Análisis de encuestas de hogares con R

Análisis de variables continuas

Modelamient de variables

Análisis de encuestas de hogares con R Modulo 11: Estimación con pesos de replica

CEPAL - Unidad de Estadísticas Sociales

Análisis de encuestas de hogares con R

- 1 Análisis de variables continuas
- Modelamiento de variables Análisis de
- continuas Modelamiento
- de variables

Definición las replica.

Análisis de encuestas de hogares con R

Análisis de variables continuas

Modelamiento de variables

Para mejorar la estimación es posible utilizar técnicas de remuestreo, tal es el caso de JKn y bootstrap que ya están incluidas den el paquete de *survey*, para poder ejecutarlas es relativamente simple.

```
encuesta <- readRDS("../Data/encuesta.rds")
diseno <- encuesta %>%
  as_survey_design(
    strata = Stratum,
    ids = PSU,
    weights = wk,
    nest = T
)
```

Análisis de encuestas de hogares con R

Análisis de variables

Modelamiento de variables Las funciones que permite incorporar los pesos de replica son as_survey_rep y as.svrepdesign, las opciones disponibles en este paquete son:

■ JK1, JKn Jackknife Repeated Replication (JRR) (Rust, 1985; Wolter, 2007)

Análisis de encuestas de hogares con R

Análisis de variables

Modelamiento de variables Las funciones que permite incorporar los pesos de replica son as_survey_rep y as.svrepdesign, las opciones disponibles en este paquete son:

- JK1, JKn Jackknife Repeated Replication (JRR) (Rust, 1985; Wolter, 2007)
- BRR: Balanced Repeated Replication

Análisis de encuestas de hogares con R

Análisis de variables

Modelamiento de variables Las funciones que permite incorporar los pesos de replica son as_survey_rep y as.svrepdesign, las opciones disponibles en este paquete son:

- JK1, JKn Jackknife Repeated Replication (JRR) (Rust, 1985; Wolter, 2007)
- BRR: Balanced Repeated Replication
- bootstrap, **subbootstrap**, mrbbootstrap

Análisis de encuestas de hogares con R

Análisis de variables

Modelamiento de variables Las funciones que permite incorporar los pesos de replica son as_survey_rep y as.svrepdesign, las opciones disponibles en este paquete son:

- JK1, JKn Jackknife Repeated Replication (JRR) (Rust, 1985; Wolter, 2007)
- BRR: Balanced Repeated Replication
- bootstrap, **subbootstrap**, mrbbootstrap
- Fay

Definiendo el objeto diseño con replicas **Jackknife** , **BRR** y **Fay**

Análisis de encuestas de hogares con R

Análisis de variables continuas

```
set.seed(123)
diseno JKn <-
  as_survey_rep(diseno,
                type = "JKn"
set.seed(123)
diseno BRR <-
  as_survey_rep(diseno,
                type = "BRR")
diseno_Fay <-
  as_survey_rep(diseno,
                type="Fay", rho=0.3)
```

Definiendo el objeto diseño con replicas bootstrap

```
Análisis de
encuestas de
hogares con R
```

Análisis de variables continuas

```
set.seed(123)
diseno bootstrap <-
  as_survey_rep(diseno,
                type = "bootstrap",
                replicates = 100 )
set.seed(123)
diseno_subbootstrap <-
  as_survey_rep(diseno,
                type = "subbootstrap",
                replicates = 100)
set.seed(123)
diseno_mrbbootstrap <-
  as survey rep(diseno,
                type = "mrbbootstrap",
                replicates = 100)
```

La matriz de replica.

Análisis de encuestas de hogares con R

Análisis de variables continuas

Modelamiento de variables

Las definiciones anteriores crean una nueva entrada en el objeto diseño el cual contiene la matriz de replicas (repweights). Las columnas de la matriz son el número de replicas, que puede variar según el método, las filas son el número de registros en la encuesta; y el valor de la celda estable por cuanto se debe multiplicar el factor de expansión para realizar la estimación del parámetro. Los valores de la celda pueden ser enteros para indicar ausencia (0) o presencia (1) o repetir el registro (>1), como sucede con BRR, Jackknife y bootstrap. En el caso de Fay, esto no ocurre dado que se trata de fracciones de muestreo que están asociado con el parámetro de ρ .

Análisis de encuestas de hogares con R

Análisis de variables

continuas Modelamie

Modelamiento de variables

```
el procedimiento es igual.
library(purrr)
library(magrittr)
list(
  sin rep = diseno,
  JKn = diseno JKn,
  BRR = diseno BRR,
  Fay = diseno Fay,
  bootstrap = diseno bootstrap,
  subbootstrap = diseno subbootstrap,
  mrbbootstrap = diseno mrbbootstrap
) %>%
 map(
    ~ .x %>% summarise(
      "Nacional" = survey_mean(Income, deff = TRUE))) %>%
  bind rows(.id = "Diseno")
```

La sintaxis muestra que sin importar la metodología de replica

Análisis de encuestas de hogares con R

Análisis de variables continuas

Modelamiento de variables

La tabla muestra el ingreso medio nacional.

Diseno	Nacional	Nacional_se	Nacional_deff
sin_rep	570.9	28.48	8.821
JKn	570.9	28.48	8.822
BRR	570.9	28.50	8.837
Fay	570.9	28.49	8.827
bootstrap	570.9	28.39	8.766
subbootstrap	570.9	27.41	8.171
mrbbootstrap	570.9	28.24	8.677

Análisis de encuestas de hogares con R

Análisis de variables continuas

Modelamiento de variables

La tabla muestra el ingreso mediano nacional.

Nacional	Nacional_se
437.4	31.93
437.4	31.93
437.4	31.93
437.4	31.93
437.4	39.99
437.4	31.86
437.4	28.66
	437.4 437.4 437.4 437.4 437.4

Análisis de encuestas de hogares con R

Análisis de variables continuas

Modelamiento de variables La tabla muestra el quantile 25 del ingreso.

Diseno	Nacional_q25	Nacional_q25_se
sin_rep	250	18.92
JKn	250	18.92
BRR	250	18.92
Fay	250	18.92
bootstrap	250	19.00
subbootstrap	250	19.00
mrbbootstrap	250	19.00

Con los resultados mostrados previamente y con la intención de observar diferentes resultados nos decantamos por el **diseno_subbootstrap** para replicar algunos de los análisis realizados en secciones anteriores.

Análisis de encuestas de hogares con R

variables continuas

Análisis de

Modelamiento de variables

Análisis de variables continuas

Estimación de la media del gasto

Análisis de encuestas de hogares con R

Análisis de variables

Modelamiento de variables

Un resultado más interesante para la variable gasto es el promedio de la variable.

	mean	SE	deff
Expenditure	370.5	12.07	4.958

	mean	Expenditure	deff
Expenditure	370.5	13.29	6.016

Estimación de la media por sub-grupos

Análisis de encuestas de hogares con R

Análisis de variables continuas

```
diseno_subbootstrap %>% group_by(Zone, Sex) %>%
  summarise(
    Media = survey_mean(
    Expenditure, level = 0.95,
    vartype = c("se"), deff = TRUE)) %>%
  as.data.frame()
```

Estimación de la media por sub-grupos

Análisis de encuestas de hogares con R Resultado con replicas

	Zone	Sex	Media	Media_se	Media_deff
Análisis de variables	Rural	Female	272.7	10.68	2.997
continuas	Rural	Male	275.3	10.80	2.510
Modelamiento de variables	Urban	Female	450.8	18.39	2.494
	Urban	Male	469.8	23.69	2.884

Resultados sin replicas

Zone	Sex	Media	Media_se	Media_deff
Rural	Female	272.7	11.61	3.545
Rural	Male	275.3	10.25	2.260
Urban	Female	450.8	20.12	2.985
Urban	Male	469.8	26.96	3.737
———	IVIAIC	409.0	20.90	3.131

Estimación de la razón entre hombres y mujeres

Análisis de encuestas de hogares con R

Análisis de variables continuas

Modelamiento de variables La estimación de una razón se obtiene con la función survey_ratio.

```
diseno_subbootstrap %>% summarise(
   Razon = survey_ratio(
      numerator = (Sex == "Female"), # creando dummy.
   denominator = (Sex == "Male"), # creando dummy.
   level = 0.95,
   vartype = c("se", "ci")
   ))
```

Estimación de la razón entre hombres y mujeres

Análisis de encuestas de hogares con R

Análisis de variables continuas

Modelamiento de variables

Resultado con replicas

Razon	Razon_se	Razon_low	Razon_upp
1.114	0.0303	1.054	1.174

Resultados sin replicas

Razon	Razon_se	Razon_low	Razon_upp
1.114	0.0351	1.045	1.184

Los resultados muestran que la estimación puntual no cambia, pero vemos una mejora permanente en la estimación de la varianza. # Análisis de variables categóricas

Creación de nuevas variables

Análisis de encuestas de hogares con R

Análisis de variables continuas

Modelamiento

Durante los análisis de encuesta surge la necesidad de crear nuevas variables a partir de las existentes, aquí mostramos la definición de algunas de ellas.

```
diseno_subbootstrap <- diseno_subbootstrap %>%
  mutate(
  pobreza = ifelse(Poverty != "NotPoor", 1, 0),
  desempleo =
   ifelse(Employment == "Unemployed", 1, 0))
```

Estimación de proporción de urbano y rural

Análisis de encuestas de hogares con R

Análisis de variables continuas

Modelamiento de variables

La función idónea para realizar la estimación de las proporciones es survey_prop y la sintaxis es como sigue:

Zone	prop	prop_se	prop_deff
Rural	0.4798	0.0126	1.677
Urban	0.5202	0.0126	1.677

Proporción de mujeres en la zona urbana y rural

Análisis de encuestas de hogares con R

Análisis de variables

```
(prop_ZonaM_Ocupacion <- diseno_subbootstrap %>%
  filter(Sex == "Female") %>%
  group_by(Zone, Employment) %>%
  summarise(
   prop = survey_prop(
     vartype = c("se"), deff = TRUE)) %>%
  data.frame())
```

Proporción de mujeres en la zona urbana y rural

Análisis de encuestas de hogares con R

Análisis de variables continuas

Zone	Employment	prop	prop_se	prop_deff
Rural	Unemployed	0.0102	0.0062	2.6212
Rural	Inactive	0.4472	0.0351	3.4490
Rural	Employed	0.2400	0.0374	5.2935
Rural	NA	0.3026	0.0309	3.1294
Urban	Unemployed	0.0211	0.0060	1.2330
Urban	Inactive	0.3645	0.0212	1.3626
Urban	Employed	0.3846	0.0162	0.7834
Urban	NA	0.2299	0.0138	0.7537

Tabla cruzada de Zona Vs Sexo

Análisis de encuestas de hogares con R

Análisis de variables continuas

```
Haciendo uso de la función group_by organizada en forma de data.frame.
```

Tabla cruzada de Zona Vs Sexo

Análisis de encuestas de hogares con R

Análisis de variables continuas

pobreza	Sex	prop	prop_se	prop_deff
0	Female	0.5292	0.0126	1.069
0	Male	0.4708	0.0126	1.069
1	Female	0.5236	0.0168	1.090
1	Male	0.4764	0.0168	1.090

Tablas de doble entrada.

Análisis de encuestas de hogares con R

Análisis de variables continuas

Modelamiento de variables

Una alternativa es utilizar la función svyby con la siguiente sintaxis.

	pobreza	SexFemale	e SexMale	se1	se2	DEff.SexFemaleD	Eff.Se×Male
0	0	0.5292	0.4708	0.0126	0.0126	1.069	1.069
1	1	0.5236	0.4764	0.0168	0.0168	1.090	1.090

Análisis de encuestas de hogares con R

Análisis de variables continuas

Modelamiento de variables

Modelo lineal de regresión.

Análisis de encuestas de hogares con R

Análisis de variables continuas

```
Ahora, emplee la función svyglm de survey
```

Resumen del Modelo

Análisis de encuestas de hogares con R

Análisis de variables continuas

Table 14: Modelo encuesta ponderada, svyglm

	Income
Expenditure	1.263***
	(0.201)
Constant	103.100
	(69.060)
N	2605
AIC	38281.000

 $^{^{***}}p < .01; \, ^{**}p < .05; \, ^{*}p < .1$

Calculo del R^2

```
Análisis de
encuestas de
hogares con R
```

Análisis de variables continuas

Modelamiento

```
(R2 = 1-s1$dispersion/s0$dispersion)
```

```
## [1] 0.5094
```

```
 \begin{array}{ll} n = sum(diseno\_subbootstrap\$variables\$wk) \\ ( & R2Adj = 1-((1-R2)*(n-1)/(n-1-1))) \end{array}
```

```
## [1] 0.5094
```

Modelo de regresión logistica

Análisis de encuestas de hogares con R

Análisis de variables continuas

```
mod_loglin <- svyglm(
  pobreza ~ Sex + Zone + Region,
  family=quasibinomial, design=diseno_subbootstrap)
tidy(mod_loglin)</pre>
```

term	estimate	std.error	statistic	p.value
(Intercept)	-0.4082	0.2851	-1.4317	0.1556
SexMale	0.0086	0.1015	0.0852	0.9323
ZoneUrban	-0.4378	0.2221	-1.9711	0.0517
RegionSur	0.0063	0.3318	0.0190	0.9848
RegionCentro	0.1915	0.4559	0.4201	0.6754
RegionOccidente	0.2319	0.3081	0.7528	0.4535
RegionOriente	0.3699	0.4305	0.8592	0.3924

Modelo log lineal ajustado

Análisis de encuestas de hogares con R

Análisis de variables continuas

Modelamiento de variables Intervalos de confianza para los coeficientes del modelo.

```
bind_cols(
  data.frame(exp_estimado = exp(coef(mod_loglin))),
  as.data.frame(exp(confint(mod_loglin)))
)
```

	exp_estimado	2.5 %	97.5 %
(Intercept)	0.6648	0.3774	1.171
SexMale	1.0087	0.8246	1.234
ZoneUrban	0.6454	0.4152	1.003
RegionSur	1.0063	0.5207	1.945
RegionCentro	1.2111	0.4898	2.995
RegionOccidente	1.2611	0.6839	2.325
RegionOriente	1.4476	0.6157	3.404

Modelo gamma ingreso

```
Análisis de
encuestas de
hogares con R
```

Análisis de

Modelamiento de variables

```
modelo_gamma <- svyglm(formula = Income ~ Age + Sex +
                   Region + Zone,
                   design = diseno_subbootstrap,
                  family = Gamma(link = "inverse"))
```

broom::tidy(modelo_gamma)

Modelo gamma

Análisis de encuestas de hogares con R

Análisis de variables continuas

Modelamiento de variables

Estimación de los parámetro del modelo.

term	estimate	std.error	statistic	p.value
(Intercept)	0.0025	2e-04	10.0256	0.0000
Age	0.0000	0e + 00	-1.2541	0.2130
SexMale	-0.0001	1e-04	-1.6470	0.1030
RegionSur	0.0000	2e-04	-0.2325	0.8167
RegionCentro	0.0000	2e-04	0.2138	0.8312
RegionOccidente	0.0002	2e-04	0.9896	0.3249
RegionOriente	0.0000	3e-04	-0.0081	0.9936
ZoneUrban	-0.0010	2e-04	-4.3810	0.0000

Análisis de encuestas de hogares con R

Análisis de variables continuas

```
diseno_subbootstrap %>% filter(Age >= 15)%>%
  group_by(Employment) %>%
  summarise(Prop = survey_mean(vartype = c("se")))
```

Employment	Prop	Prop_se	
Unemployed	0.0429	0.0079	
Inactive	0.3840 0.01		
Employed	0.5731	0.0127	

Análisis de encuestas de hogares con R

Análisis de variables continuas

```
library(svyVGAM)
diseno_15 <- diseno_subbootstrap %>%
  filter(Age >= 15)
model_mul <- svy_vglm(
   formula = Employment ~ Age + Sex +
      Region + Zone, design = diseno_15,
      crit = "coef",
   family = multinomial(refLevel = "Unemployed"))</pre>
```

Análisis de encuestas de hogares con R

Análisis de variables continuas

```
tab_model <- tidy.svyVGAM(
    x = model_mul,
    exponentiate = FALSE,
    conf.int = FALSE) %>% data.frame()
tab_model
```

Análisis de encuestas de hogares con R

Análisis de variables continuas

y.level	term	estimate	std.error	statistic	p.value
1	(Intercept)	2.3807	0.9172	2.5956	0.0094
1	Age	0.0222	0.0130	1.7106	0.0872
1	SexMale	-2.2016	0.3480	-6.3271	0.0000
1	RegionSur	-0.4429	0.7460	-0.5938	0.5527
1	RegionCentro	0.3610	0.6167	0.5854	0.5582
1	RegionOccidente	0.2530	1.6797	0.1506	0.8803
1	RegionOriente	0.6130	0.8377	0.7317	0.4643
1	ZoneUrban	-0.2279	0.4650	-0.4900	0.6241
2	(Intercept)	2.1951	0.7707	2.8482	0.0044
2	Age	0.0185	0.0111	1.6685	0.0952
2	SexMale	-0.5930	0.2944	-2.0144	0.0440
2	RegionSur	-0.2809	0.6414	-0.4379	0.6615
2	RegionCentro	0.2517	0.5502	0.4575	0.6473
2	RegionOccidente	0.0973	1.6105	0.0604	0.9518
2	RegionOriente	0.4667	0.7579	0.6158	0.5380
2	ZoneUrban	0.0515	0.4349	0.1185	0.9057

Plot del IC para los coeficientes.

Análisis de encuestas de hogares con R

Análisis de variables continuas

```
tab_model %>%
 mutate(
   model = if else(
     y.level == 1,
      "Inactive",
      "Employed".
    sig = gtools::stars.pval(p.value)
  ) %>%
 dotwhisker::dwplot(
   dodge_size = 0.3,
    vline = geom_vline(xintercept = 1, colour = "grey60",
                       linetype = 2)) +
 guides(color = guide_legend(reverse = TRUE)) +
 theme_bw() + theme(legend.position = "top")
```

Plot del IC para los coeficientes.

Análisis de encuestas de hogares con R

Análisis de variables continuas

¡Gracias!

Análisis de encuestas de hogares con R

Análisis de variables continuas

Modelamiento de variables

 $\textit{Email}: \ and res. gutier rez@cepal.org$