PROGRAMARE LOGICĂ SEMINAR 2 - DEDUCȚII ECUAȚIONALE -

Teorie:

• Deducția ecuațională - cazul necondiționat:

$$\begin{bmatrix} \mathbf{R} & \overline{(\forall X)t \doteq_s t} \\ \hline \mathbf{S} & \frac{(\forall X)t_1 \doteq_s t_2}{(\forall X)t_2 \doteq_s t_1} \\ \hline \end{bmatrix} \begin{bmatrix} \mathbf{T} & \frac{(\forall X)t_1 \doteq_s t_2, \ (\forall X)t_2 \doteq_s t_3}{(\forall X)t_1 \doteq_s t_3} \\ \hline \mathbf{C} \mathbf{\Sigma} & \frac{(\forall X)t_1 \doteq_{s_1} t'_1, \dots, (\forall X)t_n \doteq_{s_n} t'_n}{(\forall X)\sigma(t_1, \dots, t_n) \doteq_s \sigma(t'_1, \dots, t'_n)} \end{bmatrix}, \text{ unde } \sigma: s_1 \dots s_n \to s \in \Sigma$$

$$\begin{bmatrix} \mathbf{Sub}_E & \overline{(\forall X)\theta(t) \doteq_s \theta(t')} \\ \hline \end{bmatrix}, (\forall Y)t \doteq_s t' \in E \text{ si } \theta: Y \to T_{\Sigma}(X)$$

- Ecuația $\epsilon := (\forall X)t \stackrel{.}{=}_s t'$ se deduce din E dacă ex. o secvență $\epsilon_1, \dots, \epsilon_n$ a.î. $\epsilon_n = \epsilon$ și pt. or. $1 \le i \le n$:
 - $-\epsilon_i \in E$ sau
 - $-\epsilon_i$ se obține din $\epsilon_1, \ldots, \epsilon_{i-1}$ aplicând una din reg. R, S, T, $C\Sigma$, Sub_E .

Exercițiul 1:

Fie signatura (S, Σ) , $S = \{elt\}$ şi $\Sigma = \{* : elt \ elt \rightarrow elt\}$, şi $E = \{e_1, e_2\}$, unde

- e_1 : $(\forall \{x\})x * x \stackrel{\cdot}{=} x$,
- e_2 : $(\forall \{x,y\})x * y \stackrel{\cdot}{=} y * x$.

Arătați că $E \vdash (\forall \{x,y\})(x*y)*(y*x) \stackrel{.}{=} y*x$, indicând la fiecare pas regula de deducție folosită.

Rezolvare:

- 1. $(\forall \{x,y\})(x*y)*(x*y) = x*y$ (Sub_E pt. $e_1 \text{ si } \theta(x) = x*y$)
- 2. $(\forall \{x, y\})x * y = y * x$ (e₂)
- 3. $(\forall \{x, y\})x * y = x * y$ (R)
- 4. $(\forall \{x,y\})(x*y)*(x*y) \doteq (x*y)*(y*x)$ (C\(\Sigma\) pt. 3, 2 \(\sigma\)i*)
- 5. $(\forall \{x,y\})(x*y)*(y*x) \doteq (x*y)*(x*y)$ (S 4)
- 6. $(\forall \{x,y\})(x*y)*(y*x) = x*y$ (T pt. 5 şi 1)

Exercițiul 2: Fie signatura (S, Σ) , $S = \{s\}$ și $\Sigma = \{1: \rightarrow s, *: s \ s \rightarrow s, ^{-1}: s \rightarrow s\}$, și $E = \{e_1, e_2, e_3\}$, under the signatura (s, Σ) for $s \in S$, $s \in S$,

1

- e_1 : $(\forall \{x\})1 * x = x$,
- e_2 : $(\forall \{x\})x * (x^{-1}) \stackrel{.}{=} 1$,
- e_3 : $(\forall \{x, y, z\})x * (y * z) = (x * y) * z$.

Arătați că $E \vdash (\forall \{a,b\})a*((a^{-1})*b) = b$, indicând la fiecare pas regula de deducție folosită.

Rezolvare:

1.
$$(\forall \{a,b\})a * ((a^{-1})*b) \doteq (a*(a^{-1}))*b$$
 (Sub_E pt. e_3 şi $\theta(x) = a, \theta(y) = a^{-1}, \theta(z) = b$)

2.
$$(\forall \{a,b\})a * (a^{-1}) \stackrel{.}{=} 1$$
 (Sub_E pt. $e_2 \neq \theta(x) = a$)

3.
$$(\forall \{a,b\})b \stackrel{.}{=} b$$
 (R)

4.
$$(\forall \{a,b\})(a*(a^{-1}))*b = 1*b$$
 (C\(\Sigma\) pt. 2, 3 \(\sigma\)

5.
$$(\forall \{a,b\})1 * b = b$$
 (Sub_E pt. $e_1 \neq b$

6.
$$(\forall \{a,b\})(a*(a^{-1}))*b = b$$
 (T pt. 4 şi 5)

7.
$$(\forall \{a,b\})a*((a^{-1})*b) \stackrel{.}{=} b$$
 (T pt. 1şi 6)

Exercițiul 3: Fie signatura (S, Σ) , $S = \{s\}$ și $\Sigma = \{\circ : s \ s \to s\}$, și $E = \{e_1, e_2\}$, unde

- e_1 : $(\forall \{x, y, z\})x \circ (y \circ z) \stackrel{\cdot}{=} (x \circ y) \circ z$,
- e_2 : $(\forall \{x,y\})y \circ (x \circ y) \stackrel{\cdot}{=} y$.

Arătați că $E \vdash (\forall \{x\}) x \circ x = x$, indicând la fiecare pas regula de deducție folosită.

Rezolvare:

1.
$$(\forall \{x\})x \circ ((x \circ x) \circ x) = x$$
 $(\operatorname{Sub}_E \operatorname{pt.} e_2 \operatorname{si} \theta(x) = x \circ x, \theta(y) = x)$
2. $(\forall \{x\})x \circ ((x \circ x) \circ x) = (x \circ (x \circ x)) \circ x$ $(\operatorname{Sub}_E \operatorname{pt.} e_1 \operatorname{si} \theta(x) = x, \theta(y) = x \circ x, \theta(z) = x)$
3. $(\forall \{x\})(x \circ (x \circ x)) \circ x = x \circ ((x \circ x) \circ x)$ $(\operatorname{S} 2)$
4. $(\forall \{x\})(x \circ (x \circ x)) \circ x = x$ $(\operatorname{Tpt.} 3 \operatorname{si} 1)$
5. $(\forall \{x\})x \circ (x \circ x) = x$ $(\operatorname{Sub}_E \operatorname{pt.} e_2 \operatorname{si} \theta(x) = x, \theta(y) = x)$
6. $(\forall \{x\})x = x$ (R)
7. $(\forall \{x\})(x \circ (x \circ x)) \circ x = x \circ x$ $(\operatorname{C}\Sigma \operatorname{pt.} 5, 6 \operatorname{si} \circ)$
8. $(\forall \{x\})x \circ x = (x \circ (x \circ x)) \circ x$ $(\operatorname{S} 7)$
9. $(\forall \{x\})x \circ x = x$ $(\operatorname{Tpt.} 8 \operatorname{si} 4)$
R, S, T, C Σ , Sub_E.

Exercițiul 4: Fie signatura (S, Σ) , $S = \{s\}$ şi $\Sigma = \{0 : \rightarrow s, +: s \ s \rightarrow s, -: s \rightarrow s\}$, şi $E = \{e_1, e_2, e_3\}$, unde

- e_1 : $(\forall \{x, y, z\})x + (y + z) \stackrel{\cdot}{=} (x + y) + z$,
- e_2 : $(\forall \{x\})0 + x \stackrel{.}{=} x$,
- e_3 : $(\forall \{x\})(-x) + x = 0$.

Arătați că

- (1) $E \vdash (\forall \{x\})x + (-x) \stackrel{.}{=} 0$,
- (2) $E \vdash (\forall \{x\})x + 0 \stackrel{.}{=} x$,

indicând la fiecare pas regula de deducție folosită.