EXAMEN DE CÁLCULO. PRIMER CONTROL GRADO EN INGEN. INFORM. DEL SOFTWARE. 11-11-2019 (9-10:30)

Cada pregunta tipo test mal contestada penaliza 0.3. En el resto de preguntas se ha de contestar razonadamente. Cualquier resultado, no trivial, no visto en clase o en el material presentado en el Campus Virtual se ha de justificar; en caso contrario, no se valorará. No está permitido usar calculadora.

1) Sean $f(x) = \sqrt{x^2 - 1}$ y $g(x) = \frac{1}{x^2}$. El dominio de la función compuesta $g \circ f$ es:

a)
$$(1, +\infty)$$
 , b) $R - [-1, 1]$, c) $R - \{1, -1\}$, d) $R - (-1, 1)$ (1.25 p.)

- 2) Sea $D = (0, +\infty)$ el dominio de una función f que es continua en $D \{2\}$, siendo la discontinuidad esencial de salto finito. Si f tiene una asíntota horizontal y otra vertical, se verifica:
- a) f no es acotada ni superiormente ni inferiormente en D b) f es acotada en D
- c) f es acotada o superiormente o inferiormente en D d) f tiene una asíntota oblicua (1.25 p.)
- a) Definir, con rigor matemático, cuando una función f es estrictamente creciente en un dominio D y cuando es inyectiva en D.
- b) Razonar la certeza o falsedad de la afirmación siguiente. Si f es una función inyectiva en un dominio D entonces f es estrictamente creciente o bien estrictamente decreciente en D.
- c) Determinar, usando una consecuencia del teorema de Rolle, el número máximo de ceros reales de la función $f(x) = -3 + x + \frac{8}{x^4}$ definida en $R \{0\}$.

(0.7 p.+0.8 p.+1 p.)

- 4) Sea $f(x) = \log(1-|x|+x^2)$ definida en el intervalo [-1,1].
- a) Estudiar la derivabilidad lateral de f en el 0, usando las definiciones correspondientes y sin aplicar la regla de L'Hopital. Obtener f'(x) $\forall x \in (-1,1)$ donde f sea derivable.
- b) Determinar, de forma razonada, todos los puntos críticos de f en [-1,1] ¿Existe $m = \min_{x \in [-1,1]} f(x)$? ¿Existe $M = \max_{x \in [-1,1]} f(x)$? Obtenerlos, en su caso ¿quién es el conjunto imagen de f definida en [-1,1]? (1.5 p.+1.5 p.)
- a) Razonar si la sucesión $\{a_n\} = \frac{n+1}{\sqrt{n^3+4}} \cdot \cos(n^2+3)$ es convergente, divergente u oscilante. Obtener el límite en su caso.
- b) Sea $\{a_n\}=\frac{1}{\sqrt{n^2+1}}+\frac{2}{\sqrt{n^2+2}}+\ldots+\frac{n}{\sqrt{n^2+n}}$. Usar el teorema de la sucesión intermedia para calcular, de manera razonada, el límite de $\{a_n\}$.

(0.75 p.+1.25 p.)

EXAMEN DE CÁLCULO. PRIMER CONTROL GRADO EN INGEN. INFORM. DEL SOFTWARE. 11-11-2019 (10:30-12)

Cada pregunta tipo test mal contestada penaliza 0.3. En el resto de preguntas se ha de contestar razonadamente. Cualquier resultado, no trivial, no visto en clase o en el material presentado en el Campus Virtual se ha de justificar; en caso contrario, no se valorará. No está permitido usar calculadora.

1) Sean $f(x) = \sqrt{x^2 - 1}$ y $g(x) = \frac{1}{x^2}$. El dominio de la función compuesta $g \circ f$ es:

a)
$$(1, +\infty)$$
 , b) $R - \{1, -1\}$, c) $R - [-1, 1]$, d) $R - (-1, 1)$ (1.25 p.)

- 2) Sea $D = (0, +\infty)$ el dominio de una función f que es continua en $D \{2\}$, siendo la discontinuidad esencial de salto finito. Si f tiene una asíntota horizontal y otra vertical, se verifica:
 - a) f es acotada o superiormente o inferiormente en D b) f es acotada en D
- c) f no es acotada ni superiormente ni inferiormente en D d) f tiene una asíntota oblicua (1.25 p.)
- 3) a) Definir, con rigor matemático, cuando una función f es estrictamente creciente en un dominio D y cuando es inyectiva en D.
- b) Razonar la certeza o falsedad de la afirmación siguiente. Si f es una función inyectiva en un dominio D entonces f es estrictamente creciente o bien estrictamente decreciente en D.
- c) Determinar, usando una consecuencia del teorema de Rolle, el número máximo de ceros reales de la función $f(x) = -3 + x + \frac{8}{x^4}$ definida en $R \{0\}$.

(0.7 p.+0.8 p.+1 p.)

- 4) Sea $f(x) = \log(1-|x|+x^2)$ definida en el intervalo [-1,1].
- a) Estudiar la derivabilidad lateral de f en el 0, usando las definiciones correspondientes y sin aplicar la regla de L'Hopital. Obtener f'(x) $\forall x \in (-1,1)$ donde f sea derivable.
- b) Determinar, de forma razonada, todos los puntos críticos de f en [-1,1] ¿Existe $m = \min_{x \in [-1,1]} f(x)$? ¿Existe $M = \max_{x \in [-1,1]} f(x)$? Obtenerlos, en su caso ¿quién es el conjunto imagen de f definida en [-1,1]? (1.5 p.+1.5 p.)
- 5)
 a) Razonar si la sucesión $\{a_n\} = \frac{n+1}{\sqrt{n^3+4}} \cdot \cos(n^2+3)$ es convergente, divergente u oscilante. Obtener el límite en su caso.
- b) Sea $\{a_n\}=\frac{1}{\sqrt{n^2+1}}+\frac{2}{\sqrt{n^2+2}}+\ldots+\frac{n}{\sqrt{n^2+n}}$. Usar el teorema de la sucesión intermedia para calcular, de manera razonada, el límite de $\{a_n\}$.

(0.75 p.+1.25 p.)

EXAMEN DE CÁLCULO. PRIMER CONTROL GRADO EN INGEN. INFORM. DEL SOFTWARE. 11-11-2019 (11-12:30)

Cada pregunta tipo test mal contestada penaliza 0.3. En el resto de preguntas se ha de contestar razonadamente. Cualquier resultado, no trivial, no visto en clase o en el material presentado en el Campus Virtual se ha de justificar; en caso contrario, no se valorará. No está permitido usar calculadora.

1) Sean $f(x) = \sqrt{x^2 - 4}$ y $g(x) = \frac{4}{x^2}$. El dominio de la función compuesta $g \circ f$ es:

a)
$$(2, +\infty)$$
 , b) $R - (-2, 2)$, c) $R - \{2, -2\}$, d) $R - [-2, 2]$ (1.25 p.)

- 2) Sea f una función definida y continua en $D = (0, +\infty)$ tal que $f(x) > 0 \quad \forall x \in D$. Si f tiene una asíntota horizontal y otra vertical, se verifica:
- a) f no es acotada ni superiormente ni inferiormente en D b) f es acotada en D
- c) f es acotada superiormente y no inf. en D d) f es acotada inferiormente y no sup. en D (1.25 p.)
- a) Definir, con rigor matemático, cuando una función f es estrictamente decreciente en un dominio D y cuando es acotada inferiormente en D.
- b) Razonar la certeza o falsedad de la afirmación siguiente. Si f es una función estrictamente decreciente en $(-\infty,1)$ y en $(1,\infty)$ entonces f también es estrictamente decreciente en $(-\infty,1)\cup(1,\infty)$.
- c) Determinar, usando una consecuencia del teorema de Rolle, el número máximo de ceros reales de la función $f(x) = 5 2x \frac{2}{3x^3}$ definida en $R \{0\}$.

4) Sea $f(x) = \log\left(1 + |x| - \frac{x^2}{2}\right)$ definida en el intervalo [-2, 2].

- a) Estudiar la derivabilidad lateral de f en el 0, usando las definiciones correspondientes y sin aplicar la regla de L'Hopital. Obtener f'(x) $\forall x \in (-2,2)$ donde f sea derivable.
- b) Determinar, de forma razonada, todos los puntos críticos de f en [-2,2] ¿Existe $m = \min_{x \in [-2,2]} f(x)$? ¿Existe $M = \max_{x \in [-2,2]} f(x)$? Obtenerlos, en su caso ¿quién es el conjunto imagen de f definida en [-2,2]? (1.5 p.+1.5 p.)

5)
a) Razonar si la sucesión $\{a_n\} = (2 + (-1)^n) \cdot \frac{\sqrt{n^3 + 4}}{n+1}$ es convergente, divergente u oscilante. Obtener el límite en su caso.

b) Sea $\{a_n\}=\frac{1}{n^2+1}+\frac{2}{n^2+2}+\ldots+\frac{n}{n^2+n}$. Usar el teorema de la sucesión intermedia para calcular, de manera razonada, el límite de $\{a_n\}$.

(0.75 p.+1.25 p.)

(0.7 p.+0.8 p.+1 p.)

EXAMEN DE CÁLCULO. PRIMER CONTROL GRADO EN INGEN. INFORM. DEL SOFTWARE. 11-11-2019 (13-14:30)

Cada pregunta tipo test mal contestada penaliza 0.3. En el resto de preguntas se ha de contestar razonadamente. Cualquier resultado, no trivial, no visto en clase o en el material presentado en el Campus Virtual se ha de justificar; en caso contrario, no se valorará. No está permitido usar calculadora.

1) Sean $f(x) = \sqrt{4 - x^2}$ y $g(x) = \frac{4}{x^2}$. El dominio de la función compuesta $g \circ f$ es:

a)
$$(-\infty, 2)$$
 , b) $(-2, 2)$, c) $R - \{2, -2\}$, d) $[-2, 2]$ (1.25 p.)

- 2) Sea f una función definida y continua en $D = (-\infty, 0)$ tal que $f(x) < 0 \quad \forall x \in D$. Si f tiene una asíntota horizontal y otra vertical, se verifica:
- a) f no es acotada ni superiormente ni inferiormente en D b) f es acotada en D
- c) f es acotada superiormente y no inf. en D d) f es acotada inferiormente y no sup. en D (1.25 p.)
- a) Definir, con rigor matemático, cuando una función f es estrictamente creciente en un dominio D y cuando es acotada superiormente en D.
- b) Razonar la certeza o falsedad de la afirmación siguiente. Si f es una función estrictamente creciente en $(-\infty,0)$ y en $(0,\infty)$ entonces f también es estrictamente creciente en $(-\infty,0)\cup(0,\infty)$.
- c) Determinar, usando una consecuencia del teorema de Rolle, el número máximo de ceros reales de la función $f(x) = 2 x \frac{1}{3x^3}$ definida en $R \{0\}$.

4) Sea $f(x) = \log\left(1 - |x| + \frac{x^2}{2}\right)$ definida en el intervalo [-2, 2].

5)

- a) Estudiar la derivabilidad lateral de f en el 0, usando las definiciones correspondientes y sin aplicar la regla de L'Hopital. Obtener f'(x) $\forall x \in (-2,2)$ donde f sea derivable.
- b) Determinar, de forma razonada, todos los puntos críticos de f en [-2,2] ¿Existe $m = \min_{x \in [-2,2]} f(x)$? ¿Existe $M = \max_{x \in [-2,2]} f(x)$? Obtenerlos, en su caso ¿quién es el conjunto imagen de f definida en [-2,2]? (1.5 p.+1.5 p.)

a) Razonar si la sucesión $\{a_n\} = (-1)^n - 2$). $\frac{\sqrt{n^5 + 3}}{n^2 + 1}$ es convergente, divergente u oscilante. Obtener el límite en su caso.

b) Sea $\{a_n\}=\frac{1}{2n^2+1}+\frac{2}{2n^2+2}+...+\frac{n}{2n^2+n}$. Usar el teorema de la sucesión intermedia para calcular, de manera razonada, el límite de $\{a_n\}$.

(0.75 p.+1.25 p.)

(0.7 p.+0.8 p.+1 p.)