NASA TECHNICAL MEMORANDUM

NASA TM X-3372

EFFECT OF KRÜGER NOSE FLAPS ON THE EXPERIMENTAL FORCE AND MOMENT CHARACTERISTICS OF AN OBLIQUE WING

Edward J. Hopkins and George H. Lovette Ames Research Center Moffett Field, Calif. 94035

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION . WASHINGTON, D. C. . JULY 1976

-1.	Report No. NASA TM X-3372	2. Government Acces	sion No.	3. Recipient's Catalog	j No.
4.	Title and Subtitle			5. Report Date	
	EFFECT OF KRÜGER NOSE FLAPS	ON THE EVERTA	IENTAL EODOE	July 1976	
			i	6. Performing Organia	zation Code
1	AND MOMENT CHARACTERISTICS	WING			
7.	Author(s)			8. Performing Organiz	ation Report No.
	Edward J. Hopkins and George H. Lov	ette*		A-6362	
L	Laward 7. Hopkins and George 11. Lov			10. Work Unit No.	
9.	Performing Organization Name and Address	•	·	505-11-12	
			<u> </u>	11. Contract or Grant	No.
	Ames Research Center 7 Moffett Field, Calif. 94035		·		
	Monett Pield, Cant. 94033		, -	13. Type of Report ar	nd Period Covered
12.	Sponsoring Agency Name and Address				
		intentine		Technical Memor	
	National Aeronautics and Space Admin. Washington, D.C. 20546	ISUIdUON		14. Sponsoring Agency	Code
L					
15.	Supplementary Notes				
1	ADOL MEGAL	C' 11 C VC 04005	•		•
ŀ	*Project Engineer, ARO, Inc., Moffett	Field, Calif. 94035			
-					
16.	Abstract				
	Six-component experimental force	and moment data	are presented for an o	blique wing mounte	ed on a body of
	revolution and equipped with Kruger ty	pe nose flaps. The e	ffectiveness of these flap	s in making the mom	ent curves more
	linear by controlling the flow separation	on on the downstrea	m wing panel/at high li	ft coefficients was o	letermined. The
	investigation of the effects of the Krüge and (2) use of the flaps on both wing p	er Haps covered two	cases: (1) use of the flaps	on the downstream	wing panel only
	drooped either 5° or 10°. The wing was	alleis. For part of the	m had an aspect ratio of	ere mounted on nose	e Haps that were
	was tested at sweep angles of 0, 45°, and	50°. The Mach-num	ber range covered was fro	m 0.25 to 0.95.	swept span) and
		•	<u> </u>		
	It was found that the most effective	ve arrangement of th	e Krüger flaps for makin	g the pitching-, rolling	ng-, and yawing-
	moment curves more linear at high lift only on the downstrea: wing panel.	coefficients was havir	ig the Kruger flaps mount	ed on the nose flaps	drooped 5° and
	only on the downstream, wing panel.				
	•	•	:		
			•		_
				,	
			•		
			•		
		•			
				•	
17.	Key Words (Suggested by Author(s))		18. Distribution Statement		
	Wings, oblique		Unlimited		
	Leading-edge flaps, Krüger				
	Wings, flow separation			•	ĺ
			Star Category - 08		
19.	Security Classif. (of this report)	20. Security Classif. (c	of this page)	21. No. of Pages	22. Price*
	Unclassified	Unclassified		204	\$7.25
					L

NOMENCLATURE

The axes systems and sign conventions are presented in figure 1. Lift and drag are presented about the wind axes; side force, pitching moments, rolling moments, and yawing moments are presented about the body axes.

b	wing span
C_D	drag coefficient, $\frac{\text{drag}}{qS}$
$c_{l^{'}}$	rolling-moment coefficient about the body axes, $\frac{\text{rolling moment}}{qSb}$
C_L	lift coefficient, $\frac{\text{lift}}{qS}$
C_m	pitching-moment coefficient (see fig. 2(a) for moment-center location), $\frac{\text{pitching moment}}{qS\overline{c}}$
C_n	yawing-moment coefficient about the body axes, yawing moment qSb
C_{Y}	side-force coefficient about the body axes, $\frac{\text{side force}}{qS}$
c	wing chord
c_{aft}	portion of wing chord aft of the 0.25c line
c_{fwd}	portion of wing chord forward of the 0.25c line
c_{root}	wing root chord
<u>c</u>	wing mean aerodynamic chord
Н	vertical distance from wing reference plane to base line (see fig. 2(b))
M	Mach number
q `	free-stream dynamic pressure
RN/L	unit Reynolds number per meter times 10 ⁻⁶
r	body radius
S	wing area
$(t/c)_{max}$	maximum thickness-to-chord ratio
x	chordwise distance along airfoil
A-6362	chordwise distance along airfoil Preceding Page Blank

- x_1 axial distance along body from the 57.45 cm longitudinal station
- Y distance along wing span (see fig. 2(b))
- \hat{z} vertical distance above the wing chord plane
- α angle of attack, deg
- A sweep angle measured between a perpendicular to the body axis and the 0.25c line of the wing in a horizontal plane (the right wing tip is forward for positive Λ 's), deg

· iv

EFFECT OF KRÜGER NOSE FLAPS ON THE EXPERIMENTAL FORCE AND MOMENT CHARACTERISTICS OF AN OBLIQUE WING

Edward J. Hopkins and George H. Lovette*

Ames Research Center

SUMMARY

Six-component experimental force and moment data are presented for an oblique wing mounted on a body of revolution and equipped with Krüger type nose flaps. The effectiveness of these flaps in making the moment curves more linear by controlling the flow separation on the downstream wing panel at high lift coefficients was determined. The investigation of the effects of the Krüger flaps covered two cases: (1) use of the flaps on the downstream wing panel only and (2) use of the flaps on both wing panels. For part of the tests, the Krüger flaps were mounted on nose flaps that were drooped either 5° or 10°. The wing was elliptical in planform, had an aspect ratio of 6.0 (based on the unswept span), and was tested at sweep angles of 0, 45°, and 50°. The Mach number range covered was from 0.25 to 0.95.

It was found that the most effective arrangement of the Krüger flaps for making the pitching-, rolling-, and yawing-moment curves more linear at high lift coefficients was to mount them on the nose flaps drooped 5° and only on the downstream wing panel.

INTRODUCTION

It has been shown experimentally in references 1 through 4 that a low aspect-ratio oblique wing-body combination (suitable as a highly maneuverable vehicle) has higher maximum lift-to-drag ratios at transonic Mach numbers than a conventional swept wing-body combination. At moderate to high lift coefficients, however, the trailing wing panel of a swept oblique wing incurs flow separation that leads to large changes in the rolling-, pitching-, and yawing-moment coefficients. In references 2 and 4, an attempt was made to create a more uniform spanwise wing stall at high lift coefficients by bending the wing panels upward, thereby producing washout on the trailing wing panel and washin on the leading wing panel. Results from that study indicated that the amount of upward bending required to linearize the moment curves would lead to an impractical wing pivot location to reduce the rolling moments to zero at small lift coefficients.

The present wind-tunnel investigation was undertaken, therefore, to explore the possibility of delaying the wing stall on the trailing wing panel by using Kruger nose flaps. With the wing swept either 45° or 50°, these flaps were successively tested on both wing panels, on the downstream wing panel, and on nose flaps drooped either 5° or 10° to determine the optimum arrangement.

^{*}Project Engineer, ARO, Inc., Moffett Field, Calif. 94035

Consideration was given primarily to the resultant linearity of the moment curves at transonic Mach numbers. With the wing in the unswept position for low-speed flight (Mach numbers ≤ 0.6), the Krüger flaps were tested only on both wing panels.

CONFIGURATION CODE

^aWHEN SYMBOL IS DELETED, DROOPED-NOSE FLAP IS UNDEFLECTED ^bWHEN SYMBOL IS DELETED, KRUGER NOSE FLAP IS REMOVED

TEST FACILITY

The Ames 6- by 6-Foot Wind Tunnel is a variable pressure, continuous flow, closed return-type facility. The nozzle ahead of the test section consists of an asymmetric sliding block that permits a continuous variation of Mach number from 0.25 to 2.3. The test section has a perforated floor and ceiling for boundary-layer removal to permit transonic testing.

MODEL DESCRIPTION

The model consisted of an oblique wing mounted on top of a Sears-Haack body of revolution designed to have minimum wave drag for a given length and volume. By installing different fairing blocks under the wing, as indicated in figure 2(a), the wing could be swept 0, 45°, and 50°. (Details of the body and of the fairing blocks are given in table 3 of reference 1.) Note in figure 2(a) that the wing pivot point and the moment center are located at 0.40 c_{root} ($\Lambda = 0$). The wing planform consisted of two semi-ellipses having the same major axis but different minor axes in the ratio of 3:1 so that the major axis is the quarter chord line. Geometric twist was accomplished by bending the wing panels upward so that the chord lines perpendicular to the quarter chord line remain in

horizontal planes. This type of bending results in wing twist when the oblique wing is swept; that is, washout on the downstream panel and washin on the upstream panel. Equations for the bend line of the wing with the so-called "intermediate bend" of the present investigation and the wing planform are shown in figure 2(b). Additional geometric wing and body details are presented in table 1.

A subcritical Garabedian profile (designed for a lift coefficient of 1.3 for a maximum t/c = 0.1016 at a Mach number of 0.6) was used perpendicular to the quarter chord line. This profile, shown in figure 2(c), varied in maximum thickness from 0.11c at the wing root to 0.06c at the wing tip according to the elliptical equation given in figure 2(b). Coordinates for the Garabedian profile are given in table 2.

The model was equipped with leading-edge Krüger flaps which have a span 62.6 percent of that of the wing. These flaps were segmented as shown in figure 2(d). For part of the test, when the wing was swept, these flaps were used only on the downstream wing panel. The flaps had a constant nose diameter along the wing span of 0.4572 cm, resulting in a variation of the ratio of nose diameter to Krüger flap chord of 25 to 80 percent. A constant percent camber of 9.2 percent of the Krüger flap chord was built into the upper surface of these flaps by a radius fairing. The chords of the Krüger flaps were nominally 10 percent of the wing chords, but varied slightly from this value because of the leading-edge curvature of the wing (each Krüger flap segment has a straight leading edge). Only one Krüger flap deflection was tested, that of 135° relative to the chord line of the wing nose; however, for part of the test, nose flaps upon which the Krüger flaps were mounted were drooped either 5° or 10°. The nose flaps were pivoted about an axis located on the lower surface of the wing at about 15 percent of the wing chord behind the leading edge. All gaps around the drooped-nose and Krüger flaps were sealed.

DATA REDUCTION AND TEST PROCEDURE

The model was sting-supported through the base of the model on a six-component electrical strain-gage balance as shown in figure 3. Measured drag forces were corrected to a condition corresponding to that of having the free-stream static pressure on the base of the fuselage. Moment data are presented about a moment center located on the body axis at 0.4 c_{root} (Λ = 0) (see fig. 2(a)). Reference lengths and the wing area used in the reduction of the data are given in table 1.

Boundary-layer transition strips (0.1905 cm wide) consisting of a random distribution of 0.01905-cm glass spheres were placed on the upper and lower surface of the wing, on the upper surface of the Krüger flap (0.762 cm downstream of the leading edge), and on the body 2.54 cm behind its tip. Sublimation studies made on the plain wing at wing sweep angles of 0 and 45° indicate that the boundary layer was tripped by the 0.01905-cm spheres near the roughness strips at $\alpha = 0$ and 10° and at Mach numbers of 0.6 and 0.9.

The unit Reynolds number was held constant at 8.2×10^6 /m except when the Mach number was 0.25; in the latter case the unit Reynolds number was reduced to 5.6×10^6 /m because of the dynamic overload restrictions of the balance. The model was mounted on a sting that was bent 10° to increase the maximum angle of attack; the resulting range was from -3° to 28° . With the wing

A-6362

swept 45° and 50°, data were obtained at Mach numbers of 0.25, 0.4, 0.6, 0.8, 0.9, and 0.95. With the wing unswept, the Mach number range was reduced to a maximum Mach number of 0.8. Angle of attack was indicated by an electrical dangleometer mounted in the support located downstream of the sting. Corrections were applied to the indicated angle of attack for balance and sting deflections.

RESULTS AND DISCUSSION

Experimental results for the oblique wing equipped with Krüger flaps on both wing panels are presented in figures 4–9 for a wing sweep-angle of 45°, in figures 10–15 for a sweep angle of 50°, and in figures 16–19 for a sweep angle of 0. Results for the case in which Krüger flaps were used on both wings and with a nose-flap droop of 5° are shown in figures 20–25 for a sweep angle of 45° and in figures 26–29 for a sweep angle of 0. For the case in which Krüger flaps were used on the downstream wing panel only and with a nose-flap droop of 5°, the results are shown in figures 30–35; the results for a nose-flap droop angle of 10° are shown in figures 36–41. In each of the above figures, comparisons are shown between the results for the plain wing and the wing equipped with Krüger flaps at Mach numbers between 0.6 and 0.95 inclusive. For Mach numbers of 0.25 and 0.40, such comparisons were made only for the unswept case without nose-flap droop (figs. 16 and 17), and for the unswept case with 5° of nose-flap droop (figs. 26 and 27), because data for the plain wing for the other configurations were not obtained.

Krüger Flaps on Both Wing Panels

With the oblique wing swept either 45° or 50°, the linearity of the pitching-, rolling-, and yawing-moment curves at high lift and high Mach numbers was improved only slightly by adding the Krüger flaps to both wing panels (see figs. 6–9 and 12–15). A nose-flap droop of 5° in conjunction with the Krüger flaps on both wing panels slightly improved the linearity of the pitching-moment curve, but had little effect on the rolling- or yawing-moment curves (compare figs. 9 and 25). With the oblique wing unswept at a Mach number of 0.4, the Krüger flaps on both wing panels provided increments in maximum lift coefficient of about 0.2 to 0.3 with nose-flap droop angles of 0 and 5°, respectively (see figs. 17(a) and 27(a)).

Krüger Flaps on the Downstream Wing Panel

At high Mach numbers with the Krüger flap mounted on the nose flap with a droop of 5° and only on the downstream wing panel, the linearity of the yawing-moment curves was improved considerably and the linearity of the pitching- and rolling-moment curves was somewhat improved over the curves for the wing with Krüger flaps on both wing panels (compare figs. 35 and 25). Increasing the nose-flap droop to 10° produced moment curves which were less linear than for a droop of 5° (compare figs. 41 and 35).

Further improvements in linearizing the moment curves could probably be realized by increasing the Krüger flap span on the downstream wing panel up to the wing-body intersection when the wing is swept.

In reference 4 it was shown that increasing the upward spanwise bend of the oblique wing from small to intermediate (the same bend as used for the present investigation) had a very small effect on making the moment curves more linear at high lift coefficients. Therefore, little or no bend would probably be used for the final design of an oblique-wing and the aerodynamic moments caused by bending would be negligible or eliminated.

CONCLUDING REMARKS

It was shown that Krüger flaps mounted on the nose flaps drooped 5° on the downstream panel of an oblique wing swept 45° or 50° was the most effective arrangement for making the pitching-, rolling-, and yawing-moment curves more linear. It appears that a full-span Krüger flap on the downstream wing panel of a highly swept oblique wing might be even more effective in linearizing the moment curves.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif. 94035, January 20, 1976

REFERENCES

- Hopkins, Edward J.; Meriwether, Frank D.; and Pena, Douglas F.: Experimental Aerodynamic Characteristics of Low Aspect Ratio Swept and Oblique Wings at Mach Numbers Between 0.6 and 1.4. NASA TM X-62,317, Nov. 1973.
- Hopkins, Edward J.; and Levin, Alan D.: An Experimental and Theoretical Study of Low-Aspect Ratio Swept and Oblique Wings at Mach Numbers Between 0.6 and 1.4. AIAA Preprint 74-771, AIAA Mechanics and Control of Flight Conference, Anaheim, Calif., Aug. 6-9, 1974.
- 3. Hopkins, Edward J.; and Nelson, Edgar R.: Effect of Wing Bend on the Experimental Force and Moment Characteristics of an Oblique Wing. NASA TM X-3343, 1976.
- 4. Hopkins, Edward J.: Effects of Wing Bend on the Aerodynamic Characteristics of a Low Aspect Ratio Oblique Wing. AIAA Preprint 75-995, AIAA Aircraft Systems and Technology Meeting, Los Angeles, Calif., Aug. 4-7, 1975.

TABLE 1.- MODEL GEOMETRY

Body

Radius	r = 3.856	$[1-(1-2x_1)$	114.94) ²] ^{3/4} cm
Length			· :
Closed		1	114.94 cm
Cutoff	•	٠.	91.44 cm
Maximum diameter	•		7.71 cm
Wing			
Planform ellipticity about 0.25 c li	ne	1 1 1 1 10	4.7:1
Span			90.51 cm
Span (reference)			71.12 cm
Area (reference)			1365.09 cm ²
Mean aerodynamic chord (reference	e), \bar{c}		20.88 cm
Root chord			19.20 cm
Aspect ratio ($\Lambda = 0$)			6.0
Aspect ratio ($\Lambda = 45^{\circ}$)			3.2
Incidence relative to body centerling	ne		. 0
Profile perpendicular to 0.25 c line	;	Garabedi (see table	an, subcritical 2)

TABLE 2.— COORDINATES FOR GARABEDIAN PROFILE $[(t/c)_{max} = 0.1016$, design lift coefficient = 1.3 at M = 0.6]

	x/c	z/c	x/c	z/c
	0	0	0	0
	00045	.00079	.00048	00058
	00073	.00146	.00104	00120
	00086	.00191	.00165	00176
1	00097	.00244	.00257	00249
ļ	00103	.00290	.00343	00308
	00106	.00345	.00467	00382
	00104	.00403	.00592	00445
	00098	.00463	.00674	00481
	00077	.00572	.00774	~.00519
ĺ	00052	.00653	.00943	00570
ł	00021	.00732	.01149	00620
٠	.00026	.00830	.01539	00694
	.00073	.00909	.02583	00837
-	.00163	.01033	.03967	00970
1	.00276	.01161	.06022	01116
	.00464	.01340	.09339	01288
	.00709	.01538	.13965	01462
١	. 01 19 7	.01878	.19880	01601
١	.02179	.02443	.25034	01684
1	.03187	.02928	.31761	01738
	.04250	.03373	.38597	01735
١	.06373	.04113	.45495	01657
1	.09353	.04969	.50010	01568
١	.13389	.05882	.54359	01456
	.17545	.06597	.57465	01363
	.22415	.07249	.61351	01232
1	.28227	.07822	.65330	- .01090
١	.34741	.08236	.68122	00988
1	.41444	.08434	.71655	00865
1	.48168	.08406	.74682	00771
1	.55738	.08094	.77611	00702
ı	.62052	.07591	.82243	00642
1	.68276	.06852	.87054	00698
1	.72012	.06288	.89717	00810
Ì	.75413	.05684	.91595	00941
	.82318	.04227	.94348	01235
	.85663	.03370	.96854	01674
1	.89115	.02388	.98615	02126
	.92448	.01327	.99596	02434
	.95410	.00145	1.00000	02600
	.97175	00538	İ	. 1
	.99163	01450		
L	1.00000	01900		

Page Intentionally Left Blank

Figure 1.- Orientation of force and moment coefficients about body, wind, and stability axes.

Note: All dimensions are in centimeters except as noted

(a) Moment-center and wing pivot location.

Figure 2.— Oblique wing-body details.

(b) Wing dimensional details.

Figure 2. - Continued.

(c) Garabedian profiles ($M_{Des}=0.6\,$ at ($C_L)_{Des}=1.3$). Figure 2.—Continued.

Figure 2.- Concluded.

Figure 3.— Oblique wing-body combination ($\Lambda = 45^{\circ}$).

Figure 4.— Effect of having Krüger flaps on both wing panels on the static longitudinal characteristics of an oblique wing: $\Lambda = 45^{\circ}$, M = 0.25.

Figure 4. – Continued.

(c) C_L vs C_D Figure 4.— Continued.

Figure 4.— Continued.

(e) G_l , C_n , and C_Y vs C_L

Figure 4. - Concluded.

Figure 5.— Effect of having Krüger flaps on both wing panels on the static longitudinal characteristics of an oblique wing: $\Lambda = 45^{\circ}$, M = 0.40.

(a) C_L vs α

α, deg

(b) C_L vs C_m Figure 5.— Continued.

(c) $C_L \text{ vs } C_D$

Figure 5. - Continued.

Figure 5.— Continued.

SYMBOL CONFIGURATION
O 54458 LRK

(e) G_l , C_n , and C_Y vs C_L

Figure 5.- Concluded.

Figure 6.— Effect of having Krüger flaps on both wing panels on the static longitudinal characteristics of an oblique wing: $\Lambda = 45^{\circ}$, M = 0.60.

Figure 6.— Continued.

Figure 6.— Continued.

Figure 6. - Continued.

Figure 6.— Concluded.

Figure 7.— Effect of having Krüger flaps on both wing panels on the static longitudinal characteristics of an oblique wing: $\Lambda = 45^{\circ}$, M = 0.80.

SYMBOL CONFIGURATION
SW458 LRK
SM458

Figure 7. - Continued.

Figure 7.— Continued.

Figure 7.— Continued.

Figure 7.— Concluded.

Figure 8.— Effect of having Krüger flaps on both wing panels on the static longitudinal characteristics of an oblique wing: $\Lambda = 45^{\circ}$, M = 0.90.

(a) C_L vs α

Figure 8.- Continued

36

Figure 8.— Continued.

(d) L/D vs C_L Figure 8.— Continued.

Figure 8.— Concluded.

Figure 9.— Effect of having Krüger flaps on both wing panels on the static longitudinal characteristics of an oblique wing: $\Lambda = 45^{\circ}$, M = 0.95.

SYMBOL CONFIGURATION
SW45B LRK
SW45B

Figure 9. - Continued.

(d) L/D vs C_L Figure 9. — Continued.

(e) C_l , C_n , and C_Y vs C_L

Figure 9. - Concluded.

**N/L 5.600

Figure 10.— Effect of having Krüger flaps on both wing panels on the static longitudinal characteristics of an oblique wing: $\Lambda = 50^{\circ}$, M = 0.25.

(b) C_L vs C_m

Figure 10. - Continued.

Figure 10. – Continued.

(d) L/D vs C_L Figure 10.— Continued.

(e) G_l , C_n , and C_Y vs C_L

Figure 10.- Concluded.

Figure 11.— Effect of having Krüger flaps on both wing panels on the static longitudinal characteristics of an oblique wing: $\Lambda = 50^{\circ}$, M = 0.40.

SYMBOL CONFIGURATION

SYSOB LRK

(b) C_L vs C_m Figure 11.— Continued.

Figure 11.— Continued.

(e) G_l , C_n , and C_Y vs C_L

Figure 11.— Concluded.

RN/L 8.200

Figure 12.— Effect of having Krüger flaps on both wing panels on the static longitudinal characteristics of an oblique wing: $\Lambda = 50^{\circ}$, M = 0.60.

(b) C_L vs C_m Figure 12.— Continued.

Figure 12.— Continued.

Figure 12.— Continued.

(e) G_l , $G_{I'}$, and G_{Y} vs $G_{I'}$

Figure 12.- Concluded.

59

Figure 13.— Effect of having Krüger flaps on both wing panels on the static longitudinal characteristics of an oblique wing: $\Lambda = 50^{\circ}$, M = 0.80.

(a) C_L vs α

60

RN/L 8.200

SYMBOL CONFIGURATION
SWSOB LRK
SWSOB

Figure 13.- Continued.

(c) C_L vs C_D Figure 13.— Continued.

62

SYMBOL CONFIGURATION
SW50B LRK
SW50B

(d) L/ν vs C_L

Figure 13.— Continued.

(e) C_l , C_n , and C_Y vs C_L Figure 13.— Concluded.

Figure 14. – Effect of having Krüger flaps on both wing panels on the static longitudinal characteristics of an oblique wing: $\Lambda = 50^{\circ}$, M = 0.90.

Figure 14.— Continued.

Figure 14.— Continued.

(d) L/D vs C_L Figure 14.— Continued.

(e) C_l , C_n , and C_Y vs C_L Figure 14.— Concluded.

Figure 15.— Effect of having Krüger flaps on both wing panels on the static longitudinal characteristics of an oblique wing: $\Lambda = 50^{\circ}$, M = 0.95.

Figure 15.— Continued.

Figure 15.— Continued.

SYMBOL CONFIGURATION
SW50B LRK
SW50B

(d) L/D vs C_L Figure 15.— Continued.

Figure 15.— Concluded.

74

Figure 16.— Effect of having Krüger flaps on both wing panels on the static longitudinal characteristics of an oblique wing: $\Lambda = 0$, M = 0.25.

(b) C_L vs C_m Figure 16.— Continued.

(c) C_L vs C_D Figure 16.—Continued.

(d) L/D vs C_L Figure 16.— Continued.

(e) C_l , C_n , and C_Y vs C_L Figure 16.— Concluded.

Figure 17.— Effect of having Krüger flaps on both wing panels on the static longitudinal characteristics of an oblique wing: $\Lambda = 0$, M = 0.40.

(b) C_L vs C_m Figure 17.— Continued.

SYMBOL CONFIGURATION
SYOB LRK
SYOB

(c) C_L vs C_D Figure 17.— Continued.

(d) L/D vs C_L

Figure 17. – Continued.

(e) C_l , C_n , and C_Y vs C_L Figure 17.— Concluded.

Figure 18.— Effect of having Krüger flaps on both wing panels on the static longitudinal characteristics. of an oblique wing: $\Lambda = 0$, M = 0.60.

(b) C_L vs C_m

Figure 18.- Continued.

Figure 18.— Continued.

(d) L/D vs C_L Figure 18.— Continued.

(e) C_l , C_n , and C_Y vs C_L

Figure 18.- Concluded.

Figure 19.— Effect of having Krüger flaps on both wing panels on the static longitudinal characteristics of an oblique wing: $\Lambda = 0$, M = 0.80.

SYMBOL CONFIGURATION
SWOB LRK
SWOB

(b) C_L vs C_m Figure 19.— Continued.

Figure 19.— Continued.

Figure 19.— Continued.

(e) C_l , C_n , and C_Y vs C_L

Figure 19. - Concluded.

Figure 20.— Effect of having Krüger flaps on both wing panels with a nose droop of 5° on the static longitudinal characteristics of oblique wing: $\Lambda = 45^{\circ}$, M = 0.25.

(b) C_L vs C_m

Figure 20. – Continued.

(c) $C_L vs C_D$

Figure 20.— Continued.

Figure 20. – Continued.

(e) C_{l} , C_{n} , and C_{Y} vs C_{L}

Figure 20.- Concluded.

Figure 21.— Effect of having Krüger flaps on both wing panels with a nose droop of 5° on the static longitudinal characteristics of an oblique wing: $\Lambda = 45^{\circ}$, M = 0.40.

Figure 21.- Continued.

Figure 21.— Continued.

RN/L 8.200

(d) L/D vs C_L Figure 21.— Continued.

(e) C_l , C_n , and C_Y vs C_L

Figure 21. - Concluded.

Figure 22.— Effect of having Krüger flaps on both wing panels with a nose droop of 5° on the static longitudinal characteristics of an oblique wing: $\Lambda = 45^{\circ}$, M = 0.60.

(a) C_L vs α

.0

 $(c) C_L \text{ vs } C_D$

ی

Figure 22.— Continued.

Figure 22.— Continued.

(e) C_l , C_n , and C_Y vs C_L Figure 22.— Concluded.

Figure 23.— Effect of having Krüger flaps on both wing panels with a nose droop of 5° on the static longitudinal characteristics of an oblique wing: $\Lambda = 45^{\circ}$, M = 0.80.

(a) C_L vs α

Figure 23. – Continued.

Figure 23.— Continued.

Figure 23.— Continued.

(e) C_l , C_n , and C_Y vs C_L Figure 23.— Concluded.

Figure 24.— Effect of having Krüger flaps on both wing panels with a nose droop of 5° on the static longitudinal characteristics of an oblique wing: $\Lambda = 45^{\circ}$, M = 0.90.

Figure 24.— Continued.

Figure 24.— Continued.

(d) L/D vs C_L Figure 24.— Continued.

(e) C_P , C_n , and C_Y vs C_L Figure 24.— Concluded.

Figure 25.— Effect of having Krüger flaps on both wing panels with a nose droop of 5° on the static longitudinal characteristics of an oblique wing: $\Lambda = 45^{\circ}$, M = 0.95.

(b) C_L vs C_m

Figure 25. - Continued.

Figure 25.— Continued.

122

Figure 25.— Continued.

Figure 25.- Concluded.

Figure 26.— Effect of having Krüger flaps on both wing panels with a nose droop of 5° on the static longitudinal characteristics of an oblique wing: $\Lambda = 0$, M = 0.25.

(b) C_L vs C_m Figure 26. – Continued.

SYMBOL CONFIGURATION
SYOB LRK LRSN
SYOB

Figure 26. - Continued.

(d) L/D vs C_L Figure 26.— Continued.

(e) C_l , C_n , and C_Y vs C_L Figure 26.— Concluded.

Figure 27.— Effect of having Krüger flaps on both wing panels with a nose droop of 5° on the static longitudinal characteristics of an oblique wing: $\Lambda = 0$, M = 0.40.

SYMBOL CONFIGURATION FEE

Figure 27.— Continued.

Figure 27.- Continued.

Figure 27.— Continued.

(e) C_l , C_n , and C_Y vs. C_L Figure 27.— Concluded.

134

Figure 28.— Effect of having Krüger flaps on both wing panels with a nose droop of 5° on the static longitudinal characteristics of an oblique wing: $\Lambda = 0$, M = 0.60.

Figure 28. - Continued.

136

(c) $C_L ext{ vs } C_D$

Figure 28. - Continued.

Figure 28.— Continued.

(e) C_l , C_n , and C_Y vs C_L

Figure 28.- Concluded.

Figure 29. – Effect of having Krüger flaps on both wing panels with a nose droop of 5° on the static longitudinal characteristics of an oblique wing: $\Lambda = 0$, M = 0.80.

(a) C_L vs α

RN/L 8.200

Figure 29. - Continued.

 $(c) C_L vs C_D$

Figure 29. - Continued.

SYMBOL CONFIGURATION
SWOB LRK, LRSN
SWOB

Figure 29.— Continued.

(e) C_l , C_n , and C_Y vs C_L

Figure 29. - Concluded.

RN/L 5.600

Figure 30.— Effect of having Krüger flaps on the downstream wing panel with a nose droop of 5° on the static longitudinal characteristics of an oblique wing: $\Lambda = 45^{\circ}$, M = 0.25.

Figure 30. - Continued.

(b) $C_L \text{ vs } C_m$

146

(c) C_L vs C_D Figure 30. — Continued.

Figure 30.— Continued.

Figure 30. – Concluded.

Figure 31.— Effect of having Krüger flaps on the downstream wing panel with a nose droop of 5° on the static longitudinal characteristics of an oblique wing: $\Lambda = 45^\circ$, M = 0.40.

SYMBOL CONFIGURATION

O SW458 LK LSN

151

Figure 31.— Continued.

SYMBOL CONFIGURATION
C) SW45B LK LSN

Figure 31.— Continued.

(e) C_l , C_n , and C_Y vs C_L

Figure 31.- Concluded.

Figure 32.— Effect of having Krüger flaps on the downstream wing panel with a nose droop of 5° on the static longitudinal characteristics of an oblique wing: $\Lambda = 45^{\circ}$, M = 0.60.

(b) C_L vs C_m Figure 32.— Continued.

SYMBOL CONFIGURATION
SW458 LK LSN
SW458

RN/L 8.200

RN/L 8.200

SYMBOL CONFIGURATION

SW45B LK L5N

SW45B

Figure 32. - Continued.

٠ ج ي

(d) L/D vs C_L Figure 32.— Continued.

(e) C_l , C_n , and C_T vs C_L Figure 32.— Concluded.

0

Figure 33.— Effect of having Krüger flaps on the downstream wing panel with a nose droop of 5° on the static longitudinal characteristics of an oblique wing: $\Lambda = 45^{\circ}$, $M = 0.80^{\circ}$.

SYMBOL CONFIGURATION
SY458 LK LSN
SY458

161

Figure 33.- Continued.

Figure 33.— Continued.

CONFIGURATION SW45B LK LSN SW45B

(e) C_l , C_n , and C_Y vs C_L

Figure 33.- Concluded.

164

Figure 34.— Effect of having Krüger flaps on the downstream wing panel with a nose droop of 5° on the static longitudinal characteristics of an oblique wing: $\Lambda = 45^{\circ}$, M = 0.90.

Figure 34.— Continued.

Figure 34. - Continued.

168

(e) C_l , C_n , and C_I vs C_L

Figure 34. - Concluded.

-.050.

Figure 35.— Effect of having Krüger flaps on the downstream wing panel with a nose droop of 5° on the static longitudinal characteristics of an oblique wing: $\Lambda = 45^\circ$, M = 0.95.

Figure 35. - Continued.

SYMBOL CONFIGURATION
SW45B LK LSN
5845B

Figure 35.— Continued.

(e) C_l , C_n , and $C_Y ext{ vs } C_L$

Figure 35. - Concluded.

8N/L 5.600

Figure 36.— Effect of having Krüger flaps on the downstream wing panel with a nose droop of 10° on the static longitudinal characteristics of an oblique wing: $\Lambda = 45^{\circ}$, M = 0.25.

(b) C_L vs C_m Figure 36. – Continued.

Figure 36. – Continued.

Figure 36. - Continued.

178

SYMBOL CONFIGURATION

O SW45B LK LION

(e) G_{l} , C_{n} , and C_{Y} vs C_{L}

Figure 36.- Concluded.

Figure 37. – Effect of having Krüger flaps on the downstream wing panel with a nose droop of 10° on the static longitudinal characteristics of an oblique wing: $\Lambda = 45^{\circ}$, M = 0.40.

SYMBOL CONFIGURATION

Sw458 LK LION

(c) C_L vs C_D Figure 37.— Continued.

Figure 37.— Continued.

(e) C_l , C_n , and C_Y vs C_L

Figure 37. - Concluded.

Figure 38.— Effect of having Krüger flaps on the downstream wing panel with a nose droop of 10° on the static longitudinal characteristics of an oblique wing: $\Lambda = 45^{\circ}$, M = 0.60.

Figure 38.— Continued.

SYMBOL CONFIGURATION
SW458 LK LION
SW458

(c) C^T as C^D

Figure 38. - Continued.

(d) L/D vs C_L

Figure 38.- Continued.

188

SYMBOL CONFIGURATION
SW458 LK LION
SW458

Figure 38. – Concluded.

Figure 39.— Effect of having Krüger flaps on the downstream wing panel with a nose droop of 10° on the static longitudinal characteristics of an oblique wing: $\Lambda = 45^{\circ}$, M = 0.80.

RN/L 8.200

SYMBOL CONFIGURATION

SW458 LK LION
SW458

Figure 39. - Continued.

Figure 39. – Continued.

Page Intentionally Left Blank

Figure 40.— Effect of having Krüger flaps on the downstream wing panel with a nose droop of 10° on the static longitudinal characteristics of an oblique wing: $\Lambda = 45^\circ$, M = 0.90.

Figure 40. – Continued.

Figure 40.— Continued.

Figure 40. - Continued.

Figure 41.— Effect of having Krüger flaps on the downstream wing panel with a nose droop of 10° on the static longitudinal characteristics of an oblique wing: $\Lambda = 45^{\circ}$, M = 0.95.

SYMBOL CONFIGURATION
SW45B LK LION
SW45B

Figure 41.— Continued.

Figure 41.— Continued.

SYMBOL CONFIGURATION
SW458 LK LION
SW458

Figure 41.— Continued.

(e) G_l , G_n , and G_Y vs G_L

Figure 41.- Concluded.

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE \$300

SPECIAL FOURTH-CLASS RATE BOOK

POSTMASTER:

If Undeliverable (Section 158 Postal Manual) Do Not Return

"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

-NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS:

Information receiving limited distribution because of preliminary data, security classification, or other reasons. Also includes conference proceedings with either limited or unlimited distribution.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include final reports of major projects, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION

PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546