Работа №4. Преобразователи кодов

Цель работы – изучение принципов построения и методов синтеза преобразователей двоично-десятичных кодов (ДДК); моделирование электрических схем ДДК.

Самостоятельная работа студентов включает изучение и практическое применение принципов построения преобразователей одного ДДК в другой ДДК и подготовку индивидуального задания. Перед началом работы преподавателем проводится собеседование. Студент должен подготовить отчет по каждому пункту раздела «Задание и порядок выполнения работы» и знать методику выполнения каждого пункта задания. После выполнения работы студент должен представить на проверку преподавателю оформленный индивидуальный отчет.

Теоретические сведения

В данной работе проводится синтез и исследование одного из видов преобразователей кодов, а именно преобразователя двоично-десятичного кода с весами 8421 в двоично-десятичный код, задаваемый индивидуальным вариантом для каждого студента.

Двоично-десятичный код 8421 получил наиболее широкое применение; в этом коде десятичные цифры 0,1 ...,9 изображаются четырехразрядными двоичными числами — тетрадами 0000, 0001 1001 соответственно. Цифры 8,4,2,1 в обозначении кода - это веса разрядов двоичной тетрады. Двоичные тетрады 1010,1011, 1100,1101, 1110 и 1111 не используются для изображения десятичных цифр, поэтому являются избыточными и называются псевдотетрадами. На примере преобразователя ДДК 8421 в ДДК 2421 (код Айкена) поясняются основные этапы синтеза.

В табл. 1 приведено кодирование десятичных цифр в указанных ДДК.

Таблица 1 гичный код

Десятичные	Двоично-десятичный код				Двоично-десятичный код			
цифры	8421				2421			
	Веса разрядов				Веса разрядов			
	8	4	2	1	2	4	2	1
	A_3	A_2	A_1	A _o	B_3	B_2	B_1	\mathbf{B}_0
0	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	1
2	0	0	1	0	0	0	1	0
3	0	0	1	1	0	0	1	1
4	0	1	0	0	0	1	0	0
5	0	1	0	1	1	0	1	1
6	0	1	1	0	1	1	0	0
7	0	1	1	1	1	1	0	1
8	1	0	0	0	1	1	1	0
9	1	0	0	1	1	1	1	1

Для преобразования ДДК 8421 в ДДК 2421 и построения схемы преобразователя из табл. 1 нужно найти функции:

 $B_0=f_0(A_3,\ A_2,\ A_1,\ A_0),\ B_1=f_1(A_3,\ A_2,\ A_1,\ A_0),\ B_2=f_2(A_3,\ A_2,\ A_1,\ A_0),\ B_3=f_3(A_3,\ A_2,\ A_1,\ A_0),$ минимизировать функции, применяя один из методов (метод Квайна, метод Квайна с применением карт Карно и др.) с учетом избыточных (неиспользуемых) наборов переменных $A_3,\ A_2,\ A_1,\ A_0$. Минимизированные функции преобразовать в базис функции И-НЕ и составить схему на логических элементах И-НЕ.

Для преобразования ДДК 2421 в ДДК 8421, т.е. для обратного преобразования, и построения схемы преобразователя из табл. 1 нужно найти функции:

 $A_0 = \phi_0(B_3, B_2, B_1, B_0)$, $A_1 = \phi_1(B_3, B_2, B_1, B_0)$, $A_2 = \phi_2(B_3, B_2, B_1, B_0)$, $A_3 = \phi_3(B_3, B_2, B_1, B_0)$, минимизировать функции , преобразовать их в базис функции И-НЕ и составить схему на логических элементах И-НЕ.

Варианты задания двоично-десятичных кодов, в которые нужно преобразовать ДДК 8421 и выполнить обратные преобразования, приведены в табл. 2. Порядковый номер фамилии студента в списке группы является номером варианта.

Таблица 2

	Таолица 2
№ варианта	Десятичные номера двоичных наборов
двоично-	переменных, изображающих десятичные
десятичного	цифры 0,1,,9
кода	
1	3, 4,5,6,7,8,9,10,11,12
2	0,1,2,3,5,10,12,13,14,15
3	0,1,4,5,7,8,10,12,14,15
4	0,1,2,3,4,5,8,9,10,11
5	0,1,2,3,4,5,6,8,9,10
6	0,1,2,3,6,9,12,13,14,15
7	5,6,7,8,9,10,11,12,13,14
8	0,1,2,3,4,8,9,10,11,12,
9	0,1,3,4,5,7,8,10,11,12
10	0,1,2,4,5,6,7,8,9,10
11	0,1,2,3,4,5,6,7,12,13
12	0,1,2,3,7,8,12,13,14,15
13	0,1,2,4,5,6,8,9,10,12
14	2,3,4,5,6,7,8,9,10,11
15	0,1,3,4,5,7,11,12,13,15
16	0,1,2,3,5,6,9,10,12,13
17	0,1,2,3,6,7,8,9,10,11
18	0,1,2,4,5,6,10,11,13,14
19	0,1,3,4,5,8,9,11,12,13
20	4,5,6,7,8,9,10,11,12,13
21	0,1,2,3,4,11,12,13,14,15
22	0,1,2,3,5,7,8,12,13,14
23	0,1,2,3,6,7,9,10,11,14
24	0,1,2,3,5,6,7, 10,12,13
25	0,1,2,3,6,7,8,10,14,15

Задание и порядок выполнения работы

- 1. Исследование преобразователя ДДК 8421в заданный код (см. табл. 2):
 - а) выполнить синтез схемы преобразователя кода. Результаты синтеза представить в базисе И-НЕ;
 - б) выполнить синтез схемы двоично-десятичного счетчика на ЈК-триггерах по безвентильной схеме с естественным порядком изменения состояний; скоммутировать схемы счетчика и преобразователя кода; выходные сигналы счетчика использовать в качестве переменных A_3 , A_2 , A_1 , A_0 ;
 - в) исследовать схему преобразователя кода в статическом и динамическом режимах. В статическом режиме сигналы выходные сигналы счетчика использовать в качестве переменных A_3 , A_2 , A_1 , A_0 . В статическом режиме сигналы на вход счетчика подавать от ключа, в динамическом режиме от генератора импульсов.

Провести анализ работы преобразователя кода по таблице истинности и временной диаграмме входных и выходных сигналов преобразователя кода.

- 2. Исследование преобразователя заданного ДДК в ДДК 8421:
- а) а) выполнить синтез схемы преобразователя кода. Результаты синтеза представить в базисе И-НЕ;
- б) скоммутировать схемы 4-разрядного двоичного счетчика и преобразователя кода; выходные сигналы счетчика использовать в качестве переменных B_3 , B_2 , B_1 , B_0 ;
- в) исследовать схему преобразователя кода в статическом и динамическом режимах. В статическом режиме выходные сигналы счетчика использовать в качестве переменных B_3 , B_2 , B_1 , B_0 . В статическом режиме сигналы на вход счетчика подавать от ключа, в динамическом режиме от генератора импульсов. Провести анализ работы преобразователя кода по таблице истинности и временной диаграмме входных и выходных сигналов преобразователя кода.
 - 3. Составить отчет.

Требования к отчету

Отчет должен содержать результаты синтеза схем преобразователей кодов, электрические схемы исследуемых схем преобразователей и счетчиков, таблицу истинности и временные диаграммы входных и выходных сигналов преобразователей кодов.

Контрольные вопросы

- 1. Как определяются избыточные наборы переменных?
- 2. Каково правило записи функции в вид СКНФ?
- 3. Как учитываются избыточные наборы переменных при минимизации функций алгебры логики?
- 4. Каково правило перехода от ДНФ функции алгебры логики к функции, выраженной в базисе функции И-НЕ?