Redes Neurais Sem Peso CAINN

Érica Calil Nogueira

Combinando técnicas de reconhecer padrões

Redes Neurais Sem Peso

Sistema *LearnXClassify*

Detalhe: para o *classify* funcionar ele precisa estar 100% de acordo com o *learn*

Memórias Associativas

Sistema LearnXClassify

Detalhe: para o *classify* funcionar ele precisa de uma porcentagem de acordo com o *learn*

Redes sem peso e memórias associativas

Redes ADAM (1986)

Redes CAINN (2007)

Memórias Associativas Alpha-Beta

Redes ADAM

Arquitetura:

Memórias Associativas Alpha-Beta

Seja A = $\{1, 0\}$ e B = $\{0, 1, 2\}$

 $A \times A \to B$ se define como: $B \times A \to A$ se define como:

x	y	$\alpha\left(x,y\right)$
0	0	1
0	1	0
1	0	2
1	1	1

x	y	$\beta(x,y)$
0	0	0
0	1	0
1	0	0
1	1	1
2	0	1
2	1	1

A arquitetura CAINN

X: Padrão de Entrada, P: Matriz associativa de entrada

Z: Vetor de classe, Q: Matriz de saída, Y: Padrão de saída

Modelo Matemático

Variação de alpha: α_g = { 0: x<y, 1: x=y, 2: x>y}

Classe Z : Vetor one-hot do valor decimal de x

Combinações feitas entre matrizes

Aprendizado

Inicializam-se as matrizes P e Q com zeros

Atualização de P:
$$p_{ij}(\mu) = \beta \left(\alpha \left(p_{ij}(\mu - 1), 0 \right), \beta \left(z_i^{\mu}, x_j^{\mu} \right) \right)$$

Atualização de Q:
$$q_{ij}(\mu) = \beta \left(\alpha \left(q_{ij}(\mu - 1), 0 \right), \beta \left(y_i^{\mu}, z_j^{\mu} \right) \right)$$

Vetores classes Z: one-hot do valor binário x

$$\mathbf{x}^{1} = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \mathbf{y}^{1} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}; \ \mathbf{x}^{2} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \mathbf{y}^{2} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}; \ \mathbf{x}^{3} = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix}, \mathbf{y}^{3} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
$$\mathbf{z}^{1} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \qquad \mathbf{z}^{2} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \qquad \mathbf{z}^{3} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Recuperação

Sigma-Beta PxX:
$$(\mathbf{P}\sigma_{\beta}\widetilde{\mathbf{x}}^{\omega})_{i} = \sum_{i=1}^{n} \beta\left(p_{ij}, \widetilde{\mathbf{x}}^{\omega}\right), \ \forall i \in \{1, 2, \dots, k\}$$

Cálculo da classe Z atribuída ao padrão:

$$z_i^{\omega} = \beta \left(\alpha_g(t_i^{\omega}, 1), \alpha_g \left(\bigwedge_{h \in H} \left[\sum_{j=1}^n p_{hj} \right], \sum_{j=1}^n p_{ij} \right) \right), \ \forall i \in \{1, 2, \dots, k\}$$

Recuperação

Sigma-Beta QxZ:
$$(\mathbf{Q}\sigma_{\beta}\tilde{\mathbf{z}}^{\omega})_{i} = \sum_{j=1}^{n} \beta\left(q_{ij}, z_{j}^{\omega}\right), \ \forall i \in \{1, 2, \dots, m\}$$

Padrão de Saída:

$$y_i^{\omega} = \alpha_g \left(\sum_{j=1}^k \beta \left(q_{ij}, z_j^{\omega} \right), \bigvee_{h=1}^m \beta \left(q_{hj}, z_j^{\omega} \right) \right), \ \forall i \in \{1, 2, \dots, m\}$$

Recuperação

Transição de Z:

$$t_i^{\omega} = \alpha_g \left(\sum_{j=1}^n \beta \left(p_{ij}, \widetilde{x}_j^{\omega} \right), \bigvee_{h=1}^k \left[\sum_{j=1}^n \beta \left(p_{hj}, \widetilde{x}_j^{\omega} \right) \right] \right), \ \forall i \in \{1, 2, \dots, k\}$$

Conjunto H:

$$H = \left\{ h \mid \sum_{j=1}^{n} p_{hj} \widetilde{x}_{j}^{\omega} = \bigvee_{h=1}^{k} \left[\sum_{j=1}^{n} p_{hj} \widetilde{x}_{j}^{\omega} \right] \right\}, \ \forall i \in \{1, 2, \dots, k\}$$

Redes CAINN e aplicações

Classificações da planta iris:

Três classes com 4 atributos cada

Característica	Descripción
1	Clase: 1: Iris Setosa, 2:Iris Versicolor, 3:Iris Virginica
2	Largo del sépalo en centímetros
3	Ancho del sépalo en centímetros
4	Largo del pétalo en centímetros
5	Ancho del pétalo en centímetros

Controle de Método Contraceptivo na Indonésia:

Três classes com 10 atributos cada

- Não usam contraceptivos
- Usam contraceptivos de longo prazo
- Usam contraceptivos de curto prazo

Característica	Descripción
1	Clase
2	Edad
3	Grado educativo
4	Grado educativo de la pareja
5	Cantidad de niños ya concebidos
6	Religión
7	Trabajo
8	Ocupación de la pareja
9	Índice del estándar de vida
10	Riesgo de vida

Desempenho Comparativo

Vantagens e desvantagens

O modelo parece ser vantajoso para algumas classes de problemas usando heteroassociações

Devido à sua complexidade algorítmica, pode se tornar uma opção lenta, não sendo útil para processamentos em tempo real

Bibliografia: PAREDES, A. A. Redes Neurales Alfa-Beta Sin Pesos: condiciones suficientes para la recuperación de patrones. Instituto Politecnico Nacional. Mexico. 2009.