Contents

Introduction

 Giới thiệu bài toán lập lịch tuần hoàn, ứng dụng trong lập lịch trình tàu chạy. Những nghiên cứu trước về cách mô hình hóa bài toán

Background and Related Work

Logic Mệnh đề

• Định nghĩa logic mệnh đề, biểu thức logic, các kí hiệu (notation) sẽ dùng trong các chương sau

SAT Problem

- Miêu tả về bài toán SAT và các khái niệm liên quan như NP-complete
- Miêu tả thành tựu của các SAT solver hiện tại và ứng dụng trong giải quyết vấn đề thực tế
- Hướng tiếp cân vấn đề sử dung SAT-encoding (encode-> solve->decode).

Periodic event schedule network (PESP)

- Giới thiêu bài toán PESP
- Các hướng tiếp cận để giải bài toán PESP (Integer programing, constaint based...)
- Vấn đề về hiệu năng của các phương pháp trên, nếu ra một số vấn đề khác có thể giải nhanh hơn dùng sat solver (nếu có)

Encoding bài toán PESP về bài toán SAT

Direct encoding

- · Cách encode variable và constraint dùng direct encodeing
- Phương pháp maping từ PESP vars => SAT vars, cách để cài đặt và infer từ kết quả giải của solver

Support encoding (neu đủ effort)

- Support encoding thay vì cố gắng loại bỏ conflict thì liên kết các nghiệm lại với nhau. Ví dụ $x_1,x_2=(1,2)$ là một nghiệm ta có mệnh đề $p_{x_{11}}\Rightarrow p_{x_{22}}$
- Tùy vào không gian nghiệm và không gian conflict nhiều hơn mà encoding này có thể hiệu quả hơn

Order encoding

- Giới thiêu order encoding và cách encode variable trong miền order
- Encode ràng buộc trong miền order

Thực thi và kết quả đạt được

Dataset

https://timpasslib.aalto.fi/pesplib.html

Kết quả

Kết luân và du đinh

- Kết luận về cách tiếp cận SAT với vấn đề lập lịch trình tàu
- Hướng phát triển tiếp theo (lập lịch tối ưu, tìm ra ràng buộc quan trong...)