GRAPH THEORY: RETAKE EXAM

10 JUNE 2021

Throughout the entire exam, G = (V, E) denotes a finite simple graph.

Problem 1. Let $V = \{I_1, \ldots, I_n\}$ be a collection of compact intervals. Construct a graph G = (V, E) by drawing an edge between vertices I_i and I_j whenever $I_i \cap I_j \neq \emptyset$, for $1 \leq i < j \leq n$.

- (a) Construct an example where G contains a cycle of length at least 4. (1p)
- (b) Show that G cannot contain a cyckle C_k with $k \geq 4$ as an induced subgraph. (4p)

Problem 2. Let $n, m \ge 1$ be integers. Consider a graph $G_{n,m}$ obtained by "chaining together" m copies of K_n as shown in the following picture (for n = 4, m = 3):

How many spanning trees does $G_{n,m}$ have? Does this number change if the edges connecting the different copies of K_n are contracted? (5p)

Problem 3. Consider the weighted graph

- (a) Use Prim's or Kruskal's algorithm to find a minimum weight spanning tree. Your solution must contain all relevant steps in the algorithm. (2p)
- (b) What is the Prüfer sequence of the tree obtained in (a)? (1p)
- (c) Is the minimum spanning tree obtained in (a) unique? Why (not)? (2p)

Problem 4. Consider the flow network

(a) By applying the Ford-Fulkerson algorithm, find a maximal flow from s to t in the above network. Your solution must contain all relevant steps in the algorithm. (3p)

(b) Construct a minimum s-t-cut, and verify that the capacity of the cut equals the value of the flow in (a). (2p)

Problem 5. Let $n \geq 5$. Consider a graph G_n constructed in the following way: Vertices are the $\binom{n}{2}$ two-element subsets of $\{1, 2, \ldots, n\}$, and two vertices are connected by an edge iff the corresponding subsets are disjoint. Show that the graphs G_n are non-planar. (5p)

Problem 6. Consider the complete graph K_n with vertices labelled $\{1, ..., n\}$. Show that for any finite simple graph G, there is a bijection between proper n-colourings of G, and graph homomorphisms $G \to K_n$. (5p)

Problem 7. For $n \geq 3$, construct a graph W_n as follows: To C_n , add a new vertex w, and draw an edge from w to every vertex in C_n . (1p each)

- (a) Show that W_n is planar.
- (b) What is a planar dual for W_n ?
- (c) What is the vertex connectivity $\kappa(W_n)$?
- (d) What is the independence number $\alpha(W_n)$?
- (e) What is the chromatic number $\chi(W_n)$?

Problem 8. The purpose of this problem is to show that the critical function for the existence of a path on three vertices in the Erdős-Renyi graph G(n, p) is $p(n) = n^{-3/2}$.

- (a) Show that there are $3\binom{n}{3}$ copies of P_3 in K_n . (1p)
- (b) Use the first moment method to show that G(n, p) doesn't contain any copy of P_3 asymptotically almost surely for $p \ll n^{-3/2}$. (2p)
- (c) Use the second moment method to show that G(n, p) asymptotically almost surely contains a copy of P_3 for $p \gg n^{-3/2}$. (2p)

Please note: The only aids allowed are course lecture notes/videos and Diestel's book "Graph Theory". Aids not listed here are not permitted.

The problems above are to be solved and written down individually.

Upload your solutions as **one** pdf-file to studium, or send it by mail if uploading causes problems. Please take care that the solution is clearly readable, and that your name is written on it.