Доклад по теме - Методы управления памятью в операционных системах.

Неустроева И.Н.

Российский университет дружбы народов, Москва, Россия

Информация

Докладчик

- Неустроева Ирина Николаевна
- студентка группы НБИ 02-23
- Российский университет дружбы народов

Преподаватель

- Кулябов Дмитрий Сергеевич
- д.ф.-м.н., профессор
- профессор кафедры прикладной информатики и теории вероятностей
- Российский университет дружбы народов

Вводная часть

Актуальность

Память является важнейшим ресурсом, требующим тщательного управления со стороны операционной системы. В ранних ОС управление памятью сводилось просто к загрузке программы и ее данных из некоторого внешнего накопителя (магнитной ленты, магнитного диска) в память. С появлением мультипрограммирования перед ОС были поставлены новые задачи, связанные с распределением имеющейся памяти между несколькими одновременно выполняющимися программами.

Цели и задачи

Изучить основные методы управления памятью в операционных системах.

Материалы и методы

Интернет-ресурсы

Основная часть

Управление памятью

Управление памятью-это процесс координации памяти компьютера для оптимизации общей производительности системы. Это наиболее важная функция операционной системы, которая управляет основной памятью. Это помогает процессам перемещаться вперед и назад между основной памятью и исполнительным диском.

Все методы управления памятью могут быть разделены на два класса: методы, которые используют перемещение процессов между оперативной памятью и диском, и методы, которые не делают этого.

Методы управление памятью

Распределение памяти фиксированными разделами

Память разбивается на несколько разделов областей фиксированной величины. Такое разбиение выполнено вручную человеком во время старта системы.

Подсистема управления памятью в этом случае выполняет следующие задачи:

- 1. Сравнивает объем памяти, требуемый для процесса, с размерами свободных разделов и выбирает подходящий раздел.
- 2. Осуществляет загрузку и разгрузку программы в один из разделов.

Распределение памяти фиксированными разделами

Распределение памяти динамическими разделами

Память машины не делится заранее на разделы. Сначала вся память свободна. Каждому вновь поступающему процессу выделяется вся необходимая ему память. После завершения процесса память освобождается, и на это место может быть загружен другой процесс. Таким образом, в произвольный момент времени оперативная память представляет собой случайную последовательность занятых и свободных участков (разделов) произвольного размера.

Тут возникает проблема Фрагментации - это наличие большого числа участков свободной памяти очень маленького размера (фрагментов) Настолько маленького, что ни одна из вновь поступающих программ не может поместиться ни в одном из участков.

К функциям данного метода относиться:

Распределение памяти динамическими разделами

Перемещаемые разделы

Перемещение всех занятых участков в сторону старших или младших адресов, так, чтобы вся свободная память образовала единую свободную область. В дополнение к функциям, которые выполняет ОС при распределении памяти динамическими разделами в данном случае она должна еще время от времени копировать содержимое разделов из одного места памяти в другое, корректируя таблицы свободных и занятых областей. Эта процедура называется сжатием.

Перемещаемые разделы

14/23

Понятие виртуальной памяти

Виртуальная память - это совокупность программно-аппаратных средств, позволяющих пользователям писать программы, размер которых превосходит имеющуюся оперативную память.

Страничное распределение

При таком способе все фрагменты программы, на которые она разбивается получаются одинаковыми и называются страницами. Память разбивается на страничные кадры. Размер страницы будет занимать целиком кадр. Память нарезана на странички одинакового размера. Внешняя фрагментация отсутствует, а внутренняя будет не существенна.

Страничное распределение

Сегментный способ распределения виртуальной памяти

Существует таблица сегментов, она может находится в регистрах или в ОП и в этой таблице, у нее есть длина сегмента и есть базовый адрес. И когда у нас приходит логический адрес программы, который состоит из смещения и номера сегмента, то операционная система, используя номер сегмента как индекс таблицы, берет базовый адрес к нему прибавляет смещение и проверят, что получившийся адрес не выходит за размер сегмента. Так получается физический адрес.

Внутренняя сегментация отсутствует, потому что сегменты занимают ровно столько, сколько нужно программе, а внешняя фрагментация снижается, тк нам не нужно перемещать сегменты, а достаточно указать их характеристики в этой таблице и процесс будет занимать ровно столько места, сколько мы ему отведем.

Сегментный способ распределения виртуальной памяти

Странично-сегментное распределение

Данный метод сочетает в себе достоинства методов страничного и сегментного. Виртуальное пространство процесса делится на сегменты, а каждый сегмент в свою очередь делится на виртуальные страницы, которые нумеруются в пределах сегмента. Оперативная память делится на физические страницы. Загрузка процесса выполняется операционной системой постранично, при этом часть страниц размещается в оперативной памяти, а часть на диске. Для каждого сегмента создается своя таблица страниц, в которой указываются адреса таблиц страниц для всех сегментов данного процесса. Адрес таблицы сегментов загружается в специальный регистр процессора, когда активизируется соответствующий процесс.

Странично-сегментное распределение

Странично - сегментное распределение

Вывод

Мы рассмотрели основные методы распределения памяти в операционных системах и выяснили, что методы, которые не используют внешнюю память имеют фиксированный объем памяти для процессов пользователя, а методы, которые используют виртуальную память, способны на выполнение многих процессов, которые превышают объем однородной оперативной памяти.

Список литературы

- 1. Олифер В. Г. Сетевые операционные системы: учебник для вузов/ В.Г. Олифер, Н.А. Олифер. СПб.: Питер, 2009. 539 с.: ил
- 2. Попов И.И. Операционные системы, среды и оболочки/ И.И. Попов. М.: Издательство "ФОРУМ: ИНФА-М", 2010. 400 с. (Серия "Профессиональное образование")
- 3. Глава 3. Управление памятью в операционных системах (studylib.ru)

:::