Variable Length Subnet Masks

Subnets of Varying Sizes

One subnet was further divided to create 8 smaller subnets of 4 hosts each

Basic VLSM

VLSM Subnetting Scheme

Subnetting a subnet

VLSM in Practice

Network Topology: VLSM Subnets


```
R1(config)# interface gigabitethernet 0/0
R1(config-if)# ip address 192.168.20.1 255.255.255.224
R1(config-if)# exit
R1(config)# interface serial 0/0/0
R1(config-if)# ip address 192.168.20.225 255.255.252
R1(config-if)# end
R1#
```

VLSM in Practice (cont.)

Network Topology: VLSM Subnets


```
R2(config)# interface gigabitethernet 0/0
R2(config-if)# ip address 192.168.20.33 255.255.255.224
R2(config-if)# exit
R2(config)# interface serial 0/0/0
R2(config-if)# ip address 192.168.20.226 255.255.252
R2(config-if)# exit
R2(config)# interface serial 0/0/1
R2(config)# ip address 192.168.20.229 255.255.252
R2(config-if)# end
R2#
```

VLSM in Practice (cont.)

Network Topology: VLSM Subnets


```
R3(config) # interface gigabitethernet 0/0
R3(config-if) # ip address 192.168.20.65 255.255.255.224
R3(config-if) # exit
R3(config) # interface serial 0/0/0
R3(config-if) # ip address 192.168.20.230 255.255.252
R3(config-if) # exit
R3(config) # interface serial 0/0/1
R3(config) # ip address 192.168.20.233 255.255.252
R3(config-if) # end
R3#
```

VLSM in Practice (Cont.)

Network Topology: VLSM Subnets


```
R4(config) # interface gigabitethernet 0/0
R4(config-if) # ip address 192.168.20.97 255.255.255.224
R4(config-if) # exit
R4(config) # interface serial 0/0/0
R4(config-if) # ip address 192.168.20.234 255.255.252
R4(config-if) # end
R4#
```

VLSM Chart

VLSM Subnetting of 192.168.20.0/24

	/27 Network	Hosts	
Bldg A	.0	.130	
Bldg B	.32	.3362	
Bldg C	.64	.6594	
Bldg D	.96	.97126	
Unused	.128	.129158	
Unused	.160	.161190	
Unused	.192	.193222	
	.224	.225254	

	/30 Network	Hosts	
WAN R1-R2	.224	.225226	
WAN R2-R3	.228	.229230	
WAN R3-R4	.232	.233234	
Unused	.236	.237238	
Unused	.240	.241242	
Unused	.244	.245246	
Unused	.248	.249250	
Unused	.252	.253254	

Section 8.2: Addressing Schemes

Upon completion of this section, you should be able to:

Implement a VLSM addressing scheme.

Network Address Planning

Planning IP Address Assignment

Planning requires decisions on each subnet in terms of size, the number of hosts per subnet, and how host addresses will be assigned.

Planning to Address the Network

Primary Considerations when Planning Address Allocations

Assigning Addresses to Devices

IP Address Ranges

Network: 192.168.1.0/24				
Use	First	Last		
Host Devices	.1	.229		
Servers	.230	.239		
Printers	.240	.249		
Intermediary Devices	.250	.253		
Gateway (router LAN interface)	.254			

Section 8.3: Design Considerations for IPv6

Upon completion of this section, you should be able to:

Explain how to implement IPv6 address assignments in a business network.

The IPv6 Global Unicast Address

The IPv6 global unicast address normally consists of a /48 global routing prefix, a 16 bit subnet ID, and a 64 bit interface ID.

IPv6 Global Unicast Address Structure

Subnetting Using the Subnet ID

Address Block: 2001:0DB8:ACAD::/48

Increment subnet ID to create 65,536 subnets 2001:0DB8:ACAD:0000::/64 2001:0DB8:ACAD:0001::/64 2001:0DB8:ACAD:0002::/64 2001:0DB8:ACAD:0003::/64 2001:0DB8:ACAD:0004::/64 2001:0DB8:ACAD:0005::/64 2001:0DB8:ACAD:0006::/64 2001:0DB8:ACAD:0007::/64 2001:0DB8:ACAD:0008::/64 2001:0DB8:ACAD:0008::/64 2001:0DB8:ACAD:0008::/64 2001:0DB8:ACAD:0008::/64

Subnets 13 - 65,534 not shown

2001:0DB8:ACAD:FFFF::/64

IPv6 Subnet Allocation

Example Topology

IPv6 Subnet Allocation (cont.)

Address Block: 2001:0DB8:ACAD::/48

5 subnets allocated from 65,536 available subnets

```
2001:0DB8:ACAD:0000::/64
2001:0DB8:ACAD:0001::/64
2001:0DB8:ACAD:0002::/64
2001:0DB8:ACAD:0003::/64
2001:0DB8:ACAD:0004::/64
2001:0DB8:ACAD:0005::/64
2001:0DB8:ACAD:0006::/64
2001:0DB8:ACAD:0007::/64
2001:0DB8:ACAD:0008::/64
2001:0DB8:ACAD:FFFF::/64
```

IPv6 Subnet Allocation (cont.)

IPv6 Subnet Allocation

IPv6 Subnet Allocation (cont.)

IPv6 Address Configuration


```
R1(config)# interface gigabitethernet 0/0
R1(config-if)# ipv6 address 2001:db8:acad:1::1/64
R1(config-if)# exit
R1(config)# interface gigabitethernet 0/1
R1(config-if)# ipv6 address 2001:db8:acad:2::1/64
R1(config-if)# exit
R1(config)# interface serial 0/0/0
R1(config-if)# ipv6 address 2001:db8:acad:3::1/64
R1(config-if)# end
R1#
```

Section 8.4: Summary

Chapter Objectives:

- Implement an IPv4 addressing scheme to enable end-to-end connectivity in a small to medium-sized business network.
- Given a set of requirements, implement a VLSM addressing scheme to provide connectivity to end users in a small to medium-sized network.
- Explain design considerations for implementing IPv6 in a business network.