Universidade de Brasília

Delineamento e Análise de Experimentos

Professora Juliana Betini Fachini Gomes e-mail: jfachini@unb.br

Brasília - 2023

Experimentos Fatorias de dois níveis

- Vários casos especiais do exeprimento fatorial geral são importantes porque são amplamente utilizados em trabalhos de pesquisa;
- O caso mais importante é o de k fatores, cada um com apenas dois níveis;
- Esses níveis podem ser quantitativos, como dois valores de temperatura, pressão ou tempo; ou eles podem ser qualitativos, como duas máquinas, dois operadores, níveis "alto" e "baixo" de um fator, ou talvez a presença e ausência de um fator;
- Uma réplica completa desse experimento é composta por $2 \times 2 \times \dots 2 \times = 2^k$ observações e é chamado de planejamento fatorial 2^k .

- Os experimentos fatoriais 2^k são, particularmente, úteis nos estágios iniciais do trabalho experimental. Quando existem muitos fatores a serem investigados;
- Então, esses experimentos são amplamente utilizados em triagem de fator.
- Como existem apenas dois níveis para cada fator, assumimos que a resposta é aproximadamente linear ao longo do intervalo dos níveis de fator escolhidos.

Experimento 2^k

Experimento 2^k

- Porém, outro caso especial dentre os experimentos fatoriais 2^k , é o experimento 2^3 ;
- Nesses experimentos têm-se oito tratamentos que são combinações dos fatores A, B, e C e podem ser representados geometricamente como um cubo (Figura 1);
- Em que " + " representa o nível alto e " " o nível baixo do fator.

FIGURE: 1 Livro Douglas C. Montgomery (2009)

- Os símbolos (1), a, b, ab, ac, bc e abc representam o total de resposta em todas as n réplicas tomadas na combinação de tratamento.
 - o alto nível de qualquer fator na combinação de tratamento é indicado pela letra minúscula correspondente;
 - o baixo nível de um fator na combinação de tratamento é denotado pela ausência da letra correspondente.
- O efeito médio de um fator é definido como a mudança na resposta produzida por uma mudança no nível desse fator em média sobre os níveis do outro fator.

• Existem três diferentes notações para representar o experimento 2³, como mostra o quadro abaixo:

Run	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	Labels	\boldsymbol{A}	\boldsymbol{B}	C
1	_	_	_	(1)	0	0	0
2	+	_	_	а	1	0	0
3	_	+	_	b	0	1	0
4	+	+	_	ab	1	1	0
5	_	_	+	c	0	0	1
6	+	_	+	ac	1	0	1
7	_	+	+	bc	0	1	1
8	+	+	+	abc	1	1	1

- Agora, vamos construir as estimativas dos efeitos principais;
- Considere o efeito principal do fator A:
 - O efeito do fator A quando B e C estão no nível baixo é
 [a (1)]/n;
 - O efeito do fator A quando B está no nível alto e C no nível baixo é [ab-b]/n;
 - O efeito do fator A quando C está no nível alto e B no nível baixo é [ac - c]/n;
 - O efeito do fator A quando B e C estão no nível alto é [abc - bc]/n;
- A média dessas quantidades produz o efeito principal do fator
 A:

$$A = \frac{1}{4n}[a - (1) + ab - b + ac - c + abc - bc] \tag{1}$$

 Alternativamente, o efeito principal do fator A poderia ser obtido por:

$$A = \bar{y}_{A^{+}} - \bar{y}_{A^{-}}$$

$$= \frac{a + ab + ac + abc}{4n} - \frac{(1) + b + c + bc}{4n}$$

$$= \frac{1}{4n} [a + ab + ac + abc - (1) - b - c - bc]$$
(2)

Experimento 2^3

- A equação (4) também pode ser desenvolvida como um contraste entre as quatro combinações de tratamento;
- Uma forma alternativa geral, no caso de experimentos fatorias 2^k, para determinar contrastes para os efeitos AB...K, é dada por:

$$Contraste_{AB...K} = (a \pm 1)(b \pm 1)...(k \pm 1)$$
(3)

EXPERIMENTO 2^3

• O Constrate_A, para experimento 2³, pode ser construido por:

Contraste_A =
$$(a-1)(b+1)(c+1)$$

= $a-(1)+ab-b+ac-c+abc-bc$

- 1. Considere o experimento 2^3 e encontre:
 - A. Os $Constrate_B$ e $Constrate_C$;
 - B. Os $Constrate_{AB}$, $Constrate_{AC}$ e $Constrate_{BC}$;
 - C. O Constrate_{ABC};
- 2. Considere os constrastes obtidos no item 1 e obtenha os efeitos principais dos fatores B, C, AB, AC, BC e ABC.

• O efeito do fator A é dado por:

$$A = \frac{1}{4n}[a + ab + ac + abc - (1) - b - c - bc]$$

O efeito do fator B é dado por:

$$B = \frac{1}{4n}[b + ab + bc + abc - (1) - a - c - ac] \tag{4}$$

• O efeito do fator C é dado por:

$$C = \frac{1}{4n}[c + ac + bc + abc - (1) - a - b - ab]$$
 (5)

• O efeito do fator AB é dado por:

$$AB = \frac{1}{4n}[(1) - a - b + ab + c - ac - bc + abc]$$
 (6)

• O efeito do fator AC é dado por:

$$AC = \frac{1}{4n}[(1) - a + b - ab - c + ac - bc + abc] \tag{7}$$

• O efeito do fator BC é dado por:

$$BC = \frac{1}{4n}[(1) + a - b - ab - c - ac + bc + abc]$$
 (8)

- Em experimentos 2³ é sempre importante examinar a magnitude e a direção dos efeitos dos fatores para determinar quais variáveis provavelmente serão importantes;
- A análise de variância geralmente pode ser usada para confirmar essa interpretação (testes t podem ser usados também);
- A magnitude e a direção do efeito devem sempre ser consideradas junto com a ANOVA, porque a ANOVA sozinha não transmite essa informação.

Relembrando

 Um contraste de interesse pode ser escrito em termos das médias de tratamentos:

$$C=\sum_{i=1}^a c_i \bar{y}_{i.},$$

• E a soma de quadrados do contraste é definida por:

$$SQ_C = \frac{(\sum_{i=1}^a c_i \bar{y}_{i.})^2}{n \sum_{i=1}^a c_i^2},$$

 Ou seja, a soma dos quadrados para qualquer contraste é igual ao quadrado do contraste dividido pelo número de observações em cada total no contraste vezes a soma dos quadrados dos coeficientes do contraste.

• Em experimentos 2³ a soma de quadrados para qualquer efeito é definida por:

$$SQ = \frac{(Constrate)^2}{8n}. (9)$$

Experimento 2^k

• A soma de quadrado total é definida por:

$$SQ_T = \sum_{i=1}^2 \sum_{j=1}^2 \sum_{k=1}^2 \sum_{l=1}^n y_{ijkl}^2 - \frac{y_{...}^2}{8n},$$

em geral, a SQ_T em 8n-1 graus de liberdade.

• E por subtração, a soma de quadrado do resíduo é dada por:

$$SQ_{Res} = SQ_T - (SQ_A + SQ_B + SQ_C + SQ_{AB} + SQ_{AC} + SQ_{BC} + SQ_{ABC}),$$

com $8(n-1)$ graus de liberdade.

Exercício

- Um experimento fatorial 2³ foi realizado para desenvolver um processo de ataque de nitreto em uma ferramenta de gravação de plasma.
- Os fatores são o espaço entre os eletrodos, o fluxo de gás (C₂F₆ é usado como gás reagente), e a potência de RF aplicado ao cátodo.
- Cada fator é executado em dois níveis, e o experimento é repetido duas vezes.
- A variável de resposta é o taxa de corrosão para nitreto de silício (Å/m). Os dados da taxa de gravação estão no quadro abaixo:

Exercício

Run	Coded Factors		Etch Rate			Factor Levels			
	A	B	C	Replicate 1	Replicate 2	Total	Low (-1)		High (+1)
1	-1	-1	-1	550	604	(1) = 1154	A (Gap, cm)	0.80	1.20
2	1	-1	-1	669	650	a = 1319	B (C ₂ F ₆ flow, SCCM)	125	200
3	-1	1	-1	633	601	b = 1234	C (Power, W)	275	325
4	1	1	-1	642	635	ab = 1277			
5	-1	-1	1	1037	1052	c = 2089			
6	1	-1	1	749	868	ac = 1617			
7	-1	1	1	1075	1063	bc = 2138			
8	1	1	1	729	860	abc = 1589			

Exercício

- 1. Considere os dados do experimentos e calcule:
 - A) Os efeitos principais dos fatores A, B, C, AB, AC, BC e ABC.
 - B) SQ_A , SQ_B , SQ_C , SQ_{AB} , SQ_{AC} , SQ_{BC} , SQ_{ABC} , SQ_T e SQ_{Res} .
 - C) Os respectivos graus de liberdade.
 - D) Construa a Tabela ANOVA.
 - E) Interprete os resultados encontrados nos itens anteriores.

Experimento 2^k geral

- Os métodos de análise estudados podem ser generalizados para os experimentos fatoriais 2^k, com k fatores e cada um com dois níveis;
- Os contrastes para os efeitos *AB...K* são encontrados por:

$$Contraste_{AB...K} = (a \pm 1)(b \pm 1)...(k \pm 1)$$
 (10)

Os efeitos principais podem ser estimados por:

$$AB...K = \frac{2}{n2^k}(Contraste_{AB...K})$$
 (11)

• E as somas de quadrados são calculadas por:

$$SS_{AB...K} = \frac{1}{n2^k} (Contraste_{AB...K})^2$$
 (12)

Experimento 2^k geral

- A análise estatística para os experimentos fatoriais 2^k pode ser resumida nas seguintes etapas:
 - 1. Estimação dos efeitos principais de cada fator;
 - 2. Ajuste do modelo completo;
 - 3. Realização dos testes estatísticos;
 - 4. Refinamento do modelo;
 - 5. Análise dos resíduos;
 - Interpretação dos resultados.