COMP318: RDFS entailment

www.csc.liv.ac.uk/~valli/Comp318

Dr Valentina Tamma

Room: Ashton 2.12

Dept of computer science

University of Liverpool

V.Tamma@liverpool.ac.uk

Where were we

- SPARQL
 - RDF query language
 - Based on simple entailment
 - Syntax and exercises

Semantics

RDF(S) vocabulary has built-in "meaning"

- RDF(S) Semantics
 - Makes meaning explicit
 - Defines what follows from an RDF graph

- Goals
 - Evaluate the truth of a triple/graph
 - Characterise the state of the world that makes a triple/graph true.

RDF(S) entailment

- An RDF(S) graph entails implicit triples
 - triples not explicitly contained in the graph, but that can be derived from an RDF(S) graph
 - using the special semantics of the vocabulary of the graph
 - vocabulary of the graph: set of names which occurs as the subject, predicate, object
 - Interpretations assign special meaning to the symbols in a particular vocabulary
 - Interpretations (Normative)
 - Mapping of RDF assertions into an abstract model, based on set-theory
 - With an "interpretation operator" I(), maps a RDF graph into a highly abstract set of high-cardinality sets
 - Highly theoretical model, useful to prove mathematical properties
 - Entailments (Informative)
 - Transformation rules to derive new assertions from existing ones
 - May be proven complete and consistent with the formal interpretation

Entailment regimes

- Three entailment regimes
 - simple entailment: no particular extra conditions are posed on a vocabulary, including the RDF vocabulary itself;
 - it involved only graph transformations.
 - RDF entailment: based on the interpretation of the RDF vocabulary;
 - RDFS entailment:
 - based on the interpretation of the RDFS vocabulary
 - some extra conditions are posed by in the form of axiomatic triples and semantic conditions

Inference rules

• An inference rule is a rule of the form:

$$\phi_1, \phi_2, \dots \phi_n$$

- where $\phi_1, \phi_2, ... \phi_n$ are sentences in the language (assumptions), whilst ψ is a new sentence derived from the assumptions (conclusion)
- Inference rules are a formal description of the process for constructing new expressions from existing ones.
 - In RDF, inferences corresponding to entailments are described are described as correct or valid.

Proof theory

 \bullet Every formal logic has a set of inference rules that can be used to "prove" some formula μ from a given set of formulas Γ

- ullet A **formal proof** is the sequential application of the inference rules that starts with Γ and ends with μ
 - $\Gamma \vdash \mu, \mu$ can be proved from Γ

Soundness and completeness

- An inference mechanism is sound if it derives only sentences that are entailed.
 - If $\Gamma \vdash \mu$ then $\Gamma \models \mu$
- An inference mechanism is **complete** if derives all the sentences that are entailed.
 - If $\Gamma \models \mu$ then $\Gamma \vdash \mu$

RDF inference rules

- The W3C recommendation "RDF Semantics' provides the inference rules that corresponds to the various form of entailments mentioned;
 - simple entailment
 - RDF entailment
 - RDFS entailment

Notation

- a, b,
 - refer to any arbitrary URI
 - (i.e. anything that can appear in the predicate of a triple)
- u, v,
 - refer to any arbitrary URI or blank node ID
 - (i.e. anything that can appear in the subject of a triple)
- x, y,
 - refer to an arbitrary URI, blank node ID or literal
 - (i.e. anything that can appear in the object of a triple)
- _:n,
 - refer to the ID of a blank node
 - (i.e. appearing as a subject or object)
- **|**,
- refers to a literal
- (i.e. a string that is sometimes found in the object)

RDF Entailment

- The RDF entailment has 4 inference rules:
- (rdfax) Infer the triple u a x. for every RDF axiomatic triple u a x.
- (Ig, literal generalisation) If G contains u a l. then infer the triple u a _:n.
 - Specialised version of SE1 that allows generalisation of a literal by a blank node
 - Other properties of this literal can be inferred via this blank node: e.g. the literal is an instance of a class
 - Literals can only appear as objects in a triple

RDF Entailment

• The RDF entailment has 4 inference rules:

- (rdf1) If G contains a triple u a y. then we can infer
 - a rdf:type rdf:Property.
- (rdf2) If G contains a triple u a 1. where 1 is a well-formed XML literal then we can infer
 - _:n rdf:type rdf:XMLLiteral.

RDF entailment

• Theorem. A graph G1 RDF-entails a graph G2 if and only if there is a graph G1' that can be derived from G1 by using the rules rdfax, lg, rdf1 and rdf2 such that G1' simply entails G2.

Inference Rules for RDFS-entailment

- Assign "meaning" to the RDFS vocabulary
- (rdfsx) Infer the triple u a x. for every RDFS axiomatic triple u a x.
- (RDFS1, literal) If G contains u a 1. where 1 is a plain literal (with or without language information), then infer the triple:
 - _:n rdf:type rdfs:literal.

Domain and range restrictions

- (rdfs2) If G contains a triples a rdfs:domain x. u a y.then we can infer
 - u rdf:type x.
- (rdf3) If G contains a triples a rdfs:range x. u a v.then we can infer
 - v rdf:type x.

Everything is a resource

- (rdfs4a) If G contains a triple u a x. then we can infer
 - u rdf:type rdfs:Resource.
- (rdfs4b) If G contains a triple u a v.then we can infer
 - v rdf:type rdfs:Resource.
- We do not need an inference rule for predicates:
 - the relevant triple can be derived using rdf1 and rdfs4

Important property of binary relations

- binary relation R on a set A is said to be:
 - Reflexive: if x R x, for all $x \in A$
 - A number is equal to itself
 - Irreflexive: if not x R x, for all $x \in A$
 - A number x is not equal to (x+1)
 - Symmetric: if x R y implies y R x, for all x, $y \in A$
 - marriedTo: if Ross marriedTo Rachel then Rachel marriedTo Ross
 - Asymmetric: if x R y not A implies y R x, for all x, y \in A
 - parentOf: if Rachel parentOf Emma then it does not imply Emma parentOf Rachel
 - Transitive: if x R y and y R z implies x R z, for all x, y, $z \in A$
 - friendOf: if Monica friendOf Joey and Joey friendOf Phoebe then Monica friendOf Phoebe

Reflexivity and Transitivity of rdfs:subPropertyOf

- (rdfs5) If G contains the triples u rdfs:subPropertyOf v. and v rdfs:subPropertyOf x. we can infer
 - u rdfs:subPropertyOf x.
- (rdfs6) If G contains the triple u rdf:type rdf:Property. we can infer
 - u rdfs:subPropertyOf u.

More on Subproperties

(rdfs7) If G contains the triples
 a rdfs:subPropertyOf b. and u a y. we can infer

• u b y.

Classes and instances

- (rdfs8) If G contains the triple u rdf:type rdfs:Class. we can infer
 - u rdfs:subClassOf rdfs:Resource.
- (rdfs9) If G contains the triples u rdfs:subClassOf x. and v rdf:type u. we can infer
 - v rdf:type x.

Reflexivity and Transitivity of rdfs:subClassOf

- (rdfs10) If G contains the triple u rdf:type rdfs:Class. we can infer
 - u rdfs:subClassOf u.
- (rdfs11) If G contains the triples
 u rdfs:subClassOf v. and v rdfs:subClassOf
 x. we can infer
 - u rdfs:subClassOf x.

Containers

• (rdfs12) If G contains the triple

```
u rdf:type
rdfs:ContainerMembershipProperty. we can
infer
```

• u rdfs:subPropertyOf rdfs:member.

Datatypes

- (rdfs13) If G contains the triple u rdf:type rdfs:Datatype. we can infer
 - u rdfs:subClassOf rdfs:Literal.

Bijection between literals and surrogate bonds

- (gl inverse of lg) If G contains the triple
 - u a _:n. we can infer
 - u a 1. However:
 - this rule can be applied only when _:n identifies a bnode that was introduced earlier by weakening the literal 1 via the rule |g|
 - This inference rule is necessary to bring back a literal that has been substituted by a blank node using rule lg, then some other inference rule produced a triple with this blank node (_:n) in the object position, and rule gl can now be used to bring this literal back!
 - E.g.:Murray atp:name "Andy Murray".

 :atp:name rdfs:range atp:PlayerName.
 - Would entail "Andy Murray" a atp:PlayerName. which is problematic. Why?

Bijection between literals and surrogate bonds

- The latter triple is not a valid RDF triple
 - a literal should not appear in the subject position!
- thus it will not be inferred (the domain of the ?v variable in the rdfs3 rule would prevent the inference). And so, to achieve the valid inference:
 - :AndyMurray a atp:PlayerName .

Requires the surrogate blank node (_:AndyMurray) to be used through the rule lg.

The inverse rule gl then allows surrogates to "travel" back as literals into the object position, though
examples of such behaviour are not necessarily intuitive.

Conclusion

RDF entailment rules

RDFS entailment rules