MATH 6480/STAT 9300/AMCS 6481, Fall 2023, Homework Set X (two pages)

- 1. Let $\{X_n\}$ be IID random variables on some probability space and let $\mathcal{F}_n := \sigma(X_1, \dots, X_n)$. Which of the following are stopping times? Give a one-sentence reason for each.
 - (a) $\inf\{k : X_{k-1} \in A\}$
 - (b) $\inf\{k : X_{k+1} \in A\}$
 - (c) $\sup\{k: X_1, \dots, X_k \ge 0\}$
 - (d) $\sup\{k: X_1 = X_k \notin \{X_2, \cdots, X_{k-1}\}\}$

solution

Recall the definition of stopping time is $\{\tau \leq n\} \subseteq \mathcal{F}_n$ or $\{\tau = n\} \subseteq \mathcal{F}_n$

- (a) It is a stopping time, as the set includes all information of X_1 up to X_k . The set can be determined for $\tau \leq n$
- (b) It is not a stopping time, as we're not able to infer if $X_{k+1} \in A$ based on only information of previous R.V.s X_1, \dots, X_k .
- (c) It is not a stopping time. Consider the process of finding k satisfying $\sup\{k: X_1 \cdots, X_k \ge 0\}$ as an iteration with index i. Initialize i=1, if $X_1 \ge 0$, then continue to check X_2 , if the condition $X_i \ge 0$ success then further X_{i+1} till we meet m s.t. $X_m < 0$, then $\sup\{k: X_1, \cdots, X_k \ge 0\} = m-1$. Besides $X_1 \ldots X_k$, we also need the information of X_{k+1} to determine k. $\{\tau \le n\} \not\subset \mathcal{F}_n$, so it's not a stopping time.
- (d) It is a stopping time. The set describes the first labeling k s.t. $X_1 = X_k$ i.e. $X_1 \neq X_2, X_1 \neq X_3, \dots, X_1 \neq X_{k-1}$ but $X_1 = X_k$. There is $\{\tau = n\} \subseteq \mathcal{F}_n$, which implies that it's a stopping time

- 2. Let $(\Omega, \mathcal{F}, \mathbf{P}, \{\mathcal{F}_n\})$ be as in the previous problems and let τ denote the stopping time $\inf\{k \geq 2 : X_k > X_{k-1}\}$. Which of the following events or random variables are in \mathcal{F}_{τ} ? Again, give a one-sentence reason.
 - (a) $\{X_2 \le X_1\}$
 - (b) $\{X_3 \le X_2\}$
 - (c) $\{S_{\tau-1} > 10\}$ (as usual, S_n are the partial sums)
 - (d) $\inf\{k \geq 2 : X_k \leq X_{k-1}\}$

<u>solution</u> Recall that $A \in \mathcal{F}_{\tau}$ iff $A \cap \{\tau = n\} \subseteq \mathcal{F}_n$ for any n.

- (a) The event is in \mathcal{F}_{τ} . $\tau \geq 2$ so any \mathcal{F}_{τ} contains information of X_1 and X_2 . A rigorous proof: The set $\{X_2 \leq X_1\}$ holds iff $\tau > 2$. When n = 1, we have $\{X_3 \leq X_2\} \cap \{\tau = 2\} = \emptyset \subseteq \mathcal{F}_n$; when $n \geq 2$, we have $\{\tau > 2\} \cap \{\tau = n\} = \{\tau = n\} \subseteq \mathcal{F}_n$.
- (b) The event is not in \mathcal{F}_{τ} . Consider when n=2, $\{X_3 \leq X_2\} \cap \{\tau=2\} = \{X_3 \leq X_2\} \not\subset \mathcal{F}_2 = \sigma(X_1X_2)$ as \mathcal{F}_2 only contains information of X_1 and X_2 , the information of X_3 is not included.
- (c) The event is in \mathcal{F}_{τ} , since $\{S_{\tau-1} > 10\} \cap \{\tau = n\} = \{X_1 + \dots + X_{n-1} > 10\} \subseteq \mathcal{F}_n$. \mathcal{F}_n contains all information from X_1 up to X_n and thus contains the information of S_{n-1} .
- (d) It is not in \mathcal{F}_{τ} . Consider $X_1 = 1$, $X_2 = 3$ and $X_3 = 2$, the infimum of $\{k \geq 2 : X_k \leq X_{k-1}\}$ is 3 in this case. However, $\tau = 2$ in this example, the information of X_3 is not included. As a result, we cannot say $\inf\{k \geq 2 : X_k \leq X_{k-1}\}$ is in \mathcal{F}_{τ} as \mathcal{F}_{τ} has missed out information which is which is necessary for $\inf\{k \geq 2 : X_k \leq X_{k-1}\}$.

3. Let $\{X_n\}$ be IID with $X_1^+ = \max\{0, X_1\}$ and $\mathbf{E}X_1^+ < \infty$, define

$$Y_n := \max_{1 \le k \le n} X_k - cn .$$

Informally, we get credit for the highest of n values, but we have to pay c per value we have looked at. (i) Let $T_a := \inf\{n : X_n > a\}$, let $p(a) := \mathbf{P}(X_n > a)$ and compute $\mathbf{E}Y_{T_a}$. (ii) Let $\alpha = \alpha(c)$, possibly negative, be the unique solution to $\mathbf{E}(X_1 - \alpha)^+ = c$. Show that $\mathbf{E}Y_{T_\alpha} = \alpha$ and use the inequality

$$Y_n \le \alpha + \sum_{k=1}^n \left((X_k - \alpha)^+ - c \right)$$

for $n \geq 1$ to conclude that if $\tau > 1$ is a stopping time with $\mathbf{E}\tau < \infty$ then $\mathbf{E}Y_{\tau} \leq \alpha$. In other words, the stopping time $\tau = T_{\alpha}$ achieves the best expectation of Y_{τ} over all stopping times, and this expectation is α . **Note:** The above analysis assumes you have to view at least one value, X_1 . If not, then when $\alpha < 0$, the optimal strategy is not to play at all!

Solution

(i) From the definition of Y_n and $T_a, \forall k < T_a, X_k \leq a$ and $X_{T_a} > a$. Then $\mathbb{E}Y_{T_a} = \mathbb{E}(\max_{1 \leq k \leq T_a} X_k - cT_a) = \mathbb{E}(X_{T_a} - cT_a) = \mathbb{E}X_{T_a} - c\mathbb{E}(T_a)$

Consider T_a as the number of trials to get the first success, indicating that it follows geometric distribution, then $\mathbb{E}(T_a) = \frac{1}{p(a)}$, where $p(a) := \mathbb{P}(X_n > a)$

$$\mathbb{E}(T_a) = \sum_{i=1}^{\infty} \mathbb{E}(T_a \mid T_a = i) \mathbb{P}(T_a = i)$$
$$= \sum_{i=1}^{\infty} i(1-p)^{i-1}p = p \sum_{i=1}^{\infty} i(1-p)^{i-1}$$
$$= p \cdot \frac{d}{dp} \left(-\frac{1}{p}\right) = \frac{1}{p},$$

Therefore,

$$\mathbb{E}Y_{T_a} = \mathbb{E}X_{T_a} - c\mathbb{E}(T_a) = \mathbb{E}X_{T_a} - \frac{c}{p(a)}$$

since $X_{T_a} > a$ and X_i s are iid, we can further write $\mathbb{E}X_{T_a} = \mathbb{E}(X_1|X_1 > a)$

(ii) Expanding the formula $\mathbb{E}(X_1 - \alpha)^+$, we have

$$\mathbb{E}(X_{1} - \alpha)^{+} = \mathbb{E}((X_{1} - \alpha)^{+} \mid X_{1} > \alpha) \mathbb{P}(X_{1} > \alpha) + \mathbb{E}((X_{1} - \alpha)^{+} \mid X_{1} \leq \alpha) \mathbb{P}(X_{1} \leq \alpha)$$

$$= \mathbb{E}(X_{1} - \alpha \mid X_{1} > \alpha) \mathbb{P}(X_{1} > \alpha) + \mathbb{E}(0)$$

$$= [\mathbb{E}(X_{1} \mid X_{1} > \alpha) - \alpha] p(\alpha)$$

Solving the equation $[\mathbb{E}(X_1 \mid X_1 > \alpha) - \alpha] p(\alpha) = \mathbb{E}(X_1 - \alpha)^+ = c$, we can get

$$\mathbb{E}(X_1 \mid X_1 > \alpha) = \alpha + \frac{c}{p(\alpha)}$$

Recall that $\mathbb{E}X_{T_a}$ is a conditional expected value with the construction $X_{T_a} > a$, and X_i s are iid R.V.s, then

$$\mathbb{E}(X_{T\alpha}) = \mathbb{E}(X_1 \mid X_1 > \alpha) = \alpha + \frac{c}{p(\alpha)}$$

Substituting $\mathbb{E}(X_{T_{\tau}})$ in the last equation in part (a) gives

$$\mathbb{E}(Y_{T_{\alpha}}) = \mathbb{E}(X_{T_{\alpha}}) - \frac{c}{p(\alpha)} = \alpha + \frac{c}{p(\alpha)} - \frac{c}{p(\alpha)} = \alpha$$

As for the inequality, given $\mathbb{E}\tau < \infty$ taking expected value of both sides then we have

$$\mathbb{E}(Y_n) \le \mathbb{E}(\alpha + \sum_{k=1}^n ((X_k - \alpha)^+ - c)) = \alpha + \sum_{k=1}^n (\mathbb{E}(X_k - \alpha)^+ - c)) = \alpha$$

for any $n \geq 1$, therefore if $\tau > 1$ is a stopping time with $\mathbb{E}\tau < \infty$ then $\mathbb{E}Y_{\tau} \leq \alpha$.

4. Let $\{S_n\}$ be a simple random walk in one dimension, with $S_0=0$, and let

$$\tau = \tau_{[0,5]^c} = \inf\{n : S_n \notin [0,5]\}$$

be the first time the random walk exits the set $\{0, 1, 2, 3, 4, 5\}$. Evaluate $\mathbf{E}S_{\tau-1}$.

Solution

We start with $\mathbb{E}S_{\tau-1} = \mathbb{E}S_{\tau} - \mathbb{E}X_{\tau}$, then consider $\mathbb{E}S_{\tau}$ and $\mathbb{E}X_{\tau}$ separately.

- (1) Notice that $\mathbb{P}(\tau = \infty) = 0$ almost surely, i.e., the hitting time τ is almost surely finite, and thus $\mathbb{E}(\tau) < \infty$. By Wald's identity, $S_{\tau} = (\mathbb{E}X_1)(\mathbb{E}\tau) = 0$
- (2) Let $p:=\mathbb{P}(S_{\tau}=6)=1-\mathbb{P}(S_{\tau}=-1)$, then there is $\mathbb{E}S_{\tau}=6p-(1-p)=0$. Solving it we have $p=\frac{1}{7}$, then $\mathbb{P}(S_{\tau}=6)=\frac{1}{7}$ and $\mathbb{P}(S_{\tau}=-1)=\frac{6}{7}$. Consider the expected value of X_{τ} , which can only be 1 or -1 in a 1d simple random walk. $X_{\tau}=1$ has a corresponding escaping value $S_{\tau}=6$, i.e. $\{X_{\tau}=1\}=\{S_{\tau}=6\}$, while $X_{\tau}=-1$ is related to $S_{\tau}=-1$. So $\mathbb{P}(X_{\tau}=-1)=\mathbb{P}(S_{\tau}=-1)=\frac{6}{7}$, and $\mathbb{P}(X_{\tau}=1)=\mathbb{P}(S_{\tau}=6)=\frac{1}{7}$. Therefore, $\mathbb{E}X_{\tau}=1\times\frac{1}{7}-1\times\frac{6}{7}=-\frac{5}{7}$. Overall,

$$\mathbb{E}S_{\tau-1} = \mathbb{E}S - \mathbb{E}X_{\tau} = 0 - (-\frac{5}{7}) = \frac{5}{7}$$