1. У исследователя Василия есть мощный генератор многомерного нормального распределения $\mathcal{N}(0;\sigma^2I)$, где I — единичная матрица размера 4×4 . Других источников случайности в жизни Василия нет. Всё остальное предрешено, а Вася — фаталист!

Василий ничего не знает про π, e и эти самые функции плотности или распределения. Однако Василий понимает текстовую аксиоматику нормального распределения.

- а) Предложите Василию способ равномерно генерировать точки на трехмерной сфере.
- б) Предложите Василию способ равномерно генерировать точки на отрезке [0;1].
- в) Предложите Василию способ равномерно генерировать точки на квадрате $[0;1] \times [0;1]$.
- 2. Матрица X состоит из двух блоков, X = [A:B]. Обозначим $H_X = X(X'X)^{-1}X'$ и $H_A = A(A'A)^{-1}A'$.
 - а) Докажите геометрически без манипуляций с матрицами, что $H_A = H_A H_X$.
 - б) Докажите алгебраически без геометрических образов, что $H_A = H_A H_X$.
- 3. У Василия есть три вектора a, b и c. Все вектора имеют нулевую сумму компонент и единичную длину.

Василий решает найти такой вектор v, также с нулевой суммой компонент и единичный длинной, который минимизировал бы сумму квадратов расстояний

$$||a-v||^2 + ||b-v||^2 + ||c-v||^2$$

Мария решает найти такой вектор m, также с нулевой суммой компонент и единичный длинной, который максимизировал бы сумму выборочных корреляций

$$sCorr^{2}(a, m) + sCorr^{2}(b, m) + sCorr^{2}(c, m)$$

Правда ли, что у Василия и Марии получится один и тот же вектор? Докажите или опровергните.

4. Рассмотрим модель $y_i = \beta_1 + \beta_2 x_i + u_i$. Ошибки u_i независимы и нормальны $\mathcal{N}(0;1)$.

Мария оценивает модель с помощью МНК. Для каждой из ситуаций явно приведите подходящую последовательность x_i или докажите, что данная ситуация невозможна.

- а) Обе оценки сходятся к настоящим параметрам по вероятности: $\hat{\beta}_1 \to \beta_1$, $\hat{\beta}_2 \to \beta_2$.
- б) Ни одна оценка не сходится к настоящему параметру по вероятности: $\hat{\beta}_1 \not\to \beta_1$, $\hat{\beta}_2 \not\to \beta_2$.
- в) По вероятности $\hat{\beta}_1 \to \beta_1$, $\hat{\beta}_2 \not\to \beta_2$
- г) По вероятности $\hat{\beta}_1 \not\to \beta_1$, $\hat{\beta}_2 \to \beta_2$

5. Выборочная корреляционная матрица трех векторов имеет вид

$$\begin{pmatrix}
1 & 0.3 & 0 \\
0.3 & 1 & -0.2 \\
0 & -0.2 & 1
\end{pmatrix}$$

Известно, что первые две главные компоненты начинаются так:

$$pc_1 = (0.02, -0.03, \ldots)$$

$$pc_2 = (-0.01, 0.02, \ldots)$$

В этой задаче можно находить собственные числа и собственные вектора с помощью компьютера численно без пояснений.

- a) Найдите веса, с которыми исходные переменные входят в первые две главные компоненты.
- б) Восстановите наилучшую аппроксимацию для первых двух наблюдений для всех исходных переменных.
- 6. Даша хочет проверить, правда ли, что оценка по эконометрике (y_i) одинаково зависит от количества часов (x_i) , потраченных на подготовку, для трёх групп лиц.

Даша оценила четыре регрессии $y_i = \beta_1 + \beta_2 x_i + u_i$: по всем студентам, по не пьющим кофе, по пьющим мало кофе, по пьющим много кофе.

Результаты в таблице:

выборка	уравнение	RSS	наблюдений
все студенты	$\hat{y}_i = 40 + 2.8x_i$	10000	750
без кофе	$\hat{y}_i = 50 + 3.2x_i$	3000	200
мало кофе	$\hat{y}_i = 37 + 1.8x_i$	2000	300
много кофе	$\hat{y}_i = 45 + 3.4x_i$	2000	250

Помогите Даше!