

Bosch Student Competition

David Gekeler

Erik Scheurer

Julius Herb

Niklas Hornischer

06.10.2022

Problem Statement

- Robot throwing a ball into a basket
- Find optimal parameters with tolerances
- Assumptions:
 - 1. No angular momentum
 - 2. Perfectly elastic reflection

Modeling

- Ball throw with air resistance (drag equation)
- $F_G = m_{\text{ball}}g$
- $F_R = kv^2$ where $k = \frac{1}{2}\rho c_w \pi r_{\text{ball}}^2$, $v = \sqrt{v_x^2 + v_y^2}$

• ODE system:
$$\dot{\xi} = \begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{v_x} \\ \dot{v_y} \end{pmatrix} = \begin{pmatrix} v_x \\ v_y \\ -\frac{k}{m_{\text{ball}}} v_x \sqrt{v_x^2 + v_y^2} \\ -g - \frac{k}{m_{\text{ball}}} v_y \sqrt{v_x^2 + v_y^2} \end{pmatrix}, \ \xi(0) = \begin{pmatrix} h \cos \alpha \\ h \sin \alpha \\ v_0 \cos \alpha \\ v_0 \sin \alpha \end{pmatrix}$$

$$\xi(0) = \begin{pmatrix} h\cos\alpha\\ h\sin\alpha\\ v_0\cos\alpha\\ v_0\sin\alpha \end{pmatrix}$$

- First approach: Solve numerically using a Runge-Kutta method
 → not efficient enough in a multi-query setting
- Instead: Decouple the ODE system and solve it analytically

$$\dot{v}_{x} = -\frac{k}{m_{\text{ball}}} v_{x} \sqrt{v_{x}^{2} + v_{y}^{2}} \approx -\frac{k}{m_{\text{ball}}} v_{x}^{2}$$

$$\quad \bullet \ \dot{v_y} = -g - \frac{k}{m_{\rm ball}} v_y \sqrt{v_x^2 + v_y^2} \approx \begin{cases} -g - \frac{k}{m_{\rm ball}} v_y^2, \ t < t_{\rm peak} & \rightarrow \text{upward stage} \\ -g + \frac{k}{m_{\rm ball}} v_y^2, \ t \geq t_{\rm peak} & \rightarrow \text{downward stage} \end{cases}$$

Analytical solution of the decoupled ODE system:

•
$$x(t) = \frac{m_{\text{ball}}}{k} \ln \left(\frac{kv_0 \cos \alpha}{m_{\text{ball}}} t + 1 \right)$$

$$y(t) = \begin{cases} h + \frac{m_{\text{ball}}}{k} \left(\ln\left(\cos\left(\sqrt{\frac{kg}{m_{\text{ball}}}}t - c\right) \right) - \ln(\cos c) \right), \ t < t_{\text{peak}} \\ h + \frac{m_{\text{ball}}}{k} \left(-\ln\left(\cosh\left(\sqrt{\frac{kg}{m_{\text{ball}}}}t - c\right) \right) - \ln(\cos c) \right), \ t \ge t_{\text{peak}} \end{cases}$$

• where
$$t_{\rm peak}=\sqrt{\frac{m_{\rm ball}}{kg}}\,c$$
 , $c=\arctan\left(\sqrt{\frac{k}{m_{\rm ball}g}}\right)v_0\sin\alpha$

- Only few points are relevant:
 - Intersection with backboard
 - Intersection with ring zone
 - Intersection with basket level
- At bounce: Invoke simulation with new initial conditions recursively

Modeling

• Reflection at the backboard: $v_{\rm r} = \begin{pmatrix} v_{\rm r,x} \\ v_{\rm r,y} \end{pmatrix} = \begin{pmatrix} -v_{\rm x} \\ v_{\rm y} \end{pmatrix}$

• Reflection at the ring zone: $v_{\rm r} = v - 2 \frac{v \cdot e}{e \cdot e} e$

Reflections on top of the backboard are neglected

Uncertainties

- Mapping $H:(h,\alpha,v_0,r_{\text{ball}},m_{\text{ball}})\mapsto \begin{cases} 1, \text{ if ball goes in} \\ 0, \text{ if ball passes} \end{cases}$
- Assume uniform distribution:
 - $h \sim \mathcal{U}(h_{\text{opt}} 15\text{cm}, h_{\text{opt}} + 15\text{cm})$
 - $\alpha \sim \mathcal{U}(\alpha_{\text{opt}} 5^{\circ}, \alpha_{\text{opt}} + 5^{\circ})$
 - $v_0 \sim v_{0,\text{opt}} \cdot \mathcal{U}(1 0.05, 1 + 0.05)$
 - $r_{\text{ball}} \sim \mathcal{U}(r_{\text{ball,ref}} 15 \text{mm}, r_{\text{ball,ref}} + 15 \text{mm})$
 - $m_{\text{ball}} \sim \mathcal{U}(m_{\text{ball,ref}} 41\text{g}, m_{\text{ball,ref}} + 41\text{g})$
- Hit rate: $\mathbb{E}(H)$

Uncertainties

Monte Carlo experiment:

$$\mathbb{E}(H) \approx \langle H \rangle = \frac{1}{N} \sum_{i=1}^{N} H(h_i, \alpha_i, v_{0,i}, r_{\text{ball},i}, m_{\text{ball},i})$$

- Considered alternatives:
 - Error propagation, Interval arithmetic
 - →Too complex due to high non-linearity introduced by bounces

- Fix uncertainties
- Only free one
- Variables have different influence
- Better with air resistance

Optimization

0.2

0.1

• Optimization landscape (using 10000 samples, h = 2.0 m):

- Grid search
 - Refine twice around maximum
 - Second step did not change result

$h_{ m opt}$	2.0m
$lpha_{ m opt}$	60.68°
$v_{ m 0,opt}$	7.37ms ⁻¹

100 throws with optimal parameters (with uncertainties)

• Final hit rate: 47.4%

Universität Stuttgart

Workshop "Maths Meets Industry"

Thank you

Erik Scheurer, B.Sc.

Julius Herb, B.Sc.

Niklas Hornischer, B.Sc.

Universität Stuttgart

Thank you for your attention!

David Gekeler, B.Sc.

Erik Scheurer, B.Sc.

Julius Herb, B.Sc.

Niklas Hornischer, B.Sc.

Universität Stuttgart