Multivariate CLT proof with characteristic functions

Kadin Zhang

21-721, Spring 2024

1 Preliminaries

Definition (Characteristic function): Let X be a random variable, then its characteristic function is

$$\phi_X(t) = \mathbf{E} \exp(itX).$$

If X is random vector in \mathbb{R}^n , define

$$\phi_X(t) = \mathbf{E} \exp(it^\top X).$$

Proposition (Characteristic function for Gaussian): The characteristic function of a random vector $X \sim N(\mu, M)$ is

$$\phi_X(t) = \exp(it^{\top}\mu - t^{\top}Mt/2).$$

Proposition (Uniqueness): Let $\mu \in \mathbb{R}^n$ and Σ a positive semi-definite matrix. There is unique Gaussian distribution with mean μ and covariance Σ . Further, if det $\Sigma > 0$ then the distribution has well defined density

$$p(t) = \frac{1}{(2\pi)^{n/2} \det \Sigma^{1/2}} \exp\left(-\frac{1}{2}(t-\mu)^{\top} \Sigma^{-1}(t-\mu)\right).$$

Theorem (Levy continuity theorem): Let X_n have associated characteristic functions ϕ_n .

- (a) Suppose X_n converges in distribution to some RV X. Then $\phi_n \to \phi_X$ pointwise.
- (b) Suppose ϕ_n converges pointwise to a function ϕ which is continuous at 0. Then ϕ is characteristic function of some RV X and $X_n \stackrel{\mathrm{d}}{\to} X$.

2 Central limit theorem

Theorem (Multivariate CLT): Let X_n be sequence of i.i.d. random vectors in \mathbb{R}^n with mean μ and covariance Σ . Then the sequence of random vectors

$$\frac{X_1 + \dots + X_m - m\mu}{\sqrt{m}}$$

converges to a centered multivariate normal with covariance Σ .

Proof. We prove the theorem for $\mu = 0$, $\Sigma = I$, as the general result holds by linear transformation. First consider the one dimensional case. Let $Z_m = \frac{X_1 + \dots + X_m}{\sqrt{m}}$. Then, using first the product rule then Taylor's

theorem around 0,

$$\begin{split} \phi_{Z_m}(t) &= \phi_X(t/\sqrt{m})^m \\ &= \left(1 + \frac{t}{\sqrt{m}}\phi_X'(0) + \frac{t^2}{2m}\phi_X''(0) + o(1/m)\right)^m \\ &= \left(1 - \frac{t^2}{2m} + o(1/m)\right)^m \qquad (\phi_X \text{ gives moments}) \\ &\to \exp(-t^2/2). \end{split}$$

It follows that $\phi_{Z_m}(t)$ converges pointwise to the characteristic function of a standard Gaussian. Thus Z_m converges in distribution to Z, where $Z \sim N(0,1)$.

In the general case, fix $t \in \mathbb{R}^n$ and define $Y_m = t^\top X_m$. So Y_m are i.i.d. random variables with mean 0 and variance

$$\mathbf{E}(t^{\top}X)^{2} = t^{\top}\mathbf{E}(Xt^{\top}X) = t^{\top}\mathbf{E}(XX^{\top}t) = t^{\top}t.$$

Apply the one dimensional CLT to Y_m to get

$$\frac{Y_1 + \dots + Y_m}{\sqrt{m}} \stackrel{\mathrm{d}}{\to} Z,$$

where $Z \sim N(0, t^{\top}t)$. Then, by Levy continuity theorem, for $s \in \mathbb{R}$, letting $W_m = \frac{Y_1 + \dots + Y_m}{\sqrt{m}}$,

$$\phi_{W_m}(s) = \phi_{Y_m}(s/\sqrt{m})^m \to \phi_Z(s).$$

Note that

$$\phi_{X_m}(t) = \exp(it^{\top} X_m) = \exp(iY_m) = \phi_{Y_m}(1).$$

Therefore, setting s = 1, and letting $Z_m = \frac{X_1 + \dots + X_m}{\sqrt{m}}$,

$$\phi_{Z_m}(t) = \phi_{X_m}(t/\sqrt{m})^m \to \exp(-t^\top t/2).$$

So again using Levy continuity theorem, $Z_m \xrightarrow{d} Z$, where $Z \sim N(0, I)$.