

INFS4205/7205 Advanced Techniques for High Dimensional Data

An Introduction to Spatial Databases

Semester 1, 2021

The University of Queensland

+ Advanced Techniques for High Dimensional Data

- □ Course Introduction
- Introduction to Spatial Databases
- Spatial Data Organization
- Spatial Query Processing
- Managing Spatiotemporal Data
- Managing High-dimensional Data
- □ Other High-dimensional Data Applications
- When High-dimensional Data Meets Al
- □ Route Planning
- □ Trends and Course Review

+ Why Starting with Spatial Databases?

- One of the most widely used multidimensional databases
 - The most basic multidimensional data
 - Foundation of understanding other high-D data
- Many important application domains have spatial data and queries. Some Examples:
 - Insurance Risk Manager: Which homes are most likely to be affected in the next great flood on the Brisbane river?
 - Location-based Recommendation: A location-based recommendation is an information filtering service, which selectively returns spatial items (e.g., venues, events, travel routes) to a user with the consideration of relevant spatial information (e.g., current/historical locations) and the personal preferences

Location-based Recommendation

■ Given a user u with his/her current location l, recommend top-k spatial items that u would be interested in.

+ Location-based Search

+ Route Planning in Road Network

- Shortest path from UQ to Coopers Plain
- Fastest path from UQ to Coopers Plain when I depart at 5pm
- Safest path from UQ to Coopers Plain when I depart at 5pm
- 4. Fastest path from West End to Airport with toll fee under \$6 (Go Between? M7?)
- I want to spend at least 3 hours at UQ, 1 hour at Garden City, 1 hour at Southbank Parkland and arrive home by 9pm, what's the schedule to spend the least time on transportation?

- Queries
 - Where is the tutorial room of INFS4205?
 - Which courses are delivered in GP Building?

- Which buildings are adjacent to *the UQ* lake?
- Which buildings are adjacent to a lake?

spatial

+ What's Special about Spatial Queries?

- Retrieval & update of spatial data is based on the spatial location of a spatial object
 - (vs. alphanumeric attributes in RDBMS)
- Fast execution of **geometric operations like** the intersection of spatial objects
 - (vs. simple comparison (=, >, <) in RDBMS)</p>
- Fast execution of **complex spatial queries**
 - Distance and knn queries
- RDBMS Obvious limitations
 - Limited data types no support for multidimensional data!
 - Limited query types

+ Learning Objectives

- What we will cover
 - Spatial Data Types and Modelling
 - Spatial Relationships, Operations and Queries
 - SDBMS Architectures

Goals

- Understand how spatial data is different from the relational data
- Understand how these differences affect those relational techniques we learned before
- Understand what a SDBMS is

+ Why Spatial DBMS?

- Huge amounts of spatial data, extensive and comprehensive
 - Google Map: 20 Petabytes of data in 2012
 - Nowadays: every phone that enables traffic condition sharing...
 - Uber/DiDi: Terabytes of taxi trajectory per day
 - OpenStreetMap: Planet.osm 1166 GB for the static Earth
 - NearMap
 - NASA satellites image: TB per day
 - Twitter / Weibo with geo-tags
 - Weather / Climate Data: windy.com, every 6 hours
 - Foursquare check-in: 3 billion visits / month in 2017
 - Cellular signalling data from Vodafone / Telstra...
 - ...

+ Why Spatial DBMS?

- Increasing needs to store, search and use spatial data, together with other data, efficiently, enterprise-wide
 - File system-based solutions are not good enough
 - Hard to manage, search, share,...
 - Application-based solutions are not good enough either
 - There are many common spatial data and operations across these different applications
 - Data is hard to share
 - Lots of repetitive and redundant work will be done in each app

RDMBS

- Limited data types no support for spatial data!
- Limited query types no support for geometric operations and spatial queries
- Limited indexing structures no support for multidimensional data

+ Why Spatial DBMS?

- RDBMS cannot support spatial data directly
 - Store the spatial objects into tables?
 - How about spatial operations?
 - Find the fuel prices of all petrol stations with 5km of my current location (e.g., GasBuddy)
 - List of the suburbs along Brisbane river
 - What is the average speed of M3 from Kangaroo Point to Milton during the last 10 minutes?
 - How to retrieve the spatial data efficiently?
 - Hash?
 - B-Tree?

+ Spatial Data

- Any data with a location component
 - 2D Space
 - Geographical space: GIS, Urban Planning
 - 3D Space
 - (x, y, z): The universe, brain model, molecule structure...
 - \blacksquare (x, y, t): Trajectory
- Two types of spatial data
 - Those data about the space (e.g., road networks, maps)
 - Those data about objects (e.g., location of shops, location about cars)

+ More Spatial Data

Natural Area Data

 Soil types, land use (industrial, agriculture, zoning etc), vegetation, water (rivers, ponds etc)

Manmade Area Data

 Political and administrative boundaries, school districts, emergency service areas, land records data (lot boundaries, zoning, easements)

Network Data

- Utilities (phones, sewers, water, electricity etc)
- Roads (centrelines, curb lines, intersections, lights)

+ Modelling Spatial Data

+ Vector Data

- A spatial object is described by a sequence of points
 - Defined using geometric data types
 - Points, Lines and Polygons / Region
 - Work with coordinates
 - Each point is denoted by a coordinate
- Advantages
 - Suitable for processing & manipulation
 - More compact
 - Support of queries by spatial relationships
 - List all buildings adjacent to UQ lake;
 - Find rivers that intersect with M1

+ Raster Data

- A spatial object is described by a set of pixels
 - E.g., satellite imagery, remote sensing
 - Work with pixels
- Advantages
 - Suitable for display
 - Query by colour, texture etc.
 - Containing more rich information
 - Continuous information like
 - Temperature / Elevation / Humidity
 - Census / Health / Employment
- Disadvantages
 - Pixelated look
 - Hard to perform topology rules
 - Large data size

- Different representation of same data
- Suitability application-dependent
- Mutually convertible
 - Rasterization
 - Vectorization
- Often used together
 - E.g., overlay satellite image, road network, elevation data etc.
 - Hybrid mode for Google Earth / Google Map
- We deal with the vector data in spatial databases

+ Google Map

+ Coordinate Systems

- Assigning coordinates to a location and establishing relationships between sets of such coordinates
- Cartesian Coordinates
 - \blacksquare (x, y)

+ Geographical Coordinate Systems

- Lat/long system measures angles on spherical surfaces
 - Lat/long values are NOT Cartesian (X, Y) coordinates
 - 1° of longitude at the equator ≠ 1° of longitude near the poles
 - 1° longnitude $\approx 111 \times \cos(latitude)$
- Euclidean approximation of the distance between two geolocations:

$$egin{align} \partial y &= 12430rac{|lat_1-lat_2|}{180} \ \ \partial x &= 24901rac{|lng_1-lng_2|}{360}\,\cosigg(rac{lat_1+lat_2}{2}igg) \ \ d &= \sqrt{\partial x^2+\partial y^2} \ \ \end{matrix}$$

Network Distance (e.g., road network)

+ Spatial Data Acquisition

- There are many publically available spatial datasets
 - Government sources, and other providers such as Google
 - http://www.spatial-data.brisbane.qld.gov.au
 - Open Street Map / Near Map
 - Geography Mashups
- Generating new data
 - Remote sensing
 - Field data
 - Survey data
 - GPS devices
 - Crowd Sourcing (e.g., GasBuddy)

+ Spatial Data Accuracy

- Accuracy how accurate is the data (i.e., how close the recorded location of a spatial feature is to its ground location)
 - Scale: the ratio between distance on a map and the corresponding distance on the earth
 - Scale is 1:10,000, meaning that 1 unit of measurement on the map represents 10,000 of the same units on the earth's surface
 - Resolution: the size of the smallest feature that can be represented in a surface
 - When scale decreases, resolution decreases too
 - Precision: how exactly the location is recorded (i.e., # of digits, 3.14 vs. 3.1415926)
- Errors can be introduced from many sources, from data capturing sensors, data editing and pre-processing operations

+ Spatial DBMS

- A spatial database system is a database system
- It offers spatial data types in its data model and the query language
- It supports spatial data types in its implementation, by providing spatial indexing and efficient algorithms for spatial join queries and other types of spatial queries
 - Retrieve the spatial data without scanning the whole set

+ GIS and Spatial Databases

GIS Applications

- Front End
- Data capture, editing, conversion, conflation
- Map generation
- Image processing
- Data analysis (in application areas)
- Use both raster and vector

Spatial DBMS

- Back End
- Integrated management of spatial and non-spatial data
- Independent from applications
- RDBMS-comparable performance

+ Spatial Data Models

- Objects in space (Object-based)
 - Single objects
 - Point (location, POI)
 - Line / Polyline (River, Cable, Road)
 - Polygon or Region (Forest, Lake, City)
 - Spatially related collections of objects
 - Partition (Land use, districts, land ownership)
 - Network (Roads, rivers, electricity, phone)

Area- ID	Dominant Tree	Area
FS1	Pine	[(0,2), (4,2), (4,4), (0,4)]
FS2	Fir	[(0,0), (2,0), (2,2), (0,2)]
FS3	Oak	[(2,0), (4,0), (4,2), (2,2)]

+ Spatial Data Models

Space itself

- The spatial extent, Euclidian space or other types of spaces (frame/location references, dimension#, distance measures)
- Space is continuous real number
 - Computer numbers are finite and discrete, with limited approximation
- Problems: numerical rounding errors

A practical solution: for two points **a** and **b**, never ask if $\mathbf{a}=\mathbf{b}$; instead, test if $distance(\mathbf{a}, \mathbf{b}) < \varepsilon$

+ Geometry in Data Model

- How to represent real-world spatial objects using database objects (based on the data model)
- Relational data model
 - BLOB
 - Binary Large OBject
 - "The thing that ate Cincinnati, Cleveland, or whatever"
 - Create a table to store the land use information
 - landuse(area: BLOB, type: string)
 - Not searchable, Cannot be indexed, No operation...

+ Geometry in Data Model

- How to represent real-world spatial objects using database objects (based on the data model)
- Relational data model
 - Table
 - landuse(areaID: number, type: string);
 - polygon(areaID: number, pntID: number, x: number, y: number)

Area- ID	Dominant Tree	
FS1	Pine	
FS2	Fir	
FS3	Oak	

Area-ID	pntID	х	у
FS1	0	0	2
FS1	1	4	2
FS1	2	4	4
FS1	3	0	4
	•••		

+ Geometry in Data Model

- How to represent real-world spatial objects using database objects (based on the data model)
- Spatial Data Model
 - landuse(area: polygon, type: string)
 - Data Type
 - Valid Values
 - 2. Supported Operations

+ Spatial Data Model in Oracle

- Element, Geometry and Layer
- Element: the basic building block of a geometric feature
 - **Point data:** One point, stored as an (x, y) pair
 - Line data: Two points representing the start and the end of a line segment
 - Polygon data: A sequence of coordinates, one vertex pair for each line segment of the polygon
 - Simple Polygon: Both boundary and the interior
 - Complex polygons (Geometry)
 - Self-intersecting boundary
 - Multiple dis-connected components

+

Spatial Data Model in Oracle

- Geometry: representation of a user's spatial feature, modelled as an ordered set of elements
 - Each geometry has a unique ID, and can be associated with a set of attributes
 - A geometry might describe a lake
 - A polygon with nested polygons for islands
 - Attributes such as lake name, water capacity, fauna, flora, ...

+ Spatial Data Model in Oracle

- Layer: a collection of geometries having the same attribute set
 - Examples: soil types, road network, political boundaries, population density, crops, weather conditions,...

+ Spatial Data Model in Oracle

- Layer: a collection of geometries having the same attribute set
 - Examples: soil types, road network, political boundaries, population density, crops, weather conditions,...

Magpie Swooping

Transport Noise Corridor Overlay

Koala Habitat Areas

+ Spatial Relationships

Topological

- E.g., inside, intersect, adjacent
- Invariant under translation such as rotation and scaling

2. Directional

- E.g., above, left, north of
- May change with rotation

3. Metric

- E.g., distance
- May change with scaling

+ Defining Spatial Topological Relationship

Q: How to define a spatial relationship precisely?

+ The 9-Intersection Matrix

Each element is either 1 or 0.

⁺ The 8 Spatial Relationships (I)

Complete, and Mutually Exclusive.

⁺ The 8 Spatial Relationships (I)

$$egin{pmatrix} A_b \cap B_b & A_b \cap B_i & A_b \cap B_e \ A_i \cap B_b & A_i \cap B_i & A_i \cap B_e \ A_e \cap B_b & A_e \cap B_i & A_e \cap B_e \end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 1
\end{pmatrix}$$
disjoint

$$\begin{pmatrix}
0 & 0 & 1 \\
1 & 1 & 1 \\
0 & 0 & 1
\end{pmatrix}$$
contain

$$\begin{pmatrix}
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 1
\end{pmatrix}
\qquad
\begin{pmatrix}
0 & 0 & 1 \\
1 & 1 & 1 \\
0 & 0 & 1
\end{pmatrix}
\qquad
\begin{pmatrix}
0 & 1 & 0 \\
0 & 1 & 0 \\
1 & 1 & 1
\end{pmatrix}
\qquad
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

inside

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
equal

⁺ The 8 Spatial Relationships (I)

$$egin{pmatrix} A_b \cap B_b & A_b \cap B_i & A_b \cap B_e \ A_i \cap B_b & A_i \cap B_i & A_i \cap B_e \ A_e \cap B_b & A_e \cap B_i & A_e \cap B_e \end{pmatrix}$$

$$egin{pmatrix} 1 & 0 & 1 \ 0 & 0 & 1 \ 1 & 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 0 \\
0 & 1 & 0 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

meet

cover

covered_by

overlap

meet

cover

covered_by

overlap

+ Readings

- R. Güting, An Introduction to Spatial Database Systems, *The VLDB Journal*, 3:4, 1994
- Hanan Samet and Walid G. Aref, Spatial Data Models and Query Processing, in W. Kim (Ed), Modern Database Systems: The Object Model, Interoperability, and Beyond, 1995