

Presentation Outline

Introduction and Background

Types of Electronic Excited States

Valence States

- Lower Energy
- Valence Orbitals

Rydberg States

- Higher Energy
- Large, Diffuse Orbital

Core-Excited States

- Very High Energy
- Valence or Rydberg

Significance of Electronic Excited States

Chemical Databases

Chemical/Biological

Drugs/Drug Targets

3D Protein Structures

Physical Data

Solid State Data

3D Crystal Structures

Little to Nothing on Electronic Excited States!

Hypothesis

- Molecular orbitals are used to visualize excited states
- Generating orbitals for multiple molecules is tedious
- What about data? Energies, Oscillator Strengths
- Data is readily available in computation output file

Project Strategy and Methods

Manual Analysis of Excited State Data

Extraction and Storage of Excited State Data

Computational Analysis of Excited State Data

Application of Program to Other Molecule Types

Four-Step Project Strategy

Hierarchical Clustering Analysis

Cluster Analysis

- Groups data objects using information that describes their relationships
- The greater the similarity within a group, the more distinct the clustering

Hierarchical Clustering

- Agglomerative The closest pair of clusters or individual points merge at each step
- Divisive One cluster is split until only single clusters of individual points remain

Euclidean Distance

Recall the Distance Formula from General Mathematics

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Euclidean Distance = Extrapolation of Distance Formula

$$d = \sqrt{(a_B - a_A)^2 + (b_B - b_A)^2 + (c_B - c_A)^2 + \cdots}$$

Ground State Methods

- Density Functional Theory (B3LYP)
- Hartree-Fock Theory

Excited State Methods

- Configuration Interaction Singles (CIS)
- Tamm-Dancoff Approximation (TDA)
- Time-Dependent DFT (TDDFT)
- Gaussian Basis Set (6-31G)

Q-Chem Calculations

- Self-Consistent Field (SCF) Energy
- Optimized Molecular Geometry
- Infrared/Raman Frequencies
- Excitation Energies

Python Libraries

- from scipy.cluster.hierarchy import dendrogram, linkage
- from matplotlib import pyplot
- import pandas, math, sys

Methodology

Calculation of Excitation Data

Training Set of Molecules

Generated Sample Data

Identity of Compound	Dominant Transitions	Character of Transitions	CIS Excitation Energy (eV)	Oscillator Strength	CIS Orbital Energies (au)			
Acetone	16 => 17	C: $\sigma => \pi^*$ O: $p => \pi^*$	4.7661	0.0000000015	HOMO: -0.415 LUMO: +0.143			
Aniline	25 => 26	$\pi=>\pi^*$	5.9811	0.0818491600	HOMO: -0.279 LUMO: +0.150			
Anisole	29 => 30	$\pi=>\pi^*$	6.2736	0.0355694478	HOMO: -0.311 LUMO: +0.140			
Anthracene	47 => 48	$\pi=>\pi^*$	4.3100	0.1979001445	HOMO: -0.253 LUMO: +0.060			
Benzaldehyde	26 => 29	$\pi=>\pi^*$	4.4022	0.0001856074	HOMO: -0.428 LUMO: +0.069			
Benzene	$20 \Rightarrow 22$ $21 \Rightarrow 23$	$\pi=>\pi^* \ \pi=>\pi^*$	6.3811	0.0000000135	HOMO: -0.332 LUMO: +0.145			
Benzoic Acid	30 => 33	C: $\sigma => \pi^*$ O: $p => \pi^*$	5.9486	0.0005749646	HOMO: -0.455 LUMO: +0.075			
Benzoyl Chloride	34 => 37	C: $\sigma => \pi^*$ O: $p => \pi^*$	5.1617	0.0000534424	HOMO: -0.443 LUMO: +0.045			
Caffeine	51 => 52	$\pi => \pi^*$	6.0098	0.3756495104	HOMO: -0.324 LUMO: +0.088			
Ethanol	13 => 14	$p \Longrightarrow \mathbf{R}_0$	9.1059	0.0000001208	HOMO: -0.439 LUMO: +0.218			

Blue = Manual Analysis, Red = Computational Analysis

Manual Analysis of Excitation Data

Manual Analysis (MA) Dendrograms

Two Key Parameters

- (OS) **Orbital** and **Structure** Differences (Visual)
 - OS = 1 x where x = Level of Similarity
- (E) Excitation Energy Differences (Numeric)

•
$$E = 1 - \exp(-\Delta E/k_BT)$$

• (\mathbb{Z}) Weighed Combination of OS and E Values

•
$$\mathbb{Z} = C_1(OS) + C_2(E)$$

- A first approximation considered OS and E equally
- Data contained using Microsoft Excel spreadsheets
- Python script created dendrograms from spreadsheets

Manual Analysis (MA) Dendrograms

Z-Matrix Legend	Acetone	Aniline	Anisole	Anthracene	Benzaldehyde	Benzene	Benzoic Acid	Benzoyl Chloride	Caffeine	Ethanol	Ferrocene	Glucose (linear)	Naphthalene	Nitrobenzene	Oxamide	Phenol	Pyridine	TMS	Toluene	Water
Acetone																				
Aniline																				
Anisole																				
Anthracene																				
Benzaldehyde																	+			
Benzene																				
Benzoic Acid																				
Benzoyl Chloride																				
Caffeine																				T
Ethanol																			+	
Ferrocene																				
Glucose (linear)																				
Naphthalene																				
Nitrobenzene																				
Oxamide																				
Phenol																				
Pyridine																				
TMS																				
Toluene																				
Water																				

CIS Method Dendrogram

Dendrogram Parameters

```
Factor Combination:
Average of OS + E
```

```
State Combination: 60% Ex State 1 30% Ex State 2 10% Ex State 3
```


TDA Method Dendrogram

Dendrogram Parameters

```
Factor Combination:
Average of OS + E
```

```
State Combination: 60% Ex State 1 30% Ex State 2 10% Ex State 3
```


Reasoning for Final Parameters

- First Three Excited States (60/30/10)
 - Requires more energy to reach higher states
- 50/50 Weighing of Data Parameters
 - Not highly sensitive to changes
- TDA is More Stable and Accurate
 - Theory, Parameter Variation

Computational Analysis of Data

Computation Input/Output Diagram

Compression of Excitation Information

```
CIS Excitation Energies
Excited state 1: excitation energy (eV) = 9.1972
Total energy for state 1:
  Multiplicity: Singlet
  Trans. Mom.: -0.0000 X -0.0000 Y -0.2398 Z
  Strength : 0.0129519766
  D(5) --> V(1) amplitude = 0.9918
Excited state 2: excitation energy (eV) = 11.1229
Total energy for state 2:
  Multiplicity: Singlet
  Trans. Mom.: 0.0000 X -0.0000 Y -0.0000 Z
  Strength: 0.000000001
  D(5) --> V(2) amplitude = 0.9855
Excited state 3: excitation energy (eV) = 11.4658
Total energy for state 3:
                                       -75.56258504 au
  Multiplicity: Singlet
  Trans. Mom.: 0.0000 X 0.6319 Y -0.0000 Z
  Strength : 0.1121480096
  D(4) --> V(1) amplitude = 0.9858
Excited state 4: excitation energy (eV) = 13.5092
Total energy for state 4:
                                        -75.48749135 au
  Multiplicity: Singlet
  Trans. Mom.: -0.5752 X 0.0000 Y -0.0000 Z
  Strength: 0.1095169884
  D(4) --> V(2) amplitude = 0.9790
Excited state 5: excitation energy (eV) = 15.4147
Total energy for state 5:
                                        -75.41746662 au
  Multiplicity: Singlet
  Trans. Mom.: -1.1641 X -0.0000 Y 0.0000 Z
  Strength: 0.5117253160
  D(3) --> V(1) amplitude = 0.9836
```

```
TDDFT/TDA Excitation Energies
Excited state 1: excitation energy (eV) = 7.6501
Total energy for state 1:
                                         -76.10497254 au
  Multiplicity: Singlet
  Trans. Mom.: -0.0000 X -0.0000 Y -0.2359 Z
  Strength : 0.0104282200
  D(5) --> V(1) amplitude = 0.9997
Excited state 2: excitation energy (eV) =
Total energy for state 2:
                                         -76.03081470 au
  Multiplicity: Singlet
  Trans. Mom.: -0.0000 X -0.6433 Y 0.0000 Z
  Strength : 0.0980265531
  D(4) --> V(1) amplitude = 0.9891
Excited state 3: excitation energy (eV) =
Total energy for state 3:
                                         -76.02789293 au
  Multiplicity: Singlet
  Trans. Mom.: 0.0000 X 0.0000 Y -0.0000 Z
  Strength : 0.0000000000
  D(5) --> V(2) amplitude = 0.9994
Excited state 4: excitation energy (eV) = 12.0600
Total energy for state 4:
                                         -75.94291439 au
  Multiplicity: Singlet
  Trans. Mom.: 0.5727 X -0.0000 Y -0.0000 Z
  Strength: 0.0969197947
  D(4) --> V(2) amplitude = 0.9824
Excited state 5: excitation energy (eV) = 14.7697
Total energy for state 5:
                                         -75.84333474 au
  Multiplicity: Singlet
  Trans. Mom.: 1.1882 X -0.0000 Y -0.0000 Z
  Strength : 0.5108674061
  D(3) --> V(1) amplitude = 0.9821
```

Compression of Excitation Information

```
Q-Chem Molecular Excited State Information Database
      Q-Chem Output File Name: QChem_Water
CIS Calculation Basis: 6-31G
CIS Calculation Method: CIS
TDDFT Calculation Basis: 6-31G
TDDFT Calculation Method: B3LYP
Geometry of Molecule: Cs
SCF Energy (eV) = -2078.572995855402
CIS EXCITATION ENERGIES AND AMPLITUDES
                    Osc.
                                       Mult.
9.1972
             3.524414e-01
                                      Singlet
               2.721140e-09
11,1229
                                      Singlet
11.4658
                3.051704e+00
                                      Singlet
                2.980111e+00
                                      Singlet
13.5092
15.4147
                1.392476e+01
                                      Singlet
    D(5) --> V(1) \text{ amplitude} = 0.9918
    D(5) --> V(2) amplitude = 0.9855
State #3:
    D(4) \longrightarrow V(1) \text{ amplitude} = 0.9858
    D(4) --> V(2) amplitude = 0.9790
State #5:
    D(3) --> V(1) \text{ amplitude} = 0.9836
```

Length of Database Entry = 93 Lines

Parameter Optimization Formulas

S-Matrix Formula:

$$\|S\| = \sqrt{(c_1s_1 + c_2s_2 + c_3s_3)^2}$$

Description of Variables:

- c_x = State Coefficient
- s_x = Excited State

For this project:

- Constant State Coefficients
 - $c_1 = 0.60$
 - $c_2 = 0.30$
 - $c_3 = 0.10$
- Based on MA Dendrograms

Parameter Optimization Formulas

Parameters:

$$s_{x}^{2} = a_{1}^{2} e_{x}^{2} + a_{2}^{2} o_{x}^{2} + a_{3}^{2} n_{x}^{2}$$

$$e_{x} = 1 - e^{-\frac{|e_{A} - e_{B}|}{k_{B}T}}$$

$$o_{x} = |o_{A} - o_{B}|$$

$$n_{x} = \left| \frac{1}{n_{A}} - \frac{1}{n_{B}} \right|$$

Description of Variables:

- s_x = Excited State
- a_x = Element Coefficient
- e_x = Excitation Energy
- o_x = Oscillator Strength
- n_x = Number of Transitions

Parameter Optimization Formulas

Euclidean Distance:

$$d = \sqrt{\sum (\mathbb{Z} - \mathbb{S})^2}$$

Description of Variables:

- $\mathbb{Z} = Z$ -Matrix Cell Value
- S = S-Matrix Cell Value

- Differences between Each Respective Molecular Pair
- Measured the Accuracy of Experiment Dendrograms
- Best Dendrogram Tracked during Program Execution

Optimization Results (TDA)

Parameter Distribution:

$$c_1 = 0.60$$
 $a_1 = 0.62$

$$c_2 = 0.30$$
 $a_2 = 0.55$

$$c_3 = 0.10$$
 $a_3 = 0.57$

$$a_1^2 + a_2^2 + a_3^2 = 1$$

Optimized Parameters Dendrogram

Manual Analysis Dendrogram

Application of Current Program

Complete Training Set Dendrogram

$$c_1 = 0.60$$
 $a_1 = 0.62$

$$c_2 = 0.30$$
 $a_2 = 0.55$

$$c_3 = 0.10$$
 $a_3 = 0.57$

$$a_1^2 + a_2^2 + a_3^2 = 1$$

Aromatic Training Set Dendrogram

$$c_1 = 0.60$$
 $a_1 = 0.62$

$$c_2 = 0.30$$
 $a_2 = 0.55$

$$c_3 = 0.10$$
 $a_3 = 0.57$

$$a_1^2 + a_2^2 + a_3^2 = 1$$

Phenylureas Testing Set Dendrogram

$$c_1 = 0.60$$
 $a_1 = 0.62$

$$c_2 = 0.30$$
 $a_2 = 0.55$

$$c_3 = 0.10$$
 $a_3 = 0.57$

$$a_1^2 + a_2^2 + a_3^2 = 1$$

Amines Testing Set Dendrogram

$$c_1 = 0.60$$
 $a_1 = 0.62$

$$c_2 = 0.30$$
 $a_2 = 0.55$

$$c_3 = 0.10$$
 $a_3 = 0.57$

$$a_1^2 + a_2^2 + a_3^2 = 1$$

All Molecules Dendrogram

$$c_1 = 0.60$$
 $a_1 = 0.62$

$$c_2 = 0.30$$
 $a_2 = 0.55$

$$c_3 = 0.10$$
 $a_3 = 0.57$

$$a_1^2 + a_2^2 + a_3^2 = 1$$

Conclusion and Future Plans

Conclusion and Future Plans

- Manual clustering based on molecular orbitals and excitation energies used to generate reference data
- Automated clustering model developed that avoids visualization of molecular orbitals
 - Clustering optimized within model
 - Some clustering similarities vs. manual analysis
 - Additional parameters such as orbital energies should be incorporated to improve model
- Additional testing of molecules, basis sets, and methods

Acknowledgments

Thank You For Listening

Any Questions?

