Question number	Answer	Notes	Marks
6 (a) (i)	Substitution (including conversion of time to seconds);		3
	Re-arrangement of given equation P = W/t;	Allow W or E for energy or work. Can be implied from their working.	
	Evaluation;		
(ii)	 e.g. Energy = 75 x (22 x 60) = 99 000 (J) Any ONE assumption from dog does not change temperature dog does not change power output rate of transfer is constant (despite increase in temp of water) no heating of outside world/surroundings/material of bag no heating from the surroundings 	Accept 1650 or 5.9 million for 2 marks. Ignore unqualified '100% efficient' or 'no energy lost'	1
(iii)	Use of Q = m x c x $\Delta\theta$;		4
	Substitution of their energy, mass, c;	Allow ECF from (a)(i)	
	Evaluation of temp change;	Allow ECF from evaluation of temp change.	
	Calculation of final temp = temp change + 16;		
	e.g. 99 000 = 8.7 x 4200 x Δθ temp rise = 99 000/(8.7 x 4200) = 2.7 final temp = 19 (°C);	Accept 16.04 for all marks (ecf E without min->s conversion) Accept answer to 3 or more sf i.e 18.7	

Question number	Answer	Notes	Marks
9 (a) (i)	Selection of P=F/A; Conversion of g to kg; Evaluation of weight; Evaluation of pressure;	0.0037 seen anywhere	4
	Correct answer: 140 (Pa) i.e. $W = 3.7 \times 10^{-3} \times 10 = 3.7 \times 10^{-2} \text{ N};$ $P = 3.7 \times 10^{-2} / (2.6 \times 10^{-4})^{\circ}$ $P = 140 \text{ (Pa)};$	Accept any value that rounds to 140. i.e 142, 142.3, Accept use of 9.8(1) for 'g', giving 139(.46)	
(ii)	Same weight (and larger cross-sectional area); P=F/A so smaller pressure;	Allow 'force' for weight	2
(b)	Increases continuously from -10 °C to 0 °C; Remains constant at 0 °C; Increases continuously from 0 °C to 20 °C;	Responses with no period of time at 0 °C score max 1 mark. Accept • Any gradient • Straight lines or curves for the increasing temperature parts • Any non-zero amount of time at 0 °C by eye Ignore any numbers on the time axis.	3
(c)	Any TWO from: Bonds between particles are weakened or broken; Particles go from regular to irregularly packed/EQ; Particles go from vibrating (about a fixed	Allow particles get (slightly) further apart/EQ;	2
	position) to sliding past each other/EQ;	ignore references to KE	