

EXAMEN PARCIAL DE FUNDAMENTOS DE COMPUTADORES

CURSO 2016-17, PRIMER PARCIAL, 3 DE FEBRERO DE 2017

- 1. (1 punto) Dados los siguientes números: $A=+44_{10}$, $B=-165_8$, $C=-2A_{16}$ y $D=+10101_2$
 - a) Exprese los cuatro números con el mismo número de bits en representación en complemento a dos.
 - b) Efectúe las operaciones A-B y C-D en complemento a dos, indicando si existe o no desbordamiento o acarreo
- **2.** (2,5 puntos) En calidad de ingenieros de la Agencia Espacial Europea (ESA), debéis diseñar un sistema combinacional que controle el módulo de descenso del "rover" que se enviará a Marte en 2020. Dicho módulo consta de 4 retro-cohetes, cuya vista cenital se indica en la figura:

Los retro-cohetes están orientados y numerados del 1 al 4. Las entradas de este sistema son:

- Sensor de distancia al suelo: Devuelve '1' si está próximo al suelo y '0' en caso contrario.
- Sensor de verticalidad: Puede devolver los siguientes valores:
 - o 000: Posición totalmente vertical.
 - o 001: Posición rotada sentido N.
 - o 010: Posición rotada sentido E.
 - o 101: Posición rotada sentido S.
 - o 110: Posición rotada sentido W.

Las salidas son 4 señales (R1, R2, R3 y R4) que controlan el encendido ('1') y apagado ('0') de los retro-cohetes, que sólo se encenderán bajo las siguientes condiciones:

- Si el módulo de aterrizaje se encuentra en posición totalmente vertical y próximo al suelo, los 4 retro-cohetes se encenderán a la vez.
- Sin embargo, si el módulo de aterrizaje se encuentra rotado, esto se debe corregir con el encendido selectivo de sólo 2 de ellos. Así, por ejemplo, si hay una rotación sentido N, sólo se deben encender los retro-cohetes 1 y 2; o si hay una rotación al E, se encenderán el 2 y el 4. Estas correcciones se deben realizar tanto si se encuentra próximo o lejano al suelo.
 - a) (0.75 puntos) Obtener la tabla de verdad del sistema.
 - b) (0.75 punto) Implementar R1 con multiplexores 4 a 1 y menor número de puertas lógicas.
 - c) (**1 puntos**) Implementar R2, R3 y R4 con un decodificador 4 a 16 y menor número de puertas lógicas.
- **3.** (1,5 punto) un sistema tiene 2 entradas (X, Y), y dos salidas (A,B). Las entradas X, Y y la salida A son números enteros positivos representados en complemento a dos de 4 bits. La

salida B es de 1 bit. El comportamiento del sistema es el siguiente. En la salida A aparece siempre el número mayor de los 2 presentes en la entrada. Si los dos números son iguales en la salida A se coloca el mayor número representable en c2 con 4 bits. La salida B se activa a 1 si una o las dos entradas tienen el máximo valor representable y a 0 en caso contrario. Implementar el circuito con multiplexores, un sumador binario de 4 bits y puertas lógicas

- **4.** (3 puntos) Diseñar un sistema secuencial que controle la velocidad de parpadeo de un LED. Dicho sistema tendrá las siguientes entradas:
 - P (1 bit): '0' significa que el LED debe permanecer apagado; '1' significa que el LED debe parpadear.
 - V (1 bit): '0' significa que el LED parpadea a una frecuencia rápida (1 ciclo de reloj encendido 1 ciclo de reloj apagado); y '1' significa que el LED parpadea a una frecuencia lenta (2 ciclos de reloj encendido 2 ciclos de reloj apagado).

La salida del sistema será una señal de un único bit (el LED que parpadea).

- d) (1 punto) Especificar el sistema mediante un diagrama de estados tipo Moore.
- e) (0.5 puntos) Obtener las tablas de transición y de salida del sistema.
- f) (1 punto) Implementar el sistema con biestables D y:
 - i. La función de salida, con el menor número de puertas lógicas.
 - ii. La función de transición de estado, con una ROM de tamaño mínimo.
- **5.** (2 puntos) Utilizando biestables D encadenados y puertas lógicas, diseñar un circuito secuencial con una entrada binaria y una salida también binaria. La salida valdrá 1 siempre que se detecte en la entrada una secuencia de 5 bits con estructura de palíndromo (igual lectura de izquierdaderecha que derecha-izquierda, ejemplos, 10101, 00100,...), con posibilidad de solapamiento.

Examen F.C. Felsers 2017

11 D=+4410 B=165x C=-2 B16

D= +101012

40 dos los nimeros estat expresados en naquited office di utes representaciones ucognited office di utes representaciones (danal, octal, hexadecimal, bincho)

1 N = + 4410

De colcolo de la magnitul

1+44/01 = 44,0 > no thehr signs

= 101100 bp (2) saado signo positro poa convertirlo en complemento a ? 010/10002

@ - rose hace hade -> No hay s. caulis el sign.

1 A= 010110021

B=-165x (1º) ratedo de la magnifil |-165g|= 165g - prestre q. 8=23 La conversión entre potencias de la misma borce, cada digito octol se remplaza por su representación biliaria de 3 bits. 001 110 1016p vo a sighu. En este caso d'op esta represente do con mas bits de los g. necesité -> 111010/2-N.ES - 001110101pp = Dle atradiuos el sighe positiva 0111010102 si es sigho (3) presto quel li que que es hegation has que cambier el sigh. 10001010

100010102 = 13

10=-1A16

O calolo de la maghitud

1-20/6 = 20/6 - magaited sin Eigho cono 16 = 2 & aplica la conversion enta poteriar de la misma base. Le sustituje cada digito hexadecimal por su representación bihana de 4 bits

voes signo. igual q. occurria antes, ente winer no esta expresado con el menar u-o de GHS posible.

9 ε le atrede el signo positivo pera couvetivo en c?

3 como el 6 q. vos piden es agrativo has g. cambrar el cigho

1010110_{C2} = C

D= +1010/pp co calculo la magnited | +10101_{bp}| = 1010_{bp}

no es signo. (2) Se le atra de el signe perà convertible en CZ 1010101c2 = 1) 1seço los 4 homeros son A= 0101100 - 26its B= 1000(011 -> 861+5 c = 1010110 - 26its 010101, - 66its Mas q. reposentoles todos con demisho ho delits.

81 meter ho delits hecosolios para representolos
es r - los vos con menos de rebits hos s. ha sorles una extension de signi M = 00101100 B= 10001011 C = 11010110

D = 60010101

Notice se ha cen vestes en (2. -> N-B= A+(-B) A > lo cohoza 00101100 12 -> localora 10001011 -13 - No lo conoza, lo tengo qualcolor la cambio de signo ar 13 01110100 01110101=-13. cocioil co o votiene accurre- $\frac{01101001}{1010001} = A-B$ si tiene deslocatives t 0 1 1 1 0 1 0 1 [C-D] -> c+(-B) C -> lo cohoza 11010110 D- 10 coho 200 000 10101 -D-> No lo rono en cambio d'sigho aD 11010116 11101010 11101011 1110101=C-D May acquee, no desbordamento

2) El seso de serticalida V2 VI VO El senso de distancia sucho D

_	4 VOD	74 R2	·	126
100	000	1110	1 1	ι υ
000	0101	110	0	d
101	100	010	1	sub n
191	110		-	de 1
10	900	_ = =		000 000
1 10	010	001	1	PIVOD
10	100	101		V1 V1
1 11	110		-	- (3

126 El notiple to Tielle

melos setales de

control G. valiables

de entrada la fonato ->

solonação de la -
seleccionas 2 valiables

de entrada 9. Sirven

cono setales de

control -> Vo D

(7)

[20] - secondor q. las sale des del derodificador son los minterihos de las Entradas

$$P_2 = Em(1,2,3,4,5)$$

 $P_3 = Em(1,10,11,12,15) = P_4$

Solución 3

(y) Estipo Moare -> la salida sodo depende del (d)
Estados del sistema:
Coando el V=0 - porpadeo rapido ->
Un cado encendido un cido
apagado.

V=1 - popades Cents ->
2 aclos encendidos 2 cirlos
apagados.

Estados.

An - Priner cido apagado

Ro - Priner cido apagado

Ro - Priner cido encendido

En - Segon do cido Encendido

P=1, V=10

P=1, V=10

P=1, V=10

 $\begin{array}{c}
A_1 \\
P - 1 \\
V = 1
\end{array}$

	1 8	160
A0	ت ا	9 6
80	0	1
e 1	L	0
121	L	(

Tada de verda l

	000000000000000000000000000000000000000	84 E0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0	8 E 6 2 1 00 0 1
	0 1 0 1 0 1 0 10 0 10 0 10 1	00 00 00 00 00 00 00 00 00	
	1100	9 6 9 0 9 0	2 (x) (2) -2 P (x)
El	circuito es	uha Roh	

W

U

DU2 Va Vo	Rn R2 R3 Rc,
0 Cl Cl 6 Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl C	0000
0160 0101 0110	 0011 1010
1000 100 1 101 0	1111
1100	0011
A = 001011	
13 = 1000 $C = 11010$ $10 = 000101$	110

* **	PV 8480	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	0000 0 0000 1	600
,	000 0 0 01 0 1	8 b 0 0 0 6 6 6
	(O O O O O O O O O O O O O O O O O O O	001000000000000000000000000000000000000
٠	1000	Q 6
	(110	10 l 1