

Audio-Visual speech separation: Datasets

Pan Zexu

Outlines

- Audio-visual (AV) speech separation / speaker extraction datasets.
 - 1.1. Overlapped speech simulation procedure.
 - 1.2. Grid datasets [1]
 - 1.3. LRS2 datasets [2]
 - 1.4. AVSpeech datasets [3]
- 2. Other AV datasets related to speech front-end processing.
 - 2.1. AV Active speaker detection: AVA-ActiveSpeaker [4]
 - 2.2. AV diarization: VoxConverse [5]

^[1] M. Cooke, J. Barker, S. Cunningham, and X. Shao. An audio-visual corpus for speech perception and automatic speech recognition. The Journal of the Acoustical Society of America, 120(5):2421–2424, 2006.

^[2] Afouras, Triantafyllos, et al. "Deep audio-visual speech recognition." IEEE transactions on pattern analysis and machine intelligence (2018).

^[3] Ephrat, Ariel, et al. "Looking to listen at the cocktail party: a speaker-independent audio-visual model for speech separation." ACM Transactions on Graphics (TOG) 37.4 (2018): 1-11.

^[4] Roth, Joseph, et al. "Ava Active Speaker: An Audio-Visual Dataset for Active Speaker Detection." ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020.

^[5] Chung, Joon Son, et al. "Spot the conversation: speaker diarisation in the wild." arXiv preprint arXiv:2007.01216 (2020).

Outlines

- Audio-visual (AV) speech separation / speaker extraction datasets.
 - 1.1. Overlapped speech simulation procedure.
 - 1.2. Grid dataset [1]
 - 1.3. LRS2 dataset [2]
 - 1.4. AVSpeech dataset [3]
- 2. Other AV datasets related to speech front-end processing.
 - 2.1. AV Active speaker detection: AVA-ActiveSpeaker [4]
 - 2.2. AV diarization: VoxConverse [5]

1.1 Overlapped speech simulation

1.1 Datasets used since 2017

Datasets of 21 AV speech separation paper

Table 1: Statistics of commonly used AV speaker extraction datasets

	Datasets	No. hours	Language	Speakers
Small	Grid	27.5	English	33
	TCD-TIMIT	10	English	62
Medium	LRS2 (BBC)	224	English	-
	LRS3 (TED)	475	English	5543
Large	AVSpeech	4700	Mix	-
	VoxCeleb2	2000	Mix	6112

1.2 Grid dataset

1. Intro

- a. Multitalker audiovisual sentence corpus of 1000 sentences spoken by each of 34 English talkers (18 male, 16 female). Sentences are of the form "put red at G9 now"
- b. The dataset is recorded in lab environment, thus it is background noise free. However, The vocabulary size is very small (51).
- c. Primarily used for audio visual automatic speech recognition. Overlapped speech is simulated if it is used for speech separation.

Content

- a. Audio: 3 seconds @ 25 kHz
- b. Video: 3 seconds (750*576 pixels, ~6kbit/s)
- c. Text: transcriptions (eg: place red at C9 again)

1.2 Grid dataset

3. Results on Speech separation

- a. Each paper is using their own simulated datasets. No standard benchmark.
- b. Separate target speech from overlapped speech and background nose: [1], [2]
- c. Separate target speech from overlapped speech: [3],[4],[5],[6],[7]
- d. Speaker dependent: [1],[4]

Table 2 : Results of Audio-visual speech extraction on Grid dataset.

	SNRi	PESQi
Visual Speech enhancement [1]	5.59	0.95
A visual pilot [2]	8.78	0.89
Listen and look [3]	8.64	-
Seeing through noise [4]	5.58	0.5
Audio-Visual deep clustering [5]	8.95	-
Face landmark based [6]	7.84	0.76
Event Driven cameras [7]	6.82	0.71

^[1] Gabbay, Aviv, Asaph Shamir, and Shmuel Peleg. "Visual Speech Enhancement." Proc. Interspeech 2018 (2018): 1170-1174.

^[2] Li, Yun, et al. "A Visual-Pilot Deep Fusion for Target Speech Separation in Multitalker Noisy Environment." ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020.

^[3] Lu, Rui, Zhiyao Duan, and Changshui Zhang. "Listen and look: Audio-visual matching assisted speech source separation." *IEEE Signal Processing Letters* 25.9 (2018): 1315-1319. [4] Gabbay, Aviv, et al. "Seeing through noise: Visually driven speaker separation and enhancement." *2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*. IEEE, 2018.

^[5] Lu, Rui, Zhiyao Duan, and Changshui Zhang. "Audio-visual deep clustering for speech separation." *IEEE/ACM Transactions on Audio, Speech, and Language Processing* 27.11 (2019): 1697-1712.

^[7] Morrone, Giovanni, et al. "Face landmark-based speaker-independent audio-visual speech enhancement in multi-talker environments." ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019.

^[8] Arriandiaga, Ander, et al. "Audio-Visual Target Speaker Extraction on Multi-Talker Environment using Event-Driven Cameras." arXiv preprint arXiv:1912.02671 (2019).

1.3 LRS2 dataset

1. Intro

- a. Oxford-BBC Lip reading sentences 2 datasets contains English videos from BBC television.
 The train, val and test divided according to broadcast date.
- b. It was primarily used for audio-visual automatic speech recognition. Overlapped speech is simulated if it is used for speech separation.

2. Content

a. Video: 160*160 pixels at 25fps

b. Audio: Extracted from video with 16kHz.

c. Text: Transcriptions.

Set	Dates	# utterances	# word instances	Vocab
Pre-train	11/2010-06/2016	96,318	2,064,118	41,427
Train	11/2010-06/2016	45,839	329,180	17,660
Validation	06/2016-09/2016	1,082	7,866	1,984
Test	09/2016-03/2017	1,243	6,663	1,698

1.3 LRS2 dataset

3. Results on Speech Separation

 Each paper is using their own simulated datasets. No standard benchmark.

Table 3: Results of Audio-visual speech extraction on LRS2 dataset with two speaker overlapped.

LRS2	SNRi (SNR)	PESQi (PESQ)
Deep audio-visual [1]	(12.6)	(3.18)
The conversation [2]	12.1	1.35
My lips are concealed [3]	12.8	-
Time domain av [4]	(13.03)	-

^[1] Li, Chenda, and Yanmin Qian. "Deep Audio-Visual Speech Separation with Attention Mechanism." ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020.

^[2] Afouras, Triantafyllos, Joon Son Chung, and Andrew Zisserman. "The Conversation: Deep Audio-Visual Speech Enhancement." *Proc. Interspeech 2018* (2018): 3244-3248. [3] Afouras, Triantafyllos, Joon Son Chung, and Andrew Zisserman. "My Lips Are Concealed: Audio-Visual Speech Enhancement Through Obstructions}." *Proc. Interspeech 2019* (2019): 4295-4299.

^[4] Wu, Jian, et al. "Time domain audio visual speech separation." 2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU). IEEE, 2019.

1.4 AVSpeech dataset

1. Intro

- a. Audio-visual datasets of youtube video clips with no interfering background noise.
- b. Spanning a variety of people, language and face poses.
- c. Primarily used for audio visual speech enhancement and separation. Overlapped speech is simulated for speech separation.

2. Content

a. Video: 290k video segments, 3-10 seconds each

3. Results on speech separation

- a. [1] used the full dataset
- b. [2] used a subset of 100 hours

Table 4: Results of Audio-visual speech extraction on AVSpeech dataset with two speaker overlapped.

AVSpeech	SNRi	PESQi
Looking to listen [1]	9.9	-
Video Conferencing [2]	11.34	0.45

^[1] Ephrat, Ariel, et al. "Looking to listen at the cocktail party: a speaker-independent audio-visual model for speech separation." ACM Transactions on Graphics (TOG) 37.4 (2018): 1-11

Outlines

- 1. Audio-visual (AV) speech separation / speaker extraction datasets.
 - 1.1. Overlapped speech simulation procedure.
 - 1.2. Grid dataset
 - 1.3. LRS2 dataset
 - 1.4. AVSpeech dataset
- 2. Other AV datasets related to speech front-end processing.
 - 2.1. AV Active speaker detection: AVA-ActiveSpeaker
 - 2.2. AV diarization: VoxConverse

2.1 AVA-ActiveSpeaker

1. Intro:

- a. Active speaker detection: To detect the speaking face in the video given the audio and video.
- The dataset consist of 3.65 frames with 38.5 hours of face tracks from TV shows / movies.
- c. Spanning a variety of people, language and face poses.

2. Content:

- a. Video: 153 TV shows/ movies
- b. Label: Bounding box of all face tracks in one frame with label (0: speaking, 1:non_speaking)
- c. Each face track has a (local) identity. A new identity is assigned to the same person if the face tracking algorithm stopped and re-track the same person.

Figure 13: Visualizations of overlapping speaker instances. A green bounding box represents speaking and audible, yellow represents speaking and inaudible, red represents not speaking.

2.2 VoxConverse

1. Intro:

- a. Diarisation: who spoke when in the video. Different from the active speaker detection, we also need to cluster the speakers with their identity globally.
- b. Audio-visual diarisation dataset consist of over 50 hours of multispeaker clips of human speech from youtube videos.

2. Content:

- a. Video: To be confirmed.
- b. Audio:
- c. Label: Rich Transcription Time Marked (RTTM) files
- d. Only development audio files are available now. Visual files are not released yet.
- e. Test set will be released in October 2020 after the VoxCeleb Speaker Recognition Challenge

Conclusion

- Audio-visual (AV) speech separation / speaker extraction datasets.
 - 1.1. Overlapped speech simulation procedure.
 - 1.2. Grid dataset
 - 1.3. LRS2 dataset
 - 1.4. AVSpeech dataset
- 2. Other AV datasets related to speech front-end processing.
 - 2.1. AV Active speaker detection: AVA-ActiveSpeake
 - 2.2. AV diarization: VoxConverse

