

ENSEMBLE METHODS

GRUPO 3

INTEGRANTES

ANA OLIVEIRA ANDRÉ SOUZA BRUNO DE SOUSA DONATO LUCAS DOS SANTOS GARCIA NICOLAS SPOGIS ROGER TREZZA THIAGO MARTINS THOMAZ BARROS VINICIUS VIZENZO

Benefícios e Desvantagens

Ensemble refere-se a uma técnica em aprendizado de máquina onde múltiplos modelos são combinados para melhorar o desempenho geral.

ENSEMBLE METHODS

Ensemble Methods podem ser traduzidos livremente como "Métodos de Conjunto". Esta tradução faz sentido, pois as técnicas de ensemble consistem justamente em combinar múltiplos modelos individuais para tentar melhorar a performance preditiva sobre um determinado problema.

Podemos fazer uma analogia desta técnica a um princípio conhecido como "A Sabedoria das Multidões", que estabelece que estimativas e respostas mais precisas podem ser obtidas combinando os julgamentos de diferentes avaliadores.

"Muitos são mais inteligentes que alguns, e a inteligência coletiva pode transformar os negócios, a economia, a sociedade e as nações"

JAMES SUROWIECKI:
THE WISDOM OF CROWDS (2004)

COMBINANDO OS MODELOS

Ao selecionarmos os modelos que iremos combinar, comumente utilizamos um algoritmo de aprendizado para modelos fracos homogêneos (Bagging e Boosting).

No entanto, existem métodos de ensemble que utilizam algoritmos diferentes para combinar modelos heterogêneos (Stacking).

A ideia é que a combinação de vários modelos possa compensar as fraquezas individuais de cada modelo, resultando em uma previsão mais precisa e robusta.

BAGGING

Consiste em reunir vários modelos independentes e encontrar a "média" das previsões com o intuito de obter um modelo de variância.

Boostrapping

BOOSTING

COMO É FEITO O TREINAMENTO EM BOOSTING?

Etapa 2

Etapa 3

A cada passo nosso modelo aprender a ir um pouco melhor

BAGGING VS. BOOSTING

Boosting Ensemble Method Bagging Ensemble Method Actual Data Actual Data Bootstrap Sample 02 **Bootstrap Sample 01 Bootstrap Sample 03 Bootstrap Sample 01** Bootstrap Sample 02 Bootstrap Sample 03 **VS** Model 01 Model 01 **Majority Voting**

Build Parallel

Build Sequentially

artificielle appliquée

PRINCIPAIS MÉTODOS DE ENSEMBLE

BAGGING

Processa os modelos de maneira independente paralela, e depois os combinam utilizando padrões determinísticos

(costuma considerar modelos fracos homogêneos

BOOSTING

Processa os modelos de maneira sequencial adaptativa, e depois os combinam utilizando padrões determinísticos

(costuma considerar modelos fracos homogêneos

STACKING

Processa os modelos de maneira paralela, e depois os combinam treinando um meta-modelo para realizar uma predição baseada em diferentes modelos fracos.

(costuma considerar modelos fracos heterogêneos

QUAL É O MELHOR?

Não há melhor nem pior; depende dos dados, das simulações e das circunstâncias.

Ambos são utilizados para o mesmo princípio. Portanto, talvez o melhor seja aquele que apresente a melhor relação entre variância e viés.

DECISION TREE

Predictors				Target		
					Decision Tree	
Outlook	Temp.	Humidity	Windy	Play Golf	Outlook	
Rainy	Hot	High	Falce	No		
Rainy	Hot	High	True	No	Sunny Overcast Rainy	
Overoast	Hot	High	Falce	Yes		
Sunny	Mild	High	Falce	Yes		
Sunny	Cool	Normal	Falce	Yes		
Sunny	Cool	Normal	True	No		
Overoast	Cool	Normal	True	Yes	Windy Yes Humidity	
Rainy	Mild	High	Falce	No	-	
Rainy	Cool	Normal	Falce	Yes		
Sunny	Mild	Normal	Falce	Yes	FALSE TRUE High Normal	
Rainy	Mild	Normal	True	Yes		
Overoact	Mild	High	True	Yes		
Overoast	Hot	Normal	Falce	Yes	Yes No No Yes	
Sunny	Mild	High	True	No		

RANDOM FOREST

Extensão da Árvore de Decisão (Leo Breiman e Adele Cutler, 1996)

- Classificação e regressão
- Melhor split Entropia, Log-loss (Ganho de informação de Shannon) e Gini

Exército de árvores de decisão

- Tomada de decisão colaborativa "Opinião" de vários estimadores
- Treinadas com amostras aleatórias
- Considerado subconjunto de features para split aumento da variabilidade

artificielle appliquée

RANDOM FOREST

Pontos positivos:

Reduz overfitting

Performa bem com dados de alta dimensionalidade

Paralelização

Regressão ou classificação

Lida bem com dados desbalanceados

Checagem de Feature importance

Consegue lidar com valores faltantes

Pontos negativos:

Menor interpretabilidade

Pode ser computacionalmente caro

EXTRATREES (EXTREME RANDOMIZED TREES)

- Variação de random forest proposta por Pierre Geurts, Damien Ernst e Louis Wehenkel
- Camada adicional de aleatoriedade por isso o nome "extreme":
 - Random Forest = Best Split (Entropia)
 - Extra Trees = Random Split
- Mais rápida na construção comparada a Random Forest por não buscar melhor ponto de divisão pode resultar em maior variância sem afetar significativamente a precisão
- Combinação de classificadores fracos (baixa acurácia) podem resultar em boa acurácia/performance

EXTRA TREES (EXTREME RANDOMIZED TREES)

Pontos positivos:

- Menor tempo de treinamento (comparada a random forest, pelo split aleatório)
- Modelo menos enviesado
- Reduz overfitting

Pontos negativos:

- Menor interpretabilidade
- Pode ter performance inferior a random forest
- Variáveis não relevantes podem influenciar na má performance do modelo (pela escolha aleatória).
- Necessário atenção ao pré-processamento para selecionar variáveis mais relevantes

