# Bayesian SIR Model

## Writing the SIR model

```
library(nimble)
## nimble version 0.12.2 is loaded.
## For more information on NIMBLE and a User Manual,
## please visit https://R-nimble.org.
## Attaching package: 'nimble'
## The following object is masked from 'package:stats':
##
##
       simulate
SIR_code <- nimbleCode({</pre>
    S[1] \leftarrow N - IO - RO
    I[1] <- IO
    R[1] <- RO
    probIR <- 1 - exp(-gamma)</pre>
    ### loop over time
    for(t in 1:tau) {
        probSI[t] \leftarrow 1 - exp(-beta * I[t] / N)
        Istar[t] ~ dbin(probSI[t], S[t])
        Rstar[t] ~ dbin(probIR, I[t])
        \# update S, I, R
        S[t + 1] <- S[t] - Istar[t]</pre>
        I[t + 1] \leftarrow I[t] + Istar[t] - Rstar[t]
        R[t + 1] \leftarrow R[t] + Rstar[t]
    }
    # priors
    beta ~ dgamma(0.1, 0.1)
    gamma ~ dgamma(aa, bb)
})
```

#### Simulating epidemics

Here we specify the population size N = 10,000, 5 initially infectious individuals, and simulate 100 days of the epidemic.

```
constantsList \leftarrow list(N = 10000,
                       IO = 5.
                       RO = 0.
                       tau = 100)
sirModel <- nimbleModel(SIR code,</pre>
                        constants = constantsList)
## Defining model
## Building model
## Running calculate on model
     [Note] Any error reports that follow may simply reflect missing values in model variables.
## Checking model sizes and dimensions
##
     [Note] This model is not fully initialized. This is not an error.
            To see which variables are not initialized, use model$initializeInfo().
##
            For more information on model initialization, see help(modelInitialization).
##
# exclude data from parent nodes
dataNodes <- c('Istar', 'Rstar')</pre>
dataNodes <- sirModel$expandNodeNames(dataNodes, returnScalarComponents = TRUE)
parentNodes <- sirModel$getParents(dataNodes, stochOnly = TRUE)</pre>
parentNodes <- parentNodes[-which(parentNodes %in% dataNodes)]</pre>
parentNodes <- sirModel\expandNodeNames(parentNodes, returnScalarComponents = TRUE)
nodesToSim <- sirModel$getDependencies(parentNodes, self = FALSE, downstream = T)</pre>
```

We can simulate using various values of  $\beta$  and  $\gamma$  to specify various reproductive numbers.

In all simulations the mean infectious period is 5 days.

```
plot(sirModel\$I, type = 'l', col = pal[1], ylim = c(0, 5000),
    main = paste0('R0 = ', sirModel$beta / sirModel$gamma), lwd = 2)
# simulation 2
initsList <- list(beta = 0.4,</pre>
                  gamma = 0.2)
sirModel$setInits(initsList)
set.seed(1)
sirModel$simulate(nodesToSim, includeData = TRUE)
plot(sirModel\$S, type = 'l', col = pal[1], ylim = c(0, 10000),
     main = pasteO('RO = ', sirModel$beta / sirModel$gamma), lwd = 2)
lines(sirModel$I, col = pal[2], lwd = 2)
lines(sirModel$R, col = pal[3], lwd = 2)
legend('topright', c('S', 'I', 'R'), col = pal, lwd = 2,
      bty = 'n', horiz = T)
plot(sirModel\$I, type = 'l', col = pal[1], ylim = c(0, 2000),
 main = paste0('R0 = ', sirModel$beta / sirModel$gamma), lwd = 2)
```



## **Epidemics are Stochastic**

Here we simulate 100 epidemics from the same parameter values and plot the observed incidence curve from each simulation.



## Model fitting to simulated data

Simulate data, then use it to fit the model.



### **Model Specifications**

Before fitting the model, we need to determine a reasonable prior for  $\gamma$ . The true value corresponds to a mean infectious period of 5 days, so we choose a prior that puts 90% probability on the mean infectious period between 4 and 6 days and is centered on 5 days.

```
bb <- 348
aa <- 0.2 * bb
pgamma(1/4, aa, bb) - pgamma(1/6, aa, bb)
```

## [1] 0.900183

curve(dgamma(x, aa, bb))



```
## Defining model
```

- ## Building model
- ## Setting data and initial values
- ## Running calculate on model
- ## [Note] Any error reports that follow may simply reflect missing values in model variables.
- ## Checking model sizes and dimensions

NIMBLE automatically calculates S, I, and R from Istar and Rstar, so these do not need to be inputs to the model

```
with(sirModelFit, cbind(S, Istar, I, Rstar, R))[1:20,]
```

## Warning in cbind(S, Istar, I, Rstar, R): number of rows of result is not a ## multiple of vector length (arg 2)

| ## |       | S    | Istar | I    | Rstar | R    |
|----|-------|------|-------|------|-------|------|
| ## | [1,]  | 9995 | 2     | 5    | 1     | 0    |
| ## | [2,]  | 9993 | 6     | 6    | 1     | 1    |
| ## | [3,]  | 9987 | 10    | 11   | 1     | 2    |
| ## | [4,]  | 9977 | 13    | 20   | 7     | 3    |
| ## | [5,]  | 9964 | 10    | 26   | 5     | 10   |
| ## | [6,]  | 9954 | 14    | 31   | 4     | 15   |
| ## | [7,]  | 9940 | 23    | 41   | 9     | 19   |
| ## | [8,]  | 9917 | 24    | 55   | 12    | 28   |
| ## | [9,]  | 9893 | 41    | 67   | 10    | 40   |
| ## | [10,] | 9852 | 67    | 98   | 15    | 50   |
| ## | [11,] | 9785 | 102   | 150  | 26    | 65   |
| ## | [12,] | 9683 | 144   | 226  | 36    | 91   |
| ## | [13,] | 9539 | 181   | 334  | 68    | 127  |
| ## | [14,] | 9358 | 243   | 447  | 75    | 195  |
| ## | [15,] | 9115 | 330   | 615  | 120   | 270  |
| ## | [16,] | 8785 | 446   | 825  | 149   | 390  |
| ## | [17,] | 8339 | 557   | 1122 | 226   | 539  |
| ## | [18,] | 7782 | 644   | 1453 | 284   | 765  |
| ## | [19,] | 7138 | 716   | 1813 | 304   | 1049 |
| ## | [20,] | 6422 | 790   | 2225 | 409   | 1353 |
|    |       |      |       |      |       |      |

### Use Default Configurations and Obtain Samples

Plotted with burn-in included here

```
myConfig <- configureMCMC(sirModelFit)</pre>
## ===== Monitors =====
## thin = 1: beta, gamma
## ===== Samplers =====
## RW sampler (2)
##
    - beta
##
     - gamma
myMCMC <- buildMCMC(myConfig)</pre>
system.time({
    compiled <- compileNimble(sirModelFit, myMCMC)</pre>
    samples <- runMCMC(compiled$myMCMC, niter = 50000, setSeed = 3)</pre>
})
## Compiling
     [Note] This may take a minute.
     [Note] Use 'showCompilerOutput = TRUE' to see C++ compilation details.
## Running chain 1 ...
## |-----|-----|
##
      user system elapsed
           1.496 25.954
   23.315
head(samples)
                      gamma
            beta
## [1,] 0.1848823 0.2114557
## [2,] 0.4436705 0.2114557
## [3,] 0.6394533 0.2114557
## [4,] 0.6394533 0.2114557
## [5,] 0.6394533 0.2114557
## [6,] 0.6394533 0.2114557
par(mfrow = c(1,2))
plot(samples[,'beta'], type = '1')
abline(h = 0.6, col = 'red')
plot(samples[,'gamma'], type = '1')
abline(h = 0.2, col = 'red')
```



knitr::knit\_exit()