

Lista de ejercicios de la lección 4.2

Serie de Taylor y de McLaurin

Instrucciones. Determinar la serie de Taylor de cada función en el punto indicado.

1.
$$f(x) = \ln x$$
 en $a = 2$ 6. $f(x) = \log_3 x$ en $a = 1$

6.
$$f(x) = \log_3 x \text{ en } a = 1$$

2.
$$f(x) = \frac{1}{x}$$
 en $a = 1$ 7. $f(x) = \sqrt{x}$ en $a = 4$

7.
$$f(x) = \sqrt{x} \text{ en } a = 4$$

3.
$$f(x) = e^x \text{ en } a = 3$$

3.
$$f(x) = e^x$$
 en $a = 3$ 8. $f(x) = \sin x$ en $a = \frac{\pi}{4}$

4.
$$f(x) = e^{-2x}$$
 en $a = 2$

4.
$$f(x) = e^{-2x}$$
 en $a = 2$ 9. $f(x) = \cos x$ en $a = -\frac{\pi}{4}$

5.
$$f(x) = 3^x \text{ en } a = 1$$

Determinar la serie de MacLaurin de las siguientes funciones.

10.
$$f(x) = \sin x$$

10.
$$f(x) = \sin x$$
 13. $f(x) = \sin 2x$ 16. $f(x) = \sinh x$

16.
$$f(x) = \sinh x$$

$$11. \ f(x) = \cos x$$

11.
$$f(x) = \cos x$$
 14. $f(x) = (1+x)^{-3}$ 17. $f(x) = \cosh x$

$$17. \ f(x) = \cosh x$$

$$12. \ f(x) = \cos 2x$$

12.
$$f(x) = \cos 2x$$
 15. $f(x) = \ln (1+x)$