

"Scalable Systolic Array Multiplier Optimized by Sparse Matrix"

Presented By:

Banda Anusha (MT2022504)

Dantu Nandini Devi (MS2022007)

Mahati Basavaraju(MS2022016)

Vasanthi D R (PH2021504)

AGENDA

- Objective
- Introduction
- Application
- Paper Implementation & Simulation Results
- Proposed Method
- Implementation Results
- Future Work & Conclusion
- References

Objective

Sparse matrix multiplication optimized by scalable systolic array has been considered, which was compared with traditional systolic array for application in neural networks.

INTRODUCTION - SYSTOLIC ARRAY

IS

OS

Cont.

SPARSE MATRIX MULTIPLICATION

Row	0	0	1	1	3	3
Column	2	4	2	a	1	2
Value	3	4	5	7	2	6

APPLICATION - CONVOLTUTION NEURAL NETWORK

Convolution Layer

Process: Convolution

Fully-Connected Layer

Process: Matrix Multiplication

PAPER IMLEMENTATION

Cont.

Structure of Computation Unit

SIMULATION RESULTS

FPGA Results

Multiplier Structure	Delay (ns)	LUT
Traditional systolic array	7.874	732
Optimized sparse matrix	6.827	658

ASIC Results

Multiplier Structure	Delay (ps)	AREA (um^2)
Traditional systolic array	4817	5187.146
Optimized sparse matrix	2767	4368.024

Convolution using Paper Implementation

Systolic Array Structure for Convolution

N x N cycles

Simulation Results

Proposed Method

N cycles

Simulation Results

Implementation Results

Original Image

Gaussian Image

FUTURE WORK

- Replace adders and multipliers with their efficient counterparts.
- Include Compressed Sparse Row.

CONCLUSION

- AND gate in paper is replaced by Bitwise OR to get required results.
- Convolution is also implemented with same architecture and a new one.
- Significant improvement in delay and number of clock cycles has been found with respect to traditional structure.

REFERENCES

- [1] R. Jia, T. Xu and Y. Chang, "Scalable Systolic Array Multiplier Optimized by Sparse Matrix," 2021 IEEE 14th International Conference on ASIC (ASICON), Kunming, China, 2021, pp. 1-4, doi: 10.1109/ASICON52560.2021.9620326.
- [2] Asgari B , Hadidi R , Kim H . Proposing a Fast and Scalable Systolic Array for Matrix Multiplication, 2020 IEEE 28th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM). IEEE, 2020.
- [3] Petkov N. Systolic arrays for matrix I/O format conversion[J]. Electron. Lett. 1988.
- [4] Tang L, Cai G, Zheng Y, et al. A resource and performance optimization reduction circuit on FPGAs[J]. IEEE Transactions on Parallel and Distributed Systems, 2020, 32(2): 355-366.
- [5] R. W. Means, "A new two-dimensional systolic array for image processing and neural network applications," *IJCNN-91-Seattle International Joint Conference on Neural Networks*, Seattle, WA, USA, 1991, pp. 925 vol.2-, doi: 10.1109/IJCNN.1991.155582.

