Programowanie wypukłe i kwadratowe

Tadeusz Trzaskalik

Słowa kluczowe

- Zadanie programowania nieliniowego
- Ekstrema globalne i lokalne
- Zbiory wypukłe
- Funkcje wklęsłe i wypukłe
- Zadanie programowania wypukłego
- Funkcja Lagrange'a
- Warunki Kuhna Tuckera
- Zadanie programowania kwadratowego
- Zadanie zastępcze
- Zmienne sztuczne typu w i u
- Algorytm Wolfe'a
- Optymalny portfel akcji
- Zadanie Markowitza

6.2.1. Zbiory wypukłe i funkcje wypukle (1/5)

Ekstrema globalne i lokalne

6.2.1. Zbiory wypukłe i funkcje wypukle (2/5)

Przykłady zbiorów wypukłych i niewypukłych

$$\forall x, y \in C$$

$$\forall \lambda \in [0,1]$$

$$\forall x, y \in C$$
 $\forall \lambda \in [0,1]$ $\lambda x + (1-\lambda)y \in C$

Zbiory wypukłe

Zbiór niewypukły

6.2.1. Zbiory wypukłe i funkcje wypukle (3/5)

Funkcje wypukłe a kształty wypukle

6.2.1. Zbiory wypukłe i funkcje wypukle (4/5)

Definicje

Funkcja wypukła:

$$\forall x, y \in W, \forall \lambda \in [0,1] \quad f(\lambda x + (1-\lambda)y) \le \lambda f(x) + (1-\lambda)f(y)$$

Funkcja wklęsła:

$$f$$
 wklęsła \Leftrightarrow – f wypukła

Funkcja liniowa:

$$\alpha(\mathbf{x}) = \mathbf{p}^T \mathbf{x} + q = \sum_{j=1}^n p_j x_j + q$$

Forma kwadratowa:

$$\beta(\mathbf{x}) = \mathbf{x}^T \mathbf{C} \mathbf{x} = \sum_{i=1}^n \sum_{j=1}^n c_{ij} x_i x_j$$

Funkcja kwadratowa:

$$H(\mathbf{x}) = \mathbf{p}^T \mathbf{x} - \mathbf{x}^T \mathbf{C} \mathbf{x}$$

6.2.1. Zbiory wypukłe i funkcje wypukle (5/5)

Twierdzenia

Twierdzenie 6.1:

Funkcja liniowa jest jednocześnie funkcją wypukłą i wklęsłą.

Twierdzenie 6.2:

Forma kwadratowa jest funkcja wypukłą (wklęsłą) wtedy i tylko wtedy, gdy macierz formy *C* jest nieujemnie (niedodatnio) określona.

6.2.2. Sformułowanie zadania programowania wypukłego (1/3)

Sformułowanie zadania

$$f(x) \to \max$$

$$g_1(x) \ge 0$$

$$g(x) = \begin{bmatrix} g_1(x) \\ \dots \\ g_m(x) \end{bmatrix}$$

$$g_m(x) \ge 0$$

$$f(x) \to \max$$

$$g(x) \ge 0$$

Powyższe zadanie jest zadaniem programowania wypukłego jeżeli f i wszystkie g_i są funkcjami **wklęsłymi**.

6.2.2. Sformułowanie zadania programowania wypukłego (2/3)

Przykład 6.1

$$f(x) = x_1 + x_2$$

$$g_{1}(x) = 8 - x_{1}^{2} - x_{2}^{2} \ge 0$$

$$g_{2}(x) = x_{1} \ge 0$$

$$g_{3}(x) = x_{2} \ge 0$$

6.2.2. Sformułowanie zadania programowania wypukłego (3/3)

Zadanie programowania kwadratowego

$$\mathbf{p}^{T} \mathbf{x} - \mathbf{x}^{T} \mathbf{C} \mathbf{x} \to \max$$

$$\mathbf{A} \mathbf{x} \leq \mathbf{b}$$

$$\mathbf{x} \geq 0$$

C – macierz nieujemnie określona

6.2.3. Warunki Kuhna-Tuckera (1/2)

Funkcja Lagrange'a

$$f(\mathbf{x}) \to \max$$
$$g(\mathbf{x}) \ge 0$$

$$L(\mathbf{x}, \mathbf{y}) = f(\mathbf{x}) + \mathbf{y}g(\mathbf{x})$$
$$\mathbf{y} = [y_1, ..., y_m]$$

$$L(x_1,...,x_n,y_1,...,y_m) = f(x_1,...,x_n) + \sum_{i=1}^m y_i g_i(x_1,...,x_n)$$

6.2.3. Warunki Kuhna-Tuckera (2/2)

Sformułowanie warunków

Warunek 1
$$\nabla_x L(x, y) = 0$$
 $\nabla_x L(x, y) = \left[\frac{\partial L(x, y)}{\partial x_1}, ..., \frac{\partial L(x, y)}{\partial x_n}\right]$

Warunek 2
$$yg(x) = 0$$

Warunek 3
$$g(x) \ge 0$$

Warunek 4
$$y \ge 0$$

Warunek Slatera

Twierdzenie 6.3:

Problem programowania wypukłego i problem Kuhna-Tuckera opisane warunkami 1 - 4 są sobie równoważne.

6.2.4. Wykorzystanie warunków K-T do rozwiązywania zadań programowania wypukłego (1/5)

Przykład 6.1 (c.d.)

$$f(x) = x_1 + x_2$$

$$g_1(x) = 8 - x_1^2 - x_2^2 \ge 0$$

$$g_2(x) = x_1 \ge 0$$

$$g_3(x) = x_2 \ge 0$$

$$L(x_1, x_2, y_1, y_2, y_3) = x_1 + x_2 + y_1(8 - x_1^2 - x_2^2) + y_2x_1 + y_3x_2$$

Warunek 1:

$$\frac{\partial L}{\partial x_1} = 1 - 2y_1 x_1 + y_2 = 0$$

$$\frac{\partial L}{\partial x_2} = 1 - 2y_1 x_2 + y_3 = 0$$

Warunek 2:

$$y_1(8-x_1^2-x_2^2)+y_2x_1+y_3x_2=0$$

Warunek 3:

$$g_1(x) = 8 - x_1^2 - x_2^2 \ge 0$$

$$g_2(x) = x_1 \ge 0$$

$$g_3(x) = x_2 \ge 0$$

Warunek 4:

$$y_1 \ge 0, y_2 \ge 0, y_3 \ge 0$$

6.2.4. Wykorzystanie warunków K-T do rozwiązywania zadań programowania wypukłego (2/5)

Podział zbioru rozwiązań dopuszczalnych na podzbiory

Podzbiór 1

$g_1 > 0$ $g_2 > 0$ $g_3 > 0$ 0 B x_1

Podzbiór 2

 $g_1 = 0$

 $g_2 > 0$

 $g_3 > 0$

Podzbiór 3

Podzbiór 4

$$g_1 > 0$$

$$g_2 > 0$$

$$g_3 = 0$$

6.2.4. Wykorzystanie warunków K-T do rozwiązywania zadań programowania wypukłego (3/5)

Podział zbioru rozwiązań dopuszczalnych na podzbiory (c.d.)

Podzbiór 5

$g_1 = 0$ $g_2 = 0$ $g_3 > 0$ O B x_1

Podzbiór 6

Podzbiór 7

Podzbiór 8

A
$$x_2$$
O B x_1

$$g_1 = 0$$
$$g_2 = 0$$

$$g_3 = 0$$

Zbiór pusty

6.2.4. Wykorzystanie warunków K-T do rozwiązywania zadań programowania wypukłego (4/5)

Podzbiór 1

Warunek 1

$$\frac{\partial L}{\partial x_1} = 1 - 2y_1 x_1 + y_2 = 0$$

$$\frac{\partial L}{\partial x_2} = 1 - 2y_1 x_2 + y_3 = 0$$

Warunek 2

$$y_1(8-x_1^2-x_2^2)+y_2x_1+y_3x_2=0$$

Warunek 3

$$g_1(x) = 4 - x_1^2 - x_2^2 \ge 0$$

$$g_2(x) = x_1 \ge 0$$

$$g_3(x) = x_2 \ge 0$$

Warunek 4

$$y_1 \ge 0, y_2 \ge 0, y_3 \ge 0$$

Podzbiór 1

$$g_1 > 0, g_2 > 0, g_3 > 0$$

z warunku 2 wynika, że

$$y_1 = 0, y_2 = 0, y_3 = 0$$

Wstawiamy te wartości do warunku 1

$$1 - 2 \cdot 0 \cdot x_1 + 0 = 0$$

$$1 - 2 \cdot 0 \cdot x_2 + 0 = 0$$

czyli: 1 = 0 - sprzeczność

6.2.4. Wykorzystanie warunków K-T do rozwiązywania zadań programowania wypukłego (5/5)

Podzbiór 2

Warunek 1

$$\frac{\partial L}{\partial x_1} = 1 - 2y_1 x_1 + y_2 = 0$$

$$\frac{\partial L}{\partial x_2} = 1 - 2y_1 x_2 + y_3 = 0$$

Warunek 2

$$y_1(8-x_1^2-x_2^2)+y_2x_1+y_3x_2=0$$

Warunek 3

$$g_1(x) = 4 - x_1^2 - x_2^2$$

$$g_2(x) = x_1 \ge 0$$

$$g_3(x) = x_2 \ge 0$$

Warunek 4

$$y_1 \ge 0, y_2 \ge 0, y_3 \ge 0$$

Podzbiór 2

$$g_1 = 0, g_2 > 0, g_3 > 0$$

z warunku 2 wynika, że

$$y_2 = 0, y_3 = 0$$

Wstawiamy te wartości do warunku 1

$$1 - 2y_1x_1 + 0 = 0$$

$$1 - 2y_1x_2 + 0 = 0$$

$$x_1 = \frac{1}{2y_1}, x_2 = \frac{1}{2y_1}$$

$$8 - \frac{1}{(2y_1)^2} - \frac{1}{(2y_1)^2} = 0$$

$$x_1 = 2$$
, $x_2 = 2$, $y_1 = 0.25$, $y_2 = 0$, $y_3 = 0$

6.3.1. Warunki Kuhna-Tuckera dla zadania programowania kwadratowego (1/3)

Przykład 6.2

$$f(x_1, x_2) = 10 x_1 + 25 x_2 - 10 x_1^2 - x_2^2 - 4 x_1 x_2 \to \max_{\substack{x_1 + 2x_2 \\ x_1 + x_2 \\ \le 9}} \le 10$$

$$p^{T} x - x^{T} Cx \to \max$$

$$Ax \le b$$

$$x \ge 0$$

C – macierz nieujemnie określona

$$p = \begin{bmatrix} 10 \\ 25 \end{bmatrix}, \qquad C = \begin{bmatrix} 10 & 2 \\ 2 & 1 \end{bmatrix}, \qquad b = \begin{bmatrix} 10 \\ 9 \end{bmatrix}, \qquad x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

6.3.1. Warunki Kuhna-Tuckera dla zadania programowania kwadratowego (2/3)

Przekształcenia warunków ograniczających

$$f(x) = 10x_1 + 25x_2 - 10x_1^2 - x_2^2 - 4x_1x_2 \rightarrow \text{max}$$

$$x_1 + 2x_2 \le 10 \rightarrow g_1(x_1, x_2) = 10 - x_1 - 2x_2 \ge 0$$

 $x_1 + x_2 \le 9 \rightarrow g_2(x_1, x_2) = 9 - x_1 - x_2 \ge 0$
 $x_1 \ge 0 \rightarrow g_3(x_1, x_2) = x_1 \ge 0$

$$x_2 \ge 0 \quad \to \quad g_4(x_1, x_2) = \qquad \qquad x_2 \ge 0$$

$$y = [y_1, y_2, y_1^d, y_2^d]$$

$$L(x_1, x_2, y_1, y_2, y_1^d, y_2^d) = 10x_1 + 25x_2 - 10x_1^2 - 4x_1x_2 - x_2^2 + y_1(10 - x_1 - 2x_2) + y_2(9 - x_1 - x_2) + y_1^d x_1 + y_2^d x_2$$

6.3.1. Warunki Kuhna-Tuckera dla zadania programowania kwadratowego (3/3)

Sformułowanie warunków K-T

Warunek 1
$$\nabla_x L(x, y) = 0$$

$$\frac{\partial L}{\partial x_1} = 10 - 20x_1 - 4x_2 - y_1 - y_2 + y_1^d = 0$$

$$\frac{\partial L}{\partial x_2} = 25 - 4x_1 - 2x_2 - 2y_1 - y_2 + y_2^d = 0$$

Przenosimy wyrazy wolne na prawą stronę

$$-20x_{1}-4x_{2}-y_{1}-y_{2}+y_{1}^{d}=-10$$

$$-4x_{1}-2x_{2}-2y_{1}-y_{2}+y_{2}^{d}=-25$$

Mnożymy obie strony równań przez (-1)

$$20x_1 + 4x_2 + y_1 + y_2 - y_1^d = 10$$
$$4x_1 + 2x_2 + 2y_1 + y_2 - y_2^d = 25$$

6.3.1. Warunki Kuhna-Tuckera dla zadania programowania kwadratowego (3/3)

Sformułowanie warunków K-T

Warunek 2

$$yg(x) = 0$$

$$y_1(10 - x_1 - 2x_2) + y_2(9 - x_1 - x_2) + y_1^d x_1 + y_2^d x_2 = 0$$

Bilansowanie ograniczeń

$$x_1 + 2x_2 \le 10 \rightarrow x_1 + 2x_2 + x_1^d = 10$$

 $x_1^d = 10 - x_1 - 2x_2$

$$x_1 + x_2 \le 9$$
 $\rightarrow x_1 + x_2 + x_2^d = 9$
 $x_2^d = 9 - x_1 - x_2$

Po podstawieniu x₁^d i x₂^d Warunek 2 ma postać

$$y_1 x_1^d + y_2 x_2^d + y_1^d x_1 + y_2^d x_2 = 0$$

6.3.1. Warunki Kuhna-Tuckera dla zadania programowania kwadratowego (3/3)

Sformułowanie warunków K-T

Warunek 3

$$g(x) \ge 0$$

Warunek ten stanowi powtórzenie ograniczeń rozpatrywanego zadania

$$g_1(x_1, x_2) = 10 - x_1 - 2x_2 \ge 0$$
 $g_2(x_1, x_2) = 9 - x_1 - x_2 \ge 0$

$$g_2(x_1, x_2) = 9 - x_1 - x_2 \ge 0$$

$$g_3(x_1, x_2) = x_1 \ge 0$$

$$g_4(x_1, x_2) = x_2 \ge 0$$

Uwzględniając zmienne bilansujące x_1^d i x_2^d , mamy:

$$10 - x_1 - x_2 - x_1^d = 0$$

$$9 - x_1 - x_2 - x_2^d = 0$$

$$x_1 \ge 0$$

$$x_2 \ge 0$$

Przenosimy wyrazy wolne na prawa stronę i mnożymy przez (-1):

$$x_1 + 2x_2 + x_1^d = 10$$

$$x_1 + x_2 + x_2^d = 9$$

$$x_1 \ge 0$$

$$x_2 \ge 0$$

6.3.1. Warunki Kuhna-Tuckera dla zadania programowania kwadratowego (3/3)

Sformułowanie warunków K-T

Warunek 4

$$y \ge 0$$

$$y_1 \ge 0$$
, $y_2 \ge 0$, $y_1^d \ge 0$, $y_2^d \ge 0$

Zestawienie warunków w wykorzystywanej dalej kolejności:

$$x_{1} + 2x_{2} + x_{1}^{d} = 10$$

$$20x_{1}^{1} + x_{2}^{1} + x_{2}^{2} + y_{1}^{1} + y_{2}^{2} - y_{1}^{d} = 10$$

$$4x_{1} + 2x_{2} + 2y_{1} + y_{2} - y_{2}^{d} = 25$$

$$x_{1}, x_{2}, x_{1}^{d}, x_{2}^{d}, y_{1}, y_{2}, y_{1}^{d}, y_{2}^{d} \ge 0$$

$$y_{1}x_{1}^{d} + y_{2}x_{2}^{d} + y_{1}^{d}x_{1} + y_{2}^{d}x_{2} = 0$$

6.3.2. Sformułowanie zadania zastępczego (1/1)

Zadanie zastępcze

$$w_{1} + w_{2} \rightarrow \min$$

$$x_{1} + 2x_{2} + x_{1}^{d} = 10$$

$$x_{1} + x_{2} + x_{2}^{d} = 9$$

$$20x_{1} + 4x_{2} + y_{1} + y_{2} - y_{1}^{d} + w_{1} = 10$$

$$4x_{1} + 2x_{2} + 2y_{1} + y_{2} - y_{2}^{d} + w_{2} = 25$$

$$x_{1}, x_{2}, x_{1}^{d}, x_{2}^{d}, y_{1}, y_{2}, y_{1}^{d}, y_{2}^{d}, w_{1}, w_{2} \ge 0$$

Pominiety warunek:

$$y_1 x_1^d + y_2 x_2^d + y_1^d x_1 + y_2^d x_2 = 0$$

Pary zmiennych komplementarnych:

$$y_1 \quad \mathbf{i} \quad x_1^d \qquad \qquad y_2 \quad \mathbf{i} \quad x_2^d \\ y_1^d \quad \mathbf{i} \quad x_1 \qquad \qquad y_2^d \quad \mathbf{i} \quad x_2$$

6.3.3. Rozwiązanie zadania zastępczego (1/5)

Przebieg obliczeń

$cx \rightarrow$	min	0	0	0	0	0	0	0	0	1	1	
Baza	c_B	x ₁	x ₂	x_1^d	x_2^d	\mathbf{y}_1	y_2	y_1^d	y_2^d	\mathbf{w}_1	\mathbf{w}_2	b
x_1^d	0	1	2	1	0	0	0	0	0	0	0	10
x_2^d	0	1	1	0	1	0	0	0	0	0	0	9
\mathbf{w}_1	1	20	4	0	0	1	1	-1	0	1	0	10
W_2	1	4	2	0	0	2	1	0	-1	0	1	25
c _j -	\mathbf{z}_{j}	-24	-6	0	0	-3	-2	1	1	0	0	

6.3.3. Rozwiązanie zadania zastępczego (2/5)

Przebieg obliczeń (c.d.)

$cx \rightarrow$	min	0	0	0	0	0	0	0	0	1	1	
Baza	c _B	x ₁	x ₂	x_1^d	x_2^d	\mathbf{y}_1	y ₂	y_1^d	y_2^d	\mathbf{w}_1	\mathbf{w}_2	b
x_1^d	0	0	1,8	1	0	-0,05	-0,05	0,05	0	-0,05	0	9,5
x_2^d	0	0	0,8	0	1	-0,05	-0,05	0,05	0	-0,05	0	8,5
\mathbf{x}_1	0	1	0,2	0	0	0,05	0,05	-0,05	0	0,05	0	0,5
W_2	1	0	1,2	0	0	1,8	0,8	0,2	-1	-0,2	1	23
c _i -	z _i	0	-1,2	0	0	-1,8	-0,8	-0,2	1	1,2	0	

6.3.3. Rozwiązanie zadania zastępczego (3/5)

Przebieg obliczeń (c.d.)

$cx \rightarrow$	min	0	0	0	0	0	0	0	0	1	1	
Baza	c_B	x ₁	\mathbf{x}_2	x_1^d	x_2^d	\mathbf{y}_1	y_2	y_1^d	y_2^d	\mathbf{w}_1	\mathbf{w}_2	b
x_1^d	0	-9	0	1	0	-0,5	-0,5	0,5	0	-0,25	0	5
\mathbf{x}_{2}^{d}	0	-4	0	0	1	-0,25	-0,25	0,25	0	-0,25	0	6,5
\mathbf{x}_2	0	5	1	0	0	0,25	0,25	-0,25	0	0,25	0	2,5
W_2	1	-6	0	0	0	1,5	0,5	0,5	-1	-0,5	1	20
c _j -	$\mathbf{z}_{\mathbf{j}}$	6	0	0	0	-1,5	-0,5	-0,5	1	1,5	0	

6.3.3. Rozwiązanie zadania zastępczego (4/5)

Przebieg obliczeń (c.d.)

$cx \rightarrow$	min	0	0	0	0	0	0	0	0	1	1	
Baza	c _B	x ₁	\mathbf{x}_2	x_1^d	x_2^d	y_1	y_2	y_1^d	y_2^d	\mathbf{w}_1	\mathbf{w}_2	b
y_1^d	0	-18	0	2	0	-1	-1	1	0	-1	0	10
x_2^d	0	0,5	0	-0,5	1	0	0	0	0	0	0	4
X_2	0	0,5	1	0	0	0	0	0	0	0	0	5
\mathbf{w}_2	1	3	0	-1	0	2	1	0	-1	0	1	15
c _j -	\mathbf{z}_{j}	-3	0	1	0	-2	-1	0	1	1	0	

6.3.3. Rozwiązanie zadania zastępczego (5/5)

Przebieg obliczeń (c.d.)

$cx \rightarrow$	min	0	0	0	0	0	0	0	0	1	1	•
Baza	c _B	\mathbf{x}_1	\mathbf{x}_2	x_1^d	x_2^d	\mathbf{y}_1	y ₂	y_1^d	y_2^d	\mathbf{w}_1	\mathbf{w}_2	b
y_1^d	0	-16,5	0	1,5	0	0	-0,5	1	-0,5	-1	0,5	17,5
x_2^d	0	0,5	0	-0,5	1	0	0	0	0	0	0	4
\mathbf{x}_2	0	0,5	1	0,5	0	0	0	0	0	0	0	5
y_2	1	1,5	0	-0,5	0	1	0,5	0	-0,5	0	0,5	7,5
c _j -z _j		0	0	0	0	0	0	0	0	1	1	

Z twierdzenia Kuhna-Tuckera:

$$x_1 = 0$$
, $x_2 = 5$ - rozwiązanie optymalne wyjściowego zadania programowania kwadratowego

6.3.4. Przypadek ogólny (1/5)

Przykład 6.3

$$f(x_1,x_2) = 10x_1 + 25x_2 - 10x_1^2 - x_2^2 - 4x_1x_2 \to \max$$

$$x_1 + 2x_2 \le 10$$

$$-x_1 - x_2 \le -9$$

$$x_1 \ge 0$$

$$x_2 \ge 0$$

Zadanie zastępcze

$$v_{1} + w_{1} + w_{2} \rightarrow \min$$

$$x_{1} + 2x_{2} + x_{1}^{d} = 10$$

$$x_{1} + x_{2} - x_{2}^{d} + v_{1} = 9$$

$$20x_{1} + 4x_{2} + y_{1} - y_{2} - y_{1}^{d} + w_{1} = 10$$

$$4x_{1} + 2x_{2} + 2y_{1} - y_{2} - y_{2}^{d} + w_{2} = 25$$

$$x_{1}, x_{2}, x_{1}^{d}, x_{2}^{d}, y_{1}, y_{2}, y_{1}^{d}, y_{2}^{d}, v_{1}, w_{1}, w_{2} \ge 0$$

6.3.4. Przypadek ogólny (2/5)

Iteracja 5

$cx \rightarrow$	min	0	0	0	0	0	0	0	0	1	1	1	
Baza	c_B	\mathbf{x}_1	\mathbf{x}_2	x_1^d	x_2^d	\mathbf{y}_1	y ₂	y_1^d	y_2^d	\mathbf{v}_1	\mathbf{w}_1	\mathbf{w}_2	b
\mathbf{x}_2	0	0,5	1	0,5	0	0	0	0	0	0	0	0	5
y_1	0	1,5	0	-0,5	0	1	-0,5	0	-0,5	0	0	0,5	7,5
y_1^d	0	-16,5	0	1,5	0	0	0,5	1	-0,5	0	-1	0,5	17,5
\mathbf{v}_1	1	0,5	0	-0,5	-1	0	0	0	0	1	0	0	4
c _j -	Z _j	-0,5	0	0,5	1	0	0	0	0	0	1	1	

6.3.4. Przypadek ogólny (3/5)

Iteracja 6

$cx \rightarrow$	min	0	0	0	0	0	0	0	0	1	1	1	
Baza	c_B	x ₁	\mathbf{x}_2	x_1^d	x_2^d	\mathbf{y}_1	y_2	y_1^d	y_2^d	\mathbf{v}_1	\mathbf{w}_1	\mathbf{w}_2	b
\mathbf{x}_2	0	0,5	1	0,5	0	0	0	0	0	0	0	0	5
y_1	0	-15	0	1	0	1	0	1	-1	0	-1	1	25
y_2	0	-33	0	3	0	0	1	2	-1	0	-2	1	35
\mathbf{v}_1	1	0,5	0	-0,5	-1	0	0	0	0	1	0	0	4
c _j -	\mathbf{z}_{j}	-0,5	0	0,5	1	0	0	0	0	0	1	1	

6.3.4. Przypadek ogólny (4/5)

Iteracja 7

$cx \rightarrow$	min	0	0	0	0	0	0	0	0	1	1	1	•
Baza	c _B	x ₁	\mathbf{x}_2	x_1^d	x_2^d	\mathbf{y}_1	y_2	y_1^d	y_2^d	\mathbf{v}_1	\mathbf{w}_1	\mathbf{w}_2	b
\mathbf{x}_2	0	0	1	1	1	0	0	0	0	-1	0	0	1
y_1	0	0	0	-14	-30	1	0	1	-1	30	-1	1	145
y_2	0	0	0	-30	-66	0	1	2	-1	66	-2	1	299
\mathbf{x}_1	0	1	0	-1	-2	0	0	0	0	2	0	0	8
c _j -z _j		0	0	0	0	0	0	0	0	0	1	1	

Z twierdzenia Kuhna-Tuckera:

$$x_1 = 8$$
, $x_2 = 1$ - rozwiązanie optymalne wyjściowego zadania programowania kwadratowego

6.3.4. Przypadek ogólny (5/5)

Przykład 6.4

$$f(x_1,x_2) = 10x_1 - 25x_2 - 10x_1^2 - x_2^2 - 4x_1x_2 \to \max$$

$$x_1 + 2x_2 \le 10$$

$$-x_1 - x_2 \le -9$$

$$x_1 \ge 0$$

$$x_2 \ge 0$$

Zadanie zastępcze

$$v_{1} + w_{1} \rightarrow \min$$

$$x_{1} + 2x_{2} + x_{1}^{d} = 10$$

$$x_{1} + x_{2} - x_{2}^{d} + v_{1} = 9$$

$$20x_{1} + 4x_{2} + y_{1} - y_{2} - y_{1}^{d} + w_{1} = 10$$

$$-4x_{1} - 2x_{2} - 2y_{1} + y_{2} + y_{2}^{d} = 25$$

$$x_{1}, x_{2}, x_{1}^{d}, x_{2}^{d}, y_{1}, y_{2}, y_{1}^{d}, y_{2}^{d}, v_{1}, w_{1} \ge 0$$

6.3.5. Reguły postępowania w metodzie Wolfe'a (1/1)

Algorytm

- 1. Zapisanie warunków Kuhna-Tuckera.
- 2. Zapisanie zadania zastępczego:
 - a) zmienne sztuczne typu w,
 - b) zmienne sztuczne typu v.
- 3. Rozwiązanie zadania zastępczego:
 - a) wybór zmiennej kandydującej do bazy,
 - b) sprawdzenie, czy wybór zmiennej kandydującej był właściwy,
 - c) wybór zmiennej usuwanej z bazy,
 - d) badanie niesprzeczności zadania.
- 4. Odczytanie rozwiązania zadania wyjściowego.

6.4. Optymalny portfel akcji

6.4.1. Oczekiwana stopa zysku i ryzyko portfela (1/2)

Podstawowe pojęcia

Określić taki skład portfela, złożonego z akcji *n* spółek, by zminimalizować ryzyko portfela, przy założonym z góry poziomie oczekiwanego zysku.

Stopa zysku z i-tej akcji w okresie t (t = 1, ..., T)

Oczekiwana stopa zysku z *i*-tej akcji

Udziały akcji w portfelu

Oczekiwana stopa zysku portfela akcji

$$R_i(t) = \frac{P_i(t) - P_i(t-1)}{P_i(t-1)}$$

$$R_i = \frac{1}{T} \sum_{t=2}^{T} R_i(t)$$

$$\sum_{i=1}^{n} x_i = 1, \qquad x_i \ge 0$$

$$R_p = \sum_{i=1}^n R_i x_i$$

6.4.1. Oczekiwana stopa zysku i ryzyko portfela (2/2)

Podstawowe pojęcia (c.d.)

$$v_p = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i x_j S_i S_j r_{ij}$$

$$S_i = \sqrt{\frac{1}{T} \sum_{t=1}^{T} (R_i(t) - R_i)^2}$$

$$r_{ij} = \frac{\frac{1}{T} \sum_{t=1}^{T} (R_i(t) - R_i) (R_j(t) - R_j)}{S_i S_j} = \frac{\text{cov}(R_i, R_j)}{S_i S_j}$$

$$v_p = \sum_{i=1}^{n} \sum_{i=1}^{n} x_i x_j \operatorname{cov}(R_i, R_j)$$

6.4.2. Optymalizacja portfela akcji jako zadanie programowania kwadratowego (1/7)

Sformułowanie zadania

$$\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} x_{j} v_{ij} \rightarrow \min$$

$$\sum_{i=1}^{n} R_{i} x_{i} \geq R_{0}$$

$$\sum_{i=1}^{n} R_{i} x_{i} \geq R_{0}$$

$$\sum_{i=1}^{n} x_{i} = 1$$

$$\sum_{i=1}^{n} x_{i} = 1$$

$$x \geq 0$$

$$x_i \ge 0$$
 dla $i = 1, ..., n$

V – macierz wariancji i kowariancji ($V = [cov(R_i, R_j)]$),

$$\mathbf{R} = \begin{bmatrix} R_1, \dots, R_n \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, \quad \mathbf{0} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}, \quad \mathbf{1} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$$

6.4.2. Optymalizacja portfela akcji jako zadanie programowania kwadratowego (2/7)

Przykład 6.4

Notowania						
Spółka 1	Spółka 2	Spółka 3	Spółka 4	Spółka 5		
53.60	15.20	273.00	26.90	67.50		
52.00	15.75	283.00	27.20	66.00		
51.00	15.50	275.50	27.80	66.50		
52.30	15.50	270.00	29.30	65.70		
54.60	15.25	274.50	31.40	68.00		
58.30	15.20	290.00	29.80	69.00		
61.00	15.50	283.50	28.70	70.00		
61.90	15.50	281.00	29.00	69.00		
61.90	16.00	286.00	28.90	68.30		
59.40	16.00	286.00	29.80	68.10		
64.20	16.50	285.00	33.00	68.80		
66.60	16.90	272.00	32.70	71.50		
65.70	17.70	270.50	34.30	75.30		
64.30	17.20	265.00	34.50	73.90		
64.30	17.30	267.00	34.00	74.00		
66.20	17.20	263.50	33.30	72.30		
67.60	18.60	265.00	32.90	72.40		
67.10	18.50	268.00	32.80	72.20		
65.10	17.95	270.00	31.30	71.40		
65.00	18.50	269.50	29.10	72.10		
64.00	19.15	270.50	31.00	73.50		

Oczekiwane stopy zysku z akcji w okresie t w %						
Spółka 1	Spółka 2	Spółka 3	Spółka 4	Spółka 5		
-2.99	3.62	3.66	1.12	-2.22		
-1.92	-1.59	-2.65	2.21	0.76		
2.55	0.00	-2.00	5.40	-1.20		
4.40	-1.61	1.67	7.17	3.50		
6.78	-0.33	5.65	-5.10	1.47		
4.63	1.97	-2.24	-3.69	1.45		
1.48	0.00	-0.88	1.05	-1.43		
0.00	3.23	1.78	-0.34	-1.01		
-4.04	0.00	0.00	3.11	-0.29		
8.08	3.13	-0.35	10.74	1.03		
3.74	2.42	-4.56	-0.91	3.92		
-1.35	4.73	-0.55	4.89	5.31		
-2.13	-2.82	-2.03	0.58	-1.86		
0.00	0.58	0.75	-1.45	0.14		
2.95	-0.58	-1.31	-2.06	-2.30		
2.11	8.14	0.57	-1.20	0.14		
-0.74	-0.54	1.13	-0.30	-0.28		
-2.98	-2.97	0.75	-4.57	-1.11		
-0.15	3.06	-0.19	-7.03	0.98		
-1.54	3.51	0.37	6.53	1.94		

6.4.2. Optymalizacja portfela akcji jako zadanie programowania kwadratowego (3/7)

Obliczenia pomocnicze

Oczekiwane stopy zysku z akcji w %							
p	Spółka 1	Spółka 2	Spółka 3	Spółka 4	Spółka 5		
R _i -	0.94	1.20	-0.02	0.81	0.45		

Macierz wariancji-kowariancji stóp zysku						
	Spółka 1	Spółka 2	Spółka 3	Spółka 4	Spółka 5	
Spółka 1	11.4312	1.1701	0.1232	1.6619	2.0254	
Spółka 2	1.1701	7.7723	0.4983	1.1374	1.7056	
Spółka 3	0.1232	0.4983	5.1598	-1.3094	-0.6307	
Spółka 4	1.6619	1.1374	-1.3094	20.2858	2.2824	
Spółka 5	2.0254	1.7056	-0.6307	2.2824	4.3189	

6.4.2. Optymalizacja portfela akcji jako zadanie programowania kwadratowego (4/7)

Model matematyczny

Cel

Znalezienie portfela akcji minimalizującego ryzyko o zadanej oczekiwanej stopie zysku.

Zmienne decyzyjne

 x_1 – udział w portfelu akcji spółki 1,

 x_2 – udział w portfelu akcji spółki 2,

 x_3 – udział w portfelu akcji spółki 3,

 x_4 – udział w portfelu akcji spółki 4,

 x_5 – udział w portfelu akcji spółki 5,

6.4.2. Optymalizacja portfela akcji jako zadanie programowania kwadratowego (5/7)

Model matematyczny (c.d.)

Funkcja celu

$$f(x_1, x_2, x_3, x_4, x_5) = [x_1, x_2, x_3, x_4, x_5] \cdot \mathbf{V} \cdot [x_1, x_2, x_3, x_4, x_5]^{\mathrm{T}} \rightarrow \min$$

$$V =$$
11.43121.17010.12321.66192.02541.17017.77230.49831.13741.70560.12320.49835.1598-1.3094-0.63071.66191.1374-1.309420.28582.28242.02541.7056-0.63072.28244.3189

Ograniczenia

oczekiwany zysk z portfela ma być większy od 1%, czyli:

$$0.94x_1 + 1.20x_2 - 0.02x_3 + 0.81x_4 + 0.45x_5 \ge 1$$

udziały akcji w portfelu sumują się do jedności:

$$x_1 + x_2 + x_3 + x_4 + x_5 = 1$$

warunki nieujemności:

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

6.4.2. Optymalizacja portfela akcji jako zadanie programowania kwadratowego (6/7)

Rozwinięta postać zadania

$$f(x_1, x_2, x_3, x_4, x_5) = \begin{bmatrix} 11,4312 & 1,1701 & 0,1232 & 1,6619 & 2,0254 \\ 1,1701 & 7,7723 & 0,4983 & 1,1374 & 1,7056 \\ 0,1232 & 0,4983 & 5,1598 & -1,3094 & -0,6307 \\ 1,6619 & 1,1374 & -1,3094 & 20,2858 & 2,2824 \\ 2,0254 & 1,7056 & -0,6307 & 2,2824 & 4,3189 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} \rightarrow \max$$

przy warunkach ograniczających:

$$-0.94x_{1} - 1.20x_{2} + 0.02x_{3} - 0.81x_{4} - 0.45x_{5} \le -1$$

$$x_{1} + x_{2} + x_{3} + x_{4} + x_{5} \le 1$$

$$-x_{1} - x_{2} - x_{3} - x_{4} - x_{5} \le -1$$

$$x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \ge 0$$

6.4.2. Optymalizacja portfela akcji jako zadanie programowania kwadratowego (7/7)

Rozwiązanie i interpretacja

Rozwiązanie optymalne

$$x_1 = 0.2468$$
 $x_2 = 0.5391$ $x_3 = 0.0285$ $x_4 = 0.1060$ $x_5 = 0.0797$

Interpretacja rozwiązania

Optymalny portfel, dla którego stopa oczekiwanego zysku jest nie mniejsza niż 1% będzie się składał (w ujęciu wartościowym) w 24,68% z akcji spółki 1, w 53,91% z akcji spółki 2, w 2,85% z akcji spółki 3, w 10,6% z akcji spółki 4 i w 7,97% akcji spółki 5. Ryzyko takiego portfela wynosi $\sqrt{2} \approx 1,41$

6.4.3. Dwukryterialne zadanie poszukiwania optymalnego portfela akcji (1/5)

Przykład 6.4

<u>Cel</u>

Szukamy takiego portfela akcji, dla którego ryzyko jest minimalne, a oczekiwany zysk portfela – maksymalny.

Zmienne decyzyjne

 x_1 – udział w portfelu akcji spółki 1,

 x_2 – udział w portfelu akcji spółki 2,

 x_3 – udział w portfelu akcji spółki 3,

 x_4 – udział w portfelu akcji spółki 4,

 x_5 – udział w portfelu akcji spółki 5,

6.4.3. Dwukryterialne zadanie poszukiwania optymalnego portfela akcji (2/5)

Model matematyczny

Funkcje celu

Minimalizacja ryzyka portfela

$$\begin{bmatrix} 11,4312 & 1,1701 & 0,1232 & 1,6619 & 2,0254 \\ 1,1701 & 7,7723 & 0,4983 & 1,1374 & 1,7056 \\ 0,1232 & 0,4983 & 5,1598 & -1,3094 & -0,6307 \\ 1,6619 & 1,1374 & -1,3094 & 20,2858 & 2,2824 \\ 2,0254 & 1,7056 & -0,6307 & 2,2824 & 4,3189 \end{bmatrix} [x_1,x_2,x_3,x_4,x_5]^T \to \min$$

Maksymalizacja oczekiwanej stopy zysku portfela:

$$0.94x_1 + 1.2x_2 - 0.02x_3 + 0.81x_4 + 0.45x_5 \rightarrow \text{max}$$

Ograniczenia

$$x_1 + x_2 + x_3 + x_4 + x_5 = 1$$
$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

6.4.3. Dwukryterialne zadanie poszukiwania optymalnego portfela akcji (3/5)

Metoda satysfakcjonującego poziomu kryteriów

Funkcja celu

$$\begin{bmatrix} 11,4312 & 1,1701 & 0,1232 & 1,6619 & 2,0254 \\ 1,1701 & 7,7723 & 0,4983 & 1,1374 & 1,7056 \\ 0,1232 & 0,4983 & 5,1598 & -1,3094 & -0,6307 \\ 1,6619 & 1,1374 & -1,3094 & 20,2858 & 2,2824 \\ 2,0254 & 1,7056 & -0,6307 & 2,2824 & 4,3189 \end{bmatrix} \begin{bmatrix} x_1,x_2,x_3,x_4,x_5 \end{bmatrix}^T \to \min$$

Ograniczenia

$$\begin{aligned} -0.94x_1 - 1.20x_2 + 0.02x_3 - 0.81x_4 - 0.45x_5 &\leq -R_0 \\ x_1 + & x_2 + & x_3 + & x_4 + & x_5 &\leq 1 \\ -x_1 - & x_2 - & x_3 - & x_4 - & x_5 &\leq -1 \\ x_1, x_2, x_3, x_4, x_5 &\geq 0 \end{aligned}$$

6.4.3. Dwukryterialne zadanie poszukiwania optymalnego portfela akcji (4/5)

Wyniki obliczeń

Parametry portfeli wyznaczonych dla założonych wartości R ₀							
Lp	R_0	V_p	x ₁	\mathbf{x}_2	x ₃	X ₄	X ₅
P_1	1.2	2.79	0	1	0	0	0
P_2	1.15	2.42	0.1841	0.8104	0	0.0054	0
P_3	1.1	2.20	0.2527	0.6594	0	0.0879	0
P_4	1.0	2.00	0.2468	0.5391	0.0285	0.1060	0.0797
P_5	0.9	1.83	0.2171	0.4671	0.0897	0.0986	0.1275
P_6	0.8	1.67	0.1874	0.3951	0.1510	0.0911	0.1754
P_7	0.7	1.53	0.1577	0.3231	0.2122	0.0837	0.2233
P_8	0.6	1.43	0.1280	0.2511	0.2734	0.0763	0.2711
P_9	0.5	1.36	0.0984	0.1791	0.3347	0.0689	0.3190
P ₁₀	0.4	1.34	0.0687	0.1071	0.3959	0.0615	0.3668

6.4.3. Dwukryterialne zadanie poszukiwania optymalnego portfela akcji (5/5)

Pora na relaks

