Algorithmes et complexité

Définitions, notation O

Training beOI

OLYMPIADE BELGE D'INFORMATIQUE BELGISCHE INFORMATICA-OLYMPIADE

8 octobre 2016

Table des matières

Algorithmes

Complexité

Qu'est-ce qu'un algorithme?

- Une manière de calculer un résultat
- Une idée pour résoudre un problème
- Une suite d'instructions
- La description d'un programme

Qu'est qu'un bon algorithme?

Domaine du programmeur :

- ▶ Ne crashe pas
- Se termine
- Donne la bonne réponse

Notre domaine:

- Est rapide
- Utilise peu de mémoire
- Est accepté en concours

Table des matières

Algorithmes

Complexité

Mesurer l'efficacité

Idées:

- Chronométrer
- Mesurer la RAM

Mais varie selon:

- ▶ Le langage
- ▶ L'implémentation
- ▶ La machine
- L'heure de la journée

La notation O

Trouver une notion d'efficacité *intrinsèque* :

- ► Faisons grandir l'input
- Regardons comment la vitesse évolue

Exemple : calculer $1 + \cdots + n$. Si n multiplié par 2, le temps d'exécution :

- Reste constant : O(1)
- Est multiplié par 2: O(n)
- ▶ Est multiplié par 4 : $O(n^2)$

Cela ne dépend pas des facteurs constants!

Temps constant

Problème : calculer la somme $1 + 2 + \cdots + n$.

Solution 1 : Un simple calcul

```
int sum = n * (n+1) / 2;
```

- ► Temps ne change pas si *n* double
- Temps "constant"
- ► Complexité *O*(1)
- ▶ Temps "proportionnel à 1"

Temps linéaire

Solution 2 : Une boucle

- ► Temps double si *n* double
- ► Temps "linéaire"
- ► Complexité *O*(*n*)
- ▶ Temps "proportionnel à *n*"

Temps quadratique

Solution 3 : Deux boucles (stupide!)

```
int sum = 0;

for (int i = 1; i \le n; i++)

for (int j = 1; j \le i; j++)

sum++;
```

- ► Temps quadruple si *n* double
- ► Temps "quadratique"
- ► Complexité $O(n^2)$
- ▶ Temps "proportionnel à n^2 "

Puissances

Définition:

- Multiplications en chaîne
- ▶ "3 exposant *n*"

$$3^n = \underbrace{3 \times \cdots \times 3}_{n \text{ fois}}$$

Exemples:

- $ightharpoonup 3^0 = 1$ (par définition)
- \rightarrow 3¹ = 3
- ▶ $3^2 = 3 \times 3 = 9$ (carré)
- $3^3 = 3 \times 3 \times 3 = 27$ (cube)

Logarithmes: intuition (1)

Jeu à deux joueurs :

- Alice choisit entre 1 et 16
- ▶ À chaque tour :
 - ▶ Bob donne à Alice un ou plusieurs nombres
 - ▶ Alice dit si le nombre est parmi ceux-là
- Quand Bob trouve le nombre il a gagné
- Comment gagner en peu de tours?

Logarithmes: intuition (2)

Stratégie : Donner la moitié des nombres possibles

- ▶ D'abord 8 nombres parmi les 16
- Puis 4 parmi les 8 restants
- ▶ Puis 2 parmi les 4 restants
- Puis 1 des 2 restants
- Trouvé!

Donc 4 questions suffisent.

Logarithmes: intuition (3)

De manière générale, avec n nombres au départ, combien de questions?

Combien de fois peut-on couper en deux?

- ▶ Si n = 2, une fois
- ▶ Si n = 4, deux fois
- ▶ Si n = 8, trois fois
- ▶ Si n = 16, quatre fois

Logarithme en base 2

La fonction qui répond à cette question est \log_2 : le logarithme en base 2. Par exemple

- ▶ $\log_2(2) = 1$
- $\log_2(4) = 2$
- $\log_2(8) = 3$
- $\log_2(16) = 4$

La stratégie de Bob est en $O(\log_2(n)) = O(\log n)$.

En fait, le logarithme, c'est l'exposant qu'il faut mettre à 2 pour atteindre n:

$$x = \log_2(n) \Leftrightarrow 2^x = n$$

Logarithme général (bonus)

Pas seulement pour deux! Le logarithme en base a, c'est le nombre de fois qu'on peut diviser par a. Par exemple :

- $\log_3(27) = 3$
- $\log_4(16) = 2$
- $\log_5(5) = 1$

En fait, c'est l'exposant qu'il faut mettre à a pour atteindre n:

$$x = \log_a(n) \Leftrightarrow a^x = n$$

C'est un peu "l'inverse" des puissances.

Recherche dans un tableau trié (1)

On nous donne un tableau dans l'ordre croissant :

1	4	6	9	15	23	24
---	---	---	---	----	----	----

Vérifier si un nombre x s'y trouve.

Solution 1 : Tout parcourir, linéaire O(n)

```
bool isln(int tab[], int n, int x)
{
    for (int i = 0; i < n; i++)
        if (tab[i] == x)
            return true;
    return false;
}</pre>
```

Recherche dans un tableau trié (2)

On cherche 7.

Idée : regarder au milieu et comparer :

		_	_	4 -	00	0.4
1	4	6	9	15	23	24

Trop grand (9 > 7), allons à gauche :

1	4	6	9	15	23	24
---	---	---	---	----	----	----

Trop petit (4 < 7), allons à droite :

1	4	6	9	15	23	24
---	---	---	---	----	----	----

Mais $6 \neq 7$ donc 7 n'est pas dans le tableau.

Recherche dans un tableau trié (3)

On coupe en deux à chaque fois $\Rightarrow \log_2(n)$ essais.

Solution 2 : Recherche dichotomique, logarithmique $O(\log n)$

```
bool isln(int tab[], int n, int x)
    int left = 0, right = n-1;
    while (left <= right)</pre>
        int mid = (left+right) / 2;
        if (x < tab[mid]) right = mid - 1;
        else if (x > tab[mid]) left = mid + 1;
        else return true;
    return false;
```

Beaucoup plus rapide!

Limites pratiques

Limites sur *n* pour s'exécuter en quelques secondes :

Complexité	Limite de <i>n</i>	Exemple
$ \begin{array}{c} O(1), O(\log n) \\ O(n) \\ O(n \log n) \end{array} $	$\leq 10^{18} \\ \leq 100 \text{M} \\ \leq 1 \text{M}$	(Taille limite d'un entier) Parcourir un tableau Trier un tableau
$O(n^2)$	≤ 10 k	Boucle dans une boucle

En concours : regarder la deuxième colonne et cela donne la complexité.