Math 542 HW4

Hongtao Zhang

1 Adjugates and Laplace

1.1

Solution 1.1.1

We know that $\det(A)$ is defined by the coefficient of $Ae_1\wedge...Ae_n=v_1\wedge...\wedge v_n=\det(A)e_1\wedge...\wedge e_n.$

Then we consider A_{ij} by seeing that it is the coefficient of $e_1 \wedge ... \wedge e_n$ after we replace $v_1 \wedge ... v_i \wedge ... \wedge v_n$ with $v_1 \wedge ... \wedge e_j \wedge ... \wedge v_n$.

Consider a matrix B_{ij} which is the matrix after removing the i-th row and j-th column of A.

Now we consider the exterior basis removing e_i .

$$\begin{split} B_{ij}e_1 \wedge \ldots \wedge B_{ij}e_{j-1} \wedge B_{ij}e_{j+1} \wedge \ldots \wedge e_n &= A_{ij}e_1 \wedge \ldots \wedge e_{j-1} \wedge e_{j+1} \wedge \ldots \wedge e_n \\ &= w_1 \wedge \ldots \wedge w_{j-1} \wedge w_{j+1} \wedge \ldots \wedge w_n \end{split}$$

where $w_i = v_i$ projecting to the subspace orthogonal to e_i .

Note that

$$e_j \wedge \left(w_1 \wedge \ldots \wedge w_{j-1} \wedge w_{j+1} \wedge \ldots \wedge w_n\right) = e_j \wedge \left(\left(v_1 - \operatorname{proj}_{e_i} v_i\right) \wedge \ldots\right)$$

Then we can see the projection terms just become 0 after wedging with e_i .

$$e_j \wedge \left(w_1 \wedge \ldots \wedge w_{j-1} \wedge w_{j+1} \wedge \ldots \wedge w_n\right) = e_j \wedge v_1 \wedge \ldots \wedge v_{j-1} \wedge v_{j+1} \wedge \ldots \wedge v_n$$

which is what we want to show.

1.2

Solution 1.2.1

This can be done easily by seeing that $v_i = \sum_j a_{ij} e_j$, then by lienarity of exterior product the result follows.

1.3

Solution 1.3.1

Consider the first row times first column of $A \operatorname{adj}(A)$. We can see that it is $\sum (-1)^{1+j} a_{1j} A_{1j} = \det(A)$ from part (2).

Consider the multiplication at row 2 and column 1.

The result is

$$\sum_{j} (-1)^{2+j} a_{2j} A_{1j}$$

This is 0 because with (1) we have showed that A_{ij} is the coefficient of $e_1 \wedge ... \wedge e_n$, but when adding the linear combination from another row, we essentially recover one of the vector. Therefore the wedge product become 0.

Therefore $A \operatorname{adj}(A) = \det(A)I$. The reason for the commutativity is due to that we only have non-zero scalar multiplication and addition in the diagonal, which is commutative.

2 Cayley-Hamilton

Solution 2.1

Consider how B looks like

$$B = \begin{pmatrix} A - a_{11} & -a_{12} & \dots & -a(1n) \\ -a_{21} & A - a_{22} & \dots & -a(2n) \\ \vdots & & \ddots & \\ -a_{n_1} & -a_{n_2} & \dots & A - a_{n_n} \end{pmatrix}$$

We can see that $\sum_{j=1}^n b_{ij}e_j = Ae_i - \sum_{j=1}^n a_{1n}e_j = 0$.

Consider the adjugate matrix C of B.

We know that $CB = \det(B)I$, which means $\forall k : \sum_{i=1}^n c_{ki}b_{ij} = \delta_{kj}\det(B)$.

Consider

$$\sum_{j} \sum_{j} c_{ki} b_{ij} e_j = \sum_{j} \delta_{kj} \det(B) e_j = \sum_{i} c_{ki} 0 = 0$$

Thus det(B) = 0.

We can see that a matrix defined by entries i and j with $\delta_{ij}x - a_{ij}$ will be sent to B in R'.

3 Free Module

Solution 3.1

It suffices to consider $R^{m+1} \to R^m$. Assume $\varphi: R^{m+1} \to R^m$ is the injection, and let $\psi: R^m \to R^{m+1}$ be the projection.

Consider $A = \psi \circ \varphi$.

Consider the minimal degree nonzero polynomial such that p(A)=0. Since A is injective, we have the n-th degree non-zero when applying A as x. Thus, by Cayley-Hamilton we have the constant term non-zero.

However, consider applying p(A) to $(0,...,0,1) \in \mathbb{R}^m + 1$, the result will not be 0 because the final term is always 0, while the constant is non-zero, which means the result is non-zero, which is a contradiction.

4 Commutator subgroups of matrix group

4.1

Solution 4.1.1

This is a direct result of smith normal form.

4.2

Solution 4.2.1

Because all elementary row/column operations matrix can be written as a $E_{ij}(a)$. Since every matrix in $\mathrm{SL}(n,k)$ can be written as identity times some $E_{ij}(a)$, we can conclude that $\mathrm{SL}(n,k)$ is product of $E_{ij}(a)$.

4.3

Solution 4.3.1

Consider the commutator of $\begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix}$ and $\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$.

$$\binom{a \ 0}{0 \ a^{-1}}\binom{1 \ b}{0 \ 1}\binom{a^{-1} \ 0}{0 \ a}\binom{1 \ -b}{0 \ 1} = \binom{a \ ab}{0 \ a^{-1}}\binom{a^{-1} \ -a^{-1}b}{0 \ a} = \binom{1 \ -b + a^2b}{0 \ 1}$$

Then for any elementary matrix we just need to have $-b+a^2b=a'$ so $E_{ij}(a')=ABA^{-1}B^{-1}$ for some A,B.

4.4

This can be done by induction on n with the previous question.

5 Determinats of exterior and tensor powers