what is 'chaos'? a field theorist stroll through Bernoullistan

Predrag Cvitanović

Georgia Tech
ChaosBook.org/overheads/spatiotemporal
→ Chaotic field theory slides

December 6, 2021

Mephistopheles knocks at Faust's door and says, "Du mußt es dreimal sagen!"

- "You have to say it three times"
 - Johann Wolfgang von Goethe Faust I Studierzimmer 2. Teil

- what is this about
- coin toss
- temporal cat
- spatiotemporal cat
- bye bye, dynamics

(1) coin toss, if you are stuck in XVIII century

time-evolution formulation

fair coin toss

Bernoulli map

$$\phi_{t+1} = \left\{ \begin{array}{l} 2\phi_t \\ 2\phi_t \pmod{1} \end{array} \right.$$

 \Rightarrow fixed point $\overline{0}$, 2-cycle $\overline{01}$, \cdots

a coin toss

what is (mod 1)?

map with integer-valued 'stretching' parameter $s \ge 2$:

$$x_{t+1} = s x_t$$

(mod 1): subtract the integer part $m_t = \lfloor sx_t \rfloor$ so fractional part ϕ_{t+1} stays in the unit interval [0, 1)

$$\phi_{t+1} = s\phi_t - m_t, \qquad \phi_t \in \mathcal{M}_{m_t}$$

 m_t takes values in the s-letter alphabet

$$m \in \mathcal{A} = \{0, 1, 2, \cdots, s-1\}$$

a fair dice throw

slope 6 Bernoulli map

$$egin{aligned} \phi_{t+1} &= 6\phi_t - \emph{m}_t \,,\; \phi_t \in \mathcal{M}_{\emph{m}_t} \ \text{6-letter alphabet} \ \emph{m}_t \in \mathcal{A} &= \{0,1,2,\cdots,5\} \end{aligned}$$

6 subintervals $\{\mathcal{M}_0,\mathcal{M}_1,\cdots,\mathcal{M}_5\}$

what is chaos?

a fair dice throw

6 subintervals $\{\mathcal{M}_{\textit{m}_t}\}$, 6² subintervals $\{\mathcal{M}_{\textit{m}_1\textit{m}_2}\}$, \cdots

each subinterval contains a periodic point, labeled by $M = m_1 m_2 \cdots m_n$

 $N_n = 6^n - 1$ unstable orbits

definition: chaos is

positive Lyapunov ($\ln s$) - positive entropy ($\frac{1}{n} \ln N_n$)

definition: chaos is

positive Lyapunov (ln s) - positive entropy $(\frac{1}{n} \ln N_n)$

- Lyapunov : how fast is local escape?
- entropy : how many ways of getting back?

⇒ ergodicity

the precise sense in which dice throw is an example of deterministic chaos

(2) field theorist's chaos

lattice formulation

lattice Bernoulli

recast the time-evolution Bernoulli map

$$\phi_{t+1} = s\phi_t - m_t$$

as 1-step difference equation on the temporal lattice

$$-\phi_{t+1}+s\phi_t=m_t, \qquad \phi_t\in[0,1)$$

field ϕ_t , source m_t on each site t of a 1-dimensional lattice $t \in \mathbb{Z}$

write an *n*-sites lattice segment as the field configuration and the symbol block

$$\Phi = (\phi_{t+1}, \cdots, \phi_{t+n}), \quad \mathsf{M} = (m_{t+1}, \cdots, m_{t+n})$$

'M' for 'marching orders' : come here, then go there, \cdots

scalar field theory on 1-dimensional lattice

write a periodic field over *n*-sites Bravais cell as the field configuration and the symbol block (sources)

$$\Phi = (\phi_{t+1}, \cdots, \phi_{t+n}), \quad M = (m_{t+1}, \cdots, m_{t+n})$$

'M' for 'marching orders' : come here, then go there, \cdots

think globally, act locally

Bernoulli condition at every lattice site t, local in time

$$-\phi_{t+1} + s\phi_t = m_t$$

is enforced by the global equation

$$(-r+s1) \Phi = M$$

 $[n \times n]$ shift matrix

$$r_{jk} = \delta_{j+1,k}, \qquad r = \begin{pmatrix} 0 & 1 & & & \\ & 0 & 1 & & & \\ & & & \ddots & & \\ & & & 0 & 1 \\ 1 & & & & 0 \end{pmatrix}$$

compares the neighbors

think globally, act locally

solving the lattice Bernoulli system

$$\mathcal{J}\Phi = M$$
,

$$[n \times n]$$
 Hill matrix

$$\mathcal{J}=-r+s\mathbf{1}\,,$$

is a search for zeros of the function

$$F[\Phi] = \mathcal{J}\Phi - \mathsf{M} = \mathsf{0}$$

the entire global lattice state Φ_{M} is now a single fixed point $(\phi_{1}, \phi_{2}, \cdots, \phi_{n})$

Hill-Poincaré

orbit stability

Hill matrix

solving a nonlinear

$$F[\Phi] = 0$$
 fixed point condition

with Newton method requires evaluation of the $[n \times n]$

Hill matrix

$$\mathcal{J}_{ij} = \frac{\delta F[\Phi]_i}{\delta \phi_j}$$

what does this global Hill matrix do?

- fundamental fact!
- global stability of lattice state Φ, perturbed everywhere

(1)

fundamental fact

(1) fundamental fact

to satisfy the fixed point condition

$$\mathcal{J}\Phi - M = 0$$

the Hill matrix $\mathcal J$

- o stretches the unit hyper-cube $\Phi \in [0, 1)^n$ into the n-dimensional fundamental parallelepiped
- **2** maps each periodic point $\Phi_{M} \Rightarrow$ integer lattice \mathbb{Z}^{n} point
- then translate by integers $M \Rightarrow$ into the origin hence $N_n = \text{total} \; \sharp \; \text{solutions} = \; \sharp \; \text{integer lattice points within the fundamental parallelepiped}$

the fundamental fact¹: Hill determinant counts solutions

$$N_n = \text{Det } \mathcal{J}$$

integer points in fundamental parallelepiped = its volume

¹M. Baake et al., J. Phys. A **30**, 3029–3056 (1997).

example : fundamental parallelepiped for n = 2

Hill matrix for s=2; unit square basis vectors; their images:

$$\mathcal{J}=\left(egin{array}{cc} 2 & -1 \ -1 & 2 \end{array}
ight); \quad \Phi_B=\left(egin{array}{cc} 1 \ 0 \end{array}
ight) \
ightarrow \ \Phi_{B'}=\mathcal{J} \, \Phi_B=\left(egin{array}{cc} 2 \ -1 \end{array}
ight) \cdots ,$$

Bernoulli periodic points of period 2

square $[0BCD] \Rightarrow \mathcal{J} \Rightarrow$ fundamental parallelepiped [0B'C'D']

fundamental fact for any n

an n = 3 example

 \mathcal{J} [unit hyper-cube] = [fundamental parallelepiped]

unit hyper-cube $\Phi \in [0,1)^3$

n > 3 cannot visualize

a periodic point ⇒ integer lattice point : • on a face, • in the interior

(2

orbit stability

(2) orbit stability vs. temporal stability

Hill matrix

 $\mathcal{J}_{ij} = \frac{\delta F[\Phi]_i}{\delta \phi_j}$ stability under global perturbation of the whole orbit for *n* large, a huge $[dn \times dn]$ matrix

temporal Jacobian matrix

J propagates initial perturbation n time steps small $[d \times d]$ matrix

J and \mathcal{J} are related by²

Hill's 1886 remarkable formula

$$|\mathrm{Det}\,\mathcal{J}_{\mathsf{M}}| = |\mathrm{det}\,(\mathbf{1} - \mathcal{J}_{\mathsf{M}})|$$

 \mathcal{J} is huge, even ∞ -dimensional matrix J is tiny, few degrees of freedom matrix

²G. W. Hill, Acta Math. **8**, 1–36 (1886).

field theorist's chaos

definition: chaos is

expanding Hill determinants Det \mathcal{J} exponential \sharp field configurations N_n

the precise sense in which a (discretized) field theory is deterministically chaotic

NOTE: there is no 'time' in this definition

periodic orbit theory

volume of a periodic orbit

Ozorio de Almeida and Hannay³ 1984 : # of periodic points is related to a Jacobian matrix by

principle of uniformity

"periodic points of an ergodic system, counted with their natural weighting, are uniformly dense in phase space"

where

'natural weight' of periodic orbit M

$$\frac{1}{\left|\det\left(1-J_{\mathsf{M}}\right)\right|}$$

³A. M. Ozorio de Almeida and J. H. Hannay, J. Phys. A 17, 3429 (1984).

periodic orbits partition lattice states into neighborhoods

how come Hill determinant $\operatorname{Det} \mathcal{J}$ counts periodic points ?

'principle of uniformity' is in4

periodic orbit theory

known as the flow conservation sum rule:

$$\sum_{M} \frac{1}{|\det(1 - J_{M})|} = \sum_{M} \frac{1}{|\operatorname{Det} \mathcal{J}_{M}|} = 1$$

sum over periodic points Φ_{M} of period n

state space is divided into

neighborhoods of periodic points of period *n*

⁴P. Cvitanović, "Why cycle?", in Chaos: Classical and Quantum, edited by P. Cvitanović et al. (Niels Bohr Inst., Copenhagen, 2020).

periodic orbit counting

how come a $\operatorname{Det} \mathcal{J}$ counts periodic points ?

flow conservation sum rule:

$$\sum_{\Phi_{\mathsf{M}}\in\mathsf{Fix}f^{n}}\frac{1}{|\mathrm{Det}\,\mathcal{J}_{\mathsf{M}}|}=1$$

Bernoulli system 'natural weighting' is simple:

the determinant $\mathrm{Det}\,\mathcal{J}_M=\mathrm{Det}\,\mathcal{J}$ the same for all periodic points, whose number thus verifies the fundamental fact

$$N_n = |\text{Det } \mathcal{J}|$$

the number of Bernoulli periodic lattice states

$$N_n = |\text{Det } \mathcal{J}| = s^n - 1$$
 for any n

remember the fundamental fact?

period 2 example

 $\begin{array}{ll} \text{fixed point} & \Phi_{00} \\ \text{2-cycle} & \Phi_{01}, \, \Phi_{10} \\ \end{array}$

 \mathcal{J} [unit hyper-cube] = [fundamental parallelepiped]

look at preimages of the fundamental parallelepiped :

example: lattice states of period 2

unit hypercube, partitioned

flow conservation sum rule

$$\frac{1}{|\mathrm{Det}\,\mathcal{J}_{00}|} + \frac{1}{|\mathrm{Det}\,\mathcal{J}_{01}|} + \frac{1}{|\mathrm{Det}\,\mathcal{J}_{10}|} = 1$$

sum over periodic points Φ_{M} of period n=2

state space is divided into

neighborhoods of periodic points of period *n*

Amazing! I did not understand a single word.

—Fritz Haake 1988

zeta function

periodic orbit theory, version (1): counting lattice states

topological zeta function

$$1/\zeta_{top}(z) = \exp\left(-\sum_{n=1}^{\infty} \frac{z^n}{n} N_n\right)$$

- weight 1/n as by (cyclic) translation invariance, n lattice states are equivalent
- 2 zeta function counts orbits, one per each set of equivalent lattice states

Bernoulli topological zeta function

counts orbits, one per each set of lattice states $N_n = s^n - 1$

$$1/\zeta_{\mathsf{top}}(z) = \exp\left(-\sum_{n=1}^{\infty} \frac{z^n}{n} N_n\right) = \frac{1-sz}{1-z}$$

numerator (1 - sz) says that Bernoulli orbits are built from s fundamental primitive lattice states,

the fixed points
$$\{\phi_0, \phi_1, \cdots, \phi_{s-1}\}$$

every other lattice state is built from their concatenations and repeats.

solved!

this is 'periodic orbit theory'

And if you don't know, now you know

summary: think globally, act locally

the problem of enumerating and determining all lattice states stripped to its essentials :

each solution is a zero of the global fixed point condition

$$F[\Phi] = 0$$

global stability: the Hill matrix

$$\mathcal{J}_{ij} = \frac{\delta F[\Phi]_i}{\delta \phi_j}$$

fundamental fact : the number of period-n orbits

$$N_n = |\text{Det } \mathcal{J}|$$

o zeta function $1/\zeta_{top}(z)$: all predictions of the theory

next: a kicked rotor

Du mußt es dreimal sagen!

— Mephistopheles

- what is this about
- coin toss
- kicked rotor
- spatiotemporal cat
- bye bye, dynamics