

Semester 3th | Practical Assignment | Computer Networks (2305CS332)

Date: 18 /09 /2025

Name: Ghorecha Harsh

Roll No: 106

Lab Practical #10:

Study Packet capture and header analysis by Wireshark (HTTP, ICMP, DNS, TCP, UDP etc.)

Practical Assignment #10:

1. Explain usage of Wireshark tool.

1. Usage of Wireshark

- · Wireshark is a powerful network protocol analyzer widely used for monitoring, diagnosing, and studying network behavior. It allows users to capture real-time network traffic and break down packets to examine protocol details, headers, and payloads. Common protocols analyzed include:
- HTTP (HyperText Transfer Protocol): Facilitates communication between web browsers and servers.
- ICMP (Internet Control Message Protocol): Primarily used for error reporting and diagnostic tools such as ping.
- DNS (Domain Name System): Translates human-readable domain names into numerical IP addresses.
- TCP (Transmission Control Protocol): Provides reliable, connection-based data transfer.
- UDP (User Datagram Protocol): Enables fast, connectionless communication, often used in streaming and online gaming

Semester 3th | Practical Assignment | Computer Networks (2305CS332)

Date: 18 /09 /2025

2. Here is steps for working with wireshark:

- 1. Launch Wireshark and choose the appropriate network adapter/interface.
- 2. Begin packet capture by clicking the shark fin button on the toolbar.
- 3. Apply filters in the filter bar to view specific traffic types:
 - \circ http \rightarrow to see web traffic
 - icmp → to capture ping requests/replies
 - \circ dns \rightarrow to observe domain name lookups
 - \circ **tcp** \rightarrow for reliable, connection-oriented traffic
 - o **udp** → for streaming, gaming, or VoIP packets
- 4. Generate some activity like opening websites or sending pings, then stop the capture.

5. Analyze packets:

- Look into headers and data sections.
- Identify source and destination IPs.
- Check sequence numbers, flags, or query names.

Semester 3th | Practical Assignment | Computer Networks (2305CS332)

Date: 18 /09 /2025

2. Packet capture and header analysis by Wireshark (HTTP, ICMP, DNS, TCP, UDP

Packet Analysis Example

➤ HTTP Packet

Source IP: 192.168.1.5

Destination IP: 172.217.10.78

Info: GET / HTTP/1.1

Explanation: This shows a request sent from your system to a website's server.

➤ ICMP Packet

Type: Echo (ping) request

• Sequence number: 1

• Time to live (TTL): 64

Explanation: This shows a diagnostic request to check if another device is

reachable.

➤ DNS Packet

Query: www.google.com

Response: 172.217.10.78

Explanation: Converts a hostname to an IP address.

➤ TCP Packet

Flags: SYN, ACK

• Sequence number: 12345

Explanation: Initiates and manages a connection between two devices.

➤ UDP Packet

Source Port: 12345

• Destination Port: 53

Explanation: Used for quick, connectionless communications like DNS queries.

Semester 3th | Practical Assignment | Computer Networks (2305CS332)

Date: 18 /09 /2025

- Packet capture is the process of intercepting and logging traffic that passes
 through a network. It involves examining the data packets that are sent and
 received across a network to diagnose issues, monitor performance, or analyze
 security threats.
- **Wireshark** is one of the most widely used network protocol analyzers for packet capture and inspection. It allows users to:
- Capture live data from network interfaces.
- Save and open captured packet files.
- Analyze the content of each packet.

2. How Does Wireshark Work?

1. Network Interface Selection

You select the network interface (e.g., Ethernet, Wi-Fi) to capture traffic from.

2. Capturing Packets

Wireshark listens to packets flowing through that interface and records them.

3. Filtering Packets

Filters allow focusing on specific types of packets or traffic patterns.

4. Header Analysis

Each packet is dissected into layers such as Ethernet, IP, TCP/UDP, and Application (HTTP, DNS, etc.).

5. Exporting or Saving

Captured data can be saved and analyzed later.

Network Protocols and Their Header Analysis

A. HTTP (Hypertext Transfer Protocol)

Used for web communication.

Key Fields in HTTP Header:

- Request Line: Method (GET, POST), URI, version.
- Host: Domain name.
- User-Agent: Client information.

Semester 3th | Practical Assignment | Computer Networks (2305CS332)

Date: 18 /09 /2025

- Accept, Content-Type: Types of supported content.
- Status Code (in response): 200 OK, 404 Not Found. Wireshark Usage:
- Filter: http
- Helps inspect requests, responses, cookies, and headers.
- Good for debugging web applications or finding slow requests.

Semester 3th | Practical Assignment | Computer Networks (2305CS332)

Date: 18 /09 /2025

B. ICMP (Internet Control Message Protocol)

Used for network diagnostics like ping and traceroute.

Key Fields:

- Type & Code: Defines message purpose (Echo request/reply).
- Checksum: Error-checking value.
- Identifier & Sequence Number: Helps track multiple requests.

Wireshark Usage:

- Filter: icmp
- Used to diagnose network reachability and latency.

C. DNS (Domain Name System)

Used to resolve domain names to IP addresses.

Key Fields:

- Transaction ID: Matches requests and responses.
- Flags: Query/response, authoritative answer.
- Questions: Domain name being queried.
- Answers: IP address returned.

Semester 3th | Practical Assignment | Computer Networks (2305CS332)

Date: 18 /09 /2025

Wireshark Usage:

Filter: dns

Analyze lookup times, spoofed replies, or failed queries.

D. TCP (Transmission Control Protocol)

Provides reliable, connection-oriented communication.

Key Fields:

- Source & Destination Ports: Identifies service endpoints.
- Sequence Number & Acknowledgment: Ensures proper delivery.
- Flags: SYN, ACK, FIN, RST (connection setup/teardown).
- Window Size: Flow control.
- Checksum: Integrity verification.

Wireshark Usage:

- Filter: tcp
- Used to diagnose retransmissions, connection failures, or packet drops.

Semester 3th | Practical Assignment | Computer Networks (2305CS332)

Date: 18 /09 /2025

E. UDP (User Datagram Protocol)

Used for faster, connectionless communication.

Key Fields:

- Source & Destination Ports: Endpoint identifiers.
- Length: Size of payload.
- Checksum: Integrity check.

Wireshark Usage:

- Filter: udp
- Good for analyzing services like DNS, VoIP, or streaming traffic.

