

Agenda

- 1. Introduction
- 2. Theory
- 3. Implementation & Results
- 4. Future Work

Introduction

- OpenStreetMap (OSM) is an Open Source of geographical data
- Anyone can add, edit, and delete data
 - → varying data quality
- Improve quality by correcting Way names in Denmark

OpenStreetMap

OpenStreetMap Data Format

Data

- Components
 - e.g. Way, Node, and Relation
- Tags (key=value)
 - e.g. *Name*, *Surface*, and *Highway*

OSM: Example of a Way component

Sträcka: Lille Kirkestræde (95745230) ×

Added footways based on SDFE around Hjørring

Redigerades för 10 månader sedan av hyggemap Version #4 · Ändringsset #49978828

Etiketter

highway	residential
name	Lille Kirkestræde

Noder

```
461167737 (del av sträckorna — Vestergade
(93206057) och Vestergade (95745232))
1109781395
4946655758 (del av sträcka ...... 504516286)
461167740
461167742
447560774 (del av sträcka — Nørregade
(25477990))
```

Research Questions

- 1. How to identify misspelled names for Way components?
- 2. How to generate suggestions of a misspelled name?
- 3. How to generate suggestions for ways with missing names?
- 4. Is it possible to find anomalies in the data from names in combination with other tags like max speed?

Approach

Improving Way name data

- 1. Missing Names
- 2. Anomalies
- 3. Misspelled Names

Theory

- Data Understanding
- Evaluation
- Machine Learning

Data Understanding

- Collect and analyze the data (2015-2018)
- Become familiar with data format

Data Understanding: Edit distance

Data Understanding: Problems

- 300/52 000 Way components edited (2015-2018)
 - Less within one edit distance
- Machine Learning requires large amounts of data
- Supervised machine learning requires both true and false cases

Evaluation

- F1 score
 - Harmonized average of precision and recall
 - Precision: measure of exactness or quality whereas
 Recall: measure of completeness or quantity
- Accurate Correction Rate (ACR)
 - CI: Corrections introduced
 - EI: Errors introduced

$$ACR = \frac{CI}{EI + CI}$$

Machine Learning

XGBoost

- Ensemble Learning
- Multiple Decision Trees built together sequentially

http://statweb.stanford.edu/~jhf/ftp/trebst.pdf

Deep Learning

- Neural Networks
- Autoencoder
- Sequence-2-Sequence
- Bidirectional Recurrent Neural Networks

Neural Network (NN)

- Tries to mimic the mammalian neurons
- Can either pass forward signal or "keep closed"
- Weights itself during training

Autoencoder

- Finds a structure in the data
- Unsupervised

Sequence-2-Sequence

- Makes undefined sequences possible
- Great for natural language
- Recurrent Neural Network (RNN) architecture

Bidirectional RNN

Gives future context

(a) (b)

Structure overview

- (a) unidirectional RNN
- (b) bidirectional RNN

Implementation

- 1. Missing Names
- 2. Anomalies
- 3. Misspelled Names

Missing Names

- Simple algorithmic solution
 - Graph and Label continuity
- Two cases caught
 - Small Tail
 - In-Between

Small Tail

In Between

Missing Names: Results

- # instances = 6,066,646
- # name suggestions = 756,245
- ~12.5 %
- Results when manually inspecting 50 random instances:

Error: 34

No Error: 16

Anomalies

- Name + Tags = True or False
- End system makes use of heuristic
- Andersgade + 130 km/h = True (most likely)
 - Expand upon this concept with more tags

Results

XG-Boost achieves 0.91 F1-score RNN achieves 0.9 F1-score

Why tokenize?

T	3	81,802	81,805
\mathbf{F}	2	81,728	81,730
	5	163,530	163,535

T	72,212	9,593	81,805
\mathbf{F}	6,339	75,391	81,730
	78,551	84,984	163,535

On todays OSM:

~20k/330k (6%)

~6k/330k (2%)

RNN is more selective

Misspelled Names

- We believed the problem to be a translation problem
 - Take misspelled words to well spelled
- Translation tasks have had great success using Sequence-2-Sequence
- Character-2-Character

Misspelled Names

- We aimed for modularity
 - This was done by not including language dependant heuristics
- Corpus from Det Danske Sprog- og Litteraturselskab
 - Wikipedia dump also works
- OpenStreetMap data

Problems

- No language context
 - I'm **goint** to school...
 - A **goint** venture is a business...
- Compounding language
 - Christian + vej → Christian**s**vej
- High quality data
 - Not nearly enough of data
 - Experiment for gathering misspellings

Comparison of edits

OSM change data

Experiment data

SymSpell

- Symmetric Delete Spell Correction Algorithm
- Language independent spell correction

Originally implemented by Wolf Garbe (https://github.com/wolfgarbe, C#)

Results on Test Data

	ACR
SymSpell	0.1348
RNN Baseline	0.0086
RNN Autoencoder	0.5143
BRNN Autoencoder	0.6363
BRNN Autoencoder + SymSpell	0.6949

$$ACR = \frac{CI}{EI + CI}$$

Results on Estonia

	ACR	F_1
SymSpell	0.36	
BRNN Autoencoder (dk_alphabet)	0.85	0.983
BRNN Autoencoder (et_alphabet)	0.88	0.986

Results on Today's OSM

	F_1	ACR	EI	CI	FC
BiRNN Autoencoder 1	0.97	0.004	1653	7	73
BiRNN Autoencoder 2	0.98	0.011	93	1	42
BiRNN Autoencoder 3	0.99	0.167	5	1	3

BiRNN Autoencoder 1: 50% artificially noised names. BiRNN Autoencoder 2: 0% artificially noised names. BiRNN Autoencoder 3: 5% artificially noised names.

Demo

Future Work

- Generate or find a better data set to work from
- Add Meta information
 - Such as entity-recognition and geographical knowledge
- Make use of history

1. We have created an algorithm that fills ~9 % of all Missing Names correct

- We have created an algorithm that fills ~9 % of all Missing Names correct
- 2. We have built a neural network that has learned to identify anomalies and can forward them to a manual editor with an F1-score of 90%
 - a. Completely without natural data

- We have created an algorithm that fills ~9 % of all Missing Names correct
- 2. We have built a neural network that has learned to identify anomalies and can forward them to a manual editor with an F1-score of 90%
 - a. Completely without natural data
- 3. We have shown that neural networks:
 - a. Can learn how to correct Way names without context
 - b. Can learn a language model
 - c. Data is a big problem but can be solved with time

- We have created an algorithm that fills ~9 % of all Missing Names correct
- 2. We have built a neural network that has learned to identify anomalies and can forward them to a manual editor with an F1-score of 90%
 - a. Completely without natural data
- 3. We have shown that neural networks:
 - a. Can learn how to correct Way names without context
 - b. Can learn a language model
 - c. Data is a big problem but can be solved with time

Hard to do any real conclusions as data is a problem

Questions?