

Aug 2021

Presenter: Jing Pan¹, Huigang Chen²

[1] Uber Technologies [2] Facebook

Agenda

- **01** Motivations
- **02** CausalML Solution
- **03** Case Study
- **04** Summary & Takeaways

KDD website: https://t.uber.com/kdd causalml

(or https://causal-machine-learning.github.io/kdd2021-tutorial/)

Installation: https://github.com/uber/causalml#installation

Tutorial Notebook: t.uber.com/kdd_causalml_case1

Motivation | Where AB Test Fails

Although true experiments have higher internal validity, sometimes in reality it's **not feasible (not practical or ethical)** to provide or withhold a treatment on a random basis;

Observational Causal Inference can still allow you to establish the causal

Observational Causal Inference can still allow you to establish the causal relationship and estimate the effects (ATE).

CausalML Solution

Scoring, Matching, Inference

Motivation

Cross-sell opportunities are huge but require rigor in quantifying the long term monetary impact

Marketers have no way to tie their acquisition efforts to monetary impact for Uber for cross-sell budget planning

Cross-sell opportunities are huge but require rigor in quantifying the long term monetary impact

Marketers have no way to tie their acquisition efforts to monetary impact for Uber for cross-sell budget planning

Leadership cannot rely on rigorous causality to prioritize between products acquisition

Cross-sell opportunities are huge but require rigor in quantifying the long term monetary impact

Marketers have no way to tie their acquisition efforts to monetary impact for Uber for cross-sell budget planning

Leadership cannot rely on rigorous causality to prioritize between product acquisition

Data Scientists that build cross-sell conversion models cannot measure expected value of a conversion without insight into the value of a conversion on the individual level

Cross-sell opportunities are huge but require rigor in quantifying the long term monetary impact

Can't set up a randomized control experiment

Want to understand:

- Will promoting cross-sell hurt or help the business at Uber as a whole platform
- ? How much the incremental impact will be

UberX Intercity

Motivation | Benefits

CausalML: leveraging observational data to establish causality

Time horizon relative to field experiments

Not as expensive

Externally valid inference (depending on the data and design)

Less fraught with behavioral concerns

UberFlash

UberX Intercity

Motivation | Benefits

CausalML: leveraging observational data to establish causality

Time horizon relative to field experiments

Not as expensive

Externally valid inference (depending on the data and design)

Less fraught with behavioral concerns

UberFlash

UberX Intercity

Motivation Applications

Generalized the approach applied in multiple scenarios when AB test fails

Cross-sell/Upsell

Disengagement

Loyalty Program

Brand Impact

Marketing Campaigns

•••

Note: Data analyzed in this study is observational, not experimental; We applied state-of-the-art causal inference techniques to infer causality. However in practice is never guaranteed, we recommend conducting AB tests to evaluate the implemented strategies.

Validation Inference Matching **Propensity Score Analysis Setup** Uber

Methodology

Among all the methods, CeViChE uses well established, tunable matching and rigorous inference validation techniques

- Parametric Regression
 - Difference in Differences (DID pre-post with-without comparison)
 - Regression Discontinuity Design (RDD)
 - Interrupted Time Series
 - Panel Regression
 - o ...
- Matching
 - Exact Matching
 - Coarsened Exact Matching (CEM)
 - o ...
- CeViChE Stratified Propensity Score Matching + Meta Learners + Sensitivity Analysis

CausalML

Propensity Score Methods

Causal Inference Models

Sensitivity Analysis

Static Features Time Varying Features **Cohort Preference** LTV Features **Analysis Setup** Feature Collection* Marketing Communication **Feature Engineering** Promotion

^{*} As in any observational study, there may still exist hidden confounders that influence both the conversion behavior and the potential outcomes. We try to be comprehensive in the feature list for the matching to remove the bias as much as we can.

Propensity Score Matching: Homogeneous group creation from observation data

- Propensity score matching*: User-level matching procedure to ensure T/C groups are as similar as possible.
 - Propensity score reflects each user's characteristics and past pm = ElasticNetPropensityModel(random_state=RANDOM_SEED)

 behaviours.

 pm = ElasticNetPropensityModel(random_state=RANDOM_SEED)

 train[PROPENSITY_FEATURES], df_train[TREATMENT]
 - Perform a nearest neighbor matching based on propensity score (notable point: add calipers to define the maximum threshold for difference).
 - Optimize the matching results by adding matching covariates together with propensity score into matching.
 - Verify similarity of and feature distributions between treatment and control after matching.

```
rom causalml.match import NearestNeighborMatch, create_table_one, MatchOptimizer
    causalml.propensity import ElasticNetPropensityModel
          NearestNeighborMatch(caliper=0.1, replace=T
          = matcher.match(data=df, treatment_col=TREATMENT_COL, score_cols=SCORE_COL)
optimizer = MatchOptimizer(treatment col=TREATMENT COL, ps col=SCORE COL,
                                    per group=100, smd cols=[SCORE COL])
```

^{*} As in any observational study, there may still exist hidden confounders that influence both the conversion behavior and the potential outcomes. We try to be comprehensive in the feature list for the matching to remove the bias as much as we can.

Inference: Leveraging different methods to validate inference

- Apply models on the matched dataset to estimate Average Treatment Effect (ATE). This process is cross-validated by various algorithms and time frames.
- Meta-learner algorithms^{[1], [2]} as the main inference model to estimate the impact of the conversion event on gross bookings.
 - S Learner
 - T Learner
 - X Learner
 - R Learner
- Evaluate the inference validity by two sets of models using XGBoost and Linear Regression as base learner.

[1] Kunzel S, Sekhon J, Bickel P, Y Bin. "Meta-learners for Estimating Heterogeneous Treatment Effects using Machine Learning", arXiv preprint arXiv:1706.03461.

[2] Alaa A, van der Schaar M. "Limits of Estimating Heterogeneous Treatment Effects: Guidelines for Practical Algorithm Design", AAAI 2018.

Sensitivity Analysis to Check the Robustness

Placebo Treatment

Replace the treatment with a random variable, then retrain the meta-learners

Subset Validation

Remove a random subset of the data, then retrain the meta-learners

Replace/Add Irrelevant Confounder

Add/replace a random variable to introduce noise to the system, then retrain the meta-learners

Selection Bias^[1]

One Sided confounding function and Alignment confounding function

Idninent comound	ATE	New ATE	New ATE LB	New ATE UB
Placebo Treatment	0.4552	0.0174	-0.0387	0.0736
Random Cause	0.4552	0.4546	0.3994	0.5098
Subset Data(sample size @0.9)	0.4552	0.4477	0.3901	0.5054
Random Replace	0.4552	0.4549	0.3997	0.5101
Selection Bias (alpha@-0.6281, with r-sqaure:0	0.4552	1.0816	1.0264	1.1368
Selection Bias (alpha@-0.50248, with r-sqaure:	0.4552	0.9563	0.9011	1.0115
Selection Bias (alpha@-0.37686, with r-sqaure:	0.4552	0.8310	0.7758	0.8862
Selection Bias (alpha@-0.25124, with r-sqaure:	0.4552	0.7058	0.6506	0.7610
Selection Bias (alpha@-0.12562, with r-sqaure:	0.4552	0.5805	0.5253	0.6357
Selection Bias (alpha@0.0, with r-sqaure:0.0	0.4552	0.4552	0.4000	0.5104
Selection Bias (alpha@0.12562, with r-sqaure:0	0.4552	0.3300	0.2748	0.3852
Selection Bias (alpha@0.25124, with r-sqaure:0	0.4552	0.2047	0.1495	0.2599
Selection Bias (alpha@0.37686, with r-sqaure:0	0.4552	0.0794	0.0242	0.1346
Selection Bias (alpha@0.50248, with r-sqaure:0	0.4552	-0.0458	-0.1010	0.0094
Selection Bias (alpha@0.6281, with r-sqaure:0	0.4552	-0.1711	-0.2263	-0.1159

Case Study

Monetary Impact of Rider to Eater (R2E) Cross Sell

Notebook: t.uber.com/kdd causalml case1

Analysis Setup

- Treatment Group: Riders who converted to Eaters within treatment period
- Control Group: Riders who were not converted to Eaters until the end of post-treatment period

Propensity Score Matching

Matching removes biases between treatment and control

Before matching

After matching

R2E Conversion

Treatment: **4K** users

3 Mon GB*: **\$2,000**

3 Mon Trips: 100

Treatment: **4K** users **R2E** Conversion

3 Mon GB: **\$2,000**

3 Mon Trips: 100

Control: 96K users

No R2E

3 Mon GB: **\$20**

3 Mon Trips: 10

4K users Control:

No R2E

3 Mon GB: **\$2,000**

3 Mon Trips: 100

^{*} Number here just for illustration purpose not from the real Uber Rider datasets

Matching Validation

Meta Learners

Consistent Results across Meta Learners

	S Learner (LR)	S Learner (XGB)	T Learner (LR)	T Learner (XGB)	X Learner (LR)	X Learner (XGB)	R Learner (LR)	R Learner (XGB)
ATE	0.4473	0.3964	0.4479	0.4405	0.4479	0.4437	0.4458	0.4450
Lower	0.3923	0.3478	0.3928	0.3933	0.3928	0.3975	0.4451	0.4444
Upper	0.5024	0.4450	0.5030	0.4876	0.5030	0.4899	0.4465	0.4457
Baseline	0.2896	0.3405	0.2891	0.2964	0.2891	0.2932	0.2911	0.2919
Lift	1.5446	1.1641	1.5495					

Cross-sell drives synergistic lift: Eats conversion drives Rides spend

Sensitivity Analysis

Robust Results Validated by Sensitivity Analysis

Method	ATE	New ATE	New ATE LB	New ATE
Placebo Treatment	0.4552	0.0174	-0.0387	0.0736
Random Cause	0.4552	0.4546	0.3994	0.5098
Subset Data(sample size @0.9)	0.4552	0.4477	0.3901	0.5054
Random Replace	0.4552	0.4549	0.3997	0.5101
Selection Bias (alpha@-0.6281, with r-sqaure:0	0.4552	1.0816	1.0264	1.1368
Selection Bias (alpha@-0.50248, with r-sqaure:	0.4552	0.9563	0.9011	1.0115
Selection Bias (alpha@-0.37686, with r-sqaure:	0.4552	0.8310	0.7758	0.8862
Selection Bias (alpha@-0.25124, with r-sqaure:	0.4552	0.7058	0.6506	0.7610
Selection Bias (alpha@-0.12562, with r-sqaure:	0.4552	0.5805	0.5253	0.6357
Selection Bias (alpha@0.0, with r-sqaure:0.0	0.4552	0.4552	0.4000	0.5104
Selection Bias (alpha@0.12562, with r-sqaure:0	0.4552	0.3300	0.2748	0.3852
Selection Bias (alpha@0.25124, with r-sqaure:0	0.4552	0.2047	0.1495	0.2599
Selection Bias (alpha@0.37686, with r-sqaure:0	0.4552	0.0794	0.0242	0.1346
Selection Bias (alpha@0.50248, with r-sqaure:0	0.4552	-0.0458	-0.1010	0.0094
Selection Bias (alpha@0.6281, with r-sqaure:0	0.4552	-0.1711	-0.2263	-0.1159

Matching Validation

Standard Mean Difference (SMD) on observed covariates, with |SMD| < 0.1 considered balanced

		Pre-Matching			After-Matching			
	Variable	Control	Treatment	SMD	Control	Treatment	SMD	
100+ covariates: Static, LTV, Trips/Orders, Marketing, Comms, Promo	n	96k	4k		96k	4k		
	S: feature_1	0.11 (0.17)	0.30 (0.13)	1.248	0.30 (0.13)	0.30 (0.13)	0.000	
	feature_2	62.99 (137.07)	17.28 (51.43)	-0.442	16.94 (51.15)	17.28 (51.43)	0.007	
	feature_3	0.53 (1.84)	2.14 (3.57)	0.568	2.14 (3.57)	2.14 (3.57)	-0.001	
	feature_4	0.87 (1.49)	1.97 (2.98)	0.470	1.99 (3.02)	1.97 (2.98)	-0.005	
	feature_5	0.80 (3.18)	3.61 (7.87)	0.467	3.53 (7.73)	3.61 (7.87)	0.009	
	feature_6	0.08 (0.12)	0.31 (0.17)	1.538	0.31 (0.17)	0.31 (0.17)	0.000	
	fefeature_7	1.76 (2.21)	4.60 (1.71)	1.435	4.62 (1.69)	4.60 (1.71)	-0.011	
	·							

Summary & Takeaways

Summary | Core team and Contributors

Shoutout to all the contributors¹ of CausalML community!

Dahee Lee

Huigang Chen

Jeong-Yoon Lee

Jing Pan

Mike Yung

Mert Bay

Paul Lo

Totte Harinen

Yifeng Wu

Zhenyu Zhao

Yuchen (@yluogit)

Manoj (@manojbalaji1)

Peter (@peterfoley)

Suraj (@surajiyer)

Harsh (@HarshCasper)

Fritz (@fritzo)

Tomasz (@TomaszZamacinski)

Georg (@waltherg)

Florian (@FlorianWilhelm)

Harry (@deeplaunch)

Katherine (@khof312)

Steve (@steveyang90) Vaclavbelak (@vaclavbelak) Mario (@mwijaya3) Christophe (@ccrndn) Jannik (@jroessler) downloads 401k Matthew (@maccam912) Leo (@lleiou) ☆ Star 2,165 Mohamed (@ibraaaa) Contributors 26 + 15 contributors

¹ List of contributors: https://github.com/uber/causalml/graphs/contributors

Q&A

Key Takeaways

- Recommendations: promote more Rider-to-Eater campaigns to drive the cross-sell conversions as it have incremental monetary impact for both products
- Applied in multiple projects at Uber to measure and predict the incrementality of cross-sell, disengagement, loyalty program, and marketing campaigns
- Observational data can be used to establish the causal relationship when AB test fails; proposed CeViChE framework creates a scalable and flexible framework that establishes causality between user actions and monetary value
- W. C.

- CausalML provides one-stop shop for an end-to-end solution
 - Notebook: <u>t.uber.com/kdd_causalml_case1</u>

Appendix