$$(B)_{s}$$

$$(B)_{t}$$

$$(B)_$$

in which G is

$$-(CR^{1}R^{2})_{n}-A-(CR^{1}R^{2})_{m}-(CR^{1}R^{3})_{i}-(CR^{1}R^{2})_{q}-R^{4}$$

A is selected from the group consisting of a direct bond, $-C(0)NR^5-$, $-NR^5C(0)-$, -C(0)-, $-RR^5-$, -O-, -S-, -S(0)-, $-S(0)_2-$, (C_2-C_4) -alkynediyl, (C_2-C_4) -alkenediyl and (C_5-C_{14}) -arylene where in the arylene residue one, two, three, four or five ring carbon atoms can be replaced by a heteroatom selected from the group consisting of nitrogen, oxygen and sulfur, or a divalent residue of a 3-membered to 7-membered saturated or unsaturated ring which can contain one or two ring heteroatoms selected from the group consisting of nitrogen, sulfur and oxygen and which can be monosubstituted or disubstituted by a member selected from the group consisting of =0, =S and $=R^3$;

B are individually selected from the group consisting of (C_1-C_{18}) -

alkyl, (C_s-C_{14}) -cycloalkyl, (C_s-C_{14}) -cycloalkyl- (C_1-C_8) -alkyl-, (C_s-C_{14}) -aryl, (C_s-C_{14}) -aryl- (C_1-C_8) -alkyl-, (C_s-C_{14}) -heteroaryl, (C_s-C_{14}) -heteroaryl- (C_1-C_8) -alkyl-, fluorine, chlorine, bromine, hydroxy, cyano, trifluoromethyl, nitro, hydroxycarbonyl-, (C_1-C_6) -alkoxy, (C_1-C_6) -alkoxy- (C_1-C_6) -alkyl-, (C_1-C_6) -alkoxycarbonyl-, (C_1-C_6) -alkylcarbonyl-, (C_5-C_{14}) -arylcarbonyl-, (C_1-C_6) -alkylamino-carbonyl-, (C_1-C_6) -alkoxy- (C_1-C_6) -alkoxy-, (C_5-C_{14}) -aryl- (C_1-C_8) -alkylcarbonyl-, (C_1-C_6) -alkanoylamino-, (C_1-C_6) -alkylsulfonylamino-, (C_5-C_{14}) -arylsulfonylamino-, (C_1-C_6) -alkylsulfonyl-, di- $((C_1-C_6)$ -alkyl) amino-, (C_1-C_6) -alkylsulfonyl-, aminosulfonyl-, (C_5-C_{14}) -arylsulfonyl-, (C_5-C_{14}) -aryl-anyl- (C_5-C_{14}) -aryl-anyl-heteroaryl;

X is selected from the group consisting of hydrogen, NR^6R^6 , fluorine, chlorine, bromine, $-OR^6$, $-SR^6$, hydroxy- (C_1-C_6) -alkyl-NH-, $(hydroxy-(C_1-C_6)$ -alkyl)₂N-, amino- (C_1-C_6) -alkyl-NH-, $(amino-(C_1-C_6)$ -alkyl)₂N-, hydroxy- (C_1-C_6) -alkyl-O-, hydroxy- (C_1-C_6) -alkyl-S- and -NH- $(C(0)-R^6)$;

Y is selected from the group consisting of R^6 , fluorine, chlorine, bromine, cyano, $-NR^6R^{6^\circ}$ -, $-OR^6$, $-SR^6$ and hydroxy- (C_1-C_6) -alkyl-NH-;

 R^1 and R^2 are individually selected from the group consisting of hydrogen, fluorine, chlorine, cyano, nitro, (C_1-C_{10}) -alkyl, (C_3-C_{14}) -

cycloalkyl, (C_3-C_{14}) -cycloalkyl- (C_1-C_8) -alkyl-, (C_5-C_{14}) -aryl, (C_5-C_{14}) -aryl- (C_1-C_8) -alkyl-, (C_5-C_{14}) -heteroaryl, (C_5-C_{14}) -heteroaryl- (C_1-C_8) -alkyl-, (C_5-C_{14}) -heteroaryl- (C_1-C_8)

R³ is selected from the group consisting of hydrogen, fluorine, chlorine, cyano, nitro, (C_1-C_{18}) -alkyl, (C_4-C_{14}) -cycloalkyl, (C_3-C_{14}) -cycloalkyl- (C_1-C_8) -alkyl-, (C_5-C_{14}) -aryl, (C_5-C_{14}) -aryl- (C_1-C_8) -alkyl-, (C_5-C_{14}) -heteroaryl, (C_5-C_{14}) -heteroaryl- (C_1-C_8) -alkyl-, R^6-O-R^7 , $R^6R^6N-R^7$, $R^6C(O)-O-R^7$, $R^6C(O)R^7$, $R^6OC(O)R^7$), $(R^6N(R^6))C(O)OR^7$, $R^6S(O)_pN(R^5)R^7$, $R^6OC(O)N(R^5)R^7$, $R^6N(R^6)C(O)N(R^5)R^7$, $R^6N(R^6)C(O)_pN(R^5)R^7$, $R^6S(O)_pR^7$, $R^6S(O)_pR^7$, $R^6S(O)_pR^7$, $R^6N(R^6)C(O)R^7$ and $R^6N(R^6)S(O)_pR^7$, where alkyl can be mono-unsaturated or polyunsaturated and where alkyl, cycloalkyl, aryl, and heteroaryl can be monosubstituted or polysubstituted by a member selected from the group consisting of R^6 , fluorine, chlorine, bromine, cyano, trifluoromethyl, $R^6R^6NR^7$, nitro, $R^6OC(O)R^7$, $R^6C(O)R^7$, $R^6N(R^6)C(O)R^7$, $R^6N(R^6)S(O)_pR^7$ and R^6-O-R^7 , and where all R^4 s are independent of one another and can be identical or different;

 R^4 is selected from the group consisting of $-C(0)R^8$, $-C(S)R^8$, $-S(0)_pR^8$, $-S(0)_pR^8$, $-P(0)R^8R^8$ and a 4-membered to 8-membered saturated or unsaturated heterocycle which contains 1, 2, 3 or 4 heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur;

 R_5 is selected from the group consisting of hydrogen, (C_1-C_{10}) -alkyl, (C_3-C_{14}) -cycloalkyl- (C_1-C_8) -alkyl-, (C_5-C_{14}) -aryl and (C_5-C_{14}) aryl- (C_1-C_8) -

alkyl-;

 R^6 and R^{6° are individually selected from the group consisting of hydrogen, (C_1-C_{18}) -alkyl, (C_3-C_{14}) -cycloalkyl, (C_3-C_{14}) -cycloalkyl- (C_1-C_{18}) -cycloalkyl- $(C_1-C_{1$ C_8)-alkyl-, (C_5-C_{14}) -aryl, (C_5-C_{14}) -aryl- (C_1-C_8) -alkyl-, heteroaryl and (C_5-C_{14}) -heteroaryl- (C_1-C_8) -alkyl- where heteroaryl, cycloalkyl and alkyl can be substituted one, two or three times by individual substituents selected from the group consisting of fluorine, chlorine, bromine, cyano, trifluoromethyl, nitro, hydroxycarbonyl-, (C_1-C_6) -alkyl, (C_1-C_6) -alkoxy, (C_1-C_6) alkoxy- (C_1-C_6) -alkyl-, (C_1-C_6) -alkoxycarbonyl-, (C_1-C_6) alkylcarbonyl-, (C_1-C_6) -alkylaminocarbonyl-, (C_1-C_6) -alkoxy- (C_1-C_6) alkoxy-, (C_5-C_{14}) -arylcarbonyl-, (C_5-C_{14}) -aryl- (C_1-C_8) -alkylcarbonyl-, (C_1-C_6) -alkanoylamino-, (C_5-C_{14}) -arylsulfonylamino-, alkylsulfonylamino-, (C_1-C_6) -alkylamino-, $di-((C_1-C_6)$ -alkyl)amino-, (C_1-C_6) -alkylsulfonyl-, (C_1-C_6) -alkylaminosulfonyl-, arylaminosulfonyl-, (C_5-C_{14}) -aryl- (C_1-C_8) -alkylaminosulfonyl, (C_5-C_{14}) arylsulfonyl-, (C_5-C_{14}) -aryl- (C_1-C_8) -alkylsulfonyl, (C_5-C_{14}) -aryl and $(C_5-C_{14}-heteroaryl;$

 R^7 is (C_1-C_4) -alkanediyl or a direct bond, where all R^7 are independent of one another and can be identical or different;

 R^8 and $R^{8'}$ are individually selected from the group consisting of hydroxy, (C_1-C_8) -alkoxy, (C_5-C_{14}) -aryl- (C_1-C_8) -alkoxy-, (C_5-C_{14}) -aryloxy, (C_1-C_8) -alkylcarbonyloxy- (C_1-C_4) -alkoxy-, (C_5-C_{14}) -aryl- (C_1-C_8) -alkylcarbonyloxy- (C_1-C_4) -alkoxy-, (C_5-C_{14}) -aryl- (C_1-C_8) -aryl- (C_1-C_8) -alkylcarbonyloxy- (C_1-C_8) -alkoxy-, (C_5-C_{14}) -aryl- (C_1-C_8) -aryl- (C_1-C_8) -alkylcarbonyloxy- (C_1-C_8) -alkoxy-, (C_5-C_{14}) -aryl- (C_1-C_8) - (C_1-C_8) -aryl- (C_1-C_8) -aryl- (C_1-C_8) -aryl- (C_1-C_8) - $(C_1-C$

 C_8)-alkylcarbonyloxy- (C_1-C_8) -alkoxy-, NR^6R^6 , $(di-((C_1-C_8)-alkyl)amino)$ carbonylmethyloxy-, $(di-((C_5-C_{14})-aryl-(C_1-C_8)-alkyl)amino)$ carbonylmethyloxy-, (C_5-C_{14}) -arylamino-, an amino acid, $N-((C_1-C_4)-alkyl)$ piperidin-4-yloxy-, 2-methylsulfonylethoxy-, 1,3-thiazol-2-ylmethyloxy-, 3-pyridylmethyloxy-, 2- $(di-((C_1-C_4)-alkyl))$ amino)-ethoxy and $Q^*(CH_3)_3N^+-CH_2-CH_2-O-$ in which Q^* is a physiologically tolerable anion;

```
n is zero, one, two, three, four or five;

m is zero, one, two, three, four or five;

i is zero or one;

q is zero, one or two;

r is zero, one or two;

s is zero, one, two or three;

t is zero, one, two, three, four, five, six, seven or eight;

p is zero, one or two, where all numbers p are independent of one
another and can be identical or different;
```

in all their stereoisomeric forms and mixtures thereof in all ratios, and their non-toxic, physiologically tolerable salts;

where, instead of the purine structure shown in formula I, also a 3-deazapurine structure, a 7-deazapurine structure or a 7-deaza-8-azapurine structure can be present.

Claim 2 (amended) A compound of claim 1, wherein G is

$$-(CR^{1}R^{2})_{n}-A-(CR^{1}R^{2})_{m}-(CR^{1}-R^{3})_{i}-(CR^{1}R^{3})_{i}-(CR^{1}R^{2})_{d}-R^{4}$$

A is selected from the group consisting of a direct bond, $-C(0)NR^5-$, $-NR^5C(0)-$, -C(0)-, $-R^5-$, -O-, -S-, -S(0)-, $-S(0)_2-$, (C_2-C_4) -alkynediyl, (C_2-C_4) -alkenediyl, (C_5-C_{14}) -arylene where in the arylene residue one, two, three, four or five ring carbon atoms can be replaced by a heteroatom selected from the group consisting of nitrogen, oxygen and sulfur, and a divalent residue of a 3-membered to 7-membered saturated or unsaturated ring which can contain one or two ring heteroatoms selected from the group consisting of nitrogen, sulfur and oxygen and which can be monosubstituted or disubstituted by a member selected from the group consisting of =0, =S and R^3 ;

B is selected from the group consisting of (C_1-C_{12}) -alkyl, (C_3-C_{14}) -cycloalkyl, (C_3-C_{14}) -cycloalkyl- (C_1-C_8) -alkyl-, (C_5-C_{14}) -aryl, (C_5-C_{14}) -aryl- (C_1-C_8) -alkyl-, (C_5-C_{14}) -heteroaryl, (C_5-C_{14}) heteroaryl- (C_1-C_8) -alkyl-, fluorine, chlorine, bromine, hydroxy, cyano, trifluoromethyl, nitro, hydroxycarbonyl-, (C_1-C_6) -alkoxy, (C_1-C_6) -alkoxy- (C_1-C_6) -alkyl-, (C_1-C_6) -alkylcarbonyl-, (C_5-C_{14}) -arylcarbonyl-, (C_5-C_{14}) -aryl- (C_1-C_8) -alkylcarbonyl- (C_1-C_6) -alkylaminocarbonyl-, (C_1-C_6) -alkanoylamino-, (C_1-C_6) -alkylsulfonylamino-, (C_5-C_{14}) -aryl-sulfonylamino-, (C_1-C_{14}) -alkylamino-, di- $((C_1-C_6)$ -alkyl) amino-, (C_1-C_8) -alkylsulfonyl-, (C_5-C_{14}) -aryl-sulfonyl-, (C_5-C_{14}) -aryl-aryl-sulfonyl-, (C_5-C_{14}) -aryl-aryl-heteroaryl, where all Bs are independent of one another and can be identical or different;

X is selected from the group consisting of hydrogen, NH_2 , $-NH-C(O)-R^6$ and OH;

Y is hydrogen;

Z is N;

 R^1 and R^2 are independently selected from the group consisting of hydrogen, fluorine, chlorine, cyano, nitro, (C_1-C_{10}) -alkyl, (C_3-C_{14}) -cycloalkyl, (C_3-C_{14}) -cycloalkyl- (C_1-C_8) -alkyl-, (C_5-C_{14}) -aryl, (C_5-C_{14}) -aryl, (C_5-C_{14}) -aryl, (C_5-C_{14}) -heteroaryl, (C_5-C_{14}) -heteroaryl- (C_1-C_8) -alkyl-, (C_5-C_{14}) -heteroaryl- (C_1-C_8) -heteroaryl- (C_1-C_8) -alkyl-, (C_5-C_{14}) -heteroaryl- (C_1-C_8) -hete

R³ is selected from the group consisting of hydrogen, fluorine, chlorine, cyano, nitro, (C_1-C_{18}) -alkyl, (C_3-C_{14}) -cycloalkyl, (C_3-C_{14}) -cycloalkyl- (C_1-C_8) -alkyl, (C_5-C_{14}) -aryl, (C_5-C_{14}) -aryl- (C_1-C_8) -alkyl-, (C_5-C_{14}) -heteroaryl, (C_5-C_{14}) -heteroaryl- (C_1-C_8) -alkyl-, R^6 -O- R^7 , R^6R^6 'N- R^7 , R^6 C(O)-O- R^7 , R^6 C(O)R 7 , R^6 N(R 6)C(O)N(R 5)R 7 , R^6 N(O)N(R 5)R 7 , R^6 N(R 6)C(O)N(R 5)R 7 , R^6 N(R 6)S(O)_pN(R 5)R 7 , R^6 N(R 6)C(O)N(R 5)R 7 , R^6 N(R 6)S(O)_pR 7 , where alkyl can be mono-unsaturated or poly-unsaturated and where alkyl, cycloalkyl, aryl and heteroaryl can be monosubstituted or polysubstituted by a member selected from the group consisting of R^6 , fluorine, chlorine, bromine, cyano, trifluoromethyl, R^6 R 6 NR 7 , nitro, R^6 OC(O)R 7 , R^6 C(O)R 7 , R^6 N(R 6)C(O)R 7 , R^6 N(R 6)S(O)_pR 7 and R^6 O-O-R 7 ,

and where all R³ are independent of one another and can be identical or different;

 R^4 is $-C(0)R^8$ or $-P(0)R^8R^{8'}$;

 R^5 is selected from the group consisting of hydrogen, (C_1-C_{10}) -alkyl, (C_3-C_{14}) -cycloalkyl- (C_1-C_8) -alkyl- and $(C_5-C_{14}$ -aryl- (C_1-C_8) -alkyl-, where all R^5 are independent of one another and can be identical or different;

 R^6 and R^6 are individually selected from the group consisting of hydrogen, (C_1-C_{12}) -alkyl, (C_3-C_{14}) -cycloalkyl, (C_3-C_{14}) -cycloalkyl- (C_1-C_8) -alkyl-, (C_5-C_{14}) -aryl, (C_5-C_{14}) -aryl- (C_1-C_8) -alkyl-, (C_5-C_{14}) -heteroaryl- (C_1-C_8) -alkyl- where aryl, heteroaryl, cycloalkyl and alkyl can be substituted one, two or three times by individual substituents selected from the group consisting of fluorine, chlorine, bromine, cyano, trifluoromethyl, nitro, hydroxycarbonyl-, (C_1-C_6) -alkyl, (C_1-C_6) -alkoxy-, (C_1-C_6) -alkoxy- (C_1-C_6) -alkoxy- (C_1-C_6) -alkyl, (C_5-C_{14}) -arylcarbonyl-, (C_5-C_{14}) -aryl- (C_1-C_6) -alkylcarbonyl-, (C_1-C_6) -alkanoylamino-, (C_5-C_{14}) -arylsulfonylamino-, (C_1-C_6) -alkylsulfonyl-, (C_5-C_{14}) -aryl and (C_5-C_{14}) -heteroaryl, and where all R_6 and R_6 are independent of one another and can be identical or different;

 R^7 is (C_1-C_4) -alkanediyl or a direct bond, where all R^7 are

independent of one another and can be identical or different;

 R^{8} and $R^{8'}$ are individually selected from the group consisting of $(C_{1}-C_{8})$ -alkoxy, $(C_{5}-C_{14})$ -aryl- $(C_{1}-C_{8})$ -alkoxy-, $(C_{1}-C_{8})$ -alkylcarbonyloxy- $(C_{1}-C_{4})$ -alkoxy- and $NR^{6}R^{6'}$ where all R^{8} and $R^{8'}$ are independent of one another and can be identical or different;

```
n is zero, one, two, three, four or five;

m is zero, one, two, three, four or five;

i is zero or one;

q is zero, one or two;

r is zero, one or two;

s is zero, one, two or three;

t is zero, one, two, three, four, five, six, seven or eight;

p is zero, one or two, where all numbers p are independent of one
another and can be identical or different;
```

in all their stereoisomeric forms and mixtures thereof in all ratios, and their non-toxic, physiologically tolerable salts and their prodrugs.

Claim 3 (amended) A compound of claim 1 wherein G is

$$-(CR^{1}R^{2})_{n}-A-(CR^{1}R^{2})_{m}-(CR^{1}-R^{3})_{i}-(CR^{1}R^{2})_{q}-R^{4}$$

A is selected from the group consisting of a direct bond, -C(O)NR5-,

-NR 5 C(O)-, -C(O)-, -NR 5 - and (C $_5$ -C $_{14}$)-arylene where in the arylene, one or two ring carbon atoms can be replaced by a heteroatom selected from the group consisting of nitrogen, oxygen and sulfur;

B is selected from the group consisting of (C_1-C_6) -alkyl, chlorine, hydroxy, cyano, trifluoromethyl, (C_1-C_6) -alkoxy, (C_1-C_6) -alkylcarbonyl-, (C_1-C_6) -alkanoylamino-, (C_1-C_6) -alkylamino and di((C_1-C_6) -alkyl)amino-, where all Bs are independent of one another and can be identical or different;

X is hydrogen;

Y is hydrogen;

Z is N;

 R^1 and R^2 are individually selected from the group consisting of hydrogen, (C_1-C_4) -alkyl, $R^6S(O)$, NHR⁷ and $R^6OC(O)$ NHR₇;

 R^3 is selected from the group consisting of hydrogen, (C_1-C_{12}) -alkyl, (C_3-C_{14}) -cycloalkyl, (C_3-C_{14}) -cycloalkyl- (C_1-C_6) -alkyl-, (C_5-C_{14}) -aryl, (C_5-C_{14}) -aryl- (C_1-C_6) -alkyl-, (C_5-C_{14}) -heteroaryl, (C_5-C_{14}) -heteroaryl- (C_1-C_6) -alkyl-, $R^6R^6N-R^7$, $R^6S(O)_2N(R^5)R^7$, $R^6OC(O)N(R^5)R^7$ and $R^6C(O)N(R^5)R^7$, where alkyl can be mono-unsaturated or polyunsaturated and where alkyl, cycloalkyl, aryl, and heteroaryl can be monosubstituted or polysubstituted by a member selected from the

group consisting of R^6 , fluorine, chlorine, trifluoromethyl, $R^6C(0)R^7$ and R^6-O-R^7 ;

 R^4 is $-C(0)R^*$;

 R^5 is hydrogen or (C_1-C_4) -alkyl, where all R_5 s are independent of one another and can be identical or different;

 R^6 and R^6 are individually hydrogen, (C_1-C_{12}) -alkyl, (C_3-C_{14}) -cycloalkyl, (C_3-C_{14}) -cycloalkyl- (C_1-C_8) -alkyl-, (C_5-C_{14}) -aryl, (C_5-C_{14}) -aryl- (C_1-C_8) -alkyl-, (C_5-C_{14}) -heteroaryl and (C_5-C_{14}) -heteroaryl- (C_1-C_8) -alkyl- where aryl, heteroaryl, cycloalkyl and alkyl can be substituted one, two or three times by members selected from the group consisting of fluorine, chlorine, bromine, cyano, trifluoromethyl, (C_1-C_6) -alkyl, $(_1-C_6)$ -alkoxy-, (C_1-C_6) -alkylamino-, (C_5-C_{14}) -aryl and (C_5-C_{14}) -heteroaryl, and where all R^6 s and R^6 's are independent of one another and can be identical or different;

 R^7 is (C_1-C_2) -alkanediyl or a direct bond, where all R^7 s are independent of one another and can be identical or different;

 R^{8} is hydroxy or $(C_{1}-C_{6})$ -alkoxy;

n is zero, one, two, three, four or five;
m is zero or one;

i is zero or one;
q is zero or one;
r is zero or one;
s is zero, one or two;
t is zero, one, two, three or four;

in all their stereoisomeric forms and mixtures thereof in all ratios, and their non-toxic physiologically tolerable salts.

Claim 4 (amended) A compound of claim 1 wherein G is

$$-(CR^{1}R^{2})_{n}-A-(CR^{1}R^{2})_{m}-(CR^{1}R^{3})_{i}-(CR^{1}R^{2})_{q}-R^{4}$$

A is a direct bond;

B is (C_1-C_6) -alkyl or hydroxy, where all Bs are independent of one another and can be identical or different;

X is hydrogen;

Y is hydrogen;

Z is N;

 R^1 and R^2 are individually selected from the group consisting of hydrogen, (C_1-C_4) -alkyl, $R^6S(O)_2NHR^7$ and $R^6OC(O)NHR^7$,

 R^3 is selected from the group from the group consisting of hydrogen, (C_1-C_{12}) -alkyl, (C_3-C_{14}) -cycloalkyl, (C_3-C_{14}) -cycloalkyl- (C_1-C_6) -alkyl-, (C_5-C_{14}) -aryl, (C_5-C_{14}) -aryl- (C_1-C_6) -alkyl-, (C_5-C_{14}) -heteroaryl, (C_5-C_{14}) -heteroaryl- (C_1-C_6) -alkyl-, (C_5-C_{14}) -heteroaryl-, (C_5-C_{14})

 R^4 is $-C(0)R^8$;

 R^5 is hydrogen or (C_1-C_4) -alkyl;

 R^6 and $R^{6'}$ are individually hydrogen, (C_1-C_{12}) -alkyl, (C_3-C_{14}) -cycloalkyl, (C_3-C_{14}) -cycloalkyl- (C_1-C_8) -alkyl-, (C_5-C_{14}) -aryl, (C_5-C_{14}) -aryl- (C_1-C_8) -alkyl-, (C_5-C_{14}) -heteroaryl or (C_5-C_{14}) -heteroaryl- (C_1-C_8) -alkyl- where aryl, heteroaryl, cycloalkyl and alkyl can be substituted one, two or three times by at least one substituent selected from the group consisting of fluorine, chlorine, bromine, cyano, trifluoromethyl, (C_1-C_6) -alkyl, (C_1-C_6) -alkoxy, (C_1-C_6) -alkylamino, di $((C_1-C_6)$ -alkyl)amino-, (C_5-C_{14}) -aryl and (C_5-C_{14}) -heteroaryl, and where all R^6 s and R^6 's are independent of one another and can be identical or different;

 R^7 is a direct bond;

```
R^{8} is hydroxy or (C_{1}-C_{4})-alkoxy;
n is zero, one or two;
m is zero or one;
i is zero or one;
q is zero or one;
r is zero or one;
s is zero, one or two;
t is zero;
in all their stereoisomeric forms and mixtures thereof in all
ratios, and their non-toxic, physiologically tolerable salts.
     Claim 5 (amended) A compound of claim 1 wherein G is
     -(CR^{1}R^{2})_{n}-A-(CR^{1}R^{2})_{m}-(CR^{1}R^{3})_{i}-(CR^{1}R^{2})^{q}-R^{4}
A is a direct bond;
X is hydrogen;
Y is hydrogen;
Z is N;
```

 R^1 and R^2 are hydrogen or (C_1-C_2) -alkyl, where all R^1 s and R^2 s are

independent of one another and can be identical or different;

 R^3 is selected from the group consisting of $R^6R^6N-R^7$, $R^6S(O)_2N(R^5)R^7$ and $R^6C(O)N(R^5)R^7$;

 R^4 is $-C(0)R^8$;

 R^5 is hydrogen or (C_1-C_2) -alkyl;

 R^6 and $R^{6'}$ are individually selected from the group consisting of hydrogen, (C_1-C_{12}) -alkyl, (C_3-C_{14}) -cycloalkyl, (C_4-C_{14}) -cycloalkyl- (C_1-C_8) -alkyl-, (C_5-C_{14}) -aryl, (C_5-C_{14}) -aryl- (C_1-C_8) -alkyl, (C_5-C_{14}) -aryl, (C_5-C_{14}) -aryl- (C_1-C_8) -alkyl-, (C_5-C_{14}) -heteroaryl and (C_5-C_{14}) -heteroaryl- (C_1-C_8) -alkyl- where aryl, heteroaryl, cycloalkyl and alkyl can be substituted one, two or three times by at least one substituent selected from the group consisting of fluorine, chlorine, bromine, cyano, trifluoromethyl, (C_1-C_6) -alkyl, (C_1-C_6) -alkoxy, (C_1-C_6) -alkylamino-, (C_5-C_{14}) -aryl and (C_5-C_{14}) -heteroaryl, and where the R^6 s and R^6 's are independent of one another and can be identical or different;

 R^7 is a direct bond;

 R^{8} is hydroxy or $(C_{1}-C_{4})$ -alkoxy;

n is zero, one or two;

m is zero or one;

i is zero or one;

```
q is zero or one;
r is zero;
s is zero;
t is zero;
```

in all their stereoisomeric forms and mixtures thereof in all ratios, and their non-toxic, physiologically tolerable salts.

Claim 6 (amended) A compound of claim 1 wherein G is

$$-(CR^1-R^2)_n-A-(CR^1R^2)_m-(CR^1-R^3)_i-(CR^1R^2)_q-R^4$$

A is a direct bond;

X is hydrogen;

Y is hydrogen;

Z is N;

 R_1 and R^2 are hydrogen;

 R^{3} is $R^{6}S(O)_{2}N(R^{5})R^{7}$ or $R^{6}OC(O)N(R^{5})R^{7}$;

 R^4 is $-C(0)R^8$;

```
R' is hydrogen;
```

 R^6 is selected from the group consisting of (C_1-C_{12}) -alkyl, (C_3-C_{14}) -cycloalkyl, (C_3-C_{14}) -cycloalkyl- (C_1-C_8) -alkyl-, (C_5-C_{14}) -aryl, (C_5-C_{14}) -aryl- (C_1-C_8) -alkyl-, (C_5-C_{14}) -heteroaryl and (C_5-C_{14}) -heteroaryl- (C_1-C_8) -alkyl- where aryl, heteroaryl, cycloalkyl and alkyl can be substituted one, two or three times by at least one substituent selected from the group consisting of fluorine, chlorine, bromine, cyano, trifluoromethyl, (C_1-C_6) -alkyl, (C_1-C_6) -alkoxy, (C_1-C_6) -alkylamino, $di-((C_1-C_6)$ -alkyl)amino-, (C_5-C_{14}) -aryl and (C_5-C_{14}) -heteroaryl;

```
R<sup>7</sup> is a direct bond;

R* is hydroxy or (C<sub>1</sub>-C<sub>4</sub>)-alkoxy;

n is one;

m is zero;
i is one;
q is zero;
r is zero;
s is zero;
```

t is zero;

in all their stereoisomeric forms and mixtures thereof in all ratios, and their non-toxic, physiologically tolerable salts.

Claim 7 (amended) A process for the preparation of a compound of claim 1 comprising reacting a compound of the formula VI

V١

with a compound of the of formula VIIa or of formula VIIb

wherein L^1 is a leaving group and B, G, X, Y, r, s and t are defined as in claim 1 but wherein functional groups can also be present in the form of precursor groups or in protected form.

Claim 8 (amended) A pharmaceutical composition, comprising an amount of a compound of claim 1 sufficient to act as a vitronectin receptor antagonist and a pharmaceutically acceptable carrier.