AMATH 581: Report 3

Minho Choi

November 15th, 2023

Problem 4 (a)

To determine the order of accuracy for the 5-point Laplacian, we use the numerical method of comparing the logarithms of error (E) and Δx . The error (E) is calculated using 1-norm, so we have:

$$E = \max | \text{Approximation} - \text{Exact Solution} |$$

For Δx values, we used 8 different values, which are 2^{-2} , 2^{-3} , 2^{-4} , 2^{-5} , 2^{-6} , 2^{-7} , 2^{-8} , 2^{-9} . For the 5-point Laplacian, we obtain the following log-log plot:

The equation of the best fit line is:

$$\ln(E) = 2.004508788898138 \times \ln(\Delta x) - 3.1556870128339423$$

Therefore, the order of accuracy of the 5-point Laplacian is $\mathcal{O}(\Delta x^2)$.

Problem 4 (b)

We repeat the same process in **Problem 4(a)** (with the same Δx values and 1-norm to calculate the error) to calculate the order of accuracy for the 9-point Laplacian. We obtain the following log-log plot:

9-points Laplacian log-log plot

The equation of the best fit line is:

$$\ln(E) = 2.005902589364498 \times \ln(\Delta t) - 2.455615978948617$$

Therefore, the order of accuracy of 9-point Laplacian is also $\mathcal{O}(\Delta x^2)$.

Problem 4 (c)

For the discretization error of the 9-point Laplacian, we get the following 3-dimensional surface plot:

Surface Plot of $\Delta_9^2 u(x, y) - f(x, y)$

For the function $f_{xx} + f_{yy}$, where $f(x,y) = -\sin(\pi x)\sin(\pi y)$, we get the following 3-dimensional surface plot:

Surface Plot of $f_{xx} + f_{yy}$

Note that the shape of the two surfaces are very similar to each other. The only difference is the scale in z-axis. Hence, the leading error term of the 9-point Laplacian approximation is proportional to $f_{xx} + f_{yy}$.

From **Problem 4(b)**, we know that the order of accuracy for 9-point Laplacian is $\mathcal{O}(\Delta x^2)$. Then, by subtracting the function $f_{xx} + f_{yy}$ from the approximation, we can eliminate the leading error term which is in order $\mathcal{O}(\Delta x^2)$. As a result, the order of accuracy for 9-point Laplacian will decrease to the next leading error term in the finite difference, which is $\mathcal{O}(\Delta x^4)$.