Midterm #1 Study Guide Math 157 (Calculus II), Spring 2024

- 1. Geometric applications of integrals [§6.1, 6.2, 6.3]
 - (a) Area between curves [§6.1]: area between y = f(x) and y = g(x) is $\int_a^b |f(x) g(x)| dx$.
 - (b) Volume of general solid [§6.2]: if A(x) = area of cross-section, then volume is $\int_a^b A(x) dx$.
 - (c) Volume of solid of revolution [§6.2, 6.3]: "disks/washers" & "cylindrical shells" methods. For region below curve y = f(x) from x = a to x = b:
 - i. rotated around x-axis, "disks method" gives volume = $\int_a^b \pi f(x)^2 dx$;
 - ii. rotated around y-axis, "shells method" gives volume = $\int_a^b 2\pi f(x) x dx$.
- 2. Other applications of integrals [§6.4, 6.5]
 - (a) Work [§6.4]: if F(x) =force as function of distance, then work done is $W = \int_a^b F(x) \ dx$.
 - (b) Average of function [§6.5]: the average of f(x) from x = a to x = b is $\frac{1}{b-a} \int_a^b f(x) dx$.
- 3. Techniques for computing integrals [§7.1, 7.2, 7.3, 7.4, 7.5]
 - (a) Integration by parts [§7.1]: $\int u \, dv = uv \int v \, du$; choose u using "LIATE" rule
 - (b) Trigonometric integrals [§7.2]: for $\int \sin^n(x) \cos^m(x) dx$, use the Pythagorean identity $\sin^2(x) + \cos^2(x) = 1$ to isolate single factor of $\cos(x) dx$ or $\sin(x) dx$, then do a *u*-sub.
 - (c) Trigonometric substitution [§7.3]:
 - i. for $a^2 x^2 \Rightarrow \sup x = a\sin(\theta)$, $dx = a\cos(\theta) d\theta$, and use $1 \sin^2(\theta) = \cos^2(\theta)$;
 - ii. for $a^2 + x^2 \Rightarrow \text{sub } x = a \tan(\theta), dx = a \sec^2(\theta) d\theta$, and use $1 + \tan^2(\theta) = \sec^2(\theta)$.
 - (d) Integrating rational functions by partial fractions [§7.4]: find roots of denominator Q(x) and solve system of equations to write P(x)/Q(x) = A/(x-a) + B/(x-b) + ... + Z/(x-z) and use $\int A/(x-a) dx = A \ln(x-a)$; for repeated roots do $A_1/(x-a) + A_2/(x-a)^2 + \cdots$
- 4. Other concepts related to integration [§7.7]
 - (a) Approximating definite integrals [§7.7]: two good approximations of $\int_a^b f(x) dx$ are
 - i. midpoint approximation $M_n = \sum_{i=1}^n f(\overline{x}_i) \Delta x$ where $\overline{x}_i = \frac{x_{i-1} + x_i}{2}$;
 - ii. trapezoid approximation $T_n = \frac{\Delta x}{2} (f(x_0) + 2f(x_1) + 2f(x_2) + \dots + 2f(x_{n-1}) + f(x_n)).$