Fakultät für Mathematik

Universität Regensburg

Ein Vergleich des Verfahrens der konjugierten Gradienten und Mehrgittermethoden, angewandt auf die diskretisierte Poisson-Gleichung

Bachelor-Arbeit

Michael Bauer Matrikel-Nummer 1528558

Erstprüfer Prof. Garcke **Zweitprüfer** Prof. Blank

Inhaltsverzeichnis

1	Ein	leitun	g	1
2	Dis 2.1 2.2 2.3	Defini Finite 2.2.1 2.2.2	tierung der Poisson-Gleichung im \mathbb{R}^2 Ition (Poisson-Gleichung) Differenzen-Methode für die Poisson-Gleichung Zentraler Differenzenquotient zweiter Ordnung Diskretisierung von Ω schaften der Matrix \mathbf{A}_{2D} Eigenwerte und Eigenvektoren von \mathbf{A}_{2D} Definition (Kondition einer symmetrischen Matrix) Lemma (Kondition von \mathbf{A}_{2D})	2 2 3 6 7 8
3	Iter 3.1		Lösungsvefahren für lineare Gleichungssysteme dbegriffe	10 10
	3.2	3.1.4 Das Ja 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5	Definition (Residuum und Fehler)	11 11 12 12 13
	3.3	Das Ja 3.3.1 3.3.2 3.3.3 3.3.4	Algorithmus (Jacobi-Relaxations-Verfahren)	14 15 15 15 16
	3.4 3.5		erfahren der konjugierten Gradienten Definition (A-orthogonal) Satz Lemma - (A-orthogonaler) Projektionssatz Allgemeiner Algorithmus der konjugierten Gradienten	19 19 20 21

Inhaltsverzeichnis

		3.5.5	Lemma	23
		3.5.6	Lemma	23
		3.5.7	Lemma	23
		3.5.8	Satz (Bestimmung einer A-orthogonalen Basis)	24
		3.5.9	Lemma	
		3.5.10	Numerischer Algorithmus der konjugierten Gradienten	24
		3.5.11	Satz (Konvergenz des CG-Algorithmus) [DahmenReusken]	25
	3.6	Vorko	nditioniertes Verfahren der konjugierten Gradienten (PCG)	25
		3.6.1	Satz	26
			3.6.1.1 Beweis:	26
		3.6.2	Der Algorithmus des vorkonditionierten konjugierten Gradienten	
			Verfahrens	26
		3.6.3	Die unvollständige Cholesky-Zerlegung	27
			3.6.3.1 Definition (Das Muster E)	27
			3.6.3.2 Eigenschaften der Matrix $\tilde{\mathbf{L}}$	27
			3.6.3.3 Der numerische Algorithmus der unvollständigen Choles-	
			ky Zerlegung	28
		3.6.4	Die modifizierte unvollständige Cholesky-Zerlegung	28
			3.6.4.1 Eigenschaften der Matrix $\tilde{\mathbf{L}}$	28
			3.6.4.2 Der numerische Algorithmus der modifizierten unvollstän-	
			digen Cholesky-Zerlegung	29
4	3 6 1	• • •		20
4			erverfahren	30
	4.1		llagen	
	4.2		agation	
	4.0		Interpolationsmatrix	
	4.3		ktion	
	1 1	4.3.1	Restriktionsmatrix	
	4.4 4.5		nrung in die Mehrgittermethoden	
	4.5 4.6		weigitter-Algorithmus	
	4.0	Der M	ehrgitter-Algorithmus	33
5	Fin	Verole	eich zwischen Iterativen- und Mehrgitter-Methoden	37
	5.1		el einer Poisson Gleichung	37
	5.2		pplementierung in C++	37
	5.3		chkriterien	38
	5.4		g der Poisson Gleichung (Jacobi-Verfahren)	38
	5.5		g der Poisson Gleichung (Jacobi-Relaxations-Verfahren)	39
	0.0	5.5.1	Parameter $\omega = \frac{1}{2}$	39
		5.5.2	Parameter $\omega = \frac{4}{5}$	39
	5.6		erfahren angewandt auf das Beispiel	39
	5.7		Verfahren angewandt auf das Beispiel	40
	0.1	5.7.1	Unvollständige Cholesky-Zerlegung	40
		\cup ./.1	Onvonstandige Cholesky-Leneguilg	-10

Inhaltsverzeichnis

	5.7.2	Modifizierte unvollständige Cholesky-Zerlegung	40
5.8	Das M	Iehrgitterverfahren angewandt auf das Beispiel	40
	5.8.1	V-Zyklus	40
	5.8.2	W-Zyklus	41

1 Einleitung

Viele Prozesse in den Naturwissenschaften, wie Biologie, Chemie und Physik, aber auch der Medizin, Technik und Wirtschaft lassen sich auf partielle Differentialgleichungen (PDG) zurückführen. Das Lösen solcher Gleichungen ist allerdings nicht immer möglich, oder aufwendig.

Eine PDG, die vor Allem in der Physik häufige Verwendung findet, ist die Poisson-Gleichung – eine elliptische partielle Differentialgleichung zweiter Ordnung. So genügt diese Gleichung beispielsweise dem elektrostatischen Potential u zu gegebener Ladungsdichte f, aber auch dem Gravitationspotential u zu gegebener Massendichte f.

Methoden aus der numerischen Mathematik ermöglichen uns nun das Lösen von partiellen Differentialgleichungen mittels computerbasierten Algorithmen. Hierbei wird jedoch nicht die Lösung direkt bestimmt, sondern versucht eine exakte Approximation der Lösung zu erhalten. Dabei ist es wichtig, dass der zugrunde liegende Algorithmus effizient ist.

Um nun die Lösung einer partiellen Differentialgleichung mittels effizienten Algorithmus bestimmen zu können, müssen wir uns im Vorfeld Gedanken darüber machen, wie wir diese am besten erhalten. Eine der zentralen Methoden der Numerik sind Finite Differenzen. Hierbei diskretisiert man das Gebiet, auf dem die PDG definiert ist und führt die Gleichung auf ein lineares Gleichungssystem zurück.

Eine Möglichkeit ein solches lineares Gleichungssystem zu lösen sind iterative Verfahren. Somit hat man ein großartiges Werkzeug, dass eine Lösung innerhalb weniger Iterationsschritte berechnet und auch mit sehr großen Systemen gut zurecht kommt. Natürlich gilt das nicht für jedes Verfahren, weshalb wir über die Verfahren sprechen möchten, die diese Kriterien erfüllen.

Abschließend wollen wir uns dann noch mit Mehrgittermethoden beschäftigen. Sie stellen die wohl effizienteste und modernste Methode dar, ein lineares Gleichungssystem zu lösen.

2.1 Definition (Poisson-Gleichung)

Sei $\Omega = (0,1) \times (0,1) \in \mathbb{R}^2$ ein beschränktes, offenes Gebiet. Gesucht wird eine Funktion u(x,y), die das Randwertproblem

$$-\Delta u(x,y) = f(x,y) \text{ in } \Omega, \tag{2.1}$$

$$u(x,y) = g(x,y) \text{ in } \partial\Omega$$
 (2.2)

löst. Dabei seien $f:\Omega\to\mathbb{R}$ und $g:\partial\Omega\to\mathbb{R}$ stetige Funktionen und es bezeichnet $\Delta:=\sum_{k=1}^n\frac{\partial^2}{\partial x_k^2}$ den Laplace-Operator. Für die Poisson-Gleichung im \mathbb{R}^2 gilt dann:

$$-\Delta u(x,y) = \frac{\partial^2 u(x,y)}{\partial x^2} + \frac{\partial^2 u(x,y)}{\partial y^2} = f(x,y) \text{ in } \Omega, \tag{2.3}$$

$$u(x,y) = g(x,y) \text{ in } \partial\Omega.$$
 (2.4)

Gleichung 2.2 bzw. Gleichung 2.4 nennt man Dirichlet-Randbedingung.

Beachte:
$$\partial_{xx}u(x,y) = \frac{\partial^2 u(x,y)}{\partial x^1}$$
.

Um diese (elliptische) partielle Differentialgleichung nun in Ω zu diskretisieren, bedarf es der Hilfe der Finiten Differenzen Methode.

2.2 Finite Differenzen-Methode für die Poisson-Gleichung

2.2.1 Zentraler Differenzenquotient zweiter Ordnung

Wir betrachten ein $(x,y) \in \Omega$ beliebig. Dann gilt für h > 0 mit der Taylorformel

$$u(x+h,y) = \sum_{k=0}^{n} h^k \frac{\partial^k u(x,y)}{\partial x^k} \approx u(x,y) + h\partial_x u(x,y) + \frac{h^2}{2!} \partial_{xx} u(x,y) + \mathcal{O}(h^3), \qquad (2.5)$$

$$u(x-h,y) = \sum_{k=0}^{n} (-1)^k h^k \frac{\partial^k u(x,y)}{\partial y^k} \approx u(x,y) - h\partial_x u(x,y) + \frac{h^2}{2!} \partial_{xx} u(x,y) - \mathcal{O}(h^3). \quad (2.6)$$

Analog können wir diese Betrachtung für u(x, y + h) und u(x, y - h) machen:

$$u(x,y+h) = \sum_{k=0}^{n} h^k \frac{\partial^k u(x,y)}{\partial y^k} \approx u(x,y) + h \partial_y u(x,y) + \frac{h^2}{2!} \partial_{yy} u(x,y) + \mathcal{O}(h^3), \qquad (2.7)$$

$$u(x,y-h) = \sum_{k=0}^{n} (-1)^k h^k \frac{\partial^k u(x,y)}{\partial y^k} \approx u(x,y) - h \partial_y u(x,y) + \frac{h^2}{2!} \partial_{yy} u(x,y) - \mathcal{O}(h^3). \quad (2.8)$$

Löst man nun Gleichung 2.5 und Gleichung 2.6 jeweils nach $\partial_{xx}u(x,y)$ auf und addiert die zwei Gleichungen, so erhält man:

$$\partial_{xx}u(x,y) + O(h^2) = \frac{u(x-h,y) - 2u(x,y) + u(x+h,y)}{h^2}.$$
 (2.9)

Ebenso lösen wir nach $\partial_{yy}u(x,y)$ auf und erhalten:

$$\partial_{yy}u(x,y) + O(h^2) = \frac{u(x,y-h) - 2u(x,y) + u(x,y+h)}{h^2}.$$
 (2.10)

Diese Näherungen nennt man auch (zentralen) Differenzenquotienten der zweiten Ableitung. $O(h^2)$ ist ein Term zweiter Ordnung und wird vernachlässigt.

Somit erhalten wir für $\Delta u(x, y)$ die Näherung

$$\Delta u(x,y) = \partial_{xx} u(x,y) + \partial_{yy} u(x,y) \approx \frac{u(x-h,y) + u(x+h,y) - 4u(x,y) + u(x,y-h) + u(x,y+h)}{h^2}. (2.11)$$

2.2.2 Diskretisierung von Ω

Mit einem zweidimensionalen Gitter, der Gitterweite h, wobei $h \in \mathbb{Q}$ mit $h = \frac{1}{m}$ und $m \in \mathbb{N}_{>1}$, wird nun das Gebiet Ω diskretisiert. Die Zahl N := (m-1) gibt uns an, wie

viele Gitterpunkte es jeweils in x- bzw. y-Richtung gibt.

Für i, j = 1, ..., N kann man dann u(x, y) auch schreiben als:

$$u(x_i, y_i) = u(ih, jh). \tag{2.12}$$

 Ω fassen wir als Ω_h auf, so dass:

$$\Omega_h := \{ u(ih, jh) | 1 \le i, j \le N \}. \tag{2.13}$$

Abbildung 2.1: 5-Punkt-Differenzenstern im Gitter

Mit Gleichung 2.11 ergibt sich nun für $\Delta u(x,y) \approx \Delta_h u(x,y)$ die diskretisierte Form:

$$\Delta_h u(x,y) = \frac{u(x-h,y) + u(x+h,y) - 4u(x,y) + u(x,y-h) + u(x,y+h)}{h^2}.$$
 (2.14)

für alle $(x, y) \in \Omega_h$.

Man stellt $\Delta_h u(x,y)$ häufig auch als 5-Punkt-Differenzenstern (Abbildung 2.2.2) in der Form

$$[-\Delta_h]_{\xi} = \frac{1}{h^2} \begin{pmatrix} -1 & -1 \\ -1 & 4 & -1 \\ -1 & -1 \end{pmatrix}, \xi \in \Omega_h$$
 (2.15)

dar. (Dahmen Reusken)

Abbildung 2.2: (Lexikographische) Nummerierung von $\Omega = (0,1)^2$ mit n=5

Nummeriert man nun alle Gitterpunkte des Gitters fortlaufend von links unten nach rechts oben (Abbildung 2.2.2) und stellt für jeden dieser Punkte Gleichung 2.14 auf, so führt dies auf eine $N^2 \times N^2$ -Matrix der Form:

$$\mathbf{A} = \begin{pmatrix} A_1 & -Id & & \\ -Id & A_2 & \ddots & & \\ & \ddots & \ddots & -Id \\ & & -Id & A_n \end{pmatrix}, \tag{2.16}$$

wobei $\mathbf{Id} \in \mathbb{R}^{N \times N}$ die Identität meint und für alle i = 0,..,n gilt:

$$A_{i} = \begin{pmatrix} 4 & -1 & & & \\ -1 & 4 & \ddots & & & \\ & \ddots & \ddots & -1 & \\ & & -1 & 4 \end{pmatrix}. \tag{2.17}$$

 $A_i \in \mathbb{R}^{N \times N}$.

Um nun auf ein lineares Gleichungssystem der Form $\mathbf{A}u = f$ zu kommen, muss natürlich noch die rechte Seite, also das f aufgestellt werden. Zu jeder Komponente von f, die einen Randpunkt als Nachbarn hat, wird dieser dazu addiert. Hat eine Komponente von f zwei Nachbarn am Rand von Ω_h , werden beide addiert. Dies führt uns auf folgende rechte Seite:

$$f = h^2 \begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ f_N \end{pmatrix}, \tag{2.18}$$

wobei gilt

$$f_{1} = \begin{pmatrix} f(h,h) + h^{-2}(g(h,0) + g(0,h)) \\ f(2h,h) + h^{-2}(g(2h,0)) \\ \vdots \\ f(1-2h,h) + h^{-2}(g(1-2h,0)) \\ f(1-h,h) + h^{-2}(g(1-h,0) + g(0,1-h)) \end{pmatrix},$$
(2.19)

$$f_{j} = \begin{pmatrix} f(h,jh) + h^{-2}(g(0,jh)) \\ f(2h,jh) \\ \vdots \\ f(1-2h,jh) \\ f(1-h,jh) + h^{-2}(g(1,jh)) \end{pmatrix} 2 \le j \le N-1,$$
 (2.20)

$$f_{N} = \begin{pmatrix} f(h, 1-h) + h^{-2}(g(h, 1) + g(0, 1-h)) \\ f(2h, 1-h) + h^{-2}(g(2h, 1)) \\ \vdots \\ f(1-2h, 1-h) + h^{-2}(g(1-2h, 1)) \\ f(1-h, 1-h) + h^{-2}(g(1-h, 1) + g(1, 1-h)) \end{pmatrix}.$$
(2.21)

Wir erhalten das lineare Gleichungssystem der Form $\mathbf{A}u = f$, wobei \mathbf{A} und f bekannt sind und u der approximierte Lösungsvektor ist, der die Lösung der partielle Differentialgleichung enthält. Wir bezeichnet ab jetzt die diskrete 2D Poisson Matrix aus Gleichung 2.16 mit \mathbf{A}_{2D} .

2.3 Eigenschaften der Matrix A_{2D}

Da $\mathbf{A}_{2D} \in \mathbb{R}^{n \times n}$ s.p.d. ist, existiert eine Orthogonalbasis aus Eigenvektoren für die gilt:

$$\mathbf{A}_{2D}v_{i,j} = \lambda_{i,j}v_{i,j},\tag{2.22}$$

wobei $\lambda_{1,1},...,\lambda_{N,N} \in \mathbb{R}$ und $v_{i,j} \in \mathbb{R}^n$.

2.3.1 Eigenwerte und Eigenvektoren von A_{2D}

Für $k \in \mathbb{N}$ und $h = \frac{1}{m}$ wie oben, seien $(x_k, y_l) \in \Omega_h$ mit $x_k := k \cdot h, y_l := l \cdot h$ und $\theta_k \in \mathbb{R}$ mit $\theta_k := k\pi h$. Dann gilt für die Eigenwerte:

$$\lambda_{i,j} = 4\left(\sin^2(\frac{\theta_i}{2}) + \sin^2(\frac{\theta_j}{2})\right) \text{ für } 1 \le i, j \le N,$$
(2.23)

Für einen Eigenvektor am Punkt (x_k, y_l) gilt:

$$v_{i,j}(x_k, y_l) = \sin(i\pi x_k)\sin(j\pi y_l) \text{ für } 1 \le i, j, k, l \le N.$$
 (2.24)

wobei *N* jeweils die Anzahl der Gitterpunkte in x- und in y-Richtung definiert.

Bemerkung:

Ein Eigenvektor im Punkt (x_k, y_l) lässt sich auch in der folgenden Form darstellen:

$$v_{k,l} = \begin{pmatrix} \sin(\pi x_k) \sin(\pi y_l) \\ \sin(\pi x_k) \sin(2\pi y_l) \\ \vdots \\ \sin(\pi x_k) \sin(N\pi y_l) \\ \sin(2\pi x_k) \sin(\pi y_l) \\ \sin(2\pi x_k) \sin(2\pi y_l) \\ \vdots \\ \sin(N\pi x_k) \sin((N-1)\pi y_l) \\ \sin(N\pi x_k) \sin(N\pi y_l) \end{pmatrix}. \tag{2.25}$$

Beweis:

Beispiel:

Um sich einen Eigenvektor besser vorstellen zu können, betrachten wir als Beispiel $v_{3,3} \in \mathbb{R}^{16}$ auf dem Gitter aus Abbildung 2.2.2 (Punkt "11").

Eigenvektor im Punkt (3/5,3/5)

z 0.5 -0.5 -1 0 0.2 0.4 0.6 0.8 0.8 0.2 0.4 y

Abbildung 2.3: Man kann am Eigenvektor des Gitterpunktes $(\frac{3}{5}, \frac{3}{5})$ gut die überlagerten Sinuswellen erkennen.

2.3.2 Definition (Kondition einer symmetrischen Matrix)

Sei **A** eine symmetrische Matrix des $\mathbb{R}^{n \times n}$. Dann gilt für die euklidische Kondition der Matrix:

$$\kappa_2(A) := \frac{\lambda_{max}}{\lambda_{min}}. (2.26)$$

2.3.3 Lemma (Kondition von A_{2D})

Für die Matrix \mathbf{A}_{2D} gilt für ihre Kondition:

$$\kappa_2(A_{2D}) = \frac{\cos^2(\frac{\pi h}{2})}{\sin^2(\frac{\pi h}{2})} = \left(\frac{2}{\pi h}\right)^2 (1 + \mathcal{O}(h^2)). \tag{2.27}$$

Beweis:

Da \mathbf{A}_{2D} s.p.d. ist, gilt mit Gleichung 2.26: $\kappa_2(A_{2D}) = \frac{\lambda_{max}}{\lambda_{min}}$. Für die Eigenwerte gilt aus Unterabschnitt 2.3.1:

$$\lambda_{i,j} = 4\left(\sin^2(\frac{\theta_i}{2}) + \sin^2(\frac{\theta_j}{2})\right) \text{ für } 1 \leq i, j \leq N.$$

Dann folgt:

$$\kappa_{2}(A_{2D}) = \frac{\lambda_{N,N}}{\lambda_{1,1}} = \frac{4(2\sin^{2}(\frac{N\pi h}{2}))}{4(2\sin^{2}(\frac{\pi h}{2}))} \stackrel{N=\frac{1}{m'}}{=} \frac{\sin^{2}(\frac{(m-1)\pi}{2m})}{\sin^{2}(\frac{\pi h}{2})}$$
$$= \frac{\sin^{2}(\frac{\pi}{2} - \frac{\pi h}{2})}{\sin^{2}(\frac{\pi h}{2})} \stackrel{Additions theoreme}{=} \frac{\cos^{2}(\frac{\pi h}{2})}{\sin^{2}(\frac{\pi h}{2})}.$$

In [DahmenReusken] wird außerdem gezeigt, dass sich $\kappa(\mathbf{A}_{2D})$ wie folgt nähern lässt:

$$\frac{\cos^2(\frac{\pi h}{2})}{\sin^2(\frac{\pi h}{2})} = \left(\frac{2}{\pi h}\right)^2 (1 + \mathcal{O}(h^2)). \tag{2.28}$$

Natürlich wollen wir die Funktion u(x, y) so gut wie möglich in Ω_h approximieren und sind daher bestrebt das Gitter so fein als möglich zu wählen. Daraus ergibt sich jedoch die negative Eigenschaft von \mathbf{A}_{2D} .

Zur Erinnerung: $h := \frac{1}{m}$. Je größer m gewählt wird, desto schlechter wird die Kondition der Matrix.

$$\left(\frac{2}{\pi h}\right)^2 (1 + \mathcal{O}(h^2)) = \left(\frac{2}{\pi \frac{1}{m}}\right)^2 (1 + \mathcal{O}(\frac{1}{m^2})) \approx \frac{4m^2}{\pi}.$$
 (2.29)

Für ein großes *m*, also ein feines Gitter, wird die Kondition sehr groß.

3 Iterative Lösungsvefahren für lineare Gleichungssysteme

Gleichungssysteme, die partielle Differentialgleichungen lösen, können sehr groß werden. Aus diesem Grund sind direkte Verfahren, wie z.B. der Gauß-Algorithmus oder die LR-Zerlegung nicht geeignet. Ihr Rechenaufwand beläuft sich im Allgemeinen auf $\mathcal{O}(n^3)$ und ist zu langsam.

Wesentlich besser geeignet für diese Problemstellung sind iterative Verfahren. Sie zeichnen sich durch eine schnelle Konvergenz und einen geringeren Rechenaufwand aus - falls sie konvergieren.

3.1 Grundbegriffe

3.1.1 Definition (Iterationsmatrix)

Sei $\mathbf{A} \in \mathbb{R}^{n \times n}$. Sei außerdem $\mathbf{C} \in \mathbb{R}^{n \times n}$ eine nichtsinguläre Matrix. Für die iterative Lösung eines linearen Gleichungssystems der Form Au = f ist die Iterationsmatrix $\mathbf{T} \in \mathbb{R}^{n \times n}$ definiert als:

$$T := (Id - CA), \tag{3.1}$$

wobei die Iterationsvorschrift für k = 1, ..., n gegeben ist durch:

$$u^{k+1} := (\mathbf{Id} - \mathbf{CA})u^k + \mathbf{C}f. \tag{3.2}$$

3.1.2 Definition (Spektralradius)

Sei $\mathbf{A} \in \mathbb{R}^{n \times n}$. Und seien für alle $i = 1, ..., n, \lambda_i \in \mathbb{R}$. Dann gilt:

$$\rho(A) := \max_{1 \le i \le n} |\lambda_i|. \tag{3.3}$$

Ist **A** symmetrisch so gilt auch $\rho(A) = ||A||_2$ und $\lambda_i \in \mathbb{R}_{>0}$ für alle i = 1, ..., n.

3.1.3 Satz (Konvergenz iterativer Verfahren)

Ein iteratives Verfahren mit beliebigen Startvektor $x^0 \in \mathbb{R}^n$ konvergiert genau dann gegen die exakte Lösung $x^* \in \mathbb{R}^n$, wenn gilt:

$$\rho(\mathbf{T}) = \rho(Id - CA) < 1. \tag{3.4}$$

Einen Beweis hierzu findet man z.B. in (Dahmen/Reusken und Verweis).

3.1.4 Definition (Residuum und Fehler)

Sei $u^* \in \mathbb{R}^n$ die exakte Lösung des linearen Gleichungssystems Au = f. Sei außerdem $u^k \in \mathbb{R}^n$ die Approximation der Lösung im k - ten Iterationsschritt. Dann gilt für das Residuum:

$$r^k := f - \mathbf{A}u^k. \tag{3.5}$$

Der Fehler, also die Diskrepanz zwischen exakter und approximierter Lösung, ist definiert als:

$$e^k := u^* - u^k. (3.6)$$

Durch Multiplikation mit der Matrix A ergibt sich:

$$e = u^* - u \Leftrightarrow \mathbf{A}e = \mathbf{A}(u^* - u) \Leftrightarrow \mathbf{A}e = \mathbf{A}u^* - \mathbf{A}u \Leftrightarrow \mathbf{A}e = b - \mathbf{A}u \Leftrightarrow \mathbf{A}e = r.$$
 (3.7)

 $\mathbf{A}e = r$ nennen wir Residuumsgleichung.

3.2 Das Jacobi-Verfahren (Gesamtschrittverfahren)

Sei $\mathbf{A} \in \mathbb{R}^{n \times n}$ und $f, u \in \mathbb{R}^n$, wobei u die Lösung des linearen Gleichungssystems $\mathbf{A}u = f$ ist. Dann lässt sich \mathbf{A} wie folgt zerlegen:

$$A = D - L - U. (3.8)$$

Dabei sind \mathbf{D} , \mathbf{L} , $\mathbf{U} \in \mathbb{R}^{n \times n}$, wobei $\mathbf{D} = diag(a_{1,1},...,a_{n,n})$ und \mathbf{L} eine strikte untere und \mathbf{U} eine strikte obere Dreiecksmatrix ist. Somit ergibt sich für $\mathbf{A}u = f$:

$$Au = f \Leftrightarrow (D - L - U)u = f \Leftrightarrow Du = (L + U)u + f. \tag{3.9}$$

3 Iterative Lösungsvefahren für lineare Gleichungssysteme

Ist nun **D** nicht singulär, so gilt für das Jacobi-Verfahren folgende Iterationsvorschrift:

$$Du^{k+1} = (L+U)u^k + f \Leftrightarrow u^{k+1} = D^{-1}(L+U)u^k + D^{-1}f.$$
(3.10)

3.2.1 Algorithmus (Jacobi-Verfahren)

In Komponentenschreibweise mit einem Startvektor $u^0 \in \mathbb{R}^n$ beliebig und k=1,2,... Berechne für i=1,...,n:

$$u_i^{k+1} = \frac{1}{a_{ii}} (f_i - \sum_{\substack{j=1\\j \neq i}}^n a_{ij} u_i^k).$$
 (3.11)

In jedem Schritt zur Berechnung von u^{k+1} muss hier die Information seines Vorgängers u^k bekannt sein. Der Rechenaufwand pro Iterationsschritt beträgt $\mathcal{O}(n^2)$ und entspricht somit einer Matrix-Vektor-Multiplikation.

3.2.2 Satz (Iterationsmatrix des Jacobi-Verfahrens)

Für die Iterationsmatrix des Jacobi-Verfahrens gilt:

$$\mathbf{T}_{J} := (\mathbf{Id} - \mathbf{D}^{-1}\mathbf{A}) \tag{3.12}$$

Hier ist also $\mathbf{C} = \mathbf{D}^{-1}$

Beweis:

Mit der Iterationsvorschrift folgt:

$$u^{k+1} = D^{-1}(L+U)u^k + D^{-1}f \stackrel{(L+U)=(D-A)}{=} D^{-1}(D-A)u^k + D^{-1}f$$

= $(Id - D^{-1}A)u^k + D^{-1}f$.

Also $\mathbf{T}_{J} := (\mathbf{Id} - \mathbf{D}^{-1}\mathbf{A}).$

3.2.3 Satz (Eigenwerte der Jacobi-Iterationsmatrix bzgl. A_{2D})

Man sieht leicht ein, dass die Eigenvektoren von T_I gleich denen von A_{2D} sind. Dann gilt für die Eigenwerte der Iterationsmatrix $T_I := (Id - D^{-1}A_{2D})$:

$$\lambda_{i,j}(\mathbf{T}_J) = 1 - \left(\sin^2(\frac{\theta_i}{2}) + \sin^2(\frac{\theta_j}{2})\right). \tag{3.13}$$

für $1 \le i, j \le N$ und θ_i , θ_j wie in Unterabschnitt 2.3.1.

Beweis:

Dieser folgt direkt mit dem Beweis aus Unterabschnitt 3.3.2 für $\omega = 1$.

3.2.4 Lemma (Spektralradius der Jacobi-Iterationsmatrix bzgl. A_{2D})

Das Jacobi-Verfahren konvergiert für die diskrete Poisson Gleichung und es gilt für den Spektralradius:

$$\rho(\mathbf{T}_I) = \cos(\pi h) < 1. \tag{3.14}$$

Beweis:

Folgt mit Beweis aus Unterabschnitt 3.3.3 und $\omega = 1$.

Das Jacobi-Verfahren konvergiert also für A_{2D} . Allerdings nimmt mit feinerem Gitter, also kleinere Schrittweite h, die Konvergenzgeschwindigkeit stark ab, da der Spektralradius nahe bei 1 liegt.

Abschließend wollen wir den Rechenaufwand verbessern. Dafür nutzen wir die Dünnbesetztheit von A_{2D} aus. Es sind pro Zeile maximal 5 Einträge ungleich Null. Oder anders formuliert, hat jeder Gitterpunkt in Ω_h höchstens 4 Nachbarn. Nutzt man diese Struktur aus, so erhält man den folgenden Algorithmus.

3.2.5 Algorithmus (Jacobi-Verfahren für A_{2D})

Berechne für k = 1, 2, ... mit Startvektor $u^0 \in \mathbb{R}^n$ beliebig Für i = 1, ..., N und für j = 1, ..., N:

$$u_{i,j}^{k+1} = \frac{1}{a_{i,i}} (f_{i,j} - u_{i-1,j}^k + u_{i+1,j}^k + u_{i,j-1}^k + u_{i,j+1}^k).$$
(3.15)

(Werte, bei denen eine Null im Index steht, werden ignoriert!)

Der Rechenaufwand pro Iterationsschritt beträgt lediglich $\mathcal{O}(N \cdot N) = \mathcal{O}(n)$ Schritte.

3.3 Das Jacobi-Relaxationsverfahren

Wir wollen nochmal das Jacobi-Verfahren betrachten:

$$u^{k+1} = (Id - D^{-1}A)u^k + D^{-1}f.$$
 (3.16)

Wir wollen zunächst eine Umformung vornehmen:

$$u^{k+1} = (Id - D^{-1}A)u^k + D^{-1}f$$

$$= u^k - D^{-1}Au^k + D^{-1}f$$

$$= u^k + D^{-1}\underbrace{(f - Au^k)}_{-r^k}.$$
(3.17)

Wir addieren also zu u^k das Residuum. Die Idee ist nun dieses mit einem Parameter $\omega \in \mathbb{R}$ zu multiplizieren, um neue Eigenschaften zu erhalten:

$$u^{k+1} = u^{k} + D^{-1}\omega r^{k} = u^{k} + \omega D^{-1}(f - Au^{k})$$

$$= u^{k} - \omega D^{-1}Au^{k} + \omega D^{-1}f = (Id - \omega D^{-1}A)u^{k} + \omega D^{-1}f$$

$$= (Id - \omega Id + \omega Id - \omega D^{-1}A)u^{k} + \omega D^{-1}f$$

$$= (1 - \omega)Id + \omega (Id - D^{-1}A)u^{k} + \omega D^{-1}f.$$
(3.18)

Gleichung 3.18 ist die Iterationsvorschrift für das Jacobi-Relaxationsverfahren. Die Iterationsmatrix ist offensichtlich gegeben durch:

$$\mathbf{T}_{J_{\omega}} := (1 - \omega)\mathbf{Id} + \omega(\mathbf{Id} - \mathbf{D}^{-1}\mathbf{A}) = (\mathbf{Id} - \omega\mathbf{D}^{-1}\mathbf{A}). \tag{3.19}$$

Man erweitert den Jacobi-Algorithmus also mit dem Parameter ω und addiert $(1 - \omega)u^k$ zu u^{k+1} .

3.3.1 Algorithmus (Jacobi-Relaxations-Verfahren)

Sei $u^0 \in \mathbb{R}^n$ ein *beliebiger* Startvektor und k = 1, 2, ... berechne für i = 1, ..., n:

$$u_i^{k+1} = (1 - \omega)u_i^k + \frac{\omega}{a_{ii}}(f_i - \sum_{\substack{j=1\\j \neq i}}^n a_{ij}u_i^k).$$
 (3.20)

Beachte: Für $\omega = 1$ erhalten wir das Jacobi-Verfahren. Auch hier beträgt der Rechenaufwand $\mathcal{O}(n^2)$.

3.3.2 Satz (Eigenwerte des Jacobi-Relaxationsverfahren bzgl. A_{2D})

Auch hier entsprechen die Eigenvektoren denen von ${\bf A}_{2D}$ und für die Eigenwerte von ${\bf T}_{J\omega}$ gilt:

$$\lambda_{i,j}(\mathbf{T}_J) = 1 - \omega \left(\sin^2(\frac{\theta_i}{2}) + \sin^2(\frac{\theta_j}{2}) \right) \text{ für } 1 \le i, j \le N.$$
 (3.21)

 θ_i , θ_j wie in Unterabschnitt 2.3.1.

Beweis:

Für $\mathbf{D} = 4\mathbf{Id}$ folgt $\mathbf{D}^{-1} = \frac{1}{4}\mathbf{Id}$. Für die Iterationsmatrix $\mathbf{T}_{J_{\omega}}$ angewandt auf einen Vektor u gilt:

$$\mathbf{T}_{J_{\omega}}u = (\mathbf{I}d - \omega \mathbf{D}^{-1}\mathbf{A})u = \mathbf{I}\mathbf{d}u - \omega \mathbf{D}^{-1}\underbrace{\mathbf{A}u}_{=\lambda_{i,j}(A)u} = \mathbf{I}\mathbf{d}u - \frac{\omega}{4}\mathbf{I}\mathbf{d}\mathbf{A}u = u(1 - \frac{\omega}{4}\lambda_{i,j}(\mathbf{A})).$$

Die Eigenwerte von $\mathbf{T}_{J_{\omega}}$ lassen sich also einfach durch $(1-\frac{\omega}{4}\lambda_{i,j}(A))$ berechen:

$$\lambda_{i,j}(\mathbf{T}_J) = 1 - \omega \left(\sin^2(\frac{\theta_i}{2}) + \sin^2(\frac{\theta_j}{2}) \right) \text{ für } 1 \le i, j \le N.$$

3.3.3 Lemma (Spektralradius der Jacobi-Relaxations-Matrix bzgl. A_{2D})

Das Jacobi-Relaxations-Verfahren konvergiert für die diskrete Poisson Gleichung und es gilt für den Spektralradius:

$$\rho(\mathbf{T}_{I\omega}) = 1 - \omega(1 - \cos(\pi h)) < 1. \tag{3.22}$$

Beweis:

Mit Gleichung 3.21 folgt:

$$\rho(\mathbf{Id} - \omega \mathbf{D}^{-1} \mathbf{A}_{2D}) = \max_{1 \le i,j \le N} |\lambda_{i,j}| = \max_{1 \le i,j \le N} |1 - \omega \left(\sin^2(\frac{\theta_i}{2}) + \sin^2(\frac{\theta_j}{2}) \right)|$$

$$= 1 - 2\omega \sin^2(\frac{\theta_1}{2}) = 1 - 2\omega \sin^2(\frac{\pi h}{2}) = 1 - 2\omega(\frac{1}{2}(1 - \cos(\pi h)))$$

$$= 1 - \omega(1 - \cos(\pi h)) \stackrel{\text{Taylorformel}}{\approx} 1 - \omega(1 - (1 - \frac{\pi^2 h^2}{2}))$$

$$= 1 - \frac{\omega}{2}\pi^2 h^2 < 1.$$

Das Jacobi-Relaxations-Verfahren konvergiert für \mathbf{A}_{2D} sogar schneller für ein $\omega \in (0,1)$. Häufig verwendete Werte im zweidimensionalen Fall sind $\omega = \frac{1}{2}$ und $\omega = \frac{4}{5}$, wobei letzterer Wert für das Mehrgitterverfahren den optimalen Parameter darstellt [Saad]. Leider ist für kleines h die Konvergenz immer noch sehr langsam. Den Rechenaufwand kann man allerdings auch hier verbesseren. Mit der selben Vorgehensweise wie in Unterabschnitt 3.2.5 erhalten wir:

3.3.4 Algorithmus (Jacobi-Relaxations-Verfahren für A_{2D})

Berechne für k = 1, 2, ... mit Startvektor $u^0 \in \mathbb{R}^n$ beliebig Für i = 1, ..., N und für j = 1, ..., N:

$$u_{i,j}^{k+1} = (1 - \omega)u^k + \frac{\omega}{a_{i,i}}(f_{i,j} - u_{i-1,j}^k + u_{i+1,j}^k + u_{i,j-1}^k + u_{i,j+1}^k),$$
(3.23)

mit Rechenaufwand $\mathcal{O}(n)$.

3.4 Glättungseigenschaft

Die Iterationsvorschrift des Jacobi-Relaxations-Verfahrens war gegeben durch:

$$u^{k+1} = (Id - \omega D^{-1}A)u^k + \omega D^{-1}f.$$
(3.24)

Die Eigenvektoren sind wegen Unterabschnitt 3.2.3 und Unterabschnitt 3.3.2 gegeben durch:

$$v_{k,l} = \sin(i\pi x_k)\sin(j\pi y_l) \text{ für } 1 \le i, j, k, l \le N$$
(3.25)

3 Iterative Lösungsvefahren für lineare Gleichungssysteme

und $(x_k, y_l) \in \Omega_h$.

Als Eigenvektoren der Matrizen \mathbf{T}_J bzw. \mathbf{T}_{J_ω} bilden diese Vektoren eine Basis des \mathbb{R}^n , wobei $n=N^2$. Für den Fehlerterm im k-ten Iterationsschritt gilt:

$$e^k = u^* - u^k. (3.26)$$

Betrachten wir nun den (k+1) – ten Fehler und formen geschickt um, dann gilt:

$$e^{k+1} = u^* - u^{k+1} = u^* - \left((Id - \omega D^{-1}A)u^k + \omega D^{-1}f \right)$$

$$= \underbrace{u^* - u^k}_{=e^k} + \omega D^{-1}Au^k - D^{-1}f = e^k + \omega D^{-1}(Au^k - f)$$

$$= e^k + \omega D^{-1}(Au^k - Au^*) = e^k + \omega D^{-1}A(u^k - u^*)$$

$$= e^k + \omega D^{-1}Ae^k = (Id - \omega D^{-1}A)e^k. \tag{3.27}$$

Eigenwerte des Jacobi-Verfahrens für n=15

Abbildung 3.1: Plot für ein Omega blablalba

Da die n Eigenvektoren $v_{i,j}$ eine Basis bilden, lässt sich der Fehler e als Linearkombination

3 Iterative Lösungsvefahren für lineare Gleichungssysteme

der $v_{i,j}$ darstellen:

$$e^{k+1} = \sum_{i=1}^{N} \sum_{j=1}^{N} \xi_{i,j}^{k+1} v_{i,j} = (Id - \omega D^{-1}A) \left(\sum_{i=1}^{N} \sum_{j=1}^{N} \xi_{i,j}^{k} v_{i,j} \right)$$

$$= \left(\sum_{i=1}^{N} \sum_{j=1}^{N} \xi_{i,j}^{k} (Id - \omega D^{-1}A) v_{i,j} \right) = \left(\sum_{i=1}^{N} \sum_{j=1}^{N} \xi_{i,j}^{k} (v_{i,j} - \frac{\omega}{4} \underbrace{Av_{i,j}}_{=\lambda_{i,j}(A) v_{i,j}}) \right)$$

$$= \left(\sum_{i=1}^{N} \sum_{j=1}^{N} \xi_{i,j}^{k} \underbrace{(1 - \frac{\omega}{4} \lambda_{i,j}(A))}_{=\lambda_{i,j}(\mathbf{T}_{I\omega})} v_{i,j} \right) = \left(\sum_{i=1}^{N} \sum_{j=1}^{N} \xi_{i,j}^{k} \lambda_{i,j} (\mathbf{T}_{J\omega}) v_{i,j} \right). \tag{3.28}$$

Eigenwerte des Jacobi-Verfahrens für n=15

Abbildung 3.2: Plot für ein Omega blablalba

Betrachten wir nun die Eigenwerte der Iterationsmatrix für $\omega=1$ (Jacobi-Verfahren), sieht man, dass die Eigenwerte für i,j nahe Null oder i,j nahe N den Fehler schlecht bis gar nicht dämpfen (Abbildung 3.1). Dies erklärt auch das langsame Konvergenzverhalten des Jacobi-Verfahren (siehe Kapitel 5). Interessanter weiße ist der optimale Wert $\omega=1$, wenn man das Ganze als iteratives Verfahren verwendet [Saad]. Das Jacobi-Verfahren besitzt aber keine Glättungseigenschaft.

Da wir aber eine Fehlerglättung erreichen wollen, wählen wir nun $\omega = \frac{1}{2}$ (Abbildung 3.2). Wir stellen fest, dass die Eigenwerte der Iterationsmatrix zwischen 0 und 1 liegen. Sind

 $i,j>\frac{N}{2}$ so werden die Fehleranteile wesentlich besser gedämpft, da die Eigenwerte hier nahe Null liegen. Diese Eigenschaft nennt man die *Glättungseigenschaft*. Es stellt sich z.B. heraus [Saad], dass der optimale Relaxationsparameter, der unabhängig von der Schrittweite h gewählt werden kann, $\omega=\frac{4}{5}$ ist. In Abbildung 3.3 ist gut zu sehen, dass viele der Eigenwerte nahe Null liegen.

Abbildung 3.3: Plot für ein Omega blablalba

3.5 Das Verfahren der konjugierten Gradienten

Das Verfahren der konjugierten Gradienten wurde 1952 von Hestenes und Stiefel erstmals vorgestellt. Es zeichnet sich durch Stabilität und schnelle Konvergenz aus. Das CG-Verfahren (conjugate gradient) - wie es auch genannt wird - ist eine Projektions-und Krylow-Raum-Methode.

3.5.1 Definition (A-orthogonal)

Sei **A** eine symmetrische, nicht singuläre Matrix. Zwei Vektoren $x, y \in \mathbb{R}^n$ heißen **konjugiert** oder **A-orthogonal**, wenn $x^T A y = 0$ gilt.

3.5.2 Satz

Sei $A \in \mathbb{R}^{n \times n}$ s.p.d. und

$$f(u) := \frac{1}{2}u^{T}Au - f^{T}u, \tag{3.29}$$

wobei $f, u \in \mathbb{R}^n$. Dann gilt:

f hat ein eindeutig bestimmtes Minimum und

$$Au^* = f \iff f(u^*) = \min_{u \in \mathbb{R}^n} f(u)$$
 (3.30)

Einen Beweis hierzu findet man z.B. in [Dahmen/Reusken].

Es ist also äquivalent die Funktion f(u) zu minimieren und das Gleichungssystem Au = f zu lösen. Betrachtet man nun den Gradienten von f(x), so stellt man fest, dass gilt:

$$\nabla f(x) = Ax - f = -r. \tag{3.31}$$

Der Gradient von f(x) ist also das negative Residuum. Beim normalen Gradientenverfahren wählt man als Richtung des steilsten Abstiegs genau das Residuum. Hier wählt man jedoch konjugierte Richtungen p für die Richtung des steilsten Abstiegs. Die dabei berechneten (konjugierten) Vektoren p sind alle A-orthogonal und spannen einen sogenannten Krylow-Raum $U_k = \{p^0, ..., p^k\}$ auf. Für den Zusammenhang zwischen dem CG-Verfahren und Krylow-Räumen möchte ich an dieser Stelle auf [Braess] verweisen.

Da wir also stets das Minimum im Teilraum U_k suchen, wird uns folgendes Lemma hilfreich sein:

Abbildung 3.4: Abstieg

3.5.3 Lemma - (A-orthogonaler) Projektionssatz

Sei U_k ein k-dimensionaler Teilraum des \mathbb{R}^n $(k \le n)$, und $p^0, p^1, ..., p^{k-1}$ eine A-orthogonale Basis dieses Teilraums, also $\langle p^i, p^j \rangle_A = 0$ für $i \ne j$. Sei $v \in \mathbb{R}^n$, dann gilt für $u^k \in U_k$:

$$||u^k - v||_A = \min_{u \in U_k} ||u - v||_A$$
 (3.32)

genau dann, wenn u^k die A-orthogonale Projektion von v auf $U_k=span\{p^0,...,p^{k-1}\}$ ist. Außerdem hat \mathbf{u}^k die Darstellung

$$P_{U_{k,\langle\cdot,\cdot\rangle}}(v) = \mathbf{u}^k = \sum_{j=0}^{k-1} \frac{\langle v, p^j \rangle_A}{\langle p^j, p^j \rangle_A} p^j$$
(3.33)

3 Iterative Lösungsvefahren für lineare Gleichungssysteme

Der Beweis zu diesem Lemma folgt direkt aus dem Projektionssatz [Dahmen/Reusken]

3.5.4 Allgemeiner Algorithmus der konjugierten Gradienten

Zur Erzeugung der Lösung von u^* durch Näherungen u^1 , u^2 , ... definieren wir folgende Teilschritte [Dahmen/Reusken]:

0. Definiere Teilraum U_1 und bestimme r^0 mit beliebigen Startvektor u^0

$$U_1 := span\{r^0\}, \text{ wobei } r^0 = f - Au^0$$
 (3.34)

1. Bestimme eine A-orthogonale Basis

$$p^0, ..., p^{k-1} \text{ von } U_k.$$
 (3.35)

2. Bestimme eine Näherungslösung u^k , so dass gilt:

$$||u^k - u^*||_A = \min_{u \in U_k} ||x - u^*||_A.$$
(3.36)

Wir berechnen also:

$$u^{k} = \sum_{j=0}^{k-1} \frac{\langle u^*, p^j \rangle_A}{\langle p^j, p^j \rangle_A} p^j.$$
 (3.37)

3. Erweitere den Teilraum U_k und berechne erneut das Residuum

$$U_{k+1} := span\{p^0, ..., p^{k-1}, r^k\} \text{ wobei } r^k := f - Au^k.$$
 (3.38)

Nachdem man ein Residuum berechnet hat, startet der erste Iterationsschritt: Man erweitert seinen Teilraum um das Residuum und bestimmt darauf hin eine A-orthogonale Basis dieses Teilraumes. Ein gängiges Verfahren ist das Gram-Schmidt-Orthonormalisierungsverfahren. Die neue Näherungslösung bzgl. U_k kann dann über den (A-orthogonalen) Projektionssatz bestimmt werden. Nachdem erneut ein Residuum berechnet wurde, startet der nächste Iterationsschritt.

Wegen Gleichung 3.37 könnte man vermuten, dass u^* zur Durchführung des Algorithmus bekannt sein muss. Die folgenden Lemmata werden zeigen, dass dem nicht so ist.

3 Iterative Lösungsvefahren für lineare Gleichungssysteme

3.5.5 Lemma

Sei $u^* \in \mathbb{R}^n$ die Lösung von Au = f. Dann gilt für ein $y \in U_k$:

$$\langle u^*, y \rangle_A = \langle f, y \rangle \tag{3.39}$$

Beweis:

Wir nutzen die Eigenschaften des A-Skalarproduktes aus:

$$\langle u^*, y \rangle_A = u^{*^T} A y = y^T A u^* = y^T f = f^T y = \langle f, y \rangle.$$

Nun wollen wir Gleichung 3.37 neu formulieren.

3.5.6 Lemma

Sei $u^* \in \mathbb{R}^n$ die Lösung von Au = f und $u^k \in \mathbb{R}^n$ die optimale Approximation von u^* in U_k . Dann kann u^k wie folgt berechnet werden:

$$u^k = u^{k-1} + \alpha_{k-1} p^{k-1}$$
, mit $\alpha_{k-1} := \frac{\langle r^0, p^{k-1} \rangle}{\langle p^{k-1}, A p^{k-1} \rangle}$.

Einen Beweis findet man in [Dahmen/Reusken].

Bemerkung: u^k kann mit wenig Aufwand aus u^{k-1} und p^{k-1} berechnet werden.

3.5.7 Lemma

Das Residuum $r^k \in \mathbb{R}^n$ kann einfach berechnet werden durch:

$$r^{k} = r^{k-1} - \alpha_{k-1} A p^{k-1}, \tag{3.40}$$

wobei α_{k-1} wie in Gleichung 3.40.

Beweis:

$$u^{k} = u^{k-1} + \alpha_{k-1}p^{k-1}$$

$$\iff Au^{k} = Au^{k-1} + \alpha_{k-1}Ap^{k-1}$$

$$\iff b - Au^{k} = b - Au^{k-1} - \alpha_{k-1}Ap^{k-1}$$

$$\implies r^{k} = r^{k-1} - \alpha_{k-1}Ap^{k-1}.$$

Da wir nun u^k und r^k recht komfortabel bestimmen können, wollen wir im Folgenden noch eine Möglichkeit sehen, um p^k schnell zu berechnen.

3.5.8 Satz (Bestimmung einer A-orthogonalen Basis)

Durch

$$p^{k-1} = r^{k-1} - \sum_{j=0}^{k-2} \frac{\langle r^{k-1}, p^j \rangle_A}{\langle p^j, p^j \rangle_A} p^j, \tag{3.41}$$

wird die A-orthogonale Basis zum Vektor r^{k-1} bestimmt, wobei p^{k-1} , $r^{k-1} \in \mathbb{R}^n$.

Beweis:

Der Beweis folgt direkt aus dem Gram-Schmidt-Orthonormalisierungsverfahren, welches allerdings einen hohen Rechenaufwand vorweist.

Wir wollen ohne Beweis (siehe z.B. [Dahmen/Reusken]) angeben, wie man die p^k effizienter bestimmen kann.

3.5.9 Lemma

Für die Berechnung von p^k gilt:

$$p^{k-1} = r^{k-1} - \frac{\langle r^{k-1}, Ap^{k-2} \rangle}{\langle p^{k-2}, Ap^{k-2} \rangle} p^{k-2}.$$
 (3.42)

Substituiert man nun geschickt einige Werte in den Skalarprodukten, führt das auf den Algorithmus des CG-Verfahrens.

3.5.10 Numerischer Algorithmus der konjugierten Gradienten

Gegeben ist eine symmetrisch positiv definite Matrix $\mathbf{A} \in \mathbb{R}^n$. Bestimme die (Näherungs-) Lösung u^* mit Hilfe eines *beliebigen* Startvektors $u^0 \in \mathbb{R}^n$ zu einer gegebenen rechten Seite $b \in \mathbb{R}^n$. Setze $\beta_{-1} := 0$ und berechne das Residuum $r^0 = b - Au^0$. Für k = 1, 2, ..., falls $r^{k-1} \neq 0$ berechne:

3 Iterative Lösungsvefahren für lineare Gleichungssysteme

$$p^{k-1} = r^{k-1} + \beta_{k-2}p^{k-2}, \text{ wobei } \beta_{k-2} = \frac{\langle r^{k-1}, r^{k-1} \rangle}{\langle r^{k-2}, r^{k-2} \rangle} \text{ mit } (k \ge 2)$$

$$u^k = u^{k-1} + \alpha_{k-1}p^{k-1}, \text{ wobei } \alpha_{k-1} = \frac{\langle r^{k-1}, r^{k-1} \rangle}{\langle p^{k-1}, Ap^{k-1} \rangle}$$

$$r^k = r^{k-1} - \alpha_{k-1}Ap^{k-1}$$

Man muss in diesem Algorithmus pro Iterationsschritt lediglich zwei Skalarprodukte ausrechnen (die r^{k-1} -Skalarprodukte können für die r^{k-2} nach der Berechnung des neuen Residuums wieder verwendet werden!) und eine Matrix-Vektor-Multiplikation durchführen. Somit erhält man einen Rechenaufwand von $\mathcal{O}(n^2)$. Angewandt auf \mathbf{A}_{2D} kann man - durch das Ausnutzen der Dünnbesetztheit - einen Aufwand pro Schritt von $\mathcal{O}(n)$ erreichen.

An dieser Stelle soll noch ein kurzer Satz über die Konvergenz des Verfahrens folgen. Einen Beweis hierzu findet man z.B. in (Dahmen/Reusken 573):

3.5.11 Satz (Konvergenz des CG-Algorithmus) [DahmenReusken]

Sei $A \in \mathbb{R}^{n \times n}$ symmetrisch, positiv definit und seien $u, f, u^*, u^k \in \mathbb{R}^n$, wobei u^* die exakte Lösung des Gleichungssystems Au = b und u^k die approximierte Lösung durch das CG-Verfahren ist. Dann gilt für k = 1, 2, ...:

$$\|u^k - u^*\|_A \le 2\left(\frac{\kappa_2(A) - 1}{\kappa_2(A) + 1}\right)^k \|u^0 - u^*\|_A$$
 (3.43)

Da stets $\frac{\kappa_2(A)-1}{\kappa_2(A)+1} < 1$ gilt, sichert dieser Satz die Konvergenz des Algorithmus. Man sieht also, dass die Konvergenz des Verfahrens von der Kondition der Matrix \mathbf{A}_{2D} abhängt.

3.6 Vorkonditioniertes Verfahren der konjugierten Gradienten (PCG)

Das PCG-Verfahren (preconditioned conjugate gradient) ist eine optimierte Version des CG-Verfahrens. Wie wir in Unterabschnitt 2.3.3 gesehen haben, ist \mathbf{A}_{2D} schlecht konditioniert. Dies mindert natürlich die Effizienz des Verfahrens. Die Idee ist nun, die bei der Iteration zu Grunde liegende Matrix \mathbf{A} durch eine ähnliche Matrix mit besserer Kondition zu ersetzen, damit sich das Konvergenzverhalten verbessert.

3.6.1 Satz

Sei $\mathbf{W} \in \mathbb{R}^{n \times n}$ s.p.d. dann gilt:

$$\mathbf{A}u = f \Longleftrightarrow \mathbf{W}^{-1}\mathbf{A}u = \mathbf{W}^{-1}f \tag{3.44}$$

Es macht also keinen Unterschied, ob wir Au = f oder das äquivalente System lösen.

3.6.1.1 Beweis:

$$\mathbf{A}u = f \iff u = \mathbf{A}^{-1}\mathbf{E}f \iff u = \mathbf{A}^{-1}\mathbf{W}\mathbf{W}^{-1}f$$

$$\iff u = (\mathbf{W}^{-1}\mathbf{A})^{-1}f \iff \mathbf{W}^{-1}\mathbf{A}u = \mathbf{W}^{-1}b$$

Die Konditionszahl dieses Problem ist nun durch $\kappa_2(\mathbf{W}^{-1}\mathbf{A})$ bedingt. Das Ziel muss es also sein, \mathbf{W}^{-1} so gut wie möglich zu wählen, damit die Kondition möglichst klein wird. Nun ist im Allgemeinen $\mathbf{W}^{-1}\mathbf{A}$ nicht s.p.d. Somit könnten wir zwar den CG-Alorithmus trotzdem anwenden, werden aber wegen dieser Tatsache möglicherweise keine Konvergenz erhalten. Um dies zu umgehen findet man z.B. in (Dahmen/Reusken 576) einen Lösungsansatz, bei dem mit der Cholesky-Zerlegung eine entsprechende Umformung gefunden werden kann.

3.6.2 Der Algorithmus des vorkonditionierten konjugierten Gradienten Verfahrens

Gegeben seien $\mathbf{A}, \mathbf{W} \in \mathbb{R}^n$ s.p.d. Bestimme die (Näherungs-) Lösung u^* mit Hilfe eines beliebigen Startvektors $u^0 \in \mathbb{R}^n$ zu einer gegebenen rechten Seite $b \in \mathbb{R}^n$. Setze $\beta_{-1} := 0$, berechne das Residuum $r^0 = b - Au^0$ und $z^0 = \mathbf{W}^{-1}r^0$ (löse $\mathbf{W}z^0 = r^0$). Für k = 1, 2, ..., falls $r^{k-1} \neq 0$ berechne:

$$p^{k-1} = z^{k-1} + \beta_{k-2}p^{k-2}, \text{ wobei } \beta_{k-2} = \frac{\langle z^{k-1}, r^{k-1} \rangle}{\langle z^{k-2}, r^{k-2} \rangle} \text{ mit } (k \ge 2)$$

$$u^{k} = u^{k-1} + \alpha_{k-1}p^{k-1}, \text{ wobei } \alpha_{k-1} = \frac{\langle z^{k-1}, r^{k-1} \rangle}{\langle p^{k-1}, Ap^{k-1} \rangle}$$

$$r^{k} = r^{k-1} - \alpha_{k-1}Ap^{k-1}$$

$$z^{k} = \mathbf{W}^{-1}r^{k} \text{ (löse } \mathbf{W}z^{k} = r^{k})$$

Wichtig hierbei ist, dass das Lösen von $\mathbf{W}z^k = r^k$ mit möglichst wenig Aufwand (ideal: $\mathcal{O}(n)$) berechnet werden soll.

3.6.3 Die unvollständige Cholesky-Zerlegung

Eine Matrix A, die symmetrisch positiv definit ist, lässt sich durch eine Cholesky-Zerlegung in eine normierte untere Dreiecksmatrix L und eine rechte obere Dreicksmatrix U zerlegen, wobei gilt: $U := DL^T$

Mit dieser Zerlegung möchten wir nun unser System vorkonditionieren. Allerdings würde eine vollständige Cholesky-Zerlegung viele Nulleinträge in einer dünn besetzten Matrix auslöschen. Darum greift man auf eine unvollständige Cholesky-Zerlegung zurück, bei der die Stellen, an denen A Nulleinträge besitzt, in L und U ebenfalls Null bleiben.

3.6.3.1 Definition (Das Muster E)

Sei das Muster $E \subseteq \{1, ..., n\} \times \{1, ..., n\}$, dann gilt:

$$E := \{(i,j)|1 \le i, j \le n, a_{i,j} \ne 0\}$$
(3.45)

Dann lässt sich die Matrix **A** auch folgendermaßen schreiben:

$$\mathbf{A} = \tilde{\mathbf{L}}\tilde{\mathbf{L}}^T + E \approx \tilde{\mathbf{L}}\tilde{\mathbf{L}}^T \tag{3.46}$$

wobei $\tilde{\mathbf{L}}$, $\tilde{\mathbf{L}}^T$ nicht die komplette Faktorisierung darstellt, sondern folgende Eigenschaften erfüllt:

3.6.3.2 Eigenschaften der Matrix L

- L̃ ist normierte untere Dreicksmatrix
- Es gilt: $l_{i,j} = 0$, falls $(i,j) \notin E$

Natürlich ist diese Faktorisierung ungenauer, als die vollständige Zerlegung, allerdings genügt sie, um die Kondition des Gleichungssystems in vielen Fällen zu verbessern. Um den folgenden Algorithmus effizient zu machen, werden Summen nur über Indizes aus dem Muster berechnet.

3.6.3.3 Der numerische Algorithmus der unvollständigen Cholesky Zerlegung

Seien $A \in \mathbb{R}^{n \times n}$ s.p.d. und E das Muster zur Matrix A. Berechne dann für i = 1, 2, ..., n:

$$l_{i,i} = \left(a_{i,i} - \sum_{j=1,(i,j)\in E}^{i-1} l_{i,j}^2\right)^{\frac{1}{2}}$$
(3.47)

for
$$k = i + 1, ..., n : if (k, i) \in E :$$
 (3.48)

$$l_{k,i} = \left(a_{k,i} - \sum_{j=1,(k,j)\in E,(i,j)\in E}^{k-1} l_{k,j} l_{i,j}\right) / l_{i,i}$$
(3.49)

Bemerkungen:

- Die für den PCG-Algorithmus wichtige Matrix **W** wird nun definierte als: $\mathbf{W} := \tilde{\mathbf{L}}\tilde{\mathbf{L}}^T$. Dadurch wird auch $\mathbf{W}z^k = \tilde{\mathbf{L}}\tilde{\mathbf{L}}^Tz^k = r^k$ schnell durch Vorwärts- bzw. Rückwärts- einsetzen lösbar.
- Für viele Probleme zeigt sich, dass $\kappa_2(\mathbf{W}^{-1}\mathbf{A}) \ll \kappa_2(A)$ gilt.

Es gibt einige Varianten dieses Verfahrens. Wir wollen uns an dieser Stelle mit einer dieser auseinander setzen.

3.6.4 Die modifizierte unvollständige Cholesky-Zerlegung

Auch bei der modifizierten Methode des Verfahrens gehen wir vor, wie in Unterabschnitt 3.6.3. Jedoch werden die Vorschriften für die Matrix $\tilde{\mathbf{L}}$ abgeändert:

3.6.4.1 Eigenschaften der Matrix L

Sei $e := (1, 1, ..., 1)^T$

- $a_{i,j} = (\tilde{\mathbf{L}}\tilde{\mathbf{L}}^T)_{i,j}$ für alle $(i,j) \in E, i \neq j$
- $\mathbf{A}e = \tilde{\mathbf{L}}\tilde{\mathbf{L}}^T e$, d.h. die Zeilensummen stimmen überein.
- $l_{i,j} = r_{i,j} = 0$ für alle $(i,j) \notin E$

3.6.4.2 Der numerische Algorithmus der modifizierten unvollständigen Cholesky-Zerlegung

Seien $\mathbf{A} \in \mathbb{R}^{n \times n}$ s.p.d. und E das Muster zur Matrix \mathbf{A} . Berechne dann für i=1,2,...,n:

$$l_{i,i} = \left(a_{i,i} - \sum_{j=1,(i,j)\in E}^{i-1} l_{i,j}^2\right)^{\frac{1}{2}}$$
(3.50)

for
$$k = i+1,...,n$$
: (3.51)

if
$$(k,i) \in E$$
: (3.52)

$$l_{k,i} = \left(a_{k,i} - \sum_{j=1,(k,j)\in E,(i,j)\in E}^{k-1} l_{k,j} l_{i,j}\right) / l_{i,i}$$
(3.53)

else:
$$(3.54)$$

$$a_{k,k} = a_{i,i} - \sum_{j=1,(k,j)\in E,(i,j)\in E}^{k-1} l_{k,j} l_{i,j}$$
 (3.55)

Wir setzen wieder $\mathbf{W} := \tilde{\mathbf{L}}\tilde{\mathbf{L}}^T$.

Es gibt noch weitere Verfahren (siehe z.B. Saad), wie beispielsweise das SSOR-Verfahren, die wir hier nicht weiter diskutieren wollen.

In diesem Abschnitt sollen nun die Mehrgittermethoden genauer betrachtet werden. Zunächst aber nochmals die Grundlagen:

4.1 Grundlagen

1. Glättungseigenschaft der Jacobi-Relaxation

Das Jacobi-Relaxationsverfahren löscht kurzwellig Fehler in den ersten Iterationsschritten aus. Langwellige Fehler werden nur sehr langsam beseitigt.

2. Residuumsgleichung

Die für diesen Algorithmus wichtige Residuumsgleichung lautet:

$$\mathbf{A}e^k = r^k \tag{4.1}$$

Die Lösung von $\mathbf{A}e^k = r^k$ ist äquivalent zur Lösung von $\mathbf{A}u = b$ für $e^k = 0$.

Beweis:

Das Residuum ist an der k – ten Stelle definiert als

$$r^k = b - \mathbf{A}u^k \tag{4.2}$$

Der Fehler

$$e = u^* - u^k \tag{4.3}$$

wobei u^* die exakte Lösung darstellt. Betrachten wir jetzt nochmals Gleichung 4.1, dann stellen wir fest, dass gilt:

$$\mathbf{A}e^k = r^k = b - \mathbf{A}u^k = 0 \text{ für } e^k = 0.$$
 (4.4)

Somit ist

$$\mathbf{A}e^k = r^k \Longleftrightarrow \mathbf{A}u^k = b \text{ falls } e^k = 0. \tag{4.5}$$

30

3. Grobe Fehler nach einer Gittertransformation

Kurzwellige Fehler auf dem feinen Gitter bleiben kurzwellig, wenn man diese auf ein grobes Gitter transformiert. Langwellige Fehleranteile des feinen Gitters, werden jedoch auf dem groben Gitter ebenfalls zu kurzwelligen.

Beispiel:

Wir wollen diese Aussage anhand eines Beispiels illustrieren. Wir betrachten...

4.2 Prolongation

Bevor wir nun auf die Mehrgittermethoden explizit eingehen, müssen wir uns Gedanken darüber machen, wie wir von einem Gitter auf das andere kommen. Angenommen wir befinden uns auf dem groben Gitter Ω_{2h} , so ist das Ziel auf ein feineres Gitter Ω_h mit wenig Rechenaufwand zu kommen und die Werte aus Ω_{2h} sollten auf Ω_h gut genähert abgebildet werden. Für die Prolongation wählen wir hierfür eine lineare Interpolation.

4.2.1 Interpolationsmatrix

Sei $I_{2h}^h: \Omega_{2h} \longrightarrow \Omega_h$ eine Abbildung mit $I_{2h}^h(u_{2h}) = \mathbf{I}u_{2h} = u_h$, wobei $\mathbf{I} \in \mathbb{R}^{(2\tilde{N}-1)^2 \times \tilde{N}^2}$ und \tilde{N} die Anzahl der Gitterpunkte auf dem groben Gitter. Dabei überführt die Matrix \mathbf{I} Vektoren von Ω_{2h} auf Ω_h . Sie ist *nicht* symmetrisch und kann verschiedene Gestalten haben.

$$\mathbf{I} = \frac{1}{4} \begin{pmatrix} I_1 & & & \\ I_2 & & & \\ & I_1 & & \\ & I_2 & & \\ & & \ddots & \\ & & & I_1 \\ & & & I_2 \end{pmatrix}, \tag{4.6}$$

für $I_1, I_2 \in \mathbb{R}^{(2\tilde{N}-1) \times \tilde{N}}$ gilt folgende Darstellung:

$$\mathbf{I}_{1} = \begin{pmatrix} 4 & & & & \\ 2 & 2 & & & \\ & 4 & & & \\ & 2 & 2 & & \\ & & \ddots & & \\ & & & 4 & & \\ & & & 2 & 2 \\ & & & & 4 \end{pmatrix}, \qquad \mathbf{I}_{2} = \begin{pmatrix} 2 & \dots & 2 & & & \\ 4 & \dots & 4 & & & \\ & 2 & \dots & 2 & & \\ & 4 & \dots & 4 & & \\ & & & \ddots & & & \\ & & & 2 & \dots & 2 & \\ & & & 4 & \dots & 4 & \\ & & & & 2 & \dots & 2 \end{pmatrix}. \qquad (4.7)$$

Wir haben hier die Full-Weighted-Matrix der Interpolation verwendet, da sie die höchste Genauigkeit beim Übergang von Ω_{2h} auf Ω_h besitzt. Sie berücksichtigt bei der Interpolation nicht nur Gitterpunkte, die in Ω_{2h} , sowie in Ω_h , existieren, sondern auch den jeweiligen Nachbarn. Zur Veranschaulichung dient (Abbildung bla). Es geht also in jedes $u_h^{i,j}$ auch der gewichtete Wert aller Nachbarpunkte von $u_{2h}^{i,j}$ des feinen Gitters mit ein.

Beispiel:

$$\mathbf{I}u_{2h}^{i,j} = \frac{1}{4} \begin{pmatrix} I_{1} & & & \\ I_{2} & & & \\ & I_{1} & & \\ & I_{2} & & \\ & & \ddots & \\ & & & I_{1} \\ & & & I_{2} \end{pmatrix} \begin{pmatrix} u_{2h}^{(1)} \\ \vdots \\ \vdots \\ u_{2h}^{(m)} \end{pmatrix} = \begin{pmatrix} u_{h}^{(1)} \\ u_{h}^{(2)} \\ \vdots \\ \vdots \\ u_{h}^{(n-1)} \\ u_{h}^{(n)} \end{pmatrix} = u_{h}^{i,j}. \tag{4.8}$$

Bemerkung:

Für den Fall einer eindimensionalen Poisson Matrix hätte I folgende Darstellung:

$$\mathbf{I} = \frac{1}{2} \begin{pmatrix} 1 & & & & \\ 2 & & & & \\ 1 & 1 & & & \\ & 2 & & & \\ & 1 & & & \\ & & \ddots & & \\ & & & 1 & 1 \\ & & & & 2 \\ & & & & 1 \end{pmatrix}. \tag{4.9}$$

Hier ist $\mathbf{I} \in \mathbb{R}^{N \times \tilde{N}}$.

Für das Umsetzen in Programmcode ist es natürlich ungünstig eine komplette Matrix-Vektor-Multiplikation zu implementieren, zumal eine Matrix dieser Größe enorm viel Speicherplatz erfordert. Aus diesem Grund lässt sich die Interpolation auch in Komponentenschreibweise schreiben:

$$u_h^{2i-1,2j-1} = u_{2h}^{i,j}$$
 $i, j = 1, ..., \tilde{N},$ (4.10)

$$u_h^{2i-1,2j} = \frac{1}{2}(u_{2h}^{i,j} + u_{2h}^{i,j+1})$$
 $i = 1, ..., \tilde{N}; j = 1, ..., \tilde{N} - 1$ (4.11)

$$u_h^{2i,2j-1} = \frac{1}{2}(u_{2h}^{i,j} + u_{2h}^{i+1,j})$$
 $i = 1, ..., \tilde{N} - 1; j = 1, ..., \tilde{N}$ (4.12)

$$u_{h}^{2i-1,2j-1} = u_{2h}^{i,j} \qquad i, j = 1, ..., \tilde{N}, \tag{4.10}$$

$$u_{h}^{2i-1,2j} = \frac{1}{2}(u_{2h}^{i,j} + u_{2h}^{i,j+1}) \qquad i = 1, ..., \tilde{N}; j = 1, ..., \tilde{N} - 1 \tag{4.11}$$

$$u_{h}^{2i,2j-1} = \frac{1}{2}(u_{2h}^{i,j} + u_{2h}^{i+1,j}) \qquad i = 1, ..., \tilde{N} - 1; j = 1, ..., \tilde{N} \tag{4.12}$$

$$u_{h}^{2i,2j} = \frac{1}{4}(u_{2h}^{i,j} + u_{2h}^{i+1,j} + u_{2h}^{i+1,j+1}) \qquad i, j = 1, ..., \tilde{N} - 1 \tag{4.13}$$

Diese Vorschrift lässt sich nun relativ komfortabel und effizient programmieren. Somit ist nun der Übergang vom groben zum feinen Gitter bekannt. Im Folgenden wollen wir auch noch die Gegenrichtung betrachten.

4.3 Restriktion

Sei also $R_h^{2h}:\Omega_h\longrightarrow\Omega_{2h}$ mit $R_h^{2h}(u_h)=\mathbf{R}u_h=u_{2h}$ und $\mathbf{R}\in\mathbb{R}^{\tilde{N}^2\times(2\tilde{N}-1)^2}$. Diese Abbildungsvorschrift nennt man Restriktion. Auch hier gibt es unterschiedliche Methoden, wobei in diesem Abschnitt das Gegenstück zur obigen Interpolation - der Full-Weighting-Operator für die Restriktion - verwendet wird. Auch dieser stellt den exaktesten Übergang zwischen beiden Gittern dar und hat einen speziellen Bezug zu T

$$\mathbf{R} := \frac{1}{4} \mathbf{I}^T \tag{4.14}$$

4.3.1 Restriktionsmatrix

Dadurch ist die Matrixdarstellung gegeben durch:

$$R = \frac{1}{16} \begin{pmatrix} I_1^T & I_2^T & & & \\ & I_1^T & I_2^T & & \\ & & & \ddots & \\ & & & & I_1^T & I_2^T \end{pmatrix}, \tag{4.15}$$

wobei I_1^T , I_2^T die transponierten Matrizen von I_1 , I_2 darstellen.

Beispiel:

$$\mathbf{R}u_{h}^{i,j} = \frac{1}{16} \begin{pmatrix} I_{1}^{T} & I_{2}^{T} & & & \\ & I_{1}^{T} & I_{2}^{T} & & & \\ & & & \ddots & & \\ & & & & I_{1}^{T} & I_{2}^{T} \end{pmatrix} \begin{pmatrix} u_{h}^{(1)} \\ u_{h}^{(2)} \\ \vdots \\ u_{h}^{(n)} \end{pmatrix} = \begin{pmatrix} u_{2h}^{(1)} \\ \vdots \\ u_{2h}^{(m)} \end{pmatrix} = u_{2h}^{i,j}.$$
(4.16)

Und für die Umsetzung in Code benutzen wir die Komponentenschreibweise:

Für ein u_{2h} auf Ω_{2h} gilt:

$$u_{2h}^{i,j} = \frac{1}{16} \left(4u_h^{i,j} + 2(u_h^{i+1,j} + u_h^{i-1,j} + u_h^{i,j+1} + u_h^{i,j+1}) + u_h^{i-1,j-1} + u_h^{i-1,j+1} + u_h^{i+1,j+1} + u_h^{i+1,j-1} \right)$$

$$(4.17)$$

Bemerkung:

Auch hier wollen wir noch die Restriktionsmatrix für den eindimensionalen Fall angeben:

$$\mathbf{R} = \frac{1}{4} \begin{pmatrix} 1 & 2 & 1 & & & \\ & 1 & 2 & 1 & & & \\ & & & \ddots & & \\ & & & 1 & 2 & 1 \end{pmatrix}$$
(4.18)

4.4 Einführung in die Mehrgittermethoden

Bisher haben wir gesehen, dass das Jacobi-Relaxationsverfahren als iteratives Verfahren ungeeignet ist. Allerdings besitzt es die Glättungseigenschaft.

Gauss-Seidel- und Jacobi-Verfahren löschen also hochfrequente Fehler in den ersten Itertionsschritten aus. Um die nieder frequenten Fehler zu reduzieren sind allerdings wesentlich mehr Iterationsschritte notwendig. Auch aus diesem Grund finden beide Verfahren bei der Lösung großer, linearer Gleichungssysteme wenig Anwendung.

Auch wenn die hohe Anzahl an notwendigen Iterationen ein deutlicher Nachteil ist, wollen wir im folgenden die Vorteile dieser Methoden ausnutzen.

Wie in Abschnitt 2.2 gesehen befinden wir uns bei der Diskretisierung der Poisson-Gleichung auf einem Gebiet $\Omega_h=(0,1)^2$ der Schrittweite $h=\frac{1}{n}$. Nach der Ausführung von k-Iterationsschritten von Einzel- oder Gesamtschrittverfahren sind auf diesem Gitter die hochfrequenten Fehler $e^k=u^*-u^k$ verschwunden. Nun berechnet man im k-ten Schritt das Residuum r^k und führt für das äquivalente lineare Gleichungssystem $\mathbf{A}e^k=r^k$, wobei $e^k=0$ gilt, l Iterationsschritte aus. So erhalten wir eine Näherung des Fehlers e^k .

Stellt man Gleichung 4.3 um, berechnet also $e^k + u^k$, so erhält man eine neue Näherung der exakten Lösung.

Kombiniert man dieses Vorgehen nun mit dem Wechsel zwischen zwei Gittern der Gitterweite *h* und 2*h* so erhält man das Zweigitterverfahren:

4.5 Der Zweigitter-Algorithmus

Der Zweigitter-Algorithmus findet in der Praxis zwar wenig Verwendung, allerdings wird die Idee dahinter die Basis für das Mehrgitter-Verfahren sein.

while
$$u^k \neq u^*$$
 pre -smooth Jacobi-/Gauss-Seidel-Steps $calculate\ residual$ $r^k = b - Au^k$ $restrict$ $r^k_{2h} = Rr^k_h$ $\mathbf{A}^{2h} = R\mathbf{A}^hP$ $set\ error$ $e^0_{2h} = 0$ $solve\ direct$ $\mathbf{A}^{2h}e_{2h} = r^k_{2h}$ $prolongate$ $e^k_h = Pe^k_{2h}$ $add\ error$ $u^k_h = u^{k-1}_h + e^k_h$ $smooth\ (optional)$ Jacobi-/Gauss-Seidel-Steps end

Zunächst sei erwähnt, dass das Nachglätten optional ist, allerdings einige Vorteile bietet, auf die wir hier nicht genauer eingehen möchten. Bei der Implementierung sollte also auf Nachglättung geachtet werden.

Der klare Nachteil dieser Methode liegt natürlich im direkten Lösen der Residuumsgleichung. Wählen wir ein sehr feines Gebiet Ω_h mit n=256, also $h=\frac{1}{256}$, so liefert das Gebiet Ω_{2h} immer noch ein Gleichungssystem der Dimension 127². Ein System dieser Ordnung zu lösen erfordert Rechenaufwand, der hier nicht erwünscht ist.

4.6 Der Mehrgitter-Algorithmus

Eine bessere Methode ist, das Gitter immer feiner zu machen, bis das System direkt lösbar ist, um dann wieder auf das feinste Gitter zurück zu kehren. Genauer:

$$\begin{array}{lll} \textbf{Multigrid} \ (u,b) \\ & \textbf{if} \ (finest \ grid) & \text{return} \ u_{finest \ grid} = \textbf{A}^{-1}b \\ & \textbf{else} \\ & pre-smooth & \textbf{Jacobi-/Gauss-Seidel-Steps} \\ & calculate \ residual & r^k = b - Au^k \\ & restrict & r^k_{2h} = Rr^k_h \\ & \textbf{A}^{2h} = R\textbf{A}^hP \\ & recursion & e^k_{2h} = \textbf{Multigrid} \ (0,r^k_{2h}) \\ & prolongate & e^k_h = Pe^k_{2h} \\ & add \ error & u^k_h = u^{k-1}_h + e^k_h \\ & smooth & \textbf{Jacobi-/Gauss-Seidel-Steps} \\ & return \ u_h \\ \end{array}$$

Nun wollen wir die Idee, die wir in Abschnitt 4.5 entwickelt haben formulieren. Hier unterscheiden wir dann zwischen zwei Methoden: dem **V-Zyklus** und dem **W-Zyklus**. Bei einem V-Zyklus wird geht man pro Iterationsschritt vom feinsten zum gröbsten Gitter und zurück (siehe Bild bla). Bei einem W-Zyklus geht man vom feinsten auf das gröbste Gitter über, prolongiert

end

In diesem letzten Kapitel wollen wir die Iterativen-Verfahren, speziell das Verfahren der konjugierten Gradienten, und die Mehrgitterverfahren numerisch vergleichen. Dafür betrachten wir folgende Gleichung:

5.1 Beispiel einer Poisson Gleichung

Seien $f: \Omega \to \mathbb{R}$ und $g: \partial \Omega \to \mathbb{R}$ stetige Funktionen mit f(x,y) = -4. und $g(x,y) = x^2 + y^2$. Sei außerdem $\Omega = (0,1) \times (0,1) \in \mathbb{R}^2$. Gegeben ist das Randwertproblem

$$-\Delta u(x,y) = f(x,y) = -4 \text{ in } \Omega$$
 (5.1)

$$u(x,y) = g(x,y) = x^2 + y^2 \text{ in } \partial\Omega$$
 (5.2)

Gesucht ist eine Funktion u(x,y), die diese Gleichung löst.

Offensichtlich löst der elliptische Paraboloid $u(x,y) = x^2 + y^2$ die partielle Differentialgleichung, da $\partial_{xx}u(x,y) = \partial_{yy}u(x,y) = 2$. Allerdings wollen wir nun diese Lösung auch numerisch erhalten.

Die gewünschte Lösung sollte also folgenden Graphen ergeben:

Zu beachten ist außerdem, dass wir $\Omega_h \in [0,1]$ gewählt haben. Es wird also auch nur das Viertel des Graphen ausgegeben, welches sich im Einheitsquadrat befindet.

5.2 Zur Implementierung in C++

Das gesamte Programm wurde objektorientiert geschrieben, darum ist stets von Methoden und Klassen, nicht von Funktionen die Rede. In den folgenden Beispielen wollen wir zunächst die Lösung der Poisson Gleichung für verschiedene Verfahren betrachten. Dafür werden die jeweiligen Methoden der Klassen ebenfalls dargestellt. Außerdem wollen wir nicht nur die Iterationsschritte genauer betrachten, sondern auch die Rechenzeit.

An manchen Stellen im Code kommt die Vermutung auf, dass es sich um Pseudocode handeln könnte. Dies ist natürlich nicht der Fall. Es wurden lediglich bestimmte Operatoren wie *,+,-,etc. überladen.

5.3 Abbruchkriterien

Um zu verstehen, warum wir Abbruchkriterien benötigen, soll hier ein kurzes Beispiel folgen:

Das CG-Verfahren konvergiert bekanntlich nach maximal n Schritten. Wir brauchen also kein Abbruchkriterium, damit wir die optimale Lösung finden. Angenommen die Dimension der Matrix ist $n=10^6$. Dann werden trotz der schnellen Konvergenz eine große Anzahl an Iterationen benötigt. Im schlimmsten Fall eben 10^6 . Um dies zu vermeiden, lässt man den Algorithmus abbrechen, sobald eine gewisse Toleranzgrenze erreicht ist. In der Praxis schätzt man das k-te Residuum in der A-Norm oder der 2-Norm gegen eine Grenze ab. In diesem Beispiel wählen wir folgenden Ansatz:

$$||u^k - u^*||_2 \le 10^{-3} \cdot ||u^0 - u^*||_2.$$
 (5.3)

Im Allgemeinen ist natürlich die Lösung der partiellen Differentialgleichung nicht bekannt. Hier existiert allerdings die analytische Lösung und wir können das Abbruchkriterium so wählen.

5.4 Lösung der Poisson Gleichung (Jacobi-Verfahren)

Wie wir bereits in Unterabschnitt 3.2.4 gesehen haben, konvergiert das Jacobi-Verfahren nur langsam. Es überrascht darum nicht, dass einige Iterationsschritte nötig sind, um das Gleichungssystem zu lösen. Trotz einer effizienten Programmierung benötigt die Methode viel Rechenzeit. Dies illustriert (Tabelle kommt noch).

N	40	80	160	320
Schritte	2092	8345	33332	133227
Rechenzeit in s	0.45	7.28	120.31	2034.71

Tabelle 5.1: Je größer N wird, desto mehr Iterationsschritte und Rechenaufwand ist zum Lösen der Gleichung nötig.

5.5 Lösung der Poisson Gleichung (Jacobi-Relaxations-Verfahren)

5.5.1 Parameter $\omega = \frac{1}{2}$

N	40	80	160	320
Schritte	4186	16693	66667	133227
Rechenzeit in s	0.88	14.43	237.10	bla

Tabelle 5.2: Je größer N wird, desto mehr Iterationsschritte und Rechenaufwand ist zum Lösen der Gleichung nötig.

5.5.2 Parameter $\omega = \frac{4}{5}$

N	40	80	160	320
Schritte	2615	10432	41666	166534
Rechenzeit in s	0.55	9.00	147.91	3794.98

Tabelle 5.3: Je größer N wird, desto mehr Iterationsschritte und Rechenaufwand ist zum Lösen der Gleichung nötig.

5.6 CG-Verfahren angewandt auf das Beispiel

N	40	80	160	320
Schritte	65	130	262	525
Rechenzeit in s	0.02	0.16	1.35	11.26

Tabelle 5.4: Je größer N wird, desto mehr Iterationsschritte und Rechenaufwand ist zum Lösen der Gleichung nötig.

5.7 PCG-Verfahren angewandt auf das Beispiel

5.7.1 Unvollständige Cholesky-Zerlegung

N	40	80	160	320
Schritte	20	40	79	158
Rechenzeit in s	0.01	0.14	1.1	8.78

Tabelle 5.5: Je größer N wird, desto mehr Iterationsschritte und Rechenaufwand ist zum Lösen der Gleichung nötig.

5.7.2 Modifizierte unvollständige Cholesky-Zerlegung

N	40	80	160	320
Schritte	7	10	13	19
Rechenzeit in s	0.00	0.04	0.21	1.23

Tabelle 5.6: Je größer N wird, desto mehr Iterationsschritte und Rechenaufwand ist zum Lösen der Gleichung nötig.

5.8 Das Mehrgitterverfahren angewandt auf das Beispiel

5.8.1 V-Zyklus

N	32	64	128	256
Schritte	46	97	173	200
Rechenzeit in s	0.05	0.47	3.58	17.72

Tabelle 5.7: Je größer N wird, desto mehr Iterationsschritte und Rechenaufwand ist zum Lösen der Gleichung nötig.

5.8.2 W-Zyklus

N	32	64	128	256
Schritte	2092	8345	33332	133227
Rechenzeit in s	0.45	7.28	120.31	bla

Tabelle 5.8: Je größer N wird, desto mehr Iterationsschritte und Rechenaufwand ist zum Lösen der Gleichung nötig.

Erklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe, dass alle Stellen der Arbeit, die wörtlich oder sinngemäß aus anderen Quellen übernommen wurden, als solche kenntlich gemacht und dass die Arbeit in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegt wurde.

Ort, Datum

Unterschrift