Hazel Phi: 11-type-constructors

July 29, 2021

SYNTAX

DECLARATIVES

 $\Delta; \Phi \vdash \tau ::> \kappa$ τ has principal (well formed) kind κ

$$\frac{\Delta; \Phi \vdash \mathsf{OK}}{\Delta; \Phi \vdash \mathsf{bse} ::> \mathsf{S}_{\mathsf{Type}}(\mathsf{bse})} \mathsf{PK-Base} \qquad \frac{\Delta; \Phi_1, t :: \kappa, \Phi_2 \vdash \mathsf{OK}}{\Delta; \Phi \vdash t ::> \mathsf{S}_{\kappa}(t)} \mathsf{PK-Var}$$

$$\frac{\Delta; \Phi \vdash \tau_1 :: \mathsf{Type} \qquad \Delta; \Phi \vdash \tau_2 :: \mathsf{Type}}{\Delta; \Phi \vdash \tau_1 \oplus \tau_2 ::> \mathsf{S}_{\mathsf{Type}}(\tau_1 \oplus \tau_2)} \mathsf{PK-\oplus} \qquad \frac{\Delta_1, u :: \kappa, \Delta_2; \Phi \vdash \mathsf{OK}}{\Delta; \Phi \vdash (\emptyset^u)^u} \mathsf{PK-EHole}$$

$$\frac{\Delta_1, u :: \kappa, \Delta_2; \Phi \vdash \mathsf{OK} \qquad \Delta; \Phi \vdash \tau_1 :: \kappa_1}{\Delta; \Phi \vdash (\emptyset^u)^u} \mathsf{PK-NEHole} \qquad \frac{\Delta_1, u :: \kappa, \Delta_2; \Phi \vdash \mathsf{OK} \qquad t \notin \Phi}{\Delta; \Phi \vdash (\emptyset^u)^u} \mathsf{PK-Unbound}$$

$$\frac{\Delta; \Phi \vdash (\emptyset^u)^u ::> \mathsf{S}_{\kappa}((\emptyset^u)^u)}{\Delta; \Phi \vdash (\emptyset^u)^u} \mathsf{PK-Var}$$

$$\frac{\Delta; \Phi \vdash (\emptyset^u)^u ::> \mathsf{S}_{\kappa}((\emptyset^u)^u)}{\Delta; \Phi \vdash (\emptyset^u)^u} \mathsf{PK-Var}$$

$$\frac{\Delta; \Phi \vdash \tau_1 ::> \kappa}{\Delta; \Phi \vdash \kappa} \frac{\Delta; \Phi \vdash \kappa}{\Pi} \Pi_{t :: \kappa_1, \kappa_2} \qquad \Delta; \Phi \vdash \tau_2 :: \kappa_1}{\Delta; \Phi \vdash \tau_1, \tau_2} \mathsf{PK-Ap}$$

$$\frac{\Delta; \Phi \vdash \tau_1 ::> \kappa}{\Delta; \Phi \vdash \tau_1, \tau_2} ::> [\tau_2/t] \frac{\kappa_2}{\kappa_2}$$

 $\Delta; \Phi \vdash \tau :: \kappa$ τ is well formed at kind κ

$$\frac{\Delta; \Phi \vdash \tau ::> \mathbf{S}_{\kappa}(\tau)}{\Delta; \Phi \vdash \tau ::\kappa} \text{ WFaK-1} \qquad \frac{\Delta; \Phi \vdash \tau ::> \kappa_{1} \qquad \Delta; \Phi \vdash \kappa_{1} \lesssim \kappa}{\Delta; \Phi \vdash \tau ::\kappa} \text{ WFaK-Subsump}$$

$$\frac{\Delta; \Phi \vdash \tau ::> \kappa}{\Delta; \Phi \vdash \tau ::\kappa} \text{ WFaK-Reit} \qquad \frac{\Delta; \Phi \vdash \tau ::\kappa}{\Delta; \Phi \vdash \tau ::\kappa} \text{ WFaK-Self}$$

$$\frac{\Delta; \Phi \vdash \tau ::\Pi_{t ::\kappa_{3}}.\kappa_{4}}{\Delta; \Phi \vdash \tau ::\Pi_{t ::\kappa_{3}}.\kappa_{4}} \qquad \Delta; \Phi \vdash \Pi_{t ::\kappa_{3}}.\kappa_{4} \lesssim \Pi_{t ::\kappa_{1}}.\kappa_{2}$$

$$\frac{\Delta; \Phi \vdash \tau ::\Pi_{t ::\kappa_{1}}.\kappa_{2}}{\Delta; \Phi \vdash \tau ::\kappa} \text{ WFaK-Flatten}$$

$$\frac{\Delta; \Phi \vdash \tau ::\kappa}{\Delta; \Phi \vdash \tau ::\kappa} \text{ WFaK-Flatten}$$

 $\Delta; \Phi \vdash \kappa \prod_{\Pi} \Pi_{t::\kappa_1}.\kappa_2 \mid \kappa$ has matched Π -kind $\Pi_{t::\kappa_1}.\kappa_2$

$$\frac{\Delta; \Phi \vdash \mathsf{OK}}{\Delta; \Phi \vdash \mathsf{KHole} \overset{\blacktriangleright}{\Pi} \Pi_{t::\mathsf{KHole}}.\mathsf{KHole}} \overset{\blacktriangleright}{\Pi} \neg \mathsf{KHole} \qquad \frac{\Delta; \Phi \vdash \kappa \equiv \mathsf{S}_{\mathsf{KHole}}(\tau)}{\Delta; \Phi \vdash \kappa \overset{\blacktriangleright}{\Pi} \Pi_{t::\mathsf{S}_{\mathsf{KHole}}(\tau)}.\mathsf{S}_{\mathsf{KHole}}(\tau \ t)} \overset{\blacktriangleright}{\Pi} \neg \mathsf{SKHole}} \\ \frac{\Delta; \Phi \vdash \kappa \equiv \Pi_{t::\kappa_{I}}.\kappa_{2}}{\Delta; \Phi \vdash \kappa \overset{\blacktriangleright}{\Pi} \Pi_{t::\kappa_{I}}.\kappa_{2}} \overset{\blacktriangleright}{\Pi} \neg \Pi}$$

 $\Delta; \Phi \vdash \kappa_1 \equiv \kappa_2 \mid \kappa_1 \text{ is equivalent to } \kappa_2$

$$\frac{\Delta;\Phi \vdash \kappa \text{ OK}}{\Delta;\Phi \vdash \kappa \equiv \kappa} \text{ KEquiv-Refl} \qquad \qquad \frac{\Delta;\Phi \vdash \kappa_2 \equiv \kappa_1}{\Delta;\Phi \vdash \kappa_1 \equiv \kappa_2} \text{ KEquiv-Symm}$$

$$\frac{\Delta;\Phi \vdash \kappa_1 \equiv \kappa_3 \qquad \Delta;\Phi \vdash \kappa_3 \equiv \kappa_2}{\Delta;\Phi \vdash \kappa_1 \equiv \kappa_2} \text{ KEquiv-Trans}$$

$$\frac{\Delta; \Phi \vdash \tau :: \mathbf{S}_{\kappa}(\tau_{1})}{\Delta; \Phi \vdash \mathbf{S}_{\mathbf{S}_{\kappa}(\tau_{1})}(\tau) \equiv \mathbf{S}_{\kappa}(\tau_{1})} \text{ KEquiv-SKind}_{\mathbf{SKind}} \qquad \frac{\Delta; \Phi \vdash \tau :: \mathbf{\Pi}_{t :: \kappa_{1}}.\kappa_{2}}{\Delta; \Phi \vdash \mathbf{S}_{\mathbf{\Pi}_{t :: \kappa_{1}}.\kappa_{2}}(\tau) \equiv \mathbf{\Pi}_{t_{1} :: \kappa_{1}}.\mathbf{S}_{[t_{1}/t]\kappa_{2}}(\tau \ t_{1})} \text{ KEquiv-SKind}_{\mathbf{\Pi}_{\mathbf{SKind}}}$$

$$\frac{\Delta; \Phi \vdash \kappa_1 \equiv \kappa_2 \qquad \Delta; \underline{\Phi}, \underline{t} :: \kappa_1 \vdash \kappa_3 \equiv \kappa_4}{\Delta; \Phi \vdash \Pi_{t :: \kappa_1}. \kappa_2 \equiv \Pi_{t :: \kappa_3}. \kappa_4} \text{ KEquiv-Π} \qquad \frac{\Delta; \Phi \vdash \tau_1 \stackrel{\kappa_1}{\equiv} \tau_2 \qquad \Delta; \Phi \vdash \kappa_1 \equiv \kappa_2}{\Delta; \Phi \vdash S_{\kappa_1}(\tau_1) \equiv S_{\kappa_2}(\tau_2)} \text{ KEquiv-SKind}$$

 $\Delta; \Phi \vdash \kappa_1 \lesssim \kappa_2$ κ_1 is a consistent subkind of κ_2

$$\frac{\Delta; \Phi \vdash \kappa \text{ OK}}{\Delta; \Phi \vdash \text{KHole} \lesssim \kappa} \text{ CSK-KHoleL} \qquad \frac{\Delta; \Phi \vdash \kappa \text{ OK}}{\Delta; \Phi \vdash \kappa \lesssim \text{KHole}} \text{ CSK-KHoleR}$$

$$\frac{\Delta; \Phi \vdash \text{S}_{\text{KHole}}(\tau) \text{ OK} \qquad \Delta; \Phi \vdash \kappa \text{ OK}}{\Delta; \Phi \vdash S_{\text{KHole}}(\tau) \lesssim \kappa} \text{ CSK-SKind}_{\text{KHole}} \text{L}$$

$$\frac{\Delta; \Phi \vdash \kappa \text{ OK} \qquad \Delta; \Phi \vdash S_{\text{KHole}}(\tau) \text{ OK}}{\Delta; \Phi \vdash \kappa \lesssim S_{\text{KHole}}(\tau)} \text{ CSK-SKind}_{\text{KHole}} \text{R}$$

$$\frac{\Delta; \Phi \vdash \kappa_1 \equiv \kappa_2}{\Delta; \Phi \vdash \kappa_1 \lesssim \kappa_2} \text{ CSK-KEquiv} \qquad \frac{\Delta; \Phi \vdash \kappa_1 \equiv \kappa_3 \qquad \Delta; \Phi \vdash \kappa_3 \lesssim \kappa_4 \qquad \Delta; \Phi \vdash \kappa_4 \equiv \kappa_2}{\Delta; \Phi \vdash \kappa_1 \lesssim \kappa_2} \text{ CSK-Normal}$$

$$\frac{\Delta; \Phi \vdash S_{\kappa}(\tau) \text{ OK}}{\Delta; \Phi \vdash S_{\kappa}(\tau) \leq \kappa} \text{ CSK-SKind}$$

$$\frac{\Delta; \Phi \vdash \kappa_3 \lesssim \kappa_1}{\Delta; \Phi \vdash \Pi_{t::\kappa_1}.\kappa_2} \frac{\Delta; \underline{\Phi}, t::\kappa_3 \vdash \kappa_2 \lesssim \kappa_4}{\lesssim \Pi_{t::\kappa_3}.\kappa_4} \text{ СSK-П}$$

$$\frac{\Delta; \Phi \vdash \kappa_1 \lesssim \kappa_2}{\Delta; \Phi \vdash \tau_1 \stackrel{\kappa_1}{\equiv} \tau_2} \text{CSK-?}$$

 $\Delta; \Phi \vdash \tau_1 \stackrel{\kappa}{=} \tau_2 \mid \tau_1 \text{ is provably equivalent to } \tau_2 \text{ at kind } \kappa$

$$\frac{\Delta;\Phi \vdash \tau ::\kappa}{\Delta;\Phi \vdash \tau ::\kappa} \, \operatorname{EquivAK-Ref1} \qquad \frac{\Delta;\Phi \vdash \tau_2 \stackrel{\kappa}{=} \tau_1}{\Delta;\Phi \vdash \tau_1 \stackrel{\kappa}{=} \tau_2} \, \operatorname{EquivAK-Symm} \\ \frac{\Delta;\Phi \vdash \tau_1 \stackrel{\kappa}{=} \tau_3 \qquad \Delta;\Phi \vdash \tau_3 \stackrel{\kappa}{=} \tau_1}{\Delta;\Phi \vdash \tau_1 \stackrel{\kappa}{=} \tau_2} \, \operatorname{EquivAK-Trans} \\ \frac{\Delta;\Phi \vdash \tau_1 :::> \kappa_1 \qquad \Delta;\Phi \vdash \kappa_1 \equiv \mathbf{S}_{\kappa}(\tau_2)}{\Delta;\Phi \vdash \tau_1 \stackrel{\kappa}{=} \tau_2} \, \operatorname{EquivAK-SKind} \\ \frac{\Delta;\Phi \vdash \tau_1 :::\Pi_{t::\kappa_1}.\kappa_3 \qquad \Delta;\Phi \vdash \tau_2 :::\Pi_{t::\kappa_1}.\kappa_4 \qquad \Delta;\Phi,t::\kappa_1 \vdash \tau_1 \ t \stackrel{\kappa_2}{=} \tau_2 \ t \\ \Delta;\Phi \vdash \tau_1 \stackrel{\Pi_{t::\kappa_1}.\kappa_2}{=} \tau_3 \qquad \Delta;\Phi \vdash \tau_2 \stackrel{\kappa_1}{=} \tau_4 \\ \Delta;\Phi \vdash \tau_1 \quad \tau_2 \stackrel{[\tau_2/t]\kappa_2}{=} \tau_3 \quad \tau_4 \\ \frac{\Delta;\Phi \vdash \tau_1 \stackrel{\mathsf{Type}}{=} \tau_3 \qquad \Delta;\Phi \vdash \tau_1 \stackrel{\mathsf{Type}}{=} \tau_2}{\Delta;\Phi \vdash \tau_1 \stackrel{\mathsf{Type}}{=} \tau_3} \qquad \Delta;\Phi \vdash \tau_1 \stackrel{\mathsf{Type}}{=} \tau_2 \\ \Delta;\Phi \vdash \tau_1 \stackrel{\mathsf{Type}}{=} \tau_3 \qquad \Delta;\Phi \vdash \tau_1 \stackrel{\mathsf{Type}}{=} \tau_2 \\ \Delta;\Phi \vdash \tau_1 \stackrel{\mathsf{Type}}{=} \tau_3 \qquad \Delta;\Phi \vdash \tau_2 \stackrel{\mathsf{Type}}{=} \tau_4 \\ \Delta;\Phi \vdash \tau_1 \stackrel{\mathsf{Type}}{=} \tau_3 \qquad \Delta;\Phi \vdash \tau_1 \stackrel{\mathsf{Type}}{=} \tau_2 \qquad \Delta;\Phi \vdash \kappa_1 \equiv \kappa_2 \qquad \Delta;\Phi,t::\kappa_1 \vdash \tau_1 \stackrel{\kappa}{=} \tau_2 \\ \Delta;\Phi \vdash \tau_1 \stackrel{\mathsf{Type}}{=} \tau_3 \qquad \Delta;\Phi \vdash \tau_2 \stackrel{\mathsf{Type}}{=} \tau_4 \qquad (2) \qquad \Delta;\Phi \vdash \kappa_1 \equiv \kappa_2 \qquad \Delta;\Phi,t::\kappa_1 \vdash \tau_1 \stackrel{\mathsf{T}}{=} \tau_2 \qquad (3)$$

 $\Delta; \Phi \vdash \tau_1 \stackrel{\kappa_1}{=} \tau_2 \qquad \Delta; \Phi \vdash \kappa_1 \equiv \kappa$ $\Delta; \Phi \vdash \tau_1 \stackrel{\kappa}{=} \tau_2 \qquad (4)$

 $\Delta; \Phi \vdash \kappa \text{ OK} \quad \kappa \text{ is well formed}$

$$\frac{\Delta; \Phi \vdash \mathsf{OK}}{\Delta; \Phi \vdash \mathsf{Type} \ \mathsf{OK}} \ \mathtt{KWF-Type}$$

$$\frac{\Delta; \Phi \vdash \mathsf{OK}}{\Delta; \Phi \vdash \mathsf{KHole}\; \mathsf{OK}} \; \mathsf{KWF}\text{-}\mathsf{KHole}$$

$$\frac{\Delta; \Phi \vdash \tau :: \kappa}{\Delta; \Phi \vdash \mathbf{S}_{\kappa}(\tau) \ \mathsf{OK}} \ \mathsf{KWF}\text{-SKind}$$

$$\frac{\Delta; \underline{\Phi}, t :: \kappa_{\underline{I}} \vdash \kappa_{\underline{Z}} \ \mathsf{OK}}{\Delta; \underline{\Phi} \vdash \underline{\Pi}_{t :: \kappa_{\underline{I}}} . \kappa_{\underline{Z}} \ \mathsf{OK}} \ \mathtt{KWF-\Pi}$$

 $\Delta; \Phi \vdash \mathsf{OK}$ Context is well formed

$$\frac{t \notin \Phi \quad \Delta; \Phi \vdash \kappa \text{ OK}}{\Delta; \Phi, t :: \kappa \vdash \text{OK}} \text{ CWF-TypVar}$$

$$\frac{\mathbf{u} \notin \Delta \qquad \Delta; \Phi \vdash \kappa \ \mathsf{OK}}{\Delta, \mathbf{u} :: \kappa; \Phi \vdash \mathsf{OK}} \ \mathsf{CWF-Hole}$$

METATHEORY

Lemma 1 (COK). If Δ ; $\Phi \vdash \mathcal{J}$, then Δ ; $\Phi \vdash OK$

Proof. By simultaneous induction on derivations.

No interesting cases.

Lemma 2 (Exchange).

If Δ ; Φ_1 , t_{L1} :: κ_{L1} , t_{L2} :: κ_{L2} , $\Phi_2 \vdash \mathcal{J}$ and Δ ; Φ_1 , t_{L2} :: κ_{L2} , t_{L1} :: κ_{L1} , $\Phi_2 \vdash \mathcal{O}K$, then Δ ; Φ_1 , t_{L2} :: κ_{L2} , t_{L1} :: κ_{L1} , $\Phi_2 \vdash \mathcal{J}$

Proof. By simultaneous induction on derivations.

No interesting cases.

(Only rules with Φ extended in the consequent are interesting, which is only CWF-TypVar, but when \mathcal{J} is CWF, Exchange is identity)

Lemma 3 (Weakening).

If Δ ; $\Phi \vdash \mathcal{J}$ and Δ ; Φ , $t_L :: \kappa_L \vdash OK$, then Δ ; Φ , $t_L :: \kappa_L \vdash \mathcal{J}$

Lemma 4 (OK-PK). *If* Δ ; $\Phi \vdash \tau ::> \kappa$, then Δ ; $\Phi \vdash \kappa$ *OK*

Lemma 5 (OK-WFaK). If $\Delta; \Phi \vdash \tau :: \kappa$, then $\Delta; \Phi \vdash \kappa$ OK

Lemma 6 (OK-MatchPi). If Δ ; $\Phi \vdash \kappa \prod_{\Pi} \Pi_{t::\kappa_1} . \kappa_2$, then Δ ; $\Phi \vdash \kappa$ OK and Δ ; $\Phi \vdash \Pi_{t::\kappa_1} . \kappa_2$ OK

Lemma 7 (OK-KEquiv). If $\Delta; \Phi \vdash \kappa_1 \equiv \kappa_2$, then $\Delta; \Phi \vdash \kappa_1$ OK and $\Delta; \Phi \vdash \kappa_2$ OK

Lemma 8 (OK-CSK). If Δ ; $\Phi \vdash \kappa_1 \lesssim \kappa_2$, then Δ ; $\Phi \vdash \kappa_1$ OK and Δ ; $\Phi \vdash \kappa_2$ OK

Lemma 9 (OK-EquivAK). If Δ ; $\Phi \vdash \tau_1 \stackrel{\kappa}{\equiv} \tau_2$, then Δ ; $\Phi \vdash \tau_1 :: \kappa$ and Δ ; $\Phi \vdash \tau_2 :: \kappa$ and Δ ; $\Phi \vdash \kappa$ OK

Lemma 10 (OK-Substitution).

If Δ ; $\Phi \vdash \tau_L :: \kappa_{L1}$ and Δ ; Φ , $t_L :: \kappa_{L1} \vdash \kappa_{L2}$ OK, then Δ ; $\Phi \vdash [\tau_L/t_L]\kappa_{L2}$ OK (induction on Δ ; Φ , $t_L :: \kappa_{L1} \vdash \kappa_{L2}$ OK)

Lemma 11 (K-Substitution).

If Δ ; $\Phi \vdash \tau_{L1} :: \kappa_{L1}$ and Δ ; Φ , $t_L :: \kappa_{L1} \vdash \tau_{L2} :: \kappa_{L2}$, then Δ ; $\Phi \vdash [\tau_{L1}/t_L]\tau_{L2} :: [\tau_{L1}/t_L]\kappa_{L2}$ (induction on Δ ; Φ , $t_L :: \kappa_{L1} \vdash \tau_{L2} :: \kappa_{L2}$)

Proof. By simultaneous induction on derivations.

The interesting cases per lemma:

Weakening.	PK- λ	$\Delta; \Phi, t_L :: \kappa_2 \vdash OK$	by IH
		$\Delta; \Phi, t :: \kappa_1 \vdash OK$	by COK on premiss
		$\Delta; \Phi \vdash \kappa_1 OK$	by premiss
		$\Delta; \Phi, t_L :: \kappa_L \vdash \kappa_1 OK$	by Weakening on premiss
		$\Delta; \Phi, t_L :: \kappa_L, t :: \kappa_1 \vdash OK$	
		$\Delta; \Phi, t :: \kappa_1, t_L :: \kappa_L \vdash \tau ::> \kappa_2$	
		$\Delta; \Phi, t_L :: \kappa_L, t :: \kappa_1 \vdash \tau ::> \kappa_2$	
OK-PK.	PK-Base	$\Delta ; \Phi \vdash \mathtt{bse} :: \mathtt{S}_{Type}(\mathtt{bse})$	by (9)
		$\Delta ; \Phi \vdash \mathtt{bse} :: Type$	by (10)
	*	$\Delta; \Phi \vdash \mathtt{S}_{Type}(bse) \; OK$	by (43)
	*	$\Delta;\Phi \vdash OK$	by premiss
	PK-Ap		bad
OK-WFaK.	(12)	$\Delta; \Phi \vdash au_2 :: \kappa$	by (10)
	*	$\Delta; \Phi \vdash \mathtt{S}_{\kappa}(au_{2}) \; OK$	by (43)
OK-KEquiv.	(22)	$\Delta; \Phi \vdash \tau \ t ::> \kappa$	
OK-Substitution.	(41)	$\Delta; \Phi, t_L :: \kappa_{L1} \vdash OK$	premiss (41)
		$\Delta; \Phi \vdash \kappa_{L1} OK$	by subderivation premiss (46)
	*	$\Delta; \Phi \vdash OK$	by OK-KWF
	*	$\Delta ; \Phi dash [au_L/t_L]$ Type OK	by (41) and degenerate subst
	(43)	$\Delta; \Phi, t_L :: \kappa_{L1} \vdash \tau :: \kappa$	premiss (43)
		$\Delta; \Phi, t_L :: \kappa_{L1} \vdash OK$	by OK-WFaK
		$\Delta; \Phi \vdash \kappa_{L1} OK$	by subderivation premiss (46)
	*	$\Delta; \Phi \vdash OK$	by OK-KWF
		$\Delta; \Phi \vdash [\tau_{L1}/t_L]\tau :: [\tau_{L1}/t_L]\kappa$	by K-Substitution on premiss
	*	$\Delta; \Phi \vdash [au_L/t_L] \mathtt{S}_{m{\kappa}}(au) \; OK$	by (43)

Lemma 12 (PK-Unicity). If $\Delta; \Phi \vdash \tau_L ::> \kappa_{L1}$ and $\Delta; \Phi \vdash \tau_L ::> \kappa_{L2}$ then κ_{L1} is κ_{L2}

Lemma 13. If Δ ; $\Phi \vdash \tau ::> \kappa_1$ and Δ ; $\Phi \vdash \tau :: \kappa_2$, then Δ ; $\Phi \vdash \kappa_1 \lesssim \kappa_2$

Lemma 14. If $\Delta; \Phi \vdash \kappa_1 \lesssim S_{\kappa_2}(\tau)$, then $\Delta; \Phi \vdash \kappa_1 \lesssim \kappa_2$