Group 6

Humza Haider & Shawn Seymour

Sorting Competition Results

Placement:

- Placed 6th in the competition.
- Accounting for disqualifications, we placed 5th in the competition and 4th in the class.

Correctness:

- Our algorithm correctly sorted in every run of the data. However, an error was pointed out in our analysis.
 - > We modified a global variable (threshold) which was against the rules.
 - > Each run of our sort method would square our threshold value.
 - Eventually, the threshold would change too much and we'd likely get incorrect output; though this never happened in any of our testing.

Data Storage and Algorithm

Data Storage:

- Data was stored in our own Banana data structure:

 > int x, y, time; double distance;
- Implements Comparable<Banana> to compare the distances of two Banana objects.

Algorithm:

- We stuck with Java's Arrays.sort() which is an implementation of Timsort.
- We figured it would be quite fast if we could optimize the calculations going on before the sorting actually happens.

Sorting Algorithm Analysis

Timsort:

- Derivation of merge sort and insertion sort.
 - \triangleright Worst-case: θ (n log n).
 - \triangleright Average-case: θ (n log n).
 - \triangleright Best-case (sorted data): $\theta(n)$.

<u>Constants & Memory:</u>

- ♦ Two linear θ(n) loops outside of sorting for data storage
 & retrieval.
- ❖ We use one array of size n to store our Banana objects.