Convergence

Suppose $\{x_k\}_{k=0}^{\infty}$ converges to x^* . Let $e_k = x_i - x^*$. If $\exists q > 0, \lambda > 0$ such that

$$\lim_{n \to \infty} \frac{|x_{k+1} - x^*|}{|x_k - x^*|^q} = \frac{|e_{k+1}|}{|e_k|^q} = \lambda$$

then, $\{x_k\}_{k=0}^{\infty}$ is said to converge to x^* with order q and asymptotic error constant λ .

(Note: terminology in deSterck is equivalent, but different)

Note that:

- Higher order q will generally converge faster
- Smaller λ is generally better (but not as important as value of q).

Linear vs Quadratic Convergence

Consider two sequences that converge to 0:

- Linear
- $\{p_n\}_{n=0}^{\infty} \to 0 \text{ with } \lambda_p = \frac{1}{2} \text{ and } |p_{n+1}| \sim \frac{1}{2} |p_n| \text{ So, } |p_{n+1}| \sim (\frac{1}{2})^n |p_0|$

- Quadratic
- $\{q_n\}_{n=0}^{\infty} \to 0 \text{ with } \lambda_q = \frac{1}{2} \text{ and } |q_{n+1}| \sim \frac{1}{2} |q_n|^2$ So, $|q_{n+1}| \sim (\frac{1}{2})^{2^{n}-1} |q_0|^{2^n}$

Linear vs Quadratic: Does it matter?

n	Linear {p _n }	Quadratic {q _n }
1	5.0000 e -1	5.0000 e -1
2	2.5000 e -1	1.2500 e −1
3	1.2500 e -1	7.8125 e -3
4	6.2500 e -2	3.0518 e -5
5	3.1250 e -2	4.6566 e −10
6	1.5625 e -2	1.0842 e -19
7	7.8125 e -3	5.8775 e −39

Some terminology

- Double root: x* is a double root of f(x*)=0 iff f(x*)=0 and f'(x*) = 0.
- Root of multiplicity m: $f(x^*)=0$, f'(x)=0, ..., $f^{(m-1)}(x^*)=0$, for some m>0
- Simple root: multiplicity 1
- Multiple roots may affect convergence rates.

Convergence of Newton-Raphson Method

Thm: If $f(x^*)=0$, $f'(x^*)\neq 0$, and f, f', f'' are all continuous in an interval about x^* (e.g. over $[x^*-\delta, x^*+\delta]$) with x_0 sufficiently close to x^* , then the sequence $\{x_k\}$ converges quadratically to x^* .

Suppose x^* is a simple root of f. By Taylor's expansion, there exists θ_k between x^* and x_k such that

$$f(x^*) = f(x_k) + f'(x_k)(x^* - x_k) + \frac{1}{2}f''(\vartheta_k)(x^* - x_k)^2$$

Additional notes on Newton-Raphson

- if f'(x*)=0 (i.e. x* has multiplicity ≥ 2),
 convergence becomes linear
- If conditions not met, sequence may not converge.
- If conditions not met, sequence might still converge or may diverge or even cycle

Secant:

- Similar analysis to Newton
- Not as fast as Newton (due to additional approximations)
- q ~ 1.6
- Like Newton, not guaranteed to converge if conditions not met
- Note: like Newton, not guaranteed to diverge if conditions not met either.

Bisection Method:

- Nature of algorithm does not easily apply to definition
- At each stage the interval decrease by a half
- Error is no more than length of interval
- Length of interval converges to 0
- Convergence is (roughly/informally) linear
- Recall: convergence is guaranteed

Regula falsi:

- Bracketing again hard to apply convergence definition directly
- Generally will be at least as fast as bisection, though could be particularly slow
- Recall: convergence is guaranteed

Convergence of Fixed Point Methods

- Let g be continuous over interval [a, b],
- $g(x) \in [a, b]$ for all $x \in [a, b]$,
- x^* is a fixed point of $g \in [a, b]$,
- $\exists \delta \ s. \ t. \ g'(x)$ is continuous on $[x^* \delta, x^* + \delta]$
- Define $x_k = g(x_{k+1})$

Then

- If $|g'(x^*)| < 1$, $\exists \epsilon$ s.t. $\{x_k\}$ converges to x^* for $|x_0-x^*| < \epsilon$
- If $|g'(x^*)| > 1$ then $\{x_k\}$ diverges for any x_0 .