Геометрические приложения определенного интеграла.

1. Вычисление площади плоской фигуры

Ранее было показано, что при помощи определенного интеграла может быть вычислена площадь криволинейной ограниченной трапеции, сверху графиком неотрицаельной на [a;b] функции y = f(x): $S = \int_a^b f(x) dx.$

$$S = \int_{a}^{b} f(x)dx. \tag{1}$$

Следует заметить, что в случае неположительной на [a;b] функции y = f(x) интеграл будет отрицательным, и, следовательно,

$$S = -\int_{a}^{b} f(x)dx. \tag{2}$$

Формулы (1) и (2) можно объединить в одну

$$S = \left| \int_{a}^{b} f(x) dx \right| \tag{3}$$

Обобщим полученную формулу на случай произвольной плоской фигуры, расположенной на плоскости Оху.

1. Прямоугольные координаты.

Предположим, что плоская фигура ограничена сверху графиком функции $y = f_2(x)$, снизу графиком функции $y = f_1(x)$, слева и справа прямыми x=a и x=bсоответственно. Можем сказать, что площадь рассматриваемой фигуры равна разности площадей криволинейных трапеций aA_2B_2b и aA_1B_1b .

Применяя к вычислению этих площадей (1) и используя

свойства определенного интеграла, получим:
$$S = S_2 - S_1 = \int_a^b f_2(x) dx - \int_a^b f_1(x) dx = \int_a^b \left(f_2(x) - f_1(x) \right) dx. \tag{4}$$

Если плоская фигура имеет более сложную форму, то ее площадь можно вычислить, разбивая на простые составные части применяя к каждой из них формулу (4).

В случае, если границы криволинейной трапеции удобнее описать уравнением $x = \phi(y)$, то для вычисления ее площади следует составить ортогональную проекцию на ось Oy, и формула для вычисления площади примет вид: $S = \int_{a}^{d} \varphi(y) dy$

Пример 1: найти площадь фигуры, ограниченной графиком функции $y = x^2 - 2x$ и осью Ox. Описанная фигура имеет вид, представленный на рисунке. Поскольку часть фигурв расположена ниже оси Ох, а часть выше, то формула для вычисления площади имеет вид:

$$S = -\int_0^2 (x^2 - 2x) dx + \int_2^3 (x^2 - 2x) dx = -\frac{x^3}{3} \Big|_0^2 + x^2 \Big|_0^2 + \frac{x^3}{3} \Big|_2^3 - x^2 \Big|_2^3 = 2\frac{2}{3}.$$

2. Прямоугольные координаты, параметрическое задание.

Предположим, кривая, ограничивающая криволинейную трапецию, задана параметрически

$$\begin{cases} x = x(t), \\ y = y(t), \end{cases}$$
где $t \in [\alpha; \beta]$

 $\begin{cases} x = x(t), \\ y = y(t), \end{cases}$ где $t \in [\alpha; \beta].$ Тогда, используя формулу замены переменной в определенном интеграле, получим

$$S = \int_{a}^{b} y(x)dx = \int_{\alpha}^{\beta} y(t)x'(t)dt$$
 (5)

 $S=\int_a^b y(x)dx=\int_lpha^\beta y(t)x'(t)dt$ Пример 2: вычислить площадь фигуры, ограниченной эллипсом с полуосями a и b.

Заметим, что наиболее удобным для интегрирования является параметрическое задание эллипса

$$\begin{cases} x = a\cos t, \\ y = b\sin t, \end{cases}$$
 где $t \in [0; 2\pi].$

В силу симметрии эллипса, фигура также будет симметрична относительно коорджинатных осей. Поэтому удобно вычислить площадь 1/4 частиэллипса в пределах $t \in [0; \frac{\pi}{2}]$ и умножить получившийся результат на 4.

$$S = 4 \int_{\frac{\pi}{2}}^{0} a \sin t (b \cos t)' dt = -4ab \int_{\frac{\pi}{2}}^{0} \sin^{2}t dt = 2ab \int_{0}^{\frac{\pi}{2}} (1 - \cos 2t) dt = 2ab \left(t - \frac{1}{2} \sin 2t\right) \Big|_{0}^{\frac{\pi}{2}} = \pi ab.$$

3. Полярные координаты.

Кривая, ограничивающая плоскуюфигуру, может быть задана уравнением в полярных координатах $r = r(\varphi)$, а также лучами $\varphi = \alpha$ и $\varphi = \beta$. В этом случае правилнее вести речь о площади криволинейного сектора.

Согласно школьному курсу геометрии, площадь кругового сектора с раствором $\Delta \varphi$ равна

$$\Delta S = \frac{1}{2}r^2\Delta\varphi.$$

$$S \approx \sum_{i=1}^{n} \frac{1}{2} r^2(\varphi_i) \Delta \varphi_i.$$

Откуда, пелреходя к пределу последовательности интегральных сумм, получаем формулу площади

$$S = \frac{1}{2} \int_{\alpha}^{\beta} r^2 (\varphi) d\varphi. \tag{6}$$

Пример 3:вычислить площадь фигуры, ограниченной трехлепестковой розой $r = a\cos 3\varphi$.

Прежде всего следует построить плоскую фигуру а ПДСК. Для этого совмести полярную ось с осью Ox, а полюс с началом координат в ПДСК. При этом очевидно, что кривая существует не при всех значениях аргумента, а также, что кривая имеет три оси симметрии. Поэтому можем вычислить площадь половины одного лепестка, и полученный результат умножить на 6.

$$S = 6 * \frac{1}{2} \int_{0}^{\frac{\pi}{6}} a^{2} \cos^{2} 3\varphi d\varphi = \frac{3}{2} a^{2} \int_{0}^{\frac{\pi}{6}} (1 + \cos 6\varphi) d\varphi$$
$$= \frac{3a^{2}}{2} (\varphi + \frac{1}{6} \sin 6\varphi) \Big|_{0}^{\frac{\pi}{6}} = \frac{3a^{2}\pi}{2}.$$

2. Длина дуги плоской кривой

1. Прямоугольные декартовы координаты

Пусть в прямоугольных декартовых координатах плоская кривая AB задана уравнением y = f(x) при $a \le x \le b$. Поставим задачу вычислить длину дуги AB.

Для этого протзвольными точками M_1 , M_2 , ..., M_{n-1} дугу AB разобьем на частичные дуги M_1M_2 и каждую из частичных дуг заменим отрезком M_1M_2 . Тогда вместо дуги получим ломаную с вершинами в точках M_0 , M_1 , M_2 , ..., M_{n-1} , M_n , длина которой при ближено описывает длину кривой AB, причем точность приближения будет тем выше, чем больше число разбиений n.

Длина каждого звена $M_{i-1}M_i$ ломаной может быть определена по теореме Пифагора:

$$\Delta l_i = \sqrt{\Delta x_i^2 + \Delta y_i^2} = \sqrt{1 + (y')^2} \Delta x_i.$$
 (7)

o

Следовательно длина всей ломаной будет представлять собой интегральную сумму для функции y = f(x) по отрезку [a; b]

$$L_n = \sum_{i=1}^n \Delta l_i = \sum_{i=1}^n \sqrt{1 + (y')^2} \Delta x_i.$$

Тогда длина кривой АВ

$$L_{AB} = \lim_{n \to \infty} \sum_{i=1}^{n} \Delta l_i = \lim_{n \to \infty} \sum_{i=1}^{n} \sqrt{1 + (y')^2} \, \Delta x_i = \int_a^b \sqrt{1 + (y')^2} \, dx \tag{8}$$

Пример 4: Найти длину окружности радиуса *R*.

Расположим окружность в ПДСК, совместив ее центр с началом координат. Окружность будет симметрична относительно координатных осей, поэтому мы можем вычислить длину четверти окружности, расположенной в первом квадранте, и полученный результат умножить на 4. Уравнение четверти окружности запришем в виде

$$y = \sqrt{R^2 - x^2}, \text{при } 0 \le x \le R.$$

Воспользуемся формулой (8), предварительно просчитав производную:

$$y' = \frac{-2x}{2\sqrt{R^2 - x^2}} = -\frac{x}{\sqrt{R^2 - x^2}}$$

Тогда

$$L = 4 \int_{0}^{R} \sqrt{1 + \left(-\frac{x}{\sqrt{R^2 - x^2}}\right)^2} dx = 4 \int_{0}^{R} \sqrt{\frac{R^2 - x^2 + x^2}{R^2 - x^2}} dx = 4 \int_{0}^{R} \frac{R}{\sqrt{R^2 - x^2}} d$$

2. Плоская кривая задана параметрически

уравнениями $\begin{cases} x = x(t), \\ y = y(t), \end{cases}$ где $t \in [\alpha; \beta]$, и функции x(t), y(t) - непрерывно дифференцируемы, то

$$L_{AB} = \lim_{n \to \infty} \sum_{i=1}^{n} \Delta l_i = \lim_{n \to \infty} \sum_{i=1}^{n} \sqrt{\Delta x_i^2 + \Delta y_i^2} = \int_{\alpha}^{\beta} \sqrt{(x'(t))^2 + (y'(t))^2} dt$$
 (9)

Пример 5. Решим пример 4, взяв в качестве уравнения окружности параметрические уравнения $\begin{cases} x = Rcost, \\ y = Rsint, \end{cases} 0 \le t \le \frac{\pi}{2}.$

$$L = 4 \int_{0}^{\frac{\pi}{2}} \sqrt{(-Rsint)^{2} + (Rcost)^{2}} \, dx = 4R \int_{0}^{\frac{\pi}{2}} \sqrt{\cos^{2}x + \sin^{2}x} \, dx = 4R \int_{0}^{\frac{\pi}{2}} dx = 4Rx|_{0}^{\frac{\pi}{2}} = 2\pi R.$$

3. Плоская кривая в полярных координатах задана уравнением $r = r(\varphi)$, где $\varphi \in [\alpha; \beta]$. Предположим, что $r(\varphi)$ непрерывно дифференцируемая на $[\alpha; \beta]$ функция. Формулы преобразования декартовых координат в полярные

$$\begin{cases} x = r \cos \varphi, \\ y = r \sin \varphi \end{cases}$$

 $\begin{cases} x = r cos \varphi, \\ y = r sin \varphi \end{cases}$ Можно рассматривать как параметрическое задание кривой отностительноа параметра φ :

$$\begin{cases} x(\varphi) = r(\varphi)\cos\varphi, \\ y(\varphi) = r(\varphi)\sin\varphi. \end{cases}$$

 $\{y(\varphi)=r(\varphi)sin\varphi.$ Тогда можем использовать формулу (9) для вычисления длины дуги:

$$L_{AB} = \int_{\alpha}^{\beta} \sqrt{(x'(\varphi))^2 + (y'(\varphi))^2} d\varphi = \int_{\alpha}^{\beta} \sqrt{(r'\cos\varphi - r\sin\varphi)^2 + (r'\sin\varphi + r\cos\varphi)^2} d\varphi =$$
$$= \int_{\alpha}^{\beta} \sqrt{(r)^2 + (r')^2} d\varphi. \tag{10}$$

Пример 5: Вычислить длину дуги кардиоиды $r = a(1 + cos \varphi)$.

Очевидно, что каодиоида симметрична относительно полярной ося, поэтому посчитаем длину ее половины при $\varphi \in [0; \pi]$ и умножим на 2.

$$L_{AB} = \int_{0}^{\pi} \sqrt{(a(1+\cos\varphi))^{2} + ((a(1+\cos\varphi))')^{2}} d\varphi =$$

$$= a \int_{0}^{\pi} \sqrt{(1+\cos\varphi)^{2} + (-\sin\varphi)^{2}} d\varphi =$$

$$= a \int_{0}^{\pi} \sqrt{1+2\cos\varphi + \cos^{2}\varphi + \sin^{2}\varphi} d\varphi =$$

$$= a \int_{0}^{\pi} \sqrt{2+2\cos\varphi} d\varphi = a\sqrt{2} \int_{0}^{\pi} \sqrt{2\cos^{2}\frac{\varphi}{2}} d\varphi$$

$$= 2a \int_{0}^{\pi} \cos\frac{\varphi}{2} d\varphi = 4a\sin\frac{\varphi}{2} \Big|_{0}^{\pi} = 4a.$$

3. **Вычисление объемов тел.**

1. По заданным площадям поперечных сечений.

Требуется найти объем некоторого тела, для которого при всех $a \le x \le b$ известны сечений величины S(x)плоскостью, перпендикулярной оси Ох. Будем считать функцию S(x) непрерывной и нерперывно дифференцируемой при $a \le x \le b$. Рассечем подобными плоскосиями тело на

частичные области, и каждую из такиз областей заменим цилиндрическим телом с высотой Δx и основанием площадью S(x). Применяя рассуждения, аналогичные приведенным выше,

получим, что интегральная сумма для функции S(x) по отрезку [a;b] дает приближенное значение объема тела. А точное значение объема определяется определенным интегралом

$$V = \int_a^b S(x) dx.$$
 (11)
 Пример Найти объем эллипсоида $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$

 \bigcirc Решение: Рассекая эллипсоид плоскостью, параллельной плоскости Oyz и на расстоянии x от нее $(-a \leqslant x \leqslant a)$, получим эллипс

2. Объем тела вращения.

Прусть вокруг оси Ох вращается криволинейная трапеция, ограниченная сверху графиком неотрицательной на [a;b] функции y=f(x). Слева и справа прямыми x=a и x=b соответственно. При пересечении этого тела вращения плоскостью $x=x_i$, перпендикулярой оси Ox, в сечении получается круг paluyca $f(x_i)$, площадь которого равна $S(x_i)=\pi f^2(x_i)$. Тогда, согласно (11),

$$V = \pi \int_a^b f^2(x) dx. \tag{12}$$

Пример Найти объем тела, образованного вращением фигуры, ограниченной линиями $y=\frac{x^2}{2},\, x=0,\, y=2\sqrt{2}$ вокруг оси Oy

Решение: По формуле находим:

$$V_y = \pi \int_0^{2\sqrt{2}} 2y \, dy = \pi y^2 \Big|_0^{2\sqrt{2}} = 8\pi.$$