Could not connect to the reCAPTCHA service. Please check your internet connection and reload to get a reCAPTCHA challenge.

# Wine Quality Prediction using Support Vector Machine

Get Understanding about Data set

## Import Library

```
import pandas as pd
import numpy as np
```

## Import CSV as DataFrame

## Use URL of file directly

```
df = pd.read_csv(r'https://github.com/YBI-Foundation/Dataset/raw/main/WhiteWineQuality.csv',se
```

## or use local file path in jupyter Notebook

```
# df = pd.read_csv(r'C:\Users\YBI Foundation\Desktop\WhiteQuality.csv')
```

### or use file after uplaoding file in Google Colab Notebook

```
# df = pd.read_csv(r'/content/WhiteWineQuality.csv')
```

#### **Get the First Five Rows of Dataframe**

df.head()



| <u>→</u> |   | fixed<br>acidity | volatile<br>acidity | citric<br>acid | residual<br>sugar | chlorides | free<br>sulfur<br>dioxide | total<br>sulfur<br>dioxide | density | рН   | sulphat |
|----------|---|------------------|---------------------|----------------|-------------------|-----------|---------------------------|----------------------------|---------|------|---------|
|          | 0 | 7.0              | 0.27                | 0.36           | 20.7              | 0.045     | 45.0                      | 170.0                      | 1.0010  | 3.00 | 0.      |
|          | 1 | 6.3              | 0.30                | 0.34           | 1.6               | 0.049     | 14.0                      | 132.0                      | 0.9940  | 3.30 | 0.      |
|          | 2 | 8.1              | 0.28                | 0.40           | 6.9               | 0.050     | 30.0                      | 97.0                       | 0.9951  | 3.26 | 0.      |
|          | 3 | 7.2              | 0.23                | 0.32           | 8.5               | 0.058     | 47.0                      | 186.0                      | 0.9956  | 3.19 | 0.      |
|          | 4 | 7.2              | 0.23                | 0.32           | 8.5               | 0.058     | 47.0                      | 186.0                      | 0.9956  | 3.19 | 0.      |
|          |   |                  |                     |                |                   |           |                           |                            |         |      |         |

Next steps:

Generate code with df



**New interactive sheet** 

### **Get Information of DataFrame**

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4898 entries, 0 to 4897
Data columns (total 12 columns):

| #  | Column               | Non-Null Count | Dtype   |
|----|----------------------|----------------|---------|
|    |                      |                |         |
| 0  | fixed acidity        | 4898 non-null  | float64 |
| 1  | volatile acidity     | 4898 non-null  | float64 |
| 2  | citric acid          | 4898 non-null  | float64 |
| 3  | residual sugar       | 4898 non-null  | float64 |
| 4  | chlorides            | 4898 non-null  | float64 |
| 5  | free sulfur dioxide  | 4898 non-null  | float64 |
| 6  | total sulfur dioxide | 4898 non-null  | float64 |
| 7  | density              | 4898 non-null  | float64 |
| 8  | рН                   | 4898 non-null  | float64 |
| 9  | sulphates            | 4898 non-null  | float64 |
| 10 | alcohol              | 4898 non-null  | float64 |
| 11 | quality              | 4898 non-null  | int64   |
|    |                      |                |         |

dtypes: float64(11), int64(1)

memory usage: 459.3 KB

## **Get the Summary Statistics**

df.describe()



|       | fixed<br>acidity | volatile<br>acidity | citric<br>acid | residual<br>sugar | chlorides   | free<br>sulfur<br>dioxide | to<br>sul<br>dio |
|-------|------------------|---------------------|----------------|-------------------|-------------|---------------------------|------------------|
| count | 4898.000000      | 4898.000000         | 4898.000000    | 4898.000000       | 4898.000000 | 4898.000000               | 4898.000         |
| mean  | 6.854788         | 0.278241            | 0.334192       | 6.391415          | 0.045772    | 35.308085                 | 138.360          |
| std   | 0.843868         | 0.100795            | 0.121020       | 5.072058          | 0.021848    | 17.007137                 | 42.498           |
| min   | 3.800000         | 0.080000            | 0.000000       | 0.600000          | 0.009000    | 2.000000                  | 9.000            |
| 25%   | 6.300000         | 0.210000            | 0.270000       | 1.700000          | 0.036000    | 23.000000                 | 108.000          |
| 50%   | 6.800000         | 0.260000            | 0.320000       | 5.200000          | 0.043000    | 34.000000                 | 134.000          |
| 75%   | 7.300000         | 0.320000            | 0.390000       | 9.900000          | 0.050000    | 46.000000                 | 167.000          |
| max   | 14.200000        | 1.100000            | 1.660000       | 65.800000         | 0.346000    | 289.000000                | 440.000          |
| 4     |                  |                     |                |                   |             |                           | <b>&gt;</b>      |

### **Get Columns Names**

```
df.columns
```

```
Index(['fixed acidity', 'volatile acidity', 'citric acid', 'residual sugar', 'chlorides', 'free sulfur dioxide', 'total sulfur dioxide', 'density', 'pH', 'sulphates', 'alcohol', 'quality'], dtype='object')
```

## **Get Columns Names**

df.shape

**→** (4898, 12)

## **Get Shape of DataFrame**

df['quality'].value\_counts()

| <b>→</b> |         | count |
|----------|---------|-------|
|          | quality |       |
|          | 6       | 2198  |
|          | 5       | 1457  |
|          | 7       | 880   |
|          | 8       | 175   |
|          | 4       | 163   |

dtype: int64

3

9

df.groupby('quality').mean()

20

5

| <b>→</b> |         | fixed<br>acidity | volatile<br>acidity | citric<br>acid | residual<br>sugar | chlorides | free<br>sulfur<br>dioxide | total<br>sulfur<br>dioxide | density  |
|----------|---------|------------------|---------------------|----------------|-------------------|-----------|---------------------------|----------------------------|----------|
|          | quality |                  |                     |                |                   |           |                           |                            |          |
|          | 3       | 7.600000         | 0.333250            | 0.336000       | 6.392500          | 0.054300  | 53.325000                 | 170.600000                 | 0.994884 |
|          | 4       | 7.129448         | 0.381227            | 0.304233       | 4.628221          | 0.050098  | 23.358896                 | 125.279141                 | 0.994277 |
|          | 5       | 6.933974         | 0.302011            | 0.337653       | 7.334969          | 0.051546  | 36.432052                 | 150.904598                 | 0.995263 |
|          | 6       | 6.837671         | 0.260564            | 0.338025       | 6.441606          | 0.045217  | 35.650591                 | 137.047316                 | 0.993961 |
|          | 7       | 6.734716         | 0.262767            | 0.325625       | 5.186477          | 0.038191  | 34.125568                 | 125.114773                 | 0.992452 |
|          | 8       | 6.657143         | 0.277400            | 0.326514       | 5.671429          | 0.038314  | 36.720000                 | 126.165714                 | 0.992236 |
|          | 9       | 7.420000         | 0.298000            | 0.386000       | 4.120000          | 0.027400  | 33.400000                 | 116.000000                 | 0.991460 |
|          | 4       |                  |                     |                |                   |           |                           |                            | `        |

Define y (dependent or label or target variable) and X (independent or features or attribute Variable)

```
y = df['quality']
y.shape

→ (4898,)
```

```
\overline{\longrightarrow}
            quality
        0
                   6
        1
                   6
        2
                   6
        3
                   6
                   6
      4893
                   6
      4894
                   5
      4895
                   6
                   7
      4896
      4897
                   6
     4898 rows × 1 columns
     dtype: int64
lfur dioxide', 'total sulfer dioxide', 'density', 'pH', 'sulphates', 'alcohol']]
     KeyError
                                                  Traceback (most recent call last)
     <ipython-input-21-b88da4b1b7fe> in <cell line: 1>()
     ----> 1 x = df[['fixed acidity', 'volatile acidity', 'citric acid', 'residual sugar',
     'chlorides', 'free sulfur dioxide', 'total sulfer dioxide', 'density', 'pH', 'sulphates',
     'alcohol']]
                                          2 frames -
     /usr/local/lib/python3.10/dist-packages/pandas/core/indexes/base.py in
     _raise_if_missing(self, key, indexer, axis_name)
        6177
                          not_found = list(ensure_index(key)[missing_mask.nonzero()
        6178
     [0]].unique())
                          raise KeyError(f"{not_found} not in index")
     -> 6179
        6180
        6181
                  @overload
     KeyError: "['total sulfer dioxide'] not in index"
 Next steps:
              Explain error
or use.drop function to define X
x = df.drop(['quality'],axis=1)
x.shape
→ (4898, 11)
```

Х

| e |   | ٦.            |
|---|---|---------------|
| - | ۷ | $\overline{}$ |
| L | _ | ď.            |

| <b>→</b> |         | fixed<br>acidity | volatile<br>acidity | citric<br>acid | residual<br>sugar | chlorides | free<br>sulfur<br>dioxide | total<br>sulfur<br>dioxide | density | рН   | sulp |
|----------|---------|------------------|---------------------|----------------|-------------------|-----------|---------------------------|----------------------------|---------|------|------|
|          | 0       | 7.0              | 0.27                | 0.36           | 20.7              | 0.045     | 45.0                      | 170.0                      | 1.00100 | 3.00 |      |
|          | 1       | 6.3              | 0.30                | 0.34           | 1.6               | 0.049     | 14.0                      | 132.0                      | 0.99400 | 3.30 |      |
|          | 2       | 8.1              | 0.28                | 0.40           | 6.9               | 0.050     | 30.0                      | 97.0                       | 0.99510 | 3.26 |      |
|          | 3       | 7.2              | 0.23                | 0.32           | 8.5               | 0.058     | 47.0                      | 186.0                      | 0.99560 | 3.19 |      |
|          | 4       | 7.2              | 0.23                | 0.32           | 8.5               | 0.058     | 47.0                      | 186.0                      | 0.99560 | 3.19 |      |
|          |         |                  |                     |                |                   |           |                           |                            |         |      |      |
|          | 4893    | 6.2              | 0.21                | 0.29           | 1.6               | 0.039     | 24.0                      | 92.0                       | 0.99114 | 3.27 |      |
|          | 4894    | 6.6              | 0.32                | 0.36           | 8.0               | 0.047     | 57.0                      | 168.0                      | 0.99490 | 3.15 |      |
|          | 4895    | 6.5              | 0.24                | 0.19           | 1.2               | 0.041     | 30.0                      | 111.0                      | 0.99254 | 2.99 |      |
|          | 4896    | 5.5              | 0.29                | 0.30           | 1.1               | 0.022     | 20.0                      | 110.0                      | 0.98869 | 3.34 |      |
|          | 4897    | 6.0              | 0.21                | 0.38           | 8.0               | 0.020     | 22.0                      | 98.0                       | 0.98941 | 3.26 |      |
|          | 4898 rc | ws × 11 co       | lumns               |                |                   |           |                           |                            |         |      |      |

4898 rows × 11 columns

Next steps:

Generate code with  $\, x \,$ 



View recommended plots

New interactive sheet

#### Get X Variable Standardized

```
from sklearn.preprocessing import StandardScaler
```

```
ss = StandardScaler()
```

```
x = ss.fit_transform(x)
```

Х

```
array([[ 1.72096961e-01, -8.17699008e-02, 2.13280202e-01, ..., -1.24692128e+00, -3.49184257e-01, -1.39315246e+00], [-6.57501128e-01, 2.15895632e-01, 4.80011213e-02, ..., 7.40028640e-01, 1.34184656e-03, -8.24275678e-01], [ 1.47575110e+00, 1.74519434e-02, 5.43838363e-01, ..., 4.75101984e-01, -4.36815783e-01, -3.36667007e-01], ..., [ -4.20473102e-01, -3.79435433e-01, -1.19159198e+00, ..., -1.31315295e+00, -2.61552731e-01, -9.05543789e-01], [ -1.60561323e+00, 1.16673788e-01, -2.82557040e-01, ..., 1.00495530e+00, -9.62604939e-01, 1.85757201e+00], [ -1.01304317e+00, -6.77100966e-01, 3.78559282e-01, ..., 4.75101984e-01, -1.48839409e+00, 1.04489089e+00]])
```

## **Get Train Test Split**

```
from sklearn.model_selection import train_test_split

x_train, x_test, y_train, y_test = train_test_split(x,y, test_size = 0.3, stratify= y, random_

x_train.shape, x_test.shape, y_train.shape, y_test.shape

((3428, 11), (1470, 11), (3428,), (1470,))
```

#### **Get Model Train**

```
from sklearn.svm import SVC

svc = SVC()

svc.fit(x_train, y_train)

v SVC
SVC()
```

#### **Get Model Prediction**

#### **Get ModelEvaluation**

from sklearn.metrics import confusion\_matrix,classification\_report

print(confusion\_matrix(y\_test, y\_pred))

```
→ [[
       0
                1
                                01
            2 25 22
                                01
            3 273 160
                                0]
            0 122 515
                       23
                                0]
                6 191
                       67
                                0]
                  39
                       14
                            0
                                0]
```

```
print(classification_report(y_test,y_pred))
```

```
\rightarrow
                    precision
                                   recall f1-score
                                                         support
                 3
                          0.00
                                     0.00
                                                 0.00
                                                               6
                 4
                          0.40
                                     0.04
                                                 0.07
                                                              49
                 5
                          0.64
                                     0.62
                                                             437
                                                 0.63
                 6
                          0.55
                                     0.78
                                                 0.65
                                                             660
                 7
                          0.63
                                     0.25
                                                 0.36
                                                             264
                 8
                          0.00
                                     0.00
                                                 0.00
                                                              53
                 9
                          0.00
                                     0.00
                                                 0.00
                                                 0.58
                                                            1470
         accuracy
                                     0.24
                                                            1470
        macro avg
                          0.32
                                                 0.25
                          0.57
                                     0.58
                                                 0.55
                                                            1470
    weighted avg
```

```
/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1471: Undefined
    _warn_prf(average, modifier, msg_start, len(result))
/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1471: Undefined
    _warn_prf(average, modifier, msg_start, len(result))
/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1471: Undefined
    _warn_prf(average, modifier, msg_start, len(result))
```

## Get Model Re-run with Two Class Created for Wine Quality

y.value\_counts()

| <b>→</b> |         | count |
|----------|---------|-------|
|          | quality |       |
|          | 6       | 2198  |
|          | 5       | 1457  |
|          | 7       | 880   |
|          | 8       | 175   |
|          | 4       | 163   |
|          | 3       | 20    |
|          | 9       | 5     |

dtype: int64

## **Get Train Test Split**

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X,y, test_size = 0.3, stratify= y, random_
     NameError
                                               Traceback (most recent call last)
     <ipython-input-54-1508bbec45f8> in <cell line: 1>()
     ----> 1 X_train, X_test, y_train , y_test = train_test_split(X,y, test_size = 0.3,
     stratify= y, random_state=2529)
     NameError: name 'X' is not defined
              Explain error
 Next steps:
x_train.shape, x_test.shape, y_train.shape, y_test.shape
((3428, 11), (1470, 11), (3428,), (1470,))
Get Model Train
from sklearn.svm import SVC
svc = SVC()
svc.fit(x_train, y_train)
     ▼ SVC
     SVC()
```

### **Get Model Prediction**

```
y_pred = svc.predict(x_test)

y_pred.shape

→ (1470,)

y_pred

→ array([5, 7, 5, ..., 5, 5, 5])
```

### **Get Model Evalution**

from sklearn.metrics import confusion\_matrix, classification\_report

print(confusion\_matrix(y\_test,y\_pred))

```
[[
             1
                  5
 0
         2
            25
                 22
                           0
                                0]
 0
         3 273 160
                                01
    0
         0 122 515
                     23
                                0]
             6 191
                                0]
    0
         0
                39
                     14
                           0
                                0]
                  0
                      1
                                0]]
```

print(classification\_report(y\_test,y\_pred))

| <b>→</b>     | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 3            | 0.00      | 0.00   | 0.00     | 6       |
| 4            | 0.40      | 0.04   | 0.07     | 49      |
| 5            | 0.64      | 0.62   | 0.63     | 437     |
| 6            | 0.55      | 0.78   | 0.65     | 660     |
| 7            | 0.63      | 0.25   | 0.36     | 264     |
| 8            | 0.00      | 0.00   | 0.00     | 53      |
| 9            | 0.00      | 0.00   | 0.00     | 1       |
| accuracy     |           |        | 0.58     | 1470    |
| macro avg    | 0.32      | 0.24   | 0.25     | 1470    |
| weighted avg | 0.57      | 0.58   | 0.55     | 1470    |

/usr/local/lib/python3.10/dist-packages/sklearn/metrics/\_classification.py:1471: Undefinec \_warn\_prf(average, modifier, msg\_start, len(result))

/usr/local/lib/python3.10/dist-packages/sklearn/metrics/\_classification.py:1471: Undefined \_warn\_prf(average, modifier, msg\_start, len(result))

/usr/local/lib/python3.10/dist-packages/sklearn/metrics/\_classification.py:1471: Undefined
 \_warn\_prf(average, modifier, msg\_start, len(result))



Let select a random sample from existing dataset as new value

```
df_new = df.sample(1)
```

df new Could not connect to the reCAPTCHA service. Please check your internet connection and reload to get a reCAPTCHA challenge.