Act-3000 Théorie du risque - Méthodes de discrétisation et produit de convolution

avec Christopher Blier-Wong et Ihsan Chaoubi

Illustrations numériques

Étienne Marceau

École d'actuariat Université Laval, Québec, Canada

2018-10-04

Faculté des sciences et de génie École d'actuariat

Agenda

1 Contexte

- 2 Méthodes de discrétisation
 - Méthode upper
 - Méthode lower
 - Convergence en distribution et sandwich
 - Exemple Loi lognormale
 - Exemple Loi Pareto
 - 3 Produit de convolution
 - Exemple Loi lognormale
 - Exemple Loi Pareto
- 4 Somme aléatoire
 - Exemple Loi lognormale
 - Exemple Loi Pareto
- 5 Conclusion
- 6 References

Contexte

Ce document fournit des exemples numériques sur les méthodes d'arithmétisation (discrétisation) et sur le produit de convolution.

Les notions sont expliquées en détails dans [Marceau, 2013] et [Cossette and Marceau, 2018]

Agenda

- 1 Contexte
- Méthodes de discrétisation
 - Méthode upper
 - Méthode lower
 - Convergence en distribution et sandwich
 - Exemple Loi lognormale
 - Exemple Loi Pareto
- 3 Produit de convolution
 - Exemple Loi lognormale
 - Exemple Loi Pareto
- 4 Somme aléatoire
 - Exemple Loi lognormale
 - Exemple Loi Pareto
- 5 Conclusion
- 6 References

Soit une v.a. continue positive Y, avec fonction de répartition F_Y . Pour simplifier la présentation, $F_Y(0) = 0$.

Un certain nombre de méthodes de discrétisation existent afin de définir la v.a. \widetilde{Y} qui approxime la v.a. Y.

On présente les principales méthodes dans les prochaines sous-sections.

Méthode upper

Selon la méthode *upper*, la valeur de la fonction de masse de probabilité à 0 est

$$f_{\widetilde{Y}(u,h)}(0) = \Pr(Y \le h) = F_Y(h)$$

et les valeurs de la fonction de masse de probabilité à 1h,2h,3h,... sont

$$f_{\widetilde{Y}(u,h)}\left(kh\right) = \Pr\left(kh \le Y < \left(k+1\right)h\right) = F_Y\left(\left(k+1\right)h\right) - F_Y\left(kh\right)$$

pour $k \in \mathbb{N}^+$.

La fonction de répartition $F_{\widetilde{Y}(u,h)}(x)$ est une fonction en escalier dont les sauts sont à 0h, 1h, 2h, ... et dont la première marche à 0 est d'une hauteur $F_{\widetilde{Y}(u,h)}(0) = F_Y(h)$.

On a

$$F_{\widetilde{Y}^{(u,h)}}\left(x\right) = \begin{cases} F_{Y}\left(h\right), & 0 \le x < h \\ F_{Y}\left(2h\right), & h \le x < 2h \\ F_{Y}\left(3h\right), & 2h \le x < 3h \end{cases}$$
...

Selon cette méthode, on a la relation $F_{Y}\left(x\right) \leq F_{\widetilde{Y}^{(u,h)}}\left(x\right), \ x \geq 0.$

Méthode lower

Pour la méthode *lower*, la valeur de la fonction de masse de probabilité à 0 est $f_{\widetilde{Y}(l,h)}(0) = 0$ et les valeurs de la fonction de masse de probabilité à 1h,2h,3h,... sont

$$f_{\widetilde{Y}^{(l,h)}}\left(kh\right) = \Pr\left(\left(k-1\right)h \le Y < kh\right) = F_Y\left(kh\right) - F_Y\left(\left(k-1\right)h\right),$$
pour $k \in \mathbb{N}^+$.

La fonction de répartition $F_{\widetilde{Y}(l,h)}\left(x\right)$ est une fonction en escalier dont les sauts sont à $1h,\ 2h,\ ...,$ soit

$$F_{\widetilde{Y}^{(l,h)}}\left(x\right) = \left\{ \begin{array}{ll} 0, & 0 \leq x < h \\ F_{Y}\left(h\right), & h \leq x < 2h \\ F_{Y}\left(2h\right), & 2h \leq x < 3h \\ & \dots \end{array} \right.$$

LAVAL

On observe la relation $F_Y(x) \ge F_{\widetilde{Y}(l,h)}(x)$, $x \ge 0$.

Convergence en distribution :

$$Y^{(u,h)} \stackrel{D}{\to} Y, \text{ i.e.,}$$

$$\underset{h\rightarrow 0}{\lim}F_{Y^{(u,h)}}\left(x\right)=F_{Y}\left(x\right)\text{, pour }x\geq 0.$$

$$Y^{(l,h)} \stackrel{D}{\to} Y$$
, i.e.,

$$\lim_{h\to 0} F_{Y^{(l,h)}}\left(x\right) = F_Y\left(x\right), \text{ pour } x \ge 0.$$

Convergence en distribution et sandwich

Inégalités : Soit $h_2 \le h_1$. On a

$$F_{Y^{\left(l,h_{1}\right)}}\left(x\right)\leq F_{Y^{\left(l,h_{2}\right)}}\left(x\right)\leq F_{Y}\left(x\right)\leq F_{Y^{\left(u,h_{2}\right)}}\left(x\right)\leq F_{Y^{\left(u,h_{1}\right)}}\left(x\right)$$

 $\text{pour } x \geq 0.$

Soit $Y \sim LNorm(\mu, \sigma)$ avec $\mu = \ln(10) - 0.32$ et $\sigma = 0.8$.

	$VaR_{\kappa}\left(Y^{(u,h)}\right)$			$VaR_{\kappa}(Y)$	$VaR_{\kappa}\left(Y^{(l,h)}\right)$				
κ	h = 1	h = 0.1	h = 0.01	$h = 10^{-3}$		$h = 10^{-3}$	h = 0.01	h = 0.1	h = 1
0.9	20	20.2	20.24	20.243	20.24335	20.244	20.25	20.3	21
0.99	46	46.6	46.69	46.696	46.69623	46.697	46.70	46.7	47
0.999	86	86.0	86.03	86.036	86.03644	86.037	86.04	86.1	87
0.9999	142	142.2	142.28	142.280	142.28019	142.281	142.29	142.3	143

Les calculs s'effectuent très rapidement.

Exemple - Loi lognormale

Graphique #1 Convergence en distribution - Méthode lower

Exemple - Loi lognormale

Graphique #2 Convergence en distribution - Méthode upper

Exemple - Loi lognormale

Graphique #3 - Sandwich

Soit $Y \sim Pareto(\alpha, \lambda)$ avec $\alpha = 1.5$ et $\lambda = 5$ (variance infini)

	$VaR_{\kappa}\left(Y^{(u,h)}\right)$			$VaR_{\kappa}(Y)$	$VaR_{\kappa}\left(Y^{(l,h)}\right)$				
κ	h = 1	h = 0.1	h = 0.01	$h = 10^{-3}$		$h = 10^{-3}$	h = 0.01	h = 0.1	h = 1
0.9	18	18.2	18.20	18.207	18.20794	18.208	18.21	18.3	19
0.99	102	102.7	102.72	102.721	102.722	102.722	102.73	102.8	103
0.999	495	495.0	495.00	495.000	495.000	495.001	495.01	495.1	496
0.9999	2315	2315.7	2315.79	2315.794	2315.794	2315.795	2315.80	2315.8	2316

Exemple - Loi Pareto

Graphique #1 Convergence en distribution - Méthode upper

Exemple - Loi Pareto

Graphique #2 Convergence en distribution - Méthode lower

Exemple - Loi Pareto

Graphique #3 - Sandwich

Agenda

- 1 Contexte
- 2 Méthodes de discrétisation
 - Méthode upper
 - Méthode lower
 - Convergence en distribution et sandwich
 - Exemple Loi lognormale
 - Exemple Loi Pareto
- 3 Produit de convolution
 - Exemple Loi lognormale
 - Exemple Loi Pareto
- 4 Somme aléatoire
 - Exemple Loi lognormale
 - Exemple Loi Pareto
- 5 Conclusion
- 6 References

Soit les variables aléatoires indépendantes continues positives X_1 et X_2 avec les fonctions de répartition F_{X_i} et les fonctions de densité f_{X_i} , pour i=1,2.

On définit la v.a. S par

$$S = X_1 + X_2$$

avec une fonction de répartition F_S et une fonction de densité f_S .

On définit les versions discrétisées des v.a. X_1 , X_2 et S par les v.a. $\widetilde{X}_1^{(m\acute{e}t,h)}$, $\widetilde{X}_2^{(m\acute{e}t,h)}$, et $\widetilde{S}^{(m\acute{e}t,h)}$, où $m\acute{e}t$ = "u" ou "l", définies sur le support

$$A_h = \{0,1h,2h,...\}$$
.

La fonction de densité f_S est définie par le produit de convolution de f_{X_1} et f_{X_2} où

$$f_{S}(x) = f_{X_{1}+X_{2}}(x) = f_{X_{1}} * f_{X_{2}}(x)$$

$$= \int_{0}^{x} f_{X_{1}}(y) f_{X_{2}}(x-y) dy, \qquad (1)$$

pour $x \ge 0$.

La fonction de répartition F_S est définie par

$$F_S(x) = \int_0^x f_S(s) \, \mathrm{d}s,$$

pour $x \ge 0$.

Très souvent, il n'y a pas d'expression fermée à (1).

La fonction de masse de probabilité $f_{\widetilde{S}(m\acute{e}t,h)}$ est définie par le produit de convolution de $f_{\widetilde{X}_1^{(m\acute{e}t,h)}}$ et $f_{\widetilde{X}_2^{(m\acute{e}t,h)}}$ où

$$f_{\widetilde{S}(m\acute{e}t,h)}\left(kh\right) = f_{\widetilde{X}_{1}^{(m\acute{e}t,h)} + \widetilde{X}_{2}^{(m\acute{e}t,h)}}\left(kh\right) = f_{\widetilde{X}_{1}^{(m\acute{e}t,h)}} * f_{\widetilde{X}_{2}^{(m\acute{e}t,h)}}\left(kh\right)$$

$$= \sum_{j=0}^{k} f_{\widetilde{X}_{1}^{(m\acute{e}t,h)}}\left(jh\right) f_{\widetilde{X}_{2}^{(m\acute{e}t,h)}}\left(\left(k-j\right)h\right), \tag{2}$$

pour $k \in \mathbb{N}$.

La fonction de répartition $F_{\widetilde{S}(m\acute{e}t,h)}$ est définie par

$$F_{\widetilde{S}(m\acute{e}t,h)}\left(kh\right) = \sum_{l=0}^{k} f_{\widetilde{S}(m\acute{e}t,h)}\left(lh\right), (k \in \mathbb{N}).$$

La relation en (2) se programme aisément en R.

Soit
$$X_1 \sim X_2 \sim X \sim LNorm(\mu, \sigma)$$
 avec $\mu = \ln(10) - 0.32$ et $\sigma = 0.8$.

On a

	$VaR_{\kappa}\left(Y^{(u,h)}\right)$			$VaR_{\kappa}\left(Y^{(l,h)}\right)$		
κ	h = 1	h = 0.1	h = 0.01	h = 0.01	h = 0.1	h = 1
0.9	35	35.7	35.83	35.85	35.9	37
0.99	68	68.7	68.75	68.77	68.9	70
0.999	113	113.5	113.59	113.61	113.7	115
0.9999	175	175.5	175.57	175.59	175.7	177

Les temps de calculs sont longs pour des pas plus petits (h < 0.01).

Exemple - Loi lognormale

Graphique #1 Convergence en distribution - Méthode upper

Exemple - Loi lognormale

Graphique #2 Convergence en distribution - Méthode lower

Exemple - Loi lognormale

Graphique #3 - Sandwich

Soit
$$X_1 \sim X_2 \sim X \sim Pareto(\alpha, \lambda)$$
 avec $\alpha = 1.5$ et $\lambda = 5$.

On a

	$VaR_{\kappa}\left(Y^{(u,h)}\right)$			$VaR_{\kappa}\left(Y^{(l,h)}\right)$		
κ	h = 1	h = 0.1	h = 0.01	h = 0.01	h = 0.1	h = 1
0.9	35	36.4	36.45	36.47	36.6	37
0.99	173	174.1	174.18	174.20	174.3	175
0.999	797	798.2	798.24	798.26	798.4	799
0.9999	3688	3688.8	3688.92	3688.94	3689.0	3690

Les temps de calculs sont plus longs en comparaison à ceux de l'exemple précédent.

Exemple - Loi Pareto

Graphique #1 Convergence en distribution - Méthode upper

Exemple - Loi Pareto

Graphique #2 Convergence en distribution - Méthode lower

Exemple - Loi Pareto

Graphique #3 - Sandwich

Agenda

- 1 Contexte
- 2 Méthodes de discrétisation
 - Méthode upper
 - Méthode lower
 - Convergence en distribution et sandwich
 - Exemple Loi lognormale
 - Exemple Loi Pareto
- 3 Produit de convolution
 - Exemple Loi lognormale
 - Exemple Loi Pareto
- 4 Somme aléatoire
 - Exemple Loi lognormale
 - Exemple Loi Pareto
- 5 Conclusion
- 6 References

Soit la v.a. de comptage M (forcément discrète), avec une fonction de masse de probabilité f_M .

Soit la variable aléatoire continue positive X avec la fonction de répartition F_X et la fonction de densité f_X .

Soit une suite de v.a. i.i.d. $\underline{X}=\{X_i,i\in\mathbb{N}^+\}$, qui est indépendante de X, où $X_i\sim X$, $i\in\mathbb{N}^+$.

On définit la v.a. S par

$$S = \sum_{i=1}^{M} X_i$$

avec la convention $\sum_{i=1}^{0} a_i = 0$.

On définit les versions discrétisées des v.a. X et S par les v.a. $\widetilde{X}^{(m\acute{e}t,h)}$ et $\widetilde{S}^{(m\acute{e}t,h)}$, où $m\acute{e}t$ = "u" ou "l", définies sur le support

$$A_h = \{0,1h,2h,...\}$$
.

La fonction de répartition F_S est définie par

$$F_S(x) = f_M(0) + \sum_{i=1}^{\infty} f_M(i) F_{B_1 + \dots + B_i}(x),$$
 (3)

pour $x \ge 0$.

Très souvent, il n'y a pas d'expression fermée à (3).

La fonction de masse de probabilité $f_{\widetilde{S}(m\acute{e}t,h)}$ est définie par

$$f_{\widetilde{S}(m\acute{e}t,h)}(kh) = f_M(0) \times 1_{\{k=0\}} + \sum_{i=1}^{\infty} f_M(i) f_{B_1 + \dots + B_i}(kh), k \in \mathbb{N}.$$
 (4)

Les valeurs de $f_{\widetilde{S}(m\acute{e}t,h)}$ peuvent être calculées directement avec (4).

Toutefois, il est préférable de recourir à des méthodes récursives ou à la FFT.

La fonction de répartition $F_{\widetilde{S}(m\acute{e}t,h)}$ est définie par

$$F_{\widetilde{S}(m\acute{e}t,h)}\left(kh\right) = \sum_{l=0}^{k} f_{\widetilde{S}(m\acute{e}t,h)}\left(lh\right), k \in \mathbb{N}.$$

Soit
$$X \sim LNorm(\mu, \sigma)$$
 avec $\mu = \ln(10) - 0.32$ et $\sigma = 0.8$.

Soit
$$M \sim Pois(\lambda)$$
, $\lambda = 2$ ou $\lambda = 10$.

Pour $\lambda = 2$, on a

	$VaR_{\kappa}\left(Y^{(u,h)}\right)$			$VaR_{\kappa}\left(Y^{(l,h)}\right)$		
κ	h = 1	h = 0.5	h = 0.1	h = 0.1	h = 0.5	h = 1
0.9	43	44.5	45.0	45.4	46.0	47
0.99	85	85.5	86.5	87.0	88.0	89
0.999	132	133.0	134.0	134.4	135.5	136
0.9999	193	193.5	194.4	194.8	195.5	197

■ Pour λ = 10, les calculs prennent plus de temps.

Exemple - Loi lognormale

Graphique #1 Convergence en distribution - Méthode upper avec λ = 2

Exemple - Loi lognormale

Graphique #2 Convergence en distribution - Méthode lower avec λ = 2

Exemple - Loi lognormale

Graphique #3 - Sandwich λ = 2

Exemple - Loi Pareto

Soit
$$X \sim Pareto(\alpha, \lambda)$$
 avec $\alpha = 1.5$ et $\lambda = 5$.
Soit $M \sim Pois(\lambda)$, $\lambda = 2$ ou $\lambda = 10$.

- Les calculs sont plus longs comparer à l'exemple précédent.
- Pour $\lambda = 2$, on obtient

	Va.	$R_{\kappa}(Y^{(u)})$,h))	$VaR_{\kappa}\left(Y^{(l,h)}\right)$		
κ	h = 4	h = 2	h = 1	h = 1	h = 2	h = 4
0.9	36	38	39	42	44	48
0.99	176	180	182	185	186	192
0.999	804	806	807	810	812	816
0.9999	3692	3696	3697	3700	3702	3704

- Pour λ = 10, les calculs prennent beaucoup plus de temps.
- Si on prend des pas plus petits que h = 1, les calculs prennent plus de temps.

Exemple - Loi Pareto

Graphique #1 Convergence en distribution - Méthode upper avec λ = 2

Exemple - Loi Pareto

Graphique #2 Convergence en distribution - Méthode lower avec λ = 2

Exemple - Loi Pareto

Graphique #3 Sandwich avec λ = 2

Agenda

- 1 Contexte
- 2 Méthodes de discrétisation
 - Méthode upper
 - Méthode lower
 - Convergence en distribution et sandwich
 - Exemple Loi lognormale
 - Exemple Loi Pareto
- 3 Produit de convolution
 - Exemple Loi lognormale
 - Exemple Loi Pareto
- 4 Somme aléatoire
 - Exemple Loi lognormale
 - Exemple Loi Pareto
- 5 Conclusion
- 6 References

Conclusion

Le choix du pas de discrétisation dépend du degré de précision souhaité et du temps de calculs.

Les paramètres des lois lognormale et Pareto ont été fixés de telle sorte que les espérances soient égales à 10. Toutefois, les valeurs de VaR diffèrent considérablement pour $\kappa > 0.99$

Agenda

- 1 Contexte
- 2 Méthodes de discrétisation
 - Méthode upper
 - Méthode lower
 - Convergence en distribution et sandwich
 - Exemple Loi lognormale
 - Exemple Loi Pareto
- 3 Produit de convolution
 - Exemple Loi lognormale
 - Exemple Loi Pareto
- 4 Somme aléatoire
 - Exemple Loi lognormale
 - Exemple Loi Pareto
- 5 Conclusion
- 6 References

Références |

Cossette, H. and Marceau, E. (2018).

Mathématiques actuarielles du risque : modèles, mesures de risque et méthodes quantitatives.

Marceau, E. (2013).

Modélisation et évaluation quantitative des risques en actuariat: Modèles sur une période.

Springer.

