Chapter 3. QR factorization and least squares Sec 3.1 Projectors

Topics: 1. projectors, orthogonal projectors

- z. construct orthogonal projector ith an orthonormal basis.
- 3. Construct orthogonal projector with an arbitrary basis

1. Projectors:

Def: A projector is a square matrix P that satisfies $P^2 = P$.

eg. $P = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $P^2 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = P$. $P\begin{pmatrix} X_1 \\ X_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 0 & 0 \end{pmatrix}$

Def: If P is a projector, I-P is called the complementary projector to P.

(It is easy to verify that J-P is a projector: $(I-P)^2 = I-2P+P^2 = I-2P+P = I-P$)

eg. $P = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $I-P = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$. $(I-P)\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ x_2 \end{pmatrix}$

Theorem: range (I-P) = null(P), null(I-P) = range(P), $\text{range}(P) \cap \text{null}(P) = \{\vec{o}\}$

• Def: Suppose S, and Sz are subspaces of C^m . If $S_1 \cap S_2 = \{\vec{o}\}$ and $S_1 + S_2 = C^m$, then S, and Sz are said to be complementary subspaces.

Span of S, and Sz

Remark: A projector P suparates C^m into S_1 and S_2 with range $(P) = S_1$ and $null(P) = S_2$.

We say that P is the projector onto S_1 along S_2 .

-eg. $P = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. $S_1 = range(P) = \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \middle| any x_1 \right\} = span \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$ $S_2 = rull(P) = \left\{ \begin{pmatrix} 0 \\ x_2 \end{pmatrix} \middle| any x_2 \right\} = span \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$ $S_1 \cap S_2 = \left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}$ $S_1 + S_2 = \mathbb{C}^2$

· Def: An orthogonal projector is one that projects onto S, along Sz, where S, and Sz are orthogonal.

range (p) \overrightarrow{V}

Theorem: The projector p is orthogonal \iff $P = p^*$

2. Construct orthogonal projector with an orthonormal basis:

Let $\{\vec{q}_1, \dots, \vec{q}_m\}$ be an orthonormal basis of \mathbb{C}^m . Let $\hat{\mathbb{Q}} = [\vec{q}_1, \dots; \vec{q}_n] \in \mathbb{C}^{m \times n}$, $n \leq m$ • Define $P := \hat{Q} \cdot \hat{Q}^*$. Then P is an orthogonal projector.

$$(Proof: P^2 = \hat{Q} \hat{Q}^* \cdot \hat{Q} \hat{Q}^* = \hat{Q} \cdot I_n \cdot \hat{Q}^* = \hat{Q} \cdot \hat{Q}^* = P, \quad P^* = (\hat{Q} \hat{Q}^*)^* = \hat{Q} \hat{Q}^* = P)$$

$$\vec{p} = \hat{Q} \hat{Q}^* \vec{v} = \vec{q} \cdot \vec{$$

 \Rightarrow P projects onto the column space of $\hat{\mathbb{Q}}$.

•
$$I-P=I-\hat{Q}\hat{Q}^*$$
 is also an orthogonal projector, because $(I-P)^*=I^*-P^*=I-P$

· special case: Given a unit vector q,

rank 1 orthogonal projector: $P_{\vec{q}} = \vec{q}, \vec{q}^*$. It gives component in direction \vec{q} rank m-1 orthogonal projector: $P_{\pm\vec{q}} = I - \vec{q} \vec{q}^*$. It eliminates component in direction \vec{q}

For arbitrary nonzero vector
$$\vec{a}$$
, $P_{\vec{a}} = \frac{\vec{a} \vec{a}^*}{\vec{a}^* \vec{a}}$ orthogonal, rank $|P_{\perp \vec{a}}| = |I - P_{\vec{a}}| = |I - \vec{a}|^{\frac{1}{2}}$ orthogonal, rank $|P_{\perp \vec{a}}| = |I - P_{\vec{a}}| = |I - P_{\vec{a}}|$

3. Construct orthogonal projection with an arbitrary bassis.

suppose $\vec{a_1}$,..., $\vec{a_n}$ ∈ C^m are linearly independent. Let $A = [\vec{a_1}, ..., \vec{a_n}]$ ∈ $C^{m \times n}$. Construct an orthogonal projector $P: \mathbb{C}^m \to \text{range}(A)$:

P is orthogonal \iff range $(P) \perp nwll(P) \iff$ range $(A) \perp range (I-P)$

For any $\vec{v} \in \mathbb{C}^m$, we need $\vec{a}_j \perp (I-P)\vec{v}$, i.e. $\vec{a}_j^*(v-P\vec{v}) = 0$, $\vec{v} = 1, \dots, n$.

$$\Rightarrow A^*(\vec{v} - A\vec{\chi}) = 0 \Rightarrow A^*\vec{v} = A^*A\vec{\chi} \Rightarrow \vec{\chi} = (A^*A)^{-1}A^*\vec{v}$$

$$\Rightarrow A^*(\vec{v} - A\vec{\chi}) = 0 \Rightarrow A^*\vec{v} = A^*A\vec{\chi} \Rightarrow \vec{\chi} = (A^*A)^\top A^*\vec{v}$$

$$\Rightarrow P\vec{v} = A\vec{\chi} = A(A^*A)^\top A^*\vec{v}. \quad \text{Therefore}, \quad P = A(A^*A)^\top A^* \quad \text{is orthogonal}.$$

Remark: 1. $P = A(A^*A)^{-1}A^*$ is a multi-dimensional generalization of $P_a = \frac{\vec{a} \vec{a}^*}{\vec{a}^* \vec{a}}$.

2. When
$$A = \hat{a}$$
 is orthonormal, $P = \hat{a}(\hat{a}^{\dagger}\hat{a})^{\dagger}\hat{a}^{\dagger} = \hat{a}\cdot\hat{a}^{\dagger}$