-D Finite-State-Machines (FSMs)

-D Mealy FSMS

-D Output Logic Function: Y= for (Sn, X) = 5,(1), Sn(0).X

AC	TUAL S	STATE	INPUT	NEXT STATE Sn+4			OUTPUT
	5n(1)	Sn(0)	X		Sn+2(1)	Sn+2(0)	У
SI	0	0	0	કથ	0	1	1
51	0	0	1	ડ 3	1	1	0
Sa	0	1	0	८३	1	1.	G
ડર	0	1	4	5ą	0	1	1
\$3	1	1	0	S1	0	0	0
53	1	<u> </u>	1	53	1	1	0

Esercizi

1) Design a logic circuit able to detect two equal consecutive bits. In case of positive event, the Youtput signal is 1, otherwise is 0. The circuit receives one single bit (x) and uses one single clock. Implement by Moore-F5M.

FSM Design Procedure

- Definive
 - [Segnali di Input (x)
 - I Segnali di Output (Y)
 - U Lista degli Stati
 - State-Diagram
 - O Rappresentazione grafica di tutti gli stati e transizioni
 - State-Table
 - I Una tabella con due colome Sn e Sn+1, X e Y.
 - Next-State Function fus
 - a Sn+4 = fus (x, 5n)

State-Diagram

State-Table

ACTUAL	STA	TIES		TUPUT	I NEXT	TUQTUO	
State Name	520	L) Sn(1)? ⁽⁰⁾	×	State Name	Snz(2) Snz(1) Snd	Y
50	0	0	0	0	કથ	0	0
SO	0	0	0	1	51	0 0 1	0
ક ન	0	0	1	0	52	0 1 0	0
S1	0	0	1	1.	<i>s</i> 3	0 4 1	1
ડર	0	1	0	0	S 4	1 0 0	4.
ક રૂ	0	1	0	1_	51	0 0 1	0
ડઙ		1	1	0	s2	010	0
s 3	0	1	1	1	s 3	0 1 1	1
S 4	4	0	0	O	54	100	1
S 4	1	0	0	1	. 51	001	0

Next-State Function fins $S_{n+1} = f_{NS} (X, S_n)$

$$S_{n+1}(1) = S_n(0) + \overline{S_n(1)} \cdot \overline{S_n(1)} \cdot X$$

 $S_{n+1}(0) = \overline{X}$
 $Y = S_n(2) + S_n(1) \cdot S_n(0)$