

Adventures in Bayesian Structural Time Series

Andrew Bates, Josh Gloyd, Tyler Tucker

What is BSTS?

- ► Comprised of 3 components:
 - ▶ Structural Time Series model (a.k.a. state space model)
 - ► Spike and Slab regression
 - ▶ Bayesian model averaging
- ▶ Predicting the Present with Bayesian Structural Time Series by Steven L. Scott and Hal Varian (Google)
- ► Implementation
 - R: bsts
 - ▶ or Causal Impact
 - ▶ Python: Causal Impact

Structural Time Series

- ▶ Data from unobserved **state space** plus noise
- ▶ Model the latent state space instead of the data directly

Local Level Model

- \triangleright y_t : data
- $\blacktriangleright \mu_t$: latent state

$$y_t = \mu_t + \varepsilon_t$$
 $\varepsilon_t \sim N(0, \sigma_{\varepsilon}^2)$
 $\mu_{t+1} = \mu_t + \xi_t$ $\xi_t \sim N(0, \sigma_{\varepsilon}^2)$

Analogous to the inercept in linear regression but allowing for the intercept to vary over time

Local Linear Trend Model

- \triangleright y_t, μ_t : same as before
- $\triangleright \nu_t$: slope (additional state component)

$$y_{t} = \mu_{t} + \varepsilon_{t} \qquad \qquad \varepsilon_{t} \sim N(0, \sigma_{\varepsilon}^{2})$$

$$\mu_{t+1} = \mu_{t} + \nu_{t} + \xi_{t} \qquad \qquad \xi_{t} \sim N(0, \sigma_{\xi}^{2})$$

$$\nu_{t+1} = \nu_{t} + \zeta_{t} \qquad \qquad \zeta_{t} \sim N(0, \sigma_{\zeta}^{2})$$

Structural Time Series

General Form

- \triangleright y_t : data
- $\triangleright \alpha_t$: state component

$$y_t = Z_t' \alpha_t + \varepsilon_t$$
 $\varepsilon_t \sim N(0, H_t)$ (1)

$$\alpha_{t+1} = T_t \alpha_t + R_t \eta_t \qquad \eta_t \sim N(0, Q_t)$$
 (2)

- ▶ (1): observation equation
- ► (2): transition equation

Bayesian Context

- ► Spike and slab regression
 - ▶ Used when regression components are included
 - ▶ Variable selection technique
 - ▶ Prior on regression coefficients
- ► Bayesian Model Averaging
 - ► Consequence of spike and slab prior
 - ▶ Different β s included in each draw of posterior (i.e. different model on each draw)
- ▶ Prior Elicitation and Posterior Sampling
 - ▶ Inclusion probabilities for regression coefficients
 - ▶ Or: expected model size, expected R^2 , weight given to R^2
 - ► Gibbs sampler (stochastic search variable selection) to draw from posterior
 - ▶ For details see paper by Scott and Varian