domínios de fatorização única

domínios de fatorização única

Definição. Um domínio de fatorização única ou domínio de Gauss é um domínio de integridade D no qual todo o elemento $x \in D \setminus (\mathcal{U}_D \cup \{0_D\})$ se escreve como produto de elementos irredutíveis, sendo essa decomposição única, a menos do produto por unidades, ou seja,

$$\forall x \in D \setminus (\mathcal{U}_D \cup \{0_D\}) \exists p_1, p_2, ..., p_n \text{ irredutive is } em D : x = p_1 p_2 \cdots p_n$$

e se existem $q_1, q_2, ..., q_t$ irredutíveis em D tais que

$$x = q_1 q_2 \cdots q_t,$$

então, n=t e cada elemento p_i (i=1,2,...,n) é associado a um elemento q_j (j=1,2,...,n) e reciprocamente.

Ao número de fatores irredutíveis que aparecem na fatorização de um elemento x de D chamamos o comprimento de x.

Exemplo 7. O domínio de integridade \mathbb{Z} é um domínio de Gauss. Pelo Teorema Fundamental da Aritmética, sabemos que todo o inteiro maior que do que 1 se escreve como produto de primos (que, como já vimos, são os elementos irredutíveis de \mathbb{Z}^+) de modo único, a menos da ordem dos fatores. Assim, concluímos que $x \in \mathbb{Z} \setminus \{-1,0,1\}$ se escreve como produto de elementos irredutíveis de \mathbb{Z} . Essa decomposição é única a menos do produto de ± 1 . Por exemplo, as únicas fatorizações possíveis de 6 são, a menos da ordem dos fatores, $2 \cdot 3$ e (-2)(-3).

Teorema. Seja D um domínio de Gauss e $a, b \in D$. Então, existe m.d.c.(a, b).

Demonstração. Se $a=0_D$ ou $b=0_D$, temos que $[a,b]=\{0_D\}$. Sejam, então, $a,b\in D\setminus\{0_D\}$. Suponhamos primeiro que $a\in\mathcal{U}_D$. Então, $a\mid b$ e, portanto, existe $\mathrm{m.d.c.}(a,b)$ e $[a,b]=a\mathcal{U}_D$. A situação é análoga se supormos que $b\in\mathcal{U}_D$.

Suponhamos, então, que $a,b\not\in\mathcal{U}_D$. Então, existem $r\in\mathbb{N},\ m_1,m_2,...,m_r,n_1,n_2,...,n_r\in\mathbb{N}_0$ e $p_1,p_2,...,p_r,q_1,q_2,...,q_r$ elementos irredutíveis em D tais que $a=p_1^{m_1}p_2^{m_2}\cdots p_r^{m_r}$ e $b==q_1^{n_1}q_2^{n_2}\cdots q_r^{n_r}$.

Observe-se que temos garantia que existe pelo menos um dos fatores. Se mais não houver, consideramos o expoente nulo, que transforma o fator em $\mathbf{1}_D$. Assim, nestas duas fatorizações, podemos considerar o mesmo número de fatores.

Seja $d=p_1^{s_1}p_2^{s_2}\cdots p_r^{s_r}$ onde $s_i=\min(m_i,n_i)$ para cada i=1,2,...,r. Vamos provar que d é $\mathrm{m.d.c.}(a,b)$. Uma vez que $s_i\leq m_i$, podemos escrever

$$a = (p_1^{s_1} p_2^{s_2} \cdots p_r^{s_r})(p_1^{m_1 - s_1} p_2^{m_2 - s_2} \cdots p_r^{m_r - s_r}) = d(p_1^{m_1 - s_1} p_2^{m_2 - s_2} \cdots p_r^{m_r - s_r}),$$

pelo que $d \mid a$. De modo análogo, concluímos que $d \mid b$.

Seja $k \in D$ tal que $k \mid a$ e $k \mid b$. Se $k \in \mathcal{U}_D$, temos obviamente que $k \mid d$. Se $k \notin \mathcal{U}_D$, existem $v_1, v_2, ..., v_r \in \mathbb{N}_0$ tais que $u = p_1^{v_1} p_2^{v_2} \cdots p_r^{v_r} u'$, com $u' \in \mathcal{U}_D$ e, como $k \mid a$ e $k \mid b$,

$$v_i \leq m_i \ e \ v_i \leq n_i \qquad (i=1,2,...,r).$$

Logo, para cada i=1,2,...,r, $v_i \leq s_i$ e, portanto, $k \mid d$. Logo, $d \in \mathrm{m.d.c.}(a,b)$.

Observação. Este teorema permite-nos concluir que, num domínio de Gauss, são válidos todos os resultados que apresentámos que envolvem máximos divisores comuns, pois temos sempre a garantia que qualquer par de elementos admite pelo menos um m.d.c.

domínios de ideais principais

domínios de ideais principais

Definição. Um domínio de ideais principais é um domínio de integridade onde todos os ideais são principais.

Exemplo 8. O domínio de integridade dos inteiros é um domínio de ideais principais. De facto, sabemos que B é ideal de \mathbb{Z} se e só se existe $n \in \mathbb{Z}$ tal que B = (n).

Proposição. Se D é um domínio de ideais principais, $p \in D \setminus \{0_D\}$ é irredutível se e só se (p) é um ideal maximal de D.

Teorema. Todos os domínios de ideais principais são domínios de fatorização única.

Observação. O recíproco do teorema anterior não é verdadeiro:

Exemplo 9. Consideremos o conjunto dos polinómios em x com coeficientes em \mathbb{Z} , o qual representamos por $\mathbb{Z}[x]$. Prova-se que, quando algebrizado com a adição e a multiplicação usuais de polinómios, é um domínio de fatorização única. No entanto, não é um domínio de ideais principais. Para provarmos tal afirmação basta observar que o ideal gerado pelos polinómios p(x)=2 e q(x)=x, i.e., o menor ideal que contém os dois polinómios, não é principal.

Observação. Num domínio de ideais principais, existe m.d.c. de qualquer par de elementos de D.

De facto, cada domínio de ideais principais é um domínio de Gauss e, em cada domínio de Gauss, existe m.d.c. de dois quaisquer elementos.

No entanto, é só num domínio de ideais principais que podemos escrever qualquer $\mathrm{m.d.c.}$ de dois elementos como combinação linear desses mesmos elementos.

Proposição. Sejam D um domínio de ideais principais e $a,b,d\in D$. Se d é $\mathrm{m.d.c.}(a,b)$, então, existem $\alpha,\beta\in D$ tais que $d=\alpha a+\beta b$.

Demonstração. Seja $I = \{xa + yb : x, y \in D\}$. Como

- $0_D = 0_D a + 0_D b \in I$;
- $(x_1a + y_1b) (x_2a + y_2b) = (x_1 x_2)a + (y_1 y_2)b \in I$ para todos $x_1, x_2, y_1, y_2 \in D$;
- $t(xa + yb) = (tx)a + (ty)b \in I$, para todos $x, y, t \in D$,

concluímos que I é um ideal de D. Como D é um domínio de ideais principais, temos que existe $d \in D$ tal que I = (d) = dD.

Facilmente se vê que $d \in \mathrm{m.d.c.}(a,b)$. Assim, de $d \in I$, concluímos que existem $\alpha, \beta \in D$ tais que $d = \alpha a + \beta b$. Mais ainda, se $d_1 \in [a,b]$, $d_1 = du$ para alguma unidade u de D. Logo, $d_1 = (\alpha u)a + (\beta u)b$.

domínios euclidianos

domínios euclidianos

Definição. Um domínio de integridade diz-se um domínio euclidiano se for possível definir uma aplicação $\delta:D\to\mathbb{N}_0$ tal que

(E1)
$$\forall a, b \in D \setminus \{0_D\}$$
 $b \mid a \Rightarrow \delta(b) \leq \delta(a)$;

(E2) se $a,b\in D$ e $b\neq 0_D$, então, existem $q,r\in D$ tais que a=bq+r e $\delta(r)<\delta(b)$.

À aplicação δ chama-se valoração em D.

Exemplo 10. O domínio de integridade \mathbb{Z} é um domínio euclidiano. Basta pensar na aplicação que a cada inteiro faz corresponder o seu valor absoluto.

Proposição. Seja D um domínio euclidiano. Então,

$$\forall b \in D \setminus \{0_D\}$$
 $\delta(0_D) < \delta(b)$.

Demonstração. Como $b \neq 0_D$ e $0_D \in D$, temos, por (E2) da definição de domínio euclidiano, que existem $q,r \in D$ tais que $0_D = bq + r$ e $\delta(r) < \delta(b)$. Assim, r = -bq = b(-q) e, portanto, $b \mid r$. Se $r \neq 0_D$, temos, por (E1), que $\delta(b) \leq \delta(r)$. Logo, $\delta(r) < \delta(r)$, o que é um absurdo. O absurdo resulta do facto de supormos que $r \neq 0_D$. Concluímos, então, que $r = 0_D$ e, portanto, $\delta(0_D) < \delta(b)$.

Teorema. Todo o domínio euclidiano é um domínio de ideais principais. **Demonstração**. Sejam D um domínio euclidiano e I um ideal de D. Se $I = \{0_D\}$, então, $I = (0_D)$ e I é principal.

Suponhamos que $I \neq \{0_D\}$. Então, existe $b \neq 0_D$ e, portanto, pela proposição anterior, $\delta(b) \neq \delta(0_D)$. Seja $a \in I \setminus \{0_D\}$ tal que $\delta(a) \leq \delta(x)$ para todo $x \in I \setminus \{0_D\}$. Vamos provar que I = (a). Seja $i \in I$. Como $a \neq 0_D$, por (E2) existem $q, r \in D$ tais que i = aq + r e $\delta(r) < \delta(a)$. Então, $r = i - aq \in I$.

Como a é o elemento não nulo de D de menor valoração, concluímos que $r=0_D$ e, portanto, $i=aq\in aD=$ (a). Assim, $I\subseteq$ (a). Como a outra inclusão é trivial, concluímos que I é principal. \Box

Corolário. Todo o domínio euclidiano é domínio de fatorização única.

Exemplo 11. O anel $\mathbb{Z}\left[\frac{1+\sqrt{-19}}{2}\right]$ é um domínio de ideais principais que não é euclidiano.

Observação. A importância do estudo dos domínios euclidianos prende-se com a generalização do conhecido Algoritmo de Euclides, enunciado para os inteiros (aliás, é deste facto que resulta a escolha do nome para esta classe de domínios de integridade).

Teorema. (Algoritmo de Euclides) Sejam D um domínio euclidiano e $a,b\in D\setminus\{0_D\}$. Sejam $r_1,q_1\in D$ tais que

$$a = bq_1 + r_1$$
 onde ou $r_1 = 0_D$ ou $\delta(r_1) < \delta(b)$.

Se $r_1 \neq 0_D$, sejam $r_2, q_2 \in D$ tais que

$$b=r_1q_2+r_2$$
 onde ou $r_2=0_D$ ou $\delta(r_2)<\delta(r_1)$.

Em geral, sejam $r_{i+1}, q_{i+1} \in D$ tais que

$$r_{i-1} = r_i q_{i+1} + r_{i+1}$$
 onde ou $r_{i+1} = 0_D$ ou $\delta(r_{i+1}) < \delta(r_i)$.

Então, a sequência $r_1, r_2, ...$ tem de terminar para algum $r_s = 0_D$. Se

- $r_1 = 0_D$ então $b \in [a, b]$;
- $r_1 \neq 0_D$ e r_s é o primeiro dos r_i nulo, então $r_{s-1} \in [a,b]$.

Demonstração. Como $\delta(r_i) < \delta(r_{i-1})$ e $\delta(r_i) \in \mathbb{N}_0$, é óbvio que, após um número finito de passos, temos algum $r_s = 0_D$.

Se $r_1 = 0_D$, então $a = bq_1$ e, portanto, $b \mid a$. Logo, $b \in [a, b]$.

Suponhamos que $r_1 \neq 0_D$. Se $d \in D$ é tal que $d \mid a$ e $d \mid b$, então, $d \mid (a - bq_1)$, ou seja, $d \mid r_1$. No entanto, se $d_1 \in D$ é tal que $d_1 \mid r_1$ e $d_1 \mid b$, então, $d_1 \mid (bq_1 + r_1)$, i.e., $d_1 \mid a$. Assim, $[a,b] = [b,r_1]$. Com um raciocínio análogo, se $r_2 = 0_D$, provamos que $[b,r_1] = [r_1,r_2]$. Continuando o processo, concluímos que $[a,b] = [r_{s-2},r_{s-1}]$, onde r_s é o primeiro dos r_i nulo. Mas, como

$$r_{s-2} = r_{s-1}q_s + r_s = r_{s-1}q_s,$$

 $r_{s-1} \mid r_{s-2}$. Logo,

$$[a,b]=r_{s-1}\mathcal{U}.$$

28