Restrictions sur l'algèbre des endomorphismes d'une jacobienne hyperelliptique

Pip Goodman

Jacobiennes

Soit C une courbe (lisse, irréductible, projective), on peut y associer une variété abélienne, $\mathrm{Jac}(C)$ appelée la jacobienne de C.

De plus, pour chaque morphisme $C \to C'$, on en obtient un autre entre les jacobiennes $\mathrm{Jac}(C) \to \mathrm{Jac}(C')$.

Jacobiennes

Soit C une courbe (lisse, irréductible, projective), on peut y associer une variété abélienne, $\operatorname{Jac}(C)$ appelée la jacobienne de C.

De plus, pour chaque morphisme $C \to C'$, on en obtient un autre entre les jacobiennes $\mathrm{Jac}(C) \to \mathrm{Jac}(C')$.

Soient K un corps de nombres et $f \in K[x]$ une polynôme de degré 2g+1 ou 2g+2 avec des racines distinctes.

Alors l'équation $y^2=f(x)$ détermine une courbe de genre g.

On appelle une telle courbe hyperelliptique.

Notation

On écrit J_f pour la jacobienne d'une courbe hyperelliptique.

Notations

Représentations galoisennes

ℓ-torsion

Soit ℓ un nombre premier, on a une représentation

$$G_K := \operatorname{Gal}(\bar{K}/K) \to \operatorname{Aut}(J_f[\ell]).$$

Où $J_f[\ell]$ désigne les points d'ordre ℓ dans $J(\bar{K})$. Il est un espace vectoriel de dimension 2g sur \mathbb{F}_ℓ .

On a $K(J_f[2]) = K(f)$, le corps de décomposition de f.

Représentations galoisennes

ℓ-torsion

Soit ℓ un nombre premier, on a une représentation

$$G_K := \operatorname{Gal}(\bar{K}/K) \to \operatorname{Aut}(J_f[\ell]).$$

Où $J_f[\ell]$ désigne les points d'ordre ℓ dans $J(\bar{K})$. Il est un espace vectoriel de dimension 2g sur \mathbb{F}_ℓ .

On a $K(J_f[2]) = K(f)$, le corps de décomposition de f.

Question

Y a-t-il un rapport entre $\operatorname{End}(J_f)$ et les représentations ci-dessus / les corps $K(J_f[\ell])$?

En général, K(f) n'a rien à voir avec $\operatorname{End}(J_f)$. Par exemple :

1
$$f(x) = (x+1)(x^4 + x^3 + x^2 + x + 1)$$
, a End $(J_f) \cong \mathbb{Z}$.

$$f(x) = x(x^4 + x^3 + x^2 + x + 1)$$
, a $\operatorname{End}(J_f) \cong \mathbb{Z} \times \mathbb{Z}$.

3
$$f(x) = (x-1)(x^4 + x^3 + x^2 + x + 1)$$
, a $\operatorname{End}(J_f) \cong \mathbb{Z}[\zeta_5]$.

Théorème (Serre '72)

Soit E/K une courbe elliptique avec $\operatorname{End}(E) \cong \mathbb{Z}$. Alors, pour presque tout nombres premiers ℓ , on a $\operatorname{Gal}(K(E[\ell])/K) = \operatorname{GL}_2(\mathbb{F}_\ell)$.

Théorème (Hall '08)

Soit $C_f: y^2=f(x)$, où $\deg(f)=2g+1$. Soit $J_f=\operatorname{Jac}(C_f)$. Supposons que $\operatorname{End}(J_f)\cong \mathbb{Z}$, et f a une racine double modulo un nombre premier p. Alors, pour presque tout nombre premier ℓ , on a $\operatorname{Gal}(K(J_f[\ell])/K)=\operatorname{GSp}_{2g}(\mathbb{F}_\ell)$.

Théorème (Zarhin '00)

Soit $f \in K[x]$ un polynôme de degré $n \geq 5$ tel que son groupe de Galois contient A_n Alors l'anneau des endomorphismes de J_f est trivial.

Remarque

Il suffit de démontrer le résultat pour A_n

Théorème (Serre '72)

Soit E/K une courbe elliptique avec $\operatorname{End}(E) \cong \mathbb{Z}$. Alors, pour presque tout nombres premiers ℓ , on a $\operatorname{Gal}(K(E[\ell])/K) = \operatorname{GL}_2(\mathbb{F}_\ell)$.

Théorème (Hall '08)

Soit $C_f: y^2 = f(x)$, où $\deg(f) = 2g + 1$. Soit $J_f = \operatorname{Jac}(C_f)$. Supposons que $\operatorname{End}(J_f) \cong \mathbb{Z}$, et f a une racine double modulo un nombre premier p. Alors, pour presque tout nombre premier ℓ , on a $\operatorname{Gal}(K(J_f[\ell])/K) = \operatorname{GSp}_{2g}(\mathbb{F}_{\ell})$.

Théorème (Zarhin '00)

Soit $f \in K[x]$ un polynôme de degré $n \geq 5$ tel que son groupe de Galois contient A_n Alors l'anneau des endomorphismes de J_f est trivial.

Remarque

Il suffit de démontrer le résultat pour A_n

Théorème (Serre '72)

Soit E/K une courbe elliptique avec $\operatorname{End}(E) \cong \mathbb{Z}$. Alors, pour presque tout nombres premiers ℓ , on a $\operatorname{Gal}(K(E[\ell])/K) = \operatorname{GL}_2(\mathbb{F}_\ell)$.

Théorème (Hall '08)

Soit $C_f: y^2 = f(x)$, où $\deg(f) = 2g + 1$. Soit $J_f = \operatorname{Jac}(C_f)$. Supposons que $\operatorname{End}(J_f) \cong \mathbb{Z}$, et f a une racine double modulo un nombre premier p. Alors, pour presque tout nombre premier ℓ , on a $\operatorname{Gal}(K(J_f[\ell])/K) = \operatorname{GSp}_{2g}(\mathbb{F}_{\ell})$.

Théorème (Zarhin '00)

Soit $f \in K[x]$ un polynôme de degré $n \geq 5$ tel que son groupe de Galois contient A_n Alors l'anneau des endomorphismes de J_f est trivial.

Remarque

Il suffit de démontrer le résultat pour A_n

Théorème (Serre '72)

Soit E/K une courbe elliptique avec $\operatorname{End}(E) \cong \mathbb{Z}$. Alors, pour presque tout nombres premiers ℓ , on a $\operatorname{Gal}(K(E[\ell])/K) = \operatorname{GL}_2(\mathbb{F}_\ell)$.

Théorème (Hall '08)

Soit $C_f: y^2 = f(x)$, où $\deg(f) = 2g + 1$. Soit $J_f = \operatorname{Jac}(C_f)$. Supposons que $\operatorname{End}(J_f) \cong \mathbb{Z}$, et f a une racine double modulo un nombre premier p. Alors, pour presque tout nombre premier ℓ , on a $\operatorname{Gal}(K(J_f[\ell])/K) = \operatorname{GSp}_{2g}(\mathbb{F}_{\ell})$.

Théorème (Zarhin '00)

Soit $f \in K[x]$ un polynôme de degré $n \geq 5$ tel que son groupe de Galois contient A_n . Alors l'anneau des endomorphismes de J_f est trivial.

Remarque

Il suffit de démontrer le résultat pour A_n .

Règles du jeu

Théorème (Zarhin '00)

Soit $f \in K[x]$ un polynôme de degré $n \geq 5$ tel que son groupe de Galois contient A_n . Alors l'anneau des endomorphismes de J_f est trivial.

Remarque

Il suffit de démontrer le résultat pour A_n .

Pour J_f/K , on a :

- End(J_f) est un \mathbb{Z} -module libre de rang $< 4g^2$.
- Les idempotents dans $\operatorname{End}(J_f)$ donnent lieu à des idempotents dans $\operatorname{End}(J_f) \otimes \mathbb{Z}/2\mathbb{Z}$.
- $G_K = \operatorname{Gal}(\bar{K}/K)$ agit sur $\operatorname{End}(J_f)$ par conjugaison.
- $\operatorname{End}(J_f) \otimes \mathbb{Z}/2\mathbb{Z}$ est une sous-algèbre de $\operatorname{End}(J_f[2])$.

Qu'est-ce que l'on peut dire pour des groupes de Galois plus petits?

Zarhin a énormément travaillé là-dessus quand le groupe de Galois est grand et non-résoluble. Le "plus petit" qu'il a regardé est le suivant :

Théorème (Elkin, Zarhin '06,'08)

Soit n=q+1, où $q\geq 5$ est une puissance d'un nombre premier et est congru à ± 3 ou 7 modulo 8. Supposons que $f(x)\in K[x]$ de degré n soit irréductible et $\mathrm{Gal}(f)\cong\mathrm{PSL}_2(\mathbb{F}_q)$. Alors, une des suivantes est vraie :

- End⁰ $(J_f) = \mathbb{Q}$ ou un corps quadratique.
- $q \equiv 3 \mod 4$ et $\operatorname{End}^0(J_f) \cong M_g(\mathbb{Q}(\sqrt{-q})).$

Un résultat de Lombardo

Théorème (Lombardo '19)

Soit $f \in K[x]$ un polynôme irréductible de degré 5. Alors $\operatorname{End}^0(J_f)$ est une algèbre à division.

Peut-on améliorer le résultat de Lombardo?

Exemple

Il est facile de trouver des jacobiennes J_f avec $\operatorname{End}(J_f)\cong \mathbb{Z}$, donc voici d'autres exemples.

Gal(f)	$\operatorname{End}(J_f)$	f(x)
$\overline{F_5}$	$\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$	$x^5 + 10x^3 + 20x + 5$
F_5	$\mathbb{Z}[ilde{\zeta_5}]$	$x^{5}-2$

où R est l'ordre maximal d'un corps de nombre à CM, défini par le polynôme $x^4 + x^3 + 2x^2 - 4x + 3$. On note que ce corps est cyclique ramifié seulement à 13, e 2 est totalement inerte.

On note aussi que lorsque $\operatorname{Gal}(f) \cong F_5$ et J_f est à CM, $\operatorname{End}^0(J_f)$ est isomorphe à l'unique extension de degré 4 de $\mathbb Q$ contenu dans $\mathbb Q(f)$.

Peut-on améliorer le résultat de Lombardo?

Exemple

Il est facile de trouver des jacobiennes J_f avec $\operatorname{End}(J_f)\cong \mathbb{Z}$, donc voici d'autres exemples.

Gal(f)	$\operatorname{End}(J_f)$	f(x)
F_5	$\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$	$x^5 + 10x^3 + 20x + 5$
F_5	$\mathbb{Z}[ar{\zeta_5}]$	$x^5 - 2$
D_5	$\mathbb{Z}\left[\frac{1+\sqrt{13}}{2}\right]$	$x^5 - 19x^4 + 107x^3 + 95x^2 + 88x - 16$
F_5	R	$52x^5 + 104x^4 + 104x^3 + 52x^2 + 12x + 1$

où R est l'ordre maximal d'un corps de nombre à CM, défini par le polynôme $x^4+x^3+2x^2-4x+3$. On note que ce corps est cyclique ramifié seulement à 13, et 2 est totalement inerte.

On note aussi que lorsque $\operatorname{Gal}(f) \cong F_5$ et J_f est à CM, $\operatorname{End}^0(J_f)$ est isomorphe à l'unique extension de degré 4 de $\mathbb Q$ contenu dans $\mathbb Q(f)$.

Peut-on améliorer le résultat de Lombardo?

Exemple

Il est facile de trouver des jacobiennes J_f avec $\operatorname{End}(J_f)\cong \mathbb{Z}$, donc voici d'autres exemples.

Gal(f)	$\operatorname{End}(J_f)$	f(x)
F_5	$\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$	$x^5 + 10x^3 + 20x + 5$
F_5	$\mathbb{Z}[ar{\zeta_5}]$	$x^5 - 2$
D_5	$\mathbb{Z}\left[\frac{1+\sqrt{13}}{2}\right]$	$x^5 - 19x^4 + 107x^3 + 95x^2 + 88x - 16$
F_5	R	$52x^5 + 104x^4 + 104x^3 + 52x^2 + 12x + 1$

où R est l'ordre maximal d'un corps de nombre à CM, défini par le polynôme $x^4 + x^3 + 2x^2 - 4x + 3$. On note que ce corps est cyclique ramifié seulement à 13, et 2 est totalement inerte.

On note aussi que lorsque $\operatorname{Gal}(f) \cong F_5$ et J_f est à CM, $\operatorname{End}^0(J_f)$ est isomorphe à l'unique extension de degré 4 de $\mathbb Q$ contenu dans $\mathbb Q(f)$.

Genre 2

Théorème (G. '21)

Soit $f(x) \in K[x]$ un polynôme de degré 5 ou 6, et supposons que $\operatorname{Gal}(f)$ contient un élément d'ordre 5. Alors, l'une des assertions suivantes est vérifiée :

- I End $(J_f) \cong \mathbb{Z}$.
- $extbf{2} \operatorname{End}(J_f) \cong \mathbb{Z}\left[rac{1+r\sqrt{D}}{2}
 ight]$, où $D \equiv 5 \mod 8$, D > 0 et $2 \nmid r$.
- $\operatorname{End}(J_f)\cong R$, où R est un ordre maximal à 2 dans un corps à CM de degré 4, qui de plus est totalement inerte à 2.

Remarque

En précisant Gal(f), on obtient plus d'informations sur $End(J_f)$.

Genre ≥ 1

Théorème (G.'21)

Soit $f(x) \in K[x]$ un polynôme de degré 2g+1 ou 2g+2. Supposons que $\operatorname{Gal}(f)$ contient un élément d'ordre premier p=2g+1, et g satisfait d'autres conditions. Alors l'une des assertions suivantes est vérifiée :

- $\operatorname{End}^0(J_f)$ est un corps de nombres, avec des restrictions sur les idéaux premiers au dessus de 2;
- $Arr End^0(J_f)\cong M_a(F)$ où $F\subsetneq \mathbb{Q}(\zeta_p)$ est un corps à CM et $a=\frac{2g}{[F:\mathbb{Q}]}$.

Satisfait par g = 1, 2, 3, 5, 6, 9, 11, 14, 18, 23, 26, 29, 30, 33, 35, 39, 41, ...

Genre > 1

Théorème (G.'21)

Soit $f(x) \in K[x]$ un polynôme de degré 2g+1 ou 2g+2. Supposons que $\mathrm{Gal}(f)$ contient un élément d'ordre premier p=2g+1, et g satisfait d'autres conditions. Alors l'une des assertions suivantes est vérifiée :

- $\operatorname{End}^0(J_f)$ est un corps de nombres, avec des restrictions sur les idéaux premiers au dessus de 2;
- $extbf{2} \operatorname{End}^0(J_f) \cong M_a(F) \ \text{où } F \subsetneq \mathbb{Q}(\zeta_p) \ \text{est un corps à CM et } a = \frac{2g}{[F:\mathbb{Q}]}.$

Satisfait par q = 1, 2, 3, 5, 6, 9, 11, 14, 18, 23, 26, 29, 30, 33, 35, 39, 41, ...

Idée de la démonstration

On considère le cas où l'action de $\mathrm{Gal}(f)$ sur J[2] est irréductible. On peut supposer que $|\operatorname{Gal}(f)|=p$. D'abord on montre que $\operatorname{End}_K^0(J_f)$ est un corps.

Restrictions sur le corps des endomorphismes

Soit A/K une variété abélienne de dimension g. On écrit L/K pour l'extension minimale sur laquelle tous les endomorphismes de A sont défini.

E.g.
$$E: y^2 = x^3 - 2$$
 a $g = 1$ et $L = \mathbb{Q}(\zeta_3)$.

Théorème (G.'21)

Supposons que p=2g+1 est un nombre premier divisant [L:K]. Alors $\operatorname{End}^0(A)\cong M_a(F)$ où $F\subsetneq \mathbb{Q}(\zeta_p)$ est un corps à CM et $a=\frac{2g}{[F:\mathbb{Q}]}$.

Démonstration esquissée

Démonstration esquissée

- D'abord on montre que $\operatorname{End}^0(A) \cong M_n(D)$ où D est une algèbre à division de dimension finie sur $\mathbb Q$ qui satisfait $[D:\mathbb Q]n \leq 2g = p-1$ et n>1.
- 2 On observe que l'action de Gal(L/K) sur $M_n(D)$ par automorphismes est fidèle
- Le théorème de Skolem-Noether fournit une représentation fidèle

$$\rho: \operatorname{Gal}(L/K) \to \operatorname{PGL}_n(D)$$

Geci implique que D est un sous-corps propre de $\mathbb{Q}(\zeta_p)$ et $[D:\mathbb{Q}]n=p-1$. En utilisant la théorie de CM, on trouve que D est à CM.

Démonstration esquissée

Démonstration esquissée

- D'abord on montre que $\operatorname{End}^0(A) \cong M_n(D)$ où D est une algèbre à division de dimension finie sur $\mathbb Q$ qui satisfait $[D:\mathbb Q]n \leq 2g = p-1$ et n>1.
- 2 On observe que l'action de Gal(L/K) sur $M_n(D)$ par automorphismes est fidèle.
- Le théorème de Skolem-Noether fournit une représentation fidèle

$$\rho: \operatorname{Gal}(L/K) \to \operatorname{PGL}_n(D)$$

◄ Ceci implique que D est un sous-corps propre de $\mathbb{Q}(\zeta_p)$ et $[D:\mathbb{Q}]n=p-1$. En utilisant la théorie de CM, on trouve que D est à CM.

Variétés abéliennes définies sur Q

Théorème (G.'21)

Soit A/\mathbb{Q} une variété abélienne de dimension $g \geq 1$ où p = 2g + 1 est un nombre premier. Supposons $\operatorname{Gal}(\mathbb{Q}(A[2])/\mathbb{Q}) \cong C_p$. Alors

- soit $\operatorname{End}^0(A)$ est un sous-corps propre de $\mathbb{Q}(\zeta_p)$;
- soit $p \equiv 3 \mod 4$ et $\operatorname{End}^0(A) \cong M_g(\mathbb{Q}(\sqrt{-p}))$.

En particulier, il y a un nombre fini des possibilités pour $\operatorname{End}^0(A)$.

Ci-dessus et un résultat technique donnent :

Corollaire (G.'21'

Soit $C: y^2 = f(x)$ une courbe elliptique définie sur un corps avec un plongement réel. Si $\operatorname{Gal}(f) \cong C_3$, alors $\operatorname{End}(C) = \mathbb{Z}$.

Corollaire (G.'21)

Soit A/\mathbb{Q} une surface abélienne. Supposons que $\operatorname{Gal}(\mathbb{Q}(A[2])/\mathbb{Q}) \cong C_5$. Alors soit $\operatorname{End}(A) = \mathbb{Z}$ soit $\operatorname{End}_{\mathbb{Q}}^0(A) = \operatorname{End}^0(A) = \mathbb{Q}(\sqrt{5})$.

Variétés abéliennes définies sur Q

Théorème (G.'21)

Soit A/\mathbb{Q} une variété abélienne de dimension $g \geq 1$ où p = 2g + 1 est un nombre premier. Supposons $\operatorname{Gal}(\mathbb{Q}(A[2])/\mathbb{Q}) \cong C_p$. Alors

- soit $\operatorname{End}^0(A)$ est un sous-corps propre de $\mathbb{Q}(\zeta_p)$;
- soit $p \equiv 3 \mod 4$ et $\operatorname{End}^0(A) \cong M_g(\mathbb{Q}(\sqrt{-p}))$.

En particulier, il y a un nombre fini des possibilités pour $\operatorname{End}^0(A)$.

Ci-dessus et un résultat technique donnent :

Corollaire (G.'21)

Soit $C: y^2 = f(x)$ une courbe elliptique définie sur un corps avec un plongement réel. Si $\operatorname{Gal}(f) \cong C_3$, alors $\operatorname{End}(C) = \mathbb{Z}$.

Corollaire (G.'21)

Soit A/\mathbb{Q} une surface abélienne. Supposons que $\operatorname{Gal}(\mathbb{Q}(A[2])/\mathbb{Q}) \cong C_5$. Alors soit $\operatorname{End}(A) = \mathbb{Z}$ soit $\operatorname{End}_{\mathbb{Q}}^0(A) = \operatorname{End}^0(A) = \mathbb{Q}(\sqrt{5})$.

Des pubs vont arriver

Vous aimeriez peut-être aussi...

Chabauty symétrique généralisé

Question (Zureick-Brown)

Est-il possible de déterminer les points cubiques sur $X_0(65)$, malgré le fait qu'il y a un infini de points quadratiques?

Théorème (Box, Gajović, G. '21

Soit $N \in \{53, 57, 61, 65, 67, 73\}$. Alors les points cubiques sur $X_0(N)$ sont connus De plus, les points quartiques isolés sur $X_0(65)$ sont connus.

Pour démontrer ci-dessus, on prolonge les méthodes de "Chabauty symétrique" de Siksek et on a implémenté nos méthodes dans Magma.

Théorème (Box '21)

Des courbes elliptiques sur des corps quartiques complètement réels qui ne contiennent pas $\sqrt{5}$ sont modulaire.

Théorème (Banwait, Derickx)

Supposons GRH. Alors pour chaque nombre premier p:

$$Y_0(p)(\mathbb{Q}(\zeta_7)^+) \neq \emptyset \iff Y_0(p)(\mathbb{Q}) \neq \emptyset.$$

Chabauty symétrique généralisé

Question (Zureick-Brown

Est-il possible de déterminer les points cubiques sur $X_0(65)$, malgré le fait qu'il y a un infini de points quadratiques?

Théorème (Box, Gajović, G. '21)

Soit $N \in \{53, 57, 61, 65, 67, 73\}$. Alors les points cubiques sur $X_0(N)$ sont connus. De plus, les points quartiques isolés sur $X_0(65)$ sont connus.

Pour démontrer ci-dessus, on prolonge les méthodes de "Chabauty symétrique" de Siksek et on a implémenté nos méthodes dans Magma.

Théorème (Box '21)

Des courbes elliptiques sur des corps quartiques complètement réels qui ne contiennent pas $\sqrt{5}$ sont modulaire.

Théorème (Banwait, Derickx)

Supposons GRH. Alors pour chaque nombre premier p:

$$Y_0(p)(\mathbb{Q}(\zeta_7)^+) \neq \emptyset \iff Y_0(p)(\mathbb{Q}) \neq \emptyset.$$

Chabauty symétrique généralisé

Question (Zureick-Brown)

Est-il possible de déterminer les points cubiques sur $X_0(65)$, malgré le fait qu'il y a un infini de points quadratiques?

Théorème (Box, Gajović, G. '21)

Soit $N \in \{53, 57, 61, 65, 67, 73\}$. Alors les points cubiques sur $X_0(N)$ sont connus. De plus, les points quartiques isolés sur $X_0(65)$ sont connus.

Pour démontrer ci-dessus, on prolonge les méthodes de "Chabauty symétrique" de Siksek et on a implémenté nos méthodes dans Magma.

Théorème (Box '21)

Des courbes elliptiques sur des corps quartiques complètement réels qui ne contiennent pas $\sqrt{5}$ sont modulaire.

Théorème (Banwait, Derickx)

Supposons GRH. Alors pour chaque nombre premier p:

$$Y_0(p)(\mathbb{Q}(\zeta_7)^+) \neq \emptyset \iff Y_0(p)(\mathbb{Q}) \neq \emptyset.$$

Courbes superelliptiques avec des grosses images de Galois

Soient r un nombre premier, $f \in \mathbb{Q}(\zeta_r)[x]$ un polynôme sans facteur carrée. Soit J la jacobienne de la courbe superelliptique définie par $y^r = f(x)$.

Théorème (G. '20)

Il y a des conditions de congruence sur f qui garantissent que les représentations

$$\rho_{\ell} \colon G_{\mathbb{Q}(\zeta_r)} \to \operatorname{Aut}(J[\ell])$$

ont des images aussi grosses que possible pour tout nombre premier ℓ hors d'un ensemble fini.

Par contre, ces images ont des formes bizarres, plutôt inattendues!

Images explicites

Théorème (G.'20)

Pour r=3 et presque tout premier ℓ , l'image de

$$\rho_{\ell} \colon G_{\mathbb{Q}(\zeta_3)} \to \operatorname{Aut}(J[\ell])$$

est pour i impair :

$$\rho_{\ell}(G_{\mathbb{Q}(\zeta_3)}) = \mathrm{GL}_g(\ell)^{\lceil \frac{g}{3} \rceil, 6} \rtimes \langle \chi_{\ell} \rangle$$

et pour i pair :

$$\rho_{\ell}(G_{\mathbb{Q}(\zeta_3)}) = \mathrm{GU}_g(\ell)^{\lceil \frac{g}{3} \rceil, 6} . \langle \chi_{\ell} \rangle.$$

Théorème (G.'20)

Soit $\ell \equiv 1 \mod r$. Alors pour tout premier ℓ hors d'un ensemble fini et explicite, on a :

$$\bar{\rho}_{\lambda}(G_{\mathbb{Q}(\zeta_r)}) = \mathrm{GL}_n(\ell)$$

$$où n = \frac{2g}{r-1}$$
.

Quelques exemples

Pour $d \in \{12, 18, 24\}$ les courbes

$$y^3 - \zeta_3^2 \pi y^2 - \zeta_3^2 y = x^d + x^{d-1} + 7x^3 + 14x^2 + 45\zeta_3 \pi$$

où $\pi=1-\zeta_3$, ont une image aussi grosse que possible tout premier ℓ hors d'un ensemble fini et explicite.

En particulier, hors de cet ensemble, elles satisfont

$$\bar{\rho}_{\lambda}(G_{\mathbb{Q}(\zeta_3)}) = \mathrm{GL}_{d-2}(\ell) \text{ for } \ell \equiv 1 \mod 3;$$

et

$$\bar{\rho}_{\lambda}(G_{\mathbb{Q}(\zeta_3)}) = \Delta U_{d-2}(\ell) \text{ for } \ell \equiv 5, 29 \mod 36.$$

Quand d=12,24 le résultat ci-dessus reste vrai pour $\ell \equiv 5 \mod 12$.

Et une autre

Pour $\ell \neq 2, 3, 7, 41, 701, 1039501386253916593179$, ou

 $\begin{array}{c} 439258487404987531911163270843844304591936466390597312579686975888086620510735\\ 1354930470916194229999769267625792575400330624106332584372975559484695436136367 \\ 118772361796350659366993443881953314038538101272367583 \end{array}$

courbe superelliptique

$$y^7 = x^{14} + \pi x^{13} + 2\pi^7 x^7 + 6\pi^{12} x^2 + 246\pi^7$$

où $\pi = 1 - \zeta_7$, a une image maximale en ℓ .

Si $\lambda | \ell$ avec $\ell \equiv 1 \mod 7$, on a

$$\bar{\rho}_{\lambda}(G_{\mathbb{Q}(\zeta_7)}) = \mathrm{GL}_{12}(\ell)$$

et pour $\ell \equiv 13 \mod 28$

$$\bar{\rho}_{\lambda}(G_{\mathbb{Q}(\zeta_7)}) = \Delta U_{12}(\ell).$$