Gas de Bose

1.1 Cuánticos IV -reubicar-

algunos temitas sueltos:

números de ocupación

gas de Fermi $p y c_v$

gas de Fermi $p y c_v$

Condensado de Bose

El coeficiente lineal del virial $1/2^{5/2}=0.1767767$ sale considerando las $f_{\nu}(z)$ hasta orden uno y tirando términos más allá.

El requerimiento $\mu<0$ viene de que el fundamental n_0 no puede tener población negativa

$$\begin{split} n_0 &= \frac{1}{\mathrm{e}^{\beta(e_0 - \mu)} - 1} = \frac{1}{\mathrm{e}^{-\beta\mu} - 1} \geq 0 \\ &= \mathrm{e}^{-\beta\mu} - 1 > 0 \quad \Rightarrow \quad \mu < 0 \end{split}$$

Con $\mu \to 0^-$ tenemos $n \to \infty$

En el caso del condensado establecemos desde

$$\frac{\lambda^3(T)}{v} = g_{3/2}(1)$$

que lleva para T_c (para v fijo) o v_c (para T fija) versiones evaluadas de la anterior ecuación.

Para la población de los estados excitados

$$p_x = \frac{h}{V^{1/3}} n_x \Rightarrow \mathbf{p} = \frac{h}{V^{1/3}} \mathbf{n}$$

¿El condensado BE requiere población de los niveles o V total de algún tipo? Tenia unas consultas agarradas con clip: ¿porqué hay una cúspide en C_v ? ¿transiciones?

$$\frac{n_{e_i}}{V} = \frac{1}{V} \frac{1}{z^{-1} \operatorname{e}^{\beta e_i} - 1} \leq \frac{1}{V(\operatorname{e}^{\beta e_i} - 1)} = \frac{1}{V(\sum_{l=1}^{\infty} (\beta e_i)^l / l!)}$$

pués $z^{-1} = 1/z \le 1$

$$\beta e = \frac{\beta p^2}{2m} = \frac{\beta}{2m} \frac{h^2}{V^{2/3}} (n_x^2 + n_y^2 + n_z^2)$$

$$\frac{2m}{V^{1/3}\beta h^2(\sum_{l=1}\ldots)}\to 0 \quad \text{ si } \quad V\to\infty$$

y entonces

$$\frac{n_e}{V} \to 0$$
 si $V \to \infty$

Esto significa que si V es muy grande, en el condensado se tenderá a que todas las partículas se hallen en e=0 pues

$$\frac{N_e}{N} \to 0$$
 $\frac{N_0}{N} \to 1$

Véamoslo en la ecuación de N,

$$\frac{\lambda^3 N}{V} = g_{3/2}(1) + \frac{\lambda^3}{V} \frac{z}{1-z}$$

y si $z \to 1$ de forma que $z/(1-z) \gg 1$ entonces $g_{3/2}(1)$ es despreciable de modo que

$$\frac{\lambda^3 N}{V} \approx \frac{\lambda^3}{V} \frac{z}{1-z} = \frac{\lambda^3 N_0}{V}$$

y se da que $N \sim N_0.$

En Bose se da 0 < z < 1

DIBUJITOS

Con $z\ll 1$ es $\lambda^3/v\approx z$ y entonces $z\approx 1/(v/\lambda^3)$. Con z=1 es $\lambda^3/v=2.612$ n pero si $\lambda^3/v>2.612$ entonces z no se mueve y sigue en su valor 1.