Совмещение каналов изображения

Константин Кожемяков, Влад Шахуро, Александр Сергеев

Обзор задания

Первым цветным фотографом России является Михаил Сергеевич Прокудин-Горский, сделавший единственный цветной портет Льва Толстого. Каждый его снимок представляет из себя три изображения в градациях серого, соответствующие синему, зеленому и красному цветовым каналам. Сейчас коллекция его снимков находится в американской библиотеке конгресса, сканкопии фотопластинок доступны в интернете. В данном задании мы предлагаем вам создать программу, которая будет совмещать изображения, полученные с фотопластинок Прокудина-Горского.

Описание задания

1. Базовое совмещение

Реализация базовой части программы реализуется в несколько этапов:

- 1. Загрузка изображения и разделение изображения на три канала. Достаточно разделить изображение на три равные части по высоте.
- 2. Удаление рамок пленки. Каждый из каналов изображения нужно обрезать на 10% с каждой стороны.
- 3. Поиск наилучшего сдвига для совмещения каналов. Для того, чтобы совместить два изображения, будем сдвигать одно изображение относительно другого по горизонтали и по вертикали в некоторых пределах, например, от -15 до 15 пикселей. Далее, для перекрывающихся областей изображений посчитаем метрику. Оптимальным будет тот сдвиг, при котором метрика принимает наибольшее или наименьшее значение (в зависимости от метрики). Предлагается реализовать две метрики и выбрать ту, которая позволяет получить более качественный результат при совмещении:
 - (a) Среднеквадратичное отклонение для изображений I_1 и I_2 :

$$MSE(I_1, I_2) = \frac{1}{width \cdot height} \sum_{x,y} (I_1(x, y) - I_2(x, y))^2,$$

где width, height — ширина и высота изображений соответственно. Для нахождения оптимального сдвига нужно взять минимум по всем сдвигам.

(b) Нормализованная кросс-корреляция для изображений I_1 и I_2 :

$$I_1 \star I_2 = \frac{\sum_{x,y} I_1(x,y) I_2(x,y)}{\sqrt{\sum_{x,y} I_1^2(x,y) \cdot \sum_{x,y} I_2^2(x,y)}}.$$

Для нахождения оптимального сдвига нужно взять максимум по всем сдвигам.

Совмещение больших изображений при базовом подходе будет проходить очень медленно. Для ускорения совмещения Можно использовать пирамиду изображений.

В пирамиде изображений исходное изображение последовательно уменьшается в 2 раза до некоторого размера (например, чтобы обе стороны были не больше 500 пикселей в длину). Поиск оптимального сдвига начинается с самого маленького изображения, а затем на пути к исходному изображению уточняется на уменьшенных копиях изображения. Таким образом, оригинальное изображение совмещается не в диапазоне $-15\dots 15$ пикселей, а в меньшем, уточненном с помощью уменьшенных копий изображения.

2. Совмещение с помощью преобразования Фурье

Когда ищутся достаточно большие сдвиги (например, при сшивании изображений или поиске части изображения на целом), пирамидальный подход может работать не очень хорошо: для бо́льших сдвигов нужно сильнее уменьшать исходные изображения, что приводит к потере деталей. В этом случае хорошо работает подход, основанный на преобразовании Фурье.

Рассмотрим нормализованную кросс-корреляцию для двух изображений I_1 и I_2 . Для нахождения оптимального сдвига нужно взять максимум по всем сдвигам:

$$(u^*, v^*) = \underset{u, v}{\operatorname{argmax}} \frac{\sum_{x,y} I_1(x, y) I_2(x + u, y + v)}{\sqrt{\sum_{x,y} I_1^2(x, y) \cdot \sum_{x,y} I_2^2(x, y)}}.$$

Для сдвига изображения будем использовать циклический сдвиг. Выражение в знаменателе становится константой, на значение argmax не влияет:

$$(u^*, v^*) = \underset{u,v}{\operatorname{argmax}} \sum_{x,y} I_1(x,y) I_2(x+u, y+v).$$

Заметим, что справа находится операция корреляции. Преобразование Фурье позволяет заменить дорогую операцию корреляции на более дешевую операцию произведения матриц. Обозначим

$$C(u,v) = \sum_{x,y} I_1(x,y)I_2(x+u,y+v) = (I_1 * I_2)(u,v).$$

Матрица C содержит значения кросс-корреляции двух изображений ∂ ля всех возможных с ∂ вигов. Координаты максимального значения матрицы C и есть искомый сдвиг. Вычислить эффективным образом матрицу C можно с помощью преобразования Φ урье:

$$\mathcal{F}\{C(u,v)\} = \mathcal{F}\{(I_1 * I_2)(u,v)\} = \left(\mathcal{F}\{I_1\} \cdot \overline{\mathcal{F}\{I_2\}}\right)(u,v),$$
$$C(u,v) = \mathcal{F}^{-1}\left(\mathcal{F}\{I_1\} \cdot \overline{\mathcal{F}\{I_2\}}\right)(u,v).$$

Здесь \mathcal{F} и \mathcal{F}^{-1} — прямое и обратное преобразование Фурье, $\overline{\mathcal{F}\{\cdot\}}$ — комплексное сопряжение. Таким образом, для нахождения оптимального сдвига необходимо вычислить

$$\operatorname{argmax} \mathcal{F}^{-1} \left(\mathcal{F} \{ I_1 \} \cdot \overline{\mathcal{F} \{ I_2 \}} \right).$$

Интерфейс программы, данные и скрипт для тестирования

Необходимо реализовать функцию align, принимающую на вход изображение, полученное сканированием фотопластинки, и возвращающую совмещенное изображение. Для полного решения задания необходимо реализовать *либо* базовое и пирамидальное совмещение, *либо* совмещение с помощью преобразования Фурье.

Данные для тестирования — 10 картинок в двух разрешениях для тестирования обычной реализации и реализации с пирамидой соответственно. На каждой картинке размечены три точки, по одной на каждом канале. Функция совмещения align должна по точке (g_row, g_col) зеленого канала определить координаты соответствующих ей точек синего и красного каналов: (b_row, b_col), (r_row, r_col). Для возвращенных функцией координат точек и координат разметки вычисляется метрика l_1 , которая затем сранивается с порогом. Если метрика не превосходит порог, то изображение считается качественно совмещенным. Для маленьких изображений порог равен 5, для больших — 10. Скрипт для тестирования также проверяет, что возвращаемое функцией align изображение достаточно большого размера. Оценка за задание определяется как количество качественно совмещенных картинок, деленное на 2, максимум 10 баллов.

Полезные ресурсы

Выставка о Прокудине-Горском на сайте библиотеки конгресса.