Summary of Discrete Distributions

Notation and Parameters	Probability Function $f(x)$	Mean E(X)	Variance Var(X)
Discrete Uniform (a, b) $b \ge a$ a, b integers	$\frac{1}{b-a+1}$ $x = a, a+1,, b$	$\frac{a+b}{2}$	$\frac{(b-a+1)^2-1}{12}$
Hypergeometric(N, r, n) $N = 1,2,$ $n = 0,1,, N$ $r = 0,1,, N$	$\frac{\binom{r}{x}\binom{N-r}{n-x}}{\binom{N}{n}}$ $x = \max(0, n - N + r),$, $\min(r, n)$	$\frac{nr}{N}$	$\frac{nr}{N}\Big(1-\frac{r}{N}\Big)\frac{N-n}{N-1}$
Binomial (n, p) $0 \le p \le 1, q = 1 - p$ n = 1, 2,	$\binom{n}{x} p^x q^{n-x}$ $x = 0, 1, \dots, n$	np	npq
Bernoulli(p) $0 \le p \le 1, q = 1 - p$	$p^x q^{1-x}$ $x = 0,1$	p	pq
Negative Binomial (k, p) 0 $k = 1, 2,$		$\frac{kq}{p}$	$\frac{kq}{p^2}$
Geometric(p) 0	pq^{x} $x = 0,1,$	$\frac{q}{p}$	$\frac{q}{p^2}$
Poisson(λ) $\lambda \geq 0$	$\frac{e^{-\lambda}\lambda^x}{x!}$ $x = 0,1,$	λ	λ
$\begin{aligned} & \text{Multinomial}(n; p_1, p_2, \dots, p_k) \\ & 0 \leq p_i \leq 1 \\ & i = 1, 2, \dots, k \\ & \text{and } \sum_{i=1}^k p_i = 1 \end{aligned}$	$x = 0,1,$ $f(x_1, x_2,, x_k) = \frac{n!}{x_1! x_2! x_k!} p_1^{x_1} p_2^{x_2} p_k^{x_k}$ $x_i = 0,1,, n$ $i = 1,2,, k$ and $\sum_{i=1}^{n} x_i = n$	$E(X_i)$ $= np_i$ $i = 1,, k$	$Var(X_i)$ $= np_i(1 - p_i)$ $i = 1, 2,, k$

Summary of Continuous Distributions

Notation and Parameters	Probability Density Function $f(x)$	Mean E(X)	Variance $Var(X)$
Uniform (a, b) $b > a$	$\frac{1}{b-a}$ $a \le x \le b$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
Exponential(θ) $\theta > 0$	$\frac{1}{\theta}e^{-x/\theta}$ $x \ge 0$	θ	θ^2
$N(\mu, \sigma^{2}) = G(\mu, \sigma)$ $\mu \in \mathbb{R}, \sigma > 0$	$\frac{1}{\sqrt{2\pi}\sigma}e^{-(x-\mu)^2/(2\sigma^2)}$ $x \in \mathbb{R}$	μ	σ^2