

2.1 Thursday

2.1.1 Row-Echelon Form

Gaussian Elimination don't always derive unique solution

Let's discuss an example to introduce the concept for row-echelon form.

■ Example 2.1

We use Gaussian Elimination to try to transfrom a Augmented matrix:

Here in step one we choose the first row as pivot row (the first nonzero entry is the pivot):

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 2 & 0 \\ 0 & 0 & 2 & 2 & 5 & 3 \\ 0 & 0 & 1 & 1 & 3 & -1 \\ 0 & 0 & 1 & 1 & 3 & 0 \end{bmatrix}$$

And we choose second row as pivot row to continue elimination:

14 Week1

And we choose the third row as pivot row to continue elimination:

$$\frac{\text{Add } (-1) \times \text{ row } 3 \text{ to row } 1; \text{Add } (-1) \times \text{ row } 3 \text{ to row } 4}{\text{Add } (-1) \times \text{ row } 3 \text{ to row } 5}$$

$$\begin{vmatrix}
1 & 1 & 1 & 1 & 0 & -2 \\
0 & 0 & 1 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 0 & -4 \\
0 & 0 & 0 & 0 & 0 & -3
\end{vmatrix}$$
(2.1)

And matrix (2.1) is of **Row Echlon form**. And we set second row as pivot row then set third row as pivot row to do elimination:

$$\frac{\text{Add } (-1) \times \text{ row 2 to row 1}}{\text{Add } 2 \times \text{ row 3 to row 1; Add } (-2) \times \text{ row 3 to row 2}}$$

$$\begin{bmatrix}
1 & 1 & 0 & 0 & 0 & | & 4 \\
0 & 0 & 1 & 1 & 0 & | & -6 \\
0 & 0 & 0 & 0 & 1 & | & 3 \\
0 & 0 & 0 & 0 & 0 & | & -4 \\
0 & 0 & 0 & 0 & 0 & | & -3
\end{bmatrix}$$
(2.2)

The matrix (2.2) is of **Reduced Row Echelon form**. And it is *singular matrix*. (Don't worry, we will introduce the definition for singular matrix in the future.)

You may find there exist many solutions to this system of equation, which means Gaussian Elimination **don't** always derive **unique** solution.

So let's give the definition for Row-Echelon Form.

Definition 2.1 — Row Echelon Form.

A matrix is said to be in **row echelon form** if

- (i) The first nonzero entry in each nonzero row is 1.
- (ii) If row k does not consist entirely of zeros, the number of leading zero entries in row k+1 is greater than the number of leading zero entries in row k.
- (iii) If there are rows whose entries are all zero, they are below the rows having nonzero entries.

Definition 2.2 — Reduced Row Echelon Form.

A matrix is said to be in **Reduced row echelon form** if

- (i) The matrix is in row echelon form.
- (ii) The first nonzero entry in each row is the only nonzero entry in its column.

2.1.2 Matrix Multiplication

Matrix Multiplied by Vector

Here we give the definition for inner product of vector:

2.1 Thursday

Definition 2.3 — inner product. Given two vectors $x = (x_1, x_2, ..., x_n)$ and $y = (y_1, y_2, ..., y_n)$, the inner product between x and y is given by

$$< x, y > = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$$

And the notation can also be written as $x^{T}y$ or $x \cdot y$.

Pro. Tom Luo highly recommends you to write *inner procuct* as $\langle x, y \rangle$. For myself, I also try to avoid using notation $x \cdot y$ to avoid misunderstanding.

Let's see an example of matrix multiply a vector:

■ Example 2.2

For the system of equation $\begin{cases} 2x_1 + x_2 + x_3 = 5 \\ 4x_1 - 6x_2 = -2 \\ -2x_2 + 7x_2 + 2x_3 = 9 \end{cases}$, we define

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \mathbf{A} = \begin{pmatrix} 2 & 1 & 1 \\ 4 & -6 & 0 \\ -2 & 7 & 2 \end{pmatrix} = \begin{pmatrix} a_1 & a_2 & a_3 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} 5 \\ -2 \\ 9 \end{pmatrix}.$$

Here \boldsymbol{x} and a_1, a_2, a_3 are all column vector (3 × 1 matrix). More specifically,

$$a_1 = \begin{pmatrix} 2 \\ 4 \\ -2 \end{pmatrix}, a_2 = \begin{pmatrix} 1 \\ -6 \\ 7 \end{pmatrix}, a_3 = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}.$$

Then we multiple matrix \boldsymbol{A} with vector \boldsymbol{x} :

$$\mathbf{Ax} = \begin{pmatrix} 2x_1 + x_2 + x_3 \\ 4x_1 - 6x_2 \\ -2x_1 + 7x_2 + 2x_3 \end{pmatrix} = \begin{pmatrix} \langle a_1, \mathbf{x} \rangle \\ \langle a_2, \mathbf{x} \rangle \\ \langle a_3, \mathbf{x} \rangle \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

Hence we finally write the system equation as:

$$Ax = b$$
 (Compactmatrix form)

And also, if we regard x as a scalar, we can also write:

$$\mathbf{b} = \mathbf{A}\mathbf{x} = (a_1 \ a_2 \ a_3)\mathbf{x} = a_1\mathbf{x} + a_2\mathbf{x} + a_3\mathbf{x}$$

Matrix Multiply Matrix

Note that an $m \times n$ matrix \boldsymbol{A} can be written as (a_{ij}) , where a_{ij} is the entry of ith row, jth column of \boldsymbol{A}

Notice that matrix \mathbf{A} and \mathbf{B} can do multiplication operatr if and only if the # for column of \mathbf{A} equal to the # for row of \mathbf{B} . And moreover, for $m \times n$ matrix \mathbf{A} and $n \times k$ matrix \mathbf{B} , we can do multiplication as follows:

$$AB = A (b_1 \ b_2 \ \dots \ b_k) = (Ab_1 \ Ab_2 \ \dots \ Ab_k)$$

16 **Week1**

And the result is the $m \times k$ matrix. Then we only need to calculate matrix multiplied by vector.

■ Example 2.3 We want to calculate the result for $m \times n$ matrix **A** multiply $n \times k$ matrix **B**, which is written as

$$\mathbf{AB} = \mathbf{C} = (\mathbf{A}b_1 \ \mathbf{A}b_2 \ \dots \ \mathbf{A}b_k)$$

Hence for the the entry of ith row, jth column of C is given by

$$c_{ij} = \sum_{l=1}^{n} a_{il} b_{lj} = \langle a_i^T b_j \rangle$$

You should understand this result, this means the *i*th row, *j*th column entry of C is given by the *i*th row of A multiply the *j*th row of B.

Time Complexity Analysis

- To Calculate the single entry of C you need to do n times multiplication.
- There exists n^2 entries in C
- Hence it takes $n \times n^2 \sim O(n^3)$ operations to compute C. (Moreover, using Strassen Algorithm, the time complexity is reduced to $O(n^{log_2^7})$

2.1.3 Special Matrices

Here we introduce several special matrices:

Definition 2.4 — Identity Matrix. The $n \times n$ identity matrix is the matrix $I = (m_{ij})$, where

$$m_{ij} = \begin{cases} 1, & \text{if } i = j; \\ 0, & \text{if } i \neq j. \end{cases}$$

Proposition 2.1 — **Identity.** It has the properties:

$$IB = B$$

$$AI = A$$

where \boldsymbol{A} and \boldsymbol{B} are all matrix.

Definition 2.5 — **Elementary Matrix of type** *III*. An elementary matrix E_{ij} of type *III* is a matrix that its diagonal entries are all 1 and the *i*th row *j* th column is a scalar, and the remaining entries are all zero.

For example, the matrix $\mathbf{A} = \begin{pmatrix} 2 & 1 & 1 \\ 4 & -6 & 0 \\ -2 & 7 & 2 \end{pmatrix}$ is elementary matrix of type *III*

Proposition 2.2 If \mathbf{A} is a matrix, postmultiplying \mathbf{E}_{ij} has the same effect of performing row operation on a matrix. For example, \mathbf{E}_{21} is elementary matrix of type III and A is a matrix given by:

2.1 Thursday

Then the effect of *EA* has the same effect of adding $(-2) \times \text{row } 1$ to row 2:

$$\mathbf{\textit{E}}_{21}A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & -8 & -2 \\ -2 & 7 & 2 \end{pmatrix}$$

And if define
$$\mathbf{E} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
, then postmultiplying \mathbf{E}_{31} is just like do Gaussian Elimination: