Gases ideales

2uímica 15 Cursado 2018 ¿Por qué muchas sustancias existen en la naturaleza en estado gaseoso

¿Cuáles son los gases más importantes presentes en la naturaleza?

¿Todos los gases son compatibles con la vida?

¿Qué característica particular presenta el estado gaseoso?

Composición del aire

Componente		Concentración aproximada	
·Nitrógeno	(N)	78.03% en volumen	
• Oxígeno	(O)	20.99% en volumen	
• Dióxido de Carbono	(CO ₂)	0.03% en volumen	
• Argón	(Ar)	0.94% en volumen	
• Neón	(Ne)	0.00123% en volumen	
• Helio	(He)	0.0004% en volumen	
Kriptón	(Kr)	0.00005% en volumen	
• Xenón	(Xe)	0.00006% en volumen	
 Hidrógeno 	(H)	0.01% en volumen	
Metano	(CH ₄)	0.0002% en volumen	
Óxido nitroso	(N ₂ O)	0.00005% en volumen	
Vapor de Agua	(H ₂ O)	Variable	
• Ozono	(O ₃)	Variable	
• Partículas		Variable	

- Los gases tienden a ocupar el mayor volumen posible
- No tienen ni forma ni volumen propio
- >Son compresibles
- El volumen de un gas varía con la Temperatura, la Presión y el número de moles. En general estas variaciones son independientes de la naturaleza del gas.

¿Por qué?

Particularidad del estado gaseoso

El volumen de un gas es función de la presión P, la temperatura T y número de moles n

Cómo se mide la presión atmosférica?

Experiencia de Torricelli

¿Hasta cuándo asciende el Hg por la columna?

_____ 760 mm Hg = 1 atm

Dispositivo empleado para determinar la variación de los parámetros P, T, V en un gas

Relación Presión-Volumen: Ley de Boyle

Disminuye el volumen

Crece el N° de partículas por unidad de volumen

C₁ depende del número de partículas y de la temperatura

Se incrementa el número de colisiones por segundo

Se incrementa la presión

Volumen	Presión	PxV
(L)	(atm)	(atm L)
1	4	4
2	2	4
4	1	4

$$V \times P = C_{(T, n)}$$

Relación temperatura-volumen Ley de Charles

P y n se mantienen constantes

Sólo varía el volumen en función de la temperatura

$$V/T = C_2$$

C₂ depende del número de partículas y de la presión

* A -273,15 °C, el V de un gas es teóricamente cero

* Vy t (en °C) no varían de una forma directamente proporcional

* Se define una temperatura absoluta o Kelvin T

$$T = 273,15 + t (^{\circ}C)$$

* V y T (en K) varían de una forma directamente proporcional

iEn la escala Kelvin no hay temperaturas negativas!

Relación entre presión y temperatura Ley de Gay-Lussac

A V constante, la presión se incrementa con la temperatura absoluta T

$$P/T = C_3$$

C₃ depende del número de partículas y del volumen

Relación entre número de partículas y volumen: Avogadro

 $V/n = C_4$

C₄ depende de la temperatura y de la presión

Ley general de los gases ideales

Por Boyle

 $V \propto 1/P$

Por Charles

 $V \propto T$

Por Avogadro

 $V \propto n$

De la combinación de las leyes anteriores:

$$V \propto \frac{nT}{P}$$

R: constante universal de los gases

$$V = R \times \frac{nT}{P}$$

$$* \& Cu\'al es su valor? 0,08205 atm*L/(K*mol)$$

Ley de Boyle P₁V₁=P₂V₂

P

Ley de Gay-Lussac

$$\frac{P_1}{T_1} = \frac{P_2}{T_2}$$

$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

Ley de Charles

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

Ley de Dalton de las presiones parciales

Ilustración de la ley de Dalton

✓ Para una mezcla de gases A y B;

$$P_{\text{mezcla}} = P_A + P_B$$

- √P_A es la presión que ejercería el gas A si estuviera sólo en el recipiente
- ✓ Lo mismo ocurre con P_B

Teoría cinético-molecular de los gases ideales

Postulados:

- 1- Las partículas de un gas ideal se consideran puntuales
- 2- Las partículas se encuentran en continuo movimiento al azar chocando entre sí y con las paredes del recipiente que las contiene
- 3- Los choques entre las partículas son perfectamente elásticos
- 4- La energía cinética media de las moléculas es directamente proporcional a la temperatura absoluta T.

Efusión y difusión

$$V \propto \frac{1}{\sqrt{M}}$$

$$V_{1} \propto rac{1}{\sqrt{M_{1}}} \qquad {
m Y} \qquad V_{2} \propto rac{1}{\sqrt{M_{2}}}$$

$$\frac{\mathsf{V}_1}{\mathsf{V}_2} = \sqrt{\frac{\mathsf{M}_2}{\mathsf{M}_1}}$$

Ley de Graham