01 - Supervised Learning - Classification - Decision Trees(Solution) st122097 Thantham

September 13, 2021

1 Programming for Data Science and Artificial Intelligence

- 1.1 Supervised Learning Classification Decision Trees
- 1.2 Name: Thantham Khamyai
- 1.3 Student ID: 122097
- 1.3.1 = = Task = = =

Let's modify the above scratch code to - Modify the scratch code so it can accept an hyperparameter max_depth , in which it will continue create the tree until max_depth is reached. - Put everything into a class DecisionTree. It should have at least two methods, fit(), and predict() - Load the iris data and try with your class

```
[1]: import numpy as np import matplotlib.pyplot as plt
```

1.4 Decision Tree Class

```
def predict(self, X):
       # For each x_test_i -> predict class
       return np.array([self._predict(x_i) for x_i in X])
   # Reuseable function to create new Node
   def _grow_tree(self, X, y, depth=0):
       # get number sample for each output class
       num_samples_per_class = [np.sum(y == i) for i in range(self.n_classes_)]
       # get the output class that has largest number of samples
       predicted_class = np.argmax(num_samples_per_class)
       # create a Node with that class
       node = self.Node(predicted_class=predicted_class)
       # Check if depth of tree is exceed max_depth
       if depth < self.max_depth:</pre>
           # Find feature_idx and feature_threshold value from finding best_{\sqcup}
\rightarrow split
           idx, thr = self._best_split(X, y)
           # check if idx exists
           if idx is not None:
               # Is it on Left?
               indices_left = X[:, idx] < thr</pre>
               # Point to the left
               X_left, y_left = X[indices_left], y[indices_left]
               # Point to the right (from not left)
               X_right, y_right = X[~indices_left], y[~indices_left]
               # set identity feature at node
               node.feature_index = idx
               # set threshold for node
               node.threshold = thr
               # continuely grow left and right node
               node.left = self._grow_tree(X_left, y_left, depth + 1)
               node.right = self._grow_tree(X_right, y_right, depth + 1)
       return node
```

```
def _predict(self, inputs):
    #init tree for prediction
    node = self.tree_
    # If next branch exists -> go next branch
    while node.left:
        # test on if feature that current node less than threshold
        if inputs[node.feature_index] < node.threshold:</pre>
            # go to the left leaf
            node = node.left
        else:
            # go to the right leaf
            node = node.right
    return node.predicted_class
def _best_split(self, X, y):
    # get number of samples
    m = y.size
    # if no samples more, than exit
    if m <= 1:
        return None, None
    # count samples that are each class
    num_parent = [np.sum(y == c) for c in range(self.n_classes_)]
    # find gini Index using I_g equation
    best_gini = 1.0 - sum((n / m) ** 2 for n in num_parent)
    # init best split indx and threshold value
    best_idx, best_thr = None, None
    # looping all features to find best split
    for idx in range(self.n_features_):
        # make list of threshold split
        thresholds, classes = zip(*sorted(zip(X[:, idx], y)))
        # make countable list
        num_left = [0] * self.n_classes_
```

```
# make init right
           num_right = num_parent.copy()
           # try to calcualate left to right
           for i in range(1, m):
               c = classes[i - 1]
               num left[c] += 1
               num_right[c] -= 1
               # gini index on left
               gini_left = 1.0 - sum(
                   (num_left[x] / i) ** 2 for x in range(self.n_classes_)
               # qini index on right
               gini_right = 1.0 - sum(
                   (num_right[x] / (m - i)) ** 2 for x in range(self.
→n_classes_)
               )
               # gini on node
               gini = (i * gini_left + (m - i) * gini_right) / m
               # If out of threshold exists
               if thresholds[i] == thresholds[i - 1]:
                   continue
               # if current gini is better previous
               if gini < best_gini:</pre>
                   best_gini = gini # set it as best gini
                   best_idx = idx # set idx for best gini
                   best_thr = (thresholds[i] + thresholds[i - 1]) / 2 # calc_{\sqcup}
→ threshold which is between best split
       return best_idx, best_thr
   # Inner class for Node Generation
   class Node:
       def __init__(self, predicted_class):
           # Being predicted to be class
           self.predicted_class = predicted_class
           # Will test on feature at
           self.feature_index = 0
```

```
# With Threshold
self.threshold = 0

# Connect with Left and Right Node at
self.left = None
self.right = None
```

1.4.1 How to use DecisionTree model

 $DecisionTree(max_depth = None)$

Hyperparameter

• max_depth: int or None (if None or negative, depth will be st to infinite automatically.)

1.5 Perform Decision Tree Classisification on Iris Data

Load dataset

```
[3]: from sklearn.datasets import load_iris

dataset = load_iris()
X, y = dataset.data, dataset.target
```

Try to see what are the scatter will looks like

```
[4]: plt.scatter(X[:, 0], X[:, 1], c=y)
    plt.xlabel('feature 1')
     plt.ylabel('feature 2')
     plt.title('Feature space (X1, X2) of Iris')
     plt.grid()
    plt.show()
     plt.scatter(X[:, 1], X[:, 2], c=y)
     plt.xlabel('feature 2')
     plt.ylabel('feature 3')
     plt.title('Feature space (X2, X3) of Iris')
     plt.grid()
     plt.show()
    plt.scatter(X[:, 2], X[:, 3], c=y)
     plt.xlabel('feature 3')
     plt.ylabel('feature 4')
     plt.title('Feature space (X3, X4) of Iris')
     plt.grid()
     plt.show()
```


However, Decision tree will perform on between values threshold. So, we might not need to normalize the data.

Split Data to Train and Test

Instantiate and Fit The Model Lets try model

```
[6]: model = DecisionTree(max_depth=5)
model.fit(X_train, y_train)
```

Predict yhat After fitting model, we futher predict values

The predicted values will looks like this

- [8]: y_pred[:10]
- [8]: array([1, 1, 2, 0, 2, 2, 0, 2, 0, 1])

Model Evaluation

[9]: from sklearn.metrics import classification_report

print(classification_report(y_test, y_pred))

	precision	recall	f1-score	support
0	1.00	1.00	1.00	11
1	0.94	0.89	0.91	18
2	0.88	0.94	0.91	16
accuracy			0.93	45
macro avg	0.94	0.94	0.94	45
weighted avg	0.93	0.93	0.93	45

1.5.1 Try on different implementation with infinite depth

[10]: model_inf = DecisionTree(max_depth=None)
 model_inf.fit(X_train, y_train)
 y_pred_inf = model_inf.predict(X_test)
 print(classification_report(y_test, y_pred_inf))

{Warning]: max_depth defined is None or less than 1, model will set to no limit precision recall f1-score support

0	1.00	1.00	1.00	11
1	0.94	0.89	0.91	18
2	0.88	0.94	0.91	16
accuracy			0.93	45
macro avg	0.94	0.94	0.94	45
weighted avg	0.93	0.93	0.93	45