

Introduction to OSG

Tim Cartwright

University of Wisconsin-Madison

OSG School Director
OSG Campus Coordinator

So far, we have seen how to use HTC on one cluster

Don't let computing be a barrier to research!

(Sometimes, one cluster is not enough)

Today, we see what it takes to get more capacity *

* Caveat: I will focus on compute capacity; Wed. will focus on data.

What Researchers Want

Submit locally, run globally

Yesterday

\$ ls science.sub input.dat \$ condor_q

What That Takes

- ✓ Lots of networked computing capacity
 - OSPool capacity are contributed by campuses!
 - (PATh Facility, used yesterday, is owned by PATh)
- √ Capacity owners who are motivated to share
- √ Trust among owners, researchers, OSG staff
- Automation to make it work at scale
- √ No allocations or charges would be nice!

Demo, Part I

8

Behind the Curtain

Reasons for Continuing

- So why learn more about how the OSPool works?
 - May change how you plan to run computing there
 - May change the way you use the Access Point
 - May change how you handle issues that arise
- What is there to learn? (outline of rest of talk)
 - Concepts of OSG, Pool, and Access Point
 - How the OSPool gets resources
 - How the OSPool differs from a local cluster

What is OSG?

OSG Defined, Version 1

- OSG Consortium in this view, OSG is people:
 - Users: individuals PI/students to collabs. of 1,000s
 - Resource owners/contributors
 - Team: provides infrastructure, support, features, ...

OSG Defined, Version 2

- Pools of capacity
 - Capacity: compute, storage, and other systems that can be used for research workflows
 - Services: software infrastructure that manages capacity and makes features available

https://www.pngall.com/wp-content/uploads/5/ Server-Rack-PNG-Free-Image.png

OSG Defined, Version 3

- OSG Access Point
 - Where you go to do computing
 - Has access to capacity (constantly changing)
 - Provides means for accessing data (see Wednesday)

```
[[tim.cartwright@ap40 ~]$ condor_version
$CondorVersion: 10.7.0 2023-07-10 BuildID: 659788 PackageID: 10.7.0-0.659788 RC $
$CondorPlatform: x86_64_AlmaLinux8 $
[tim.cartwright@ap40 ~]$
```


Getting Capacity for OSPool

1. Before OSPool

Nothing available at Wisc.

Access Point

Job1.0

Job1.1

Job1.2

Job1.3

Job1.1999

Wisconsin

Busy	
Busy	
Busy	
Busy	
Busy	

2. Add capacity contributors!

Access Point

Job1.0

Job1.1

Job1.2

Job1.3

•

Job1.1999

Nebraska

Busy		
Busy		

Maine

Busy	
Busy	

Wisconsin

Busy	
Busy	
Busy	
Busy	
Busy	

Chicago

Busy
Busy
Busy
Busy
Busy
Busy
Busy

19

3. Request capacity (method #1)

Start Execution Points on clusters

Access Point

Job1.0

Job1.1

Job1.2

Job1.3

•

Job1.1999

Nebraska

OSPoo1	EP	NU1
OSPoo1	EP	NU2
Busy		
Busy		

Maine

OSPoo1	EP	ME2
Busy		
OSPoo1	EP	ME1
OSPoo1	EP	ME3
Busy		

Wisconsin

Busy	
Busy	
Busy	
Busy	
Busy	

Chicago

OSPoo1	EP	UC2
OSPoo1	EP	UC1
Busy		
Busy		
Busy		

Busy		
OSPoo1	EP	NM1
Busy		
Busy		
Busy		
OSPoo1	EP	NM4
OSPoo1	EP	NM2
OSPoo1	EP	NM3
Busy		
Busy		
Busy		

20

4. EPs add capacity to Pool

(I am not explaining how yet)

AP

Job1.0

Job1.1

Job1.2

Job1.3

...

Job1.1999

Pool

OSPoo1	EP	NU1	id1e
OSPoo1	EP	NU2	id1e
OSPoo1	EP	ME1	id1e
OSPoo1	EP	ME2	id1e
OSPoo1	EP	ME3	id1e
OSPoo1	EP	UC1	id1e
OSPoo1	EP	UC2	id1e
OSPoo1	EP	NM1	id1e
OSPoo1	EP	NM2	id1e
OSPoo1	EP	NM3	id1e
OSPoo1	EP	NM4	id1e

Nebraska

OSPoo1	EP	NU1
OSPoo1	EP	NU2
Busy		
Busy		

Maine

OSPoo1	EP	ME2
Busy		
OSPoo1	EP	ME1
OSPoo1	EP	ME3
Busy		

Wisconsin

Busy
Busy
Busy
Busy
Busy

Chicago

OSPoo1	EP	UC2
OSPoo1	EP	UC1
Busy		
Busy		
Busy		

		_
Busy		
OSPoo1	EP	NM1
Busy		
Busy		
Busy		
OSPoo1	EP	NM4
OSPoo1	EP	NM2
OSPoo1	EP	NM3
Busy		
Busy		
Busy		
		-

5. Run jobs

HTCondor with AP & Pool

AP

Job1.0

Job1.1

Job1.2

Job1.3

•••

Job1.1999

Pool

OSPoo1	EP	NU1	Job1.4
OSPoo1	EP	NU2	id1e
OSPoo1	EP	ME1	Job1.0
OSPoo1	EP	ME2	Job1.3
OSPoo1	EP	ME3	id1e
OSPoo1	EP	UC1	Job1.2
OSPoo1	EP	UC2	Job1.6
OSPoo1	EP	NM1	Job1.8
OSPoo1	EP	NM2	Job1.12
OSPoo1	EP	NM3	Job1.10
OSPoo1	EP	NM4	id1e

Nebraska

NU1 > Job1.4
NU2 > id1e
Busy
Busy

Maine

ME2 > Job1.3
Busy
ME1 > Job1.0
ME3 > id7e
Busy

Wisconsin

Busy
Busy
Busy
Busy
Busy

Chicago

UC2 > Job1.6
UC1 > Job1.2
Busy
Busy
Busy

Busy	
NM1 :	> Job1.8
Busy	
Busy	
Busy	
VM4	> idle
NM2 :	> Job1.12
NM3 :	> Job1.10
Busy	
Busy	
Busy	

22

6. Get resources (method #2)

Direct contributions

AP

Job1.0

Job1.1

Job1.2

Job1.3

...

Job1.1999

Pool

OSPoo1	EP	NU1	Job1.4
OSPoo1	EP	NU2	id1e
OSPoo1	EP	ME1	Job1.0
OSPoo1	EP	ME2	Job1.3
OSPoo1	EP	ME3	id1e
OSPoo1	EP	UC1	Job1.2
OSPoo1	EP	UC2	Job1.6
OSPoo1	EP	NM1	Job1.8
OSPoo1	EP	NM2	Job1.12
OSPoo1	EP	NM3	Job1.10
OSPoo1	EP	NM4	id1e
NM Cont	trb	EP1	id1e

Nebraska

NU1 >	Job1.4
NU2 >	id1e
Busy	
Busy	

Maine

ME2 >	Job1.3
Busy	
ME1 >	Job1.0
ME3 >	id1e
Busy	

Wisconsin

Busy
Busy
Busy
Busy
Busy

Chicago

UC2 >	Job1.6
UC1 >	Job1.2
Busy	
Busy	
Busy	

1411130				
Busy				
VM1 > Job1.8				
Busy				
Busy				
Busy				
VM4 > <i>id1e</i>				
VM2 > Job1.12				
VM3 > Job1.10				
Busy				
VM Contrb EP1				
Busy				
Busy				
-				

OSPool dHTC – A Few Details

For a batch scheduler:

- CE requests capacity (as jobs)
 - based on demand
- Scheduler may run req.s
- Our SW creates Execution
 Point & adds to OSPool
- OSPool workloads run on EP

Using containers:

- Admin starts containers
- SW makes EP, etc. (same)

OSPool Contributors (United States)

OSPool Usage

25

Jobs

Hours

Using OSPool

OSPool Is HTCondor

- OSPool is an HTCondor pool:
 You have condor_q, condor_submit, DAGMan, etc.
- OSPool bonus features!
 - More capacity (usually) than a typical local system
 - Some storage on Access Point (Data lecture, Wed.)
 - Some special resources, like GPUs (AI/ML topic, Thu.)
- How does OSPool differ from local one? Variety

Varied Hardware

- Wider variety of CPUs (type, speed), memory, ...
- Request what you need in submit files (request_cpus, request_memory, request_disk)
- Some specific hardware may be specified; search for documentation or contact us
 - Often in submit-file requirements expression
 - Example: GPU needs (ask us!)

Varied OSs and Software

- Varied Operating Systems
 - All Linux, mostly recent, but lots of variation
 - Changes to CentOS 8 => new variants (e.g., Alma)
 - Software on the Access Point probably won't exist on Execution Points! (e.g., specific Python version)
- Your software
 - Never assume your software is on Execution Points
 - The Software lecture (later today) is on this topic!

Varied Access to Data

- No shared filesystem
 - Unlike some local clusters with shared filesystems
 - Thus, files must be transferred to Execution Points
- There are many ways to handle data
 - Data lecture is Wednesday morning

Varied Policies

- Individual sites/clusters have their own policies
 - Example: Whether to kill jobs that exceed memory
 - Example: Maximum run-time of a job (or its glidein)
- If possible, set requirements for what you need
 - But this does not help with, e.g., maximum run-time
- Generally, try to make "OSG-sized" jobs (see next)

What Makes a Good OSG Job?

	Ideal Jobs! (up to 10,000 cores across Jobs, per user!)	Still Very Advantageous!	Less-so, but maybe
Cores (GPUs)	1 (1; non-specific type)	<8 (1; specific GPU type)	>8 (or MPI) (multiple)
Walltime	<10 hrs* *or checkpointable	<20 hrs* *or checkpointable	>20 hrs
RAM	<few gb<="" th=""><th><10s GB</th><th>>10s GB</th></few>	<10s GB	>10s GB
Input	<500 MB	<10 GB	>10 GB
Output	<1 GB	<10 GB	>10 GB
Software	'portable' (pre-compiled binaries, transferable, containerizable, etc.)	most other than →	Licensed software; non-Linux

More OSG Tips – Security

- Computer security is hard read the headlines!
- OSG does its best, but no system is perfect
- Some suggestions:
 - Use strong, distinct passwords for each account
 - Do not share your account
 - Avoid world-writable directories and files
 - Avoid sensitive software and data (no HIPAA!)
 - Do not try to work around security barriers;
 contact us to help meet your goals in a safe way

Acknowledgements

You Can Acknowledge OSG!

If you publish or present results that benefitted from using OSG services, please acknowledge us!

https://osg-htc.org/acknowledging

Acknowledgements

- OSG team, especially Christina Koch; in past years: Brian Lin, Mats Rynge, and Jason Patton
- This work was supported by the National Science Foundation under Cooperative Agreement OAC-2030508

A Few Suggestions

Exercises

- Today, some exercises will specify less, so try to use what you learned yesterday — first, from memory, if possible, then look things up
- Use Slack! There are staff online who can help, too

Consultations

- Please consider signing up for a consultation, if you haven't already
- If the slots fill up, we will try to make more!

Demo, Part II