

Teaching machines to understand natural language conversations

Dr. Jason Hoelscher-Obermaier Data Scientist & Software Developer jason.hoelscher@ondewo.com

www.ondewo.com

The Current State of Al

Computers can see, listen, talk and learn strategy – thanks to advances in Machine Learning / Deep Learning.

General Predictive Modelling

Processing

Computer Vision

Speech

Reinforcement Learning

Al which enables natural-language conversation between humans and machines

Simple example

"Please fetch me the coffee mug from the top of my desk"

entity recognition → object: coffee mug location: top of desk

intent detection→ **intent**: retrieve object

Al which enables natural-language conversation between humans and machines

Components of a conversational AI system

- speech2txt ← useful, not easy for German, especially dialects; (research project with ✓ 🔭)
- NLP preprocessing
- Named entity recognition
- Intent detection
- Response generation
- $txt2speech \leftarrow easy$, not our business

Al which enables natural-language conversation between humans and machines

Components of a conversational AI system

- speech2txt \leftarrow useful, not easy for German, especially dialects; (research project with \bigcirc
- NLP preprocessing
- Named entity recognition
- Intent detection
- Response generation
- txt2speech ← easy, not our business

Al which enables natural-language conversation between humans and machines

Components of a conversational AI system

- speech2txt ← useful, not easy for German, especially dialects; (research project with ✓ 🔭)
- NLP preprocessing
- Named entity recognition
- Intent detection
- Response generation
- $txt2speech \leftarrow easy, not our business$

Dialogue manager

Presentation Outline

- NLP preprocessing
- Named entity recognition
- Intent detection
- How well does it work?
- Challenges and solutions
- Where do we stand and where do we want to go?

Overview detection pipeline

Overview NLP preprocessing

Overview named entity recognition

Overview intent detection

How well does it work?

RasaFrankenBot

"im looking for a restaurant in the west part of town that serves moroccan food" intent: "inform" cuisine

location

- 6 intents, 5 entities
- Imbalanced in both intents & entities
- Small (Train: 598; Test: 150)

Data:

https://github.com/RasaHQ/rasa_core/blob/master/examples/restaurantbot/data/nlu.md

SNIPS small

- English
- 7 intents, 39 entities
- Intents balanced, entities imbalanced
- Medium (Train: 2223, Test: 556)

Data:

https://github.com/snipsco/nlu-benchmark/tree/master/2017-06-custom-intent-engines

How well does it work for entities? (preliminary results)

Datasets (a-z sorted) Entity f1 (µ-averaged) Rasa Snips Franken (small) Platform (a-z sorted) Bot **1** LUIS 68,3% 75,7% ONDEWO CONVERSATIONAL AL 97,9% 90,8% 68,9% 74.7%

71,4%

82,8%

Challenges and solutions

Data quality: usually very sparse and biased

- Data augmentation
- Pre-trained models
- Pre-trained word embeddings

Too many degrees of freedom

- Normalization
- Stop word / stop phrase removal
- Spell checking
- Lemmatization / stemming
- Word embeddings
- Bag of words

Datasets quite heterogeneous

- Fine-tuning of algo configurations
- Hybrid approaches: meta-classifier / merge strategies

Outlook

Today: Conversational Al works

- for restricted domains
- with considerable manual work required to
 - create suitable training data (diverse, annotated)
 - define hard-coded responses

Tomorrow: Conversational AI capable of

- self-learning (reinforcement learning)
- natural conversations
- ... with very broad conversational domains
- ... and auto-generated responses (seq2seq)
- ⇒ "Self-learning conversational brains"

Got 5 exclusive tickets - let me know afterwards if interested

conversational ai

17. APRIL 2019 DEMO EVENT

NLP Vienna Meetup

Interested? Get in touch!

We need you!

jason.hoelscher@ondewo.com

THANK YOU FOR YOUR ATTENTION!

