

(19) 3251 1012 www.elitecampinas.com.br

p. 1

PROFESSOR DANILO

INTERFERÊNCIA E ONDAS ESTACIONÁRIAS - 3º ANO - 28/09/202

FOLHA 11

Apostila 3.

ÍNDICE

- Mais sobre Fenômenos Ondulatórios Lista: Ondas Eletromagnéticas
- Interferência de ondas p. 2
- Lista: Interferência de ondas
 - Ondas estacionárias

Lista: Ondas estacionárias

Após observarmos os itens 1 ao 4 abaixo, vamos resolver alguns exercícios da lista "Ondas Eletromagnéticas".

DIFRAÇÃO E ESPALHAMENTO

- A difração é a capacidade de contornar objetos de dimensões próximas ao comprimento de onda da onda incidente
- O espalhamento ocorre quando as dimensões dos objetos são muito menores que o comprimento de onda da onda incidente
- Falaremos disso em detalhes mais adiante

PRINCÍPIO DE HUYGENS 2.

Cada ponto de uma frente de onda se comporta como se fosse uma fonte de onda

Podemos explicar o espalhamento e a difração usando este princípio

Difração: a fenda se comporta como uma fonte e a parede interromperá as ondas nas laterais.

Quanto maior a frequência maior o espalhamento. Os pontos entorno das partículas se comportam como fontes.

POLARIZAÇÃO 3.

- Só podemos polarizar ondas transversais
- Um polarizador funciona como um filtro permitindo a passagem de uma parte da onda que oscila em direção específica
- É muito usado em óptica (display de calculadora, lentes

Digamos que uma onda eletromagnética incide oscilando em uma direção z e haja uma lente polarizadora inclinada de um ângulo $\, \Theta \,$ em relação à essa direção. Se a intensidade do campo incidente é E_0 , a intensidade que atravessa é

$$E_{passa} = E_0 \cdot \cos \theta$$

Lembre-se que a intensidade é proporcional ao quadrado da amplitude (seção 12)

$$I_{passa} = I_0 \cdot \cos^2 \theta$$

Colégia

PROFESSOR DANILO

 A polarização pode ocorrer por reflexão: quando o raio refratado forma um ângulo de 90° com o ângulo refletido, a polarização é máxima.

Esta condição implica na chamada lei de Brewster.

4. REFLETÂNCIA E TRANSMITÂNCIA

- Como vimos, quando a luz atinge uma interface ela pode sofrer reflexão e transmissão
- Sendo I₀ a intensidade da onda incidente, I_T a intensidade da onda transmitida e I_R a intensidade d onda refletida podemos definir a

Transmitância:

$$T = \frac{I_T}{I_0}$$

е

Refletância:

$$R = \frac{I_R}{I_0}$$

Note que se não houver absorção:

$$I_0 = I_T + I_R \Leftrightarrow 1 = T + R$$

O gráfico a seguir representa a transmitância e a refletância, de forma qualitativa, para um ângulo de incidência que varia de 0 à 90° quando a luz vai do meio menos refringente para o mais refringente.

O gráfico a seguir representa a situação em que a radiação vai do meio mais para o menos refringente.

Observe neste exemplo que o ângulo limite é um pouco maior que 40°.

INTERFERÊNCIA DE ONDAS

 Sabemos que uma onda pode ser descrita matematicamente através de funções

INTERFERÊNCIA E ONDAS ESTACIONÁRIAS - 3º ANO - 28/09/202

- Da experiência, sabemos que quando duas ondas se superpõem, o resultado equivale à soma das duas funções que descrevem as duas ondas
- Não faremos isso matematicamente, apenas geometricamente

- Quando duas ondas estão em fase e se interferem, a amplitude final será a soma das duas ondas e chamamos isso de interferência construtiva
- Quando duas ondas estão em oposição de fase se superpõem (interferem), a amplitude resultante será a diferença das duas amplitudes e a isso chamamos de interferência destrutiva. Particularmente, se as duas ondas possuem a mesma amplitude, quando a amplitude resultante é zero, chamamos isso de interferência totalmente destrutiva.
- É importante destacar que a interferência é local: as duas ondas seguirão seus caminhos, após interagirem uma com a outra, como se nada tivesse acontecido.
- Se as duas ondas que interferirem possuírem frequências próximas, ocorrerá um fenômeno chamado de batimento cuja frequência será f_{bat} .

$$f_{bat} = |f_1 - f_2|$$

Enquanto a onda resultante terá frequência f_{result} dada por

$$f_{result} = \frac{f_1 + f_2}{2}$$

Interferência

Observe alguns casos de interferências: Interferência Interferência

Em representação bidimensional, os vales são representados por linhas pontilhadas e as cristas por linhas cheias

(19) 3251 1012 www.elitecampinas.com.br

PROFESSOR DANILO

Sabemos que ondas podemser descritas matematicamente, assim a interferência entre duas ondas corresponde à soma das funções que descrevem ambas as ondas.

Quando temos ondas unidimensionais, a solução é mais simples: basta sobrepormos as duas ondas. Já no caso de interferência bidimensional, a situação é um pouco mais complicada.
Q. 1 – DIFERENÇA DE FASE INICIAL: FONTES EM FASE
Q. 2– DIFERENÇA DE FASE INICIAL: OPOSIÇÃO DE FASE
Q. 3– DIFERENÇA DE FASE DEVIDO À DIFERENÇA DE CAMINHO

	Q. 5 –	DIFERE	NCA DE	FASE TO	OTAL	
	Q. 5 –	DIFERE	NÇA DE	FASE TO	OTAL_	
	Q. 5 –	<u>DIFERE</u> I	NÇA DE	FASE TO	OTAL_	
	Q. 5 –	DIFERE	NÇA DE	FASE TO	OTAL .	
	Q. 5 –	DIFERE	NÇA DE	FASE TO	OTAL_	
	Q. 5 –	DIFERE	NÇA DE	FASE TO	OTAL	
	Q. 5 –	DIFERE	NÇA DE	FASE TO	OTAL	

Q. 4 – DIFERENÇA DE FASE DEVIDO À REFLEXÃO

RESUMO:

- Dadas duas fontes, a diferença de fase total é:
 - Devido à diferença de caminho:

$$\Delta \phi_{caminho} = \frac{|d_1 - d_2|}{\lambda} \cdot 2\pi$$

Devido às reflexões:

 $\Delta\phi_{\mbox{reflex}\mbox{\sc ao}}=\pi\;$ para cada reflexão com inversão de fase

A diferença de fase total será:

- Se n for par, a interferência é construtiva
- Se n for impar, a interferência é destrutiva
- Soma-se uma fase dependendo das condições iniciais
- A diferença total de fase será, portanto:

 $\Delta \phi_{\mathsf{TOTAL}} = \Delta \phi_{\mathsf{caminho}} + \Delta \phi_{\mathsf{reflexão}} + \Delta \phi_{\mathsf{inicial}} = n \cdot \pi$

PROFESSOR DANILO

INTERFERÊNCIA DA LUZ

- Filmes finos
- Iridescência
- Dupla fenda de Thomas Young

$$x = k \frac{\lambda D}{y}$$

• Experimento do fio de cabelo

Veja teoria abaixo e discussão com o professor utilizando programa gráfico. Vamos ver mais detalhes em exercícios.

AMBAS AS EXTREMIDADES FIXAS

- Imagine uma onda produzida em uma corda com ambas as extremidades presas
- Quando refletida ela volta com inversão de fase

- Se o comprimento do fio tiver tamanho adequado dizemos que a onda no fio é uma onda estacionária, pois vemos a onda como se estivesse parada
- Vamos estudar os harmônicos nesse caso

Q. 6 – ONDA ESTACIONÁRIA EM CORDAS – PRIMEIRO HARMÔNICO

Q. 7 – ONDA ESTACIONÁRIA EM CORDAS – SEGUNDO HARMÔNICO

Q. 8 – ONDA ESTACIONÁRIA EM CORDAS – TERCEIRO HARMÔNICO

INTERFERÊNCIA E ONDAS ESTACIONÁRIAS - 3º ANO - 28/09/2024

Q. 9 – ONDA ESTACIONÁRIA EM CORDAS – QUARTO HARMÔNICO

Q. 10 – ONDA ESTACIONÁRIA EM CORDAS – n-ÉSIMO HARMÔNICO

RESUMINDO O QUE APRENDEMOS:

RESUMINDO O QUE APRENDEMOS:			
	1° Harmônico	$\lambda_1 = \frac{2L}{1}$	
	2° Harmônico	$\lambda_2 = \frac{2L}{2} = L$	
	3° Harmônico	$\lambda_3 = \frac{2L}{3}$	
	4° Harmônico	$\lambda_4 = \frac{2L}{4} = \frac{L}{2}$	
	n° Harmônico	$\lambda_n = \frac{2L}{n}$	

PROFESSOR DANILO

INTERFERÊNCIA E ONDAS ESTACIONÁRIAS - 3º ANO - 28/09/2024

TUBOS SONOROS

- Instrumentos musicais cujo som é produzido por sopro segue a mesma lógica
- Em geral um dos lados é aberto e o outro é ou aberto ou fechado
 - Quando ambos os lados são abertos, chamamos de tubo aberto;
 - Quando uma extremidade é fechada e a outra aberta chamamos de tubo fechado.

AMBAS AS EXTREMIDADES ABERTAS/LIVRES

Q. 13 – ONDA ESTACIONÁRIA EM TUBO ABERTO – TERCEIRO HARMÔNICO

Q. 15 – ONDA ESTACIONÁRIA EM TUBO ABERTO – n-ÉSIMO HARMÔNICO

RESUMINDO O QUE APRENDEMOS:

Figura 1: Representação de um tubo sonoro com ambas as extremidades abertas e em seu primeiro harmônico

1° Harmônico	$L = 2\frac{\lambda_1}{4} \Longrightarrow \lambda_1 = \frac{4L}{2} \Longrightarrow \lambda_1 = \frac{4L}{2 \cdot 1}$
2° Harmônico	$L = 4 \frac{\lambda_2}{4} \Longrightarrow \lambda_2 = \frac{4L}{2 \cdot 2}$
3° Harmônico	$\lambda_3 = \frac{4L}{2 \cdot 3}$
4° Harmônico	$\lambda_4 = \frac{2L}{4}$
n° Harmônico	$\lambda_n = \frac{2L}{n}$

PROFESSOR DANILO

INTERFERÊNCIA E ONDAS ESTACIONÁRIAS – 3° ANO – 28/09/2024

UMA EXTREMIDADE ABERTA E OUTRA FECHADA

Q. 16 – ONDA ESTACIONÁRIA EM TUBO ABERTO – PRIMEIRO HARMÔNICO

Q. 17 – ONDA ESTACIONÁRIA EM TUBO ABERTO – SEGUNDO HARMÔNICO

Q. 18 – ONDA ESTACIONÁRIA EM TUBO ABERTO – TERCEIRO HARMÔNICO

Q. 19 – ONDA ESTACIONÁRIA EM TUBO ABERTO – QUARTO HARMÔNICO

Q. 20 – ONDA ESTACIONÁRIA EM TUBO ABERTO – n-ÉSIMO HARMÔNICO

RESUMINDO O QUE APRENDEMOS:

Figura 2: Representação de um tubo sonoro com uma extremidade fechada e outra aberta. Como tubos soboros com ambas as extremidades fechadas é impossível para um instrumento musical, dizemos que isso é um **tubo fechado**

amente macical, alzemee que lece e am tabe le				
1° Harmônico	$L = 1 \frac{\lambda_1}{4} \Longrightarrow \lambda_1 = \frac{4L}{1}$			
2° Harmônico	Não existe			
3° Harmônico	$\lambda_3 = \frac{4L}{3}$			
4° Harmônico	Não existe			

n° Harmônico	$\lambda_n = \frac{4L}{n}$			

Note que não existe os harmônicos pares