第七章 代数系统

第六节 二元运算的其它性质

5、可消去元

定义

设★是X上的二元运算, $a \in X$,如果对任 何 $x, y \in X$,有 $(a \star x = a \star y) \Rightarrow x = y$ 或者 $(x \star a = y \star a) \Rightarrow x = y$. 则称 a 是相对 \star 的可消去元。 如果对任何 $a \in X \land a \neq \theta$, a 均是可消去 元,则称 \star 运算在 X 上有可消去性。

例如 乘法运算,对任意实数 $a\neq 0$, a 就是可消元。 因为当 $a\neq 0$, 若ax=ay则有x=y。 所以乘法在实数集合上有可消去性。 而集合族上的∪和○运算都不满足可消去性。 因为 $A \cup B = A \cup C$ 或 $A \cap B = A \cap C$, 不一定有B=C。

定理

设 \star 是X上可结合的二元运算,如果 $a \in X$,且 $a^{-1} \in X$,则a是可消元。

证明:如
$$a \in X$$
,且 $a^{-1} \in X$,任取 $x,y \in X$,设有 $a \star x = a \star y$,则 $a^{-1} \star (a \star x) = a^{-1} \star (a \star y)$ $(a^{-1} \star a) \star x = (a^{-1} \star a) \star y$,所以 $e \star x = e \star y$,即 $x = y$,所以 a 相对 \star 是可消元。如果有 $x \star a = y \star a$,可类似证明。

第六节 结束