

ELECTROTEHNICA

Conf. Dr. Ing. Luminiţa BAROTE

Structura cursului:

- I. Legile fundamentale ale câmpului electromagnetic
- II. Retele de condensatoare
- III. Circuite in curent continuu
- IV. Circuite in regim tranzitoriu
- V. Circuite in în regim sinusoidal
- VI. Circuite in în regim nesinusoidal
- VII. Circuite trifazate
- VIII. Cuadripoli
- IX. Masini electrice (Transformator, Masina asincrona si sincrona)

Referinte bibliografice

- L.E. Aciu, D. Bidian, L. Barote, *Bazele Electrotehnicii: Teoria Circuitelor Electrice*, Editura Universității Transilvania din Brașov, 2013.
- L. Barote, *Electrotehnică și mașini electrice*, Editura Universității Transilvania din Brașov, 2014.
- L.E. Aciu, Gh. Pana, L. Barote, *Electrotehnica si Electronica aplicata*. *Partea a 2-a*, Editura Universității Transilvania din Brașov, 2015.
- L. E. Aciu, L. Barote, M. Fratu, D.S. Bidian, *Electrotehnică și Electronică aplicată*. *Partea a 3-a*, Editura Universității Transilvania din Brașov, 2016.
- A. Nicolaide, *Bazele fizice ele electrotehnicii*, vol I și II, Editura Scrisul Românesc, Craiova, 1986.
- Gh. Scutaru, D. Sorea, *Bazele electrotehnici. Probleme*. Universitatea Transilvania din Brașov, 1992.

Evaluare

☐ Examen: 60 %.

☐ Seminar: 40 %.

CURS 1

Legile fundamentale ale câmpului electromagnetic

Cuprins

- Sarcina electrica. Câmpul electric în vid. Intensitatea câmpului electric
- Formula lui Coulomb
- Tensiunea electrică
- Lucrul mecanic al forţelor de natură electrică
- Legea fluxului electric
- Starea electrocinetica: Curentul electric
- Clasificarea materialelor
- Regimuri fundamentale ale electrocineticii

Câmpul electromagnetic este o forma de manifestare a materiei existenta in acele zone din spaţiu in care, asupra corpurilor se manifesta/executa forţele si cupluri de natura electromagnetica.

<u>In funcție de variația in timp a mărimilor,</u> fenomenele electromagnetice se pot clasifica in 4 regimuri:

- Static mărimi de stare ale câmpului electromagnetic constante in timp;
- ➤ Staţionar mărimi de stare ale câmpului electromagnetic constante in timp, dar apare curentul electric;
- ➤ Cvasistationar: mărimile variază in timp dar suficient de lent pentru a se putea neglija fenomenul de radiaţie a energiei electromagnetice.
- ➤ **Nestationar** mărimi de stare ale câmpului electromagnetic variabile in timp.

7

Sarcina electrică

Sarcina electrică: mărimea fizică scalară cu ajutorul căreia se caracterizează starea de electrizare a corpurilor.

Notaţie: q.

Unitate de măsură: **Coulomb, [C]**; submultipli: mC (10⁻³), µC (10⁻⁶), nC (10⁻⁹), pC (10⁻¹²).

Sarcina electrică elementară: **electronul**, sarcină negativă, $q_e = -1.602*10^{-19}$ C

Câmpul electric în vid. Intensitatea câmpului electric

Câmpul electric este starea de existenţă a materiei diferita de substanta, ce se caracterizează prin faptul că exercită forţe sau cupluri asupra unor corpuri electrizate aflate în câmpul electric.

Intensitatea câmpului electric într-un punct este egală cu raportul dintre forța exercitată de câmpul electric asupra unui corp de probă și sarcina electrică q a corpului de probă situat în acel punct.

$$\overline{E_V} = \frac{\overline{F}}{q}$$
 $\overline{F} = q \cdot \overline{E_V}$

Unitate de măsură: Volt/metru (V/m).

Liniile de câmp electric

Linia de câmp electric este curba tangentă în orice punct la intensitatea câmpului electric $\overline{E}_{_{V}}$.

Sensul liniilor de câmp electric este același cu sensul $\overline{E}_{_{V}}$.

10

Repartiția (distribuția) sarcinii pe corpuri poate fi:

- **volumetrică**, sarcina se găseşte distribuită în întreg volumul corpului, caracteristică materialelor izolante.

$$\rho_V = \lim_{\Delta V \to 0} \frac{\Delta q}{\Delta V} = \frac{dq}{dV} \quad [\text{C/m}^3] \quad \text{- densitate a de volum a sarcinii electrice}$$

$$q = \int \rho_V \cdot dV$$

- superficială, sau de suprafață, sarcina se află pe suprafața corpului, caracteristică pentru conductoare.

$$\rho_S = \lim_{\Delta S \to 0} \frac{\Delta q}{\Delta S} = \frac{dq}{dS} \qquad [\text{C/m}^2] \qquad \text{- densitate a de suprafața a sarcinii electrice}$$

$$q = \int \rho_S \cdot dS$$

Repartiția (distribuția) sarcinii pe corpuri poate fi:

- liniară, sau de linie, sarcina se află pe corpuri filiforme (fire subțiri, cabluri, linii electrice).

$$\rho_l = \lim_{\Delta l \to 0} \frac{\Delta q}{\Delta l} = \frac{dq}{dl} \qquad [C/m] \quad -\text{ densitatea de linie a sarcinii electrice}$$

$$q = \int \rho_l \cdot dl$$

Sarcina totală se obține prin însumare:

$$q_{t} = \int \rho_{V} \cdot dV + \int \rho_{S} \cdot dS + \int \rho_{l} \cdot dl$$

Formula lui Coulomb

$$\overline{F}_{21} = \frac{1}{4 \cdot \pi \cdot \varepsilon} \cdot \frac{q_1 \cdot q_2}{r_{12}} \cdot \frac{\overline{r}_{12}}{r_{12}}$$

$$\overline{F}_{12} \stackrel{\text{(-)}}{\longleftarrow} \frac{\overline{r}_{12}}{q_1} \stackrel{\text{(-)}}{\longleftarrow} \frac{\overline{r}_{12}}{q_2} \stackrel{\text{(-)}}{\longleftarrow} \frac{\overline{r}_{12}}{q_1} \stackrel{\text{(-)}}{\longleftarrow} \frac{\overline{r}_{12}}{\overline{r}_{12}} \stackrel{\text{(-)}}{\longleftarrow} \frac{\overline{r}_{12}}{\overline{r}_{12}} \stackrel{\text{(-)}}{\longleftarrow} \frac{\overline{r}_{12}}{\overline{r}_{21}} \stackrel{\text{(-)}}{\longrightarrow} \frac{\overline{r}_{12}}{\overline{r}_{21}} \stackrel{\text{(-)}}{\longrightarrow} \frac{\overline{r}_{21}}{\overline{r}_{21}} \stackrel{\text{(-)}}{\longrightarrow} \frac{$$

permitivitatea vidului

$$\varepsilon = \varepsilon_0 = \frac{1}{4 \cdot \pi \cdot 9 \cdot 10^9} \left[\frac{F}{m} \right]$$
permitivitate electrica

$$\mathcal{E} = \mathcal{E}_r \cdot \mathcal{E}_0 \quad \left[\frac{F}{m} \right]$$
 permitivitate relativa a mediului

Formula lui Coulomb

Importanta relaţiei lui Coulomb: Permite definirea unitatii de măsura a sarcinii electrice:

COULOMB = Sarcina electrica a unui corp mic situat in vid, la distanta de 1 m de un alt corp incarcat cu aceeasi sarcina electrica asupra caruia se exercita o forta de 9*10⁹ N.

Principiul suprapunerii forțelor:

$$\overline{F} = \overline{F_1} + \overline{F_2} + \dots + \overline{F_n} = \frac{q}{4 \cdot \pi \cdot \varepsilon_0} \sum_{k=1}^n \frac{q_k}{r_k^3} \cdot \overline{r_k}$$

Calculul intensității câmpului electric produs de o sarcină punctiformă

2 sarcini punctiforme aflate intrun sistem izolat:

$$r$$
 q
 $Fig. 1.4.$
 r
 E_V
 F

Forta de interacțiune dintre sarcini:

$$\overline{F} = q' \cdot \overline{E}_{V}$$

$$\overline{F} = \frac{1}{4 \cdot \pi \cdot \varepsilon} \cdot \frac{q \cdot q'}{r^{2}} \cdot \frac{\overline{r}}{r}$$

$$\overline{E}_{V} = \frac{\overline{F}}{q'} = \frac{q}{4 \cdot \pi \cdot \varepsilon \cdot r^{2}} \cdot \frac{\overline{r}}{r}$$

Tensiunea electrică

Fig. 1.5.

Unitate de măsură: Voltul (V).

Lucrul mecanic al forțelor de natură electrică

Lucrul mecanic pentru deplasarea sarcinii q intre punctele A si B:

$$L_{AB} = \int_{A(C)}^{B} \overline{F} \cdot \overline{dl} = \int_{A(C)}^{B} q \cdot \overline{E} \cdot \overline{dl} = q \cdot \int_{A(C)}^{B} \overline{E} \cdot \overline{dl} = q \cdot U_{AB}$$

Unitate de măsură: **Joule (J).**

Definiție **VOLT**:

Intre doua puncte din câmpul electric exista tensiunea electrica de 1 V daca pentru a deplasa o sarcina de 1 C este necesar un lucru mecanic de 1 J.

Legea fluxului electric

Se consideră o suprafata inchisa Σ in care se afla o sarcina q.

Se calculeaza fluxul vectorului intensitate a câmpului electric prin această suprafaţă.

$$\int\limits_{\Sigma} \varepsilon_0 \vec{E} d\vec{s} = q_{\Sigma}$$
 q_{Σ} - sarcina totală din interiorul suprafeței

<u>Legea fluxului electric in vid:</u> Fluxul electric printr-o suprafata inchisa Σ este egal cu sarcina electrica din interiorul acelei suprafete.

$$\vec{D} = \varepsilon_0 \vec{E}$$
 - inductie electrica in vid $\left[D\right]_{SI}$: $\left[C/m^2\right]$

$$\int_{\Sigma} \vec{D} \cdot d\vec{s} = q_{\Sigma}$$

Starea electrocinetica

Curentul electric de conducţie: apare datorita deplasării ordonate a sarcinilor electrice in conductoare.

Intensitatea curentului electric: limita raportului dintre sarcina electrica ce trece prin suprafaţa transversala a unui conductor in intervalul de timp stabilit.

$$i = \lim_{\Delta t \to 0} \frac{\Delta q}{\Delta t} = \frac{dq}{dt}$$

Notaţie: i, I

Unitate de măsură: **Amper**, [A]

submultipli: mA (10⁻³), µA (10⁻⁶), nA (10⁻⁹), pA (10⁻¹²).

Curentul electric

Densitatea de curent: mărime fizica vectoriala, caracterizează distribuţia locala a curentului.

Unitate de măsură: [A/m²]

Ptr. conductor de forma oarecare:

Clasificarea materialelor

Clasificarea materialelor – după cum permit trecerea curentului electric de conducţie:

- 1. Materiale conductoare permit trecerea cu uşurinţa a curentului electric de conducţie. Sarcina electrica comunicata intr-un punct, se raspandeste rapid pe toata suprafaţa.
 - conductoare de specia întâi electronii liberi se deplasează ordonat, prezintă conductivitate electronica

Exemple: metale, carbon.

 conductoare de specia a doua – ionii pozitivi si negativi se deplasează ordonat, apar si reacţii de natura chimica, prezintă conductivitate ionica

Exemple: soluţii de săruri, baze, acizi, topituri de săruri.

Clasificarea materialelor

2. Materiale izolante (dielectrici) – nu permit trecerea curentului electric de conducţie. Sarcina electrica comunicata acestor materiale ramane in zona de electrizare timp îndelungat.

Exemple: sticla, cauciuc, porţelan, lichidele pure, hârtia.

3. Materiale semiconductoare – sunt materiale izolante care, in anumite condiţii, pot asigura trecerea curentului electric de conducţie.

Exemple: siliciul, germaniul, seleniul.

Regimuri fundamentale ale electrocineticii

■ Legea conservării sarcinii electrice

Intensitatea curentului electric i_{Σ} de conducţie ce iese dintr-o suprafaţa închisa Σ este egala cu viteza de scădere a sarcinii electrice q_{Σ} din interiorul suprafeţei.

$$i_{\Sigma} = -\frac{dq_{\Sigma}}{dt}$$

- **Exemplu:** curentul care apare la descărcarea unui condensator

Legea conservării sarcinii electrice

Consecința importanta a legii conservării sarcinii electrice:

In lungul unui conductor neramificat intensitatea curentului electric de conducție ramane constanta in regim staționar.

$$i_{\Sigma} = \int_{\Sigma} \overline{J} \cdot d\overline{S} = -i_{1} + i_{2}$$

Semnul curentului s-a asociat cu semnul pozitiv al versorului suprafaţa.

In electrocinetica regimul este staţionar, deci: $\frac{dq_{\Sigma}}{dt} = 0 \implies i_1 = i_2$

Regimuri fundamentale ale electrocineticii

■ Legea conducţiei electrice

Se considera o porţiune de conductor de secţiune constanta, este:

- limitata de punctele 1 si 2
- parcursa de curentul (i)
- conţine si o sursa de tensiune electromotoare (Ue).

Integrala de linie a intensitatii câmpului electric, pe o porţiune de conductor cu sursa electromotoare = produsul dintre intensitatea curentului din conductor si o mărime scalara R_{12} , numita rezistenta electrica.

$$\int_{1(C)}^{2} (\overline{E} + \overline{E_i}) \cdot \overline{dl} = i \cdot R_{12}$$

forțele de natura neelectrica care exercitate asupra sarcinilor electrice duc la mişcarea ordonata a acestora.

Tensiunea electromotoare – apare in urma existentei câmpurilor electrice imprimate.

Legea conducției electrice

Legea conducţiei electrice este o lege de material, deoarece apare in expresia ei o mărime dependenta de material.

$$u_{12} = u_f = \int\limits_{1(C)}^2 \overline{E} \cdot \overline{dl} \quad \text{- tensiunea electrica in lungul firului}$$

$$u_{ei} = \int\limits_{1(C)}^2 \overline{E}_i \cdot \overline{dl} \quad \text{- tensiunea electromotoare}$$

$$\Psi$$

$$u_{12} + u_{ei} = i \cdot R_{12} \quad \text{Ptr. un circuit închis: } u_{12} = 0 \quad \Rightarrow \quad u_{ei} = i \cdot R$$

Legea conducției electrice

In regim staţionar (curent continuu) se poate afirma, pe baza **teoremei potenţialului electric staţionar**, ca tensiunea in lungul firului nu depinde de fir ci doar de punctele pentru care este scrisa:

$$u_{12} = u_f = u_b = \int_{1}^{2} \overline{E} \cdot \overline{dl} = V_1 - V_2$$

 u_h - tensiunea la bornele circuitului.

$$u_b = i \cdot R_{12}$$
 - Legea lui Ohm

Legea lui Ohm: Permite definirea rezistentei electrice:

Rezistenta electrica a unui conductor este numeric egala cu raportul dintre tensiunea electrica continua aplicata conductorului si curentul care îl străbate.

$$\rightarrow R = \frac{u_b}{i}$$

Legea conducției electrice

Măsurările experimentale indica pentru rezistenta electrica a conductorului relaţia:

$$R_{12} = \int_{1}^{2} \rho \cdot \frac{dl}{S}$$

- ρ reprezintă rezistivitatea conductorului (o proprietate de material);
- **dl** elementul de lungime in lungul căruia se determina rezistenta
- S secțiunea transversala a conductorului.

Rezistenta unui conductor omogen, de secţiune constanta (S), pentru o lungime (I) considerata este:

$$R = \rho \cdot \frac{l}{S}$$

Unitate de măsură: Ohm, $[\Omega]$.

Legea transformării energiei in conductoare

Trecerea curenţilor prin conductoare este insotita de transformări energetice caracteristice stării electrocinetice.

Puterea electromagnetica (P) primita de un conductor de la campul electromagnetic in procesul de conducţie = produsul dintre tensiunea electrica in lungul conductorului si intensitatea curentului electric din conductor:

$$P = u_f \cdot i$$

$$u_f = R \cdot i - u_{ei} \rightarrow P = R \cdot i^2 - i \cdot u_{ei} = P_R - P_G$$

Subjecte examen:

- 1. Enumeraţi regimurile caracteristice pentru fenomenele electromagnetice.
- Prin ce se caracterizează regimul electric static/stationar/cvasistationar/nestationar.
- 3. Sarcina electrica definiție, unitate de măsura.
- 4. Definiţi câmpul electric.
- 5. Intensitatea câmpului electric definiţie, formula, semnificaţie mărimi, unitate de măsura.
- 6. Densitatea de suprafaţa/volum/linie a sarcinii electrice definiţie, formula, semnificaţie mărimi, unitate de măsura.
- 7. Tensiunea electrica formula, semnificaţie mărimi, unitate de masura.
- 8. Lucrul mecanic al forțelor de natură electrică formula, semnificație mărimi, unitate de măsura.
- 9. Legea fluxului electric enunţ, formula, semnificaţie mărimi.
- 10. Intensitatea curentului electric definiţie, formula, semnificaţie mărimi, unitate de masura.
- 11. Densitatea de curent pentru un conductor de forma oarecare formula, semnificaţie mărimi, unitate de măsura.
- 12. Clasificarea materialele conductoare, exemple.
- 13. Ce sunt materialele izolante, exemple.
- 14. Ce sunt materialele semiconductoare, exemple.
- 15. Legea conservării sarcinii electrice enunţ, formula, semnificaţie mărimi.
- 16. Legea conducției electrice enunț, formula, semnificație mărimi.
- 17. Legea lui Ohm enunţ, formula, semnificaţie mărimi.
- 18. Legea transformării energiei in conductoare.