# Optimierung

Vorlesung 1 Einführung und Überblick

- Informatik befasst sich viel mit Algorithmen
- Noch vor dem Algorithmus steht jedoch das zu lösende Problem, welches man idealerweise formal sauber in Form eines Modells ausdrückt.
- Überspringt man die Modellierung, führt dies zu "Hacks" mit zahlreichen negativen Konsequenzen:
  - Zusammenhänge zwischen ähnlichen Problemen gehen verloren
  - Kombinationen und Erweiterungen werden sehr schnell sehr kompliziert
  - Theoretische Analyse und Garantien oft nicht möglich
- Konsequenter Zugang:
  - Formulierung des zu lösenden Problems (Modell, Zielfunktion)
  - Anwendung von passenden Algorithmen entsprechend der Problemklasse (Optimierungsmethode)

- Informatiker im Bankengewerbe, Auftrag: Erwarteter Gewinn Hausverkäufe
- Lösung 1: Einfach Erwartungswert bilden.
- Lösung 2: Sich die Verteilung ansehen -> Nachbarschaften



Optimierungsproblem: Optimiere Parameter der beiden Verteilungen

- Basteln und Ausprobieren ist die kreative Seite der Wissenschaft
- Für komplexe Aufgaben reicht Kreativität alleine nicht aus



- das Wesentliche erkennen
- Zusammenhänge zu bekannten Lösungen sehen
- bekannte Analysen und Eigenschaften nutzen
- Übrig bleibt (hoffentlich) eine viel einfachere Aufgabe, an der dann gebastelt werden darf
- Theorie und Praxis sind keine Gegensätze!





• Ein Optimierungsproblem besteht aus einer **zulässigen Menge** G und einer **Zielfunktion**  $f:G\to\mathbb{R}$ 

• Beispiel:

$$f(x) = x^2$$
$$G = \{x \in \mathbb{R} | 2 \le x \le 5\}$$



- Minimum:  $min_x f(x) = 4$
- Minimierer:  $argmin_x f(x) = 2$
- Wir haben also ein Modell in Form einer Zielfunktion und möchten aus einer großen Anzahl möglicher Lösungen (zulässige Menge) die beste finden (Minimierer).

## Anwendungen für Optimierung

- Historisch stark verankert in "Operations Research":
   Optimierung von Produktionskosten unter diversen Nebenbedingungen
- Fast alle modernen Verfahren aus dem maschinellen Lernen basieren auf Optimierung
- Pfadplanung basiert auf effizienten Optimierungsverfahren (z.B. kürzeste Pfade in Navigationssystemen)
- Hardwaredesign und paralleles Rechnen basiert auf der Optimierung von Layouts und Netzwerken
- Computer Vision basiert größtenteils auf Optimierung
- Große Teile der Bioinformatik nutzen Optimierungsverfahren

# Beispiel aus dem maschinellen Lernen: Support Vector Machine

- Gegeben: Samples  $\mathbf{x}_n$  zweier Klassen:  $t_n \in \{-1, 1\}$
- Ziel: Finde lineare Entscheidungsgrenze  $y = \mathbf{w}^{\top}\mathbf{x} + b$  um ein neues Beispiel x zu klassifizieren



 Formuliere das Problem als Kostenfunktion

$$\underset{\mathbf{w},b}{\operatorname{argmin}}_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^2$$
 (kleine Gewichte sind günstiger)

mit Nebenbedingungen

$$t_n(\mathbf{w}^{\top}\mathbf{x}_n + b) \ge 1$$
 (alle Samples müssen richtig klassifiziert werden)

2. Dieses Optimierungsproblem ist ein **quadratisches Programm**→ kann mit Standardverfahren garantiert optimal gelöst werden

# Beispiel aus Computer Vision: 3D Rekonstruktion





Finde die Oberfläche, die am besten alle Eingabebilder erklärt

$$\operatorname{argmin}_{u(\mathbf{X}) \in [0,1]} \int Ru + \nu \rho |\nabla u| \, d\mathbf{X}$$

# Beispiel aus Computer Vision: Bildsegmentierung

- Ziel: Finde eine Kontur C, die das Bild In Vordergrund  $\Omega_1$  und Hintergrund  $\Omega_2$  aufteilt
- Beide Regionen werden durch die mittlere Helligkeit  $\mu_1, \mu_2$  modelliert
- Kürzere Konturen sind besser
- Kostenfunktion:

$$E(C) = \int_{\Omega_1} (I - \mu_1)^2 dx + \int_{\Omega_2} (I - \mu_2)^2 dx + \nu |C|$$

Kann mittels **Gradientenabstieg** minimiert werden





**Autor: Daniel Cremers** 

## Beispiel aus der Robotik: SLAM

- Ziel: Erstellen einer Umgebungskarte und gleichzeitige Lokalisierung in der Karte (SLAM = simultaneous localization and mapping)
- Sensormessungen sind jeweils relativ zur Roboterposition
   Berücksichtigung aller Messungen in einem Optimierungsproblem
- Lösung mit
   Gauss-Newton-Verfahren
- Äquivalentes Problem (im Sinne der Optimierung) in Computer Vision: Bundle Adjustment







- 3D-Rekonstruktion
- Gleichzeitige Optimierung von Kamera-Position und 3D-Objekt



C. Olsson, A. Eriksson, Ri. Hartley, CVPR 2010

# Beispiel aus dem Hard-/Softwaredesign: Sicherheitsgarantien

- Für sicherheitsrelevante Systeme muss gezeigt werden, dass sie bestimmte Spezifikationen (mit einer bestimmten Wahrscheinlichkeit) erfüllen.
- Exploration sehr großer Zustandsräume
- Oft ist nur ein bestimmtes Teilsystem für die Abweichung von der Spezifikation verantwortlich
- Das kleinste relevante Teilsystem lässt sich mithilfe eines **linearen Programms** bestimmen.



#### Minimales kritisches Teilsystem

minimize 
$$-\frac{1}{2} p_{s_{\text{init}}} + \sum_{s \in S} x_s$$
such that 
$$\forall s \in T_a: \quad p_s = x_s$$

$$\forall s \in S \setminus T_a: \quad p_s \leq x_s$$

$$\forall s \in S \setminus T_a: \quad p_s \leq \sum_{s' \in \text{succ}(s)} P(s, s') \cdot p_{s'}$$

$$p_{s_{\text{init}}} > \lambda .$$

## Mixed integer linear program

Quelle: Wimmer et al. 2012

## Beispiele aus der Bioinformatik

- Sequenzalignment Basistechnologie zur Bestimmung der Evolution von Genen
   Dynamische Programmieren O(n²)
- Anwendung auch zur Bestimmung der Ähnlichkeit ganzer Genome -> Hauptspeicher wird zum Problem Linear-Space mit Divide-and-Conquer
- Erweiterung: Strukturelles Alignment ist NP-schwer

Integer Linear Programming

 Lokales Alignment: Alignment-Score wird durch die Alignment-Länge geteilt

Fractional Programming



Unpaired

Conservation Covariation

# Typische Problemklassen in der Optimierung

Probleme mit Nebenbedingungen vs.
 Probleme ohne Nebenbedingungen



 Optimierung mit kontinuierlichen Variablen vs. diskreten Variablen



Lineare vs. nichtlineare Funktionen



 Eindimensionale vs. mehrdimensionale Funktionen



 Konvexe vs. nicht-konvexe Funktionen und Mengen (mehr dazu gleich)





• Problem:  $\min(x_1-2)^2+(x_2-1)^2$  subject to  $\begin{cases} x_1+x_2 \leq 2 \\ x_1^2-x_2 \leq 0 \end{cases}$ 

Lösungsbereich:



• Bem: allg. Kreisgleichung lautet  $(x_1 - M_1)^2 + (x_2 - M_2)^2 = r^2$ 

- Die verschiedenen Problemklassen (und ihre Kombinationen) sind unterschiedlich "schwierig".
- Bei <u>diskreten</u> Optimierungsproblemen:
  - Lässt sich das Optimum garantiert in polynomieller Zeit finden?
  - Falls ja, wie groß ist die Komplexität des Optimierungsverfahrens?
  - Gibt es Approximationen mit Garantien bzgl. der maximalen Abweichung (obere/untere Schranken)?
- Bei kontinuierlichen Optimierungsproblemen:
  - Gibt es Verfahren, die in allen Fällen zu einer Lösung konvergieren?
  - Konvergiert das Verfahren garantiert zum globalen Optimum?
  - Wie schnell konvergiert das Verfahren (Konvergenzordnung)?

## Lokale und globale Minima



• Für ein **lokales Minimum**  $f(x^L)$  muss gelten

$$f(x^L) \le f(x) \quad \forall x \in U(x^L)$$

Dabei ist  $U(x^L)$  eine Normkugel mit einem hinreichend kleinen Radius  $\epsilon>0$ :

$$U(x^{L}) = \{x \in \mathbb{R}^{n} | ||x - x^{L}|| < \epsilon \}$$

• Für ein **globales Minimum**  $f(x^*)$  muss gelten

$$f(x^*) \le f(x) \quad \forall x \in \mathbb{R}^n$$



Kann man feststellen, ob eine Optimierungsaufgabe "gutmütig" ist, also ein eindeutiges globales Minimum und keine weiteren lokalen Minima hat?



• Eine Menge  $G \subset \mathbb{R}^n$  ist konvex, wenn für beliebige Punkte  $x,y \in G$  auch die Verbindungslinie

$$[x,y] := \{z := (1-\lambda)x + \lambda y | \lambda \in [0,1] \}$$

in *G* enthalten ist:

$$x, y \in G \implies [x, y] \subset G$$

• Die **konvexe Hülle** einer Menge G ist die kleinste konvexe Menge, die G vollständig enthält.





• Eine über einer konvexen Menge G definierte Funktion  $f:G \to \mathbb{R}$  heißt **konvex**, falls

$$x, y \in G; x \neq y \Rightarrow f((1-\lambda)x + \lambda y) \leq (1-\lambda)f(x) + \lambda f(y) \quad \forall \lambda \in [0, 1]$$

Sie heißt streng konvex, falls

$$x, y \in G; x \neq y \Rightarrow f((1-\lambda)x+\lambda y) \bigcirc (1-\lambda)f(x)+\lambda f(y) \quad \forall \lambda \in [0,1]$$

- Eine streng konvexe Funktion besitzt ein eindeutiges globales Minimum und keine lokalen Minima.
- Eine konvexe Funktion kann mehrere globale Minima besitzen, jedoch keine zusätzlichen lokalen Minima.
- Eine nicht-konvexe Funktion, die keine weiteren lokalen Minima besitzt, wird als quasikonvex bezeichnet.



 Die Verbindungsline zwischen globalem und lokalem Minimum muss unter-halb des Graphen liegen!

- Vorlesung 1: Einführung
- Vorlesung 2: Gradientenverfahren
- Vorlesung 3: Newton- und Quasi-Newton-Verfahren
- Vorlesung 4: Optimierung mit Nebenbedingungen
- Vorlesung 5: Lineare Programme
- Vorlesung 6: Quadratische Programme
- Vorlesung 7: Nichtlineare Programme
- Vorlesung 8: Kombinatorische Optimierung
- Übung 1: Gradientenverfahren
- Übung 2: Quasi-Newton-Verfahren
- Übung 3: Nebenbedingungen
- Übung 4: Lineare Programme
- Übung 5: Projektionsmethoden

## Organisatorisches

- Übungen
  - Mehrheitlich praktische Aufgaben in Python
  - Ziel: Gefühl für einige wichtige Verfahren
  - Ca. jede dritte Woche (genaue Information auf der Internetseite der Vorlesung)
- Prüfung
  - Schriftliche Prüfung
  - Unbedingt rechtzeitig zur Prüfung anmelden
  - Keine Zulassungsbeschränkungen
- Folien und weiteres Material im ILIAS unter:

https://ilias.uni-freiburg.de

Kurs "Optimierung"

(Passwort: reinda)

direkter Link in Kursseite auf

http://www.bioinf.uni-freiburg.de/Lehre

- Sie sind erwachsene Menschen und Studenten einer Universität
- Fachwissen ist <u>nicht</u> das primäre Lernziel (vergleiche Fachhochschulen)
- Lernziele an der Universität:
  - Fähigkeit zu abstrahieren
  - Lernen mit Schwierigkeiten positiv umzugehen
  - Verantwortung übernehmen (zunächst für sich selbst)
  - Durchzuhalten auch wenn es mal keinen Spaß macht
- Nutzen Sie die Freiheit richtig und nehmen Sie diese Ratschläge mit:
  - Nehmen Sie die Übungen ernst
  - Arbeiten Sie den Stoff nach der Vorlesung noch einmal kurz durch
  - Füllen Sie Verständnislücken möglichst zügig (eigenständig, mit Kommilitonen, durch Fragen in der Vorlesung oder Übung)
  - Betreiben Sie bewusst Zeitmanagement (just in time is often just too late)

- J. Nocedal, S. J. Wright: Numerical Optimization, Springer, 2006.
- H. Jongen, K. Meer, E. Triesch: Optimization Theory, Kluwer, 2004.
- C. Großmann, J. Terno: Numerik der Optimierung, Teubner, 1997.
- H. Hamacher, K. Klamroth: Lineare Optimierung und Netzwerkoptimierung, Vieweg, 2006.
- M. S. Bazaraa, H. D. Sherali, C. M. Shetty: Nonlinear Programming, Wiley, 2006.
- R. Wimmer, B. Becker, N. Jansen, E. Abraham, J.-P. Katoen: Minimal critical subsystems for discrete-time Markov models, Proc. TACAS, Springer LNCS, pp. 299–314, 2012.