EKSPLORASI DATA

Apa itu eksplorasi data?

- Merupakan eksplorasi pendahuluan terhadap data untuk pemahaman yang baik mengenai karakteristiknya
- Tujuan utama eksplorasi data di antaranya:
 - Membantu pemilihan tools yang tepat untuk proses preprocessing atau analisis
 - Mempermudah user untuk mengenali pola yang tidak tergambar oleh tools analisis data
- Berhubungan dengan Exploratory Data Analysis (EDA) yang diperkenalkan oleh ahli statistik John Tukey

Teknik-teknik Eksplorasi Data

- Summary statistics
- Visualisasi
- Online Analytical Processing (OLAP)
- Clustering dan anomaly detection → menurut EDA Tukey

Contoh Dataset Iris

- Merupakan dataset mengenai bunga iris yang sangat populer dan banyak digunakan teknik eksplorasi data.
 - Sumber: UCI Machine Learning Repository <u>http://www.ics.uci.edu/~mlearn/MLRepository.html</u>
 - From the statistician Douglas Fisher
 - Terdapat 3 tipe bunga (kelas)
 - Setosa
 - Virginica
 - Versicolour
 - 4 Atribut
 - Sepal width
 - Sepal length
 - Petal width
 - Petal length

Iris Versicolor

Iris Virgi<mark>nica</mark>

Summary Statistics

- Merupakan angka-angka yang meringkaskan properti dari data seperti:
 - Frekuensi, lokasi dan sebaran
 - Contoh: lokasi mean (nilai tengah)
 sebaran- standar deviasi

Frekuensi, Mode, Persentil

- Penggunaan Frekuensi dan mode untuk data kategoris
- Frekuensi dari nilai atribut adalah persentase jumlah kemunculan nilai pada data set
 - For example, given the attribute 'gender' and a representative population of people, the gender 'female' occurs about 50% of the time.
- Mode sebuah atribut adalah nilai atribut yang paling sering muncul
- Persentil adalah nilai dalam skala seratus yang menunjukkan distribusi sama atau lebih
 - berguna untuk data kontinu

Mean dan Median

- Mean adalah is the most common measure of the location of a set of points.
- Mean sangat sensitif terhadap outlier.

$$mean(x) = \overline{x} = \frac{1}{m} \sum_{i=1}^{m} x_i$$

$$median(x) = \begin{cases} x_{(r+1)} & \text{if } m \text{ is odd, i.e., } m = 2r + 1\\ \frac{1}{2}(x_{(r)} + x_{(r+1)}) & \text{if } m \text{ is even, i.e., } m = 2r \end{cases}$$

Range dan Variance

- Range adalah selisih antara nilai max dan min
- variance atau standar deviasi merupakan pengukuran untuk melihat persebaran data point.

variance
$$(x) = s_x^2 = \frac{1}{m-1} \sum_{i=1}^{m} (x_i - \overline{x})^2$$

Karena variance juga sensitif terhadap outliers, sehingga ada perhitungan lain:

$$AAD(x) = \frac{1}{m} \sum_{i=1}^{m} |x_i - \overline{x}|$$

$$MAD(x) = median \left(\{ |x_1 - \overline{x}|, \dots, |x_m - \overline{x}| \} \right)$$

interquartile range(
$$x$$
) = $x_{75\%} - x_{25\%}$

Visualisasi

Visualisasi adalah konversi data menjadi bentuk gambar atau tabular sehingga karaktristik data dan hubungan antar item data atau atribut dapat dianalisis atau dilaporkan

- Visualisasi merupakan salah satu teknik eksplorasi data yang paling powerful
 - Manusia lebih mudah menganalisis data dengan jumlah besar melalui representasi visual
 - Dapat mendeteksi pola umum dan tren
 - Dapat mendeteksi outliers dan pola khusus (unsual)

Contoh: Suhu permukaan laut

- Gambar berikut menunjukkan suhu permukaan laut pada Juli 1982
 - 10 ribu data point diringkas dalam satu gambar

Representasi

- Adalah pemetaan informasi menjadi format visual
- Objek data, atribut, dan hubungan antar objek data diterjemahkan menjadi elemen grafis seperti point, garis, bentuk, dan warna.

Contoh:

- Objek direpresentasikan sebagai points
- Nilai atributnya direpresentasikan sebagai posisi points atau karakteristik points, misal warna, ukuran, dan bentuk
- Jika posisi digunakan, maka hubungan antar point (outlier atau tidak) akan terlihat jelas misal jika point mengumpul atau tidak

Arrangement

- Merupakan penempatan penampakan elemen visual sehinga pemahaman data bisa lebih baik
- **contoh:**

	1	2	3	4	5	6
1	0	1	0	1	1	0
2	1	0	1	0	0	1
3	0	1	0	1	1	0
4	1	0	1	0	0	1
5	0	1	0	1	1	0
6	1	0	1	0	0	1
7	0	1	0	1	1	0
8	1	0	1	0	0	1
9	0	1	0	1	1	0

	6	1	3	2	5	4
4	1	1	1	0	0	0
2	1	1	1	0	0	0
6	1	1	1	0	0	0
8	1	1	1	0	0	0
5	0	0	0	1	1	1
3	0	0	0	1	1	1
9	0	0	0	1	1	1
1	0	0	0	1	1	1
7	0	0	0	1	1	1

Seleksi

- Penghilangan atau de-emphasis objek dan atribut tertentu
- Seleksi akan melibatkan pemilihan subset atribut
 - Pengurangan Dimensi
- Seleksi juga akan melibatkan pemilihan subset objects

Teknik Visualisasi: Histograms

- Histogram
 - Digunakan untuk menunjukkan distribusi nilai suatu variabel
 - Membagi nilai menjadi bins dan menunjukkan bar plot jumlah objects di setiap bin.
 - ► Tinggi setiap bar mengindikasikan jumlah objek
 - Ukuran histogram tergantung jumlah bins
- Contoh: Petal Width (10 dan 20 bins)

Histogram 2 Dimensi

- Menampilkan joint distribution dari nilai dua atribut
- contoh: petal width dan petal length
 - ▶ What does this tell us?

Teknik Visualisasi: Box Plots

- Box Plots
 - ▶ Ditemukan oleh J. Tukey
 - ► Cara menampilkan distribusi data

Contoh Box Plots

► Box plots dapat digunakan untuk membandingkan atribut

Teknik Visualisasi: Scatter Plots

- Scatter plots
 - Nilai Atribut menentukan posisi
 - Biasanya dalam 2 dimensi namun bisa juga dalam 3 dimensi
 - Sebaiknya menggunakan tampilan yang berbeda dari segi ukuran, bentuk, dan warna untuk representasi objek sehingga dapat dengan mudah dianalisis

Scatter Plot Atribut Iris

OLAP

- On-Line Analytical Processing (OLAP) diperkenalkan oleh
 E. F. Codd (Bapak Relational database)
- Relational databases menempatkan data menjadi tabel, sedangkan OLAP menggunakan representasi multidimensional array
- Dengan representasi data tsb, analisis dan ekplorasi data dapat dengan mudah dilakukan

Membuat Multidimensional Array

- 2 langkah mengkonversikan data tabel menjadi multidimensional array.
 - pertama, identifikasi atribut yang akan menjadi dimensi dan atribut yang menjadi target yang mana nilainya muncul sebagai entries pada multidimensional array.
 - Atribut yang digunakan sebagai dimensi harus memiliki nilai diskrit
 - Nilai target biasanya count atau nilai kontinu mis., harga barang
 - Bisa saja variabel target tidak ada kecuali jumlah objek yang memiliki nilai atribut yang sama
 - Kedua, cari nilai setiap entry pada multidimensional array dengan menjumlahkan nilai (dari atribut target) atau hitung seluruh objek yang memiliki nilai atribut yang berkorespondensi dengan entri tsb.

Contoh: Data Iris

- Atribut petal length, petal width, dan species type dapat dikonversi menjadi multidimensional array
 - ► Pertama, diskritkan petal width dan petal length sehingga memiliki nilai kategoris : low, medium, dan high
 - ▶ Didapat tabel sbb- (lihat atribut count)

Petal Length	Petal Width	Species Type	Count
low	low	Setosa	46
low	medium	Setosa	2
medium	low	Setosa	2
medium	medium	Versicolour	43
medium	high	Versicolour	3
medium	high	Virginica	3
high	medium	Versicolour	2
high	medium	Virginica	3
high	high	Versicolour	2
high	high	Virginica	44

Contoh: data Iris (lanjt)

- ► Tiap tuple unik dari petal width, petal length, dan species type mengidentifikasikan satu elemen dari array.
- Elemen ini dihubungkan dengan nilai count.
- Semua non-specified tuples =0.

Contoh: data Iris (lanjt)

- Slices dari multidimensional array dapat terlihat pada crosstabulations
- Informasi apa yang bisa didapat dari tabel ini?

		Width			
		low	medium	$_{ m high}$	
th	low	46	2	0	
engl	medium	2	0	0	
Leı	high	0	0	0	

		Width				
		low	medium	high		
th	low	0	0	0		
engt	medium	0	43	3		
Leı	high	0	2	2		

Iris-setosa

Iris-virginica

		\mathbf{Width}				
		low	medium	high		
h	low	0	0	0		
engt	medium	0	0	3		
Гe	$_{ m high}$	0	3	44		

Iris-versicolor

Operasi OLAP: Data Cube

- Operasi kunci OLAP adalah formasi data cube
- data cube merupakan representasi multidimensional data, dengan semua kemungkinan agregasinya

Contoh Data Cube

- Misalkan terdapat data mengenai penjualan produk pda perusahaan dagang pada waktu yang berbeda-beda
- Data ini dapat direpresentasikan menjadi 3 dimensional array
- Ada 3 two-dimensional aggregates (3 choose 2),
 3 one-dimensional aggregates, dan 1 zero-dimensional aggregate (total keseluruhan)

Contoh Data Cube (lanjt)

► Gambar tabel berikut menunjukkan satu dari 2 dimensional aggregates, 2 dari one-dimensional aggregates, dan total keseluruhan

data

			aate		
		Jan 1, 2004	Jan 2, 2004	 Dec 31, 2004	total
	1	\$1,001	\$987	 \$891	\$370,000
ct IL	:	:		:	<u>:</u>
product	27	\$10,265	\$10,225	 \$9,325	\$3,800,020
[d	:			:	:
,	total	\$527,362	\$532,953	 \$631,221	\$227,352,127

Operasi OLAP: Slicing dan Dicing

- Slicing adalah memilih group cells dari seluruh multidimensional array dengan menentukan nilai specifik untuk satu atau lebih dimensi
- Dicing merupakan pemilihan subset cells dengan menentukan range nilai atribut.
 - Ekivalen dengan menentukan subarray dari complete array.
- Dalam prakteknya, kedua operasi tsb dapat juga dilakukan dengan aggregasi beberapa dimensi.

Operasi OLAP: Roll-up dan Drill-down

- Nilai Atribute biasanya memiliki struktur hirarki.
 - Setiap tanggal diasosiasikan dengan tahun, bulan dan minggu
 - Lokasi diasosiasikan dengan benua, negara, propinsi dan kota
 - Produk dapat dikategorikan menjadi beberapa seperti pakaian, elektronik dan furnitur
- Perhatikan bahwa kategori tsb bersarang dan membentuk tree
 - Tahun terdiri dari bulan yang terdiri dari hari
 - Negara terdiri dari porpinsi yang terdiri dari kota

Operasi OLAP: Roll-up dan Drill-down

- struktur hirarki memungkinkan dilakukannya operasi roll-up dan drill-down.
 - Untuk data penjualan, dapat diaggregate (roll up) penjualan selama satu bulan
 - Sebaliknya, jika ada data dimana dimensi waktunya dibagi menjadi bulan, maka dapat dilakukan split penjulaan bulanan total (drill down) menjadi total penjualan harian.
 - Demikian juga, drill down atau roll up pada lokasi atau atribut product ID.