

Model Optimization and Tuning Phase Template

Date	4 June 2024
Team ID	SWTID1720076203
Project Title	Anemia Sense: Leveraging Machine Learning For Precise Anemia Recognitions
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters	Optimal Values
Logistic Regression	'Logistic Regression': { 'C': [0.01, 0.1, 1, 10], 'penalty': ['l1', 'l2']	Model: Logistic Regression - Best Parameters: {'C': 10, 'penalty': 'l2'}
Random Forest	'Random Forest': {	Model: Random Forest - Best Parameters: {'max_depth': 4, 'n_estimators': 100}
Decision Tree	'Decision Tree': {	del: Decision Tree – Best Parameters: max_depth': 3, 'min_samples_split': 2}
Gradient Boosting	'Gradient Boosting': { 'n_estimators': [100, 200, 300], 'learning_rate': [0.1, 0.01, 0.001] },	<pre>Model: SVM - Best Parameters: {'C': 10, 'kernel': 'linear'}</pre>

Performance Metrics Comparison Report (2 Marks):

Model		Optim	ized Me	tric	
	Classification			f1-score	support
	0 1	1.00 1.00	1.00 1.00	1.00 1.00	167 118
Logistic Regression	accuracy macro avg weighted avg	1.00 1.00	1.00 1.00	1.00 1.00 1.00	285 285 285
	Confusion [[167 0 [0 118]			
	Classification	n Report: precision	recall	f1-score	support
Random Forest	0 1	1.00 1.00	1.00 1.00	1.00 1.00	167 118
	accuracy macro avg weighted avg	1.00 1.00	1.00 1.00	1.00 1.00 1.00	285 285 285
	Confusion [[167 0 [0 118]			

	Classificati	ion Rep prec	ort: ision	recall	f1-score	support
) 1	1.00 1.00	1.00 1.00	1.00 1.00	167 118
Decision Tree	accuracy macro avo weighted avo	g	1.00 1.00	1.00 1.00	1.00 1.00 1.00	285 285 285
	Confusion Matrix: [[167 0] [0 118]]					
	Classificati		ort: ision	recall	f1-score	support
	0 1		1.00 1.00	1.00 1.00	1.00 1.00	167 118
Gradient Boosting	accuracy macro avg weighted avg	J	1.00 1.00	1.00 1.00	1.00 1.00 1.00	285 285 285
	Confusic [[167 [0 11	0]	trix:			
	Classification		ort: ision	<u>recall</u>	f1-score	support
	0 1		0.95 0.84	0.87 0.94	0.91 0.89	167 118
SVM	accuracy macro avg weighted avg		0.90 0.91	0.91 0.90	0.90 0.90 0.90	285 285 285
	Confusio [[146 2 [7 11	1]	trix:			

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
	The Gradient Boosting model was selected for its superior performance, exhibiting high accuracy during hyperparameter tuning. Its ability to handle complex relationships, minimize overfitting, and optimize predictive accuracy aligns with project objectives, justifying its selection as the final model.
Gradient Boosting	