

간결화 알고리즘과 규칙 관계 분석

Concise Algorithm and Analysis of Rule Relations

홍정식 교수¹, 김재호 석사과정², 이정언 석사과정², 황인서 학사과정²

1서울과학기술대학교 산업공학과, 2서울과학기술대학교 일반대학원 데이터사이언스학과

1hong@seoultech.ac.kr,
 2{doe2x2, jeongeon.lee}@seoultech.ac.kr, nayaseo98@gmail.com

본 연구는 2022년도 정부(산업통상자원부)의 재원으로 한국산업기술진흥원의 지원을 받아 수행되었음 (P0017123, 2022년 산업혁신인재성장지원사업)

Table of Contents

- 1. Motivation
- 2. Backgrounds
- 3. Concise Algorithm
- 4. Analysis of Rule Relation
- 5. Experimental Result
- 6. Case Study (BC Data at UCI Repository)
- 7. Conclusion

1. Motivation

❖ DT 알고리즘의 문제점 ① – Greedy splitting

- Impurity of the next level nodes in CART
 - Gini index : $g(S) = 1 \sum p_k^2$
 - Gini gain : $g(S_l, S_r) = \frac{|S_l|}{|S|} g(S_l) + \frac{|S_r|}{|S|} g(S_r)$

S_l S_r

• 문제점

- 양쪽 노드의 불순도 가중 합이 최소화되는 지점으로 분기함 → 두 개의 노드를 동시에 고려함으로 문제가 생김
- CART는 양쪽 노드의 동질성을 고려해 c1으로 분기하나, 한쪽 노드만 고려해보면 c2가 더 높은 동질성

1. Motivation

❖ DT 알고리즘의 문제점 ② - Unnecessary Condition

- Rule interdependence of DT
 - 위계적인 구조로 인해 하위 노드에서 불필요한 규칙을 무조건 포함하게 될 수 있음

- 폐암 진단 예시
 - 뿌리 노드의 기준인 나이와 상관 없이, 폐암은 혈액 검사만으로도 진단이 될 수 있는데 위계적인 구조로 인해 나이가 항상 규칙에 포함됨.
 - 불필요한 규칙이 늘어나 사용자가 해석을 오도할 가능성이 있고 해석 상의 어려움이 발생

1. Motivation

❖ DT 알고리즘의 문제점 ③ – All leaf nodes : mutually exclusive

- 하나의 object를 규정하는 특징이 여러 개 일 수 있음 (Cause1 and Symptom1, Cause2 and Symptom2)
- DT의 모든 규칙은 negative association 문제
- 독립적인 규칙, positive association 관계의 규칙이 배제됨

❖ DT 알고리즘의 문제점의 해결

- ① Greedy splitting \Rightarrow OSM Tree
- ② Unnecessary Condition ⇒ Concise Rule Induction
- ③ All leaf nodes : mutually exclusive ⇒ Rule 규칙관계 분석

2. Backgrounds

- Two types of Machine learning models (ML models)
 - (1) White-box model (Interpretable model, transparent model)
 - Decision Tree (DT)
 - Rule Induction (RI)
 - Linear regression (LR)
 - (2) Black-box model (Opaque model)
 - Neural Network (NN)
 - Ensemble Model (EM)

2. Backgrounds

❖ Concise Rule 관련연구

- DT & RI은 if-then rules로 표현됨
- DT Rule은 불필요한 조건들을 포함
- RI Rule separate & conquer
- Rule pruning은 predictive accuracy 관점에서 수행됨

❖ 규칙관계분석 관련연구

- Rule overlapping is avoided
 (H.Lakkaraju Interpretable Decision Sets: A Joint Framework for Description and Prediction 2016)
- Non overlapping rules : independent rule (?)

❖ 새로운 분기 기준 - OSM(One-Sided-Maximum)

- 분기 시 한쪽 노드의 동질성만을 고려
- The study proposes a splitting criterion including the number of samples in each child node as following:
 - Proposed : $\max\left(\left(\frac{|S_l|}{|S|}\right)^{\lambda}g(S_l), \left(\frac{|S_r|}{|S|}\right)^{\lambda}g(S_r)\right)$, where $\lambda \in [0,1]$
- The hyperparameter λ controls the relative importance of the homogeneity and the sample coverage.

New Splitting Criterion, S Hwang et. al, 2020

❖ Rule Generation

- Concise Rule Induction consists of the set of serial algorithms (rule generation, concise, and then ensemble)
- Rule Generation (Separate and Conquer)
 - ▸ Max로 분기되지 않은 min은 해석력이 떨어지므로 루트노드로부터 max로만 분기된 규칙을 유도
 - 1. Generates a decision tree using OSM splitting criteria.
 - 2. We pick only one leaf node that is generated by following all maximal sides (R1).
 - 3. Repeat the above process for subset (S_1^r) that are not included in R1.

• Rule generation process is completed as follows:

- 생성된 규칙
 - 1st Rule: (R1)
 - 2nd Rule : (\overline{R}1, R2)
 - 3rd Rule : $(\overline{R}1, \overline{R}2, R3)$
 - 4th Rule : $(\overline{R}1, \overline{R}2, \overline{R}3, R4)$
 - 5th Rule : $(\overline{R}1, \overline{R}2, \overline{R}3, \overline{R}4)$
- 첫번째 규칙을 제외한 다른 규칙에서 분리조건들은 불필요할 수 있음
 - Concise algorithm

- Concise algorithm
 - 불필요한 분리 조건들을 제거함으로써 규칙을 간결화
 - 분리 조건을 제거해본 후 통계적 검정을 통해 제거 여부를 판단
- Rule : $\overline{R}1$, $\overline{R}2$, $\overline{R}3$, ... $\overline{R}(n-1)$, Rn
 - Step 1) 분리 조건 0개 test:
 - 통과 → 종료, Rule = Rn
 - 통과 실패 → step 2
 - Step 2) 분리 조건 1개 test:
 - 통과 조건 1개 \rightarrow 종료, Rule = $\overline{R}i$ and Rn
 - 통과 조건 2개 \rightarrow Coverage가 최대인 조건을 선택 -> 종료, Rule = $\overline{R}i^*$ and Rn
 - 통과 실패 → step 3

 - Step n-1) 분리 조건 n-2개 test:
 - 통과 조건 1개 → 종료, Rule = Ri * Rj... * Rn

 - 통과 조건 2개 이상 \rightarrow Coverage가 최대인 조건을 선택 \rightarrow Rule = $\bar{\mathbf{R}}i^* * \bar{\mathbf{R}}j^* \dots * \mathbf{R}\mathbf{n}$

n-2개

• 통과 실패 → 종료, Rule = R1* R2 ... * Rn

- 예시 4th Rule의 분리 조건 제거 여부
 - 4th Rule : (R1, R2, R3, R4), 분리 조건 : R1, R2, R3
 - Let $P[Y=y_0|\overline{R}1, \overline{R}2, \overline{R}3, R4] = p$, y_0 is dominant response of the rule
 - Step 1) 07 Test: Test on the necessity of (\$\overline{R}\$1, \$\overline{R}\$2, \$\overline{R}\$3)
 - H_0 : P[Y = $y_0|R4$] \geq p vs. H_1 : not H_0
 - If H_0 is accepted(통과), then 4th Rule = R4
 - Else if H_0 is not accepted(통과 실패), then move step 2

Concise Rule Algorithm

```
Algorithm: Concise rule
  Input: R_1, \cdots, R_k
             S(R_1), \cdots, S(R_k)
             TS_1, \cdots, TS_k
             P(R_1/TS_1), \cdots, P(R_k/TS_k) \quad (P(R_i/TS_i) = P(y = f_i/S(R_i/TS_i)))
  Output: R_{1*}, \cdots, R_{k*}
               S(R_1), \cdots, S(R_k)
               TS_1, \cdots, TS_k
               P(R_{1*}/TS_{1*}), \cdots, P(R_{k*}/TS_{k*})
  for i = 1 to k do
       for j = i + 1 to k do
            Compute Z_{i,j} = \frac{P(R_j/TS_i) - P(R_j/TS_j)}{\sqrt{\frac{P(R_j/TS_j)(1 - P(R_j/TS_j))}{|S(R_j/TS_i)|}}}
       end
  end
  for j = 1 to k do
      j^* = \min_{1 \le i \le j-1} I[Z_{ij}, z_{\alpha}]
      R_{j^*} = R_j \cdot \bar{R}_1 \cdot \bar{R}_2 \cdots \bar{R}_{j^*-1}
P(R_{j^*}/TS_{j^*}) = P(y = f_j/S(R_j/TS_{j^*}))
  end
```

4. Analysis of Rule Relation

❖ Definition of Rule

(1) Function

Domain: Subset of data set

Co-Domain: Class value

ex) if 성별 = 남성, 수입 >= 2,400만원 , then 대출 = 승인

(2) Subset (Set)

Fix the value of class variable

"대출 = 승인" rules

R1: { S(R1) / 성별 = 남성, 수입 >= 2,400만원 }

R2: { S(R2) / 직업 = 근로소득자, 수입 >= 2,350만원 }

4. Analysis of Rule Relation

❖ For a case of two causes and related symptoms

(Cause 1, Symptom 1)
$$\Rightarrow$$
 (C1, S1) (C2, S2) \Rightarrow Model (Cause 2, Symptom 2)

Possible DT presentation of 2 causes-symptoms

Possible RI presentation of 2 causes-symptoms

4. Analysis of Rule Relation

- (2) Measure of Rule Association
 - (2.1) Overlapping Degree of Rules

$$L(R_i, R_j) = \frac{|S(R_i) \cap S(R_j)|}{|S(R_i) \cup S(R_j)|}$$
overlapping
$$\downarrow \quad \text{non-overlapping} \Rightarrow \text{ F-independent Rule}$$

(2.2) Conditional Association Degree of Rules

$$A(R_i,R_j/y=y_k)=P(R_i\cap R_j/y=y_k)-P(R_i/y=y_K)\times P(R_j/y=y_k)$$

$$A(R_i,R_j/y=y_k)\to -0.25 \qquad R_i \& R_j \Rightarrow \text{Conditionally negative associative}$$
 $A(R_i,R_j/y=y_k)\to +0.25 \qquad R_i \& R_j \Rightarrow \text{Conditionally positive associative}$

5. Experimental Result

❖ Interpretability 비교 결과

D-44	T4	Attril	outes	Cl
Dataset	Instances	Categorical	Numerical	Classes
Adult	48,842	8	6	2
Australian	690		16	2
Avilar	20,867		10	12
BC-wisconsin	699	1	8	2
Car	1,728	6		4
Churn	5,000	4	15	2
Connect-4	67,557	42		3
EEG	14,980		14	2
Employee-attrition	1,470	26	8	2
GermanCredit	1,000	13	7	2
Image	2,310		19	7
Ionosphere	351		23	2
Letter-multi	20,000		16	26
Letter	20,000		16	2
Pima-indians-diabetes	768		8	2
Spambase	4,601		57	2
Splice-jxn	3,190	60		3
Waveform	5,000		21	3
Yeast	1,484	1	8	9

	n-th rule	CART	Hwang et al. (2020)	CN2	Proposed
	1	$1.49{\pm}0.55$	1.06 ± 0.23	2.19 ± 1.20	$1.69{\pm}1.23$
	2	$2.33{\pm}0.38$	2.09 ± 0.24	3.71 ± 1.53	1.73 ± 0.88
# of Condition	3	3.05 ± 0.33	3.14 ± 0.35	4.04 ± 1.70	$2.05{\pm}1.14$
# of Condition	4	3.67 ± 0.54	3.97 ± 0.25	3.90 ± 1.53	$2.54{\pm}1.70$
	5	4.15 ± 0.74	4.85 ± 0.47	4.02 ± 1.67	$2.26{\pm}1.38$
	Average	$2.94{\pm}0.95$	3.02 ± 1.34	3.57 ± 0.70	$2.05{\pm}0.32$
	1	$0.28{\pm}0.19$	0.15 ± 0.13	0.05 ± 0.08	0.15 ± 0.16
	2	0.14 ± 0.11	0.12 ± 0.10	0.05 ± 0.01	0.14 ± 0.10
Coverage	3	0.17 ± 0.17	0.10 ± 0.08	0.02 ± 0.01	0.17 ± 0.15
Coverage	4	0.08 ± 0.04	0.07 ± 0.04	0.01 ± 0.01	$0.17{\pm}0.12$
	5	0.07 ± 0.04	0.06 ± 0.04	0.02 ± 0.01	$0.20{\pm}0.15$
	Average	0.15 ± 0.08	0.10 ± 0.03	0.02 ± 0.01	$0.17{\pm}0.02$
	1	0.90 ± 0.09	0.92 ± 0.12	1.00 ± 0.00	0.93 ± 0.11
	2	0.81 ± 0.16	0.90 ± 0.13	1.00 ± 0.00	0.91 ± 0.12
Homogeneity	3	0.81 ± 0.11	0.88 ± 0.12	1.00 ± 0.00	0.88 ± 0.12
Homogeneity	4	0.76 ± 0.12	0.84 ± 0.13	1.00 ± 0.00	0.86 ± 0.12
	5	0.70 ± 0.13	0.82 ± 0.13	1.00 ± 0.00	0.83 ± 0.13
	Average	0.79±0.06	0.87±0.04	1.00±0.00	0.88±0.04

❖ Wisconsin Breast Cancer Dataset Sample (Attribute 11개 x Record 683개)

Attribute	ID	Clump_ Thickness	Uniformity_of_ Cell_Size	Uniformity_of_ Cell_Shape	Marginal_ Adhesion	Single_Epithelial_ Cell_Size	Bare_ Nucleoli	Bland_ Chromatin	Normal_ Nucleoli	Mitoses	Class
Type	Integer (1-10)	Integer (1-10)	Integer (1-10)	Integer (1-10)	Integer (1-10)	Integer (1-10)	Integer (1-10)	Integer (1-10)	Integer (1-10)	Integer (1-10)	Integer (0:Benign, 1:Malignant)
1	1000025	5	1	1	1	2	1	3	1	1	0
2	1002945	5	4	4	5	7	10	3	2	1	0
:											
682	897471	4	8	6	4	3	4	10	6	1	1
683	897471	4	8	8	5	4	5	10	4	1	1

***** Attribute Descriptions

No.	Attribute	Description
1	Clump_Thickness (덩어리 두께)	암세포의 그룹화를 나타내는 덩어리 두께
2	Uniformity_of_Cell_Size (세포 크기의 균일성)	세포 크기의 균일성 여부
3	Uniformity_of_Cell_Shape (세포 모양의 균일성)	세포 모양의 균일성 여부
4	Marginal_Adhesion (염색질의 유착성)	서로 분리된 세포가 부분적으로 유착되는 것으로, 유착의 기간이 오래되면 유방암 발병률이 높아짐
5	Single_Epithelial_Cell_Size (단일 상피세포 크기)	상피는 조직 표면에 있는 특수 세포의 얇은 층으로 단일 상피세포 크기가 커지면 악성 세포의 경우가 많음.
6	Bare_Nucleli (베어 핵)	세포질이 사실상 없는 세포학적 준비의 핵으로, 일반적으로 세포의 퇴화에서 볼 수 있음
7	Bland_Chromatin (블랜드 크로마틴)	보통 양성 세포에서 볼 수 있는 핵의 균일한(부드러운) "질감"을 이야기하며, 악성 세포(암)에서 염색질은 더 거칠어지는 경향이 있음
8	Normal_Nucleoli (정상핵)	정상 세포에서 핵은 보통 매우 작음
9	Mitoses (체세포분열)	세포가 분열하고 복제하는 과정으로 유사분열 수를 세어 암의 등급을 결정

Dataset Summary by Class

Columns	Class	1	2	3	4	5	6	7	8	9	10	Total
	0 : Benign	136	46	92	67	83	15	1	4	0	0	444
Clump_Thickness	1: Maligant	3	4	12	12	45	18	22	40	14	69	239
. –	-	139	50	104	79	128	33	23	44	14	69	683
								•	•			
	0 : Benign	369	37	27	8	0	0	1	1	1	0	444
Uniformity_of_Cell_Size	1: Maligant	4	8	25	30	30	25	18	27	5	67	239
	-	373	45	52	38	30	25	19	28	6	67	683
	0 : Benign	344	51	30	12	2	2	2	1	0	0	444
Uniformity_of_Cell_Shape	1: Maligant	2	7	23	31	30	27	28	26	7	58	239
	-	346	58	53	43	32	29	30	27	7	58	683
	0 : Benign	363	37	31	5	4	3	0	0	0	1	444
Marginal_Adhesion	1: Maligant	30	21	27	28	19	18	13	25	4	54	239
	=	393	58	58	33	23	21	13	25	4	55	683
	0 : Benign	43	355	28	7	5	1	2	2	0	1	444
Single_Epithelial_Cell_Size	1: Maligant	1	21	43	41	34	39	9	19	2	30	239
	=	44	376	71	48	39	40	11	21	2	31	683
	0 : Benign	387	21	14	6	10	0	1	2	0	3	444
Bare_Nucleoli	1: Maligant	15	9	14	13	20	4	7	19	9	129	239
	=	402	30	28	19	30	4	8	21	9	132	683
	0 : Benign	148	153	125	7	4	1	6	0	0	0	444
Bland_Chromatin	1: Maligant	2	7	36	32	30	8	65	28	11	20	239
	=	150	160	161	39	34	9	71	28	11	20	683
	0 : Benign	391	30	11	1	2	4	2	3	0	0	444
Normal_Nucleoli	1: Maligant	41	6	31	17	17	18	14	20	15	60	239
		432	36	42	18	19	22	16	23	15	60	683
	0 : Benign	431	8	2	0	1	0	1	1	0	0	444
Mitoses	1: Maligant	132	27	31	12	5	3	8	7	0	14	239
	-	563	35	33	12	6	3	9	8	0	14	683

CART / CN2 / CRI _ Rule List (y = 1)

R_i (y=1)	CRI (Concise Rule Induction)	CART	CN2
1	Uniformity_of_Cell_Size >= 4.5	Uniformity_of_Cell_Size > 2.5, Uniformity_of_Cell_Shape > 2.5, Marginal_Adhesion > 5.5	Uniformity_of_Cell_Size >= 5.0, Bland_Chromatin >= 5.0
2	Clump_Thickness >= 8.5	Uniformity_of_Cell_Size > 2.5, Uniformity_of_Cell_Shape > 2.5, Marginal_Adhesion < = 5.5, Clump_Thickness > 6.5, Uniformity_of_Cell_Size > 4.5	Bare_Nucleoli >= 9.0, Uniformity_of_Cell_Shape >= 4.0
3	Uniformity_of_Cell_Size >= 1.5 Marginal_Adhension>= 6.5	Uniformity_of_Cell_Size > 2.5, Uniformity_of_Cell_Shape > 2.5, Marginal_Adhesion <= 5.5, Clump_Thickness > 6.5, Uniformity_of_Cell_Size <= 4.5	Clump_Thickness >= 7.0, Clump_Thickness >= 9.0
4	Normal_Nucleoli >= 8.5	Uniformity_of_Cell_Size>2.5, Uniformity_of_Cell_Shape> 2.5, Marginal_Adhesion<= 5.5, Clump_Thickness<= 6.5, Bland_Chromatin> 4.5	Bare_Nucleoli >= 3.0, Clump_Thickness >= 5.0, Bare_Nucleoli <= 7.0

CART / CN2 / CRI _ Rule List (y = 0)

R _i (y=0)	CRI (Concise Rule Induction)	CART	CN2
1	Uniformity_of_Cell_Shape < 1.5	Uniformity_of_Cell_Size <= 2.5, Bare_Nucleoli<= 2.5, Single_Epithelial_Cell_Size <= 2.5	Uniformity_of_Cell_Shape <= 3.0 Bare_Nucleoli <= 3.0, Bare_Nucleoli <= 2.0
2	Uniformity_of_Cell_Size < 1.5	Uniformity_of_Cell_Size <= 2.5, Bare_Nucleoli <= 2.5, Single_Epithelial_Cell_Size > 2.5	Normal_Nucleoli <= 3.0, Uniformity_of_Cell_Size <= 2.0, Clump_Thickness <= 4.0, Single_Epithelial_Cell_Size >= 2.0
3	Bland_Chromatin < 1.5	Uniformity_of_Cell_Size > 2.5 Uniformity_of_Cell_Shape <= 2.5	Marginal_Adhesion <= 7.0
4	Uniformity_of_Cell_Shape < 2.5	Uniformity_of_Cell_Size <= 2.5, Bare_Nucleoli > 2.5	-

❖ Rule Quality (y = 1)

• y=1 사전확률: 239/683 = 0.409949

R _i (y=1)		lomogeneit	mogeneity		Coverage		Weighted relative Accuracy(WA)*			Justifiability		
	(1) CRI	(2)CART	(3)CN2	(1)CRI	(2)CART	(3)CN2	(1)CRI	(2)CART	(3) CN2	(1)CRI	(2)CART	(3)CN2
1	0.9828	1.0	1.0	0.2562	0.157	0.186	0.147	0.101	0.120	0	0	0
2	1.0	1.0	1.0	0.1215	0.084	0.17	0.072	0.054	0.110	0	1	0
3	1.0	0.90	1.0	0.1405	0.04	0.122	0.083	0.022	0.079	0	1	0
4	1.0	0.88	0.95	0.1098	0.032	0.088	0.065	0.017	0.053	0	1	1

❖ Rule Quality (y = 0)

• y=0 사전확률: 444/683 = 0.761578

Ri (y=0)	Homogeneity		Coverage		Weighted relative Accuracy(WA)			Justifiability				
(<i>y</i> = 0)	(1)CRI	(2)CART	(3)CN2	(1)CRI	(2)CART	(3)CN2	(1)CRI	(2)CART	(3) CN2	(1)CRI	(2)CART	(3)CN2
1	0.9942	1.0	0.99	0.5065	0.529	0.582	0.118	0.1870	0.204	0	0	0
2	0.9892	0.95	1.0	0.5461	0.036	0.41	0.124	0.0110	0.145	0	1	1
3	0.9866	0.84	0.73	0.2196	0.035	0.884	0.049	0.0070	0.074	0	1	0
4	0.9772	0.65	-	0.5915	0.048	-	0.128	0.0003	-	0	1	-

^{*} Weighted relative Accuracy(WA) = Coverage x (Homogeneity – 사전확률)

Overlapping Degree of Rules

$R_i & R_j (y=1)$	$R_i \cup R_j$	$R_i \cap R_j$	Overlapping Degree	R _i & R _j (y=0)	$R_i \cup R_j$	$R_i \cap R_j$	Overlapping Degree
R ₁ & R ₂	195	60	0.308	R ₁ & R ₂	391	322	0.824
$R_1 \& R_3$	<mark>188</mark>	<mark>80</mark>	<mark>0.426</mark>	R ₁ & R ₃	371	121	0.326
R ₁ & R ₄	184	63	0.342	R ₁ & R ₄	395	344	0.871
$R_2 \& R_3$	152	27	0.178	$R_2 \& R_3$	390	127	0.326
R ₂ & R ₄	134	24	0.179	R ₂ & R ₄	418	346	0.828
R ₃ & R ₄	133	38	0.286	R ₃ & R ₄	408	135	0.331

^{*} Overlapping Degree : $P(R_i \cap R_j) / P(R_i \cup R_j)$

Conditional Association Degree of Rules

Y (n=683)	Rule	Conditions	Yk	$P(R_i/y=Y_k)$
	Rule1	Uniformity_of_Cell_Size >= 4.5	<mark>172</mark>	0.720
y=1	Rule2	Clump_Thickness >= 8.5	83	0.347
(n=239)	Rule3	Uniformity_of_Cell_Size >= 1.5 Marginal_Adhension>= 6.5	<mark>96</mark>	0.402
	Rule4	Normal_Nucleoli >= 8.5	75	0.314
	Rule1	Uniformity_of_Cell_Shape < 1.5	344	0.775
y=0	Rule2	Uniformity_of_Cell_Size < 1.5	369	0.831
(n=444)	Rule3	Bland_Chromatin < 1.5	148	0.333
	Rule4	Uniformity_of_Cell_Shape < 2.5	395	0.890

R _i & R _j (y=1)	Rules Association		
R ₁ & R ₂	0.001	R1 & R2	0.081
R₁ & R₃	0.046	R1 & R3	0.014
R ₁ & R ₄	0.038	R1 & R4	0.086
R ₂ & R ₃	ι R ₃ -0.027 R2 & R3		0.009
R ₂ & R ₄	R ₂ & R ₄ -0.009		0.040
R ₃ & R ₄	0.033	R3 & R4	0.008

^{*} Rules Association : $A(R_i, R_i/y = y_k) = P(R_i \cap R_i/y = y_k) - (P(R_i/y = y_K) \times P(R_i/y = y_K))$

7. Conclusion

Experimental Result

- CART, Hwang, CN2, CRI 알고리즘을 통해 19개 데이터셋을 통해 생성된 Rule의 Condition 개수와, Coverage, Homogeneity를 비교
- CRI 알고리즘의 Condition 수는 2.05개로 다른 알고리즘과 비교했을 때 가장 작았음을 확인
- CRI 알고리즘의 Coverage가 0.17로 다른 알고리즘과 비교했을 때 가장 높았음을 확인
- CRI 알고리즘의 Homogeneity는 0.88로 CN2 보다 낮았지만, CART, Hwang 보다는 높았음을 확인

	CART	Hwang et al	CN2	Proposed		
#of Condition	2.94±0.95	3.02±1.34	3.57±0.70	2.05±0.32		
Coverage	0.15±0.08	0.10±0.03	0.02±0.01	0.17±0.02		
Homogeneity	0.79±0.06	0.87±0.04	1.00±0.00	0.88±0.04		

❖ BC Case Study Result

у	Homogeneity		Coverage		WA		Justifiability					
	(1) CRI	(2)CART	(3)CN2	(1)CRI	(2)CART	(3)CN2	(1)CRI	(2)CART	(3) CN2	(1)CRI	(2)CART	(3) CN2
1	0.996	0.945	0.988	0.157	0.078	0.142	0.092	0.049	0.091	0	1	1
0	0.987	0.860	0.907	0.466	0.162	0.625	0.105	0.051	0.141	0	1	1

- Concise 알고리즘의 효과: y=1일 때 Rule당 Condition수가 CART 3.5개, CN2 2.4개, CRI 1.125개로 CRI알고리즘의 Condition수가 가장 적었음을 확인
- Rule association Quality 비교 : y=1인 Rule에서는 CRI 알고리즘의 Coverage, Homogeneity, Weight Accuracy가 제일 높았으며, 다른 알고리즘들과 달리 Rule의 Justifiability위반도 없었음을 확인