$$q(t) = \frac{1}{2}C + \sum_{n=1}^{\infty} a_n sin(2\pi n + t) + \sum_{n=1}^{\infty} b_n cos(2\pi n + t)$$

$$a_n = \frac{2}{T} \int_{0}^{T} q(t) sin(2\pi n + t) dt$$

2). Bandwidth limited signals-
$$ms = \sqrt{a_n^2 + b_n^2}$$

Athenuation = transmitted received

Electromagnetic spectrum:

$$\Delta f = \frac{C \Delta \lambda}{\lambda^2}$$

tigher the bandwidth \Rightarrow higher the data rate $\frac{\Delta f}{t} \ll 1$

Modulation & Demodulation:

Bound rate = samples [sec
$$\Rightarrow$$
 Bound rate = symbol rate Bit rate = $\frac{\text{symbol}}{\text{sec}} \times \frac{\text{bili}}{\text{symbol}}$

Baseband modulation:

Bit ostream = 01001101

Constellation diagrams:

- 1) BPSK phase change by 45°
- 2) 9AM-16 4 phases changed 4 bits, 16 symbols
- 3) 9 AM-64 16 phase change 6 bits, 64 symbols

Net Attenuation loss = 10 log (P2/P,) P2-output power
SNR = ang signal power.
ang noise power
TOUGH POVIAL
Framo sirilo - (NO el elete) y Colonia.
Frame soige = (no. of slots) x (character size + slot address)
Frame duration =
frame rate.
Framing:
Frame delimited by flag bytes -
FLAG Header Payload Field Trailer FLAG
A-FLAG-B => A-ESC-FLAG-B
$A - ESC - B \Rightarrow A - ESC - ESC - B$
A-ESC-FLAG-B => A-ESC-ESC-FLAG-B
A-ESC-ESC-B => A-ESC-ESC-ESC-B
If the total no of bits in a transmittable unit is m+r,
then I must be able to indicate at least m+ r+1 different
states.
$2^{n} \ge m+r+1$
Pure ALOHA:
GZN
$P_{r}(k) = G^k e^{-G} \Rightarrow S = Ge^{-2G}$ \(\text{channel utilisation} = 18%
k! J

Slotted ALDHA:

$$P_0 = e^{-\frac{4}{9}}$$
 ly channel utilisation = 37%.
 $S = \frac{4}{9}$ empty stots = 37% & collision = 26%.

Transmission time > = 2 * propagation time

Frame format for ethernet:

1EE 802.3 ⇒

	destination source length data pad chicksum					
Preamble SE	destination	source	length	data	pad	chicksum
					7	7

Ethernet performance:

A =
$$kp(1-p)^{k-1}$$

A is maximum when $p = 1/k$ with $A \rightarrow 1/e$.

2) contention interval has
$$j$$
 slots $A + (I-A)^{j-1}$

3) mean renumber of slot per contention is $\sum_{j=0}^{\infty} jA(1-A)^{j-1} = \frac{1}{A}$

each slot has duration of QTmean contention interval is W = QT/A.