Laboratorio di misura

Lorenzo Mauro Sabatino

1 Introduzione

Fare fisica richiede fare misure. In fisica, usiamo spesso relazioni funzionali per comprendere come una quantità **varia** in funzione di un'altra. Ad esempio, se si applica una forza costante a un oggetto, la sua accelerazione sarà direttamente proporzionale alla forza (relazione lineare).

Attenzione: non basta fare misure. Bisogna essere in grado di dare un senso ai risultati che si ottengono e confrontarli con quelli ottenuti da altre persone.

2 Usare Google Maps per stimare il valore di Pi Greco

2.1 Procedimento

- Trova tre oggetti circolari (di diametri diversi) su Google Maps
- Misura circonferenza e diametro di ciascuno tramite l'interfaccia di Maps (click tasto destro > Misura distanza)
- Riporta i dati nella Tabella 1
- Costruisci un grafico con la circonferenza sull'asse Y e il diametro sull'asse X
- Calcola il coefficiente angolare (pendenza), cioè il rapporto $\Delta y/\Delta x$. Questa è la tua stima di Pi Greco

Oggetto (nome/numero)	Diametro d [m]	Circonferenza C [m]

Tabella 1

Qui trovi il link per Google Maps (puoi cliccarlo): https://www.google.com/maps Qui puoi scaricare un template di un file Excel: Template

Suggerimento 1: cerca elementi geologici o strutture artificiali circolari

Suggerimento 2: di solito quando un meteorite colpisce la Terra lascia un grande cratere abbastanza circolare. Ne riesci a trovare alcuni? Altrimenti cerca dei serbatoi circolari artificiali che si trovano in molte città

Suggerimento 3: se non trovi nulla, eccone alcuni:

- Cratere in Quebec
- Serbatoi
- Aeroporto
- Rotonda
- Pista circolare
- Quartiere

2.2 Risultati

Qual è la tua stima di Pi Greco?

2.2.1 Incertezza delle misure

Dalla misurazione precedente, probabilmente hai scoperto che il tuo valore di Pi Greco differisce dal valore accettato (3,14159...). Potrebbe essere leggermente più alto o leggermente più basso a seconda dell'accuratezza della tua misurazione. Questo grado di "bontà" sarà determinato da molti fattori: la qualità degli strumenti, la loro risoluzione intrinseca, la tua abilità come sperimentatore, ecc.

Possiamo quantificare questa "bontà" considerando l'errore associato alla misurazione. In scienza, errore **non** significa sbaglio, o risposta errata, come nel linguaggio comune. Nelle misurazioni scientifiche, l'errore si riferisce specificamente a quanto siamo sicuri della nostra misurazione. Maggiore è l'errore, minore è la nostra sicurezza nelle nostre misurazioni. La nostra misurazione può comunque essere corretta, solo che ne siamo meno certi.

3 Esempio

Considereremo innanzitutto l'errore associato a una semplice misurazione di lunghezza. Di seguito è riportata l'immagine di una matita misurata con un righello.

Figura 1: Lunghezza di una matita

Possiamo vedere che la matita è lunga più di 9 centimetri, ma meno di 9,5. A causa della spaziatura dei segni sul righello, possiamo essere solo parzialmente certi di questa misura. Possiamo ovviamente vedere che la matita è lunga circa 9,25 centimetri. Quindi, in generale, diremo che l'incertezza in questa misura è pari alla metà della spaziatura minima sul righello, che in questo caso è di 0,5 centimetri.

$$\Delta L = 0.5 \text{ cm}/2 = 0.25 cm$$
 (1)

Scriviamo così la misura ottenuta: 9.25 ± 0.25 cm.