# Recognizing and Simplifying Linear Equations

Tutoring Centre Ferndale



## Forms of Linear Equations

A linear equation is an equation that forms a straight line when its solutions are plotted on a graph.

• The standard form of a linear equation is:

$$Ax + By = C$$

where A, B, and C are constants, and x and y are variables.

• Sometimes linear equations are in the slope-intercept form:

$$y = mx + b$$

where m is the slope of the line and b is the y-intercept, the point where the line intercepts the y-axis.

• Another common form is the point-slope form, which is used when the slope of the line and the coordinates of a point on the line are known:

$$y - y_1 = m(x - x_1)$$

where m is the slope of the line and  $(x_1, y_1)$  is a point on the line.

Any linear equation can be converted to any one of these forms.

### **Recognizing Linear Equations**

Linear equations can sometimes appear in nonstandard forms. The key to recognizing them is to check if they can be simplified to either the standard form or the slope-intercept form or the point-slope form.

### **Identifying Linear Equations**

An equation is linear if:

- The highest power of any variable is 1.
- There are no products of variables (e.g., xy).
- There are no variables inside fractions, squares, or other complicated expressions.

### Examples

Let's look at some examples to identify and simplify linear equations.

#### Example 1

$$2x + 3y = 6$$

This is already in standard form. Therefore, it is a linear equation.

#### Example 2

$$y = 4x - 5$$

This is in the slope-intecept form y = mx + b so it is a linear equation.

This can be rewritten as:

$$4x - y = 5$$

Now, it is in standard form Ax + By = C.

#### Example 3

$$2(x-3) = y+1$$

First, simplify the equation:

$$2x - 6 = y + 1$$

Rearrange to standard form:

$$2x - y = 7$$

Thus, it is a linear equation.

You could also simply note that it was already in the point-slope form

$$y - y_1 = m(x - x_1)$$

and is therefore a linear equation.

### Example 4

$$y = \frac{2x+3}{4}$$

Multiply both sides by 4 to clear the fraction:

$$4y = 2x + 3$$

Rearrange to standard form:

$$2x - 4y = -3$$

So, it is a linear equation.

# Exercises

Determine if the following equations are linear. If they are, convert them to standard form Ax + By = C.

1. 
$$3x + 4y = 12$$

5. 
$$x^2 + y = 1$$

2. 
$$y = 5x - 7$$

6. 
$$y = \frac{1}{x} + 2$$

3. 
$$2(x+1) = y-3$$

7. 
$$6 = 2x - 3y$$

4. 
$$y = \frac{3x+2}{2}$$

8. 
$$\frac{x-2y}{3} = 1$$

# Answers to Exercises

1. 
$$3x + 4y = 12$$
 (Already in standard form)

2. 
$$y = 5x - 7 \Rightarrow 5x - y = 7$$

3. 
$$2(x+1) = y - 3 \Rightarrow 2x + 2 = y - 3 \Rightarrow 2x - y = -5$$

4. 
$$y = \frac{3x+2}{2} \Rightarrow 2y = 3x + 2 \Rightarrow 3x - 2y = -2$$

5. 
$$x^2 + y = 1$$
 (Not a linear equation)

6. 
$$y = \frac{1}{x} + 2$$
 (Not a linear equation)

7. 
$$6 = 2x - 3y \Rightarrow 2x - 3y = 6$$
 (Already in standard form)

8. 
$$\frac{x-2y}{3} = 1 \Rightarrow x - 2y = 3$$