Departamento de Ciência de Computadores Modelos de Computação (CC1004)

FCUP 2014/15

1° Teste – 11.04.2015

Uma resolução (v2)

duração: 2h + 30m

- **1.** Seja $\Sigma = \{0, 1, 2\}$ e seja r a expressão $((1+2)((0^*)(1+2)))$.
- a) Baseando-se na definição de expressão regular, mostre que r é uma expressão regular sobre Σ .

Resposta:

Uma expressão regular sobre Σ é qualquer sequência finita de símbolos de $\Sigma \cup \{\emptyset, \varepsilon, +, *, \}, (\}$ que se possa obter por aplicação das regras seguintes: $\varepsilon, \emptyset, 0, 1$ e 2 são expressões regulares sobre Σ ; se r e s são expressões regulares sobre Σ então (r+s), (rs) e (r^*) são expressões regulares sobre Σ .

Assim, r é uma expressão regular sobre Σ pois $r=(r_1r_2)$, com $r_1=(1+2)$ e $r_2=((0^\star)(1+2))$, e $r_1=(r_3+r_4)$, com $r_3=1$ e $r_4=2$, e $r_2=(r_5r_1)$, com $r_5=(0^\star)$. Por sua vez, $r_5=(r_6^\star)$, com $r_6=0$.

b) Determine o autómato finito que resulta da aplicação do método de Thompson à expressão regular r. Apresente **os passos relevantes** dessa construção.

Resposta:

Na continuação da resposta anterior, os AFNDs- ε para r_3 , r_4 , e r_6 são:

 $A(r_3): \longrightarrow \widehat{(i_3)} \xrightarrow{1} \widehat{f_3}$

 $A(r_4): \longrightarrow \widehat{(i_4)} \xrightarrow{2} \widehat{(f_4)}$

 $A(r_6): \longrightarrow \widehat{(i_6)} \xrightarrow{0} \widehat{(f_6)}$

Os AFNDs- ε para $r_1=(r_3+r_4)$ e $r_5=(r_6^{\star})$ são:

 $A(r_5)$:

A partir dos AFNDs- ε $A(r_5)$ e $A(r_1)$ construimos o autómato $A(r_2)$ para $r_2=(r_5r_1)$, por identificação do estado inicial de $A(r_1)$ com o final de $A(r_5)$.

Com um clone de $A(r_1)$ e $A(r_2)$, construimos o autómato A(r):

c) Apresente a expressão r na forma *abreviada*, retirando parentesis desnecessários, e descreva informalmente a linguagem de Σ^* que é caraterizada pela expressão regular r.

Resposta:

 $\overline{\text{A express}}$ ão abreviada é $(1+2)0^*(1+2)$.

A linguagem descrita pela expressão r é o conjunto das palavras de $\{0, 1, 2\}^*$ que não começam nem terminam em 0 e têm exatamente dois símbolos que não são 0.

d) Descreva informalmente a linguagem descrita pela expressão regular $((r+0)^*)$. Partindo dessa descrição, determine um AFD que reconheça tal linguagem. Justifique sucintamente a correção da resposta, descrevendo o que memoriza cada estado (e explicando a necessidade das mudanças de estado).

Resposta:

 \overline{A} linguagem descrita pela expressão indicada é o conjunto das palavras de $\{0, 1, 2\}^*$ em que o número de símbolos distintos de 0 é par.

A linguagem é reconhecida pelo AFD seguinte:

As palavras que levam este AFD do estado inicial s_0 ao estado s_1 são as que têm número ímpar de símbolos distintos de 0. As palavras cujo número total de 1's e 2's é par levam o autómato do estado s_0 ao estado s_0 . Os dois estados são necessários porque apenas as palavras que têm número par de símbolos distintos de 0 pertencem à linguagem.

2. Seja $A = (S, \Sigma, \delta, q_0, F)$ o autómato finito não determinístico com transições por ε representado pelo diagrama seguinte, com alfabeto $\Sigma = \{a, b\}$.

a) Qual é o valor de $\delta(q_0, b)$, $\delta(q_2, a)$, $\delta(q_3, \varepsilon)$, e $\delta(q_1, \varepsilon)$? Justifique sucintamente.

Resposta:

A função de transição δ do AFND- ε $A=(S,\Sigma,\delta,q_0,F)$ é uma função de $S\times(\Sigma\cup\{\varepsilon\})$ em 2^S . O diagrama de transição tem um arco de s para s' com etiqueta α se e só se $s'\in\delta(s,\alpha)$. Se houver várias transições de um estado para outro (ou para si próprio), essas transições representam-se por um único arco, com os símbolos correspondentes separados por vírgulas.

Assim,
$$\delta(q_0, \mathbf{b}) = \emptyset$$
, $\delta(q_2, \mathbf{a}) = \{q_0, q_3\}$, $\delta(q_3, \varepsilon) = \emptyset$, $\delta(q_1, \varepsilon) = \{q_2\}$.

b) Determine $\hat{\delta}(\{q_0\}, \text{aab})$. Apresente os cálculos intermédios.

Resposta:

$$\overline{\hat{\delta}(\{q_0\}, \mathtt{aab})} = \hat{\delta}(Fecho_{\varepsilon}(\{q_1\}), \mathtt{ab}) = \hat{\delta}(\{q_1, q_2, q_3\}, \mathtt{ab}) = \hat{\delta}(Fecho_{\varepsilon}(\{q_0, q_3\}), \mathtt{b}) = \hat{\delta}(\{q_0, q_3\}, \mathtt{b}) = \hat{\delta}(Fecho_{\varepsilon}(\{q_1, q_3\}), \varepsilon) = Fecho_{\varepsilon}(\{q_1, q_3\}) = \{q_1, q_2, q_3\}.$$

(a definição de $\hat{\delta}$ que estamos a seguir está em **2e**))

c) Que interpretação tem $\hat{\delta}(\{q_0\}, \mathtt{aab})$? É verdade ou é falso que $\mathtt{aab} \in \mathcal{L}(A)$? Justifique.

Resposta:

 $\hat{\delta}(\{q_0\}, \mathtt{aab})$ representa o conjunto de estados em que o autómato se pode encontrar se consumir a palavra aab partindo do estado q_0 (estado inicial do autómato).

A palavra aab pertence a $\mathcal{L}(A)$ porque $\hat{\delta}(\{q_0\}, aab) = \{q_1, q_2, q_3\}$ contém estados finais (os estados q_1 e q_2).

d) Por aplicação do método de eliminação de estados, determine uma expressão regular que descreva a linguagem que A reconhece. Deverá apresentar os passos intermédios da aplicação do algoritmo. Pode apresentar expressões abreviadas, usando as propriedades e precedência das operações para retirar parentesis desnecessários. Sempre que for óbvio, simplifique as expressões obtidas em cada passo.

Resposta:

Todos os estados do autómato são acessíveis do estado inicial e permitem aceder a algum estado final. Assim, não há estados que se possam eliminar por serem inutéis.

Começamos por substituir os estados finais por um único estado final f (do qual não saem transições). Inserimos um novo estado inicial i, para garantir que não chegam transições ao estado inicial. Substituimos as etiquetas dos ramos por expressões regulares.

Eliminamos q_0 , substituindo os percursos $q_2q_0q_1$ e iq_0q_1 por arcos (q_2,q_1) e (i,q_1) , com etiquetas aa e ε a \equiv a, respetivamente.

Eliminamos q_3 , substituindo o percurso $q_2q_3q_3^{\star}q_1$ por um arco (q_2, q_1) com etiqueta $(\varepsilon + a)b^{\star}b$. Como já existia um arco de q_2 para q_1 , substituimos a sua expressão por $aa + (\varepsilon + a)b^{\star}b$.

Eliminamos q_1 , substituindo os percursos iq_1f , iq_1q_2 , q_2q_1f , e $q_2q_1q_2$ por arcos (i, f), (i, q_2) , (q_2, f) e (q_2, q_2) com expressões a, $\mathbf{a}(\varepsilon + \mathbf{b})$, aa $+ (\varepsilon + \mathbf{a})\mathbf{b}^*\mathbf{b}$ e $(\mathbf{aa} + (\varepsilon + \mathbf{a})\mathbf{b}^*\mathbf{b})(\varepsilon + \mathbf{b})$.

(cont.)

Resposta 2d) cont.:

Eliminando q_2 , por substituição de percursos $iq_2q_2^{\star}f$ por um arco (i, f), obtém-se a expressão para $\mathcal{L}(A)$:

$$a + (a + ab)((aa + (\varepsilon + a)b^*b)(\varepsilon + b))^*(\varepsilon + aa + (\varepsilon + a)b^*b).$$

Nota adicional: a expressão é equivalente a $a + (a + ab)(aa + b + ab)^*$ porque

$$((aa + (\varepsilon + a)b^*b)(\varepsilon + b))^* \equiv (aa + bb^* + ab^*b + aab + bb^*b + ab^*bb)^* \equiv (aa + b + ab)^*$$

e
$$(aa + b + ab)^*(\varepsilon + aa + (\varepsilon + a)b^*b) \equiv (aa + b + ab)^*$$
.

e) Por aplicação do método de conversão descrito nas aulas para obter um AFD equivalente a um dado AFND- ε , determine o diagrama de transição de um AFD equivalente ao autómato A. Explique.

Resposta:

 $\overline{\mathbf{O} \operatorname{AFD} A'} = (2^S, \Sigma, \delta', Fecho_{\varepsilon}(q_0), F'), \operatorname{com} F' = \{E \mid E \in 2^S \text{ e } E \cap F \neq \emptyset\} \text{ e}$

$$\delta'(E, a) = Fecho_{\varepsilon} \left(\bigcup_{s \in Fecho_{\varepsilon}(E)} \delta(s, a) \right) = \hat{\delta}(E, a)$$

para todo $E \in 2^S$ e $a \in \Sigma$, é equivalente ao AFND- $\varepsilon A = (S, \Sigma, \delta, q_0, F)$.

Por definição, $Fecho_{\varepsilon}(s)=\{s\}\cup\{s'\mid \text{ existe um percurso de }s\text{ para }s'\text{ formado por transições-}\varepsilon\}$ e $Fecho_{\varepsilon}(E)=\bigcup_{s\in E}Fecho_{\varepsilon}(s).$

Como o número de estados deste AFD genérico é exponencial no número de estados do AFND- ε dado, vamos tentar obter um AFD com menos estados, criando apenas os estados que são acessíveis do seu estado inicial $Fecho_{\varepsilon}(q_0)=\{q_0\}$. Obtém-se o seguinte AFD.

3. Seja L a linguagem de alfabeto $\Sigma = \{a, b\}$ que é aceite pelo AFD $A = (\{s_1, s_2, s_3, s_4, s_5\}, \Sigma, \delta, s_1, F)$, com $F = \{s_1, s_3\}$ e δ dada pela tabela representada à esquerda.

	a	b
s_1	s_4	s_2
s_2	s_4	s_3
s_3	s_4	s_3
s_4	s_5	s_2
s_5	s_1	s_2

- a) Desenhe o diagrama de transição de A e descreva informalmente L.
- **b)** Diga, justificando, se o AFD dado é o AFD mínimo para L.
- c) Assuma que, para aplicação do método de Kleene a A, se designa o estado s_i apenas pelo símbolo i, para i=1,2,3,4,5. Indique uma expressão regular (abreviada) que descreva a linguagem $\mathcal{L}(r_{13}^{(3)})$. Justifique sucintamente.

Resposta:

3a)

L é o conjunto das sequências finitas de a's e b's que terminam em bb mas não num único b ou em que o número de a's depois do último b é múltiplo positivo de três. Se não tiverem b's, têm um número de a's que é multiplo de três, podendo ser zero.

3b)

Sendo R_L a relação do teorema de Myhill-Nerode que carateriza o AFD mínimo para L, temos:

 $(\varepsilon, \mathbf{a}) \notin R_L$ pois $\varepsilon \in L$ e $\mathbf{a} \notin L$.

 $(\varepsilon, b) \notin R_L$ pois $\varepsilon b \notin L$ e $bb \in L$.

 $(b, a) \notin R_L$ pois baa $\notin L$ e aaa $\in L$.

 $(\varepsilon, aa) \notin R_L$ pois $\varepsilon \in L$ e $aa \notin L$.

 $(a, aa) \notin R_L$ pois $aa \notin L$ e $aaa \in L$.

 $(b, aa) \notin R_L$ pois $ba \notin L$ e $aaa \in L$.

 $(\varepsilon, bb) \notin R_L$ pois $\varepsilon b \notin L$ e $bbb \in L$.

 $(a, bb) \notin R_L$ pois $a \notin L$ e $bb \in L$.

 $(b, bb) \notin R_L$ pois $b \notin L$ e $bb \in L$.

 $(aa, bb) \notin R_L$ pois $aaa \in L$ e $bba \notin L$.

Então, o AFD mínimo para L tem pelo menos cinco estados ($[\varepsilon]$, [a], [b], [aa] e [bb]), e como $L = \mathcal{L}(A)$ e A é um AFD com cinco estados, então A é o AFD mínimo para L.

3c)

No método de Kleene, a expressão regular $r_{ij}^{(k)}$ descreve a linguagem das palavras que levam o autómato do estado i ao estado j, podendo passar por estados *intermédios* numerados até k (inclusivé).

Assim, a $\mathcal{L}(r_{13}^{(3)})$ é descrita pela expressão regular bbb* pois apenas podemos considerar palavras que correspondem a percursos do estado s_1 para o estado s_3 que não passem em s_4 nem s_5 , o que restringe a análise ao diagrama seguinte:

(Fim)