RAJASEKHAR NARALA

Folsom CA, Contact: 520 906 1774, rnarala@asu.edu LinkedIn: rnarala233

SUMMARY

- Design Verification Lead with 10+ years of experience in validating high-performance GPUs and accelerators.
- Expertise in UVM-based testbenches, optimizing verification flows, and driving successful product launches.
- Proven track record in verifying complex GPU subsystems such as shaders, rendering pipelines, and compute units, consistently improving verification efficiency and product quality.

TECHNICAL SKILLS

Verification Methodologies : UVM, System Verilog, Verilog HDL

Programming Languages:C++, Perl, Python, TCLVersion Control & Collaboration:Git, Perforce, JIRA

Simulation & Debug Tools : VCS, Verdi, Jasper Formal

Graphics APIs & Emulation : OpenGL, DirectX, CUDA, ZEBU Platform

PROFESSIONAL EXPERIENCE

Staff GPU Design Verification Engineer

Intel, Folsom CA

Nov 2021 – Present

Shader (GPU/ML Core) Subsystem

- Led design verification of the SIMD dispatch and instruction execution sub-system, improving verification efficiency by 50% through testbench migration to UVM and reducing regression cycles.
- Defined verification plans and coverage with architects to expedite feature validation.
- Served as the primary contact for GPU simulation triages and post-silicon bug reproduction, resolving critical issues.
- Optimized testbench with the PPA team for power and performance micro-tests, enhancing testing efficiency.
- Developed end-to-end checks for silicon performance events, identifying and resolving functional issues.

MTS GPU Verification Engineer

AMD, Orlando FL

Jan 2020 - Oct 2021

Performance analysis via HW Emulation

- Executed game frames in HW EMU, resolving critical functional and performance issues for left shift validation.
- Ran compute workloads on the graphics core, generating performance data to optimize the MI200 Platform.
- Captured performance data and debugged firmware to enable RISCV adoption in next-gen command processor.

Design Verification of Geometry Sub-system (RDNA3)

- Developed C++ test content for new features, including test plans and coverage analysis for full validation.
- Updated fixed-function shader test suites for next-gen ISA, enabling rigorous testing of the new geometry pipeline.

Senior GPU Design Verification Engineer

Intel. Folsom CA

Jul 2015 - Dec 2019

RTL Design: Pixel Shader Scheduler

- Co-led micro-architectural changes, interface definitions, and design spec implementation details.
- Expert in pipeline design, data synchronization, muxing, assertions, and observation architecture.
- Implemented logic solutions for timing convergence through synthesis report analysis.
- Developed and implemented unit-level clock gating and formal verification, reducing power consumption by 30% and improving timing convergence.
- Collaborated with the physical design team on partitioning, placement optimization, timing, and gate savings.

Design Verification: Pixel Front-End Sub-system

- Led functional verification and debugged failures ensuring compliance with specifications.
- Created test plans, monitors, C++ checkers, and developed functional coverage from the ground up.
- Developed Perl subroutines to auto-randomize register programming and generate tests based on design changes.
- Doubled compilation and simulation speed by optimizing log dumping and coverage bins.
- Managed weekly regression runs and automated large-scale testing, ensuring efficient logging.

PROJECTS AND ACHIEVEMENTS

- Published Verification Methodology: Intel's "Design for Test and Technology Conference" (DTTC) 2019.
- Contributed to validation of advanced features like Variable rate shading and Variable registers per thread.

EDUCATION

Master of Science in Electrical Engineering BE Electronics and Instrumentation

Arizona State University, Tempe BITS, Pilani Aug 2013 – May 2015

Aug 2009 – May 2013