Modelación Basada en Agentes

Dr. Felipe Contreras

25 de enero de 2018

- Antecedentes
 - Sistemas Complejos
 - Mapeos Discretos
 - Autómatas Celulares

Sistemas Complejos

- Sistema: Conjunto de elementos o partes conectadas entre sí, que llevan acabo cierta función
- Complejo ≠ Complicado
- Presentan auto-organización
- Exhiben propiedades emergentes ("el todo es más que la suma de sus partes")
 - Muchos elementos
 - Las interacciones son dinámicas
 - Elementos influyen y son influidos por los demás
 - Las interacciones son no lineales (pequeñas "causas", pueden tener "efectos" grandes)
 - Las interacciones son recursivas
 - Son abiertos
 - Operan lejos del equilibrio
 - Tienen una historia
 - Los elementos actúan con información local

- Sistema: Conjunto de elementos o partes conectadas entre sí, que llevan acabo cierta función
- ullet Complejo eq Complicado
- Presentan auto-organización
- Exhiben propiedades emergentes ("el todo es más que la suma de sus partes")
 - Muchos elementos
 - Las interacciones son dinámicas
 - Elementos influyen y son influidos por los demás
 - Las interacciones son no lineales (pequeñas "causas", pueden tener "efectos" grandes)
 - Las interacciones son recursivas
 - Son abiertos
 - Operan lejos del equilibrio
 - Tienen una historia
 - Los elementos actúan con información local

- Sistema: Conjunto de elementos o partes conectadas entre sí, que llevan acabo cierta función
- ullet Complejo eq Complicado
- Presentan auto-organización
- Exhiben propiedades emergentes ("el todo es más que la suma de sus partes")
 - Muchos elementos
 - Las interacciones son dinámicas
 - 🔘 Elementos influyen y son influidos por los demás
 - Las interacciones son no lineales (pequeñas "causas", pueden tener "efectos" grandes)
 - Las interacciones son recursivas
 - Son abiertos
 - Operan lejos del equilibrio
 - Tienen una historia
 - Los elementos actúan con información local

- Sistema: Conjunto de elementos o partes conectadas entre sí, que llevan acabo cierta función
- ullet Complejo eq Complicado
- Presentan auto-organización
- Exhiben propiedades emergentes ("el todo es más que la suma de sus partes")
 - Muchos elementos
 - 2 Las interacciones son dinámicas
 - Elementos influyen y son influidos por los demás
 - Las interacciones son no lineales (pequeñas "causas", pueden tener "efectos" grandes)
 - 5 Las interacciones son recursivas
 - Son abiertos
 - Operan lejos del equilibrio
 - Tienen una historia
 - Los elementos actúan con información local

- Sistema: Conjunto de elementos o partes conectadas entre sí, que llevan acabo cierta función
- Complejo ≠ Complicado
- Presentan auto-organización
- Exhiben propiedades emergentes ("el todo es más que la suma de sus partes")
 - Muchos elementos
 - Las interacciones son dinámicas
 - Elementos influyen y son influidos por los demás
 - Las interacciones son no lineales (pequeñas "causas", pueden tener "efectos" grandes)
 - 5 Las interacciones son recursivas
 - Son abiertos
 - Operan lejos del equilibrio
 - Tienen una historia
 - O Los elementos actúan con información local

- Sistema: Conjunto de elementos o partes conectadas entre sí, que llevan acabo cierta función
- Complejo \neq Complicado
- Presentan auto-organización
- Exhiben propiedades emergentes ("el todo es más que la suma de sus partes")
 - Muchos elementos
 - 2 Las interacciones son dinámicas
 - Elementos influyen y son influidos por los demás
 - Las interacciones son no lineales (pequeñas "causas", pueden tener "efectos" grandes)
 - 5 Las interacciones son recursivas
 - Son abiertos
 - Operan lejos del equilibrio
 - Tienen una historia
 - O Los elementos actúan con información local

- Sistema: Conjunto de elementos o partes conectadas entre sí, que llevan acabo cierta función
- Complejo \neq Complicado
- Presentan auto-organización
- Exhiben propiedades emergentes ("el todo es más que la suma de sus partes")
 - Muchos elementos
 - 2 Las interacciones son dinámicas
 - Selementos influyen y son influidos por los demás
 - Las interacciones son no lineales (pequeñas "causas", pueden tener "efectos" grandes)
 - Las interacciones son recursivas
 - Son abjectos
 - Operan lejos del equilibrio
 - Tienen una historia
 - O Los elementos actúan con información local

- Sistema: Conjunto de elementos o partes conectadas entre sí, que llevan acabo cierta función
- Complejo \neq Complicado
- Presentan auto-organización
- Exhiben propiedades emergentes ("el todo es más que la suma de sus partes")
 - Muchos elementos
 - 2 Las interacciones son dinámicas
 - Elementos influyen y son influidos por los demás
 - Las interacciones son no lineales (pequeñas "causas", pueden tener "efectos" grandes)
 - 5 Las interacciones son recursivas
 - Son abiertos
 - Operan lejos del equilibrio
 - Tienen una historia
 - O Los elementos actúan con información local

- Sistema: Conjunto de elementos o partes conectadas entre sí, que llevan acabo cierta función
- Complejo \neq Complicado
- Presentan auto-organización
- Exhiben propiedades emergentes ("el todo es más que la suma de sus partes")
 - Muchos elementos
 - 2 Las interacciones son dinámicas
 - Selementos influyen y son influidos por los demás
 - Las interacciones son no lineales (pequeñas "causas", pueden tener "efectos" grandes)
 - 5 Las interacciones son recursivas
 - Son abiertos
 - Operan lejos del equilibrio
 - Tienen una historia
 - O Los elementos actúan con información local

- Sistema: Conjunto de elementos o partes conectadas entre sí, que llevan acabo cierta función
- Complejo \neq Complicado
- Presentan auto-organización
- Exhiben propiedades emergentes ("el todo es más que la suma de sus partes")
 - Muchos elementos
 - 2 Las interacciones son dinámicas
 - Elementos influyen y son influidos por los demás
 - Las interacciones son no lineales (pequeñas "causas", pueden tener "efectos" grandes)
 - 5 Las interacciones son recursivas
 - Son abiertos
 - Operan lejos del equilibrio
 - Tienen una historia
 - Los elementos actúan con información local

- Sistema: Conjunto de elementos o partes conectadas entre sí, que llevan acabo cierta función
- Complejo ≠ Complicado
- Presentan auto-organización
- Exhiben propiedades emergentes ("el todo es más que la suma de sus partes")
 - Muchos elementos
 - 2 Las interacciones son dinámicas
 - Selementos influyen y son influidos por los demás
 - Las interacciones son no lineales (pequeñas "causas", pueden tener "efectos" grandes)
 - 5 Las interacciones son recursivas
 - Son abiertos
 - Operan lejos del equilibrio
 - Tienen una historia
 - Los elementos actúan con información local

- Sistema: Conjunto de elementos o partes conectadas entre sí, que llevan acabo cierta función
- Complejo ≠ Complicado
- Presentan auto-organización
- Exhiben propiedades emergentes ("el todo es más que la suma de sus partes")
 - Muchos elementos
 - 2 Las interacciones son dinámicas
 - Selementos influyen y son influidos por los demás
 - Las interacciones son no lineales (pequeñas "causas", pueden tener "efectos" grandes)
 - 5 Las interacciones son recursivas
 - Son abiertos
 - Operan lejos del equilibrio
 - Tienen una historia
 - Los elementos actúan con información local

- Sistema: Conjunto de elementos o partes conectadas entre sí, que llevan acabo cierta función
- Complejo ≠ Complicado
- Presentan auto-organización
- Exhiben propiedades emergentes ("el todo es más que la suma de sus partes")
 - Muchos elementos
 - 2 Las interacciones son dinámicas
 - 3 Elementos influyen y son influidos por los demás
 - Las interacciones son no lineales (pequeñas "causas", pueden tener "efectos" grandes)
 - 6 Las interacciones son recursivas
 - Son abiertos
 - Operan lejos del equilibrio
 - 3 Tienen una historia
 - 2 Los elementos actúan con información local

Mapeos Discretos

Mapeos discretos

•
$$y = f(x)$$

•
$$x_1 = f(x_0)$$

•
$$x_2 = f(x_1), x_3 = f(x_2), x_4 = f(x_3), ...$$

Mapeos discretos

- y = f(x)
- $x_1 = f(x_0)$
- $x_2 = f(x_1), x_3 = f(x_2), x_4 = f(x_3), ...$

Mapeos discretos

- y = f(x)
- $x_1 = f(x_0)$
- $x_2 = f(x_1), x_3 = f(x_2), x_4 = f(x_3), ...$

Representación gráfica

Representación gráfica

Representación gráfica

- Converge (a un punto)
- No converge: tiene ciclo límite
- No converge: órbita densa

- Converge (a un punto)
- No converge: tiene ciclo límite
- No converge: órbita densa

- Converge (a un punto)
- No converge: tiene ciclo límite
- No converge: órbita densa

Autómatas Celulares

- Vocabulario σ de n símbolos
- Organización de m de estos símbolos en un estado inicial E₀
- ullet Tamaño de vecindad o radio ho
- Condiciones en la frontera (cíclica, terminación, valor único)
- Regla de evolución (función de mapeo)

$$\sigma = \{0, 1\}, n = 2$$

- Vocabulario σ de n símbolos
- Organización de m de estos símbolos en un estado inicial E₀
- Tamaño de vecindad o radio ρ
- Condiciones en la frontera (cíclica, terminación, valor único)
- Regla de evolución (función de mapeo)

- Vocabulario σ de n símbolos
- Organización de m de estos símbolos en un estado inicial E₀
- ullet Tamaño de vecindad o radio ho
- Condiciones en la frontera (cíclica, terminación, valor único)
- Regla de evolución (función de mapeo)

 $\rho = 3$

- Vocabulario σ de n símbolos
- Organización de m de estos símbolos en un estado inicial E₀
- ullet Tamaño de vecindad o radio ho
- Condiciones en la frontera (cíclica, terminación, valor único)
- Regla de evolución (función de mapeo)

E₀ 0 1 1 0 1 1 1 0 0 0 1 0 0

- Vocabulario σ de n símbolos
- Organización de m de estos símbolos en un estado inicial E_0
- ullet Tamaño de vecindad o radio ho
- Condiciones en la frontera (cíclica, terminación, valor único)
- Regla de evolución (función de mapeo)

Regla 124

0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Regla de evolución

Regla 124

$$124_{10} = 011111100_2$$

Aplicación de la regla

*E*₁

Aplicación de la regla

Aplicación de la regla

¿cómo quedan las demás?, ¿cómo funciona la condición de frontera cíclica?

Ejemplos

Regla 90, E₀="central"

Ejemplos

Regla 94, E_0 ="01110000000000011111100001111"

Ejemplos

Regla 135, E_0 ="azar"

- El conjunto de símbolos es $\sigma = \{0,1\}$, significando 0="muerta", 1="viva"
- ullet E_0 , y todos los demás estados, están dispuestos en una parrilla 2D de celdas
- La vecindad mide $\rho = (3,3)$, es un cuadro de 3×3 símbolos
- La regla de evolución para el siguiente estado, asigna a la celda central el valor:
 - "viva", si la celda central esta "muerta" y hay exactamente 3 vecinos vivos
 - "muerta", si la celda central está "viva" y más de 3 (sobrepoblación) o menos de 2 (soledad) vecinos están vivos
 - En cualquier otro caso, la celda mantiene su símbolo

- El conjunto de símbolos es $\sigma = \{0,1\}$, significando 0="muerta", 1="viva"
- E_0 , y todos los demás estados, están dispuestos en una parrilla 2D de celdas
- La vecindad mide $\rho = (3,3)$, es un cuadro de 3×3 símbolos
- La regla de evolución para el siguiente estado, asigna a la celda central el valor:
 - "viva", si la celda central esta "muerta" y hay exactamente 3 vecinos vivos
 - "muerta", si la celda central está "viva" y más de 3 (sobrepoblación) o menos de 2 (soledad) vecinos están vivos
 - En cualquier otro caso, la celda mantiene su símbolo

- El conjunto de símbolos es $\sigma = \{0,1\}$, significando 0="muerta", 1="viva"
- E_0 , y todos los demás estados, están dispuestos en una parrilla 2D de celdas
- La vecindad mide $\rho = (3,3)$, es un cuadro de 3×3 símbolos
- La regla de evolución para el siguiente estado, asigna a la celda central el valor:
 - "viva", si la celda central esta "muerta" y hay exactamente 3 vecinos vivos
 - "muerta", si la celda central está "viva" y más de 3 (sobrepoblación) o menos de 2 (soledad) vecinos están vivos
 - En cualquier otro caso, la celda mantiene su símbolo

- El conjunto de símbolos es $\sigma = \{0,1\}$, significando 0="muerta", 1="viva"
- E_0 , y todos los demás estados, están dispuestos en una parrilla 2D de celdas
- La vecindad mide $\rho = (3,3)$, es un cuadro de 3×3 símbolos
- La regla de evolución para el siguiente estado, asigna a la celda central el valor:
 - "viva", si la celda central esta "muerta" y hay exactamente 3 vecinos vivos
 - "muerta", si la celda central está "viva" y más de 3 (sobrepoblación) o menos de 2 (soledad) vecinos están vivos
 - En cualquier otro caso, la celda mantiene su símbolo

- El conjunto de símbolos es $\sigma = \{0, 1\}$, significando 0="muerta", 1="viva"
- E_0 , y todos los demás estados, están dispuestos en una parrilla 2D de celdas
- La vecindad mide $\rho = (3,3)$, es un cuadro de 3×3 símbolos
- La regla de evolución para el siguiente estado, asigna a la celda central el valor:
 - "viva", si la celda central esta "muerta" y hay exactamente 3 vecinos vivos
 - "muerta", si la celda central está "viva" y más de 3 (sobrepoblación) o menos de 2 (soledad) vecinos están vivos
 - En cualquier otro caso, la celda mantiene su símbolo

- El conjunto de símbolos es $\sigma = \{0,1\}$, significando 0="muerta", 1="viva"
- E₀, y todos los demás estados, están dispuestos en una parrilla 2D de celdas
- La vecindad mide $\rho = (3,3)$, es un cuadro de 3×3 símbolos
- La regla de evolución para el siguiente estado, asigna a la celda central el valor:
 - "viva", si la celda central esta "muerta" y hay exactamente 3 vecinos vivos
 - "muerta", si la celda central está "viva" y más de 3 (sobrepoblación) o menos de 2 (soledad) vecinos están vivos
 - En cualquier otro caso, la celda mantiene su símbolo

- El conjunto de símbolos es $\sigma = \{0, 1\}$, significando 0="muerta", 1="viva"
- E₀, y todos los demás estados, están dispuestos en una parrilla 2D de celdas
- La vecindad mide $\rho = (3,3)$, es un cuadro de 3×3 símbolos
- La regla de evolución para el siguiente estado, asigna a la celda central el valor:
 - "viva", si la celda central esta "muerta" y hay exactamente 3 vecinos vivos
 - "muerta", si la celda central está "viva" y más de 3 (sobrepoblación) o menos de 2 (soledad) vecinos están vivos
 - En cualquier otro caso, la celda mantiene su símbolo

- El conjunto de símbolos es $\sigma = \{0,1\}$, significando 0="muerta", 1="viva"
- E_0 , y todos los demás estados, están dispuestos en una parrilla 2D de celdas
- La vecindad mide $\rho = (3,3)$, es un cuadro de 3×3 símbolos
- La regla de evolución para el siguiente estado, asigna a la celda central el valor:
 - "viva", si la celda central esta "muerta" y hay exactamente 3 vecinos vivos
 - "muerta", si la celda central está "viva" y más de 3 (sobrepoblación) o menos de 2 (soledad) vecinos están vivos
 - En cualquier otro caso, la celda mantiene su símbolo

