

¹ MOE KLINNS Lab, Xi'an Jiaotong University

² JIUTIAN Team, China Mobile Research

"Think Before You Speak":

Improving Multi-Action Dialog Policy by Planning Single-Action Dialogs

Shuo Zhang ¹ Junzhou Zhao ¹ Pinghui Wang ¹

Yu Li ¹ Yi Huang ² Junlan Feng ²

Paper Link

- 1. Background: Task Oriented Dialog System
- 2. Task: Multi-Action Dialog Policy Learning (MADPL)
- 3. Method: Improving MADPL by Planning Single-Action Dialogs
- 4. Experimental Results
- 5. Conclusion & Future Work

- 1. Background: Task Oriented Dialog System
- 2. Task: Multi-Action Dialog Policy Learning (MADPL)
- 3. Method: Improving MADPL by Planning Single-Action Dialogs
- 4. Experimental Results
- 5. Conclusion & Future Work

BACKGROUND

Task-Oriented Dialog System

Goal: order a hot Latte

X1: I would like a cup of coffee.

Y1: What coffee would you like?

X2: What coffee do you serve?

Y2: We serve Espresso, Americano, Latte, Mocha, etc.

X3: I would like a cup of Latte.

Y3: Hot Latte or Iced Latte?

:

5

- 1. Background: Task Oriented Dialog System
- 2. Task: Multi-Action Dialog Policy Learning (MADPL)
- 3. Method: Improving MADPL by Planning Single-Action Dialogs
- 4. Experimental Results
- 5. Conclusion & Future Work

Multi-Action Dialog Policy Learning (MADPL)

(a) Single-action Dialog Policy

(b) Multi-action Dialog Policy

MADPL as Multi-Label Classification

I'm looking for a nice, expensive restaurant on the south side of town.

We have 5 restaurants that meet that criteria. Are you looking for a specific type of food?

Inform(Choice), Request(Food)

Mexican sounds good.

- 1. Background: Task Oriented Dialog System
- 2. Task: Multi-Action Dialog Policy Learning (MADPL)
- 3. Method: Improving MADPL by Planning Single-Action Dialogs
- 4. Experimental Results
- 5. Conclusion & Future Work

Existing Methods for MADPL

Supervised Learning-based Imitation

Limited Data → Poor generalization ability

Reinforcement Learning / Adversarial Learning

Costly Real-world Environments & Unstable Training

Interactive Learning

Costly Human Annotation

Method

Multi-action Dialog *Turn* ~ Single-action Dialog *Fragment*

Method

Planning-Enhanced Dialog Policy

- 1. Background: Task Oriented Dialog System
- 2. Task: Multi-Action Dialog Policy Learning (MADPL)
- 3. Method: Improving MADPL by Planning Single-Action Dialogs
- 4. Experimental Results
- 5. Conclusion & Future Work

Experiments

Datasets

- MultiWOZ: Standard Benchmark. We use the agenda-based user simulator
- SGD: 2.3x Domains and 8.9x Slots compared to MultiWOZ. For Scaling concerns.

Evaluation Metrics

- Interactive Evaluation: Success Rate Inform Scores Match Rate Turn
- Standard Evaluation: Sample-wise Precision, Recall and F1

Baselines

- SL-based: DiaMultiClass DiaSeq DiaMultiDense gCAS
- RL-based: GP-MBCM ACER PPO
- AL-based: ALDM GDPL DiaAdv

Experiments

Interactive Evaluation

	MultiWOZ					
Agent	Turn	Match	Rec	F1	Success	
DiaMultiClass	11.46 ± 0.56	$0.68 \pm 3.9\%$	$0.81 \pm 3.2\%$	$0.81 \pm 2.1\%$	67.3 ± 3.69	
+ sample	9.23 ± 0.2	$0.82 \pm 1.1\%$	$0.90 \pm 1.8\%$	$0.77 \pm 1.2\%$	81.4 ± 1.78	
DiaSeq (beam)	9.06 ± 0.67	$0.81 \pm 0.4\%$	$0.9 \pm 1.2\%$	$0.86 \pm 0.9\%$	81.4 ± 0.16	
greedy	10.35 ± 0.04	$0.68 \pm 1.5\%$	$0.80 \pm 0.5\%$	$0.77 \pm 0.5\%$	67.7 ± 1.02	
+ sample	8.82 ± 0.1	$0.86 \pm 0.6\%$	$0.93 \pm 0.4\%$	$0.81 \pm 0.5\%$	86.9 ± 0.49	
DiaMultiDense	9.66 ± 0.15	$0.85 \pm 0.6\%$	$0.94 \pm 0.4\%$	$0.87 \pm 0.6\%$	86.3 ± 0.64	
- sample	12.75 ± 0.77	$0.61~\pm6\%$	$0.72 \pm \! 5.4\%$	$0.80 \pm 2.3\%$	58.4 ± 6.05	
gCAS	11.69 ± 0.53	$0.56 \pm 1.4\%$	$0.72 \pm 0.4\%$	$0.76 \pm 1.4\%$	58.8 ± 2.82	
GP-MBCM ⁵	2.99	0.44	-	0.19	28.9	
ACER ⁵	10.49	0.62	-	0.78	50.8	
PPO ⁵	15.56	0.60	0.72	0.77	57.4	
ALDM ⁵	12.47	0.69	-	0.81	61.2	
GDPL	7.54 ± 0.43	$0.84 \pm 0.9\%$	$0.89 \pm 2.2\%$	$0.88 \pm 1.2\%$	83.2 ± 1.48	
DiaAdv	8.90 ± 0.18	$0.87 \pm 0.9\%$	$0.94 \pm 0.75\%$	$0.85 \pm 0.58\%$	87.6 ± 0.9	
- sample	11.9 ± 0.88	$0.62 \pm \! 5.9\%$	$0.73 ~ {\pm} 4.6\%$	$0.80 \pm 2.1\%$	61.7 ± 5.59	
PEDP	8.69 ± 0.15	0.88 ±1.3%	0.97 ±0.4%	$0.87 \pm 1.1\%$	90.6 ±0.68	
- planning	9.66 ± 0.15	$0.85 \pm 0.6\%$	$0.94 \pm 0.4\%$	$0.87 \pm 0.6\%$	86.3 ± 0.64	
- ensemble	9.25 ± 0.43	$0.88 \pm 1.97\%$	$0.96 \pm 0.8\%$	$0.85 \pm 2.5\%$	89.1 ± 1.74	
- sample	8.85 ± 0.22	$0.82 \pm 2.5\%$	$0.93 \pm 1.4\%$	$0.86 \pm 1.6\%$	83.4 ± 1.01	

Experiments Standard Evaluation

	MultiWOZ			SGD (scaling)		
Agent	F1%	Precision%	Recall%	F1%	Precision %	Recall%
DiaMultiClass	39.41 ± 1.08	54.59 ± 1.71	34.32 ± 1.32	58.09 ± 0.63	81.29 ± 1.13	46.29 ± 0.57
+ sample	38.91 ± 0.74	47.28 ± 0.68	37.56 ± 1.08	58.03 ± 0.64	81.48 ± 0.18	46.14 ± 0.80
DiaSeq (beam)	44.64 ± 2.08	51.91 ± 0.99	43.66 ± 2.27	63.13 ± 0.18	86.04 ± 0.5	50.83 ± 0.30
greedy	48.34 ± 0.45	54.71 ± 0.21	48.84 ± 0.84	63.21 ± 0.35	86.31 ± 0.7	50.85 ± 0.40
+ sample	37.82 ± 0.45	43.02 ± 0.48	38.91 ± 0.64	62.64 ± 1.03	85.54 ± 1.62	50.40 ± 0.76
DiaMultiDense	35.92 ± 0.54	51.93 ± 0.33	30.10 ± 0.69	57.85 ± 0.68	80.64 ± 0.43	46.21 ± 0.89
- sample	34.35 ± 0.62	52.14 ± 0.19	27.74 ± 0.74	56.69 ± 0.62	79.54 ± 0.88	45.19 ± 0.75
gCAS	50.01 ± 0.62	55.56 ± 0.59	51.21 ± 1.74	76.37 ± 1.60	77.70 ± 1.46	79.99 ± 1.03
GDPL	31.89±0.96	50.14 ±0.79	24.99 ± 1.14	-	-	-
+ sample	34.60 ± 0.47	$45.01{\scriptstyle~\pm0.24}$	31.54 ± 0.80	-	-	-
DiaAdv	40.97 ± 0.95	53.44 ± 0.50	36.84 ± 1.30	-	-	-
- sample	41.71 ± 0.47	56.46 ± 0.45	36.28 ± 1.48	-	-	-
PEDP	64.63 ±0.16	77.03 ± 1.39	61.77 ± 1.01	84.12 ±0.38	91.66 ± 0.52	81.19 ± 0.4
- planning	35.92 ± 0.54	51.93 ± 0.33	30.10 ± 0.69	57.85 ± 0.68	80.64 ± 0.43	46.21 ± 0.89
- ensemble	64.34 ± 0.29	77.63 ± 2.04	60.85 ± 1.54	83.31 ± 0.55	91.66 ± 0.78	$80.10 \; {\pm} 0.55$
- sample	66.95 ±0.45	78.11 ± 3.03	65.02 ± 1.22	84.74 ±0.55	92.07 ±0.97	81.30 ± 0.82

Experiments

Human Evaluation

Dialog pair	Win	Lose	Tie	α
PEDP vs. DiaSeq	41.7	31.3	27.0	0.820
PEDP vs. DiaAdv	36.5	27.6	35.9	0.856
PEDP vs. GDPL	32.6	26.5	40.9	0.839

Hyper-parameter sensitivity

\overline{K}	1	2	3	4	5	6
Success	89.1	89.3	90.6	89.7	90.2	89.9
Std. Dev.	1.74	1.19	0.68	0.73	0.62	0.57

Case Sample

GDPL

USER: I would prefer Chinese food please. I also need a place to dine that is expensive priced. I'm so hungry - can you find me a place to eat in the Centre?

SYSTEM: I have 4 options for you!

USER: I would like to know the postcode of the restaurant, if possible?

SYSTEM: The ugly duckling is a nice place would you like to try that one? The restaurant postcode is cb21tw.

PEDP

USER: I would prefer Chinese food please. I also need a place to dine that is expensive priced. I 'm so hungry - can you find me a place to eat in the Centre?

SYSTEM: How about ugly duckling? It is Chinese food. It is located in the Centre. Would you like me to book it?

USER: What is their postcode?

SYSTEM: Their postcode is cb21nw. Is there anything else I can help you with?

Conclusion & Future work

- Multi-Action Dialog Turn ~ Single-Action Dialog Fragment
- Planning-enhanced Dialog Policy for Improved MADPL
- Improved Performance on MultiWOZ and SGD
- Knowledge-enhanced MADPL

Thanks

zs412082986@stu.xjtu.edu.cn

MOE KLINNS Lab, Xi'an Jiaotong University
JIUTIAN Team, China Mobile Research