<u>Help</u>

sandipan_dey >

<u>Calendar</u> **Discussion** <u>Notes</u> <u>Course</u> <u>Progress</u> <u>Dates</u>

☆ Course / Unit 1: Functions of two variab... / Lecture 1: Level curves and partial derivati...

(1)

You are taking "Exam (Timed, No Correctness Feedback)" as a timed exam. Show more

End My Exam

44:54:34

Lecture due Aug 4, 2021 20:30 IST Completed

Practice

Practice 1

2.0/2 points (graded)

Let
$$f(x,y)=8x^7-x\sqrt{y}$$
.

Compute:

$$f_x(x,y) =$$

$$56*x^6-sqrt(y)$$

? INPUT HELP

Submit

You have used 1 of 5 attempts

Practice 2

2.0/2 points (graded)

Let
$$h\left(x,t
ight)=e^{-3t}\cos\left(\pi x
ight)$$
.

Compute:

? INPUT HELP

Solution:

To compute $m{h_x}$, differentiate with respect to $m{x}$ treating $m{t}$ as a constant:

$$egin{aligned} h_x\left(x,t
ight) &= rac{\partial}{\partial x}ig(e^{-3t}\cos\left(\pi x
ight)ig) \ &= e^{-3t}rac{\partial}{\partial x}\cos\left(\pi x
ight) \ &= e^{-3t}\left(-\pi\sin\left(\pi x
ight)
ight) \ &= -\pi e^{-3t}\sin\left(\pi x
ight) \end{aligned}$$

from the chain rule.

To compute $h_{m{t}}$, differentiate with respect to $m{t}$ treating $m{x}$ as a constant:

$$egin{aligned} h_t\left(x,t
ight) &= rac{\partial}{\partial t}ig(e^{-3t}\cos\left(\pi x
ight)ig) \ &= \cos\left(\pi x
ight)rac{\partial}{\partial t}e^{-3t} \end{aligned}$$

$$= \cos(\pi x) \left(-3e^{-3t}\right)$$
$$= -3e^{-3t} \cos(\pi x)$$

from the chain rule.

Submit

You have used 1 of 5 attempts

1 Answers are displayed within the problem

Practice 3

3.0/3 points (graded)

Let
$$g(x,y,z)=x\ln{(y-z)}$$
.

Compute:

? INPUT HELP

Solution:

To compute $oldsymbol{g_x}$, differentiate with respect to $oldsymbol{x}$ treating $oldsymbol{y}$ and $oldsymbol{z}$ as constants:

$$egin{aligned} g_x\left(x,y,z
ight) &= rac{\partial}{\partial x}(x\ln{(y-z)}) \ &= \ln{(y-z)}\,rac{\partial}{\partial x}x \ &= \ln{(y-z)}\,. \end{aligned}$$

To compute g_y , differentiate with respect to y treating $oldsymbol{x}$ and $oldsymbol{z}$ as constants:

$$egin{aligned} g_y\left(x,y,z
ight) &= rac{\partial}{\partial y}(x\ln{(y-z)}) \ &= xrac{\partial}{\partial y}\ln{(y-z)} \ &= rac{x}{y-z} \end{aligned}$$

from the chain rule.

To compute g_z , differentiate with respect to z treating $oldsymbol{x}$ and $oldsymbol{y}$ as constants:

$$egin{aligned} g_z\left(x,y,z
ight) &= rac{\partial}{\partial z}(x\ln{(y-z)}) \ &= xrac{\partial}{\partial z}\ln{(y-z)} \ &= rac{-x}{y-z} \end{aligned}$$

from the chain rule.

Submit

You have used 2 of 5 attempts

1 Answers are displayed within the problem

Practice 4

2.0/2 points (graded)

Let
$$q\left(x,y
ight) =x\sin \left(y
ight) +e^{3x^{2}y^{2}}$$
 .

Compute:

$$q_x\left(x,y
ight) =$$

Answer: sin(y)+6*x*y^2*exp(3*x^2*y^2)

$$q_y\left(x,y
ight) =% {\displaystyle\int\limits_{0}^{\infty }} \left[{\int\limits_{0}^{\infty }} \left[{\int\limits$$

$$x*cos(y)+6*x^2*y*e^(3*x^2*y^2)$$

Answer: $x*\cos(y)+6*x^2*y*\exp(3*x^2*y^2)$

? INPUT HELP

Solution:

To compute $oldsymbol{q_x}$, differentiate with respect to $oldsymbol{x}$ treating $oldsymbol{y}$ as a constant:

$$egin{align} q_x\left(x,y
ight) &= rac{\partial}{\partial x} \Big(x \sin{(y)} + e^{3x^2y^2}\Big) \ &= \sin{(y)} rac{\partial}{\partial x} x + e^{3x^2y^2} rac{\partial}{\partial x} (3x^2y^2) \ &= \sin{(y)} + 6xy^2 e^{3x^2y^2} \ \end{aligned}$$

from the chain rule.

To compute $oldsymbol{q_y}$, differentiate with respect to $oldsymbol{y}$ treating $oldsymbol{x}$ as a constant:

$$egin{align} q_y\left(x,y
ight) &= rac{\partial}{\partial y} \Big(x \sin{(y)} + e^{3x^2y^2}\Big) \ &= x rac{\partial}{\partial y} \sin{(y)} + e^{3x^2y^2} rac{\partial}{\partial y} (3x^2y^2) \ &= x \cos{(y)} + 6x^2y e^{3x^2y^2} \ \end{aligned}$$

from the chain rule.

Submit

You have used 2 of 5 attempts

1 Answers are displayed within the problem

Identify the mistake

1/1 point (graded)
Consider the function

$$h(x,r,t) = t\cos(x+t) + r^2\ln(x+t) + \frac{t^3r}{x}.$$
 (2.25)

One of the following partial derivative computations is incorrect. Identify the *incorrect* computation.

$$rac{\partial h}{\partial x} = -t\sin{(x+t)} + rac{r^2}{x+t} - rac{t^3r}{x^2}$$

$$rac{\partial h}{\partial r}=2r\ln{(x+t)}+rac{t^3}{x}$$

$$rac{\partial h}{\partial t} = -t \sin{(x+t)} + rac{r^2}{x+t} + rac{3t^2r}{x}$$

Solution:

The first term of the expression for $m{h}$ involves a multiplication of two expressions involving $m{t}$. So, to compute we need to use the product rule.

$$\frac{\partial h}{\partial t} = \frac{\partial}{\partial t} t \cos(x+t) + \frac{\partial}{\partial t} r^2 \ln(x+t) + \frac{\partial}{\partial t} \frac{t^3 r}{x}$$
 (2.26)

$$= \cos(x+t) - t\sin(x+t) + \frac{r^2}{x+t} + \frac{3t^2r}{x}. \tag{2.27}$$

Submit

You have used 1 of 2 attempts

Answers are displayed within the problem

12. Computing partial derivatives: practice

Hide Discussion

Topic: Unit 1: Functions of two variables / 12. Computing partial derivatives: practice

Add a Post

Show all posts ✓ by recent a	activity 🗸
• unable to submit Hi I was extremely busy last week so I couldn't submit the graded assignments in time. Is there a way to shift the schedule? I can't s	
[STAFF] Mistake in solution for Part 3 Practice 3.	2
? [STAFF] Practice 4 the one on (x*sin(y) + e^(3*x^2*y^2)) At first I thought it was my internet, but it happens that this question has suddenly disappeared. I am getting the following message:	2 <u>:-</u>
? [STAFF] Scoring issue - Identify the mistake for the Identify the mistake problem, I got my first try wrong and I clicked on the correct one for the last attempt but I didn't get the	2
Correction request For the last question 3 options and 5 attempts))) Plz reduce, at least to 2	2
Mr. Forgot about product rule[REDACTED]	3

Previous

Next >

© All Rights Reserved

edX

About

<u>Affiliates</u>

edX for Business

Open edX

Careers

<u>News</u>

Legal

Terms of Service & Honor Code

<u>Privacy Policy</u>

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

<u>Blog</u> **Contact Us**

Help Center Media Kit **Donate**

© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>