

Theory of Machines and Languages

Fatemeh Deldar

1403-1404

Example

- \triangleright s-grammar for $L(aa^*b + b)$
 - \circ $S \rightarrow aA \mid b$
 - O $A \rightarrow aA \mid b$
- \triangleright s-grammar for $L = \{a^nb^n : n \ge 1\}$
 - \circ $S \rightarrow aA$
 - \circ $A \rightarrow aAB \mid b$
 - O $B \rightarrow b$

□ Ambiguity in Grammars and Languages

A context-free grammar G is said to be **ambiguous** if there exists some $w \in L(G)$ that has at least two distinct derivation trees. Alternatively, ambiguity implies the existence of two or more leftmost or rightmost derivations.

Example

ightharpoonup The grammar $S \to aSb|SS|\lambda$, is ambiguous

Example Consider the grammar $E \to I$,

 $E \to E + E$,

 $E \to E*E$,

 $E \to (E)$,

• The grammar is ambiguous

One way to resolve the ambiguity is to associate precedence rules with the operators + and *

Example

$$E \rightarrow T,$$
 $T \rightarrow F,$
 $F \rightarrow I,$
 $E \rightarrow E + T,$
 $T \rightarrow T * F,$
 $F \rightarrow (E),$
 $I \rightarrow a |b| c.$

• The grammar is unambiguous

- □ If L is a context-free language for which there exists an unambiguous grammar, then L is said to be unambiguous
- \square If every grammar that generates L is ambiguous, then the language is called *inherently ambiguous*

Example

The language $L = \{a^nb^nc^m\} \cup \{a^nb^mc^m\}$ is an inherently ambiguous context-free language

$$S \rightarrow S_1 | S_2$$
 $S_1 \rightarrow S_1 c | A$
 $A \rightarrow aAb | \lambda$
 $S_2 \rightarrow aS_2 | B$
 $B \rightarrow bBc | \lambda$

The grammar is ambiguous since the string $a^nb^nc^n$ has two distinct derivations

Greibach Normal Form

A context-free grammar is said to be in Greibach normal form if all productions have the form

$$A \to ax$$

where $a \in T$ and $x \in V^*$.

Example

$$S \to AB,$$

 $A \to aA |bB| b,$

$$B \rightarrow b$$

$$S \to aAB |bBB| bB,$$

 $A \to aA |bB| b,$

$$A \to aA |bB| b$$
,

$$B \rightarrow b$$
,

$$S \to abSb|aa$$

$$S \to aBSB|aA$$
,

$$A \to a$$
,

$$B \to b$$
,