الإجابة النموذجية وسلم التنقيط

امتحان شمادة البكالوريا دورة: 2010

بباورب مورد ، ١٠٥٥	
الشعب (ة): رياضيات + تقنى رياضى	اختبار مادة : علوم فيزيانية
T. T	····

نمة	العلا	عناصر الإجابة (الموضوع الأول)	محاور
مجموع	مجزاة		الموضوع
		التمرين الأول: (03,5 نقطة)	
		/ i -1	
	0.25	$S_2O_8^{2-}(aq) + 2e^- = 2SO_4^{2-}(aq)$	
1 75	0.25	$2I^{-}(aq) = 2e^{-} + I_{2}(aq)$	
1.75	0.25	$S_2O_8^{2-}(aq) + 2I^{-}(aq) = I_2(aq) + 2SO_4^{2-}(aq)$	
		ب/ جدول التقدم	
		$S_2O_8^{2-}(aq) + 2I^-(aq) = I_2(aq) + 2SO_4^{2-}(aq)$	
	0.75	8×10 ⁻³ ع- ابتدائية 8×10 ع- ابتدائية	
		انتقالیة $8 \times 10^{-3} - x$ $8 \times 10^{-2} - 2x$ x x	
		ح، نهائية $8 \times 10^{-3} - x_f$ $8 \times 10^{-2} - 2x_f$ x_f x_f	
	0.25	$S_2O_8^{2-}(aq)$ المتفاعل المحد: بيروكسو دي كبريتات	
	0.25	$t = t_{1/2} = 0,84min$: أمن البيان البيان	
	0.25	$v=rac{d\left[I_{2} ight]}{dt}$: ب- عبارة السرعة المجمية:	
0.75		dt قيمتها عند $t = t_{1/2}$: نحسب ميل المماس عند هذه اللحظة	
	0.25	$v \simeq 8,3mmol\ L^{-1}.min^{-1}$	
	0.23	$v = 0, \text{3mmol } L \cdot \text{min}$	
	0.25	اً/ الخواص الأساسية للتفاعل:سريع ، ثام.	
	0.25	$[I_2]V = \frac{1}{2}C'V_E \Leftrightarrow [I_2] = \frac{C'V_E}{2V_E}/\varphi$	
01	0.23	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	
01	0.25	$V_E = \frac{2[I_2]V}{C'} = \frac{2 \times 13.10^{-3} \times 10}{1,0.10^{-2}}$: $t = 1,2min$ is a likely $t_E = 1,2min$	
	0.25	$V_E = 26mL$	
	0.20		
		التمرين الثاني: (03 نقاط)	
	0.75	$^{137}_{55}Cs \rightarrow ^{137}_{56}Ba + ^{0}_{-1}e / 1 - 1$	
		ب/ حساب λ:	
		$t_{1/2} = \frac{\ln 2}{\lambda}$	
	0.05	1	
1.5	0.25	$\lambda = \frac{\ln 2}{t_{1/2}} = 0,023 ans^{-1}$	
		$\lambda = 7,24 \times 10^{-10} s^{-1}$	
	4	70	<u> </u>
	L	12/1	

تابع الأجابة النمو ذجية اختيار مادة: علوم فيزيانية الشعب (ة): رياضيات + تقني رياضي

مة	العلا	ع الإجابه النمودجيه لختبار مادة: علوم فيزيانيه الشعب(ة): رياضيات + تقني را مناب الاحادة	محاور	
مجموح	مجزاة	عناصر الإجابة	محاور الموضوع	
		: m :==================================		
	0.25	$A_0 = \lambda N_0 = \lambda N_A \cdot \frac{m}{M}$		
	0.25	$\boldsymbol{m}_0 = \frac{\boldsymbol{A}_0.\boldsymbol{M}}{\lambda_n \boldsymbol{N}_A}$		
	0.25	$m_0 = 9,4 \times 10^{-8} g$		
0.75	0.25	$A(t) = A_0 e^{-\lambda t} / -2$ $A = 2.93 \times 10^5 Bq \iff t = lan / -2$		
	0.25	$\frac{\Delta A}{A} = \frac{ A - A_0 }{A} = 0,023 = 2,3\%$ =		
	0.25	$A = A_0 \cdot e^{-\lambda t}$		
0.75	0.25	$\frac{A}{A_0} = e^{-\lambda t} \Rightarrow \ln \frac{A}{A_0} = -\lambda t$		
	0.00	$t = -\frac{1}{\lambda} \ln \frac{A}{A_0}$		
	0.25	$t \approx 100ans$		
		المتمرين الثالث: $(03,5)$ نقطة) $u_{C}=f(t)$ البيان $u_{C}=f(t)$		
		$u_C = f(t)$ البيان -1		
01	0.5	t(ms)		
	0.25	$U(\tau) = 5 \times 0,63 = 3,15V$ $U(\tau) = 5 \times 0,63 = 3,15V$ و طريقة المماس $\tau \simeq 15,6ms$		
	0.25	$\tau = RC \implies C = \frac{\tau}{R} = \frac{15, 6.10^{-3}}{120} = 13.10^{-5} F = 130 \mu F$		
	0.25	$\tau' > \tau$ $C' > C$ عندما -2		
	0.25	$\tau'' < \tau$ $R < 120\Omega$ ladic		
0.75	0.25	7'' T(ms)		
	18	12/2	<u> </u>	

تابع الإجابة النموذجية اختبار مادة: علوم فيزيائية الشعب(ة): رياضيات + تقني رياضي

مة	العلا	صيات + نقني ز		عناصر الإجابة	···· • · · · · · · · · · · · · · · · ·		محاور
مجموع	مجزاة			عاصر الإجابة			لموضوع
1.25	0.25 0.25 2×0.25	Αe ^{αt}	(/ ($q(t) = A$ $\frac{B}{C} - \frac{E}{R} = 0 : \Delta$ $C = Q_{max} \cdot c$	$a_R = E \Leftrightarrow \frac{dq}{dt}$ $e^{\alpha t} + \beta \Leftrightarrow \frac{dq}{dt}$ $A \Rightarrow a = -\frac{1}{\tau}$ $A \Rightarrow a \Rightarrow $	ر بتطبيق قانون جمع $\frac{L}{RC}q(t)=rac{E}{R}$ $+rac{1}{RC}q(t)=rac{E}{R}$ $+rac{1}{RC}q(t)=A\alpha e^{\alpha t}$ $+rac{1}{R}$	ال ب ب ب
	0.25					21 - Emax . O	*
0.5	0.25		$\boldsymbol{E}_0 =$	$\boldsymbol{E} = \frac{1}{2} \times$:130×10 ⁻⁶ ×($C_{max} = 5V / 1 - 4$ $5)^2 = 1,62 \times 10^{-3} J$ $0^{-3}s = 5,4ms / 4$	
0.25	0.25	CH ₃ CC		$I_2O(1) = CH$	باعل المنمذج لـ 3COO-(aq	التمرين الرابع: (33) 1- كتابة معادلة التة 1 + H ₃ O ⁺ (aq) 2-ا/ جدول التقدم لا	
		المعائلة ح ابتدائية	$CH_3COOH(\alpha q)$	ر) + H ₂ O(l) = 0 بزیادة	CH ₃ COO*(ac	$\frac{1}{2} + H_3 O^+(aq)$	
1	0.25	ح إنتقالية	n_0-x	بزیادة	x	x	
i				بزيادة			

181

تابع الإجابة النموذجية اختبار مادة: عوم فيزيائية الشعب(ة): رياضيات + تقتى رياضي

مة	العلا	ع الإجابة التمودجية احتبار ماده: حوم فيروسية السعب(ه): ريضيت + نفي ري	محاور
مجموع	مجزاة	عناصر الإجابة	الموضوع
		ب/ حساب قيمة التقدم النهائي:	
	0.25	$x_f = [H_3O^+]_c V = 10^{-pH} V = 10^{-3,4} \times 100 \times 10^{-3} = 3,98 \times 10^{-5} mol$	
	0.25	$x_f = 4 \times 10^{-5} mol$	
		ج/ التحقق من قيمة التركيز المولى للمحلول (S):	
		$\tau_f = \frac{x_f}{x_{max}} = \frac{\left[H_3O^+\right]_f}{C} \Rightarrow C = \frac{\left[H_3O^+\right]_f}{\tau_f}$	
	0.25	$C = \frac{3.98.10^{-4}}{0.039} \approx 0.01 \text{mol.} L^{-1}$	
0.1		قيمة الكتلة m المذابة :	
01			
	0.25	$C = \frac{n}{V} = \frac{m}{MV} \Rightarrow m = CMV$	
		$m = 0,01 \times 60 \times 0,1 = 60 \times 10^{-3} g = 60 mg$	
		3- حساب كسر التفاعل الابتدائي:	
		$Q_{ri} = \frac{\left[CH_{3}COO^{-}\right]_{i}\left[H_{3}O^{+}\right]_{i}}{\left[CH_{3}COOH\right]_{i}} = 0$	
	0.25	$Q_{ri} = \frac{2c}{[CH_3COOH]_i} = 0$	
		حساب كسر التفاعل عند التوازن:	
		$\begin{bmatrix} CH_3COO^- \end{bmatrix} \begin{bmatrix} H_3O^+ \end{bmatrix}$	
ł		$Q_{rf} = \frac{\left[CH_{3}COO^{-}\right]_{f}\left[H_{3}O^{+}\right]_{f}}{\left[CH_{3}COOH\right]_{c}}$	
		ديث :	
		$[CH_3COOH]_f = \frac{n_0 - x_f}{V} = C - [H_3O^+]_f =$	
		· · · · · · · · · · · · · · · · · · ·	
		$= 0.01 - 4.10^{-4} = 9.6.10^{-3} mol / L$	
		$Q_{rf} = \frac{(4.10^{-4})^2}{9.6.10^{-3}} = 1,6.10^{-5}$	
	0.05	2,010	
	0.25	$Q_{rf} = \frac{\tau^2 f \cdot C}{1 - \tau_f} = \frac{(0.039)^2 \times 0.1}{1 - 0.039} = 1.6.10^{-5}$: induced in the state of the	
0.75	0.25	جهة تفكك الحمض.	
		4-أ/ البروتوكول التجريبي:	
		يذكر التلميذ: - الهدف، الأجهزة المستعملة	
	0.25	- خطوات العمل باختصار. - مخطط النجرية.	
,		.5.	
	0.25	$CH_3COOH(aq) + HO^-(aq) = CH_3COO^-(aq) + H_2O(1)$ بـــاب التركيز C_a للمحلول (3)	
01	0.25	Survey Assista	
	1 1/2	$C_a V_a = C_b V_E \Rightarrow C_a = \frac{C_b V_E}{V_a}$ عند التكافؤ:	
		$C_a = \frac{4.10^{-3} \times 25}{10} = 0,01$ وهي القيمة المعطاة سابقا	
	0.25	10	
8	V.DJ	$pH = pK_a = 4.8$: $here be a pK = 4.8$	

12/4

تابع الإجابة النموذجية اختبار مادة: علوم فيزيانية الشعب(ة): رياضيات + تقنى رياضي

مة		ع الإجابه النمودجيه اختبار مادة: علوم فيزيانيه الشعب(ة): رياضيات + نفني ري	
مجموع	مجزاة	عناصر الإجابة	محاور الموضوع
	0.25	التمرين الخامس: (3 نقاط) $I_{ m o}=0,24A$ $-1-1$	
		$ au \simeq 10ms$	
	0.25	$E = (R+r)I \Rightarrow r = \frac{E}{I} - R$	
1.25	0.25	$r=7.5\Omega$	
	0.25		
	0.25	$ au = rac{L}{R+r} \Rightarrow L = au imes (R+r)$ $L \simeq 0,25H$	
		. /2	
0.75	0.25	$E = (R + r)i + L \frac{di}{dt}$	
0.75		E = (R + r)I	
		$\tau = \frac{L}{R+r} \Rightarrow \frac{1}{r} = \frac{R+r}{L}$	
	0.25	$rac{di}{dt} + rac{i}{ au} = rac{I_0}{ au} \; \Leftarrow \; au rac{di}{dt} + i = I_0$ ومنه:	
	0.25	$\dot{z} = I_{c} \left(1 - e^{-rac{t}{\tau}} \right)$ حل للمعادلة التفاضلية نجد ان المعادلة	
	0.25	التفاضلية.	
	0.25	3 - المنحنى البياني	
		ب- معادلة البيان	
01	0.25	$L = a\tau$	
	0.20	$\begin{array}{c c} \textbf{0.1H} \\ \hline \textbf{4 ms} \\ \hline \end{array} \qquad \qquad L = 25\tau$	
	0.25	ج- الاستنتاج: - الاستنتاج:	
	0.23	$L=(R+r) au$ $\Rightarrow r=7,5\Omega$ (توافق القيمة المحسوبة في $r=7,5\Omega$	
		183	

تابع الإجابة النموذجية اختبار مادة : علوم فيزياتية الشعب(ة): رياضيات + تقني رياضي

3 .	ريسمي العلا	ع الإجابة النموذجية اختبار مادة : علوم فيزيائية الشعب(ة): رياضيات + تقتى	محاور
	مجزأة	عناصر الإجابة	محاور الموضوع
مجموع	مجره		سرسوح
		<u>التمرين الخامس</u> : (04 نقاط)	
		$1^{\nu (ms^{-1})}$. I hapel . 1^{-1}	
0.5	0.5	0.08	
Ì		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		0.04 0.00 1(3)	. 8
	2×0.25		
	0.25	$a=2m.s^{-2}$ الحركة مستقيمة متغيرة بانتظام متسارعة -1	
1.25	0.5	$v_0 = 0.08 m.s^{-1} - \omega$	
		d=0,008m ج- المسافة المقطوعة : مساحة الحيز $d=0,008m$:
	0.25	$\sum \vec{F} = m \vec{a}_0$: $($ $)$ $)$ $)$ $= 1 - 3$	
	0.25	$\overrightarrow{P}+\overrightarrow{R}=m\overrightarrow{a_0}$.	
	0.25	$a_0 = g \sin lpha : \overline{x'x}$ بالإسقاط على	
	0.25	$a_0 = 3, 4m.s^{-2}$	
1.25		T. P	
1.20			
	0.25		
	0.25	$a_0>a$ ب $-$ المقارنة: $a_0>a$ جود احتكاكات	
	0.25	$\overrightarrow{P}+\overrightarrow{R}+\overrightarrow{f}=m\overrightarrow{a}$ \overrightarrow{f} قيمة \overrightarrow{f} قيمة	
	0.25		
01	0.05	$mg\sinlpha-f=ma$	
	0.25	C 0 1 4 N I	
		f=0,14N	
	0.25	$-\frac{x'}{x}$	
	0.25		
		x 7 7	
		T P	

		194	
		IUT	

تابع الإجابة النموذجية اختبار مادة: علوم فيزيانية الشعب(ة): رياضيات + تقنى رياضي

ئمة	العلا	سیات + تقنی ر ا		······································	ة : علوم فيزيا	· · · · · · · · · · · · · · · · · · ·			محاور
مجموع	مجزأة			وع التاني)	إجابة (الموض	عناصر ال			الموضوع
	0.25 0.25 0.25		$H_2O_2(a$	$I_{2}(aq) + 2e$ $I_{3}(aq) + 2e^{-} + 2H$ $I_{3}(aq) + 2I^{-}(aq) $	$^{+}(aq) = 2H_2C$	P (<i>l</i>)	<u>لأول</u> : (5,5)	<u>التمرين ا!</u> 1 – أ/	
1.5	000000000000000000000000000000000000000	لمعادلة	1		+2I^(aq) +		$I_2(\alpha q) + 2$		
	0.5	ح. ابتدائیة ح . انتقالیة ح . نهائیة	0 x	4,5mmol $4,5-x$ $4,5-x$	$ \begin{array}{c c} 20mmol \\ 20-2x \\ 20-2x_f \end{array} $	بوفرة //	0 x	بوفرة //	
A transmission of the second	0.25	' ' ' ' ' C	x_j	$4,5-x_{\rm m}$	$\frac{1}{2} = 0 \Rightarrow x_{\text{max}} = 0 \Rightarrow x_{ma$		اعل المحد	ومنه المتف	
0.25	0.25			I_2	كل نتائي اليود دينا :	ليد لتوقيف تش ل المعايرة لم			
0.5	0.25 0.25		[/	$\left[\frac{CV_{E}}{2V}\right] = \frac{CV_{E}}{2V}$				Action 1	
A deligner of the second secon	0.25			1 – 9 mi	بة التفاعل . كل I ₂ عند n	في نهاء I_2 في نهاء $\left[I_2\right]_r=22$	$2,4.10^{-3}$ m	$ol.L^{-1}$	
1.25	0.25			$\frac{\Delta[I_2]}{\Delta t}$	يمثل ميل المما	$\frac{d[I_2]}{dt} :$	اب السرعة ٧ حيث	$=\frac{d\left[I_{2}\right]}{dt}$	
	0.25					$\frac{\Delta[I_2]}{\Delta t} \simeq 0$,7mmol.1	Z-I min-1	
	0.25			2	V # O -	$\frac{dn_{(H_2O_2)}}{dt}$	-=+ dx =	-> =v _{vol} .V	
	0.25					$dt \approx 0.14mmol$	2.00	vui	
And a second sec		[18	35						

تابع الإجابة النموذجية اختبار مادة : علوم فيزيائية الشعب(ة): رياضيات + تقنى رياضي

مة	العلا	ع الإجابة النموذجية اختبار مادة: علوم فيزيائية الشعب(ة): رياضيات + تقتى را عناصر الإجابة	محاور
مجموع	مجزاة	عنصر الإجابة	الموضوع
		التمرين الثاني: (03 نقاط)	
	0.25	$238 + x = 241 \Rightarrow x = 3 \neg 1 - 1$	
	0.25	$92 = 94 - y \Rightarrow y = 2$ ${}^{241}Pu \rightarrow {}^{A}Am + {}^{0}e - \hookrightarrow$	
		$Z = 95 \qquad A = 241$	
	0.25		
		ج- طاقة الربط لنواة Pu : عاقة الربط لنواة الربط النواة عام 241 الم	
02	0.25	$E_{i} = 1818,4743 MeV$ $E_{i} = \left[Z.m_{p} + (A-Z)m_{n} - m(Pu)\right]c^{2}$	
		طاقة الربط لنواة ²⁴¹ Am :	
	0.25	$E'_{i} = 1817,7197 MeV$ $e'_{i} = [Z.m_{p} + (A-Z)m_{n} - m(Am)]c^{2}$	
	0.25	$\frac{E_i}{241} = 7,5455 MeV / nucl$: طاقة الربط لكل نوكليون	
	0.5	$\frac{E_{l}'}{241} = 7,5424 MeV / nucl$	
		نواة ²⁴¹ Pu أكثر استقرارا من ²⁴¹ Am.	
	0.25	$ \ln \frac{A(t)}{A_0} = f(t) \qquad \ln \frac{A(t)}{A_0} = f(t) $ $ t(ans) $	
01	0.25	$A(t) = A_0 e^{-\lambda t} \Rightarrow \frac{A(t)}{A_0} = e^{-\lambda t} - \varphi$ $\ln \frac{A(t)}{A_0} = -\lambda t$	
	0.25	$-\lambda=a$ و منه: $a\langle 0 \rangle = \ln \frac{A(t)}{A_0} = at$ و منه: $-\lambda=a$	
	0.25	$\lambda = 0,05 ans^{-1}$	
	0.23	$t_{\frac{1}{2}} = 13,2ans \qquad \text{(ais)} \qquad t_{\frac{1}{2}} = \frac{\ln 2}{\lambda}$	

تابع الإجابة النموذجية اختبار مادة: علوم فيزيائية الشعب(ة): رياضيات + تقتى رياضي

نمة	العلا	3.1. VI 11-	محاور
مجموح	مجزاة	عناصر الإجابة	محاور لموضوع
	0.25 0.25	$ au\simeq 14ms$ $ au\simeq 14ms$ $E=14,8V$ $ au=BC\Rightarrow C=rac{ au}{T}$	
1.25	0.25 0.25 0.25	R $C=28\times 10^{-6}F=28\mu F$ $u_{C}=14,8\times \frac{99}{100}=14,65V$ - بياتيا: $t'=70ms$	
	0.25	$E = u_{AB} + u_{BD}$ $E = u_C(t) + Ri$ $i = \frac{dq}{dt} = C \frac{du_C}{dt}(t)$	
01	0.25 0.25	$E=u_{_C}(t)+RCrac{du_{_C}}{dt}(t)$ $rac{du_{_C}}{dt}(t)+rac{1}{RC}u_{_C}(t)-rac{E}{RC}=0$ $u_{_C}(t)=E(1-e^{-\epsilon/ au})$: نبات	ان انجا
	0.25 0.25	$\begin{split} E_C &= \frac{1}{2}Cu_C^2 \\ t_a &= 0 \Rightarrow E_a = 0J \end{split}$	
1.25	0.25 0.25	$t_1 = \tau \Rightarrow E_1 = \frac{1}{2} (0.63E)^2 C = 1.21 \times 10^{-3} J$ $t_2 = 5\tau \Rightarrow E_2 = \frac{1}{2} (0.99E)^2 C = 3 \times 10^{-3} J$	
	0.25	$3x10^{-3}$ $Ec(J)$ 7 5τ $t(s)$	

تابع الأجابة النموذجية اختبار مادة : علوم فيزيائية الشعب(ة): رياضيات + تقتى رياضي

نمة	العلا	رياضيات + تقني ر	1	2000			عابه النمونجيا		
مجموع	مجزأة			الإجابه	عناصر				محاور الموضوع
					,	نقاط)	ن الرابع: (03	التمرير	
	0.25		$c_i =$	$0,1mol.L^{-1}$		$c_1 = \frac{1}{V}$	$\frac{n}{V} = \frac{V_g}{V_{-}V} -$	i — 1	
0.5	0.25		λ	$H_3(g)+H$	$_{2}O\left(I\right) =I$	$VH_4^+(aq)+$	$HO^{-}(aq)$	ب –	
							– جُدولُ النقد		
1		الحالة	النقدم	$NH_3(g)+$	H 20 (1)	= NH , (aq)	+ HO - (aq)		
	0.5	ح. إبندائية	0	$0,1V_1$	بزيادة	0	0		
		ح . إنتقالية	x	$0.1V_1-x$	//	х	х		
		ح . نهائية	x_{j}	$0,1V_1-x_f$	//	x_f	x_f		
			1	•			$x_{\text{max}} = 0.1V_{\text{i}}$		
01				$[H_3C]$)+],=10	$p^{H} = 10^{-11.1}$	$=7,9.10^{-12}$ me	$ol.L^{-1}$	
				HO-] =-	Ke	10-14	$=1,26.10^{-3}$ me	J I-1	
Ĭ			ļ	-,, _], _[H_3O^+	7,9.10-12	- 1, 20.10 110	,, , <u>,</u> ,	
				$\mathbf{x}_f = [HO^-]$	V_1 ,	$x_f = 1, 2$	$6 \times 10^{-3} V_{i}$	9	
Ī	0.25						$\tau_{1_f} = \frac{x_f}{x_{-\infty}} =$	1,3%	
	0.25			(X	(غير تام).	ليا مع الماء	ر لا يتفاعل كا		
		$V_{x} = \frac{c_{x}V_{x}}{c_{x}}$	$\frac{2}{L} = 10mL$	10 <i>n</i> حجما	عتها Lr	طة ماصة س	– ناخذ بواس	1-3	
	0.25	L_1					في حوجلة س		
		, کر					ى قىي خوجتە سا 10 ⁻¹¹ mol.L ⁻¹	_	
0.75				$\left[HO^{-}\right]_{f}=\overline{\left[}$	$\frac{Ke}{H_3O^*}$	$\frac{10}{1,6.10^{-11}}$	0,625.10 ⁻³ m	ot.L ⁻¹	
	0.25	$\tau_{2_i} = \frac{x_i}{x_i}$	H = HO	$\frac{V_2}{V_2} = \frac{H_2}{G_2}$	<u>o-]</u>	, $ au_2$	= 3,1%		
	0.25						لية التمديد ترفع	- عما	
		4 3			, , ,	,	_	- 4	
						nH - :	ok +log [N	$[H_3]$	
	0.25					pi1 = [$pK_{a_1} + \log \frac{[N]}{[N]}$	H_4^+	
0.75						$pK_{a_1} =$	$pH - \log \frac{[N]}{[N]}$	H_3 H_4^+	
	0.25			•	pK	$C_{a_1} = 11, 1 - 1$	$og \frac{9,87.10^{-2}}{1,26.10^{-3}}$	= 9,2	
	0.25	188	3				$-pKa_1 = 6,3.10$		

تابع الإجابة النموذجية اختبار مادة: علوم فيزياتية الشعب(ة): رياضيات + تقنى رياضي

العلامة		ع الإجابه النمودجية اختبار مادة: علوم فيزيائيه الشعب(ة): رياضيات + تقتي ر	محاور
مجمو	مجزاة	عناصر الإجابة	لموضوع
		التمرين الخامس: (03 نقاط)	
	0.25	ا- مسار الكوكب اهليليجي تمثل الشمس أحد محرقيه .	
	0.25	هما محرقا المدار الاهليليجي، F_2 , F_1 هما محرقا المدار الاهليليجي، F_2 , F_3	
01	0.25	$S_{i} = S_{2} - 2$ $\widehat{C'C} < \widehat{D'D} \Rightarrow \frac{\widehat{C'C}}{\Delta t} < \frac{\widehat{D'D}}{\Delta t} - 3$	
	0.25	-ب	
	0.25	مربع دور الكوكب يتناسب مع مكعب البعد المتوسط للكوكب عن الشمس -1 $\frac{T^2}{a^3}=K=rac{T^2}{r^3}\Leftarrowigg[a=r]$	
ļ		2- بتطبيق قانون نيوتن الثاني:	
	0.25	$\sum_{\vec{F}} \vec{F}' = m \vec{a}$	
-			
		$ F = m a_n $ $ F = G \frac{m M}{r^2} $ $ \Rightarrow m a_n = G \frac{m M}{r^2} $	
		$a_{,,} = G \frac{m M}{n^{3}}$	
02	0.25	$a_{n} = \frac{v^{2}}{r}$ $T = \frac{2 \pi r}{v}$ $\Rightarrow \frac{v = \sqrt{\frac{GM}{r}}}{r = 2 \times \sqrt{\frac{r^{3}}{GM}}}$	
	0.25	$T = \frac{2 \pi r}{v}$	
		$T^2=Kr^3$:بیانیا:	
	0.25	$T^2 = 0.3 imes 10^{-18} r^3$ $T^2 = K r^3$ حسب قانون كبار الثالث: $T^2 = K r^3$	
		-4 حسب فالون كبار النائب: 117 1 5 - استنتج قيمة كتلة الشمس:	
	0.25	$ \left. \begin{array}{l} T^2 = Kr^3 \\ T^2 = \frac{4\pi^2}{GM}r^3 \right \Rightarrow \frac{4\pi^2}{GM} = K $	
		$M = \frac{4\pi^2}{GK}$	
	0.25	$M=1,97\times10^{30}Kg$	
		189	

تابع الإجابة النموذجية اختبار مادة: علوم فيزيائية الشعب(ة): رياضيات + تقتى رياضي

		ع الإجابة النموذجية اختبار مادة: علوم فيزيائية الشعب(ة): رياضيات + تقتي ريا	
العلامة		عناصر الإجابة	محاور ا
مجموع	مجزأة	9-10-301-120	الموضوع
	0.5 0.25	التمرين التجريبي: (04 نقاط) $v(m.s^{-1})$ $v = f(t)$ البياني $v = f(t)$ البياني $v_{lim} = 1,14m/s$ برا	
1.5		t	
	0.5	ج/ الشكل ، الحجم، الكتلة (dv)	
	0.25	$a_0 = \left(\frac{dv}{dt}\right) = 8,76m.s^{-1} / 2$	
	0.25	$\vec{\Pi}$ $(\vec{F} \cdot \vec{P} \cdot$	
2.5	0.25 0.25	$\sum \overline{F_{\acute{e}xa}} = m \overline{a}$: بنطبیق القانون الثانی لنبوتن $P+f+\Pi=m \overline{a}$	
	0.25	بالإسقاط على (ZZ') : $P-\Pi-f=ma$ (1) $\Rightarrow m\frac{dv}{dt}=mg-\rho Vg-kv$	
3		$rac{dv}{dt}+rac{k}{m}v=g\left(1-rac{ ho V}{m} ight)$: بالقسمة على m نجد m نجد m نجد m بالمطابقة مع المعادلة المعطاة: m المطابقة مع المعادلة المعطاة: m	
	0.25	***	
	0.25	$A = \frac{k}{m} C = g : $	
	2×0.25	$v = 0$ ، $a_0 = 8,76m.s^{-1}$: $t = 0$ من المعادلة $\Pi = 19,76 \times 10^{-3}N$: (1) من النظام الدائم : $v = v_{lim} = 1,14m.s^{-1}$ ، $a = 0$: من النظام الدائم	
	2×0.25	$k = 0.16 N .m s^{-1}$: (1) بالتعویض فی	
		190	