5. 積位相

岩井雅崇 2022/11/01

以下断りがなければ、 \mathbb{R}^n にはユークリッド位相を入れたものを考える.また集合系を表す際に用いられる Λ は空でないと仮定する.

- 問 $5.1 f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ を f(x,y) = x + y で定めると連続写像になることを示せ.
- 問 $5.2 f: X \to \mathbb{R}$ を位相空間 X から \mathbb{R} への写像とする. 次は同値であることを示せ.
 - (a) f は連続である.
 - (b) $\{(x,y) \in X \times \mathbb{R} | f(x) > y\}$ と $\{(x,y) \in X \times \mathbb{R} | f(x) < y\}$ は共に $X \times \mathbb{R}$ の開集合である.
- 問 $5.3 \ f: X \to \mathbb{R}$ を位相空間 X から \mathbb{R} への写像とする. 次の主張が正しい場合は証明し、間違っている場合は反例をあげよ.

「 $\{(x,y) \in X \times \mathbb{R} | f(x) = y\}$ が $X \times \mathbb{R}$ の閉集合であるとき, f は連続である.」

- 問 5.4 位相空間 (X, \mathcal{O}_X) について $\Delta: X \to X \times X$ を $\Delta(x) = (x, x)$ で定める. Δ は (X, \mathcal{O}_X) から $(X, \mathcal{O}_X) \times (X, \mathcal{O}_X)$ への連続写像であることを示せ.
- 問 5.5~(X,d) を距離空間とする. 距離関数 $d:X\times X\to\mathbb{R}$ は積位相に関して連続であることを示せ.
- 問 5.6 $(X, d_X), (Y, d_Y)$ を距離空間とする. 関数 $d_{X \times Y} : (X \times Y) \times (X \times Y) \to \mathbb{R}$ を

$$d_{X\times Y}((x_1,y_1),(x_2,y_2)) := d_X(x_1,x_2) + d_Y(y_1,y_2)$$

と定義する. $d_{X \times Y}$ は $X \times Y$ 上の距離関数になり, $d_{X \times Y}$ が定める位相が $X \times Y$ の積位相に一致することを示せ.

- 問 5.7 $\mathbb N$ を自然数の集合とし、各 $i\in\mathbb N$ について、 $X_i=\mathbb R$ とする. $\prod_{i\in\mathbb N}(0,1)$ は積空間 $\prod_{i\in\mathbb N}X_i$ の 開集合かどうか判定せよ.
- 問 5.8 (積位相の普遍性) $\{X_\lambda\}_{\lambda\in\Lambda}$ を集合系とし, \mathscr{O}_λ を X_λ の位相とする. 「任意の位相空間 (T,\mathscr{O}_T) と連続写像の族 $g_\lambda:T\to X_\lambda$ について, ある積空間 $\prod_{\lambda\in\Lambda}X_\lambda$ への連続写像 $g:T\to\prod_{\lambda\in\Lambda}X_\lambda$ がただ一つ存在して, 任意の $\mu\in\Lambda$ について $g_\mu=p_\mu\circ g$ となる」ことを示せ.
- 問 5.9 $\mathbb N$ を自然数の集合とする. 各 $i\in\mathbb N$ について $X_i=\{0,1\}$ とし $\mathscr O_i$ を X_i の離散位相とする. $f:\prod_{i\in\mathbb N}X_i\to\mathbb R$ を

$$f(\{x_i\}_{i\in\mathbb{N}}) = \sum_{i=0}^{\infty} \frac{x_i}{2^i}$$

で定める. f が well-defined であり、積空間 $\prod_{i\in\mathbb{N}}X_i$ から \mathbb{R} への連続写像になることを示せ.

- 問 5.10 $(X, \mathcal{O}_X), (Y, \mathcal{O}_Y)$ を位相空間とし, $A \subset X$ や $B \subset Y$ をその部分集合とする. 次を示せ.
 - (a) $(A \times B)^a = A^a \times B^a$
 - (b) $(A \times B)^i = A^i \times B^i$

- 問 $5.11\ \{X_\lambda\}_{\lambda\in\Lambda}$ を集合系とし、 \mathscr{O}_λ を X_λ の位相とする.各 $\lambda\in\Lambda$ について部分集合 $A_\lambda\subset X_\lambda$ を考える.次の主張が正しい場合は証明し、間違っている場合は反例をあげよ.
 - (a) $(\prod_{\lambda \in \Lambda} A_{\lambda})^a = \prod_{\lambda \in \Lambda} (A_{\lambda}^a)$
 - (b) $(\prod_{\lambda \in \Lambda} A_{\lambda})^i = \prod_{\lambda \in \Lambda} (A_{\lambda}^i)$