#### 2019 CS420, Machine Learning, Lecture 5

# Tree Models

Weinan Zhang

Shanghai Jiao Tong University

http://wnzhang.net

# ML Task: Function Approximation

- Problem setting
  - Instance feature space  $\mathcal{X}$
  - Instance label space  ${\cal Y}$
  - Unknown underlying function (target)  $f: \mathcal{X} \mapsto \mathcal{Y}$
  - Set of function hypothesis  $H = \{h|h: \mathcal{X} \mapsto \mathcal{Y}\}$
- Input: training data generated from the unknown

$$\{(x^{(i)}, y^{(i)})\} = \{(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})\}$$

- Output: a hypothesis  $h \in H$  that best approximates f
- Optimize in functional space, not just parameter space

# Optimize in Functional Space

- Tree models
  - Intermediate node for splitting data
  - Leaf node for label prediction
- Continuous data example



Node

Leaf

Node

# Optimize in Functional Space

- Tree models
  - Intermediate node for splitting data
  - Leaf node for label prediction
- Discrete/categorical data example

|          | Response    |               |        |          |  |
|----------|-------------|---------------|--------|----------|--|
| Outlook  | Temperature | Humidity Wind |        | Class    |  |
|          |             |               |        | Play=Yes |  |
|          |             |               |        | Play=No  |  |
| Sunny    | Hot         | High          | Weak   | No       |  |
| Sunny    | Hot         | High          | Strong | No       |  |
| Overcast | Hot         | High          | Weak   | Yes      |  |
| Rain     | Mild        | High          | Weak   | Yes      |  |
| Rain     | Cool        | Normal        | Weak   | Yes      |  |
| Rain     | Cool        | Normal        | Strong | No       |  |
| Overcast | Cool        | Normal        | Strong | Yes      |  |
| Sunny    | Mild        | High          | Weak   | No       |  |
| Sunny    | Cool        | Normal        | Weak   | Yes      |  |
| Rain     | Mild        | Normal        | Weak   | Yes      |  |
| Sunny    | Mild        | Normal        | Strong | Yes      |  |
| Overcast | Mild        | High          | Strong | Yes      |  |
| Overcast | Hot         | Normal        | Weak   | Yes      |  |
| Rain     | Mild        | High          | Strong | No       |  |



# Decision Tree Learning

- Problem setting
  - Instance feature space  $\mathcal{X}$
  - Instance label space  ${\cal Y}$
  - Unknown underlying function (target)  $f: \mathcal{X} \mapsto \mathcal{Y}$
  - Set of function hypothesis  $H = \{h|h: \mathcal{X} \mapsto \mathcal{Y}\}$
- Input: training data generated from the unknown

$$\{(x^{(i)}, y^{(i)})\} = \{(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})\}$$

- Output: a hypothesis  $h \in H$  that best approximates f
- Here each hypothesis h is a decision tree

### Decision Tree – Decision Boundary

- Decision trees divide the feature space into axisparallel (hyper-)rectangles
- Each rectangular region is labeled with one label
  - or a probabilistic distribution over labels





# History of Decision-Tree Research

- Hunt and colleagues used exhaustive search decision-tree methods (CLS) to model human concept learning in the 1960's.
- In the late 70's, Quinlan developed ID3 with the information gain heuristic to learn expert systems from examples.
- Simultaneously, Breiman and Friedman and colleagues developed CART (Classification and Regression Trees), similar to ID3.
- In the 1980's a variety of improvements were introduced to handle noise, continuous features, missing features, and improved splitting criteria. Various expert-system development tools results.
- Quinlan's updated decision-tree package (C4.5) released in 1993.
- Sklearn (python)Weka (Java) now include ID3 and C4.5

#### **Decision Trees**

- Tree models
  - Intermediate node for splitting data
  - Leaf node for label prediction

- Key questions for decision trees
  - How to select node splitting conditions?
  - How to make prediction?
  - How to decide the tree structure?

# Node Splitting

Which node splitting condition to choose?



- Choose the features with higher classification capacity
  - Quantitatively, with higher information gain

## Fundamentals of Information Theory

- Entropy (more specifically, Shannon entropy) is the expected value (average) of the information contained in each message.
- Suppose X is a random variable with n discrete values

$$P(X = x_i) = p_i$$

• then its entropy H(X) is

$$H(X) = -\sum_{i=1}^{n} p_i \log p_i$$

• It is easy to verify

$$H(X) = -\sum_{i=1}^{n} p_i \log p_i \le -\sum_{i=1}^{n} \frac{1}{n} \log \frac{1}{n} = \log n$$

# Illustration of Entropy



Entropy of binary distribution

$$H(X) = -p_1 \log p_1 - (1 - p_1) \log(1 - p_1)$$

# Cross Entropy

• Cross entropy is used to measure the difference between two random variable distributions

$$H(X,Y) = -\sum_{i=1}^{n} P(X=i) \log P(Y=i)$$

Continuous formulation

$$H(p,q) = -\int p(x)\log q(x)dx$$

Compared to KL divergence

$$D_{\text{KL}}(p||q) = \int p(x) \log \frac{p(x)}{q(x)} dx = H(p,q) - H(p)$$

# KL-Divergence

Kullback–Leibler divergence (also called relative entropy) is a measure of how one probability distribution diverges from a second, expected probability distribution

$$D_{\text{KL}}(p||q) = \int p(x) \log \frac{p(x)}{q(x)} dx = H(p,q) - H(p)$$



Original Gaussian PDF's

KL Area to be Integrated

## Cross Entropy in Logistic Regression

Logistic regression is a binary classification model

$$p_{\theta}(y = 1|x) = \sigma(\theta^{\top}x) = \frac{1}{1 + e^{-\theta^{\top}x}}$$
 $p_{\theta}(y = 0|x) = \frac{e^{-\theta^{\top}x}}{1 + e^{-\theta^{\top}x}}$ 



Cross entropy loss function

$$\mathcal{L}(y, x, p_{\theta}) = -y \log \sigma(\theta^{\top} x) - (1 - y) \log(1 - \sigma(\theta^{\top} x))$$

Gradient

$$\frac{\partial \mathcal{L}(y, x, p_{\theta})}{\partial \theta} = -y \frac{1}{\sigma(\theta^{\top} x)} \sigma(z) (1 - \sigma(z)) x - (1 - y) \frac{-1}{1 - \sigma(\theta^{\top} x)} \sigma(z) (1 - \sigma(z)) x$$

$$= (\sigma(\theta^{\top} x) - y) x$$

$$\theta \leftarrow \theta + (y - \sigma(\theta^{\top} x)) x$$

$$\frac{\partial \sigma(z)}{\partial z} = \sigma(z) (1 - \sigma(z))$$

# Conditional Entropy

• Entropy 
$$H(X) = -\sum_{i=1}^{n} P(X=i) \log P(X=i)$$

• Specific conditional entropy of X given Y = v

$$H(X|Y = v) = -\sum_{i=1}^{n} P(X = i|Y = v) \log P(X = i|Y = v)$$

Specific conditional entropy of X given Y

$$H(X|Y) = \sum_{v \in \text{values}(Y)} P(Y = v)H(X|Y = v)$$

Information Gain of X given Y

$$I(X,Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)$$
  
=  $H(X) + H(Y) - H(X,Y)$ 

Entropy of (X,Y) instead of cross entropy

#### Information Gain

Information Gain of X given Y

$$\begin{split} I(X,Y) &= H(X) - H(X|Y) \\ &= -\sum_{v} P(X=v) \log P(X=v) + \sum_{u} P(Y=u) \sum_{v} P(X=v|Y=u) \log P(X=v|Y=u) \\ &= -\sum_{v} P(X=v) \log P(X=v) + \sum_{u} \sum_{v} P(X=v,Y=u) \log P(X=v|Y=u) \\ &= -\sum_{v} P(X=v) \log P(X=v) + \sum_{u} \sum_{v} P(X=v,Y=u) [\log P(X=v,Y=u) - \log P(Y=u)] \\ &= -\sum_{v} P(X=v) \log P(X=v) - \sum_{u} P(Y=u) \log P(Y=u) + \sum_{u,v} P(X=v,Y=u) \log P(X=v,Y=u) \\ &= H(X) + H(Y) - H(X,Y) \end{split}$$

Entropy of (X,Y) instead of cross entropy

$$H(X,Y) = -\sum_{u,v} P(X = v, Y = u) \log P(X = v, Y = u)$$

# Node Splitting

Information gain

$$H(X|Y=v) = -\sum_{i=1}^{n} P(X=i|Y=v) \log P(X=i|Y=v)$$
 $H(X|Y) = \sum_{v \in \text{values}(Y)} P(Y=v)H(X|Y=v)$ 



$$H(X|Y=S) = -\frac{3}{5}\log\frac{3}{5} - \frac{2}{5}\log\frac{2}{5} = 0.9710$$

$$H(X|Y=O) = -\frac{4}{4}\log\frac{4}{4} = 0$$

$$H(X|Y=R) = -\frac{4}{5}\log\frac{4}{5} - \frac{1}{5}\log\frac{1}{5} = 0.7219$$

$$H(X|Y) = \frac{5}{14} \times 0.9710 + \frac{4}{14} \times 0 + \frac{5}{14} \times 0.7219 = 0.6046$$

$$I(X,Y) = H(X) - H(X|Y) = 1 - 0.6046 = 0.3954$$



$$H(X|Y = H) = -\frac{2}{4}\log\frac{2}{4} - \frac{2}{4}\log\frac{2}{4} = 1$$

$$H(X|Y = M) = -\frac{1}{4}\log\frac{1}{4} - \frac{3}{4}\log\frac{3}{4} = 0.8113$$

$$H(X|Y = C) = -\frac{4}{6}\log\frac{4}{6} - \frac{2}{6}\log\frac{2}{6} = 0.9183$$

$$H(X|Y) = \frac{4}{14} \times 1 + \frac{4}{14} \times 0.8113 + \frac{5}{14} \times 0.9183 = 0.9111$$

$$I(X,Y) = H(X) - H(X|Y) = 1 - 0.9111 = 0.0889$$

#### Information Gain Ratio

The ratio between information gain and the entropy

$$I_R(X,Y) = \frac{I(X,Y)}{H_Y(X)} = \frac{H(X) - H(X|Y)}{H_Y(X)}$$

• where the entropy (of Y) is

$$H_Y(X) = -\sum_{v \in \text{values}(Y)} \frac{|X_{y=v}|}{|X|} \log \frac{|X_{y=v}|}{|X|}$$

- where  $|X_{y=v}|$  is the number of observations with the feature y=v
- NOTE:  $H_{\gamma}(X)$  measures how much the variable Y could partition the data itself.
- Normally we don't want a Y that yields a good information gain of X just because Y itself performs a fine-grained partition of the data.

# Node Splitting

• Information gain ratio 
$$I_R(X,Y) = \frac{I(X,Y)}{H_Y(X)} = \frac{H(X) - H(X|Y)}{H_Y(X)}$$





$$I(X,Y) = H(X) - H(X|Y) = 1 - 0.6046 = 0.3954$$

$$H_Y(X) = -\frac{5}{14} \log \frac{5}{14} - \frac{4}{14} \log \frac{4}{14} - \frac{5}{14} \log \frac{5}{14} = 1.5774$$

$$I_R(X,Y) = \frac{0.3954}{1.5774} = 0.2507$$

$$I(X,Y) = H(X) - H(X|Y) = 1 - 0.9111 = 0.0889$$

$$H_Y(X) = -\frac{4}{14} \log \frac{4}{14} - \frac{4}{14} \log \frac{4}{14} - \frac{6}{14} \log \frac{6}{14} = 1.5567$$

$$I_R(X,Y) = \frac{0.0889}{1.5567} = 0.0571$$

- ID3 (Iterative Dichotomiser 3) is an algorithm invented by Ross Quinlan
  - ID3 is the precursor to the C4.5 algorithm
- Algorithm framework
  - Start from the root node with all data
  - For each node, calculate the information gain of all possible features
  - Choose the feature with the highest information gain
  - Split the data of the node according to the feature
  - Do the above recursively for each leaf node, until
    - There is no information gain for the leaf node
    - Or there is no feature to select

An example decision tree from ID3



Each path only involves a feature at most once

An example decision tree from ID3



How about this tree, yielding perfect partition?

# Overfitting

 Tree model can approximate any finite data by just growing a leaf node for each instance



# Decision Tree Training Objective

Cost function of a tree T over training data

$$C(T) = \sum_{t=1}^{|T|} N_t H_t(T)$$

where for the leaf node t

- $H_t(T)$  is the empirical entropy
- $N_t$  is the instance number,  $N_{tk}$  is the instance number of class k

$$H_t(T) = -\sum_{k} \frac{N_{tk}}{N_t} \log \frac{N_{tk}}{N_t}$$

• Training objective: find a tree to minimize the cost

$$\min_{T} C(T) = \sum_{t=1}^{|T|} N_t H_t(T)$$

# Decision Tree Regularization

Cost function over training data

$$C(T) = \sum_{t=1}^{|T|} N_t H_t(T) + \lambda |T|$$

#### where

- |T| is the number of leaf nodes of the tree T
- $\lambda$  is the hyperparameter of regularization

An example decision tree from ID3



Whether to split this node?

• Calculate the cost function difference.  $C(T) = \sum_{t=1}^{|T|} N_t H_t(T) + \lambda |T|$ 

# Summary of ID3

- A classic and straightforward algorithm of training decision trees
  - Work on discrete/categorical data
  - One branch for each value/category of the feature
- Algorithm C4.5 is similar and more advanced to ID3
  - Splitting the node according to information gain ratio
- Splitting branch number depends on the number of different categorical values of the feature
  - Might lead to very broad tree

# CART Algorithm

- Classification and Regression Tree (CART)
  - Proposed by Leo Breiman et al. in 1984
  - Binary splitting (yes or no for the splitting condition)
  - Can work on continuous/numeric features
  - Can repeatedly use the same feature (with different splitting)



# CART Algorithm

- Regression Tree
  - Output the predicted value



For example: predict the user's rating to a movie

- Classification Tree
  - Output the predicted class



For example: predict whether the user like a move

# Regression Tree

Let the training dataset with continuous targets y be

$$D = \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}\$$

• Suppose a regression tree has divided the space into M regions  $R_1$ ,  $R_2$ , ...,  $R_M$ , with  $c_m$  as the prediction for region  $R_m$ 

$$f(x) = \sum_{m=1}^{M} c_m I(x \in R_m)$$

• Loss function for  $(x_i, y_i)$ 

$$\frac{1}{2}(y_i - f(x_i))^2$$

It is easy to see the optimal prediction for region m is

$$\hat{c}_m = \arg(y_i | x_i \in R_m)$$

# Regression Tree

- How to find the optimal splitting regions?
- How to find the optimal splitting conditions?
  - Defined by a threshold value s on variable j
  - Lead to two regions

$$R_1(j,s) = \{x | x^{(j)} \le s\}$$
  $R_2(j,s) = \{x | x^{(j)} > s\}$ 

Training based on current splitting

$$\min_{j,s} \left[ \min_{c_1} \sum_{x \in R_1(j,s)} (y_i - c_1)^2 + \min_{c_2} \sum_{x \in R_2(j,s)} (y_i - c_2)^2 \right]$$

$$\hat{c}_m = \arg(y_i | x_i \in R_m)$$

- INPUT: training data D
- OUTPUT: regression tree f(x)
- Repeat until stop condition satisfied:
  - Find the optimal splitting (j,s)

$$\min_{j,s} \left[ \min_{c_1} \sum_{x \in R_1(j,s)} (y_i - c_1)^2 + \min_{c_2} \sum_{x \in R_2(j,s)} (y_i - c_2)^2 \right]$$

• Calculate the prediction value of the new region  $R_1$ ,  $R_2$ 

$$\hat{c}_m = \operatorname{avg}(y_i | x_i \in R_m)$$

Return the regression tree

$$f(x) = \sum_{m=1}^{M} \hat{c}_m I(x \in R_m)$$

How to efficiently find the optimal splitting (j,s)?

$$\min_{j,s} \left[ \min_{c_1} \sum_{x \in R_1(j,s)} (y_i - c_1)^2 + \min_{c_2} \sum_{x \in R_2(j,s)} (y_i - c_2)^2 \right]$$

Sort the data ascendingly according to feature j value



How to efficiently find the optimal splitting (j,s)?

$$\min_{j,s} \left[ \min_{c_1} \sum_{x \in R_1(j,s)} (y_i - c_1)^2 + \min_{c_2} \sum_{x \in R_2(j,s)} (y_i - c_2)^2 \right]$$

Sort the data ascendingly according to feature j value



$$loss_{6,7} = -\frac{1}{6} \left( \sum_{i=1}^{6} y_i \right)^2 - \frac{1}{6} \left( \sum_{i=7}^{12} y_i \right)^2 + C$$

How to efficiently find the optimal splitting (j,s)?

$$\min_{j,s} \left[ \min_{c_1} \sum_{x \in R_1(j,s)} (y_i - c_1)^2 + \min_{c_2} \sum_{x \in R_2(j,s)} (y_i - c_2)^2 \right]$$

Sort the data ascendingly according to feature j value



$$\log_{6,7} = -\frac{1}{6} \Big(\sum_{i=1}^{6} y_i\Big)^2 - \frac{1}{6} \Big(\sum_{i=7}^{12} y_i\Big)^2 + C \qquad \bullet \quad \text{Maintain and online update in } O(1) \text{ Ti}$$

$$\lim_{i \to \infty} \int_{0}^{1} y_i \int_{0}^{12} y_$$

• Maintain and online update in O(1) Time

$$\operatorname{Sum}(R_1) = \sum_{i=1}^k y_i \quad \operatorname{Sum}(R_2) = \sum_{i=k+1}^n y_i$$

#### Classification Tree

The training dataset with categorical targets y

$$D = \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}\$$

• Suppose a regression tree has divided the space into M regions  $R_1$ ,  $R_2$ , ...,  $R_M$ , with  $c_m$  as the prediction for region  $R_m$ 

$$f(x) = \sum_{m=1}^{M} c_m I(x \in R_m)$$

• Here the leaf node prediction  $c_m$  is the category distribution

$$\hat{c}_m = \{P(y_k | x_i \in R_m)\}_{k=1...K}$$

•  $c_m$  is solved by counting categories

$$P(y_k|x_i \in R_m) = \frac{C_m^k}{C_m} \quad \text{\# instances in leaf $m$ with cat $k$} \\ \text{\# instances in leaf $m$} \quad$$

#### Classification Tree

- How to find the optimal splitting regions?
- How to find the optimal splitting conditions?
  - For continuous feature j, defined by a threshold value s
    - Yield two regions

$$R_1(j,s) = \{x | x^{(j)} \le s\}$$
  $R_2(j,s) = \{x | x^{(j)} > s\}$ 

- For categorical feature j, select a category a
  - Yield two regions

$$R_1(j,s) = \{x | x^{(j)} = a\}$$
  $R_2(j,s) = \{x | x^{(j)} \neq a\}$ 

How to select? Argmin Gini impurity.

# Gini Impurity

- In classification problem
  - suppose there are K classes
  - let  $p_k$  be the probability of an instance with the class k
  - the Gini impurity index is

$$Gini(p) = \sum_{k=1}^{K} p_k (1 - p_k) = 1 - \sum_{k=1}^{K} p_k^2$$

• Given the training dataset D, the Gini impurity is

$$\operatorname{Gini}(D) = 1 - \sum_{k=1}^K \left(\frac{|D^k|}{|D|}\right)^2 \quad \text{\# instances in $D$ with cat $k$} \\ \text{\# instances in $D$}$$

# Gini Impurity

- For binary classification problem
  - let p be the probability of an instance with the class 1
  - Gini impurity is Gini(p) = 2p(1-p)
  - Entropy is  $H(p) = -p \log p (1-p) \log(1-p)$

Gini impurity and entropy are quite similar in representing classification error rate.



# Gini Impurity

- With a categorical feature j and one of its categories a
  - The two split regions  $R_1$ ,  $R_2$

$$R_1(j,a) = \{x | x^{(j)} = a\}$$
  $R_2(j,a) = \{x | x^{(j)} \neq a\}$ 

$$D_j^1 = \{(x,y)|x^{(j)} = a\}$$
  $D_j^2 = \{(x,y)|x^{(j)} \neq a\}$ 

The Gini impurity of feature j with the selected category

$$Gini(D_j, j = a) = \frac{|D_j^1|}{|D_j|}Gini(D_j^1) + \frac{|D_j^2|}{|D_j|}Gini(D_j^2)$$

# Classification Tree Algorithm

- INPUT: training data D
- OUTPUT: classification tree f(x)
- Repeat until stop condition satisfied:
  - Find the optimal splitting (j,a)

$$\min_{j,a} \operatorname{Gini}(D_j, j = a)$$

• Calculate the prediction distribution of the new region  $R_1$ ,  $R_2$ 

$$\hat{c}_m = \{P(y_k | x_i \in R_m)\}_{k=1...K}$$

Return the classification tree

$$f(x) = \sum_{m=1}^{M} \hat{c}_m I(x \in R_m)$$

- Node instance number is small
- 2. Gini impurity is small
- 3. No more feature

# Classification Tree Output

- Class label output
  - Output the class with the highest conditional probability

$$f(x) = \arg\max_{y_k} \sum_{m=1}^{M} I(x \in R_m) P(y_k | x_i \in R_m)$$

Probabilistic distribution output

$$f(x) = \sum_{m=1}^{M} \hat{c}_m I(x \in R_m)$$

$$\hat{c}_m = \{P(y_k | x_i \in R_m)\}_{k=1...K}$$

# Converting a Tree to Rules



For example: predict the user's rating to a movie

Decision tree model is easy to be visualized, explained and debugged.

# Learning Model Comparison

| Characteristic                                     | Neural   | SVM      | Trees    | MARS     | k-NN,    |
|----------------------------------------------------|----------|----------|----------|----------|----------|
|                                                    | Nets     |          |          |          | Kernels  |
| Natural handling of data of "mixed" type           | <b>V</b> | ▼        | <b>A</b> | <b>A</b> | •        |
| Handling of missing values                         | <b>V</b> | ▼        | <b>A</b> | <b>A</b> | <b>A</b> |
| Robustness to outliers in input space              | <b>V</b> | ▼        | <b>A</b> | ▼        | <b>A</b> |
| Insensitive to monotone transformations of inputs  | <b>V</b> | ▼        | <b>A</b> | ▼        | ▼        |
| Computational scalability (large $N$ )             | •        | ▼        | <b>A</b> | <b>A</b> | •        |
| Ability to deal with irrelevant inputs             | •        | <b>V</b> | <b>A</b> | <b>A</b> | ▼        |
| Ability to extract linear combinations of features | <b>A</b> | <b>A</b> | ▼        | ▼        | <b>*</b> |
| Interpretability                                   | <b>V</b> | ▼        | <b>*</b> | <b>A</b> | ▼        |
| Predictive power                                   | <b>A</b> | <b>A</b> | ▼        | <b>*</b> | <u> </u> |