(19) 日本国特許庁 (JP) (12) 公開特許公報 (A) (11) 特許出願公開番号

特開平8-327192

(43)公開日 平成8年(1996)12月13日

(51) Int.CL*	識別記号	庁内整理番号	ΡI			技術表示箇所
F 2 5 B 47/02	530		F 2 5 B	47/02	530F	
39/02				39/02	н	

審査請求 未請求 請求項の数1 OL (全 4 頁)

(21)出願番号	特顯平7 -139105	(71)出顧人	000222288			
			東洋サーモコントロール株式会社			
(22) 出願日	平成7年(1995)6月6日		神奈川県伊勢原市鈴川36番地			
		(72)発明者	光藤寿			
			神奈川県伊勢原市鈴川36番地 東洋サーモ			
			コントロール株式会社内			
		(74)代理人	弁理士 小山 飲造 (外1名)			

(54) 【発明の名称】 冷凍機のエパポレータ

(57)【要約】

【目的】 冷凍機の運転中に霜取り作用のできる冷凍機 のエバポレータを得ようとする。

【構成】 コンデンサ5を出た冷媒液を膨張弁7に送る 管8に、加熱部8aを設け、これをエバポレータ1に近 接させて配置する。

【特許請求の範囲】

【請求項1】 冷媒ガスをコンプレッサで圧縮し、コン デンサで凝縮させて得た冷媒液を通す管(8)の一部 に、加熱部(8a)を設け、この加熱部(8a)をエバ ポレータ (1) に近接させて配置したことを特徴とする 冷凍機のエバポレータ。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、冷凍機のエバボレー タに関し、冷凍機運転中に霜取り作用が行なわれてエバ 10 ポレータに霜が付着するのを抑止すると共に、冷凍効果 をも減少させないエバボレータを得ようとするものであ

[0002]

【従来の技術】圧縮した冷媒ガスを冷却して液化させ、 これを膨張弁を通してエバポレータのジグザグに折曲げ た複数のチューブ内に噴出し気化させてチューブの温度 を低下させ、チューブ群の間を流通する空気等の流体を 冷却する冷凍機は広く利用されている。

【0003】図3は、このような冷凍機の一般的な構成 20 を示す略図である。エバポレータ1は、ジグザグに折り 曲げた複数のチューブ2に、多数のフィン3を嵌着し束 ねて構成される。4はチューブ2に通して気化した冷媒 を吸引し圧縮するコンプレッサ、5は圧縮された冷媒ガ スを冷却し液化させるコンデンサ、6はレシーバ、7は 膨張弁、8はレシーバ6を膨張弁7に通じさせる管、9 はエバポレータ1を出た冷媒ガスをコンプレッサ4に通 じさせる管、10はコンデンサ5、レシーバ6、膨張弁 7を短絡する管、11は管10を閉じる止弁である。冷 凍を行なうときは、コンデンサで液化されレシーバ6に 30 貯溜された冷媒を、管8を通して膨張弁7に送る。この ときは、管10の止弁11は閉じておく。冷媒液は膨張 弁7からチューブ2内に噴出して気化し、温度低下し て、チューブ2、フィン3を冷却し、これらに接触する 空気等を冷却する。空気等の熱を吸収し気化した冷媒 は、管9を通ってコンプレッサ4に吸入される。

【0004】冷凍機の使用時間が長くなるに伴なって、 エバポレータのチューブ2、フィン3には、空気中の湿 気が霜となって付着し、冷却能力が低下するので、一時 開き、コンプレッサ4から吐出された温度の高い冷媒ガ スを管10を通してチューブ2に直接流し、チューブ 2、フィン3の温度を高くして付着した霜を溶かして除 き、冷却能力を回復させる。

[0005]

【発明が解決しようとする課題】このように冷凍運転を 中断して霜取り操作をすることは、煩わしいだけでな く、冷凍効果を悪くし、又霜取り時期を監視する装置を 設けることも必要になる。

[0006]

【課題を解決するための手段】この発明は、冷媒ガスを コンプレッサで圧縮し、コンデンサで凝縮させた冷媒液 を通す管(8)の一部に、加熱部(8a)を設け、この 加熱部 (8 a) をエバポレータ (1) に近接させて配置 することにより、エバポレータを冷媒液により加熱して 着霜を抑止し、これにより温度が少し低下した冷媒液を 膨張弁から噴出させるように構成したものである。

[0007]

【作用】冷媒の種類により差があるが、冷媒としてRー 502を使用した場合を例にとると、コンデンサ5で凝 縮した冷媒液は、30℃程度の温度となっている。これ をそのまま膨張弁7を通して膨張させると-20℃とな ってエバポレータ1を冷却する。冷媒R-502が30 ℃で凝縮したときのエンタルピは約142kcal/kg 、こ れをそのまま膨張気化させるとエンタルビは約108kc al/kg となるから、冷媒の冷凍効果はその差の34kcal /kg となる。

【0008】この冷媒液により、加熱部8aにおいてエ バポレータ1を加熱し、逆に冷媒液を5℃だけ冷却し2 5℃として膨張弁7から噴出させたとすると、気化冷媒 のエンタルピは約107kcal/kg であるから、凝縮冷媒 液のエンタルピ142kcal/kg との差は35kcal/kg で あり、冷媒液を5℃だけ冷却することにより冷媒の冷凍 効果には約1kcal/kg の改善が得られる。

【0009】しかも加熱部8aからエバポレータに熱が 伝わるため、冷凍機運転中もエバポレータへの着霜抑止 効果があり、霜取りのための運転休止を頻繁に行なうこ とが避けられる。

[0010]

【実施例】図1は本発明のエバポレータの構成を示す略 図、 図2はこれの具体的構造を示す斜視図である。 図3 の従来例と同等部分は同符号で示すと共に説明を省略し て次にこれを説明する。

【0011】膨張弁7に冷媒液を送る管8には、エバボ レータ1に近接させて加熱部8aを設けている。加熱部 8aは、管をジグザグに折曲げて形成され、エバポレー タ1の下面に接近して広がっている。 図3のコンデンサ 5、レシーバ6、膨張弁7を1本で短絡する管10の代 りに、図1、図2ではコンデンサ5を短絡し止弁12を 冷凍を休止して霜取りを行なう。このときは止弁11を 40 持つ管13と、膨張弁7を短絡し止弁15を持つ管14 とを設けている。コンデンサ5の入口には、全冷媒を管 13へ向わせるための止弁16を設けている。このよう に構成すればエバボレータ部Aとコンプレッサ、コンデ ンサ部Bとを接続する管数を減らすことができる。エバ ポレータのチューブ2はジグザグに折曲げられており、 これの複数個(通常10個前後の多数であるが、図2に は4個を示す)を並べ、フィン3で束ねてエバボレータ 1を形成する。冷媒液を膨張弁7に供給する管8の一部 は、ジグザグに折曲げて加熱部8aを形成すると共にフ 50 ィン3群の下に近接して位置させる。

【0012】冷凍運転を行なうときは、止弁12、15を閉じ、止弁16を開いてコンプレッサ4を運転すると、冷媒ガスはコンデンサ5で液化され、レシーバ6に入り、管8から加熱部8aを経て膨張弁7からチューブ2内に噴出し、エバボレータ1を冷却する。このようにして冷凍運転時には、常に加熱部8aに温度の高い冷媒液が通るので、エバボレータは加熱されて着霜が抑止されると共に、冷媒液の温度が5℃程度低くなり、前記のように冷凍効果を高めることができる。又、フィン3に付着しこれから滴下する水滴は、エバボレータの下に接10近させて設けられる水受けバン(図示せず)に溜るが、この水も加熱部8aに加熱されるので、凍結が阻止される

【0013】このようにして冷凍運転中もエバポレータへの着霜抑止作用が行なわれるので、従来のような霜取り操作を行なう回数は著しく減少するが、長い間に着霜して霜取り操作をする必要を生じたときは、止弁12、15を開き止弁16を閉じてコンプレッサを運転する。これにより温度の高い冷媒ガスは、直接チューブ2に流入して従来同様に霜取りを行なうことができる。このと 20き、止弁16を閉じることにより冷媒ガスの一部がコンデンサ5に流入することを防止して冷媒ガスの圧力損失を小さくする。又、管13をコンデンサ5とレシーバ6との間に接続したから、冷媒ガスのためレシーバ内の冷媒液は押し出されて、冷媒液がレシーバ内に滞留するのが防止できる。

【0014】 【発明の効果】 (1) 加圧液化されて温度の高い冷媒をエバポレータの側面に近接させて流すから、冷凍機運転中にエバポレータへの着霜を抑えることができる。

【0015】(2) 逆に冷媒液は温度が低くなり、膨張弁からの噴出時に冷凍効果を高めることができる。

【0016】(3) エバポレータは、冷媒液のため少し加熱されるが、これによる冷凍効果の低下は、着霜による低下に比べれば大きくない。

【図面の簡単な説明】

- 10 【図1】本発明のエバポレータの構成を示す略図。
 - 【図2】これの具体的構造を例示する斜視図。
 - 【図3】従来の冷凍機の一般的な構成を示す略図。 【符号の説明】
 - 1 エバポレータ
 - 2 チューブ
 - 3 フィン
 - 4 コンプレッサ
 - 5 コンデンサ
 - 6 レシーバ
- 0 7 膨張弁
 - 8、9、10 管
 - 8a 加熱部
 - 11、12 止弁
 - 13、14 管
 - 15、16 止弁
 - A エバポレータ部
 - B コンプレッサ、コンデンサ部

【図1】

【図2】

【図3】

PAT-NO:

JP408327192A

DOCUMENT-IDENTIFIER: JP 08327192 A

TITLE:

EVAPORATOR OF FREEZER

PUBN-DATE:

December 13, 1996

INVENTOR-INFORMATION:

NAME

KOTO, HISASHI

INT-CL (IPC): F25B047/02, F25B039/02

ABSTRACT:

PURPOSE: To restrict a frosting in an evaporator during an operation of a freezer by a method wherein refrigerant gas is compressed by a compressor, a part of a pipe passing refrigerant liquid condensed by a condensor is provided with a heating part and the heating part is arranged near the evaporator.

CONSTITUTION: There are provided a pipe 13 for short circuting a condensor 5 and having a stopper valve 12, and a pipe 14 for short circuiting an expansion valve 7 and having a stopper valve 15. An inlet port of the condensor 5 is provided with a stopper valve 16 for directing all the refrigerant toward the pipe 13. Then, the stopper valve 16 is opened to operate a compressor 4, resulting in that the refrigerant gas is liquefied with the condensor 5, a part of a pipe 8 for supplying the liquefied refrigerant liquid to the expansion valve 7 is provided with a zig-zag formed heating part 8a, the heating part 8a is arranged near the evaporator 1. With such an arrangement as above, it is possible to restrict frosting at the evaporator 1 during an operation of a freezer.

COPYRIGHT: (C)1996,JPO