Міністерство освіти і науки України

Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського»

Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 6 з дисципліни

«Основи програмування

1. Базові конструкції»

«Організація підпрограм»

Варіант 22

Виконав студент <u>ІП-14 Нікулін Павло Юрійович</u> (шифр, прізвище, ім'я, по батькові)

Перевірив <u>Новікова Поліна Анатоліївна</u> (прізвище, ім'я, по батькові)

Лабораторна робота №6

Організація підпрограм

Мета: набути навичок складання і використання підпрограм користувача.

Хід роботи

Задача: для заданого дійсного x, використовуючи розкладання функції cos(x) в ряд Тейлора $cos(x) = x - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} \dots$, обчислити із заданною точністю ε значення

$$y = cos(a) + cos^{2}(b) + cos(a+b)$$

Розв'язання

1. **Постановка задачі** результатом роботи має бути сума рядів Тейлора, обчислених з певною точністю. Використаємо функції для обчислення ряду Тейлора та для обчислення факторіалу від числа

Побудова математичної моделі. Складемо таблицю імен змінних.

Змінна	Тип	Ім'я	Призначення
Початкове А	Дійсне	A	Початкове дане
Початкове В	Дійсне	В	Початкове дане
Початкове N	Натуральне	N	Початкове дане
Точність обчислення	Дійсне	EPS	Початкове дане
Розкладання в ряд Тейлора	Дійсне	COS(X)	Функція
Сума ряду Тейлора	Дійсне	SUM	Проміжне дане
Формальне X1	Дійсне	X1	Формальна змінна
Формальне N1	Натуральне	N1	Формальна змінна
Формальна точність	Дійсне	EPS1	Формальна змінна
Обчислення факторіала	Натуральне	FACT(I)	Функція
Число під факторіалом	Натуральне	I	Формальна змінна
Результат програми	Дійсне	Y	Результат

Випробування коду

Python

Код

```
import math

a = float(input("Введіть дійсне a: "))
b = float(input("Введіть дійсне b: "))
eps = float(input("Введіть точність обчислення: "))

n = 0

#Функція обчислення ряду Тейлора
def cos(x1, n1, eps1):

sum = (((-1) ** n1) * (x1 ** (2 * n1))) / math.factorial(2 * n1)

if math.fabs(sum) < eps1:
    return 0
else:
    return sum + cos(x1, n1 + 1, eps1)

y = cos(a, n, eps) + (cos(b, n, eps) ** 2) + cos (a + b, n, eps)
#print("\ncos({a}) + cos({b})^2 + cos({c}) = {y}".format(a=a, b=b, c=a+b, y=y))
print(cos(a, n, eps))</pre>
```

Результат

```
Введіть дійсне а: 3.3
Введіть дійсне b: 4.5
Введіть точність обчислення: 0.001
-0.9872805498349635
```

```
Введіть дійсне а: -2.1
Введіть дійсне b: 9.09
Введіть точність обчислення: 0.0001
-0.5048610958203592
```

C++

Код

```
#include <iostream>
#include <cmath>
 #include <windows.h>
/*Функція обчислення факторіала*/

¡int fact(int i)
       if (i <= 1)
           return i * fact(i - 1);
       float sum;
       sum = (pow((-1), n1) * pow(x1, 2 * n1)) / fact(2 * n1);
       if (fabs(sum) < eps1)</pre>
           return sum + cos(x1, n1 + 1, eps1);
int main()
       SetConsoleCP(1251);
SetConsoleOutputCP(1251);
       float a, b, eps, y;
      cout << "Введіть дійсне а: ";
      cin->>-a;
cout << "Введіть дійсне b: ";
      cin->> b;
cout-<<-"Введіть-точність-обчислення:-";
       y = cos(a, n, eps) + pow(cos(b, n, eps), 2) + cos(a + b, n, eps);
       cout << "\ny == " << y << endl;
```

Результат

```
Введіть дійсне a: 1.2
Введіть дійсне b: -2.2
Введіть дійсне b: -2.2
Введіть точність обчислення: 0.01
Введіть точність обчислення: 0.001
у = 1.24803
```


Висновок

Під час виконання лабораторної роботи було набуто навички складання і використання підпрограм. У роботі було створено функції функції cos() для обчислення ряду Тейлора та fact() для обчислення факторіалу від числа (у Python тільки cos(), факторіал обчислюється за допомогою бібліотеки). У C++ було використано бібліотеку cmath для знаходження модуля, у Python бібліотека math для знаходження модуля та факторіала. Результат роботи ϵ однаковим і правильним на двох мовах програмування при будь-яких вхідних даних, що підходять за умовою задачі.