Inhalt

1	Differentialrechnung				
	1.1	Diffenrenzenquotient			
	1.2	Ableitungsregeln			
	1.3	l'Hospital			
	1.5	Kurvendiskussion			
		1.5.1 Definitionsbereich			
		1.5.2 Symmetrie			
		1.5.3 Nullstellen			
		1.5.4 Ableitungen			
		1.5.5 Extremwerte			
		1.5.6 Wendepunkte			
		1.5.7 Verhalten im Unendlichen			
		1.5.8 Verhalten an Definitionslücken			
		1.5.9 Wertemengen			
		1.5.10 Graph			
	1.6	Potenzreihen			
		1.6.1 Definition			
		1.6.2 Konvergenzradius und Kriterien			
		1.6.3 Addition und Multiplikation von Potenzreihen			
		1.6.4 Differentiation			
	1.7	Taylorreihen			
2	Integralrechnung				
	2.1	Bestimmtes Integral			
	2.2	Unbestimmtes Integral			

2.3

2.4

Uneigentliches Integral

Stammfunktion

- 2.5 Stammintegrale
- 2.6 Integrationsmethoden
 - 2.6.1 Substitutionsmethoden
 - 2.6.2 Partialbruchzerlegung
 - 2.6.2.1 Polynomdivision
 - 2.6.3 Partielle Integration
- 2.7 Kreisgleichung
- 2.8 Integration von Potenzreihen
- 2.9 Anwendung der Integralrechnung
- 3 Funktion mehrerer Variablen
 - 3.1 Darstellungsformen
 - 3.2 Stetigkeit
 - 3.3 Partielle Ableitung
 - 3.4 Satz von Schwartz
 - 3.5 Totales Differential
 - 3.6 Tangentialebenen
 - 3.7 Bedingungen für Extremwerte
 - 4 Anhänge

1 Differentialrechnung

1.1 Diffenrenzenquotient

$$\lim_{(x \to x_0)} \frac{(f(x) - f(x_0))}{(x - x_0)}$$
 Steigung der Sekante durch P und Q lso

$$\frac{\Delta y}{\Delta x} = m_s$$

1.2 Ableitungsregeln

1.2.1 Kettenregel (innere Ableitung * äußere Ableitung)

$$f'(g(x)) = g'(x) * f'(g(x)) b.z.w (f^{\circ}g)(x) = g'(x) * f'(g(x))$$

1.2.2 Produktregel

$$f(x)*g(x) = f'(x) * g(x) + f(x) * g'(x)$$

1.2.3 Quotientenregel

$$y = \frac{f(x)}{g(x)}y' = \frac{f'(x) * g(x) - f(x) * g'(x)}{(g(x))^2}$$

1.2.4 Umkehrfunktion

$$f^{-1}(y) = \frac{1}{f'(f^{-1}(y))}$$

1.3 l'Hospital

$$\frac{f(x)}{g(x)} = \frac{f'(x)}{g'(x)}$$
 Vorraussetzung: $g(x) \neq 0$

1.5 Kurvendiskussion

1.5.1 Definitionsbereich

Prüfen, ob f gebrochen rational

ja:
$$N(x) \neq 0$$

nein: Funtion auf Definitionslücken prüfen

1.5.2 Symmetrie

f gerade:

Spiegelsymmetrisch zur y-Achse Bedingung: f(x) = f(-x)

f ungerade:

1.5.3 Nullstellen

$$f(x)=0$$
 setzen

1.5.4 Ableitungen

Ableitung bis f'' (siehe Ableitungsregeln)

1.5.5 Extremwerte

$$f'(x)=0$$
 dann Einsetzen der x_i in $f''(x)$

dann Bestimmung Maximum/Minimum

Maximum, wenn
$$f''(x_i) < 0$$

Minimum, wenn
$$f''(x_i) > 0$$

1.5.6 Wendepunkte

$$f''(x)=0$$
 dann Einsetzen der x_i in $f'''(x)$

Sattelpunkt, wenn f'''(x)=0

sonst Wendepunkt

- 1.5.7 Verhalten im Unendlichen
- 1.5.8 Verhalten an Definitionslücken

Asymptote bestimmen dann substituieren

1.5.9 Wertebereich

Der Wertebreich (f(x) = y) ist die Funktion des Abbildungsbereiches (x)

1.5.10 Graph

Die einzelnen Teilschritte ein den Graphen einzeichnen

- Potenzreihen 1.6
 - 1.6.1 Definition

$$\sum_{n=0}^{\infty} a_n * (x - x_0) x^n$$

1.6.2 Konvergenzradius und Kriterien

$$r = \lim_{(n \to \infty)} \left| \frac{a_n}{a_{n+1}} \right| = \frac{1}{\sqrt[n]{|a_n|}}$$

dann r in Potenzreihe einsetzen und prüfen, ob an den Randpunkten konvergent/divergent. Dann Intervall bestimmen.

1.6.3 Addition und Multiplikation von Potenzreihen

Regel 1:

$$\sum_{n=0}^{\infty} a_n (x-x_0)^n + \sum_{n=0}^{\infty} b_n (x-x_0)^n = \sum_{n=0}^{\infty} (a_n + b_n) (x-x_0)^n$$

Regel 2:

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n * \sum_{n=0}^{\infty} b_n (x - x_0)^n = \sum_{n=0}^{\infty} \left(\sum_{k=0}^n (a_n * b_{n-k}) \right) (x - x_0)$$

1.6.4 Differentiation von Potenzreihen

$$f(x) = \sum_{n=0}^{\infty} a_n * (x - x_0)^n$$

$$f'(x) = \sum_{n=0}^{\infty} n * a_n * (x - x_0)^{n-1}$$

1.7 Taylorreihen

Bis zum m-ten Grad

$$T(x) = \sum_{n=0}^{m} \frac{f^{n}(x_{0})}{(n!)} * (x - x_{0})^{n}$$

Restgliedbestimmung nach LaGrange ($x_0! = 0$):

$$r_n(x) = \frac{f^{n+1}(\xi)}{(n+1)!} * (x-x_0)^{(n+1)}$$
 (\xi liegt zwischen x und x_0)

Restgliedbestimmung nach LaGrange 2 ($x_0 = 0$):

$$r_n(x) = \frac{f^{n+1}(vx)}{(n+1)!} * (x-x_0)^{(n+1)} \quad (0 < v < 1)$$

2 Integralrechnung

2.1 Bestimmtes Integral

Hauptsatz:

$$\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

Regeln:

Faktorregel:

$$\int_{a}^{b} C * f(x) dx = C * \int_{a}^{b} f(x) dx$$

$$\int_{a}^{b} [f_{1}(x) + \dots + f_{n}(x)] dx = \int_{a}^{b} f_{1}(x) dx + \dots + \int_{a}^{b} f_{n}(x) dx$$

Vertauschungsregel:

$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$$

Integrationsgrenzen a bis b

$$\int_{a}^{b} f(x) dx = A$$

Für jede Stelle
$$a \le c \le b$$
 gilt:

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

2.2 Unbestimmtes Integral

$$\int f(x) dx = F(x) + C$$

 $\int f(x) dx = F(x) + C$ Anwendung gewöhnlicher Integrationsmethoden.

2.3 Uneigentliches Integral

$$\int_{a}^{\infty} f(x) dx = \lim_{t \to \infty} \int_{a}^{t} f(x) dx$$

$$\int_{-\infty}^{a} f(x) dx \, und \, \int_{-\infty}^{\infty} f(x) \, dx$$

2.4 Stammfunktion

$$\int ax^b dx = \frac{a}{b+1} * x^{b+1}$$

2.5 Stammintegrale

siehe Anhang Stammintegrale 5.1

2.6 Integrationsmethoden

2.6.1 Substitutionsmethode

siehe Anhang Standard Substitutionen 5.2

Beispiel (ohne Integrationsgrenzen):

$$\int \sin \sqrt{x} \, dx$$

Substitution: $t = \sqrt{x}$, damit $x = t^2$ und $\frac{dx}{dt} = 2t$ und dx = 2t * dt

dann

$$\int \sin \sqrt{x} \, dx = \int \sin t \cdot 2t \, dt = 2 \int t \cdot \sin t \, dt$$

dann lösen.

Mit Integrationsgrenzen:

Um die Grenzen des Integrals herauszubekommen, wird die Umkehrfunktion der Substitution gebildet und die Grenzen der Ursprungsfunktion in die Umkehrfunktion eingesetzt.

2.6.2 Partialbruchzerlegung

Falls $f(x) = \frac{Z(x)}{N(x)}$ mit Z(x) > N(x) dann ist die Funktion unecht gebrochen rational dann folgt die ...

2.6.2.1 Polynomdivision

$$Z(x):N(x)=P(x)+R(x)$$
 mit P(x) als ganzrationalem und R(x) als echt gebrochen Rationalem Anteil

2.6.2.2 Nullstellen des Nenners suchen

Beispiel
$$x_1 = 1 \rightarrow x_1 - 1 = 0$$

Weitere NST durch Polynomdividion b.z.w. pq-Formel

$$x_1/x_2 = \frac{-p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2 - q}$$

2.6.2.3 Zerlegung der echt gebrochen rationalen Funktion

$$\frac{A_1}{x-x_1} + \frac{A_2}{(x-x_1)^2} + \frac{B}{x-x_2} + \dots + \frac{N}{x-x_n}$$

2.6.2.4 Bestimmung der Konstanten A,B,...,N und Abschluß

$$f(x) = \frac{Z(x)}{N(x)} = \frac{A_1}{x - x_1} + \frac{A_2}{(x - x_1)^2} + \frac{B}{x - x_2} + \dots + \frac{N}{x - x_n}$$

Da der Nenner beider Seiten ausmultipliziert gleich ist, kann man diesen streichen und nur noch den Zähler betrachten.

Beispiel:

$$Z(x) = A_1 * (x - x_1) * (x - x_2) + A_2 * (x - x_2) + B * (x - x_1)^2$$

Danach folgt das Einsetzen der NST. Somit erhält man die Konstanten A ... N und setzt diese in den Term ein.

2.6.3 Partielle Integration

Die Formel der partiellen Integration lautet:

Unbestimmtes Integral:

$$\int u(x) * v'(x) dx = u(x) * v(x) - \int u'(x) * v(x) dx$$

Bestimmtes Integral:

$$\int_{a}^{b} u(x) * v'(x) dx = [u(x) * v(x)]_{a}^{b} - \int_{a}^{b} u'(x) * v(x) dx$$

2.7 Kreisgleichung

$$r^2 = x^2 + y^2$$

Fläche

$$A_{Kreis} = \Pi r^2$$

Erklärung anhand des Beispieles:

$$\int_{0}^{1} \cos(\sqrt{x}) dx = ?$$

Potenzreihe nach Mac Laurin für cos z

$$\cos z = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \frac{z^6}{6!} \pm \dots \quad (|z| < \infty)$$

Substitution $z = \sqrt{x}$:

$$\cos(\sqrt{x}) = 1 - \frac{x}{2!} + \frac{x^2}{4!} - \frac{x^3}{6!} \pm \dots \quad (|x| < \infty)$$

Gliedweise Integration:

$$\int_{0}^{1} \cos(\sqrt{x}) dx = \int_{0}^{1} \left(1 - \frac{x}{2!} + \frac{x^{2}}{4!} - \frac{x^{3}}{6!} \pm \dots\right) dx =$$

$$= \left[x - \frac{x^{2}}{2 \cdot 2!} + \frac{x^{3}}{3 \cdot 4!} - \frac{x^{4}}{4 \cdot 6!} \pm \dots\right]_{0}^{1} =$$

$$= 1 - \frac{1}{2 \cdot 2!} + \frac{1}{3 \cdot 4!} - \frac{1}{4 \cdot 6!} \pm \dots \approx 0,763$$

2.9 Anwendung der Integralrechnung

2.9.1 Linearer Mittelwert

$$y_{linear} = \frac{1}{b-a} * \int_{a}^{b} f(x) dx$$

2.9.2 Quadratischer Mittelwert

$$y_{quadratisch} = \sqrt{\frac{1}{b-a} * \int_{a}^{b} [f(x)]^{2} dx}$$

2.9.3 Flächeninhalt

zwischen zwei Funktionen

$$A = \int_{a}^{b} \left(f_{oben}(x) - f_{unten}(x) \right)$$

zwischen Funktionen und x-Achse

$$A = \int_{a}^{b} f(x) dx$$

2.9.4 Bogenlänge einer ebenen Kurve

$$s = \int_{a}^{b} \sqrt{1 + (f'(x))^{2}} dx$$

- 2.9.5 Schwerpunkt einer homogenen ebenen Fläche
- 2.9.6 Volumen eines Rotationskörpers

Rotation um die x-Achse:

$$V_{x} = \Pi * \int_{a}^{b} (f(x))^{2} dx$$

2.9.7 Mantelfläche eines Rotationskörpers

$$M_x = 2 \Pi * \int_a^b f(x) * \sqrt{1 + (f'(x))^2} dx$$

2 .9.8 Schwerpunkt eines homogenen Rotationskörpers

Rotation um x- Achse

$$y_s = 0$$
 $x_s = \frac{\Pi}{V(x)} * \int_a^b x * y^2 dx$

- 3 Funktion mehrerer Variablen
 - 3.1 Darstellungsformen

$$f(x; y; ...; n) = ?$$

3.2 Stetigkeit

$$f_{xy} = f_{yx}$$
 Satz von Schwarz

Wenn die Reihenfolge der Ableitungen irrelevant ist, so ist die Funktion stetig.

3.3 Partielle Ableitung

$$\frac{\delta}{\delta x} = [f(x;y)] = f_x(x;y), \qquad \frac{\delta}{\delta y} = [f(x;y)] = f_y(x;y)$$

höherer Ordnung analog dazu weiter ableiten

3.4 Totales Differential

Totales Differential von
$$y = f(x_1; x_2; ...; x_n)$$

$$dy = f_{x_1} dx_1 + f_{x_2} dx_2 + ... + f_{x_n} dx_n = \frac{\delta f}{\delta x_1} dx_1 + \frac{\delta f}{\delta x_2} dx_2 + ... + \frac{\delta f}{\delta x_n} dx_n$$

3.5 Tangentialebenen

$$(z-z_0)=f_x(x_0;y_0)*(x-x_0)+f_y(x_0,y_0)*(y-y_0)$$

3.6 Bedingungen für Extremwerte

Zuerst: Finden der Extremwertkandidaten

- 1.) $f_x(x_0; y_0) = 0$ analog zur Berechnung der Extremwerte mit einer Variablen $f_y(x_0; y_0) = 0$
- 2.) $\Delta = f_{xx}(x_0; y_0) * f_{yy}(x_0; y_0) f_{xy}^2(x_0; y_0) > 0$ $f_{xx}(x_0; y_0) < 0 => \text{Relatives Maximum}$ $f_{xx}(x_0; y_0) > 0 => \text{Relatives Minimum}$

4 Differentialgleichungen

Eine gewöhnliche Differentialgleichung der Ordnung n hat die implizite Form

$$F(x, y, y', \dots, y^n) = 0$$

oder falls sich diese DGL nach der nächsten Ableitung auflösen lässt, die explizite Form

$$y^{(n)} = f(x, y, y' \dots y^{(n-1)})$$

homogen:

$$y'+f(x)*y=0$$

inhomogen:

$$y' + f(x) * y = h(x)$$

4.1 Differentialgleichungen 1. Ordnung

Eine Differentialgleichung vom Typ

$$y' = \frac{dy}{dx} = f(x) * g(y)$$

löst man durch Trennung der Variablen und Integration auf beiden Seiten, so daß

$$\int \frac{dy}{g(y)} = \int f(x) dx \qquad (g(y) \neq 0)$$

4.2 Spezielle DGL (Substitution)

Differentialgleichung	Substitution	Lösungsweg
y' = f(ax + by + c)	u = ax + by + c	 u'=a+b*f(u) 1. Trennung der Variablen 2. Rücksubstitution
$y' = f(\frac{y}{x})$ homogene DGL	$u = \frac{y}{x}$	$u' = \frac{f(u) - u}{x}$ 1. Trennung der Variablen 2. Rücksubstitution
$y'+g(x)*y=h(x)*y^n$	$u = y^{(1-n)}$	u'+(1-n)*g(x)*u =(1-n)*h(x) 1. Lineare DGL 2. Rücksubstitution

4.3 Exakte Differentialgleichungen

Problem:

$$g(x;y)dx + h(x;y)dy = 0$$
 mit $\frac{\delta g}{\delta v} = \frac{\delta h}{\delta x}$

Lösung:

$$\int g(x,y)dx + \int [h(x;y) - \int \frac{\delta g}{\delta y} dx]dy = c = const.$$

- 4.4 Lineare Differentialgleichungen 1. Ordnung
- 4.4.1 Definition

$$y'+f(x)*y=g(x)$$
 $g(x)$ ist das Störglied

4.4.2 Integration der homogenen Differentialgleichung

$$y' + f(x) * y = 0$$
 (homogenes Problem)

Lösung:

$$y = C * e^{-\int f(x) dx}$$
 benötigt Trennung der Variablen

4.4.3 Integration der inhomogenen lineraren Differentialgleichung

$$y' + f(x) * y = h(x)$$
 (inhomogenes Problem)

Lösung

$$y = K(x) * e^{-\int f(x)dx} => K(x)$$
 benötigt Variation der Konstanten

5.1 Standardableitungen

	f(x)	f'(x)
Potenzfunktion	x^n	$n*x^{(n-1)}$
Trigonometrische Funktionen	$\sin x$	$\cos x$
	$\cos x$	$-\sin x$
	tan x	$\frac{1}{(\cos^{2x})} = 1 + \tan^2 x$
	cot x	$-\frac{1}{\sin^2 x} = -1 - \cot^2 x$
Arkusfunktionen	arcsin x	$\frac{1}{\sqrt{1-x^2}}$
	arccos x	$ \frac{1}{\sqrt{1-x^2}} $ $ -\frac{1}{\sqrt{1-x^2}} $
	arctan x	$\frac{1}{1+x^2}$
	arccot x	$-\frac{1}{1+x^2}$
Exponentialfunktionen	e^x	e^x
	a^{x}	$\ln a * a^x$
Logarithmusfunktionen	$\ln x$	$\frac{1}{x}$
	$\log_a x$	$\frac{1}{(\ln a)*x}$
Hyperbelfunktionen	sinh x	cosh x
	$\cosh x$	$\sinh x$
	tanh x	$\frac{1}{\cosh^2 x} = 1 - \tanh^2 x$
	coth x	$-\frac{1}{\sinh^2 x} = 1 - \coth^2 x$
Areafunktionen	arsinh x	$\frac{1}{\sqrt{x^2+1}}$
	arcosh x	$\frac{1}{\sqrt{x^2-1}}$
	artanh x	$\frac{1}{1-x^2}$
	arcoth x	$\frac{1}{1-x^2}$

5.2 Standard Substitutionen

Integraltyp	Substitution	Neues Integral/LSG	Beispiel
f(ax+b)dx	$U = ax + b$ $dx = \frac{du}{a}$	$\frac{1}{a} * \int f(u) du$	$\int \sqrt{4x+5} dx$ $(u=4x+5)$
$\int f(x) * f'(x) dx$	$u = f(x)$ $dx = \frac{du}{f'(x)}$	$\frac{1}{2}[f(x)]^2 + C$	$\int sinx*cosxdx$
$\int [f(x)]^n * f'(x) dx$	$u = f(x)$ $dx = \frac{du}{f'(x)}$	$\frac{1}{n+1}[f(x)]^{n+1} + C$	$\int (\ln x)^2 + \frac{1}{x} dx$ $(u = \ln x)$
$\int f[g(x)] * g'(x) dx$	$u = g(x)$ $dx = \frac{du}{g'(x)}$	f(u)du	$\int x * e^{x^2}$ $u = x^2$
$\frac{\int f'(x)}{f(x)}$	$u = f(x)$ $dx = \frac{du}{f'(x)}$	$\ln f(x) + c$	$\int \frac{2x-3}{x^2-3x+1} dx$ $u=x^2-3x+1$
$\int R(x; \sqrt{a^2 - x^2}) dx$ R: Rationale Funktion von x und $\sqrt{a^2 - x^2}$	$x = a * \sin u$ $dx = a * \cos u du$ $\sqrt{a^2 - x^2} = a * \cos u$		$\int \frac{x^3}{\sqrt{4-x^2}} dx$ $x = 2 \cdot \sin u$
$\int R(x; \sqrt{x^2 + a^2}) dx$ R: Rationale Funktion von x und $\sqrt{x^2 + a^2}$	$x = a * \sinh u$ $dx = a * \cosh u du$ $\sqrt{x^2 + a^2} = a * \cosh u$		$\int \frac{x^2}{\sqrt{x^2 + 9}} dx$ $x = x * \sinh u$
$\int R(x; \sqrt{x^2 - a^2}) dx$ R: Rationale Funktion von x und $\sqrt{x^2 - a^2}$	$x = a * \cosh u$ $dx = a * \sinh u du$ $\sqrt{x^2 - a^2} = a * \sinh u$		$\int \frac{1}{\sqrt{x^2 - 25}} dx$ $x = 5 * \cosh u$
$\int R(\sin x; \cos x) dx$ R ist Rationale Funktion von $\sin x$ und $\cos x$	$u = \tan\left(\frac{x}{2}\right)$ $dx = \frac{2}{1 + u^2} du$ $\sin x = \frac{2u}{1 + u^2}$ $\cos x = \frac{1 - u^2}{1 + u^2}$		$\frac{\int 1 + \cos x}{\sin x} dx$
$\int R(\sinh x; \cosh x) dx$ R ist Rationale Funktion von $\sinh x$ und $\cosh x$	$u=e^{x} , dx = \frac{du}{u}$ $\sinh x = \frac{u^{2}-1}{2u}$ $\cosh x = \frac{u^{2}+1}{2u}$		$\int \frac{\sinh x + 1}{\cosh x} dx$