Student Name: Instructor: Mustafa Altun

Student ID:

Date: 19/03/2018

EHB322E Digital Electronic Circuits MIDTERM I

Duration: 120 Minutes Grading: 1) 30%, 2) 30%, 3) 40%

Exam is in closed-notes and closed-books format; calculators are allowed For your answers please use the space provided in the exam sheet

GOOD LUCK!

1) Consider a buffer shown below. Use the following equations for your calculations.

Saturation region current-voltage equation: $I_D = \frac{1}{2} k'_{p,n} \frac{W}{L} (V_{GS} - V_{T0p,n})^2$

Linear region current-voltage equation: $I_D = \frac{1}{2} k'_{p,n} \frac{W}{L} \left[2(V_{GS} - V_{T0p,n})V_{DS} - V_{DS}^2 \right]$

Transistor parameters: $k_p' = \mu_p c_{ox} = 35 \text{uA/V}^2$, $k_n' = \mu_n c_{ox} = 98 \text{uA/V}^2$, $V_{TN} = 1 \text{V}$, $V_{TP} = -0.5 \text{V}$, $W_{N-1} = 5 \text{u}$, $W_{N-2} = 5 \text{u}$, $L_P = L_N = 1 \text{u}$.

Buffer

- a) Find the maximum value of W_{P-1} satisfying that $V_{in}=5V$ results in $V_{out}=5V$.
- **b)** Find the value of W_{P-2} if $V_{in}=0V$ results in $V_{out}=1V$.
- c) Find the buffer's static power consumption values when $V_{in}=0$ V and $V_{in}=5$ V.

2) Consider a buffer circuit consisting of two CMOS NAND gates, shown below. An external capacitor of 48fF is connected to the output. A signal switching from high to low is applied to the input.

Equivalent resistor for an NMOS transistor: $R_N = (12k\Omega) / (W/L)_N$ Equivalent resistor for a PMOS transistor: $R_P = (24k\Omega) / (W/L)_P$ Gate capacitors $C_{GS-N} = c_{ox}W_NL_N$ and $C_{GS-P} = c_{ox}W_PL_P$; neglect C_{GD} capacitors. Transistor parameters: $c_{ox}=1$ fF/um2, $L_N=L_P=1u$, $W_{N1}=2u$, $W_{P1}=3u$, $W_{N2}=4u$, $W_{P2}=6u$.

Digital circuit with two CMOS NAND gates

- a) Implement a NAND gate with a Boolean function $f = \overline{x_1 x_2}$ using CMOS transistors. If inputs of a NAND gate are shorted, as we use in our circuit, then find its Boolean function. Draw the CMOS implementation of the above circuit.
- **b**) Find the **total propagation delay value** between the input and the output.
 - You should consider C_{GS} capacitors as well as the external C=48fF capacitor
 - Do not consider capacitors at nodes other than the node of gate inputs/outputs.

- 3) For a specific technology and a specific supply voltage, a CMOS inverter with parameters $W_P=1u$, $W_N=1u$, $L_P=1u$, $L_N=1u$, and a total output load capacitor of 1 fF has $t_{PHL}=1$ ns and $t_{PLH}=2$ ns. By considering the same technology and the supply voltage,
 - a) Implement $f = x_1x_2\overline{x_3} + x_1\overline{x_2}x_3 + \overline{x_1}x_2x_3 + \overline{x_1}x_4$ with a **CMOS circuit** using **minimum** number of transistors. Draw the circuit. How many PMOS and NMOS transistors do you use?
 - **b)** Select W_P=4u for all PMOS transistors and W_N=2u for all NMOS transistors of your CMOS circuit. Find the **worst case (largest) and** the **best case (smallest)** t_{PHL} and t_{PLH} values if a total output load capacitor is 2 fF. Neglect internal node capacitors. You should report 4 delay values.