stl2137_p8122_hw1

Question 1

Part A

For all individuals calculate the effect of treatment on the outcome and interpret.

Individual	Y_0	Y_1	$Y_0 - Y_1$
1	0	0	0
2	1	0	1
3	0	1	-1
4	1	0	1
5	1	0	1
6	0	1	-1
7	1	0	1
8	0	0	0

- For individuals 2, 4, 5, and 7, Y_0 had a positive causal effect.
- For individuals 3 and 6, Y_0 had a negative causal effect.
- For individuals 1 and 8, neither Y_0 or Y_1 had a causal effect.

Part B

Calculate the average causal effect of treatment on the outcome and interpret.

$$E[Y_0] - E[Y_1]$$
= $\frac{4}{8} - \frac{2}{8} = \frac{1}{4}$

• Treatment 0 is better on average than treatment 1.

Part C

Calculate the association of the treatment with the outcome under the following treatment assignment for subjects $i = 1, ..., 8 : A_1 = 1, A_2 = 0, A_3 = 1, A_4 = 1, A_5 = 0, A_6 = 0, A_7 = 0, A_8 = 1$. Interpret the result, compare with the effect computed in question 1b.

Individual	Y_0	Y_1	Treatment
1	0	0	$A_1 = 1$
2	1	0	$A_2 = 0$
3	0	1	$A_3 = 1$
4	1	0	$A_4 = 1$
5	1	0	$A_5 = 0$
6	0	1	$A_6 = 0$

Individual	Y_0	Y_1	Treatment
7	1	0	$A_7 = 0$
8	0	0	$A_8 = 1$

$$E[Y|A = 0] - E[Y|A = 1]$$
$$= \frac{4}{4} - \frac{2}{4} = \frac{1}{2}$$

The difference in observed group means and apparent effects between Y_0 and Y_1 is $\frac{1}{2}$, which is higher than the ACE of $\frac{1}{4}$ from part 1b. The apparent effect from the difference in observed group mean overstates the causal effect when compared to the ACE.

Part D

Show a random assignment of the treatment for this population. Explain your work. Compute the association of the treatment with the outcome under the random assignment and compare with the treatment effect computed in question 1b.

```
set.seed(21)
rbinom(8, 1, 0.5)
```

[1] 1 0 1 0 1 1 0 0

Individual	Y_0	Y_1	Treatment
1	0	0	$A_1 = 1$
2	1	0	$A_2 = 0$
3	0	1	$A_3 = 1$
4	1	0	
5	1	0	$A_5 = 1$
6	0	1	$A_6 = 1$
7	1	0	$A_7 = 0$
8	0	0	$A_8 = 0$

$$E[Y|A=0] - E[Y|A=1]$$

= $\frac{4}{6} - \frac{2}{2} = -\frac{1}{3}$

The difference in observed group means and apparent effects between Y_0 and Y_1 is $-\frac{1}{3}$. Unlike in part 1b, where the ACE states that the causal effect is $\frac{1}{4}$, meaning that Treatment 0 is better, this derived apparent effect of $-\frac{1}{3}$ implies that Treatment 1 is better.