Számításelmélet

1. előadás

előadó: Kolonits Gábor kolomax@inf.elte.hu

Ábécé: Egy véges, nemüres halmaz.

Ábécé: Egy véges, nemüres halmaz. Az ábécé elemeit **betűk**nek nevezzük.

Ábécé: Egy véges, nemüres halmaz. Az ábécé elemeit **betűk**nek nevezzük.

Egy V ábécé elemeiből képzett véges sorozatokat V feletti szavaknak vagy sztringeknek nevezzük. Egy $u=t_1\cdots t_n$ szóban lévő betűk számát (n) a szó hosszának nevezzük. Jelölés: |u|=n.

Abécé: Egy véges, nemüres halmaz. Az ábécé elemeit **betűk**nek nevezzük.

Egy V ábécé elemeiből képzett véges sorozatokat V feletti szavaknak vagy sztringeknek nevezzük. Egy $u=t_1\cdots t_n$ szóban lévő betűk számát (n) a szó hosszának nevezzük. Jelölés: |u|=n. A 0 hosszú sorozat jelölése ε , ezt üres szónak nevezzük $(|\varepsilon|=0)$.

Ábécé: Egy véges, nemüres halmaz. Az ábécé elemeit **betűk**nek nevezzük.

Egy V ábécé elemeiből képzett véges sorozatokat V feletti szavaknak vagy sztringeknek nevezzük. Egy $u=t_1\cdots t_n$ szóban lévő betűk számát (n) a szó hosszának nevezzük. Jelölés: |u|=n. A 0 hosszú sorozat jelölése ε , ezt üres szónak nevezzük ($|\varepsilon|=0$). V^* jelöli a V ábécé feletti szavak halmazát, beleértve az üres szót is.

Abécé: Egy véges, nemüres halmaz. Az ábécé elemeit **betűk**nek nevezzük.

Egy V ábécé elemeiből képzett véges sorozatokat V feletti szavaknak vagy sztringeknek nevezzük. Egy $u=t_1\cdots t_n$ szóban lévő betűk számát (n) a szó hosszának nevezzük. Jelölés: |u|=n. A 0 hosszú sorozat jelölése ε , ezt üres szónak nevezzük ($|\varepsilon|=0$). V^* jelöli a V ábécé feletti szavak halmazát, beleértve az üres szót is.

 $V^+ = V^* \backslash \{\varepsilon\}$ a V ábécé feletti, nemüres szavak halmazát jelöli.

Ábécé: Egy véges, nemüres halmaz. Az ábécé elemeit **betűk**nek nevezzük.

Egy V ábécé elemeiből képzett véges sorozatokat V feletti szavaknak vagy sztringeknek nevezzük. Egy $u=t_1\cdots t_n$ szóban lévő betűk számát (n) a szó hosszának nevezzük. Jelölés: |u|=n. A 0 hosszú sorozat jelölése ε , ezt üres szónak nevezzük ($|\varepsilon|=0$). V^* jelöli a V ábécé feletti szavak halmazát, beleértve az üres szót is.

 $V^+ = V^* \setminus \{\varepsilon\}$ a V ábécé feletti, nemüres szavak halmazát jelöli.

Példa:
$$V = \{a, b\}$$
, ekkor $V^* = \{\varepsilon, a, b, aa, ab, ba, bb, aaa, aab, ...\}$.

Legyen V egy ábécé, V^* egy L részhalmazát V feletti **nyelvnek** nevezzük.

Legyen V egy ábécé, V^* egy L részhalmazát V feletti nyelvnek nevezzük.

Az üres nyelv (nyelv, amely egyetlen szót sem tartalmaz) jelölése \varnothing .

Legyen V egy ábécé, V^* egy L részhalmazát V feletti nyelvnek nevezzük.

Az üres nyelv (nyelv, amely egyetlen szót sem tartalmaz) jelölése \emptyset . Egy V ábécé feletti nyelv véges nyelv, ha véges számú szót tartalmaz, ellenkező esetben végtelen.

Legyen V egy ábécé, V^* egy L részhalmazát V feletti nyelvnek nevezzük.

Az üres nyelv (nyelv, amely egyetlen szót sem tartalmaz) jelölése \varnothing . Egy V ábécé feletti nyelv véges nyelv, ha véges számú szót tartalmaz, ellenkező esetben végtelen.

Ha X egy halmaz, jelölje $\mathcal{P}(X)$ az X halmaz hatványhalmazát, azaz $\mathcal{P}(X)=\{A\,|\,A\subseteq X\}.$

Legyen V egy ábécé, V^* egy L részhalmazát V feletti nyelvnek nevezzük.

Az üres nyelv (nyelv, amely egyetlen szót sem tartalmaz) jelölése \emptyset . Egy V ábécé feletti nyelv véges nyelv, ha véges számú szót tartalmaz, ellenkező esetben végtelen.

Ha X egy halmaz, jelölje $\mathcal{P}(X)$ az X halmaz hatványhalmazát, azaz $\mathcal{P}(X) = \{A \,|\, A \subseteq X\}.$

Nyelvcsalád (vagy nyelvosztály) alatt nyelveknek egy halmazát értjük.

Legyen V egy ábécé, V^* egy L részhalmazát V feletti nyelvnek nevezzük.

Az üres nyelv (nyelv, amely egyetlen szót sem tartalmaz) jelölése \varnothing . Egy V ábécé feletti nyelv véges nyelv, ha véges számú szót tartalmaz, ellenkező esetben végtelen.

Ha X egy halmaz, jelölje $\mathcal{P}(X)$ az X halmaz hatványhalmazát, azaz $\mathcal{P}(X) = \{A \mid A \subseteq X\}$.

Nyelvcsalád (vagy nyelvosztály) alatt nyelveknek egy halmazát értjük.

Tehát ha V egy ábécé:

a ∈ V: betű

Legyen V egy ábécé, V^* egy L részhalmazát V feletti **nyelvnek** nevezzük.

Az üres nyelv (nyelv, amely egyetlen szót sem tartalmaz) jelölése \varnothing . Egy V ábécé feletti nyelv véges nyelv, ha véges számú szót tartalmaz, ellenkező esetben végtelen.

Ha X egy halmaz, jelölje $\mathcal{P}(X)$ az X halmaz hatványhalmazát, azaz $\mathcal{P}(X) = \{A \mid A \subseteq X\}$.

Nyelvcsalád (vagy nyelvosztály) alatt nyelveknek egy halmazát értjük.

Tehát ha V egy ábécé:

- a ∈ V: betű
- *u* ∈ *V**: szó

Legyen V egy ábécé, V^* egy L részhalmazát V feletti nyelvnek nevezzük.

Az üres nyelv (nyelv, amely egyetlen szót sem tartalmaz) jelölése \emptyset . Egy V ábécé feletti nyelv véges nyelv, ha véges számú szót tartalmaz, ellenkező esetben végtelen.

Ha X egy halmaz, jelölje $\mathcal{P}(X)$ az X halmaz hatványhalmazát, azaz $\mathcal{P}(X) = \{A \mid A \subseteq X\}$.

Nyelvcsalád (vagy nyelvosztály) alatt nyelveknek egy halmazát értjük.

Tehát ha V egy ábécé:

- a ∈ V: betű
- *u* ∈ *V**: szó
- $L \subseteq V^*$ vagy $L \in \mathcal{P}(V^*)$: nyelv

Legyen V egy ábécé, V^* egy L részhalmazát V feletti nyelvnek nevezzük.

Az üres nyelv (nyelv, amely egyetlen szót sem tartalmaz) jelölése \emptyset . Egy V ábécé feletti nyelv véges nyelv, ha véges számú szót tartalmaz, ellenkező esetben végtelen.

Ha X egy halmaz, jelölje $\mathcal{P}(X)$ az X halmaz hatványhalmazát, azaz $\mathcal{P}(X) = \{A \mid A \subseteq X\}$.

Nyelvcsalád (vagy nyelvosztály) alatt nyelveknek egy halmazát értjük.

Tehát ha V egy ábécé:

- a ∈ V: betű
- *u* ∈ *V**: szó
- $L \subseteq V^*$ vagy $L \in \mathcal{P}(V^*)$: nyelv
- $\mathcal{L} \subseteq P(V^*)$ vagy $\mathcal{L} \in \mathcal{P}(\mathcal{P}(V^*))$: nyelvcsalád

Definíció

Egy $G = \langle N, T, P, S \rangle$ rendezett négyest **grammatikának** nevezünk ha

N és T diszjunkt véges ábécék (azaz N ∩ T = Ø). N elemeit nemterminális, T elemeit pedig terminális szimbólumoknak nevezzük.

Definíció

Egy $G = \langle N, T, P, S \rangle$ rendezett négyest **grammatikának** nevezünk ha

- N és T diszjunkt véges ábécék (azaz N ∩ T = Ø). N elemeit nemterminális, T elemeit pedig terminális szimbólumoknak nevezzük.
- $S \in N$ a grammatika kezdőszimbóluma.

Definíció

Egy $G = \langle N, T, P, S \rangle$ rendezett négyest **grammatikának** nevezünk ha

- N és T diszjunkt véges ábécék (azaz N ∩ T = Ø). N elemeit nemterminális, T elemeit pedig terminális szimbólumoknak nevezzük.
- $S \in N$ a grammatika kezdőszimbóluma.
- ▶ A P szabályrendszer $x \to y$ alakú szabályok véges halmaza, ahol $x \in (N \cup T)^*N(N \cup T)^*, y \in (N \cup T)^*$.

Definíció

Legyen $G = \langle N, T, P, S \rangle$ egy grammatika és legyen $u, v \in (N \cup T)^*$. A v szó közvetlenül vagy **egy lépésben** levezethető az u szóból G -ben, jelölése $u \Rightarrow_G v$, ha $u = u_1 x u_2$ és $v = u_1 y u_2$, ahol $u_1, u_2 \in (N \cup T)^*$ és $x \to y \in P$.

Definíció

```
Legyen G = \langle N, T, P, S \rangle egy grammatika és legyen u, v \in (N \cup T)^*. A v szó közvetlenül vagy egy lépésben levezethető az u szóból G -ben, jelölése u \Rightarrow_G v, ha u = u_1 x u_2 és v = u_1 y u_2, ahol u_1, u_2 \in (N \cup T)^* és x \to y \in P.
```

u-ból (több lépésben vagy közvetetten) **levezethető** v, ha u=v vagy van olyan $n\geqslant 1$ és $w_0,\ldots w_n\in (N\cup T)^*$, hogy $w_{i-1}\Rightarrow_G w_i$ $(1\leqslant i\leqslant n)$ és $w_0=u$ és $w_n=v$. Jelölés: $u\Rightarrow_G^* v$.

Definíció

Legyen $G = \langle N, T, P, S \rangle$ egy grammatika és legyen $u, v \in (N \cup T)^*$. A v szó közvetlenül vagy **egy lépésben** levezethető az u szóból G -ben, jelölése $u \Rightarrow_G v$, ha $u = u_1 x u_2$ és $v = u_1 y u_2$, ahol $u_1, u_2 \in (N \cup T)^*$ és $x \to y \in P$.

u-ból (több lépésben vagy közvetetten) **levezethető** v, ha u=v vagy van olyan $n\geqslant 1$ és $w_0,\ldots w_n\in (N\cup T)^*$, hogy $w_{i-1}\Rightarrow_G w_i$ $(1\leqslant i\leqslant n)$ és $w_0=u$ és $w_n=v$. Jelölés: $u\Rightarrow_G^* v$.

Mondatforma: A kezdőszimbólumból levezethető szó.

Definíció

Legyen $G = \langle N, T, P, S \rangle$ egy grammatika és legyen $u, v \in (N \cup T)^*$. A v szó közvetlenül vagy **egy lépésben levezethető** az u szóból G -ben, jelölése $u \Rightarrow_G v$, ha $u = u_1 x u_2$ és $v = u_1 y u_2$, ahol $u_1, u_2 \in (N \cup T)^*$ és $x \to y \in P$.

u-ból (több lépésben vagy közvetetten) **levezethető** v, ha u=v vagy van olyan $n\geqslant 1$ és $w_0,\ldots w_n\in (N\cup T)^*$, hogy $w_{i-1}\Rightarrow_G w_i$ $(1\leqslant i\leqslant n)$ és $w_0=u$ és $w_n=v$. Jelölés: $u\Rightarrow_G^* v$.

Mondatforma: A kezdőszimbólumból levezethető szó.

 \Rightarrow_G illetve \Rightarrow_G^* helyett gyakran röviden \Rightarrow -t illetve \Rightarrow^* -t írunk.

Definíció

Legyen $G = \langle N, T, P, S \rangle$ egy grammatika és legyen $u, v \in (N \cup T)^*$. A v szó közvetlenül vagy **egy lépésben levezethető** az u szóból G -ben, jelölése $u \Rightarrow_G v$, ha $u = u_1 x u_2$ és $v = u_1 y u_2$, ahol $u_1, u_2 \in (N \cup T)^*$ és $x \to y \in P$.

u-ból (több lépésben vagy közvetetten) **levezethető** v, ha u=v vagy van olyan $n\geqslant 1$ és $w_0,\ldots w_n\in (N\cup T)^*$, hogy $w_{i-1}\Rightarrow_G w_i$ $(1\leqslant i\leqslant n)$ és $w_0=u$ és $w_n=v$. Jelölés: $u\Rightarrow_G^* v$.

Mondatforma: A kezdőszimbólumból levezethető szó.

 \Rightarrow_G illetve \Rightarrow_G^* helyett gyakran röviden \Rightarrow -t illetve \Rightarrow^* -t írunk.

Definíció

Legyen $G = \langle N, T, P, S \rangle$ egy tetszőleges grammatika. A G által **generált nyelv** alatt az $L(G) := \{ w \mid S \Rightarrow_G^* w, w \in T^* \}$ szavakból álló halmazt értjük.

Legyen $G = \langle N, T, P, S \rangle$ egy grammatika. A G grammatika i-típusú (i = 0, 1, 2, 3), ha P szabályhalmazára teljesülnek a következők:

▶ i = 0 eset: nincs korlátozás,

Legyen $G = \langle N, T, P, S \rangle$ egy grammatika. A G grammatika i-típusú (i = 0, 1, 2, 3), ha P szabályhalmazára teljesülnek a következők:

- → i = 0 eset: nincs korlátozás,
- i = 1 eset:
 - (1) P minden szabálya $u_1Au_2 \rightarrow u_1vu_2$ alakú, ahol $u_1, u_2, v \in (N \cup T)^*, A \in N$, és $v \neq \varepsilon$,

Legyen $G = \langle N, T, P, S \rangle$ egy grammatika. A G grammatika i-típusú (i = 0, 1, 2, 3), ha P szabályhalmazára teljesülnek a következők:

- i = 0 eset: nincs korlátozás,
- ▶ *i* = 1 eset:
 - (1) P minden szabálya $u_1Au_2 \rightarrow u_1vu_2$ alakú, ahol $u_1, u_2, v \in (N \cup T)^*, A \in N$, és $v \neq \varepsilon$,
 - (2) Egyetlen kivétel megengedünk: P tartalmazhatja az $S \rightarrow \varepsilon$ szabályt, de csak abban az esetben, ha S nem fordul elő P egyetlen szabályának jobb oldalán sem.

("Korlátozott ε szabály" vagy röviden "KES")

Legyen $G = \langle N, T, P, S \rangle$ egy grammatika. A G grammatika i-típusú (i = 0, 1, 2, 3), ha P szabályhalmazára teljesülnek a következők:

- i = 0 eset: nincs korlátozás,
- ▶ *i* = 1 eset:
 - (1) P minden szabálya $u_1Au_2 \rightarrow u_1vu_2$ alakú, ahol $u_1, u_2, v \in (N \cup T)^*, A \in N$, és $v \neq \varepsilon$,
 - (2) Egyetlen kivétel megengedünk: P tartalmaz**hat**ja az $S \rightarrow \varepsilon$ szabályt, de csak abban az esetben, ha S nem fordul elő P egyetlen szabályának jobb oldalán sem.

("Korlátozott ε szabály" vagy röviden "KES")

i = 2 eset: P minden szabálya A → v alakú, ahol A ∈ N és v ∈ (N ∪ T)*,

Legyen $G = \langle N, T, P, S \rangle$ egy grammatika. A G grammatika i-típusú (i = 0, 1, 2, 3), ha P szabályhalmazára teljesülnek a következők:

- i = 0 eset: nincs korlátozás,
- ▶ *i* = 1 eset:
 - (1) P minden szabálya $u_1Au_2 \rightarrow u_1vu_2$ alakú, ahol $u_1, u_2, v \in (N \cup T)^*, A \in N$, és $v \neq \varepsilon$,
 - (2) Egyetlen kivétel megengedünk: P tartalmazhatja az $S \rightarrow \varepsilon$ szabályt, de csak abban az esetben, ha S nem fordul elő P egyetlen szabályának jobb oldalán sem.
 - ("Korlátozott ε szabály" vagy röviden "KES")
- i = 2 eset: P minden szabálya A → v alakú, ahol A ∈ N és v ∈ (N ∪ T)*,
- ▶ i = 3 eset: P minden szabálya vagy $A \rightarrow uB$ vagy $A \rightarrow u$, alakú, ahol $A, B \in N$ és $u \in T^*$.

 $\mathcal{L}_i := \{L \mid \exists G \in \mathcal{G}_i, \text{ hogy } L = L(G)\}$ jelöli az *i*-típusú nyelvek nyelvosztályát, elemei az *i*-típusú nyelvek. (i = 0, 1, 2, 3).

 $\mathcal{L}_i := \{L \mid \exists G \in \mathcal{G}_i, \text{ hogy } L = L(G)\}$ jelöli az *i*-típusú nyelvek nyelvosztályát, elemei az *i*-típusú nyelvek. (i = 0, 1, 2, 3).

A 0,1,2,3-típusú grammatikákat rendre mondatszerkezetű, környezetfüggő, környezetfüggetlen, valamint reguláris grammatikának is mondjuk.

 $\mathcal{L}_i := \{L \mid \exists G \in \mathcal{G}_i, \text{ hogy } L = L(G)\}$ jelöli az *i*-típusú nyelvek nyelvosztályát, elemei az *i*-típusú nyelvek. (i = 0, 1, 2, 3).

A 0,1,2,3-típusú grammatikákat rendre mondatszerkezetű, környezetfüggő, környezetfüggetlen, valamint reguláris grammatikának is mondjuk.

A 0,1,2,3-típusú nyelvek osztályait rendre **rekurzíven felsorolható**, **környezetfüggő**, **környezetfüggetlen**, valamint **reguláris** nyelvosztálynak is mondjuk.

 $\mathcal{L}_i := \{L \mid \exists G \in \mathcal{G}_i, \text{ hogy } L = L(G)\}$ jelöli az *i*-típusú nyelvek nyelvosztályát, elemei az *i*-típusú nyelvek. (i = 0, 1, 2, 3).

A 0,1,2,3-típusú grammatikákat rendre mondatszerkezetű, környezetfüggő, környezetfüggetlen, valamint reguláris grammatikának is mondjuk.

A 0,1,2,3-típusú nyelvek osztályait rendre rekurzíven felsorolható, környezetfüggő, környezetfüggetlen, valamint reguláris nyelvosztálynak is mondjuk.

Chomsky nyelvhierarchia tétele

$$\mathcal{L}_3 \subset \mathcal{L}_2 \subset \mathcal{L}_1 \subset \mathcal{L}_0$$
.

 $\mathcal{L}_i := \{L \mid \exists G \in \mathcal{G}_i, \text{ hogy } L = L(G)\}$ jelöli az *i*-típusú nyelvek nyelvosztályát, elemei az *i*-típusú nyelvek. (i = 0, 1, 2, 3).

A 0,1,2,3-típusú grammatikákat rendre mondatszerkezetű, környezetfüggő, környezetfüggetlen, valamint reguláris grammatikának is mondjuk.

A 0,1,2,3-típusú nyelvek osztályait rendre **rekurzíven felsorolható**, **környezetfüggő**, **környezetfüggetlen**, valamint **reguláris** nyelvosztálynak is mondjuk.

Chomsky nyelvhierarchia tétele

$$\mathcal{L}_3 \subset \mathcal{L}_2 \subset \mathcal{L}_1 \subset \mathcal{L}_0.$$

Emlékeztető: Az \mathcal{L}_2 és az \mathcal{L}_1 nyelvosztályok közötti tartalmazási reláció nem adódik azonnal a grammatikaosztályok definíciójából. Tartalmazás valódisága: pumpálási (Bar Hillel) lemmákkal.

Formális nyelvek megadása

• (Generatív) grammatikákkal

• (Generatív) grammatikákkal

A grammatikák szintetizáló eszközök, egyetlen szimbólumból egy szabályrendszer segítségével szavakat lehet felépíteni. Azon szavak halmaza, melyeket fel lehet építeni egy nyelvet határoz meg, tehát a grammatika szabályrendszere meghatároz egy nyelvet.

• (Generatív) grammatikákkal

A grammatikák szintetizáló eszközök, egyetlen szimbólumból egy szabályrendszer segítségével szavakat lehet felépíteni. Azon szavak halmaza, melyeket fel lehet építeni egy nyelvet határoz meg, tehát a grammatika szabályrendszere meghatároz egy nyelvet.

Matematikai gépek, automaták segítségével

• (Generatív) grammatikákkal

A grammatikák szintetizáló eszközök, egyetlen szimbólumból egy szabályrendszer segítségével szavakat lehet felépíteni. Azon szavak halmaza, melyeket fel lehet építeni egy nyelvet határoz meg, tehát a grammatika szabályrendszere meghatároz egy nyelvet.

Matematikai gépek, automaták segítségével

Az automaták elemző, **analitikus** eszközök. Az automaták bemenete egy szó, kimenete egy bináris érték ("igen"/"nem"). Az automata működési szabályai szerint feldolgozza a szavakat. Csak bizonyos szavak esetén ad "igen" választ, ezen szavak egy nyelvet alkotnak, melyet az automata működési szabályai határoz meg.

• (Generatív) grammatikákkal

A grammatikák szintetizáló eszközök, egyetlen szimbólumból egy szabályrendszer segítségével szavakat lehet felépíteni. Azon szavak halmaza, melyeket fel lehet építeni egy nyelvet határoz meg, tehát a grammatika szabályrendszere meghatároz egy nyelvet.

Matematikai gépek, automaták segítségével

Az automaták elemző, **analitikus** eszközök. Az automaták bemenete egy szó, kimenete egy bináris érték ("igen"/"nem"). Az automata működési szabályai szerint feldolgozza a szavakat. Csak bizonyos szavak esetén ad "igen" választ, ezen szavak egy nyelvet alkotnak, melyet az automata működési szabályai határoz meg.

• egyéb módon: felsorolás, reguláris kifejezés, ...

• (Generatív) grammatikákkal

A grammatikák szintetizáló eszközök, egyetlen szimbólumból egy szabályrendszer segítségével szavakat lehet felépíteni. Azon szavak halmaza, melyeket fel lehet építeni egy nyelvet határoz meg, tehát a grammatika szabályrendszere meghatároz egy nyelvet.

Matematikai gépek, automaták segítségével

Az automaták elemző, **analitikus** eszközök. Az automaták bemenete egy szó, kimenete egy bináris érték ("igen"/"nem"). Az automata működési szabályai szerint feldolgozza a szavakat. Csak bizonyos szavak esetén ad "igen" választ, ezen szavak egy nyelvet alkotnak, melyet az automata működési szabályai határoz meg.

• egyéb módon: felsorolás, reguláris kifejezés, ...

Figyelem! Nem feltétlen lehet minden eszközzel minden nyelvet megadni. Például reguláris kifejezéssel kevesebb nyelvet lehet leírni mint egy általános grammatikával, de az se elég az összes {0,1} ábécé feletti nyelv leírásához.

 A véges automata a kezdőállapotából indul, az inputszó az inputszalagon helyezkedik el, az olvasófej pedig az inputszó legbaloldalibb szimbólumán áll.

- A véges automata a kezdőállapotából indul, az inputszó az inputszalagon helyezkedik el, az olvasófej pedig az inputszó legbaloldalibb szimbólumán áll.
- Az automata, miután elolvasott egy szimbólumot, az olvasófejet egy pozícióval jobbra mozgatja, majd állapotot vált az állapot-átmenet függvénye szerint.

- A véges automata a kezdőállapotából indul, az inputszó az inputszalagon helyezkedik el, az olvasófej pedig az inputszó legbaloldalibb szimbólumán áll.
- Az automata, miután elolvasott egy szimbólumot, az olvasófejet egy pozícióval jobbra mozgatja, majd állapotot vált az állapot-átmenet függvénye szerint.
- Amennyiben az automata még nem olvasta végig a teljes inputot és elfogadó állapotba ér akkor nem dönt még az elfogadásról/elutasításról, tovább működik. Ha végigolvasta az inputot, akkor megáll és aktuális állapota alapján válaszol, hogy elfogadja vagy elutasítja-e a bemenetet.

Tétel

Tétel

Az alábbi formális eszközök mindegyikével pontosan a 3-as típusú nyelvek írhatók le

3-as típusú grammatikák

Tétel

- 3-as típusú grammatikák
- 3-as normálformájú grammatikák

Tétel

- 3-as típusú grammatikák
- 3-as normálformájú grammatikák
- reguláris kifejezések

Tétel

- 3-as típusú grammatikák
- 3-as normálformájú grammatikák
- reguláris kifejezések
- determinisztikus véges automaták (az automata átmenetfüggvénye minden állatot-betű párhoz egyértelműen rendel új állapotot)

Tétel

- 3-as típusú grammatikák
- 3-as normálformájú grammatikák
- reguláris kifejezések
- determinisztikus véges automaták (az automata átmenetfüggvénye minden állatot-betű párhoz egyértelműen rendel új állapotot)
- nemdeterminisztikus véges automaták (az automata átmenetfüggvénye nem feltétlenül egyértelműen rendel az egyes állatot-betű párokhoz új állapotot, több kezdőállapot is megengedett)

A verem tartalma, csak a legfelső elem olvasható közvetlenül

A verem tartalma, csak a legfelső elem olvasható közvetlenül

 A veremautomata a véges automata általánosítása potenciálisan végtelen veremmel és véges kontrollal.

A verem tartalma, csak a legfelső elem olvasható közvetlenül

- A veremautomata a véges automata általánosítása potenciálisan végtelen veremmel és véges kontrollal.
- A verem esetében az új adat mindig a már meglévő veremtartalom tetejéhez adódik, kivétele fordított sorrendben történik.

A verem tartaima, csak a legfelso elem olvasnato kozvetlenul

- A veremautomata a véges automata általánosítása potenciálisan végtelen veremmel és véges kontrollal.
- A verem esetében az új adat mindig a már meglévő veremtartalom tetejéhez adódik, kivétele fordított sorrendben történik.
- alapértelmezetten nemdeterminisztikus

Jelölés: ha X egy halmaz, jelölje $\mathcal{P}_{\text{véges}}(X)$ az X véges részhalmazainak halmazát.

Jelölés: ha X egy halmaz, jelölje $\mathcal{P}_{\text{véges}}(X)$ az X véges részhalmazainak halmazát.

Definíció

A veremautomata egy $A = \langle Z, Q, T, \delta, z_0, q_0, F \rangle$, rendezett hetes, ahol

Z a veremszimbólumok véges halmaza (veremábécé),

Jelölés: ha X egy halmaz, jelölje $\mathcal{P}_{\text{véges}}(X)$ az X véges részhalmazainak halmazát.

Definíció

- Z a veremszimbólumok véges halmaza (veremábécé),
- Q az állapotok véges halmaza,

Jelölés: ha X egy halmaz, jelölje $\mathcal{P}_{\text{véges}}(X)$ az X véges részhalmazainak halmazát.

Definíció

- Z a veremszimbólumok véges halmaza (veremábécé),
- Q az állapotok véges halmaza,
- T az inputszimbólumok véges halmaza (inputábécé),

Jelölés: ha X egy halmaz, jelölje $\mathcal{P}_{\text{véges}}(X)$ az X véges részhalmazainak halmazát.

Definíció

- Z a veremszimbólumok véges halmaza (veremábécé),
- Q az állapotok véges halmaza,
- T az inputszimbólumok véges halmaza (inputábécé),
- $\delta: Z \times Q \times (T \cup \{\varepsilon\}) \to \mathcal{P}_{\text{v\'eges}}(Z^* \times Q)$, az ún. átmeneti függvény,

Jelölés: ha X egy halmaz, jelölje $\mathcal{P}_{\text{véges}}(X)$ az X véges részhalmazainak halmazát.

Definíció

- Z a veremszimbólumok véges halmaza (veremábécé),
- Q az állapotok véges halmaza,
- T az inputszimbólumok véges halmaza (inputábécé),
- $\delta: Z \times Q \times (T \cup \{\varepsilon\}) \to \mathcal{P}_{\text{v\'eges}}(Z^* \times Q)$, az ún. átmeneti függvény,
- ▶ $z_0 \in Z$ a kezdeti (kezdő) veremszimbólum,

Jelölés: ha X egy halmaz, jelölje $\mathcal{P}_{\text{véges}}(X)$ az X véges részhalmazainak halmazát.

Definíció

- Z a veremszimbólumok véges halmaza (veremábécé),
- Q az állapotok véges halmaza,
- T az inputszimbólumok véges halmaza (inputábécé),
- $\delta: Z \times Q \times (T \cup \{\varepsilon\}) \to \mathcal{P}_{\text{v\'eges}}(Z^* \times Q)$, az ún. átmeneti függvény,
- ▶ $z_0 \in Z$ a kezdeti (kezdő) veremszimbólum,
- $q_0 \in Q$ a kezdeti állapot (kezdőállapot),

Jelölés: ha X egy halmaz, jelölje $\mathcal{P}_{\text{véges}}(X)$ az X véges részhalmazainak halmazát.

Definíció

- Z a veremszimbólumok véges halmaza (veremábécé),
- Q az állapotok véges halmaza,
- T az inputszimbólumok véges halmaza (inputábécé),
- $\delta: Z \times Q \times (T \cup \{\varepsilon\}) \to \mathcal{P}_{\text{v\'eges}}(Z^* \times Q)$, az ún. átmeneti függvény,
- $z_0 \in Z$ a kezdeti (kezdő) veremszimbólum,
- $q_0 \in Q$ a kezdeti állapot (kezdőállapot),
- $F \subseteq Q$ az elfogadó állapotok vagy végállapotok halmaza.

 A verem tetején lévő szimbólum, az aktuális állapot és az inputszimbólum együttesen határozzák meg a következő átmenetet.

- A verem tetején lévő szimbólum, az aktuális állapot és az inputszimbólum együttesen határozzák meg a következő átmenetet.
- Minden lépésben mindenképpen kiveszünk egyetlen egy elemet a verem tetejéről és beteszünk helyette néhányat. (0,1,2,... darabot)

- A verem tetején lévő szimbólum, az aktuális állapot és az inputszimbólum együttesen határozzák meg a következő átmenetet.
- Minden lépésben mindenképpen kiveszünk egyetlen egy elemet a verem tetejéről és beteszünk helyette néhányat. $(0,1,2,\ldots$ darabot)
- ▶ Ha $\delta(z,q,\varepsilon)$ nem üres, akkor ún. ε -átmenet (ε -lépés, ε -mozgás) hajtható végre, ami lehetővé teszi, hogy a veremautomata anélkül változtassa meg az állapotát, hogy valamilyen szimbólumot olvasson az inputszalagról.

- A verem tetején lévő szimbólum, az aktuális állapot és az inputszimbólum együttesen határozzák meg a következő átmenetet.
- Minden lépésben mindenképpen kiveszünk egyetlen egy elemet a verem tetejéről és beteszünk helyette néhányat. $(0,1,2,\ldots$ darabot)
- ▶ Ha $\delta(z,q,\varepsilon)$ nem üres, akkor ún. ε -átmenet (ε -lépés, ε -mozgás) hajtható végre, ami lehetővé teszi, hogy a veremautomata anélkül változtassa meg az állapotát, hogy valamilyen szimbólumot olvasson az inputszalagról.
- ε-mozgásra lehetőség van már az első inputszimbólum elolvasása előtt is illetve még az utolsó inputszimbólum elolvasása után is.

Veremautomata konfigurációi

Definíció

A veremautomata **konfigurációja** alatt egy zqw alakú szót értünk, ahol $z \in Z^*$ a verem aktuális tartalma és $q \in Q$ az aktuális állapot és $w \in T^*$ az input még feldolgozatlan része.

Veremautomata konfigurációi

Definíció

A veremautomata **konfigurációja** alatt egy zqw alakú szót értünk, ahol $z \in Z^*$ a verem aktuális tartalma és $q \in Q$ az aktuális állapot és $w \in T^*$ az input még feldolgozatlan része.

z első betűje van a verem alján, míg utolsó betűje a verem tetején.

Veremautomata konfigurációi

Definíció

A veremautomata **konfigurációja** alatt egy zqw alakú szót értünk, ahol $z \in Z^*$ a verem aktuális tartalma és $q \in Q$ az aktuális állapot és $w \in T^*$ az input még feldolgozatlan része.

z első betűje van a verem alján, míg utolsó betűje a verem tetején.

Az input olvasófeje w első betűjén áll.

Veremautomata konfigurációi

Definíció

A veremautomata **konfigurációja** alatt egy zqw alakú szót értünk, ahol $z \in Z^*$ a verem aktuális tartalma és $q \in Q$ az aktuális állapot és $w \in T^*$ az input még feldolgozatlan része.

z első betűje van a verem alján, míg utolsó betűje a verem tetején.

Az input olvasófeje w első betűjén áll.

Így a q baloldalán lévő szimbólum van a verem tetején, míg a jobboldalán lévő szimbólum az input következő feldolgozandő betűje.

Veremautomata konfigurációi

Definíció

A veremautomata **konfigurációja** alatt egy zqw alakú szót értünk, ahol $z \in Z^*$ a verem aktuális tartalma és $q \in Q$ az aktuális állapot és $w \in T^*$ az input még feldolgozatlan része.

z első betűje van a verem alján, míg utolsó betűje a verem tetején.

Az input olvasófeje w első betűjén áll.

Így a q baloldalán lévő szimbólum van a verem tetején, míg a jobboldalán lévő szimbólum az input következő feldolgozandő betűje.

Definíció

Az $A = \langle Z, Q, T, \delta, z_0, q_0, F \rangle$ veremautomata $w \in T^*$ bemenethez tartozó **kezdőkonfigurációja** $z_0 q_0 w$.

Alapvető veremműveletek megvalósítása

Alapvető veremműveletek megvalósítása

Legyen $t \in T \cup \{\varepsilon\}$, $q, r \in Q$ és $z \in Z$

• $(\varepsilon,r)\in\delta(z,q,t)$: a z elemet kivehetjük a veremből (POP művelet)

Alapvető veremműveletek megvalósítása

- $(\varepsilon, r) \in \delta(z, q, t)$: a z elemet kivehetjük a veremből (POP művelet)
- $(z,r) \in \delta(z,q,t)$: a verem tartalma változatlan maradhat

Alapvető veremműveletek megvalósítása

- $(\varepsilon, r) \in \delta(z, q, t)$: a z elemet kivehetjük a veremből (POP művelet)
- $(z,r) \in \delta(z,q,t)$: a verem tartalma változatlan maradhat
- $(z',r) \in \delta(z,q,t)$: z-t lecserélhetjük z'-re a verem tetején $(z' \in Z)$

Alapvető veremműveletek megvalósítása

- $(\varepsilon, r) \in \delta(z, q, t)$: a z elemet kivehetjük a veremből (POP művelet)
- $(z,r) \in \delta(z,q,t)$: a verem tartalma változatlan maradhat
- $(z',r) \in \delta(z,q,t)$: z-t lecserélhetjük z'-re a verem tetején $(z' \in Z)$
- $(zz',r) \in \delta(z,q,t)$: z'-t a verem tetejére (z-re rá) tehetjük $(z' \in Z)$ (PUSH művelet)

Alapvető veremműveletek megvalósítása

- $(\varepsilon, r) \in \delta(z, q, t)$: a z elemet kivehetjük a veremből (POP művelet)
- $(z,r) \in \delta(z,q,t)$: a verem tartalma változatlan maradhat
- $(z',r) \in \delta(z,q,t)$: z-t lecserélhetjük z'-re a verem tetején $(z' \in Z)$
- $(zz',r) \in \delta(z,q,t)$: z'-t a verem tetejére (z-re rá) tehetjük $(z' \in Z)$ (PUSH művelet)
- ▶ Egyéb lehetőségek, például $(zz'z'',r) \in \delta(z,q,t)$: z'z''-t a verem tetejére tehetjük, z'' lesz a tetején $(z',z''\in Z)$.

Alapvető veremműveletek megvalósítása

- $(\varepsilon, r) \in \delta(z, q, t)$: a z elemet kivehetjük a veremből (POP művelet)
- $(z,r) \in \delta(z,q,t)$: a verem tartalma változatlan maradhat
- $(z',r) \in \delta(z,q,t)$: z-t lecserélhetjük z'-re a verem tetején $(z' \in Z)$
- $(zz',r) \in \delta(z,q,t)$: z'-t a verem tetejére (z-re rá) tehetjük $(z' \in Z)$ (PUSH művelet)
- ▶ Egyéb lehetőségek, például $(zz'z'',r) \in \delta(z,q,t)$: z'z''-t a verem tetejére tehetjük, z'' lesz a tetején $(z',z''\in Z)$.
- Általánosan $(w, r) \in \delta(z, q, t)$, ahol $w \in Z^*$ tetszőleges Z feletti szó. A w szó kerül z helyére és w utolsó betűje lesz a verem tetején.

Egylépéses redukció

Definíció

Az A veremautomata az $\alpha \in Z^*QT^*$ konfigurációt a $\beta \in Z^*QT^*$ konfigurációra **redukálja egy lépésben**, amelyet $\alpha \Rightarrow_A \beta$ -val jelölünk, ha létezik olyan $z \in Z, q, p \in Q, a \in T \cup \{\varepsilon\}, \quad r, u \in Z^*$ és $w \in T^*$, hogy $(u,p) \in \delta(z,q,a)$ és $\alpha = rzqaw$ és $\beta = rupw$ teljesül.

Egylépéses redukció

Definíció

Az A veremautomata az $\alpha \in Z^*QT^*$ konfigurációt a $\beta \in Z^*QT^*$ konfigurációra **redukálja egy lépésben**, amelyet $\alpha \Rightarrow_A \beta$ -val jelölünk, ha létezik olyan $z \in Z, q, p \in Q, a \in T \cup \{\varepsilon\}, \quad r, u \in Z^*$ és $w \in T^*$, hogy $(u,p) \in \delta(z,q,a)$ és $\alpha = rzqaw$ és $\beta = rupw$ teljesül.

Példák:

ha A-ban $\delta(c,q_1,a)=\{(dd,q_2),(\varepsilon,q_4)\}$ és $z_0cddcq_1ababba$ egy konfiguráció, akkor $z_0cddcq_1ababba\Rightarrow_A z_0cdddq_2babba$ és $z_0cddcq_1ababba\Rightarrow_A z_0cddq_4babba$ is teljesül,

Egylépéses redukció

Definíció

Az A veremautomata az $\alpha \in Z^*QT^*$ konfigurációt a $\beta \in Z^*QT^*$ konfigurációra **redukálja egy lépésben**, amelyet $\alpha \Rightarrow_A \beta$ -val jelölünk, ha létezik olyan $z \in Z, q, p \in Q, a \in T \cup \{\varepsilon\}, \quad r, u \in Z^*$ és $w \in T^*$, hogy $(u,p) \in \delta(z,q,a)$ és $\alpha = rzqaw$ és $\beta = rupw$ teljesül.

Példák:

- ha A-ban $\delta(c, q_1, a) = \{(dd, q_2), (\varepsilon, q_4)\}$ és $z_0cddcq_1ababba$ egy konfiguráció, akkor $z_0cddcq_1ababba \Rightarrow_A z_0cdddq_2babba$ és $z_0cddcq_1ababba \Rightarrow_A z_0cddq_4babba$ is teljesül,
- ▶ ha A-ban $\delta(c, q_3, \varepsilon) = \{(dd, q_2)\}$ és $z_0cddcq_3ababba$ egy konfiguráció, akkor $z_0cddcq_3ababba$ $\Rightarrow_{A} z_0cdddq_2ababba$

Egylépéses redukció

Definíció

Az A veremautomata az $\alpha \in Z^*QT^*$ konfigurációt a $\beta \in Z^*QT^*$ konfigurációra **redukálja egy lépésben**, amelyet $\alpha \Rightarrow_A \beta$ -val jelölünk, ha létezik olyan $z \in Z, q, p \in Q, a \in T \cup \{\varepsilon\}, \quad r, u \in Z^*$ és $w \in T^*$, hogy $(u,p) \in \delta(z,q,a)$ és $\alpha = rzqaw$ és $\beta = rupw$ teljesül.

Példák:

- ha A-ban $\delta(c, q_1, a) = \{(dd, q_2), (\varepsilon, q_4)\}$ és $z_0cddcq_1ababba$ egy konfiguráció, akkor $z_0cddcq_1ababba \Rightarrow_A z_0cdddq_2babba$ és $z_0cddcq_1ababba \Rightarrow_A z_0cddq_4babba$ is teljesül,
- ▶ ha A-ban $\delta(c,q_3,\varepsilon)=\{(dd,q_2)\}$ és $z_0cddcq_3ababba$ egy konfiguráció, akkor $z_0cddcq_3ababba$ $\Rightarrow_A z_0cddddq_2ababba$
- ▶ ha A-ban $\delta(c, q_5, \varepsilon) = \emptyset$ és $\delta(c, q_5, a) = \emptyset$, akkor nem létezik olyan C konfiguráció, melyre $z_0ccq_5aab \Rightarrow_{\Delta} C$

Többlépéses redukció és a felismert nyelv

Definíció

Az A veremautomata az $\alpha \in Z^*QT^*$ konfigurációt a $\beta \in Z^*QT^*$ konfigurációra **redukálja**, amelyet $\alpha \Rightarrow_A^* \beta$ -val jelölünk, ha vagy $\alpha = \beta$, vagy létezik olyan $\alpha_1, \ldots, \alpha_n$ szavakból álló véges sorozat, ahol $\alpha = \alpha_1, \beta = \alpha_n$ és $\alpha_i \Rightarrow_A \alpha_{i+1}, \ 1 \leqslant i \leqslant n-1$.

Többlépéses redukció és a felismert nyelv

Definíció

Az A veremautomata az $\alpha \in Z^*QT^*$ konfigurációt a $\beta \in Z^*QT^*$ konfigurációra **redukálja**, amelyet $\alpha \Rightarrow_A^* \beta$ -val jelölünk, ha vagy $\alpha = \beta$, vagy létezik olyan $\alpha_1, \ldots, \alpha_n$ szavakból álló véges sorozat, ahol $\alpha = \alpha_1, \beta = \alpha_n$ és $\alpha_i \Rightarrow_A \alpha_{i+1}, \ 1 \leqslant i \leqslant n-1$.

Tehát a \Rightarrow_A^* reláció a \Rightarrow_A reláció reflexív, tranzitív lezártja.

Többlépéses redukció és a felismert nyelv

Definíció

Az A veremautomata az $\alpha \in Z^*QT^*$ konfigurációt a $\beta \in Z^*QT^*$ konfigurációra **redukálja**, amelyet $\alpha \Rightarrow_A^* \beta$ -val jelölünk, ha vagy $\alpha = \beta$, vagy létezik olyan $\alpha_1, \ldots, \alpha_n$ szavakból álló véges sorozat, ahol $\alpha = \alpha_1, \beta = \alpha_n$ és $\alpha_i \Rightarrow_A \alpha_{i+1}, \ 1 \leqslant i \leqslant n-1$.

Tehát a \Rightarrow_A^* reláció a \Rightarrow_A reláció reflexív, tranzitív lezártja.

Példa: Ha $\delta(d,q_6,b)=\{(\varepsilon,q_5)\}$ és $\delta(d,q_5,\varepsilon)=\{(dd,q_2),(\varepsilon,q_4)\}$ akkor $\#cddq_6bab\Rightarrow_A\#cdq_5ab\Rightarrow_A\#cddq_2ab$

Többlépéses redukció és a felismert nyelv

Definíció

Az A veremautomata az $\alpha \in Z^*QT^*$ konfigurációt a $\beta \in Z^*QT^*$ konfigurációra **redukálja**, amelyet $\alpha \Rightarrow_A^* \beta$ -val jelölünk, ha vagy $\alpha = \beta$, vagy létezik olyan $\alpha_1, \ldots, \alpha_n$ szavakból álló véges sorozat, ahol $\alpha = \alpha_1, \beta = \alpha_n$ és $\alpha_i \Rightarrow_A \alpha_{i+1}, \ 1 \leqslant i \leqslant n-1$.

Tehát a \Rightarrow_A^* reláció a \Rightarrow_A reláció reflexív, tranzitív lezártja.

Példa: Ha $\delta(d,q_6,b)=\{(\varepsilon,q_5)\}$ és $\delta(d,q_5,\varepsilon)=\{(dd,q_2),(\varepsilon,q_4)\}$ akkor $\#cddq_6bab\Rightarrow_A\#cdq_5ab\Rightarrow_A\#cdq_2ab$ és $\#cddq_6bab\Rightarrow_A\#cdq_5ab\Rightarrow_A\#cq_4ab$. Tehát $\#cddq_6bab\Rightarrow_A\#cddq_2ab$ és $\#cddq_6bab\Rightarrow_A\#cq_4ab$.

Többlépéses redukció és a felismert nyelv

Definíció

Az A veremautomata az $\alpha \in Z^*QT^*$ konfigurációt a $\beta \in Z^*QT^*$ konfigurációra **redukálja**, amelyet $\alpha \Rightarrow_A^* \beta$ -val jelölünk, ha vagy $\alpha = \beta$, vagy létezik olyan $\alpha_1, \ldots, \alpha_n$ szavakból álló véges sorozat, ahol $\alpha = \alpha_1, \beta = \alpha_n$ és $\alpha_i \Rightarrow_A \alpha_{i+1}, \ 1 \leqslant i \leqslant n-1$.

Tehát a \Rightarrow_A^* reláció a \Rightarrow_A reláció reflexív, tranzitív lezártja.

Példa: Ha $\delta(d, q_6, b) = \{(\varepsilon, q_5)\}$ és $\delta(d, q_5, \varepsilon) = \{(dd, q_2), (\varepsilon, q_4)\}$ akkor $\#cddq_6bab \Rightarrow_A \#cdq_5ab \Rightarrow_A \#cddq_2ab$ és $\#cddq_6bab \Rightarrow_A \#cdq_5ab \Rightarrow_A \#cq_4ab$. Tehát $\#cddq_6bab \Rightarrow_A^* \#cddq_2ab$ és $\#cddq_6bab \Rightarrow_A^* \#cq_4ab$.

Definíció

Az A veremautomata által elfogadó állapottal (végállapottal) elfogadott nyelv

$$L(A) = \{ w \in T^* \mid z_0 q_0 w \Rightarrow^*_{\Delta} up, \text{ ahol } u \in Z^*, p \in F \}.$$

Determinisztikus veremautomata

Definíció

Az $A = \langle Z, Q, T, \delta, z_0, q_0, F \rangle$ veremautomatát **determinisztikusnak** nevezzük, ha minden $(z, q, a) \in Z \times Q \times T$ esetén $|\delta(z, q, a)| + |\delta(z, q, \varepsilon)| = 1$.

Determinisztikus veremautomata

Definíció

Az $A = \langle Z, Q, T, \delta, z_0, q_0, F \rangle$ veremautomatát **determinisztikusnak** nevezzük, ha minden $(z, q, a) \in Z \times Q \times T$ esetén $|\delta(z, q, a)| + |\delta(z, q, \varepsilon)| = 1$.

Tehát minden $q \in Q$ és $z \in Z$ esetén

• vagy $\delta(z,q,a)$ pontosan egy elemet tartalmaz minden $a\in T$ inputszimbólumra és $\delta(z,q,\varepsilon)=\varnothing$,

Determinisztikus veremautomata

Definíció

Az $A = \langle Z, Q, T, \delta, z_0, q_0, F \rangle$ veremautomatát **determinisztikusnak** nevezzük, ha minden $(z, q, a) \in Z \times Q \times T$ esetén $|\delta(z, q, a)| + |\delta(z, q, \varepsilon)| = 1$.

Tehát minden $q \in Q$ és $z \in Z$ esetén

- vagy $\delta(z,q,a)$ pontosan egy elemet tartalmaz minden $a\in T$ inputszimbólumra és $\delta(z,q,\varepsilon)=\varnothing$,
- vagy $\delta(z, q, \varepsilon)$ pontosan egy elemet tartalmaz és $\delta(z, q, a) = \emptyset$ minden $a \in \mathcal{T}$ inputszimbólumra.

Determinisztikus veremautomata

Definíció

Az $A = \langle Z, Q, T, \delta, z_0, q_0, F \rangle$ veremautomatát **determinisztikusnak** nevezzük, ha minden $(z, q, a) \in Z \times Q \times T$ esetén $|\delta(z, q, a)| + |\delta(z, q, \varepsilon)| = 1$.

Tehát minden $q \in Q$ és $z \in Z$ esetén

- vagy $\delta(z,q,a)$ pontosan egy elemet tartalmaz minden $a\in T$ inputszimbólumra és $\delta(z,q,\varepsilon)=\varnothing$,
- vagy $\delta(z, q, \varepsilon)$ pontosan egy elemet tartalmaz és $\delta(z, q, a) = \emptyset$ minden $a \in \mathcal{T}$ inputszimbólumra.

Determinisztikus veremautomata

Definíció

Az $A = \langle Z, Q, T, \delta, z_0, q_0, F \rangle$ veremautomatát **determinisztikusnak** nevezzük, ha minden $(z, q, a) \in Z \times Q \times T$ esetén $|\delta(z, q, a)| + |\delta(z, q, \varepsilon)| = 1$.

Tehát minden $q \in Q$ és $z \in Z$ esetén

- vagy $\delta(z,q,a)$ pontosan egy elemet tartalmaz minden $a\in T$ inputszimbólumra és $\delta(z,q,\varepsilon)=\varnothing$,
- vagy $\delta(z, q, \varepsilon)$ pontosan egy elemet tartalmaz és $\delta(z, q, a) = \emptyset$ minden $a \in \mathcal{T}$ inputszimbólumra.

Észrevétel: Ha minden $(z,q,a) \in Z \times Q \times T$ esetén $|\delta(z,q,a)| + |\delta(z,q,\varepsilon)| \le 1$ akkor a veremautomata a felismert nyelv módosulása nélkül kiegészíthető determinisztikus veremautomatává. Így tágabb értelemben az ezt a feltételt teljesítő veremautomatákat is tekinthetjük determinisztikus veremautomatának.

Alternatív reprezentációk

Átírási szabályokkal:

A δ leképezést szabályok formájában is megadhatjuk. Az így nyert szabályhalmazt M_δ -val jelöljük. Tehát ezzel az alternatív jelöléssel:

$$zqa \rightarrow up :\in M_{\delta} \iff (u,p) \in \delta(z,q,a),$$

 $zq \rightarrow up :\in M_{\delta} \iff (u,p) \in \delta(z,q,\varepsilon).$
 $(p,q \in Q, a \in T, z \in Z, u \in Z^*)$

Alternatív reprezentációk

Átírási szabályokkal:

A δ leképezést szabályok formájában is megadhatjuk. Az így nyert szabályhalmazt M_δ -val jelöljük. Tehát ezzel az alternatív jelöléssel:

$$zqa \rightarrow up :\in M_{\delta} \iff (u,p) \in \delta(z,q,a),$$

 $zq \rightarrow up :\in M_{\delta} \iff (u,p) \in \delta(z,q,\varepsilon).$
 $(p,q \in Q, a \in T, z \in Z, u \in Z^*)$

Átmenetdiagrammal:

$$p,q\in Q, a\in T\cup \{\varepsilon\}, z\in Z, u\in Z^*$$
 esetén:

A végállapotokat duplán karikázzuk. A kezdőállapotot ightarrow jelöli.

1. Példa: Legyen $L_1 = \{wcw^{-1} \mid w \in \{a, b\}^+\}$. Készítsünk egy A veremautomatát, melyre $L(A) = L_1$.

1. Példa: Legyen $L_1 = \{wcw^{-1} \mid w \in \{a, b\}^+\}$. Készítsünk egy A veremautomatát, melyre $L(A) = L_1$.

$$A = \langle \{q_0, q_1, q_2, q_3\}, \{a, b, c\}, \{\#, a, b\}, \delta, q_0, \#, \{q_3\} \rangle, \text{ ahol:}$$

$$(\#t, q_1) \in \delta(\#, q_0, t) \quad \forall t \in \{a, b\}$$

$$(zt, q_1) \in \delta(z, q_1, t) \quad \forall z, t \in \{a, b\}$$

$$(z, q_2) \in \delta(z, q_1, c) \quad \forall z \in \{a, b\}$$

$$(\varepsilon, q_2) \in \delta(t, q_2, t) \quad \forall t \in \{a, b\}$$

$$(\#, q_3) \in \delta(\#, q_2, \varepsilon)$$

1. Példa: Legyen $L_1 = \{wcw^{-1} \mid w \in \{a, b\}^+\}$. Készítsünk egy A veremautomatát, melyre $L(A) = L_1$.

$$\begin{split} A &= \big\langle \{q_0, q_1, q_2, q_3\}, \{a, b, c\}, \{\#, a, b\}, \delta, q_0, \#, \{q_3\} \big\rangle, \text{ ahol:} \\ &(\#t, q_1) \in \delta(\#, q_0, t) \quad \forall t \in \{a, b\} \\ &(zt, q_1) \in \delta(z, q_1, t) \quad \forall z, t \in \{a, b\} \\ &(z, q_2) \in \delta(z, q_1, c) \quad \forall z \in \{a, b\} \\ &(\varepsilon, q_2) \in \delta(t, q_2, t) \quad \forall t \in \{a, b\} \\ &(\#, q_3) \in \delta(\#, q_2, \varepsilon) \end{split}$$

2. Példa: Legyen $L_2 = \{ww^{-1} \mid w \in \{a, b\}^+\}$. Készítsünk egy A veremautomatát, melyre $L(A) = L_2$.

$$A = \langle \{q_0, q_1, q_2, q_3\}, \{a, b\}, \{\#, a, b\}, \delta, q_0, \#, \{q_3\} \rangle, \text{ ahol:}$$

$$(\#t, q_1) \in \delta(\#, q_0, t) \quad \forall t \in \{a, b\}$$

$$(zt, q_1) \in \delta(z, q_1, t) \quad \forall z, t \in \{a, b\}$$

$$(z, q_2) \in \delta(z, q_1, \varepsilon) \quad \forall z \in \{a, b\}$$

$$(\varepsilon, q_2) \in \delta(t, q_2, t) \quad \forall t \in \{a, b\}$$

$$(\#, q_3) \in \delta(\#, q_2, \varepsilon)$$

2. Példa: Legyen $L_2 = \{ww^{-1} \mid w \in \{a, b\}^+\}$. Készítsünk egy A veremautomatát, melyre $L(A) = L_2$.

$$A = \langle \{q_0, q_1, q_2, q_3\}, \{a, b\}, \{\#, a, b\}, \delta, q_0, \#, \{q_3\} \rangle, \text{ ahol:}$$

$$(\#t, q_1) \in \delta(\#, q_0, t) \quad \forall t \in \{a, b\}$$

$$(zt, q_1) \in \delta(z, q_1, t) \quad \forall z, t \in \{a, b\}$$

$$(z, q_2) \in \delta(z, q_1, \varepsilon) \quad \forall z \in \{a, b\}$$

$$(\varepsilon, q_2) \in \delta(t, q_2, t) \quad \forall t \in \{a, b\}$$

$$(\#, q_3) \in \delta(\#, q_2, \varepsilon)$$

Üres veremmel elfogadott nyelv

Definíció

Az A veremautomata által üres veremmel elfogadott nyelv

$$N(A) = \{ w \in T^* \mid z_0 q_0 w \Rightarrow_A^* p, \text{ ahol } p \in Q \}.$$

Üres veremmel elfogadott nyelv

Definíció

Az A veremautomata által **üres veremmel elfogadott nyelv** $N(A) = \{ w \in T^* \mid z_0 q_0 w \Rightarrow_A^* p, \text{ ahol } p \in Q \}.$

Megjegyzés:

Vegyük észre, hogy ha a verem üres, akkor az automata működése blokkolódik, mivel nincs átmenet definiálva üres verem esetére. (lásd δ definíciója).

Üres veremmel elfogadott nyelv

Definíció

Az A veremautomata által **üres veremmel elfogadott nyelv** $N(A) = \{ w \in T^* \mid z_0 q_0 w \Rightarrow_A^* p$, ahol $p \in Q \}$.

Megjegyzés:

Vegyük észre, hogy ha a verem üres, akkor az automata működése blokkolódik, mivel nincs átmenet definiálva üres verem esetére. (lásd δ definíciója).

Így a verem az input teljes feldolgozása után, az utolsó átmenettel kell üressé váljon.

Üres veremmel elfogadott nyelv

Definíció

Az A veremautomata által **üres veremmel elfogadott nyelv** $N(A) = \{ w \in T^* \mid z_0 q_0 w \Rightarrow_A^* p, \text{ ahol } p \in Q \}.$

Megjegyzés:

Vegyük észre, hogy ha a verem üres, akkor az automata működése blokkolódik, mivel nincs átmenet definiálva üres verem esetére. (lásd δ definíciója).

Így a verem az input teljes feldolgozása után, az utolsó átmenettel kell üressé váljon.

Szintén a blokkolás elkerülése végett definiáltuk úgy a kezdőkonfigurációt, hogy a veremábécé egy eleme (z_0) már eleve a veremben van.

Üres veremmel elfogadott nyelv

Definíció

Az A veremautomata által **üres veremmel elfogadott nyelv** $N(A) = \{ w \in T^* \mid z_0 q_0 w \Rightarrow_A^* p$, ahol $p \in Q \}$.

Megjegyzés:

Vegyük észre, hogy ha a verem üres, akkor az automata működése blokkolódik, mivel nincs átmenet definiálva üres verem esetére. (lásd δ definíciója).

Így a verem az input teljes feldolgozása után, az utolsó átmenettel kell üressé váljon.

Szintén a blokkolás elkerülése végett definiáltuk úgy a kezdőkonfigurációt, hogy a veremábécé egy eleme (z_0) már eleve a veremben van.

Megjegyzés: Vegyük észre, hogy az elfogadó állapotok halmaza irreleváns N(A) szempontjából.

Üres veremmel elfogadott nyelv

Példa: Az alábbi $A = \langle \{\$, a\} \{q_0, q_1\}, \{a, b\}, \delta, \$, q_0, \{\} \rangle$ veremautomata esetén $N(A) = \{a^n b^n \mid n \geqslant 1\}$, azaz ezt nyelvet ismeri fel üres veremmel.

Üres veremmel elfogadott nyelv

Példa: Az alábbi $A = \langle \{\$, a\} \{q_0, q_1\}, \{a, b\}, \delta, \$, q_0, \{\} \rangle$ veremautomata esetén $N(A) = \{a^n b^n \mid n \geqslant 1\}$, azaz ezt nyelvet ismeri fel üres veremmel.

```
M_\delta :
```

```
$q_0 a \rightarrow $aq_0
aq_0 a \rightarrow aaq_0
aq_0 b \rightarrow q_1
aq_1 b \rightarrow q_1
$q_1 \rightarrow q_1.
```

Üres veremmel elfogadott nyelv

Példa: Az alábbi $A = \langle \{\$, a\} \{q_0, q_1\}, \{a, b\}, \delta, \$, q_0, \{\} \rangle$ veremautomata esetén $N(A) = \{a^n b^n \mid n \geqslant 1\}$, azaz ezt nyelvet ismeri fel üres veremmel.

 M_δ :

$$$q_0a \rightarrow $aq_0$$

 $aq_0a \rightarrow aaq_0$
 $aq_0b \rightarrow q_1$
 $aq_1b \rightarrow q_1$
 $$q_1 \rightarrow q_1$.

A determinisztikus, a^2b^3 -re:

Üres veremmel elfogadott nyelv

Példa: Az alábbi $A = \langle \{\$, a\} \{q_0, q_1\}, \{a, b\}, \delta, \$, q_0, \{\} \rangle$ veremautomata esetén $N(A) = \{a^n b^n \mid n \geqslant 1\}$, azaz ezt nyelvet ismeri fel üres veremmel.

 M_δ :

$$$q_0a \rightarrow $aq_0$$

 $aq_0a \rightarrow aaq_0$
 $aq_0b \rightarrow q_1$
 $aq_1b \rightarrow q_1$
 $$q_1 \rightarrow q_1$

A determinisztikus, a^2b^3 -re:

 $q_0 = bb \Rightarrow q_0 = bb \Rightarrow q_1 = q_1 =$

Üres veremmel elfogadott nyelv

Példa: Az alábbi $A = \langle \{\$, a\} \{q_0, q_1\}, \{a, b\}, \delta, \$, q_0, \{\} \rangle$ veremautomata esetén $N(A) = \{a^n b^n \mid n \geqslant 1\}$, azaz ezt nyelvet ismeri fel üres veremmel.

 M_δ :

$$$q_0a \rightarrow $aq_0$$
 $aq_0a \rightarrow aaq_0$
 $aq_0b \rightarrow q_1$
 $aq_1b \rightarrow q_1$
 $$q_1 \rightarrow q_1$

A determinisztikus, a^2b^3 -re:

$$q_0 = p_0 = p_0$$

A elutasítja aabbb-t, mivel hiába lett üres a verem, még volt hátra az inputból.

Veremautomaták és a 2-es típusú nyelvek

Tétel

Bármely L nyelvre ekivalensek a következő állítások

L környezetfüggetlen, azaz környezetfüggetlen (2-es típusú) grammatikával generálható

Veremautomaták és a 2-es típusú nyelvek

Tétel

Bármely L nyelvre ekivalensek a következő állítások

- L környezetfüggetlen, azaz környezetfüggetlen (2-es típusú) grammatikával generálható
- L (nemdeterminisztikus) veremautomatával végállapottal felismerhető

Veremautomaták és a 2-es típusú nyelvek

Tétel

Bármely L nyelvre ekivalensek a következő állítások

- L környezetfüggetlen, azaz környezetfüggetlen (2-es típusú) grammatikával generálható
- L (nemdeterminisztikus) veremautomatával végállapottal felismerhető
- L (nemdeterminisztikus) veremautomatával üres veremmel felismerhető

Veremautomaták és a 2-es típusú nyelvek

Tétel

Bármely L nyelvre ekivalensek a következő állítások

- L környezetfüggetlen, azaz környezetfüggetlen (2-es típusú) grammatikával generálható
- L (nemdeterminisztikus) veremautomatával végállapottal felismerhető
- L (nemdeterminisztikus) veremautomatával üres veremmel felismerhető

Tétel

Minden reguláris (3-as típusú) nyelv felismerhető determinisztikus veremautomatával, de létezik olyan (2-es típusú) környezetfüggetlen nyelv, ami nem ismerhető fel determinisztikus veremautomatával.

Definíció

Definíció

•
$$S \rightarrow \varepsilon$$

Definíció

- \triangleright $S \rightarrow \varepsilon$
- ▶ $A \rightarrow BC$, $A, B, C \in N$; továbbá $B, C \neq S$, ha $S \rightarrow \varepsilon \in P$.

Definíció

- $S \rightarrow \varepsilon$
- ▶ $A \rightarrow BC$, $A, B, C \in N$; továbbá $B, C \neq S$, ha $S \rightarrow \varepsilon \in P$.
- $A \rightarrow a, A \in N, a \in T.$

Definíció

Egy $G = \langle N, T, P, S \rangle$ grammatika Chomsky normálformájú, ha minden P-beli szabály alakja a következők valamelyike:

- $S \rightarrow \varepsilon$
- ▶ $A \rightarrow BC$, $A, B, C \in N$; továbbá $B, C \neq S$, ha $S \rightarrow \varepsilon \in P$.
- $A \rightarrow a, A \in N, a \in T.$

Tétel

Minden G környezetfüggetlen grammatikához létezik vele ekvivalens Chomsky normálformájú grammatika.

Definíció

Egy $G = \langle N, T, P, S \rangle$ grammatika **Chomsky normálformájú**, ha minden P-beli szabály alakja a következők valamelyike:

- $S \rightarrow \varepsilon$
- ▶ $A \rightarrow BC$, $A, B, C \in N$; továbbá $B, C \neq S$, ha $S \rightarrow \varepsilon \in P$.
- $A \rightarrow a, A \in N, a \in T.$

Tétel

Minden G környezetfüggetlen grammatikához létezik vele ekvivalens Chomsky normálformájú grammatika.

Bizonyítás: Több lépésben átalakítjuk *G*-t a megfelelő alakra ügyelve arra, hogy az egyes átalakítási lépések után kapott grammatika *G*-vel ekvivalens legyen.

1. lépés Új kezdőszimbólum bevezetése

Vezessünk be egy új S_0 kezdőszimbólumot és adjuk hozzá az $S_0 \to S$ szabályt P-hez. A generált nyelv nyilván nem változik, de a kezdőszimbólum már nem fordul elő szabály jobboldalán.

1. lépés Új kezdőszimbólum bevezetése

Vezessünk be egy új S_0 kezdőszimbólumot és adjuk hozzá az $S_0 \to S$ szabályt P-hez. A generált nyelv nyilván nem változik, de a kezdőszimbólum már nem fordul elő szabály jobboldalán.

Kivétel: Amennyiben S nem fordul elő szabály jobboldalán, ez a lépés kihagyható.

1. lépés Új kezdőszimbólum bevezetése

Vezessünk be egy új S_0 kezdőszimbólumot és adjuk hozzá az $S_0 \to S$ szabályt P-hez. A generált nyelv nyilván nem változik, de a kezdőszimbólum már nem fordul elő szabály jobboldalán.

Kivétel: Amennyiben S nem fordul elő szabály jobboldalán, ez a lépés kihagyható.

Megjegyzés: A bizonyítás további része feltételezi, hogy *S*-sel van jelölve a kezdőszimbólum, ez a nemterminálisok átnevezésével biztosítható.

2. lépés Álterminálisok bevezetése

Minden $a \in T$ terminálisra végezzük el a következőt. Legyen \bar{a} egy új nemterminális szimbólum és helyettesítsük minden P-beli szabály jobboldalán a előfordulásait \bar{a} -val. Adjuk hozzá ezen kívül P-hez a $\bar{a} \to a$ új szabályt.

2. lépés Álterminálisok bevezetése

Minden $a \in T$ terminálisra végezzük el a következőt. Legyen \bar{a} egy új nemterminális szimbólum és helyettesítsük minden P-beli szabály jobboldalán a előfordulásait \bar{a} -val. Adjuk hozzá ezen kívül P-hez a $\bar{a} \to a$ új szabályt.

Az így kapott grammatika az eredetivel ekvialens (ezt az előző félévben már meggondoltuk a zártsági tétel bizonyításánál).

2. lépés Álterminálisok bevezetése

Minden $a \in T$ terminálisra végezzük el a következőt. Legyen \bar{a} egy új nemterminális szimbólum és helyettesítsük minden P-beli szabály jobboldalán a előfordulásait \bar{a} -val. Adjuk hozzá ezen kívül P-hez a $\bar{a} \to a$ új szabályt.

Az így kapott grammatika az eredetivel ekvialens (ezt az előző félévben már meggondoltuk a zártsági tétel bizonyításánál).

Kivétel: Amennyiben $A \rightarrow a \in P$, akkor a-nak ezt az előfordulását nem szükséges átírni, hiszen ez a szabály már kellő alakú.

3. lépés Hosszredukció

Ekkor minden $X \to Y_1 Y_2 \cdots Y_k, \ k \geqslant 3$ alakú szabályt helyettesítünk egy

$$\{X \to Y_1 Z_1, Z_1 \to Y_2 Z_2, \dots, Z_{k-2} \to Y_{k-1} Y_k\}$$

szabályhalmazzal, ahol Z_1, \ldots, Z_{k-2} új, a szabályhoz bevezetett nemterminálisok.

3. lépés Hosszredukció

Ekkor minden $X \to Y_1 Y_2 \cdots Y_k, \ k \geqslant 3$ alakú szabályt helyettesítünk egy

$$\{X \to Y_1 Z_1, Z_1 \to Y_2 Z_2, \dots, Z_{k-2} \to Y_{k-1} Y_k\}$$

szabályhalmazzal, ahol Z_1, \ldots, Z_{k-2} új, a szabályhoz bevezetett nemterminálisok.

Nyilván minden $X \to Y_1 Y_2 \cdots Y_k$ szabályalkalmazás helyettesíthető a fenti szabályokkal.

3. lépés Hosszredukció

Ekkor minden $X \to Y_1 Y_2 \cdots Y_k, \ k \geqslant 3$ alakú szabályt helyettesítünk egy

$$\{X \to Y_1 Z_1, Z_1 \to Y_2 Z_2, \dots, Z_{k-2} \to Y_{k-1} Y_k\}$$

szabályhalmazzal, ahol Z_1, \ldots, Z_{k-2} új, a szabályhoz bevezetett nemterminálisok.

Nyilván minden $X \to Y_1 Y_2 \cdots Y_k$ szabályalkalmazás helyettesíthető a fenti szabályokkal. Másrészt minden, valamelyik Z_i -t tartalmazó levezetés az átalakított grammatikában Z_1, \ldots, Z_{k-2} sorrendben minden Z_i -t be kell hozzon majd át kell írjon.

3. lépés Hosszredukció

Ekkor minden $X \to Y_1 Y_2 \cdots Y_k, \ k \geqslant 3$ alakú szabályt helyettesítünk egy

$${X \to Y_1 Z_1, Z_1 \to Y_2 Z_2, \dots, Z_{k-2} \to Y_{k-1} Y_k}$$

szabályhalmazzal, ahol Z_1, \ldots, Z_{k-2} új, a szabályhoz bevezetett nemterminálisok.

Nyilván minden $X \to Y_1 Y_2 \cdots Y_k$ szabályalkalmazás helyettesíthető a fenti szabályokkal. Másrészt minden, valamelyik Z_i -t tartalmazó levezetés az átalakított grammatikában Z_1, \ldots, Z_{k-2} sorrendben minden Z_i -t be kell hozzon majd át kell írjon. Mivel G környezetfüggetlen, így amennyiben a Z_i -t behozó lépést nem közvetlenül követi a Z_i -t átíró lépés, akkor az átíró lépés a levezetésben előrehozható. Tehát feltehető, hogy a Z_i -k a fenti sorrendben, közvetlenül egymást követő lépésekben jönnek be majd íródnak át vagyis az $X \to Y_1 Y_2 \cdots Y_k$ szabály alkalmazását szimulálják.

4. lépés ε -mentesítés

Definiáljuk az $U_i \subseteq N$ halmazokat a következőképpen:

$$U_1:=\{X\,|\,X\to\varepsilon\in P\},$$

4. lépés ε -mentesítés

Definiáljuk az $U_i \subseteq N$ halmazokat a következőképpen:

$$U_1 := \{ X \mid X \to \varepsilon \in P \},\$$

$$U_{i+1} := U_i \cup \{X \mid X \to u \in P \text{ \'es } u \in U_i^*\}. \quad i \geqslant 1$$

4. lépés ε -mentesítés

Definiáljuk az $U_i \subseteq N$ halmazokat a következőképpen:

$$U_1 := \{ X \mid X \to \varepsilon \in P \},$$

$$U_{i+1} := U_i \cup \{X \mid X \to u \in P \text{ és } u \in U_i^*\}. \quad i \geqslant 1$$

Nyilvánvaló, hogy az U_i sorozat, $i=1,2,\ldots$ a tartalmazásra nézve hierarchiát alkot és van olyan k index, hogy $U_k=U_{k+1}$ és így $U_\ell=U_k$ minden $\ell\geqslant k$ -ra.

4. lépés ε -mentesítés

Definiáljuk az $U_i \subseteq N$ halmazokat a következőképpen:

$$U_1 := \{ X \mid X \to \varepsilon \in P \},$$

$$U_{i+1} := U_i \cup \{X \mid X \to u \in P \text{ és } u \in U_i^*\}. \quad i \geqslant 1$$

Nyilvánvaló, hogy az U_i sorozat, $i=1,2,\ldots$ a tartalmazásra nézve hierarchiát alkot és van olyan k index, hogy $U_k=U_{k+1}$ és így $U_\ell=U_k$ minden $\ell\geqslant k$ -ra.

$$U := U_k$$
.

4. lépés ε -mentesítés

Definiáljuk az $U_i \subseteq N$ halmazokat a következőképpen:

$$U_1 := \{ X \mid X \to \varepsilon \in P \},$$

$$U_{i+1} := U_i \cup \{X \mid X \to u \in P \text{ \'es } u \in U_i^*\}. \quad i \geqslant 1$$

Nyilvánvaló, hogy az U_i sorozat, $i=1,2,\ldots$ a tartalmazásra nézve hierarchiát alkot és van olyan k index, hogy $U_k=U_{k+1}$ és így $U_\ell=U_k$ minden $\ell\geqslant k$ -ra.

 $U := U_k$.

Állítás: $X \Rightarrow_G^* \varepsilon \iff X \in U$.

4. lépés ε -mentesítés

Definiáljuk az $U_i \subseteq N$ halmazokat a következőképpen:

$$U_1 := \{ X \mid X \to \varepsilon \in P \},$$

$$U_{i+1} := U_i \cup \{X \mid X \to u \in P \text{ \'es } u \in U_i^*\}, \quad i \geqslant 1$$

Nyilvánvaló, hogy az U_i sorozat, $i=1,2,\ldots$ a tartalmazásra nézve hierarchiát alkot és van olyan k index, hogy $U_k=U_{k+1}$ és így $U_\ell=U_k$ minden $\ell\geqslant k$ -ra.

 $U := U_k$.

Állítás: $X \Rightarrow_G^* \varepsilon \iff X \in U$.

Az állítás következménye: $\varepsilon \in L(G) \iff S \in U$.

Az állítás bizonyítása:

Az állítás bizonyítása:

(\Leftarrow) Minden $1 \leqslant i \leqslant k$ -ra (ahol k az első index, melyre $U_k = U_{k+1}$) és minden $X \in U_i$ -ra $X \Rightarrow_G^* \varepsilon$.

Az állítás bizonyítása:

(\Leftarrow) Minden $1 \leqslant i \leqslant k$ -ra (ahol k az első index, melyre $U_k = U_{k+1}$) és minden $X \in U_i$ -ra $X \Rightarrow_G^* \varepsilon$.

Ez *i*-re vonatkozó teljes indukcióval könnyen látható. i=1-re az állítás U_1 definíciójából azonnal következik.

Az állítás bizonyítása:

(\Leftarrow) Minden $1 \leqslant i \leqslant k$ -ra (ahol k az első index, melyre $U_k = U_{k+1}$) és minden $X \in U_i$ -ra $X \Rightarrow_G^* \varepsilon$.

Ez i-re vonatkozó teljes indukcióval könnyen látható. i=1-re az állítás U_1 definíciójából azonnal következik.

Tegyük fel, hogy i-re teljesül. Ha $X \in U_{i+1}$, akkor van olyan $u \in U_i^*$, melyre $X \to u \in P$. Legyen $u = Z_1 \cdots Z_n$, ahol $Z_r \in U_i$ $(1 \le r \le n)$.

Az állítás bizonyítása:

(\Leftarrow) Minden $1 \leqslant i \leqslant k$ -ra (ahol k az első index, melyre $U_k = U_{k+1}$) és minden $X \in U_i$ -ra $X \Rightarrow_G^* \varepsilon$.

Ez i-re vonatkozó teljes indukcióval könnyen látható. i=1-re az állítás U_1 definíciójából azonnal következik.

Tegyük fel, hogy i-re teljesül. Ha $X \in U_{i+1}$, akkor van olyan $u \in U_i^*$, melyre $X \to u \in P$. Legyen $u = Z_1 \cdots Z_n$, ahol $Z_r \in U_i$ $(1 \le r \le n)$.

Ekkor az indukciós feltevés miatt $Z_i \Rightarrow_G^* \varepsilon \ (1 \leqslant r \leqslant n)$. Tehát $X \Rightarrow_G Z_1 \cdots Z_n \Rightarrow_G^* \varepsilon$.

Az állítás bizonyítása:

(\Leftarrow) Minden $1 \leqslant i \leqslant k$ -ra (ahol k az első index, melyre $U_k = U_{k+1}$) és minden $X \in U_i$ -ra $X \Rightarrow_G^* \varepsilon$.

Ez i-re vonatkozó teljes indukcióval könnyen látható. i=1-re az állítás U_1 definíciójából azonnal következik.

Tegyük fel, hogy i-re teljesül. Ha $X \in U_{i+1}$, akkor van olyan $u \in U_i^*$, melyre $X \to u \in P$. Legyen $u = Z_1 \cdots Z_n$, ahol $Z_r \in U_i$ $(1 \le r \le n)$.

Ekkor az indukciós feltevés miatt $Z_i \Rightarrow_G^* \varepsilon \ (1 \leqslant r \leqslant n)$. Tehát $X \Rightarrow_G Z_1 \cdots Z_n \Rightarrow_G^* \varepsilon$.

Mivel $U = U_k$, ezért az állításnak ezt az irányát bizonyítottuk.

Az állítás bizonyítása:

Az állítás bizonyítása:

(
$$\Rightarrow$$
) Ha $X \Rightarrow_G^* \varepsilon$ akkor létezik G -beli $X \Rightarrow w_n \Rightarrow w_{n-1} \Rightarrow \cdots \Rightarrow w_1 \Rightarrow \varepsilon$ levezetés $(n \geqslant 1)$.

Az állítás bizonyítása:

```
(\Rightarrow) Ha X \Rightarrow_G^* \varepsilon akkor létezik G-beli X \Rightarrow w_n \Rightarrow w_{n-1} \Rightarrow \cdots \Rightarrow w_1 \Rightarrow \varepsilon levezetés (n \geqslant 1).
```

i-re vonatkozó teljes indukcióval $(1 \le i \le n)$ könnyen látható, hogy $w_i \in U_i^*$.

Az állítás bizonyítása:

(
$$\Rightarrow$$
) Ha $X \Rightarrow_G^* \varepsilon$ akkor létezik G -beli $X \Rightarrow w_n \Rightarrow w_{n-1} \Rightarrow \cdots \Rightarrow w_1 \Rightarrow \varepsilon$ levezetés $(n \ge 1)$.

i-re vonatkozó teljes indukcióval $(1 \le i \le n)$ könnyen látható, hogy $w_i \in U_i^*$.

Valóban, $w_1 \in U_1$ következik U_1 definíciójából, hiszen w_1 egyetlen olyan nemterminálisból kell álljon, amire van ε -szabály P-ben.

Az állítás bizonyítása:

(
$$\Rightarrow$$
) Ha $X \Rightarrow_G^* \varepsilon$ akkor létezik G -beli $X \Rightarrow w_n \Rightarrow w_{n-1} \Rightarrow \cdots \Rightarrow w_1 \Rightarrow \varepsilon$ levezetés $(n \geqslant 1)$.

i-re vonatkozó teljes indukcióval $(1 \le i \le n)$ könnyen látható, hogy $w_i \in U_i^*$.

Valóban, $w_1 \in U_1$ következik U_1 definíciójából, hiszen w_1 egyetlen olyan nemterminálisból kell álljon, amire van ε -szabály P-ben.

Tegyük fel, hogy i-re teljesül az állítás. Ekkor a $w_{i+1} \Rightarrow w_i$ levezetési lépésben egy olyan $X \to u \in P$ szabály került alkalmazásra, ahol $u \in U_i^*$, így $X \in U_{i+1}$. Mivel $U_i \subseteq U_{i+1}$, így $w_{i+1} \in U_{i+1}^*$.

Az állítás bizonyítása:

(
$$\Rightarrow$$
) Ha $X \Rightarrow_G^* \varepsilon$ akkor létezik G -beli $X \Rightarrow w_n \Rightarrow w_{n-1} \Rightarrow \cdots \Rightarrow w_1 \Rightarrow \varepsilon$ levezetés $(n \geqslant 1)$.

i-re vonatkozó teljes indukcióval $(1 \le i \le n)$ könnyen látható, hogy $w_i \in U_i^*$.

Valóban, $w_1 \in U_1$ következik U_1 definíciójából, hiszen w_1 egyetlen olyan nemterminálisból kell álljon, amire van ε -szabály P-ben.

Tegyük fel, hogy i-re teljesül az állítás. Ekkor a $w_{i+1} \Rightarrow w_i$ levezetési lépésben egy olyan $X \to u \in P$ szabály került alkalmazásra, ahol $u \in U_i^*$, így $X \in U_{i+1}$. Mivel $U_i \subseteq U_{i+1}$, így $w_{i+1} \in U_{i+1}^*$.

Tehát $X \in U_{n+1} \subseteq U$, ezzel az állítást bizonyítottuk.

Hagyjuk el P-ből az összes $X \to \varepsilon$ alakú ún. ε -szabályt és adjuk hozzá a következőket

Hagyjuk el P-ből az összes $X \to \varepsilon$ alakú ún. ε -szabályt és adjuk hozzá a következőket

▶ $A \rightarrow BC \in P, B, C \in U$ esetén az $A \rightarrow B$ és $A \rightarrow C$ szabályokat

Hagyjuk el P-ből az összes $X \to \varepsilon$ alakú ún. ε -szabályt és adjuk hozzá a következőket

- ▶ $A \rightarrow BC \in P, B, C \in U$ esetén az $A \rightarrow B$ és $A \rightarrow C$ szabályokat
- ▶ $A \rightarrow BC \in P, B \in U, C \notin U$ esetén az $A \rightarrow C$ szabályt

Hagyjuk el P-ből az összes $X \to \varepsilon$ alakú ún. ε -szabályt és adjuk hozzá a következőket

- ▶ $A \rightarrow BC \in P, B, C \in U$ esetén az $A \rightarrow B$ és $A \rightarrow C$ szabályokat
- ▶ $A \rightarrow BC \in P, B \in U, C \notin U$ esetén az $A \rightarrow C$ szabályt
- ▶ $A \rightarrow BC \in P, B \notin U, C \in U$ esetén az $A \rightarrow B$ szabályt

Hagyjuk el P-ből az összes $X \to \varepsilon$ alakú ún. ε -szabályt és adjuk hozzá a következőket

- ▶ $A \rightarrow BC \in P, B, C \in U$ esetén az $A \rightarrow B$ és $A \rightarrow C$ szabályokat
- ▶ $A \rightarrow BC \in P, B \in U, C \notin U$ esetén az $A \rightarrow C$ szabályt
- ▶ $A \rightarrow BC \in P, B \notin U, C \in U$ esetén az $A \rightarrow B$ szabályt

Legyen G' az így kapott grammatika. Ekkor $L(G_1)\subseteq L(G)\setminus\{\varepsilon\}$, hiszen minden új szabály alkalmazása megfelel egy régi szabály alkalmazásának amelyet egy $B\Rightarrow_G^*\varepsilon$ vagy $C\Rightarrow_G^*\varepsilon$ levezetés alkalmazásával kombinálunk.

Hagyjuk el P-ből az összes $X \to \varepsilon$ alakú ún. ε -szabályt és adjuk hozzá a következőket

- ▶ $A \rightarrow BC \in P, B, C \in U$ esetén az $A \rightarrow B$ és $A \rightarrow C$ szabályokat
- ▶ $A \rightarrow BC \in P, B \in U, C \notin U$ esetén az $A \rightarrow C$ szabályt
- ▶ $A \rightarrow BC \in P, B \notin U, C \in U$ esetén az $A \rightarrow B$ szabályt

Legyen G' az így kapott grammatika. Ekkor $L(G_1) \subseteq L(G) \setminus \{\varepsilon\}$, hiszen minden új szabály alkalmazása megfelel egy régi szabály alkalmazásának amelyet egy $B \Rightarrow_G^* \varepsilon$ vagy $C \Rightarrow_G^* \varepsilon$ levezetés alkalmazásával kombinálunk.

Másrészt $L(G)\setminus\{\varepsilon\}\subseteq L(G_1)$. Ugyanis, ha $S\Rightarrow_G^* u$ és $u\neq \varepsilon$, akkor $S\Rightarrow_{G'}^* u$, hiszen az $X\to \varepsilon$ típusú szabályok alkalmazása elkerülhető egy megfelelő új szabály alkalmazásával.

Hagyjuk el P-ből az összes $X \to \varepsilon$ alakú ún. ε -szabályt és adjuk hozzá a következőket

- ▶ $A \rightarrow BC \in P, B, C \in U$ esetén az $A \rightarrow B$ és $A \rightarrow C$ szabályokat
- ▶ $A \rightarrow BC \in P, B \in U, C \notin U$ esetén az $A \rightarrow C$ szabályt
- ▶ $A \rightarrow BC \in P, B \notin U, C \in U$ esetén az $A \rightarrow B$ szabályt

Legyen G' az így kapott grammatika. Ekkor $L(G_1) \subseteq L(G) \setminus \{\varepsilon\}$, hiszen minden új szabály alkalmazása megfelel egy régi szabály alkalmazásának amelyet egy $B \Rightarrow_G^* \varepsilon$ vagy $C \Rightarrow_G^* \varepsilon$ levezetés alkalmazásával kombinálunk.

Másrészt $L(G)\setminus\{\varepsilon\}\subseteq L(G_1)$. Ugyanis, ha $S\Rightarrow_G^* u$ és $u\neq\varepsilon$, akkor $S\Rightarrow_{G'}^* u$, hiszen az $X\to\varepsilon$ típusú szabályok alkalmazása elkerülhető egy megfelelő új szabály alkalmazásával.

Tehát $S \notin U$ esetén G_1 ekvivalens G-vel.

 $S \in U$ esetén adjuk hozzá G szabályaihoz az $S \to \varepsilon$ szabályt.

5. lépés Láncmentesítés

5. lépés Láncmentesítés

Már csak az $X \to Y$ alakú $(X, Y \in N)$, ú.n. **láncszabályokat** kell eliminálni. Jelölje P_0 a P-beli láncszabályok halmazát.

5. lépés Láncmentesítés

Már csak az $X \to Y$ alakú $(X, Y \in N)$, ú.n. **láncszabályokat** kell eliminálni. Jelölje P_0 a P-beli láncszabályok halmazát.

Minden $A \in N$ esetén legyen $H(A) := \{B \in N \mid A \Rightarrow^* B\}.$

5. lépés Láncmentesítés

Már csak az $X \to Y$ alakú $(X, Y \in N)$, ú.n. **láncszabályokat** kell eliminálni. Jelölje P_0 a P-beli láncszabályok halmazát.

Minden $A \in N$ esetén legyen $H(A) := \{B \in N \mid A \Rightarrow^* B\}.$

A G-vel ekvivalens, láncmentes G' grammatika szabályai:

5. lépés Láncmentesítés

Már csak az $X \to Y$ alakú $(X, Y \in N)$, ú.n. **láncszabályokat** kell eliminálni. Jelölje P_0 a P-beli láncszabályok halmazát.

Minden $A \in N$ esetén legyen $H(A) := \{B \in N \mid A \Rightarrow^* B\}.$

A G-vel ekvivalens, láncmentes G' grammatika szabályai:

 $P' := \{A \to w \mid \exists B \in H(A), \text{ amelyre } B \to w \in P\} \setminus P_0.$

5. lépés Láncmentesítés

Már csak az $X \to Y$ alakú $(X, Y \in N)$, ú.n. **láncszabályokat** kell eliminálni. Jelölje P_0 a P-beli láncszabályok halmazát.

Minden $A \in N$ esetén legyen $H(A) := \{B \in N \mid A \Rightarrow^* B\}.$

A G-vel ekvivalens, láncmentes G' grammatika szabályai:

 $P':=\{A\to w\ |\ \exists B\in H(A),\ \text{amelyre}\ B\to w\in P\}\backslash P_0.$

 $L(G')\subseteq L(G)$, hiszen egy $A\to w$ új szabály alkalmazása megfelel az $A\Rightarrow^* B$ láncszabályok és a $B\to w$ eredeti szabály alkalmazásának $\big(B\in H(A)\big)$.

5. lépés Láncmentesítés

Már csak az $X \to Y$ alakú $(X, Y \in N)$, ú.n. **láncszabályokat** kell eliminálni. Jelölje P_0 a P-beli láncszabályok halmazát.

Minden $A \in N$ esetén legyen $H(A) := \{B \in N \mid A \Rightarrow^* B\}.$

A G-vel ekvivalens, láncmentes G' grammatika szabályai:

 $P' := \{A \to w \mid \exists B \in H(A), \text{ amelyre } B \to w \in P\} \setminus P_0.$

 $L(G')\subseteq L(G)$, hiszen egy $A\to w$ új szabály alkalmazása megfelel az $A\Rightarrow^* B$ láncszabályok és a $B\to w$ eredeti szabály alkalmazásának $(B\in H(A))$.

Másrészt $L(G) \subseteq L(G')$, hiszen az új szabályokkal a láncszabályok alkalmazása elkerülhető.

$$H_0(A) := \{A\}$$

$$H_0(A):=\{A\}$$

$$H_{i+1}(A) := H_i(A) \cup \{B \in N \,|\, \exists \, C \in H_i(A) \text{ amelyre } C \to B \in P\}.$$

$$H_0(A) := \{A\}$$
 $H_{i+1}(A) := H_i(A) \cup \{B \in N \mid \exists C \in H_i(A) \text{ amelyre } C \to B \in P\}.$
 $H_0(A) \subseteq H_1(A) \subseteq \cdots \subseteq H_k(A) \subseteq \cdots \subseteq N$

$$H_0(A) := \{A\}$$

$$H_{i+1}(A) := H_i(A) \cup \{B \in N \mid \exists C \in H_i(A) \text{ amelyre } C \to B \in P\}.$$

$$H_0(A) \subseteq H_1(A) \subseteq \cdots \subseteq H_k(A) \subseteq \cdots \subseteq N$$

$$k := \min \{0 \le i \le n-1 \mid H_i(A) = H_{i+1}(A)\}.$$

$$H_0(A) := \{A\}$$

$$H_{i+1}(A) := H_i(A) \cup \{B \in N \mid \exists C \in H_i(A) \text{ amelyre } C \to B \in P\}.$$

$$H_0(A) \subseteq H_1(A) \subseteq \cdots \subseteq H_k(A) \subseteq \cdots \subseteq N$$

$$k := \min \{0 \leqslant i \leqslant n - 1 \mid H_i(A) = H_{i+1}(A)\}.$$

$$H(A) := H_k(A).$$

Állítás: $H_k(A) = \{B \in N \mid A \Rightarrow^* B\}.$

Az állítás bizonyítása:

(\subseteq) *i*-re vonatkozó teljes indukcióval könnyen látható, hogy $H_i(A) \subseteq \{B \in N \mid A \Rightarrow^* B\}$ $(1 \leqslant i \leqslant k)$.

Állítás: $H_k(A) = \{B \in N \mid A \Rightarrow^* B\}.$

Az állítás bizonyítása:

(\subseteq) *i*-re vonatkozó teljes indukcióval könnyen látható, hogy $H_i(A) \subseteq \{B \in N \mid A \Rightarrow^* B\}$ $(1 \le i \le k)$.

i = 0-ra nyilvánvaló.

Állítás: $H_k(A) = \{B \in N \mid A \Rightarrow^* B\}.$

Az állítás bizonyítása:

(\subseteq) *i*-re vonatkozó teljes indukcióval könnyen látható, hogy $H_i(A) \subseteq \{B \in N \mid A \Rightarrow^* B\}$ ($1 \le i \le k$).

i=0-ra nyilvánvaló. Ha $B\in H_{i+1}(A)$, akkor van olyan $C\in H_i(A)$, hogy $C\to B\in P$.

Állítás: $H_k(A) = \{B \in N \mid A \Rightarrow^* B\}.$

Az állítás bizonyítása:

(\subseteq) *i*-re vonatkozó teljes indukcióval könnyen látható, hogy $H_i(A) \subseteq \{B \in N \mid A \Rightarrow^* B\}$ ($1 \le i \le k$).

i=0-ra nyilvánvaló. Ha $B\in H_{i+1}(A)$, akkor van olyan $C\in H_i(A)$, hogy $C\to B\in P$. Mivel $C\in H_i(A)$, ezért az indukciós feltevés miatt $A\Rightarrow^*C$, és így $A\Rightarrow^*C\Rightarrow B$, tehát $H_{i+1}(A)\subseteq \{B\in N\,|\, A\Rightarrow^*B\}$.

Állítás: $H_k(A) = \{B \in N \mid A \Rightarrow^* B\}.$

Az állítás bizonyítása:

(\subseteq) *i*-re vonatkozó teljes indukcióval könnyen látható, hogy $H_i(A) \subseteq \{B \in N \mid A \Rightarrow^* B\}$ ($1 \le i \le k$).

i=0-ra nyilvánvaló. Ha $B\in H_{i+1}(A)$, akkor van olyan $C\in H_i(A)$, hogy $C\to B\in P$. Mivel $C\in H_i(A)$, ezért az indukciós feltevés miatt $A\Rightarrow^*C$, és így $A\Rightarrow^*C\Rightarrow B$, tehát $H_{i+1}(A)\subseteq \{B\in N\,|\, A\Rightarrow^*B\}$.

(\supseteq) Tegyük fel, hogy $A \Rightarrow^* B$, ekkor vagy B = A és így $B \in H_0(A)$ vagy $\exists k \geqslant 1$, hogy $A \Rightarrow Z_1 \Rightarrow \cdots \Rightarrow Z_k = B$ valamely $Z_1 \ldots, Z_k \in N$ -re.

Állítás: $H_k(A) = \{B \in N \mid A \Rightarrow^* B\}.$

Az állítás bizonyítása:

(\subseteq) *i*-re vonatkozó teljes indukcióval könnyen látható, hogy $H_i(A) \subseteq \{B \in N \mid A \Rightarrow^* B\}$ ($1 \le i \le k$).

i=0-ra nyilvánvaló. Ha $B\in H_{i+1}(A)$, akkor van olyan $C\in H_i(A)$, hogy $C\to B\in P$. Mivel $C\in H_i(A)$, ezért az indukciós feltevés miatt $A\Rightarrow^*C$, és így $A\Rightarrow^*C\Rightarrow B$, tehát $H_{i+1}(A)\subseteq\{B\in N\mid A\Rightarrow^*B\}$.

(⊇) Tegyük fel, hogy $A \Rightarrow^* B$, ekkor vagy B = A és így $B \in H_0(A)$ vagy $\exists k \geqslant 1$, hogy $A \Rightarrow Z_1 \Rightarrow \cdots \Rightarrow Z_k = B$ valamely $Z_1 \ldots, Z_k \in N$ -re.

i-re vonatkozó teljes indukcióval könnyen látható, hogy $Z_i \in H_i(A)$. (i=1-re az indukció kezdőlépése illetve i-ről i+1-re az indukciós lépés is $H_i(A)$ definíciójából azonnal adódik.)

Példa: Hozzuk az alábbi grammatikát Chomsky normálformára! (a nagybetűk a nemterminálisok, *S* a kezdőszimólum)

Példa: Hozzuk az alábbi grammatikát Chomsky normálformára! (a nagybetűk a nemterminálisok, S a kezdőszimólum)

```
S \rightarrow AB
 A \rightarrow aAa \mid C
```

$$B \rightarrow bBb \mid C$$

$$C \rightarrow Cabc \mid b \mid \varepsilon$$

Példa: Hozzuk az alábbi grammatikát Chomsky normálformára! (a nagybetűk a nemterminálisok, S a kezdőszimólum)

```
S \rightarrow AB

A \rightarrow aAa \mid C

B \rightarrow bBb \mid C

C \rightarrow Cabc \mid b \mid \varepsilon
```

Megoldás:

1. lépés: Nincs S a jobboldalon, maradhat S a kezdőszimbólum.

Példa: Hozzuk az alábbi grammatikát Chomsky normálformára! (a nagybetűk a nemterminálisok, S a kezdőszimólum)

```
S \rightarrow AB

A \rightarrow aAa \mid C

B \rightarrow bBb \mid C

C \rightarrow Cabc \mid b \mid \varepsilon
```

Megoldás:

- 1. lépés: Nincs S a jobboldalon, maradhat S a kezdőszimbólum.
- 2. lépés (Álterminálisok bevezetése):

$$S \rightarrow AB$$

 $A \rightarrow DAD \mid C$
 $B \rightarrow EBE \mid C$
 $C \rightarrow CDEF \mid b \mid \varepsilon$
 $D \rightarrow a$
 $E \rightarrow b$
 $F \rightarrow C$

3. lépés (Hosszredukció):

```
S \rightarrow AB
A \rightarrow DAD \mid C
B \rightarrow EBE \mid C
C \rightarrow CDEF \mid b \mid \varepsilon
D \rightarrow a
E \rightarrow b
F \rightarrow c
```

3. lépés (Hosszredukció):

$$S \rightarrow AB$$

$$A \rightarrow DZ_{1} \mid C$$

$$B \rightarrow EZ_{2} \mid C$$

$$C \rightarrow CZ_{3} \mid b \mid \varepsilon$$

$$D \rightarrow a$$

$$C \rightarrow CDEF \mid b \mid \varepsilon \implies E \rightarrow b$$

$$D \rightarrow a$$

$$E \rightarrow b$$

$$F \rightarrow c$$

$$Z_{1} \rightarrow AD$$

$$F \rightarrow c$$

$$Z_{2} \rightarrow BE$$

$$Z_{3} \rightarrow DZ_{4}$$

$$Z_{4} \rightarrow EF$$

 $S \rightarrow AB$

4. lépés (ε -mentesítés):

 $Z_A \rightarrow EF$

$$U_{0} = \{C\}, \ U_{1} = \{C, A, B\}, U_{2} = U_{3} = \{S, A, B, C\} = U.$$

$$S \to AB$$

$$A \to DZ_{1} \mid C$$

$$B \to EZ_{2} \mid C$$

$$C \to CZ_{3} \mid b \mid \varepsilon$$

$$D \to a$$

$$E \to b$$

$$F \to c$$

$$Z_{1} \to AD$$

$$Z_{2} \to BE$$

$$Z_{3} \to DZ_{4}$$

4. lépés (ε -mentesítés):

$$U_{0} = \{C\}, \ U_{1} = \{C, A, B\}, \ U_{2} = U_{3} = \{S, A, B, C\} = U.$$

$$S \rightarrow AB$$

$$A \rightarrow DZ_{1} \mid C$$

$$B \rightarrow EZ_{2} \mid C$$

$$C \rightarrow CZ_{3} \mid b \mid \varepsilon$$

$$D \rightarrow a$$

$$E \rightarrow b$$

$$F \rightarrow c$$

$$Z_{1} \rightarrow AD$$

$$Z_{2} \rightarrow BE$$

$$Z_{3} \rightarrow DZ_{4}$$

$$Z_{4} \rightarrow EF$$

$$S \rightarrow AB \mid A \mid B \mid \varepsilon$$

$$A \rightarrow DZ_{1} \mid C$$

$$B \rightarrow EZ_{2} \mid C$$

$$C \rightarrow CZ_{3} \mid b \mid Z_{3}$$

$$D \rightarrow a$$

$$E \rightarrow b$$

$$F \rightarrow c$$

$$Z_{1} \rightarrow AD \mid D$$

$$Z_{2} \rightarrow BE \mid E$$

$$Z_{3} \rightarrow DZ_{4}$$

$$Z_{4} \rightarrow EF$$

5. lépés (Láncmentesítés): $H_0(S) = \{S\}, H_1(S) = \{S,A,B\}, H_2(S) = \{S,A,B,C\}, H_3(S) = \{S,A,B,C,Z_3\} = H(S)$

Hasonlóan $H(A) = \{A, C, Z_3\}, H(B) = \{B, C, Z_3\},$ $H(C) = \{C, Z_3\}, H(Z_1) = \{D, Z_1\}, H(Z_2) = \{E, Z_2\},$ a többi csak önmagát tartalmazza.

$$S \rightarrow AB \mid A \mid B \mid \varepsilon$$

$$A \rightarrow DZ_1 \mid C$$

$$B \rightarrow EZ_2 \mid C$$

$$C \rightarrow CZ_3 \mid b \mid Z_3$$

$$D \rightarrow a$$

$$E \rightarrow b$$

$$F \rightarrow c$$

$$Z_1 \rightarrow AD \mid D$$

$$Z_2 \rightarrow BE \mid E$$

$$Z_3 \rightarrow DZ_4$$

$$Z_4 \rightarrow EF$$

5. lépés (Láncmentesítés): $H_0(S) = \{S\}, H_1(S) = \{S, A, B\}, H_2(S) = \{S, A, B, C\}, H_3(S) =$ $\{S, A, B, C, Z_3\} = H(S)$ Hasonlóan $H(A) = \{A, C, Z_3\}, H(B) = \{B, C, Z_3\},\$

 $H(C) = \{C, Z_3\}, H(Z_1) = \{D, Z_1\}, H(Z_2) = \{E, Z_2\}, \text{ a t\"obbi csak}$ önmagát tartalmazza.

$$S \rightarrow AB \mid A \mid B \mid \varepsilon \qquad S \rightarrow AB \mid DZ_1 \mid CZ_3 \mid b \mid DZ_4 \mid EZ_2 \mid \varepsilon$$

$$A \rightarrow DZ_1 \mid C \qquad A \rightarrow DZ_1 \mid CZ_3 \mid b \mid DZ_4$$

$$B \rightarrow EZ_2 \mid C \qquad B \rightarrow EZ_2 \mid CZ_3 \mid b \mid DZ_4$$

$$C \rightarrow CZ_3 \mid b \mid Z_3 \qquad C \rightarrow CZ_3 \mid b \mid DZ_4$$

$$D \rightarrow a \qquad D \rightarrow a$$

$$E \rightarrow b \qquad E \rightarrow b$$

$$F \rightarrow c \qquad F \rightarrow c$$

$$Z_1 \rightarrow AD \mid D \qquad Z_2 \rightarrow BE \mid E \qquad Z_2 \rightarrow BE \mid b$$

$$Z_3 \rightarrow DZ_4 \qquad Z_4 \rightarrow EF$$

4□ → 4周 → 4 = → 4 = → 9 Q (~)

Chomsky normálforma – az algoritmus hatékonysága

Legyen $G=\langle N,T,P,S\rangle$ egy környezetfüggetlen grammatika. Ha $p:X\to Y_1\cdots Y_m\in P$, akkor legyen |p|:=m+1, a p szabály balés jobboldalának összhossza. Jelölje $|G|:=\sum_{p\in P}|p|$ a G grammatika **méretét**.

Chomsky normálforma – az algoritmus hatékonysága

Legyen $G=\langle N,T,P,S\rangle$ egy környezetfüggetlen grammatika. Ha $p:X\to Y_1\cdots Y_m\in P$, akkor legyen |p|:=m+1, a p szabály balés jobboldalának összhossza. Jelölje $|G|:=\sum_{p\in P}|p|$ a G grammatika **méretét**.

A Chomsky normálformára hozás hatékonysága:

A fenti algoritmus nagyságrendileg $|G|^2$ lépésben (precízebben: $O(|G|^2)$ lépésben, lásd később) előállít egy nagyságrendileg legfeljebb $|G|^2$ méretű (precízebben: $O(|G|^2)$ méretű) G-vel ekvivalens Chomsky normálformájú grammatikát.

Chomsky normálforma – az algoritmus hatékonysága

Legyen $G=\langle N,T,P,S\rangle$ egy környezetfüggetlen grammatika. Ha $p:X\to Y_1\cdots Y_m\in P$, akkor legyen |p|:=m+1, a p szabály balés jobboldalának összhossza. Jelölje $|G|:=\sum_{p\in P}|p|$ a G grammatika **méretét**.

A Chomsky normálformára hozás hatékonysága:

A fenti algoritmus nagyságrendileg $|G|^2$ lépésben (precízebben: $O(|G|^2)$ lépésben, lásd később) előállít egy nagyságrendileg legfeljebb $|G|^2$ méretű (precízebben: $O(|G|^2)$ méretű) G-vel ekvivalens Chomsky normálformájú grammatikát.

Megjegyzés: A méretnövekedés a láncmentesítés kivételével lineáris.