Homework 2:

Gabriel de Sa

UTA ID: 1001676832

Task 1:

A) Is
$$2^{n+1} = O(2^n)$$
?

Answer: Using the Limit Asymptotic Theorem the $\lim_{x\to\infty} \frac{f(x)}{g(x)} = L$ where

$$f(x) = 2^{n+1}$$
 and $g(x) = 2^n$ we get $\lim_{n \to \infty} \frac{2^{n+1}}{2^n}$ which is equal to $\frac{\infty}{\infty}$ so using algebra we

can get that $\lim_{n\to\infty} \frac{2*2^n}{2^n} = 2$. According to the Limit Asymptotic Theorem

if L = C where C is a constant, then the $\lim_{n \to \infty} is \Theta(n)$ so, $2^{n+1} = O(2^n)$ but it is mainly $\Theta(2^n)$,

since $\Theta(n)$ means that it is both O(n) and $\Omega(n)$.

B) Is
$$2^{2n} = O(2^n)$$
?

Answer: Using the Limit Asymptotic Theorem the $\lim_{x\to\infty} \frac{f(x)}{g(x)} = L$ where

$$f(x) = 2^{2n}$$
 and $g(x) = 2^n$, we get $\lim_{n \to \infty} \frac{2^{2n}}{2^n} = \lim_{n \to \infty} \frac{(2^n)^2}{2^n} = \lim_{n \to \infty} \frac{2^n * 2^n}{2^n} = \lim_{n \to \infty} 2^n = \infty$,

meaning that this is $\Omega(2^n)$ which then means that it is not $O(2^n)$.

Task 2: Let
$$f(n) = (\frac{4}{9})^0 + (\frac{4}{9})^1 + (\frac{4}{9})^2 + \dots + (\frac{4}{9})^n$$
. Find Θ for $f(n)$.

Answer: Where
$$x = \frac{4}{9}$$
 and $0 < \frac{4}{9} < 1$, so $\sum_{k=0}^{n} x^k \le \sum_{k=0}^{\infty} x^k = \frac{1}{1-x} = \frac{1}{1-\frac{4}{9}} \to 1.8$

Meaning that this function is $\Theta(C) = \Theta(1.8) = \Theta(1)$.

Task 3: Do the following tasks to Compile the program.

- 1. Run the command "make" in terminal.
- 2. run the ./insertion sort.e program.
- 3. Enter the name of the file you wish to sort.

Done!