Application of Ciphertext Policy Attribute Based Encryption in Cloud based Electronic Health Record

Lê Mậu Anh Phong Nguyễn Duy Huy

Context

- Electronic Health Records
- Profiles
- Internal information
- •

Nhiều dữ liệu

- Availability
- Cost saving

Cloud

What do we protect?

- Patient's health record:
 - Personal information
 - Medical diagnosis
 - Laboratory results
 - Treatment plans
- Doctors, nurses, staff... profiles
- Financial information
- Other profiles, ...

•••

•••

Security goals

- Ensure patient privacy
- Secure EHR data on Cloud Storage with confidential
- Only authorized parties are able to access patient health data

Solution

- Use CP-ABE to encrypt data before uploading to cloud
- Use HTTPS to secure transmission
- Use JWT + ABAC to authenticate, authorize to cloud

- Patient's relatives

Authority server will sign JWT, and authentication module will verify it

HTTPS

- Create free DNS records using DuckDNS.
- Use SSLForFree to generate key and cetificate.

- Algorithm: Ed25519
 - openssl genpkey -algorithm Ed25519 -out ed25519key.pem
 - openssl pkey -in ed25519key.pem -pubout -out ed25519pubkey.pem

```
HEADER: ALGORITHM & TOKEN TYPE
    "alg": "EdDSA",
    "typ": "JWT"
PAYLOAD: DATA
    "uid": 1,
    "attributes": {
      "ROLES": [
         "ADMIN"
    "exp": 1686676294.001003
```

Permissions

- Read: Any user can download the data, but only those who have the right access policy can decrypt it.
- Write/Upload: Controlled by the ABAC Engine (PyCasbin) on the cloud web server.
 People are only allowed to write their data in specific categories.

Database

- Stores some info about users (ID, uploader ID), and encrypted data (name, modified time).
- Encrypted data is encoded to base64 form

Client

- Login to AS and get the token,
 public key and private key
- Encrypt + upload data to cloud
- Download + decrypt data
- Searching data on cloud

Application context

- A healthcare organization that maintains (EHRs) for its patients
- Diverse set of users, including doctors, nurses, researchers, administrative staff, and patients, ...
- Requiring varying levels of access to the EHRs
- EHRs are storing on the third-party cloud storage

Test scenario

- Set up a test environment for the EHR system
- Create a sample dataset of patient records
- Tests the EHR system using dataset and analyze the results

Cloud Implementations Details

Programming Language	Python	
Isolated Environment	Docker	Phong + Huy
HTTP Server	Flask Gunicorn Nginx	Phong + Huy
JWT verification	OpenSSL PyJWT (Ed25519)	Phong
Secure Connection (HTTPS)	DuckDNS SSLForFree	Phong
Database	MariaDB	Huy
Cloud ABAC	PyCasbin	Huy + Phong

AS Implementations details

Programming Language	Python	
Isolated Environment	Docker	Huy + Phong
HTTP Server	Flask Gunicorn Nginx	Phong + Huy
JWT signing	JWT	Phong
Secure Connection (HTTPS)	DuckDNS + SSLForFree	Phong
Database	MariaDB	Huy

Client Implementations details

Programming Language	Python	
Data Encryption/Decryption	Charm-Crypto CP-ABE	Huy
Client application	Qt	Huy

Cloud System specifications

Cloud	Google Cloud Platform – VM
Operating System	Debian GNU/Linux 11 (bullseye)
CPU	Intel(R) Xeon(R) CPU @ 2.20GHz
Memory	8GB RAM
Storage:	20GB

AS System specifications

Operating System	Ubuntu 20.04.5 LTS (WSL2)
CPU	11th Gen Intel(R) Core(TM) i5- 1135G7 @ 2.40GHz 2.42 GHz
Memory	5GB RAM
Storage:	SSD 250GB

Client System specifications

Operating System	Arch Linux x86_64
CPU	AMD Ryzen 5 5600H 3.300GHz
Memory	16GB RAM
Storage:	SSD 500GB

References

- [1] Bethencourt, J., Sahai, A., & Waters, B. (2007, May). Ciphertext-policy attribute-based encryption. In 2007 IEEE symposium on security and privacy (SP'07) (pp. 321-334). IEEE.
- [2] Li, M., Yu, S., Zheng, Y., Ren, K., & Lou, W. (2012). Scalable and secure sharing of personal health records in cloud computing using attribute-based encryption. IEEE transactions on parallel and distributed systems, 24(1), 131-143.
- [3] Alshehri, S., Radziszowski, S. P., & Raj, R. K. (2012, April). Secure access for healthcare data in the cloud using ciphertext-policy attribute-based encryption. In 2012 IEEE 28th international conference on data engineering workshops (pp. 143-146). IEEE.
- [4] Yuan, E., & Tong, J. (2005, July). Attributed based access control (ABAC) for web services. In IEEE International Conference on Web Services (ICWS'05). IEEE.