МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский Авиационный Институт» (Национальный Исследовательский Университет)

Институт: №8 «Компьютерные науки и прикладная математика» Кафедра: 806 «Вычислительная математика и программирование»

Группа	М8О-109Б-22
Студент	Филиппов А. М.
Преподаватель	Сысоев М. А.
Оценка	
Дата	

Задание

Составить программу на Си с процедурами решения трансцендентных алгебраических уравнений резличными численными методами (итераций, Ньютона и половинного деления — дихотомии). Нелинейные уравнения оформить как параметры-функции, разрешив относительно неизвестной величины в случае необходимости. Применить каждую процедуру к решению двух уравнений, заданных двумя строками таблицы, начиная с варианта с заданным номером. Если метод неприменим, дать математическое обоснование и графическую иллюстрацию, например, с использованием gnuplot.

Варианты 9, 10:

№	Уравнение	Отрезок,	Базовый	Приближенное
		содержащий	метод	значение корня
		корень		
9	$x^2 - \ln(1+x) - 3 = 0$	[2, 3]	итераций	2.0267
10	$2x \cdot \sin x - \cos x = 0$	[0.4, 1]	Ньютона	0.6533

Теоретическая часть

1. Метод итераций

Идея заключается в замене исходного уравнения f(x) = 0 на уравнение x = f(x). Перед началом итерационного процесса необходимо проверить условие сходимости: |f'(x)| < 1, $x \in [a, b]$. Изначально x равен (a + b)/2. Итерационный процесс: $x_{i+1} = f(x_i)$.

2. Метод Ньютона

Является частным случаем метода итераций, отличается условие выхода из цикла: $|f(x) * f''(x)| < (f'(x))^2$ и итерационным процессом: $x_{i+1} = x_i - (f(x_i)/f'(x_i))$.

Алгоритм решения

Для начала с помощью функций IsNewtonConvergent и IsIterationsConvergent проверим методы на сходимость. Для каждого сходящегося метода с его помощью вычислим корень соответствующего уравнения. Затем подставим корни в уравнение для проверки.

Использованные в программе переменные

Название переменной	Тип переменной	Смысл переменной
a	long double	Начало отрезка
b	long double	Конец отрезка
X	long double	Значения в промежутке [a;b], для которого вычисляются значения
step	long double	Значение, прибавляемое к х на каждом шаге
root	long double	Корень уравнения
result	long double	Значение уравнения после подстановки корня
LDBL_EPSILON long double		Машинный эпсилон. Для long double $ε = 1.08*10^{-19}$

Исходный код программы:

```
include <stdio.h
int IsIterationConvergent(
   long double x1 = f(x0);
       x1 = f(x0);
int IsNewtonConvergent(
```

Входные данные

Нет

Выходные данные

Программа должна вывести для каждого уравнения сходится метод или нет.

Если метод сходится, вывести приближенный корень уравнения, а затем вывести значение уравнения, в который будет подставлен корень.

Протокол исполнения и тесты

Тест №1 (корни совпали)

Входные данные:

Выходные данные:

```
Function 9 (Iterations Method):
              x^2 - \log(1 + x) - 3 = 0
Convergence check: OK!
Approximated root: 2.0266892632
Result of inserting root: -0.0000000000
Function 10 (Newton Method):
              2 * x * sinl(x) - cosl(x) = 0
Convergence check: OK!
Approximated root: 0.6532711871
Result of inserting root: -0.0000000000
Process finished with exit code 0
```

Вывод

Недостатком почти всех методов нахождения корней является то, что при они позволяют найти лишь один корень функции, к тому же, мы не знаем какой именно. Чтобы найти другие корни, можно было бы брать новые стартовые точки и применять метод вновь, но нет гарантии, что при этом итерации сойдутся к новому корню, а не к уже найденному, если вообще сойдутся.