MI3 Sección A Primer Semestre 2021

Profesora: Inga. Ericka Cano Aux: William Hernández

CLASE 12/02/2021

MÉTODOS DE SOLUCIÓN PARA ECUACIONES DIFERENCIALES DE PRIMER ORDEN

PRUEBA DE CONOCIMIENTO

Métodos para resolver Ecuaciones Diferenciales de Primer Orden Resuelva la siguientes ecuaciones diferenciales

Indique que método utiliza para resolverlas

大きな大きのけり大

$$1. \quad 2xyy' = 4x^2 + 3y^2$$

1.
$$2xyy' = 4x^2 + 3y^2$$

(b) Reducible a exact $7.1 = x^4$

(c) Homograph of 2 such $7 = x$

2.
$$(10 - 6y + e^{-3x})dx - 2dy = 0$$

$$3. \quad x\frac{dy}{dx} = 2xe^x - y + 6x^2$$

$$4. \quad \frac{dy}{dx} = \frac{y}{x + y^3 x^2}$$

$$5. \quad \cos(x - y) = y'$$

1.
$$2xyy' = 4x^2 + 3y^2$$

Reducible a exacta

Homogenea grado 2

Bernoulli en "y"

$$F.I. = x^{-3}$$
 $y = (cx^3 - 4x^2)^{\frac{1}{2}}$ Sol explicits

2.
$$(10 - 6y + e^{-3x})dx - 2dy = 0$$

Reducible a exacta

$$F. I. = e^{3x};$$
 $10 - 2ye^{3x} + \frac{10}{3}e^{3x} + x = c$ Sol implication

3.
$$x \frac{dy}{dx} = 2xe^x - y + 6x^2$$

Lineal en "y"

F. I. = x;
$$y = 2e^x - 2\frac{e^x}{x} + 2x^2 + \frac{c}{x}$$
 Sol explicits

Exacta

$$-xy + 2xe^x - 2e^x + 2x^3 = c \qquad 58 \qquad \text{with a fin}$$

$$4. \quad \frac{dy}{dx} = \frac{y}{x + y^3 x^2}$$

Bernoulli en "x"

Reducible a exacta

$$F.I. = x^{-2};$$
 $|-x^{-1}y - \frac{y^4}{4} = c$

$$5. \cos(x-y) = y'$$

Sustitución que genera variables separables

$$| -\cot(x-y) - \csc(x-y) = x+c$$
50l impliation

Buen día a todos!!!