Methods 3: Multilevel Statistical Modeling and Machine Learning

Week 9: Dimensionality Reduction, Principled Component Analysis (PCA) November 23, 2021

by: Lau Møller Andersen

These slides are distributed according to the CC BY 4.0 licence:

https://creativecommons.org/licenses/by/4.0/

Attribution 4.0 International (CC BY 4.0)

Did you learn?

Logistic regression (machine learning)

- 1) Understanding of how logistic regression can be adapted to a classification framework
- 2) Understanding the idea of a Support Vector Machine
- 3) Getting acquainted with how Support Vector Machines can solve non-linear problems

SUPPORT VECTOR MACHINES Recapitulation

(p. 69: Raschka, 2015)

$$\phi(x_1, x_2) = (z_1, z_2, z_3) = (x_1, x_2, x_1^2 + x_2^2)$$

Creating the higher dimensions can be computationally expensive

Kernel (k) function

$$k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \phi(\mathbf{x}^{(i)})^{T} \phi(\mathbf{x}^{(j)})$$
$$k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = e^{(-y \|\mathbf{x}^{(i)} - \mathbf{x}^{(j)}\|^{2})}$$
$$(y = \frac{1}{2\sigma^{2}}, \text{ also called the precision})$$

Non-linear decision boundaries

(p. 78: Raschka, 2015)

Low γ - soft boundary

gamma controls the softness of the boundary

(p. 79: Raschka, 2015)

High γ - tight boundary

gamma controls the softness of the boundary

(p. 80: Raschka, 2015)

Live coding

RECAPITULATION_SUPPORT_VECTOR_MACHINE.ipynb

Available online on The Royal Library

Learning goals

Dimensionality reduction

- 1) Learning how we can extract the features that explain the most variance
- 2) Understanding how that can improve classification
- 3) Get acquainted with the concept of a eigenvector

The curse of dimensionality

```
import numpy as np
import matplotlib.pyplot as plt
from os.path import join
path = '/home/lau/Skrivebord/class subject'
data = np.load(join(path, 'megmag data.npy'))
print('Shape: ' + str(data.shape))
print('n measurements: ' + str(np.prod(data.shape)))
print('n observations: ' + str(data.shape[0]))
print('n features: ' + str(np.prod(data.shape[1:])))
Shape: (682, 102, 251)
n measurements: 17460564
n observations: 682
n features: 25602
```

Principled components

FINDING THE DIRECTIONS OF MOST VARIANCE

(p. 128: Raschka, 2015)

Principled components

FINDING THE DIRECTIONS OF MOST VARIANCE

why are they orthogonal (retvinklet)?
- we wanna find vectors that are orthogonal in order for them to share variance. :)
we waant ecah of the pca's to explain new parts of the variance

PC1 has the most variance

we are gonna find vectors (PC! and PC2)) that explains the most variance

(p. 128: Raschka, 2015)

This can be **generalized** to as many dimensions as you like

A dataset (wine)

(p. 118: Raschka, 2015)

```
X, y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values
print(X.shape)
print(np.unique(y))

(178, 13) X: 13 different kinds of features
[1 2 3] y= targets (type of wine)
```

AIM: for **x**: find **W** such that:

$$x = [x_1, x_2, ..., x_d], x \in \mathbb{R}^d$$

$$\downarrow xW, W \in \mathbb{R}^{d \times k}$$

$$z = [z_1, z_2, ..., z_k], z \in \mathbb{R}^k$$
 The z is then our new data after dimension reduction

k = the number of dimensions we wanna end up with (reduced amount of dimensions)

d = 13

Approach

PRINCIPLED COMPONENT ANALYSIS

- 1) Standardize the *d*-dimensional dataset
- 2) Construct the covariance matrix
- 3) Decompose the covariance matrix into its eigenvectors and eigenvalues
- 4) Select k eigenvectors that correspond to the k largest eigenvalues where k is the dimensionality of the new feature subspace ($k \le d$) we can have more dimension the new feature subspace ($k \le d$) reduction:
- 5) Construct a projection matrix W from the "top" k eigenvectors
- 6) Transform the d-dimensional input dataset X using the projection matrix W to obtain the new k-dimensional feature subspace

(p. 129: Raschka, 2015)

Standardize the dataset (1)

FINDING THE DIRECTIONS OF MOST VARIANCE

we cant compare mouse height to human height, so we scale :)) we cant compare mouse weight to human voice pitch, so we scale (standardize)

```
X_train, X_test, y_train, y_test = \
    train_test_split(X, y, test_size=0.3, random_state=0)

sc = StandardScaler()
X_train_std = sc.fit_transform(X_train)
X_test_std = sc.fit_transform(X_test)
X_std = sc.fit_transform(X)
```

Question: why do we need to standardize?

Compare the variance of a measurement made in millimetres to one made in kilometres!

Data

Construct the covariance matrix (2)

FINDING THE DIRECTIONS OF MOST VARIANCE

$$\sigma_{jk} = \frac{1}{n} \sum_{i=1}^{n} (x_{j}^{(i)} - \mu_{j}) (x_{k}^{(i)} - \mu_{k})$$

$$\Sigma = \begin{bmatrix} \sigma_{1}^{2} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{2}^{2} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{3}^{2} \end{bmatrix}$$

Question: what will be the size of the covariance matrix in the *Wine* dataset?

13*13 = our features*features in data

Malic acid

Alcohol - 1.0

COVARIANCE MATRIX

its covariance, they are all 1 diagnoally, because the 13 features covariate with them selves

some of the features will explain the same variance = these being 1 fx :))

CC BY Licence 4.0: Lau Møller Andersen

0.9

0.6

-0.3 0.3

Nonflavanoid phenols

Proanthocyanins

0.5

Total phenols

Magnesium

-0.2

-0.2

-0.5

-0.5

Color intensity

- 0.50

1.00

0.75

0.25

0.00

-0.25

-0.50

-0.5 -0.5 1.0 1.0 OD280/OD315 of diluted wines

24

Magnesium -

Total phenois

Nonflavanoid phenois -0.2

Proanthocyanins

OD280/OD315 of diluted wines

Color intensity

Flavanoids

Proline

Alcalinity of ash -0.3

-0.1 0.2

1.0

-0.3 0.1 -0.4 0.2

-0.1 1.0

-0.4

-0.3

-0.5

Alcalinity of ash

-0.5 -0.1 -0.3 0.1

0.2

0.2 0.1

1.0

-0.75

-1.00

Find the eigenvectors and eigenvalues (3) FINDING THE DIRECTIONS OF MOST VARIANCE

multiplying the covariance matrix with eigenvector

$$\sum \mathbf{v} = \lambda \mathbf{v}$$

v: eigenvector

 λ : eigenvalue

 Σ : covariance matrix

Link to Chris Mathys's lecture from Methods II

Link to 3blue1brown's video of the same matter

Remember: matrix multiplication of a vector can be seen as a **transformation** of the vector

$$T(x) = Ax$$

A: transformation matrix

x: column vector

T: transformed column vector

Identity Transformation

Scaling Transformation

[0. 2.]]

Rotation Transformation

Random Transformation


```
In [142]: ## eigenvalues and eigenvectors
  eigen_vals, eigen_vecs = np.linalg.eig(cov_mat)
  print(eigen_vals.shape)
  print(eigen_vecs.shape)

(13,)
  (13, 13)
  we will have as many eigen values as dimension:)
```

```
In [17]: # checking whether the equation holds
        evec 0 = eigen vecs[:, 0]
        eval 0 = eigen vals[0]
        mat trans = cov mat @ evec 0 ## A times x
        scalar trans = eval 0 * evec 0 # lambda times x
        print(mat trans)
        print(scalar trans)
        print(np.isclose(mat trans, scalar trans)) ## instead of using "==", due to rounding error
        [ 0.7176924 -1.18513985 -0.14644842 -1.24846827  0.5909797
                                                               1.90479358
          2.07074217 -1.49875647 1.49568723 -0.48283127 1.46928422 1.80140436
          1.43147537
        [ 0.7176924 -1.18513985 -0.14644842 -1.24846827 0.5909797
                                                               1.90479358
         2.07074217 -1.49875647 1.49568723 -0.48283127 1.46928422 1.80140436
          1.431475371
        Truel
```

Eigenvectors (black), scaled by eigenvalues (red)

$\Sigma \mathbf{v} = \lambda \mathbf{v}$

Eigenvalues:

[0.92015307 1.09610709]

Eigenvectors:

[[-0.70710678 -0.70710678]

0.70710678 -0.70710678]]

Covariance matrix:

[[1.00813008 0.08797701]

[0.08797701 1.00813008]]

Applying a transformation

how to rotate something in 2d:)

For comparison

In the case where k=d...

- 4) Select k eigenvectors that correspond to the k largest eigenvalues where k is the dimensionality of the new feature subspace ($k \le d$)
- 5) Construct a projection matrix **W** from the "top" *k* eigenvectors
- 6) Transform the d-dimensional input dataset x using the projection matrix w to obtain the new k-dimensional feature subspace

... applying steps 4, 5 & 6 result in:

this is **not** feature reduction, however...

"reducing" to a new subspace (k=d) (4)

Eigenvalues for the **full** covariance matrix

```
## going back to the full feature matrix
print(eigen_vals)
[4.8923083    2.46635032    1.42809973    1.01233462    0.84906459    0.60181514
   0.52251546    0.08414846    0.33051429    0.29595018    0.16831254    0.21432212
   0.2399553 ]
```

Variance explained ratio

$$\frac{\lambda_j}{\sum_{j=1}^d \lambda_j}$$

$$\lambda_1 = \max(\lambda_j)$$
$$\lambda_7 = \min(\lambda_j)$$

$$\frac{\lambda_{1}}{d} = 37\%$$

$$\sum_{j=1}^{d} \lambda_{j}$$

$$\frac{\lambda_{7}}{d} = 0.64\%$$

$$\sum_{i=1}^{7 \text{ gamma}} \lambda_{j}$$

Sorted explained variance

(p. 132: Raschka, 2015)

Setting k = 2

Construct a projection matrix W from the "top" k eigenvectors (5)

eigenvalues in an eigen vector made into a W matrix

```
print('Weight matrix:\n', W)
Weight matrix:
 [[ 0.14669811  0.50417079]
 [-0.24224554 0.24216889]
 [-0.02993442 0.28698484]
 [-0.25519002 -0.06468718]
  0.12079772 0.229953851
  0.38934455 0.093639911
 [ 0.42326486  0.01088622]
 [-0.30634956 0.01870216]
 [ 0.30572219  0.03040352]
 [-0.09869191 0.54527081]
  0.30032535 -0.27924322]
  0.36821154 -0.174365
 [ 0.29259713  0.36315461]]
```

Transform the *d*-dimensional input dataset *X* using the projection matrix *W* to obtain the new *k*-dimensional feature subspace (6)

$$\mathbf{x} = [x_1, x_2, ..., x_d], \mathbf{x} \in \mathbb{R}^d$$

$$\mathbf{v} = [x_1, x_2, ..., x_k], \mathbf{v} \in \mathbb{R}^d$$

$$\mathbf{z} = [z_1, z_2, ..., z_k], \mathbf{z} \in \mathbb{R}^k$$

$$Z = XW$$

Reduced space

NOW its easier to calssify

We can now do logistic regression in this space

Logistic regression on reduced space (k = 2)

(p. 136: Raschka, 2015)

48

Did you learn?

Dimensionality reduction

- 1) Learning how we can extract the features that explain the most variance we learn nothing about WHICH features
- 2) Understanding how that can improve classification
- 3) Get acquainted with the concept of a eigenvector

(OPTIONAL) Live coding WEEK_09.ipynb

(OPTIONAL) Live coding NUMPY.ipynb

References

- Abe, S., 2010. Support Vector Machines for Pattern Classification. Springer, London.
- Raschka, S., 2015. Python Machine Learning.
 Packt Publishing Ltd.