1. Tema de casă Nr. 3¹

Nume și prenume	Nr. matricol	S ₁ = suma cifrelor numărului matricol S ₂ = suma cifrelor impare din numărul matricol	$a = S_1 mod7$ $b = S_2 mod3$	Data completării formularului
Regulas Alexandru	12503	S1=11; S2=9;	a=4; b=0	21.10.2021

TEMA DE CASĂ NR. 3

(Tema de casă se depune pe CV în săptămâna consecutivă celei în care s-a efectuat lucrarea de laborator. Formularul completat se depune în format pdf.)

1.1. Pentru circuitul din fig. -a- de la pag. 2 din lucrarea de laborator avem R_1 = 10 k Ω , C_1 = 420 μ F, R_2 = (100+5a) k Ω , C_2 = (180+2b) μ F. Să se particularizeze numeric modelul operațional (10).

1.2. Circuitul din figura -a- de la pag. 2 din lucrarea de laborator se consideră ca sistem orientat $u \rightarrow i_2$. Să se determine un MM-II în domeniul timp care le agă cele două semnale.

 $[\]equiv$

Formularul cu tema de casă este disponibil pentru completare în fișierul TS_II-CTI_TC_03.docx.

1.3. Se consideră modelul Simulink de la pag. 4 din lucrarea de laborator sau omologul său Xcos. Să se eșantioneze semnalul (12) cu pasul h = 0.2·(1+b) secunde pentru un interval de timp de 6 secunde.

1.4. Reluați simularea cu modelul Simulink de la pag. 5 din lucrarea de laborator sau modelul Xcos de la pag. 6 pentru valorile a și b personalizate.


```
A03_L3_1script.m × +

- a=4;

- b=0;

- R1=120*(0.1+b)+10*(a+1);

- R2=430-15*(a+2);

- C1=220*(0.1+b)*10^(-6);

- C2=C1+(a+5)*10^(-6)
```

2.1 Soluțiile exemplelor A), B) și C) de la pag. 8 nu depind de pasul de discretizare h. Comentați acest fapt.

Solutiile exemplelor A), B) si C) nu depinde de pasul de discretizare deoarece pasul h nu respecta o ratie stabilita deci h nu este constant.

2.2 Semnalul $x(t) = 3.5 \cdot \sin(2 \cdot \pi \cdot t + 0.16)$, $t \ge 0$ se eșantionează cu pasul $h = (0.1 + S_1 + S_2)$. Scrieți termenul general x[t] al semnalului $\{x[t]\}_{t \in \mathbb{N}}$ și calculați transformata z a semnalului discretizat.

= sin(211 t) cos(c, 16) + cos(211 t) sin (0, 16)
= 3,5 (sin (211t) cos(c,16) + cos(211t) since; = 3,5 (sin (211t) · 0,98 + cos(211t) · 0,45
$= 358 \sin(20t) \cdot 3.43 + 35\cos(20t) \cdot 0.52$ $= \sin(20t) \cdot 3.43 + \cos(20t) \cdot 0.52$ $= \sin(20t) = -2\sin(20t)$ $\sin(20t) = -2\sin(20t)$
$\frac{2^{2}-12\cos 2\pi h+1}{2\cos (2\pi t)} = \frac{2(2-\cos 2\pi h+1)}{2^{2}-22\cos 2\pi h+1}$
=)x(=3, 43 = 2 sein 2 (7 h) + 0,52 2 (2 -con 21) h) =)x(=3, 43 = 2 2 2 con (7 h 4)
h=(0,1+S1+S2)=0,1+11+9=29,1
$X(\mathbf{Z}) = \frac{2 \sin \pi \cdot 20.1}{2^2 - 2 \cos \pi \cdot 20.1 + 1} + 0.52 \frac{2(2 - \cos 2\pi \cdot 20.1)}{2^2 - 22 \cos 2\pi \cdot 20.1 + 1}$