Introduction to Analysis

Lecture 2

Haoming Wang

25 June 2019

Abstract

This is the Lecture note for the Introduction to Analysis class in Fall 2019.

Exercise 1 (Squeeze theorem). *If* $\lim_{n\to\infty} a_n = l$ *and* $\lim_{n\to\infty} b_n = m$ *and* $a_n \le c_n \le b_n$, *show that* $l = m \Rightarrow \lim_{n\to\infty} c_n = l$.

Proof. Since $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = l$, for $\forall \epsilon > 0, \exists N \in \mathbb{N}$, s.t. $\forall n \geq N$ has $|a_n - l| < \epsilon/3$ and $|b_n - l| < \epsilon/3$. And since $a_n \leq c_n \leq b_n$, we have that $0 \leq c_n - a_n \leq b_n - a_n$. Thus for $\forall n \geq N$, we have

$$|c_{n} - l| = |c_{n} - a_{n} + a_{n} - l|$$

$$\leq |c_{n} - a_{n}| + |a_{n} - l|$$

$$\leq |b_{n} - a_{n}| + |a_{n} - l|$$

$$= |b_{n} - l + l - a_{n}| + |a_{n} - l|$$

$$\leq |b_{n} - l| + 2|a_{n} - l|$$

$$\leq \varepsilon.$$

thus $\lim_{n\to\infty} c_n = l$.

Exercise 2. If a > 1 show that $\lim_{n \to \infty} 1/a^n = 0$.

Proof. Since $a > 1 \Rightarrow b := a - 1 > 0$, thus

$$0 \le \frac{1}{a^n} = \frac{1}{(1+b)^n} \le \frac{1}{1+nb} \to 0$$

as $n \to \infty$, thus $\lim_{n \to \infty} 1/a^n = 0$ by Squeeze theorem.

Definition 1. A seq. $a_n (n \in \mathbb{N})$ in \mathbb{R} is

1. nondecreasing monotone/increasing if $a_n \leq a_{n+1}$ for $\forall n \in \mathbb{N}$, denoted by a_n , nonincreasing monotone/decreasing if $a_n \geq a_{n+1}$ for $\forall n \in \mathbb{N}$, denoted by a_n .

2. strictly increasing if $a_n < a_{n+1}$ for $\forall n \in \mathbb{N}$, denoted by $a_n \nearrow \nearrow$; strictly decreasing if $a_n > a_{n+1}$ for $\forall n \in \mathbb{N}$, denoted by $a_n \nearrow \nearrow$.

Theorem 1 (Monotone Seq. Property). *If* $a_n \nearrow and \{a_n | n \in \mathbb{N}\}$ *has an upper bound, then* $\lim_{n\to\infty} a_n = \sup\{a_n | n \in \mathbb{N}\}$; $a_n \searrow and \{a_n | n \in \mathbb{N}\}$ *has an lower bound, then* $\lim_{n\to\infty} a_n = \inf\{a_n | n \in \mathbb{N}\}$.

Proof. $\{a_n|n \in \mathbb{N}\}$ has an upper bound $\Rightarrow l := \sup\{a_n|n \in \mathbb{N}\}$ exists by Weierstrass theorem. Thus for $\forall \epsilon > 0, l - \epsilon$ is not an upper bound of $\{a_n\}$, then $\exists N \in \mathbb{N}$, s.t. $a_N > l$ and since $a_n \nearrow$, we have that $\forall n \geq N, l - \epsilon < a_n \leq l \Rightarrow \lim_{n \to \infty} a_n = l$.

Example 1 (Decimal expression gives real number). Suppose $d_i \in \mathbb{N}$ and $0 \le d_i \le 9$ for $i \in \mathbb{N}$, and define

$$a_n = \frac{d_1}{10} + \frac{d_2}{10^2} + \dots + \frac{d_n}{10^n}$$

for $n \in \mathbb{N}$, then it is direct to see that $a_n \nearrow$ and

$$a_n \le \frac{9}{10} + \frac{9}{10^2} + \dots + \frac{9}{10^n}$$

$$= \frac{9}{10} \left(\frac{1 - \frac{1}{10^{n+1}}}{1 - \frac{1}{10}} \right)$$

$$< \frac{9}{10} \left(\frac{1}{1 - \frac{1}{10}} \right)$$

$$= 1$$

and hence $\lim_{n\to\infty} a_n$ exists, and we can define a real number by $\lim_{n\to\infty} a_n =: 0.d_1d_2\cdots$

Example 2 (The natural base *e*). Define a seq. $a_n = (1 + 1/n)^n (n \in \mathbb{N})$, then we have

$$a_{n} = \left(1 + \frac{1}{n}\right)^{n}$$

$$= \binom{n}{0} + \binom{n}{1} \frac{1}{n} + \binom{n}{2} \frac{1}{n^{2}} + \dots + \binom{n}{n} \frac{1}{n^{n}}$$

$$= \sum_{j=0}^{n} \binom{n}{j} \frac{1}{n^{j}} = \sum_{j=0}^{n} \frac{n!}{j!(n-j)!} \cdot \frac{1}{n^{j}}$$

$$= \sum_{j=0}^{n} \frac{1}{j!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \dots \left(1 - \frac{j-1}{n}\right)$$

$$< \sum_{j=0}^{n+1} \frac{1}{j!} \left(1 - \frac{1}{n+1}\right) \left(1 - \frac{2}{n+1}\right) \dots \left(1 - \frac{j-1}{n+1}\right)$$

Thus $a_n \nearrow \nearrow$. On the other hand, for $\forall n \in \mathbb{N}$, we have

$$a_n < \sum_{j=0}^{n+1} \frac{1}{j!} = 1 + 1 + \frac{1}{2!} + \dots + \frac{1}{n!}$$

$$< 1 + 1 + \frac{1}{2} + \dots + \frac{1}{2^n}$$

$$= 1 + \frac{1 - \frac{1}{2^n}}{1 - \frac{1}{2}}$$

$$< 3$$

Thus a_n has an upper bound and hence a_n converges, and we define $\lim_{n\to\infty} a_n =: e$.

1 Nested Intervals

Definition 2 (Nested). A seq. of intervals $I_n(n \in \mathbb{N})$ is nested if $I_n \neq \emptyset$ and $I_{n+1} \subseteq I_n$ for $\forall n \in \mathbb{N}$.

Example 3. If we have a seq. of nested intervals $I_n(n \in \mathbb{N})$, do we have $\cap_{n \in \mathbb{N}} I_n \neq \emptyset$? The answer is not sure. For example,

- 1. $I_n = (0, 1/n), n \in \mathbb{N}$, then for any $r \in \mathbb{R}, \exists N \in \mathbb{N}$, s.t. 1/N < r by Archimedean Property, thus $r \notin I_N$, and hence $\cap_{n \in \mathbb{N}} I_n = \emptyset$;
- 2. $I_n = [n, \infty), n \in \mathbb{N}$, then for any $r \in \mathbb{R}, \exists N \in \mathbb{N}$, s.t. r < N by Archimedean Property, thus $r \notin I_N$, and hence $\cap_{n \in \mathbb{N}} I_n = \emptyset$;

Theorem 2 (Theorem of Nested Interval). If $I_n(n \in \mathbb{N})$ is a seq. of bounded closed nested intervals, then $\cap_{n \in \mathbb{N}} I_n \neq \emptyset$. (In the other word, there exists a real number $c \in \mathbb{R}$ such that $c \in \cap_{n \in \mathbb{N}} I_n$)

Proof. Write $I_n = [a_n, b_n] (n \in \mathbb{N})$, then $I_n (n \in \mathbb{N})$ is nested $\Leftrightarrow a_n \leq b_n$ and $a_n \nearrow$ and $b_n \nearrow$. And furthermore, for $\forall n, m \in \mathbb{N}$,

$$a_n \leq a_{\max\{m,n\}} \leq b_{\max\{m,n\}} \leq b_m,$$

in the other word, for $\forall m \in \mathbb{N}$, b_m is an upper bound of $\{a_n | n \in \mathbb{N}\}$, thus seq. a_n converges. Let $c = \lim_{n \to \infty} a_n$, then given $m \in \mathbb{N}$, for $\forall n \in \mathbb{N}$, $a_n \leq b_m$ thus

$$c = \lim_{n \to \infty} a_n \le \lim_{n \to \infty} b_m = b_m.$$

On the other hand, $c = \sup\{a_n | n \in \mathbb{N}\}$, thus for all $m \in \mathbb{N}$, we have

$$a_m \le c \le b_m$$

thus $c \in I_m$ for $\forall m \in \mathbb{N} \Rightarrow c \in \cap_{n \in \mathbb{N}} I_n$.

Exercise 3. *Show that* $\cap_{n\in\mathbb{N}}I_n\neq\emptyset$, *if*

- 1. $I_n = (a_n, b_n)$, nested and $a_n \nearrow \nearrow$ and $b_n \nearrow ?$
- 2. $I_n = (a_n, \infty)$, nested and $\{a_n | n \in \mathbb{N}\}$ is bounded from above.

Proof. 1. Just as analyzed before, there exist $c \in \mathbb{R}$ such that $c = \lim_{n \to \infty} a_n$, and $c = \sup\{a_n | n \in \mathbb{N}\}$ and hence $a_n \le c \le b_m$ for $\forall n, m \in \mathbb{N}$. Note that $a_n \le c$ implies that $a_n < c$ for $\forall n \in \mathbb{N}$, otherwise if $\exists n' \in \mathbb{N}$, s.t. $a_{n'} = c$ then

$$a_{n'+1} \ge a_{n'} = c$$
,

which leads to the contradiction. In the same way $c \leq b_m$ implies that $c < b_m$ for $\forall m \in \mathbb{N}$. Thus there $\exists c \in \mathbb{R}$ such that

$$a_n < c < b_m$$

for $\forall n, m \in \mathbb{N} \Rightarrow c \in \cap_{n \in \mathbb{N}} I_n$.

2. Since $I_n = (a_n, \infty)$ is a nested interval, $a_n \nearrow \Rightarrow a_n$ converges since a_n is upper bounded. That is $\exists c \in \mathbb{R}$, s.t. $c = \lim_{n \to \infty} a_n = \sup\{a_n\}$, thus for $\forall n \in \mathbb{N}, c \geq a_n$, that is

$$c+1>c\geq a_n$$

for $\forall n \in \mathbb{N} \Rightarrow c+1 \in \cap_{n \in \mathbb{N}} I_n$.

Exercise 4. Show that Theorem of Nested Interval implies Dedekind's Gapless Property.

Proof. Let (A, B) be a Dedekind cut of \mathbb{R} , pick a from A and b from B, and form an interval $I_0 = [a, b]$. Then (a + b)/2 lies in the middle of I_0 and must belong to A or B. If (a + b)/2 belongs to A, we let

$$a_1 = \frac{a+b}{2}, \quad b_1 = b$$

and if (a + b)/2 belongs to B, let

$$a_1 = a$$
, $b_1 = \frac{a+b}{2}$

and hence we can form a new interval $I_1 = [a_1, b_1]$ whose length is half of the former I_0 . Repeat this process, we obtain a seq. of nested intervals

$$I_0 \supseteq I_1 \supseteq \cdots \supseteq I_n \supseteq \cdots$$

where $I_n = [a_n, b_n], b_n - a_n = (b_{n-1} - a_{n-1})/2$. Thus there exists $s \in \mathbb{R}$ lies in the $\bigcap_{n \in \mathbb{N}} I_n$ by the theorem of nested intervals, and either $s \in A$ or $s \in B$.

Assume that $s \in A$, for any $s' \in \mathbb{R}$, s < s', exists b_n such that $s < b_n < s'$ since $b_n \to s$, thus $s' \in B$. That is $s \in A$ and for any s' > s, $s' \in B$. In the other word, s is the maximal element of A and B has no minimal element in this case, since assume s' is the minimal element of B then $\exists b_n$, s.t. $b_n < s'$ and $b_n \in B$, which is a contradiction.

Remark 1. Summary, we have discussed

- 1) Dedekind's Gapless Property;
- 2) Weierstrass Theorem;
- 3) Monotone Seq. Property;
- 4) Theorem of Nested Interval. which have the relationship:

$$\begin{array}{ccc} 1) & \Longrightarrow 2) \\ \uparrow & & \downarrow \\ 4) & \longleftarrow 3) \end{array}$$

These 5 properties are equivalent and we call the these the **Completeness of the real numbers**.

2 Limit Superior / Inferior

Let $a_n (n \in \mathbb{N})$ be a bounded (upper bdd. and lower bdd.) seq. in \mathbb{R} , we define **upper seq. of** a_n as

$$u_n := \sup\{a_m | m \ge n\},\$$

and **lower seq.** of a_n as

$$l_n := \inf\{a_m | m \ge n\},$$

for $n \in \mathbb{N}$. Thus give $n \in \mathbb{N}$, we have that for $\forall m \geq n$

$$l_n \leq a_m \leq u_n$$

We now show that l_n and u_n is monotone. Assume that $\exists n \in \mathbb{N}$, s.t. $u_n < u_{n+1}$, let $\epsilon = (u_{n+1} - u_n)/2$, then

$$u_{n+1} - \epsilon > u_n = \sup\{a_m | m \ge n\},$$

thus for $\forall m \geq n$, $u_{n+1} - \epsilon > a_m$ and hence $u_{n+1} - \epsilon$ is an upper bound of $\{a_m | m \geq n+1\}$, which leads to a contradiction. Thus for $\forall n \in \mathbb{N}, u_n \geq u_{n+1} \Rightarrow u_n$, and l_n in the same way.

Thus we have that for any $n, m \in \mathbb{N}$,

$$l_m \leq l_{\max\{m,n\}} \leq u_{\max\{m,n\}} \leq u_n,$$

thus l_1 is a lower bound for $\{u_n|n \in \mathbb{N}\}$ and u_1 is an upper bound of $\{l_n|n \in \mathbb{N}\}$ and hence $u_n, l_n(n \in \mathbb{N})$ are convergent by Monotone seq. property. We define the **limit superior** of a_n as the limit of u_n :

$$\overline{\lim}_{n\to\infty} a_n := \lim_{n\to\infty} u_n = \lim_{n\to\infty} \sup_{m\geq n} a_m = \inf_{n\in\mathbb{N}} \sup_{m\geq n} a_m$$

The last equals sign is because $u_n \searrow$ and hence converges to its greatest lower bound by Monotone seq. property. And the **limit inferior** of a_n as the limit of l_n :

$$\underline{\lim}_{n\to\infty} a_n := \lim_{n\to\infty} l_n = \lim_{n\to\infty} \inf_{m\geq n} a_m = \sup_{n\in\mathbb{N}} \inf_{m\geq n} a_m$$

Exercise 5. *Let* $a_n (n \in \mathbb{N})$ *, show that*

$$a_n$$
 converges $\Leftrightarrow \overline{\lim}_{n\to\infty} a_n = \underline{\lim}_{n\to\infty} a_n$

and if any of both sides holds, then

$$\lim_{n\to\infty}a_n=\overline{\lim_{n\to\infty}}a_n=\underline{\lim_{n\to\infty}}a_n$$

Proof. ⇒: Suppose that $\lim_{n\to\infty} a_n = s$. Then for any $\epsilon > 0$, $\exists N \in \mathbb{N}$, s.t. $\forall n \ge N$, $|a_n - s| < \epsilon/2$, thus $s - \epsilon/2 < a_n < s + \epsilon/2$ for $\forall n \ge N$. Thus the upper seq. u_n of a_n has

$$s - \frac{\epsilon}{2} < a_n \le u_n \le s + \frac{\epsilon}{2},$$

for $\forall n \geq N$. The third inequality symbol is because if $\exists n' \geq N$ such that $u_{n'} > s + \epsilon/2$, then there exist a real number q such that $s + \epsilon/2 < q < u_{n'}$ and $q > s + \epsilon/2 > a_n$ for $\forall n \geq N$ and hence $q > a_n$ for $\forall n \geq n'$, and then $u_{n'}$ is not the least upper bound of $\{a_n | n \geq n'\}$ which is contrary. Thus $|u_n - s| \leq \epsilon/2 < \epsilon$, thus

$$\lim_{n\to\infty} u_n = \overline{\lim}_{n\to\infty} a_n = \lim_{n\to\infty} a_n = s,$$

and $\lim_{n\to\infty} l_n = \underline{\lim}_{n\to\infty} a_n = \lim_{n\to\infty} a_n = s$ in the same way.

 \Leftarrow : Suppose $\lim_{n\to\infty}u_n=\lim_{n\to\infty}l_n=s$, then for $\forall \epsilon>0, \exists N\in\mathbb{N}$, s.t. $\forall n\geq N$ one has $|u_n-s|<\epsilon/3$ and $|l_n-s|<\epsilon/3$ and $|u_n-l_n|\leq |u_n-s|+|l_n-s|<2\epsilon/3$, since $l_n\leq a_n\leq u_n$ then $0\leq a_n-l_n\leq u_n-l_n$. Then we have that

$$|a_n - s| = |a_n - l_n + l_n - s|$$

$$\leq |a_n - l_n| + |l_n - s|$$

$$\leq |u_n - l_n| + |l_n - s|$$

$$\leq \epsilon$$

for
$$\forall n \geq N \Rightarrow \lim_{n \to \infty} a_n = \overline{\lim}_{n \to \infty} a_n = \underline{\lim}_{n \to \infty} a_n = s$$
.

Exercise 6. Let $a_n, b_n (n \in \mathbb{N})$ be two bdd. seq. show that

- 1. $\overline{\lim}_{n\to\infty}(a_n+b_n)\leq \overline{\lim}_{n\to\infty}a_n+\overline{\lim}_{n\to\infty}b_n;$
- 2. $\underline{\lim}_{n\to\infty} a_n + \underline{\lim}_{n\to\infty} b_n \leq \underline{\lim}_{n\to\infty} (a_n + b_n)$.