- On note \mathcal{F} l'ensemble des fonctions bornées de \mathbb{N} dans \mathbb{R} .
- On note \mathcal{P} l'ensemble des suites de nombres réels positifs de somme égale à 1 :

$$\mathcal{P} = \{ P = (p_n, \ n \ge 0) / \ \forall n \ge 0, \ p_n \ge 0 \ \text{ et } \sum_{n=0}^{\infty} p_n = 1 \}$$

— Pour $P, Q \in \mathcal{P}$, on définit

$$\operatorname{dist}(P,Q) = \sup_{A \subset \mathbb{N}} \left| \sum_{n \in A} p_n - \sum_{n \in A} q_n \right| = \sup_{A \subset \mathbb{N}} \left| \sum_{n=0}^{\infty} \mathbf{1}_A(n) p_n - \sum_{n=0}^{\infty} \mathbf{1}_A(n) q_n \right|,$$

où $\mathbf{1}_A(n)=1$ si $n\in A$ et $\mathbf{1}_A(n)=0$ sinon. On pourra écrire P(A) pour $\sum_{n\in A}p_n$.

— Dans tout ce qui suit, λ est un réel strictement positif fixé et h est un élément de \mathcal{F} , c'est à dire une fonction bornée de \mathbb{N} dans \mathbb{R} .

1 Préliminaires

1. Trouver le réel c tel que la suite

$$c\frac{\lambda^n}{n!}, \ n \geq 0$$

appartienne à \mathcal{P} .

2. Soient p, q deux réels de [0, 1]. Calculer

$$dist((1-p, p, 0, \dots), (1-q, q, 0, \dots)).$$

3. Soient $f \in \mathcal{F}$ et $P \in \mathcal{P}$, montrer que la série de terme général $(f(n)p_n, n \geq 0)$ est convergente.

2 Caractérisation

Soit $P_{\lambda} = (p_n^{(\lambda)}, n \in \mathbb{N}) \in \mathcal{P}$ défini par

$$\forall n \in \mathbb{N}, \ p_n^{(\lambda)} = e^{-\lambda} \frac{\lambda^n}{n!}.$$

- 4. Soit $f \in \mathcal{F}$, montrer que la série de terme général $(nf(n)p_n^{(\lambda)}, n \geq 0)$ est convergente.
- 5. Pour tout $f \in \mathcal{F}$, établir l'identité suivante :

$$\lambda \sum_{n=0}^{+\infty} f(n+1)p_n^{(\lambda)} = \sum_{n=0}^{+\infty} nf(n)p_n^{(\lambda)}$$
(1).

Soit $Q=(q_n,\ n\geq 0)$ un élément de $\mathcal P$ tel que pour tout $f\in \mathcal F,$ l'identité suivante soit satisfaite :

$$\lambda \sum_{n=0}^{+\infty} f(n+1)q_n = \sum_{n=0}^{+\infty} n f(n)q_n.$$

6. En choisissant convenablement des éléments de \mathcal{F} , montrer que $Q = \mathcal{P}_{\lambda}$.

3 Résolution de l'équation de Stein

On note S_h l'ensemble des fonctions de $\mathbb N$ dans $\mathbb R$ telles que, pour tout entier $n \geq 0$, l'identité suivate soit satisfaite :

$$\lambda f(n+1) - n f(n) = h(n) - \sum_{k=0}^{\infty} h(k) p_k^{(\lambda)}$$
 (2).

Pour simplifier les notations, on note \tilde{h} la fonction définie pour tout $n \geq 0$ par

$$\tilde{h}(n) = h(n) - \sum_{k=0}^{\infty} h(k) p_k^{(\lambda)}$$

7. Montrer que S_h possède une infinité d'éléments et que pour tout $f \in S_h$, pour tout entier $n \ge 1$,

$$f(n) = \frac{(n-1)!}{\lambda^n} \sum_{k=0}^{n-1} \tilde{h}(k) \frac{\lambda^k}{k!}.$$
 (3)

8. Pour $f \in \mathcal{S}_h$, pour tout entier $n \geq 1$, établir l'identité suivante

$$f(n) = -\frac{(n-1)!}{\lambda^n} \sum_{k=n}^{\infty} \tilde{h}(k) \frac{\lambda^k}{k!}.$$
 (4)

9. En déduire que toute fonction de S_h est bornée.

4 Propriété de Lipschitz

Pour une fonction f de \mathbb{N} dans \mathbb{R} , on considère la fonction Δf définie de \mathbb{N} dans \mathbb{R} par

$$\forall n \in \mathbb{N}, \ \Delta f(n) = f(n+1) - f(n).$$

On veut montrer que pour $f \in \mathcal{S}_h$,

$$\sup_{n\geq 1} |\Delta f(n)| \leq \frac{1 - e^{-\lambda}}{\lambda} \left(\sup_{k \in \mathbb{N}} h(k) - \inf_{k \in \mathbb{N}} h(k) \right). \tag{5}$$

Pour un entier $m \geq 0$, on considère d'abord le cas particulier où $h = \mathbf{1}_{\{m\}}$:

$$h(m) = 1$$
 et $h(n) = 0$ si $n \neq m$.

On note f_m l'un des éléments de $\mathcal{S}_{\mathbf{1}_{\{m\}}}$.

10. Etablir pour $1 \le n \le m$ l'identité suivante :

$$f_m(n) = -\frac{(n-1)!}{\lambda^n} p_m^{(\lambda)} \sum_{k=0}^{n-1} \frac{\lambda^k}{k!}.$$

- 11. Etablir une identité analogue pour $n > m \ge 0$ et en déduire le signe de $f_m(n)$ pour tout $n \ge 1$.
- 12. Montrer que la fonction Δf_m est négative sur $\mathbb{N} \setminus \{0, m\}$. Indication: on distinguera les cas $1 \leq n < m$ et $n > m \geq 0$.
- 13. Etablir les identités suivantes :

$$\Delta f_0(0) = \frac{1 - e^{-\lambda}}{\lambda} - f_0(0), \ \Delta f_m(m) = \frac{e^{-\lambda}}{\lambda} \left(\sum_{k \ge m+1} \frac{\lambda^k}{k!} + \frac{\lambda}{m} \sum_{k=1}^m \frac{k}{m} \frac{\lambda^k}{k!} \right) \text{ pour } m > 0.$$

14. En déduire que

$$\sup_{n>1} \Delta f_m(n) \le \frac{1 - e^{-\lambda}}{\lambda}.$$

On étudie maintenant le cas général. On définit la fonction h_+ par

$$h_{+}(n) = h(n) - \inf_{n \in \mathbb{N}} h(k)$$

- 15. Montrer que $S_h = S_{h_+}$.
- 16. Montrer que la série

$$\sum_{m=0}^{\infty} h_{+}(m) f_{m}(n).$$

est convergente pour tout entier $n \geq 1$.

17. Montrer que la fonction f définie pour tout $n \ge 1$ par

$$f(n) = \sum_{m=0}^{\infty} h_{+}(m) f_{m}(n)$$

appartient à S_h .

18. En déduire que pour tout entier $n \geq 1$,

$$f(n+1) - f(n) \le \frac{1 - e^{-\lambda}}{\lambda} \left(\sup_{k \in \mathbb{N}} h(k) - \inf_{k \in \mathbb{N}} h(k) \right).$$

En utilisant -f et $h_- = \sup_{k \in \mathbb{N}} h(k) - h$, on prouverait de façon analogue que pour tout entier $n \ge 1$,

$$-(f(n+1) - f(n)) \le \frac{1 - e^{-\lambda}}{\lambda} \left(\sup_{k \in \mathbb{N}} h(k) - \inf_{k \in \mathbb{N}} h(k) \right).$$

et qu'ainsi l'inégalité (5) est vraie dans le cas général.

5 Application probabiliste

On considère $(X_k, k = 1, ..., n)$ une suite de variables aléatoires discrètes indépendantes. On suppose que pour tout entier $k \in \{1, ..., n\}$, X_k suit une loi de Bernoulli de paramètre $r_k \in]0, 1]$:

$$\mathbb{P}(X_k = 1) = r_k = 1 - \mathbb{P}(X_k = 0).$$

On pose $\lambda = \sum_{k=1}^{n} r_k$ ainsi que

$$S = \sum_{k=1}^{n} X_k$$
 et pour tout $k \in \{1, ..., n\}, W_k = S - X_k$.

On identifie la loi de la variable aléatoire S et l'élément ($\mathbb{P}(S=k), k \in \mathbb{N}$) de \mathcal{P} , l'ensemble défini au début de ce texte.

19. Pour tout $k \in \{1, \dots, n\}$, pour tout $f \in \mathcal{F}$, montrer que

$$X_k f(S) = X_k f(W_k + 1)$$
 et que $\mathbb{E}(f(W_k) X_k) = r_k \mathbb{E}(f(W_k))$.

20. Soit $h \in \mathcal{F}$ et $f \in \mathcal{S}_h$, établir l'identité suivante

$$\mathbb{E}(\lambda f(S+1) - Sf(S)) = \sum_{k=1}^{n} r_k \mathbb{E}(X_k (f(W_k+2) - f(W_k+1))).$$

21. Etablir que

$$\operatorname{dist}(\operatorname{loi}(S), P_{\lambda}) = \sup_{A \subset \mathbb{N}} |\mathbb{E}(\lambda f_A(S+1) - S f_A(S))|.$$

où f_A est un élément de $\mathcal{S}_{\mathbf{1}_A}$.

22. En déduire que

$$\operatorname{dist}(\operatorname{loi}(S), P_{\lambda}) \le \frac{1 - e^{-\lambda}}{\lambda} \sum_{k=1}^{n} r_k^2.$$