CSE4107 Class Test 3, Fall-2021

Marks: 10 Time: 25 min.

- 1. What role does utility theory play in acting under uncertainty? (2)
- 2. Consider the 'Escape the monster' environment given below.

OK	OK	
1,2 S	2,2 S	
OK	OK	OK
1,1	2,1	3,1 S

Assume that OK indicates absence of a monster(M) at the cell, the status of the cells of the 4 x 4 grid other than those shown are unknown, and that the agent can smell(S) a monster at a cell vertically or horizontally adjacent to it.

Find $P(M_{2,3})$ taking 0.1 as the independent probability of a monster at any of the unknown cells. (3)

- 3. What are the major components of a Decision Network? (2)
- 4. Say, we have a Bayesian network containing 4 random variables A, B, C and D with two distinct values each. The conditional probability tables assigned to the random variables are given below. Draw the network and compute $P(D \mid a \land \neg b \land c)$ using the network. (3)

Α	В	P(c)
a	b	0.7
a	$\neg b$	0.5
¬a	b	0.2
¬a	¬b	0.02

_			
Ī	A	C	P(d)
ſ	a	С	0.8
Γ	a	¬с	0.4
Γ	¬a	c	0.3
	¬a	¬с	0.01

B P(a)	
b 0.6	
¬b 0.05	

P(b)
0.09

- 1. What are the major tools for acting under uncertainty? (2)
- 2. Joint-probability distribution of two random variables, having three different values each is shown in the table below.

		X_2		
		V21	V22	V23
	V ₁₁	0.06	0.07	0.13
X_1	V12	0.21	0.14	0.12
	V ₁₃	0.08	0.15	0.04

Compute the probabilities of the compound propositions, $v_{11} \lor v_{22}$ and $v_{21} | v_{13}$ using the distribution. (3)

- 3. Write a short note on 'Future state in Decision Networks'. (2)
- 4. Consider the 'Escape the monster' environment given below.

Ī	OK					
	1,2	S			_	
ĺ	OK		OK			
	1,2		2,2	S		
ĺ	OK		OK		OK	
	1,1		2,1		3,1	S

Assume that OK indicates absence of a monster(M) at the cell, the status of the cells of the 4×4 grid other than those shown are unknown, and that the agent can smell(S) a monster at a cell vertically or horizontally adjacent to it.

Find $P(M_{2,3})$ taking 0.3 as the independent probability of a monster at any of the unknown cells. (3)