

Outlines

- Introduction to Neural Network
- Mathematical Model for Neural Network
- Differentiation and its Application to Train Neural Network
- Deep Neural Network
- Recent Advances in Deep Learning
 - Activation Function, Weight Initialization (Xavier & Glorot, He)
 - Dropout and Regularization, Batch Normalization
 - Optimizers (SGD, NAG, AdaGrad, AdaDelta, RMSPROP, ADAM)
 - Building and Training Deep Neural Network using Python
- Introduction to Hyper-Parameter Optimization

Artificial Neural Network

• An Artificial Neural Network (ANN) is a mathematical model that *loosely simulates* the structure and functionality of **Biological** nervous system to map the inputs to outputs.

Block Diagram of Biological Nervous System

Typical Human Brain

Human Brain Neuron vs Artificial Neuron

Artificial Neuron

$$V_k = W_{k1} * x_1 + Wk_2 * x_2 + Wk_3 * x_3 + \cdots + W_{kn} * x_n + b_k$$

Artificial Neuron

Single Neuron Model

Single Neuron Model

Application

y=mx+c

Where m=Slope Of Straight Line X=Height c=Intercept y=Weight

Single Neuron Model

Error Calculation

- The error E_i =(Actual Value Predicted value)=($Ti y_i$)
- For making +ve= $E_i = (T_i y_i)^2$ [Error for ith input instance]

Linear Neural Network

Error Calculation

 It is done to adjust the slope(m) and intercept for better fitting next time.

Linear Neural Network

2/3/2025 Plotting the Error.

Plotting Error

$$y = f(x)$$

$$\frac{dy}{dx} = \frac{df}{dx} = y' = f'$$

How much does y change as x changes = $\frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{p}{b} = \tan(\theta)$

$$\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$

$$\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$

As $\Delta x \rightarrow 0$ we obtain a tangent at x.

$$\frac{dy}{dx} = \tan(\theta)$$
=slope of the tangent at x=x₁

$$\frac{dy}{dx}$$
 = Slope of the tangent to x-axis at x=x₁

$$\theta = 0 \tan(\theta) = 0$$

Distinguishing between a Minima & Maxima

Let
$$f(x) = X^2 - 3X + 2$$

$$\frac{df}{dx} = 0$$

$$2X - 3 = 0$$

$$X = 1.5$$

$$f(1.5) = -0.25$$

Take a point near 1.5, let X=1

$$f(1)=1-3+2=0$$

X=1.5 can't be maxima. It is a minima.

Error Function with Minima and No Maxima

Error Function with a Maxima and No Minima

Error Function without a Maxima and Minima

Error Function with multiple Maxima and Minima

Linear regression

Here, the θ_i 's are the parameters (also called weights)

Intercept form of the hypothesis

To perform supervised learning, we must decide how we're going to represent functions/hypotheses h in a computer:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

- To simplify our notation, we also introduce the convention of letting $x_0 = 1$
- Also, we will drop the θ subscript in $h_{\theta}(x)$,

$$h(x) = \sum_{i=0}^{n} \theta_i x_i = \theta^T x$$

Given a training set, how to pick the parameters θ

Cost function:

$$J(\theta) = \frac{1}{2} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$$
 Price of House Size of house (sqm.)

Cost Function

- Now the objective is to choose parameters θ to minimise the cost function $j(\theta)$
- The update rule considering the gradient descent algorithm for this:

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

Here, α is called the learning rate.

Gradient descent algorithm

If we have only one training example (x, y),

$$\frac{\partial}{\partial \theta_{j}} J(\theta) = \frac{\partial}{\partial \theta_{j}} \frac{1}{2} (h_{\theta}(x) - y)^{2}$$

$$= 2 \cdot \frac{1}{2} (h_{\theta}(x) - y) \cdot \frac{\partial}{\partial \theta_{i}} (h_{\theta}(x) - y)$$

$$= (h_{\theta}(x) - y) \cdot \frac{\partial}{\partial \theta_{j}} \left(\sum_{i=0}^{n} \theta_{i} x_{i} - y \right)$$

$$= (h_{\theta}(x) - y) x_{j}$$

For a single training example, this gives the update rule:

$$\theta_j := \theta_j + \alpha \left(y^{(i)} - h_\theta(x^{(i)}) \right) x_j^{(i)}$$

Logistic regression

Hypothesis representation

- Want $0 \le h_{\theta}(x) \le 1$
- $\bullet \ h_{\theta}(x) = g(\theta^{\mathsf{T}} x),$

where
$$g(z) = \frac{1}{1+e^{-z}}$$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^{\mathsf{T}} x}}$$

Cost function for Linear Regression

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y))$$

$$Cost(h_{\theta}(x), y) = \frac{1}{2}(h_{\theta}(x) - y)^2$$

Cost function for Logistic Regression

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

$$Cost(h_{\theta}(x), y) = -y \log(h_{\theta}(x)) - (1 - y) \log(1 - h_{\theta}(x))$$

Logistic regression

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)}))$$

$$=$$

$$-\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log \left(h_{\theta}(x^{(i)}) \right) + (1 - y^{(i)}) \log \left(1 - h_{\theta}(x^{(i)}) \right) \right]$$

Learning: fit parameter
$$\theta$$
 $\min_{\theta} J(\theta)$

Prediction: given new xOutput $h_{\theta}(x) = \frac{1}{1+e^{-\theta^{T}x}}$

Derivation of the cost function

$$\begin{split} \frac{\partial}{\partial \theta_{j}} \ell(\theta) &= \left(y \frac{1}{g(\theta^{T}x)} - (1 - y) \frac{1}{1 - g(\theta^{T}x)} \right) \frac{\partial}{\partial \theta_{j}} g(\theta^{T}x) \\ &= \left(y \frac{1}{g(\theta^{T}x)} - (1 - y) \frac{1}{1 - g(\theta^{T}x)} \right) g(\theta^{T}x) (1 - g(\theta^{T}x) \frac{\partial}{\partial \theta_{j}} \theta^{T}x) \\ &= \left(y (1 - g(\theta^{T}x)) - (1 - y) g(\theta^{T}x) \right) x_{j} \\ &= \left(y - h_{\theta}(x) \right) x_{j} \end{split}$$

$$\sigma(x) = \frac{1}{1 + e^{-x}} \\ \frac{d(\sigma(x))}{dx} = \frac{0 * (1 + e^{-x}) - (1) * (e^{-x} * (-1))}{(1 + e^{-x})^{2}} \\ \frac{d(\sigma(x))}{dx} = \frac{(e^{-x})}{(1 + e^{-x})^{2}} = \frac{1 - 1 + (e^{-x})}{(1 + e^{-x})^{2}} = \frac{1 + e^{-x}}{(1 + e^{-x})^{2}} - \frac{1}{(1 + e^{-x})^{2}} \\ \frac{d(\sigma(x))}{dx} = \frac{1}{1 + e^{-x}} * \left(1 - \frac{1}{1 + e^{-x}} \right) = \sigma(x) (1 - \sigma(x)) \end{split}$$

Gradient descent

Gradient descent for Linear Regression

Repeat { $\theta_j \coloneqq \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)} \qquad h_{\theta}(x) = \theta^{\top} x$ }

Gradient descent for Logistic Regression

Repeat {
$$\theta_{j} \coloneqq \theta_{j} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)}$$
}

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^{\mathsf{T}}x}}$$

Feed-Forward network

Lets begin with simple Feed-forward network

Output z can be expressed as weighted sum of inputs

$$z = b + \sum_{i} w_{i} x_{i}$$

express this weighted sum using vector notation

$$z = w \cdot x + b$$

instead of using z, a linear function of x, neural units apply a non-linear function f (activation function) to z.

$$y = a = f(z)$$

sigmoid function as activation function

$$y = \sigma(z) = \frac{1}{1 + e^{-z}}$$

Substituting the sigmoid equation

$$y = \sigma(w \cdot x + b) = \frac{1}{1 + exp(-(w \cdot x + b))}$$

Types of Neural Network

Figure 1.2: Single layer Neural Network

Figure 1.3: Multilayer Neural Network

WHY MULTILAYER NEURAL NETWORK?

- Biological Inspiration
- Universal Approximators: Can approximate any nonlinear function to any desired level of accuracy.
- Results in Powerful Models

Graph for $2*sin(x^2)+sqrt(x*5)$

TRAINING MULTILAYER NEURAL NETWORK

- Back-Propagation: Chain Rule + Memoization
 - In Stochastic Gradient Descent (SGD) U take one point (Input Vector)
 - In Mini-Batch SGD, U take a set of points(input vectors)
 - In Gradient Descent, U take all the input vectors

2/3/2025 Deep Learning

AI vs Machine Learning vs Deep Learning

Deep Learning

• A type of *machine learning* based on *artificial neural networks* in which *multiple layers of processing* are used to *extract progressively higher level features* from data.

- "Deep Learning with Python" François Chollet

Why Deep Learning? Why Now?

• Computer Vision- Convolutional Neural Networks and Backpropagation —well understood since 1989

• Time Series Forecasting- Long Short-Term Memory — well understood since 1997

- "Deep Learning with Python" François Chollet

Why Deep Learning? Why Now?

Algorithmic Advancements...

- Better *Activation Functions* for neural layers.
- Better Weight Initialization Schemes starting with layer-wise pretraining.
- To avoid Overfitting the Concepts like *Dropout* is Introduced.
- Better *optimization schemes*, such as RMSProp and Adam.

Activation Functions...

- An Activation Function (Transfer Function) maps the weighted summation of inputs to output.
- An Activation function is used to add *Nonlinearity so* that the network can learn complex patterns.

Sigmoid Activation Functions

- Characteristics:
- $f(x) = \frac{1}{1 + e^{-x}}$
 - Differentiable
 - Nonlinear
 - -O/P lies in [0-1]
 - -Fast
 - -Vanishing Gradient **Problem**

VANISHING GRADIENT PROBLEM

- Because of sigmoid activation function the derivative is less than 1 and when the derivatives are multiplied it gives a very small number which ultimately changes the weight very less.
- Usually occurs when the derivative is less than 1.
- In case of *sigmoid and tanh activation* function it occurs frequently.

$$\frac{dL}{dw} = \frac{dL}{df_1} \times \frac{df_1}{df_2} \times \frac{df_2}{df_3} \times \cdots \dots \times \frac{df_n}{dw}$$

ReLU Activation Function

- f(x)= x, when x>0= 0, when x<=0
- Avoids Vanishing Gradient Problem.
- Derivative is Simple

$$-f'(x)=1 \text{ for } x>=0$$

= 0 for x<0

- Problem:
 - Dead ReLU Units

f(x) = max(0, x)

https://www.v7labs.com/blog/neural-networks-activation-functions

Leaky ReLU Activation Function

- f(x)= x, when x>0= 0.1x, when x<=0
- The advantages of Leaky ReLU are same as that of ReLU.
- In addition, it enables Backpropagation, even for negative input values.
- Avoids Dead ReLU
- Simple Derivative

$$-f'(x)=1$$
 for x>=0
= 0.1 for x<0

- Mostly used
 - We should never initialize to same values.
 - Asymmetry is necessary
 - We should not initialize to large —ve values
 - Vanishing Gradient problems
 - Weights should be small (not too small)
 - Weights should have good variance
 - Weights should come from a Normal distribution with mean zero and small variance
 - -Should have some +ve and Some -ve values

- Better Strategies obtained from large experiments
 - -Initialize weights based on Fan-in and Fan-out
 - Initialize your weights from a uniform distribution

•
$$\left[-\frac{1}{\sqrt{fanin}}, \frac{1}{\sqrt{fanin}}\right]$$

-Works well for sigmoid activation function

- -Xavier/Glorot initialization in 2010- well for sigmoid activation function
 - First Variation $W_{ij} = N(0, \sigma_{ij})$, $\sigma_{ij} = \frac{2}{Fanin + Fanout}$
 - Second Variation— $W_{ij} = U\left(-\frac{\sqrt{6}}{\sqrt{Fanin + Fanout}}, \frac{\sqrt{6}}{\sqrt{Fanin + Fanout}}\right)$

—He Initializer, 2015 works well for ReLU

• First Variation –
$$W_{ij} = N(0, \sigma_{ij}), \quad \sigma_{ij} = \sqrt{\frac{2}{Fanin}}$$

• Second Variation—
$$W_{ij} = U\left(-\frac{\sqrt{6}}{\sqrt{Fanin}}, \frac{\sqrt{6}}{\sqrt{Fanin}}\right)$$

BIAS-VARIANCE TRADE-OFF

No. of Layers Decreases

Less No. of Weights

Chances to Underfit is High

Problem of High Bias

Multilayer ANN has higher chance of overfitting.

DROPOUT AND REGULARIZATION

- Deep NN tend to overfit because of many layers and weights
- For this dropout and regularization is needed
- In Dropout, a certain percentage of inputs and hidden layer neurons are dropped out for an iteration
- Some call it as drop out network or layer.

•

Dropout

- Procedure:
 - During training we decide with probability p to update a node's weights or not.
 - We set p to be typically 0.5
- Highly effective in deep learning:
 - Decreases overfitting
 - Reduces training time
- Can be loosely interpreted as ensemble of networks

2/3/2025

- Normalization is a data pre-processing tool used to bring the numerical data to a common scale without distorting its shape.
 - Decimal Scaling: $N_i = \frac{T_i}{10^p}$
 - Median: $N_i = \frac{T_i}{\text{median}(T)}$
 - Min-Max: $N_i = Min_N + \frac{T_i Min_T}{Max_T Min_T} \times (Max_N Min_N)$
 - Vector: $N_i = \frac{T_i}{\sqrt{\sum_{j=1}^k T_j^2}}$
 - Z-Score: $N_i = \frac{T_i \mu_T}{\sigma_T}$

Motivation

$$\mu = \frac{1}{m} \sum h_i$$

$$\sigma = \sqrt{\frac{1}{m}} \sum_{i} (h_i - \mu)^2$$

$$h_{i(norm)} = \frac{h_i - \mu}{\sigma + \epsilon}$$

Where m: Number of Neurons at h_i

$$h_i = \gamma . h_{i(norm)} + \beta$$

• Where γ and β are hyper parameters.

- Advantages
 - Faster Convergence
 - Weak Regularizer (Batch Normalization + dropout)
 - Avoids internal covariate shift
- https://arxiv.org/pdf/1502.03167v3.pdf

OPTIMIZERS

• At minima, maxima and saddle point, u have the gradient as Zero.

OPTIMIZERS

- Convex function and Non-Convex Function
- Convex functions have either 1 maxima or minima. (Local minima=global minima)
- Non-convex functions have more than one minima or maxima

Stochastic gradient descent (SGD)

You take one point (Input Vector), Feed Forward it then update the weights by backpropagating the gradient of errors.

- Initialize W_0 randomly
- For t in $0, \ldots, T_{\text{maxiter}}$ $W^{t+1} = W^t - \eta_t \cdot \nabla Loss(f_w(x_i), y_i)$

Stochastic gradient where index i is chosen randomly

- computation of $\nabla Loss(...)$ requires only one training example
- Per-iteration comp. cost = O(1)

Gradient descent

You take all Input Vectors, Feed Forward it one by one, compute the error and get the mean error, then update the weights by back-propagating the gradient of errors.

- Initialize W_0 randomly
- For t in $0, ..., T_{\text{maxiter}}$ $W^{t+1} = W^t \eta_t \cdot \nabla L(f_w(x_i), y_i)$ Gradient of the objective

- computation of $abla L(W^t)$ requires a full sweep over the training data
- Per-iteration comp. cost = O(n)

Minibatch stochastic gradient descent

You take a subset of Input Vectors (more than one), Feed Forward it one by one, compute the error and get the mean error, then update the weights by back-propagating the gradient of errors.

- Initialize W_0 randomly
- For t in $0, ..., T_{\text{maxiter}}$ $W^{t+1} = W^t \eta_t \cdot \tilde{\nabla}_B L(W)$

minibatch gradient

where minibatch *B* is chosen randomly

- $ilde{
 abla}L(heta)$ is average gradient over random subset of data of size B
- Per-iteration comp. cost = O(B)

STOCHASTIC GRADIENT WITH MOMENTUM

- The rate of convergence of Stochastic Gradient can be improved by adding a momentum to the Gradient expression.
- This can be achieved by adding a fraction of previous weight change to the current weight change.

Nestrov Accelerated Gradient (NAG)

• SGD + Momentum

$$(w_i)_t = (w_i)_{t-1} - \alpha \cdot \Delta w_{t-1} - \eta \frac{aL}{dw}$$

Nestrov Accelerated Gradient (NAG)

NAG

Nestrov Accelerated Gradient (NAG)

(b) Nesterov Accelerated Gradient Descent

2/3/2025 AdaGrad

ADAPTIVE GRADIENT(ADAGRAD)

• In SGD, SGD+Momentum and NAG, the learning rate is same for each weight.

• However, in Adagrad you have different learning rate for different weights.

- Why
 - -Sparse Feature
 - Dense Feature

ADAPTIVE GRADIENT(ADAGRAD)

• SGD

$$(w_i)_{new} = (w_i)_{old} - \eta \left[\frac{dL}{dw_i} \right]$$

Adagrad

Adagrad
$$\eta_{t} = \frac{\eta}{\sqrt{\alpha_{t-1} + \varepsilon}} \text{ with } \alpha_{t} \ge \alpha_{t-1}$$

$$t-1 \leq 1 \leq 2$$

$$\alpha_{t-1} = \sum_{i=1}^{t-1} \left(\frac{dL}{dw}\right)_i^2$$

As iteration increases the learning rate decreases.

ADAPTIVE GRADIENT(ADAGRAD)

ADAPTIVE GRADIENT(ADAGRAD)

- Advantages
 - -No need of manual tuning
 - -Works well for both Sparse and Dense Feature
- Disadvantages
 - As iteration increases, the learning rate will get low, which will result in Slow Convergence.
 - -Computationally expensive.

ADADELTA

$$\eta'_{t} = \frac{\eta}{\sqrt{Exponentially\ Decaying(\alpha)_{t-1} + \epsilon}}$$

•
$$EDA_{t-1} = \gamma * EDA_{t-1} + (1 - \gamma) \left(\frac{dL}{dw}\right)_{t-2}^{2}$$

 Avoids the Problem of slow convergence of AdaGrad

Root Mean Square Propagation (RMSProp)

• It is same to AdaDelta however, it discards the history from extreme past while computing the exponentially decaying average.

• Converges faster once it finds a locally convex bowl as its error function.

• Faster convergence than AdaDelta.

ADAM(ADAPTIVE MOMENTUM ESTIMATION)

- https://arxiv.org/pdf/1412.6980.pdf
- Momentum is adaptive

$$w_{t+1} = w_t - \alpha m_t$$

where,

$$m_t = \beta m_{t-1} + (1 - \beta) \left[\frac{\delta L}{\delta w_t} \right]$$

```
m_t = aggregate of gradients at time t [current] (initially, m_t = 0) m_{t-1} = aggregate of gradients at time t-1 [previous] W_t = weights at time t W_{t+1} = weights at time t+1 \alpha_t = learning rate at time t \partial L = derivative of Loss Function \partial W_t = derivative of weights at time t \beta = Moving average parameter (const, 0.9)
```

WHICH OPTIMIZER TO USE

- MiniBatch-SGD:::::: Small/Shallow ANN
- Momentum & NAG::: Works well in most cases but Slower
- AdaGrad:::::: Sparse Features
- AdaDelta & RMSProp: Preferred Over AdaGrad
- Adam:::::: Most Favorite

How to Train a Deep Neural Network?

- 1. Pre-processing: Data Narmalization
- 2. Weight Initialization
 - Xavier & Glorot (For Sigmoid)
 - He Initializer (For ReLU)
- 3. Choose the Activation Function (ReLU-Most Favourite)
- **4. Batch Normalization** (Especially for later layers close to O/P Layer)
- 5. Use Dropout
- **6.** Choose the Optimizer (Favourite- Adam)
- 7. **Hyper-parameters:** Architecture(# Layers, # Neurons), etc...
- 8. Loss Function
 - 2-Class Classification : Log Loss
 - Multi-Class Classification: Multi-Class Log Loss
 - Regression: Squared Loss

TENSORFLOW & KERAS

- One of the most popular Deep Learning Libraries.
- Developed by Google in November 2015.

Researcher

Development

Deployment

TENSORFLOW & KERAS

- Core is written in C & C++ making it faster.
- Supports:
 - Python
 - -Java
 - Javascript
 - -Android (Tensorflow Lite)

2/3/2025

Tensorflow

Keras

- High-level Neural Network Library for developers and deployment.
- Easy to Learn
- Few Lines of Code

Google Colab

colab.research.google.com

DECISION SURFACES: PLAYGROUND

http://playground.tensorflow.org/

2/3/2025

BIG QUESTIONS?

- How many Inputs?
- How many Layers?
- How many neurons in each layer?
- Which Activation Function?
- Which Kernel Initializer?
- Which Optimizer?
- What is the Batch Size?
- What is the Learning Rate?

End of the topic

SOLUTION

- Grid Search
- Bayesian Optimization
- Swarm and Evolutionary Algorithms

SWARM & EVOLUTIONARY ALGORITHM BASED DNN

SWARM & EVOLUTIONARY ALGORITHM BASED DNN

Figure 1 Encoding a DL model to a decision vector (chromosome).

Table 3 Example of real encoded DL model with hyper-parameters.

			~1 1			
128.33 1.2 2	2.4 0.7	69.78 2.6	1.3	0.4	0.01	3.89

Table 4 Example of real encoded DL model with hyper-parameters and pruning of layer.

128.33 1.2 2.4 0.7 69.78 2.6 1.3 1 0.01							
	3 1 0.01 3.89	2.6	69.78	0.7	2.4	1.2	128.33

2/3/2025 Decoding

Deep Neural Network

SWARM & EVOLUTIONARY ALGORITHM BASED DNN

Algorithm 1	Algorithm 2
Get the activation function: $get_activation_function(v)$.	Get the kernel initializer: get_kernel_initializer(v).
Input: Decision variable v	Input: Decision variable v
Output: Activation function	Output: Kernel Initializer
1: gene \leftarrow round (v)	1: gene \leftarrow round (v)
2: if gene equals to 0 then	2: if gene equals to 0 then
3: return "relu"	3: return " glorot uniform"
4: else if gene equals to 1 then	4: else if gene equals to 1 then
5: return "sigmoid"	5: return " glorot normal"
6: else if gene equals to 2 then	6: else if gene equals to 2 then
7: return "tanh"	7: return "he uniform"
8: else	8: else
9: return "elu"	9: return "he normal"
10: endif	10: endif

SWARM & EVOLUTIONARY ALGORITHM BASED DNN

Algorithm 3

Decode a Decision Vector to a DL Model.

```
Input: Decision vector V = [v_1, v_2, ..., v_d]
Output: DL Model
```

- 1: model DL ← empty
- 2: add layer input to DL
- 3: for each hidden layer hyper-parameter in decision vector V
- 4: **if** v_{i+4} not equal to 1 **then** // dropout !=1
- 5: $nn=round(v_i)$ // number of neuron
- 6: $af=get_activation_function(v_{i+1})$
- 7: $ki=get_kernel_initializer(v_{i+2})$
- add a layer to DL model with nn neurons, af as activation function, ki as kernel initializer and v_{i+4} as dropout rate.
- 9: endif
- 10: endfor
- 11: add a layer with 1 neuron and linear activation function. // Output layer
- 12: batch size=2^{round(v_d)}
- 13: learning_rate= v_{d-1}
- 14: Compile the DL model with mean square error as the loss, adam as the optimizer with Learning rate set to learning_rate.
- 15: return DL

SWARM & EVOLUTIONARY ALGORITHM BASED DNN

• Implement a neural network from scratch for mapping the following inputs to outputs.

• $X=[0,0,1]$	y = [0]	
[0,1,1]	[1]	
[1,0,1]	[1]	
[1,1,1]	[0]	

Use Sigmoid activation function, neurons without biases and learning rate=1

• Implement a neural network from scratch for mapping the following inputs to outputs.

• $X=[0,0,1]$	y=[0]	
[0,1,1]	[1]	
[1,0,1]	[1]	
[1,1,1]	[0]	

Use Sigmoid activation function, neurons without biases and learning rate=0.5

• Implement a neural network from scratch for mapping the following inputs to outputs.

• $X=[0,0,1]$	y = [0]	
[0,1,1]	[1]	
[1,0,1]	[1]	
[1,1,1]	[0]	

Use Sigmoid activation function, neurons without biases and learning rate=0.1

• Implement a neural network from scratch for mapping the following inputs to outputs.

• $X=[0,0,1]$	y = [0]	
[0,1,1]	[1]	
[1,0,1]	[1]	
[1,1,1]	[0]	

Use Sigmoid activation function, neurons without biases and learning rate=0.1, Plot the

Convergence Plot

• Implement a neural network from scratch for mapping the following inputs to outputs.

• X=[0,0,1]	y = [0]	
[0,1,1]	[1]	
[1,0,1]	[1]	
[1,1,1]	[0]	

Use Sigmoid activation function, neurons with biases and learning rate=0.1, Plot the Convergence Plot

• Implement a neural network from scratch for mapping the following inputs to outputs.

• $X=[0,0,1]$	y=[0]	
[0,1,1]	[1]	
[1,0,1]	[1]	
[1,1,1]	[0]	

Use **ReLu activation function**, neurons without biases and **learning rate=0.1**, **Plot the Convergence Plot**

• Using Keras library perform classification on MNIST data.

• Using Keras library perform multivariate air quality index prediction of Delhi.