The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

Embracing Domain Differences in Fake News: Cross-domain Fake News Detection using Multi-modal Data

Amila Silva, Ling Luo, Shanika Karunasekera, Christopher Leckie

School of Computing and Information Systems

The University of Melbourne
Parkville, Victoria, Australia

amila.silva@student., ling.luo@, karus@, caleckie@}unimelb.edu.au

AAAI'21 220331 Chia-Chun Ho

Outline

Introduction

Related Works

Methodology

Experiments

Conclusion

Comments

Motivation

- Social media is considered as one of the leading and fastest media to seek news information online.
 - Thus provide an ideal environment to spread fake news.
- Many times the cost and damage due to fake news are high and early detection to stop spreading such information is of importance.
 - Like the US president election, COVID-19 pandemic etc.
- Due to the high volumes of news generated on a daily basis, it's not practical to identify fake news using manual fact checking.

Introduction Challenges (1/2)

Facture	Weiner	Network	Maximum	Propagation
Feature	Index	Depth	Outdegree	Speed
p-value	1.81e-2	5.81e-19	4.11e-4	3.42e-29

T-test result conducted using 2 datasets

- Most existing techniques are trained and evaluated using datasets that are limited to a single domain such as politics, entertainment, healthcare.
 - Real news stream typically covers a wide variety of domains.
 - Existing approaches perform poorly for such a cross-domain news dataset.
- Due to two reasons:
 - Domain-specific word usage
 - Domain-specific propagation patterns

PolitiFact

GossipCop

Word cloud for the top 20 words in two dataset

Challenges (1/2)

- To address this challenge, some previous works learned models to overlook such domain-specific information and only rely on cross-domain information.
 - E.g., web-markup and readability features
- Domain-specific knowledge could be useful for accurate identification of fake news.
- As a solution, this work aims to address
 - preserve domain-specific and cross-domain knowledge in news at the same time
 - detect fake news in cross-domain datasets.

Challenges (2/2)

- Studies show that most approach are not good at identifying fake news from unseen or rarely-seen domains during training.
- Models can be learned using a dataset that covers as many domains as possible.
- Here assume that FND model requires supervision as supervised techniques are known to be substantially better at identifying fake news compared to unsupervised methods.
- Due to sheer volume of unlabeled news available, there is a need to identify information news to annotate such that the labelled dataset ultimately covers many domains while avoiding any selection biases.

Contributions

- Propose a multimodal fake news detection technique for cross-domain news datasets
 - that learns domain-specific & cross-domain information of news using two independent embedding spaces.
- Propose an unsupervised technique to select a given number of news from a large data pool
 - such that the selected dataset maximizes that domain coverage.

Related Works

Limitations

- Domain-agnostic FND has two limitations:
 - It assumes that the news records from different domains arrive sequentially, though this is not always true for real-world streams.
 - It requires the domain of news records to be known, which is not generally available.
- Active Learning for FND has two limitations:
 - It requires a pre-trained model to select instances.
 - it is known to be highly vulnerable to the biases introduced by the initial model.

Problem Statement

Notations

- Each news record r in set of news R $(r \in R)$ is represented as a tuple $\langle t^r, W^r, G^r \rangle$
 - t^r : timestamp when r is published online
 - W': text content of r
 - $G^r(V^r, E^r, X^r)$: attributed directed graph represent the propagation network of r for time bound ΔT (ΔT set 5 hours for evaluate early detection performance)
 - V^r : nodes represent the tweets/retweets of r
 - E^r : edges represent the retweet relationships among them.
 - X^r : set of attributes of the nodes in G^r .

Problem Statement

Sub-Tasks

Dataset	PolitiFact	GossipCop	CoAID
# Fake News	269	1269	135
# Real News	230	2466	1568

Statics of 3 datasets

- Select a set of instances \mathbb{R}^L from \mathbb{R} to label while give labeling budget \mathbb{R} (constrains the # of instances in \mathbb{R}^L).
 - Assign a binary label y^r (1: fake 0: real)
- Learn an effective model using R^L to predict the label y^r for unlabeled news $r \in R^U$ as false or real news.
 - $R(R^L \cup R^U)$ is not constrained to a specific domain.
 - To emulate such a domain-agnostic dataset, combine PolitiFact, GossipCop, CoAID.

Embracing Domain Differences in Fake News (EDDFN*)

Methodology EDDFN

- EDDFN includes 2 main components for FND.
 - Unsupervised embedding learning
 - Supervised domain-agnostic news classification
 - These components are integrated to identify fake news while exploiting domain-specific and cross-domain knowledge in news.
- In addition, the proposed instance selection approach
 - Adopts the same domain embedding learning component to select informative news for labeling, which eventually yields a labeled dataset that maximizes the domain-coverage.

Methodology Unsupervised Domain Discovery

justin
 baby new
 selenakim
 star wedding
 first year
 kardashian
 season
 season
 jenner
 say gomez
 jennifer

PolitiFact

GossipCop

Word cloud for the top 20 words in two dataset

- For a give news r, assume that its domain label is not available.
- Proposed unsupervised domain embedding learning technique exploits multimodal content of r to represent the domain of r as low-dimensional vector $f_{domain}(r)$.
- Approach is motivated by:
 - Tendency of users to form groups containing people with similar interests (homophily), which results in different domain have distinct user bases.
 - Significant differences in domain-specific word usage as shown in previous figure.

Network Construction

- Create set for each news by adding all users and all words appearing in the news title.
- For each pair of items, build a weighted edge linking the two items in the graph.
- Repeat above steps for all news to obtain the final network.

Algorithm 1: Domain Embedding Learning

```
Input: A collection of news records R
Output: Domain embeddings f_{domain}(r) of r \in R

// Network construction
```

```
// Network construction
Initialize an empty graph G;
for r \in R do
 | S^r \leftarrow X^r \cup U^r |
for each pair (s_1, s_2) \in S do
 | e \leftarrow (\{s_1, s_2\}, 1);
if edge e exists in graph G then
 | Increment edge <math>e in graph G by 1;
else
 | Add edge e \text{ to graph } G;
// Community Detection
```

10 $C \leftarrow \text{Find communities in } G \text{ using Louvain;}$

// Embedding Learning

- 11 for $r \in R$ do
- Compute $f_{domain}(r)$ using Eq. 2
- 13 Return $f_{domain}(r)$ of $r \in R$.

Community Detection

- Adopt Louvain algorithm* to identify communities in graph.
 - Best performing parameter-free community detection algorithm.
- Obtain a set of communities/clusters, each having either a highly connected set of users or words.
- Assume each community belongs to a single domain.

```
Algorithm 1: Domain Embedding Learning
   Input: A collection of news records R
  Output: Domain embeddings f_{domain}(r) of r \in R
   // Network construction
 1 Initialize an empty graph G;
2 for r \in R do
      S^r \leftarrow X^r \cup U^r
      for each pair (s_1, s_2) \in S do
          e \leftarrow (\{s_1, s_2\}, 1);
          if edge e exists in graph G then
              Increment edge e in graph G by 1;
          else
              Add edge e to graph G;
       Community Detection
   C \leftarrow Find communities in G using Louvain;
       Embedding Learning
11 for r \in R do
      Compute f_{domain}(r) using Eq. 2
13 Return f_{domain}(r) of r \in R.
```

Embedding Learning

• Compute the soft membership $p(r \in c)$ of r in a cluster c:

$$p(r \in c) = \sum_{v \in c \cap r} v_{deg} / \sum_{c \in C} \sum_{v \in r} v_{deg}$$

- $p(r \in c)$ is proportional to # of common users or words that r and c have.
- Each node v is weighted using the degree v_{deg} in G to reflect their caring importance for the corresponding community.

```
Algorithm 1: Domain Embedding Learning
   Input: A collection of news records R
  Output: Domain embeddings f_{domain}(r) of r \in R
   // Network construction
 1 Initialize an empty graph G;
2 for r \in R do
      S^r \leftarrow X^r \cup U^r
      for each pair (s_1, s_2) \in S do
          e \leftarrow (\{s_1, s_2\}, 1);
          if edge e exists in graph G then
              Increment edge e in graph G by 1;
          else
              Add edge e to graph G;
       Community Detection
10 C \leftarrow Find communities in G using Louvain;
       Embedding Learning
11 for r \in R do
      Compute f_{domain}(r) using Eq. 2
13 Return f_{domain}(r) of r \in R.
```

Embedding Learning

- Finally, produce the domain embedding $f_{domain}(r) \in \mathbb{R}^{|C|}$ of r as concatenation of r's likelihood belonging to communities in C:
- $f_{domain}(r) = p(r \in c_1) \oplus p(r \in c_2) \oplus \dots p(r \in c_{|C|})$

```
Algorithm 1: Domain Embedding Learning
   Input: A collection of news records R
  Output: Domain embeddings f_{domain}(r) of r \in R
   // Network construction
 1 Initialize an empty graph G;
 2 for r \in R do
      S^r \leftarrow X^r \cup U^r
      for each pair (s_1, s_2) \in S do
          e \leftarrow (\{s_1, s_2\}, 1);
          if edge e exists in graph G then
              Increment edge e in graph G by 1;
          else
              Add edge e to graph G;
       Community Detection
10 C \leftarrow Find communities in G using Louvain;
       Embedding Learning
11 for r \in R do
      Compute f_{domain}(r) using Eq. 2
```

13 Return $f_{domain}(r)$ of $r \in R$.

Comparison of domain embedding

t-SNE result (user-based/multimodal)

- Proposed approach (fig.b) yields a clear separation between the domains compared to user-based domain discovery algorithm (fig.a).
- May mainly due to ability of proposed approach to jointly exploit multi-modalities, both users and text of news to discover their domain.
- Most previous works on domain discovery ultimately assign hard domain labels for news, but some news may belong to multiple domains.
 - Hence, proposed method use low-dimensional vector to represent domain embedding can preserved such knowledge related to the domains of news.

Domain-agnostic News Classification

- In classification model, each news r is represented as a vector $f_{input}(r)$ using textual content W^r and propagation network G^r of r.
- Then, model maps $f_{input}(r)$ into 2 subspace:
 - Preserves domain-specific knowledge: $f_{specific}: f_{input}(r) \to \mathbb{R}^d$
 - Preserves cross-domain knowledge: $f_{shared}: f_{input}(r) \to \mathbb{R}^d$

Domain-agnostic News Classification

- Then, $f_{specific}(r) \oplus f_{shared}(r)$ is used to recover the label y^r and input representation $f_{input}(r)$ of r during training via two decoder function g_{pred} and g_{recon} respectively.
- BCE: binary cross-entropy loss function
- Minimize L_{pred} & L_{recon} to find optimal parameters of $(f_{specific}, f_{shared}, g_{pred}, g_{recon})$.

- $\overline{y^r} = g_{pred}(f_{specific}(r) \oplus f_{shared}(r))$
- $\overline{f_{input}(r)} = g_{recon}(f_{specific}(r) \oplus f_{shared}(r))$
- $L_{pred} = BCE(y^r, \overline{y^r})$
- $L_{recon} = ||f_{input}(r) \overline{f_{input}(r)}||^2$

Domain-agnostic News Classification

- However, L_{pred} & L_{recon} do not leverage domain difference in news.
- Hence, now discuss how the mapping function for subspaces, $f_{specific}$ &t f_{shared} .
 - Further learned to preserve the domain-specific and cross-domain knowledge in news.

Leveraging Domain-specific Knowledge

- To preserve domain-specific knowledge, introduce an auxiliary loss term $L_{specific}$ to learn a news decoder function $g_{specific}$ to recover the domain embedding $f_{domain}(r)$ using the domain-specific representation $f_{specific}(r)$.
- Minimize $L_{specific}$ to find optimal parameters for $(f_{specific}, g_{specific})$ to capture the domain-specific knowledge by $f_{specific}$.
 - $L_{specific} = ||f_{domain}(r) g_{specific}(f_{specific}(r))||^2$

$$\hat{g}_{specific}, \hat{f}_{specific}) = \underset{(g_{specific}, f_{specific})}{\operatorname{argmin}} (L_{specific})$$

Leveraging Cross-domain Knowledge

- In contrast, learn f_{shared} to overlook domain-specific knowledge of news.
- Train a decoder function g_{shared} to accurately predict domain of r using $f_{shared}(r)$.
- Meanwhile, learn f_{shared} to fool decoder g_{shared} by maximizing loss if g_{shared} .
 - Such a formulation forces f_{shared} to only rely in cross-domain knowledge.
 - Useful to transfer the knowledge across domains.

Leveraging Cross-domain Knowledge

- Can be defined as a minimax game between g_{shared} &t f_{shared} .
 - $L_{shared} = ||g_{shared}(f_{shared}(r)) f_{domain}(r)||^2$
 - . $(\hat{g}_{shared}, \hat{f}_{shared}) = \underset{f_{shared}}{\operatorname{argmin argmax}} (-L_{shared})$

Integrated model

- Then final loss function of model is formulated as:
 - $L_{final} = L_{pred} + \lambda_1 L_{recon} + \lambda_2 L_{specific} \lambda_3 L_{shared}$
 - where λ controls the importance given to each loss term compared to L_{pred} (main).
- To learn minimax game in L_{shared} , the final loss function L_{final} :

$$(\widehat{\theta_1}) = \underset{\theta_1}{\operatorname{argmin}} L_{final}(\theta_1, \theta_2), \quad \theta_1 : (f_{specific}, f_{shared}, g_{specific}, g_{pred}, g_{recon})$$

$$(\widehat{\theta}_{2}) = \underset{\theta_{2}}{\operatorname{argmax}} L_{final}(\widehat{\theta}_{1}, \theta_{2}) \quad \theta_{2} : g_{shared}$$

LHS-based Instance Selection

- Aforementioned model is able to exploit the domain-specific and cross-domain knowledge in news to identify their veracity.
- Empirically observe that the performance of the model substantially drops when identify unseen or rarely appearing domain news during training.
- Proposed an unsupervised technique to come up with a labeled training dataset for a given labeling budget B such that it covers as many domains as possible.
- Ultimate objective of this technique is to learn a model using such a dataset that performs well for many domains.

LHS-based Instance Selection

- Initially represents each news $r \in R$ using its domain embedding $f_{domain}(r)$.
- Proposed* a Locality-Sensitive Hashing (LSH) algorithm based on random projection to select a set of news in R that are distant in the domain embedding space.

Methodology LSH algorithm

credit: https://randorithms.com/2019/09/19/Visual-LSH.htm

credit: http://nnw.cz/doi/2017/NNW.2017.27.005.p

- LSH is an algorithmic technique that hashes similar input items into the same "buckets" with high probability.
- Since similar items end up in the same buckets, this technique can be used for data clustering and nearest neighbor search.
- It differs from conventional hashing techniques in that hash collisions are maximized, not minimized.
- Alternatively, the technique can be seen as a way to reduce the dimensionality of high-dimensional data; high-dimensional input items can be reduced to low-dimensional versions while preserving relative distances between items.

Methodology Step of Instance Selection

$$h_{i,j} = \sqrt{3} \times \begin{cases} +1 & \text{with probability } 1/6 \\ 0 & \text{with probability } 2/3 \\ -1 & \text{with probability } 1/6 \end{cases}$$
 probability distribution

- Create |H| different hash functions such as $H_i(r) = sgn(h_i \cdot f_{domain}(r))$, $i \in [0, |H| 1]$.
- Construct an H-dimensional hash vector for each news as $H_0(r) \oplus \ldots \oplus H_{|H|-1}(r)$.
- Group the news with similar hash values to construct a hash table.
- Randomly pick a news from each bin in the hash table and add to the selected dataset pool.
- Repeat above steps until the size of the dataset pool reaches the labelling budget B.

Instance Selection Performance

- As can be seen, random selection follows empirical distribution of dataset and pick few instances from rarely domain.
- In contrast, the proposed approach provides a significant # of samples from even rarely occurring domains.
- Also mentioned complexity is efficient...

Dataset	PolitiFact	GossipCop	CoAID
# Fake News	269	1269	135
# Real News	230	2466	1568

Statics of 3 datasets

Encoding & Decoding Functions

- Adopt RoBERTa-base to learn text-based representation $f_{text}(r)$.
- Detection Deadline

 Tweets Posted within the Detection Deadline
 Tweets Posted after the Detection Deadline
 Source Node/ News Record
 Node-level Aggregation

 Local Network
 Embedding

 Multimodal
 Input
 Representation

 Global Network
 Embedding

 Text
 Embedding

 Jenus Je
- Propagation network-based representation $f_{network}(r)$ is using unsupervised network representation learning technique proposed by author.
- Then final input representation $f_{input}(r)$ is constructed as $f_{text}(r) \oplus f_{network}(r)$.
- All other encoding/decoding functions ($f_{specific}$, f_{shared} , $g_{specific}$, g_{shared} , g_{pred} , g_{recon}) are modeled as 2-layer feed-forward network with sigmoid activation.

Datasets

- Combine PolitiFact, GossipCop, CoAID to produce a cross-domain news dataset.
- 75% candidate data pool for training: 25% for testing
- For given a budget B, select B instances from pool to train the model.

Baselines

- LIWC: learns feature vectors from the text content of news by counting the #of lexicons falling into different psycho-linguistic categories.
- HAN: adopts a hierarchical attention neural network framework to model the text content of news.
- EANN: use EANN-Unimodal (text) & EANN-multimodal (text, network).
- HPNF: extracts various features from the propagation network of news to generate its feature representation.
- AE: adopts an Auto-encoder architecture to learn latent representation for each news based on its propagation network.
- SAFE: propose modality-similarity method by caption news image compare with news text content.

ExperimentsPerformance Comparison

Method		Туре			Polit	ifact			Gossi	ірсор		CoAID				
	T	S	M	Acc	Prec	Rec	F1	Acc	Prec	Rec	F1	Acc	Prec	Rec	F1	
LIWC (Pennebaker et al. 2015)	✓			0.488	0.680	0.565	0.432	0.662	0.550	0.516	0.472	0.903	0.586	0.531	0.538	
text-CNN (Kim 2014)	✓			0.608	0.621	0.623	0.608	0.733	0.698	0.703	0.701	0.903	0.679	0.674	0.677	
HAN (Yang et al. 2016)	✓			0.632	0.672	0.651	0.648	0.716	0.703	0.709	0.706	0.919	0.698	0.682	0.688	
EANN-Unimodal (Wang et al. 2018)	✓			0.794	0.811	0.790	0.791	0.765	0.732	0.738	0.734	0.925	0.842	0.763	0.792	
HPNF (Shu et al. 2020b)		✓		0.697	0.692	0.683	0.687	0.721	0.703	0.689	0.695	0.902	0.652	0.693	0.672	
AE (Silva et al. 2020)		✓		0.784	0.783	0.774	0.779	0.834	0.828	0.802	0.812	0.928	0.686	0.673	0.677	
HPNF + LIWC (Shu et al. 2020b)			✓	0.704	0.723	0.708	0.716	0.734	0.715	0.706	0.708	0.911	0.682	0.709	0.690	
SAFE (Zhou et al. 2020)			✓	0.793	0.782	0.771	0.775	0.831	0.822	0.798	0.806	0.931	0.754	0.744	0.748	
EANN-Multimodal (Wang et al. 2018)			✓	0.804	0.808	0.794	0.798	0.836	0.812	0.815	0.813	0.944	0.849	0.803	0.808	
Our Approach ($B = 100\% R_{pool} $)			✓	0.840	0.836	0.831	0.835	0.877	0.840	0.832	0.836	0.970	0.876	0.863	0.869	
Our Approach ($B = 50\% R_{pool} $)			✓	0.838	0.836	0.828	0.833	0.848	0.822	0.797	0.808	0.963	0.870	0.854	0.862	
Ablation Study ($B = 100\% R_{pool} $)																
(-) Domain-shared loss				0.823	0.821	0.812	0.815	0.864	0.832	0.828	0.829	0.956	0.857	0.861	0.858	
(-) Domain-specific loss				0.792	0.800	0.783	0.786	0.858	0.832	0.821	0.828	0.934	0.850	0.857	0.853	
(-) Network modality				0.816	0.815	0.817	0.815	0.765	0.749	0.745	0.746	0.945	0.803	0.855	0.827	
(-) Text modality				0.804	0.798	0.793	0.795	0.837	0.835	0.815	0.817	0.932	0.711	0.704	0.707	

ExperimentsPerformance Comparison

Method		Туре			Polit	ifact			Gossi	ірсор		CoAID				
	T	S	M	Acc	Prec	Rec	F1	Acc	Prec	Rec	F1	Acc	Prec	Rec	F1	
LIWC (Pennebaker et al. 2015)	✓			0.488	0.680	0.565	0.432	0.662	0.550	0.516	0.472	0.903	0.586	0.531	0.538	
text-CNN (Kim 2014)	✓			0.608	0.621	0.623	0.608	0.733	0.698	0.703	0.701	0.903	0.679	0.674	0.677	
HAN (Yang et al. 2016)	✓			0.632	0.672	0.651	0.648	0.716	0.703	0.709	0.706	0.919	0.698	0.682	0.688	
EANN-Unimodal (Wang et al. 2018)	✓			0.794	0.811	0.790	0.791	0.765	0.732	0.738	0.734	0.925	0.842	0.763	0.792	
HPNF (Shu et al. 2020b)		✓		0.697	0.692	0.683	0.687	0.721	0.703	0.689	0.695	0.902	0.652	0.693	0.672	
AE (Silva et al. 2020)		\		0.784	0.783	0.774	0.779	0.834	0.828	0.802	0.812	0.928	0.686	0.673	0.677	
HPNF + LIWC (Shu et al. 2020b)			✓	0.704	0.723	0.708	0.716	0.734	0.715	0.706	0.708	0.911	0.682	0.709	0.690	
SAFE (Zhou et al. 2020)			✓	0.793	0.782	0.771	0.775	0.831	0.822	0.798	0.806	0.931	0.754	0.744	0.748	
EANN-Multimodal (Wang et al. 2018)			✓	0.804	0.808	0.794	0.798	0.836	0.812	0.815	0.813	0.944	0.849	0.803	0.808	
Our Approach ($B = 100\% R_{pool} $)			✓	0.840	0.836	0.831	0.835	0.877	0.840	0.832	0.836	0.970	0.876	0.863	0.869	
Our Approach ($B = 50\% R_{pool} $)			✓	0.838	0.836	0.828	0.833	0.848	0.822	0.797	0.808	0.963	0.870	0.854	0.862	
Ablation Study ($B = 100\% R_{pool} $)																
(-) Domain-shared loss				0.823	0.821	0.812	0.815	0.864	0.832	0.828	0.829	0.956	0.857	0.861	0.858	
(-) Domain-specific loss				0.792	0.800	0.783	0.786	0.858	0.832	0.821	0.828	0.934	0.850	0.857	0.853	
(-) Network modality				0.816	0.815	0.817	0.815	0.765	0.749	0.745	0.746	0.945	0.803	0.855	0.827	
(-) Text modality				0.804	0.798	0.793	0.795	0.837	0.835	0.815	0.817	0.932	0.711	0.704	0.707	

ExperimentsPerformance Comparison

Method		Туре			Polit	ifact			Gossi	ірсор		CoAID				
	T	S	M	Acc	Prec	Rec	F1	Acc	Prec	Rec	F1	Acc	Prec	Rec	F1	
LIWC (Pennebaker et al. 2015)	✓			0.488	0.680	0.565	0.432	0.662	0.550	0.516	0.472	0.903	0.586	0.531	0.538	
text-CNN (Kim 2014)	✓			0.608	0.621	0.623	0.608	0.733	0.698	0.703	0.701	0.903	0.679	0.674	0.677	
HAN (Yang et al. 2016)	✓			0.632	0.672	0.651	0.648	0.716	0.703	0.709	0.706	0.919	0.698	0.682	0.688	
EANN-Unimodal (Wang et al. 2018)	✓			0.794	0.811	0.790	0.791	0.765	0.732	0.738	0.734	0.925	0.842	0.763	0.792	
HPNF (Shu et al. 2020b)		✓		0.697	0.692	0.683	0.687	0.721	0.703	0.689	0.695	0.902	0.652	0.693	0.672	
AE (Silva et al. 2020)		✓		0.784	0.783	0.774	0.779	0.834	0.828	0.802	0.812	0.928	0.686	0.673	0.677	
HPNF + LIWC (Shu et al. 2020b)			✓	0.704	0.723	0.708	0.716	0.734	0.715	0.706	0.708	0.911	0.682	0.709	0.690	
SAFE (Zhou et al. 2020)			✓	0.793	0.782	0.771	0.775	0.831	0.822	0.798	0.806	0.931	0.754	0.744	0.748	
EANN-Multimodal (Wang et al. 2018)			✓	0.804	0.808	0.794	0.798	0.836	0.812	0.815	0.813	0.944	0.849	0.803	0.808	
Our Approach ($B = 100\% R_{pool} $)			✓	0.840	0.836	0.831	0.835	0.877	0.840	0.832	0.836	0.970	0.876	0.863	0.869	
Our Approach ($B = 50\% R_{pool} $)			✓	0.838	0.836	0.828	0.833	0.848	0.822	0.797	0.808	0.963	0.870	0.854	0.862	
Ablation Study ($B = 100\% R_{pool} $)																
(-) Domain-shared loss				0.823	0.821	0.812	0.815	0.864	0.832	0.828	0.829	0.956	0.857	0.861	0.858	
(-) Domain-specific loss				0.792	0.800	0.783	0.786	0.858	0.832	0.821	0.828	0.934	0.850	0.857	0.853	
(-) Network modality				0.816	0.815	0.817	0.815	0.765	0.749	0.745	0.746	0.945	0.803	0.855	0.827	
(-) Text modality				0.804	0.798	0.793	0.795	0.837	0.835	0.815	0.817	0.932	0.711	0.704	0.707	

ExperimentsAblation Study (1/2)

Method		Туре			Polit	ifact			Gossi	ірсор		CoAID				
	T	S	M	Acc	Prec	Rec	F1	Acc	Prec	Rec	F1	Acc	Prec	Rec	F1	
LIWC (Pennebaker et al. 2015)	✓			0.488	0.680	0.565	0.432	0.662	0.550	0.516	0.472	0.903	0.586	0.531	0.538	
text-CNN (Kim 2014)	✓			0.608	0.621	0.623	0.608	0.733	0.698	0.703	0.701	0.903	0.679	0.674	0.677	
HAN (Yang et al. 2016)	✓			0.632	0.672	0.651	0.648	0.716	0.703	0.709	0.706	0.919	0.698	0.682	0.688	
EANN-Unimodal (Wang et al. 2018)	✓			0.794	0.811	0.790	0.791	0.765	0.732	0.738	0.734	0.925	0.842	0.763	0.792	
HPNF (Shu et al. 2020b)		✓		0.697	0.692	0.683	0.687	0.721	0.703	0.689	0.695	0.902	0.652	0.693	0.672	
AE (Silva et al. 2020)		\		0.784	0.783	0.774	0.779	0.834	0.828	0.802	0.812	0.928	0.686	0.673	0.677	
HPNF + LIWC (Shu et al. 2020b)			✓	0.704	0.723	0.708	0.716	0.734	0.715	0.706	0.708	0.911	0.682	0.709	0.690	
SAFE (Zhou et al. 2020)			✓	0.793	0.782	0.771	0.775	0.831	0.822	0.798	0.806	0.931	0.754	0.744	0.748	
EANN-Multimodal (Wang et al. 2018)			✓	0.804	0.808	0.794	0.798	0.836	0.812	0.815	0.813	0.944	0.849	0.803	0.808	
Our Approach ($B = 100\% R_{pool} $)			✓	0.840	0.836	0.831	0.835	0.877	0.840	0.832	0.836	0.970	0.876	0.863	0.869	
Our Approach ($B = 50\% R_{pool} $)			✓	0.838	0.836	0.828	0.833	0.848	0.822	0.797	0.808	0.963	0.870	0.854	0.862	
Ablation Study ($B = 100\% R_{pool} $)																
(-) Domain-shared loss				0.823	0.821	0.812	0.815	0.864	0.832	0.828	0.829	0.956	0.857	0.861	0.858	
(-) Domain-specific loss				0.792	0.800	0.783	0.786	0.858	0.832	0.821	0.828	0.934	0.850	0.857	0.853	
(-) Network modality				0.816	0.815	0.817	0.815	0.765	0.749	0.745	0.746	0.945	0.803	0.855	0.827	
(-) Text modality				0.804	0.798	0.793	0.795	0.837	0.835	0.815	0.817	0.932	0.711	0.704	0.707	

ExperimentsAblation Study (1/2)

Method		Туре			Polit	ifact			Gossi	ірсор		CoAID			
	T	S	M	Acc	Prec	Rec	F1	Acc	Prec	Rec	F1	Acc	Prec	Rec	F1
LIWC (Pennebaker et al. 2015)	✓			0.488	0.680	0.565	0.432	0.662	0.550	0.516	0.472	0.903	0.586	0.531	0.538
text-CNN (Kim 2014)	✓			0.608	0.621	0.623	0.608	0.733	0.698	0.703	0.701	0.903	0.679	0.674	0.677
HAN (Yang et al. 2016)	✓			0.632	0.672	0.651	0.648	0.716	0.703	0.709	0.706	0.919	0.698	0.682	0.688
EANN-Unimodal (Wang et al. 2018)	✓			0.794	0.811	0.790	0.791	0.765	0.732	0.738	0.734	0.925	0.842	0.763	0.792
HPNF (Shu et al. 2020b)		✓		0.697	0.692	0.683	0.687	0.721	0.703	0.689	0.695	0.902	0.652	0.693	0.672
AE (Silva et al. 2020)		✓		0.784	0.783	0.774	0.779	0.834	0.828	0.802	0.812	0.928	0.686	0.673	0.677
HPNF + LIWC (Shu et al. 2020b)			✓	0.704	0.723	0.708	0.716	0.734	0.715	0.706	0.708	0.911	0.682	0.709	0.690
SAFE (Zhou et al. 2020)			✓	0.793	0.782	0.771	0.775	0.831	0.822	0.798	0.806	0.931	0.754	0.744	0.748
EANN-Multimodal (Wang et al. 2018)			✓	0.804	0.808	0.794	0.798	0.836	0.812	0.815	0.813	0.944	0.849	0.803	0.808
Our Approach ($B = 100\% R_{pool} $)			✓	0.840	0.836	0.831	0.835	0.877	0.840	0.832	0.836	0.970	0.876	0.863	0.869
Our Approach ($B = 50\% R_{pool} $)			✓	0.838	0.836	0.828	0.833	0.848	0.822	0.797	0.808	0.963	0.870	0.854	0.862
Ablation Study ($B = 100\% R_{pool} $)															
(-) Domain-shared loss				0.823	0.821	0.812	0.815	0.864	0.832	0.828	0.829	0.956	0.857	0.861	0.858
(-) Domain-specific loss				0.792	0.800	0.783	0.786	0.858	0.832	0.821	0.828	0.934	0.850	0.857	0.853
(-) Network modality				0.816	0.815	0.817	0.815	0.765	0.749	0.745	0.746	0.945	0.803	0.855	0.827
(-) Text modality				0.804	0.798	0.793	0.795	0.837	0.835	0.815	0.817	0.932	0.711	0.704	0.707

ExperimentsAblation Study (2/2)

- As can be seen, the domain-specific embedding layer preserves the domain of the news by mapping different domains into different clusters (fig.a).
- In contrast, cannot identify the domain labels of news from the cross-domain embedding space (fig.b).
 - Hence, this embedding space is useful to share common knowledge between news from different domains.

Evaluation of LSH-based Instance Selection

- Proposed approach substantially outperforms the random instance selection for the rarely-appearing or highly imbalance domains.
- It increases F1-score by 14% for PolitiFact and 17% for CoAlD, when $B/\left|R_{pool}\right|$ = 0.1.
 - May due to the ability of approach to maximize the coverage of domains when selecting instances.
 - Instead of biasing towards a domain with larger # of records.

Conclusion

- Proposed a novel FND framework, which exploits domain-specific & cross-domain knowledge in news to determine fake news from different domains.
- Also introduced novel unsupervised approach to select informative instances for manual labelling from a large pool of unlabelled news.
 - Selected data pool is subsequently used to train a model that can perform equally for different domains.
- For future work, authors intend to extend model as an online learning framework to determine fake news in a real-world news stream, which typically covers a large number of domains.

Comments of EDDFN

- Multimodal setting in this paper is use text & network information.
 - Different w/ text & image as usual.
- Preserve domain-invariant & domain-specific feature at the same time.
 - Curious about the domain-specific detail performance (only cancel loss in ablation).
- Notation in this paper is uncleared. \bigcirc (f_{shared} vs. $f_{shared}(r)$)
- Network feature not detailed explained cause use authors' previous work.