YOLO v2 딥러닝을 사용한 객체 검출

YOLO v2 딥러닝을 사용한 객체 검출

이 예제에서는 YOLO(You Only Look Once) v2 객체 검출기를 훈련시키는 방법을 다룹니다. 딥러닝은 강건한 객체 검출기를 훈련시키는 데 사용할 수 있는 강력한 머신러닝 기법입니다. Faster R-CNN과 YOLO(You Only Look Once) v2를 비롯한 다양한 객체 검출 기법이 있습니다. 이 예제에서는 trainYOLOv2ObjectDetector 함수를 사용하여 YOLO v2 차

https://kr.mathworks.com/help/deeplearning/ug/object-detection-using-yolo-v2.html

이 예제에서는 trainYOLOv2ObjectDetector 함수를 사용하여 YOLO v2 차량 검출기를 훈련시킨다.

Mathworks YOLO documentation

자세한 사항은 다음의 영문 자료를 참고한다.

Getting Started with YOLO v2 - MATLAB & Simulink - MathWorks 한국

The you-only-look-once (YOLO) v2 object detector uses a single stage object detection network. YOLO v2 is faster than other two-stage deep learning object detectors, such as regions with convolutional neural networks (Faster R-CNNs). The YOLO v2 model runs a deep learning CNN on an input image to produce network

https://kr.mathworks.com/help/vision/ug/getting-started-with-yolo-v2.html

YOLO v2 는 다른 2-stage 객체 탐지 모델보다 빠릅니다. YOLO v2 모델은 하나의 인풋 이미지가 네트워크에 들어가면 예측을 만들어내는 CNN 네트워크와, 객체 탐지를 위해 예측값을 디코딩하고 바운딩 박스를 생성하는 기능으로 구서외어 있습니다.

이미지 객체 검출 관련

YOLOv2 는 이미지에서 여러 객체의 클래스를 탐지하기 위해 앵커 박스를 사용합니다. 더 디테일한 사항은 다음의 영문 자료를 참고하면 좋습니다.

Anchor Boxes for Object Detection - MATLAB & Simulink - MathWorks 한국 Object detection using deep learning neural networks can provide a fast and accurate means to predict the location and size of an object in an image. Ideally, the network returns valid objects in a timely manner, regardless of the scale of the objects. In this image, Ideally, the network returns valid objects in a timely manner, and the scale of the objects. In this image, Ideally, the network returns valid objects in a timely manner, and the scale of the objects.

YOLO v2 는 각각의 앵커 박스를 활용해 세 개의 속성값들을 예측합니다.

- Intersection over Union(IoU): 각 앵커 박스들에 객체 존재 유무 정도를 예측합니다.
- Anchor box offsets : 앵커 박스의 위치를 재조정합니다.
- Class probability: 각 앵커 박스에 배치된 클래스 라벨을 예측합니다.

다음의 그림은 feature map 상에서의 각 지점에서의 예측되는 앵커 박스를 보여주며 조정된 위치로 앵커 박스 offset 이 됨이 나타납니다.

YOLO v2 딥러닝을 사용한 객체 검출 1

Anchor boxes at each predefined location in each feature map

Refined location of anchor box

전이 학습

전이 학습을 활용해, YOLO v2 네트워크에서 피쳐 추출기로서 pretrained 된 CNN 모델을 사용할 수 있습니다. 'yoov2Layers' 함수를 통해 MobileNet과 같이 pretrained 된 CNN 을 YOLO 네트워크에 사용할 수 있습니다.

전이학습에 관련해서는 다음의 자료를 참고하면 됩니다.

YOLO v2 Detection Network 설계

레이어를 쌓아 YOLO 네트워크를 커스텀할 수 있습니다. 모델은 피쳐 추출 네트워크(앞서 말한, pretrained 된 CNN)부터 시작합니다.

그리고 하위 네트워크는 일련의 컨볼루션 레이어, 배치정규화 레이어, ReLU 활성화 함수 레이어로 구성됩니다. 이러한 series 는 yolov2TransformLayer, yolov2OutputLayer 가 뒤따릅니다. yolov2TransformLayer 는 raw CNN output 을 객체 탐지를 위해 요구되는 form 으로 변환합니다. yolov2OutputLayer 는 anchor box 파라미터들과 훈련시 loss function 의 업데이트를 정의합니다.

You can also use the **Deep Network Designer (Deep Learning Toolbox)** app to manually create a network. The designer incorporates Computer Vision Toolbox™ YOLO v2 features.

스크래치부터 YOLO 네트워크의 구현을 더 자세히 알고 싶다면 다음의 자료를 참고하면 됩니다.

YOLO v2 딥러닝을 사용한 객체 검출 2

Create YOLO v2 Object Detection Network

This example shows how to modify a pretrained MobileNet v2 network to create a YOLO v2 object detection network. The procedure to convert a pretrained network into a YOLO v2 network is similar to the transfer learning procedure for image classification: Load a pretrained MobileNet v2 network using mobilenetv2.

♦ https://kr.mathworks.com/help/vision/ug/create-yolo-v2-object-detection-network.html

YOLO v2 딥러닝을 사용한 객체 검출 3