

Lecture 10 – Magnetic Memories

Outline – Lecture 10

- Magnetic memory principle
- The magnetic tunnel junction
- Spin-torque transfer
- Scaling STT-MRAM
- Stoichastic synaptic devices

Promise of MRAM

- Energy
 - SRAM: 10's fJ/bit
 - DRAM: 1-10 pJ/bit
 - STT-MRAM: 10-100 fJ/bit
- Speed/delay
 - SRAM: 1 ns
 - DRAM: ~10 ns
 - STT-MRAM: 1-10 ns
- Cost/Density
 - SRAM: 120F²
 - DRAM: 6F²
 - STT-MRAM: 4-6F²
- Volatility
 - SRAM and DRAM: Volatile
 - STT-MRAM: Non-volatile

Principle of Magnetic RAM

- 1T1R device → Minimum size 6F²
- Memory state is stored in magnetization of a thin film
- Magnetic element connected in series with transistor
- Read-out by difference in in resistance between the two magnetization states of the free layer

Free layer

Nonmagnetic spacer

Reference layer (pinned!)

Magnetic Anisotropy

- Contrary to magnetic isotropy, magnetization is preferable in certain directions.
- Easy axis: An axis in which magnetization is preferable

Reading out state - Magnetoresistance

- First observed in 1856, in Fe and Ni
- Due to spin-orbit coupling: Magnetization perturbs the electron cloud → changes amount of scattering
- Magnitude ~ 2 %
- Giant Magnetoresistance (discovered in 80's) in Cr/Fe stacks
 - Spin-dependent scattering
 - − → Harddrive revolution
 - Albert Fert and Peter Grünberg Nobel Prize in Physics 2007.
 - Magnitude ~10-20%

Magnetic Tunnel Junction (MTJ)

- Still Free layer and Reference layer
- Spacer → NOT conductive
- Transport through quantum tunneling
 - Tunnel barrier typically Aluminum oxide
- → Tunneling Magnetoresistance (TMR)

$$TMR = \frac{R_{ap} - R_p}{R_p} \sim 70 \%$$

Alignment of spin gives higher tunneling probability

"Giant" Tunneling magnetoresistance

- Giant TMR through crystalline MgO barriers
 - spd hybridized states (Δ_1) are fully polarized
 - Couple to evanescent Δ₁ states in MgO
 - MgO(001) evanescent Δ_1 decay slowest
 - → filters out states with low spin polarization
 - → Makes TMR effect very strong!
 - TMR ~ 600%

TMR = 40-80 %

TMR = 300-500 %

Writing in MRAM

- Current pulses on BIT and WORD lines create orthogonal B-fields
- Only sum of these magnetic field strengths should be enough to switch magnetization in Free Layer.
 - → Selection of device possible
- Current needed for sufficient field strengths > $H_{\kappa}^{2/3}$ prevents scaling as $H_{\kappa} \propto \frac{1}{L}$, where L is device size

Needed other way to operate MRAM...

Spin-torque transfer

- Electrons flowing through the tunnel junction can transfer spin angular momentum
- Resulting "torque" on magnetization
- WRITING of data possible

- An electron spin passing through a magnetized layer has its spin direction altered
 - But also the magnetization is affected (torque)
- Magnetization goes through a precession path with damping

STT-MRAM layout

- Transistor Gate → Word line
- MTJ on Drain → Bitline
- No external magnetic field needed!
- Switching magnetization by <u>current</u> (STT)
- Minimum memory cell area: 6F²

Write current

 $\alpha = \text{damping factor}$ $H_k = \text{anisotropy field}$

• Critical current for switching magnetization: $J_C = \left(\frac{\alpha}{\eta}\right) \left(\frac{2e}{\hbar}\right) M_S H_k t + 2\pi M_S$

• Current costs energy!

→ Want as low as possible

2 min Exercise: Current supply

- Typical value $J_C = 3 \text{ MA/cm}^2$
- 10nm node Intel transistor: F = 50 nm. $I_{on} = 1 \, mA/\mu m$ @ W = 1F $\rightarrow I_{on} = 50 \, \mu A$.
- For a 1F² MTJ, can this transistor supply sufficient current density?

2 min exercise – The write current

- 1. What parameters should we use to decrease the write current?
- 2. How can we practically change these?

$$J_C = \left(\frac{\alpha}{\eta}\right) \left(\frac{2e}{\hbar}\right) M_S H_k t + 2\pi M_S$$

 $\eta = \text{STT}$ efficiency parameter $\alpha = \text{damping factor}$ $M_S = \text{saturation magnetization}$ t = free layer film thickness $H_k = \text{anisotropy field}$

STT-MRAM Write "0"

- "0" is low resistive state (parallel)
- Word line chooses device
- Bit line biased negative → current "upwards" → parallel spin

STT-MRAM Write "1"

- "0" is low resistive state (parallel)
- Word line chooses device
- Bit line biased negative → current "upwards" → parallel spin

Damping: Write current and speed

- Larger damping factor α gives faster switching due to faster to achieve end magnetization.
 - But also means larger switching current is needed!
- α gets stronger with spin-orbit coupling ($\propto Z$).
- α gets stronger with imperfections (roughness, defects, interfaces, surrounding layers)

STT-MRAM Read

- Read current much lower than needed to flip magnetization
- Parallel / Antiparallel spin in free layer → low / high resistance i.e. data read out

Data retention and scaling

- Free layer needs to retain its magnetization despite disturbance
- Typical target is 10 years retention → 60 kT ~ 1.5 eV energy barrier for switch
- Possible disturbance:
 - Thermal fluctuations
 - Read event
 - Typical prob. for unwanted switch ~ 10⁻²¹
- $E_b \propto K_u V \rightarrow$ scaling down decreases barrier height!
 - Need very high K_u for ultra-scaled memory cells
 - This was for long a major road block

In-plane or perpendicular magnetization?

- Magnetization can also be out-of-plane (perpendicular)
- In-plane relies on *shape anisotropy* → not scalable beyond 60 nm
- Perpendicular Magnetic Anisotropy does not rely on shape anisotropy

Perpendicular (to the) Plane

Designing for Perpendicular anisotropy

STT-MRAM as storage

	DRAM	3DNAND	RRAM	PCM	STT-MRAM
Nonvolatile	No	Yes	Yes	Yes	Yes
Speed (ns)	10	10 ⁴	< 5 ns	10 ns	< 5 ns
Energy use (pJ/write)	0.1	1	0.1-1	>1	< 0.2 pJ
Endurance (cycles)	10 ¹⁶	10 ⁵	10 ⁶ -10 ⁷	109	>10 ¹⁵
Multilevel?	No	Yes	3-6 bit	Yes	No
Scalability	6-8F ²	3D!	3D!	3D!	6F ²
Other	Destructive Read	High Voltage	Abrupt SET	R drifts	Scaling limited by needed current

MRAM in SNNs

- Binary device, no memristor
- With J_c near threshold \rightarrow M switching becomes stochastic!

Stoichastic STDP

- Stoichastic STDP
 - Every post-spike can lead to flip of synapse weight
 - Switching probability P_{switch} given by STDP function
 - Potentiation prob. not too high → keeps learning general
 - Depression prob. much lower → avoids forgetting common features between classes

Example of implementation

- 1 layer network.
- CMOS LIF neurons on output.
- Integrates signals from parallel M_s devices only
 - → Digital weight representation
- Upon post spike:
 - Post-neuron applies (2)
 - All recently active pre-neurons apply (1)
 - Inactive preneurons apply (0)
 - Lateral inhibition of output neurons (WTA)
- (1) + (2) give certain probability to flip M_s
 - Set to equal to 10% in the paper.

Test of implementation (car counter)

- Pasadena 5 lane highway recorded with neuromorphic retina
 - No frames! Spikes when intensity of pixel changes

Input neurons (N = 32768) Outp

Output neurons (N = 20)

Natural specialization on particular lanes!

Detection accuracy in lanes 1-4 ~ 97% Power consumption for learning 180 nW!

Effect of device variability

- Variations in min and max resistance → variation in current → dramatic variation in switching probability!
- Synaptic variations (SV) of 5, 10 and 25% (very high!)
- Very robust to device to device variations!

