Mathematica Labs | iLearnMath.net | Denis Shubleka

Subject: Calculus

Topic: Chain Rule

■ Goal: Use *Mathematica* to find partial derivatives of compositions of several variables.

Task 1

In Mathematica we define three function z(x, y), x(s, t), and y(s, t).

To compute the partial derivatives $\frac{\partial z}{\partial t}$ and $\frac{\partial z}{\partial s}$, we use the derivative command.

To evaluate the partial derivative $\frac{\partial z}{\partial s}$, which we computed last, at $\{s=1, t=2\}$ use the substitution rule:

$$% /. \{s \rightarrow 1, t \rightarrow 2\}$$

Related Exercises/Notes:

■ 1. Use the Chain Rule to find the indicated partial derivatives. Use *Mathematica* to confirm your answers by first finding the derivative(s) and then evaluating it.

a)
$$P = \sqrt{u^2 + v^2 + w^2}$$
, $u = x e^y$, $v = y e^x$, $w = e^{xy}$; $\frac{\partial P}{\partial x}$, $\frac{\partial P}{\partial y}$ when $x = 0$, $y = 2$.

b)
$$u = x e^{ty}$$
, $x = \alpha^2 \beta$, $y = \beta^2 \gamma$, $t = \gamma^2 \alpha$; $\frac{\partial u}{\partial \alpha}$, $\frac{\partial u}{\partial \beta}$, $\frac{\partial u}{\partial \gamma}$ when $\alpha = -1$, $\beta = 2$, $\gamma = 1$.