Digital Logic Design

- Basics
- Combinational Circuits

Adapted from the slides prepared by S. Dandamudi for the book, Fundamentals of Computer Organization and Design.

Introduction to Digital Logic Basics

- Hardware consists of a few simple building blocks
 - These are called *logic gates*
 - AND, OR, NOT, ...
 - NAND, NOR, XOR, ...
- Logic gates are built using transistors
 - NOT gate can be implemented by a single transistor
 - AND gate requires 3 transistors
- Transistors are the fundamental devices
 - Pentium consists of 3 million transistors
 - Compaq Alpha consists of 9 million transistors
 - Now we can build chips with more than 100 million transistors

Basic Concepts

- Simple gates
 - AND
 - OR
 - NOT
- Functionality can be expressed by a truth table
 - A truth table lists output for each possible input combination
- Precedence
 - NOT > AND > OR
 - F = A B + A B _ _ = (A (B)) + ((A) B)

AND gate

_ A	В	F
0	0	0
0	1	0
1	0	0
1	1	1

A	7	
В		F

OR gate

A	-	>>-	- F
	-		

NOT gate

Logic symbol

A	В	F
0	0	0
0	1	1
1	0	1
1	1	1

A	F
0	1
1	0

Truth table

Basic Concepts (cont.)

- Additional useful gates
 - NAND
 - NOR
 - XOR
- NAND = AND + NOT
- NOR = OR + NOT
- XOR implements exclusive-OR function
- NAND and NOR gates require only 2 transistors
 - AND and OR need 3 transistors!

NAND gate

U	U	1
0	1	1
1	0	1
1	1	0

A	7	
В		F

NOR gate

A	В	F
0	0	1
0	1	0
1	0	0
_1	1	0

Α	В	F
0	0	0
0	1	1
1	0	1
1	1	0

XOR gate

Logic symbol

Truth table

Basic Concepts (cont.)

Proving NAND gate is universal

Basic Concepts (cont.)

Proving NOR gate is universal

NOT gate

Logic Chips (cont.)

Logic Chips (cont.)

- Integration levels
 - SSI (small scale integration)
 - Introduced in late 1960s
 - 1-10 gates (previous examples)
 - MSI (medium scale integration)
 - Introduced in late 1960s
 - 10-100 gates
 - LSI (large scale integration)
 - Introduced in early 1970s
 - 100-10,000 gates
 - VLSI (very large scale integration)
 - Introduced in late 1970s
 - More than 10,000 gates

Logic Functions

- Logical functions can be expressed in several ways:
 - Truth table
 - Logical expressions
 - Graphical form
- Example:
 - Majority function
 - Output is one whenever majority of inputs is 1
 - We use 3-input majority function

Logic Functions (cont.)

3-input majority function

<u>A</u>	В	С	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

• Logical expression form F = AB + BC + AC

Logical Equivalence

All three circuits implement F = A B function

Logical Equivalence (cont.)

- Proving logical equivalence of two circuits
 - Derive the logical expression for the output of each circuit
 - Show that these two expressions are equivalent
 - Two ways:
 - You can use the truth table method
 - For every combination of inputs, if both expressions yield the same output, they are equivalent
 - Good for logical expressions with small number of variables
 - You can also use algebraic manipulation
 - Need Boolean identities

Logical Equivalence (cont.)

- Derivation of logical expression from a circuit
 - Trace from the input to output
 - Write down intermediate logical expressions along the path

Logical Equivalence (cont.)

Proving logical equivalence: Truth table method

A	В	F1 = A B	F3 = (A + B) (A + B) (A +
В)		
0	0	0	0
0	1	0	0
1	0	0	0
1	1	l 1 l	1

Boolean Algebra

Boolean identities

Name	AND version	OR version
Identity	$\mathbf{x} \cdot 1 = \mathbf{x}$	x + 0 = x
Complement	$\mathbf{x} \cdot \overline{\mathbf{x}} = 0$	$X + \overline{X} = 1$
Commutative	$x \cdot y = y \cdot x$	x + y = y + x
Distribution	$x \cdot (y + z) = xy + xz$	$x + (y \cdot z) =$
		(x+y)(x+z)
Idempotent	$X \cdot X = X$	X + X = X
Null	$\mathbf{x} \cdot 0 = 0$	x + 1 = 1

Boolean Algebra (cont.)

Name	AND version	OR version
Involution	= $X = X$	
Absorption	$x \cdot (x + y) = x$	$x + (x \cdot y) = x$
Associative	$x \cdot (y \cdot z) = (x \cdot y) \cdot z$	x + (y + z) =
		(x+y)+z
de Morgan	$\overline{\mathbf{x}} \cdot \overline{\mathbf{y}} = \overline{\mathbf{x}} + \overline{\mathbf{y}}$	$\overline{x + y} = \overline{x} \cdot \overline{y}$

Logical Expression Simplification

- Algebraic manipulation
 - Use Boolean laws to simplify the expression
 - Difficult to use
 - Don't know if you have the simplified form

Introduction to Combinational Circuits

- Combinational circuits
 - Output depends only on the current inputs
- Combinational circuits provide a higher level of abstraction
 - Help in reducing design complexity
 - Reduce chip count
- We look at some useful combinational circuits

Multiplexers

- Multiplexer
 - 2n data inputs
 - n selection inputs
 - a single output
- Selection input determines the input that should be connected to the output

4-data input MUX

S_1	S_0	0
0	0	I_0
0	1	\mathbf{I}_1
1	0	I_2
1	1	I_3

4-data input MUX implementation

MUX implementations

Majority function

Even-parity function

Example chip: 8-to-1 MUX

Efficient implementation: Majority function

Original truth table

A	В	C	F_1
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

New truth table

A	В	$\overline{F_1}$
0	0	0
0	1	C
1	0	C
1	1	1

Efficient implementation: Majority function

Original truth table

A	В	C	F_1
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

New truth table

A	В	F_1
0	0	0
0	1	C
1	0	C
1	0	С
1	1	1
•	•	•

Demultiplexers

Demultiplexer (DeMUX)

Decoders

Decoder selects one-out-of-N inputs. Decoders are simply a collection of logic gates which are arranged in a specific way so as to breakdown any combination of inputs to a set of terms that are all set to '0' apart from one term.

Adders

- Half-adder
 - Adds two bits
 - Produces a sum and carry
- Full-adder
 - Adds three 1-bit values
 - Like half-adder, produces a sum and carry
 - Allows building N-bit adders
 - Simple technique
 - Connect C_{out} of one adder to C_{in} of the next
 - These are called ripple-carry adders

Adders (cont.)

Α	В	Sum	Cout
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

(a) Half-adder truth table and implementation

A	В	C_{in}	Sum	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

(b) Full-adder truth table and implementation