Stochastische Modelle

10. Übung

Aufgabe 39. (Googles PageRank) Gegeben seien Webseiten $1, \ldots, m$. Für jede Seite sei bekannt, auf welche Seiten sie durch Links verweist. Ein "random surfer" beginnt mit einer zufällig gewählten Seite X_0 . Ist er zum Zeitpunkt n auf Seite X_n , wählt er die nächste Seite X_{n+1} , unabhängig von den zuvor besuchten Seiten, wie folgt aus. Enthält die aktuelle Seite keine Links, wählt er von allen m Seiten eine zufällig aus. Andernfalls folgt er mit Wahrscheinlichkeit $\alpha \in (0,1)$ einem zufällig gewählten Link auf der aktuellen Seite und mit Wahrscheinlichkeit $1-\alpha$ wählt er von allen m Seiten eine zufällig aus. Eine zufällige Auswahl bedeutet hier, dass jede der betrachteten Möglichkeiten mit derselben Wahrscheinlichkeit gewählt wird.

Der Rang von Seite j sei $r_j := \lim_{n \to \infty} P(X_n = j)$. Geben Sie ein lineares Gleichungssystem für die Seitenränge an. Zeigen Sie, dass das Gleichungssystem eine eindeutige Lösung hat.

Aufgabe 40. Ist die einfache symmetrische Irrfahrt auf \mathbb{Z}^2 mit Übergangswahrscheinlichkeiten

$$p_{(x,y),(x,y+1)} = p_{(x,y),(x,y-1)} = p_{(x,y),(x+1,y)} = p_{(x,y),(x-1,y)} = \frac{1}{4}, \qquad (x,y) \in \mathbb{Z}^2,$$

rekurrent?

Hinweis. Die Summe

$$\sum_{k=0}^{n} \binom{n}{k}^2$$

lässt sich durch einen Koeffizientenvergleich der Polynome $(1+t)^n(1+t)^n$ und $(1+t)^{2n}$ vereinfachen.

Aufgabe 41. Sei $\{X_n : n \in \mathbb{N}_0\}$ eine irreduzible und aperiodische Markov-Kette mit Zustandsraum $S = \{1, \ldots, s\}$ und stationärer Verteilung $\pi = (\pi_1, \ldots, \pi_s)$. Sei $f : S \to \mathbb{R}$. Zeigen Sie:

(a) $Cov(f(X_n), f(X_m)) \to 0$ für $|n - m| \to \infty$.

I know why they are true, but showing it seems very hard.

(b) $\frac{1}{n} \sum_{k=1}^{n} f(X_k)$ konvergiert stochastisch gegen $\sum_{i=1}^{s} \pi_i f(i)$.