3/7/2016 file21a46afe52b.html

Table 1. Land use categories in Faga'alu subwatersheds (NOAA Ocean Service and Coastal Services Center, 2010). Land cover percentages are of the subwatershed.

	Cumulat	ive Area	Subwaters	ea Land cover as % subwatershed area ^a				ea ^a				
Subwatershed (outlet)	km ²	%	km ²	%	В	HI	DOS	GA	F	S	Disturbed	Undisturbed
Upper (FG1)	0.9	50	0.90	50	0.4	0.0	0.0	0.1	82	17.1	0.4	100
Lower_Quarry (FG2)	1.2	66	0.27	16	5.7	0.7	0.1	0.5	92	0.9	6.5	94
Lower_Village (FG3)	1.8	100	0.60	34	0.0	9.0	2.6	0.2	88	0.6	11.7	88
Lower (FG3)	1.8	100	0.88	50	1.8	6.4	1.8	0.3	89	0.7	10.1	90
Total (FG3)	1.8	100	1.78	100	1.1	3.2	0.9	0.2	86	9.0	5.2	95

a. B=Bare, HI=High Intensity Developed, DOS=Developed Open Space, GA=Grassland (agriculture), F=Forest, S=Scrub/Shrub, Disturbed=B+HI+DOS+GA, Undisturbed=F+S

b. Disturbed area for Upper was from natural landslide. Undisturbed is 100% from rounding up.

3/7/2016 file21a440665b70.html

Table 2. Event-wise suspended sediment yield (SSY_{EV}) from subwatersheds in Faga'alu for events with simultaneous data from FG1 and FG3. Storm numbers correspond with the storms presented in Appendix C Table 1.

	Storm	Precip	SS	${ m SY_{EV}}$ to	ns		of _TOTAL	P	E ^a	S	SC
Storm#	Start	mm	Upper ^b	Lower	Total ^d		Lower	Upper	r Total	Data Source Upper	Data Source Total
2	01/19/2012	18	0.06	0.63	0.69	8.0	91.0	56	36	T-TS	int. grab
4	01/31/2012	35	0.03	1.92	1.95	1.0	98.0	56	118	T-TS	T-YSI
5	02/01/2012	11	0.01	0.4	0.42	3.0	96.0	56	118	T-TS	T-YSI
6	02/02/2012	16	0.06	1.02	1.08	5.0	94.0	56	118	T-TS	T-YSI
7	02/03/2012	11	0.08	2.01	2.09	3.0	96.0	56	118	T-TS	T-YSI
8	02/04/2012	6	0.0	0.51	0.51	0.0	99.0	56	118	T-TS	T-YSI
9	02/05/2012	23	0.05	0.98	1.03	5.0	94.0	56	118	T-TS	T-YSI
10	02/05/2012	21	0.09	1.93	2.02	4.0	95.0	56	118	T-TS	T-YSI
11	02/06/2012	38	0.28	4.75	5.03	5.0	94.0	56	118	T-TS	T-YSI
12	02/07/2012	4	0.01	0.13	0.15	9.0	90.0	56	118	T-TS	T-YSI
13	02/07/2012	10	0.03	0.51	0.54	5.0	94.0	56	118	T-TS	T-YSI
14	02/13/2012	11	0.0	0.27	0.27	1.0	98.0	56	118	T-TS	T-YSI
16	03/05/2012	22	0.0	4.39	4.4	0.0	99.0	56	118	T-TS	T-YSI
17	03/06/2012	56	0.19	9.05	9.25	2.0	97.0	56	118	T-TS	T-YSI
18	03/08/2012	22	0.09	2.89	2.98	2.0	97.0	56	118	T-TS	T-YSI
19	03/09/2012	19	0.2	2.78	2.97	6.0	93.0	56	118	T-TS	T-YSI
20	03/15/2012	17	0.01	1.17	1.18	0.0	99.0	56	118	T-TS	T-YSI
21	03/16/2012	34	0.08	2.12	2.2	3.0	96.0	56	118	T-TS	T-YSI
22	03/17/2012	32	0.09	3.33	3.43	2.0	97.0	56	118	T-TS	T-YSI
23	03/20/2012	24	0.04	0.84	0.88	4.0	95.0	56	118	T-TS	T-YSI
24	03/21/2012	18	0.2	2.06	2.26	8.0	91.0	56	118	T-TS	T-YSI
25	03/22/2012	34	0.37	5.75	6.12	5.0	94.0	56	118	T-TS	T-YSI
27	03/24/2012	7	0.03	0.19	0.22	12.0	87.0	56	118	T-TS	T-YSI
28	03/25/2012	49	0.7	11.92	12.62	5.0	94.0	56	118	T-TS	T-YSI
29	03/31/2012	15	0.03	0.78	0.81	3.0	96.0	56	118	T-TS	T-YSI
32	05/07/2012	11	0.0	1.31	1.31	0.0	99.0	56	118	T-TS	T-YSI
33	05/08/2012	21	0.13	6.65	6.79	1.0	98.0	56	118	T-TS	T-YSI
34	05/20/2012	13	0.0	0.47	0.48	0.0	99.0	56	118	T-TS	T-YSI
64	04/16/2013	62	0.54	4.01	4.55	11.0	88.0	40	36	_	int. grab
70	04/23/2013	86	9.57	13.51	23.08	41.0	58.0	40	36	_	int. grab
79	06/24/2013	9	0.01	0.13	0.14	7.0	92.0	43	77	T-YSI	T-OBS
80	07/02/2013	13	0.02	0.28	0.3	5.0	94.0	43	77	T-YSI	T-OBS
106	02/14/2014	25	0.26	1.57	1.82	14.0	85.0	43	51	T-YSI	T-OBS
107	02/15/2014	7	0.04	0.63	0.67	6.0	93.0	43	51	T-YSI	T-OBS
109	02/18/2014	12	0.01	0.81	0.81	0.0	99.0	43	51	T-YSI	T-OBS
110	02/20/2014	29	0.13	3.71	3.84	3.0	96.0	43	51	T-YSI	T-OBS
111	02/21/2014	51	2.55	7.03	9.58	26.0	73.0	43	51	T-YSI	T-OBS
112	02/24/2014	16	0.09	0.56	0.65	13.0	86.0	43	51	T-YSI	T-OBS
113	02/24/2014	1	0.01	0.12	0.13	9.0	90.0	43	51	T-YSI	T-OBS
114	02/25/2014	67	0.62	7.17	7.79	7.0	92.0	43	51	T-YSI	T-OBS
115	02/27/2014	16	0.13	0.68	0.8	15.0	84.0	43	51	T-YSI	T-OBS
116	02/27/2014	12	0.12	1.25	1.37	8.0	91.0	43	51	T-YSI	T-OBS
Total/Avg		1004	17.0	112.2	129.2	13	87	52	94	-	-
Tons/km2	2 -	-	18.8	127.5	72.6	-	-	-	-	-	-
DR	-	-	1	6.8	3.9	-	-	-	-	-	-

a. PE is cumulative probable error (Eq 4) as a percentage of the mean observed SSY_{EV}.

b. Measured SSY_{EV} at FG1.

c. $\ensuremath{\mathsf{SSY}_{EV}}$ at FG3 - $\ensuremath{\mathsf{SSY}_{EV}}$ at FG1.

d. Measured SSY_{EV} at FG3.

3/7/2016 file21a45c1d382f.html

Table 3. Suspended sediment yield (SSY), specific suspended sediment yield (sSSY), and disturbance ratio (DR) from disturbed portions of Upper and Lower subwatersheds for the storm events in Table 2.

	Upper ^a	Lower	Total
Fraction of subwatershed area disturbed (%)	0.4	10.1	5.2
SSY (tons)	17.0	112.2	129.2
Forested areas	16.9	14.9	31.7
Disturbed areas	0.1	97.3	97.5
% from disturbed areas	0.9	87	75
sSSY, disturbed areas (tons/km ²)	41.0	1095.0	1053.1
DR for sSSY from disturbed areas ^b	2	58	56

a. Disturbed areas in Upper are bare areas from landslides.

b. Calculated as (sSSY from disturbed areas)/sSSY from Upper (17.0 tons/km^2)

3/7/2016 file21a42a0e78de.html

Table 4. Event-wise suspended sediment yield (SSY_{EV}) from subwatersheds in Faga'alu for events with simultaneous data from FG1, FG2, and FG3. Storm numbers correspond with the storms presented in Table 2 and Appendix C Table 1.

	Storm	Precip		SS	SY _{EV} tons	% of SSY_{EV_TOTAL}					
Storm#	Start	mm	Upper	Lower_Quarry ^b	Lower_Village	Lower	l Total ^e	Upper	Lower_Quarry I	Lower_Villa	age Lower
2	01/19/2012	18	0.06	0.3	0.33	0.63	0.69	8.0	43.0	47.0	91.0
64	04/16/2013	62	0.54	2.77	1.24	4.01	4.55	11.0	60.0	27.0	88.0
70	04/23/2013	86	9.57	8.21	5.3	13.51	23.08	41.0	35.0	22.0	58.0
106	02/14/2014	25	0.26	1.01	0.55	1.57	1.82	14.0	55.0	30.0	86.0
110	02/20/2014	29	0.13	1.6	2.11	3.71	3.84	3.0	41.0	54.0	96.0
111	02/21/2014	51	2.55	2.07	4.96	7.03	9.58	26.0	21.0	51.0	73.0
115	02/27/2014	16	0.13	0.08	0.59	0.68	0.8	16.0	9.0	73.0	85.0
116	02/27/2014	12	0.12	0.32	0.93	1.25	1.37	8.0	23.0	67.0	91.0
Total/Avg	g 8	299	13.4	16.4	16.0	32.4	45.7	29	36	35	71
Tons/km ²	2		14.8	60.6	26.7	36.8	25.7	-	-	-	-
DR			1.0	4.08	1.8	2.5	1.7	-	-	-	-

a. Measured SSY_{EV} at FG1.

b. $\ensuremath{\mathsf{SSY}}_{EV}$ at FG2 - $\ensuremath{\mathsf{SSY}}_{EV}$ at FG1.

c. $\ensuremath{\mathsf{SSY}_{EV}}$ at FG3 - $\ensuremath{\mathsf{SSY}_{EV}}$ at FG2.

d. $\ensuremath{\mathsf{SSY}_{\mathsf{EV}}}$ at FG3 - $\ensuremath{\mathsf{SSY}_{\mathsf{EV}}}$ at FG1.

e. Measured SSY_{EV} at FG3.

3/7/2016 file21a43552e60.html

Table 5. Suspended sediment yield (SSY), specific suspended sediment yield (sSSY), and disturbance ratio (DR) from disturbed portions of Upper, Lower_Quarry, and Lower_Village subwatersheds for the storm events in Table 4.

	Upper	Lower_Quarry	Lower_Village	Lower	Total
Fraction of subwatershed area disturbed (%)	0.4	6.5	11.7	10.1	5.2
SSY (tons)	13.4	16.4	16.0	32.4	45.7
Forested areas	13.3	3.7	7.8	11.7	25.0
Disturbed areas	0.1	12.7	8.2	20.7	20.7
% from disturbed areas	1.0	77	51	64	45
sSSY, disturbed areas (tons/km ²)	37.0	721.6	116.2	232.8	223.9
DR for sSSY from disturbed areas	3	49	8	16	15

3/7/2016 file21a41c8967a8.html

Table 6. Goodness-of-fit statistics for storm metric-SSY $_{\rm EV}$ relationships. Spearman correlation coefficients significant at p<0.01.

Model	Spearman	r ²	RMSE(tons)	Intercept(α)	Slope(β)	BCF
Psum_upper	0.70	0.39	4.31	0.003	1.10	2.71
Psum_total	0.88	0.71	2.43	0.033	1.11	1.39
EI_upper	0.48	0.18	5.48	0.001	0.97	4.38
EI_total	0.73	0.55	2.98	0.001	1.32	2.00
Qsum_upper	0.91	0.83	2.15	0.000	1.65	1.42
Qsum_total	0.83	0.70	2.46	0.000	1.29	1.50
Qmax_upper	0.90	0.79	2.36	0.398	1.51	2.12
Qmax_total	0.80	0.67	2.59	2.429	1.41	1.49

3/7/2016 file21a457626df9.html

Table 7. Estimates of Annual SSY and sSSY calculated using four different methods

				Equation 6				
	Psum model, Events in 2014	Qmax model, Events in 2014	Events in Table 2	Events in Table 4	All Measured Events			
Precipitation								
mm (% of Ps _{ann})	2770	2770	1004 (36%)	299 (11%)	3457 (125%)			
Annual SSY (ton	s/year)							
Upper	35	129	46	120	41			
Lower	152	526	310	300	388			
Lower_Quarry	-	-	-	150	-			
Lower_Village	-	-	-	150	-			
Total	187	655	360	420	428			
Annual sSSY (to	ns/km²/year)							
Upper	39	143	51	140	45			
Lower	679	598	350	340	441			
Lower_Quarry	-	-	-	560	-			
Lower_Village	-	-	-	250	-			
Total	105	368	200	240	241			

Table 8. Annual Specific Suspended Sediment Yield (sSSY) from steep, volcanic islands in the tropical Pacific.

Location	Watershed drainage area (km2)		annual tion (mm)	sSSY range tons/km2/yr	Reference
Faga'alu UPPER	0.88	ргестрии	tion (mm)	45-143	This study
Faga'alu TOTAL	1.78	2 380-6 350	(varies with	241-368	This study
raga ara 1017iL	1.70		ation)	241 300	This study
Kawela, Molokai	13.5		(varies with	394	(Stock and Tribble, 2010)
Kaweia, Molokai	13.5	•	•	374	(Stock and Tribble, 2010)
Hanalei, Kauai	60.04	elevation) 500 – 9,500 (varies with		545 ± 128	(Ferrier et al., 2013)
Hanaiei, Kauai	00.04	•	ation)	343 ± 120	(Perrier et al., 2013)
Hanalei, Kauai	48.4		0 (varies with	525	(Stock and Tribble, 2010)
Hallalel, Kaual	40.4		ation)	323	(Stock and Tribble, 2010)
Hanalei, Kauai	54.4		,	140±55	(Calhoun and Fletcher, 1999)
Hallalel, Kauai	34.4	54.4 2,000-11,000 (varies with elevation)		140±33	(Califouli allu Fletcher, 1999)
St. John, USVIa	3.5	1,300-1,400		18	(Ramos-Scharrón and
St. John, OSVI	3.5	1,300	-1,400	10	Macdonald, 2007)
St. John, USVI	2.3	1,300-1,400		24	(Nemeth and Nowlis, 2001)
- · · · · · · · · · · · · · · · · · · ·	2.3 6	1,300-1,400		36	(Nemeth and Nowlis, 2001)
St. John, USVI Oahu	10.4	,	(varies with	330±130; 200±100	(Hill et al., 1997)
Oanu	10.4		•	·	(Hill et al., 1997)
Daniel Calanada Daniel	0.022		ation)	(varies with method)	(7:
Barro Colorado, Panama	0.033	•	3±458	100-200	(Zimmermann et al., 2012)
Fly River, PNGb	76,000	up to	10,000	1,000-1,500	(Milliman, 1995)
Purari River, PNG	35,000			3,000	
Milliman and Syvitski (19	92) Model:				
$sSSY = cA^f$					(Milliman and Syvitski, 1992)
c,f = regression coeff. for	region/max elevation	С	f	sSSY tons/km2/yr	, ,
Max elev >3,000m	Faga'alu	280	-0.54	UPPER = 296	-
	UPPER = 0.88			TOTAL = 205	
	TOTAL = 1.78				
Max elev 1000-3000m		65	-0.46	UPPER = 68	-
(Oceania)				TOTAL = 50	
Max elev 500-1,000m		12	-0.59	UPPER = 13	-
				TOTAL = 9	

3/7/2016 file21a42e52218d.html

Table A3.1. Water discharge from subwatersheds in Faga'alu. Includes all storm events for 2012, 2013, and 2014.

			D i	ischarge m ³		Perce	
Storm#	Storm Start	Precip mm	Upper	Lower	Total	Upper	Lower
1	01/18/2012	70.0	10765.0	12319.0	23084.0	46.0	53.0
2	01/19/2012	18.0	8117.0	11055.0	19172.0	42.0	57.0
3	01/25/2012	79.0	17887.0	17125.0	35012.0	51.0	48.0
4	01/31/2012	35.0	6467.0	7868.0	14335.0	45.0	54.0
5	02/01/2012	11.0	4071.0	5767.0	9838.0	41.0	58.0
6	02/02/2012	16.0	9224.0	14750.0	23974.0	38.0	61.0
7	02/03/2012	11.0	12729.0	18682.0	31411.0	40.0	59.0
8	02/04/2012	6.0	1359.0	2765.0	4124.0	32.0	67.0
9	02/05/2012	23.0	8374.0	12716.0	21090.0	39.0	60.0
10	02/05/2012	21.0	9603.0	16471.0	26074.0	36.0	63.0
11	02/06/2012	38.0	20080.0	25795.0	45875.0	43.0	56.0
12	02/07/2012	4.0	2643.0	2970.0	5613.0	47.0	52.0
13	02/07/2012	10.0	5178.0	6536.0	11714.0	44.0	55.0
14	02/07/2012	11.0	1186.0	1548.0	2734.0	43.0	56.0
15	02/23/2012	17.0	11491.0	15655.0	27146.0	42.0	57.0
16	03/05/2012	22.0	14491.0	4629.0	6078.0	23.0	76.0
17	03/05/2012			17173.0	30304.0		
		56.0	13131.0			43.0	56.0
18	03/08/2012	22.0	6904.0	4946.0	11850.0	58.0	41.0
19	03/09/2012	19.0	12850.0	10482.0	23332.0	55.0	44.0
20	03/15/2012	17.0	2138.0	3305.0	5443.0	39.0	60.0
21	03/16/2012	34.0	8794.0	10815.0	19609.0	44.0	55.0
22	03/17/2012	32.0	9756.0	12562.0	22318.0	43.0	56.0
23	03/20/2012	24.0	3621.0	3782.0	7403.0	48.0	51.0
24	03/21/2012	18.0	13828.0	14072.0	27900.0	49.0	50.0
25	03/22/2012	34.0	14265.0	19236.0	33501.0	42.0	57.0
26	03/23/2012	16.0	5544.0	5833.0	11377.0	48.0	51.0
27	03/24/2012	7.0	5264.0	3865.0	9129.0	57.0	42.0
28	03/25/2012	49.0	31904.0	30062.0	61966.0	51.0	48.0
29	03/31/2012	15.0	2106.0	2468.0	4574.0	46.0	53.0
30	04/03/2012	9.0	1184.0	1237.0	2421.0	48.0	51.0
31	05/02/2012	30.0	2880.0	4833.0	7713.0	37.0	62.0
32	05/07/2012	11.0	1327.0	1890.0	3217.0	41.0	58.0
33	05/08/2012	21.0	6129.0	6038.0	12167.0	50.0	49.0
34	05/20/2012	13.0	1025.0	1306.0	2331.0	43.0	56.0
35	05/22/2012	52.0	15584.0	14239.0	29823.0	52.0	47.0
36	05/23/2012	86.0	104576.0	18743.0	123319.0	84.0	15.0
37	05/24/2012	34.0	41794.0	19271.0	61065.0	68.0	31.0
38	05/25/2012	5.0	1255.0	999.0	2254.0	55.0	44.0
39	05/26/2012	37.0	38685.0	27294.0	65979.0	58.0	41.0
40	06/02/2012	20.0	4486.0	4717.0	9203.0	48.0	51.0
41	06/03/2012	22.0	13122.0	8781.0	21903.0	59.0	40.0
42	06/04/2012	38.0	32150.0	25378.0	57528.0	55.0	44.0
43	06/05/2012	8.0	12702.0	10050.0	22752.0	55.0	44.0
	06/05/2012		5433.0				
44		8.0		3525.0	8958.0	60.0	39.0
45	06/07/2012	7.0	13217.0	8988.0	22205.0	59.0	40.0
46	07/08/2012	34.0	5660.0	5623.0	11283.0	50.0	49.0
47	07/08/2012	12.0	4528.0	6015.0	10543.0	42.0	57.0
48	07/26/2012	31.0	4796.0	6411.0	11207.0	42.0	57.0
49	07/27/2012	13.0	5516.0	6385.0	11901.0	46.0	53.0
50	08/07/2012	13.0	882.0	1571.0	2453.0	35.0	64.0
51	08/08/2012	44.0	17172.0	9804.0	26976.0	63.0	36.0
52	02/27/2013	4.0	756.0	1452.0	2208.0	34.0	65.0
53	03/03/2013	19.0	792.0	2509.0	3301.0	23.0	76.0
54	03/05/2013	11.0	541.0	1777.0	2318.0	23.0	76.0

72010			11102 10420022 100				
55	03/05/2013	33.0	4994.0	16176.0	21170.0	23.0	76.0
56	03/06/2013	22.0	10726.0	26751.0	37477.0	28.0	71.0
57	03/07/2013	5.0	775.0	1819.0	2594.0	29.0	70.0
58	03/10/2013	6.0	680.0	2571.0	3251.0	20.0	79.0
59	03/11/2013	43.0	19107.0	40420.0	59527.0	32.0	67.0
60	03/21/2013	17.0	2580.0	5269.0	7849.0	32.0	67.0
61	03/23/2013	17.0	2151.0	7704.0	9855.0	21.0	78.0
62	03/26/2013	9.0	545.0	1474.0	2019.0	26.0	73.0
63	04/11/2013	8.0	369.0	1297.0	1666.0	22.0	77.0
64	04/16/2013	62.0	10340.0	28165.0	38505.0	26.0	73.0
65	04/17/2013	42.0	17144.0	42894.0	60038.0	28.0	71.0
66	04/18/2013	3.0	1767.0	4655.0	6422.0	27.0	72.0
67	04/18/2013	2.0	846.0	2178.0	3024.0	27.0	72.0
68	04/18/2013	9.0	1621.0	5532.0	7153.0	22.0	77.0
69	04/20/2013	27.0	6704.0	27501.0	34205.0	19.0	80.0
70	04/23/2013	86.0	63144.0	33894.0	97038.0	65.0	34.0
71	04/28/2013	14.0	5893.0	7407.0	13300.0	44.0	55.0
72	04/28/2013	2.0	10542.0	13364.0	23906.0	44.0	55.0
73	04/30/2013	111.0	82708.0	39233.0	121941.0	67.0	32.0
74	05/11/2013	19.0	3789.0	5916.0	9705.0	39.0	60.0
75	05/30/2013	10.0	1247.0	1772.0	3019.0	41.0	58.0
76	06/05/2013	177.0	138613.0	27276.0	165889.0	83.0	16.0
77	06/09/2013	1.0	1785.0	1950.0	3735.0	47.0	52.0
78	06/16/2013	30.0	11314.0	6350.0	17664.0	64.0	35.0
78 79	06/24/2013	9.0	4587.0	2955.0	7542.0	60.0	39.0
80	07/02/2013	13.0	3320.0	2578.0	5898.0	56.0	43.0
81	07/13/2013	24.0	5520.0	6316.0	11836.0	46.0	53.0
82	07/15/2013	9.0	2663.0	1162.0	3825.0	69.0	30.0
83	07/16/2013	17.0	5815.0	4509.0	10324.0	56.0	43.0
84	07/17/2013	26.0	14544.0	25462.0	40006.0	36.0	63.0
85	07/19/2013	34.0	13957.0	28596.0	42553.0	32.0	67.0
86	07/20/2013	26.0	16092.0	34908.0	51000.0	31.0	68.0
87	07/24/2013	13.0	2243.0	1888.0	4131.0	54.0	45.0
88	07/27/2013	22.0	5886.0	4163.0	10049.0	58.0	41.0
89	08/03/2013	20.0	3645.0	3731.0	7376.0	49.0	50.0
90	08/05/2013	19.0	12492.0	10070.0	22562.0	55.0	44.0
91	08/09/2013	81.0	26772.0	63930.0	90702.0	29.0	70.0
92	08/15/2013	28.0	3752.0	7636.0	11388.0	32.0	67.0
93	08/16/2013	102.0	60145.0	47130.0	107275.0	56.0	43.0
94	08/17/2013	0.0	1255.0	2297.0	3552.0	35.0	64.0
95	08/17/2013	85.0	47275.0	73771.0	121046.0	39.0	60.0
96	08/18/2013	5.0	1521.0	3582.0	5103.0	29.0	70.0
90 97	08/19/2013	36.0	13038.0	24494.0	37532.0	34.0	65.0
97 98							
	08/21/2013	12.0	1980.0	3709.0	5689.0	34.0	65.0
99	08/26/2013	29.0	2963.0	5490.0	8453.0	35.0	64.0
100	09/01/2013	41.0	9592.0	15806.0	25398.0	37.0	62.0
101	09/01/2013	3.0	3390.0	5620.0	9010.0	37.0	62.0
102	09/07/2013	23.0	4392.0	4692.0	9084.0	48.0	51.0
103	09/08/2013	8.0	4093.0	4949.0	9042.0	45.0	54.0
104	09/18/2013	16.0	3541.0	4793.0	8334.0	42.0	57.0
105	09/21/2013	14.0	2970.0	3809.0	6779.0	43.0	56.0
106	02/14/2014	25.0	11129.0	10822.0	21951.0	50.0	49.0
107	02/15/2014	7.0	4178.0	5397.0	9575.0	43.0	56.0
108	02/16/2014	0.0	1800.0	3838.0	5638.0	31.0	68.0
109	02/18/2014	12.0	2064.0	7026.0	9090.0	22.0	77.0
110	02/20/2014	29.0	7151.0	23927.0	31078.0	23.0	76.0
111	02/21/2014	51.0	19822.0	41477.0	61299.0	32.0	67.0
112	02/24/2014	16.0	3512.0	4329.0	7841.0	44.0	55.0
112	02/24/2014	1.0		2558.0	4995.0	48.0	51.0
113	02/24/2014	1.0	2437.0	<i>433</i> 8.0	4773.U	40.0	31.0

3/7/2016			file21a42e52218	d.html			
114	02/25/2014	67.0	23172.0	53565.0	76737.0	30.0	69.0
115	02/27/2014	16.0	9496.0	10192.0	19688.0	48.0	51.0
116	02/27/2014	12.0	11970.0	16225.0	28195.0	42.0	57.0
117	03/03/2014	0.0	1435.0	1441.0	2876.0	49.0	50.0
118	03/06/2014	3.0	2988.0	1869.0	4857.0	61.0	38.0
119	03/06/2014	41.0	17760.0	23829.0	41589.0	42.0	57.0
120	03/13/2014	45.0	9943.0	13565.0	23508.0	42.0	57.0
121	03/14/2014	11.0	13503.0	19938.0	33441.0	40.0	59.0
122	03/14/2014	12.0	2813.0	5276.0	8089.0	34.0	65.0
123	03/23/2014	11.0	1337.0	4027.0	5364.0	24.0	75.0
124	03/24/2014	6.0	1576.0	3013.0	4589.0	34.0	65.0
125	03/28/2014	8.0	1512.0	3724.0	5236.0	28.0	71.0
126	04/01/2014	33.0	1740.0	7044.0	8784.0	19.0	80.0
127	04/06/2014	61.0	13915.0	27351.0	41266.0	33.0	66.0
128	04/08/2014	18.0	4986.0	10385.0	15371.0	32.0	67.0
129	04/09/2014	18.0	6119.0	11750.0	17869.0	34.0	65.0
130	04/11/2014	14.0	3586.0	7585.0	11171.0	32.0	67.0
131	04/16/2014	9.0	565.0	2162.0	2727.0	20.0	79.0
132	04/17/2014	12.0	2271.0	4559.0	6830.0	33.0	66.0
133	04/17/2014	9.0	3767.0	7636.0	11403.0	33.0	66.0
134	04/18/2014	15.0	5828.0	12730.0	18558.0	31.0	68.0
135	04/19/2014	26.0	9058.0	27855.0	36913.0	24.0	75.0
136	04/19/2014	10.0	7815.0	21881.0	29696.0	26.0	73.0
137	04/25/2014	24.0	9048.0	15297.0	24345.0	37.0	62.0
138	04/26/2014	16.0	5427.0	8943.0	14370.0	37.0	62.0
139	04/27/2014	25.0	8430.0	20305.0	28735.0	29.0	70.0
140	04/28/2014	16.0	2748.0	8205.0	10953.0	25.0	74.0
141	04/28/2014	0.0	855.0	2634.0	3489.0	24.0	75.0
142	04/28/2014	27.0	8785.0	33864.0	42649.0	20.0	79.0
143	04/29/2014	6.0	1065.0	3447.0	4512.0	23.0	76.0
144	04/30/2014	29.0	20768.0	43623.0	64391.0	32.0	67.0
145	05/19/2014	14.0	2217.0	4677.0	6894.0	32.0	67.0
146	05/19/2014	27.0	4698.0	9150.0	13848.0	33.0	66.0
147	05/20/2014	12.0	4886.0	10631.0	15517.0	31.0	68.0
148	05/22/2014	63.0	10344.0	36648.0	46992.0	22.0	77.0
149	05/23/2014	1.0	1485.0	5040.0	6525.0	22.0	77.0
150	05/26/2014	4.0	2264.0	7894.0	10158.0	22.0	77.0
151	05/29/2014	8.0	3777.0	8673.0	12450.0	30.0	69.0
152	06/03/2014	11.0	2485.0	5683.0	8168.0	30.0	69.0
153	06/05/2014	75.0	18454.0	51224.0	69678.0	26.0	73.0
154	06/16/2014	7.0	2398.0	4088.0	6486.0	36.0	63.0
155	06/16/2014	24.0	9597.0	22539.0	32136.0	29.0	70.0
156	07/02/2014	68.0	11276.0	30561.0	41837.0	26.0	73.0
157	07/05/2014	33.0	14056.0	30023.0	44079.0	31.0	68.0
158	07/06/2014	20.0	3794.0	11113.0	14907.0	25.0	74.0
159	07/09/2014	10.0	1242.0	2347.0	3589.0 5256.0	34.0	65.0
160 161	07/27/2014 07/29/2014	1.0	1121.0 176157.0	4235.0 132096.0	5356.0 308253.0	20.0	79.0
	07/30/2014	334.0 77.0		58704.0		57.0	42.0
162 163	07/31/2014	77.0 114.0	47946.0 69273.0	58704.0 85587.0	106650.0 154860.0	44.0 44.0	55.0 55.0
163 164	08/01/2014	4.0	1075.0	3839.0	4914.0	21.0	78.0
164	08/02/2014	2.0	2243.0	3839.0 6196.0	8439.0	26.0	73.0
166	08/02/2014	13.0	12712.0	22143.0	34855.0	36.0	63.0
167	08/17/2014	13.0	2242.0	2618.0	4860.0	46.0	53.0
168	08/23/2014	6.0	2280.0	2598.0	4878.0	46.0	53.0
169	09/15/2014	14.0	2633.0	6322.0	8955.0	29.0	70.0
109	-	17.U -	2055.0	-	Average:	45	55
	-	·			1 i voi ago.	TJ	<i>JJ</i>