0.1 H28 数学 A

 $\boxed{1} \ (1)|x| \leq \tfrac{1}{2} \ \text{なら} \ 5 - 1/(1+x)^2 > 0 \ \text{である}. \quad \text{よって} \ 0 < \int_0^x 5 - 1/(1+t)^2 dt = 5x + 1/(1+x) - 1 \ \text{である}. }$ よって $0 < \int_0^x 5t + 1/(1+t) - 1 dt = 5x^2/2 + \log(1+x) - x \ \text{である}. \quad \text{よって} \ -5x^2/2 < \log(1+x) - x \ \text{である}. }$ また $5 + 1/(1+x)^2 > 0 \ \text{である}. \quad \text{よって} \ 0 < \int_0^x 5t + 1/(1+t)^2 dt = 5x - 1/(1+x) + 1 \ \text{である}. \quad \text{よって} \ 0 < \int_0^x 5t - 1/(1+t) + 1 dt = 5x^2/2 - \log(1+x) + x \ \text{である}. \quad \text{よって} \ 5x^2/2 > \log(1+x) - x \ \text{である}. }$ すなわち $|\log(1+x) - x| < 5x^2/2 \ \text{である}.$

 $(2)\sum a_k$ が収束するから、ある $N\in\mathbb{N}$ が存在して、 $n\geq N$ ならば、 $a_n<1/2$ である.無限積の収束性は k=N からの無限積の収束性と同じ.また (1) より $|\log(1+x)|\leq Cx^2+x$ である.log の連続性から

$$\log \lim_{n \to \infty} \prod_{k=N}^{n} (1 + a_k) = \lim_{n \to \infty} \log \prod_{k=N}^{n} (1 + a_k) = \lim_{n \to \infty} \sum_{k=N}^{n} \log(1 + a_k)$$

である.

絶対級数 $\sum |\log(1+a_k)|$ の収束性を考える.

$$\lim_{n \to \infty} \sum_{k=N}^{n} |\log(1 + a_k)| \le \lim_{n \to \infty} \sum_{k=N}^{n} C a_k^2 + a_k = C \lim_{n \to \infty} \sum_{k=N}^{n} a_k^2 + \lim_{n \to \infty} \sum_{k=N}^{n} a_k$$

右辺は収束するから, $\sum \log(1+a_k)$ は絶対収束する.よって収束するので, $\lim_{n\to\infty}\prod_{k=N}^n(1+a_k)$ は収束する.

 $(3)\sum_{k=1}^{\infty} \frac{(-1)^k}{3k+1}$ と $\sum_{k=1}^{\infty} \left(\frac{(-1)^k}{3k+1}\right)^2$ の収束を示せばよい。 $S_n = \sum_{k=1}^n \frac{(-1)^k}{3k+1}$ とする。 $S_{2n} = \sum_{k=1}^n \left(\frac{1}{3(2k-1)+1} - \frac{1}{3(2k)+1}\right)$ であり, $\frac{1}{3(2k-1)+1} - \frac{1}{3(2k)+1} > 0$ より S_{2n} は単調増加する。同様に $S_{2n+1} = 1/4 - \sum_{k=1}^n \left(\frac{1}{3(2k)+1} - \frac{1}{3(2k)+1} - \frac{1}{3(2k+1)+1}\right)$ であり, $\frac{1}{3(2k)+1} - \frac{1}{3(2k+1)+1} > 0$ より S_{2n+1} は単調減少する。 $S_{2n+1} - S_{2n} = 1/(3(2n+1)+1)$ であり, $\lim_{n\to\infty} S_{2n+1} - S_{2n} = 0$ である。また $S_{2n+1} = 1/(3(2n+1)+1) + S_n > 0$ より S_{2n+1} は有界な単調数列であるから収束する。したがって S_{2n} も収束して $\lim_{n\to\infty} S_{2n} = \lim_{n\to\infty} S_{2n+1}$ である。よって $\sum_{k=1}^\infty \frac{(-1)^k}{3k+1}$ は収束する。

 $\sum\limits_{k=1}^{\infty}\left(rac{(-1)^k}{3k+1}
ight)^2=\sum\limits_{k=1}^{\infty}rac{1}{(3k+1)^2}<rac{1}{9}\sum\limits_{k=1}^{\infty}rac{1}{k^2}<\infty$ である.ともに収束するから無限積も収束する.

2 $(1)y \in f_A(W^{\perp})$ を任意にとる。ある $x \in W^{\perp}$ が存在して $y = f_A(x)$ である。任意の $u \in W$ について $(u,y) = {}^t uAx = {}^t ({}^tAu)x = ({}^tAu,x) = (f_A(u),x) = 0$ である。よって $y \in W^{\perp}$ である。

A の固有値 $\lambda \in \mathbb{C}$ と固有ベクトル $v \in \mathbb{C}^n \setminus \{0\}$ をとる. $x,y \in \mathbb{C}^n$ について標準エルミート内積 $(x,y) = {}^t x \overline{y}$ を定める. $\lambda(v,v) = (Av,v) = (v,\overline{t} \overline{A}v) = (v,\overline{\lambda}v) = \overline{\lambda}(v,v)$ である. (v,v) > 0 より $\lambda = \overline{\lambda}$ である. よって $\lambda \in \mathbb{R}$ である.

(2)A の固有空間全ての直和を W とする. $\mathbb{R}^n=W\oplus W^\perp$ である. $f_A(W)\subset W$ となるから, $f_A|_{W^\perp}\colon W^\perp\to W^\perp$ を得る. \mathbb{C} による定数倍を加えることで \mathbb{R}^n を \mathbb{C} 上線形空間 \mathbb{C}^n に拡張する. W,W^\perp も同様に $\overline{W},\overline{W^\perp}$ に拡張する. $f_A|_{W^\perp}$ は $\overline{W^\perp}$ 上の線形変換に拡張できる. $W^\perp\neq\{0\}$ なら $f_A|_{\overline{W^\perp}}$ の固有値 λ と固有ベクトル $v\neq 0$ をとれる. $u=0+v\in \overline{W}\oplus \overline{W^\perp}$ とする. $Au=\lambda u$ である. λ は f_A の固有値であるから $\lambda\in\mathbb{R}$ である. よって $u\in\mathbb{R}^n$ としてよい. $u\in W^\perp$ となるがこれは W の定義に矛盾. よって $W^\perp=\{0\}$.

 f_A の固有値 λ と固有ベクトル x について $\mathrm{Span}\{x\} = \mathrm{Span}\{x\}^{\perp \perp}$ であり、任意の $y \in \mathrm{Span}\{x\}^{\perp}$ について $(y, {}^t A x) = (A y, x) = 0$ より ${}^t A x \in \mathrm{Span}\{x\}$ である。よって ${}^t A x = \mu x$ とできる。 $\lambda(x, x) = (A x, x) = (x, {}^t A x) = (x, \mu x) = \mu(x, x)$ である。(x, x) > 0 より $\lambda = \mu$ である。

 \mathbb{R}^n の任意の元 x は固有ベクトル v_1,\ldots,v_n の線形結合で表せる. $x=\sum_{i=1}^n a_i v_i$ とする. $Ax=\sum_{i=1}^n a_i A v_i = \sum_{i=1}^n a_i \lambda_i v_i = t A x$ である. よって A=t A である.

 $\boxed{3}$ (1) 任意の $x,y\in[0,1]^\infty$ に対して $|x_k-y_k|\leq 1$ である.よって $\sum\limits_{k=1}^\infty 2^{-k}|x_k-y_k|\leq \sum\limits_{k=1}^\infty 2^{-k}=1$ である.よって d は $[0,1]^\infty imes[0,1]^\infty$ から $\mathbb R$ への写像である.

x=y なら d(x,y)=0 である. また d(x,y)=0 なら $\sum\limits_{k=1}^{\infty}2^{-k}|x_k-y_k|=0$ であるから $x_k=y_k$ である. よって d(x,y)=0 なら x=y である. d(x,y)=d(y,x) は明らか.

x,y,z について $\sum\limits_{k=1}^{n}2^{-k}|x_k-z_k|\leq\sum\limits_{k=1}^{n}2^{-k}|x_k-y_k|+\sum\limits_{k=1}^{n}2^{-k}|y_k-z_k|$ である. $n\to\infty$ とすると $\sum\limits_{k=1}^{\infty}2^{-k}|x_k-z_k|\leq\sum\limits_{k=1}^{\infty}2^{-k}|x_k-y_k|+\sum\limits_{k=1}^{\infty}2^{-k}|y_k-z_k|$ である. よって $d(x,z)\leq d(x,y)+d(y,z)$ である. よって d は距離.

 $(2)x_n \to a$ とする. $d(x_n,a) = \sum\limits_{k=1}^\infty 2^{-k}|x_{n,k}-a_k| \geq 2^{-i}|x_{n,i}-a_i| \to 0 \quad (n\to\infty)$ である. よって任意の k に対して $x_{n,k}\to a_k$.

任意の k に対して $x_{n,k} \to a_k$ とする. 任意の ε に対して $2^{1-n_0} \le \varepsilon$ なる n_0 が存在する. このとき $\sum\limits_{k=n_0}^\infty 2^{-k}|x_{n,k}-a_k| \le 2^{1-n_0} \le \varepsilon$ である. 1 から n_0-1 までの整数 k について,ある N_k が存在して $n \ge N_k$ な

ら $|x_{n,k} - a_k| \le \varepsilon$ である. $N = \max\{N_1, \dots, N_{n_0-1}\}$ とする. このとき $\sum\limits_{k=1}^{n_0-1} 2^{-k} |x_{n,k} - a_k| \le \sum\limits_{k=1}^{n_0-1} 2^{-k} \varepsilon \le 2\varepsilon$ である. よって $n \ge N$ なら $d(x_n, a) \le 3\varepsilon$ であるから $x_n \to a$ である.

 $(3)\{x_{n,k}\}_{k=1}^{\infty}$ は有界閉区間 [0,1] 内の点列であるから,収束部分列を必ずもつ.したがって収束部分列 $\{x_{n,k_j^{(n)}}\}_{j=1}^{\infty}$ に対して数列 $\{x_{n+1,k_j^{(n)}}\}_{j=1}^{\infty}$ も収束部分列 $\{x_{n+1,k_j^{(n+1)}}\}_{j=1}^{\infty}$ を持つ.このとき $\{k_j^{(n+1)}\}_{j=1}^{\infty}$ は $\{k_j^{(n)}\}_{j=1}^{\infty}$ の部分列である.これが任意の n について成り立つから数列 $\{k_j^{(1)}\}_{j=1}^{\infty}, \{k_j^{(2)}\}_{j=1}^{\infty}, \dots$ を得て,それぞれ前の数列の部分列となっている.数列 $\{s_n\}_{n=1}^{\infty}$ を $s_n=k_n^{(n)}$ で定める. $\{s_n\}_{n=1}^{\infty}$ は全ての m について n>m では $\{k_j^{(m)}\}_{j=1}^{\infty}$ の部分列となっている.したがって $\{x_{s_n,k}\}_{n=1}^{\infty}$ は収束列になっている.よって $\{x_{s_n}\}_{n=1}^{\infty}$ は収束列である.

$$\int_{C_r} \frac{e^{iz}}{z} dz = \int_0^{\pi} \frac{e^{ire^{i\theta}}ire^{i\theta}}{re^{i\theta}} d\theta = \int_0^{\pi} ie^{ire^{i\theta}} d\theta = \int_0^{\pi} ie^{ir\cos\theta} e^{-r\sin\theta} d\theta$$

$$\int_{C_r} \left| \frac{e^{iz}}{z} \right| dz = \int_0^{\pi} \left| e^{-r\sin\theta} \right| d\theta \le \int_0^{\pi} d\theta = \pi$$

である. よってルベーグの収束定理から

$$\lim_{r\to 0} \int_{C_r} \frac{e^{iz}}{z} dz = \int_0^{\pi} i d\theta = \pi i, \quad \lim_{r\to \infty} \left| \int_{C_r} \frac{e^{iz}}{z} dz \right| \le \lim_{r\to \infty} \int_0^{\pi} \left| e^{-r\sin\theta} \right| d\theta = \int_0^{\pi} 0 d\theta = 0$$

(2)

r>arepsilon>0 に対して z=arepsilon から z=r までの積分経路を $\Gamma_{arepsilon,r}^+$ とする. z=-r から z=-arepsilon までの積分経路を $\Gamma_{arepsilon,r}^-$ とする.

$$\int_{\Gamma_{\varepsilon,r}^{+}} \frac{e^{iz}}{z} dz = \int_{\varepsilon}^{r} \frac{e^{ix}}{x} dx = \int_{\varepsilon}^{r} \frac{\cos x + i \sin x}{x} dx$$

$$\int_{\Gamma^{-}} \frac{e^{iz}}{z} dz = \int_{-r}^{-\varepsilon} \frac{e^{ix}}{x} dx = \int_{r}^{\varepsilon} -\frac{\cos x - i \sin x}{-x} dx = \int_{\varepsilon}^{r} \frac{-\cos x + i \sin x}{x} dx$$

である.積分経路 $\Gamma_{\varepsilon,r}^+,C_r,\Gamma_{\varepsilon,r}^-,-C_\varepsilon$ によってできる閉曲線 Γ を考えると,被積分関数は原点を除いて正則であるから, $\int_{\Gamma}\frac{e^{iz}}{z}dz=0$ である.よって

$$0 = \int_{\Gamma_{\varepsilon,r}^{+}} \frac{e^{iz}}{z} dz + \int_{C_{r}} \frac{e^{iz}}{z} dz + \int_{\Gamma_{\varepsilon,r}^{-}} \frac{e^{iz}}{z} dz + \int_{-C_{\varepsilon}} \frac{e^{iz}}{z} dz$$

$$= \int_{\varepsilon}^{r} \frac{\cos x + i \sin x}{x} dx + \int_{\varepsilon}^{r} \frac{-\cos x + i \sin x}{x} dx + I(r) - I(\varepsilon)$$

$$= 2i \int_{\varepsilon}^{r} \frac{\sin x}{x} dx + I(r) - I(\varepsilon) \to 2i \int_{0}^{\infty} \frac{\sin x}{x} dx - \pi i \quad (r \to \infty)$$

したがって $\int_0^\infty \frac{\sin x}{x} dx = \pi/2$ である.