

Departamento de Eléctrica y Electrónica

Carrera de Electrónica y Automatización

SISTEMAS BASADOS EN MCU

Práctica 2.1

EJERCICIOS DE DIRECCIONAMIENTO INDIRECTO CON EL PIC16F877

	Iza Tipanluisa Alex Paul
Docente:	Ing. Amparo Meythaler

Autor:

NRC: 4891

1) OBJETIVOS

- Consolidar la forma de realizar Diagramas de Flujo para resolver ejercicios con el Microcontrolador PIC16F877.
- Consolidar la forma de correr programas en forma total en el MPLAB IDE.
- Realizar ejercicios de programación en Direccionamiento Indirecto.

2) MARCO TEORICO

DIRECCIONAMIENTO INDIRECTO

Este modo se usa cuando en una instrucción se utiliza como operando en registro INDF, que ocupa la dirección 0 de ambos bancos. En realidad, el registro INDF no está implementado físicamente y cuando se le hace referencia, se accede a la dirección de un banco especificada con los 7 bits de menos peso del registro FSR.

El bit de más peso del FSR junto al bit IRP del registro ESTADO se encarga del banco a acceder, mientras que los 7 bits de menos peso del FSR apuntan a la posición.

3) EQUIPOS Y MATERIALES

• PC con el paquete MPLAB IDE de la MICROCHIP.

4) ACTIVIDADES

- 1) Contabilice los datos menores o iguales a 8A de aquellos que están desde la localidad [35] hasta la localidad [38]. La respuesta coloque en la localidad [39].
 - Realice el diagrama de flujo.
 - Codifique con las instrucciones del Microcontrolador PIC16F877. (Ponga al inicio como un comentario su nombre).
 - Coloque datos desde la localidad [35] hasta la localidad [38].
 - Corra el ejercicio en forma total y verifique el resultado.
 - Repita el corrido cambiando los datos de la localidades de análisis.

Ilustración 1

Ilustración 2

Ilustración 3

- 2) Contabilice los datos que tienen iguales sus bits 4 y 5 de aquellos que están desde la localidad [20] hasta la localidad [29]. La respuesta coloque en la localidad siguiente.
 - Realice el diagrama de flujo.
 - Codifique con las instrucciones del Microcontrolador PIC16F877. (Ponga al inicio como un comentario su
 - nombre).
 - Coloque datos desde la localidad [20] hasta la localidad [29].
 - Corra el ejercicio en forma total y verifique el resultado.
 - Repita el corrido cambiando los datos de la localidades de análisis.

5) RESULTADOS

• Explique los errores cometidos en los ejercicios realizados (si los tuvo) y la forma de corregirlos.

Al momento de analizar el FSR en el segundo programa estaba filtrando los datos con el valor de 30 y lo estaba guardando en la localidad FSR lo cual cambiaba los valores de entrada; lo solucione cambiando la dirección del guardado de localidad (andwf INDF,1) a w (andwf INDF,0).

También al momento de analizar el bit 5, estaba filtrando nuevamente, me percaté que no era necesario y lo eliminé.

Por último, me confundí al momento de guardar los datos en la localidad 2A por que me olvidé que las localidades trabajan en hexadecimal y estaba colocando después de la localidad 29 el 30 lo cual estaba incorrecto.

• Explique con 2 ejemplos numéricos la función del registro INDF en el Direccionamiento Indirecto.

[24]=4E INDF=4E [25]=AA INDF=AA [26]=1B INDF=1B

El INDF toma los valores guardado en el FSR (para los ejercicios realizados)

6) DISEÑO

7) DIAGRAMA DE FLUJO

1) Contabilice los datos menores o iguales a 9F de aquellos que están desde la localidad [25] hasta la localidad [35]. La respuesta coloque en la localidad [36].

2) Contabilice los datos que tienen desiguales sus bits 4 y 5 de aquellos que están desde la localidad [30] hasta la localidad [39]. La respuesta coloque en la localidad siguiente.

Gráfico 2

8) PROGRAMA

a. Contabilice los datos menores o iguales a 8A de aquellos que están desde la localidad [35] hasta la localidad [38]. La respuesta coloque en la localidad [39].

```
;IZA TIPANLUISA ALEX PAUL
List p=pic16f877
estado equ 03
fsr equ 04
INDF equ 00
org 0
clrf 39
movlw 35
movwf fsr
SIGA:
movlw 8B
subwf INDF,0
BTFSS estado,0
incf 39,1
incf fsr,1
movlw 39
xorwf fsr,0
btfss estado,2
goto SIGA
   end
```

b. Contabilice los datos que tienen iguales sus bits 4 y 5 de aquellos que están desde la localidad [20] hasta la localidad [29]. La respuesta coloque en la localidad siguiente.

```
;IZA TIPANLUISA ALEX PAUL
List p=pic16f877
estado equ 03
fsr equ 04
INDF equ 00
org 0
clrf 2A
movlw 20
movwf fsr
SIGA:
movlw 30
andwf INDF,0
BTFSC INDF,4
GOTO BUNO
GOTO BCERO
```

BUNO: BTFSS INDF,5 goto nocumple goto cumple BCERO:

BTFSC INDF,5 goto nocumple goto cumple

cumple:incf 2A,1 nocumple:incf fsr,1 movlw 2A xorwf fsr,0 btfss estado,2 goto SIGA end

9) CONCLUSIONES

- Se ha concluido que el código en cuanto al direccionamiento indirecto puede ser reutilizado y lo único que cambia en el programa es el que va a hacer.
- Se ha concluido que la localidad INDF no existe, pero tiene la función de tener el valor de la localidad que se está analizando (en los programas presentados anteriormente).
- Se ha concluido que se debe tener cuidado en donde se va a guardar los datos por que si se confunde en el direccionamiento el "0" con el "1" este podría cambiar los datos ingresados por el usuario

10) RECOMENDACIONES

- Se recomienda realizar correctamente y de manera ordenada el diagrama de flujo ya que en este se basa el programa
- Se recomienda revisar varias veces el programa ya que puede haber instrucciones que se pueden eliminar o están demás; las mismas que no afectan en el programa.
- Se recomienda estas seguro de la localidad en la que se va a guardar ya que el programa trabaja con valores hexadecimales.

11) **BIBLIOGRAFIA**

Meythaler, A. (2021). Sistemas basados en MCU. Ecuador: UFA ESPE