Rock Central Case

Data-Driven Approach to Predict the Success of Bank Telemarketing

Michael Harder

July 23, 2021

Introduction

Data

Modeling

Next Steps

Introduction

Background:

- Portuguese retail bank's telemarketing campaign data collected from 2008 2013
- Goal of the campaign calls were to sell bank long-term deposits
- By leveraging this data to predict the success of a campaign call, we can better understand which customers we should be targeting with telemarketing campaigns

Objective:

- Create a model to predict if a client will subscribe to term deposit (classification problem)
- Evaluation metric: accuray

Introduction

Data

Modeling

Next Steps

Data

- Made public on the <u>UCI Machine Learning Repository</u>
- Direct marketing campaigns data from a Portuguese bank
- Roughly **41,000 observations**
- 20 features which can be used for modeling
 - Call duration provided in dataset but cannot be used for prediction
- Data includes:
 - Bank client data
 - Last contact information of the current campaign
 - Social and economic contextual features
 - Additional client campaign attributes

Data Label

Duration Probability Distribution Function by Label 'Duration' seems to separate the data well; however, we cannot know call duration before the campaign call.

Data

Previous marketing campaign outcome

Introduction

Data

Modeling

Next Steps

Modeling

Models tested using stratified k-fold cross validation optimized on accuracy

Model	Accuracy	Precision	Recall	F Score
KNeighbors	89.96%	67.0%	21.4%	0.325
SVC	90.13%	66.4%	25.1%	0.364
XGBoost	90.18%	68.1%	24.1%	0.356
MLP	90.34%	68.9%	26.0%	0.377

ModelingMLP - Feature importance

Features dropped from modeling informed by permutations test: age, previous, default, cons.price.indx, education, marital, cons.conf.inx, housing

Introduction

Data

Modeling

Next Steps

Next Steps

• Seek further model improvements

• Feature engineering and deploying bayesian optimization over grid search

• Explore additional features

 Some of the most important variables for the model were economic and social context features; similar features could help improve the model accuracy

Identify ideal customer profiles

Optimize outreach efforts of telemarketing campaigns

Understand client behavior

- Model does slightly better than a naive guess; if model improvements are not possible, drive additional business impact by increasing understanding of what makes a client subscribe to term deposit
- o E.g. understand the directional impact of pdays a potentially actionable feature

Introduction

Data

Modeling

Next Steps

AppendixEDA - Correlation matrix

Appendix MLP - Confusion matrix

