SLOS081C - FEBRUARY 1977 - REVISED SEPTEMBER 1996

24 DEVICES COVER COMMERCIAL, INDUSTRIAL, AND MILITARY TEMPERATURE RANGES

- Low Power Consumption
- Wide Common-Mode and Differential Voltage Ranges
- Low Input Bias and Offset Currents
- Output Short-Circuit Protection
- Low Total Harmonic Distortion . . . 0.003% Typ

- High Input Impedance . . . JFET-Input Stage
- Latch-Up-Free Operation
- High Slew Rate . . . 13 V/μs Typ
- Common-Mode Input Voltage Range Includes V_{CC+}

description

The TL08x JFET-input operational amplifier family is designed to offer a wider selection than any previously developed operational amplifier family. Each of these JFET-input operational amplifiers incorporates well-matched, high-voltage JFET and bipolar transistors in a monolithic integrated circuit. The devices feature high slew rates, low input bias and offset currents, and low offset voltage temperature coefficient. Offset adjustment and external compensation options are available within the TL08x family.

The C-suffix devices are characterized for operation from 0° C to 70° C. The I-suffix devices are characterized for operation from -40° C to 85° C. The M-suffix devices are characterized for operation over the full military temperature range of -55° C to 125° C.

symbols

TL082 (EACH AMPLIFIER) TL084 (EACH AMPLIFIER)

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SLOS081C - FEBRUARY 1977 - REVISED SEPTEMBER 1996

NC - No internal connection

		FLAT	(w)				I		I							TL084MW
		FLAT PACK	(n)				I							TL081MU	TL082MU	
		TSSOP	(PW)	TL081CPW		TL082CPW		TL084CPW				I			I	
		PLASTIC DIP	(P)	TL081CP	TL081BCP	TL082CP	TL082ACP TL082BCP		l		TL0811P	TL082IP				
SNO	DEVICES	PLASTIC DIP	(N)				1	TL084CN	TL084ACN	TL084BCN			TL084IN		l	
AVAILABLE OPTIONS	PACKAGED DEVICES	CERAMIC DIP	(၁၉)				I		l					TL081MJG	TL082MJG	
AVA		CERAMIC DIP	(n)				I									TL084MJ
		CHIP CARRIER	(FK)				1		ļ			I		TL081MFK	TL082MFK	TL084MFK
		SMALL OUTLINE	(D014)				I	TL084CD	TL084ACD	TL084BCD			TL084ID		l	
		SMALL OUTLINE	(D008)	TL081CD	TL081BCD	TL082CD	TL082ACD TL082BCD		1		TL0811D	TL082ID	TL084ID			
		V _{IO} max AT 25°C		15 mV 6 mV	3 mV	15 mV	6 mV 3 mV	15 mV	6 mV	3 mV						9 mV
		Ā				၁ _° ၀	to 70°C				TL081ID — — — TL081IP — TL082ID — — — TL082IP — TL084ID TL084IN TL084IN — — TL081MFK TL081MJG — —		125°C			

TL084Y

TL082Y

CHIP FORM

The D package is available taped and reeled. Add R suffix to the device type (e.g., TL081CDR).

schematic (each amplifier)

Component values shown are nominal.

TL082Y chip information

These chips, when properly assembled, display characteristics similar to the TL082. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform.

SLOS081C - FEBRUARY 1977 - REVISED SEPTEMBER 1996

TL084Y chip information

These chips, when properly assembled, display characteristics similar to the TL084. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform.

SLOS081C - FEBRUARY 1977 - REVISED SEPTEMBER 1996

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

		TL08_C TL08_AC TL08_BC	TL08_I	TL08_M	UNIT
Supply voltage, V _{CC+} (see Note 1)		18	18	18	V
Supply voltage V _{CC} – (see Note 1)		-18	-18	-18	V
Differential input voltage, V _{ID} (see Note 2)		± 30	± 30	± 30	V
Input voltage, V _I (see Notes 1 and 3)		±15	±15	±15	V
Duration of output short circuit (see Note 4)		unlimited	unlimited	unlimited	
Continuous total power dissipation		Se	e Dissipation	Rating Table	
Operating free-air temperature range, TA		0 to 70	- 40 to 85	- 55 to 125	°C
Storage temperature range, T _{Stg}		- 65 to 150	- 65 to 150	- 65 to 150	°C
Case temperature for 60 seconds, T _C	FK package			260	°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds	J or JG package			300	°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	D, N, P, or PW package	260	260		°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V_{CC+} and V_{CC+}.
 - 2. Differential voltages are at IN+ with respect to IN-.
 - 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.
 - 4. The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR	DERATE ABOVE T _A	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
D (8 pin)	680 mW	5.8 mW/°C	32°C	460 mW	373 mW	N/A
D (14 pin)	680 mW	7.6 mW/°C	60°C	604 mW	490 mW	N/A
FK	680 mW	11.0 mW/°C	88°C	680 mW	680 mW	273 mW
J	680 mW	11.0 mW/° C	88°C	680 mW	680 mW	273 mW
JG	680 mW	8.4 mW/°C	69°C	672 mW	546 mW	210 mW
N	680 mW	9.2 mW/°C	76°C	680 mW	597 mW	N/A
Р	680 mW	8.0 mW/°C	65°C	640 mW	520 mW	N/A
PW (8 pin)	525 mW	4.2 mW/°C	25°C	336 mW	N/A	N/A
PW (14 pin)	700 mW	5.6 mW/°C	25°C	448 mW	N/A	N/A
U	675 mW	5.4 mW/°C	25°C	432 mW	351 mW	135 mW
W	680 mW	8.0 mW/°C	65°C	640 mW	520 mW	200 mW

Template Release Date: 7–11–94

TL081, TL081A, TL081B, TL082, TL082A, TL082B TL082Y, TL084, TL084A, TL084B, TL084Y JFET-INPUT OPERATIONAL AMPLIFIERS SLOS081C - FEBRUARY 1977 - REVISED SEPTEMBER 1996

		_															
	PARAMETER	TEST CC	TEST CONDITIONS	TA⊤	= = =	TL081C TL082C TL084C		루루	TL081AC TL082AC TL084AC		FFF	TL081BC TL082BC TL084BC			TL0811 TL0821 TL0841		LIND
					NIE	TYP	MAX	Z Z	TYP	MAX	Z	ΤΥΡ	MAX	Z	ΤYΡ	MAX	
(.)	000100.100#011000	0 0 / 1		25°C		3	15		3	9		2	3		3	9	/\~
01^	input oliset voltage	,O = 0,	KS = 50 1/2	Full range			20			7.5			5			6)
ΟΙΛα	Temperature coefficient of input offset voltage	V _O = 0,	RS = 50 Ω	Full range		18			18			18			18		μV/°C
(-	+ *************************************	(25°C		2	200		2	100		2	100		2	100	ЬĄ
0	Input oirset current +	0=0		Full range			2			2			2			10	nA
<u>!</u>	+ *************************************	0 - 0 / 1		25°C		30	400		30	200		30	200		30	200	pA
<u>B</u>	Input bias current+	0 II O		Full range			10			7			7			20	hA
	Common mode inner					-12			-12			-12			-12		
VICR	voltage range			25°C	+1	to <u>1</u> 5		+1	to 12		+1	to 15		+1	to 12		>
		$R_L = 10 \text{ k}\Omega$	а	25°C	±12 ±	±13.5	T	±12 ±	±13.5		±12	±13.5		±12	±13.5		
VOM	Maximum peak output	$R_{L} \ge 10 \text{ k}\Omega$	ច		±12			±12			±12			±12			>
	Voltago Swillig	$R_{L} \ge 2 k\Omega$		ruii rarige	±10	±12		±10	±12		±10	±12		±10	±12		
٠.	Large-signal differential	$V_{Q} = \pm 10 \text{ V},$ $R_{L} \ge 2 \text{ k}\Omega$	2,	25°C	25	200		20	200		20	200		20	200		/(//
AVD	voltage amplification	$V_{Q} = \pm 10 \text{ V},$ $R_{L} \ge 2 \text{ k}\Omega$	>	Full range	15			25			25			25) E/>
Β ₁	Unity-gain bandwidth			25°C		က			က			က			က		MHz
ľ	Input resistance			25°C	Ì	1012			1012			1012			1012		G
CMRR	Common-mode rejection ratio	VIC = VICRmin, VO = 0, RS =	Rmin, RS = 50 Ω	25°C	02	98		75	98		75	98		75	98		фВ
kSVR	Supply voltage rejection ratio ($\Delta \text{VCC}_{\pm}/\Delta \text{VIO}$)	$ \begin{array}{c} V_{CC} = \pm 15 \text{ V} \\ V_{O} = 0, R \end{array} $	$15 \text{ V to } \pm 9 \text{ V,}$ RS = 50Ω	25°C	02	98		80	98		80	86		80	98		фB
၁၁၊	Supply current (per amplifier)	V _O = 0,	No load	25°C		1.4	2.8		1.4	2.8		1.4	2.8		1.4	2.8	mA
VO1/VO2	Crosstalk attenuation	AVD = 100	0	25°C		120			120			120			120		dB
† All charact TL08_BC a	† All characteristics are measured under open-loop conditions with zero common-mode voltage unless otherwise specified. Full range for TA is 0°C to 70°C for TL08_C, TL08_AC, TL08_BC and -40°C to 85°C for TL08_I.	er open-loo 8_l.	p conditions wi	th zero comr	non-mode	e voltage	salun e	s otherw	ise spe	cified. F	ull rang	ye for T _A	is 0°C	to 70°C	for TL0	8_C, TL	.08_AC,

‡Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive as shown in Figure 17. Pulse techniques must be used that maintain the junction temperature as close to the ambient temperature as possible.

INSTRUMENTS

electrical characteristics, $V_{CC\pm}$ = ±15 V (unless otherwise noted)

electrical characteristics, $V_{\mbox{CC}\,\pm}$ = ± 15 V (unless otherwise noted)

	DADAMETED	TEST SOURITIONS!	_	TL08	31M, TL0	82M		TL084M		UNIT
	PARAMETER	TEST CONDITIONS†	TA	MIN	TYP	MAX	MIN	TYP	MAX	UNII
\/10	Input offset voltage	$V_{O} = 0$, $R_{S} = 50 \Omega$	25°C		3	6		3	9	mV
VIO	input onset voltage	VO = 0, KS = 50 12	-55°C to 125°C			9			15	IIIV
αΛΙΟ	Temperature coefficient of input offset voltage	$V_{O} = 0$, $R_{S} = 50 \Omega$	-55°C to 125°C		18			18		μV/°C
li o	law of affact as smart	V _O = 0	25°C		5	100		5	100	pА
liO	Input offset current [‡]	vO = 0	125°C			20			20	nA
lin.	Input bias current‡	V _O = 0	25°C		30	200		30	200	pА
IВ	input bias current+	νO = 0	125°C			50			50	nA
VICR	Common-mode input voltage range		25°C	±11	±12 to 15		±11	± 12 to 15		٧
		R _L = 10 kΩ	25°C	±12	±13.5		±12	±13.5		
Vом	Maximum peak output voltage swing	$R_L \ge 10 \text{ k}\Omega$	-55°C to 125°C	±12			±12			V
	output voltage swiling	$R_L \ge 2 k\Omega$	-55 C to 125 C	±10	±12		±10	±12		
۸	Large-signal differential	$V_O = \pm 10 \text{ V},$ $R_L \ge 2 \text{ k}\Omega$	25°C	25	200		25	200		V/mV
AVD	voltage amplification	$V_O = \pm 10 \text{ V},$ $R_L \ge 2 \text{ k}\Omega$	-55°C to 125°C	15			15			V/IIIV
B ₁	Unity-gain bandwidth		25°C		3			3		MHz
rį	Input resistance		25°C		1012			1012		Ω
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}$ min, $V_{O} = 0$, $R_{S} = 50 \Omega$	25°C	80	86		80	86		dB
k _{SVR}	Supply voltage rejection ratio $(\Delta V_{CC\pm}/\Delta V_{IO})$	$V_{CC} = \pm 15 \text{ V to } \pm 9 \text{ V},$ $V_{O} = 0, R_{S} = 50 \Omega$	25°C	80	86		80	86		dB
ICC	Supply current (per amplifier)	V _O = 0, No load	25°C		1.4	2.8		1.4	2.8	mA
V _{O1} /V _{O2}	Crosstalk attenuation	A _{VD} = 100	25°C		120			120		dB

[†] All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified.

operating characteristics, $V_{CC\pm}$ = ± 15 V, T_A = 25°C (unless otherwise noted)

	PARAMETER		TEST CO	NDITIONS		MIN	TYP	MAX	UNIT
		V _I = 10 V,	$R_L = 2 k\Omega$,	$C_L = 100 pF$,	See Figure 1	8*	13		
SR	Slew rate at unity gain	$V_I = 10 \text{ V},$ $T_A = -55^{\circ}\text{C to } 12^{\circ}$	_	C _L = 100 pF, See Figure 1		5*			V/µs
t _r	Rise time	V 20 mV	P 2 kO	C 100 pF	Soo Figure 1		0.05		μs
	Overshoot factor	$V_{ } = 20 \text{ mV},$	KL = 2 KS2,	$C_L = 100 \text{ pF},$	See Figure 1		20%		
\	Fauityalant innut naisa yaltaga	D- 20.0	f = 1 kHz				18		nV/√ Hz
V _n	Equivalent input noise voltage	$R_S = 20 \Omega$	f = 10 Hz to	10 kHz			4		μV
In	Equivalent input noise current	$R_S = 20 \Omega$,	f = 1 kHz				0.01		pA/√ Hz
THD	Total harmonic distortion	$V_{O(rms)} = 10 V,$	$R_S \le 1 k\Omega$,	$R_L \ge 2 k\Omega$,	f = 1 kHz		0.003%		

^{*}On products compliant to MIL-PRF-38535, this parameter is not production tested.

[‡] Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive as shown in Figure 17. Pulse techniques must be used that maintain the junction temperatures as close to the ambient temperature as is possible.

SLOS081C - FEBRUARY 1977 - REVISED SEPTEMBER 1996

electrical characteristics, $V_{CC\pm} = \pm 15 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (unless otherwise noted)

	PARAMETER	TEST SONI	NTIONOT	TL0	82Y, TL08	34Y	UNIT
	PARAMETER	TEST CONI	DITIONS	MIN	TYP	MAX	UNII
V _{IO}	Input offset voltage	$V_{O} = 0,$	$R_S = 50 \Omega$,		3	15	mV
ανιο	Temperature coefficient of input offset voltage	$V_{O} = 0$,	$R_S = 50 \Omega$,		18		μV/°C
I _{IO}	Input offset current‡	$V_{O} = 0,$			5	200	pА
I _{IB}	Input bias current [‡]	$V_{O} = 0,$			30	400	pA
VICR	Common-mode input voltage range			±11	-12 to 15		V
VOM	Maximum peak output voltage swing	$R_L = 10 \text{ k}\Omega$,		±12	±13.5		V
AVD	Large-signal differential voltage amplification	$V_0 = \pm 10 \text{ V},$	$R_L \ge 2 k\Omega$	25	200		V/mV
B ₁	Unity-gain bandwidth				3		MHz
rį	Input resistance				1012		Ω
CMDD	Common mode valention vette	V _{IC} = V _{ICR} min,	V _O = 0,	70	86		dB
CMRR	Common-mode rejection ratio	$R_S = 50 \Omega$		70	86		dB
kova	Supply voltage rejection ratio (AVa /AV/a)	$V_{CC} = \pm 15 \text{ V to } \pm$	9 V,	70	86		dB
ksvr	Supply voltage rejection ratio (ΔV _{CC±} /ΔV _{IO})	$V_{O} = 0$,	$R_S = 50 \Omega$	70	86		dB
ICC	Supply current (per amplifier)	$V_{O} = 0,$	No load		1.4	2.8	mA
V _{O1} /V _{O2}	Crosstalk attenuation	A _{VD} = 100			120	·	dB

[†] All characteristics are measured under open-loop conditions with zero common-mode voltage unless otherwise specified.

operating characteristics, $V_{\mbox{CC}\pm}$ = ± 15 V, $T_{\mbox{A}}$ = $25^{\circ}\mbox{C}$

	PARAMETER		TEST CON	IDITIONS		MIN	TYP	MAX	UNIT
SR	Slew rate at unity gain	V _I = 10 V,	$R_L = 2 k\Omega$,	$C_L = 100 pF$,	See Figure 1	8	13		V/μs
t _r	Rise time	V _I = 20 mV,	$R_1 = 2 k\Omega$	C 100 pF	Soo Eiguro 1		0.05		μs
	Overshoot factor	ν = 20 mν,	KL = 2 K32,	$C_L = 100 pF,$	See Figure 1		20%		
	Equivalent input noise voltage	Po - 20 O	f = 1 kHz				18		nV/√ Hz
Vn	Equivalent input noise voltage	$R_S = 20 \Omega$	f = 10 Hz to 1	0 kHz			4		μV
In	Equivalent input noise current	$R_S = 20 \Omega$,	f = 1 kHz				0.01		pA/√ Hz
THD	Total harmonic distortion	$V_{O(rms)} = 10 V,$	$R_S \le 1 k\Omega$,	$R_L \ge 2 k\Omega$,	f = 1 kHz		0.003%		

[‡] Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive as shown in Figure 17. Pulse techniques must be used that maintain the junction temperature as close to the ambient temperature as possible.

PARAMETER MEASUREMENT INFORMATION

 $V_{I} \xrightarrow{1 \text{ k}\Omega} OUT$ $R_{L} \xrightarrow{\overline{}} C_{L} = 100 \text{ pF}$

Figure 1

Figure 3

Figure 2

Figure 4

TYPICAL CHARACTERISTICS

Table of Graphs

			FIGURE
V _{OM}	Maximum peak output voltage	vs Frequency vs Free-air temperature vs Load resistance vs Supply voltage	5, 6, 7 8 9 10
A _{VD}	Large-signal differential voltage amplification	vs Free-air temperature vs Frequency	11 12
	Differential voltage amplification	vs Frequency with feed-forward compensation	13
PD	Total power dissipation	vs Free-air temperature	14
Icc	Supply current	vs Free-air temperature vs Supply voltage	15 16
I _{IB}	Input bias current	vs Free-air temperature	17
	Large-signal pulse response	vs Time	18
٧o	Output voltage	vs Elapsed time	19
CMRR	Common-mode rejection ratio	vs Free-air temperature	20
Vn	Equivalent input noise voltage	vs Frequency	21
THD	Total harmonic distortion	vs Frequency	22

MAXIMUM PEAK OUTPUT VOLTAGE

vs **FREQUENCY** ± 15 V_{CC±} = ±15 V $R_L = 10 \text{ k}\Omega$ $T_A^- = 25^{\circ}C$ V_{OM} - Maximum Peak Output Voltage - V See Figure 2 ±12.5 ± 10 $V_{CC\pm} = \pm 10 \text{ V}$ ±**7.5** ±5 $V_{CC\pm} = \pm 5 V$ ± 2.5 100 100 k 10 M 1 k 10 k 1 M f - Frequency - Hz

MAXIMUM PEAK OUTPUT VOLTAGE

Figure 5 Figure 6

Figure 7

MAXIMUM PEAK OUTPUT VOLTAGE

Figure 8

MAXIMUM PEAK OUTPUT VOLTAGE

SUPPLY VOLTAGE ± 15 $R_L = 10 \text{ k}\Omega$ V_{OM} - Maximum Peak Output Voltage - V T_A = 25°C ±12.5 ± 10 ± 7.5 $\pm \mathbf{5}$ ± 2.5 0 0 2 8 10 12 14 16 $|V_{CC\pm}|$ - Supply Voltage - V

Figure 10

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

LARGE-SIGNAL **DIFFERENTIAL VOLTAGE AMPLIFICATION**

Figure 11

LARGE-SIGNAL **DIFFERENTIAL VOLTAGE AMPLIFICATION**

Figure 12

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

DIFFERENTIAL VOLTAGE AMPLIFICATION FREQUENCY WITH FEED-FORWARD COMPENSATION 106 $V_{CC\pm} = \pm 15 V$ A_{VD} - Differential Voltage Amplification - V/mV C2 = 3 pF10⁵ T_A = 25°C See Figure 3 104 10³ 102 10 100 1 k 10 k 100 k 1 M 10 M f - Frequency With Feed-Forward Compensation - Hz

Figure 13

Figure 15

Figure 14

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

INPUT BIAS CURRENT FREE-AIR TEMPERATURE 100 $v_{CC\pm}$ = \pm 15 vIB - Input Bias Current - nA 10 0.1 0.01 - 50 - 25 25 75 100 125 T_A – Free-Air Temperature – °C

Figure 17

COMMON-MODE REJECTION RATIO

Figure 19 Figure 20

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

Figure 21 Figure 22

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

APPLICATION INFORMATION

Figure 23

Figure 24

APPLICATION INFORMATION

Figure 25. Audio-Distribution Amplifier

NOTE A: These resistor values may be adjusted for a symmetrical output.

Figure 26. 100-KHz Quadrature Oscillator

APPLICATION INFORMATION

Figure 27. Positive-Feedback Bandpass Filter

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated