

SÍLABO INGENIERÍA DE MÉTODOS II

ÁREA CURRICULAR: PRODUCCIÓN E INGENIERÍA INDUSTRIAL

CICLO: VII SEMESTRE ACADÉMICO: 2017-II

I. CÓDIGO DEL CURSO : 09013207040

II. CRÉDITOS : 04

III.REQUISITOS : 09013606050 Ingeniería de Procesos

: 09011806040 Ingeniería de Métodos I

IV.CONDICIÓN DEL CURSO : Obligatorio

V. SUMILLA

El curso es de naturaleza teórico práctico y da al alumno los conocimientos sobre el manejo y optimización de plantas industriales, usando técnicas de ingeniería basados en modelos de programación dinámica y entera y filosofías de producción.

El curso se desarrolla mediante las unidades de aprendizaje siguientes:

I. Estrategias de Proceso- Planificación de la Capacidad. II. Estrategias de Localización- Estudio de la Disposición de Planta. III. Cálculo de los requerimientos de áreas IV. Distribución General y Distribución de Detalle.

VI. FUENTES DE CONSULTA:

Bibliográficas

- Tompkins, J., White, J., Bozer, Y. & Tanchoco, J.M. (2015). *Facilities Planning (Hardcover). Four Edition*.U.S.A.: John Wiley & Sons.
- Heyzer, Jay & Render, Barry (2013). Dirección de la producción y de operaciones. . México: Pearson Educación S.A.
- Díaz, B., Jarufe, B. y Noriega, M. (2012). Disposición de Planta. Lima-Perú.: Fondo Editorial Univ. de Lima.
- Suñé, A., Gil, F. & Arcusa, I. (2013). Manual práctico de diseño de sistemas productivos.
 España.:Edit Díaz de Santos..
- Francis, R., McGinnis, L., White, J. (2011). *Facility Layout and Location*: An Analytical Approach. New Jersey. : Ed. Prentice Hall Inc.

VII. UNIDADES DE APRENDIZAJE

UNIDAD I: ESTRATEGIAS DE PROCESO-PLANIFICACIÓN DE LA CAPACIDAD

OBJETIVOS DE APRENDIZAJE:

- Identificar enfoques a proceso, repetitivo y a producto.
- Evaluar los enfoques del proceso
- Comparar las diferentes estrategias de procesos
- Definir la capacidad de diseño, capacidad efectiva y utilización
- Planificar las necesidades de capacidad.

PRIMERA SEMANA

Primera sesión

Perfil de una empresa global. Enfoque a proceso. Enfoque repetitivo. Enfoque a producto. Enfoque de personalización en masa. Comparación de las diferentes estrategias de proceso.

Segunda sesión

Tecnologías de producción y de servicio.

SEGUNDA SEMANA

Primera sesión

Capacidad. Capacidad de diseño. Capacidad y estrategia. Consideraciones sobre la capacidad.

Segunda sesión

Planificación de las necesidades de capacidad.

UNIDAD II: ESTRATEGIAS DE LOCALIZACIÓN - ESTUDIO DE LA DISPOSICIÓN DE PLANTA

OBJETIVOS DE APRENDIZAJE:

- Identificar los objetivos de la estrategia de localización.
- Resolver problemas de localización.
- Reconocer los tipos de layout.
- Explicar cómo conseguir un buen layout para las instalaciones orientadas a proceso.
- Determinar cómo equilibrar el flujo de producción en una instalación repetitiva.

TERCERA SEMANA

Primera sesión

Importancia estratégica de la localización. Factores que afectan a la decisión de localización.

Segunda sesión

Métodos de evaluación de alternativas de localización: Método de factores ponderados, análisis del umbral de rentabilidad de localización.

CUARTA SEMANA

Primera sesión

Métodos de evaluación de alternativas de localización: Método de Centro de Gravedad, Modelo de Transporte.

Segunda sesión

Estrategias de localización de servicios. Determinación del tamaño viable de planta y selección.

QUINTA SEMANA

Primera sesión

Definición. Principios básicos. Tipos de estudio. Planeamiento sistemático para la disposición de planta.

Segunda sesión

Factores de disposición de planta.

SÉXTA SEMANA

Primera sesión

Importancia estratégica de las decisiones de layout. Tipos de layout. Layout de oficinas.

Layout de comercios. Layout de almacenes: cross docking, almacenamiento aleatorio, personalización. Layout de posición fija o de proyecto.

Segunda sesión

Layout orientado a proceso. Células de trabajo.

SÉPTIMA SEMANA

Primera sesión

Layout orientado a producto. Balance de Línea.

Segunda sesión

Balance de Línea.

OCTAVA SEMANA

Examen Parcial

UNIDAD III: CÁLCULO DE LOS REQUERIMIENTOS DE ÁREAS

OBJETIVOS DE APRENDIZAJE:

- Evaluar las necesidades básicas de espacio requeridas para la ubicación de los factores de la producción en la planta
- Determinar el área total mínima requerida de una planta
- Interpretar planos de distribución

NOVENA SEMANA

Primera Sesión

Curso gramas de disposición. Cálculo de las superficies de distribución: Superficie estática, superficie gravitacional, superficie de evolución, superficie total.

Segunda Sesión

Cálculo para determinar número de ventanas para ventilación e iluminación natural.

Pasillos. Normas.

UNIDAD IV: DISTRIBUCIÓN GENERAL Y DISTRIBUCIÓN DE DETALLE

OBJETIVOS DE APRENDIZAJE:

- Determinar la disposición general de planta donde se incluya todas las actividades relacionadas con las operaciones, la gestión y los servicios.
- Aplicar metodologías para determinar el ordenamiento físico que se establecerá en la planta

DÉCIMA SEMANA

Primera sesión

Distribución general. Tabla relacional. Diagrama relacional de recorrido o actividades.

Diagrama relacional de espacios.

Segunda sesión

Disposición ideal. Disposición práctica.

UNDÉCIMA SEMANA

Primera sesión

Distribución de detalle. Diagrama de recorrido sencillo. Diagrama multiproducto.

Segunda sesión

Análisis de transportación. Análisis matricial.

DUODÉCIMA SEMANA

Primera sesión

Evaluación de alternativas de disposición de planta. Relación de ventajas y desventajas. Análisis de factores. Comparación de costos.

Segunda sesión

Implementación de la propuesta elegida. Planificación de la instalación.

DECIMOTERCERA SEMANA

Primera sesión

Definición de ergonomía. Objetivos. Disciplinas relacionadas con la ergonomía. Principios básicos de la ergonomía.

Segunda sesión

Lesiones y enfermedades habituales en el puesto de trabajo. Definición.

DECIMOCUARTA SEMANA

Primera sesión

Exposiciones. Presentaciones de trabajo de curso.

Segunda sesión:

Exposiciones. Presentaciones de trabajo de curso.

DECIMOQUINTA SEMANA

Primera sesión:

Exposiciones. Presentaciones del trabajo de curso

Segunda sesión:

Exposiciones. Presentaciones de trabajo de curso

DECIMOSEXTA SEMANA

Examen final.

DECIMOSÉPTIMA SEMANA

Entrega de promedios finales y acta del curso

VIII. CONTRIBUCIÓN DEL CURSO AL COMPONENTE PROFESIONAL

a. Matemática y Ciencias Básicas
b. Tópicos de Ingeniería
c. Educación General
0

IX. PROCEDIMIENTOS DIDÁCTICOS

Las clases se realizarán basadas en:

- **Aspecto metodológico**: Estimulando la participación activa de los estudiantes, mediante el desarrollo de ejercicios individuales y/o de grupo, entonces el docente orientará el trabajo grupal y fomentará la investigación, creatividad y originalidad en la confección de las tareas.
- Procedimientos: Observación del mundo real, análisis y diseño para la solución de problemas.
- Técnicas: expositiva, dialogo y lluvia de ideas y visita a plantas industriales.

X. MEDIOS Y MATERIALES

Equipos: Computadora, Proyector Multimedia y Laboratorio para uso de la herramienta Web Quest. **Materiales:** Material del Docente, Guía Práctica y Textos base.

XI. EVALUACIÓN

El promedio final se obtiene del modo siguiente:

PF= (PE+EP+EF)/3

PE = (P1 + P2 + P3)/3

PF= Promedio final

EP= Examen parcial (escrito)

EF= Examen Final (escrito)

PE = Promedio de Evaluaciones

P# = Práctica Calificada

XII. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados (Outcomes), para la Escuela Profesional de Ingeniería Industrial, se establece en la tabla siguiente:

K = clave **R** = relacionado **Recuadro vacío** = no aplica

(a)	Habilidad para aplicar conocimientos de matemática, ciencia e ingeniería			
(b)	Habilidad para diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos			
(c)	Habilidad para diseñar sistemas, componentes o procesos que satisfagan las necesidades requeridas			
(d)	Habilidad para trabajar adecuadamente en un equipo multidisciplinario			
(e)	Habilidad para identificar, formular y resolver problemas de ingeniería			
(f)	Comprensión de lo que es la responsabilidad ética y profesional			
(g)	Habilidad para comunicarse con efectividad			
(h)	Una educación amplia necesaria para entender el impacto que tienen las soluciones de la ingeniería dentro de un contexto social y global			
(i)	Reconocer la necesidad y tener la habilidad de seguir aprendiendo y capacitándose a lo largo de su vida			
(j)	Conocimiento de los principales temas contemporáneos			
(k)	Habilidad de usar técnicas, destrezas y herramientas modernas necesarias en la práctica de la ingeniería			

XIII. HORAS, SESIONES, DURACIÓN

a) Horas de clase:

Teoría	Práctica	Laboratorio
3	2	0

- b) Sesiones por semana: Dos sesiones.c) Duración: 5 horas académicas de 45 minutos

XIV. JEFE DE CURSO

Ing. Raúl Gamarra Villacorta.

XV. FECHA

La Molina, agosto del 2017.