

Tal Daniel (https://taldatech.github.io)

Tutorial 01 - Dimensionality Reduction - Principle Component Analysis (PCA), Kernels & KPCA

- Motivation- Why Dimensionality Reduction?
- Dimensionality Reduction
- Principal Component Analysis (PCA) Recap
 - PCA Algorithm
 - PCA for Compression
 - The Transpose Trick
 - Relation to SVD (Singular Value Decomposition)
- Kernels Motivation
- The Kernel Trick
- NLPCA- Nonlinear PCA
 - Kernel PCA
- Recommended Videos
- Credits

In [1]: # imports for the tutorial

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from sklearn.decomposition import PCA, KernelPCA
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import make_circles, make_moons
%matplotlib notebook

Motivation- Why Dimensionality Reduction?

• Discover Hidden Correlation/Topics - when we reduce dimensions, we sometimes discover **correlation between features**.

- For example, we can notice two features that occur commonly together.
- Anomaly (Outlier) Detection
- Remove Redundant and Noisy Features
 - Not all features are useful and sometimes harm the performance.
- Interpretation & Visualization
 - For example, when we reduce n-dimensional features to 2 or 3, we can plot them and see the relationship with our eyes.
- · Easier Storage and Processing of the Data
 - Reduces time and space complexity.
 - Yields a more optimized process.
- Alleviates The Curse of Dimensionality
 - Fewer dimensions → less chance of overfitting → better generalization (recall what happens to classic ML models that become too complex).

Dimensionality Reduction

- Dimensionality reduction is the process of reducing the dimensionality of the feature space with consideration by obtaining a set of principal features.
 - Dimensionality reduction can be further broken into feature selection and feature extraction.
- Dimensionality Reduction vs. Feature Selection
 - Differs from feature selection in 2 ways:
 - 1. Instead of choosing subset of features, it creates new features (dimensions) defined as functions over all features.
 - 2. Does not consider class labels, just data points.
- Main Idea:
 - Given data points in *d*-dimensional space.
 - Project the data points into lower dimensional space while preserving as much information as possible.
 - For example, find the best 2D approximation to 3/4/104-D data.
 - In particular, choose the projection that minimizes the squared error in reconstruction of the original data.

Principal Component Analysis (PCA)

PCA is a method for reducing the dimensionality of data.

It uses simple matrix operations from linear algebra and statistics to calculate a projection of the original data into the same number or fewer dimensions.

PCA Goals:

- Find linearly independent dimensions (or basis of views) which can losslessly represent the data points.
- 2. Those newly found dimensions should allow us to predict/reconstruct the original dimensions. **The reconstruction/projection error should be minimized** (in Frobenius

norm).

- More formally, PCA finds a new set of dimensions (or a set of basis of views) such that
 all the dimensions are **orthogonal** (and hence linearly independent) and ranked
 according to the variance of data along them.
- It means that the more important principal axis occurs first where more important = more variance/more spread out data.

Recap of some basics:

- Variance a measure of the variability. Mathematically, it is the average squared deviation from the mean score. We use the following formula to compute variance: $var(x) = \frac{1}{N} \sum_{i=1}^{N} (x_i \mu_x)^2$ where μ_x is the mean.
- Covaraince a measure of the extent to which corresponding elements from two sets of ordered data move in the same direction. We use the following formula to compute variance: $cov(x,y) = \frac{1}{N} \sum_{i=1}^{N} (x_i \mu_x)(y_i \mu_y)$. Replace $\frac{1}{N}$ with $\frac{1}{N-1}$ for the unbiased estimation.
- Covariance matrix includes the variance of dimensions on the main diagonal and the rest is the covariance between dimensions. If we have N data points (samples) with d dimensions for each sample and X is an dxN matrix, then: $Cov(X) = \frac{1}{N}(X \mu_X)(X \mu_X)^T \text{ (in PCA, we wish this matrix to be diagonal). We assume the data is centered, thus: <math>Cov(X) = \frac{1}{N}XX^T$. Replace $\frac{1}{N}$ with $\frac{1}{N-1}$ for the unbiased estimation.
- In the PCA case, multiplying by $\frac{1}{N-1}$ will not have much effect on the result, so in the following we will skip this step.

 \overline{x} is the mean of the orange points

• Consider the variance along direction v (projection) among all the orange points:

$$var(v) = \sum_{orange\ points\ x} ||(x - \overline{x}) \cdot v||^2$$

- What is the unit vector v that minimizes the variance?
 - $\min_{v}(var(v)) = v_2$
- What is the unit vector v that maximizes the variance?
 - $\max_{v}(var(v)) = v_1$

•
$$var(v) = var((x - \overline{x})^T \cdot v) = \sum_x ||(x - \overline{x})^T \cdot v||^2 = \sum_x v^T (x - \overline{x})(x - \overline{x})^T v = \iota$$

· Formally:

$$\max_{s.t} v^T A v$$

$$s.t \ ||v|| = 1,$$
 where $A = \sum_x (x - \overline{x})(x - \overline{x})^T = (X - \overline{X})(X - \overline{X})^T$

• Solution:

- v₁ is eigenvector of A with the largest eigenvalue
- v_2 is eigenvector of A with the **smallest** eigenvalue

PCA Algorithm

1. **Normalize/Standartize** (if we use features of different scales, we may get misleading components) and center the data. Given data $X \in \mathcal{R}^{m \times N}$, where m is the number of features and N is the number of samples, normalization:

$$\tilde{X} = X - \overline{X}$$

Standartization:

$$\tilde{X} = \frac{X - \overline{X}}{\overline{\sigma}_x}$$

Where $\overline{\sigma}_x$ is the empirical standard deviation (the square root of the empirical variance).

2. Calculate the empirical covariance matrix X of data points:

$$P = \tilde{X}\tilde{X}^T \in \mathcal{R}^{m \times m}$$

• Note that it is usually better to normalize:

$$P = \frac{1}{N-1} \tilde{X} \tilde{X}^T$$

- 3. Calculate eigenvectors and corresponding eigenvalues.
- 4. Sort the eigenvectors according to their eigenvalues in decreasing order.
- 5. Choose first k largest eigenvectors and that will be the new k dimensions.
- 6. Transform the original d dimensional data points into k dimensions.

Example - PCA on Breast Cancer Dataset

The Breast Cancer Wisconsin (Diagnostic) Data Set

This dataset contains features of breast cancer and classify them to benign/malignant. Features are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. They describe characteristics of the cell nuclei present in the image.

• We will take the first 3 features, and reduce the dimensionality to 2 using PCA.

In [2]: # load the data dataset = pd.read_csv('./datasets/cancer_dataset.csv') # print the number of rows in the data set number_of_rows = len(dataset) print('Number of rows in the dataset: {}'.format(number_of_rows)) ## Show a sample 10 rows dataset.sample(10)

Number of rows in the dataset: 569

Out[2]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothn
140	868999	В	9.738	11.97	61.24	288.5	
503	915143	М	23.090	19.83	152.10	1682.0	
528	918192	В	13.940	13.17	90.31	594.2	
121	86517	М	18.660	17.12	121.40	1077.0	
437	909220	В	14.040	15.98	89.78	611.2	
436	908916	В	12.870	19.54	82.67	509.2	
411	905520	В	11.040	16.83	70.92	373.2	
392	903507	М	15.490	19.97	102.40	744.7	
179	873586	В	12.810	13.06	81.29	508.8	
506	91544001	В	12.220	20.04	79.47	453.1	

10 rows × 33 columns

4

•

```
In [3]: # take only the first 3 features
        x = dataset[['radius_mean', 'texture_mean', 'perimeter_mean']].values
        # standartize the data (centering and normalizing), features of different s
        # note: you can also use scikit-learn's StandardScaler()
        x -= x.mean(axis=0, keepdims=True)
        x /= x.std(axis=0, keepdims=True)
        # calculate the covariance matrix
        A = x.T @ x # x in [N x m]
        # calculate eigenvalues and eigenvectors
        # NOT ordered in decreasing order
        d, v = np.linalg.eig(A)
        # sort by decreasing order
        v = v[:,np.argsort(-d)]
        d = d[np.argsort(-d)]
        print("eigenvalues:")
        print(d.astype(np.float16))
        # the reconstruction of x would be x \sim X @ V @ V.T
        # take the 2 most dominant directions
        print("projection - dimension reduction (3 to 2):")
        x_{proj} = x @ v[:, :-1]
        print(x_proj)
        eigenvalues:
        [1.24e+03 4.66e+02 1.21e+00]
        projection - dimension reduction (3 to 2):
        [[-0.80196001 2.54048135]
         [-2.18555934 1.23675759]
         [-2.23789966 0.38704729]
         [-1.65154304 -1.54971556]
         [-3.36804781 -1.19009381]
         [ 1.93933426 -2.07217819]]
In [4]: def plot_pca():
            # plot
            fig = plt.figure(figsize=(8, 8))
            ax = fig.add_subplot(1, 1, 1, projection='3d')
              ax.axis('equal')
            ax.set_xlabel('radius_mean',)
            ax.set_ylabel('texture_mean')
            ax.set_zlabel('perimeter_mean')
            ax.plot(x[:, 0], x[:, 1], x[:, 2], '.', markersize=3)
            ax.plot([0, v[0, 0]], [0, v[1, 0]], [0, v[2, 0]], 'r') # most dominant
            ax.plot([0, v[0, 1]], [0, v[1, 1]], [0, v[2, 1]], 'g')
            ax.plot([0, v[0, 2]], [0, v[1, 2]], [0, v[2, 2]], 'b')
```

```
In [5]: %matplotlib notebook
plot_pca()
```

<IPython.core.display.Javascript object>


```
In [7]: def plot_sk_pca():
    # plot
    fig = plt.figure(figsize=(8, 8))
    ax = fig.add_subplot(1, 1, 1, projection='3d')
    ax.scatter(X_3d[y,0], X_3d[y, 1], X_3d[y, 2], color='r', marker='*', la
    ax.scatter(X_3d[~y,0], X_3d[~y, 1], X_3d[~y, 2], color='b', marker='x',
    ax.grid()
    ax.legend()
    ax.set_title("3D PCA of the Breast Cancer Dataset")
```

```
In [8]: plot_sk_pca()
```

<IPython.core.display.Javascript object>

PCA for Compression

- The **projection matrix** is a matrix composed of the data projected onto the top-*K* eigenvectors.
- To get a better understanding of the dimensionality reduction quality, we observe the trade-off between the **compression and the reconstruction error**.

- The more compression (that is, lower dimension) the larger the reconstruction error and the representation quality is degraded (as our new features don't represent the original data faithfully).
- · Measuring the normalized reconstruction error:
 - Denote the top-K eigenvector matrix: $W_k \in \mathcal{R}^{m \times k}$
 - The projection: $Z = XW_K \in \mathcal{R}^{n \times k}$
 - The reconstruction: $\tilde{X} = ZW_k^T = XW_kW_k^T \in \mathcal{R}^{N \times m}$
 - Measure the error by the Matrix Norm: Frobenius Norm:

$$||M||_F^2 = \sum_{ij} M_{ij}^2 \to ||A - B||_F^2 = \sum_{ij} (A_{ij} - B_{ij})^2$$

• The normalized reconstruction error:

$$err_k = \frac{||XW_kW_k^T - X||_F^2}{||X||_F^2}$$

- How to pick k?
 - As a rule of thumb we take the amount of eigenvectors that allows no more than 1% reconstruction error.

```
In [9]: X_normalized = X - X.mean(axis=0, keepdims=True)
        X_norm = np.linalg.norm(X_normalized, ord='fro') # ord='fro' for Frobenius
        # calculate the covariance matrix
        A = X \text{ normalized.T } @ X \text{ normalized } \# x \text{ in } [N \times m]
        d, v = np.linalg.eig(A)
        # sort by decreasing order
        v = v[:,np.argsort(-d)]
        d = d[np.argsort(-d)]
        for k in range(1, X_normalized.shape[1] + 1):
            Z = X_{normalized} @ v[:,:k]
            err = np.square(np.linalg.norm(Z @ v[:,:k].T - X_normalized, ord='fro')
            print("number of eigenvectors (k): {}, reconstruction error: {}".format
        number of eigenvectors (k): 1, reconstruction error: 0.3817772746473096
        number of eigenvectors (k): 2, reconstruction error: 0.18251649332420763
        number of eigenvectors (k): 3, reconstruction error: 0.061153584222750024
        number of eigenvectors (k): 4, reconstruction error: 0.014432620496369605
        number of eigenvectors (k): 5, reconstruction error: 0.002089071617164215
        number of eigenvectors (k): 6, reconstruction error: 4.1709202569973447e-0
        number of eigenvectors (k): 7, reconstruction error: 3.4934265607613812e-3
```

```
In [12]: def plot_pca_recon_error(X, v, d):
             k_s = list(range(X.shape[1]))
             X_norm = np.linalg.norm(X, ord='fro')
             errs = []
             for k in k_s:
                 Z = X @ v[:,:k]
                 err = np.square(np.linalg.norm(Z @ v[:,:k].T - X, ord='fro') / X_no
                 errs.append(err)
             fig = plt.figure(figsize=(8, 5))
             ax = fig.add_subplot(111)
             ax.plot(k_s, errs)
             ax.grid()
             ax.set_xlabel("number of eigenvectors (K)")
             ax.set_ylabel("error")
             ax.set_title("reconstruction error vs. number of eigenvectors (K)")
             ax.set ylim([0, 0.4])
```


- What happens when the number of features is very large and much larger than the number of samples, that is, m >> N?
 - Calculating the $m \times m$ covariance matrix is computationally expensive $(O(m^2N))$.
- The Transpose Trick: $(X \in \mathcal{R}^{m \times N})$
 - Instead of calculating the eigenvalues and eigenvectors of $\frac{1}{N}XX^T$ we compute the eigenvalues and eigenvectors of

$$\frac{1}{m}X^TX$$

- Why???
 - If v is an eigenvector of XX^T , then:

$$XX^Tv = \lambda v$$

 \circ Left-multiplying by X^T , we get

$$\ddot{X}^T X (X^T v) = \lambda (X^T v)$$

- $\circ \to X^T v$ is an eigenvector of $X^T X$ with eigenvalue λ .
- In order to compute v, which is really what we want:
 - Denote the eigenvector of X^TX by w.
 - We get:

$$Xw = XX^Tv = \lambda v \rightarrow v = \lambda^{-1}Xw$$

The Relationship Between PCA & SVD

- The PCA viewpoint requires that one compute the eigenvalues and eigenvectors of the covariance matrix, which is the product XX^T , where X is the data matrix. Since the covariance matrix is symmetric, the matrix is diagonalizable, and the eigenvectors can be normalized such that they are orthonormal: $XX^T = WAW^T$
- On the other hand, applying SVD to the data matrix X as follows: $X = U\Sigma V^T$, and attempting to construct the covariance matrix from this decomposition gives:

$$XX^{T} = (U\Sigma V^{T})(U\Sigma V^{T})^{T} = U\Sigma^{2}U^{T}$$

the last transition is due to V being orthonormal ($VV^T = I$). Thus, the square roots of the eigenvalues of XX^T are the singular values of X.

• Using the SVD to perform PCA makes much better sense numerically than forming the covariance matrix to begin with, since the formation of XX^{\top} can cause loss of precision. But performing SVD is slower.

PCA as Dimensionality Reduction Technique

- Pro: Optimal reconstruction error in Frobenius norm.
- Con: Interpretability problem features lose their previous meaning.
 - A singular vector specifies a linear combination of all input columns or rows
 - PCA is sensitive to outliers since it is minimizing l₂ norms. The squaring of deviations from the outliers, they will dominate the total norm and therefore will drive the PCA components.
- · When will PCA work?
 - PCA assumes linear realtionships among variables.
 - Clouds of points in p-dimensional space has linear dimensions that can be effectively summarized by the principal axes.
 - If the structure in the data is non-linear (the cloud of points twists and curves its way through p-dimensional space), the principal axes will not be an efficient and informative summary of the data.

- The main shortcoming of PCA is that it is unable to capture nonlinear structures in the data.
- Consider the following example of linearly inseparatable 1-D set of exmaples and then extracting polynimial (second order) features (**feature extraction**):

```
In [14]: def plot_kernel_example():
             x_1 = \text{np.random.randint}(0,6, \text{size}=(3,))
             x_2 = np.random.randint(8,14, size=(3,))
             x = np.random.randint(20,25, size=(3,))
             x_1_p = x_1 ** 2
             x_2p = x_2 ** 2
             x_3_p = x_3 ** 2
             x_{class} = np.linspace(0, 30, 400)
             y class = 25 * x class - 130
             fig = plt.figure(figsize=(8,5))
             ax_1 = fig.add_subplot(211)
             ax_1.scatter(x_1, np.zeros_like(x_1), marker='*', color='b')
             ax_1.scatter(x_2, np.zeros_like(x_2), marker='^', color='r')
             ax_1.scatter(x_3, np.zeros_like(x_3), marker='*', color='b')
             ax_1.grid()
             ax_2 = fig.add_subplot(212)
             ax_2.scatter(x_1, x_1_p, marker='*', color='b')
             ax_2.scatter(x_2, x_2_p, marker='^', color='r')
             ax 2.scatter(x 3, x 3 p, marker='*', color='b')
             ax_2.plot(x_class, y_class)
             ax_2.grid()
```

In [15]: plot_kernel_example()

- Adding polynomial features is simple to implement and can work great with all sorts of ML algorithms.
- At a low polynomial degree it cannot deal with more complex datasets.
- At a high polynomial degree there are a lot of features, which makes the computation very slow.

- Computation in the feature space can be costly because it is high dimensional (even go to infinity).
- The Kernel Trick comes to the rescue!
 - It makes it possible to get the same result as if you added many features (even in high dimension), without actually adding them!
 - So there is no computational disaster resulting from the large number of

The Kernel Trick

- When the **data points**, $\{x^{(i)}\}_{i=1}^m$, only appear as **inner (dot) products** $(x^{(i)})^T x^{(j)}$, we can apply the kernel trick.
- As long as we can calculate the inner product in the feature space, we don't need the mapping explicitly.
 - The kernel function, denoted $K(x^{(i)}, x^{(j)}) = \phi(x^{(i)})^T \phi(x^{(j)})$, stands for the inner product in the feature space, and can easily plugged into the optimization.
 - If we could find a function $K(x^{(i)}, x^{(j)})$ that is simple enough, we can actually save us the huge number of calculations required to calculate $\phi(x^{(i)})^T \phi(x^{(j)})$, or even prevent us from the feature extraction itself, $\phi(x)$, this is the **kernel trick**.
- There are no restrictions on the form of $x^{(i)}$, $x^{(j)}$, but there are restrictions on the kernel function $K(x^{(i)}, x^{(j)})$.
 - $K(x^{(i)}, x^{(j)})$ must satisfy the **Mercer Condition** the $n \times n$ kernel matrix $K(x^{(i)}, x^{(j)})$ is **PSD**.
 - This implies that the quadratic optimization is convex.
 - It has a uniuge solution and can be solved efficiently
- Mercer's Theorem: Suppose that k(x, y) is a symmetric real valued function such that $k(x, y) \le C$ for some C > 0. Suppose the linear operator

$$\mathcal{L}(f)(x) = \int_{\mathcal{R}^D} k(x, y) f(y) dy$$

is PSD, that is

$$\int \int_{\mathbb{R}^D} k(x, y) f(y) dy dx \ge 0$$

Let ψ_i be the normalized orthogonal eigenfunctions of \mathcal{L} , associated with eigenvalues $\lambda_i>0$, sorted in non-decreasing order, and let m be the number of non-zero eigenvalues.

• Then, the sequence of eigenvalues is summable, namely $\sum_i \mid \lambda_i \mid < \infty$, and the kernel can be expressed as

$$k(x, y) = \sum_{i=1}^{m} \lambda_i \psi_i(x) \psi_i(y)$$

• We thus see that by choosing $\phi_i(x) = \sqrt{\lambda_i} \psi_i(x)$, a feature based representation is obtained.

The Kernel Trick - Polynomial Kernel Example

- We will now demonstrate the kernel trick for a 2^{nd} -degree polynomial mapping.
- Suppose the feature mapping (or extraction) is defined as follows:

$$\phi(u) = \phi(\begin{bmatrix} u_1 \\ u_2 \end{bmatrix}) = \begin{bmatrix} 1 \\ \sqrt{2}u_1 \\ \sqrt{2}u_2 \\ \sqrt{2}u_1u_2 \\ u_1^2 \\ u_2^2 \end{bmatrix}$$

• The inner product $\phi(u)^T \phi(v)$:

$$\phi(u)^{T}\phi(v) = 1 + 2u_{1}v_{1} + 2u_{2}v_{2} + 2u_{1}u_{2}v_{1}v_{2} + u_{1}^{2}v_{1}^{2} + u_{2}^{2}v_{2}^{2} = (1 + u_{1}v_{1} + u_{2}v_{2})$$

- **HOW ABOUT THAT?** We just found out that we can calculate $\phi(u)^T \phi(v)$ just by calculating the input inner product $u^T v$ and plugging it in $(1 + u^T v)^2$, thus saving us the whole feature mapping calculation process!
- We define the 2^{nd} polynomial kernel:

$$K(u, v) = (1 + u^T v)^2$$

- No need to calculate $\phi(u)^T\phi(v)$ explicitly!
- The use of kernel function to avoid computing $\phi(\cdot)$ explicitly is known as **the kernel trick**.

Other Kernel Functions

· Linear kernel:

$$K(u,v) = u^T v$$

• Polynomial kernel with degree *d*:

$$K(u, v) = (\alpha u^T v + \beta)^d$$

- The feature space is all monomials up to degree d
- Radial Basis Function (Gaussian RBF) kernel with width σ :

$$K(u,v) = e^{-\frac{||u-v||^2}{2\sigma^2}} = e^{-\gamma||u-v||^2} = exp(-\gamma||u-v||^2)$$

- It is also a type of a similarity function that measures how far are two points?
- RBF covers the space with "balls" of a fixed radius, where the centers are the support vectors (in SVM).
- The radius of the "balls" is determined by the parameter $\gamma = \frac{1}{2\sigma^2}$
 - A smaller γ means a larger radius, a lower "model complexity"
 - A **larger** γ means a smaller radius, a finer grain coverage which may possibly lead to overfitting.
- The feature space is infinite-dimensional (expand the exponential to an infinite series using Taylor series).
- Sigmoid kernel, with parameters κ and θ :

$$K(u, v) = tanh(\kappa u^T v + \theta)$$

• Techniques for constructing new kernels (from *Pattern Recognition and Machine Learning*, C.Bishop):

Given valid kernels $k_1(\mathbf{x}, \mathbf{x}')$ and $k_2(\mathbf{x}, \mathbf{x}')$, the following new kernels will also be valid:

$$k(\mathbf{x}, \mathbf{x}') = ck_1(\mathbf{x}, \mathbf{x}')$$
(6.13)

$$k(\mathbf{x}, \mathbf{x}') = f(\mathbf{x})k_1(\mathbf{x}, \mathbf{x}')f(\mathbf{x}')$$
(6.14)

$$k(\mathbf{x}, \mathbf{x}') = q(k_1(\mathbf{x}, \mathbf{x}'))$$
(6.15)

$$k(\mathbf{x}, \mathbf{x}') = \exp(k_1(\mathbf{x}, \mathbf{x}'))$$
(6.16)

$$k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}') + k_2(\mathbf{x}, \mathbf{x}')$$
(6.17)

$$k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}')k_2(\mathbf{x}, \mathbf{x}')$$
(6.18)

$$k(\mathbf{x}, \mathbf{x}') = k_3(\phi(\mathbf{x}), \phi(\mathbf{x}'))$$
(6.19)

$$k(\mathbf{x}, \mathbf{x}') = \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}'$$
(6.20)

$$k(\mathbf{x}, \mathbf{x}') = k_a(\mathbf{x}_a, \mathbf{x}'_a) + k_b(\mathbf{x}_b, \mathbf{x}'_b)$$
(6.21)

$$k(\mathbf{x}, \mathbf{x}') = k_a(\mathbf{x}_a, \mathbf{x}'_a)k_b(\mathbf{x}_b, \mathbf{x}'_b)$$
(6.22)

where c>0 is a constant, $f(\cdot)$ is any function, $q(\cdot)$ is a polynomial with nonnegative coefficients, $\phi(\mathbf{x})$ is a function from \mathbf{x} to \mathbb{R}^M , $k_3(\cdot,\cdot)$ is a valid kernel in \mathbb{R}^M , \mathbf{A} is a symmetric positive semidefinite matrix, \mathbf{x}_a and \mathbf{x}_b are variables (not necessarily disjoint) with $\mathbf{x}=(\mathbf{x}_a,\mathbf{x}_b)$, and k_a and k_b are valid kernel functions over their respective spaces.

Let $k_1(x, y)$ and $k_2(x, y)$ be valid kernels according to Mercer's theorem (that is, they represent an inner product in some transformed space). Prove that the following functions are valid kernels as well:

1. Prove:

$$k(x, y) = k_1(x, y) + k_2(x, y)$$

2. Prove:

$$k(x, y) = f(x)k_1(x, y)f(y)$$
 where $f: \mathbb{R}^D \to \mathbb{R}$

The basic trick here is using the initial knowledge that both kernels are valid according to Mercer's theorem.

Section 1

Prove for:

$$k(x, y) = k_1(x, y) + k_2(x, y)$$

Using Mercer's theorem we know that there exists mappings $\phi_1(x)$ and $\phi_2(x)$ such that:

$$k_1(x, y) = \phi_1(x)^T \phi_1(y)$$

 $k_2(x, y) = \phi_2(x)^T \phi_2(y)$

Thus,

$$k(x, y) = k_1(x, y) + k_2(x, y)$$

= $\phi_1(x)^T \phi_1(y) + \phi_2(x)^T \phi_2(y)$

$$= [\phi_1(x), \phi_2(x)]^T [\phi_1(y), \phi_2(y)] = \Phi(x)^T \Phi(y)$$

• $[\phi_1(x), \phi_2(x)]$ is a concatentanion of the vectors $\phi_1(x), \phi_2(x)$:

$$\begin{bmatrix} \phi_{11}(x) & \dots & \phi_{1n}(x) & \phi_{21}(x) & \dots & \phi_{2m}(x) \end{bmatrix}^T$$

• Thus, k(x, y) represents an inner product in some transformed space.

Section 2

· Prove for:

$$k(x, y) = f(x)k_1(x, y)f(y)$$
 where $f: \mathbb{R}^D \to \mathbb{R}$

Again, using Mercer's theorem:

$$k(x, y) = f(x)k_1(x, y)f(y)$$

= $f(x)\phi_1(x)^T\phi_1(y)f(y)$
= $\Phi(x)^T\Phi(y)$

where $\Phi(x) = f(x)\phi_1(x)$.

- Recall that $\phi_1(x)$ is a vector and f(x) is a **scalar**.
- Thus, k(x, y) represents an inner product in some transformed space.

- The main shortcoming of PCA is that it is **unable to capture nonlinear structures in the data**.
- The basic idea behind Kernel PCA is that by embedding the data into a highdimensional space for which linear sub-spaces capture the relavant structures.
- · Mathematically:

$$x \in \mathcal{R}^D \xrightarrow{\text{nonlinear}} \phi(x) \in \mathcal{R}^m \xrightarrow{\text{linear}} y \in \mathcal{R}^d, m \ge D > d$$
 (and usually $m >> D$)

- The basic steps of Nonlinear PCA:
 - Using the mapping $\phi(x)$, we map each data point $x_i \to \phi(x_i), i = 1, \dots, n$.
 - As in regular PCA, we center (or normalize/standartize) the data. We define:

$$\Phi = \left(\phi(x_1) - \overline{\phi}, \dots, \phi(x_n) - \overline{\phi}\right) \in \mathcal{R}^{m \times n}$$
$$\overline{\phi} = \frac{1}{n} \sum_{i=1}^{n} \phi(x_i)$$

Define the sample covariance matrix:

$$\hat{P}_{\phi(x)} = \frac{1}{n} \sum_{j=1}^{n} \left(\phi(x_j) - \overline{\phi} \right) \left(\phi(x_j) - \overline{\phi} \right)^T = \frac{1}{n} \Phi \Phi^T \in \mathcal{R}^{m \times m}$$

• Perform the *eigen-decomposition* of the sample covariance matrix:

$$\hat{P}_{\phi(x)}u_i = \lambda_i u_i, \ i = 1, \dots, m$$

• The *d nonlinear* Principal Components (PCs):

$$y_i = u_i^T \left(\phi(x) - \overline{\phi} \right) \in \mathcal{R}, \ u_i \in \mathcal{R}^m, \ i = 1, \dots, d$$

- · Compuational cost:
 - Computing the eigenvectors of a $m \times m$ matrix requires (in general) $O(m^3)$ steps very expensive for large m!
- **Note** the features $\phi(x_i)$ need to be centered even if the x_i are centered, since the mapping ϕ is **nonlinear**.
- · Reducing the computational cost using the Transpose Trick:
 - The dimension *m* of the feature space may be very large which may be very expensive computationally.
 - Using the *transpose trick* which is based on the relation between the eigendecomposition of $\Phi\Phi^T$ and $\Phi^T\Phi$, we can reduce the cost.
 - \circ Recall the the **eigenvalues** of $\Phi\Phi^T$ and $\Phi^T\Phi$ are equal.
 - Doing the same derivation as before (look up...) we get that if w is an eigen-vector of $\Phi^T\Phi$ and v is an eigen-vector of $\Phi\Phi^T$ then:

$$u = \lambda^{-1} \Phi w$$

- It is much cheaper to compute as the number of samples $n \ll m$.
- The *d nonlinear* Principal Components (PCs):

$$y_i = u_i^T \left(\phi(x) - \overline{\phi} \right) = \lambda_i^{-1} w_i^T \Phi^T \left(\phi(x) - \overline{\phi} \right) \in \mathcal{R}, \ u_i \in \mathcal{R}^m, \ i = 1, \dots, d$$
$$Y = \Lambda^{-1} W^T \Phi^T \Phi \in \mathcal{R}^{d \times n}$$

- Notice that the nonlinear PCs only require the computation of *inner products* between the features ϕ . This indicates that we can use **the kernel trick** to calculate these inner products.
- · We define the kernel and centered kernel functions:

$$k(x, y) = \phi(x)^{T} \phi(y)$$

$$\tilde{k}(x, y) = \left(\phi(x) - \overline{\phi}\right)^{T} \left(\phi(y) - \overline{\phi}\right)$$

Note that:

$$\tilde{k}(x,y) = k(x,y) - \frac{1}{n} \sum_{j=1}^{n} k(x,x_j) - \frac{1}{n} \sum_{i=1}^{n} k(x_i,y) + \frac{1}{n^2} \sum_{i=1}^{n} \sum_{j=1}^{n} k(x_i,y_j)$$

Define the kernel and centered kernel matrices, which are defined w.r.t. the data points:

$$K = \begin{bmatrix} k_{ij} \end{bmatrix}, \quad k_{ij} = k(x_i, x_j)$$
$$\tilde{K} = \Phi^T \Phi = \begin{bmatrix} \tilde{k}_{ij} \end{bmatrix}, \quad \tilde{k}_{ij} = \tilde{k}(x_i, x_j)$$

Claim

The nonlinear PCs can be computed directly in terms of the matrix $ilde{K}.$

· It can be shown that:

$$\tilde{K} = \left(I - \frac{1}{n} \mathbb{1}^T\right) K \left(I - \frac{1}{n} \mathbb{1}^T\right) = JKJ$$

· We also define the vectors:

$$k_x = [k(x_1, x), \dots, k(x_n, x)]^T$$
$$\tilde{k_x} = \Phi^T(\phi(x) - \overline{\phi}) = [\tilde{k}(x_1, x), \dots, \tilde{k}(x_n, x)]^T$$

• The nonlinear PCs can then be computed as:

$$y_i = w_i^T \Phi^T \left(\phi(x) - \overline{\phi} \right) = w_i^T \tilde{k}_x, \quad i = 1, 2, \dots, d$$

• w_i are the **eignevectors** of \tilde{K} :

$$\tilde{K}w_i = \lambda_i w_i$$

ullet V_d and Λ_d are obtained from the top-d eigenvectors of $ilde{K}$'s eigen-decomposition:

$$\tilde{K} = V_{\tilde{K}} \Lambda_{\tilde{K}} V_{\tilde{K}}^T$$

- Note that if \tilde{K} is a valid kernel, then $\tilde{K} = \tilde{\Phi}^T \tilde{\Phi}$ for some mapping $\tilde{\Phi}$. In this case: $\tilde{\Phi}^T = V_{\tilde{K}} \Lambda^{\frac{1}{2}}$.
- Concatenating the components y_i we get (the projection):

$$Y = (y_1, y_2, \dots, y_d)^T = \Lambda_d^{-1} W_d^T \Phi^T \Phi = \Lambda_d^{-1} W_d^T \tilde{K}$$

- The low-dimensional nonlinear representation is obtained from the top-d eigenvectors of the matrix $ilde{K}$.
 - The problem has been solved in the high-dimensional feature space ϕ while not explicitly computing ϕ or even working in \mathcal{R}^m .

Kernel-PCA Algorithm

- Input: A set of points $\mathcal{X} = \{x_1, x_2, \dots, x_N\} \subset \mathcal{R}^D$, and a mapping $\phi : \mathcal{R}^D \to \mathcal{R}^M$ or a symmetric positive definite kernel function $k : \mathcal{R}^D \times \mathcal{R}^D \to \mathcal{R}$
- 1. Compute $\overline{\phi} = \frac{1}{N} \sum_j \phi(x_j)$ and the centered embedded data matrix Φ or the kernel matrix K.
- 2. Compute the centered kernel matrix:

$$\tilde{\mathcal{K}} = \Phi^T \Phi \text{ or } \tilde{\mathcal{K}} = \left(I - \frac{1}{n} \mathbb{1}^T\right) K \left(I - \frac{1}{n} \mathbb{1}^T\right) = JKJ \text{ or } \left(\tilde{k}(x_i, x_j)\right) \in \mathcal{R}^{N \times N}$$

3. Compute the eigenvectors $w_i \in \mathcal{R}^N$ of $\tilde{\mathcal{K}}$:

$$\tilde{\mathcal{K}}w_i=\lambda_iw_i.$$

• For every data point x, its i^{th} nonlinear principal component is given by:

$$y_i = \lambda_i^{-1} w_i^T \Phi^T(\phi(x) - \overline{\phi}) = \lambda_i^{-1} w_i^T [\tilde{k}(x_1, x), \dots, \tilde{k}(x_N, x)]^T$$
 for $i = 1, 2, \dots, d$

4. The projection is given by:

$$Y = (y_1, y_2, \dots, y_d)^T = \Lambda_d^{-1} W_d^T \Phi^T \Phi = \Lambda_d^{-1} W_d^T \tilde{K}$$

• **Output**: A set of points $\{y_j\}_{j=1}^N$ lying in \mathcal{R}^d , where y_{ij} in the i^{th} nonlinear principal component of x_i for $i=1,\ldots,d$ and $j=1,\ldots,N$

Important Notes

- 1. When using KPCA, you must save the data in memory since you need the kernel matrix to compute the projection.
- 2. When using KPCA and want to know the mapping of a new unseen data point (not part of the N data points), you have to re-calcualte the kernel between all of your data and the new point.
- 3. When we calculate eigenvalues and eigenvectors (with <code>numpy</code>), the eigenvectors are **orthonormal**, that is, $W^TW=I$. However, when we use the **Transpose Trick** (as in KPCA), we actually care about the eigenvectors V of $\Phi\Phi^T$ and not W. So we need to make sure that V are **orthonormal**, so let's calculate:

$$w^T w = ||w||^2 = 1, w = \phi^T v,$$

taking the norm, we get:

$$w^{T}w = v^{T}(\phi\phi^{T}v) = v^{T}\lambda v,$$

$$\rightarrow ||w||^{2} = 1 = \lambda ||v||^{2},$$

$$\rightarrow ||v|| = \lambda^{-\frac{1}{2}}$$

. Our final expression for the projection becomes ($\frac{\phi^T v}{||v||}$):

$$Y = (v_1, v_2, \dots, v_d)^T = \Lambda^{-\frac{1}{2}} W^T \Phi^T \Phi = \Lambda^{-\frac{1}{2}} W^T \tilde{K}$$

```
In [4]: def plot_circles_example():
            # example - circles
            X, y = make_circles(n_samples=1000, random_state=123, noise=0.1, factor
            pca = PCA(n components=2)
            kpca = KernelPCA(n components=2, kernel='rbf', gamma=15) # Radial Basi
            X_pca = pca.fit_transform(X)
            X_kpca = kpca.fit_transform(X)
            # plot
            fig = plt.figure(figsize=(10,4))
            # original data
            ax1 = fig.add_subplot(1,3,1)
            ax1.scatter(X[y==0, 0], X[y==0, 1], color='red', marker='^', alpha=0.5)
            ax1.scatter(X[y=1, 0], X[y=1, 1], color='blue', marker='o', alpha=0.5
            ax1.grid()
            ax1.set_title("original data")
            # pca
            ax2 = fig.add_subplot(1,3,2)
            ax2.scatter(X_pca[y==0, 0], X_pca[y==0, 1], color='red', marker='^', al
            ax2.scatter(X_pca[y==1, 0], X_pca[y==1, 1], color='blue', marker='o', a
            ax2.grid()
            ax2.set_title("PCA")
            ax2.set xlabel("PC1")
            ax2.set_ylabel("PC2")
            # kpca
            ax3 = fig.add subplot(1,3,3)
            ax3.scatter(X_kpca[y==0, 0], X_kpca[y==0, 1], color='red', marker='^',
            ax3.scatter(X_kpca[y==1, 0], X_kpca[y==1, 1], color='blue', marker='o',
            ax3.grid()
            ax3.set_title("KPCA")
            ax3.set_xlabel("PC1")
            ax3.set_ylabel("PC2")
            plt.tight_layout()
```

In [5]: plot_circles_example()


```
In [6]: def plot_moons_example():
            # example - moons
            X, y = make_moons(n_samples=100, random_state=123)
            pca = PCA(n components=2)
            kpca = KernelPCA(n_components=2, kernel='rbf', gamma=15) # Radial Basi
            X_pca = pca.fit_transform(X)
            X_kpca = kpca.fit_transform(X)
            # plot
            fig = plt.figure(figsize=(10,4))
            # original data
            ax1 = fig.add_subplot(1,3,1)
            ax1.scatter(X[y=0, 0], X[y=0, 1], color='red', marker='^', alpha=0.5)
            ax1.scatter(X[y=1, 0], X[y=1, 1], color='blue', marker='o', alpha=0.5
            ax1.grid()
            ax1.set_title("original data")
            # pca
            ax2 = fig.add_subplot(1,3,2)
            ax2.scatter(X_pca[y==0, 0], X_pca[y==0, 1], color='red', marker='^', al
            ax2.scatter(X_pca[y==1, 0], X_pca[y==1, 1], color='blue', marker='o', a
            ax2.grid()
            ax2.set_title("PCA")
            ax2.set xlabel("PC1")
            ax2.set_ylabel("PC2")
            # kpca
            ax3 = fig.add subplot(1,3,3)
            ax3.scatter(X_kpca[y==0, 0], X_kpca[y==0, 1], color='red', marker='^',
            ax3.scatter(X_kpca[y==1, 0], X_kpca[y==1, 1], color='blue', marker='o',
            ax3.grid()
            ax3.set_title("KPCA")
            ax3.set_xlabel("PC1")
            ax3.set_ylabel("PC2")
            plt.tight_layout()
```

In [7]: plot_moons_example()

- These videos do not replace the lectures and tutorials.
- Please use these to get a better understanding of the material, and not as an alternative to the written material.

Video By Subject

- PCA (1) <u>StatQuest: Principal Component Analysis (PCA), Step-by-Step (https://www.youtube.com/watch?v=FqakZw6K1QQ)</u>
- PCA (2) <u>Principal Component Analysis (PCA) Computerphile</u> (https://www.youtube.com/watch?v=TJdH6rPA-TI)
- The Kernel Trick <u>Machine Learning Fundamentals The Kernel Trick</u> (https://www.youtube.com/watch?v=JiM_LXpAtLc)
- Kernel PCA <u>David Thompson: Nonlinear Dimensionality Reduction: KPCA</u>
 (https://www.youtube.com/watch?v=HbDHohXPLnU)

- Icons from Icon8.com (https://icon88.com (https://
- Datasets from <u>Kaggle (https://www.kaggle.com/)</u> <u>https://www.kaggle.com/</u> (https://www.kaggle.com/)