統計学2及び演習

分割表における独立性検定とその応用例

東京理科大学 創域理工学部情報計算科学科 安藤宗司

2023年6月21日

Contents

□分割表

- ■独立性の検定
 - ■帰無仮説と対立仮説
 - ■帰無仮説のもとでの期待度数
 - ■検定統計量
- □応用例

分割表

- □属性Aの事象 $A_1, A_2, ..., A_R$
- □属性Bの事象 $B_1, B_2, ..., B_C$

属性AとBについて集計した二次元度数分布表を 特に分割表 (contingency table) とよぶ

- $\blacksquare x_{ij}$: A_i かつ B_j である観測度数
- $x_{i.} = \sum_{j=1}^{C} x_{ij}$ (i = 1, ..., R)
- $x_{.j} = \sum_{i=1}^{R} x_{ij}$ (j = 1, ..., C)

	B_1	B_2	• • •	$B_{\mathcal{C}}$	計
A_1	x_{11}	<i>x</i> ₁₂	•••	x_{1C} x_{2C}	x_1 .
A_2	x_{21}	x_{22}	•••	x_{2C}	x_2 .
•					•
A_R	x_{R1}	x_{R2}	•••	x_{RC}	x_R .
計		<i>x</i> . ₂	• • •	$x_{\cdot C}$	n

対応する同時確率

 \blacksquare $\Pr(A_i \cap B_j) = \pi_{ij}$: A_i かつ B_j である確率

$$Pr(A_i) = \pi_{i.} = \sum_{j=1}^{C} \pi_{ij} (i = 1, ..., R)$$

$$Pr(B_j) = \pi_{\cdot j} = \sum_{i=1}^R \pi_{ij} \quad (j = 1, ..., C)$$

観測度数

441	六古	ス	同	時確	
カリル	1119	(a)	$I \rightarrow I$	H/L/H	<u>—————————————————————————————————————</u>

	B_1	B_2	• • •	$B_{\mathcal{C}}$	計
A_1	x_{11} x_{21}	x_{12}	• • •	x_{1C}	
A_2	x_{21}	x_{22}	• • •	x_{2C}	x_2 .
•					•
A_R		x_{R2}	• • •	x_{RC}	x_R .
計	<i>x</i> . ₁	<i>x</i> . ₂	• • •	$x_{\cdot C}$	n

	B_1	B_2	• • •	$B_{\mathcal{C}}$	計
A_1		π_{12}	• • •	π_{1C}	π_1 .
A_2	π_{21}	π_{22}	• • •	π_{2C}	π_2 .
•					•
A_R	π_{R1}	π_{R2}	• • •	π_{RC}	π_R .
計	$\pi_{\cdot 1}$	$\pi_{\cdot 2}$	• • •	$\pi_{\cdot C}$	1

仮定する分布

■観測度数

$$\mathbf{x} = (x_{11}, x_{12}, \dots, x_{1C}, \dots, x_{R1}, x_{R2}, \dots, x_{RC})$$

 \blacksquare パラメータ (n,π) の多項分布からの実現値と考える $\pi = (\pi_{11},\pi_{12},...,\pi_{1C},...,\pi_{R1},\pi_{R2},...,\pi_{RC})$

■多項分布

$$\Pr(X_{11} = x_{11}, \dots, X_{RC} = x_{RC}) = \frac{n!}{\prod_{i=1}^{R} \prod_{j=1}^{C} x_{ij}!} \prod_{i=1}^{R} \prod_{j=1}^{C} \pi_{ij}^{x_{ij}}$$

期待值 $E[X_{ij}] = n\pi_{ij}$ 共分散 $Cov[X_{ij}, X_{st}] = -n\pi_{ij}\pi_{st}$ $(i \neq s \text{ or } j \neq t)$

分散
$$V[X_{ij}] = n\pi_{ij}(1-\pi_{ij})$$

独立性の検定

□帰無仮説と対立仮説

 H_0 : $A \, \subset \, B$ は互いに統計的独立

$$\Leftrightarrow H_0: \pi_{ij} = \pi_{i}.\pi_{ij} \quad (i = 1, ..., R; j = 1, ..., C)$$

 $H_1:H_0$ ではない

■帰無仮説の別表現

$$H_0: \pi_{ij} = g_{ij}(\pi_1, \dots, \pi_{R-1}; \pi_1, \dots, \pi_{C-1}) \quad (i = 1, \dots, R; j = 1, \dots, C)$$

$$\pi_{R.} = 1 - (\pi_{1.} + \dots + \pi_{R-1.})$$
 $\pi_{.C} = 1 - (\pi_{.1} + \dots + \pi_{.C-1})$

検定統計量

■Pearson(ピアソン)のカイ二乗統計量

帰無仮説のもとで

$$\chi^{2} = \sum_{i=1}^{R} \sum_{j=1}^{C} \frac{\left(X_{ij} - n\hat{\pi}_{ij}\right)^{2}}{n\hat{\pi}_{ij}}$$

$$= \sum_{i=1}^{R} \sum_{j=1}^{C} \frac{\left(X_{ij} - \frac{X_{i}.X_{\cdot j}}{n}\right)^{2}}{\frac{X_{i}.X_{\cdot j}}{n}} \approx \chi^{2}_{(RC-1-s)}$$
分布

帰無仮説のもとでの π_{ii} の最尤推定量

$$\hat{\pi}_{ij} = \hat{\pi}_{i}.\hat{\pi}_{.j} = \frac{X_{i}.X_{.j}}{n}$$

$$(i = 1, ..., R; j = 1, ..., C)$$

 $H_0: \pi_{ij} = g_{ij}(\pi_1, ..., \pi_{R-1}; \pi_{-1}, ..., \pi_{-C-1}) \quad (i = 1, ..., R; j = 1, ..., C) \quad \text{であることから}$

$$s = R - 1 + C - 1$$
 $RC - 1 - s = RC - 1 - (R - 1 + C - 1) = (R - 1)(C - 1)$

棄却域と検定方式

■棄却域

$$W = \{ x \mid \chi^2 > \chi^2_{((R-1)(C-1))}(\alpha) \}$$

$$\chi^2_{((R-1)(C-1))}(\alpha): 自由度((R-1)(C-1))のカイ二乗分布の上側100 α %点$$

□検定方式

$$\chi^2 \in \left(\chi^2_{((R-1)(C-1))}(\alpha), \infty\right)$$
 のとき,帰無仮説を棄却する $\chi^2 \notin \left(\chi^2_{((R-1)(C-1))}(\alpha), \infty\right)$ のとき,帰無仮説を採択する

帰無仮説のもとでの π_{ij} の最尤推定量 (1)

$$H_0: \pi_{ij} = \pi_{i}.\pi_{ij} \quad (i = 1, ..., R; j = 1, ..., C)$$

$$L(\{\pi_{ij}\} \mid \{x_{ij}\}) = \frac{n!}{\prod_{i=1}^{R} \prod_{j=1}^{C} x_{ij}!} \prod_{i=1}^{R} \prod_{j=1}^{C} \pi_{ij}^{x_{ij}}$$

$$L(\{\pi_{i\cdot}\}, \{\pi_{\cdot j}\} \mid \{x_{ij}\}) = \frac{n!}{\prod_{i=1}^{R} \prod_{j=1}^{C} x_{ij}!} \prod_{i=1}^{R} \prod_{j=1}^{C} (\pi_{i\cdot}\pi_{\cdot j})^{x_{ij}}$$

$$\log L(\{\pi_{i.}\}, \{\pi_{.j}\} \mid \{x_{ij}\}) = \text{Const} + \sum_{i=1}^{R} \sum_{j=1}^{C} x_{ij} (\log \pi_{i.} + \log \pi_{.j})$$

Const =
$$\log \frac{n!}{\prod_{i=1}^{R} \prod_{j=1}^{C} x_{ij}!}$$

帰無仮説のもとでの π_{ii} の最尤推定量 (2)

ラグランジュの未定乗数法より

$$\log L = \text{Const} + \sum_{i=1}^{R} \sum_{j=1}^{C} x_{ij} \left(\log \pi_{i\cdot} + \log \pi_{\cdot j} \right) - \phi_1 \left(\sum_{i=1}^{R} \pi_{i\cdot} - 1 \right) - \phi_2 \left(\sum_{j=1}^{C} \pi_{\cdot j} - 1 \right)$$

$$\frac{\partial \log L}{\partial \pi_{k}} = \frac{x_{k}}{\pi_{k}} - \phi_{1} \quad (\equiv 0)$$

$$(k = 1, ..., R)$$

$$3 \quad \frac{\partial \log L}{\partial \phi_{1}} = \sum_{i=1}^{R} \pi_{i} - 1 \quad (\equiv 0)$$

$$\frac{\partial \log L}{\partial \pi_{\cdot l}} = \frac{x_{\cdot l}}{\pi_{\cdot l}} - \phi_2 \quad (\equiv 0)$$

$$(l = 1, \dots, C)$$

$$4 \frac{\partial \log L}{\partial \phi_2} = \sum_{j=1}^{C} \pi_{.j} - 1 \quad (\equiv 0)$$

帰無仮説のもとでの π_{ii} の最尤推定量 (3)

$$\textcircled{2} \Leftrightarrow x_{\cdot l} - \phi_2 \pi_{\cdot l} = 0 \quad (l = 1, ..., C)$$

和をとると

$$\sum_{k=1}^{R} (x_k - \phi_1 \pi_{k \cdot}) = 0 \Leftrightarrow \phi_1 = n$$

$$\sum_{l=1}^{C} (x_{\cdot l} - \phi_2 \pi_{\cdot l}) = 0 \Longleftrightarrow \phi_2 = n$$

これらの結果を①.②式に代入すると

$$\hat{\pi}_{k.} = \frac{X_{k.}}{n} \quad (k = 1, ..., R)$$

$$\hat{\pi}_{.l} = \frac{X_{.l}}{n} \quad (l = 1, ..., C)$$

$$\hat{\pi}_{\cdot l} = \frac{X_{\cdot l}}{n} \quad (l = 1, ..., C)$$

したがって

$$\hat{\pi}_{ij} = \hat{\pi}_{i}.\hat{\pi}_{.j} = \frac{X_{i}.X_{.j}}{n}$$
 $(i = 1, ..., R; j = 1, ..., C)$

$$(i = 1, ..., R; j = 1, ..., C)$$

2×2 分割表

- □属性Aの事象*A*₁, *A*₂
- □属性Bの事象B₁,B₂

	B_1	B_2	計
A_1	x_{11}	<i>x</i> ₁₂	x_1 .
A_2	x_{21}	x_{22}	x_2 .
計	$x_{\cdot 1}$	<i>x</i> . ₂	n

■Pearson(ピアソン)のカイ二乗統計量

$$\chi^2 = \sum_{i=1}^2 \sum_{j=1}^2 \frac{\left(X_{ij} - \frac{X_{i.}X_{.j}}{n}\right)^2}{\frac{X_{i.}X_{.j}}{n}} = \frac{n(X_{11}X_{22} - X_{12}X_{21})^2}{X_{1.}X_{2.}X_{.1}X_{.2}} \approx \chi^2_{(1)}$$
分布 $n:$ 大きいとき

イエーツの補正

 $\square \chi^2$ 分布への近似をよくするための補正

$$\chi^{2} = \sum_{i=1}^{2} \sum_{j=1}^{2} \frac{\left(\left|X_{ij} - \frac{X_{i}.X_{\cdot j}}{n}\right| - \frac{1}{2}\right)^{2}}{\frac{X_{i}.X_{\cdot j}}{n}} = \frac{n\left(\left|X_{11}X_{22} - X_{12}X_{21}\right| - \frac{n}{2}\right)^{2}}{X_{1}.X_{2}.X_{\cdot 1}X_{\cdot 2}} \approx \chi^{2}_{(1)}$$

- ■セル観測度数が少ない(例えば5未満)ときに有効
- ■総観測度数が少ないときは、イエーツの補正でも近似の精度 は十分ではないため、フィッシャーの正確検定を用いる

応用例

■新規治療と標準治療の有効性の比較

	有効	無効	計
標準治療	63	20	83
新規治療	22	6	28
計	85	26	111

$$\chi^{2} = \frac{111(63 \times 6 - 20 \times 22)^{2}}{83 \times 28 \times 85 \times 26} = 0.083 < \chi^{2}_{(1)}(0.05) = 3.84$$

$$\chi^{2} = \frac{111\left(|63 \times 6 - 20 \times 22| - \frac{111}{2}\right)^{2}}{83 \times 28 \times 85 \times 26} = 0.0009 < \chi^{2}_{(1)}(0.05) = 3.84$$

間

□次式が成り立つことを示せ

$$\chi^{2} = \sum_{i=1}^{2} \sum_{j=1}^{2} \frac{\left(X_{ij} - \frac{X_{i} \cdot X_{\cdot j}}{n}\right)^{2}}{\frac{X_{i} \cdot X_{\cdot j}}{n}} = \frac{n(X_{11} X_{22} - X_{12} X_{21})^{2}}{X_{1} \cdot X_{2} \cdot X_{\cdot 1} X_{\cdot 2}}$$