Inferència

Estimadors:

$$\bar{y} = \sum_{i=1}^{n} Y_i / n$$

$$s^{2} = \frac{\sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}}{n-1} = \frac{\sum_{i=1}^{n} Y_{i}^{2} - n(\overline{Y})^{2}}{n-1} = \frac{\sum_{i=1}^{n} Y_{i}^{2} - \frac{(\sum_{i=1}^{n} Y_{i})^{2}}{n}}{n-1}$$

Estadístics: "senyal /soroll" o "diferència / s.e." segueixen una N o t_{ν} "quocient variàncies" segueixen una χ^2_{ν} o F_{ν}

Paràmetre	Estadístic (i se*)	Premisses	Distribució	Interval de Confiança (1-α)% (risc α%)
μ	$Z = \frac{(\overline{y} - \mu)}{\sigma / \sqrt{n}} = \frac{(\overline{y} - \mu)}{se}$	[Y ~ N o n "gran"] i σ coneguda	$Z \sim N(0,1)$	$[\bar{y} \pm z_{1-\frac{\alpha}{2}} \ se]$
μ	$T = \frac{(\overline{y} - \mu)}{s/\sqrt{n}} = \frac{(\overline{y} - \mu)}{se}$	Y ~ N	$T \sim t_{n-1}$	$[\bar{y} \pm t_{n-1,1-\frac{\alpha}{2}} \ se]$
π	$Z = \frac{(p-\pi)}{\sqrt{\hat{\pi}(1-\hat{\pi})/n}} = \frac{(p-\pi)}{se}$ $\hat{\pi} = P o \hat{\pi} = 0.5$	$(1-\pi) \ n \ge \approx 5$ $\pi \ n \ge \approx 5$	$Z \sim N(0,1)$	$[p \pm z_{1-\frac{\alpha}{2}} se]$
σ^2	$X^2 = \frac{s^2(n-1)}{\sigma^2}$	Y ~ N	$X^2 \sim \chi^2_{n-1}$	$\left[\frac{s^2(n-1)}{\chi^2_{n-1, 1-\alpha/2}}, \frac{s^2(n-1)}{\chi^2_{n-1,\alpha/2}}\right]$
μ ₁ – μ ₂ (ο μ _D)	$T = \frac{(\bar{d} - \mu_D)}{s_D / \sqrt{n}} = \frac{(\bar{d} - \mu_D)}{se}$	D ~ N (2 grups aparellats)	$T \sim t_{n-1}$	$[\bar{d} \pm t_{n-1,1-\frac{\alpha}{2}} \ se]$
μ1 – μ2	$T = \frac{(\bar{y}_1 - \bar{y}_2) - (\mu_1 - \mu_2)}{s\sqrt{1/n_1 + 1/n_2}} = \frac{(\bar{y}_1 - \bar{y}_2) - (\mu_1 - \mu_2)}{se}$ $s^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$	Y_1 , $Y_2 \sim N$ $\sigma_1 = \sigma_2$ desconegudes (2 grups independents)	$T \sim t_{n1+n2-2}$	$[(\bar{y}_1 - \bar{y}_2) \pm t_{(n_1+n_2-2),1-\frac{\alpha}{2}} se]$
π1 – π2	$Z = \frac{(P_1 - P_2) - (\pi_1 - \pi_2)}{se}$ $se = \sqrt{P_1(1 - P_1)/n_1 + P_2(1 - P_2)/n_2}$	(1-π) $n ≥ ≈ 5π$ $n ≥ ≈ 5(2 grups independents)$	$Z \sim N(0,1)$	$[(P_1 - P_2) \pm z_{1 - \frac{\alpha}{2}} se]$
$\frac{\sigma_1^2}{\sigma_2^2}$	$F = \frac{s_1^2/\sigma_1^2}{s_2^2/\sigma_2^2}$	Y ₁ , Y ₂ ∼ N (2 grups independents)	$F \sim \mathbf{F}_{n1-1,n2-1}$	$\left[\frac{s_1^2/s_2^2}{F_{(n1-1,n2-1),1-\frac{\alpha}{2}}}, \frac{s_1^2/s_2^2}{F_{(n1-1,n2-1),\frac{\alpha}{2}}}\right]$

^{*} se (standard error o error tipus)