Adam Bauer

Graduate Research Assistant

@ adammb4@illinois.edu

% adam-bauer-34.github.io

adam-bauer-34

Champaign, IL, USA

RESEARCH INTERESTS

Nonlinear Dynamical Systems

Climate Science

Social Cost of Carbon

Extreme Weather Events

Atmospheric Fluid Dynamics

Numerical Modeling

EDUCATION

Ph. D. Physics

- Currently enrolled in the physics doctoral program.
- Cumulative GPA: 4.000

B.S. Physics & B.S. Mathematics

- Minor: Astronomy and Astrophysics
- Cumulative GPA: 3.972 (Summa Cum Laude)
- Thesis: On the Behavior of Null Rays in Spherically Symmetric Spacetimes

CURRENT RESEARCH PROJECTS

Building a Hasselmann-like model for soil moisture dynamics

Advisor: Prof. Cristian Proistosescu

- Built a numerical code to simulate the time-evolution of near-surface air energy and moisture budgets, forced by both observational data and synthetic data.
- · Analytically derived a one-dimensional Hasselmann-like model for soil moisture dynamics.
- Analytically computed (and numerically verified) the central moments of the soil moisture in our 1D Hasselmann-like model when forced with stochastic forcing.
- · Outcome: An in preparation publication.

Updating EZClimate using an enhanced climate emulator

Advisor: Prof. Cristian Proistosescu & Prof. Gernot Wagner

- Implemented a new climate module into EZClimate, an Integrated Assessment Model used to calculate the social cost of carbon.
- Module includes, among other things, a two-box Hasselmann-like model to accurately calculate the warming in response
 to a doubling of CO₂ and a physically consistent representation of the carbon cycle.
- · Outcome: An in preparation publication.

PAST RESEARCH PROJECTS

Using accretion physics to test general relativity

Advisor: Prof. Nicolás Yunes & Prof. Charles Gammie

multiple university of Illinois Urbana Champaign

multiple Dec 2020 − Oct 2021

very Urbana, IL

- Performed analytic calculations of accretion disk flow properties in a modified theory of gravity.
- · Built a ray tracing code to calculate the intensity profile of a black hole accretion disk in a modified theory of gravity.
- Investigated the feasibility of testing general relativity using the Event Horizon Telescope.
- Outcome: A first-author publication in revision at The Astrophysical Journal.

Near-horizon null rays in stationary spherically symmetric spacetimes

Advisor: Prof. Samuel Gralla

- Utilized Penrose limit metrics and perturbation theory to further investigate the Aretakis instability of extremal black holes.
- · Outcome: Senior thesis.

Transonic canards in the stellar wind problem

Advisor: Prof. Paul Carter

 NSF REU internship where we proved the existence of a canard-shock solution in the hydrodynamic equations governing gas surrounding a star, including the effects of heat conduction and viscosity using geometric singular perturbation theory results. · Outcome: A first-author publication in SIAM Journal on Applied Dynamical Systems.

Data-driven investigation of massive galaxy cluster lensing properties

Advisor: Prof. Brenda Frye

- Developed a numerical algorithm to reduce and analyze observational data.
- Used observational data to measure the redshift of galaxy cluster members and calculated the total cluster mass.
- Fully funded by University of Arizona/NASA Space Grant from Aug 2018 May 2019.
- Outcomes: Two publications in The Astrophysical Journal (1 in prep) and publication of an open-source user's manual.

REFEREED PUBLICATIONS

A. Bauer, A. Cardenas-Avendaño, C. F. Gammie, N. Yunes. Spherical accretion in alternative theories of gravity. *Submitted to The Astrophysical Journal*, 2021. arXiv Link.

M. Pascale, B. Frye, **A. Bauer**. Multiband photometry and photometric redshift estimatation in the field of PLCK G165+67.0. *In preparation*, 2021.

A. Bauer, P. Carter. Existence of transonic solutions in the stellar wind problem with viscosity and heat conduction. *SIAM Journal on Applied Dynamical Systems*, 20:1, 2021.

B. Frye, ..., **A. Bauer** et al. PLCK G165.7+67.0: Analysis of a massive lensing cluster in a Hubble Space Telescope census of sub-millimeter giant arcs selected using Planck/Hershel. *The Astrophysical Journal*, 871:51, 2019.

UNREFEREED PUBLICATIONS

A. Bauer, B. Frye. THELI Reduction Software: A write up for inexperienced data reducers. Posted to THELI forums & Cloudynights.com, 2019. (Theli Link.) (Cloudynights Link.)

PEDAGOGICAL WORK

Analytic Formal Report Development and Implementation (PI)

- Led the development of the Analytic Formal Report, a new assignment for upper division physics students.
- Graded AFRs and held office hours to help students with them in the 2020 spring semester.
- Mentored Danielle Dickenson, who performed my spring 2020 duties, in the spring 2021 semester.

TALKS AND PRESENTATIONS

(Upcoming) Updating Calculations of Optimal CO₂ Price Paths Using a State-of-the-Art Climate Emulator

Characterization and Analysis of Massive Space Telescopes

Measuring the Dynamical Masses of Sub-millimeter Selected Gravitational Lenses

Measuring Masses of Galaxy Clusters

ACADEMIC HONORS AND ACHIEVEMENTS

NSF Graduate Research Fellowship Program

Honorable Mention – 2020

The Excellence in Undergraduate Research Award

UArizona College of Science - 2020

The Excellence in Undergraduate Research Award

UArizona Department of Physics - 2020

University of Arizona/NASA Space Grant Intern

2018 - 2019

Phi Beta Kappa Society

Alpha of Arizona Chapter – 2018

Galileo Circle Scholar

2018 - 2019

Weaver Research Award

UArizona Department of Physics, 2017 – 2018

Highest Academic Achievement

UArizona, 2016 – 2017, 2018 – 2019, & 2019 – 2020

SCHOLARSHIPS AWARDED

Glenn C. Purviance Scholarship

UArizona Department of Physics, 2019 – 2020

Grogan Scholarship

UArizona Department of Mathematics, 2019 - 2020

Gregson Award

UArizona Department of Physics, 2019 – 2020

Douglass/Langadas Scholarship

UArizona Department of Astronomy, 2018 - 2019

TEACHING EXPERIENCE

Graduate Teaching Assistant

Course: PHYS 102 - College Physics: E&M and Modern

- Made the List of Teachers Ranked as Excellent By Their Students.
- · Led discussion sections for introductory physics course designed for non-physics majors.
- · Prepared small lectures and held extra exam review sessions.

Undergraduate Teaching Assistant

Course: PHYS 103 - Introductory Physics II

• Oversaw problem solving sessions bi-weekly where I walked students through exam level practice problems.

TECHNICAL STRENGTHS

Strong:Intermediate:Beginner:Python, Mathematica, LATEXIRAF/PyRAFC/C++, IDL

EXTRA-CIRRICULAR

Graduate Peer Mentor

University of Illinois Urbana Champaign

Grad On-Call

University of Illinois Urbana Champaign

Undergraduate Peer Mentor

University of Arizona

Physics Discovery Team Member & Project Developer

University of Arizona