gekoppelte Schwingungen

- Energieaustausch zwischen einzelnenen Oszillatoren ist möglich.
- zum Beispiel zwei gekoppelte Pendel die durch Feder miteinander verbunden sind. ⇒ neue Gleichgewichtslage.

- P_2 wird um Θ_2 ausgelenkt ausgelenkt. $\Rightarrow M_2 = -mgL\Theta_2 kl^2\Theta_2$ mit der Kopplungskonstante k.
- \bullet P_1 wird um Θ_1 ausgelenkt ausgelenkt. $\Rightarrow M_2 = -mgL\Theta_2 kl^2\Theta_2 + kl^2\Theta_1 = J\ddot{\Theta_2}$
- \bullet dazu wurde verwendet, dass $M=J\ddot{\Theta}$ und für Pendel $J=mL^2$
- Analoges Verfahren für P_1 :

$$J\ddot{\Theta}_1 = -mgL\Theta_1 + kl^2(\Theta_2 - \Theta_1)$$

$$J\ddot{\Theta}_2 = -mgL\Theta_2 + kl^2(\Theta_1 - \Theta_2)$$

 \Rightarrow gekoppeltes Diffenzialgleichungssystem