Chapitre 5 : Conduction thermique

I Loi de Fourier

A) Enoncé

Hypothèses:

- Milieu isotrope
- Equilibre thermique local $(T(\vec{r},t))$ est défini)

$$\bullet$$
 $() \rightarrow d\vec{S}$

$$\delta^2 Q = \vec{j}_Q \cdot d\vec{S}dt \,, \,\, \forall d\vec{S}$$

$$d\phi = \vec{j}_{Q} \cdot d\vec{S}$$

Loi de Fourier:

 $\vec{j}_Q = -\lambda \vec{\nabla} T$; λ : scalaire positif, conductivité thermique du milieu.

 $\vec{j}_{\mathcal{Q}}$: densité de flux de chaleur par conduction (pas de rayonnement ni diffusion)

B) Discussion

• Loi phénoménologique :

La loi de Fourier est basée sur la description des phénomènes

- Satisfaisante physiquement :
- \vec{j}_O est opposé à $\vec{\nabla} T$
- Plus ∇T est important, plus le flux l'est.
- Phénomène irréversible :

La loi de Fourier traduit un phénomène irréversible.

• Loi linéaire :

La loi correspond à un développement limité du premier ordre ; on peut donc observer des écarts pour $\vec{\nabla} T$ très grand.

- λ dépend :
- Du matériau
- De la température
- Plus λ est élevé,
- Plus $\vec{j}_{\scriptscriptstyle O}$ est important à $\vec{\nabla} T$ fixé
- Plus $\vec{\nabla} T$ est faible à $\vec{j}_{\mathcal{Q}}$ fixé.

- Plus T s'uniformise rapidement si le système est isolé.
- Limites:
- Le matériau doit être isotrope.

Pour un matériau non isotrope, λ dépend des directions privilégiées. Par exemple, pour le bois, λ est plus grand dans le sens des fibres que dans le sens orthogonal aux fibres. Pour une autre direction, le flux aura une direction différente de celle de ∇T

- On doit être au voisinage de l'équilibre local : $|\vec{\nabla}T|$ « pas trop grand ».
- Il ne doit pas y avoir d'autres gradients que le gradient de température.

C) Conductivités thermiques

$$\vec{j}_{Q}: \mathbf{W}.\mathbf{m}^{-2}$$

$$\vec{\nabla} T: \mathbf{K}.\mathbf{m}^{-1}$$

1) Gaz

- $\lambda \sim 10^{-2} \, \text{W.m}^{-1} . \text{K}^{-1}$
- λ augmente quand T augmente.
- λ est indépendant de P pour P < 10bar
- λ augmente quand M (masse molaire) diminue.

A 200K	$\lambda_{\rm H_2} = 0.128 \text{W.m}^{-1}.\text{K}^{-1}$	$\lambda_{\rm O_2} = 0.018 \text{W.m}^{-1} \cdot \text{K}^{-1}$	$\lambda_{\rm CO_2} = 0.009 \mathrm{W.m^{-1}.K^{-1}}$
A 300K	$\lambda_{\rm H_2} = 0.177 \mathrm{W.m^{-1}.K^{-1}}$	$\lambda_{O_2} = 0.027 \mathrm{W.m^{-1}.K^{-1}}$	$\lambda_{\text{CO}_2} = 0.017 \text{W.m}^{-1}.\text{K}^{-1}$

• Les gaz sont de meilleurs isolants que les liquides ou les solides.

Problème : le gaz est un très bon convecteur ; il ne peut donc pas être utilisé pour l'isolation, à moins de l'empêcher de circuler (avec de la laine de verre).

2) Les liquides

$$\begin{split} \lambda \sim 0,\! 1 &\ \text{à} \ 1 W.m^{-1}.K^{-1} \\ H_2O &\ : \ \lambda_{20^\circ} = 0,\! 60 W.m^{-1}.K^{-1} \end{split}$$

3) Les solides

- Conduction thermique électronique
- Mécanisme :

Modèle du gaz d'électron (Drude), valable pour une conduction thermique ou électrique :

Pour un matériau conducteur, les électrons libres circulent comme dans un « cylindre », de la même façon que des gaz dans une enceinte.

- Loi de Wiedemann–Franz pour un métal :

$$\frac{\lambda}{\sigma} = LT \ (\sigma : \text{conductivit\'e \'electrique}), \text{ avec } L = \frac{\pi^2}{3} \left(\frac{k_B}{e}\right)^2$$

(Formule théorique, très proche des valeurs expérimentales)

Le rapport est donc indépendant du matériau

- A 300K:

$$\lambda_{C_{11}} \sim 400 \text{W.m}^{-1}.\text{K}^{-1}$$

$$\lambda_{A1} \sim 237 W.m^{-1}.K^{-1}$$

$$\lambda_{Acier} \sim 10W.m^{-1}.K^{-1}$$

- Conduction thermique phonique:
- Mécanisme :

On suppose qu'il peut y avoir des vibrations et des interactions.

Si l'une des particules se met à vibrer à cause d'un flux thermique, elle va transférer une partie de son énergie de cette façon (c'est le même principe que pour le son)

- Ordre de grandeur :

Carbone diamant, très bon isolant électrique, mais $\lambda \sim 2000 W.m^{-1}.K^{-1}$ Pour le verre, $\lambda \sim 1W.m^{-1}.K^{-1}$, et pour le ciment $\lambda \sim 0.1W.m^{-1}.K^{-1}$

II Flux thermique à une paroi

A) Transfert convectif dans les fluides

1) Convection forcée

La convection est imposée par un opérateur.

Exemple : sèche-cheveux, ventilateur (ici par les hélices)

2) Convection naturelle

La convection naturelle est moins efficace que la convection forcée.

3) Convection mixte

C'est une convection partiellement forcée et naturelle.

B) Flux conducto-convectif à une paroi

 \vec{j}_{o} : flux conductif et convectif.

 $\vec{j}_Q = j_Q \vec{u}_x$ (les autres composantes ne servent pas ici)

En x = 0:

- Continuité de la température $T(x=0^-) = T(x=0^+) = T_1$
- Continuité de \vec{j}_Q $\vec{j}_Q(x=0^-) = \vec{j}_Q(x=0^+)$. En particulier pas de frottements au niveau de la paroi.

1) Dans le solide

$$j_{Q}(x=0^{-}) = -\lambda_{S} \left(\frac{\partial T}{\partial x}\right)_{0^{-}}$$
 d'après la loi de Fourier.

2) Dans le fluide

Pour un écoulement :

Le fluide étant plus ou moins visqueux va « coller » à la paroi et ne se déplacera donc pas lorsqu'il sera à proximité)

(On peut aussi avoir $T_1 < T_f$)

$$j_{\mathcal{Q}}(x=0^+) = -\lambda_f \left(\frac{\partial T}{\partial x}\right)_{0^+} = -\lambda_f \frac{T_f - T_1}{\xi} = h(T_1 - T_f) \text{ où } h = \frac{\lambda_f}{\xi}$$

Ainsi,
$$j_Q = h(T_1 - T_f)$$
: Loi de Newton.
Et $-\lambda_s \left(\frac{\partial T}{\partial x}\right)_{0^-} = h(T_1 - T_f)$

Et
$$-\lambda_{S} \left(\frac{\partial T}{\partial x} \right)_{0^{-}} = h(T_{1} - T_{f})$$

3) Coefficient de transfert conducto-convectif h.

- unité : W.m⁻².K⁻¹
- Plus la conduction est importante, plus λ_f augmente Plus la convection est importante, plus ξ diminue.

Et dans les deux cas *h* augmente.

- On détermine *h* expérimentalement.
- h est indépendant de la paroi, mais dépend de la nature du fluide et de l'écoulement.
- Convection naturelle:
- Gaz: $h \sim 5 \rightarrow 10 \text{W.m}^{-2} \cdot \text{K}^{-1}$
- Eau: $h \sim 100 \rightarrow 1000 \text{ W.m}^{-2} \text{.K}^{-1}$ Convection forcée:
- Gaz: $h \sim 10 \rightarrow 300 \text{ W.m}^{-2} \text{.K}^{-1}$
- Eau: $h \sim 300 \rightarrow 12000 \text{ W.m}^{-2}.\text{K}^{-1}$

Cas du sodium liquide (utilisé dans les centrales nucléaires) :

Pour une convection forcée, $h \sim 6000 \rightarrow 110000 \text{W.m}^{-2}.\text{K}^{-1}$

III Distribution de température dans les solides

On veut déterminer $T(\vec{r},t)$ dans un solide.

T satisfait une équation aux dérivées partielles (bilan énergétique) et des conditions aux limites, donc T pourra être déterminé.

A) Bilan d'énergie

1) Hypothèses de travail

On suppose le système S fermé, et la pression uniforme et stationnaire égale à P_0 .

2) Premier principe

Expression globale:

Pour une surface fermée Σ

On suppose que $\Delta E_{c \text{ macro}} = 0$, $\Delta E_{n \text{ macro}} = 0$

Ainsi,
$$\Delta U = Q + \underbrace{W_p}_{-P\Delta V} + W'$$
. Donc $\Delta H = Q + W'$

On a alors
$$\frac{dH}{dt} = - \iint_{\Sigma} \vec{j}_H \cdot d\vec{S} + \iiint p d\tau = - \iint_{\Sigma} \vec{j}_Q \cdot d\vec{S} + \iiint p d\tau$$

(où p est la puissance volumique de W')

Expression locale:

$$\frac{dH}{dt} = \frac{d}{dt} \iiint_{v} h d\tau \text{ où } h \text{ est l'enthalpie par unité de volume } (h(\vec{r}, t))$$

=
$$\iiint_v \frac{\partial h}{\partial t} d\tau$$
 (on néglige les variations de volume, qui sont faibles pour

un solide)

Donc
$$\frac{\partial h}{\partial t} + \vec{\nabla} \cdot \vec{j}_{\mathcal{Q}} = p$$

Par comparaison avec
$$\frac{\partial g}{\partial t} + \vec{\nabla} \cdot \vec{j}_G = \sigma_G$$
, on a $\vec{j}_G = \vec{j}_H$ et $p = \sigma_G$.

Le volume et la pression n'ont pas d'influence très importante sur un solide. On peut donc écrire dU = cdT et dH = dU (et donc remplacer h par u dans l'égalité obtenue)

B) Equations de la température

• Terme
$$\vec{\nabla} \cdot \vec{j}_{\mathcal{Q}}$$
 :

$$\vec{\nabla} \cdot \vec{j}_O = \vec{\nabla} \cdot (-\lambda \vec{\nabla} T) = -\lambda \vec{\nabla}^2 T - \vec{\nabla} \lambda \cdot \vec{\nabla} T$$

Si une grandeur Y varie avec une distance caractéristique l_Y , on peut considérer

que
$$\frac{dY}{dx} \sim \frac{Y}{l_y}$$
, et $\frac{d^2Y}{dx^2} \sim \frac{Y}{(l_y)^2}$:

Ainsi, dans l'équation précédente :

$$\lambda \vec{\nabla}^2 T \sim \lambda \frac{T}{(l_T)^2} \text{ et } \vec{\nabla} \lambda \cdot \vec{\nabla} T \sim \frac{\lambda}{l_\lambda} \frac{T}{l_T}$$

On supposera dans la suite que $l_{\lambda} >> l_{T}$ (c'est-à-dire que la température varie plus que λ)

Ainsi,
$$\vec{\nabla} \cdot \vec{j}_Q = -\lambda \vec{\nabla}^2 T$$
.

• Terme enthalpique $\frac{\partial h}{\partial t}$

$$d(\delta H) = \delta c_p dT$$
, et $\delta c_p = c_{p,m} \rho \delta \tau$

Donc
$$d(\delta H) = c_{p,m} \rho \delta \tau dT$$

Donc
$$d(\underbrace{\frac{\delta H}{\delta \tau}}) = c_{p,m} \rho dT$$
, soit $dh = c_{p,m} \rho dT$, ou $\frac{\partial h}{\partial t} = c_{p,m} \rho \frac{\partial T}{\partial t}$

• Equation de la température :

- Cas général :

$$\rho c_{p,m} \frac{\partial T}{\partial t} - \lambda \vec{\nabla}^2 T = p$$

Cas d'une réaction chimique :

H dépend en plus de l'avancement de la réaction.

Donc
$$dH = \underbrace{\frac{\partial H}{\partial T}}_{c_p} dT + \underbrace{\frac{\partial H}{\partial \xi}}_{\Delta_r H^0} d\xi = c_p dT + \Delta_r H^0 d\xi$$

Donc $\frac{\partial H}{\partial t} = \rho c_{p,m} \frac{\partial T}{\partial t} + \Delta_r H^0 \frac{\partial x}{\partial t}$ où x est l'avancement par unité de volume.

$$\frac{\partial x}{\partial t} = \frac{1}{V} \frac{\partial \xi}{\partial t} = v(\vec{r}, t) .$$

$$\frac{\partial x}{\partial t} = \frac{1}{V} \frac{\partial \xi}{\partial t} = v(\vec{r}, t).$$
D'où
$$\rho c_{p,m} \frac{\partial T}{\partial t} - \lambda \vec{\nabla}^2 T = -\Delta_r H^0 v + p$$

- Equation « de la chaleur » (de Fourier) :

C'est le cas où p = 0:

$$\frac{\partial T}{\partial t} = \frac{\lambda}{\rho . c_{p,m}} \vec{\nabla}^2 T, \text{ soit } \frac{\partial T}{\partial t} = D \vec{\nabla}^2 T \text{ où } D = \frac{\lambda}{\rho . c_{p,m}} : \text{ diffusivit\'e thermique.}$$

$$[D] = L^2 T^{-1} (m^2 s^{-1})$$

• Conditions aux limites :

On suppose $p(\vec{r},t)$ connu

Grandeurs imposées à une surface :

Température $T = T_0(\vec{r}, t)$ (Dirichlet)

Ou
$$\vec{j}_O \cdot \vec{n} = j_0(\vec{r}, t)$$
 (Neumann)

- Relations de continuité à une surface :

Solide/Solide:

La température doit être continue, ainsi que $\vec{j}_Q \cdot \vec{n}$ ($\lambda_1 \left(\frac{\partial T}{\partial n} \right) = \lambda_2 \left(\frac{\partial T}{\partial n} \right)$)

Solide/Fluide:

$$T_{f}$$

$$-\lambda_{s} \left(\frac{\partial T}{\partial n} \right)_{s} = h(T_{1} - T_{f})$$

- Conditions initiales $T(\vec{r}, t_0)$

• Cas du régime permanent

- Equation de Poisson :

On est en régime permanent, c'est-à-dire $\frac{\partial}{\partial t} = 0$.

Donc
$$-\lambda \vec{\nabla}^2 T = p$$
, soit $\vec{\nabla}^2 T = -\frac{p}{\lambda}(\vec{r})$

- Equation de Laplace :

On est en régime permanent et p = 0.

Ainsi,
$$\vec{\nabla}^2 T = 0$$
.

C) Problèmes unidimensionnels

On suppose ici que \vec{r} ne dépend que d'une seule coordonnée.

1) Problème unidirectionnel

On a alors $\vec{j}_O = j_O(x, t)\vec{u}_x$

Bilan enthalpique:

$$d(\delta H) = j_O(x,t).S.dt - j_O(x + \delta x,t).S.dt + p.S.\delta x.dt$$

Or,
$$j_{Q}(x + \delta x, t) - j_{Q}(x, t) = \frac{\partial j_{Q}}{\partial x} \delta x = -\lambda \frac{\partial^{2} T}{\partial x^{2}} \delta x \text{ (car } j_{Q} = -\lambda \frac{\partial T}{\partial x})$$

Donc
$$d(\delta H) = \left(+\lambda \frac{\partial^2 T}{\partial x^2} + p \right) . S. \delta x. dt$$

D'autre part,
$$d(\delta H) = \rho c_{p,m} S \delta x dt \frac{\partial T}{\partial t}$$

Done
$$\lambda \frac{\partial^2 T}{\partial x^2} + p = \rho . c_{p,m} \frac{\partial T}{\partial t}$$

Application:

$$\frac{\partial}{\partial t} = 0$$

$$p = 0$$

$$\frac{\partial^2 T}{\partial x^2} = 0$$
. Donc $T = ax + b$ (on retrouve la linéarité de la température

pour une barre placée entre deux sources de températures différentes)

2) Problème à symétrie cylindrique de révolution

Rappel : un cylindre en mathématiques est un ensemble de droites parallèles passant par un contour fermé, celui-ci n'étant pas forcément un cercle.

Un cylindre de révolution est un cylindre engendré par un cercle.

On suppose que $T(\vec{r},t) = T(r,\theta,t,t) = T(r,t)$; ainsi on a une symétrie cylindrique (indépendant de z) de révolution (indépendant de θ)

On a aussi
$$\vec{j}_Q = j_Q(r,t)\vec{u}_r = -\lambda \frac{\partial T}{\partial t}\vec{u}_r$$
.

$$d(\delta H) = j_{Q}(r,t) \times 2\pi . r. ldt - j_{Q}(r + \delta r,t) \times 2\pi . (r + \delta r). ldt + p \times \underbrace{2\pi . r}_{\delta r} \underbrace{dt}$$

Or,
$$j_{Q}(r + \delta r, t) \cdot (r + \delta r) - j_{Q}(r, t) \cdot r = \frac{\partial (r \times j_{Q})}{\partial r} \delta r = -\frac{\partial}{\partial r} \left(r \lambda \frac{\partial T}{\partial r} \right) \delta r$$

Donc
$$d(\delta H) = \left(\frac{1}{r} \frac{\partial}{\partial r} \left(r\lambda \frac{\partial T}{\partial r}\right) + p\right) \times 2\pi r \delta r.ldt$$

D'autre part,
$$d(\delta H) = \delta c_p dT = \rho . c_{p,m} \underbrace{2\pi . r. \delta r. l}_{\delta \tau} \frac{\partial T}{\partial t} dt$$

Donc
$$\rho.c_{p,m} \frac{\partial T}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} \left(r \lambda \frac{\partial T}{\partial r} \right) + p = \lambda \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) + p$$

(On reconnaît le Laplacien de T en coordonnées cylindriques)

3) Problème à symétrie sphérique

Ici, T = T(r,t) (où r est le r des coordonnées sphériques)

Et
$$\vec{j}_Q = -\lambda \frac{\partial T}{\partial r} \vec{u}_r$$

De la même façon que précédemment, en considérant cette fois le volume entre deux sphères de rayons r et r+dr et de même centre, on obtiendra :

$$\rho.c_{p,m}\frac{\partial T}{\partial t} = \lambda \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial T}{\partial r}\right) + p$$

Et on reconnaît encore le Laplacien, mais en coordonnées sphériques.

D) Transferts linéaires en régime permanent

1) Analogie électrocinétique

• Principe:

Loi de Fourier :
$$\vec{j}_O = -\lambda \vec{\nabla} T$$

Loi d'Ohm :
$$\vec{j}_q = -\sigma \vec{\nabla} v \ (\vec{j}_q = \sigma \vec{E})$$

$$\vec{j}_{\varrho}$$
 \vec{j}_{q} V

$$\phi = \iiint \vec{j}_{Q} \cdot d\vec{S} \quad I = \iiint \vec{j}_{q} \cdot d\vec{S}$$

Intérêt de cette analogie : en régime permanent, les lois de l'électrocinétique sont simples.

Modélisation:

$$T_A - T_B = R_{th} \phi$$

$$T_{A} \xrightarrow{R_{h}} T_{B}$$

Avec plusieurs parois:

On a $T_A - T_B = (R_{th1} + R_{th2} + R_{th3})\phi$

Modélisation :
$$T_A R_{th1} R_{th2} R_{th3} T_B$$

Lorsque plusieurs tiges sont en parallèles :

Modélisation:

- Conditions de validité :
- Loi de l'électrocinétique :

En régime permanent :

- (1) $\vec{j} = \sigma \vec{E} = -\sigma \vec{\nabla} v$, et σ est indépendant de v.
- (2) $\vec{\nabla} \cdot \vec{j}_q = 0$ (flux conservatif)

On a en effet:

$$i_2$$
 i_1
 i_3
 i_1

 $\frac{dq}{dt} = -\oint_{\Sigma} \vec{j}_q \cdot d\vec{S}$ (car la charge est conservative)

Soit $\frac{d}{dt} \iiint \rho d\tau = - \oint_{\Sigma} \vec{j}_q \cdot d\vec{S}$. Ou $\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot \vec{j}_q = 0$, et comme on est en

régime permanent, $\frac{\partial \rho}{\partial t} = 0$, d'où $\vec{\nabla} \cdot \vec{j}_q = 0$

- Transposition à la thermique :

Pour que la modélisation soit valable, on doit avoir :

- (1) $\vec{j}_o = -\lambda \vec{\nabla} T$ et λ indépendant de la température.
- (2) $\vec{\nabla} \cdot \vec{j}_Q = 0$.

De plus, comme on a $\frac{\partial h}{\partial t} + \vec{\nabla} \cdot \vec{j}_{Q} = p$, il faut aussi être en régime permanent et il ne doit pas y avoir de source enthalpique.

2) Résistance thermique

• Cas de la propagation unidirectionnelle :

$$\xrightarrow{S} \xrightarrow{X}$$

On suppose que T = T(x).

On a
$$\vec{j}_Q = -\lambda \frac{dT}{dx} \vec{u}_x$$
.

Comme $\vec{\nabla} \cdot \vec{j}_{Q} = 0$, soit $\frac{\partial j_{Q}}{\partial x} = 0$, j_{Q} est alors indépendant de x.

Donc
$$\phi = \oiint \vec{j}_{Q} \cdot d\vec{S} = j_{Q}S = -\lambda \frac{dT}{dx}S$$

Ainsi,
$$-dT = \frac{1}{\lambda S} \phi dx$$
, donc $T_A - T_B = \frac{l}{\lambda S} \phi$, et $R_{th} = \frac{l}{\lambda S}$

Avec $\lambda = 1$ S.I., l = 0.2m et S = 10m² (correspond à un mur d'habitation) On trouve $R_{th} = 2.10^{-2}$ K.W⁻¹ et $\phi = 1000$ W.

On aura
$$R'_{th} = \frac{1}{S} \left(\frac{l_1}{\lambda_1} + \frac{l_2}{\lambda_2} + \frac{l_3}{\lambda_1} \right)$$

Si $\lambda_2 \ll \lambda_1$ (c'est-à-dire si le mur du milieu est isolant), on aura $R'_{th} >> R_{th}$

- Cas général :
- Résistance d'un tube de courant élémentaire :

On travaille ici avec les conductances, sinon on obtient une résistance infiniment grande.

$$\delta \phi = j_Q \delta S = -\lambda \frac{\partial T}{\partial s} \delta S = -\lambda \frac{dT}{ds} \delta S$$
 (s désigne l'abscisse curviligne)

Donc
$$-dT = \frac{1}{\lambda} \frac{ds}{\delta S} \delta \phi$$
, soit $T_A - T_B = \left(\int_A^B \frac{1}{\lambda(s) \delta S(s)} ds \right) \delta \phi$

D'où
$$d\Gamma_{th} = \frac{1}{\int_A^B \frac{1}{\lambda(s)\delta S(s)} ds}$$
 (conductance thermique)

Résistance d'un tube fini :

3) Exemples

On suppose que le flux de chaleur est uniquement radial.

Plus le tube est long, plus il y aura des fuites ; la résistance thermique devra donc varier en $\frac{1}{7}$. On néglige ici les effets de bords :

La température dépend ainsi uniquement de r, et $\vec{j}_Q = -\lambda \frac{dT}{dr} \vec{u}_r$.

Pour $r \in [R_1, R_2]$:

$$\phi = \iint \vec{j}_Q \cdot d\vec{S} = j_Q \times 2\pi r \cdot l = -\lambda \frac{dT}{dr} \times 2\pi r \cdot l$$

Donc
$$-dT = \frac{\phi}{2\pi l \lambda} \frac{dr}{r}$$
, soit $T_A - T_B = \frac{\phi}{2\pi l \lambda} \ln \frac{R_1}{R_2}$, d'où $R_{th} = \frac{1}{2\pi l \lambda} \ln \frac{R_1}{R_2}$.

Résistance de transfert conducto-convectif:

$$T_i = 20^{\circ}\text{C}$$
 $T_e = 0^{\circ}\text{C}$
 $T_B = 0^{\circ}\text{C}$

$$T_i - T_e = \underbrace{T_i - T_A}_{=\phi\frac{1}{h_i S}} + \underbrace{T_A - T_B}_{R_{ih}\phi} + \underbrace{T_B - T_e}_{=\phi\frac{1}{h_e S}}$$

Où *S* est la surface de contact (loi de Newton) Modélisation :

$$T_{i} \xrightarrow{T_{A}} T_{A} \xrightarrow{T_{B}} T_{e}$$

$$R_{th,i} = \frac{1}{h.S} R_{th} R_{th,e}$$

IV Compléments

A) Isolation d'un fil électrique

On suppose \vec{j} uniforme (ainsi, $I = \pi R_1^2 j$)

On a
$$T = T(r)$$
, $\vec{j}_{O} = j_{O}(r)\vec{u}_{r}$.

• Bilan:

Avec $r < R_1$:

$$j_{o}(r) \times 2\pi r \cdot l - j_{o}(r + dr) \times 2\pi \cdot (r + dr) \cdot l + p \times 2\pi r \cdot dr \cdot l = 0$$

Donc
$$j_O(r)r - j_O(r+dr) \times (r+dr) + p.dr = 0$$

Soit
$$-\frac{d(r.j_Q)}{dr} + pr = 0$$
, ou $\frac{d}{dr} \left(r.\lambda \frac{dT}{dr} \right) + pr = 0$.

Remarque:

Pour un petit élément, on a :

$$\uparrow_{\vec{j}} \bigcirc \uparrow_{\vec{d}}$$

$$P = R.I^2 = \frac{1}{\sigma} \frac{dl}{dS} \times (jdS)^2 = \frac{j^2}{\sigma} d\tau \text{ avec } d\tau = dl.dS \text{ . Ainsi, } p = \frac{P}{\delta \tau} = \frac{j^2}{\sigma}.$$

En reprenant les égalités précédentes :

On a alors:

$$\frac{d}{dr}\left(r\frac{dT}{dr}\right) = -\frac{p}{\lambda}r$$

Donc $r \frac{dT}{dr} = -\frac{1}{2} \frac{p}{\lambda} r^2 + \text{cte (car } p \text{ est indépendant de } r)$

Soit
$$\frac{dT}{dr} = -\frac{1}{2} \frac{p}{\lambda} r + \frac{\text{cte}}{r}$$

Donc, pour
$$r < R_1$$
: $T(r) = -\frac{1}{4} \frac{p}{\lambda_C} r^2 + A \ln r + B$,

Et, pour $R_1 < r < R_2$ (c'est la même chose avec $\vec{j} = \vec{0}$): $T(r) = A' \ln r + B'$

• Conditions aux limites :

T(r) doit être fini. Donc A = 0.

En
$$r = R_2$$
, $T = T_0$.

En
$$r = R_1$$
, $T(R_1^-) = T(R_1^+)$ et $\vec{j}_{Q}(R_1^-) = \vec{j}_{Q}(R_1^+)$ soit $\lambda_{C} \left(\frac{dT}{dr}\right)_{R_1^-} = \lambda_{g} \left(\frac{dT}{dr}\right)_{R_1^+}$

Ainsi, pour $r < R_1$, on trouve, en remplaçant p par la valeur calculée :

$$T(r) - T_0 = \frac{1}{4} \frac{j^2}{\lambda_C \sigma} R_1^2 \left(1 - \frac{r^2}{R_1^2} \right) - \frac{1}{2} \frac{j^2}{\lambda_\sigma \sigma} R_1^2 \ln \frac{R_1}{R_2}$$

Et pour $R_1 < r < R_2$:

$$T(r) - T_0 = -\frac{1}{2} \frac{j^2}{\lambda_o \sigma} R_1^2 \ln \frac{r}{R_2}$$

• Discussion:

$$\left| \begin{array}{c} T_0 \\ \end{array} \right| T_a$$

Si on donne T_a , h, on a la condition supplémentaire suivante :

$$-\lambda_g \left(\frac{dT}{dx}\right)_{R_2^-} = h(T_0 - T_1)$$

Et on obtient alors comme profil de température :

B) Ailette de refroidissement

Les pertes de la paroi au niveau du contact avec la tige sont remplacées par les pertes sur toute la tige.

Répartition de température :

Bilan sur la tige :

On suppose que T = T(x).

$$\longleftrightarrow$$

On a
$$j_O(x).\pi R^2 - j_O(x + \delta x).\pi R^2 - h(T - T_a).2\pi R \delta x = 0$$

Done
$$\frac{dj_Q}{dx} \delta x = \frac{-2h}{R} (T - T_a) \delta x$$

Soit
$$\lambda \frac{d^2T}{dx^2} = \frac{2h}{R}(T - T_a)$$
.

On pose
$$\theta = T - T_a$$
.

Ainsi,
$$\frac{d^2\theta}{dx^2} - \frac{2h}{R\lambda}\theta = 0$$
.

On pose
$$d = \sqrt{\frac{R\lambda}{2h}}$$
.

On a ainsi $\theta = Ae^{x/d} + Be^{-x/d}$.

Conditions aux limites:

En
$$x = 0$$
, $T = T_0$.

En
$$x = l$$
, $-\lambda \left(\frac{dT}{dx}\right)_{x=l} = h(T_{x=l} - T_a)$.

On trouve alors
$$T - T_a = (T_0 - T_a) \frac{\operatorname{ch} \left(\frac{l - x}{d} + \varphi \right)}{\operatorname{ch} \left(\frac{l}{d} + \varphi \right)}$$
, avec th $\varphi = \frac{hd}{\lambda}$.

Le plus efficace est lorsque $l \sim d$ (lorsque l >> d, une grande partie de la barre ne sert à rien, et lorsque l << d, elle ne sert à rien)

Définition:

Efficacité de l'ailette = $\frac{\text{puissance évacuée avec la tige}}{\text{puissance évacuée sans la tige}}$

Ici,
$$e = \frac{-\lambda \left(\frac{dT}{dx}\right)_{x=0^+}}{h(T_0 - T_a)}$$

C) Onde thermique

• Hypothèses:

$$T \xrightarrow[z \to +\infty]{} T_0$$

En z = 0, $T(z = 0,t) = T_0 + \theta_0 \cos \omega t = T_0 + e^{i\omega t}$ (partie réelle)

Détermination de T(z,t):

- Analyse:
- En un point intérieur, on aura la même pulsation ω .
- A mesure qu'on s'enfonce, il y aura moins de variations autour de T.
- Il y aura une phase en profondeur (il n'y a pas de propagation instantanée)

• Equation « de la chaleur » (on suppose qu'il n'y a pas de source en profondeur) :

$$\frac{\partial T}{\partial t} = D \frac{\partial^2 T}{\partial z^2}$$
 avec $D = \frac{\lambda}{\rho \cdot c}$

• Méthode de résolution :

On commence par chercher une fonction de la forme f(z)g(t):

 $g(t) = e^{i\omega t}$ (à une constante multiplicative près, qu'on « met » dans f)

On cherche ainsi $T = T_0 + f(z)e^{i\omega t}$.

On note
$$\theta = T - T_0$$
. On a toujours $\frac{\partial \theta}{\partial t} = D \frac{\partial^2 \theta}{\partial z^2}$.

Ainsi, après simplification par $e^{i\omega t}$, $i\omega f(z) = D.f''(z)$.

Donc
$$f''(z) - \frac{i\omega}{D} f(z) = 0$$

D'où, avec
$$k^2 = i\frac{\omega}{D}$$
 (soit $k = \pm (1+i)\sqrt{\frac{\omega}{2D}} = \pm \frac{(1+i)}{\delta}$):

$$f(z) = Ae^{(1+i)z/d} + Be^{-(1+i)z/d}$$

• Conditions aux limites :

Lorsque $z \to +\infty$, $\theta \to 0$. Donc A = 0

En
$$z = 0$$
, $\theta = \theta_0 e^{i\omega t}$. Donc $B = \theta_0$

Donc
$$\theta = \theta_0 e^{-z/\delta} \times e^{i(\omega t - z/d)}$$

Soit
$$T = T_0 + \theta_0 e^{-z/\delta} \cos(\omega t - \frac{z}{\delta})$$

- Analyse:
- On admet que c'est l'unique solution possible.
- L'amplitude de variation dépend de la profondeur : « effet de cave »
- Propagation : $\omega t \frac{z}{\delta} = \omega t'$ avec $t' = t \frac{z}{\omega \delta} = t \tau(z)$; on a un décalage de $\tau(z)$.
- Si $T(z=0,t) = T_0 + \theta_0(t)$, où θ_0 est périodique de pulsation ω , on peut utiliser le théorème de Fourier : $\theta_0(t) = \sum_{n \ge 0} \alpha_n \cos(n\omega t + \varphi_n)$. On peut ensuite résoudre l'équation (qui est homogène linéaire).