Siamese Tracking

Jesus Zarzar October 16, 2018

Papers

• Signature Verifcation

"Signature Verification using a "Siamese" Time Delay Neural Network"

Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Sickinger and Roopak Shah

NIPS 1993

SiamFC

"Fully-Convolutional Siamese Networks for Object Tracking"
Luca Bertinetto, Jack Valmadre, João F. Henriques, Andrea Vedaldi, Philip H. S. Torr
ECCV 2016

SiamRPN

"High Performance Visual Tracking with Siamese Region Proposal Network"
Bo Li, Junjie Yan, Wei Wu, Zheng Zhu, Xiaolin Hu
CVPR 2018

Outline

- Siamese Networks
 - Signature Verification
- Siamese Tracking
 - SiamFC
- State of the Art
 - SiamRPN

- "Signature Verification using a "Siamese" Time Delay Neural Network"
 Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Sickinger and Roopak Shah
 NIPS 1993
- "Fully-Convolutional Siamese Networks for Object Tracking"
 Luca Bertinetto, Jack Valmadre, João F. Henriques, Andrea Vedaldi, Philip H. S. Torr
 ECCV 2016
- "High Performance Visual Tracking with Siamese Region Proposal Network"
 Bo Li, Junjie Yan, Wei Wu, Zheng Zhu, Xiaolin Hu
 VOT 2018

- Electronic signature verification
 - Detect credit card frauds
- Comparison of two signatures
 - o "Genuine" or "Forged"

- Dataset
 - Digital-pen input signatures
 - o 219 people, 10-20 signatures each
 - Bell Laboratories Cafeteria
- Two identical networks
- Handpicked features
- Encode two input feature vectors
 - Sample and Example
- Distance measure
 - Cosine similarity
 - 1 for Genuine
 - -1 for Forgerie

• ~99% Genuine Accepted and ~80% Forgeries Rejected

Network	Input Features	Best Performance on:		
	37 1.2 C C.	Training Set	Validation Set	
1, arch 1	pud acc-c acc-t spd $\cos\theta \sin\theta \cos\phi \sin\phi$	GA 97.0% FR 65.3%, 26 passes through set	GA 90.3% FR 74.8%, 6 passes through set	
2, arch 1	same as 1, but pen up trajectory removed	GA 97.8% FR 60.0%, 11 passes through set	GA 93.2% FR 75.2%, 2 passes through set	
3, arch 1	$x y \text{ pud spd } \cos\theta \sin\theta$ $\cos\phi \sin\phi$	GA 99.8% FR 88.8%, 100 passes through set	GA 91.7% FR 74.2%, 32 passes through set	
4, arch 1	same as network 3, but a larger training set	GA 98.2% FR 81.7%, 42 passes through set	GA 99.4% FR 80.5%, 42 passes through set	
5, arch 2	same as 4, except ar- chitecture 2 was used	GA 98.6% FR 81.5%, 69 passes through set	GA 99.6% FR 80.1%, 44 passes through set	

- "Signature Verification using a "Siamese" Time Delay Neural Network"
 Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Sickinger and Roopak Shah
 NIPS 1993
- "Fully-Convolutional Siamese Networks for Object Tracking"
 Luca Bertinetto, Jack Valmadre, João F. Henriques, Andrea Vedaldi, Philip H. S. Torr
 ECCV 2016
- "High Performance Visual Tracking with Siamese Region Proposal Network"
 Bo Li, Junjie Yan, Wei Wu, Zheng Zhu, Xiaolin Hu
 VOT 2018

- Exemplar z
- Search Image *x*
- Fully-convolutional encoder φ
 - Commutes with translation
- Output score map v
 - Cosine Window
 - Penalize large displacements

- Encoding function φ
 - Based on AlexNet
 - Cut at conv5
 - No padding
 - Xavier Initialization

				Activation size		
Layer	Support	Chan. map	Stride	for exemplar	for search	chans.
				127×127	255×255	$\times 3$
conv1	11×11	96×3	2	59×59	123×123	$\times 96$
pool1	3×3		2	29×29	61×61	$\times 96$
conv2	5×5	256×48	1	25×25	57×57	$\times 256$
pool2	3×3		2	12×12	28×28	$\times 256$
conv3	3×3	384×256	1	10×10	26×26	$\times 192$
conv4	3×3	384×192	1	8×8	24×24	$\times 192$
conv5	3×3	256×192	1	6×6	22×22	×128

- Trained on image pairs
 - ImageNet Video
 - 50 epochs, 50,000 pairs
 - Centered around GT
 - Padded with mean value
- Binary GT map y
- Score map v
- Loss map l(y,v)
- Averaged loss

Tracking

- Search image 4 times previous box
- 5 Scales 1.025^{-2,-1,0,1,2}
- No model update

- "Signature Verification using a "Siamese" Time Delay Neural Network"
 Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Sickinger and Roopak Shah
 NIPS 1993
- "Fully-Convolutional Siamese Networks for Object Tracking"
 Luca Bertinetto, Jack Valmadre, João F. Henriques, Andrea Vedaldi, Philip H. S. Torr
 ECCV 2016
- "High Performance Visual Tracking with Siamese Region Proposal Network"
 Bo Li, Junjie Yan, Wei Wu, Zheng Zhu, Xiaolin Hu
 VOT 2018

- φ from SiamFC
- First 3 conv layers fixed

Similar to Faster R-CNN

- o k Anchors
- o positive/negative anchor map
- dx/dy/dw/dh anchor map

Anchors

- Pre-defined boxes
- Fixed width, height ratios
- o Ratios [0.33, 0.5, 1, 2, 3]
- Single scale
- Centered anywhere in image

- Classification Branch
 - Positive IoU > 0.6
 - Negative IoU < 0.3
- Regression Branch
 - o dx/dy/dw/dh w.r.t. GT

$$x_i^{pro} = x_i^{an} + dx_l^{reg} * w_l^{an}$$

$$y_j^{pro} = y_j^{an} + dy_l^{reg} * h_l^{an}$$

$$w_l^{pro} = w_l^{an} * e^{dw_l}$$

$$h_l^{pro} = h_l^{an} * e^{dh_l}$$

- Trained on pair of frames
 - ILSVRC Random frame difference
 - Up to 100 frame difference
 - Youtube-BB Continuously
 - Template Detection pairs
 - 64 anchors per pair
 - At most 16 positive anchors
 - o 50 epochs
- Classification Branch
 - \circ Cross-Entropy loss L_{cls}
- Regression Branch
 - \circ Smooth $L_{\rm 1}$ loss $L_{\rm reg}$

$$loss = L_{cls} + \lambda L_{reg}$$

$$L_{reg} = \sum_{i=0}^{3} smooth_{L1}(\delta[i], \sigma)$$

$$smooth_{L_1}(x, \sigma) = \begin{cases} 0.5\sigma^2 x^2, & |x| < \frac{1}{\sigma^2} \\ |x| - \frac{1}{2\sigma^2}, & |x| \ge \frac{1}{\sigma^2} \end{cases}$$

$$\delta[0] = \frac{T_x - A_x}{A_w}, \quad \delta[1] = \frac{T_y - A_y}{A_h}$$

$$\delta[2] = ln\frac{T_w}{A_w}, \quad \delta[3] = ln\frac{T_h}{A_h}$$

σ - hyperparameter

T - ground truth box

A - anchor box

- Proposal Selection
 - Top K from Classification Maps
 - Discard anchors far from center
 - Apply cosine window
 - Size and Ratio change penalty
 - Re-ranked
 - Non-Maximum-Suppresion
- Target box linearly interpolated

k - hyperparameter

r, *r*' - ratio of previous and current frame

s, s' - scale of previous and current frame

- Dynamic Model Tracking
 - Template = Previous Frame

- One-Shot Detection
 - Template = Frame Zero
 - Online Tracking

Thank You