Systemic Risk and Financial Connectedness: Empirical Evidence

Mateusz Dadej

Phd. student at Universita degli Studi di Brescia, ITA Visiting researcher at Universität Mannheim, DE

The 29th Forecasting Financial Markets Conference (FFM29)
University of Oxford

- "Robust-yet-fragile" property of financial system can serve at the same time as shock-absorbers and shock-amplifiers to the financial sector (Haldane 2009).
- This makes the system robust, when the magnitude of shock is relatively small, but fragile, when the shock is large.
- A seminal paper by Acemoglu, Ozdaglar, and Tahbaz-Salehi 2015a, provides a formal model, in which an extent of financial contagion exhibits a form of regime transition.
 - When the shocks are small, the damages are dissipated through large number of financial institutions.
 - When the shock is above some threshold, the properties of the system changes markedly. The damages are amplified through the network.

- "Robust-yet-fragile" property of financial system can serve at the same time as shock-absorbers and shock-amplifiers to the financial sector (Haldane 2009).
- This makes the system robust, when the magnitude of shock is relatively small, but fragile, when the shock is large.
- A seminal paper by Acemoglu, Ozdaglar, and Tahbaz-Salehi 2015a, provides a formal model, in which an extent of financial contagion exhibits a form of regime transition.
 - When the shocks are small, the damages are dissipated through large number of financial institutions.
 - When the shock is above some threshold, the properties of the system changes markedly. The damages are amplified through the network.

- "Robust-yet-fragile" property of financial system can serve at the same time as shock-absorbers and shock-amplifiers to the financial sector (Haldane 2009).
- This makes the system robust, when the magnitude of shock is relatively small, but fragile, when the shock is large.
- A seminal paper by Acemoglu, Ozdaglar, and Tahbaz-Salehi 2015a, provides a formal model, in which an extent of financial contagion exhibits a form of regime transition.
 - When the shocks are small, the damages are dissipated through large number of financial institutions.
 - When the shock is above some threshold, the properties of the system changes markedly. The damages are amplified through the network.

- "Robust-yet-fragile" property of financial system can serve at the same time as shock-absorbers and shock-amplifiers to the financial sector (Haldane 2009).
- This makes the system robust, when the magnitude of shock is relatively small, but fragile, when the shock is large.
- A seminal paper by Acemoglu, Ozdaglar, and Tahbaz-Salehi 2015a, provides a formal model, in which an extent of financial contagion exhibits a form of regime transition.
 - When the shocks are small, the damages are dissipated through large number of financial institutions.
 - When the shock is above some threshold, the properties of the system changes markedly. The damages are amplified through the network.

- "Robust-yet-fragile" property of financial system can serve at the same time as shock-absorbers and shock-amplifiers to the financial sector (Haldane 2009).
- This makes the system robust, when the magnitude of shock is relatively small, but fragile, when the shock is large.
- A seminal paper by Acemoglu, Ozdaglar, and Tahbaz-Salehi 2015a, provides a formal model, in which an extent of financial contagion exhibits a form of regime transition.
 - When the shocks are small, the damages are dissipated through large number of financial institutions.
 - When the shock is above some threshold, the properties of the system changes markedly. The damages are amplified through the network.

- The aim is to provide (and quantify) empirical evidence for the regime-dependent effect of connectedness on financial stability, i.e.:
 - ullet Stable markets regime: Higher connectedness o less volatility
 - ullet High shock regime: Higher connectedness o more volatility
- In a following steps:
 - Based on stock prices of the biggest banks in EU and USA, I calculate the connectedness measures in a rolling window basis.
 - This time series measure is then used as an explanatory variable in a Markov switching ARCH model.

- The aim is to provide (and quantify) empirical evidence for the regime-dependent effect of connectedness on financial stability, i.e.:
 - ullet Stable markets regime: Higher connectedness o less volatility
 - ullet High shock regime: Higher connectedness o more volatility
- In a following steps:
 - Based on stock prices of the biggest banks in EU and USA, I calculate the connectedness measures in a rolling window basis.
 - This time series measure is then used as an explanatory variable in a Markov switching ARCH model.

- The aim is to provide (and quantify) empirical evidence for the regime-dependent effect of connectedness on financial stability, i.e.:
 - ullet Stable markets regime: Higher connectedness o less volatility
 - ullet High shock regime: Higher connectedness o more volatility
- In a following steps:
 - Based on stock prices of the biggest banks in EU and USA, I calculate the connectedness measures in a rolling window basis.
 - This time series measure is then used as an explanatory variable in a Markov switching ARCH model.

- The aim is to provide (and quantify) empirical evidence for the regime-dependent effect of connectedness on financial stability, i.e.:
 - ullet Stable markets regime: Higher connectedness o less volatility
 - ullet High shock regime: Higher connectedness o more volatility
- In a following steps:
 - Based on stock prices of the biggest banks in EU and USA, I calculate the connectedness measures in a rolling window basis.
 - This time series measure is then used as an explanatory variable in a Markov switching ARCH model.

- The aim is to provide (and quantify) empirical evidence for the regime-dependent effect of connectedness on financial stability, i.e.:
 - ullet Stable markets regime: Higher connectedness o less volatility
 - ullet High shock regime: Higher connectedness o more volatility
- In a following steps:
 - Based on stock prices of the biggest banks in EU and USA, I calculate the connectedness measures in a rolling window basis.
 - This time series measure is then used as an explanatory variable in a Markov switching ARCH model.

- The aim is to provide (and quantify) empirical evidence for the regime-dependent effect of connectedness on financial stability, i.e.:
 - ullet Stable markets regime: Higher connectedness o less volatility
 - \bullet High shock regime: Higher connectedness \to more volatility
- In a following steps:
 - Based on stock prices of the biggest banks in EU and USA, I calculate the connectedness measures in a rolling window basis.
 - This time series measure is then used as an explanatory variable in a Markov switching ARCH model.

(Financial) network estimation from time series

$$\begin{pmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ x_{31} & x_{32} & \dots & x_{3n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{T1} & x_{T2} & \dots & x_{Tn} \end{pmatrix}$$

Time series matrix X of size $T \times n$.

$$\begin{pmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ x_{31} & x_{32} & \dots & x_{3n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{T1} & x_{T2} & \dots & x_{Tn} \end{pmatrix} \qquad f : \mathbb{R}^{T \times n} \to \mathbb{R}^{n \times n} \qquad \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$

Adiacency matrix $\mathbf{A} \times \mathbf{n}$.

Graph representation of matrix A.

- **1** Average correlation: $\frac{\sum_{i\neq i}^{N}\sum_{j\neq j}^{N}\rho_{i,j}(R)}{N^2-N}$, with $\rho(\cdot)$ being the Ledoit-Wolf estimator of the covariance matrix (Ledoit and Wolf 2003).
- 2 $\frac{\sum_{i=1}^{k} \lambda_{i}}{\sum_{i=1}^{N} \lambda_{i}}$, with λ being an eigenvalue of the covariance matrix.
- (Granger 1969) based measure of connectedness:
- For each of stock pair estimate:
 - $r_{i,t+1} = \beta_0 + \beta_1 r_{m,t} + \beta_2 r_{j,t} + \sum_k \beta_{c+2} x_{c,t} + \epsilon_t$
 - The "causality" matrix is set as: $G_{i,j} = \begin{cases} 1 & \text{if } \beta_2 \text{ is significant } \\ 0 & \text{otherwise} \end{cases} \forall i
 eq if it is a significant in the property of th$
 - As with before we calculate average connectedness: $\frac{\sum_{i\neq j}\sum_{j\neq i}G_{i,j}}{N\times(N-1)}$
 - Last two measures are as described in Billio et al. 2012

- **1** Average correlation: $\frac{\sum_{i\neq i}^{N}\sum_{j\neq j}^{N}\rho_{i,j}(R)}{N^2-N}$, with $\rho(\cdot)$ being the Ledoit-Wolf estimator of the covariance matrix (Ledoit and Wolf 2003).
- ② $\frac{\sum_{i=1}^{k} \lambda_{i}}{\sum_{i=1}^{N} \lambda_{i}}$, with λ being an eigenvalue of the covariance matrix.
- (Granger 1969) based measure of connectedness:
- For each of stock pair estimate:
 - $r_{i,t+1} = \beta_0 + \beta_1 r_{m,t} + \beta_2 r_{j,t} + \sum_k \beta_{c+2} x_{c,t}$
 - The "causality" matrix is set as: $G_{i,j} = \begin{cases} 1 & \text{if } \beta_2 \text{ is significant} \\ 0 & \text{otherwise} \end{cases} \forall i \neq j$
 - As with before we calculate average connectedness: $\frac{\sum_{j\neq i}^{n} G_{i,j}}{N\times (N-1)}$
 - Last two measures are as described in Billio et al. 2012

- **1** Average correlation: $\frac{\sum_{i\neq j}^{N}\sum_{j\neq j}^{N}\rho_{i,j}(R)}{N^{2}-N}$, with $\rho(\cdot)$ being the Ledoit-Wolf estimator of the covariance matrix (Ledoit and Wolf 2003).
- ② $\frac{\sum_{i=1}^{k} \lambda_{i}}{\sum_{i=1}^{N} \lambda_{i}}$, with λ being an eigenvalue of the covariance matrix.
- (Granger 1969) based measure of connectedness:
 - For each of stock pair estimate:
 - $r_{i,t+1} = \beta_0 + \beta_1 r_{m,t} + \beta_2 r_{j,t} + \sum_k^s \beta_{c+2} x_{c,t} + \epsilon_t$ The "causality" matrix is set as: $G_{i,j} = \begin{cases} 1 & \text{if } \beta_2 \text{ is significant} \\ 0 & \text{otherwise} \end{cases} \forall i \neq j$
 - As with before we calculate average connectedness: $\frac{\sum_{i \neq j}^{N} \sum_{j \neq i}^{N} G_{i,j}}{N \lor (M-1)}$

- **1** Average correlation: $\frac{\sum_{i\neq i}^{N}\sum_{j\neq j}^{N}\rho_{i,j}(R)}{N^2-N}$, with $\rho(\cdot)$ being the Ledoit-Wolf estimator of the covariance matrix (Ledoit and Wolf 2003).
- ② $\frac{\sum_{i=1}^{k} \lambda_{i}}{\sum_{i=1}^{N} \lambda_{i}}$, with λ being an eigenvalue of the covariance matrix.
- (Granger 1969) based measure of connectedness:
 - For each of stock pair estimate: $r_{i,t+1} = \beta_0 + \beta_1 r_{m,t} + \beta_2 r_{j,t} + \sum_k^s \beta_{c+2} x_{c,t} + \epsilon_t$
 - The "causality" matrix is set as: $G_{i,j} = \begin{cases} 1 & \text{if } \beta_2 \text{ is significant} \\ 0 & \text{otherwise} \end{cases} \forall i \neq j$
 - As with before we calculate average connectedness: $\frac{\sum_{i\neq j}^{N}\sum_{j\neq i}^{N}G_{i,j}}{N\times(N-1)}$
 - Last two measures are as described in Billio et al. 2012

- **1** Average correlation: $\frac{\sum_{i\neq i}^{N}\sum_{j\neq j}^{N}\rho_{i,j}(R)}{N^2-N}$, with $\rho(\cdot)$ being the Ledoit-Wolf estimator of the covariance matrix (Ledoit and Wolf 2003).
- ② $\frac{\sum_{i=1}^{k} \lambda_{i}}{\sum_{i=1}^{N} \lambda_{i}}$, with λ being an eigenvalue of the covariance matrix.
- (Granger 1969) based measure of connectedness:
 - For each of stock pair estimate: $r_{i,t+1} = \beta_0 + \beta_1 r_{m,t} + \beta_2 r_{j,t} + \sum_k^s \beta_{c+2} x_{c,t} + \epsilon_t$
 - The "causality" matrix is set as: $G_{i,j} = \begin{cases} 1 & \text{if } \beta_2 \text{ is significant} \\ 0 & \text{otherwise} \end{cases} \forall i \neq j$
 - As with before we calculate average connectedness: $\frac{\sum_{i\neq j}^{N}\sum_{j\neq i}^{N}G_{i,j}}{N\times(N-1)}$
 - Last two measures are as described in Billio et al. 2012

- **1** Average correlation: $\frac{\sum_{i\neq i}^{N}\sum_{j\neq j}^{N}\rho_{i,j}(R)}{N^2-N}$, with $\rho(\cdot)$ being the Ledoit-Wolf estimator of the covariance matrix (Ledoit and Wolf 2003).
- ② $\frac{\sum_{i=1}^{k} \lambda_{i}}{\sum_{i=1}^{N} \lambda_{i}}$, with λ being an eigenvalue of the covariance matrix.
- (Granger 1969) based measure of connectedness:
 - For each of stock pair estimate:

$$r_{i,t+1} = \beta_0 + \beta_1 r_{m,t} + \beta_2 r_{j,t} + \sum_{k=0}^{s} \beta_{c+2} x_{c,t} + \epsilon_t$$

- The "causality" matrix is set as: $G_{i,j} = \begin{cases} 1 & \text{if } \beta_2 \text{ is significant} \\ 0 & \text{otherwise} \end{cases} \forall i \neq j$
- As with before we calculate average connectedness: $\frac{\sum_{i\neq j}^{N}\sum_{j\neq i}^{N}G_{i,j}}{N\times(N-1)}$
- Last two measures are as described in Billio et al. 2012

- **1** Average correlation: $\frac{\sum_{i\neq i}^{N}\sum_{j\neq j}^{N}\rho_{i,j}(R)}{N^2-N}$, with $\rho(\cdot)$ being the Ledoit-Wolf estimator of the covariance matrix (Ledoit and Wolf 2003).
- ② $\frac{\sum_{i=1}^{k} \lambda_{i}}{\sum_{i=1}^{N} \lambda_{i}}$, with λ being an eigenvalue of the covariance matrix.
- (Granger 1969) based measure of connectedness:
 - For each of stock pair estimate:

$$r_{i,t+1} = \beta_0 + \beta_1 r_{m,t} + \beta_2 r_{j,t} + \sum_{k=0}^{s} \beta_{c+2} x_{c,t} + \epsilon_t$$

- The "causality" matrix is set as: $G_{i,j} = \begin{cases} 1 & \text{if } \beta_2 \text{ is significant} \\ 0 & \text{otherwise} \end{cases} \forall i \neq j$
- As with before we calculate average connectedness: $\frac{\sum_{i\neq j}^{N}\sum_{j\neq i}^{N}G_{i,j}}{N\times(N-1)}$
- Last two measures are as described in Billio et al. 2012

Example of estimated network

(a) Circle representation of graph

(b) Representation of graph with random position

Connectedness measures results

Figure: Standardized time series of connectedness measures for US market and a rolling window of 63 trading days (quarter)

Modeling the regime-dependent effect of connectedness

Mean specification of the model:

$$r_{b,t} = \beta_0 + \sum_{i=1}^{k} \beta_i r_{b,t-i} + \sum_{j=0}^{p} \beta_{k+j} r_{m,t-j} + \epsilon_t$$
Banking index
Broad market index

The Markov-switching ARCH specification is:

$$\sqrt{\epsilon_t^2} = \alpha_{0,S_t} + \underbrace{\alpha_{1,S_t} \gamma_{t-1}}_{\text{connectedness}} + \underbrace{\sum_{i=1}^p \alpha_{i+1} \sqrt{\epsilon_{t-i}^2}}_{\text{lag controls}} + \vartheta_t$$

$$\vartheta \sim \mathcal{N}(0, \eta)$$

With regime changes according to Markov process:

$$P(S_t = i | S_{t-1} = j) = \begin{bmatrix} \pi_1 & 1 - \pi_2 \\ 1 - \pi_1 & \pi_2 \end{bmatrix}$$

Estimation results

US banking sector and 252 trading days (year) rolling window

Connectedness measure		Regime 1		Regime 2	
		Estimate	S.E.	Estimate	S.E.
Ledoit-Wolf	α_{0}	0.37*	0.013	1.342*	0.037
	α_1	0.014	0.006	0.226*	0.026
	η	0.319	0.007	0.888	0.009
	$\pi_{i,i}$	80.64%		57.8%	
Eigenvalue-based	α_{0}	0.378*	0.014	1.337*	0.037
	α_1	0.025	0.007	0.222*	0.028
	η	0.319	0.007	0.89	0.01
	$\pi_{i,i}$	80.3%		57%	
Granger-based	α_0	0.375*	0.013	1.352*	0.036
	α_1	0.019	0.007	0.197*	0.024
	η	0.316	0.007	0.889	0.009
* coefficient with 5% stati	$\pi_{i,i}$	80.7%		58.84%	

^{*} coefficient with 5% statistical significance

EU banking sector and 63 trading days (year) rolling window

Connectedness measure		Regime 1 Reg			gime 2	
		Estimate	S.E.	Estimate	S.E.	
Ledoit-Wolf	α_{0}	0.441*	0.019	1.82*	0.05	
	α_1	0.019*	0.01	0.302*	0.036	
	η	0.401	0.009	1.209	0.011	
	$\pi_{i,i}$	73.4%		48.16%		
Eigenvalue-based	α_0	0.434*	0.017	1.829*	0.048	
	α_1	-0.013*	0.008	0.303*	0.043	
	η	0.49	0.008	1.22	0.11	
	$\pi_{i,i}$	74.8%		60.8%		
Granger-based	α_{0}	0.445*	0.018	1.824*	0.05	
	α_1	0.018	0.001	0.276*	0.033	
	η	0.401	0.009	1.215	0.011	
* ((, , , , , , , , , , , , , , , , , ,	$\pi_{i,i}$	74.56%		50.76%		

^{*} coefficient with 5% statistical significance

- Are there confounders in the bank specific characteristics?
- To check this I use quarterly financial statement data
 - Data is sourced from Orbis database.
 - Substantial reduction of used data due to lower frequency of reports and their availability.
 - N banks: $51 \rightarrow 30$. T observations $6240 \rightarrow 260$.
 - Quarterly financial data was interpolated (with splines) into weekly data
 - Financial ratios and financial variable growth was used as a control in the Granger-based connectedness estimation

- Are there confounders in the bank specific characteristics?
- To check this I use quarterly financial statement data:
 - Data is sourced from Orbis database.
 - Substantial reduction of used data due to lower frequency of reports and their availability.
 - N banks: $51 \rightarrow 30$. T observations $6240 \rightarrow 260$.
 - Quarterly financial data was interpolated (with splines) into weekly data.
 - Financial ratios and financial variable growth was used as a control in the Granger-based connectedness estimation

- Are there confounders in the bank specific characteristics?
- To check this I use quarterly financial statement data:
 - Data is sourced from Orbis database.
 - Substantial reduction of used data due to lower frequency of reports and their availability.
 - *N* banks: $51 \rightarrow 30$. *T* observations $6240 \rightarrow 260$.
 - Quarterly financial data was interpolated (with splines) into weekly data.
 - Financial ratios and financial variable growth was used as a control in the Granger-based connectedness estimation

- Are there confounders in the bank specific characteristics?
- To check this I use quarterly financial statement data:
 - Data is sourced from Orbis database.
 - Substantial reduction of used data due to lower frequency of reports and their availability.
 - N banks: $51 \rightarrow 30$. T observations $6240 \rightarrow 260$.
 - Quarterly financial data was interpolated (with splines) into weekly data.
 - Financial ratios and financial variable growth was used as a control in the Granger-based connectedness estimation

- Are there confounders in the bank specific characteristics?
- To check this I use quarterly financial statement data:
 - Data is sourced from Orbis database.
 - Substantial reduction of used data due to lower frequency of reports and their availability.
 - N banks: $51 \rightarrow 30$. T observations $6240 \rightarrow 260$.
 - Quarterly financial data was interpolated (with splines) into weekly data.
 - Financial ratios and financial variable growth was used as a control in the Granger-based connectedness estimation

- Are there confounders in the bank specific characteristics?
- To check this I use quarterly financial statement data:
 - Data is sourced from Orbis database.
 - Substantial reduction of used data due to lower frequency of reports and their availability.
 - *N* banks: $51 \rightarrow 30$. *T* observations $6240 \rightarrow 260$.
 - Quarterly financial data was interpolated (with splines) into weekly data.
 - Financial ratios and financial variable growth was used as a control in the Granger-based connectedness estimation

- Are there confounders in the bank specific characteristics?
- To check this I use quarterly financial statement data:
 - Data is sourced from Orbis database.
 - Substantial reduction of used data due to lower frequency of reports and their availability.
 - *N* banks: $51 \rightarrow 30$. *T* observations $6240 \rightarrow 260$.
 - Quarterly financial data was interpolated (with splines) into weekly data.
 - Financial ratios and financial variable growth was used as a control in the Granger-based connectedness estimation

Robustness check - results

Results for EU banks with a rolling window of 52 weeks

Granger-based		Regime 1 Regime 2			e 2		
		Estimate	S.E.	Estimate	S.E.		
Correlation-based	α_{0}	1.524*	0.19*	5.031*	0.53		
	α_1	0.129	0.093	1.175*	0.434		
	η	1.013	0.045	2.872	0.086		
	$\pi_{i,i}$	80.36%		51.8%			
* coefficient with 5% statistical significance							

Concluding remarks

- The theory is confirmed to some degree the connectedness effect is indeed regime dependent.
- The effect is asymmetric the connectedness is more important in the high shock regime. Consistent with financial network externality (Acemoglu, Ozdaglar, and Tahbaz-Salehi 2015b)

Concluding remarks

- The theory is confirmed to some degree the connectedness effect is indeed regime dependent.
- The effect is asymmetric the connectedness is more important in the high shock regime. Consistent with financial network externality (Acemoglu, Ozdaglar, and Tahbaz-Salehi 2015b)

Thank you!

- Contac:t m.dadej@unibs.it
- Working paper and replication code may be found at my github: github.com/m-dadej/robust_fragile

References I

- Acemoglu, Daron, Asuman Ozdaglar, and Alireza Tahbaz-Salehi (2015a). "Systemic Risk and Stability in Financial Networks". In: *American Economic Review* 105.2, pp. 564–608. DOI: 10.1257/aer.20130456. URL:
 - https://www.aeaweb.org/articles?id=10.1257/aer.20130456.
- Acemoglu, Daron, Asuman E Ozdaglar, and Alireza Tahbaz-Salehi (2015b). "Systemic risk in endogenous financial networks". In: Columbia business school research paper 15-17.
- Billio, Monica et al. (2012). "Econometric measures of connectedness and systemic risk in the finance and insurance sectors". In: *Journal of Financial Economics* 104, pp. 535–559.
- Granger, C. W. J. (1969). "Investigating Causal Relations by Econometric Models and Cross-spectral Methods". In: *Econometrica* 37.3, pp. 424–438. ISSN: 00129682, 14680262. URL: http://www.jstor.org/stable/1912791 (visited on 01/09/2024).

References II

- Haldane, Andrew G. (2009). Rethinking the financial network. Speech delivered at the Financial Student Association, Amsterdam. URL: https://www.bankofengland.co.uk/speech/2009/rethinking-the-financial-network.
- Ledoit, Olivier and Michael Wolf (2003). "Honey, I shrunk the sample covariance matrix". In: *UPF economics and business working paper* 691.