EPITA

Mathematics

Midterm exam S2

Duration: 3 hours

March 2022

Name:
First name:
Class:
MARK:
The marking system is given for a grading scale from 0 to 35. The final mark will be re-scaled from 0 to 20.
Instructions:

- Read the whole exam before starting. It contains 7 exercises.
- A 1-point penalty may be removed if the worksheet's presentation is confused.
- Write your answers on the stapled sheets provided for answering. Look at the frame's size before writing your redaction.
- Documents and pocket calculators are not allowed.
- Please, do not use lead pencils for answering.

Exercise 1 (5,5 points)

1.	Solve on $I =]0, +\infty[$ the differential equation (E) $xy' + \frac{1}{2}y = -2.$
2.	Solve on \mathbb{R} the differential equation (E) $2y'' + 8y' + 8y = 3e^{-2x}$

Exercise 2 (5 points)

The questions of the exercise are mutually independent.

1. Let f and g be two functions such that, as x approaches 0:

$$f(x) = o(x^3)$$
 and $g(x) = x^2 \varepsilon(x)$ with $\lim_{x \to 0} \varepsilon(x) = 0$

(a)	Can we say that,	as x approaches 0 ,	$f(x) = o(x^2)$? And that	$f(x) = o(x^4)$? Justify your answers.
-----	------------------	-------------------------	----------------------------	---

(b) Find the greatest natural number n such that we are sure to have: $f(x) - 2q(x) = o(x^n)$.

2. Consider two functions f and g such that, as x approaches 0:

$$f(x) = 1 + x + x^2 + o(x^3)$$
 and $g(x) = 2x + x^2 - x^3 + o(x^3)$

Find simple equivalents in 0 of: f(x), g(x) and 2xf(x) - g(x).

3. Propose a Taylor expansion in 0, at the order 3, of a non-zero function h which would satisfy:

$$h(x) \sim -3x$$
 and $h(x) + 3x \sim 5x^2$

4. Propose a Taylor expansion in 0, at the order 4, of a non-zero function i which would satisfy:

$$i(x) = o(x^3) \quad \text{and} \quad \lim_{x \to 0} \frac{i(x)}{x^4} = 2$$

.....

Exercise 3 (5 points)

	ylor expansion in 0 at the order 3 of $f(x) = \sin(2x)e^{-x}$.
ompute the Ta	ylor expansion in 0 at the order 3 of $g(x) = \ln (1 + x + \cos(x))$.
ompute the Ta	ylor expansion in 0 at the order 3 of $g(x) = \ln(1 + x + \cos(x))$.
	· · · · · · · · · · · · · · · · · · ·

Exercise 4 (5 points)

1.	Find $\lim_{x \to 0} \frac{\sqrt{1 + 2x^2} - \cos(2x^2) - x^2}{e^{-x} + \sin(x) - 1}$
2.	Find $\lim_{x \to +\infty} \left(x \sin\left(\frac{1}{x}\right) \right)^{x^2}$.

Exercise 5 (6 points)

Are th	e following sets \mathbb{R} -vector spaces? Justify rigorously your answers.
	$E = \left\{ (u_n) \in \mathbb{R}^{\mathbb{N}}, \forall n \in \mathbb{N}, u_n \ge -1 \right\}.$
2	$F = \{u \in \mathbb{R}^3, u = \alpha e_1 + \beta e_2; (\alpha, \beta) \in \mathbb{R}^2\}$ where $e_1 = (1, 1, 0)$ and $e_2 = (0, 5, 3)$.
	$(a \in \mathbb{R}^3, a = a \in \mathbb{R}^3, (a, p) \in \mathbb{R}^3 $
9	$C = \{f : \mathbb{D} \setminus \mathbb{D} \mid f(g) = g(g) \text{ as } g \text{ approaches } 0\}$
ა.	$G = \{f : \mathbb{R} \longrightarrow \mathbb{R}, f(x) = o(x) \text{ as } x \text{ approaches } 0\}$

Exercise 6 (4,5 points)

nsic	ler a natural number $n \ge 5$ and the polynomial $P_n(X) = X^{n+1} - 2X^n + 2X^{n-1} - 2X^{n-2} + X^{n-3}$.
1.	Check that 0 is a root of P . Without doing computations, find its order of multiplicity and explain why.

2.	Show that 1 is a root of P . Find its order of multiplicity.
	Assume in this question that $n = 11$. Thus, $P_{11}(X) = X^{12} - 2X^{11} + 2X^{10} - 2X^{9} + X^{8}$. Using the previous question factorize P_{11} as a product of irreducible polynomials in $\mathbb{R}[X]$.

Exercise 7 (4 points)

The purpose of the exercise is to find all the polynomials P of degree 3 such that $(X-1)^2|P(X)-1$ and $(X+1)^2|P(X)+1$. Consider a polynomial $P(X)=aX^3+bX^2+cX+d$ with $(a,b,c,d)\in\mathbb{R}^4$ and satisfying the hypothesis:

$$(H)$$
: $(X-1)^2 | P(X) - 1$ and $(X+1)^2 | P(X) + 1$

Let us define the two polynomials: A(X) = P(X) - 1 and B(X) = P(X) + 1.

1.	Write all the information about A and B that can be deduced from the hypothesis (H) ?
2.	Deduce the values of $P(1)$, $P'(1)$, $P(-1)$ and $P'(-1)$.
3.	Find all the polynomials P of degree 3 who satisfy (H) .