TRIGONOMÉTRIE

Gabriel ROMON

Version du 2020-07-11 à 14:12:53

Définition 1

Le sinus noté sin et le cosinus noté cos sont des fonctions sin : $\mathbb{R} \to \mathbb{R}$, cos : $\mathbb{R} \to \mathbb{R}$ dont les définitions formelles sont trop compliquées pour être comprises en 1S.

A titre indicatif, on peut définir sin comme la somme de la série entière
$$\sum_{k\geq 0} \frac{(-1)^k}{(2k+1)!} x^{2k+1}$$
, ou différemment comme la solution de l'équation différentielle
$$\begin{cases} f''(x)+f(x)=0\\ f(0)=0\\ f'(0)=1 \end{cases}$$
 De façon similaire, cos est la somme de la série entière $\sum_{k\geq 0} \frac{(-1)^k}{(2k)!} x^{2k}$, ou est la solution de l'équation différentielle
$$\begin{cases} f''(x)+f(x)=0\\ f(0)=1\\ f(0)=0 \end{cases}$$
 l'équation différentielle
$$\begin{cases} f''(x)+f(x)=0\\ f(0)=0\\ f(0)=0 \end{cases}$$

l'équation différentielle
$$\begin{cases} f''(x) + f(x) = 0 \\ f(0) = 1 \\ f'(0) = 0 \end{cases}$$

2 **Propriétés**

- 1. cos et sin sont 2π -périodiques, c'est-à-dire: pour tout $x \in \mathbb{R}$, $\cos(x+2\pi) = \cos(x)$ et $\sin(x + 2\pi) = \sin(x)$
- 2. Les valeurs usuelles de cos et sin sont données sur le cercle trigonométrique

Figure 1: Cercle trigonométrique

3. cos est paire et sin est impaire, c'est-à-dire: pour tout $x \in \mathbb{R}$, $\cos(-x) = \cos(x)$ et $\sin(-x) = -\sin(x)$

4. On a les équivalences

$$\cos(x) = 0 \iff \text{il existe } k \in \mathbb{Z}, \ x = \frac{\pi}{2} + k\pi$$
$$\sin(x) = 0 \iff \text{il existe } k \in \mathbb{Z}, \ x = k\pi$$

- 5. cos et sin sont dérivables sur \mathbb{R} avec $\cos' = -\sin$ et $\sin' = \cos$
- 6. Pour tout $x \in \mathbb{R}$,

$$\cos(\frac{\pi}{2} - x) = \sin(x)$$
$$\sin(\frac{\pi}{2} - x) = \cos(x)$$
$$\cos(\pi - x) = -\cos(x)$$
$$\sin(\pi - x) = \sin(x)$$

7. Pour tout $x \in \mathbb{R}$,

$$\cos^2(x) + \sin^2(x) = 1$$

8. Pour tout $x \in \mathbb{R}$,

$$cos(2x) = 2cos^{2}(x) - 1$$
$$sin(2x) = 2cos(x)sin(x)$$

9. Pour tout $a, b \in \mathbb{R}$,

$$cos(a + b) = cos(a)cos(b) - sin(a)sin(b)$$

$$sin(a + b) = sin(a)cos(b) + cos(a)sin(b)$$

10. Pour tout $p, q \in \mathbb{R}$,

$$\cos(p) + \cos(q) = 2\cos(\frac{p+q}{2})\cos(\frac{p-q}{2})$$
$$\sin(p) + \sin(q) = 2\sin(\frac{p+q}{2})\cos(\frac{p-q}{2})$$

11. Pour tout $a, b \in \mathbb{R}$,

$$\cos(a)\cos(b) = \frac{1}{2}(\cos(a+b) + \cos(a-b))$$
$$\sin(a)\sin(b) = \frac{1}{2}(\cos(a-b) - \cos(a+b))$$