MH4311 Cryptography

Lecture 18

Secret Sharing

Wu Hongjun

Lecture Outline

- Classical ciphers
- Symmetric key encryption
- Hash function and Message Authentication Code
- Public key encryption
- Digital signature
- Key establishment and management
 - Key generation
 - Key establishment
 - Key establishment using symmetric key cryptography
 - Key establishment using public key cryptography
 - PKI, Certificate: TLS/SSL
 - SSH
 - Secret sharing
 - Simple secret sharing
 - Shamir's threshold secret sharing scheme
 - Threshold public key cryptosystem
- Introduction to other cryptographic topics

Recommended Reading

- CTP: Section 13.1
- Wiki

Secret Sharing:

- http://en.wikipedia.org/wiki/Secret_sharing
- http://en.wikipedia.org/wiki/Shamir%27s_Secret_Sharing
- http://en.wikipedia.org/wiki/Threshold_cryptosystem

Secret Sharing

- Secret sharing
 - Distribute a secret among a group of participants,
 each of them is allocated a share of the secret.
 - The secret can be reconstructed only when a sufficient number of shares are combined together; individual shares are of no use on their own

Secret Sharing

- Threshold secret sharing
 - Distribute a secret among *n* participants
 - The secret can be reconstructed only when **at least** *t* shares are combined together
 - *t*-out-of-*n* secret sharing scheme
 - Alternatively, denoted as (t, n) secret sharing scheme
 - Application example:
 - In the early 1990s in Russia, control of nuclear weapons depended upon a two-out-of-three access mechanism
 - Three parties: president, defense minister, defense ministry
 - Any two parties can control nuclear weapons

- *n*-out-of-*n* secret sharing
 - The simplest threshold secret sharing
 - Distribute a secret among *n* participants
 - The secret can be reconstructed only when all the shares are combined together

- The *n*-out-of-*n* secret sharing scheme
 - Let the secret be encoded as an integer S
 - Generate n-1 random number r_i ($1 \le i \le n$ -1), where each r_i is the same size as that of S
 - Let $r_n = S \oplus r_1 \oplus r_2 \oplus r_3 \oplus \ldots \oplus r_{n-1}$
 - r_i $(1 \le i \le n)$ are the *n* shares of the secret *s*
 - Reconstructing S requires all the n shares
 - $S = r_1 \oplus r_2 \oplus r_3 \oplus \ldots \oplus r_{n-1} \oplus r_n$

- Security
 - Unconditionally secure
 - With less than *n* shares, no information of *S* can be recovered

- Insecure *n*-out-of-*n* secret sharing scheme
 - Suppose that a secret key K is to be shared among n participants
 - Divide *K* into small pieces (*K* is α*n*-bit, each k_i is α-bit) $K = k_1 \parallel k_2 \parallel k_3 \parallel \ldots \parallel k_n$
 - The *i*-th participant receives k_i
- Attack
 - With t shares, $t \cdot \alpha$ bits of K are known
 - Then recovering K requires only $2^{(n-t)\cdot\alpha}$ computations, instead of $2^{n\cdot\alpha}$ computations (less than n shares can be used to reconstruct the secret)

- (n, n) secret sharing is not robust
 - If one share is lost, the secret cannot be recovered
 - So (t, n) secret sharing is needed.

- Shamir's secret sharing scheme
 - -(t, n) secret sharing scheme
 - Based on simple math
- Basic idea
 - 2 points are sufficient to define a line
 - 3 points are sufficient to define a parabola
 - 4 points to define a cubic curve
 - => it takes t points to define a polynomial of degree t-1

- Shamir's scheme over finite field GF(p)
 (p is a large prime, the secret S is an integer less than p)
 - Generate t-1 random integers a_i (i = 1, 2, 3, ..., t-1) (each a_i is a random integer less than p)
 - Let $a_0 = S$
 - Build the polynomial over GF(p):

$$f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_{t-1} x^{t-1}$$

- Compute *n* points: (j, f(j)) for j = 1, 2, 3, ..., n
- Each participant is given a point (a share)
- Reconstructing the secret S
 - Given t points, solve the linear equations to determine the coefficients of the polynomial
 - $S = a_0$

- Instead of solving linear equations, we can use Lagrange interpolation to find the coefficient a_0 efficiently
- Lagrange polynomial
 - Given t points (x_j, y_j) of a polynomial with degree t-1, the interpolation polynomial in the Lagrange form can be written as

$$L(x) = \sum_{j=1}^{t} y_j \lambda_j(x), \text{ where } \lambda_j(x) = \left(\prod_{\substack{1 \le i \le t \\ i \ne j}} \frac{x - x_i}{x_j - x_i}\right) \bmod p$$

• The coefficient a_0 is given as

$$a_0 = L(0) = (\sum_{j=1}^{t} y_j \lambda_j(0)) \mod p$$

- Security
 - Unconditionally secure
 - With less than t shares (points), no information of S can be recovered

- In a public key cryptosystem, the simple (n, n) secret sharing scheme and Shamir's (t, n) secret sharing scheme can be used to share a private key, and the private key can be successfully reconstructed if sufficient number of shares are given
 - But reconstructing the private key may not be a good idea since the hacker may get this private key
 - How to design such a threshold public key cryptosystem?

- (n, n) threshold public key cryptosystem
 - Example: (3,3) threshold ElGamal encryption scheme
 - Let the private key $x = x_1 + x_2 + x_3 \mod p$ -1, where x_1, x_2 are random integers
 - x_1, x_2, x_3 are given to three participants A_1, A_2 and A_3 , respectively
 - After receiving a ciphertext (c_1,c_2) ,
 - A_1 computes $w_1 = (c_1)^{x_1} \mod p$
 - A_2 computes $w_2 = (c_1)^{x_2} \mod p$
 - A_3 computes $w_3 = (c_1)^{x3} \mod p$
 - The message is decrypted as: $(w_1 \cdot w_2 \cdot w_3)^{-1} \cdot c_2 \mod p = m$ (the message is decrypted without each participant revealing its share x_i to others)

- (*t*, *n*) threshold public key cryptosystem
 - A Simple Example: (2, 3) threshold ElGamal encryption scheme
 - Let the private key $x = x_1 + x_2 + x_3 \mod p$ -1, where x_1, x_2 are random numbers
 - x_1 , x_2 are given to participant A_1 , respectively x_2 , x_3 are given to participant A_2 , respectively x_1 , x_3 are given to participant A_3 , respectively

(continued in the next page)

- (*t*, *n*) threshold public key cryptosystem
 - A Simple Example: (2, 3) threshold ElGamal encryption scheme (cont.)
 - After receiving ciphertext (c_1,c_2) ,
 - If only A1 and A2 are available, then
 - A_1 computes $W_1 = (c_1)^{x_1} \mod p$
 - **»** A_2 computes $w_2 = (c_1)^{x^2} \mod p$; $w_3 = (c_1)^{x^3} \mod p$
 - » The message is decrypted as: $(w_1 \cdot w_2 \cdot w_3)^{-1} \cdot c_2 \mod p = m$
 - If only A1 and A3 are available, then
 - **»** A_1 computes $w_1 = (c_1)^{x_1} \mod p$, $w_2 = (c_1)^{x_2} \mod p$
 - » A_3 computes $w_3 = (c_1)^{x3} \mod p$
 - » The message is decrypted as: $(w_1 \cdot w_2 \cdot w_3)^{-1} \cdot c_2 \mod p = m$
 - If only A2 and A3 are available, then
 - **»** A_2 computes $w_2 = (c_1)^{x^2} \mod p$, $w_3 = (c_1)^{x^3} \mod p$
 - » A_3 computes; $w_1 = (c_1)^{x_1} \mod p$
 - » The message is decrypted as: $(w_1 \cdot w_2 \cdot w_3)^{-1} \cdot c_2 \mod p = m$

- (*t*, *n*) threshold public key cryptosystem based on Shamir's secret sharing scheme
 - Example: Threshold ElGamal encryption scheme
 - Consider a slightly modified ElGamal encryption scheme: the large prime p satisfies p-1=2q, q is a prime, and the order of g is q
 - The private key x is shared using Shamir's secret sharing scheme over GF(q)
 - Generate t-1 random integers a_i (i = 1, 2, 3, ..., t-1) (each a_i is an integer less than q)
 - Let $a_0 = S$
 - Build the polynomial over GF(q):

$$f(z) = a_0 + a_1 z + a_2 z^2 + a_3 z^3 + \dots + a_{t-1} z^{t-1}$$

- Compute *n* points: $(u_i, z_i) = (j, f(j))$ for j = 1, 2, 3, ..., n
- Each participant is given a point (u_i, z_i)

- (*t*, *n*) threshold public key cryptosystem based on Shamir's secret sharing scheme
 - Example: Threshold ElGamal encryption scheme (cont.)
 - After receiving a ciphertext (c_1, c_2) , the ciphertext is decrypted by t participants as follows:
 - -Each participant computes $w_j = (c_1)^{z_j} \mod p$ for $1 \le j \le t$
 - -Compute $\lambda_j(0) = \prod_{\substack{1 \le i \le t \\ i \ne j}} \frac{0 u_i}{u_j u_i} \mod q$ (using public information)
 - -Then the message is obtained as $(\prod_{j=1}^{t} (w_j)^{\lambda_j(0)})^{-1} c_2 \mod p$

Proof.
$$\prod_{j=1}^{t} (w_j)^{\lambda_j(0)} \mod p = \prod_{j=1}^{t} (c_1)^{z_j \cdot \lambda_j(0)} \mod p = (c_1)^{\sum_{j=1}^{t} z_j \cdot \lambda_j(0)} \mod p$$
$$= (c_1)^{a_0} \mod p = (c_1)^x \mod p$$

Summary

- Secret sharing
 - -(n, n) secret sharing
 - Shamir's secret sharing scheme
 - Threshold public key cryptosystem
 - (n, n) threshold public key cryptosystem
 - (t, n) threshold public key cryptosystem
 - (*t*, *n*) threshold ElGamal encryption scheme based on Shamir's secret sharing scheme