Weijian Zhang

55 Dale Road, Birmingham. B29 6FQ. +44 7724806386 wxz163@student.bham.ac.uk UoB Student Profile Personal Website

Research

I am a PhD student in the Intelligent Robotics Lab at the University of Birmingham. My current research is focused on motion planning and formation control in multi-robot systems. To achieve this, I apply planning and optimal control to enable robots to exhibit safe, efficient, and reliable behavior.

Research Interests

- Formation Control
- Multi-Robot Coordination
- Multi-Robot Motion Planning
- Human-aware navigation

Education

- DPhil in Computer Science at the University of Birmingham 2023-Present
 - Thesis: Formation Control and Motion Planning for Multi-Robot System
 - Supervisors: Masoumeh Mansouri, Vahid Mamduhi and Charlie Street
- MSci in Robotics at the University of Birmingham

2021-2022

- Thesis: Multi-robot object delivery in formation based on convex optimization
- Supervisor: Masoumeh Mansouri
- Degree Class: Distinction
- BEng in Automation at the Southwest Jiaotong University 2017-2021

Supervisor: Yiduo ZhouDegree Class: Merit

Technical Skills

Languages

English (Fluent)/Chinese (Native)

Programming Languages

C++ I can use classes and templates on top of the underlying C functionality.

C I have strong experience with memory management, pointers etc.

Python I am very familiar with Python, having used it for many projects.

Other

Git I have experience using Git, having used it for any significant project I have partaken in.

LaTeX I've produced many documents in LaTeX, notably my MSc dissertation.

ROS I've had experience working with/running robotics systems using the ROS middleware.

Service

• Conference Reviewing: IEEE International Conference on Robotics and Automation (ICRA) - 2023, 2024; IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) - 2024; International Conference on Autonomous Agents and Multiagent Systems (AAMAS) - 2024.

Teaching

• Teaching Assistant: University of Birmingham

 Module: LM Robot Motion Planning and Control 	2025
 Module: LM Intelligent Robotics 	2024
 Module: LH Intelligent Robotics 	2024
 Module: LM Advanced Robotics 	2024
– Module: LH Artificial Intelligence 1	2024, 2025
– Module: LH Computer Vision and Imaging	2023
- Module: LM Robot Vision	2023

Honors & awards

• ICRA 2025 Best Multi-Robot Systems Paper Award Finalist	2025
\bullet Best Poster award at The 7th IEEE UK & Ireland RAS Conference	2024
• Awarded MCS Prize for Best	2022
• Awarded Comprehensive Scholarship of Southwest Jiaotong University	2020
• Awarded Comprehensive Scholarship of Southwest Jiaotong University	2019

References

- Masoumeh (Iran) Mansouri (University of Birmingham) m.mansouri@bham.ac.uk
- Charlie Street (University of Birmingham) c.l.street@bham.ac.uk

Publications

[1] Weijian Zhang, Charlie Street, and Masoumeh Mansouri. "Multi-Nonholonomic Robot Object Transportation with Obstacle Crossing using a Deformable Sheet". In: Proceedings of the International Conference on Robotics and Automation (ICRA). Nominated for Best Multi-Robot Paper, Best Student Paper, Best Paper. 2025.

- [2] Weijian Zhang, Charlie Street, and Masoumeh Mansouri. "A decoupled solution to heterogeneous multi-formation planning and coordination for object transportation". In: *Robotics and Autonomous Systems* (Aug. 2024), p. 104773. URL: http://dx.doi.org/10.1016/j.robot.2024.104773.
- [3] Weijian Zhang, Charlie Street, and Masoumeh Mansouri. "Multi-Formation Planning and Coordination for Object Transportation". In: 2023 European Conference on Mobile Robots (ECMR). IEEE, Sept. 2023. URL: http://dx.doi.org/10.1109/ecmr59166.2023.10256314.