

We Claim:

1. Amine salts of rosuvastatin of Formula I

or solvate, hydrate, crystalline or amorphous form thereof, in which the amine residue has a Formula $\text{NR}_1\text{R}_2\text{R}_3$ (wherein independently R_1 , R_2 and R_3 are H, straight or branched chain C_{1-15} alkyl or hydroxyalkyl, C_{3-10} single or fused ring optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted aralkyl, alkylcycloalkyl, or independently R_1 , R_2 and R_3 combine with each other to form a C_{3-7} membered cycloalkyl ring or heterocyclic residue containing one or more heteroatoms), with the proviso that amine is not ammonia, methylamine, ethylamine, diethanolamine, tri(hydroxymethyl)-methylamine, benzylamine, or 4-methoxybenzylamine.

2. The amine salts of rosuvastatin of claim 1, having purity above 99% and diastereomeric impurity less than 0.5%.
3. The compound according to claim 2, wherein the purity is more than 99.5% and diastereomeric impurity less than 0.25%.
4. The compound according to claim 3, wherein the purity is more than 99.75% and diastereomeric impurity less than 0.15%.
5. A process for the preparation of amine salts of rosuvastatin of Formula I

or solvate, hydrate, crystalline or amorphous form thereof, in which the amine residue has a Formula $NR_1R_2R_3$ (wherein independently R_1 , R_2 and R_3 are H, straight or branched chain C_{1-15} alkyl or hydroxyalkyl, C_{3-10} single or fused ring optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted aralkyl, alkylcycloalkyl, or independently R_1 , R_2 and R_3 combine with each other to form a C_{3-7} membered cycloalkyl ring or heterocyclic residue containing one or more heteroatoms), with the proviso that amine is not ammonia, methylamine, ethylamine, diethanolamine, tri(hydroxymethyl)-methylamine, benzylamine, or 4-methoxybenzylamine,

the process comprising:

- a) treating rosuvastatin of Formula II

with an amine of Formula $\text{NR}_1\text{R}_2\text{R}_3$ (wherein independently R_1 , R_2 and R_3 are H, straight or branched chain C₁₋₁₅ alkyl or hydroxyalkyl, C₃₋₁₀ single or fused ring optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted aralkyl, alkylcycloalkyl, or independently R_1 , R_2 and R_3 combine with each other to form a C₃₋₇ membered cycloalkyl ring or heterocyclic residue containing one or more heteroatoms), with a proviso that the amine is not selected from ammonia, methylamine, ethylamine, diethanolamine, tri(hydroxymethyl)-methylamine, benzylamine, or 4-methoxybenzylamine; and

b) isolating the amine salt of rosuvastatin of Formula I.

6. Amine salts of rosuvastatin of Formula I

or solvate, hydrate, crystalline or amorphous form thereof, in which the amine residue has a Formula $\text{NR}_1\text{R}_2\text{R}_3$ (wherein independently R_1 , R_2 and R_3 are H, straight or branched chain C₁₋₁₅ alkyl or hydroxyalkyl, C₃₋₁₀ single or fused ring optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted aralkyl, alkylcycloalkyl, or independently R_1 , R_2 and R_3 combine with each other to form a C₃₋₇ membered cycloalkyl ring or heterocyclic residue containing one or more heteroatoms), with a proviso that the amine is not selected from ammonia, methylamine, ethylamine, diethanolamine, tri(hydroxymethyl)-methylamine, benzylamine, or 4-methoxybenzylamine as intermediates for the preparation of rosuvastatin or pharmaceutically acceptable salts, esters and lactones thereof.

7. A process for preparation of amorphous or crystalline rosuvastatin calcium of Formula IIa from amine salt of Formula I,

wherein the process comprises of

- treating an amine salt of Formula I,

or solvate, hydrate, crystalline or amorphous form thereof, in which the amine residue has a Formula $\text{NR}_1\text{R}_2\text{R}_3$ (wherein independently R_1 , R_2 and R_3 are H, straight or branched chain C_{1-15} alkyl or hydroxyalkyl, C_{3-10} single or fused ring optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted aralkyl, alkylcycloalkyl, or independently R_1 , R_2 and R_3 combine with each other to form a C_3 .

- γ membered cycloalkyl ring or heterocyclic residue containing one or more heteroatoms), with a proviso that the amine is not selected from ammonia, methylamine, ethylamine, diethanolamine, tri(hydroxymethyl)-methylamine, benzylamine, or 4-methoxybenzylamine, with an acid;
- optionally isolating rosuvastatin acid or a lactone thereof;
 - adding a base and calcium ions;
 - isolating amorphous rosuvastatin calcium; and
 - optionally converting amorphous rosuvastatin calcium to crystalline rosuvastatin calcium.

8. A process for the preparation of amorphous rosuvastatin calcium from amine salt rosuvastatin of Formula I

or solvate, hydrate, crystalline or amorphous form thereof, in which the amine residue has a Formula $\text{NR}_1\text{R}_2\text{R}_3$ (wherein independently R_1 , R_2 and R_3 are H, straight or branched chain C_{1-15} alkyl or hydroxyalkyl, C_{3-10} single or fused ring optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted aralkyl, alkylcycloalkyl, or independently R_1 , R_2 and R_3 combine with each other to form a C_{3-7} membered cycloalkyl ring or heterocyclic residue containing one or more heteroatoms), with a proviso that the amine is not selected from ammonia, methylamine, ethylamine, diethanolamine, tri(hydroxymethyl)-methylamine, benzylamine, or 4-methoxybenzylamine,

the process comprising

- a) treating an amine salt of rosuvastatin with a base and a calcium ions; and
 - b) isolating the amorphous rosuvastatin calcium from the reaction mass.
9. Amorphous rosuvastatin calcium prepared by a process according to claims 7 and 8 having a purity of at least above 99% having less than 0.5% of diastereomeric impurity.
10. A process for preparation of amorphous or crystalline rosuvastatin magnesium of

FORMULA B

Formula IIb

from amine salt of Formula I,

or solvate, hydrate, crystalline or amorphous form thereof, in which the amine residue has a Formula $NR_1R_2R_3$ (wherein independently R_1 , R_2 and R_3 are H, straight or branched chain C₁₋₁₅ alkyl or hydroxyalkyl, C₃₋₁₀ single or fused ring optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted aralkyl, alkylcycloalkyl, or independently R_1 , R_2 and R_3 combine with each other to form a C₃₋₇ membered cycloalkyl ring or heterocyclic residue containing one or more heteroatoms), with a proviso that the amine is not selected from ammonia, methylamine, ethylamine, diethanolamine, tri(hydroxymethyl)-methylamine, benzylamine, or 4-methoxybenzylamine,

wherein the process comprises:

- a) treating an amine salt of Formula I with an acid;
- b) optionally isolating rosuvastatin acid or a lactone thereof;
- c) adding a base and magnesium ions;
- d) isolating crystalline rosuvastatin magnesium; and
- e) optionally converting crystalline rosuvastatin magnesium to amorphous rosuvastatin magnesium.

11. A process according to claim 10 wherein the acid is selected from inorganic mineral acids or organic acids.

12. A process for the preparation of amorphous rosuvastatin magnesium from amine salt of rosuvastatin of Formula I

or solvate, hydrate, crystalline or amorphous form thereof, in which the amine residue has a Formula NR₁R₂R₃ (wherein independently R₁, R₂ and R₃ are H, straight or branched chain C₁₋₁₅ alkyl or hydroxyalkyl, C₃₋₁₀ single or fused ring optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted aralkyl, alkylcycloalkyl, or independently R₁, R₂ and R₃ combine with each other to form a C₃₋₇ membered cycloalkyl ring or heterocyclic residue containing one or more heteroatoms), with a proviso that the amine is not selected from ammonia, methylamine, ethylamine, diethanolamine, tri(hydroxymethyl)-methylamine, benzylamine, or 4-methoxybenzylamine, which comprises:

- a) treating an amine salt of rosuvastatin with a base and a magnesium ions; and
- b) isolating the crystalline rosuvastatin magnesium from the reaction mass.

13. Highly pure rosuvastatin calcium or rosuvastatin magnesium in crystalline or amorphous form thereof having purity of at least above 99.5% and diastereomeric impurity less than 0.25%.

14. A cyclohexyl ammonium salt of Formula I

wherein R₁ and R₂ are hydrogen and R₃ is cyclohexyl group.

15. The cyclohexyl ammonium salt of claim 14, having the X-ray diffraction pattern (XRD) as provided in Figure 1.

16. A diisopropyl ammonium salt of Formula

wherein R_1 and R_2 are isopropyl groups and R_3 is hydrogen.

17. The diisopropyl ammonium salt of claim 16 having the X-ray diffraction pattern (XRD) as provided in Figure 2.

18. An isopropyl ammonium salt of Formula I

wherein R_1 and R_2 are hydrogen and R_3 is isopropyl.

19. The isopropyl ammonium salt of claim 18, having the X-ray diffraction pattern (XRD) as provided in Figure 3.

20. A dicyclohexyl ammonium salt of Formula I

wherein R_1 and R_2 are cyclohexyl groups and R_3 is hydrogen.

21. The dicyclohexyl ammonium salt of claim 20, having the X-ray diffraction pattern (XRD) as provided in Figure 4.

22. A (S) (+)- \square -methylbenzyl ammonium salt of Formula I

wherein R_1 and R_2 are hydrogen and R_3 is (S) (+)- \square -methylbenzyl group.

23. The (S) (+)- \square -methylbenzyl ammonium salt of claim 22, having the X-ray diffraction pattern (XRD) as provided in Figure 5.

24. A pharmaceutical composition comprising amine salts of rosuvastatin of Formula I

or solvate, hydrate, crystalline or amorphous form thereof, in which the amine residue has a Formula $\text{NR}_1\text{R}_2\text{R}_3$ (wherein independently R_1 , R_2 and R_3 are H, straight or branched chain C_{1-15} alkyl or hydroxyalkyl, C_{3-10} single or fused ring optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted aralkyl, alkylcycloalkyl, or independently R_1 , R_2 and R_3 combine with each other to form a C_{3-7} membered cycloalkyl ring or heterocyclic residue containing one or more heteroatoms), with a proviso that the amine is not selected from ammonia, methylamine, ethylamine, diethanolamine, tri(hydroxymethyl)-methylamine, benzylamine, or 4-methoxybenzylamine, with a pharmaceutically acceptable diluent or carrier.

25. A method of treating disease conditions wherein HMG-CoA is implicated, which comprises of administering to a mammal in need thereof a therapeutically effective amount of amine salt of rosuvastatin of Formula I

or solvate, hydrate, crystalline or amorphous form thereof, in which the amine residue has a Formula $NR_1R_2R_3$ (wherein independently R_1 , R_2 and R_3 are H, straight or branched chain C_{1-15} alkyl or hydroxyalkyl, C_{3-10} single or fused ring optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted aralkyl, alkylcycloalkyl, or independently R_1 , R_2 and R_3 combine with each other to form a C_{3-7} membered cycloalkyl ring or heterocyclic residue containing one or more heteroatoms), with a proviso that the amine is not selected from ammonia, methylamine, ethylamine, diethanolamine, tri(hydroxymethyl)-methylamine, benzylamine, or 4-methoxybenzylamine.