Лабораторная работа №2

Обработка признаков. Часть 1

Выполнил: Борисочкин М. И. ИУ5-21М

Задание

- 1. Выбрать набор данных (датасет), содержащий категориальные и числовые признаки и пропуски в данных. Для выполнения следующих пунктов можно использовать несколько различных наборов данных (один для обработки пропусков, другой для категориальных признаков и т.д.) Просьба не использовать датасет, на котором данная задача решалась в лекции.
- 2. Для выбранного датасета (датасетов) на основе материалов лекций решить следующие задачи:
- устранение пропусков в данных;
- кодирование категориальных признаков;
- нормализация числовых признаков.

Описание исходного набора данных

В качестве набора данных был взят Vehicle Sales Data, содержащий данные о продажах автомобилей и состоящий из следующих полей:

- year. Год производства автомобиля
- make. Брэнд автомобиля
- model. Модель автомобиля
- trim. Дополнение к модели автомобиля
- body. Тип двигателя
- transmission. Тип трансмиссии
- vin. ВИН номер
- state. Штат, где двигатель зарегистрирован
- condition. Состояние двигателя на момент продажи
- odometer. Значение на одометре машины перед продажей (пробег автомобиля)
- color. Цвет автомобиля
- interior. Цвет интерьера автомобиля
- seller. Продавец автомобиля
- mmr. Manheim Market Report. Может показывать рыночную цену автомобиля
- sellingprice. Цена, за которую продали автомобиль
- saledate. Дата и время, когда продали автомобиль

Импорт библиотек

```
In [1]: from sklearn.impute import SimpleImputer, KNNImputer, MissingIndicator
    from category_encoders.count import CountEncoder
    from category_encoders.one_hot import OneHotEncoder

import numpy as np
import scipy.stats as stats
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

%matplotlib inline
sns.set_style("whitegrid")
```

Загрузка датасета

Out[4]:		year	make	model	trim	body	transmission	vin	state
	363218	2008	Mercury	Milan	Premier	Sedan	automatic	3mehm021x8r636447	ny
	3460	2007	Ford	Fusion	SE	Sedan	automatic	3fahp07z07r258408	ca
	508202	2014	Kia	Rio	LX	sedan	automatic	knadm4a38e6340309	nv
	472373	2013	Ford	Escape	SEL	suv	automatic	1fmcu0hxxdud23355	il
	273509	2013	Mercedes- Benz	C- Class		Sedan	automatic	wddgf4hb1da816103	ca
In [5]:	data.in	fo()							

```
<class 'pandas.core.frame.DataFrame'>
        Index: 25000 entries, 363218 to 210765
        Data columns (total 16 columns):
         # Column Non-Null Count Dtype
         --- -----
                              -----
                              25000 non-null int64
         0 year
                        24541 non-null object
24538 non-null object
24528 non-null object
24404 non-null object
         1
              make
          2
              model
          3 trim
         4 body
          5 transmission 22121 non-null object
         6 vin 25000 non-null object
7 state 25000 non-null object
8 condition 24473 non-null float64
9 odometer 24994 non-null float64
10 color 24965 non-null object
11 interior 24965 non-null object
12 seller 25000 non-null object
13 mmr 25000 non-null float64
          14 sellingprice 25000 non-null float64
          15 saledate 25000 non-null object
        dtypes: float64(4), int64(1), object(11)
        memory usage: 3.2+ MB
In [6]: # Нулевые значения в наборе данных
          data.isnull().sum()
Out[6]: year
                                  0
          make
                               459
          model
                               462
          trim
                             472
          body
                             596
          transmission
                              2879
          vin
                               0
          state
                                  0
          condition
                             527
          odometer
                                6
          color
                                35
          interior
                               35
          seller
                                  0
          mmr
          sellingprice
                                  0
          saledate
          dtype: int64
In [7]: sns.pairplot(data)
```

plt.show()

Устранение пропусков

Первым делом разберёмся с пропусками в числовых признаках, т. к. оных с пропусками гораздо меньше, чем категориальных.


```
In [11]: def research_impute_numeric_column(dataset, num_column, const_value=None):
    strategy_params = ['mean', 'median', 'most_frequent', 'constant']
    strategy_params_names = ['Cpeднee', 'Meдиана', 'Moga']
    strategy_params_names.append('Константа = ' + str(const_value))

    original_temp_data = dataset[[num_column]].values
    size = original_temp_data.shape[0]
    original_data = original_temp_data.reshape((size,))

    new_df = pd.DataFrame({'Исходные данные':original_data})
```

```
for i in range(len(strategy_params)):
    strategy = strategy_params[i]
    col_name = strategy_params_names[i]
    if (strategy!='constant') or (strategy == 'constant' and const_value!=None)
        if strategy == 'constant':
            temp_data, _, _ = impute_column(dataset, num_column, strategy, fill
        else:
            temp_data, _, _ = impute_column(dataset, num_column, strategy)
        new_df[col_name] = temp_data
sns.kdeplot(data=new_df)
```

In [12]: # Различные стратегии заполнения для признака odometer research_impute_numeric_column(data, "odometer")

Стратегия заполнения признака odometer не имеет значения, так как пропусков слишком мало. Заполним пропущенные значения модой

```
In [13]: # Заполнение пустых значений в поле odometer
  data_filled = data.copy().reset_index(drop=True)
  data_filled["odometer"], _, _ = impute_column(data_filled, "odometer", strategy_par
  data_filled["odometer"].isnull().sum()
```

```
In [14]: # Различные стратегии заполнения для признака condition research_impute_numeric_column(data, "condition")
```


Признак condition предлагаю заполнить с помощью KNN.

```
In [15]:
         # Список колонок, которые будут участвовать в KNNInpute
         knnimpute_cols = numbers_missing_cols + ["year", "mmr"]
         knnimpute_cols
Out[15]: ['condition', 'odometer', 'year', 'mmr']
         # До вставки значений
In [16]:
         knnimpute_df = data_filled[knnimpute_cols].copy()
         knnimpute_df.isnull().sum()
Out[16]: condition
                       527
          odometer
         year
         mmr
          dtype: int64
In [17]: # Создание импютера и вставка пропущенных значений
         knnimputer = KNNImputer(
             n_neighbors=5,
             weights='distance',
             metric='nan_euclidean',
             add_indicator=False,
```

```
knnimpute_df_imputed_temp = knnimputer.fit_transform(knnimpute_df)
          knnimpute_df_imputed = pd.DataFrame(knnimpute_df_imputed_temp, columns=knnimpute_df
In [18]: # После вставки значений
         knnimpute_df_imputed.isnull().sum()
                       0
Out[18]: condition
          odometer
                       0
          year
          mmr
          dtype: int64
In [19]: # KDE до заполнения пропусков и после
          sns.kdeplot(data=data_filled, x="condition", label="Исходное")
          sns.kdeplot(data=knnimpute_df_imputed, x="condition", label="KNN")
          plt.legend()
         plt.show()
           0.040
                         Исходное
                         KNN
           0.035
           0.030
           0.025
        Density
           0.020
           0.015
           0.010
           0.005
           0.000
                                    10
                                              20
                                                                    40
                                                                               50
                                                          30
                                                 condition
In [20]: # Применение импьютации
         data_filled["condition"] = knnimpute_df_imputed["condition"].astype("float64")
         data_filled["condition"].isnull().sum()
Out[20]: 0
         Теперь будем разбираться с категориальными признаками
In [21]: # Количество пропусков в категориальных колонках в %
          cat_missing_cols = ["make", "model", "trim", "body", "transmission", "color", "inte
```

```
for column in cat_missing_cols:
             print(f" Пропусков в колонке {column}: {data[column].isnull().sum()/data[column]
         Пропусков в колонке make: 1.836 %
         Пропусков в колонке model: 1.848 %
         Пропусков в колонке trim: 1.888 %
         Пропусков в колонке body: 2.384 %
         Пропусков в колонке transmission: 11.516 %
         Пропусков в колонке color: 0.140 %
         Пропусков в колонке interior: 0.140 %
In [22]: # Количество уникальных значений в колонках
         for column in cat missing cols:
             print (f"Количество уникальных значений в колонке {column}: {len((data_filled[c
        Количество уникальных значений в колонке make: 73
        Количество уникальных значений в колонке model: 658
        Количество уникальных значений в колонке trim: 989
        Количество уникальных значений в колонке body: 62
        Количество уникальных значений в колонке transmission: 2
        Количество уникальных значений в колонке color: 19
        Количество уникальных значений в колонке interior: 17
         Предлагаю удалить строки с пропущенными значениями во всех признаках, кроме
         transmition. Также проверим насколько в процентах уменьшилась входная выборка
In [23]: data_filled_cat = data_filled.dropna(subset=["make", "model", "trim", "body", "colo
         for column in cat missing cols:
             print(f" Пропусков в колонке {column}: {data_filled_cat[column].isnull().sum()/
         Пропусков в колонке make: 0.000 %
         Пропусков в колонке model: 0.000 %
         Пропусков в колонке trim: 0.000 %
         Пропусков в колонке body: 0.000 %
         Пропусков в колонке transmission: 11.120 %
         Пропусков в колонке color: 0.000 %
         Пропусков в колонке interior: 0.000 %
In [24]: # Уменьшение размера выборки в процентах
         (data.shape[0] - data_filled_cat.shape[0])/data.shape[0]*100
Out[24]: 2.528
         Исходный набор данных уменьшился на 2,5 %, поэтому удаление пустых значений
         можно считать допустимым.
         Теперь разберёмся с признаком transmission
In [25]: sns.countplot(data=data filled cat, x="transmission")
         plt.show()
```


У столбца transmission всего два уникальных значений, причём одно из них встречается в датасете намного чаще другого. Чтобы не увеличивать данный разрыв предлагаю добавить ещё одно значение (категорию) — unknown.

```
In [26]: # Заполнение признака transmission
    data_filled_cat.loc[:,"transmission"], _, _ = impute_column(data_filled_cat, "trans
    sns.countplot(data=data_filled_cat, x="transmission")
    plt.show()
```



```
In [27]: # Проверка отсутствия нулевых значений
         data_filled_cat.isnull().sum()
Out[27]: year
                         0
                         0
         make
         model
                         0
         trim
                         0
         body
         transmission
         vin
         state
                         0
         condition
                         0
         odometer
         color
         interior
         seller
                         0
         mmr
         sellingprice
                         0
         saledate
         dtype: int64
```

Кодирование категориальных признаков

```
In [28]: # Количество уникальных значений в колонках for column in cat_missing_cols + ["vin", "state", "seller", "saledate"]: print (f"Количество уникальных значений в колонке {column}: {len((data_filled_c
```

```
Количество уникальных значений в колонке make: 48
Количество уникальных значений в колонке model: 604
Количество уникальных значений в колонке trim: 911
Количество уникальных значений в колонке body: 62
Количество уникальных значений в колонке transmission: 3
Количество уникальных значений в колонке color: 19
Количество уникальных значений в колонке interior: 17
Количество уникальных значений в колонке vin: 24345
Количество уникальных значений в колонке state: 37
Количество уникальных значений в колонке seller: 3746
Количество уникальных значений в колонке saledate: 1917
```

Обработаем категориальные признаки следующим образом:

- 1. Удалим столбец с vin, так как для каждой строки он уникален, то есть не несёт полезной информации
- 2. Преобразуем saledate в datetime
- 3. Закодируем transmission с помощью OHE
- 4. Все остальные категориальные признаки закодируем с помощью Frequency Encoder-a

```
In [29]:
         # Первые два пункта
          data coded = data filled cat.copy()
          data coded = data coded.drop(columns=["vin"])
          data_coded["saledate"] = pd.to_datetime(data_coded["saledate"], format='mixed', utc
         data_coded.head()
Out[29]:
                                             body transmission state condition odometer
             year
                       make model
                                        trim
                                                                                             co
          0 2008
                     Mercury
                              Milan Premier Sedan
                                                                             28.0
                                                                                    84302.0
                                                       automatic
                                                                    ny
                                                                                             bla
          1 2007
                        Ford Fusion
                                         SE Sedan
                                                       automatic
                                                                             2.0
                                                                                   151270.0
                                                                                             bla
                                                                    ca
          2 2014
                         Kia
                                Rio
                                         LX sedan
                                                       automatic
                                                                             43.0
                                                                                    36563.0
                                                                    nv
                                                                                             wh
                        Ford Escape
                                        SEL
                                                                    il
                                                                            44.0
          3 2013
                                                       automatic
                                                                                    19503.0
                                               suv
                                                                                            bro
                   Mercedes-
                                 C-
                                       C250
          4 2013
                                             Sedan
                                                                             29.0
                                                                                    17151.0
                                                       automatic
                                                                    ca
                                                                                             wh
                       Benz
                               Class
                                       Sport
         # Применение ОНЕ для transmission
In [30]:
          ce OHE = OneHotEncoder(cols=["transmission"])
          data_coded = ce_OHE.fit_transform(data_coded)
          data_coded.head()
```

Out[30]:	year		make	model	trim	body	transmission_1	transmission_2	transmission_3
	0	2008	Mercury	Milan	Premier	Sedan	1	0	0
	1	2007	Ford	Fusion	SE	Sedan	1	0	0
	2	2014	Kia	Rio	LX	sedan	1	0	0
	3	2013	Ford	Escape	SEL	suv	1	0	0
	4	2013	Mercedes- Benz	C- Class	C250 Sport	Sedan	1	0	0

In [31]: # Применение Frequency Encoder для остальных категориальных признаков
 ce_Freq = CountEncoder(cols=data_coded.select_dtypes(include="object").columns, nor
 data_coded = ce_Freq.fit_transform(data_coded)
 data_coded.head()

Out[31]:	year ı		make	model	trim	body	transmission_1	transmission_2	transmissic
	0	2008	0.003324	0.000328	0.001067	0.365931	1	0	
	1	2007	0.172234	0.023966	0.081254	0.365931	1	0	
	2	2014	0.033158	0.002544	0.038862	0.079777	1	0	
	3	2013	0.172234	0.022735	0.017236	0.042392	1	0	
	4	2013	0.029670	0.008495	0.002298	0.365931	1	0	

Нормализация числовых признаков

В данном разделе мы рассмотрим три варианта нормализация для поля odometer: логарифм, преобразование Бокса-Кокса, преобразование Йео-Джонсона

```
In [32]: def diagnostic_plots(df, variable):
    plt.figure(figsize=(15,6))
    # zucmozpamma
    plt.subplot(1, 2, 1)
    sns.histplot(data=df, x=variable, bins=30)
    ## Q-Q plot
    plt.subplot(1, 2, 2)
    stats.probplot(df[variable], dist="norm", plot=plt)
    plt.show()
```

In [33]: # Исходные данные diagnostic_plots(data_coded, "odometer")


```
In [34]: # ΠοzαρυφΜυνεςκοε πρεοδρασοβαниε
  data_coded_norm = data_coded.copy()
  data_coded_norm["odometer_log"] = np.log(data_coded_norm["odometer"])
  diagnostic_plots(data_coded_norm, "odometer_log")
```



```
In [35]: # Преобразование Бокса-Кокса
data_coded_norm["odometer_boxcox"], param_boxcox = stats.boxcox(data_coded_norm["od
diagnostic_plots(data_coded_norm, "odometer_boxcox")
```


In [36]: param_boxcox

Out[36]: 0.3175989307690552

In [37]: # Преобразование Йео-Джонсона data_coded_norm["odometer_yeojohnson"], param_yeojohnson = stats.yeojohnson(data_codiagnostic_plots(data_coded_norm, "odometer_yeojohnson")

In [38]: param_yeojohnson

Out[38]: 0.31654045587180696