Reg. No.		The A ST AV
----------	--	-------------

B.Tech. DEGREE EXAMINATION, NOVEMBER 2023

Fourth, Fifth and Sixth Semester

18MAB302T – DISCRETE MATHEMATICS FOR ENGINEERS

(For the candidates admitted from the academic year 2020-2021 & 2021-2022)

	•	4	_	
- 1 %	O	I	t,	-
				٠

- (i) Part A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.
- (ii) Part B & Part C should be answered in answer booklet.

Time	: 3	hours						÷		The second	Max. I	Mark	s: 100
				PART –	A (20 × 1 =	= 20 N	Marks)				Marks	BL	со
					ver ALL Q								
	1	The	oordinalit	of the pow	-)) ic			1	1	1
7	1.		-	of the pow	er set of th			23 18					
		(A)	8			(B)	6					11	
		(C)	7			(D)	9						
											<u>ur</u>	,	Service.
	2.	If A	is a non	-empty set	with n el	emen	ts, the	n the nun	nber of p	ossible	7 1	1	1
		relat	ions on the	e set A is									
		(A)	2^n			(B)	2^{n-1}						
		(C)	2^{n^2}			(D)	2^{n+1}						
		(-)	2			`							
	3	Δ re	lation R or	n set A is de	fined as if	•					_ 1	2	1
	٥.			$x = y \ \forall x,$									
			-		y C 21, 111011			matria		÷			
		`	Symmetr			(B)		metric					1
		(C)	Antisymr	netric		(D)	Trans	itive		À			
										A	1	2	4.4
	4.	A fu	nction f: A	\rightarrow B is said	to be		if f	or every y	∈B there	exist at		2	TAR
		least	one eleme	ent x∈A suc	ch that f(x)	=y.							
)		(A)	Surjective			(B)	Biject	tive				11	
		(C)	Injective			(D)	•	norphism					
		(0)	injective			(-)		100	1, 2				US:
	5	If th	a object A	is chosen i	n M wavs	and F	R in N	wavs ther	either A	or B is	1	1	2
	٥.					und I	, III 11	ways me	TEL 19	. 01 2 10	1 1	۳.	
			en in	way	5.	(D)	MN						
			M/N			(B)							
		(C)	M+N			(D)	M-N						
								1		i it	24		•
	6.	Assı	iming that	repetitions	are not pe	rmitte	ed, hov	v many fo	ur-digit 1	number	s 1	2	2
		are 1	ess than 40	000, can be	formed fro	m the	e six di	gits 1, 2, 3	3, 5, 7, 8?)			
			125			(B)	124						
		(C)	63			(D)	180				0.1		
		(0)	55			. ,							
	7	Ever	winteger t	n>1 can be	renresente	l unio	nely a	s a produc	et of		1	1	2
	1.	EVEL	Drima ma	mberg	Сргозопис			posite nun					
			Prime me					numbers	10013				
		(C)	Even nun	nders		(D)	Odd 1	numbers	The same				

	۳8.	For any positive integers a and 3 ther that a=3q+r where r must satisfy	re ex	ists unique integers q and r such	1	2	2
		(A) $1 < r < 3$	(B)	0 < r < 3			
			(D)	$0 < r \le 3$			
		(C) $0 \le r < 3$	(D)	0 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3			
	0	Tris 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		statement.	1	1	3
	9.	The biconditional is conjunction of tw					
		` ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '		Compound			
		(C) Connective	(D)	Conditional			
	10.	Negation of $P \rightarrow (P \vee \neg Q)$ is					
		(A) $\neg P \rightarrow (\neg P \lor Q)$	(B)	$P \wedge (\neg P \wedge Q)$			
				$\neg P \rightarrow (\neg P \rightarrow Q)$			
				(a / g)			
	11	D. O. T. C. H. C. C. C. L.		- 1	1	2	3
	11.	P→Q is logically equivalent to	(D)	$P_{V}=0$			
		(A) $\neg P \lor \neg Q$	(B)	$P \lor \neg Q$ $\neg P \land Q$			
		(C) $\neg P \lor Q$	(D)	$\neg r \land Q$			
	10	A	, 12.	in the desiration is called	1	1	3
	12.	A premises may be introduced at any j		Rule US	+		,
			` ,	Rule P			
		(C) CF fule	(D)	Kule r			
	13	Fourth root of unity namely 1 -1 i i	form	n a group with respect to	1	2	4
	15.	Fourth root of unity namely $1, -1, i,-i$ (A) Addition		Subtraction			
			(D)				
		(C) William Cation	(D)	Division			
	14	If G is a finite group and order of group	ın ic	m then for all acG	1	1	4
	h		-	$a^m = e$, an identity			
				$a^m = a^{-1}$			
		(c) $a - a$	(D)	aa			
	15	A finite integral domain is a			i	1	4
	13.		(B)	Vector			
			` /	Ring			
		(C) Tiold	(1)	King			
	16.	If in a ring R, the exist an elements a,	b su	ch that $a*b = 0$ implies either $a =$	1	2	4
		0 or $b = 0$ or both $a = 0$ and $b = 0$ then					
				Ring with zero divisor			
1				Boolean ring			
		() 8	(-)	200100111111111111111111111111111111111			
	17.	A graph G is said to be a simple graph	1		1	1	5
			(B)	There is exactly one edge			
			-	between any given pair of			
		· 5		vertices			
		(C) Both (A) and (B)	(D)	It contains only parallel edges			
			` ′	J 1			
	18.	If G is an undirected graph with 12 ed	ges.	Also, it is given that two vertices	1	2	5
		are of degree 2, two are of degree 3, a	nd o	ne of degree 4 and remaining are			
		of degree 5. How many total vertices a	are th	nere in G?			
		(A) 8	(B)	7			
		(C) 9	D	10			

		A path in a connected graph G=V, E) is called Hamilton path if (A) It includes every edge exactly (B) It includes every vertex exactly once once (C) It includes every edge exactly (D) It includes every vertex exactly twice A degree of pendent vertex is (A) 0 (B) 1 (C) 2 (D) 3	1	2	5
		PART – B (5 × 4 = 20 Marks) Answer ANY FIVE Questions	(arks	BL	CO
	21.	Prove that $(A-C)\cap(C-B)=\emptyset$ analytically where A, B and C are sets.	4	3	1
	22.	Draw the Hasse diagram for (D12, \mid) where D_{12} is the set of positive integers divisor of 12.	4	4	1
	23.	Find the number of ways of preparing a garland with 3 yellow, 4 pink and 2 red roses of different sizes such that the two red roses come together.	4	3	2
	24.	Construct the truth table for the following $(P \rightarrow Q) \leftrightarrow (\neg Q \rightarrow \neg P)$	4	4	3
	25.	Prove the following implication without using truth table $P \Rightarrow (Q \rightarrow P)$.	4	3	3
		If α , β are elements of the symmetric group S_4 given by $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 2 & 1 \end{pmatrix} \text{ and } \beta = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix}$		3	4
	27.	Find $\alpha\beta$, $\beta\alpha$, α^2 and α^{-1} . Prove that the number of edges in a bipartite graph with n vertices is atmost $n^2/4$.	4	4	5
		PART – C ($5 \times 12 = 60$ Marks) Answer ALL Questions	Marks	BL	со
28	. a.i.	R is the relation on the set of integers such that $(a, b) \in R$ if $3a+4b=7n$ for some integer n, prove R is equivalence relation?	12	3	1
	ii.	If $A=\{1, 2, 3, 4, 5\}$, $B=\{1, 2, 3, 8, 9\}$ and $f:A \rightarrow B$ and $g:A \rightarrow A$ are defined by $f=\{(1, 8), (3, 9), (4, 3), (2, 1), (5, 2)\}$ and $g=\{(1, 2), (3, 1), (2, 2), (4, 3), (5, 2)\}$. Find $f \circ g, g \circ f, f \circ f, g \circ g$ if they exist. (OR)	- 12	3	1
	b.	Let $A = \{1,2,3,4\}$ and $R = \{(1,2),(2,3),(2,1),(3,4)\}$ using Warshall's algorithm, find the transitive closure of R.	12	3	1
29	. a.i.	If there are 5 points inside a square of side length 2. Prove that two of the points are within a distance of $\sqrt{2}$ of each other	12	4	2
Page	ii. 3 of 4	In a group of 72 students, 47 have background in electronics, 59 have background in mathematics and 42 have background in both the subject, how many students do not have background in any of the subjects? 24NF4,5	12 5 &6-1 8	4 SMAB	2 302T

(OR)

- b. Use the Euclidean algorithm to find gcd(1819, 3587) and also express linear combination of the given number.
- 30. a.i. Prove the following by using direct method $P \lor Q, Q \to R, P \to S, \neg S \Rightarrow R \land (P \lor Q)$

of a group.

12

ii. Show that $P \rightarrow Q, P \rightarrow R, Q \rightarrow R$ and P are inconsistent.

b.i. Use indirect method of proof to show that $R \rightarrow \neg Q, R \lor S, S \rightarrow \neg Q, P \rightarrow Q \Rightarrow \neg P$

ii. Use mathematical induction to show that $n! \ge 2^{n-1} \ \forall n \ge 1$.

- 12
- 31. a.i Let $Q^+ = \{\text{set of all postive rational number}\}$, let * be defined on Q^+ by $a * b = \frac{ab}{2}a, b \in Q^+$, prove that $(Q^+, *)$ is an abelian group.
 - ii. Prove that the intersection of two subgroups of a group is also a subgroup

(OR)

b. Find the code words generated by the parity check matrix

- $H = \begin{vmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{vmatrix}$ when the encoding function is e:B³ \rightarrow B⁶.
- 32. a.i. Check whether the following graphs are isomorphic. If not give reason.

ii. Prove that a tree with n vertices has n-1 edges.

(OR)

b. Use Kuskal's algorithm to find a minimum spanning tree for the weighted graph.

(4m)

B. Tech Degree Examination. Nov 2023 18MAB302T - Discrete Mathematics for Engineers Answer Key

PART - A (20 x1 = 20 Monks)

1. A. 8

11. C. TPVQ

2. c. 2 2

12. D. Rule P

3. C. Antisymmetric

13. C. Multiplication

4. A. Swyechive

14. B. am = e, an identity

5. C. M+N

15. C. Field

6. D. 180

16. C. Ring without zono divisoor

7. A. Prime members

14. C. Both (A) and (B)

18. B. 7

8. C-04843

19. B. It includes every vertex exactly

9. D. Conditional

20. B.1

B. PA (TPAQ)

(5x4 = 20 Magks) Questions any time

21. (A-c) n (C-B) = {x|xen and x¢c and x¢c and x¢B} = {x | x EA and (x ec and x ec) and x & B}

= $\{x \mid (x \in B) \text{ and } x \in B\}$

= {x / xeAno and xeB} $= \{x \mid x \in \phi \cap \overline{B}\} = \{x \mid x \in \phi\} = \phi.$

It number of ways of preparing a garland with 3 yellows, 4 pink and 2 red voses of different sizes such that the two red voses come together is $\frac{7!}{2} \times \frac{2!}{2} = 5040$. (4m)

ચ મ	T T F	Q T f T f	TP F F T	7Q F T F	P→Q T F T	70→7P T P T	(P→0) ←> T T T	(7Q→7P) (4m)
	F	۶	1	•	•			

TPT: $P \rightarrow (Q \rightarrow P)$ is a tembology $P \rightarrow (Q \rightarrow P) \equiv P \rightarrow (TQVP)$ $\equiv TPVTQVP$ $\equiv TVTQ$ $\equiv T$

The vortex set V, contains x vortices and V_2 contains (n-x) vortices. The largest number of the edges, f(x) = x(n-x) $f'(x) = n - \partial x \text{ and } f''(x) = -2$ (2m) $f'(x) = 0 \text{ when } x = \frac{1}{2} \text{ and } f''(\frac{1}{2}) \angle 0 \text{ Hence } f(x) \text{ is maximum when } x = \frac{1}{2}$. These fore maximum number of edges required (2m) $= f(\frac{n}{2}) = \frac{n^2}{4}$.

```
(5x12 = 60 Harks)
                                                                   (2)
                              questions
                       an
             Answar
                  3 a + 4 a = + a when a is an integer (2m)
28)
    Reflexure:
                  36+4a = 7a + 46 - (3a +46)
a.i)
    Symmetry:
                           = + (a+b) - 7n = + (a+b-n)
     where a+b-n is an unteger. ; (b,a) fR when (a,b) fR
    Transitive: let (a,b) and (b,c) ER
           3a+4b = +m-10 and 3b+4c=+n-2
             = 3a++b+4c = +m++n
             30 + 40 = 7 (m+n-b) where m+n-b is an infeger
             (a,c) ER
                  equivalance relation.
    =) R is an
         = {(1,1), (2,1), (3,8), (4,9), (5,1)}
                                                       (2m)
          is not defined. [ sange (f) & dom (g)]
                                                        (Jw)
         us not definéed [ sange (f) 4 dom (f))
                                                      (LW)
     gog = { (1,2), (2,2), (3,2), (4,1), (5,2)}
     R = { (1,2), (2,3), (2,1), (3,4)}
                                                               (2 m)
          pos. of 1's in
                                     New POS
                         bos of 18
                                                     WK.
                                     of 1/2 in WK
                          in sou to
     R
           col. Re
                                     (2,2)
                          ಶ
             ಒ
                                  (1,1) (1,2), (1,3),
                      11213
           112
                                  (2,1), (2,2), (2,3)
      ಶ
                                (1,4), (2,4)
                      4
           1,2
      3
                                                             (Sm)
            1,2,3
      Transitue Closure of R = {(1,1), (1,2), (1,3), (1,4), (2,1), (2,1), (2,3), (3,4), (3,4) (2,4)
```

```
points - Pigeons
                                  Longth - 2 .
                                               Subsquare - programolar.
                                                             (6m)
                                     1 En 11 = 112
(t_{ij})
      181 = 17
                     INI = 59;
                                                            (4m)
              16/4/W/ = 16VW
      CUMI =
            = मक् मह्य = मर्क
                                                         the subjects
            = 61.
    No. of Shudanta do not have background in any of
                                                             (2m)
           4-2-64 = 8.
                                  17 = 51 - 1. 84
     3681 = 1 . 1819 + 1768
54)
                                    =51-1. (1768-34.51)
    1819 = 1.1708 + 51
                                      35.51 - 1.1468
    1466 = 34 . 21 +34
                                   - 35. (1619 - 1.1768) -1 .1768-
         = 1 . 34 +17
                                     35. 1819 - 36.17-68
     34 - 2.14+0 (6m)
                                      25. 1819 - 36 (3587 -1.1819)
    Jed (1817, 3587) =17
                                   = 71.1819 - 36.3587.
                                                               (6m)
80
     Ster NO
                       Statement
                                           Reason
di
                      PUR
       $
                                                              (1m)
                      Q->R
                                           P
                      P-35
                      75
                                         Modus toller [ 824]
                      TP
                                         from O, P-SQ = TPVQ
                      TP-1a
                                        Hodin ponen 526
                      Q.
       4.
                                                                (2m)
                                         Moder pomen 2 27
                      R
       8.
                                                     1 and & . (1m)
                    RA(PVR)
                                        continuepion of
       9.
```

```
Statement
                                             Reason
                       Pol
                       P>R
                       a -> TR
                                             P
                        P
                                             1,4, Hodus pomen
                        a
                                           3,5, Hoden pomen
                       TR
                                           113, Hypothetical Syllogism
                      PATR
                                           6,7, Modus tollan
                      TP
                                           488 - conjunction
                    PATP
                                           9, Negation law
                     F
                                           conjunction of a and 10. (pm)
    10 .
                    FN (TPVR)
                                            12, Dominant law
    11.
                    F
    12.
                                             Reason.
                         Statement
30.
       Step No
                                            P
                        R -> 7a
bi)
                                            P
         1.
                        RUS
                        S -> 7Q
                                           P
                        Pol
                                           AP
                                          425, Moder pomen
                        a
                                            feam 2
                                           3 & 7, Hypothetical Syllogism
                      7R->S
         7.
                      7R -> 7Q
                                           contrapositive of 8
         8,
                      Q JR
                                            129, Hypothetical Syllogism
         9.
                      Q -> 7Q
                                            from 10
         10.
                      70
                                             6 211, conjunctions
         11.
                     DIAD
                                              12, Negation law.
         12.
```

F

13.

```
2 " ; U? ≥ 9 "-1
b. ii) S1: 11. 7, 20 which is true
       let Sk be true i.e k! > 2k-1-0
      Now ( &+1) ! = ( &+1) &!
                         > (b+1). 2 to - [feom 0]
                         7 2.218-1 Since 18+172
                         = 2te
       => Sp+1 ii also true
      => Sn is true for n=1,2,3,...
                                                                 (Im)
       a*b = ab where abeat
      when a,b \in a^{\dagger}, \frac{ab}{3} \in a^{\dagger} \Rightarrow a^{\dagger} is closed under the operation *
           (0*b) *C = a*(6*c)
           \Rightarrow \frac{ab}{9} * C = a * \frac{bc}{9} \Rightarrow \frac{abc}{9} = \frac{abc}{9}
      => Aesociative feolds good.

Identity: a *e = a, a e Q +
                   \underline{\underline{Ae}} = \alpha =) \underline{ae} = 30 =) \underline{ae} - 30 = 0
                                                 =3 e=3
                  \alpha * \alpha^{-1} = e
                  \frac{aa^{-1}}{3}=3 \Rightarrow aa^{-1}=9 \Rightarrow a^{-1}=\frac{9}{a}.
                   axb = b *a
                  \Rightarrow \frac{ab}{3} = \frac{ba}{3}
                                                                    (1m)
     > (Qt, *) forms an abelian group.
a·ii) Let a & HINHZ
                        Then a EHI and a EH2
                    Then bEH, and beH2
       b E HINHZ
    Hi wi a sbgp of a: Hz wi a sbgp of Ge
axb GH; (2m): axb GHz-(2m)
    3 ax 6 E Hint2 1. a, b E Hint2 - (2m)
     >> Hintz us a subgroup of Gr.
```

```
H = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} A^T & I_{n-m} \end{bmatrix}
    C = \left[ I_{m} \mid A \right] = \left[ \begin{array}{c|c} 1 & 0 & 0 & | & 1 & 1 \\ 0 & 1 & 0 & | & 1 & 1 \\ 0 & 0 & 1 & 0 & | & 1 \end{array} \right]
    B^3 = \{000, 001, 010, 100, 011, 101, 110, 111\}
     6(000) = [000000]
     6(001) = [001011]
     6(010) = [010101]
     e(100) = [10011]
     e (011) = [ 011110]
     e (101) = [101100]
     e (110) = [110010]
     e(111) = [ 11100]]
     The codewords generated are
    000000, 001011, 010101, 100111, 011110, 101100, 110010 and
    111001.
                                                          1E21 = 6
                                                  Degrae Septiance: 3,3, 2,2,2
    Degree , septience: 3,2,2,3,2.
     The gaples Gi and Co. age isomorphic. 3. Gz: Gz:
ali) The property is tour for n=1,2,3
     let us arrime it is true for all trees with
     loes than n vertices. Now consider a tree T with n vertices.
     Let ex be the edge connecting the vertices by and by of T.
     Delete the edge ex, T becomes disconnected
                                                                    (3m)
      T, -> & vertices T2 -> n-r-1 edges

Induction hypodhesis
```

Thus a true with n vertices has (n-1) edges.

(2m)

Thus a true with n vertices has (n-1) edges.

The party inducted wind the I not yielded

- 1				
	Egre	Weight	Included in the spanning true or not	is wit formed
	EC	l	Yes	_
	AD	2	Yes	_
	肛	2	yes	
	BD	3	Yes	- (Cm)
	ĊF	3	yes	(8m)
	EH	3	Yes	_
	BC	. 4	Yes	-
	FH	4	NO	8-t-H-E
	FI	4	NO	E-F-I-H-E
	ଜ୍ୟ	4	Yes	-
	AB	5	-	<u>-</u>
	BE	5	-	-
	BF	·6	-	· ·
	DG	Ь	-	
	DE	7	-	-
	DH	8	_	3 - 2 - 14 - 14 - 14 - 14 - 14 - 14 - 14
	¥.	, D		

39)

The total length of the minimum spanning tree = 22 (2m)