

Lucas Arnström

Department of Computer Systems

Uppsala University

2016-12-13

Introduction

What is P2PChat?

Chat program which utilizes peer-to-peer connections in order to construct a large network of clients whom all participate in a single global group chat.

How does it work?

- Clients connect to each other and create a network.
- Clients can then broadcast messages over the network.
- No tracker sadly; clients have to manually connect to each other

Example Network

Five clients connected to each other forming a simple network. If client 5 broadcasts a message, it will traverse the entire graph and eventually reach all nodes in the network.

■ Rounded rectangles represents actors.

- Rounded rectangles represents actors.
- Arrows inside big rectangle represents channels.

- Rounded rectangles represents actors.
- Arrows inside big rectangle represents channels.
- Arrows outside/across borders represents TCP sockets.

¹Threads can share data, but under very strict conditions.

- Why Rust instead of any other language?
 - Forces me to reason about memory ownership.

¹Threads can share data, but under very strict conditions.

- Why Rust instead of any other language?
 - Forces me to reason about memory ownership.
 - Only one scope can own and use a reference at any given time.

¹Threads can share data, but under very strict conditions.

- Forces me to reason about memory ownership.
 - Only one scope can own and use a reference at any given time.
- Allows easy memory management without the need of a garbage collector.

¹Threads can share data, but under very strict conditions.

- Forces me to reason about memory ownership.
 - Only one scope can own and use a reference at any given time.
- Allows easy memory management without the need of a garbage collector.
- Guarantees memory safety.

¹Threads can share data, but under very strict conditions.

- Forces me to reason about memory ownership.
 - Only one scope can own and use a reference at any given time.
- Allows easy memory management without the need of a garbage collector.
- · Guarantees memory safety.
- Guarantees no data races.

¹Threads can share data, but under very strict conditions.

- Forces me to reason about memory ownership.
 - Only one scope can own and use a reference at any given time.
- Allows easy memory management without the need of a garbage collector.
- Guarantees memory safety.
- Guarantees no data races.
 - ▶ Does so by not allowing any threads to share data.¹

¹Threads can share data, but under very strict conditions.

- Forces me to reason about memory ownership.
 - Only one scope can own and use a reference at any given time.
- Allows easy memory management without the need of a garbage collector.
- · Guarantees memory safety.
- Guarantees no data races.
 - ▶ Does so by not allowing any threads to share data.¹
 - Need to use channels in order to pass data between threads.

¹Threads can share data, but under very strict conditions.