Tutor: Benjamin Brindle Josua Kugler, Nico Haaf

\sum	A45	A46	A47	A48
	4	4	6	4

Aufgabe 45

Sei $\emptyset \neq D \subseteq \mathbb{C}$ ein Gebiet.

(a) Sei f eine meromorphe Funktion auf D. Ohne Einschränkung habe \tilde{f} genau einen Pol der Ordnung ≥ 1 in $z_0 \in D$ (Singularitäten von \tilde{f} sind höchstens Pole und liegen diskret in \mathbb{C} . Da Holomorphie eine lokale Eigenschaft ist und der Fall f holomorph trivial ist, genügt es genau eine Singularität von \tilde{f} zu betrachten). Wir setzen \tilde{f} fort, durch $f: D \to \hat{\mathbb{C}}$ mit $f(z) = \tilde{f}(z)$ für $z \neq z_0$ und $f(z_0) = \infty$.

f ist stetig auf D, denn: Stetigkeit auf $D \setminus \{z_0\}$ folgt aus $f|_{D \setminus \{z_0\}} = \tilde{f}$ holomorph auf $D \setminus \{z_0\}$, also insbesondere stetig. Nun hat \tilde{f} in z_0 einen Pol Ordnung ≥ 1 . Aus der Charakterisierung von Polstellen nicht verschwindender Ordnung folgt dann:

$$\lim_{z \to z_0} f(z) = \lim_{z \to z_0} \tilde{f}(z) = \infty = f(z_0).$$

Folglich ist f stetig in z_0 , also f stetig auf ganz D.

Nun zeigen wir, dass f holomorphe Funktion zwischen Riemannschen Flächen ist: wir fassen D als Riemannsche Fläche auf, mit dem Atlas der nur aus der Karte D und der Kartenabbildung idD besteht und $\hat{\mathbb{C}}$ als Riemannsche Fläche, mit dem Atlas der aus $X_0 = \mathbb{C}$ und $X_1 = \mathbb{C}^\times \cup \infty$ mit den Kartenabbildungen $\psi_0 = \mathrm{id}_C \colon \mathbb{C} \to \mathbb{C}$ und $\psi_1 = \frac{1}{z} \colon X_1 \to \mathbb{C}$. Sei $z \in D$.

 $z \neq z_0$, dann ist $f(z) \in C$ und $\psi_0 \circ f \circ \mathrm{id}_{\mathbb{C}}^{-1} = f$ auf einer Umgebung von z ist holomorph, also f holomorph in z.

 $z=z_0$, dann ist $f(z_0)=\infty$ und $\psi_1\circ f\circ \mathrm{id}_{\mathbb{C}}^{-1}=\frac{1}{f(z)}$. $\frac{1}{f(z_0)}=0$ und nach Identitätssatz existiert eine Umgebung V von z_0 sodass $0\notin f[V]$, folglich $\frac{1}{f(z)}$ holomorph auf V und somit. Also f holomorph in z_0 . Folglich f holomorph auf D.

(b) $\mathbf{Z.Z.}$ $f: D \to \hat{\mathbb{C}}, f(z) = \infty$ ist holomorph, jedoch existiert keine meromorphe Funktion \tilde{f} sodass f durch \tilde{f} definiert wird. f ist die einzige holomorphe Funktion $D \to \hat{\mathbb{C}}$ mit dieser Eigenschaft. Beweis f ist holomorph: $f = \infty$ konstant, also stetig. $z \in D$, dann $f(z) = \infty$ und $\psi_1 \circ f \circ \mathrm{id}_{\mathbb{C}}^{-1} = \frac{1}{f(z)} = 0$ ist holomorph, also ist f holomorph in z.

Angenommen \tilde{f} existiert, dann ist $f(z) = \infty$ genau dann wenn \tilde{f} ein Pol Ordnung $\neq 0$ hat. Also hat \tilde{f} Polstellen in jedem Punkt in D. Somit sind die Polstellen von \tilde{f} nicht diskret in D, folglich ist \tilde{f} nicht meromorph.

Sei $g \colon D \to \hat{\mathbb{C}}$ holomorph sodass es keine meromorphe Funktion \tilde{g} auf D gibt die g definiert. Hat $\{z \in D \mid g(z) = \infty\}$ keinen Häufungpunkt in D, dann existiert offensichtlich ein solches g (denn dann liegt $\{z \in D \mid g(z) = \infty\}$ diskret in D). Also hat $\{z \in D \mid g(z) = \infty\}$ einen Häufungspunkt in D.

Sei $z_0 \in D$ diese Häufungspunkt. Angenommen $g(z_0) = 0$, dann ist $\psi_0 \circ g \circ \mathrm{id}_{\mathbb{C}}^{-1} = g(z)$ holomorph in einer Umgebung U von z_0 , jedoch existiert ein $\xi \in U$ sodass $g(\xi) = \infty$, da z_0 Häufungspunkt von $\{z \in D \mid g(z) = \infty\}$, ein Widerspruch, also $g(z_0) \neq 0$. g holomorph in z_0 , also ist $\psi_1 \circ g \circ \mathrm{id}_C^{-1} = \frac{1}{g(z)}$

holomorph in einer ϵ -Umgebung $U \subseteq D$ von z_0 . Nun liegt $\left\{z \in D \mid \frac{1}{g(z)} = 0\right\}$ dicht in U, also ist nach Identitätssatz $\frac{1}{g(z)} = 0$ auf ganz U, also $g(z_0) = \infty$.

Sei $\xi \in D$. Ist $\xi \in U$, so folgt bereits $g(\xi) = \infty$. Sei nun $\xi \notin U$, da D wegzusammenhängend, existiert ein Weg γ mit $\gamma(0) = z_0$ und $\gamma(1) = \xi$. g ist in jedem Punkt in D holomorph, also auch

in jedem Punkt $\gamma([0,1])\setminus U\neq\emptyset$. Sei U_z zu jedem Punkt $z\in\gamma([0,1])\setminus U$ die Umgebung in der $\psi_i\circ g\circ \operatorname{id}_{\mathbb C}^{-1}$ holomorph ist. $\gamma([0,1])\setminus U$ ist kompakt, folgich existieren endlich viele solche U_x die $\gamma\setminus U$ überdecken. Ohne Einschränkung existiere genau ein solches U_x (sonst folgt induktiv folgt nach endliche vielen Schritten, dass $g(\xi)=\infty$). Es genügt zu zeigen, dass $g(U_x)=\{\infty\}$. Es gilt $U_x\cap U\neq\emptyset$ offen, insbesondere $g(U_x\cap U)=\{\infty\}$. Also ist $\psi_1\circ g\circ \operatorname{id}_{\mathbb C}^{-1}=\frac{1}{g(z)}$ holomorph auf U_x . Da $\frac{1}{g(U_x\cap U)}=\{\infty\}$ hat $\left\{\frac{1}{g(z)}=0\mid z\in U_x\right\}$ einen Häufungspunkt, aus dem Identitätssatz folgt $g=\infty$ auf ganz U_x .

Aufgabe 46

$$p = \frac{4(1 - \lambda + \lambda^2)^3}{27\lambda^2(1 - \lambda)^2}.$$

(a) $\lambda \colon \mathbb{H} \to \mathbb{C} \setminus \{0,1\}$ ist holomorph. Folglich ist $27\lambda^2(1-\lambda)^2 \neq 0$ für alle $\tau \in \mathbb{H}$. Insbesondere ist $p \in \mathcal{O}(\mathbb{H})$ also Quotient (usw.) von holomorphen Funktionen mit Nenner keine Nullstelle in \mathbb{H} . Aus der VL ist bekannt, dass $\lambda \in \mathbb{C}(\Gamma[2])$, also $\lambda|_0M = \lambda$ für alle $M \in \Gamma[2]$. Es folgt direkt, dass $p|_0M = p$ für alle $M \in \Gamma[2]$. Ferner ist bekannt, dass:

$$\lim_{\tau \to i\infty} \lambda(\tau) = 0, \quad \lim_{\tau \to 0} \lambda(\tau) = 1, \quad \lim_{\tau \to 1} \lambda(\tau) = \infty.$$

Wir folgern:

$$\begin{split} &\lim_{\tau \to i\infty} p(\tau) = \lim_{\tau \to i\infty} \frac{4(1-\lambda+\lambda^2)^3}{27\lambda^2(1-\lambda)^2} = \infty, \\ &\lim_{\tau \to 0} p(\tau) = \lim_{\tau \to 0} \frac{4(1-\lambda+\lambda^2)^3}{27\lambda^2(1-\lambda)^2} = \infty, \\ &\lim_{\tau \to 1} p(\tau) = \lim_{\tau \to 1} \frac{4\lambda^6 + \mathcal{O}(\lambda^5)}{27\lambda^4 + \mathcal{O}(\lambda^3)} = \infty. \end{split}$$

Es folgt, dass $p|_0M$ für alle $M \in \Gamma$ holomorph auf \mathbb{H} ist und in $i\infty$ eine nicht wesentliche Singularität hat (sprich $\lim_{\tau \to i\infty} p|_0M \in \hat{\mathbb{C}}$). Folglich ist p holomorphe Modulfunktion auf \mathbb{H} zu $\Gamma[2]$.

(b) Da $p|_0M = p$ für alle $M \in \Gamma$ genügt es zu zeigen, dass $p|_0M = p$ für alle M Vertreter von Elementen von $\Gamma/\Gamma[2]$. Wir wissen bereits von Aufgabe 35, dass wir genau die folgenden Transformationen betrachten müssen: (sei M_i die zur *i*-ten links stehenden Transformation gehörige Matrix)

$$\{\lambda, \lambda^{-1}, 1 - \lambda, \left(1 - \frac{1}{\lambda}\right), \left(\frac{1}{1 - \lambda}\right), \left(\frac{\lambda}{1 - \lambda}\right)\}.$$

$$M = S \text{ reach } wcgen$$

$$M = S$$

Wir erhalten durch ausrechnen, wobei wir benutzen, dass $\lambda(\tau) \notin \{0,1\}$:

$$p|_{0}M_{1} = p$$

$$p|_{0}M_{2} = \frac{4\left(1 - \frac{1}{\lambda} + \frac{1}{\lambda^{2}}\right)^{3}}{27\frac{1}{\lambda^{2}}\left(1 - \frac{1}{\lambda}\right)^{2}} \cdot \frac{\lambda^{6}}{\lambda^{6}} = \frac{4(\lambda^{2} - \lambda + 1)^{3}}{27\lambda^{2}} = p$$

$$p|_{0}M_{3} = \frac{4\left(1 - (1 - \lambda) + (1 - \lambda)^{2}\right)^{3}}{27(1 - \lambda)^{2}(1 - (1 - \lambda))^{2}} = \frac{4(\lambda + \lambda^{2} - 2\lambda + 1)^{3}}{27\lambda^{2}(1 - \lambda)^{2}} = p$$

$$p|_{0}M_{4} = \frac{4\left(1 - \left(1 - \frac{1}{\lambda}\right) + \left(1 - \frac{1}{\lambda}\right)^{2}\right)^{3}}{27\left(1 - \frac{1}{\lambda}\right)^{2}\left(1 - \left(1 - \frac{1}{\lambda}\right)\right)^{2}} = \frac{4\left(1 - \frac{1}{\lambda} + \frac{1}{\lambda^{2}}\right)^{3}}{27\frac{1}{\lambda^{2}}\left(1 - \frac{1}{\lambda}\right)^{2}} \stackrel{?}{=} p$$

$$p|_{0}M_{5} = \frac{4\left(1 - \left(\frac{1}{1 - \lambda}\right) + \left(\frac{1}{1 - \lambda}\right)^{2}\right)^{3}}{27\left(\frac{1}{1 - \lambda}\right)^{2}\left(1 - \left(\frac{1}{1 - \lambda}\right)\right)^{2}} \cdot \frac{(1 - \lambda)^{6}}{(1 - \lambda)^{6}} = \frac{4\left(1 - (1 - \lambda) + (1 - \lambda)^{2}\right)^{3}}{27(1 - \lambda)^{2}(1 - (1 - \lambda))^{2}} \stackrel{?}{=} p$$

$$p|_{0}M_{6} = \frac{4\left(1 - \left(\frac{\lambda}{1 - \lambda}\right) + \left(\frac{\lambda}{1 - \lambda}\right)^{2}\right)^{3}}{27\left(\frac{\lambda}{1 - \lambda}\right)^{2}\left(1 - \left(\frac{\lambda}{1 - \lambda}\right)\right)^{2}} = \cdots \stackrel{\text{analog}}{=} p.$$

Folglich gilt $p|_0M=p$ für alle $M\in\Gamma$ und analog zu den bereits in (a) geniauen vorwanden folgt dass p holomorphe Modulfunktion zu Γ vom Gewicht 0 ist, also $p\in\mathbb{C}(\Gamma)=\mathbb{C}(j)$. Es folgt die Existenz eine komplexen Polynoms $P=a_0+a_1X+...+a_nX^n$ mit P(j)=p.

Aufgabe 47

(a) Es gilt

$$(0,0)*(a_1,a_2)=(a_1,a_2)\forall (a_1,a_2)\in\mathbb{Z}^2$$

Damit ist (0,0) das neutrale Element. Weiter ist durch

$$((-1)^{-a_2+1}a_1, -a_2) * (a_1, a_2) = ((-1)^{-a_2+1}a_1 + (-1)^{-a_2}a_1, -a_2 + a_2) = (0, 0)$$

das Inverse zu (a_1, a_2) bestimmt. Die Assoziativität folgt durch

$$((a_1, a_2) * (b_1, b_2))(c_1, c_2) = (a_1 + (-1)^{a_2}b_1, a_2 + b_2)(c_1, c_2)$$

$$= (a_1 + (-1)^{a_2}b_1 + (-1)^{a_2+b_2}c_1, (a_2 + b_2) + c_2)$$

$$= (a_1 + (-1)^{a_2}(b_1 + (-1)^{b_2}c_1), a_2 + (b_2 + c_2))$$

$$= (a_1, a_2) * (b_1 + (-1)^{b_2}c_1, b_2 + c_2)$$

$$= (a_1, a_2) * ((b_1, b_2) * (c_1, c_2))$$

Offensichtlich ist jedes Produkt wieder in \mathbb{Z}^2 enthalten. Dadurch wird $(\mathbb{Z}^2, *)$ zu einer Gruppe. Wegen

$$(1,2)*(2,1) = (1+(-1)^22,2+1) = (3,3)$$

 $(2,1)*(1,2) = (2+(-1)^11,1+2) = (1,3)$

ist die Gruppe nicht abelsch. $(0,0)*(x_1,x_2)=(x_1,x_2)$ mit $(x_1,x_2)\in\mathbb{R}^2$ folgt analog zum Beweis, dass (0,0) neutrales Element von $(\mathbb{Z}^2,*)$ ist. $(a_1,a_2)*((b_1,b_2)*(x_1,x_2))=((a_1,a_2)*(b_1,b_2))*(x_1,x_2)$

folgt analog zum Beweis der Assoziativität. Daher handelt es sich um eine Linksoperation. Diese ist wegen

 $D[(a_1, a_2) * (b_1, b_2)] = \begin{pmatrix} (-1)^{a_2} & 0 \\ 0 & 1 \end{pmatrix}$

differenzierbar. Offensichtlich sind alle höheren partiellen Ableitungen 0. Daher handelt es sich um eine glatte Gruppenoperation.

- (b) Wir zeigen die beiden Eigenschaften einer freien Operation.
 - (1) Wähle zu $x \in \mathbb{R}^2$ die offene Umgebung $U_{1/2}(x)$. Man sieht (u.a. aus Symmetriegründen) schnell ein, dass $(a_1, a_2) * U_{\epsilon}(x) = U_{\epsilon}((a_1, a_2) * x)$ gelten muss. Daher erhalten wir

$$(a_{1}, a_{2}) * U_{1/2}(x) \cap U_{1/2}(x) \neq \emptyset \Leftrightarrow U_{1/2}((a_{1}, a_{2}) * x) \cap U_{1/2}(x) \neq \emptyset$$

$$\Rightarrow U_{1/2}((a_{1} + (-1)^{a_{2}}x_{1}, a_{2} + x_{2})) \cap U_{1/2}((x_{1}, x_{2})) \neq \emptyset$$

$$\Rightarrow |a_{1} + (-1)^{a_{2}}x_{1} - x_{1}|^{2} + |a_{2} + x_{2} - x_{2}|^{2} < 1$$

$$\Rightarrow |a_{1} + (-1)^{a_{2}}x_{1} - x_{1}|^{2} + |a_{2}|^{2} < 1$$

$$\stackrel{a_{2} \in \mathbb{Z}}{\Longrightarrow} |a_{1} + (-1)^{a_{2}}x_{1} - x_{1}|^{2} < 1 \wedge a_{2} = 0$$

$$\Rightarrow |a_{1} + x_{1} - x_{1}|^{2} < 1 \wedge a_{2} = 0$$

$$\Rightarrow |a_{1}|^{2} < 1 \wedge a_{2} = 0$$

$$\stackrel{a_{1} \in \mathbb{Z}}{\Longrightarrow} a_{1} = a_{2} = 0$$

- (2) Seien $(x_1, x_2) \not\sim (y_1, y_2) \in \mathbb{R}^2$ gegeben. Wieder nutzen wir $(a_1, a_2) * U_{\epsilon}(x) = U_{\epsilon}((a_1, a_2) * x)$. Daher genügt es zu zeigen, dass $||(a_1, a_2) * (x_1, x_2) (y_1, y_2)|| \geq 2\epsilon$ gilt. Dann sind nämlich beliebig Translate der ϵ -Umgebungen von x und y disjunkt. Wir unterscheiden drei Fälle
 - i. $x_2 y_2 \notin \mathbb{Z}$. Setze $\epsilon = \frac{x_2 y_2 \mod \mathbb{Z}}{2}$. Wegen

$$\|(a_1, a_2) * (x_1, x_2) - (y_1, y_2)\| \ge \sqrt{|a_2 + x_2 - y_2|^2} \ge \sqrt{(x_2 - y_2 \mod \mathbb{Z})^2} \ge 2 \cdot \epsilon$$

folgt die Aussage für diesen Fall.

ii. $x_2 - y_2 \in 2\mathbb{Z}$. Setze $\epsilon = \frac{x_1 - y_1 \mod \mathbb{Z}}{2}$. Insbesondere ist $\epsilon < \frac{1}{2}$. Angenommen, $\epsilon = 0$. Dann wäre $y_1 - x_1, y_2 - x_2$ * $(x_1, x_2) = (y_1 - x_1 + (-1)^{x_2 - y_2} x_1, y_2 - x_2 + x_2) = (y_1, y_2)$, Widerspruch. Also $0 < \epsilon < \frac{1}{2}$. Daher gilt für alle $(a_1, a_2) * (x_1, x_2) = (a_1 + (-1)^{a_2} x_1, a_2 + x_2)$ mit $a_2 + x_2 \neq y_2$ bereits

$$||(a_1, a_2) * (x_1, x_2) - (y_1, y_2)|| \ge \sqrt{|a_2 + x_2 - y_2|^2} \ge 1 \ge 2 \cdot \epsilon.$$

Wir müssen also nur (a_1, a_2) betrachten mit $a_2 + x_2 = y_2$. Aufgrund der Voraussetzung gilt $y_2 - x_2 \in 2\mathbb{Z}$. Es folgt $(a_1, y_2 - x_2) * (x_1, x_2) = (a_1 + (-1)^{y_2 - x_2} x_1, y_2) = (a_1 + x_1, y_2)$. Schließlich erhalten wir

$$||(a_1, y_2 - x_2) * x - y|| = |a_1 + x_1 - y_1| \ge x_1 - y_1 \mod \mathbb{Z} \ge 2\epsilon.$$

iii. $x_2 - y_2 \in 2\mathbb{Z} + 1$. Setze $\epsilon = \frac{x_1 + y_1 \mod \mathbb{Z}}{2}$. Insbesondere ist $\epsilon < \frac{1}{2}$. Angenommen, $\epsilon = 0$. Dann wäre $y_1 + x_1, y_2 - x_2$ * $(x_1, x_2) = (y_1 + x_1 + (-1)^{x_2 - y_2} x_1, y_2 - x_2 + x_2) = (y_1, y_2)$, Widerspruch. Also $0 < \epsilon < \frac{1}{2}$. Daher gilt für alle $(a_1, a_2) * (x_1, x_2) = (a_1 + (-1)^{a_2} x_1, a_2 + x_2)$ mit $a_2 + x_2 \neq y_2$ bereits

$$||(a_1, a_2) * (x_1, x_2) - (y_1, y_2)|| \ge \sqrt{|a_2 + x_2 - y_2|^2} \ge 1 \ge 2 \cdot \epsilon.$$

Wir müssen also nur (a_1, a_2) betrachten mit $a_2 + x_2 = y_2$. Aufgrund der Voraussetzung gilt $y_2 - x_2 \in 2\mathbb{Z}$. Es folgt $(a_1, y_2 - x_2) * (x_1, x_2) = (a_1 + (-1)^{y_2 - x_2} x_1, y_2) = (a_1 - x_1, y_2)$. Schließlich erhalten wir

$$||(a_1, y_2 - x_2) * x - y|| = |a_1 - x_1 - y_1| \ge x_1 + y_1 \mod \mathbb{Z} \ge 2\epsilon.$$

(c) Wir haben oben bereits gesehen, dass die Gruppenoperation glatt ist wegen

$$D[(a_1, a_2) * (b_1, b_2)] = \begin{pmatrix} (-1)^{a_2} & 0 \\ 0 & 1 \end{pmatrix}.$$

Identifiziert man $\mathbb{R}^2 \cong \mathbb{C}$, so verstößt diese Jacobimatrix für ungerade a_2 gegen die Cauchy-Riemann-Differentialgleichungen. Daher ist die Gruppenoperation nicht holomorph. Insbesondere wird $G \setminus \mathbb{C}$ nicht zu einer Riemannschen Fläche.

Aufgabe 48

d steting Offensichtlich ist $p_1 \times p_2 \colon X_1 \times X_2 \to Y_1 \times Y_2$ surjektiv. Sei $(x^1, x^2) \in X_1 \times X_2$. Dann existieren nach Definition der Überlagerung Umgebungen $x^1 \in U^1, x^2 \in U^2$ mit

$$p_k^{-1}(U^k) = \biguplus_{i \in F^k} U_i^k,$$

sodass alle Einschränkungen $p_k|_{U_i^k}\colon U_k^i\stackrel{\sim}{\to} U^k$ bistetig sind für $k\in\{1,2\}$. Daher gilt

$$(p_1 \times p_2)^{-1}(U^1 \times U^2) = \{(x_1, x_2) | p(x_1) \in U^1, p(x_2) \in U^2\}$$

$$= \{(x_1, x_2) | x_1 \in \biguplus_{i \in F^1} U_i^1, x_2 \in \biguplus_{j \in F^2} U_j^2\}$$

$$= \biguplus_{i \in F^1} \{(x_1, x_2) | x_1 \in U_i^1, x_2 \in \biguplus_{j \in F^2} U_j^2\}$$

$$= \biguplus_{i \in F^1} \biguplus_{j \in F^2} \{(x_1, x_2) | x_1 \in U_i^1, x_2 \in U_j^2\}$$

$$= \biguplus_{(i, j) \in F^1 \times F^2} U_i^1 \times U_j^2$$

Wegen $p_k|_{U^k}\colon U^i_k\stackrel{\sim}{\to} U^k$ bistetig für $K\in\{1,2\}$ folgt, dass

$$p_1 \times p_2|_{U_i^1 \times U_i^2} \colon U_i^1 \times U_j^2 \to U^1 \times U^2$$

bezüglich der Produkttopologie bistetig sein muss. Damit handelt es sich bei $p_1 \times p_2$ ebenfalls um eine Überlagerung.