Билет 70

Автор1, ..., Aвтор<math>N

20 июня 2020 г.

Содержание

0.1	билет 70: Формула для коэффициентов разложения в ряд аналитической функ-	
	ции. Несовпадение классов бесконечно дифференцируемых и аналитических функ-	
	ций	1

Билет 70 COДЕРЖАНИЕ

0.1. Билет 70: Формула для коэффициентов разложения в ряд аналитической функции. Несовпадение классов бесконечно дифференцируемых и аналитических функций.

Теорема 0.1 (единственность разложения функции в степенной ряд).

Пусть
$$f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$$
 при $|z-z_0| < R$ – радиус сходимости.

Тогда ряд раскладывается единственным образом, причем коэффициенты в этом ряду будут выглядеть так: $a_n = \frac{f^{(n)}(z_0)}{n!}$

Доказательство.

По предыдущей теореме:

$$f^{(m)}(z) = \sum_{n=m}^{\infty} n(n-1) \dots (n-m+1) a_n (z-z_0)^{n-m}$$

Подставим $z=z_0$. Тогда все слагаемые кроме первого занулятся и получим:

$$f^{(m)}(z_0) = m(m-1)\dots 1 \cdot a_m = m!a_m$$

. Отсюда
$$a_m = \frac{f^{(n)}(z_0)}{n!}$$
.

Определение 0.1.

Ряд Тейлора функции
$$f$$
 в точке z_0 называется ряд $\sum\limits_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!}(z-z_0)^n$

Определение 0.2.

Функция называется аналитической в точке z_0 , если она является суммой своего ряда Тейлора для точки z_0 в окрестности точки z_0 .

Ряд Тейлора мы можем писать только, если функция бесконечно дифферинцируема. Но бывают бесконечно дифференцируемые функции, которые не являются аналитическими, например:

Пример.

$$f(x) = \begin{cases} e^{-1/x^2} & \text{при } x \neq 0 \\ 0 & \text{при } x = 0 \end{cases}$$

Рассмотрим точки $x \neq 0$:

$$f^{(n)}(x) = \frac{P_n(x)}{x^{3n}}e^{-1/x^2}$$

Идем по индукции $(n \to n+1)$, проверяем есть ли формула для разных производных:

База: Для f: $f = P_0 e^{-1/x^2}$, то есть $P_0 \equiv 1$

Переход:

$$f^{(n+1)}(x) = (f^{(n)}(x))' = (P_n(x)x^{-3n}e^{-1/x^2})' =$$

$$= P_n(x)x^{-3n}e^{-1/x^2}\frac{1}{x^3} + P'_n(x)x^{-3n}e^{-1/x^2} + P_n(x)(-3n)x^{-3n-1}e^{-1/x^2} = \frac{e^{-1/x^2}}{x^{3n+3}}P_{n+1}(x)$$

Найдем $f^{(n)}(0)=\lim_{x\to 0} \frac{f^{(n-1)}(x)-f^{(n-1)}(0)}{x}$ Докажем по индукции $(n-1\to n),$ что $f^{(n)}(0)=0.$

Билет 70 COДЕРЖАНИЕ

Переход:

$$f^{(n)}(0) = \lim_{x \to 0} \frac{f^{(n-1)}(x) - f^{(n-1)}(0)}{x} = \lim_{x \to 0} \frac{f^{(n-1)}}{x} = \lim_{x \to 0} e^{-1/x^2} \frac{P_n(x)}{x^{3n+1}} = \lim_{y \to 1/x} e^{-y^2} y^{3n+1} P_n\left(\frac{1}{y}\right) = 0$$

$$P_n\left(\frac{1}{y}\right) \xrightarrow[y \to \infty]{} P_n(0)$$
 – константа

$$e^{-y^2}y^{3n+1} \xrightarrow[y\to\infty]{} 0$$
, так как e^{-y^2} убывает быстрее.

Значит ряд Тейлора равен 0, но функция не 0 в точках $x \neq 0$. Значит функция не аналитическая.