I Questions de cours

- 1 Énoncer et démontrer la formule du binôme de Newton.
- 2 Énoncer et démontrer les formules d'addition pour cosinus, sinus et tangente.
- 3 Énoncer et démontrer les propriétés de la bijection réciproque (résultats sur la composition, la bijection et la monotonie).

II Exercices sur la trigonométrie

Exercice 1:

- 1 Donner la valeur de $\cos\left(\frac{\pi}{12}\right)$ et $\sin\left(\frac{\pi}{12}\right)$.
- 2 Résoudre l'équation $\cos\left(2\theta + \frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$.
- 3 Résoudre l'inéquation $\cos(\theta) \le \frac{\sqrt{3}}{2}$.

Exercice 2

- 1 Calculer à l'aide de radicaux $\cos\left(\frac{\pi}{8}\right)$ et $\sin\left(\frac{\pi}{8}\right)$.
- 2 Résoudre l'équation $\sin(\theta) = \sin(2\theta)$.
- 3 Résoudre l'inéquation $\sin(\theta) > \sin(2\theta)$.

Exercice 3:

- 1 Résoudre l'équation $\sin(\theta) = \sqrt{3}\cos(\theta)$.
- 2 Résoudre l'équation $\sin(\theta) = \cos(2\theta)$.
- 3 Résoudre l'inéquation $\sin^2(\theta) \le \frac{1}{2}$.

III Exercices sur la dérivabilité

Exercice 4:

Déterminer $a, b \in \mathbb{R}$ tels que la fonction f définie sur \mathbb{R}^+ par :

$$f(x) = \begin{cases} \sqrt{x} & \text{si } x \in [0; 1] \\ ax^2 + bx + 1 & \text{si } x > 1 \end{cases}$$

soit dérivable en 1.

Exercice 5:

Démontrer que les courbes d'équation $y = x^2$ et $y = \frac{1}{x}$ admettent une unique tangente commune.

Exercice 6:

Démontrer que la fonction $f: \mathbb{R} \longrightarrow \mathbb{R}_+^*$ définie par :

$$f(x) = \frac{e^x + 2}{e^{-x}}$$

est bijective et donner sa bijection réciproque.

IV Exercices sur le calcul algébrique

Exercice 7:

Montrer de deux manières que :

$$\forall x \in \mathbb{R}^+, \ \forall n \in \mathbb{N}, \ (1+x)^n \ge 1 + nx$$

Exercice 8:

Soit n > 2.

Calculer la somme
$$S = \sum_{k=2}^{n} \ln \left(\frac{k^2 - 1}{k^2} \right)$$
.

Exercice 9:

Quel est le coefficient de x^4y^8 dans le développement de l'expression $(3x-7y)^{12}$?

Exercice 10:

Pour tout $n \in \mathbb{N}$, calculer $\sum_{k=0}^{n} k \binom{n}{k}$.