Introduction
Background
Methodology
Applications

Variable Selection for Clustering via Manly Transformation

Elisa Du

Supervised by Dr.Paul McNicholas

McMaster University

April 9, 2020

Introduction

Background

Introduction

Application

2 Background

Reference

Methods

4 Applications

5 Summary

6 Appendix

Introduction

Introduction

Methodolo Application Summary References

- In the era of big data, data sets are becoming more massive.
- High-dimensional data can lead to overparameterization when fitting models.
- This makes variable selection an important area of study.

Introduction (cont'd)

Introduction

Methodolog Applications Summary

- Clustering is a form of unsupervised learning.
- Finite mixture models (McLachlan and Peel, 2000) have become a popular tool for clustering.
- Clusters in this context can be viewed as components within a mixture model (McNicholas, 2016).

Introduction (cont'd)

Introduction

Background

Applications

References

Appendia

- Challenges in clustering with high-dimensional data include:
 - high computational intensity
 - reduced interpretability in the data set
 - high financial costs
 - at times unsatisfactory clustering performance of the model (Andrews and McNicholas, 2014).
- Variable selection techniques can improve clustering performance.
 - by removing noisy variables to improve the algorithm's ability to achieve more distinctive data group separation.

Introduction (cont'd)

Introduction

Methodolog
Application
Summary
References

- Much work has been done on model-based variable selection methods in Gaussian settings.
- But in many real-world data sets, variables deviate from normality.
 - Variable selection methods in Gaussian settings are no longer plausible.
- Here we propose and test an approach that enables *skewed* variable selection.

Finite Mixture Models

ntroduction

Background

Application

_

Appendix

- Finite mixture models can be applied in three settings: model-based clustering, classification, and discriminant analysis (McNicholas, 2016).
- Here we focus on clustering.
- The density of a random vector X, for all x ⊂ X, from a finite mixture distribution is written

$$f(\mathbf{x}|\mathbf{v}) = \sum_{g=1}^{G} \pi_g f_g(\mathbf{x}|\theta_g)$$
 (1)

where mixing proportions $\pi_g > 0$ and satisfy $\sum_{g=1}^G \pi_g = 1$, $f_1(\mathbf{x}|\boldsymbol{\theta}_g),...,f_G(\mathbf{x}|\boldsymbol{\theta}_g)$ are the component densities that are usually of the same type, and $\mathbf{v} = (\pi,\theta_1,...,\theta_G)$ is the vector of parameters with $\mathbf{\pi} = (\pi_1,...,\pi_G)$.

Gaussian Finite Mixture Model

ntroduction

Background

Application

Summary

Reference

Appendix

 A popular mixture model is the mixture of multivariate Gaussian distributions, with density written

$$f(\mathbf{x}|\mathbf{v}) = \sum_{g=1}^{G} \pi_g \phi(\mathbf{x}|\boldsymbol{\mu}_g, \boldsymbol{\Sigma}_g), \qquad (2)$$

where $\phi\left(\mathbf{x}|\boldsymbol{\mu}_{g},\boldsymbol{\Sigma}_{g}\right)$ is the multivariate Gaussian density with mean $\boldsymbol{\mu}_{g}$ and covariance matrix $\boldsymbol{\Sigma}_{g}$. (McNicholas, 2016).

 Next we introduce a family of models based on the Gaussian mixture model.

MCLUST Family of Mixture Models

Introduction

Background

Application

Summary

References Appendix The total number of parameters of a p-dimensional random variable from a G-component Gaussian mixture model is equal to

$$G-1+Gp+\frac{Gp(p+1)}{2}.$$
 (3)

- Banfield and Raftery (1993) proposed placing constraints on the elements of the eigen-decomposed components of the covariance matrix.
- The constraints gave rise to the family of eight Gaussian models known as the MCLUST family. (Fraley and Raftery, 2002).

Model Selection in MCLUST Family

Background
Methodology

Application Summary

Reference Appendix

- A well-established model selection criterion is the Bayesian information criterion (BIC; Schwarz, 1978).
- The MCLUST family of models (Fraley and Raftery, 2002) chooses the model with the highest BIC, here given

$$BIC = 2\ell(\hat{\mathbf{v}}) - \rho \log n, \tag{4}$$

where $\hat{\mathbf{v}}$ is the maximum likelihood estimate of \mathbf{v} , $\ell(\hat{\mathbf{v}})$ is the maximized log-likelihood, n is the number of observations, and ρ is the number of free parameters estimated in the model.

Membership Labels

Introduction

Background

Application

Summary

References Appendix • The true membership of observation x_i from component g is denoted as the indicator variable z_{ig} , i.e.

$$z_{ig} = \begin{cases} 1 & \text{if } \mathbf{x_i} = (x_{i1}, ..., x_{ip}) \text{ belongs to cluster g,} \\ 0 & \text{otherwise.} \end{cases}$$

• "Soft" or "fuzzy" a posteriori predicted membership falling in the interval [0,1] is often used for interpretability, given

$$\hat{z}_{ig} := \frac{\hat{\pi}_g \phi \left(\mathbf{x}_i \middle| \hat{\boldsymbol{\mu}}_g, \hat{\boldsymbol{\Sigma}}_g \right)}{\sum_{h=1}^G \hat{\pi}_h \phi \left(\mathbf{x}_i \middle| \hat{\boldsymbol{\mu}}_h, \hat{\boldsymbol{\Sigma}}_h \right)}$$
(5)

for i = 1, ..., n and g = 1, ..., G (McNicholas, 2016).

Parameter Estimation

Background
Methodology
Applications
Summary
References

- The expectation-maximization (EM) algorithm (Dempster, Laird, and Rubin, 1977) is commonly used to compute model parameter estimates.
- E-step updates \hat{z}_{ig} , and M-step updates parameter estimates.
 - The two steps are iterated until convergence, usually by some lack of progress criterion.
- We will introduce a variant of the EM algorithm later on...

Clustering Performance Measures

Background
Methodology

Summary

• The Rand index (ARI; Rand, 1971) measures the similarity between estimated and actual clustering membership.

$$RI = \frac{\text{number of pairwise agreements}}{\text{total number of pairs}}.$$
 (6)

- The adjusted Rand Index(ARI; Hubert and Arabie, 1985) accounts for chance agreement between two random groupings.
 - Expected value of ARI = 0 indicates random clustering (Steinley, 2004).
 - ARI = 1 indicates perfect cluster agreement.

Variable Selection in Gaussian settings

Background
Methodology
Applications
Summary
References

- We introduce two variable selection techniques suitable in Gaussian settings (McNicholas, 2016).
- clustvarsel selects variables by comparing models using approximate Bayes factors (Kass and Raftery, 1995).
- Variable selection for clustering and classification (VSCC) technique has the aim of "simultaneously minimizing the 'within-group' variance and maximizing the 'between-group' variance" (Andrews and McNicholas, 2014).

Skewed Variable Selection

ntroduction

Background

. . . .

_ . .

References

Reference Appendix

- Skewed variables are encountered in research in sleep (Wallace et al., 2017), drug-screening (Lo, Brinkman, and Gottardo, 2008), and facial recognition (Wang et al., 2019).
- Fitting Gaussian mixture models to skewed data can result in poor clustering recovery or overfitting.
- Two approaches to model skewness are:
 - choosing components that use asymmetric distributions to improve fit, and
 - 2 transforming the data to near-normality.

Approach 1: Skewvarsel

Background
Methodology
Applications
Summary
References

- Wallace et al. (2017) recently introduced the *skewvarsel* technique for skewed variable selection.
- Recall clustvarsel (Raftery and Dean, 2006; Scrucca and Raftery, 2018) is applicable in Gaussian settings.
- skewvarsel is a step-wise regression algorithm that extends clustvarsel to the multivariate skew normal distribution.
 (Pyne et al., 2009; Azzalini and Valle, 1996)

Approach 2: Manly Transformation

ntroduction

Background
Methodology

Applicatio

Summary

Appendi

- A widely known transformation is the Box-Cox power transformation (Box and Cox, 1964).
 - It has the drawback of only handling positive data values.
- Manly exponential transformation (Manly, 1976) can handle data ranging from $-\infty$ to $+\infty$.
- ullet In the univariate case, for the scalar variable x, Manly transformation is given by

$$y = \begin{cases} \frac{e^{\lambda x} - 1}{\lambda} & \lambda \neq 0, \\ x & \lambda = 0, \end{cases}$$

where λ is the transformation parameter and y is the transformed variable.

Multivariate Manly Transformation

Introduction

Background

Application

Summary

Reference Appendix • Zhu and Melnykov (2018) extend the Manly transformation to the multivariate scenario, where there are n p-dimensional data vectors $\mathbf{x_1},...,\mathbf{x_n}$. Assume there exists a transformation vector $\boldsymbol{\lambda_g} = (\lambda_{g1},...,\lambda_{gp})^{'}$ for component g=1,...,G, so that the transformed vector is written

$$\mathbf{Y}_{g} = \left(\frac{\mathrm{e}^{\lambda_{g1}\mathbf{x}_{1}} - 1}{\lambda_{g1}}, ..., \frac{\mathrm{e}^{\lambda_{gp}\mathbf{x}_{p}} - 1}{\lambda_{gp}}\right) \sim N_{p}\left(\mu_{g}, \Sigma_{g}\right).$$
 (7)

 This led to the Manly mixture model used to model skew data...

The Manly Mixture model

Introduction

Background

Methodology

Applications

Summary

References

- Each component of the Manly mixture model (Zhu and Melnykov, 2018) can be obtained via a back-transformation from the Gaussian distribution to the original skewed data.
- The density of the Manly mixture model is written

$$g\left(\mathbf{x}\middle|\mathbf{v}\right) = \sum_{g=1}^{G} \pi_{g} \phi\left(\mathcal{M}\left(\mathbf{x}, \boldsymbol{\lambda}_{g}\right)\middle|\boldsymbol{\mu}_{g}, \boldsymbol{\Sigma}_{g}\right) \exp\{\boldsymbol{\lambda}_{g}^{'} \boldsymbol{x}\}, \quad (8)$$

where $\mathcal{M}\left(\mathbf{x}, \lambda_g\right) \equiv \mathbf{Y}_g$ is the original data $\mathcal{X} = \mathbf{x}_1, ..., \mathbf{x}_n$ transformed to normality, $\phi\Big(\cdot \Big| \mu_g, \Sigma_g\Big)$ is the multivariate Gaussian density with mean μ_g and covariance matrix Σ_g , and λ_g is the Manly transformation parameter of \mathcal{X} for the gth component.

Manly-EM Introduction

Introduction
Background

Background Methodology

Application

References

Appendix

- Zhu and Melnykov (2018) proposed a variant of the EM algorithm to compute parameter estimates of the Manly mixture model.
- Here we refer to this algorithm as Manly-EM.
- The likelihood of Manly mixture model can be written by

$$\mathcal{L}(\mathbf{v}) = \prod_{i=1}^{n} \left(\sum_{g=1}^{G} \pi_{g} \phi \left(\mathcal{M}(\mathbf{x}, \lambda_{g}) \middle| \boldsymbol{\mu}_{g}, \boldsymbol{\Sigma}_{g} \right) \exp\{\boldsymbol{\lambda}_{g}^{'} \mathbf{x}\} \right), \tag{9}$$

where $\mathcal{M}\left(\mathbf{x}, \lambda_g\right)$ is the transformed data, $\phi\left(\cdot \middle| \mu_g, \Sigma_g\right)$ is the multivariate Gaussian density with mean μ_g and covariance matrix Σ_g , and λ_g is the Manly transformation parameter of \mathcal{X} for the gth component.

Manly-EM algorithm

Introduction

Background

Methodology

Summary

References

Appendix

 In the E-step, the conditional expectation of the complete-data log-likelihood is computed, also known as the Q-function, given by

$$Q\left(\mathbf{v}\middle|\hat{\mathbf{v}},\mathbf{x}\right) = \sum_{i=1}^{n} \sum_{g=1}^{G} \hat{z}_{ig} \left[\log\left\{\pi_{g}\phi\left(\mathcal{M}\left(\mathbf{x}_{i}, \boldsymbol{\lambda}_{g}\right)\middle|\boldsymbol{\mu}_{g}, \boldsymbol{\Sigma}_{g}\right)\right\} + \boldsymbol{\lambda}_{g}^{'}\mathbf{x}_{i}\right], \tag{10}$$

which simplifies to updating \hat{z}_{ig} , the *a posteriori* membership probability for each component, given by

$$\hat{z}_{ig} = \frac{\hat{\pi}_{g}\phi\left(\mathcal{M}\left(\mathbf{x}_{i}, \hat{\boldsymbol{\lambda}}_{g}\right) \middle| \hat{\boldsymbol{\mu}}_{g}, \hat{\boldsymbol{\Sigma}}_{g}\right) \exp\{\hat{\boldsymbol{\lambda}}_{g}^{'}\mathbf{x}_{i}\}}{\sum_{h=1}^{G} \hat{\pi}_{h}\phi\left(\mathcal{M}\left(\mathbf{x}_{i}, \hat{\boldsymbol{\lambda}}_{h}\right) \middle| \hat{\boldsymbol{\mu}}_{h}, \hat{\boldsymbol{\Sigma}}_{h}\right) \exp\{\hat{\boldsymbol{\lambda}}_{h}^{'}\mathbf{x}_{i}\}}.$$
(11)

Manly-EM algorithm (cont'd)

Methodology

 The M-step computes the parameter estimates by maximizing the Q-function with respect to each of π_{g} , μ_{g} , and Σ_{g} , giving

$$\hat{\pi}_{g} = \frac{\sum_{i=1}^{n} \hat{z}_{ig}}{n}, \qquad (12) \qquad \hat{\mu}_{g} = \frac{\sum_{i=1}^{n} \hat{z}_{ig} \mathcal{M}\left(\mathbf{x}_{i}, \hat{\lambda}_{g}\right)}{\sum_{i=1}^{n} \hat{z}_{ig}}, \quad (13)$$

$$\hat{\Sigma}_{g} = \frac{\sum_{i=1}^{n} \hat{z}_{ig} \left(\mathcal{M} \left(\mathbf{x}_{i}, \hat{\lambda}_{g} \right) - \hat{\boldsymbol{\mu}}_{g} \right) \left(\mathcal{M} \left(\mathbf{x}_{i}, \hat{\lambda}_{g} \right) - \hat{\boldsymbol{\mu}}_{g} \right)'}{\sum_{i=1}^{n} \hat{z}_{ig}}.$$
 (14)

• Since the closed-form solution for $\hat{\lambda}_{g}$ is not available, Nelder-Mead numerical optimization (Nelder and Mead, 1965) is used.

Manly-EM algorithm (cont'd)

Background

Methodology

Applications

Summary

- Nelder-Mead method (Nelder and Mead, 1965) find the values that optimize a multidimensional unconstrained function without requiring any derivative information.
- $oldsymbol{\circ}$ To compute $\hat{\lambda}_{\mathbf{g}}$, the component-wise \mathcal{Q} -function is maximized using Nelder-Mead optimization, written

$$Q_{g}\left(\lambda_{g}\middle|\hat{\mathbf{v}}\right)(\lambda_{g}) = \sum_{i=1}^{n} \hat{z}_{ig} \left\{\log \phi\left(\mathcal{M}\left(\mathbf{x}_{i}, \lambda_{g}\right)\middle|\boldsymbol{\mu}_{g}, \boldsymbol{\Sigma}_{g}\right) + \lambda_{g}'\mathbf{x}_{i}\right\} + const.$$
(15)

• Note the relation between $\mathcal Q$ and $\mathcal Q_g$:

$$Q\left(\mathbf{v}\middle|\hat{\mathbf{v}},\mathbf{x}\right) = \sum_{g=1}^{G} \left[\sum_{i=1}^{n} \hat{z}_{ig} \log \hat{\pi}_{g} + Q_{g}\right].$$
 (16)

Manly-EM: initialization and convergence

Introduction
Background
Methodology
Applications
Summary

 Convergence criterion is the relative difference of Q-function values between consecutive iterations, i.e.

$$Q^{(k)} - Q^{(k-1)} < \epsilon, \tag{17}$$

where $Q^{(k)}$ is the conditional expectation of complete-data log-likelihood at iteration k.

• Initialization of \hat{z}_{ig} is via K-means (Macqueen, 1967) clustering, and $\hat{\lambda}_g$ is initialized with value of 0.1 for each of the p variables.

VSCC algorithm

Introduction
Background
Methodology
Applications
Summary

Summary
References

- The central idea of VSCC is to find the variables that minimize the within-group variance and maximize the between-group variance (Andrews and McNicholas, 2014).
- First, the within-group variance for each variable j = 1, ..., p is calculated, written

$$W_{j} = \frac{\sum_{g=1}^{G} \sum_{i=1}^{n} z_{ig} (x_{ij} - \mu_{gj})^{2}}{n},$$
 (18)

where x_{ij} is observation i on variable j, μ_{gj} is the mean of variable j in group g, n is the number of observations, and z_{ig} is the group membership indicator variable.

• The data is assumed to have been standarized to have mean 0 and variance 1.

VSCC algorithm (cont'd)

Introduction
Background
Methodology
Applications

Summary References

- The first variable selected is one with minimum W_i .
- To select remaining variables, the within-group variance and between-variable correlation is used as criterion:

$$|\rho_{jr}| < \left(1 - W_j\right)^m,\tag{19}$$

where ρ_{jr} is the correlation between variables, for all $r \in V$ where V is the space of currently selected variables, and $m \in \{1, ..., 5\}$ is fixed.

Up to 5 distinct variable subsets can be selected.

VSCC algorithm(cont'd)

Introduction

Background

Methodology

. . .

Summary

Referenc

Appendix

- Mclust is used to perform clustering for the (up to 5) distinct variable subsets.
- The best variable subset is taken to be the one that minimizes the total model uncertainty in the fuzzy clustering matrix \hat{z}_{ig} , which is

$$n - \sum_{i=1}^{n} \max\{\hat{z}_{ig}\}.. \tag{20}$$

VSCC limitation

Background
Methodology
Applications
Summary
References

- VSCC can only be applied for Gaussian scenarios, so it falls short in identifying skewed clusters in data sets that deviate from normality.
- It is this limitation that motivates the variable selection approach proposed in the next section.

Manly-VSCC

Background

Methodology

Applications

Summary

• We will refer to the proposed skewed-variable selection approach as *Manly-VSCC*.

- Pseudocode below:
 - **1** Manly-EM is used to find parameter estimates for the Manly mixture model, and for our purpose, we use it to obtain \hat{z}_{ig} and $\hat{\lambda}_{g}$.
 - 2 Based on \hat{z}_{ig} , multivariate Manly transformation is applied to the observation \mathbf{x}_i identified to belong to component g. This results a p-variate normally distributed data set.
 - **3** *VSCC* is applied to the transformed data to obtain the best variable subset.
 - Clustering results with mclust is reported for the best subset.

Applications

Background

Applications

Summary

References

Appendix

- Manly-VSCC was evaluated by comparing its clustering results with those from three other approaches:
 - Mclust (no variable selection)
 - VSCC
 - skewvarsel.
- Mclust was used as the model-based clustering algorithm for techniques involving VSCC.
- skewvarsel used the mixture of generalized hyperbolic distributions (McNeil, Frey, and Embrechts, 2005) to obtain clustering results.

AIS data set

Introduction
Background
Methodology
Applications
Summary
References

- The Australian Institute of Sport (AIS) data set (Cook and Weisberg, 1994) contains information on 202 athletes, 102 male and 100 female.
- 11 (numeric) out of the 13 variables were used to construct clustering models.
- The goal of the analysis is to cluster the athletes into male and female groups.

Background

• Manly-EM clustering results has 20 misclassifications.

Applications

Table: True group memberships (Male, Female) against predicted group memberships (1,2) using Manly-EM. ARI = 0.64.

M 89 13 F 7 93

ntroduction

Background

Applications

Аррисаціон

Reference

Reference: Appendix • The *skewvarsel* solution picked the correct number of components (G = 2), with 8 misclassifications.

	1	2	3				1	2	2	3	4
М	7	8	87	_		М	1	2	2	88	11
F	90	3	7			F	56	4	2	0	2
(a)	(a) Manly-VSCC (b) VSCC										
	1	2	2	3	4				1		2
М	0	3	8 5	59	5	_	_	М	94	1	8 100
F	55	1	2	0	33			F	0		100
(c) Mclust						(d) skewvarsel					

Table: True group memberships (Male, Female) against predicted group memberships (1,2) for the AIS data set.

Applications

Background Methodology Applications Summary

Table: Summary model and clustering results using Manly-VSCC,VSCC, Mclust, and skewvarsel methods for AIS data set.

	G	ARI
Manly-VSCC	3	0.65
VSCC	4	0.61
Mclust	4	0.39
skewvarsel	2	0.85

- *skewvarsel* results in the highest ARI of 0.85, followed by the second-highest ARI of the proposed *Manly-VSCC* approach, which is 0.65.
- This data set is an example of how variable selection can improve clustering performance.

Swiss bank notes data

Introduction
Background
Methodology
Applications
Summary
References

- The Swiss bank notes data set (Fraley, Raftery, and Scrucca, 2016) includes 6 measurements made on 200 bank notes, including 100 genuine and 100 counterfeit.
- The clustering results using the Manly-EM algorithm is given. The algorithm demonstrated good clustering performance, with ARI of 0.85 and 8 misclassifications total.

Table: True group memberships (counterfeit, genuine) against predicted group memberships (1,2) using Manly-EM. ARI = 0.85.

	1	2
counterfeit	97	3
genuine	5	95

Swiss bank notes data (cont'd)

Applications

- skewvarsel performs the best, choosing the correct number of groups with only 1 misclassification.
- However, Manly-VSCC performs clustering poorly.

	1	2	3	4	5	6
counterfeit	0	2	1	32	31	34
genuine	33	33	29	4	1	0

Manly-VSCC

	1	2	3	
counterfeit	15	0	85	counterfeit
genuine	1	99	0	genuine

(b) VSCC

(c) Mclust

16

2

	1	2
counterfeit	100	0
genuine	1	99

98

84

0

Swiss bank notes data (cont'd)

Background
Methodology

Applications

Summary References

- Skewvarsel has the best clustering performance (ARI = 0.98).
- VSCC and Mclust have good clustering recovery.
- The unusually low ARI of Manly-VSCC indicates it falters for this data set.

Table: Summary model and clustering results for Swiss bank notes data.

	G	ARI
Manly-VSCC	6	0.28
VSCC	3	0.86
Mclust	3	0.84
skewvarsel	2	0.98

Italian Olive Oils data set

Background
Methodology
Applications
Summary
References

- The Italian Olive Oils data set (Forina et al., 1983; Forina and Tiscornia, 1982) contains 8 fatty acid measurements on 572 Italian olive oil samples originating from 3 regions(323 samples from Southern Italy, 98 from Sardinia, and 151 from Northern Italy).
- Poor clustering results is demonstrated by Manly-EM, with low ARI of 0.41.

Table: True group memberships (Southern Italy, Sardinia, Northern Italy) against predicted group memberships (1,2,3) using Manly-EM.

	1	2	3
S.Italy	0	121	202
Sardinia	97	0	1
N.Italy	88	63	0

Italian Olive Oils data set (cont'd)

Background
Methodology
Applications

References

• Scatterplot matrices of VSCC and skewvarsel are shown.

Figure: VSCC solution.

Figure: skewvarsel solution.

Italian Olive Oils data set(cont'd)

Background
Methodology
Applications
Summary
References

- skewvarsel outperform the 3 other approaches in having the highest ARI (0.63) using a two-cluster solution.
- Manly-VSCC and VSCC perform roughly on par, but neither perform as well as Mclust.

Table: Summary model and clustering results on Italian Olive Oils data set.

	G	ARI
Manly-VSCC	6	0.41
VSCC	9	0.35
Mclust	6	0.56
skewvarsel	2	0.63

Summary

Background
Methodology
Applications
Summary
References

- We proposed and evaluated a skewed-variable selection approach under a clustering framework.
- The approach is tested with three real data sets, of which one performed well but two others did poorly.
- The poor performance can be attributed to one or more of the following:
 - Initialization method causing unstable Manly-EM performance.
 - Inaccurate parameter estimated by the Manly-EM algorithm, which fails to transform data to near-normality.
 - Issues in using Nelder-Mead optimization to update the skewness transformation parameters.

Future approach to investigate

Background
Methodology
Applications
Summary
References

- *skewvarsel* demonstrates promising performance across the three data sets.
- Recall that skewvarsel selects for skewed variables using the multivariate skew normal distribution (Wallace et al., 2017).
- We propose a similar approach using the variance-gamma mixture model.
- The mixture of variance-gamma (VG) distributions arises from placing parameter restrictions on the generalized hyperbolic distribution (McNeil, Frey, and Embrechts, 2005).

Using variance-gamma distance for skewed-VSCC?

Summary

 Two candidate distances identified from the variance-gamma density are:

$$\sqrt{(\psi + \alpha' \Sigma^{-1} \alpha) \delta(\mathbf{x}, \mu | \Sigma)}$$
 (21)

and

$$\left\{ \left(\mu - \mathsf{x}\right)' \Sigma^{-1} \alpha \right\} \tag{22}$$

where (21) is a modified Mahalanobis distance that accounts for both skewness and concentration, and (22) is one that accounts for skewness only.

 As future direction, we can derive within-group variance expressions for each of (21) and (22) to account for skewness and arrive at a variable selection approach for asymmetric distributions.

Acknowledgements

I would like to thank Dr.McNicholas for his encouragement and guidance throughout the course of my thesis.

Summary

References I

Introduction

Background

A --- 1: --- 4:

_

Summary

References
Appendix

- Andrews, J. L. and P. D. McNicholas (2014). "Variable Selection for clustering and classification". In: *Journal of Classification* 31.2, pp. 136–153.
- Azzalini, A. and A. D. Valle (1996). "Multivariate skew-normal distribution". In: *Biometrika* 83, pp. 715–726.
- Banfield, J. D. and A. E. Raftery (1993). "Model-based Gaussian and non-Gaussian clustering". In: *Biometrics* 49, pp. 803–821.
- Box, G. E. and D. R. Cox (1964). "An analysis of transformations". In: *Journal of the Royal Statistical Society* 26, pp. 211–252.
- Cook, D. and S. Weisberg (1994). An Introduction to Regression Graphics. New York: John Wiley & Sons.

References II

Background

Application

Summary

References
Appendix

- Dempster, A. P., N. M. Laird, and D. B. Rubin (1977). "Maximum likelihood from incomplete data via the EM algorithm". In: *Journal of the Royal Statistical Society: Series B* 39.1, pp. 1–38.
- Forina, M. and E. Tiscornia (1982). "Pattern recognition methods in the prediction of Italian olive oil origin by their fatty acid content". In: *Annali di Chimica* 72, pp. 143–155.
- Forina, M. et al. (1983). Classification of olive oils from their fatty acid composition. London: Applied Science Publishers.
- Fraley, A., E. Raftery, and L. Scrucca (2016). mclust: Gaussian Mixture Modelling for Model-Based Clustering, Classification, and Density Estimation. R package version 5.2.

References III

References

- Fraley, C. and A. E. Raftery (2002). "Model-based clustering, discriminant analysis, and density estimation". In: Journal of the American Statistical Association 97. pp. 611–631.
- Hubert, L. and P. Arabie (1985). "Comparing partitions". In: Journal of Classification 2, pp. 193–218.
- Kass, R. E. and A. E. Raftery (1995). "Bayes factors". In: Journal of the American Statistical Association 90, pp. 773–795.
- Lo, K., R. R. Brinkman, and R. Gottardo (2008). "Automated gating of flow cytometry data via robust model-based clustering". In: Cytometry 73, pp. 321–332.

References IV

ntroduction

Background

Application

Summary

References

- Macqueen, J. (1967). "Some methods for classification and analysis of multivariate observations". In: *In 5-th Berkeley Symposium on Mathematical Statistics and Probability*, pp. 281–297.
- Manly, B. F. J (1976). "Exponential data transformations". In: Journal of the Royal Statistical Society 25, pp. 37–42.
- McLachlan, G. J. and D. Peel (2000). *Finite mixture models*. John Wiley & Sons.
- McNeil, A. J., R. Frey, and P. Embrechts (2005). *Quantitative Risk Management: Concepts, Techniques and Tools*. Princeton: Princeton University Press.
- McNicholas, P. D. (2016). *Mixture Model-Based Classification*. CRC Press.

References V

Introduction

Background

Applica

Summary

References

Appendix

- Nelder, J. A. and R. Mead (1965). "A simplex method for function minimization". In: *The Computer Journal* 7, pp. 308–313.
- Pyne, S. et al. (2009). "Proceedings of the National Academy of Sciences in the United States of America". In: vol. 106. National Academy of Sciences.
- Raftery, A. E. and N. Dean (2006). "Variable selection for model-based clustering". In: *Journal of the American Statistical Association* 101, pp. 168–178.
- Rand, W. M. (1971). "Objective criteria for the evaluation of clustering methods". In: *Journal of the American Statistical Association* 66, pp. 846–850.
- Schwarz, G. (1978). "Estimating the dimension of a model". In: *The Annals of Statistics* 6, pp. 461–464.

References VI

Introduction

Background

Applicatio

Summary

References

Scrucca, L. and A. E. Raftery (2018). "clustvarsel: A package implementing variable selection for Gaussian model-based clustering in R". In: *Journal of Statistical Software* 84, pp. 1–28.

Steinley, D. (2004). "Properties of the Hubert-Arabie adjusted Rand index". In: *Psychological Methods* 9, pp. 386–396.

Wallace, M. L. et al. (2017). "Variable selection for skewed model-based clustering: Application to the identification of novel sleep phenotypes". In: *Journal of the American Statistical Association* 113, pp. 95–110.

Wang, P. et al. (2019). "Deep class-skewed learning for face recognition". In: *Neurocomputing* 363, pp. 35–45.

References VII

Introduction

Background

Zhu, X. W. and V. Melnykov (2018). "Manly transformation in finite mixture modeling". In: *Computational Statistics and Data Analysis* 121, pp. 190–208.

Summarv

References

Appendix

Parameter Estimation for Gaussian Mixture

ntroduction

Background

Appendix

 For the mixture of multivariate Gaussians, the clustering log-likelihood is given by

Applications log-likelihood is given

$$\log \mathcal{L}(\mathbf{v}) = \sum_{i=1}^{n} \log \sum_{g=1}^{G} \pi_{g} \phi\left(\mathbf{x}_{i} \middle| \hat{\mu}_{g}, \hat{\Sigma}_{g}\right). \tag{23}$$

Manly-EM pseudocode

ntroduction

Background

Appendix

initialize \hat{z}_{ig} and $\hat{\lambda}_g$

initialize $\hat{\pi}_{\mathsf{g}}$, $\mathcal{M}(\mathsf{x},\hat{\pmb{\lambda}}_{\mathsf{g}})$, $\hat{\pmb{\mu}}_{\mathsf{g}}$, $\hat{\pmb{\Sigma}}_{\mathsf{g}}$

while not converged

update 2ig

update $\hat{oldsymbol{\lambda}}_g$ via Nelder-Mead optimization of $-\mathcal{Q}_g$

update $\mathcal{M}(\mathsf{x},\hat{\lambda}_g)$

update $\hat{\pi}_{g}$, $\hat{\mu}_{g}$, $\hat{\Sigma}_{g}$

check convergence criterion

end while

AIS data set - results

ntroduction

Background

Methodolog

Applications

Summary

Appendix

Figure: scatterplot matrix of the VSCC 5 selected variables on the AIS data, where the colours correspond to the different groups found via the method.

AIS data set (cont'd)

ntroduction Background Methodology

Applicatio Summary

References

Appendix

- Manly-VSCC retained 1 more variable than the other approaches.
- Both VSCC techniques chose the quadratic relation as the variable subset that minimizes clustering model uncertainty.

Table: Summary results on variable selection for AIS data set.

	num. var. selected	names of var.selected
Manly-VSCC (Quadratic)	6	Bfat,Hg,WCC,Ferr,BMI,LBM
VSCC(Quadratic)	5	Bfat,SSF,Ht,BMI,LBM
skewvarsel	5	Bfat,SSF,Ht,Wt,LBM

Swiss bank note data set - results

Background

Methodolog

References

Appendix

Figure: scatterplot matrix of the 5 selected variables using Manly-VSCC on the Swiss bank notes data.

Swiss bank notes data

Background
Methodolog
Applications
Summary
References

Appendix

- *Manly-VSCC* retains one more variable than the other two approaches using the linear relation.
- *VSCC* chooses the cubic relation, and chose the same number of variables as *skewvarsel*.

Table: Summary results on variable selection for Swiss bank notes data set.

	num. var. selected	names of var.selected
Manly-VSCC(Linear)	5	Length, Left, Right, Bottom, D
VSCC(Cubic)	4	Top,Right,Bottom,Diagon
skewvarsel	4	Top, Left, Bottom, Diagona

Future Direction for Manly-EM

Background
Methodology
Applications
Summary
References

Appendix

- There are currently no constraints placed on the covariance matrix components of the Manly mixture model.
- A future direction would be to include in *Manly-EM* the 14 parameterizations of the within-group covariance matrix Σ_g , as in for the *Mclust* family (Fraley, Raftery, and Scrucca, 2016).