실습 자료 안내

- 15만여개 Inorganic 물질에 대한 DFT 계산 정보를 포함하고 있는 Materials Project 데이터 베이스 활용
- 물질의 전자 상태를 나타내는 값인 Bandgap 예측하는 모델 생성

- 1. Colab 접속 (https://colab.google/)
- 2. 파일 → 노트 열기 → GitHub → URL 검색

URL: https://github.com/Juo-kim/KSME-Al-winter.git

KSME-Al-winter

Juo Kim

CS-AI Lab
School of Mechanical Engineering
Soongsil University

Contact: rlawndh14@gmail.com

Bandgap?

- Energy gap : 전자가 존재하고 있는 가장 높은 에너지 레벨 (Valence Band) 부터 전자가 존재하지 않는 가장 낮은 에너지레벨 (Conduction Band) 사이의 에너지 준위
- 물질이 외부에서 충분한 에너지를 공급받게 된다면, Valence band에 위치한 전자가 Conduction Band로 뛰어넘는 것이 가능함
- Bandgap의 크기에 따라 물질의 전기적 성질을 확인할 수 있음
- Metal = 0 eV, 0 eV < Semiconductor < 4 eV, Insulator ≥ 4 eV
- 전기적 성질을 알아보기 위해서 매우 중요하지만, Bandgap 계산을 위해 필요한 계산적, 실험적 cost가 큼

http://solarcellcentral.com/junction_page.html

Materials Project

- Open source Inorganic database 중 하나
- 154,718개의 Inorganic 물질에 대한 DFT 계산 기반의
 물성 포함
- Bandgap, Energy above hull, Space group number,
 Crystal structure 등 많은 계산 결과
- → <u>Materials Project database로 bandgap을 예측할 수</u> <u>있는 regression model을 만드는 것이 실습의 목표</u>

The Materials Project

Harnessing the power of supercomputing and state-of-the-art methods, the Materials Project provides open web-based access to computed information on known and predicted materials as well as powerful analysis tools to inspire and design novel materials.

The Materials Project by the numbers MATERIALS REGISTERED USERS DATABASE ENTRIES 154,718 400.000+ Charge Densities === EXAFS Tensor Properties (Elastic, Dielectric, Piezoelectric) Density of States CITATIONS INTERCALATION ELECTRODES Crystal Structures (SCAN/R2SCAN) 4,351 19,000+ MOLECULES CPU HOURS/YEAR 172,874 100 million

Chemical Descriptor

Meaning of chemical descriptors (CDs)	Numbe	r of attributes	Attributes
Stoichiometric attributes		6	Ncomp, Comp_L2Norm, Comp_L3Norm, Comp_L5Norm, Comp_L7Norm, Comp_L10Norm
		Mean (22)	
		Range (22)	Atomic Number, MendeleevNumber, AtomicWeight, MeltingT,
Florestel consists based attails to	122	Dev (22)	Column, Row, CovalentRadius, Electronegativity,
Elemental-property-based attributes	132	Max (22)	NsValence, NpValence, NdValence, NfValence, Nvalance, NsUnfilled, NpUnfilled, NdUnfilled, NfUnfilled, Nunfilled,
		Min (22)	GSvolume_pa, GSbandgap, GSmagmom, SpaceGroupNumber
		Most (22)	
Valance orbital occupation attributes		4	frac_sValence, frac_pValence, frac_dValence, frac_fValence
lonic compound attributes		3	CanFormlonic, MaxlonicChar, MeanlonicChar

Take a quick look at the Data structure

Properties from Materials Project

features created by Chemical Descriptor

Take a quick look at the Data structure

Create a Test set

[75] from sklearn.model_selection import train_test_split random_train_set, random_test_set = train_test_split(MP_bandgap, test_size=0.2, random_state=0)

[82] from sklearn.model_selection import StratifiedShuffleSplit

split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42)
for train_index, test_index in split.split(MP_bandgap, MP_bandgap["bandgap_cat"]):
 strat_train_set = MP_bandgap.iloc[train_index]
 strat_test_set = MP_bandgap.iloc[test_index]

✓ Stratified sampling

Database

• 모집단을 여러 층으로 분류하고 각 층에서 n개씩 랜덤하게 추출하는 방법

Sampling

• 데이터 편향을 예방할 수 있음

Random vs Stratified sampling

Correlation Coefficient

Prepare the Data for Machine Learning Algorithms

- ✓ MaxIonicChar, MeanIonicChar의 feature 값들이 없는 부분 존재
 - Option 1: 해당 data 삭제

• Option 2: 해당 feature 삭제

• Option 3: mean, average 등 대표값을 취함

	bandgap	NComp	Comp_L2Norm	Comp_L3Norm	Comp_L5Norm	Comp_L7Norm	Comp_L10Norm	mean_Number	maxdiff_Number	dev_Number	m	max_SpaceGroupNumber	min_SpaceGroupNumber	most_SpaceGroupNumber	frac_sValence	frac_pValence	frac_dValence	frac_fValence	CanFormIonic	MaxIonicChar	MeanIonicChar
780	11.7274	1	1.0	1.0	1.0	1.0	1.0	10.0	0	0.0		225	225	225.0	0.25	0.75	0.0	0.0	0	0.590585	0.203416
12013	16.5864	1	1.0	1.0	1.0	1.0	1.0	2.0	0	0.0		225	225	225.0	1.00	0.00	0.0	0.0	0	0.590585	0.203416
8509	17.8914	1	1.0	1.0	1.0	1.0	1.0	2.0	0	0.0		225	225	225.0	1.00	0.00	0.0	0.0	0	0.590585	0.203416
7806	8.4898	1	1.0	1.0	1.0	1.0	1.0	18.0	0	0.0		225	225	225.0	0.25	0.75	0.0	0.0	0	0.590585	0.203416
272	17.7675	1	1.0	1.0	1.0	1.0	1.0	2.0	0	0.0		225	225	225.0	1.00	0.00	0.0	0.0	0	0.590585	0.203416

5 rows × 146 columns

Training and Evaluation

LinearRegression

```
from sklearn.linear_model import LinearRegression
     lin reg = LinearRegression()
     lin_reg.fit(train_x, train_y)
     LinearRegression
     LinearRegression()

    Calculate RMSE, MAE, R2

[111] from sklearn.metrics import mean_squared_error
     LR_bandgap_predictions = lin_reg.predict(test_x)
     LR_rmse = np.sqrt(LR_mse)
     LR rmse
```

LR_mae = mean_absolute_error(test_y, LR_bandgap_predictions) LR_mae 0.8117386380297497 [113] from sklearn.metrics import r2 score

LR_r2 = r2_score(test_y, LR_bandgap_predictions) LR_r2

```
LR_mse = mean_squared_error(test_y, LR_bandgap_predictions)
     1.0754600014055637
[112] from sklearn.metrics import mean_absolute_error
```

0.48476581910545014

DecisionTreeRegressor

```
[115] from sklearn.tree import DecisionTreeRegressor
     DT reg = DecisionTreeRegressor(random state=42)
     DT_reg.fit(train_x, train_y)
              DecisionTreeRegressor
```

DecisionTreeRegressor(random_state=42)

Calculate RMSE, MAE, R2

```
[116] from sklearn.metrics import mean_squared_error
     DT_bandgap_predictions = DT_reg.predict(test_x)
     DT mse = mean squared error(test y, DT bandgap predictions)
     DT_rmse = np.sqrt(DT_mse)
     DT_rmse
     0.8329822526612584
[117] from sklearn.metrics import mean absolute error
     DT_mae = mean_absolute_error(test_y, DT_bandgap_predictions)
     DT_mae
```

[118] from sklearn.metrics import r2_score DT_r2 = r2_score(test_y, DT_bandgap_predictions) DT_r2

0.6909080899872387

0.4128481275736755

RandomForestRegressor

```
[120] from sklearn.ensemble import RandomForestRegressor
     RF_reg = RandomForestRegressor(n_estimators=100, random_state=42)
     RF_reg.fit(train_x, train_y)
              RandomForestRegressor
```

Calculate the RMSE, MAE, R2

RandomForestRegressor(random_state=42)

```
[121] from sklearn.metrics import mean_squared_error
     RF bandgap predictions = RF reg.predict(test x)
     RF_mse = mean_squared_error(test_y, RF_bandgap_predictions)
     RF_rmse = np.sqrt(RF_mse)
     RF_rmse
```

0.6598511264068248

```
[136] from sklearn.metrics import mean absolute error
     RF_mae = mean_absolute_error(test_y, RF_bandgap_predictions)
     RF mae
```

0.3646210316593357

```
[137] from sklearn.metrics import r2_score
     RF_r2 = r2_score(test_y, RF_bandgap_predictions)
     RF_r2
```

0.8060418353047923

Using AutoML - Pycaret

s = setup(train, target='bandgap', session_id = 0, index=False, n_jobs = -1)

_	_
	7

	Description	Value
0	Session id	0
1	Target	bandgap
2	Target type	Regression
3	Original data shape	(1014840, 146)
4	Transformed data shape	(1014840, 146)
5	Transformed train set shape	(710388, 146)
6	Transformed test set shape	(304452, 146)
7	Numeric features	145
8	Rows with missing values	0.0%
9	Preprocess	True
10	Imputation type	simple
11	Numeric imputation	mean
12	Categorical imputation	mode
13	Fold Generator	KFold
14	Fold Number	10
15	CPU Jobs	-1
16	Use GPU	False
17	Log Experiment	False
18	Experiment Name	reg-default-name
19	USI	4848

Computational Science

Artificial Intelligence

[26] best = compare_models(include = ['lr', 'dt'], cross_validation=False)

	Model	MAE	MSE	RMSE	R2	RMSLE	MAPE	TT (Sec)
lr	Linear Regression	1.2087	2.2437	1.4979	0.0066	0.6495	14.2146	22.9300
dt	Decision Tree Regressor	1.2548	2.5944	1.6107	-0.1486	0.6997	13.8090	105.1900

1 evaluate_model(best) Plot Type: Pipeline Plot Hyperparameters Residuals Prediction Error Cooks Distance Feature Selection Learning Curve Manifold Learning Validation Curve Feature Importance Feature Importance... Decision Tree

Using AutoML - Pycaret

Tune model

```
tuned_model = tune_model(best, n_iter = 20, optimize = 'MAE')
```

Blending model

```
1 blend1 = blend_models(estimator_list = [lr, dt],fold=3)
```

	MAE	MSE	RMSE	R2	RMSLE	MAPE
Fold						
0	1.2298	2.3993	1.5490	-0.0578	0.6692	15.6101
1	1.2268	2.3823	1.5435	-0.0589	0.6685	14.7248
2	1.2282	2.3925	1.5468	-0.0567	0.6680	14.6943
Mean	1.2283	2.3914	1.5464	-0.0578	0.6686	15.0097
Std	0.0012	0.0070	0.0023	0.0009	0.0005	0.4247

Ensemble model

```
ensembled_model1 = ensemble_model(dt, fold=3) #Bagging
#ensembled_model2 = ensemble_model(dt, method='Boosting', fold=3) #Boosting
```

	MAE	MSE	RMSE	R2	RMSLE	MAPE
Fold						
0	1.2764	2.7582	1.6608	-0.2160	0.7183	15.0171
1	1.2753	2.7545	1.6597	-0.2244	0.7182	14.8193
2	1.2745	2.7481	1.6577	-0.2138	0.7168	14.3727
Mean	1.2754	2.7536	1.6594	-0.2181	0.7178	14.7364
Std	0.0008	0.0042	0.0013	0.0046	0.0007	0.2695

```
1 final_model = finalize_model(blend1)

1 prediction = predict_model(final_model, data = test)
```

```
        Model
        MAE
        MSE
        RMSE
        R2
        RMSLE
        MAPE

        0
        Voting Regressor
        1.1888
        2.2040
        1.4846
        0.0273
        0.6425
        13.4030
```


Training and Evaluation

	LR	DT	RF
R^2	0.485	0.691	0.806
MAE	0.812	0.413	0.365
RMSE	1.075	0.833	0.650

GdPO4	mp-1103324	3.2911	12	141		710678	0.67354 0.66				18.5		15.1666667	64	
GdPO4	mp-3735	2.613	24	14	3 0.70	710678	0.67354 0.66	692688 0.66	667829 0.66	666679	18.5	56	15.1666667	64	_
H2	mp-632291	8.8499	2	139				1			_,_			_ 1	
12	mp-24504	8.0699	4	194	1	1	1	1	1	1	1	0	0	1	
12	mp-1066989	6.2332	4	65	1	1	1	1	1	1	1	0	0	1	
12	mp-730101	9.7197	8	19	1	1	1	1	1	1	1	0	0	1	
12	mp-1096977	0.2567	1	123	1	1	1	1	1	1	1	0	0	1	
12	mp-632250	7.4222	1	229	1	1	1	1	1	1	1	0	0	1	
12	mp-23907	7.4848	2	194	1	1	1	1	1	1	1	0	0	1	
12	mp-754417	7.4040	1	191	1	1	1	1	1	1	1	0	0	1	
12	mp-634659	7.5517	1	225	1	1	1	1	1	1	1	0	0	1	
12	mp-850274	8.5338	2	139	1	1	1	1	1	1	1	0	0	1	
12	mp-1188177	7.3865	16	62	1	1	1	1	1	1	1	0	0	1	
12	mp-738409	8.1865	32	4	1	1	1	1	1	1	1	0	0	1	
12	mp-731827	8.1932	16	62	1	1	1	1	1	1	1	0	0	1	
12	mp-973783	8.8022	4	64	1	1	1	1	1	1	1	0	0	1	
12	mp-570752	6.6359	2	194	1	1	1	1	1	1	- 1	0	0	1	
12	mp-1181265	1.5178	16	62	1	1	1	1	1	1	1	0	0	1	
12	mp-632172	9.3289	2	139	1	1	1	1	1	1	1	0	0	1	

algorithm	mean mae	std mae	mean rmse	max max_error
coGN	0.1559	0.0017	0.3956	7.3352
coNGN	0.1697	0.0035	0.4271	7.9674
ALIGNN	0.1861	0.0030	0.4635	7.4756
MegNet (kgcnn v2.1.0)	0.1934	0.0087	0.4715	7.8821
DimeNet++ (kgcnn v2.1.0)	0.1993	0.0058	0.4720	14.0169
Finder_v1.2 structure-based version	0.2193	0.0012	0.4989	7.6676
MODNet (v0.1.12)	0.2199	0.0059	0.4525	7.5685

https://matbench.materialsproject.org/

- Chemical Composition만을 가지고 물질을 대표하는 feature 생성할 수 없음
- 새로운 ML Model, Hyperparameter optimization 등 정확한 예측을 하기 위한 방법이 존재
- AutoML 사용하여 low code로도 더 많은 비교 가능

Thank you

