

¹MIT CSAIL

Songlin Yang¹ Bailin Wang¹ Yu Zhang² Yikang Shen³ Yoon Kim¹

²Soochow University

³MIT-IBM Watson Al Lab

Summary

DeltaNet: a variant of linear Transformer whose update is given by the Delta Rule

	Softmax Attention	Linear Attention	DeltaNet
Training (Parallel)	$\mathbf{O} = \operatorname{softmax} \left((\mathbf{Q} \mathbf{K}^{T}) \odot \mathbf{M} \right) \mathbf{V}$	$\mathbf{S}_{[t+1]} = \mathbf{S}_{[t]} + \mathbf{V}_{[t]}^T \mathbf{K}_{[t]}$ $\mathbf{O}_{[t]} = \mathbf{Q}_{[t]} \mathbf{S}_{[t]}^T + \underbrace{\left((\mathbf{Q}_{[t]} \mathbf{K}_{[t]}^T) \odot \mathbf{M} \right) \mathbf{V}_{[t]}}_{\text{inter-chunk}}$ intra-chunk	??? (This work)
Inference (Iterative)	$oldsymbol{o}_t = rac{\sum_{i=1}^t \exp(oldsymbol{q}_t oldsymbol{k}_i^T) oldsymbol{v}_i}{\sum_{i=1}^t \exp(oldsymbol{q}_t oldsymbol{k}_i^T)}$	$egin{aligned} \mathbf{S}_t &= \mathbf{S}_{t-1} + oldsymbol{v}_t oldsymbol{k}_t^{^{T}} \ oldsymbol{o}_t &= \mathbf{S}_t oldsymbol{q}_t \end{aligned}$	$egin{aligned} \mathbf{S}_t &= \mathbf{S}_{t-1} (\mathbf{I} - eta_t oldsymbol{k}_t oldsymbol{k}_t^{^T}) + eta_t oldsymbol{v}_t oldsymbol{k}_t^{^T} \ oldsymbol{o}_t &= \mathbf{S}_t oldsymbol{q}_t \end{aligned}$

Our contributions

- Revisit and demonstrate DeltaNet's effectiveness on in-context retrieval tasks.
- Develop a new parallel training algorithm to scale up DeltaNet.
- Conduct billion-scale experiments for DeltaNet and two hybrid models, showing strong language modeling and recall performance

DeltaNet is a better RNN in-context learner

DeltaNet [Schlag, Irie and Schmidhuber, '21]: Use vector representations to retrieve and update memory ("Fast Weight Programmers")

Query, key and value vectors are computed Old memory is retrieved using key

New memory combines current value and old memory State matrix is updated

Final output is computed using query

Performance on Synthetic In-context Tasks

Model	Compress	Fuzzy Recall	In-Context Recall	Memorize	Noisy Recall	Selective Copy	Average
Transformer	51.6	29.8	94.1	85.2	86.8	99.6	74.5
Hyena	45.2	7.9	81.7	89.5	78.8	93.1	66.0
Multihead Hyena	44.8	14.4	99.0	89.4	98.6	93.0	73.2
Mamba	52.7	6.7	90.4	89.5	90.1	86.3	69.3
GLA	38.8	6.9	80.8	63.3	81.6	88.6	60.0
DeltaNet	42.2	35.7	100	52.8	100	100	71.8

Table 1. MAD (Poli et al, 2024).

Parallelizing DeltaNet across sequence dimension $\mathbf{S}_{t} = \mathbf{S}_{t-1} - \beta_{t} \left(\mathbf{S}_{t-1} \boldsymbol{k}_{t} \right) \boldsymbol{k}_{t}^{\mathsf{T}} + \beta_{t} \boldsymbol{v}_{t} \boldsymbol{k}_{t}^{\mathsf{T}} = \mathbf{S}_{t-1} (\mathbf{I} - \beta_{t} \boldsymbol{k}_{t} \boldsymbol{k}_{t}^{\mathsf{T}}) + \beta_{t} \boldsymbol{v}_{t} \boldsymbol{k}_{t}^{\mathsf{T}} = \sum_{i=1}^{t} (\beta_{i} \boldsymbol{v}_{i} \boldsymbol{k}_{i}^{\mathsf{T}} \prod_{j=i+1}^{t} (\mathbf{I} - \beta_{j} \boldsymbol{k}_{j} \boldsymbol{k}_{j}^{\mathsf{T}}))$ defined as: \mathbf{P}_{i}^{t}

where \mathbf{S}_t and $\mathbf{P}_t := P_0^t$ allow for compact WY representation.

$$\mathbf{P}_t = \mathbf{I} - \sum_{i=1}^t oldsymbol{w}_i oldsymbol{k}_i^{\!\mathsf{T}}, oldsymbol{w}_t = eta_t \left(oldsymbol{k}_t - \sum_{i=1}^{t-1} oldsymbol{w}_i (oldsymbol{k}_i^{\!\mathsf{T}} oldsymbol{k}_i)
ight), \qquad \qquad \mathbf{S}_t = \sum_{i=1}^t oldsymbol{u}_i oldsymbol{k}_i^{\!\mathsf{T}}, oldsymbol{u}_t = eta_t \left(oldsymbol{v}_t - \sum_{i=1}^{t-1} oldsymbol{u}_i (oldsymbol{k}_i^{\!\mathsf{T}} oldsymbol{k}_i^r)
ight)$$

Performance

Table 2. Performance comparison under the same training settings. +SWA indicates interleaving DeltaNet layers and Sliding Window Attention layers as in Samba (Ren et al, 2024). +GlobalAttn means inserting two global attention layers at layer 2 and N/2-1 as in H3 (Fu et al, 2023).

Scale	Model	Wiki. ppl↓	LM Eval. acc. ↑	Recall Tasks FDA SWD SQD	State expansion
340M Params	Transformer++	28.39	41.2	21.4 42.2 22.1	N/A
15B Tokens	RetNet	32.33	41.0	2.9 13.3 27.6	512x
	Mamba	28.39	41.8	2.1 12.4 23.0	64x
	GLA	28.65	41.5	8.1 18.6 27.2	128x
	DeltaNet	28.24	42.1	12.8 26.4 28.9	128x
	+ SWA	27.06	42.1	18.8 39.3 32.5	≈1000x
	+ GlobalAttn	27.51	42.1	23.1 42.9 32.1	N/A
1.3B Params	Transformer++	16.85	50.9	21.4 42.2 22.1	N/A
100B Tokens	RetNet	18.64	48.9	14.3 42.8 34.7	512x
	Mamba	17.06	50.0	6.2 41.4 35.2	64x
	GLA	17.22	51.0	19.9 50.6 42.6	256x
	DeltaNet	16.87	51.6	17.2 49.5 37.4	128x
	+ SWA	16.56	52.1	22.3 53.3 43.3	≈1000x
	+ GlobalAttn	16.55	51.8	29.8 71.0 43.0	N/A

Model	ARC	HellaSwag	OBQA	PIQA	WinoGrande	MMLU	Average
Llama-3.2-3B	59.1	73.6	43.4	77.5	69.2	54.1	62.8
PowerLM-3B	60.5	74.6	43.6	79.9	70.0	45.0	62.3
DeltaNet-3B	60.4	72.8	41.0	78.5	65.7	40.7	59.8
RecurrentGemma-2B	57.0	71.1	42.0	78.2	67.6	31.8	57.9
RWKV-6-3B	49.5	68.6	40.6	76.8	65.4	28.4	54.9
Mamba-2.7B	50.3	65.3	39.4	75.8	63.1	26.1	53.3

Towards a Unifying Framework for Efficient Recurrent Models

Autoregressive transformations $x_1 \dots x_T \mapsto o_1 \dots o_T$ (typically) given by:

 $\mathbf{S}_t = \mathbf{S}_{t-1} ullet \mathbf{M}_t + oldsymbol{v}_t oldsymbol{k}_t^{'}, \qquad oldsymbol{o}_t = \mathbf{S}_t oldsymbol{q}_t,$

where ullet is an associate operator and $\mathbf{M}_t, oldsymbol{v}_t, oldsymbol{k}_t, oldsymbol{q}_t$ are (potentially nonlinear) functions of $oldsymbol{x}_t$.

Model	Recurrence	Memory read-out
Linear Attention	$\mathbf{S}_t = \mathbf{S}_{t-1} + oldsymbol{v}_t oldsymbol{k}_t^{^{T}}$	$oldsymbol{o}_t = \mathbf{S}_t oldsymbol{q}_t$
+ Kernel	$\mathbf{S}_t = \mathbf{S}_{t-1} + \boldsymbol{v}_t \phi(\boldsymbol{k}_t)^{^T}$	$oldsymbol{o}_t = \mathbf{S}_t \phi(oldsymbol{q}_t)$
+ Normalization	$\mathbf{S}_t = \mathbf{S}_{t-1} + \boldsymbol{v}_t \phi(\boldsymbol{k}_t)^{^{T}}, \ \ \boldsymbol{z}_t = \boldsymbol{z}_{t-1} + \phi(\boldsymbol{k}_t)$	$oldsymbol{o}_t = \mathbf{S}_t \phi(oldsymbol{q}_t)/(oldsymbol{z}_t^{^{T}} \phi(oldsymbol{q}_t))$
DeltaNet	$\mathbf{S}_t = \mathbf{S}_{t-1}(\mathbf{I} - \beta_t \boldsymbol{k}_t \boldsymbol{k}_t^T) + \beta_t \boldsymbol{v}_t \boldsymbol{k}_t^T$	$oldsymbol{o}_t = \mathbf{S}_t oldsymbol{q}_t$
Gated RFA	$\mathbf{S}_{t} = g_{t}\mathbf{S}_{t-1} + (1 - g_{t})\boldsymbol{v}_{t}\boldsymbol{k}_{t}^{T}, \boldsymbol{z}_{t} = g_{t}\boldsymbol{z}_{t-1} + (1 - g_{t})\boldsymbol{k}_{t}$	$oldsymbol{o}_t = \mathbf{S}_t oldsymbol{q}_t / (oldsymbol{z}_t^{^{T}} oldsymbol{q}_t)$
ABC	$\mathbf{S}_t^{m{k}} = \mathbf{S}_{t-1}^{m{k}} + m{k}_t m{\phi}_t^{^T}, \ \ \mathbf{S}_t^{m{v}} = \mathbf{S}_{t-1}^{m{v}} + m{v}_t m{\phi}_t^{^T}$	$\boldsymbol{o}_t = \mathbf{S}_t^{\boldsymbol{v}} \operatorname{softmax} \left(\mathbf{S}_t^{\boldsymbol{k}} \boldsymbol{q}_t \right)$
RetNet	$\mathbf{S}_t = \gamma \mathbf{S}_{t-1} + \boldsymbol{v}_t \boldsymbol{k}_t^{T}$	$oldsymbol{o}_t = \mathbf{S}_t oldsymbol{q}_t$
Mamba	$\mathbf{S}_t = \mathbf{S}_{t-1} \odot \exp(-(oldsymbol{lpha}_t 1^{^{T}}) \odot \exp(oldsymbol{A})) + (oldsymbol{lpha}_t \odot oldsymbol{v}_t) oldsymbol{k}_t^{^{T}}$	$oldsymbol{o}_t = \mathbf{S}_t oldsymbol{q}_t + oldsymbol{d}\odot oldsymbol{v}_t$
GLA	$\mathbf{S}_t = \mathbf{S}_{t-1} \odot (1oldsymbol{lpha}_t^{^T}) + oldsymbol{v}_t oldsymbol{k}_t^{^T} = \mathbf{S}_{t-1} Diag(oldsymbol{lpha}_t) + oldsymbol{v}_t oldsymbol{k}_t^{^T}$	$oldsymbol{o}_t = \mathbf{S}_t oldsymbol{q}_t$
RWKV-6	$\mathbf{S}_t = \mathbf{S}_{t-1} Diag(oldsymbol{lpha}_t) + oldsymbol{v}_t oldsymbol{k}_t^T$	$oldsymbol{o}_t = (\mathbf{S}_{t-1} + (oldsymbol{d}\odotoldsymbol{v}_t)oldsymbol{k}_t^{^{T}})oldsymbol{q}_t$
HGRN-2	$\mathbf{S}_t = \mathbf{S}_{t-1} Diag(oldsymbol{lpha}_t) + oldsymbol{v}_t (1 - oldsymbol{lpha}_t)^{^T}$	$oldsymbol{o}_t = \mathbf{S}_t oldsymbol{q}_t$
mLSTM	$\mathbf{S}_t = f_t \mathbf{S}_{t-1} + i_t \boldsymbol{v}_t \boldsymbol{k}_t^T, \boldsymbol{z}_t = f_t \boldsymbol{z}_{t-1} + i_t \boldsymbol{k}_t$	$oldsymbol{o}_t = \mathbf{S}_t oldsymbol{q}_t / \max\{1, oldsymbol{z}_t^{^T} oldsymbol{q}_t \}$
Mamba-2	$\mathbf{S}_t = \gamma_t \mathbf{S}_{t-1} + oldsymbol{v}_t oldsymbol{k}_t^{^T}$	$oldsymbol{o}_t = \mathbf{S}_t oldsymbol{q}_t$
GSA	$\mathbf{S}_t^{\boldsymbol{k}} = \mathbf{S}_{t-1}^{\boldsymbol{k}} \operatorname{Diag}(\boldsymbol{\alpha}_t) + \boldsymbol{k}_t \boldsymbol{\phi}_t^{T}, \mathbf{S}_t^{\boldsymbol{v}} = \mathbf{S}_{t-1}^{\boldsymbol{v}} \operatorname{Diag}(\boldsymbol{\alpha}_t) + \boldsymbol{v}_t \boldsymbol{\phi}_t^{T}$	$\boldsymbol{o}_t = \mathbf{S}_t^{\boldsymbol{v}} \operatorname{softmax} \left(\mathbf{S}_t^{\boldsymbol{k}} \boldsymbol{q}_t \right)$