//

Jay Patel

HW #2

CS 331

Student ID: 469572103

Email: jbpatel@iastate.edu



## 2. 1.4

a. Suppose language B over alphabet  $\Sigma$  has a DFA

$$\mathsf{M} = (\mathsf{Q}, \Sigma, \delta, q_1, \mathsf{F})$$

So, for complimentary language

$$\overline{M} = (Q, \Sigma, \delta, q_1, Q - F)$$

by this we can tell that M and  $\overline{M}$  have the same transition function  $\delta$ . So, I can tell that both M and  $\overline{M}$  are deterministic. We will be getting some state i.e.  $r \in Q$  if we run M on any input string. There will be only one possible state that M can end into input W, as we figured that M is deterministic. Let's take another example,  $w \in B$ . This will then accept W for M, which is the ending state  $r \in F$ . Where r is the accept state of M. But in case of Q-F,  $\overline{M}$  won't be able to accept W for the accept states. In conclusion,  $\overline{M}$  will accept string W, so  $\overline{M}$  recognizes language B.

b.

i.  $C = \{W \in \Sigma^* | w \ ends \ with \ 00\}$ Where we know that  $\Sigma = \{0,1\}$ 



by swapping

accept & non accept we get,



ii. For NFAs they are closed under complements, if c is a language recognized by NFAs

$$C = L(M)$$

So,

L(D)=L(M)=C

As we learned in class, every DFA is a NFA so there is a NFA.

Hence,  $\overline{C} = L(\overline{D})$ 

## 3. 1.13

 $F = \{W \,|\, W \text{ doesn't contain a pair of 1's that are separated by an odd number}\}$  $\overline{F} = \{W \mid W \text{ contains a pair of 1's that are separated by an odd number of symbol}\}$ So,



DFA,

$$M_F = (Q', \Sigma, \delta', q0', F)$$

$$N_F = (Q, \Sigma, \delta, q_0, F)$$



## DFA me has minimum state



## 4. L = (011 U 001 U100) \*





Proof:

Base case:  $\in$ , 0, 1

Induction step:  $|w| = n \ge 2$ 

Assume w ends with 0

w = x0

Where, x is the prefix that can ends in any state and ends in the same state If we say that the state is in  $q_1$  and waiting to process the ending 0

So,

$$\delta(q_1,0) = q_1$$

Similarly,

For w = x1

If we suppose that M is some state  $q_1$  such that it has processed all the characters in  $\mathbf x$ 

$$\delta(q_i, 1) = q_{i+1}$$

We do the same for  $q_3$ , it will go to the first state, since there is no  $q_4$ .

Then, we can prove that the machine accepts the language, where it has at least 3 1's.