x) = y(x) = h(x) f(x) = h(x) =

(A)
$$1 + [g(x)]^5$$

(B)
$$\frac{1}{1 + [g(x)]^5}$$

(C)
$$-\frac{1}{1+[g(x)]^5}$$

$$(D) -1$$

(A)
$$\tan x^3$$

(B)
$$-2 \tan \left[\frac{3x+4}{5x+6} \right]^2 \cdot \frac{1}{(5x+6)^2}$$

(C)
$$f\left(\frac{3\tan x^2 + 4}{5\tan x^2 + 6}\right) \tan x^2$$

Teko Classes, Maths: Suhag R. Kariya (S. R. K. Sir), Bhopa. I Phone: (0755) 32 00 000, 0 98930 58881, WhatsApp Number 9009 260 559.

$$(B) \sin^{-1} x$$

(C)
$$\sin^{-1} \sqrt{x}$$

(A)
$$\frac{1+x-x^2}{(1+x^2)^2} \sin\left(\frac{2x-1}{x^2+1}\right)$$

(B)
$$\frac{2\left(1+x-x^2\right)}{\left(1+x^2\right)^2}\sin\left(\frac{1+x^2}{x^2}\right)$$

$$\left(\frac{2x-1}{x^2+1}\right)$$
 (C) $\frac{1-x+x^2}{\left(1+x^2\right)^2}$

$$\frac{-x + x^2}{1 + x^2} \sin \left(\frac{2x - 1}{x^2 + 1} \right)$$
 (D) none

(A)
$$\frac{5}{2^{10}}$$

(B)
$$\frac{1+a^2}{a^{10}}$$

(C)
$$\frac{a^{10}}{1+a^2}$$

(D)
$$\frac{1+a^{10}}{a^2}$$

(A)
$$\frac{y}{x}$$

(B)
$$-\frac{y}{x}$$

(C)
$$-\frac{x}{y}$$

(D)
$$\frac{x}{y}$$

If $y = \sin^{-1} \frac{2x}{1 + x^2}$ then $\frac{dy}{dx}\Big|_{x = -2}$ is: Q.8

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com								
		$(B) \frac{2}{\sqrt{5}}$	•	(D) none	e 18			
E _{Q.9}	The derivative of sec ⁻¹	$\left(\frac{1}{2x^2-1}\right)$ w.r.t. $\sqrt{1-1}$	$\overline{x^2}$ at $x = \frac{1}{2}$ is:		page			
G	(A) 4	(B) 1/4	(C) 1	(D) none	59.			
Q.10	If $y^2 = P(x)$, is a polynomial	omial of degree 3, then	$2\left(\frac{\mathrm{d}}{\mathrm{d}x}\right)\left(y^3 \cdot \frac{\mathrm{d}^2y}{\mathrm{d}x^2}\right) \mathrm{equ}$	(D) none als: (D) a constant f(x) = f(x) + f'(x) + f''(x), then for any real	260 5			
ഗ ഇ	(A) $P'''(x) + P'(x)$ Let $f(x)$ be a quadratic $f(x)$	(B) P''(x). P'''(x) expression which is pos	(C) $P(x) \cdot P'''(x)$ sitive for all real x . If $g(x)$	(D) a constant x = f(x) + f'(x) + f''(x), then for any real	6006 al			
aths	A, Willelf Office is coffeet.	(B) g(x) > 0	(C) g(x) = 0	(D) $g(x) \ge 0$	mber			
∑ Q.12	If $x^p \cdot y^q = (x + y)^{p+q}$	then $\frac{dy}{dx}$ is:			N			
www.MathsBySuhag.com	(A) independent of p b(C) dependent on both	ut dependent on q 1 p & q	(B) dependent on p by (D) independent of p	(D) $g(x) \ge 0$ at independent of q & q both . If erentiable at $x = 0$, passing through the	ıtsApp			
∞ Q.13	Let $f(x) = \begin{bmatrix} g(x) \cdot \cos \frac{1}{x} \\ 0 \end{bmatrix}$	if $x \neq 0$ if $x = 0$ where $g(x)$) is an even function dif	ferentiable at $x = 0$, passing through th	ĕ, Wha			
com	origin. Then $f'(0):(A)$) is equal to 1 (B) is	_	equal to 2 (D) does not exist	881			
တ္တQ.14	If $y = \frac{1}{1 + x^{n-m} + x^{p-m}}$	$+\frac{1}{1+\mathbf{v}^{m-n}+\mathbf{v}^{p-n}}+$	$\frac{1}{1+v^{m-p}+v^{n-p}}$ then $\frac{d}{d}$	$\frac{y}{x}$ at $e^{m^{n^p}}$ is equal to:	0 58			
sse	(A) e ^{mnp}	(B) $e^{mn/p}$	$(C) e^{np/m}$	(D) none	0 98930 58881			
www.TekoClasses.	$\lim_{x \to 0} \frac{\log_{\sin^2 x} \cos x}{\log_{\sin^2 \frac{x}{2}} \cos \frac{x}{2}} \text{ has}$	the value equal to						
Tekc	(A) 1	(B) 2	(C) 4	(D) none of these	a.I Phone : (0755) 32 00 000,			
≥ 0.16	If f is differentiable in (0, 6) & f'(4) = 5 then $\lim_{x \to 2} \frac{f(4) - f(x^2)}{2 - x} = \frac{8}{10}$							
\$ 0.10		(B) $5/4$	(C) 10 $(C) 10$	(D) 20	755)			
iiO 17	Let $l = \underset{x \to 0^+}{\text{Lim}} x^{\text{m}} (l \text{n } x)^{\text{n}}$			(b) 20	0)			
website:	(A) l is independent of r	m and n	(B) l is independent of		one			
ф	(C) l is independent of r $ \cos x \propto x$	and dependent on m	(D) l is dependent on l	both m and n	<u>-</u>			
> ⊂ 0.18	Let $f(x) = \begin{cases} \cos x & x \\ 2\sin x & x^2 \\ \tan x & x \end{cases}$	$\frac{1}{2x}$. Then Limit $\frac{f'(x)}{x}$) =		opa			
lon,	tanx x	1 $x \to 0$ x			, Bh			
e fi	(A) 2	(B) -2	(C) -1	(D) 1	Sir)			
g B C 10	cos x sin	x cos x	π		Ä.			
2 0.19	Let $I(X) = \cos 2X - \sin 2x$	$\frac{2x}{3x} = \frac{2\cos 2x}{3\cos 3x}$ then 1'	$\left(\frac{1}{2}\right) =$		κ. «			
Ъ	(A) 0	(B) - 12	(C) 4	(D) 12	/a (
≥ Q.20	Let $f(x) = \begin{vmatrix} \cos x & x & 1 \\ 2\sin x & x^2 & 2x \\ \tan x & x & 1 \end{vmatrix}$. Then $\frac{\text{Limit}}{x \to 0} \frac{f'(x)}{x} = \frac{1}{x \to 0} \frac{1}{x} = \frac{1}{x \to$							
Download Study Package from 6.70 Download Study Package from 6.72	$D^*f(x) = \underset{h \to 0}{\text{Limit}} \frac{f^2(x + 1)}{f^2(x + 1)}$	$\frac{h)-f^2(x)}{h}$ where $f^2(x)$) means $[f(x)]^2$. If $f(x) =$	x lnx then	lhag R			
<u>80</u>	$D * f(x) _{x=e}$ has the va	alue			Su			
N N	(A) e	(B) 2e	(C) 4e	(D) none	ths			
Q Q.21	If $f(4) = g(4) = 2$; $f'(4) = 2$	4) = 9; $g'(4) = 6$ the	n Limit $\frac{\sqrt{f(x)} - \sqrt{g(x)}}{\sqrt{x} - 2}$	is equal to :	эs, Ма			
FREE	(A) $3\sqrt{2}$	(B) $\frac{3}{\sqrt{2}}$	(C) 0	(D) none	Class			
Q.22	If $f(x)$ is a differentiable	e function of v then L	$imit \frac{f(x+3h) - f(x-2h)}{f(x-2h)}$	<u>th)</u> _	9 Q			
Q.22	(A) $f'(x)$	(B) $5f'(x)$	(C) 0 h	(D) none	ř			

(Get Solution of These Packages & Lear	n bv Video Tutorials	on www.MathsBvSuhag.com
	d^2x	-	6 π
.com	(A) e^{x} (B) $-\frac{e^{x}}{(1+e^{x})^{3}}$	$(C) - \frac{e^x}{\left(1 + e^x\right)^2}$	-1
တ္ Q Q.24	If $x^2y + y^3 = 2$ then the value of $\frac{d^2y}{dx^2}$ at the p	point (1, 1) is:	0 559
3ySul	(A) $-\frac{3}{4}$ (B) $-\frac{3}{8}$	(C) $-\frac{5}{12}$	(D) none 6
S Q.25	If $f(a) = 2$, $f'(a) = 1$, $g(a) = -1$, $g'(a) = 2$	then the value of $\underset{x \to a}{\text{Limit}}$	$\frac{g(x) \cdot f(a) - g(a) \cdot f(x)}{x - a} \text{ is:} \qquad \qquad \overset{\mathfrak{O}}{\triangleright}$
Z0.26	(A) -5 (B) $1/5$	(C) 5 $f(x) = f(x) = g(x)$	(D) none
	h'(x) = $h'(x) = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	f(x), $f(x) = g(x)f(x)2 + [g(x)]^2 and f(x) = 2 f(x) h(1) = 4$	rtsApp I
om & v	If $y = x + e^x$ then $\frac{dy^2}{dy^2}$ is: (A) e^x (B) $-\frac{e^x}{\left(1+e^x\right)^3}$ If $x^2y + y^3 = 2$ then the value of $\frac{d^2y}{dx^2}$ at the part of	(B) a curve passing th (D) a straight line wit	rough the origin h y intercept equal to -2.
ပ် (Q.27	The derivative of the function, $f(x)=\cos^{-1}\sqrt[3]{x}$	$\frac{1}{\sqrt{13}} \left(2\cos x - 3\sin x \right)$	$+\sin^{-1}\sqrt[3]{\frac{1}{\sqrt{13}}}(2\cos x + 3\sin x)$ w.r.t.
lasse	$\sqrt{1+x^2}$ at $x = \frac{3}{4}$ is:		0 9893
SoS	(A) $\frac{3}{2}$ (B) $\frac{5}{2}$	(C) $\frac{10}{3}$	(D) 0
₩Q.28	Let $f(x)$ be a polynomial in x . Then the second (A) $f''(e^x) \cdot e^x + f'(e^x)$ (C) $f''(e^x) e^{2x}$	nd derivative of $f(e^x)$, is (B) $f''(e^x) \cdot e^{2x} + f'$ (D) $f''(e^x) \cdot e^{2x} + f'$	(D) 0 (C) (e x) . e 2x (e x) . e x (E) (D) x (C) : (C)
≶ Q.29	The solution set of $f'(x) > g'(x)$, where $f(x)$	$(x) = \frac{1}{2} (5^{2x+1}) & g(x) =$	$=5^{x}+4x (ln 5) \text{ is } :$
ഗ ∩ 3∩	If $y = \sin^{-1} \frac{1}{2} + \sec^{-1} \frac{1}{2} + \sec^{-1} \frac{1}{2}$	then - is equal to:	(D) x>0
We	(A) $\frac{x}{4}$ (B) $\frac{x^2}{x^4+1}$	(C) 0	(D) 1
Q Q.31	If $y = \frac{x}{a+} \frac{x}{b+} \frac{x}{a+} \frac{x}{b+} \frac{x}{a+} \frac{x}{b+} \dots \infty$ the	$n \frac{dy}{dx} =$	ir), Bhc
age	(A) $\frac{a}{ab+2ay}$ (B) $\frac{b}{ab+2by}$	(C) $\frac{a}{ab + 2by}$	(D) $\frac{b}{ab + 2av}$ $\overset{\circ}{\checkmark}$
2 Q.32	Let $f(x)$ be a polynomial function of second $f'(c)$ are in	degree. If $f(1) = f(-1)$	and a, b, c are in A.P., then $f'(a)$, $f'(b)$ and σ
, Pa	(A) GP. (B) H.P.	(C) A.G.P.	(D) A.P.
Strody Q.33	(A) $\frac{x}{x^4 - 1}$ (B) $\frac{x^2}{x^4 - 1}$ If $y = \frac{x}{a + \frac{x}{b + \frac{x}{a + b + a + \frac{x}{b + a + a$	(where subscripts of y sl	nows the order of derivatiive) is:
oad	(A) independent of x but dependent on m (C) dependent on both m & x	(B) dependent of x b (D) independent of m	ut independent of m
E Q.34	If $x^2 + y^2 = R^2$ (R > 0) then $k = \frac{y''}{\sqrt{y''}}$	= where k in terms of I	R alone is equal to
Do	$\sqrt{\left(1+{y'}^2\right)^2}$, Mat
Щ	$(A) - \frac{1}{R^2} \qquad (B) - \frac{1}{R}$	(C) $\frac{2}{R}$	$(D) - \frac{2}{R^2}$
Q Q.35	If f & g are differentiable functions such that has the value equal to: (A) 2/3 (B) 1	g'(a) = 2 & g(a) = b and $G'(a) = b$	and if $f \circ g$ is an identity function then $f'(b) \circ g$ (D) $1/2$
Q.36	Given $f(x) = -\frac{x^3}{2} + x^2 \sin 1.5 a - x \sin a$. s	(C) 0	(D) 1/2
Q.30	(A) $f(x)$ is not defined at $x = \sin 8$	(B) $f'(\sin 8) > 0$	u : 1// tilon :

(Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com (C) $f'(x)$ is not defined at $x = \sin 8$ (D) $f'(\sin 8) < 0$							
Q.37	A function f, defined	for all positive real number	ers, satisfies the equation	$f(x^2) = x^3$ for every $x > 0$. Then the value ∞				
Ε	of f'(4) = (A) 12	(B) 3	(C) 3/2	(D) cannot be determined				
Q Q.38	Given: $f(x) = 4x^3 - $	$6x^2\cos 2a + 3x\sin 2a . s$	$\sin 6a + \sqrt{\ln \left(2a - a^2\right)}$	then:				
hag.	(A) f(x) is not define(C) f'(x) is not define	ned at x = 1/2	(B) $f'(1/2) < 0$ (D) $f'(1/2) > 0$	0 559				
Q Q.39	If $y = (A + Bx) e^{mx}$	$+(m-1)^{-2} e^{x}$ then $\frac{d^{2}y}{dx^{2}}$	$-2m \frac{dy}{dx} + m^2y$ is equ	ual to :				
www.MathsBySuhag.com Q.41 Q.42	(A) e^x Suppose $f(x) = e^{ax} + equal to$	(B) e^{mx} - e^{bx} , where $a \neq b$, and the	(C) e^{-mx} at $f''(x) - 2f'(x) - 15$	ual to: (D) $e^{(1-m)x}$ $f(x) = 0$ for all x. Then the product ab is a				
∑ Q.41	(Â) 25 Let h (x) be different	(B) 9 iable for all x and let $f(x)$ the value of k is equal to	(C) - 15 = $(kx + e^x) h(x)$ where	(D) - 9 k is some constant. If h (0) = 5, h'(0) = $-Z$				
₹ Q.42	(A) 5 Let $e^{f(x)} = ln x$. If $g($	(B) 4 (x) is the inverse function	(C) 3 n of $f(x)$ then $g'(x)$ equ	$\begin{array}{c} \text{(D) 2.2} \\ \text{pals to :} \\ \text{(D) } e^{(x+\ln x)} \end{array}$				
ર્જ જે	(A) e ^x	(B) $e^x + x$	(C) $e^{(x + e^x)}$	(D) $e^{(x+\ln x)}$				
E _{Q.43}	The equation y^2e^x x = -1 and $y = 3$ is	$y = 9e^{-3} \cdot x^2$ defines y	as a differentiable	(D) 2.2 and to: (D) $e^{(x + \ln x)}$ function of x. The value of $\frac{dy}{dx}$ for $\frac{1}{888}$ (D) 15				
sses	$(A) - \frac{15}{2}$	$(B) - \frac{9}{5}$	(C) 3	(D) 15 00 00 00 00 00 00 00 00 00 00 00 00 00				
$\frac{\mathbf{e}}{\mathbf{O}}$ Q.44	Let $f(x) = (x^x)^x$ and	$g(x) = x^{(x^x)} \text{ then :}$						
<u>o</u> _{0.45}	(A) $f'(1) = 1$ and $g(1) = 1$ and $g(2) = 1$ and $g(3) = 1$	g'(1) = 2 g'(1) = 0 x + x, being differentiabl	(B) f'(1) = 2 and g (D) f'(1) = 1 and g e and one to one, has a	g'(1) = 1 g'(1) = 1 differentiable inverse $f^{-1}(x)$. The value of $g'(x)$				
L.www	Let $e^{a(x)} = ln x$. If $g(x) = ln x$. If $g($	f(/n2) is		55) 32 (
Psite Q:46	If $f(x) = \frac{\log_{\sin x }}{\log_{\sin x }}$	$\frac{\cos^3 x}{\cos^3 x}$ for $ x < \frac{\pi}{3}$	$(C) \frac{1}{4}$ $x \neq 0$	auou (Q) 32 (0755) 32				
m we	$\log_{\sin 3x } c$ $= 4$	for $x = 0$		nopa.l				
fo	then, the number of p	points of discontinuity of 1	$\sin\left(-\frac{\pi}{3},\frac{\pi}{3}\right)$ is	ir), Bl				
age	(A) 0	(B) 3	(C) 2	(D) 4				
Q.47	If $y = \frac{(a-x)\sqrt{a-x}}{\sqrt{a-x}}$	$\frac{-(b-x)\sqrt{x-b}}{+\sqrt{x-b}}$ then $\frac{dy}{dx}$	wherever it is defined i	s equal to :				
udy F	(A) $\frac{x + (a+b)}{\sqrt{(a-x)(x-b)}}$	(B) $\frac{2x - (a+b)}{2\sqrt{(a-x)(x-b)}}$	(C) $-\frac{(a+b)}{2\sqrt{(a-x)(x-a-b)}}$	$\frac{1}{\overline{(b)}} (D) \frac{2x + (a+b)}{2\sqrt{(a-x)(x-b)}} \qquad \qquad \vdots \qquad \vdots$				
හි _{Q.48}	If y is a function of	x then $\frac{d^2 y}{dx^2} + y \frac{dy}{dx} = 0$. If x is a function of y	y then the equation becomes:				
$\frac{\ddot{O}}{A}$ (A) $\frac{d}{d}$	$\frac{d^2x}{y^2} + x \frac{dx}{dy} = 0 $ (B)	$\frac{d^2x}{dy^2} + y\left(\frac{dx}{dy}\right)^3 = 0$	(C) $\frac{d^2 x}{dy^2} - y \left(\frac{dx}{dy}\right)^2$	(D) 4 Is equal to: (D) $\frac{2x + (a+b)}{2\sqrt{(a-x)(x-b)}}$ If then the equation becomes: (E) $\frac{d^2x}{dy^2} - x\left(\frac{dx}{dy}\right)^2 = 0$ If then the equation becomes: (E) $\frac{d^2x}{dy^2} - x\left(\frac{dx}{dy}\right)^2 = 0$ (E) $\frac{d^2x}{dy} - x\left(\frac{dx}{dy}\right)^2 = 0$ (E) $\frac{dx}{dy} - x\left(\frac{dx}{dy}\right)^2 = 0$ (
ш	(11)	(B) C	(0) 0	$(x) + \dots = \infty$ where $f(x)$ is a differentiable $(x) = 1$, then $f(x)$ is: $(D) e^{4x}$				
HQ.50	If $y = \frac{\cos 6x + 6\cos 6x}{\cos 5x + 5\cos 6x}$	$\frac{34x + 15\cos 2x + 10}{\cos 3x + 10\cos x}$, then $\frac{dy}{dx} =$	$(D) e^{4x}$ $(D) \sin 2x$ $(D) \sin 2x$				
	(A) $2 \sin x + \cos x$	(B)-2sinx	(C) cos2x	(D) $\sin 2x$				
Q.51	If $\frac{d^2x}{dy^2} \left(\frac{dy}{dx}\right)^3 + \frac{d^2x}{dx}$	$\frac{y}{2} = K$ then the value o	f K is equal to					
	(A) I	$(\mathbf{B})-1$	(C) 2	$\left(\mathrm{D}\right)0$ ith "I Will". Ineffective People don't.				

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com

- If $f(x) = 2\sin^{-1}\sqrt{1-x} + \sin^{-1}\left(2\sqrt{x(1-x)}\right)$ where $x \in \left(0, \frac{1}{2}\right)$ then f'(x) has the value equal to

$$y = f(x) = \begin{bmatrix} e^{-x^2} & \text{if } x \neq \\ \\ 0 & \text{if } x = \end{bmatrix}$$

- If $y = at^2 + 2bt + c$ and $t = ax^2 + 2bx + c$, then $\frac{d^3y}{dx^3}$ equals (A) 24 a^2 (at + b) (B) 24 a (ax + b)² (C) 24 a (at + b)²

- $(A) \frac{2}{\sqrt{x(1-x)}} \qquad (B) zero \qquad (C)^{-\frac{2}{\sqrt{x(1-x)}}} \qquad (D) \pi$ $(A) \frac{2}{\sqrt{x(1-x)}} \qquad (B) zero \qquad (C)^{-\frac{2}{\sqrt{x(1-x)}}} \qquad (D) \pi$ $(A) \frac{2}{\sqrt{x(1-x)}} \qquad (B) \frac{2}{\sqrt{x(1-x)}} \qquad (D) \frac{2}{\sqrt{x(1-x)}} \qquad (D) \pi$ $(A) \frac{2}{\sqrt{x(1-x)}} \qquad (B) \frac{2}{\sqrt{x(1-x)}} \qquad (D) \frac{2}{\sqrt{x$ FREE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com

- function f(x) f(4x) at x = 1, has the value equal to (A) 19 (B) 9 (C) 17 (D) 14

 If $y = \frac{x^4 x^2 + 1}{x^2 + \sqrt{3}x + 1}$ and $\frac{dy}{dx} = ax + b$ then the value of a + b is equal to

 (A) $\cot \frac{5\pi}{8}$ (B) $\cot \frac{5\pi}{12}$ (C) $\tan \frac{5\pi}{12}$ (D) $\tan \frac{5\pi}{8}$ Suppose that $h(x) = f(x) \cdot g(x)$ and F(x) = f(g(x)), where f(2) = 3; g(2) = 5; g'(2) = 4; if f'(2) = -2 and f'(5) = 11, then (A) F'(2) = 11, then (B) F'(2) = 22h'(2) (C) F'(2) = 44h'(2) (D) none

 Let $f(x) = x^3 + 8x + 3$ which one of the properties of the derivative enables you to conclude that f(x) has an inverse?

 (A) f'(x) is a polynomial of even degree. (B) f'(x) is self inverse.

 (C) domain of f'(x) is the range of f'(x). (D) f'(x) is always positive.

 Which one of the following statements is NOT CORRECT?

 (A) The derivative of a diffrentiable periodic function is a periodic function with the same period.

 (B) If f(x) and g(x) both are defined on the entire number line and are aperiodic then the function F(x) = f(x). So g(x) can not be periodic.

 (C) Derivative of an even differentiable function is an odd function and derivative of an odd differentiable function is an even function.
 - Teko (is an even function.
 - (D) Every function f (x) can be represented as the sum of an even and an odd function

Select the correct alternatives : (More than one are correct)

If $y = \tan x \tan 2x \tan 3x$ then $\frac{dy}{dx}$ has the value equal to:

(A)
$$\frac{e^{\sqrt{x}} - e^{-\sqrt{x}}}{2\sqrt{x}}$$
 (B) $\frac{e^{\sqrt{x}} - e^{-\sqrt{x}}}{2x}$ (C) $\frac{1}{2\sqrt{x}}\sqrt{y^2 - 4}$ (D) $\frac{1}{2\sqrt{x}}\sqrt{y^2 + 4}$

66 If
$$y = x^{x^2}$$
 then $\frac{dy}{dx} = (A) 2 \ln x \cdot x^{x^2}$ (B) $(2 \ln x + 1) \cdot x^{x^2}$ (C) $(2 \ln x + 1) \cdot x^{x^2 + 1}$ (D) $x^{x^2 + 1} \cdot \ln ex^2$

Q.67 Let
$$y = \sqrt{x + \sqrt{x + \sqrt{x + \dots + \infty}}}$$
 then $\frac{dy}{dx} = \frac{dy}{dx}$

(A)
$$\frac{1}{2y-1}$$

(B)
$$\frac{x}{x+2y}$$

(C)
$$\frac{1}{\sqrt{1+4x}}$$

(D)
$$\frac{y}{2x + y}$$

If
$$2^x + 2^y = 2^{x+y}$$
 then $\frac{dy}{dx}$ has the value equal to:

$$(A) - \frac{2^y}{2^x}$$

(B)
$$\frac{1}{1-2^x}$$

(C)
$$1-2^{y}$$

(D)
$$\frac{2^{x}(1-2^{y})}{2^{y}(2^{x}-1)}$$

(A)
$$v \frac{du}{dx} - u \frac{dv}{dx} = u^2 + v^2$$

(B)
$$\frac{d^2u}{dx^2} = 2x$$

$$(C) \frac{d^2v}{dx^2} = -2v$$

Teko Classes, Maths: Suhag R. Kariya (S. R. K. Sir), Bhopa. I Phone: (0755) 32 00 000, 0 98930 58881, WhatsApp Number 9009 260 559.

70 Let
$$f(x) = \frac{\sqrt{x - 2\sqrt{x - 1}}}{\sqrt{x - 1} - 1} \cdot x$$
 then:

(A)
$$f'(10) = 1$$

(B)
$$f'(3/2) = -1$$

(C) domain of
$$f(x)$$
 is $x \ge 1$ (D) no

$$f(0) = {2 \over g(0)}$$
, $f'(0) = 2g'(0) = 4g(0)$, $g''(0) = 5f''(0) = 6f(0) = 3$ then

(A) if
$$h(x) = \frac{f(x)}{g(x)}$$
 then $h'(0) = \frac{15}{4}$

(B) if
$$k(x) = f(x) \cdot g(x) \sin x$$
 then $k'(0) = 2$

(C)
$$\lim_{x \to 0} \frac{g'(x)}{f'(x)} = \frac{1}{2}$$

(A)
$$\frac{y}{x} \left(\ln x^{\ln x - 1} + 2 \ln x \ln \left(\ln x \right) \right)$$

(B)
$$\frac{y}{x} (\ln x)^{\ln (\ln x)} (2 \ln (\ln x) + 1)$$

(C)
$$\frac{y}{x \ln x} ((\ln x)^2 + 2 \ln (\ln x))$$

(D)
$$\frac{y \, \ln y}{x \, \ln x} \left(2 \ln \left(\ln x \right) + 1 \right)$$

	(et Solution (A) 3 sec ² 3x	of These tan x tan	e Packages & 12x + sec ² x tai	k Learr n 2x tan	3x + 2 sec ² 2x	torials (tan 3x t	on www.Math an x	sBySu	nag.com
		(B) 2y (cosec (C) 3 sec ² 3x	$2x + 2 cc - 2 sec^{2}$	$ \frac{1}{2}\sec 4x + 3\cos 2x - \sec^2 x $	ec 6x)	(D) $\sec^2 x + 2$	$\sec^2 2x$	$+3 \sec^2 3x$		
	E Q.65	If $y = e^{\sqrt{x}} + e^{\sqrt{x}}$	$e^{-\sqrt{x}}$ then	$\frac{dy}{dx}$ equals		、 /				
	uhag.	$(A) \frac{e^{\sqrt{x}} - e^{-}}{2\sqrt{x}}$	$-\sqrt{x}$	$(B) \frac{e^{\sqrt{x}} - e^{-x}}{2x}$	√x —	(C) $\frac{1}{2\sqrt{x}}\sqrt{y^2}$	-4	(D) $\frac{1}{2\sqrt{x}}\sqrt{y^2}$	+4	
	S Q.66	If $y = x^{x^2}$ the	$en \frac{dy}{dx} =$	(A) $2 \ln x \cdot x^x$	² (B) ($2 \ln x + 1). x^{x^2}$	(C) (2	$2 \ln x + 1$). x^{x^2}	¹ (D) _X	x^{2+1} . $ln ex^2$
	aths Q.67	Let $y = \sqrt{x + y}$	$\sqrt{x + \sqrt{x}}$	+ ∞ then	$\frac{\mathrm{d}y}{\mathrm{d}x} =$					
	∑	$(A) \ \frac{1}{2y-1}$		(B) $\frac{x}{x+2y}$		$(C) \frac{1}{\sqrt{1+4x}}$		(D) $\frac{y}{2x + y}$		
	≸ Q.68	If $2^x + 2^y = 2^x$	x+y then	$\frac{dy}{dx}$ has the va	ılue equ	al to:		(\	
	emo	$(A) - \frac{2^y}{2^x}$		(B) $\frac{1}{1-2^x}$		(C) $1-2^y$		(D) $\frac{2^{x}(1-2^{y})}{2^{y}(2^{x}-1)}$	<u>()</u> 1)	
	ပ် (Q.69	The functions	$u = e^x \sin x$	$nx ; v = e^x \cos x$	x satisf	y the equation:	2	(,	
	asse	$(A) v \frac{du}{dx} - u = 0$	$\frac{dv}{dx} = u^2 + \frac{dv}{dx}$	$+ v^2$ (B) $\frac{d}{d}$	$\frac{^2\mathbf{u}}{\mathbf{x}^2} = 2\mathbf{v}$	$(C) \frac{d}{d}$	$\frac{\mathrm{d}^2 \mathbf{v}}{\mathrm{d} \mathbf{x}^2} = -$	2 u	(D) no	ne of these
	ÖQ.70	Let $f(x) = \frac{\sqrt{x}}{x}$	$\frac{x-2\sqrt{x-1}}{\sqrt{x-1}}$	$\frac{-1}{1}$. x then:						
(A) $f'(10) = 1$ (B) $f'(3/2) = -1$ (C) domain of $f(x)$ is $x \ge 1$ (D) $Q.71$ Two functions $f \& g$ have first & second derivatives at $x = 0 \&$ satisfy the relations,									(D) no	one
	*	(A) 3 sec ² 3x tan x tan 2x + sec ² x tan 2x tan 3x tan x (B) 2y (cose 2x + 2 sec) 4x 1 3 cose 6x) (C) 3 sec ² 3x - 2 sec ² 2x - sec ² 2x - sec ² x (D) sec ² x + 2 sec ² 2x + 3 sec ² 3x (C) 3 sec ² 3x - 2 sec ² 2x - sec ² x (D) sec ² x + 2 sec ² 2x + 3 sec ² 3x (D) sec ² x + 2 sec ² x + 3 s								
	ite:	(A) if $h(x) =$	$\frac{f(x)}{g(x)}$ the	$\operatorname{en} \mathbf{h}'(0) = \frac{15}{4}$		(B) if $k(x) = 1$	f(x).g(x	x) sin x then k'((0) = 2	
	vebs	(C) $\underset{x \to 0}{\text{Limit}} \frac{g'}{f'}$	$\frac{(x)}{(x)} = \frac{1}{2}$			(D) none				
	€Q.72	If $y = x^{(\ln x)^{\ln x}}$	the	en $\frac{dy}{dx}$ is equa	Ito:					
	Į	(A) $\frac{y}{x} \left(\ln x^{\ln x} \right)$	$+2\ell$	$(n \times \ell n (\ell n \times))$		(B) $\frac{y}{x} (\ln x)^{\ln x}$	n (ln x) (2	ln(lnx) + 1)		
	age	(C) $\frac{x}{y}$ (($(\ln x)^2 + 2$	$l \ln (l \ln x)$		(D) $\frac{x}{y \ln y}$ (2	ln (ln x)+1)		
	8	x ℓnx				x ℓnx				
	<u> </u>			Λ.	NSWI	TD KEV				
	Q Q.1	A	Q.2	C <u>A</u>	Q.3	B	Q.4	D	Q.5	В
	が _{0.11}	B B	Q.7 Q.12	B D	Q.8 Q.13	C B	Q.9 Q.14	A D	Q.10 Q.15	C C
	QQ.16	D	Q.17	A	Q.18	B	Q.19	C	Q.20	Č
	ÖQ.21 Q.26	A C	Q.22 Q.27	C	Q.23 Q.28	D B	Q.24 Q.29	D B	Q.25 Q.30	C
	Q 0.31	D	Q.32	D R	Q.33	D	Q.34	В	Q.35	D C
	Q.41 Q.41	C	Q.42	C	Q.43	D	Q.39 Q.44	D	Q.45 Q.45	В
	ШQ.46 ШQ.51	C D	Q.47 Q.52	B B	Q.48 Q.53	D D C C D	Q.49 Q.54	A B	Q.50 Q.55	B A
	Q Q.56 L Q.61	D B	Q.57 Q.62	D D	Q.58 Q.63	D B	Q.59	A	Q.60	В
	Q.64 Q.68	A,B,C A,B,C,D	Q.65	A,C A,B,C	Q.66 Q.70	C,D A,B	Q.67 Q.71	A,C,D A,B,C	Q.72	B,D

$$(C)-i$$

If
$$y = x^{x^2}$$
 then $\frac{dy}{dx} =$

(A) 2
$$\ell$$
n x. x^{x^2}

(B)
$$(2 \ln x + 1)$$
. x^{x^2}

(B) (2
$$\ell$$
n x + 1). x^{x^2} (C) (2 ℓ n x + 1). x^{x^2+1} (D) x^{x^2+1} . ℓ n ex²

(A)
$$2 \ln x$$
. x^{x^2} (B) $(2 \ln x)$
If $f(x) = e^{\tan^{-1}\left(\sin\frac{x}{2}\right)}$, then $f'(0)$.
(A) $\frac{1}{2}$ (B) $-\frac{1}{2}$

(A)
$$\frac{1}{2}$$

(B)
$$-\frac{1}{2}$$

If
$$y = \frac{x}{a + \frac{x}{b + \frac{x}{a + \dots}}}$$
 then $\frac{dy}{dx} = \frac{dy}{dx}$

(A)
$$\frac{a}{ab + 2ay}$$

(B)
$$\frac{b}{ab + 2by}$$

(C)
$$\frac{a}{ab + 2by}$$

(D)
$$\frac{b}{ab + 2ay}$$

Let $f(x) = \sin x$; $g(x) = x^2 \& h(x) = \log_e x \& F(x) = h[g(f(x))]$ then $\frac{d^2 F}{dx^2}$ is equal to:

(A)
$$2 \csc^3 x$$
 (B) $2 \cot (x^2) - 4x^2 \csc^2 (x^2)$ (C) $2x \cot x^2$

$$(A) -1$$

If $y = (1 + x) (1 + x^2) (1 + x^4) \dots (1 + x^{2n})$, then $\frac{dy}{dx}$ at x = 0 is (A) -1 (B) 1 (C) 0 (D) If $y = \sin^{-1}\left(x\sqrt{1-x} + \sqrt{x}\sqrt{1-x^2}\right)$ and $\frac{dy}{dx} = \frac{1}{2\sqrt{x(1-x)}} + p$, then p = x

(B)
$$\frac{1}{\sqrt{1-x}}$$

(C)
$$\sin^{-1} \sqrt{x}$$

(D)
$$\frac{1}{\sqrt{1-x^2}}$$

If $\sqrt{x^2 + y^2} = e^t$ where $t = \sin^{-1} \left(\frac{y}{\sqrt{x^2 + y^2}} \right)$ then $\frac{dy}{dx}$:

(A)
$$\frac{x-y}{x+y}$$

(B)
$$\frac{x+y}{y}$$

(C)
$$\frac{2x+y}{x-y}$$

(D)
$$\frac{x-y}{2x+y}$$

If $y = \sin^{-1} \frac{x^2 - 1}{x^2 + 1} + \sec^{-1} \frac{x^2 + 1}{x^2 - 1}$, |x| > 1 then $\frac{dy}{dx}$ is equal to:

(A)
$$\frac{x}{x^4 - 1}$$

(B)
$$\frac{x^2}{x^4 - 1}$$

The differential coefficient of $\sin^{-1}\frac{t}{\sqrt{1+t^2}}$ w.r.t. $\cos^{-1}\frac{1}{\sqrt{1+t^2}}$ is:

(A) 1

14.

$$(C) \frac{1}{\sqrt{1+t^2}}$$

Differentiation of $\left(\frac{\tan^{-1} x}{1 + \tan^{-1} x}\right)$ w.r.t. $\tan^{-1} x$ is:

$$(A) \left(\frac{1}{1 + \tan^{-1} x} \right)$$

(C)
$$\frac{1}{(1 + \tan^{-1} x)^2}$$

(D)
$$\frac{-1}{(1+\tan^{-1}x)^2}$$

Let f(x) be a polynomial in x. Then the second derivative of $f(e^x)$, is: (A) $f''(e^x)$. $e^x + f'(e^x)$ (B) $f''(e^x)$. $e^{2x} + f'(e^x)$. e^{2x} (C) $f''(e^x)$ e^{2x}

(D)
$$f''(e^x)$$
. $e^{2x} + f'(e^x)$. e^x

If f(x), g(x), h(x) are polynomials in x of degree 2 and F(x) =, then F'(x) is equal to (A) 1

У₂

If $y = \sin mx$ then the value of $\begin{vmatrix} y_3 & y_4 & y_5 \end{vmatrix}$ (where settings of y shows the order of derivative) is: Successful People Replace the words Mke; "wish", "try" & "should" with "I Will". Ineffective People don't.

(A)
$$f_n(x) \cdot \frac{d}{dx} \{f_{n-1}(x)\}$$

Teko Classes, Maths: Suhag R. Kariya (S. R. K.

page 18

+ $x^2 \sin 1.5 a - x \sin a$. $\sin 2a - 5 \sin^{-1} (a^2 - 8a + 17)$ then:

(C) f(1) + f(3) = f(2)

(D) none of these If $f(x) = (ax + b) \sin x + (cx + d) \cos x$, then the values of a, b, c and d such that $f'(x) = x \cos x$ for all x are (A) a = d = 1 (B) b = 0 (C) c = 0 (D) b = c

EXERCISE -2

If y = A e^{-kt} cos (p t + c) then prove that $\frac{d^2y}{dt^2}$ + 2 k $\frac{dy}{dt}$ + n² y = 0, where n² = p² + k².

3. If
$$f(x) = \begin{vmatrix} (x-a)^4 & (x-a)^3 & 1 \\ (x-b)^4 & (x-b)^3 & 1 \\ (x-c)^4 & (x-c)^3 & 1 \end{vmatrix}$$
 then $f'(x) = \lambda$.
$$\begin{vmatrix} (x-a)^4 & (x-a)^2 & 1 \\ (x-b)^4 & (x-b)^2 & 1 \\ (x-c)^4 & (x-c)^2 & 1 \end{vmatrix}$$
. Find the value of λ .

0 - (0 - 1 (' (T)	D 1 0 1	1. A C de a T (a a' a		D O I
Get Solution of These	Packades & Learn	ny video Hitoria	als on www.w iviaths	KKVSUnad com
	ri adhagod a Edairi	by viaco i atomo	alo oli www.iviatiic	Dy Carlag.com
	_	-		

4. If
$$x = a t^3 \& y = b t^2$$
, where t is a parameter, then prove that $\frac{d^3 y}{dx^3} = \frac{8.b}{27a^3.t^7}$

If sin y = x sin (a + y), show that $\frac{dy}{dx} = \frac{sina}{1 - 2xcosa + x^2}$.

If
$$F(x) = f(x)$$
. $g(x) \& f'(x)$. $g'(x) = c$, prove that $\frac{F''}{F} = \frac{f''}{f} + \frac{g''}{g} + \frac{2c}{fg} \& \frac{F'''}{F} = \frac{f'''}{f} + \frac{g'''}{g}$. If α be a repeated root of a quadratic equation $f(x) = 0 \& A(x)$, $B(x)$, $C(x)$ be the polynomials of degree 3, 4 &

A(x)B(x)C(x) $A(\alpha)$ $B(\alpha)$ $C(\alpha)$ is divisible by f(x), where dash denotes the derivative. respectively, then show that

Estimate 1. If
$$\sin y = x \sin (a + y)$$
, show that $\frac{dy}{dx} = \frac{\sin a}{1 - 2x \cos a + x^2}$.

If $F(x) = f(x)$. $g(x) \& f'(x)$. $g'(x) = c$, prove that $\frac{F''}{F} = \frac{f''}{f} + \frac{g''}{g} + \frac{2c}{fg} \& \frac{F'''}{F} = \frac{f'''}{f} + \frac{g'''}{g}$.

If α be a repeated root of a quadratic equation $f(x) = 0 \& A(x)$, $B(x)$, $C(x)$ be the polynomial respectively, then show that $A(x) = A(x) = A(x) = A(x)$. Is divisible by $A(x) = A(x) = A(x) = A(x)$. Show that $A(x) = A(x) = A(x) = A(x) = A(x) = A(x)$. Show that $A(x) = A(x) = A(x) = A(x) = A(x)$. Show that $A(x) = A(x) = A(x) = A(x) = A(x) = A(x)$. Show that $A(x) = A(x) = A(x) = A(x) = A(x)$. If $A(x) = A(x) = A(x) = A(x)$, $A(x) = A(x) = A(x)$, $A(x) = A(x) = A(x)$, $A(x) = A(x)$

Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopa.I Phone : (0755) 32 00 000, 0 98930 58881 , WhatsApp Number 9009 260 559. Also show that, if $x = a \sin 2\theta (1 + \cos 2\theta) & y = a \cos 2\theta (1 - \cos 2\theta)$ then the value of R equals to 4 a cos 3θ .

Differentiate the following functions with respect to x.

(i)
$$x^2$$
. $\ell n \ x$. e^x (i) $\frac{\sin x - x \cos x}{x \sin x + \cos x}$

(iii)
$$\tan \left(\tan^{-1} \sqrt{\frac{1 - \cos x}{1 + \cos x}} \right)$$

В С 10. 11. D 15. C 16. C **17**. C **18.** B 20. ABC -21. AC 22. CD 23. AD 24. ABC

Exercise # **2**. 1 3. 3

9. (i)
$$e^x \times (2 \ln x + 1 + x \ln x)$$
 (ii) $\frac{x^2}{(x \sin x + \cos x)^2}$ (iii) $\frac{1}{2} \sec^2 \frac{x}{2}$

For 38 Years Que. from IIT-JEE(Advanced) & 14 Years Que. from AIEEE (JEE Main) we distributed a book in class room