Sonnenkompass

Jürgen Womser-Schütz, https://github.com/JW-Schuetz/Hobby

1 Fragestellung

Wir genau ist die bekannte Methode, die Nord-Richtung per Sonnenstand zu bestimmen?

2 Methodenbeschreibung

- einen Stab senkrecht in die Erde stecken
- das Ende des Schattens des Stabes mit einen Stein markieren
- einige Zeit abwarten bis der Stabschatten weiter gewandert ist
- das neue Schattenende des Stabes mit einem zweiten Stein markieren.

Man erhält die Nordrichtung mittels der folgenden Regeln

- R1: der Schatten des Stab-Endes bewegt sich auf der Verbindungsgeraden der beiden Steine
- R2: die Nordrichtung ist orthogonal zur Verbindungsgeraden
- R3: auf der Nordhalbkugel der Erde zeigt der Schatten Richtung Norden, auf der Südhalbkugel Richtung Süden.

3 Problemformulierung

Es werden kartesische Koordinaten (x_1, x_2, x_3) verwendet, wobei das Koordinatenpaar (x_1, x_2) die Ekliptikalebene aufspannt, der Ursprung des Koordinatensystems ist der Erdmittelpunkt (siehe dazu die Problemskizze in Abbildung 1).

Es werden die folgenden Annahmen getroffen:

- der Zeitpunkt im Jahr sei die Sommersonnenwende
- \bullet die Sonne im Punkt \underline{S} sei durch einen Punktstrahler darstellt
- ullet die Sonne habe den Abstand R_S von der Erde
- ullet die Erde habe ideale Kugelgestalt mit dem Radius R_E
- die Erd-Rotationsachse habe einen Neigungswinkel ψ zur x_3 -Achse
- \bullet im Punkt \underline{P} der Erdoberfläche befinde sich der Fusspunkt des Stabes der Länge L
- die Erdoberfläche um den Fusspunkt des Stabes herum werde durch eine Tangentialebene an die Erdkugel angenähert.

Die Methode wird allerdings in der Nähe der Pole scheitern, da das Stabende dort keinen Schatten mehr wirft.

Abbildung 1: Nicht massstäbliche Problemskizze (Sommersonnenwende)

4 Vereinbarungen

Im folgenden werden zum Verständnis Basiskenntnisse der Geometrie und der linearen Algebra vorausgesetzt.

Vektoren werden durch einen Unterstrich kenntlich gemacht (\underline{x}) und ihre Transponierten (\underline{x}^T) durch ein hochgestelltes T. Matrizen werden nicht besonders bezeichnet.

5 Lösung

Zur Unterstützung der Problemlösung wird MatLab und seine "Symbolic Math Toolbox" verwendet, die MatLab-Quellen finden sich im GitHub-Unterverzeichnis "Matlab-Sources".

Gesucht wird die Trajektorie des Schattens des Stabendes auf der Tangentialebene in Abhängigkeit des Erd-Rotationswinkels α .

Es sind zwei äquivalente Lösungsansätze denkbar, die Erdrotation zu berücksichtigen

- Die mit der Erde verbundenen Orte um den Winkel α zu rotieren und die Sonne fixiert lassen (siehe dazu Abschnitt 11).
- Den Ort der Sonne um den Winkel $-\alpha$ zu rotieren und die mit der Erde verbundenen Orte fixiert lassen (siehe dazu Abschnitt 12).

6 Erdrotation

Die Rotation der Erde um ihre Rotationsachse wird in Abhängigkeit des Rotationswinkels $\alpha \in [0, 2\pi]$ durch die Drehmatrix

$$D_{\alpha} = \begin{pmatrix} e_1^2 (1 - \cos \alpha) + \cos \alpha & e_1 e_2 (1 - \cos \alpha) - e_3 \sin \alpha & e_1 e_3 (1 - \cos \alpha) + e_2 \sin \alpha \\ e_2 e_1 (1 - \cos \alpha) + e_3 \sin \alpha & e_2^2 (1 - \cos \alpha) + \cos \alpha & e_2 e_3 (1 - \cos \alpha) - e_1 \sin \alpha \\ e_3 e_1 (1 - \cos \alpha) - e_2 \sin \alpha & e_3 e_2 (1 - \cos \alpha) + e_1 \sin \alpha & e_3^2 (1 - \cos \alpha) + \cos \alpha \end{pmatrix}$$

beschrieben, dabei ist

$$\underline{e} = \begin{pmatrix} e_1 \\ e_2 \\ e_3 \end{pmatrix}$$

ein Einheitsvektor, der Richtung und Orientierung der Rotationsachse definiert (siehe dazu z.B. [1]).

In dieser Arbeit soll der Zeitpunkt der Sommersonnenwende betrachtet werden, d.h. die Rotationsachse soll, so wie in Abbildung 1 dargestellt, in der (x_1, x_3) -Ebene liegen. Der Einheitsvektor ist somit durch

$$e_1 = \sin \psi$$

$$e_2 = 0$$

$$e_3 = \cos \psi.$$
(1)

gegeben und für die Drehmatrix folgt schliesslich

$$D_{\alpha} = \begin{pmatrix} \sin^{2} \psi \left(1 - \cos \alpha \right) + \cos \alpha & -\cos \psi \sin \alpha & \sin \psi \cos \psi \left(1 - \cos \alpha \right) \\ \cos \psi \sin \alpha & \cos \alpha & -\sin \psi \sin \alpha \\ \cos \psi \sin \psi \left(1 - \cos \alpha \right) & \sin \psi \sin \alpha & \cos^{2} \psi \left(1 - \cos \alpha \right) + \cos \alpha \end{pmatrix}. \tag{2}$$

Die Drehmatrix ist orthogonal, d.h. es gilt mit der Einheitsmatrix E

$$D_{\alpha}^{T}D_{\alpha}=E.$$

Der Winkel ψ hat den numerischen Wert [2]

$$\psi = 23.44^{\circ}. \tag{3}$$

Für 12 Uhr mittags soll $\alpha = 0$ gelten.

7 Fusspunkt des Stabes

Der Ort $\underline{P} = (p_1, p_2, p_3)^T$ des Fusses des Stabes bestimmt sich aus der geographischen Breite Θ , der geographischen Länge φ , dem Erdradius R_E und dem Achsneigungswinkel nach Gleichung ψ (3) zu (siehe dazu z.B. [4])

$$\underline{P} = \begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix} \tag{4}$$

mit

$$\begin{array}{rcl} p_1 & = & R_E \sin{(\Theta - \psi)} \cos{\varphi} \\ p_2 & = & R_E \sin{(\Theta - \psi)} \sin{\varphi} \\ p_3 & = & R_E \cos{(\Theta - \psi)} \,. \end{array}$$

Berücksichtigt man die Erdrotation durch die Drehmatrix D_{α} so folgt für den Ort des Stabfusspunktes aus Gleichung (4)

$$\underline{P}^{\alpha} = D_{\alpha}\underline{P}. \tag{5}$$

8 Endpunkt des Stabes

Für den Punkt Q am Ende des Stabes der Länge L gilt

$$\underline{Q} = \left(1 + \frac{L}{R_E}\right)\underline{P}.\tag{6}$$

Berücksichtigt man die Erdrotation durch die Drehmatrix D_{α} so folgt aus den Gleichungen (5, 6)

$$\underline{Q}^{\alpha} = \left(1 + \frac{L}{R_E}\right) D_{\alpha} \underline{P}
= \left(1 + \frac{L}{R_E}\right) \underline{P}^{\alpha}.$$
(7)

9 Tangentialebene

Die Kugel mit Radius R_E um den Ursprung ist durch die Gleichung $f(x_1, x_2, x_3) = 0$ gegeben, mit

$$f(x_1, x_2, x_3) = \sum_{i} x_i^2 - R_E^2, \tag{8}$$

für den Index gilt hier und im folgenden $i \in [1, 3]$.

Für die Tangentialebene im Berührpunkt $\underline{P} = (p_1, p_2, p_3)^T$ gilt (siehe dazu z.B. [3])

$$\sum_{i} \frac{\partial f}{\partial x_i} (x_i - p_i) = 0.$$

Die Ableitungen sind im Berührpunkt \underline{P} zu bilden.

Für die implizite Gleichung der Tangentialebene im Berührpunkt \underline{P} folgt schliesslich für die Kugel nach Gleichung (8) der Ausdruck

$$\sum_{i} p_i \left(x_i - p_i \right) = 0$$

oder in vektorieller Schreibweise

$$\underline{P}^{T}\left(\underline{x}-\underline{P}\right) = 0. \tag{9}$$

Berücksichtigt man die Erdrotation durch die Drehmatrix D_{α} so folgt für die gedrehte Tangentialebene T^{α} aus den Gleichungen (5, 9)

$$(D_{\alpha}\underline{P})^{T}(\underline{x} - D_{\alpha}\underline{P}) = 0$$

$$(\underline{P}^{\alpha})^{T}(\underline{x} - \underline{P}^{\alpha}) = 0.$$
 (10)

10 Verbindungsgerade

Die Sonne befindet sich im Punkt

$$\underline{S} = \begin{pmatrix} R_S \\ 0 \\ 0 \end{pmatrix}.$$

Die Punkte der Verbindungsgerade \underline{G} der Sonne \underline{S} mit dem Stabende Q nach Gleichung (6) sind durch

$$\underline{G} = \mu Q + (1 - \mu) \underline{S} \tag{11}$$

gegeben, dabei gilt $\mu \geq 0$.

Berücksichtigt man die Erdrotation durch die Drehmatrix D_{α} und fixiert die Sonne, dann folgt aus Gleichung (11)

$$\underline{G}_{E}^{\alpha} = \mu D_{\alpha} \underline{Q} + (1 - \mu) \underline{S}
= \mu \underline{Q}^{\alpha} + (1 - \mu) \underline{S}.$$
(12)

Berücksichtigt man die Drehung der Sonne durch die Drehmatrix $D_{(-\alpha)}$ und fixiert die Erde, dann folgt mit

$$S^{\alpha} = D_{(-\alpha)}S\tag{13}$$

aus Gleichung (11)

$$\underline{G}_{S}^{\alpha} = \mu \underline{Q} + (1 - \mu) D_{(-\alpha)} \underline{S}
= \mu \underline{Q} + (1 - \mu) \underline{S}^{\alpha}$$
(14)

In Gleichung (12) wird für $\mu=0$ der Punkt \underline{S} , für $\mu=1$ wird der Punkt \underline{Q}^{α} beschrieben. In Gleichung (14) wird für $\mu=0$ wird der Punkt \underline{S}^{α} , für $\mu=1$ wird der Punkt \underline{Q} beschrieben.

11 Lösung durch Fixierung der Erde

Gesucht ist der Schnittpunkt der Geraden $\underline{G}_{S}^{\alpha}$ nach Gleichung (14) mit der Tangentialebene T oder anders formuliert, gesucht wird der Geradenparameter μ , der eine Lösung \underline{x}_{0} der Gleichung (9) mit der Bedingung

$$\underline{x}_0 = \mu Q + (1 - \mu) \underline{S}^{\alpha} \tag{15}$$

zulässt.

11.1 Lösungspunkt

Einsetzen von Gleichung (15) in Gleichung (9) liefert

$$\underline{P}^{T} \left[\mu Q + (1 - \mu) \underline{S}^{\alpha} - \underline{P} \right] = 0.$$

Wegen

$$\underline{P}^T\underline{P} = R_E^2$$

folgt nach kurzer Umformung die zu lösende Gleichung

$$\mu_0\left(\alpha\right) = \frac{R}{R+L} \tag{16}$$

mit der Abkürzung

$$R\left(\alpha\right) = R_E - \frac{\underline{P}^T \underline{S}^{\alpha}}{R_E}.$$

Da mit $\mu=0$ die Sonne und mit $\mu=1$ das Stabende beschrieben wird, muss wegen Gleichung (14) für die Lösung $\mu_0>1$ und damit R<0 gelten.

Der gesuchte Punkt \underline{x}_0 ergibt sich als Funktion des Drehwinkels α mit dem nach Gleichung (16) bestimmten μ_0 (α) durch Einsetzen in Gleichung (15) zu

$$\underline{x}_0^S(\alpha) = \mu_0 Q + (1 - \mu_0) \underline{S}^{\alpha}. \tag{17}$$

11.2 Koordinatentransformation

Die gefundenen Trajektorienpunkte $\underline{x}_0(\alpha)$ sind im Koordinatensystem (x_1, x_2, x_3) gegeben. Sie sollen aber auf ein zweidimensionales Koordinatensystem der Tangentialebene T transformiert werden.

Dazu wird der Punkt \underline{P} um um seinen negativen Längenwinkel $-\varphi$ um die x_3 -Achse und anschliessend um den Winkel $\Theta + \psi - \frac{\pi}{2}$ um die x_2 -Achse gedreht. Er stimmt danach mit der x_1 -Achse überein und die Trajektorienpunkte können mittels der Projektionsabbildung

$$A = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)$$

auf die Tangentialebene T projiziert werden¹.

Die Drehung um die x_3 -Achse um den Winkel φ wird durch die Matrix

$$D_{\varphi}^{x_3} = \begin{pmatrix} \cos \varphi & -\sin \varphi & 0\\ \sin \varphi & \cos \varphi & 0\\ 0 & 0 & 1 \end{pmatrix} \tag{18}$$

und die Drehung um die x_2 -Achse um den Winkel Θ wird durch die Matrix

$$D_{\Theta}^{x_2} = \begin{pmatrix} \cos\Theta & 0 & \sin\Theta \\ 0 & 1 & 0 \\ -\sin\Theta & 0 & \cos\Theta \end{pmatrix} \tag{19}$$

vermittelt (siehe dazu z.B. [1]).

¹Der dadurch auftretende Verzerrungsfehler liegt bei Stablängen von einem Meter im Bereich von Mikrometern.

12 Lösung durch Fixierung der Sonne

Gesucht ist der Schnittpunkt der Geraden \underline{G}_E^{α} nach Gleichung (12) mit der Tangentialebene T^{α} oder anders formuliert, gesucht wird der Geradenparameter μ , der eine Lösung \underline{x}_0 der Gleichung (10) mit der Bedingung

$$\underline{x}_0 = \mu Q^{\alpha} + (1 - \mu) \underline{S} \tag{20}$$

zulässt.

12.1 Lösungspunkt

Einsetzen von Gleichung (20) in Gleichung (10) liefert

$$(\underline{P}^{\alpha})^{T} \left[\mu Q^{\alpha} + (1 - \mu) \underline{S} - \underline{P}^{\alpha} \right] = 0.$$

Wegen

$$(\underline{P}^{\alpha})^{T} \, \underline{P}^{\alpha} = \underline{P}^{T} \underline{P} = R_{E}^{2}$$

folgt nach kurzer Umformung die zu lösende Gleichung

$$\mu_0\left(\alpha\right) = \frac{R}{R+L} \tag{21}$$

mit der Abkürzung

$$R(\alpha) = R_E - \frac{(\underline{P}^{\alpha})^T \underline{S}}{R_E}.$$

Da mit $\mu = 0$ die Sonne und mit $\mu = 1$ das Stabende beschrieben wird, muss wegen Gleichung (12) für die Lösung $\mu_0 > 1$ und damit R < 0 gelten.

Der gesuchte Punkt \underline{x}_0 ergibt sich als Funktion des Drehwinkels α mit dem nach Gleichung (21) bestimmten μ_0 (α) durch Einsetzen in Gleichung (20) zu

$$\underline{x}_0^E(\alpha) = \mu_0 Q^\alpha + (1 - \mu_0) \underline{S}. \tag{22}$$

12.2 Koordinatentransformation

Jeder aufgefundene Punkt $\underline{x}_0^E(\alpha)$ wird um den Winkel $-\alpha$ um die Erd-Rotationsachse zurückgedreht, dann um den Winkel $-\varphi$ um die x_3 -Achse und schliesslich noch um den Winkel $\Theta + \psi - \frac{\pi}{2}$ um die x_2 -Achse gedreht.

Er stimmt danach mit der x_1 -Achse überein und die Trajektorienpunkte können mittels der Projektionsabbildung²

$$P = \left(\begin{array}{ccc} 0 & 1 & 0\\ 0 & 0 & 1 \end{array}\right) \tag{23}$$

auf die Tangentialebene T projiziert werden³.

Es ergibt sich also mit den Abbildungen (2, 18, 19 und 23) für die auf die Tangentialebene projizierten Punkte

$$x\left(\alpha\right) = PD_{\left(\Theta + \psi - \frac{\pi}{2}\right)}^{x_2} D_{\left(-\varphi\right)}^{x_3} D_{\left(-\alpha\right)} \underline{x}_0^E\left(\alpha\right).$$

²Die Projektionsabbildung P bitte nicht verwechseln mit dem Punkt \underline{P} .

³Der dadurch auftretende Verzerrungsfehler liegt bei einer Stablänge von einem Meter im Bereich von Mikrometern.

13 Äquivalenz der Lösungsansätze

Es soll die Äquivalenz der beiden Lösungsansätze "Lösung durch Fixierung der Erde" und "Lösung durch Fixierung der Sonne" gezeigt werden.

Im Fall der gefixten Erde folgt nach Gleichung (17)

$$\underline{x}_0^S(\alpha) = \mu_0 Q + (1 - \mu_0) \underline{S}^{\alpha}$$

während im Fall der gefixten Sonne nach Gleichung (22)

$$\underline{x}_0^E(\alpha) = \mu_0 Q^{\alpha} + (1 - \mu_0) \underline{S}$$

gilt. Ersetzen von \underline{S}^{α} und Q^{α} liefert

$$\underline{x}_0^S(\alpha) = \mu_0 \underline{Q} + (1 - \mu_0) D_{(-\alpha)} \underline{S}$$

$$\underline{x}_0^E(\alpha) = \mu_0 D_{\alpha} \underline{Q} + (1 - \mu_0) \underline{S}.$$

Literatur

- [1] https://de.wikipedia.org/wiki/Drehmatrix
- [2] https://de.wikipedia.org/wiki/Erdachse
- $[3] \ \ https://de.wikipedia.org/wiki/Tangentialebene$
- [4] https://de.wikipedia.org/wiki/Kugelkoordinaten