חלוקה הוגנת Fair Division

אראל סגל-הלוי, י"ד באייר ה'תשע"ח

חלוקה הוגנת

- קלט: משאב משותף, זכויות שוות.
 - אתגר: העדפות שונות.
- מטרה: חלוקה שתהיה הוגנת בעיני כולם.
 - יישומים: הרבה
 - http://spliddit.org/-
 - http://www.fairoutcomes.com/-

חלוקת עוגה בין שני ילדים

- עמי מחלק את העוגה לשני חלקים שוים בעיניו (בשווי 1/2).
 - •תמי בוחרת את החלק הטוב בעיניה.
 - עמי מקבל את השאר.

חלוקת קרקע בין שני אנשים

בראשית יד9-8: וַיּאמֶר אַבְרָם אֶל לוֹט: אַל נָא תְהִי מְרִיבָה בֵּינִי וּבֵינֶיךָ וּבֵין רֹעֵי וּבֵין רֹעֶיךָ כִּי אֲנָשִׁים אַחִים אֲנָחְנוּ. ַהְלֹא כָל הָאָרֶץ לְפָנֶיךָ, הִפָּרֶד נָא מֵעְלָי! אָם הַשְּׁמֹאל וְאֵימִנָה, וְאָם הַיָּמִין וְאַשְׂמְאִילָה.

אברם

לוט

אלגוריתם "חתוך ובחר"

תכונות:

1) כל משתתף חושב שהחלק שלו שווה לפחות 1/2 – חלוקה פרופורציונלית (proportional). 2)כל משתתף חושב שהחלק שלו טוב (2)כל משתתף חושב שהחלק שלו טוב

קנאה (envy-free). הרחבות:

•מה עושים כשיש הרבה ילדים?

יותר מכל האחרים – חלוקה

- •מה עושים כשהחפצים בדידים?
- •מה עושים כשהמשתתפים לא שווים?

חלוקת עוגה להרבה אנשים

תכונות:

ל משתתף חושב שהחלק שלו שווה לפחות 1/1 – חלוקה פרופורציונלית (proportional).
ל משתתף חושב שהחלק שלו (משתתף חושב שהחלק שלו טוב יותר מכל האחרים – חלוקה ללא קנאה (envy-free).

חידה: מה יותר קשה?

חלוקה פרופורציונלית

- אלג. "המפחית האחרון" -Last Diminisher – הוגו שטיינהאוס 1948
 - עמי מסמן 1/n בעיניו.
 - אם תמי חושבת שזה
 יותר מדי היא מפחיתה
 ל-1/n. וכן רמי וכו'.
 - •האחרון שהפחית מקבל את החלק שסימן.
 - •ממשיכים ברקורסיה.

הרעיון: מכרז בין השחקנים: מי שמוכן לקבל הכי מעט – זוכה.

אלגוריתם המפחית האחרון

משפט: אלגוריתם "המפחית האחרון" מתן חלוקה פרופורציונלית - כל שחקן המשחק לפי הכללים מקבל לפחות n/1 מערך העוגה בעיניו.

הוכחה: נניח שערך העוגה כולה הוא n. נוכיח שכל שחקן מקבל חלק ששווה בעיניו לפחות 1. נוכיח באינדוקציה על n. *בסיס*: שחקן אחד מקבל הכל צעד: נניח שנכון ל-n-1 שחקנים. עכשיו יש n. אחד n-1 מהם מקבל חלק ששווה בעיניו 1. נשארים שחקנים. בעיניהם, החלק שנמסר שווה פחות מ-1. לכן, החלק שנשאר שווה בעיניהם יותר מ-n-1. לפי הנחת האינדוקציה, כל אחד מקבל לפחות 1.

אלגוריתם המפחית האחרון

משפט: אלגוריתם "המפחית האחרון" משתמש ב-שאילתות. O(n²)

הוכחה: בכל צעד שחקן אחד יוצא – יש n צעדים. בכל צעד צריך לשאול כל שחקן שאילתה אחת. סה"כ O(n²) שאילתות.

?האם יש אלגוריתם מהיר יותר

המפחית האחרון – גרסה רציפה

אלגוריתם דובינס-ספניי - Dubins & Spanier 1961

מחזיקים סכין מעל העוגה ומזיזים אותו מימין לשמאל.

מי שחושב שהחלק מימין לסכין שווה n/1 צועק "עצור!" ומקבל את מה שמימין לסכין.

• השאר ממשיכים רקורסיבית.

יותר נוח וקל למשתמש – אבל לא יותר מהיר חישובית.

חלוקה פרופורציונלית מהירה

- אלגוריתם אבן-פז Even-Paz -שמעון אבן ועזריה פז, 84'
- כל שחקן מחלק לשני חלקים בשווי 1/2 בעיניו.
 - חותכים את העוגה בחציוןשל הקוים.
 - שולחים כל שחקן לחצי שמכיל את הקו שלו.
 - מחלקים כל חצי ברקורסיה.

אלגוריתם אבן-פז

?מה עושים כש-ח איזוגי

• כל שחקן מחלק לשני חלקים ביחס של:

(n-1)/2:(n+1)/2

- •חותכים את העוגה כך שבצד אחד יהיו שבצד אחד יהיו (n-1)/2 קוים ובצד שני (n+1)/2 קוים.
- שולחים כל שחקן לחצי שמכיל את הקו שלו.

אלגוריתם אבן-פז

משפט: אלגוריתם אבן-פז נותן חלוקה פרופורציונלית - כל שחקן המשחק לפי הכללים מקבל לפחות 1/n מערך העוגה בעיניו.

הוכחה: נניח שערך העוגה כולה הוא n. נוכיח שכל שחקן מקבל חלק ששווה בעיניו לפחות 1. נוכיח באינדוקציה על n. *בסיס*: שחקן אחד מקבל הכל צעד: נניח שנכון לכל מספר שחקנים עד n-1. עכשיו יש n. כל מי שמשחק לפי הכללים, מגיע לחלק ששווה בעיניו לפחות k, ויש בו k שחקנים, כאשר k הוא n/2 או 2/(n-1). לפי (n+1). לפי הנחת האינדוקציה, כל אחד מקבל לפחות 1.

אלגוריתם אבן-פז

משפט: אלגוריתם אבן-פז משתמש ב- (O(n log n) שאילתות.

הוכחה: נעגל את n למעלה לחזקה הקרובה של 2. הגדלנו אותו בפחות מ-2. עכשיו, בכל צעד, גודל הקבוצות יש ֵפי 2. לכן מספר הצעדים הוא לכל היותר (log₂(2 n). בכל צעד, שואלים כל שחקן שאילתה אחת. לכן הסיבוכיות (n log n). האם יש אלגוריתם מהיר יותר?

-- לא! כל אלגוריתם לחלוקה פרופורציונלית צריך O(n log n) שאילתות (הוכח בשנת 2007).