COMPSCI 762 Tutorial 8

Tutorial on Bayesian Networks, kNN and SVM

Luke Chang

May 2021

The University of Auckland

Topics

Bayesian Networks

K-Nearest Neighbour (kNN) Model

Support Vector Machine (SVM)

Example

You are given a toxicity data set that describes chemical compounds with 5 *Boolean* attributes: water **S**olubility, **C**ytochrominhibitor, contains **P**hosphate, and cancerogenic in the **R**at model, and the **O**utcome of some toxicity test. Could you learn a Bayesian network on the given dataset?

S	C	P	R	О
TRUE	TRUE	FALSE	TRUE	Negative
TRUE	FALSE	TRUE	TRUE	Negative
FALSE	FALSE	TRUE	FALSE	Negative
FALSE	TRUE	TRUE	TRUE	Positive

If you condition on every attribute (join links top down), $\mathbf{0}$ will condition on 4! = 24 possible combinations.

S	C	P	R	0
TRUE	TRUE	FALSE	TRUE	Negative
TRUE	FALSE	TRUE	TRUE	Negative
FALSE	FALSE	TRUE	FALSE	Negative
FALSE	TRUE	TRUE	TRUE	Positive

O	P(S)	$P(\neg S)$		O	P(C)	$P(\neg C)$
P	0.0	1.0	•	P	1.0	0.0
N	0.666	0.333		N	0.333	0.666

O	P(P)	$P(\neg P)$
P	1.0	0.0
N	0.666	0.333

O	P(R)	$P(\neg R)$
P	1.0	0.0
N	0.666	0.333

Apply Laplace smoothing

Laplace smoothing

S	C	P	R	0
TRUE	TRUE	FALSE	TRUE	Negative
TRUE	FALSE	TRUE	TRUE	Negative
FALSE	FALSE	TRUE	FALSE	Negative
FALSE	TRUE	TRUE	TRUE	Positive

$$\begin{array}{c|c} P(O) & P(\neg O) \\ \hline \frac{1+1}{4+2} = 0.333 & \frac{3+1}{4+2} = 0.666 \end{array}$$

$$\begin{array}{c|cccc} O & P(S) & P(\neg S) \\ \hline P & \frac{0+1}{1+2} = 0.333 & \frac{1+1}{1+2} = 0.666 \\ N & \frac{2+1}{3+2} = 0.6 & \frac{1+1}{3+2} = 0.4 \\ \end{array}$$

$$\begin{array}{ccc} O & P(P) & P(\neg P) \\ \hline P & \frac{1+1}{1+2} = 0.666 & \frac{0+1}{1+2} = 0.333 \\ N & \frac{2+1}{3+2} = 0.6 & \frac{1+1}{3+2} = 0.4 \end{array}$$

$$\begin{array}{c|cccc} O & P(C) & P(\neg C) \\ \hline P & \frac{1+1}{1+2} = 0.666 & \frac{0+1}{1+2} = 0.333 \\ N & \frac{1+1}{3+2} = 0.4 & \frac{2+1}{3+2} = 0.6 \\ \end{array}$$

$$\begin{array}{c|cccc} O & P(R) & P(\neg R) \\ \hline P & \frac{1+1}{1+2} = 0.666 & \frac{0+1}{1+2} = 0.333 \\ N & \frac{2+1}{3+2} = 0.6 & \frac{1+1}{3+2} = 0.4 \\ \end{array}$$

O	P(S)	$P(\neg S)$	O	P(C)	$P(\neg C)$	O	P(P)	$P(\neg P)$	Ο	P(R)	$P(\neg R)$
P	0.333	0.666	P	0.666	0.333	P	0.666	0.333	P	0.666	0.333
N	0.6	0.4	N	0.4	0.6	N	0.6	0.4	N	0.6	0.4

A new instance with S = T, C = F, P = F, what is the probability of test positive?

$$P(O = P, S, \neg C, \neg P, \neg F) = P(S|O)P(\neg C|O)P(\neg P|O)P(\neg F|O)P(O)$$

= $(\frac{1}{3})^5 \approx 0.004$

K-Nearest Neighbour (kNN)

Model

The k-nearest neighbour fits for \hat{Y} is defined as follows:

$$\hat{Y}(x) = \frac{1}{k} \sum_{x \in N_k(x)} y_i$$

where $N_k(x)$ is the neighbourhood of x defeined by the k closest points x in the training sample.

What does kNN do during training?

The k-nearest neighbour fits for \hat{Y} is defined as follows:

$$\hat{Y}(x) = \frac{1}{k} \sum_{x \in N_k(x)} y_i$$

where $N_k(x)$ is the neighbourhood of x defeined by the k closest points x in the training sample.

What does kNN do during training?

- Saving all training instances
- Algorithms used to compute the nearest neighbors:
 - · Brute-force search
 - KD Tree: Splits from median on every feature; works well in lower dimensional data
 - **Ball Tree:** Also a binary tree which partitions data from N-dimensional hyper-sphere; the preferred method for high dimensional data

What should you use for the distance metric?

What should you use for the distance metric?

- Euclidean Distance: L₂-norm
- Manhattan Distance: L₁-norm, works better in higher dimensional data
- Mahalanobis Distance, Chebyshev Distance (L_{∞} -norm) and others

How do you choose the value of k?

What should you use for the distance metric?

- Euclidean Distance: L₂-norm
- Manhattan Distance: L₁-norm, works better in higher dimensional data
- Mahalanobis Distance, Chebyshev Distance (L∞-norm) and others

How do you choose the value of *k*?

- Apply cross-validation on the training data.
- Don't forget fit the model with the full training data after the optimal *k* is selected.

What are the limitations?

What should you use for the distance metric?

- Euclidean Distance: L₂-norm
- Manhattan Distance: L₁-norm, works better in higher dimensional data
- Mahalanobis Distance, Chebyshev Distance (L_{∞} -norm) and others

How do you choose the value of *k*?

- Apply cross-validation on the training data.
- Don't forget fit the model with the full training data after the optimal *k* is selected.

What are the limitations?

- Sensitive to noise
- Computational expensive at inference time (Scale by the size of training data)
- Does not scale well with larger datasets

Explain briefly how an SVM is trained.

¹Hastie, Tibshirani, and Friedman, *The elements of statistical learning: data mining, inference, and prediction.*

Explain briefly how an SVM is trained.

Figure 1: SVM. Left: A separable case; Right: A non-separable case. The vectors ξ_j^* are the support vectors¹.

¹Hastie, Tibshirani, and Friedman, *The elements of statistical learning: data mining, inference, and prediction.*

Explain briefly how an SVM is trained.

- A technique for constructing an optimal separating hyperplane between two classes
- The margin M is $\frac{1}{\|\beta\|}$; Minimize $\|\beta\|$ (Maximize margin)
- Hard-margin: the training data is linearly separable
- **Soft-margin:** the data are not linearly separable, minimize the observations on the wrong side by minimizing the hinge loss using Lagrangian multiplier.
- **Kernel function** is used for the non-linear boundaries. e.g.: 2-degree polynomial $\phi(x) = x^2$

Multi-class Classification

What strategies are SVM use when the data have more than two classes?

Multi-class Classification

What strategies are SVM use when the data have more than two classes?

- One-Vs-Rest (OVR): Example: Three output classes: A, B, C. Solve 3 binary classified problem:
 - 1. A vs. (B, C)
 - 2. B vs. (A, C)
 - 3. C vs. (A, B)
- One-Vs-One (OVO): Train N choose 2 classifiers, $\binom{N}{2} = \frac{N \cdot (N-1)}{2}$
 - 1. A vs. B
 - 2. A vs. C
 - 3. B vs. C

What the difference between SVM and logistic regression?

What the difference between SVM and logistic regression?

- SVM maximizes the margin between the closest support vectors
- Logistic regression maximize the posterior class probability (Different loss function)
- SVM is deterministic and LR is probabilistic
- SVM can be used for both classification and regression

How do SVMs compare to simple instance-based learning approaches such as k-Nearest Neighbour?

How do SVMs compare to simple instance-based learning approaches such as k-Nearest Neighbour?

- Both can be thought of as instance based learners
- SVM doesn't need to store all training samples
- SVM outperforms kNN in high dimensional data

Parameters in SVM

Which hyper-parameters should you tune?

Parameters in SVM

Which hyper-parameters should you tune?

- SVM is NOT scale invariant. Before training, normalize your data.
- Complexity parameter: The penalty parameter c of the error term. In *sklearn*, the default value is 1. If the data is noisy, decrease it (Less penalty for misclassification.). If the data is highly non-linear, increase it. c can take value larger than 1, e.g.: $c \in [0.1, 100]$
- **kernel**: Linear, polynomial, sigmoid, Radial Basis Function (RBF)
- For non-linear kernels, γ is the kernel coefficient. The default value is $\frac{1}{n_features}$. If γ is small, the model prefers linear-like decision boundary. Large value may lead to overfitting.