16-745 Optimal Control Lecture 4

Reid Graves

January 28, 2025

1 Last Time

- Root Finding
- Newton's Method
- Minimization
- Regularization

2 Today

- Line Search (fix overshooting problem)
- Constrained Minimization

3 Line Search

- Often Δx step from Newton overshoots the minimum
- To fix this, check $f(x + \Delta x)$ and "backtrack" untill we get a "good" reduction
- Many strategies
- A simple and effective strategy is "Armijo Rule"

$$\alpha=1$$
 while $f(x+\alpha\Delta x)>f(x)+b\alpha\nabla f(x)^T\Delta x$ b is tolerance, whole addition to $f(x)$ is expected reduction from linearization

 $\alpha \leftarrow c\alpha$ c is a scalar < 1

end

- Intuition
 - Make sure step agrees with linearization within some tolerance b
- Typical values:

$$c = \frac{1}{2}, b = 10^{-4} \text{ to } 0.1$$

- Take away:
 - Newton with simple and cheap modifications called "globalization strategies" is extremely effective at finding local optima

4 Equality constraints

$$\min_{x} f(x) \leftarrow f(x) : \mathbb{R}^{n} \to \mathbb{R}$$

s.t. $c(x) = 0 \leftarrow c(x) : \mathbb{R}^{n} \to \mathbb{R}^{m}$

- First-Order necessary conditions
 - 1. Need $\nabla f(x) = 0$ in **free** directions
 - 2. Need c(x) = 0

$$f(x): \mathbb{R}^2 \to \mathbb{R}$$

 $c(x): \mathbb{R}^2 \to \mathbb{R}$

• Any nonzero component of ∇f must be normal to the constraint at an optimum- equivalently ∇f must be parallel to ∇c

$$\Rightarrow \nabla f + \lambda \nabla c = 0$$

 λ is Lagrange multiplier/"dual variable"

• In general:

$$\frac{\partial f}{\partial x} + \lambda^T \frac{\partial c}{\partial x} = 0, \quad \lambda \in \mathbb{R}^m$$

• Based on this gradient condition, we define:

$$L(x,\lambda) = f(x) + \lambda^T c(x)$$

L is lagrangian

• Such that:

$$\nabla_x L(x,\lambda) = \nabla f + \left(\frac{\partial c}{\partial x}\right)^T \lambda = 0$$
$$\nabla_\lambda L(x,\lambda) = C(x) = 0$$

• We can sove this with Newton:

$$\nabla_x L(x + \Delta x, +\lambda + \Delta \lambda) \approx \nabla_x L(x, \lambda) + \frac{\partial^2 L}{\partial x^2} \Delta x + \frac{\partial^2 L}{\partial x \partial \lambda} \Delta \lambda = 0$$
$$\nabla_\lambda L(x + \Delta x, \lambda + \Delta \lambda) \approx c(x) + \frac{\partial c}{\partial x} = 0$$

$$\begin{bmatrix} \frac{\partial^2 L}{\partial x^2} & \left(\frac{\partial c}{\partial x}\right)^T \\ \frac{\partial c}{\partial x} & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta \lambda \end{bmatrix} = \begin{bmatrix} -\nabla_x L(x,\lambda) \\ -c(x) \end{bmatrix}$$

This is "KKT system"

• Gauss-Newton Method:

$$\frac{\partial^2 L}{\partial x^2} = \nabla^2 f + \frac{\partial}{\partial x} \left[\left(\frac{\partial c}{\partial x} \right)^T \lambda \right]$$

Right additive term is expensive to compute

- We often drop the 2nd "Constraint curvature" term
- Called "Gauss Newton"
- Slightly slower convergence than full Newton method (more iterations) but iterations are cheaper
- Often wins in wall-clock time

4.1 Example

- \bullet start [-1,-1], [-3,2] Full newton got stuck on [-3,2], but Gauss-Newton doesn't
- Take Aways:
 - May still need to regularize $\frac{\partial^2 L}{\partial x^2}$ even if $\nabla^2 f > 0$
 - Gauss-Newton is often used in practice

5 Inequality Constraints

$$\min_{x} f(x)$$
, s.t. $c(x) > 0$

- We'll just look at inequalities for now
- Just combine with previous methods to handle both kinds of constraints

\bullet First-Order Necessary Conditions:

- 1. $\nabla f = 0$ in the **free directions**
- 2. $c(x) \ge 0$

• KKT conditions:

$$\begin{split} \nabla f - \left(\frac{\partial c}{\partial x}\right)^T \lambda &= 0 \quad \leftarrow \text{Stationarity} \\ c(x) &\geq 0 \quad \leftarrow \text{Primal feasibility} \\ \lambda &\geq \quad \leftarrow \text{Dual feasibility} \\ \lambda \cdot c(x) &= \lambda^T c(x) = 0 \quad \leftarrow \text{Complementarity} \end{split}$$