Lineare Regression

Definition

Gegeben sind Datenpunkte $(x_i;y_i)$ mit $1 \leq i \leq n$. Die Residuen oder Fehler $\epsilon_i = y_i - \underbrace{g(x_i)}_{=\hat{y}_i}$ dieser Datenpunkte sind die Abstände in y-Richtung zwischen den

beobachteten Werten y_i und den durch die lineare Regression prognostizierten Werten $\hat{y}_i = g(x_i)$. Die Ausgleichs- oder Regressionsgerade $g(x) = m \cdot x + d$ (in y-Richtung) ist diejenige Gerade, für die die Summe der quadrierten Residuen $\sum_{i=1}^n \epsilon_i^2$ am kleinsten ist.

Zusammenfassung Regressionsgerade:

Die Regressionsgerade $\ g(x)=m\cdot x+d$ mit den Parametern m und d ist die Gerade, für die die Residualvarianz $\ \tilde{s}_{\epsilon}^{2}$ minimal ist.

Die Regressionsgerade hat die Steigung $m=rac{ ilde{s}_{xy}}{ ilde{s}_x^2}$

und den y -Achsenabschnitt $d=\overline{y}-m\cdot\overline{x}$

Für die zugehörige (minimale) Residualvarianz gilt: $\tilde{s}^2_{\epsilon} = \tilde{s}^2_y - \underbrace{\frac{\tilde{s}^2_{xy}}{\tilde{s}^2_y}}_{=\tilde{s}^2_y}$

mit:

Varianz der x_i -Werte: \tilde{s}_x^2

Varianz. der y_i -Werte (Totale Varianz) : $ilde{s}_y^2$

Varianz der \hat{y}_i -Werte (Prognostizierte Varianz): $\tilde{s}_{\hat{y}}^2$

Kovarianz: $ilde{s}_{xy}$

arithmetische Mittelwerte \overline{x} und \overline{y}

Hinweis: Die Berechnungen können alternativ auch mit den korrigierten Varianzen s_{ϵ}^2 , $|s_x^2, s_y^2, s_{\hat{y}}^2|$ und der korrigierten Kovarianz s_{xy} erfolgen!

Zusammenfassung Bestimmtheitsmass:

Die Totale Varianz setzt sich zusammen aus der Residualvarianz und der Varianz der prognostizierten Werte (Varianzzerlegung):

$$ilde{s}_y^2 = ilde{s}_\epsilon^2 + \underbrace{ ilde{s}_{\hat{y}}^2}_{=rac{ ilde{s}_x^2}{\hat{s}_z^2}}$$

Das $\mathit{Bestimmtheitsmass}\ R^2$ beurteilt die globale Anpassungsgüte einer Regression über den Anteil der prognostizierten (erklärten) Varianz $\tilde{s}_{\hat{y}}^2$ an der totalen Varianz \tilde{s}_y^2 :

$$R^2=rac{ ilde{s}_{\hat{y}}^2}{ ilde{s}_y^2}$$
 bzw. $R^2=rac{s_{\hat{y}}^2}{s_y^2}$

Das Bestimmtheitsmass R^2 stimmt überein mit dem Quadrat des Korrelationskoeffizienten (nach Bravais-Pearson):

$$R^2=rac{ ilde{s}_{xy}^2}{ ilde{s}_x^2 ilde{s}_y^2}=r_{xy}^2$$
 bzw. $R^2=rac{s_{xy}^2}{s_x^2\cdot s_y^2}=r_{xy}^2$

Bestimmung der Regressionsgerade als Matrizenproblem:

Die Parameter
$$m$$
 und d werden mit der Matrix $A=\begin{pmatrix} x_1 & 1 \\ x_2 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{pmatrix}$ aus den folgenden Normalengleichungen berechnet:

$$A^T \cdot A \cdot inom{m}{q} = A^T \cdot inom{y_1}{dots}$$

Die Methode der kleinsten Quadrate (KQM)

Das lineare, inhomogene Gleichungssystem mit m Gleichungen und n Unbekannten x_1, \ldots, x_n

hat immer (mind.) eine Lösung mit einem Residuenvektor $\vec{\epsilon}$ von minimalem Betrag. Diese Lösungen sind Lösungen der Normalengleichungen $A^T \cdot A \cdot \vec{x} = A^T \cdot \vec{y}$. Hat die Matrix A den Rang n, so ist die symmetrische $n \times n$ Matrix $A^T \cdot A$ invertierbar und die einzige Lösung erhält man aus der Gleichung $\vec{x} = (A^T \cdot A)^{-1} \cdot A^T \vec{y}$.

Für die Lösungen \vec{x} gilt immer:

- $A \cdot \vec{x}$ und der Residuenvektor $\vec{\epsilon} = \vec{y} A \cdot \vec{x}$ sind orthogonal zueinander.
- Es gilt der Satz von Pythagoras (Quadratsummenzerlegung):

$$\left|ec{y}
ight|^{2}=\left|A\cdotec{x}
ight|^{2}+\underbrace{\left|ec{y}-A\cdotec{x}
ight|^{2}}_{=\left|ec{\epsilon}
ight|^{2}}$$

Zuletzt geändert: Montag, 11. Dezember 2023, 15:51

Barrierefreiheitserklärung ZHAW Moodle | Feedback zur ZHAW Moodle Barrierefreiheit