

Sequências Numéricas

Muitos são os nomes de pessoas que dedicaram suas vidas à descoberta e ao aperfeiçoamento da matemática. Elas são dos mais variados ramos do conhecimento humano, mas que compartilham entre si um desejo comum: o manuseio dos números e das formas. A matemática recebe, em sua plataforma de estudo, advogados, filósofos, físicos, químicos, engenheiros, matemáticos e muitos outros profissionais ou amantes desta ciência milenar, que é marcada pela importância no desenvolvimento planetário ou, ainda além, universal.

Em 1789, na cidade de Paris, França, nascia o professor, engenheiro e matemático Augustin-Louis Cauchy. Ele estudou na Escola Politécnica de Paris, onde depois tonou-se professor. Cauchy foi um dos mais importantes matemáticos de todos os tempos, tendo importantes descobertas, principalmente no campo da Matemática Pura. Pode-se afirmar que Cauchy é um dos fundadores do Cálculo com Variáveis Complexas, assim como tem papel marcante no Cálculo Elementar, Teoria dos Determinantes e nas Séries Infinitas, sendo estas responsáveis pelo desenvolvimento da Teoria das Funções.

Definindo sequência/sucessão

Observe a informação que darei a seguir e compreenda a ideia prática de sucessão ou sequência.

A Copa do Mundo de 2010, realizada na África do Sul, teve como campeã, ou seja, em primeiro lugar, a Espanha; no segundo lugar, a Holanda; no terceiro lugar a Alemanha e no quarto, Uruguai. Estes dados podem ser mais bem visualizados se utilizarmos representações de ordem. Vejam:

1° lugar – Espanha

2° lugar - Holanda

3° lugar - Alemanha

4° lugar – Uruguai

Sabendo destas informações, poderíamos escrever a ordem de classificação desta Copa da seguinte maneira: Espanha, Holanda, Alemanha, Uruguai. Ainda segundo essa ideia, temos, por exemplo, que os dias segunda-feira, terça-feira, quarta-feira, quinta-feira, sexta-feira, sábado, domingo, representam a sequência ou sucessão de dias de uma semana.

DEFINIÇÃO

Toda função/relação cujo domínio (conjunto de partida) é o conjunto dos números naturais é também uma sequência ou sucessão.

Sequência ou sucessão numérica

DEFINIÇÃO

Sequência numérica é uma sequência ou sucessão que tem como contradomínio (conjunto de chegada) o conjunto dos números reais.

As sequências numéricas podem ser finitas, quando é possível "contar" os seus elementos, ou infinitas, quanto não é possível "contar" os seus elementos. Visualize, nos dois casos, as representações matemáticas.

Sequência finita: (a₁, a₂, a₃, ..., a_n)

Sequência infinita: (a₁, a₂, a₃, ..., a_{n,...)}

Leitura dos termos acima:

 $a_1 \rightarrow a$ índice 1 (primeiro termo)

 $a_2 \rightarrow a$ índice 2 (segundo termo)

 $a_3 \rightarrow a$ indice 3 (terceiro termo)

 $a_{n \to} a$ índice n (enésimo termo)

Veja exemplos de sequências finitas e infinitas:

Sequência finita: (5, 7, 9, 11, 13, 15, 17, 19)

Sequência infinita (3, 5, 7, 11, 13, 17,...)

Verificação da aprendizagem

Dada a sequência definida por $a_n = 4n - 1$, com $n \in \mathbb{N}^*$, calcule:

 $a_3 - a_1$

Lembre-se de que o domínio desta sequência é N^* (naturais não nulos), sendo assim, o primeiro termo (a₁) é 1.

Para n = 1, temos: $a_1 = 4x1 - 1 = 3$

Para n = 3, temos: $a_3 = 4x3 - 1 = 11$

 $a_3 - a_1 = 11 - 3 = 8$

 $(a_5)^2 + (a_6)^2$

Mais uma vez considerando que o conjunto domínio é N*, temos:

Para n = 5, temos: $a_5 = 4x5 - 1 = 19$

Para n = 6, temos: $a_6 = 4x6 - 1 = 23$

 $19^2 + 23^2 = 890$

Escreva os quatro primeiros termos das sequências dadas pelos termos gerais, sendo n E N*.

 $a_n = 3n - 1$

Para n = 1, temos: $a_1 = 3x1 - 1 = 2$

Para n = 2, temos: $a_2 = 3x^2 - 1 = 5$

Para n = 3, temos: $a_3 = 3x3 - 1 = 8$

Para n = 4, temos: $a_4 = 3x4 - 1 = 11$

Conclusão: (2, 5, 8, 11)

 $a_n = 2^{n-1}$

Para n = 1, temos: $a_1 = 2^{1-1} = 1$

Para n = 2, temos: $a_2 = 2^{2-1} = 2$

Para n = 3, temos: $a_3 = 2^{3-1} = 4$

Para n = 4, temos: $a_4 = 2^{4-1} = 8$

Conclusão: (1, 2, 4, 8)

Considerações finais

Aos caros leitores, deixo claro que este trabalho é apenas uma introdução ao conceito de sequência que, um pouco mais adiante, contemplará as ideias e operações das Progressões Aritméticas e/ou Geométricas, as famosas P.A e P.G. Ciente da importância dessas duas temáticas, escreverei sobre elas em meus próximos trabalhos. Porém, esta introdução deverá ser lida e estudada como pré-requisito a um estudo mais detalhado do tema em discussão.

Sequência numérica é uma sucessão finita ou infinita de números obedecendo uma determinada ordem definida antecipadamente.

Uma sequência numérica na matemática deve ser representada entre parênteses e ordenada. Veja como são representadas nos exemplos abaixo:

(1, 2, 3, 4, 5, 6, ...): sequência dos números naturais;

(2, 3, 5, 7, 11, 13, 17, 19, ...): sequência dos números primos positivos;

(1, 3, 5, 7, 9, ...): sequência dos números ímpares positivos.

Classificação das Sequências Numéricas

Podemos classificar as sequências numéricas em finitas e infinitas:

Sequência Infinita: uma sequência infinita é representada da seguinte forma: (a₁, a₂, a₃, a₄, ..., a_n, ...)

Exemplos:

(2, 4, 6, 8, 10, ...): sequência dos números pares positivos;

(1, 2, 3, 4, 5, 6, 7, 8, ...): sequência dos números naturais;

As sequências infinitas são representadas com uma reticência no final. Os elementos são indicados pela letra a. Então, o elemento a₁, equivale ao primeiro elemento, a₂, ao segundo elemento e assim por diante.

Sequência Finita: uma sequência finita é representada da seguinte forma: (a1, a2, a3, a4, ..., an)

Exemplo:

(0, 1, 2, 3, 4, 5, 6, 7, 8, 9): sequência dos algarismos do sistema decimal de numeração;

Nas sequências finitas podemos indicar o elemento a_n da sequência, pois se trata de uma sequência finita e sabemos exatamente a quantidade de elementos da sequência. Na sequência acima, n = 10, portanto, a_n é $a_{10} = 9$.

Então:

- $a_1 = 0$;
- $a_2 = 1$;
- $a_3 = 2$;
- $a_4 = 3$:
- $a_5 = 4$;
- $a_6 = 5$;
- $a_7 = 6$:
- $a_8 = 7$;

 $a_9 = 8;$

 $a_{10} = 9$;

Igualdade de Sequências Numéricas

Duas sequências são consideradas iguais se apresentarem os mesmos termos e na mesma ordem.

Exemplo:

Considerem as seguintes sequências:

(a, b, c, d, e)

(2, 7, 9, 10, 20)

As duas sequências acima poderão ser consideras iguais se, e somente se, a = 2, b = 7, c = 9, d = 10 e e = 20.

Considerem as seguintes sequências:

(1, 2, 3, 4, 5)

(5, 4, 3, 2, 1)

As sequências acima não são iguais, mesmo apresentando os mesmos números, elas possuem ordens diferentes.

Fórmula do Termo Geral

Cada sequência numérica possui sua lei de formação. A sequência (1, 7, 17, 31, ...) possui a seguinte lei de formação:

$$a_n = 2n^2 - 1, n \in \mathbb{N}^*$$

Essa fórmula é usada para encontrar qualquer termo da sequência. Por exemplo, o termo $a_4 = 2 \cdot 4^2 - 1 = 31$

Exemplo:

 $a_1 = 2 \cdot 1^2 - 1 = 1$;

 $a_2 = 2 \cdot 2^2 - 1 = 7$;

 $a_3 = 2 \cdot 3^2 - 1 = 17;$

 $a_4 = 2 \cdot 4^2 - 1 = 31$;

E assim por diante.

Lei de Recorrência

A lei de recorrência de uma sequência numérica permite calcularmos cada termos conhecendo o seu antecedente:

Exemplo:

Considere a seguinte fórmula de recorrência $a_{n+1} = a_n - 1$ para a sequência (10, 9, 8, 7, 6, ...), sendo que o termo $a_1 = 10$. Determine os 5 primeiros termos.

 $a_2 = 10 - 1 = 9$;

 $a_3 = 9 - 1 = 8$;

$$a_4 = 8 - 1 = 7$$

$$a_5 = 7 - 1 = 6$$

Cada sequência numérica possui sua lei de recorrência.

Progressões Aritméticas e Geométricas

As progressões geométricas e aritméticas são sequências numéricas bem conhecidas na matemática.

A progressão aritmética (PA) é um tipo de sequência em que cada termo, começando a partir do segundo, é o termo anterior somado a uma constante r, a qual é chamada de razão da PA.

Uma PA é definida pela seguinte expressão:

$$a_{n+1} = a_n + r$$

Exemplo:

$$(0, 2, 4, 6, 8, 10, ...)$$
: PA com primeiro termo $a_1 = 0$ e razão $r = 2$.

A progressão geométrica (PG) é um tipo de sequência em que cada termo, começando a partir do segundo, é determinado pela multiplicação por uma constante r, a qual é chamada de razão da PG.

Uma PG é definida pela seguinte expressão:

$$a_n = a_1 \cdot q^{(n-1)}$$

Exemplo:

(1, 2, 4, 8, 16, 32, ...): é uma PG em que o primeiro termo $a_1 = 0$ e razão r = 2.

Na matemática, a sequência numérica ou sucessão numérica corresponde a uma função dentro de um agrupamento de números.

De tal modo, os elementos agrupados numa sequência numérica seguem uma sucessão, ou seja, uma ordem no conjunto.

Classificação

As sequências numéricas podem ser finitas ou infinitas, por exemplo:

$$S_F = (2, 4, 6, ..., 8)$$

$$S_1 = (2,4,6,8...)$$

Note que quando as sequências são infinitas, elas são indicadas pelas reticências no final. Além disso, vale lembrar que os elementos da sequência são indicados pela letra a. Por exemplo:

1° elemento: $a_1 = 2$

 4° elemento: $a_4 = 8$

O último termo da sequência é chamado de enésimo, sendo representado por an. Nesse caso, o an da sequência finita acima seria o elemento 8.

Assim, podemos representá-la da seguinte maneira:

$$S_F = (a_1, a_2, a_3,...,a_n)$$

$$S_1 = (a_1, a_2, a_3, a_n...)$$

Lei de Formação

A Lei de Formação ou Termo Geral é utilizada para calcular qualquer termo de uma sequência, expressa pela expressão:

$$a_n = 2n^2 - 1$$

Lei de Recorrência

A Lei da Recorrência permite calcular qualquer termo de uma sequência numérica a partir de elementos antecessores:

$$a_n = a_{n-1}, a_{n-2},...a_1$$

Progressões Aritméticas e Progressões Geométricas

Dois tipos de sequências numéricas muito utilizadas na matemática são as progressões aritmética e geométrica.

A progressão aritmética (PA) é uma sequência de números reais determinada por uma constante r (razão), a qual é encontrada pela soma entre um número e outro.

A progressão geométrica (PG) é uma sequência numérica cuja razão (r) constante é determinada pela multiplicação de um elemento com o quociente (q) ou razão da PG.

Para compreender melhor, veja abaixo os exemplos:

PA = (4,7,10,13,16a _n) PA infinita de razão (r) 3	
PG (1, 3, 9, 27, 81,), PG crescente de razão (r) 3	