Student Information

Name: Batuhan Akçan

ID: 2580181

Answer 1

a)

 G_1 represents the language $L = L_1 \cup L_2$ where $L_1 = \{0^n 1^n \mid n \ge 0\}$ and $L_2 = \{1^n 0^n \mid n \ge 0\}$. In other words, L is the language generated by G_1 .

b)

Yes, it is ambiguous because the empty string ϵ has 2 distinct (nonsimilar) derivations:

- 1) $S \rightarrow_{G_1} A \rightarrow_{G_1} \epsilon$
- 2) $S \rightarrow_{G_1} B \rightarrow_{G_1} \epsilon$

Answer 2

a)

The string a has 2 distinct (nonsimilar) derivations:

- 1) $S \rightarrow_{G_2} AB \rightarrow_{G_2} A \rightarrow_{G_2} a$

2) $S \rightarrow_{G_2} AB \rightarrow_{G_2} A \rightarrow_{G_2} aA \rightarrow_{G_2} a$. Therefore, the grammar G_2 is ambiguous.

b)

$$G_3=\{V,\Sigma,R',S\}$$
 where $V=\{a,b,S,A,B\},\Sigma=\{a,b\}$ and R' is: $S\to AB$ $A\to aA\mid \epsilon$ $B\to bB\mid \epsilon$.

c)

$$S \rightarrow_{G_3} AB \rightarrow_{G_3} aAB \rightarrow_{G_3} aB \rightarrow_{G_3} abB \rightarrow_{G_3} abbB \rightarrow_{G_3} abbbB \rightarrow_{G_3} abbb.$$

Answer 3

a)

i)

Let the grammar that represents L_1 be $G_1 = \{V, \Sigma, R, S\}$ where $V = \{S, c, P, d, R, K, L, a, b\}$, $\Sigma = \{a, b, c, d\}$ and R is:

 $S \rightarrow cP \mid dR$

 $P \to K \mid L$

 $K \rightarrow aK \mid aKb \mid a$

 $L \rightarrow Kb \mid aKb \mid b$

 $R \rightarrow aRbb \mid e$

We can construct a top-down parser M_1 where $L(M_1) = L(G_1)$. Since all top-down parsers are deterministic pushdown automata, M_1 is also a deterministic pushdown automaton. Since only deterministic context-free languages can be recognized by a deterministic pushdown automata, the language recognized by M_1 , which is L_1 , is a deterministic context-free language.

ii)

Let the grammar that represents L_2 be $G_2 = \{V, \Sigma, R, S\}$ where $V = \{S, P, R, K, L, a, b, c, d\}$,

 $\Sigma = \{a, b, c, d\}$ and R is:

 $S \to P \mid R$

 $P \to K^{'}|\; L$

 $K \rightarrow aK \mid aKb \mid ac$

 $L \rightarrow Kb \mid aKb \mid cb$

 $R \rightarrow aRbb \mid d$

We can construct a top-down parser M_2 where $L(M_2) = L(G_2)$. Since all top-down parsers are deterministic pushdown automata, M_2 is also a deterministic pushdown automaton. Since only deterministic context-free languages can be recognized by a deterministic pushdown automata, the language recognized by M_2 , which is L_2 , is a deterministic context-free language.

b)

 $CF \colon \text{context-free}, \quad \overline{CF} \colon \text{complement of context-free}, \\ DCF \colon \text{deterministic context-free}, \quad R \colon \text{regular}$

