İstanbul Üniversitesi Bilgisayar Mühendisliği Bölümü *Prof.Dr. Ahmet SERTBAŞ & Araş.Gör. Dr. Erdem İSENKUL*

LOJÍK DEVRE TASARIMI / Final- 20016 ÍKÍNCÍ EĞİTİM

- 1- [20p] Bir iletim hattından alınan ikili bilginin (giriş, X) bir anda 1-bit olarak geldiğini kabul ediniz. Son alınan 4-bitlik giriş dizisindeki 1 sayısı tek ise, devre 1 çıkışı üretecektir. Devre, her alınan 4-bit bilgiden sonra başlangıç durumuna döndürülmelidir. (Yani diziler arasında bir örtüşme olmadığı kabul edilecektir).
 - a- Bu devre ardışıl loik devre olarak tasarlandığında, devrenin durum diyagramını çiziniz?
 - b- Devreyi JK türü flip floplar kullanarak tasarlayınız?
- 2- [15p] Aşağıdaki Ardışıl Lojik Devrenin (A,B dış girişler, Z çıkış)
 - a- Durum diyagramı çiziniz?.
 - b- Durum denklemlerini yazınız?.

3[15p]. Greg-Paul flip-flop olarak isimlendirilen 2 girişli (G ve P) flip flobun karakteristik tablosu aşağıda verilmiştir. Buna göre flip flobun uyarım tablosunu oluşturunuz ve karakteristik denklemini veriniz?

G	P	Q(t+1)
0	0	0
0	1	Q(t)_
1	0	Q'(t)
1	1	1

4- [30p] $F_1 = A + B + A'B'C$ ve $F_2 = (B'+C)(C'+A)(A'+B+C)$ fonksiyonlarını düşünün.

- a. 2:1 multiplexers kullanarak F1 fonksiyonunu gerçekleyiniz [10pts]
- b. F1 ve F2 fonksiyonlarını 1 decoder ve 2 OR kapısı ile gerçekleyiniz [10pts]
- c. PLA kullanarak F1 ve F2 fonksiyonlarını gerçekleyiniz? [10pts] PLA program tablosunu oluşturun ve aşağıdaki PLA üzerinde bağlantıları gösteriniz.

5-[20p]

Aşağıdaki işlemleri gerçekleyen 4-bit saklayıcı devresini <u>SR</u> tipi flip-floplar ve gerekli lojik yapıları kullanarak tasarlayınız?

$\overline{S_1}$	So	Fonksiyon
1	1	Değişim yok
1	0	Paralel Yükleme
0	1	Senkron Silme (Asenkron sil girişi kullanmadan)
0	0	Artırma (İçeriğin 1 arttırılması)

SÜRE: 90 dakika

Durumlar GHI G: 000	Gris Sarvalii X G'H+T+ O 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
$\frac{J}{Q} \times \frac{X}{X} = \frac{Q}{Q}$ $\frac{J}{Q} \times \frac{X}{X} = \frac{Q}{Q}$ $\frac{J}{Q} \times \frac{X}{X} = \frac{Q}{Q}$ $\frac{J}{Q} \times \frac{X}{X} = \frac{Q}{Q}$ $\frac{J}{Q} \times \frac{X}{X} = \frac{Q}{Q}$ $\frac{J}{Q} \times \frac{X}{X} = \frac{Q}{Q}$ $\frac{J}{Q} \times \frac{X}{Q} = \frac{Q}{Q}$ $\frac{J}{Q} \times \frac{Q}{Q} = \frac{Q}{Q}$ \frac{J}	

1 b) (delan) Denre \mathcal{B} 91 B 91 $\mathsf{K}_{\mathcal{I}}$

$$\Theta_{x}^{+} = A$$

Grisler B10000	Dix Dy O O I I	Sonrali Oux By	ahre Z
0000	0 -0-	0000	1
0000	0 0 0		0 0 0
	0 0 - 1	0000	

No brow)

A=1 B=1/1

A=0/\$

A=0/1

b) Down Dorblemi

a)
$$\frac{O(+)}{O}$$
 $\frac{O(+)}{O}$ \frac

6)	6 P8 01 10 10 10 10 10 10 10 10 10 10 10 10	
Ì	8(++1) = P8+681	

6/0000	P100	9 (4)	D(+1)
1	00-1	0-0-	1 1
5 p	uan) 1	

4)
$$F_1 = A \oplus B + A'B'C$$
 $F_2 = (B'+C)(C+A)(A'+B+C)$

a) 2:1 mx ile F1

1 mile A seame girisi

20 mb B segme girisi

$$\begin{array}{c} (2) \quad B' \Rightarrow B'.1 + B.0 \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

3. Mul C seame Girisi

(4) b) Five F2 1 decoder re 2 or ile

(4) (6)
$$F_1 = AB'+A'B+A'B'C \implies F_1 \times \text{or 'O'} = f_1$$

 $f_2 = (B'+C)(C'+A)(A'+B+C) \implies F_2' \times \text{or 'I'} = f_2'$
 $F_2' = BC'+A'C+AB'C'$

 Θ^{ι} 90 β_3 Si-3 o to o In 0 So Si Sz S3 & Toplom

Tom Toployica

4 bit

A3 A2 A1 A3 B3 B2 B, Bo 0001