Assignment 1

Weihao Li

2020/8/29

1

(a)

 $X_T = \overline{Y}_T - \mu_0$ is of order $T^{-\frac{1}{2}}$ in probability. $T^{-\frac{1}{2}}$ is a deterministic sequence of T that converges to 0 as $T \to \infty$.

Proof:

By definition of $O_p(.)$,

if for every $\varepsilon > 0$, there exists a constant M_{ε} , such that:

$$\sup_T\! Pr(|\frac{X_T}{R_T}|>M_\varepsilon)<\varepsilon$$

then we can write:

$$X_T = O_p(R_T)$$

We know

$$\sqrt{T}(\overline{Y}_T - \mu_0) = O_p(1)$$

 \Longrightarrow

$$\begin{split} \sup_T & Pr(|\frac{\sqrt{T}(\overline{Y}_T - \mu_0)}{1}| > M_\varepsilon) < \varepsilon \\ & \sup_T & Pr(|\frac{(\overline{Y}_T - \mu_0)}{\frac{1}{\sqrt{T}}}| > M_\varepsilon) < \varepsilon \\ & \sup_T & Pr(|\frac{(\overline{Y}_T - \mu_0)}{T^{-\frac{1}{2}}}| > M_\varepsilon) < \varepsilon \\ & (\overline{Y}_T - \mu_0) = X_T = O_p(T^{-\frac{1}{2}}) \end{split}$$

(b)

 $X_T = \overline{Y}_T - \mu_0$ is of smaller order in probability than $T^{-\frac{1}{4}}$

Proof:

By definition of $o_p(.)$,

if for every $\varepsilon > 0$,

$$\underset{T\rightarrow\infty}{\lim} Pr(|\frac{X_T}{R_T}-0|>\varepsilon)=0$$

then we can write:

$$X_T = o_p(R_T)$$

$$\begin{split} \overline{\underline{Y}_T - \mu_0} &= T^{\frac{1}{4}} (\overline{Y}_T - \mu_0) \\ &= T^{-\frac{1}{4}} \sqrt{T} (\overline{Y}_T - \mu_0) \end{split}$$

Given $\sqrt{T}(\overline{Y}_T - \mu_0) = O_p(1)$ and $T^{-\frac{1}{4}} = o_p(1)$. Then using the rules of engagement $O_p(1)o_p(1) = o_p(1)$, $T^{-\frac{1}{4}}\sqrt{T}(\overline{Y}_T - \mu_0) = o_p(1)$

for every $\varepsilon > 0$,

$$\lim_{T \to \infty} \Pr(|\frac{T^{-\frac{1}{4}}\sqrt{T}(\overline{Y}_T - \mu_0)}{1} - 0| > \varepsilon) = 0$$
$$\lim_{T \to \infty} \Pr(|\frac{(\overline{Y}_T - \mu_0)}{T^{-\frac{1}{4}}} - 0| > \varepsilon) = 0$$

$$X_T = \overline{Y}_T - \mu_0 = o_p(T^{-\frac{1}{4}})$$

 $X_T = \overline{Y}_T - \mu_0$ is of smaller order in probability than $T^{-\frac{1}{4}}$

(c)

 $X_T = \overline{Y}_T - \mu_0$ is of smaller order in probability than $T^{-\frac{1}{4}}$

informal explanation:

Using $\overline{Y}_T - \mu_0 \stackrel{approx}{\sim} N(0, \frac{\sigma_0^2}{T})$

$$\frac{\overline{Y}_T - \mu_0}{T^{-\frac{1}{4}}} \approx T^{\frac{1}{4}} \times N(0, \frac{\sigma_0^2}{T})$$
$$= N(0, T^{-\frac{1}{2}}\sigma_0^2)$$

since $T^{-\frac{1}{2}} \to 0$ as $T \to \infty$, $N(0, T^{-\frac{1}{2}}\sigma_0^2)$ will become a degenerate distribution concentrate onto 0. In other words, $\frac{\overline{Y}_T - \mu_0}{T^{-\frac{1}{4}}} = \frac{X_T}{T^{-\frac{1}{4}}} = o_p(1)$ and X_T is of smaller order in probability than $T^{-\frac{1}{4}}$.

(d)

Given the conditions provided in the question 1 and by the central limit theorem,

$$\frac{\sqrt{T}(\overline{Y}_T - \mu_0)}{\sigma_0} \stackrel{d}{\to} N(0, 1)$$

Now $\hat{\sigma}$ is any consistent estimator of $\hat{\sigma}_0$, which means

$$\hat{\sigma}_0 \stackrel{p}{\to} \hat{\sigma}$$

By the continuous mapping theorem, if $X_T \stackrel{d}{\to} X$ and $C_T \stackrel{p}{\to} C$, then $X_T/C_T \stackrel{d}{\to} X/C$. Thus,

$$\frac{\sqrt{T}(\overline{Y}_T - \mu_0)}{\hat{\sigma}} \stackrel{d}{\to} N(0, 1)$$

 $\mathbf{2}$

(a)

$$lnL_T(\boldsymbol{\theta}) = \frac{1}{T}lnf(\mathbf{Y}|\boldsymbol{\theta})$$

independence

$$= \frac{1}{T} ln \prod_{t=1}^{T} f(y_t | \boldsymbol{\theta})$$

identically distributed

$$\begin{split} &= \frac{1}{T} ln \prod_{t=1}^{T} (2\pi)^{-1/2} (\sigma^2)^{-1/2} exp \{ -\frac{1}{2\sigma^2} (y_t - \mu)^2 \} \\ &= \frac{1}{T} ln [(2\pi)^{-T/2} (\sigma^2)^{-T/2} \prod_{t=1}^{T} exp \{ -\frac{1}{2\sigma^2} (y_t - \mu)^2 \}] \\ &= \frac{1}{T} ln [(2\pi)^{-T/2} (\sigma^2)^{-T/2} exp \{ \sum_{t=1}^{T} -\frac{1}{2\sigma^2} (y_t - \mu)^2 \}] \\ &= \frac{1}{T} ln [(2\pi)^{-T/2} (\sigma^2)^{-T/2} exp \{ -\frac{1}{2\sigma^2} \sum_{t=1}^{T} (y_t - \mu)^2 \}] \\ &= \frac{1}{T} [ln ((2\pi)^{-T/2}) + ln ((\sigma^2)^{-T/2}) + ln (exp \{ -\frac{1}{2\sigma^2} \sum_{t=1}^{T} (y_t - \mu)^2 \})] \\ &= \frac{1}{T} [ln ((2\pi)^{-T/2}) + ln ((\sigma^2)^{-T/2}) - \frac{1}{2\sigma^2} \sum_{t=1}^{T} (y_t - \mu)^2] \\ &= \frac{1}{T} [\frac{-T}{2} ln (2\pi) + \frac{-T}{2} ln (\sigma^2) - \frac{1}{2\sigma^2} \sum_{t=1}^{T} (y_t - \mu)^2] \\ &= -\frac{1}{2} ln (2\pi) - \frac{1}{2} ln (\sigma^2) - \frac{1}{2\sigma^2} \frac{1}{T} \sum_{t=1}^{T} (y_t - \mu)^2 \end{split}$$

(b)

$$G_T(\boldsymbol{\theta}) = \frac{1}{T} \sum_{t=1}^{T} g_t(\boldsymbol{\theta})$$
$$= \frac{1}{T} \sum_{t=1}^{T} \frac{\partial ln f(y_t | \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}$$

identically distributed

$$= \frac{1}{T} \sum_{t=1}^{T} \frac{\partial \ln((2\pi)^{-1/2}(\sigma^2)^{-1/2}exp\{-\frac{1}{2\sigma^2}(y_t - \mu)^2\})}{\partial \theta}$$

$$= \frac{1}{T} \sum_{t=1}^{T} \frac{\partial \ln((2\pi)^{-1/2}) + \ln((\sigma^2)^{-1/2}) - \frac{1}{2\sigma^2}(y_t - \mu)^2}{\partial \theta}$$

$$= \frac{1}{T} \sum_{t=1}^{T} \left[\frac{\partial \ln((2\pi)^{-1/2}) + \ln((\sigma^2)^{-1/2}) - \frac{1}{2\sigma^2}(y_t - \mu)^2}{\partial \mu} \right]$$

$$= \frac{1}{T} \sum_{t=1}^{T} \left[\frac{\frac{\partial \ln((2\pi)^{-1/2}) + \ln((\sigma^2)^{-1/2}) - \frac{1}{2\sigma^2}(y_t - \mu)^2}{\partial \sigma} \right]$$

$$= \frac{1}{T} \sum_{t=1}^{T} \left[\frac{\frac{1}{\sigma^2}(y_t - \mu)}{-\frac{1}{\sigma} + (y_t - \mu)^2 \sigma^{-3}} \right]$$

(c)

$$H_{T}(\boldsymbol{\theta}) = \frac{1}{T} \sum_{t=1}^{T} h_{t}(\boldsymbol{\theta})$$

$$= \frac{1}{T} \sum_{t=1}^{T} \frac{\partial^{2} lnf(y_{t}|\boldsymbol{\theta})}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'}$$

$$= \frac{1}{T} \sum_{t=1}^{T} \begin{bmatrix} \frac{\partial^{2} lnf(y_{t}|\boldsymbol{\theta})}{\partial \mu^{2}} & \frac{\partial^{2} lnf(y_{t}|\boldsymbol{\theta})}{\partial \mu \partial \sigma} \\ \frac{\partial^{2} lnf(y_{t}|\boldsymbol{\theta})}{\partial \sigma \partial \mu} & \frac{\partial^{2} lnf(y_{t}|\boldsymbol{\theta})}{\partial \sigma^{2}} \end{bmatrix}$$

using the result from part b

$$= \frac{1}{T} \sum_{t=1}^{T} \begin{bmatrix} -\frac{1}{\sigma^2} & -2(y_t - \mu)\sigma^{-3} \\ -2(y_t - \mu)\sigma^{-3} & \frac{1}{\sigma^2} - 3(y_t - \mu)^2\sigma^{-4} \end{bmatrix}$$

(d)

To derive the MLE, we set the first order derivative of $lnL_T(\boldsymbol{\theta})$ to **0**

$$G_{T}(\boldsymbol{\theta}) = \frac{1}{T} \sum_{t=1}^{T} \begin{bmatrix} \frac{1}{\sigma^{2}} (y_{t} - \mu) \\ -\frac{1}{\sigma} + (y_{t} - \mu)^{2} \sigma^{-3} \end{bmatrix} = \mathbf{0}$$

$$\begin{bmatrix} \frac{1}{T} \sum_{t=1}^{T} \frac{1}{\sigma^{2}} (y_{t} - \mu) \\ \frac{1}{T} \sum_{t=1}^{T} -\frac{1}{\sigma} + (y_{t} - \mu)^{2} \sigma^{-3} \end{bmatrix} = \mathbf{0}$$

$$\hat{\mu}_{MLE} = \overline{y} = \frac{1}{T} \sum_{t=1}^{T} y_{t}$$

$$\hat{\sigma}_{MLE} = \sqrt{\frac{1}{T} \sum_{t=1}^{T} (y_{t} - \overline{y})^{2}}$$

$$\hat{\theta}_{MLE} = (\hat{\mu}_{MLE}, \hat{\sigma}_{MLE})'$$

We define a non-zero column vector z with real entries a and b

$$\begin{split} \mathbf{z}'H_T(\pmb{\theta})\mathbf{z} &= \begin{bmatrix} a & b \end{bmatrix} (\frac{1}{T} \sum_{t=1}^T \begin{bmatrix} -\frac{1}{\sigma^2} & -2(y_t - \mu)\sigma^{-3} & \frac{1}{\sigma^2} - 3(y_t - \mu)^2\sigma^{-4} \end{bmatrix}) \begin{bmatrix} a \\ b \end{bmatrix} \\ &= \begin{bmatrix} a \frac{1}{T} \sum_{t=1}^T -\frac{1}{\sigma^2} + b \frac{1}{T} \sum_{t=1}^T -2(y_t - \mu)\sigma^{-3} & a \frac{1}{T} \sum_{t=1}^T -2(y_t - \mu)\sigma^{-3} + b \frac{1}{T} \sum_{t=1}^T \frac{1}{\sigma^2} - 3(y_t - \mu)^2\sigma^{-4} \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} \\ &= a^2 \frac{1}{T} \sum_{t=1}^T -\frac{1}{\sigma^2} + ab \frac{1}{T} \sum_{t=1}^T -2(y_t - \mu)\sigma^{-3} + ab \frac{1}{T} \sum_{t=1}^T -2(y_t - \mu)\sigma^{-3} + b^2 \frac{1}{T} \sum_{t=1}^T \frac{1}{\sigma^2} - 3(y_t - \mu)^2\sigma^{-4} \\ &= a^2 \frac{1}{T} \sum_{t=1}^T -\frac{1}{\sigma^2} + 2ab \frac{1}{T} \sum_{t=1}^T -2(y_t - \mu)\sigma^{-3} + b^2 \frac{1}{T} \sum_{t=1}^T \frac{1}{\sigma^2} - 3(y_t - \mu)^2\sigma^{-4} \\ &= -\frac{a^2}{\sigma^2} + \frac{b^2}{\sigma^2} - \frac{b^2}{T} \sum_{t=1}^T 3(y_t - \mu)^2\sigma^{-4} - \frac{2ab}{T} \sum_{t=1}^T 2(y_t - \mu)\sigma^{-3} \\ &= \frac{b^2 - a^2}{\sigma^2} - 3\frac{b^2}{T}\sigma^{-4} \sum_{t=1}^T (y_t - \mu)^2 - \frac{4ab}{T}\sigma^{-3} \sum_{t=1}^T (y_t - \mu) \end{split}$$

$$\begin{split} \mathbf{z}'H_{T}(\hat{\boldsymbol{\theta}}_{MLE})\mathbf{z} &= \frac{b^{2} - a^{2}}{\hat{\sigma}_{MLE}^{2}} - 3\frac{b^{2}}{T}\hat{\sigma}_{MLE}^{-4}\sum_{t=1}^{T}(y_{t} - \hat{\mu}_{MLE})^{2} - \frac{4ab}{T}\hat{\sigma}_{MLE}^{-3}\sum_{t=1}^{T}(y_{t} - \hat{\mu}_{MLE}) \\ &= \frac{b^{2} - a^{2}}{\hat{\sigma}_{MLE}^{2}} - 3\frac{b^{2}}{T}\hat{\sigma}_{MLE}^{-4}T\hat{\sigma}_{MLE}^{2} - 0 \\ &= \frac{-2b^{2} - a^{2}}{\hat{\sigma}_{MLE}^{2}} \end{split}$$

Since
$$-2b^2-a^2<0$$
 and $\hat{\sigma}^2_{MLE}>0,$
$$\frac{-2b^2-a^2}{\hat{\sigma}^2_{MLE}}<0$$

 $H_T(\hat{\theta}_{MLE})$ is a negative definite matrix. The second-order condition for a maximum holds.

(e)

Using the equation in part a, and replace σ^2 with $\frac{1}{\sigma^{-2}}$

$$lnL_T(\boldsymbol{\eta}) = -\frac{1}{2}ln(2\pi) - \frac{1}{2}ln(\frac{1}{\sigma^{-2}}) - \frac{1}{2\frac{1}{\sigma^{-2}}}\frac{1}{T}\sum_{t=1}^{T}(y_t - \mu)^2$$

$$G_T(\boldsymbol{\eta}) = \frac{1}{T} \sum_{t=1}^{T} g_t(\boldsymbol{\eta})$$
$$= \frac{1}{T} \sum_{t=1}^{T} \frac{\partial ln f(y_t | \boldsymbol{\eta})}{\partial \boldsymbol{\eta}}$$

identically distributed

$$= \frac{1}{T} \sum_{t=1}^{T} \frac{\partial ln((2\pi)^{-1/2}(\frac{1}{\sigma^{-2}})^{-1/2}exp\{-\frac{1}{2\frac{1}{\sigma^{-2}}}(y_t - \mu)^2\})}{\partial \eta}$$

$$= \frac{1}{T} \sum_{t=1}^{T} \frac{\partial ln((2\pi)^{-1/2}) + ln((\frac{1}{\sigma^{-2}})^{-1/2}) - \frac{1}{2\frac{1}{\sigma^{-2}}}(y_t - \mu)^2}{\partial \eta}$$

$$= \frac{1}{T} \sum_{t=1}^{T} \left[\frac{\partial ln((2\pi)^{-1/2}) + ln((\frac{1}{\sigma^{-2}})^{-1/2}) - \frac{1}{2\frac{1}{\sigma^{-2}}}(y_t - \mu)^2}{\partial \mu} \right]$$

$$= \frac{1}{T} \sum_{t=1}^{T} \left[\frac{\partial ln((2\pi)^{-1/2}) + ln((\frac{1}{\sigma^{-2}})^{-1/2}) - \frac{1}{2\frac{1}{\sigma^{-2}}}(y_t - \mu)^2}{\partial \sigma^{-2}} \right]$$

$$= \frac{1}{T} \sum_{t=1}^{T} \left[\frac{\frac{1}{\sigma^2}(y_t - \mu)}{\frac{1}{2\sigma^{-2}} - \frac{1}{2}(y_t - \mu)^2} \right]$$

$$H_T(\boldsymbol{\eta}) = \begin{bmatrix} -\frac{1}{\sigma^2} & y_t - \mu \\ y_t - \mu & -\frac{1}{2}(\sigma^{-2})^{-2} \end{bmatrix}$$

Set $G_T(\eta) = \mathbf{0}$,

$$\hat{\mu}_{MLE} = \overline{y} = \frac{1}{T} \sum_{t=1}^{T} y_t$$

$$\widehat{\sigma^{-2}}_{MLE} = \left[\frac{1}{T} \sum_{t=1}^{T} (y_t - \overline{y})^2 \right]^{-1}$$

$$\hat{\eta}_{MLE} = (\hat{\mu}_{MLE}, \widehat{\sigma^{-2}}_{MLE})'$$

We define a non-zero column vector z with real entries a and b

$$z'H_{T}(\boldsymbol{\theta})z = \begin{bmatrix} a & b \end{bmatrix} \left(\frac{1}{T} \sum_{t=1}^{T} \begin{bmatrix} -\frac{1}{\sigma^{2}} & y_{t} - \mu \\ y_{t} - \mu & -\frac{1}{2}(\sigma^{-2})^{-2} \end{bmatrix} \right) \begin{bmatrix} a \\ b \end{bmatrix}$$

$$= \frac{a^{2}}{T} \sum_{t=1}^{T} -\frac{1}{\sigma^{2}} + 2\frac{ab}{T} \sum_{t=1}^{T} (y_{t} - \mu) + \frac{b^{2}}{T} \sum_{t=1}^{T} -\frac{1}{2}(\sigma^{-2})^{2}$$

$$= -\frac{a^{2}}{\sigma^{2}} + 2\frac{ab}{T} \sum_{t=1}^{T} (y_{t} - \mu) - \frac{b^{2}}{2}(\sigma^{-2})^{2}$$

$$\begin{aligned} z' H_T(\theta_{MLE}) z &= -a^2 \widehat{\sigma^{-2}}_{MLE} + 2 \frac{ab}{T} \sum_{t=1}^T (y_t - \hat{\mu}_{MLE}) - \frac{b^2}{2} (\widehat{\sigma^{-2}}_{MLE})^2 \\ &= -a^2 \widehat{\sigma^{-2}}_{MLE} - \frac{b^2}{2} (\widehat{\sigma^{-2}}_{MLE})^2 \end{aligned}$$

Since $\widehat{\sigma^{-2}}_{MLE}>0,\, (\widehat{\sigma^{-2}}_{MLE})^2>0$ $a^2>0$ and $\frac{b^2}{2}>0$, so

$$-a^2\widehat{\sigma^{-2}}_{MLE} - \frac{b^2}{2}(\widehat{\sigma^{-2}}_{MLE})^2 < 0$$

 $H_T(\hat{\eta}_{MLE})$ is a negative definite matrix. The second-order condition for a maximum holds. The second-order condition for a maximum holds.

Meanwhile,

$$\widehat{\sigma^{-2}}_{MLE} = \left(\sqrt{\frac{1}{T} \sum_{t=1}^{T} (y_t - \overline{y})^2}\right)^{-2} = (\widehat{\sigma}_{MLE})^{-2} = C_{\sigma}(\widehat{\sigma}_{MLE})$$

and

$$\hat{\mu}_{MLE} = \hat{\mu}_{MLE} = C_{\mu}(\hat{\mu}_{MLE})$$

We also know

$$C_{\sigma}(\sigma_0) = \sigma_0^{-2}$$
 and $C_{\mu}(\mu_0) = \mu_0$

⇒ The functions apply to the true parameters are the same as the functions we obtain from the MLE. Thus,

$$\hat{\boldsymbol{\eta}}_{MLE} = \boldsymbol{C}(\hat{\boldsymbol{\theta}}_{MLE})$$

if $\eta_0 = C(\theta_0)$, $\hat{\theta}_{MLE}$ is the MLE of θ_0 and $C((x_0, x_1)') = (x_0, x_1^{-2})'$.

3

(a)

In the derivation of the limiting distribution of MLE, we first using the Taylor's theorem to expand the average of derivatives $G_T(\theta)$.

$$\frac{1}{T} \sum_{t=1}^{T} g_t(\theta) = \frac{1}{T} \sum_{t=1}^{T} g_t(\theta_0) + (\theta - \theta_0) \left[\frac{1}{T} \sum_{t=1}^{T} h_t(\theta_0) \right] + \frac{1}{2!} (\theta - \theta_0)^2 \left[\frac{1}{T} \sum_{t=1}^{T} q_t(\theta^*) \right]$$

The reason we use this tool is because we want the term $\theta - \theta_0$, which can then be evaluate at $\hat{\theta}_{MLE}$. Then we rearrange the terms in the equation

$$\sqrt{T}(\hat{\theta}_{MLE} - \theta_0) = \sqrt{T} \left[\frac{1}{T} \sum_{t=1}^{T} g_t(\theta_0) \right] / \left\{ -\frac{1}{T} \sum_{t=1}^{T} h_t(\theta_0) - \frac{1}{2!} (\hat{\theta}_{MLE} - \theta_0) \left[\frac{1}{T} \sum_{t=1}^{T} q_t(\theta^*) \right] \right\}$$

From this equation, we can see that if we can prove that $\frac{1}{2!}(\hat{\theta}_{MLE} - \theta_0)[\frac{1}{T}\sum_{t=1}^T q_t(\theta^*)]$ is negligible, then we will have a nice distribution form for $\sqrt{T}(\hat{\theta}_{MLE} - \theta_0)$, given $\sqrt{T}[\frac{1}{T}\sum_{t=1}^T g_t(\theta_0)]/\{-\frac{1}{T}\sum_{t=1}^T h_t(\theta_0)\}$ will become a normal distribution asymptotically.

To prove $\frac{1}{2!}(\hat{\theta}_{MLE} - \theta_0)[\frac{1}{T}\sum_{t=1}^{T} q_t(\theta^*)]$ is negligible we need to use the **preliminary result of consistency**. By the result of consistency,

$$(\hat{\theta}_{MLE} - \theta_0) = o_p(1)$$

By the regularity condition 3, $q_t(\theta^*) < |q_t(\theta^*)|$ will be bounded by some values B_t . And by the WLLN, the average of B_t converges to E[B], which means the average of $q_t(\theta^*)$ will be always smaller than a value E[B]. Therefore, by the definition of $O_p(.)$, $\frac{1}{T} \sum_{t=1}^T q_t(\theta^*) = O_p(1)$.

Finally, by the rules of engagement, $kO_p(1)o_p(1) = o_p(1)$

$$\frac{1}{2!}(\hat{\theta}_{MLE} - \theta_0)[\frac{1}{T}\sum_{t=1}^{T} q_t(\theta^*)] = o_p(1)$$

Now,

$$\sqrt{T}(\hat{\theta}_{MLE} - \theta_0) = \sqrt{T} \left[\frac{1}{T} \sum_{t=1}^{T} g_t(\theta_0) \right] / \left\{ -\frac{1}{T} \sum_{t=1}^{T} h_t(\theta_0) - o_p(1) \right\}$$

Given in the i.i.d case, the information equality holds, which means

$$I(\theta_0) = -H(\theta_0) = J(\theta_0)$$

By the WLLN, $-\frac{1}{T}\sum_{t=1}^{T}h_t(\theta_0)$ is a consistent estimator of $-H(\theta_0)$.

$$\begin{split} \sqrt{T}(\hat{\theta}_{MLE} - \theta_0) &= \sqrt{T} [\frac{\frac{1}{T} \sum_{t=1}^{T} g_t(\theta_0)}{\sqrt{I(\theta_0)}}] / \{\frac{-\frac{1}{T} \sum_{t=1}^{T} h_t(\theta_0) - o_p(1)}{\sqrt{I(\theta_0)}}\} \\ \{\frac{-\frac{1}{T} \sum_{t=1}^{T} h_t(\theta_0) - o_p(1)}{\sqrt{I(\theta_0)}}\} \xrightarrow{p} \sqrt{I(\theta)} \end{split}$$

By the CLT and Lemma 2 that the expectation of the gradient at the true value is equal to 0

$$\frac{\frac{1}{T} \sum_{t=1}^{T} g_t(\theta_0)}{\sqrt{I(\theta_0)}} \stackrel{d}{\to} \mathbb{Z}$$

By the CMT,

$$\sqrt{T}(\hat{\theta}_{MLE} - \theta_0) \stackrel{d}{\rightarrow} N(0, I^{-1}(\theta_0))$$

(b)

There are three regularity conditions that are not required in proof of concsistency.

R1: The true θ_0 is at some interior point (i.e. not on the boundary) of Θ

This one is required because if the θ_0 is on the boundary of the parameter space, it is possible that the $E[g(\theta_0)]$ is not equal to 0. In this situation, our derivation and proof will become much more complicated.

R3:

- (a) $L(\theta|\mathbf{y})$ is a thrice-differentiable continuous function of θ
- (b) all derivatives are bounded, when evaluated at any of θ close to θ_0

We use (a) to define the first, second and third-order derivative of the log likelihood function. The third-order derivative is only used in the Taylor's theorem application in the proof of limiting normality.

We use (b) to bound the value of the third-order derivative to prove $\frac{1}{2!}(\hat{\theta}_{MLE} - \theta_0)[\frac{1}{T}\sum_{t=1}^{T}q_t(\theta^*)]$ is negligible which is a step of the proof of limiting normality.

R5: The support of $Y_1, Y_2, ..., Y_T$ is independent of θ .

We use this condition to put the differentiation inside the integral. More particular, we use it in the proof of Lemma 2 and Lemma 3.

4

(a)

With reference to Q2, which is a i.i.d case, where

$$I(\theta_0) = -H(\theta_0) = J(\theta_0)$$

holds

$$\begin{split} I^{-1}(\boldsymbol{\theta}_0) &= (-H(\boldsymbol{\theta}_0))^{-1} \\ &= (-E[h(\boldsymbol{\theta}_0)])^{-1} \\ &= \left(-E \left[\begin{matrix} -\frac{1}{\sigma_0^2} & -2(y-\mu_0)\sigma_0^{-3} \\ -2(y-\mu_0)\sigma_0^{-3} & \frac{1}{\sigma_0^2} - 3(y-\mu_0)^2\sigma_0^{-4} \end{matrix} \right] \right)^{-1} \\ &= \left[\begin{matrix} \frac{1}{\sigma_0^2} & 0 \\ 0 & \frac{2}{\sigma_0^2} \end{matrix} \right]^{-1} \\ &= \begin{bmatrix} \sigma_0^2 & 0 \\ 0 & \frac{\sigma_0^2}{2} \end{bmatrix} \end{split}$$

(b)

With reference to Q2e, we know $\theta_0 = (\mu_0, \sigma_0)'$

We define
$$C(\theta_0) = (\mu_0, \sigma_0^{-2})'$$
, where $C((x_0, x_1)') = (x_0, x_1^{-2})'$

 $C(\hat{\boldsymbol{\theta}}_{MLE})$ is the MLE of $C(\boldsymbol{\theta}_0)$, in other words

$$\hat{\boldsymbol{\theta}}_{MLE} = \underset{\boldsymbol{\theta} \in \boldsymbol{\Theta}}{argmax} \ lnf(\mathbf{y}|\boldsymbol{\theta})$$

$$\boldsymbol{C}(\hat{\boldsymbol{\theta}}_{MLE}) = \widehat{\boldsymbol{C}(\boldsymbol{\theta})}_{MLE} = \underset{\boldsymbol{C}(\boldsymbol{\theta}) \in \boldsymbol{C}(\boldsymbol{\Theta})}{argmax} \quad lnf(\mathbf{y}|\boldsymbol{C}(\boldsymbol{\theta}))$$

We have already shown in Q2e that the MLE of $C(\theta_0)$ is $\hat{\eta}_{MLE}$, which is equivalent to $C(\hat{\theta}_{MLE})$.

(c)

Theorem 9a is the Delta method

$$\sqrt{T}(\boldsymbol{C}(\hat{\boldsymbol{\theta}}_{MLE}) - \boldsymbol{C}(\boldsymbol{\theta}_0)) \stackrel{d}{\rightarrow} N(0, D(\boldsymbol{\theta}_0)I^{-1}(\boldsymbol{\theta})D(\boldsymbol{\theta}_0)')$$

where

$$D(\boldsymbol{\theta}) = \frac{\partial \boldsymbol{C}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}'}$$

We know

$$D(\boldsymbol{\theta}) = \begin{bmatrix} 1 & 0 \\ 0 & -2\sigma^{-3} \end{bmatrix}$$

So

$$\sqrt{T}(\boldsymbol{C}(\hat{\boldsymbol{\theta}}_{MLE}) - \boldsymbol{C}(\boldsymbol{\theta}_0)) \stackrel{d}{\to} N(0, \begin{bmatrix} \sigma_0^2 & 0\\ 0 & 2\sigma_0^{-4} \end{bmatrix})$$