Лабораторная работа 3.3.3. Опыт Милликена

Норкин Дмитрий

Цель работы

Определить минимальный квант электрического заряда.

Теория

Уравнение движения капли имеет вид

$$m\frac{dv}{dt} = \frac{qV}{l} - mg - kv$$

Рассмотрим это уравнение при наличии и при отсутствии электрического поля. Решим его для каждого из двух случаев и найдем из установившихся скоростей капель, времена t_E и t_g . Связав эти времена, выразим заряд капли:

$$q = 9\pi \sqrt{\frac{2\eta^{3}h^{3}}{\rho g}} \frac{l(t_{g} + t_{E})}{Vt_{q}^{3/2}t_{E}}$$

Измерения

Для начала, оценим напряжение, при котором капли с зарядом порядка нескольких e будут за $t_g = t_E = 20 \ c$ подниматься и опускаться на 4 деления:

$$V(e) \approx 1 \text{ kB}; \quad V(5e) \approx 0.2 \text{ kB}$$

Снимем зависимость времени падения капли t_g и время ее подъема в электрическом поле t_E на 2 деления по 6 раз для каждой из 15 различных капель. Затем рассчитаем по формуле заряд капли в величинах элементарного заряда e.

N	V,	t_g^1 ,	t_E^1 ,	t_g^2 ,	t_E^2 ,	t_g^3 ,	t_E^3 ,	t_g^4 ,	t_E^4 ,	t_g^5 ,	t_E^5 ,	t_q^6 ,	q, e	$\Delta q, e$
1	0.3	38.0	7.7	33.0	8.6	50.0	7.8	43.0	7.3	46.0	7.8	41.0	1.32	0.33
2	0.32	23.3	13.8	26.5	13.3	24.0	12.7	24.0	14.1	21.0	12.3	26.0	1.27	0.22
3	0.38	18.8	13.8	17.9	11.9	16.9	11.4	18.8	12.9	20.1	12.7	18.8	1.40	0.24
4	0.78	13.1	10.1	11.3	9.7	11.5	9.8	11.3	9.7	11.7	9.0	12.0	1.19	0.30
5	0.37	21.2	12.3	20.1	11.7	23.8	12.1	20.0	12.7	22.4	12.1	18.5	1.30	0.24
6	0.95	5.5	8.3	5.8	8.2	5.6	8.2	5.6	7.8	5.6	8.4	5.6	2.26	0.64
7	0.61	10.1	5.3	10.5	5.3	10.9	5.4	10.8	5.6	10.6	5.4	10.8	2.36	0.73
8	0.94	9.5	8.5	10.9	9.4	10.4	8.5	10.0	8.8	9.8	8.8	10.5	1.20	0.37
9	0.44	17.1	12.0	15.6	12.7	15.8	12.5	16.5	13.4	16.7	11.9	15.8	1.36	0.26
10	0.49	16.1	15.4	15.4	15.3	14.0	15.6	14.8	15.0	15.6	15.8	15.9	1.15	0.21
11	1.01	9.0	10.0	9.3	9.6	9.2	9.2	9.5	9.8	9.7	10.0	8.9	1.16	0.34
12	0.42	16.2	14.2	17.4	13.6	15.6	13.9	17.0	16.0	15.7	14.2	15.5	1.32	0.23
13	0.93	9.9	10.1	10.0	9.5	10.4	10.2	9.9	10.0	10.2	9.9	10.4	1.14	0.32
14	0.65	8.6	7.8	8.0	7.8	7.9	8.1	8.0	7.8	8.2	7.6	8.4	2.28	0.56
15	0.66	5.7	7.0	6.2	6.9	5.8	6.7	6.1	6.7	6.0	6.9	6.0	3.28	0.84

Как можно видеть из таблицы, принимая во внимание довольно большую погрешность измерений, капли с номером $N \in \{6, 7, 14\}$ имеют заряд равный $q = 2e_0$, капля с номером $15 - q = 3e_0$, а все остальные $-q = e_0$.

Посчитаем среднее значение $e_0 = (1.2 \pm 0.3) \ e$

Выводы

Полученное в эксперименте значение элементарного заряда с высокой точностью согласуется с реальным зарядом электрона.