1.) Base case: For
$$n=1$$
, $l=\frac{l\cdot 2}{2}$ is the.

Inductive step: Suppose

$$1+4+...+(3n-2) = n(3n-1)$$

is the for some nEIN. Adding 3n+1 to both sides,

$$1+4+...+(3n-2)+(3n+1) = \frac{n(3n-1)}{2}+(3n+1)$$

$$= \frac{3n^2-n+6n+2}{2}$$

$$= \frac{(n+1)(3n+2)}{2}$$

So the statement is the for not.

Together, we conclude that the statement is the Ync IN by induction.

3.) (a.) . sup A is an upper bound for A and

 $n \in \mathbb{N} \Rightarrow n > 0 \Rightarrow \frac{1}{n} > 0 \Rightarrow 2 - \frac{3}{n} < 2$

• Suppose L is an upper bound. Fix $\varepsilon > 0$. Then $\exists n \in \mathbb{N}$ s.t. $\frac{1}{n} < \frac{\varepsilon}{3}$, and so

$$L > 2 - \frac{3}{n} > 2 - 3 \cdot \frac{\varepsilon}{3} = 2 - \varepsilon$$
.

As E>O was orbitrary, then L22.

4.) Case: a>0. Then $f(x)=x^2$ on (a-8,a+8) for S=a. We know x^2 is differentiable at a since it's a polynomial, and so f'(a)=2a.

Case: a<0. Then f(x)=0 on (a-8, a+8) for S=|a|. We know O is differentiable at a, and so f(a)=0.

Case:
$$a=0$$
. For $h \neq 0$,
$$f(h) - f(0) = \begin{cases} h^2 - 0 = h & h > 0 \\ h & h < 0 \end{cases}$$

Fix E> O. Set S=E. Then

$$O < |h| < S \Rightarrow |\frac{f(h) - f(o)}{h} - O| = { |h| < S = \varepsilon }$$

Altogether,

$$f'(a) = \begin{cases} 2a & a > 0 \\ 0 & a \leq 0 \end{cases} = 2 \max\{0, a\}.$$

$$0 = f'(x) = -\frac{a}{\kappa^2} + b = \frac{bx^2 - a}{\kappa^2}$$

$$\Rightarrow \chi_0 = \sqrt{\frac{a}{b}}$$

Solution: We will prove that $f(\pi_0) = 2\sqrt{ab}$ is the global minimum of f, where $\pi_0 = \sqrt{\frac{a}{b}}$.

Claim: $f(x) > f(x_0) \quad \forall x \in (x_0, \infty)$. Note that

 $\chi > \chi_0 = \sqrt{\frac{a}{b}} \implies \chi^2 > \frac{a}{b} \implies b\chi^2 - a > 0$

 $\Rightarrow f'(x) = \frac{bx^2 - a}{x^2} > 0$

Given $x>x_0$, by the MVT there is a point $CE(x_0,x)$ where

$$0 < f'(c) = \frac{f(x) - f(x_0)}{x - x_0} \Rightarrow f(x) > f(x_0).$$

Claim: f(n) > f(no) Y x ∈ (0, no). Note that

$$0 => $x^2<\frac{a}{b}$ => $bx^2-a<0$$$

$$\Rightarrow f'(x) = \frac{bx^2 - a}{x^2} < 0$$

Given $x < x_0$, by the MVT there is a point $C \in (x, x_0)$ where

$$0 > f'(c) = \frac{f(x_0) - f(x)}{x_0 - x} \implies f(x) > f(x_0).$$

Want: $\exists x \in [0,1]$ s.t. g(x) = 0. Note that:

Case: g(0) < 0 < g(1). As f and -1+x are continuous on [0,1], then so is g. So, by the Intermediate Value Theorem, $\frac{1}{2}x\in(0,1)$ s.t. g(x)=0.

Case: g(0)=0. Then n=0 works.

Case: g(1)=0. Then x=1 works.

(b.) Suppose not: $\exists x_1 < x_2 \text{ in } [0,1] \text{ s.t.}$ $f(x_1) = 1 - x_1 \text{ and } f(x_2) = 1 - x_2 \text{. As } f \text{ is differentiable}$ on (0,1), it is also differentiable on (x_1,x_2) . So, by the Mean Value Theorem, $\exists c \in (x_1,x_2) \text{ s.t.}$

 $f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{(1 - x_2) - (1 - x_1)}{x_2 - x_1} = -1$ This contradicts $|f'(x)| < 1 \quad \forall x \in (0, 1)$.

7.) For neIN, set $P_n = \{-1, -\frac{1}{h}, \frac{1}{h}, 1\}$. Then $U(P, P_n) = -2 \cdot (-\frac{1}{h} - (-1)) + 2 \cdot (\frac{1}{h} - (-\frac{1}{h})) + 2 \cdot (1 - \frac{1}{h})$ $= \frac{1}{h}$

$$L(f, P_n) = -2 \cdot (-\frac{1}{2} - (-1)) + (-2) \cdot (\frac{1}{2} - (-\frac{1}{2})) + 2 \cdot (1 - \frac{1}{2})$$

$$= -\frac{1}{2}$$

Together,

 $-\frac{4}{3} = L(f, P_n) \leq L(f) \leq U(f) \leq U(f, P_n) = \frac{4}{3}.$

Fix $\varepsilon > 0$. Then $\exists n \in \mathbb{N}$ st. $\forall x \in \mathbb{Z}$, and so $-2 < -\frac{1}{2} \le L(f) \le U(f) \le \frac{1}{2} < \varepsilon$.

As 2>0 was arbitrary, we conclude

$$L(f) = O = U(f)$$
.

So f is integrable on [-1,1] and $\int_{-1}^{1} f = 0$.

8.) (a.) We know:

· -cos x is differentiable on [0,6]

· sin x is integrable on CO, b]: since it's continuous.

So, by the Fundamental Theorem of Calculus,

 $\int_{0}^{b} \sin n \, dx = -\cos(b) + \cos(0) = 1 - \cos b.$

(b.) We will apply integration by parts to $f(\kappa) = \sin^2 \kappa$ and $g(\kappa) = -\cos \kappa$. We know:

· I, g are differentiable on [D, b]

, $f'(n) = 2\sin x \cos n$ and $g'(n) = \sin n$ are continuous on [0,b]

So, $\int_{0}^{b} \sin^{3} x \, dx = \int_{0}^{b} f_{0}^{1} = \int_{0}^{b} f_{0}^{1} g(b) - \int_{0}^{b} f_{0}^{1} g$ $= -\sin^2 b \cos b + 2 \int_0^b \sin^3 x \, dx$ $- 2 \int_0^b \sin^3 x \, dx$ $= - \sin^2 b \cos b + 2 \int_0^b \sin x \, dx$ $= - \sin^2 b \cos b + 2 (1 - \cos b)$ $= - \sin^2 b \cos b + 2 (1 - \cos b)$

 $\implies \int_0^b \sin^3 x \, dx = -\frac{1}{3} \sin^2 b \cos b + \frac{2}{3} (1 - \cos b).$