Семинарска работа по предметот Бизнис статистика

Податочно множество

Податочно множество: https://www.kaggle.com/datasets/burnoutminer/heights-and-weights-dataset

Ова податочно множество содржи мерења за висината и тежината на 25000 различни 18 годишни лица.

Обем на примерокот: 25000 единки

Обележја:

- 1. Индекс: Уникатна бројка на поединецот (Категориски номинален податок)
- 2. Висина (инчи): Измерена висина на поединецот (Квантитативен непрекинат податок)
- 3. Тежина (либри): Измерена висина на поединецот (Квантитативен непрекинат податок)

Резултати

Прв дел

Задача 1

Табели на честоти

Дел од табелата за висина

Дел од табелата за тежина

	Interval	Freq	Midpoint	Rel_freq	Cum_freq
1	(78.01,78.6]		78.305	0.00004	
2	(78.6,79.19]		78.895	0.00000	
3	(79.19,79.78]		79.485	0.00000	
4	(79.78,80.37]		80.075	0.00000	
5	(80.37,80.95]		80.660	0.00000	
6	(80.95,81.54]	0	81.245	0.00000	
7	(81.54,82.13]	0	81.835	0.00000	
8	(82.13,82.72]		82.425	0.00004	
9	(82.72,83.3]		83.010	0.00004	
10	(83.3,83.89]		83.595	0.00004	
11	(83.89,84.48]		84.185	0.00008	
12	(84.48,85.07]		84.775	0.00004	
13	(85.07,85.65]		85.360	0.00004	8
14	(85.65,86.24]		85.945	0.00004	
15	(86.24,86.83]		86.535	0.00008	11
16	(86.83,87.42]		87.125	0.00008	13
17	(87.42,88]		87.710	0.00004	14
18	(88,88.59]		88.295	0.00008	16
19	(88.59,89.18]		88.885	0.00004	17
20	(89.18,89.77]		89.475	0.00008	19
21	(89.77,90.35]		90.060	0.00028	26
22	(90.35,90.94]	4	90.645	0.00016	30
23	(90.94,91.53]	4	91.235	0.00016	34
24	(91.53,92.12]		91.825	0.00020	39
25	(92.12,92.71]		92.415	0.00028	46
26	(92.71,93.29]		93.000	0.00036	55
27	(93.29,93.88]	8	93.585	0.00032	63
28	(93.88,94.47]	13	94.175	0.00052	76
29	(94.47,95.06]	11	94.765	0.00044	87
30	(95.06,95.64]	8	95.350	0.00032	95
31	(95.64,96.23]	19	95.935	0.00076	114
32	(96.23,96.82]	17	96.525	0.00068	131
33	(96.82,97.41]	17	97.115	0.00068	148
34	(97.41,97.99]	23	97.700	0.00092	171
35	(97.99,98.58]	23	98.285	0.00092	194
36	(98.58,99.17]	22	98.875	0.00088	216
37	(99.17,99.76]	21	99.465	0.00084	237
38	(99.76,100.3]	47	100.030	0.00188	284
39	(100.3,100.9]	48	100.600	0.00192	332
40	(100.9,101.5]	45	101.200	0.00180	377
41	(101.5,102.1]	51	101.800	0.00204	428
42	(102.1,102.7]	54	102.400	0.00216	482
43	(102.7,103.3]	52	103.000	0.00208	534

Средни точки

Средните точки на интервалите се добиени со собирање на долната и горната граница на интервалот и делење со 2.

Релативни фреквенции

Релативните фреквенции се добиваат со делење на фреквенцијата со обемот на примерокот.

Кумулативни фреквенции

Кумулативните фреквенции се добиваат со собирање на последователните фреквенции (фреквенцијата на сегашниот интервал и интервалите пред него)

Хистограми

Хистограм за висина

Полигони

Полигон за висина

Полигон за тежина

Задача 2

Стебло-лист дијаграм на висината

Стебло-лист дијаграм на тежината

Задача 3

График на расејување

Позитивна корелација

Графикот ни покажува позитивна корелација меѓу висината и тежината. Како се зголемува висината, така и тежината има тенденција да се зголеми.

Густина на податоците

Графикот е густо пополнет во средината, покажувајќи дека повеќето индивидуи во податочното множество припаѓаат во одреден опсег на висина и тежина.

Аутлаери

Има одредени лица кои се наоѓаат надвор од главниот куп. Овие аутлаери се лицата кои се или многу повисоки, пониски, полесни или потешки од просечната популација.

Варијација

Покрај тоа што има позитивен тренд, графикот покажува дека има доста варијација. Не сите индивидуи со дадена висина имаат иста тежина. Варијацијата може да е поради повеќе фактори, како возраст, пол, композиција на телото и стилот на животот

Залача 4

Мода

Модата е вредноста која има најголема честота. Еден примерок може да нема мода, но може да има и повеќе моди.

Мода на висината: 67.9406 Мода на тежината: 124.7975

Медијана

Медијана е вредноста која се наоѓа на средината на подреден примерок. Ако бројот на податоци е непарен, се зема вредноста во средината. Ако бројот на податоци е парен, се зема просекот на податоците во средината.

Медијана на висината: 67.9957

Медијана на тежината:

127.1577

Просек

Просекот е збирот на набљудуваните вредности поделен со големината на примерокот. Недостаток на оваа мерка за централна тенденција е тоа што е многу осетлива на екстремни вредности.

Просек на висината: 67.99311

Просек на тежината: 127.0794

Задача 5

Квартали

Кварталите се вид на перцентили кои го делат примерокот на четири дела со приближно еднаква големина.

- 1. Q₁ Првиот квартал е вредност таква што приближно 25% од податоците во подредениот примерок се лево од него, а приближно 75% се десно. Познат е и како долен квартал.
- 2. Q_2 Вториот квартал е медијана на примерокот, така што приближно 50% од податоците во подредениот примерок се лево од него, а приближно 50% се десно.
- 3. Q₃ Третиот квартал е вредност таква што приближно 75% од податоците во подредениот примерок се лево од него, а приближно 25% се десно. Познат е и како горен квартал.

Кај висината: Кај тежината: $Q_1 = 66.7044$ $Q_1 = 119.3087$ $Q_2 = 67.9957$ $Q_3 = 69.2730$ $Q_3 = 134.8929$

Опсег

Опсегот е разликата помеѓу најголемата и најмалата набљудувана вредност.

Опсег на висината:

14.87444

Интерквартален опсег

Интеркварталниот опсег е разликата помеѓу третиот и првиот квартал.

Интерквартален опсег на висината: 2.56856

Интерквартален опсег на тежината:

Опсег на тежината:

92.90924

15.58418

Задача 6

Дисперзија

Дисперзијата е мерка на расејување. Ја пресметува средната вредност на квадрираното растојание на дадените вредности од очекуваните.

Дисперзија на висината:

3.616382

Дисперзија на тежината: 135.9765

Стандардна девијација

Стандардната девијација е позитивниот корен на дисперзијата. Ако таа има мала вредност тоа упатува дека сите елементи од групата се многу блиску до средната вредност, додека големата вредност упатува дека групата е широка, со широк опсег на вредности.

Стандардна девијација на висината:

1.901679

Стандардна девијација на тежината:

11.6609

Задача 7

Коефициент на корелација

Коефициентот на корелација го мери правецот и јачината на линеарната врска помеѓу две квантитативни променливи. Секогаш има вредност помеѓу -1 и 1. Ако вредноста е блиску до 0 се зборува за слаба линеарна врска. Јачината на линеарната врска расте со растење на вредноста кон 1 или опаѓање кон -1. Ако има вредност 1 или -1 тоа значи дека точките лежат на една права.

Коефициент на корелација: 0.5028585

Ова значи дека има умерена позитивна врска помеѓу висината и тежината.

Втор дел

Задача 1

Интервал на доверба

Интервал на доверба претставува интервал каде што со одредена веројатност може да кажеме дека оценуваниот параметар се наоѓа во него.

За нашиот примерок ние ќе ја оцениме вредноста на математичкото очекување со интервал на доверба од 90%

Интервал на доверба: (67.973330493858 , 68.012896699742)

Задача 2

Хипотези

 H_0 : EX = 68 H_A : $EX \neq 68$

Тест

 $Z_0 = -0.5725657$

 $\alpha = 0.1$

c = 1.644854

C = ($-\infty$, -1.644854) U (1.644854 , ∞)

 $Z_0 \notin C$

Нултата хипотеза не се отфрла, односно ЕХ = 68

Задача 3

Визуелна интерпретација

Ако податоците се нормално распределени, хистограмот би требало да има облик на ѕвонче.

По набљудување на хистограмот, тој дефинитивно има облик на ѕвонче.

Хипотези

 H_0 : Обележјето има нормална распределба H_A : Обележјето нема нормална распределба

Тест

Ќе ја добиеме р-вредноста преку Kolmogorov-Smirnov тест. Иако има некои вредности кои се исти, тие имаат минимално влијание на крајниот резултат гледајќи го тоа колку е обемен примерокот. р-вредност го претставува најмалото ниво на значајност кое би водело до отфрлање на нултата хипотеза.

 $\alpha = 0.1$ p-вредност = 0.9785271 α е помала од р-вредноста, тоа значи дека нултата хипотеза не се отфрла, односно обележјето има нормална распределба.

Задача 4

Хипотези

 H_0 : Висината и тежината се независни H_A : Висината и тежината се зависни

Тест

Ќе ја добиеме р-вредноста преку Karl Pearson тест.

$$\alpha = 0.1$$
 p-вредност = 0

 α е поголема од p-вредноста, тоа значи дека нултата хипотеза се отфрла, односно висината и тежината се зависни

Задача 5

Регресиона анализа

Регресиона анализа се користи за одредување на видот на врската на обележјата и главната цел кога се користи овој метод е да се предвиди или процени вредноста на едната променлива за дадена вредност на другата променлива.

График на корелација

Права на регресија на тежина по висина
$$y = -82.576 + 3.083x$$

Пример:

При проверување на очекуваната тежина за висина од 60 инчи, се добива 102.404 либри.