Course code	Course Name	L-T-P -Credits	Year of Introduction
FS201	PRINCIPLES OF CHEMICAL ENGINEERING	3-1-0-4	2016

Prerequisite: Nil

Course Objectives

- To provide fundamental knowledge in chemical engineering.
- To familiarize the concept of material balance and energy balance calculations
- To understand the fundamentals of chemical engineering thermodynamics
- To understand the application of laws of thermodynamics

Syllabus

Basic Principles-Introduction to basic chemical calculations, Ideal gases and gas mixtures, Material balance-material balance without and with chemical reactions, Energy balance-enthalpy, specific heat, Fundamentals of Chemical Engineering Thermodynamics-thermodynamic system Application of laws of Thermodynamics-entropy, Maxwel relation, Reaction equilibria

Expected outcome.

- i. Understand the principles of chemical engineering
- ii. Solve problems with material balance and energy balance.
- iii. Apply the first and second laws of thermodynamics to chemical processes

Text Books:

- 1. K.V. Narayanan & B. Lakshmikutty : Stoichiometry and Process Calculations, PHI, New Delhi
- 2. K.V. Narayanan: A Textbook of Chemical Engineering Thermodynamics, PHI, New Delhi

References:

- 1. B.I Bhat & S.M. Vora: Stoichiometry, Tata McGraw Hill, New Delhi
- 2. Hougen O. A, Watson. K. M and Ragatz R. A, Chemical Process Principles (Part-II), 2nd Edition, CBS Publishers, 2004.
- 3. Smith J. M, H. C. Van Ness and M. M. Abbott, Introduction to Chemical Engineering Thermodynamics, 7th ed., McGraw-Hill, 2004.

Course Plan

Module	Contents	Hours	Sem.Exam
	2014		Marks
I	Basic Principles: Introduction to basic chemical calculations-mole concept, methods of expressing composition-mole fraction, weight fraction, volume fraction, concentration of liquid solutions- molarity, molality, normality, ppm. Ideal gases and gas mixtures- Ideal gas law, Amagat's law, Dalton's law, Henry's law, average molecular weight, density of gases, partial pressure and partial volume calculations	8	15%
II	Material Balance: Material balance without chemical reactions, simple calculations involving recycle ,bypass and purge streams Material balance with chemical reactions	10	20%

	Energy Balance: Energy balance ,heat capacity, specific heat		
III	and enthalpy, heat capacity of gases at constant pressure, heat capacity of gaseous mixtures, latent heats Enthalpy changes accompanying chemical reactions- standard heat of formation, standard heat of combustion and standard heat of reaction, Hess's law of heat summation	10	15%
	A DT A DIDITI IZATA	A . A	
IV	Fundamentals of Chemical Engineering Thermodynamics: Chemical thermodynamics - fundamental concepts and definitions- types of thermodynamic systems and properties- closed, open and isolated system- intensive and extensive properties- path and state functions	8	15%
	SECOND INTERNAL EXAMINATION		•
v	Application of laws of Thermodynamics First law of thermodynamics and applications, equation of state of gases, the principle of corresponding states Second law of thermodynamics- entropy, change in entropy, compression and expansion of fluids, Joule –Thomson expansion.	8	15%
VI	Reaction Equilibria Gibbbs Free energy change -Thermodynamic property relations, Maxwell relations- equilibrium constant, effect of	8	15%
	temperature on equilibrium constant. END SEMESTER EXAM		

QUESTION PAPER PATTERN:

Maximum Marks: 100 Duration: 3 Hours

Part – A: 5 MARK QUESTIONS

There will be two questions from module 2 and module 3 and one question each from remaining modules (5x8 = 40)

PART B: 10 MARK QUESTIONS

5 questions uniformly covering the first four modules. Each question can have maximum of three sub questions, if needed. Student has to answer any 3 questions ($3 \times 10 = 30 \text{ marks}$)

PART C: 15 MARK QUESTIONS

4 questions uniformly covering the last two modules. Each question can have maximum of four sub questions, if needed. Student has to answer any two questions

(2 x 15 = 30 marks)