Лабораторная работа 2.2.1 Исследование взаимной диффузии газов

Норкин Дмитрий, 621 группа $18 \ {\rm mas} \ 2017 \ {\rm r}.$

Оборудование: Насос, баллоны с воздухом и гелием, установка для осуществления диффузии газов, вольтметр

Теория

Плотность потока вещества определяется формулой Фика:

$$j = -D\frac{\partial n}{\partial x} \tag{1}$$

Применяя (1) для данной установки, можно показать, что:

$$\frac{dn_1}{dt} - \frac{dn_2}{dt} = -\frac{n_1 - n_2}{l} DS\left(\frac{1}{V_1} + \frac{1}{V_2}\right) \tag{2}$$

Введя новую переменную $\Delta n = n_1 - n_2$ и проинтегрировав (2), получаем:

$$\Delta n = \Delta n_0 e^{-t/\tau}$$
, где (3)

$$\tau = \frac{V_1 V_2}{V_1 + V_2} \frac{l}{SD} = \frac{Vl}{2SD} \Rightarrow D = \frac{Vl}{2S\tau} \tag{4}$$

Из молекулярно-кинетической теории

$$D = \frac{1}{3}\lambda \overline{v} \Rightarrow \lambda = \frac{3D}{\overline{v}} \tag{5}$$

Измерения

Запишем параметры установки:

$$V = (775 \pm 10) \, cm$$

$$L/S = (5.3 \pm 0.1) \, cm^{-1}$$

Снимем зависимость напряжения на мосту от времени V(t) при разных значениях рабочего давления P_{Σ} :

t_1, s	V_1, mV	t_2, s	V_2, mV	t_3, s	V_3, mV	$ln(V_1)$	$ln(V_2)$	$ln(V_3)$
8.0	19.7	4.0	21.3	4.0	16.27	2.981	3.059	2.789
18.0	18.45	13.0	20.33	13.0	15.66	2.915	3.012	2.751
27.0	17.4	22.0	19.43	22.0	15.07	2.856	2.967	2.713
37.0	16.31	32.0	18.49	31.0	14.53	2.792	2.917	2.676
47.0	15.29	42.0	17.6	41.0	13.96	2.727	2.868	2.636
57.0	14.32	52.0	16.74	51.0	13.39	2.662	2.818	2.595
67.0	13.41	61.0	16.04	61.0	12.85	2.596	2.775	2.553
77.0	12.56	70.0	15.33	70.0	12.39	2.531	2.73	2.517
87.0	11.78	80.0	14.59	79.0	11.96	2.466	2.68	2.482
97.0	11.02	90.0	13.88	89.0	11.47	2.4	2.63	2.44
107.0	10.29	100.0	13.21	99.0	11.02	2.331	2.581	2.4
117.0	9.63	110.0	12.57	109.0	10.57	2.265	2.531	2.358
127.0	9.0	120.0	11.97	119.0	10.15	2.197	2.482	2.317
137.0	8.4	130.0	11.38	129.0	9.75	2.128	2.432	2.277
147.0	7.84	140.0	10.82	139.0	9.36	2.059	2.381	2.236
157.0	7.37	150.0	10.29	149.0	8.97	1.997	2.331	2.194
167.0	6.87	160.0	9.78	159.0	8.61	1.927	2.28	2.153
176.0	6.39	170.0	9.3	169.0	8.26	1.855	2.23	2.111
186.0	5.95	180.0	8.83	179.0	7.92	1.783	2.178	2.069
196.0	5.53	190.0	8.38	189.0	7.59	1.71	2.126	2.027

Таблица 1: 1-3 серии

t_4, s	V_4, mV	t_5, s	V_5, mV	t_6, s	V_6, mV	$ln(V_4)$	$ln(V_5)$	$ln(V_6)$
8.0	19.6	5.0	17.16	3.0	17.0	2.976	2.843	2.833
22.0	18.8	21.0	16.49	18.0	16.63	2.934	2.803	2.811
32.0	18.28	44.0	15.64	33.0	16.2	2.906	2.75	2.785
47.0	17.49	64.0	14.88	46.0	15.84	2.862	2.7	2.763
57.0	17.0	87.0	14.1	65.0	15.3	2.833	2.646	2.728
72.0	16.27	102.0	13.62	80.0	14.87	2.789	2.612	2.699
86.0	15.63	123.0	12.96	93.0	14.55	2.749	2.562	2.678
100.0	15.0	145.0	12.32	114.0	14.0	2.708	2.511	2.639
115.0	14.37	168.0	11.7	127.0	13.66	2.665	2.46	2.614
130.0	13.75	188.0	11.15	142.0	13.31	2.621	2.411	2.589
145.0	13.16	205.0	10.69	155.0	12.98	2.577	2.369	2.563
160.0	12.6	221.0	10.32	171.0	12.61	2.534	2.334	2.534
175.0	12.06	243.0	9.78	190.0	12.17	2.49	2.28	2.499
190.0	11.55	262.0	9.36	208.0	11.77	2.447	2.236	2.466
205.0	11.08	284.0	8.87	229.0	11.32	2.405	2.183	2.427
220.0	10.6	300.0	8.54	240.0	11.08	2.361	2.145	2.405
235.0	10.14	324.0	8.06	258.0	10.7	2.316	2.087	2.37
250.0	9.7	342.0	7.7	272.0	10.41	2.272	2.041	2.343
270.0	9.15	360.0	7.37	296.0	9.97	2.214	1.997	2.3
290.0	8.6	380.0	7.0	327.0	9.38	2.152	1.946	2.239

Таблица 2: 4-6 серии

Обработка

Погрешности измерений $\Delta t=0.5\,s,$ $\Delta V=0.03\,mV\Rightarrow\Delta(ln(V))=\Delta V/V<0.005\Rightarrow$ слишком малы для отображения на графике.

Рис. 1: Зависимость напряжения от времени

Посчитаем из графика все коэффициенты наклона и занесем их в таблицу

au, s	$D, \frac{cm^2}{s}$	P_{Σ}, kPa	$P_{\Sigma}^{-1}, kPa^{-1}$
148.922	13.791	4.5	0.222
200.397	10.248	7.0	0.143
243.853	8.422	8.5	0.118
343.86	5.973	11.0	0.091
421.232	4.876	13.0	0.077
542.927	3.783	19.5	0.051

Таблица 3: Зависимость коэффициента диффузии от давления

Построим график

Аппроксимируем полученную зависимость линейной функцией y = ax + b. Коэффициенты рассчитаем по МНК. Получаем:

$$a = (61 \pm 4) \frac{cm^2 kPa}{s}$$

$$b = (0.6 \pm 0.6) \, \frac{cm^2}{s}$$

Коэффициент b разумно считать 0 без погрешности. Тогда для атмосферного давления $P_{\Sigma}^{-1}=0.01\,kPa\Rightarrow$

$$D = (0.61 \pm 0.04) \frac{cm^2}{s}$$

Длина свободного пробега для гелия получается равной

$$\lambda = \frac{3D}{\overline{v}} = D\sqrt{\frac{3\mu}{RT}} = (1.3 \pm 0.1) \cdot 10^{-7} \ m$$

Выводы

Зависимости логарифма напряжения от времени линейны с очень хорошей точностью, что подтверждает применимость закона Фика.

Табличное значение $D_{th}=0.62\,\frac{cm^2}{s}$ почти совпадает с полученным в ходе работы, что говорит о высокой точности проведенного эксперимента.