Equivalencia y consecuencia lógica para lógica de predicados

Clase 05

IIC 1253

Prof. Cristian Riveros

Recordatorio: Predicados n-arios

Definición

- Un predicado n-ario $P(x_1,...,x_n)$ es una afirmación con n variables, cuyo valor de verdad depende de los objetos en el cuál es evaluado.
- Para un predicado $P(x_1,...,x_n)$ y valores $a_1,...,a_n$, la valuación $P(a_1,...,a_n)$ es el valor de verdad de P en $a_1,...,a_n$.

¿cuál es el valor de verdad de las siguientes valuaciones?

- $O(x,y) := x \le y$
- S(x, y, z) := x + y = z
- Padre(x, y) := x es padre de y
 - O(2,3) S(5,10,15) S(4,12,1) Padre(Homero, Bart)

Recordatorio: Predicados y dominio

Definición

- Un predicado n-ario $P(x_1,...,x_n)$ es una afirmación con n variables, cuyo valor de verdad depende de los objetos en el cuál es evaluado.
- Para un predicado $P(x_1,...,x_n)$ y valores $a_1,...,a_n$, la valuación $P(a_1,...,a_n)$ es el valor de verdad de P en $a_1,...,a_n$.
- Todos los predicados están restringidos a un dominio de evaluación.

Ejemplos depredicados y sus dominios

$$O(x,y) := x \le y$$

sobre N

$$S(x, y, z) := x + y = z$$

sobre $\mathbb Q$

Padre
$$(x, y) := x$$
 es padre de y

sobre todas las personas

Recordatorio: Predicados compuestos (o formulas)

Definición

Un predicado es **compuesto** si es un predicado básico, o la negación (\neg) , conjunción (\land) , disyunción (\lor) , condicional (\rightarrow) , bicondicional (\leftrightarrow) de predicados compuestos sobre el **mismo dominio**.

El valuación de un predicado compuesto corresponde a la valuación recursiva de sus conectivos lógicos y predicados básicos.

Ejemplos

Para los predicados $P(x) \coloneqq x$ es par y $O(x,y) \coloneqq x \le y$ sobre \mathbb{N} :

- $P'(x) := \neg P(x)$
- $O'(x,y,z) := O(x,y) \wedge O(y,z)$
- $P''(x,y) := (P(x) \land P(y)) \to O(x,y)$

Recordatorio: Cuantificador universal

Definición

Para b_1, \ldots, b_n en D y $P'(y_1, \ldots, y_n) := \forall x. P(x, y_1, \ldots, y_n)$, definimos:

$$P'(b_1,\ldots,b_n) = 1$$

si para todo a en D se tiene que $P(a, b_1, ..., b_n) = 1$, y 0 en otro caso.

Ejemplos

Para los predicados $P(x) \coloneqq x$ es par y $O(x,y) \coloneqq x \le y$ sobre \mathbb{N} :

$$O'(y) := \forall x. \ O(x,y)$$

$$O'(2) = \forall x. \ O(x,2)$$

$$O''(x) := \forall y. O(x, y)$$

$$O''(0) = \forall y.\ O(0,y)$$

$$P_0 := \forall x. P(x)$$

$$P_0' := \forall x. (P(x) \vee \neg P(x))$$

Recordatorio: Cuantificador existencial

Definición

Para b_1, \ldots, b_n en D y $P'(y_1, \ldots, y_n) := \exists x. P(x, y_1, \ldots, y_n)$, definimos:

$$P'(b_1,\ldots,b_n) = 1$$

si existe a en D tal que $P(a, b_1, ..., b_n) = 1$, y 0 en otro caso.

Ejemplos

Para los predicados $P(x) \coloneqq x$ es par y $O(x,y) \coloneqq x \le y$ sobre \mathbb{N} :

$$O'(y) := \exists x. \ O(x,y)$$
 $O'(2) = \exists x. \ O(x,2)$

$$O''(x) := \exists y. \ O(x,y)$$
 $O''(2) = \exists y. \ O(2,y)$

•
$$O'''(x,y) := \exists z. \ O(x,z) \land O(z,y)$$
 $O'''(1,2)$

$$P_0 := \exists x. P(x)$$

Recordatorio: Lógica de Predicados

(re)Definición

Decimos que una predicado es compuesto (o también formula) si es:

- un predicado básico,
- la negación (¬), conjunción (∧), disyunción (∨), condicional (→), bicondicional (↔) de predicados compuestos sobre el mismo dominio o
- la cuatificación universal (\forall) o existencial (\exists) de un pred. compuesto.

El valuación de un predicado compuesto corresponde a la valuación recursiva de sus cuantificadores, conectivos lógicos y predicados básicos.

Outline

Interpretaciones

Equivalencia lógica

Consecuencia lógica

Outline

Interpretaciones

Equivalencia lógica

Consecuencia lógica

¿de qué depende si una formula sea verdadera o falsa?

¿es la formula verdadera o falsa?

$$\varphi = \exists x. \ \forall y. \ x \leq y$$

- lacksquare si el "dominio" donde se evalúa arphi son los naturales.
- si el "dominio" donde se evalúa φ son los enteros.
- si el "dominio" donde se evalúa φ son nombres de personas. (?)

Depende de la **interpretación** del dominio y símbolo ≤.

Notación

Desde ahora, diremos que $P(x_1,...,x_n)$ es un símbolo de predicado.

Definición

Una interpretación \mathcal{I} para sím. de predicado P_1, \ldots, P_m se compone por:

- 1. un dominio $\mathcal{I}(dom)$ y
- 2. para cada símbolo P_i un **predicado** $\mathcal{I}(P_i)$.

Definición

Una interpretación \mathcal{I} para sím. de predicado P_1, \ldots, P_m se compone por:

- 1. un dominio $\mathcal{I}(dom)$ y
- 2. para cada símbolo P_i un **predicado** $\mathcal{I}(P_i)$.

Ejemplos

Considere los símbolos P(x) y O(x,y).

- $\mathcal{I}_1(\textit{dom}) := \mathbb{N}$ $\mathcal{I}_1(P) := x \neq 1$ $\mathcal{I}_1(O) := x \text{ divide a } y$
- $\mathcal{I}_2(dom) := \mathbb{Z}$ $\mathcal{I}_2(P) := x < 0$ $\mathcal{I}_2(O) := x + y = 0$

Definición

Sea $\varphi(x_1,\ldots,x_n)$ una formula y $\mathcal I$ una interpretación de los símbolos en φ .

Diremos que la interpretación \mathcal{I} satisface φ sobre a_1, \ldots, a_n en $\mathcal{I}(dom)$:

$$\mathcal{I} \vDash \varphi(a_1,\ldots,a_n)$$

si $\varphi(a_1,\ldots,a_n)$ es **verdadero** al evaluar cada símbolo en φ según \mathcal{I} .

Ejemplos

Para los símbolos P(x) y O(x, y):

$$\mathbf{I}_1 \models \forall x. \exists y. P(y) \land O(x, y)$$

$$\blacksquare \mathcal{I}_2 \models \forall x. \exists y. P(y) \land O(x, y)$$
 ?

Definición

Sea $\varphi(x_1,\ldots,x_n)$ una formula y \mathcal{I} una interpretación de los símbolos en φ .

Diremos que la interpretación \mathcal{I} satisface φ sobre a_1, \ldots, a_n en $\mathcal{I}(dom)$:

$$\mathcal{I} \vDash \varphi(a_1,\ldots,a_n)$$

si $\varphi(a_1,\ldots,a_n)$ es **verdadero** al evaluar cada símbolo en φ según \mathcal{I} .

Si \mathcal{I} **NO** satisface φ sobre a_1, \ldots, a_n en $\mathcal{I}(dom)$ lo anotaremos como:

$$\mathcal{I} \not\models \varphi(a_1,\ldots,a_n)$$

 $\mathcal{I} \vDash \varphi$ se puede leer como:

" φ es **verdadero** bajo el dominio y predicados dados por \mathcal{I} ."

Outline

Interpretaciones

Equivalencia lógica

Consecuencia lógica

Equivalencia lógica en Lógica de Predicados

Definición

Sean $\varphi(x_1,\ldots,x_n)$ y $\psi(x_1,\ldots,x_n)$ dos formulas en lógica de predicados.

Decimos que φ y ψ son lógicamente equivalentes:

$$\varphi \equiv \psi$$

si para toda interpretación \mathcal{I} y para todo a_1, \ldots, a_n en $\mathcal{I}(dom)$ se cumple:

$$\mathcal{I} \vDash \varphi(a_1, \ldots, a_n)$$
 si, y solo si, $\mathcal{I} \vDash \psi(a_1, \ldots, a_n)$

Caso especial

Si φ y ψ son oraciones (no tienen variables libres), entonces:

para toda interpretación \mathcal{I} : $\mathcal{I} \models \varphi$ si, y solo si, $\mathcal{I} \models \psi$

Equivalencia lógica en Lógica de Predicados

Todas las equivalencias de lógica proposicional son equivalencias en lógica de predicados.

Ejemplos

Para fórmulas α , β y γ en lógica de predicados:

- 1. Conmutatividad: $\alpha \land \beta \equiv \beta \land \alpha$
- 2. Asociatividad: $\alpha \wedge (\beta \wedge \gamma) \equiv (\alpha \wedge \beta) \wedge \gamma$
- 3. **Idempotente**: $\alpha \land \alpha \equiv \alpha$
- 4. Doble negación: $\neg \neg \alpha \equiv \alpha$
- 5. Distributividad: $\alpha \land (\beta \lor \gamma) \equiv (\alpha \land \beta) \lor (\alpha \land \gamma)$
- **6.** De Morgan: $\neg(\alpha \land \beta) \equiv \neg\alpha \lor \neg\beta$
- 7. ...

Equivalencia lógica en Lógica de Predicados

Ejemplos

Las siguientes formulas son lógicamente equivalente:

- $\forall x. P(x) \rightarrow R(x) \equiv \forall x. \neg P(x) \lor R(x)$
- $(\forall x. P(x)) \rightarrow (\exists y. R(y)) \equiv (\neg \exists y. R(y)) \rightarrow (\neg \forall x. P(x))$

Nuevas equivalencias lógicas en Lógica de Predicados

Para formulas φ y ψ en lógica de predicados:

- 1. $\neg \forall x. \varphi \equiv \exists x. \neg \varphi$.
- 2. $\neg \exists x. \varphi \equiv \forall x. \neg \varphi$.

Demostración $(\neg \forall x. \varphi \equiv \exists x. \neg \varphi)$

Sea \mathcal{I} una interpretación cualquiera, entonces:

$$\mathcal{I} \vDash \neg \forall x. \ \varphi(x) \qquad \text{ssi} \qquad \mathcal{I} \not \models \forall x. \ \varphi(x)$$

$$\text{ssi} \qquad \text{existe a en $\mathcal{I}(dom)$ tal que $\mathcal{I} \not \models \varphi(a)$ }$$

$$\text{ssi} \qquad \text{existe a en $\mathcal{I}(dom)$ tal que $\mathcal{I} \vDash \neg \varphi(a)$ }$$

$$\text{ssi} \qquad \mathcal{I} \vDash \exists x. \neg \varphi(x)$$

Demuestre la otra equivalencia!

Nuevas equivalencias lógicas en Lógica de Predicados

Para formulas φ y ψ en lógica de predicados:

- 3. $\forall x. (\varphi \land \psi) \equiv (\forall x. \varphi) \land (\forall x. \psi)$.
- 4. $\exists x. (\varphi \lor \psi) \equiv (\exists x. \varphi) \lor (\exists x. \psi).$

Demostración $(\exists x. (\varphi \lor \psi) \equiv (\exists x. \varphi) \lor (\exists x. \psi))$

Sea ${\mathcal I}$ una interpretación cualquiera, entonces:

$$\mathcal{I} \vDash \exists x. \ (\varphi(x) \lor \psi(x)) \qquad \text{ssi} \qquad \text{existe a en $\mathcal{I}(dom)$ tal que $\mathcal{I} \vDash \varphi(a) \lor \psi(a)$}$$

$$\text{ssi} \qquad \text{existe a en $\mathcal{I}(dom)$ tal que $\mathcal{I} \vDash \varphi(a)$} \qquad (?)$$

$$\text{ssi} \qquad \mathcal{I} \vDash \exists x. \ \varphi(x)$$

$$\text{ssi} \qquad \mathcal{I} \vDash \exists x. \ \varphi(x) \lor \exists x. \ \psi(x)$$

Demuestre la otra equivalencia!

Nuevas equivalencias lógicas en Lógica de Predicados

; es verdad que ...?

$$\forall x. (\varphi \lor \psi) \stackrel{?}{=} (\forall x. \varphi) \lor (\forall x. \psi)$$

$$\exists x. (\varphi \wedge \psi) \stackrel{?}{\equiv} (\exists x. \varphi) \wedge (\exists x. \psi)$$

Outline

Interpretaciones

Equivalencia lógica

Consecuencia lógica

Tautologías en lógica de predicados

Definición

Una fórmula φ es una **tautología** si para toda interpretación \mathcal{I} y para todo a_1, \ldots, a_n en $\mathcal{I}(dom)$ se cumple que:

$$\mathcal{I} \vDash \varphi(a_1,\ldots,a_n)$$

¿cuáles fórmulas son tautologías?

- $\forall x. P(x) \lor \neg P(x)$
- $\forall x. \exists y. x \leq y$
- $(\forall x. P(x)) \rightarrow P(y)$
- $\forall x. (P(x) \rightarrow P(y))$

Consecuencia lógica en lógica de predicados

Para un conjunto Σ de formulas, decimos que \mathcal{I} satisface Σ sobre a_1, \ldots, a_n en $\mathcal{I}(dom)$ (notación $\mathcal{I} \models \Sigma(a_1, \ldots, a_n)$) si:

$$\mathcal{I} \vDash \varphi(a_1, \ldots, a_n)$$
 para toda $\varphi \in \Sigma$

Definición

Una oración φ es consecuencia lógica de un conjunto de oraciones Σ :

$$\Sigma \models \varphi$$

si para toda interpretación \mathcal{I} y a_1, \ldots, a_n en $\mathcal{I}(dom)$ se cumple que:

si
$$\mathcal{I} \models \Sigma(a_1, \ldots, a_n)$$
 entonces $\mathcal{I} \models \varphi(a_1, \ldots, a_n)$

Consecuencia lógica en lógica de predicados

Ejemplo

Todos los hombres son mortales.

Sócrates es hombre.

Por lo tanto, Sócrates es mortal.

Esto lo podemos modelar con el vocabulario $H(\cdot)$, $M(\cdot)$:

$$\forall x. \ \mathsf{H}(x) \to \mathsf{M}(x)$$

 $\mathsf{H}(y)$

M(y)

¿se cumple la consecuencia lógica?

¿cuáles son consecuencias lógicas válidas?

1.
$$\{ (\forall x. \varphi) \lor (\forall x. \psi) \} \models \forall x. (\varphi \lor \psi)$$

2. $\{ \exists x. (\varphi \land \psi) \} \models (\exists x. \varphi) \land (\exists x. \psi)$

3. $\{ (\exists x. \varphi) \land (\exists x. \psi) \} \models \exists x. (\varphi \land \psi)$

4. $\{ (\exists x. \varphi(x)) \land \psi \} \models \exists y. (\varphi(y) \land \psi), y \text{ no aparece en } \varphi \circ \psi$

5. $\{ \forall x. \varphi \} \models \exists x. \varphi$

6. $\{ \forall x. \exists y. R(x, y) \} \models \exists x. \forall y. R(x, y)$

Demuestre estas consecuencias lógicas

Para hacer inferencia lógica es muy útil usar nombres de variables!

1. Instanciación universal:

$$\forall x. \, \varphi(x)$$
 $\varphi(a)$ para cualquier a

2. Generalización universal:

arphi(a)	para cualquier <i>a</i>
$\forall x. \varphi(x)$	

Para hacer inferencia lógica es muy útil usar nombres de variables!

3. Instanciación existencial:

$$\exists x. \, \varphi(x)$$
 $\varphi(a)$ para algún a (nuevo)

4. Generalización existencial:

$$\frac{\varphi(a) \qquad \text{para algún } a}{\exists x. \, \varphi(x)}$$

Ejemplo

Algún estudiante en la sala no estudio para el examen

Todos los estudiantes en la sala pasaron el examen

Algún estudiante pasó el examen y no estudio

¿cómo modelamos este problema?

$$S(x) := x \text{ está en la sala.}$$

$$E(x) := x$$
 estudio para el examen.

$$X(x) := x$$
 pasó el examen.

¿cómo queda la consecuencia lógica?

$$\exists x. S(x) \land \neg E(x)$$

$$\forall x. S(x) \rightarrow X(x)$$

$$\exists x. X(x) \land \neg E(x)$$

Ejemplo $\exists x. S(x) \land \neg E(x)$ $\forall x. S(x) \rightarrow X(x)$ $\exists x. X(x) \land \neg E(x)$ ¿cómo inferimos esta consecuencia lógica? 1. $\exists x. S(x) \land \neg E(x)$ (Premisa) 2. $S(a) \land \neg E(a)$ (Inst. existencial 1.) (Simpl. conjuntiva 2.) S(a)4. $\forall x. S(x) \rightarrow X(x)$ (Premisa) 5. $S(a) \rightarrow X(a)$ (Inst. universal 4.) 6. X(a)(Modus ponens 3. y 5.) 7. $\neg E(a)$ (Simpl. conjuntiva 2.) 8. $X(a) \land \neg E(a)$ (Conjunción 6. y 7.) 9. $\exists x. X(x) \land \neg E(x)$ (Gen. existencial 8.)