[CSED211] Introduction to Computer Software Systems

Lecture 3: Floating point

Prof. Jisung Park

2023.09.13

Lecture Agenda: Floating Point

- Background: Fractional Binary Numbers
- IEEE Floating Point Standard: Definition
- Example and Properties
- Rounding, Addition, Multiplication
- Floating Point in C
- Summary

Fractional Binary Numbers

- What is 1011.101₍₂₎?
 - The same principle as base 10 numbers

- Representation
 - Bits to right of binary point represent fractional powers of 2
 - Represents rational number: $\sum_{k=-i}^{i} b_k \times 2^k$

Fractional Binary Numbers: Examples

Value Representation

$$5\frac{3}{4}$$
 101.11₍₂₎ $2\frac{7}{8}$ 10.111₍₂₎ $1\frac{7}{16}$ 1.0111₍₂₎

- Observations
 - Divide by 2: shifting right
 - Multiply by 2: by shifting left
 - \circ 0.1111111...₍₂₎ is just below 1.0

$$1/2 + 1/4 + 1/8 + ... + 1/2^i + ... = 1.0$$

■ Use notation $1.0 - \varepsilon$

Representable Numbers

- Limitation#1
 - Can only exactly represent numbers of the form $x/2^k$
 - Other rational numbers have repeating bit representations

0	Value	Representation
	1/3	$0.01010101[01]_{\cdots(2)}$
	1/5	$0.001100110011[0011]_{\cdots(2)}$
	1/10	0.0001100110011[0011] ₍₂₎

Limitation#2

- Just one setting of decimal point within the w bits
 - → Limited range of numbers (very small values? very large?)

Lecture Agenda: Floating Point

- Background: Fractional Binary Numbers
- IEEE Floating Point Standard: Definition
- Example and Properties
- Rounding, Addition, Multiplication
- Floating Point in C
- Summary

IEEE Floating Point

- IEEE (Institute of Electrical and Electronics Engineers) Standard 754 (IEEE754-1985)
 - Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
 - Supported by all major CPUs
 - Merged with IEEE854-1987 in 2008 (IEEE754-2008)
 - Recently published with minor revision (IEEE754-2019)
- Driven by numerical concerns
 - Nice standards for rounding, overflow, underflow, etc.
 - Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

Floating Point Representation (Format)

- Numerical form: (−1)^s × M × 2^E
 - Sign bit s determines whether number is negative or positive
 - Significand M normally a fractional value in range [1.0,2.0)
 - Exponent E weights value by power of two

Encoding

- MSB s is sign bit s
- Exp field e encodes E (not exactly the same as E)
- \circ Frac field f encodes M (not exactly the same as M)

) (nac)	S	e (exp)	f (frac)
---------	---	---------	----------

Precisions

• Single precision: 32 bits

• Double precision: 64 bits

- Extended precision (Intel only): 80 bits
- s e
- 1 15 bits 63 or 64 bits

Normalized Values

• When: $e \neq 000...0$ and $e \neq 111...1$

$$v = (-1)^s \times M \times 2^E$$

- Exponent coded as biased value: E = Exp Bias
 - o Exp: unsigned value e
 - Bias: 2^{k-1} 1, where k is the number of exponent bits
 - Single precision (8-bit exp): 127 (Exp: 1, ..., 254 map to E: -126, ..., 127)
 - Double precision (11-bit exp): 1023 (Exp: 1, ..., 2046 map to E: -1022, ..., 1023)
- Significand coded with implied leading 1: M = 1.xxx...x₍₂₎
 - \circ $f_{i-1}, f_{i-2}, ..., f_0$ represent the mantissa part **xxx**...**x**
 - Minimum when 000...0 (M = 1.0)
 - O Maximum when 111...1 (M = 2.0 ε)
 - Get extra leading bit for free

Normalized Encoding Example

```
    Value: float f = 15213.0;
    ○ 15213<sub>(10)</sub> = 11101101101101<sub>(2)</sub>
    = 1.1101101101101<sub>(2)</sub> × 2<sup>13</sup>
```

```
v = (-1)^{s} \times M \times 2^{E}
E = Exp - Bias
```

Significand

```
 \circ \quad M = 1.101101101_{(2)} 
 \circ \quad f = 101101101101_{(2)}
```

• Exponent

```
\circ E = 13

\circ Bias = 127

\circ Exp (e) = 140 = 10001100<sub>(2)</sub>
```

Result

0	1000 1100	110 1101 1011 0100 0000 0000
S	e (exp)	f (frac)

Denormalized Values

• When e = 000...0

$$v = (-1)^s \times M \times 2^E$$

$$E = 1 - Bias$$

- Exponent E = 1 Bias (instead of E = -Bias)
- Significand coded with implied leading 0: M = 0.xxx...x₍₂₎
 - \circ $f_{i-1}, f_{i-2}, ..., f_0$ represent the mantissa part **xxx**...**x**
- Two purposes
 - \circ To represent zero value: f = 000...0
 - Note distinct values: +0 and -0 (why?)
 - To represent numbers very close to $0: f \neq 000...0$
 - Lose precision as get smaller
 - Gradual underflow: for numbers smaller than the minimum normalized value

Special Values

- When e = 111...1
- If f = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - \circ e.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- If $f \neq 000...0$
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - \circ e.g., sqrt(-1), ∞ ∞ , $\infty \times 0$

Visualization: Floating Point Encodings

Lecture Agenda: Floating Point

- Background: Fractional Binary Numbers
- IEEE Floating Point Standard: Definition
- Example and Properties
- Rounding, Addition, Multiplication
- Floating Point in C
- Summary

Tiny Floating Point Example

- 8-bit floating point representation
 - the sign bit is in the most significant bit
 - the next four bits are the exponent, with a bias of 7
 - the last three bits are the fraction part
- The same general format as IEEE format
 - For normalized and denormalized numbers
 - For special values to represent 0, NaN, and infinity

Dynamic Range (Positive Only)

	s exp	frac	E	Value	
	0 0000	000	-6	0	
	0 0000	001	-6	1/8*1/64 = 1/512	Closest to zero
Denormalized	0 0000	010	-6	2/8*1/64 = 2/512	
numbers					
	0 0000	110	-6	6/8*1/64 = 6/512	
	0 0000	111	-6	7/8*1/64 = 7/512	Largest denorm.
	0 0001	000	-6	8/8*1/64 = 8/512	Smallest norm.
	0 0001	001	-6	9/8*1/64 = 9/512	
	0 0110	110	-1	14/8*1/2 = 14/16	
	0 0110	111	-1	15/8*1/2 = 15/16	Closest to 1 below
Normalized	0 0111	000	0	8/8*1 = 1	
numbers	0 0111	001	0	9/8*1 = 9/8	Closest to 1 above
	0 0111	010	0	10/8*1 = 10/8	
	0 1110	110	7	14/8*128 = 224	
	0 1110	111	7	15/8*128 = 240	
	0 1111	000	n/a	inf	Largest norm 16

Distribution of Values

- 6-bit IEEE-like format
 - \circ e = 3 exponent bits
 - \circ f = 2 fraction bits
 - Bias is $2^{(3-1)} 1 = 3$

• The closer the values to the origin (0), the denser the distribution

Distribution of Values (Close-Up View)

- 6-bit IEEE-like format
 - \circ e = 3 exponent bits
 - \circ f = 2 fraction bits
 - \circ Bias is $2^{(3-1)} 1 = 3$

 Gradual underflow: the same distances b/w adjacent denormalized values as adjacent normalized values in the previous ranges (i.e., equispace)

Special Properties of Encoding

- Floating-point zero is the same as the integer zero
 - All bits are '0'
- Can (almost) use unsigned-integer comparison
 - Must first compare sign bits
 - \circ Must consider 0 = -0
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise, OK
 - Denormalized vs. normalized
 - Normalized vs. infinity

Creating Floating Point Number

- Three steps
 - Step 1: Normalize to have leading 1
 - Step 2: Round to fit within fraction
 - Step 3: Post-normalize to deal with effects of rounding

• Case Study: convert 8-bit unsigned numbers to tiny floating-point format

Value	Numbers
128 ₍₁₀₎	10000000 ₍₂₎
15 ₍₁₀₎	00001101 ₍₂₎
17 ₍₁₀₎	00010001 ₍₂₎
19 ₍₁₀₎	00010011 ₍₂₎
138 ₍₁₀₎	10001010 ₍₂₎
63 ₍₁₀₎	00111111 ₍₂₎

Step 1: Normalization

 Set the binary point so that the number to have leading one
 s
 e
 f

 1
 4 bits
 3 bits

- o i.e., to be in a form of 1.xxxxx...
- While incrementing the exponent as shift the binary point to the left
- Case Study: convert 8-bit unsigned numbers to tiny floating-point format

Value	Numbers	Fraction	Exponent
128 ₍₁₀₎	10000000 ₍₂₎	1.0000000 ₍₂₎	7
15 ₍₁₀₎	00001101 ₍₂₎	1.1010000 ₍₂₎	3
17 ₍₁₀₎	00010001 ₍₂₎	1.0001000 ₍₂₎	4
19 ₍₁₀₎	00010011 ₍₂₎	1.0011000 ₍₂₎	4
138 ₍₁₀₎	10001010 ₍₂₎	1.0001010 ₍₂₎	7
63 ₍₁₀₎	00111111 ₍₂₎	$1.1111100_{(2)}$	5

Rounding

Principle

- \circ R = 0 \rightarrow Discard the remaining bits (\because remainders < 0.5)
- \circ R = 1 and S = 1 \rightarrow Increase G (\because remainders > 0.5)
- \circ R = 1 and S = 0 (i.e., remainders = 0.5) \rightarrow Round to even

Value	Fraction	GRS	Increase?	Rounded
128 ₍₁₀₎	1.00000000(2)	000	N	1.000
15 ₍₁₀₎	$1.1010000_{(2)}$	100	N	1.101
17 ₍₁₀₎	1.0001000(2)	010	N	1.000
19 ₍₁₀₎	1.0011000(2)	11 0	Y	1.010
138 ₍₁₀₎	1.0001010 ₍₂₎	011	Y	1.001
63 ₍₁₀₎	$1.1111100_{(2)}$	111	Y	10.00

Post-Normalization

- Issue: rounding may have caused overflow
 - Handle by shifting right once & incrementing exponent

Value	Rounded	Exp	Adjusted	Result
128 ₍₁₀₎	1.000	7		128 ₍₁₀₎
15 ₍₁₀₎	1.101	3		15 ₍₁₀₎
17 ₍₁₀₎	1.000	4		16(10)
19 ₍₁₀₎	1.010	4		20(10)
138 ₍₁₀₎	1.001	7		142(10)
63 ₍₁₀₎	10.00	5	1.000/6	64 (10)

Lecture Agenda: Floating Point

- Background: Fractional Binary Numbers
- IEEE Floating Point Standard: Definition
- Example and Properties
- Rounding, Addition, Multiplication
- Floating Point in C
- Summary

Floating Point Operations: Basic Idea

- $\bullet \quad x +_{f} y = Round(x + y)$
- $\bullet \quad \mathbf{x} \times_{\mathbf{f}} \mathbf{y} = \mathrm{Round}(\mathbf{x} \times \mathbf{y})$
- Basic idea
 - First compute exact result
 - Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into *f*

Rounding

Rounding modes (illustrate with \$ rounding)

	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
Towards zero	\$1	\$1	\$1	\$2	-\$1
Round down (to $-\infty$)	\$1	\$1	\$1	\$2	-\$2
Round up (to $+\infty$)	\$2	\$2	\$2	\$3	-\$1
Nearest even (default)	\$1	\$2	\$2	\$2	-\$2

What are the advantages of each mode?

Closer Look at Round-to-Even

- Default rounding mode
 - All other modes are statistically biased: sum of a set of positive numbers will consistently be over- or under- estimated
- Applying to other decimal places / bit positions
 - When exactly halfway between two possible values
 - Round so that least significant digit is even
 - o e.g., round to nearest hundredth

1.234 9999	1.23	(Less than half way)
1.235 0001	1.24	(Greater than half way)
1.2350000	1.24	(Half way—round up)
1.2450000	1.24	(Half way—round down)

Rounding Binary Numbers

- Binary fractional numbers
 - Even when the least significant bit is 0
 - Half-way when bits to right of rounding position = 100... (2)
- Examples: round to nearest 1/4 (2-bit right of binary point)

Value	Binary	Rounded	Action	Rounded Value
2 3/32	$10.00011_{(2)}$	10.00 ₍₂₎	(<1/2—down)	2
2 3/16	10.00 <mark>110</mark> ₍₂₎	10.01 ₍₂₎	(>1/2—up)	2 1/4
2 7/8	10.11 <mark>100₍₂₎</mark>	11.00 ₍₂₎	(1/2—up)	3
2 5/8	10.10 <mark>100₍₂₎</mark>	10.10 ₍₂₎	(1/2—down)	2 1/2

Floating Point Multiplication

- $\{(-1)^{s1} \times M1 \times 2^{E1}\} \times \{(-1)^{s2} \times M2 \times 2^{E2}\} = (-1)^{s} \times M \times 2^{E}, \text{ where}$
 - Sign s:
- s1 ^ s2
- Significand M: M1 × M2
- Exponent E: E1 + E2
- Adjustment
 - If $M \ge 2$, shift M right, increment E
 - If E out of range, overflow
 - Round M to fit the given precision
- Implementation
 - Biggest chore is multiplying significands

Floating Point Addition

- $\{(-1)^{s1} \times M1 \times 2^{E1}\} + \{(-1)^{s2} \times M2 \times 2^{E2}\}$
 - Assume E1 > E2
- Exact Result: $(-1)^s \times M \times 2^E$, where
 - Sign s, significand M:Result of signed align & add
 - Exponent E: E1
- Adjustment
 - If $M \ge 2$, shift M right, increment E
 - If M < 1, shift M left, decrement E
 - Overflow if E out of range
 - Round M to fit the given precision

 $(-1)^{s} M$

Mathematical Properties of Floating Point Add.

Compare to those of Abelian Group

Closed under addition? Yes: but may results in infinity or NaN

Associative? No: Overflow and inexactness of rounding

Identity element?

Inverse element?
 Yes, except for infinity or NaN

Commutative? Yes

Monotonicity

 \circ $a \ge b \Rightarrow a+c \ge b+c?$

Yes, except for infinity or NaN

Mathematical Properties of FP Mult

Compare to Commutative Ring

Closed under multiplication? Yes: but may results in infinity or NaN

Associative? No: Overflow and inexactness of rounding

Identity element?

Inverse element?
 Yes, except for infinity or NaN

Commutative? Yes

Multiplication distributes over addition?

No: Overflow and inexactness of rounding

1e20*(1e20-1e20)=0.0, 1e20*1e20-1e20*1e20=NaN

Monotonicity

 $\circ \quad a \ge b \quad \& \quad c \ge 0 \quad \Rightarrow a * c \ge b * c?$

Yes, except for infinity or NaN

Lecture Agenda: Floating Point

- Background: Fractional Binary Numbers
- IEEE Floating Point Standard: Definition
- Example and Properties
- Rounding, Addition, Multiplication
- Floating Point in C
- Summary

Floating Point in C

- C supports two precision levels
 - o **float** single precision
 - double double precision
- Conversions and casting
 - Casting between int, float, and double changes bit representation
 - double/float → int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: generally, sets to TMin
 - int → double
 - Exact conversion, as long as int has ≤ 53-bit word size
 - int → float
 - May be rounded according to rthe ounding mode

Floating Point Puzzles

- For each of the following C expressions, either:
 - Argue that it is true for all argument values
 - Explain why not true

```
int x = ...;
float f = ...;
double d = ...;
```

Assume neither d nor f is NaN

```
\mathbf{x} == (int) (float) \mathbf{x}
\mathbf{x} = (int) (double) \mathbf{x}
■ f == (float) (double) f
\blacksquare d == (float) d
f == -(-f);
 = 2/3 == 2/3.0 
■ d < 0.0 \Rightarrow ((d*2) < 0.0)
= d > f \Rightarrow -f > -d
= d*d >= 0.0
  (d+f)-d == f
```

Interesting Numbers

Description	e	f	Numeric Value
• Zero	0000	0000	0.0
 Smallest Pos. Denorm. Single ≈ 1.4 x 10⁻⁴⁵ 	0000	0001	$2^{-\{23, 52\}} \times 2^{-\{126, 1022\}}$
○ Double $\approx 4.9 \times 10^{-324}$			
 Largest Denormalized. 	0000	1111	$(1.0 - \varepsilon) \times 2^{-\{126, 1022\}}$
○ Single $\approx 1.18 \times 10^{-38}$			
○ Double $\approx 2.2 \times 10^{-308}$			
 Smallest Pos. Normalized 	0001	0000	$1.0 \times 2^{-\{126, 1022\}}$
 Just larger than largest der 	normalized		
• One	0111	0000	1.0
 Largest Normalized 	1110	1111	$(2.0 - \varepsilon) \times 2^{\{127, 1023\}}$
○ Single $\approx 3.4 \times 10^{38}$,
○ Double $\approx 1.8 \times 10^{308}$			

Summary

- IEEE Floating Point has clear mathematical properties
- Represents numbers of form $(-1)^s \times M \times 2E$
- One can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers

[CSED211] Introduction to Computer Software Systems

Lecture 3: Floating point

Prof. Jisung Park

2023.09.13