

EE141-Spring 2010 Digital Integrated Circuits

Lecture 20 Technology Scaling

EECS141 Lecture #20

Administrativia

- □ Midterm 2 on We April 7 6:30-8pm in 277 Cory
 - Open book.
 - Covers everything until Lecture 17 (DOMINO LOGIC). Registers and timing NOT included.
- □ Review Session: Tu April 6 6:30-8pm in 289 Cory
- DO NOT FORGET THE PROJECT!
 - Extra office hours of TAs on Mo and Tu (during lab hours) in 353 Cory
- □ Project Phase 1 has been graded. Results will be posted early next week.

Class Material

- □ Last lecture
 - Timing
- □ Today's lecture
 - Technology Scaling
- □ Reading (Ch 5)

Clock Constraints in Edge-Triggered Systems

If launching edge is late and receiving edge is early, the data will not be too late if:

$$t_{clk-q} + t_{logic} + t_{setup} < T_{CLK} - t_{JS,1} - t_{JS,2} + \delta$$

Minimum cycle time is determined by the maximum delays through the logic

$$t_{clk-a} + t_{logic} + t_{setup} - \delta + 2t_{IS} < T_{CLK}$$

Skew can be either positive or negative

Clock Constraints in Edge-Triggered Systems

If launching edge is early and receiving edge is late:

$$t_{clk-q,min} + t_{logic,min} - t_{IS,1} > t_{hold} + t_{IS,2} + \delta$$

Minimum logic delay

$$t_{clk-q,min} + t_{logic,min} > t_{hold} + 2t_{JS} + \delta$$

(This assumes jitter at launching and receiving clocks are independent – which usually is not true)

EECS141 Lecture #20

Reference

Clock Period	Adder	Absolute Value	Logarithm
1	$a_1 + b_1$		
2	$a_2 + b_2$	$ a_1+b_1 $	
3	$a_3 + b_3$	$ a_2 + b_2 $	$\log(a_1+b_1)$
4	$a_4 + b_4$	$ a_3 + b_3 $	$\log(a_2+b_2)$
5	<i>a</i> ₅ + <i>b</i> ₅	$ a_4 + b_4 $	$\log(a_3+b_3)$

Pipelined

EECS141

Lecture #20

8

Loop Unrolling

EECS141 Lecture #20

Latch vs. Flip-flop

- □ In a flip-flop based system:
 - Data launches on one rising edge
 - And must arrive before next rising edge
 - If data arrives late, system fails
 - If it arrives early, wasting time
 - Flip-flops have hard edges
- □ In a latch-based system:
 - Data can pass through latch while it is transparent
 - Long cycle of logic can borrow time into next cycle
 As long as each loop finished in one cycle

Latch vs. Flip-flop Summary

- □ Flip-flops generally easier to use
 - Most digital ASICs designed with register-based timing
- □ But, latches (both pulsed and level-sensitive) allow more flexibility
 - And hence can potentially achieve higher performance
 - Latches can also be made more tolerant of clock un-certainty
 - More in EE241

EECS141 Lecture #20 13

CMOS Transistor Scaling

Goals of Technology Scaling

- Make things cheaper:
 - Want to sell more functions (transistors) per chip for the same money
 - Or build same products cheaper
 - Price of a transistor has to be reduced
- □ But also want to be faster, smaller, lower power...

EECS141 Lecture #20 15

Technology Scaling

- □ Benefits of 30% "Dennard" scaling (1974):
 - Double transistor density
 - Reduce gate delay by 30% (increase operating frequency by 43%)
 - Reduce energy per transition by 65% (50% power savings @ 43% increase in frequency)
- □ Die size used to increase by 14% per generation (not any more)
- □ Technology generation spans 2-3 years

Technology Scaling Models

Full Scaling (Constant Electrical Field)

ideal model — dimensions and voltages scale together by the same factor ${\bf S}$

Fixed Voltage Scaling

most common model until 1990's only dimensions scale, voltages remain constant

General Scaling

most realistic for today's situation — voltages and dimensions scale with different factors

Full Scaling (Dennard, Long-Channel)

- W, L, t_{ox}: 1/S
- \square V_{DD} , V_{T} : 1/S
- □ Area: WL
- □ C_{ox}: 1/tox
- \Box C_L : $C_{ox}WL$
- \Box I_D : $C_{ox}(W/L)(V_{DD}-V_T)^2$
- \square R_{eq} : V_{DD}/I_{DSAT}

Full Scaling (Dennard, Long-Channel)

- \square W, L, t_{ox} : 1/S
- □ V_{DD}, V_T: 1/S
- \Box t_p : $R_{eq}C_L$
- \square P_{avg} : $C_L V_{DD}^2 / t_p$
- \square P_{avg}/A : $C_{ox}V_{DD}^{2}/t_{p}$

EECS141 Lecture #20 25

Scaling Relationships for Long Channel Devices

Parameter	Relation	Full Scaling	General Scaling	Fixed Voltage Scaling
W, L, t _{ox}		1/S	1/S	1/S
V_{DD}, V_{T}		1/S	1/U	1
N_{SUB}	V/W _{depl} ²	S	S ² /U	S ²
Area/Device	WL	1/S ²	1/S ²	1/S ²
Cox	1/t _{ox}	S	S	S
$\mathrm{C}_{\mathbf{L}}$	CoxWL	1/S	1/S	1/S
k _n , k _p	C _{ox} W/L	S	S	S
Iav	$k_{n,p} V^2$	1/S	S/U ²	S
t _p (intrinsic)	$\mathrm{C_LV}$ / $\mathrm{I_{av}}$	1/S	U/S ²	1/S ²
Pav	$\frac{\mathrm{C_L V^2}/\mathrm{t_p}}{\mathrm{C_L V^2}}$	1/S ²	S/U ³	S
PDP	C_LV^2	1/S ³	1/SU ²	1/S

Full Scaling (Dennard, Short-Channel)

- □ W, L, t_{ox}: 1/S
- □ V_{DD}, V_T: 1/S
- □ Area: WL
- □ C_{ox}: 1/tox
- \Box C_L : $C_{ox}WL$
- \square I_D : $WC_{ox}v_{sat}(V_{DD}-V_T-V_{VSAT}/2)$
- \square R_{eq} : V_{DD}/I_{DSAT}

EECS141 Lecture #20 2

Full Scaling (Dennard, Short-Channel)

- □ W, L, t_{ox}: 1/S
- □ V_{DD}, V_T: 1/S
- \Box t_p : $R_{eq}C_L$
- \Box P_{avg} : $C_L V_{DD}^2 / t_p$
- \square P_{avg}/A : $C_{ox}V_{DD}^{2}/t_{p}$

Transistor Scaling (Velocity-Saturated Devices)

Parameter	Relation	Full Scaling	General Scaling	Fixed-Voltage Scaling		
W , L , $t_{\rm ox}$		1/S	1/S	1/S		
V_{DD} V_{T}		1/S	1/U	1		
$N_{\it SUB}$	V/W_{depl}^2	S	S^2/U	S^2		
Area/Device	WL	1/S ²	$1/S^2$	$1/S^2$		
$C_{\rm ox}$	$1/t_{ox}$	S	S	S		
$C_{\it gate}$	$C_{ox}WL$	1/S	1/S	1/S		
k_n , k_p	$C_{ox}W/L$	S	S	S		
I_{scat}	$C_{ox}WV$	1/S	1/U	1		
Current Density	I _{sat} /Area	S	S^2/U	S^2		
Ron	V/I _{sat}	1	1	1		
Intrinsic Delay	$R_{on}C_{gate}$	1/S	1/S	1/S		
P	$I_{sat}V$	1/S ²	$1/U^2$	1		
Power Density	P/Area	1	S^2/U^2	S^2		
Lecture #20						

29

An interesting question

- □ What will did cause this model to break?
 - Leakage set by kT/q

EECS141

- Temp. does not scale
- V_T set to minimize power
- Power actually increased
 - Leakage increased drastically
 - f increased faster than device speed
 - Hit cooling limit
- Process Variation
 - Hard to build very small things accurately (less averaging)