13 Polygones réguliers constructibles

Leçons 102, 125, 151, 191(, 104, 141, 144)

Ref: [Mercier]

Définition 1 Les nombres de Fermat sont les nombres premiers F_{β} s'écrivant $F_{\beta} = 1 + 2^{2^{\beta}}$, pour $\beta \in \mathbb{N}$.

Théorème 2 Soit $p \in \mathfrak{P}$ impair, et $\alpha \in \mathbb{N}^*$. Alors le polygône \mathcal{P}_n régulier à n côtés, avec $n = p^{\alpha}$, est constructible si et seulement si $\alpha = 1$ et p est un nombre premier de Fermat.

Démonstration. On rappelle que \mathcal{P}_n est constructible si et seulement si $\cos\left(\frac{2\pi}{n}\right)$ l'est.

 \Longrightarrow On suppose \mathcal{P}_n constructible et on pose $\omega = \mathrm{e}^{\frac{2\mathrm{i}\pi}{n}}$. Le théorème de Wantzel montre que $\mathbb{Q}(\omega)$ est le m-ième terme d'une suite d'extensions quadratiques de \mathbb{Q} . De plus, comme le polynôme minimal de ω est Φ_n , on a

$$2^m = [\mathbb{Q}(\omega) : \mathbb{Q}] = \deg(\Phi_n) = p^{\alpha - 1}(p - 1).$$

Comme p est impair, on a donc $\alpha = 1$ et $p = 1 + 2^m$. Montrons que m est une puissance de 2. On écrit $m = \lambda 2^{\beta}$, avec $\beta \in \mathbb{N}$ et $\lambda \in \mathbb{N}^*$ impair. Ainsi, -1 est racine de $X^{\lambda} + 1$, donc X + 1 divise $X^{\lambda} + 1$ sur \mathbb{Z} . On en déduit que F_{β} divise $p = 1 + \left(2^{2^{\beta}}\right)^{\lambda}$. Mais comme p est premier, on a alors égalité : p est un nombre premier de Fermat.

 \Leftarrow Soit $p = F_{\beta}$ un nombre premier de Fermat. On note $q = 2^{\beta}$, de sorte que $p = 1 + 2^{q}$. On pose aussi $\omega = e^{\frac{2i\pi}{p}}$.

Étape 1. Description des automorphismes de $\mathbb{Q}(\omega)$. On a alors

$$[\mathbb{Q}(\omega):\mathbb{Q}] = \deg(\Phi_p) = 2^q.$$

On note G le groupe des automorphismes de corps sur $\mathbb{Q}(\omega)$ laissant \mathbb{Q} invariant 1. Ainsi, si $g \in G$, il est entièrement déterminé par l'image de ω . Comme $\omega^p = 1$, $g(\omega)^p = 1$, donc $g(\omega)$ est une racine p-ième de l'unité, ce qui permet de décrire G^2 :

$$G = \left\{ g : \omega \longmapsto \omega^i, \ i \in [[1, p - 1]] \right\}.$$

On voit alors que l'application

$$\varphi: \left| \begin{array}{ccc} G & \longrightarrow & (\mathbb{Z}/p\mathbb{Z})^* \\ g_i & \longmapsto & i \end{array} \right|$$

est un isomorphisme de groupes 3 , ce qui prouve que G est un groupe cyclique.

Étape 2. Une tour d'extensions de corps.

On notera dans la suite g un générateur de G. On définit pour $i \in [0, n]$ le sous-corps

$$K_i := \ker \left(g^{2^i} - \mathrm{id} \right).$$

Comme $g^{2^{i+1}}=(g^{2^i})^2$, on a $K_i\subset K_{i+1}$. Montrons que $K_0=\mathbb{Q}$. On remarque que les $(g^i(\omega))_{0\leq i\leq p-2}$

forment une base de $\mathbb{Q}(\omega)$ sur \mathbb{Q} . Soit $z \in K_0$. On écrit $z = \sum_{i=0}^{p-2} z_i g^i(\omega)$. On a alors

$$z = g(z) = \sum_{i=0}^{p-2} z_i g^{i+1}(\omega).$$

Il vient que les z_i sont tous égaux, et on a donc

$$z = z_0 \sum_{i=0}^{p-1} g^i(\omega) = z_0 \sum_{i=1}^{p-1} \omega^i = -z_0 \in \mathbb{Q}.$$

Donc $K_0 \subset \mathbb{Q}$. Réciproquement, comme g est \mathbb{Q} -invariant, l'inclusion inverse est vraie aussi, et $K_0 = \mathbb{Q}$. De même, comme g est un générateur du groupe G, qui est d'ordre 2^q , on a $K_q = \mathbb{Q}(\omega)$.

^{1.} Si on veut passer vite sur certains arguments, une des possibilités (si l'on maîtrise un peu la théorie de Galois) est de dire que ce groupe est le groupe de Galois de $\mathbb{Q}(\omega)/\mathbb{Q}$, et certaines choses démontrées plus bas en découlent directement.

^{2.} On vérifie que l'on obtient ainsi p-1 automorphismes distincts.

^{3.} On a $\varphi(g_i \circ g_j) = \varphi(g_{ij}) = ij = \varphi(g_i)\varphi(g_j)$.

Étape 3. Extensions quadratiques et conclusion.

Montrons que K_i est une extension quadratique de K_{i-1} , pour $i \geq 1$. On considère cette fois

$$z = \sum_{k=0}^{2^{q-i}-1} g^{k2^i}(\omega)$$
. On a

$$g^{2^{i}}(z) = \sum_{k=0}^{2^{q-i}-1} g^{(k+1)2^{i}}(\omega) = \sum_{k=1}^{2^{q-i}-1} g^{k2^{i}}(\omega) + \underbrace{g^{2^{q}}(\omega)}_{=\omega = g^{0}(\omega)} = z.$$

Donc $z \in K_i$. De plus,

$$g^{2^{i-1}}(z) = \sum_{k=0}^{2^{q-i}-1} g^{k2^i+2^{i-1}}(\omega).$$

Comme on a décalé chaque coordonnée non nulle de z de 2^{i-1} , alors que celles-ci sont espacées de 2^i , les coordonnées non nulles de z et g(z) ne sont pas les mêmes. Donc $z \notin K_{i-1}$. Donc la suite

$$\mathbb{Q} = K_0 \subsetneq K_1 \subsetneq .. \subsetneq K_q = \mathbb{Q}(\omega)$$

est une suite d'extensions strictes. En passant au degré, on a alors

$$2^{q} = [\mathbb{Q}(\omega) : \mathbb{Q}] = \prod_{i=0}^{q-1} \underbrace{[K_{i+1} : K_{i}]}_{>2} \ge 2^{q},$$

ce qui implique que les extensions K_{i+1}/K_i sont quadratiques. Donc $\cos\left(\frac{2\pi}{p}\right) = \frac{\omega + \omega^{-1}}{2}$ est dans une extension qui est le terme d'une suite d'extensions quadratiques de \mathbb{Q} , donc est constructibles d'après le théorème de Wantzel, ce qui montre que \mathcal{P}_p est constructible.

Théorème 3 (Gauß-Wantzel) Les seuls polygones réguliers constructibles sont les polygones à n côtés, avec $n = 2^m p_1..p_r$, où $m \in \mathbb{N}$ et les p_i sont des nombres premiers de Fermat distincts.

Démonstration. On démontre un lemme qui nous permettra d'effectuer une récurrence.

Lemme 4 – Pour $n \geq 3$, \mathcal{P}_n est constructible si et seulement si \mathcal{P}_{2n} l'est.

– Si pour $n, m \geq 3$ premiers entre eux, \mathcal{P}_n et \mathcal{P}_m sont constructibles si et seulement si \mathcal{P}_{mn} l'est.

Démonstration.

- Si \mathcal{P}_{2n} est construit, prendre un point sur deux permet de construire \mathcal{P}_n . Réciproquement, si \mathcal{P}_n est construit, on trace les médiatrices de ses côtés, et leur intersection avec le cercle circonscrit forment les points manquants de \mathcal{P}_{2n} .
- Si \mathcal{P}_{nm} est construit, prendre un point sur m (resp. un point sur n) permet de construire \mathcal{P}_n (resp. \mathcal{P}_m). Pour la réciproque, on se donne une relation de Bézout 1 = un + vm. On a alors

$$\frac{2\pi}{mn} = u\frac{2\pi}{m} + v\frac{2\pi}{n}.$$

Ainsi, si l'on reporte u fois l'angle $\frac{2\pi}{m}$ (que l'on a puisque \mathcal{P}_m est construit) puis v l'angle $\frac{2\pi}{n}$, on obtient $\frac{2\pi}{mn}$.