DAFTAR ISI

	Halaman
DAFTAR ISI	i
BAB 1: PENDAHULUAN	
1.1 Latar Belakang	1
1.2 Rumusan Masalah	2
1.3 Tujuan Penelitian	2
1.4 Urgensi (Keutamaan) Penelitian	2
1.5 Manfaat Penelitian	2
1.6 Target Penelitian	2
1.7 Kontribusi Penelitian	2
1.8 Luaran yang Diharapkan	2
BAB 2: TINJAUAN PUSTAKA	
2.1 Aerogel	3
2.2 Buah Nanas (Ananas comosus L.)	3
2.3 Trimethylchlorosilane (TMCS)	4
2.4 Biodiesel	4
BAB 3: METODE PENELITIAN	
3.1 Waktu dan Tempat Penelitian	5
3.2 Prosedur	5
3.3 Teknik Pengujian	6
3.4 Teknik Pengumpulan Data	6
3.5 Analisa Data	7
3.6 Luaran dan Indikator Pencapaian yang Terukur Setiap Tahapan	7
BAB 4: BIAYA DAN JADWAL KEGIATAN	
4.1 Anggaran Biaya	8
4.2 Jadwal Kegiatan Program	8
DAFTAR PUSTAKA	9
LAMPIRAN	
1. Biodata Ketua, Anggota, dan Dosen Pendamping	10
2. Justifikasi Anggaran Kegiatan	18
3. Susunan Organisasi Tim dan Pembagian Tugas	20
1 Surat Pernyataan Ketua Pelaksana	21

BAB 1. PENDAHULUAN

1.1 Latar Belakang

Penggunaan bahan bakar fosil hingga saat ini masih menjadi primadona dengan jumlah permintaan energi dunia sebesar 45% pada tahun 2030 dan akan terus meningkat 1,6% per tahunnya sehingga bahan bakar fosil akan terus berkurang secara eksponensial akibat eksploitasi secara besar-besaran yang berdampak terjadinya krisis energi di suatu negara salah satunya Indonesia yang merupakan negara terpadat ke-4 di dunia dengan jumlah penduduk pada tahun 2021 mencapai 271,34 juta jiwa yang mengakibatkan semakin tingginya tingkat konsumsi bahan bakar fosil (Elma, 2016). Oleh karena itu, krisis energi menjadi permasalahan yang sangat mendesak saat ini dan harus diselesaikan karena terbatasnya bahan bakar fosil. Sedangkan, sumber energi terbesar di Indonesia terdapat dari hasil pertanian seperti minyak kelapa sawit dengan jumlah produksi menurut data BPS di tahun 2020 sebesar 49,12 juta ton dan masih belum dimanfaatkan secara optimal sebagai sumber energi terbarukan.

Salah satu bentuk sumber energi alternatif yang berasal dari minyak kelapa sawit yaitu biodiesel yang saat ini menjadi pusat perhatian besar pemerintah Indonesia. Biodiesel diperoleh dari hasil proses transesterifikasi Fatty Acid Methil Ester (FAME) yang memiliki gugus rantai -OH yang pendek dikarenakan tingkat impuritas yang tinggi sehingga masih banyak kontaminan gliserol, metanol, katalis, fosfolipid dan air yang berefek terjadinya penyumbatan fuel filter, fouling pada injektor bahan bakar dan pembentukan deposit pada dasar tangki penyimpanan (Bimantio, 2020). Hal ini dikarenakan proses pemurnian biodiesel belum optimal. Berdasarkan standar mutu biodiesel EN14214 jumlah ambang batas untuk kandungan gliserol adalah $\leq 0.02\%$ massa total. Secara konvensional proses pemisahan gliserol menggunakan membran polimer hidrofobik dan corong pisah yang telah dilakukan oleh Widiamara, 2017 yaitu menggunakan membran polipropilen (PP). Hasil penelitian diperoleh terjadi peningkatan kandungan FAME sebesar 92,03% dalam biodiesel. Akan tetapi, hasil ini masih dibawah standar untuk biodiesel dan proses sintesis membran PP masih sulit sehingga menyebabkan harga dari membran ini menjadi mahal.

Oleh karena itu, dalam penelitian ini akan diusung suatu inovasi biomembran baru berbasis aerogel yang memiliki kapasitas penyerapan tinggi dan mudah disintesis dikarenakan aerogel memiliki densitas yang rendah (0,004–0,5) gr/cm³ dengan pori terbuka >80% sehingga luas permukaan spesifik cukup tinggi untuk mengikat kontaminan biodiesel (Lim, 2020). Biomembran aerogel hidrofobik dibuat dengan memanfaatkan nanoselulosa limbah buah nanas yang termodifikasi Trimethylchlorosilane (TMCS) yang mana jumlah serat nenas sangat melimpah dengan (20-40)% dari bobot total buah memiliki kandungan selulosa (35-50)%, densitas 0,486 kg/m³ sehingga lebih ringan, lebih elastis dengan kuat tarik 34,8 MPa dan elastisitasnya 6088,16 MPa, serta memiliki mesopori dengan kapasitas adsorpsi yang tinggi mencapai 84,72%. Sedangkan Trimethylchlorosilane SiCl(CH₃)₃ sebagai agen sililasi memiliki gugus aktif silanol (Si-OH) yang dapat mengaktifkan luas permukaan spesifik dan meningkatkan sudut kontak aerogel yang dapat mencegah adsorpsi air sehingga bersifat hidrofobik (Do, 2019). Diharapkan nantinya aerogel nanoselulosa buah nanas ini memiliki karakteristik yang baik dan juga memiliki tingkat keefektivitas yang tinggi dalam proses pemurnian biodiesel.

1.2 Rumusan Masalah

Beberapa permasalahan yang akan diselesaikan dalam proposal ini, yaitu :

- 1. Bagaimana proses pembuatan biomembran aerogel hidrofobik dari nanoselulosa buah nanas yang termodifikasi TMCS dengan menggunakan metode sol gel?
- 2. Bagaimana formulasi komposisi nanoselulosa, TMCS dan polivinil alkohol (PVA) sebagai material aerogel sehingga memiliki sifat fisis, mekanik, dan adsorpsi yang baik sebagai aplikasi permurnian biodiesel?

1.3 Tujuan Khusus

Tujuan dari penelitian ini adalah sebagai berikut : (1) Membuat biomembran aerogel nanoselulosa buah nanas yang termodifikasi TMCS berbasis sol gel, (2) Menentukan komposisi optimum biomembran aerogel sehingga memiliki sifat fisis, mekanik dan adsorpsi yang dapat memurnikan biodiesel secara maksimal.

1.4 Urgensi (Keutamaan) Penelitian

Menemukan teknologi membran terbaru yaitu nanoselulosa aerogel berbasis serat limbah nanas yang termodifikasi sebagai pemurni biodiesel dengan kapasitas adsorpsi tinggi, sifat fisis dan mekanik yang baik yang akan berdampak terhadap peningkatan kualitas produksi biodiesel sebagai energi terbarukan di Indonesia.

1.5 Manfaat Penelitian

Mengembangkan ilmu pengetahuan dan teknologi mengenai teknologi membran sebagai bahan pemurni biodiesel dari bahan potensial limbah buah nanas untuk mendukung kualitas produksi biodiesel sesuai SNI ramah lingkungan sebagai suatu upayah dalam mempercepat pengembangan energi terbarukan di Indonesia.

1.6 Target Penelitian

Target penelitian ini mampu menghasilkan suatu biomembran aerogel hidrofobik nanoselulosa limbah buah nanas melalui metode sol gel yang dapat diaplikasi sebagai material pemurnian biodiesel yang berkualitas.

1.7 Kontribusi Penelitian

Kontribusi penelitian ini diharapkan sebagai solusi meningkatkan kualitas biodiesel dengan menurunkan kadar impuritas dan memperpanjang gugus -OH pada biodiesel sehingga menghasilkan pembakaran yang rendah emisi dan tidak menyebabkan fouling maupun korosi pada mesin diesel.

1.8 Luaran yang Diharapkan

Dari penelitian ini luaran yang diharapkan diantaranya menghasilkan laporan kemajuan dan laporan akhir mengenai biomembran aerogel sebagai pemurni biodiesel, produk dari program, publikasi artikel ilmiah sebagai sumber referensi bagi masyarakat luas, dan potensi paten biomembran aerogel berbasis limbah nanas.

BAB 2. TINJAUAN PUSTAKA

2.1 Aerogel

Aerogel adalah material yang memiliki sifat hidrofobisitas alami yang super ringan dengan porositas tinggi hingga 99% dan kepadatan sangat rendah dari (0.003-0.5) g/cm³, dan memiliki nlai konduktivitas termal yang sangat rendah dari (0,018-0,075) W/mK (Oktavian, 2019). Pada proses pembuatan aerogel, pelarut dalam sistem gel diganti dengan gas melalui proses pengeringan dengan karbon dioksida superkritis, pengeringan beku vakum, dan pengeringan ambien. Sumber bahan baku untuk sintesis aerogel sangat beragam seperti senyawa anorganik (silika, oksida logam) menjadi zat organik (resorsinol-formaldehida, polisakarida, karbon) dan selulosa yang telah dikembangkan dari biomassa seperti ampas tebu, sabut kelapa, daun kulit durian, dan jerami padi yang mengandung banyak selulosa >70% (Do, 2020). Menurut laporan baru oleh Grand View Research, Inc., dari 2018 hingga 2025, pasar aerogel global akan mengalami meningkat dengan tingkat pertumbuhan tinggi 22,6% mencapai 3,29 juta USD pada tahun 2025, menjadi 785,3 juta dolar USD pada tahun 2022 oleh berbagai kelompok riset pasar, didorong oleh permintaan dari beberapa industri seperti minyak dan gas, konstruksi serta otomotif (Do, dkk, 2019). Salah satu penelitian yang pernah mensintesis silika aerogel yaitu dengan menggunakan metode sol-gel dengan pengeringan pada tekanan ambien dengan bahan yang memiliki kandungan silika sebesar 54,92% dan menghasilkan silika aerogel yang putih bening dan bersifat hidrofobik. Metode sol gel merupakan salah satu metoda sintesis nanopartikel yang menerapkan 2 tahapan fasa penting yaitu sol dan gel. Pada umumnya, tahapan proses sol gel terbagi atas tiga bagian, yaitu hidrolisis, kondensasi alkohol, dan kondensasi air (Liza, 2019).

2.2 Buah Nanas (Ananas Comosus L.)

Nanas adalah tanaman tropis yang dibudidayakan di lebih dari 82 negara. Menurut *Food and Agriculture Organization* (FAO) *Statistic*, produksi nanas meningkat sebesar 1,2 juta metrik ton dan mencapai 27,4 juta metrik ton pada tahun 2017 (Chen, 2019). Setelah buah-buahan nanas dipanen, limbah nanas yang dihasilkan naik secara signifikan, dimana sebagian besar limbah nanas diubah menjadi kompos, dibuang atau dibakar. Pengolahan dan produksi nanas menghasilkan 20-40% limbah berupa kulit, daun, dan inti. Limbah kulit nanas terdiri dari 35-50% selulosa, 20-35% hemiselulosa, dan 5-30% lignin. Oleh karena itu, limbah nanas masih bisa dieksplorasi dan dimanfaatkan dalam pembuatan sebuah bioproduk. Daun nanas dianggap sebagai bahan limbah setelah panen nanas. Daun nanas terdiri dari 80% selulosa, yang terbuang setelah panen (Balakrishnan, 2017). Menurut Badan Pusat Statistik, pada tahun 2019 Indonesia memproduksi Nanas sebanyak 2.196.458 ton. Hal ini berarti ada sekitar 878.583 ton diantaranya berpontensi menjadi limbah di Indonesia.

2.3 Trimethylchlorosilane (TMCS)

Trimethylchlorosilane (TMCS) adalah monomer organosilikon paling umum yang biasanya digunakan sebagai agen sililasi dalam pembuatan silika aerogel. Selama prosedur pengeringan, reaksinya antara gugus hidroksil terminal permukaan dan TMCS menghasilkan uap asam (HCl), yang menyebabkan parah kerusakan pada ruang stainless steel peralatan pengering karena uap korosif tidak bisa benar-benar dihilangkan sebelum dikeringkan. Oleh karena itu, sangat penting untuk mengurangi pelepasan zat korosif uap untuk menghindari korosi peralatan dan pencemaran lingkungan yang serius selama prosedur pengeringan (Zhu, 2018). Trimethylchlorosilane (TMCS) dikenal sebagai agen sililasi yang lebih kuat dibanding Hexadimethylsilazane (HMDS). TMCS adalah cairan tidak berwarna dan populer digunakan sebagai reagen dan pendahulu basa dalam sintesis organik dan kimia organologam. TMCS bisa memberikan pengaruh yang baik pada peningkatan kristalinitas yang mengakibatkan peningkatan ketahanan material terhadap air sehingga digunakan sebagai bahan pelapis (Silviana, 2021).

2.4 Biodiesel

Biodiesel diproduksi dari minyak nabati maupun lemak hewani yang tidak mengandung belerang sehingga menghasilkan lebih sedikit karbon monoksida, asap partikulat, hidrokarbon dan memiliki lebih banyak oksigen bebas daripada diesel (Gebremariam, 2018). Reaksi transesterfikasi menghasilkan biodiesel yang mengandung berbagai kotoran seperti sabun, katalis, gliserol bebas dan alkohol yang ada harus dihilangkan dari produk biodiesel untuk memenuhi spesifikasi standar internasional. Pemisahan gliserol bebas penting karena berefek negatif pada mesin diesel dan kualitas bahan bakar biodiesel. Jumlah sabun yang tinggi dalam biodiesel dapat merusak injektor, menimbulkan masalah korosi pada mesin diesel, penyumbatan filter, dan pelemahan mesin sehingga perlu dihilangkan juga. Sehingga proses pemurnian saat diperhatikan, yang mana pada umumnya proses pemurnian kandungan gliserol menggunakan sebuah decanter yang terbagi atas pencucian basah dan kering. Pencucian basah adalah metode yang paling sering digunakan untuk pemurnian biodiesel yang dilakukan dengan air suling atau air asam. Metode ini berhasil menghilangkan kotoran, tetapi kerugian utamanya adalah menghasilkan air limbah dalam jumlah besar yang harus diolah sebelum dibuang ke sistem pembuangan limbah. Jumlah air limbah dapat berkisar dari 0,2 hingga 10 L air per 1 L biodiesel yang dimurnikan (Sokac, 2020).

Gambar 2.1 Skema Pemurnian Biodiesel Dengan Membran Aerogel

BAB 3. METODE PENELITIAN

3.1 Waktu dan Tempat Penelitian

Riset ini berbasis riset empirik yang akan dilaksanakan selama 3 bulan yang mana preparasi aerogel nanoselulosa buah nanas di Laboratorium Organik Teknik Kimia USU dengan memperhatikan protokol kesehatan Covid19. Karakterisasi sifat dan performa biomembran aerogel hidrofobik di Laboratorium Terpadu USU.

3.2 Prosedur

3.2.1 Preparasi Nanopatikel Daun Buah Nanas

Sintesis selulosa dari serat nanas diawali dengan perebusan 15 gr serat nanas dalam 500 mL larutan natrium hidroksida (NaOH) 4M dengan pencampuran pada magnetic stirrer selama 4 jam pada suhu 80°C. Filtrat hidrolisis basa yang mengendap disaring dan dibilas hingga pH nya menjadi 7, lalu dikeringkan dalam oven. Hasil penyaringannya dilarutkan dalam natrium hipoklorit (NaOCl) 5% (proses bleaching) lalu disaring lagi hingga membentuk suspensi dan dicampur dengan akuades sampai pH nya mencapai 7. Suspensi kembali disaring dan dipisahkan menggunakan mesin sentrifugasi. Filtrat dimasukkan ke dalam oven untuk pengeringan hingga didapatkan serbuk selulosa. Sintesis nanoselulosa dilakukan dengan melarutkan 5 gr selulosa pada 100 mL aquades dan ditambahkan 0,2 g PVA dipanaskan selama 10 menit pada suhu 80 °C. kemudian campuran selulosa dan PVA dilarutkan dengan 25 mL larutan H₂SO₄ 45% pada suhu 45°C selama 90 menit dengan magnetic mixer. Akuades ditambahkan ke dalam koloid hingga volume total mencapai 400 mL lalu diendapkan selama 24 jam dan dibilas kemudian dinetralkan dengan larutan NaOH 0,5M 28 mL di alat sentrifugasi hingga pH mendekati 6. Endapan hasil penetralan disonifikasi menggunakan ultrasonic homogenizer kemudian disentrifugasi menggunakan tabung sampai terbentuk gel.

3.2.2 Fabrikasi Aerogel Hidrofobik Nanoselulosa Daun Buah Nanas

Langkah selanjutnya dilakukan metode sol gel yaitu dilarutkan nanoselulosa buah nanas dengan kopolimer PVA menggunakan magnetik stirer pada suhu 80°C selama 10 menit. Kemudian larutan dihomogenisasi dengan ultrasonikasi selama 10 menit sehingga terbentuk suspensi. Hasil suspensi tersebut dimasukkan kedalam cetakan dan dikeringkan kedalam oven pada suhu 80°C selama 2 jam untuk mempercepat proses ikatan silang antara PVA dengan nanoselulosa buah nanas. Setelah itu, ditempatkan di lemari es untuk dibekukan pada suhu -4°C selama 24 jam sehingga terbentuk aerogel nanoselulosa. Aerogel nanoselulosa buah nanas yang terbentuk masih bersifat hidrofilik dikarenakan adanya gugus hidroksil sehingga dilakukan coating untuk meningkatkan sifat hidrofobisitas tanpa mempengaruhi porositas yaitu dengan pelapisan TMCS yaitu dengan cara direndam aerogel nanoselulosa dengan larutan TMCS dalam wadah kaca kecil di dalam oven pada suhu 80°C selama 3 jam dan karakterisasi meliputi sifat fisis, dan mekanik.

3.2.3 Proses Pemurnian Biodiesel Dengan Aerogel Limbah Buah Nanas

Pertama memasukkan 400 ml larutan umpan ke dalam gelas beaker 1000 ml dengan kondisi feed konstan sesuai variabel. Laju alir yang digunakan adalah 3; 5; 7 ml/menit. Proses mikrofiltrasi dilakukan selama 5 menit tiap variabel dengan pengamatan tiap 30 detik dan diuji meliputi analisa kandungan gliserol pada permeat hasil mikrofiltrasi dengan pendekatan metode uji bilangan asam, analisis fluks membran, analisis kandungan metil ester, analisis permeat (nilai kalor, viskositas, titik nyala dan densitas).

Gambar 3.1 Rancangan Alat Pemurnian Biodiesel Dengan Membran Aerogel

3.3 Teknik Pengujian

- Variabel bebas : Variasi komposisi campuran nanoselulosa limbah nanas dan PVA dengan metode sol-gel.
- Variabel terikat : Pengujian aerogel meliputi sifat fisis (densitas, porositas, swelling, morfologi permukaan dan struktur kristal), sifat mekanik (uji tarik, modulus elastisitas dan elongasi) dan uji adsorpsi untuk pemurnian biodiesel.
- Variabel Kontrol : Variasi komposisi untuk agen sililasi TMCS 50 mL dengan pengeringan beku -4°C dan freezer dryer -18°C.

3.4 Teknik Pengumpulan Data

Variabel penelitian pada pembuatan aerogel dari limbah daun nanas antara lain komposisi bahan baku dan karakterisasi dengan sistem Rancangan Acak Lengkap (RAL) non Faktorial.

 Tabel 3.1 Persentase Komposisi Aerogel Nanoselulosa Buah Nanas

Kode Sampel	Serat Limbah Nanas	PVA
	(%wt)	(%wt)
A	65	25
В	60	30
C	55	35
D	50	40
E	45	45

Sedangkan untuk karakterisasi aerogel dari limbah daun nanas meliputi: sifat fisis (densitas, porositas, laju penyerapan air, morfologi, struktur kristal dan gugus

fungsi), sifat mekanik (kuat tarik, elongasi dan modulus elastisitas) dan adsorpsi kemurnian biodiesel (uji bilangan asam, uji fluks membran, uji kandungan metil ester, uji permeat (nilai kalor, viskositas, titik nyala dan densitas).

3.5 Analisa Data

Analisis data dilakukan dengan Analisis Variansi (ANAVA) untuk melihat pengaruh perlakuan yang diberikan oleh variabel terhadap pencampuran antara nanoselulosa buah nanas/PVA yang termodifikasi agen sililasi TMCS terhadap sifat fisis, mekanik dan adsorpsi biomembran aerogel hidrofobik yang terbentuk untuk aplikasi pemurnian biodiesel. Sedangkan untuk pengujian efektivitas dan efisiensi diolah ke dalam rumus empiris, kemudian data dari perhitungan disajikan dalam bentuk tabulasi dan grafik.

3.6 Luaran dan Indikator Pencapaian yang Terukur Setiap Tahapan

No	Kegiatan	Luaran	Indikator
1	Studi Literatur	Jurnal Penelitian	Didapatkan jurnal penelitian yang benar
2	Surat izin penelitian	Surat izin penelitian	Didapatkan surat izin di Laboratorium Kimia Organik FT USU, Kimia Dasar LIDA USU dan Laboratorium Terpadu USU
3	Penyiapan alat dan bahan	Alat dan bahan	Didapatkan alat dan bahan yang dibutuhkan
4	Pengambilan data	Data hasil pengujian optimasi dan performansi membran aerogel meliputi : sifat fisis, mekanik dan adsorpsi untuk aplikasi pemurnian biodiesel.	Didapatkan komposisi optimal biomembran aerogel nanoselulosa buah nanas/PVA/TMCS terhadap sifat fisis (morfologi permukaan, densitas, porositas, swelling, dan struktur kristal), sifat mekanik (modulus elastisitas, elongasi dan kuat tarik) dan adsorpsi dari aerogel dengan hasil pemurnian sesuai EN14214.
5	Pengolahan data	Analisis data	Didapatkan data
6	Membuat laporan akhir penelitian	Menghasilkan laporan kemajuan, dan laporan akhir penelitian	Laporan kemajuan dan Laporan akhir siap di evaluasi
7	Membuat artikel ilmiah/narrative review dan paten	Artikel ilmiah dan draft paten tentang hasil penelitian	Artikel ilmiah dimuat pada sebuah jurnal dan paten

BAB 4. BIAYA DAN JADWAL KEGIATAN

4.1. Anggaran Biaya

Berikut ini adalah perincian rekapitulasi rencana anggaran biaya yang disus sesuai dengan kebutuhan yang dapat dilihat pada Tabel 4.1 sebagai berikut :

Tabel 4.1 Rekapitulasi Rencana Anggaran Biaya

No.	Jenis Pengeluaran	Biaya (Rp)
1	Kebutuhan kegiatan virtual	2.370.000
2	Bahan Habis Pakai	1.298.000
3	Perjalanan dalam kota	455.000
4	Lain-lain	5.730.000
	Jumlah	9.853.000

4.2. Jadwal kegiatan

Berikut ini adalah jadwal tahap kegiatan yang disusun dalam bentuk *bar chart* sesuai agenda yang dapat dilihat pada Tabel 4.2 sebagai berikut :

Tabel 4.2 Jadwal Rencana Kegiatan

			Bulan					Person						
No	Jenis Kegiatan		1 2 3		Penanggung-									
		1	2	3	4	1	2	3	4	1	2	3	4	jawab
1.	Persiapan													
	administrasi,													
	Study literatur dan													Muhammad
	persiapan													Gading Akbar
	peralatan													
	penelitian													
2.	Pemilihan Bahan													Rivka Dinda
	dan Peralatan yang													Annisa Sarumpaet
_	Diperlukan													.
3.	Fabrikasi													
	Nanopatikel Daun													
	Buah Nanas dan													Muhammad
	Preparasi Aerogel													Gading Akbar
	Nanoselulosa													
	Daun Buah Nanas													
4.	Analisis Data dan													
	Penyusunan													Evo Mobriio
	Laporan													Eva Mahrija
	Kemajuan													
5.	Pembuatan Artikel													Rivka Dinda
	Ilmiah/Narative													
	Review													Annisa Sarumpaet
6.	Laporan akhir													Semua Anggota

DAFTAR PUSTAKA

- Balakrishnan, P., Sreekala M S, Kunaver M. 2017. Morphology, Transport characteristics in nanocomposites based on thermoplastic potato starch and cellulose nanofibers from pineapple leaf. *Carbohydrate Polymers*. 169(1): 176-188.
- Bimantio, M. H., dan Reza O., W. 2020. Perancangan desain portable fixed-bed composite adsorben sebagai media pemurnian biodiesel dengan sistem packing bed. *Jurnal Teknik*. 41(3):253-260
- Chen, H., Hu, B., Zhao, L. 2019. Differential expression analysis of reference genesin pineapple (*Ananas comosus L.*) during reproductive development. *Tropical Plant Biology*. 12(1): 67-77.
- Do, N. H. N., Luu T P, Quoc B. 2019. Heat and sound insulation applications of pineapple aerogels from pineapple waste. *Journal Materials Chemistry and Physics*. 242(1): 1-26.
- Do, N. H. N., Tran V T, Tran Q B M. 2020. Recycling of pineapple leaf and cotton waste fibers into heat-insulating and flexible cellulose aerogel composites. *Journal of Polymers and the Environment*. 2(1): 1-10.
- Elma dan Satria, M. 2016. Proses pembuatan biodiesel dari campuran minyak kelapadan minyak jelantah. *Jurnal Konversi*, 5(1):8-17
- Gebremariam, S. N., and Marchetti J M. 2018. Economics of biodiesel production. *Energy and Management*. 168(1): 74-84.
- Hadi, T. dan Jokosisworo, S. 2017. Analisa teknis penggunaan serat daun nanas sebagaibahan komposit. *Jurnal Teknik Perkapalan*. 4(1):323-331.
- Lim, Z. Q., Duyen B., Thao, K., Phuc, P., Nga, T., Do, H., Nhan P., Xue, P., dan Hai, P. M. 2020. Functionalized Pineapple Aerogels for Ethylene Gas Adsorption and Nickel (II) Ion Removal Applications. *Journal of Environmental Chemical Engineering*. 8(1):1-10
- Liza, M. Y., Yasin R. C., Maidani, S. S. 2019. Sol-gel: principle and technique (a review). *INA-Rxiv Papers*.
- Oktavian, R., Poewardi, B., Supriyono. 2019. Studi performa membran hidrofobik berbasis silika dalam proses permurnian biodiesel. *Jurnal Rekayasa Bahan Alam dan Energi Berkelanjutan*. 3(1): 20-24.
- Silviana, S., Darmawan A., dan Dalanta F. 2021. Superhydrophobic coating from geothermal silica to enhance material durability of bamboo using HMDS and *Trimethylchlorosilane* (TMCS). *Materials*. 14(530): 1-20.
- Sokac, T. G., dan Tusek, A. 2020. Purification of biodiesel produced by lipase catalysed transesterification by ultrafiltration. *Renewable Energy*. 159(1): 642-651.
- Thai, Q. S., Duong T., Tuan K., Dat D., Nga M., Thao, H., Phung, P., Duyen, K., Nhan, K., Hai, P. M. 2020. Cellulose-based aerogels from sugarcane bagasse for oil spill-cleaning and heat insulation applications. *Journal of CarbohydratePolymers*. 228(1):1-7
- Widiamara, A. 2017. Efek waktu dan suhu operasi proses sililasi pada pembuatan aerogel silika pada pengeringan tekanan atmosferik (ambient-pressure drying). Skripsi: Universitas Brawijaya.
- Zhu, L., Wang Y., dan Cui, S. 2018. Preparation of silica aerogels by ambient pressure drying without causing equipment corrosion. *Molecules*. 23(1): 1-12.

LAMPIRAN

Lampiran 1. Biodata Ketua, Anggota, dan Dosen Pendamping 1.1 Biodata Ketua

A. Identitas Diri

1	Nama Lengkap	Muhammad Gading Akbar
2	Jenis Kelamin	Laki – laki
3	Program Studi	Teknik Kimia S1
4	NIM	180405074
5	Alamat	Jln. Gatot Subroto no.78 lk 2
6	Tempat dan Tanggal Lahir	Jakarta 26 Maret 2000
7	E-mail	gading.akbar4869@gmail.com
8	Nomor Telepon/HP	082167282688

B.Kegiatan Yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat	
1	Covalen Study Group	Divisi Dakwah	2020 Sekarang di	
			Departemen Teknik Kimia FT USU	
2	Gantari Team USU	Anggota	2020 – Sekarang di	
			Departemen Teknik	
			Kimia FT USU	
3	Schneider Team USU	Anggota	2020 – Sekarang di	
			USU	
4	Asisten Laboratorium	Koordinator	2020 – Sekarang di	
	Kimia Analisa		Departemen Teknik	
			Kimia FT USU	

C. Penghargaan Yang Pernah Diterima

No	Jenis Penghargaan	Instituti Pemberi	Tahun
110	Jems i enghargaan	Penghargaan	1 anun
1	Penerima Dana Penelitian	Tanoto Foundation	2019
	Tanoto Student Research		
	Award		
2	Penerima Hibah PKMPE	Ristekdikti	2020
	Ristekdikti		
3	Juara III Kompetisi	Baramulti X Narasi	2020
	Nasional Ideanation		
4	Juara III LKTI USU Games	USU	2020

5	Juara 3 Bussines Plan Competition USU Games 2.0		2020
6	23 Besar LKTI Respon	PT. PON Gresik	2021

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggung jawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidak sesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Hibah PKM-RE

Medan, 11-02-2021

Ketua Tim,

(Muhammad Gading Akbar)

1.2 Biodata Anggota 1

A. Identitas Diri

1	Nama Lengkap	Rivka Dinda Annisa Sarumpaet
2	Jenis Kelamin	Perempuan
3	Program Studi	Teknik Kimia S1
4	NIM	180405153
5	Tempat dan Tanggal	Gunungsitoli, 09 November 2000
	Lahir	
6	E-mail	rivka0911@gmail.com
7	Nomor Telepon/HP	082167772611

B. Kegiatan Yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	Industrial Problem Solving oleh	Liaison Officer	Nov 2019-Maret 2020 di Departemen Teknik Kimia dan INALUM
2	Schneider Tim USU	Anggota	2020-Sekarang di USU
3	Covalen Study Group	Bendahara Umum	2020-Sekarang di Departemen Teknik Kimia FT USU
4	Gantari Team USU	Anggota	2020-Sekarang di USU

C. Penghargaan Yang Pernah Diterima

No	Jenis Penghargaan	Instituti Pemberi Penghargaan	Tahun
1	Juara III Lomba Menulis Essay Indonesia Menyala	AKU MASUK ITB	2018
2	Juara II LKTI USU Games 2.0	USU	2020
3	Juara III Business Plan Usu Games 2.0	USU	2020
4	Finalis 23 Besar LKTI RESPON	PT. PON Gresik	2020

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggung jawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidak sesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Hibah **PKM-RE**

Medan, 11-02-2021

Anggota 1,

(Rivka Dinda Annisa Sarumpaet)

HMADIS.

1.3 Biodata Anggota 2

A. Identitas Diri

1	Nama Lengkap	Eva Mahrija
2	Jenis Kelamin	Perempuan
3	Program Studi	S1 Kimia
4	NIM	170802008
5	Tempat dan Tanggal Lahir	Langkat, 06 Oktober 1999
6	E-mail	Evamahrija3366@gmail.com
7	Nomor Telepon/HP	085262017094

B. Kegiatan Yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	Chemistry Goes to School	Anggota	2018
2	Kunjungan Industri	Sekretaris	2019
3	Olimpiade Kimia Indonesia	Anggota	2020
	Asisten LIDA	Anggota	2018

C. Penghargaan Yang Pernah Diterima

No	Jenis Penghargaan	Instituti Pemberi Penghargaan	Tahun
1		_	-
2	-	-	5-14 5-14
3		-	

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggung jawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidak sesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Hibah PKM-RE

Medan, 11-02-2021

Anggota 2,

(Eva Mahrija)

1.4 Biodata Dosen Pendamping

A. Identitas Diri

Nama Lengkap	Erni Misran, S.T., M.T., Ph.D
Jenis kelamin	P
Program studi	Teknik Kimia
NIDN	0013097301
Tempat dan Tanggal lahir	Medan, 13 September 1973
Email	erni_misran@yahoo.com
Nomor Telepon/HP	0813-7097-7471

A. RiwayatPendidikan

Gelar Akademik	Sarjana	S2/Magister	S3/Doktor
	USU	ITB	Universiti
Nama Institusi			Kebangsaan
			Malaysia
Jurusan/Prodi	Teknik	Teknik	Teknik Kimia
	Kimia	Kimia	
Tahun Masuk-Lulus	1992-1997	1998-2001	2009-2014

B. Rekam Jejak Tri Dharma PT

C.1. Pendidikan/Pengajaran

No.	Nama Mata Kuliah	Wajib/Pilihan	SKS
1.	Azas Teknik Kimia	Wajib	4
2.	Komputasi Proses	Wajib	3
3.	Proses Pemisahan1: Distilasi, Absorpsi, Humidifikasi	Wajib	3
4.	Proses Pemisahan2: Ekstraksi, Leaching, Adsorpsi, Membran	Wajib	3
5.	Pengetahuan Lingkungan	Wajib	2
6.	Perancangan Pabrik	Wajib	4
7.	Bioenergi (S2)	Pilihan	3
8.	Energi Berkelanjutan (S3)	Pilihan	3

C.2. Penelitian

No.	Judul Penelitian	Penyandang Dana	Tahun
1.	Pemanfaatan Karbon Aktif Dari		
	Limbah Biomassa Dalam Pembuatan		
	Membran Hibrida Nafion/Karbon	Penelitian	2016
	Aktif Untuk Proton Exchange	Fundamental	2010
	Membran Fuel Cell (PEMFC) –		
	Tahun 1		

2.	Pra Studi Potensi Sampah TPA Terjun	Dinas Kebersihan	2016
	untuk Dikonversi Menjadi Listrik	Kota Medan	2010
3.	Hidrolisis Tandan Kosong Kelapa	DDDTN 2016	2016
	Sawit dengan Iradiasi Microwave	DFF 11N 2010	2010
4.	Sterilisasi Buah Kelapa Sawit	Danalitian Draduk	
	Menggunakan Iradiasi Microwave		2017
	Secara Sinambung untuk Pembuatan	-	2017
	Crude Palm Oil	DRFWI	
	Pemanfaatan Karbon Aktif dari		
	Batang Pisang dalam Proses Adsorpsi		
5.	Methylene Blue: Isoterm, Kinetika,	Non-PNBP USU	2017
	Termodinamika, Perpindahan Massa,		
	dan Regenerasi	Listrik Kota Medan Kelapa BPPTN 2016 Wit Penelitian Produk Terapan Dana DRPM F dari es Adsorpsi Kinetika, nan Massa, mpah unakan bik Non-PNBP USU Non-PNBP USU	
	Pembuatan Biogas dari Sampah		
6.	Organik Perkotaan Menggunakan	Non DNRD HSH	2017
0.	Sistem Bioreaktor Anaerobik	Non-Findr USU	2017
	Berpenyekat		
	Pemanfaatan Limbah Fly Ash		
7.	Sebagai Adsorben Untuk Penyisihan	Non-PNBP USU	2018
	CO ₂ dari Biogas		

C.3. Pengabdian kepada Masyarakat

No.	Judul Penelitian	Penyandang Dana	Tahun
1	IbM Kelompok Petani Karet di Kab.	BOPTN USU	2015
1.	Labuhan Batu Utara	DOI IN USU	2013
	Sosialisasi Bahaya Bahan Kimia Pada		
2.	Peralatan Memasak Untuk Anggota	Mandiri	2016
	Perispindo I BICT		
	Pemanfaatan Asap Cair Hasil		
	Pirolisis Limbah Pelepah Kelapa		2016
2	Sawit untuk Peningkatan Kualitas	BOPTN USU	
3.	Bahan Olah Karet (Bokar) Kelompok	DOF IN USU	
	Petani Karet Di Desa Sekoci,		
1.	Kabupaten Langkat		
	Proses Pengolahan Tanaman Obat		
4.	(Herba) untuk Terapi Kesehatan	Mandiri	2017
	Alternatif		
	Pengaruh Zat Kimia dan Parasit		
5.	dalam Makanan terhadap Kesehatan	Mandiri	2017
	dan Cara Identifikasinya		

	Pengoperasian Bioreaktor Berpengaduk <i>Ribbon</i> untuk		
6.	Pembuatan Pupuk Organik Cair Melalui Pemnafaatan Sampah	luk Ribbon untuk n Pupuk Organik Cair emnafaatan Sampah umah Tangga di n Medan Marelan Penyakit Menular untuk nisyiyah Cabang Medan tentang Gaya Hidup Sehat an Pengurus Pusat I Mandiri	2017
	Organik Rumah Tangga di Kecamatan Medan Marelan		
7.	Sosialisasi Penyakit Menular untuk Anggota Aisyiyah Cabang Medan Johor	Mandiri	2018
8.	Sosialisasi tentang Gaya Hidup Sehat untuk Badan Pengurus Pusat Perispindo I		2018
9	Aplikasi Teknologi Pencampuran dan Pengemasan Untuk Pengembangan Usaha Rumah Tangga Pembuatan Sabun Mandi Cair	BOPTN USU	2019

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggung jawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidak sesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Hibah **PKM-RE**

Medan, 11-02-2021 Dosen Pendamping

(Erni Misran

Lampiran 2. Justifikasi Anggaran Biaya

Jenis Pengeluaran	Volume	Harga Satuan (Rp)	Nilai (Rp)
1. Kebutuhan kegiatan virtual			
a. Sewa kuota internet	12 unit	100.000	1.200.000
b. Sewa aplikasi zoom	1 unit	120.000	120.000
c. Sewa aplikasi Mendeley	1 unit	300.000	300.000
d. Headset	3 unit	100.000	300.000
e. Hardisk	1 unit	450.000	450.000
		SUB TOTAL (Rp)	2.370.000
2. Bahan Habis Pakai	Volume	Harga Satuan (Rp)	Nilai (Rp)
a. Limbah Nanas	10 kg	2.000	20.000
b.Trimethylchlorosilane (TMCS)	1 kg	150.000	150.000
c. Minyak Nabati	5 L	15.000	75.000
d. Kalium Hidroksida (KOH)	1 kg	25.000	25.000
e. Aquadest	10 L	5.000	50000
f. Metanol	3 L	11.000	33.000
g. Etanol	1 L	22.000	22.000
h. Polyethylene (PE)	500 mL	53.000	53.000
i. PVA	1 kg	70.000	70.000
j. Natrium Hidroksida (NaOH)	1 kg	22.000	22.000
k. Amonia (NH3)	1kg	30.000	30.000
1. Natrium hipoklorit (NaOCl),	1 L	80.000	80.000
m. Kertas A4	1 rim	50.000	50.000
n. Aluminium Foil	2 unit	19.000	38.000
o. Masker	2 pack	125.000	250.000
p. Sarung tangan	2 pack	100.000	200.000
q. Sanitizer	2 L	65.000	130.000
		SUB TOTAL (Rp)	1.298.000
3. Perjalanan dalam kota	Volume	Harga Satuan (Rp)	Nilai (Rp)
a.Biaya pengiriman dari pembeli peralatan dan bahan (on-line)	1 kali	100.000	100.000
b. Akomodasi perjalanan pengambilan sampel buah	2 orang	50.000	100.000
c. Akomodasi perjalanan pengujian sampel	2 orang	127.500	255.000
		SUB TOTAL (Rp)	455.000
4. Lain-Lain	Volume	Harga Satuan (Rp)	Nilai (Rp)
a. Magnetic Stirer	1 unit	200.000	200.000

Terbilang (Sembilan Juta Del	lapan Ratus	· • /	L
		TOTAL 1+2+3+4 (Rp)	9.853.000
	<u>. </u>	SUBTOTAL	5.730.000
s. Uji kualitas biodiesel	1 paket	800.000	800.000
r. Uji Penyerapan Air	5 kali	30.000	150.000
q. Uji Porositas	5 kali	50.000	250.000
p. Kadar air	5 kali	20.000	100.000
o.Uji Sifat Mekanik (Tarik dan Modulus Elastisitas	10 kali	50.000	500.000
n. Uji Densitas	5 kali	20.000	100.000
m. Uji FTIR	2 kali	200.000	400.000
l Uji SEM	5 kali	150.000	750.000
k. Sewa Laboratorium Terpadu USU	4 bulan	300.000	300.000
j. Sewa Laboratorium Kimia Dasar LIDA USU	4 bulan	300.000	300.000
i.Sewa Lab Kimia Organik Teknik Kimia USU	4 bulan	300.000	300.000
h.Administrasi, laporan akhir, poster, banner, seminar	1 paket	540.000	540.000
g. Kertas Saring Whatman	20 pcs	5.000	100.000
f. Pompa	1 unit	320.000	320.000
e. Spatula Kaca	1 unit	100.000	100.000
d. Termometer	2 unit	70.000	140.000
c. Beaker Glass	4 unit	70.000	280.000
b. Botol polyethylene	50 unit	2.000	100.000

Lampiran 3. Susunan Organisasi Tim Kegiatan dan Pembagian Tugas

No	Nama/NIM	Program Studi	Bidang Ilmu	Alokasi Waktu (Jam/ Minggu)	Uraian Tugas
1	Muhammad Gading Akbar 180405074	S-1	Teknik Kimia	8	Penyewaan laboratorium, Koordinir studi literatur, Persiapan alat dan bahan, Mengkordinir anggota sesuai kerja masing-masing, dalam pembuatan Artikel Ilmiah, Laporan Kemajuan, dan Laporan Akhir serta riset berbasis penelitian.
2	Rivka Dinda Annisa Sarumpaet 180405153	S-1	Teknik Kimia	6	Preparasi bahan penelitian yaitu limbah daun dan kulit nanas Melakuakan Analisis dan karakterisasi aerogel dan pengaruhnya terhadap penambahan TMCS. Megisi logbook kegiatan.
3	Eva Mahrija 170802008	S-1	Kimia	6	Mencari Jurnal dan artikel yang mendukung penelitian Pembuatan nanoselulosa selulosa limbah nanas, pembuatan

Lampiran 4. Surat Pernyataan Ketua Pelaksana

SURAT PERNYATAAN KETUA TIM PELAKSANA

Yang bertanda tangan di bawah ini:

Nama

: Muhammad Gading Akbar

NIM

: 180405074

Program Studi

: Teknik Kimia S1

Fakultas

: Teknik

Dengan ini menyatakan bahwa proposal PKM-RE saya dengan judul "Sintesis Dan Karakterisasi Biomembran Aerogel Hidrofobik Berbasis Limbah Buah Nanas Yang Termodifikasi TMCS Sebagai Pemurni Biodiesel Rendah Emisi" yang diusulkan untuk tahun anggaran 2021 adalah asli karya kami dan belum pernah dibiayai oleh lembaga atau sumber dana lain.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya penelitian yang sudah diterima ke kas negara. Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenarbenarnya.

Medan, 11-02-2021

Yang Menyatakan,

(Muhammad Gading Akbar)

NIM. 180405074

AJX028639490