Area and volume by double integral

Area of the region D by double integral:

The area of the region D in the xy-plane is given by
$$A = \iint_D dx \, dy = \iint_D dA \, .$$

The area of the planer region bounded by the curve $x = 6y^2 - 2$ Q.1. and $x = 2y^2$. **IIT-JAM 2015**

(a)
$$\frac{\sqrt{2}}{3}$$

(a)
$$\frac{\sqrt{2}}{3}$$
 (b) $\frac{2\sqrt{2}}{3}$

(c)
$$\frac{4\sqrt{2}}{3}$$

(d)
$$\sqrt{2}$$

Q.2. The area of $\{(x,y) \in \mathbb{R}^2; |x| + |y| \le 2\}$ is HCU 2021

(a) 4

(b) 8

(d) 5

Dr.Gajendra Purohit (PhD,NET)
Referral Code GPSIR

- Q.3. The area of the region in the first quadrant that is bounded by $y = \sqrt{x}$, y = x 2 and the x-axis
 - (a) 1/3

(b) 10

(c) 10/3

(d) 4

Q4. Area enclosed by the curve $y^2 = x$ and $y^2 = 2x - 1$ lying in the first quadrant is IIT JAM - 2005

(a) 1/6

(b) 1/4

(c) 1/2

(d) 1/3

- Consider the open rectangle $G = \{(s,t) \in \mathbb{R}^2 : 0 < s < 1 \text{ and }$ Q.5. 0 < t < 1 and the map T: G $\rightarrow \mathbb{R}^2$ given by $T(s,t) = \left(\frac{\pi s(1-t)}{2}, \frac{\pi(1-s)}{2}\right)$ for $(s,t) \in G$ Then the area of
 - (a) $\pi/4$

(b) $\pi^2/4$ (d) 1

the image T(G) of the map T is equal to IIT JAM 2022

(c) $\pi^2/8$