RSA: security basis and practical aspects

Sandra Marcello

6 mars 2022

Plan

RSA security

Factorisation's algorithm

Pollard's p-1 1974

Pollard's Rho method

Attack on DLP (Discrete Logarithm Problem)

Impelmentation's tools: exponentiation

Introduction

- RSA's security relies on the factorization Problem.
- ► El gammal's security relies on the DLP (Discrete Logarithm Problem.

Goal :Description of some algorithms against these problems.

Basic analysis

- Factorisation Problem : Giving n = pq with p, q prime numbers .Find p and q.
 - 1. Knowing p and q. Compute $\phi(n)$.
 - 2. Extended Euclidean algorithm : find the private key thanks to the public one.
- Necessary to hide $\phi(n)$ $\phi(n) = (p-1)(q-1)$ Writing $\frac{q=n}{p}$, we obtain the following equation :

$$p^2 + p(\phi(n) - 1 - n) + n,$$

whose roots are p and q.

Pollard's p-1: idea

- Let p be a prime number such that n = 0[p].
- Let q be a prime number, with p-1=o[q]
- ▶ Using a "random "list of elements L (\mathbb{F}_n)
- As n is not a prime : existence of collision modulo p.
- ▶ In case of collision $GCD(x_j x_i, n) = p$

Pollard's ρ -method

Main ideas :n = p.q, with

- ▶ Using a "random "list of elements L (\mathbb{F}_n)
- As n is not a prime : existence of collision modulo p.
- ▶ In case of collision $GCD(x_j x_i, n) = p$

Pollard's ρ -method : function f

- Consider $f(x) = x^2 + a[n]$, usually a = 1.
- Build the List : L
- Compute $GCD(x_i, x_{2i})$, if $GCD(x_i, x_{2i}) > 1$ then $GCD(x_i, x_{2i}) = p$ or $GCD(x_i, x_{2i}) = q$

Pollard's ρ -method : description

- Consider $f(x) = x^2 + a[n]$, usually a = 1.
- Build the List : L
- Compute $GCD(x_i, x_{2i})$, if $GCD(x_i, x_{2i}) > 1$ then $GCD(x_i, x_{2i}) = p$ or $GCD(x_i, x_{2i}) = q$

Example : n = 7171 = 71 * 101, $f(x) = x^2 + 1$ and $x_1 = 1$.

Pollard's ρ -method : pseudo-code

Pollard's Rho : Input (n, x_1)

- \triangleright $x \leftarrow x_1$.
- $\triangleright x' \leftarrow f(x)[n]$
- $p \leftarrow GCD(x x', n)$ While p = 1 Do
 - $\triangleright x \leftarrow f(x)[n]$
 - \triangleright $x' \leftarrow f(x')[n]$
 - p = GCD(x x', n)

If p = n return "Fail" Else return "p".

Shanks' algorithm

Compromis Espace-Temps

Shanks's algorithm : (G,n,α,β)

- 1. $m \leftarrow \lceil \sqrt{n} \rceil$
- 2. For $j \leftarrow o$ until m-1 Do : α^{mj}
- 3. Build a list $L_1(j, \alpha^{mj})$
- 4. For $i \leftarrow o$ until m-1 Do : $\beta \alpha^{-i}$
- 5. build a List L_2 $(i, \beta \alpha^{-i})$
- 6. Find a collision (on the second coordinate) (j, y et (i, y).
- 7. $\log_{\alpha}(\beta) \leftarrow (mj + i)[n]$.

Pollard Rho algorithm

Input : Let G be a cyclic group. (mandatory) Same ideas (cf. Pollard Rho algorithm factorization)

- Split your group G in 3 subsets (partition). ($S_0 = \{x \in G \text{ such that } x = 0[3]\}$,.... if $G = (\mathbb{Z}/p\mathbb{Z})^*$)
- ▶ Define a "random " function on G thanks to these 3 subsets.
- Buid a List L
- Find a collision

Pollard Rho algorithm

```
Pollard Rho algorithm for DLP: (G,n,\alpha,\beta) function f: f(x,a,b) If x \in S_0 then f \leftarrow (\beta.x,a,(b+1)[n]) else if x \in S_1 then f \leftarrow (x^2,2a[n],2b[n]) else f \leftarrow (\alpha.x,(a+1)[n],b) return (f)
```

Pollard Rho algorithm

Main:

- 1. Define $G = S_0 \cup S_1 \cup S_2$
- 2. $(x, a, b) \leftarrow f(1, 0, 0)$ $(x', a', b') \leftarrow f(x, a, b)$
- 3. While $x \neq x'$ Do :
 - \blacktriangleright $(x, a, b) \leftarrow f(x, a, b)$
 - $(x', a', b') \leftarrow f(x', a', b')$

If
$$(b'-b) \land n \neq 1$$

then Return "fail" else return $((a-a')(b'-b)^{-1}[n])$

Exponentiation

- Algorithme naif: $x^n = x.x \cdots x.x \ n-1$ multiplications successives .
- ▶ Optimisation : Pour $n = 2^k$

$$x^n = \left(\cdots \left((x^2)^2\right)^2 \cdots\right)^2.$$

k multiplications élémentaires au lieu de $2^k - 1$. Complexity : $\mathcal{O}((\log(x))^k)$.

Exemple: x^{15} ?

Fast exponentiation (square and multiply)

```
Goal : z = x^c[n]

Binary decomposition : Let c \in \mathbb{N} with c = \sum_{i=0}^{l-1} c_i 2^i

Fast exponentiation(x, c, n) : z \leftarrow 1

For i \leftarrow l-1 to 0

Do

z \leftarrow z^2[n]

If c_i = 1 then z \leftarrow (z \times x)[n]

Return (z)
```