世界知的所有権機関

PCT

国 聚 事 務 局

特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6

F16L 15/00, B32B 15/08, B05D 7/14

(11) 国際公開番号"

WO 96/10710

A1

(43) 国際公開日

1996年4月11日(11.04.96)

(21) 国際出願番号

PCT/JP95/02034

JP

TP

JP.

JP

(22) 国際出版日

1995年10月4日(04.10.95)

(30) 優先権データ 特顧平6/239850

1994年10月4日(04.10.94)

特順平6/239851 特順平7/43245 特膜平7/43246 1994年10月4日(04.10.94)

1995年3月2日(02.03.95)

1995年3月2日(02.03.95)

(71) 出願人(米国を除くすべての指定国について)

新日本製鐵株式会社

(NIPPON STEEL CORPORATION)[JP/JP]

〒100-71 東京都千代田区大手町二丁目6番3号 Tokyo, (JP)

(72) 発明者:および

(75) 発明者/出願人(米国についてのみ)

郑留英司(TSURU, Eiji)[JP/JP]

岡 正春(OKA, Masaharu)[JP/JP]

永吉治之(NAGAYOSHI, Hartyuki)[JP/JP]

中島 晃(NAKASHIMA, Akira)[JP/JP]

〒804 福岡県北九州市戸畑区飛幡町1-1

新日本製銀株式会社 八幡製銀所內 Fukuoka, (JP)

福口征順(HIGUTI, Seijun)[JP/JP]

〒804 福岡県北九州市戸畑区沢見一丁目7-5-208 Fukuoka, (JP)

井上陸介(INOUE, Rypsuke)[JP/JP]

〒803 福岡県北九州市小倉北区熊谷2-28-12 Fukuoka, (JP)

秋山野雄(AKIYAMA, Toshio)[JP/JP]

〒329-01 栃木県下都賀郡野木町野凌953 Tochigi, (JP)

相良和美(SAGARA, Kazumi)[JP/JP]

〒306-04 茨城県猿島郡境町長井戸1686-25 Ibataki, (JP)

(74) 代理人

弁理士 石田 敬,外(ISHIDA, Takashi et al.)

〒105 東京都港区虎ノ門三丁目5番1号 虎ノ門37森ビル

青和特許法律事務所 Tokyo, (JP)

(81) 指定医

CN, NO, US, 欧州特許(AT, BE, CH, DE, DK, ES, FR, GB, GR,

IE, IT, LU, MC, NL, PT, SE).

必付公開書類

国際調査報告書

(54) Tide - STEEL PIPE JOINT HAVING HIGH GALLING RESISTANCE AND SURFACE TREATMENT METHOD THEREOF

(54) 発明の名称 耐ゴーリング性に優れた鋼管維手およびその表面処理方法

(57) Abstract

A screw joint of an oil-well pipe having a high seizure resistance. The threaded portion and metal seal portion of the pipe has a manganese phosphate chemical conversion treatment coating layer of 5 to 30 μ m thickness or a double-layer of a nitrogen treatment coating layer of 1 to 20 μ m thickness and a manganese phosphate chemical conversion treatment coating layer of 5 to 30 μ m thickness. The portions have also a solid lubricant coating layer of 10 to 45 μ m thickness formed by coating the portions with a solid lubricant having a specific composition and containing molybdenum disulfide powder or tungsten disulfide powder and at least one component selected from an epoxy resin, a furan resin and a polyamide-imide resin as the essential components and by subjecting them to a heat treatment. Due to such surface treatments, a steel pipe joint at which galling does not occur for a long time even when the number of repeated uses of the steel pipe is large can be obtained.

(57) 要約

油井管ねじ継手に優れた耐焼付き性を付与することを目的とする。ねじ部、メタルシール部に厚さ 5 ~30 μ m の燐酸マンガン系化成処理被膜層、あるいは厚さ 1~20 μ m の窒化処理層と厚さ 5~30 μ m の燐酸マンガン系化成処理被膜層を設けるとともにさらに二硫化モリブデンまたは二硫化タングステン粉末とエポキシ樹脂、フラン樹脂、ポリアミドイミド樹脂の中より選定した一種を必須成分として含有し、特定の組成比で構成される固体潤滑剤を塗布し、加熱処理を施して厚さ10~45 μ m の固体潤滑被膜層を形成することを特徴とする。

係る表面処理により鋼管の繰り返し使用回数が増大しても、ゴーリングの発生を長期に亘って防止することが出来る鋼管継手を得る

明細書

耐ゴーリング性に優れた鋼管継手およびその表面処理方法

技術分野

本発明は、無潤滑下での耐焼付き性に優れたネジ継手に関し、更に詳しくは原油採掘に使用する油井管ネジ継手や採掘された原油を輸送するラインパイプ用ネジ継手において、グリスを塗布しない繰り返し締め付け、緩めに対しても継手が焼付くことなく、繰り返し使用できる耐ゴーリング性に優れた鋼管継手およびその表面処理に関するものである。

背景技術

抽井掘削時に使用するチュービングやケーシングには一般にネジ 継手が用いられている。これらのネジ継手には使用環境下で内外圧、軸力、曲げ等を複合して被るため、これらの複合荷重下においても継手がリークしないこと、継手が破損しないことが要求される。一方、チュービングやケーシングの降下作業時には一度、締め込んだ継手を緩めることもあり、一般にチュービングで10回、ケーシングで3回の締め緩めに対しても継手が焼き付くことなく使用できることがAPI(米国石油協会)でも望まれている。上記の要求性能を満たすためには、API BUL5A2に述べられているコンパウンドグリスを塗布して継手を締め込むことが現在まで常識化している。ここでのコンパウンドグリスの役割は耐焼付き性の確保とシール性の向上にある。

その後、シール性をより向上させる発明として金属対金属接触部 を有する特殊ネジ継手、すなわち、プレミアムジョイントの開発が 盛んになされ、種々な形状のシール部を有するプレミアムジョイント(特公昭59-44552号公報、特公平5-41876号公報)が発明されている。このような発明により、維手のガスシール性は管体降伏強度と同等以上にまで向上させるに至った。しかしながら、より優れたシール性を得るには金属接触部に母材の降伏点をも越えるような、より高い面圧を付与しなければならないため、焼付きの中でも修復不可能なゴーリングが発生し易くなり、ゴーリングを防止する研究が盛んに行われるようになってきた。

このゴーリング防止対策として、コンパウンドグリスに亜鉛、鉛、鋼等の重金属粉、あるいは雲母等の無機物を適切に含有させるグリスの開発やシール部形状に工夫を疑らすことで局部面圧を軽減するもの(特開昭62~209291号公報、特開平4~277392号公報)や、シール面の性状を制御したもの(実公平6~713号公報)や表面処理によりゴーリング性を向上させるもの(特公平3~78517号公報、特開平5~117870号公報、特開昭62~258283号公報、特開昭60~26695号公報、特開昭58~31097号公報、特開昭58~17285号公報、特開昭61~124792号公報、特開昭61~136087号公報)等がある。係る各特許公報に示す技術もそれなりに効果があり、特に適切な表面処理とコンパウンドグリスを用いることで耐焼付き性も実用的に充分な範囲にまで向上してきた。

特に、特公平3-78517号公報には油井管ネジ継手に二硫化モリブデンを分散混合させた樹脂被膜を形成されるものが知られている。しかし、係る公報は樹脂被膜層を金属対金属接触部の表面相さ以下に形成されている。これはコンパウンドグリス塗布を念頭に置いたもので、最終表面の凹凸にグリスが封入される効果を狙ったもので、無グリス潤滑下での締め緩めに対しては下地の表面相さによる選択的接触により安定した耐焼付き性は得られない。また、経時劣化

を最小限にするための下地処理の考えはなく、相さのみについての 言及では長期に亘る安定した耐焼付き性を得ることが出来ないとい う問題がある。

更に、特開平 6-10154号公報には表面処理前の表面最大租さと表面処理被膜厚さの関係を規定したものが知られている。しかし、係る公報は金属接触部の隙間を小さくすることでシール性の向上を狙ったものであり、尚かつ、コンパウンドグリスの効果について述べているものの、上記同様無潤滑下の耐焼付き性については全く述べられていない。さらに実施例として述べられている金属系の表面処理では無グリス潤滑下での耐焼付き性が期待できないことは前述したとおりである。

このような状況のもとに、近年の研究として塗布したグリスがメークアップ(締め付け)中に高圧になり使用性能を劣化させること(特開昭63-210487号公報、特開平 6-11078号公報)やコンパウンドグリスに含有されている重金属分に起因した環境汚染問題などが取り上げられ、重金属分を含まないコンパウンドグリスの商品化などコンパウンドグリスに関わる問題が生じ始めた。1991年に制定されたAPI RP5C5 にも継手性能に及ぼすグリス量やグリス圧力の問題を評価するプログラムとなっている。それにも増して、コンパウンドグリスの塗布作業は作業環境を悪化させると同時に作業効率をも低下させている。従って、このようなコンパウンドグリスを一切用いることなく、従来の性能、特にゴーリング性を確保できれば上述した問題点を一掃できる画期的なネジ継手となる。それにも拘らず、コンパウンドグリスを用いざるを得ないのは完全無グリス潤滑下では従来の技術ではゴーリング性が数段劣化することにあった。

USP4692988には、ねじ継手に固体潤滑剤として二硫化モリブデンを用い、PTFE等でパウンドしたもの、あるいはキャリアによりPTFE

を塗布する時の方法等について述べられている。さらに、係る技術は液体潤滑剤とともに用いられる場合に効果を発揮するものと解釈でき、本発明が完極的な目標とする完全無液体潤滑環境下では十分な効果を発揮できない。この理由として、特にねじ継手のシール時においては、管体降伏強度以上の高面圧により摺動を繰り返すためにより、ねじ部以上に焼付きやすいためである。

この問題を解決するための手段として発明者等は下地処理の適正 化に着目し、シール部、及びねじ部に燐酸被膜処理を適正な方法で 施した後に、固体潤滑被膜を設けることではじめて完全液体無潤滑 下での焼付き性が維持できることを究明した。

同様に、固体潤滑剤をねじ継手に適用した例に、USP4414247がある。この発明においてはブラストによる下地処理を施した後、二硫化モリブデンを樹脂とともに塗布し、焼付けるものであるが、ブラストによる下地処理では特に高面圧下での無液体潤滑下で十分な耐焼付き性を発揮することができない。これに対して、燐酸塩被膜処理を施した場合、実施例で述べたように無液体潤滑下でも焼付きを起こすことなく、10回以上のメークアップ、プレークアウトを行うことができる。

燐酸塩被膜層が耐焼付き性に優れる理由として燐酸塩被膜層の凹凸、及び空隙が樹脂のアンカー効果を増進させ、繰り返し摺動後も 燐酸被膜層の上表層に薄膜の後退潤滑被膜が残存するためである。

発明の開示

上述のような問題を解消するべき、発明者らは鋭意研究を重ねた 結果、従来において継手メークアップ前に塗布したコンパウンドグ リスなどの液体潤滑剤を一切使用することなく、繰り返しの締め、 緩めに対してゴーリングを起こすことなく、かつシール性等の使用 性能も満足することが出来る耐ゴーリング性に優れた鋼管継手およびその表面処理方法を提供することにある。その本発明の要旨は次のとおりである。

- (1) 雄ネジとネジなし金属接触部からなるピンと雌ネジとネジなし金属接触部からなるボックスから構成される管のネジ維手において、ボックスまたはピンの接触表面に、燐酸系化成処理被膜層あるいは窒化処理層と燐酸系化成処理被膜層を設けると共に、二硫化モリブデンまたは二硫化タングステン粉末を樹脂に分散混合した樹脂被膜層を該燐酸系化成処理被膜層上に形成し、前記樹脂被膜の膜厚を該燐酸系化成処理被膜層の膜厚以上とした耐焼付き性に優れたネジ維手。
- (2)項目(1)において、前記樹脂被膜の膜厚を燐酸系化成処理被膜層の表面相さ以上とする耐焼付き性に優れたネジ維手。
- (3)項目(1)または(2)において、さらに相対する摺動面の表面組さを前記樹脂被膜層の厚さより小さくする、耐焼付き性に優れたネジ維手。
- (4)項目(1)から(3)のいずれかにおいて、前記燐酸系化成処理披膜層厚さを $5\sim30\,\mu$ mに、前記室化処理層厚みを $1\sim20\,\mu$ mにし、前記二硫化モリブデンまたは二硫化タングステン粉末量を
- 0.2 ≤ {(二硫化モリプデンまたは二硫化タングステンまたは二硫化タングステン粉末)の含有量 / {(樹脂)の含有量) ≤ 9.

なる割合となるようにし、かつ前記樹脂被膜層の厚みを10~45μm に形成する耐焼付き性に優れたネジ継手。

(5)項目(1)から(4)のいずれかにおいて、さらに前記樹脂に腐食抑制剤を分散混合する耐焼付き性に優れたネジ雑手。

(6) 鋼管の継手部分のねじ部およびメタルシール部に、厚さ5~30μmの燐酸マンガン系化成処理被膜層、あるいは厚さ1~20μmの窒化処理層と厚さ5~30μmの燐酸マンガン系化成処理被膜層を設けるとともに、さらに二硫化モリプデンまたは二硫化タングステン粉末とエポキシ樹脂、フラン樹脂、ポリアミドイミド樹脂の中より選定した一種を必須成分として含有し、

- 0.2 ≦ ((二硫化モリプテンまたは二硫化タングステン粉末)の含有量} / ((エポキシ樹脂、プラン樹脂、ポリアミドイミド樹脂の中より選定した一種)の含有量} ≦9.0(重量比)
- の組成比で構成される固体潤滑剤を塗布し、加熱処理を施して、厚さ10~45μmの固体潤滑被膜層を形成せしめることを特徴とする鋼管継手の表面処理方法。
- (7)項目(6)において、さらに二硫化モリブデンまたは二硫化タングステン粉末に対して10~50重量%のCu. Zn粉末の一種または二種を含有し、
- 0.2 ≦ ((二硫化モリプデンまたは二硫化タングステン粉末とCu . Zn粉末の一種または二種)の含有量) / ((エポキシ樹脂、フラン樹脂、ポリアミドイミド樹脂の中より選定した一種)の含有量) ≤9.0(重量比)
- の組成比で構成される固体調滑剤を塗布する鋼管継手の表面処理方 法。
- (8)項目(6)において、固体潤滑被膜層を形成せしめる固体 潤滑剤の必須成分である二硫化モリプテンまたは二硫化タングステン粉末の粒子径がフィッシャー法による測定により0.45~10μmの 範囲、また分子量が2.000~10.000の範囲のエポキシ樹脂、分子量 が 150~250 の範囲のフラン樹脂、分子量が10.000~25,000の範囲 のポリアミドイミド樹脂の中より選定した一種で構成されることを

特徴とする鋼管継手の表面処理方法。

(9)項目(7)において、CuあるいはZn粉末の粒子径が 0.5~10μmの範囲の一種または二種である鋼管継手の表面処理方法。

- (10) Cr含有量が10重量%以上の高Cr含有量の合金鋼からなる油井管の継手部分のねじ部およびメタルシール部に、厚さ1~20μmの室化処理層、厚さ 0.5~15μmの鉄めっき層あるいは10%以下のNi. Coの一種または二種を含有する鉄合金めっき層の下地処理層と厚さ5~30μmの燐酸マンガン系化成処理被膜層、さらに二硫化モリブデンまたは二硫化タングステン粉末とエポキシ樹脂、フラン樹脂、ポリアミドイミド樹脂の中より選定した一種を必須成分として含有し、
- $0.2 \le ((cm \ell + i))$ では、 i で
- の組成比で構成される固体潤滑剤を塗布し、加熱処理を施して、厚さ10~45μmの固体潤滑被膜層からなる三層被膜層を設けることを特徴とする鋼管継手の表面処理方法。
- (T1) 項目(10) において、さらに二硫化モリブデンまたは二硫化タングステン粉末に対して10~50重量%のCu. Zn粉末の一種または二種を含有する鋼管継手の表面処理方法。
- (12) 項目(10) において、固体潤滑被膜層を形成せしめる固体 潤滑剤の必須成分である二硫化モリプデンまたは二硫化タングステン粉末の粒子径がフィッシャー法による測定により0.45~10μmの 範囲、また分子量が 2.000~10,000の範囲のエポキシ樹脂、分子量 が 150~250 の範囲のフラン樹脂、分子量が10.000~25,000の範囲 のポリアミドイミド樹脂の中より選定した一種で構成される鋼管維 手の表面処理方法。

(13)項目(11)において、固体潤滑被膜層を形成せしめる固体 潤滑剤の必須成分である二硫化モリブデンまたは二硫化タングステン粉末の粒子径がフィッシャー法による測定により0.45~10μmの 範囲、CuあるいはZn粉末の粒子径 0.5~10μmの範囲の一種または 二種、または分子量が 2.000~10.000の範囲のエポキシ樹脂、分子 量が 150~250 の範囲のフラン樹脂、分子量が10,000~25.000の範 囲のポリアミドイミド樹脂の中より選定した一種で構成される鋼管 継手の表面処理方法。

図面の簡単な説明

- 第1図は本発明を適用した推手構成部材の概略図である。
- 第2図は各継手構成部材の組立構成を示す図である。
- 第3図は各種表面処理とゴーリング発生時の回数との関係を示す 図である。
 - 第4図は本発明での試験の概要を示す図である。
- 第5図は分散メッキによる表面被膜の種類と焼付きまでの摺動距離との関係を示す図である。
- 第6図は各種樹脂に二硫化モリプテン粉末を分散混合させた被膜 と焼付きまでの摺動距離との関係を示す図である。
- 第7図は各種下地処理した場合の樹脂に二硫化モリブデン粉末を 分散混合させた表面被膜と焼付きまでの摺動距離との関係を示す図 である。
- 第8図は燐酸系化成処理の膜厚と焼付きまでの摺動距離との関係 を示す図である。
- 第9図は本発明に係る樹脂被膜の膜厚と燐酸系化成処理被膜層の 腹厚との関係を示す図である。
 - 第10図は本発明に係る樹脂披膜の膜厚と燐酸系化成処理披膜層の

膜厚及び相対する摺動面の表面粗さとの関係を示す図である。

第11図は本発明に係る樹脂被膜の膜厚と燐酸系化成処理被膜層の 表面租さとの関係を示す図である。

第12図は摺動相手材にサンドプラストを施した場合の各種表面処理とゴーリング発生時の回数との関係を示す図である。

第13図は本発明に係る樹脂被膜の膜厚と燐酸系化成処理被膜層の 表面粗さ及び相対する摺動面の表面粗さとの関係を示す図である。

第14図は本発明に係る樹脂被膜厚みと表面粗さにおける耐焼付き 性との関係を示す図である。

第15図は相対する摺動面租さでのメーク・ブレーク回数と樹脂被 膜厚みの減少過程を示す図である。

発明を実施するための最良の形態

第1図に本発明を適用した継手構成部材の概略図を示す。第1図に示すように、維手部材であるボックス1とピン(鋼管先端継手部)2について、それぞれの継手部材を構成するネジ部3および金属一金属接触部4に対して、ボックス1のみ、あるいはボックス1とピン2の接触界面に燐酸マンガン系化成処理被膜層または下地窒化処理と燐酸マンガン系化成処理被膜層および樹脂被膜層を施し、維手螺合中には係る表面処理層と相対する母材表面が摺動する。

第2図は各継手構成部材の組立構成を示す図である。第2図に示すようにボックス1とピン2を嵌合させ、それぞれのネジ部3、金属一金属接触部4に高面圧を付与しつつ摺動させる。このような構造において、一般に継手径が大きくなるほど耐焼付き性が厳しくなるものである。そこで、例えば10回の締め緩めに対して、ゴーリングを起こさないことが要求されるチュービングサイズの最大径、ゆ178mm の金属対金属接触部を有するプレミアムジョイントに対して

耐焼付き性の評価試験を行った。

第3図は各種表面処理とゴーリング発生時の回数との関係を示す図である。第3図に示すように、亜鉛メッキ、銅メッキ、錫メッキ、頻酸塩処理、サンドプラストを施したボックスと機械加工のままのピンに潤滑剤を塗布することなく、締め緩めを行った場合の各種類の焼付き発生回数を示しており、最も焼付き性に優れると言われる銅メッキでさえも僅か3回目でゴーリングが発生し、無潤滑下で耐ゴーリング性を確保することがいかに難易度の高い技術であることが判る。何故ならば、通常プレミアムジョイントはガスシールを行うために金属対金属接触部に600MPaにも及ぶ母材自身の降伏点をも越えるような高面圧を発生し、継手のメークアップ、プレークアウト中には係る高面圧下で金属同士が摺動するからである。

そこで、発明者らは高面圧下での潤滑機能に優れる二硫化モリブ デンまたは二硫化タングステンに着目し、油井管ネジ継手に関する 固体潤滑被膜の研究に取り組んだ。

一般に潤滑剤の潤滑効果は使用条件、すなわち、面圧、摺動速度、潤滑剤の種類及び有無、面性状及び温度等によって大きく異なることも知られている。二硫化モリブデンまたは二硫化タングステンにおいても、その使用方法により極めて優れた耐焼付き性を発揮したり、通常のグリス潤滑よりも劣る場合があることが知られている。特に二硫化モリブデンまたは二硫化タングステンの場合、その下地処理とバインダー(結合剤)が潤滑性の良否を左右すると言っても過言ではない。

以上の理由から耐焼付き性の評価に当たっては実継手を用いることが最も望ましいわけであるが、先ずは被膜潤滑性の相対比較を行う観点からピンーオンーディスクタイプの焼付き評価試験機を開発し、小型サンブルによる評価を行った。ここでパウデン摩擦試験機

等の既存の焼付き評価試験機を用いず、独自の試験機で評価に当たったことは、前述のように被膜の耐焼付き性向上効果は使用環境によって大きく異なるためである。プレミアムジョイントの場合、接触面圧が前述のように非常に大きいため、小型試験においても係る高面圧を付与する必要があるからである。第4図に本発明での試験の概要を示す。以下にサンブル及び実験条件を示す。

ピン 試験面の形状:R24mm

ディスク 外径: ø 250mm

表面租さ: 0.007mm

試験条件 負荷重:230kg

摺動速度:5m/min

回転直径:178mm

温度: 20°C

潤滑剤:なし

ここで言うピンに耐焼付き性のある被膜を施し、例えば実継手のボックスを想定し、ディスクには例えば実継手のピンを想定し、実機手同等の施盤加工による表面相さを付与した。一回転当たりの摺動距離は178mm 外径のパイプに相当し、実継手で許される最大の摺動速度で実継手同等の高面圧を付与した。更に特徴的なことはグリスなどの潤滑剤を一切用いることなく、耐焼付き性を評価したことにある。

先ず、発明者らは既存の金属メッキをマトリックスに二硫化モリプデンを分散混合した表面処理、いわゆる分散メッキの評価を行った。その結果を第5図に示す。すなわち、第5図は分散メッキによる表面被膜の種類と焼付きまでの摺動距離との関係を示す図であり、この図より分散メッキの耐焼付き性はマトリックス金属の耐焼付き性に大きく左右され、二硫化モリブデンの分散効果は殆ど現れず

、むしろ、金属マトリックス単体の耐焼付き性の方が優れる場合が 多いことが判る。これは高面圧特有の現象であり、軽荷重下では一 般的に言われるように二硫化モリプデンの効果が現れ、分散メッキ の方が優れた耐焼付き性を呈したものである。また、二硫化タング ステンについても同様の作用がある。

次に、ポリアミドイミド、エポキシ、フラン等の樹脂をバインダーに二硫化モリブデン粉末を分散混合させたコーティングの評価結果を第6図に示す。すなわち、第6図は各種樹脂に二硫化モリブデン粉末を分散混合させた披膜と焼付きまでの摺動距離との関係を示す図であり、ここで下地処理としては燐酸マンガン系化成処理を施した。かかる披膜の耐焼付き性は従来最も優れていると言われていた銅メッキの10倍以上の耐焼付き性を呈し、一時的に設定していた最大試験摺動距離80mに達してもゴーリングすることはなかった。さらに、二硫化タングステンについても同様の作用を有する。

バインダーの種類による耐焼付き性の有意差が明確に現れ、ポリアミドイミド、エポキシ、フランの順に優れていることが判った。 これは樹脂自身の引張強度、衝撃値と関係するものである。

しかも、上述の有機樹脂が、

0.2 ≤ { (二硫化モリブデンまたは二硫化タングステン粉末) の 含有量} / { (樹脂) の含有量} ≤ 9.0

の割合に分散混合した樹脂被膜層を下地処理である燐酸系化成処理 被膜層上に厚さ10~45μmに形成せしめる必要がある。二硫化モリ プテンまたは二硫化タングステン粉末と有機樹脂バインダーの組成 比が 0.2未満の場合には、形成される固体潤滑被膜層の目的とする 潤滑機能の向上効果が得られ難く、また、組成比が 9 を越える場合 には、形成された固体潤滑被膜層の密着性が劣化し、特に被膜層か らの二硫化モリブデンまたは二硫化タングステン粉末の剝離が著し

い等の欠点を生じるので好ましくない。従って、固体潤滑被膜層を 形成するために使用される処理剤の必須含有成分である二硫化モリ ブデンまたは二硫化タングステン粉末と有機樹脂バインダーの含有 組成比は 0.2~9 の範囲とする。

これらの樹脂被膜層を下地処理された燐酸系化成処理被膜層上に厚さ10~45μm形成させるもので、この被膜厚さが10μm未満の場合には、本発明の目的とする潤滑性能向上の効果が少なく、特に鋼管推手のメークアップとプレークアウトの繰り返し使用回数が減少する等の問題を生ずるので好ましくない。

一方、該被膜層の厚さが45μmを越える場合には、潤滑機能向上効果が飽和するとともに、メークアップトルクが上昇しすぎ、経済的に不利である。むしろ、固体潤滑被膜層の密着性が劣化する傾向が増加し、該被膜層の剝離によるムシレの発生する原因になるので好ましくない。従って、樹脂被膜層の厚さは10~45μmの範囲、好ましくは15~40μmの範囲に規制した。

また、コーティングの下地処理は二硫化モリブデンの特徴を活かす最も重要な要素であるため、耐焼付き性に及ぼす下地処理の影響を評価したものが第7図である。すなわち、第7図は各種下地処理した場合の樹脂に二硫化モリブデン粉末を分散混合させた表面被膜と焼付きまでの摺動距離との関係を示す図であり、ここでは下地処理として燐酸マンガン系化成処理、窒化処理、サンドブラスト、無処理の順に優れ、下地処理なしの場合は銅メッキ程度の耐焼付き性しかないことが判った。このことは、二硫化タングステンについても同様の作用である。また、窒化後燐酸マンガン系処理をすることで耐焼付き性は最も安定する。もう一つの注目すべきことは、下地処理にサンドブラ

ストを用いた場合、二硫化モリブデンの効果に非常にはらつきがでることである。これはグリス潤滑剤を伴わない焼付き試験ではサンドプラストによる凹凸の凸部が選択的に相手金属と接触し、樹脂被膜が部分的に損耗し、金属同士の凝着が起こりゴーリングは発生し易くなるものと考えられる。

このメカニズムに着目し、燐酸マンガン系化成処理について被膜厚さの効果を検討したところ、厚さ5~30μmの燐酸系化成処理被膜層を設けることが最適であることが判った。すなわち、燐酸系化成処理被膜層の厚さが5μm未満では化成処理被膜層の均一被膜性が十分でなく、固体潤滑被膜層に対する十分な密着性向上効果、特に腐食環境に長時間曝された場合の密着性、所謂経時後の密着性向上効果が得られにくく、また、固体潤滑被膜層が消耗後の潤滑性能が良くなく、本発明の目的とする鋼管維手の耐ゴーリング性の向上効果が不十分である。

一方、燐酸系化成処理被膜層が厚さ30μmを越えて生成される場合には、二次結晶が生成される傾向が著しく、該被膜自体の密着性が劣化するとともに、樹脂被膜層の密着性も劣化させるので好ましくない。従って、本発明においては、燐酸系化成処理被膜層が厚さは5~30μmの範囲、好ましくは10~25μmの範囲に限定した。

さらに、本発明においては、必要に応じて燐酸系化成処理被膜層、特に燐酸マンガン系化成処理被膜層のさらなる付着強度の向上、あるいは、この被膜層の均一な生成が阻害される鋼成分の鋼管継手に対する燐酸マンガン系化成処理被膜層の均一な生成促進および樹脂被膜層の消耗後の潤滑効果の長時間に亘る確保を目的として、拡散処理による窒化処理層が燐酸マンガン系化成処理被膜層の下地処理層として設けられる。

而して、これらの作用、効果を得るためには下地窒化処理層の厚

さは 1 μ m 以上 20 μ m 以下の範囲に限定される。この下地窒化処理層の厚さが 1 μ m 未満の場合には、窒化処理層に欠陥部が多く生成されるため、上記の効果が得られにくく好ましくない。一方、下地窒化処理層の厚さが 20 μ m を越える場合には、上述した効果が飽和するとともに、むしろ窒化層の硬度が高いために、その厚さ増加による鋼管継手の材質変化をもたらすため好ましくない。従って、本発明においては下地窒化処理層の厚さは 1 ~ 20 μ m の範囲、好ましくは 5 ~ 15 μ m の厚さに限定される。

第8回は燐酸処理の膜厚と焼付きまでの摺動距離との関係を示す 図である。この図に示すように燐酸マンガン系化成処理の厚さと樹脂被膜の厚さには、より優れた耐焼付き性を発揮できる特定の傾向があり、化成処理の厚さ以上に樹脂被膜を形成させることである。この組合せが効果的な理由として、前述のサンドブラストの下地処理を施した場合も化成処理原理した場合も化成処理原理以上に樹脂被膜をコーティングさせる必要がある。また、燐酸系化成処理を施すことなく、表面組さのみをサかある。また、燐酸系化成処理を施すことなく、表面組さのみをサントなどを設け、その組さを樹脂被膜厚さいた場合となりの効果が得られるが、次に理由から燐酸系化成処理を施した方が好ましい。

このように、下地処理を燐酸系化成処理層に特定した理由として、サンドプラストなどの下地処理に比べ、燐酸系化成処理は樹脂被膜との密着性の点で経時劣化を起こしにくいことと、施工性上の問題である。経時劣化について下地処理に燐酸マンガン系化成処理を用いたものとサンドプラストを用いたものに同様の樹脂被膜を形成し、水中に1ヶ月浸液後、密着状況を観察したところ、燐酸マンガン系化成処理をしたものには変化がなかったものの、サンドプラス

トをしたものには樹脂被膜の浮き上がりが観察されるものもあり、特に湿潤環境下での保存及び使用に問題のあることが判った。施工性の点ではサンドプラストを下地処理として用いた場合、サンドプラスト後望ましくは30分以内にコーティング処理を行う必要があるが、製造現場ではライン構造上、不可能な場合も多い。これに対して、燐酸マンガン系化成処理の場合、処理後2週間放置後樹脂被膜を施しても実使用上問題のないことが確認された。

グリス潤滑を用いない場合のもう一つの劣化性能として金属密封部のガスシール性がある。無潤滑下でのガスシール性を評価するために継手に10回の締め緩めを繰り返した後、API RP5C5 の荷重条件に則って、ガスシール性の評価を試みた。その結果、従来グリス潤滑をしていた場合と同様の加工公差範囲内での評価試験でも継手はリークすることはなかった。これは耐焼付き性を確保するためにが成した下地処理の膜厚以上の樹脂膜厚により、実質上のシールを行う金属接触部界面の凹凸が極めて滑らかになり、尚かつ相対する摺動面の隙間にも樹脂が密封されるため、グリスを用いなくても優れたシール機能が発揮できるものである。

第9図は本発明に係る樹脂被膜の膜厚と燐酸系化成処理被膜層の膜厚との関係を示す図である。本発明の目的を達成する鋼管維手の表面状態としては、第9図に示すように、燐酸系化成処理被膜層 5 あるいは窒化処理層と燐酸系化成処理被膜層の膜厚 δ μ と、これら下地処理層上に形成した二硫化モリブデンまたは二硫化タングステン粉末を樹脂に分散混合した樹脂被膜層 6 の膜厚 δ c とすると、δ μ < δ c の関係に成るように形成させることにある。すなわち、樹脂被膜層の膜厚 δ c を燐酸系化成処理被膜層あるいは窒化処理層と燐酸系化成処理被膜層の膜厚 δ μ より大きくする必要がある。これより小さい場合には、本発明の目的である耐焼付き性を維持するこ

とができないばかりか、シール性を維持することができなくなる。また、この燐酸系化成処理被膜層の膜厚 δ は前述した $5\sim30\,\mu$ m、樹脂被膜層の膜厚 δ は $10\sim45\,\mu$ mであるから、この両者において常に δ M $<\delta$ 。を保つ条件で形成させる必要がある。

第10図は本発明に係る樹脂被膜の膜厚と燐酸系化成処理被膜層の膜厚及び相対する摺動面の表面相さとの関係を示す図である。本発明の目的を達成するための第2の発明であって、第10図に示すように、燐酸系化成処理被膜層 5 あるいは窒化処理層と燐酸系化成処理被膜層の膜厚 δ ω とこれら下地処理層上に形成した二硫化モリブシまたは二硫化タングステン粉末を樹脂に分散混合した樹脂被膜層の膜厚 δ 。 との間に、 δ ω < δ 。 の関係があり、かつ、相対する 宿動面 7 の表面相さ R **** とすると R **** < δ 。 の関係が成り立つように R **** を決めることにある。すなわち、相対する摺動面の表面相さ R **** が樹脂被膜層の膜厚 δ 。 より大きいと本発明においては、 グリス又は液体潤滑剤がないことからリークを起こし、本発明の目的を達成することができない。

第11図は本発明に係る樹脂被膜の膜厚と燐酸系化成処理被膜層の表面粗さとの関係を示す図である。本発明の目的を達成する鋼管維手の表面状態としては、第11図に示すように、燐酸系化成処理被膜層 5 あるいは窒化処理層と燐酸系化成処理被膜層の表面粗さ R M とこれら下地処理層上に形成した二硫化モリブデンまたは二硫化タングステン粉末を樹脂に分散混合した樹脂被膜層 6 の膜厚 δ 。 とすると、R M < δ c の関係に成るように形成させることにある。すなわち、樹脂被膜層の膜厚 δ c を燐酸系化成処理被膜層あるいは窒化処理層と燐酸系化成処理被膜層の表面粗さ R M より大きくする必要がある。これより小さい場合には、本発明の目的である耐焼付き性を維持することができないばかりか、シール性を維持することができないばかりか、シール性を維持することができないばかりか、シール性を維持することができないばかりか、シールを

きなくなる。

また、この燐酸系化成処理被膜層の表面相さ R M は 3 ~ 30 μ m の 範囲とする。 3 μ m 未満では樹脂被膜との密着性が悪く、30 μ m を 越える表面相さになると燐酸系化成処理被膜層の厚さが厚くなり、 二次結晶が生成される傾向が著しく、該被膜層自体がもろくなり、 密着性が逆に劣化することになる。従って、本発明においては、燐 酸系化成処理被膜層の表面相さ R M は 3 ~ 30 μ m の範囲に限定した

次に、継手の金属接触部の耐焼付き性を向上させる方法に接触界 面を意識的に機械加工により粗くしたり、あるいはサンドプラスト を施し、他の表面処理を用いずに耐焼付き性を向上させることは一 般に用いられている手段でコンパウンドグリスを塗布した環境下で は一定の効果を上げてきた。しかし、この摺動相手材の表面性状の 効果をグリス無潤滑下で評価したものはなく、ここにグリス無潤滑 下での銅メッキを施した母材に対してサンドプラストにより表面を R ... = 30 µmに処理したピンを締め級めを繰り返した場合の結果 を第12図に示す。すなわち、第12図は摺動相手材にサンドプラスト を施した場合の各種表面処理とゴーリング発生時の回数との関係を 示す図で、この図に示すように、摺動相手材の表面にサンドブラス トを施した方が耐焼付き性が劣化することが判る。この理由として 、表面を粗くすることの効果は表面を粗くすることにより接触界面 に隙間を設け、その隙間にコンパウンドグリスを封入し、潤滑効果 を向上させることにあるわけで、グリス無潤滑下ではこの効果がな いばかりか、唯一の耐焼付き性の機能を有する表面処理をサンドブ ラストの凹凸により、損耗させてしまうからである。

第13図は本発明に係る樹脂被膜の膜厚と燐酸系化成処理被膜層の 表面粗さ及び相対する摺動面の表面粗さとの関係を示す図である。

本発明の目的を達成するための第2の発明であって、第13図に示すように、燐酸系化成処理被膜層 5 あるいは窒化処理層と燐酸系化成処理被膜層の表面粗さ R_n とこれら下地処理層上に形成した二硫化モリプデンまたは二硫化タングステン粉末を樹脂に分散混合した樹脂被膜層 6 の膜厚 δ 。との間に、 R_n く δ 。の関係があり、かつ、相対する摺動面 7 の表面粗さ R_n 。とすると R_n く δ 。の関係があり、かつ、成り立つように R_n を決めることにある。すなわち、相対する摺動面の表面粗さ R_n が樹脂被膜層の膜厚 δ 。より大きいと本発明においては、グリス又は液体潤滑剤がないことからリークを起こし、本発明の目的を達成することができない。また、この表面粗さ R_n は $1 \sim 25 \mu$ m の範囲とする。 1μ m 未満では継手の生産効率に焼付けを起し、シール性を劣化させる。従って、相対する摺動面の表面粗さ R_n は $1 \sim 25 \mu$ m の範囲が望ましい。その作用、効果を第14図及び第15図に示す。

第14図は本発明に係る樹脂膜厚みと表面粗さにおける耐焼付き性との関係を示す図である。すなわち、燐酸マンガン系化成処理を下地処理に二硫化モリブデンまたは二硫化タングステンをポリアミドイミド樹脂に分散混合した場合の初期の樹脂被膜厚と10回の締め緩め後の樹脂被膜厚を示したものである。相対する摺動面の表面粗さか粗いほど残存膜厚が小さくなり、耐焼付き性が劣化することが判る。

第15図は相対する摺動面組さでのメーク・ブレーク回数と樹脂被膜厚みの減少過程を示す図で、締め綴めを繰り返したときの樹脂膜厚の減少過程を示している。この図より、総損耗量が相対する摺動面の租さと同等になるあたりから、損耗は減少する傾向にある。従って、耐焼付き性を安定的に得るには樹脂被膜の膜厚を相対する摺

動面の粗さ以上に設計する必要がある。

更に、二硫化モリプデンまたは二硫化タングステンを唯一の分散 粒子とした樹脂被膜を用いることはグリス潤滑無しの場合、必須条件であったが、係る分散粒子を用いた場合の弊害としてSが水分中などの水素と結び付き、硫化水素を生成し、特に母材が高強度の場合、硫化物応力腐食割れを誘発すると言うものである。このような問題に対処するために、樹脂中に2ーポリメリクリンセード、1ートリエチレントリアミノイミダブリン(2-polymericlinseed、1ーtriethylenetriaminoimidazoline)などの腐食抑制剤を分散させることで耐焼付き性を維持したまま硫化物応力腐食割れを防止することができるものである。

さらに、本発明においては、固体潤滑剤に適正量のCu粉末および Zn粉末の一種または二種を含有せしめることにより、固体潤滑被膜 層の高面圧下におけるさらなる耐摩耗性の向上が可能なことを見出 し、その適用による対策も併せ講じた。従って、本発明の機成によ る固体潤滑剤を用いて固体潤滑被膜層を形成することにより、潤滑 性および耐摩耗性、すなわち被膜強度の向上効果が得られる。

また、前記の固体潤滑被膜層の処理後および腐食環境下に長期間 曝される場合の密着性、所謂経時密着性の向上、さらには高面圧下 での繰り返し摺動により固体潤滑被膜層に摩耗、損傷が生じた場合 に対しても、さらなる潤滑寿命の向上を計るため、固体潤滑被膜層 の下層に窒化処理層、鉄めっき層あるいはNi. Coの一種または二種 を含有する鉄合金めっき層と燐酸マンガン系化成処理被膜層を生成 せしめる投錨効果の向上の対応策を講じた。すなわち、燐酸マンガン系化成処理被膜層の均一な生成が困難な10%以上のCrを含有する 高Cr合金鋼製鋼管維手に対して、窒化処理層、鉄めっき層あるいは 鉄合金めっき層を設けることにより、燐酸マンガン系化成処理被膜

層の均一な生成を可能ならしめ、該被膜層と固体潤滑被膜層との相乗効果の活用による性能向上を計った。すなわち、燐酸マンガン系化成処理被膜層は生成される結晶粒子の間に多くの空隙が生成されるため、固体潤滑被膜層が空隙に多量にトラップされた状態で付着、形成される。そのため、密着性に優れた固体潤滑被膜層が形成され、また燐酸マンガン系化成処理被膜層の塗膜下腐食の抑制効果による経時密着性の向上効果が得られる。さらに、固体潤滑被膜層が摩耗、損傷後も、燐酸マンガン系化成処理被膜層と該被膜層にトラップされた固体潤滑被膜層との相乗効果による潤滑機能の長期に亘る接続効果が可能となる。

以上のように、本発明の方法は、10%以上のCrを含有する高Cr合金鋼製鋼管継手に対して、窒化処理層、鉄めっき層あるいは鉄合金めっき層と燐酸マンガン系化成処理被膜層を設けるとともに、靱性、硬度および潤滑性能に優れた固体潤滑被膜層を生成せしめることによって、密着性、被膜強度ならびに潤滑性能に著しく優れ、特に潤滑命の長期間に亘る確保が可能な表面処理被膜層を形成せしめたものである。そのため、本発明の方法による高Cr合金鋼製鋼管継手は、鋼管の長期使用、すなわちメークアップ、プレークアウトの繰り返し回数の増大に対して、耐焼き付き性、耐摩耗性、耐久性に極めて優れる。すなわち、長期間に亘る繰り返し使用に対して、従来法に比較して焼き付きとムシレの発生を防止し得る耐ゴーリング性に極めて優れた鋼管継手が得られる。

以下に本発明の目的を達成する鋼管継手を製造するための表面処理方法について詳述する。

而して、本発明においては、鋼管推手に対して厚さ $5 \sim 30 \, \mu$ mの 範囲の燐酸マンガン系化成処理被膜層、あるいは厚さが $1 \sim 20 \, \mu$ m の範囲の下地窒化処理層と厚さが $5 \sim 30 \, \mu$ m の範囲の燐酸マンガン

系化成処理被膜層が設けられる。すなわち、燐酸マンガン系化成処理被膜層の厚さが5μm未満では、化成処理被膜層の均一被覆性が十分でなく、固体潤滑被膜層に対する十分な密着性向上効果、特に腐食環境に長時間曝された場合の密着性、所謂経時後の密着性向上効果が得られ難く、また固体潤滑被膜層が消耗後の潤滑性能が良好でなく、本発明の目的とする鋼管継手の耐ゴーリング性の向上効果が不十分である。一方、燐酸マンガン系化成処理被膜層が厚さ30μmを越えて生成される場合には、二次結晶が生成される傾向が著しく、該被膜層自体の密着性が劣化するとともに、固体潤滑被膜層の密着性も劣化させるので好ましくない。したがって、本発明においては、燐酸マンガン系化成処理被膜層の厚さは5~30μmの範囲、好ましくは10~20μmの範囲に限定される。

さらに、本発明においては、必要に応じて燐酸マンガン系化成処理被膜層のさらなる付着強度の向上、あるいは該被膜層の均一な生成が阻害される鋼成分の鋼管粧手に対する燐酸マンガン系化成処理被膜層の均一な生成促進および固体潤滑被膜層の消耗後の潤滑効果の長期間に亘る確保を目的として、拡散処理による窒化処理層が燐酸マンガン系化成処理被膜層の下地処理層として設けられる。

而して、これらの作用効果を得るためには、下地窒化処理層の厚さは 1 ~20μmの範囲に限定される。該下地窒化処理層の厚さが 1 μm未満の場合には、窒化処理層に欠陥部が多く生成されるため、上記の効果が得られにくく好ましくない。一方、下地窒化処理層の厚さが20μmを越える場合には、上記した効果が飽和するとともに、むしろ窒化層の硬度が高いため、その厚さ増加による鋼管継手の材質劣化をもたらすため、好ましくない。したがって、本発明においては、下地窒化処理層の厚さは 1~20μmの範囲、好ましくは 5~15μmの厚さに限定される。

而して、鋼管継手に燐酸マンガン系化成処理被膜層、あるいは下 地窒化処理層と燐酸マンガン系化成処理被膜層を設ける方法につい ては、特に限定されるものではない。すなわち、燐酸マンガン系化 成処理に関しては、鋼管継手を脱脂、酸洗、あるいは脱脂、ショッ トプラスト等の表面清浄化および活性化処理を施した後、従来かか る鋼管推手の耐ゴーリング性向上のために行われている既に公知の 燐酸マンガン系化成処理方法が適用される。例えば、前記の表面清 浄化および活性化処理後に直接あるいは前処理工程を行って燐酸マ ンガン系化成処理が施される。前処理浴としては、例えば、濃度が 0.1~ 3.0g/1の(チタシコロイド-ピロリン酸ソーダ) 系谷、 (マンガンコロイドーピロリン酸ソーダ) 系浴等が用いられるが、 特に規定されるものではない。これに続いて施される頻酸マンガン 系化成処理についても、本発明においては特に規定されるものでは なく、例えば、第一燐酸マンガンを主成分として含有する(Mn2+-Ni²⁺-PO₄³⁻ - NO₂)系化成処理浴、あるいは(Mn²⁺-Ni²⁺-Fe ²⁺-P0₄³⁻ - N0₃--F-) 系化成処理浴等が使用され、温度75~ 98℃で目標とする被膜厚さに対応した処理時間で被膜層が設けられ る。

一方、下地窒化処理層と燐酸マンガン系化成処理被膜層を施す方法に関し、窒化処理層は以下のように設けられる。すなわち、鋼管維手部分を脱脂、酸洗あるいは脱脂、ショットプラスト等の表面清浄化および活性化処理を施した後、窒化処理については処理浴組成として、例えば、

(A) 浴 NaCN 25%

KCN 1096

NaCNO 25%

KCNO 10%

Na 2CO s 20%

K2CO: 10%

(B) 浴NaCNO 10%

KCNO 45%

Na 2 CO 3 10 %

K2CO2 35%

のような窒素化合物を含有する溶融塩浴が用いられるとともに、浴温が 400~ 700℃の条件下で、目的とする窒化処理層の厚さを得るために鋼管推手のサイズ、処理温度などの適用される条件に対応してそれぞれ選定された処理時間で処理される。

次いで、該窒化処理が施された鋼管継手は、脱脂、水洗後、または酸洗、水洗等の表面清浄化と活性化処理後、前記と同様の方法で燐酸マンガン系化成処理被膜層が設けられる。さらに、本発明の目的を達成するためには、以上のように構成された燐酸マンガン系化成処理被膜層あるいは下地窒化処理層と燐酸マンガン系化成処理被膜層を有する鋼管継手の焼き付きとムシレの発生を防止する機能をさらに向上させるために、固体潤滑剤被膜層が設けられる。而して、本発明の目的を達成するためには、該固体潤滑被膜層は、燐酸マンガン系化成処理被膜層との密着性に優れるとともに、高面圧下での潤滑性能と被膜強度に優れる被膜層が形成されることが必要である。

また、鉄めっきあるいは鉄合金めっきについては処理浴組成として、例えば、硫酸鉄 - 塩化鉄 - 塩化アンモン系 Feめっき浴、硫酸鉄 - 塩化ニッケルー硼酸系 Fe - Ni 合金めっき浴、硫酸鉄 - 塩化ニッケルー塩化コバルトー硼酸系 Fe - Co合金めっき浴、硫酸鉄 - 塩化ニッケルー塩化コバルトー塩化アンモン系 Fe - Ni - Co合金めっき浴等が用いられ、電流密度 1 ~ 20 A / dm²、浴温が室温~60℃の条件下で、目的とするめ

っき厚を得るために設定した電解時間が電気めっきを行う。また、 鉄系合金めっきについては、前述の電気めっき浴に含有されるFe²⁺ に対してNi²⁺, Co²⁺添加量と電流密度を選定することにより、めっ き組成が調整される。

したがって、本発明においては、被膜に対する潤滑機能の付与を目的とした二硫化モリブデンまたは二硫化タングステン粉末を必須成分として含有せしめるとともに、被膜の密着性ならびに被膜強度の向上を狙いとして分子量がそれぞれ 2.000~10.000の範囲のエボキシ樹脂、 150~250 の範囲のフラン樹脂および10.000~25.000の範囲のポリアミドイミド樹脂の中より選定した一種をバインターとして含有して構成される固体潤滑剤が用いられる。また、該固体潤滑剤に対して、形成される被膜のより一層の耐摩耗性の向上を目的として、必要に応じてCu粉末、Zn粉末の一種または二種が含有される。

而して、本発明の目的を達成するためには、被処理材に対して、フィッシャー法による測定粒径が0.45~10μmの二硫化モリブデシまたは二硫化タングステン粉末と上述の有機樹脂が、

0.2 ≦ ((二硫化モリブデンまたは二硫化タングステン粉末)の含有量) / ((エポキシ樹脂、フラン樹脂あるいはポリアミドイミド樹脂の中より選定した一種) の含有量) ≤9.0(重量比)

の組成比で構成される固体潤滑剤を塗布し、150 ℃~ 300℃の温度 範囲における加熱ベーキング処理を施して、厚さが10~45μmの固 体潤滑披膜層を形成せしめることが必要である。

すなわち、固体潤滑剤に添加される二硫化モリプデンまたは二硫 化タングステン粉末のフィッシャー法による測定粒子径か0.45μm 未満では、二硫化モリプデンまたは二硫化タングステン粉末の本発 明の目的とする耐ゴーリング性に対する潤滑機能向上の効果が得ら

れ難い。

一方、その粒子径が10μmを超える場合には、被膜に含有される 二硫化モリプテンまたは二硫化タングステン粉末の潤滑性向上効果 が飽和するとともに、目的とする固体潤滑被膜層の厚さの調整が困 難なため、好ましくない。したかって、本発明において使用される 二硫化モリブデンまたは二硫化タングステン粉末は、フィッシャー 法により測定した粒子径が0.45~10μmの範囲、好ましくは2~5 μmの範囲に規制される。また、該潤滑剤を構成する有機樹脂系パ インダーは、それぞれエポキシ樹脂が分子量 2,000~10,000、フラ ン樹脂が 150~250 、ポリアミドイミド樹脂が10.000~25.000に規 制される。すなわち、エポキシ樹脂の分子量が 2,000未満、フラン 樹脂の分子量が 150未満、ポリアミドイミド樹脂の分子量が10,000 未満では、生成される被膜に本発明の目的とする靱性と硬度を付与 するのが困難であり、またエポキシ樹脂の分子量が10,000、フラン 樹脂の分子量が 250、ポリアミドイミド樹脂の分子量が25.000をそ れぞれ超える場合には、生成される被膜の靱性と硬度の向上効果が 飽和されるとともに、むしろ所定厚さに処理剤を均一に塗布するの が困難であり、また生成される被膜と燐酸マンガン系化成被膜との 密着性が劣化するので好ましくない。

したがって、本発明においては、固体潤滑被膜層の形成に適用される潤滑剤に使用される有機樹脂系パインダーは、分子量が 2,000~10,000以下、好ましくは 3,000~5,000 の範囲のエポキシ樹脂、分子量が 150~250 以下、好ましくは 170~220 の範囲のフラン樹脂、分子量が10,000~25,000以下、好ましくは15,000~20,000の範囲のポリアミドイミド樹脂に規制されるとともに、これら樹脂の中より選定した一種が用いられる。

而して、本発明の目的とする効果を達成するためには、固体潤滑

被膜層を形成するための固体潤滑剤に関し、前記の二硫化モリブデンまたは二硫化タングステン粉末と有機樹脂パインダーの組成比が重要であり、本発明においては、該組成比は重量比で、

0.2 ≦ ((二硫化モリプデンまたは二硫化タングステン粉末)の含有量} / {(エポキシ樹脂、フラン樹脂あるいはポリアミドイミド樹脂の中より選定した一種)の含有量} ≦9.0(重量比)の範囲に規制される。

該組成比が 0.2未満の場合には、形成される固体潤滑被膜層の目的とする潤滑機能の向上効果が得られ難く、また該組成比が9.0 を超える場合には、形成された固体潤滑被膜層の密着性が劣化し、特に被膜層からの二硫化モリブデンまたは二硫化タングステン粉末の 別離が著しい等の欠点を生じるので好ましくない。

したがって、固体潤滑披膜層を形成するために使用される処理剤の必須含有成分である二硫化モリブデンまたは二硫化タングステン粉末と有機樹脂バインダーの含有組成比は、より好ましくは 0.5~3.0 の範囲、最も好ましくは 0.8~2.0 の範囲に規制される。

また、本発明においては、形成される固体潤滑被膜層の耐摩耗性をさらに向上させるために、処理剤にCu粉末、Zn粉末の一種または二種が必要に応じて添加される。これら粉末は、粒径か 0.5~10 μ m の範囲で使用され、処理剤に含有される二硫化モリブデンまたは二硫化タングステン粉末に対して10~50重量%以下の範囲で添加される。すなわち、粒径が 0.5 μ m 未満の粒径のCu粉末あるいはZn粉末が固体潤滑被膜層に含有されても、被膜層の強度向上の効果が小さく、また使用される粒径が10 μ m を超える場合には、固体潤滑被膜層の所定厚さに調整することが困難なため、好ましくない。

さらに、これら粉末の添加量が三硫化モリブデンまたは二硫化タングステン粉末に対して、10重量%未満では、目的とする耐摩耗性

の向上効果が小さく、また50重量%を超える場合には、生成される 固体潤滑被膜層の潤滑性能および燐酸マンガン系化成処理被膜層と の密着性の劣化をもたらすので好ましくない。

したがって、固体潤滑剤にCu粉末あるいはZn粉末が添加、使用される場合には、粒径は $0.5\sim10\,\mu$ m、好ましくは $0.8\sim6.5\,\mu$ mの範囲、またその添加量は二硫化モリブデンまたは二硫化タングステン粉末に対して $10\sim50$ 重量%、好ましくは $20\sim42.5$ 重量%の範囲にそれぞれ限定される。

而して、以上のように構成された固体潤滑剤は、狙いとする被膜 厚さ、塗布方法等に対応して、溶剤を用いて粘度調整を行って、前 記の燐酸マンガン系化成処理あるいは下地窒化処理層と燐酸マンガ ン系化成処理を施した鋼管継手に塗布される。これら固体潤滑剤の 粘度調整方法あるいは塗布方法等については、本発明において特に 規定されるものではなく、従来から行われている方法により、例え ば溶剤としてケトン系溶剤等を用いて粘度調整を行い、スプレイ塗 布方式等により塗布処理が施される。次いで、固体潤滑剤が塗布処 理された鋼管継手に加熱ベーキング処理を施して、本発明の目的と する固体潤滑被膜層が形成せしめられる本発明においては、該加熱 ベーキング処理の方法あるいは条件については、特に規定されるも のではなく、固体潤滑剤に使用される有機樹脂系バインダーの性状 に対応して加熱温度は任意に設定されるとともに、また加熱方法に ついても、従来からの公知の方法が採用される。例えば、熱風乾燥 、ガスもしくは電気加熱、赤外線法等が用いられ、加熱温度 150℃ ~ 300℃、好ましくは 180℃~ 270℃の温度範囲で加熱ベーキング 処理が施される。

なお、加熱処理時間は、鋼管継手のサイズ、形状等に対応して任 意に設定すればよく、また加熱処理時間の短縮および固体潤滑剤の

塗布後、加熱ベーキング処理の間におけるたれ現象を防止するため 、鋼管継手を固体潤滑剤の塗布処理に先立って予め予熱処理を行う 等の対策を講じても良い。

これらの方法により、鋼管継手に形成される固体潤滑被膜層の被膜厚さは10~45μmの範囲に規制される。この被膜厚さが10μm未満の場合には、本発明の目的とする潤滑性能向上の効果が少なく、特に鋼管継手のメークアップとプレークアウトの繰り返し使用回数が減少する等の問題を生じるので好ましくない。一方、該被膜層の厚さが45μmを超える場合には、潤滑機能向上効果が飽和するとともに、経済的に不利である。むしろ、固体潤滑被膜層の密着性が劣化する傾向が増加し、該被膜層の剝離によるムシレの発生する原因になるので好ましくない。したがって、固体潤滑被膜層は、本発明の方法においては、その厚さが10~45μm、好ましくは15~30μmの範囲に規制される。

而して、前記のように構成された固体潤滑剤を用いて燐酸マンガン系化成処理被膜層に固体潤滑被膜層を形成することにより、該固体潤滑被膜は燐酸マンガン系化成処理被膜との相互作用によって密着性に非常に優れるとともに、被膜の靱性と硬度、すなわち被膜度および潤滑性能に極めて優れる。特に、本発明の目的とする用途に対しては、前記の各固体潤滑剤のうち、二硫化モリプデンまたは二硫化タングステン粉末ーポリアミドイミド樹脂およびそれぞれにCu粉末あるいはZn粉末を添加した固体潤滑剤を用いて形成される固体潤滑被膜層が、他の樹脂系に比較してその靱性と硬度に優れ、またCu粉末等の添加効果によってさらに耐摩耗性が向上するため、より優れた効果が得られる。すなわち、形成される固体潤滑被膜層の強度に特に優れるため、高面圧下での摺動を繰り返し受ける使用条件下での被膜寿命の向上効果により、長期間に亘るメークアップと

プレークアウトの繰り返し使用に対して極めて有効である。

以上のように、本発明においては、鋼管継手は、燐酸マンガン系化成処理被膜層あるいは下地窒化処理層と燐酸マンガン系化成処理被膜層を介して密着性ならびに被膜強度と潤滑性能に極めて優れる固体潤滑被膜層からなる複合被膜層が形成されるため、これら各被膜層の相乗効果により長期間に亘る使用条件において耐ゴーリング性に極めて優れる鋼管継手を得ることが出まる。なお、本発明の方法による複合被膜層を有する鋼管継手は、ねじ部あるいはメタルシール部にコンパウンドグリスを塗布していないます。こと、さらにコンパウンドグリスが十分に塗布されていないは変数的にコンパウンドグリスを塗布しないは変数的にコンパウンドグリスを塗布しない使用条件下においても、被膜の焼き付きの発生が起こりにくく、耐ゴーリング性に極めて優れる。

また、本発明の処理は、油井管の連結に用いられる継手部分、すなわち油井管の先端に形成されたねじ部とその基部に形成されたテーパ部分からなるピンおよびこのねじ部と蝶合するねじ部と先端に先細のテーパ部分を形成したカップリングの両方に施しても良く、またどちらかの片方、特にカップリングにのみ施しても良い。本発明は特に油井管ねじ継手の被膜構造について言及したものであり、被膜と継手形状の組み合せについて特定するものではない。

以下、本発明について実施例に基づいてさらに詳述する。

実施例

実施例1

鋼管の継手部分である第 I 図に示す継手部材であるボックスとピンについて、それぞれの継手部材を構成するネジ部および金属ー金

属接触部に対して、下地処理としてボックスの接触界面に燐酸マンガン系化成処理被膜層または下地窒化処理層と燐酸マンガン系化成処理被膜層ないしはサンドブラスト処理を行い、樹脂被膜として一流化モリブデンとポリアミドイミド樹脂、エポキン系樹脂を放在して、樹脂を強力した。また、間間を強力を強力を強力を強力を強力を強力を変えて設けた。また、相対する摺動面の相さを変えたときのゴーリング発生回数を第1表に示す。その結果、第1表に示すように、最高20回までのグリス潤滑を伴わない実継手の締みに対している。このように心を関び本発明の効果の高いことを明確に現している。このように企業である。とを明確に現している。このように企業である。との対理を関係を用いる場合、樹脂を関いては指動面のやすり効果が顕著に現れるように他脂を開いる場合、樹脂を関係を用いる場合、樹脂を関係を用いる場合、樹脂を関係を用いる場合、樹脂を関係を用いる場合、樹脂を関係を用いる場合、樹脂を関係を用いる場合、樹脂を関係を用いる場合、樹脂を関係を開かる場合、樹脂を関係を開かると同時に相対する複数の面相さを前述したように樹脂を関係に表が表がある。

第1表

	下地処理	樹脂被膜	相対指動面の表面	ゴーリング	備
	(被膜表面粗さ)	(膜厚)	粗さ	発生回数	考
1	窒化 2 μm 増酸マンガン系化成 処理核膜表面組さ 25 μm	二硫化モリブデン/ ポリアミドイミド樹脂 28μm	7.μm	20回以上	本発明
2	窒化 2 μm 横酸マンガン系化成 処理被膜表面祖さ 20 μm	二硫化モリブデン/ ポリアミドイミド検贴 5 µm	20 μm	50	比較
3	窒化 2 μm 焼酸マンガン系化成 処理被膜表面祖さ 20μm	二硫化モリブデン/ ポリアミドイミド樹脂 7 μm	7 μm	80	例
4	窒化 2 μm 増酸マンガン系化成 処理被膜表面粗さ 15 μm	二硫化モリブデン/ ポリアミドイミド梅脂 20μm	7 μm	20回以上	
5	増酸マンガン系化成 処理被膜表面阻さ 5 μm	二硫化モリブデン/ ポリアミドイミド樹脂 25μm	7 μm	20回以上	本発
6	増設マンガン系化成 処理被膜表面粗さ 5 μm	二硫化モリプデン/ ポリアミドイミド使脂 15μm	3 µm	20回以上	明
7	窒化 2 μm 増設亜鉛系化成 処理被膜表面粗さ 12 μm	二硫化モリブデン/ ポリアミドイミド樹脂 28μm	7μm	20回以上	
8	サンドプラスト 30μm	二硫化モリブデン/ ポリアミドイミド梅脂 20μm	7 μm	7回	比較
9	サンドプラスト 20μm	二硫化モリプデン/ ポリアミドイミド樹脂 28μm	7 μm	1 2 Ū	例
10	爆酸マンガン系化成 処理被膜表面粗さ 5 μ	二硫化モリブデン/ エポキシ系樹脂 25μm	7μm	20回以上	本発
11	増設マンガン系化成 処理被膜表面相さ 5 μ	二硫化モリプテン/ フラシ系検脂 25μm	7 μm	20回以上	明

実施例2

鋼管の継手部分、すなわち第1図に示すボックス(継手部材)1 とピン2(鋼管先端継手部)について、それぞれの継手部分を構成 するねじ部3およびメタルーメタルシール部4に対して、ボックス 1のみ、あるいはボックス1とピン2に本発明の方法による燐酸マンガン系化成処理被膜層、または下地窒化処理と燐酸マンガン系化 成処理被膜層および固体潤滑被膜層を設けた鋼管継手を作成し、評 価試験に供した。

すなわち、本発明の処理を施した評価材を第2図に示すように、ボックス1とピン2を篏合させた。次いで、締め付け機により、試験条件に応じて所定のトルク値でメークアップし、第2図のボックス1およびピン2のそれぞれのねじ部3、メタルーメタルシール部4に高面圧を付与しつつ摺動させた。かかる後に、締め付け機によりボックス1およびピン2をメークアップと逆の方向に回転させブレークアウトした。プレークアウトした後に、ボックス1、ピン2のねじ部3およびメタルーメタルシール部4を観察し、表面処理被膜の剝離状況ならびにゴーリングの発生状況を調査した。

調査の結果、被膜の剝離、ゴーリングが生じていない場合、あるいは軽度の場合には、さらにボックス1とピン2を嵌合させ、前述の締め付け機により同一の条件でメークアップを行った。

以上のように、評価材について被膜の剝離、ゴーリングが発生するまでメークアップ、プレークアウトを繰り返し、最大20回まで調査し、評価を行った。なお、メークアップ、プレークアウトに際しては、ボックスに対してピンを1~3 rpm の速度で回転させて評価試験を行った。

API P110相当の鋼材を用いて作成した内径 5.5インチのボックス 1 およびこれに対応したサイズのピン 2 の先端部を水系脱脂剤を用 い脱脂、水洗後、12%HC1 水溶液中で室温、20秒の酸洗、水洗を行って、直ちに(9.5g/1 Mn²+-0.15g/1 Ni²+- 1.0g/1 Fe²+- 36g/1 P0.²-- 6.1g/1 N0。- 0.3g/1 F-) 系治からなる燐酸マンガン系化成処理浴を用いて、95℃、10分間の処理により 燐酸マンガン系化成処理被膜層を設けた。

次いで、平均粒子径 2.5μmの二硫化モリプテン粉末と平均分子 量4.200 のエポキン樹脂を主要成分として含有するとともに、1.3(重量比)の組成比で構成される固体潤滑剤を塗布し、 180℃で20分 間の加熱ベーキング処理を施して、固体潤滑剤被膜層を設けた。

すなわち、本発明の処理によりボックス1とピン2のねじ部3ならびにメタルシール部4にそれぞれ燐酸マンガン系化成処理被膜層18μmおよび固体潤滑被膜層16.5μmからなる二層被膜層を評価材に形成せしめた。ボックス1とピン2のネジ部3およびメタルシール部4にAPI BU15A2 Sect2相当のコンパウンドブリスを塗布し、シール部4に 3.000kg/cm² の面圧を付与しつつ、継手部に対してメークアップ、プレークアウトの繰り返しテストを行った。

該テストを15回繰り返し行った結果はシール部の焼き付き、ムシレの発生を生じなかったが、16回目のテストにおいて焼き付きとムシレがかなり生じた。

比較例1

API P110相当の鋼材を用いて作成した内径 5.5インチのボックス 1 とピン 2 の先端部を水系脱脂剤を用い脱脂、水洗を行って、12% HC1 水溶液中で室温、20秒の酸洗、水洗後、実施例 1 の固体潤滑剤を用いて、ボックス 1 とピン 2 のねじ部 3 およびメタルシール部 4 に被膜厚を16.5μmの固体潤滑被膜層のみを設けて、比較例とした

該比較材を実施例2と同一条件で評価試験を行った結果、繰り返

しテスト7回目に固体潤滑被膜層の剝離がかなり生じるとともに、 8回目のテストにおいて焼き付きとムシレが著しく発生した。 実施例3

N-80相当の鋼材を用いて作成した内径7インチのボックス1を 溶剤系脱脂剤を用い脱脂、水洗を行い、 (20% NaCN-15% KCN -17 .5% NaCNO -17.5% KCNO-10% Na,CO,-20% K,CO,)からなる容融塩 浴中で、 450℃、30分間の加熱窒化処理を施し、オイルバス中で冷 却した。該窒化処理材を溶剤脱脂して、5%H2SO。水溶液中で室温 、5秒の酸洗、水洗後、 0.8g/1の (チタンコロイドーピロリン 酸ソーダ)系前処理浴による室温で2分間の前処理工程を行ってか 5. $(8.7g/1 Mn^{2+} - 0.2g/1 Ni^{2+} - 0.6g/1 Fe^{2+} - 32.3g/$ 1PO₄2-- 5.7g/1 NO₈-- 0.6g/1F-) 系裕からなる燐酸 マンガン系化成処理浴を用いて、90℃、15分間の処理により燐酸マ ンガン系化成処理被膜層を設けた。次いで、平均粒子径 2.8μmの 二硫化モリブテン粉末と平均分子量185 のフラン樹脂を主成分とし て含有するとともに、2.5(重量比)の組成比で構成される固体潤滑 剤を塗布し、 200℃で30分間の加熱ベーキング処理を施して、固体 潤滑被膜層を設けた。すなわち、本発明の処理によりボックス1の ねじ部3ならびにメタルーメタルシール部4にそれぞれ窒化処理層 6.4μm、燐酸マンガン系化成処理被膜層14μmおよび固体潤滑被 膜層14μmからなる三層被膜層を評価材に形成せしめた。

シール部 4 に 6.000kg/cm² の面圧を付与しつつ、継手部に対してメークアップ、プレークアウトの繰り返しテストを行った。該テストの13回目まではシール部の焼き付きとムシレは殆ど生じなかったが、15回目のテストにおいて焼き付きとムシレが生じた。

比較例2

N-80相当の鋼材を用いて作成した内径7インチのボックス1に

対して、実施例3と同一の方法により、ボックス1のねじ部3およびメタルシール部4に厚さ 6.4μmの窒化処理層と厚さ14μmの燐酸マンガン系化成処理被膜層を設けた。次いで、平均粒子径 2.8μmの二硫化モリブデン粉末と平均分子量185 のフラン樹脂を主要成分として含有するとともに、0.15 (重量比)の組成比で構成される固体潤滑剤を塗布し、 200℃で30分間のベーキング処理を施して、厚さ14μmの固体潤滑被膜層を設けて、比較例とした。

該比較材を実施例3と同一条件で評価試験を行った結果、潤滑性が十分でなく、繰り返しテスト8回目において焼き付きとムシレの発生が著しく、評価試験を中断した。

実施例 4

T-90相当の鋼材を用いて作成した内径7インチのボックス1を 水系脱脂および水洗を行い、ガラスピーズショット(粒子径#100 、圧力 5 kgf /cm²、60秒) による前処理後、(25% NaCN-10% KC N - 25% NaCNO - 10% KCNO-20% Na2CO: - 10% K2CO:)系溶融塩浴中 で、 570℃、20分間の加熱窒化処理を施し、オイルバス中で冷却し た。該窒化処理材を水系脱脂剤による脱脂、10%H.SO. 水溶液中で の室温、10秒間の酸洗、水洗後、 0.5g/1の (マンガンコロイド - ピロリン酸ソーダ)系前処理浴を用いて室温で20秒間の前処理を 行ってから、(8g/1Mn²⁺- 0.3g/1Ni²⁺- 0.2g/1Fe²⁺-29.5g/1PO.3- - 5.4g/1 NO. - 0.8g/1F-) 系浴から なる燐酸マンガン系化成処理浴を用いて、85℃、13分間の処理によ り燐酸マンガン系化成処理被膜層を設けた。次いで、平均粒子径 3 .0μmの二硫化モリプデン粉末と平均分子量20,000のポリアミドイ ミド樹脂を主要成分として含有するとともに、0.8(重量比)の組成 比で構成される固体潤滑剤を塗布し、 250℃で30分間の加熱ベーキ ング処理を施して、固体潤滑被膜層を設けた。すなわち、本発明の

処理によりボックス 1 のねじ部 3 ならびにメタルシール部 4 にそれぞれ窒化処理層 $10 \, \mu$ m、燐酸マンガン系化成処理被膜層 $12 \, \mu$ m および固体潤滑被膜層 $18.5 \, \mu$ m からなる三層被膜層を評価材に形成せしめた。

シール部 4 に 6.000kg/cm² の面圧を付与しつつ、継手部に対してメークアップ、プレークアウトの繰り返しテストを行った。該テストの15回目まではシール部の焼き付きとムシレは殆ど生じなかったが、18回目のテストにおいて焼き付きとムシレが生じた。

比較例3

T-90相当の鋼材を用いて作成した内径 7 インチのボックス1に対して実施例 4 と同一方法により、ボックス部 1 のねじ部 3 およびメタルシール部 4 に窒化処理層 10 μ m と燐酸マンガン系化成処理被膜層 12 μ m を設けた。次いで、平均粒子径 3.0 μ m の二硫化モリブデン粉末と平均分子量 20.000のポリアミドイミド樹脂を主要成分として含有するとともに、9.5(重量比)の組成比で構成される固体潤滑を塗布し、200℃で30分間の加熱ベーキング処理を施して、厚さ18.5 μ m の固体潤滑被膜層を形成せしめて、比較例とした。

該比較材に実施例 4 と同様に、継手部に対してメークアップ、プレークアウトの繰り返しテストを行った。その結果、固体潤滑被膜層の剝離が著しく、繰り返しテスト7回目のテストにおいて評価試験を中断した。

実施例5

9% Cr-1% Moを有する鋼材を用いて作成した内径 7 インチのボックス 1 を水系脱脂、ガラスビーズショット (粒子径 # 100 、圧力 5 kgf / cm²、90秒)による前処理後、 (25% Na CN-10% KCN-20% Na CNO-15% KCNO-20% Na CO₂-10% K₂CO₂)系溶融塩浴中で、 580℃、15分間の加熱窒化処理を施し、オイルバス中で冷却した。該

窒化処理材を水系脱脂剤による脱脂、10%H₂SO₂ 水溶液中での室温、5秒間の酸洗、水洗後、0.5g/1の(マンガンコロイドーピロリン酸ソーダ)系前処理浴を用いて室温で2分間の前処理工程を行ってから、(9g/1 Mo² - 0.2g/1 Ni² - 0.6g/1 Fe² - 33.5g/1 PO₃ - 5.7g/1 NO₃ - 0.6g/1 F -)系浴からなる燐酸マンガン系化成処理浴を用いて、88℃、10分間の処理により燐酸マンガン系化成処理被膜層を設けた。次いで、ボックス1を175℃で15分間予備加熱を行った後、平均粒子径3.0μmの二硫化モリブデン粉末と平均分子量20,000のポリアミドイミド樹脂を主要成分として含有するとともに、1.0(重量比)の組成比で構成される固体潤滑剤を塗布し、240℃で30分間の加熱ベーキング処理を施して、固体潤滑被膜層を設けた。すなわち、本発明の処理によりボックス1のねじ部3ならびにメタルシール部4にそれぞれ窒化処理簡11.5μm、燐酸マンガン系化成処理被膜層13.5μmおよび固体潤滑被膜層20μmからなる三層被膜層を評価材に形成せしめた。

該評価材を対象に、ボックス1およびピン2のねじ部3とメタルシール部4にコンパウンドグリスを塗布しない条件下で、シール部4に3.500kg/cm²の面圧を付与しつつ、維手部に対してメークアップ、ブレークアウトの繰り返しテストを行った。該テストを12回繰り返し行った結果は、被膜層の剝離は比較的少なく、またシール部の焼き付き、ムシレの発生を生じなかったが、13回目のテストにおいて焼き付きとムシレがかなり生じた。

比較例 4

9% Cr-1% Moを有する鋼材を用いて作成した内径 7 インチのボックス 1 を水系脱脂後、ショットプラストによる前処理によりボックス 1 の内面に表面最大祖さを 25μm に調整した。次いで、 175℃で15分間予備加熱を行った後、実施例 5 と同一条件で固体潤滑被膜

層20μmを形成せしめ、比較例とした。

該比較材に、実施例 5 と同様に、維手部に対してメークアップ、 ブレークアウトの繰り返しテストを行った。その結果、繰り返しテスト 4 回目のテストにおいて焼き付きとムシレの発生が著しく、評価試験を中断した。

実施例6

L-80に相当する鋼材を用いて作成した内径 7 インチのボックス 1 を水系脱脂剤を用いて脱脂、水洗を行い、10%H₂SO。水溶液中で50℃、10秒間の酸洗、水洗後、 0.5 g / 1 の (チタンコロイドーピロリン酸ソーダ) 系前処理浴による室温で1分間の前処理を施し、(9.5 g / 1 Mn² *- 0.15 g / 1 Ni² *- 0.9 g / 1 Pe² *- 36 g / 1 Po *² - 6.1 g / 1 NO₃ *- 0.5 g / 1 F *-) 系浴からなる燐酸マンガン系化成処理浴を用いて、95℃、10分間の処理により燐酸マンガン系化成処理被膜層を生成せしめた。次いで、平均粒子径 4.0 μ m と 1.0 μ m の二硫化モリブデン粉末および平均分子量16.000のポリアミドイミド樹脂を主要成分として含有するとともに、1.1(重量比)の組成比で構成される固体潤滑剤を塗布し、 260℃で25分間の加熱ベーキング処理を施して、固体潤滑被膜層を設けた。すなわち、本発明の処理によりボックス1のねじ部3ならびにメタルシール部4にそれぞれ燐酸マンガン系化成処理被膜層15 μ m および固体潤滑被膜層15 μ m からなる二層被膜層を評価材に形成せしめた。

実施例3と同様に、継手部に対してメークアップ、ブレークアウトの繰り返しテストを行った。該テストの18回目までは焼き付きとムシレの発生を生じなかったが、19回目のテストにおいて焼き付きとムシレがかなり生じた。

比較例 5

L-80に相当する鋼材を用いて作成した内径7インチのボックス

1 に対して、実施例 6 と同一方法によりねじ部 3 およびメタルシール部 4 に15 μ m 厚さの燐酸マンガン系化成処理被膜層を設けた。次いで、実施例 6 と同一組成の固体潤滑剤を塗布し、 260℃で25分間の加熱ペーキング処理を施して、厚さ 5 μ m の固体潤滑被膜層を形成せしめて比較例とした。

該比較材を実施例 6 と同様に、継手部に対してメークアップ、ブレークアウトの繰り返しテストを行った。その結果、繰り返しテスト10回目のテストにおいて焼き付きとムシレの発生が著しく、評価試験を中断した。

実施例7

AP1 P110に相当する鋼材を用いて作成した内径 7 インチのボックス1を水系脱脂剤を用いて脱脂、水洗を行い、15 % H₂SO』水溶液中で室温、18秒間の酸洗、水洗後、直ちに(9.5g/1 Mn²+-0.15g/1 Ni²+-0.4g/1 Fe²+-36g/1 PO₂²--6.1g/1 NO₂--0.3g/1 F-)系浴からなる燐酸マンガン系化成処理浴を用いて、90℃、20分間の処理により燐酸マンガン系化成処理被膜層を生成せしめた。次いで、ボックス1を 180℃で15分間予備加熱を行った後、平均粒子径 4.3μmの二硫化モリブデン粉末と平均粒子径 1.0μmのCu粉末および平均分子量20.000のポリアミドイミド樹脂を主要成分として含有するとともに、1.0(重量比)の組成比で構成される固体潤滑を塗布し、270℃で20分間の加熱処理を施して、固体潤滑被膜層を設けた。すなわち、本発明の処理によりボックス1のねじ部3ならびにメタルシール部4にそれぞれ燐酸マンガン系化成処理被膜層16μmおよび固体潤滑被膜層17μmからなる二層被膜層を評価材に形成せしめた。

実施例3と同様、継手部に対してメークアップ、ブレークアウト の繰り返しテストを行った。該テストを20回繰り返し行った結果、 シール部の焼き付き、ムシレの発生が極めて少なく、非常に良好であった。

比較例 6

API P110に相当する鋼材を用いて作成した内径 7 インチのボックス1 に対して、水系脱脂後、ショットプラストによる前処理としてボックス1 の内面の表面最大租さを35μmに表面調整を行った。実施例 7 と同一の方法で厚さ16μmの燐酸マンガン系化成処理披腹層をボックス1 のねじ部 3 およびメタルシール部 4 に生成せしめ、比較例とした。

該比較材を実施例7と同様に、推手部に対してメークアップ、ブレークアウトの繰り返しテストを行った。その結果、繰り返しテスト9回目のテストにおいて、焼き付きとムシレの発生が著しく、評価試験を中断した。

実施例8

L-80に相当する鋼材を用いて作成した内径 7 インチのボックス 1 を水系脱脂剤を用いて脱脂、水洗を行い、12.5% H₂SO₂ 水溶液中で室温、15秒の酸洗を行った、水洗後に 0.3g / 1 の (マンガンコロイドーピロリン酸ソーダ) 系前処理浴を用いて常温で30秒間の前処理を行ってから、(8 g / 1 Mn² * - 0.15 g / 1 Ni² * - 0.4 g / 1 Fe² * - 29.5 g / 1 PO₂³ - 6.1 g / 1 NO₂ - 0.7 g / 1 F -) 系浴からなる燐酸マンガン系化成処理浴を用いて、80℃、10分間の処理により燐酸マンガン系化成処理浴を用いて、80℃、10分間の処理により燐酸マンガン系化成処理被膜層を生成せしめた。次いで、ボックス 1 を 180℃で15分間予備加熱を行った後、平均粒子径 4.3 μmの二硫化モリブデン粉末と平均粒子径 1.0μmのCu粉末および平均分子量19.000のポリアミドイミド樹脂を主要成分として含有するとともに、1.0(重量比)の組成比で構成される固体潤滑を塗布し、270℃で20分間の加熱処理を施して、固体潤滑被膜層を設けた

。すなわち、本発明の処理によりボックス1のねじ部3ならびにメタルシール部4にそれぞれ燐酸マンガン系化成処理被膜層10.5μm および固体潤滑被膜層28.5μmからなる二層被膜層を評価材に形成せしめた。

実施例 5 と同様にボックス 1 およびピン 2 のねじ部 3 とメタルシール部 4 にコンパウンドグリスを塗布しない条件下で、シール部 4 に 4.000kg/cm² の面圧を付与しつつ、継手部に対してメークアップ、プレークアウトの繰り返しテストを行った。該テストを13回繰り返し行った結果は、シール部の焼き付き、ムシレの発生を殆ど生じなかったが、14回目のテストにおいて焼き付きとムシレがかなり生じた。

比較例7

L-80に相当する鋼材を用いて作成した内径 7 インチのボックス 1 に対して、実施例 8 と同一方法によりねじ部 3 およびメタルシール部 4 に厚さ10.5 μ m の燐酸マンガン系化成処理被膜層を設け、比較例とした。

該比較材を実施例 8 と同様にコンパウンドグリスを塗布することなく、シール部 4 に 4.000kg/cm² の面圧を付与しつつ、継手部に対してメークアップ、ブレークアウトの繰り返しテストを行った。その結果、繰り返しテスト 3 回目のテストにおいて、焼き付きとムシレの発生が著しく、評価試験を中断した。

実施例9

T-90に相当する鋼材を用いて作成した内径 7 インチのボックス 1 に対して、実施例 5 と同一方法および処理条件により、窒化処理 層と燐酸マンガン系化成処理被膜層を設けた。次いで、ボックス 1 を 160℃で20分間予備乾燥を行った後、平均粒子径 3.5μmの二硫 化モリブデン粉末、平均粒子径 0.8μmのCu粉末、平均粒子径 5.0

μmのZn粉末および平均分子量18,000のポリアミドイミド樹脂を主要成分として含有するとともに、1.2(重量比)の組成比で構成される固体潤滑剤を塗布し、250℃で25分間の加熱処理を施して、固体潤滑被膜層を設けた。

すなわち、本発明の処理によりボックス1のねじ部 3 ならびにメタルシール部 4 にそれぞれ窒化処理層 11.5μ m、燐酸マンガン系化成処理被膜層 18.5μ m からなる三層被膜層を評価材に形成せしめた。

実施例3と同様に、継手部に対してメークアップ、ブレークアウトの繰り返しテストを行った。該テストを20回繰り返し行った結果は、シール部の焼き付き、ムシレの発生が極めて少なく、非常に良好であった。

比較例8

T-90に相当する鋼材を用いて作成した内径 7 インチのボックス 1 に対して、実施例 5 と同一方法により、ねじ部 3 およびメタルシール部 4 に下地窒化処理と燐酸マンガン系化成処理を施し、比較例とした。すなわち、実施例 5 および実施例 9 と同様に、厚さ11.5μmの窒化処理層と13.5μmの燐酸マンガン系化成処理被膜層を設けたボックス 1 を比較材として評価を行った。

該比較材を実施例 9 と同様にコンパウンドグリスを塗布し、シール部 4 に 4.000kg/cm² の面圧を付与しつつ、継手部に対してメークアップ、ブレークアウトの繰り返しテストを行った。その結果、繰り返しテスト10回目のテストにおいて、焼き付きとムシレの発生が著しく、評価試験を中断した。

以上の通り、本発明の燐酸マンガン系化成処理被膜層あるいは下 地窒化処理層と燐酸マンガン系化成処理被膜層および固体潤滑被膜 層の複合被膜層で構成された鋼管継手は、被膜の密着性、被膜強度

ならびに潤滑性に優れるため、メークアップ、ブレークアウトの繰り返し回数の増大に対して、被膜の焼き付き、ムシレの発生が起こりにくく、耐ゴーリング性に著しく優れることがわかる。

実施例10

第2表にそれぞれの組成を示すCr含有量10%以上の高Cr含有合金 鋼から製造された鋼管の継手部分、すなわち第1図に示すボックス (継手部材) 1とピン2(鋼管先端継手部)について、それぞれの 継手部分を構成するねじ部3およびメタルーメタルシール部4に対 して、ボックス1のみ、あるいはボックス1とピン2に本発明の方 法による窒化処理、鉄めっきあるいは鉄合金めっきによる下地処理 層、燐酸マンガン系化成処理被膜層および固体潤滑被膜層を設けた 鋼管継手を作成し、評価試験に供した。評価材について被膜の剝離、ゴーリングが発生するまでメークアップ、プレークアウトを繰り 返し、最大15回まで調査し、評価を行った。なお、メークアップ、 プレークアウトに際しては、カップリングに対してピンを1~3rp m の速度で回転させて評価試験を行った。

	ပ	S	£	, م	တ	o O	or Or	Z	SF.	-	A	Z
供額 試入	0.19	0.36	0.44	0.012	0.004	0.02	0.012 0.004 0.02 12.93 0.13 0.01	0.13	0.01	Trace	0.024	0.027
供置 関因	0.05	0.33	0.13	0.018	0.018 0.002 0.03	0.03	16.14 0.08 0.02	0.08	0.02	0.003 0.124	0.124	0.011
供置に	0.02	0.45	0. 28	0.008	0.006	0.01	0.008 0.006 0.01 25.18 7.52 2.80	7. 52	2.80	0.05	0.028	0.017

4 5

供試網Aを用いて作成した内径 5.5インチのボックス1およびこれに対応したサイズのピン 2 の先端部を溶剤脱脂後、(20%NaCN-15%KCN0-10%Na₂CO₃-20%K₂CO₃)からなる溶融塩浴中で、 450°C、30分間の加熱窒化処理を行い、オイルバス中で冷却した。該窒化処理材を溶剤脱脂して、5 %H₂SO₄ 水溶液中で室温、5 秒の酸洗、水洗後、 0.8 g/1 の(チタンコロイドーピロリン酸ソーダ)系前処理浴による室温で 2 分間の前処理を行ってから、(8.7 g/1 Mn²⁺- 0.2 g/1 Ni²⁺- 0.6 g/1 Fe²⁺-32.3 g/1 PO₄3⁻ -5.7 g/1 NO₃-0.6 g/1 F⁻) 系浴からなる燐酸マンガン系化成処理浴を用いて、90°C、10分間の処理により燐酸マンガン系化成処理浴を用いて、90°C、10分間の処理により燐酸マンガン系化成処理被膜層を設けた。

次いで、平均粒子径 2.5μmの二硫化モリブデン粉末と平均分子 量 4.200のエポキシ樹脂を主要成分として含有するとともに、1.3(重量比)の組成比で構成される固体潤滑剤を塗布し、 180℃で20分 間の加熱ペーキング処理を施して、固体潤滑被腹層を設けた。

すなわち、本発明の処理によりボックス1とピン2のねじ部3ならびにメタルシール部4にそれぞれ窒化処理層 6.4μm、燐酸マンガン系化成処理被膜層13μmおよび固体潤滑被膜層16.5μmからなる三層被膜層を評価材に形成せしめた。カップリング1およびピン2のねじ部3とメタルシール部4にAPI BU15A2 Sect2相当のコンパウンドグリスを塗布し、シール部4に 3.000kg/cm² の面圧を付与しつ、機手部に対してメークアップ、ブレークアウトの繰り返しテストを行った。

該テストの10回目までは焼き付きとムシレの発生が殆ど生じなかったが、11回目のテストにおいて焼き付きとムシレがかなり生じた

比較例 9

しかしながら、該比較材には殆ど燐酸マンガン系化成処理被膜層が生成されず、実施例10と同一条件で評価試験を行った結果、繰り返しテスト2回目のテストにおいて焼き付きとムシレが著しく、評価試験を中断した。

実施例11

供試鋼Cを用いて作成した内径7インチのボックス1を水系脱脂剤を用いて脱脂を行い、(10%HNO3+1%HP)系水溶液により室温、30秒の酸洗、水洗後、(250g/1 FeSO4・7H20 - 42g/1 FeC12・4 H20 - 20g/1 NH4C1)系組成の電気めっき浴を用いて電流密度10A/dm²で60秒間の電解処理により、鉄めっき層を設けた。次いで、水洗後直ちに(9.5g/1 Mn²+-0.15g/1 Ni²+- 1.0g/1 Fe²+-36g/1 PO4³-- 6.1g/1 NO3-- 0.3g/1 F-) 系浴からなる燐酸マンガン系化成処理浴を用いて、95℃、10分間の処理により燐酸マンガン系化成処理被膜層を設けた。さらに、平均粒子径 2.8μmの二硫化モリブデン粉末と平均分子量 185のフラン樹脂を主要成分として含有するとともに、1.8(重量比)の組成比で構成される固体潤滑剤を塗布し、200℃で30分間の加熱ベーキング処理を施して、固体潤滑被膜層を設けた。すなわち、本発明の処理によりボックス1のねじ部3ならびにメタルシール部4にそれぞれ鉄め

っき層 1.5 μm、燐酸マンガン系化成処理被膜層18 μmおよび固体 潤滑被膜層15 μmからなる三層被膜層を評価材に形成せしめた。

実施例10と同様に、コンパウンドグリスを塗布し、シール部4に4.000kg/cm²の面圧を付与しつつ、継手部に対してメークアップ、プレークアウトの繰り返しテストを行った。該テストの11回目まではシール部の焼き付きとムシレは殆ど発生しなかったが、12回目のテストにおいて焼き付きとムシレがかなり生じた。

比較例10

供試鋼Cを用いて作成した内径 7 インチのボックス1 を実施例11と同一の前処理を行った後、同一条件で 1.5μmの鉄めっき層と18μmの燐酸マンガン系化成処理層を設けた。さらに、実施例 2 と同一組成の固体潤滑剤を塗布し、 200℃で30分間の加熱ベーキング処理を施し、実施例11と同一組成で構成される厚さ5μmの固体潤滑被膜層を形成せしめ、比較例とした。

該比較材を実施例11と同一条件で評価試験を行った結果、繰り返 しテスト8回目において焼き付きとムシレの発生が著しく、評価試験を中断した。

実施例12

供試鋼Bを用いて作成した内径 7 インチのカップリング 1 を水系 脱脂剤を用いて脱脂を行い、ガラスピーズショット (粒子径 # 100、圧力 5 kgf / cm²、60秒)による前処理後、(25%NaCN-10%KCN - 25%NaCN0 - 10%KCN0-20%Na₂CO₃-10%K₂CO₃)系溶融塩浴中で、570℃、20分間の加熱窒化処理を施し、オイルバス中で冷却した。該窒化処理材を水系脱脂剤による脱脂、10%H₂SO₄、水溶液中での室温、10秒間の酸洗、水洗後、0.5g/1の(マンガンコロイドーピロリン酸ソーダ)系前処理浴を用いて室温で20秒間の前処理を行ってから、(8g/1Mn²+-0.3g/1Ni²+-0.2g/1Fe²+-

29.5g/1P0.³ - 5.4g/1 N0.² - 0.3g/1F -) 系浴からなる燐酸マンガン系化成処理浴を用いて、85℃、13分間の処理により燐酸マンガン系化成処理被膜層を設けた。次いで、平均粒子径 3.0μmの二硫化モリブデン粉末と平均分子量20.000のポリアミドイミド樹脂を主要成分として含有するとともに、0.8(重量比)の組成比で構成される固体潤滑剤を塗布し、250℃で30分間の加熱ベーキング処理を施して、固体潤滑被膜層を設けた。すなわち、本発明の処理によりボックス1のねじ部 3 ならびにメタルシール部 4 にそれぞれ窒化処理層10μm、燐酸マンガン系化成処理被膜層12μmおよび固体潤滑被膜層15μmからなる三層被膜層を評価材に形成せしめた。

実施例11と同様に、継手部に対してメークアップ、プレークアウトの繰り返しテストを行った。該テストの13回目までは焼き付きとムシレの発生が殆ど生じなかったが、14回目のテストにおいて焼き付きとムシレがかなり生じた。

比較例11

供試鋼Bを用いて作成した内径7インチのボックス1に対して、実施例12と同一方法により、ボックス部1のねじ部3およびメタルシール部4に窒化処理層10μmと燐酸マンガン系化成処理被膜層12μmを設けた。次いで、平均粒子径 3.0μmの二硫化モリプテン粉末と平均分子量20,000のポリアミドイミド樹脂を主要成分として含有するとともに、9.5(重量比)の組成比で構成される固体潤滑剤を塗布し、200℃で30分間の加熱ベーキング処理を施して、厚さ15μmの固体潤滑被膜層を形成せしめて比較例とした。該比較材に、実施例11と同様に、継手部に対してメークアップ、プレークアウトの繰り返しテストを行った。その結果、固体潤滑被膜層の剝離が著しく、繰り返しテスト6回目のテストにおいて評価試験を中断した。

実施例13

供試鋼Bを用いて作成した内径7インチのポックス1を水系脱脂 剤を用いて脱脂を行い、(10%HNO:+1%HF)系水溶液により室温 で45秒の酸後、(330g/lFeSO₄・7H₂O - 10g/lNiCl₂・6H₂ 0-10g/1 CoCl: 6H:0-20g/1NH,Cl)系めっき浴中で 7.5 A/dm² - 130秒間の電解処理により、Fe-1%Ni-1%Co系合金 めっき層を設けた。次いで、水洗、10%H2SO, 浴による10秒の酸洗 、水洗を行って、直ちに (8 g/1 Mn²*- 0.3g/1 Ni^{2*}- 0.7g $/1 \text{ Fe}^{2*} - 29.5 \text{ g} / 1 \text{ PO}_{4}^{3*} - 5.4 \text{ g} / 1 \text{ NO}_{5}^{-} - 0.5 \text{ g} / 1 \text{ F}^{-}$)系浴からなる燐酸マンガン系化成処理浴を用いて、92℃、15分間 の処理により燐酸マンガン系化成処理被膜層を設けた。次いで、平 均粒子径 3.5μmの二硫化モリブデン粉末と平均分子量18.000のポ リアミドイミド樹脂を主要成分として含有するとともに、1.8(重量 比)の組成比で構成される固体潤滑剤を塗布し、 260℃で25分間の 加熱ベーキング処理を施して、固体潤滑被膜層を設けた。すなわち 、本発明の処理によりボックス1のねじ部3ならびにメタルシール 部 4 にそれぞれFe-1 %Ni-1 %Ni-1 %Co系合金めっき層 2.54 m、燐酸マンガン系化成処理被膜層17μmおよび固体潤滑被膜層12 μmからなる三層被膜層を評価材に形成せしめた。

実施例11と同様に、継手部に対してメークアップ、ブレークアウトの繰り返しテストを行った。該テストの12回目までは焼き付きとムシレの発生を生じなかったが、13回目のテストにおいて焼き付きとムシレがかなり生じた。

比較例12

供試鋼 B を用いて作成した内径 7 インチのボックス 1 に対して、 実施例 12と同一方法により、ボックス部 1 のねじ部 3 およびメタル シール部 4 に Fe-1 % Ni-1 % Co系合金めっき層 2.5μm と燐酸マ ンガン系化成処理被膜層17μmを設けた。次いで、平均粒子径 3.5 μmの二硫化モリプデン粉末と平均分子量18,000のポリアミドイミド樹脂を主要成分として含有するとともに、0.15 (重量比)の組成比で構成される固体潤滑剤を塗布し、250℃で30分間の加熱ペーキング処理を施して、厚さ12μmの固体潤滑被膜層を形成せしめて、比較例とした。該比較材に実施例11と同様に、継手部に対してメークアップ、ブレークアウトの繰り返しテストを行った。その結果、固体潤滑被膜層の潤滑性能の向上効果が不十分なため、繰り返しテスト5回目のテストにおいて、焼き付きとムシレの発生が著しく、評価試験を中断した。

実施例14

供試鋼Cを用いて作成した内径7インチのボックス1を水系脱脂 剤を用いて脱脂を行い、(10%HNO3+1%HF) 系水溶液により室温 、60秒の酸洗後、(300g/1FeSO、・7H₂O -35g/1NiCl₂・6 H₂0 -30g/1H₂BO₃)系組成の電気めっき浴を用いて電流密度15A /dm² で82.5秒間の電解処理により、Ni含有量 3.5%のFe-Ni系合 金めっき層を設けた。次いで、水洗、3%H2SO,浴で室温、3秒の 酸洗、水洗後、直ちに(8.7g/1Mn²⁺- 0.2g/1Ni²⁺- 0.6g/ $1 \text{ Fe}^{2+} - 32.3 \text{ g} / 1 \text{ PO}_{\bullet}^{2-} - 5.7 \text{ g} / 1 \text{ NO}_{\bullet}^{-} - 0.5 \text{ g} / 1 \text{ F}^{-})$ 系浴からなる燐酸マンガン系化成処理浴を用いて、95℃、10分間の 処理により燐酸マンガン系化成処理被膜層を生成せしめた。次いで 、平均粒子径 4.0μmと 1.0μmの二硫化モリブテン粉末および平 均分子量16,000のポリアミドイミド樹脂を主要成分として含有する とともに、1.1(重量比)の組成比で構成される固体潤滑剤を塗布し 、 260°Cで25分間の加熱ベーキング処理を施して、固体潤滑被膜層 を設けた。すなわち、本発明の処理によりカップリング1のねじ部 3ならびにメタルシール部4にそれぞれFe-Ni系合金めっき層 3.0

μm、燐酸マンガン系化成処理被膜層15μmおよび固体潤滑被膜層16μmからなる三層被膜層を評価材に形成せしめた。

実施例11と同様に、継手部に対してメークアップ、ブレークアウトの繰り返しテストを行った。該テストの13回目までは焼き付きとムシレの発生が生じなかったが、14回目のテストにおいて焼き付きとムシレがかなり生じた。

比較例13

供試鋼Cを用いて作成した内径7インチのボックス1に対して、 実施例13と同一方法によりねじ部3およびメタルシール部4にFe-3.5%Ni系合金めっき層3.0μmを設けた。次いで、実施例14と同 一の固体潤滑剤を塗布、同一の処理により厚さ16μmの固体潤滑被 膜層を形成せしめて、比較例とした。

該比較材を実施例14と同様に、継手部に対してメークアップ、ブレークアウトの繰り返しテストを行った。その結果、繰り返しテスト7回目に固体潤滑被膜層の摩耗、部分的な剝離に起因する焼き付きとムシレの発生が著しく、評価試験を中断した。

実施例15

ックス1を 180℃で15分間予熱加熱を行った後、平均粒子径 4.3μmの二硫化モリブデン粉末と平均粒子径 1.0μmのCu粉末および平均分子量20,000のポリアミドイミド樹脂を主要成分として含有するとともに、1.0(重量比)の組成比で構成される固体潤滑剤を塗布し、270℃で20分間の加熱処理を施して、固体潤滑被膜層を設けた。すなわち、本発明の処理によりカップリング1のねじ部3ならびにメタルシール部4にそれぞれ窒化処理層 7.5μm、燐酸マンガン系化成処理被膜層16μmおよび固体潤滑被膜層15μmからなる三層被膜層を評価材に形成せしめた。

実施例11と同様に、継手部に対してメークアップ、ブレークアウトの繰り返しテストを行った。該テストを15回繰り返し行った結果は、シール部の焼き付き、ムシレの発生が極めて少なく、非常に良好であった。

比較例14

供試鋼Aを用いて作成した内径7インチのボックス1に対して、 実施例15と同一方法によりねじ部3とメタルシール部4に窒化処理 層7.5μmを設けた。次いで、その表面を水系脱脂剤を用いて脱脂、水洗後に、実施例15と同一の固体潤滑剤を塗布、同一の処理により厚さ15μmの固体潤滑被膜層を形成せしめて、比較例とした。

該比較材を実施例11と同様に、継手部に対してメークアップ、ブレークアウトの繰り返しテストを行った。その結果、繰り返しテスト8回目に固体潤滑被膜層の摩耗、部分的な剝離が著しく、評価試験を中断した。

実施例16

供試鋼Bを用いて作成した内径 7 インチのボックス 1 を溶剤脱脂を行い、 (10% HNO₃ + 1 % HF) 系水溶液により室温で60秒の酸洗、水洗後、(330g/1 FeSO₄ ・ 7 H₂O - 12g/1 CoCl₂ ・ 6 H₂O - 15

要/1 H₂B0₂)系めっき浴中で電流密度20 A / dm²、40秒間の電解処理により、Fe-1.2% Co系合金めっき層を設けた。次いで、水洗、5 %H₂S0。浴による10秒の酸洗、水洗を行って、濃度 0.3 g / 1 の (マンガンコロイドーピロリン酸ソーダ) 系前処理による室温で1分間の前処理を行い、(9.5 g / 1 Mn²+-0.15 g / 1 Ni²+-0.9 g / 1 Fe²+-36 g / 1 P0.³--6.1 g / 1 N0.²--1.0 g / 1 F⁻) 系浴からなる燐酸マンガン系化成処理浴を用いて、90℃、12.5分間の処理により燐酸マンガン系化成処理浴を用いて、90℃、12.5分間の処理により燐酸マンガン系化成処理被膜層を設けた。さらに、ボックス1を160℃で20分間予熱加熱を行った後、平均粒子径 3.5 μ m の二硫化モリブデン粉末、平均粒子径 0.8 μ m の Cu粉末、平均粒子径 5.0 μ m の Zn粉末および平均分子量18,000のポリアミドイミド樹脂を主要成分として含有するとともに、1.2(重量比)の組成比で構成される固体潤滑剤を塗布し、250℃で25分間の加熱処理を施して、固体潤滑被膜層を設けた。

すなわち、本発明の処理によりボックス 1 のねじ部 3 ならびにメタルシール部 4 にそれぞれFe-1 1.2% Co 系合金層 2.0 μ m、燐酸マンガン系化成処理被膜層 10 μ m および固体潤滑被膜層 21 μ m からなる三層披膜層 e 評価材に形成せしめた。

実施例11と同様に、継手部に対してメークアップ、ブレークアウトの繰り返しテストを行った。該テストを15回繰り返し行った結果は、シール部の焼き付き、ムシレの発生が極めて少なく、非常に良好であった。

比較例15

供試鋼Bを用いて作成した内径 7 インチのボックス 1 に対して、実施例14と同一の方法による脱脂、酸洗処理後に、 $(150\,g/1\,FeSO...)$ を $7\,H_2O-100\,g/1\,CoCl...$ 6 $H_2O-20\,g/1\,H_2\,BO_3$)系めっき 浴中で電流密度 $20\,A/dm^2$ 、 40 秒間の電解処理により、 $Fe-15\%\,Co$

系合金めっき層を設けた。次いで、実施例16と同一の方法による類酸マンガン系化成処理被膜層および固体潤滑被膜層の形成処理を実施し、比較例とした。

すなわち、上記処理により、比較材のねじ部3とメタルシール部4には、Fe-15%Co系合金めっき層20μm、不均一、まばらに生成された燐酸マンガン系化成処理披膜層および実施例16と同一組成で構成される厚さ21μmの固体潤滑披膜層が形成された。

該比較材を実施例16と同様に、維手部に対してメークアップ、ブレークアウトの繰り返しテストを行った。その結果、繰り返しテスト7回目のテストにおいて、被膜層の剝離が著しく、評価試験を中断した。

実施例17

N-80相当の鋼材を用いて作成した内径 7 インチのボックス 1 を溶剤系脱脂剤を用い脱脂、水洗を行い、(20% NaCN-15% KCN-17.5% NaCNO-17.5% KCNO-10% Na₂CO₃-20% K₂CO₃)からなる溶融塩浴中で、450℃、30分間の加熱窒化処理を施し、オイルバス中で冷却した。該窒化処理材を溶剤脱脂して、5 % H₂SO₄ 水溶液中で室温、5 秒の酸洗、水洗後、0.8 g / 1 の(チタンコロイドーピロリン酸ソーダ)系前処理浴による室温で2 分間の前処理工程を行ってから、(8.7 g / 1 Mn²+-0.2 g / 1 Ni²+-0.6 g / 1 Fe²+-32.3 g / 1 PO₄³--5.7 g / 1 NO₃⁻-0.6 g / 1 F⁻) 系浴からなる燐酸マンガン系化成処理浴を用いて、90℃、15分間の処理により燐酸マンガン系化成処理浴を用いて、90℃、15分間の処理により燐酸マンガン系化成処理被膜層を設けた。次いで、平均粒子径 2.8 μ mの二硫化タングステン粉末と平均分子量185 のフラン樹脂を主成分として含有するとともに、5.0(重量比)の組成比で構成される固体固滑和を塗布し、200℃で30分間の加熱ベーキング処理を施して、固体潤滑板膜層を設けた。すなわち、本発明の処理によりボックス1

のねじ部 3 ならびにメタルーメタルシール部 4 にそれぞれ窒化処理 層 6.4μm、燐酸マンガン系化成処理被膜層14μmおよび固体潤滑 被膜層14μmからなる三層被膜層を評価材に形成せしめた。

シール部 4 に 6.000kg/cm² の面圧を付与しつつ、継手部に対してメークアップ、ブレークアウトの繰り返しテストを行った。該テストの15回目まではシール部の焼き付きとムシレは殆ど生じなかったが、20回目のテストにおいて焼き付きとムシレが生じた。

比較例16

N-80相当の鋼材を用いて作成した内径 7 インチのボックス 1 に対して、実施例 17と同一の方法により、ボックス 1 のねじ部 3 およびメタルシール部 4 に厚さ 6.4 μ m の窒化処理層と厚さ 14 μ m の燐酸マンガン系化成処理被膜層を設けた。次いで、平均粒子径 2.8 μ m の二硫化タングステン粉末と平均分子量 185 のフラン樹脂を主要成分として含有するとともに、0.15(重量比)の組成比で構成される固体潤滑剤を塗布し、200℃で 30分間のベーキング処理を施して、厚さ 14 μ m の固体潤滑被膜層を設けて、比較例とした。

該比較材を実施例17と同一条件で評価試験を行った結果、潤滑性が十分でなく、繰り返しテスト10回目において焼き付きとムシレの発生が著しく、評価試験を中断した。

実施例18

T-90相当の鋼材を用いて作成した内径 7 インチのボックス 1 を水系脱脂および水洗を行い、ガラスビーズショット (粒子径 # 100、圧力 5 kgf / cm²、60秒)による前処理後、 (25% Na CN-10% KCN - 25% Na CN0 - 10% KCN0-20% Na 2 CO 3 - 10% K 2 CO 3)系溶融塩浴中で、 570℃、20分間の加熱窒化処理を施し、オイルバス中で冷却した。該窒化処理材を水系脱脂剤による脱脂、10% H 2 SO 4、水溶液中での室温、10秒間の酸洗、水洗後、 0.5g/1の (マンガンコロイド

ーピロリン酸ソーダ)系前処理浴を用いて室温で20秒間の前処理を行ってから、(8 g / 1 Mn²+ - 0.3 g / 1 Ni²+ - 0.2 g / 1 Fe²+ - 29.5 g / 1 P0.²- - 5.4 g / 1 N0₃- - 0.8 g / 1 F⁻) 系浴からなる燐酸マンガン系化成処理浴を用いて、85℃、13分間の処理により燐酸マンガン系化成処理被膜層を設けた。次いで、平均粒子径 3.0 μ m の二硫化タングステン粉末と平均分子量20.000のポリアミドイミド樹脂を主要成分として含有するとともに、8.0(重量比)の組成比で構成される固体潤滑剤を塗布し、250℃で30分間の加熱ベーキング処理を施して、固体潤滑被膜層を設けた。すなわち、本発明の処理によりボックス1のねじ部3ならびにメタルシール部4にそれぞれ窒化処理層10 μ m、燐酸マンガン系化成処理被膜層12 μ m および固体潤滑被膜層18.5 μ m からなる三層被膜層を評価材に形成せしめた。

シール部4に 6.000kg/cm² の面圧を付与しつつ、継手部に対してメークアップ、プレークアウトの繰り返しテストを行った。該テストの18回目まではシール部の焼き付きとムシレは殆ど生じなかったが、20回目のテストにおいて焼き付きとムシレが生じた。

比較例17

T-90相当の鋼材を用いて作成した内径 7 インチのボックス1 に対して実施例 18と同一方法により、ボックス部 1 のねじ部 3 およびメタルシール部 4 に窒化処理層 10 μmと燐酸マンガン系化成処理被膜層 12 μmを設けた。次いで、平均粒子径 3.0 μmの二硫化タングステン粉末と平均分子量 20,000のポリアミドイミド樹脂を主要成分として含有するとともに、10 (重量比)の組成比で構成される固体潤滑利を塗布し、200℃で30分間の加熱ベーキング処理を施して、厚さ18.5 μmの固体潤滑被膜層を形成せしめて、比較例とした。

該比較材に実施例18と同様に、継手部に対してメークアップ、ブ

レークアウトの繰り返しテストを行った。その結果、固体潤滑被膜 層の剝離が著しく、繰り返しテスト9回目のテストにおいて評価試 験を中断した。

産業上の利用可能性

以上述べたように、本発明によるネジ維手は、ボックスまたはピンの接触表面に燐酸系化成処理被膜層あるいは窒化処理層と燐酸系化成処理被膜層を設け、この燐酸系化成処理被膜層上に樹脂被膜層を形成し、この樹脂被膜の膜厚を燐酸系化成処理被膜の厚さまたは表面粗さ以上とするか、また、更に加えて、この樹脂被膜の膜厚を相対する摺動面の表面粗さ以上としたことにより、従来において維手メークアップ前に塗布していたコンパウンドグリスなどの液体潤滑剤を一切使用することなく、繰り返しの締め、緩めに対してゴーリングを起こすことなく、かつシール性等の使用性能も満足することが出来る極めて優れた管ネジ維手を得ることができる。

請求の範囲

- 1. 雄ネジとネジなし金属接触部からなるピンと雌ネジとネジなし金属接触部からなるボックスから構成される管のネジ維手において、ボックスまたはピンの接触表面に、燐酸系化成処理被膜層あるいは窒化処理層と燐酸系化成処理被膜層を設けると共に、二硫化モリブデンまたは二硫化タングステン粉末を樹脂に分散混合した樹脂被膜層を該燐酸系化成処理被膜層上に形成し、前記樹脂被膜の膜厚を該燐酸系化成処理被膜層の膜厚以上とした耐焼付き性に優れたネジ維手。
- 2. 請求の範囲1において、前記樹脂被膜の膜厚を燐酸系化成処理被膜層の表面組さ以上とする耐焼付き性に優れたネジ継手。
- 3. 請求の範囲1または2において、さらに相対する摺動面の表面粗さを前記樹脂被膜層の厚さより小さくする耐焼付き性に優れたネジ継手。
- 4. 請求の範囲 1 から 3 のいずれかにおいて、前記燐酸系化成処理被膜層厚さを 5 ~ 30 μ m に、前記窒化処理層厚みを 1 ~ 20 μ m にし、前記二硫化モリプテンまたは二硫化タングステン粉末量を、
- 0.2 ≤ ((二硫化モリブデンまたは二硫化タングステン粉末)の含有量) / ((樹脂)の含有量) ≤ 9.0
- なる割合となるようにし、かつ前記樹脂被膜層の厚みを10~45μm に形成する耐焼付き性に優れたネジ継手。
- 5. 請求の範囲1から4のいずれかにおいて、さらに前記樹脂に 腐食抑制剤を分散混合する耐焼付き性に優れたネジ継手。
- 6. 鋼管の継手部分のねじ部およびメタルシール部に、厚さ5~30μmの燐酸マンガン系化成処理被膜層、あるいは厚さ1~20μmの窒化処理層と厚さ5~30μmの燐酸マンガン系化成処理被膜層を

設けるとともに、さらに二硫化モリブデシまたは二硫化タングステン粉末とエポキシ樹脂、フラン樹脂、ポリアミドイミド樹脂の中より選定した一種を必須成分として含有し、

 $0.2 \leq \{(二硫化モリプデンまたは二硫化タングステン粉末) の含有量 \} / \{(エポキシ樹脂、フラン樹脂、ポリアミドイミド樹脂の中より選定した一種) の含有量 <math>\} \leq 9.0 (重量比)$

の組成比で構成される固体潤滑剤を塗布し、加熱処理を施して、厚さ10~45μmの固体潤滑被膜層を形成せしめることを特徴とする鋼管継手の表面処理方法。

7. 請求の範囲 6 において、さらに二硫化モリブデンまたは二硫化タングステン粉末に対して10~50重量%のCu. Zn粉末の一種または二種を含有し、

0.2 ≦ ((二硫化モリプテンまたは二硫化タングステン粉末とCu. Zn粉末の一種または二種)の含有量} / ((エポキシ樹脂、フラン樹脂、ポリアミドイミド樹脂の中より選定した一種)の含有量} ≤ 9.0(重量比)

の組成比で構成される固体潤滑剤を塗布する鋼管継手の表面処理方法。

- 8. 請求の範囲 6 において、固体潤滑被膜層を形成せしめる固体 潤滑剤の必須成分である二硫化モリプデンまたは二硫化タンクステン粉末の粒子径がフィッシャー法による測定により 0.45~10 μmの 範囲、また分子量が 2.000~10.000の範囲のエポキシ樹脂、分子量 が 150~250 の範囲のフラン樹脂、分子量が10.000~25.000の範囲 のポリアミドイミド樹脂の中より選定した一種で構成されることを 特徴とする鋼管維手の表面処理方法。
- 9. 請求の範囲 7 において、Cuあるいは 2n粉末の粒子径が 0.5~10 μm の範囲の一種または二種である鋼管継手の表面処理方法。

10. Cr含有量が10重量%以上の高Cr含有量の合金鋼からなる油井管の継手部分のねじ部およびメタルシール部に、厚さ 1~20μmの窒化処理層、厚さ 0.5~15μmの鉄めっき層あるいは10%以下のNi, Coの一種または二種を含有する鉄合金めっき層の下地処理層と厚さ 5~30μmの燐酸マンガン系化成処理被膜層、さらに二硫化モリブデンまたは二硫化タングステン粉末とエポキシ樹脂、フラン樹脂、ポリアミドイミド樹脂の中より選定した一種を必須成分として含有し、

- $0.2 \leq \{ (二硫化モリブデンまたは二硫化タングステン粉末) の含有量) / \{ (エポキシ樹脂、フラン樹脂、ボリアミドイミド樹脂の中より選定した一種) の含有量<math>\} \leq 9.0(重量比)$
- の組成比で構成される固体潤滑剤を塗布し、加熱処理を施して、厚さ10~45μmの固体潤滑被膜層からなる三層被膜層を設けることを特徴とする鋼管継手の表面処理方法。
- 11. 請求の範囲10において、さらに二硫化モリプデンまたは二硫化タングステン粉末に対して10~50重量%のCu. Zn粉末の一種または二種を含有する鋼管継手の表面処理方法。
- 12. 請求の範囲10において、固体間滑被膜層を形成せしめる固体 間滑剤の必須成分である二硫化モリプデンまたは二硫化タングステン粉末の粒子径がフィッシャー法による測定により0.45~10μmの 範囲、また分子量が 2.000~10,000の範囲のエポキシ樹脂、分子量 が 150~250 の範囲のフラン樹脂、分子量が10,000~25,000の範囲 のポリアミドイミド樹脂の中より選定した一種で構成される鋼管継 手の表面処理方法。
- 13. 請求の範囲11において、固体潤滑被膜層を形成せしめる固体 潤滑剤の必須成分である二硫化モリプデンまたは二硫化タングステン粉末の粒子径がフィッシャー法による測定により0.45~10μmの

範囲、CuあるいはZn粉末の粒子径が 0.5~10μmの範囲の一種または二種、また分子量が 2.000~10.000の範囲のエポキシ樹脂、分子量が 150~250 の範囲のフラン樹脂、分子量が10.000~25.000の範囲のポリアミドイミド樹脂の中より選定した一種で構成される鋼管維手の表面処理方法。

Fig.2

Fig.4

Fig.10

Fig.11

Fig.14

Fig.15

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP95/02034

A. CLASSIFICATION OF SUBJECT MATTER	· · · · · · · · · · · · · · · · · · ·					
Int. C16 F16L15/00, B32B15/08, B05D7/14						
According to International Patent Classification (IPC) or to both national classification and IPC						
B. FIELDS SEARCHED						
Minimum documentation searched (classification system followed by classification symbols)						
Int. Cl ⁶ F16L15/00, B32B15/0		v				
Documentation searched other than minimum documentation to Jitsuyo Shinan Koho Kokai Jitsuyo Shinan Koho Toroku Jitsuyo Shinan Koho	1925 - 1995 1971 - 1995 1994 - 1995					
Electronic data base consulted during the international search (m	ame of data base and, where practicable, search	ternis used)				
C. DOCUMENTS CONSIDERED TO BE RELEVAN	r	- Massimu — ay may a sayas same di				
Category* Citation of document, with indication, whe	re appropriate, of the relevant passages	Relevant to claim No.				
Y JP, 59-111844, A (Sumito Ltd.), June 28, 1984 (28 Lines 4 to 10, lower lef	. 06 84).	1-1.3				
(Family: none) Y JP, 3-264692, A (Shinto November 25, 1991 (25. 1) Line 12, lower right columper left column, page & EP, 448280, Al & AU, 7 & US, 5348634, A	1. 91), umn, page 2 to line 6, 3	/ 1~13				
y JP, 51-42852, A (Jonan S April 12, 1976 (12. 04. Lines 6 to 14, lower lef line 20, lower left colu right column, lines 18 t (Family: none)	76), t column, page 1, mn to line 6. lower	1-13				
<u></u>						
X Further documents are listed in the continuation of Box	C. See patent family annex.					
Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "B" cartier document but published on or after the international filing date. "C" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "C" document of particular relevance; the claimed investion cannot be considered movel or ca						
Occurrent referring to an oral disclosure, use, exhibition or other means Considered to involve an inventive step when the document is combined with one or more other such document, such combination being obvious to a person skilled in the art						
Date of the actual completion of the international search December 4, 1995 (04, 12, 95) December 26, 1995 (26, 12, 95)						
Name and mailing address of the ISA/	Authorizadioffices					
Japanese Patent Office	Authorized officer					
Facsimile No.	Telephone No.					

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP95/02034

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
¥.	JP, 61-184290, A (Sumitomo Metal Industries, Ltd.), August 16, 1986 (16. 08. 86), Lines 5 to 15, lower left column, page 1 (Family: none)	1-13
		-
		,
		:.
	:	,
	· -	
:		
. *· .	ing the state of t	-
		n yenter
,		
		<u>.</u>
		-
		1
		1
	¥	

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

田

幸

福島委号 03-3581-1101 内線

遊

3347

東京都千代田区数が関三丁目 4 番 3 号

99	85	*	473	4

国際出版書号 PCT/JP 95 / 02034

川用文献の カテゴリー≠	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	間達する 東京の範囲の番号
¥	JP, 51-42852, A(株式会社 城南製作所)。 12.4月、1976(12.04.76)。 第1页左下棚第6行-第14行, 第2页左下欄第20行- 同右下欄第6行及び岡第18行-第19行 (ファミリーなし)	1-13
Y	JP, 61-184290, A(住友金為株式会社), 16.8月、1986(16.08.86), 第1頁左下楣第5行一第15行 (ファミリーなし)	3-1-3
		<i>.</i> .
		: .
:		
		-
: :: ::		
		v.