Sustainable Energy System (ENES801002) - 6 Credits

Instructors

Prof. Widodo W. Purwanto (WWP) Sheila Tobing, S.T., M.Eng., Ph.D. (ST) Dr. Hasbi Priadi, S.T., M.Sc. (HP)

Course Assistant

Gabriela Averina, S.T., M.T.

Markus Aminius Gielbert, S.T., M.T. (+62 89507646838 *WhatsApp for working hours only)

Course description

Motivated by the desire to design future energy systems and create a sustainable and clean environment, there is gradual shifting from the use of fossil fuels to more clean and sustainable energy resources. Fossil fuels which are currently most used to meet energy demand, are now being depleted. Currently, Indonesia is also facing the transition from fossil energy exporter to oil importer. One thing is very true that achieving future sustainable energy system requires more role of renewable energy and holistic policy approaches by taking into account economic, environmental and social dimensions. The purpose of this course is to provide an overview of current energy status and the transition to future energy systems, especially energy resources (fossil and renewables), conversion, transportation, storage and end-used technologies as well as its linkage to other systems (economic, social and environment). The class will explore the current issues of energy and understand the challenges in sustainable energy technologies and policy in fulfilling world and national energy needs in a sustainable manner.

Course objective

Students who complete this course will be able to:

- 1 Explains the principles of energy system.
- 2 Distinguish the concept of sustainability and sustainable energy.
- 3 Distinguish the relationships of energy system to economic, society and environment systems.
- 4 Interpret geopolitical and global aspects of energy related to their supply-demand chains.
- Analyze technical, economic, and environment attributes of sustainable energy systems from resource, conversion, transportation, storage, and users.
- 6 Analyze the energy demand, energy efficiency and how to reduce it, include consumer behaviour.
- 7 Understand sustainable energy policy and international commitment.

Course content

Week/Instructor /Date	Торіс	Reading	Assignments
1 WWP	Concept of energy system,	JT Ch.1, GB Ch. 1,	
Wed, 28 August	sustainability and sustainable energy	MK I.1, F&S Ch.1	
2 ST	Global climate change, mitigation and	JT Ch.4, 7, GB Ch. 5,	
4 September	cleaner fossil energy systems	7, 13,14	
3 WWP	E Contain Transition	TEA	
11 September	Energy System Transition	IEA	
4 HP	Demonstra Emonsor II. Diagram	IT Cl. 10 E9C Cl. 4	HW 1
18 September	Renewable Energy II: Bioenergy	JT Ch.10, F&S Ch.4	
5 ST	Renewable Energy II: Hydropower	IT CL 12 MIZ LIII	HW 2
25 September	System	JT Ch.12, MK I, III	
6 ST	December 5. and III. Occasi Frances	IT Ch 14 MIZ I	
2 October	Renewable Energy III: Ocean Energy	JT Ch.14, MK I	
7 HP	Renewable Energy IV: Geothermal		
9 October	Energy (Guest Lecture)		
8 ST	Mid From		
16 October	Mid Exam		

Week/Instructor /Date	Topic	Reading	Assignments	
9 ST 30 October	Renewable Energy IV: VRE – Wind Energy	TB Ch.2-3, JT Ch.15		
10 ST 6 November	Renewable Energy V: VRE – Solar Energy (PV and thermal)	JT Ch.13, MK I, III	HW 3	
11 WWP 13 November	New Energy: Hydrogen+Fuel and Fuel Cell, Nuclear Energy	JT Ch.9, 16		
12 ST 20 November	Energy Storage and Power Flexibility (PtX)	JT Ch.17, F&S Ch. 10, IRENA	1111/14	
13 WWP 27 November	Energy Demand Systems; Energy Efficiency; and conservation	JT Ch.17,18,19,20, F&S Ch.12	HW 4	
14 WWP 4 December	Sustainable Energy Policy and Energy Economic	SCB Ch. 11		
15 HP 11 December	Class Project Presentation			
16 HP 18 December	Final Exam			

Grading System (4 credits)

HW	= 10%
Class Project	= 15%
Paper/Presentation	= 15%
Mid Exam	= 30%
Final Exam	= 30%

Required Books

- 1. Jefferson W. Tester, et al., Sustainable Energy: Choosing Among Options, MIT Press, 2005 (JT)
- 2. Godfrey Boyle, et al. Energy Systems and Sustainability: Power for a Sustainable Future, Oxford University Press, 2003. (**GB**)
- 3. Mac Kay, D.J.C., Sustainable Energy –without hot air, UIT Cambridge, 2008, free online (MK)
- 4. Dincer, Ibrahim, Zamfirescu, Calin, Sustainable Energy Systems and Applications, Springer, 2012 (D&Z)
- 5. Hendrik Lund, Renewable Energy Systems. A Smart Energy Systems Approach to the Choice and Modeling of 100% Renewable Solutions, 2nd Edition, Elsevier, 2014 (**HL**)
- 6. Frank Kreith, Susan Krumdieck, Principles of Sustainable Energy System, 2014, CRC Press, (F&S)
- 7. Amritanshu Shukla and Atul Sharma, Energy Security and Sustainability, 2017, CRC Press (A&A)
- 8. Bhattacharyya. Energy Economics. Springer 2011 (SCB)
- 9. Tony, L Burton. et al. Wind Energy Handbook. Available from: VitalSource Bookshelf, (3rd Edition). Wiley Professional, Reference & Trade (Wiley K&L), 2021 (**TB**)

Other useful references

- 10. Website of related institution: Sustainable energy for all- UN (<u>Sustainable Energy for All | Sustainable Energy for All | (seforall.org)</u>), IRENA (<u>IRENA International Renewable Energy Agency</u>)
- 11. Course web sites: Sustainable Energy MIT (https://ocw.mit.edu/courses/nuclearengineering/22-081j-introduction-to-sustainable-energy-fall-2010/index.htm)
- 12. IRENA Power Flexibility (https://www.irena.org/publications/2018/Nov/Power-systemflexibility-for-the-energy-transition) (IRENA)
- 13. Net Zero by 2050 IEA (https://www.iea.org/reports/net-zero-by-2050) (IEA)