Lecture 16

Recap: quasi-likelihood methods

Quasi - like lihood method.

Recap: quasi-Poisson

When to use quasi-Poisson models

- The response is a count variable
- The Poisson shape assumption looks good
- The response has more variability than a Poisson distribution accounts for
- We believe variance is a multiple of the mean

Estimating the dispersion parameter

Motivation: if
$$\forall i = N(Mi, \sigma^2)$$

then $\hat{\sigma}^2 = \frac{1}{n-p} \frac{2}{(\pi i - \hat{M}i)^2}$ $(V(Mi) = 1)$
Two views:
 $= \frac{D(\pi, \hat{M})}{n-p} \qquad \frac{1}{n-p} \frac{2}{(\pi i - \hat{M}i)^2}$
(mean deviance estimate) (Pearser estimate)
In general: $\hat{\sigma}_0 = \frac{D(\pi, \hat{M})}{n-p}$
 $\hat{\sigma}_p = \frac{1}{n-p} \frac{2}{(\pi i - \hat{M}i)^2}$
 $\hat{\sigma}_0 \neq \hat{\sigma}_p$ in general (Normal is the any exception)

Analogas to $\hat{\sigma}^2 = \frac{1}{1-1} \left(\sum_{i=1}^{n} (Y_i - Y_i)^2 \right)$

Mean deviance estimate

 $F(y; \mu, \emptyset) = b(y, \emptyset) exp \begin{cases} -d(y, \mu) \begin{cases} \frac{1}{2\pi} \end{cases} \end{cases}$

For Poisson: Suddepoint approx. is good if min 24:3 = 3

(suddlepoint approx) $\frac{1}{\sqrt{2\pi} \otimes V(y)} \exp \left\{ -\frac{d(y, n)}{2} \right\}$

If saddle point approx, is good,

 $\frac{D(Y,\hat{\omega})}{\emptyset} \approx \chi^{2}_{n-p} \Rightarrow \mathbb{E}\left[\frac{D(Y,\hat{\omega})}{n-n}\right] \approx \emptyset$

 $e(\mu, \emptyset) \approx \frac{2}{2} \left\{ -\frac{1}{2} \log(2\pi \emptyset V(y)) - \frac{1}{2\emptyset} d(Y_{i}, \mu_{i}) \right\}$ $= \frac{1}{2} \frac{1}{2} \left(\frac{1}{2} \frac{1}{2}$

 $\hat{Q}_{NLE} = \frac{1}{n} \underbrace{SO(Y_{i,Mi})}_{n=i} = \frac{D(Y_{i,M})}{n-p}$ Don't know w_{i} So plug w_{i} : $\hat{Q}_{0} = \frac{D(Y_{i,M})}{n-p}$

Pearson estimate

$$E[Ti] = Mi = TE \left[\frac{Ti - Mi}{\sqrt{V(Mi)}} \right] = 0$$

$$E[\left(\frac{Ti - Mi}{\sqrt{V(Mi)}} \right)^{2}] = \frac{Var(Ti)}{V(Mi)} = \frac{OV(Mi)}{V(Mi)} = 0$$

$$\hat{O}_{p} = \frac{1}{n-p} \sum_{i=1}^{n} \left(\frac{Ti - Mi}{\sqrt{V(Mi)}} \right)^{2}$$

If appropriate assumptions hold:
$$\hat{\phi}_{p}$$
, $\hat{\phi}_{o} \approx 0$ (both approximately imbiased)

Distribution of the estimates

Linear regression:
$$(n-p)\frac{\hat{\sigma}^2}{\sigma^2} \sim \chi^2_{n-p}$$

GLMs:
$$(n-p)\frac{\hat{\partial}}{\partial}$$
 $\approx \chi_{n-p}^2$

Inference with quasi-Poisson models

Class activity

https://sta712-

f23.github.io/class_activities/ca_lecture_16.html