# Relation of Literacy Rate of a State and Wealth of People

Sachin Kohli CS20123

## **Table of Contents**

- 1. Abstract
- 2. Introduction
- 3. Methodology
- 4. Data Cleaning
- 5. Imported Libraries
- 6. Dataset Used
- 7. Data Summary
- 8. Calculating Different Literacy Rates
- 9. Plotting Literacy Rate of Different States in Order
- 10. Calculating Data for Wealth Metric
- 11. Dimensionality Reduction using PCA
- 12. Result
  - Correlation
  - Wealth vs Literacy Rate
  - Wealth vs Male Literacy Rate
  - Wealth vs Female Literacy Rate
- 13. Conclusion
- 14. Dataset Reference

#### **Abstract**

In this document we will try to find a relationship between Literacy Rate of different States with the wealth of it's people using the Census of 2011. Literacy Rate is a very straight-forward metric to calculate but same cannot be said for the metric of Wealth.

In this document to calculate the Wealth of people we use attributes such as commodities owned by a particular household. However such metric doesn't give us the exact wealth of the household but gives us a rough estimate about the wealth of the household which is good enough to find relation between the two.

#### Introduction

- Census is the process of collection and compilation of data of population of a country.
- It is a reflection of truth and facts as they exist in a country about its people.
- It is conducted once in every ten years, the last census was conducted in the year 2011.
- Its comprises of population count of different sections of society with their geographic location, details of different commodity owned by households, etc. But for the project we are only concerned with the two above mentioned usecases.

• Here we are going to see whether literacy rate relates to Wealth or not by graphically plotting their respective metrics with each other.

## Methodology

- Data Source Used
  - The Census Data of 2011 is Used

#### • For Calculation of Literacy Rate

- First we calculate the Total population then,
- calculate Literate population the finally,
- Literacy Rate = Literate Population / Total Population

#### • For Calculation of Wealth Metric

- Calculate the households with Electricity, Television, Computer, Two-Wheeler and Four-Wheeler.
- Divide the above by Total households
- Now we get five columns of values, we reduce this to two column values by PCA
- Atlast we plot graph between the most significant principle component, which is
   Wealth with Literacy Rate

## **Data Cleaning**

- Data was manually cleaned through MS Excel.
- Certain names were change according to preference.

## **Imported Libraries**

```
In [288...
```

```
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
import numpy as np
```

#### **Dataset Used**

```
In [289...
```

```
df = pd.read_csv('census_2011.csv')
df.head()
```

Out[289...

| •• |   | District code | State name              | District<br>name | Population | Male   | Female | Literate | Male_Literate | Female_Liter |
|----|---|---------------|-------------------------|------------------|------------|--------|--------|----------|---------------|--------------|
|    | 0 | 1             | JAMMU<br>AND<br>KASHMIR | Kupwara          | 870354     | 474190 | 396164 | 439654   | 282823        | 1568         |
|    | 1 | 2             | JAMMU<br>AND<br>KASHMIR | Badgam           | 753745     | 398041 | 355704 | 335649   | 207741        | 1279         |
|    | 2 | 3             | JAMMU<br>AND<br>KASHMIR | Leh(Ladakh)      | 133487     | 78971  | 54516  | 93770    | 62834         | 309          |

|     | District code        | State<br>name           | District name | Population | Male   | Female | Literate | Male_Literate | Female_Liter |  |
|-----|----------------------|-------------------------|---------------|------------|--------|--------|----------|---------------|--------------|--|
| 3   | 4                    | JAMMU<br>AND<br>KASHMIR | Kargil        | 140802     | 77785  | 63017  | 86236    | 56301         | 299          |  |
| 4   | 5                    | JAMMU<br>AND<br>KASHMIR | Punch         | 476835     | 251899 | 224936 | 261724   | 163333        | 98:          |  |
| 5 r | 5 rows × 118 columns |                         |               |            |        |        |          |               |              |  |
| 4   |                      |                         |               |            |        |        |          |               | <b>&gt;</b>  |  |

## **Data Summary**

```
In [290... df.describe()
```

Out[290...

|       | District code | Population   | Male         | Female       | Literate     | Male_Literate | Female_ |
|-------|---------------|--------------|--------------|--------------|--------------|---------------|---------|
| count | 640.000000    | 6.400000e+02 | 6.400000e+02 | 6.400000e+02 | 6.400000e+02 | 6.400000e+02  | 6.4000  |
| mean  | 320.500000    | 1.891961e+06 | 9.738598e+05 | 9.181011e+05 | 1.193186e+06 | 6.793182e+05  | 5.1386  |
| std   | 184.896367    | 1.544380e+06 | 8.007785e+05 | 7.449864e+05 | 1.068583e+06 | 5.924144e+05  | 4.8018  |
| min   | 1.000000      | 8.004000e+03 | 4.414000e+03 | 3.590000e+03 | 4.436000e+03 | 2.614000e+03  | 1.8220  |
| 25%   | 160.750000    | 8.178610e+05 | 4.171682e+05 | 4.017458e+05 | 4.825982e+05 | 2.764365e+05  | 2.0089  |
| 50%   | 320.500000    | 1.557367e+06 | 7.986815e+05 | 7.589200e+05 | 9.573465e+05 | 5.483525e+05  | 4.0385  |
| 75%   | 480.250000    | 2.583551e+06 | 1.338604e+06 | 1.264277e+06 | 1.602260e+06 | 9.188582e+05  | 6.6415  |
| max   | 640.000000    | 1.106015e+07 | 5.865078e+06 | 5.195070e+06 | 8.227161e+06 | 4.591396e+06  | 3.6357  |
|       |               |              |              |              |              |               |         |

8 rows × 116 columns

## **Calculating Different Literacy Rates**

```
states = pd.Series(df['State name']).unique().tolist()
In [291...
          pop = [0 for i in states]
          f_pop = [0 for i in states]
          m_pop = [0 for i in states]
          lit = [0 for i in states]
          f_lit = [0 for i in states]
          m_lit = [0 for i in states]
          f_rate = [0 for i in states]
          m_rate = [0 for i in states]
          rate = [0 for i in states]
          for index,row in df.iterrows():
              sn = row['State name']
              i = states.index(sn)
              pop[i] += row['Population']
              f pop[i] += row['Female']
              m_pop[i] += row['Male']
              lit[i] += row['Literate']
              f_lit[i] += row['Female_Literate']
              m_lit[i] += row['Male_Literate']
```

```
for i in range(35):
    f_rate[i] = f_lit[i]/f_pop[i]
    m_rate[i] = m_lit[i]/m_pop[i]
    rate[i] = lit[i]/pop[i]

dic = {'State':states, 'Literacy Rate':rate, 'Female Literacy Rate':f_rate, 'Male Literacy Rate' = pd.DataFrame(dic)

new_df
```

Out[291...

|    | State                  | Literacy Rate | Female Literacy Rate | Male Literacy Rate |
|----|------------------------|---------------|----------------------|--------------------|
| 0  | JAMMU AND KASHMIR      | 0.563517      | 0.474959             | 0.642206           |
| 1  | HIMACHAL PRADESH       | 0.734163      | 0.676125             | 0.790549           |
| 2  | PUNJAB                 | 0.674293      | 0.631194             | 0.712871           |
| 3  | CHANDIGARH             | 0.763123      | 0.716304             | 0.801405           |
| 4  | UTTARAKHAND            | 0.682208      | 0.609727             | 0.752020           |
| 5  | HARYANA                | 0.654755      | 0.573929             | 0.725770           |
| 6  | NCT OF DELHI           | 0.758745      | 0.710574             | 0.800556           |
| 7  | RAJASTHAN              | 0.558368      | 0.442061             | 0.666322           |
| 8  | UTTAR PRADESH          | 0.572525      | 0.484231             | 0.653088           |
| 9  | BIHAR                  | 0.504369      | 0.419430             | 0.582334           |
| 10 | SIKKIM                 | 0.728740      | 0.673664             | 0.777754           |
| 11 | ARUNACHAL PRADESH      | 0.553581      | 0.486906             | 0.616138           |
| 12 | NAGALAND               | 0.678510      | 0.648399             | 0.706541           |
| 13 | MANIPUR                | 0.668282      | 0.612908             | 0.722833           |
| 14 | MIZORAM                | 0.773032      | 0.755990             | 0.789660           |
| 15 | TRIPURA                | 0.763431      | 0.724304             | 0.800997           |
| 16 | MEGHALAYA              | 0.601642      | 0.590571             | 0.612588           |
| 17 | ASSAM                  | 0.614569      | 0.563950             | 0.663049           |
| 18 | WEST BENGAL            | 0.674199      | 0.623371             | 0.722485           |
| 19 | JHARKHAND              | 0.555596      | 0.463671             | 0.642783           |
| 20 | ORISSA                 | 0.637120      | 0.561259             | 0.711370           |
| 21 | CHHATTISGARH           | 0.602067      | 0.516982             | 0.686353           |
| 22 | MADHYA PRADESH         | 0.590019      | 0.504843             | 0.669311           |
| 23 | GUJARAT                | 0.679907      | 0.608616             | 0.745441           |
| 24 | DAMAN AND DIU          | 0.774546      | 0.686022             | 0.829289           |
| 25 | DADRA AND NAGAR HAVELI | 0.649474      | 0.538243             | 0.735554           |
| 26 | MAHARASHTRA            | 0.725738      | 0.670531             | 0.777047           |
| 27 | ANDHRA PRADESH         | 0.597733      | 0.529337             | 0.665641           |
| 28 | KARNATAKA              | 0.665310      | 0.602047             | 0.726862           |
| 29 | GOA                    | 0.799075      | 0.764054             | 0.833162           |
|    |                        |               |                      |                    |

|    | State                       | Literacy Rate | Female Literacy Rate | Male Literacy Rate |
|----|-----------------------------|---------------|----------------------|--------------------|
| 30 | LAKSHADWEEP                 | 0.815116      | 0.782456             | 0.846028           |
| 31 | KERALA                      | 0.842237      | 0.830382             | 0.855091           |
| 32 | TAMIL NADU                  | 0.718498      | 0.660862             | 0.775929           |
| 33 | PONDICHERRY                 | 0.767103      | 0.723797             | 0.812031           |
| 34 | ANDAMAN AND NICOBAR ISLANDS | 0.773241      | 0.730989             | 0.810254           |

# Plotting Literacy Rate of Different States in Order

```
In [292... df3 = new_df.sort_values(by=['Literacy Rate'])
    rate = df3['Literacy Rate'].tolist()
    states = df3['State'].tolist()
    fig = plt.figure(figsize = (12, 17))
    plt.barh(states,rate)
    plt.ylabel("States", size = 20, rotation='horizontal')
    plt.xlabel("Literacy Rate" , size = 20)
    plt.xlim([0.4, 0.9])
    #plt.title("", size = 20)
    plt.show()
```



# Calculating Data for Wealth Metric

```
states = pd.Series(df['State name']).unique().tolist()
In [293...
          hous = [0 for i in states]
          elec = [0 for i in states]
          tv = [0 for i in states]
          comp = [0 for i in states]
          mobile = [0 for i in states]
          two = [0 for i in states]
          four = [0 for i in states]
          for index,row in df.iterrows():
              sn = row['State name']
              i = states.index(sn)
              hous[i] += row['Households']
              elec[i] += row['Housholds_with_Electric_Lighting']
              tv[i] += row['Households_with_Television']
              comp[i] += row['Households with Computer']
              mobile[i] += row['Households_with_Telephone_Mobile_Phone']
              two[i] += row['Households_with_Scooter_Motorcycle_Moped']
              four[i] += row['Households_with_Car_Jeep_Van']
```

```
for i in range(35):
    elec[i] /= hous[i]
    tv[i] /= hous[i]
    comp[i] /= hous[i]
    mobile[i] /= hous[i]
    two[i] /= hous[i]
    four[i] /= hous[i]
new_df['Electricity'] = elec
new_df['T.V.'] = net
new_df['Computer'] =
                       comp
new_df['Mobile'] = mobile
new_df['2-Wheeler'] =
new_df['4-Wheeler'] =
                        four
new_df
```

Out[293...

|    | State                | Literacy<br>Rate | Female<br>Literacy<br>Rate | Male<br>Literacy<br>Rate | Electricity | T.V.     | Computer | Mobile   | 2<br>Wheele |
|----|----------------------|------------------|----------------------------|--------------------------|-------------|----------|----------|----------|-------------|
| 0  | JAMMU AND<br>KASHMIR | 0.563517         | 0.474959                   | 0.642206                 | 0.476063    | 0.016088 | 0.046720 | 0.388554 | 0.072234    |
| 1  | HIMACHAL<br>PRADESH  | 0.734163         | 0.676125                   | 0.790549                 | 0.487030    | 0.014041 | 0.042042 | 0.414167 | 0.078089    |
| 2  | PUNJAB               | 0.674293         | 0.631194                   | 0.712871                 | 0.665923    | 0.037224 | 0.087939 | 0.566138 | 0.327087    |
| 3  | CHANDIGARH           | 0.763123         | 0.716304                   | 0.801405                 | 0.774898    | 0.148418 | 0.261802 | 0.703104 | 0.36767     |
| 4  | UTTARAKHAND          | 0.682208         | 0.609727                   | 0.752020                 | 0.513735    | 0.018630 | 0.064538 | 0.440265 | 0.135087    |
| 5  | HARYANA              | 0.654755         | 0.573929                   | 0.725770                 | 0.602468    | 0.034999 | 0.087887 | 0.528126 | 0.221890    |
| 6  | NCT OF DELHI         | 0.758745         | 0.710574                   | 0.800556                 | 0.718873    | 0.127878 | 0.211255 | 0.658287 | 0.281917    |
| 7  | RAJASTHAN            | 0.558368         | 0.442061                   | 0.666322                 | 0.466496    | 0.012534 | 0.048139 | 0.491546 | 0.167485    |
| 8  | UTTAR<br>PRADESH     | 0.572525         | 0.484231                   | 0.653088                 | 0.268310    | 0.013499 | 0.058984 | 0.487834 | 0.142913    |
| 9  | BIHAR                | 0.504369         | 0.419430                   | 0.582334                 | 0.132329    | 0.007069 | 0.056997 | 0.448897 | 0.065542    |
| 10 | SIKKIM               | 0.728740         | 0.673664                   | 0.777754                 | 0.701554    | 0.025346 | 0.087764 | 0.553129 | 0.021476    |
| 11 | ARUNACHAL<br>PRADESH | 0.553581         | 0.486906                   | 0.616138                 | 0.457019    | 0.013640 | 0.056514 | 0.336121 | 0.097593    |
| 12 | NAGALAND             | 0.678510         | 0.648399                   | 0.706541                 | 0.610760    | 0.012977 | 0.066861 | 0.397112 | 0.047292    |
| 13 | MANIPUR              | 0.668282         | 0.612908                   | 0.722833                 | 0.568288    | 0.017847 | 0.074934 | 0.478233 | 0.164685    |
| 14 | MIZORAM              | 0.773032         | 0.755990                   | 0.789660                 | 0.690919    | 0.020803 | 0.124893 | 0.596650 | 0.11348(    |
| 15 | TRIPURA              | 0.763431         | 0.724304                   | 0.800997                 | 0.540638    | 0.008072 | 0.058073 | 0.379725 | 0.065110    |
| 16 | MEGHALAYA            | 0.601642         | 0.590571                   | 0.612588                 | 0.454571    | 0.011198 | 0.056651 | 0.320748 | 0.039999    |
| 17 | ASSAM                | 0.614569         | 0.563950                   | 0.663049                 | 0.259948    | 0.011039 | 0.065401 | 0.335837 | 0.071234    |
| 18 | WEST BENGAL          | 0.674199         | 0.623371                   | 0.722485                 | 0.431473    | 0.017505 | 0.065845 | 0.389805 | 0.067484    |
| 19 | JHARKHAND            | 0.555596         | 0.463671                   | 0.642783                 | 0.362988    | 0.011682 | 0.054697 | 0.380769 | 0.127292    |
| 20 | ORISSA               | 0.637120         | 0.561259                   | 0.711370                 | 0.325719    | 0.010611 | 0.038487 | 0.301500 | 0.10981     |
| 21 | CHHATTISGARH         | 0.602067         | 0.516982                   | 0.686353                 | 0.622373    | 0.009974 | 0.038380 | 0.253872 | 0.129124    |

|    | State                             | Literacy<br>Rate | Female<br>Literacy<br>Rate | Male<br>Literacy<br>Rate | Electricity | T.V.     | Computer | Mobile   | 2<br>Wheele |
|----|-----------------------------------|------------------|----------------------------|--------------------------|-------------|----------|----------|----------|-------------|
| 22 | MADHYA<br>PRADESH                 | 0.590019         | 0.504843                   | 0.669311                 | 0.542990    | 0.011486 | 0.047766 | 0.372278 | 0.152194    |
| 23 | GUJARAT                           | 0.679907         | 0.608616                   | 0.745441                 | 0.628464    | 0.021777 | 0.061488 | 0.479330 | 0.237297    |
| 24 | DAMAN AND<br>DIU                  | 0.774546         | 0.686022                   | 0.829289                 | 0.665236    | 0.018726 | 0.062249 | 0.580147 | 0.21113     |
| 25 | DADRA AND<br>NAGAR HAVELI         | 0.649474         | 0.538243                   | 0.735554                 | 0.639420    | 0.018505 | 0.055312 | 0.422612 | 0.171415    |
| 26 | MAHARASHTRA                       | 0.725738         | 0.670531                   | 0.777047                 | 0.595898    | 0.041089 | 0.094550 | 0.490285 | 0.176998    |
| 27 | ANDHRA<br>PRADESH                 | 0.597733         | 0.529337                   | 0.665641                 | 0.757071    | 0.021461 | 0.068902 | 0.518161 | 0.152923    |
| 28 | KARNATAKA                         | 0.665310         | 0.602047                   | 0.726862                 | 0.663671    | 0.035472 | 0.094019 | 0.524105 | 0.18747     |
| 29 | GOA                               | 0.799075         | 0.764054                   | 0.833162                 | 0.542440    | 0.071220 | 0.174416 | 0.498940 | 0.318799    |
| 30 | LAKSHADWEEP                       | 0.815116         | 0.782456                   | 0.846028                 | 0.502260    | 0.015394 | 0.070662 | 0.471848 | 0.193438    |
| 31 | KERALA                            | 0.842237         | 0.830382                   | 0.855091                 | 0.649385    | 0.043111 | 0.108278 | 0.616829 | 0.165602    |
| 32 | TAMIL NADU                        | 0.718498         | 0.660862                   | 0.775929                 | 0.745253    | 0.033335 | 0.084459 | 0.597876 | 0.258017    |
| 33 | PONDICHERRY                       | 0.767103         | 0.723797                   | 0.812031                 | 0.758262    | 0.046614 | 0.105562 | 0.627911 | 0.361733    |
| 34 | ANDAMAN<br>AND NICOBAR<br>ISLANDS | 0.773241         | 0.730989                   | 0.810254                 | 0.567644    | 0.022827 | 0.057837 | 0.551262 | 0.16288(    |
| 4  |                                   |                  |                            |                          |             |          |          |          | •           |

# Correlation

In [294... new\_df.corr()

Out[294...

|                            | Literacy<br>Rate | Female<br>Literacy<br>Rate | Male<br>Literacy<br>Rate | Electricity | T.V.     | Computer | Mobile   | 2-<br>Wheeler | Wheele  |
|----------------------------|------------------|----------------------------|--------------------------|-------------|----------|----------|----------|---------------|---------|
| Literacy<br>Rate           | 1.000000         | 0.981689                   | 0.974847                 | 0.578507    | 0.448626 | 0.511363 | 0.592412 | 0.418484      | 0.41732 |
| Female<br>Literacy<br>Rate | 0.981689         | 1.000000                   | 0.916683                 | 0.545021    | 0.435113 | 0.520344 | 0.553752 | 0.359320      | 0.42335 |
| Male<br>Literacy<br>Rate   | 0.974847         | 0.916683                   | 1.000000                 | 0.589097    | 0.441286 | 0.474855 | 0.602418 | 0.471178      | 0.38052 |
| Electricity                | 0.578507         | 0.545021                   | 0.589097                 | 1.000000    | 0.490812 | 0.478130 | 0.624161 | 0.538415      | 0.46045 |
| T.V.                       | 0.448626         | 0.435113                   | 0.441286                 | 0.490812    | 1.000000 | 0.955996 | 0.669908 | 0.690434      | 0.91662 |
| Computer                   | 0.511363         | 0.520344                   | 0.474855                 | 0.478130    | 0.955996 | 1.000000 | 0.698258 | 0.638185      | 0.91879 |
| Mobile                     | 0.592412         | 0.553752                   | 0.602418                 | 0.624161    | 0.669908 | 0.698258 | 1.000000 | 0.674648      | 0.60438 |
| 2-<br>Wheeler              | 0.418484         | 0.359320                   | 0.471178                 | 0.538415    | 0.690434 | 0.638185 | 0.674648 | 1.000000      | 0.60271 |

|               | Literacy<br>Rate | Kate     | Kate     |          |          | Computer |          |          |          |
|---------------|------------------|----------|----------|----------|----------|----------|----------|----------|----------|
| 4-<br>Wheeler | 0.417323         | 0.423359 | 0.380522 | 0.460452 | 0.916622 | 0.918798 | 0.604385 | 0.602710 | 1.00000  |
| 4             |                  |          |          |          |          |          |          |          | <b>•</b> |

## **Electricity per Household vs Literacy Rate**



# Mobile Commodity vs Literacy Rate

```
In [296... x = new_df['Literacy Rate'].tolist()
    y = new_df['Mobile'].tolist()

fig = plt.figure(figsize = (15, 10))
    plt.scatter(x,y)
```



# **Dimensionality Reduction using PCA**

### Standardize the Data

```
features = ['Electricity','T.V.','Computer','Mobile','2-Wheeler','4-Wheeler']
    # Separating out the features
    x = new_df.loc[:, features].values
    # Separating out the target
    y = new_df.loc[:,['Literacy Rate','Female Literacy Rate','Male Literacy Rate']].valu
    # Standardzing the features
    x = StandardScaler().fit_transform(x)
```

• ### Principle Component Analysis (PCA)

```
In [298... pca = PCA(n_components=2)
    principalComponents = pca.fit_transform(x)
    principalDf = pd.DataFrame(data = principalComponents, columns = ['principal compone
    final_df = pd.concat([new_df[['Literacy Rate','Female Literacy Rate','Male Literacy final_df
```

Out[298...

|    | Literacy<br>Rate | Female Literacy<br>Rate | Male Literacy<br>Rate | principal component<br>1 | principal component 2 |
|----|------------------|-------------------------|-----------------------|--------------------------|-----------------------|
| 0  | 0.563517         | 0.474959                | 0.642206              | -1.473560                | 0.417109              |
| 1  | 0.734163         | 0.676125                | 0.790549              | -1.404316                | 0.218053              |
| 2  | 0.674293         | 0.631194                | 0.712871              | 1.921930                 | -0.709739             |
| 3  | 0.763123         | 0.716304                | 0.801405              | 7.363155                 | 1.665735              |
| 4  | 0.682208         | 0.609727                | 0.752020              | -0.777305                | 0.019139              |
| 5  | 0.654755         | 0.573929                | 0.725770              | 0.937953                 | -0.243887             |
| 6  | 0.758745         | 0.710574                | 0.800556              | 5.355753                 | 1.226566              |
| 7  | 0.558368         | 0.442061                | 0.666322              | -0.840522                | -0.222528             |
| 8  | 0.572525         | 0.484231                | 0.653088              | -1.318396                | 0.808652              |
| 9  | 0.504369         | 0.419430                | 0.582334              | -2.351515                | 1.547685              |
| 10 | 0.728740         | 0.673664                | 0.777754              | 0.159886                 | -0.429329             |
| 11 | 0.553581         | 0.486906                | 0.616138              | -1.400297                | 0.773743              |
| 12 | 0.678510         | 0.648399                | 0.706541              | -0.937171                | 0.097241              |
| 13 | 0.668282         | 0.612908                | 0.722833              | -0.162031                | -0.238194             |
| 14 | 0.773032         | 0.755990                | 0.789660              | 0.947477                 | -0.573082             |
| 15 | 0.763431         | 0.724304                | 0.800997              | -1.673354                | -0.072410             |
| 16 | 0.601642         | 0.590571                | 0.612588              | -1.908544                | 0.813521              |
| 17 | 0.614569         | 0.563950                | 0.663049              | -2.199959                | 1.515229              |
| 18 | 0.674199         | 0.623371                | 0.722485              | -1.640458                | 0.548920              |
| 19 | 0.555596         | 0.463671                | 0.642783              | -1.710171                | 0.643795              |
| 20 | 0.637120         | 0.561259                | 0.711370              | -2.422797                | 0.904483              |
| 21 | 0.602067         | 0.516982                | 0.686353              | -1.837769                | -0.327760             |
| 22 | 0.590019         | 0.504843                | 0.669311              | -1.321570                | -0.279831             |
| 23 | 0.679907         | 0.608616                | 0.745441              | 0.133274                 | -0.832197             |
| 24 | 0.774546         | 0.686022                | 0.829289              | 0.407124                 | -1.302118             |
| 25 | 0.649474         | 0.538243                | 0.735554              | -0.492645                | -0.653156             |
| 26 | 0.725738         | 0.670531                | 0.777047              | 0.442966                 | -0.137945             |
| 27 | 0.597733         | 0.529337                | 0.665641              | 0.037475                 | -1.476491             |
| 28 | 0.665310         | 0.602047                | 0.726862              | 0.717629                 | -0.603401             |
| 29 | 0.799075         | 0.764054                | 0.833162              | 3.209606                 | 1.489571              |
| 30 | 0.815116         | 0.782456                | 0.846028              | -0.693652                | -0.408111             |
| 31 | 0.842237         | 0.830382                | 0.855091              | 1.447032                 | -0.364120             |
| 32 | 0.718498         | 0.660862                | 0.775929              | 1.218721                 | -1.596377             |
| 33 | 0.767103         | 0.723797                | 0.812031              | 2.302001                 | -1.649568             |
| 34 | 0.773241         | 0.730989                | 0.810254              | -0.035948                | -0.569200             |

### Result

• ### Correlation

```
In [299... final_df.corr()
```

Out[299...

|                          | Literacy<br>Rate | Female Literacy<br>Rate | Male Literacy<br>Rate | principal<br>component 1 | principal component 2 |
|--------------------------|------------------|-------------------------|-----------------------|--------------------------|-----------------------|
| Literacy Rate            | 1.000000         | 0.981689                | 0.974847              | 5.720551e-01             | -2.649433e-01         |
| Female Literacy<br>Rate  | 0.981689         | 1.000000                | 0.916683              | 5.488191e-01             | -2.073006e-01         |
| Male Literacy<br>Rate    | 0.974847         | 0.916683                | 1.000000              | 5.683620e-01             | -3.226811e-01         |
| principal<br>component 1 | 0.572055         | 0.548819                | 0.568362              | 1.000000e+00             | -1.915884e-16         |
| principal<br>component 2 | -0.264943        | -0.207301               | -0.322681             | -1.915884e-16            | 1.000000e+00          |

• ### Wealth vs Literacy Rate

```
In [300...
          x = final_df['Literacy Rate'].tolist()
          y = final_df['principal component 1'].tolist()
          # Linear Regression
          Sum = 0
          for i in x:
              Sum += i;
          x_mean = Sum/len(x);
          Sum = 0
          for i in y:
              Sum += i;
          y_mean = Sum/len(y);
          nume = 0
          deno = 0
          for i in range(len(x)):
              nume += (x[i]-x_mean)*(y[i]-y_mean)
              deno += pow((x[i] - x_mean),2)
          \# v = mx + c
          m = nume/deno
          c = y_mean - m*x_mean
          xx = np.array([0.5, 0.9])
          plt.figure(figsize = (13,10))
          plt.plot(xx, xx*m + c, color = 'red')
          plt.scatter(x,y)
          plt.xlabel("Literacy Rate", size = 15)
          plt.ylabel("Wealth" , size = 15,rotation='horizontal')
          plt.title("Wealth vs Literacy Rate", size = 18)
          for i, txt in enumerate(states):
              if txt in ['HIMACHAL PRADESH', 'PUNJAB', 'CHANDIGARH', 'UTTARAKHAND', 'HARYANA',
                          'RAJASTHAN', 'UTTAR PRADESH', 'BIHAR', 'SIKKIM', 'MANIPUR', 'MIZORAM'
                          'TRIPURA', 'ASSAM', 'WEST BENGAL', 'ORISSA', 'CHHATTISGARH',
                          'GUJARAT', 'DAMAN AND DIU', 'DADRA AND NAGAR HAVELI', 'MAHARASHTRA',
```

```
'GOA', 'LAKSHADWEEP', 'KERALA', 'TAMIL NADU', 'PONDICHERRY', 'ANDAMAN plt.annotate(txt, (x[i]+.004, y[i]))

plt.show()
```



• ### Wealth vs Male Literacy Rate

```
In [301...
          x = final_df['Male Literacy Rate'].tolist()
          y = final_df['principal component 1'].tolist()
          # Linear Regression
          Sum = 0
          for i in x:
              Sum += i;
          x_mean = Sum/len(x);
          Sum = 0
          for i in y:
              Sum += i;
          y_mean = Sum/len(y);
          nume = 0
          deno = 0
          for i in range(len(x)):
               nume += (x[i]-x_mean)*(y[i]-y_mean)
               deno += pow((x[i] - x_mean),2)
          \# y = mx + c
          m = nume/deno
          c = y_mean - m*x_mean
          xx = np.array([0.5, 0.9])
          plt.figure(figsize = (13,10))
```



• ### Wealth vs Female Literacy Rate

```
In [302... x = final_df['Female Literacy Rate'].tolist()
y = final_df['principal component 1'].tolist()

# Linear Regression
Sum = 0
for i in x:
        Sum += i;
        x_mean = Sum/len(x);

Sum = 0
for i in y:
        Sum += i;
        y_mean = Sum/len(y);
```

```
nume = 0
deno = 0
for i in range(len(x)):
   nume += (x[i]-x_mean)*(y[i]-y_mean)
   deno += pow((x[i] - x mean),2)
\# y = mx + c
m = nume/deno
c = y_mean - m*x_mean
xx = np.array([0.4, 0.9])
plt.figure(figsize = (13,10))
plt.plot(xx, xx*m + c, color = 'red')
plt.scatter(x,y)
plt.xlabel("Female Literacy Rate", size = 15)
plt.ylabel("Wealth" , size = 15,rotation='horizontal')
plt.title("Wealth vs Female Literacy Rate", size = 15)
for i, txt in enumerate(states):
   'TRIPURA', 'ASSAM', 'WEST BENGAL', 'ORISSA', 'CHHATTISGARH',
             'GUJARAT', 'DADRA AND NAGAR HAVELI', 'MAHARASHTRA', 'ANDHRA PRADESH',
             'GOA', 'LAKSHADWEEP', 'KERALA', 'TAMIL NADU', 'PONDICHERRY', 'ANDAMAN
       plt.annotate(txt, (x[i]+.004, y[i]))
plt.show()
```



#### Conclusion

The Correlation between Literacy Rate and Wealth comes out to be 0.57

- The Scatter Graphes Plotted gives us impression that the data follow a linear order with few inconsistencies.
- Further Linear Regression gives tells us the relation between Literacy Rate is somewhat linear with few inconsistencies.
- The Male Literacy Rate is the most related compared to Female Literacy Rate or Total Literacy Rate to the Wealth.

## **Dataset Reference**

• https://www.kaggle.com/danofer/india-census?select=india-districts-census-2011.csv