

Controle de Processos

Dados Pessoais

Nome:	Turma:		
Endereço:			
Cidade:	CEP:		
Estado:	Telefone:		
F-mail:			

Todos os Direitos Reservados.

Capa e Projeto Gráfico: CEDTEC

Controle de Processos Nº Registro: 522.872 Livro: 992 Folha: 347

A reprodução deste material, total ou parcial, só poderá ser realizada com autorização do CEDTEC – Ensino e Soluções Didáticas Ltda.

CEDTEC – Ensino e Soluções Didáticas Ltda.

Av. Civit, 911, Parque Residencial Laranjeiras, Serra – ES

CEP: 29.165-032

e-mail: cedtec@cedtec.com.br

Sistema de Ensino Profissional CEDTEC

O caminho para uma qualificação profissional de qualidade.

"A educação é o grande motor do desenvolvimento pessoal. É através dela que a filha de um camponês pode se tornar uma médica, que o filho de um mineiro pode se tornar o diretor da mina, que uma criança de peões de fazenda pode se tornar o presidente de um país."

NELSON MANDELA

Caro Aluno

Esta é a apostila de Controle de Processos, faça excelente uso deste material, cujo conteúdo foi desenvolvido para produzir no estudante, as habilidades necessárias à continuação dos estudos, sendo de grande importância para o melhor aproveitamento das disciplinas ao longo do curso.

A partir do domínio da variáveis de processos os alunos iniciam o desenvolvimento das técnicas e ferramentas para o controle destes, que estão baseados em monitoramento por instrumentação. O domínio do controle de processos, define basicamente a capacidade do técnico de automação em produzir soluções inteligentes na maioria dos problemas dos que surgem em processos industriais baseados em Controles Automáticos.

Esta disciplina tem intima relação com Instrumentação e é eminentemente teórica, com grande aplicação de Funções Matemáticas.

É importante ressaltar que esta apostila não se propõe esgotar esse assunto. Cabe então, aos profissionais que almejam o aumento de sua capacitação nesta área, buscar constante atualização. O assunto é vasto, assim como são inúmeras as fontes de informações.

Bons estudos!

CEDTEC – Ensino e Soluções Didáticas Ltda. Educação profissional levada a sério

Sumário

1 - INTRODUÇÃO	
1.1 - Evolução Histórica do Controle Automático	7
2 - CONCEITOS E CONSIDERAÇÕES BÁSICAS DE CONTROLE AUTOMÁTICO	
2.1 - Conceitos	9
2.2 - Tipos de Controle	11
2.2.1 - Controle Manual e Controle Automático	
2.2.2 - Controle Auto-operado	12
2.2.3 - Controle em Maina Aberta e Maina Fechada	
2.4 - Diagrama de Blocos	
2.5 - Atrasos no Processo	
2.5.1 - Tempo Morto	
2.5.3 - Resistência	16
3 - CARACTERÍSTICAS DE PROCESSOS INDUSTRIAIS	
3 - CARACTERISTICAS DE PROCESSOS INDUSTRIAIS	
3.1 - Processos de Fabricação Contínua e Descontínua	
3.1.1 - Processos Contínuos	17
3.1.1 - Processos Contínuos	17 17
3.1.1 - Processos Contínuos	17 17 18
3.1.1 - Processos Contínuos	17 17 18
3.1.1 - Processos Contínuos	17181819
3.1.1 - Processos Contínuos	17181819
3.1.1 - Processos Contínuos	17181919
3.1.1 - Processos Contínuos	1718191919
3.1.1 - Processos Contínuos	17181919192020
3.1.1 - Processos Contínuos	17181919202121
3.1.1 - Processos Contínuos	17181919202121
3.1.1 - Processos Contínuos	17181919202121
3.1.1 - Processos Contínuos	
3.1.1 - Processos Contínuos 3.1.2 - Processos Descontínuos 3.2 - Representação e Terminologia de Processos 3.2.1 - Esquema de Funcionamento e Diagrama de Bloco 3.2.2 - Processos e a Instrumentação	

4.2 - Ação de Controle On-Off (Liga-Desliga)	26
4.2.1 - Características básicas do controle ON-OFF	27
4.2.2 - Conclusão	28
4.3 - Ação Proporcional (Ação P)	28
4.3.1 - Faixa Proporcional	
4.3.2 - Erro de Off-Set	
4.3.3 - Características básicas do controle proporcional	31
4.3.4 - Esquema básico de um controlador proporcional	
4.3.5 - Conclusão	
4.4 - Ação Integral	32
4.4.1 - Características básicas do controle integral	33
4.4.2 - Esquema básico de um controlador integral	
4.4.3 - Conclusão	34
4.5 - Ação Proporcional + Integral (Ação P+ I)	
4.5.1 - Esquema básico de um controlador P + I	36
4.5.2 - Conclusão	36
4.6 - Ação Derivativa (Ação D)	36
4.6.1 - Características básicas do controle derivativo	
4.6.2 - Esquema básico de um controlador derivativo	
4.6.3 - Conclusão	38
4.7 - Ação Proporcional + Integral + Derivativa (PID)	38
4.7.1 - Esquema básico de um controlador PID	
4.7.2 - Conclusão	39
4.8 - Quadro Comparativo Entre o Tipo de Desvio e a Resposta de Cada	a Ação 40
5 - MALHAS DE CONTROLE AUTOMÁTICO	
5.1 - Malha de Controle Tipo Feedback	43
5.2 - Critérios de Performance e Comportamento das Ações PID em Malha I	
5.2.1 - Critério da Taxa de Amortecimento ou Área Mínima	
5.2.2 - Critério de Distúrbio Mínimo	
5.2.3 - Critério da Amplitude Mínima	45
5.2.4 - Ação Proporcional	45
5.2.5 - Ação Integral	47
5.2.6 - Ação Derivativa	47
5.3 - Controle em Cascata	48
5.3.1 - Funcionamento	48
5.3.2 - Exemplos de malha em cascata	49

5.4 - Controle de Relação	50
5.5 - Controle Feed Forward	52
5.5.1 - Malha de Controle Feed Forward (malha aberta) 5.5.2 - Outros Exemplos de Controle Feed Forward	
5.6 - Controle Tipo Split-Range	
6 - MÉTODOS DE SINTONIA DE MALHAS	
6.1 - Métodos de Aproximações Sucessivas ou Tentativa e Erro	55
6.2 - Métodos que Necessitam de Identificação do Processo	56
6.2.1 - Para Processos Estáveis	
6.3 - Método de Ziegler e Nichols em Malha Fechada	59
6.3.1 - Procedimento	59
6.4 - Métodos de Auto-Sintonia	61
EXERCÍCIOS	

BIBLIOGRAFIA

Desse modo, a energia era fornecida pelo próprio trabalho humano ou pelos trabalhos de animais domésticos. Somente no século XVIII, com o advento das máquinas a vapor , conseguiu-se transformar a energia da matéria em trabalho. Porém, o homem apenas teve a sua condição de trabalho mudada, passando do trabalho puramente braçal ao trabalho mental. Nesse momento, cabia ao homem o esforço de tentar "controlar" esta nova fonte de energia, exigindo dele então muita intuição e experiência, além de expô-lo constantemente ao perigo devido a falta de segurança. No princípio, isso foi possível devido à baixa demanda. Entretanto, com o aumento acentuado da demanda, o homem viu-se obrigado a desenvolver técnicas e equipamentos capazes de substituí-lo nesta nova tarefa, libertando-o de grande parte deste esforço braçal e mental. Daí então surgiu o controle automático que, quanto à necessidade, pode assim ser classificado:

NECESSIDADE DO CONTROLE AUTOMÁTICO	1 – Porque o homem não é mais capaz de manter o controle a contento.	a – produção elevada do sistema
		b – ritmo acelerado de produção
		c – precisão requerida na produção
		d – confiabilidade
		e – aumento do nível de perigo
	2 – Para elevação da Produtividade.	f – redução de mão-de-obra
		g – aumento da eficiência operacional das instalações
		h – redução de custo operacional do equipamento

1.1 - Evolução Histórica do Controle Automático

O primeiro controlador automático industrial de que há notícia é o regulador centrífugo inventado em 1775, por James Watts, para o controle de velocidade das máquinas à vapor.

Esta invenção foi puramente empírica. Nada mais aconteceu no campo de controle até 1868, quando Clerk Maxwell, utilizando o cálculo diferencial, estabeleceu a primeira análise matemática do comportamento de um sistema máquina-regulador.

Por volta de 1900 aparecem outros reguladores e servomecanismos aplicados à máquina a vapor, a turbinas e a alguns processos.

Durante a primeira guerra mundial, "N. Minorsky cria o servocontrole, também baseado na realimentação, para a manutenção automática da rota dos navios e escreve um artigo intitulado Directional Stability of Automatically Steered Bodies".

O trabalho pioneiro de Norbert Wiener (1948) sobre fenômenos neurológicos e os sistemas de controle no corpo humano abreviou o caminho para o desenvolvimento de sistemas complexos de automação.

A partir daqui o progresso do controle automático foi muito rápido. Atualmente existe uma enorme variedade de equipamentos de medidas primárias, transmissão das medidas (transmissores), de regulação (controles pneumáticos, elétricos e eletrônicos), de controle final (válvulas pneumáticas, válvulas solenóide, servomotores etc.), de registro (registradores), de indicação (indicadores analógicos e digitais), de computação (relés analógicos, relés digitais com microprocessador), PLC's, SDCD's etc.

Estes equipamentos podem ser combinados de modo a constituírem cadeias de controle simples ou múltiplas, adaptadas aos inúmeros problemas de controle e a um grande número de tipos de processos.

Em 1932, H. Nyquist, da Bell Telephone, cria a primeira teoria geral de controle automático com sua "Regeneration Theory", na qual se estabelece um critério para o estudo da estabilidade.