Spark Machine Learning

CMPT 732, Fall 2018

Recap: Machine Learning

We have input columns (features), x, and parameters θ .

Functions $y(x; \theta)$ produce predictions, y.

We want heta that minimizes (some measure of) error between the predictions y and target labels t.

If we have a discrete set of labels/predictions, then we have a *classification* problem: we are trying to predict the class or category. If we have a *continuout* set of labels/predictions, then we have a *regression* problems: we are trying to predict a numeric value.

Or maybe we don't have labels are are trying to partition our inputs into unknown categories: clustering.

Spark ML

As with other components: there's an older RDD-based API, and a newer DataFrame-based API. We'll talk only about the DataFrame ML tools: the pyspark.ml package.

See also the Spark ML Guide.

Complete code for the example to follow: ml_pipeline.py.

Pieces we'll have:

DataFrame

As before, store data: features, feature vectors, true labels, and generated predictions.

Transformers

Feature extraction and transformation. Generally manipulating the data to get the featuers you need. Implemented with Transformer instances.

Estimator

Implementations of ML algorithms that make predictions: regressors, classifiers, clustering. Implemented with <u>Estimator</u> instances.

Pipelines

[Concepts may be familiar to you from Scikit-Learn, but also maybe not...]

We are often going to want to take the data we have, and manipulate it before wassing it into the model: <u>feature engineering</u>, but also just reformatting and tidying the data.

That's what the <u>Transformer</u>s are for. Common pattern: data \rightarrow Transformer \rightarrow … \rightarrow Transformer \rightarrow Estimator \rightarrow predictions.

You *could* apply transformations manually, but that's going to be tedious and error-prone: you have to apply the same ones for training, validation, testing, predicing.

A *pipeline* describes a series of transformations to its input, finishing with an estimator to make predictions. Implemented with <u>Pipeline</u> instances.

A pipeline can be trained as a unit: some transforms need training (PCA, indexer, etc), and the estimator certainly does.

Estimators need a single column of all features put together into a vector, so minimal pipeline might be:

```
assemble_features = VectorAssembler(
    inputCols=['length', 'width', 'height'],
    outputCol='features')
classifier = GBTRegressor(
    featuresCol='features', labelCol='volume')
pipeline = Pipeline(stages=[assemble_features, classifier])
```

Models

When a Spark estimator is trained, it produces a *model* object: a trained estimator that can actually make predictions; a <u>Model</u> (or probably PipelineModel) instance.

If we have some training data:

```
model = pipeline.fit(training)
```

Once trained, we can predict, possibly on some validation data:

```
predictions = model.transform(validation)
predictions.show()
```

Evaluation

Once you have a trained model, you probably want to come up with a score to see how it's working. This is done with **Estmator** instances.

Regression and classification are evaluated differently, but the API is the same.

```
r2_evaluator = RegressionEvaluator(
    predictionCol='prediction', labelCol='volume',
    metricName='r2')
r2 = r2_evaluator.evaluate(predictions)
print(r2)
```

ML Algorithms

 $\underline{\textbf{Lots of learning algorithms}}\ \textbf{to choose from. All of them implement the } \textbf{Estimator}\ \textbf{interface}.$

More Topics

Regularization

Hyperparameter tuning (Model selection)

Course Notes Home. CMPT 732, Fall 2018. Copyright © 2015–2018 Greg Baker, Jiannan Wang, Steven Bergner.