STREET Data 분석 및 연구 진행 과정

발표자 : 202000919 손건희

목차

table of contents

1 논문 Review

- 2 데이터 EDA 및전처리
- 3 문제점
- 4 향후연구계획

논문 Review

1. 무슨 데이터인가?

2.데이터셋의목표

3.데이터수집과정

무슨 데이터인가?

약 400만장 이상

1.무슨데이터인가?

2. 데이터셋의 목표

3.데이터수집과정

2.데이터셋의목표

기준 연구의 한계점

기존의 교통 데이터셋들은 대부분 도심 지역이나 고속도로 교통흐름에 초점을 맞추고 있어, 교외 지역의 교통 패턴을 잘 반영하지못하는 한계가 존재

주요 목표

지능형 교통 시스템 및 스마트 시티 구축에 필요한 교통데이터를 제공하고 연구자들에게 벤치마크 데이터셋으로 활용될 수 있도록 하는 것

1.무슨데이터인가?

2.데이터셋의목표

3.데이터 수집 과정

3.데이터수집과정

전체 기간

2.5개월

사진 간격

10분

최소 2방향 ~ 최대 4 방향

사진 방향

graphs.zip
incidents.zip
roadmasks.zip
trafficcounts.zip
trafficstate.zip
vehicleannotations.zip
view classifiers. zip

추가적으로 데이터 정보 넣을지 고민 중

데이터 정보는 바로 사고 데이터 파라 미터 등 추가적인 정보

데이터 EDA 및 전처리

요약 | Overview

Г	ev	entid e	venttype	road	roaddirection	MaxO	ftrafficimpact st	tartcrossstreet	endcrossstreet	responsestart	createtime
ľ	0 92	29916	Stall	194	3		1 1	60 (Town Line Rd)	IL-60 (Town Line Rd)	NaT	2018-08-20 00:03:30
ŀ	1 92	29917	Accident	194	2		1	Old US Hwy 41	Old US Hwy 41	NaT	2018-08-20 00:03:39
į	2 92	29918	Stall	IL Rte 21	2		1	Casey Rd	Casey Rd	NaT	2018-08-20 00:07:39
:	3 92	29919	Other	194	4		1	Everett Rd	Everett Rd	NaT	2018-08-20 00:08:12
•	4 92	29920	Weather	NaN	1		0	NaN	NaN	NaT	2018-08-20 00:29:31
ı		eventic	l eventtype		road roaddire	ction	MaxOftrafficimpact	startcrossstreet	endcrossstreet	responsestart	createtime
1:	2538	945924	l Roadwork	Ken	osha Rd	1	4	IL Rte 173	21st St	2018-09-10 09:01:41	2018-08-24 09:01:26
1:	2539	945924	l Roadwork	Ken	osha Rd	1	4	IL Rte 173	IL Rte 173	2018-09-10 09:01:41	2018-08-24 09:01:26
1	2540	945924	l Roadwork	Kilbo	ourne Rd	1	4	IL Rte 173	21st St	2018-09-10 09:01:41	2018-08-24 09:01:26
1:	2541	945924	l Roadwork	Kilbo	ourne Rd	1	4	IL Rte 173	IL Rte 173	2018-09-10 09:01:41	2018-08-24 09:01:26

```
df.info()
✓ 0.0s
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 12543 entries, 0 to 12542
Data columns (total 9 columns):
    Column
                        Non-Null Count Dtype
    eventid
                        12543 non-null int64
                        12543 non-null object
    eventtype
    road
                        11680 non-null object
    roaddirection
                        12543 non-null int64
    MaxOftrafficimpact 12543 non-null int64
     startcrossstreet
                       7584 non-null object
    endcrossstreet
                        7584 non-null
                                       object
    responsestart
                        1574 non-null
                                       datetime64[ns]
     createtime
                        12543 non-null datetime64[ns]
```

- 1. 9개의 컬럼
- 2. 정수, 문자열, 시간 타 임 존재
- 3. Null 값이 존재하는 것 확인
- 4. 총 1254<u>2</u>개
- 5. 사고 데이터 같은 경우 는 약 한달 치 (8월20일부터 9월20일)

df.describe() ✓ 0.0s								
	eventid	roaddirection	MaxOftrafficimpact					
count	12543.000000	12543.000000	12543.000000					
mean	935674.119031	1.869409	1.928167					
std	3347.696768	1.460207	0.941702					
min	929916.000000	0.000000	0.000000					
25%	932779.500000	1.000000	1.000000					
50%	935683.000000	2.000000	2.000000					
75%	938564.500000	3.000000	3.000000					
max	958076.000000	4.000000	4.000000					

1. Eventid : 그냥 93000가 많이 존재, 사고가 90000 발생이라고 보기 는 어려움 확인

eventid

각 열별 널 값의 수 계산

```
# 각 열별 널 값의 수 계산
null_counts = df.isnull().sum()

print(null_counts)

✓ 0.0s
```

 Null값 확인 : 거의 50% 에 가까운 것과 80% 넘 는 경우는 데이터 분석 시 필수적인 열이 아니 여서 삭제 후 진행

```
drop_df = df.drop(columns= ["startcrossstreet", "endcrossstreet", "responsestart" ])
eventtype
           ✓ 0.0s
road
                          863
roaddirection
                            0
MaxOftrafficimpact
startcrossstreet
                        4959
endcrossstreet
                        4959
responsestart
                       10969
createtime
                            0
dtype: int64
```

eventtype 열의 고	유 값과 빈도수:	
Accident	4423	
Stall	1830	
Debris	1687	
Fire	1347	
Incident	1222	
Other	885	
Weather	864	
Signal Flash	109	
Signal Out	85	
Roadwork	52	
Congestion	17	
Police Activity	11	
Signing Only	8	
Special Event	3	
Name: eventtype,	dtype: int64	

1. Eventtype : 어떤 이벤트 가 존재했는지 확인하고 횟수 확인-> 사고가 가장 많은 것을 확인

고 저 1 시간에 따른 이벤트 타입 별 수치화 x 축 시간 y축 사건 타입 4가지(꺽은선 그래프)

고 저 1 시간에 따른 이벤트 타입 별 수치화 x 축 시간 y축 사건 타입 4가지(꺽은선 그래프)

과제 2 시간에 따른 교통 사고 수치화 x축 시간(00시 04시 08시 12시 16시 20시 00시)(일 평균내기), y 축 사건 발생 수 (bar 차트)

고 저 3 장소에 따른 교통 사건 타입 수치화 x축 지역 이름 y축 사건 타입(bar 차트)

Part 1 데이터전처리

3

문제점

문제점

1. 사고 데이터셋은 약 30일정도의 기록만 존재 -> 현재의 존재하는 데이터와 일치하지않 는 문제

2. 사건 데이터 엑셀과 row data 사진 이름과 다르다. 즉 이름 형식을 같게 전처리 필요

3. GPU 용량 부족

4.사고 데이터 엑셀에서 지역 부분 컬럼에서 unknown data 정말 많다는 점

향후연구계획

4번 5번 성공 후 ->

5번에 대한 이해 필요해 질의 ② ② 교통 상황에 대한 정보를 얻고 사고 상황에 대한 인지

Q&A