Matematyka dyskretna (L)

Katarzyna Paluch

Instytut Informatyki, Uniwersytet Wrocławski

2021

Iloczyn kartezjański

Ala chce kupić po jednej paczce: herbaty, kawy i ciastek. W sklepie, w którym robi zakupy jest 5 rodzajów herbaty, 10 rodzajów kawy i 5 typów ciastek. Na ile sposobów może skomponować swój zestaw?

Iloczyn kartezjański

Ala chce kupić po jednej paczce: herbaty, kawy i ciastek. W sklepie, w którym robi zakupy jest 5 rodzajów herbaty, 10 rodzajów kawy i 5 typów ciastek. Na ile sposobów może skomponować swój zestaw?

 $5 \cdot 10 \cdot 5$

Iloczyn kartezjański

Niech $A_1, A_2, \dots A_n$ będą skończonymi zbiorami. Wówczas $|A_1 \times A_2 \times \dots \times A_n| = |A_1| \times |A_2| \times \dots \times |A_n|$.

Wariacje

Profesor Ksawery Ksenofiliński chciałby wysłać po widokówce do każdego z 7 swoich przyjaciół. Na ile sposobów może to zrobić, jeśli widokówek na ulicznym straganie jest 13 rodzajów?

Wariacje

Profesor Ksawery Ksenofiliński chciałby wysłać po widokówce do każdego z 7 swoich przyjaciół. Na ile sposobów może to zrobić, jeśli widokówek na ulicznym straganie jest 13 rodzajów?

 13^{7}

Liczba funkcji

Liczba wariacji z powtórzeniami

Niech A i B będą skończonymi zbiorami o odpowiednio m i n elementach. Wówczas liczba funkcji ze zbioru A w B wynosi n^m .

Innymi słowy: $|\{f: A \to B\}| = n^m$.

Liczba funkcji

Liczba wariacji z powtórzeniami

Niech A i B będą skończonymi zbiorami o odpowiednio m i n elementach. Wówczas liczba funkcji ze zbioru A w B wynosi n^m .

Innymi słowy: $|\{f: A \to B\}| = n^m$.

Dowód 1: przez indukcję.

Dowód 2: pokazujemy równoliczność zbiorów: (i) $\{f:A \rightarrow B\}$ oraz (ii)

iloczynu kartezjańskiego $B \times B \times ... \times B$.

Wariacje cd

Profesor Ksawery Ksenofiliński wybiera sie na tygodniowy rejs po Cykladach. Każdego dnia chciałby wysłać po jednej widokówce do każdego z 7 swoich przyjaciół. Okazuje sie, że każdego dnia na każdej z odwiedzonych 7 (różnych) wysp sprzedawca ma 13 rodzajów widokówek do zaoferowania. Na ile sposobów profesor może wysłać widokówki?

Wariacje bez powtórzeń

Profesor Ksawery Ksenofiliński chciałby wysłać po widokówce do każdego z 7 swoich przyjaciół. Na ile sposobów może to zrobić, jeśli widokówek na ulicznym straganie jest 13 rodzajów, ale straganiarz wyprzedał prawie wszystkie widokówki i z każdego rodzaju została tylko jedna ?

Wariacje bez powtórzeń

Profesor Ksawery Ksenofiliński chciałby wysłać po widokówce do każdego z 7 swoich przyjaciół. Na ile sposobów może to zrobić, jeśli widokówek na ulicznym straganie jest 13 rodzajów, ale straganiarz wyprzedał prawie wszystkie widokówki i z każdego rodzaju została tylko jedna ?

 $13 \cdot 12 \cdot 11 \cdot \ldots \cdot 7$

Liczba funkcji różnowartościowych

Liczba wariacji bez powtórzeń

Niech A i B będą skończonymi zbiorami o odpowiednio m i n elementach. Wówczas liczba funkcji $r\acute{o}$ żnowartościowych ze zbioru A w B wynosi $n(n-1)\ldots(n-m+1)=\frac{n!}{(n-m)!}$.

Liczba podzbiorów

Niech A będzie skończonym zbiorem o n elementach - |A| = n. Ile podzbiorów ma A?

$$|\{B: B \subseteq A\}| = ???$$

Liczba podzbiorów

Liczba podzbiorów

Niech A będzie skończonym zbiorem o n elementach. Wtedy

$$|\{B: B \subseteq A\}| = 2^n.$$

Dowód 1: przez indukcję.

Dowód 2:

Liczba podzbiorów

Liczba podzbiorów

Niech A będzie skończonym zbiorem o n elementach. Wtedy

$$|\{B: B \subseteq A\}| = 2^n.$$

Dowód 1: przez indukcję.

Dowód 2: przez pokazanie równoliczności zbiorów: $\{B:B\subseteq A\}$ i

 $\{f: A \to \{0,1\}\}.$

Para podzbiorów

Niech U będzie zbiorem n-elementowym. Na ile sposobów możemy wybrać dwa jego podzbiory A i B takie, że $A \subseteq B$?

$$|\{(A,B): A\subseteq B\subseteq U\}|=???$$

Para podzbiorów

Niech U będzie zbiorem n-elementowym. Na ile sposobów możemy wybrać dwa jego podzbiory A i B takie, że $A \subseteq B$?

$$|\{(A,B): A \subseteq B \subseteq U\}| = |\{f: U \to \{0,1,2\}| = 3^n\}|$$

Permutacje

Niech U będzie zbiorem n-elementowym. Na ile sposobów możemy ustawić w rząd jego elementy?

Permutacje

Niech U będzie zbiorem n-elementowym. Na ile sposobów możemy ustawić w rząd jego elementy?

Na tyle, ile jest funkcji różnowartościowych $f:U \rightarrow \{1,2,\ldots,n\}$.

$$|\{f: U \to \{1, 2, \dots, n\}, 1-1\}| = \frac{n!}{(n-n)!} = n!.$$

Sufit i podłoga

Niech
$$x \in R$$
 i $n \in Z$.
 $\lfloor x \rfloor = n \Leftrightarrow n \leq x < n+1$ podłoga z $x \in [x] = n \Leftrightarrow n-1 < x \leq n$ sufit z $x \in [x] = x - \lfloor x \rfloor$ część ułamkowa x

Sufit i podłoga - własności

Niech
$$x \in R$$
 i $n \in Z$.
 $\lfloor x + n \rfloor = n + \lfloor x \rfloor$, bo
 $\lfloor x \rfloor + n \le x + n < \lfloor x \rfloor + n + 1$

$$[x+n] = n + [x]$$

Sufit i podłoga - własności

Niech $x \in R$ i $n \in Z$.

Czy zachodzi: $\lfloor nx \rfloor = n \lfloor x \rfloor$?

Jak zamienić podłogę na sufit?

Sufit i podłoga - własności

Niech $x \in R$ i $n \in Z$.

Czy zachodzi: $\lfloor nx \rfloor = n \lfloor x \rfloor$?

Jak zamienić podłogę na sufit?

$$\lfloor -x \rfloor = -\lceil x \rceil$$