T-33-07

NPN Silicon Transistors

BD 135

SIEMENS AKTIENGESELLSCHAF

BD 137 BD 139

For AF driver and output stages of medium performance

BD 135, BD 137, and BD 139 are epitaxial NPN silicon planar transistors in TO 126 plastic package (12 A 3 DIN 41869, sheet 4). The collector is electrically connected to the metallic mounting area. Together with BD 136, BD 138, and BD 140 as complementary pairs the transistors BD 135, BD 137, and BD 139 are designed for use in driver stages of high performance AF amplifiers.

Туре	Ordering code
BD 135	Q62702-D106
BD 135-6	Q62702-D106-V1
BD 135-10	Q62702-D106-V2
BD 135-16	Q62702-D106-V3
BD 135 paired	Q62702-D106-P
BD 137	Q62702-D108
BD 137-6	Q62702-D108-V1
BD 137-10	Q62702-D108-V2
BD 137 paired	Q62702-D108-P
BD 139	Q62702-D110
BD 139-6	Q62702-D110-V1
BD 139-10	Q62702-D110-V2
BD 139 paired	Q62702-D110-P
BD 135/BD 136 compl. pair.	Q62702-D139-S1
BD 137/BD 138 compl. pair.	Q62702-D140-S1
BD 139/BD 140 compl. pair.	Q62702-D141-S1

Туре	Ordering code
Mica washer Spring washer A 3 DIN 137	Q62902-B62 Q62902-B63
E C C C C C C C C C C C C C C C C C C C	1.75min. 3°402.
	37:01
Approx. weight 0.5	g Dimensions in mm

Transistor fixing with M 3 screw. Starting torque < 0.8 Nm; washer or spring washer should be used.

 If a 50 µ mica washer (ungreased) is used, the thermal resistance increases by 8 K/W and in case of a greased one by 4 K/W.

	BD 135	BD 137	BD 139	
V_{CER}	_	l –	100	V
	45	60	-	V
V _{CEO}	45	60	80	V
VEBO	5	5	5	l v
I_{CM}	2,0	2,0	2.0	Α
	1,5	1,5	1,5	Α
I _B	0,2	0,2	0.2	Α
$\bar{T_i}$	150	150	150	J.C
	−55 to	+125		°C
Ptot	12,5	12,5	12.5	W
RthJA	≦110	≦110	≤110	k/w
R _{thJC} ¹)	≦10	≦10	≦10	K/W
	VEBO ICM IC IB Tj Tstg Ptot	V _{CER} - V _{CEO} 45 V _{CEO} 45 V _{CEO} 5 I _{CM} 2,0 I _C 1,5 I _B 0,2 T _j 150 T _{stg} -55 to P _{tot} 12,5	V _{CER} V _{CBO} 45 60 60 V _{CEO} 45 5 5 5 1 _{CM} 2,0 2,0 I _C 1,5 1,5 I _B 0,2 0,2 T _j 150 150 T _{stg} -55 to +125 P _{tot} 12,5 12,5	VCER - - 100 VCBO 45 60 - VCEO 45 60 80 VEBO 5 5 5 ICM 2,0 2,0 2.0 IC 1,5 1,5 1,5 IB 0,2 0,2 0.2 Tj 150 150 150 Tstg -55 to +125 -55 12,5 Ptot 12,5 12,5 12.5

378 1755

F-14

SIEMENS AKTIENGESELLSCHAF 14333

BD 135 BD 137 BD 139

Static characteristics ($T_{amb} = 25$ °C)

The transistors BD 135, BD 137, and BD 139 are grouped in accordance with the DC current gain $h_{\rm FE}$, and marked by numerals of the German DIN standard.

h _{FE} group	6	10	16	BD 135 BD 137 BD 139	
Туре	BD 135 BD 137 BD 139	BD 135 BD 137 BD 139	BD 135 - -		
I _C (mA)	h _{FE}	h _{FE} I _C /I _B	h _{FE} I _C /I _B	V _{BE} (V)	
5	>25	>25	>25	-	
150	63 (40 to 100)	100 (63 to 160)	160 (100 to 250)	_	
500	>25	>25	>25	1.2	

25 °C)	BD 135	BD 137	BD 139	<u> </u>	
Voseat	. <0.5	<0.5	<0.5	v	
I _{CBO}	<100	<100	<100	nA	
I_{CBO}	≦10	≦10	≦10	μΑ	
I_{EBO}	≦10	≦10	≦10	μΑ	
V _{(BR)CEO}	>45	>60	>80	V	
h _{FE1}	<u>≤1.41</u>	≦1.41	≤1.41	_	
Dynamic characteristics ($T_{amb} = 25$ °C)					
	V _{CEsat} I _{CBO} I _{CBO} V _(BR) CEO h _{FE1} h _{FE2}	V_{CEsat} <0.5 I_{CBO} <100 I_{CBO} ≤10 I_{EBO} ≤10 $V_{(BR)CEO}$ >45 $\frac{h_{FE1}}{h_{FE2}}$ ≤1.41	V_{CEsat} <0.5 <0.5 I_{CBO} <100 <100 I_{CBO} ≤10 ≤10 I_{EBO} ≤10 ≤10 $V_{(BR)CEO}$ >45 >60 $\frac{h_{FE1}}{h_{FE2}}$ ≤1.41 ≤1.41	V_{CEsat} <0.5 <0.5 <0.5 I_{CBO} <100 <100 <100 I_{CBO} ≤ 10 ≤ 10 ≤ 10 I_{EBO} ≤ 10 ≤ 10 ≤ 10 $V_{(BR)CEO}$ >45 >60 >80 $\frac{h_{FE1}}{h_{FE2}}$ ≤ 1.41 ≤ 1.41 ≤ 1.41	

Transition frequency ($I_C = 50 \text{ mA}$; $V_{CE} = 10 \text{ V}$; f = 100 MHz)

>50

>50 >50

MHz

SIEMENS AKTIENGESELLSCHAF

BD 137 BD 139

Total perm. power dissipation versus temperature

Ptot = f(T); Rth = parameter

BD 135, BD 137, E

³⁸⁰ 1757

G-02

25C 04335

-33-07

SIEMENS AKTIENGESELLSCHAF

BD 137 BD 139

DC current gain $h_{\rm FE} = f(I_{\rm C})$ $V_{\rm CE} = 2$ V; $T_{\rm amb} =$ parameter BD 135-10, BD 137-10, BD 139-10

Collector cutoff current versus temperature $I_{CBO} = f(T_{amb})$

Base-emitter saturation voltage

381

. 1758 G-03 SIEMENS AKTIENGESELLSCHAF

BD 135 BD 137

BD 139

Output characteristics $I_C = f(V_{CE})$

Output characteristics $I_{C} = f(V_{CE})$

Output characteristics $I_{C} = f(V_{CE})$

Transition frequency $f_T = f(I_C)$

382

1759

- --- -

G-04

Jan.T.