NOTES ON ERGODIC THEORY

ZHAOSHEN ZHAI

Abstract. TODO

Contents

1

1 Lecture 1 (Samy Lahlou): Crash course on Measure Theory, Part I

1. Lecture 1 (Samy Lahlou): Crash course on Measure Theory, Part I

Given a set X, our goal is to define a map $\mu: \mathcal{P}(X) \to [0,\infty]$ that assigns to each subset $A \subseteq X$ a measure $\mu(A) \in [0,\infty]$ that 'behaves like the volume of A'. This turns out to be impossible in full generality (and we shall see using ergodic-theoretic methods that this impossibility is for good reason), so we instead restrict to special subsets of X with a nice algebraic (think: 'constructible') structure.

TODO: add references to Anush's notes and Folland.

Definition 1.1. Let X be a set. A σ -algebra on X is a collection $\mathcal{B} \subseteq \mathcal{P}(X)$ of subsets of X containing \varnothing and is closed under complements and countable unions. More precisely:

- 1. $\varnothing \in \mathcal{B}$.
- 2. For any $A \in \mathcal{B}$, we have $X \setminus A \in \mathcal{B}$.
- 3. For any countable family $\{A_n \in \mathcal{B} : n \in \mathbb{N}\}$, we have $\bigcup_n A_n \in \mathcal{B}$.

Definition 1.2. If \mathcal{B} is a σ -algebra on a set X, the pair (X,\mathcal{B}) is said to be a measurable space.

A useful way to construct a σ -algebra is to start with a collection $\mathcal{C} \subseteq \mathcal{P}(X)$ and close¹ it under the above three conditions. Abstractly:

Definition 1.3. The σ -algebra generated by $\mathcal{C} \subseteq \mathcal{P}(X)$ is $\langle \mathcal{C} \rangle_{\sigma} := \bigcap \{\mathcal{B} : \mathcal{B} \supseteq \mathcal{C} \text{ is a } \sigma\text{-algebra on } X\}$.

Note that $\langle \mathcal{C} \rangle_{\sigma}$ is indeed a σ -algebra on X since the intersection of σ -algebras is again a σ -algebra.

Definition 1.4. Let X be a topological space. The Borel σ -algebra on X is the σ -algebra $\mathcal{B}(X) := \langle \mathcal{T} \rangle_{\sigma}$, where \mathcal{T} is the topology on X. The elements of $\mathcal{B}(X)$ are called the Borel sets of X.

Intuitively, for any topological space X, one would like to measure open sets, closed sets, countable unions of closed sets (called F_{σ} sets), countable intersections of open sets (called G_{δ} sets), countable intersections of F_{σ} sets, countable unions of G_{δ} sets, and so on².

Definition 1.5. A measure on a measurable space (X, \mathcal{B}) is a map $\mu : \mathcal{B} \to [0, \infty]$ such that $\mu(\emptyset) = 0$ and $\mu(\bigsqcup_{n \in \mathbb{N}} A_n) = \sum_{n \in \mathbb{N}} \mu(A_n)$ for any pairwise disjoint family $\{A_n \in \mathcal{B} : n \in \mathbb{N}\}.$

The triple (X, \mathcal{B}, μ) is then called a measure space.

Date: May 6, 2025.

Notes for the summer 2025 reading group on Ergodic Theory, organized by Frédéric Kai, Ludovic Rivet, and Zhaoshen Zhai (website).

¹This 'closure' operation can be made precise as follows. Starting with $C_0 := C$, throw in all the subsets of X that is necessary to satisfy Definition 1.1 relativized to C_0 to obtain C_1 (that is, let C_1 contain \varnothing and such that if $A \in C_0$, then $X \setminus A \in C_1$, and similarly for condition 3). Then, let C_2 be defined by throwing in all the countable unions and complements of sets in C_1 . Doing so infinitely-many times and taking the union $\bigcup_{\alpha} C_{\alpha}$ will give us $\langle C \rangle_{\sigma}$, but beware that this process must proceed into the transfinite up to $\alpha < \omega_1$, where ω_1 is the first uncountable ordinal; ask your local set theorist why.

²This goes up the *Borel hierarchy*.

Definition 1.6. A measure μ on (X, \mathcal{B}) is said to be *finite* if $\mu(X) < \infty$, a probability measure if $\mu(X) = 1$, and σ -finite if there is a partition $X = \bigsqcup_{n \in \mathbb{N}} X_n$ such that $X_n \in \mathcal{B}$ and $\mu(X_n) < \infty$ for all $n \in \mathbb{N}$.

Example 1.7. There is³ a unique measure $\lambda : \mathcal{B}(\mathbb{R}) \to [0, \infty]$ on \mathbb{R} such that $\lambda([a, b]) = b - a$ for each $a \leq b$, called the *Lebesgue measure*. This measure will be the default measure on \mathbb{R} unless stated otherwise.

Exercise 1.8. For each $p \in [0,1]$, is a unique measure $\mu_p : \mathcal{B}(2^{\mathbb{N}}) \to [0,\infty]$ on $2^{\mathbb{N}}$ such that for each word $w \in 2^{<\mathbb{N}}$, we have $\mu_p([w]) = p^{n_1}(1-p)^{n_0}$, where n_i is the number of $i \in \{0,1\}$ in w and [w] is the set of all sequences in $2^{\mathbb{N}}$ containing w as a prefix, called the *Bernoulli(p) measure*.

TODO: add intuition about densities; ask Samy

Definition 1.9. Let (X, \mathcal{B}, μ) be a measure space. A subset $Z \subseteq X$ is said to be μ -null if there exists some $Z' \in \mathcal{B}$ such that $Z \subseteq Z'$ and $\mu(Z') = 0$. We write Null_{μ} for the set of all μ -null subsets of X.

Definition 1.10. Let (X, \mathcal{B}, μ) be a measure space. A subset $A \subseteq X$ is μ -measurable⁴ if there exists some $B \in \mathcal{B}$ and some μ -null set Z such that $A = B \cup Z$. We write Meas_{μ} for the set of all μ -measurable sets.

Fact 1.11. For any measure space (X, \mathcal{B}, μ) , we have $\operatorname{Meas}_{\mu} = \langle \mathcal{B} \cup \operatorname{Null}_{\mu} \rangle_{\sigma}$. Moreover, μ admits a unique extension to a map $\overline{\mu} : \operatorname{Meas}_{\mu} \to [0, \infty]$, called the *completion* of μ , and this measure satisfies $\operatorname{Meas}_{\overline{\mu}} = \operatorname{Meas}_{\mu}$.

We end with some exercises. Throughout, let (X, \mathcal{B}, μ) be a measure space.

Exercise 1.12 (Monotonicity). For any $A, B \in \mathcal{B}$ with $A \subseteq B$, we have $\mu(A) \le \mu(B)$. Deduce that if μ is finite, then μ is a bounded function.

Exercise 1.13 (Inclusion-exclusion). For any $A, B \in \mathcal{B}$, we have $\mu(A \cup B) = \mu(A) + \mu(B) - \mu(A \cap B)$.

Exercise 1.14 (Continuity \nearrow). If $(A_n)_{n\in\mathbb{N}}$ is increasing, then $\mu(\bigcup_{n\in\mathbb{N}}A_n)=\lim_{n\to\infty}\mu(A_n)$.

Exercise 1.15 (Continuity \searrow). If $(A_n)_{n\in\mathbb{N}}$ is decreasing and $\mu(A_1)<\infty$, then $\mu(\bigcap_{n\in\mathbb{N}}A_n)=\lim_{n\to\infty}\mu(A_n)$.

References

Department of Mathematics and Statistics, McGill University, 805 Sherbrooke Street West, Montreal, QC, H3A 0B9, Canada

Email address: zhaoshen.zhai@mail.mcgill.ca

 $^{^3}$ We will not prove this fact, but it is an application of Carathéodory's Extension Theorem.

⁴Very confusing terminology. One might think that elements of \mathcal{B} are the 'measurable' ones, but this removes μ from the picture. In general, there are much more μ -measurable sets that there are sets in \mathcal{B} . Indeed, TODO