E_{x} 7.3 (a)

This exercise has already been Solved in Ex 5.13. However, Part (c) of this exercise looms for this To be Proved for a more general smoother S Pather than the specific case of a cubic smoothing Spline. Thus, here we will Prove (7.64) for a general Smoother S = X(XTX + K) -1 XT Which includes Cubic Smootling Splines.

We will also assume that (XTX+K)" is Positive Semidefinite.

Notation: X(i) denotes the matrix X with the ith row removed.

Ond a few facts we will use:

(1) X^TX = X^{(-i)T}X⁽⁻ⁱ⁾ + x_ix_i^T and X^{(-i)T}X⁽⁻ⁱ⁾ = X^TY - x_iy_i

The ith diagonal element of S (e.g. Sii) is given by: $Sii = \sum_{i} (X^{T}X + K)^{-1} X_{i} \text{ and } Sii \geq 0 \text{ by the}$ definition of a fositive Semi definite matrix on $(X^{T}X + K)^{-1}$

3 \(\hat{f}(\chi_i) = \chi_i^T (\chi_X^T \chi + \chi)^T \chi_X^T \chi

The Sherman-Morrison formula (Proved in CL 6): $(A + \lambda uv^{T})^{-1} = (A^{-1} - \lambda A^{-1}uv^{T}A^{-1})$ $1 + \lambda v^{T}A^{-1}u$

finally, to begin the proof he will find an expression for fine

 $\widehat{f}^{(-i)}(x_i) = \chi_i^T (\chi^{(-i)T} \chi^{(-i)} + K)^{-1} \chi^{(-i)T} \gamma^{(-i)} \qquad (6y)$ $= \chi_i^T (\chi^T \chi - \chi_i \chi_i^T + K)^{-1} (\chi^T \chi - \chi_i \chi_i) \qquad (6y)$

and we can expand this using Θ with: U=V=Xi, $\Lambda=$ and $A=X^TX+K$ $= \chi_{i}^{T} \left((X^{T}X + K)^{-1} + (X^{T}X + K)^{-1} \chi_{i} \chi_{i}^{T} (X^{T}X + K)^{-1} \right) (X^{T}Y - \chi_{i}Y_{i})$ $= \chi_{i}^{T} \left((X^{T}X + K)^{-1} + (X^{T}X + K)^{-1} \chi_{i}^{T} (X^{T}X + K)^{-1} \chi_{i}^{T} \right)$ $= \left(\chi_{i}^{\mathsf{T}} \left(\chi^{\mathsf{T}} \chi + K \right)^{-1} + \underbrace{Sii \chi_{i}^{\mathsf{T}} \left(\chi^{\mathsf{T}} \chi + K \right)^{-1}}_{1 - Sii} \left(\chi^{\mathsf{T}} \chi + K \right)^{-1} \right) \left(\chi^{\mathsf{T}} \chi - \chi_{i} \chi_{i} \right) \quad \text{(by @)}$ = x; T(XTX+K)-1XTY + Six x; T(XTX+K)-1XTY +-x; T(XTX+K)-1xyi - Su XiT (XTX+K)-1 xiy: $= \hat{f}(x_i) + \underbrace{Sii}_{1-Sii} \hat{f}(x_i) - \underbrace{Sii}_{1-Sii} \frac{y_i}{1-Sii}$ = f(xi) - Sieye + Sie(f(xi) - Sieye) = (f(xi) - Sie yi) (1 + Sie) = $\hat{f}(x_i) - S_{ii}y_i$ (as required) Since $y_i - \hat{f}^{(-i)}(x_i) = y_i - \hat{f}(x_i) - S_{ii}y_i$ $1 - S_{ii}$ = yi - Sieyi = f(xi) + Sie yi $= \underbrace{y_i - \hat{f}(x_i)}_{1 - S_i}$

-	Ex 7.3 (b)
	By ② We know that $X_i^T(X^{(-i)T}X^{(i)}+K)^{-1}X_i \geq 0$ by definition of a Positive Semidefinite matrix.
	by definition of a Positive Semi definite matrix.
	3
	Then, as we did in (*) we may use () to expand
	this expression:
	this expression: $\chi_i^{T} \left(\chi^{(-i)T} \chi^{(-i)} + \kappa \right)^{-1} \chi_i = \left(\chi_i^{T} \left(\chi^{T} \chi + \kappa \right)^{-1} + \underbrace{S_{ii}}_{1} \chi_i^{T} \left(\chi^{T} \chi + \kappa \right)^{-1} \right) \chi_i$ $1 - S_{ii}$
	1-54
	$= x_i^T (X^T X + K)^{-1} x_i + x_i x_i^T (X^T X + K)^{-1} x_i$
	$= x_i^T (X^T X + K)^{-1} x_i + S_{ii} x_i^T (X^T X + K)^{-1} x_i$ $1 - S_{ii}$
	$= \frac{S_{ii} + \frac{S_{ii}^2}{1 - S_{ii}}}{1 - S_{ii}} = \frac{S_{ii}}{1 - S_{ii}} \ge 0$
	1-Sii 1-Sii
	(a) (b) (c)
	Bounds to investigate at $Sii \in (-\infty, 0), [0, 1), (1, \infty)$
	In (a) and (c) Sii LO, therefore Sii E[O,1).
-	
	This implies that 1- Si E (0,1].
	and since We Proved in Part (a) that:
	$\hat{\Gamma}^{(-i)}(x) \qquad \qquad \hat{\Gamma}^{(i)}(x)$
	$y_{i} - \hat{f}^{(-i)}(x_{i}) = y_{i} - \hat{f}(x_{i})$ $1 - S_{ii}$
	We may conclude that:
	$ y_{i} - \hat{f}^{(-i)}(x_{i}) \ge y_{i} - \hat{f}(x_{i}) $
	J
_	

	Ex 7.3 (c)
	T- 0 (7(1))
	To Prove (7.64) we have assumed a smoother
	OF the form $y = Sy$ where the smoother Matrix
	S is of the form:
	$S = X(X^{\tau}X + K)^{-1}X^{\tau}$
	Such that K is not a function of Y and therefore
	S is not a fuetion of Y. in other hoods S is
—	S is not a fuetion of Y. In other hoods S is only a function of the data X and Smoothing Perameter(s).
	additionally, we required that $(X^TX + K)^{-1}$ is Positive Semidefinite (only For Part (6)).
	These are the several conditions we have assumed to
	These are the general conditions we have assumed to Prove that (7.64) holds.
	·
_•	