

CS/IS F214 Logic in Computer Science

MODULE: PROPOSITIONAL LOGIC

Validity and Conjunctive Normal Form

11-09-2018 Sundar B. CS&IS, BITS Pilani 0

Conjunctive Normal Form (CNF)

RECALL

• A propositional logic formula φ is said to be in CNF if the formula is <u>a conjunction of sub-formulas</u> (or *clauses*):

i.e. it is of the form $C_1 \wedge C_2 \wedge ... \wedge C_n$

where each clause C_i is a <u>disjunction of literals</u>:

i.e. it is of the form $L_{i1} \lor L_{i2} \lor ... \lor L_{im}$

- where each literal L_{ij} is
 - either <u>an atomic proposition</u> (\mathbf{p}) or the negation of <u>an</u> <u>atomic proposition</u> ($\neg \mathbf{p}$).
- In Boolean logic, the CNF is referred to as the *Product-of-Sums* (*POS*) form.

Validity and CNF

- Consider a formula φ in CNF:
 - Let ϕ be $C_1 \wedge C_2 \wedge ... \wedge C_n$
 - Then φ is valid <u>if and only if C</u> is valid for all i
 - Let a given clause C_i be L_{i1} ∨ L_{i2} ∨ ... ∨ L_{im}
 - Then, under what conditions will C_i be valid?

Validity and CNF

- Consider a formula φ in CNF:
 - Let ϕ be $C_1 \wedge C_2 \wedge ... \wedge C_n$
 - Then φ is valid <u>if and only if</u> C_i is valid for all i
- Let a given clause C_i be L_{i1} ∨ L_{i2} ∨ ... ∨ L_{im}
- Question:
 - Under what conditions will C_i be valid?
 - Answer:
 - C_i will be valid only if it <u>includes a proposition p and</u> <u>its negation</u> i.e.:
 - there exist \mathbf{k} and \mathbf{l} such that \mathbf{L}_{ik} is \mathbf{p} and \mathbf{L}_{il} is $\neg \mathbf{p}$ for some propositional atom \mathbf{p}

CNF – Algorithm for checking Validity

- isValidCNF(φ)
 - 1. Let ϕ be $C_1 \wedge C_2 \wedge ... \wedge C_n$
 - **2.** *for each* i:
 - 1. if $\underline{\text{not(isValidDisClause}(C_i))}$ then return FALSE;
 - **3.** return TRUE;
- isValidDisClause(C)
 - 1. Let C be $L_1 \lor L_2 \lor ... \lor L_m$
 - **2.** *for each* **i**:
 - 1. if L_i is $p \{ for each j > i : if <math>L_j$ is $\neg p$ then return TRUE $\}$ else $\{ for each j > i : if <math>L_i$ is p then return TRUE $\}$
 - 3. return FALSE;

CNF – Algorithm for checking Validity

isValidCNF(φ) Let ϕ be $C_1 \wedge C_2 \wedge ... \wedge C_n$ for each i: if <u>not(isValidDisClause(**C**_i))</u> then return FALSE; return TRUE; isValidDisClause(C) Let C be $L_1 \vee L_2 \vee ... \vee L_m$ for each **i**: if L_i is $p \{ for each j > i : if <math>L_i$ is $\neg \mathbf{p}$ then return TRUE } $\{ for each j>i : if L_i is \}$ p then return TRUE } return FALSE;

CNF – Cost of checking Validity

Time taken by **isValidCNF**:

- φ has **n** clauses:
 - n * (1 + (<u>time taken by</u> <u>isValidDisClause</u>))
 - in the worst case

<u>Time taken by isValidDisClause</u>:

- •The input clause has **m** literals:
 - 1 + m * (1 + (m * 1))
 - in the worst case

Cost of checking Validity

- Given a formula in CNF with n clauses, and each clause with at most m literals:
 - the cost of checking whether the formula is valid:
 - c*(n + *m*n + m*m*n) in the worst case for some constant c
- Thus the cost of checking whether a formula in CNF is valid is at most:
 - c * m² * n for a suitable constant c

Cost of checking Validity

- Compare the cost of checking validity of a formula in CNF with
 - the <u>cost of checking validity</u> of a formula <u>using the truth</u> <u>table method</u> (or equivalently, <u>by testing a circuit</u>):
 - (# rows in truth table) * (cost of evaluating the formula)
 - 2^k * (n*m)
 - where **k** different propositional atoms are used in the formula.
- Is there a better way for checking validity of a propositional logic formula, if it is not known to be in CNF?

