离散数学作业 Problem Set 17

Problem 1

不定项选择题

设 H,K 是群 $< G, \circ >$ 的子群,下面哪些代数系统是 $< G, \circ >$ 的子群? A. $< H \cap K, \circ >$ B. $< K - H, \circ >$ C. $< H - K, \circ >$

Problem 2

设 V=<a,b,*> 是半群,且 a*a=b,证明:

- (1) a*b=b*a
- (2) b*b=b

Problem 3

设 H 是群 G 的子群, $x \in G$, 令 $xHx^{-1} = \{xhx^{-1}|h \in H\}$, 证明 xHx^{-1} 是 G 的子群, 称为 H 的共轭子群.

Problem 4

设 H 和 K 分别为群 G 的 r,s 阶子群, 若 r 与 s 互素, 证明 $H \cap K = \{e\}$.

Problem 5

证明:若 G 中只有一个 2 阶元,则这个 2 阶元一定与 G 中所有元素可交换。

Problem 6

证明: 在群 G 中,如果 $g,h \in G$ 满足 gh = hg,并且 $\gcd(|g|,|h|) = 1$,那 么 |gh| = |g||h|

(提示: $\Diamond N = |gh||g|$, 使用阶的性质和交换律)

Problem 7

设群 G 有子群 H, H 是正规子群当且仅当

 $\forall g \in G, \forall h \in H : ghg^{-1} \in H$

证明: 若子群 H 为正规子群,则左右陪集相等。即证 $\forall g \in G, gH = Hg$.

Problem 8

证明: 使用阶的概念证明费马小定理。即对素数 p 和任意整数 a, 均有 $a^p \equiv a \pmod{p}$ 。

(提示:考虑集合 $\mathbb{Z}_n^* := \{[m]_n \in \mathbb{Z}_n | \gcd(m,n) = 1\}$ 在乘法下构成的群。使用拉格朗日定理的拓展:元素的阶和群的阶之间的关系)