Contents

1. Basic theory	2
1.1. Absolute values	
2 Valuation rings	4

1. Basic theory

Example. Let $f(x_1,...,x_r) \in \mathbb{Z}[x_1,...,x_r]$, a Diophantine equation asks to solve $f(x_1,...,x_r)=0$. Easier questions are when is $f(x_1,...,x_r)\equiv 0 (\operatorname{mod} p)$ and $f(x_1,...,x_r) \equiv 0 \pmod{p^n}$. Local fields "package" all this information together for all

1.1. Absolute values

Definition. Let K be a field. An absolute value on K is a function $|\cdot|: K \to \mathbb{R}_{\geq 0}$ such that $\forall x, y \in K$:

- $|x| = 0 \iff x = 0$.
- $|xy| = |x| \cdot |y|$ (multiplicative).
- $|x+y| \le |x| + |y|$ (triangle inequality).

 $(K, |\cdot|)$ is a valued field.

Example.

- $K = \mathbb{Q}, \mathbb{R}$ or \mathbb{C} with usual absolute value $|a+ib| = \sqrt{a^2 + b^2}$. We write $|\cdot|_{\infty}$ for this absolute value.
- The **trivial** absolute value is |x| = 0 if x = 0 and |x| = 1 otherwise.

Definition. Let $K = \mathbb{Q}$, p be prime. For $0 \neq x \in \mathbb{Q}$, write $x = p^n \frac{a}{b}$ where $p \nmid a, b$. The *p*-adic absolute value $|\cdot|_p$ is defined as

$$|x|_p = \begin{cases} 0 & \text{if } x = 0\\ p^{-n} & \text{if } x = p^n \frac{a}{b}. \end{cases}$$

Proposition. The *p*-adic absolute value is an absolute value.

Proof.

- The first axiom is trivial.
- Let $y = p^m \frac{c}{d}$.
- $\begin{aligned} \bullet & |xy|_p = |p^{m+n} \frac{ac}{bd}|_p = p^{-m-n} = |x|_p \cdot |y|_p. \\ \bullet & \text{WLOG, assume that } m \geq n. \ |x+y|_p = |p^n \frac{ad+p^{m-n}bc}{bd}|_p \leq p^{-n} = \max \big\{ |x|_p, |y|_p \big\}. \end{aligned}$

Proposition. An absolute value $|\cdot|$ on K induces a metric d(x,y) = |x-y| (and hence a topology) on K.

Proof. Exercise.

Definition. Two absolute values on K are equivalent if they induce the same topology.

A **place** is an equivalence class of absolute values.

Proposition. Let $|\cdot|$ and $|\cdot|'$ be non-trivial absolute values on K. Then TFAE:

- 1. $|\cdot|$ and $|\cdot|'$ are equivalent.
- 2. |x| < 1 iff |x|' < 1 for all $x \in K$.
- 3. There exists c > 0 such that $|x|^c = |x|'$ for all $x \in K$.

Proof.

- $(1 \Rightarrow 2)$:
 - $|x| < 1 \text{ iff } x^n \to 0 \text{ w.r.t } |\cdot| \text{ iff } x^n \to 0 \text{ w.r.t } |\cdot|' \text{ iff } |x|' < 1.$
- $(2 \Rightarrow 3)$:
 - Note $|x|^c = |x|'$ iff $c \log |x| = \log |x|'$.
 - Let $a \in K^{\times}$ such that |a| > 1 (this exists since $|\cdot|$ is non-trivial).
 - We show that $\log |x| / \log |a| = \log |x|' / \log |a|'$ for all $x \in K^{\times}$.
 - Assume not, then $\log |x| / \log |a| < \log |x|' / \log |a|'$.
 - Choose $m,n\in\mathbb{Z}$ such that $\log |x|/\log |a|<\frac{m}{n}<\log |x|/\log |a|.$
 - ▶ Then $n \log |x| < m \log |a|$ and $n \log |x|' > m \log |a|'$, so $\left|\frac{x^n}{a^m}\right| < 1$ but $\left|\frac{x^n}{a^m}\right|' > 1$: contradiction.
 - Similarly for $\log |x| / \log |a| > \log |x|' / \log |a|'$.
- $(3 \Rightarrow 1)$:
 - Trivial, as open balls they define are the same.

Remark. $|\cdot|_{\infty}^2$ on \mathbb{C} is not an absolute value by out definition since it violates the triangle inequality. Note some authors replace the triangle inequality axiom with $|x+y|^{\beta} \leq |x|^{\beta} + |y|^{\beta}$ for some fixed $\beta > 0$.

Definition. An absolute value $|\cdot|$ on K is **non-Archimedean** if it satisfies the **ultrametric inequality**:

$$|x+y| \le \max\{|x|, |y|\}.$$

Otherwise, it is **Archimedean**.

Example.

- $|\cdot|_{\infty}$ on \mathbb{R} is Archimedean.
- $|\cdot|_p$ on \mathbb{Q} is non-Archimedean.

Lemma. Let $(K, |\cdot|)$ be non-Archimedean and $x, y \in K$. If |x| < |y|, then |x - y| = |y| (i.e. all triangles are isosceles).

Proof. For \leq , use ultrametric inequality. For \geq , use that |y| = |x - y - x|.

Proposition. Let $(K, |\cdot|)$ be non-Archimedean. Let (x_n) be a sequence in K. If $|x_n-x_{n+1}|\to 0$, then x_n is Cauchy. In particular, if K is complete with respect to $|\cdot|$, then (x_n) converges.

Proof.

- For $\varepsilon > 0$, choose N such that $|x_n x_{n+1}| < \varepsilon$ for all n > N.
- Then for $N < n < m, \, |x_n x_m| = |(x_n x_{n+1}) + (x_{n+1} x_{n+2}) + \dots + (x_{m-1} x_m)| < \varepsilon.$

Example. Let p = 5 and consider the sequence (x_n) in \mathbb{Z} satisfying:

- $x_n^2 + 1 \equiv 0 \operatorname{mod} 5^n$.
- $x_n \equiv x_{n+1} \mod 5^n$.

Take $x_1=2$. Suppose we have constructed $x_1,...,x_n$. Then write $x_n^2+1=a5^n$ and set $x_{n+1}=x_n+b5^n$. Then $x_{n+1}^2+1=x_n^2+2bx_n5^n+b^25^{2n}+1=a5^n+2bx_n5^n+b^25^{2n}$. We choose b such that $a+2bx_n\equiv 0 \bmod 5$ (this congruence is solvable). Then we have $x_{n+1}^2+1=0 \bmod 5^{n+1}$.

Hence (x_n) is Cauchy. Suppose $x_n \to l \in \mathbb{Q}$. Then $x_n^2 \to l^2 \in \mathbb{Q}$. But the first condition implies that $x_n^2 \to -1 = l^2$, contradiction. So (x_n) doesn't converge in \mathbb{Q} . So $(\mathbb{Q}, |\cdot|_5)$ is not complete.

Definition. The set of *p*-adic numbers \mathbb{Q}_p is the completion of \mathbb{Q} with respect to $|\cdot|_p$.

Remark. There is an analogy with the construction of \mathbb{R} with respect to $|\cdot|_{\infty}$.

Definition. For $x \in K$ and r > 0, define

$$B(x,r) \coloneqq \{y \in K : |x-y| < r\},$$

$$\overline{B}(x,r) = \{y \in K : |x-y| \le r\}.$$

Lemma. Let $(K, |\cdot|)$ be a non-Archimedean valued field.

- If $z \in B(x,r)$, then B(z,r) = B(x,r), i.e. open balls don't have a centre.
- If $z \in \overline{B}(x,r)$, then $\overline{B}(z,r) = \overline{B}(x,r)$. i.e. closed balls don't have a centre.
- B(x,r) is closed.
- $\overline{B}(x,r)$ is open.

Proof.

- Let $y \in B(x, r)$. Then |x y| < r so $|z y| = |(z x) + (x y)| \le \max\{|z x|, |x y|\} < r$. Hence $B(x, r) \subseteq B(z, r)$. Converse is obtained by symmetry.
- Same as above.
- Let $y \notin B(x,r)$. If $z \in B(x,r) \cap B(y,r)$ then B(x,r) = B(z,r) = B(y,r) by above, hence $y \in B(x,r)$: contradiction. Hence $B(x,r) \cap B(y,r) = \emptyset$.
- Let $z \in \overline{B}(x,r)$, then $B(z,r) \subseteq \overline{B}(z,r) = \overline{B}(x,r)$ by above.

2. Valuation rings

Definition. Let K be a field. $t: K^{\times} \to \mathbb{R}$ is a valuation on K if:

- v(xy) = v(x) + v(y).
- $v(x+y) \ge \min\{v(x), v(y)\}.$

Fix $\alpha \in (0,1)$. Then for a valuation v on K, we can define a non-Archimedean absolute value

$$|x| = \begin{cases} \alpha^{v(x)} & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

Conversely, a non-Archimedean absolute value determines a valuation

$$v(x) = \log_{\alpha} |x|$$

Remark.

- We ignore the trivial valuation v(x) = 0 (corresponds to trivial absolute value).
- We say v_1 and v_2 are equivalent valuations if there exists c > 0 such that $v_1(x) = cv_2(x)$ for all $x \in K^{\times}$.

Example.

- For $K = \mathbb{Q}$, $v_p(x) = -\log_p |x|_p$ is the p-adic valuation.
- Let k be field, $K = k(t) = \operatorname{Frac}(k[t])$ be the rational function field. Define the t-adic valuation $v\left(t^n\frac{f(t)}{g(t)}\right) = n$ where $f, g \in k[t], f(0), g(0) \neq 0$.
- $K = k((t)) = \operatorname{Frac}(k[[t]]) = \{\sum_{i=n}^{\infty} a_i t^i : a_i \in k, n \in \mathbb{Z}\}$ is the field of formal Laurent series over k. Define the t-adic valuation

$$v\Biggl(\sum_i a_i t^i\Biggr) = \min\{i \in \mathbb{Z}: a_i \neq 0\}$$

Definition. Let $(K, |\cdot|)$ be a non-Archimedean valued field. The **valuation ring** of K is

$$\begin{split} \mathcal{O}_K &= \{x \in K: |x| \leq 1\} = \overline{B}(0,1) \\ &= \{x \in K^\times: v(x) \geq 0\} \cup \{0\} \end{split}$$

Proposition.

- \mathcal{O}_K is an open subring of K.
- The subsets $\{x \in K : |x| \le r\}$ and $\{x \in K : |x| < r\}$ are both open ideals in \mathcal{O}_K for $r \le 1$.
- $\mathcal{O}_K^{\times} = \{ x \in K : |x| = 1 \}.$

Proof.

- To show ring:
 - $|0| = 0, |1| = 1 \le 1 \text{ so } 0, 1 \in \mathcal{O}_K.$
 - If $x \in \mathcal{O}_K$, then $|-x| = |x| \le 1$ so $-x \in \mathcal{O}_K$.
 - If $x, y \in \mathcal{O}_K$, then $|x + y| \le \max\{|x|, |y|\} \le 1$ so $x + y \in \mathcal{O}_K$.
 - If $x, y \in \mathcal{O}_K$, then $|xy| = |x| \ |y| \le 1$ so $xy \in \mathcal{O}_K$.
- \mathcal{O}_K is open since it is a "closed" ball.
- Showing open ideals is similar to above.
- $|x| |x^{-1}| = |xx^{-1}| = 1$ so |x| = 1 iff $|x^{-1}| = 1$, i.e. $x, x^{-1} \in \mathcal{O}_K$, i.e. $x \in \mathcal{O}_K^{\times}$.

Notation. Write $m := \{x \in \mathcal{O}_K : |x| < 1\}$ which is a maximal ideal in \mathcal{O}_K . $k = \mathcal{O}_K/m$ be the **residue field**.

Corollary. \mathcal{O}_K is a local ring (i.e. it has a unique maximal ideal) with unique maximal ideal m.

Proof. Let $m' \neq m$ be a maximal ideal, then there exists $x \in m' \setminus m$, hence |x| = 1 so x is a unit, so m' = R: contradiction.

Example.

• Let $K = \mathbb{Q}$ with $|\cdot|_p$. Then $\mathcal{O}_K = \mathbb{Z}_{(p)} = \left\{ \frac{a}{b} \in \mathbb{Q} : p \nmid b \right\}$. $m = p\mathbb{Z}_{(p)}$ and $k = \mathbb{F}_p$.

Definition. A valuation $v: K^{\times} \to \mathbb{R}$ is **discrete** if $v(K^{\times}) \cong \mathbb{Z}$. In this case, K is a **discretely valued field**, and element $\pi \in \mathcal{O}_K$ is a **uniformiser** if $v(\pi) > 0$ and $v(\pi)$ generates $v(K^{\times})$.

Example.

- $K = \mathbb{Q}$ with the *p*-adic valuation is discretely valued.
- K = k(t) with the t-adic valuation is discretely valued.
- $K = k(t)(t^{1/2}, t^{1/4}, ...)$ with the t-adic valuation is not discrete.

Remark. If v is a discrete valuation, then we can replace it with an equivalent valuation such that $v(K^{\times}) = \mathbb{Z}$. Such valuations are called **normalised** valuations (in this case, π is a uniformiser iff $v(\pi) = 1$).

Lemma. Let v be a valuation on K. TFAE:

- 1. v is discrete.
- 2. \mathcal{O}_K is a PID.
- 3. \mathcal{O}_K is Noetherian.
- 4. m is principal.

Proof.

- $(1 \Rightarrow 2)$:
 - \mathcal{O}_K is ID as subring of a field.
 - ▶ Let $I \subseteq \mathcal{O}_K$ be a non-zero ideal, $x \in I$ such that $v(x) = \min\{v(a) : a \in I\}$ (which exists as valuation is discrete).
 - We claim $x\mathcal{O}_K = \{a \in K : v(a) \ge v(x)\}$ is equal to I.
 - $ightharpoonup \subseteq$: since I is ideal.
 - \supseteq : let $y \in I$, then $v(x^{-1}y) \ge 0$ so $y = x(x^{-1}y) \in x\mathcal{O}_{\mathcal{K}}$ TODO: finish.
- $(2 \Rightarrow 3)$: clear.
- $(3 \Rightarrow 4)$: write $m = x_1 \mathcal{O}_K + \dots + x_n \mathcal{O}_K$. WLOG $v(x_1) \leq \dots \leq v(x_n)$. Then $x_2, \dots, x_n \in x_1 \mathcal{O}_K$ so $m = x \mathcal{O}_K$.
- $(4 \Rightarrow 1)$: let $m = \pi \mathcal{O}_K$ for some $\pi \in \mathcal{O}_K$, let $c = v(\pi)$. Then if v(x) > 0, $x \in m$, hence $v(x) \geq c$. Thus $v(K^{\times}) \cap (0,c) = \emptyset$. Since $v(K^{\times})$ is a subgroup, we must have $v(K^{\times}) = c\mathbb{Z}$.