Geometría diferencial de curvas y superficies

Prueba de evaluación continua 2020

La hora final es improrrogable por lo que se recomienda no esperar al último momento.

Es importante la redacción y claridad de la exposición, explicando cada paso en la solución. Pueden utilizar los teoremas, corolarios, definiciones, ejercicios y observaciones del libro de texto.

Ejercicio.

Sea $\alpha:(0,+\infty)\to\mathbb{R}^3$ una parametrización natural de una curva sin puntos de inflexión y con $\tau_{\alpha}(t)>0$, para todo $t\in I$. Sea $B_{\alpha}(t)$ el vector binormal en $\alpha(t)$. Se define $\beta:(0,+\infty)\to\mathbb{R}^3$ por la siguiente expresión:

$$\beta(t) = \int_0^t B_{\alpha}(s) ds$$

a) Probar que β es una parametrización natural de una curva $\beta(0, +\infty)$.y que se verifican las siguientes igualdades:

$$\begin{split} \kappa_{\alpha}(t) &= \tau_{\beta}(t), \tau_{\alpha}(t) = \kappa_{\beta}(t) \\ T_{\alpha}(t) &= B_{\beta}(t), N_{\alpha}(t) = -N_{\beta}(t), B_{\alpha}(t) = T_{\beta}(t) \end{split}$$

- b) Dar un ejemplo de parametrización α de modo que exista una isometría directa (que conserve la orientación) del espacio que lleve $\alpha(0, +\infty)$ en $\beta(0, +\infty)$; cuál es la matriz de dicha isometría?
 - c) Dar un ejemplo donde no exista isometría de $\alpha(0, +\infty)$ en $\beta(0, +\infty)$.
- d) Si cambiamos la condición $\tau_{\alpha}(t) > 0$ por $\tau_{\alpha}(t) < 0$ para todo $t \in I$, ¿cómo cambian las igualdades del apartado a)?