THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS

Calculus Tutorial 9 (Week 10)

MATH1062/MATH1023: Mathematics 1B (Calculus)

Semester 2, 2024

Questions marked with * are harder questions.

Material covered

(1) Applications of partial derivatives

Summary of essential material

The differential of function f(x, y) is given by $df = f_x(x, y)dx + f_y(x, y)dy$. Recall that it can be used to approximate functions near "easy-to-compute" function values.

Questions to complete during the tutorial

1. Find the differentials of the following functions:

(a) $f(x, y) = xe^{y}$

(c) $h(p,q) = p^5 q^3$

(b) $g(x, y) = \ln(xy^2)$

(d) m(a,b) = abc

- **2.** Find the differential of $f(x,y) = \sqrt{20 x^2 7y^2}$. Use this to approximate the value of $f(x, y) = \sqrt{20 - x^2 - 7y^2}$ when x = 1.95 and y = 1.08.
- **3.** Let $f(x, y) = \sin(xy x^2)$. Use the differential to approximate f(0.98, 1.03) and f(1.04, 1.02), and f(0.99, 1).
- **4.** Use the formula for the implicit derivative to calculate dy/dx, where the given equation defines y implicitly as a function of x.

(a) $x^2 - xy + y^3 = 8$

(b) $\cos(x - y) = xe^y$

5. Use the chain rule to calculate $\frac{dz}{dt}$ where

(a) $z = x^2 + y^2 + xy$, $x = \sin(t)$, $y = \cos(t)$ (b) $z = \cos(x + 4y)$, $x = t^2$, $y = t^3$

*6. Suppose that z = f(x, y), where $x = r \cos \theta$ and $y = r \sin \theta$. Calculate $\partial z/\partial r$ and $\partial z/\partial \theta$ in terms of $\partial z/\partial x$ and $\partial z/\partial y$.

Hence, show that the Cauchy–Riemann equations for differentiable functions u(x, y) and v(x, y),

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$

and

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x},$$

become

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$$

and

$$\frac{1}{r}\frac{\partial u}{\partial \theta} = -\frac{\partial v}{\partial r},$$

in cylindrical polar coordinates (r, θ) .

Hint: For the last part, start with expressions for $\frac{\partial u}{\partial r}$ and $\frac{\partial v}{\partial r}$.