数季电路与逻辑设计

Digital circuit and logic design

● 第六章 异步时序逻辑电路

主讲教师 赵贻竹

■脉冲异步时序逻辑电路

脉冲异步时序逻辑电路的分析

分析方法与同步时序逻辑电路大致相同

工具:状态表、状态图、时间图等

注意:

※ 对触发器的时钟控制端应作为激励函数处理

当时钟端有脉冲作用时,才根据触发器的输

入确定状态转移方向

当时钟端无脉冲作用时,触发器状态不变

分析时可以排除两个或两个以上 输入端同时出现脉冲以及输入端 无脉冲出现情况

可使状态图和状态表简化

■同步时序逻辑电路分析步骤

■同步时序逻辑电路分析步骤

分 析

- 两个钟控J-K触发器
 - 时钟端不相同
 - 异步时序逻辑电路
- 一个与门
- 输入端:x
- 输出端:Z
- Mealy型

分 析

函数表达式

$$J_1 = K_1 = J_2 = K_2 = 1$$

$$C_1 = x$$

$$C_2 = y_1$$

$$Z = xy_2y_1$$

次态真值表

◎ 次态真值表

$$J_1 = K_1 = J_2 = K_2 = 1$$
 $Z = xy_2y_1$

$$Z = xy_2y_1$$

$$C_1 = x$$
 C_2

$$C_2 = y_1$$

	现态	输入		激	勍		态	输出	
	y ₂ y ₁	Х	J_2K_2	J_2K_2 C_2 J_1K_1 C_1				y_1^{n+1}	Z
	0 0	1	11		11	\forall	0	1	0
1	0 1	_1	11	+	11	→	1	0	0
ı	1 0	1	11		11	+	1	1	0
	1 1	1	11	1	11		0	0	1

J K	Q^{n+1}
0 0	Q
01	0
10	1
11	$ar{oldsymbol{Q}}$

分

析

函数表达式

$$J_1 = K_1 = J_2 = K_2 = 1$$

$$C_1 = x$$

$$C_2 = y_1$$

$$Z = xy_2y_1$$

次态真值表

状态表和状态图

◎ 状态表和状态图

现态	次态y ₂ ⁿ⁺¹ y ₁ ⁿ⁺¹ /输出z
$y_2 y_1$	x = 1
00	01/0
01	10/0
10	11/1
11	00/1

现态	输入		激励				次态	
y ₂ y ₁	x	J_2K_2	C_2 J_1K_1 C_1 $y_2^{n+1}y_1^{n+1}$				Z	
0 0	1	11	K	11	+	0	1	0
0 1	1	11	\forall	11	+	1	0	0
1 0	1	11	À	11	→	1	1	0
11	1	11	+	11	+	0	0	1

◎ 状态表和状态图

现态	次态y ₂ ⁿ⁺¹ y ₁ ⁿ⁺¹ /输出z
$y_2 y_1$	x = 1
0.0	01/0
01	10/0
10	11/1
11	00/1

现态	输入
y ₂ y ₁	x
0 0	1
0 1	1
1 0	1
11	1

次	输出	
y_2^{n+1}	y_1^{n+1}	Z
0	1	0
1	0	0
1	1	0
0	0	1

● 状态表和状态图

现态	次态y ₂ ⁿ⁺¹ y ₁ ⁿ⁺¹ /输出z
$y_2 y_1$	x = 1
00	01/0
01	10/0
10	11/1
11	00/1

分 析

◎ 函数表达式

$$J_1 = K_1 = J_2 = K_2 = 1$$

$$C_1 = x$$

$$C_2 = y_1$$

$$Z = xy_2y_1$$

带进位的模四计数器

画出时间序列图

分析下图所示脉冲异步时序逻辑电路。

0

两个与非门构成的基本R-S触发器

- 冠 无时钟
- ₩ 异步时序逻辑电路
- ◎ 与非门,或非门,非门,与或非门
- 輸入端: x₁, x₂, x₃
- 輸出端: Z
- Moore型

分 析

函数表达式

$$z = \overline{y_2 + \overline{y_1}} = \overline{y_2}y_1$$

$$R_2 = \overline{x_3 + x_2 y_1}$$

$$s_2 = \overline{x_1}$$

$$R_1 = \overline{x_1 + x_3 \overline{y_2} + x_2 y_1}$$

$$s_1 = \overline{x_2 y_2 \overline{y_1}}$$

次态真值表

分

析

输入	现态		激	励		次态 y ₂ ⁿ⁺¹ y ₁ ⁿ⁺¹		输出
$x_3 x_2 x_1$	y_2y_1	R_2	S_2	R_1	S_1			Z
	0 0	1	0	0	1	1	0	0
001	01	1	0	0	1	1	0	1
00 1	10	7	0	0	7	1	0	0
	11	1	0	0	1	1	0	0
	0.0	41	1	1	1	0	0	0
010	01	0	1	0	1	0	0	_1_
0,0	10	1	1	1	0	_1_	_1_	0
	11	0	1	0	1	0	0	0
	0 0	0	1	0	1	0	0	0
100	01	0	1	0	1	0	0	1
	10	0	1	1	1	0	0	0
	11	0	1	1	1	0	1	0

$$z = \overline{y_2 + \overline{y_1}} = \overline{y_2}y_1$$

$$R_2 = \overline{x_3 + x_2y_1}$$

$$s_2 = \overline{x_1}$$

$$R_1 = \overline{x_1 + x_3}\overline{y_2} + x_2y_1$$

$$s_1 = \overline{x_2y_2}\overline{y_1}$$

RS	Q ⁿ⁺¹
0.0	d
0 1	0
1 0	1
1 1	Q

分 析

函数表达式

次态真值表

状态表和状态图

输入	现态		激	励		次态		输出
$x_3 x_2 x_1$	y_2y_1	R_2	S_2	R_1	S_1	y_2^{n+1}	y_1^{n+1}	Z
	0 0	1	0	0	1	1	0	0
001	01	1	0	0	1	1	0	1
001	10	1	0	0	4	1	0	0
	11	4	0	0	1	1	0	0
	0.0	1	1	1	1	0	0	0
010	01	0	1	0	1	0	0	1
010	10	1	1	1	0	1	1	0
	11	0	7	0	1	0	0	0
	0.0	0	1	0	1	0	0	0
100	01	0	1	0	1	0	0	1
100	10	0	1	1	1	0	0	0
	11	0	1	1	1	0	1	0

现态	次态	输出		
y_2y_1	x_1	<i>x</i> ₂	<i>x</i> ₃	Z
00	10	00	00	0
01	10	00	00	1_
10	10	11	00	0
11	10	00	01	0

现态	次态y ₂ ⁿ⁺¹ y ₁ ⁿ⁺¹			输出
y_2y_1	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	Z
00	10	00	00	0
01	10	00	00	1
10	10	11	00	0
11	10	00	01	0

时 间 冬

即 假定输入端 x_1 、 x_2 、 x_3 出现脉冲的顺序依次为 " x_1 — x_2 — x_1 — x_3 — x_1 $x_2 - x_3 - x_1 - x_3 - x_2''$

假定电路状态转换发生在输入脉冲作用结束时

逻辑函数的基本概念

功能分析

数季电路与逻辑设计

Digital circuit and logic design

● 谢谢,祝学习快乐!

主讲教师 赵贻竹

