

Datenstrukturen, Algorithmen und Programmierung 2 (DAP2)

Was ist eine Datenstruktur?

- Eine Datenstruktur ist eine Anordnung von Daten im Speicher eines Rechners, die effizienten Zugriff auf die Daten ermöglicht
- Datenstrukturen f
 ür viele unterschiedliche Anfragen vorstellbar

Ein grundlegendes Datenbank-Problem

Speicherung von Datensätzen

Beispiel

Kundendaten (Name, Adresse, Wohnort, Kundennummer, offene Rechnungen, offene Bestellungen,...)

Anforderungen

- Schneller Zugriff
- Einfügen neuer Datensätze
- Löschen bestehender Datensätze

Zugriff auf Daten

- Jedes Datum (Objekt) hat einen Schlüssel
- Eingabe des Schlüssels liefert Datensatz
- Schlüssel sind vergleichbar (es gibt totale Ordnung der Schlüssel)

Beispiel

- Kundendaten (Name, Adresse, Kundennummer)
- Schlüssel: Name
- Totale Ordnung: Lexikographische Ordnung

Zugriff auf Daten

- Jedes Datum (Objekt) hat einen Schlüssel
- Eingabe des Schlüssels liefert Datensatz
- Schlüssel sind vergleichbar (es gibt totale Ordnung der Schlüssel)

Beispiel

- Kundendaten (Name, Adresse, Kundennummer)
- Schlüssel: Kundennummer
- Totale Ordnung: , ≤ '

Problem

Gegeben sind n Objekte $O_1, ..., O_n$ mit zugehörigen Schlüsseln $s(O_i)$

Operationen

- Suche(x); Ausgabe O mit Schlüssel s(O) = x; nil, falls kein Objekt mit Schlüssel x in Datenbank
- Einfügen(0); Einfügen von Objekt 0 in Datenbank
- Löschen(0); Löschen von Objekt 0 mit aus der Datenbank

Vereinfachung

- Schlüssel sind natürliche Zahlen
- Eingabe nur aus Schlüsseln

Analyse von Datenstrukturen

- Platzbedarf in Θ- bzw. O-Notation
- Laufzeit der Operationen in Θ- bzw. O-Notation

Aufgabe

Datenstrukturen

- Welche einfachen Datenstrukturen kennen Sie, mit denen man das Wörterbuchproblem lösen kann?
- Was sind die Laufzeiten für Suchen, Einfügen und Löschen?
 (n bezeichne die Anzahl der Objekte in der Datenstruktur)

Einfaches Feld

- Feld A[1.. max]
- Integer n, $1 \le n \le \max$
- n bezeichnet Anzahl Elemente in Datenstruktur

Einfügen(s)

- 1. **if** $n = \max$ **then** Ausgabe "Fehler: Kein Platz in Datenstruktur"
- 2. else
- 3. $n \leftarrow n + 1$
- 4. $A[n] \leftarrow s$

Einfügen(s)

- 1. **if** $n = \max$ **then** Ausgabe "Fehler: Kein Platz in Datenstruktur"
- 2. else
- 3. $n \leftarrow n + 1$
- 4. $A[n] \leftarrow s$

Einfügen(s)

- 1. **if** $n = \max$ **then** Ausgabe "Fehler: Kein Platz in Datenstruktur"
- 2. else
- 3. $n \leftarrow n + 1$
- 4. $A[n] \leftarrow s$

Einfügen(2)

Suche(x)

- 1. **for** $i \leftarrow 1$ **to** n **do**
- 2. if A[i] = x then return i
- 3. return nil

Löschen(i)

- $1. A[i] \leftarrow A[n]$
- 2. $A[n] \leftarrow \mathbf{nil}$
- 3. $n \leftarrow n-1$

Annahme:

Wir bekommen Index *i* des zu löschenden Objekts

Löschen(i)

- $1. A[i] \leftarrow A[n]$
- 2. $A[n] \leftarrow \mathbf{nil}$
- 3. $n \leftarrow n-1$

Löschen(i)

- $1. A[i] \leftarrow A[n]$
- 2. $A[n] \leftarrow \mathbf{nil}$
- 3. $n \leftarrow n-1$

Datenstruktur Feld

- Platzbedarf Θ(max)
- Laufzeit Suche: $\Theta(n)$
- Laufzeit Einfügen/Löschen: Θ(1)

Vorteile

Schnelles Einfügen und Löschen

Nachteile

- Speicherbedarf abhängig von max (nicht vorhersagbar)
- Hohe Laufzeit für Suche

Datenstruktur "sortiertes Feld"

- Sortiertes Feld A[1..max]
- Integer n, $1 \le n \le \max$
- n bezeichnet Anzahl Elemente in Datenstruktur

Datenstruktur "sortiertes Feld"

- Sortiertes Feld A[1..max]
- Integer $n, 1 \le n \le \max$
- n bezeichnet Anzahl Elemente in Datenstruktur

Welchen Vorteil bietet ein sortiertes Feld?

- A) Schnelleres Einfügen
- B) Weniger Speicherverbrauch
- C) Schnelleres Löschen
- D) Schnelleres Suchen

Einfügen(s)

1.
$$n \leftarrow n + 1$$

- 2. $i \leftarrow n$
- 3. **while** s < A[i-1] **do**
- 4. $A[i] \leftarrow A[i-1]$
- 5. $i \leftarrow i 1$
- 6. $A[i] \leftarrow s$

Einfügen(s)

1.
$$n \leftarrow n + 1$$

- 2. $i \leftarrow n$
- 3. **while** s < A[i-1] **do**
- 4. $A[i] \leftarrow A[i-1]$
- 5. $i \leftarrow i 1$
- 6. $A[i] \leftarrow s$

Einfügen(s)

1.
$$n \leftarrow n + 1$$

2.
$$i \leftarrow n$$

3. **while**
$$s < A[i-1]$$
 do

4.
$$A[i] \leftarrow A[i-1]$$

5.
$$i \leftarrow i - 1$$

6.
$$A[i] \leftarrow s$$

Einfügen(s)

1.
$$n \leftarrow n + 1$$

2.
$$i \leftarrow n$$

3. while
$$s < A[i-1]$$
 do

4.
$$A[i] \leftarrow A[i-1]$$

5.
$$i \leftarrow i - 1$$

6.
$$A[i] \leftarrow s$$

Einfügen(s)

- 1. $n \leftarrow n + 1$
- 2. $i \leftarrow n$
- 3. **while** s < A[i-1] **do**
- 4. $A[i] \leftarrow A[i-1]$
- 5. $i \leftarrow i 1$
- 6. $A[i] \leftarrow s$

2 4 6 7 10 11 13 nil nil nil nil nil

Einfügen(10)

Laufzeit $\mathbf{O}(n)$

Löschen(*i*)

- 1. **for** $j \leftarrow i$ **to** n 1 **do**
- $2. A[j] \leftarrow A[j+1]$
- 3. $A[n] \leftarrow \mathbf{nil}$
- 4. $n \leftarrow n 1$

Parameter ist der Index *i* des zu löschenden Objekts

Löschen(i)

- 1. **for** $j \leftarrow i$ **to** n 1 **do**
- $2. A[j] \leftarrow A[j+1]$
- 3. $A[n] \leftarrow \mathbf{nil}$
- 4. $n \leftarrow n-1$

Parameter ist der Index *i* des zu löschenden Objekts

Löschen(i)

- 1. **for** $j \leftarrow i$ **to** n 1 **do**
- $2. A[j] \leftarrow A[j+1]$
- 3. $A[n] \leftarrow \mathbf{nil}$
- 4. $n \leftarrow n-1$

Löschen(*i*)

1. **for**
$$j \leftarrow i$$
 to $n-1$ **do**

$$2. \qquad A[j] \leftarrow A[j+1]$$

- 3. $A[n] \leftarrow \mathbf{nil}$
- 4. $n \leftarrow n-1$

Löschen(*i*)

- 1. **for** $j \leftarrow i$ **to** n 1 **do**
- $2. A[j] \leftarrow A[j+1]$
- 3. $A[n] \leftarrow \mathbf{nil}$
- 4. $n \leftarrow n-1$

Löschen(i)

- 1. **for** $j \leftarrow i$ **to** n 1 **do**
- $2. A[j] \leftarrow A[j+1]$
- 3. $A[n] \leftarrow \mathbf{nil}$
- 4. $n \leftarrow n-1$

Suchen(x)

- Binäre Suche
- Laufzeit $\mathbf{O}(\log n)$

Datenstruktur sortiertes Feld

- Platzbedarf Θ(max)
- Laufzeit Suche: Θ(log n)
- Laufzeit Einfügen/Löschen: $\Theta(n)$

Vorteile

Schnelles Suchen

Nachteile

- Speicherbedarf abhängig von max (nicht vorhersagbar)
- Hohe Laufzeit für Einfügen/Löschen

Doppelt verkettete Listen

- Listenelement x ist Objekt bestehend aus Schlüssel und zwei Zeigern prev und next
- next verweist auf Nachfolger von x
- prev verweist auf Vorgänger von x
- prev/next sind nil, wenn Vorgänger/Nachfolger nicht existiert
- head[L] zeigt auf das erste Element

Einfügen(L, x)

- 1. $next[x] \leftarrow head[L]$
- 2. **if** head[L] \neq **nil** then prev[head[L]] \leftarrow x
- 3. head[L] $\leftarrow x$
- 4. $prev[x] \leftarrow nil$

Einfügen(L, x)

- 1. $next[x] \leftarrow head[L]$
- 2. **if** head[L] \neq **nil then** prev[head[L]] \leftarrow x
- 3. head[L] $\leftarrow x$
- 4. $prev[x] \leftarrow nil$

Einfügen(L, x)

- 1. $next[x] \leftarrow head[L]$
- 2. **if** head[L] \neq **nil** then prev[head[L]] \leftarrow x
- 3. head[L] $\leftarrow x$
- 4. $prev[x] \leftarrow nil$

Einfügen(L, x)

- 1. $next[x] \leftarrow head[L]$
- 2. **if** head[L] \neq **nil then** prev[head[L]] $\leftarrow x$
- 3. $head[L] \leftarrow x$
- 4. $prev[x] \leftarrow nil$

Einfügen(L, x)

- 1. $next[x] \leftarrow head[L]$
- 2. **if** head[L] \neq **nil then** prev[head[L]] \leftarrow x
- 3. head[L] $\leftarrow x$
- 4. $prev[x] \leftarrow nil$

Einfügen(L, x)

- 1. $next[x] \leftarrow head[L]$
- 2. **if** head[L] \neq **nil** then prev[head[L]] \leftarrow x
- 3. head[L] $\leftarrow x$
- 4. $prev[x] \leftarrow nil$

Laufzeit

• **0**(1)

$L\"{o}schen(L, x)$

- 1. **if** $prev[x] \neq nil then next[prev[x]] \leftarrow next[x]$
- 2. **else** head[L] \leftarrow next[x]
- 3. **if** $next[x] \neq nil$ **then** $prev[next[x]] \leftarrow prev[x]$
- 4. delete x

$L\"{o}schen(L, x)$

- 1. **if** $prev[x] \neq nil then <math>next[prev[x]] \leftarrow next[x]$
- 2. **else** head[L] \leftarrow next[x]
- 3. **if** $next[x] \neq nil$ **then** $prev[next[x]] \leftarrow prev[x]$
- 4. delete x

$L\ddot{o}schen(L, x)$

- 1. **if** $prev[x] \neq nil then next[prev[x]] \leftarrow next[x]$
- 2. **else** head[L] \leftarrow next[x]
- 3. **if** $next[x] \neq nil$ **then** $prev[next[x]] \leftarrow prev[x]$
- 4. delete x

$L\"{o}schen(L, x)$

- 1. **if** $prev[x] \neq nil then next[prev[x]] \leftarrow next[x]$
- 2. **else** head[L] \leftarrow next[x]
- 3. **if** $next[x] \neq nil then prev[next[x]] \leftarrow prev[x]$
- 4. delete x

$L\"{o}schen(L, x)$

- 1. **if** $prev[x] \neq nil then <math>next[prev[x]] \leftarrow next[x]$
- 2. **else** head[L] \leftarrow next[x]
- 3. **if** $next[x] \neq nil$ **then** $prev[next[x]] \leftarrow prev[x]$
- 4. **delete** x

Löschen(L, x)

- 1. **if** $prev[x] \neq nil then next[prev[x]] \leftarrow next[x]$
- 2. **else** head[L] \leftarrow next[x]
- 3. **if** $next[x] \neq nil$ **then** $prev[next[x]] \leftarrow prev[x]$
- 4. delete x

Laufzeit

• **0**(1)

Suche(L, k)

- 1. $x \leftarrow \text{head}[L]$
- 2. while $x \neq \text{nil}$ and $\text{key}[x] \neq k$ do
- 3. $x \leftarrow \text{next}[x]$
- 4. return x

Suche(L, k)

- 1. $x \leftarrow \text{head}[L]$
- 2. **while** $x \neq \text{nil}$ and $\text{key}[x] \neq k \text{ do}$
- 3. $x \leftarrow \text{next}[x]$
- 4. return x

Suche(L, k)

- 1. $x \leftarrow \text{head}[L]$
- 2. while $x \neq \text{nil}$ and $\text{key}[x] \neq k$ do
- 3. $x \leftarrow \text{next}[x]$
- 4. return x

Suche(L, k)

- 1. $x \leftarrow \text{head}[L]$
- 2. **while** $x \neq \text{nil}$ and $\text{key}[x] \neq k \text{ do}$
- 3. $x \leftarrow \text{next}[x]$
- 4. return x

Suche(L, k)

- 1. $x \leftarrow \text{head}[L]$
- 2. **while** $x \neq \text{nil}$ and $\text{key}[x] \neq k \text{ do}$
- 3. $x \leftarrow \text{next}[x]$
- 4. return x

Suche(L, k)

- 1. $x \leftarrow \text{head}[L]$
- 2. **while** $x \neq \text{nil}$ and $\text{key}[x] \neq k \text{ do}$
- 3. $x \leftarrow \text{next}[x]$
- 4. return x

Suche(L, k)

- 1. $x \leftarrow \text{head}[L]$
- 2. while $x \neq \text{nil}$ and $\text{key}[x] \neq k \text{ do}$
- 3. $x \leftarrow \text{next}[x]$
- 4. return x

Laufzeit

• **0**(n)

Datenstruktur Liste

- Platzbedarf $\Theta(n)$
- Laufzeit Suche: $\Theta(n)$
- Laufzeit Einfügen/Löschen: Θ(1)

Vorteile

- Schnelles Einfügen/Löschen
- O(n) Speicherbedarf

Nachteile

Hohe Laufzeit für Suche

Ein grundlegendes Datenbank-Problem

Speicherung von Datensätzen

Beispiel

Kundendaten (Name, Adresse, Wohnort, Kundennummer, offene Rechnungen, offene Bestellungen,...)

Anforderungen

- Schneller Zugriff
- Einfügen neuer Datensätze
- Löschen bestehender Datensätze

Zugriff auf Daten

- Jedes Datum (Objekt) hat einen Schlüssel
- Eingabe des Schlüssels liefert Datensatz
- Schlüssel sind vergleichbar (es gibt totale Ordnung der Schlüssel)

Beispiel

- Kundendaten (Name, Adresse, Kundennummer)
- Schlüssel: Name
- Totale Ordnung: Lexikographische Ordnung

Problem

Gegeben sind n Objekte $O_1, ..., O_n$ mit zugehörigen Schlüsseln $s(O_i)$

Operationen

- Suche(x); Ausgabe O mit Schlüssel s(O) = x; nil, falls kein Objekt mit Schlüssel x in Datenbank
- Einfügen(0); Einfügen von Objekt 0 in Datenbank
- Löschen(0); Löschen von Objekt 0 mit aus der Datenbank

Drei grundlegende Datenstrukturen

- Feld
- sortiertes Feld
- doppelt verkettete Liste

Diskussion

- Alle drei Strukturen haben gewichtige Nachteile
- Zeiger/Referenzen helfen beim Speichermanagement
- Sortierung hilft bei Suche ist aber teuer aufrecht zu erhalten

Definition (Binärbaum)

- Ein Binärbaum T ist eine Struktur, die auf einer endlichen Menge definiert ist. Diese Menge nennt man auch die Knotenmenge des Binärbaums.
- Die leere Menge ist ein Binärbaum. Dieser wird auch als leerer Baum bezeichnet.
- Ein Binärbaum ist ein Tripel (v, T_1, T_2) , wobei T_1 und T_2 Binärbäume mit disjunkten Knotenmengen V_1 und V_2 sind und $v \notin V_1 \cup V_2$ Wurzelknoten heißt. Die Knotenmenge des Baums ist dann $\{v\} \cup V_1 \cup V_2$. T_1 heißt linker Unterbaum von v und T_2 heißt rechter Unterbaum von v.

Darstellung von Binärbäumen

Darstellung von Binärbäumen

Häufig lässt man die leeren Bäume in der Darstellung eines Binärbaums weg

Binärbäume(Darstellung im Rechner)

- Schlüssel key und ggf. weitere Daten
- Vaterzeiger p[v] auf Vater von v (blau)
- Zeiger lc[v] (rc[v]) auf linkes (rechtes) Kind von v
- Wurzelzeiger root[T]

Binäre Suchbäume

- Verwende Binärbaum
- Speichere Schlüssel "geordnet"

Binäre Suchbaumeigenschaft

- Sei x Knoten im binären Suchbaum
- Ist y Knoten im linken Unterbaum von x, dann gilt key[y] < key[x]</p>
- Ist y Knoten im rechten Unterbaum von x, dann gilt key[y] > key[x]

Unterschiedliche Suchbäume

- Schlüsselmenge 3,4,6,7,8,9
- Wir erlauben kein mehrfaches Vorkommen desselben Schlüssels

Ausgabe aller Schlüssel

- Gegeben binärer Suchbaum
- Wie kann man alle Schlüssel aufsteigend sortiert in $\Theta(n)$ Zeit ausgeben?

Inorder-Tree-Walk(x)

- 1. if $x \neq \text{nil then}$
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Aufruf über Inorder-Tree-Walk(root[*T*])

- 1. if $x \neq \text{nil then}$
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

- 1. if $x \neq \text{nil then}$
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

- 1. if $x \neq \text{nil then}$
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

- 1. if $x \neq \text{nil then}$
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

- 1. if $x \neq \text{nil then}$
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

- 1. if $x \neq \text{nil then}$
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

- 1. if $x \neq \text{nil then}$
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Inorder-Tree-Walk(x)

- 1. if $x \neq \text{nil then}$
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if $x \neq \text{nil then}$
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

Inorder-Tree-Walk(x)

if $x \neq \text{nil then}$

- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if $x \neq \text{nil then}$
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if $x \neq \text{nil then}$
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if $x \neq \text{nil then}$
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if $x \neq \text{nil then}$
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if $x \neq \text{nil then}$
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if $x \neq \text{nil then}$
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if $x \neq \text{nil then}$
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if $x \neq \text{nil then}$
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if $x \neq \text{nil then}$
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if $x \neq \text{nil then}$
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if $x \neq \text{nil then}$
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if $x \neq \text{nil then}$
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if $x \neq \text{nil then}$
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if $x \neq \text{nil then}$
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if $x \neq \text{nil then}$
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if $x \neq \text{nil then}$
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if $x \neq \text{nil then}$
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

3, 4, 6, 7, 8

Inorder-Tree-Walk(x)

- 1. if $x \neq \text{nil then}$
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

3, 4, 6, 7, 8

Inorder-Tree-Walk(x)

- 1. if $x \neq \text{nil then}$
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe: 3, 4, 6, 7, 8

Inorder-Tree-Walk(x)

- 1. if $x \neq \text{nil then}$
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

3, 4, 6, 7, 8

Inorder-Tree-Walk(x)

- 1. if $x \neq \text{nil then}$
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

3, 4, 6, 7, 8

Inorder-Tree-Walk(x)

- 1. if $x \neq \text{nil then}$
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if $x \neq \text{nil then}$
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if $x \neq \text{nil then}$
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if $x \neq \text{nil then}$
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if $x \neq \text{nil then}$
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if $x \neq \text{nil then}$
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if $x \neq \text{nil then}$
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

Inorder-Tree-Walk(x)

- 1. if $x \neq \text{nil then}$
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Ausgabe:

Lemma 33

Inorder-Tree-Walk gibt die Schlüssel eines binären Suchbaums in aufsteigender Reihenfolge aus.

"Normale" Induktion

- Wir wollen zeigen, dass Aussage A(i) für alle natürlichen Zahlen i gilt
- Dazu beweisen wir, dass
- *(a)* A(1) *gilt*
- (b) Wenn A(i) gilt, dann gilt auch A(i + 1)
- (a) heißt Induktionsanfang
- (b) nennt man Induktionsschluss (oder auch Induktionsschritt)
- Die Vorraussetzung in (b) (also A(i)) heißt Induktionsvoraussetzung

Induktion über die Struktur von Binärbäumen

Wollen zeigen, dass Aussage für alle Binärbäume gilt:

- (a) Zeige Induktionsanfang für "kleine Binärbäume"
- (b) Setze größere Bäume aus kleinen Binärbäumen zusammen, d.h.

Aussage gilt für Bäume A und B

Induktion über die Struktur von Binärbäumen

Wollen zeigen, dass Aussage für alle Binärbäume gilt:

- (a) Zeige Induktionsanfang für "kleine Binärbäume"
- (b) Setze größere Bäume aus kleinen Binärbäumen zusammen, d.h.

Definition

Die Höhe eines Binärbaums mit Wurzel v ist die Länge (Anzahl Kanten) des längsten einfachen Weges (keine mehrfach vorkommenden Knoten) von der Wurzel zu einem Blatt.

Beispiel

Baum der Höhe 3

Definition

Die Höhe eines Binärbaums mit Wurzel v ist die Länge (Anzahl Kanten) des längsten einfachen Weges (keine mehrfach vorkommenden Knoten) von der Wurzel zu einem Blatt.

Beispiel

Baum der Höhe 1

Definition

Die Höhe eines Binärbaums mit Wurzel v ist die Länge (Anzahl Kanten) des längsten einfachen Weges (keine mehrfach vorkommenden Knoten) von der Wurzel zu einem Blatt.

Beispiel

Baum der Höhe 0

Definition

Die Höhe eines Binärbaums mit Wurzel v ist die Länge (Anzahl Kanten) des längsten einfachen Weges (keine mehrfach vorkommenden Knoten) von der Wurzel zu einem Blatt.

Beispiel

Übereinkunft: Ein leerer Baum hat Höhe -1

Damit gilt:
 Höhe eines Baumes mit Wurzel v und
 Teilbäumen A und B ist
 1 + max{Höhe(A), Höhe(B)}

Induktion über die Struktur von Binärbäumen

- Wir wollen Aussage A(i) durch Induktion über die Höhe von Bäumen zeigen
- (a) Zeige die Aussage für leere Bäume (Bäume der Höhe -1)

 (b) Zeige: Gilt die Aussage für Bäume der Höhe i, so gilt sie auch für Bäume der Höhe i + 1

B

Induktion über die Struktur von Binärbäumen

- Wir wollen Aussage A(i) durch Induktion über die Höhe von Bäumen zeigen
- (a) Zeige die Aussage für leere Bäume (Bäume der Höhe -1)

• (b) Zeige: Gilt die Aussage für Bäume der Höhe i, so gilt sie auch für Bäume der Höhe i+1

- Dabei können wir immer annehmen, dass ein Baum der Höhe i + 1 aus einer Wurzel v und zwei Teilbäumen A, B besteht, so dass
 - (1) A und B Höhe maximal i haben und
 - (2) A oder B Höhe i hat

Induktion über die Struktur von Binärbäumen

- Wir wollen Aussage A(i) durch Induktion über die Höhe von Bäumen zeigen
- (a) Zeige die Aussage für leere Bäume (Bäume der Höhe -1)

• (b) Zeige: Gilt die Aussage für Bäume der Höhe i, so gilt sie auch für Bäume der Höhe i+1

- Dabei können wir immer annehmen, dass ein Baum der Höhe i + 1 aus einer Wurzel v und zwei Teilbäumen A, B besteht, so dass
 - (1) A und B Höhe maximal i haben und
 - (2) A oder B Höhe i hat

Lemma 33

Inorder-Tree-Walk gibt die Schlüssel eines binären Suchbaums in aufsteigender Reihenfolge aus.

Inorder-Tree-Walk(x)

- 1. if $x \neq \text{nil then}$
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Beweis

(I.A.) Leerer Baum: Keine Ausgabe, also korrekt

Lemma 33

Inorder-Tree-Walk gibt die Schlüssel eines binären Suchbaums in aufsteigender Reihenfolge aus.

Inorder-Tree-Walk(x)

- 1. if $x \neq \text{nil then}$
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

- (I.A.) Leerer Baum: Keine Ausgabe, also korrekt
- (I.V.) Lemma gilt für Bäume der Höhe $\leq i$.

Lemma 33

Inorder-Tree-Walk gibt die Schlüssel eines binären Suchbaums in aufsteigender Reihenfolge aus.

Inorder-Tree-Walk(x)

- 1. if $x \neq \text{nil then}$
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

- (I.A.) Leerer Baum: Keine Ausgabe, also korrekt
- (I.V.) Lemma gilt für Bäume der Höhe $\leq i$.
- (I.S.) z.z.: Lemma gilt auch für Höhe $i + 1 \ge 0$.

Lemma 33

Inorder-Tree-Walk gibt die Schlüssel eines binären Suchbaums in aufsteigender Reihenfolge aus.

Inorder-Tree-Walk(x)

- 1. if $x \neq \text{nil then}$
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

- (I.A.) Leerer Baum: Keine Ausgabe, also korrekt
- (I.V.) Lemma gilt für Bäume der Höhe $\leq i$.
- (I.S.) z.z.: Lemma gilt auch für Höhe $i + 1 \ge 0$.
- Betrachte Inorder-Tree-Walk auf solchem Baum. Höhe

Lemma 33

Inorder-Tree-Walk gibt die Schlüssel eines binären Suchbaums in aufsteigender Reihenfolge aus.

Inorder-Tree-Walk(x)

- 1. if $x \neq \text{nil then}$
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

- (I.A.) Leerer Baum: Keine Ausgabe, also korrekt
- (I.V.) Lemma gilt für Bäume der Höhe $\leq i$.
- (I.S.) z.z.: Lemma gilt auch für Höhe $i + 1 \ge 0$.
- Betrachte Inorder-Tree-Walk auf solchem Baum.
- Nach Suchbaumeigenschaft sind alle Schlüssel in A kleiner oder gleich Schlüssel von v

Lemma 33

Inorder-Tree-Walk gibt die Schlüssel eines binären Suchbaums in aufsteigender Reihenfolge aus.

Inorder-Tree-Walk(x)

- 1. if $x \neq \text{nil then}$
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

- (I.A.) Leerer Baum: Keine Ausgabe, also korrekt
- (I.V.) Lemma gilt für Bäume der Höhe $\leq i$.
- (I.S.) z.z.: Lemma gilt auch für Höhe $i + 1 \ge 0$.
- Betrachte Inorder-Tree-Walk auf solchem Baum.
- Nach Suchbaumeigenschaft sind alle Schlüssel in A kleiner oder gleich Schlüssel von v
- Zeile 2: Aufruf für Teilbaum A der Höhe ≤ i
 Nach (I.V.): Schlüssel aus A werden in aufsteigender
 Reihenfolge ausgegeben

Lemma 33

Inorder-Tree-Walk gibt die Schlüssel eines binären Suchbaums in aufsteigender Reihenfolge aus.

Inorder-Tree-Walk(x)

- 1. if $x \neq \text{nil then}$
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

- (I.A.) Leerer Baum: Keine Ausgabe, also korrekt
- (I.V.) Lemma gilt für Bäume der Höhe $\leq i$.
- (I.S.) z.z.: Lemma gilt auch für Höhe $i + 1 \ge 0$.
- Betrachte Inorder-Tree-Walk auf solchem Baum.
- Nach Suchbaumeigenschaft sind alle Schlüssel in A kleiner oder gleich Schlüssel von v
- Zeile 2: Aufruf für Teilbaum A der Höhe ≤ i
 Nach (I.V.): Schlüssel aus A werden in aufsteigender
 Reihenfolge ausgegeben

Lemma 33

Inorder-Tree-Walk gibt die Schlüssel eines binären Suchbaums in aufsteigender Reihenfolge aus.

Inorder-Tree-Walk(x)

- 1. if $x \neq \text{nil then}$
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

Beweis

Zeile 2: Aufruf für Teilbaum A der Höhe ≤ i Nach (I.V.): Schlüssel aus A werden in aufsteigender Reihenfolge ausgegeben

Lemma 33

Inorder-Tree-Walk gibt die Schlüssel eines binären Suchbaums in aufsteigender Reihenfolge aus.

Inorder-Tree-Walk(x)

- 1. if $x \neq \text{nil then}$
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

- Zeile 2: Aufruf für Teilbaum A der Höhe ≤ i
 Nach (I.V.): Schlüssel aus A werden in aufsteigender
 Reihenfolge ausgegeben
- Zeile 3: key[v] wird ausgegeben
- Alle Schlüssel in Teilbaum B sind größer als Schlüssel von v (Suchbaumeigenschaft)

Lemma 33

Inorder-Tree-Walk gibt die Schlüssel eines binären Suchbaums in aufsteigender Reihenfolge aus.

Inorder-Tree-Walk(x)

- 1. if $x \neq \text{nil then}$
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

- Zeile 2: Aufruf für Teilbaum A der Höhe ≤ i
 Nach (I.V.): Schlüssel aus A werden in aufsteigender
 Reihenfolge ausgegeben
- Zeile 3: key[v] wird ausgegeben
- Alle Schlüssel in Teilbaum B sind größer als Schlüssel von v (Suchbaumeigenschaft)
- Zeile 4: Aufruf für Teilbaum B der Höhe ≤ i
 Nach (I.V.): Schlüssel aus B werden in aufsteigender
 Reihenfolge ausgegeben

Lemma 33

Inorder-Tree-Walk gibt die Schlüssel eines binären Suchbaums in aufsteigender Reihenfolge aus.

Inorder-Tree-Walk(x)

- 1. if $x \neq \text{nil then}$
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

- Zeile 2: Aufruf für Teilbaum A der Höhe ≤ i
 Nach (I.V.): Schlüssel aus A werden in aufsteigender
 Reihenfolge ausgegeben
- Zeile 3: key[v] wird ausgegeben
- Alle Schlüssel in Teilbaum B sind größer als Schlüssel von v (Suchbaumeigenschaft)
- Zeile 4: Aufruf für Teilbaum B der Höhe ≤ i
 Nach (I.V.): Schlüssel aus B werden in aufsteigender
 Reihenfolge ausgegeben

Lemma 33

Inorder-Tree-Walk gibt die Schlüssel eines binären Suchbaums in aufsteigender Reihenfolge aus.

Inorder-Tree-Walk(x)

- 1. if $x \neq \text{nil then}$
- 2. Inorder-Tree-Walk(lc[x])
- 3. Ausgabe key[x]
- 4. Inorder-Tree-Walk(rc[x])

- Insgesamt:
- Schlüssel aus A aufsteigend, Schlüssel von v, Schlüssel aus B aufsteigend
- Nach Suchbaumeigenschaft ist dies aufsteigende Folge

Suchen in Binärbäumen

- Gegeben ist Schlüssel k
- Gesucht ist ein Knoten mit Schlüssel k

- 1. if x = nil or k = key[x] then return x
- 2. if k < key[x] then return Baumsuche(lc[x], k)
- 3. **else return** Baumsuche(rc[x], k)

Baumsuche(x, k) Aufruf mit x = root[T]

- 1. if x = nil or k = key[x] then return x
- 2. if k < key[x] then return Baumsuche(lc[x], k)
- 3. **else return** Baumsuche(rc[x], k)

- 1. if x = nil or k = key[x] then return x
- 2. **if** k < key[x] **then return** Baumsuche(lc[x], k)
- 3. **else return** Baumsuche(rc[x], k)

- 1. if x = nil or k = key[x] then return x
- 2. **if** k < key[x] **then return** Baumsuche(lc[x], k)
- 3. **else return** Baumsuche(rc[x], k)

- 1. if x = nil or k = key[x] then return x
- 2. if k < key[x] then return Baumsuche(lc[x], k)
- 3. **else return** Baumsuche(rc[x], k)

- 1. if x = nil or k = key[x] then return x
- 2. **if** k < key[x] **then return** Baumsuche(lc[x], k)
- 3. **else return** Baumsuche(rc[x], k)

- 1. if x = nil or k = key[x] then return x
- 2. **if** k < key[x] **then return** Baumsuche(lc[x], k)
- 3. **else return** Baumsuche(rc[x], k)

- 1. if x = nil or k = key[x] then return x
- 2. **if** k < key[x] **then return** Baumsuche(lc[x], k)
- 3. **else return** Baumsuche(rc[x], k)

- 1. if x = nil or k = key[x] then return x
- 2. **if** k < key[x] **then return** Baumsuche(lc[x], k)
- 3. **else return** Baumsuche(rc[x], k)

- 1. if x = nil or k = key[x] then return x
- 2. **if** k < key[x] **then return** Baumsuche(lc[x], k)
- 3. **else return** Baumsuche(rc[x], k)

- 1. while $x \neq \text{nil and } k \neq \text{key}[x]$ do
- 2. if k < key[x] then $x \leftarrow \text{lc}[x]$
- 3. **else** $x \leftarrow rc[x]$
- 4. return x

- 1. while $x \neq \text{nil and } k \neq \text{key}[x]$ do
- 2. if k < key[x] then $x \leftarrow \text{lc}[x]$
- 3. **else** $x \leftarrow rc[x]$
- 4. return x

IterativeBaumsuche(x, k)

Aufruf mit x = root[T]

- 1. while $x \neq \text{nil and } k \neq \text{key}[x]$ do
- 2. if k < key[x] then $x \leftarrow \text{lc}[x]$
- 3. **else** $x \leftarrow rc[x]$
- 4. return x

- 1. while $x \neq \text{nil and } k \neq \text{key}[x]$ do
- 2. **if** k < key[x] **then** $x \leftarrow \text{lc}[x]$
- 3. **else** $x \leftarrow rc[x]$
- 4. return x

- 1. while $x \neq \text{nil and } k \neq \text{key}[x]$ do
- 2. **if** k < key[x] **then** $x \leftarrow \text{lc}[x]$
- 3. **else** $x \leftarrow rc[x]$
- 4. return x

- 1. while $x \neq \text{nil and } k \neq \text{key}[x]$ do
- 2. **if** k < key[x] **then** $x \leftarrow \text{lc}[x]$
- 3. **else** $x \leftarrow rc[x]$
- 4. return x

IterativeBaumsuche(x, k)

Aufruf mit x = root[T]

- 1. while $x \neq \text{nil and } k \neq \text{key}[x]$ do
- 2. **if** k < key[x] **then** $x \leftarrow \text{lc}[x]$
- 3. **else** $x \leftarrow rc[x]$
- 4. return x

IterativeBaumsuche(x, k)

- 1. while $x \neq \text{nil and } k \neq \text{key}[x]$ do
- 2. **if** k < key[x] **then** $x \leftarrow \text{lc}[x]$
- 3. **else** $x \leftarrow rc[x]$
- 4. return x

IterativeBaumsuche(x, k)

- 1. while $x \neq \text{nil and } k \neq \text{key}[x]$ do
- 2. **if** k < key[x] **then** $x \leftarrow \text{lc}[x]$
- 3. **else** $x \leftarrow rc[x]$
- 4. return x

IterativeBaumsuche(x, k)

- 1. while $x \neq \text{nil and } k \neq \text{key}[x]$ do
- 2. **if** k < key[x] **then** $x \leftarrow \text{lc}[x]$
- 3. **else** $x \leftarrow rc[x]$
- 4. $| \mathbf{return} x |$

IterativeBaumsuche(x, k)

- 1. while $x \neq \text{nil and } k \neq \text{key}[x]$ do
- 2. **if** k < key[x] **then** $x \leftarrow \text{lc}[x]$
- 3. **else** $x \leftarrow rc[x]$
- 4. return x

Funktionsweise wie (rekursive) Baumsuche. Laufzeit ebenfalls $\mathbf{O}(h)$.

Minimum- und Maximumsuche

Suchbaumeigenschaft:

Alle Knoten im rechten Unterbaum eines Knotens x sind größer als key[x] Alle Knoten im linken Unterbaum von x sind kleiner als key[x]

Wird mit Wurzel aufgerufen

MinimumSuche(x)

- 1. while $lc[x] \neq nil do x \leftarrow lc[x]$
- 2. return x

Wird mit Wurzel aufgerufen

Laufzeit **O**(h)

MinimumSuche(x)

- 1. while $lc[x] \neq nil do x \leftarrow lc[x]$
- 2. return x

Nachfolgersuche

- Nachfolger bzgl. Inorder-Tree-Walk
- Wenn alle Schlüssel unterschiedlich, dann ist das der nächstgrößere Schlüssel

Nachfolgersuche

Fall 1 (rechter Unterbaum von x nicht leer):
 Dann ist der linkeste Knoten im rechten Unterbaum der Nachfolger von x

Nachfolgersuche

Fall 1 (rechter Unterbaum von x nicht leer):
 Dann ist der linkeste Knoten im rechten Unterbaum der Nachfolger von x

Nachfolgersuche

Fall 1 (rechter Unterbaum von x nicht leer):
 Dann ist der linkeste Knoten im rechten Unterbaum der Nachfolger von x

Nachfolgersuche

Fall 2 (rechter Unterbaum von x leer und x hat Nachfolger y):
 Dann ist y der erste Knoten auf dem Pfad zur Wurzel, der größer als x ist

Nachfolgersuche

Fall 2 (rechter Unterbaum von x leer und x hat Nachfolger y):
 Dann ist y der erste Knoten auf dem Pfad zur Wurzel, der größer als x ist

Nachfolgersuche

Fall 2 (rechter Unterbaum von x leer und x hat Nachfolger y):
 Dann ist y der erste Knoten auf dem Pfad zur Wurzel, der größer als x ist

Nachfolgersuche(x)

- 1. if $rc[x] \neq nil$ then return MinimumSuche(rc[x])
- 2. $y \leftarrow p[x]$
- 3. while $y \neq \text{nil and } x = rc[y] \text{ do}$
- 4. $x \leftarrow y$
- 5. $y \leftarrow p[y]$
- 6. return y

Nachfolgersuche(x)

1. if $rc[x] \neq nil$ then return MinimumSuche(rc[x])

4

- 2. $y \leftarrow p[x]$
- 3. while $y \neq \text{nil and } x = rc[y] \text{ do}$
- 4. $x \leftarrow y$
- 5. $y \leftarrow p[y]$

Nachfolgersuche(x)

1. **if** $rc[x] \neq$ **nil then return** MinimumSuche(rc[x])

4

- 2. $y \leftarrow p[x]$
- 3. while $y \neq \text{nil and } x = rc[y] \text{ do}$
- 4. $x \leftarrow y$
- 5. $y \leftarrow p[y]$

Nachfolgersuche(x)

- 1. **if** $rc[x] \neq$ **nil then return** MinimumSuche(rc[x])
- 2. $y \leftarrow p[x]$
- 3. while $y \neq \text{nil and } x = rc[y] \text{ do}$
- 4. $x \leftarrow y$
- 5. $y \leftarrow p[y]$

Nachfolgersuche(x)

1. if $rc[x] \neq nil$ then return MinimumSuche(rc[x])

4

- 2. $y \leftarrow p[x]$
- 3. while $y \neq \text{nil and } x = rc[y] \text{ do}$
- 4. $x \leftarrow y$
- 5. $y \leftarrow p[y]$

Nachfolgersuche(x)

1. **if** $rc[x] \neq$ **nil then return** MinimumSuche(rc[x])

4

- 2. $y \leftarrow p[x]$
- 3. while $y \neq \text{nil and } x = rc[y] \text{ do}$
- 4. $x \leftarrow y$
- 5. $y \leftarrow p[y]$

Nachfolgersuche(x)

- 1. if $rc[x] \neq nil$ then return MinimumSuche(rc[x])
- 2. $y \leftarrow p[x]$
- 3. while $y \neq \text{nil and } x = rc[y] \text{ do}$
- 4. $x \leftarrow y$
- 5. $y \leftarrow p[y]$

Nachfolgersuche(x)

- 1. if $rc[x] \neq nil$ then return MinimumSuche(rc[x])
- 2. $y \leftarrow p[x]$
- 3. while $y \neq \text{nil and } x = rc[y] \text{ do}$
- 4. $x \leftarrow y$
- 5. $y \leftarrow p[y]$

Nachfolgersuche(x)

- 1. if $rc[x] \neq nil$ then return MinimumSuche(rc[x])
- $2. \quad y \leftarrow p[x]$
- 3. **while** $y \neq \text{nil and } x = rc[y] \text{ do}$
- 4. $x \leftarrow y$
- 5. $y \leftarrow p[y]$

Nachfolgersuche(x)

- 1. if $rc[x] \neq nil$ then return MinimumSuche(rc[x])
- 2. $y \leftarrow p[x]$
- 3. while $y \neq \text{nil and } x = rc[y] \text{ do}$
- 4. $x \leftarrow y$
- 5. $y \leftarrow p[y]$

Nachfolgersuche(x)

- 1. if $rc[x] \neq nil$ then return MinimumSuche(rc[x])
- 2. $y \leftarrow p[x]$
- 3. while $y \neq \text{nil and } x = rc[y]$ do
- $4. \qquad x \leftarrow y$
- 5. $y \leftarrow p[y]$

Nachfolgersuche(x)

- 1. if $rc[x] \neq nil$ then return MinimumSuche(rc[x])
- 2. $y \leftarrow p[x]$
- 3. while $y \neq \text{nil and } x = rc[y] \text{ do}$
- 4. $x \leftarrow y$
- 5. $y \leftarrow p[y]$
- 6. return y

Nachfolgersuche(x)

- 1. if $rc[x] \neq nil$ then return MinimumSuche(rc[x])
- 2. $y \leftarrow p[x]$
- 3. while $y \neq \text{nil and } x = rc[y] \text{ do}$
- 4. $x \leftarrow y$
- 5. $y \leftarrow p[y]$

Nachfolgersuche(x)

- 1. **if** $rc[x] \neq nil$ **then return** MinimumSuche(rc[x])
- 2. $y \leftarrow p[x]$
- 3. while $y \neq \text{nil and } x = rc[y]$ do
- 4. $x \leftarrow y$
- 5. $y \leftarrow p[y]$
- 6. return y

Laufzeit $\mathbf{O}(h)$

Vorgängersuche

- Symmetrisch zu Nachfolgersuche
- Daher ebenfall **O**(h) Laufzeit

Laufzeit O(h)

Binäre Suchbäume

- Aufzählen der Elemente mit Inorder-Tree-Walk in O(n) Zeit
- Suche in **O**(h) Zeit
- Minimum/Maximum in O(h) Zeit
- Vorgänger/Nachfolger in **O**(h) Zeit

Dynamische Operationen?

- Einfügen und Löschen
- Müssen Suchbaumeigenschaft aufrecht erhalten
- Auswirkung auf Höhe des Baums?

Einfügen

- Ähnlich wie Baumsuche: Finde Blatt, an das neuer Knoten angehängt wird
- Danach wird nil-Zeiger durch neues
 Element ersetzt

Einfügen(T, z)

- 1. $y \leftarrow \mathbf{nil}; x \leftarrow \mathbf{root}[T]$
- 2. while $x \neq nil$ do
- 3. $y \leftarrow x$
- 4. **if** key[z] < key[x] **then** $x \leftarrow lc[x]$
- 5. **else** $x \leftarrow rc[x]$
- 6. $p[z] \leftarrow y$
- 7. if $y = \text{nil then } \text{root}[T] \leftarrow z$
- 8. else
- 9. **if** key[z] < key[y] **then** $lc[y] \leftarrow z$
- 10. **else** $rc[y] \leftarrow z$

Einfügen(T, z)

1. $y \leftarrow \mathbf{nil}; x \leftarrow \mathbf{root}[T]$

2. while $x \neq nil do$

3. $y \leftarrow x$

4. **if** key[z] < key[x] **then** $x \leftarrow lc[x]$

5. **else** $x \leftarrow rc[x]$

6. $p[z] \leftarrow y$

7. if $y = \mathbf{nil}$ then $root[T] \leftarrow z$

8. else

9. **if** key[z] < key[y] **then** $lc[y] \leftarrow z$

10. **else** $rc[y] \leftarrow z$

y wird Vater des einzufügenden Elements

Einfügen(8)

Einfügen(T, z)

- 1. $y \leftarrow \mathbf{nil}; x \leftarrow \mathbf{root}[T]$
- 2. while $x \neq nil$ do
- 3. $y \leftarrow x$
- 4. **if** key[z] < key[x] **then** $x \leftarrow lc[x]$
- 5. **else** $x \leftarrow rc[x]$
- 6. $p[z] \leftarrow y$
- 7. **if** y =**nil then** $root[T] \leftarrow z$
- 8. else
- 9. **if** key[z] < key[y] **then** $lc[y] \leftarrow z$
- 10. **else** $rc[y] \leftarrow z$

Einfügen(8)

Einfügen(T, z)

- 1. $y \leftarrow \mathbf{nil}; x \leftarrow \mathbf{root}[T]$
- 2. while $x \neq nil$ do
- 3. $y \leftarrow x$
- 4. **if** key[z] < key[x] **then** $x \leftarrow lc[x]$
- 5. **else** $x \leftarrow rc[x]$
- 6. $p[z] \leftarrow y$
- 7. if $y = \text{nil then } \text{root}[T] \leftarrow z$
- 8. else
- 9. **if** key[z] < key[y] **then** $lc[y] \leftarrow z$
- 10. **else** $rc[y] \leftarrow z$

Einfügen(8)

Einfügen(T, z)

- 1. $y \leftarrow \mathbf{nil}; x \leftarrow \mathbf{root}[T]$
- 2. while $x \neq nil$ do
- 3. $y \leftarrow x$
- 4. **if** key[z] < key[x] **then** $x \leftarrow \text{lc}[x]$
- 5. **else** $x \leftarrow rc[x]$
- 6. $p[z] \leftarrow y$
- 7. if $y = \text{nil then } \text{root}[T] \leftarrow z$
- 8. else
- 9. **if** key[z] < key[y] **then** $lc[y] \leftarrow z$
- 10. **else** $rc[y] \leftarrow z$

Einfügen(T, z)

- 1. $y \leftarrow \mathbf{nil}; x \leftarrow \mathbf{root}[T]$
- 2. while $x \neq nil$ do
- 3. $y \leftarrow x$
- 4. **if** key[z] < key[x] **then** $x \leftarrow lc[x]$
- 5. **else** $x \leftarrow rc[x]$
- 6. $p[z] \leftarrow y$
- 7. if $y = \mathbf{nil}$ then $root[T] \leftarrow z$
- 8. else
- 9. **if** key[z] < key[y] **then** $lc[y] \leftarrow z$
- 10. **else** $rc[y] \leftarrow z$

Einfügen(T, z)

- 1. $y \leftarrow \mathbf{nil}; x \leftarrow \mathbf{root}[T]$
- 2. while $x \neq nil$ do
- 3. $y \leftarrow x$
- 4. **if** key[z] < key[x] **then** $x \leftarrow lc[x]$
- 5. **else** $x \leftarrow rc[x]$
- 6. $p[z] \leftarrow y$
- 7. if $y = \text{nil then } \text{root}[T] \leftarrow z$
- 8. else
- 9. **if** key[z] < key[y] **then** $lc[y] \leftarrow z$
- 10. **else** $rc[y] \leftarrow z$

Einfügen(T, z)

- 1. $y \leftarrow \mathbf{nil}; x \leftarrow \mathbf{root}[T]$
- 2. while $x \neq nil$ do
- 3. $y \leftarrow x$
- 4. **if** key[z] < key[x] **then** $x \leftarrow lc[x]$
- 5. **else** $x \leftarrow rc[x]$
- 6. $p[z] \leftarrow y$
- 7. if $y = \mathbf{nil}$ then $root[T] \leftarrow z$
- 8. else
- 9. **if** key[z] < key[y] **then** $lc[y] \leftarrow z$
- 10. **else** $rc[y] \leftarrow z$

Einfügen(T, z)

- 1. $y \leftarrow \mathbf{nil}; x \leftarrow \mathbf{root}[T]$
- 2. while $x \neq nil$ do
- 3. $y \leftarrow x$
- 4. **if** key[z] < key[x] **then** $x \leftarrow \text{lc}[x]$
- 5. **else** $x \leftarrow rc[x]$
- 6. $p[z] \leftarrow y$
- 7. if $y = \text{nil then } \text{root}[T] \leftarrow z$
- 8. else
- 9. **if** key[z] < key[y] **then** $lc[y] \leftarrow z$
- 10. **else** $rc[y] \leftarrow z$

Einfügen(T, z)

- 1. $y \leftarrow \mathbf{nil}; x \leftarrow \mathbf{root}[T]$
- 2. while $x \neq nil$ do
- 3. $y \leftarrow x$
- 4. **if** key[z] < key[x] **then** $x \leftarrow lc[x]$
- 5. **else** $x \leftarrow rc[x]$
- 6. $p[z] \leftarrow y$
- 7. if $y = \mathbf{nil}$ then $root[T] \leftarrow z$
- 8. else
- 9. **if** key[z] < key[y] **then** $lc[y] \leftarrow z$
- 10. **else** $rc[y] \leftarrow z$

Einfügen(T, z)

- 1. $y \leftarrow \mathbf{nil}; x \leftarrow \mathbf{root}[T]$
- 2. while $x \neq nil$ do
- 3. $y \leftarrow x$
- 4. **if** key[z] < key[x] **then** $x \leftarrow lc[x]$
- 5. **else** $x \leftarrow rc[x]$
- 6. $p[z] \leftarrow y$
- 7. if $y = \text{nil then } \text{root}[T] \leftarrow z$
- 8. else
- 9. **if** key[z] < key[y] **then** $lc[y] \leftarrow z$
- 10. **else** $rc[y] \leftarrow z$

Einfügen(T, z)

- 1. $y \leftarrow \mathbf{nil}; x \leftarrow \mathbf{root}[T]$
- 2. while $x \neq nil$ do
- 3. $y \leftarrow x$
- 4. **if** key[z] < key[x] **then** $x \leftarrow lc[x]$
- 5. **else** $x \leftarrow rc[x]$
- 6. $p[z] \leftarrow y$
- 7. if $y = \mathbf{nil}$ then $root[T] \leftarrow z$
- 8. else
- 9. **if** key[z] < key[y] **then** $lc[y] \leftarrow z$
- 10. **else** $rc[y] \leftarrow z$

Einfügen(T, z)

- 1. $y \leftarrow \mathbf{nil}; x \leftarrow \mathbf{root}[T]$
- 2. while $x \neq nil$ do
- 3. $y \leftarrow x$
- 4. **if** key[z] < key[x] **then** $x \leftarrow \text{lc}[x]$
- 5. **else** $x \leftarrow rc[x]$
- 6. $p[z] \leftarrow y$
- 7. if $y = \text{nil then } \text{root}[T] \leftarrow z$
- 8. else
- 9. **if** key[z] < key[y] **then** $lc[y] \leftarrow z$
- 10. **else** $rc[y] \leftarrow z$

Einfügen(T, z)

- 1. $y \leftarrow \mathbf{nil}; x \leftarrow \mathbf{root}[T]$
- 2. while $x \neq nil$ do
- 3. $y \leftarrow x$
- 4. **if** key[z] < key[x] **then** $x \leftarrow lc[x]$
- 5. **else** $x \leftarrow rc[x]$
- 6. $|p[z] \leftarrow y|$
- 7. if $y = \text{nil then } \text{root}[T] \leftarrow z$
- 8. else
- 9. **if** key[z] < key[y] **then** $lc[y] \leftarrow z$
- 10. **else** $rc[y] \leftarrow z$

Einfügen(T, z)

- 1. $y \leftarrow \mathbf{nil}; x \leftarrow \mathbf{root}[T]$
- 2. while $x \neq nil do$
- 3. $y \leftarrow x$
- 4. **if** key[z] < key[x] **then** $x \leftarrow lc[x]$
- 5. **else** $x \leftarrow rc[x]$
- 6. $p[z] \leftarrow y$
- 7. **if** y =**nil then** $root[T] \leftarrow z$
- 8. else
- 9. **if** key[z] < key[y] **then** $lc[y] \leftarrow z$
- 10. **else** $rc[y] \leftarrow z$

Einfügen(T, z)

- 1. $y \leftarrow \mathbf{nil}; x \leftarrow \mathbf{root}[T]$
- 2. while $x \neq nil$ do
- 3. $y \leftarrow x$
- 4. **if** key[z] < key[x] **then** $x \leftarrow lc[x]$
- 5. **else** $x \leftarrow rc[x]$
- 6. $p[z] \leftarrow y$
- 7. if $y = \text{nil then } \text{root}[T] \leftarrow z$
- 8. else
- 9. **if** key[z] < key[y] **then** $lc[y] \leftarrow z$
- 10. else $rc[y] \leftarrow z$

Einfügen(T, z)

- 1. $y \leftarrow \mathbf{nil}; x \leftarrow \mathbf{root}[T]$
- 2. while $x \neq nil$ do
- 3. $y \leftarrow x$
- 4. **if** key[z] < key[x] **then** $x \leftarrow lc[x]$
- 5. **else** $x \leftarrow rc[x]$
- 6. $p[z] \leftarrow y$
- 7. if $y = \text{nil then } \text{root}[T] \leftarrow z$
- 8. else
- 9. **if** key[z] < key[y] **then** $lc[y] \leftarrow z$
- 10. **else** $rc[y] \leftarrow z$

Einfügen(T, z)

- 1. $y \leftarrow \mathbf{nil}; x \leftarrow \mathbf{root}[T]$
- 2. while $x \neq nil$ do
- 3. $y \leftarrow x$
- 4. **if** key[z] < key[x] **then** $x \leftarrow lc[x]$
- 5. **else** $x \leftarrow rc[x]$
- 6. $p[z] \leftarrow y$
- 7. if $y = \text{nil then } \text{root}[T] \leftarrow z$
- 8. else
- 9. **if** key[z] < key[y] **then** $lc[y] \leftarrow z$
- 10. **else** $rc[y] \leftarrow z$

Laufzeit **O**(h)

Löschen

- 3 unterschiedliche Fälle
- (a) zu löschendes Element z hat keine Kinder
- (b) zu löschendes Element z hat ein Kind
- (c) zu löschendes Element z hat zwei Kinder

Fall (a)

zu löschendes Element z hat keine Kinder

Fall (a)

- zu löschendes Element z hat keine Kinder
- Entferne Element

Fall (b)

Zu löschendes Element z hat 1 Kind

Fall (b)

Zu löschendes Element z hat 1 Kind

Fall (c)

Zu löschendes Element z hat 2 Kinder

Fall (c)

- Zu löschendes Element z hat 2 Kinder
- Schritt 1: Bestimme Nachfolger von z

Fall (c)

- Zu löschendes Element z hat 2 Kinder
- Schritt 1: Bestimme Nachfolger von z

Nachfolger hat nur ein Kind

Fall (c)

- Zu löschendes Element z hat 2 Kinder
- Schritt 1: Bestimme Nachfolger von z
- Schritt 2: Entferne Nachfolger

Fall (c)

- Zu löschendes Element z hat 2 Kinder
- Schritt 1: Bestimme Nachfolger von z
- Schritt 2: Entferne Nachfolger
- Schritt 3: Ersetze z durch Nachfolger

- 1. if $lc[z] = nil or rc[z] = nil then <math>y \leftarrow z$
- 2. **else** $y \leftarrow \text{NachfolgerSuche}(z)$
- 3. if $lc[y] \neq nil$ then $x \leftarrow lc[y]$
- 4. else $x \leftarrow rc[y]$
- 5. if $x \neq \text{nil then } p[x] \leftarrow p[y]$
- 6. **if** $p[y] = \mathbf{nil}$ **then** $root[T] \leftarrow x$
- 7. **else if** y = lc[p[y]] **then** $lc[p[y]] \leftarrow x$
- 8. **else** $\operatorname{rc}[p[y]] \leftarrow x$
- 9. $\text{key}[z] \leftarrow \text{key}[y]$

Datenstruk

Referenz auf z wird übergeben!

$L\"{o}schen(T, z)$

- 1. if $lc[z] = nil or rc[z] = nil then <math>y \leftarrow z$
- 2. **else** $y \leftarrow \text{NachfolgerSuche}(z)$
- 3. if $lc[y] \neq nil$ then $x \leftarrow lc[y]$
- 4. **else** $x \leftarrow rc[y]$
- 5. if $x \neq \text{nil then } p[x] \leftarrow p[y]$
- 6. **if** $p[y] = \mathbf{nil}$ **then** $root[T] \leftarrow x$
- 7. else if y = lc[p[y]] then $lc[p[y]] \leftarrow x$
- 8. **else** $\operatorname{rc}[p[y]] \leftarrow x$
- 9. $\text{key}[z] \leftarrow \text{key}[y]$

$L\"{o}schen(T, z)$

- 1. | if $lc[z] = nil or rc[z] = nil then <math>y \leftarrow z$
- 2. **else** $y \leftarrow \text{NachfolgerSuche}(z)$
- 3. if $lc[y] \neq nil$ then $x \leftarrow lc[y]$
- 4. else $x \leftarrow rc[y]$
- 5. if $x \neq \text{nil then } p[x] \leftarrow p[y]$
- 6. **if** $p[y] = \mathbf{nil}$ **then** $root[T] \leftarrow x$
- 7. else if y = lc[p[y]] then $lc[p[y]] \leftarrow x$
- 8. **else** $\operatorname{rc}[p[y]] \leftarrow x$
- 9. $\text{key}[z] \leftarrow \text{key}[y]$

Bestimme Knoten, der gelöscht werden soll. Der Knoten hat nur einen Nachfolger

$L\"{o}schen(T, z)$

- 1. | if $lc[z] = nil or rc[z] = nil then <math>y \leftarrow z$
- 2. **else** $y \leftarrow \text{NachfolgerSuche}(z)$
- 3. if $lc[y] \neq nil$ then $x \leftarrow lc[y]$
- 4. else $x \leftarrow rc[y]$
- 5. if $x \neq \text{nil then } p[x] \leftarrow p[y]$
- 6. **if** $p[y] = \mathbf{nil}$ **then** $root[T] \leftarrow x$
- 7. else if y = lc[p[y]] then $lc[p[y]] \leftarrow x$
- 8. **else** $\operatorname{rc}[p[y]] \leftarrow x$
- 9. $\text{key}[z] \leftarrow \text{key}[y]$

Bestimme Knoten, der gelöscht werden soll. Der Knoten hat nur einen Nachfolger

$L\"{o}schen(T, z)$

- 1. if lc[z] = nil or rc[z] = nil then
- 2. **else** $y \leftarrow \text{NachfolgerSuche}(z)$
- 3. | if $lc[y] \neq nil$ then $x \leftarrow lc[y]$
- 4. **else** $x \leftarrow rc[y]$
- 5. if $x \neq \text{nil then } p[x] \leftarrow p[y]$
- 6. **if** $p[y] = \mathbf{nil}$ **then** $root[T] \leftarrow x$
- 7. **else if** y = lc[p[y]] **then** $lc[p[y]] \leftarrow x$
- 8. **else** $\operatorname{rc}[p[y]] \leftarrow x$
- 9. $\text{key}[z] \leftarrow \text{key}[y]$

Bestimme das Kind von y, falls existent

en(6)

- 1. if lc[z] = nil or rc[z] = nil the
- 2. **else** $y \leftarrow \text{NachfolgerSuche}(z)$
- 3. **if** $lc[y] \neq nil$ then $x \leftarrow lc[y]$
- 4. else $x \leftarrow rc[y]$
- 5. if $x \neq \text{nil then } p[x] \leftarrow p[y]$
- 6. **if** $p[y] = \mathbf{nil} \ \mathbf{then} \ \mathrm{root}[T] \leftarrow x$
- 7. **else if** y = lc[p[y]] **then** $lc[p[y]] \leftarrow x$
- 8. **else** $\operatorname{rc}[p[y]] \leftarrow x$
- 9. $\text{key}[z] \leftarrow \text{key}[y]$

$L\"{o}schen(T, z)$

- 1. if $lc[z] = nil or rc[z] = nil then <math>y \leftarrow z$
- 2. **else** $y \leftarrow \text{NachfolgerSuche}(z)$
- 3. if $lc[y] \neq nil$ then $x \leftarrow lc[y]$
- 4. else $x \leftarrow rc[y]$
- 5. if $x \neq \text{nil then } p[x] \leftarrow p[y]$
- 6. **if** $p[y] = \mathbf{nil} \ \mathbf{then} \ \mathrm{root}[T] \leftarrow x$
- 7. **else if** y = lc[p[y]] **then** $lc[p[y]] \leftarrow x$
- 8. **else** $\operatorname{rc}[p[y]] \leftarrow x$
- 9. $\text{key}[z] \leftarrow \text{key}[y]$

- 1. if $lc[z] = nil or rc[z] = nil then <math>y \leftarrow z$
- 2. **else** $y \leftarrow \text{NachfolgerSuche}(z)$
- 3. if $lc[y] \neq nil$ then $x \leftarrow lc[y]$
- 4. else $x \leftarrow rc[y]$
- 5. if $x \neq \text{nil then } p[x] \leftarrow p[y]$
- 6. **if** p[y] =**nil then** $root[T] \leftarrow x$
- 7. **else if** y = lc[p[y]] **then** $lc[p[y]] \leftarrow x$
- 8. **else** $\operatorname{rc}[p[y]] \leftarrow x$
- 9. $\text{key}[z] \leftarrow \text{key}[y]$

- 1. if $lc[z] = nil or rc[z] = nil then <math>y \leftarrow z$
- 2. **else** $y \leftarrow \text{NachfolgerSuche}(z)$
- 3. if $lc[y] \neq nil$ then $x \leftarrow lc[y]$
- 4. else $x \leftarrow rc[y]$
- 5. if $x \neq \text{nil then } p[x] \leftarrow p[y]$
- 6. **if** p[y] =**nil then** $root[T] \leftarrow x$
- 7. **else if** y = lc[p[y]] **then** $lc[p[y]] \leftarrow x$
- 8. **else** $\operatorname{rc}[p[y]] \leftarrow x$
- 9. $\text{key}[z] \leftarrow \text{key}[y]$

- 1. if $lc[z] = nil or rc[z] = nil then <math>y \leftarrow z$
- 2. **else** $y \leftarrow \text{NachfolgerSuche}(z)$
- 3. if $lc[y] \neq nil$ then $x \leftarrow lc[y]$
- 4. else $x \leftarrow rc[y]$
- 5. if $x \neq \text{nil then } p[x] \leftarrow n[v]$
- 6. if p[y] = nil then roo Umkopieren des
- 7. else if y = lc[p[y]] the Inhalts von y nach z
- 8. **else** $\operatorname{rc}[p[y]] \leftarrow x$
- 9. $\ker[z] \leftarrow \ker[y]$

$L\"{o}schen(T, z)$

- 1. if $lc[z] = nil or rc[z] = nil then y \leftarrow z$
- 2. **else** $y \leftarrow \text{NachfolgerSuche}(z)$
- 3. if $lc[y] \neq nil$ then $x \leftarrow lc[y]$
- 4. else $x \leftarrow rc[y]$
- 5. if $x \neq \text{nil then } p[x] \leftarrow p[y]$
- 6. **if** $p[y] = \mathbf{nil}$ **then** $root[T] \leftarrow x$
- 7. else if y = lc[p[y]] then $lc[p[y]] \leftarrow x$
- 8. **else** $\operatorname{rc}[p[y]] \leftarrow x$
- 9. $\text{key}[z] \leftarrow \text{key}[y]$

Laufzeit **O**(h)

$L\"{o}schen(T, z)$

- 1. if $lc[z] = nil or rc[z] = nil then <math>y \leftarrow z$
- 2. **else** $y \leftarrow \text{NachfolgerSuche}(z)$
- 3. if $lc[y] \neq nil$ then $x \leftarrow lc[y]$
- 4. else $x \leftarrow rc[y]$
- 5. if $x \neq \text{nil then } p[x] \leftarrow p[y]$
- 6. **if** $p[y] = \mathbf{nil}$ **then** $root[T] \leftarrow x$
- 7. **else if** y = lc[p[y]] **then** $lc[p[y]] \leftarrow x$
- 8. **else** $\operatorname{rc}[p[y]] \leftarrow x$
- 9. $\text{key}[z] \leftarrow \text{key}[y]$

