COMPUTATIONAL NEUROSCIENCE PROJECT 1

ROHAN GHOSH DASTIDAR 22CH30028

(a) VDP equation reduced to two first order differential

equations in terms of the two state variables y and $\mu^{-1}\dot{y}$

Phase Plane plot for soln. of the VDP equation:

Let
$$y_1 = y$$
 and $y_2 = \frac{y'}{\mu} = \frac{y_1'}{\mu}$

VDP eqn. reduced to 2 first order ODE's:

$$\Rightarrow y_1' = \mu y_2 \dots (i)$$

$$\Rightarrow y_2' = -\frac{y_1}{\mu} + (1 - y_1^2) y_2 \dots (ii)$$

(b) Solution of VDP eqn. solved using ODE45:

Solution of VDP eqn. solved using ODE15s:

(c) Comparison b/w ODE45 and ODE15s:

Condition	Observation
$\mu = 0.1, 1$	ODE15s is faster for smaller μ values
μ = 100, 1000	ODE45 works better when the VDP is more <i>stiff</i> , at higher values of μ
Lower iterations (time < 50) High iterations	Faster solver depends on the stiffness and damping of the oscillator ODE45 works better in most cases

(d) Analysis of Phase Plane plots of VDP oscillator

- For $\mu = 0.1$, the phase plane plot converges to steady state values, the plot resembles an elliptical shape, which is indicative of *sinusoidal* oscillatory behaviour of the system.
- For higher values of μ , this nature completely breaks down.
- μ = 1, the system seems to converge to a steady state but the shape of the plot is very distorted, resembling a quadrilateral.
- For very high values of $\mu = 100$, 1000, the phase plane plot shows instability and does not converge.