Nodes' Evolution Diversity and Link Prediction in Social Networks

Presented by Zoykin Alexander

Tasks to solve

network evolution analysis

detecting anomalies in graph edges

link prediction

predicting new edges in a graph

Simple approach

- Collect features about nodes
- Train a model for similarity

Simple approach x2

$$\begin{split} CN(u,v) &= \mid \Gamma(u) \cap \Gamma(v) \mid \\ JC(u,v) &= \frac{\mid \Gamma(u) \cap \Gamma(v) \mid}{\mid \Gamma(u) \cup \Gamma(v) \mid} \\ AA(u,v) &= \sum_{w \in \Gamma(u) \cap \Gamma(v)} \frac{1}{\log(\mid \Gamma(w) \mid)} \\ RA(u,v) &= \sum_{w \in \Gamma(u) \cap \Gamma(v)} \frac{1}{\mid \Gamma(w) \mid} \\ PA(u,v) &= \mid \Gamma(u) \mid \times \mid \Gamma(v) \mid \\ AR(u,v) &= \frac{2(ad-bc)}{(a+b)(b+d)+(a+c)(c+d)} \\ ND(u,v) &= \frac{\mid \Gamma(u) \cap \Gamma(v) \mid}{\sqrt{\mid \Gamma(u) \mid \times \mid \Gamma(v) \mid}} \\ TN(u,v) &= \mid \Gamma(u) \cup \Gamma(v) \mid \\ UD &= \mid \Gamma(u) \mid \\ VD &= \mid \Gamma(v) \mid \\ SC(u,v) &= \left\{ \begin{array}{ccc} 1 & \text{if u and v belong to the same community} \\ 0 & \text{otherwise} \end{array} \right. \end{split}$$

- Γ set of neighbours
- XGBoost with this features

Barabási–Albert model

Model tries to explain the laws of network evolution.

Nodes' degrees tend to be distributed with $P(k) \sim k^{-3}$

Why?

Preferential attachment

Connect new node to one of old ones, neighbour is more likely if it has more own neighbours.

Let p_i be probability of i-th node and k - number of neighbours

$$p_i = rac{k_i}{\sum_j k_j}$$

Triadic closure

Also - homophily, reciprocity and social balance

Sometimes it is better to use both

Nodes' evolution diversity

Let's have a separate prediction algorithm(from some given algorithm set) for every edge of every node of a graph. Let's assume that graph should be full and find answers for all possible edges.

Network evolution analysis part

- Get a link prediction algorithm set
- Different algorithms(like preferential attachment) give different likelihoods for all edges in a graph.
- Get a Mt matching set algorithm to choose for every edge of every node

Network evolution analysis part

- Divide edges into train E^{tr} and test E^{pr}, E = E^{tr} + E^{pr}, E^{tr} ∩
 F^{pr} = ∅
- Predict edges E^{tr} based on Mt and E^{tr}

Evolution diversity evaluation

- egc a measure to evaluate the extent to which the generation of an edge can be explained by a link prediction algorithm.
- $egc_{\langle i,j\rangle}(lp)$ $egc_{\langle j,i\rangle}(lp)$
- For a fixed algorithm, let's compare likelihood value of an edge with another edges. Let's say it is greater than n₀ of them and equal to n₁ of them. Than

$$egc_{\langle i,j\rangle}(lp) = \frac{n_0 + 0.5 \times n_1}{N}$$

Select the best

ALGORITHM: DNAA

INPUT: $G = (V, E), \gamma, E$, and ψ . OUTPUT: E^d .

Step 1: Randomly select $\gamma |E|$ edges from E to constitute E^{pr} , and the other edges in E constitute E^{tr} . Step 2: Calculate and rank the likelihood values of all the non-existent edges and the edges in E^{pr} by each $lp \in$ ψ based on E^{tr} .

For i = 1 to $N_V = |V|$: For j = 1 to $N_V = |V|$: If i < j and (i, j) not in E^{tr} :

Step 3: Determine $E_p(i)$ and $E_p(j)$. Step 4: $egc_{(i,i)} = max\{egc_{(i,i)}(lp), egc_{(j,i)}(lp)\},\$ where $lp \in \psi$ (detailed in Section 4). End End End

Step 5: Rank all the non-existent edges and the edges in E^{pr} in descending order of egc.

Step 6: Select the edges in the top $|E^{pr}|$ places as E^{d} .

Fig. 3. Evaluating the performance of DNAA: (a) the probe set $E^{pr} = \{(A, D), (F, E)\}$ (black dashed edges), (b) the egc values of unobserved edges, (c) predicted social network (red dashed edges are the outcome).

TABLE 3

AUC VALUES OF DIFFERENT LINK PREDICTION ALGORITHMS FOR 10 REAL-WORLD NETWORKS

AUC Values of Different Link Prediction Algorithms for 10 Real-World Networks										
AUC	Jazz	Wikivote	Facebook	SciNet	Enron	Epinions	AgrCol	Slashdot	Twitter	BrightKite
PA	0.774	0.985	0.724	0.834	0.893	0.768	0.845	0.915	0.816	0.623
ACT	0.801	0.754	0.729	0.491	0.732	0.894	0.812	0.823	0.867	0.791
Lop	0.924	0.983	0.749	0.892	0.737	0.846	0.885	0.901	0.896	0.734
Katz	0.419	0.498	0.938	0.876	0.621	0.756	0.724	0.811	0.652	0.725
CN	0.955	0.852	0.571	0.892	0.867	0.823	0.831	0.827	0.834	0.723
AA	0.962	0.853	0.571	0.793	0.867	0.834	0.834	0.845	0.845	0.824
RA	0.969	0.853	0.571	0.891	0.866	0.857	0.823	0.834	0.839	0.813
HPI	0.942	0.843	0.572	0.894	0.859	0.814	0.811	0.832	0.728	0.811
HSM	0.912	0.894	0.612	0.875	0.820	0.913	0.849	0.891	0.915	0.834
SPM	0.794	0.867	0.634	0.889	0.891	0.891	0.886	0.876	0.920	0.813
SBM	0.855	0.832	0.657	0.852	0.842	0.812	0.834	0.866	0.837	0.857
LM	0.973	0.932	0.857	0.876	0.863	0.889	0.871	0.887	0.937	0.821
DNAA	0.985	0.991	0.972	0.922	0.919	0.932	0.901	0.947	0.989	0.899

Used literature

- 1. https://hackernoon.com/link-prediction-in-large-scale-networks-f836fcb05c88 an article describing simple link prediction algos
- 2. https://sci-hub.tw/10.1109/TKDE.2017.2728527 sci-hub link to original article
- 3. https://pdfs.semanticscholar.org/2d9c/af713b2dc3abf09fd94991ad2d1587d3e12c.pdf
 article about triadic elegure graph construction
 - article about triadic closure graph construction
- 4. https://arxiv.org/abs/cond-mat/0106096 Barabasi-Albert model