Problemas distribuciones discretas y continuas

Cristopher Morales Ubal e-mail: c.m.ubal@gmail.com

Problemas

1. Sea $T \sim \exp(\alpha)$, $X|T = t \sim P(t)$, es decir:

$$\mathbb{P}(X = k | T = t) = \frac{e^{-t}t^k}{k!}, \quad k = 0, 1, \dots$$

Muestre que

$$\mathbb{P}(X = n) = \frac{\alpha}{(\alpha + 1)^{n+1}}, n = 0, 1, \dots$$

- 2. Sea $X \sim N(0,1)$; $Y = H(X) = X^2$. Determine la densidad de Y, es decir $f_Y(y)$, y concluya que $Y \sim G(1/2,1/2) = \chi_1^2$.
- 3. Sean X, Y errores de medición de las coordenadas de x, y al medir la posición de un objeto en el plano. Si X, Y distribuyen $N\left(0, \sigma^2\right)$ y son independientes. Determine, usando el Teorema del Cambio de Variable (TCV), la densidad de $R = \sqrt{X^2 + Y^2}$.
- 4. Sean X_1, \ldots, X_n sucesión de v.a. independientes tal que $X_i \sim B(1, p)$, $\forall i$. Sea $N \sim P(\lambda)$ independientes de X_i , $\forall i$. Calcular $\mathbb{P}\left(\sum_{i=1}^N X_i = k\right)$.

Hint: Dado N=n, que distribución tiene $\sum_{i=1}^{N} X_i$?

5. Recuerde que la función $\Gamma: \mathbb{R}_+ - \{0\} \to \mathbb{R}_+ - \{0\}$ está dada por:

$$\Gamma\left(\alpha\right) = \int_0^\infty e^{-x} x^{\alpha - 1} dx \ .$$

Sea X una v.a. que tiene distribución $Gamma(1,\alpha)$, es decir, su función de densidad viene dada por:

$$f_X(x) = \frac{e^{-x}x^{\alpha - 1}}{\Gamma(\alpha)} \cdot \mathbf{1}_{\{x > 0\}}$$

- a) Encuentre $\mathbb{E}(X)$ para $n \geq 1$ (puede dejarla expresada en términos de la función Γ) y deduzca $\mathrm{Var}(X)$.
- b) Calcule la función generadora de momentos $\mathbb{E}\left(e^{-sX}\right)$ para $s\geq 0$.
- c) Pruebe, usando función generadora de momentos, que si las v.a.'s X e Y son independientes, $X \sim \operatorname{Gamma}(1, \alpha)$ e $Y \sim \operatorname{Gamma}(1, \beta)$ entonces $X + Y \sim \operatorname{Gamma}(1, \gamma)$ y encuentre γ .
- 6. a) Sea X una variable aleatoria que sigue una ley de Poisson de parámetro $\lambda > 0$. Es decir,

$$\mathbb{P}(X=i) = e^{-\lambda} \frac{\lambda^{i}}{i!}, i = 0, 1, 2, \dots$$

Demuestre que $\mathbb{E}(X) = \lambda$.

b) Sea X una variable aleatoria discreta definida en $\mathbb{N} \cup \{0\}$. Demuestre que

$$\mathbb{E}\left(X\right) = \sum_{i>1} \mathbb{P}\left(X \ge i\right)$$

7. a) Sean X e Y v.a. continuas independientes. Muestre que:

$$\mathbb{P}(X < Y) = \int_{-\infty}^{\infty} F_X(y) f_Y(y) dy$$

- b) Considere X, Y v.a. independientes tales que $X \sim \exp(\lambda), Y \sim \exp(\alpha)$. Calcule $\mathbb{P}(Y > k \cdot X)$, $\forall k$.
- c) Considere X,Y v.a. independientes tales que $X \sim N(0,1), Y \sim N(0,1)$. Usando T.C.V. determine la función de densidad de la v.a. $Z = \frac{X}{Y}$.
- 8. a) Se dispone de un cordel de largo 1, el cual se corta en un punto escogido al azar (es decir, uniformemente).
 - 1) Sea X el largo del trozo mayor. Muestre que X es una variable uniforme en el intervalo [1/2,1]
 - 2) Encuentre la función de densidad de X/(1-X). Calcule la probabilidad de que el largo del trozo mayor sea a lo más 4 veces el largo del trozo menor.
 - b) Sea X una variable aleatoria. Dado $\alpha \in \mathbb{R}$ se define $s(\alpha) = \mathbb{E}\left[\left(X \alpha\right)^2\right]$. Pruebe que $s(\alpha) \geq \operatorname{Var}(X)$ para todo α y que se alcanza la igualdad sólo cuando $\alpha = \mathbb{E}(X)$.

Soluciones

Problemas

- 1. Demonstración.
- 2. Demonstración.

3.
$$f_R(r) = \frac{\sqrt{2\pi}}{|\sigma|} r e^{-\frac{1}{2}r^2} \cdot \mathbf{1}_{\{r \ge 0\}}$$

4.
$$\mathbb{P}\left(\sum_{i=1}^{N} X_i = k\right) = \frac{(p\lambda)^k e^{-p\lambda}}{k!}$$

5. a)
$$\mathbb{E}(X^n) = \frac{\Gamma(n+\alpha)}{\Gamma(\alpha)} \text{ y } Var(X) = \alpha$$

$$b) \mathbb{E}\left(e^{-sX}\right) = \frac{1}{\left(s+1\right)^{\alpha}} , s > -1$$

c)
$$\gamma = \alpha + \beta$$

- 6. a) Demonstración.
 - b) Demonstración.
- 7. a) Prueba

$$b) \ \mathbb{P}(Y > kX) = \frac{\lambda}{\lambda + \alpha k} \ , \ k \ge 0 \ \text{y} \ \mathbb{P}(Y > kX) = 1 \ , \ k < 0.$$

$$c) \ f_Z(z) = \frac{1}{\pi \left(1 + z^2\right)} \cdot \mathbf{1}_{\mathbb{R}}$$

8. *a*) 1) Prueba

2)
$$\frac{3}{5}$$
.

b) Prueba