CSE 150 Assignment 5 - Policy Improvement

Josh Anthony - A14281769

Consider the Markov decision process (MDP) with two states $s \in \{0, 1\}$, two actions $a \in \{0, 1\}$, discount factor $\gamma = \frac{2}{3}$, and rewards and transition matrices as shown below:

s	R(s)
0	-2
	4

s	s'	P(s' s, a=0)
0	0	3/4
0	1	1/4
1	0	1/4
1	1	3/4

s	s'	P(s' s, a=1)
0	0	1/2
0	1	1/2
1	0	1/2
1	1	1/2

a) (2.5 points) Consider the policy π that chooses the action a=0 in each state. For this policy, solve the linear system of Bellman equations to compute the state-value function $V^{\pi}(s)$ for $s \in \{0, 1\}$. Your answers should complete the following table:

s	π(s)	V ^π (s)
0	0	
1	0	

So $V^{\pi}(0) = -1.5$ and $V^{\pi}(1) = 7.5$

b) (2.5 points) Compute the greedy policy $\pi'(s)$ with respect to the state-value function $V^{\pi}(s)$ from part (a). Your answers should complete the following table:

s	π(s)	π'(s)
0	0	
1	0	

So.	$T'(s) = argmax \leq P(s' s,a) V^{T}(s')$ So for $s=6$ $T'(0) = 1 \leq P(s' s=0,a) V^{T}(s')$
And yo	$T(1) = \underset{\alpha}{\operatorname{argmax}} $

So $\pi^{'}(0) = 1$ and $\pi^{'}(1) = 0$