

Московский Физико-Технический Институт

Отчет по эксперименту

Определение константы диссоцаиции уксусной кислоты методом кондуктометрии

Цель работы:

Исследовать электрические свойства раствора уксусной кислоты и определить его константу диссоциации.

Оборудование и реактивы:

Кондуктор "Анион 4100" и измерительная ячейка; раствор КСL с концентрацией 0.01 М; раствор слабого электролита с концецнтрацией 0.01 М (уксусная кислота); стакан стеклянный лабораторный (10 мл); два мерных цилиндра (10 мл); дистилированная вода.

Теоретическое введение:

Электрохимия - это раздел физической химии, в котором изучают физико-химические свойства ионных систем, а также процессы и явления на границах раздела фаз с участием заряженных частиц (электронов или ионов)

Электролит - это система, обладающая в жидком или твердом состоянии ионной проводимостью. Соотвественно, различают твердые электролиты, расплавы и растворы электролитов. Электролиты отностятся к проводникам второго рода.

Если раствор электролита поместить в электрическое поле, то ионы начнут смещаться по направлению силовых линий поля. Направленное перемещение ионов электролита будет представлять собой похождение электрического тока через электролит. Чем больше заряд иона и чем большее количество ионов пройдет в секунду через сечение раствора, тем больше будет его электрическая проводимость.

Согласно термодинамической теории, предложенной А.С, Аррениусом, электролит в растворе обладает способностью при растоворении в различных растоворителях распадаться на ионы.

Диссоциация - это химическая реакция между растворителем и электролитом, которая сопровождается выделением или поглощением тепла и изменением объема: $\Delta H := 0$, $\Delta V := 0$. Диссоциация электролитов харакетризуется степенью диссоциации.

Степень диссоциации - это отношение числа молекул электрлита, распавшихся в растворе на ионы, к первоначальному числу молекул.

Константа равновесия реакции диссоциации слабого электролита называется константоки диссоциации.

Электрическая проводимость - это способность растворов электролитов проводить электрический ток.

Молярная электрическая проводимость (λ) - это электрическая проводимость объема раствора электролита, содержащего 1 моль, растворенного вещества и находящегося между двумя параллельными электродами, расположенными на расстоянии 1 м друг от друга.

Кондуктометрия основана на измерении электриской проводиомсти растворов. На основе электропроводности можно сделать рациональный выбор раствора электролита. Кондуктометрия позволяет автоматизировать контроль производства в процессах, имеющих дело с растворами электролитов или расплавами, определять содержание солей в различных растворах при испарен воды для контроля ее качества.

Степень диссоциации электролита α_i рассчитывается по формуле:

$$\alpha_i = \frac{\lambda_i}{\lambda_{\infty}}$$

 λ_i - молярная электрическая проводимость, λ_∞ - молярная электрическая проводимость при концентрации раствора, стремящейся к нулю.

Константа диссоциации слабого электролита K_D определяется для каждого значения концентрации раствора c_i по уравнению:

$$K_D = \frac{c_i \cdot {\alpha_i}^2}{1 - \alpha_i}$$

В итоге получается:

$$K_D = \frac{c_i * {\lambda_i}^2}{\lambda_{\infty}(\lambda_{\infty} - \lambda_i)}$$

или:

$$\frac{1}{\lambda_i} = \frac{1}{\lambda_\infty} + \frac{\lambda_i c_i}{K_D \lambda_\infty^2}$$

Если построить график зависимости $\frac{1}{\lambda}(\lambda c)$, то по тангенсу угла его наклона можно определить константу диссоциации:

$$K_D = \frac{1}{\tan(\alpha)\lambda_{\infty}^2}$$

Ход работы:

Экспериментальная чать данной лабораторной работы состоит из 2-ух эатов:

- 1. Определение нормировочного коэффициента
- 2. Определение константы и степени диссоциации слабого электролита

No॒	1	2	3	4	5
c, 0.01 моль	1	1/2	1/4	1/8	1/16
χ_i , MKCM/CM	135.1	94.0	62.9	42.7	29.0
λ_i , См*см ² /моль	13.5	18.8	25.2	34.2	46.4
α_i	0.38	0.53	0.71	0.97	1.31

Таблица 1: Результаты измерений

Для KCL получили следующее: $\kappa_{KCl} = 1,344*10^{-3} \; \mathrm{Cm/cm} \; (\mathrm{t} = 25^{\circ}\mathrm{C}).$

Из специальной таблицы берем удельную электрическую проводимость χ_{KCl} при 25 °C и 0.01 М

Получаем значение: $1,441 * 10^{-3}$ См/см.

Считаем значение нормировочного коэффициента:

$$\varphi = \frac{\chi_{KCl}}{\kappa_{KCl}} = 1.072$$

Молярную электрическую проводимость считаем по следующей формуле: $\lambda_i = \frac{1000\chi_i}{c_i}$

Далее строим график, и по методу наименьших квадратов строим прямую. С тангенса угла наклона находим K_D , также при экстрополяции находим значение $\frac{1}{\lambda_{\infty}}$. Получаем следующие значения:

 $b = \frac{1}{\lambda_{\infty}} = 0.028 \text{ моль/Cm} \cdot \text{cm}^2;$ $\lambda_{\infty} = 35.7 \text{ моль/Cm} \cdot \text{cm}^2;$ $k = 65.89 \frac{\text{моль}}{\text{Cm} \cdot \text{cm}^2}^2 \cdot \frac{1}{\text{моль}}$ $K_D = 1.8969 \cdot 10^{-5} \text{ моль/л}.$

Вывод:

В ходе работы нам удалось определить константу диссоциации уксусной кислоты методом кондуктометрии. Полученный нами результат с приемлемой точностью совпадает с табличным ($\approx 5\%$). Для повышения точности при измерениях необходимо использовать растворы с более точной концентрацией. В нашем же случае, в ходе разбавления в 2 раза после каждого измерения, могли возникнуть существенные неточности.

Приложения:

Зависимость обратной проводимости от произведения проводимости и концентрации

Рис. 1: График $\frac{1}{\lambda}(\lambda c)$