CS7800: Advanced Algorithms

Dynamic Programming I:

- Weighted Interval Scheduling
- Log cutting

Jonathan Ullman

09-20-2022

What is Dynamic Programming?

- Don't think too hard about the name
 - I thought dynamic programming was a good name. It was something not even a congressman could object to. So I used it as an umbrella for my activities. -Bellman
- Dynamic programming is careful recursion
 - Break the problem up into small pieces
 - Recursively solve the smaller pieces
 - **Key Challenge:** identifying the pieces

Weighted Interval Scheduling

Input: n intervals [si, fi] with values V;

Output: a set of non-overlapping intervals

S = {1,2,...,n3 maximizing } V;

A Greedy Algorithm?

- Sort by finish time?

Dynamic Programming - Thinking Recursively

-Let 6 be an optimal solution

Case 1: 6 E O

```
Index
\begin{cases}
1 & v_1 = 2 \\
2 & v_2 = 4
\end{cases}
Solution for intervals
v_3 = 4 & v_3 = 4 \\
v_4 & v_5 = 1
\end{cases}
Where v_6 = 1
```

0+ value of opt for 81,3,53 = 8

Case 2: 6 & G

Dynamic Programming - Thinking Recursively Let OPT(i) be the optimal value of a schedule using only intervals \$1,2,...,i3 (for i=0,1,2,...,n)

Evaluating the Recorrence: Take I

Key Observation: Don't recompute the same subproblem.

Evaluating the Recorrence: Take II

OPT(0)	(1)	OPT(2)	०१र(उ)	OPT (4)	OPT (5)	OPT(6)
0	2	4	6			
~						

OPT(i) = max	§ OPT(i-1), v; + OPT(p	ortlo)=0	OPT(1)=V,
Index			
1	$v_1 = 2$	P1 = 0	
2 ⊢	$v_2 = 4$	P2 = 0	
3	-	v ₃ = 4 P3=(
4	-	v ₄ = 7	-0
5		$v_5 = 2$	2 Ps=3
6		<i>v</i> ₆ =	= 1 P62'

"Bottom up":

fill in the table of supproblems one by one

Evaluating the Recorrence: Take II

(0) T90	OPT(1)	OPT(2)	०१र(ङ)	OPT (4)	OPT(5)	OPT(6)
0	2	4	6			
~						

```
main:

opt(0)=0

for i=1,...,n:

lopt(i)=max ? ort(i-1), v; topt(p;)?

Return opt(n)
```

running time
is just O(n)

(once you sort
the input and
compute P:)

Finding the Optimal Schedule

Which branch in the recurrence gives this bit.

Finding the Optimal Schedule

OPT(i) = max { OPT(i-1), v; + OPT(p;)}

if this is the max then 0; = 0;-1

if this is the max then 0; = Op.+5:3 Calc OPT: let OPT (0) = 0

Find Schedule (i) if i=0 retuin \$\phi\$
else if Branch(i)=yes
[retuin &:3+FS(pi) for i=(,...,n: | OPT(i) = [securrence]
| Branch(i) = { yes if v; + OPT(p;) > OPT(:-1) }
| NO O.U. elle Leturn FS(:-1)

What were the steps?

required (1) We asked a good question about the solution creativity (2) We found a recurrence relation for the value of opt

- (3) We implemented that recurrence efficiently

 there is a <u>small</u> set of subproblems

 avoided recomputing the same subproblem
- (4) Add a step to find the optimal solution
 remember which branch you took and
 interpret its meaning

The Log Cutting Problem

loget: The length n of a log, prices & Pl3 l=1...n for selling an L-foot log

Output: Integer lengths $l_1 \dots l_k$ such that $\sum_{i=1}^k l_i = n$ and $\sum_{i=1}^k P_k$ is maximized

Dynamic Programming

Let OPT(:) be the most money | can get with a log of length i (for i= 0,1,--, n)

```
Calc OPT:

let OPT(o) = 0

for i=1,2,...,n:

let OPT(i) = max { P: + OPT(i-L) }

leavin OPT(n)
```

Running time is O(n2)