

June 2002

PWM Optimized

ISL9N308AD3 / ISL9N308AD3ST

N-Channel Logic Level UltraFET $^{\mbox{\scriptsize B}}$ Trench Power MOSFETs 30V, 50A, 8m Ω

General Description

This device employs a new advanced trench MOSFET technology and features low gate charge while maintaining low on-resistance.

Optimized for switching applications, this device improves the overall efficiency of DC/DC converters and allows operation to higher switching frequencies.

Applications

DC/DC converters

Features

- · Fast switching
- $r_{DS(ON)} = 0.0064\Omega$ (Typ), $V_{GS} = 10V$
- $r_{DS(ON)} = 0.010\Omega$ (Typ), $V_{GS} = 4.5V$
- $Q_g (Typ) = 24nC, V_{GS} = 5V$
- Q_{qd} (Typ) = 8nC
- C_{ISS} (Typ) = 2600pF

MOSFET Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Parameter	Ratings	Units	
V_{DSS}	Drain to Source Voltage	30	V	
V _{GS}	Gate to Source Voltage	±20	V	
	Drain Current			
I _D	Continuous ($T_C = 25^{\circ}$ C, $V_{GS} = 10V$) Note 1	50	Α	
	Continuous ($T_C = 100^{\circ}$ C, $V_{GS} = 4.5$ V) Note 1	48	А	
	Continuous ($T_C = 25^{\circ}$ C, $V_{GS} = 10$ V, $R_{\theta JC} = 52^{\circ}$ C/W)	14	А	
	Pulsed	Figure 4	А	
D	Power dissipation	100	W	
P_{D}	Derate above 25°C	0.67	W/°C	
T _J , T _{STG}	Operating and Storage Temperature	-55 to 175	°C	

Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance Junction to Case TO-252, TO-251	1.5	°C/W
$R_{\theta JA}$	Thermal Resistance Junction to Ambient TO-252, TO-251	100	°C/W
$R_{\theta,JA}$	Thermal Resistance Junction to Ambient TO-252, 1in ² copper pad area	52	°C/W

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
N308AD	ISL9N308AD3ST	TO-252AA	330mm	16mm	2500 units
N308AD	ISL9N308AD3	TO-251AA	Tube	N/A	75 units

Symbol	Parameter	Test Condi	tions	Min	Тур	Max	Unit	
Off Chara	cteristics							
B _{VDSS}	Drain to Source Breakdown Voltage	I _D = 250μA, V _{GS}	= 0V	30	-	-	V	
	Zara Cata Valla da Braia Carra d	V _{DS} = 25V		-	-	1	_	
I _{DSS}	Zero Gate Voltage Drain Current	$V_{GS} = 0V$	$\Gamma_{\rm C} = 150^{\rm o}$	-	-	250	μΑ	
I _{GSS}	Gate to Source Leakage Current	V _{GS} = ±20V		-	-	±100	nA	
On Chara	cteristics							
V _{GS(TH)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 2$	250μΑ	1	-	3	V	
	D 1 1 0 0 D 11	I _D = 50A, V _{GS} = 10V		-	0.0064	0.008		
r _{DS(ON)}	Drain to Source On Resistance	$I_D = 48A, V_{GS} = 4$		-	0.010	0.012	Ω	
Dynamic	Characteristics							
C _{ISS}	Input Capacitance			-	2600	-	pF	
C _{OSS}	Output Capacitance	──V _{DS} = 15V, V _{GS} = ──f = 1MHz	= UV,	-	520	-	pF	
C _{RSS}	Reverse Transfer Capacitance	1 = 110172		-	225	-	pF	
Q _{q(TOT)}	Total Gate Charge at 10V	$V_{GS} = 0V \text{ to } 10V$		-	45	68	nC	
Q _{g(5)}	Total Gate Charge at 5V	$V_{GS} = 0V \text{ to } 5V$	V _{DD} = 15V	-	24	37	nC	
Q _{q(TH)}	Threshold Gate Charge	$V_{GS} = 0V \text{ to } 1V$	I _D = 48A	-	2.6	4.0	nC	
Q _{gs}	Gate to Source Gate Charge		$I_g = 1.0 \text{mA}$	-	7	-	nC	
Q _{gd}	Gate to Drain "Miller" Charge			-	8	-	nC	
Switching	Characteristics (V _{GS} = 4.5V)			T	1	T	Т	
t _{ON}	Turn-On Time			-	-	122	ns	
t _{d(ON)}	Turn-On Delay Time			-	15	-	ns	
t _r	Rise Time	$V_{DD} = 15V, I_D = 1$		-	67	-	ns	
t _{d(OFF)}	Turn-Off Delay Time	$V_{GS} = 4.5V, R_{GS} = 6.2\Omega$		-	35	-	ns	
t _f	Fall Time			-	32	-	ns	
t _{OFF}	Turn-Off Time				-	100	ns	
Switching	Characteristics (V _{GS} = 10V)							
t _{ON}	Turn-On Time			-	-	71	ns	
$t_{d(ON)}$	Turn-On Delay Time	$V_{DD} = 15V, I_{D} = 14A$ $V_{GS} = 10V, R_{GS} = 6.2\Omega$		-	8	-	ns	
t _r	Rise Time			-	40	-	ns	
t _{d(OFF)}	Turn-Off Delay Time			-	64	-	ns	
t _f	Fall Time			-	31	-	ns	
t _{OFF}	Turn-Off Time				-	142	ns	
Unclampe	ed Inductive Switching							
t _{AV}	Avalanche Time	$I_D = 3.2A, L = 3.0mH$		215	-	-	μs	
	rce Diode Characteristics							
	lep = 48A			-	_	1.25	V	
V_{SD}	Source to Drain Diode Voltage	I _{SD} = 20A		-	-	1.0	V	
t _{rr}	Reverse Recovery Time	$I_{SD} = 48A$, $dI_{SD}/dt = 100A/\mu s$		-	-	26	ns	
Q _{RR}	Reverse Recovered Charge	$I_{SD} = 48A$, $dI_{SD}/dt = 100A/\mu s$		-	-	14	nC	

^{1:} TO-251AA continuous current limited by package to 35A.

Figure 1. Normalized Power Dissipation vs Ambient Temperature

Figure 2. Maximum Continuous Drain Current vs Case Temperature

Figure 3. Normalized Maximum Transient Thermal Impedance

Figure 4. Peak Current Capability

©2002 Fairchild Semiconductor Corporation ISL9N308AD3 / ISL9N308AD3ST Rev C

Figure 5. Transfer Characteristics

Figure 6. Saturation Characteristics

Figure 7. Drain to Source On Resistance vs Gate
Voltage and Drain Current

Figure 8. Normalized Drain to Source On Resistance vs Junction Temperature

Figure 9. Normalized Gate Threshold Voltage vs Junction Temperature

Figure 10. Normalized Drain to Source Breakdown Voltage vs Junction Temperature

Figure 11. Capacitance vs Drain to Source Voltage

Figure 12. Gate Charge Waveforms for Constant Gate Currents

Figure 13. Switching Time vs Gate Resistance

Figure 14. Switching Time vs Gate Resistance

Test Circuits and Waveforms

Figure 15. Unclamped Energy Test Circuit

Figure 16. Unclamped Energy Waveforms

Test Circuits and Waveforms (Continued)

Figure 17. Gate Charge Test Circuit

Figure 18. Gate Charge Waveforms

Figure 19. Switching Time Test Circuit

Figure 20. Switching Time Waveforms

Thermal Resistance vs. Mounting Pad Area

The maximum rated junction temperature, T_{JM} , and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, P_{DM} , in an application. Therefore the application's ambient temperature, T_A (°C), and thermal resistance $R_{\theta JA}$ (°C/W) must be reviewed to ensure that T_{JM} is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part.

$$P_{DM} = \frac{(T_{JM} - T_A)}{Z_{\theta JA}} \tag{EQ. 1}$$

In using surface mount devices such as the TO-252 package, the environment in which it is applied will have a significant influence on the part's current and maximum power dissipation ratings. Precise determination of P_{DM} is complex and influenced by many factors:

- Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board.
- 2. The number of copper layers and the thickness of the board.
- 3. The use of external heat sinks.
- 4. The use of thermal vias.
- 5. Air flow and board orientation.
- For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in.

Fairchild provides thermal information to assist the designer's preliminary application evaluation. Figure 21 defines the $R_{\theta JA}$ for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Fairchild device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve.

Displayed on the curve are $R_{\theta JA}$ values listed in the Electrical Specifications table. The points were chosen to depict the compromise between the copper board area, the thermal resistance and ultimately the power dissipation, $P_{DM}. \label{eq:power}$

Thermal resistances corresponding to other copper areas can be obtained from Figure 21 or by calculation using Equation 2. $R_{\theta JA}$ is defined as the natural log of the area times a coefficient added to a constant. The area, in square inches is the top copper area including the gate and source pads.

$$R_{\theta JA} = 33.32 + \frac{23.84}{(0.268 + Area)}$$
 (EQ. 2)

Figure 21. Thermal Resistance vs Mounting
Pad Area

PSPICE Electrical Model .SUBCKT ISL9N308AD3ST 2 1 3 ; rev Dec2000 CA 12 8 1.5e-9 CB 15 14 1.75e-9 LDRAIN CIN 6 8 2.35e-9 DPI CAP DRAIN 10 DBODY 7 5 DBODYMOD **RLDRAIN** DBREAK 5 11 DBREAKMOD **≨**RSLC1 DBREAK **DPLCAP 10 5 DPLCAPMOD** RSI C2 ₹ EBREAK 11 7 17 18 32.7 **ESLC** EDS 14 8 5 8 1 50 FGS 13 8 6 8 1 ESG 6 10 6 8 1 **▲** DBODY RDRAIN <u>6</u> 8 EBREAK **ESG** EVTHRES 6 21 19 8 1 **EVTHRES** EVTEMP 20 6 18 22 1 (<u>19</u> 8 MWEAK LGATE EVTEMP IT 8 17 1 GATE **RGATE €**MMED 18 22 9 20 4 MSTR LDRAIN 2 5 1e-9 RLGATE LGATE 1 9 4.58e-9 LSOURCE CIN LSOURCE 3 7 1.47e-9 SOURCE 8 RSOURCE MMED 16 6 8 8 MMEDMOD RLSOURCE MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD RBREAK <u>13</u> 8 17 RBREAK 17 18 RBREAKMOD 1 o S2B **₹**RVTEMP RDRAIN 50 16 RDRAINMOD 2.5e-3 S1B RGATE 9 20 3.4 СВ 19 CA т (♠ 14 RLDRAIN 2 5 10 VBAT **RLGATE 1 9 45.8** FGS FDS **RLSOURCE 3 7 14.7** RSLC1 5 51 RSLCMOD 1e-6 8 RSLC2 5 50 1e3 RVTHRES RSOURCE 8 7 RSOURCEMOD 2.55e-3 RVTHRES 22 8 RVTHRESMOD 1 **RVTEMP 18 19 RVTEMPMOD 1** S1A 6 12 13 8 S1AMOD S1B 13 12 13 8 S1BMOD S2A 6 15 14 13 S2AMOD S2B 13 15 14 13 S2BMOD VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*200),5))} .MODEL DBODYMOD D (IS = 1.9e-11 N = 1.075 RS = 4.2e-3 TRS1 = 9e-4 TRS2 = 1e-6 XTI = 2.2 CJO = 1.1e-9 TT = 8e-11 M = 0.49.MODEL DBREAKMOD D (RS = 1.7e-1 TRS1 = 1e-3 TRS2 = -8.9e-6) .MODEL DPLCAPMOD D (CJO = 8.2e-10 IS = 1e-30 N = 10 M = 0.45) .MODEL MMEDMOD NMOS (VTO = 1.9 KP = 3 IS=1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 3.4) .MODEL MSTROMOD NMOS (VTO = 2.35KP = 90 IS = 1e-30 N= 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 1.6 KP = 0.05 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 34 RS = 0.1) .MODEL RBREAKMOD RES (TC1 = 1e-3 TC2 = -7e-7) .MODEL RDRAINMOD RES (TC1 = 7e-3 TC2 = 1e-5) .MODEL RSLCMOD RES (TC1 = 1e-3 TC2 = 1e-6) .MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 1e-6) .MODEL RVTHRESMOD RES (TC1 = -2.7e-3 TC2 = -1e-5) .MODEL RVTEMPMOD RES (TC1 = -1.8e-3 TC2 = 1e-6) .MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -4.0 VOFF= -0.8) .MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -0.8 VOFF= -4.0) .MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -0.3 VOFF= 0.2) .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0.2 VOFF= -0.3) FNDS For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank

Wheatley.

SABER Electrical Model REV Dec 2000 template ISL9N308AD3ST n2,n1,n3 electrical n2,n1,n3 var i iscl dp..model dbodymod = (isl = 1.9e-11, nl=1.075, rs = 4.2e-3, trs1 = 9e-4, trs2 = 1e-6, xti=2.2, cjo = 1.1e-9, tt = 8e-11, m = 0.49,) dp..model dbreakmod = (rs = 0.17, trs1 = 1e-3, trs2 = -8.9e-6)dp..model dplcapmod = (cjo = 8.2e-10, isl=10e-30, nl=10, m=0.45) $m..model mmedmod = (type=_n, vto = 1.9, kp=3, is=1e-30, tox=1)$ m..model mstrongmod = $(type=_n, vto = 2.35, kp = 90, is = 1e-30, tox = 1)$ m..model mweakmod = $(type=_n, vto = 1.6, kp = 0.05, is = 1e-30, tox = 1, rs=0.1)$ sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -4.0, voff = -0.8) sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -0.8, voff = -4.0) sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -0.3, voff = 0.2) LDRAIN sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.2, voff = -0.3) DPI CAP DRAIN 10 c.ca n12 n8 = 1.5e-9RLDRAIN ≸RSLC1 c.cb n15 n14 = 1.75e-9c.cin n6 n8 = 2.35e-9ISCL dp.dbody n7 n5 = model=dbodymod DBREAK Y dp.dbreak n5 n11 = model=dbreakmod 50 dp.dplcap n10 n5 = model=dplcapmod **≨**RDRAIN $ESG(\frac{6}{8})$ DBODY **EVTHRES** i.it n8 n17 = 1 MWEAK I GATE **EVTEMF RGATE** I.ldrain n2 n5 = 1e-9GATE ÷(18) **EBREA €**MMED I.lgate n1 n9 = 4.58e-9J₉ 20 4 MSTR I.Isource n3 n7 = 1.47e-9RLGATE LSOURCE CIN SOURCE m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u RSOURCE RLSOURCE m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u **RBREAK** res.rbreak n17 n18 = 1. tc1 = 1e-3. tc2 = -7e-7 res.rdrain n50 n16 = 2.5e-3, tc1 = 7e-3, tc2 = 1e-5 RVTEMP res.rgate n9 n20 = 3.4res.rldrain n2 n5 = 10 CB: 19 CA IT (lacktriangle)res.rlgate n1 n9 = 45.8 VBAT res.rlsource n3 n7 = 14.7EGS res.rslc1 n5 n51= 1e-6, tc1 = 1e-3, tc2 = 1e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 2.55e-3, tc1 = 1e-3, tc2 = 1e-6 **RVTHRES** res.rvtemp n18 n19 = 1, tc1 = -1.8e-3, tc2 = 1e-6res.rvthres n22 n8 = 1, tc1 = -2.7e-3, tc2 = -1e-5spe.ebreak n11 n7 n17 n18 = 32.7 $\frac{1}{100}$ spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e-6/200))** 5))

©2002 Fairchild Semiconductor Corporation ISL9N308AD3 / ISL9N308AD3ST Rev C

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™ FRFET™ PACMAN™ SuperSOT™-3 Bottomless™ GlobalOptoisolator™ POPTM SuperSOT™-6 Power247™ CoolFET™ GTO™ SuperSOT™-8 PowerTrench® HiSeC™ CROSSVOLT™ SyncFET™ DOME™ QFET™ I^2C^{TM} TinyLogic™ QSTM EcoSPARK™ ISOPLANAR™ TruTranslation™ E²CMOS™

FACT Quiet Series™ MICROWIRE™ SMART START™

FAST[®] OPTOLOGIC[®] SPM[™] FASTr[™] OPTOPLANAR[™] Stealth[™]

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.