HW7

Wednesday, November 1, 2023 10:08 PM

Chapter 7:

Problems: 10, 20, 41, 42, and 54

$$T_{\xi} = \frac{20+20}{2} = 25 \text{ °C } (2.98 \text{ K})$$

$$\frac{7A4}{2} \rightarrow K = 26.3 \times 10^{3} \text{ Wark}$$

$$y = 15.59 \times 10^{6} \text{ W/s}$$

$$f_{\xi} = 0.767$$

Re = VI = (524)(20) = 629327 TURDULUT eg 736 Nu_= 0.0296Re 45 7 43 = 0.0296(62937) (0.704) Ny=hL - 1= (1148.68)(26.5×0534/4K) = 15.1 4/2/2

$$Q = J_{A}A\Delta T = (15.1 \%)(2m \times 3m)(30 - 20 K) \in 906 W$$

$$C_{D} = 0.0592 Re_{X} = 0.0592 (629327)^{1/5} = 0.004098$$

$$F_{D} = C_{O} A \rho V^{2}/2 = (0.004098)(2m \times 3m)(1.1649 K \%)(5m/5)^{2} + (0.557 N)$$

- 7.20 Consider a rectangular fin that is used to cool a motor cycle engine. The fin is 0.15 m long and at a temperature of 250°C, while the motorcycle is moving a 80 km/h in air at 27°C. The air is in parallel flow over both surfaces of the fin, and turbulent flow condition may be assumed to exist throughout.
 - (a) What is the rate of heat removal per unit width of the fin?

$$T_{f} = \frac{250 + 27}{2} = 138.5 \text{ C} (41.5 \text{ K})$$
 $TA4 - 9 \quad K \approx 35 \times 10^{-3} \text{ Wak}$
 $Pr \approx 0.089$
 $V \approx 27.5 \times 10^{-4} \text{ M/s}$

$$g = hA\Delta T$$
 $N_a = \frac{hL}{K} \rightarrow h = \frac{N_a K}{L}$
 $e_a = 7.56 \quad Nu = 0.0296 \quad Re^{46} Pr^{1/3}$
 $Nu = 0.0296 \quad (21090)^{1/3} \quad (0.681)^{1/3}$
 $Nu = 304.7$
 $h = \frac{(304.7)(35 \times 10^{-5} \text{W/MS})}{(0.15 \text{m})} = 7.07 \quad \text{Mark}$

- (b) What fin length would provide a close approximation to the heat rate found in part (a)? *Hint*: Refer to Example 3.9.
 (c) Determine the fin effectiveness, ε_j.
- (d) What is the percentage increase in the heat rate from A_{κ} due to installation of the fin?

V= 5 3

T=29'E

A = 0.000+ m2

D=0.005M

the circular cyl	lar cylinder in cross flow [12, 13]			
Re_D	c	m		
0.4-4	0.989	0.330		
4-40	0.911	0.385		
40-4000	0.683	0.466		
4000-40,000	0.193	0.618		
40,000-400,000	0.027	0.805		

T T	127+27 = 77 C (350K)	TAY	~	28.92 NOT MYS 30×10-3 WMK 0.700	
	Ar	SI 3A4	ه سوا ی بیا	W/	

$$Re_{0} = \frac{VD}{Y} = \frac{(5m/3)(0.005m)}{(20.71\times10^{-6}m/5)} = 1862$$

$$eq 7.52 \quad Nu_{0} = \frac{ND}{K} = CRe_{0}^{M} Pr^{V_{3}}$$

$$\overline{J_{n}} = \frac{K}{D} CRe_{0}^{M} Pr^{V_{3}} = \frac{(30\times10^{-5} \text{ W/mc})}{(0.005m)} (0.683) (1862) (0.700)^{3}$$

$$\overline{J_{n}} = 98.70$$

Correlation		Geometry	Conditions
$\delta = 5x Re_x^{-1/2}$	(7.19)	Flat plate	Laminar, T_f
$C_{f,x} = 0.664 Re_x^{-1/2}$	(7.20)	Flat plate	Laminar, local, T_f
$Nu_x = 0.332 Re_x^{1/2} Pr^{1/3}$	(7.23)	Flat plate	Laminar, local, T_f , $Pr \gtrsim 0.6$
$\delta_i = \delta Pr^{-1/3}$	(7.24)	Flat plate	Laminar, T_f
$\overline{C}_{f,x} = 1.328 Re_x^{-1/2}$	(7.29)	Flat plate	Laminar, average, T_f

Table 7.7 (Continued)						
Correlation		Geometry	Conditions ^c			
$\overline{Nu}_x = 0.664 Re_x^{1/2} Pr^{1/3}$	(7.30)	Flat plate	Laminar, average, T_f , $Pr \gtrsim 0.6$			
$Nu_x = 0.564 Pe_x^{1/2}$	(7.32)	Flat plate	Laminar, local, T_f , $Pr \lesssim 0.05$, $Pe_x \gtrsim 100$			
$C_{f,x} = 0.0592 Re_x^{-1/5}$	(7.34)	Flat plate	Turbulent, local, T_f , $Re_x \lesssim 10^8$			
$\delta = 0.37x Re_x^{-1/5}$	(7.35)	Flat plate	Turbulent, T_f , $Re_x \lesssim 10^8$			
$Nu_x = 0.0296 Re_x^{4/5} Pr^{1/3}$	(7.36)	Flat plate	Turbulent, local, T_f , $Re_x \lesssim 10^8$, $0.6 \lesssim Pr \lesssim 60$			
$\overline{C}_{f,L} = 0.074 Re_L^{-1/5} - 1742 Re_L^{-1}$	(7.40)	Flat plate	Mixed, average, T_f , $Re_{s,c} = 5 \times 10^5$, $Re_L \lesssim 10^8$			
$\overline{Nu}_L = (0.037 Re_L^{4/5} - 871) Pr^{1/3}$	(7.38)	Flat plate	Mixed, average, T_f , $Re_{sc} = 5 \times 10^5$, $Re_L \lesssim 10^8$, $0.6 \lesssim Pr \lesssim 60$			