Project 2

李林翼 * 朱祺 †

June 25, 2017

Contents

1	引言	•
	1.1 实验环境	,
	1.2 分工	,
2	数据预处理和特征提取	•
	2.1 新闻数据读入	,
	2.2 对全文进行预处理	٠
	2.3 转化成 tfidf 向量	4
	2.4 降维	4
3	基本分类器的运用和比较	2
	3.1 总体情况	4
	3.2 特定类别	ţ
4	ensemble 算法运用和比较	6
	4.1 总体情况	,
	4.2 特定类别	-
5	聚类算法运用和比较	8

^{*†† 43, 2014011361,} limyik.li
96@gmail.com ††† 43, 2014011336, zhu-q14@mails.tsinghua.edu.cn

6	可视	Ł	9
	6.1	分类结果可视化	9
	6.2	聚类结果可视化	12

1 引言

1.1 实验环境

使用 Python 语言编写,版本 2.7.10,使用的工具包有:

ElementTree 预处理时用于解析 xml 格式的新闻

enchant 预处理时用于拼写检查

nltk 预处理时用于分词,词干化等自然语言处理

numpy

sklearn

xgboost Gradient Boost

matplotlib 可视化

1.2 分工

	预处理	分类	ensemble	聚类	可视化
李林翼		基本	bootstrap,adaboost,random forest		
朱祺		knn,lda	xgboost, bagging(kNN)	基本	

2 数据预处理和特征提取

2.1 新闻数据读人

抽取 docid, categories, full-text 属性,这部分与 project 1 类似。每篇文档可能有多个类别。同时,提取出出现次数大于 500 次的类别,作为分类时的类别,有 26 个类。去除没有类别标签或没有全文的。

2.2 对全文进行预处理

使用 enchant、nltk 自然语言处理的工具包,对新闻全文依次进行以下处理:分句、分词、拼写检查、去除短词与停用词、词干化、去除短词与停用词。之后,得到词袋模型。

2.3 转化成 tfidf 向量

从词袋模型得到字典,包含出现次数大于10的词。利用词袋模型和字典,将每篇文档用tfidf的向量表示,得到(48793,24541)的矩阵,即48793篇文档,字典大小24541。同时,所有新闻按照9:1的比例随机分成训练集和测试集。

2.4 降维

鉴于上一步得到的 tfidf 向量维度太大了,不利于保存和分类,因此使用 pca 降维到 100 维。为了后面将要进行的聚类可视化任务,也用 pca 降到 2 维。

3 基本分类器的运用和比较

使用的分类算法除了要求的 Logistic Regression, Naive Bayes, SVM, Decision Tree, MLP, 还有 k Nearest Neighbors, Linear Discriminant Analysis。这些算法 sklearn 中都有提供, 其中 Naive Bayes 用的是高斯分布的 GaussianNB。

10 折,选择 2 号作为测试集。这些算法的训练集大小 (43913, 100),测试集 (4880, 100),这里将 pca 降维后的数据进一步处理,使用 Standard-Scaler 标准化,移去均值缩放到单位方差。共有 26 个类别,由于每篇文档可能有多个类别,因此对每个类训练一个二分类器,用 sklearn 中OneVsRestClassifier 方法辅助,完整的结果见 result/log.txt。

3.1 总体情况

下面是 Pecision, Recall, F1-score 的平均值,以及训练时间:

平均值	Pecision	Recall	F1-score	训练时间 (s)
Logistic Regression	0.72	0.45	0.53	84.3
Gaussian Naive Bayes	0.19	0.91	0.28	1.7
SVM(SVC)	0.82	0.51	0.58	1022.1
Decision Tree	0.59	0.61	0.60	177.9
MLP	0.76	0.70	0.73	658.6
kNN(k=5)	0.75	0.62	0.67	7.9
Linear Discriminant Analysis	0.63	0.43	0.49	22.3

总体上来说,MLP 是效果最好的,但是训练时间较长。kNN 效果次之,训练时间短,但是预测的时间长,这与它本身的特点有关。Decision Tree 的 Pecision 和 Recall 较接近,虽然两者都不高,但是 F1-score 还不错。Linear Discriminant Analysis, Logistic Regression, SVM(SVC) 这三者比较相似,都是线性模型,效果一个比一个好,但是训练时间也变长了,SVM(SVC) 的训练时间非常长。Gaussian Naive Bayes 效果很差,可能数据分布不符合高斯的假设。

3.2 特定类别

观察到不同类别的分类效果相差很大,比如对 paid death notices 类,每个分类器的分类效果都很好,而对 travel 类等,线性模型如 Logistic Regression, SVM(SVC), Linear Discriminant Analysis 等效果都很差 (F1-score 无法计算或接近 0)。因此平均值不能完全反应分类器的效果,下面选择三个类别,比较在这三个类别上分类器的表现。选择的是在各分类器中效果几乎都是最好的两个类,和在某些模型中很差,在另一些模型中较好的一个类。

类别: paid death notices	Pecision	Recall	F1-score
Logistic Regression	0.99	0.98	0.98
Gaussian Naive Bayes	0.77	0.87	0.82
SVM(SVC)	0.98	0.99	0.99
Decision Tree	0.97	0.99	0.98
MLP	0.99	0.99	0.99
kNN(k=5)	1.00	0.85	0.91
Linear Discriminant Analysis	1.00	0.92	0.95

paid death notices 类比较明显,各个分类器都有比较好的效果 (除了 Gaussian Naive Bayes)。其中 Logistic Regression, SVM(SVC), Decision Tree, MLP 效果非常好,说明了数据本身对分类效果有很大影响。

类别: corrections	Pecision	Recall	F1-score
Logistic Regression	0.96	0.96	0.96
Gaussian Naive Bayes	0.21	0.99	0.35
SVM(SVC)	0.97	0.92	0.94
Decision Tree	0.93	0.93	0.93
MLP	0.96	0.95	0.96
kNN(k=5)	0.99	0.83	0.90
Linear Discriminant Analysis	0.97	0.87	0.92

对 corrections 类,情况类似。综合这两个类的情况,可以发现 kNN, Linear Discriminant Analysis 的 Recall 值明显低于其他分类器而 Pecision 较高,说明它们对于混淆的处理不太好。

类别: travel	Pecision	Recall	F1-score
Logistic Regression	0.25	0.01	0.02
Gaussian Naive Bayes	0.04	0.95	0.07
SVM(SVC)	0.00	0.00	0.00
Decision Tree	0.31	0.39	0.35
MLP	0.67	0.56	0.61
kNN(k=5)	0.68	0.53	0.60
Linear Discriminant Analysis	0.00	0.00	0.00

在 travel 类, Logistic Regression, SVM(SVC), Linear Discriminant Analysis 等线性模型都没用了,猜测这是因为判决边界并非线性的。在这种情况下, MLP 和 kNN 仍能取得一定的效果,可以认为它们可以捕捉这种特性。从表达能力上来说, MLP 和 kNN 要更强一些。

也试过直接使用 tfidf 向量分类,但是既耗内存,效果也不好。以上分析均是针对当前数据集,分类器的特定参数设定下,不代表该分类器能达到的最好效果。实际上,分类器的参数也对效果和训练速度有很大的影响,不加设定的比较并不能说明太多东西。

4 ensemble 算法运用和比较

使用的 ensemble 算法除了要求的 Bootstrap, AdaBoost, Random Forest, Gradient Boost(xgboost) 外, 还有 Gradient Boost(sklearn), Bagging(kNN)。除了 xgboost, 其他 sklearn 中都有。Bootstrap, AdaBoost 的 Basic estimator 是 Decision Tree。其他的设定与上一节的分类器相同。

4.1 总体情况

下面是 Pecision, Recall, F1-score 的平均值,以及训练时间:

平均值	Pecision	Recall	F1-score	训练时间 (s)
bootstrap	0.83	0.57	0.66	996.9
Adaboost	0.73	0.56	0.62	826.9
Random Forest	0.85	0.54	0.64	92.3
bagging: kNN	0.85	0.41	0.53	25.8
Gradient Boost(sklearn)	0.70	0.52	0.58	658.6
Gradient Boost(xgboost)	0.72	0.48	0.55	153.2

总体上来说, bootstrap 和 Random Forest 差不多,总体效果较好反映了适应能力强,但 bootstrap 耗时最多,Random Forest 耗时较少。Adaboost,Gradient Boost(sklearn),Gradient Boost(xgboost) 差不多,但是 xgboost 明显要快一些。bagging: kNN 主要取决于 kNN 的特性,训练时间最短,Pecision 高但是 Recall 低。

4.2 特定类别

与分类时的情况类似,不同类别的分类效果相差很大,平均值不能完全反应分类器的效果,下面选择与分类器特定类别比较时相同的三个类。

类别: paid death notices	Pecision	Recall	F1-score
bootstrap	0.99	0.98	0.99
Adaboost	0.99	0.98	0.98
Random Forest	0.99	0.98	0.98
bagging: kNN	0.99	0.87	0.93
Gradient Boost(sklearn)	0.99	0.98	0.98
Gradient Boost(xgboost)	0.99	0.98	0.99

paid death notices 类比较明显,各个分类器都有比较好的效果。值得一提的是,bagging: kNN 比 kNN 效果略有提升。

类别: corrections	Pecision	Recall	F1-score
bootstrap	0.96	0.94	0.95
Adaboost	0.96	0.97	0.97
Random Forest	0.96	0.94	0.95
bagging: kNN	0.98	0.63	0.77
Gradient Boost(sklearn)	0.00	0.00	0.00
Gradient Boost(xgboost)	0.97	0.97	0.97

对 corrections 类, bagging: kNN 比 kNN 效果差, Gradient Boost(sklearn) 无法正确分类,原因未知。其他算法差不多。

类别: travel	Pecision	Recall	F1-score
bootstrap	0.97	0.33	0.49
Adaboost	0.70	0.46	0.55
Random Forest	0.82	0.16	0.27
bagging: kNN	1.00	0.04	0.07
Gradient Boost(sklearn)	0.77	0.32	0.45
Gradient Boost(xgboost)	0.73	0.39	0.51

在 travel 类, bagging: kNN 无能为力, 其他算法表现也不是很好, Pecision 和 Recall 相差太大。

综合上述分析,可以认为 Gradient Boost(xgboost) 要优于 Gradient Boost(sklearn)。 Random Forest 速度快,效果好。bagging: kNN 虽然训练时间少但是效果 差。bootstrap, Adaboost 效果好但是训练时间长。

5 聚类算法运用和比较

输入为 pca 降维后的全部数据集,使用的聚类算法有: K-means,dbscan。原本想尝试其他聚类算法的如 AffinityPropagation, SpectralClustering, Birch,但是要不就是非常消耗内存,要不就是非常消耗时间,因此作罢。K-means的初始化分为 K-means++ 和 random 两种。聚类的 cluster 设定为 27,表示 26 个类和其他。对于类别多于一个的文档,随机选择一个类别作为标签,用于 AMI, NMI 统计。AMI, NMI 以及运行时间如下:

	AMI	NMI	time(s)
K-means(random)	0.3491	0.3646	15.4
$\overline{\text{K-means}(\text{K-means}++)}$	0.2887	0.3357	11.7
dbscan	0.1001	0.2192	549.7

可以看到, K-means AMI,NMI, 运行速度均优于 dbscan。K-means 的两种初始化, K-means++运行速度快, 但是 random 的 AMI,NMI 较高。

6 可视化

将 pca 降到两维的所有数据作为训练集,在此基础上进行可视化。降到两维后,大部分样本的一个维度近似 0,剩下的一个维度在 0 附近相差不大,可以说是非常糟糕了。我们尝试用 pca 降到 100 维的数据,取前两维作为替代,效果要好一些。

6.1 分类结果可视化

pca 降到 100 维的数据,取前两维,在所有数据上对类别 paid death notices 训练分类器,使用的分类器有 Logistic Regression, Linear Discriminant Analysis, AdaBoost, Gradient Boost(sklearn)。将结果可视化以观察判决边界。其中 Class B 代表有 paid death notices 标签的样本。

前两者的判决边界像一条线,后两者的判决边界更复杂一些。分类结果如下:

	Precision	Recall	F1-score
Logistic Regression ¹	1.00	0.88	0.94
Linear Discriminant Analysis ²	1.00	0.81	0.90
AdaBoost ³	0.97	0.96	0.97
Gradient Boost(sklearn) ⁴	0.98	0.96	0.97

可以发现前两个分类器的效果不如后两个。从可视化的结果上也可以看出,前两个分类器判决边界一刀切,缺了一些灵活性,不如后两者效果好。

Figure 1: Logistic Regression

Figure 2: Linear Discriminant Analysis

Figure 3: AdaBoost

Figure 4: Gradient Boost(sklearn)

6.2 聚类结果可视化

使用 K-means(random) 聚类,将结果可视化。效果比预期要差,看不到太多明显的类别。AMI 0.1867, NMI 0.1993。

Figure 5: K-means

K-means clustering on the digits dataset (PCA-reduced data) Centroids are marked with white cross 0.20 0.15 0.00 -0.05 -0.10 -0.15

Figure 6: 局部放大

0.6

0.7

0.8

0.9

0.3

0.4

0.5

K-means clustering on the digits dataset (PCA-reduced data) Centroids are marked with white cross

Figure 7: 局部放大