1 Fundamentals

1.1 Nanoparticles in medicine

- 1.1.1 Polymeric colloids
 - 1.1.1.1 Functionalization for protein binding
 - 1.1.1.2 Polymerization consequences (initiator, co-monomer, surfactants...)
- 1.1.2 Liposomal nanocarriers (formation for amphiphilic lipids)
 - 1.1.2.1 phospholipid bilayer (typical molecules HSPC, DPPC, cholesterol, PEG...)
 - 1.1.2.2 polydispersity control (extrusion, paper w/ Zoltan)
 - 1.1.2.3 Drug carrier, SSLs (stealth function, bilayer stabiliy, filling)
- 1.1.3 Physicochemical characterization
 - 1.1.3.1 Dimensional metrology and traceability
 - 1.1.3.2 Characterization tools
 - 1.1.3.2.1 Single-particle (AFM, TEM, SEM, TSEM...)
 - 1.1.3.2.2 Ensemble (DLS, DCS, SAXS)

1.2 Small Angle X-ray Scattering (SAXS)

- 1.2.1 Physical Process
- 1.2.2 Evaluation of the scattering intensity (Form factor *S(q), electron density, number of colloids)
 - 1.2.2.1 What is q?
 - 1.2.2.2 Modelling
 - 1.2.2.2.1 Sphere (Gudrun polymeric colloids)
 - 1.2.2.2.2 Core-shell (interface effects???)
 - 1.2.2.2.3 Vesicle model (5 gaussian) ????
 - 1.2.2.2.4 Inclusion of background ??? (a+b*q^-4)
 - 1.2.2.3 Guinier approach (deviation when using few points, polydispersity...)
- 1.2.3 Contrast variation (solvent variation, ASAXS...)
 - 1.2.3.1 Isoscattering point
 - 1.2.3.1.1 Polydispersity and elipticity smearing (simulation, calculation)
 - 1.2.3.2 Basic functions approach
 - 1.2.3.2.1 Shape factor
 - 1.2.3.2.2 Guinier rule
 - 1.2.3.2.3 I (0) for polydisperse systems

2	Evnovim	ontal co	atum.						
2	Experimental setup 2.1 BESSY II								
	2.1 BESSY II2.2 FCM Beamline								
	2.2.1	ransmission measurements (calibrated diodes)							
	2.3 SAXS								
	2.3.1		llatus detector (high dynamic range, noise free)						
	2.3.2	2 H	ZB SAXS setup						
	2.3.2.1		distance calibration (10^-4 uncertainty)						
	2.3.3	3 R	lial integration and error propagation						
	2.3.4	4 A	bsolute intensity calibration						
	2.3.4.1		Flux monitor (thin diode)						
	2.3.4.2		Detector efficiency (pilatus, thin diode)						
	2.4 Continuous contrast variation								
	2.4.1	l Fi	illing of capillaries (galden at bottom, reference layer)						
	2	2.4.1.1	Capillary homogeneity (Hilgenberg)						
	2.4.2	alibration of solvent density and finding of main axis							
	2.4.3 Limitations								
	2	2.4.3.1	Density range (sucrose, fructose, iodixanol)						
	2.4.3.2		Background, induced aggregation (heavy salts)						
2.4.3.3 Comparison to SANS / RSoXS in polymeric l			Comparison to SANS / RSoXS in polymeric Nps (H. Abe, 2006)						
3	3 Contrast variation in SAXS with the density gradient technique (1st paper)								
3.1 Materials and methods									
	3.1.1	l Pa	article and chemicals						
3.1.		Diffusion time and calibration height (sucrose mass fraction formula)							
3.2 Con			ontinuous contrast variation in SAXS on PS-PMMA nanoparticles						
	3.3 Model dependent evaluation								
	3.3.1		Core-shell form factor fit						
	3.4 Mod		el-free approach to contrast variation data						

3.5 Summary

3.4.2.1

3.4.1.1

3.4.1

3.4.2

Isoscattering point

Guinier Region analysis

Relative standard uncertainty

Average electron density

4	Simultaneous s	size and densit	y determination	of poly	vmeric <i>c</i>	olloids (2nd	naner)
-	Dilliultuilcoub	nze ana acimi	y actermination	UI PUI	y 1111C1 1C \	Jonioras (HIIU	paper

- 4.1 Materials and methods
 - 4.1.1 Particle and chemicals
 - 4.1.2 Differential Centrifuge Sedimentation (DCS)
- 4.2 Technique validation for the determination of the particle size distribition
 - 4.2.1 Inter-laboratory comparison of the mean particle size
 - 4.2.2 Colloidal size distribution
- 4.3 Considerations about contrast variation data evaluation
 - 4.3.1 Shape factor formalism (simulation, depending on number of curves)
 - 4.3.1.1 Advantages / disadvantages
 - 4.3.2 Isoscattering point formalism (simulation, dependent of many things)
 - 4.3.2.1 Advantages / disadvantages
- 4.4 Determination of the particle physical density
 - 4.4.1 Validation through comparison with DCS
 - 4.4.1.1 Uncertanties (physical density inaccuracy, beam size)
 - 4.4.2 Use for homogenous polymeric colloids (PMMA-COOH)
- 4.5 Summary
- 5 Continuous contrast variation applied to relevant relevant bio-materials (3rd paper)
 - 5.1 Materials and methods
 - 5.1.1 Caelyx: PEGylated liposomal doxorubicin
 - 5.1.2 Iso-osmolar contrast agent: Iodixanol
 - 5.1.3 Sterically Stabilized Liposomes (SSLs) of different sizes
 - 5.2 Traceable size determination of a liposomal drug
 - 5.2.1 Isoscattering point approach
 - 5.2.2 Shape factor calculation
 - 5.3 Osmotic effects in liposomes
 - 5.3.1 Application to drug-stabilized liposomes
 - 5.3.2 Size dependency of the osmotic activity
 - 5.4 Protein-coated low-density nano-particles
 - 5.5 Summary