

Modeling and Simulation of Physical Systems with Physical Modeling

Hands-on Workshop

Setup

■ Let Exercise 03b ■ ■ Exercise 03c

■ ■ Exercise 03d ■ Les Exercise 04a

 ■ ■ Exercise 05a ■ Les Exercise 06a

■ Les Exercise 07a ■ Les Exercise 08a

startup workshop.m

■

■ Tools

Details

C: MyTemp > PhysMod_Workshop_Exercises >

- Unzip PhysMod Workshop Exercises.zip
- 2. Move to folder PhysMod Workshop Exercises
- 3. Run >> mex -setup Configure compiler
- 4. Run >> startup workshop Adds paths, checks license, builds custom library

Exercises

Exercise

Exercise 0: Introduction to the Physical Modeling Tools Exercise 1a: Using Simscape to model a DC Motor Exercise 1b: Using Simulink Parameter Estimation to tune parameters Exercise 1c: Using Simulink Response Optimization to optimize system performance Exercise 1d: Using Simscape to model a four-way directional valve Exercise 2a: Using SimMechanics to model a power window mechanism Exercise 2b: Connecting a DC motor to a SimMechanics window mechanism Exercise 3a: Using SimDriveline to model a drivetrain with a clutch Exercise 3b: Using SimDriveline to model a vehicle powertrain Exercise 3c: Adding a four-speed transmission and controller to a powertrain model Exercise 3d: Using SimDriveline to model a ratchet leadscrew mechanism Exercise 4a: Using SimHydraulics to model a hydraulic actuation system Exercise 5a: Using Simscape and SimElectronics to model a position control system Exercise 6a: Using SimPowerSystems to model a PWM controlled motor Exercise 7a: Using the Simscape language to model custom mechanical springs Exercise 8a: Using SimMechanics to model a slider-crank mechanism

Exercise 0: 1 DOF Mass-Spring-Damper

System

Model:

Problem: Model a 1 DOF mass-spring-damper system within the Simulink environment from first principles and using physical modelling tools.

Solution: Use Simulink, Simscape, or SimMechanics.

Exercise 1a: DC Motor

Model:

Problem: Model a DC motor in a reusable way within the Simulink environment

Solution: Use <u>Simscape</u> to model the electromechanical system

Exercise 1b: Estimating Model Parameters

Problem: Simulation data does not match measured data because the parameters are incorrect

Solution: Use Simulink Design
Optimization to automatically tune
model parameters

R	L	J	K	В
4.03	1e-4	0.11	0.45	1.07

Exercise 1c: Optimizing Performance

Model:

Motor Speed

2.5

2
(Lud.) peeds

0.5

1.5

Time (s)

Problem: Design and tune the controller in this system to meet system requirements

Solution: Use <u>Simulink Response</u>
Optimization to design, tune, and test the controller

Kp	$K_{\mathtt{i}}$	
14.39	1.336	

Exercise 1d: Four-Way Valve

Problem: Model a four-way directional valve and double-acting cylinder within the Simulink environment

Solution: Use Simscape to model the four-way directional valve

Exercise 2a: Window Mechanism

Problem: Model a window mechanism in a reusable way within the Simulink environment.

Solution: Use <u>SimMechanics</u> to model the mechanical system.

Exercise 2b: Power Window Mechanism

Problem: Simulate the electrical and mechanical components in one environment

Solution: Use <u>Simscape</u> and SimMechanics to model the system within the Simulink environment

Exercise 3a: Drivetrain with

clutch and gear

Problem: Model a drivetrain mechanism for use with HIL tests in the Simulink environment.

Solution: Use SimDriveline to model the mechanical system.

Exercise 3b: Vehicle Powertrain

Vehicle Speed (km/hr)

100
50
50
0
2
4
6
8
10
Time (s)
Engine Power

8
6
6
8
10
Time (s)

Find (s)

Time (s)

Problem: Create a vehicle drivetrain model that can be reused for controls development

Solution: Use SimDriveline to model the system within the Simulink environment

Exercise 3c: Transmission Controller

Problem: Add a four-speed transmission and a controller to a powertrain model.

Solution: Use SimDriveline and Stateflow to model the system within the Simulink environment

Exercise 3d: Ratchet Leadscrew Mechanism

Problem: Model the ratchet mechanism with self-locking leadscrew

Solution: Use SimDriveline to model the system within the Simulink environment

Exercise 4a: Hydraulic Actuation System

Model:

Problem: Model a hydraulic actuation system within the Simulink environment

Solution: Use <u>SimHydraulics</u> to model the hydraulic actuation system

Exercise 5a: Linear Actuator with DC Motor

Motor DC Motor Servoamplifier DC Motor Hall Effect Sensor

Problem: Model a closed-loop position control system with a DC motor driving a linear actuator

Solution: Use <u>Simscape</u>, <u>SimElectronics</u> and <u>Simulink</u> to model the electromechanical control system

Averaged Mode

PWM Mode

Exercise 6a: PWM Controlled Motor

Problem: Determine the frequency spectrum of the phase-to-phase voltage of the motor.

Solution: Use <u>SimPowerSystems</u> and the PowerGUI to determine the frequency spectrum.

Exercise 7a: Custom Mechanical Springs

Model:

Problem: Create models of custom mechanical springs within the Simulink environment

Solution: Use the <u>Simscape</u> <u>language</u> to define reusable spring models

Exercise 8a: Slider Crank

Model:

Problem: Model a piston using reusable component models in the Simulink environment.

Solution: Use SimMechanics to model the mechanical system.

