

Chapitre 5 : Les éléments d'interconnexion

Cours Systèmes et réseaux

La carte réseau

- Composant le plus important du réseau
- indispensable pour chaque élément terminal
- = interface entre l'ordinateur et le câble réseau (ou le wi-fi).
- Possède une adresse physique donnée par le constructeur de la carte : l'adresse MAC (Medium Access Control).
 - ▶ 48 bits (6 octets 12 caractères hexadécimaux)

Le premier à être transmis

- ► En théorie : unique
- ► En réalité : plus assez d'adresses MAC disponibles pour toutes les cartes réseau.
 - (une MAC adresse par port!)
 - Switch:

Rack de switchs :

- Objets connectés
- Solution temporaire : assurer l'unicité par continent
- Egalement appelée NIC (Network Interface Card)

```
C:N.
                            Invite de commandes
Microsoft Windows [version 6.3.9600]
(c) 2013 Microsoft Corpor<del>ation. Tous</del> droits réservés.
C:\Users\WindowsFacile>ipconfig /all
Configuration IP de Windows
  Nom de l'hôte . . . . . . . . . .
  Suffixe DNS principal . . . . . .
  Type de noeud. . . . . . . . : Hybride
  Routage IP activé . . . . . . : Non
  Proxy WINS activé . . . . . . : Non
  Liste de recherche du suffixe DNS.: localdomain
Carte Ethernet Ethernet0 :
  Suffixe DNS propre à la connexion. . . : localdomain
  Description. . . . . . . . . . . : Connexion réseau Intel(R)
  Configuration automatique activée. . . : Oui
  Adresse IPv6 de liaison locale. . . . : fe80::fd7c:f7ed:5fe7:91c
  Adresse IPv4. . . . . . . . . . . . . . . . . 192.168.183.131(préféré)
  Masque de sous-réseau. . . . . . : 255.255.255.0
  Bail obtenu. . . . . . . . . . . . . . . . jeudi 16 avril 2015 10:40:
  Bail expirant. . . . . . . . . . . . . . . . jeudi 16 avril 2015 11:25:
  Passerelle par défaut. . . . . . . : 192.168.183.2
  Serveur DHCP . . . . . . . . . . . : 192.168.183.254
  IAID DHCPv6 . . . . . . . . . : 50334761
  Serveurs DNS. . . . . . . . . . . : 192.168.183.2
  Serveur WINS principal . . . . . : 192.168.183.2
  NetBIOS sur Topip. . . . . . . . . . . . Activé
```

```
Carte réseau sans fil Wi-Fi :
    Suffixe DNS propre à la connexion. . . :
    Description. . . . . . . . . . . . . . . . . . .
   Adresse physique . . . . . . . . . :
   Configuration automatique activée. . . :
Adresse IPv6 de liaison locale. . . . .:
____ Masque de sous-réseau. . . . . . . . . :
____ Bail obtenu. . . . . . . . . . . . . . . . .
IAID DHCPv6 . . . . . . . . . . . . . . . 8128
    DUID de client DHCPv6. . . . . . . . . . . . . .
   Serveurs DNS. . . . . . . . . . . . . . . . . . .
                               172.
    Serveur WINS principal . . . . . . :
    NetBIOS sur Tcpip. . . . . . . . . . . . .
```


- Préparer les données
- Envoyer les données
- Contrôler le flux de données entre l'ordinateur et le câble.

Le concentrateur (hub)

- ► Hub = dispositif en réseau qui permet de mettre plusieurs ordinateurs en contact.
- Plusieurs ports : reçoit des données par un port, et envoie ce qu'il reçoit aux autres
- Exemple avec 8 ports

Rôles du concentrateur :

- Renvoyer les données arrivant sur le port de réception sur les ports de diffusion
- Réamplifier les signaux en entrée
 - Oui : concentrateurs actifs.
 - ► Non: concentrateurs passifs.
- ▶ Relier 2 lignes de natures différentes : il récupère les données et en refait le codage
 → fonction de transceiver.
- Souci : manque de confidentialité!!!

Connecter des hubs entre eux : OK

- soit en utilisant les ports normaux → câble croisé
- soit en utilisant un port spécial présent sur la plupart des concentrateurs et appelé « uplink » ou « daisy-chain » pour connecter le premier hub à un port quelconque du second.

→ câble droit

• Il existe également des hubs capables de croiser ou décroiser automatiquement leurs ports selon qu'il est relié à un hôte ou à un hub.

- Règle des 5,4,3 :
 - ▶ 5 : entre 2 stations du réseau, on ne peut avoir au maximum que 5 tronçons
 - ▶ 4 : entre 2 stations, il existe au maximum 4 répéteurs
 - > 3 : Parmi les hubs, 3 au maximum portent des stations.

(Au moins un hub → répéteur simple ou interconnection d'autres hubs entre eux)

- HUB abandonné progressivement au profit du commutateur
- Travaille au niveau « physique » de la transmission : ne s'occupe pas des adresses MAC ou des adresses IP

Le commutateur (switch)

- Très semblable au hub
- Différence: n'envoie l'info qu'à l'élément terminal concerné
 - → + de sécurité
 - → encombrement du réseau
- Exemple avec 8 ports → tableau
- Lecture des trames Ethernet : adresse MAC
- Le switch enregistre dans une table interne les adresses MAC associées à chacun de ses ports physiques et ne transmet les données que vers le connecteur associé.

Table d'adresses MAC			
Vlan	Mac Address	Туре	Port

Ne permet pas de connecter des réseaux de classes d'adresses IP différentes.

Le commutateur : table MAC en mémoire interne adresse MAC ← port associé. Dans table MAC Inconnue dans la table Renvoi de la trame sur le bon port traite la trame comme un broadcast transmise à tous les ports (sauf port de réception). Mais seule la machine destinataire lit le message technique du FLOODING

- Si plusieurs switchs en cascade, le switch va envoyer un message spécial (une adresse MAC de type broadcast) sur tous ses ports pour demander sur lequel ce périphérique est connecté.
 - le deuxième switch reçoit le message, vérifie dans sa propre table s'il a une correspondance entre l'adresse MAC et un de ses ports.
 - ▶ Si elle est connue, il va renvoyer un message au premier qui va mettre à jour sa table de correspondance (port de connexion au deuxième switch) et envoyer le message vers le deuxième commutateur.
 - ► Sinon → broadcast

Le pont (bridge)

- 2 ports physiques
- ► Lit l'adresse MAC du destinataire
- Supprime la trame ou COMMUTE
- = switch à 2 ports

Le routeur

- Seul élément permettant de connecter 2 réseaux entre eux
- Utilise le routage

Différence switch - hub

- Différence switch routeur :
 - ► Le switch se base sur les adresses MAC
 - Le routeur se base sur les adresses IP
 - Le switch ne fait pas de routage (calcul du meilleur itinéraire)
 - Le switch ne permet pas de connecter différents réseaux entre eux

Le répéteur

