Lista de Exercícios 2

1 Programação Linear

Exercício 1. Expresse a desigualdade $2x + 3y \le 5$ utilizando apenas igualdades e/ou restrições de não-negatividade. Dica: adicione uma variável w. Faça o mesmo para $8x - y + z \ge 10$.

Exercício 2. Demonstre que a PL abaixo é viável, porém ilimitada.

$$\max \quad (1 -1 -3) \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
 sujeito a
$$\begin{pmatrix} 1 -2 & 5 \\ 2 & -4 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 4 \\ -2 \\ 1 \end{pmatrix},$$

$$x_1, x_2, x_3 \ge 0$$

Exercício 3. Coloque a PL abaixo em FPI, ache uma candidata a solução ótima, e exiba um certificado de otimalidade.

$$\begin{array}{ll}
\max & (1 & 1) \cdot \boldsymbol{x} \\
\text{sujeito a} & \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \boldsymbol{x} \leq \begin{pmatrix} 2 \\ 2 \end{pmatrix} \\
\boldsymbol{x} \geq 0.$$

Exercício 4. Considere o seguinte sistema de equações:

$$\begin{pmatrix} 1 & 0 & 1 & 1 & 1 \\ 2 & 1 & 1 & 0 & 0 \end{pmatrix} \boldsymbol{x} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}.$$

Para cada um dos vetores abaixo, determine se

- (i) É solução?
- (ii) Se for solução, é uma solução básica?
- (iii) Se for solução básica, qual a base de colunas associada? Se houver mais de uma, descreva todas.
- (iv) Se for solução básica, é viável?
- (a) (1 -1 -1 1 1).

- (b) $(2 -4 \ 0 \ 0 \ 0)$.
- (c) (2 -2 -1 1 0).
- (d) $(0 \ 0 \ 0 \ 1 \ 1)$.
- (e) $(0 \ 0 \ 1 \ 1 \ 0)$.
- (f) $(0 \ 0 \ 0 \ 2 \ 0)$.
- (g) $(0 \ 1 \ 0 \ 1 \ 0)$.
- (h) (0 -2 2 0 0).

Exercício 5. Considere uma matriz A de m linhas e n colunas e um vetor b. Assuma que o poliedro descrito por A e b, ou seja, $P(A,b) = \{x \in \mathbf{R}^n | Ax \le b\}$ é limitado (é um politopo).

- a) Qual o maior número de vértices que P(A, b) pode possuir?
- b) O número que você calculou acima é exato? Ou seja, é exatamente o número de vértices de P(A,b)?
- c) \star Qual o menor número de vértices que P(A, b) pode possuir?

2 Simplex - Teoria

Exercício 6. Considere a seguinte PL em FPI

$$\begin{array}{ll} \max & \boldsymbol{c}^T \boldsymbol{x} \\ \text{sujeito a} & \mathbf{A} \boldsymbol{x} = \boldsymbol{b} \\ & \boldsymbol{x} \geq \boldsymbol{0}. \end{array}$$

Suponha que $\bf A$ possui m linhas linearmente independentes, e n colunas. Explique por que podemos assumir, sem qualquer prejuízo à solução da PL, que se $n \geq m$, há precisamente m colunas linearmente independentes em $\bf A$.

Exercício 7. Considere o sistema de equações abaixo

$$\begin{pmatrix} 1 & 1 & 0 & 2 & 1 & 1 & 1 \\ 0 & 2 & 2 & 0 & 0 & -2 & 1 \\ 1 & 2 & 1 & 5 & 4 & 3 & 3 \end{pmatrix} \boldsymbol{x} = \begin{pmatrix} 2 \\ 2 \\ 6 \end{pmatrix}$$

e os vetores

- (a) $(1 \ 1 \ 0 \ 0 \ 0 \ 0)$
- (b) (2 -1 2 0 1 0 0)
- (c) $(1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0)$

- (d) $(0 \ 0 \ 1 \ 1 \ 0 \ 0 \ 0)$
- (e) $(0 \ 1/2 \ 0 \ 0 \ 1/2 \ 0 \ 1)$

Para cada um deles, decida se é uma solução básica ou não, e se for, se é viável (≥ 0) ou não.

Exercício 8. O objetivo deste exercício é compreender melhor a geometria da região viável de uma PL, assim como a natureza das soluções básicas. Considere uma PL em FPI

$$\begin{array}{ll}
\max & \boldsymbol{c}^T \boldsymbol{x} \\
\text{sujeito a} & A\boldsymbol{x} = \boldsymbol{b} \\
& \boldsymbol{x} \ge 0,
\end{array}$$

que seja viável e limitada. Suponha que A é uma matriz $m \times n, n \ge m$, e seu posto é igual a m.

(a) Suponha que z_1 e z_2 são soluções viáveis. Mostre que para qualquer $\alpha, 0 \le \alpha \le 1$, o vetor

$$\boldsymbol{z} = \alpha \boldsymbol{z}_1 + (1 - \alpha) \boldsymbol{z}_2$$

também é uma solução viável. (em particular, você estará mostrando que a região de viabilidade é convexa).

- (b) Mostre que o valor objetivo de z não pode ser estritamente maior que ambos os valores objetivos de z_1 e z_2 , e que se z_1 e z_2 são soluções ótimas, então z também é.
- (c) Mostre que z não pode ser uma solução básica viável da PL.
- (d) Mostre que se $\mathbf{w} > 0$ (ou seja, um vetor em que todas as entradas são positivas) e \mathbf{w} é viável, então existem $\mathbf{w}_1 \neq \mathbf{w}_2$ soluções viáveis tais que $\mathbf{w} = 1/2(\mathbf{w}_1 + \mathbf{w}_2)$, a não ser possivelmente no caso em que n = m.
- (e) ★ mostre que os vértices da região viável (ou seja, os pontos que não pertencem a um segmento viável) são exatamente as soluções básicas viáveis.

3 Simplex - Prática

Exercício 9. Considere a PL abaixo

max
$$\begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \boldsymbol{x}$$

sujeito a $\begin{pmatrix} 4 & -1 & 0 \\ 1 & 0 & -1 \\ 1 & 1 & 1 \\ 2 & -2 & 0 \end{pmatrix} \boldsymbol{x} = \begin{pmatrix} 7 \\ 2 \\ 3 \\ 2 \end{pmatrix}$
 $\boldsymbol{x} \ge \boldsymbol{0}$.

É possível escrever uma PL equivalente a esta em que a matriz A possua menos linhas?

Exercício 10. Considere a PL em FPI com

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & -2 & 0 \\ 0 & 1 & 3 & 1 \end{pmatrix} \quad \mathbf{b} = \begin{pmatrix} 2 \\ 5 \end{pmatrix} \quad \mathbf{c} = \begin{pmatrix} 0 \\ 3 \\ 1 \\ 0 \end{pmatrix}.$$

- (a) Aplique o método simplex a esta PL iniciando com a base de colunas 1 e 4.
- (b) Ache um certificado de que a PL é ótima ou ilimitada (se for ótima, no olho mesmo, por enquanto).

Exercício 11. Considere a PL em FPI dada por

$$\mathbf{A} = \begin{pmatrix} -2 & 1 & 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 & 1 & 0 \\ 2 & -3 & -1 & 0 & 0 & 1 \end{pmatrix} \quad \mathbf{b} = \begin{pmatrix} 1 \\ 2 \\ 6 \end{pmatrix} \quad \mathbf{c} = \begin{pmatrix} 2 \\ 1 \\ -1 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

Resolva a PL usando o simplex.

Exercício 12. A PL abaixo é viável ou inviável?

max
$$(2 -1 2) \boldsymbol{x}$$

sujeito a $\begin{pmatrix} -1 & -2 & 1 \\ 1 & -1 & 1 \end{pmatrix} \boldsymbol{x} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$
 $\boldsymbol{x} \ge 0$.

Exercício 13. Para cada uma das PLs abaixo, resolva-as usando o Simplex. Se a PL tiver solução ótima, ache-a, e exiba juntamente com a solução um certificado de otimalidade. Se a PL for ilimitada, encontre ao menos uma solução viável e exiba um certificado de que a PL é ilimitada.

(a)

max
$$(3 \ 2 \ 4) x$$

sujeito a $\begin{pmatrix} 1 & 1 & 2 \\ 2 & 0 & 3 \\ 2 & 1 & 3 \end{pmatrix} x \le \begin{pmatrix} 4 \\ 5 \\ 7 \end{pmatrix}$
 $x \ge 0$.

(b)

$$\max \quad \begin{pmatrix} 1 & 3 & -1 \end{pmatrix} \boldsymbol{x}$$
sujeito a
$$\begin{pmatrix} 2 & 2 & -1 \\ 3 & -2 & 1 \\ 1 & -3 & 1 \end{pmatrix} \boldsymbol{x} \le \begin{pmatrix} 10 \\ 10 \\ 10 \end{pmatrix}$$
$$\boldsymbol{x} \ge 0.$$

Exercício 14. Escreva a dual da PL abaixo

max
$$\begin{pmatrix} 1 & 3 & -1 \end{pmatrix} \boldsymbol{x}$$

sujeito a $\begin{pmatrix} 2 & 2 & -1 \\ 3 & -2 & 1 \\ 1 & -3 & 1 \end{pmatrix} \boldsymbol{x} \le \begin{pmatrix} 10 \\ 10 \\ 10 \end{pmatrix}$
 $\boldsymbol{x} \ge 0$.

Mostre que a dual é inviável de duas formas diferentes:

- (i) Mostrando que a primal é ilimitada.
- (ii) Usando uma PL auxiliar.

Exercício 15. Considere a PL

min
$$(1 \ \alpha \ 10 \ 25/2) x$$

sujeito a $\begin{pmatrix} 1 \ 0 \ 5 \ 6 \\ 2 \ 6 \ 0 \ 1 \end{pmatrix} x \stackrel{\geq}{\leq} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$
 $x_1 \geq 0, x_2 \leq 0, x_3 \text{ livre}, x_4 \geq 0.$

Escreva a dual, e determine para quais valores de α a solução (1 0 0 0) é ótima para a PL acima.

Exercício 16. Considere as quatro PLs primais abaixo, e as quatro PLs duais em seguida. Associe os pares corretamente, e em seguida decida qual caso do corolário acima se aplica a cada par. Apresente certificados.

 $y_1, y_2 \ge 0$

 $y_1, y_2 \ge 0$

Exercício 17. Considere a PL

max
$$a_1x_1 + a_2x_2$$

sujeito a $\begin{pmatrix} 1 & -3 \\ -1 & 3 \end{pmatrix} \boldsymbol{x} \ge \begin{pmatrix} -2 \\ 3 \end{pmatrix}$
 \boldsymbol{x} livre

- (i) Mostre que é inviável.
- (ii) Escreva sua dual.
- (iii) Ache todos os valores de a_1 e a_2 tais que a dual seja (1) viável (2) inviável (3) viável e ilimitada.
- (iv) A dual pode ser viável e limitada?

Exercício 18. Dado um par primal-dual

- (a) Prove que todo certificado de ilimitada para (P) é um certificado de inviabilidade para (D).
- (b) Quais propriedades um vetor \boldsymbol{d} deve satisfazer para ser um certificado de que (D) é ilimitada?
- (c) (*) É verdade que todo certificado de que uma PL é inviável é um certificado de que sua dual é ilimitada? Se sim, prove. Se não, produza um contra-exemplo.

4 Análise de Sensibilidade

Exercício 19. Prove ou apresente um contra-exemplo: Se o problema

$$\begin{array}{ll}
\max & c^T x \\
st & Ax = b \\
x \ge 0
\end{array}$$

é ilimitado para um certo valor de c, então existe um índice k tal que o problema

$$\begin{array}{ll}
\max & x_k \\
st & Ax = b \\
x \ge 0
\end{array}$$

é ilimitado

Exercício 20. Seja A uma matriz antissimétrica (ou seja, $A^t = -A$). Qual o dual do modelo

e qual a sua solução ótima?