Topology I – Homework 3

Junwoo Yang

May 8, 2020

Problem 3.1 Find the definition of the Cantor set and write it down.

Solution. Let $C_0 := [0,1]$ closed unit interval, and $I_1 := (\frac{1}{3},\frac{2}{3})$ the middle third of C_0 . Define $C_1 := C_0 \setminus I_1 = [0,\frac{1}{3}] \cup [\frac{2}{3},1]$. Next, we repeat this procedure for each sub-interval of C_1 ; that is, we delete the middle third open interval. At the second stage we get $C_2 = [0,\frac{1}{9}] \cup [\frac{2}{9},\frac{1}{3}] \cup [\frac{2}{3},\frac{7}{9}] \cup [\frac{8}{9},1]$. We repeat this process to define $C_k = C_{k-1} \setminus I_k$. Then, the Cantor set \mathcal{C} is by definition the intersection of all C_k 's:

$$\mathcal{C} = \bigcap_{k=0}^{\infty} C_k.$$

Problem 3.2 Show that the Cantor set C (i) is a closed subset of \mathbb{R} with empty interior. (ii) is uncountable. (iii) has no isolated point.

Solution. (i) C is an arbitrary intersection of closed set C_k 's. So, C is compact. Since any $c \in C$ is end-point of some interval C_k , B(c,r) contains points in some I_k . Thus there is no interior point.

(ii) The number in [0,1] can be written with ternary number system (3-adic number system). For $a \in I_k$, $a = 0, \dots$, the first 1 appears at k-th digit. Thus, $c \in \mathcal{C}$ can be expressed by 0 and 2. Consider the binary number system for [0,1]. $b \in [0,1]$ can be expressed by 0 and 1. Then we can construct a 1 to 1 correspondence between binary number expression of [0,1] and ternary number expression for $c \in \mathcal{C}$ by replacing 1 and 2. Hence \mathcal{C} is uncountable.

(iii) It is enough to show that every point $c \in \mathcal{C}$ is an accumulation point of \mathcal{C} . We know that the boundary of C_k belong to \mathcal{C} and the length of C_k goes to 0 as $k \to \infty$. Consider an open interval B(c,r) for any $c \in \mathcal{C}$, r > 0. There exsits $N \in \mathbb{N}$ such that the interval of C_k containg c as boundary on one side is contained in B(c,r) for $k \geq N$. The boundary of this interval belongs to \mathcal{C} . Therefore, $B(c,r) \cap \mathcal{C}$ has another boundary of C_k besides c. Hence every $c \in \mathcal{C}$ is an accumulation point of \mathcal{C} . Since \mathcal{C} is closed and has no isolated point, \mathcal{C} is perfect.