Números Complejos

Adriana Dávila Santos

20 de julio de 2021

Objetivo particular

El alumno reconocerá de los números complejos las diferentes formas, realizará operaciones fundamentales con ellos e identificará las propiedades de estas operaciones.

Necesidad de los números complejos para la solución de ecuaciones de segundo grado: la unidad imaginaria

Definición

$$\sqrt{-1} = i \rightarrow i^2 = -1$$
, i recibe el nombre de unidad imaginaria

Recordemos que hay ecuaciones de segundo grado, cuyas raíces no se encuentran en \mathbb{R} , ya que encontramos que la solución es la raíz cuadrada de un número negativo, por lo que nos salimos de los números reales para entrar al campo de los **complejos**.

Estos números surgen bajo la necesidad de poder dar respuesta a las raíces de números negativos, ya que muchas ecuaciones de n-ésimo grado las poseen.

Veamos esto con un ejemplo sencillo.

Necesidad de los números complejos para la solución de ecuaciones de segundo grado: la unidad imaginaria

Ejemplo

Encuentra las raíces de la ecuación $x^2 = -4$ Resolveremos esta ecuación usando la fórmula general de 2° grado:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-0 \pm \sqrt{0^2 - 4(1)(4)}}{2(1)} = \frac{0 \pm \sqrt{-16}}{2}$$

Justo en este punto es dónde aparece la unidad imaginaria para resolver estos problemas, ya que tenemos lo siguiente:

$$\frac{0 \pm \sqrt{(16)(-1)}}{2} = \frac{0 \pm \sqrt{16} \cdot \sqrt{-1}}{2} = \frac{0 \pm 4i}{2} = \pm 2i$$

Como podemos observar, gracias a la unidad imaginaria, podemos obtener las raíces de este tipo de ecuaciones, en estos casos dónde aparece el número i, estamos hablando de números complejos.

Estructura

Definición

Definiremos al campo de los números complejos de la siguiente forma:

Sea
$$\mathbb{C}=\{z=a+bi:a,b\in\mathbb{R}\ \&\ i=\sqrt{-1}\ (unidad\ imaginaria)\}$$

Dónde 'a' es la parte real y 'b' la imaginaria, si b=0, entonces estamos hablando de un número real

Suma y producto

Definición

Definiremos al campo de los números complejos de la siguiente forma:

Sea
$$\mathbb{C}=\{z=a+bi:a,b\in\mathbb{R}\ \&\ i=\sqrt{-1}\ (unidad\ imaginaria)\}$$

Dónde a es la parte real y b la imaginaria, si b = 0, entonces estamos hablando de un número real

Definición

La suma (+) de números complejos en forma binómica consiste en operar las partes reales e imaginarias de manera independiente de la siguiente forma:

Sea
$$z_1 = a + bi$$
 y $z_2 = c + di$, $z + w = (a + c) + (b + d)i$

Definición

El producto (\cdot) de números complejos en forma binómica, se trabaja de la misma forma que el producto de expresiones algebraicas, multiplicando cada número de un término con cada número del otro término y sumando respectivamente de la siguiente forma:

Sea
$$z_1 = a + bi$$
 y $z_2 = c + di$,
 $z_1 \cdot z_2 = (a + bi)(c + di) = (a \cdot c + a \cdot di + c \cdot bi + bi \cdot di)$
 $\rightarrow z_1 \cdot z_2 = (a \cdot c - b \cdot d) + (a \cdot d + c \cdot b)i$

7/28

Suma y producto

Ejemplo

Sea
$$z_1 = 3 - 4i$$
 y $z_2 = 6 + 9i$
 $z_1 + z_2 = (3 + 6) + (-4 + 9)i = 9 + 5i$

Ejemplo

Sea
$$z_3 = 5 + 2i$$
 y $z_4 = 12 + 7i$
 $z_3 \cdot z_4 = (5 + 2i)(12 + 7i) = 5 \cdot 12 + 5 \cdot 7i + 12 \cdot 2i + 2i \cdot 7i$
 $z_3 \cdot z_4 = 60 + 35i + 24i - 14 = 46 + 59i$

NOTA: Sea
$$x \in \mathbb{R}$$
 $y z = (a + bi) \in \mathbb{C}$ $x(a + bi) = ax + bxi$

Propiedades de la suma y el producto

La suma posee la propiedad conmutativa, asociativa y de cerradura, existe el neutro aditivo (0+0i=0) y existe el inverso aditivo $\forall z \in \mathbb{C}$ que es -z

El producto posee la propiedad conmutativa, asociativa y de cerradura, existe el neutro multiplicativo (1+0i) y existe el inverso multiplicativo $\forall z \in \mathbb{C} \neq 0$

El producto es distributivo sobre la suma de modo que:

$$z_1(z_2+z_3)=z_1\cdot z_2+z_1\cdot z_3 \ \forall z_i\in \ \mathbb{C}$$

Conjugado y modulo de un número complejo

Definición

El conjugado de un número complejo z=a+bi, denotado por \bar{z} , se define como $\bar{z}=a-bi$

Definición

El modulo o valor absoluto de un número complejo z=a+bi, denotado por |z|, se define como $|z|=\sqrt{a^2+b^2}$

Conjugado y modulo de un número complejo

Teorema

Si un número $z\in\mathbb{C}$ es raíz de un polinomio o de una ecuación de n-ésimo grado $\to \ \bar{z}$ también es raíz

Teorema

 $\forall z \in \mathbb{C}, z = a + bi \text{ se tiene que:}$

$$z \cdot \bar{z} = z \cdot z = a^2 + b^2$$

Teorema

 $\forall \ z_1, \ z_2 \in \mathbb{C}$ se cumple que:

$$\frac{\overline{(z_1+z_2)}=\overline{z_1}+\overline{z_2}}{\overline{(z_1\cdot z_2)}=\overline{z_1}\cdot\overline{z_2}}$$

Conjugado y modulo de un número complejo

Teorema

 \forall $z \in \mathbb{C}$, se tiene que:

$$|z| \ge 0$$
, $|z| = 0 \iff z = 0$

Teorema

 $\forall z_1, z_2 \in \mathbb{C}$, se cumple que:

$$|z_1\cdot z_2|=|z_1|\cdot |z_2|$$

Ejercicio

Demostrar los teoremas anteriores

Conjugado y modulo de un número complejo

Ejemplo

Determine el conjugado de los siguientes números complejos:

•
$$z_1 = -(2+5i) \rightarrow \overline{z_1} = -2+5i$$

•
$$z_2 = 18 - 3i \rightarrow \overline{z_1} = 18 + 3i$$

•
$$z_3 = -(-7 + 12i) \rightarrow \overline{z_1} = 7 + 12i$$

Ejemplo

Determine el módulo de los siguientes números complejos:

•
$$z_1 = -(2+5i) \rightarrow |z_1| = \sqrt{(-2)^2 + (-5)^2} = \sqrt{29}$$

•
$$z_2 = 18 - 3i \rightarrow |z_2| = \sqrt{(18)^2 + (-3)^2} = \sqrt{333}$$

•
$$z_3 = -(-7 + 12i) \rightarrow |z_3| = \sqrt{(7)^2 + (-12)^2} = \sqrt{193}$$

Definición

Para dividir números complejos en forma binómica se multiplica numerador y denominador por el conjugado del denominador y se realizan las operaciones correspondientes. Sea $z_1=a+bi,\ z_2=c+di\ \rightarrow\ z_1\div z_2$ se resuelve de la siguiente forma:

$$\frac{a+bi}{c+di} = \frac{(a+bi)(c-di)}{(c+di)(c-di)} = \frac{(ac+bd)+(bc-ad)i}{c^2+d^2} = \frac{ac+bd}{c^2+d^2} + \frac{bc-ad}{c^2+d^2}i$$

Ejemplo

$$\frac{3+2i}{2+3i} = \frac{(3+2i)(2-3i)}{(2+3i)(2-3i)} = \frac{6-9i+4i+6}{4+9} = \frac{12}{13} - \frac{5}{13}i$$

Forma polar: La forma polar de un número complejo es otra forma de representar un número complejo y se expresa como $z = r(cos(\theta) + isen(\theta))$, donde $r^2 = a^2 + b^2 \rightarrow r = |z|$ Esta forma se deduce del teorema de Pítagoras cómo se muestra a continuación, dónde 'x' es el eje de los reales y 'y' el de los imaginarios:

Por último vemos que $\theta = tan^{-1}(\frac{b}{a})$

Forma exponencial: Para representar a un número complejo a su forma exponencial debemos expresarlo de la siguiente forma:

$$z = re^{i\theta}$$

De dónde ya sabemos que $e=2,7182818...,\ r=|z|$ y que $\theta=tan^{-1}(\frac{b}{a})$

Conversión de números complejos en sus diferentes formas

Ejemplo

Pasar el número z = 2 + 2i a su forma polar y exponencial

Forma polar:

$$r = |z| = \sqrt{a^2 + b^2} = \sqrt{2^2 + 2^2} = \sqrt{4 + 4} = \sqrt{8} = 2\sqrt{2}$$

$$\theta = tan - 1(\frac{b}{a}) = tan - 1(\frac{2}{2}) = tan - 1(1) = 45^{\circ} = \frac{\pi}{4} rad$$

$$\rightarrow z = 2\sqrt{2}[cos(\frac{\pi}{4}) + isen(\frac{\pi}{4})]$$

Forma exponencial:

$$z = re^{i\theta} = 2\sqrt{2}(e^{\frac{\pi}{4}i})$$

NOTA: Se recomienda trabajar los ángulos en radianes

Conjugado en forma polar y en forma exponencial

Ejercicio

Sea el número complejo $z = r[\cos(\theta) + i\sin(\theta)]$. Demostrar que $\overline{z} = r[\cos(\theta) - i\sin(\theta)]$

Ejercicio

Sea el número complejo $z=r(e^{i\theta})$. Demostrar que $\overline{z}=r(e^{-i\theta})$

Conjugado en forma polar y en forma exponencial

Ejemplo

Sea el número complejo $z=2\sqrt{2}[\cos(\frac{\pi}{4})+i\sin(\frac{\pi}{4})]$, determine su conjugado.

$$\overline{z} = 2\sqrt{2}[\cos(\frac{\pi}{4}) - i\sin(\frac{\pi}{4})]$$

Ejemplo

Sea el número complejo $z=2\sqrt{2}(e^{\frac{\pi}{4}i})$, determine su conjugado.

$$z=2\sqrt{2}(e^{-\frac{\pi}{4}i})$$

Producto y división en forma polar y en forma exponencial

Multiplicación forma polar:

Sea
$$z_1 = r_1[cos(\theta_1) + isen(\theta_1)]$$
 y $z_2 = r_2[cos(\theta_2) + isen(\theta_2)]$
 $\rightarrow z_1 \cdot z_2 = r_1 \cdot r_2[cos(\theta_1 + \theta_2) + isen(\theta_1 + \theta_2)]$

Multiplicación forma exponencial:

Sea
$$z_1=r_1(e^{i\theta_1})$$
 y $z_2=r_2(e^{i\theta_2})$ $ightarrow z_1\cdot z_2=r_1\cdot r_2[e^{i(\theta_1+\theta_2)}]$

Producto y división en forma polar y en forma exponencial

Ejemplo

Sea
$$z_1=3\sqrt{2}[\cos(\frac{\pi}{4})+i\mathrm{sen}(\frac{\pi}{4})]$$
 y $z_2=2\sqrt{2}[\cos(\frac{\pi}{2})+i\mathrm{sen}(\frac{\pi}{2})]$

$$\rightarrow z_1 \cdot z_2 = (3\sqrt{2})(2\sqrt{2})[\cos(\frac{\pi}{4} + \frac{\pi}{2}) + i\sin(\frac{\pi}{4} + \frac{\pi}{2})] = 12[\cos(\frac{3\pi}{4}) + i\sin(\frac{3\pi}{4})]$$

Ejemplo

Sea
$$z_1=3\sqrt{2}(e^{i\frac{\pi}{4}})$$
 y $z_2=2\sqrt{2}(e^{i\frac{\pi}{2}})$

$$\rightarrow z_1 \cdot z_2 = (3\sqrt{2})(2\sqrt{2})[e^{i(\frac{\pi}{4} + \frac{\pi}{2})}] = 12(e^{i\frac{3\pi}{4}})$$

Producto y división en forma polar y en forma exponencial

División forma polar:

Sea
$$z_1 = r_1[cos(\theta_1) + isen(\theta_1)]$$
 y $z_2 = r_2[cos(\theta_2) + isen(\theta_2)]$
 $\rightarrow z_1 \div z_2 = \frac{r_1}{r_2}[cos(\theta_1 - \theta_2) + isen(\theta_1 - \theta_2)]$

División forma exponencial:

Sea
$$z_1=r_1(e^{i\theta_1})$$
 y $z_2=r_2(e^{i\theta_2})$ $ightarrow z_1 \div z_2=rac{r_1}{r_2}(e^{i(\theta_1-\theta_2)})$

Producto y división en forma polar y en forma exponencial

Ejemplo

Sea
$$z_1 = 3\sqrt{2}[\cos(\frac{\pi}{2}) + i sen(\frac{\pi}{2})]$$
 y $z_2 = 2\sqrt{2}[\cos(\frac{\pi}{4}) + i sen(\frac{\pi}{4})]$

$$ightarrow z_1 \div z_2 = \frac{3\sqrt{2}}{2\sqrt{2}}[\cos(\frac{\pi}{2} - \frac{\pi}{4}) + i sen(\frac{\pi}{2} - \frac{\pi}{4})] = \frac{3}{2}[\cos(\frac{\pi}{4}) + i sen(\frac{\pi}{4})]$$

Ejemplo

Sea
$$z_1 = 3\sqrt{2}(e^{i\frac{\pi}{2}})$$
 y $z_2 = 2\sqrt{2}(e^{i\frac{\pi}{4}})$

$$\rightarrow z_1 \div z_2 = \frac{3\sqrt{2}}{2\sqrt{2}} (e^{i(\frac{\pi}{4} - \frac{\pi}{2})}) = \frac{3}{2} (e^{i\frac{\pi}{4}})$$

Solución de ecuaciones

Para resolver una ecuación de n-ésimo grado debemos tener en cuenta que existen n soluciones, en el caso de los números complejos debemos trabajarlos en forma polar o exponencial para poder hallar las raíces.

Recordemos que en un número complejo $z = r[cos(\theta) + isen(\theta)]$, **r** es el módulo y θ es el ángulo o argumento.

Al obtener las raíces del número complejo z, por lo general el módulo se va a mantener constante, sin embargo, el ángulo o argumento es el que va a cambiar y el que hará que las soluciones sean distintas.

Para obtener los ángulos lo haremos de manera iterativa con la siguiente fórmula:

$$\theta_k = \frac{\theta + 2\pi k}{n}$$

Donde $k = \{0,1,2,...,n-1\}$ y n es la raíz o potencia de z

Ejemplo

Resuelva la ecuación $z^4 + 1 = 0$

Primero despejamos z de la siguiente forma:

$$z^4 = -1$$

$$z^4 = 1[\cos(\pi) + i\mathrm{sen}(\pi)]$$

$$z = (\cos(\pi) + i\mathrm{sen}(\pi))^{\frac{1}{4}}$$

Al ser una ecuación de cuarto grado, obtendremos cuatro raíces, así que comenzamos a obtenerlas de manera iterativa:

$$z_0 = \sqrt[4]{1}[\cos(\tfrac{\pi+2\pi\cdot 0}{4}) + \mathit{isen}(\tfrac{\pi+2\pi\cdot 0}{4})] = [\cos(\tfrac{\pi}{4}) + \mathit{isen}(\tfrac{\pi}{4})]$$

$$z_1 = \sqrt[4]{1}[\cos(\frac{\pi+2\pi\cdot 1}{4}) + isen(\frac{\pi+2\pi\cdot 1}{4})] = [\cos(\frac{3\pi}{4}) + isen(\frac{3\pi}{4})]$$

Solución de ecuaciones

Ejemplo

$$z_2 = \sqrt[4]{1}[\cos(\frac{\pi+2\pi\cdot 2}{4}) + isen(\frac{\pi+2\pi\cdot 2}{4})] = [\cos(\frac{5\pi}{4}) + isen(\frac{5\pi}{4})]$$

$$z_3 = \sqrt[4]{1}\left[\cos\left(\frac{\pi+2\pi\cdot 3}{4}\right) + i\operatorname{sen}\left(\frac{\pi+2\pi\cdot 3}{4}\right)\right] = \left[\cos\left(\frac{7\pi}{4}\right) + i\operatorname{sen}\left(\frac{7\pi}{4}\right)\right]$$

De este modo obtenemos las 4 soluciones, si continuaramos iterando con z_4 observariamos que el resultado sería igual a z_0 , por lo que se convertiría en un ciclo.

Las raíces están expresadas en forma polar, sin embargo pueden pasarse a forma exponencial o binómica:

- $z_0 = e^{i\frac{\pi}{4}}$
- $z_1 = e^{i\frac{3\pi}{4}}$
- $z_2 = e^{i\frac{5\pi}{4}}$
- $z_3 = e^{i\frac{7\pi}{4}}$

Solución de ecuaciones

Ejemplo

Resuelva la ecuación $z^4 = -8 + 8\sqrt{3}i$

Primero despejamos z de la siguiente forma:

$$z^4 = 16\left[\cos\left(\frac{2\pi}{3}\right)isen\left(\frac{2\pi}{3}\right)\right]$$
$$z = 16\left[\cos\left(\frac{2\pi}{3}\right)isen\left(\frac{2\pi}{3}\right)\right]^{\frac{1}{4}}$$

Al ser una ecuación de cuarto grado, obtendremos cuatro raíces, así que comenzamos a obtenerlas de manera iterativa:

$$z_0 = \sqrt[4]{16} \left[\cos(\frac{\frac{2\pi}{3} + 2\pi \cdot 0}{4}) + i\sin(\frac{\frac{2\pi}{3} + 2\pi \cdot 0}{4})\right]^{\frac{1}{4}} = 2\left[\cos(\frac{\pi}{6}) + i\sin(\frac{\pi}{6})\right]$$

$$z_1 = \sqrt[4]{16} \left[\cos\left(\frac{\frac{2\pi}{3} + 2\pi \cdot 1}{4}\right) + i sen\left(\frac{\frac{2\pi}{3} + 2\pi \cdot 1}{4}\right)\right]^{\frac{1}{4}} = 2\left[\cos\left(\frac{2\pi}{3}\right) + i sen\left(\frac{2\pi}{3}\right)\right]$$

Solución de ecuaciones

Ejemplo

$$z_2 = \sqrt[4]{16} \left[\cos\left(\frac{\frac{2\pi}{3} + 2\pi \cdot 2}{4}\right) + i \operatorname{sen}\left(\frac{\frac{2\pi}{3} + 2\pi \cdot 2}{4}\right)\right]^{\frac{1}{4}} = 2\left[\cos\left(\frac{7\pi}{6}\right) + i \operatorname{sen}\left(\frac{7\pi}{6}\right)\right]$$

$$z_3 = \sqrt[4]{16} \left[\cos(\frac{\frac{2\pi}{3} + 2\pi \cdot 3}{4}) + isen(\frac{\frac{2\pi}{3} + 2\pi \cdot 3}{4})\right]^{\frac{1}{4}} = 2\left[\cos(\frac{5\pi}{3}) + isen(\frac{5\pi}{3})\right]$$

- $z_0 = 2e^{i\frac{\pi}{6}}$
- $z_1 = 2e^{i\frac{2\pi}{3}}$
- $z_2 = 2e^{i\frac{7\pi}{6}}$
- $z_3 = 2e^{i\frac{5\pi}{3}}$