Calcolatori Elettronici (12AGA) – esame del 19.9.2014

Domande a risposta chiusa (è necessario rispondere correttamente ad almeno 6 domande). Non è possibile consultare alcun tipo di materiale. Tempo: 20 minuti.

1	Si desidera realizzare un banco di memoria composto da 1M parole da 32 bit ciascuna, utilizzando moduli composti ciascuno da 256K parole da 8 bit. Quanti di questi moduli sono necessari?								
2	Con riferimento alla mappa di Karnaugh a destra, si	, a b							
	disegni una copertura minima e si scriva qui sotto la funzione booleana corrispondente all'espressione minima.	c d	00	01	11	10			
	T	00	1	I _	0	0]		
			21-8-1		"				
		01	1	1-	0	0			
		11	1	-	-	1			
		10	1	0	0	0			
		10	1		U				
3	Si consideri un sistema di arbitraggio di bus basato su	Daisy Chaining						A	
	Daisy Chaining e un altro basato su richieste indipendenti.	Richieste Indipendenti						В	
	In quale dei due sistemi il tempo di arbitraggioè	Il tempo di arbitraggio è lo	stesso	1				С	
	mediamente inferiore?	Dipende dal numero di unit	tà coni	nesse				D	
4	Quale vantaggio offre l'uso della microprogrammazione	Maggiore velocità						A	
	verticale rispetto a quella orizzontale?	Maggiore semplicità di pro						В	
		Minore dimensione della m						C	
		Minor costo della logica accedere alla memoria di m			one de	egli in	dirizzi per	D	
5	Quale delle seguenti tipologie di memoria è volatile?	ROM	пстосс	Juice				Α	
	Quality de la segue de la memoria e Todame	Static RAM						В	
		FPGA						С	
		EPROM						D	
6	Che cosa succede in un processore quando un programma	Si scatena un'eccezione; il	progra	ımma è	interr	otto e	viene	Α	
	esegue una divisione per 0?	eseguita la procedura di ser		l cui ii	ndirizz	o è me	morizzato		
		in un certo elemento della l						_	
		Nulla; il programma proced					1 1	В	
		Viene settato il flag di over		ii prog	ramma	proce	de oltre	C D	
7	Si consideri una <i>cache</i> composta da 256 linee, ciascuna	Il processore viene resettate	0					υ	
,	corrispondente a 8 byte, che utilizza il meccanismo del Direct Mapping. Quanti bit compongono il campo tag, assumendo che il processore emetta indirizzi su 32 bit?								
8	Quale dei seguenti strumenti produce il file eseguibile in un tipico flusso di scrittura di un programma?	Editor						A	
		Assemblatore						В	
		Linker						С	
		Sistema operativo						D	
9	Si considerino due variabili UNO e DUE di tipo word. Si scriva a fianco il frammento di codice che esegue lo scambio di valore tra le due variabili.								

Risposte corrette

1	2	3	4	5	6	7	8	9
16		В	С	В	A	21	С	

Domanda 2

u = a'b' + cd

Domanda 9

Esempio di soluzione

MOV AX, UNO MOV BX, DUE MOV UNO, AX MOV DUE, BX

Mama		matuicala	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
nome,	cognome,	matricola	

Domande a risposta aperta (sino a 5 punti per ogni domanda) – Non è possibile consultare alcun materiale - Tempo: 40 minuti.

10	Si illustrino le caratteristiche e il funzionamento di un bus asincrono, confrontandolo poi con quelle di un bus sincrono; si
	elenchino vantaggi e svantaggi di ciascuno.
11	Con riferimento al processore con l'architettura della figura, si elenchino le microistruzioni necessarie all'esecuzione completa dell'istruzione
11	ADD R5, VAR, che esegue la somma del valore contenuto nella variabile di memoria VAR con il registro R5 (R5←R5+VAR).
	ADD R3, VAR, the esegue is somina der valore contenuto nena variable di memoria VAR con il registro R3 (R3~R3+VAR).
	0
	Unità di controllo IR R ₀ R _{n-1} TEMP
	र्ह ै ं Unità di │
	ST CONTROLL IR R ₀ R ₁ TEMP
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	S _e
	← †
	Bus interno
	Y Y
	PC MAR MDR
	TI I I I I I I I I I I I I I I I I I I
	Line and Arry Arry Arry Arry Arry Arry Arry Arr
	$\rightarrow \rightarrow $
	CarryIn
	Bus esterno Z
1	

12	Si disegnino l'architettura di un ripple carry adder e quella di un carry lookahead adder, illustrando vantaggi e svantaggi di ciascuno dei due.
13	Si illustrino le caratteristiche tipiche di un processore RISC.
13	Si illustrino le caratteristiche tipiche di un processore RISC.
13	Si illustrino le caratteristiche tipiche di un processore RISC.
13	Si illustrino le caratteristiche tipiche di un processore RISC.
13	Si illustrino le caratteristiche tipiche di un processore RISC.
13	Si illustrino le caratteristiche tipiche di un processore RISC.
13	Si illustrino le caratteristiche tipiche di un processore RISC.
13	Si illustrino le caratteristiche tipiche di un processore RISC.
13	Si illustrino le caratteristiche tipiche di un processore RISC.
13	Si illustrino le caratteristiche tipiche di un processore RISC.
13	Si illustrino le caratteristiche tipiche di un processore RISC.
13	Si illustrino le caratteristiche tipiche di un processore RISC.
13	Si illustrino le caratteristiche tipiche di un processore RISC.
13	Si illustrino le caratteristiche tipiche di un processore RISC.
13	Si illustrino le caratteristiche tipiche di un processore RISC.
13	Si illustrino le caratteristiche tipiche di un processore RISC.
13	Si illustrino le caratteristiche tipiche di un processore RISC.
13	Si illustrino le caratteristiche tipiche di un processore RISC.

Nome, cognome, matricola

Esercizio di programmazione

sino a 12 punti – è possibile consultare qualunque materiale cartaceo - tempo: 60 minuti

Una periferica di output connessa a un sistema basato sul processore 8086 riceve i caratteri (byte) da visualizzare attraverso un protocollo seriale come illustrato in figura:

Ogni byte è trasmesso sulla linea *dato* a partire dal bit più significativo, preceduto da uno "start bit" a 1 e seguito dal bit di parità del byte trasmesso (parità dispari); per ogni byte da trasmettere sono dunque inviati 10 bit. Durante l'invio di ogni bit, un fronte positivo del segnale di *clock* segnala alla periferica la disponibilità di un valore da acquisire.

Si scriva una **procedura sendcode** in linguaggio Assembly 8086 in grado di realizzare la trasmissione descritta mediante l'interfaccia parallela programmabile 8255, utilizzando il bit 7 della porta C per il segnale di *dato* e il bit 6 della stessa porta per il segnale di *clock*. Il modulo 8255 si può considerare inizialmente programmato in modo 0 per entrambi i gruppi, con tutte le porte in modo output. Si assuma che i 4 registri dell'8255 rispondano agli indirizzi 80h, 81h, 82h e 83h, rispettivamente.

La procedura riceve un byte da trasmettere alla volta mediante lo stack. Di seguito un esempio di programma chiamante:

MOV AL, 'c' XOR AH, AH PUSH AX CALL sendcode ADD SP, 2

[...]