

SECOND SEMESTER 2023-2024

Course Handout Part II

Date: 09.01.2024

In addition to part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : PHY F241

Course Title : Electromagnetic Theory II Instructor-in-Charge : SASHIDEEP GUTTI

Instructors :SarmisthaBanik, SashideepGutti

Scope and Objective of the Course:

Working knowledge of EMT is a must to be a good physicist. It is the foundation for the technologies of EE, ECE and computer engineering, spanning the entire electromagnetic spectrum, from dc to light. In EMT-I we assembled electrodynamics piece by piece and covered upto Maxwell's equations. Now it's time to appreciate the extraordinary power and richness of electrodynamics. We will see that Maxwell's equations represent a fundamental unification and interdependence of electric and magnetic fields and predict electromagnetic wave phenomena. These waves move with speed of light and here we make a connection between EMT and optics. Also we study the physical phenomenon of electromagnetic radiation through Maxwell's equations. Finally, we introduce the other major conceptual advance in electromagnetic theory i.e. Einstein's special theory of relativity.

Textbooks:

1. David Griffiths, J., *Introduction to Electrodynamics*, PHI, 4th ed.

Reference books

1. Feynman Lectures on Physics Vol II

Course Plan:

Lecture Number	Learning Objectives	Topics to be Covered	Chapter in the Text Book
1-2	Introduction and recapitulation of EMT1	Magnetic Field in Matter(mostly self study),Maxwell's equations	(6.1.4, 6.2,6.3),7.3
3-6	Conservation laws	Conservation of Charge, Poynting theorem, Linear and Angular momentum	8.1, 8.2
6-15	Electromagnetic Waves	EM waves in free space, EM waves in dielectric matter, reflection, refraction	9.2,9.3,9.4

classes	1 diolidis					
14	Tutorials					
	Radiation	from Point Charge, Radiation reaction				
35-40	Electromagnetic	Electric Dipole Radiation, Radiation	10.1,10.2			
		moving point charge				
		Wiechert potential and fields of a				
29-34	Potentials and Fields	The Potential formulation, Retarded	12.1,12.2,12.3			
26-28	Seminar/Poster Presentations					
	Mid Sem					
		Electrodynamics				
	Relativity	Relativistic Mechanics, Relativistic				
16-25	Electrodynamics and	The Special Theory of Relativity,	11.1,11.2,11.3			
		Dispersion.				
		propagation in metals, Absorption &				
		and transmission at interfaces, Wave				

Evaluation Scheme:

E C N	Evaluation Component	Duration	Weighta ge (%)	Date, Time	Nature of Componen t
1.	Midsem	90 mins.	30%	15/03 - 9.30 - 11.00AM	Closed
2.	Poster	-	15%	TBA	Open
3	Tutorial tests (best 1 of 2)	45 min	15%	tutorial hour	Closed
4.	Comprehensive Examination	180 mins.	40%	16/05 FN	Open

Consultation Hour:TBA

Notices: Notices for the course will be displayed on CMS.

Make-up Policy: Make up will be given for only in cases of genuine sickness (hospitalization). Make up requests must be given before the test. No Make-up for tutorial tests.

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

INSTRUCTOR-IN-CHARGE

