ETSITS 145 003 V4.4.0 (2005-01)

Technical Specification

Digital cellular telecommunications system (Phase 2+); Channel coding (3GPP TS 45.003 version 4.4.0 Release 4)

Reference
RTS/TSGG-0145003v440

Keywords
GSM

ETSI

650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from: <u>http://www.etsi.org</u>

The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.

Information on the current status of this and other ETSI documents is available at

http://portal.etsi.org/tb/status/status.asp

Copyright Notification

No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2005.
All rights reserved.

DECTTM, **PLUGTESTS**TM and **UMTS**TM are Trade Marks of ETSI registered for the benefit of its Members. **TIPHON**TM and the **TIPHON logo** are Trade Marks currently being registered by ETSI for the benefit of its Members. **3GPP**TM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under http://webapp.etsi.org/key/queryform.asp.

Contents

Intelle	ectual Property Rights	2
Forew	vord	2
Forew	vord	9
1	Scope	10
1.1	References	
1.2	Abbreviations	
2	Company	11
2	General	
2.1	General organization	
2.2	Naming Convention	15
3	Traffic Channels (TCH)	17
3.1	Speech channel at full rate (TCH/FS and TCH/EFS)	17
3.1.1	Preliminary channel coding for EFR only	
3.1.1.1	CRC calculation	17
3.1.1.2	Repetition bits	18
3.1.1.3	Correspondence between input and output of preliminary channel coding	18
3.1.2	Channel coding for FR and EFR.	18
3.1.2.1	Parity and tailing for a speech frame	18
3.1.2.2	Convolutional encoder	19
3.1.3	Interleaving	19
3.1.4	Mapping on a Burst	19
3.2	Speech channel at half rate (TCH/HS)	
3.2.1	Parity and tailing for a speech frame	20
3.2.2	Convolutional encoder	20
3.2.3	Interleaving	
3.2.4	Mapping on a burst	21
3.3	Data channel at full rate, 12.0 kbit/s radio interface rate (9.6 kbit/s services (TCH/F9.6))	
3.3.1	Interface with user unit	22
3.3.2	Block code	
3.3.3	Convolutional encoder	
3.3.4	Interleaving	
3.3.5	Mapping on a Burst	
3.4	Data channel at full rate, 6.0 kbit/s radio interface rate (4.8 kbit/s services (TCH/F4.8))	
3.4.1	Interface with user unit	
3.4.2	Block code	
3.4.3	Convolutional encoder	
3.4.4	Interleaving	
3.4.5	Mapping on a Burst	
3.5	Data channel at half rate, 6.0 kbit/s radio interface rate (4.8 kbit/s services (TCH/H4.8))	
3.5.1	Interface with user unit	
3.5.2	Block code	
3.5.3	Convolutional encoder	
3.5.4	Interleaving	
3.5.5	Mapping on a Burst	
3.6	Data channel at full rate, 3.6 kbit/s radio interface rate (2.4 kbit/s and less services (TCH/F2.4))	
3.6.1	Interface with user unit	
3.6.2	Block code	
3.6.3	Convolutional encoder	
3.6.4	Interleaving	
3.6.5	Mapping on a Burst.	
3.7	Data channel at half rate, 3.6 kbit/s radio interface rate (2.4 kbit/s and less services (TCH/H2.4))	
3.7.1	Interface with user unit	
3.7.2	Block code	
3.7.3 3.7.4	Convolutional encoder	
1/4	interteaving	2.6

3.7.5	Mapping on a Burst	
3.8	Data channel at full rate, 14.5 kbit/s radio interface rate (14.4 kbit/s services (TCH/F14.4))	26
3.8.1	Interface with user unit	
3.8.2	Block code	
3.8.3	Convolutional encoder	
3.8.4	Interleaving	
3.8.5	Mapping on a Burst	
3.9	Adaptive multi rate speech channel at full rate (TCH/AFS)	
3.9.1	SID_UPDATE	
3.9.1.1	Coding of in-band data	
3.9.1.2	Parity and convolutional encoding for the comfort noise parameters	
3.9.1.3	Identification marker	
3.9.1.4	Interleaving	
3.9.1.5	Mapping on a Burst	
3.9.2	SID_FIRST	
3.9.2.1	Coding of in-band data	
3.9.2.2	Identification marker	
3.9.2.3	Interleaving	
3.9.2.4	Mapping on a Burst	
3.9.3 3.9.3.1	ONSET	
3.9.3.1	Coding of in-band data	
3.9.3.2 3.9.3.3	Interleaving	
3.9.3.3 3.9.4	Mapping on a Burst	
3.9.4 3.9.4.1	Coding of the in-band data	
3.9.4.1	Ordering according to subjective importance	
3.9.4.2	Parity for speech frames	
3.9.4.4	Convolutional encoder	
3.9.4.5	Interleaving	
3.9.4.6	Mapping on a Burst	
3.9.5	RATSCCH	
3.9.5.1	Coding of in-band data	
3.9.5.2	Parity and convolutional encoding for the RATSCCH message	
3.9.5.3	Identification marker	
3.9.5.4	Interleaving	41
3.9.5.5	Mapping on a Burst	41
3.10	Adaptive multi rate speech channel at half rate (TCH/AHS)	
3.10.1	SID_UPDATE	
3.10.1.1	Coding of in-band data	
3.10.1.2	Parity and convolutional encoding for the comfort noise parameters	
3.10.1.3	Identification marker	
3.10.1.4	Interleaving	
3.10.1.5	Mapping on a Burst	
3.10.2	SID_UPDATE_INH	
3.10.2.1	Coding of in-band data	
3.10.2.2	Identification marker	
3.10.2.3	Interleaving	
3.10.2.4	Mapping on a Burst	
3.10.3	SID_FIRST_P1	
3.10.3.1	Coding of in-band data	
3.10.3.2	Identification marker	
3.10.3.3 3.10.3.4	Interleaving	
3.10.3.4	SID_FIRST_P2	
3.10.4	Coding of in-band data	
3.10.4.1	Interleaving	
3.10.4.2	Mapping on a Burst	
3.10.4.3	SID_FIRST_INH	
3.10.5.1	Coding of in-band data	
3.10.5.2	Identification marker	
3.10.5.3	Interleaving	
3 10 5 4	Manning on a Burst	16

3.10.6	ONSET	
3.10.6.1	Coding of in-band data	
3.10.6.2	Interleaving	
3.10.6.3	Mapping on a Burst	
3.10.7	SPEECH	
3.10.7.1	Coding of the in-band data	
3.10.7.2	Ordering according to subjective importance	
3.10.7.3	Parity for speech frames	47
3.10.7.4	Convolutional encoder	49
3.10.7.5	Interleaving	53
3.10.7.6	Mapping on a Burst	53
3.10.8	RATSCCH_MARKER	53
3.10.8.1	Coding of in-band data	53
3.10.8.2	Identification marker	53
3.10.8.3	Interleaving	53
3.10.8.4	Mapping on a Burst	53
3.10.9	RATSCCH_DATA	53
3.10.9.1	Coding of in-band data	54
3.10.9.2	Parity and convolutional encoding for the RATSCCH message	54
3.10.9.3	Interleaving	55
3.10.9.4	Mapping on a Burst	55
3.11	Data channel for ECSD at full rate, 29.0 kbit/s radio interface rate (28.8 kbit/s services (E-TCH/F28.8))	
3.11.1	Interface with user unit	55
3.11.2	Block code	55
3.11.2.1	Repetition bits	55
3.11.2.2	Reed Solomon encoder	55
3.11.3	Convolutional encoder	57
3.11.3.1	Tailing bits for a data frame	
3.11.3.2	Convolutional encoding for a data frame	
3.11.4	Interleaving	
3.11.5	Mapping on a Burst	57
3.12	Data channel for ECSD at full rate, 32.0 kbit/s radio interface rate (32.0 kbit/s services (E-TCH/F32.0))	
3.12.1	Interface with user unit	58
3.12.2	Void	58
3.12.3	Convolutional encoder	58
3.12.3.1	Tailing bits for a data frame	
3.12.3.2	Convolutional encoding for a data frame	
3.12.4	Interleaving	
3.12.5	Mapping on a Burst	60
3.13	Data channel for ECSD at full rate, 43.5 kbit/s radio interface rate (43.2 kbit/s services (E-TCH/F43.2))	60
3.13.1	Interface with user unit	60
3.13.2	Convolutional encoder	
3.13.2.1	Tailing bits for a data frame	
3.13.2.2	Convolutional encoding for a data frame	
3.13.3	Interleaving	
3.13.4	Mapping on a Burst	61
4 Co	ontrol Channels	61
4.1	Slow associated control channel (SACCH)	
4.1.1	Block constitution	
4.1.1	Block code	
4.1.3	Convolutional encoder	
4.1.4	Interleaving	
4.1.5	Mapping on a Burst	
4.1.3	Fast associated control channel at full rate (FACCH/F).	
4.2.1	Block constitution	
4.2.1	Block code	
4.2.3	Convolutional encoder	
4.2.3	Interleaving	
4.2.5	Mapping on a Burst	
4.3	Fast associated control channel at half rate (FACCH/H)	
4.3 4.3.1	Rlock constitution	63

4.3.2	Block code	63
4.3.3	Convolutional encoder	63
4.3.4	Interleaving	63
4.3.5	Mapping on a Burst	63
4.4	Broadcast control, Paging, Access grant, Notification and Cell broadcast channels (BCCH, PCH,	
	AGCH, NCH, CBCH), CTS Paging and Access grant channels (CTSPCH, CTSAGCH)	64
4.5	Stand-alone dedicated control channel (SDCCH)	
4.6	Random access channel (RACH)	64
4.7	Synchronization channel (SCH), Compact synchronization channel (CSCH), CTS Beacon and Access	C 5
4.0	request channels (CTSBCH-SB, CTSARCH)	
4.8	Access Burst on circuit switched channels other than RACH	
4.9	Access Bursts for uplink access on a channel used for VGCS	
4.10	Fast associated control channel at ECSD E-TCH/F (E-FACCH/F)	
4.10.1		
4.10.2		
4.10.3		
4.10.4	E	
4.10.5	Mapping on a Burst	66
5	Packet Switched Channels.	67
5.1	Packet data traffic channel (PDTCH)	
5.1.1	Packet data block type 1 (CS-1)	
5.1.2	Packet data block type 2 (CS-2)	
5.1.2.1		
5.1.2.2		
5.1.2.3		
5.1.2.4		
5.1.2.5	\boldsymbol{c}	
5.1.2.3 5.1.3		
	Packet data block type 3 (CS-3)	
5.1.3.1		
5.1.3.2		
5.1.3.3		
5.1.3.4	· · · · · · · · · · · · · · · · · · ·	
5.1.3.5		
5.1.4	Packet data block type 4 (CS-4)	
5.1.4.1		
5.1.4.2		
5.1.4.3		
5.1.4.4		
5.1.4.5	11 0	
5.1.5	Packet data block type 5 (MCS-1)	
5.1.5.1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
5.1.5.1		
5.1.5.1	1 0	
5.1.5.1	8	
5.1.5.1		
5.1.5.1	e	
5.1.5.1	11 0	
5.1.5.2		
5.1.5.2		
5.1.5.2	Č	
5.1.5.2	e	
5.1.5.2		
5.1.5.2	11 0	
5.1.6	Packet data block type 6 (MCS-2)	
5.1.6.1		
5.1.6.1		
5.1.6.1	1 0	
5.1.6.1	1.3 Header coding	75
5.1.6.1	1.4 Data coding	75
5.1.6.1	1.5 Interleaving	76
5 1 6 1	I 6 Mapping on a burst	76

5.1.6.2	Uplink (MCS-2 UL)	76
5.1.6.2.1	Block constitution	76
5.1.6.2.2	Header coding	76
5.1.6.2.3	Data coding	76
5.1.6.2.4	Interleaving	76
5.1.6.2.5	Mapping on a burst	76
5.1.7	Packet data block type 7 (MCS-3)	76
5.1.7.1	Downlink (MCS-3 DL)	76
5.1.7.1.1	Block constitution	76
5.1.7.1.2	USF precoding	76
5.1.7.1.3	Header coding	77
5.1.7.1.4	Data coding	77
5.1.7.1.5	Interleaving	77
5.1.7.1.6	Mapping on a burst	77
5.1.7.2	Uplink (MCS-3 UL)	78
5.1.7.2.1	Block constitution	78
5.1.7.2.2	Header coding	78
5.1.7.2.3	Data coding	78
5.1.7.2.4	Interleaving	
5.1.7.2.5	Mapping on a burst	
5.1.8	Packet data block type 8 (MCS-4)	
5.1.8.1	Downlink (MCS-4 DL)	78
5.1.8.1.1	Block constitution	78
5.1.8.1.2	USF precoding	
5.1.8.1.3	Header coding	
5.1.8.1.4	Data coding	
5.1.8.1.5	Interleaving	
5.1.8.1.6	Mapping on a burst	
5.1.8.2	Uplink (MCS-4 UL)	
5.1.8.2.1	Block constitution	
5.1.8.2.2	Header coding	
5.1.8.2.3	Data coding	
5.1.8.2.4	Interleaving	
5.1.8.2.5	Mapping on a burst	
5.1.9	Packet data block type 9 (MCS-5)	
5.1.9.1	Downlink (MCS-5 DL)	
5.1.9.1.1	Block constitution	
5.1.9.1.2	USF precoding	
5.1.9.1.3	Header coding	
5.1.9.1.4	Data coding	
5.1.9.1.5	Interleaving	
5.1.9.1.6 5.1.9.2	Mapping on a burst	
5.1.9.2 5.1.9.2.1	Uplink (MCS-5 UL)	
5.1.9.2.1	Header coding	
5.1.9.2.2	Data coding	
5.1.9.2.3	Interleaving	
5.1.9.2.5	Mapping on a burst	
5.1.10	Packet data block type 10 (MCS-6)	
5.1.10.1	Downlink (MCS-6 DL)	
5.1.10.1.1	Block constitution	
5.1.10.1.2	USF precoding	
5.1.10.1.2	Header coding	
5.1.10.1.4	Data coding	
5.1.10.1.5	Interleaving	
5.1.10.1.6	Mapping on a burst	
5.1.10.2	Uplink (MCS-6 UL)	
5.1.10.2.1	Block constitution	
5.1.10.2.2	Header coding	
5.1.10.2.3	Data coding	
5.1.10.2.4	Interleaving	
5 1 10 2 5	Manning on a hurst	86

5.1.11		ype 11 (MCS-7)	
5.1.11.1		S-7 DL)	
5.1.11.1.1		itution	
5.1.11.1.2	-	ing	
5.1.11.1.3		ng	
5.1.11.1.4		[
5.1.11.1.5			
5.1.11.1.6		a burst	
5.1.11.2		(UL)	
5.1.11.2.1		itution	
5.1.11.2.2		ng	
5.1.11.2.3		[
5.1.11.2.4			
5.1.11.2.5		a burst	
5.1.12		ype 12 (MCS-8)	
5.1.12.1		S-8 DL)	
5.1.12.1.1		itution	
5.1.12.1.2		ing	
5.1.12.1.3		ng	
5.1.12.1.4		<u></u>	
5.1.12.1.5			
5.1.12.1.6	11 -	a burst	
5.1.12.2		5 UL)	
5.1.12.2.1		itution	
5.1.12.2.2		ng	
5.1.12.2.3		<u></u>	
5.1.12.2.4			
5.1.12.2.5	11 -	a burst	
5.1.13		ype 13 (MCS-9)	
5.1.13.1		S-9 DL)	
5.1.13.1.1		itution	
5.1.13.1.2 5.1.13.1.3		ingng	
5.1.13.1.4		[
5.1.13.1.5			
5.1.13.1.6		a burst	
5.1.13.1.0		UL)	
5.1.13.2.1	* '	itution	
5.1.13.2.2		ing	
5.1.13.2.3		[
5.1.13.2.4	C		
5.1.13.2.5		a burst	
		s (PACCH, PBCCH, PAGCH, PPCH, PNCH, PTCCH, CPBCCH, CPAGCH,	
			95
		channel (PRACH and CPRACH)	
5.3.1		st	
5.3.2		ccess Burst	
5.4		t switched channels other than PRACH and CPRACH	
Annex A	(informative):	Summary of Channel Types	112
Annex B	(informative):	Summary of Polynomials Used for Convolutional Codes	114
Annex C	(informative):	Change history	115
History			116

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

- x the first digit:
 - 1 presented to TSG for information;
 - 2 presented to TSG for approval;
 - 3 or greater indicates TSG approved document under change control.
- y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
- z the third digit is incremented when editorial only changes have been incorporated in the document.

1 Scope

A reference configuration of the transmission chain is shown in 3GPP TS 45.001[4]. According to this reference configuration, the present document specifies the data blocks given to the encryption unit.

It includes the specification of encoding, reordering, interleaving and the stealing flag. It does not specify the channel decoding method.

The definition is given for each kind of logical channel, starting from the data provided to the channel encoder by the speech coder, the data terminal equipment, or the controller of the Mobile Station (MS) or Base Transceiver Station (BTS). The definitions of the logical channel types used in this technical specification are given in 3GPP TS 45.002 [5], a summary is in annex A.

1.1 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document *in the same Release as the present document*.

Release as th	he present document.
[1]	3GPP TR 21.905: "Technical Specification Group Services and System Aspects; Vocabulary for 3GPP Specifications".
[2]	3GPP TS 44.018: "Digital cellular telecommunications system (Phase 2+); Mobile radio interface layer 3 specification, Radio Resource Control Protocol".
[3]	3GPP TS 44.021: "Digital cellular telecommunications system (Phase 2+); Rate adaption on the Mobile Station - Base Station System (MS - BSS) interface".
[4]	3GPP TS 45.001: "Digital cellular telecommunications system (Phase 2+); Physical layer on the radio path General description".
[5]	3GPP TS 45.002: "Digital cellular telecommunications system (Phase 2+); Multiplexing and multiple access on the radio path".
[6]	3GPP TS 45.005: "Digital cellular telecommunications system (Phase 2+); Radio Transmission and Reception".
[7]	3GPP TS 45.009: "Digital cellular telecommunications system (Phase 2+); Link adaptation".

- [8] 3GPP TS 46.010: "Digital cellular telecommunications system; Full rate speech transcoding".
- [9] 3GPP TS 46.020: "Digital cellular telecommunications system; Half rate speech transcoding".
- [10] 3GPP TS 46.060: "Digital cellular telecommunications system; Enhanced Full Rate (EFR) speech transcoding".
- [11] 3GPP TS 26.090: "Digital cellular telecommunications system; Adaptive Multi-Rate speech codec; Transcoding functions ".
- [12] 3GPP TS 26.093: "Digital cellular telecommunications system; Discontinuous transmission (DTX) for Adaptive Multi-Rate Speech Codec; Source Controlled Rate operation ".
- [13] 3GPP TS 43.052: "Digital cellular telecommunications system (Phase 2+); GSM Cordless Telephony System (CTS), Phase 1; Lower layers of the CTS Radio Interface; Stage 2".

1.2 Abbreviations

Abbreviations used in the present document are listed in 3GPP TR 21.905.

2 General

2.1 General organization

Each channel has its own coding and interleaving scheme. However, the channel coding and interleaving is organized in such a way as to allow, as much as possible, a unified decoder structure.

Each channel uses the following sequence and order of operations:

- the information bits are coded with a systematic block code, building words of information + parity bits;
- these information + parity bits are encoded with a convolutional code, building the coded bits;
- reordering and interleaving the coded bits, and adding a stealing flag, gives the interleaved bits.

All these operations are made block by block, the size of which depends on the channel. However, most of the channels use a block of 456 coded bits which is interleaved and mapped onto bursts in a very similar way for all of them. Figures 1a and 1b give a diagram showing the general structure of the channel coding.

This block of 456 coded bits is the basic structure of the channel coding scheme. In the case of full rate speech TCH, this block carries the information of one speech frame. In case of control channels, it carries one message.

In the case of half rate speech TCH, the information of one speech frame is carried in a block of 228 coded bits.

In the case of the Enhanced full rate speech the information bits coming out of the source codec first go through a preliminary channel coding. then the channel coding as described above takes place.

In the case of a packet switched channel the block of 456 or 1384 coded bits carries one radio block.

In the case of E-TCH/F28.8 or E-TCH/F43.2, the block of 1368 coded bits (456 coded symbols) carries one radio block. In the case of E-TCH/F32.0, the block of 1392 coded bits (464 coded symbols) carries one radio block.

In the case of FACCH, a coded message block of 456 bits is divided into eight sub-blocks. The first four sub-blocks are sent by stealing the even numbered bits of four timeslots in consecutive frames used for the TCH. The other four sub-blocks are sent by stealing the odd numbered bits of the relevant timeslot in four consecutive used frames delayed 2 or 4 frames relative to the first frame. Along with each block of 456 coded bits there is, in addition, a stealing flag (8 bits), indicating whether the block belongs to the TCH or to the FACCH. In the case of SACCH, BCCH, CCCH or CTSCCH, this stealing flag is dummy. In the case of a packet switched channel, these bits are used to indicate the coding scheme used.

In the case of E-FACCH/F, a coded message block of 456 bits is divided into four sub-blocks. The four sub-blocks are sent by stealing all symbols of four timeslots in consecutive frames used for the E-TCH and using GMSK modulation. The indication of the E-FACCH/F is based on the identification of the modulation. Along with each block of 456 coded bits there is, in addition, a stealing flag (8 bits), indicating whether the block belongs to the E-FACCH, FACCH or TCH.

Some cases do not fit in the general organization, and use short blocks of coded bits which are sent completely in one timeslot. They are the random access messages of:

- the RACH;
- or PRACH and CPRACH;

on uplink and the synchronization information broadcast on the SCH or CSCH on the downlink. In CTS, they are the access request message of the CTSARCH on uplink and the information broadcast on the CTSBCH-SB on downlink.

Figure 1a: Channel Coding and Interleaving Organization

In each box, the last line indicates the chapter defining the function. In the case of RACH, P0 = 8 and P1 = 18; in the case of SCH, CSCH, CTSBCH-SB and CTSARCH, P0 = 25 and P1 = 39. In the case of data TCHs, P0 = 25 and P1 = 39. In the case of data TCHs, P0 = 25 and P1 = 39. In the case of data TCHs, P0 = 25 and P1 = 39.

Interfaces:

- 1) information bits (d);
- 2) information + parity + tail bits (u);
- 3) coded bits (c);
- 4) interleaved bits (e).

TCH/AHS TCH/AFS

Figure 1b: Channel Coding and Interleaving Organization, adaptive multi-rate speech

In each box, the last line indicates the chapter defining the function.

Interfaces:

- 0) speech bits from the speech encoder (s);
- 1) reordered speech bits (d);
- 2) speech + parity + tail bits (u);
- 3) coded bits (c);
- 4) interleaved bits (e).

Figure 2a: Channel Coding and Interleaving Organization for ECSD 8-PSK modulated signals

In each box, the last line indicates the chapter defining the function.

Figure 2b: Channel Coding and Interleaving Organization for EGPRS Packet Data Channels

In each box, the last line indicates the chapter defining the function.

2.2 Naming Convention

For ease of understanding a naming convention for bits is given for use throughout the technical specification:

- General naming:

"k" and "j" for numbering of bits in data blocks and bursts;

" K_x " gives the amount of bits in one block, where "x" refers to the data type;

"n" is used for numbering of delivered data blocks where;

"N" marks a certain data block;

"B" is used for numbering of bursts or blocks where;

" B_0 " marks the first burst or block carrying bits from the data block with n = 0 (first data block in the transmission).

- Data delivered to the preliminary channel encoding unit (for EFR only):

$$s(k)$$
 for $k = 1..., K_s$

- Data delivered by the preliminary channel encoding unit (for EFR only) before bits rearrangement

$$w(k)$$
 for $k = 1..., K_w$

- Data bits delivered to the encoding unit (interface 1 in figure 1):

d(k) for
$$k = 0,1,...,K_{d}-1$$

- Data symbols delivered to the encoding unit:

D(k) for
$$k = 0,1,...,K_{D}-1$$

- Input in-band data bits (for TCH/AMR only):

$$id(k)$$
 for $k = 0, 1$

- Encoded in-band data bits (for TCH/AMR only):

ic(k) for k = 0, 1,...,3 TCH/AHS speech frames or
$$k=0,\,1,...,7 \; TCH/AFS \; speech \; frames \; or \\ k=0,\,1,...,15 \; TCH/AMR, \; SID \; frames$$

- Code identifying the used coding scheme (for packet switched channels only):

q(k) for
$$k = 0,1,...,7$$

- Data bits after the first encoding step (block code, cyclic code; interface 2 in figure 1):

$$u(k)$$
 for $k = 0,1,...,K_{u}-1$

- Data symbols after the first encoding step (block code):

U(k) for
$$k = 0,1,...,K_{IJ}-1$$

- Data put into the shift register of the convolutional code and calculated from the data bits u(k) and the feedback bits in recursive systematic convolutional codes

$$r(k)$$
 for $k = 0,1,..., K_{r}-1$

- Data after the second encoding step (convolutional code; interface 3 in figure 1):

$$c(n,k)$$
 or $c(k)$ for $k = 0,1,...,K_c-1$

$$n = 0,1,...,N,N+1,...$$

- Interleaved data bits:

$$i(B,k)$$
 for $k = 0,1,...,K_{\hat{1}}-1$
$$B = B_0, B_0+1,....$$

- Interleaved data symbols:

I(B,k) for
$$k = 0,1,...,K_{1}-1$$

$$B = B_{0}, B_{0}+1,....$$

- Bits in one burst (interface 4 in figure 1):

e(B,k)
$$\mbox{for } k = 0,1,...,114,115$$

$$\mbox{B} = \mbox{B}_0, \mbox{B}_0 + 1,...$$

- Symbols in one burst (interface 4 in figure 2):

E(B,k) for
$$k = 0,1,...,114,115$$

$$B = B_0,B_0+1,...$$

- E-IACCH messages delivered to the block coding of inband signalling (for ECSD only):

for
$$k = 0,1,2$$

 $n = 0,1,...,N,N+1,...$

- E-IACCH bits delivered to the mapping on one burst (for ECSD only):

$$\label{eq:barbonic} \begin{array}{ll} ib(B,k) & \qquad \text{for } k=0,1,...,5 \\ \\ B=B_0,\,B_0+1,.... \end{array}$$

- E-IACCH symbols in one burst (for ECSD only):

HL(B) and HU(B)

for
$$B = B_0, B_0 + 1,...$$

3 Traffic Channels (TCH)

Two kinds of traffic channel are considered: speech and data. Both of them use the same general structure (see figure 1), and in both cases, a piece of information can be stolen by the FACCH.

3.1 Speech channel at full rate (TCH/FS and TCH/EFS)

The speech coder (whether Full rate or Enhanced full rate) delivers to the channel encoder a sequence of blocks of data. In case of a full rate and enhanced full rate speech TCH, one block of data corresponds to one speech frame.

For the full rate coder each block contains 260 information bits, including 182 bits of class 1 (protected bits), and 78 bits of class 2 (no protection), (see table 2).

The bits delivered by the speech coder are received in the order indicated in 3GPP TS 46.010 and have to be rearranged according to table 2 before channel coding as defined in subclauses 3.1.1 to 3.1.4. The rearranged bits are labelled $\{d(0),d(1),...,d(259)\}$, defined in the order of decreasing importance.

For the EFR coder each block contains 244 information bits. The block of 244 information bits, labelled s(1)..., s(244), passes through a preliminary stage, applied only to EFR (see figure 1) which produces 260 bits corresponding to the 244 input bits and 16 redundancy bits. Those 16 redundancy bits correspond to 8 CRC bits and 8 repetition bits, as described in subclause 3.1.1. The 260 bits, labelled w(1)..w(260), have to be rearranged according to table 7 before they are delivered to the channel encoding unit which is identical to that of the TCH/FS. The 260 bits block includes 182 bits of class 1(protected bits) and 78 bits of class 2 (no protection). The class 1 bits are further divided into the class 1a and class 1b, class 1a bits being protected by a cyclic code and the convolutional code whereas the class 1b are protected by the convolutional code only.

3.1.1 Preliminary channel coding for EFR only

3.1.1.1 CRC calculation

An 8-bit CRC is used for error-detection. These 8 parity bits (bits w253-w260) are generated by the cyclic generator polynomial: $g(D) = D^8 + D^4 + D^3 + D^2 + 1$ from the 65 most important bits (50 bits of class 1a and 15 bits of class 1b). These 65 bits (b(1)-b(65)) are taken from the table 5 in the following order (read row by row, left to right):

s39	s40	s41	s42	s43	s44	s48	s87	s45	s2
s3	s8	s10	s18	s19	s24	s46	s47	s142	s143
s144	s145	s146	s147	s92	s93	s195	s196	s98	s137
s148	s94	s197	s149	s150	s95	s198	s4	s5	s11
s12	s16	s9	s6	s7	s13	s17	s20	s96	s199
s1	s14	s15	s21	s25	s26	s28	s151	s201	s190
s240	s88	s138	s191	s241					

The encoding is performed in a systematic form, which means that, in GF(2), the polynomial:

$$- \quad b(1)D^{72} + b(2)D^{71} + ... + b(65)D^8 + p(1)D^7 + p(2)D^6 + ... + p(7)D^1 + p(8);$$

- p(1) p(8): the parity bits (w253-w260);
- b(1) b(65) = the data bits from the table above;

when divided by g(D), yields a remainder equal to 0.

3.1.1.2 Repetition bits

The repeated bits are s70, s120, s173 and s223. They correspond to one of the bits in each of the PULSE_5, the most significant one not protected by the channel coding stage.

3.1.1.3 Correspondence between input and output of preliminary channel coding

The preliminary coded bits w(k) for k = 1 to 260 are hence defined by:

$$w(k) = s(k)$$
 for $k = 1$ to 71
 $w(k) = s(k-2)$ for $k = 74$ to 123
 $w(k) = s(k-4)$ for $k = 126$ to 178
 $w(k) = s(k-6)$ for $k = 181$ to s230
 $w(k) = s(k-8)$ for $k = 233$ to s252

Repetition bits:

$$w(k) = s(70)$$
 for $k = 72$ and 73
 $w(k) = s(120)$ for $k = 124$ and 125
 $w(k) = s(173)$ for $k = 179$ and 180
 $w(k) = s(223)$ for $k = 231$ and 232

Parity bits:

$$w(k = p(k-252))$$
 for $k = 253$ to 260

3.1.2 Channel coding for FR and EFR

3.1.2.1 Parity and tailing for a speech frame

a) Parity bits:

The first 50 bits of class 1 (**known as class 1a for the EFR**) are protected by three parity bits used for error detection. These parity bits are added to the 50 bits, according to a degenerate (shortened) cyclic code (53,50,2), using the generator polynomial:

$$g(D) = D^3 + D + 1$$

The encoding of the cyclic code is performed in a systematic form, which means that, in GF(2), the polynomial:

$$d(0)D^{52} + d(1)D^{51} + ... + d(49)D^{3} + p(0)D^{2} + p(1)D + p(2)$$

where p(0), p(1), p(2) are the parity bits, when divided by g(D), yields a remainder equal to:

$$1+D+D^2$$

b) Tailing bits and reordering:

The information and parity bits of class 1 are reordered, defining 189 information + parity + tail bits of class 1, $\{u(0),u(1),...,u(188)\}$ defined by:

$$u(k) = d(2k)$$
 and $u(184-k) = d(2k+1)$ for $k = 0,1,...,90$
$$u(91+k) = p(k)$$
 for $k = 0,1,2$
$$u(k) = 0$$
 for $k = 185,186,187,188$ (tail bits)

3.1.2.2 Convolutional encoder

The class 1 bits are encoded with the 1/2 rate convolutional code defined by the polynomials:

$$G0 = 1 + D^3 + D^4$$

 $G1 = 1 + D + D^3 + D^4$

The coded bits $\{c(0), c(1), ..., c(455)\}$ are then defined by:

- class 1:
$$c(2k) = u(k) + u(k-3) + u(k-4)$$

$$c(2k+1) = u(k) + u(k-1) + u(k-3) + u(k-4) \qquad \text{for } k = 0,1,...,188$$

$$u(k) = 0 \text{ for } k < 0$$
 - class 2: $c(378+k) = d(182+k)$ for $k = 0,1,...,77$

3.1.3 Interleaving

The coded bits are reordered and interleaved according to the following rule:

$$i(B,j) = c(n,k),$$
 for $k = 0,1,...,455$
 $n = 0,1,...,N,N+1,...$
 $B = B_0 + 4n + (k \mod 8)$
 $j = 2((49k) \mod 57) + ((k \mod 8) \operatorname{div} 4)$

See table 1. The result of the interleaving is a distribution of the reordered 456 bits of a given data block, n = N, over 8 blocks using the even numbered bits of the first 4 blocks ($B = B_0 + 4N + 0$, 1, 2, 3) and odd numbered bits of the last 4 blocks ($B = B_0 + 4N + 4$, 5, 6, 7). The reordered bits of the following data block, n = N+1, use the even numbered bits of the blocks $B = B_0 + 4N + 4$, 5, 6, 7 ($B = B_0 + 4(N+1) + 0$, 1, 2, 3) and the odd numbered bits of the blocks $B = B_0 + 4(N+1) + 4$, 5, 6, 7. Continuing with the next data blocks shows that one block always carries 57 bits of data from one data block (n = N) and 57 bits of data from the next block (n = N+1), where the bits from the data block with the higher number always are the even numbered data bits, and those of the data block with the lower number are the odd numbered bits.

The block of coded data is interleaved "block diagonal", where a new data block starts every 4th block and is distributed over 8 blocks.

3.1.4 Mapping on a Burst

The mapping is given by the rule:

$$e(B,j) = i(B,j)$$
 and $e(B,59+j) = i(B,57+j)$ for $j = 0,1,...,56$

and

$$e(B,57) = hl(B)$$
 and $e(B,58) = hu(B)$

The two bits, labelled hl(B) and hu(B) on burst number B are flags used for indication of control channel signalling. For each TCH/FS block not stolen for signalling purposes:

```
hu(B) = 0 for the first 4 bursts (indicating status of even numbered bits)
```

$$hl(B) = 0$$
 for the last 4 bursts (indicating status of odd numbered bits)

For the use of hl(B) and hu(B) when a speech frame is stolen for signalling purposes see subclause 4.2.5.

3.2 Speech channel at half rate (TCH/HS)

The speech coder delivers to the channel encoder a sequence of blocks of data. In case of a half rate speech TCH, one block of data corresponds to one speech frame. Each block contains 112 bits, including 95 bits of class 1 (protected bits), and 17 bits of class 2 (no protection), see tables 3a and 3b.

The bits delivered by the speech coder are received in the order indicated in 3GPP TS 46.020 and have to be arranged according to either table 3a or table 3b before channel encoding as defined in subclauses 3.2.1 to 3.2.4. The rearranged bits are labelled $\{d(0),d(1),...,d(111)\}$. Table 3a has to be taken if parameter Mode = 0 (which means that the speech encoder is in unvoiced mode), while table 3b has to be taken if parameter Mode = 1, 2 or 3 (which means that the speech encoder is in voiced mode).

3.2.1 Parity and tailing for a speech frame

a) Parity bits:

The most significant 22 class 1 bits d(73),d(74),...,d(94) are protected by three parity bits used for error detection. These bits are added to the 22 bits, according to a cyclic code using the generator polynomial:

$$g(D) = D^3 + D + 1$$

The encoding of the cyclic code is performed in a systematic form, which means that, in GF(2), the polynomial:

$$d(73)D^{24} + d(74)D^{23} + ... + d(94)D^{3} + p(0)D^{2} + p(1)D + p(2)$$

where p(0), p(1), p(2) are the parity bits, when divided by g(D), yields a remainder equal to:

$$1 + D + D^2$$
.

b) Tail bits and reordering:

The information and parity bits of class 1 are reordered, defining 104 information + parity + tail bits of class 1, $\{u(0),u(1),...,u(103)\}\$ defined by:

$$u(k) = d(k)$$
 for $k = 0,1,...,94$
$$u(k) = p(k-95)$$
 for $k = 95,96,97$
$$u(k) = 0$$
 for $k = 98,99,...,103$ (tail bits)

3.2.2 Convolutional encoder

The class 1 bits are encoded with the punctured convolutional code defined by the mother polynomials:

$$G4 = 1 + D^{2} + D^{3} + D^{5} + D^{6}$$

$$G5 = 1 + D + D^{4} + D^{6}$$

$$G6 = 1 + D + D^{2} + D^{3} + D^{4} + D^{6}$$

and the puncturing matrices:

In the puncturing matrices, a 1 indicates no puncture and a 0 indicates a puncture.

The coded bits $\{c(0),c(1),...,c(227)\}$ are then defined by:

class 1 information bits:

$$c(2k) = u(k) + u(k-2) + u(k-3) + (k-5) + u(k-6)$$

$$c(2k+1) = u(k) + u(k-1) + u(k-2) + u(k-3) + u(k-4) + u(k-6)$$
for $k = 0,1,...,94; u(k) = 0$ for $k < 0$
parity bits:
$$c(3k-95) = u(k) + u(k-2) + u(k-3) + u(k-5) + u(k-6)$$

$$c(3k-94) = u(k) + u(k-1) + u(k-4) + u(k-6)$$

$$c(3k-93) = u(k) + u(k-1) + u(k-2) + u(k-3) + u(k-4) + u(k-6)$$
for $k = 95,96,97$
tail bits:
$$c(2k+3) = u(k) + u(k-2) + u(k-3) + u(k-6)$$

$$c(2k+4) = u(k) + u(k-1) + u(k-2) + u(k-3) + u(k-6)$$
for $k = 98,99,...,103$
class 2 information bits:
$$c(k+211) = d(k+95) \text{ for } k = 0,1,...,16$$

3.2.3 Interleaving

The coded bits are reordered and interleaved according to the following rule:

$$i(B,j)=c(n,k) \qquad \text{for} \qquad k=0,1,...,227$$

$$n=0,1,...,N,N+1,...$$

$$B=B0+2n+b$$

The values of b and j in dependence of k are given by table 4.

The result of the interleaving is a distribution of the reordered 228 bits of a given data block, n = N, over 4 blocks using the even numbered bits of the first 2 blocks (B = B0+2N+0,1) and the odd numbered bits of the last 2 blocks (B = B0+2N+2,3). The reordered bits of the following data block, n = N+1, use the even numbered bits of the blocks B = B0+2(N+1)+0,1) and the odd numbered bits of the blocks B = B0+2(N+1)+2,3. Continuing with the next data blocks shows that one block always carries 57 bits of data from one data block (n = N) and 57 bits from the next block (n = N+1), where the bits from the data block with the higher number always are the even numbered data bits, and those of the data block with the lower number are the odd numbered bits. The block of coded data is interleaved "block diagonal", where a new data block starts every 2nd block and is distributed over 4 blocks.

3.2.4 Mapping on a burst

The mapping is given by the rule:

$$e(B,j)=i(B,j)$$
 and $e(B,59+j)=i(B,57+j)$ for $j=0,1,...,56$ and
$$e(B,57)=hl(B) \ and \ e(B,58)=hu(B)$$

The two bits, labelled hl(B) and hu(B) on burst number B are flags used for indication of control channel signalling. For each TCH/HS block not stolen for signalling purposes:

```
hu(B) = 0 for the first 2 bursts (indicating status of the even numbered bits)

hl(B) = 0 for the last 2 bursts (indicating status of the odd numbered bits)
```

For the use of hl(B) and hu(B) when a speech frame is stolen for signalling purposes, see subclause 4.3.5.

3.3 Data channel at full rate, 12.0 kbit/s radio interface rate (9.6 kbit/s services (TCH/F9.6))

The definition of a 12.0 kbit/s radio interface rate data flow for data services is given in 3GPP TS 44.021.

3.3.1 Interface with user unit

The user unit delivers to the encoder a bit stream organized in blocks of 60 information bits (data frames) every 5 ms. Four such blocks are dealt with together in the coding process $\{d(0),...,d(239)\}$. For non-transparent services those four blocks shall align with one 240-bit RLP frame.

3.3.2 Block code

The block of 4 * 60 information bits is not encoded, but only increased with 4 tail bits equal to 0 at the end of the block.

$$u(k) = d(k) \qquad \qquad \text{for } k = 0,1,...,239$$

$$u(k) = 0 \qquad \qquad \text{for } k = 240,241,242,243 \text{ (tail bits)}$$

3.3.3 Convolutional encoder

This block of 244 bits $\{u(0),...,u(243)\}$ is encoded with the 1/2 rate convolutional code defined by the following polynomials:

$$G0 = 1 + D^3 + D^4$$

 $G1 = 1 + D + D^3 + D^4$

resulting in 488 coded bits $\{C(0), C(1), \dots, C(487)\}$ with

$$\begin{split} &C(2k) &= u(k) + u(k-3) + u(k-4) \\ &C(2k+1) &= u(k) + u(k-1) + u(k-3) + u(k-4) \quad \text{for } k = 0,1,...,243 \ ; \ u(k) = 0 \ \text{for } k < 0 \end{split}$$

The code is punctured in such a way that the following 32 coded bits:

```
\{C(11+15j) \text{ for } j = 0,1,...,31\} are not transmitted.
```

The result is a block of 456 coded bits, $\{c(0), c(1), ..., c(455)\}$

3.3.4 Interleaving

The coded bits are reordered and interleaved according to the following rule:

```
\begin{split} i(B,j) &= c(n,k) \, \text{for} \, \, k \, = 0,1,...,455 \\ n &= 0,1,...,N,N+1,... \\ B &= B_0 + 4n + (k \, \text{mod} \, \, 19) + (k \, \, \text{div} \, \, 114) \\ j &= (k \, \, \text{mod} \, \, 19) + 19 \, (k \, \, \text{mod} \, \, 6) \end{split}
```

The result of the interleaving is a distribution of the reordered 114 bit of a given data block, n = N, over 19 blocks, 6 bits equally distributed in each block, in a diagonal way over consecutive blocks.

Or in other words the interleaving is a distribution of the encoded, reordered 456 bits from four given input data blocks, which taken together give n = N, over 22 bursts, 6 bits equally distributed in the first and 22^{nd} bursts, 12 bits distributed in the second and 21st bursts, 18 bits distributed in the third and 20th bursts and 24 bits distributed in the other 16 bursts.

The block of coded data is interleaved "diagonal", where a new block of coded data starts with every fourth burst and is distributed over 22 bursts.

3.3.5 Mapping on a Burst

The mapping is done as specified for TCH/FS in subclause 3.1.4. On bitstealing by a FACCH, see subclause 4.2.5.

3.4 Data channel at full rate, 6.0 kbit/s radio interface rate (4.8 kbit/s services (TCH/F4.8))

The definition of a 6.0 kbit/s radio interface rate data flow for data services is given in 3GPP TS 44.021.

3.4.1 Interface with user unit

The user unit delivers to the encoder a bit stream organized in blocks of 60 information bits (data frames) every 10 ms, $\{d(0),d(1),...,d(59)\}$.

In the case where the user unit delivers to the encoder a bit stream organized in blocks of 240 information bits every 40 ms (e.g. RLP frames), the bits $\{d(0),d(1),...,d(59),d(60),...,d(60+59),d(2*60),...,d(2*60+59),d(3*60),...,d(3*60+59)\}$ shall be treated as four blocks of 60 bits each as described in the remainder of this clause. To ensure end-to-end synchronization of the 240 bit blocks, the resulting block after coding of the first 120 bits $\{d(0),d(1),...,d(60+59)\}$ shall be transmitted in one of the transmission blocks B0, B2, B4 of the channel mapping defined in 3GPP TS 45.002.

3.4.2 Block code

Sixteen bits equal to 0 are added to the 60 information bits, the result being a block of 76 bits, $\{u(0),u(1),...,u(75)\}$, with:

$$\begin{split} u(19k+p) &= d(15k+p) \text{for } k = 0,1,2,3 \text{ and } p = 0,1,...,14; \\ u(19k+p) &= 0 & \text{for } k = 0,1,2,3 \text{ and } p = 15,16,17,18. \end{split}$$

Two such blocks forming a block of 152 bits $\{u'(0),u'(1),...,u'(151)\}$ are dealt with together in the rest of the coding process:

$$u'(k) = u1(k), k = 0,1,...,75 (u1 = 1st block)$$

 $u'(k+76) = u2(k), k = 0,1,...,75 (u2 = 2nd block)$

3.4.3 Convolutional encoder

This block of 152 bits is encoded with the convolutional code of rate 1/3 defined by the following polynomials:

$$G1 = 1 + D + D^{3} + D^{4}$$

$$G2 = 1 + D^{2} + D^{4}$$

$$G3 = 1 + D + D^{2} + D^{3} + D^{4}$$

The result is a block of 3 * 152 = 456 coded bits, $\{c(0),c(1),...,c(455)\}$:

$$\begin{split} c(3k) &= u'(k) + u'(k\text{-}1) + u'(k\text{-}3) + u'(k\text{-}4) \\ c(3k+1) &= u'(k) + u'(k\text{-}2) + u'(k\text{-}4) \\ c(3k+2) &= u'(k) + u'(k\text{-}1) + u'(k\text{-}2) + u'(k\text{-}3) + u'(k\text{-}4) \quad \text{for } k = 0,1,...,151; \\ u'(k) &= 0 \text{ for } k < 0 \end{split}$$

3.4.4 Interleaving

The interleaving is done as specified for the TCH/F9.6 in subclause 3.3.4.

3.4.5 Mapping on a Burst

The mapping is done as specified for the TCH/FS in subclause 3.1.4. On bitstealing for signalling purposes by a FACCH, see subclause 4.2.5.

3.5 Data channel at half rate, 6.0 kbit/s radio interface rate (4.8 kbit/s services (TCH/H4.8))

The definition of a 6.0 kbit/s radio interface rate data flow for data services is given in 3GPP TS 44.021.

3.5.1 Interface with user unit

The user unit delivers to the encoder a bit stream organized in blocks of 60 information bits (data frames) every 10 ms. Four such blocks are dealt with together in the coding process, $\{d(0),d(1),...,d(239)\}$.

For non-transparent services those four blocks shall align with one complete 240-bit RLP frame.

3.5.2 Block code

The block encoding is done as specified for the TCH/F9.6 in subclause 3.3.2.

3.5.3 Convolutional encoder

The convolutional encoding is done as specified for the TCH/F9.6 in subclause 3.3.3.

3.5.4 Interleaving

The interleaving is done as specified for the TCH/F9.6 in subclause 3.3.4.

3.5.5 Mapping on a Burst

The mapping is done as specified for the TCH/FS in subclause 3.1.4. On bitstealing for signalling purposes by a FACCH, see subclause 4.3.5.

3.6 Data channel at full rate, 3.6 kbit/s radio interface rate (2.4 kbit/s and less services (TCH/F2.4))

The definition of a 3.6 kbit/s radio interface rate data flow for data services is given in 3GPP TS 44.021.

3.6.1 Interface with user unit

The user unit delivers to the encoder a bit stream organized in blocks of 36 information bits (data frames) every 10 ms. Two such blocks are dealt with together in the coding process, $\{d(0),d(1),...,d(71)\}$.

3.6.2 Block code

This block of 72 information bits is not encoded, but only increased with four tail bits equal to 0 at the end of the block.

```
u(k) = d(k), \quad k = 0,1,...,71

u(k) = 0 \quad , \quad k = 72,73,74,75 \text{ (tail bits);}
```

3.6.3 Convolutional encoder

This block of 76 bits $\{u(0),u(1),...,u(75)\}$ is encoded with the convolutional code of rate 1/6 defined by the following polynomials:

$$G1 = 1 + D + D^{3} + D^{4}$$

$$G2 = 1 + D^{2} + D^{4}$$

$$G3 = 1 + D + D^{2} + D^{3} + D^{4}$$

$$G1 = 1 + D + D^{3} + D^{4}$$

$$G2 = 1 + D^{2} + D^{4}$$

$$G3 = 1 + D + D^{2} + D^{3} + D^{4}$$

The result is a block of 456 coded bits:

 $\{c(0), c(1), ..., c(455)\}, \text{ defined by}$ c(6k) = c(6k+3) = u(k) + u(k-1) + u(k-3) + u(k-4) c(6k+1) = c(6k+4) = u(k) + u(k-2) + u(k-4) $c(6k+2) = c(6k+5) = u(k) + u(k-1) + u(k-2) + u(k-3) + u(k-4), \text{ for } \quad k = 0,1,...,75;$ u(k) = 0 for k < 0

3.6.4 Interleaving

The interleaving is done as specified for the TCH/FS in subclause 3.1.3.

3.6.5 Mapping on a Burst

The mapping is done as specified for the TCH/FS in subclause 3.1.4.

3.7 Data channel at half rate, 3.6 kbit/s radio interface rate (2.4 kbit/s and less services (TCH/H2.4))

The definition of a 3.6 kbit/s radio interface rate data flow for data services is given in 3GPP TS 44.021.

3.7.1 Interface with user unit

The user unit delivers to the encoder a bit stream organized in blocks of 36 information bits (data frames) every 10 ms. Two such blocks are dealt with together in the coding process, $\{d(0),d(1),...,d(71)\}$.

3.7.2 Block code

The block of 72 information bits is not encoded, but only increased with 4 tail bits equal to 0, at the end of the block.

Two such blocks forming a block of 152 bits $\{u(0),u(1),...,u(151)\}$ are dealt with together in the rest of the coding process.

$$\begin{array}{lll} u(k) & = d1(k), & k = 0,1,...,75 \; (d1 = 1st \; information \; block) \\ \\ u(k+76) & = d2(k), & k = 0,1,...,75 \; (d2 = 2nd \; information \; block) \\ \\ u(k) & = 0, & k = 72,73,74,75,148,149,150,151 \; (tail \; bits) \end{array}$$

3.7.3 Convolutional encoder

The convolutional encoding is done as specified for the TCH/F4.8 in subclause 3.4.3.

3.7.4 Interleaving

The interleaving is done as specified for the TCH/F9.6 in subclause 3.3.4.

3.7.5 Mapping on a Burst

The mapping is done as specified for the TCH/FS in subclause 3.1.4. On bit stealing for signalling purposes by a FACCH, see subclause 4.3.5.

3.8 Data channel at full rate, 14.5 kbit/s radio interface rate (14.4 kbit/s services (TCH/F14.4))

The definition of a 14.5 kbit/s radio interface rate data flow for data services is given in 3GPP TS 44.021.

3.8.1 Interface with user unit

The user unit delivers to the encoder a bit stream organized in blocks of 290 information bits (data frames) every 20 ms.

3.8.2 Block code

The block of 290 information bits is not encoded, but only increased with 4 tail bits equal to 0 at the end of the block.

$$u(k) = d(k) \qquad \qquad \text{for } k = 0,1,...,289$$

$$u(k) = 0 \qquad \qquad \text{for } k = 290,291,292,293 \text{ (tail bits)}$$

3.8.3 Convolutional encoder

This block of 294 bits $\{u(0),...,u(293)\}$ is encoded with the 1/2 rate convolutional code defined by the following polynomials:

$$G0 = 1 + D^3 + D^4$$

 $G1 = 1 + D + D^3 + D^4$

resulting in 588 coded bits $\{C(0), C(1), \dots, C(587)\}$ with

$$\begin{split} &C(2k)=u(k)+u(k\text{-}3)+u(k\text{-}4)\\ &C(2k+1)=u(k)+u(k\text{-}1)+u(k\text{-}3)+u(k\text{-}4) \text{ for } k=0,1,...,293 \text{ ; } u(k)=0 \text{ for } k<0 \end{split}$$

The code is punctured in such a way that the following 132 coded bits:

```
\{C(18*j+1), C(18*j+6), C(18*j+11), C(18*j+15) \text{ for } j=0,1,...,31\} and the bits C(577), C(582), C(584) and C(587) are not transmitted.
```

The result is a block of 456 coded bits, $\{c(0),c(1),...,c(455)\}$

3.8.4 Interleaving

The interleaving is done as specified for the TCH/F9.6 in section 3.3.4.

3.8.5 Mapping on a Burst

The mapping is done as specified for TCH/FS in section 3.1.4. On bitstealing by a FACCH, see section 4.2.5.

3.9 Adaptive multi rate speech channel at full rate (TCH/AFS)

This section describes the coding for the different frame formats used for TCH/AFS. The formats used are (in the order they are described):

SID_UPDATE Used to convey comfort noise parameters during DTX

SID_FIRST Marker to define end of speech, start of DTX

ONSET Used to signal the Codec mode for the first speech frame after DTX

SPEECH Speech frames

RATSCCH Frames used to convey RATSCCH messages

In this chapter, sub chapters 3.9.1 to 3.9.5 describe the channel coding for the different formats listed above.

Common to all the formats is that in-band information is conveyed, the coding for the in-band channel is described in the table below.

Identifier	Received in-band	Encoded in-band data for SID	Encoded in-band data for
(defined in 3GPP TS	data	and RATSCCH frames	speech frames
45.009 [7])	id(1), id(0)	ic(15),, ic(0)	ic(7),, ic(0)
CODEC_MODE_1	00	0101001100001111	00000000
CODEC_MODE_2	01	0011111010111000	10111010
CODEC_MODE_3	10	1000100001100011	01011101
CODEC_MODE_4	11	1110010111010100	11100111

3.9.1 SID_UPDATE

The speech encoder delivers 35 bits of comfort noise parameters. Also delivered is two in-band channels, id0(0,1) and id1(0,1), id0 corresponding to Mode Commands or Mode Requests and id1 to Mode Indication. The general coding is as: the two in-band data channels are coded to 16 bits each, a 14-bit CRC is added to the 35 CN bits which are then coded by a rate 1/4 RSC coder to 212 bits. Finally a 212 bit identification field is added thereby giving a total size of 456 bits. These 456 bits are then block interleaved in the same way as SACCH frames.

3.9.1.1 Coding of in-band data

The two n-band data fields, id0(0,1) and id1(0,1), are encoded, giving ic0(0..15) and ic1(0..15).

The ic0 and ic1 data is moved to the coded data c as:

c(k) = ic0(k)	for $k = 0,1,2,3$
c(k) = ic1(k-4)	for $k = 4, 5, 6, 7$
c(k) = ic0(k-4)	for $k = 8, 9, 10, 11$
c(k) = ic1(k-8)	for k = 12, 13, 14, 15
c(k) = ic0(k-8)	for k = 16, 17, 18, 19
c(k) = ic1(k-12)	for $k = 20, 21, 22, 23$
c(k) = ic0(k-12)	for k = 24, 25, 26, 27
c(k) = ic1(k-16)	for $k = 28, 29, 30, 31$

3.9.1.2 Parity and convolutional encoding for the comfort noise parameters

a) Parity bits:

A 14-bit CRC is used for error-detection. These 14 parity bits are generated by the cyclic generator polynomial: $g(D) = D^{14} + D^{13} + D^5 + D^3 + D^2 + I$ from the 35 comfort noise parameter bits. The encoding of the cyclic code is performed in a systematic form, which means that, in GF(2), the polynomial:

$$d(0)D(48) + d(1)D(47) + ... + d(34)D^{\left(14\right)} + p(0)D^{\left(13\right)} + ... + p(12)D + p(13)$$

where p(0), p(1) ... p(13) are the parity bits, when divided by g(D), yields a remainder equal to $1+D+D^2+D^3+D^4+D^5+D^6+D^7+D^8+D^9+D^{10}+D^{11}+D^{12}+D^{13}$

The information and parity bits are merged:

$$u(k) = d(k)$$
 for $k = 0, 1, ..., 34$

$$u(k) = p(k-35)$$
 for $k = 35, 36, ..., 48$

b) Convolutional encoder

The comfort noise parameters with parity bits (u(0..48)) are encoded with the 1/4 rate

convolutional code defined by the polynomials:

$$G1/G3 = 1 + D + D^3 + D^4 / 1 + D + D^2 + D^3 + D^4$$

$$G2/G3 = 1 + D^2 + D^4 / 1 + D + D^2 + D^3 + D^4$$

$$G3/G3 = 1$$

$$G3/G3 = 1$$

resulting in 212 coded bits, $\{C(0)...C(211)\}\$ defined by:

$$r(k) = u(k) + r(k-1) + r(k-2) + r(k-3) + r(k-4)$$

$$C(4k) = r(k) + r(k-1) + r(k-3) + r(k-4)$$

$$C(4k+1) = r(k)+r(k-2)+r(k-4)$$

$$C(4k+2) = u(k)$$

$$C(4k+3) = u(k)$$
 for $k = 0, 1, ..., 48$; $r(k) = 0$ for $k < 0$

and (for termination of the coder):

$$r(k) = 0$$

$$C(4k) = r(k)+r(k-1) + r(k-3) + r(k-4)$$

$$C(4k+1) = r(k)+r(k-2)+r(k-4)$$

$$C(4k+2) = r(k-1)+r(k-2)+r(k-3)+r(k-4)$$

$$C(4k+3) = r(k-1)+r(k-2)+r(k-3)+r(k-4)$$
 for $k = 49, 50, ..., 52$

This block of data is moved to the coded data (c) as:

$$c(8*k+32) = C(4*k)$$

$$c(8*k+33) = C(4*k+1)$$

$$c(8*k+34) = C(4*k+2)$$

$$c(8*k+35) = C(4*k+3)$$
 for $k = 0, 1, ..., 52$

3.9.1.3 Identification marker

The identification marker, IM(0..211), is constructed by repeating the following 9-bit sequence: { 0, 1, 0, 0, 1, 1, 1, 1, 0 } 24 times and then discarding the last 4 bits. This block of data is moved to the coded data (c) as:

$$c(8*k+36) = IM(4*k)$$
 $c(8*k+37) = IM(4*k+1)$
 $c(8*k+38) = IM(4*k+2)$
 $c(8*k+39) = IM(4*k+3)$ for $k = 0, 1, ..., 52$

3.9.1.4 Interleaving

The interleaving is done as specified for the SACCH in subclause 4.1.4.

3.9.1.5 Mapping on a Burst

The interleaving is done as specified for the SACCH in subclause 4.1.5 with the exception that hl(B) and hu(B) is set to "0".

3.9.2 SID_FIRST

This frame type contains no source data from the speech coder, what is transmitted is the in-band channel (signalling Mode Indication or Mode Command/Mode Request depending on the current frame number) and an identification marker.

3.9.2.1 Coding of in-band data

The in-band data, id(0,1), is encoded to ic(0..15) which is moved to the coded data c as:

$$c(k) = ic(k) \qquad \qquad \text{for } k = 0,1,2,3$$

$$c(k) = ic(k-4) \qquad \qquad \text{for } k = 8, \, 9, \, 10, \, 11$$

$$c(k) = ic(k-8) \qquad \qquad \text{for } k = 16, \, 17, \, 18, \, 19$$

$$c(k) = ic(k-12) \qquad \qquad \text{for } k = 24, \, 25, \, 26, \, 27$$

3.9.2.2 Identification marker

The identification marker, IM(0..211), is constructed by repeating the following 9-bit sequence: { 0, 1, 0, 0, 1, 1, 1, 1, 0 } 24 times and then discarding the last 4 bits. This block of data is moved to the coded data (c) as:

$$\begin{array}{ll} c(8*k+32) & = IM(4*k) \\ \\ c(8*k+33) & = IM(4*k+1) \\ \\ c(8*k+34) & = IM(4*k+2) \\ \\ c(8*k+35) & = IM(4*k+3) & \text{for } k=0,1,...,52 \end{array}$$

3.9.2.3 Interleaving

The interleaving is done as specified for the TCH/FS in subclause 3.1.3.

3.9.2.4 Mapping on a Burst

The mapping is done as specified for the TCH/FS in subclause 3.1.4. The last 4 bursts shall not be transmitted unless the SID_FIRST frame is immediately followed by a speech frame.

3.9.3 ONSET

Onset frames are used to preset the interleaver buffer after a period of no speech activity in DTX mode. This frame type contains no source data from the speech coder, what is transmitted is the in-band channel signalling the Mode Indication for the speech frame following the onset marker.

3.9.3.1 Coding of in-band data

The in-band data, Mode Indication id1(0,1), is encoded to ic1(0..15). This sequence is then repeated 14 times more, and the last 12 bits are discarded (15*16-12=228) giving the sequence ic1(0..227).

This sequence is then moved to c as:

$$c(8*k+4) = ic1(4*k)$$

 $c(8*k+5) = ic1(4*k+1)$
 $c(8*k+6) = ic1(4*k+2)$
 $c(8*k+7) = ic1(4*k+3)$ for $k = 0, 1, ..., 56$

3.9.3.2 Interleaving

The coded bits are reordered and interleaved according to the following rule:

$$\begin{split} i(B,j) &= c(n,k), &\quad \text{for } k = 4,5,6,7,\ 12,13,14,15,20,21,22,23\ ...,455 \\ n &= 0,1,...,N,N+1,... \\ B &= B_0 + 4n + (k\ \text{mod }8) - 4 \\ j &= 2((49k)\ \text{mod }57) + ((k\ \text{mod }8)\ \text{div }4) \end{split}$$

See table 1. The result of the interleaving is a distribution of the defined 228 bits of a given data block of size 456 bits, n = N, over 4 blocks using the odd numbered bits. The even numbered bits of these 4 blocks will be filled by the speech frame for which this frame is the ONSET.

3.9.3.3 Mapping on a Burst

The mapping is given by the rule:

$$e(B,j) = i(B,j)$$
 and $e(B,59+j) = i(B,57+j)$ for $j = 0,1,...,56$

and

$$e(B,57) = hl(B)$$

The bit labelled hl(B) on burst number B is a flag used for indication of control channel signalling. For each ONSET block not stolen for signalling purposes:

```
hl(B) = 0 for the 4 bursts (indicating status of odd numbered bits)
```

For the use of hl(B) when an ONSET is stolen for signalling purposes see subclause 4.2.5.

3.9.4 SPEECH

The speech coder delivers to the channel encoder a sequence of blocks of data. One block of data corresponds to one speech frame and the block length is different in each of the eight channel codec modes. Adjoining each block of data is information of the channel codec mode to use when encoding the block. Also delivered is the in-band data id(0,1) representing Mode Indication or Mode Command/Mode Request depending on the current frame number.

3.9.4.1 Coding of the in-band data

The two input in-band bits (id(0,1)) are coded to eight coded in-band bits (ic(0..7)).

The encoded in-band bits are moved to the coded bits, c, as

$$c(k) = ic(k)$$
 for $k = 0, 1, ..., 7$.

3.9.4.2 Ordering according to subjective importance

The bits delivered by the speech encoder, $\{s(1), s(2), ..., s(K_s)\}$, are rearranged according to subjective importance before channel coding. Tables 7 to 16 define the correct rearrangement for the speech codec modes 12.2 kbit/s, 10.2 kbit/s, 7.95 kbit/s, 7.40 kbit/s, 6.70 kbit/s, 5.90 kbit/s, 5.15 kbit/s and 4.75 kbit/s, respectively. In the tables speech codec parameters are numbered in the order they are delivered by the corresponding speech encoder according to 3GPP TS 26.090 [11] and the rearranged bits are labelled $\{d(0),d(1),...,d(K_{d}-1)\}$, defined in the order of decreasing importance. Index K_d refers to the number of bits delivered by the speech encoder, see below:

Codec mode	Number of speech bits delivered per block (K _d)
TCH/AFS12.2	244
TCH/AFS10.2	204
TCH/AFS7.95	159
TCH/AFS7.4	148
TCH/AFS6.7	134
TCH/AFS5.9	118
TCH/AFS5.15	103
TCH/AFS4.75	95

The ordering algorithm is in pseudo code as:

for
$$j = 0$$
 to $K_{d}-1$ $d(j) := s(table(j)+1);$ where $table(j)$ is read line by line left to right

The rearranged bits are further divided into two different classes to perform unequal error protection for different bits according to subjective importance.

The protection classes are:

- 1a Data protected with the CRC and the convolution code.
- 1b Data protected with the convolution code.

No unprotected bits are used.

The number of class 1 (sum of class 1a and 1b), class 1a and class 1b bits for each codec mode is shown below:

Codec Mode	Number of speech bits delivered per block	Number of class 1 bits per block	Number of class 1a bits per block	Number of class 1b bits per block
TCH/AFS12.2	244	244	81	163
TCH/AFS10.2	204	204	65	139
TCH/AFS7.95	159	159	75	84
TCH/AFS7.4	148	148	61	87
TCH/AFS6.7	134	134	55	79
TCH/AFS5.9	118	118	55	63
TCH/AFS5.15	103	103	49	54
TCH/AFS4.75	95	95	39	56

3.9.4.3 Parity for speech frames

The basic parameters for each codec mode for the first encoding step are shown below:

Codec mode	Speech encoded bits (K _d)	CRC protected bits (K _{d1a})	Number of bits after first encoding step (K _u = K _d + 6)
TCH/AFS12.2	244	81	250
TCH/AFS10.2	204	65	210
TCH/AFS7.95	159	75	165
TCH/AFS7.4	148	61	154
TCH/AFS6.7	134	55	140
TCH/AFS5.9	118	55	124
TCH/AFS5.15	103	49	109
TCH/AFS4.75	95	39	101

A 6-bit CRC is used for error-detection. These 6 parity bits are generated by the cyclic generator polynomial: $g(D) = D^6 + D^5 + D^3 + D^2 + D^1 + I$ from the first K_{d1a} bits of class 1, where K_{d1a} refers to number of bits in protection class 1a as shown above for each codec mode. The encoding of the cyclic code is performed in a systematic form, which means that, in GF(2), the polynomial:

$$d(0)D(K_{d1a}+5) + d(1)D(K_{d1a}+4) + ... + d(K_{d1a}-1)D(6) + p(0)D(5) + ... + p(4)D + p(5)$$

where p(0), p(1) ... p(5) are the parity bits, when divided by g(D), yields a remainder equal to:

$$1 + D + D^2 + D^3 + D^4 + D^5$$
.

The information and parity bits are merged:

u(k) = d(k) for $k = 0, 1, ..., K_{d1a}-1$

 $u(k) = p(k\text{-}K_{d1a}) \hspace{1cm} \text{for } k = K_{d1a},\, K_{d1a}\text{+}1,\, \dots,\, K_{d1a}\text{+}5$

 $u(k) = d(k-6) \qquad \qquad \text{for } k = K_{d1a} + 6, \, K_{d1a} + 7, \, \dots, \, K_{u} - 1$

Thus, after the first encoding step u(k) will be defined by the following contents for each codec mode:

TCH/AFS12.2:

u(k) = d(k) for k = 0, 1, ..., 80

u(k) = p(k-81) for k = 81, 82, ..., 86

u(k) = d(k-6) for k = 87, 88, ..., 249

TCH/AFS10.2:

u(k) = d(k) for k = 0, 1, ..., 64

u(k) = p(k-65) for k = 65, 66, ..., 70

u(k) = d(k-6) for k = 71, 72, ..., 209

TCH/AFS7.95:

u(k) = d(k) for k = 0, 1, ..., 74

u(k) = p(k-75) for k = 75, 76, ..., 80

u(k) = d(k-6) for k = 81, 82, ..., 164

TCH/AFS7.4:

u(k) = d(k) for k = 0, 1, ..., 60

u(k) = p(k-61) for k = 61, 62, ..., 66

u(k) = d(k-6) for k = 67, 68, ..., 153

TCH/AFS6.7:

u(k) = d(k) for k = 0, 1, ..., 54

$$u(k) = p(k-55)$$
 for $k = 55, 56, ..., 60$

$$u(k) = d(k-6)$$
 for $k = 61, 62, ..., 139$

TCH/AFS5.9:

$$u(k) = d(k)$$
 for $k = 0, 1, ..., 54$

$$u(k) = p(k-55)$$
 for $k = 55, 56, ..., 60$

$$u(k) = d(k-6)$$
 for $k = 61, 62, ..., 123$

TCH/AFS5.15:

$$u(k) = d(k)$$
 for $k = 0, 1, ..., 48$

$$u(k) = p(k-49)$$
 for $k = 49, 50, ..., 54$

$$u(k) = d(k-6)$$
 for $k = 55, 56, ..., 108$

TCH/AFS4.75:

$$u(k) = d(k)$$
 for $k = 0, 1, ..., 38$

$$u(k) = p(k-39)$$
 for $k = 39, 40, ..., 44$

$$u(k) = d(k-6)$$
 for $k = 45, 46, ..., 100$

3.9.4.4 Convolutional encoder

The bits from the first encoding step (u(k)) are encoded with the recursive systematic convolutional codes as summarised below. The number of output bits after puncturing is 448 for all codec modes.

Codec mode	Rate	Number of input bits to conv. coder	Number of output bits from conv. coder	Number of punctured bits
TCH/AFS12.2	1/2	250	508	60
TCH/AFS10.2	1/3	210	642	194
TCH/AFS7.95	1/3	165	513	65
TCH/AFS7.4	1/3	154	474	26
TCH/AFS6.7	1/4	140	576	128
TCH/AFS5.9	1/4	124	520	72
TCH/AFS5.15	1/5	109	565	117
TCH/AFS4.75	1/5	101	535	87

Below the coding for each codec mode is specified in detail.

TCH/AFS12.2:

The block of 250 bits $\{u(0)...u(249)\}$ is encoded with the 1/2 rate convolutional code defined by the following polynomials:

$$G0/G0 = 1$$

$$G1/G0 = 1 + D + D^3 + D^4 / 1 + D^3 + D^4$$

resulting in 508 coded bits, $\{C(0)...C(507)\}\$ defined by:

$$r(k) = u(k) + r(k-3) + r(k-4)$$

$$C(2k) = u(k)$$

$$C(2k+1) = r(k)+r(k-1)+r(k-3)+r(k-4)$$
 for $k = 0, 1, ..., 249$; $r(k) = 0$ for $k < 0$

and (for termination of the coder):

$$r(k) = 0$$

$$C(2k) = r(k-3) + r(k-4)$$

$$C(2k+1) = r(k) + r(k-1) + r(k-3) + r(k-4)$$
 for $k = 250, 251, ..., 253$

The code is punctured in such a way that the following 60 coded bits:

```
C(321), C(325), C(329), C(333), C(337), C(341), C(345), C(349), C(353), C(357), C(361), C(363), C(365), C(369), C(373), C(377), C(379), C(381), C(385), C(389), C(393), C(395), C(397), C(401), C(405), C(409), C(411), C(413), C(417), C(421), C(425), C(427), C(429), C(433), C(437), C(441), C(443), C(445), C(449), C(453), C(457), C(459), C(461), C(465), C(469), C(473), C(475), C(477), C(481), C(485), C(489), C(491), C(493), C(495), C(497), C(499), C(501), C(503), C(505) and C(507)
```

are not transmitted. The result is a block of 448 coded and punctured bits, P(0)...P(447) which are appended to the in-band bits in c as

$$c(k+8) = P(k)$$
 for $k = 0, 1, ..., 447$.

TCH/AFS10.2:

The block of 210 bits $\{u(0)...u(209)\}$ is encoded with the 1/3 rate convolutional code defined by polynomials:

$$G1/G3 = 1 + D + D^{3} + D^{4} / 1 + D + D^{2} + D^{3} + D^{4}$$

$$G2/G3 = 1 + D^{2} + D^{4} / 1 + D + D^{2} + D^{3} + D^{4}$$

$$G3/G3 = 1$$

resulting in 642 coded bits, {C(0)... C(641)} defined by:

$$\begin{split} r(k) &= u(k) + r(k\text{-}1) + r(k\text{-}2) + r(k\text{-}3) + r(k\text{-}4) \\ C(3k) &= r(k) + r(k\text{-}1) + r(k\text{-}3) + r(k\text{-}4) \\ C(3k\text{+}1) &= r(k) + r(k\text{-}2) + r(k\text{-}4) \\ C(3k\text{+}2) &= u(k) & \text{for } k = 0, 1, ..., 209 \end{split}$$

and (for termination of the coder):

$$\begin{split} r(k) &= 0 \\ C(3k) &= r(k) + r(k-1) + r(k-3) + r(k-4) \\ C(3k+1) &= r(k) + r(k-2) + r(k-4) \\ C(3k+2) &= r(k-1) + r(k-2) + r(k-3) + r(k-4) \quad \text{for } k = 210, \, 211, \, ..., \, 213 \end{split}$$

The code is punctured in such a way that the following 194 bits:

```
C(1), C(4), C(7), C(10), C(16), C(19), C(22), C(28), C(31), C(34), C(40), C(43), C(46), C(52), C(55), C(58), C(64), C(67), C(70), C(76), C(79), C(82), C(88), C(91), C(94), C(100), C(103), C(106), C(112), C(115), C(118), C(124), C(127), C(130), C(136), C(139), C(142), C(148), C(151), C(154), C(160), C(163), C(166), C(172), C(175), C(178), C(184), C(187), C(190), C(196), C(199), C(202), C(208), C(211), C(214), C(220), C(223), C(226), C(232), C(235), C(238), C(244), C(247), C(250), C(256), C(259), C(262), C(268), C(271), C(274), C(280), C(283), C(286), C(292), C(295), C(298), C(304), C(307), C(310), C(316), C(319), C(322), C(325), C(331), C(334), C(337), C(340), C(343), C(346), C(349), C(352), C(355), C(358), C(361), C(364), C(367), C(370), C(373), C(376), C(379), C(382), C(385), C(388), C(391), C(394), C(397), C(400), C(403), C(406), C(409), C(412), C(415), C(418), C(421), C(424), C(427), C(430), C(433), C(436), C(439), C(442), C(445), C(448), C(451), C(454), C(457), C(460), C(463), C(466), C(469), C(472), C(475), C(478), C(481), C(484), C(487), C(490), C(493), C(496), C(499), C(502), C(505), C(508), C(511), C(517), C(520), C(523), C(556), C(558), C(571), C(577), C(580), C(583), C(586), C(589), C(592), C(595), C(595), C(559), C(
```

C(598), C(601), C(604), C(607), C(609), C(610), C(613), C(616), C(619), C(621), C(622), C(625), C(627), C(628), C(631), C(633), C(634), C(636), C(637), C(639) and C(640)

are not transmitted. The result is a block of 448 coded and punctured bits, P(0)...P(447) which are appended to the in-band bits in c as:

$$c(k+8) = P(k)$$
 for $k = 0, 1, ..., 447$.

TCH/AFS7.95:

The block of 165 bits $\{u(0)...u(164)\}$ is encoded with the 1/3 rate convolutional code defined by the following polynomials:

$$G4/G4 = 1$$

$$G5/G4 = 1 + D + D^4 + D^6/1 + D^2 + D^3 + D^5 + D^6$$

$$G6/G4 = 1 + D + D^2 + D^3 + D^4 + D^6/1 + D^2 + D^3 + D^5 + D^6$$

resulting in 513 coded bits, $\{C(0)...C(512)\}\$ defined by:

$$r(k) = u(k) + r(k-2) + r(k-3) + r(k-5) + r(k-6)$$

$$C(3k) = u(k)$$

$$C(3k+1) = r(k)+r(k-1)+r(k-4)+r(k-6)$$

$$C(3k+2) = r(k)+r(k-1)+r(k-2)+r(k-3)+r(k-4)+r(k-6)$$
 for $k = 0, 1, ..., 164$; $r(k) = 0$ for $k < 0$

and (for termination of the coder):

$$r(k) = 0$$

$$C(3k) = r(k-2) + r(k-3) + r(k-5) + r(k-6)$$

$$C(3k+1) = r(k)+r(k-1)+r(k-4)+r(k-6)$$

$$C(3k+2) = r(k)+r(k-1)+r(k-2)+r(k-3)+r(k-4)+r(k-6)$$
 for $k = 165, 166, ..., 170$

The code is punctured in such a way that the following 65 coded bits:

C(1), C(2), C(4), C(5), C(8), C(22), C(70), C(118), C(166), C(214), C(262), C(310), C(317), C(319), C(325), C(332), C(334), C(341), C(343), C(349), C(356), C(358), C(365), C(367), C(373), C(380), C(382), C(385), C(389), C(391), C(397), C(404), C(406), C(409), C(413), C(415), C(421), C(428), C(430), C(433), C(437), C(439), C(445), C(452), C(454), C(457), C(461), C(463), C(469), C(476), C(478), C(481), C(485), C(487), C(490), C(493), C(500), C(502), C(503), C(505), C(506), C(508), C(509), C(511) and C(512)

are not transmitted. The result is a block of 448 coded and punctured bits, P(0)...P(447) which are appended to the in-band bits in c as

$$c(k+8) = P(k)$$
 for $k = 0, 1, ..., 447$.

TCH/AFS7.4:

The block of 154 bits $\{u(0)...\ u(153)\}$ is encoded with the 1/3 rate convolutional code defined by the following polynomials:

$$G1/G3 = 1 + D + D^3 + D^4 / 1 + D + D^2 + D^3 + D^4$$

$$G2/G3 = 1 + D^2 + D^4 / 1 + D + D^2 + D^3 + D^4$$

$$G3/G3 = 1$$

resulting in 474 coded bits, {C(0)... C(473)} defined by:

$$r(k) = u(k) + r(k-1) + r(k-2) + r(k-3) + r(k-4)$$

$$C(3k) = r(k) + r(k-1) + r(k-3) + r(k-4)$$

$$C(3k+1) = r(k)+r(k-2)+r(k-4)$$

 $C(3k+2) = u(k)$ for $k = 0, 1, ..., 153$

and (for termination of the coder):

$$r(k) = 0$$

$$C(3k) = r(k)+r(k-1) + r(k-3) + r(k-4)$$

$$C(3k+1) = r(k)+r(k-2)+r(k-4)$$

$$C(3k+2) = r(k-1)+r(k-2)+r(k-3)+r(k-4)$$
 for $k = 154, 155, ..., 157$

The code is punctured in such a way that the following 26 bits:

$$C(0)$$
, $C(355)$, $C(361)$, $C(367)$, $C(373)$, $C(379)$, $C(385)$, $C(391)$, $C(397)$, $C(403)$, $C(409)$, $C(415)$, $C(421)$, $C(427)$, $C(433)$, $C(439)$, $C(445)$, $C(451)$, $C(457)$, $C(460)$, $C(463)$, $C(466)$, $C(468)$, $C(469)$, $C(471)$ and $C(472)$

are not transmitted. The result is a block of 448 coded and punctured bits, P(0)...P(447) which are appended to the in-band bits in c as:

$$c(k+8) = P(k)$$
 for $k = 0, 1, ..., 447$.

TCH/AFS6.7:

The block of 140 bits $\{u(0)...u(139)\}$ is encoded with the 1/4 rate convolutional code defined by the following polynomials:

$$G1/G3 = 1 + D + D^3 + D^4 / 1 + D + D^2 + D^3 + D^4$$

 $G2/G3 = 1 + D^2 + D^4 / 1 + D + D^2 + D^3 + D^4$
 $G3/G3 = 1$
 $G3/G3 = 1$

resulting in 576 coded bits, $\{C(0)...C(575)\}\$ defined by:

$$r(k) = u(k) + r(k-1) + r(k-2) + r(k-3) + r(k-4)$$

$$C(4k) = r(k) + r(k-1) + r(k-3) + r(k-4)$$

$$C(4k+1) = r(k)+r(k-2)+r(k-4)$$

$$C(4k+2) = u(k)$$

$$C(4k+3) = u(k)$$
 for $k = 0, 1, ..., 139$; $r(k) = 0$ for $k < 0$

and (for termination of the coder):

$$r(k) = 0$$

$$C(4k) = r(k)+r(k-1) + r(k-3) + r(k-4)$$

$$C(4k+1) = r(k)+r(k-2)+r(k-4)$$

$$C(4k+2) = r(k-1)+r(k-2)+r(k-3)+r(k-4)$$

$$C(4k+3) = r(k-1)+r(k-2)+r(k-3)+r(k-4)$$
 for $k = 140, 141, ..., 143$

The code is punctured in such a way that the following 128 coded bits:

```
C(1), C(3), C(7), C(11), C(15), C(27), C(39), C(55), C(67), C(79), C(95), C(107), C(119), C(135), C(147), C(159), C(175), C(187), C(199), C(215), C(227), C(239), C(255), C(267), C(279), C(287), C(291), C(295), C(299), C(303), C(307), C(311), C(315), C(319), C(323), C(327), C(331), C(335), C(339), C(343), C(347), C(351), C(355), C(359), C(363), C(367), C(369), C(371), C(375), C(377), C(379), C(383), C(385), C(387), C(387), C(387), C(387), C(388), C(388), C(3887), C(38
```

C(391), C(393), C(395), C(399), C(401), C(403), C(407), C(409), C(411), C(415), C(417), C(419), C(423), C(425), C(427), C(431), C(433), C(435), C(439), C(441), C(443), C(447), C(449), C(451), C(455), C(457), C(459), C(463), C(465), C(467), C(471), C(473), C(475), C(479), C(481), C(483), C(487), C(489), C(491), C(495), C(497), C(499), C(503), C(505), C(507), C(511), C(513), C(515), C(519), C(521), C(523), C(527), C(529), C(531), C(535), C(537), C(539), C(543), C(545), C(547), C(549), C(551), C(553), C(555), C(557), C(559), C(561), C(563), C(565), C(567), C(569), C(571), C(573) and C(575)

are not transmitted. The result is a block of 448 coded bits, P(0)...P(447) which are appended to the in-band bits in c as

$$c(k+8) = P(k)$$
 for $k = 0, 1, ..., 447$.

TCH/AFS5.9:

The block of 124 bits $\{u(0)...u(123)\}$ is encoded with the 1/4 rate convolutional code defined by the following polynomials:

$$G4/G6 = 1 + D^{2} + D^{3} + D^{5} + D^{6} / 1 + D + D^{2} + D^{3} + D^{4} + D^{6}$$

$$G5/G6 = 1 + D + D^{4} + D^{6} / 1 + D + D^{2} + D^{3} + D^{4} + D^{6}$$

$$G6/G6 = 1$$

$$G6/G6 = 1$$

resulting in 520 coded bits, $\{C(0)...C(519)\}\$ defined by:

and (for termination of the coder):

The code is punctured in such a way that the following 72 coded bits:

```
C(0), C(1), C(3), C(5), C(7), C(11), C(15), C(31), C(47), C(63), C(79), C(95), C(111), C(127), C(143), C(159), C(175), C(191), C(207), C(223), C(239), C(255), C(271), C(287), C(303), C(319), C(327), C(331), C(335), C(343), C(347), C(351), C(359), C(363), C(367), C(375), C(379), C(383), C(391), C(395), C(399), C(407), C(411), C(415), C(423), C(427), C(431), C(439), C(443), C(447), C(455), C(459), C(463), C(467), C(471), C(475), C(479), C(483), C(487), C(491), C(495), C(499), C(503), C(507), C(509), C(511), C(512), C(513), C(515), C(516), C(517) and C(519)
```

are not transmitted. The result is a block of 448 coded and punctured bits, P(0)...P(447) which are appended to the in-band bits in c as

$$c(8+k) = P(k)$$
 for $k = 0, 1, ..., 447$.

TCH/AFS5.15:

The block of 109 bits $\{u(0)...u(108)\}$ is encoded with the 1/5 rate convolutional code defined by the following polynomials:

$$G1/G3 = 1 + D + D^{3} + D^{4} / 1 + D + D^{2} + D^{3} + D^{4}$$

$$G1/G3 = 1 + D + D^{3} + D^{4} / 1 + D + D^{2} + D^{3} + D^{4}$$

$$G2/G3 = 1 + D^{2} + D^{4} / 1 + D + D^{2} + D^{3} + D^{4}$$

$$G3/G3 = 1$$

$$G3/G3 = 1$$

resulting in 565 coded bits, $\{C(0)...C(564)\}\$ defined by:

$$r(k) = u(k) + r(k-1) + r(k-2) + r(k-3) + r(k-4)$$

$$C(5k) = r(k) + r(k-1) + r(k-3) + r(k-4)$$

$$C(5k+1) = r(k) + r(k-1) + r(k-3) + r(k-4)$$

$$C(5k+2) = r(k)+r(k-2)+r(k-4)$$

$$C(5k+3) = u(k)$$

$$C(5k+4) = u(k)$$

for
$$k = 0, 1, ..., 108$$
; $r(k) = 0$ for $k < 0$

and (for termination of the coder):

$$\begin{split} r(k) &= 0 \\ C(5k) &= r(k) + r(k-1) + r(k-3) + r(k-4) \\ C(5k+1) &= r(k) + r(k-1) + r(k-3) + r(k-4) \\ C(5k+2) &= r(k) + r(k-2) + r(k-4) \\ C(5k+3) &= r(k-1) + r(k-2) + r(k-3) + r(k-4) \\ C(5k+4) &= r(k-1) + r(k-2) + r(k-3) + r(k-4) & \text{for } k = 109, 110, ..., 112 \end{split}$$

The code is punctured in such a way that the following 117 coded bits:

C(0), C(C(4), C(5), C(9), C(10), C(14), C(15), C(20), C(25), C(30), C(35), C(40), C(50), C(60), C(70), C(80), C(90), C(100), C(110), C(120), C(130), C(140), C(150), C(160), C(170), C(180), C(190), C(200), C(210), C(220), C(230), C(240), C(250), C(260), C(270), C(280), C(290), C(300), C(310), C(315), C(320), C(325), C(330), C(334), C(335), C(340), C(344), C(345), C(350), C(354), C(355), C(360), C(364), C(365), C(370), C(374), C(375), C(380), C(384), C(385), C(390), C(394), C(395), C(400), C(404), C(405), C(410), C(414), C(415), C(420), C(424), C(425), C(430), C(434), C(435), C(440), C(444), C(445), C(450), C(454), C(455), C(460), C(464), C(465), C(470), C(474), C(475), C(480), C(484), C(485), C(490), C(494), C(495), C(500), C(504), C(505), C(510), C(514), C(515), C(520), C(524), C(525), C(529), C(530), C(534), C(535), C(539), C(540), C(544), C(545), C(549), C(550), C(554), C(555), C(559), C(560) and C(564)

are not transmitted. The result is a block of 448 coded and punctured bits, P(0)...P(447) which are appended to the in-band bits in c as

$$c(8+k) = P(k)$$
 for $k = 0, 1, ..., 447$.

TCH/AFS4.75:

The block of 101 bits $\{u(0)...\ u(100)\}$ is encoded with the 1/5 rate convolutional code defined by the following polynomials:

$$G4/G6 = 1 + D^2 + D^3 + D^5 + D^6 / 1 + D + D^2 + D^3 + D^4 + D^6$$

$$G4/G6 = 1 + D^{2} + D^{3} + D^{5} + D^{6} / 1 + D + D^{2} + D^{3} + D^{4} + D^{6}$$

$$G5/G6 = 1 + D + D^{4} + D^{6} / 1 + D + D^{2} + D^{3} + D^{4} + D^{6}$$

$$G6/G6 = 1$$

$$G6/G6 = 1$$

resulting in 535 coded bits, $\{C(0)...C(534)\}\$ defined by:

$$r(k) = u(k) + r(k-1) + r(k-2) + r(k-3) + r(k-4) + r(k-6)$$

$$C(5k) = r(k) + r(k-2) + r(k-3) + r(k-5) + r(k-6)$$

$$C(5k+1) = r(k) + r(k-2) + r(k-3) + r(k-5) + r(k-6)$$

$$C(5k+2) = r(k) + r(k-1) + r(k-4) + r(k-6)$$

$$C(5k+3) = u(k)$$

$$C(5k+4) = u(k)$$

for
$$k = 0, 1, ..., 100$$
; $r(k) = 0$ for $k < 0$

and (for termination of the coder):

$$r(k) = 0$$

$$C(5k) = r(k)+r(k-2) + r(k-3) + r(k-5) + r(k-6)$$

$$C(5k+1) = r(k)+r(k-2) + r(k-3) + r(k-5) + r(k-6)$$

$$C(5k+2) = r(k)+r(k-1)+r(k-4)+r(k-6)$$

$$C(5k+3) = r(k-1)+r(k-2)+r(k-3)+r(k-4)+r(k-6)$$

$$C(5k+4) = r(k-1)+r(k-2)+r(k-3)+r(k-4)+r(k-6)$$

for
$$k = 101, 102, ..., 106$$

The code is punctured in such a way that the following 87 coded bits:

```
C(0), C(1), C(2), C(4), C(5), C(7), C(9), C(15), C(25), C(35), C(45), C(55), C(65), C(75), C(85), C(95), C(105), C(115), C(125), C(135), C(145), C(155), C(165), C(175), C(185), C(195), C(205), C(205), C(235), C(245), C(255), C(265), C(275), C(285), C(295), C(305), C(315), C(325), C(335), C(345), C(355), C(365), C(375), C(385), C(395), C(400), C(405), C(410), C(415), C(420), C(425), C(430), C(435), C(440), C(445), C(450), C(455), C(459), C(460), C(465), C(470), C(475), C(479), C(480), C(485), C(490), C(495), C(499), C(500), C(505), C(509), C(510), C(515), C(517), C(519), C(520), C(522), C(524), C(525), C(526), C(527), C(529), C(530), C(531), C(532) and C(534)
```

are not transmitted. The result is a block of 448 coded and punctured bits, P(0)...P(447) which are appended to the inband bits in c as

$$c(8+k) = P(k)$$
 for $k = 0, 1, ..., 447$.

3.9.4.5 Interleaving

The interleaving is done as specified for the TCH/FS in subclause 3.1.3.

3.9.4.6 Mapping on a Burst

The mapping is done as specified for the TCH/FS in subclause 3.1.4.

3.9.5 RATSCCH

The RATSCCH message consists of 35 bits. Also delivered are two in-band channels, id0(0,1) and id1(0,1), id0 corresponding to Mode Commands or Mode Requests and id1 to Mode Indication. The general coding is as: the two inband data channels are coded to 16 bits each, a 14-bit CRC is added to the 35 RATSCCH bits which are then coded by a rate 1/4 RSC coder to 212 bits. Finally a 212 bit identification field is added thereby giving a total size of 456 bits. These 456 bits are then block interleaved in the same way as a normal speech frame.

3.9.5.1 Coding of in-band data

The two n-band data fields, id0(0,1) and id1(0,1), are encoded, giving ic0(0..15) and ic1(0..15). These bits are moved to the coded bits c as:

$$c(k) = ic1(k)$$
 for $k = 0,1, ..., 15$
 $c(k+228) = ic0(k)$ for $k = 0, 1, ..., 15$

3.9.5.2 Parity and convolutional encoding for the RATSCCH message

a) Parity bits:

A 14-bit CRC is used for error-detection. These 14 parity bits are generated by the cyclic generator polynomial: $g(D) = D^{14} + D^{13} + D^5 + D^3 + D^2 + 1$ from the 35 comfort noise parameter bits. The encoding of the cyclic code is performed in a systematic form, which means that, in GF(2), the polynomial:

$$d(0)D(48) + d(1)D(47) + ... + d(34)D(14) + p(0)D(13) + ... + p(12)D + p(13)$$
 where p(0), p(1) ... p(13) are the parity bits, when divided by g(D), yields a remainder equal to 1+ D + D² + D³ + D⁴ + D⁵ + D⁶ + D⁷ + D⁸ + D⁹ + D¹⁰ + D¹¹ + D¹² + D¹³

The information and parity bits are merged:

$$u(k) = d(k)$$
 for $k = 0, 1, ..., 34$
 $u(k) = p(k-35)$ for $k = 35, 36, ..., 48$

b) Convolutional encoder

The comfort noise parameters with parity and tail bits (u(0..48)) are encoded with the 1/4 rate

convolutional code defined by the polynomials:

$$G1/G3 = 1 + D + D^{3} + D^{4} / 1 + D + D^{2} + D^{3} + D^{4}$$

$$G2/G3 = 1 + D^{2} + D^{4} / 1 + D + D^{2} + D^{3} + D^{4}$$

$$G3/G3 = 1$$

$$G3/G3 = 1$$

resulting in 212 coded bits, $\{C(0)...C(211)\}\$ defined by:

$$\begin{array}{ll} r(k) & = u(k) + r(k-1) + r(k-2) + r(k-3) + r(k-4) \\ \\ C(4k) & = r(k) + r(k-1) + r(k-3) + r(k-4) \\ \\ C(4k+1) & = r(k) + r(k-2) + r(k-4) \\ \\ C(4k+2) & = u(k) \\ \\ C(4k+3) & = u(k) \end{array}$$
 for $k=0,1,...,48$; $r(k)=0$ for $k<0$

and (for termination of the coder):

$$r(k) = 0$$

$$C(4k) = r(k)+r(k-1)+r(k-3)+r(k-4)$$

$$C(4k+1) = r(k)+r(k-2)+r(k-4)$$

$$C(4k+2) = r(k-1)+r(k-2)+r(k-3)+r(k-4)$$

$$C(4k+3) = r(k-1)+r(k-2)+r(k-3)+r(k-4)$$
 for $k = 49, 50, ..., 52$

This block of data is moved to the coded data (c) as:

$$c(k+244) = C(k)$$
 for $k = 0, 1, ..., 211$

3.9.5.3 Identification marker

The identification marker, IM(0..211), is constructed by repeating the following 11-bit sequence: $\{1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1\}$ 20 times and then discarding the last 8 bits. This block of data is moved to the coded data (c) as:

$$c(k+16) = IM(k)$$
 for $k = 0, 1, ..., 211$

3.9.5.4 Interleaving

The interleaving is done as specified for the TCH/FS in subclause 3.1.3.

3.9.5.5 Mapping on a Burst

The mapping is done as specified for the TCH/FS in subclause 3.1.4.

3.10 Adaptive multi rate speech channel at half rate (TCH/AHS)

This section describes the coding for the different frame formats used for TCH/AHS. The formats used are (in the order they are described):

SID_UPDATE Used to convey comfort noise parameters during DTX

SID UPDATE INH Used to inhibit the second part of a SID UPDATE frame if there is a speech onset

SID_FIRST_P1 First part of marker to define end of speech, start of DTX

SID_FIRST_P2 Second part of marker to define end of speech, start of DTX

SID_FIRST_INH Used to inhibit the second part of a SID_FIRST_P1 frame if there is a speech onset

ONSET Used to signal the Codec mode for the first speech frame after DTX

SPEECH Speech frames

RATSCCH_MARKER Marker to identify RATSCCH frames

RATSCCH_DATA Frame that conveys the actual RATSCCH message

In this chapter, sub chapters 3.10.1 to 3.10.9 describe the channel coding for the different formats listed above.

Common to all the formats is that in-band information is conveyed, the coding for the in-band channel is described in the table below:

Identifier (defined in 3GPP TS 45.009 [7])	Received in-band data id(1), id(0)	Encoded in-band data for SID and RATSCCH frames ic(15),, ic(0)	Encoded in-band data for speech framesic(3),, ic(0)
CODEC_MODE_1	00	0101001100001111	0000
CODEC_MODE_2	01	0011111010111000	1001
CODEC_MODE_3	10	1000100001100011	0111
CODEC_MODE_4	11	1110010111010100	1110

3.10.1 SID_UPDATE

The speech encoder delivers 35 bits of comfort noise parameters. Also delivered is two in-band channels, id0(0,1) and id1(0,1), id0 corresponding to Mode Commands/Mode Requests and id1 to Mode Indication. The general coding is as: the two in-band data channels are coded to 16 bits each, a 14-bit CRC is added to the 35 CN bits which are then coded by a rate 1/4 RSC coder to 212 bits. Finally a 212 bit identification field is added thereby giving a total size of 456 bits. These 456 bits are block interleaved over 4 bursts.

3.10.1.1 Coding of in-band data

The two in-band data fields, id0(0,1) and id1(0,1), are encoded, giving ic0(0..15) and ic1(0..15).

The ic0 and ic1 data is moved to the coded data c as:

$$c(k) = ic1(k)$$
 for $k = 0,1, ..., 15$
 $c(k) = ic0(k-228)$ for $k = 228, 229, ..., 243$

3.10.1.2 Parity and convolutional encoding for the comfort noise parameters

a) Parity bits:

A 14-bit CRC is used for error-detection. These 14 parity bits are generated by the cyclic generator polynomial: $g(D) = D^{14} + D^{13} + D^5 + D^3 + D^2 + I$ from the 35 comfort noise parameter bits. The encoding of the cyclic code is performed in a systematic form, which means that, in GF(2), the polynomial:

$$d(0)D(48) + d(1)D(47) + ... + d(34)D(14) + p(0)D(13) + ... + p(12)D + p(13)$$
 where p(0), p(1) ... p(13) are the parity bits, when divided by g(D), yields a remainder equal to $1 + D + D^2 + D^3 + D^4 + D^5 + D^6 + D^7 + D^8 + D^9 + D^{10} + D^{11} + D^{12} + D^{13}$

The information and parity bits are merged:

$$u(k) = d(k)$$
 for $k = 0, 1, ..., 34$
 $u(k) = p(k-35)$ for $k = 35, 36, ..., 48$

b) Convolutional encoder

The comfort noise parameters with parity bits (u(0..48)) are encoded with the 1/4 rate

convolutional code defined by the polynomials:

$$G1/G3 = 1 + D + D^{3} + D^{4} / 1 + D + D^{2} + D^{3} + D^{4}$$

$$G2/G3 = 1 + D^{2} + D^{4} / 1 + D + D^{2} + D^{3} + D^{4}$$

$$G3/G3 = 1$$

$$G3/G3 = 1$$

resulting in 212 coded bits, $\{C(0)...C(211)\}\$ defined by:

$$\begin{array}{ll} r(k) & = u(k) + r(k-1) + r(k-2) + r(k-3) + r(k-4) \\ \\ C(4k) & = r(k) + r(k-1) + r(k-3) + r(k-4) \\ \\ C(4k+1) & = r(k) + r(k-2) + r(k-4) \\ \\ C(4k+2) & = u(k) \\ \\ C(4k+3) & = u(k) \end{array}$$
 for k = 0, 1, ..., 48; r(k) = 0 for k<0

and (for termination of the coder):

$$r(k) = 0$$

$$C(4k) = r(k)+r(k-1) + r(k-3) + r(k-4)$$

$$C(4k+1) = r(k)+r(k-2)+r(k-4)$$

$$C(4k+2) = r(k-1)+r(k-2)+r(k-3)+r(k-4)$$

$$C(4k+3) = r(k-1)+r(k-2)+r(k-3)+r(k-4)$$
for k = 49, 50, ..., 52

This block of data is moved to the coded data (c) as:

$$c(k+244) = C(k)$$
 for $k = 0, 1, ..., 211$

3.10.1.3 Identification marker

The identification marker, IM(0..211), is constructed by repeating the following 9-bit sequence: { 1, 0, 1, 1, 0, 0, 0, 0, 1 } 24 times and then discarding the last 4 bits. This block of data is moved to the coded data (c) as:

$$c(k+16) = IM(k)$$
 for $k = 0, 1, ..., 211$

3.10.1.4 Interleaving

The coded bits are reordered and interleaved according to the following rule:

$$\begin{split} i(B,j) &= c(n,k) \, \text{for} \, \, k = 0,1,...,227 \\ &\quad n = 0,1,...,N,N+1,... \\ &\quad B = B0 + 2n + b \\ \\ i(B,j) &= c(n,k+228) \quad \text{for} \, \, k = 0,1,...,227 \\ &\quad n = 0,1,...,N,N+1,... \\ &\quad B = B0 + 2n + ((b+2) \ \text{mod} \ 4) \end{split}$$

The values of b and j in dependence of k are given by table 4.

The result of the interleaving is a distribution of the 456 bits of a given data block, n = N, over 4 blocks using all bits for each block. The block of coded data is interleaved "block rectangular" where a new data block starts every 4th block and is distributed over 4 blocks.

3.10.1.5 Mapping on a Burst

The mapping is given by the rule:

$$e(B,j) = i(B,j)$$
 and $e(B,59+j) = i(B,57+j)$ for $j = 0,1,...,56$ and $e(B,57) = hl(B)$ and $e(B,58) = hu(B)$

The two bits, labelled hl(B) and hu(B) on burst number B are flags used for indication of control channel signalling. For each block not stolen for FACCH signalling purposes:

$$hu(B)$$
 = 0 for all 4 bursts
 $hl(B)$ = 0 for all 4 bursts

For the use of hl(B) and hu(B) when frame is stolen for signalling purposes, see subclause 4.3.5.

3.10.2 SID_UPDATE_INH

This special frame is used when the first 2 burst of a SID_UPDATE frame have been transmitted but the second two bursts cannot be transmitted due to a speech frame. The general coding is as: the in-band data (Note that this must be

the same Mode Indication bits as id1(0,1) for the SID_UPDATE frame that is being inhibited) is encoded, a marker that is the opposite of the SID_UPDATE marker is appended and the data is interleaved in such a way that the odd bits of two bursts are filled.

3.10.2.1 Coding of in-band data

The in-band data, Mode Indication id1(0,1), is encoded to ic1(0..15) which is moved to the coded data c as:

$$c(k) = ic1(k)$$
 for $k = 0,1, ..., 15$

3.10.2.2 Identification marker

The identification marker, IM(0..211), is constructed by repeating the following 9-bit sequence: { 0, 1, 0, 0, 1, 1, 1, 1, 0 } 24 times and then discarding the last 4 bits. This block of data is moved to the coded data (c) as:

$$c(k+16) = IM(k)$$
 for $k = 0, 1, ..., 211$

3.10.2.3 Interleaving

The coded bits are reordered and interleaved according to the following rule:

$$i(B,j) = c(n,k)$$
 for $k = 1,3,5,7,...,227$
$$n = 0,1,...,N,N+1,...$$

$$B = B0 + 2n + b - 2$$

The values of b and j in dependence of k are given by table 4.

The result of the interleaving is a distribution of 114 of the reordered 228 bits of a given data block, n = N, over 2 blocks using the odd numbered bits. The even numbered bits of these 2 blocks will be filled by the speech frame that following immediately after this frame.

3.10.2.4 Mapping on a Burst

The mapping is given by the rule:

$$e(B,j) = i(B,j) \mbox{ and } e(B,59+j) = i(B,57+j) \mbox{ for } j=0,1,...,56$$
 and
$$e(B,57) = hl(B)$$

The bit labelled hl(B) on burst number B is a flag used for indication of control channel signalling. For each SID_FIRST_INH block not stolen for signalling purposes:

hl(B) = 0 for the 2 bursts (indicating status of the odd numbered bits)

For the use of hl(B) when a SID_UPDATE_INH is stolen for signalling purposes, see subclause 4.3.5.

3.10.3 SID_FIRST_P1

This frame type contains no source data from the speech coder. What is generated is the in-band channel and an identification marker. The in-band data id(0,1) represents Mode Indication or Mode Command/Mode Request depending on the current frame number.

3.10.3.1 Coding of in-band data

The in-band data, id(0,1), is encoded to ic(0..15) which is moved to the coded data c as:

$$c(k) = ic(k)$$
 for $k = 0,1, ..., 15$

3.10.3.2 Identification marker

The identification marker, IM(0..211), is constructed by repeating the following 9-bit sequence: { 0, 1, 0, 0, 1, 1, 1, 1, 0 } 24 times and then discarding the last 4 bits. This block of data is moved to the coded data (c) as:

$$c(k+16) = IM(k)$$
 for $k = 0, 1, ..., 211$

3.10.3.3 Interleaving

The interleaving is done as specified for the TCH/HS in subclause 3.2.3.

3.10.3.4 Mapping on a Burst

The mapping is done as specified for the TCH/HS in subclause 3.2.4.

3.10.4 SID FIRST P2

This frame type contains no source data from the speech coder. What is generated is the in-band channel and, derived from that, an identification marker. The in-band data id(0,1) represents Mode Indication or Mode Command/Mode Request depending on the current frame number.

3.10.4.1 Coding of in-band data

The in-band data, id(0,1), is encoded to ic(0..15). This sequence is then repeated 7 times more, and the last 14 bits are discarded (8*16-14=114) giving the sequence ic(0..113).

This sequence is then moved to c as:

$$c(2*k) = ic(k)$$
 for $k = 0, 1, ..., 113$

3.10.4.2 Interleaving

The coded bits are reordered and interleaved according to the following rule:

$$i(B,j) = c(n,k) \qquad \qquad for \qquad \qquad k = 0,2,4,6,...,226$$

$$n = 0,1,...,N,N+1,...$$

$$B = B0 + 2n + b$$

The values of b and j in dependence of k are given by table 4.

The result of the interleaving is a distribution of 114 of the reordered 228 bits of a given data block, n = N, over 2 blocks using the even numbered bits. The odd numbered bits of these 2 blocks have already been filled by the SID_FIRST_P1 frame.

3.10.4.3 Mapping on a Burst

The mapping is given by the rule:

$$e(B,j) = i(B,j) \mbox{ and } e(B,59+j) = i(B,57+j) \mbox{ for } j=0,1,...,56$$
 and
$$e(B,58) = hu(B)$$

The bit labelled hu(B) on burst number B is a flag used for indication of control channel signalling. For each SID_FIRST_P2 block not stolen for signalling purposes:

hu(B) = 0 for the 2 bursts (indicating status of the even numbered bits)

For the use of hu(B) when a SID_FIRST_P2 is stolen for signalling purposes, see subclause 4.3.5.

3.10.5 SID_FIRST_INH

This special frame is used when the first 2 burst of a SID_FIRST_P1 frame have been transmitted but the second two bursts cannot be transmitted due to a SPEECH frame. The general coding is as: the in-band data (Note that this must be the same data as for the SID_FIRST_P1 frame that is being inhibited) is encoded, a marker that is the opposite of the SID_FIRST_P1 marker is appended and the data is interleaved in such a way that the odd bits of two bursts are filled.

3.10.5.1 Coding of in-band data

The coding of the in-band data is done as specified for the SID FIRST P1 frame in subclause 3.10.3.1.

3.10.5.2 Identification marker

The identification marker, IM(0..211), is constructed by repeating the following 9-bit sequence: { 1, 0, 1, 1, 0, 0, 0, 0, 1 } 24 times and then discarding the last 4 bits. This block of data is moved to the coded data (c) as:

$$c(k+16) = IM(k)$$
 for $k = 0, 1, ..., 211$

3.10.5.3 Interleaving

The interleaving is done as specified for the SID_UPDATE_INH in subclause 3.10.2.3.

3.10.5.4 Mapping on a Burst

The mapping is done as specified for the SID_UPDATE_INH in subclause 3.10.2.4.

3.10.6 ONSET

Onset frames are used to preset the interleaver buffer after a period of no speech activity in DTX mode. This frame type contains no source data from the speech coder. What is transmitted is the in-band channel signalling the Mode Indication for the speech frame following the onset marker.

3.10.6.1 Coding of in-band data

The in-band data, Mode Indication id1(0,1), will be encoded to ic1(0..15). This sequence is then repeated 7 times more, and the last 14 bits are discarded (8*16-14=114) giving the sequence ic1(0..113).

This sequence is then moved to c as:

$$c(2*k+1) = ic1(k)$$
 for $k = 0, 1, ..., 113$

3.10.6.2 Interleaving

The interleaving is done as specified for the SID_UPDATE_INH in subclause 3.10.2.3.

3.10.6.3 Mapping on a Burst

The mapping is done as specified for the SID UPDATE INH in subclause 3.10.2.4.

3.10.7 SPEECH

The speech coder delivers to the channel encoder a sequence of blocks of data. One block of data corresponds to one speech frame and the block length is different in each of the six channel codec modes. Adjoining each block of data is information of the channel codec mode to use when encoding the block Also delivered is the in-band data id(0,1) representing Mode Indication or Mode Command/Mode Request depending on the current frame number.

3.10.7.1 Coding of the in-band data

The two bits to be in-band encoded, id(0,1), are encoded into ic(0...3).

The encoded in-band data (4 bits) are then moved to c(k) as:

$$c(k) = ic(k)$$
 for $k = 0, 1, ..., 3$

3.10.7.2 Ordering according to subjective importance

The bits delivered by the speech encoder, $\{s(1),s(2),...,s(K_s)\}$, are rearranged according to subjective importance before channel coding, Tables 9, 10, 11, 12, 13, 14 define the correct rearrangement for the speech codec modes 7.95 kbit/s, 7.40 kbit/s, 6.70 kbit/s, 5.90 kbit/s, 5.15 kbit/s and 4.75 kbit/s, respectively. In the tables speech codec parameters are numbered in the order they are delivered by the corresponding speech encoder according to 3GPP TS 26.090 [11] and the rearranged bits are labelled $\{d(0),d(1),...,d(K_d-1)\}$, defined in the order of decreasing importance. Index K_d refers to the number of bits delivered by the speech encoder, see below:

Codec mode	Number of speech bits delivered per block (K _d)
TCH/AHS7.95	159
TCH/AHS7.4	148
TCH/AHS6.7	134
TCH/AHS5.9	118
TCH/AHS5.15	103
TCH/AHS4.75	95

The ordering algorithm is in pseudo code as:

for
$$j = 0$$
 to K_{d-1} $d(j) := s(table(j)+1)$; where table(j) is read line by line left to right

The rearranged bits are further divided into three different classes to perform unequal error protection for different bits according to subjective importance.

The protection classes are:

- 1a Data protected with the CRC and the convolution code.
- 1b Data protected with the convolution code.
- 2 Data sent without protection.

The number of class 1 (sum of class 1a and 1b), class 1a, class 1b and class 2 bits for each codec mode is shown below:

Codec mode	Number of speech bits delivered per block	Number of class 1 bits per block	Number of class 1a bits per block	Number of class 1b bits per block	Number of class 2 bits per block
TCH/AHS7.95	159	123	67	56	36
TCH/AHS7.4	148	120	61	59	28
TCH/AHS6.7	134	110	55	55	24
TCH/AHS5.9	118	102	55	47	16
TCH/AHS5.15	103	91	49	42	12
TCH/AHS4.75	95	83	39	44	12

3.10.7.3 Parity for speech frames

The basic parameters for each codec mode for the first encoding step are shown below:

Mode number	Number of class 1 bits (K _{d1})	CRC protected bits (K _{d1a})	Number of output bits from first encoding step $(K_{u=} K_{d1} + 6)$
TCH/AHS7.95	123	67	129
TCH/AHS7.4	120	61	126
TCH/AHS6.7	110	55	116
TCH/AHS5.9	102	55	108
TCH/AHS5.15	91	49	97
TCH/AHS4.75	83	39	89

A 6-bit CRC is used for error-detection. These 6 parity bits are generated by the cyclic generator polynomial: $g(D) = D^6 + D^5 + D^3 + D^2 + D^1 + I$ from the first K_{d1a} bits of class 1, where K_{d1a} refers to number of bits in protection class 1a. The value of K_{d1a} for each codec mode is shown above.

The encoding of the cyclic code is performed in a systematic form, which means that, in GF(2), the polynomial: $d(0)D(K_{d1a}+5) + d(1)D(K_{d1a}+4) + ... + d(K_{d1a}-1)D(6) + p(0)D(5) + ... + p(4)D + p(5)$

where p(0), p(1) ... p(5) are the parity bits, when divided by g(D), yields a remainder equal to:

$$1+D+D^2+D^3+D^4+D^5$$
.

The information and parity bits are merged:

$$\begin{array}{ll} u(k) = d(k) & \qquad & \text{for } k = 0,\,1,\,...,\,K_{d1a}\text{-}1 \\ \\ u(k) = p(k\text{-}K_{d1a}) & \qquad & \text{for } k = K_{d1a},\,K_{d1a}\text{+}1,\,...,\,K_{d1a}\text{+}5 \end{array}$$

$$u(k) = d(k-6)$$
 for $k = K_{d1a} + 6, K_{d1a} + 7, ..., K_{u}-1$

Thus, after the first encoding step u(k) will be defined by the following contents for each codec mode:

TCH/AHS7.95:

$$u(k) = d(k)$$
 for $k = 0, 1, ..., 66$ $u(k) = p(k-67)$ for $k = 67, 68, ..., 72$

$$u(k) = d(k-6)$$
 for $k = 73, 74, ..., 128$

TCH/AHS7.4:

$$u(k) = d(k)$$
 for $k = 0, 1, ..., 60$

$$u(k) = p(k-61)$$
 for $k = 61, 62, ..., 66$

$$u(k) = d(k-6)$$
 for $k = 67, 68, ..., 125$

TCH/AHS6.7:

$$u(k) = d(k)$$
 for $k = 0, 1, ..., 54$

$$u(k) = p(k-55)$$
 for $k = 55, 56, ..., 60$

$$u(k) = d(k-6)$$
 for $k = 61, 62, ..., 115$

TCH/AHS5.9:

$$u(k) = d(k)$$
 for $k = 0, 1, ..., 54$

$$u(k) = p(k-55)$$
 for $k = 55, 56, ..., 60$

$$u(k) = d(k-6)$$
 for $k = 61, 62, ..., 107$

TCH/AHS5.15:

$$u(k) = d(k)$$
 for $k = 0, 1, ..., 48$

$$u(k) = p(k-49)$$
 for $k = 49, 50, ..., 54$

$$u(k) = d(k-6)$$
 for $k = 55, 56, ..., 96$

TCH/AHS4.75:

$$u(k) = d(k)$$
 for $k = 0, 1, ..., 38$

$$u(k) = p(k-39)$$
 for $k = 39, 40, ..., 44$

$$u(k) = d(k-6)$$
 for $k = 45, 46, ..., 88$

3.10.7.4 Convolutional encoder

The bits from the first encoding step (u(k)) are encoded with the recursive systematic convolution code as summarised below:

Codec mode	Number of input bits to conv. code	Rate	Number of output bits from conv. code	Number of punctured bits
TCH/AHS7.95	129	1/2	266	78
TCH/AHS7.4	126	1/2	260	64
TCH/AHS6.7	116	1/2	240	40
TCH/AHS5.9	108	1/2	224	16
TCH/AHS5.15	97	1/3	303	91
TCH/AHS4.75	89	1/3	285	73

Below the coding for each codec mode is specified in detail.

TCH/AHS7.95:

The block of 129 bits $\{u(0)...u(128)\}$ is encoded with the 1/2 rate convolutional code defined by the following polynomials:

$$G0/G0 = 1$$

$$G1/G0 = 1 + D + D^3 + D^4 / 1 + D^3 + D^4$$

resulting in 266 coded bits, $\{C(0)...C(265)\}\$ defined by:

$$r(k) = u(k) + r(k-3) + r(k-4)$$

$$C(2k) = u(k)$$

$$C(2k+1) = r(k)+r(k-1)+r(k-3)+r(k-4)$$
 for $k = 0, 1, ..., 128$; $r(k) = 0$ for $k < 0$

and (for termination of the coder):

$$r(k) = 0$$

$$C(2k) = r(k-3) + r(k-4)$$

$$C(2k+1) = r(k)+r(k-1)+r(k-3)+r(k-4)$$
 for $k = 129, 130 ..., 132$

The code is punctured in such a way that the following 78 coded bits:

```
C(1), C(3), C(5), C(7), C(11), C(15), C(19), C(23), C(27), C(31), C(35), C(43), C(47), C(51), C(55), C(59), C(63), C(67), C(71), C(79), C(83), C(87), C(91), C(95), C(99), C(103), C(107), C(115), C(119), C(123), C(127), C(131), C(135), C(139), C(143), C(151), C(155), C(159), C(163), C(167), C(171), C(175), C(177), C(179), C(183), C(185), C(187), C(191), C(193), C(195), C(197), C(199), C(203), C(205), C(207), C(211), C(213), C(215), C(219), C(221), C(223), C(227), C(229), C(231), C(233), C(235), C(239), C(241), C(243), C(247), C(249), C(251), C(255), C(257), C(259), C(261), C(263) and C(265)
```

are not transmitted. The result is a block of 188 coded and punctured bits, P(0)...P(187) which are appended to the in-band bits in c as

$$c(k+4) = P(k)$$
 for $k = 0, 1, ..., 187$.

Finally the 36 class 2 bits are appended to c

$$c(192+k) = d(123+k)$$
 for $k = 0, 1, ..., 35$.

TCH/AHS7.4:

The block of 126 bits $\{u(0)...u(125)\}$ is encoded with the 1/2 rate convolutional code defined by the following polynomials:

$$G0/G0 = 1$$

$$G1/G0 = 1 + D + D^3 + D^4 / 1 + D^3 + D^4$$

resulting in 260 coded bits, $\{C(0)...C(259)\}\$ defined by:

$$r(k) = u(k) + r(k-3) + r(k-4)$$

$$C(2k) = u(k)$$

$$C(2k+1) = r(k)+r(k-1)+r(k-3)+r(k-4)$$
 for $k = 0, 1, ..., 125$; $r(k) = 0$ for $k < 0$

and (for termination of the coder):

$$r(k) = 0$$

$$C(2k) = r(k-3) + r(k-4)$$

$$C(2k+1) = r(k)+r(k-1)+r(k-3)+r(k-4)$$
 for $k = 126, 127 ..., 129$

The code is punctured in such a way that the following 64 coded bits:

 $C(1), C(3), C(7), C(11), C(19), C(23), C(27), C(35), C(39), C(43), C(51), C(55), C(59), C(67), C(71), C(75), \\ C(83), C(87), C(91), C(99), C(103), C(107), C(115), C(119), C(123), C(131), C(135), C(139), C(143), \\ C(147), C(151), C(155), C(159), C(163), C(167), C(171), C(175), C(179), C(183), C(187), C(191), C(195), \\ C(199), C(203), C(207), C(211), C(215), C(219), C(221), C(223), C(227), C(229), C(231), C(235), C(237), \\ C(239), C(243), C(245), C(247), C(251), C(253), C(255), C(257) \text{ and } C(259)$

are not transmitted. The result is a block of 196 coded and punctured bits, P(0)...P(195) which are appended to the in-band bits in c as

$$c(k+4) = P(k)$$
 for $k = 0, 1, ..., 195$.

Finally the 28 class 2 bits are appended to c

$$c(200+k) = d(120+k)$$
 for $k = 0, 1, ..., 27$.

TCH/AHS6.7:

The block of 116 bits $\{u(0)...u(115)\}$ is encoded with the 1/2 rate convolutional code defined by the following polynomials:

$$G0/G0 = 1$$

$$G1/G0 = 1 + D + D^3 + D^4 / 1 + D^3 + D^4$$

resulting in 240 coded bits, $\{C(0)...C(239)\}\$ defined by:

$$r(k) = u(k) + r(k-3) + r(k-4)$$

$$C(2k) = u(k)$$

$$C(2k+1) = r(k)+r(k-1)+r(k-3)+r(k-4)$$
 for $k = 0, 1, ..., 115$; $r(k) = 0$ for $k < 0$

and (for termination of the coder):

$$r(k) = 0$$

$$C(2k) = r(k-3) + r(k-4)$$

$$C(2k+1) = r(k)+r(k-1)+r(k-3)+r(k-4)$$
 for $k = 116, 117 ..., 119$

The code is punctured in such a way that the following 40 coded bits:

$$C(1), C(3), C(9), C(19), C(29), C(39), C(49), C(59), C(69), C(79), C(89), C(99), C(109), C(119), C(129), \\ C(139), C(149), C(159), C(167), C(169), C(177), C(179), C(187), C(189), C(197), C(199), C(203), C(207), \\ C(209), C(213), C(217), C(219), C(223), C(227), C(229), C(231), C(233), C(235), C(237) and C(239)$$

are not transmitted. The result is a block of 200 coded and punctured bits, P(0)...P(199) which are appended to the in-band bits in c as

$$c(k+4) = P(k)$$
 for $k = 0, 1, ..., 199$.

Finally the 24 class 2 bits are appended to c

$$c(204+k) = d(110+k)$$
 for $k = 0, 1, ..., 23$.

TCH/AHS5.9:

The block of 108 bits $\{u(0)...u(107)\}$ is encoded with the 1/2 rate convolutional code defined by the following polynomials:

$$G0/G0 = 1$$

$$G1/G0 = 1 + D + D^3 + D^4 / 1 + D^3 + D^4$$

resulting in 224 coded bits, $\{C(0)...C(223)\}\$ defined by:

$$r(k) = u(k) + r(k-3) + r(k-4)$$

$$C(2k) = u(k)$$

$$C(2k+1) = r(k)+r(k-1)+r(k-3)+r(k-4)$$
 for $k = 0, 1, ..., 107$; $r(k) = 0$ for $k < 0$

and (for termination of the coder):

$$r(k) = 0$$

$$C(2k) = r(k-3) + r(k-4)$$

$$C(2k+1) = r(k)+r(k-1)+r(k-3)+r(k-4)$$
 for $k = 108, 109 ..., 111$

The code is punctured in such a way that the following 16 coded bits:

$$C(1)$$
, $C(15)$, $C(71)$, $C(127)$, $C(139)$, $C(151)$, $C(163)$, $C(175)$, $C(187)$, $C(195)$, $C(203)$, $C(211)$, $C(215)$, $C(219)$, $C(221)$ and $C(223)$

are not transmitted. The result is a block of 208 coded and punctured bits, P(0)...P(207) which are appended to the in-band bits in c as

$$c(k+4) = P(k)$$
 for $k = 0, 1, ..., 207$.

Finally the 16 class 2 bits are appended to c

$$c(212+k) = d(102+k)$$
 for $k = 0, 1, ..., 15$.

TCH/AHS5.15:

The block of 97 bits $\{u(0)...u(96)\}$ is encoded with the 1/3 rate convolutional code defined by the following polynomials:

$$G1/G3 = 1 + D + D^3 + D^4 / 1 + D + D^2 + D^3 + D^4$$

$$G2/G3 = 1 + D^2 + D^4 / 1 + D + D^2 + D^3 + D^4$$

$$G3/G3 = 1$$

resulting in 303 coded bits, $\{C(0)...C(302)\}\$ defined by:

$$r(k) = u(k) + r(k-1) + r(k-2) + r(k-3) + r(k-4)$$

$$C(3k) = r(k) + r(k-1) + r(k-3) + r(k-4)$$

$$C(3k+1) = r(k)+r(k-2)+r(k-4)$$

$$C(3k+2) = u(k)$$
 for $k = 0, 1, ..., 96$

and (for termination of the coder):

$$r(k) = 0$$

$$C(3k) = r(k)+r(k-1) + r(k-3) + r(k-4)$$

$$C(3k+1) = r(k)+r(k-2)+r(k-4)$$

$$C(3k+2) = r(k-1)+r(k-2)+r(k-3)+r(k-4)$$
 for $k = 97, 98, ..., 100$

The code is punctured in such a way that the following 91 coded bits:

are not transmitted. The result is a block of 212 coded and punctured bits, P(0)...P(211) which are appended to the in-band bits in c as

$$c(k+4) = P(k)$$
 for $k = 0, 1, ..., 211$.

Finally the 12 class 2 bits are appended to c

$$c(216+k) = d(91+k)$$
 for $k = 0, 1, ..., 11$.

TCH/AHS4.75:

The block of 89 bits $\{u(0)...u(88)\}$ is encoded with the 1/3 rate convolutional code defined by the following polynomials:

$$G4/G4 = 1$$

$$G5/G4 = 1 + D + D^4 + D^6/1 + D^2 + D^3 + D^5 + D^6$$

$$G6/G4 = 1 + D + D^2 + D^3 + D^4 + D^6/1 + D^2 + D^3 + D^5 + D^6$$

resulting in 285 coded bits, $\{C(0)...C(284)\}\$ defined by:

$$r(k) = u(k) + r(k-2) + r(k-3) + r(k-5) + r(k-6)$$

$$C(3k) = u(k)$$

$$C(3k+1) = r(k)+r(k-1)+r(k-4)+r(k-6)$$

$$C(3k+2) = r(k)+r(k-1)+r(k-2)+r(k-3)+r(k-4)+r(k-6)$$
 for $k = 0, 1, ..., 88$; $r(k) = 0$ for $k < 0$

and (for termination of the coder):

$$r(k) = 0$$

$$C(3k) = r(k-2) + r(k-3) + r(k-5) + r(k-6)$$

$$C(3k+1) = r(k)+r(k-1)+r(k-4)+r(k-6)$$

$$C(3k+2) = r(k)+r(k-1)+r(k-2)+r(k-3)+r(k-4)+r(k-6)$$
 for $k = 89, 90, ..., 94$

The code is punctured in such a way that the following 73 coded bits:

 $C(1), C(2), C(4), C(5), C(7), C(8), C(10), C(13), C(16), C(22), C(28), C(34), C(40), C(46), C(52), C(58), \\ C(64), C(70), C(76), C(82), C(88), C(94), C(100), C(106), C(112), C(118), C(124), C(130), C(136), C(142), \\ C(148), C(151), C(154), C(160), C(163), C(166), C(172), C(175), C(178), C(184), C(187), C(190), C(196), \\ C(199), C(202), C(208), C(211), C(214), C(220), C(223), C(226), C(232), C(235), C(238), C(241), C(244), \\ C(247), C(250), C(253), C(256), C(259), C(262), C(265), C(268), C(271), C(274), C(275), C(277), C(278), \\ C(280), C(281), C(283) \text{ and } C(284)$

are not transmitted. The result is a block of 212 coded and punctured bits, P(0)...P(211) which are appended to the in-band bits in c as

$$c(k+4) = P(k)$$
 for $k = 0, 1, ..., 211$.

Finally the 12 class 2 bits are appended to c

$$c(216+k) = d(83+k)$$
 for $k = 0, 1, ..., 11$.

3.10.7.5 Interleaving

The interleaving is done as specified for the TCH/HS in subclause 3.2.3.

3.10.7.6 Mapping on a Burst

The mapping is done as specified for the TCH/HS in subclause 3.2.4.

3.10.8 RATSCCH_MARKER

This frame type contains the in-band channel and an identification marker. The in-band data id(0,1) represents Mode Indication or Mode Command/Mode Request depending on the current frame number.

3.10.8.1 Coding of in-band data

The in-band data, ic(0,1), is encoded to ic(0..15) which is moved to the coded data c as:

$$c(k) = ic(k)$$
 for $k = 0,1,...,15$

3.10.8.2 Identification marker

The identification marker, IM(0..211), is constructed by repeating the following 11-bit sequence: { 1, 0, 0, 1, 0, 0, 0, 1 } 20 times and then discarding the last 8 bits. This block of data is moved to the coded data (c) as:

$$c(k+16) = IM(k)$$
 for $k = 0, 1, ..., 211$

3.10.8.3 Interleaving

The interleaving is done as specified for the TCH/HS in subclause 3.2.3.

3.10.8.4 Mapping on a Burst

The mapping is done as specified for the TCH/HS in subclause 3.2.4.

3.10.9 RATSCCH DATA

This frame contains the RATSCCH data and an inband channel. The RATSCCH data consists of 35 bits. The in-band data id(0,1) represents Mode Indication or Mode Command/Mode Request depending on the current frame number.

3.10.9.1 Coding of in-band data

The in-band data, ic(0,1), is encoded to ic(0..15) which is moved to the coded data c as:

$$c(k) = ic(k)$$
 for $k = 0,1, ..., 15$

3.10.9.2 Parity and convolutional encoding for the RATSCCH message

a) Parity bits:

A 14-bit CRC is used for error-detection. These 14 parity bits are generated by the cyclic generator polynomial: $g(D) = D^{14} + D^{13} + D^5 + D^3 + D^2 + I$ from the 35 comfort noise parameter bits. The encoding of the cyclic code is performed in a systematic form, which means that, in GF(2), the polynomial:

$$\begin{aligned} &d(0)D(48) + d(1)D(47) + ... + d(34)D^{\left(14\right)} + p(0)D^{\left(13\right)} + ... + p(12)D + p(13) \\ &\text{where } p(0), \, p(1) \, ... \, p(13) \text{ are the parity bits, when divided by } g(D), \, \text{yields a remainder equal to } 1 + D + D^2 \\ &+ D^3 + D^4 + D^5 + D^6 + D^7 + D^8 + D^9 + D^{10} + D^{11} + D^{12} + D^{13} \end{aligned}$$

The information and parity bits are merged:

$$u(k) = d(k)$$
 for $k = 0, 1, ..., 34$ $u(k) = p(k-35)$ for $k = 35, 36, ..., 48$

b) Convolutional encoder

The comfort noise parameters with parity and tail bits (u(0..48)) are encoded with the 1/4 rate convolutional code defined by the polynomials:

$$G1/G3 = 1 + D + D^{3} + D^{4} / 1 + D + D^{2} + D^{3} + D^{4}$$

$$G2/G3 = 1 + D^{2} + D^{4} / 1 + D + D^{2} + D^{3} + D^{4}$$

$$G3/G3 = 1$$

$$G3/G3 = 1$$

resulting in 212 coded bits, $\{C(0)...C(211)\}\$ defined by:

$$\begin{split} r(k) &= u(k) + r(k\text{-}1) + r(k\text{-}2) + r(k\text{-}3) + r(k\text{-}4) \\ C(4k) &= r(k) + r(k\text{-}1) + r(k\text{-}3) + r(k\text{-}4) \\ C(4k+1) &= r(k) + r(k\text{-}2) + r(k\text{-}4) \\ C(4k+2) &= u(k) \\ C(4k+3) &= u(k) & \text{for } k = 0, 1, ..., 48; r(k) = 0 \text{ for } k < 0 \end{split}$$

and (for termination of the coder):

$$\begin{split} r(k) &= 0 \\ C(4k) &= r(k) + r(k-1) + r(k-3) + r(k-4) \\ C(4k+1) &= r(k) + r(k-2) + r(k-4) \\ C(4k+2) &= r(k-1) + r(k-2) + r(k-3) + r(k-4) \\ C(4k+3) &= r(k-1) + r(k-2) + r(k-3) + r(k-4) & \text{for } k = 49, 50, ..., 52 \end{split}$$

This block of data is moved to the coded data (c) as:

$$c(k+16) = C(k)$$
 for $k = 0, 1, ..., 211$

3.10.9.3 Interleaving

The interleaving is done as specified for the TCH/HS in subclause 3.2.3.

3.10.9.4 Mapping on a Burst

The mapping is done as specified for the TCH/HS in subclause 3.2.4.

3.11 Data channel for ECSD at full rate, 29.0 kbit/s radio interface rate (28.8 kbit/s services (E-TCH/F28.8))

The definition of a 28.8 kbit/s radio interface rate data flow for data services is given in 3GPP TS 44.021.

3.11.1 Interface with user unit

The user unit delivers to the encoder a bit stream organized in blocks of 580 information bits (data frames) every 20 ms.

3.11.2 Block code

3.11.2.1 Repetition bits

To match to RS alphabet 4 extra data bits are added to the end of each block of 580 bits: d(k)=0, k=580,...583.

3.11.2.2 Reed Solomon encoder

The block of 584 information bits is encoded by shortened systematic Reed Solomon (RS) code over Galois field $GF(2^8)$. The Galois field $GF(2^8)$ is built as an extension of GF(2). The characteristic of $GF(2^8)$ is equal to 2.

The code used is systematic RS₈ (85,73), which is shortened systematic RS₈(255,243) code over GF(2^8) with the primitive polynomial $p(x)=x^8+x^4+x^3+x^2+1$. The primitive element a is the root of the primitive polynomial, i.e.

$$a^8 = a^4 + a^3 + a^2 + 1$$

Generator polynomial for RS₈(255,243) code is:

 $g(x) = \prod_{i=0}^{11} (x - a^{i+122})$; that results in symmetrical form for the generator polynomial with coefficients given in decimal notation

$$g(x) = x^{12} + 18x^{11} + 157x^{10} + 162x^9 + 134x^8 + 157x^7 + 253x^6 + 157x^5 + 134x^4 + 162x^3 + 157x^2 + 18x + 118x^2 + 1$$

where binary presentation of polynomial coefficients in GF(256) is $\{a^7, a^6, a^5, a^4, a^3, a^2, a, 1\}$.

Specifically, decimal, power and polynomial presentations for the generator polynomial coefficients are the following:

$$x^{12}: 1$$

$$x^{11}: 18 = a^{224} = a^4 + a$$

$$x^{10}: 157 = a^{32} = a^7 + a^4 + a^3 + a^2 + 1$$

$$x^{9}: 162 = a^{209} = a^7 + a^5 + a$$

$$x^{8}: 134 = a^{99} = a^7 + a^2 + a$$

$$x^{7}: 157 = a^{32} = a^7 + a^4 + a^3 + a^2 + 1$$

$$x^{6}: 253 = a^{80} = a^7 + a^6 + a^5 + a^4 + a^3 + a^2 + 1$$

$$x^{5}: 157 = a^{32} = a^7 + a^4 + a^3 + a^2 + 1$$

$$x^4$$
: $134 = a^{99} = a^7 + a^2 + a$

$$x^3$$
: $162 = a^{209} = a^7 + a^5 + a^8$

$$x^2$$
: 157 = a^{32} = $a^7 + a^4 + a^3 + a^2 + 1$

$$x^{1}$$
: $18 = a^{224} = a^{4} + a$

$$x^0$$
: $1 = a^{255} = 1$

The RS encoding is performed in the following three steps:

a) Bit to symbol conversion

The information bits $\{d(0),d(1),...,d(583)\}$ are converted into 73 information 8-bit symbols $\{D(0),...,D(72)\}$ as the following:

$$D(k) = 128d(8k+7) + 64d(8k+6) + 32d(8k+5) + 16d(8k+4) + 8d(8k+3) + 4d(8k+2) + 2d(8k+1) + d(8k)$$
 for $k = 0,1,...,72$

Resulting 8-bit symbols are presented as

$$D(k) = \{d(8k+7), d(8k+6), d(8k+5), d(8k+4), d(8k+3), d(8k+2), d(8k+1), d(8k)\}\$$
 for $k = 0, 1, ..., 72$

where d(8k+7),...,d(8k) are ordered from the most significant bit (MSB) to the less significant bit (LSB).

The polynomial representation of a single information symbol over $GF(2^8)$ in terms of a is given by

$$D_a(k) = a^7 d(8k+7) + a^6 d(8k+6) + a^5 d(8k+5) + a^4 d(8k+4) + a^3 d(8k+3) + a^2 d(8k+2) + ad(8k+1) + d(8k)$$

b) Encoding

The information symbols D(0)...D(72) are encoded by shortened systematic $RS_8(85,73)$ code with output symbols U(0)...U(84) ordered as

$$U(k)=D(k)$$
 for $k=0,1,...72$; $U(k)=R(k)$ for $k=73,74,...,84$;

where R(k) are parity check symbols added by RS₈(85,73) encoder.

Information symbols are ordered in the descending polynomial order such that $D_a(72)$ corresponds to the lowest

degree term of $D(x) = D_a(72) + D_a(71)x + ... + D_a(1)x^{71} + D_a(0)x^{72}$, where D(x) is the polynomial representation of

information symbols $\{D(0),D(1),...,D(72)\}$ over Galois field.

Parity check symbols in polynomial representation over Galois field are ordered in the descending polynomial order such that $R_a(84)$ corresponds to the lowest degree of $R(x)=R_a(84)+R_a(83)x+...+R_a(74)x^{10}+R_a(73)x^{11}$. The parity check symbols are calculated as R(x)= remainder $[x^{12}D(x)/g(x)]$, and $U(x)=R(x)+x^{12}D(x)$, i.e.,

$$U_a(k) = D_a(k)$$
 for k=0,1,...72; $U_a(k) = R_a(k)$ for k=73,74,...,84.

The encoding operation with the shortened RS₈(85,73) code may be presented as the following:

- Expanding 73 information symbols to the block of 243 symbols by adding 170 dump (zero) symbols
- Encoding 243 symbols by systematic RS₈(255,243) encoder with outer block of 255 symbols
- Removing 170 dump symbols, resulting in the output block of 85 symbols.

c) Symbol to bit conversion

The output symbols $\{U_a(0),...,U_a(84)\}$ are converted back into symbols $\{U(0),...,U(84)\}$ and then back into binary form with LSB coming out first, resulting in the block of 680 bits $\{u(0),...u(679)\}$.

3.11.3 Convolutional encoder

3.11.3.1 Tailing bits for a data frame

Before convolutional encoding 6 tail bits $\{u(k)=0, k=680,...685\}$ are added to the end of each data block.

3.11.3.2 Convolutional encoding for a data frame

This block of 686 bits $\{u(0),...,u(685)\}$ is encoded with the 1/2 rate convolutional code defined by the following polynomials:

$$G4 = 1 + D^2 + D^3 + D^5 + D^6$$
$$G7 = 1 + D + D^2 + D^3 + D^6$$

resulting in 1372 coded bits $\{c(0), c(1), ..., c(1371)\}$ with

$$c(2k)=u(k)+u(k-2)+u(k-3)+u(k-5)+u(k-6);$$

$$c(2k+1)=u(k)+u(k-1)+u(k-2)+u(k-3)+u(k-6)$$
 for $k=0,1,...,685$; $u(k)=0$ for $k<0$

The code is punctured in such a way that the following 4 coded bits:

The result is a block of 1368 coded bits, $\{c(0), c(1), ..., c(1367)\}$.

3.11.4 Interleaving

The interleaving scheme is presented below.

The coded bits are reordered and interleaved according to the following rule:

$$i(B,j) = c(n,k),$$
 for $k = 0,1,...,1367$
 $n = 0,1,...,N,N+1,...$
 $B = B_0 + 4n + (k \text{ mod } 19) + (k \text{ div } 342)$
 $j = (k \text{ mod } 19) + 19(k \text{ mod } 18)$

The result of the interleaving is a distribution of the reordered 342 bit of a given data block, n = N, over 19 blocks, 18 bits equally distributed in each block, in a diagonal way over consecutive blocks.

Or in other words the interleaving is a distribution of the encoded, reordered 1368 bits from four given input data blocks, which taken together give n = N, over 22 bursts, 18 bits equally distributed in the first and 22^{nd} bursts, 36 bits distributed in the second and 21st bursts, 54 bits distributed in the third and 20th bursts and 72 bits distributed in the other 16 bursts.

The block of coded data is interleaved "diagonal", where a new block of coded data starts with every fourth burst and is distributed over 22 bursts.

3.11.5 Mapping on a Burst

Before mapping on a burst the interleaved bits $\{i(0)...i(1367)\}$ are converted into 3-bit symbols $\{I(0),I(1),...,I(455)\}$ according to Table 1 in 3GPP TS 45.004, the symbol I(k) depends on i(3k+2), i(3k+1) and i(3k) for k=0,1,...,455.

The E-IACCH message delivered to the encoder on every 20ms has a fixed size of 3 information bits $\{im(0), im(1), im(2)\}$. The contents of the bits are defined in 3GPP TS 45.008 for both uplink and downlink.

The E-IACCH information bits $\{im(n,0),im(n,1),im(n,2)\}$ are coded into 24 bits ib(B,k), $B_0 + 4n \le B < B_0 + 4n + 4$, k = 0,1,...5 according to the following table:

im(n,0),im(n,1),im(n,2)	<u>ib(</u> B ₀ +4n,0 <u>),,ib(</u> B ₀ +4n,5 <u>),,</u>
	<u>ib(</u> B ₀ +4n+3,0 <u>),ib(</u> B ₀ +4n+3,5 <u>)</u>
000	000000 000000 000000 000000
<u>001</u>	<u>001111 110100 100101 110100</u>
<u>010</u>	<u>011100 010111 111001 100011</u>
<u>011</u>	<u>010011 100011 011100 010111</u>
<u>100</u>	<u>100110 011001 110110 001101</u>
<u>101</u>	<u>101001 101101 010011 111001</u>
<u>110</u>	<u>111010 001110 001111 101110</u>
<u>111</u>	<u>110101 111010 101010 011010</u>

Before mapping on a burst the E-IACCH bits $\{ib(B,0)...ib(B,5)\}$ are converted into 3-bit symbols $\{HL(B),HU(B)\}$ according to Table 1 in 3GPP TS 45.004. The symbol HL(B) depends on ib(B,2), ib(B,1) and ib(B,0) and

the symbol HU(B) on ib(B,5), ib(B,4) and ib(B,3).

The mapping is given by the rule:

$$E(B,j) = I(B,j)$$
 and $E(B,59+j) = I(B,57+j)$ for $j = 0,1,...,56$

and

$$E(B,57) = HL(B)$$
 and $E(B,58) = HU(B)$.

The two symbols, labelled HL(B) and HU(B) on burst number B are flags used for E-IACCH.

3.12 Data channel for ECSD at full rate, 32.0 kbit/s radio interface rate (32.0 kbit/s services (E-TCH/F32.0))

The definition of a 32.0 kbit/s radio interface rate data flow for data services is given in 3GPP TS 44.021.

3.12.1 Interface with user unit

The user unit delivers to the encoder a bit stream organized in blocks of 640 information bits (data frames) every 20 ms.

3.12.2 Void

3.12.3 Convolutional encoder

3.12.3.1 Tailing bits for a data frame

Before convolutional encoding 6 tail bits $\{d(k)=0, k=640,...,645\}$ are added to the end of each data block.

3.12.3.2 Convolutional encoding for a data frame

This block of 646 bits $\{d(0),...,d(645)\}$ is encoded with the 1/3 rate convolutional code (the same code as for MCS-1) defined by the following polynomials:

$$G4 = 1 + D^2 + D^3 + D^5 + D^6$$

$$G7 = 1 + D + D^2 + D^3 + D^6$$

$$G5 = 1 + D + D^4 + D^6$$

resulting in 1938 coded bits $\{c(0), c(1), ..., c(1937)\}$ with

$$c(3k) = d(k) + d(k-2) + d(k-3) + d(k-5) + d(k-6)$$
;

```
\begin{split} c(3k+2) &= d(k) + d(k-1) + d(k-2) + d(k-3) + d(k-6) \; ; \\ c(3k+3) &= d(k) + d(k-1) + d(k-4) + d(k-6) \; ; \\ \text{for } k &= 0,1,...,645 \; ; \; d(k) &= 0 \; \text{for } k < 1 \end{split}
```

The code is punctured in such a way that the following 546 coded bits:

```
c(0), c(3), c(7), c(10), c(14), c(17), c(21), c(24), c(28), c(31), c(35), c(39), c(42), c(46), c(49), c(53), c(56), c(60),
     c(63), c(67), c(70), c(74), c(78), c(81), c(85), c(88), c(92), c(95), c(99), c(102), c(106), c(110), c(113), c(117),
     c(120), c(124), c(127), c(131), c(134), c(138), c(141), c(145), c(149), c(152), c(156), c(159), c(163), c(166),
     c(170), c(173), c(177), c(181), c(184), c(188), c(191), c(195), c(198), c(202), c(205), c(209), c(212), c(216),
     c(220), c(223), c(227), c(230), c(234), c(237), c(241), c(244), c(248), c(252), c(255), c(259), c(262), c(266),
     c(269), c(273), c(276), c(280), c(283), c(287), c(291), c(294), c(298), c(301), c(305), c(308), c(312), c(315),
     c(319), c(323), c(326), c(330), c(333), c(337), c(340), c(344), c(347), c(351), c(354), c(358), c(362), c(365),
     c(369), c(372), c(376), c(379), c(383), c(386), c(390), c(393), c(397), c(401), c(404), c(408), c(411), c(415),
     c(418), c(422), c(425), c(429), c(433), c(436), c(440), c(443), c(447), c(450), c(454), c(457), c(461), c(464),
     c(468), c(472), c(475), c(479), c(482), c(486), c(489), c(493), c(496), c(500), c(504), c(507), c(511), c(514),
     c(518), c(521), c(525), c(528), c(532), c(535), c(539), c(543), c(546), c(550), c(553), c(557), c(560), c(564),
     c(567), c(571), c(575), c(578), c(582), c(585), c(589), c(592), c(596), c(599), c(603), c(606), c(610), c(614),
     c(617), c(621), c(624), c(628), c(631), c(635), c(638), c(642), c(646), c(649), c(653), c(656), c(660), c(663),
     c(667), c(670), c(674), c(677), c(681), c(685), c(688), c(692), c(695), c(699), c(702), c(706), c(709), c(713),
     c(716), c(720), c(724), c(727), c(731), c(734), c(738), c(741), c(745), c(748), c(752), c(756), c(759), c(763),
     c(766), c(770), c(773), c(777), c(780), c(784), c(787), c(791), c(795), c(798), c(802), c(805), c(809), c(812),
     c(816), c(819), c(823), c(827), c(830), c(834), c(837), c(841), c(844), c(848), c(851), c(855), c(858), c(862),
     c(866), c(869), c(873), c(876), c(880), c(883), c(887), c(890), c(894), c(898), c(901), c(905), c(908), c(912),
     c(915), c(919), c(922), c(926), c(929), c(933), c(937), c(940), c(944), c(947), c(951), c(954), c(958), c(961),
     c(965), c(969), c(972), c(976), c(979), c(983), c(986), c(990), c(993), c(997), c(1000), c(1004), c(1008), c(1011), c(1008), c(
     c(1015), c(1018), c(1022), c(1025), c(1029), c(1032), c(1036), c(1039), c(1043), c(1047), c(1050), c(1054),
     c(1057), c(1061), c(1064), c(1068), c(1071), c(1075), c(1079), c(1082), c(1086), c(1089), c(1093), c(1096),
     c(1100), c(1103), c(1107), c(1110), c(1114), c(1118), c(1121), c(1125), c(1128), c(1132), c(1135), c(1139),
     c(1142), c(1146), c(1150), c(1153), c(1157), c(1160), c(1164), c(1167), c(1171), c(1174), c(1178), c(1181),
     c(1185), c(1189), c(1192), c(1196), c(1199), c(1203), c(1206), c(1210), c(1213), c(1217), c(1221), c(1224),
     c(1228), c(1231), c(1235), c(1238), c(1242), c(1245), c(1249), c(1252), c(1256), c(1260), c(1263), c(1267),
     c(1270), c(1274), c(1277), c(1281), c(1284), c(1288), c(1292), c(1295), c(1299), c(1302), c(1306), c(1309),
     c(1313), c(1316), c(1320), c(1323), c(1327), c(1331), c(1334), c(1338), c(1341), c(1345), c(1348), c(1352),
     c(1355), c(1359), c(1362), c(1366), c(1370), c(1373), c(1377), c(1380), c(1384), c(1387), c(1391), c(1394),
     c(1398), c(1402), c(1405), c(1409), c(1412), c(1416), c(1419), c(1423), c(1426), c(1430), c(1433), c(1437),
     c(1441), c(1444), c(1448), c(1451), c(1455), c(1458), c(1462), c(1465), c(1469), c(1473), c(1476), c(1480),
     c(1483), c(1487), c(1490), c(1494), c(1497), c(1501), c(1504), c(1508), c(1512), c(1515), c(1519), c(1522),
     c(1526), c(1529), c(1533), c(1536), c(1540), c(1544), c(1547), c(1551), c(1554), c(1558), c(1561), c(1565),
     c(1568), c(1572), c(1575), c(1579), c(1583), c(1586), c(1590), c(1593), c(1597), c(1600), c(1604), c(1607),
     c(1611), c(1615), c(1618), c(1622), c(1625), c(1629), c(1632), c(1636), c(1639), c(1643), c(1646), c(1650),
     c(1654), c(1657), c(1661), c(1664), c(1668), c(1671), c(1675), c(1678), c(1682), c(1685), c(1689), c(1693),
     c(1696), c(1700), c(1703), c(1707), c(1710), c(1714), c(1717), c(1721), c(1725), c(1728), c(1732), c(1735),
     c(1739), c(1742), c(1746), c(1749), c(1753), c(1756), c(1760), c(1764), c(1767), c(1771), c(1774), c(1778),
     c(1781), c(1785), c(1788), c(1792), c(1796), c(1799), c(1803), c(1806), c(1810), c(1813), c(1817), c(1820),
     c(1824), c(1827), c(1831), c(1835), c(1838), c(1842), c(1845), c(1849), c(1852), c(1856), c(1859), c(1863),
     c(1867), c(1870), c(1874), c(1877), c(1881), c(1884), c(1888), c(1891), c(1895), c(1898), c(1902), c(1906),
     c(1909), c(1913), c(1916), c(1920), c(1923), c(1927), c(1930), c(1934)
```

are not transmitted.

The result is a block of 1392 coded bits, $\{c(0),c(1),...,c(1391)\}$.

3.12.4 Interleaving

The coded bits are reordered and interleaved according to the following rule:

```
i(B,j) = c(n,k), for k = 0,1,...,1391

n = 0,1,...,N,N+1,...
```

$$B = B_0 + 4n + (k \mod 12)$$

$$j = 3*[(49*(k+int(k/348)) \mod 116] + int[(k \mod 12)/4]$$

The result of the interleaving is a distribution of the reordered 348 bits of a given data block, n = N, over 12 blocks, 29 bits equally distributed in each block. The block of coded data is interleaved "diagonal", where a new block of coded data starts with every fourth burst and is distributed over 12 bursts.

3.12.5 Mapping on a Burst

The mapping is given by the rule:

$$e(B,j) = i(B,j)$$
 for $j = 0,1,...,347$

NOTE: No stealing flags are used.

3.13 Data channel for ECSD at full rate, 43.5 kbit/s radio interface rate (43.2 kbit/s services (E-TCH/F43.2))

The definition of a 43.5 kbit/s radio interface rate data flow for data services is given in 3GPP TS 44.021.

3.13.1 Interface with user unit

The user unit delivers to the encoder a bit stream organized in blocks of 870 information bits (data frames) every 20 ms.

3.13.2 Convolutional encoder

3.13.2.1 Tailing bits for a data frame

Before convolutional encoding 6 tail bits $\{d(k)=0, k=870,...875\}$ are added to the end of each data block.

3.13.2.2 Convolutional encoding for a data frame

This block of 876 bits $\{d(0),...,d(875)\}$ is encoded with the 1/2 rate convolutional code defined by the following polynomials:

$$G4 = 1 + D^2 + D^3 + D^5 + D^6$$

$$G7 = 1 + D + D^2 + D^3 + D^6$$

resulting in 1752 coded bits $\{c(0), c(1), ..., c(1751)\}$ with

$$c(2k)=d(k)+d(k-2)+d(k-3)+d(k-5)+d(k-6);$$

$$c(2k+1) = d(k) + d(k-1) + \ d(k-2) + \ d(k-3) + \ d(k-6) \ \ \text{ for } k = 0,1,...,875; \ \ u(k) = 0 \ \text{ for } k < 0$$

The code is punctured in such a way that the following 384 coded bits:

$$c(2+8(k-1))$$
 for $k=1:219$; $c(4+16(k-1))$ for $k=1:110$; $c(6+32(k-1))$ for $k=1:55$

are not transmitted.

The result is a block of 1368 coded bits, $\{c(0),c(1),...,c(1367)\}$.

3.13.3 Interleaving

The interleaving is done as specified for E-TCH/F28.8 in subclause 3.11.4.

3.13.4 Mapping on a Burst

The mapping is done as specified for E-TCH/F28.8 in subclause 3.11.5.

4 Control Channels

4.1 Slow associated control channel (SACCH)

4.1.1 Block constitution

The message delivered to the encoder has a fixed size of 184 information bits $\{d(0),d(1),...,d(183)\}$. It is delivered on a burst mode.

4.1.2 Block code

a) Parity bits:

The block of 184 information bits is protected by 40 extra bits used for error correction and detection. These bits are added to the 184 bits according to a shortened binary cyclic code (FIRE code) using the generator polynomial:

$$g(D) = (D^{23} + 1)*(D^{17} + D^3 + 1)$$

The encoding of the cyclic code is performed in a systematic form, which means that, in GF(2), the polynomial:

$$d(0)D^{223} + d(1)D^{222} + ... + d(183)D^{40} + p(0)D^{39} + p(1)D^{38} + ... + p(38)D + p(39)$$

where $\{p(0), p(1), ..., p(39)\}$ are the parity bits, when divided by g(D) yields a remainder equal to:

$$1 + D + D^2 + ... + D^{39}$$
.

b) Tail bits

Four tail bits equal to 0 are added to the information and parity bits, the result being a block of 228 bits.

$$\begin{array}{ll} u(k)=d(k) & \text{for } k=0,1,...,183 \\ \\ u(k)=p(k\text{-}184) & \text{for } k=184,185,...,223 \\ \\ u(k)=0 & \text{for } k=224,225,226,227 \text{ (tail bits)} \end{array}$$

4.1.3 Convolutional encoder

This block of 228 bits is encoded with the 1/2 rate convolutional code (identical to the one used for TCH/FS) defined by the polynomials:

$$G0 = 1 + D^3 + D^4$$

 $G1 = 1 + D + D^3 + D^4$

This results in a block of 456 coded bits: $\{c(0),c(1),...,c(455)\}\$ defined by:

$$\begin{split} c(2k) &= u(k) + u(k-3) + u(k-4) \\ c(2k+1) &= u(k) + u(k-1) + u(k-3) + u(k-4) & \text{for } k = 0,1,...,227 \; ; \; u(k) = 0 \; \text{for } k < 0 \end{split}$$

4.1.4 Interleaving

The coded bits are reordered and interleaved according to the following rule:

$$i(B,j) = c(n,k)$$
 for $k = 0,1,...,455$
 $n = 0,1,...,N,N+1,...$
 $B = B_0 + 4n + (k \text{ mod } 4)$
 $j = 2((49k) \text{ mod } 57) + ((k \text{ mod } 8) \text{ div } 4)$

See table 1. The result of the reordering of bits is the same as given for a TCH/FS (subclause 3.1.3) as can be seen from the evaluation of the bit number-index j, distributing the 456 bits over 4 blocks on even numbered bits and 4 blocks on odd numbered bits. The resulting 4 blocks are built by putting blocks with even numbered bits and blocks with odd numbered bits together into one block.

The block of coded data is interleaved "block rectangular" where a new data block starts every 4th block and is distributed over 4 blocks.

4.1.5 Mapping on a Burst

The mapping is given by the rule:

and

$$e(B,j) = i(B,j)$$
 and $e(B,59+j) = i(B,57+j)$ for $j = 0,1,...,56$

$$e(B,57) = hl(B)$$
 and $e(B,58) = hu(B)$

The two bits labelled h(B) and hu(B) on burst number B are flags used for indication of control channel signalling. They are set to "1" for a SACCH.

4.2 Fast associated control channel at full rate (FACCH/F)

4.2.1 Block constitution

The message delivered to the encoder has a fixed size of 184 information bits. It is delivered on a burst mode.

4.2.2 Block code

The block encoding is done as specified for the SACCH in subclause 4.1.2.

4.2.3 Convolutional encoder

The convolutional encoding is done as specified for the SACCH in subclause 4.1.3.

4.2.4 Interleaving

The interleaving is done as specified for the TCH/FS in subclause 3.1.3.

4.2.5 Mapping on a Burst

A FACCH/F frame of 456 coded bits is mapped on 8 consecutive bursts as specified for the TCH/FS in subclause 3.1.4. As a FACCH is transmitted on bits which are stolen in a burst from the traffic channel, the even numbered bits in the first 4 bursts and the odd numbered bits of the last 4 bursts are stolen.

To indicate this to the receiving device the flags hl(B) and hu(B) have to be set according to the following rule:

```
hu(B) = 1 for the first 4 bursts (even numbered bits are stolen);

hl(B) = 1 for the last 4 bursts (odd numbered bits are stolen).
```

The consequences of this bitstealing by a FACCH/F is for a:

- speech channel (TCH/FS) and data channel (TCH/F2.4):

One full frame of data is stolen by the FACCH.

- Data channel (TCH/F14.4):

The bitstealing by a FACCH/F disturbs a maximum of 96 of the 456 coded bits generated from an input data block of 290 bits.

- Data channel (TCH/F9.6):

The bitstealing by a FACCH/F disturbs a maximum of 96 coded bits generated from an input frame of four data blocks. A maximum of 24 of the 114 coded bits resulting from one input data block of 60 bits may be disturbed.

- Data channel (TCH/F4.8):

The bit stealing by FACCH/F disturbs a maximum of 96 coded bits generated from an input frame of two data blocks. A maximum of 48 of the 228 coded bits resulting from one input data block of 60 bits may be disturbed.

NOTE: In the case of consecutive stolen frames, a number of bursts will have both the even and the odd bits stolen and both flags hu(B) and hl(B) must be set to 1.

4.3 Fast associated control channel at half rate (FACCH/H)

4.3.1 Block constitution

The message delivered to the encoder has a fixed size of 184 information bits. It is delivered on a burst mode.

4.3.2 Block code

The block encoding is done as specified for the SACCH in subclause 4.1.2.

4.3.3 Convolutional encoder

The convolutional encoding is done as specified for the SACCH in subclause 4.1.3.

4.3.4 Interleaving

The coded bits are reordered and interleaved according to the following rule:

```
i(B,j) = c(n,k) \text{ for } k = 0,1,...,455 n = 0,1,...,N,N+1,... B = B_0 + 4n + (k \text{ mod } 8) - 4((k \text{ mod } 8) \text{ div } 6) j = 2((49k) \text{ mod } 57) + ((k \text{ mod } 8) \text{ div } 4)
```

See table 1. The result of the reordering of bits is the same as given for a TCH/FS (subclause 3.1.3) as can be seen from the evaluation of the bit number-index j, distributing the 456 bits over 4 blocks on even numbered bits and 4 blocks on odd numbered bits. The 2 last blocks with even numbered bits and the 2 last blocks with odd numbered bits are put together into 2 full middle blocks.

The block of coded data is interleaved "block diagonal" where a new data block starts every 4th block and is distributed over 6 blocks.

4.3.5 Mapping on a Burst

A FACCH/H frame of 456 coded bits is mapped on 6 consecutive bursts by the rule:

$$e(B,j)=i(B,j)$$
 and $e(B,59+j)=i(B,57+j)$ for $j=0,1,...,56$ and
$$e(B,57)=hl(B) \quad \text{and} \quad e(B,58)=hu(B)$$

As a FACCH/H is transmitted on bits which are stolen from the traffic channel, the even numbered bits of the first 2 bursts, all bits of the middle 2 bursts and the odd numbered bits of the last 2 bursts are stolen.

To indicate this to the receiving device the flags hl(B) and hu(B) have to be set according to the following rule:

```
hu(B) = 1 for the first 2 bursts (even numbered bits are stolen)

hu(B) = 1 and hl(B) = 1 for the middle 2 bursts (all bits are stolen)

hl(B) = 1 for the last 2 bursts (odd numbered bits are stolen)
```

The consequences of this bitstealing by a FACCH/H is for a:

- speech channel (TCH/HS):

two full consecutive speech frames are stolen by a FACCH/H.

- data channel (TCH/H4.8):

The bitstealing by FACCH/H disturbs a maximum of 96 coded bits generated from an input frame of four data blocks. A maximum of 24 out of the 114 coded bits resulting from one input data block of 60 bits may be disturbed.

- data channel (TCH/H2.4):

The bitstealing by FACCH/H disturbs a maximum of 96 coded bits generated from an input frame of four data blocks. A maximum of 24 out of the 114 coded bits resulting from one input data block of 36 bits may be disturbed.

NOTE: In the case of consecutive stolen frames, two overlapping bursts will have both the even and the odd numbered bits stolen and both flags hu(B) and hl(B) must be set to 1.

4.4 Broadcast control, Paging, Access grant, Notification and Cell broadcast channels (BCCH, PCH, AGCH, NCH, CBCH), CTS Paging and Access grant channels (CTSPCH, CTSAGCH)

The coding scheme used for the broadcast control, paging, access grant, notification and cell broadcast messages is the same as for the SACCH messages, specified in subclause 4.1. In CTS, the coding scheme used for the paging and access grant messages is also the same as for the SACCH messages, specified in subclause 4.1.

4.5 Stand-alone dedicated control channel (SDCCH)

The coding scheme used for the dedicated control channel messages is the same as for SACCH messages, specified in subclause 4.1.

4.6 Random access channel (RACH)

The burst carrying the random access uplink message has a different structure. It contains 8 information bits d(0),d(1),...,d(7).

Six parity bits p(0),p(1),...,p(5) are defined in such a way that in GF(2) the binary polynomial:

```
d(0)D^{13} + ... + d(7)D^6 + p(0)D^5 + ... + p(5), when divided by D^6 + D^5 + D^3 + D^2 + D + 1 yields a remainder equal to D^5 + D^4 + D^3 + D^2 + D + 1.
```

The six bits of the BSIC, $\{B(0),B(1),...,B(5)\}$, of the BS to which the Random Access is intended, are added bitwise modulo 2 to the six parity bits, $\{p(0),p(1),...,p(5)\}$. This results in six colour bits, C(0) to C(5) defined as C(k) = b(k) + p(k) (k = 0 to 5) where:

b(0) = MSB of PLMN colour code

b(5) = LSB of BS colour code.

This defines $\{u(0), u(1), ..., u(17)\}$ by:

$$u(k) = d(k)$$
 for $k = 0,1,...,7$

$$u(k) = C(k-8)$$
 for $k = 8,9,...,13$

$$u(k) = 0$$
 for $k = 14,15,16,17$ (tail bits)

The bits $\{e(0), e(1), ..., e(35)\}$ are obtained by the same convolutional code of rate 1/2 as for TCH/FS, defined by the polynomials:

$$G0 = 1 + D^3 + D^4$$

$$G1 = 1 + D + D^3 + D^4$$

and with:

$$e(2k) = u(k) + u(k-3) + u(k-4)$$

$$e(2k+1) = u(k) + u(k-1) + u(k-3) + u(k-4)$$

for
$$k = 0,1,...,17$$
; $u(k) = 0$ for $k < 0$

4.7 Synchronization channel (SCH), Compact synchronization channel (CSCH), CTS Beacon and Access request channels (CTSBCH-SB, CTSARCH)

The burst carrying the synchronization information on the downlink BCCH, the downlink CPBCCH for Compact, and in CTS the information of the CTSBCH-SB and the access request message of the CTSARCH, has a different structure. It contains 25 information bits $\{d(0),d(1),...,d(24)\}$, 10 parity bits $\{p(0),p(1),...,p(9)\}$ and 4 tail bits. The precise ordering of the information bits is given in 3GPP TS 44.018.

The ten parity bits $\{p(0),p(1),...,p(9)\}$ are defined in such a way that in GF(2) the binary polynomial:

$$d(0)D^{34} + ... + d(24)D^{10} + p(0)D^9 + ... + p(9)$$
, when divided by:

$$D^{10}+D^8+D^6+D^5+D^4+D^2+1,$$
 yields a remainder equal to:

$$D^9 + D^8 + D^7 + D^6 + \ D^5 + \ D^4 + D^3 + D^2 + D + 1.$$

Thus the encoded bits $\{u(0),u(1),...,u(38)\}$ are:

$$u(k) = d(k)$$
 for $k = 0,1,...,24$

$$u(k) = p(k-25)$$
 for $k = 25,26,...,34$

$$u(k) = 0$$
 for $k = 35,36,37,38$ (tail bits)

The bits $\{e(0),e(1),...,e(77)\}$ are obtained by the same convolutional code of rate 1/2 as for TCH/FS, defined by the polynomials:

$$G0 = 1 + D^3 + D^4$$

$$G1 = 1 + D + D^3 + D^4$$

and with:

$$e(2k) = u(k) + u(k-3) + u(k-4)$$

$$e(2k+1) = u(k) + u(k-1) + u(k-3) + u(k-4)$$
 for $k = 0,1,...,77$; $u(k) = 0$ for $k < 0$

4.8 Access Burst on circuit switched channels other than RACH

The encoding of this burst is as defined in subclause 4.6 for the random access channel (RACH). The BSIC used shall be the BSIC of the BTS to which the burst is intended.

4.9 Access Bursts for uplink access on a channel used for VGCS

The encoding of this burst is as defined in subclause 4.5 for the RACH. The BSIC used by the Mobile Station shall be the BSIC indicated by network signalling, or if not thus provided, the last received BSIC on the SCH of the current cell.

4.10 Fast associated control channel at ECSD E-TCH/F (E-FACCH/F)

4.10.1 Block constitution

The message delivered to the encoder has a fixed size of 184 information bits. It is delivered on a burst mode.

4.10.2 Block code

The block encoding is done as specified for the SACCH in subclause 4.1.2.

4.10.3 Convolutional encoder

The convolutional encoding is done as specified for the SACCH in subclause 4.1.3.

4.10.4 Interleaving

The interleaving is done as specified for the SACCH in subclause 4.1.4.

4.10.5 Mapping on a Burst

A E-FACCH/F frame of 456 coded bits is mapped on 4 full consecutive bursts. As a E-FACCH/F is transmitted on bits, which are stolen in a burst from the ECSD traffic channel, the four full bursts are stolen.

The mapping on is given by the rule:

$$e(B,j)=i(B,j)$$
 and $e(B,59+j)=i(B,57+j)$ for $j=0,1,...,56$

and

$$e(B,57)=hl(B)$$
 and $e(B,58)=hu(B)$.

To indicate to the receiving device the flags hl(B) and hu(B) have to be set according to the following rule:

hu(B)=1 and hl(B)=1 for the all 4 bursts (4 full bursts are stolen).

The consequences of this bitstealing by a E-FACCH/F is for a:

- Data channel (E-TCH/F43.2)

The bitstealing by a E-FACCH/F disturbs a maximum of 288 of the 1368 coded bits generated from an input data block of 870 bits.

- Data channel (E-TCH/F32)

The bitstealing by a E-FACCH/F disturbs 464 of the 1392 coded bits generated from an input data block of 640 bits.

Data channel (E-TCH/F28.8)

The bitstealing by a E-FACCH/F disturbs a maximum of 288 of the 1368 coded bits generated from an input data block of 580 bits.

5 Packet Switched Channels

5.1 Packet data traffic channel (PDTCH)

Thirteen coding schemes are specified for the packet data traffic channels. For the coding schemes CS-2 to CS-4 and MCS-1 to MCS-4, the first three bits (USF-bits) of the data block are encoded such that the first twelve coded bits are representing the same bit pattern, irrespective of the coding scheme, depending only on the USF-bits. For these coding schemes, the USF-bits can therefore always be decoded from these twelve bits in the same way. It should be noted that the USF precoding is done in the uplink direction for coding schemes CS-2 – CS-4, despite the fact that uplink RLC data block structure (3GPP TS 44.060) does not define USF-field.

For the nine coding schemes MCS-1 to MCS-9, the block structure differs between uplink and downlink since header sizes before coding are not the same.

5.1.1 Packet data block type 1 (CS-1)

The coding scheme used for packet data block type 1 is the same as for SACCH as specified in section 4.1.

The flags hl(B) and hu(B) set to "1" identify the coding scheme CS-1.

5.1.2 Packet data block type 2 (CS-2)

5.1.2.1 Block constitution

The message delivered to the encoder has a fixed size of 271 information bits $\{d(0),d(1),...,d(270)\}$. It is delivered on a burst mode.

5.1.2.2 Block code

a) USF precoding:

The first three bits d(0), d(1), d(2) are precoded into six bits u'(0), u'(1),..., u'(5) according to the following table:

d(0),d(1),d(2)	u'(0),u'(1),,u'(5)
000	000 000
001	001 011
010	010 110
011	011 101
100	100 101
101	101 110
110	110 011
111	111 000

b) Parity bits:

Sixteen parity bits p(0),p(1),...,p(15) are defined in such a way that in GF(2) the binary polynomial:

$$d(0)D^{286} + ... + d(270)D^{16} + p(0)D^{15} + ... + p(15)$$
, when divided by:

 $D^{16} + D^{12} + D^5 + 1$, yields a remainder equal to:

$$D^{15} + D^{14} + D^{13} + D^{12} + D^{11} + D^{10} + D^9 + D^8 + D^7 + D^6 + D^5 + D^4 + D^3 + D^2 + D + 1.$$

c) Tail bits:

u(k)

Four tail bits equal to 0 are added to the information and parity bits, the result being a block of 294 bits $\{u(0),u(1),...,u(293)\}$:

$$u(k) = u'(k)$$
 for $k = 0,1,...,5$
 $u(k) = d(k-3)$ for $k = 6,7,...,273$
 $u(k) = p(k-274)$ for $k = 274,275,...,289$

5.1.2.3 Convolutional encoder

This block of 294 bits $\{u(0),u(1),...,u(293)\}$ is encoded with the 1/2 rate convolutional code (identical to the one used for TCH/FS) defined by the polynomials:

$$G0 = 1 + D^3 + D^4$$

 $G1 = 1 + D + D^3 + D^4$

=0

This results in a block of 588 coded bits: $\{C(0),C(1),...,C(587)\}\$ defined by:

$$\begin{split} &C(2k) &= u(k) + u(k-3) + u(k-4) \\ &C(2k+1) = u(k) + u(k-1) + u(k-3) + u(k-4) \qquad \text{for } k = 0,1,...,293 \ ; \ u(k) = 0 \ \text{for } k < 0 \end{split}$$

for k = 290,291,292,293 (tail bits)

The code is punctured in such a way that the following coded bits:

$$\{C(3+4j) \ for \ j=3,4,...,146 \ except \ for \ j=9,21,33,45,57,69,81,93,105,117,129,141\} \ are \ not \ transmitted$$

The result is a block of 456 coded bits, $\{c(0),c(1),...,c(455)\}$.

5.1.2.4 Interleaving

The interleaving is done as specified for SACCH in section 4.1.4.

5.1.2.5 Mapping on a burst

The mapping is given by the rule:

$$e(B,j) = i(B,j)$$
 and $e(B,59+j) = i(B,57+j)$ for $j = 0,1,...,56$

and

$$e(B+m,\!57) = q(2m) \ \ \text{and} \ \ e(B+m,\!58) = q(2m+1) \ \ \text{for} \ m = 0,\!1,\!2,\!3$$

where

q(0),q(1),...,q(7) = 1,1,0,0,1,0,0,0 identifies the coding scheme CS-2.

5.1.3 Packet data block type 3 (CS-3)

5.1.3.1 Block constitution

The messages delivered to the encoder has a fixed size of 315 information bits $\{d(0),d(1),...,d(314)\}$. It is delivered on a burst mode.

5.1.3.2 Block code

a) USF precoding:

The first three bits d(0),d(1),d(2) are precoded into six bits u'(0),u'(1),...,u'(5) as specified for CS-2 in section 5.1.2.2.a).

b) Parity bits:

Sixteen parity bits p(0),p(1),...,p(15) are defined in such a way that in GF(2) the binary polynomial:

$$d(0)D^{330} + ... + d(314)D^{16} + p(0)D^{15} + ... + p(15)$$
, when divided by:

 $D^{16} + D^{12} + D^5 + 1$, yields a remainder equal to:

$$D^{15} + D^{14} + D^{13} + D^{12} + D^{11} + D^{10} + D^9 + D^8 + D^7 + D^6 + D^5 + D^4 + D^3 + D^2 + D + 1.$$

c) Tail bits:

Four tail bits equal to 0 are added to the information and parity bits, the result being a block of 338 bits $\{u(0),u(1),...,u(337)\}$:

$$u(k) = u'(k)$$
 for $k = 0,1,...,5$

$$u(k) = d(k-3)$$
 for $k = 6,7,...,317$

$$u(k) = p(k-318)$$
 for $k = 318,319,...,333$

$$u(k) = 0$$
 for $k = 334,335,336,337$ (tail bits)

5.1.3.3 Convolutional encoder

This block of 338 bits $\{u(0),u(1),...,u(337)\}$ is encoded with the 1/2 rate convolutional code (identical to the one used for TCH/FS) defined by the polynomials:

$$G0 = 1 + D^3 + D^4$$

$$G1 = 1 + D + D^3 + D^4$$

This results in a block of 676 coded bits: $\{C(0),C(1),...,C(675)\}\$ defined by:

$$C(2k) = u(k) + u(k-3) + u(k-4)$$

$$C(2k+1) = u(k) + u(k-1) + u(k-3) + u(k-4)$$
 for $k = 0,1,...,337$; $u(k) = 0$ for $k < 0$

The code is punctured in such a way that the following coded bits:

$$\{C(3+6j) \text{ and } C(5+6j) \text{ for } j = 2,3,...,111\}$$
 are not transmitted

The result is a block of 456 coded bits, $\{c(0),c(1),...,c(455)\}$.

5.1.3.4 Interleaving

The interleaving is done as specified for SACCH in subclause 4.1.4.

5.1.3.5 Mapping on a burst

The mapping is given by the rule:

$$e(B,j) = i(B,j)$$
 and $e(B,59+j) = i(B,57+j)$ for $j = 0,1,...,56$

and

$$e(B+m,57) = q(2m)$$
 and $e(B+m,58) = q(2m+1)$ for $m = 0,1,2,3$

where

$$q(0),q(1),...,q(7) = 0,0,1,0,0,0,0,1$$
 identifies the coding scheme CS-3.

5.1.4 Packet data block type 4 (CS-4)

5.1.4.1 Block constitution

The message delivered to the encoder has a fixed size of 431 information bits $\{d(0),d(1),...,d(430)\}$. It is delivered on a burst mode.

5.1.4.2 Block code

a) USF precoding:

The first three bits d(0),d(1),d(2) are block coded into twelve bits u'(0),u'(1),...,u'(11) according to the following table:

d(0),d(1),d(2)	u'(0),u'(1),,u'(11)
000	000 000 000 000
001	000 011 011 101
010	001 101 110 110
011	001 110 101 011
100	110 100 001 011
101	110 111 010 110
110	111 001 111 101
111	111 010 100 000

b) Parity bits:

Sixteen parity bits p(0),p(1),...,p(15) are defined in such a way that in GF(2) the binary polynomial:

$$d(0)D^{446} + ... + d(430)D^{16} + p(0)D^{15} + ... + p(15)$$
, when divided by:

$$D^{16} + D^{12} + D^5 + 1$$
, yields a remainder equal to:

$$D^{15} + D^{14} + D^{13} + D^{12} + D^{11} + D^{10} + D^9 + D^8 + D^7 + D^6 + D^5 + D^4 + D^3 + D^2 + D + 1.$$

The result is a block of 456 coded bits, $\{c(0),c(1),...,c(455)\}$:

$$c(k) = u'(k)$$
 for $k = 0,1,...,11$

$$c(k) = d(k-9)$$
 for $k = 12,13,...,439$

$$c(k) = p(k-440)$$
 for $k = 440,441,...,455$

5.1.4.3 Convolutional encoder

No convolutional coding is done.

5.1.4.4 Interleaving

The interleaving is done as specified for SACCH in section 4.1.4.

5.1.4.5 Mapping on a burst

The mapping is given by the rule:

$$e(B,j) = i(B,j)$$
 and $e(B,59+j) = i(B,57+j)$ for $j = 0,1,...,56$

and

$$e(B+m,57) = q(2m) \ \ and \ \ e(B+m,58) = q(2m+1) \ \ for \ m = 0,1,2,3$$

where

$$q(0),q(1),...,q(7) = 0,0,0,1,0,1,1,0$$
 identifies the coding scheme CS-4.

5.1.5 Packet data block type 5 (MCS-1)

5.1.5.1 Downlink (MCS-1 DL)

5.1.5.1.1 Block constitution

The message delivered to the encoder has a fixed size of 209 information bits $\{d(0),d(1),...,d(208)\}$. It is delivered on a burst mode.

5.1.5.1.2 USF precoding

The first three bits d(0),d(1),d(2) are block coded into twelve bits u'(0),u'(1),...,u'(11) as for Packet data block type 4 (CS-4) in subclause 5.1.4.2.

5.1.5.1.3 Header coding

a) Parity bits:

Eight header parity bits p(0),p(1),...,p(7) are defined in such a way that in GF(2) the binary polynomial:

$$d(3)D^{35} + ... + d(30)D^8 + p(0)D^7 + ... + p(7)$$
, when divided by:

 $D^8 + D^6 + D^3 + 1$, yields a remainder equal to:

$$D^7 + D^6 + D^5 + D^4 + D^3 + D^2 + D + 1$$
.

b) Tail biting:

The six last header parity bits are added before information and parity bits, the result being a block of 42 bits $\{u''(-6),...,u''(0),u''(1),...,u''(35)\}$ with six negative indexes:

$$u''(k-6) = p(k+2)$$
 for $k = 0,1,...,5$

$$u''(k) = d(k+3)$$
 for $k = 0,1,...,27$

$$u''(k) = p(k-28)$$
 for $k = 28,29,...,35$

c) Convolutional encoder

This block of 42 bits $\{u''(-6),...,u''(0),u''(1),...,u''(35)\}$ is encoded with the 1/3 rate convolutional mother code defined by the polynomials:

$$G4 = 1 + D^2 + D^3 + D^5 + D^6$$

$$G7 = 1 + D + D^2 + D^3 + D^6$$

$$G5 = 1 + D + D^4 + D^6$$

This results in a block of 108 coded bits: $\{C(0),C(1),...,C(107)\}\$ defined by:

$$C(3k) = u''(k) + u''(k-2) + u''(k-3) + u''(k-5) + u''(k-6)$$

$$C(3k+1) = u''(k) + u''(k-1) + u''(k-2) + u''(k-3) + u''(k-6)$$

$$C(3k+2) = u''(k) + u''(k-1) + u''(k-4) + u''(k-6)$$
 for $k = 0,1,...,35$

The code is punctured in such a way that the following coded bits:

$$\{C(2+3j) \text{ for } j = 0,1,...,35\}$$
 as well as $\{C(k) \text{ for } k = 34,58,82,106\}$ are not transmitted

The result is a block of 68 coded bits, $\{hc(0),hc(1),...,hc(67)\}$.

5.1.5.1.4 Data coding

a) Parity bits:

Twelve data parity bits p(0), p(1), ..., p(11) are defined in such a way that in GF(2) the binary polynomial:

$$d(31)D^{189} + ... + d(208)D^{12} + p(0)D^{11} + ... + p(11)$$
, when divided by:
 $D^{12} + D^{11} + D^{10} + D^8 + D^5 + D^4 + 1$, yields a remainder equal to:
 $D^{11} + D^{10} + D^9 + D^8 + D^7 + D^6 + D^5 + D^4 + D^3 + D^2 + D + 1$.

b) Tail bits:

Six tail bits equal to 0 are added to the information and parity bits, the result being a block of 196 bits $\{u(0),u(1),...,u(195)\}$:

$$\begin{array}{ll} u(k) &= d(k{+}31) & \text{ for } k = 0,1,...,177 \\ \\ u(k) &= p(k{-}178) & \text{ for } k = 178,179,...,189 \\ \\ u(k) &= 0 & \text{ for } k = 190,191,...,195 \text{ (tail bits)} \end{array}$$

c) Convolutional encoder

This block of 196 bits $\{u(0),u(1),...,u(195)\}$ is encoded with the 1/3 rate convolutional mother code defined by the polynomials:

$$G4 = 1 + D^{2} + D^{3} + D^{5} + D^{6}$$

$$G7 = 1 + D + D^{2} + D^{3} + D^{6}$$

$$G5 = 1 + D + D^{4} + D^{6}$$

This results in a block of 588 coded bits: $\{C(0),C(1),...,C(587)\}\$ defined by:

$$\begin{split} &C(3k) &= u(k) + u(k-2) + u(k-3) + u(k-5) + u(k-6) \\ &C(3k+1) = u(k) + u(k-1) + u(k-2) + u(k-3) + u(k-6) \\ &C(3k+2) = u(k) + u(k-1) + u(k-4) + u(k-6) \quad \text{ for } k = 0,1,...,195; \ u(k) = 0 \text{ for } k < 0 \end{split}$$

The code is punctured depending on the value of the CPS field as defined in 3GPP TS 44.060. Two puncturing schemes named P1 or P2 are applied in such a way that the following coded bits:

P1	$\{C(2+21j), C(5+21j), C(8+21j), C(10+21j), C(11+21j), C(14+21j), C(17+21j), C(20+21j) \text{ for } j=0,1,,27\}$ are not transmitted except $\{C(k) \text{ for } k=73,136,199,262,325,388,451,514}\}$ which are transmitted
P2	$ \{C(1+21j), C(4+21j), C(7+21j), C(9+21j), C(13+21j), C(15+21j), C(16+21j), C(19+21j) \text{ for } j=0,1,,27\} \\ \text{are not transmitted except } \{C(k) \text{ for } k=78,141,204,267,330,393,456,519} \text{ which are transmitted} $

The result is a block of 372 coded bits, $\{dc(0),dc(1),...,dc(371)\}$.

5.1.5.1.5 Interleaving

The USF, header and data are put together as one entity as described by the following rule:

$$\begin{split} c(k) &= u\text{'}(k) & \text{for } k = 0,1,...,11 \\ c(k) &= hc(k\text{-}12) & \text{for } k = 12,13,...,79 \\ c(k) &= dc(k\text{-}80) & \text{for } k = 80,81,...,451 \\ c\text{'}(n,k) &= c(n,k) & \text{for } k = 0,1,...,24 \\ c\text{'}(n,k) &= c(n,k\text{-}1) & \text{for } k = 26,27,...,81 \\ c\text{'}(n,k) &= c(n,k\text{-}2) & \text{for } k = 83,84,...,138 \end{split}$$

$$\begin{split} c'(n,k) &= c(n,k\text{-}3) & \text{for } k = 140,141,...,423 \\ \\ c'(n,k) &= c(n,k\text{-}4) & \text{for } k = 425,426,...,455 \\ \\ c'(n,25) &= q(8) & c'(n,82) = q(9) & c'(n,139) = q(10) & c'(n,424) = q(11) \end{split}$$

c(n,k) are the coded bits and q(8),q(9),...,q(11)=0,0,0,0 are four extra stealing flags

The resulting block is interleaved according to the following rule:

$$i(B,j) = c'(n,k) \quad \text{ for } k = 0,1,...,455$$

$$n = 0,1,...,N,N+1,...$$

$$B = B_0 + 4n + (k \text{ mod } 4)$$

$$j = 2((49k) \text{ mod } 57) + ((k \text{ mod } 8) \text{ div } 4)$$

5.1.5.1.6 Mapping on a burst

The mapping is given by the rule:

$$e(B,j) = i(B,j)$$
 and $e(B,59+j) = i(B,57+j)$ for $j = 0,1,...,56$

and

$$e(B+m,57) = q(2m)$$
 and $e(B+m,58) = q(2m+1)$ for $m = 0,1,2,3$

where

$$q(0),q(1),...,q(7) = 0,0,0,1,0,1,1,0.$$

Note: For a standard GPRS MS, bits q(0),...,q(7) indicates that the USF is coded as for CS-4.

5.1.5.2 Uplink (MCS-1 UL)

5.1.5.2.1 Block constitution

The message delivered to the encoder has a fixed size of 209 information bits $\{d(0),d(1),...,d(208)\}$. It is delivered on a burst mode.

5.1.5.2.2 Header coding

a) Parity bits:

Eight header parity bits p(0),p(1),...,p(7) are defined in such a way that in GF(2) the binary polynomial:

$$d(0)D^{38} + ... + d(30)D^{8} + p(0)D^{7} + ... + p(7)$$
, when divided by:

 $D^8 + D^6 + D^3 + 1$, yields a remainder equal to:

$$D^7 + D^6 + D^5 + D^4 + D^3 + D^2 + D + 1$$
.

b) Tail biting:

u"(k)

The six last header parity bits are added before information and parity bits, the result being a block of 45 bits $\{u"(-6),...,u"(0),u"(1),...,u"(38)\}$ with six negative indexes:

$$u''(k-6) = p(k+2)$$
 for $k = 0,1,...,5$ $u''(k) = d(k)$ for $k = 0,1,...,30$

= p(k-31) for k = 31,32,...,38

c) Convolutional encoder

This block of 45 bits $\{u''(-6),...,u''(0),u''(1),...,u''(38)\}$ is encoded with the 1/3 rate convolutional mother code defined by the polynomials:

$$G4 = 1 + D^2 + D^3 + D^5 + D^6$$

$$G7 = 1 + D + D^2 + D^3 + D^6$$

$$G5 = 1 + D + D^4 + D^6$$

This results in a block of 117 coded bits: $\{C(0),C(1),...,C(116)\}\$ defined by:

$$C(3k) = u''(k) + u''(k-2) + u''(k-3) + u''(k-5) + u''(k-6)$$

$$C(3k+1) = u''(k) + u''(k-1) + u''(k-2) + u''(k-3) + u''(k-6)$$

$$C(3k+2) = u''(k) + u''(k-1) + u''(k-4) + u''(k-6)$$
 for $k = 0,1,...,38$

The code is punctured in such a way that the following coded bits:

$$\{C(5+12j), C(8+12j), C(11+12j), \text{ for } j=0,1,...,8\} \text{ as well as } \{C(k) \text{ for } k=26,38,50,62,74,86,98,110,113,116}\} \text{ are not transmitted}$$

The result is a block of 80 coded bits, $\{hc(0),hc(1),...,hc(79)\}$.

5.1.5.2.3 Data coding

The data coding is the same as for downlink as specified in subclause 5.1.5.1.4.

5.1.5.2.4 Interleaving

The header and data are put together as one entity as described by the following rule:

$$c(k) = hc(k)$$
 for $k = 0,1,...,79$

$$c(k) = dc(k-80)$$
 for $k = 80,81,...,451$

$$c'(n,k) = c(n,k)$$
 for $k = 0,1,...,24$

$$c'(n,k) = c(n,k-1)$$
 for $k = 26,27,...,81$

$$c'(n,k) = c(n,k-2)$$
 for $k = 83,84,...,138$

$$c'(n,k) = c(n,k-3)$$
 for $k = 140,141,...,423$

$$c'(n,k) = c(n,k-4)$$
 for $k = 425,426,...,455$

$$c'(n,25) = q(8) \qquad \quad c'(n,82) = q(9) \qquad \quad c'(n,139) = q(10) \ c'(n,424) = q(11)$$

c(n,k) are the coded bits and q(8),q(9),...,q(11) = 0,0,0,0 are four extra stealing flags

The resulting block is interleaved according to the following rule:

$$i(B,j) = c'(n,k) \quad \text{ for } k = 0,1,...,455$$

$$n = 0,1,...,N,N+1,...$$

$$B = B_0 + 4n + (k \text{ mod } 4)$$

$$j = 2((49k) \text{ mod } 57) + ((k \text{ mod } 8) \text{ div } 4)$$

5.1.5.2.5 Mapping on a burst

The mapping is the same as for MCS-1 DL as specified in subclause 5.1.5.1.6.

5.1.6 Packet data block type 6 (MCS-2)

5.1.6.1 Downlink (MCS-2 DL)

5.1.6.1.1 Block constitution

The message delivered to the encoder has a fixed size of 257 information bits $\{d(0),d(1),...,d(256)\}$. It is delivered on a burst mode.

5.1.6.1.2 USF precoding

The first three bits d(0),d(1),d(2) are block coded into twelve bits u'(0),u'(1),...,u'(11) as for Packet data block type 4 (CS-4) in subclause 5.1.4.2.

5.1.6.1.3 Header coding

A block of 68 coded bits $\{hc(0),hc(1),...,hc(67)\}$ is derived from $\{d(3),d(4),...,d(30)\}$ as described for MCS-1 DL in subclause 5.1.5.1.3.

5.1.6.1.4 Data coding

a) Parity bits:

Twelve data parity bits p(0),p(1),...,p(11) are defined in such a way that in GF(2) the binary polynomial:

$$d(31)D^{237} + ... + d(256)D^{12} + p(0)D^{11} + ... + p(11)$$
, when divided by:

$$D^{12} + D^{11} + D^{10} + D^8 + D^5 + D^4 + 1$$
, yields a remainder equal to:

$$D^{11} + D^{10} + D^9 + D^8 + D^7 + D^6 + D^5 + D^4 + D^3 + D^2 + D + 1$$
.

b) Tail bits:

Six tail bits equal to 0 are added to the information and parity bits, the result being a block of 244 bits $\{u(0),u(1),...,u(243)\}$:

$$u(k) = d(k+31)$$
 for $k = 0,1,...,225$

$$u(k) = p(k-226)$$
 for $k = 226,227,...,237$

$$u(k) = 0$$
 for $k = 238,239,...,243$ (tail bits)

c) Convolutional encoder

This block of 244 bits $\{u(0),u(1),...,u(243)\}$ is encoded with the 1/3 rate convolutional mother code defined by the polynomials:

$$G4 = 1 + D^2 + D^3 + D^5 + D^6$$

$$G7 = 1 + D + D^2 + D^3 + D^6$$

$$G5 = 1 + D + D^4 + D^6$$

This results in a block of 732 coded bits: $\{C(0),C(1),...,C(731)\}\$ defined by:

$$C(3k) = u(k) + u(k-2) + u(k-3) + u(k-5) + u(k-6)$$

$$C(3k+1) = u(k) + u(k-1) + u(k-2) + u(k-3) + u(k-6)$$

$$C(3k+2) = u(k) + u(k-1) + u(k-4) + u(k-6)$$
 for $k = 0,1,...,243$; $u(k) = 0$ for $k < 0$

The code is punctured depending on the value of the CPS field as defined in 3GPP TS 44.060. Two puncturing schemes named P1 or P2 are applied in such a way that the following coded bits:

P1	$\{C(6j), C(1+6j), C(5+6j) \text{ for } j = 0,1,,121\}$ and $\{C(k) \text{ for } k = 57,171,285,399,513,627\}$ are transmitted
P2	$\{C(2+6j), C(3+6j), C(4+6j) \text{ for } j = 0,1,,121\}$ and $\{C(k) \text{ for } k = 108,222,336,450,564,678\}$ are
	transmitted

The result is a block of 372 coded bits, $\{dc(0),dc(1),...,dc(371)\}$.

5.1.6.1.5 Interleaving

The interleaving is done as specified for MCS-1 DL in subclause 5.1.5.1.5.

5.1.6.1.6 Mapping on a burst

The mapping is done as specified for MCS-1 DL in subclause 5.1.5.1.6.

5.1.6.2 Uplink (MCS-2 UL)

5.1.6.2.1 Block constitution

The message delivered to the encoder has a fixed size of 257 information bits $\{d(0),d(1),...,d(256)\}$. It is delivered on a burst mode.

5.1.6.2.2 Header coding

A block of 80 coded bits $\{hc(0),hc(1),...,hc(79)\}$ is derived from $\{d(0),d(1),...,d(30)\}$ as described for MCS-1 UL in subclause 5.1.5.2.2.

5.1.6.2.3 Data coding

The data coding is the same as for downlink as specified in subclause 5.1.6.1.4..

5.1.6.2.4 Interleaving

The interleaving is the same as for MCS-1 UL as specified in subclause 5.1.5.2.4...

5.1.6.2.5 Mapping on a burst

The mapping is the same as for MCS-1 DL as specified in subclause 5.1.5.1.6.

5.1.7 Packet data block type 7 (MCS-3)

5.1.7.1 Downlink (MCS-3 DL)

5.1.7.1.1 Block constitution

The message delivered to the encoder has a fixed size of 329 information bits $\{d(0),d(1),...,d(328)\}$. It is delivered on a burst mode.

5.1.7.1.2 USF precoding

The first three bits d(0),d(1),d(2) are block coded into twelve bits u'(0),u'(1),...,u'(11) as for Packet data block type 4 (CS-4) in subclause 5.1.4.2.

5.1.7.1.3 Header coding

A block of 68 coded bits $\{hc(0),hc(1),...,hc(67)\}$ is derived from $\{d(3),d(4),...,d(30)\}$ as described for MCS-1 DL in subclause 5.1.5.1.3.

5.1.7.1.4 Data coding

a) Parity bits:

Twelve data parity bits p(0),p(1),...,p(11) are defined in such a way that in GF(2) the binary polynomial:

$$d(31)D^{309} + ... + d(328)D^{12} + p(0)D^{11} + ... + p(11)$$
, when divided by:
 $D^{12} + D^{11} + D^{10} + D^8 + D^5 + D^4 + 1$, yields a remainder equal to:

$$D^{11} + D^{10} + D^9 + D^8 + D^7 + D^6 + D^5 + D^4 + D^3 + D^2 + D + 1.$$

b) Tail bits:

Six tail bits equal to 0 are added to the information and parity bits, the result being a block of 316 bits $\{u(0),u(1),...,u(315)\}$:

$$\begin{array}{ll} u(k) &= d(k{+}31) & \text{ for } k = 0{,}1{,}...{,}297 \\ \\ u(k) &= p(k{-}298) & \text{ for } k = 298{,}299{,}...{,}309 \\ \\ u(k) &= 0 & \text{ for } k = 310{,}311{,}...{,}315 \text{ (tail bits)} \end{array}$$

c) Convolutional encoder

This block of 316 bits $\{u(0),u(1),...,u(315)\}$ is encoded with the 1/3 rate convolutional mother code defined by the polynomials:

$$G4 = 1 + D^{2} + D^{3} + D^{5} + D^{6}$$

$$G7 = 1 + D + D^{2} + D^{3} + D^{6}$$

$$G5 = 1 + D + D^{4} + D^{6}$$

This results in a block of 948 coded bits: $\{C(0),C(1),...,C(947)\}\$ defined by:

$$\begin{split} &C(3k) &= u(k) + u(k-2) + u(k-3) + u(k-5) + u(k-6) \\ &C(3k+1) = u(k) + u(k-1) + u(k-2) + u(k-3) + u(k-6) \\ &C(3k+2) = u(k) + u(k-1) + u(k-4) + u(k-6) \qquad \text{for } k = 0,1,...,315; \ u(k) = 0 \ \text{for } k < 0 \end{split}$$

The code is punctured depending on the value of the CPS field as defined in 3GPP TS 44.060. Three puncturing schemes named P1, P2 or P3 are applied in such a way that the following coded bits:

P1	$\{C(18j), C(1+18j), C(3+18j), C(6+18j), C(10+18j), C(14+18j), C(17+18j) \text{ for } j = 0,1,,51\}$
	and {C(k) for k = 241,475,709, 936,937,939,942,946 } are transmitted
P2	$\{C(2+18j), C(5+18j), C(6+18j), C(7+18j), C(9+18j), C(12+18j), C(16+18j) \text{ for } j=0,1,,51\}$
	and {C(k) for k = 121,355,589, 938,941,942,943,945 } are transmitted
P3	$\{C(18j), C(4+18j), C(8+18j), C(11+18j), C(12+18j), C(13+18j), C(15+18j) \text{ for } j = 0,1,,51\}$
	and {C(k) for k = 181,289,523,811, 936,940,944,947 } are transmitted

The result is a block of 372 coded bits, $\{dc(0),dc(1),...,dc(371)\}$.

5.1.7.1.5 Interleaving

The interleaving is done as specified for MCS-1 DL in subclause 5.1.5.1.5.

5.1.7.1.6 Mapping on a burst

The mapping is done as specified for MCS-1 DL in subclause 5.1.5.1.6.

5.1.7.2 Uplink (MCS-3 UL)

5.1.7.2.1 Block constitution

The message delivered to the encoder has a fixed size of 329 information bits $\{d(0),d(1),...,d(328)\}$. It is delivered on a burst mode.

5.1.7.2.2 Header coding

A block of 80 coded bits $\{hc(0),hc(1),...,hc(79)\}$ is derived from $\{d(0),d(1),...,d(30)\}$ as described for MCS-1 UL in subclause 5.1.5.2.2.

5.1.7.2.3 Data coding

The data coding is the same as for downlink as specified in subclause 5.1.7.1.4..

5.1.7.2.4 Interleaving

The interleaving is the same as for MCS-1 UL as specified in subclause 5.1.5.2.4.

5.1.7.2.5 Mapping on a burst

The mapping is the same as for MCS-1 DL as specified in subclause 5.1.5.1.6.

5.1.8 Packet data block type 8 (MCS-4)

5.1.8.1 Downlink (MCS-4 DL)

5.1.8.1.1 Block constitution

The message delivered to the encoder has a fixed size of 385 information bits $\{d(0),d(1),...,d(384)\}$. It is delivered on a burst mode.

5.1.8.1.2 USF precoding

The first three bits d(0),d(1),d(2) are block coded into twelve bits u'(0),u'(1),...,u'(11) as for Packet data block type 4 (CS-4) in subclause 5.1.4.2.

5.1.8.1.3 Header coding

A block of 68 coded bits $\{hc(0),hc(1),...,hc(67)\}$ is derived from $\{d(3),d(4),...,d(30)\}$ as described for MCS-1 DL in subclause 5.1.5.1.3.

5.1.8.1.4 Data coding

a) Parity bits:

Twelve data parity bits p(0),p(1),...,p(11) are defined in such a way that in GF(2) the binary polynomial:

$$d(31)D^{365} + ... + d(384)D^{12} + p(0)D^{11} + ... + p(11)$$
, when divided by:

$$D^{12} + D^{11} + D^{10} + D^8 + D^5 + D^4 + 1$$
, yields a remainder equal to:

$$D^{11} + D^{10} + D^9 + D^8 + D^7 + D^6 + D^5 + D^4 + D^3 + D^2 + D + 1$$
.

b) Tail bits:

Six tail bits equal to 0 are added to the information and parity bits, the result being a block of 372 bits $\{u(0),u(1),...,u(371)\}$:

$$u(k) = d(k+31)$$
 for $k = 0,1,...,353$

$$u(k) = p(k-354)$$
 for $k = 354,355,...,365$

$$u(k) = 0$$
 for $k = 366,367,...,371$ (tail bits)

c) Convolutional encoder

This block of 372 bits $\{u(0),u(1),...,u(371)\}$ is encoded with the 1/3 rate convolutional mother code defined by the polynomials:

$$G4 = 1 + D^2 + D^3 + D^5 + D^6$$

$$G7 = 1 + D + D^2 + D^3 + D^6$$

$$G5 = 1 + D + D^4 + D^6$$

This results in a block of 1116 coded bits: $\{C(0),C(1),...,C(1115)\}\$ defined by:

$$C(3k) = u(k) + u(k-2) + u(k-3) + u(k-5) + u(k-6)$$

$$C(3k+1) = u(k) + u(k-1) + u(k-2) + u(k-3) + u(k-6)$$

$$C(3k+2) = u(k) + u(k-1) + u(k-4) + u(k-6)$$
 for $k = 0,1,..., 371$; $u(k) = 0$ for $k < 0$

The code is punctured depending on the value of the CPS field as defined in 3GPP TS 44.060. Three puncturing schemes named P1, P2 or P3 are applied in such a way that the following coded bits:

P1	$\{C(3j) \text{ for } j = 0,1,,371\}$ are transmitted
P2	$\{C(1+3j) \text{ for } j = 0,1,,371\}$ are transmitted
P3	$\{C(2+3j) \text{ for } j = 0,1,,371\}$ are transmitted

The result is a block of 372 coded bits, $\{dc(0),dc(1),...,dc(371)\}$.

5.1.8.1.5 Interleaving

The interleaving is done as specified for MCS-1 DL in subclause 5.1.5.1.5.

5.1.8.1.6 Mapping on a burst

The mapping is done as specified for MCS-1 DL in subclause 5.1.5.1.6.

5.1.8.2 Uplink (MCS-4 UL)

5.1.8.2.1 Block constitution

The message delivered to the encoder has a fixed size of 385 information bits $\{d(0),d(1),...,d(384)\}$. It is delivered on a burst mode.

5.1.8.2.2 Header coding

A block of 80 coded bits $\{hc(0),hc(1),...,hc(79)\}$ is derived from $\{d(0),d(1),...,d(30)\}$ as described for MCS-1 UL in subclause 5.1.5.2.2.

5.1.8.2.3 Data coding

The data coding is the same as for downlink as specified in subclause 5.1.8.1.4.

5.1.8.2.4 Interleaving

The interleaving is the same as for MCS-1 UL as specified in subclause 5.1.5.2.4.

5.1.8.2.5 Mapping on a burst

The mapping is the same as for MCS-1 DL as specified in subclause 5.1.5.1.6.

5.1.9 Packet data block type 9 (MCS-5)

5.1.9.1 Downlink (MCS-5 DL)

5.1.9.1.1 Block constitution

The message delivered to the encoder has a fixed size of 478 information bits $\{d(0),d(1),...,d(477)\}$. It is delivered on a burst mode.

5.1.9.1.2 USF precoding

The first three bits d(0),d(1),d(2) are block coded into 36 bits u'(0),u'(1),...,u'(35) according to the following table:

d(0),d(1),d(2)	u'(0),u'(1),,u'(35)							
	burst 0	burst 1	burst 2	burst 3				
000	000000000	000000000	000000000	000000000				
001	111110000	111100000	111111000	111110001				
010	111001110	111011100	110000110	110001100				
011	100111100	11000011	101110111	001001111				
100	000110011	001011010	100001101	111111110				
101	110101011	000110101	011101011	100101011				
110	001001101	101111111	011010001	001110100				
111	011010111	010101111	000111110	010010011				

5.1.9.1.3 Header coding

a) Parity bits:

Eight header parity bits p(0),p(1),...,p(7) are defined in such a way that in GF(2) the binary polynomial:

$$d(3)D^{32} + ... + d(27)D^8 + p(0)D^7 + ... + p(7)$$
, when divided by:

 $D^8 + D^6 + D^3 + 1$, yields a remainder equal to:

$$D^7 + D^6 + D^5 + D^4 + D^3 + D^2 + D + 1$$
.

b) Tail biting:

The six last header parity bits are added before information and parity bits, the result being a block of 39 bits $\{u"(-6),...,u"(0),u"(1),...,u"(32)\}$ with six negative indexes:

$$u''(k-6) = p(k+2)$$
 for $k = 0,1,...,5$

$$u''(k) = d(k+3)$$
 for $k = 0,1,...,24$

$$u''(k) = p(k-25)$$
 for $k = 25,26,...,32$

c) Convolutional encoder

This block of 39 bits $\{u''(-6),...,u''(0),u''(1),...,u''(32)\}$ is encoded with the 1/3 rate convolutional mother code defined by the polynomials:

$$G4 = 1 + D^2 + D^3 + D^5 + D^6$$

$$G7 = 1 + D + D^2 + D^3 + D^6$$

$$G5 = 1 + D + D^4 + D^6$$

This results in a block of 99 coded bits: $\{C(0),C(1),...,C(98)\}$ defined by:

$$C(3k) = u''(k) + u''(k-2) + u''(k-3) + u''(k-5) + u''(k-6)$$

$$C(3k+1) = u''(k) + u''(k-1) + u''(k-2) + u''(k-3) + u''(k-6)$$

C(3k+2) = u''(k) + u''(k-1) + u''(k-4) + u''(k-6) for k = 0,1,...,32

A spare bit is added at the end of this block:

$$hc(k) = C(k)$$
 for $k = 0,1,...,98$
 $hc(99) = C(98)$

The result is a block of 100 coded bits, $\{hc(0),hc(1),...,hc(99)\}$.

5.1.9.1.4 Data coding

a) Parity bits:

Twelve data parity bits p(0), p(1), ..., p(11) are defined in such a way that in GF(2) the binary polynomial:

$$d(28)D^{461} + ... + d(477)D^{12} + p(0)D^{11} + ... + p(11), \text{ when divided by:}$$

$$D^{12} + D^{11} + D^{10} + D^8 + D^5 + D^4 + 1, \text{ yields a remainder equal to:}$$

$$D^{11} + D^{10} + D^9 + D^8 + D^7 + D^6 + D^5 + D^4 + D^3 + D^2 + D + 1.$$

b) Tail bits:

Six tail bits equal to 0 are added to the information and parity bits, the result being a block of 468 bits $\{u(0),u(1),...,u(467)\}$:

$$u(k) = d(k+28)$$
 for $k = 0,1,...,449$ $u(k) = p(k-450)$ for $k = 450,451,...,461$ $u(k) = 0$ for $k = 462,463,...,467$ (tail bits)

c) Convolutional encoder

This block of 468 bits $\{u(0),u(1),...,u(467)\}$ is encoded with the 1/3 rate convolutional mother code defined by the polynomials:

$$G4 = 1 + D^{2} + D^{3} + D^{5} + D^{6}$$

$$G7 = 1 + D + D^{2} + D^{3} + D^{6}$$

$$G5 = 1 + D + D^{4} + D^{6}$$

This results in a block of 1404 coded bits: $\{C(0),C(1),...,C(1403)\}\$ defined by:

$$\begin{split} &C(3k) &= u(k) + u(k-2) + u(k-3) + u(k-5) + u(k-6) \\ &C(3k+1) = u(k) + u(k-1) + u(k-2) + u(k-3) + u(k-6) \\ &C(3k+2) = u(k) + u(k-1) + u(k-4) + u(k-6) \qquad \text{for } k = 0,1,...,467; \ u(k) = 0 \ \text{for } k < 0 \end{split}$$

The code is punctured depending on the value of the CPS field as defined in 3GPP TS 44.060. Two puncturing schemes named P1 or P2 are applied in such a way that the following coded bits:

P1	$\{C(2+9j) \text{ for } j = 0,1,,153\}$ as well as $\{C(1388+3j) \text{ for } j = 0,1,,5\}$ are not transmitted
	except $\{C(k) \text{ for } k = 47,371,695,1019\}$ which are transmitted
P2	$\{C(1+9j) \text{ for } j = 0,1,,153\}$ as well as $\{C(1387+3j) \text{ for } j = 0,1,,5\}$ are not transmitted
	except $\{C(k) \text{ for } k = 136,460,784,1108} \text{ which are transmitted}$

The result is a block of 1248 coded bits, $\{dc(0),dc(1),...,dc(1247)\}$.

5.1.9.1.5 Interleaving

a) Header

The 100 coded bits of the header, {hc(0),hc(1),...,hc(99)}, are interleaved according to the following rule:

$$hi(j) = hc(k)$$
 for $k = 0,1,...,99$
 $j = 25(k \mod 4) + ((17k) \mod 25)$

b) Data

There is no closed expression describing the interleaver, but it has been derived taking the following approach:

1. A block interleaver with a 1392 bit block size is defined:

The kth input data bit is mapped to the jth bit of the Bth burst, where

$$k = 0,...,1391$$

$$B = mod(k,4)$$

$$d = mod(k,464)$$

$$j = 3*(2mod(25d,58) + div(mod(d,8),4) + 2(-1)^{B}div(d,232)) + mod(k,3)$$

- 2. The data bit positions being mapped onto header positions in the interleaved block are removed (the header positions are j = 156,157,...,191 when the header is placed next to the training sequence. This leaves 1248 bits in the mapping.
- 3. The bits are renumbered to fill out the gaps both in j and k, without changing the relative order

The resulting interleaver transform the block of 1248 coded bits, $\{dc(0),dc(1),...,dc(1247)\}$ into a block of 1248 interleaved bits, $\{di(0),di(1),...,di(1247)\}$.

$$di(j') = dc(k')$$
 for $k' = 0,1,...,1247$

(An explicit relation between j' and k' is given in table 15)

5.1.9.1.6 Mapping on a burst

a) Straightforward Mapping

The mapping is given by the rule:

$$\begin{split} e(B,j) &= di(312B+j) & \text{for } j = 0,1,...,155 \\ e(B,j) &= hi(25B+j-156) & \text{for } j = 156,157,...,167 \\ e(B,j) &= u'(9B+j-168) & \text{for } j = 168,169,...,173 \\ e(B,j) &= q(2B+j-174) & \text{for } j = 174,175 \\ e(B,j) &= u'(9B+j-170) & \text{for } j = 176,177,178 \\ e(B,j) &= hi(25B+j-167) & \text{for } j = 179,180,...,191 \\ e(B,j) &= di(312B+j-36) & \text{for } j = 192,193,...,347 \\ \end{split}$$

where

q(0),q(1),...,q(7) = 0,0,0,0,0,0,0,0,0 identifies the coding scheme MCS-5 or MCS-6.

b) Bit swapping

After this mapping the following bits are swapped:

For B = 0,1,2,3,

Swap e(B,142) with e(B,155)

Swap e(B,144) with e(B,158)

Swap e(B,145) with e(B,161)

Swap e(B,147) with e(B,164)

Swap e(B,148) with e(B,167)

Swap e(B,150) with e(B,170)

Swap e(B,151) with e(B,173)

Swap e(B,176) with e(B,195)

Swap e(B,179) with e(B,196)

Swap e(B,182) with e(B,198)

Swap e(B,185) with e(B,199)

Swap e(B,188) with e(B,201)

Swap e(B,191) with e(B,202)

Swap e(B,194) with e(B,204).

5.1.9.2 Uplink (MCS-5 UL)

5.1.9.2.1 Block constitution

The message delivered to the encoder has a fixed size of 487 information bits $\{d(0),d(1),...,d(486)\}$. It is delivered on a burst mode.

5.1.9.2.2 Header coding

a) Parity bits:

Eight header parity bits p(0),p(1),...,p(7) are defined in such a way that in GF(2) the binary polynomial:

 $d(0)D^{44} + ... + d(36)D^8 + p(0)D^7 + ... + p(7)$, when divided by:

 $D^8 + D^6 + D^3 + 1$, yields a remainder equal to:

$$D^7 + D^6 + D^5 + D^4 + D^3 + D^2 + D + 1$$
.

b) Tail biting:

The six last header parity bits are added before information and parity bits, the result being a block of 51 bits $\{u"(-6),...,u"(0),u"(1),...,u"(44)\}$ with six negative indexes:

$$u''(k-6) = p(k+2)$$
 for $k = 0,1,...,5$

$$u''(k) = d(k)$$
 for $k = 0,1,...,36$

$$u''(k) = p(k-37)$$
 for $k = 37,38,...,44$

c) Convolutional encoder

This block of 51 bits $\{u''(-6),...,u''(0),u''(1),...,u''(44)\}$ is encoded with the 1/3 rate convolutional mother code defined by the polynomials:

$$G4 = 1 + D^2 + D^3 + D^5 + D^6$$

$$G7 = 1 + D + D^2 + D^3 + D^6$$

$$G5 = 1 + D + D^4 + D^6$$

This results in a block of 135 coded bits: $\{C(0),C(1),...,C(134)\}\$ defined by:

$$C(3k) = u''(k) + u''(k-2) + u''(k-3) + u''(k-5) + u''(k-6)$$

$$C(3k+1) = u''(k) + u''(k-1) + u''(k-2) + u''(k-3) + u''(k-6)$$

$$C(3k+2) = u''(k) + u''(k-1) + u''(k-4) + u''(k-6)$$
 for $k = 0,1,...,44$

The code is punctured in such a way that the following coded bits:

$$hc(k) = C(k)$$
 for $k = 0, 1, ..., 134$

$$hc(135) = C(134)$$

The result is a block of 136 coded bits, $\{hc(0),hc(1),...,hc(135)\}$.

5.1.9.2.3 Data coding

The data coding is the same as for downlink as specified in subclause 5.1.9.1.4 where bits $\{d(28),d(29),...,d(477)\}$ are replaced by bits $\{d(37),d(38),...,d(486)\}$.

5.1.9.2.4 Interleaving

a) Header

The 136 coded bits of the header, {hc(0),hc(1),...,hc(135)}, are interleaved according to the following rule:

$$hi(j) = hc(k)$$
 for $k = 0,1,...,135$
$$j = 34(k \mod 4) + 2((11k) \mod 17) + [(k \mod 8)/4]$$

b) Data

The data interleaving is the same as for MCS-5 DL as specified in subclause 5.1.9.1.5.

5.1.9.2.5 Mapping on a burst

a) Straightforward Mapping

The mapping is given by the rule:

For
$$B=0,1,2,3$$
, let

$$e(B,j) = di(312B+j)$$
 for $j = 0,1,...,155$

$$e(B,j) = hi(34B+j-156)$$
 for $j = 156,157,...,173$

$$e(B,j) = q(2B+j-174)$$
 for $j = 174,175$

$$e(B,j) = hi(34B+j-158)$$
 for $j = 176,177,...,191$

$$e(B,j) = di(312B+j-36)$$
 for $j = 192,193,...,347$

where

q(0),q(1),...,q(7) = 0,0,0,0,0,0,0,0,0 identifies the coding scheme MCS-5 or MCS-6.

b) Bit swapping

The bit swapping is the same as for MCS-5 DL as specified in subclause 5.1.9.1.6.

5.1.10 Packet data block type 10 (MCS-6)

5.1.10.1 Downlink (MCS-6 DL)

5.1.10.1.1 Block constitution

The message delivered to the encoder has a fixed size of 622 information bits $\{d(0),d(1),...,d(621)\}$. It is delivered on a burst mode.

5.1.10.1.2 USF precoding

A block of 36 bits $\{u'(0),u'(1),...,u'(35)\}$ is derived from $\{d(0),d(1),d(2)\}$ as described for MCS-5 DL in subclause 5.1.9.1.2.

5.1.10.1.3 Header coding

A block of 100 coded bits $\{hc(0),hc(1),...,hc(99)\}$ is derived from $\{d(3),d(4),...,d(27)\}$ as described for MCS-5 DL in subclause 5.1.9.1.3.

5.1.10.1.4 Data coding

a) Parity bits:

Twelve data parity bits p(0),p(1),...,p(11) are defined in such a way that in GF(2) the binary polynomial:

$$d(28)D^{605} + ... + d(621)D^{12} + p(0)D^{11} + ... + p(11), \text{ when divided by:}$$

$$D^{12} + D^{11} + D^{10} + D^8 + D^5 + D^4 + 1, \text{ yields a remainder equal to:}$$

$$D^{11} + D^{10} + D^9 + D^8 + D^7 + D^6 + D^5 + D^4 + D^3 + D^2 + D + 1$$
.

b) Tail bits:

Six tail bits equal to 0 are added to the information and parity bits, the result being a block of 612 bits $\{u(0),u(1),...,u(611)\}$:

$$u(k) = d(k+28)$$
 for $k = 0,1,...,593$ $u(k) = p(k-594)$ for $k = 594,595,...,605$ $u(k) = 0$ for $k = 606,607,...,611$ (tail bits)

c) Convolutional encoder

This block of 612 bits $\{u(0),u(1),...,u(611)\}$ is encoded with the 1/3 rate convolutional mother code defined by the polynomials:

$$G4 = 1 + D^{2} + D^{3} + D^{5} + D^{6}$$

$$G7 = 1 + D + D^{2} + D^{3} + D^{6}$$

$$G5 = 1 + D + D^{4} + D^{6}$$

This results in a block of 1836 coded bits: $\{C(0),C(1),...,C(1835)\}\$ defined by:

$$\begin{split} &C(3k) &= u(k) + u(k-2) + u(k-3) + u(k-5) + u(k-6) \\ &C(3k+1) = u(k) + u(k-1) + u(k-2) + u(k-3) + u(k-6) \\ &C(3k+2) = u(k) + u(k-1) + u(k-4) + u(k-6) \quad \text{ for } k = 0,1,...,611; \ u(k) = 0 \text{ for } k < 0 \end{split}$$

The code is punctured depending on the value of the CPS field as defined in 3GPP TS 44.060. Two puncturing schemes named P1 or P2 are applied in such a way that the following coded bits:

86

P1	$ \{C(2+3j) \text{ for } j=0,1,,611\} \text{ are not transmitted except } \{C(k) \text{ for } k=32,98,164,230,296,428,494,560}, \\ 626,692,824,890,956,1022,1088,1220,1286,1352,1418,1484,1616,1682,1748,1814} \text{ which are transmitted} $
P2	$\{C(1+3j) \text{ for } j=0,1,,611\}$ are not transmitted except $\{C(k) \text{ for } k=16,82,148,214,280,412,478,544,610,676,808,874,940,1006,1072,1204,1270,1336,1402,1468,1600,1666,1732,1798} \text{ which are transmitted}$

The result is a block of 1248 coded bits, $\{dc(0),dc(1),...,dc(1247)\}$.

5.1.10.1.5 Interleaving

The interleaving is done as specified for MCS-5 DL in subclause 5.1.9.1.5.

5.1.10.1.6 Mapping on a burst

The mapping is done as specified for MCS-5 DL in subclause 5.1.9.1.6.

5.1.10.2 Uplink (MCS-6 UL)

5.1.10.2.1 Block constitution

The message delivered to the encoder has a fixed size of 631 information bits $\{d(0),d(1),...,d(630)\}$. It is delivered on a burst mode.

5.1.10.2.2 Header coding

A block of 136 coded bits $\{hc(0),hc(1),...,hc(135)\}$ is derived from $\{d(0),d(1),...,d(36)\}$ as described for MCS-5 UL in subclause 5.1.9.2.2.

5.1.10.2.3 Data coding

The data coding is the same as for downlink as specified in subclause 5.1.10.1.4 where bits $\{d(28),d(29),...,d(621)\}$ are replaced by bits $\{d(37),d(38),...,d(630)\}$.

5.1.10.2.4 Interleaving

The interleaving is the same as for MCS-5 UL as specified in subclause 5.1.9.2.4.

5.1.10.2.5 Mapping on a burst

The mapping is the same as for MCS-5 UL as specified in subclause 5.1.9.2.5.

5.1.11 Packet data block type 11 (MCS-7)

5.1.11.1 Downlink (MCS-7 DL)

5.1.11.1.1 Block constitution

The message delivered to the encoder has a fixed size of 940 information bits $\{d(0),d(1),...,d(939)\}$. It is delivered on a burst mode.

5.1.11.1.2 USF precoding

A block of 36 bits $\{u'(0), u'(1), ..., u'(35)\}$ is derived from $\{d(0), d(1), d(2)\}$ as described for MCS-5 DL in subclause 5.1.9.1.2.

5.1.11.1.3 Header coding

a) Parity bits:

Eight header parity bits p(0),p(1),...,p(7) are defined in such a way that in GF(2) the binary polynomial:

$$d(3)D^{44} + ... + d(39)D^{8} + p(0)D^{7} + ... + p(7)$$
, when divided by:

 $D^8 + D^6 + D^3 + 1$, yields a remainder equal to:

$$D^7 + D^6 + D^5 + D^4 + D^3 + D^2 + D + 1$$
.

b) Tail biting:

The six last header parity bits are added before information and parity bits, the result being a block of 51 bits $\{u''(-6),...,u''(0),u''(1),...,u''(44)\}$ with six negative indexes:

$$u''(k-6) = p(k+2)$$
 for $k = 0,1,...,5$

$$u''(k) = d(k+3)$$
 for $k = 0,1,...,36$

$$u''(k) = p(k-37)$$
 for $k = 37,38,...,44$

c) Convolutional encoder

This block of 51 bits $\{u''(-6),...,u''(0),u''(1),...,u''(44)\}$ is encoded with the 1/3 rate convolutional mother code defined by the polynomials:

$$G4 = 1 + D^2 + D^3 + D^5 + D^6$$

$$G7 = 1 + D + D^2 + D^3 + D^6$$

$$G5 = 1 + D + D^4 + D^6$$

This results in a block of 135 coded bits: $\{C(0),C(1),...,C(134)\}\$ defined by:

$$C(3k) = u''(k) + u''(k-2) + u''(k-3) + u''(k-5) + u''(k-6)$$

$$C(3k+1) = u''(k) + u''(k-1) + u''(k-2) + u''(k-3) + u''(k-6)$$

$$C(3k+2) = u''(k) + u''(k-1) + u''(k-4) + u''(k-6)$$
 for $k = 0,1,...,44$

The code is punctured in such a way that the following coded bits:

$$\{C(k) \text{ for } k = 14,23,33,50,59,69,86,95,105,122,131\}$$
 are not transmitted

The result is a block of 124 coded bits, $\{hc(0),hc(1),...,hc(123)\}$.

5.1.11.1.4 Data coding

- I) First half:
- a) Parity bits:

Twelve data parity bits p(0), p(1), ..., p(11) are defined in such a way that in GF(2) the binary polynomial:

$$d(40)D^{461} + ... + d(489)D^{12} + p(0)D^{11} + ... + p(11)$$
, when divided by:

$$D^{12} + D^{11} + D^{10} + D^8 + D^5 + D^4 + 1$$
, yields a remainder equal to:

$$D^{11} + D^{10} + D^9 + D^8 + D^7 + D^6 + D^5 + D^4 + D^3 + D^2 + D + 1$$
.

b) Tail bits:

Six tail bits equal to 0 are added to the information and parity bits, the result being a block of 468 bits $\{u(0),u(1),...,u(467)\}$:

$$u(k) = d(k+40)$$
 for $k = 0,1,...,449$

$$u(k) = p(k-450)$$
 for $k = 450,451,...,461$

$$u(k) = 0$$
 for $k = 462,463,...,467$ (tail bits)

c) Convolutional encoder

This block of 468 bits $\{u(0),u(1),...,u(467)\}$ is encoded with the 1/3 rate convolutional mother code defined by the polynomials:

$$G4 = 1 + D^2 + D^3 + D^5 + D^6$$

$$G7 = 1 + D + D^2 + D^3 + D^6$$

$$G5 = 1 + D + D^4 + D^6$$

This results in a block of 1404 coded bits: $\{C(0),C(1),...,C(1403)\}\$ defined by:

$$C(3k) = u(k) + u(k-2) + u(k-3) + u(k-5) + u(k-6)$$

$$C(3k+1) = u(k) + u(k-1) + u(k-2) + u(k-3) + u(k-6)$$

$$C(3k+2) = u(k) + u(k-1) + u(k-4) + u(k-6)$$
 for $k = 0,1,...,467$; $u(k) = 0$ for $k < 0$

The code is punctured depending on the value of the CPS field as defined in 3GPP TS 44.060. Three puncturing schemes named P1, P2 or P3 are applied in such a way that the following coded bits:

P1	{C(18j), C(1+18j), C(4+18j), C(8+18j), C(11+18j), C(12+18j), C(13+18j), C(15+18j)
	for j = 0,1,,77} are transmitted
	except {C(k) for k = 1,19,37,235,415,595,775,955,1135,1351,1369,1387} which are not transmitted
P2	{C(2+18j), C(3+18j), C(5+18j), C(6+18j), C(10+18j), C(14+18j), C(16+18j), C(17+18j)
	for j = 0,1,,77} are transmitted
	except {C(k) for k = 16,34,52,196,376,556,736,916,1096,1366,1384,1402} which are not transmitted
P3	{C(2+18j), C(5+18j), C(6+18j), C(7+18j), C(9+18j), C(12+18j), C(13+18j), C(16+18j)
	for j = 0,1,,77} are transmitted
	except {C(k) for k = 13,31,49,301,481,661,841,1021,1201,1363,1381,1399} which are not transmitted

The result is a block of 612 coded bits, $\{c1(0),c1(1),...,c1(611)\}$.

II) Second half:

The same data coding as for first half is proceeded with bits $\{d(40),d(41),...,d(489)\}$ replaced by bits $\{d(490),d(491),...,d(939)\}$. The result is a block of 612 coded bits, $\{c2(0),c2(1),...,c2(611)\}$.

5.1.11.1.5 Interleaving

a) Header

The 124 coded bits of the header, {hc(0),hc(1),...,hc(123)}, are interleaved according to the following rule:

$$hi(j) = hc(k)$$
 for $k = 0,1,...,123$
 $j = 31(k \mod 4) + ((17k) \mod 31)$

b) Data

Data are put together as one entity as described by the following rule:

$$dc(k) = c1(k)$$
 for $k = 0,1,...,611$

dc(k) = c2(k-612) for k = 612,613,...,1223

The resulting block is interleaved according to the following rule:

$$\begin{aligned} \text{di}(j) &= \text{dc}(k) \quad \text{for } k = 0, 1, ..., 1223 \\ j &= 306(k \text{ mod } 4) + 3((44k) \text{ mod } 102 + (k \text{ div } 4) \text{ mod } 2) + (k + 2 - (k \text{ div } 408)) \text{ mod } 3 \end{aligned}$$

5.1.11.1.6 Mapping on a burst

a) Straightforward Mapping

The mapping is given by the rule:

For B=0,1,2,3, let

$$e(B,j) = di(306B+j)$$
 for $j = 0,1,...,152$

$$e(B,j) = hi(31B+j-153)$$
 for $j = 153,154,...,167$

$$e(B,j) = u'(9B+j-168)$$
 for $j = 168,169,...,173$

$$e(B,j) = q(2B+j-174)$$
 for $j = 174,175$

$$e(B,j) = u'(9B+j-170)$$
 for $j = 176,177,178$

$$e(B,j) = hi(31B+j-164)$$
 for $j = 179,180,...,194$

$$e(B,j) = di(306B+j-42)$$
 for $j = 195,196,...,347$

where

q(0),q(1),...,q(7) = 1,1,1,0,0,1,1,1 identifies the coding scheme MCS-7, MCS-8 or MCS-9.

b) Bit swapping

The bit swapping is the same as for MCS-5 DL as specified in subclause 5.1.9.1.6.

5.1.11.2 Uplink (MCS-7 UL)

5.1.11.2.1 Block constitution

The message delivered to the encoder has a fixed size of 946 information bits $\{d(0),d(1),...,d(945)\}$. It is delivered on a burst mode.

5.1.11.2.2 Header coding

a) Parity bits:

Eight header parity bits p(0),p(1),...,p(7) are defined in such a way that in GF(2) the binary polynomial:

$$d(0)D^{53} + ... + d(45)D^{8} + p(0)D^{7} + ... + p(7)$$
, when divided by:

 $D^8 + D^6 + D^3 + 1$, yields a remainder equal to:

$$D^7 + D^6 + D^5 + D^4 + D^3 + D^2 + D + 1$$
.

b) Tail biting:

The six last header parity bits are added before information and parity bits, the result being a block of 60 bits $\{u"(-6),...,u"(0),u"(1),...,u"(53)\}$ with six negative indexes:

$$u''(k-6) = p(k+2)$$
 for $k = 0,1,...,5$

$$u''(k) = d(k)$$
 for $k = 0,1,...,45$

$$u''(k) = p(k-46)$$
 for $k = 46,47,...,53$

c) Convolutional encoder

This block of 60 bits $\{u''(-6),...,u''(0),u''(1),...,u''(53)\}$ is encoded with the 1/3 rate convolutional mother code defined by the polynomials:

$$G4 = 1 + D^2 + D^3 + D^5 + D^6$$

$$G7 = 1 + D + D^2 + D^3 + D^6$$

$$G5 = 1 + D + D^4 + D^6$$

This results in a block of 162 coded bits: $\{C(0),C(1),...,C(161)\}\$ defined by:

$$C(3k) = u''(k) + u''(k-2) + u''(k-3) + u''(k-5) + u''(k-6)$$

$$C(3k+1) = u''(k) + u''(k-1) + u''(k-2) + u''(k-3) + u''(k-6)$$

$$C(3k+2) = u''(k) + u''(k-1) + u''(k-4) + u''(k-6)$$
 for $k = 0,1,...,53$

The code is punctured in such a way that the following coded bits:

$$\{C(k) \text{ for } k = 35,131\}$$
 are not transmitted

The result is a block of 160 coded bits, $\{hc(0),hc(1),...,hc(159)\}$.

5.1.11.2.3 Data coding

The data coding is the same as for downlink as specified in subclause 5.1.11.1.4 where bits $\{d(40),d(41),...,d(939)\}$ are replaced by bits $\{d(46),d(47),...,d(945)\}$.

5.1.11.2.4 Interleaving

a) Header

The 160 coded bits of the header, $\{hc(0),hc(1),...,hc(159)\}$, are interleaved according to the following rule:

$$hi(j) = hc(k)$$
 for $k = 0,1,...,159$
 $j = 40(k \mod 4) + 2((13(k \operatorname{div} 8)) \mod 20) + ((k \mod 8) \operatorname{div} 4)$

b) Data

The data interleaving is the same as for MCS-7 DL as specified in subclause 5.1.11.1.5.

5.1.11.2.5 Mapping on a burst

a) Straightforward Mapping

The mapping is given by the rule:

$$e(B,j) = di(306B+j)$$
 for $j = 0,1,...,152$

$$e(B,j) = hi(40B+j-153)$$
 for $j = 153,154,...,173$

$$e(B,j) = q(2B+j-174)$$
 for $j = 174,175$

$$e(B,j) = hi(40B+j-155)$$
 for $j = 176,177,...,194$

$$e(B,j) = di(306B+j-42)$$
 for $j = 195,196,...,347$

where

q(0),q(1),...,q(7) = 1,1,1,0,0,1,1,1 identifies the coding scheme MCS-7, MCS-8 or MCS-9.

b) Bit swapping

The bit swapping is the same as for MCS-5 DL as specified in subclause 5.1.9.1.6.

5.1.12 Packet data block type 12 (MCS-8)

5.1.12.1 Downlink (MCS-8 DL)

5.1.12.1.1 Block constitution

The message delivered to the encoder has a fixed size of 1132 information bits $\{d(0),d(1),...,d(1131)\}$. It is delivered on a burst mode.

5.1.12.1.2 USF precoding

A block of 36 bits $\{u'(0),u'(1),...,u'(35)\}$ is derived from $\{d(0),d(1),d(2)\}$ as described for MCS-5 DL in subclause 5.1.9.1.2.

5.1.12.1.3 Header coding

A block of 124 coded bits $\{hc(0),hc(1),...,hc(123)\}$ is derived from $\{d(3),d(4),...,d(39)\}$ as described for MCS-7 DL in subclause 5.1.11.1.3.

5.1.12.1.4 Data coding

- I) First half:
- a) Parity bits:

Twelve data parity bits p(0),p(1),...,p(11) are defined in such a way that in GF(2) the binary polynomial:

$$d(40)D^{557} + ... + d(585)D^{12} + p(0)D^{11} + ... + p(11), \text{ when divided by:}$$

$$D^{12} + D^{11} + D^{10} + D^8 + D^5 + D^4 + 1, \text{ yields a remainder equal to:}$$

$$D^{11} + D^{10} + D^9 + D^8 + D^7 + D^6 + D^5 + D^4 + D^3 + D^2 + D + 1$$
.

b) Tail bits:

Six tail bits equal to 0 are added to the information and parity bits, the result being a block of 564 bits $\{u(0),u(1),...,u(563)\}$:

$$\begin{array}{ll} u(k) &= d(k{+}40) & \text{ for } k = 0,1,...,545 \\ \\ u(k) &= p(k{-}546) & \text{ for } k = 546,547,...,557 \\ \\ u(k) &= 0 & \text{ for } k = 558,559,...,563 \text{ (tail bits)} \end{array}$$

c) Convolutional encoder

This block of 564 bits $\{u(0),u(1),...,u(563)\}$ is encoded with the 1/3 rate convolutional mother code defined by the polynomials:

$$G4 = 1 + D^{2} + D^{3} + D^{5} + D^{6}$$

$$G7 = 1 + D + D^{2} + D^{3} + D^{6}$$

$$G5 = 1 + D + D^{4} + D^{6}$$

This results in a block of 1692 coded bits: $\{C(0),C(1),...,C(1691)\}\$ defined by:

$$\begin{split} &C(3k) &= u(k) + u(k-2) + u(k-3) + u(k-5) + u(k-6) \\ &C(3k+1) = u(k) + u(k-1) + u(k-2) + u(k-3) + u(k-6) \\ &C(3k+2) = u(k) + u(k-1) + u(k-4) + u(k-6) \quad \text{ for } k = 0,1,....,563; \ u(k) = 0 \text{ for } k < 0 \end{split}$$

The code is punctured depending on the value of the CPS field as defined in 3GPP TS 44.060. Three puncturing schemes named P1, P2 or P3 are applied in such a way that the following coded bits:

P1	$\{C(36j), C(2+36j), C(5+36j), C(6+36j), C(10+36j), C(13+36j), C(16+36j), C(20+36j), C(23+36j), C(24+36j), C(27+36j), C(31+36j), C(35+36j), for j = 0,1,,46\}$ as well as $\{C(845)\}$ are transmitted
P2	{C(1+36j), C(4+36j), C(8+36j), C(11+36j), C(12+36j), C(15+36j), C(17+36j), C(19+36j), C(22+36j),
	$C(25+36j)$, $C(28+36j)$, $C(30+36j)$, $C(33+36j)$, for $j = 0,1,,46$ as well as $\{C(582)\}$ are transmitted
P3	{C(2+36j), C(3+36j), C(7+36j), C(9+36j), C(14+36j), C(17+36j), C(18+36j), C(21+36j), C(26+36j),
	$C(27+36j)$, $C(29+36j)$, $C(32+36j)$, $C(34+36j)$, for $j = 0,1,,46$ as well as $\{C(1156)\}$ are transmitted

The result is a block of 612 coded bits, $\{c1(0),c1(1),...,c1(611)\}$.

II) Second half:

The same data coding as for first half is proceeded with bits $\{d(40),d(41),...,d(585)\}$ replaced by bits $\{d(586),d(587),...,d(1131)\}$. The result is a block of 612 coded bits, $\{c2(0),c2(1),...,c2(611)\}$.

5.1.12.1.5 Interleaving

a) Header

The header interleaving is the same as for MCS-7 DL as specified in subclause 5.1.11.1.5.

b) Data

Data are put together as one entity as described by the following rule:

$$dc(k) = c1(k)$$
 for $k = 0,1,...,611$
 $dc(k) = c2(k-612)$ for $k = 612,613,...,1223$

The resulting block is interleaved according to the following rule:

$$\begin{aligned} \text{di}(j) &= \text{dc}(k) \quad \text{for } k = 0, 1, ..., 1223 \\ j &= 306(2(k \text{ div } 612) + (k \text{ mod } 2)) + 3((74k) \text{ mod } 102 + (k \text{ div } 2) \text{ mod } 2) + (k + 2 - (k \text{ div } 204)) \text{ mod } 3 \end{aligned}$$

5.1.12.1.6 Mapping on a burst

The mapping is the same as for MCS-7 DL as specified in subclause 5.1.11.1.6.

5.1.12.2 Uplink (MCS-8 UL)

5.1.12.2.1 Block constitution

The message delivered to the encoder has a fixed size of 1138 information bits $\{d(0),d(1),...,d(1137)\}$. It is delivered on a burst mode.

5.1.12.2.2 Header coding

A block of 160 coded bits $\{hc(0),hc(1),...,hc(159)\}$ is derived from $\{d(0),d(1),...,d(45)\}$ as described for MCS-7 UL in subclause 5.1.11.2.2.

5.1.12.2.3 Data coding

The data coding is the same as for downlink as specified in subclause 5.1.12.1.4 where bits $\{d(40), d(41), \dots, d(1131)\}$ are replaced by bits $\{d(46), d(47), \dots, d(1137)\}$.

5.1.12.2.4 Interleaving

a) Header

The header interleaving is the same as for MCS-7 UL as specified in subclause 5.1.11.2.4.

b) Data

The data interleaving is the same as for MCS-8 DL as specified in subclause 5.1.12.1.5.

5.1.12.2.5 Mapping on a burst

The mapping is the same as for MCS-7 UL as specified in subclause 5.1.11.2.5.

5.1.13 Packet data block type 13 (MCS-9)

5.1.13.1 Downlink (MCS-9 DL)

5.1.13.1.1 Block constitution

The message delivered to the encoder has a fixed size of 1228 information bits $\{d(0),d(1),...,d(1227)\}$. It is delivered on a burst mode.

5.1.13.1.2 USF precoding

A block of 36 bits $\{u'(0),u'(1),...,u'(35)\}$ is derived from $\{d(0),d(1),d(2)\}$ as described for MCS-5 DL in subclause 5.1.9.1.2.

5.1.13.1.3 Header coding

A block of 124 coded bits $\{hc(0),hc(1),...,hc(123)\}$ is derived from $\{d(3),d(4),...,d(39)\}$ as described for MCS-7 DL in subclause 5.1.11.1.3.

5.1.13.1.4 Data coding

- I) First half:
- a) Parity bits:

Twelve data parity bits p(0),p(1),...,p(11) are defined in such a way that in GF(2) the binary polynomial:

$$d(40)D^{605} + ... + d(633)D^{12} + p(0)D^{11} + ... + p(11), \text{ when divided by:}$$

$$D^{12} + D^{11} + D^{10} + D^8 + D^5 + D^4 + 1, \text{ yields a remainder equal to:}$$

$$D^{11} + D^{10} + D^9 + D^8 + D^7 + D^6 + D^5 + D^4 + D^3 + D^2 + D + 1.$$

b) Tail bits:

Six tail bits equal to 0 are added to the information and parity bits, the result being a block of 612 bits $\{u(0),u(1),...,u(611)\}$:

$$\begin{array}{ll} u(k) &= d(k{+}40) & \text{ for } k = 0,1,...,593 \\ \\ u(k) &= p(k{-}594) & \text{ for } k = 594,595,...,605 \\ \\ u(k) &= 0 & \text{ for } k = 606,607,...,611 \text{ (tail bits)} \end{array}$$

c) Convolutional encoder

This block of 612 bits $\{u(0),u(1),...,u(611)\}$ is encoded with the 1/3 rate convolutional mother code defined by the polynomials:

$$G4 = 1 + D^{2} + D^{3} + D^{5} + D^{6}$$

$$G7 = 1 + D + D^{2} + D^{3} + D^{6}$$

$$G5 = 1 + D + D^{4} + D^{6}$$

This results in a block of 1836 coded bits: $\{C(0),C(1),...,C(1835)\}\$ defined by:

$$\begin{split} &C(3k) &= u(k) + u(k-2) + u(k-3) + u(k-5) + u(k-6) \\ &C(3k+1) = u(k) + u(k-1) + u(k-2) + u(k-3) + u(k-6) \\ &C(3k+2) = u(k) + u(k-1) + u(k-4) + u(k-6) \quad \text{ for } k = 0,1,...,611; \ u(k) = 0 \text{ for } k < 0 \end{split}$$

The code is punctured depending on the value of the CPS field as defined in 3GPP TS 44.060. Three puncturing schemes named P1, P2 or P3 are applied in such a way that the following coded bits:

P1	$\{C(3j) \text{ for } j = 0,1,,611\}$ are transmitted
P2	$\{C(1+3j) \text{ for } j = 0,1,,611\}$ are transmitted
P3	$\{C(2+3j) \text{ for } j = 0,1,,611\}$ are transmitted

The result is a block of 612 coded bits, $\{c1(0),c1(1),...,c1(611)\}$.

II) Second half:

The same data coding as for first half is proceeded with bits $\{d(40),d(41),...,d(633)\}$ replaced by bits $\{d(634),d(635),...,d(1227)\}$. The result is a block of 612 coded bits, $\{c2(0),c2(1),...,c2(611)\}$.

5.1.13.1.5 Interleaving

The interleaving is the same as for MCS-8 DL as specified in subclause 5.1.12.1.5.

5.1.13.1.6 Mapping on a burst

The mapping is the same as for MCS-7 DL as specified in subclause 5.1.11.1.6.

5.1.13.2 Uplink (MCS-9 UL)

5.1.13.2.1 Block constitution

The message delivered to the encoder has a fixed size of 1234 information bits $\{d(0),d(1),...,d(1233)\}$. It is delivered on a burst mode.

5.1.13.2.2 Header coding

A block of 160 coded bits $\{hc(0),hc(1),...,hc(159)\}$ is derived from $\{d(0),d(1),...,d(45)\}$ as described for MCS-7 UL in subclause 5.1.11.2.2.

5.1.13.2.3 Data coding

The data coding is the same as for downlink as specified in subclause 5.1.13.1.4 where bits $\{d(40),d(41),...,d(1227)\}$ are replaced by bits $\{d(46),d(47),...,d(1233)\}$.

5.1.13.2.4 Interleaving

The interleaving is the same as for MCS-8 UL as specified in subclause 5.1.12.2.4.

5.1.13.2.5 Mapping on a burst

The mapping is the same as for MCS-7 UL as specified in subclause 5.1.11.2.5.

5.2 Packet control channels (PACCH, PBCCH, PAGCH, PPCH, PNCH, PTCCH, CPBCCH, CPAGCH, CPPCH, and CPNCH)

The coding scheme used for PACCH, PBCCH, PAGCH, PPCH, PNCH, downlink PTCCH, CPBCCH, CPAGCH, CPPCH, and CPNCH is the same as for SACCH as specified in section 4.1.

The coding scheme used for uplink PTCCH is the same as for PRACH as specified in section 5.3.

5.3 Packet random access channel (PRACH and CPRACH)

Two coding schemes are specified for access bursts on the packet switched channels. The packet access burst containing 8 information bits and the extended packet access burst containing 11 information bits. Only the 11 information bits access burst may be transmitted on the CPRACH.

5.3.1 Packet Access Burst

The encoding of this burst is as defined in section 4.6 for the random access channel (RACH). The BSIC used shall be the BSIC of the BTS to which the burst is intended.

5.3.2 Extended Packet Access Burst

The burst carrying the extended packet random access uplink message contains 11 information bits $d(0), d(1), \dots, d(10)$.

Six parity bits p(0),p(1),...,p(5) are defined in such a way that in GF(2) the binary polynomial:

$$d(0)D^{16} + ... + d(10)D^{6} + p(0)D^{5} + ... + p(5)$$
, when divided by $D^{6} + D^{5} + D^{3} + D^{2} + D + 1$ yields a remainder equal to $D^{5} + D^{4} + D^{3} + D^{2} + D + 1$.

The six bits of the BSIC, $\{B(0),B(1),...,B(5)\}$, of the BTS to which the Random Access is intended, are added bitwise modulo 2 to the six parity bits, $\{p(0),p(1),...,p(5)\}$. This results in six colour bits, C(0) to C(5) defined as C(k) = b(k) + p(k) (k = 0 to 5) where:

b(0) = MSB of PLMN colour code

b(5) = LSB of BS colour code.

This defines $\{u(0), u(1), ..., u(20)\}$ by:

$$\begin{array}{ll} u(k) = d(k) & \text{for } k = 0,1,...,10 \\ \\ u(k) = C(k\text{-}11) & \text{for } k = 11,12,...,16 \\ \\ u(k) = 0 & \text{for } k = 17,18,19,20 \text{ (tail bits)} \end{array}$$

The coded bits $\{c(0),c(1),...,c(41)\}$ are obtained by the same convolutional code of rate 1/2 as for TCH/FS, defined by the polynomials:

$$G0 = 1 + D^3 + D^4$$

 $G1 = 1 + D + D^3 + D^4$

and with:

$$\begin{split} c(2k) &= u(k) + u(k-3) + u(k-4) \\ c(2k+1) &= u(k) + u(k-1) + u(k-3) + u(k-4) \qquad \text{ for } k = 0,1,...,20 \ ; \ u(k) = 0 \ \text{ for } k < 0 \end{split}$$

The code is punctured in such a way that the following coded bits:

```
c(0), c(2), c(5), c(37), c(39), c(41) are not transmitted.
```

This results in a block of 36 coded bits, $\{e(0), e(1),...,e(35)\}$.

5.4 Access Burst on packet switched channels other than PRACH and CPRACH

The encoding of this burst is as defined in section 5.3 for the packet random access channel (PRACH). The BSIC used shall be the BSIC of the BTS to which the burst is intended.

Table 1: Reordering and partitioning of a coded block of 456 bits into 8 sub-blocks

k mod 8=	0	1	2	3		k mod 8=	4	5	6	7
j=0	k=0	57	114	171		j=1	228	285	342	399
2	64	121	178	235		3	292	349	406	7
4	128	185	242	299		5	356	413	14	71
6	192	249	306	363		7	420	21	78	135
8	256	313	370	427		9	28	85	142	199
10	320	377	434	35		11	92	149	206	263
	384	441	42	99			156	213	270	327
	448	49	106	163			220	277	334	391
	56	113	170	227			284	341	398	455
	120	177	234	291			348	405	6	63
20	184	241	298	355		21	412	13	70	127
20	248	305	362	419			20	77	134	191
	312	369	426	27			84	141	198	255
	376	433	34	91			148	205	262	319
	440	41	98	155			212	269	326	383
30	48	105	162	219		31	276	333	390	447
30	112	169	226	283			340	397	454	55
	176	233	290	347			404	5	62	119
	240	297	354	411			12	69	126	183
	304	361	418	19			76	133	190	247
40	368	425	26	83		41	140	197	254	311
40	432	33	90	147		41	204	261	318	375
	40	97	154	211			268	325	382	439
	104	161	218	275			332	389	446	47
	168	225	282	339			396	453	54	111
50	232	289	346	403		51	4	61	118	175
30	296	353	410	11		31	68	125	182	239
	360	417	18	75			132	189	246	303
	424	25	82	139			196	253	310	367
	32	89	146	203			260	317	374	431
60	96	153	210	267		61	324	381	438	39
	160	217	274	331		01	388	445	46	103
	224	281	338	395			452	53	110	167
	288	345	402	3			60	117	174	231
	352	409	10	67			124	181	238	295
70	416	17	74	131		71	188	245	302	359
, ,	24	81	138	195		''	252	309	366	423
	88	145	202	259			316	373	430	31
	152	209	266	323			380	437	38	95
	216	273	330	387			444	45	102	159
80	280	337	394	451		81	52	109	166	223
	344	401	2	59		"	116	173	230	287
	408	9	66	123			180	237	294	351
	16	73	130	187			244	301	358	415
	80	137	194	251			308	365	422	23
90	144	201	258	315		91	372	429	30	23 87
30	208	265	322	379		91	436	37	94	151
	272	329	386	443			44	101	158	215
	336	393	450	51			108	165	222	279
	400	1	58	115			172	229	286	343
100	8	65	122	179		101	236	293	350	407
100	72	129	186	243		'5'	300	357	414	15
	136	193	250	307			364	421	22	79
	200	257	314	371			428	29	86	143
	264	321	378	435			36	93	150	207
110	328	385	442	43		111	100	157	214	271
112	392	449	50	107		113	164	221	278	335
					l					

Table 2: Subjective importance of encoded bits for the full rate speech TCH (Parameter names and bit indices refer to 3GPP TS 46.010)

Importance	Parameter name	Parameter	Bit	Label	Class
class		number	index		
1	Log area ratio 1	1	5	d0	
	block amplitude	12,29,46,63	5	d1, d2, d3, d4	
	Log area ratio 1	1	4		
2	Log area ratio 2	2	5		
	Log area ratio 3		4		
	Log area ratio 1	1	3		
	Log area ratio 2	2	4		
	Log area ratio 3	3 4	3		
3	Log area ratio 4	9,26,43,60	4 6		4
3	LPT lag block amplitude		4		1 with
	Log area ratio 2,5,6	12,29,43,63 2,5,6	3		parity
	LPT lag	9,26,43,60	5		check
	LPT lag	9,26,43,60	4		OHOOK
	LPT lag	9,26,43,60	3		
	LPT lag	9,26,43,60	2		
	block amplitude	12,29,43,63	3		
	Log area ratio 1	1	2		
	Log area ratio 4	4	3		
	Log area ratio 7	7	2		
4	LPT lag	9,26,43,60	1	d48, d49	
	Log area ratio 5,6	5,6	2	d50	
	LPT gain	10,27,44,61	1		
	LPT lag	9,26,43,60	0		
	Grid position	11,28,45,62	1		
	Log area ratio 1	1	1		
	Log area ratio 2,3,8,4	2,3,8,4	2		
	Log area ratio 5,7	5,7	1		
	LPT gain	10,27,44,61	0		
	block amplitude	12,29,43,63	2		1
	RPE pulses	1325	2		with
_	RPE pulses	3042	2 2		parity
5	RPE pulses	4759 6476	2		check
	RPE pulses Grid position	11,28,45,62	0		
	block amplitude	12,29,43,63	1		
	RPE pulses	1325	1		
	RPE pulses	3042	1		
	RPE pulses	4759	1		
	RPE pulses	6467	1	d181	
	RPE pulses	6876	1	d182	
	Log area ratio 1	1	0		
	Log area ratio 2,3,6	2,3,6	1		
	Log area ratio 7	7	0		
	Log area ratio 8	8	1		
	Log area ratio 8,3	8,3	0		
6	Log area ratio 4	4	1		2
	Log area ratio 4,5	4,5	0		
	block amplitude	12,29,43,63	0		
	RPE pulses	1325	0		
	RPE pulses	3042	0		
	RPE pulses	4759	0		
	RPE pulses	6467	0	4050	
	Log area ratio 2,6	2,6	0	d259	

Table 3a: Subjective importance of encoded bits for the half rate speech TCH for unvoiced speech frames (Parameter names and bit indices refer to 3GPP TS 46.020)

Parameter	Bit	Label	Class
name	index		
R0 LPC 3 GSP 0-1 GSP 0-2 GSP 0-3 GSP 0-4 LPC 1 LPC 2 LPC 3 Code 1-2 Code 2-2 Code 2-3 LPC3 R0 INT-LPC Code 1-1 GSP 0-4 GSP 0-3 GSP 0-2 GSP 0-1 LPC 2 GSP 0-1 LPC 2 GSP 0-1 LPC 2 GSP 0-1 LPC 1	1 7 2 2 2 2 2 2 0 51 60 60 60 63 0 0 16 0 06 0 0 0 1 1 1 1 1 1 1	d0 d1 d2 d3 d4 d5 d6 d7d11 d12	1 without parity check
LPC 1 GSP 0-4 GSP 0-3 GSP 0-2 GSP 0-1 LPC2 GSP 0-4 GSP 0-3 GSP 0-2 GSP 0-1 LPC 1 R0 LPC 1 R0 Mode Code 2-4 Code 1-4 Code 2-3	5 3 3 3 68 4 4 4 4 69 2 10 3,4 0,1 06 06 02	d94 d95 d111	1 with parity check

Table 3b: Subjective importance of encoded bits for the half rate speech TCH for voiced speech frames (Parameter names and bit indices refer to 3GPP TS 46.020)

Parameter	Bit index	Label	Class
name			0.0.00
LPC 1	2,1	d0, d1	
LPC 2	64	d2	
GSP 0-1	4		
GSP 0-2	4		
GSP 0-3	4		
GSP 0-4	4 3		
GSP 0-1 GSP 0-2	3		
GSP 0-2	3		
GSP 0-4	3		
GSP 0-1			
GSP 0-2	2		
GSP 0-3	2		
GSP 0-4	2		
Code 1	80		
Code 2	85		
Code 2	20		
Code 3	8		
Code 2	4,3		
GSP 0-1 GSP 0-2	1 1		
GSP 0-2 GSP 0-3	1		
GSP 0-4	1		1
GSP 0-1	0		•
GSP 0-2	0		without
GSP 0-3	0		parity
GSP 0-4	0		check
INT-LPC	0		
LPC 2	0		
LPC 3	0		
LAG 4 LPC 3	0		
LPC 2	1		
LAG 4	1		
LAG 3	0		
LAG 2	0		
LAG 1	0		
LAG 4	2		
LAG 3	1		
LAG 2	1		
LAG 1	1		
LPC 3 LPC 2	24		
LPC 2 LPC 3	2 5,6		
LPC 2	3		
R0	0		
LPC 3	7		
LPC 1	0		
LAG 4	3		
LAG 3	2		
LAG 2	2 2 2		
LAG 1			
R0	1	d72	

Parameter name	Bit index	Label	Class
LAG 3	3	d73	
LAG 2	3		
LAG 1	3,4		1
LPC 2	7,8		
LPC 1	36		with
R0	2		parity
LAG 1	57		check
LPC 1	710		
R0	3,4		
Mode	0,1	d94	
Code 4	08	d95	2
Code 3	07	d111	

Table 4: Reordering and partitioning of a coded block of 228 bits into 4 sub-blocks for TCH/HS

b=	0	1
i=0	k=0	150
2	38	188
4	76	226
6	114	14 52
8 10	152 190	52 90
10	18	128
	56	166
	94	204
	132	32
20	170	70
	208	108
	8	146
	46	184
0.0	84	222
30	122	10
	160 198	48 86
	28	124
	66	162
40	104	200
	142	30
	180	68
	218	106
	4	144
50	42	182
	80	220
	118 156	6 44
	194	82
60	22	120
	60	158
	98	196
	136	24
	174	62
70	212	100
	12	138
	50	176
	88 126	214 2
80	164	40
00	202	78
	34	116
	72	154
	110	192
90	148	26
	186	64
	224	102
	16 54	140 178
100	54 92	178 216
100	130	20
	168	58
	206	96
	36	134
110	74	172
112	112	210

b=	2	3
i=1	k=1	151
3	39	189
5 7	77 115	227 15
9	153	53
11	191	91
	19	129
	57	167
	95	205
0.4	133	33
21	171 209	71 109
	9	147
	47	185
	85	223
31	123	11
	161	49
	199	87 125
	29 67	125 163
41	105	201
	143	31
	181	69
	219	107
51	5 43	145 183
31	81	221
	119	7
	157	45
	195	83
61	23	121
	61 99	159 197
	137	25
	175	63
71	213	101
	13	139
	51	177
	89	215 3
81	127 165	41
01	203	79
	35	117
	73	155
6.4	111	193
91	149 187	27 65
	225	103
	17	141
	55	179
101	93	217
	131	21
	169 207	59 97
	37	135
111	75	173
113	113	211

Table 5: Enhanced Full rate Source Encoder output parameters in order of occurrence and bit allocation within the speech frame of 244 bits/20 ms(Parameter names and bit indices refer to 3GPP TS 46.060)

Bits (MSB-LSB)	Description
s1 - s7	index of 1st LSF submatrix
s8 - s15	index of 2nd LSF submatrix
s16 - s23	index of 3rd LSF submatrix
s24	sign of 3rd LSF submatrix
s25 - s32	index of 4th LSF submatrix
s33 - s38	index of 5th LSF submatrix
	subframe 1
s39 - s47	adaptive codebook index
s48 - s51	adaptive codebook gain
s52	sign information for 1st and 6th pulses
s53 - s55	position of 1st pulse
s56	sign information for 2nd and 7th pulses
s57 - s59	position of 2nd pulse
s60	sign information for 3rd and 8th pulses
s61 - s63	position of 3rd pulse
s64	sign information for 4th and 9th pulses
s65 - s67	position of 4th pulse
s68	sign information for 5th and 10th pulses
s69 - s71	position of 5th pulse
s72 - s74	position of 6th pulse
s75 - s77	position of 7th pulse
s78 - s80	position of 8th pulse
s81 - s83	position of 9th pulse
s84 - s86	position of 10th pulse
s87 - s91	fixed codebook gain
	subframe 2
s92 - s97	adaptive codebook index (relative)
s98 - s141	same description as s48 - s91
	subframe 3
s142 - s194	same description as s39 - s91
	subframe 4
s195 - s244	same description as s92 - s141

Table 6: Ordering of enhanced full rate speech parameters for the channel encoder (subjective importance of encoded bits) (after preliminary channel coding)

(Parameter names refers to 3GPP TS 46.060)

Description	Bits (Table 5)	Bit index within parameter
CLASS 1a: 50 bits (protected by 3 bit TCH-FS CRC)		
LTP-LAG 1	w39 - w44	b8, b7, b6, b5, b4, b3
LTP-LAG 3	w146 - w151	b8, b7, b6, b5, b4, b3
LTP-LAG 2	w94 - w95	b5, b4
LTP-LAG 4	w201 - w202	b5, b4
LTP-GAIN 1	n48	b3
FCB-GAIN 1	w89	b4
LTP-GAIN 2	w100	b3
FCB-GAIN 2	w141	b4
LTP-LAG 1	w45	b2
LTP-LAG 3	w152	b2
LTP-LAG 2	w96	b3
LTP-LAG 4	w203	b3
LPC 1	w2 - w3	b5, b4
LPC 2	w8	b7
LPC 2	w10	b5
LPC 3	w18 - w19	b6, b5
LPC 3	w24	b0
LTP-LAG 1	w46 - w47	b1, b0
LTP-LAG 3	w153 - w154	b1, b0
LTP-LAG 2	w155 - w154 w97	b1, 50
LTP-LAG 2	w204	b2
LPC 1	w4 - w5	b3, b2
LPC 2	w11 - w12	b4, b3
LPC 3	w11 - w12	b4, b3
LPC 2	w16 w9	b6
LPC 2	w9 w6 - w7	b1, b0
LPC 1	wo - w/ w13	b1, b0
LPC 3	w17	b7
LPC 3	w20	b4
LTP-LAG 2	w98	b1
LTP-LAG 4	w205	b1
CLASS 1b: 132 bits (protected)		
LPC 1	w1	b6
LPC 2	w14 - w15	b1, b0
LPC 3	w21	b3
LPC 4	w25 - w26	b7, b6
LPC 4	w28	b4
LTP-GAIN 3	w155	b3
LTP-GAIN 4	w207	b3
FCB-GAIN 3	w196	b4
FCB-GAIN 4	w248	b4
FCB-GAIN 1	w90	b3
FCB-GAIN 2	w142	b3
FCB-GAIN 3	w197	b3
FCB-GAIN 4	w249	b3
CRC-POLY	w253 - w260	b7, b6, b5, b4, b3, b2, b1, b0
LTP-GAIN 1	w49	b2

Table 6 (continued): Ordering of enhanced full rate speech parameters for the channel encoder (subjective importance of encoded bits) (after preliminary channel coding)

(Parameter names refers to 3GPP TS 46.060)

Description	Bits (Table 5)	Bit index within parameter
LTP-GAIN 2	w101	b2
LTP-GAIN 3	w156	b2
LTP-GAIN 4	w208	b2
LPC 3	w22 - w23	b2, b1
LPC 4	w27	b5
LPC 4	w29	b3
PULSE 1_1	w52	b3
PULSE 1_2	w56	b3
PULSE 1_3	w60	b3
PULSE 1_4	w64	b3
PULSE 1_5	w68	b3
PULSE 2_1	w104	b3
PULSE 2_2	w108	b3
PULSE 2_3	w112	b3
PULSE 2_4	w116	b3
PULSE 2_5	w120	b3
PULSE 3_1	w159	b3
PULSE 3_2	w163	b3
PULSE 3_3	w167	b3
PULSE 3_4	w171	b3
PULSE 3_5	w175	b3
PULSE 4_1	w211	b3
PULSE 4_2	w215	b3
PULSE 4_3	w219	b3
PULSE 4_4	w223	b3
PULSE 4_5	w227	b3
FCB-GAIN 1	w91	b2
FCB-GAIN 2	w143	b2
FCB-GAIN 3	w198	b2
FCB-GAIN 4	w250	b2
LTP-GAIN 1	w50	b1
LTP-GAIN 2	w102	b1
LTP-GAIN 3	w157	b1
LTP-GAIN 4	w209	b1
LPC 4	w30 - w32	b2, b1, b0
LPC 5	w33 - w36	b5, b4, b3, b2
LTP-LAG 2	w99	b0
LTP-LAG 4	w206	b0
PULSE 1_1	w53	b2
PULSE 1_2	w57	b2

Table 6 (continued): Ordering of enhanced full rate speech parameters for the channel encoder (subjective importance of encoded bits) (after preliminary channel coding)

(Parameter names refers to 3GPP TS 46.060)

Description	Bits (Table 5)	Bit index within parameter
PULSE 1_3	w61	b2
PULSE 1_4	w65	b2
PULSE 1_5	w69	b2
PULSE 2_1	w105	b2
PULSE 2_2	w109	b2
PULSE 2_3	w113	b2
PULSE 2_4	w117	b2
PULSE 2_5	w121	b2
PULSE 3_1	w160	b2
PULSE 3_2	w164	b2
PULSE 3_3	w168	b2
PULSE 3_4	w172	b2
PULSE 3_5	w176	b2
PULSE 4_1	w212	b2
PULSE 4_2	w216	b2
PULSE 4_3	w220	b2
PULSE 4_4	w224	b2
PULSE 4_5	w228	b2
PULSE 1_1	w54	b1
PULSE 1_2	w58	b1
PULSE 1_3	w62	b1
PULSE 1_4	w66	b1
PULSE 2_1 PULSE 2_2	w106	b1
PULSE 2_2 PULSE 2_3	w110 w114	<u>b1</u> b1
PULSE 2_4	w114 w118	b1
PULSE 3_1	w116	b1
PULSE 3_2	w165	b1
PULSE 3_3	w169	b1
PULSE 3_4	w173	b1
PULSE 4_1	w213	b1
PULSE 4_3	w221	b1
PULSE 4_4	w225	b1
FCB-GAIN 1	w92	b1
FCB-GAIN 2	w144	b1
FCB-GAIN 3	s199	b1
FCB-GAIN 4	w251	b1
LTP-GAIN 1	w51	b0
LTP-GAIN 2	w103	b0
LTP-GAIN 3	w158	b0
LTP-GAIN 4	w210	b0
FCB-GAIN 1	w93	b0
FCB-GAIN 2	w145	b0
FCB-GAIN 3	w200	b0
FCB-GAIN 4	w252	b0
PULSE 1_1	w55	b0
PULSE 1_2	w59	b0
PULSE 1_3	w63	b0
PULSE 1_4	w67	b0
PULSE 2_1	w107	b0
PULSE 2_2	w111	b0
PULSE 2_3	w115	b0
PULSE 2_4	w119	b0
PULSE 3_1	w162	<u>b0</u>
PULSE 3_2	w166	b0
PULSE 3_3	w170	b0

Table 6 (continued): Ordering of enhanced full rate speech parameters for the channel encoder (subjective importance of encoded bits) (after preliminary channel coding)

(Parameter names refers to 3GPP TS 46.060)

Description	Bits (Table 5)	Bit index within parameter
PULSE 3_4	w174	b0
PULSE 4_1	w214	b0
PULSE 4_3	w222	b0
PULSE 4_4	w226	b0
LPC 5	w37 - w38	b1, b0
CLASS 2: 78 bits (unprotected)		
PULSE 1_5	w70	b1
PULSE 1_5	w72 - w73	b1, b1
PULSE 2_5	w122	b1
PULSE 2_5	w124 - s125	b1, b1
PULSE 3_5	w177	b1
PULSE 3_5	w179 - w180	b1, b1
PULSE 4_5	w229	b1
PULSE 4_5	w231 - w232	b1, b1
PULSE 4_2	w217 - w218	b1, b0
PULSE 1_5	w71	b0
PULSE 2_5	w123	b0
PULSE 3_5	w178	b0
PULSE 4_5	w230	b0
PULSE 1_6	w74	b2
PULSE 1_7	w7-7	b2
PULSE 1_8	w80	b2
PULSE 1_9	w83	b2
PULSE 1_10	w86	b2
PULSE 2_6	w126	b2
PULSE 2_7	w120 w129	b2
PULSE 2_8	w132	b2
PULSE 2_9	w132	b2
PULSE 2_9 PULSE 2_10	w138	b2
PULSE 2_10 PULSE 3_6	w136 w181	b2
PULSE 3_7	w184	b2
PULSE 3_8	w187	b2
PULSE 3_9	w190	b2
PULSE 3_10	w193	b2
PULSE 4_6	w233	b2
PULSE 4_7	w236	b2
PULSE 4_8	w239	b2
PULSE 4_9	w242	b2
PULSE 4_10	w245	b2
PULSE 1_6	w75	<u>b1</u>
PULSE 1_7	w78	<u>b1</u>
PULSE 1_8	w81	<u>b1</u>
PULSE 1_9	w84	b1
PULSE 1_10	w87	b1
PULSE 2_6	w127	b1
PULSE 2_7	w130	b1
PULSE 2_8	w133	b1
PULSE 2_9	w136	b1
PULSE 2_10	w139	b1
PULSE 3_6	w182	b1
PULSE 3_7	w185	b1
PULSE 3_8	w188	b1
PULSE 3_9	w191	b1
PULSE 3_10	w194	b1
PULSE 4_6	w234	b1
PULSE 4_7	w237	b1

Table 6 (concluded): Ordering of enhanced full rate speech parameters for the channel encoder (subjective importance of encoded bits) (after preliminary channel coding)

(Parameter names refers to 3GPP TS 46.060)

Description	Bits (Table 5)	Bit index within parameter
PULSE 4_8	w240	b1
PULSE 4_9	w243	b1
PULSE 4_10	w246	b1
PULSE 1_6	w76	b0
PULSE 1_7	w79	b0
PULSE 1_8	w82	b0
PULSE 1_9	w85	b0
PULSE 1_10	w88	b0
PULSE 2_6	w128	b0
PULSE 2_7	w131	b0
PULSE 2_8	w134	b0
PULSE 2_9	w137	b0
PULSE 2_10	w140	b0
PULSE 3_6	w183	b0
PULSE 3_7	w186	b0
PULSE 3_8	w189	b0
PULSE 3_9	w192	b0
PULSE 3_10	w195	b0
PULSE 4_6	w235	b0
PULSE 4_7	w238	b0
PULSE 4_8	w241	b0
PULSE 4_9	w244	b0
PULSE 4_10	w247	b0

Table 7: Sorting of the speech encoded bits for TCH/AFS12.2

0	1	2	3	4	5	6	7	8	9
10	11	12	13	14	23	15	16	17	18
19	20	21	22	24	25	26	27	28	38
141	39	142	40	143	41	144	42	145	43
146	44	147	45	148	46	149	47	97	150
200	48	98	151	201	49	99	152	202	86
136	189	239	87	137	190	240	88	138	191
241	91	194	92	195	93	196	94	197	95
198	29	30	31	32	33	34	35	50	100
153	203	89	139	192	242	51	101	154	204
55	105	158	208	90	140	193	243	59	109
162	212	63	113	166	216	67	117	170	220
36	37	54	53	52	58	57	56	62	61
60	66	65	64	70	69	68	104	103	102
108	107	106	112	111	110	116	115	114	120
119	118	157	156	155	161	160	159	165	164
163	169	168	167	173	172	171	207	206	205
211	210	209	215	214	213	219	218	217	223
222	221	73	72	71	76	75	74	79	78
77	82	81	80	85	84	83	123	122	121
126	125	124	129	128	127	132	131	130	135
134	133	176	175	174	179	178	177	182	181
180	185	184	183	188	187	186	226	225	224
229	228	227	232	231	230	235	234	233	238
237	236	96	199						

Table 8: Sorting of the speech encoded bits for TCH/AFS10.2

7	6	5	4	3	2	1	0	16	15
14	13	12	11	10	9	8	26	27	28
29	30	31	115	116	117	118	119	120	72
73	161	162	65	68	69	108	111	112	154
157	158	197	200	201	32	33	121	122	74
75	163	164	66	109	155	198	19	23	21
22	18	17	20	24	25	37	36	35	34
80	79	78	77	126	125	124	123	169	168
167	166	70	67	71	113	110	114	159	156
160	202	199	203	76	165	81	82	92	91
93	83	95	85	84	94	101	102	96	104
86	103	87	97	127	128	138	137	139	129
141	131	130	140	147	148	142	150	132	149
133	143	170	171	181	180	182	172	184	174
173	183	190	191	185	193	175	192	176	186
38	39	49	48	50	40	52	42	41	51
58	59	53	61	43	60	44	54	194	179
189	196	177	195	178	187	188	151	136	146
153	134	152	135	144	145	105	90	100	107
88	106	89	98	99	62	47	57	64	45
63	46	55	56						

Table 9: Sorting of the speech encoded bits for TCH/AFS7.95 and TCH/AHS7.95

8	7	6	5	4	3	2	14	16	9
10	12	13	15	11	17	20	22	24	23
19	18	21	56	88	122	154	57	89	123
155	58	90	124	156	52	84	118	150	53
85	119	151	27	93	28	94	29	95	30
96	31	97	61	127	62	128	63	129	59
91	125	157	32	98	64	130	1	0	25
26	33	99	34	100	65	131	66	132	54
86	120	152	60	92	126	158	55	87	121
153	117	116	115	46	78	112	144	43	75
109	141	40	72	106	138	36	68	102	134
114	149	148	147	146	83	82	81	80	51
50	49	48	47	45	44	42	39	35	79
77	76	74	71	67	113	111	110	108	105
101	145	143	142	140	137	133	41	73	107
139	37	69	103	135	38	70	104	136	

Table 10: Sorting of the speech encoded bits for TCH/AFS7.4 and TCH/AHS7.4

0	1	2	3	4	5	6	7	8	9
10	11	12	13	14	15	16	26	87	27
88	28	89	29	90	30	91	51	80	112
141	52	81	113	142	54	83	115	144	55
84	116	145	58	119	59	120	21	22	23
17	18	19	31	60	92	121	56	85	117
146	20	24	25	50	79	111	140	57	86
118	147	49	78	110	139	48	77	53	82
114	143	109	138	47	76	108	137	32	33
61	62	93	94	122	123	41	42	43	44
45	46	70	71	72	73	74	75	102	103
104	105	106	107	131	132	133	134	135	136
34	63	95	124	35	64	96	125	36	65
97	126	37	66	98	127	38	67	99	128
39	68	100	129	40	69	101	130		

Table 11: Sorting of the speech encoded bits for TCH/AFS6.7 and TCH/AHS6.7

0	1	4	3	5	6	13	7	2	8
9	11	15	12	14	10	28	82	29	83
27	81	26	80	30	84	16	55	109	56
110	31	85	57	111	48	73	102	127	32
86	51	76	105	130	52	77	106	131	58
112	33	87	19	23	53	78	107	132	21
22	18	17	20	24	25	50	75	104	129
47	72	101	126	54	79	108	133	46	71
100	125	128	103	74	49	45	70	99	124
42	67	96	121	39	64	93	118	38	63
92	117	35	60	89	114	34	59	88	113
44	69	98	123	43	68	97	122	41	66
95	120	40	65	94	119	37	62	91	116
36	61	90	115						

Table 12: Sorting of the speech encoded bits for TCH/AFS5.9 and TCH/AHS5.9

0	1	4	5	3	6	7	2	13	15
8	9	11	12	14	10	16	28	74	29
75	27	73	26	72	30	76	51	97	50
71	96	117	31	77	52	98	49	70	95
116	53	99	32	78	33	79	48	69	94
115	47	68	93	114	46	67	92	113	19
21	23	22	18	17	20	24	111	43	89
110	64	65	44	90	25	45	66	91	112
54	100	40	61	86	107	39	60	85	106
36	57	82	103	35	56	81	102	34	55
80	101	42	63	88	109	41	62	87	108
38	59	84	105	37	58	83	104		

Table 13: Sorting of the speech encoded bits for TCH/AFS5.15 and TCH/AHS5.15

7	6	5	4	3	2	1	0	15	14
13	12	11	10	9	8	23	24	25	26
27	46	65	84	45	44	43	64	63	62
83	82	81	102	101	100	42	61	80	99
28	47	66	85	18	41	60	79	98	29
48	67	17	20	22	40	59	78	97	21
30	49	68	86	19	16	87	39	38	58
57	77	35	54	73	92	76	96	95	36
55	74	93	32	51	33	52	70	71	89
90	31	50	69	88	37	56	75	94	34
53	72	91							

Table 14: Sorting of the speech encoded bits for TCH/AFS4.75 and TCH/AHS4.75

0	1	2	3	4	5	6	7	8	9
10	11	12	13	14	15	23	24	25	26
27	28	48	49	61	62	82	83	47	46
45	44	81	80	79	78	17	18	20	22
77	76	75	74	29	30	43	42	41	40
38	39	16	19	21	50	51	59	60	63
64	72	73	84	85	93	94	32	33	35
36	53	54	56	57	66	67	69	70	87
88	90	91	34	55	68	89	37	58	71
92	31	52	65	86					

Table 15: Interleaving table for MCS5 and MCS6:

m\n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	463	890	1038	220	371	795	946	582	733	1160	63	490	641	277	428
1	852	1003	185	333	1223	120	547	698	1122	28	915	1066	242	390	817	968
2	610	761	1185	85	512	660	305	453	880	1031	204	355	782	1242	148	575
3	723	1150	50	474	625	1088	267	418	845	993	169	320	1207	113	537	688
4	1115	12	902	1050	232	383	807	958	594	745	1172	75	502	653	289	440
5	864	1015	197	345	1235	132	559	710	1134	40	927	1078	254	402	829	980
6	159	622	773	1197	97	524	672	1099	5	465	892	1043	216	367	794	942
7	587	735	1162	62	486	637	279	430	857	1005	181	332	1219	125	549	700
8	1127	24	914	1062	244	395	819	970	606	757	1184	87	514	665	301	452
9	876 841	1027 992	209 171	357 322	784 1209	1247 109	144 536	571 684	722 1111	1146 17	52 904	479 1055	627 228	1090 379	266 806	414 954
11	599	747	1174	74	498	649	291	442	869	1017	193	344	1231	137	561	712
12	1139	36	926	1074	256	407	831	982	158	618	769	1196	99	526	677	1101
13	7	458	894	1033	227	363	802	941	577	740	1152	70	485	645	284	420
14	859	998	189	328	1215	127	542	702	1117	35	922	1061	246	385	824	960
15	605	765	1180	92	504	667	309	448	887	1023	211	350	786	1237	155	567
16	730	1145	54	469	632	1080	274	413	849	988	176	312	1202	117	532	695
17	1107	19	906	1045	239	375	814	953	589	752	1164	82	497	657	296	432
18	871	1010	201	340	1227	139	554	714	1129	47	934	1073	258	397	836	972
19	166	617	777	1192	104	516	679	1094	9	460	899	1035	223	362	798	937
20	579	742	1157	66	481	644	286	425	861	1000	188	324	1214	129	544	707
21	1119	31	918	1057	251	387	826	965	601	764	1176	94	509	669	308	444
22	883 848	1022 984	213	352 317	791 1204	1239	151 528	566	726	1141 21	59 911	471	634	1085 374	270	409
23	591	754	178 1169	78	493	116 656	298	691 437	1106 873	1012	200	1047 336	235 1226	141	810 556	949 719
25	1131	43	930	1069	263	399	838	977	162	613	776	1188	106	521	681	1096
26	2	462	889	1040	219	370	797	945	584	732	1159	65	489	640	276	427
27	854	1002	184	335	1222	122	546	697	1124	27	917	1065	241	392	816	967
28	609	760	1187	84	511	662	304	455	879	1030	206	354	781	1244	147	574
29	725	1149	49	476	624	1087	269	417	844	995	168	319	1206	112	539	687
30	1114	14	901	1052	231	382	809	957	596	744	1171	77	501	652	288	439
31	866	1014	196	347	1234	134	558	709	1136	39	929	1077	253	404	828	979
32	161	621	772	1199	96	523	674	1098	4	467	891	1042	218	366	793	944
33	586	737	1161	61	488	636	281	429	856	1007	180	331	1218	124	551	699
34	1126	26	913	1064	243	394	821	969	608	756	1183	89	513	664	300	451
35 36	878 840	1026 991	208 173	359 321	783 1211	1246 108	146 535	570 686	721 1110	1148 16	51 903	478 1054	629 230	1089 378	265 805	416 956
37	598	749	1173	73	500	648	293	441	868	1019	192	343	1230	136	563	711
38	1138	38	925	1076	255	406	833	981	157	620	768	1195	101	525	676	1103
39	6	457	896	1032	226	365	801	940	576	739	1154	69	484	647	283	422
40	858	997	191	327	1217	126	541	704	1116	34	921	1060	248	384	823	962
41	604	767	1179	91	506	666	311	447	886	1025	210	349	788	1236	154	569
42	729	1144	56	468	631	1082	273	412	851	987	175	314	1201	119	531	694
43	1109	18	908	1044	238	377	813	952	588	751	1166	81	496	659	295	434
44	870	1009	203	339	1229	138	553	716	1128	46	933	1072	260	396	835	974
45	165	616	779	1191	103	518	678	1093	11	459	898	1037	222	361	800	936
46	581	741	1156	68	480	643	285	424	863	999	187	326	1213	131	543	706
47	1121	30	920	1056	250	389	825	964	600	763	1178	93	508	671	307	446
48 49	882 847	1021 986	215 177	351 316	790 1203	1241 115	150 530	565 690	728 1105	1140 23	58 910	473 1049	633 234	1084 373	272 812	408 948
50	593	753	1168	80	492	655	297	436	875	1011	199	338	1225	143	555	718
51	1133	42	932	1068	262	401	837	976	164	612	775	1190	105	520	683	1095
52	1	464	888	1039	221	369	796	947	583	734	1158	64	491	639	278	426
53	853	1004	183	334	1221	121	548	696	1123	29	916	1067	240	391	818	966
54	611	759	1186	86	510	661	303	454	881	1029	205	356	780	1243	149	573
55	724	1151	48	475	626	1086	268	419	843	994	170	318	1208	111	538	689
56	1113	13	900	1051	233	381	808	959	595	746	1170	76	503	651	290	438
57	865	1016	195	346	1233	133	560	708	1135	41	928	1079	252	403	830	978
58	160	623	771	1198	98	522	673	1100	3	466	893	1041	217	368	792	943
59 60	585 1125	736 25	1163 912	60 1063	487 245	638 393	280 820	431 971	855 607	1006 758	182 1182	330 88	1220 515	123 663	550 302	701 450
61	877	1028	207	358	785	1245	145	572	720	1147	53	477	628	1091	264	415
62	842	990	172	323	1210	110	534	685	1112	15	905	1053	229	380	804	955
63	597	748	1175	72	499	650	292	443	867	1018	194	342	1232	135	562	713
64	1137	37	924	1075	257	405	832	983	156	619	770	1194	100	527	675	1102
65	8	456	895	1034	225	364	803	939	578	738	1153	71	483	646	282	421
66	860	996	190	329	1216	128	540	703	1118	33	923	1059	247	386	822	961
67	603	766	1181	90	505	668	310	449	885	1024	212	348	787	1238	153	568

m\n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
68	731	1143	55	470	630	1081	275	411	850	989	174	313	1200	118	533	693
69	1108	20	907	1046	237	376	815	951	590	750	1165	83	495	658	294	433
70	872	1008	202	341	1228	140	552	715	1130	45	935	1071	259	398	834	973
71	167	615	778	1193	102	517	680	1092	10	461	897	1036	224	360	799	938
72	580	743	1155	67	482	642	287	423	862	1001	186	325	1212	130	545	705
73	1120	32	919	1058	249	388	827	963	602	762	1177	95	507	670	306	445
74	884	1020	214	353	789	1240	152	564	727	1142	57	472	635	1083	271	410
75	846	985	179	315	1205	114	529	692	1104	22	909	1048	236	372	811	950
76	592	755	1167	79	494	654	299	435	874	1013	198	337	1224	142	557	717
77	1132	44	931	1070	261	400	839	975	163	614	774	1189	107	519	682	1097

This table describes the interleaving applied to MCS-5 and MCS-6

$$di(j') = dc(k')$$
 for $k' = 0,1,...,1223$

$$k' = 16*m + n$$

The value of j' for a given k is in the cell located in the row m and in the column n.

Annex A (informative): Summary of Channel Types

TCH/EFS: enhanced full rate speech traffic channel

TCH/FS: full rate speech traffic channel

TCH/HS: half rate speech traffic channel

TCH/AFS: adaptive multirate full rate speech traffic channel

TCH/AFS12.2 adaptive multirate full rate speech, 12.2 kbit/s

TCH/AFS10.2 adaptive multirate full rate speech, 10.2 kbit/s

TCH/AFS7.95 adaptive multirate full rate speech, 7.95 kbit/s

TCH/AFS7.4 adaptive multirate full rate speech, 7.5 kbit/s

TCH/AFS6.7 adaptive multirate full rate speech, 6.7 kbit/s

TCH/AFS5.9 adaptive multirate full rate speech, 5.9 kbit/s

TCH/AFS5.15 adaptive multirate full rate speech, 5.15 kbit/s

TCH/AFS4.75 adaptive multirate full rate speech, 4.75 kbit/s

TCH/AHS: adaptive multirate half rate speech traffic channel

TCH/AHS7.95 adaptive multirate half rate speech, 7.95 kbit/s

TCH/AHS7.4 adaptive multirate half rate speech, 7.5 kbit/s

TCH/AHS6.7 adaptive multirate half rate speech, 6.7 kbit/s

TCH/AHS5.9 adaptive multirate half rate speech, 5.9 kbit/s

TCH/AHS5.15 adaptive multirate half rate speech, 5.15 kbit/s

TCH/AHS4.75 adaptive multirate half rate speech, 4.75 kbit/s

E-TCH/F43.2: 43.2 kbit/s full rate data traffic channel

E-TCH/F32.0: 32.0 kbit/s full rate data traffic channel

E-TCH/F28.8: 28.8 kbit/s full rate data traffic channel

TCH/F14.4 14.4 kbit/s full rate data traffic channel

TCH/F9.6: 9.6 kbit/s full rate data traffic channel

TCH/F4.8: 4.8 kbit/s full rate data traffic channel

TCH/H4.8: 4.8 kbit/s half rate data traffic channel

TCH/F2.4: 2.4 kbit/s full rate data traffic channel

TCH/H2.4: 2.4 kbit/s half rate data traffic channel

SACCH: slow associated control channel

FACCH/F: fast associated control channel at full rate

FACCH/H: fast associated control channel at half rate

E-FACCH/F: enhanced circuit switched fast associated control channel at full rate

SDCCH: stand-alone dedicated control channel

BCCH: broadcast control channel

PCH: paging channel

AGCH access grant channel

RACH: random access channel

SCH: synchronization channel

CBCH: cell broadcast channel

CTSBCH-SB: CTS beacon channel (synchronisation burst)

CTSPCH: CTS paging channel

CTSARCH: CTS access request channel

CTSAGCH: CTS access grant channel

PDTCH packet data traffic channel

PACCH packet associated control channel

PBCCH packet broadcast control channel

PAGCH packet access grant channel

PPCH packet paging channel

PNCH packet notification channel

PTCCH packet timing advance control channel

PRACH packet random access channel

CFCCH Compact Frequency Correction Channel

CPAGCH Compact Packet Access Grant Channel

CPBCCH Compact Packet Broadcast Control Channel

CPCCCH Compact Packet Common Control Channel

CPNCH Compact Packet Notification Channel (for PTM-M on CPCCCH)

CPPCH Compact Packet Paging Channel

CPRACH Compact Packet Random Access Channel

CSCH Compact Synchronization Channel

Annex B (informative): Summary of Polynomials Used for Convolutional Codes

 $G0 = 1 + D^3 + D^4$ TCH/FS, TCH/EFS, TCH/AFS, TCH/AHS, TCH/F14.4, TCH/F9.6, TCH/H4.8, SDCCH, BCCH, PCH, SACCH, FACCH, E-FACCH, AGCH, RACH, SCH, CSCH, CTSBCH-SB, CTSPCH, CTSARCH, CTSAGCH, PDTCH (CS-1, CS-2, CS3, CS-4), PACCH, PBCCH, PAGCH, PPCH, PNCH, PTCCH, PRACH, CPBCCH, CPAGCH, CPPCH, CPNCH $G1 = 1 + D + D^3 + D^4$ TCH/FS, TCH/EFS, TCH/AFS, TCH/AHS, TCH/F14.4, TCH/F9.6, TCH/H4.8, SACCH, FACCH, E-FACCH, SDCCH, BCCH, PCH, AGCH, RACH, SCH, TCH/F4.8, TCH/F2.4, TCH/H2.4, PDTCH(CS-1, CS-2, CS-3, CS-4), PACCH, PBCCH, PAGCH, PPCH, PNCH, PTCCH, PRACH, CPBCCH, CPAGCH, CPPCH, CPNCH, CPNCH $G2 = 1 + D^2 + D^4$ TCH/AFS, TCH/F4.8, TCH/F2.4, TCH/H2.4 $G3 = 1 + D + D^2 + D^3 + D^4$ TCH/AFS, TCH/F4.8, TCH/F2.4, TCH/H2.4 $G4 = 1 + D^2 + D^3 + D^5 + D^6$ TCH/HS, TCH/AFS, TCH/AHS, E-TCH/F43.2, E-TCH/F32.0, E-TCH/F28.8, PDTCH(MCS-1, MCS-2, MCS-3, MCS-4, MCS-5, MCS-6, MCS-7, MCS-8, MCS- $G5 = 1 + D + D^4 + D^6$ TCH/HS, TCH/AFS, TCH/AHS, E-TCH/F32.0, PDTCH(MCS-1, MCS-2, MCS-3, MCS-4, MCS-5, MCS-6, MCS-7, MCS-8, MCS-9) $G6 = 1 + D + D^2 + D^3 + D^4 + D^6$ TCH/HS, TCH/AFS, TCH/AHS $G7 = 1 + D + D^2 + D^3 + D^6$ E-TCH/F43.2, E-TCH/F32.0, E-TCH/F28.8, PDTCH(MCS-1, MCS-2, MCS-3,

MCS-4, MCS-5, MCS-6, MCS-7, MCS-8, MCS-9)

Annex C (informative): Change history

SPEC	SMG	CR	PH	VER	NEW_VE	SUBJECT
05.03	s25	A015	R97	6.0.0	6.1.0	14.4kbps Data Service
05.03	s27		R97	6.1.0	6.1.2	Change of status to EN
05.03	s28	A017	R97	6.1.2	6.2.0	Clarification on the definition of USF precoding
05.03	s28	A016	R98	6.2.0	7.0.0	Introduction of CTS in 05.03
05.03	s28		R98	7.0.0	7.0.1	Correction to Figure 1
05.03	s29	A021	R98	7.0.1	7.1.0	Introduction of AMR
05.03	s29	A022	R99	7.1.0	8.0.0	Introduction of ECSD/EDGE
05.03	s30	A023	R99	8.0.0	8.1.0	Introduction of Fast power Control for ECSD in 05.03
05.03	s30	A025	R99	8.0.0	8.1.0	EGPRS Channel Coding
05.03	s30	A026	R99	8.0.0	8.1.0	AMR Channel Coding
05.03	s30	A027	R99	8.0.0	8.1.0	EDGE Compact logical channels
05.03	s30	A029	R99	8.0.0	8.1.0	Correction of several small bugs in the AMR section / Optimization of the transmission of the in-band parameter Mode Indication
05.03	s30	A030	R99	8.0.0	8.1.0	E-FACCH/F interleaving
05.03	s30	A032	R99	8.0.0	8.1.0	Introduction of RATSCCH for AMR
05.03	s30b	A033	R99	8.1.0	8.2.0	Correction of EGPRS channel coding
05.03	s31	A035	R99	8.2.0	8.3.0	Correction concerning SID_FIRST and clarification concerning bit order of codec mode code words
05.03	s31	A036	R99	8.2.0	8.3.0	Editorial correction for ECSD channel coding
05.03	s31	A037	R99	8.2.0	8.3.0	Correction for EGPRS Channel Coding
05.03	s31b	A039	R99	8.3.0	8.4.0	Fast inband signalling: E-IACCH
05.03	s32	A040	R99	8.4.0	8.5.0	Clarification of stealing bits for MCS-1 to 4
05.03	s32	A041	R99	8.4.0	8.5.0	Correction to the interleaving formula of MCS-8 case
						GERAN#2 November 2000
05.03	G02	A043	R99	8.5.0	8.6.0	Correction of errors in coding schemes

Change history											
Date	TSG #	TSG Doc.	CR	Rev	Subject/Comment	Old	New				
2001-01	03	GP-010261	A045		Editorial Correction to SACCH Block Coding	8.6.0	4.0.0				
2001-11	07	GP-012770	009	1	Correction of references to relevant 3GPP TSs	4.0.0	4.1.0				
2003-04	14	GP-030757	023		Padding for MCS-8 Retransmissions	4.1.0	4.2.0				
2004-11	22	GP-042822	043	1	FLO-compatible quick fix for VT over GERAN	4.2.0	4.3.0				
2005-01	23	GP-050038	048		Correction to E-FACCH/F for E-TCH/F32.0	4.3.0	4.4.0				
2005-01	23	GP-050488	051		Interleaving for E-TCH/F32.0	4.3.0	4.4.0				

History

	Document history									
V4.0.0	January 2002	Publication								
V4.1.0	November 2001	Publication								
V4.2.0	April 2003	Publication								
V4.3.0	November 2004	Publication								
V4.4.0	January 2005	Publication								