Aula 4 – Álgebra de Boole

Prof. Dr. Emerson Carlos Pedrino

024376 – Circuitos Digitais

DC/UFSCar

www.dc.ufscar.br/~emerson

(a) Complemento

 \bar{A} = complemento de A

•
$$A = 0 \rightarrow \bar{A} = 1$$

•
$$A = 1 \rightarrow \bar{A} = 0$$

(c) Multiplicação

$$0 \cdot 0 = 0$$

$$0.1 = 0$$

$$1.0 = 0$$

$$1.1 = 1$$

$$A \cdot 0 = 0$$

$$A . 1 = A$$

$$A \cdot A = A$$

$$A \cdot A = 0$$

Propriedades

1.2. PROPRIEDADES

(a) Comutativa

 \bullet A \cdot B = B \cdot A

A + (B+C) = (A+B) + C= A + B + C

• $A \cdot (BC) = (AB) \cdot C = ABC$

$$A \cdot (B+C) = AB + AC$$

Teoremas de De Morgan

Teoremas de De Morgan

Equivalência entre Blocos Lógicos

Equivalência entre Blocos Lógicos

Outras Identidades

$$(a) = A$$

(b)
$$A + A \cdot B = A$$

(c)
$$A + \overline{A}B = A + B$$

(d)
$$(A + B) (A + C) = A + B \cdot C$$

Exercícios

Simplificar as expressões:

1.
$$S = ABC + ABC$$

2.
$$S = (A + B) \cdot (A + B)$$

3.
$$S = ABC + AC + AB$$

4.
$$S = (\overline{A} + C) \cdot (\overline{A} + D)$$

Exercícios Extras de Simplificação*©

(a)
$$x = ABC + \overline{A}C$$

(b) $y = (Q + R)(\overline{Q} + \overline{R})$
(c) $w = ABC + A\overline{B}C + \overline{A}$
(d) $q = \overline{RST}(\overline{R} + S + T)$
(e) $x = \overline{A}\overline{B}\overline{C} + \overline{A}BC + ABC + A\overline{B}\overline{C} + A\overline{B}C$
(f) $z = (B + \overline{C})(\overline{B} + C) + \overline{A} + B + \overline{C}$
(g) $y = (\overline{C} + \overline{D}) + \overline{A}C\overline{D} + A\overline{B}\overline{C} + \overline{A}\overline{B}CD + AC\overline{D}$
(h) $x = AB(\overline{C}D) + \overline{A}BD + \overline{B}\overline{C}\overline{D}$

Universalidade das Portas NAND e NOR

- Todas as expressões Booleanas consistem de combinações de funções OR, AND e NOT;
- Portas NAND e NOR são universais, ou seja, podem se "transformar" em qualquer outra porta lógica e podem, portanto, ser usadas para representar qualquer expressão Booleana;

Inversor usando Porta NAND

Inversor usando Porta NAND

Porta AND usando 2 Portas NAND

Porta OR usando 3 Portas NAND

Porta OR usando 3 Portas NAND

Inversor usando Porta NOR

Porta OR usando 2 Portas NOR

Porta AND usando 3 Portas NOR

Porta AND usando 3 Portas NOR

Resumo

AND
$$A \rightarrow B$$
 $A \rightarrow B$ $A \rightarrow B$

Exercícios*©

• Fazer todos os exercícios do Cap. 3 do livro texto, menos os de HDL.

Referências

- Tocci, R. J. et al. Sistemas Digitais (princípios e aplicações), 10a Edição. Pearson, 2007.
- Vieira, M. A. C. SEL-0414-Sistemas Digitais, EESC-USP.