

The effect of corruption on economic growth in developing countries

Qian Zhang | timqzhang@uchicago.edu | Github: timqzhang Master in Computational Social Science, University of Chicago June 3, 2020

Research Question

does corruption affect economic growth in developing countries?

- How to obtain a consistent and continuous measurement of corruption?
- How to estimate the impact of corruption on economic growth in developing countries?
- What is the best statistical learning model for prediction on economic growth?

Limitation of current corruption index

- 1. Different methodologies in each existing index.
- 2. Failing to include some important factors.
- 3. Current indices are not continuous.

Reconstruction of corruption: SVM

- Theoretical framework: SVM [1]
 - Mainly measures Corruption via Corruption **Control** as $c_{i,t}$ for certain country i at period t:

•
$$c_{i,t} = F\left(x_{i,t}^1, \cdots, x_{i,t}^m\right) \ \forall (i,t)$$

- Algorithms
- Select m conditions for function.
- 2. Get a sample set by coding country-year pairs as having good(1) or bad(0) Corruption Control.
- 3. Fit the SVM model and apply the approximated function to all country-year pairs.

Statistical justification:

Estimated SVM Corruption index: Visualization

F2. SVM Corruption index around world, 2016 Higher index, better corruption control

F3. Kernel density estimate of SVM corruption control, 1996 and 2016

Impact of corruption on growth: Model specification

A Dynamic Panel Data (DPD) model is implemented. Baseline model is written as

$$y_{i,t} = \beta y_{i,t-1} + \gamma c_{i,t} + \theta X_{i,t} + \mu_i + \xi_t + \epsilon_{i,t},$$

- $y_{i,t}$ denotes the log form of GDP per capita, $c_{i,t}$ denotes the corruption-control indicator, X denotes all other control variables, μ_i denotes country's fixed effect, and ξ_t denotes time's fixed effect.
- Two-step "Difference" GMM is applied for estimation. [2]

Data and Variables: Statistic summary

Variables	Obs	Mean	Std.Dev.
GDP Per Capita	2630	5448.30	8370.52
Corruption Control	1974	0.23	0.17
Regulatory Quality	2646	-0.39	0.77
Inflation%	2623	13.44	111.67
Gov Consumption%	2464	14.66	7.21
Trade Openness%	2553	82.55	50.86
Capital Investment%	2464	22.51	8.23
FDI inflow%	2605	4.38	7.46
Natural Resource%	2630	10.19	12.85

T1. Summary Statistics

Empirical results

Dependent: lgdp_pcap	(1)	(2)	(3)	(4)
Lagged Igdp_pcap	0.97*** (0.0017)	0.97*** (0.0020)	0.97*** (0.0018)	0.96*** (0.0018)
Corruption Control (CC)	0.087*** (0.0067)	0.29*** (0.027)	0.25*** (0.031)	0.56*** (0.072)
CC^2		-0.24*** (0.037)	-0.25*** (0.039)	-0.75*** (0.10)
Regulatory Quality (RQ)			0.029*** (0.0021)	0.00057 (0.0035)
CC×RQ				0.139*** (0.015)

* p<0.1, ** p<0.05, *** p<0.01 T2. GMM estimation results

Corruption Control's overall effect on column 4: 0.56-1.50×CC+0.139×Reg Qual

Given a proper corruption control (0.56-1.50 \times CC > 0), Better RQ enlarges CC's positive effect.

More results: Prediction on growth

- Randomly splitting dataset to get 10 bootstraps
- Applying 8 prediction models

F4. CV-MSE of prediction

Best prediction model: Random Forest

Conclusions

- 1. There is an optimal level of corruption control regarding growth in developing countries.
- 2. Better regulatory quality could enlarge the positive impact of corruption control on growth.
- 3. Best prediction model on economic growth is Random Forest.

Limitations & Future work

- The diff-GMM, though much better than sys-GMM, still has IV proliferation which weakens the power of IV related test (Sargan test).
- 2. More approaches and algorithms could be explored to measure the corruption more accurately other than SVM in this work.

References

- [1] Gründler, K., & Krieger, T. (2016). Democracy and growth: Evidence from a machine learning indicator. European Journal of Political Economy, 45, 85–107.
- [2] Arellano, M., & Bond, S. (1991). Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Review of Economic Studies, 58(2), 277–297.

Acknowledgements

I would like to express my sincere gratitude to Dr. Richard Evans for his continuous support and helpful comments on my work. Also, I want to thank all classmates in MACS 30250 this Spring.