Алгебра Страница 19

7 Лекция 25.04

Теорема 9 (Кэли). Всякая конечная группа G порядка n изоморфна подгруппе симметрической группы S_n .

Доказательство. Рассмотрим действие $G \times G \to G$ левыми сдвигами. Это задает гомоморфизм $a: G \to S(G)$. Это действие свободно, следовательно эффективно, что в свою очередь значит, что ker $a = \{e\}$. Тогда a инъективен. По теореме о гомоморфизме $G \cong G/\{e\} \cong \text{Im } a \subseteq S(G) = S_n$.

Кольца и поля

Определение 39. Кольцо — множество $(R, +, \times)$, которое удовлетворяет следующим аксиомам:

- 1. (R, +) абелева группа.
- 2. дистрибутивность

$$a(b+c) = ab + ac$$

$$(b+c)a = ba + ca$$

- 3. (R, \times) ассоциативно
- 4. $\exists 1 \in R, \forall a \in R : a \cdot 1 = 1 \cdot a = a$

Утверждение 5. $\forall a \in R : a \cdot 0 = 0 \cdot a = 0.$

Доказательство.
$$a \cdot 0 = a \cdot (0+0) = a \cdot 0 + a \cdot 0 \Leftrightarrow a \cdot 0 = 0$$

Следствие 12. Если $|R| \ge 2$, то $0 \ne 1$.

Определение 40. Кольцо R коммутативно, если умножение коммутативно, то есть $\forall a, b \in R: a \cdot b = b \cdot a$.

Примеры колец

- 1. Числовые кольца \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C}
- 2. Вычеты \mathbb{Z}_n
- 3. $M_n(\mathbb{R})$, где R кольцо
- 4. Многочлены $R[x], R[x_1, ..., x_n]$ от одной и от многих переменных
- 5. Формальные степенные ряды $R[[x]] = \left\{ \sum_{i=0}^{\infty} a_i x^i, a_i \in R \right\}$; справедливо $R[x] \subseteq R[[x]]$
- 6. Кольцо функций F(M,R), где M множество, R кольцо. $F(M,R) = \{f: M \to R\}$. Введем операции

$$(f_1 + f_2)(m) := f_1(m) + f_2(m), (f_1 \cdot f_2)(m) := f_1(m) \cdot f_2(m)$$

Нулем и единицей будут 0 и 1 соответственно.

Определение 41. В кольце R элемент $a \in R$ называется обратимым, если $\exists b \in R : ab = ba = 1$.

Замечание 6. Все обратимые элементы кольца образуют группу по умножению.

Определение 42. Элемент $a \in R$ ($a \neq 0$) называется левым (соответственно правым) делителем нуля, если $\exists b \in R$ ($b \neq 0$) : ab = 0 (соответственно ba = 0).

Замечание 7. Все делители нуля необратимы. Если ab = 0, и а обратим, то $a^{-1}ab = (a^{-1}a)b = b = 0$, но $b \neq 0$.

Алгебра Страница 20

Определение 43. Элемент $a \in R$ ($a \neq 0$) называется нильпотентным, если $\exists m \in \mathbb{N} : a^m = 0$.

Замечание 8. Нильпотент является делителем нуля, так как $a \cdot a^{m-1} = 0$, но $a, a^{m-1} \neq 0$.

Определение 44. Элемент $a \in R$ называется идемпотентом, если $a^2 = a$.

Определение 45. Поле K — коммутативное кольцо и любой ненулевой элемент обратим.

Пример. $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}_p$ (где p простое) — поля.

Определение 46. Подкольцо $(R', +, \times)$, где $R' \subseteq R$, определяется аналогично кольцу. Так же определяется подполе.

Определение 47. Алгебра — кольцо + векторное пространство над полем K. Оно задается как $(R, +, \times, \lambda)$, то есть можно умножать на скаляр $\lambda \in K$.

Примеры алгебр

- 1. Поле K алгебра над K.
- 2. $M_n(K)$ алгебра над K, dim = n^2
- 3. $K[x_1,...,x_n]$ алгебра над K, dim = ∞ (но счетная)
- 4. F(M,K) алгебра над K, dim = |M| (можно задать функции, которые в одной точке 1, а во всех остальных 0, и через них выразить все другие функции)

Определение 48. Подалгебра — подкольцо + подпространство.

Определение 49. Идеал I кольца R — подмножество, которое удовлетворяет 2 свойствам:

- 1. подгруппа по сложению
- 2. $\forall a \in I, r \in R : ar \in I, ra \in I$ (это для двустороннего идеала; аналогично определяются односторонние идеалы)

Замечание 9. Идеалы — это аналог нормальных подгрупп (по ним можно факторизовать).

Упражнение. $I = R \Leftrightarrow 1 \in I \Leftrightarrow$ в идеале есть обратимый элемент.

Как строить идеалы? Здесь и далее полагаем, что R коммутативно. Определим главный идеал элемента $r \in R$, где $(r) = \{ar \mid a \in R\}$.

Пример. Пусть $R = \mathbb{Z}$. Тогда $(k) = k\mathbb{Z}$, и все идеалы главные (так как любая подгруппа \mathbb{Z} имеет вид $k\mathbb{Z}$).

Бывают ли неглавные идеалы? Рассмотрим $\mathbb{R}[x,y]$ кольцо многочленов, у которых свободный член нулевой. Обобщим понятие главного идеала. Пусть $S \subseteq R$ — идеал:

$$(S) = \{a_1 s_1 + \dots + a_n s_n \mid k \in \mathbb{N}, s_i \in S, a_i \in \mathbb{R}\}\$$

Факторкольцо Факторкольцом называется $R/I = \{a+I, a \in R\}$. Определим сложение (a+I)+(b+I) = (a+b)+I и умножение (a+I)(b+I) = ab+I. Определение корректно, потому что

$$((a+i)+I)((b+j)+I) = (ab+ib+aj+ij)+I, ib+aj+ij \in I$$

Нетрудно видеть, что $\mathbb{Z}=\mathbb{Z}/n\mathbb{Z}=\mathbb{Z}/(n)$. Также определим гомоморфизм $\varphi:R_1\to R_2$, $\ker\varphi=\{a\in R\mid \varphi(a)=0\}$ — идеал в R_1 . Аналогично определим образ $\operatorname{Im}\varphi=\{\varphi(a)\mid a\in R_1\}$.

Теорема 10 (О гомоморфизме для колец). Im $\varphi \cong R_1 / \ker \varphi$.