

- 1. Determinar los puntos del gráfico del campo escalar $f(x, y) = e^{x-y}(x^2 2y^2)$ en los que el plano tangente es paralelo al plano xy. Entre los puntos hallados, ¿hay algún punto de ensilladura? Justificar.
- 2. Hallar la familia de primitivas de $f(x) = \frac{\sqrt{\ln x}}{x} + \frac{e^{-x}}{e^{-2x}(e^{-x} + 1)}$
- 3. Considerar las superficies $S_1 = \{(x, y, z) \in \mathbb{R}^3 / z = x^2 + y^2\}$, $S_2 = \{(x, y, z) \in \mathbb{R}^3 / 6 z = \sqrt{x^2 + y^2}\}$
- a. Proponer una parametrización para cada una de las superficies.
- b. Proponer una parametrización para la curva intersección entre S₁ y S₂
- c. Hallar la ecuación de la recta tangente a la curva hallada en el ítem anterior, en el punto (1, 1, 2).
- 4. Sea \bar{g} la función vectorial dada por $\bar{g}:[0,\frac{\pi}{2}] \rightarrow R / \bar{g}(t) = (2\cos t, 3 \sin t)$ y sea C la curva de ecuación cartesiana $x^2 4x + y^2 + 2 = 0 \cos 0 \le y \le 2$. Hallar el área de la región comprendida por la curva imagen de \bar{g} , la curva C y el eje de las ordenadas.
- 5. Sea el campo escalar $F(x, y) = In(x^3y x).\sqrt[4]{9 x^2}$
- a. Hallar gráfica y analíticamente su dominio.
- b. Hallar un valor aproximado de F(2,9; 1,01) mediante una aproximación lineal.
- 6. Dada la expresión del diferencial primero de un campo escalar $F:D\subseteq \mathbb{R}^2 \to \mathbb{R}$

$$dF(x;y;\Delta x;\Delta y) = ((x+1)^2 + 4y - 1)\Delta x + (2y - \frac{5}{2} + 4x)\Delta y$$

obtener la derivada de la función compuesta $h = F \circ \bar{g}$ para t = 1, sabiendo que $\bar{g}(t) = (t^2 + 1; 2t + 1)$ y que $\bar{g}(1) = (-1; 2)$.

- 7. Dada $F(x;y;z) = e^{x.z-2} + y.lnz x.y + 5$
 - a. Verificar que F(x;y;z) = 0 define implícitamente una función z = z(x,y) en un entorno de $(x_0;y_0) = (2; 3)$ con $z_0 = z(2,3) = 1$ y
 - b. Hallar el valor de la derivada direccional máxima de z = z(x,y) el punto (2, 3).
 - c. Obtener un valor aproximado de z(2, 01; 3,02) utilizando una aproximación lineal.
- 8. Sea f una función escalar cuya función derivada es $f'(x) = x^2 \cdot \ln(2x)$, que verifica $f(\frac{1}{2}) = \frac{71}{72}$ Sea el campo escalar $G: \Re^2 \to \Re / G(x;y) = x^{2y} y \cdot f(x)$. Determinar la expresión del diferencial de G en el punto (1;0).
- 9. Obtener el área de la región limitada entre la función $f(x) = \begin{cases} e^{2x} & \text{si } x \le 0 \\ 1 x^2 & \text{si } x > 0 \end{cases}$ y la trayectoria de la función vectorial $\overline{g}(t) = (3t/18t^2 2)$ con $-1 \le x \le b$ siendo b el valor de positivo de la abscisa del punto donde el gráfico de f se intersecta con la trayectoria de \overline{g} .
- 10. Sea D = { $(u, v) \in \mathbb{R}^2 / 0 \le v \le 2\pi, 0 \le u \le \frac{\pi}{2}$ } y sea T: D \Rightarrow R³ el campo vectorial dado por T(u, v) = $(2\cos(v)\operatorname{sen}(u), 2\operatorname{sen}(v), 2\cos(u))$

- a. Hallar la ecuación cartesiana de la superficie S = Im(T)
- b. Dar la ecuación cartesiana del plano tangente a S en $P_0 = (1, 1, \sqrt{2})$ y la ecuación vectorial de la recta normal a S en P_0 .
- Sea u = u(x, y) un campo escalar de clase C^2 cuyo dominio es R^2 {(0, 0)} , que satisface la ecuación $u_{xx} + u_{yy} = 0$

Demostrar que el campo escalar dado por

$$v(x,y) = u\left(\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2}\right)$$

también satisface $v_{xx} + v_{yy} = 0$.

Sea el campo vectorial \bar{F} dado por \bar{F} (x, y) = (x + 1, 2y - e^x) y sea G: $R^2 \rightarrow R$ diferenciable tal que el polinomio de Mac Laurin de orden dos de h = $Go\bar{F}$ es $P(x, y) = 4 + 3x - 2y - x^2 + 5xy$

Calcular ∇ G(1, -1).

- 13. Sea f: (0, 1] \rightarrow R tal que f(t) = $t^2 \ln(t) + \frac{\cos(\pi t)}{1 + \sin(\pi t)}$
 - a. Calcular $\int_{0}^{1} f(t) dt$
 - b. Sea $\bar{\gamma}$:(0, 1] \rightarrow R³ / $\bar{\gamma}$ (t) = (f(t), t², 2t). Determinar la ecuación de la recta tangente a la curva parametrizada por $\bar{\gamma}$ en el punto P₀ = (-1, 1, 2),
- 14. a. Proponer la expresión de una función vectorial $g: R \rightarrow R^2$ cuya imagen sea la circunferencia de centro (-1, 3) y radio dos. Hallar la ecuación de la recta tangente a dicha curva en el punto (1, 3).
 - b. Proponer un campo escalar F: $\mathbb{R}^2 \to \mathbb{R}$, de clase \mathbb{C}^1 , tal que la matriz hessiana de f en el punto (1, 2) sea $H_f(1,2) = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$

Para el campo propuesto, hallar el polinomio de Taylor de orden dos alrededor del punto (1, 2).

- 15. Sea el campo escalar F : $R^3 \rightarrow R / F(x,y,z) = 3x^2 + 3y^2 + 3xy + 3e^z + 3z 4$
 - a. Demostrar que en en entorno del punto $P = (\frac{2}{3}, -\frac{1}{3}, 0)$ la ecuación F(x,y,z) = 0 define a z = z(x,y)
 - b. Calcular el $\vec{\nabla}$ z($\frac{2}{3}$, $-\frac{1}{3}$)
- 16. Obtener la derivada direccional de $H(x;y) = \sqrt{2x + F(x;y)}$ en (-1;2) hacia (3;4) sabiendo que el diferencial de F(x;y) desarrollado en (-1;2) es dF(-1;2) = 2x + 3y 4
- 17. Hallar el área de la región limitada por el gráfico de $f(x) = -\frac{2}{9}(x-1)^2 + 9$, la curva imagen de la función $g: R^2 \rightarrow R$, $g(t) = (e^t 3, e^t)$ y el eje x.

18. Proponer en cada caso la expresión de un campo vectorial $\bar{F}: \mathbb{R}^2 \to \mathbb{R}^3$ cuyo dominio sea la región dada

a.

b

Sea a un número real positivo y sea C_1 la curva descripta por $\bar{f}(t) = (t^3, at^9)$, $\bar{f}: R \to R^2$. Sea C_2 la recta tangente a C_1 en el punto $P = \bar{f}(1)$.

Además de cortarse en P, las curvas C_1 y C_2 tienen en común otro punto Q. Al cortarse en dos puntos (P y Q), entre las dos curvas C_1 y C_2 queda encerrada una región plana D.

Determinar el único valor de la constante a para el cual resulta que el área de la región D es igual a 27.

20. a. Dada $h(x) = \begin{cases} k + 3^x & x > -2 \\ \frac{1}{x^3} & x < -2 \end{cases}$ se pide determinar el valor de la constante k para que resulte $\int_{-3}^{0} h(x) dx = 1$.

b. Si
$$\int_{2}^{5} f(x) dx = 4 y \int_{-3}^{5} (f(x) + 1) dx = -2$$
, calcular $\int_{-3}^{2} (f(x) - x) dx$

- Si el diferencial del campo escalar F es dF(x;y; dx;dy) = $(6x^2+y)$ dx (5-x)dy, se pide:
 - a. Determinar el valor de la derivada direccional de F en (1;-1) en la dirección y sentido dados por el vector (3;-4). ¿Es máximo este valor de derivada direccional para F en dicho punto? Justificar la respuesta.
 - b. Determinar, en el punto (2, 2), la matriz jacobiana del campo vectorial $\bar{S}(x, y) = (F(x, y); G(x, y))$ si

$$G(x, y) = x \ln\left(\frac{y}{2}\right) - \sqrt{\frac{x}{y}}$$

- Si un móvil se desplaza sobre un plano y $\bar{f}(t) = (2t, t^2 1)$ indica su posición en el instante de tiempo t, respecto de un sistema de coordenadas cartesianas en ese plano, se pide:
 - a. determinar el vector velocidad para este móvil, en el instante en que pasa por el punto (2;0)
 - b. representar gráficamente la trayectoria recorrida por el móvil en el intervalo de tiempo [0;3]