Formale Grundlagen der Informatik II 1. Übungsblatt

Fachbereich Mathematik Prof. Dr. Ulrich Kohlenbach SoSe 2014 11. Juni 2014

Davorin Lešnik, Daniel Günzel, Daniel Körnlein

Gruppenübung

Aufgabe G1 (Formalisierung in Aussagenlogik)

Wir betrachten ein Netzwerk mit vier Ports (Ports 1, 2, 3 und 4), die jeweils entweder aktiv (A) oder inaktiv und entweder offen (O) oder geschlossen sind. Wir führen aussagenlogische Variablen p_{iA} ein für "Port i ist aktiv" und p_{iO} für "Port i ist offen". Formalisieren Sie folgende Aussagen in der Aussagenlogik:

- (a) Wenn Port 1 offen ist, dann ist Port 2 offen oder Port 3 inaktiv.
- (b) Ports 1 und 2 sind nicht beide aktiv.
- (c) Höchstens zwei Ports sind offen.
- (d) Von je drei Ports ist mindestens einer inaktiv.

Aufgabe G2 (Aussagenlogische Formeln)

(a) Erstellen Sie die Wahrheitstafel zu folgender Formel:

$$\varphi := (\neg p \land \neg q) \to (p \lor (\neg q \land r))$$

Ist die Formel erfüllbar? Ist sie allgemeingültig?

(b) Geben Sie eine Formel zu folgender Wahrheitstafel an:

p	q	
0	0	0
0	1	0
1	0	1
1	1	0

- (c) Geben Sie eine Formel $\varphi(p,q,r)$ an, die genau dann wahr ist, wenn höchstens eine der Variablen p,q,r wahr ist.
- (d) Geben Sie eine Formel $\varphi(p,q,r,s)$ an, die genau dann wahr ist, wenn genau drei der Variablen denselben Wert haben.

Aufgabe G3 (Modellbeziehung)

- (a) Beweisen oder widerlegen Sie die folgenden Aussagen.
 - i. $\varphi \models \psi$ genau dann, wenn $\models \varphi \rightarrow \psi$.
 - ii. Wenn $\varphi \models \psi$ und φ allgemeingültig (bzw. erfüllbar) ist, dann ist auch ψ allgemeingültig (bzw. erfüllbar).
 - iii. Wenn $\varphi \models \psi$ und ψ allgemeingültig (bzw. erfüllbar) ist, dann ist auch φ allgemeingültig (bzw. erfüllbar).
 - iv. $\{\varphi, \psi\} \models \vartheta$ genau dann, wenn $\varphi \models \vartheta$ oder $\psi \models \vartheta$.
- (b) Beweisen oder widerlegen Sie die folgenden Äquivalenzen und Folgerungsbeziehungen.

i.
$$\neg(\varphi \lor \psi) \equiv \neg \varphi \land \neg \psi$$

ii.
$$\neg(\varphi \lor \psi) \equiv \neg \varphi \lor \neg \psi$$

iii.
$$\{\neg \psi, \psi \rightarrow \varphi\} \models \neg \varphi$$

iv.
$$\{\neg \varphi, \psi \rightarrow \varphi\} \models \neg \psi$$

Hausübung

Aufgabe H1 (Exklusiv-Oder, Sheffer-Operator, Peirce-Operator)

(12 Punkte)

Wir führen drei neue logische Junktoren ein:

- $p \oplus q := (p \lor q) \land \neg (p \land q)$ (Exklusiv-Oder, XOR, Parity, entweder-oder),
- $p \uparrow q := \neg (p \land q)$ (äquivalent: $\neg p \lor \neg q$) (Sheffer-Operator, NAND),
- $p \downarrow q := \neg (p \lor q)$ (äquivalent: $\neg p \land \neg q$) (Peirce-Operator, NOR, weder-noch).
- (a) Zeigen Sie, dass XOR auch auf diese weiteren Weisen angegeben werden kann: $p \oplus q \equiv (p \land \neg q) \lor (\neg p \land q)$ und $p \oplus q \equiv \neg (p \leftrightarrow q)$.
- (b) Zeigen Sie, dass \oplus kommutativ und assoziativ ist, das heißt, $p \oplus q \equiv q \oplus p$ und $(p \oplus q) \oplus r \equiv p \oplus (q \oplus r)$ gelten. *Bemerkung:* Das bedeutet, dass man in Ausdrücken, wo \oplus der einzige Junktor ist, die Aussagen in beliebiger Reihenfolge bzw. ohne Klammern schreiben kann. (Dasselbe gilt natürlich auch für \land und \lor .)
- (c) Beweisen Sie, dass $\{\uparrow\}$ und $\{\downarrow\}$ vollständige Junktorensysteme sind, $\{\oplus\}$ aber nicht.

Aufgabe H2 (Boolesche Funktion zu Formel)

(12 Punkte)

Gegeben sei die Boolesche Funktion

$$f(x, y, u, v) := \begin{cases} 1 & \text{die Summe } x + y + u + v \text{ ist ungerade,} \\ 0 & \text{sonst.} \end{cases}$$

- (a) Geben Sie DNF für f(x, y, u, v) an.
- (b) Geben Sie KNF für f(x, y, u, v) an.
- (c) Geben Sie eine Formel φ an, sodass $f=f_{\varphi}$ und φ nur den Junktor \oplus benutzt.

Aufgabe H3 (Erfüllbarkeit unendlicher Menge)

(12 Punkte)

Seien p_1, p_2, \ldots AL-Variablen und seien die Formeln φ_n induktiv definiert durch

$$\varphi_1 := 1, \quad \varphi_{n+1} := (p_n \longleftrightarrow p_{n+1}) \uparrow \varphi_n.$$

Ist die Formelmenge $\Phi := \{ \varphi_n \mid n \geq 1 \}$ erfüllbar? Wenn ja, finden Sie alle Modelle, die Φ erfüllen.