AMENDMENTS TO THE CLAIMS

Docket No.: 13111-00038-US1

This listing of the claims will replace all prior versions and listings of the claims in this application.

Listing of the Claims:

- 1. (Currently amended) A process for the hydroformylation of compounds containing which comprises, providing at least one compound with an ethylenically unsaturated double bond by reaction and reacting the at least one compound with carbon monoxide and hydrogen in at least one reaction zone in the presence of a catalytically active fluid which comprises a dissolved metal complex of a metal of transition group VIII of the Periodic Table of the Elements with at least one phosphoramidite compound as ligand, wherein the fluid is brought into contact with a at least one base base.
 - 2. (Currently amended) A process according to claim 1, wherein
- a) the ethylenically unsaturated compound(s) and carbon monoxide and hydrogen are fed into the reaction zone(s) and are reacted in the presence of the catalytically active fluid,
- b) an output is taken <u>further comprising removing</u> from the reaction zone and a product <u>mixture which</u> is subjected to a fractionation to give a fraction consisting essentially of the <u>a</u> hydroformylation product and a fraction comprising the catalytically active fluid in which the by-products of the hydroformylation which have boiling points higher than that of the hydroformylation product are present and the metal complex is dissolved, and
- e) the catalytically active fluid is, if appropriate after separating off at least part of the by products having boiling points higher than that of the hydroformylation product, recirculated recirculating the catalytically active fluid to the reaction zone.

3. (Currently amended) A process according to any of the preceding claims claim 1, wherein the at least one base is selected from among bases soluble in the catalytically active fluid, bases immobilized on a solid phase and or combinations thereof.

- 4. (Currently amended) A process according to any of the preceding claims claim 1, wherein the base is selected from among comprises a basic nitrogen compounds.
- 5. (Currently amended) A process according to any of the preceding claims claim 1, wherein the at least one base which is soluble in the catalytic fluid is used and is present in a molar ratio of base to phosphoramidite compound of from 0.01:1 to 5:1, preferably from 0.1:1 to 1.5:1, is maintained in the reaction zone.
- 6. (Currently amended) A process according to any of the preceding claims claim 1, wherein a combination of the at least one base includes a base soluble in the catalytic fluid and at least one a base immobilized on a solid phase is used and the immobilized bases are base is capable of at least partly liberating the soluble bases base from the acid-base adducts obtained by reaction of the soluble bases base with acids an acid.
- 7. (Currently amended) A process according to any of claims 2 to 6 claim 2, wherein the fractionation of the output from the reaction in step b) product mixture comprises a thermal separation step and at least one high-boiling soluble base which is present remains in the catalytically active fluid after the fractionation is used.
- 8. (Currently amended) A process according to any of claims 2 to 7 claim 2, wherein at least one base immobilized on a solid phase is used and the catalytically active fluid obtained in step b) after fractionation is brought into contact with the immobilized base before it is recirculated to the reaction zone.

9. (Currently amended) A process according to any of the preceding claims claim 1, wherein the phosphoramidite compound is selected from among compounds of the formulae I and II

$$R^{1} - P - (X^{2})_{b} - R^{3}$$

$$(X^{1})_{a}$$

$$| \qquad \qquad |$$

$$R^{2}$$
(I)

Docket No.: 13111-00038-US1

$$R^{1} - P - (X^{2})_{b} - Y - (X^{3})_{c} - P - R^{5}$$

$$(X^{1})_{a} \qquad (X^{4})_{d} \qquad (II)$$

$$R^{2} \qquad R^{4}$$

where

R¹ and R⁵ are each, independently of one another, pyrrole groups bound via the nitrogen atom to the phosphorus atom,

R², R³ and R⁴ are each, independently of one another, alkyl, cycloalkyl, heterocycloalkyl, aryl or hetaryl, or R¹ together with R² and/or R⁴ together with R⁵ forms a divalent group containing at least one pyrrole group bound via the pyrrolic nitrogen atom to the phosphorus atom,

Y is a divalent bridged group having from 2 to 20 bridge atoms between the flanking bonds,

 X^1, X^2, X^3 and X^4 are selected independently from among O, S, $SiR^{\alpha}R^{\beta}$ and NR^{γ} , where R^{α} , R^{β} and R^{γ} are each, independently of one another, hydrogen, alkyl, cycloalkyl, heterocycloalkyl, aryl or hetaryl, and

a, b, c and d are each, independently of one another, 0 or 1.

10. (Currently amended) A process according to any of the preceding claims, wherein the phosphoramidite compound is selected from among compounds of the formula II.1

$$R^{1}$$
— P — $(O)_{b}$ — Y — $(O)_{c}$ — P — R^{5}
 R^{2}
 R^{4}
(II.1)

Docket No.: 13111-00038-US1

where R^1 and R^5 are each, independently of one another, pyrrole groups bound via the nitrogen atom to the phosphorus atom,

 R^2 , R^4 and R^4 are each, independently of one another, alkyl, cycloalkyl, heterocycloalkyl, aryl or hetaryl, or R^1 together with R^2 and/or R^4 together with R^5 forms a divalent group containing at least one pyrrole group bound via the pyrrolic nitrogen atom to the phosphorus atom, R^5 .

Y is a divalent bridged group having from 2 to 20 bridge atoms, and b and c are each, independently of one another, 0 or 1as defined in claim 9.

11. (Currently amended) A process according to claim 9 or 10, wherein R^1 , R^2 , R^4 and R^5 are selected independently from among groups of the formulae III.a to III.k

where

Alk is a C1-C12-alkyl group and

 R^a , R^b , R^c and R^d are each, independently of one another, hydrogen, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, acyl, halogen, C_1 - C_4 -alkoxycarbonyl or carboxyl.

12. (Currently amended) A process according to any of claims 9 to 11 claim 9, wherein the bridging group Y is selected from among groups of the formulae IV.a to IV.u

$$R^{III}$$
 R^{IV}
 R^{V}
 R^{V}
 R^{V}
 R^{V}
 R^{V}

$$R^{III}$$
 R^{IV}
 R^{V}
 R^{V}
 R^{V}
 R^{V}
 R^{V}

$$R^{II}$$
 R^{V}
 R^{V}
 R^{VIII}
 R^{IX}
 R^{X}
 R^{XI}
 R^{XI}
 R^{XII}
 R^{XII}

where

 R^{I} , R^{II} , R^{III} , R^{III} , R^{III} , R^{IV} , R^{IV} , R^{V} , R^{V} , R^{VI} , R^{VIII} , R^{IX} , R^{X} , R^{XI} and R^{XII} are each, independently of one another, hydrogen, alkyl, cycloalkyl, heterocycloalkyl, aryl, hetaryl, hydroxy, thiol, polyalkylene oxide, polyalkylenimine, alkoxy, halogen, SO_3H , sulfonate, NE^1E^2 , alkylene- NE^1E^2 , nitro, alkoxycarbonyl, carboxyl, acyl or cyano, where E^1 and E^2 are identical or different radicals selected from among hydrogen, alkyl, cycloalkyl and aryl,

Z is O, S, NR^{δ} or $SiR^{\delta}R^{\epsilon}$, where

 R^{δ} and R^{ϵ} are each, independently of one another, hydrogen, alkyl, cycloalkyl, heterocycloalkyl, aryl or hetaryl,

or Z is a C_1 - C_4 -alkylene bridge which may have a double bond and/or bear an alkyl, cycloalkyl, heterocycloalkyl, aryl or hetaryl substituent,

or Z is a C_2 - C_4 -alkylene bridge which is interrupted by O, S or NR^{δ} or $SiR^{\delta}R^{\epsilon}$,

where, in the groups of the formulae IV.a and IV.b, two adjacent radicals R^I to R^{VI} together with the carbon atoms of the benzene ring to which they are bound may also form a fused ring system having 1, 2 or 3 further rings,

where, in the groups of the formulae IV.h to IV.n, two geminal radicals R^{I} , R^{II} ; R^{II} , R^{III} , R^{IIII} and/or R^{IV} , R^{IV} may also represent oxo or a ketal thereof,

 A^1 and A^2 are each, independently of one another, O, S, $SiR^{\phi}R^{\gamma}$, NR^{η} or $CR^{\iota}R^{\kappa}$, where $R^{\phi}_{...}R^{\gamma}$, R^{η} , R^{ι} and R^{κ} are each, independently of one another, hydrogen, alkyl, cycloalkyl, heterocycloalkyl, aryl or hetaryl,

A³ and A⁴ are each, independently of one another, SiR, N or CR⁴, D is a divalent bridging group of the formula

where

 R^9 , $R^{9'}$, R^{10} and $R^{10'}$ are each, independently of one another, hydrogen, alkyl, cycloalkyl, aryl, halogen, trifluoromethyl, carboxyl, carboxylate or cyano,

where R^{9'} together with R^{10'} can also represent the second bond of a double bond between the two carbon atoms to which R^{9'} and R^{10'} are bound, and/or R⁹ and R¹⁰ together with the carbon atoms to which they are bound may also form a 4- to 8-membered carbocycle or heterocycle which may additionally be fused with one, two or three cycloalkyl, heterocycloalkyl, aryl or hetaryl groups, where the heterocycle and, if present, the fused-on groups may each bear, independently of one another, one, two, three or four substituents selected from among alkyl, cycloalkyl, heterocycloalkyl, aryl, hetaryl, COOR^f, COO'M⁺, SO₃R^f, SO'₃M⁺, NE⁴E⁵, alkylene-NE⁴E⁵, NE⁴E⁵E⁶⁺X⁻, alkylene-NE⁴E⁵E⁶⁺X⁻, OR^f, SR^f, (CHR^eCH₂O)_yR^f, (CH₂N(E⁴))_yR^f, (CH₂N(E⁴))_yR^f, halogen, trifluoromethyl, nitro, acyl and cyano, where

R^f, E⁴, E⁵ and E⁶ are identical or different radicals selected from among hydrogen, alkyl, cycloalkyl and aryl,

R^e is hydrogen, methyl or ethyl, M⁺ is a cation, is an anion and y is an integer from 1 to 240.

13. (Currently amended) A method of stabilizing a catalytically active fluid comprising a dissolved metal complex of a metal of transition group VIII of the Periodic Table of the Elements with at least one phosphoramidite compound as ligand in the hydroformylation of ethylenically unsaturated compounds, which comprises bringing the fluid into contact with a at least one base.

14. (Currently amended) A method according to claim 13, wherein the fluid is admixed with a base which is soluble therein in the catalytically active fluid and/or the fluid is brought into contact with a base immobilized on a solid phase.

- 15. (Currently amended) The use of bases at least one base for stabilizing a catalytically active fluid comprising a dissolved metal complex of a metal of transition group VIII of the Periodic Table of the Elements with at least one phosphoramidite compound as ligand in the hydroformylation of ethylenically unsaturated compounds.
- 16. (New) A process according to claim 2 further comprising removing at least part of the by-products from the catalytically active fluid prior to recirculating the fluid.
 - 17. (New) A process according to claim 5, wherein the molar ratio is from 0.1:1 to 1.5:1.
- 18. (New) A process according to claim 10, wherein R¹, R², R⁴ and R⁵ are selected independently from among groups of the formulae III.a to III.k

$$R^{a} \xrightarrow{N} C (=0) \text{ Alk} \qquad R^{b} \xrightarrow{N} COOAlk \qquad R^{b} \qquad R^{d}$$
(III.h) (III.k)

where

Alk is a C₁-C₁₂-alkyl group and

 R^a , R^b , R^c and R^d are each, independently of one another, hydrogen, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, acyl, halogen, C_1 - C_4 -alkoxycarbonyl or carboxyl.

19. (New) A process according to claim 10, wherein the bridging group Y is selected from among groups of the formulae IV.a to IV.u

$$R^{III}$$
 R^{IV}
 R^{V}
 R^{V}
 R^{V}
 R^{V}
 R^{V}

$$R^{III}$$
 R^{IV}
 R^{V}
 R^{V}
 R^{V}
 R^{V}
 R^{V}

$$R^{III}$$
 R^{IV}
 R^{VI}
 R^{VIII}
 R^{VIII}
 R^{VIII}

$$R^{II}$$
 R^{V}
 R^{V}
 R^{VIII}
 R^{IX}
 R^{XII}
 R^{XII}
 R^{XII}
 R^{XII}

$$R^{IV}$$
 R^{V}
 R^{VIII}
 R^{IX}
 R^{XI}
 R^{XII}
 R^{XII}
 R^{XII}
 R^{XII}

$$R^{II} \xrightarrow{R^{II'}} R^{III'}$$

$$R^{II} \xrightarrow{R^{II'}} R^{III'}$$

$$R^{IV} \xrightarrow{R^{IV}} R^{IV}$$

where

 R^{I} , R^{II} , R^{III} , R^{III} , R^{III} , R^{IV} , R^{IV} , R^{V} , R^{V} , R^{VI} , R^{VII} , R^{IX} , R^{X} , R^{X} and R^{XII} are each, independently of one another, hydrogen, alkyl, cycloalkyl, heterocycloalkyl, aryl, hetaryl, hydroxy, thiol, polyalkylene oxide, polyalkylenimine, alkoxy, halogen, SO_3H , sulfonate, NE^1E^2 , alkylene- NE^1E^2 , nitro, alkoxycarbonyl, carboxyl, acyl or cyano, where E^1 and E^2 are identical or different radicals selected from among hydrogen, alkyl, cycloalkyl and aryl,

Z is O, S, NR^{δ} or $SiR^{\delta}R^{\epsilon}$, where

 R^{δ} and R^{ϵ} are each, independently of one another, hydrogen, alkyl, cycloalkyl, heterocycloalkyl, aryl or hetaryl,

or Z is a C₁-C₄-alkylene bridge which may have a double bond and/or bear an alkyl, cycloalkyl, heterocycloalkyl, aryl or hetaryl substituent,

Docket No.: 13111-00038-US1

or Z is a C_2 - C_4 -alkylene bridge which is interrupted by O, S or NR^{δ} or $SiR^{\delta}R^{\epsilon}$,

where, in the groups of the formulae IV.a and IV.b, two adjacent radicals R^I to R^{VI} together with the carbon atoms of the benzene ring to which they are bound may also form a fused ring system having 1, 2 or 3 further rings,

where, in the groups of the formulae IV.h to IV.n, two geminal radicals R^{I} , R^{II} ; R^{II} , R^{III} , R^{IIII} and/or R^{IV} , R^{IV} may also represent oxo or a ketal thereof,

 A^1 and A^2 are each, independently of one another, O, S, $SiR^{\phi}R^{\gamma}$, NR^{η} or $CR^{\iota}R^{\kappa}$, where $R^{\phi}_{..}R^{\gamma}$, R^{η} , R^{ι} and R^{κ} are each, independently of one another, hydrogen, alkyl, cycloalkyl, heterocycloalkyl, aryl or hetaryl,

A³ and A⁴ are each, independently of one another, SiR, N or CR⁴,

D is a divalent bridging group of the formula

where

R⁹, R⁹, R¹⁰ and R¹⁰ are each, independently of one another, hydrogen, alkyl, cycloalkyl, aryl, halogen, trifluoromethyl, carboxyl, carboxylate or cyano,

where R^{9'} together with R^{10'} can also represent the second bond of a double bond between the two carbon atoms to which R^{9'} and R^{10'} are bound, and/or R⁹ and R¹⁰ together with the carbon atoms to which they are bound may also form a 4- to 8-membered carbocycle or heterocycle which may additionally be fused with one, two or three cycloalkyl, heterocycloalkyl, aryl or hetaryl groups, where the heterocycle and, if present, the fused-on groups may each bear, independently of one another, one, two, three or four substituents selected from among alkyl, cycloalkyl, heterocycloalkyl, aryl, hetaryl, COOR^f, COO'M⁺, SO₃R^f, SO⁻³M⁺, NE⁴E⁵, alkylene-

 NE^4E^5 , $NE^4E^5E^{6+}X^-$, alkylene- $NE^4E^5E^{6+}X^-$, OR^f , SR^f , $(CHR^eCH_2O)_yR^f$, $(CH_2N(E^4))_yR^f$, $(CH_2CH_2N(E^4))_yR^f$, halogen, trifluoromethyl, nitro, acyl and cyano, where

R^f, E⁴, E⁵ and E⁶ are identical or different radicals selected from among hydrogen, alkyl, cycloalkyl and aryl,

R^e is hydrogen, methyl or ethyl,

M⁺ is a cation,

is an anion and

y is an integer from 1 to 240.

20 (New) A process according to claim 11, wherein the bridging group Y is selected from among groups of the formulae IV.a to IV.u

$$R^{III}$$
 R^{IV}
 R^{V}
 R^{V}
 R^{V}
 R^{V}
 R^{V}

$$R^{III}$$
 R^{IV}
 R^{V}
 R^{V}
 R^{V}
 R^{V}
 R^{V}

$$R^{II} \xrightarrow{R^{IV}} R^{V} \xrightarrow{R^{VI}} R^{VII}$$

$$R^{I} \xrightarrow{R^{VIII}} R^{VIII}$$

$$R^{VIII}$$

$$R^{III} \qquad R^{VI} \qquad R^{VI} \qquad R^{VIII} \qquad R^{II} \qquad R^{VI} \qquad R^{VIII} \qquad R^{X} \qquad$$

$$R^{IV}$$
 R^{V}
 R^{VIII}
 R^{IX}
 R^{VII}
 R^{XII}
 R^{XII}
 R^{XII}
 R^{XII}

$$R^{II} \qquad R^{III} \qquad R^{II$$

where

 R^{I} , R^{II} , R^{III} , R^{III} , R^{III} , R^{IV} , R^{IV} , R^{V} , R^{V} , R^{VI} , R^{VIII} , R^{IX} , R^{X} , R^{XI} and R^{XII} are each, independently of one another, hydrogen, alkyl, cycloalkyl, heterocycloalkyl, aryl, hetaryl, hydroxy, thiol, polyalkylene oxide, polyalkylenimine, alkoxy, halogen, SO_3H , sulfonate, NE^1E^2 , alkylene- NE^1E^2 , nitro, alkoxycarbonyl, carboxyl, acyl or cyano, where E^1 and E^2 are identical or different radicals selected from among hydrogen, alkyl, cycloalkyl and aryl,

Z is O, S, NR^{δ} or $SiR^{\delta}R^{\epsilon}$, where

 R^{δ} and R^{ϵ} are each, independently of one another, hydrogen, alkyl, cycloalkyl, heterocycloalkyl, aryl or hetaryl,

or Z is a C₁-C₄-alkylene bridge which may have a double bond and/or bear an alkyl, cycloalkyl, heterocycloalkyl, aryl or hetaryl substituent,

or Z is a C_2 - C_4 -alkylene bridge which is interrupted by O, S or NR^{δ} or $SiR^{\delta}R^{\epsilon}$,

where, in the groups of the formulae IV.a and IV.b, two adjacent radicals R^I to R^{VI} together with the carbon atoms of the benzene ring to which they are bound may also form a fused ring system having 1, 2 or 3 further rings,

where, in the groups of the formulae IV.h to IV.n, two geminal radicals R^{I} , R^{II} ; R^{III} , R^{IIII} and/or R^{IV} , R^{IV} may also represent oxo or a ketal thereof,

 A^1 and A^2 are each, independently of one another, O, S, $SiR^{\phi}R^{\gamma}$, NR^{η} or $CR^{\iota}R^{\kappa}$, where $R^{\phi}_{...}R^{\gamma}$, R^{η} , R^{ι} and R^{κ} are each, independently of one another, hydrogen, alkyl, cycloalkyl, heterocycloalkyl, aryl or hetaryl,

A³ and A⁴ are each, independently of one another, SiR, N or CR^t,
D is a divalent bridging group of the formula

where

R⁹, R⁹, R¹⁰ and R¹⁰ are each, independently of one another, hydrogen, alkyl, cycloalkyl, aryl, halogen, trifluoromethyl, carboxyl, carboxylate or cyano,

where R^{9'} together with R^{10'} can also represent the second bond of a double bond between the two carbon atoms to which R^{9'} and R^{10'} are bound, and/or R⁹ and R¹⁰ together with the carbon atoms to which they are bound may also form a 4- to 8-membered carbocycle or heterocycle which may additionally be fused with one, two or three cycloalkyl, heterocycloalkyl, aryl or hetaryl groups, where the heterocycle and, if present, the fused-on groups may each bear, independently of one another, one, two, three or four substituents selected from among alkyl, cycloalkyl, heterocycloalkyl, aryl, hetaryl, COOR^f, COO⁻M⁺, SO₃R^f, SO⁻₃M⁺, NE⁴E⁵, alkylene-NE⁴E⁵, NE⁴E⁵E⁶⁺X⁻, alkylene-NE⁴E⁵E⁶⁺X⁻, OR^f, SR^f, (CHR^eCH₂O)_yR^f, (CH₂N(E⁴))_yR^f, halogen, trifluoromethyl, nitro, acyl and cyano, where

 R^f , E^4 , E^5 and E^6 are identical or different radicals selected from among hydrogen, alkyl, cycloalkyl and aryl,

R^e is hydrogen, methyl or ethyl,

M⁺ is a cation,

is an anion and

y is an integer from 1 to 240.