Algorytmy wizualizacji grafów

27.10.2020

Random layout

Bipartite layout

Multipartite layout

Multipartite layout

Circular layout

Shell layout

Spiral layout

Planar layout

The left-right planarity test

algorytm opiera się na obserwacji, że cykle są fragmentami grafu, które mog spowodować przecinanie się krawędzi, w szczególności różne cykle mając wspólne krawędzie	•
Cykle dzielą płaszczyznę na 2 rozłączne części, należy zatem przemyśleć cz pozostałe wierzchołki w grafie łączymy "wewnątrz" czy "na zewnątrz" cyklu	zy
☐ sprawdzenie planarności sprowadza się do podjęcia powyższej decyzji dł każdego cyklu, to jest określenie czy kierunek cyklu jest zgodny czy niezgodn ze wskazówkami zegara. Jeśli można to zrobić bez przecięcia cykli, graf jes planarny	าy
☐ cykli w grafie może być bardzo dużo, jednak wystarczy skupić się tylko n reprezentatywnym podzbiorze cyklów	าล

The Left-Right Planarity Test

Reprezentatywny podzbiór cykli:

- weźmy skierowane drzewo rozpinające,które tworzymy jak w DFS
- □ określamy relatywny do drzewa kierunek krawędzi powracających:
 - lewy krawędzie niebieskie,
 - prawy krawędzie czerwone
- ☐ otrzymujemy reprezentatywny podzbiór cykli wraz z ich skrętnością

Papier wyjaśniający szczegóły:

Ulrik Brandes: The Left-Right Planarity Test 2009

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.217.9208

The Left-Right Planarity Test

Papier wyjaśniający szczegóły:

Ulrik Brandes: The Left-Right Planarity Test 2009

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.217.9208

Piotr Gierda, Stanisław Giziński

Uniwersytet

Spectral layout

Spectral layout

Klastruje wierzchołki korzystając z wektorów własnych macierzy Laplace'a.

Macierz Laplace'a

$$L = D - A$$

gdzie D to macierz stopni wierzchołków, A to macierz sąsiedztwa grafu.

GRAF	D			A				L								
6 4 5 1	$\begin{pmatrix} 2 & 0 \\ 0 & 3 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$	$ \begin{array}{ccc} 0 & 0 \\ 2 & 0 \\ 0 & 3 \end{array} $	0 0 0	0 0 0 0 0 0	$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$	0 1 0 1	1 0 1 0	0 1 0 1	1 0 1 0	0	-1 ((-1	$ \begin{array}{cccc} & -1 & & & & \\ & 3 & & -1 & & \\ & 0 & & -1 & & \\ & 0 & & & 0 \end{array} $	-1 2 -1 0	$0\\-1\\3$	-1	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ -1 \\ 0 \\ 1 \end{pmatrix}$

Spectral layout

- □ policzmy 2 najmniejsze niezerowe wartości własne (λ2 ≤ λ3) macierzy L
 - λ2 spectral gap, mierzy rozpiętość spektralną grafu
 - λ3 wartość Fiedler'a, miara zagęszczenia krawędzi w grafie
- \Box policzmy znormalizowane wektory własne u2, u3 związane z odpowiednio λ 2 and λ 3

$$R = [u2 u3]$$

☐ wierzchołek i-ty umieszczamy na płaszczyźnie o koordynatach i-tego wiersza macierzy R

Kamada-Kawai layout

Kamada-Kawai layout

Pomysł:							
	Każdy wierzchołek -	czą	steczka połączona	sprę	żynami ze wszy	stkimi inn	ymi
	Długości sprężyn wierzchołkami	-	proporcjonalne	do	najkrótszych	ścieżek	między
	Szukamy równowag	i					

T. KAMADA and S. KAWAI "AN ALGORITHM FOR DRAWING GENERAL UNDIRECTED GRAPHS" (1989) http://www.itginsight.com/Files/paper/AN%20ALGORITHM%20FOR%20DRAWING%20GENERAL%20UNDIRECTED%20GRAPHS (Kadama%20Kawai%20layout).pdf

Kamada-Kawai layout

Minimalizuje

$$E = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{1}{2} k_{ij} (|p_i - p_j| - l_{ij})^2.$$

$$l_{i,j} = d_{i,j} * L$$

 $d_{i,j}$ - najkrótsza ścieżka między węzłami

_ oczekiwana długość wyświetlonej krawędzi

Algorytm Fruchterman-Reingold:

☐ symuluje zachowanie modelu, w którym wierzchołki są stapierścieniami a krawędzie reprezentują sprężyny mocujące psiebie	-
☐ siły przyciągające w modelu są analogiczne do działania spodpychające do sił elektrostatycznych	rężyn a siły
☐ w każdej iteracji ruch wierzchołka zależy od wypadkowej on niego sił przyciągania i odpychania	działających na
☐ temperatura układu, to jest ruchliwość wierzchołków, ma iteracją a układ zmierza ku equilibrium.	leje z każdą

Stan początkowy, iteracja 0:

Iteracja 1:

Iteracja 2:

Iteracja 3:

Iteracja 10:

Iteracja 20:

Iteracja 50:

Iteracja 10000:

Iteracja 10000, inne ziarno:

Notebook do zabawy:

https://github.com/Gizzio/tgsc