Prof. Dr. Ir. Dr. h. c. Joost-Pieter Katoen

Christian Hensel, Matthias Volk

Introduction to Model Checking (Summer Term 2018)

— Exercise Sheet 4 (due 28th May) —

General Remarks

- The exercises are to be solved in groups of three students.
- You may hand in your solutions for the exercises just before the exercise class starts at 12:15 or by dropping them into the "Introduction to Model Checking" box at our chair *before 12:00*. Do *not* hand in your solutions via L2P or via e-mail.

Exercise 1 (6 Points)

Let $AP = \{a, b\}$ and let

$$E = \left\{ \sigma = A_0 A_1 A_2 \dots \in \left(2^{AP}\right)^\omega \mid (\exists n \geq 0 \, . \, \forall 0 \leq i < n \, . \, a \in A_i \wedge A_n = \{a,b\}) \wedge (\forall j \geq 0 \, . \, \exists i \geq j \, . \, b \in A_i) \right\}$$

be an LT property. Provide a decomposition $E = S \cap L$ into a safety property S and a liveness property L. For this, give ω -regular expressions s and l over the alphabet 2^{AP} such that $S = \mathcal{L}_{\omega}(s)$ and $L = \mathcal{L}_{\omega}(l)$.

Hint: For a regular expression δ over the alphabet Σ , we let $\mathcal{L}(\delta) \subseteq \Sigma^*$ denote the language of finite words induced δ . An ω -regular expression γ over the alphabet Σ is of the form

$$\gamma = \alpha_1 \cdot \beta_1^{\omega} + \ldots + \alpha_n \cdot \beta_n^{\omega}$$

where $n \geq 1$, α_i , β_i are regular expressions over Σ such that $\epsilon \notin \mathcal{L}(\beta_i)$ for all $1 \leq i \leq n$. The semantics of an ω -regular expression γ is a language of infinite words defined by

$$\mathcal{L}_{\omega}(\gamma) = \mathcal{L}(\alpha_1)\mathcal{L}(\beta_1)^{\omega} \cup \ldots \cup \mathcal{L}(\alpha_n)\mathcal{L}(\beta_n)^{\omega}$$

where

- for $L \subseteq \Sigma^*$ it is $L^{\omega} = \{ \sigma_1 \sigma_2 \sigma_3 \dots \mid \forall i \geq 1 . \sigma_i \in L \}$, and
- for $L_1 \subseteq \Sigma^*, L_2 \subseteq \Sigma^\omega$ it is $L_1L_2 = \{\sigma_1\sigma_2 \mid \sigma_1 \in \mathcal{L}_1 \land \sigma_2 \in L_2\} \subseteq \Sigma^\omega$.

Exercise 2*

$$(1 + 2 + 2 + 3 \text{ Points})$$

Let $TS_i = (S_i, Act, \rightarrow_i, S_0^i, AP_i, L_i)$ be transition systems for $i \in \{1, 2\}$. Note that TS_1 and TS_2 have the same action set.

Prove or disprove the following statements under the assumption $AP_2 = \emptyset$.

- (a) $Traces(TS_1) \subseteq Traces(TS_1 \parallel TS_2)$,
- (b) $Traces(TS_1 \parallel TS_2) \subseteq Traces(TS_1)$.

Furthermore, let $\mathcal{F} = (\emptyset, \mathcal{F}_s, \mathcal{F}_w)$ be a fairness assumption.

Prove or disprove the following statements (for arbitrary AP₂).

- (c) $Traces(TS_1) \subseteq Traces(TS_2) \implies FairTraces_{\mathcal{F}}(TS_1) \subseteq FairTraces_{\mathcal{F}}(TS_2)$, and
- (d) if E is a liveness property and $TS_2 \models_{\mathcal{F}} E$, then

$$Traces(TS_1) \subseteq Traces(TS_2) \implies TS_1 \models_{\mathcal{F}} E.$$

Exercise 3^* (1+3+3 Points)

Consider the transition system TS given below. Let $B_1 = \{\alpha\}$, $B_2 = \{\alpha, \beta\}$ and $B_3 = \{\beta\}$ be sets of actions. Further, let E_a , E_b and E' be the following LT properties:

- E_a = the set of all words $A_0A_1A_2\cdots \in (2^{\{a,b\}})^{\omega}$ with $A_i \in \{\{a,b\},\{a\}\}\}$ for infinitely many i (i.e., infinitely often a).
- E_b = the set of all words $A_0 A_1 A_2 \cdots \in (2^{\{a,b\}})^{\omega}$ with $A_i \in \{\{a,b\},\{b\}\}$ for infinitely many i (i.e., infinitely often b).
- E' = the set of all words $A_0A_1A_2\cdots \in (2^{\{a,b\}})^{\omega}$ for which there does not exist an $i \in \mathbb{N}$ s.t. $A_i = \{a\}, A_{i+1} = \{a,b\}$ and $A_{i+2} = \emptyset$.

- (a) For which LT properties $E \in \{E_a, E_b, E'\}$ does it hold that TS $\models E$?
- (b) For which sets of actions B_i ($i \in \{1, 2, 3\}$) and LT properties $E \in \{E_a, E_b, E'\}$ does it hold that $TS \models_{\mathcal{F}^i_{strong}} E$? Here, \mathcal{F}^i_{strong} is a strong fairness condition with respect to B_i that does not impose any unconditional or weak fairness conditions (i.e., $\mathcal{F}^i_{strong} = (\emptyset, \{B_i\}, \emptyset)$).
- (c) Answer the questions in (b) for weak fairness instead of strong fairness (i.e., $\mathcal{F}_{weak}^i = (\emptyset, \emptyset, \{B_i\})$).

Consider the transition system TS depicted below and the regular safety property

 $P_{safe} = \text{ ``always if a is valid and $b \land \neg c$ was valid somewhere before, } \\ \text{then neither a nor b holds thereafter at least until c holds"}$

As an example, it holds:

$$\{b\} \emptyset \{a, b\} \{a, b, c\} \in \operatorname{pref}(P_{safe})$$

$$\{a, b\} \{a, b\} \emptyset \{b, c\} \in \operatorname{pref}(P_{safe})$$

$$\{b\} \{a, c\} \{a\} \{a, b, c\} \in \operatorname{BadPref}(P_{safe})$$

$$\{b\} \{a, c\} \{a, c\} \{a\} \in \operatorname{BadPref}(P_{safe})$$

- (a) Define an NFA \mathcal{A} such that $\mathcal{L}(\mathcal{A}) = MinBadPref(P_{safe})$.
- (b) Decide whether TS $\models P_{safe}$ using the TS $\otimes A$ construction. Provide a counterexample if TS $\not\models P_{safe}$.