MA3705 Algoritmos Combinatoriales.

Profesor: Iván Rapaport.

Auxiliares: Antonia Labarca y Cristian Palma.

Auxiliar 7

P1 Sea G = (V, E) un grafo simple. Un conjunto $M \subseteq E$ se dice **matching** si $\forall e, f \in M$, $e \cap f = \emptyset$ (es decir, las aristas de M no tienen vértices en común). Un conjunto $C \subseteq V$ se dice **cover** si $\forall e \in E, e \cap C \neq \emptyset$ (es decir, todas las aristas inciden en al menos un vértice del conjunto).

Sea G bipartito. Pruebe que

 $\max\{|M|: M \text{ es matching de } G\} = \min\{|C|: C \text{ es cover de } G\}$

P2 Se tiene un conjunto P de proyectos. Cada proyecto $i \in P$ tiene asociado una utilidad $p_i \neq 0$ (que puede ser positiva o negativa). También se tienen proyectos que son requisitos de otros (si i es requisito de j, para hacer i es necesario también hacer j), en un conjunto R de requisitos. Diseñe un algoritmo que maximice la suma de las utilidades.