

Shape Compatibility Rules

A.	+ - .op	x and y have the same size and shape
B.	*	size(x,2) equals size(y,1)
C.	\	size(x,1) equals size(y,1)
D.	/	size(x,2) equals size(y,2)
E.	^	x and y are square and at least one is scalar

Here we have five rules for a binary operation,

Shape Compatibility Rules

٨	+ -	x and y have the same size and shape
A.	. op	or at least one is scalar
D	*	size(x,2) equals size(y,1)
B.		or at least one is scalar
	\	<pre>size(x,1) equals size(y,1)</pre>
C.		or at least x is scalar
0	,	size(x,2) equals size(y,2)
D.	/	or at least y is scalar
E.	^	x and y are square and at least one is scalar

The special cases are that if one operand is a scaler,

Shape Compatibility Rules

+ -	x and y have the same size and shape
. op	or at least one is scalar
*	size(x,2) equals size(y,1)
	or at least one is scalar
\	size(x,1) equals size(y,1)
\	or at least x is scalar
,	size(x,2) equals size(y,2)
/	or at least y is scalar
^	x and y are square and at least one is scalar
+ -	ammary and vocatom with acrual mary an column langth
.op	array and vector with equal row or column length
	. op * . \

Shape Compatibility Rules

	A.	+ -	x and y have the same size and shape
		. op	or at least one is scalar
		*	size(x,2) equals size(y,1)
	B. C.	\	or at least one is scalar
			size(x,1) equals size(y,1)
			or at least x is scalar
			size(x,2) equals size(y,2)
	D.	/	or at least y is scalar
	E.	^	x and y are square and at least one is scalar
	_	+ -	1 , 1,1 1 1 1 1
	F.	00	array and vector with equal row or column length
		.00	

Type-Shape Combinations

Allowed Operators

- 1. \mathbf{x} , \mathbf{y} = floating point numbers
- 2. x, y = scalars: integers of same ALL type or integer and double
- 3. **x** = integer array, **y** = scalar integer ➤ ALL except \ and ^ of same type or scalar double
- 4. **y** = integer array, **x** = scalar integer ALL except / and ^ of same type or scalar double
- 5. x, y = non-scalar integers of → +, -, and .op the same type
- 6. x, y = integers of different types ▶ NONE

Type-Shape Combinations

Allowed Operators

[Forward 4 sec. / Keyframe / 00:32:11 (98.4%)]

Binary Arithmetic Operations, x op y Shape Compatibility Rules

	Α.	+ -	x and y have the same size and shape
		. op	or at least one is scalar
	В.	*	size (x,2) equals size (y,1) or at least one is scalar
	C.	١	size (x,1) equals size (y,1) or at least x is scalar
	D.	1	size (x,2) equals size (y,2) or at least y is scalar
	E.	^	x and y are square and at least one is scalar
	F.	+ -	array and vector with equal row or column length
		.op	Harris Assessed all WES

Binary Arithmetic Operations, x op y

These tables will let you know what works and what doesn't.

[Forward 4 sec. / Keyframe / 00:32:22 (98.9%)]

Binary Arithmetic Operations, x op y Shape Compatibility Rules

- 1	_		v
	A.	+ - .op	x and y have the same size and shape or at least one is scalar
	В.	*	size(x,2) equals size(y,1) or at least one is scalar
	C.	1	size(x,1) equals size(y,1) or at least x is scalar
	D.	1	size(x,2) equals size(y,2) or at least y is scalar
	E.	^	x and y are square and at least one is scalar
	F.	+ - .op	array and vector with equal row or column length

Binary Arithmetic Operations, x op y

The output of x op y has the type of the operand that occupies fewer bytes in memory.

You can refer back to these tables, which are provided as accompanying references

Simultaneous Linear Algebraic Equations

$$Ax = b$$

or some other permutation of these three adjectives,

Summary of Error Handling

- Previous error handling
 - MATLAB error messages to help us debug our code
 - not informative enough
 - change from one MATLAB version to another
 - If-statements to examine input for errors
 - too many possibilities to be feasible