Cluster Stability

- Clusterings obtained from several datasets sampled from the same underlying distribution as **D** should be similar or "stable"
- the same underlying distribution as **D** should be similar or "stable"

 Typical approach:
 - ☐ Find good parameter values for a given clustering algorithm
- \square Example: Find a good value of k, the correct number of clusters
- \square A **bootstrapping approach** to find the best value of k (judged on stability)
 - ☐ Generate *t* samples of size *n* by sampling from *D* with replacement
 - \Box For each sample D_i , run the same clustering algorithm with k values from 2 to k_{max}
 - □ Compare the distance between all pairs of clusterings $C_k(\mathbf{D}_i)$ and $C_k(\mathbf{D}_j)$ via some distance function
 - \Box Compute the expected pairwise distance for each value of k
 - The value k^* that exhibits the least deviation between the clusterings obtained from the resampled datasets is the best choice for k since it exhibits the most stability

