EXAMEN 2010

- 1. Quan en un circuit assenyalem el sentit del corrent indiquem...
- a) El sentit cap on circulen totes les càrregues.
- b) El sentit cap on es mourien les càrregues positives.
- c) El sentit cap on es mouen els electrons.
- d) El sentit dels potencials creixents.

2. La llei d'Ohm ens dóna:

- a) La tensió d'una resistència en funció del corrent que l'atravessa.
- b) La diferència de tensió que cau a una resistència en funció del corrent que cau a una resistència.
- c) La diferència de tensió que cau a una resistència en funció del corrent que l'atravessa.
- d) La tensió que atravessa una resistència en funció de corrent que cau.

3. Quina afirmació és correcta respecte a un condensador:

- a) Quan s'està carregant, travessen càrregues pel material aïllant. Quan ja s'ha carregat, no.
- b) Quan s'està carregant, condensa càrregues de l'ambient, fent circular un corrent pel condensador.
- c) Mai travessen càrregues pel material aïllant i, per tant, la tensió al condensador és sempre de 0V.
- d) Mai travessen càrregues pel material aïllant, acumulant les càrregues degudes als corrents a las plaques metàl·liques.

4. Per aquest circuit, i tenint en compte el sentit dels corrents indicats, es compleix:

- a) Va+Rb·Ib=0
- b) Va-Ic·Rc+Ic·Rd=0
- c) Va=Ic·Rc+Ic·Rd
- d) Va+Ic·Rc+Ic·Rd=0
- e) Va-Ib·Rb=-Ic·Rc-Ic·Rd

5. Per obtenir la tensió equivalent de Thevenin d'una part del circuit entre dos punts A i B:

- a) Obrim el circuit pels dos punts i deixem les rames obertes. Resolem la part del circuit que ens demanen i obtenim la diferència de tensió entre els dos punts.
- b) Obrim el circuit pels dos punts i eliminem les fonts. Resolem la part del circuit que ens demanen i obtenim la diferència de tensió entre els dos punts.
- c) Curtcircuitem el circuit pels dos punts i resolem la part del circuit que ens demanen.
- d) Resolem tot el circuit i obtenim la diferència de tensió entre els dos punts.

6. Desconnectar una font de tensió, és a dir fer V=0, equival a:

- a) L'afirmació es falsa. Desconnectar la font de tensió no significa posar la V a 0V.
- b) Depen de la resta del circuit.
- c) Curtcircuitar la branca del circuit on és.
- d) Obrir la branca del circuit on és.

7) El principi de superposició permet resoldre alguns circuits complexos en diferents problemes. Consisteix en:

- a) Resoldre els circuits cada vegada només amb una des les fonts del circuit, eliminant la resta. La solució del circuit és el valor més alt obtingut.
- b) El principi de superposició no fa més que complicar la resolució del problema ja que consisteix en resoldre el circuit tantes vegades com fonts tenim al circuit.
- c) Si una part del circuit amb fonts és igual a una altre, aquestes es superposen i, per tant, només és necessari resoldre un d'aquests circuits per obtenir la solució final.
- d) Resoldre els circuits cada vegada només amb una des les fonts del circuit, eliminant la resta. La solució del circuit és la suma de totes les solucions.
- e) Resoldre els circuits cada vegada només amb una des les fonts del circuit, eliminant la resta. La solució del circuit és qualsevol d'aquestes solucions.

8. En aquesta figura la part de V negativa expressa la conducció en inversa.

- a) Cert, sempre i quan el díode estigui connectat.
- b) Cert, en tots els casos.
- c) Fals, ja que tenim un corrent lo no nul.
- d) Fals, ja que s'expressa amb una altra equació.

9. En el circuit de la figura ...

- a) L'existència de corrent dependrà de la temperatura.
- b) Sí que hi haurà, però serà mínim, quasi menyspreable.
- c) Sí passarà corrent, sempre que VD sigui suficientment gran.
- d) No hi haurà corrent.

10) Aquesta figura representa el pas de prendre una aproximació lineal en polarització directa. Si prenc Rf=0 ...

- a) No circularà corrent.
- b) No em serveix de res.
- c) El díode estarà en inversa.
- d) És l'aproximació ideal.
- e) Es cremarà el component.

11. Quina funció fa aquest circuit (suposem Vi sinusoidal amb amplitud major que Vγ, i sortida VC):

- a) Una vegada que Vi arriba al seu valor màxim, la sortida es manté sempre constant.
- b) Una vegada que Vi arriba al seu valor mínim, la sortida es manté sempre constant.
- c) Quan Vi és positiva, la sortida es Vi-Vγ. Quan és negativa, Vo=0V.
- d) Quan Vi és negativa, la sortida es Vi-Vγ. Quan és positiva, Vo=0V.

12. Quina funció té aquest circuit a la sortida respecte l'entrada:

- a) Vo és sempre igual a Vi.
- b)Aquest circuit no pot funcionar mai.
- c) Es retalla la tensió d'entrada per tensions superiors a 5.7V.
- d)Vo és sempre igual a -Vi.

13. Considera un rectificador de mitja ona. Si l'ona blava (Vi) és la d'entrada i la vermella la rectificada (Vk). A què es degut que en els primers instants del semicicle positiu el resultat de la rectificació sigui 0?

- a) Això no es produeix en realitat.
- b) A que el díode triga un temps en reaccionar.
- c) Només s'ha posat així per poder veure les dues curves.
- d) A que encara no s'ha superat la tensió llindar.
- 14. Si la tensió d'emissor i la de col·lector són superiors a la de base, el BJT PNP està en:
- a) Activa directe.
- b) Saturació.
- c) Tall.
- d) Activa inversa.
- 15. El quocient entre intensitat de col·lector i de base és sempre constant en un BJT.
- a) Fals. Només és aproximadament constant quan estem en activa directe.
- b) Fals. Només és constant quan estem en activa directe.
- c) Cert. S'anomena guany de tensió d'emissor comú i es simbolitza per una lletra grega alfa.
- d) Cert. S'anomena guany de corrent d'emissor comú i es simbolitza per una lletra grega beta.

16. En un BJT NPN, es consideren positius els corrents:

- a) IB i IE quan entren al transistor i IC quan surt.
- b) IC i IB quan entren al transistor i IE quan surt.
- c) IC i IE quan entren al transistor i IB quan surt.
- d) Quan entren tots tres corrents entren al transistor.
- e) Quan surten tots tres corrents del transistor.

17. El transistor BJT treballant com a interruptor, en quins dos modes treballa?:

- a) Tall i activa directa.
- b) Tall i saturació.
- c) Saturació i activa directa.
- d) En saturació i en tall o activa directa.
- e) Bé i malament.

18. L'amplificador diferencial amb entrades V1 i V2:

- a) Amplifica V1-V2 per valors petits d'aquesta diferència, i es comporta com un comparador lògic fora d'aquest rang.
- b) Sempre amplifica V1-V2 i això sempre és un comparador lògic.
- c) Només amplifica una de les entrades.
- d) Amplifica V1 a una de les sortides i V2 a l'altre sortida.
- e) L'amplificador diferencial només té una entrada.

19. L'interruptor BJT tancat (és a dir, que deixa passar el corrent), en quin mode treballa?:

- a) Activa directa.
- b) Saturació.
- c) Tall.
- d) Inversió tèrmica.

20. Què és una família lògica?:

- a) Una família amb components que son molt raonables.
- b) Un conjunt de circuits que s'han d'aplicar amb certa lògica.
- c) Un conjunt de circuits de funcions lògiques, amb unes certes característiques comunes.
- d) Un conjunt de circuits de funcions lògiques, fabricats amb diferents tecnologies per poder escollir entre més opcions.

EXAMEN 2011

- 1. Quan en un circuit assenyalem el sentit del corrent indiquem...
- a) El sentit cap on circulen totes les càrregues.
- b) El sentit cap on es mouen els electrons.
- c) El sentit cap on es mourien les càrregues positives.
- d) El sentit dels potencials creixents.

2. El valor de resistència d'una resistència lineal:

- a) Depèn de la diferència de tensió entre els seus terminal i del corrent que la travessa.
- b) Només depèn de la diferència de tensió.
- c) Només depèn del corrent que travessa la resistència.
- d) No depèn ni del corrent ni de la tensió.

3. Quina afirmació és correcta respecte a un condensador:

- a) Quan s'està carregant, travessen càrregues pel material aïllant. Quan ja s'ha carregat,
- b) Quan s'està carregant, condensa càrregues de l'ambient, fent circular un corrent pel condensador.
- c) Mai travessen càrregues pel material aïllant, acumulant les càrregues degudes als corrents a les plaques metàl·liques.
- d) Mai travessen càrregues pel material aïllant i, per tant, la tensió al condensador és sempre de 0V.

4. Per aquest circuit, i tenint en compte el sentit dels corrents indicats, es compleix:

- a) Ib·Rb-Ic·Rc=Va
- b) Ib·Rb-Ic·Rc=Ic·Rd
- c) Ic·Rc+Ic·Rd=0
- d) Va+Ic·Rc+Ic·Rd=0
- e) Va-Ib·Rb=-Ic·Rc-Ic·Rd

5. Per obtenir la resistència equivalent de Thevenin d'una part del circuit entre dos punts A i B:

- a) Obrim el circuit pels dos punts i deixem les rames obertes. Resolem la part del circuit que ens demanen. La resistència és igual a la diferència de tensió entre A i B.
- b) Obrim el circuit pels dos punts i eliminem les fonts. Resolem la part del circuit que ens demanen i obtenim la diferència de tensió entre els dos punts.
- c)Obrim el circuit pels dos punts i eliminem les fonts. La resistència és la resistència equivalent entre els punts.
- d) Resolem tot el circuit i obtenim la diferència de tensió entre els dos punts. Aquesta tensió és la resistència de Thevenin.

6. Desconnectar una font de corrent, és a dir fer I=0, equival a:

- a) L'afirmació es falsa. Desconnectar la font de tensió no significa posar la I a OA.
- b) Depen de la resta del circuit.
- c) Curtcircuitar la branca del circuit on és.
- d) Obrir la branca del circuit on és.

7) El principi de superposició permet resoldre alguns circuits complexos en diferents problemes. Consisteix en:

- a) Resoldre els circuits cada vegada només amb una de les fonts del circuit, eliminant la resta. La solució del circuit és el valor més alt obtingut.
- b) El principi de superposició no fa més que complicar la resolució del problema ja que consisteix en resoldre el circuit tantes vegades com fonts tenim al circuit.
- c) Si una part del circuit amb fonts és igual a una altre, aquestes es superposen i, per tant, només és necessari resoldre un d'aquests circuits per obtenir la solució final.
- d) Resoldre els circuits cada vegada només amb una des les fonts del circuit, eliminant la resta. La solució del circuit és la suma de totes les solucions.
- e) Resoldre els circuits cada vegada només amb una des les fonts del circuit, eliminant la resta. La solució del circuit és qualsevol d'aquestes solucions.

8. En aquesta figura la part de V negativa expressa la conducció en inversa d'un díode.

- a) Cert, tal com es mostra a la figura.
- b) Cert, però aquest corrent invers sempre és nul.
- c) Fals, ja que el corrent no és zero a l'origen.
- d) Fals, ja que tenim un corrent lo no nul.

9. En el circuit de la figura ...

- a) El corrent és l'indicat per la fletxa.
- b) Passarà corrent, sempre que VD sigui suficientment gran.
- c) Circularà el corrent d'inversa, que és molt petit.
- d) No hi haurà corrent.

10) Aquesta figura representa el pas de prendre una aproximació lineal en polarització directa.

- a) Fals. La font s'ha de posar en sentit oposat.
- b) Fals. Aquest model no és el d'un díode.
- c) Cert, i serveix també en inversa.
- d) Fals. Aquesta és l'aproximació ideal.
- e) Cert, pels díodes més comuns.

11. Quina funció fa aquest circuit (suposem Vi sinusoidal amb amplitud major que $V\gamma$, i sortida VC):

- a) Una vegada que Vi arriba al seu valor mínim, la sortida es manté sempre constant.
- b) Una vegada que Vi arriba al seu valor màxim, la sortida es manté sempre constant.
- c) Quan Vi és positiva, la sortida es Vi-Vy. Quan és negativa, Vo=0V.
- d) Quan Vi és negativa, la sortida es Vi-Vy. Quan és positiva, Vo=0V.

12. Quina funció té aquest circuit a la sortida respecte l'entrada:

- a) Aquest circuit no pot funcionar mai.
- b) Vo és sempre igual a -Vi.
- c) Vo és sempre igual a Vi.
- d) Es retalla la tensió d'entrada per tensions inferiors a -5.7V.
- e) Es retalla la tensió d'entrada per tensions superiors a 5.7V.

13. Considera un rectificador de mitja ona. La diferència entre el senyal d'entrada i el rectificat és Vg.

- a) Cert, sempre.
- b) Només és cert quan l'entrada ha superat la tensió llindar.
- c) Només és aproximadament cert quan l'entrada ha superat la tensió llindar.
- d) Aquesta gràfica no es correspon amb el rectificat de mitja ona.

14. En un transistor MOSFET, el que diferencia el Drenador (Drain) de la Font (Source) és ...

- a) Físicament són indistingibles, elèctricament dels dos terminals diem que, per un NMOS, és la font el que té el potencial inferior.
- b) Físicament, que la font té més dopatge que el drenador i elèctricament que la tensió de font és inferior.
- c) Que la font sempre està a terra.
- d) Que pel drenador controlem la tensió corresponent a l'efecte camp.

15. La tensió Vds que separa la regió de tríode i la regió de saturació d'un transistor MOSFET:

- a) Sempre el mateix ja que sempre es compleix la mateixa relació.
- b) Depèn només de les propietats del transistor.
- c) Depèn de Vgs.
- d) No depèn de Vgs.

16. Aquest NMOS, estarà sempre en ...

- a) Saturació.
- b) Saturació, si Vdd és inferior a la tensió llindar.
- c) Saturació, si Vdd és superior a la tensió llindar.
- d) Tríode, si Vdd és superior a la tensió llindar.
- e) Tríode, si Vdd és inferior a la tensió llindar.

17. El corrent de porta d'un NMOS...

- a) Augmenta amb Vds.
- b) Disminueix amb Vds.
- c) Augmenta amb Vgs.
- d) Depèn del transistor.
- e) Sempre té el mateix valor.

18. La resistència del canal d'un NMOS a la regió de tríode lineal...

- a) És constant amb Vds, però depèn de Vgs.
- b) Es constant amb Vgs, però depèn de Vds.
- c) És sempre constant.
- d) No existeix cap resistència de canal en un NMOS.

19. La família lògica CMOS fa ús...

- a) del sentit comú, com és lògic.
- b) de combinacions de transistors MOS i BJT.
- c) de combinacions de transistors NMOS i PMOS.
- d) de combinacions de flip-flops i de banners-flappys.

20. Què és una família lògica?:

- a) Un conjunt de circuits que s'han d'aplicar amb certa lògica.
- b) Un conjunt de circuits de funcions lògiques, amb unes certes característiques comunes.
- c) Un conjunt de circuits de funcions lògiques, fabricats amb diferents tecnologies per poder escollir entre més opcions.
- d) Una família amb components que son molt raonables.

EXAMEN 2012

- 1. Quan resolem un circuit i obtenim un corrent negatiu, significa que...
- a) La solució és incorrecta.
- b) El circuit no es pot resoldre.
- c) El corrent està format per càrregues negatives.
- d) El corrent té sentit oposat al suposat inicialment.
- e) El circuit es cremarà.

2. El valor de resistència d'una resistència linial:

- a) Depèn de com estigui connectada al circuit.
- b) Depèn del corrent que l'atravessa.
- c) Depèn de la propietat de resistivitat elèctrica del material.
- d) Depèn del dia.

3. Quina afirmació és correcta respecte a un condensador:

- a) Quan s'està carregant, travessen càrregues pel material aïllant. Quan ja s'ha carregat, no.
- b) Quan s'està carregant, condensa càrregues de l'ambient, fent circular un corrent pel condensador.
- c) Mai travessen càrregues pel material aïllant i, per tant, la tensió al condensador és sempre de 0V.
- d) Mai travessen càrregues pel material aïllant, acumulant les càrregues degudes als corrents a les plaques metàl·liques.
- 4. Per aquest circuit, i tenint en compte el sentit dels corrents indicats, es compleix:

a)
$$lb \cdot Rb + lc \cdot Rc = Va$$

b)
$$1b \cdot Rb - Ic \cdot Rc = 0$$

c)
$$Ic \cdot Rc + Ic \cdot Rd = 0$$

d)
$$Va - Ic \cdot Rc - Ic \cdot Rd = 0$$

e)
$$Va - Ib \cdot Rb = - Ic \cdot Rc - Ic \cdot Rd$$

5. Per obtenir la resistència equivalent de Thevenin d'una part del circuit entre dos punts A i B:

- a) Obrim el circuit pels dos punts i eliminem les fonts. La resistència és la resistència equivalent entre els punts.
- b) Obrim el circuit pels dos punts i deixem les rames obertes. Resolem la part del circuit que ens demanen. La resistència és igual a la diferència de tensió entre A i B.
- c) Obrim el circuit pels dos punts i eliminem les fonts. Resolem la part del circuit que ens demanen i obtenim la diferència de tensió entre els dos punts.
- d) Resolem tot el circuit i obtenim la diferència de tensió entre els dos punts. Aquesta tensió és la resistència de Thevenin.

6. Desconnectar una font de corrent, és a dir fer I=0, equival a:

- a) L'afirmació es falsa. Desconnectar la font de corrent no significa posar la I a 0.
- b) Variar el corrent de la font fins que V sigui 0.
- c) Curtcircuitar la branca del circuit on és.
- d) Obrir la branca del circuit on és.

7) El principi de superposició permet resoldre alguns circuits complexos en diferents problemes. Consisteix en:

- a) Resoldre els circuits cada vegada només amb una de les fonts del circuit, eliminant la resta. La solució del circuit és el valor més alt obtingut.
- b) Resoldre els circuits cada vegada només amb una des les fonts del circuit, eliminant la resta. La solució del circuit és qualsevol d'aquestes solucions.
- c) El principi de superposició no fa més que complicar la resolució del problema ja que consisteix en resoldre el circuit tantes vegades com fonts tenim al circuit.
- d) Si una part del circuit amb fonts és igual a una altre, aquestes es superposen i, per tant, només és necessari resoldre un d'aquests circuits per obtenir la solució final.
- e) Resoldre els circuits cada vegada només amb una des les fonts del circuit, eliminant la resta. La solució del circuit és la suma de totes les solucions.

8. En aquesta figura es mostra aproximadament la corba característica d'un díode.

- a) Cert, però aquest corrent invers sempre és nul.
- b) Cert, però nomès per polarització directa.
- c) Cert, però el corrent a l'origen pot ser diferent de 0.
- d) Cert, però aquí no es veu clar la tensió llindar.

9. En el circuit de la figura ...

- a) Passarà el corrent de directa, sempre que VD sigui negativa.
- b) Passarà el corrent de directa, sempre que VD sigui positiva.
- c) Circularà el corrent d'inversa, si VD es negativa.
- d) Circularà el corrent d'inversa, si VD es positiva.
- e) Sempre circula el corrent entre p i n.

10) En el model lineal d'un díode:

- a) El corrent és proporcional a una exponencial depenent de la tensió.
- b) El díode en directa es substitueix per un curtcircuit.
- c) El díode en directa es substitueix per una font de tensió i una resistència de valor petit.
- d) El díode en inversa es substitueix per una resistència, de valor petit.
- e) El díode en inversa es substitueix per un díode en sentit oposat.

11. Quina funció fa aquest circuit (suposem Vi sinusoidal amb amplitud major que Vg, i sortida Vc):

- a) Una vegada que Vi arriba al seu valor màxim, la sortida es manté sempre constant.
- b) Una vegada que Vi arriba al seu valor mínim, la sortida es manté sempre constant.
- c) Una vegada que Vi arriba a Vy, la sortida es manté sempre constant.
- d) Quan Vi és negativa, la sortida es Vi-Vg. Quan és positiva, Vo=-(Vi-Vg).
- 12. En aquest circuit retallador, quina tensió cau al díode quan Vi = 0V:
- a) Aproximadament la tensió llindar del díode.
- b) 5V.
- c) 10V.
- d) No es pot saber.
- e) 0V.

13. Considera un rectificador de mitja ona. La máxima diferència entre el senyal d'entrada i el rectificat quan el senyal és positiu és produeix quan...

- a) A l'instant t=0.
- b) Quan el senyal arriba a la tensió llindar.
- c) Quan el senyal arriba al seu valor màxim.
- d) La diferència sempre és la mateixa: Vg.

14. Si la tensió de porta d' un transistor NMOS és major que les de drenador i font, sabem que...

- a) El transistor estarà en tríode.
- b) El transistor estarà en saturació.
- c) El transistor no estarà en saturació.
- d) El transistor no estarà en tall.
- e) Cap d'aquestes respostes és correcte.

15. La tensió Vds que separa la regió de tríode i la regió de saturació d'un transistor MOSFET:

- a) És un valor fixe (constant) per cada transistor.
- b) Només depèn de la tensió llindar del transistor.
- c) Depèn de Vgs i de la tensió llindar del transistor.
- d) Només depèn de Vgs.

16. D'aquest transistor podem dir...

- a) Que estarà en saturació.
- b) Que mai estarà en saturació.
- c) Que estarà en triode.
- d) Que mai treballarà en triode.
- e) No pot funcionar per què VG=0V.

17. La tensió de font d'un NMOS...

- a) Sempre és 0V.
- b) S'agafa de tal forma que sigui major que la de drenador.
- c) S'agafa de tal forma que sigui menor que la de drenador.
- d) S'agafa de tal forma que sigui menor que la de porta.
- e) S'agafa de tal forma que sigui major que la de porta.

18. La resistència del canal d'un NMOS a la regió de tríode lineal...

- a) És sempre constant.
- b) No existeix cap resistència de canal en un NMOS.
- c) És constant amb Vds, però depèn de Vgs.
- d) Es constant amb Vgs, però depèn de Vds.

19. La família lògica CMOS fa ús...

- a) de díodes.
- b) de combinacions de transistors MOS i díodes
- c) de combinacions de transistors NMOS i PMOS.
- d) de combinacions de transistors NMOS, connectats de forma oposades.

20. Què és una família lògica?:

- a) Un conjunt de circuits que donen un 1 quan funcionen i donen un 0 quan no funcionen.
- b) Un conjunt de circuits de diferents funcions lògiques, amb unes certes característiques comunes.
- c) Un conjunt de circuits de funcions lògiques, fabricats amb diferents tecnologies per poder escollir entre més opcions.
- d) Una família amb components que són molt raonables.

EXAMEN 2014

- 1. Quan en un circuit assenyalem el sentit del corrent indiquem...
- a) El sentit cap on es mouen els electrons.
- b) El sentit cap on es mourien les càrregues positives
- c) El sentit cap on circulen totes les càrregues.
- d) El sentit dels potencials creixents.
- 2. Quan resolem un circuit i obtenim un corrent negatiu, significa que...
- a) La solució és incorrecta.
- b) El circuit no es pot resoldre.
- c) El corrent està format per càrregues negatives.
- d) El corrent té sentit oposat al suposat inicialment.
- e) El circuit es cremarà.
- 3. La llei de nodes (o nussos) de les lleis de Kirchhoff diu que...
- a) La suma de les tensions que entren en un node és igual a la suma de les que surten.
- b) Tots els corrents que conflueixen a un node han de sortir del node ja que a un node no poden entrar mai corrents.
- c) La suma dels corrents entrants sempre ha de ser 0.
- d) La suma dels corrents que surten d'un node ha de coincidir amb la suma dels corrents que entren al mateix node.
- e) La llei dels nussos no forma part de les lleis de Kirchhoff i nomès interessa als escaladors.

4. La llei d'Ohm ens diu que:

- a) En una resistència, la diferència de tensió és proporcional al corrent que la travessa.
- b) En un condensador, la càrrega acumulada és proporcional a la diferència de tensió.
- c) El valor de resistència d'una resistència depèn de la temperatura.
- d) En un condensador, el corrent es proporcional a la diferència de tensió.
- e) El valor de resistència d'una resistència ens indica la màxima diferència de tensió que aguanta abans d'explotar.

5. Quina afirmació és correcta respecte a un condensador:

- a) Acumula càrregues a les seves plaques metàl·liques mantenint la diferència de tensió entre els seus terminals constant.
- b) Acumula tensió a les seves plaques metàl·liques sense necessitat d'emmagatzemar càrregues a les seves plaques.
- c) És com una resistència, a on la diferència de tensió és proporcional al corrent que el travessa.
- d) Les càrregues s'acumulen dins del material aïllant, fins que una diferència de tensió permet treure-les.
- e) S'acumulen càrregues oposades a les dues plaques metàl·liques, desenvolupant així una diferència de tensió.

6. Quina afirmació és correcta respecte a un condensador:

- a) Quan s'està carregant, condensa càrregues de l'ambient, fent circular un corrent pel condensador.
- b) Quan s'està carregant, travessen càrregues pel material aïllant. Quan ja s'ha carregat, no.
- c) Mai travessen càrregues pel material aïllant i, per tant, la tensió al condensador és sempre de 0V.
- d) Mai travessen càrregues pel material aïllant, acumulant les càrregues degudes als corrents a les plaques metàl·liques.

7. Si Vi = 1V, quina tensió cau al díode?:

- a) 0V.
- b) 1V.
- c) Aproximadament 0,7V.
- d) Aproximadament -0.7V.
- e) No es pot saber sense més informació.

8. Per aquest circuit, i tenint en compte el sentit dels corrents indicats, es compleix:

- a) Va=Ia·(Rc+Rd).
- b) lb = la+Va
- c) lc+lb = la
- d) lb+la= lc
- e) Va=Ib·Rc

9. El teorema de Thevenin ens permet:

- a) Substituir una part linial d'un circuit per una resistència i una font de tensió.
- b) Substituir una part d'un circuit linial per una resistència i una font de corrent.
- c) Substituir tot el circuit per una font de tensió i una resistència.
- d) Substituir una part linial d'un circuit per una font.
- e) Substituir una resistència i una font per una única resistència.

10) El principi de superposició permet resoldre alguns circuits complexos en diferents problemes. Consisteix en:

- a) Resoldre els circuits cada vegada només amb una de les fonts del circuit, eliminant la resta. La solució del circuit és el valor més alt obtingut.
- b) Resoldre els circuits cada vegada només amb una des les fonts del circuit, eliminant la resta. La solució del circuit és qualsevol d'aquestes solucions.
- c) El principi de superposició no fa més que complicar la resolució del problema ja que consisteix en resoldre el circuit tantes vegades com fonts tenim al circuit.
- d) Si una part del circuit amb fonts és igual a una altre, aquestes es superposen i, per tant, només és necessari resoldre un d'aquests circuits per obtenir la solució final.
- e) Resoldre els circuits cada vegada només amb una des les fonts del circuit, eliminant la resta. La solució del circuit és la suma de totes les solucions.

11. Per obtenir la resistència de Thevenin, hem de:

- a) Eliminar les fonts i resoldre el circuit.
- b) Eliminar les fonts i obtenir la resistència equivalent.
- c) Eliminar les resistències i obtenir la diferència de tensió.
- d) Curtcircuitar les fonts i obtenir la resistència equivalent.
- e) Demanar-li a Thevenin que ens doni una.

12. Desconnectar una font de corrent, és a dir fer I=0, equival a:

- a) L'afirmació es falsa. No podem posar I=0 per la font.
- b) Variar el corrent de la font fins que V sigui 0.
- c) Curtcircuitar la branca del circuit on és.
- d) Cap d'aquestes respostes és correcte.

13. En un díode es compleix que

- a) El corrent invers és sempre exactament nul.
- b) Quan VPN és OV, el corrent és exactament nul.
- c) Si VPN és 5V, el díode està en inversa.
- d) Quan s'il·lumina es posa en directa.

14. Quan un díode està polaritzat en directa

- a) Pot passar qualsevol valor de corrent, però la diferencia de tensió es manté aproximadament constant.
- b) Pot passar qualsevol valor de corrent, i pot haver qualsevol diferència de tensió.
- c) Pot haver qualsevol diferència de tensió, però el corrent
- d) El corrent que el travessa és de 0.7mA.
- e) El corrent que el travessa és molt petit.
- serà com a màxim de 0.7 mA.

15. En el model lineal d'un díode de silici:

- a) El corrent és proporcional a una exponencial depenent de la tensió.
- b) El díode en inversa es substitueix per una resistència, de valor petit.
- c) El díode en inversa es substitueix per un díode en sentit oposat.
- d) El díode en directa es substitueix per una font de tensió i una resistència de valor petit.
- e) El díode en directa es substitueix per un curtcircuit.

16. Quina funció fa aquest circuit (suposem Vi sinusoidal amb amplitud major que Vg, i sortida VC):

- a) Una vegada que Vi arriba al seu valor màxim, la sortida es manté sempre constant.
- b) Una vegada que Vi arriba a Vγ, la sortida es manté sempre constant.
- c) Una vegada que Vi arriba al seu valor mínim, la sortida es manté sempre constant.
- d) Quan Vi és negativa, la sortida es Vi-Vγ. Quan és positiva, Vo=-(Vi-Vγ).

17. En aquest circuit retallador, quina tensió cau al díode (VPN) quan Vi = 0V:

- a) Aproximadament la tensió llindar del díode.
- b) -5V.
- c) 5V.
- d) No es pot saber.
- e) 0V.

18. En un rectificador d'ona completa, per la resistència de sortida

- a) Mai passa corrent. Només passa pels díodes.
- b) Quan passa corrent sempre ho fa en el mateix sentit.
- c) Si passa corrent, té un sentit quan Vi es positiva i sentit oposat quan Vi és negativa.
- d) Sempre passa corrent.
- e) El rectificador d'ona completa no fa servir resistències, només díodes.

19. Considera un rectificador de mitja ona. La mínima diferència entre el senyal

d'entrada i el rectificat és produeix quan...

- b) Quan el senyal arriba a la tensió llindar.
- c) Quan el senyal arriba al seu valor màxim.
- d) La diferència sempre és la mateixa: Vg.

20. En aquesta figura es mostra aproximadament la corba característica d'un díode.

a) Cert.

- b) Cert, però aquest <u>corrent</u> invers sempre és nul.
- c) Cert, però nomès per polarització directa.
- d) Cert, però el corrent a l'origen pot ser diferent de 0.

EXAMEN 2016

1. El valor i direcció del corrent electrònic depèn de...

- a) El signe de les càrregues, cap a on es mouen i el tamany del cable.
- b) El signe de les càrregues i el tamany del cable.
- c) El signe de les càrregues, cap a on es mouen i la seva velocitat.
- d) Només de la velocitat de les càrregues.
- e) El valor va al pes de les càrregues i la direcció sempre és cap avall.

2. Quan resolem un circuit i obtenim un corrent negatiu, significa que...

- a) El circuit no es pot resoldre.
- b) La solució és incorrecta.
- c) El corrent té sentit oposat al suposat inicialment.
- d) El corrent està format per càrregues negatives.
- e) El circuit es cremarà.

3. La llei de malles de les lleis de Kirchhoff diu que...

- a) La suma de les tensions a una branca és igual 0.
- b) La suma dels corrents d'una malla és 0.
- c) La suma de les tensions d'una malla és 0.
- d) La suma de les tensions de les branques que entren a la malla és 0.
- e) La llei de malles només s'aplica als ballarins de dança, i no a l'electrònica.

4. La llei d'Ohm ens diu que:

- a) En un condensador, el corrent es proporcional a la diferència de tensió.
- b) En un condensador, la càrrega acumulada és proporcional a la diferència de tensió.
- c) El valor de resistència d'una resistència depèn de la temperatura.
- d) En una resistència, la diferència de tensió es proporcional al corrent que la travessa.
- e) És el títol d'un western.

5. Quina afirmació és correcta respecte a una bobina:

- a) La diferència de tensió és proporcional a la derivada del corrent que la travessa.
- b) El corrent que la travessa és proporcional a la derivada de la seva diferència de tensió.
- c) Acumula càrrega en la bobina.
- d) És com una resistència, amb VL=L·IL.
- e) Que és la famella d'un boví.

6. Quina afirmació és correcta respecte a un condensador:

- a) Quan s'està carregant, condensa càrregues de l'ambient, fent circular un corrent pel condensador.
- b) Acumulen càrregues a les plaques metàl·liques degut als corrents, però mai travessen pel material aïllant.
- c) Mai travessen càrregues pel material aïllant i, per tant, la tensió al condensador és sempre de 0V.
- d) Quan s'està carregant, travessen càrregues pel material aïllant. Quan ja s'ha carregat, no.

7. Si Vi és sinusoïdal amb amplitud de 2V, quin corrent màxim passarà pel circuit ($V\gamma = 0.7V$):

- a) 2V/C.
- b) 1.3V/C.
- c) No passarà mai corrent.
- d) No ho podem saber.
- e) Només pot passar corrent d'aigua.

8. Per aquest circuit, i tenint en compte el sentit dels corrents indicats, es compleix:

- a) Va=Ia·(Rc+Rd).
- b) Ic·Rc=Ib·Rb-Ic·Rd
- c) lc+lb = la
- d) lb+la= lc
- e) Va=-Ib·Rc

9. Per obtenir la resistència de Thevenin, hem de:

- a) Eliminar les fonts i resoldre el circuit.
- b) Eliminar les fonts i obtenir la resistència equivalent.
- c) Eliminar les resistències i obtenir la diferència de tensió.
- d) Curtcircuitar les fonts i obtenir la resistència equivalent.
- e) Demanar-li a Thevenin que ens doni una.

10. En un díode es compleix que

- a) El corrent invers és sempre exactament nul.
- b) Quan VPN és 0V, el corrent és exactament nul.
- c) Si VPN és 5V, el díode està en inversa.
- d) Quan s'il·lumina es posa en directa.

11. Quan un díode està polaritzat en directa

- a) Pot passar qualsevol valor de corrent, però la diferencia de tensió es manté aproximadament constant.
- b) Pot passar qualsevol valor de corrent, i pot haver qualsevol diferència de tensió.
- c) Pot haver qualsevol diferència de tensió, però el corrent sempre és de 0.7 mA.
- d) El corrent que el travessa és de 0.7mA.
- e) El corrent que el travessa és molt petit. Serà com a màxim de 0.7mA.

12. En el model lineal d'un díode de silici:

- a) El corrent és proporcional a una exponencial depenent de la tensió.
- b) El díode en inversa es substitueix per una resistència, de valor petit.
- c) El díode en inversa es substitueix per un díode en sentit oposat.
- d) El díode en directa es substitueix per una font de tensió i una resistència de valor petit.
- e) El díode en directa es substitueix per un curtcircuit.

13. Quina funció fa aquest circuit (suposem Vi sinusoidal amb amplitud major que $V\gamma$, i sortida VC):

- a) Una vegada que Vi arriba al seu valor màxim, la sortida es manté sempre constant.
- b) Una vegada que Vi arriba a Vy, la sortida es manté sempre constant.
- c) Una vegada que Vi arriba al seu valor mínim, la sortida es manté sempre constant.
- d) Quan Vi és negativa, la sortida es Vi-Vγ. Quan és positiva, Vo=-(Vi-Vγ).

14. En aquest circuit retallador, quina tensió cau a la resistència quan Vi = 5V:

- a) Aproximadament la tensió llindar del díode.
- b) 2.5V.
- c) 5V.
- d) No es pot saber.
- e) 0V.

15. En un rectificador d'ona completa, per la resistència de sortida

- a) Mai passa corrent. Només passa pels díodes.
- b) Quan passa corrent sempre ho fa en el mateix sentit.
- c) Si passa corrent, té un sentit quan Vi es positiva i sentit oposat quan Vi és negativa.
- d) Sempre passa corrent.
- e) El rectificador d'ona completa no fa servir resistències, només díodes.

16. En aquesta figura es mostra aproximadament la corba característica d'un díode.

- a) Cert.
- b) Cert, però aquest corrent invers sempre és nul.
- c) Cert, però nomès per polarització directa.
- d) Cert, però el corrent a l'origen pot ser diferent de 0.

17. Si la tensió de font d'un transistor NMOS és major que la de porta, sabem que...

- a) El transistor estarà en tríode.
- b) El transistor estarà en saturació.
- c) El transistor estarà en tall.
- d) Això és imposible per un NMOS.
- e) Cap d'aquestes respostes és correcte.

18. La tensió Vds que separa la regió de tríode i la regió de saturació d'un transistor MOSFET:

- a) Només depèn de Vgs.
- b) Depèn de Vgs i de la tensió llindar del transistor.
- c) És un valor fixe (constant) per cada transistor.
- d) Només depèn de la tensió llindar del transistor.

19. D'aquest transistor podem dir...

- a) Que estarà en saturació.
- b) Que mai treballarà en triode.
- c) Que mai estarà en saturació.
- d) Que estarà en triode.
- e) No pot funcionar per què VG=0V.

20. La resistència del canal d'un NMOS a la regió de triode lineal...

- a) És constant amb Vgs, però depèn de Vds.
- b) És constant amb Vds, però depèn de Vgs.
- c) És sempre constant.
- d) No existeix cap resistència de canal en un NMOS.

EXAMEN 2018

- 1. Quan resolem un circuit i obtenim un corrent nul, significa que...
- a) La solució d'aquest corrent és incorrecta.
- b) No hi ha càrregues en aquesta branca del circuit.
- c) Existeixen dos corrents a la mateixa branca.
- d) Les càrregues no es mouen a la seva branca.
- e) Corrent 0 significa que no té alcohol.

2. El valor i la direcció del corrent electrònic depèn de

- a) El signe de les càrregues, cap a on es mouen i la mida del cable.
- b) El signe de les càrregues, cap a on es mouen i la seva velocitat.
- c) El signe de les càrregues i la mida del cable.
- d) Només de la velocitat de les càrregues.
- e) El valor depèn del pes de les càrregues i la direcció és aleatòria.

3. La llei d'Ohm ens diu que:

- a) la tensió i el corrent que circula per una resistència són proporcionals.
- b) la resistència té unitats de Ohms.
- c) la resistència és el factor proporcional entre la tensió i el corrent que circula per una bobina.
- d) el corrent que entra per una resistència és el mateix que el que surt.
- e) la resistència va ser clau a la segona guerra mundial.

4. D'un condensador podem dir que:

- a) la càrrega acumulada és proporcional al corrent.
- b) emmagatzema càrregues obtingudes de l'ambient.
- c) té el mateix comportament que una bobina.
- d) la seva capacitat no depèn de la càrrega acumulada.
- e) s'utilitza per produir llet condensada.

5. Si a la branca d'un condensador (C) sabem que hi circula un corrent de 1mA en un moment determinat, podem dir que:

- a) està carregat amb q=C·1mA.
- b) hi cau una tensió de V=C·1mA.
- c) no podem saber la càrrega acumulada.
- d) no és possible que hi hagi aquest corrent.

6. Si per una bobina (L) hi ha una diferència de tensió ②V20 en un moment determinat, sabem que:

- a) el corrent que hi circula està variant amb el temps.
- b) el corrent que hi circula és diferent de 0.
- c) el corrent que hi circula és 2V/L.
- d) el corrent és 0.

7. Quan tallem un circuit a dos nodes per aplicar el teorema de Thevenin, s'ha de complir què:

- a) les dues parts del circuit separades no tenen cap altre punt de connexió comú.
- b) els dos nodes han de tenir la mateixa tensió.
- c) els dos nodes s'han de trobar connectats a almenys una resistència.
- d) els dos nodes han de pertànyer a la mateixa branca.

8. Quan apliquem els teorema de Thevenin o principi de superposició, eliminar una font vol dir:

- a) Deixar oberta la branca on hi és.
- b) Curt-circuitar la font.
- c) Treure-la del circuit.
- d) Posar el seu valor a 0.
- e) Posar el seu valor a -1.

9. Per obtenir la resistència de Thevenin, hem de:

- a) Eliminar les fonts i resoldre el circuit.
- b) Eliminar les resistències i obtenir la diferència de tensió.
- c) Eliminar les fonts i obtenir la resistència equivalent.
- d) Curtcircuitar les fonts i obtenir la resistència equivalent.
- e) Demanar-li a Thevenin que ens la doni.

10. El principi de superposició és útil per...

- a) resoldre circuits amb diverses fonts per parts més senzilles de resoldre.
- b) resoldre circuits amb molts condensadors i bobines.
- c) resoldre circuits amb moltes resistències.
- d) resoldre circuits amb molts nodes per parts més senzilles de resoldre.
- e) superman.

11. El principi de superposició permet resoldre alguns circuits complexos en diferents problemes. Consisteix en:

- a) Resoldre els circuits cada vegada només amb una de les fonts del circuit, eliminant la resta. La solució del circuit és el valor més alt obtingut.
- b) Resoldre els circuits cada vegada només amb una de les fonts del circuit, eliminant la resta. La solució del circuit és qualsevol d'aquestes solucions.
- c) El principi de superposició no fa més que complicar la resolució del problema ja que consisteix en resoldre el circuit tantes vegades com fonts tenim al circuit.
- d) Resoldre els circuits cada vegada només amb una de les fonts del circuit, eliminant la resta. La solució del circuit és la suma de totes les solucions.
- e) Si una part del circuit amb fonts és igual a una altre, aquestes es superposen i, per tant, només és necessari resoldre un d'aquests circuits per obtenir la solució final.

12. En un díode es compleix que...

- a) El corrent invers és sempre exactament nul.
- b) Quan VPN és OV, el díode està en directa.
- c) En directa, sempre hi circula corrent.
- d) En directa sempre cau exactament Vg.
- e) Quan s'il·lumina es posa en directa.

13. En un díode, quan la diferència de tensió és 0, sabem que:

- a) el corrent que hi circula depèn de si està en directa o en inversa.
- b) el corrent que hi circula és 0.
- c) el corrent invers de saturació hi circularà.
- d) Mai pot ser la tensió 0. Com a mínim serà Vγ.
- e) el díode emetrà llum.

14. Si un díode amb Vg=0.7V i RD=5g està en inversa, sabem que:

- a) la diferència de tensió serà igual o major a 0.7V.
- b) la diferència de tensió serà exactament 0.7V.
- c) el corrent que hi circula serà Vg/RD.
- d) el corrent que hi circula serà aproximadament el corrent invers de saturació.
- e) la diferència de tensió es Vg i el corrent és Vg/RD.

15. En aquesta figura es mostra aproximadament la corba característica d'un díode. V es refereix a

- a) la tensió a la part P.
- b) la tensió a la part N.
- c) la suma de tensions a la part P i la N.
- d) la diferència de tensions P i N.
- e) una sèrie de llangardaixos.

16. En el model ideal d'un díode:

- a) El corrent és proporcional a una exponencial depenent de la tensió.
- b) El díode en directa es substitueix per una font de tensió i una resistència de valor petit.
- c) El díode en directa es substitueix per una font de tensió.
- d) El díode en inversa es substitueix per una resistència, de valor petit.
- e) El díode en inversa es substitueix per un díode en sentit oposat.

17. Quina funció fa aquest circuit (suposem Vi sinusoidal amb amplitud major que Vg, i sortida VC):

- a) Una vegada que Vi arriba a Vg, la sortida es manté sempre constant.
- b) Una vegada que Vi arriba al seu valor mínim, la sortida es manté sempre constant.
- c) Una vegada que Vi arriba al seu valor màxim, la sortida es manté sempre constant.
- d) Quan Vi és negativa, la sortida es Vi-Vg.

18. En aquest circuit retallador, quina tensió cau al díode (valor absolut) quan Vi = 2V:

- a) Aproximadament la tensió llindar del díode.
- b) 2.0V.
- c) 2.5V.
- d) 3V.
- e) 5V.

19. Considera un rectificador de mitja ona. En quin moment la tensió de sortida comença a pujar des de 0V?

- a) A l'instant t=0.
- b) Quan el senyal d'entrada arriba al seu valor màxim.
- c) Quan el senyal d'entrada arriba al seu valor mínim.
- d) Quan el senyal d'entrada arriba a la tensió llindar.

20. En un rectificador d'ona completa, per la resistència de sortida...

- a) Mai passa corrent. Només passa pels díodes.
- b) Si passa corrent, té un sentit quan Vi es positiva i sentit oposat quan Vi és negativa.
- c) Si passa corrent sempre ho fa en el mateix sentit.
- d) Sempre passa corrent.
- e) El rectificador d'ona completa no fa servir resistències, només díodes.