Introduction

A Comprehensive Presentation of Concepts in Machine Learning and Optimization

Visualization of PlantUML Sequence Diagram

Problem Setup

Suppose we have two classes, A and B, and we want to train a classifier to distinguish between them.

• Core Idea:

- \circ Extract a **core subset** S_A and S_B from A and B respectively.
- Identify a decision boundary using compressed representations.

Encoder-Decoder Architecture

Step 1: Projection

- 1. Use an **encoder** to project the dataset $R^n(A,B)$ into a lower-dimensional space R^k where $k \ll d$.
- 2. Reconstruct the dataset back to \mathbb{R}^n .

Gaussian Mixture Modeling

- In the reduced space $R^k(A', B')$, the data looks smoother than in R^n .
- We can approximate the class distributions using Gaussian Mixture Models (GMMs):
 - o Represent the class distributions as linear combinations of Gaussian distributions.

$$N(\mu_A,\Sigma_A), \quad N(\mu_B,\Sigma_B)$$

Gaussian Mixture Model (GMM)

- The image shows the learning of Gaussian Mixture Models (GMMs) with different numbers of clusters (k=2 and k=5).
- GMM Objective:
 - \circ Learn the parameters μ_k and Σ_k to best fit the data distributions.
- Applications:
 - Clustering
 - Dimensionality reduction

6/38

Compression Step

To compress the data:

- Learn μ_A , Σ_A , μ_B , Σ_B using Gaussian Mixture Model Distribution Learning (GMM).
- Compressed dataset becomes:

$$\circ \ \mu_A, \Sigma_A, \mu_B, \Sigma_B.$$

ullet The decoder maps $R^k o R^n$.

Reconstruction Step

Given $\mu_A, \Sigma_A, \mu_B, \Sigma_B$, and the decoder:

Step 1: Sampling

• Sample from $N(\mu_A, \Sigma_A)$ and $N(\mu_B, \Sigma_B)$.

Step 2: Pass Samples Through Decoder

• The samples are passed through the decoder to reconstruct the dataset in \mathbb{R}^n .

Reconstructed Dataset

- The reconstructed dataset approximates the original $\mathbb{R}^n(A,B)$.
- This approach provides an efficient way to compress, store, and reconstruct datasets.

Kullback-Leibler (KL) Divergence

The formula for KL divergence between a reference probability distribution P and a second probability distribution Q is:

$$D_{KL}(P||Q) = \sum_{x \in \chi} P(x) \log \left(rac{P(x)}{Q(x)}
ight)$$

• Interpretation: The expected excess surprise from using Q as a model instead of P.

Reconstruction Loss

The code to compute the reconstruction loss:

```
from torch.nn import functional as F

def reconstruction_loss(x, x_hat):
    return F.binary_cross_entropy(x_hat, x, reduction="sum")
```

- Inputs: x and x_hat have dimensions (N, 1, H, W).
- Explanation: This computes the negative log-likelihood of the Bernoulli distribution.

Adversarial Optimization

1. Adversarial Loss Minimization:

$$\min_{\delta \in C} L(x_t, y_{ ext{adv}}, heta(\delta))$$

2. Training Loss:

$$heta(\delta) = rg\min_{ heta} \sum_{i \in V} L(x_i + \delta_i, y_i, heta)$$

3. Perturbation Class:

$$C = \{\delta \in \mathbb{R}^{n imes m} : ||\delta||_{\infty} \leq \epsilon, \delta_i = 0 \, orall i
otin V_p \}$$

Second-Order Approximation

A second-order approximation of $F(w + \delta)$:

$$F(w+\delta) = rac{1}{2}\delta^T H_S \delta + g_S^T \delta + F(w)$$

- $g_S = \nabla_w F(w,S)$: Gradient.
- H_S : Hessian matrix.

Federated Learning Objectives

1. Global Objective:

$$F_{ ext{glob}}(w) = \sum_{k=1}^m p_k F_k(w)$$

2. FedProx Regularization:

$$\min_{w_{ ext{loc}}} F_k(w_{ ext{loc}}) + rac{\mu}{2} ||w_{ ext{loc}} - w_t||^2$$

3. **q-FFL Loss**:

$$\min_{w_M} F(w_M) = rac{1}{q+1} \sum_{k=1}^m p_k F_k(w_M)^{q+1}$$

Submodularity Properties

1. Diminishing Gains:

$$F(A \cup \{e\}) - F(A) \ge F(B \cup \{e\}) - F(B)$$

2. Union-Intersection:

$$F(S)+F(T)\geq F(S\cup T)+F(S\cap T)$$

3. Monotonicity:

$$F(A) \leq F(B) \quad \forall A \subset B$$

Gradient-Based Clustering

The optimization problem is:

$$rg\min_{S,\gamma_j\geq 0} |S| \quad ext{s.t.} \quad \max_{w\in W} ||
abla_w F(w,V) -
abla_w F(w,S)|| \leq \epsilon$$

Greedy Algorithms

1. Subset Selection:

$$F(S_k) \geq igg(1-rac{1}{e}igg)F(ext{OPT})$$

- 2. Complexity:
- Time Complexity: O(nk).

Hessian-Based Optimization

The bound is:

$$|d_{ij} \leq ext{constant} imes ||x_i - x_j||$$

This guides the selection of core sets S^* for efficient learning.

Summary

- Explored concepts in optimization, adversarial learning, and federated learning.
- Applied submodularity and second-order approximations to enhance efficiency.
- Addressed practical scenarios with examples and mathematical rigor.

Autoencoders

- Autoencoders are neural networks designed for unsupervised learning.
- They consist of two main parts:
 - i. **Encoder**: Maps input (x) to a lower-dimensional latent representation (z).
 - ii. **Decoder**: Reconstructs (x) from (z).

Architecture of Autoencoders

```
Input --> Encoder --> Latent Space --> Decoder --> Output
```

• Objective:

Minimize reconstruction loss $(L(x, \hat{x}))$.

Reconstruction Loss

The reconstruction loss measures how well the autoencoder reconstructs the input:

$$L(x,\hat{x}) = ||x - \hat{x}||^2$$

Alternatively, for binary data:

$$L(x,\hat{x}) = -\sum_i \left[x_i\log(\hat{x}_i) + (1-x_i)\log(1-\hat{x}_i)
ight]$$

Compression with Autoencoders

- Goal: Reduce the dimensionality of the input while retaining essential information.
- Latent space acts as a compressed representation.
- Applications:
 - Image compression.
 - Dimensionality reduction.

Lemma: Gradient Descent Convergence

Lemma: For a differentiable convex function (f(w)) with a Lipschitz-continuous gradient (L), the gradient descent update:

$$w_{t+1} = w_t - \eta
abla f(w_t)$$

with learning rate (\eta \leq \frac{1}{L}), satisfies the following convergence property:

$$f(w_{t+1}) - f(w^*) \leq rac{1}{2\eta} ||w_t - w^*||^2 - rac{1}{2\eta} ||w_{t+1} - w^*||^2$$

where (w^*) is the global minimum of (f(w)).

Limitations of Standard Autoencoders

- They struggle to learn meaningful latent spaces.
- Lack of control over latent representations.
- Enter Variational Autoencoders (VAEs).

Variational Autoencoders (VAEs)

- VAEs extend autoencoders to probabilistic models.
- Instead of a fixed latent (z), VAEs learn a probability distribution (p(z|x)).
- Outputs are sampled from this distribution.

VAE Architecture

```
Input --> Encoder --> Latent Distribution --> Decoder --> Output
```

- Encoder: Produces (\mu) and (\sigma^2) for latent distribution.
- Latent Distribution: Sampled using reparameterization trick.
- **Decoder**: Reconstructs (x) from samples (z).

Latent Space in VAEs

- In VAEs, the latent space represents a distribution.
- Assumes (z \sim \mathcal{N}(\mu, \sigma^2)), a Gaussian distribution.

VAE Loss Function

The VAE loss combines two terms:

1. Reconstruction Loss:

$$L_{ ext{recon}}(x,\hat{x}) = ||x-\hat{x}||^2$$

2. **KL Divergence** (regularizer):

$$L_{
m KL} = D_{
m KL}(q(z|x)||p(z))$$

KL Divergence in VAEs

The KL divergence regularizes the latent space:

$$D_{ ext{KL}}(q(z|x)||p(z)) = \int q(z|x) \log \left(rac{q(z|x)}{p(z)}
ight) dz$$

• Encourages (q(z|x)) to be close to the prior (p(z)).

Reparameterization Trick

To allow backpropagation through the sampling process:

• Replace $z \sim \mathcal{N}(\mu, \sigma^2)$ with:

$$z = \mu + \sigma \odot \epsilon, \quad \epsilon \sim \mathcal{N}(0, I)$$

Applications of VAEs

1. Image Generation:

 \circ Generate new samples by sampling (z) from (p(z)).

2. Anomaly Detection:

Use reconstruction loss to identify anomalies.

3. **Data Imputation**:

• Fill in missing data.

Compression

- Compression aims to reduce data storage requirements while maintaining quality.
- Lossy Compression:
 - Examples: JPEG, MP3.
 - Allows small errors for higher compression.
- Lossless Compression:
 - Examples: PNG, FLAC.
 - Retains original data perfectly.

Information Bottleneck Principle

- A theoretical framework for compression in neural networks.
- Balances:
 - Compression: Reduce information from (x) to (z).
 - Relevance: Ensure (z) retains information about (y).

Objective of Information Bottleneck

Minimize the following loss:

$$\mathcal{L} = I(x; z) - \beta I(z; y)$$

Where:

- (I(x; z)): Mutual information between (x) and (z).
- (I(z; y)): Mutual information between (z) and (y).
- (\beta): Controls the trade-off.

Connection Between VAEs and Information Bottleneck

- VAEs implicitly optimize an information bottleneck objective.
- KL Divergence term in VAEs regularizes the latent space.

Challenges in VAEs

- 1. Balancing reconstruction loss and KL divergence.
- 2. Posterior collapse:
 - \circ When (q(z|x)) becomes overly simple (e.g., close to prior (p(z))).

Key Takeaways

- 1. Autoencoders and VAEs are powerful tools for representation learning.
- 2. The latent space is critical for meaningful representations.
- 3. Information bottleneck provides a theoretical foundation for compression and relevance trade-offs.

Thank You!

Questions? 👺