Chapter 3

Sang Tran

September 12, 2024

RUDIN Chapter 3 problems 2, 4, 5, 6, 7, 8, 9, 10, 11(abc), 12, 13, 14(ab), 16(a), 17(abc), 19, 20, 21, 22, 23

2.

$$\lim_{n \to \infty} (\sqrt{n^2 + n} - n) = \lim_{n \to \infty} \frac{n}{\sqrt{n^2 + n} + n}$$

$$= \lim_{n \to \infty} \frac{1}{\sqrt{1 + \frac{1}{n}} + 1}$$

$$= \frac{1}{2}.$$

Observe that $\{s_n\} = \{0, 0, \frac{1}{2}, \frac{1}{4}, \frac{3}{4}, \frac{3}{8}, \frac{7}{8}, \dots\}$ <u>Claim</u>: $s_{2m+2} = \frac{1}{2} - \frac{1}{2^{m+1}}$; $s_{2m+1} = 1 - \frac{1}{2^m}$ for $m \ge 0$. Since either one is determined by the other in the definition, it suffices to prove

only one. The base case holds trivially. Suppose both hold for $m \leq r$. Then

$$s_{2(r+1)+2} = \frac{s_{2(r+1)+1}}{2} = \frac{1}{2} - \frac{1}{2^{(r+1)+1}}.$$

Thus by induction we are done.

The subsequence with odd terms converges to 1 and since $s_n \in [0,1)$, and all terms of the original sequence are less than 1 and therefore, by theorem 3.17, $\limsup_{n\to\infty} s_n = 1.$

The subsequence with even terms converges to $\frac{1}{2}$ and for any $0 < x < \frac{1}{2}$, by A.P. $\exists k \in \mathbb{N}$ such that $\frac{1}{2} - x > \frac{1}{k}$. But for any such k, $\exists m \in \mathbb{N}$ such that $2^{m+1} > k$, or $\frac{1}{k} > \frac{1}{2^{m+1}}$ (i.e. take m = k). Thus

$$\frac{1}{2} - x > \frac{1}{k} > \frac{1}{2^{m+1}} \to s_{2m+2} > x \ \forall m \ge k.$$

It is trivial for $x \leq 0$ since after the first term, all terms in the subsequence are greater 0. Hence, by theorem 3.17, $\liminf_{n\to\infty} s_n = \frac{1}{2}$.

5.

Let $r \in \mathbb{R}$.

If the RHS is of the form $\infty + \infty$, $\infty \pm r$, or $r + \infty$, then the RHS = ∞ and the inequality holds trivially.

If the RHS is of the form $r - \infty$ or $-\infty + r$, then the RHS $= -\infty$ and W.L.O.G. suppose $\limsup_{n \to \infty} a_n = r$ and $\limsup_{n \to \infty} b_n = -\infty$. Then by definition of the upper limit, $\lim_{n \to \infty} b_n = -\infty$. On the other hand, by theorem 3.17 part (b), $\exists M > r$ such that $a_n < M$, $\forall n$. Thus, by theorem 3.19,

$$\limsup_{n \to \infty} (a_n + b_n) \le \limsup_{n \to \infty} (M + b_n) = -\infty,$$

which implies $\limsup_{n\to\infty} (a_n + b_n) = -\infty$. So the inequality holds.

If the RHS $\in \mathbb{R}$, or $\limsup_{n\to\infty}(a_n)=A$ and $\limsup_{n\to\infty}(b_n)=B$. Then let $\limsup_{n\to\infty}(a_n+b_n)=C$. Suppose on the contrary that $A+B< C\to A< C-B$. Thus $\exists S$ such that A< S< C-B.

By theorem 3.17 part (b), $\exists N$ such that $\forall n \geq N$, $a_n < S$. Therefore, when $n \geq N$, $a_n + b_n < S + b_n$ and by theorem 3.19,

$$C = \limsup_{n \to \infty} (a_n + b_n) < \limsup_{n \to \infty} (S + b_n) = S + \limsup_{n \to \infty} (b_n) = S + B < C,$$

a contradiction.

6

(a)

$$\sum_{n=1}^{m} a_n = (\sqrt{2} - \sqrt{1}) + (\sqrt{3} - \sqrt{2}) + \dots + \sqrt{m+1} - \sqrt{m}$$
$$= \sqrt{m+1} - 1$$

$$\implies \sum a_n = \lim_{m \to \infty} (\sqrt{m+1} - 1) = \infty.$$

Hence, the series diveges.

(b)

$$0 \le a_n = \frac{\sqrt{n+1} - \sqrt{n}}{n}$$
$$= \frac{1}{n(\sqrt{n+1} + \sqrt{n})} < \frac{1}{2n\sqrt{n}} = \frac{1}{2n^{\frac{3}{2}}}.$$

The p-series $\sum \frac{1}{n^{\frac{3}{2}}}$ converges with $p = \frac{3}{2} > 1$, and thus $\sum \frac{1}{2n^{\frac{3}{2}}}$ also converges. Since the above relation holds for all n, by comparison test, we have $\sum a_n$ converges.

(c)

$$\alpha = \limsup \sqrt[n]{|a_n|} = \limsup \left(\sqrt[n]{n} - 1\right)$$
$$= \left(\limsup \sqrt[n]{n}\right) - 1$$
$$= 1 - 1$$
$$= 0,$$

where the equality follows from theorem 3.20 (c) i.e. $\lim \sqrt[n]{n} = 1 \implies \limsup \sqrt[n]{n} = 1$.

Since $\alpha = 0 < 1$, by the root test, $\sum a_n$ converges.

(d) If
$$|z| \le 1$$
, then $|1 + z^n| \le 1 + |z^n| \le 1 + |z|^n \le 2$

$$|a_n| = \left| \frac{1}{1 + z^n} \right| \ge \frac{1}{2} \ \forall n$$

which means a_n does not tend to 0 and hence $\sum a_n$ does not converge. If |z| > 1, then since $\forall n \ge 1$, $|1+z^n|+1 \ge |1+z^n-1|=|z^n|$, or $|1+z^n| \ge |z|^n-1>0 \Longrightarrow \frac{1}{|1+z^n|} \le \frac{1}{|z|^{n-1}}$ and $-|z|^{n-1} \le -1 \Longrightarrow |z|^n-|z|^{n-1} \le |z|^n-1$ Therefore, we have

$$|a_n| = \left| \frac{1}{1+z^n} \right| \le \frac{1}{|z|^n - 1}$$

$$\le \frac{1}{|z|^n - |z|^{n-1}}$$

$$= \frac{1}{1 - \frac{1}{|z|}} \cdot \frac{1}{|z|^n}$$

$$= \frac{|z|}{|z| - 1} \cdot \frac{1}{|z|^n},$$

and by assumption $\frac{1}{|z|} < 1$ so $\sum \frac{1}{|z|^n}$ converges, hence $\frac{|z|}{|z|-1} \sum \frac{1}{|z|^n}$ converges. By the comparison test, $\sum a_n$ converges.

7

Sol1:

We have

$$\left(\sqrt{a_n} - \frac{1}{n}\right)^2 \ge 0 \implies \frac{\sqrt{a_n}}{n} \le \frac{1}{2}\left(a_n + \frac{1}{n^2}\right)$$

Since $\sum a_n$ and $\sum \frac{1}{n^2}$ converges, where the latter is p-series with p=2>1, hence $\frac{1}{2}\sum \left(a_n+\frac{1}{n^2}\right)$ converges. By the comparison test, $\sum \frac{\sqrt{a_n}}{n}$ converges.

Sol2:

By the Cauchy-Schwarz inequality

$$\left| \sum_{k=n}^{m} \frac{\sqrt{a_k}}{k} \right| \le \left(\sum_{k=n}^{m} a_k \right)^{\frac{1}{2}} \left(\sum_{k=n}^{m} \frac{1}{k^2} \right)^{\frac{1}{2}}$$

Let $\epsilon>0$, then $\exists N_1,N_2\in\mathbb{N}$ such that $\forall m_1\geq n_1\geq N_1$ and $m_2\geq n_2\geq N_2$ implies

$$0 \le \sum_{k=n_1}^{m_1} a_k \le \epsilon \text{ and } 0 \le \sum_{k=n_2}^{m_2} \frac{1}{k^2} \le \epsilon$$

where $\sum \frac{1}{n^2}$ is p-series with p = 2 > 1. Let $N = max\{N_1, N_2\}$, then

$$\left| \sum_{k=n}^{m} \frac{\sqrt{a_k}}{k} \right| \le \sqrt{\epsilon \cdot \epsilon} = \epsilon.$$

8

Sol 1:

Since $\sum a_n$ converges, it is bounded and hence the partial sums A_n form a bounded sequence. Since $\{b_n\}$ is monotonic and bounded, it converges to, say b.

If $\{b_n\}$ is monotonically decreasing, let $c_n = b_n - b$, then $\{c_n\}$ is monotonically decreasing and $\lim c_n = 0$. By theorem 3.42, $\sum a_n c_n$ converges. On the other hand,

$$\sum a_n b_n = \sum a_n c_n + \sum a_n b = \sum a_n c_n + b \sum a_n$$

The RHS converges from theorem 3.47 and above and thus, $\sum a_n b_n$ converges. If $\{b_n\}$ is monotonically increasing, let $c_n = b - b_n$, then by similar reasoning as above we also conclude $\sum a_n b_n$ converges.

Sol2:

Let $s_n = \sum_{i=1}^n a_i$, and $s_0 = 0$, then $a_k = s_k - s_{k-1}$. Since $\sum a_n$ converges,

$$(\forall \epsilon > 0)(\exists N \in \mathbb{N}) \ m \ge n \ge N \implies |s_m - s_n| = \left| \sum_{i=n}^m a_i \right| < \epsilon.$$

In other words $\{s_n\} \to s$, and hence $\{s_n\}$ is bounded. We also have $\{b_n\} \to b$ since $\{b_n\}$ is monotonic and bounded. Therefore, $\{b_ns_n\} \to bs$.

Let |M| be the upper bound for both $\{b_n\}$ and $\{s_n\}$. Then

$$\left| \sum_{k=n+1}^{m} a_k b_k \right| = \left| \sum_{k=n+1}^{m} (s_k - s_{k-1}) b_k \right|$$

$$= \left| b_m s_m - b_n s_n + \sum_{k=n}^{m-1} (b_k - b_{k+1}) s_k \right|$$

$$\leq \left| b_m s_m - b_n s_n \right| + \left| \sum_{k=n}^{m-1} (b_k - b_{k+1}) s_k \right|$$

$$\leq \left| b_m s_m - b_n s_n \right| + \left| M \right| \sum_{k=n}^{m-1} \left| (b_k - b_{k+1}) \right|$$

$$= \left| b_m s_m - b_n s_n \right| + \left| M \right| \left| \sum_{k=n}^{m-1} (b_k - b_{k+1}) \right|$$
(since $\{b_n\}$ is monotonic)
$$= \left| b_m s_m - b_n s_n \right| + \left| M \right| \left| b_n - b_m \right|$$

Since $\{b_n\}$, and $\{b_ns_n\}$ are convergent sequences, which means they are Cauchy. Given $\epsilon > 0$, pick $N = \max\{N_1, N_2\}$ such that

$$|b_m s_m - b_n s_n| < \frac{2\epsilon}{3} \, \forall m \ge n \ge N_1.$$

$$|b_n - b_m| < \frac{\epsilon}{3|M|} \, \forall m \ge n \ge N_2.$$

$$\left| \sum_{k=1}^m a_k b_k \right| < \epsilon.$$

Then

9

(a)
$$\limsup \left|\frac{(n+1)^3}{n^3}\right| = \limsup \frac{(1+\frac{1}{n})^3}{1} = 1$$
 $\implies R=1.$

(b)
$$\limsup \left|\frac{2^{n+1}n!}{(n+1)!2^n}\right| = \limsup \frac{2}{n+1} = 0$$

 $\implies R = \infty.$

(c)
$$\limsup \left| \frac{2^{n+1}n^2}{2^n(n+1)^2} \right| = \limsup \frac{2}{(\frac{1}{n}+1)^2} = 2$$

$$\implies R = \frac{1}{2}.$$

 $\implies R = 3.$

(d)
$$\limsup \left| \frac{(n+1)^3 3^n}{n^3 3^{n+1}} \right| = \limsup \frac{(1+\frac{1}{n})^3}{3} = \frac{1}{3}$$

10

Let $\alpha = \limsup \sqrt[n]{|a_n|}$. Suppose R > 1, then $\alpha < 1$. Choose β and integer N (by theorem 3.17 (b)) so that $\alpha < \beta < 1$, and

$$\sqrt[n]{|a_n|} < \beta \implies |a_n| < \beta^n < 1 \ \forall n \ge N$$

 $\implies a_n = 0 \ \forall n \geq N$ and thus for $1 \leq i \leq N$, there could only be finite number of non-zero integer a_i 's, which contradicts the fact that $\{a_n\}$ contains infinitely non-zero integers.

Hence, $R \leq 1$.

16(a).

$$x_n - x_{n+1} = \frac{1}{2} \left(x_n - \frac{\alpha}{x_n} \right) \implies x_n - x_{n+1} = \frac{1}{2} \left(\frac{x_n^2 - \alpha}{x_n} \right)$$
$$\implies x_n - x_{n+1} = \frac{1}{2} \left(\frac{(x_n - \sqrt{\alpha})(x_n + \sqrt{\alpha})}{x_n} \right).$$

We know $x_1 > 0$ and from the recursion formula, it is obvious that $x_2, x_3, ... > 0$. $x_1 - \sqrt{\alpha} > 0$. For n > 1,

$$x_n - \sqrt{\alpha} = \frac{1}{2} \left(x_{n-1} + \frac{\alpha}{x_{n-1}} \right) - \sqrt{\alpha}$$
$$= \frac{1}{2} \left(\frac{x_{n-1}^2 + \alpha - 2x_{n-1}\sqrt{\alpha}}{x_{n-1}} \right)$$
$$= \frac{1}{2} \left(\frac{(x_{n-1} - \alpha)^2}{x_{n-1}} \right) \ge 0$$

If $x_{n-1} - \alpha = 0 \implies x_{n-1} = \alpha$ and $x_n = \sqrt{\alpha}$. But from the recursion formula $x_n = \frac{1}{2} \left(\alpha - \frac{\alpha}{\alpha} \right) = \frac{1}{2} (\alpha - 1) \neq \sqrt{\alpha}$. Thus $x_n - \sqrt{\alpha} > 0$.

And hence, $x_n - x_{n+1} > 0$, which means the sequence decreases monotonically and is bounded below by $\sqrt{\alpha}$.

By theorem 3.14, $\{x_n\}$ converges to some $p \in \mathbb{R}$.

$$0$$

or $p = \sqrt{\alpha}$ since $p \ge \sqrt{\alpha} > 0$. If $p < \sqrt{\alpha}$, $\exists x_l \in B_{\sqrt{\alpha}-p}(p) \setminus \{p\}$, so $x_l < \sqrt{\alpha}$, contradicting $x_n > \sqrt{\alpha}$ for all n. Thus, $\lim x_n = \sqrt{\alpha}$.

11(abc).

(a)

Sol 1:

Suppose not, i.e. the series converges. Then $\lim \frac{a_n}{1+a_n} = \lim \frac{1}{\frac{1}{a}+1} = 0$.

$$\implies \frac{1}{a_n} \to \infty$$
$$\implies a_n \to 0.$$

$$\implies a_n \to 0.$$

 $\implies \exists N \text{ such that for all } n \geq N, \, a_n < 1. \text{ But then } 1 + a_n < 2 \implies \frac{a_n}{2} < \frac{a_n}{1 + a_n}$

Since $\sum a_n$ diverges, then $\frac{1}{2}\sum a_n$ diverges and therefore by the comparison test $\sum \frac{a_n}{1+a_n}$ diverges, contradiction.

If $a_n \to \infty$ as $n \to \infty$ then $\lim \frac{a_n}{1+a_n} = \lim (1-\frac{1}{1+a_n}) = 1 \neq 0$, so the series

$$1+a_n < 1+M \implies \frac{1}{1+M} < \frac{1}{1+a_n} \implies \frac{a_n}{1+M} < \frac{a_n}{1+a_n}$$

If a_n remains bounded on (0, M) for some $M \in \mathbb{R}_+$, then $1 + a_n < 1 + M \implies \frac{1}{1+M} < \frac{1}{1+a_n} \implies \frac{a_n}{1+M} < \frac{a_n}{1+a_n}$ Since $\sum a_n$ diverges, then $\frac{1}{1+M} \sum a_n$ diverges and therefore by the comparison test $\sum \frac{a_n}{1+a_n}$ diverges.

(b)

$$\begin{split} \frac{a_{N+1}}{s_{N+1}} + \ldots + \frac{a_{N+k}}{s_{N+k}} &\geq 1 - \frac{s_N}{s_{N+k}} \\ &= \frac{a_{N+1}}{s_{N+k}} + \ldots + \frac{a_{N+k}}{s_{N+k}} \end{split}$$

Since $a_n > 0$, thus $s_i > s_j$ for all i > j since the partial sums form an increasing sequence, which implies $\frac{a_j}{s_j} > \frac{a_j}{s_i}$. After cancelling the last term on the both hand sides, the inequality holds.

Suppose the series converges, then given $\epsilon > 0$, there exists N such that for all $N+k \geq N$, we have

$$\frac{a_{N+1}}{s_{N+1}} + \ldots + \frac{a_{N+k}}{s_{N+k}} < \epsilon \implies 1 - \frac{s_N}{s_{N+k}} < \epsilon$$

which is a contradiction as N is fixed and $\lim_{k\to\infty} s_{N+k} = \infty$ i.e. pick $0 < \epsilon < 1$, the latter inequality above does not hold for sufficiently large k.

(c)

Given $a_n > 0$, we have

$$\frac{a_n}{s_n^2} \le \frac{1}{s_{n-1}} - \frac{1}{s_n}$$

$$\iff \frac{a_n}{s_n^2} \le \frac{s_n - s_{n-1}}{s_n s_{n-1}}$$

$$\iff \frac{a_n}{s_n} \le \frac{a_n}{s_{n-1}}$$

$$\iff \frac{1}{s_n} \le \frac{1}{s_{n-1}} \iff s_{n-1} \le s_n.$$

The last inequality holds since $\{s_n\}$ is an increasing sequence.

Suppose the series diverges, then by comparison test, $\sum \left(\frac{1}{s_{n-1}} - \frac{1}{s_n}\right)$ also diverges. Then

$$\exists \epsilon > 0, \forall N \in \mathbb{N}, \ m \ge n \ge N \implies \left| \sum_{k=n}^{m} \left(\frac{1}{s_{k-1}} - \frac{1}{s_k} \right) \right| = \sum_{k=n}^{m} \left(\frac{1}{s_{k-1}} - \frac{1}{s_k} \right) = \frac{1}{s_{n-1}} - \frac{1}{s_m} \ge \epsilon.$$

which is not true since $s_n \to \infty$, thus $\frac{1}{s_{n-1}} - \frac{1}{s_m} \to 0 - 0 = 0 < \epsilon$ as $n \to \infty$, i.e. the inequality will not hold for sufficiently large N.

Alternatively, since $s_1 = a_1$ and $\frac{a_n}{s^2} > 0$

$$\sum_{k=1}^{n} \frac{a_{k}}{s_{k}^{2}} = \frac{a_{1}}{a_{1}^{2}} + \sum_{k=2}^{n} \frac{a_{k}}{s_{k}^{2}} = \frac{1}{a_{1}} + \sum_{k=2}^{n} \frac{a_{k}}{s_{k}^{2}} \le \frac{1}{s_{1}} + \sum_{k=2}^{n} \left(\frac{1}{s_{k-1}} - \frac{1}{s_{k}}\right)$$

$$\implies \sum_{k=1}^{n} \frac{a_{k}}{s_{k}^{2}} \le \frac{1}{s_{1}} + \frac{1}{s_{1}} - \frac{1}{s_{n}} = \frac{2}{s_{1}} - \frac{1}{s_{n}} < \frac{2}{s_{1}}. \implies \text{the partial sums form a bounded sequence.}$$

On the other hand, $\sum_{k=1}^{n+1} \frac{a_k}{s_k^2} - \sum_{k=1}^{n} \frac{a_k}{s_k^2} = \frac{a_{n+1}}{s_{n+1}^2} > 0$, the partial sums form an increasing bounded sequence \implies it converges.

(d)

Take $a_n = \frac{1}{n}$, then $\sum a_n$ diverges and $\sum \frac{a_n}{1+na_n} = \sum \frac{1}{2n}$ diverges. Take $a_n = 1$ for $n = 2^k$ where $k \in \mathbb{Z}_+$, and $a_n = \frac{1}{n^2}$ otherwise then $\sum a_n$ will be at least $\sum 1$ which diverges. However, $\frac{a_n}{1+na_n} = \frac{1}{1+2^k} < \frac{1}{2^k}$ for $n = 2^k$ where $k \in \mathbb{Z}_+$ and $\frac{a_n}{1+a_n} = \frac{1}{n^2+n} < \frac{1}{n^2}$ otherwise. By the comparison test, the two subsequences of partial sums converge (geometric series and p-series). Thus

 $\frac{\sum \frac{a_n}{1+na_n}}{\sum \frac{a_n}{1+na_n}}$ converge. Hence, $\sum \frac{a_n}{1+na_n}$ may converge or diverge.

$$\frac{a_n}{1+n^2a_n}=\frac{1}{\frac{1}{a_n}+n^2}<\frac{1}{n^2}$$
 since $a_n>0$. So $\sum \frac{a_n}{1+n^2a_n}$ converges using the compar-

is on test and the fact that $\sum \frac{1}{n^2}$ converges (p-series with p=2). Hence, $\sum \frac{a_n}{1+n^2a_n}$ converges.

12.

(a) Given $a_n > 0$, $m < n \Longrightarrow r_m > r_n$. In other words $r_m > r_{m+k} \forall k \in \mathbb{N}$. Thus, $\frac{a_m}{r_{m+k}} < \frac{a_m}{r_m}$

$$\begin{split} \frac{a_m}{r_m} + \ldots + \frac{a_n}{r_n} &> \frac{a_m + \ldots + a_n}{r_m} \\ &= \frac{r_m - r_n}{r_m} + \frac{a_n}{r_m} \\ &> \frac{r_m - r_n}{r_m} \\ &= 1 - \frac{r_n}{r_m}. \end{split}$$

Suppose the series converges, then given $\epsilon > 0$, $\exists N$ such that for all $\forall n \geq m \geq 1$

$$1 - \frac{r_n}{r_m} < \sum_{k=m}^n \frac{a_k}{r_k} = \left| \sum_{k=m}^n \frac{a_k}{r_k} \right| < \epsilon$$

$$\implies 1 - \frac{r_n}{r} < \epsilon \text{ for all } n \ge m \ge N'.$$

$$\implies r_n > (1 - \epsilon)r_m \text{ for all } n \ge m \ge N'.$$

Tw, we have $1 - \frac{r_n}{r_m} < \sum_{k=m}^n \frac{a_k}{r_k} = \left| \sum_{k=m}^n \frac{a_k}{r_k} \right| < \epsilon$ $\implies 1 - \frac{r_n}{r_m} < \epsilon \text{ for all } n \ge m \ge N'.$ $\implies r_m - r_n < r_m \epsilon \text{ for all } n \ge m \ge N'.$ $\implies r_n > (1 - \epsilon)r_m \text{ for all } n \ge m \ge N'.$ Fixing some $m \ge N'$, and since $\sum a_n$ converges, $\exists N''$ such that $\forall n \ge N''$, we have

$$r_{n+1} = |\sum_{k=1}^{n} a_k - \sum_{k=1}^{n} a_k| < (1 - \epsilon)r_m.$$

 $r_{n+1} = |\sum_{k=1}^n a_k - \sum_{k=1}^n a_k| < (1-\epsilon)r_m$. Then pick $N = \max\{m, N''\}$, and for n > N we have a contradiction.

(b)

$$\frac{a_n}{\sqrt{r_n}} < 2(\sqrt{r_n} - \sqrt{r_{n+1}})$$

$$\iff a_n - r_n < r_n - 2\sqrt{r_n r_{n+1}}$$

$$= (\sqrt{r_n} - \sqrt{r_{n+1}})^2 - r_{n+1}$$

$$\iff a_n - (r_n - r_{n+1}) < (\sqrt{r_n} - \sqrt{r_{n+1}})^2$$

$$\iff 0 = a_n - a_n < (\sqrt{r_n} - \sqrt{r_{n+1}})^2$$

The inequality holds since $\sqrt{r_n} \neq \sqrt{r_{n+1}}$, because $a_n > 0$. Let $L = \sum a_n$, then

 $\begin{array}{l} \sum_{k=1}^{n} \frac{a_{k}}{\sqrt{r_{k}}} < 2 \sum_{k=1}^{n} (\sqrt{r_{k}} - \sqrt{r_{k+1}}) = 2(\sqrt{r_{1}} - \sqrt{r_{n+1}}) < 2\sqrt{r_{1}} = 2\sqrt{L}. \\ \text{Hence the partial sums of the series form a bounded sequence.} \\ \text{On the other hand, } \sum_{k=1}^{n+1} \frac{a_{k}}{\sqrt{r_{k}}} - \sum_{k=1}^{n} \frac{a_{k}}{\sqrt{r_{k}}} = \frac{a_{n+1}}{\sqrt{r_{n+1}}} > 0 \\ \Longrightarrow \text{ the partial sums of the series form an increasing bounded sequence} \\ \Longrightarrow \sum \frac{a_{n}}{\sqrt{r_{n}}} \text{ converges.} \end{array}$

13. Let $A = \sum |a_n|$, and $B = \sum |b_n|$ be the two absolutely convergent sequence.

$$C_{m} = \sum_{n=0}^{m} |c_{m}| = \sum_{n=0}^{m} \left| \sum_{k=0}^{n} a_{k} b_{n-k} \right|$$

$$\leq \sum_{n=0}^{m} \sum_{k=0}^{n} |a_{k} b_{n-k}|$$

$$\leq \sum_{n=0}^{m} \sum_{k=0}^{n} |a_{k}| |b_{n-k}|$$

$$= \sum_{k=0}^{n} |a_{k}| \sum_{n=0}^{m} |b_{n-k}|$$

$$= \sum_{k=0}^{n} |a_{k}| \sum_{n=0}^{m-k} |b_{n}|$$

$$\leq \sum_{k=0}^{m} |a_{k}| \sum_{n=0}^{m-k} |b_{n}|$$

$$\leq AB$$

 $\implies \{C_m\}$ is bounded and also $\{C_m\}$ increases monotonically. $\implies \{C_m\}$ converges.

17(abc).

It is trivial to see that $x_n > 0$ for all n by the recursion formula.

Claim: $x_{2n} < \sqrt{\alpha}$

Since $\alpha > 1 \implies \sqrt{\alpha} > 1$. For n = 1, we know $x_1 > \sqrt{\alpha}$.

$$x_2 - \sqrt{\alpha} = \frac{\alpha + x_1 - \sqrt{\alpha} - \sqrt{\alpha}x_1}{1 + x_1}$$

$$= \frac{\sqrt{\alpha}(\sqrt{\alpha} - 1) - x_1(\sqrt{\alpha} - 1)}{1 + x_1}$$

$$= \frac{(\sqrt{\alpha} - 1)(\sqrt{\alpha} - x_1)}{1 + x_1} < 0$$

Suppose it is true for n = k i.e. $x_{2k} < \sqrt{\alpha}$. Consider n = k + 1

$$x_{2k+1} - \sqrt{\alpha} = \frac{(\sqrt{\alpha} - 1)(\sqrt{\alpha} - x_{2k})}{1 + x_1} < 0$$

By induction, we are done.

Claim: $x_{2n-1} > \sqrt{\alpha}$.

$$x_3 - \sqrt{\alpha} = \frac{\alpha + x_2 - \sqrt{\alpha} - \sqrt{\alpha}x_2}{1 + x_2}$$

$$= \frac{\sqrt{\alpha}(\sqrt{\alpha} - 1) - x_2(\sqrt{\alpha} - 1)}{1 + x_2}$$

$$= \frac{(\sqrt{\alpha} - 1)(\sqrt{\alpha} - x_2)}{1 + x_2} > 0,$$

since $\sqrt{\alpha} - x_2 > 0$.

By similar argument as above, claim is proven by induction. So every even terms are less than every odd terms.

(a) (b) For $n \ge 1$

$$x_{2n+1} - x_{2n-1} = \frac{\alpha + x_{2n}}{1 + x_{2n}} - x_{2n-1}$$

$$= \frac{\alpha + \frac{\alpha + x_{2n-1}}{1 + x_{2n-1}}}{1 + \frac{\alpha + x_{2n-1}}{1 + x_{2n-1}}} - x_{2n-1}$$

$$= \frac{2\alpha + (\alpha + 1)x_{2n-1}}{1 + \alpha + 2x_{2n-1}} - x_{2n-1}$$

$$= \frac{2\alpha - 2x_{2n-1}^2}{1 + \alpha + 2x_{2n-1}}$$

$$= \frac{2(\alpha - x_{2n-1}^2)}{1 + \alpha + 2x_{2n-1}} < 0$$

since $x_{2n-1} > \sqrt{\alpha}$.

(c)

For all $k, l \geq 1$, this relation holds $0 < x_{2k} < \sqrt{\alpha} < x_{2l-1}$ from above. $\{x_{2n-1}\}$ decreases monotonically and is bounded below by $\sqrt{\alpha}$. By theorem 3.14, $\{x_{2n-1}\}$ converges to some $p \in \mathbb{R}$.

$$p = \lim_{l \to \infty} x_{2l-1} = \lim_{l \to \infty} \frac{2\alpha + (\alpha + 1)x_{2l-3}}{1 + \alpha + 2x_{2l-3}}$$
$$= \frac{2\alpha + (\alpha + 1)p}{1 + \alpha + 2p}$$

$$\implies p^2 = \alpha$$

or $p = \sqrt{\alpha}$ since $p \ge \sqrt{\alpha} > 0$. If $p < \sqrt{\alpha}$, $\exists x_{2l-1} \in B_{\sqrt{\alpha}-p}(p) \setminus \{p\}$, so $x_{2l-1} < p$ $\sqrt{\alpha}$, contradicting $x_{2l-1} > \sqrt{\alpha}$ for all l. Thus, $\lim_{l \to \infty} x_{2l-1} = \sqrt{\alpha}$. Similarly repeat the same argument above we conclude $\lim_{k\to\infty} x_{2k} = \sqrt{\alpha}$. So for any $\epsilon > 0$, $\exists N_1, N_2$ such that $\forall l \geq N_1$, and $\forall k \geq N_2$

$$\implies d(x_{2k}, \sqrt{\alpha}) < \epsilon \text{ and } d(x_{2l-1}, \sqrt{\alpha}) < \epsilon$$

Take $N = max\{N_1, N_2\}$ then for any $n \ge N$

$$d(x_n, \sqrt{\alpha}) < \epsilon.$$

19.

Let $a = \{\alpha_n\}$ where $a_n \in \{0, 2\}$ and $x(a) = \sum \frac{\alpha_n}{3^n}$. Recall that the Cantor Set was defined as $C = \bigcap C_n$ where $C_n = \left(\frac{1}{3}C_{n-1}\right) \cup$ $\left(\frac{1}{3}C_{n-1} + \frac{2}{3}\right)$ and $C_0 = [0, 1]$.

Observe that under normal ternary expasion in base three i.e. $a_i \in \{0,1,2\}$, there could be two sequences representing the same point in [0,1], namely 0.10200000... and 0.10122222... Other than these cases, ternary expansion of $x \in [0,1]$ is unique.

Need to show the map $\{0,2\}^{\mathbb{N}} \to C$ is bijective.

 $x \in C_1 \iff \alpha_1 = 0 \lor \alpha_1 = 2$ in the ternary expasion in base three of xsince it is of the form $\frac{1}{3}y + \frac{2}{3}$ for some $y \in [0,1]$. Inductively, $x \in C_n \iff$ $\alpha_k = 0 \vee \alpha_k = 2$ in the ternary expasion in base three of x for $1 \leq k \leq n$.

 \implies ternary expansions in base three where every digit is either 0 or 2 belong to C_n for every n, hence give an element of C. \Longrightarrow under the ternary expansion, the map is onto.

If x has two different ternary expansions, let n be the first digit they differ then either $a_k = 0 \ \forall k > n$ or $a_k = 2 \ \forall k > n$. One of the two ternary expansion must have $a_n = 1$, the other must have $a_n = 0$ or 2. For example, $0.20\underline{2}000...$ and $0.20\underline{1}222...$ or $0.20\underline{1}000...$ and $0.20\underline{0}2222...$ But then in either case there is only one expansion that has $a_k \neq 1 \ \forall k$, thus the map is injective.

20.

Sol1:

Suppose not, then

Case 1: the set of subsequential limit is empty, which is not true by assumption.

Case 2: the set of subsequential limit contains at least one other point than p. In other words, $\exists p_{n_k} \to p' \neq p$. Then given $\epsilon > 0$,

 $\exists N_1 \text{ such that } \forall n_i \geq N_1, \ d(p_{n_i}, p) < \frac{\epsilon}{2} \text{ and }$

 $\exists N_2 \text{ such that } \forall n_k \geq N_2, \ d(p_{n_k}, p') < \frac{\epsilon}{2}.$

Take $N = max\{N_1, N_2\}$ then $\forall n_i, n_k \geq N$ we have:

$$d(p_{n_i}, p_{n_k}) \le d(p_{n_i}, p) + d(p, p') + d(p_{n_k}, p')$$

$$< \epsilon + d(p, p')$$

Since ϵ is arbitrary and $0 \neq d(p, p')$ is some constant, we can conclude that $d(p_{n_i}, p_{n_k}) \to d(p, p')$.

But then if we let $\epsilon = \frac{d(p,p')}{2}$, then $\not\exists N'$ such that $\forall m,n \geq N',\ d(p_n,p_m) < \epsilon$, which means $\{p_n\}$ is not Cauchy, contradicting our assumption. Sol2:

 $\{p_n\}$ is Cauchy then $\forall \epsilon > 0$, $\exists N_1 \in \mathbb{N}$ such that $m, n \geq N_1 \implies d(p_n, p_m) < \frac{\epsilon}{2}$. On the other hand, since $\{p_{n_i}\} \to p$, $\exists N_2 \in \mathbb{N}$ such that $\forall n_i \geq N_2 \implies d(p_{n_i}, p) < \frac{\epsilon}{2}$.

Take $N = max\{N_1, N_2\}$ then when $n, n_i \ge N$

$$d(p_n, p) \le d(p_n, p_{n_i}) + d(p_{n_i}, p) < \epsilon.$$

Therefore, $p_n \to p$.

21

Since each $E_n \neq \emptyset$, define $\{p_n\}$ in X as choosing $p_n \in E_n$ for every n.

Given $\epsilon > 0$, $\lim diam E_n = 0 \implies \exists N \in \mathbb{N}$ such that for $n \geq N$, $diam E_n < \epsilon$. But then for $m \geq n \geq N$, $p_m \in E_m \subset E_N$ and $p_n \in E_n \subset E_N$, so $d(p_m, p_n) \leq diam E_N < \epsilon$. Hence $\{p_n\}$ is Cauchy.

X is complete $\implies \{p_n\}$ converges to some p in X. Since $E_n \supset E_{n+1}$, the sequence $\{p_n\} \in E_n$ and therefore $p \in E_n$, since E_n is closed.

Suppose $p \notin \bigcap E_n$, $\exists N' \in \mathbb{N}$ such that $p \notin E_{N'}$, $p \in E_{N'}^c$, which is open since $E_{N'}$ is closed. Then

 $\exists r > 0$, such that $B_r(p) \setminus \{p\} \cap E_{N'} = \emptyset$, which means $\exists r > 0$, $\forall n \geq N' \Longrightarrow d(p, p_n) \geq r$ since $p_n \in E_n \subset E_{N'}$ for all $n \geq N'$, or there could only possibly be finite number of p_n 's $\in B_r(p) \setminus \{p\}$ for n < N', contradicting the fact that $\{p_n\} \to p$.

So $\bigcap E_n \neq \emptyset$.

Suppose there are at least two points in $\bigcap E_n$, then $\lim diam \bigcap E_n > 0$ and the two points are also in E_n for any n. We have $\bigcap E_n \subset E_n$ for all n.

 $\implies diam \bigcap E_n \leq diam E_n$. But $\lim diam E_n = 0 \implies diam \bigcap E_n = 0$, contradiction.

22

Since $X \neq \emptyset$, fix a point $x_0 \in X$. We know G_1 is dense in X, and making use of the fact that intersection of finite number of open sets is open, we have $B_1(x_0) \cap G_1$ is non-empty and open.

Therefore, we can find x_1 and $0 < r_1 < 1$ such that $E_1 = \overline{B_{r_1}(x_1)} \subset (B_1(x_0) \cap G_1)$, i.e. we can take $r_1 = \frac{1}{2}min\{r, 1\}$ where $B_{r_1}(x_1) \subset (B_1(x_0) \cap G_1)$.

Having chosen x_{n-1} and r_{n-1} , we know G_n is dense in X, $B_{r_{n-1}}(x_{n-1}) \cap G_n$ is non-empty and open. We can find x_n and $0 < r_n < \frac{1}{n}$ such that $E_n = \overline{B_{r_n}(x_n)} \subset (B_{r_{n-1}}(x_{n-1}) \cap G_n)$.

Then by induction, this process generates a sequence $\{E_n\}$ where for each n, E_n is non-empty, closed (proof below) and bounded. Also by construction $E_n \supset E_{n+1}$ and thus $diam\ E_n \le 2r_n < \frac{2}{n}$.

 $\implies \lim diam E_n = 0.$

By Exercise 3.21, $\bigcap G_n \supset \bigcap E_n \neq \emptyset$.

In addition, if $\bigcap E_n = \{x\}$, then $x \in B_1(x_0)$.

In fact, since x_0 is arbitrary, either $x_0 \in \bigcap G_n$ or $x_0 \notin \bigcap G_n$. If the latter is the case, given any $\epsilon > 0$, we can generate a Cauchy sequence from $\{G_n\}$ such that it converges to some x within ϵ radius of x_0 and $x \in \bigcap G_n$ with the above procedure. In other words, $x_0 \in (\bigcap G_n)'$, i.e. $\bigcap G_n$ is dense in X.

<u>Claim</u>: A closed ball is closed in a metric space X.

Let $B = \{y \in X : d(x,y) \le r, r > 0\}$. For any $p \in X \setminus B$, we have $p \notin B$, so d(p,x) > r. Let r' = d(p,x) - r > 0. Then for any $q \in B_{r'}(p)$,

$$d(x, p) \le d(x, q) + d(q, p) \implies d(x, q) \ge d(x, p) - d(p, q) > r$$

Hence, $B_{r'}(p) \subset X \setminus B$, and $X \setminus B$ is open $\implies B$ is closed. 14(ab).

For any $\epsilon > 0$, $\exists N_1$ such that $\forall n \geq N_1$, $|s_n - s| < \epsilon$. On the other hand, by A.P. $\exists N_2$ such that

$$|s_0 + s_1 + \dots + s_{N_1 - 1} - N_1 s| < N_2 \epsilon$$

So, take $n \ge max\{N_1, N_2\}$ we have $n + 1 > N_1 \wedge n + 1 > N_2$ and

$$\begin{split} |\sigma_n - s| &= \frac{|s_0 + s_1 + \ldots + s_n - (n+1)s|}{n+1} \\ &\leq \frac{|s_0 + s_1 + \ldots + s_{N_1 - 1} - N_1 s|}{n+1} + \frac{|s_{N_1} - s + s_{N_1 + 1} - s + \ldots + s_n - s|}{n+1} \\ &< \frac{|s_0 + s_1 + \ldots + s_{N_1 - 1} - N_1 s|}{N_2} + \frac{|s_{N_1} - s + s_{N_1 + 1} - s + \ldots + s_n - s|}{n+1} \\ &< \epsilon + \frac{n - N_1 + 1}{n+1} \epsilon \\ &= \epsilon + \left(1 - \frac{N_1}{n+1}\right) \epsilon \\ &< 2\epsilon \end{split}$$

Since ϵ is arbitrary thus $\lim_{n\to\infty} \sigma_n = s$.

(b)

Let $s_n = (-1)^n$ for n = 0, 1, 2, ... The subsequence with odd n converges to -1and the subsequence with even n converges to 1 so $\{s_n\}$ does not converge. $\{\sigma_n\} = \{0, -\frac{1}{2}, 0, -\frac{1}{4}, 0, -\frac{1}{6}, ...\} \text{ and } \sigma_n \to 0.$

 $\{p_n\}$ and $\{q_n\}$ are Cauchy sequences so given $\epsilon>0, \exists N_1,N_2$ such that for all $m \geq n \geq N = \max\{N_1, N_2\}$

$$\implies d(p_n, p_m) < \frac{\epsilon}{2} \text{ and } d(q_n, q_m) < \frac{\epsilon}{2}$$

Using triangle inequality,

$$d(p_n, q_n) \le d(p_n, p_m) + d(p_m, q_m) + d(q_m, q_n)$$

$$\implies d(p_n, q_n) - d(p_m, q_m) \le d(p_n, p_m) + d(q_m, q_n) < \epsilon$$

Similarly,

$$d(p_m,q_m) \le d(p_m,p_n) + d(p_n,q_n) + d(q_n,q_m)$$
 $\implies d(p_m,q_m) - d(p_n,q_n) \le d(p_m,p_n) + d(q_n,q_m) < \epsilon$

So $|d(p_m,q_m)-d(p_n,q_n)|<\epsilon$ and thus, $\{d(p_n,q_n)\}$ is Cauchy in \mathbb{R}^1 , which is complete. Hence $\{d(p_n, q_n)\}$ converges.