Chapitre 12 - Droites du plan

2GT4

Partie 2/4

Plan

II - Équation cartésienne d'une droite

- Introduction
- Équation cartésienne
- Exemple Méthode Important
- Propriété réciproque
- Un vecteur directeur

II - Équation cartésienne

Dans la partie précédente, nous avons vu la notion de « vecteur directeur » pour une droite.

Une droite peut être caractérisée par deux points ou un point et un vecteur directeur.

Dans cette partie, nous allons voir que les droites peuvent être caractérisées à l'aide d'une équation, appelée **équation cartésienne**.

3/26

Propriété

Propriété

Dans une repère du plan, les coordonnées (x;y) de tous les points M d'une droite d vérifient une équation de la forme

$$ax + by + c = 0$$

où $a,\ b$ et c sont des nombres réels tels que a et b ne sont pas simultanément nuls.

On notera par la suite $(a; b) \neq (0; 0)$.

Une telle équation s'appelle une **équation cartésienne** de la droite d.

◆ロト ◆母 ト ◆ 喜 ト ◆ 喜 ・ 夕 Q (*)

4 / 26

Remarques

Remarques:

- Une droite d peut être caractérisée par une équation de la forme ax + by + c = 0 où a, b et c sont des réels avec (a; b) ≠ (0; 0).
 Nous verrons dans la suite comment déterminer une telle équation pour une droite.
- Cette équation n'est pas unique : une droite d admet une infinité d'équations cartésiennes. On constate alors que les coefficients sont deux à deux proportionnels.

Dans la suite :

- nous allons voir une démonstration de cette propriété;
- nous allons voir comment déterminer une telle équation pour une droite.

Démonstration

Soit $A(x_A; y_A)$ un point de la droite d et $\overrightarrow{u} \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$ un vecteur directeur de d.

Le point M(x;y) appartient à la droite d si, et seulement si, les vecteurs \overrightarrow{AM} et \overrightarrow{u} sont colinéaires.

On a :
$$\overrightarrow{AM} \begin{pmatrix} x - x_A \\ y - y_A \end{pmatrix}$$
 et $\overrightarrow{u} \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$.

Les vecteurs \overrightarrow{AM} et \overrightarrow{u} sont colinéaires si, et seulement si, $\det(\overrightarrow{AM};\overrightarrow{u})=0.$

◆ロト ◆団ト ◆豆ト ◆豆ト □ りへで

2GT4

Suite de la démonstration

Les vecteurs \overrightarrow{AM} et \overrightarrow{u} sont colinéaires si, et seulement si, $\det(\overrightarrow{AM};\overrightarrow{u})=0.$

$$M(x;y) \in d \iff \det(\overrightarrow{AM}; \overrightarrow{u}) = 0$$

 $\iff \beta(x - x_A) - \alpha(y - y_A) = 0$
 $\iff \beta x - \beta x_A - \alpha y + \alpha y_A = 0$
 $\iff \beta x - \alpha y + (-\beta x_A + \alpha y_A) = 0$

On obtient bien une équation de la forme ax+by+c=0 avec $a=\beta$, $b=-\alpha$ et $c=-\beta x_A+\alpha y_A$. Le vecteur \overrightarrow{u} étant non nul, on a bien : $(a;b)\neq (0;0)$.

◆ロト ◆団ト ◆豆ト ◆豆ト □ りへで

2GT4

Exemple

Exemple : soit la droite d passant par A(1;3) et dont un vecteur directeur est $\overrightarrow{u} \begin{pmatrix} 2 \\ 5 \end{pmatrix}$. Déterminer une équation cartésienne de la droite d.

Réponse (et méthode pour les exercices) :

Soit M(x;y) appartenant à la droite d.

Le vecteur \overrightarrow{u} est un vecteur directeur pour la droite d. D'après la définition, les points A et M appartenant à la droite d, on sait que les vecteurs \overrightarrow{AM} et \overrightarrow{u} sont colinéaires.

◆ロト ◆個ト ◆屋ト ◆屋ト ■ りゅう

9/26

Or : \overrightarrow{AM} et \overrightarrow{u} sont colinéaires $\iff \det(\overrightarrow{AM}; \overrightarrow{u}) = 0$.

$$A(1;3)$$
 et $M(x;y)$ donc : $\overrightarrow{AM} \begin{pmatrix} x-1 \\ y-3 \end{pmatrix}$.

On a :
$$\overrightarrow{AM} \begin{pmatrix} x-1 \\ y-3 \end{pmatrix}$$
 et $\overrightarrow{u} \begin{pmatrix} 2 \\ 5 \end{pmatrix}$.

Puis :
$$\det(\overrightarrow{AM}; \overrightarrow{u}) = 5(x-1) - 2(y-3)$$

10 / 26

$$\overrightarrow{AM}$$
 et \overrightarrow{u} sont colinéaires $\iff \det(\overrightarrow{AM}; \overrightarrow{u}) = 0$ $\iff 5(x-1) - 2(y-3) = 0$ $\iff 5x - 5 - 2y + 6 = 0$ $\iff 5x - 2y + 1 = 0$

Une équation cartésienne de la droite d est 5x - 2y + 1 = 0.

Résumé de la méthode précédente

Tout a été détaillé dans l'exemple précédente. Voici un résumé de la méthode à appliquer en exercice :

Comment déterminer une équation cartésienne d'une droite d en partant d'un point A et d'un vecteur directeur \overrightarrow{u} :

- Soit M(x; y) appartenant à la droite d. On donne les coordonnées de \overrightarrow{AM} en fonction de x et y.
- ② Le vecteur \overrightarrow{u} est un vecteur directeur de d : les vecteurs \overrightarrow{u} et \overrightarrow{AM} sont colinéaires.
- ① Deux vecteurs sont colinéaires si et seulement si le déterminant est nul : on calcule $\det(\overrightarrow{AM};\overrightarrow{u})$ et ce nombre doit être égal à 0.

12/26

Remarque

Remarque : la méthode précédente nous donne un moyen de déterminer une équation cartésienne pour une droite d connaissant un point A et un vecteur directeur \overrightarrow{u} .

Si on a deux points A et B d'une droite d, on se rappelle que le vecteur \overrightarrow{AB} est un vecteur directeur de la droite d. Cela nous permet d'obtenir un vecteur directeur pour ensuite appliquer la méthode précédente.

13 / 26

Propriété réciproque

Propriété

L'ensemble des points M dont les coordonnées (x;y) vérifient une équation de la forme ax+by+c=0, où a, b et c sont des réels et $(a;b)\neq (0;0)$, est une droite.

2GT4 Droites du plan 14 / 26

Méthode

Pour montrer qu'un point $A(x_A;y_A)$ appartient (ou pas) une droite :

On considère la droite d dont une équation cartésienne est donné par ax+by+c=0.

On sait que : le point $A(x_A; y_A)$ appartient à la droite d si, et seulement si, $ax_A + by_A + c = 0$.

Cela donne une méthode pour montrer qu'un point appartient ou n'appartient pas à la droite :

- Si $ax_A + by_A + c = 0$ alors le point A appartient à la droite d.
- Si $ax_A + by_A + c \neq 0$ alors le point A n'appartient pas à la droite d.

Exemple

Exemple : Soit la droite d dont une équation cartésienne est -2x + 3y + 5 = 0.

- Le point A(4;1) appartient-il à la droite d?
- ② Le point B(-2; -2) appartient-il à la droite d?

16/26

Corrigé de l'exemple

Exemple : Soit la droite d dont une équation cartésienne est -2x + 3y + 5 = 0.

• Le point A(4;1) appartient-il à la droite d?

On a:

$$-2 \times x_A + 3 \times y_A + 5 = -2 \times 4 + 3 \times 1 + 5$$

= -8 + 3 + 5
= 0

 $Donc -2 \times x_A + 3 \times y_A + 5 = 0.$

Le point A appartient à la droite d.

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 へ ○

17/26

Corrigé de l'exemple

Exemple : Soit la droite d dont une équation cartésienne est -2x + 3y + 5 = 0.

② Le point B(-2; -2) appartient-il à la droite d?

On a:

$$-2 \times x_B + 3 \times y_B + 5 = -2 \times (-2) + 3 \times (-2) + 5$$

= 4 - 6 + 5
= 3

Donc $-2 \times x_B + 3 \times y_B + 5 \neq 0$.

Le point B n'appartient pas à la droite d.

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

18 / 26

Autre exemple

Exemple : On considère la droite d dont une équation cartésienne est 4x + 2y - 10 = 0. Déterminer deux points distincts appartenant à la droite d.

Réponse : En utilisant l'équation cartésienne, il suffit de choisir x et d'en déduire la valeur de y.

Pour
$$x=0$$
, on a : $4\times 0+2y-10=0$ donc $2y-10=0$. Puis : $2y-10=0 \Longleftrightarrow 2y=10 \Longleftrightarrow y=5$.

• Le point A(0;5) appartient à la droite d.

Pour
$$x=2$$
, on a : $4\times 2+2y-10=0$ donc $8+2y-10=0$. Puis : $8+2y-10=0 \Longleftrightarrow 2y-2=0 \Longleftrightarrow 2y=2 \Longleftrightarrow y=1$.

• Le point B(2;1) appartient à la droite d.

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 釣 ९ ○

2GT4

Remarque

L'exemple précédent est important car : à partir d'une équation cartésienne pour une droite, on détermine deux points appartenant à la droite.

Si on veut tracer la droite dont une équation cartésienne, il suffit de trouver de cette manière deux points distincts appartenant à la droite, de les placer dans un repère et on obtient notre droite en traçant la droite qui passe par ces deux points.

Propriété

Propriété

On considère une droite d dont une équation cartésienne est donnée par : ax+by+c=0.

Le vecteur $\overrightarrow{u} \begin{pmatrix} -b \\ a \end{pmatrix}$ est un vecteur directeur de d.

21/26

Remarque

Remarque : La propriété précédente permet, étant donnée une équation cartésienne d'une droite d, de déterminer rapidement un vecteur directeur de la droite d.

Exemple

Exemple : On considère la droite d dont une équation cartésienne est 2x - 3y - 12 = 0.

Une équation cartésienne de d est de la forme ax+by+c=0 avec a=2 et b=-3.

D'après la propriété précédente, $\overrightarrow{u} \begin{pmatrix} -b \\ a \end{pmatrix}$ est un vecteur directeur de d.

$$-b = -(-3) = 3$$
 et $a = 2$.

Donc $\overrightarrow{u} \begin{pmatrix} 3 \\ 2 \end{pmatrix}$ est un vecteur directeur de d.

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q @

2GT4 Droites du plan 23 / 26

Autre exemple

Exemple : Déterminer une équation cartésienne de la droite d passant par le point A(4;7) et dont un vecteur directeur est $\overrightarrow{u} \begin{pmatrix} 5 \\ 11 \end{pmatrix}$.

Réponse : d'après la propriété précédente, la droite d admet une équation de la forme ax+by+c=0 ou le vecteur $\overrightarrow{u}\begin{pmatrix} -b\\a\end{pmatrix}$ est un vecteur directeur de d.

Donc -b = 5 et a = 11. Ce qui donne a = 11 et b = -5.

2GT4

Une équation cartésienne de la droite d est 11x - 5y + c = 0.

Pour trouver la valeur c, nous allons utiliser le point A

$$A(4; 7) \in d \iff 11 \times 4 + (-5) \times 7 + c = 0$$
$$\iff 44 - 35 + c = 0$$
$$\iff 9 + c = 0$$
$$\iff c = -9.$$

Une équation cartésienne de la droite d est 11x - 5y - 9 = 0.

25/26

Fin de la partie 2

Feuille d'exercices 2 à traiter!