Volumes of Solids of Revolution

FIGURE 6.8 The region (a) and solid of revolution (b) in Example 4.

Solids of Revolution: The Disk Method

The solid generated by rotating (or revolving) a plane region about an axis in its plane is called a **solid of revolution**. To find the volume of a solid like the one shown in Figure 6.8, we need only observe that the cross-sectional area A(x) is the area of a disk of radius R(x), the distance of the planar region's boundary from the axis of revolution. The area is then

$$A(x) = \pi(\text{radius})^2 = \pi[R(x)]^2.$$

So the definition of volume in this case gives

Volume by Disks for Rotation About the x-axis

$$V = \int_{a}^{b} A(x) \, dx = \int_{a}^{b} \pi [R(x)]^{2} \, dx.$$

This method for calculating the volume of a solid of revolution is often called the **disk** method because a cross-section is a circular disk of radius R(x).

EXAMPLE 4 The region between the curve $y = \sqrt{x}$, $0 \le x \le 4$, and the x-axis is revolved about the x-axis to generate a solid. Find its volume.

Solution We draw figures showing the region, a typical radius, and the generated solid (Figure 6.8). The volume is

$$V = \int_{a}^{b} \pi [R(x)]^{2} dx$$

$$= \int_{0}^{4} \pi [\sqrt{x}]^{2} dx$$

$$= \pi \int_{0}^{4} x dx = \pi \frac{x^{2}}{2} \Big|_{0}^{4} = \pi \frac{(4)^{2}}{2} = 8\pi.$$
Radius *i* rotation

EXAMPLE 5 The circle

$$x^2 + y^2 = a^2$$

is rotated about the x-axis to generate a sphere. Find its volume.

Solution We imagine the sphere cut into thin slices by planes perpendicular to the *x*-axis (Figure 6.9). The cross-sectional area at a typical point *x* between -a and a is

$$A(x) = \pi y^2 = \pi (a^2 - x^2).$$
 $R(x) = \sqrt{a^2 - x^2}$ for rotation around x-axis

Therefore, the volume is

$$V = \int_{-a}^{a} A(x) dx = \int_{-a}^{a} \pi(a^2 - x^2) dx = \pi \left[a^2 x - \frac{x^3}{3} \right]_{-a}^{a} = \frac{4}{3} \pi a^3.$$

The axis of revolution in the next example is not the x-axis, but the rule for calculating the volume is the same: Integrate π (radius)² between appropriate limits.

EXAMPLE 6 Find the volume of the solid generated by revolving the region bounded by $y = \sqrt{x}$ and the lines y = 1, x = 4 about the line y = 1.

FIGURE 6.9 The sphere generated by rotating the circle $x^2 + y^2 = a^2$ about the *x*-axis. The radius is $R(x) = y = \sqrt{a^2 - x^2}$ (Example 5).

Solution We draw figures showing the region, a typical radius, and the generated solid (Figure 6.10). The volume is

$$V = \int_{1}^{4} \pi [R(x)]^{2} dx$$

$$= \int_{1}^{4} \pi \left[\sqrt{x} - 1\right]^{2} dx$$
Radius $R(x) = \sqrt{x} - 1$ for rotation around $y = 1$

$$= \pi \int_{1}^{4} \left[x - 2\sqrt{x} + 1\right] dx$$
Expand integrand.
$$= \pi \left[\frac{x^{2}}{2} - 2 \cdot \frac{2}{3} x^{3/2} + x\right]_{1}^{4} = \frac{7\pi}{6}.$$
 Integrate.

FIGURE 6.10 The region (a) and solid of revolution (b) in Example 6.

To find the volume of a solid generated by revolving a region between the y-axis and a curve x = R(y), $c \le y \le d$, about the y-axis, we use the same method with x replaced by y. In this case, the circular cross-section is

$$A(y) = \pi[\text{radius}]^2 = \pi[R(y)]^2,$$

and the definition of volume gives

Volume by Disks for Rotation About the y-axis

$$V = \int_{c}^{d} A(y) \, dy = \int_{c}^{d} \pi [R(y)]^{2} \, dy.$$

Find the volume of the solid generated by revolving the region between the y-axis and the curve x = 2/y, $1 \le y \le 4$, about the y-axis.

We draw figures showing the region, a typical radius, and the generated solid (Figure 6.11). The volume is

$$V = \int_{1}^{4} \pi [R(y)]^{2} dy$$

$$= \int_{1}^{4} \pi \left(\frac{2}{y}\right)^{2} dy$$
Radius $R(y) = \frac{2}{y}$ for rotation around y-axis
$$= \pi \int_{1}^{4} \frac{4}{y^{2}} dy = 4\pi \left[-\frac{1}{y}\right]_{1}^{4} = 4\pi \left[\frac{3}{4}\right] = 3\pi.$$

Solution We draw figures showing the region, a typical radius, and the generated solid (Figure 6.12). Note that the cross-sections are perpendicular to the line x = 3 and have y-coordinates from $y = -\sqrt{2}$ to $y = \sqrt{2}$. The volume is

$$V = \int_{-\sqrt{2}}^{\sqrt{2}} \pi [R(y)]^2 dy \qquad y = \pm \sqrt{2} \text{ when } x = 3$$

$$= \int_{-\sqrt{2}}^{\sqrt{2}} \pi [2 - y^2]^2 dy \qquad \text{Radius } R(y) = 3 - (y^2 + 1) \text{ for rotation around axis } x = 3$$

$$= \pi \int_{-\sqrt{2}}^{\sqrt{2}} [4 - 4y^2 + y^4] dy \qquad \text{Expand integrand.}$$

$$= \pi \left[4y - \frac{4}{3}y^3 + \frac{y^5}{5} \right]_{-\sqrt{2}}^{\sqrt{2}} \qquad \text{Integrate.}$$

$$= \frac{64\pi\sqrt{2}}{15}.$$

FIGURE 6.12 The region (a) and solid of revolution (b) in Example 8.

FIGURE 6.11 The region (a) and part of the solid of revolution (b) in Example 7.

FIGURE 6.13 The cross-sections of the solid of revolution generated here are washers, not disks, so the integral $\int_a^b A(x) dx$ leads to a slightly different formula.

Solids of Revolution: The Washer Method

If the region we revolve to generate a solid does not border on or cross the axis of revolution, the solid has a hole in it (Figure 6.13). The cross-sections perpendicular to the axis of revolution are *washers* (the purplish circular surface in Figure 6.13) instead of disks. The dimensions of a typical washer are

Outer radius: R(x)

Inner radius: r(x)

The washer's area is

$$A(x) = \pi [R(x)]^2 - \pi [r(x)]^2 = \pi ([R(x)]^2 - [r(x)]^2).$$

Consequently, the definition of volume in this case gives

Volume by Washers for Rotation About the x-axis

$$V = \int_a^b A(x) \, dx = \int_a^b \pi([R(x)]^2 - [r(x)]^2) \, dx.$$

This method for calculating the volume of a solid of revolution is called the **washer method** because a thin slab of the solid resembles a circular washer of outer radius R(x) and inner radius r(x).

Washer cross-section Outer radius: R(x) = -x + 3Inner radius: $r(x) = x^2 + 1$

FIGURE 6.14 (a) The region in Example 9 spanned by a line segment perpendicular to the axis of revolution. (b) When the region is revolved about the *x*-axis, the line segment generates a washer.

EXAMPLE 9 The region bounded by the curve $y = x^2 + 1$ and the line y = -x + 3 is revolved about the x-axis to generate a solid. Find the volume of the solid.

Solution We use the four steps for calculating the volume of a solid as discussed early in this section.

- Draw the region and sketch a line segment across it perpendicular to the axis of revolution (the red segment in Figure 6.14a).
- 2. Find the outer and inner radii of the washer that would be swept out by the line segment if it were revolved about the *x*-axis along with the region.

These radii are the distances of the ends of the line segment from the axis of revolution (Figure 6.14).

Outer radius: R(x) = -x + 3

Inner radius: $r(x) = x^2 + 1$

3. Find the limits of integration by finding the *x*-coordinates of the intersection points of the curve and line in Figure 6.14a.

$$x^2 + 1 = -x + 3$$

$$x^2 + x - 2 = 0$$

$$(x+2)(x-1)=0$$

$$x = -2, \quad x = 1$$

4. Evaluate the volume integral.

FIGURE 6.15 (a) The region being rotated about the *y*-axis, the washer radii, and limits of integration in Example 10. (b) The washer swept out by the line segment in part (a).

$$V = \int_{a}^{b} \pi([R(x)]^{2} - [r(x)]^{2}) dx$$
Rotation around x-axis
$$= \int_{-2}^{1} \pi((-x+3)^{2} - (x^{2}+1)^{2}) dx$$
Values from Steps 2 and 3
$$= \pi \int_{-2}^{1} (8 - 6x - x^{2} - x^{4}) dx$$
Simplify algebraically.
$$= \pi \left[8x - 3x^{2} - \frac{x^{3}}{3} - \frac{x^{5}}{5} \right]_{-2}^{1} = \frac{117\pi}{5}$$

To find the volume of a solid formed by revolving a region about the y-axis, we use the same procedure as in Example 9, but integrate with respect to y instead of x. In this situation the line segment sweeping out a typical washer is perpendicular to the y-axis (the axis of revolution), and the outer and inner radii of the washer are functions of y.

EXAMPLE 10 The region bounded by the parabola $y = x^2$ and the line y = 2x in the first quadrant is revolved about the y-axis to generate a solid. Find the volume of the solid.

Solution First we sketch the region and draw a line segment across it perpendicular to the axis of revolution (the *y*-axis). See Figure 6.15a.

The radii of the washer swept out by the line segment are $R(y) = \sqrt{y}$, r(y) = y/2 (Figure 6.15).

The line and parabola intersect at y = 0 and y = 4, so the limits of integration are c = 0 and d = 4. We integrate to find the volume:

$$V = \int_{c}^{d} \pi([R(y)]^{2} - [r(y)]^{2}) dy$$
Rotation around y-axis
$$= \int_{0}^{4} \pi\left(\left[\sqrt{y}\right]^{2} - \left[\frac{y}{2}\right]^{2}\right) dy$$
Substitute for radii and limits of integration.
$$= \pi \int_{0}^{4} \left(y - \frac{y^{2}}{4}\right) dy = \pi \left[\frac{y^{2}}{2} - \frac{y^{3}}{12}\right]_{0}^{4} = \frac{8}{3}\pi.$$