EE412 Foundation of Big Data Analytics, Fall 2021 HW2

Name: 함태욱

Student ID: 20180716

Discussion Group (People with whom you discussed ideas used in your answers):

On-line or hardcopy documents used as part of your answers:

Answer to Problem 1

(b)

(1, 15840.015935162375)

(2, 8712.758000610926)

(3, 4225.773466007261)

(4, 2018.267391109598)

(5, 1526.2137994123182)

(6, 1420.7214130743844)

(8, 1003.3225742993732)

(10, 784.7882449282713)

(12, 557.6125972712002)

(16, 504.6115133174929)

(32, 216.9042145953651)

[Graph]

-The k value with an explanation why it is good for this data.

v = 10 일때, $v(=10) \sim 2v(=20)$ 간의 기울기 변화가 적고, v/2 < k < v 를 만족하는 k 값은 6,7,8,9 중의 하나이다. 이때 binary search 를 사용한 결과 나는 k=8 이 'best value' 라고 생각하여 선택하였다.

Answer to Problem 2

(1)

[Code Attachment]

```
import sys
import numpy as np
M1 = np.array([[1,1,1],[1,2,3],[1,3,6]])
x0 = np.array([1,1,1]).T
# (a)
x = x0
prev_x = x
while True:
    x = np.matmul(M1,x)
    x = x/np.linalg.norm(x)
    if np.linalg.norm(x-prev_x)<0.000001:</pre>
            break
    prev_x = x
# (b)
eig_vec1 = x
eig val1=np.matmul(np.matmul(eig vec1.T,M1),eig vec1)
# (c)
M2 = M1 - np.dot(eig_val1 ,
np.matmul(eig_vec1.reshape(3,1),eig_vec1.reshape(1,3)))
# (d)
x = eig_vec1
prev_x =x
while True:
    x = np.matmul(M2,x)
    x = x/np.linalg.norm(x)
    if np.linalg.norm(x-prev x)<0.000001:</pre>
            break
    prev_x = x
eig_vec2 = x
eig_val2=np.matmul(np.matmul(eig_vec2.T,M2),eig_vec2)
M3 = M2 - np.dot(eig_val2 ,
np.matmul(eig_vec2.reshape(3,1),eig_vec2.reshape(1,3)))
# (e)
x = eig_vec2
prev_x = x
while True:
    x = np.matmul(M3,x)
    x = x/np.linalg.norm(x)
```

```
if np.linalg.norm(x-prev_x)<0.000001:</pre>
            break
    prev_x = x
eig vec3 = x
eig_val3=np.matmul(np.matmul(eig_vec3.T,M2),eig_vec3)
Eigenvalues = [7.872983346207407, 1.0000000000000713, 0.12701665379258312]
Eigenvectors =
[0.19382269 0.4722473 0.85989258]
[-0.81649653 -0.40824816 0.40824854]
[ 0.54384382 -0.78122714  0.30646053]
(2)
[Code Attachment]
import numpy as np
M = np.array([[1,2,3],[3,4,5],[5,4,3],[0,2,4],[1,3,5]])
row = 5
col = 3
rank = 2
# (a)
MTM = np.matmul(M.T,M)
MMT = np.matmul(M, M.T)
# (b)
val_V, vec_V = np.linalg.eig(MTM)
val_U,vec_U = np.linalg.eig(MMT)
# (c)
sigma = np.array([])
V = np.array([]) #col x rank
V = np.append(V,vec_V.T[0])
V = np.append(V,vec_V.T[1])
V = V.reshape(rank,col).T
U = np.array([]) # row x rank
U = np.append(U,vec_U.T[0])
U = np.append(U,vec_U.T[2])
U = U.reshape(rank,row).T
for val in val V:
    if val > 0.01:
        sigma = np.append(sigma,val)
sigma = np.sqrt(sigma)
```

```
sigma_diag = np.diag(sigma)
energy = np.linalg.norm(sigma)
two_dim_M = np.matmul(np.matmul(U,sigma_diag),-V.T)
# (d)
index = np.argmin(sigma)
sigma diag[index]=0
U.T[index]=0
V.T[index]=0
one_dim_M = np.matmul(np.matmul(U,sigma_diag),-V.T)
# (e)
E_retained = sigma[0]**2/(np.sum(sigma**2))
MTM =
[[36 37 38]
[37 49 61]
[38 61 84]]
MMT =
[[14 26 22 16 22]
[26 50 46 28 40]
[22 46 50 20 32]
[16 28 20 20 26]
[22 40 32 26 35]]
(b)
Eigenpairs of MTM
[1.53566996e+02, 1.54330035e+01, 2.99519331e-15]
(third eigenvalue is almost zero)
[[-0.40928285 -0.81597848 0.40824829]
[-0.56345932 -0.12588456 -0.81649658]
[-0.7176358  0.56420935  0.40824829]]
Eigenpairs of MMT
[1.53566996e+02, -2.16919039e-15, 1.54330035e+01, -2.69964138e-15, -1.63115212e-16]
(second, fourth, fifth eigenvalue is almost zero)
[[ 0.29769568  0.94131607 -0.15906393 -0.57735012 -0.21094872]
[ 0.57050856 -0.17481584 0.0332003 -0.22666834 0.06716429]
[\ 0.52074297\ -0.04034212\ \ 0.73585663\ \ 0.10591706\ -0.13512315]
[ 0.32257847 -0.18826321 -0.5103921 -0.27280206 -0.68074095]
 \lceil \ 0.45898491 \ -0.21515796 \ -0.41425998 \ \ 0.72776982 \ \ 0.68507159] \rceil
```

```
(c)
U =
[[ 0.29769568 -0.15906393]
[ 0.57050856  0.0332003 ]
[ 0.52074297  0.73585663]
[ 0.32257847 -0.5103921 ]
[ 0.45898491 -0.41425998]]
Sigma =
[[12.39221516 0.
         3.92848616]]
[ 0.
V.T =
[[0.40928285 0.56345932 0.7176358 ]
[0.81597848 0.12588456 -0.56420935]]
(Here, I multiply -1 to V.T from my code output)
M = U*Sigma*(V.T)
= [[1.00000000e+00\ 2.00000000e+00\ 3.00000000e+00]
[3.00000000e+00 4.00000000e+00 5.00000000e+00]
[5.00000000e+00 4.00000000e+00 3.00000000e+00]
[6.66133815e-16 2.00000000e+00 4.00000000e+00]
[1.00000000e+00 3.00000000e+00 5.00000000e+00]]
```

I multiply -1 to the original V.T from my code because eigenvector multiplied by a constant is also an eigenvector.

And multiplying -1 to the V makes the right output of original M

```
(d)
One – dimensional approximation to the matrix M
[[1.509889     2.0786628     2.64743661]
[2.89357443     3.98358126     5.0735881 ]
[2.64116728     3.63609257     4.63101787]
[1.63609257     2.25240715     2.86872172]
[2.32793529     3.20486638     4.08179747]]
(e)
0.9086804524257934= about 90.87%
```

Answer to Problem 3

(a)

.3.1	a	Ь	<	Ч	e	f	8	h					a	Ь	~	d	e	f	8	h			
A	4													1									
В		3	4	3	1	2	1			boolean >			l	ſ									
C	2		ı	3		4	5	3					1		ſ	ſ		1	1	1			
a)			51/	и		Jacci	ard	dist		Ы											9	'= 4i	8.
																	200						
	В, (2	台的				<u>1</u>				B: C	. ⇒	,	c o s ()	= .	<u></u> δ	4	6	- =	3	, θ=	48	2
	c, f	3	48				12				C: A	=)		cos() =	_	4			2/3	, 0	=4 8 .	2
,d)		a	L		7	0	1		h							1 4	s 1	6					
						2	Т	8	//														
	A		1		1			1															
	В		ſ	1	1																		
	C				1		1	1	1														
	51	М		Jac	card	dis.	f			COS	dista	nce											
A, B										<u> </u>			0=	54	η6°								
В, С					5					= 0													
c,A	2/6				2/3		J			4													

.)(.	a	Ь	C	Ч	e	f	8	h	Avg.				a	Ь	C	d	e	f	8	h	
A									<u>/o</u> 3	Normal	Te	A	2/3			10					
В		3	4	3	1	2	1		ก 3	<i>⇒</i>	7.	В		2/3	<u>t</u>	<u>2</u> 3	<u>-4</u> 3	-13	· 4 3		
C	2		1	3		4	5	3	3			C	-1		-2	0		,	2	D	
(2)				_	16 +	10 +	28	f -	<u>+</u>												
		A ~	B:					2708		= 0.5	843	B =	54.	25°							
		Brc			3	2	• 2	162:	_ =	= -0.7396		B= 137, 7°									
						2 -															
	-	c~1	}							- 0.((55	0 = 9	•								
					3.65	15 •	3.1	622													

(b) 175

175 5.0

261 5.0

440 5.0

480 5.0

527 5.0

5 5.0

318 5.0

364 5.0

785 5.0

1 4.5

(c)

임의의 사용자에 의한 평가되지 않은 영화에 대한 별점 예측을 하기위해서 UV decomposition 을 사용.

Utility Matrix U(n x m) 에 대해 n by 2 matrix U, 2 by m matrix V 를 생성(m = rank 로 설정 시계산시간이 너무 오래걸려 확인이 힘들었음), 그리고 각 벡터값은 0 부터 1 사이의 임의의 값으로 채웠다. 직접 간단한 K-Fold method 를 이용해 ratings 를 4 개의 set 으로 나누어 진행. RMSE 를 최소로 만들도록 U->V 순으로 최적화 진행, 이후 만들어진 P = UV matrix 로부터 ratings_test.txt 의 user-movie ratings 를 예측.