A Note on Foundations of Optimization

Xue Sen

March 22, 2022

1 Preparation

1.1 Differentiablility

Definition 1 Differentiable (Fréchet Differentiable)

A function of several real variables $\mathbf{f}: \mathbf{R}^m \to \mathbf{R}^n$ is said to be differentiable at a point \mathbf{x}_0 if there exists a linear map $\mathbf{J}: \mathbf{R}^m \to \mathbf{R}^n$ such that

$$\lim_{\mathbf{h}\to\mathbf{0}}\frac{\left\|\mathbf{f}\left(\mathbf{x_0}+\mathbf{h}\right)-\mathbf{f}\left(\mathbf{x_0}\right)-\mathbf{J}(\mathbf{h})\right\|_{\mathbf{R}^n}}{\left\|\mathbf{h}\right\|_{\mathbf{R}^m}}=0.$$

Lemma 1 If all the partial derivatives of a function exist in a neighborhood of a point x_0 and are continuous at the point x_0 , then the function is differentiable at that point x_0 .

However, the existence of the partial derivatives (or even of all the directional derivatives) does not in general guarantee that a function is differentiable at a point.

Definition 2 Continuously Differentiable:

A differentiable function f is continuously differentiable if and only if f is of differentiability class C^1 . That is, if the first order derivative of f (and possibly higher) is continuous.

Real Function

Let $I \subset \mathbb{R}$ be an open interval.

Then f is continuously differentiable on I if and only if f is differentiable on I and its derivative is continuous on I.

Real-Valued Function

Let U be an open subset of \mathbb{R}^n .

Let $f: U \to \mathbb{R}$ be a real-valued function.

Then f is continuously differentiable in the open set U if and only if:

(1): f is differentiable in U.

(2): the partial derivatives of f are continuous in U.

Vector-Valued Function

Let $U \subset \mathbb{R}^n$ be an open set.

Let $f: U \to \mathbb{R}^m$ be a vector-valued function.

Then f is continuously differentiable in U if and only if f is differentiable in U and its partial derivatives are continuous in U.

Definition 3 Gateaux differentiable

The function F is called Gateaux differentiable at $x \in U$ of

$$\lim_{t \to 0} \frac{F(x+td) - F(x)}{t}$$

is linear in d, that is, there exists a linear map $T: \mathbb{R}^n \to \mathbb{R}^m$, say T(x) = Ax, where A is an $m \times n$ matrix, such that

$$\lim_{t\to 0}\frac{F(x+td)-F(x)}{t}=Ad.$$

For the relationship among the definition, we have:

- (iv) Frechet Differentiable \Rightarrow (iii) Gateaux Differentiable \Rightarrow (ii) All Directional Derivatives Exist \Rightarrow (i) Partial Derivatives Exist
 -) I dividi Belivadi es Binse

1.2 Algebra

Definition 4 Topological Space

A topological space is an ordered pair (X, τ) , where X is a set and τ is a collection of subsets of X, satisfying the following axioms:

- 1. The empty set and X itself belong to τ .
- 2. Any arbitrary (finite or infinite) union of members of τ belongs to τ .
- 3. The intersection of any finite number of members of τ belongs to τ .

Definition 5 Isomorphism

The word isomorphism is derived from the Ancient Greek:isos "equal", and morphe "form" or "shape".

An isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping.

Example: $A \to \alpha$, $b \to \beta$, then $a \times b \to \alpha \otimes \beta$.

An automorphism is an isomorphism from a structure to itself.

Definition 6 Homomorphism

The word homomorphism comes from the Ancient Greek language: homos meaning "same" and morphe meaning "form" or "shape".

A homomorphism is a map between two algebraic structures of the same type.

A map $f: A \to B$ between two sets A, B equipped with the same structure. \otimes is an operation of the structure.

$$f(x \otimes y) = f(x) \otimes f(y)$$

Definition 7 Homeomorphism

The word homeomorphism comes from the Greek words homoios "similar" or "same" and morphe "shape" or "form".

A function $f: X \to Y$ between two topological spaces is a homeomorphism if it has the following properties:

- 1. f is a bijection (one-to-one and onto),
- 2. f is continuous,
- 3. the inverse function f^{-1} is continuous (f is an open mapping).

Definition 8 Manifold

A manifold is a topological space that locally homeomorphic to an open subset of an Euclidean space near each point(finite-dimensional).

Definition 9 Diffeomorphism

A diffeomorphism is a map between manifolds which is differentiable and has a differentiable

Theorem 1 Implicit function theorem

Theorem 2 Lyusternik

2 Unconstrained Opt

Theorem 3 Weierstrass

Theorem 4 First-Order Necessary Condition for a local minima

Theorem 5 Second-Order Necessary Condition for a local minima

Theorem 6 Second-Order Sufficient Condition for a local minima

Theorem 7 Second-Order Sufficient Condition for a global minima

3 Variational Principles

Definition 10 Semi-Continuous

4 Convex Analysis

Definition 11 Affine Combination

 $\textbf{Definition 12} \ \textit{Affine Set}$

Definition 13 Affine Hull

Definition 14 Affine Independent

Definition 15 Affine Map

Definition 16 Convex Set

Definition 17 Convex Combination

Definition 18 Cone(Convex Cone)

Definition 19 Positive Combination

Definition 20 Convex Conical Hull

Definition 21 Convex Function

Theorem 8 Differentiable and Convex

Let C be a convex set in \mathbb{R}^n , and let f be a twice Fréchet differentiable function on an open set containing C.

- (1) Convex \iff Hf(x) is positive semidefinite $\forall x \in C$.
- (2) Hf(x) is positive definite $\forall x \in C \longrightarrow strictly convex.$

Theorem 9 First-Order Necessary Condition for a local minima Add assumption that U is convex.

Theorem 10 First-Order Sufficient Condition for a global minima Add assumption that f is convex.

Excercise:

The Theorem (9) and (10) can be used to solve opt problem when its constraints provide a convex set of x.

For example:

$$\begin{array}{ll}
\min & f(x) \\
\text{s.t.} & Ax = b
\end{array}$$

and

$$\begin{array}{ll}
\min & f(x) \\
\text{s.t.} & Ax \le a \\
Bx = b
\end{array}$$

5 Structure of Convex Sets and Functions

Definition 22 Interior

Definition 23 Relative Interior

Definition 24 Algebraic interior

Definition 25 Relative Algebraic interior

Definition 26 Algebraic Closure

Definition 27 Minkowski Gauge Function

6 Nonlinear Programming and KKT

For a nonlinear programming problem (P)

min
$$f(x)$$

s.t. $g_i(x) \le 0$, $i = 1, ..., r$, (P)
 $h_j(x) = 0$, $j = 1, ..., m$,

Definition 28 Active Constraints

For a point $x \in feasible \ set \ \mathcal{F}(P)$, The set of active constraints is

$$I(x) := \{i : g_i(x) = 0\}$$

Definition 29 Tangent Direction(Tangent Cone)

A vector $d \in \mathbb{R}^n$ is called a tangent direction of a nonempty set $M \subseteq \mathbb{R}^n$ at the point $x \in M$ if there exist a sequence $x_n \in M$ converging to x and a nonnegative sequence α_n such that

$$\lim_{n \to \infty} \alpha_n \left(x_n - x \right) = d$$

Definition 30 Set of Feasible Directions $(\mathcal{FD}(x^*))$

Let x^* be a feasible point, the set of all tangent directions of $\mathcal{F}(P)$ at x^* is the Set of Feasible Directions $(\mathcal{FD}(x^*))$.

Linearized Set of Feasible Directions $(\mathcal{LFD}(x^*))$

$$\mathcal{LFD}(x^*) := \{ d : \langle \nabla g_i(x^*), d \rangle \leq 0, \quad i \in I(x^*)$$
$$\langle \nabla h_j(x^*), d \rangle = 0, \quad j = 1, \dots, m, \},$$

Definition 31 Set of Strict Descent Directions($SD(f; x^*)$)

A vector $d \in \mathbb{R}^n$ is called a strict descent direction for f at x^* if there exists a sequence of points $x_n \to x^*$ in \mathbb{R}^n with tangent direction d such that $f(x_n) < f(x^*)$ for all n.

Linearized Set of Strict Descent Directions $(SD(f; x^*))$

$$\mathcal{LSD}(f; x^*) := \{d : \langle \nabla f(x), d \rangle < 0\}.$$

Lemma 2 If $x^* \in \mathcal{F}(P)$ is a local minimum of (P), then

$$\mathcal{FD}(x^*) \cap \mathcal{SD}(f; x^*) = \emptyset$$

Theorem 11 Fritz John

If a point x^* is a local minimizer of (P), then there exist multipliers $(\lambda, \mu) := (\lambda_0, \lambda_1, \dots, \lambda_r, \mu_1, \dots, \mu_m)$, not all zero, $(\lambda_0, \lambda_1, \dots, \lambda_r) \ge 0$, such that

$$\lambda_0 \nabla f(x^*) + \sum_{i=1}^r \lambda_i \nabla g_i(x^*) + \sum_{i=1}^m \mu_j \nabla h_j(x^*) = 0$$
 (1)

$$\lambda_i \ge 0, g_i(x^*) \le 0, \lambda_i g_i(x^*) = 0, \quad i = 1, \dots, r$$
 (2)

Proof: Consider Lyusternik's theorem for linear independent scenario.

Theorem 12 KKT

If a point x^* is a local minimizer of (P), and the vectors

$$\{\nabla g_i(x^*), i \in I(x^*), \quad \nabla h_j(x^*), j = 1, \dots, m\}$$

 $are\ linearly\ independent,\ then,$

$$\nabla f(x^*) + \sum_{i=1}^r \lambda_i \nabla g_i(x^*) + \sum_{j=1}^m \mu_j \nabla h_j(x^*) = 0$$
(3)

$$\lambda_i \ge 0, \quad g_i(x^*) \le 0, \quad \lambda_i g_i(x^*) = 0, \quad i = 1, \dots, r$$
 (4)

$$h_j(x^*) = 0, \quad j = 1, \dots, m$$
 (5)

Theorem 13 First-Order Sufficient Optimality Conditions

Let x^* be a feasible solution to the optimization problem (P) satisfying (1) and (2), If the totality of the vectors

$$span\{\lambda_0 \nabla f(x^*), \lambda_i \nabla g_i(x^*), \nabla h_i(x^*) | i \in i \in I(x^*), j \in \{1, \dots, m\}\} = \mathbb{R}^n$$
 (6)

then x^* is a local minimizer of (P).

Theorem 14 Convex and KKT

Let x^* be a feasible point of problem (P) if the active constraints $\{g_i\}_{i\in I(x^*)}$ are concave functions in a convex neighborhood of x^* and the equality constraints $\{h_j\}_1^m$ are affine functions on \mathbb{R}^n .

 $x \ is \ a \ local \ minimizer \longrightarrow \ KKT \ conditions \ hold \ at \ x$

Theorem 15 Variations of KKT*

Theorem 16 Second-Order Necessary Conditions

Let x^* be a local minimizer of (P) satisfying the KKT conditions with multipliers λ^*, μ^* . If the active gradient vectors,

$$\nabla g_i(x^*), i \in I(x^*), \nabla h_j(x^*), j = 1, ..., m$$

are linearly independent, then for any direction d satisfies

$$\langle d, \nabla g_i(x^*) \rangle = 0, i \in I(x^*), \quad \langle d, \nabla h_j(x^*) \rangle = 0, j = 1, \dots, m,$$

then
$$\langle \nabla_x^2 L(x^*, \lambda^*, \mu^*) d, d \rangle \ge 0$$

Theorem 17 Second-Order Sufficient Conditions

Theorem 9.21. Let x^* be a feasible point for (P) that satisfies the KKT conditions with multipliers λ^* , μ^* . If

$$\langle \nabla_x^2 L(x^*, \lambda^*, \mu^*) d, d \rangle > 0$$

for all $d \neq 0$ satisfying the conditions

$$\langle d, \nabla g_i(x^*) \rangle \leq 0, i \in I(x^*),$$

 $\langle d, \nabla g_i(x^*) \rangle = 0, i \in I(x^*) \text{ and } \lambda_i^* > 0,$
 $\langle d, \nabla h_j(x^*) \rangle = 0, j = 1, \dots, m,$

then x^* is a strict local minimizer of (P).