MTH207M (2024-25, ODD SEMESTER) PROBLEM SET 2

- 1. Let A and G be two matrices such that G is a g-inverse of A. Further, (P,Q) is an RF of A. Then
 - (a) $QGP = I_r$ where $\rho(A) = r$, and
 - (b) if *G* is a reflexive *g*-inverse then $G = Q_R^{-1} P_L^{-1}$ for some right and left inverse of *P* and *Q*, respectively.
- 2. Let *A* be an $m \times n$ matrix. Then, *G* is a minimum norm and reflexive *g*-inverse of *A* iff $G = A^T (AA^T)^-$ where $(AA^T)^-$ is a *g*-inverse of AA^T .
- 3. Let *A* be an $m \times n$ matrix. Then, *G* is a LS and reflexive *g*-inverse of *A* iff $G = A^T(A^TA)^-$ where $(A^TA)^-$ is a *g*-inverse of A^TA .
- 4. (a) For any minimum norm and reflexive *g*-inverse *G* of *A*, prove that C(G) = R(A).
 - (b) For any reflexive and LS g-inverse G of A, prove that $\mathcal{R}(G) = \mathcal{C}(A)$.
- 5. Let B^+ be the MP *g*-inverse of B. Then show the following
 - (a) $(A^+)^T = (A^T)^+$
 - (b) $(A^T A)^+ = A^T (A^T)^+$,
 - (c) $(A^+)^+ = A$,
 - (d) $(AA^+)^+ = AA^+$,
 - (e) if A is symmetric, then A^+ is symmetric,
 - (f) if *A* is symmetric and idempotent, then $A = A^+$.

- 6. Let Ax = b be a consistent system. Show that x_j has the same value in all solutions iff $(GA)_{j\cdot} = e_j^T$ for any g-inverse G of A.
- 7. Show that, for any $m \times n$ matrix A, $A^+ = A^T$ if and only if A^TA is idempotent.
- 8. Consider a matrix $A = uv^T \neq 0$ where $u, v \in \mathbb{R}^n$. Then show that $B = c^{-1}A^T$ is the MP g-inverse of A where $c = \operatorname{tr}(A^T A)$.

Let A = BC be a rank factorization of A. Then show that

(a)
$$B^+ = (B^T B)^{-1} B^T$$
 and $C^+ = C^T (CC^T)^{-1}$, and

- (b) $A^+ = C^+ B^+$.
- 9. Prove or disprove: $A^+ = B^+$ implies A = B.
- 10. Find the MP *g*-inverse of AA^+ and A^+A .