

Data exploration Statistiques descriptives bivariées

- Observer simultanément des individus d'une population sur deux caractères
- Mesurer un lien éventuel entre deux caractères en utilisant un résumé chiffré qui traduit l'importance de ce lien
- Qualifier ce lien :
 - en cherchant une relation numérique approchée entre deux caractères quantitatifs
 - en cherchant des correspondances entre les modalités de deux caractères qualitatifs

2 types de variables \Rightarrow 3 types de croisements :

- qualitatif ×qualitatif
- qualitatif ×quantitatif
- quantitatif ×quantitatif

Croisement Quantitatif - Quantitatif Nuage de points

On considère X et Y deux variables quantitatives sur un échantillon de taille n. Les objectifs sont :

- Déterminer s'il y a un lien (corrélation) entre les deux variables.
- Construire un modèle permettant d'expliquer Y par X (ou vice-versa) s'il y a un lien.

Le modèle pourra alors servir à faire de la prévision, c-a-d prévoir des valeurs de Y pour de nouvelles valeurs de X.

Etude du lien entre la taille (X) et le poids (Y) chez les enfants de 6 ans

Enfant	1	2	3	4	5	6	7	8	9	10
Taille	121	123	108	118	111	109	114	103	110	115
Poids	25	22	19	24	19	18	20	15	20	21

La première étape consiste à constater visuellement si ce lien existe. La représentation graphique appropriée est le *nuage de points*.

On cherche à repérer une forme particulière dans le nuage qui traduirai le lien entre X et Y. En particulier, une forme allongée traduit une relation de droite entre les deux variables.

Croisement Quantitatif - Quantitatif Droite de régression

On note $\{x_i\}_{i=1,\dots,n}$ la série observée pour X et $\{y_i\}_{i=1,\dots,n}$ la série observée pour Y.

L'objectif est de trouver une fonction f telle que

$$y_i = f(x_i) + \varepsilon_i$$

où ε représente l'erreur.

On se restreint aux fonctions affines:

$$f(x) = ax + b$$

Et on cherche les coefficients a et b qui minimisent *l'erreur quadratique moyenne*

$$EQ(a,b) = \frac{1}{n} \sum_{i=1}^{n} \varepsilon_i^2$$
$$= \frac{1}{n} \sum_{i=1}^{n} (y_i - (ax_i + b)^2)$$

Croisement Quantitatif - Quantitatif Coefficients de la droite de régression

Par minimisation de l'erreur quadratique moyenne, on obtient les coefficients :

On résout le système : $\frac{\partial}{\partial a}$ EQ(a,b)=0 et $\frac{\partial}{\partial b}$ EQ(a,b)=0

$$\hat{a} = \frac{c_{xy}}{s_x^2}$$
 et $\hat{b} = \bar{y} - \hat{a}\bar{x}$

Le « chapeau » au dessus de a et b signifie que la valeur obtenue est une estimation sur un échantillon

où
$$c_{xy} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$
 est la covariance entre X et Y.

La covariance empirique garde les mêmes propriétés que la covariance théorique

 $y=\hat{a}x+\hat{b}$ est appelée droite de régression de Y en X. Elle traduit les variations de Y qui peuvent être expliquées par X. Attention la droite de régression de X en Y n'est nécessairement la même que celle de Y en X

Exemple: Etude du lien entre l'âge et le poids chez les enfants de 6 ans

\bar{x}	\bar{y}	S_{χ}^2	S_y^2	c_{xy}
113,20	20,30	38,62	8,46	16,27

L'équation de la droite de Y en X : y=0,42 x - 27,38

L'équation de la droite de X en Y : y=1,92 x - 74,15

Croisement Quantitatif - Quantitatif Covariance et coefficient de corrélation

La covariance est un indicateur numérique du lien entre X et Y : plus il est éloigné de 0, plus les variables sont liées. Le coefficient directeur de la droite est proportionnel à la covariance

L'inconvénient est qu'il n'est par normé. Pour pallier ce problème, on définit le coefficient de corrélation linéaire (coefficient de Pearson) à valeurs dans [-1,1]

$$r_{xy} = \frac{c_{xy}}{s_x s_y}.$$

Le coefficient de corrélation correspond à la covariance des séries centrées et réduites

On a alors

$$\hat{a} = \frac{c_{xy}}{s_x^2} \implies \hat{a} = r_{xy} \frac{s_y}{s_x}.$$

- |r| est proche de 1 alors X et Y sont très liés entre eux par une droite affine.
- r < 0 : globalement X et Y varient en sens inverse .
- r > 0 : globalement X et Y varient dans le même sens .
- $|r| \cong 0$: on ne peut rien dire sur un lien éventuel entre X et Y.

!!! Cela ne signifie pas qu'il n'y a pas de lien entre X et Y

<u>Exemple</u>: Etude du lien entre l'âge et le poids chez les enfants de 6 ans On trouve

$$r_{xy} = 0.90$$

- $r_{xy} \cong 1 \implies L'$ équation de droite est donc pleinement justifiée
- $r_{xy} > 0 \implies$ plus la taille est grande et plus le poids est important (et vice-versa)

Croisement Quantitatif - Quantitatif Prévisions

On appelle *prévisions* les valeurs données par la droite de régression. Pour chaque point x_i de la série observée, on peut calculer la prévision (*i.e.* une valeur approchée de y_i par la droite de régression)

$$\hat{y}_i = \hat{a}x_i + \hat{b}$$

Propriétés:

La variable Y et la partie de cette variable expliquée par la droite de régression ont la même moyenne :

$$\bar{\hat{y}} = \bar{y}$$

Démonstration en TD

mais pas la même variance :

$$s_{\hat{y}}^2 = s_{\hat{y}}^2 \times r_{xy}^2$$

$$\hat{y} = \hat{a}x + \hat{b} \implies s_{\hat{y}}^2 = (\hat{a})^2 s_x^2 = \left(r_{xy} \frac{s_y}{s_x}\right)^2 s_x^2 = r_{xy} s_y^2$$

- ⇒ La variance de Y expliquée la droite de régression est plus petite que la variance de Y
- ⇒ La variance de Y expliquée la droite de régression est d'autant meilleure que le coefficient de Pearson est proche de 1 en valeur absolue.

Croisement Quantitatif - Quantitatif Résidus

On appelle *résidus* l'écart entre la valeur observée y_i et la valeur prédite \hat{y}_i

$$e_i = y_i - \hat{y}_i = y_i - (\hat{a}x_i + \hat{b})$$

On calcule alors l'erreur globale

$$EQ(\hat{a}, \hat{b}) = \frac{1}{n} \sum_{i=1}^{n} e_i^2 = s_y^2 (1 - r_{xy}^2)$$

$$EQ = s_e^2 = s_{\{y-(\hat{a}x+\hat{b})\}}^2 = s_{y-\hat{a}x}^2 = s_y^2 + (\hat{a})^2 s_x^2 - 2\hat{a}C_{xy} = s_y^2 + \left(r_{xy}\frac{s_y}{s_x}\right)^2 s_x^2 - 2\left(r_{xy}\frac{s_y}{s_x}\right)(s_x s_y r_{xy}) = s_y^2 (1 - r_{xy}^2)$$

- ⇒ L'erreur globale est proportionnelle à la variance de la variable Y
- ⇒ L'erreur est d'autant plus petite que le coefficient est proche de 1 en valeur absolue

Validité du modèle :

Un modèle est explicatif s'il ne reste plus « d'information » dans les résidus pouvant expliquée y.

On vérifie (graphiquement) les trois points suivants :

- La moyenne des résidus est nulle
- Les résidus ne sont pas corrélés
- La variance des résidus est constante

Croisement Quantitatif - Quantitatif Décomposition de la variance

Nous avons vu que la variance de la variable Y n'est pas égale à la variance des valeurs prédites. Cependant elle peut se décomposer comme suit :

$$s_y^2 = s_{\hat{y}}^2 + s_e^2$$
variance variance variance totale expliquée résiduelle

Démonstration en TD

En divisant cette égalité par la variance totale, on obtient le pourcentage de variance de y expliquée par le modèle, ce qu'on appelle encore le coefficient de détermination,

$$R^2 = \frac{s_{\hat{y}}^2}{s_y^2} = r_{xy}^2 \in [0,1]$$

Dans l'exemple précédent, on a la décomposition de la variance suivante :

	Variances
Régression	6,17
Résidus	1,44
Total	7,61

D'où $R^2=6,17/7,61=0,81$. Cela signifie que 81% de la variation des poids observés est expliquée par la droite de régression : poids = $0,42 \times \text{taile} - 27,38$

Croisement Quantitatif - Quantitatif Outliers

Un modèle peut s'avérer très précis pour ajuster les valeurs observées mais très mauvais en ce qui concerne la prévision de nouvelles valeurs.

Observation est *influente* si une faible variation entraine une modification importante des caractéristiques du modèle.

Détection des observations influentes (atypiques/outliers)

- On retire la ième observation de l'ensemble des données
- On ajuste un nouveau modèle sans la ième donnée
- On calcule $y_{(-i)}$ la prévision de y_i avec le nouveau modèle
- On calcule le résidus , e_{(-i)=}y_i-y_(-i)

✓ Un résidus important signale une observation influente

On a
$$e_{(-i)} = \frac{e_i}{1 - h_{ii}}$$
 où $h_{ii} = \frac{1}{n} + \frac{1}{(n-1)} \frac{(x_i - \overline{x})^2}{s_x^2}$

Le PRESS (predicted residual sum of squares) donne une indication sur les qualités prédictives du modèle

PRESS =
$$\frac{1}{n} \sum_{i=1}^{n} e_{(-i)}^{2} = \frac{1}{n} \sum_{i=1}^{n} \frac{e_{i}^{2}}{(1 - h_{ii})^{2}}$$

Un *levier*1/n≤h_{ii}≤1

proche de 1 indique une observation influente

Sous l'hypothèse de normalité des résidus, les *résidus standardisés*,

$$\delta_i = \frac{e_i}{\hat{\sigma}\sqrt{1 - h_{ii}}}$$

doivent être compris (IDC) entre ± 2

NIVERSITÉ

Croisement Quantitatif - Quantitatif transformation

- Les droites de régression n'explique que les liaisons linéaires.
- Si X et Y sont liées par une relation de la forme $Y=aX^2$ alors $r_{XY}=0$ Le coefficient de corrélation linéaire de Pearson ne peut pas détecter cette liaison.
- Il n'existe pas de mesure universelle pour détecter des relations quelconques
- On essaie par des transformations de se ramener à une droite affine

Famille	Fonctions	Transformation	Forme affine
exponentielle	$y = a.e^{bx}$	$y' = \log(y)$	$y' = \log(a) + b.x$
puissance	$y = ax^b$	$y' = \log(y) \ x' = \log(x)$	$y' = \log(a) + b.x'$
inverse	$y = a + \frac{b}{x}$	$x' = \frac{1}{x}$	y'=a+b.x'
logistique	$y = \frac{1}{1 + e^{-(a \cdot x + b)}}$	$y' = \log\left(\frac{y}{1-y}\right)$	y'=a.x+b