Examen de fin d'études secondaires 2014

Section B et C

Branche: Physique

Numéro d'ordre du candidat:

A. Mouvement dans un champ de pesanteur

(16 points)

Dans le film d'action « Speed » un bus, dont la vitesse est de 108 km/h, doit passer un pont en construction. La partie non achevée du pont a une largeur de AB=15,2 m. La première partie du pont est inclinée d'un angle α par rapport à l'horizontale.

- 1. <u>Faites</u> l'étude dynamique et cinématique du mouvement du bus, traité comme masse ponctuelle, et <u>établissez</u> ses équations horaires générales. (6)
- 2. <u>Déduisez</u> l'équation cartésienne de la trajectoire. (1)
- 3. Expliquez pour quoi la première partie du pont doit être inclinée d'un angle α par rapport à l'horizontale. <u>Justifiez</u> sans calcul! (3)
- 4. Montrez que, pour une cascade réussie, il faut que :

$$\sin 2\alpha = \frac{g \cdot AB}{v_0^2}$$

et <u>calculez</u> la valeur de α . (4)

5. <u>Déterminez</u> l'intensité de la vitesse en B. (2)

Numéro d'ordre du candidat: Examen de fin d'études secondaires 2014 Section B et C Branche: Physique (17 points) B. Oscillations électriques 1. Établissez l'équation différentielle des oscillations libres électriques dans un circuit comprenant un condensateur de capacité C et une bobine d'inductance L, de résistance négligeable. 2. <u>Démontrez</u> sous quelle condition $q(t) = Q_m \cdot \cos(\omega_0 \cdot t + \varphi)$ est une solution de l'équation différentielle. 3. La fréquence d'oscillations d'un circuit LC (sans pertes) est égale à 300 kHz. L'inductance de la bobine est égale à 0,6 mH. La tension maximale aux bornes du condensateur est égale à 400 V. a) Calculez la capacité C du condensateur ainsi que la charge maximale du condenb) Calculez l'énergie totale dans le circuit ainsi que la valeur maximale du courant qui circule. c) Déduisez l'équation horaire i(t) du courant électrique dans le circuit à partir de la solution de l'équation différentielle. Indiquez les valeurs numériques des grandeurs physiques intervenant dans i(t), sachant qu'à l'instant initial la tension aux bornes du condensateur est maximale. (13 points) C. Dualité onde-corpuscule 1. Expliquez pourquoi les résultats de l'expérience de Hertz sont en contradiction avec la théorie ondulatoire de la lumière. 2. Énoncez l'hypothèse qui est la base du modèle corpusculaire de la lumière. Utilisez ce modèle pour donner une interprétation de l'effet photoélectrique. (4)3. Le travail d'extraction pour le cuivre vaut 4,4 eV. a) <u>Discutez</u> si la lumière visible est capable d'extraire des électrons du cuivre. (spectre visible : 400 nm à 750 nm) b) Déterminez la quantité de mouvement des photons capables d'extraire des

électrons, ayant après l'extraction une vitesse de 600 km/s.

(3)

Examen de fin d'études secondaires 2014

Section B et C

Branche: Physique

Numéro d'ordre du candidat:

D. Physique nucléaire

(14 points)

- 1. À l'instant t = 0 on dispose de N_0 noyaux radioactifs d'un même isotope. En admettant que le nombre de désintégrations radioactives par unité de temps est proportionnel au nombre de noyaux radioactifs encore présents, <u>établissez</u> la loi de décroissance radioactive. (5)
- 2. 20 jours après le tremblement de terre du 11 mars 2011 au Japon, la centrale nucléaire Fukushima Daiichi reste dans un état critique. Les substances radioactives créées auparavant lors de la réaction de fission ne sont plus confinées dans les barreaux de combustibles et se dégagent dans l'environnement.

Voici deux réactions qui ont lieu lors de la fission de l'uranium ²³⁵U dans les barreaux :

$$^{1}_{0}n + ^{235}_{92}U \rightarrow ^{137}_{55}Cs + ^{96}_{...}X + ... \cdot ^{1}_{0}n$$

$$^{1}_{0}n + ^{235}_{92}U \rightarrow ^{131}_{53}I + ...X' + 3^{1}_{0}n$$

- a) Complétez les équations bilan et donnez le nom des éléments inconnus. Justifiez en indiquant les lois physiques sur lesquelles vous vous basez. (2)
- b) La désintégration radioactive du césium ¹³⁷Cs produit du baryum. <u>Écrivez</u> l'équation bilan de la désintégration. <u>Justifiez</u>! (2)
- c) Au Luxembourg, le service de radioprotection a mesuré le 25 mars 2011 une concentration d'iode 131 I dans l'air de 0,49 mBq/m³. <u>Calculez</u> la masse de l'iode radioactif contenue dans l'air d'une salle d'un volume de 200 m³.

(4)

d) Pourquoi les experts du service de radioprotection luxembourgeois savaient-ils que la contamination d'iode ¹³¹I mesurée le 25 mars 2011 au Luxembourg ne pouvait pas provenir de l'accident de la centrale nucléaire de Tchernobyl du 26 avril 1986? En effet, la retombée du césium ¹³⁷Cs de Tchernobyl est encore mesurable aujourd'hui. Expliquez! (1)

${}_{Z}^{A}X$	$^{137}_{55}{ m Cs}$	$^{131}_{53}I$
M en u	136,8769	130,8770
demi-vie	30,17 ans	8 jours

Examen de fin d'études secondaires 2014

Section B et C

Branche: Physique

Numéro d'ordre du candidat:

Formules trigonométriques

$$\sin^2 x + \cos^2 x = 1$$

$$\cos^2 x = \frac{1}{1 + tg^2 x}$$

$$\sin^2 x = \frac{tg^2 x}{1 + tg^2 x}$$

$$1 + tg^2x = \frac{1}{\cos^2x}$$

$$\begin{array}{ll} \sin{(\pi-x)} = & \sin{x} \\ \cos{(\pi-x)} = -\cos{x} \\ tg{(\pi-x)} = - & tg{x} \end{array}$$

$$\sin (\pi + x) = - \sin x$$

$$\cos (\pi + x) = - \cos x$$

$$tg (\pi + x) = tg x$$

$$sin (-x) = - sin x
cos (-x) = cos x
tg (-x) = - tg x$$

$$\sin\left(\frac{\pi}{2}-x\right)=\cos x$$

$$\cos\left(\frac{\pi}{2} - x\right) = \sin x$$

$$tg\left(\frac{\pi}{2}-x\right)=\cot g\,x$$

$$\sin\left(\frac{\pi}{z} + x\right) = \cos x$$

$$\cos\left(\frac{\pi}{2} + x\right) = -\sin x$$

$$tg\left(\frac{\pi}{2} + x\right) = -\cot g x$$

$$\sin (x + y) = \sin x \cos y + \cos x \sin y$$

 $\sin (x - y) = \sin x \cos y - \cos x \sin y$

$$cos(x + y) = cos x cos y - sin x sin y$$

 $cos(x - y) = cos x cos y + sin x sin y$

$$tg(x + y) = \frac{tg x + tg y}{1 - tg x tg y}$$

$$tg (x - y) = \frac{tg x - tg y}{1 + tg x tg y}$$

$$\sin 2x = 2 \sin x \cos x$$

 $\cos 2x = \cos^2 x - \sin^2 x$

$$2 \cos^2 x = 1 + \cos 2x$$

 $2 \sin^2 x = 1 - \cos 2x$

$$\sin 2x = \frac{2 \operatorname{tg} x}{1 + \operatorname{tg}^2 x}$$

$$\sin 2x = \frac{2 \text{ tg x}}{1 + \text{ tg}^2 x}$$
 $\cos 2x = \frac{1 - \text{ tg}^2 x}{1 + \text{ tg}^2 x}$

$$tg 2x = \frac{2 tg x}{1 - tg^2 x}$$

$$\sin 3 x = 3 \sin x - 4 \sin^3 x$$

$$\cos 3x = -3\cos x + 4\cos^3 x$$

$$\sin p + \sin q = 2 \sin \frac{p+q}{2} \cos \frac{p-q}{2}$$

$$\sin p - \sin q = 2 \sin \frac{p-q}{2} \cos \frac{p+q}{2}$$

$$\cos p + \cos q = 2 \cos \frac{p+q}{2} \cos \frac{p-q}{2}$$

$$\cos p - \cos q = -2 \sin \frac{p+q}{2} \sin \frac{p-q}{2}$$

$$tg p + tg q = \frac{\sin (p+q)}{\cos p \cos q}$$
$$\sin (p-q)$$

$$tg p - tg q = \frac{\sin (p-q)}{\cos p \cos q}$$

$$\sin x \cos y = \frac{1}{2} [\sin(x+y) + \sin(x-y)]$$

 $\cos x \cos y = \frac{1}{2} [\cos(x+y) + \cos(x-y)]$

$$\cos x \cos y = \frac{1}{2} [\cos(x+y) + \cos(x-y)]$$

 $\sin x \sin y = \frac{1}{2} [\cos(x-y) - \cos(x+y)]$

Examen de fin d'études secondaires 2014

Section B et C

Branche: Physique

Numéro d'ordre du candidat:

Relevé des principales constantes physiques

Grandeur physique	Symbole	Valeur	Unité		
	usuel	numérique			
Constante d'Avogadro	N _A (ou L)	$6,022 \cdot 10^{23}$	mol ⁻¹		
Constante molaire des gaz parfaits	R	8,314	J K ⁻¹ mol ⁻¹		
Constante de gravitation	K (ou G)	6,673·10 ⁻¹¹	$N m^2 kg^{-2}$		
Constante électrique pour le vide	$k = \frac{1}{4\pi\varepsilon_0}$	8,988·10°	$N m^2 C^{-2}$		
Célérité de la lumière dans le vide	С	2,998·10 ⁸	m s ⁻¹		
Perméabilité du vide	μ_0	$4\pi \cdot 10^{-7}$	H m ⁻¹		
Permittivité du vide	$\varepsilon_0 = \frac{1}{\mu_0 c^2}$	8,854·10 ⁻¹²	F m ⁻¹		
Charge élémentaire	е	1,602·10 ⁻¹⁹	С		
Masse au repos de l'électron	m _e	9,1094.10-31	kg		
		5,4858·10 ⁻⁴	u		
		0,5110	MeV/c ²		
Masse au repos du proton	m _p	1,6726.10 ⁻²⁷	kg		
		1,0073	u		
		938,27	MeV/c ²		
Masse au repos du neutron	m_n	1,6749·10 ⁻²⁷	kg		
		1,0087	u 2		
		939,57	MeV/c ²		
Masse au repos d'une particule α	m_{α}	6,6447·10 ⁻²⁷	kg		
16		4,0015	u		
		3727,4	MeV/c ²		
Constante de Planck	h	6,626·10 ⁻³⁴	Js		
Constante de Rydberg de l'atome d'hydrogène	R _H	1,097·10 ⁷	m ⁻¹		
Rayon de Bohr	r ₁ (ou a ₀)	5,292·10 ⁻¹¹	m		
Energie de l'atome d'hydrogène dans l'état fondamental	E_1	-13,59	eV		

Grandeurs liées à la Terre et au Soleil		Valeur uti	lisée sauf						
(elles peuvent dépendre du lieu ou du temps)		indication contraire							
Composante horizontale du champ magnétique terrestre	B _h	2.10-5	T						
Accélération de la pesanteur à la surface terrestre	g	9,81	m s ⁻²						
Rayon moyen de la Terre	R	6370	km						
Jour sidéral	T	86164	S						
Masse de la Terre	M_{T}	5,98·10 ²⁴	kg						
Masse du Soleil	Ms	1,99·10 ³⁰	kg						

Conversion d'unités en usage avec le SI

 $\begin{array}{ll} 1 \ angstr\"{o}m & = 1 \ \overset{\circ}{A} = 10^{\text{-}10} \ m \\ 1 \ \'{e}lectronvolt & = 1 \ eV = 1,602 \cdot 10^{\text{-}19} \ J \\ 1 \ unit\'{e} \ de \ masse \ atomique & = 1 \ u = 1,6605 \cdot 10^{\text{-}27} \ kg = 931,49 \ MeV/c^2 \end{array}$

Examen de fin d'études secondaires 2014

Section B et C

Branche: Physique

Numéro d'ordre du candidat:

Д	8 e d P 3	Circle Carlo	:		7		0			UN.			4		w			2		PÉRIO	ODE		
Editor: Michel Ditria	l'isolope de l'élément ayant la durée de vie la plus grande. Toutefois, pour les trois éléments Th, Pa et U qui ont une composition isolopique terrestre connue, une masse atomique est indiquée.	 Yure Appl. Cheftn., 43, No. 4, 9or-9os (¿UU) masse alonique relative est donnée avec cinq chiffres significatifs. Pour less éléments qui n'ont pas de nucléides stables, la valeur entre parenthèses indique le nombre de masse de 		FRANCIUM	Fr	CÉSIUM 87 (223)	CS	55	RUBIDIUM	Rb	37 85.468		K		Na	11 22.990	LITHIUM		3 6.941	H	1 1.0079	>	CBOLIBE
itria	ement ayant le les trois élém mposition iso sse atomique	n., 73, No. 4, ique relative ificatifs. Pour déides stable lique le nombre de la company de la compa	<u> </u>	_	Ra	3) 88		91 5	_	Sr	(w)	CALCIUM	77		Mg	_	88		4	,	79	<i>*</i>	ă
	a durée de vi lents Th, Pa i topique terre est indiquée.	est donnée a les éléments s, la valeur e pre de masse		100	170	~	_	-1			_				a	.305	ICM	(P)	9.0122	>		7	1
	1	0		Actinides RUTH			anthanides		YTTRIUM ZIR	<u> </u>		Ξ	21 44.956 22	_								Q	
ACTINIUM	inides (227)	Lanthane	Lanthanides 57 138.91 58	M	R	104 (261) 1	H	9	+	Zr	4	***	7.86/	-				z		NUN		Г	1
THORIUM	90 232.04	CÉRIUM	1es 58 140.12	DUBNIUM		TANTALE 105 (262)	12	73 180.95	NIOBIUM	B		VANADIUM	V 50.942				S	NOMBRE ATOMIQUE	(1985)	ΛΈRO DU G ANDATION		A	
PROTACTINIUM	91 231.04	Pr	59 140.91	SEABORGIUM		106 (266)	*	74 183.84	MOLYBDÈNE	Mo	42 95.94	CHROME	7 51.996	6 VIB			SYMBOLE -	OMIQUE —	7	NUMÉRO DU GROUPE RECOMMANDATIONS DE L'IUPAC		7	7
URANIUM	92 238.03		1 60 144.24	m		107 (264)		75		Te	43	MANGANÈSE	Mn	-		BORE	В	5 10.811	13	Ċ		ABLEAU TEXICUIQUE DEV	1
	93	PROM	61	I	JHIS	M OSMIUM 108 (277)		76		Ru	4		10 55.845	_		4			>	NUN		=	2
<u>z</u>	7) 94		(145) 62 150.36			_			_		4			_	<u></u>	NOM DE L'ÉLÉMENT		MASSE ATOMIQUE RELATIVE (1)	(1986)	NUMÉRO DU GROUPE CHEMICAL ABSTRACT SERVICE			
LUTONIUM AMI	(244) 95	Sm J		3	MIT	109 (268) 11(22		Rh						1ENT		UE RELATI		ROUPE CT SERVICI		C	
-	(243) 96	EUROPIUM G	63 151.96 64		Umm 1	110 (281) 1:		8	_	Pd	12		N: 20.093 Z					VE (1)		(1)		П	1
CURIUM	(247)	GADOLINIUM	157.25			OR 111 (272)	Au	7	_	Ag	7	CUIVRE	27 03.340										2
BERKÉLIUM	97 (247)	Ть	65 158.93	UNUNBIUM	Umb	MERCURE 112 (285)	20	80 200.59	CADMIUM	Cd	4	ZINC	7.n										1
CALIFORNIL	98	Dy DYSPROSIUM	66 162.50			THALLIUM	Ξ	81 204.38		In	4	GALLIUM	31 09.723 C2		A	13 26.982	BORE	B	5 10.811			П	1
MEINSTEINI	(251) 99 (2)	Но Ногијим	0 67 164.93	UNUNQUADIUN	Wwg	PLOMB 114 (289)		90	ETAIN	Sn		ရှ <u>ှ</u>	32	33 SIL	S		CARBONE	\bigcirc	6 1:	2	http://w	П	1
UM FERMIUM	52) 100 (MUIC		BISMUTH		93	ANTIMOINE	Sb	71 51 12		04 33 74.92	M PHOSPHORE	P	86 15 30	D	Z	2.011 7 14		ww.ktf-spi	3	1
IUM MENDE	257) 101	THU THU	Copyrig 7.26 69 1								0,		0	ORE SOL		974 16 3			14.007 8 15.999	16	http://www.ktf-split.hr/periodni/fr/	LMEN I	
INTERPRETATION NO	(258) 103	Tm YTT	Copyright © 1998-2002 EniG (68 167.26 69 168.93 70 173.04			POLONIUM		9)	TELLURE	Te	27.60 53	<			S	2.065 17	m	0	15.999 9 1	S 17	odni/fr/	U	1
BERKÉLIUM CALIFORNIUM EINSTEINIUM FERMIUM MENDELÉVIUM NOBÉLIUM LAWRENCIUM	(252) 100 (257) 101 (258) 102 (259) 103 (262)					ASTATE		(210)	ODE	I	0		Rr		Ω	14 28.086 15 30.974 16 32.065 17 35.453 18 39.948	FLUOR	T	8.998	\$	2	15	
AWRENCIUM	03 (262)	Lutétium	9ni@ktf-split.hr 71 174.97			RADON	K	86 (222)	XÉNON	Xe	54 131.29	KRYPTON	30 03.00	ARGON	Ar	8 39.948	NÉON	Ze	0 20.180	He	4.0026		