8 etale 代数

8.1 対角化

以下ではとくに述べない限り K を可換体とする。

定理 8.1. A: K-alg と L/K: 拡大としたときに集合 $\mathscr{H}:=\mathrm{Hom}_{K-alg}(A,L)$ は L- ベクトル空間 $\mathrm{Hom}_{K-vect.sp}(A,L)$ の中で L 上一次独立。

 $Proof.\ A$ を K-vect.sp として見ればこれは加法群であるので Dedekind の補題から従う。

補題 8.2. $\dim_L(\operatorname{Hom}_{K-vect.sp}(A,L)) = [\operatorname{Hom}_{K-vect.sp}(A,L):L] = [A:K]$ が成り立つ。

 $Proof.\ A_{(L)}:=L\otimes_K A$ としてその双対空間を $(A_{(L)})^*:=\operatorname{Hom}_L(A_{(L)},L)$ とする。以下簡単のため $\operatorname{Hom}_{K-vect.sp}(A,L)$ を $\operatorname{Hom}(A,L)$ と書く。 $\overline{\cdot}:(A_{(L)})^*\longrightarrow \operatorname{Hom}(A,L),u\longmapsto \overline{u}$ で $\overline{u}:A\longrightarrow L,x\longmapsto \overline{u}(x)=u(1\otimes x)$ とすればこの $\overline{\cdot}$ は同型であり双対空間であることから $\dim_L A_{(L)}=\dim_L(A_{(L)})^*=\dim_L \operatorname{Hom}(A,L)$ である。 $\dim_L A_{(L)}=\dim_K A$ より従う。

系 8.3. 上の状況において $h(L)(=h_A(L)):=|\mathrm{Hom}_{K-alg}(A,L)|\leq [A:K]$ が成り立つ。

Proof. $\operatorname{Hom}_{K-alg}(A,L)$ は $\operatorname{Hom}_{K-vect.sp}(A,L)$ で一次独立より $h(L) \leq \dim_L(\operatorname{Hom}_{K-vect.sp}(A,L))$ である。補題 (8.2) の $\dim_L(\operatorname{Hom}_{K-vect.sp}(A,L)) = [A:K]$ より従う。

定義 8.4. K-alg の A が 対角化可能 (diagonalizable) とは $\exists n \geq 1, A \cong K^n$ であること。 とくに n=[A:K] である。 K^n は成分ごとの演算を行う直積代数である。

Proof. n = [A:K] であることは A を K- ベクトル空間と見ることからわかる。

定義 8.5. A が拡大 L/K により対角化される (diagonaled by L) とは L-alg の $L\otimes_K A$ が対角化可能であること。

定義 8.6. A が K 上etaleとは \exists 拡大 L/K により対角化されること。

Rem 8.7. (e_1,\ldots,e_n) が $K^n(\cong A)$ の標準基底とすると成分ごとの演算を行うから $e_i^2=e_i,e_ie_j=0 (i\neq j),e_1+\cdots+e_n=1_A$ となる。

命題 8.8. 有限次 $K - alg\ A$ について次は同値 (n = [A:K] とする)

- (1) A は対角化可能。
- (2) A の K 上の基底 (e_1, \ldots, e_n) で $e_i^2 = e_i, e_i e_j = 0 (i \neq j)$ を満たすものが存在する。
- (3) $\operatorname{Hom}_{K-alg}(A,K)$ は $\operatorname{Hom}_{K-vect.sp}(A,K)$ を生成する。

Proof. (1) \Rightarrow (2) は Rem (8.7) より成立。

 $(2) \Rightarrow (1)$

 $A_i = Ke_i$ とすると $A_i \cong K$ で $A = \{k_1e_1 + \dots + k_ne_n | k_i \in K\} = A_1 \times \dots \times A_n \cong K^n$ より対角化可能。 (3) \Rightarrow (1)

有限次 K-alg なので $\operatorname{Hom}_{K-alg}(A,K)=\{\pi_1,\ldots,\pi_n\}$ とする。これは定理 (8.1) より一次独立で

仮定から全体を張るので $\operatorname{Hom}_{K-vect.sp}(A,K)$ の基底になる。そしてそれを並べた K- 代数の準同型 $\pi:=(\pi_1,\ldots,\pi_n):A\longrightarrow K^n, a\longmapsto (\pi_1(a),\ldots,\pi_n(a))$ とする。

系 8.9. 系 (8.3) における $|\text{Hom}_{K-alg}(A,L)| \leq [A:K]$ について

 $|\operatorname{Hom}_{K-alg}(A,L)| = [A:K] \Leftrightarrow A$ は L で対角化される。

また、始域と終域を制限して $\pi: \operatorname{Hom}_{K-alg}(A,L) \longrightarrow \operatorname{Hom}_{L-alg}(L \otimes_K A,L)$ でも同様に全単射になるから $|\operatorname{Hom}_{K-alg}(A,L)| = |\operatorname{Hom}_{L-alg}(L \otimes_K A,L)|$ である。

命題 (8.8) の (1) \Leftrightarrow (3) で A を $L \otimes_K A$ で置き換えて、補題 (8.2) も用いれば

A は L で対角化される $\Leftrightarrow L \otimes_K A$ は対角化可能

- ⇔ $\operatorname{Hom}_{L-alg}(A_{(L)}, L)$ は $\operatorname{Hom}_{L-vect.sp}(A_{(L)}, K)$ を生成する。(基底になる) ⇔ $|\operatorname{Hom}_{L-alg}(A_{(L)}, L)| = \dim_L \operatorname{Hom}_{L-vect.sp}(A_{(L)}, K)$ ⇔ $|\operatorname{Hom}_{K-alg}(A, L)| = |\operatorname{Hom}_{L-alg}(A_{(L)}, L)|$
- $\Leftrightarrow |\operatorname{Hom}_{K-alg}(A, L)| = |\operatorname{Hom}_{L-alg}(A_{(L)}, L)|$ $= \dim_{L} \operatorname{Hom}_{L-v.s}(A, L) = \dim_{L} \operatorname{Hom}_{K-v.s}(A, L) = [A : K]$
- $\Leftrightarrow |\mathrm{Hom}_{K-alg}(A,L)| = [A:K]$

命題 8.10. K - alg A について次は同値。

- (1) A は K 上 etale である。(: \Leftrightarrow ∃拡大により対角化される)
- (2) A は K の ³有限次拡大により対角化される。
- (3) A は K の \forall 代数閉な拡大により対角化される。
- (4) A は K の ³代数閉な拡大により対角化される。

Proof. (3) \Rightarrow (4) \Rightarrow (1) は明らか。

- $(1) \Rightarrow (2) \Rightarrow (3)$ を示す。
- $(1) \Rightarrow (2)$
- $(1):\Leftrightarrow$ $\exists L/K$ により対角化される。系(8.9)から $|\mathrm{Hom}_{K-alg}(A,L)|=[A:K]=n$ となる。 $\mathrm{Hom}_{K-alg}(A,L)=\{\phi_1,\ldots,\phi_n\}$ とすると $\phi_i(A)$ は L の部分体で対角化可能だから $\phi_i(A)\otimes_K A\subset L\otimes_K A\cong K^n$ より $\phi_i(A)$ は K 上 n 次以下。よって $M:=(\phi_i(A)$ たちの合成)($\subset L$) も K の有限次拡大となり、 $\mathrm{Im}(\phi_i)\subset M$ より終域を制限することができるから $\mathrm{Hom}_{K-alg}(A,M)=\{\phi_1,\ldots,\phi_n\}$ である。系(8.9)より $|\mathrm{Hom}_{K-alg}(A,M)|=[A:K]$ だから A は K 上有限次拡大の M で対角化されるから(2)が示された。

 $(2) \Rightarrow (3)$

A はある有限次拡大 M で対角化されるとする。有限次拡大より Rem $(\ref{Rem}$ $(\ref{Rem$

 $|\mathrm{Hom}_{K-alg}(A,M)|=|\mathrm{Hom}_{K-alg}(A,\Omega)|=[A:K]$ となる。よって A は任意の代数閉体 Ω で対角化される。