### PCFGs are forever

from simple grammars to state-of-the-art phrase-based parsing

Joseph Le Roux, with Antoine Rozenknop and Jennifer Foster

Université Paris 13

11/02/2014

# Background

#### **PCFGs**

- Probabilistic Context-Free Grammars
- Well-known generative model to represent NL syntax
- Independence assumptions make them quite limited as such

# Background

#### **PCFGs**

- Probabilistic Context-Free Grammars
- Well-known generative model to represent NL syntax
- Independence assumptions make them quite limited as such

#### **PCFG-LAs**

PCFGs with Latent Annotations [Matsuzaki et al., 2005]

- the model for phrase-based parsing nowadays
  - state of the art performance
  - available implementations (Berkeley, LORG, and Zhang's)

# Objective

# We will recall that there is no PCFG-LA parsing in practice

- PCFG parsing
- with a PCFG computed online
- with statistics gathered from a PCFG-LA and a sentence

# Objective

## We will recall that there is no PCFG-LA parsing in practice

- PCFG parsing
- with a PCFG computed online
- with statistics gathered from a PCFG-LA and a sentence

## We propose a novel algorithm to combine PCFGs

to address some of the deficiencies of the PCFG-LA learning process

- uses several grammars/parsers
  - different sets of symbols
  - different binarization schemes
- finds a parse that maximizes the sum of the scores of parsers
- relies on dual decomposition
  - simplicity: reuse of vanilla CKY algorithm
  - 2 no additional heuristics : certificates of optimality
  - onot a "joint-system" : avoids search space explosion

oseph Le Roux (UP13) PCFGs are forever 11/02/2014 3 / 52

# Find a parse (tree) for a given sentence (sequence)



4 / 52

## Find a parse (tree) for a given sentence (sequence)



Joseph Le Roux (UP13) PCFGs are forever 11/02/2014

5 / 52

# Find a parse (tree) for a given sentence (sequence)



Joseph Le Roux (UP13) PCFGs are forever 11/02/2014 6 / 52

## Outline

- PCFGs
- PCFG-LAS
- Combinations of PCFGs
- 4 Conclusion

$$G = (\mathcal{N}, \mathcal{T}, \mathcal{R}, s, q)$$

- ullet  ${\cal N}$  non-terminals (with axiom  ${\it s}$ ) and  ${\cal T}$  terminals
- ullet  $\mathcal{R}$  set of rewrite rules
  - $a \to \gamma$  with  $a \in \mathcal{N}, \gamma \in \mathcal{N}^+$



•  $a \rightarrow w$  with  $a \in \mathcal{N}, w \in \mathcal{T}$ 



• for each rule r, a parameter  $q(r) \ge 0$ 

$$\forall a \in \mathcal{N} \qquad \sum_{\gamma} q(a \rightarrow \gamma) + \sum_{w} q(a \rightarrow w) = 1$$

### weight of a tree/derivation

$$Q(T) = \prod_{r \in T} q(r)^{c(r,T)}$$
 : probability of a derivation

$$s(T) = \sum_{r \in T} c(r, T) \cdot log(q(r))$$
 : score of a tree

## weight of a tree/derivation

$$Q(T) = \prod_{r \in T} q(r)^{c(r,T)}$$
 : probability of a derivation

$$s(T) = \sum_{r \in T} c(r, T) \cdot log(q(r))$$
 : score of a tree

## Parsing as a linear system

$$T^* = \underset{T}{\operatorname{arg\,max}} s(T)$$

$$= \underset{T}{\operatorname{arg\,max}} \sum_{r \in T} c(r, T) \cdot log(q(r))$$

$$= \underset{T}{\operatorname{arg\,max}} w \cdot \mathbf{N} \{r \in T\}$$

## weight of a tree/derivation

$$Q(T) = \prod_{r \in T} q(r)^{c(r,T)}$$
 : probability of a derivation

$$s(T) = \sum_{r \in T} c(r, T) \cdot log(q(r))$$
 : score of a tree

### Parsing as a linear system

$$T^*$$
 =  $\underset{T}{\operatorname{arg\,max}} s(T)$   
 =  $\underset{T}{\operatorname{arg\,max}} \sum_{r \in T} c(r, T) \cdot log(q(r))$   
 =  $\underset{T}{\operatorname{arg\,max}} w \cdot \mathbf{N} \{r \in T\}$ 

### Key property

parse tree = unique derivation

9 / 52

# Efficient Parsing: CKY Algorithm (1967)

### Bottom-up parsing algorithm

forest construction and best solution

## Parsing as Deduction

[a,i,j]: partial parse-tree rooted in A between words i and j |w|=n: length of the sentence  $w=w_1\ldots w_n$ 

initialization:

$$\{[a,i,i]\mid a\to w_i\in\mathcal{R}\}$$

• deductive rules applied until stabilization, ie for binary rules :

$$\frac{[b,i,j] \quad [c,j+1,k]}{[a,i,k]} \quad \text{if } a \to bc \in \mathcal{R}$$



# **Efficient Parsing**

CKY Algorithm (1967)

### Bottom-up parsing algorithm

forest construction and best solution

### Complexity

depends on the length of rules

- $O(|\mathcal{R}| \cdot |w|^{1+lg(\mathcal{R})})$
- with unary and binary rules  $O(|\mathcal{R}| \cdot |w|^3)$

⇒ Grammar Binarization

### **Grammar binarization**

# Well-known: Exact Binarization (Chomsky normal form)

| $	extbf{a}  ightarrow 	extbf{bcde}$ | $a 	o ba_1$           | $a_2 	o de$ | $a  ightarrow a_1 e$                          | $a_2 	o bc$ |
|-------------------------------------|-----------------------|-------------|-----------------------------------------------|-------------|
|                                     | $a_1  ightarrow ca_2$ |             | $a_1 	o da_2$                                 |             |
| a	o cde                             | $a  ightarrow ca_3$   |             | $a \rightarrow a_3 e$<br>$a_3 \rightarrow cd$ |             |
|                                     | $a_3 	o de$           |             | $a_3 	o cd$                                   |             |

- Exact binarization → same trees (up to debinarization)
- Adds many new non-terminals/rules

## **Grammar binarization**

# Well-known: Exact Binarization (Chomsky normal form)

$$egin{array}{c|cccc} a 
ightarrow bcde & a 
ightarrow ba_1 & a_2 
ightarrow de & a 
ightarrow a_1 
ightarrow ca_2 & a_1 
ightarrow da_2 & a_1 
ightarrow da_2 & a_3 
ightarrow cd & a_3$$

- Exact binarization → same trees (up to debinarization)
- Adds many new non-terminals/rules

#### Less known Markovized binarization

$$egin{aligned} a 
ightarrow b c de & a 
ightarrow b \langle a 
angle & \langle a 
angle 
ightarrow de \ & \langle a 
angle 
ightarrow c \langle a 
angle \ & a 
ightarrow c \langle a 
angle & \langle a 
angle 
ightarrow de \end{aligned}$$

- Inexact Binarization → overgeneration
- ullet Compact o at most one new NT per original NT

12 / 52

## Binarization

#### Rebuilding the original tree





- a natural non-terminal
- (a) artificial non-terminal
- debinarization before outputting the trees

Supervised Learning: learn the grammar from binarized trees (training set  $\mathcal{E}$ )

# Maximize the log-likelihood of the training set

$$q^* = \arg\max_{q} \log\prod_{t \in \mathcal{E}} Q(T) = \arg\max_{q} \sum_{t \in \mathcal{E}} s(t)$$

Supervised Learning: learn the grammar from binarized trees (training set  $\mathcal{E}$ )

## Maximize the log-likelihood of the training set

$$\begin{array}{lcl} q^* & = & \arg\max_q \log\prod_{t\in\mathcal{E}} Q(T) = \arg\max_q \sum_{t\in\mathcal{E}} s(t) \\ & = & \arg\max_q \sum_{t\in\mathcal{E}} \sum_{r\in\mathcal{T}} c(r,T) \log(q(r)) = \arg\max_q \sum_{r\in\mathcal{E}} c(r,\mathcal{E}) \log(q(r)) \end{array}$$

Supervised Learning: learn the grammar from binarized trees (training set  ${\cal E}$ )

## Maximize the log-likelihood of the training set

$$\begin{split} q^* &= & \arg\max_q \log\prod_{t\in\mathcal{E}} Q(T) = \arg\max_q \sum_{t\in\mathcal{E}} s(t) \\ &= & \arg\max_q \sum_{t\in\mathcal{E}} \sum_{r\in\mathcal{T}} c(r,T) \log(q(r)) = \arg\max_q \sum_{r\in\mathcal{E}} \operatorname{c}(r,\mathcal{E}) \log(q(r)) \\ &= & \arg\max_q \sum_{a\in\mathcal{N}} \sum_{r\in\mathcal{E}, lhs(r)=a} \operatorname{c}(r) \log(q(r)) \\ & \text{with } \forall a\in\mathcal{N} \qquad \sum_{\gamma} q(a\to\gamma) + \sum_w q(a\to w) = 1 \end{split}$$

11/02/2014

14 / 52

Supervised Learning: learn the grammar from binarized trees (training set  $\mathcal{E}$ )

### Maximize the log-likelihood of the training set

$$\begin{split} q^* &= & \arg\max_q \log\prod_{t\in\mathcal{E}} Q(T) = \arg\max_q \sum_{t\in\mathcal{E}} s(t) \\ &= & \arg\max_q \sum_{t\in\mathcal{E}} \sum_{r\in T} c(r,T) \log(q(r)) = \arg\max_q \sum_{r\in\mathcal{E}} \operatorname{c}(r,\mathcal{E}) \log(q(r)) \\ &= & \arg\max_q \sum_{a\in\mathcal{N}} \sum_{r\in\mathcal{E}, lhs(r)=a} \operatorname{c}(r) \log(q(r)) \\ & \text{with } \forall a\in\mathcal{N} \qquad \sum_{\gamma} q(a\to\gamma) + \sum_w q(a\to w) = 1 \end{split}$$

### Simple closed form

$$q^*(a \to \gamma) = \frac{c(a \to \gamma)}{c(a)}$$

### Non-Terminals

The nodes in the corpus are tagged with:

- a grammatical category (noun phrase, verb phrase,... and so on)
- sometimes a function (subject, object...)
- possibly some other info (trace of syntactic movement)

#### In this talk

- always keep the categories
- plus two approaches: with and without functions
  - $\bullet$  functions may add interesting information  $\to$  learning is more accurate
  - ullet add data sparseness o learning can be less accurate
  - are not evaluated (in the main parse metrics)

### Some results

Size of PCFGs / Parsing accuracy

#### Parseval F-score

Measure the score of tree in terms of constituents [A, i, j]

$$ullet$$
  $R=rac{| ext{correct returned constituents}|}{| ext{reference constituents}|}$   $P=rac{| ext{correct returned constituents}|}{| ext{returned constituents}|}$ 

$$\bullet \ F = \frac{2PR}{P+R} \times 100$$

## Some results

Size of PCFGs / Parsing accuracy

### Parseval F-score

Measure the score of tree in terms of constituents [A, i, j]

• 
$$R = \frac{|\text{correct returned constituents}|}{|\text{reference constituents}|}$$
  $P = \frac{|\text{correct returned constituents}|}{|\text{reference constituents}|}$ 

$$P = rac{| ext{correct returned constituents}|}{| ext{returned constituents}|}$$

• 
$$F = \frac{2PR}{P+R} \times 100$$

#### Penn TreeBank evaluation

- train set  $\approx$  40k sentences, test set  $\approx$  2400 sentences
- all grammars right-binarized

| binarization / NT set | nb of NTs | nb of Rules | F     | Exact |
|-----------------------|-----------|-------------|-------|-------|
| markov / no fun       | 98        | 4,076       | 65.27 | 6.75  |
| markov / fun          | 459       | 9,963       | 67.55 | 7.37  |
| exact / no fun        | 12,946    | 27,845      | 74.64 | 9.52  |
| exact / fun           | 18,273    | 44,307      | 75.83 | 11.55 |

### Outline

- PCFGs
- PCFG-LAs
- Combinations of PCFGs
- 4 Conclusion

### Limitations of PCFGs

#### PCFG have issues modelling Natural Language:

- NL beyond context-free (won't be addressed directly)
- What is the correct/best set of non-terminals?

## With a coarse NT set, PCFGs cannot give different weights to:



### Limitations of PCFGs

#### PCFG have issues modelling NL:

- NL beyond contex-free (won't be addressed directly)
- What is the correct/best set of non-terminals?

### With a richer NT set, PCFGs can give different weights to:



# Set of NT symbols

### Late 90s / Early 00s: Quest for the perfect set of NTs

- simple re-annotation [Johnson, 1999]
  - parent annotation
  - cannot be extended very far
  - *F* = 79.6
- very complex re-annotation[Klein and Manning, 2003]
  - almost complete rewrite of the treebank
  - requires understanding of the language, the treebank, the parser...
  - some refinements are detrimental, too precise/sparse
  - *F* = 85.7

## **PCFG-LA**

Idea: use refined symbols with coarse symbols

A grammar where each NT is of the form a[x]:

- a is non-terminal symbol, as appearing in the treebank (coarse-grain)
- x is a specialization drawn from a small set of possible refinements of a

#### **Determiners**

- in the treebank : DET for the, a, this
- we want DET[def] for the, DET[undef] for a, DET[dem] for this

Learn such a grammar from a regular (coarse-grain) treebank

# $G = (\mathcal{N}, \mathcal{H}, \mathcal{T}, \mathcal{R}, s, p)$

- ullet  ${\mathcal N}$  non-terminals (with axiom s) and  ${\mathcal T}$  terminals
- ullet  ${\cal H}$  hidden refinement of categories
- ullet  $\mathcal R$  set of rewriting rules
  - $a[x] \rightarrow b[y]c[z]$  with  $a, b, c \in \mathcal{N}$  and  $x, y, z \in \mathcal{H}$
  - $a[x] \rightarrow w$  with  $a \in \mathcal{N}, x \in \mathcal{H}, w \in \mathcal{T}$
- ullet parameters p with each rule s.t.  $\forall a[x] \in \mathcal{N} imes \mathcal{T}$

$$\sum_{\gamma} p(a[x] \to \gamma) + \sum_{w} p(a[x] \to w) = 1$$

#### Two kinds of trees

#### Derivations vs. Parses



John sees PRP

(j) Parse tree

### Two kinds of trees

## Probability of a derivation tree $T_{\mathcal{H}}$

$$P(T_{\mathcal{H}}) = \prod_{r \in T_{\mathcal{H}}} p(r)$$

### Probability of a parse tree T

$$P(T) = \sum_{T_{\mathcal{H}} \in \rho^{-1}(T)} \prod_{r \in T_{\mathcal{H}}} p(r)$$

- where  $\rho$  is a projection from annotated trees to skeletals.
- ullet ho keeps only the first component of NTs

# Learning PCFG-LA

### Objective<sup>1</sup>

- parameters that maximize log-likelihood of a training set of parse trees
- but this time we want to learn refined categories!
- one parse tree: exponentially many derivations trees
- we restrict to  $\mathcal{H} = \{1..n\}$  with fixed n
- we suppose axiom can have only one refinement.

Use the Expectation-Maximization algorithm

# Learning PCFG-LA

Sentence w and its parse tree T



Let us define the probability of deriving:

the substring from a refined symbol

$$P_{IN}^{i,k}(a[x]) = P(w_i \dots w_k | a[x])$$

• the complete context for a[x] from i to k from the axiom

$$P_{OUT}^{i,k}(a[x]) = P(w_1 \dots w_{i-1}a[x]w_{k+1} \dots w_n)$$

Joseph Le Roux (UP13) PCFGs are forever 11/02/2014 26 / 52

# Learning PCFG-LA

#### These quantities can be efficiently computed :

Inside:

$$\begin{array}{lcl} P_{lN}^{i,i}(a[x]) & = & p(a[x] \to w_i) \\ P_{lN}^{i,k}(a[x]) & = & \sum_{y,z} p(a[x]) \to (b[y])(c[z])) \cdot P_{lN}^{i,j}(b[y]) \cdot P_{lN}^{i+1,k}(c[z]) \end{array}$$

Outside:

$$\begin{array}{lcl} P_{OUT}^{1,n}(s[0]) & = & 1 \\ P_{OUT}^{i,j}(b[y]) & = & \sum_{x,z} p(a[x] \to b[y]c[z]) \cdot P_{OUT}^{i,k}(a[x]) \cdot P_{IN}^{j+1,k}(c[z]) \\ P_{OUT}^{j+1,k}(c[z]) & = & \sum_{x,z} p(a[x] \to b[y]c[z]) \cdot P_{OUT}^{i,k}(a[x]) \cdot P_{IN}^{i,j}(b[y]) \end{array}$$

# Learning PCFG-LAs

We can calculate P(T[r], i, j, k), the probability of all derivations containing  $r = a[x] \rightarrow b[y]c[z]$  in T at position (i, j, k)

$$p(a[x] \rightarrow b[y]c[z]) \cdot P_{in}^{i,k}(b[y]) \cdot P_{in}^{k+1,j}(c[z]) \cdot P_{out}^{i,j}(a[x])$$

# **Expectation Maximization**

#### EM: Maximum Likelihood estimation with omitted data

- counts → fractional counts (based on expectation)
- likelihood improves between iterations [Smith, 2011]
- can be seen as coordinate block ascent
- can get stuck to a local maximum

# 2 steps repeated until stabilization

**1** get expected counts for  $r = a[x] \rightarrow b[y]c[z]$ :

$$EC[r] = \sum_{t \in \mathcal{E}} \frac{1}{P(t)} \sum_{r \text{ spans } (i,j,k) \in t} P(t[r],i,j,k)$$

compute new probabilities (results of a maximization)

$$p(a[x] \to b[y]c[z]) = \frac{EC[a[x] \to b[y]c[z]]}{EC[a[x]]}$$

# Parsing with PCFG-LA

# Find the best tree with the given sentence as its yield:

$$T^* = \arg\max_{T} \sum_{T_{\mathcal{H}} \in \rho^{-1}(T)} \prod_{r \in T_{\mathcal{H}}} p(r)$$
 (1)

### Intractability

Reduction to the problem of finding the best 'unfolding' (tree) from an *ambiguous* (tree-local) Weighted Tree Automaton [Maletti and Satta, 2009]

Can we find an efficient good approximate?

# Compute the best derivation and clean it

$$T^* = \rho(\arg\max_{T_{\mathcal{H}}} \prod_{r \in T_{\mathcal{H}}} p(r))$$
 (2)

- We can reuse CKY parsing as is
- This assumes that the distribution is dominated by a best derivation. This is rarely the case → suboptimal accuracy

# Approximate Parsing with PCFG-LA (2)

Approximate the PCFG-LA with a specialized PCFG

#### A few remarks

- Although exact parsing is intractable, computing inside/outside probabilities in the parse forest is tractable
- Learning PCFG from a corpus (even as small as a single parse forest) is easy

#### → Variational Inference!

- We want to learn a PCFG that recognizes only the current sentence
- With statistics gathered from the PCFG-LA shared forest

## Variational Inference

From PCFG-LAs to PCFGs

#### Rules of the PCFG we want to learn

- $a^{i,k} \rightarrow b^{i,j} c^{j+1,k}$  or  $a^{i,i} \rightarrow w_i$
- Symbols have a fixed position
- denoted:  $(a \rightarrow b \ c, i, j, k)$  or  $(a \rightarrow w, i)$

# Variational Inference

From PCFG-LAs to PCFGs

#### Rules of the PCFG we want to learn

- $a^{i,k} \rightarrow b^{i,j} c^{j+1,k}$  or  $a^{i,i} \rightarrow w_i$
- Symbols have a fixed position
- denoted:  $(a \rightarrow b \ c, i, j, k)$  or  $(a \rightarrow w, i)$

## We want the distributions to be as close as possible

For a given sentence w

$$\operatorname{arg\,min} \mathit{KL}(P||Q) = \operatorname{arg\,min} \sum_{T \in \mathcal{F}(w)} P(T) \log \frac{P(T)}{Q(T)}$$

#### where

- P is the probability of the PCFG-LA model (sum of products)
- Q is the probability of the PCFG model (product)

### We want the distributions to be as close as possible

For a given sentence

$$Q^* = \arg\min_{Q} \sum_{T \in \mathcal{F}} P(T) \log \frac{P(T)}{Q(T)} = \arg\min_{Q} \sum_{T \in \mathcal{F}} K_T - P(T) \log Q(T)$$
$$= \arg\max_{Q} \sum_{T \in \mathcal{F}} P(T) \log Q(T)$$

34 / 52

### We want the distributions to be as close as possible

For a given sentence

$$Q^* = \arg\min_{Q} \sum_{T \in \mathcal{F}} P(T) \log \frac{P(T)}{Q(T)} = \arg\min_{Q} \sum_{T \in \mathcal{F}} K_T - P(T) \log Q(T)$$

$$= \arg\max_{Q} \sum_{T \in \mathcal{F}} P(T) \log Q(T)$$

$$= \arg\max_{Q} \sum_{T \in \mathcal{F}} P(T) \sum_{R \in T} c(R, T) \log q(R)$$

### We want the distributions to be as close as possible

For a given sentence

$$Q^* = \arg\min_{Q} \sum_{T \in \mathcal{F}} P(T) \log \frac{P(T)}{Q(T)} = \arg\min_{Q} \sum_{T \in \mathcal{F}} K_T - P(T) \log Q(T)$$

$$= \arg\max_{Q} \sum_{T \in \mathcal{F}} P(T) \log Q(T)$$

$$= \arg\max_{Q} \sum_{T \in \mathcal{F}} P(T) \sum_{R \in T} c(R, T) \log q(R)$$

$$= \arg\max_{Q} \sum_{R \in \mathcal{F}} \left( \sum_{R = \rho^{-1}(r)} P(\mathcal{F}[r], span(R)) \right) \log q(R)$$

### Variational Inference

#### The minimization under constraints has a closed form:

$$score(a \rightarrow b \ c, i, j, k) = \sum_{x,y,z \in \mathcal{H}} P_{\text{out}}^{i,k} \big( a[x] \big) \cdot p \big( \ a[x] \rightarrow b[y] \ c[z] \big) \cdot P_{\text{in}}^{j,j} \big( b[y] \big) \cdot P_{\text{in}}^{j,k} \big( c[z] \big)$$

$$norm(a \rightarrow b \ c, i, j, k) = \sum_{x \in \mathcal{H}} P_{\text{in}}^{j,k} \big( a[x] \big) \cdot P_{\text{out}}^{j,k} \big( a[x] \big)$$

$$score(a \rightarrow w, i) = \sum_{x \in \mathcal{H}} P_{\text{out}}^{j,i} \big( a[x] \big) \cdot p \big( a[x] \rightarrow w \big)$$

$$norm(a \rightarrow w, i) = \sum_{x \in \mathcal{H}} P_{\text{in}}^{j,i} \big( a[x] \big) \cdot P_{\text{out}}^{j,i} \big( a[x] \big)$$

$$q(r_s) = \left[ \frac{score(r_s)}{norm(r_s)} \text{ (V. Inference)} \right]$$

### Variational Inference

#### The minimization under constraints has a closed form:

$$score(a \rightarrow b \ c, i, j, k) = \sum_{x,y,z \in \mathcal{H}} P_{\text{out}}^{i,k} \left( a[x] \right) \cdot p \left( \ a[x] \rightarrow b[y] \ c[z] \right) \cdot P_{\text{in}}^{i,j} \left( b[y] \right) \cdot P_{\text{in}}^{i,k} \left( c[z] \right)$$

$$norm(a \rightarrow b \ c, i, j, k) = \sum_{x \in \mathcal{H}} P_{\text{in}}^{i,k} \left( a[x] \right) \cdot P_{\text{out}}^{i,k} \left( a[x] \right)$$

$$score(a \rightarrow w, i) = \sum_{x \in \mathcal{H}} P_{\text{out}}^{i,i} \left( a[x] \right) \cdot p \left( a[x] \rightarrow w \right)$$

$$norm(a \rightarrow w, i) = \sum_{x \in \mathcal{H}} P_{\text{in}}^{i,i} \left( a[x] \right) \cdot P_{\text{out}}^{i,i} \left( a[x] \right)$$

$$q(r_s) = \left[ \frac{score(r_s)}{norm(r_s)} \left( \text{V. Inference} \right) \right] \text{ or } \left[ \frac{score(r_s)}{P_{\text{in}}^{0,n} \left( \text{S[0]} \right)} \left( \text{Petrov's MR} \right) \right]$$

# Some Results: Approximate PCFG-LA parsing

### Penn TreeBank evaluation PTB Sec 23

Markov Right bin / no function

| $ \mathcal{H} $ | F     | Exact |
|-----------------|-------|-------|
| 1               | 65.27 | 6.75  |
| 2               | 75.76 | 10.76 |
| 4               | 84.09 | 21.52 |
| 8               | 87.19 | 28.52 |
| 16              | 89.06 | 33.32 |
| 32              | 90.03 | 35.82 |
| 64              | 90.30 | 36.02 |
| 32              | 90.03 | 35.82 |

# Some Results: Approximate PCFG-LA parsing

### Penn TreeBank evaluation PTB Sec 23

Markov Right bin / no function

| $ \mathcal{H} $ | F     | Exact |
|-----------------|-------|-------|
| 1               | 65.27 | 6.75  |
| 2               | 75.76 | 10.76 |
| 4               | 84.09 | 21.52 |
| 8               | 87.19 | 28.52 |
| 16              | 89.06 | 33.32 |
| 32              | 90.03 | 35.82 |
| 64              | 90.30 | 36.02 |

With  $|\mathcal{H}| = 64$ 

| approx/ binarization / NT set | F     | Exact |
|-------------------------------|-------|-------|
| PCFG/ markov right / no fun   | 88.81 | 33.54 |
| PCFG / markov right / fun     | 88.70 | 33.50 |
| V.I. / markov right / no fun  | 90.30 | 36.02 |
| V.I. / markov right / fun     | 89.85 | 36.22 |
| V.I. / markov left / no fun   | 90.38 | 36.01 |
| V.I. / markov left / fun      | 89.56 | 34.13 |

# Product of PCFG-LAs [Petrov, 2010]

EM grammar accuracy depends on initial settings (up to 10% ER)

#### Petrov's idea

- train several grammars that only differ in their initial settings
- and combine their scores

$$T^* = \arg \max_{T} \prod_{i=1}^{n} Q_{G_i}(T)$$

# Scoring with *n* grammars:

$$T^*$$
 =  $\underset{T}{\operatorname{arg max}} \sum_{i=1}^{n} \sum_{r \in T} \log q_{G_i}(r)$   
 =  $\underset{T}{\operatorname{arg max}} \sum_{r \in T} \sum_{i=1}^{n} \log q_{G_i}(r)$ 

The product can be treated as one grammar: CKY still applies

### Some results

Products of 16 grammars

## Evaluation on PTB test

| Binarization/NT set       | F     | EX    |
|---------------------------|-------|-------|
| Markov Right Bin / No Fun | 91.76 | 40.73 |
| Markov Left Bin / No Fun  | 91.57 | 39.07 |
| Markov Right Bin / Fun    | 91.73 | 41.47 |
| Markov Left Bin / Fun     | 91.45 | 40.11 |

### Some results

Products of 16 grammars

#### **Evaluation on PTB test**

| Binarization/NT set       | F     | EX    |
|---------------------------|-------|-------|
| Markov Right Bin / No Fun | 91.76 | 40.73 |
| Markov Left Bin / No Fun  | 91.57 | 39.07 |
| Markov Right Bin / Fun    | 91.73 | 41.47 |
| Markov Left Bin / Fun     | 91.45 | 40.11 |

- Binarizations → different errors
- Expert system with different binarization schemes

## Outline

- PCFGs
- PCFG-LAS
- Combinations of PCFGs
- 4 Conclusion

• Different grammars (binarizations, symbols)

- Different grammars (binarizations, symbols)
- Different grammars → different parsers p

$$T_p^* = \arg\max_T s_p(T)$$

- Different grammars (binarizations, symbols)
- Different grammars → different parsers p

$$T_p^* = \arg\max_T s_p(T)$$

May not give the same solution in general

$$T_{p_i}^* \neq T_{p_j}^*$$

- Different grammars (binarizations, symbols)
- Different grammars → different parsers p

$$T_p^* = \arg\max_T s_p(T)$$

May not give the same solution in general

$$T_{p_i}^* \neq T_{p_j}^*$$

Combination as a vote of experts

$$T^* = \arg\max_{T} \sum_{p=1}^{n} s_p(\mathcal{C}_p(T))$$

Issues: How to combine really different trees?

## Combine the different binarizations

# Parse agreement

- Each parser is an expert with it own binarization
- They must agree on the debinarized tree



Expert 1: left binarization

# Combine the different binarizations

# Parse agreement

- Each parser is an expert with it own binarization
- They must agree on the debinarized tree



Expert 2: right binarization

## Combine the different binarizations

### Parse agreement

- Each parser is an expert with it own binarization
- They must agree on the debinarized tree

John sees a man with a telescope

Agreement

## expert system:

$$T^* = \operatorname{arg\,max}_T \sum_{p=1}^n s_p(T)$$

### Our problem becomes

Find the best solution such that parsers agree on Natural NTs

$$(P): T^* = \underset{(T_1...T_n) \in \mathcal{C}}{\operatorname{arg max}} \sum_{p=1}^n s_p(T_p)$$
s.t.  $z(T_i) = z(T_i), \forall (i, j)$ 

 $\forall (i,j) \in [\![1,n]\!]^2$ 

 $z(T_p)$ : boolean vector indexed by Natural NTs

- $z(T_p)[A, i, j] = 1$  if A is in  $T_p$  and spans from i to j
- $z(T_p)[A, i, j] = 0$  otherwise



42 / 52

# **Dynamic Programming Solution**

We can write a CKY variant that solve the new parsing problem

#### Intractable

- amounts to debinarize in the different parsers on the fly
- the length of debinarized rules is the bottleneck (CKY)
- because of Markovization, debinarized rules can be arbitrarily long (up to the length of the sentence)

The joint approach is a dead-end

# **Dual Decomposition Solution**

#### Rewrite with a witness vector u

$$(P): \mathit{Find} \qquad o_P = \max_{(T_1...T_n) \in \mathcal{C}} \; \sum_{i=1}^{} s_i(T_i)$$
 s.t.  $z(T_i) = u \qquad \exists u \in \mathbb{R}^d, \, \forall i \in \llbracket 1, n 
rbracket$ 

# Sub-problems tractable, coupling is not

#### Idea:

- Transform coupling constraints into numerical penalties (Lagrangian)
- Integrate this penalties into the objective

### Relaxation

For each parser  $p_k$ , there is a real vector  $\Lambda_k$  indexed by [A, i, j].

#### Relaxation

$$(RP): o_{RP} = \max_{u, T_{1...n}} \min_{\Lambda} \sum_{i} s_i(T_i) + \sum_{i} (z(T_i) - u) \cdot \Lambda_i$$

- ullet If the coupling constraints are satisfied o same as before
- otherwise, we can set the values in  $\Lambda_i$  to  $\pm\infty$  and get a minimum of  $-\infty$

We get the same maximal solution iff the contraints are satisfied.

### Dualization

# Dualization 1: we permute max and min

$$(LP1): \quad o_{LP1} = \quad \min_{\Lambda} \max_{u, T_{1...n}} \sum_{i} s_i(T_i) + \sum_{i} z(T_i) \cdot \Lambda_i - u \cdot \sum_{i} \Lambda_i$$

• To obtain finite solutions:  $\sum_i \Lambda_i = \mathbf{0}$ 

# **Dualization**

# Dualization 1: we permute max and min

$$(LP1): \quad o_{LP1} = \quad \min_{\Lambda} \max_{u, T_{1...n}} \sum_{i} s_i(T_i) + \sum_{i} z(T_i) \cdot \Lambda_i - u \cdot \sum_{i} \Lambda_i$$

• To obtain finite solutions:  $\sum_i \Lambda_i = \mathbf{0}$ 

### Dualization(2) with constraints

$$(LP): \quad o_{LP} = \quad \min_{\Lambda} \sum_{i=1}^{n} \max_{T_i \in \mathcal{F}_i} \left( s_i(T_i) + z(T_i) \cdot \Lambda_i \right)$$
 $s.t. \quad \sum_{i} \Lambda_i = \mathbf{0}$ 

- If we search only on  $\sum_i \Lambda_i = \mathbf{0}$ , the subproblems are separated.
- → projected subgradient method

46 / 52

# Minimization algorithm

Projected sub-gradient method

- Initialize  $\Lambda_i$  to 0
- Until parsers agree on natural NTs:
  - We solve each sub-problem:
    - $\max_{T \in \mathcal{F}_i} (s_i(T) + z(T) \cdot \Lambda_i)$
    - the penalties  $\Lambda_i$  are integrated in the CKY algorithm
    - (best path with node penalties)
  - Update Λ<sub>i</sub>
    - with constraints  $\sum_i \Lambda_i = \mathbf{0}$
    - proportionally to the difference between the solution  $z(T_i)$  of parser i and the average solution.

# Algorithm

```
Require: n parsers \{p_i\}_{1 \le i \le n}
   for all i. do
         \Lambda_{i}^{(0)} = 0
   end for
   for t=0 \rightarrow \tau do
         for all parsers p_i do
        T_i^{(t)} \leftarrow \operatorname{arg\,max}_{T \in \mathcal{F}_i} \left( s_i(T) + z(T) \cdot \Lambda_i^{(t)} \right)
         end for
         for all parsers p<sub>i</sub> do
               \Delta_i^{(t)} \leftarrow \alpha_t \left( z \left( T_i^{(t)} \right) - \frac{\sum_{1 \leq j \leq n} z \left( T_j^{(t)} \right)}{n} \right)
               \Lambda_i^{(t+1)} \leftarrow \Lambda_i^{(t)} + \Delta_i^{(t)}
         end for
         if \Delta_i^{(t)} = 0 for all i then
                Break
         end if
   end for
   return (T_1^{(\tau)}, \cdots, T_n^{(\tau)})
```

48 / 52

### Remarks

# This method applies to any PCFG

- Not just learned from PCFG-LA
- Need to define some agreement constraints over grammars

## Certificate of optimality

If we find a solution, it is optimal

## Subproblems are independent

The computation of the best solutions can be parallelized

# Iterative algorithm

Additive complexity (vs. Multiplicative for joint systems)

49 / 52

# Final results

# Evaluation on PTB-WSJ23

| System                    | F     | EX    |
|---------------------------|-------|-------|
| Markov Right Bin / No Fun | 91.76 | 40.73 |
| Markov Left Bin / No Fun  | 91.57 | 39.07 |
| Markov Right Bin / Fun    | 91.73 | 41.47 |
| Markov Left Bin / Fun     | 91.45 | 40.11 |
| DD No Fun                 | 92.09 | 41.51 |
| DD Fun                    | 92.26 | 42.09 |
| DD Markov Right Bin       | 92.16 | 42.05 |
| DD Markov Left Bin        | 91.89 | 40.65 |
| DD4                       | 92.44 | 42.38 |

- threshold: 1 000 iterations (95% converging)
- 85 iterations on average (39 on converging instances)

Joseph Le Roux (UP13) PCFGs are forever 11/02/2014 50 / 52

## Outline

- PCFGs
- PCFG-LAS
- Combinations of PCFGs
- 4 Conclusion

## Conclusion & Future Work

#### PCFGs are a nice formalism!

- simple to understand
- efficient algorithms (polynomial...)
- no feature engineering
- generative model
  - probabilities we can use in many ways
  - inference is simple: we can learn PCFGs from parse forests

# Conclusion & Future Work

#### PCFGs are a nice formalism!

- simple to understand
- efficient algorithms (polynomial...)
- no feature engineering
- generative model
  - probabilities we can use in many ways
  - inference is simple: we can learn PCFGs from parse forests

## Combinations of PCFGs: state-of-the art systems

- on English (PTB sec23) [EMNLP 2013]
- unpublished on French (SPRML 2013 data)

# Conclusion & Future Work

#### PCFGs are a nice formalism!

- simple to understand
- efficient algorithms (polynomial...)
- no feature engineering
- generative model
  - probabilities we can use in many ways
  - inference is simple: we can learn PCFGs from parse forests

## Combinations of PCFGs: state-of-the art systems

- on English (PTB sec23) [EMNLP 2013]
- unpublished on French (SPRML 2013 data)

#### **Future Work**

- use treebank information on long distance dependencies
- combine parsing with other tasks (MWE tokenization)

Joseph Le Roux (UP13) PCFGs are forever 11/02/2014 52 / 52