SEMESTER 8

ELECTRICAL AND COMPUTER ENGINEERING

SMART GRID TECHNOLOGIES

Course Code	PEEET861	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None/ (Course code)	Course Type	PE - Theory

Course Objectives:

- 1. To introduce various advancements in the area of smart grid.
- 2. To introduce distributed energy resources and micro-grid.
- 3. To introduce cloud computing, cyber security and power quality issues in smart grids.

Module No.	Syllabus Description	Contact Hours
	Introduction to Smart Grid: Evolution of electric grid, Definitions, Need	
	for smart grid, Smart grid drivers, Functions of smart grid, Opportunities and	
	barriers of smart grid, Difference between conventional grid and smart grid,	
	Concept of resilient and self- healing grid. Components and architecture,	
	Inter-operability, Impacts of smart grid on system reliability, Present	
	development and international policies in smart grid, Smart grid standards.	
1	Information and Communication Technology in Smart Grid: Wired and	9
	wireless communication -radio mesh, ZIGBEE, 3G, 4G and 5G. Digital	
	PLC, DSL, Wi-Max, LAN, NAN, HAN, Wi-Fi, Bluetooth, Bluetooth Low	
	Energy (BLE), Li-Fi. Communication Protocols in Smart grid, Introduction	
	to IEC 61850 standard and benefits, IEC Generic Object-Oriented Substation	
	Event - GOOSE, Substation model.	
	Smart grid Technologies Part I: Introduction to smart meters, Electricity	
	tariff, Real Time Pricing- Automatic Meter Reading (AMR) - System,	
_	Services and Functions, Components of AMR Systems, Advanced Metering	_
2	Infrastructure (AMI). Plug in Hybrid Electric Vehicles (PHEV), Vehicle to	9
	Grid (V2G), Grid to Vehicle (G2V), Smart Sensors, Smart energy efficient	
	end use devices, Home & Building Automation. Intelligent Electronic	

	Devices (IED) and their application for monitoring & protection: Digital		
	Fault Recorder (DFR), Digital Protective Relay (DPR), Circuit Breaker		
	Monitor (CBM), Phasor Measurement Unit (PMU), Standards for PMU.		
	Time synchronization techniques, Wide Area Monitoring System (WAMS),		
	control and protection systems (Architecture, components of WAMS, and		
	applications: Voltage stability assessment, frequency stability assessment,		
	power oscillation assessment, communication needs of WAMS, remedial		
	action scheme).		
	Smart grid Technologies Part II: Smart substations, Substation		
	automation, Feeder automation, Fault detection, Isolation, and Service		
	Restoration (FDISR), Geographic Information System (GIS), Outage		
	Management System (OMS). Introduction to Smart distributed energy		
3	resources and their grid integration, Smart inverters, Concepts of microgrid,	9	
	Need and application of microgrid - Energy Management- Role of		
	technology in demand response- Demand side management, Demand side		
	Ancillary Services, Dynamic line rating.		
	Cloud computing in smart grid: Private, Public and hybrid cloud. Types of		
	cloud computing services- Software as a Service (SaaS), Platform as a		
	service (PaaS), Infrastructure as a service (IaaS), Data as a service (DaaS),		
	Cloud architecture for smart grid.		
4	Cyber Security - Cyber security challenges and solutions in smart grid,	9	
	Cyber security risk assessment, Security index computation.		
	Power Quality Management in Smart Grid- Fundamentals, Power Quality		
	(PQ) & Electromagnetic Compatibility (EMC) in smart grid, Power quality		
	conditioners for smart grid. Case study of smart grid.		

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the basic concept of distributed energy resources, micro-grid and smart grid	К2
CO2	Choose appropriate Information and Communication Technology (ICT) in smart grid	К2
CO3	Select infrastructure and technologies for consumer domain of smart grid	K2
CO4	Select infrastructure and technologies for smart substation and distribution automation	К2
CO5	Formulate cloud computing infrastructure for smart grid considering cyber security	К3
CO6	Categorize power quality issues and appraise it in smart grid context	К2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										
CO2	3	3	3	3	2							
CO3	3	3	3	3	2							
CO4	3	3	3	3								
CO5	3	3	3	3	3							
CO6	3	3	3	3	3							

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Smart Grid Infrastructure Technology and Solutions	Stuart Borlase	CRC Press	2nd edition			
2	Smart Grid: Fundamentals of Design and Analysis	James Momoh	Wiley	2012			
3	Microgrids and Active Distribution Networks	S. Chowdhury	Institution of Engineering and Technology	2009			
4	Smart Grids Technology and Applications	Janaka Ekanayake, Kythira Liyanage, Jianzhong Wu, Akihiko Yokohama, Nick Jenkins-	Wiley	2012			
5	Smart Grids Technology and Applications	Janaka Ekanayake, Kythira Liyanage, Jianzhong Wu, Akihiko Yokohama, Nick Jenkins	Wiley	2012			
6	Cybersecurity for the Electric Smart Grid: Elements and Considerations	Barker, Preston, Price, Rudy F	Nova Science Publishers Inc	2012			

HVDC AND FACTS

Course Code	РЕЕЕТ862	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCEET403	Course Type	PE - Theory

Course Objectives:

- 1. To introduce HVDC concepts and analysis of HVDC systems.
- **2.** To provide a detailed study of FACTS devices.

Module No.	Syllabus Description	Contact Hours
	Introduction to HVDC System: Comparison of AC and DC Transmission -	
	Types of HVDC system - Current Source Converters - Analysis without and	
	with overlap period. Voltage Source Converters (VSC) - VSC with AC cur-	
	rent control and VSC with AC voltage control	_
1	HVDC Controls - Functions of HVDC Controls - Equivalent circuit for a	9
	two terminal DC Link - Control Basics for a two terminal DC Link - Current	
	Margin Control Method - Current Control at the Rectifier - Inverter Extinc-	
	tion Angle Control - Hierarchy of Controls	
	Introduction to FACTS: Power flow in Power Systems - Voltage regula-	
	tion and reactive power flow control in Power Systems - Power flow control	
	-Constraints of maximum transmission line loading - Needs and emergence	
2	of FACTS - Types of FACTS controllers-Advantages and disadvantages	9
	Transmission line compensation- Uncompensated line -shunt compensation -	,
	Series compensation -Phase angle control.	
	Shunt and Series Facts Devices: Static shunt Compensator - Objectives of	
3	shunt compensations - Variable impedance type VAR Generators -TCR,	
	TSR, TSC, FC-TCR (Principle of operation and schematic) and - STAT-	9
	COM (Principle of operation and schematic). Static Series compensator -	
	Objectives of series compensations-Variable impedance type series compen-	

	sators - GCSC. TCSC, TSSC (Principle of operation and schematic) Switching converter type Series Compensators-(SSSC) (Principle of operation and schematic)	
4	UPFC AND IPFC: Unified Power Flow Controller: Circuit Arrangement, Operation of UPFC- Basic principle of P and Q control- independent real and reactive power flow control- Applications Introduction to interline power flow controller (IPFC) (Principle of operation and schematic) Thyristor controlled Voltage and Phase angle Regulators (Principle of operation and schematic)	9

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examina- tion-1 (Written)	Internal Examina- tion- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each mod-	Each question carries 9 marks.	
ule.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	Each question can have a maximum of 3 sub divi-	60
	sions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Analyse current source and voltage source converters for HVDC systems	K4
	111111	K2
CO2	Describe the control schemes for HVDC systems	K2
CO3	Explain the need for FACTS devices	K2
CO4	Classify reactive power compensators in power system	К2
CO5	Interpret series and shunt connected FACTS devices for power system applications	K2
CO6	Explain the dynamic interconnection mechanisms of FACTS devices	К2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3			2							
CO2	3	3			2							
CO3	3	3			2							
CO4	3	3			2							
CO5	3	3			2							
CO6	3	3			2							

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

Text Books										
Sl. No	Title of the Book	Name of the Author/s	Name of the Publish- er	Edition and Year						
1	HVDC and FACTS Controllers	Vijay K Sood	Springer	2004						
2	Understanding FACTS	N.G. Hingorani and L.Gyugyi	IEEE Press	2000						
3	High Voltage DC Transmission	K.R.Padiyar	Wiley	1993						
4	FACTS Controllers in Power Transmission and distribution	K.R.Padiyar	New age international Publishers	2007						
5	Flexible AC Transmission systems (FACTS)	Y.H. Song and A.T.Jones	IEEE Press	1999						
6	Reactive Power control in Power systems	T.J.E. Miller	John Wiley	1982						

MECHATRONIC SYSTEMS

Course Code	PEEET863	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None/ (Course code)	Course Type	PE - Theory

Course Objectives:

- 1. To familiarise mechatronic systems with fundamental knowledge in sensors and actuators achieve conceptual understanding of mechatronic systems
- 2. To enhance the fundamental knowledge in microprocessors and microcontrollers
- 3. To learn the fundamentals of system models and controllers
- **4.** To understand control actions such as Proportional, derivative and integral and study its significance in industrial applications

Module No.	Syllabus Description	Contact Hours
1	Introduction to Mechatronics: Introduction, Examples of Mechatronic systems, Electric circuits and components, Semiconductor Electronics, Transistor Applications Sensors and transducers: Performance terminology of sensors, Displacement, Position & Proximity Sensors-I, Displacement, Position & Proximity Sensors-II, Force, Fluid pressure, Liquid flow sensors, temperature, light sensor, Acceleration and Vibration measurement, Semiconductor sensor and MEMS, SAW	9
2	Actuators and mechanisms: Mechanical Actuation System, Hydraulic & Pneumatic Actuation System, Electrical Actuation System-I, Electrical Actuation System-II, Data Presentation system Signal conditioning: Introduction to signal processing & Op-Amp, Op-Amp as signal conditioner, Analogue to Digital Converter, Digital to Analogue Converter, Artificial intelligence	10
3	Microprocessors and microcontrollers: Digital circuits-I, Digital circuits-II,	

	Microprocessor Micro Controller, Programming of Microcontrollers Model-	
	ing and system response: Mechanical system model, Electrical system mod-	10
	el, Fluid system model, Dynamic response of systems, Transfer function and	
	frequency response.	
	Closed loop controllers: P, I, PID Controllers, Digital Controllers, Program	
4	Logic Controllers, Input/output & Communication systems, Fault findings	7
	Mechatronics designs, examples and case studies	

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examina- tion-1 (Written)	Internal Examina- tion- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B		
• 2 Questions from each mod-	Each question carries 9 marks.		
ule.	• Two questions will be given from each module, out		
• Total of 8 Questions, each	of which 1 question should be answered.		
carrying 3 marks	• Each question can have a maximum of 3 sub divi-	60	
	sions.		
(8x3 =24marks)	(4x9 = 36 marks)		

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome						
CO1	Comprehend the importance of sensors and actuators with application to mechatronic systems	K2					
CO2	Identify actuator mechanisms and signal conditioning processes	K2					
CO3	Select microprocessors and microcontrollers for the implementation in mechatronic system	К2					
CO4	Analyse the models and responses of different systems	К3					

Note: K1-Remember, K2-Understand, K3-Apply, K4-Analyse, K5-Evaluate, K6-Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3					1						1
CO2	3					1						1
CO3	3					1						1
CO4	3	3	3	2	3	2					2	2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

Text Books										
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Mechatronics: Electronic Control Systems in Mechanical and Electrical Engineering	W. Bolton	Pearson Education	4 th Edition						
2	Introduction to Mechatronics and Measurement Systems	Michael B. Histand, David G. Al- ciatore	McGraw-Hill Series in Mechanical Engineering	2003						
3	Mechatronics system design. CL-Engineering	Shetty, Devdas, and Richard A. Kolk.		2010.						
4	Mechatronics: an introduction.,	Bishop, Robert H.	CRC Press	2017.						
5	Intelligent Mechatronic Systems: Modeling, Control and Diagnosis	R. Merzouki, A. K. Sa- mantaray, P. M. Pathak, B. Ould Bouamama	Springer, London	2003						

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://archive.nptel.ac.in/courses/112/107/112107298/					
2	https://archive.nptel.ac.in/courses/112/107/112107298/					
3	3 https://archive.nptel.ac.in/courses/112/107/112107298/					
4	https://archive.nptel.ac.in/courses/112/107/112107298/					

SEMESTER S8 ELECTRONIC COMMUNICATION

Course Code	PEEET864	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	GYEST104, PBEET304	Course Type	PE - Theory

Course Objectives:

1. To acquire knowledge about analog and digital communication systems

Module No.	Syllabus Description	Contact Hours
1	Analog Communication: Introduction to communication systems, Classification of channels, Need for modulation. Amplitude modulation: Equation and frequency spectrum of AM signal, Double-side band suppressed carrier (DSB-SC) modulation, Single sideband modulation (SSB), comparison of spectrum, power and efficiency of all the three variants, Amplitude modulator circuits -balanced modulator, AM demodulators – Envelope detector.	Hours 9
2	Angle Modulation: Frequency and phase modulation, Narrow and wide band FM and their spectra, Modulation and demodulation techniques for FM, pre-emphasis and deemphasis, FM transmitter and receiver, Noise in receivers, Noise figures, Performance of analog modulation schemes in AWGN: SNR and figure of merit for different schemes.	9
3	Digital baseband communication: Elements of digital communication system. Sources, channels and receivers, Sampling and Reconstruction of Analog Signals: Nyquist Sampling Theorem, Ideal Reconstruction Filter, Pulse Amplitude Modulation (PAM), Time division multiplexing with PAM, Pulse Code Modulation (PCM), A-law and mu-law quantization.	9
4	Digital bandpass communication : Digital bandpass communication system, Bandpass modulation techniques:	9

Amplitude shift keying, Phase shift keying, Frequency shift keying, Methods	
of generation and detection, Signal constellations, M-ary digital modulation	
schemes, Quadrature phase shift keying, Minimum shift keying, Quadrature	
amplitude modulation.	

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examina- tion-1 (Written)	Internal Examina- tion- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each mod-	Each question carries 9 marks.	
ule.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	Each question can have a maximum of 3 sub divi-	60
	sions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the working of Amplitude modulator and demodulator circuits using mathematical relations.	К2
CO2	Explain the characteristics of various analog modulation schemes in terms of spectra, power and efficiency.	К3
CO3	Understand the various processing blocks of a digital communication system.	K2
CO4	Apply the knowledge of digital modulation in digital transmission.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3											
CO2	3	2										
CO3	3											1
CO4	3	2										1

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books							
Sl. No	Title of the Book	Name of the Author/s Name of the Publisher		Edition and Year				
1	Kennedy's Electronic Communication Systems	Kennedy, Davis and Prasanna	Tata McGraw Hill	6th Edition, 2018				
2	Electronic Communication Systems – Fundamentals through Advanced	Wayne Tomasi	Pearson	5th edition, 2008				
3	Communication Systems	Simon Haykin and Mi- chael Mohre	Wiley	5th Edi- tion,2021				
4	Principles of Communication Systems	Taub& Schilling	McGraw-Hill	4th edition, 2017				

	Reference Books							
Sl. No	Title of the Book	Title of the Book Name of the Author/s		Edition and Year				
1	Principles of Communications	Rodger E. Ziemer& William H. Tranter	Wiley	7the edition, 2014				
2	Communication System Engineering	J. G. Proakis and M. Salehi	Pearson Education	2nd Edition, 2018.				
3	Digital and Analog Communication Systems	Leon W. Couch	Prentice Hall	8th edition, 2012				
4	Modern Digital and Analog Communication Systems	B. P. Lathi, Zhi Ding	Oxford University Press	4th edition, 2011				

INTRODUCTION TO ROBOTICS

Course Code	OEEET831	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None/ (Course code)	Course Type	OE - Theory

Course Objectives:

- 1. To familiarise mechatronic systems with fundamental knowledge in sensors and actuators achieve conceptual understanding of mechatronic systems
- 2. To enhance the fundamental knowledge in microprocessors and microcontrollers
- 3. To learn the fundamentals of system models and controllers
- **4.** To understand control actions such as Proportional, derivative and integral and study its significance in industrial applications

Module No.	Syllabus Description	Contact Hours
1	Definitions- Robots, Robotics; Types of Robots- Manipulators, Mobile Robots-wheeled & Legged Robots, Aerial Robots; Anatomy of a robotic manipulator-links, joints, actuators, sensors, controller; open kinematic vs closed kinematic chain; degrees of freedom; Robot considerations for an application- number of axes, work volume, capacity & speed, stroke &reach, Repeatability, Precision and Accuracy, Operating environment, point to point control or continuous path control	7
2	Sensors and Actuators Sensor classification- touch, force, proximity, vision sensors. Internal sensors-Position sensors, velocity sensors, acceleration sensors, Force sensors; External sensors-contact type, noncontact type Actuators for robots- classification-Electric, Hydraulic, Pneumatic actuators; their advantages and disadvantages; Electric actuators- Stepper motors, DC motors, DC servo motors and their drivers, AC motors, Linear actuators, selection of motors Robotic configurations and end effectors Robot configurations-PPP, RPP,	10

	RRP, RRR; features of SCARA, PUMA Robots; Classification of robots	
	based on motion control methods and drive technologies; 3R concurrent	
	wrist;	
	Classification of End effectors - mechanical grippers, special tools, Magnetic	
	grippers, Vacuum grippers, adhesive grippers, Active and passive grippers,	
	selection and design considerations of grippers in robot.	
	Kinematics and Motion Planning	
	Robot Coordinate Systems- Fundamental and composite rotations, homoge-	
	neous co-ordinates and transformations, Kinematic parameters, D-H repre-	
	sentation, Direct Kinematics. The Arm equation- forward Kinematic analysis	
3	of a typical robots upto 3 DOF.	9
	Motion Planning- joint space trajectory planning-cubic polynomial, linear	
	trajectory with parabolic blends; Cartesian space planning, Point to point vs	
	continuous path planning.	
	Dynamics and Control of Robots	
	Building of a servo controlled robot – 1R two link chain, construction of link	
	and joint and mounting of encoder, actuator, etc.	
	Dynamics- Dynamic model of a robot using Lagrange's equation, dynamic	
	modelling of 1DOF robot, including motor and gearbox, 2R planar manipu-	
4	lator.	9
	Control Techniques- Transfer function and state space representation, Per-	
	formance and stability of feedback control, PID control of a single link ma-	
	nipulator, selection of PID controller gains; nonlinear nature of manipulators,	
	and need for nonlinear control techniques.	

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examina- tion-1 (Written)	Internal Examina- tion- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each mod-	Each question carries 9 marks.	
ule.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3 sub divi-	60
	sions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Familiarise with anatomy, specifications and applications of Robots	K2
CO2	Choose the appropriate sensors and actuators for robots	К2
CO3	Choose appropriate Robotic configuration and gripper for a particular application	K2
CO4	Obtain kinematic model of robotic manipulators	К3
CO5	Plan trajectories in joint space and Cartesian space	К3
CO6	Develop dynamic model and design the controller for robotic manipulators	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1										3
CO2	2	1										3
CO3	2	1										3
CO4	3	2	2									3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

Text Books							
Sl. No	Title of the Book Name of the Author/s		Name of the Publisher	Edition and Year			
1	Introduction to Robotics	S K Saha	McGraw Hill Education (India) Private Limited	2014			
2	Fundamentals of robotics – Analysis and control	Robert. J. Schilling	Prentice Hall of India	1996.			
3	Robotics and Control	R K Mittal and I J Nagrath	Tata McGraw Hill, New Delhi	2003			
4	Introduction to Robotics: Me- chanics and control	John. J. Craig	Pearson Education Asia	4 th Edition, 2018			
5	Robotics-Fundamental concepts and analysis	Ashitava Ghosal	Oxford University press.	2006			
6	Robotics Technology and Flexi- ble Automation	S. R. Deb	McGraw-Hill Education LLC	Second Edition,			

Video Links (NPTEL, SWAYAM)							
Module	Link ID						
No.	Link 1D						
1	https://archive.nptel.ac.in/courses/107/106/107106090/						
2	https://archive.nptel.ac.in/courses/107/106/107106090/						
3	https://archive.nptel.ac.in/courses/107/106/107106090/						
4	https://archive.nptel.ac.in/courses/107/106/107106090/						

PLC AND AUTOMATION

Course Code	OEEET832	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:1:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Learn the roles, architectures, and interfacing techniques of computer-based measurement and control systems, including HMI and hardware integration.
- **2.** Gain hands-on experience with PLC programming and simulation, and understand the functionalities and interfacing of Distributed Control Systems for process control.

Module No.	Syllabus Description	Contact Hours
1	Introduction to computer based control system -Role of computers in measurement and (process) control Basic components of computer based measurement and control systems Architecture – computer based process control system –Centralised, Distributed and Hierarchical. Human Machine Interface (HMI) Hardware for computer based process control system, Interfacing computer system with process. Architecture of DDC, SCADA and DCS. Programmable logic Controller (PLC): Introduction, Evolution, Relay VS PLC VS Computer	9
2	PLC- Hardware and Internal Architecture-Input –output devices .Basics of Ladder Programming, on/off instructions, internal relay, jump instructions, data handling instruction, data manipulation instructions, Arithmetic and Comparison ,PID and other important instructions	9
3	Timers and Counters in PLC. Problems. Design Development and Simulation of PLC Programme Program on Temperature control Valve	9

	sequencing, Conveyor belt control and Control of a process.	
	PLC Installation, trouble shooting and maintenance, Design of Alarms and	
	Interlocks, Networks of PLC	
	Distributed Control System- DCS - Evolution- Various Architectures -	
	Comparison – Local control unit	
	DCS -LCU Languages-Process interfacing issues-communication facilities-	
	Operator interface-Low level and High level Operator interface- Displays -	
4	Engineering interfaces – Low level and high level engineering interfaces –	9
	Factors to be considered in selecting DCS - Other key issues in DCS -	
	Packaging and Power system issues.	

Continuous Internal Evaluation Marks (CIE):

Attendance	Internal Ex	Evaluate	Analyse	Total
5	15	10	10	40

Criteria for Evaluation (Evaluate and Analyse): 20 marks

Micro projects on automation using PLC and DCS for student group comprising of 3 students. Report-5 marks $Working\ Model-15\ Marks$

End Semester Examination Marks (ESE):

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• 2 questions will be given from each	
module.	module, out of which 1 question should be	
• Total of 8 Questions,	answered.	
each carrying 3 marks	• Each question can have a maximum of 3	
	sub divisions.	
	• Each question carries 9 marks.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the basic architecture and components of computer-based measurement and control systems.	K2
CO2	Understand the human-machine interfaces (HMI) and learn the hardware and interfacing techniques needed to integrate computer systems with process controls.	К2
CO3	Create and troubleshoot PLC programs using ladder logic for various applications.	K5
CO4	Understand and apply the architecture and interfaces of Distributed Control Systems in various process control settings.	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3											
CO2	3											
CO3	3				2							
CO4	3											

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books										
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year							
1	Instrument Engineer's Handbook – Process Control,	B G Liptak	CRC Press	4 th edtion							
2	Understanding Distributed Processor Systems for Control,	Samel M. Herb	ISA Publication	1 st edition 1999							
3	Programmable Logic Controllers – Principles and Applications.	John W.Webb & Ronald A. Reiss,	РНІ	5 th edition							
4	Computer Control of Processes,	M. Chidambaram	Alpha Science International Ltd	1 st edition 2002							

	Reference Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Process Software and Digital Networks, CRC Press.	B G Liptak	CRC	3 rd edition						
2	Programmable Logic Controllers – Programming Methods and Applications, Pearson Education.	John R. Hackworth & Frederick D. Hackworth Jr	Pearson	1 st edition 2003						

	Video Links (NPTEL, SWAYAM)								
Module No.	Link ID								
1	https://onlinecourses.nptel.ac.in/noc21_me67/preview								
2	https://onlinecourses.nptel.ac.in/noc21_me67/preview								
3	https://onlinecourses.nptel.ac.in/noc21_me67/preview								
4	https://onlinecourses.nptel.ac.in/noc21_me67/preview								

MECHATRONIC SYSTEMS AND CONTROL

Course Code	ОЕЕЕТ833	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None/ (Course code)	Course Type	OE - Theory

Course Objectives:

- 1. To familiarise mechatronic systems with fundamental knowledge in sensors and actuators achieve conceptual understanding of mechatronic systems
- 2. To enhance the fundamental knowledge in microprocessors and microcontrollers
- 3. To learn the fundamentals of system models and controllers
- **4.** To understand control actions such as Proportional, derivative and integral and study its significance in industrial applications

Module No.	Syllabus Description	Contact Hours
1	Introduction to Mechatronics: Introduction, Examples of Mechatronic systems, Electric circuits and components, Semiconductor Electronics, Transistor Applications Sensors and transducers: Performance terminology of sensors, Displacement, Position & Proximity Sensors-I, Displacement, Position & Proximity Sensors-II, Force, Fluid pressure, Liquid flow sensors, temperature, light sensor, Acceleration and Vibration measurement, Semiconductor sensor and MEMS, SAW	9
2	Actuators and mechanisms: Mechanical Actuation System, Hydraulic & Pneumatic Actuation System, Electrical Actuation System-I, Electrical Actuation System-II, Data Presentation system Signal conditioning: Introduction to signal processing & Op-Amp, Op-Amp as signal conditioner, Analogue to Digital Converter, Digital to Analogue Converter, Artificial intelligence	10

3	Microprocessors and microcontrollers: Digital circuits-I, Digital circuits-II, Microprocessor Micro Controller, Programming of Microcontrollers Modeling and system response: Mechanical system model, Electrical system model, Fluid system model, Dynamic response of systems, Transfer function and frequency response.	10
4	Closed loop controllers: P, I, PID Controllers, Digital Controllers, Program Logic Controllers, Input/output & Communication systems, Fault findings Mechatronics designs and case studies	7

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examina- tion-1 (Written)	Internal Examina- tion- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each mod-	Each question carries 9 marks.	
ule.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	Each question can have a maximum of 3 sub divi-	60
	sions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Comprehend the importance of sensors and actuators with application to mechatronic systems	К2
CO2	Identify actuator mechanisms and signal conditioning processes	K2
СОЗ	Select microprocessors and microcontrollers for the implementation in mechatronic system	K2
CO4	Analyse the models and responses of different systems	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3					1						1
CO2	3					1						1
CO3	3					1						1
CO4	3	3	3	2	3	2					2	2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

Text Books				
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Mechatronics: Electronic Control Systems in Mechanical and Electrical Engineering	W. Bolton	Pearson Education	4 th Edition 2010
2	Introduction to Mechatronics and Measurement Systems	Michael B. Histand, David G. Al- ciatore	McGraw-Hill Series in Mechanical Engineering	2003
3	Mechatronics system design. CL-Engineering,	Shetty, Devdas, and Richard A. Kolk.		2010.
4	Mechatronics: an introduction.,	Bishop, Robert H.	CRC Press	2017.
5	Intelligent Mechatronic Systems: Modeling, Control and Diagnosis	R. Merzouki, A. K. Sa- mantaray, P. M. Pathak, B. Ould Bouamama	Springer, London	2003

	Video Links (NPTEL, SWAYAM)			
Module No.	Link ID			
1	https://archive.nptel.ac.in/courses/112/107/112107298/			
2	https://archive.nptel.ac.in/courses/112/107/112107298/			
3	https://archive.nptel.ac.in/courses/112/107/112107298/			
4	https://archive.nptel.ac.in/courses/112/107/112107298/			