EXPERIMENT-5 REALIZATION OF COMPARATORS

- 1. AIM: To Design, simulate and implement Comparators in 3 different modeling styles(Data Flow, Behavioral Flow Modeling, Structural Flow Modeling)
- 2. SOFTWARE USED: Xilinx Vivado 2022.2

3. PROCEDURE:

- Open the Xilinx Vivado project navigator.
- Open the Design source and go to add / create sources
- Create new file, give appropriate name save it.
- Open the file in the editor and write the Verilog code.
- Open the Design source and go to add / create sources to create the test bench
- Open the editor and write the Verilog code for test bench.
- After completion of Verilog code set your test bench as top module in simulation settings and Run Simulation.
- To view RTL schematic, select RTL Analysis in which select open elaborate design, select Schematic.

Comparators (Data Flow Modeling)

1.1 AIM: 1 Bit Comparator

1.2 SOFTWARE USED: Xilinx Vivado 2022.2

1.3 SYMBOL:

Comparator_1_bit_df

1.4 LOGIC EXPRESSION:

$$E = \sim (A^B)$$

$$G = (\sim B) \& A$$

$$L = (\sim A) \& B$$

1.5 BOOLEAN EXPRESSION:

$$E = \overline{A}\overline{B} + AB$$

$$G = A\overline{B}$$

$$\boldsymbol{L} = \overline{\boldsymbol{A}}\boldsymbol{B}$$

1.6 TRUTH TABLE:

INPUT		OUTPUT			
A	В	$E[\sum_{m} = (0,3)]$	$G[\sum_{m}=(2)]$	$L[\sum_{m} = (1)]$	
0	0	1	0	0	
0	1	0	0	1	
1	0	0	1	0	
1	1	1	0	0	

2.1 VERILOG CODE (Comparator_1_bit_df.v):

```
module Comparator_1_bit_df(e,g,l,a,b);
output e,g,l;
```

input a,b;

assign $e = \sim (a^b)$; // XNOR Gate

assign $g = a\&(\sim b)$;

assign $l = (\sim a) \& b$;

endmodule

LOGIC DESIGN LAB

1.8 TEST BENCH (Comparator_1_bit_df _tb.v):

```
module Comparator_1_bit_df_tb();
reg a,b;
wire e,g,l;
Comparator_1_bit_df x1(e,g,l,a,b);
initial
begin
a=1'b0;b=1'b0;
#10 a=1'b0;b=1'b1;
#10 a=1'b1;b=1'b0;
#10 a=1'b1;b=1'b1;
#10 $finish;
end
endmodule
```

1.9 WAVEFORM:

1.10 RESULT:

1 Bit Comparator is simulated and implemented in Data Flow Modeling.

Comparators (Behavioral Flow Modeling)

1.1 AIM: 1 Bit Comparator

1.2 SOFTWARE USED: Xilinx Vivado 2022.2

1.3 SYMBOL:

1.4 LOGIC EXPRESSION:

$$E = \sim (A^B)$$

$$G = (\sim B) \& A$$

$$L = (\sim A) \& B$$

1.5 BOOLEAN EXPRESSION:

$$E = \overline{A}\overline{B} + AB$$

$$\mathbf{G} = \mathbf{A} \overline{\mathbf{B}}$$

$$L = \overline{A}B$$

1.6 TRUTH TABLE:

INPUT		OUTPUT			
A	В	$E[\sum_{m}=(0,3)]$	$G[\sum_{m}=(2)]$	$L[\sum_{m}=(1)]$	
0	0	1	0	0	
0	1	0	0	1	
1	0	0	1	0	
1	1	1	0	0	

1.7 VERILOG CODE (Comparator_1_bit_bf.v):

```
module Comparator_1_bit_bf(e,g,l,a,b);
output e,g,l;
input a,b;
reg e,g,l;
always@(a,b)
case({a,b})
2'b00:begin e=1;g=0;l=0; end
2'b01:begin e=0;g=0;l=1; end
2'b10:begin e=0;g=1;l=0; end
2'b11:begin e=1;g=0;l=0; end
default:begin e=0;g=0;l=0; end
endcase
endmodule
```

1.8 TEST BENCH (Comparator_1_bit_bf _tb.v):

```
module Comparator_1_bit_df_tb();
reg a,b;
wire e,g,l;
Comparator_1_bit_bf x1(e,g,l,a,b);
initial
begin
a=1'b0;b=1'b0;
#10 a=1'b0;b=1'b1;
#10 a=1'b1;b=1'b0;
#10 a=1'b1;b=1'b1;
#10 $finish;
end
```

endmodule **1.9 WAVEFORM:**

1.10 RESULT:

1 Bit Comparator is simulated and implemented in Behavioral Flow Modeling.

Comparators(Structural Flow Modeling)

1.1 AIM: 1 Bit Comparator

1.2 SOFTWARE USED: Xilinx Vivado 2022.2

1.3 SYMBOL:

1.4 LOGIC EXPRESSION:

$$E = \sim (A^{\wedge}B)$$

$$G = (\sim B) \& A$$

$$L = (\sim A) \& B$$

1.5 BOOLEAN EXPRESSION:

$$E = \overline{A}\overline{B} + AB$$

$$\mathbf{G} = \mathbf{A} \overline{\mathbf{B}}$$

$$L = \overline{A}B$$

1.6 TRUTH TABLE:

INPUT		OUTPUT			
A	В	$E[\sum_{m} = (0,3)]$	$G[\sum_{m}=(2)]$	$L[\sum_{m} = (1)]$	
0	0	1	0	0	
0	1	0	0	1	
1	0	0	1	0	
1	1	1	0	0	

1.7 VERILOG CODE (Comparator_1_bit_sf.v):

module Comparator_1_bit_sf(e,g,l,a,b);
output e,g,l;

input a,b;

xnor (e,a,b);

and $(g,a,\sim b)$;

and $(1,\sim a,b)$;

endmodule

LOGIC DESIGN LAB

1.8 TEST BENCH (Comparator_1_bit_sf _tb.v):

```
module Comparator_1_bit_sf_tb();
reg a,b;
wire e,g,l;
Comparator_1_bit_sf x1(e,g,l,a,b);
initial
begin
a=1'b0;b=1'b0;
#10 a=1'b0;b=1'b1;
#10 a=1'b1;b=1'b0;
#10 a=1'b1;b=1'b1;
#10 $finish;
end
endmodule
```

1.9 WAVEFORM:

1.10 RESULT:

1 Bit Comparator is simulated and implemented in Structural Flow Modeling.

2.1 AIM: 2 Bit Comparator

2.2 SOFTWARE USED: Xilinx Vivado 2022.2

2.3 SYMBOL:

2.4 LOGIC EXPRESSION:

 $E = (\sim (A1^B1)) & (\sim (A0^B0))$

 $G = (A1\& (\sim B1)) \mid ((\sim B0) \& A1\&A0) \mid (A0\& (\sim B1)\&(\sim B0)))$

 $L = (B1\& (\sim A1)) \mid (B0 \& (\sim A1)\& (\sim A0)) \mid ((\sim A0)\& B1\& B0))$

2.5 BOOLEAN EXPRESSION:

 $E = (\overline{A}1\overline{B}1 + A1B1)(\overline{A}0\overline{B}0 + A0B0)$

 $G = A1\overline{B1} + A0A1\overline{B0} + A0\overline{B1}\overline{B0}$

 $L = \overline{A1}B1 + \overline{A0}\overline{A1}B0 + \overline{A0}B1B0$

2.6 TRUTH TABLE:

2.0 TRUTH TABLE:						
INPUT			OUTPUT			
A1	A0	B1	В0	E	G	L
0	0	0	0	1	0	0
0	0	0	1	0	0	1
0	0	1	0	0	0	1
0	0	1	1	0	0	1
0	1	0	0	0	1	0
0	1	0	1	1	0	0
0	1	1	0	0	0	1
0	1	1	1	0	0	1
1	0	0	0	0	1	0
1	0	0	1	0	1	0
1	0	1	0	1	0	0
1	0	1	1	0	0	1
1	1	0	0	0	1	0
1	1	0	1	0	1	0
1	1	1	0	0	1	0
1	1	1	1	1	0	0

2.7 VERILOG CODE (Comparator_2bit_sfv):

```
\label{eq:comparator_2bit_sf(e,g,l,a,b);} \begin{tabular}{ll} module Comparator_2bit_sf(e,g,l,a,b); \\ output e,g,l; \\ input [1:0]a; \\ input [1:0]b; \\ wire e,g,l; \\ or (g,(a[1]&(\sim b[1])),((\sim b[0])&a[1]&a[0]),(a[0]&(\sim b[1])&(\sim b[0]))); \\ or (l,(\sim (a[1])&b[1]),(b[0]&(\sim a[1])&(\sim a[0])),((\sim a[0])&b[1]&b[0])); \\ and (e,(\sim (a[1]^b[1])),(\sim (a[0]^b[0]))); \\ end module \end{tabular}
```

2.8 TEST BENCH (Comparator_2bit_sf_tb.v):

```
module Comparator_2bit_sf_tb();
reg [1:0]a;
reg [1:0]b;
wire e,g,l;
Comparator_2bit_sf x1(e,g,l,a,b);
initial
begin
{a,b}=4b0000;
#10 \{a,b\}=4'b0001;
#10 \{a,b\}=4b0010;
#10 {a,b}=4b0011;
#10 \{a,b\}=4'b0100;
#10 \{a,b\}=4b0101;
#10 \{a,b\}=4b0110;
#10 \{a,b\}=4'b0111;
#10 \{a,b\}=4b1000;
#10 {a,b}=4b1001;
#10 \{a,b\}=4'b1010;
#10 \{a,b\}=4b1011;
#10 \{a,b\}=4b1100;
#10 \{a,b\}=4b1101;
#10 \{a,b\}=4b1110;
#10 {a,b}=4'b1111;
#10 $finish;
end
endmodule
```

LOGIC DESIGN LAB

2.9 WAVEFORM:

2.10 RESULT:

2 Bit Comparator is simulated and implemented in Structural Flow Modeling.