BÀI 5. PHƯƠNG TRÌNH LƯƠNG GIÁC CƠ BẢN

CHƯƠNG 1. HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC

PHẦN B. BÀI TẬP TƯ LUẬN (PHÂN DANG)

DANG 1. PHƯƠNG TRÌNH TƯƠNG ĐƯƠNG

(SGK-CTST 11-Tập 1) Chỉ ra lỗi sai trong phép biến đổi phương trình dưới đây: Câu 1.

$$x^2 = 2x \Leftrightarrow \frac{x^2}{x} = 2 \Leftrightarrow x = 2.$$

Trong phép biến đổi phương trình trên, ta chia cả 2 vế cho x khi x chưa khác 0

Phương trình $x^2 = 3x$ tương đương với phương trình nào trong bốn phương trình sau? Câu 2.

(1):
$$x^2 + \sqrt{x-2} = 3x + \sqrt{x-2}$$
. (2): $x^2 + \frac{1}{x-3} = 3x + \frac{1}{x-3}$.

(3):
$$x^2 \sqrt{x-3} = 3x\sqrt{x-3}$$
. (4): $x^2 + \sqrt{x^2 + 1} = 3x + \sqrt{x^2 + 1}$.

(1)
$$\Leftrightarrow$$
 $\begin{cases} x \ge 2 \\ x^2 - 3x = 0 \end{cases} \Leftrightarrow x = 3 \quad (3) \Leftrightarrow \begin{cases} x \ge 3 \\ x(\sqrt{x-3})^3 = 0 \end{cases} \Leftrightarrow x = 3$

$$(2) \Leftrightarrow \begin{cases} x \neq 3 \\ x^2 - 3x = 0 \end{cases} \Leftrightarrow x = 0 \quad (4): x^2 + \sqrt{x^2 + 1} = 3x + \sqrt{x^2 + 1} \Leftrightarrow x^2 = 3x$$

Vậy (4) tương đương với phương trình đã cho

Tìm m để cặp phương trình sau tương đương $mx^2 - 2(m-1)x + m - 2 = 0$ (1) và

$$(m-2)x^2-3x+m^2-15=0$$
 (2)

Giả sử hai phương trình (1) và (2) tương đương

Ta có
$$(1) \Leftrightarrow (x-1)(mx-m+2) = 0 \Leftrightarrow \begin{bmatrix} x=1\\ mx-m+2=0 \end{bmatrix}$$

Do hai phương trình tương đương nên x=1 là nghiêm của phương trình (2)

Thay x = 1 vào phương trình (2) ta được

$$(m-2)-3+m^2-15=0 \iff m^2+m-20=0 \iff \begin{bmatrix} m=4\\ m=-5 \end{bmatrix}$$

• Với
$$m = -5$$
: Phương trình (1) trở thành $-5x^2 + 12x - 7 = 0 \Leftrightarrow \begin{bmatrix} x = 1 \\ x = \frac{7}{5} \end{bmatrix}$

Phương trình (2) trở thành
$$-7x^2 - 3x + 10 = 0 \Leftrightarrow \begin{bmatrix} x = 1 \\ x = -\frac{10}{7} \end{bmatrix}$$

Suy ra hai phương trình không tương đương

• Với
$$m = 4$$
: Phương trình (1) trở thành $4x^2 - 6x + 2 = 0 \Leftrightarrow \begin{bmatrix} x = \frac{1}{2} \\ x = 1 \end{bmatrix}$

Phương trình (2) trở thành
$$2x^2 - 3x + 1 = 0 \Leftrightarrow \begin{bmatrix} x = 1 \\ x = \frac{1}{2} \end{bmatrix}$$

Suy ra hai phương trình tương đương

Vậy m = 4 thì hai phương trình tương đương.

Câu 4. Tìm m để cặp phương trình sau tương đương $2x^2 + mx - 2 = 0$ (1) và

$$2x^3 + (m+4)x^2 + 2(m-1)x - 4 = 0$$
 (2)

Lời giải

Giả sử hai phương trình (3) và (4) tương đương

Ta có
$$2x^3 + (m+4)x^2 + 2(m-1)x - 4 = 0 \Leftrightarrow (x+2)(2x^2 + mx - 2) = 0$$

$$\Leftrightarrow \begin{bmatrix} x = -2 \\ 2x^2 + mx - 2 = 0 \end{bmatrix}$$

Do hai phương trình tương đương nên x = -2 cũng là nghiệm của phương trình (3) Thay

$$x = -2$$
 vào phương trình (3) ta được $2(-2)^2 + m(-2) - 2 = 0 \Leftrightarrow m = 3$

• Với
$$m = 3$$
 phương trình (3) trở thành $2x^2 + 3x - 2 = 0 \Leftrightarrow \begin{bmatrix} x = -2 \\ x = \frac{1}{2} \end{bmatrix}$

Phương trình (4) trở thành $2x^3 + 7x^2 + 4x - 4 = 0 \Leftrightarrow (x+2)^2 (2x+1) = 0$

$$\Leftrightarrow \begin{bmatrix} x = -2 \\ x = \frac{1}{2} \end{bmatrix}$$

Suy ra phương trình (3) tương đương với phương trình (4)

Vậy m=3.

DẠNG 2. GIẢI PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN

Câu 5. (SGK-CTST 11-Tập 1) Giải các phương trình sau:

a)
$$\sin x = \frac{\sqrt{3}}{2}$$

b)
$$\sin(x+30^\circ) = \sin(x+60^\circ)$$
.

a) Vì
$$\frac{\sqrt{3}}{2} = \sin \frac{\pi}{3}$$
 nên ta có phương trình $\sin x = \frac{\sqrt{3}}{2}$. Do đó phương trình có các nghiệm là:

$$x = \frac{\pi}{3} + k2\pi, k \in \mathbb{Z} \text{ và } x = \pi - \frac{\pi}{3} + k2\pi = \frac{2\pi}{3} + k2\pi, k \in \mathbb{Z}$$

b)
$$\sin(x+30^{\circ}) = \sin(x+60^{\circ})$$

$$\Leftrightarrow x + 30^{\circ} = x + 60^{\circ} + k.360^{\circ}, k \in \mathbb{Z} \lor x + 30^{\circ} = 180^{\circ} - x - 60^{\circ} + k.360^{\circ}, k \in \mathbb{Z}$$

$$\Leftrightarrow x = 45^{\circ} + k.180^{\circ}, k \in \mathbb{Z}$$

Câu 6. (SGK-CTST 11-Tập 1) Giải các phương trình sau:

- a) $\cos x = -3$;
- b) $\cos x = \cos 15^{\circ}$;

c)
$$\cos\left(x + \frac{\pi}{12}\right) = \cos\frac{3\pi}{12}$$
.

Lời giải

a) Với mọi $x \in \mathbb{R}$ ta có $-1 \le \cos x \le 1$

Vậy phương trình $\cos x = -3$ vô nghiệm

b)
$$\cos x = \cos 15^{\circ}$$

$$\Leftrightarrow x = 15^{\circ} + k360^{\circ}, k \in \mathbb{Z} \text{ hoặc } x = -15^{\circ} + k360^{\circ}, k \in \mathbb{Z}$$

c)
$$\cos\left(x + \frac{\pi}{12}\right) = \cos\frac{3\pi}{12}$$

$$\Leftrightarrow x + \frac{\pi}{12} = \frac{3\pi}{12} + k2\pi, k \in \mathbb{Z} \text{ hoặc } x + \frac{\pi}{12} = \frac{-3\pi}{12} + k2\pi, k \in \mathbb{Z}$$

$$\Leftrightarrow x = \frac{\pi}{6} + k2\pi, k \in \mathbb{Z} \text{ hoặc } x = \frac{-\pi}{3} + k2\pi, k \in \mathbb{Z}$$

Câu 7. (SGK-CTST 11-Tập 1) Giải các phương trình sau:

- a) $\tan x = 0$;
- b) $\tan (30^{\circ} 3x) = \tan 75^{\circ}$.

Lời giải

a)
$$\tan x = 0 \Leftrightarrow x = k\pi, k \in \mathbb{Z}$$

b)
$$\tan(30^{\circ} - 3x) = \tan 75^{\circ} \Leftrightarrow 30^{\circ} - 3x = 75^{\circ} + k\pi, k \in \mathbb{Z} \Leftrightarrow x = -15^{\circ} - k\frac{\pi}{3}, k \in \mathbb{Z}$$

Câu 8. (SGK-CTST 11-Tập 1) Giải các phương trình sau:

- a) $\cot x = 1$;
- b) $\cot(3x+30^{\circ}) = \cot 75^{\circ}$.

Lời giải

a)
$$\cot x = 1 \Leftrightarrow x = \frac{\pi}{4} + k\pi, k \in \mathbb{Z}$$

b)
$$\cot(3x+30^{\circ}) = \cos 75^{\circ} \Leftrightarrow 3x+30^{\circ} = 75^{\circ} + k\pi, k \in \mathbb{Z} \Leftrightarrow x=15^{\circ} + k\frac{\pi}{3}, k \in \mathbb{Z}$$

Câu 9. (SGK-CTST 11-Tập 1) Sử dụng máy tính cầm tay để giải các phương trình sau:

- a) $\cos x = 0,4$;
- b) $\tan x = \sqrt{3}$.

Kết quả ghi theo đơn vị radian và làm tròn đến hàng phần trăm.

Lời giải

a)
$$\cos x = 0, 4 \Leftrightarrow x = 1, 16 + k2\pi, k \in \mathbb{Z}$$
 hoặc $x = -1, 16 + k2\pi, k \in \mathbb{Z}$

b)
$$\tan x = \sqrt{3} \Leftrightarrow x = \frac{\pi}{3} + k\pi, k \in \mathbb{Z}$$

Câu 10. (SGK-CTST 11-Tập 1) Quay lại bài toán khởi động, phương trình chuyển động của bóng đầu trục bàn đạp là $x = 17\cos 5\pi t(cm)$ với t được đo bằng giây. Xác định các thời điểm t mà tại đó độ dài bóng |x| vừa bằng 10cm. Làm tròn kết quả đến hàng phần mười.

Ta có
$$|x| = 10$$

$$\Leftrightarrow |17\cos 5\pi t| = 10$$

$$\Leftrightarrow$$
 17 cos 5 πt = 10 \vee 17 cos 5 πt = -10

$$\bullet 17\cos 5\pi t = 10$$

$$\Leftrightarrow 5\pi t = 0.94 + k2\pi, k \in \mathbb{Z} \lor 5\pi t = -0.94 + k2\pi, k \in \mathbb{Z}$$

$$\Leftrightarrow t = 0,06+0,4k, k \in \mathbb{Z} \lor t = -0,06+0,4k, k \in \mathbb{Z}$$

•17
$$\cos 5\pi t = -10$$

$$\Leftrightarrow 5\pi t = 2.2 + k2\pi, k \in \mathbb{Z} \vee 5\pi t = -2.2 + k2\pi, k \in \mathbb{Z}$$

$$\Leftrightarrow t = 0.14 + 0.4k, k \in \mathbb{Z} \lor t = -0.14 + 0.4k, k \in \mathbb{Z}$$

Câu 11. (SGK-CTST 11-Tập 1) Giải các phương trình lượng giác sau:

a)
$$\sin 2x = \frac{1}{2}$$

b)
$$\sin\left(x-\frac{\pi}{7}\right) = \sin\frac{2\pi}{7}$$
;

c)
$$\sin 4x - \cos \left(x + \frac{\pi}{6}\right) = 0$$
.

Lời giải

a)
$$\sin 2x = \frac{1}{2}$$

$$\Leftrightarrow 2x = \frac{\pi}{6} + k2\pi, k \in \mathbb{Z} \lor 2x = \pi - \frac{\pi}{6} + k2\pi, k \in \mathbb{Z}$$

$$\Leftrightarrow x = \frac{\pi}{12} + k\pi, k \in \mathbb{Z} \lor x = \frac{5\pi}{12} + k\pi, k \in \mathbb{Z}$$

b)
$$\sin\left(x - \frac{\pi}{7}\right) = \sin\frac{2\pi}{7}$$

$$\Leftrightarrow x - \frac{\pi}{7} = \frac{2\pi}{7} + k2\pi, k \in \mathbb{Z} \lor x - \frac{\pi}{7} = \pi - \frac{2\pi}{7} + k2\pi, k \in \mathbb{Z}$$

$$\Leftrightarrow x = \frac{3\pi}{7} + k2\pi, k \in \mathbb{Z} \lor x = \frac{6\pi}{7} + k2\pi, k \in \mathbb{Z}$$

c)
$$\sin 4x - \cos \left(x + \frac{\pi}{6}\right) = 0$$

$$\Leftrightarrow \sin 4x = \sin \left(\frac{\pi}{2} - x - \frac{\pi}{6} \right)$$

$$\Leftrightarrow \sin 4x = \sin \left(\frac{\pi}{3} - x \right)$$

$$\Leftrightarrow 4x = \frac{\pi}{3} - x + k2\pi, k \in \mathbb{Z} \lor 4x = \pi - \frac{\pi}{3} + x + k2\pi, k \in \mathbb{Z}$$

$$\Leftrightarrow x = \frac{\pi}{15} + k \frac{2\pi}{5}, k \in \mathbb{Z} \quad \forall x = \frac{2\pi}{9} + x + k \frac{2\pi}{3}, k \in \mathbb{Z}$$

Câu 12. (SGK-CTST 11-Tập 1) Giải các phương trình lượng giác sau:

a)
$$\cos\left(x+\frac{\pi}{3}\right)=\frac{\sqrt{3}}{2}$$
;

b)
$$\cos 4x = \cos \frac{5\pi}{12}$$
;

c)
$$\cos^2 x = 1$$
.

a)
$$\cos\left(x+\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}$$

$$\Leftrightarrow x + \frac{\pi}{3} = \frac{\pi}{6} + k2\pi, k \in \mathbb{Z} \lor x + \frac{\pi}{3} = -\frac{\pi}{6} + k2\pi, k \in \mathbb{Z}$$

$$\Leftrightarrow x = \frac{-\pi}{6} + k2\pi, k \in \mathbb{Z} \lor x = -\frac{\pi}{2} + k2\pi, k \in \mathbb{Z}$$

b)
$$\cos 4x = \frac{5\pi}{12}$$

$$\Leftrightarrow 4x = \frac{5\pi}{12} + k2\pi, k \in \mathbb{Z} \lor 4x = -\frac{5\pi}{12} + k2\pi, k \in \mathbb{Z}$$

$$\Leftrightarrow x = \frac{5\pi}{48} + k\frac{\pi}{2}, k \in \mathbb{Z} \quad \forall x = -\frac{5\pi}{48} + k\frac{\pi}{2}, k \in \mathbb{Z}$$

c)
$$\cos^2 x = 1$$

$$\Leftrightarrow \cos x = 1 \lor \cos x = -1$$

$$\Leftrightarrow x = k2\pi, k \in \mathbb{Z} \lor x = \pi + k2\pi, k \in \mathbb{Z} \Leftrightarrow x = k\pi, k \in \mathbb{Z}$$

- Câu 13. (SGK-CTST 11-Tập 1) Giải các phương trình lượng giác sau:
 - a) $\tan x = \tan 55^{\circ}$;

b)
$$\tan\left(2x+\frac{\pi}{4}\right)=0$$
.

Lời giải

a)
$$\tan x = \tan 55^{\circ} \Leftrightarrow x = 55^{\circ} + k \cdot 180^{\circ}, k \in \mathbb{Z}$$

b)
$$\tan\left(2x + \frac{\pi}{4}\right) = 0 \Leftrightarrow 2x + \frac{\pi}{4} = k\pi, k \in \mathbb{Z} \Leftrightarrow x = \frac{-\pi}{8} + k\frac{\pi}{2}, k \in \mathbb{Z}$$

Câu 14. (SGK-CTST 11-Tập 1) Giải các phương trình lượng giác sau:

a)
$$\cot\left(\frac{1}{2}x + \frac{\pi}{4}\right) = -1$$
;

b)
$$\cot 3x = -\frac{\sqrt{3}}{3}$$
.

Lời giải

a)
$$\cot\left(\frac{1}{2}x + \frac{\pi}{4}\right) = -1 \Leftrightarrow \frac{1}{2}x + \frac{\pi}{4} = \frac{3\pi}{4} + k\pi, k \in \mathbb{Z} \Leftrightarrow x = \pi + 2k\pi, k \in \mathbb{Z}$$

b)
$$\cot 3x = -\frac{\sqrt{3}}{3} \Leftrightarrow 3x = \frac{2\pi}{3} + k\pi, k \in \mathbb{Z} \Leftrightarrow x = \frac{2\pi}{9} + k\frac{\pi}{3}, k \in \mathbb{Z}$$

Câu 15. (SGK-CTST 11-Tập 1) Tại các giá trị nào của x thì đồ thị hàm số $y = \cos x$ và $y = \sin x$ giao nhau?

Lời giải

Đồ thị hàm số $y = \cos x$ và $y = \sin x$ giao nhau tại điểm x thoả mãn $\cos x = \sin x$

Vì $\sin^2 x + \cos^2 x = 1$ nên $\cos x$ và $\sin x$ không thể đồng thời bằng 0

Chia cả 2 v'e phương trình trên cho $\cos x$ ta được

$$\tan x = 1 \iff x = \frac{\pi}{4} + k\pi, k \in \mathbb{Z}$$

Câu 16. (SGK-CTST 11-Tập 1) Trong Hình 9, khi được kéo ra khỏi vị trí cân bằng ở điểm O và buông tay, lực đàn hồi của lò xo khiến vật A gắn ở đầu của lò xo dao động quanh O. Toạ độ s(cm) của A trên

trục Ox vào thời điểm t (giây) sau khi buông tay được xác định bởi công thức $s=10\sin\left(10t+\frac{\pi}{2}\right)$. Vào các thời điểm nào thì $s=-5\sqrt{3}\,cm$?

(Theo https://www.britannica.com/science/simple-harmonic-motion)

Lời giải

Khi:
$$s = -5\sqrt{3}$$
 thì $10\sin\left(10t + \frac{\pi}{2}\right) = -5\sqrt{3}$

$$\Leftrightarrow \sin\left(10t + \frac{\pi}{2}\right) = \frac{-\sqrt{3}}{2}$$

$$\Leftrightarrow 10t + \frac{\pi}{2} = \frac{-\pi}{3} + k2\pi, k \in \mathbb{Z} \lor 10t + \frac{\pi}{2} = \pi - \frac{-\pi}{3} + k2\pi, k \in \mathbb{Z}$$

$$\Leftrightarrow t = \frac{-1}{12} + \frac{1}{5}k, k \in \mathbb{Z} \lor t = \frac{1}{12} + \frac{1}{5}k, k \in \mathbb{Z}$$

Câu 17. (SGK-CTST 11-Tập 1) Trong Hình 10, ngọn đèn trên hải đăng H cách bờ biển yy' một khoảng HO = 1km. Đèn xoay ngược chiều kim đồng hồ với tốc độ $\frac{\pi}{10} rad/s$ và chiếu hai luồng ánh sáng về hai phía đối diện nhau. Khi đèn xoay, điểm M mà luồng ánh sáng của hải đăng rọi vào bờ biển chuyển động dọc theo bờ.

Hình 10

(Theo https://www.mnhs.org/splitrock/learn/technology)

- a) Ban đầu luồng sáng trùng với đường thẳng HO. Viết hàm số biểu thị toạ độ y_M của điểm M trên trục Oy theo thời gian t.
- b) Ngôi nhà N nằm trên bờ biển với toạ độ $y_N = -1(km)$. Xác định các thời điểm t mà đèn hải đăng chiếu vào ngôi nhà.

Lời giải

a)
$$y_M = \tan \frac{\pi}{10}t$$

b) Khi
$$y_N = -1$$
 ta có $\tan \frac{\pi}{10} t = -1 \Leftrightarrow \frac{\pi}{10} t = \frac{3\pi}{4} + k\pi, k \in \mathbb{Z} \Leftrightarrow t = \frac{15}{2} + 10k, k \in \mathbb{Z}$

Câu 18. Giải các phương trình sau:

a)
$$\sin\left(\frac{x}{2} - \frac{\pi}{3}\right) = -\frac{\sqrt{3}}{4}$$

b)
$$\sin(3x - 30^{\circ}) = \sin 45^{\circ}$$

c) $\sin(3x - \frac{3\pi}{4}) = \sin(\frac{\pi}{6} - x)$
d) $\sin(4x - \frac{\pi}{3}) = 0$ e) $\cos(-\frac{\pi}{3})$

d) $\sin\left(4x - \frac{\pi}{3}\right) = 0$ e) $\cos\left(-x + \frac{\pi}{3}\right) = 1$

f)
$$\cos\left(5x - \frac{\pi}{3}\right) = \sin\left(\frac{7\pi}{4} - 2x\right)$$

g)
$$\cos(2x+25^{\circ}) = -\frac{\sqrt{2}}{2} \text{ h} \cos(\frac{\pi}{6}-2x) = -\frac{1}{4}$$

Lời giải

$$a)\sin\left(\frac{x}{2} - \frac{\pi}{3}\right) = -\frac{\sqrt{3}}{4}$$

$$\sin t = -\frac{\sqrt{3}}{4}$$

$$\Rightarrow \sin\left(\frac{x}{2} - \frac{\pi}{3}\right) = \sin t \Rightarrow \begin{bmatrix} \frac{x}{2} - \frac{\pi}{3} = t + k2\pi \\ \frac{x}{2} - \frac{\pi}{3} = \pi - t + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \frac{2\pi}{3} + 2t + k4\pi \\ x = \frac{8\pi}{3} - 2t + k4\pi \end{bmatrix}$$

b)
$$\sin(3x-30^{\circ}) = \sin 45^{\circ} \Rightarrow \begin{bmatrix} 3x-30^{\circ} = 45^{\circ} + k360^{\circ} \\ 3x-30^{\circ} = 180-45^{\circ} + k360^{\circ} \end{bmatrix} \Rightarrow \begin{bmatrix} x = 25^{\circ} + k120^{\circ} \\ x = 55^{\circ} + k120^{\circ} \end{bmatrix}$$

c)
$$\sin\left(3x - \frac{3\pi}{4}\right) = \sin\left(\frac{\pi}{6} - x\right) \Rightarrow \begin{bmatrix} 3x - \frac{3\pi}{4} = \frac{\pi}{6} - x + k2\pi \\ 3x - \frac{3\pi}{4} = \pi - \left(\frac{\pi}{6} - x\right) + k2\pi \end{bmatrix} \Rightarrow \begin{bmatrix} x = \frac{11\pi}{48} + \frac{k\pi}{2} \\ x = \frac{19\pi}{24} + k\pi \end{bmatrix}$$

d)
$$\sin\left(4x - \frac{\pi}{3}\right) = 0 \Rightarrow 4x - \frac{\pi}{3} = k\pi \Rightarrow x = \frac{\pi}{12} + \frac{k\pi}{4}$$

e)
$$\cos\left(-x + \frac{\pi}{3}\right) = 1 \Rightarrow -x + \frac{\pi}{3} = k2\pi \Rightarrow x = \frac{\pi}{3} - k2\pi$$

$$\cos\left(5x - \frac{\pi}{3}\right) = \sin\left(\frac{7\pi}{4} - 2x\right) \Rightarrow \cos\left(5x - \frac{\pi}{3}\right) = \sin\left(\frac{\pi}{2} - \left(5x - \frac{\pi}{3}\right)\right) = \sin\left(\frac{5\pi}{6} - 5x\right)$$

f)
$$\Rightarrow \sin\left(\frac{5\pi}{6} - 5x\right) = \sin\left(\frac{7\pi}{4} - 2x\right) \Leftrightarrow \begin{bmatrix} \frac{5\pi}{6} - 5x = \frac{7\pi}{4} - 2x + k2\pi \\ \frac{5\pi}{6} - 5x = \pi - \left(\frac{7\pi}{4} - 2x\right) + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = -\frac{11\pi}{36} - \frac{k2\pi}{3} \\ x = \frac{19\pi}{84} - \frac{k2\pi}{7} \end{bmatrix}$$

$$\cos(2x+25^\circ) = -\frac{\sqrt{2}}{2} \Rightarrow \cos(2x+25^\circ) = \cos 135^\circ$$

$$\cos(2x+25^{\circ}) = -\frac{\sqrt{2}}{2} \Rightarrow \cos(2x+25^{\circ}) = \cos 135^{\circ}$$
g)
$$\Rightarrow \begin{bmatrix} 2x+25^{\circ} = 135^{\circ} + k360^{\circ} \\ 2x+25^{\circ} = -135^{\circ} + k360^{\circ} \end{bmatrix} \Rightarrow \begin{bmatrix} x = 55^{\circ} + k180^{\circ} \\ x = -80^{\circ} + k180^{\circ} \end{bmatrix}$$

h)

$$\cos\left(\frac{\pi}{6} - 2x\right) = -\frac{1}{4}; \cos t = -\frac{1}{4} \Rightarrow \cos\left(\frac{\pi}{6} - 2x\right) = \cos t \Rightarrow \begin{bmatrix} \frac{\pi}{6} - 2x = t + k2\pi \\ \frac{\pi}{6} - 2x = -t + k2\pi \end{bmatrix} \Rightarrow \begin{bmatrix} x = \frac{\pi}{12} - \frac{t}{2} - k\pi \\ x = \frac{\pi}{12} + \frac{t}{2} - k\pi \end{bmatrix}$$

a)
$$\tan(2x-1) = \tan\left(-x + \frac{\pi}{3}\right)$$

b)
$$\tan(3x-10^\circ) = \sqrt{3}$$

c)
$$3 \tan \left(3x + \frac{\pi}{6}\right) = -1$$

d)
$$\cot\left(2x-\frac{\pi}{3}\right)=1$$

e)
$$2 \cot(3x) = 3$$

f)
$$\cot\left(x + \frac{\pi}{3}\right) = \cot\left(-2x + \frac{\pi}{6}\right)$$

a)
$$\tan(2x-1) = \tan\left(-x + \frac{\pi}{3}\right) \Leftrightarrow 2x-1 = -x + \frac{\pi}{3} + k\pi \Leftrightarrow x = \frac{1}{3} + \frac{\pi}{9} + \frac{k\pi}{3}$$

f)
$$\cot\left(x+\frac{\pi}{3}\right) = \cot\left(-2x+\frac{\pi}{6}\right)$$

Lòi giải

a) $\tan\left(2x-1\right) = \tan\left(-x+\frac{\pi}{3}\right) \Leftrightarrow 2x-1 = -x+\frac{\pi}{3}+k\pi \Leftrightarrow x = \frac{1}{3}+\frac{\pi}{9}+\frac{k\pi}{3}$

b) $\tan\left(3x-10^{\circ}\right) = \sqrt{3} \Rightarrow \tan\left(3x-10^{\circ}\right) = \tan 60^{\circ} \Rightarrow 3x-10^{\circ} = 60^{\circ}+k180^{\circ} \Leftrightarrow x = \frac{70^{\circ}}{3}+k60^{\circ}$

c)
$$3\tan\left(3x+\frac{\pi}{6}\right) = -1 \Leftrightarrow \tan\left(3x+\frac{\pi}{6}\right) = -\frac{1}{3} = \tan t \Leftrightarrow 3x+\frac{\pi}{6} = t+k\pi \Rightarrow x = -\frac{\pi}{18} + \frac{t}{3} + \frac{k\pi}{3}$$

d)
$$\cot\left(2x - \frac{\pi}{3}\right) = 1 \Rightarrow \cot\left(2x - \frac{\pi}{3}\right) = \cot\frac{\pi}{4} \Rightarrow 2x - \frac{\pi}{3} = \frac{\pi}{4} + k\pi \Rightarrow x = \frac{7\pi}{24} + \frac{k\pi}{2}$$

e)
$$2 \cot(3x) = 3 \Rightarrow \cot(3x) = \frac{3}{2}$$
 đặt $\cot t = \frac{3}{2} \Rightarrow \cot(3x) = \cot t \Rightarrow 3x = t + k\pi \Rightarrow x = \frac{t}{3} + \frac{k\pi}{3}$

f)
$$\cot\left(x+\frac{\pi}{3}\right) = \cot\left(-2x+\frac{\pi}{6}\right) \Rightarrow x+\frac{\pi}{3} = -2x+\frac{\pi}{6}+k\pi \Leftrightarrow x=-\frac{\pi}{6}+\frac{k\pi}{3}$$

DẠNG 3. PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN CÓ ĐIỀU KIỆN NGHIỆM

Câu 20. 1. Tìm nghiệm thuộc khoảng $\left(-\frac{\pi}{4}; 2\pi\right)$

a)
$$\sin\left(\frac{\pi}{6} + 2x\right) = -1$$

b)
$$\cos\left(2x + \frac{\pi}{3}\right) = \cos\left(x - \frac{\pi}{3}\right)$$

c)
$$\tan\left(3x - \frac{\pi}{4}\right) = \tan\left(x + \frac{\pi}{6}\right)$$

2. Tìm nghiệm thuộc khoảng $[-\pi;\pi]$

a)
$$\cot\left(-x + \frac{3\pi}{4}\right) = 0$$

b)
$$2\sin\left(x+\frac{\pi}{6}\right)=\sqrt{2}$$

c)
$$\tan(-x) = \tan(2x+1)$$

Lời giải

1. Tìm nghiệm thuộc khoảng $\left(-\frac{\pi}{4}; 2\pi\right)$

a)
$$\sin\left(\frac{\pi}{6} + 2x\right) = -1 \Leftrightarrow \frac{\pi}{6} + 2x = -\frac{\pi}{2} + k2\pi \Leftrightarrow x = -\frac{\pi}{3} + k\pi$$

 $-\frac{\pi}{4} < -\frac{\pi}{3} + k\pi < 2\pi \Rightarrow k = 1; 2 \Rightarrow x = \frac{2\pi}{3}; \frac{5\pi}{3}.$

b)
$$\cos\left(2x + \frac{\pi}{3}\right) = \cos\left(x - \frac{\pi}{3}\right) \Leftrightarrow \begin{bmatrix} 2x + \frac{\pi}{3} = x - \frac{\pi}{3} + k2\pi \\ 2x + \frac{\pi}{3} = -x + \frac{\pi}{3} + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = -\frac{2\pi}{3} + k2\pi \\ x = \frac{k2\pi}{3} \end{bmatrix}$$

Với
$$x \in \left(-\frac{\pi}{4}; 2\pi\right) \Rightarrow \begin{bmatrix} k = 1 \Rightarrow x = \frac{4\pi}{3} \\ k = 0; 1; 2 \Rightarrow x = 0; \frac{2\pi}{3}; \frac{4\pi}{3} \end{bmatrix}$$

c)
$$\tan\left(3x - \frac{\pi}{4}\right) = \tan\left(x + \frac{\pi}{6}\right) \Leftrightarrow 3x - \frac{\pi}{4} = x + \frac{\pi}{6} + k\pi \Leftrightarrow x = \frac{5\pi}{24} + \frac{k\pi}{2}$$

$$-\frac{\pi}{4} < \frac{5\pi}{24} + \frac{k\pi}{2} < 2\pi \Rightarrow k = 0; 1; 2; 3 \Rightarrow x = \left\{\frac{5\pi}{24}; \frac{17\pi}{24}; \frac{29\pi}{24}; \frac{41\pi}{24}\right\}$$
2. Tìm nghiệm thuộc khoảng $[-\pi; \pi]$

$$-\frac{\pi}{4} < \frac{5\pi}{24} + \frac{k\pi}{2} < 2\pi \implies k = 0; 1; 2; 3 \implies x = \left\{ \frac{5\pi}{24}; \frac{17\pi}{24}; \frac{29\pi}{24}; \frac{41\pi}{24} \right\}$$

a)
$$\cot\left(-x + \frac{3\pi}{4}\right) = 0 \Leftrightarrow -x + \frac{3\pi}{4} = \frac{\pi}{2} + k\pi \Leftrightarrow x = \frac{\pi}{4} - k\pi$$

$$x \in [-\pi; \pi] \Rightarrow k = 0; 1 \Rightarrow x = \frac{\pi}{4}; -\frac{3\pi}{4}$$

b)
$$2\sin\left(x+\frac{\pi}{6}\right) = \sqrt{2} \Leftrightarrow \sin\left(x+\frac{\pi}{6}\right) = \frac{\sqrt{2}}{2} = \sin\frac{\pi}{4} \Leftrightarrow \begin{bmatrix} x+\frac{\pi}{6} = \frac{\pi}{4} + k2\pi \\ x+\frac{\pi}{6} = \pi - \frac{\pi}{4} + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \frac{\pi}{12} + k2\pi \\ x = \frac{7\pi}{12} + k2\pi \end{bmatrix}$$

$$x \in [-\pi; \pi] \Rightarrow \begin{bmatrix} k = 0 \Rightarrow x = \frac{\pi}{12} \\ k = 0 \Rightarrow x = \frac{7\pi}{12} \end{bmatrix}$$

c)
$$\tan(-x) = \tan(2x+1) \Leftrightarrow -x = 2x+1+k\pi \Leftrightarrow x = -\frac{1}{3} - \frac{k\pi}{3}$$

$$x \in \left[-\pi; \pi \right] \Rightarrow k = -3; -2; -1; 0; 1; 2 \Rightarrow x = \left\{ -\frac{1}{3} + \pi; -\frac{1}{3} + \frac{2\pi}{3}; -\frac{1}{3} + \frac{2\pi}{3}; -\frac{1}{3} + \frac{\pi}{3}; -\frac{1}{3}; -\frac{1}{3} - \frac{\pi}{3}; -\frac{1}{3} - \frac{2\pi}{3}; \right\}$$

DANG 4. SỬ DỤNG CÔNG THỰC BIẾN ĐỔI ĐƯA VỀ PHƯƠNG TRÌNH LƯỢNG GIÁC

Câu 21. Giải các phương trình sau:

a)
$$\cos\left(3x - \frac{\pi}{6}\right) - \sin\left(2x + \frac{\pi}{3}\right) = 0$$

b)
$$\tan 3x + \tan x = 0$$

a)
$$\cos\left(3x - \frac{\pi}{6}\right) - \sin\left(2x + \frac{\pi}{3}\right) = 0$$

$$\Leftrightarrow \cos\left(3x - \frac{\pi}{6}\right) = \cos\left(\frac{\pi}{2} - 2x - \frac{\pi}{3}\right)$$

$$\Leftrightarrow \begin{bmatrix} 3x - \frac{\pi}{6} = \frac{\pi}{6} - 2x + k2\pi \\ 3x - \frac{\pi}{6} = -\frac{\pi}{6} + 2x + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \frac{\pi}{15} + k\frac{2\pi}{5} \\ x = k2\pi \end{bmatrix} \quad (k \in \mathbb{Z})$$

b)
$$\tan 3x + \tan x = 0$$

DK:
$$\cos 3x \neq 0 \Leftrightarrow x \neq \frac{\pi}{6} + \frac{k\pi}{3}$$
; $\cos x \neq 0 \Leftrightarrow x \neq \frac{\pi}{2} + k\pi$

$$\tan 3x = -\tan x = \tan(-x) \Leftrightarrow 3x = -x + k\pi \Leftrightarrow x = \frac{k\pi}{4} \ (k \in \mathbb{Z})$$

Kết hợp với điều kiện $\Rightarrow x = \pm \frac{\pi}{4} + k\pi$; $x = k\pi$

Câu 22. Giải các phương trình sau:

a)
$$\cos^2\left(x - \frac{\pi}{5}\right) = \sin^2\left(2x + \frac{4\pi}{5}\right)$$

b)
$$4\cos^2(2x-1)=1$$

Lời giải

a)
$$\cos^2\left(x - \frac{\pi}{5}\right) = \sin^2\left(2x + \frac{4\pi}{5}\right)$$

$$\Leftrightarrow \frac{1+\cos\left(2x-\frac{2\pi}{5}\right)}{2} = \frac{1-\cos\left(4x+\frac{8\pi}{5}\right)}{2}$$

$$\Leftrightarrow \cos\left(2x - \frac{2\pi}{5}\right) = -\cos\left(4x + \frac{8\pi}{5}\right) = \cos\left(\pi - 4x - \frac{8\pi}{5}\right)$$

$$\Leftrightarrow \begin{bmatrix} 2x - \frac{2\pi}{5} = \pi - 4x - \frac{8\pi}{5} + k2\pi \\ 2x - \frac{2\pi}{5} = -\pi + 4x + \frac{8\pi}{5} + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = -\frac{\pi}{30} + \frac{k\pi}{3} \\ x = -\frac{\pi}{2} + k\pi \end{bmatrix}$$

b)
$$4\cos^2(2x-1) = 1 \Leftrightarrow \cos^2(2x-1) = \frac{1}{4}$$

$$\cos(2x-1) = \frac{1}{2} \Leftrightarrow \begin{bmatrix}
2x-1 = \frac{\pi}{3} + k2\pi \\
2x-1 = -\frac{\pi}{3} + k2\pi \\
2x-1 = \frac{2\pi}{3} + k2\pi \\
2x-1 = \frac{2\pi}{3} + k2\pi \\
2x-1 = -\frac{2\pi}{3} + k2\pi
\end{bmatrix}
\Leftrightarrow \begin{cases}
x = \frac{1}{2} + \frac{\pi}{6} + k\pi \\
x = \frac{1}{2} - \frac{\pi}{6} + k\pi \\
x = \frac{1}{2} + \frac{\pi}{3} + k\pi
\end{cases}$$

$$x = \frac{1}{2} + \frac{\pi}{3} + k\pi$$

Câu 23. Giải các phương trình sau:

a)
$$\cos x + \cos 2x + \cos 3x = 0$$

b)
$$8\sin 2x.\cos 2x.\cos 4x = \sqrt{2}$$

c)
$$\cos 3x - \cos 5x = \sin x$$

d)
$$\sin 7x - \sin 3x = \cos 5x$$

a)
$$\cos x + \cos 2x + \cos 3x = 0$$

$$\Leftrightarrow 2\cos\left(\frac{x+3x}{2}\right).\cos\left(\frac{x-3x}{2}\right) + \cos 2x = 0$$

$$\Leftrightarrow 2\cos 2x \cdot \cos x + \cos 2x = 0 \Leftrightarrow \cos 2x (2\cos x + 1) = 0$$

$$\Leftrightarrow \begin{bmatrix} \cos 2x = 0 \\ \cos x = \frac{1}{2} \\ \end{cases} \Leftrightarrow \begin{bmatrix} x = \frac{\pi}{4} + k\frac{\pi}{2} \\ x = \frac{2\pi}{3} + k2\pi \\ x = -\frac{2\pi}{3} + k2\pi \end{bmatrix}$$

b)
$$8\sin 2x \cdot \cos 2x \cdot \cos 4x = \sqrt{2}$$

$$\Leftrightarrow 4\sin 4x.\cos 4x = \sqrt{2}$$

$$\Leftrightarrow \sin 8x = \frac{\sqrt{2}}{2} \Leftrightarrow \begin{bmatrix} 8x = \frac{\pi}{4} + k2\pi \\ 8x = \frac{3\pi}{4} + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \frac{\pi}{32} + k\frac{\pi}{4} \\ x = \frac{3\pi}{32} + k\frac{\pi}{4} \end{bmatrix}$$

c)
$$\cos 3x - \cos 5x = \sin x$$

$$\Leftrightarrow$$
 $-2\sin\left(\frac{3x+5x}{2}\right).\sin\left(\frac{3x-5x}{2}\right) = \sin x$

$$\Leftrightarrow$$
 $-2\sin 4x\sin(-x) = \sin x$

$$\Leftrightarrow \sin x (2\sin 4x - 1) = 0$$

$$\Leftrightarrow \begin{bmatrix} \sin x = 0 \\ \sin 4x = \frac{1}{2} \Leftrightarrow \begin{bmatrix} x = k\pi \\ x = \frac{\pi}{24} + k\frac{\pi}{2} \\ x = \frac{5\pi}{24} + k\frac{\pi}{2} \end{bmatrix}$$

d)
$$\sin 7x - \sin 3x = \cos 5x$$

$$\Leftrightarrow 2\cos 5x\sin 5x = \cos 5x$$

$$\Leftrightarrow \cos 5x (2\sin 2x - 1) = 0$$

$$\Leftrightarrow \begin{bmatrix} \cos 5x = 0 \\ \sin 2x = \frac{1}{2} \Leftrightarrow \\ x = \frac{\pi}{10} + k\frac{\pi}{5} \\ x = \frac{\pi}{12} + k\pi \\ x = \frac{5\pi}{6} + k\pi \end{bmatrix}$$

Câu 24. Giải các phương trình sau:

a)
$$\cot\left(\frac{5\pi}{3} - 3x\right) - \tan\left(2x + \frac{\pi}{3}\right) = 0$$

b)
$$\cot x \cdot \cot 2x = -1$$

a) ĐK:
$$\begin{cases} \sin\left(\frac{5\pi}{3} - 3x\right) \neq 0 \\ \cos\left(2x + \frac{\pi}{3}\right) \neq 0 \end{cases}$$

$$\cot\left(\frac{5\pi}{3} - 3x\right) - \tan\left(2x + \frac{\pi}{3}\right) = 0 \iff \tan\left(\frac{\pi}{2} - \frac{5\pi}{3} + 3x\right) = \tan\left(2x + \frac{\pi}{3}\right)$$

$$\Leftrightarrow$$
 $-\frac{7\pi}{6} + 3x = \frac{\pi}{3} + 2x + k\pi \Leftrightarrow x = \frac{3\pi}{2} + k\pi$ (thỏa đk)

b) ĐK:
$$\begin{cases} \sin x \neq 0 \\ \sin 2x \neq 0 \end{cases} \Leftrightarrow \begin{cases} x \neq k\pi \\ x \neq k\frac{\pi}{2} \end{cases}$$

$$\cot x \cdot \cot 2x = -1 \Leftrightarrow \cot 2x = -\tan x = \tan(-x)$$

 $\Leftrightarrow \cot 2x = \cot \left(\frac{\pi}{2} + x\right) \Leftrightarrow x = \frac{\pi}{2} + k\pi$ không thoat điều kiện nên PT vô nghiệm.

Câu 25. Giải các phương trình sau:

a)
$$\tan x = 3 \cot x$$

b)
$$2\sin^2 x + \cos 2x = 2$$

Lời giải

a) ĐK:
$$\begin{cases} \sin x \neq 0 \\ \cos x \neq 0 \end{cases}$$

$$\tan x = 3 \cot x \Leftrightarrow \frac{\sin x}{\cos x} = 3 \frac{\cos x}{\sin x} \Leftrightarrow \sin^2 x = 3 \cos^2 x$$

$$\Leftrightarrow \cos^2 x = \frac{1}{4} \Leftrightarrow \begin{bmatrix} \cos x = \frac{1}{2} \\ \cos x = -\frac{1}{2} \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \pm \frac{\pi}{3} + k2\pi \\ x = \pm \frac{2\pi}{3} + k2\pi \end{bmatrix}$$

b)
$$2\sin^2 x + \cos 2x = 2 \Leftrightarrow 2\sin^2 x + 1 - 2\sin^2 x = 2$$

 \Leftrightarrow 1 = 2 vô lý nên PT vô nghiệm.

Câu 26. Giải các phương trình: $\sqrt{2} \sin \left(2x + \frac{\pi}{4}\right) = 3 \sin x + \cos x + 2$

Lời giải

$$\sqrt{2}\sin\left(2x + \frac{\pi}{4}\right) = 3\sin x + \cos x + 2 \Leftrightarrow \sin 2x + \cos 2x = 3\sin x + \cos x + 2$$

$$\Leftrightarrow 2\sin x \cos x + 2\cos^2 x - 1 = 3\sin x + \cos x + 2$$

$$\Leftrightarrow (2\cos x - 3)(\sin x + \cos x + 1) = 0 \Leftrightarrow \begin{bmatrix} \cos x = -\frac{3}{2} : VN \\ \sin\left(x + \frac{\pi}{4}\right) = -\frac{1}{\sqrt{2}} \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = -\frac{\pi}{2} + k2\pi \\ x = \frac{3\pi}{2} + k2\pi \end{bmatrix}$$

Câu 27. Giải các phương trình: $1 + \sin x + \cos x + \sin 2x + \cos 2x = 0$

$$1 + \sin x + \cos x + \sin 2x + \cos 2x = 0$$

$$\Leftrightarrow$$
 in $x + \cos x + 2\sin x \cos x + 2\cos^2 x = 0$

$$\Leftrightarrow \sin x + \cos x + 2\cos x (\sin x + \cos x) = 0$$

$$\Leftrightarrow (\sin x + \cos x)(2\cos x + 1) = 0$$

*
$$\sin x + \cos x = 0 \Leftrightarrow \tan x = -1 \Leftrightarrow x = -\frac{\pi}{4} + k\pi$$

*
$$\cos x = -\frac{1}{2} \Leftrightarrow x = \pm \frac{2\pi}{3} + k2\pi$$

Câu 28. Giải các phương trình: $(2\cos x - 1)(2\sin x + \cos x) = \sin 2x - \sin x$

Lời giải

$$(2\cos x - 1)(2\sin x + \cos x) = 2\sin x \cos x - \sin x$$

$$\Leftrightarrow (2\cos x - 1)(\sin x + \cos x) = 0$$

*
$$\sin x + \cos x = 0 \Leftrightarrow \tan x = -1 \Leftrightarrow x = -\frac{\pi}{4} + k\pi$$

*
$$\cos x = \frac{1}{2} \Leftrightarrow x = \pm \frac{\pi}{3} + k2\pi$$

Câu 29. Giải các phương trình: $\cos 3x + \cos 2x - \cos x - 1 = 0$

$$\cos 3x + \cos 2x - \cos x - 1 = 0$$

$$\Leftrightarrow -2\sin 2x\sin x - 2\sin^2 x = 0$$

$$\Leftrightarrow \sin^2 x (2\cos x + 1) = 0 \Leftrightarrow \begin{bmatrix} \sin x = 0 \\ \cos x = -\frac{1}{2} \end{cases} \Leftrightarrow \begin{bmatrix} x = k\pi \\ x = \pm \frac{2\pi}{3} + k2\pi \end{bmatrix}$$

Câu 30. Tìm m để:

- a) Phương trình $\sin x = m$ có đúng hai nghiệm thuộc $\left(-\frac{\pi}{4}; \frac{3\pi}{4}\right]$.
- b) Phương trình $(2\cos x 1)(\sin 2x m) = 0$ có đúng hai nghiệm thuộc $\left(-\frac{\pi}{4}; \frac{3\pi}{4}\right]$.

Lời giải

a) Yêu cầu bài toán thỏa mãn khi $-1 < \sin x < 1 \Leftrightarrow -1 < m < 1$

b)
$$(2\cos x - 1)(\sin 2x - m) = 0$$

$$\Leftrightarrow \begin{bmatrix} \cos x = \frac{1}{2} \\ \sin 2x = m \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \frac{\pi}{3} + k2\pi \\ x = -\frac{\pi}{3} + k2\pi \\ \sin 2x = m \end{bmatrix}$$

Nghiệm thuộc $\left(-\frac{\pi}{4}; \frac{3\pi}{4}\right]$ suy ra $x = \frac{\pi}{3}$ là nghiệm của phương trình)

Để phương trình có đúng hai nghiệm thuộc $\left(-\frac{\pi}{4}; \frac{3\pi}{4}\right]$ thì phương trình $\sin 2x = m$ có 1 nghiệm

thuộc
$$\left(-\frac{\pi}{4}; \frac{3\pi}{4}\right]$$
 khác $\frac{\pi}{3}$ (*)

Ta có
$$x \in \left(-\frac{\pi}{4}; \frac{3\pi}{4}\right] \Rightarrow 2x \in \left(-\frac{\pi}{2}; \frac{3\pi}{2}\right]$$
 hay $2x \in \left[0; 2\pi\right]$
Từ (*) suy ra $m = 1$ hoặc $m = -1$

