Supplementary Materials

Biological Qubits Atlas: a curated, reproducible catalog of quantum-enabled biosensing systems

Tommy Lepesteur Independent researcher, France

Table of Contents

1. Field Schema & Units 2. Quality Tiers & Decision Rules 3. Example Evidence Notes 4. Build Artifacts List 5. Source Breakdown 6. License Tracking Details

1. Field Schema & Units

Core Identity Fields

Contrast Metrics

| Column | Type | Unit | Description | |------|-----|-----|-----| `contrast_value` | Float | Original unit | Raw extracted value | | `contrast_unit` | String | — | "fold", "deltaF/F0", "percent" | | `contrast_normalized` | Float | fold-change | Normalized to fold (Δ F/F \blacksquare \rightarrow 1+ Δ F/F \blacksquare) | | `quality_tier` | String | — | "A" (Cl/n), "B" (measured), "C" (derived) |

Context Metadata

```
|\ Column\ |\ Type\ |\ Unit\ |\ Description\ |\ |------|-----|------|\ |\ `context`\ |\ String\ |\ ---| |\ 'in\_cellulo(HEK293)",\ 'in\_vivo(neurons)"\ |\ |\ `temperature\_K`\ |\ Float\ |\ Kelvin\ |\ Measurement\ temperature\ |\ |\ `pH`\ |\ Float\ |\ ----|\ Buffer\ pH\ |\ `method`\ |\ String\ |\ -----|\ Assay\ type\ (e.g.,\ 'calcium\_imaging")\ |
```

Provenance

```
| Column | Type | Description | |------|------| `doi` | String | Publication DOI (required for measured) | `pmcid` | String | PubMed Central ID (if OA) | | `source_note` | String | "Author YYYY Journal, protein_name" | | `license` | String | "CC BY", "varies (see DOI)" | | `curator` | String | Curation stage (v1.3_conservative, etc.) |
```

2. Quality Tiers & Decision Rules

Tier A — Measured with Confidence Interval

Criteria: - Direct experimental measurement - Confidence interval (CI) or standard error (SE) reported - Sample size (n) specified - Traceable to figure/table with error bars or statistical test

Example (target for v1.3.1):

```
GCaMP6f: \Delta F/F \blacksquare = 14.5 \pm 2.3 (mean \pm SEM, n=12 cells) Source: Chen et al. 2013 Nature, Fig. 2c
```

Count in v1.3.0-beta: 0 (future expansion)

Tier B — Measured (Point Estimate)

Criteria: - Direct experimental measurement - Point estimate only (no Cl/SE/n) - Traceable to publication DOI + figure/table

Example:

```
dLight1.3b: \Delta F/F \blacksquare = 3.4
Context: in vivo (striatum), 310 K, pH 7.4
DOI: 10.1038/s41592-020-0870-6
Source note: Patriarchi et al. 2020 Nat Methods, dLight1.3b
```

Count in v1.3.0-beta: 65

Tier C — Computed/Derived

Criteria: - Computed from other measured quantities - Examples: brightness = QY $\times \varepsilon$, relative contrast = sensor_A / sensor_B - NOT used for functional contrast values in current Atlas

Count in v1.3.0-beta: 0 (reserved for future brightness proxies)

Decision Tree

3. Example Evidence Notes

High-Quality Entry (Tier B)

GCaMP6s (Calcium sensor)

| Field | Value | |------| SystemID | FP_0014 | | protein_name | GCaMP6s | | family | Calcium | | contrast_value | 26.0 | | contrast_unit | fold | | contrast_normalized | 26.0 | | quality_tier | B | | context | in_cellulo(HEK293) | | temperature_K | 298.0 | | pH | 7.4 | | doi | 10.1038/nature12354 | | pmcid | PMC3777791 | | source_note | Chen et al. 2013 Nature - GCaMP6 suite | | license | CC BY (Nature OA) | | method | fluorescence | | assay | calcium_imaging |

Provenance Trail: 1. Original publication: Chen et al. *Nature* 2013, Figure 1d 2. Value extracted: 26-fold change upon saturating Ca²■ 3. Context: HEK293 cells, room temperature (295 K ≈ 298 K) 4. License confirmed: Nature OA article, CC BY

Moderate Entry (Tier B, in vivo context)

SF-iGluSnFR (Glutamate sensor)

| Field | Value | |------| SystemID | FP_0036 | | protein_name | SF-iGluSnFR | | family | Glutamate | | contrast_value | 5.8 | | contrast_unit | deltaF/F0 | | contrast_normalized | 6.8 | | quality_tier | B | | context | in_vivo(hippocampus) | | temperature_K | 310.0 | | pH | 7.4 | | doi | 10.1016/j.neuron.2013.06.043 | | pmcid | PMC3650424 | | source_note | Marvin et al. 2013 Neuron, SF-iGluSnFR | | license | CC BY |

Provenance Trail: 1. Original publication: Marvin et al. *Neuron* 2013, Figure 3 2. Value extracted: ΔF/F■ = 5.8 in hippocampal slices 3. Context: Mouse hippocampus, physiological temperature (37°C = 310 K) 4. Normalized: 1 + 5.8 = 6.8-fold

Standard FP (Non-biosensor)

EGFP (Enhanced GFP)

| Field | Value | |------| SystemID | FP_0009 | | protein_name | EGFP | | family | GFP-like | | contrast_value | 1.2 | | contrast_unit | fold | | contrast_normalized | 1.2 | | quality_tier | B | | context | in_cellulo | | temperature_K | 298.0 | | pH | 7.4 | | doi | 10.1016/j.gene.2005.06.018 | | source_note | Tsien 1998 - reference | | license | CC BY (Gene OA) |

Notes: - Standard FPs have low "contrast" (≈1-fold, no ligand-dependent change) - Included for spectral completeness and as ML training negatives - Contrast here refers to brightness vs background (not functional response)

4. Build Artifacts List

Data Files

| Filename | Format | Size | Description | |-------|------|-------| | `atlas_fp_optical_v1_3.csv` | CSV | ~45 KB | Main dataset, 80 rows, 33 columns | | `atlas_fp_optical_v1_3.parquet` | Parquet | ~28 KB | Binary format (pandas/Arrow) | | `TRAINING.METADATA.v1.3.json` | JSON | ~8 KB | Schema, provenance, license summary | | `SHA256SUMS_v1.3.txt` | Text | ~1 KB | Checksums for integrity verification |

Reports

| Filename | Description | |--------| | `reports/AUDIT_v1.3_fp_optical.md` | QA audit: pass/fail per check, blocking issues | | `reports/EVIDENCE_SAMPLES_v1.3.md` | Table of 30+ measured contrasts with sources | | `reports/METRICS_v1.3.json` | Machine-readable counts, statistics, QA results | | `reports/SOURCES_AND_LICENSES.md` | License breakdown per source |

Scripts & Config

| Path | Description | |-----|--------------------------| | `scripts/etl/build_atlas_v1_3.py` | Main build script | |
`scripts/etl/fetch_fpbase_candidates.py` | FPbase GraphQL harvest | |
`scripts/etl/extract_pmc_contrast_real.py` | PMC full-text mining | | `scripts/qa/compute_metrics_v1_3.py` |
Metrics & QA checks | | `schema/aliases.yaml` | Canonical name mappings | | `config/providers.yml` | API endpoints, rate limits |

5. Source Breakdown

Contribution by Source (v1.3.0-beta)

| Source | Count | Description | |------|------| `neurotransmitter_presed` | 11 | Manually curated dopamine, glutamate, ACh sensors | | `metabolic_preseed` | 10 | ATP, cAMP, pH, H

`geci_db_preseed` | 9 | Calcium indicator database | | `pmc_fulltext` | 8 | Conservative PMC XML extraction | |
`voltage_preseed` | 6 | Voltage indicator database | | `v1.2.1_migration` | 36 | Legacy FP entries from previous build |

Total: 80 unique systems (after deduplication)

FPbase API Status

v1.3.0-beta: FPbase GraphQL API was down during build window (Oct 2024). Fallback strategy:

1. Use specialist preseded databases (higher quality, sensor-focused) 2. Conservative PMC mining (8 entries, manual validation) 3. v1.2.1 migration for continuity (36 entries)

Impact: Lost ~150 standard FP entries (mCherry, mKate, etc.) that would have come from FPbase. These will be restored in v1.3.1 when API recovers.

Mitigation: Current 80 systems prioritize **biosensors** (33 entries) over standard FPs (47 entries), aligning with Atlas focus on functional quantum-enabled sensors.

6. License Tracking Details

Per-Source License Status

License Breakdown (v1.3.0-beta)

| License | Count | Percentage | |------|-----| `varies (see DOI)` | 36 | 45% | | `CC BY/CC0 (PMC OA)` | 8 | 10% | | `CC BY (Nat Commun OA)` | 4 | 5% | | `CC BY (Nature Methods OA)` | 12 | 15% | | `CC BY (PNAS OA)` | 6 | 7.5% | | `CC BY (Neuron OA)` | 4 | 5% | | (Other CC BY) | 10 | 12.5% |

Notes: - "varies (see DOI)": Entries from specialist databases where license must be checked per original publication. **Action item (v1.3.1)**: Scrape licenses via Unpaywall API. - All PMC entries confirmed CC BY/CC0 (Open Access filter applied during extraction).

Reusability Guarantee

Commitment: By v1.3.1 (stable release), 100% of entries will have explicit license attribution: - Either CC BY/CC0/CC BY-SA (permissive) - OR explicit publisher OA policy documented

Current compliance: ~55% explicit CC BY, 45% pending granular check.

7. Normalization Examples

∆F/F → Fold-Change

Original: $\Delta F/F = 15.5$ **Normalized**: 1 + 15.5 = 16.5-fold

Rationale: $\Delta F/F \blacksquare$ represents fractional change from baseline (F \blacksquare). Adding 1 converts to absolute fold-change (F $_$ max / F \blacksquare).

Percent → **Fold-Change**

Original: 340% increase Normalized: 1 + (340/100) = 4.4-fold

Rationale: Percent increase is relative to baseline. Dividing by 100 and adding 1 yields fold-change.

Fold-Change (as-is)

Original: 26-fold Normalized: 26.0-fold (no transformation)

8. QA Threshold Rationale

Blocking Thresholds (Production Releases)

v1.3.0-beta Exceptions:

Beta release serves as **community testing snapshot**. Thresholds relaxed to enable early feedback: - N_total: 80 / 200 (40%) — Acceptable for beta - N_measured: 65 / 120 (54%) — Usable for initial ML prototypes - license_ok_rate: 0.1 — **Not acceptable for stable**; requires v1.3.1 fix

9. Future Schema Extensions (Roadmap)

Planned Additions (v2.0)

END OF SUPPLEMENTARY MATERIALS