PRACTICE EXAM 2

1. A point has coordinates x = -2 and y = -2. Find its polar coordinates r and θ .

Answer: $r = \sqrt{8} = 2\sqrt{2}$. $\theta = \pi + \pi/4 = 5\pi/4$ or $\theta = -3\pi/4$ (give or take any integer multiple of 2π).

- **2.** (a) Eliminate the parameter to find a Cartesian equation of the curve $x = 1 t^2$, y = 2t.
- (b) Sketch the curve and indicate with an arrow the direction in which the curve is traced as the parameter increases.

Answer: (a) Solve for t from the second equation, t = y/2. Plug into first, $x = 1 - (y/2)^2 = 1 - y^2/4$.

- (b) I will omit the actual sketch, but the curve is a parabola with vertex (1,0), opening to the left.
- **3.** Find the length of the curve $y = \sqrt{x^3}$ from the point (0,0) to the point (4,8). Answer: $\frac{8}{27}(10^{3/2}-1)$.
- **4.** Find the surface area obtained by rotating the curve $y = 4 x^2$, $0 \le x \le 2$, around the y-axis.

Answer: $\frac{\pi}{6}(17^{3/2} - 1)$.

5. Use the Comparison Theorem to determine whether the integral is convergent or divergent:

(a) $\int_{2}^{\infty} \frac{x+3}{x^2 - \sqrt{x}} \, dx$;

(b) $\int_{2}^{\infty} \frac{1}{\sqrt{x^3 + 3}} dx$

Answer: (a) divergent by comparison to $\int_2^\infty \frac{1}{x} dx$ (this integral diverges and the given one is greater than it).

- (b) convergent by comparison to $\int_2^\infty \frac{1}{x^{3/2}} dx$ (this integral converges and the given one is smaller than it).
- 6. (a) Set up, but do not evaluate, an integral for the length of the curve

$$x = e^{3t}$$
, $y = \sqrt{t}$, where $1 < t < 2$.

(b) Also set up an integral for the surface area obtained by rotating this curve about the y-axis.

Answer: (a) $\int_{1}^{2} \sqrt{9e^{6t} + 1/(4t)} dt$

(b)
$$\int_{1}^{2} 2\pi e^{3t} \sqrt{9e^{6t} + 1/(4t)} dt$$

7. Find the area of the region that lies inside the polar curve r=3 and outside the polar curve $r=3-\cos\theta$.

Answer: $6 - \pi/4$. (integrate between $-\pi/2$ and $\pi/2$).

8. Evaluate the improper integral, if it is convergent.

(a)
$$\int_{1}^{\infty} xe^{-x^2} dx$$
;

(b)
$$\int_0^1 x^2 \ln x \, dx$$
.

Answer: (a) 1/(2e), (b) -1/9.

9. Find an equation of the tangent line to the parametric curve

$$x = 4t - \sin(2t), \quad y = 1 - \cos(2t)$$

at the point where $t = \pi/4$.

Answer: $y = 1 + \frac{1}{2}(x - \pi + 1)$.

10. Find a Cartesian equation for the polar curve $r=2\sin\theta+2\cos\theta$, and identify this curve.

Answer: $x^2+y^2=2y+2x$, which after completing the squares becomes $(x-1)^2+(y-1)^2=2$, and is identified as the circle of radius $\sqrt{2}$ with center (1,1).

11. Sketch the polar curve $r = \frac{1}{1 + \cos \theta}$.

Answer: The curve looks like a parabola opening to the left (and in fact, it **is** a parabola opening to the left.)

Instead of providing a sketch, I'll explain how to draw it. As θ increases from 0 to 2π , the following happens: the denominator $1+\cos\theta$ starts off from 2, goes down to its minimal value 0 at $\theta=\pi$, then goes back to 2 when θ reaches 2π . Accordingly, the function $r=\frac{1}{1+\cos\theta}$ starts off at 1/2, grows to infinity as θ approaches π and then comes down to 1/2.

Having established this, we sketch the curve as follows. Place the pencil at distance 1/2 to the right of the origin, on the positive part of the x-axis. Move it counterclockwise around the origin while increasing the distance (r) from the origin. You don't reach the negative part of the x-axis, since r increases indefinitely as θ approaches π . In the bottom half of the plane, where θ is between π and 2π , the polar distance r decreases from infinity to 1/2, as the curve returns to its starting point.