Student Information

Full Name: Alperen OVAK

Id Number: 2580801

Answer 1

(a)

Base Case (m=3):

Assume $\mathbf{x_1}, \mathbf{x_2}, \mathbf{x_3}$ are three arbitrary points in the convex set \mathcal{C} . We want to show that any linear combination of these three points is also in \mathcal{C} .

Consider $\mathbf{x_1}, \mathbf{x_2}, \mathbf{x_3}$ and $\lambda_1, \lambda_2, \lambda_3$ such that $\mathbf{x_1} \geq 0$, $\mathbf{x_2} \geq 0$, $\mathbf{x_3} \geq 0$, $\lambda_1 \geq 0$, $\lambda_2 \geq 0$, $\lambda_3 \geq 0$, and $\mathbf{x_1} + \mathbf{x_2} + \mathbf{x_3} = 1$, $\lambda_1 + \lambda_2 + \lambda_3 = 1$. Now, consider the linear combination

$$\lambda_1 \mathbf{x_1} + \lambda_2 \mathbf{x_2} + \lambda_3 \mathbf{x_3}$$
.

Since $\lambda_1 \mathbf{x_1} + (1 - \lambda_1) \mathbf{x_2}$ is in \mathcal{C} (as given in the premise), we can use the same reasoning for the pair $(\lambda_1 \mathbf{x_1} + (1 - \lambda_1) \mathbf{x_2})$ and $\mathbf{x_3}$. Therefore, the linear combination $\lambda_3(\lambda_1 \mathbf{x_1} + (1 - \lambda_1) \mathbf{x_2}) + (1 - \lambda_3) \mathbf{x_3}$ is also in \mathcal{C} .

Now, let's express this in terms of λ_i 's:

$$\lambda_3(\lambda_1 \mathbf{x_1} + (1 - \lambda_1)\mathbf{x_2}) + (1 - \lambda_3)\mathbf{x_3}$$

= $\lambda_3 \lambda_1 \mathbf{x_1} + \lambda_3 (1 - \lambda_1)\mathbf{x_2} + (1 - \lambda_3)\mathbf{x_3}$

Now, observe that $\lambda_3\lambda_1 + \lambda_3(1-\lambda_1) + (1-\lambda_3) = 1$, which satisfies $\sum_{i=1}^3 \lambda_i = 1$. Therefore, the base case m = 3 holds.

Inductive Step:

Assume that the statement holds for m = k, where k is some positive integer greater than 3. That is, for any set of k points $\mathbf{x_1}, \mathbf{x_2}, \dots, \mathbf{x_k}$ in \mathcal{C} and coefficients $\lambda_1, \lambda_2, \dots, \lambda_k$ satisfying $\mathbf{x_i} \geq 0$, $\lambda_i \geq 0$, and $\sum_{i=1}^k \lambda_i = 1$, the linear combination $\sum_{i=1}^k \lambda_i \mathbf{x_i}$ is in \mathcal{C} .

Now, we want to prove the statement for m = k + 1. Consider $\mathbf{x_1}, \mathbf{x_2}, \dots, \mathbf{x_k}, \mathbf{x_{k+1}}$ as k + 1 points in \mathcal{C} and coefficients $\lambda_1, \lambda_2, \dots, \lambda_k, \lambda_{k+1}$ such that $\mathbf{x_i} \geq 0$, $\lambda_i \geq 0$, and $\sum_{i=1}^{k+1} \lambda_i = 1$.

By the inductive assumption, the linear combination $\sum_{i=1}^{k} \lambda_i \mathbf{x_i}$ is in \mathcal{C} . Now, consider the convex combination of this result with $\mathbf{x_{k+1}}$ using the coefficients λ_{k+1} :

$$\lambda_{k+1} \left(\sum_{i=1}^k \lambda_i \mathbf{x_i} \right) + (\lambda_{k+1} - 1) \mathbf{x_{k+1}}.$$

Since \mathcal{C} is convex, this convex combination is also in \mathcal{C} .

Therefore, by mathematical induction, the statement holds for all m > 3.

This completes the proof.

(b) counterexample to illustrate that the composition of convex functions is not always convex:

Let $f: \mathbb{R} \to \mathbb{R}$ be defined as $f(x) = x^2$, which is a convex function.

First derivative:

$$f'(x) = 2x$$

Second derivative:

$$f''(x) = 2$$

The second derivative is a constant, and it is always positive for all x. Since $f''(x) \ge 0$ for all x, we can conclude that $f(x) = x^2$ is a convex function.

Let $q: \mathbb{R} \to \mathbb{R}$ be defined as $q(x) = x^2 - 1$, which is also convex.

Proof is very similar to proof of x^2

Then we have $h = f \circ g$, where h(x) = f(g(x)) be defined as $h(x) = x^4 - 2x^2 + 1$.

Let's choose two points $\mathbf{x}_1 = -1$ and $\mathbf{x}_2 = 1$, and $\mathbf{t} = 0.3$ in the range [0, 1].

$$h(0.3(-1) + (0.7)1) = h(0.4) = 0.7056$$
$$0.3h(-1) + (0.7)h(1) = 0$$
$$0.7056 > 0$$

Therefore $h(x) = x^4 - 2x^2 + 1$ is not convex, so we cannot say $f \circ g$ is convex if g and f are convex functions.

(c) Implication 1:

Assume f() is a convex function. We should show that S is a convex set, and g(t) = f(x + tv) is convex for all t such that $x + tv \in S$.

- 1. Convexity of S: Since f() is defined on S, and f() is convex, it implies that S must be a convex set. This is because the domain of a convex function is always convex.
- 2. Convexity of g(t) = f(x+tv): Let $y_1 = x + t_1v$ and $y_2 = x + t_2v$ be two points in S where t_1, t_2 are such that $x + t_1v, x + t_2v \in S$.

Now, consider $z = \lambda y_1 + (1 - \lambda)y_2$, where λ is a convex combination coefficient $(0 \le \lambda \le 1)$. $z = \lambda(x + t_1v) + (1 - \lambda)(x + t_2v)$ and $z = x + (\lambda t_1 + (1 - \lambda)t_2)v$.

Since S is convex, $x + (\lambda t_1 + (1 - \lambda)t_2)v \in S$, and by the convexity of f(), g(t) = f(x + tv) is convex.

Therefore, the first implication holds.

Implication 2:

Assume S is a convex set, and g(t) = f(x + tv) is convex for all t such that $x + tv \in S$. We want to show that f() is a convex function.

To show that f() is convex, we need to consider two arbitrary points x_1, x_2 in the domain of f() and show that $f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$ for all λ in [0, 1].

Consider x_1, x_2 in the domain of f(). Let λ be a convex combination coefficient $(0 \le \lambda \le 1)$. Now, consider $z = \lambda x_1 + (1 - \lambda)x_2$. Since S is convex, z is also in S. Therefore, we can use the convexity of g(t) = f(x + tv) for t such that x + tv = z.

$$g(t) = f(x+tv) = f(\lambda x_1 + (1-\lambda)x_2)$$

By the convexity of g(t):

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$$

Therefore, the second implication holds.

Since both implications hold, we can conclude that a function f() is convex if and only if S is a convex set, and the function g(t) = f(x + tv) is convex for all t such that $x + tv \in S$.

Answer 2

(a)

(i) if X is uncountable The set of all $U \subseteq X$ is not a σ -algebra on X

Let's show a counterexample:

Let $X = \mathbb{R}$ and $U_1 = \mathbb{R} - \{1\}$.

Since $X - U_1 = \{1\}$ satisfies the condition U_1 must be in this set where $U \subseteq X$.

If this set is denoted by Σ , then from property (2) $X - U_1 = U_2$ must be in this set.

However, since $X - U_2 = \mathbb{R} - \{1\}$, which is infinite, U_2 cannot be in this set. This leads to a contradiction.

Therefore, if X is an uncountable infinite set, the set of all $U \subseteq X$ such that X - U is either finite or is \emptyset is **not** a σ -algebra on X.

(ii) if X is countable infinite The set of all $U \subseteq X$ is not a σ -algebra on X

Let's show a counterexample:

Let $X = \mathbb{Z}$ and $U_1 = \mathbb{Z} - \{1\}$.

Since $X - U_1 = \{1\}$ satisfies the condition U_1 must be in this set where $U \subseteq X$.

If this set is denoted by Σ , then from property (2) $X - U_1 = U_2$ must be in this set.

However, since $X - U_2 = \mathbb{Z} - \{1\}$, which is infinite, U_2 cannot be in this set. This leads to a contradiction.

Therefore, if X is an countable infinite set, the set of all $U \subseteq X$ such that X - U is either finite or is \emptyset is **not** a σ -algebra on X.

(iii) if X is finite

The set in question must contain the empty set \emptyset . This property is satisfied because $X - X = \emptyset$, and \emptyset itself is also part of the set.

Since every U is finite where all $U \subseteq X$, X - U is also finite and this satisfies the condiciton.

Therefore, if this set is denoted by Σ , then X-U must be in this set.

Since X - (X - U) = U is finite, this satisfies the condiciton.

 Σ is closed under finite unions:

Let A_1, A_2, \ldots be sets in Σ . This means that for each $A_i, X - A_i$ is either finite or all of X. Consider the union $A = A_1 \cup A_2 \cup \ldots$ The complement of A is

$$X - A = (X - A_1) \cup (X - A_2) \cup \dots$$

If for each $i, X - A_i$ is finite, then X - A is also finite (finite union of finite sets is finite). If for each $i, X - A_i$ is all of X, then X - A is also all of X.

Therefore, Σ is closed under finite unions.

Since each U where $U \subseteq X$ satisfies the condiciton, the set of all $U \subseteq X$ is P(X).

Since $\Sigma \subseteq P(X)$, Therefore, if X is an uncountable infinite set, the set of all $U \subseteq X$ such that X - U is either finite or is \emptyset is a σ -algebra on X.

(b)

(i) if X is uncountable The set of all $U \subseteq X$ is not a σ -algebra on X

Let's show a counterexample:

Let
$$X = \mathbb{R}$$
 and $U_1 = \mathbb{R} - \{1\}$.

Since $X - U_1 = \{1\}$ satisfies the condition U_1 must be in this set where $U \subseteq X$.

If this set is denoted by Σ , then from property (2) $X - U_1 = U_2$ must be in this set.

However, since $X - U_2 = \mathbb{R} - \{1\}$, which is uncountable, U_2 cannot be in this set. This leads to a contradiction.

Therefore, if X is an uncountable infinite set, the set of all $U \subseteq X$ such that X - U is either finite or is \emptyset is **not** a σ -algebra on X.

(ii) if X is countable infinite

The set in question must contain X. This property is satisfied because $X - \emptyset = X$, and X itself is also part of the set.

Since every U is countable where $U \subseteq X$, X - U is also uncountable and this satisfies the condiciton.

Therefore, if this set is denoted by Σ , then X-U must be in this set.

Since X - (X - U) = U is countable, this satisfies the condiciton.

Since each U where $U \subseteq X$ satisfies the condiciton, the set of all $U \subseteq X$ is P(X).

Since $\Sigma \subseteq P(X)$, Therefore, if X is an countable infinite set, the set of all $U \subseteq X$ such that X - U is either countable or is all of X is a σ -algebra on X.

(iii) if X is finite X is in Σ :

Since $X - X = \emptyset$ (the empty set) is finite, X is in Σ .

 Σ is closed under complementation:

If U is in Σ , then X-U is finite or all of X. The complement of U is X-U. If X-U is finite, then U is in Σ . If X-U is all of X, then U is also in Σ . Therefore, Σ is closed under complementation.

 Σ is closed under finite unions:

Let A_1, A_2, \ldots be sets in Σ . This means that for each $A_i, X - A_i$ is either finite or all of X. Consider the union $A = A_1 \cup A_2 \cup \ldots$ The complement of A is

$$X - A = (X - A_1) \cup (X - A_2) \cup \dots$$

If for each $i, X - A_i$ is finite, then X - A is also finite (finite union of finite sets is finite). If for each $i, X - A_i$ is all of X, then X - A is also all of X.

Therefore, Σ is closed under finite unions.

Since the set Σ satisfies all three properties, it is a σ -algebra on the finite set X.

(c)

(i) if X is uncountable The set of all $U \subseteq X$ is not a σ -algebra on X

Let's show a counterexample:

Let
$$X = \mathbb{R}$$
 and $U_1 = \{1\}$.

Since $X - U_1 = \mathbb{R} - \{1\}$ satisfies the condition. U_1 must be in this set where $U \subseteq X$.

If this set is denoted by Σ , then from property (2) $X - U_1 = U_2$ must be in this set.

However, since $X-U_2=\{1\}$, which is finite, U_2 cannot be in this set. This leads to a contradiction.

Therefore, if X is an uncountable infinite set, the set of all $U \subseteq X$ such that X - U is infinite or \emptyset or X is **not** a σ -algebra on X.

(ii) if X is countable infinite The set of all $U \subseteq X$ is not a σ -algebra on X

Let's show a counterexample:

Let
$$X = \mathbb{Z}$$
 and $U_1 = \{1\}$.

Since $X - U_1 = \mathbb{Z} - \{1\}$ satisfies the condition. U_1 must be in this set where $U \subseteq X$.

If this set is denoted by Σ , then from property (2) $X - U_1 = U_2$ must be in this set.

However, since $X - U_2 = \{1\}$, which is finite, U_2 cannot be in this set. This leads to a contradiction.

Therefore, if X is an countable infinite set, the set of all $U \subseteq X$ such that X - U is infinite or \emptyset or X is **not** a σ -algebra on X.

(iii) if X is finite

1. X is in Σ :

In this case, X itself is in the set because $X - X = \emptyset$ is in the set. So, the first property is satisfied.

2. Σ is closed under complementation:

If A is in Σ , then X - A is infinite or \emptyset or X. Let's consider each case:

- If A is finite where $A \neq X$ and $A \neq \emptyset$, then X A is also finite, which is not in the set.
- If A is \emptyset , then X A is X, which is in the set.
- If A is X, then X A is \emptyset , which is in the set.

So, the set is closed under complementation.

3. Σ is closed under countable unions:

Let A_1, A_2, \ldots be sets in Σ . We want to show that their union,

$$A = A_1 \cup A_2 \cup \dots$$

is also in Σ .

• Since we have only two elements in this set, which is \emptyset and X, then $A = X \cup \emptyset = X$ is also in the set.

Since all three properties are satisfied, the given set is a σ -algebra on the finite set X.

Answer 3

(a) Suppose $ax \equiv b \pmod{p}$ has a solution.

This implies that there exists an integer x such that $ax - b = p \cdot q$ for some integer q. Take $d = \gcd(a, p)$. We have:

$$a = a \cdot t + p \cdot r$$

where t and r are integers.

Since $d = \gcd(a, p)$, it follows that d divides both a and p. Therefore, we can express a and n as:

$$a = d \cdot q_1$$
 where $q_1 \in \mathbb{Z}$

$$p = d \cdot q_2$$
 where $q_2 \in \mathbb{Z}$

Lastly, from the earlier expression $ax - b = p \cdot q$, we can substitute a and n using the above expressions:

$$b = a \cdot x - p \cdot q = (d \cdot q_1) \cdot x - (d \cdot q_2) \cdot q = d \cdot (q_1 \cdot x - q_2 \cdot q)$$

Let $c = q_1 \cdot x - q_2 \cdot q$, then $b = d \cdot c$.

Thus, $d = \gcd(a, p)$ divides b, indicating that if there is a solution to $ax \equiv b \pmod{n}$, then $d = \gcd(a, p)$ divides b.

Suppose $d = \gcd(a, p)$ and $d \mid b$.

Then we have

$$\begin{cases} d = a \cdot t + p \cdot r, & t, r \in \mathbb{Z} \\ d \mid b \end{cases}$$

From these equations, it follows that

$$b = d \cdot c = (a \cdot t + p \cdot r) \cdot c = atc + prc \implies b - a \cdot (tc) = p \cdot (rc) \implies a \cdot (tc) = b \pmod{p}$$

This implies that $ax \equiv b \pmod{p}$ has a solution, where $x = t \cdot c$.

Therefore, the congruence $ax \equiv b \pmod{p}$ has a solution for x if and only if $gcd(a, p) \mid b$.

(b) To prove that the pair of congruences has a solution for x under the given conditions, we will use Bézout's identity.

Let $d = \gcd(p_1, p_2) = 1$ (since $\gcd(p_1, p_2) = 1$).

By Bézout's identity, there exist integers s and t such that $sp_1 + tp_2 = 1$.

Now, consider the system of congruences:

- 1. $a_1 x \equiv b_1 \pmod{p_1}$
- 2. $a_2 x \equiv b_2 \pmod{p_2}$

We want to find a solution x that satisfies both congruences.

Let's define $x_0 = t \cdot p_2$ (Note that x_0 is a solution to the second congruence since $a_2x_0 = a_2(t \cdot p_2) \equiv b_2 \pmod{p_2}$).

Now, let's consider the first congruence with this value of x_0 :

$$a_1 x_0 = a_1 (t \cdot p_2) \equiv b_1 \pmod{p_1}$$

Since $sp_1 + tp_2 = 1$, we can multiply the entire congruence by s (which is congruent to 1 modulo p_1):

$$a_1(t \cdot p_2) \cdot s \equiv b_1 \cdot s \pmod{p_1}$$

This simplifies to:

$$a_1(t \cdot p_2 \cdot s) \equiv b_1 \cdot s \pmod{p_1}$$

Since $t \cdot p_2 \cdot s$ is congruent to 1 modulo p_1 , we have:

$$a_1 \cdot 1 \equiv b_1 \cdot s \pmod{p_1}$$

This implies that $a_1 \equiv b_1 \cdot s \pmod{p_1}$. Since s is an integer, $b_1 \cdot s$ is divisible by $\gcd(a_1, p_1)$.

Therefore, $a_1 \equiv b_1 \cdot s \pmod{p_1}$ implies that $a_1 x_0 \equiv b_1 \pmod{p_1}$, and x_0 is a solution to the first congruence as well.

So, $x = x_0$ is a solution to the pair of congruences.

(c) Given: We consider the system of congruences:

$$a_i x \equiv b_i \pmod{p_i}$$

where $(a_j, p_j) = 1$ for all j.

Claim (1): There always exists a solution for

$$a_i x \equiv b_i \pmod{p_i}$$

regardless of the choice of b_i .

Proof: Let C_j be a solution for $a_j x \equiv b_j \pmod{p_j}$ for j = 1, 2, ..., k. Since $(a_j, p_j) = 1$, we have $[p_1, p_2, ..., p_k] = \Pi$, where Π is the product of all p_j since they are coprime. Consider m_j such that $m_j \Pi \equiv 1 \pmod{p_j}$ [Equation (2)]. This gives a unique solution $x \equiv m'_j \pmod{p_j}$.

Considering

$$x_0 = c_1 m_1 m_1' + c_2 m_2 m_2' + \dots + c_k m_k m_k',$$

where c_j is a chosen solution for $a_j x \equiv b_j \pmod{p_j}$ [Equation (1)], we can show that x_0 is a common solution to the system.

For $i \neq j$, p_i divides $m_j = p_1 p_2 ... p_k p_j$. Therefore,

$$a_j x_0 \equiv \sum_{i=1}^k a_i c_i m_i m_i' \equiv a_j c_j m_j m_j' \equiv a_j c_j \pmod{p_j}$$

Since $m_j m_j' \equiv 1 \pmod{p_j}$, we have $a_j x_0 \equiv a_j c_j \equiv b_j \pmod{p_j}$. Thus, x_0 is a common solution for j = 1, 2, ..., k.

Claim (2): If x is another solution to the system of congruences, then

$$x \equiv x_0 \pmod{[p_1, p_2, ..., p_k]}$$

Proof: Let x be another solution. This implies

$$x_0 \equiv c_j \equiv x \pmod{p_j}$$

for all j = 1, 2, ..., k. Thus, $x_0 - x$ is a common multiple of $p_1, p_2, ..., p_k$, and hence a multiple of $[p_1, p_2, ..., p_k] = \Pi$. Therefore,

$$x \equiv x_0 \pmod{[\Pi]}$$

.

Answer 4

(a) Let's denote this set by X^{ω} . Then we will show that a function $g: \mathbb{Z}^+ \to X^{\omega}$ cannot be surjective to prove the uncountability of this set.

Let's denote this set by X^{ω} . We will show that a function $g: \mathbb{Z}^+ \to X^{\omega}$ cannot be surjective to prove the uncountability of this set.

For a function g defined as $g(n) = (x_{n1}, x_{n2}, \dots, x_{nn}, \dots)$ where each x_{ij} belongs to the set $X = \{a, b, \dots, z\}$, consider the element $y = (y_1, y_2, \dots) \in X^{\omega}$ given by:

$$y_n = \begin{cases} a & \text{if } x_{nn} \neq a \\ b & \text{if } x_{nn} = a \end{cases}$$

In other words, y is constructed such that it differs from each g(n) by at least one coordinate. This means that y is not mapped to by g, and therefore, g cannot be surjective.

This argument generalizes to any countable product of a set X with |X| > 1. If X has |X| = k elements, then there are $k^{\mathbb{N}}$ distinct sequences in the countable product X^{ω} , making it uncountable.

(b) Consider the countable sets S_0, S_1, S_2, \ldots where $S = \bigcup_{i \in \mathbb{N}} S_i$.

Assume that none of these sets have any elements in common. Otherwise, we can consider the sets $S_0' = S_0, S_1' = S_1 \setminus S_0, S_2' = S_2 \setminus (S_0 \cup S_1), \dots$

All of these are countable by Subset of Countable Set is Countable, and they have the same union $S = \bigcup_{i \in \mathbb{N}} S_i'$.

Now we write the elements of S_0', S_1', S_2', \ldots in the form of a (possibly infinite) table:

$$a_{00}$$
 a_{10} a_{20} ... a_{01} a_{11} a_{21} ... a_{02} a_{12} a_{22} ... \vdots \vdots \vdots ...

where a_{ij} is the j-th element of set S_i .

This table clearly contains all the elements of $S = \bigcup_{i \in \mathbb{N}} S_i$.

Furthermore, we have that $\phi: S \to \mathbb{N} \times \mathbb{N}, a_{ij} \mapsto (i, j)$ is an injection.

By the Cartesian Product of Countable Sets is Countable theorem, there exists an injection $\psi: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$.

Then $\psi \circ \phi : S \to \mathbb{N}$ is also an injection by the Composite of Injections is an Injection theorem. That is to say, S is countable.