

School of Computer Wuhan University

Nicolas Bourbaki (1935 —)

关系的定义 ○●0000000

- 关系的定义
 - 引言关系的定义
 - 大术的及》
- ② 关系的表示方法 ● 集合表示法
 - 矩阵表示法● 关系图
- 3 关系的一般属性 ● 自反关系 ● 反自反关系
 - 对称关系
 - 反对称关系 传递关系
- 4 等价关系与集合的划分
 - 等价关系
 - 常用的等价关系● 等价类
 - 等价关系与划分
 - 商集合
- 6 偏序关系
 6 偏序关系的定义
 - 偏序关系的定》 ● 拟序
 - 字典序关系 ● 偏序关系的Hass图
 - 偏序关系的特殊元素
 - 限序关系

- 引言● 关系的定义
- 天糸的定》● 二元关系
- ② 关系的表示方法 ● 集合表示法
 - 矩阵表示法● 关系图
- 2 4 5 44 60 53 14
 - ●自反关系
 - 反自反关系
 - ○对称关系
 - 反对称关系传递关系
- 4 等价关系与集合的划分
 - 等价关系
 - 常用的等价关系
 - 等价类
 - 等价关系与划分
- 商集合

 5 偏序关系
 - 偏序关系的定义● 拟序
 - 字典序关系
 - 偏序关系的Hass图
 - 偏序关系的特殊元素
 - 良序关系

关系的定义 00●000000

- 集合论将不精确的自然语言转化为精确的数学语言;
- 所有的数学对象均由集合表示;
- 对客观世界描述的谓词在集合论中转化为使得该谓词为真的集合;
- $P(x_1, x_2, \ldots, x_n) \longleftrightarrow \{\langle x_1, x_2, \ldots, x_n \rangle | P(x_1, x_2, \ldots, x_n) \not\ni \underline{A} \}$
- $\{\langle x_1, x_2, \ldots, x_n \rangle | P(x_1, x_2, \ldots, x_n)$ 为真 $\} \subseteq A_1 \times A_2 \times \cdots \times A_n$
- 关系研究A₁ × A₂ ×···× A_n上普遍规律.

关系的定义 00●000000

- 集合论将不精确的自然语言转化为精确的数学语言;
- 所有的数学对象均由集合表示;
- 对客观世界描述的谓词在集合论中转化为使得该谓词为真的集合;
- $P(x_1, x_2, \ldots, x_n) \leftrightsquigarrow \{\langle x_1, x_2, \ldots, x_n \rangle | P(x_1, x_2, \ldots, x_n) \not\ni \underline{A} \}$
- $\{\langle x_1, x_2, \dots, x_n \rangle \mid P(x_1, x_2, \dots, x_n)$ 为真 $\} \subseteq A_1 \times A_2 \times \dots \times A_n$
- 关系研究A₁ × A₂ ×···× A_n上普遍规律.

关系的定义 00●000000

- 集合论将不精确的自然语言转化为精确的数学语言;
- 所有的数学对象均由集合表示;
- 对客观世界描述的谓词在集合论中转化为使得该谓词为真的集合;
- $P(x_1, x_2, \ldots, x_n) \longleftrightarrow \{\langle x_1, x_2, \ldots, x_n \rangle | P(x_1, x_2, \ldots, x_n) \not\ni \underline{a} \}$
- $\{\langle x_1, x_2, \dots, x_n \rangle | P(x_1, x_2, \dots, x_n)$ 为真 $\} \subseteq A_1 \times A_2 \times \dots \times A_n$
- 关系研究A₁ × A₀ × ··· × A_n 上普遍规律

谓词与集合的联系

Remark

- 集合论将不精确的自然语言转化为精确的数学语言;
- 所有的数学对象均由集合表示;
- 对客观世界描述的谓词在集合论中转化为使得该谓词为真的集合;
- $\bullet P(x_1, x_2, \dots, x_n) \longleftrightarrow \{\langle x_1, x_2, \dots, x_n \rangle | P(x_1, x_2, \dots, x_n) \not\ni \underline{a} \}$
- $\{\langle x_1, x_2, \dots, x_n \rangle \mid P(x_1, x_2, \dots, x_n) \not\ni A_1 \times A_2 \times \dots \times A_n\}$
- 关系研究A₁ × A₂ × ··· × A_n上普遍规律.

- 集合论将不精确的自然语言转化为精确的数学语言;
- 所有的数学对象均由集合表示;
- 对客观世界描述的谓词在集合论中转化为使得该谓词为真的集合;
- $P(x_1, x_2, \ldots, x_n) \longleftrightarrow \{\langle x_1, x_2, \ldots, x_n \rangle | P(x_1, x_2, \ldots, x_n) 为真\}$
- $\{\langle x_1, x_2, \dots, x_n \rangle | P(x_1, x_2, \dots, x_n) \not\ni \underline{A}_1 \times A_2 \times \dots \times A_n\}$
- 关系研究A₁ × A₂ × · · · × A_n上普遍规律.

谓词与集合的联系

Remark

- 集合论将不精确的自然语言转化为精确的数学语言;
- 所有的数学对象均由集合表示;
- 对客观世界描述的谓词在集合论中转化为使得该谓词为真的集合;
- $P(x_1, x_2, ..., x_n) \leftrightarrow \{\langle x_1, x_2, ..., x_n \rangle | P(x_1, x_2, ..., x_n) 为真 \}$
- $\{\langle x_1, x_2, \dots, x_n \rangle | P(x_1, x_2, \dots, x_n)$ 为真 $\} \subseteq A_1 \times A_2 \times \dots \times A_n$

- 集合论将不精确的自然语言转化为精确的数学语言;
- 所有的数学对象均由集合表示;
- 对客观世界描述的谓词在集合论中转化为使得该谓词为真的集合;
- $P(x_1, x_2, ..., x_n) \longleftrightarrow \{\langle x_1, x_2, ..., x_n \rangle | P(x_1, x_2, ..., x_n) 为真 \}$
- $\{\langle x_1, x_2, \dots, x_n \rangle | P(x_1, x_2, \dots, x_n)$ 为真 $\} \subseteq A_1 \times A_2 \times \dots \times A_n$
- 关系研究A₁ × A₂ × · · · × A_n上普遍规律.

Example

关系的定义 000●00000

- 命题公式和谓词公式的永真蕴涵和逻辑等价关系:
- 集合中的相等和包含关系;
- 排序问题;
- 数据库的库表和视图(SQL语句);
- o
- 本章将重点分析A×B上的关系

关系的定义 000●00000

- 命题公式和谓词公式的永真蕴涵和逻辑等价关系;
- 集合中的相等和包含关系;
- 排序问题;
- 数据库的库表和视图(SQL语句);
- 0
- 本章将重点分析A×B上的关系

关系的定义 000●00000

- 命题公式和谓词公式的永真蕴涵和逻辑等价关系;
- 集合中的相等和包含关系;
- 排序问题;
- 数据库的库表和视图(SQL语句);
- 0
- 本章将重点分析A×B上的关系

Example

关系的定义 000●00000

- 命题公式和谓词公式的永真蕴涵和逻辑等价关系;
- 集合中的相等和包含关系;
- 排序问题;
- 数据库的库表和视图(SQL语句);
-
- 本章将重点分析A×B上的关系

关系的定义 000●00000

- 命题公式和谓词公式的永真蕴涵和逻辑等价关系;
- 集合中的相等和包含关系;
- 排序问题;
- 数据库的库表和视图(SQL语句);
- 0
- 本章将重点分析A×B上的关系

关系的定义 000●00000

- 命题公式和谓词公式的永真蕴涵和逻辑等价关系;
- 集合中的相等和包含关系;
- 排序问题;
- 数据库的库表和视图(SQL语句);
-
- 本章将重点分析A×B上的关系

Example

关系的定义 000●00000

- 命题公式和谓词公式的永真蕴涵和逻辑等价关系;
- 集合中的相等和包含关系;
- 排序问题;
- 数据库的库表和视图(SQL语句);
-
- 本章将重点分析A×B上的关系.

关系的定义 000000000

关系的定义 ○○○○●OO○○

Definition (关系的定义)

- $\mathcal{R} \subseteq A \times B$, 二元关系;
- $\mathcal{R} \subseteq A \times B \times C$, 三元关系;
- $\mathcal{R} \subseteq A_1 \times A_2 \times \cdots \times A_n$, n元关系;
- $\mathcal{R} \subseteq A$, 一元关系, 退化为一般的集合.

Definition (平凡关系)

Definition (关系的相等)

关系 \mathcal{R}_1 和 \mathcal{R}_2 相等, iff, 两者在集合意义下相等, 即: $\mathcal{R}_1 = \mathcal{R}_2$.

关系的定义 000000000

- R ⊆ A × B. 二元关系;
- $\mathcal{R} \subseteq A \times B \times C$. 三元关系:

关系的定义 000000000

- R ⊆ A × B. 二元关系;
- $\mathcal{R} \subseteq A \times B \times C$. 三元关系:
- $\mathcal{R} \subseteq A_1 \times A_2 \times \cdots \times A_n$, n元关系;

关系的定义

- R ⊆ A × B. 二元关系;
- $\mathcal{R} \subseteq A \times B \times C$. 三元关系:
- $\mathcal{R} \subseteq A_1 \times A_2 \times \cdots \times A_n$, n元关系;
- $\mathcal{R} \subseteq A$, 一元关系, 退化为一般的集合.

关系的定义

Definition (关系的定义)

- $\mathcal{R} \subseteq A \times B$, 二元关系;
- $\mathcal{R} \subseteq A \times B \times C$, 三元关系;
- $\mathcal{R} \subseteq A_1 \times A_2 \times \cdots \times A_n$, n元关系;
- $\mathcal{R} \subseteq A$, 一元关系, 退化为一般的集合.

Definition (平凡关系)

- Ø, 空关系;
- $\mathcal{R} = A_1 \times A_2 \times \cdots \times A_n$, n元全域关系.

Definition (关系的相等)

关系 R_1 和 R_2 相等, iff, 两者在集合意义下相等, 即: $R_1 = R_2$.

关系的定义

Definition (关系的定义)

- R ⊆ A × B. 二元关系;
- $\mathcal{R} \subseteq A \times B \times C$. 三元关系:
- $\mathcal{R} \subseteq A_1 \times A_2 \times \cdots \times A_n$. n元关系:
- $\mathcal{R} \subseteq A$, 一元关系, 退化为一般的集合.

Definition (平凡关系)

- Ø. 空关系;

关系的定义

Definition (关系的定义)

- $\mathcal{R} \subseteq A \times B$, 二元关系;
- $\mathcal{R} \subseteq A \times B \times C$, 三元关系;
- $\mathcal{R} \subseteq A_1 \times A_2 \times \cdots \times A_n$, n元关系;
- $\mathcal{R} \subseteq A$, 一元关系, 退化为一般的集合.

Definition (平凡关系)

- Ø, 空关系;
- $\mathcal{R} = A_1 \times A_2 \times \cdots \times A_n$, n元全域关系.

Definition (关系的相等)

关系 R_1 和 R_2 相等, iff, 两者在集合意义下相等, 即: $R_1 = R_2$.

Definition (关系的定义)

- R ⊆ A × B. 二元关系;
- $\mathcal{R} \subseteq A \times B \times C$. 三元关系:
- $\mathcal{R} \subseteq A_1 \times A_2 \times \cdots \times A_n$. n元关系:
- $\mathcal{R} \subseteq A$, 一元关系, 退化为一般的集合.

Definition (平凡关系)

- Ø. 空关系;
- $\mathcal{R} = A_1 \times A_2 \times \cdots \times A_n$, n元全域关系.

Definition (关系的相等)

关系 \mathcal{R}_1 和 \mathcal{R}_2 相等, iff, 两者在集合意义下相等, 即: $\mathcal{R}_1 = \mathcal{R}_2$.

Examples

关系的定义 00000000

- 设P是命题公式的集合则:
 - ⇔= { $\langle P, Q \rangle$ | P和Q在所有的指派下真假值相同} ⊆ \mathcal{P}^2
 - -⇒= { $\langle P, Q \rangle$ | 在所有的指派下, 如果P真, 则Q真} ⊆ \mathcal{P}^2
 - →和↔不是关系;
- 传统数学中的=, \leq , \geq , <和>都是 \mathbb{R}^2 上的关系; 而 \leq 和<是不同的 关系;
- 传统数学函数也是一种特殊的定义域和值域集合上的关系,如: $-+\subseteq\{\langle x,y,z\rangle|x+y=z\}\subseteq\mathbb{R}^3$
- 程序设计中的所有的变量说明是关系
 - { 変量说明 } ⊆
 - NAME × TYPE × SCOPE × SIZE × MEMORY LOCATION

Examples

关系的定义 00000**0**000

Example

- 设P是命题公式的集合则:
 - ⇔= { $\langle P, Q \rangle$ | P和Q在所有的指派下真假值相同} ⊆ \mathcal{P}^2
 - ⇒= $\{\langle P, Q \rangle | \text{ 在所有的指派下, 如果P真, 则Q真} \} \subseteq \mathcal{P}^2$
 - →和↔不是关系;
- 传统数学中的=, \leq , \geq , <和>都是 \mathbb{R}^2 上的关系; 而 \leq 和<是不同的 关系;
- 传统数学函数也是一种特殊的定义域和值域集合上的关系,如 $-+\subseteq \{\langle x,y,z\rangle | x+y=z\}\subseteq \mathbb{R}^3$
- 程序设计中的所有的变量说明是关系
 - { 变量说明 } ⊆

NAME × TYPE × SCOPE × SIZE × MEMORY LOCATION

000000000

Example

- 设P是命题公式的集合则:
 - ⇔= { $\langle P, Q \rangle$ | P和Q在所有的指派下真假值相同} ⊆ \mathcal{P}^2
 - ⇒= $\{\langle P, Q \rangle | \text{ 在所有的指派下, 如果P真, 则Q真} \} \subseteq \mathcal{P}^2$
 - →和↔不是关系;
- 传统数学中的=, \leq , \geq , <和>都是 \mathbb{R}^2 上的关系; 而 \leq 和<是不同的 关系;
- 传统数学函数也是一种特殊的定义域和值域集合上的关系,如: -+ \subseteq { $\langle x,y,z\rangle | x+y=z$ } $\subseteq \mathbb{R}^3$
- 程序设计中的所有的变量说明是关系:
 - { 变量说明 } ⊆

NAME × TYPE × SCOPE × SIZE × MEMORY LOCATION

Example

- 设P是命题公式的集合则:
 - ⇔= { $\langle P, Q \rangle$ | P和Q在所有的指派下真假值相同} ⊆ \mathcal{P}^2
 - ⇒= $\{\langle P, Q \rangle |$ 在所有的指派下, 如果P真, 则Q真 $\} \subseteq \mathcal{P}^2$
 - →和↔不是关系;
- 传统数学中的=, \leq , \geq , <和>都是 \mathbb{R}^2 上的关系; 而 \leq 和<是不同的 关系;
- 传统数学函数也是一种特殊的定义域和值域集合上的关系,如: -+ \subseteq { $\langle x, y, z \rangle | x + y = z$ } $\subseteq \mathbb{R}^3$
- 程序设计中的所有的变量说明是关系:
 - { 变量说明 } ⊆

NAME × TYPE × SCOPE × SIZE × MEMORY_LOCATION

000000000

Remark

- 关系本质上是集合,因此集合上的一切结论都可以平移到关系中,如集合上的交并补等运算在关系中都适用;
- 但是由于关系是乘积集合,因此它还有一些一般集合不具有 的特性,这正是关系需要研究的内容;
- 同集合的研究方法一样,研究方法是对象是抽象的对象进行整体研究.

Propostion

设 $A_i(i = 1, 2, ..., n)$ 均是有限集合,则 $A_1 \times A_2 \times ... \times A_n$ 上的关系总数是:

 $|\mathscr{P}(A_1 \times A_2 \times \cdots \times A_n)| = 2^{|A_1| \times |A_2| \times \cdots \times |A_n|}$

关系的定义 ○○○○○○

Remark

- 关系本质上是集合,因此集合上的一切结论都可以平移到关系中,如集合上的交并补等运算在关系中都适用;
- 但是由于关系是乘积集合,因此它还有一些一般集合不具有 的特性,这正是关系需要研究的内容;
- 同集合的研究方法一样,研究方法是对象是抽象的对象进行整体研究。

Propostion

设 $A_i(i=1,2,\ldots,n)$ 均是有限集合,则 $A_1 \times A_2 \times \cdots \times A_n$ 上的关系总数是:

 $|\mathscr{P}(A_1 \times A_2 \times \cdots \times A_n)| = 2^{|A_1| \times |A_2| \times \cdots \times |A_n|}$

000000000

Remark

- 关系本质上是集合, 因此集合上的一切结论都可以平移到关 系中, 如集合上的交并补等运算在关系中都适用;
- 但是由于关系是乘积集合, 因此它还有一些一般集合不具有 的特性, 这正是关系需要研究的内容;

- 10/68 -

000000000

Remark

- 关系本质上是集合,因此集合上的一切结论都可以平移到关系中,如集合上的交并补等运算在关系中都适用;
- 但是由于关系是乘积集合,因此它还有一些一般集合不具有 的特性,这正是关系需要研究的内容;
- 同集合的研究方法一样,研究方法是对象是抽象的对象进行整体研究.

Propostion

设 $A_i(i=1,2,\ldots,n)$ 均是有限集合,则 $A_1 imes A_2 imes \cdots imes A_n$ 上的关系总数是:

 $|\mathscr{P}(A_1 \times A_2 \times \cdots \times A_n)| = 2^{|A_1| \times |A_2| \times \cdots \times |A_n|}$

- 10/68 -

000000000

Remark

- 关系本质上是集合,因此集合上的一切结论都可以平移到关系中,如集合上的交并补等运算在关系中都适用;
- 但是由于关系是乘积集合,因此它还有一些一般集合不具有 的特性,这正是关系需要研究的内容;
- 同集合的研究方法一样,研究方法是对象是抽象的对象进行整体研究.

Propostion

设 $A_i(i=1,2,\ldots,n)$ 均是有限集合,则 $A_1 \times A_2 \times \cdots \times A_n$ 上的关系总数是:

$$|\mathscr{P}(A_1 \times A_2 \times \cdots \times A_n)| = 2^{|A_1| \times |A_2| \times \cdots \times |A_n|}$$

- 10/68 -

000000000

Description (x和y有关系R的表示方法)

- 中缀表示法: ×和y有关系R: ×Ry; 如:
 -P→Q⇔¬P∨Q. 3≤5:
- 申缀表示法: ×和y没有关系R: ×尺y; 如:

Definition $(\mathcal{R} \subseteq A \times B)$

。 英文芸(Domain):

o disti(Range)

Description (x和y有关系R的表示方法)

- 集合表示法: x和y有关系R: $\langle x, y \rangle \in \mathcal{R}$ ($\neq \langle y, x \rangle \in \mathcal{R}$): $-\langle P \rightarrow Q, \neg P \lor Q \rangle \in \Leftrightarrow$, $\langle 3, 5 \rangle \in <$;
- 中缀表示法: ×和y有关系R: ×Ry; 如:
 -P→Q⇔¬P∨Q: 3≤5:
- 中缀表示法: ×和y没有关系R: ×尺y; 如:

Definition $(\mathcal{R} \subseteq A \times B)$

Description (x和y有关系R的表示方法)

- 集合表示法: x和y有关系R: $\langle x, y \rangle \in \mathcal{R}$ ($\neq \langle y, x \rangle \in \mathcal{R}$): $-\langle P \rightarrow Q, \neg P \lor Q \rangle \in \Leftrightarrow$, $\langle 3, 5 \rangle \in <$;
- 中缀表示法: ×和y有关系R: ×Ry; 如:
 -P→Q⇔¬P∨Q, 3≤5;
- 中缀表示法: ×和y没有关系R: ×Ry; 如:

Definition $(\mathcal{R} \subseteq A \times B)$

二元关系

关系的定义

Description (x和y有关系R的表示方法)

- 集合表示法: x和y有关系况: $\langle x,y \rangle \in \mathcal{R}$ ($\neq \langle y,x \rangle \in \mathcal{R}$): $-\langle P \rightarrow Q, \neg P \lor Q \rangle \in \Leftrightarrow$, $\langle 3,5 \rangle \in <$;
- 中缀表示法: ×和y有关系R: ×Ry; 如:
 -P→Q⇔¬P∨Q, 3≤5;
- 中缀表示法: x和y没有关系R: x尺y; 如:
 ¬ P → Q ⇔ ¬ P ∨ Q.

Definition $(\mathcal{R} \subseteq A \times B)$

- 定义域(Domain):
 - $Dom(\mathcal{R})$ ≜ $\{x \mid \exists y(y \in B \land \langle x, y \rangle \in \mathcal{R})\} \subseteq A;$
- 值域(Range)
 - $-Ran(\mathcal{R}) \triangleq \{y \mid \exists x(x \in A \land \langle x, y \rangle \in \mathcal{R}) \} \subseteq B.$

- $Dom(\Leftrightarrow) = Ran(\Leftrightarrow) = \mathcal{P}$
- if <是N上的二元关系, thenDom(<) = N, Ran(<) = N − {0};
- if >是N上的二元关系, then Dom(>) = N − {0}, Ran(<) = N;
- \bullet $Dom(\mathcal{R}) = \emptyset$. iff. $\mathcal{R} = \emptyset$.

关系的定义 000000000

- $Dom(\Leftrightarrow) = Ran(\Leftrightarrow) = \mathcal{P}$;
- if <是N上的二元关系, then
 Dom(<) = N, Ran(<) = N {0};
- if >是N上的二元关系, thenDom(>) = N − { 0 }, Ran(<) = N;
- $Dom(\mathcal{R}) = \emptyset$, iff, $\mathcal{R} = \emptyset$.

关系的定义

- $Dom(\Leftrightarrow) = Ran(\Leftrightarrow) = \mathcal{P}$;
- if <是N上的二元关系, then $Dom(<) = \mathbb{N}, \ Ran(<) = \mathbb{N} - \{0\};$

关系的定义

- $Dom(\Leftrightarrow) = Ran(\Leftrightarrow) = \mathcal{P}$;
- if <是 \mathbb{N} 上的二元关系, then $Dom(<) = \mathbb{N}, Ran(<) = \mathbb{N} \{0\};$
- if >是 \mathbb{N} 上的二元关系, then $Dom(>) = \mathbb{N} \{0\}, Ran(<) = \mathbb{N};$
- $Dom(\mathcal{R}) = \emptyset$, iff, $\mathcal{R} = \emptyset$.

- $Dom(\Leftrightarrow) = Ran(\Leftrightarrow) = \mathcal{P}$;
- if <是N上的二元关系, then
 Dom(<) = N, Ran(<) = N {0};
- if >是 \mathbb{N} 上的二元关系, then $Dom(>) = \mathbb{N} \{0\}, Ran(<) = \mathbb{N};$
- $Dom(\mathcal{R}) = \emptyset$, iff, $\mathcal{R} = \emptyset$.

- 引言
 - 关系的定义 ● 二元关系
- 关系的表示方法 ● 集合表示法 ● 矩阵表示法
- 关系图
 - 自反关系 ○ 反自反关系 ○ 对称关系 ○ 反对称关系 ● 传递关系
- 等价关系 ● 常用的等价关系 ● 等价类 ● 等价关系与划分
- 商集合 ● 偏序关系的定义 ● 拟序 ○ 字典序关系 ● 偏序关系的Hass图
 - 偏序关系的特殊元素 ● 良序关系

Example (集合表示(描述法和枚举法))

- 恒等关系: $\mathbb{1}_A = \{\langle x, x \rangle \mid x \in A\}$;

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ り へ ②

Example (集合表示(描述法和枚举法))

- 恒等关系: $\mathbb{1}_A = \{\langle x, x \rangle \mid x \in A\}$;
- $B = \{1, 2, 4\}$,则B上的登除天系: $\mathcal{R} = \{\langle x, y \rangle \mid x, y \in B \land y 能被x整除(x|y)\}$
- $\mathcal{R} = \{ \langle x, y \rangle \mid x, y \in \mathbb{N} \land 2 | (x y) \}.$

集合表示法

Example (集合表示(描述法和枚举法))

- 恒等关系: $\mathbb{1}_A = \{\langle x, x \rangle \mid x \in A\}$;
- $B = \{1, 2, 4\}$, 则B上的整除关系:

$$\mathcal{R} = \{ \langle x, y \rangle \mid x, y \in B \land y \text{ the } dx \text{ exc}(x|y) \}$$
$$= \{ \langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 1, 4 \rangle, \langle 2, 2 \rangle, \langle 2, 4 \rangle, \langle 4, 4 \rangle \}$$

 $\bullet \ \mathcal{R} = \{ \langle x, y \rangle \mid x, y \in \mathbb{N} \land 2 | (x - y) \}.$

集合表示法

Example (集合表示(描述法和枚举法))

- 恒等关系: $\mathbb{1}_A = \{\langle x, x \rangle \mid x \in A\}$;
- $B = \{1, 2, 4\}$, 则B上的整除关系:

$$\mathcal{R} = \{ \langle x, y \rangle \mid x, y \in B \land y \text{ the } dx \text{ exc}(x|y) \}$$
$$= \{ \langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 1, 4 \rangle, \langle 2, 2 \rangle, \langle 2, 4 \rangle, \langle 4, 4 \rangle \}$$

• $\mathcal{R} = \{ \langle x, y \rangle \mid x, y \in \mathbb{N} \land 2 | (x - y) \}.$

归纳定义法

Example

$$\mathcal{R} = \{ \langle x, y \rangle \mid x, y \in \mathbb{N} \land 2 | (x - y) \}$$

- **1** Base: $\langle 0, 0 \rangle \in \mathcal{R}$;
- ② Induction rule: if $\langle x, y \rangle \in \mathcal{R}$, then: $\langle x + 1, y + 1 \rangle \in \mathcal{R}$ $\langle x + 2, v \rangle \in \mathcal{R}$

 $\langle x, y + 2 \rangle \in \mathcal{R}$

归纳定义法

$$\mathcal{R} = \{ \langle x, y \rangle \mid x, y \in \mathbb{N} \land 2 | (x - y) \}$$

- Base: $\langle 0, 0 \rangle \in \mathcal{R}$;
- ② Induction rule: if $\langle x, y \rangle \in \mathcal{R}$, then: $\langle x+1, y+1 \rangle \in \mathcal{R}$ $\langle x+2, y \rangle \in \mathcal{R}$ $\langle x, y+2 \rangle \in \mathcal{R}$

归纳定义法

$$\mathcal{R} = \{ \langle x, y \rangle \mid x, y \in \mathbb{N} \land 2 | (x - y) \}$$

- **1** Base: $\langle 0, 0 \rangle \in \mathcal{R}$;
- 2 Induction rule: if $\langle x, y \rangle \in \mathcal{R}$, then:

$$\langle x+1,y+1\rangle \in \mathcal{R}$$

$$\langle x+2,y\rangle\in\mathcal{R}$$

$$\langle x, y + 2 \rangle \in \mathcal{R}$$

$$B = \{1, 2, 4\}, \, \text{则} B 上 的 整除 关系:$$
 $\mathcal{R} = \{\langle x, y \rangle \mid x, y \in B \land y 能 被 y 整除(x|y)\}$

$$M_{\mathcal{R}} = \begin{pmatrix} 1 & 2 & 4 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}_{A}^{1}$$

Definition (关系矩阵, Matrix of Relation)

$$A = \{a_1, a_2, \dots, a_m\}, B = \{b_1, b_2, \dots, b_n\}, \mathcal{R} \subseteq A \times B$$
$$M_{\mathcal{R}} = (c_{ij})_{m \times n}, c_{ij} = \begin{cases} 1 \text{ if } a_i \mathcal{R} b_j \\ 0 \text{ if } a_i \mathcal{R} b_i \end{cases}$$

$$B = \{1, 2, 4\}$$
, 则B上的整除关系:
 $\mathcal{R} = \{\langle x, y \rangle \mid x, y \in B \land y$ 能被y整除 $(x|y)\}$

$$M_{\mathcal{R}} = \begin{pmatrix} 1 & 2 & 4 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}_{4}^{1}$$

Definition (关系矩阵, Matrix of Relation)

$$A = \{a_1, a_2, \dots, a_m\}, B = \{b_1, b_2, \dots, b_n\}, \mathcal{R} \subseteq A \times B:$$

$$M_{\mathcal{R}} = (c_{ij})_{m \times n}, c_{ij} = \begin{cases} 1 & \text{if } a_i \mathcal{R} b_j \\ 0 & \text{if } a_i \mathcal{K} b_i \end{cases}$$

- A中的每个元素都是图的结点是: aio;
- ② if a; Raj, 则从结点a;到结点aj有一条有向边: ajo aj
- if a; Rai, 则结点a;有一条有向自回路: a;oso

- ① A中的每个元素都是图的结点是: a;o;
- ② if a; Raj, 则从结点a;到结点aj有一条有向边: ajo aj ,
- ③ if a; Rai, 则结点ai有一条有向自回路: ai ex

- ① A中的每个元素都是图的结点是: a;o;
- ② if a; Raj, 则从结点a;到结点aj有一条有向边: a; 如 aj;
- ③ if a; Rai, 则结点a;有一条有向自回路: a;∞←

- A中的每个元素都是图的结点是: a;●;
- ② if a; Raj, 则从结点a;到结点aj有一条有向边: a; 》 aj;
- ③ if a; Rai, 则结点a;有一条有向自回路: ai∞.

- ① A中的每个元素都是图的结点是: a;o;
- ② if a; Raj, 则从结点a;到结点aj有一条有向边: ajo aj;
- ③ if a; Rai,则结点a;有一条有向自回路: ai∞ .

Example ($B = \{1, 2, 4\}$ 上的整除关系)

- 引言

 - 关系的定义 ● 二元关系
- - 集合表示法 ● 矩阵表示法
 - 关系图
- 关系的一般属性
 - 自反关系
 - 反自反关系
 - 对称关系
 - 反对称关系
 - 传递关系
- - 等价关系 ● 常用的等价关系
 - 等价类

 - 等价关系与划分 ○ 商集合
- - 偏序关系的定义 ● 拟序
 - 字典序关系
 - 偏序关系的Hass图
 - 偏序关系的特殊元素
 - 良序关系

自反关系

Definition (自反关系, Reflexive)

设 $R \subseteq A^2$, R是自反关系, 当且仅当, 下述条件之一成立:

自反关系

Definition (自反关系, Reflexive)

设 $R \subseteq A^2$, R是自反关系, 当且仅当, 下述条件之一成立:

Definition (自反关系, Reflexive)

设 \mathbb{R} ⊆ A^2 , \mathbb{R} 是自反关系, 当且仅当, 下述条件之一成立:

- ③ MR对角线上的值均为1 (if A是有限集合);
- ◎ R关系图中每个结点都有自回路(if A是有限集合)

自反关系

Definition (自反关系, Reflexive)

设 $R \subseteq A^2$, R是自反关系, 当且仅当, 下述条件之一成立:

- $\mathbf{Q} \quad \mathbf{1}_{\Delta} \subset \mathcal{R}$:
- ③ MR对角线上的值均为1 (if A是有限集合);

自反关系

Definition (自反关系, Reflexive)

设 $R \subseteq A^2$, R是自反关系, 当且仅当, 下述条件之一成立:

- $\mathbf{Q} \quad \mathbf{1}_{\Delta} \subset \mathcal{R}$:
- ③ MR对角线上的值均为1 (if A是有限集合);
- R关系图中每个结点都有自回路(if A是有限集合).

Definition (自反关系, Reflexive)

设 $R \subseteq A^2$, R是自反关系, 当且仅当, 下述条件之一成立:

- ③ MR对角线上的值均为1 (if A是有限集合);
- R关系图中每个结点都有自回路(if A是有限集合).

- 1_A, ⇔, ≤, ≥和整除关系是自反关系;
- 空集上的空关系是自反关系;
- <, >, 非空集合上的空关系不是自反关系

Definition (自反关系, Reflexive)

设 $R \subseteq A^2$, R是自反关系, 当且仅当, 下述条件之一成立:

- ③ MR对角线上的值均为1 (if A是有限集合);
- R关系图中每个结点都有自回路(if A是有限集合).

- 1_A, ⇔, ≤, ≥和整除关系是自反关系;
- 空集上的空关系是自反关系;
- <, >, 非空集合上的空关系不是自反关系

Definition (自反关系, Reflexive)

设 $R \subseteq A^2$, R是自反关系, 当且仅当, 下述条件之一成立:

- ③ MR对角线上的值均为1 (if A是有限集合);
- R关系图中每个结点都有自回路(if A是有限集合).

- 1_A, ⇔, ≤, ≥和整除关系是自反关系;
- 空集上的空关系是自反关系;
- <, >, 非空集合上的空关系不是自反关系.

自反关系

关系的定义

Definition (自反关系, Reflexive)

设 $R \subseteq A^2$, R是自反关系, 当且仅当, 下述条件之一成立:

- $\mathbf{Q} \quad \mathbf{1}_{\Delta} \subset \mathcal{R}$:
- ③ MR对角线上的值均为1 (if A是有限集合);
- 尺关系图中每个结点都有自回路(if A是有限集合).

- 1_A, ⇔, ≤, ≥和整除关系是自反关系;
- 空集上的空关系是自反关系;
- <, >, 非空集合上的空关系不是自反关系.

反自反关系

Definition (反自反关系, irreflexive)

设 $R \subseteq A^2$, R是反自反关系, 当且仅当, 下述条件之一成立:

关系的一般属性

Definition (反自反关系, irreflexive)

设 $R \subseteq A^2$, R是反自反关系, 当且仅当, 下述条件之一成立:

Definition (反自反关系, irreflexive)

设 $R \subseteq A^2$, R是反自反关系, 当且仅当, 下述条件之一成立:

Definition (反自反关系, irreflexive)

设 $R \subseteq A^2$, R是反自反关系, 当且仅当, 下述条件之一成立:

- ③ MR对角线上的值均为0 (if A是有限集合);

Definition (反自反关系, irreflexive)

设 $R \subseteq A^2$, R是反自反关系, 当且仅当, 下述条件之一成立:

- ③ MR对角线上的值均为0 (if A是有限集合);
- R关系图中每个结点都没有自回路(if A是有限集合).

关系的定义

Definition (反自反关系, irreflexive)

设 $R \subseteq A^2$, R是反自反关系, 当且仅当, 下述条件之一成立:

- ③ MR对角线上的值均为0 (if A是有限集合);
- R关系图中每个结点都没有自回路(if A是有限集合).

关系的定义

Definition (反自反关系, irreflexive)

设 $R \subseteq A^2$, R是反自反关系, 当且仅当, 下述条件之一成立:

- ③ M_ℝ对角线上的值均为0 (if A是有限集合);
- R关系图中每个结点都没有自回路(if A是有限集合).

- $\mathbb{1}_{A}$, ⇔, ≤, ≥和整除关系不是反自反关系;
- <, >, 空关系是反自反关系;
- $\{\langle 1,1 \rangle\}$ ⊆ $\{1,2\}^2$ 即非自反,也非反自反

关系的定义

Definition (反自反关系, irreflexive)

设 $R \subseteq A^2$, R是反自反关系, 当且仅当, 下述条件之一成立:

- ③ M元对角线上的值均为0 (if A是有限集合);
- R关系图中每个结点都没有自回路(if A是有限集合).

- $\mathbb{1}_{A}$, ⇔, ≤, ≥和整除关系不是反自反关系;
- <, >, 空关系是反自反关系;
- $\{\langle 1,1 \rangle\}$ ⊆ $\{1,2\}^2$ 即非自反,也非反自反

关系的定义

Definition (反自反关系, irreflexive)

设 $R \subseteq A^2$, R是反自反关系, 当且仅当, 下述条件之一成立:

- ③ MR对角线上的值均为0 (if A是有限集合);
- R关系图中每个结点都没有自回路(if A是有限集合).

- 1_A, ⇔, ≤, ≥和整除关系不是反自反关系;
- <, >, 空关系是反自反关系;
- $\{\langle 1,1 \rangle\}$ ⊆ $\{1,2\}^2$ 即非自反,也非反自反.

Definition (对称关系, Symmetric)

设 $R \subseteq A^2$, R是对称关系, 当且仅当, 下述条件之一成立:

- ① $\forall x, y \in A$, if $\langle x, y \rangle \in \mathcal{R}$, then $\langle y, x \rangle \in \mathcal{R}$;
- ② MR是对称矩阵(if A是有限集合);
- R关系图中如果结点a到结点b有条有向边,则结点b 到结点a也有条有向边(if A是有限集合).

Definition (对称关系, Symmetric)

设 $R \subseteq A^2$, R是对称关系, 当且仅当, 下述条件之一成立:

- ② MR是对称矩阵(if A是有限集合)
- R关系图中如果结点a到结点b有条有向边,则结点b 到结点a也有条有向边(if A是有限集合).

Definition (对称关系, Symmetric)

设 $R \subseteq A^2$, R是对称关系, 当且仅当, 下述条件之一成立:

- ② MR是对称矩阵(if A是有限集合);
- ③ R关系图中如果结点a到结点b有条有向边,则结点b 到结点a也有条有向边(if A是有限集合).

Definition (对称关系, Symmetric)

设 $R \subseteq A^2$, R是对称关系, 当且仅当, 下述条件之一成立:

- ② M_ℝ是对称矩阵(if A是有限集合);
- ③ R关系图中如果结点a到结点b有条有向边,则结点b 到结点a也有条有向边(if A是有限集合).

Definition (对称关系, Symmetric)

设 $R \subseteq A^2$, R是对称关系, 当且仅当, 下述条件之一成立:

- ② M_R是对称矩阵(if A是有限集合);
- ③ R关系图中如果结点a到结点b有条有向边,则结点b 到结点a也有条有向边(if A是有限集合).

- 11A, ⇔和空关系是对称关系:
- <, >, ≤, ≥和整除关系不是对称关系;

Definition (对称关系, Symmetric)

设 $R \subseteq A^2$, R是对称关系, 当且仅当, 下述条件之一成立:

- ② M_R是对称矩阵(if A是有限集合);
- ③ R关系图中如果结点a到结点b有条有向边,则结点b 到结点a也有条有向边(if A是有限集合).

- 1/A, ⇔和空关系是对称关系;
- <, >, ≤, ≥和整除关系不是对称关系;

Definition (对称关系, Symmetric)

设 \mathbb{R} ⊆ A^2 , \mathbb{R} 是对称关系, 当且仅当, 下述条件之一成立:

- ② M_R是对称矩阵(if A是有限集合);
- ③ R关系图中如果结点a到结点b有条有向边,则结点b 到结点a也有条有向边(if A是有限集合).

- 1A, ⇔和空关系是对称关系;
- <, >, ≤, ≥和整除关系不是对称关系;

Definition (对称关系, Symmetric)

设 $R \subseteq A^2$, R是对称关系, 当且仅当, 下述条件之一成立:

- ② M_R是对称矩阵(if A是有限集合);
- ③ R关系图中如果结点a到结点b有条有向边,则结点b 到结点a也有条有向边(if A是有限集合).

关系的一般属性

- 11A, ⇔和空关系是对称关系;
- <, >, ≤, ≥和整除关系不是对称关系;

Definition (反对称关系, Antisymmetric)

设 $\mathcal{R} \subseteq A^2$, \mathcal{R} 是反对称关系, 当且仅当, 下述条件之一成立:

- ① $\forall x, y \in A$, if $\langle x, y \rangle \in \mathcal{R} \land \langle y, x \rangle \in \mathcal{R}$, then x = y;
- ② $\forall x, y \in A$, if $x \neq y$, then $\langle x, y \rangle \notin \mathcal{R} \vee \langle y, x \rangle \notin \mathcal{R}$
- ③ R关系图没有长度为二的回路(if A是有限集合).

Definition (反对称关系, Antisymmetric)

设 $R \subseteq A^2$, R是反对称关系, 当且仅当, 下述条件之一成立:

- ③ R关系图没有长度为二的回路(if A是有限集合)

Definition (反对称关系, Antisymmetric)

设 $R \subseteq A^2$, R是反对称关系, 当且仅当, 下述条件之一成立:

- ② $\forall x, y \in A$, if $x \neq y$, then $\langle x, y \rangle \notin \mathcal{R} \lor \langle y, x \rangle \notin \mathcal{R}$;
- ③ R关系图没有长度为二的回路(if A是有限集合)

Definition (反对称关系, Antisymmetric)

设 $R \subseteq A^2$, R是反对称关系, 当且仅当, 下述条件之一成立:

- $\forall x, y \in A$, if $\langle x, y \rangle \in \mathcal{R} \land \langle y, x \rangle \in \mathcal{R}$, then x = y;
- $\forall x, y \in A$, if $x \neq y$, then $\langle x, y \rangle \notin \mathcal{R} \vee \langle y, x \rangle \notin \mathcal{R}$;
- ③ R关系图没有长度为二的回路(if A是有限集合).

Definition (反对称关系, Antisymmetric)

设 $R \subseteq A^2$, R是反对称关系, 当且仅当, 下述条件之一成立:

- $\forall x, y \in A$, if $x \neq y$, then $\langle x, y \rangle \notin \mathcal{R} \vee \langle y, x \rangle \notin \mathcal{R}$;
- ③ R关系图没有长度为二的回路(if A是有限集合).

Example

- $\mathbb{1}_{A}$, <, >, ≤, ≥, 整除关系和空关系是反对称关系;
- ⇔和⇒不是反对称关系:

(□) (□) (□) (□) (□)

关系的定义

Definition (反对称关系, Antisymmetric)

设 $R \subseteq A^2$, R是反对称关系, 当且仅当, 下述条件之一成立:

- $\forall x, y \in A$, if $x \neq y$, then $\langle x, y \rangle \notin \mathcal{R} \vee \langle y, x \rangle \notin \mathcal{R}$;
- ③ R关系图没有长度为二的回路(if A是有限集合).

- 11_A, <, >, ≤, ≥, 整除关系和空关系是反对称关系;
- ⇔和⇒不是反对称关系;

Definition (反对称关系, Antisymmetric)

设 \mathbb{R} ⊆ A^2 , \mathbb{R} 是反对称关系, 当且仅当, 下述条件之一成立:

- $\forall x, y \in A$, if $x \neq y$, then $\langle x, y \rangle \notin \mathcal{R} \vee \langle y, x \rangle \notin \mathcal{R}$;
- ③ R关系图没有长度为二的回路(if A是有限集合).

- $\mathbb{1}_{A}$, <, >, ≤, ≥, 整除关系和空关系是反对称关系;
- ⇔和⇒不是反对称关系;

关系的定义

Definition (反对称关系, Antisymmetric)

设 $\mathcal{R} \subseteq A^2$, \mathcal{R} 是反对称关系, 当且仅当, 下述条件之一成立:

- $\forall x, y \in A$, if $\langle x, y \rangle \in \mathcal{R} \land \langle y, x \rangle \in \mathcal{R}$, then x = y;
- $\forall x, y \in A$, if $x \neq y$, then $\langle x, y \rangle \notin \mathcal{R} \setminus \langle y, x \rangle \notin \mathcal{R}$;
- ③ R关系图没有长度为二的回路(if A是有限集合).

- 11_A, <, >, ≤, ≥, 整除关系和空关系是反对称关系;
- ⇔和⇒不是反对称关系:

传递关系

Definition (传递关系, Transitive)

设 $R \subseteq A^2$, R是传递关系, 当且仅当, 下述条件之一成立:

- ① $\forall x, y, z \in A$, if $\langle x, y \rangle \in \mathcal{R} \land \langle y, z \rangle \in \mathcal{R}$, then $\langle x, z \rangle \in \mathcal{R}$;
- ② R关系图如果有条长度为2的有向路径,这从始点到终点一定有条有向边(if A是有限集合).

Definition (传递关系, Transitive)

设 $R \subseteq A^2$, R是传递关系, 当且仅当, 下述条件之一成立:

- ② R关系图如果有条长度为2的有向路径,这从始点到终点一定有条有向边(if A是有限集合).

传递关系

Definition (传递关系, Transitive)

设 $R \subseteq A^2$, R是传递关系, 当且仅当, 下述条件之一成立:

- ② R关系图如果有条长度为2的有向路径,这从始点到终点一定有条 有向边(if A是有限集合).

传递关系

Definition (传递关系, Transitive)

设 $R \subseteq A^2$, R是传递关系, 当且仅当, 下述条件之一成立:

- ② R关系图如果有条长度为2的有向路径,这从始点到终点一定有条 有向边(if A是有限集合).

Definition (传递关系, Transitive)

设 $R \subseteq A^2$, R是传递关系, 当且仅当, 下述条件之一成立:

- ② R关系图如果有条长度为2的有向路径,这从始点到终点一定有条有向边(if A是有限集合).

Example

11_A, <, >, ≤, ≥, ⇔, 整除关系, 空关系是传递关系;

传递关系

Definition (传递关系, Transitive)

设 $R \subseteq A^2$, R是传递关系, 当且仅当, 下述条件之一成立:

- ② R关系图如果有条长度为2的有向路径,这从始点到终点一定有条有向边(if A是有限集合).

- 1_A, <, >, ≤, ≥, ⇔, 整除关系, 空关系是传递关系;

● 集会A上的关系一般用上述五个特征来刻画

- 数学中常用的关系一般都满足上述五个特征中的几个:
- 关系图能够最直接地反映关系的属性:
- 上述五个特性都是用蕴涵式来定义的,所以前提是假时,关系特征均为 真;因此对称与反对称,自反与反自反不矛盾,如空关系满足除了自反以 外的所有特性;
- 既不是自反也不是反自反:图(a);但是不存在非平凡的关系既是自反同时 也是反自反关系;
- 11A既是对称也是反对称关系;
- 既不是对称也不是反对称:图(b).

(a) 既不自反也不反自反

(b) 既不对称也不是反对称

Remark

Chfwan

● 集合A上的关系一般用上述五个特征来刻画;

- 数学中常用的关系一般都满足上述五个特征中的几个:
- 关系图能够最直接地反映关系的属性
- 上述五个特性都是用蕴涵式来定义的,所以前提是假时,关系特征均为 真;因此对称与反对称,自反与反自反不矛盾,如空关系满足除了自反以 外的所有特性;
- 既不是自反也不是反自反:图(a);但是不存在非平凡的关系既是自反同时 也是反自反关系;
- 1A既是对称也是反对称关系;
- 既不是对称也不是反对称:图(b).

Chfwan

- 集合A上的关系一般用上述五个特征来刻画;
- 数学中常用的关系一般都满足上述五个特征中的几个;

Chfwan

- 集合A上的关系一般用上述五个特征来刻画;
- 数学中常用的关系一般都满足上述五个特征中的几个;
- 关系图能够最直接地反映关系的属性;
- 上述五个特性都是用蕴涵式来定义的,所以前提是假时,关系特征均为 真;因此对称与反对称,自反与反自反不矛盾,如空关系满足除了自反以 外的所有特性;
- 既不是自反也不是反自反:图(a);但是不存在非平凡的关系既是自反同时 也是反自反关系;
- 11A既是对称也是反对称关系:
- 既不是对称也不是反对称:图(b).

Remark

- 集合A上的关系一般用上述五个特征来刻画;
- 数学中常用的关系一般都满足上述五个特征中的几个;
- 关系图能够最直接地反映关系的属性;
- 上述五个特性都是用蕴涵式来定义的,所以前提是假时,关系特征均为 真;因此对称与反对称,自反与反自反不矛盾,如空关系满足除了自反以 外的所有特性;
- 既不是自反也不是反自反:图(a);但是不存在非平凡的关系既是自反同时 也是反自反关系;
- 11A既是对称也是反对称关系:
- 既不是对称也不是反对称:图(b)

Remark

- 集合A上的关系一般用上述五个特征来刻画;
- 数学中常用的关系一般都满足上述五个特征中的几个;
- 关系图能够最直接地反映关系的属性;
- 上述五个特性都是用蕴涵式来定义的,所以前提是假时,关系特征均为 真;因此对称与反对称,自反与反自反不矛盾,如空关系满足除了自反以 外的所有特性;
- 既不是自反也不是反自反:图(a);但是不存在非平凡的关系既是自反同时 也是反自反关系;
- 1A既是对称也是反对称关系
- 既不是对称也不是反对称:图(b)

(a) 既不自反也不反自反 (b) 既不对称也不是反对称

● 集合A上的关系一般用上述五个特征来刻画;

- 数学中常用的关系一般都满足上述五个特征中的几个;
- 关系图能够最直接地反映关系的属性;
- 上述五个特性都是用蕴涵式来定义的,所以前提是假时,关系特征均为 真;因此对称与反对称,自反与反自反不矛盾,如空关系满足除了自反以 外的所有特性;
- 既不是自反也不是反自反:图(a);但是不存在非平凡的关系既是自反同时 也是反自反关系;
- 1A既是对称也是反对称关系;
- 既不是对称也不是反对称:图(b)

● 集合A上的关系一般用上述五个特征来刻画;

- 数学中常用的关系一般都满足上述五个特征中的几个;
- 关系图能够最直接地反映关系的属性;
- 上述五个特性都是用蕴涵式来定义的,所以前提是假时,关系特征均为 真;因此对称与反对称,自反与反自反不矛盾,如空关系满足除了自反以 外的所有特性;
- 既不是自反也不是反自反:图(a);但是不存在非平凡的关系既是自反同时 也是反自反关系;
- 1A既是对称也是反对称关系;
- 既不是对称也不是反对称:图(b).

(a) 既不自反也不反自反

(b) 既不对称也不是反对称

- ① 关系的定义 ② 引言
 - 关系的定义 ● 二元关系
- ② 关系的表示方法 ◎ 集合表示法 ◎ 矩阵表示法
- 关系图3 关系的一般属性● 自反关系● 反自反关系
 - 对称关系 ● 反对称关系 ● 传递关系
- 4 等价关系与集合的划分 ● 等价关系
 - 等价关系常用的等价关系
 - 等价类
 - 等价关系与划分 ● 商集合
- 5 偏序关系 ● 偏序关系的定义 ● 拟序
 - ●字典序关系 ●偏序关系的Hass图 ●偏序关系的特殊元素
 - ●偏序关系自

- F ⇔ G的含义是F和G具有相同的真值表;
- ⇔具有三性: 自反, 对称和传递;
- 这样可以按照具有相同真值表的属性将集合P进行分类
- 每类实际上是P的子集合;
- 每类中的每个公式的真值表相同,即类中的任何两个公式都 有关系⇔
- 不同的类之间是两两不相交;或者说如果相交就是同一个 类;
- P中的每个元素一定在某个类中:
- 分类将集合中的元素等同起来;即在关系⇔下每类中所有元素的性态是一致的,应此可以用类中的任意一元素代表类的 所有成员,从否定现了对集合的抽象

Example (命题公式集合 \mathcal{P} 上的逻辑恒等关系 \Leftrightarrow)

- $F \Leftrightarrow G$ 的含义是F和G具有相同的真值表;

- F ⇔ G的含义是F和G具有相同的真值表;
- ⇔具有三性: 自反, 对称和传递;
- 这样可以按照具有相同真值表的属性将集合P进行分类
- 每类实际上是P的子集合;
- 每类中的每个公式的真值表相同,即类中的任何两个公式者 七、
 - 月大尔⇔
- 不同的矣之則定两两不相父; 或者说如果相父就定问一个 光·
- P中的每个元素一定在某个类中;
- ◆ 分类将集合中的元素等同起来;即在关系⇔下每类中所有元素从上。

- F ⇔ G的含义是F和G具有相同的真值表;
- ◆具有三性: 自反, 对称和传递;
- 这样可以按照具有相同真值表的属性将集合₽进行分类。

Example

- F ⇔ G的含义是F和G具有相同的真值表;
- ⇔具有三性: 自反, 对称和传递;
- 这样可以按照具有相同真值表的属性将集合P进行分类,
- 每类实际上是P的子集合;

Example

- F ⇔ G的含义是F和G具有相同的真值表;
- ⇔具有三性: 自反, 对称和传递;
- 这样可以按照具有相同真值表的属性将集合P进行分类,
- 每类实际上是P的子集合;
- 每类中的每个公式的真值表相同, 即类中的任何两个公式都 有关系⇔

Example (命题公式集合 \mathcal{P} 上的逻辑恒等关系 \Leftrightarrow)

- F ⇔ G的含义是F和G具有相同的真值表;
- ⇔具有三性: 自反, 对称和传递;
- 这样可以按照具有相同真值表的属性将集合P进行分类、
- 每类实际上是P的子集合;
- 每类中的每个公式的真值表相同, 即类中的任何两个公式都 有关系⇔
- 不同的类之间是两两不相交;或者说如果相交就是同一个 类;

Example (命题公式集合 \mathcal{P} 上的逻辑恒等关系 \Leftrightarrow)

- F ⇔ G的含义是F和G具有相同的真值表;
- ⇔具有三性: 自反, 对称和传递;
- 这样可以按照具有相同真值表的属性将集合P进行分类、
- 每类实际上是P的子集合;
- 每类中的每个公式的真值表相同,即类中的任何两个公式都 有关系⇔
- 不同的类之间是两两不相交;或者说如果相交就是同一个 类;
- ▶中的每个元素一定在某个类中;

イロト イ団ト イヨト

- F ⇔ G的含义是F和G具有相同的真值表;
- ⇔具有三性: 自反, 对称和传递;
- 这样可以按照具有相同真值表的属性将集合₽进行分类,
- 每类实际上是₽的子集合;
- 每类中的每个公式的真值表相同,即类中的任何两个公式都 有关系⇔
- 不同的类之间是两两不相交;或者说如果相交就是同一个 类;
- P中的每个元素一定在某个类中;
- ◆ 分类将集合中的元素等同起来;即在关系⇔下每类中所有元素的性态是一致的,应此可以用类中的任意一元素代表类的所有成员;从而实现了对集合的抽象.

等价关系

Definition (等价关系, Equivalence)

设 \mathbb{R} ⊆ A^2 , \mathbb{R} 是等价关系, 当且仅当, \mathbb{R} 同时满足下三条件:

- 况是自反的:
- 人定对称的
- R是传递的.

Example

 $A = \{a, b, c, d, e, f\},$ R的关系图如下

等价关系

Definition (等价关系, Equivalence)

设 \mathbb{R} ⊆ A^2 , \mathbb{R} 是等价关系, 当且仅当, \mathbb{R} 同时满足下三条件:

- R是自反的;
- 一人是不了不明
- R是传递的.

Example

 $A = \{a, b, c, d, e, f\}$, 况的关系图如下

Definition (等价关系, Equivalence)

设 \mathbb{R} ⊆ A^2 , \mathbb{R} 是等价关系, 当且仅当, \mathbb{R} 同时满足下三条件:

- R是自反的;
- 尺是对称的;
- 尺是传递的.

Example

 $A = \{a, b, c, d, e, f\},$ 况的关系图如下:

等价关系

Definition (等价关系, Equivalence)

设 \mathbb{R} ⊆ A^2 , \mathbb{R} 是等价关系, 当且仅当, \mathbb{R} 同时满足下三条件:

- R是自反的;
- R是对称的;
- R是传递的.

Example

 $A = \{a, b, c, d, e, f\}, \mathcal{R}$ 的关系图如下:

等价关系

Definition (等价关系, Equivalence)

设 $R \subseteq A^2$, R是等价关系, 当且仅当, R同时满足下三条件:

- R是自反的;
- R是对称的;
- R是传递的.

Example

 $A = \{a, b, c, d, e, f\}$, R的关系图如下:

常用的恒等关系

- 全域关系A²;
- 恒等关系1A
- 逻辑恒等关系⇔;
- 集合相等关系

- 全域关系A²;
- 恒等关系1A
- 逻辑恒等关系⇔;
- 集合相等关系

- 全域关系A²;
- 恒等关系1A
- 逻辑恒等关系⇔;
- 集合相等关系.

- 全域关系A²;
- 恒等关系1A
- 逻辑恒等关系⇔;
- 集合相等关系

常用的恒等关系

- 全域关系A²;
- 恒等关系1A
- 逻辑恒等关系⇔;
- 集合相等关系.

同余关系(1/2)

关系的定义

Example (同余关系, Congruence Relation)

设 \mathbb{Z} 是整数集合, k∈ \mathbb{N} , k同余关系=k定义如下: m = n, iff. $\exists i \in \mathbb{Z} \land m - n = ki$

也记为: $m \equiv n \pmod{k}$, 该关系也称模k关系(modulo k).

- Proof.

同余关系(1/2)

关系的定义

Example (同余关系, Congruence Relation)

设 \mathbb{Z} 是整数集合, k∈ \mathbb{N} , k同余关系=k定义如下:

m = k n, iff, $\exists i \in \mathbb{Z} \land m - n = ki$

也记为: $m \equiv n \pmod{k}$, 该关系也称模k关系(modulo k). Proof.

- $\mathbf{0} \quad \forall m \in \mathbb{Z}, \ m-m=0 \cdot k, \ \therefore \ m=k \ m;$

关系的定义

Example (同余关系, Congruence Relation)

设 \mathbb{Z} 是整数集合, k∈ \mathbb{N} , k同余关系=k定义如下: m = k n, iff, $\exists i \in \mathbb{Z} \land m - n = ki$

也记为: $m \equiv n \pmod{k}$, 该关系也称模k关系(modulo k).

Proof.

- $\mathbf{0} \quad \forall m \in \mathbb{Z}, \ m-m=0 \cdot k, \ \therefore \ m=k \ m;$
- ② if m = k n, m n = ki, $\therefore n m = (-i)k$, n = k m;

同余关系(1/2)

关系的定义

Example (同余关系, Congruence Relation)

设 \mathbb{Z} 是整数集合, k∈ \mathbb{N} , k同余关系=k定义如下: m = n, iff. $\exists i \in \mathbb{Z} \land m - n = ki$

也记为: $m \equiv n \pmod{k}$, 该关系也称模k关系(modulo k).

Proof.

- $\mathbf{0} \quad \forall m \in \mathbb{Z}, \ m-m=0 \cdot k, \ \therefore \ m=k \ m;$
- ② if m = k n, m n = ki, $\therefore n m = (-i)k$, n = k m;
- \bullet if m = k n, n = k p, $\therefore m n = ki \land n p = ki$, $\therefore m p = ki$ k(i+i), : m = k p

等价关系与集合的划分

Example $(=_4)$

$$\{\ldots,-11,-7,-3,1,5,9,13,\ldots\}$$

$$\{\ldots,-10,-6,-2,2,6,10,14,\ldots\}$$

$$\{\ldots, -9, -5, -1, 3, 7, 11, 15, \ldots\}$$

$$\{\ldots, -8, -4, 0, 4, 8, 12, 16\ldots\}$$

Example $(=_4)$

• 同0有=4的所有集合是:

$$\{\ldots, -12, -8, -4, 0, 4, 8, 12, \ldots\}$$

$$\{\ldots,-11,-7,-3,1,5,9,13,\ldots\}$$

$$\{\ldots,-10,-6,-2,2,6,10,14,\ldots\}$$

$$\{\ldots, -9, -5, -1, 3, 7, 11, 15, \ldots\}$$

$$\{\ldots, -8, -4, 0, 4, 8, 12, 16\ldots\}$$

Example $(=_4)$

• 同0有=4的所有集合是:

$$\{\ldots, -12, -8, -4, 0, 4, 8, 12, \ldots\}$$

• 同1有=4的所有集合是:

$$\{\ldots,-11,-7,-3,1,5,9,13,\ldots\}$$

• 同2有=4的所有集合是:

$$\{\ldots,-10,-6,-2,2,6,10,14,\ldots\}$$

• 同3有=4的所有集合是:

$$\{\ldots,-9,-5,-1,3,7,11,15,\ldots\}$$

● 同4有=4的所有集合是: (与①相同

$$\{\ldots, -8, -4, 0, 4, 8, 12, 16\ldots\}$$

•(分成4个类)

Example $(=_4)$

- 同0有=4的所有集合是:
 - $\{\ldots, -12, -8, -4, 0, 4, 8, 12, \ldots\}$
- 同1有=4的所有集合是:

$$\{\ldots,-11,-7,-3,1,5,9,13,\ldots\}$$

• 同2有=4的所有集合是:

$$\{\ldots, -10, -6, -2, 2, 6, 10, 14, \ldots\}$$

关系的定义

Example $(=_4)$

- 同0有=4的所有集合是:
 - $\{\ldots,-12,-8,-4,0,4,8,12,\ldots\}$
- 同1有=4的所有集合是:

$$\{\ldots,-11,-7,-3,1,5,9,13,\ldots\}$$

• 同2有=4的所有集合是:

$$\{\ldots, -10, -6, -2, 2, 6, 10, 14, \ldots\}$$

• 同3有=4的所有集合是:

$$\{\ldots,-9,-5,-1,3,7,11,15,\ldots\}$$

● 同4有=4的所有集合是: (与①相同

$$\{\ldots, -8, -4, 0, 4, 8, 12, 16\ldots\}$$

•(分成4个类)

关系的定义

Example $(=_4)$

- 同0有=4的所有集合是:
 - $\{\ldots, -12, -8, -4, 0, 4, 8, 12, \ldots\}$
- 同1有=4的所有集合是:

$$\{\ldots,-11,-7,-3,1,5,9,13,\ldots\}$$

● 同2有=4的所有集合是:

$$\{\ldots, -10, -6, -2, 2, 6, 10, 14, \ldots\}$$

● 同3有=4的所有集合是:

$$\{\ldots, -9, -5, -1, 3, 7, 11, 15, \ldots\}$$

● 同4有=4的所有集合是: (与①相同

$$\{\ldots, -8, -4, 0, 4, 8, 12, 16\ldots\}$$

Example $(=_4)$

- 同0有=4的所有集合是:
 - $\{\ldots, -12, -8, -4, 0, 4, 8, 12, \ldots\}$
- 同1有=4的所有集合是:

$$\{\ldots,-11,-7,-3,1,5,9,13,\ldots\}$$

● 同2有=4的所有集合是:

$$\{\ldots, -10, -6, -2, 2, 6, 10, 14, \ldots\}$$

● 同3有=4的所有集合是:

$$\{\ldots, -9, -5, -1, 3, 7, 11, 15, \ldots\}$$

● 同4有=4的所有集合是: (与①相同

$$\{\ldots, -8, -4, 0, 4, 8, 12, 16\ldots\}$$

•(分成4个类)

Example (等比关系)

设 \mathbb{Z} 是整数集合, $\mathbb{Z} \times (\mathbb{Z} - \{0\})$ 上的等比关系 \mathbb{Q} 定义如下: $\langle a, b \rangle \mathbb{Q} \langle c, d \rangle$, iff, ad = bc

则, Q是等价关系.

Example (Q)

等比关系

Example (等比关系)

设 \mathbb{Z} 是整数集合, $\mathbb{Z} \times (\mathbb{Z} - \{0\})$ 上的等比关系 \mathbb{Q} 定义如下: $\langle a, b \rangle \mathbb{Q} \langle c, d \rangle$, iff, ad = bc

则, Q是等价关系.

Example (Q)

- 同(0,1)有Q的所有集合是:
 - $\{\ldots,\langle 0,-2\rangle,\langle 0,-1\rangle,\langle 0,1\rangle,\langle 0,2\rangle,\langle 0,3\rangle,\ldots\}$
- 同⟨1,2⟩有♀的所有集合是:
 - $\{\ldots,\langle-3,-6\rangle,\langle-2,-4\rangle,\langle1,2\rangle,\langle2,4\rangle,\langle3,6\rangle,\ldots\}$
- 同⟨-1,2⟩有Q的所有集合是:
 - $\{\ldots,\langle-3,6\rangle,\langle-2,4\rangle,\langle-1,2\rangle,\langle1,-2\rangle,\langle2,-4\rangle,\ldots\}$

等比关系

Example (等比关系)

设 \mathbb{Z} 是整数集合, $\mathbb{Z} \times (\mathbb{Z} - \{0\})$ 上的等比关系 \mathbb{Q} 定义如下: $\langle a, b \rangle \mathbb{Q} \langle c, d \rangle$, iff, ad = bc

则, Q是等价关系.

Example (Q)

- 同⟨0,1⟩有Q的所有集合是:
 - $\{\ldots,\langle 0,-2\rangle,\langle 0,-1\rangle,\langle 0,1\rangle,\langle 0,2\rangle,\langle 0,3\rangle,\ldots\}$
- 同〈1,2〉有②的所有集合是:
 - $\{\ldots,\langle-3,-6\rangle,\langle-2,-4\rangle,\langle1,2\rangle,\langle2,4\rangle,\langle3,6\rangle,\ldots\}$
- 同⟨-1,2⟩有Q的所有集合是:
 - $\{\ldots,\langle -3,6\rangle,\langle -2,4\rangle,\langle -1,2\rangle,\langle 1,-2\rangle,\langle 2,-4\rangle,\ldots\}$

等比关系

Example (等比关系)

设 \mathbb{Z} 是整数集合, $\mathbb{Z} \times (\mathbb{Z} - \{0\})$ 上的等比关系 \mathbb{Q} 定义如下: $\langle a, b \rangle \mathbb{Q} \langle c, d \rangle$, iff, ad = bc

则, Q是等价关系.

Example (Q)

● 同〈0,1〉有②的所有集合是:

$$\{\ldots,\langle 0,-2\rangle,\langle 0,-1\rangle,\langle 0,1\rangle,\langle 0,2\rangle,\langle 0,3\rangle,\ldots\}$$

● 同〈1,2〉有Q的所有集合是:

$$\{\ldots,\langle -3,-6\rangle,\langle -2,-4\rangle,\langle 1,2\rangle,\langle 2,4\rangle,\langle 3,6\rangle,\ldots\}$$

- 同⟨-1,2⟩有Q的所有集合是
 - $\{\ldots,\langle -3,6\rangle,\langle -2,4\rangle,\langle -1,2\rangle,\langle 1,-2\rangle,\langle 2,-4\rangle,\ldots\}$

等比关系

关系的定义

Example (等比关系)

设 \mathbb{Z} 是整数集合, $\mathbb{Z} \times (\mathbb{Z} - \{0\})$ 上的等比关系 \mathbb{Q} 定义如下: $\langle a,b\rangle \mathcal{Q}\langle c,d\rangle$, iff, ad=bc

则, Q是等价关系.

Example (Q)

- 同⟨0,1⟩有Q的所有集合是: $\{\ldots,\langle 0,-2\rangle,\langle 0,-1\rangle,\langle 0,1\rangle,\langle 0,2\rangle,\langle 0,3\rangle,\ldots\}$
- 同 $\langle 1, 2 \rangle$ 有Q的所有集合是: $\{\ldots,\langle -3,-6\rangle,\langle -2,-4\rangle,\langle 1,2\rangle,\langle 2,4\rangle,\langle 3,6\rangle,\ldots\}$
- 同 $\langle -1,2\rangle$ 有Q的所有集合是: $\{\ldots,\langle -3,6\rangle,\langle -2,4\rangle,\langle -1,2\rangle,\langle 1,-2\rangle,\langle 2,-4\rangle,\ldots\}$

极限相等关系

Example (极限相等关系)

设 $\mathbf{R} = \{\langle x_n \rangle | \langle x_n \rangle$ 是有理数收敛序列 $\}$, \mathbf{R} 上的极限相等关系 \mathcal{L} 定义如下:

$$\langle x_n \rangle \mathcal{L} \langle y_n \rangle$$
, iff, $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n$

则, L是等价关系.

Example (极限相等关系)

设 $\mathbf{R} = \{\langle x_n \rangle | \langle x_n \rangle$ 是有理数收敛序列 $\}$, \mathbf{R} 上的极限相等关系 \mathcal{L} 定义如下:

$$\langle x_n \rangle \mathcal{L} \langle y_n \rangle$$
, iff, $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n$

则, L是等价关系.

- 序列: a = 1,1,1,...和序列b = 0.9,0.99,0.999,...有关系L
- 设1 = {⟨x_n⟩ | ⟨x_n⟩La}, 该集合就是实数1.

极限相等关系

Example (极限相等关系)

设 $\mathbf{R} = \{\langle x_n \rangle | \langle x_n \rangle$ 是有理数收敛序列 $\}$, **R**上的极限相等关系 \mathcal{L} 定 义如下:

$$\langle x_n \rangle \mathcal{L} \langle y_n \rangle$$
, iff, $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n$

则, L是等价关系.

- $\not = P$ $= 1, 1, 1, \dots$ $= 1, 1, 1, \dots$ $= 0.9, 0.99, 0.999, \dots$ $= 0.9, 0.999, \dots$

极限相等关系

Example (极限相等关系)

设 $\mathbf{R} = \{\langle x_n \rangle | \langle x_n \rangle$ 是有理数收敛序列 $\}$, **R**上的极限相等关系 \mathcal{L} 定 义如下:

$$\langle x_n \rangle \mathcal{L} \langle y_n \rangle$$
, iff, $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n$

则, L是等价关系.

- $\not = P$ $= 1, 1, 1, \dots$ $= 1, 1, 1, \dots$ $= 0.9, 0.99, 0.999, \dots$ $= 0.9, 0.999, \dots$
- 设 $\mathbf{1} = \{\langle x_n \rangle | \langle x_n \rangle \mathcal{L}a \}$, 该集合就是实数1.

Definition (等价类, Equivalent class)

设 \mathcal{R} 是A上的等价关系, $a \in A$, a的等价类 $[a]_{\mathcal{R}}$ 定义如下: $[a]_{\mathcal{R}} \triangleq \{x \mid x \in A \land x \mathcal{R} a\}$ a称为等价类[a]R的代表元.

等价类

Definition (等价类, Equivalent class)

设 \mathcal{R} 是A上的等价关系, $a \in A$, a的等价类 $[a]_{\mathcal{R}}$ 定义如下: $[a]_{\mathcal{R}} \triangleq \{x \mid x \in A \land x \mathcal{R} a\}$

Example

a称为等价类[a]R的代表元.

等价类

Definition (等价类, Equivalent class)

设 \mathcal{R} 是A上的等价关系, $a \in A$, a的等价类 $[a]_{\mathcal{R}}$ 定义如下: $[a]_{\mathcal{R}} \triangleq \{x \mid x \in A \land x \mathcal{R} a\}$

Example

- $[a]_{\mathcal{R}} = [b]_{\mathcal{R}} = \{a, b\}, [c]_{\mathcal{R}} = \{c\}, [d]_{\mathcal{R}} = [e]_{\mathcal{R}} = [f]_{\mathcal{R}} = [e]_{\mathcal{R}} = [f]_{\mathcal{R}} = [e]_{\mathcal{R}} = [$ { d, e, f };

a称为等价类[a]R的代表元.

a称为等价类 a R 的代表元.

Definition (等价类, Equivalent class)

设况是A上的等价关系, $a \in A$, a的等价类 $[a]_{\mathcal{R}}$ 定义如下: $[a]_{\mathcal{R}} \triangleq \{x \mid x \in A \land x \mathcal{R} a\}$

- $[a]_{\mathcal{R}} = [b]_{\mathcal{R}} = \{a, b\}, [c]_{\mathcal{R}} = \{c\}, [d]_{\mathcal{R}} = [e]_{\mathcal{R}} = [f]_{\mathcal{R}} = \{d, e, f\};$
- $[0]_{=4} = [4]_{=4} = \{\ldots, -12, -8, -4, 0, 4, 8, 12, \ldots\};$
- $\{(1,2) \mid Q = \{(2,4) \mid Q = \{($
- $\bullet \ [\langle 1 \rangle]_{\mathcal{L}} = \{ \langle x_n \rangle \mid \langle x_n \rangle \mathcal{R}1 \}.$

a称为等价类[a]R的代表元.

Definition (等价类, Equivalent class)

设 \mathcal{R} 是A上的等价关系, $a \in A$,a的等价类 $[a]_{\mathcal{R}}$ 定义如下: $[a]_{\mathcal{R}} \triangleq \{x \mid x \in A \land x \mathcal{R} a\}$

- $[a]_{\mathcal{R}} = [b]_{\mathcal{R}} = \{a, b\}, [c]_{\mathcal{R}} = \{c\}, [d]_{\mathcal{R}} = [e]_{\mathcal{R}} = [f]_{\mathcal{R}} = \{d, e, f\};$
- $[0]_{=4} = [4]_{=4} = \{\ldots, -12, -8, -4, 0, 4, 8, 12, \ldots\};$
- $[\langle 1, 2 \rangle]_{\mathcal{Q}} = [\langle 2, 4 \rangle]_{\mathcal{Q}} = \{\dots, \langle -3, -6 \rangle, \langle -2, -4 \rangle, \langle 1, 2 \rangle, \langle 2, 4 \rangle, \langle 3, 6 \rangle, \dots \};$
- $\bullet \ [\langle 1 \rangle]_{\mathcal{L}} = \{ \langle x_n \rangle \mid \langle x_n \rangle \mathcal{R} 1 \}$

关系的定义

Definition (等价类, Equivalent class)

设 \mathcal{R} 是A上的等价关系, $a \in A$,a的等价类[a] \mathcal{R} 定义如下: [a] \mathcal{R} ≜ { $x \mid x \in A \land x \mathcal{R}$ a}

a称为等价类[a]R的代表元.

- $[a]_{\mathcal{R}} = [b]_{\mathcal{R}} = \{a, b\}, [c]_{\mathcal{R}} = \{c\}, [d]_{\mathcal{R}} = [e]_{\mathcal{R}} = [f]_{\mathcal{R}} = \{d, e, f\};$
- $[0]_{=4} = [4]_{=4} = \{\ldots, -12, -8, -4, 0, 4, 8, 12, \ldots\};$
- $[\langle 1, 2 \rangle]_{\mathcal{Q}} = [\langle 2, 4 \rangle]_{\mathcal{Q}} = \{\dots, \langle -3, -6 \rangle, \langle -2, -4 \rangle, \langle 1, 2 \rangle, \langle 2, 4 \rangle, \langle 3, 6 \rangle, \dots \};$
- $[\langle 1 \rangle]_{\mathcal{L}} = \{ \langle x_n \rangle \mid \langle x_n \rangle \mathcal{R} 1 \}.$

Theorem

设R是A上的等价关系,则下述三条件等价

① $a \mathcal{R} b$; ② $[a]_{\mathcal{R}} = [b]_{\mathcal{R}}$; ③ $[a]_{\mathcal{R}} \cap [b]_{\mathcal{R}} \neq \emptyset$.

Proof

① \Longrightarrow ②: aRb, 要证明集合相等:

 $2 \Longrightarrow 3$: trivial;

 $3 \Longrightarrow 1$:

Theorem

设R是A上的等价关系,则下述三条件等价

(1) $a \mathcal{R} b$; (2) $[a]_{\mathcal{R}} = [b]_{\mathcal{R}}$; (3) $[a]_{\mathcal{R}} \cap [b]_{\mathcal{R}} \neq \emptyset$.

- ① \Longrightarrow ②: aRb, 要证明集合相等:
- $(2) \Longrightarrow (3)$: trivial;
- $(3) \Longrightarrow (1)$:

Theorem

设R是A上的等价关系,则下述三条件等价

(1) $a \mathcal{R} b$; (2) $[a]_{\mathcal{R}} = [b]_{\mathcal{R}}$; (3) $[a]_{\mathcal{R}} \cap [b]_{\mathcal{R}} \neq \emptyset$.

Proof.

① \Longrightarrow ②: aRb, 要证明集合相等:

- $\forall x \in [a]_{\mathcal{R}}, \ \emptyset, \ x \mathcal{R} \ a, \ a \mathcal{R} \ b;$

- $(2) \Longrightarrow (3)$: trivial;
- $(3) \Longrightarrow (1)$:

Theorem

设R是A上的等价关系,则下述三条件等价

(1) $a \mathcal{R} b$; (2) $[a]_{\mathcal{R}} = [b]_{\mathcal{R}}$; (3) $[a]_{\mathcal{R}} \cap [b]_{\mathcal{R}} \neq \emptyset$.

- ① \Longrightarrow ②: aRb, 要证明集合相等:
 - $\forall x \in [a]_{\mathcal{R}}$, \emptyset , $x \mathcal{R} a$, $a \mathcal{R} b$;
 - \bullet $\therefore \times \mathcal{R} b$, So $x \in [b]_{\mathcal{R}}$; $\therefore [a]_{\mathcal{R}} \subseteq [b]_{\mathcal{R}}$;
- $(2) \Longrightarrow (3)$: trivial;
- $(3) \Longrightarrow (1)$:

Theorem

设R是A上的等价关系,则下述三条件等价

(1) $a \mathcal{R} b$; (2) $[a]_{\mathcal{R}} = [b]_{\mathcal{R}}$; (3) $[a]_{\mathcal{R}} \cap [b]_{\mathcal{R}} \neq \emptyset$.

- ① \Longrightarrow ②: aRb, 要证明集合相等:
 - $\forall x \in [a]_{\mathcal{R}}, \ \emptyset, \ x \mathcal{R} \ a, \ a \mathcal{R} \ b;$
 - $\therefore x \mathcal{R} b$, So $x \in [b]_{\mathcal{R}}$; $\therefore [a]_{\mathcal{R}} \subseteq [b]_{\mathcal{R}}$;
 - : \mathcal{R} 是对称关系,同理可证明: $[b]_{\mathcal{R}} \subseteq [a]_{\mathcal{R}}$; : $[a]_{\mathcal{R}} = [b]_{\mathcal{R}}$.
- $2 \implies 3$: trivial;
- $\mathfrak{G} \Longrightarrow \mathfrak{D}$:
 - \bullet : $[a]_{\mathcal{R}} \cap [b]_{\mathcal{R}} \neq \emptyset$, $\exists c \in [a]_{\mathcal{R}} \cap [b]_{\mathcal{R}}$
 - ∴ cRa ∧ cRb, So aRc ∧ cRb
 - :. a R b.

Theorem

关系的定义

设R是A上的等价关系,则下述三条件等价

(1) $a \mathcal{R} b$; (2) $[a]_{\mathcal{R}} = [b]_{\mathcal{R}}$; (3) $[a]_{\mathcal{R}} \cap [b]_{\mathcal{R}} \neq \emptyset$.

- ① ⇒ ②: a R b, 要证明集合相等:
 - $\forall x \in [a]_{\mathcal{R}}, \ \emptyset, \ x \mathcal{R} \ a, \ a \mathcal{R} \ b;$
 - $\therefore x \mathcal{R} b$, So $x \in [b]_{\mathcal{R}}$; $\therefore [a]_{\mathcal{R}} \subseteq [b]_{\mathcal{R}}$;
 - : \mathcal{R} 是对称关系,同理可证明: $[b]_{\mathcal{R}} \subseteq [a]_{\mathcal{R}}$; : $[a]_{\mathcal{R}} = [b]_{\mathcal{R}}$.
- $2 \Longrightarrow 3$: trivial;
- $3 \Longrightarrow 1$:
 - $\bullet :: [a]_{\mathcal{R}} \cap [b]_{\mathcal{R}} \neq \emptyset, \exists c \in [a]_{\mathcal{R}} \cap [b]_{\mathcal{R}};$
 - ∴ cRa∧cRb, SoaRc∧cRb
 - ∴ a R b.

Theorem

设R是A上的等价关系,则下述三条件等价

(1) $a \mathcal{R} b$; (2) $[a]_{\mathcal{R}} = [b]_{\mathcal{R}}$; (3) $[a]_{\mathcal{R}} \cap [b]_{\mathcal{R}} \neq \emptyset$.

Proof.

① ⇒ ②: a R b, 要证明集合相等:

- $\forall x \in [a]_{\mathcal{R}}, \ \emptyset, \ x \mathcal{R} \ a, \ a \mathcal{R} \ b;$
- $\therefore x \mathcal{R} b$, So $x \in [b]_{\mathcal{R}}$; $\therefore [a]_{\mathcal{R}} \subseteq [b]_{\mathcal{R}}$;
- : \mathcal{R} 是对称关系,同理可证明: $[b]_{\mathcal{R}} \subseteq [a]_{\mathcal{R}}$; : $[a]_{\mathcal{R}} = [b]_{\mathcal{R}}$.
- $2 \Longrightarrow 3$: trivial;
- $3 \Longrightarrow 1$:
 - $\bullet :: [a]_{\mathcal{R}} \cap [b]_{\mathcal{R}} \neq \emptyset, \exists c \in [a]_{\mathcal{R}} \cap [b]_{\mathcal{R}};$
 - $\therefore cRa \land cRb$, So $aRc \land cRb$;
 - :. a R b.

Theorem

设R是A上的等价关系,则下述三条件等价

(1) $a \mathcal{R} b$; (2) $[a]_{\mathcal{R}} = [b]_{\mathcal{R}}$; (3) $[a]_{\mathcal{R}} \cap [b]_{\mathcal{R}} \neq \emptyset$.

Proof.

① ⇒ ②: a R b, 要证明集合相等:

- $\forall x \in [a]_{\mathcal{R}}, \ M, \ x \mathcal{R} \ a, \ a \mathcal{R} \ b;$
- \bullet $\therefore \times \mathcal{R} b$, So $\times \in [b]_{\mathcal{R}}$; $\therefore [a]_{\mathcal{R}} \subseteq [b]_{\mathcal{R}}$;
- : \mathcal{R} 是对称关系,同理可证明: $[b]_{\mathcal{R}} \subseteq [a]_{\mathcal{R}}$; : $[a]_{\mathcal{R}} = [b]_{\mathcal{R}}$.
- $2 \Longrightarrow 3$: trivial;
- $3 \Longrightarrow 1$:
 - $\bullet :: [a]_{\mathcal{R}} \cap [b]_{\mathcal{R}} \neq \emptyset, \exists c \in [a]_{\mathcal{R}} \cap [b]_{\mathcal{R}};$
 - $\therefore cRa \wedge cRb$, So $aRc \wedge cRb$;
 - ∴ a R b.

- 等价类要么相等, 要么不相交;
- 等价类与代表元无关;
- 同一等价类中的元素两两都有关系;
- 不相交的等价类元素之间没有关系;
- 等价类刻画了分类的本质

- 等价类要么相等, 要么不相交;

- 等价类要么相等,要么不相交;
- 等价类与代表元无关;
- 同一等价类中的元素两两都有关系;
- 不相交的等价类元素之间没有关系;
- 等价类刻画了分类的本质

- 等价类要么相等,要么不相交;
- 等价类与代表元无关;
- 同一等价类中的元素两两都有关系;

- 等价类要么相等, 要么不相交;
- 等价类与代表元无关;
- 同一等价类中的元素两两都有关系;
- 不相交的等价类元素之间没有关系;

- 等价类要么相等, 要么不相交;
- 等价类与代表元无关;
- 同一等价类中的元素两两都有关系;
- 不相交的等价类元素之间没有关系;
- 等价类刻画了分类的本质.

A是一集合, A的一个划分是一集簇:

$$\Pi = \{ A_i \mid i \in I(\text{指标集}), A_i \subseteq A \land A_i \neq \emptyset \}$$

该集簇满足下述两条件:

$$\bullet \bigcup A_i = A;$$

• $\forall i, j \in I$, if $i \neq j$, then $A_i \cap A_j = \emptyset \vee A_i = A_j$

A是一集合, A的一个划分是一集簇:

$$\Pi = \{ A_i \mid i \in I(\text{指标集}), A_i \subseteq A \land A_i \neq \emptyset \}$$

该集簇满足下述两条件:

$$\bullet \bigcup_{i\in I}A_i=A;$$

• $\forall i, j \in I$, if $i \neq j$, then $A_i \cap A_j = \emptyset \vee A_i = A_j$

A是一集合, A的一个划分是一集簇:

$$\Pi = \{ A_i \mid i \in I(\text{指标集}), A_i \subseteq A \land A_i \neq \emptyset \}$$

该集簇满足下述两条件:

$$\bullet \bigcup_{i\in I} A_i = A;$$

• $\forall i, j \in I$, if $i \neq j$, then $A_i \cap A_j = \emptyset \vee A_i = A_j$.

A是一集合, A的一个划分是一集簇:

$$\Pi = \{A_i \mid i \in I(\text{指标集}), A_i \subseteq A \land A_i \neq \emptyset\}$$

该集簇满足下述两条件:

$$\bullet \bigcup_{i\in I} A_i = A;$$

•
$$\forall i, j \in I$$
, if $i \neq j$, then $A_i \cap A_j = \emptyset \vee A_i = A_j$.

Theorem

设R是集合A上的等价关系,则R的等价类集簇:

$$\Pi_{\mathcal{R}} = \{ [a]_{\mathcal{R}} \mid a \in A \}$$

is a partition of A, 称之为由等价关系R诱导的划分(induced).

等价类与划分的关系

Theorem

设R是集合A上的等价关系,则R的等价类集簇:

$$\Pi_{\mathcal{R}} = \{ [a]_{\mathcal{R}} \mid a \in A \}$$

is a partition of A, 称之为由等价关系R诱导的划分(induced).

等价类与划分的关系

Theorem

关系的定义

设R是集合A上的等价关系,则R的等价类集簇:

$$\Pi_{\mathcal{R}} = \{ [a]_{\mathcal{R}} \mid a \in A \}$$

is a partition of A, 称之为由等价关系R诱导的划分(induced).

Proof.

 $\bullet \ \forall b \in A, \ \because b \mathcal{R} b, \ \therefore b \in [b]_{\mathcal{R}} \subseteq \bigcup [a]_{\mathcal{R}};$

$$\therefore A \subseteq \bigcup_{a \in A} [a]_{\mathcal{R}} \subseteq A; \therefore A = \bigcup_{a \in A} [a]_{\mathcal{R}};$$

等价类与划分的关系

Theorem

关系的定义

设R是集合A上的等价关系,则R的等价类集簇:

$$\Pi_{\mathcal{R}} = \{ [a]_{\mathcal{R}} \mid a \in A \}$$

is a partition of A, 称之为由等价关系R诱导的划分(induced).

Proof.

 $\bullet \ \forall b \in A, \ \because b \mathcal{R} b, \ \therefore b \in [b]_{\mathcal{R}} \subseteq \bigcup [a]_{\mathcal{R}};$

$$\therefore A \subseteq \bigcup_{a \in A} [a]_{\mathcal{R}} \subseteq A; \ \therefore A = \bigcup_{a \in A} [a]_{\mathcal{R}};$$

• 由上定理, if $[a]_{\mathcal{R}} \cap [b]_{\mathcal{R}} \neq \emptyset$, then $[a]_{\mathcal{R}} = [b]_{\mathcal{R}}$.


```
 \begin{aligned} \bullet & & [a]_{\mathcal{R}} = [b]_{\mathcal{R}} = \{ \ a, b \}; \\ & & [c]_{\mathcal{R}} = \{ \ c \}; \\ & & [d]_{\mathcal{R}} = [e]_{\mathcal{R}} = [f]_{\mathcal{R}} = \{ \ d, e, f \}; \\ & & \Pi_{\mathcal{R}} = \{ [a]_{\mathcal{R}}, [c]_{\mathcal{R}}, [d]_{\mathcal{R}} \} = \{ \{ \ a, b \}, \{ \ c \}, \{ \ d, e, f \} \}; \end{aligned}
```

- $[\langle 1,2 \rangle]_{\mathcal{Q}} = [\langle 2,4 \rangle]_{\mathcal{Q}} =$ $\{\dots,\langle -3,-6 \rangle,\langle -2,-4 \rangle,\langle 1,2 \rangle,\langle 2,4 \rangle,\langle 3,6 \rangle,\dots\}:$ $\Pi_{\mathcal{Q}} = \{ [\langle a,b \rangle]_{\mathcal{Q}} \mid a \in \mathbb{Z} \land b \in \mathbb{Z} - \{0\} \} \triangleq \mathbb{Q}$
- $[\langle 1 \rangle]_{\mathcal{L}} = \{\langle x_n \rangle \mid \langle x_n \rangle \mathcal{L}1\}$: $\Pi_{\mathcal{L}} = \{[\langle x_n \rangle]_{\mathcal{L}} \mid \langle x_n \rangle \mathbb{B}_{\mathcal{L}} \text{ 数 原列}\} \triangleq \mathbb{R}$.

```
[a]_{\mathcal{R}} = [b]_{\mathcal{R}} = \{a, b\};
•
                [c]_{\mathcal{R}} = \{c\};
                [d]_{\mathcal{R}} = [e]_{\mathcal{R}} = [f]_{\mathcal{R}} = \{d, e, f\};
     \Pi_{\mathcal{R}} = \{ [a]_{\mathcal{R}}, [c]_{\mathcal{R}}, [d]_{\mathcal{R}} \} = \{ \{ a, b \}, \{ c \}, \{ d, e, f \} \};
```



```
[a]_{\mathcal{R}} = [b]_{\mathcal{R}} = \{a, b\};
           [c]_{\mathcal{R}} = \{ c \};
           [d]_{\mathcal{R}} = [e]_{\mathcal{R}} = [f]_{\mathcal{R}} = \{d, e, f\};
\Pi_{\mathcal{R}} = \{ [a]_{\mathcal{R}}, [c]_{\mathcal{R}}, [d]_{\mathcal{R}} \} = \{ \{ a, b \}, \{ c \}, \{ d, e, f \} \};
```

- $\Pi_{=a} = \{ [i]_{=a} \mid i \in \mathbb{Z} \}$ $= \{ [0]_{=4}, [1]_{=4}, [2]_{=4}, [3]_{=4} \};$

- $|a|_{\mathcal{R}} = |b|_{\mathcal{R}} = \{a, b\};$ $[c]_{\mathcal{R}} = \{ c \};$ $[d]_{\mathcal{R}} = [e]_{\mathcal{R}} = [f]_{\mathcal{R}} = \{d, e, f\};$ $\Pi_{\mathcal{R}} = \{ [a]_{\mathcal{R}}, [c]_{\mathcal{R}}, [d]_{\mathcal{R}} \} = \{ \{a,b\}, \{c\}, \{d,e,f\} \} \};$
- $\Pi_{=a} = \{ [i]_{=a} \mid i \in \mathbb{Z} \}$ $= \{ [0]_{=4}, [1]_{=4}, [2]_{=4}, [3]_{=4} \};$
- $\{\ldots,\langle -3,-6\rangle,\langle -2,-4\rangle,\langle 1,2\rangle,\langle 2,4\rangle,\langle 3,6\rangle,\ldots\}$: $\Pi_{\mathcal{O}} = \{ [\langle a, b \rangle]_{\mathcal{O}} \mid a \in \mathbb{Z} \land b \in \mathbb{Z} - \{0\} \} \triangleq \mathbb{Q}$

关系的定义

- $|a|_{\mathcal{R}} = [b]_{\mathcal{R}} = \{a, b\};$ $[c]_{\mathcal{R}} = \{c\};$ $[d]_{\mathcal{R}} = [e]_{\mathcal{R}} = [f]_{\mathcal{R}} = \{d, e, f\};$ $\Pi_{\mathcal{R}} = \{ [a]_{\mathcal{R}}, [c]_{\mathcal{R}}, [d]_{\mathcal{R}} \} = \{ \{a, b\}, \{c\}, \{d, e, f\} \} \};$
- $\Pi_{=a} = \{ [i]_{=a} \mid i \in \mathbb{Z} \}$ $= \{ [0]_{=4}, [1]_{=4}, [2]_{=4}, [3]_{=4} \};$
- $\{\ldots,\langle -3,-6\rangle,\langle -2,-4\rangle,\langle 1,2\rangle,\langle 2,4\rangle,\langle 3,6\rangle,\ldots\}$: $\Pi_{\mathcal{O}} = \{ [\langle a, b \rangle]_{\mathcal{O}} \mid a \in \mathbb{Z} \land b \in \mathbb{Z} - \{0\} \} \triangleq \mathbb{O}$
- $[\langle 1 \rangle]_{\mathcal{L}} = \{ \langle x_n \rangle \mid \langle x_n \rangle \mathcal{L}1 \}$: $\Pi_{\mathcal{C}} = \{ [\langle x_n \rangle]_{\mathcal{C}} | \langle x_n \rangle$ 是收敛序列 $\} \triangleq \mathbb{R}$.

等价关系与划分的等价

Theorem

设 Π 是集合A的一个划分, A上的关系 R_{Π} 定义如下: $a\mathcal{R}_{\Pi}b$ iff $\exists A_i \in \Pi \land a \in A_i \land b \in A_i$

则: ① R_{Π} 是A上的等价关系;

(2) 由 R_{Π} 诱导的划分 $\Pi_{R_{\Pi}}$ (简记为 Π')就是 Π .

等价关系与划分的等价

Theorem

 $\partial \Pi$ 是集合A的一个划分,A上的关系 \mathcal{R}_{Π} 定义如下: $a\mathcal{R}_{\Pi} b \quad \text{iff} \quad \exists A_i \in \Pi \land a \in A_i \land b \in A_i$

- 则: ① R_{Π} 是A上的等价关系;
 - ② 由 R_{Π} 诱导的划分 $\Pi_{R_{\Pi}}$ (简记为 Π')就是 Π .

Remark

由该定理知等价关系可以等同集合的划分;该思想是代数学最重要的思想之一.

(1)的证明

Proof.

Proof.

- **①** 自反性: $\forall a \in A = \bigcup_{i \in I} A_i$ $\therefore \exists A_i \land a \in A_i$. So $a \mathcal{R}_{\Pi} a$:

◆ロ > ◆昼 > ◆ 差 > ・ 差 ・ 夕 < ②</p>

Proof.

① 自反性: $\forall a \in A = \bigcup_{i \in I} A_i$

 $\therefore \exists A_i \land a \in A_i$, So $a \mathcal{R}_{\Pi} a$;

- ② 对称性: trivial;
- 6递性: 设aR_Πb ∧ bR_Πc;
 ∴∃A: A: ∈ Π ∧ a, b ∈ A: ∧ b, c ∈
 - $\therefore b \in A_i \cap A_j$, So $A_i \cap A_j \neq \emptyset$, $\mathbb{R}^p A_i = A_j$;
 - $\therefore a \in A_i \land c \in A_i$, So $a \mathcal{R}_{\Pi} c$.

Proof.

① 自反性: $\forall a \in A = \bigcup_{i \in I} A_i$ $\therefore \exists A_i \land a \in A_i$. So $a \mathcal{R}_{\Pi} a$:

② 对称性: trivial;

 传递性: 设aR_□ b ∧ bR_□ c: $\therefore \exists A_i, A_i \in \Pi \land a, b \in A_i \land b, c \in A_i$

∴ $b \in A_i \cap A_i$, So $A_i \cap A_i \neq \emptyset$, $PA_i = A_i$;

 $\therefore a \in A_i \land c \in A_i$. So $a \mathcal{R}_{\Pi} c$.

• 证明: if $[a]_{\mathcal{R}_{\Pi}} \cap A_i \neq \emptyset$, then $[a]_{\mathcal{R}_{\Pi}} = A_i$:

- $\bullet \ \Pi' = \{ [a]_{\mathcal{R}_{\Pi}} \mid a \in A \} \subseteq \Pi$

 $\bullet \Pi \subseteq \Pi'$

(c)hfwan

Proof(Ⅱ和II'都是集合的集合,需要证明集合的集合相等).

- 证明: if $[a]_{\mathcal{R}_{\Pi}} \cap A_i \neq \emptyset$, then $[a]_{\mathcal{R}_{\Pi}} = A_i$:
 - ① 设 $b \in [a]_{\mathcal{R}_{\Pi}} \cap A_i$,则 $a\mathcal{R}_{\Pi} b$;

 - ② 设 $x \in A_i$, $\therefore b \in A_i$, $\therefore x \mathcal{R}_{\Pi} b$, but $a \mathcal{R}_{\Pi} b$, $\therefore x \mathcal{R}_{\Pi} a$, $\mathfrak{P}x \in [a]_{\mathcal{R}_{\Pi}}$, $\therefore A_i \subseteq [a]_{\mathcal{R}_{\Pi}}$;
 - \oplus 故 $A_i = [a]_{\mathcal{R}_{\Pi}};$
- $\bullet \ \Pi' = \{ [a]_{\mathcal{R}_{\Pi}} \mid a \in A \} \subseteq \Pi$

 $\bullet \Pi \subseteq \Pi'$

关系的定义

Proof(Ⅱ和Ⅲ′都是集合的集合,需要证明集合的集合相等).

- 证明: if $[a]_{\mathcal{R}_{\Pi}} \cap A_i \neq \emptyset$, then $[a]_{\mathcal{R}_{\Pi}} = A_i$:
 - ① 设 $b \in [a]_{\mathcal{R}_{\Pi}} \cap A_i$, 则 $a\mathcal{R}_{\Pi} b$;
 - ② 设 $\forall x \in [a]_{\mathcal{R}_{\Pi}}$, 则 $\times \mathcal{R}_{\Pi}$ $a_i : \times \mathcal{R}_{\Pi}$ b_i , 即 $\exists A_j \in \Pi$, $x, b \in A_j$, 这 $\not\vdash b \in A_i \cap A_i \neq \emptyset$. $\therefore A_i = A_i$. 即 $x \in A_i$. $\therefore [a]_{\mathcal{R}_{\Pi}} \subseteq A_i$.

 - $\mathbf{\Phi}$ 故 $A_i = [a]_{\mathcal{R}_\Pi};$
- $\bullet \ \Pi' = \{ \ [a]_{\mathcal{R}_\Pi} \mid a \in A \} \subseteq \Pi$

 $\bullet \Pi \subseteq \Pi'$

(2)的证明

关系的定义

Proof(Π 和 Π' 都是集合的集合, 需要证明集合的集合相等).

- 证明: if $[a]_{\mathcal{R}_{\Pi}} \cap A_i \neq \emptyset$, then $[a]_{\mathcal{R}_{\Pi}} = A_i$:
 - ① 设 $b \in [a]_{\mathcal{R}_{\Pi}} \cap A_i$, 则 $a\mathcal{R}_{\Pi} b$;
 - ② 设 $\forall x \in [a]_{\mathcal{R}_{\Pi}}$, 则 $x \mathcal{R}_{\Pi} a$, $\therefore x \mathcal{R}_{\Pi} b$, 即 $\exists A_i \in \Pi, x, b \in A_i$, 这 样 $b \in A_i \cap A_i \neq \emptyset$, $\therefore A_i = A_i$, $px \in A_i$, $\therefore [a]_{\mathcal{R}_{TI}} \subseteq A_i$;

c hfwang

$Proof(\Pi n \Pi'$ 都是集合的集合,需要证明集合的集合相等).

- 证明: if $[a]_{\mathcal{R}_{\Pi}} \cap A_i \neq \emptyset$, then $[a]_{\mathcal{R}_{\Pi}} = A_i$:
 - ① 设 $b \in [a]_{\mathcal{R}_{\Pi}} \cap A_i$, 则 $a\mathcal{R}_{\Pi} b$;
 - ② 设 $\forall x \in [a]_{\mathcal{R}_{\Pi}}$, 则 $\times \mathcal{R}_{\Pi}$ $a_i \therefore \times \mathcal{R}_{\Pi}$ b_i 即 $\exists A_j \in \Pi, x, b \in A_j$, 这样 $b \in A_i \cap A_i \neq \emptyset$, $\therefore A_i = A_i$, 即 $x \in A_i$, $\therefore [a]_{\mathcal{R}_{\Pi}} \subseteq A_i$;
 - ③ 设 $x \in A_i$, $\therefore b \in A_i$, $\therefore x \mathcal{R}_{\Pi} b$, but $a \mathcal{R}_{\Pi} b$, $\therefore x \mathcal{R}_{\Pi} a$, $px \in [a]_{\mathcal{R}_{\Pi}}$, $\therefore A_i \subseteq [a]_{\mathcal{R}_{\Pi}}$;
- $\bullet \Pi' = \{ [a]_{\mathcal{R}_{\Pi}} \mid a \in A \} \subseteq \Pi$

 \bullet $\Pi \subseteq \Pi'$

(2)的证明

Proof(Π 和 Π '都是集合的集合, 需要证明集合的集合相等).

- 证明: if $[a]_{\mathcal{R}_{\Pi}} \cap A_i \neq \emptyset$, then $[a]_{\mathcal{R}_{\Pi}} = A_i$:
 - ① 设 $b \in [a]_{\mathcal{R}_{\Pi}} \cap A_i$, 则 $a\mathcal{R}_{\Pi} b$;
 - ② 设 $\forall x \in [a]_{\mathcal{R}_{\Pi}}$, 则 $x \mathcal{R}_{\Pi} a$, $\therefore x \mathcal{R}_{\Pi} b$, 即 $\exists A_i \in \Pi, x, b \in A_i$, 这 样 $b \in A_i \cap A_i \neq \emptyset$, $\therefore A_i = A_i$, $\operatorname{px} \in A_i$, $\therefore [a]_{\mathcal{R}_{TI}} \subseteq A_i$;
 - **③** 设 $x \in A_i$, $\therefore b \in A_i$, $\therefore x \mathcal{R}_{\Pi} b$, but $a \mathcal{R}_{\Pi} b$, $\therefore x \mathcal{R}_{\Pi} a$,
 - **4** 故 $A_i = [a]_{\mathcal{R}_{\pi i}}$

关系的定义

Proof(Π 和 Π' 都是集合的集合,需要证明集合的集合相等).

- 证明: if $[a]_{\mathcal{R}_{\Pi}} \cap A_i \neq \emptyset$, then $[a]_{\mathcal{R}_{\Pi}} = A_i$:
 - ① 设 $b \in [a]_{\mathcal{R}_{\Pi}} \cap A_i$, 则 $a\mathcal{R}_{\Pi} b$;
 - ② 设 $\forall x \in [a]_{\mathcal{R}_{\Pi}}$, 则 $\times \mathcal{R}_{\Pi}$ $a_i : \times \mathcal{R}_{\Pi}$ b_i 即 $\exists A_j \in \Pi, x, b \in A_j$, 这样 $b \in A_i \cap A_i \neq \emptyset$, $\therefore A_i = A_i$, 即 $x \in A_i$, $\therefore [a]_{\mathcal{R}_{\Pi}} \subseteq A_i$;
 - ③ 设 $x \in A_i$, $\therefore b \in A_i$, $\therefore x \mathcal{R}_{\Pi} b$, but $a \mathcal{R}_{\Pi} b$, $\therefore x \mathcal{R}_{\Pi} a$, $px \in [a]_{\mathcal{R}_{\Pi}}$, $\therefore A_i \subseteq [a]_{\mathcal{R}_{\Pi}}$;
- $\bullet \ \Pi' = \{ [a]_{\mathcal{R}_{\Pi}} \mid a \in A \} \subseteq \Pi$

 - ② ∴ $a \in [a]_{\mathcal{R}_{\Pi}} \cap A_i \neq \emptyset$,即 $[a]_{\mathcal{R}_{\Pi}} = A_i$,∴ $[a]_{\mathcal{R}_{\Pi}} \subseteq \Pi$
- \bullet $\Pi \subseteq \Pi'$

(2)的证明

关系的定义

Proof(Π 和 Π '都是集合的集合, 需要证明集合的集合相等).

- 证明: if $[a]_{\mathcal{R}_{\Pi}} \cap A_i \neq \emptyset$, then $[a]_{\mathcal{R}_{\Pi}} = A_i$:
 - ① 设 $b \in [a]_{\mathcal{R}_{\Pi}} \cap A_i$, 则 $a\mathcal{R}_{\Pi} b$;
 - ② 设 $\forall x \in [a]_{\mathcal{R}_{\Pi}}$, 则 $x \mathcal{R}_{\Pi} a$, $\therefore x \mathcal{R}_{\Pi} b$, 即 $\exists A_i \in \Pi$, $x, b \in A_i$, 这 样 $b \in A_i \cap A_i \neq \emptyset$, $\therefore A_i = A_i$, $px \in A_i$, $\therefore [a]_{\mathcal{R}_{TI}} \subseteq A_i$;
 - **③** 设 $x \in A_i$, $\therefore b \in A_i$, $\therefore x \mathcal{R}_{\Pi} b$, but $a \mathcal{R}_{\Pi} b$, $\therefore x \mathcal{R}_{\Pi} a$, $\mathbb{P} x \in [a]_{\mathcal{R}_{\Pi}}, \therefore A_i \subseteq [a]_{\mathcal{R}_{\Pi}};$
 - **4** 故 $A_i = [a]_{\mathcal{R}_{\pi i}}$
- $\bullet \Pi' = \{ [a]_{\mathcal{R}_{\mathsf{H}}} \mid a \in A \} \subseteq \Pi$
 - \bullet $\forall [a]_{\mathcal{R}_{\Pi}} \in \Pi', \text{ So } \exists A_i, a \in A_i;$

(c) hfwang

关系的定义

Proof(Ⅱ和Ⅱ′都是集合的集合,需要证明集合的集合相等).

- 证明: if $[a]_{\mathcal{R}_{\Pi}} \cap A_i \neq \emptyset$, then $[a]_{\mathcal{R}_{\Pi}} = A_i$:
 - ① 设 $b \in [a]_{\mathcal{R}_{\Pi}} \cap A_i$, 则 $a\mathcal{R}_{\Pi} b$;
 - ② 设 $\forall x \in [a]_{\mathcal{R}_{\Pi}}$, 则 $\times \mathcal{R}_{\Pi}$ $a_i : \times \mathcal{R}_{\Pi}$ b_i 即 $\exists A_j \in \Pi, x, b \in A_j$, 这样 $b \in A_i \cap A_i \neq \emptyset$, $\therefore A_i = A_i$, 即 $x \in A_i$, $\therefore [a]_{\mathcal{R}_{\Pi}} \subseteq A_i$;
 - ③ 设 $x \in A_i$, $\therefore b \in A_i$, $\therefore x \mathcal{R}_{\Pi} b$, but $a \mathcal{R}_{\Pi} b$, $\therefore x \mathcal{R}_{\Pi} a$, $px \in [a]_{\mathcal{R}_{\Pi}}$, $\therefore A_i \subseteq [a]_{\mathcal{R}_{\Pi}}$;
- $\bullet \ \Pi' = \{ [a]_{\mathcal{R}_{\Pi}} \mid a \in A \} \subseteq \Pi$

 - $② \therefore a \in [a]_{\mathcal{R}_{\Pi}} \cap A_i \neq \emptyset, \ \mathfrak{P}[a]_{\mathcal{R}_{\Pi}} = A_i, \therefore [a]_{\mathcal{R}_{\Pi}} \subseteq \Pi$
- $\bullet \Pi \subseteq \Pi'$

Chfwan

关系的定义

$Proof(\Pi n \Pi'$ 都是集合的集合,需要证明集合的集合相等).

- 证明: if $[a]_{\mathcal{R}_{\Pi}} \cap A_i \neq \emptyset$, then $[a]_{\mathcal{R}_{\Pi}} = A_i$:
 - ① 设 $b \in [a]_{\mathcal{R}_{\Pi}} \cap A_i$, 则 $a\mathcal{R}_{\Pi} b$;
 - ② 设 $\forall x \in [a]_{\mathcal{R}_{\Pi}}$, $\mathbb{N} \times \mathcal{R}_{\Pi}$ $a_i : X \times \mathcal{R}_{\Pi}$ b_i , $\mathbb{P} \exists A_j \in \Pi$, $x, b \in A_j$, 这 $\not \models b \in A_i \cap A_i \neq \emptyset$, $\therefore A_i = A_i$, $\mathbb{P} \times A_i \in A_i$, $\therefore [a]_{\mathcal{R}_{\Pi}} \subseteq A_i$;
 - ③ 设 $x \in A_i$, $\therefore b \in A_i$, $\therefore x \mathcal{R}_{\Pi} b$, but $a \mathcal{R}_{\Pi} b$, $\therefore x \mathcal{R}_{\Pi} a$, $px \in [a]_{\mathcal{R}_{\Pi}}$, $\therefore A_i \subseteq [a]_{\mathcal{R}_{\Pi}}$;
- $\bullet \ \Pi' = \{ [a]_{\mathcal{R}_{\Pi}} \mid a \in A \} \subseteq \Pi$
- \bullet $\Pi \subseteq \Pi'$
 - ① $\forall A_i \in \Pi, \therefore A_i \neq \emptyset$, So $\exists a \in A_i$, $pa \in [a]_{\mathcal{R}_{\Pi}}$;
 - ② ∴ $a \in A_i \cap [a]_{\mathcal{R}_{\Pi}} \neq \emptyset$; $\&A_i = [a]_{\mathcal{R}_{\Pi}}$; ∴ $\Pi \subseteq \Pi'$.

关系的定义

$Proof(\Pi n \Pi'$ 都是集合的集合,需要证明集合的集合相等).

- 证明: if $[a]_{\mathcal{R}_{\Pi}} \cap A_i \neq \emptyset$, then $[a]_{\mathcal{R}_{\Pi}} = A_i$:
 - ① 设 $b \in [a]_{\mathcal{R}_{\Pi}} \cap A_i$, 则 $a\mathcal{R}_{\Pi} b$;
 - ② 设 $\forall x \in [a]_{\mathcal{R}_{\Pi}}$, 则 $\times \mathcal{R}_{\Pi}$ $a_i : \times \mathcal{R}_{\Pi}$ b_i 即 $\exists A_j \in \Pi, x, b \in A_j$, 这样 $b \in A_i \cap A_i \neq \emptyset$, $\therefore A_i = A_i$, 即 $x \in A_i$, $\therefore [a]_{\mathcal{R}_{\Pi}} \subseteq A_i$;
- $\bullet \ \Pi' = \{ [a]_{\mathcal{R}_{\Pi}} \mid a \in A \} \subseteq \Pi$
- $\Pi \subseteq \Pi'$
 - **①** $\forall A_i \in \Pi, \therefore A_i \neq \emptyset$, So $\exists a \in A_i$, $\mathbb{P}_a \in [a]_{\mathcal{R}_{\Pi}}$;
 - ② $\therefore a \in A_i \cap [a]_{\mathcal{R}_{\Pi}} \neq \emptyset$; 故 $A_i = [a]_{\mathcal{R}_{\Pi}}$; $\therefore \Pi \subseteq \Pi'$.

关系的定义

$Proof(\Pi \pi \Pi')$ 都是集合的集合,需要证明集合的集合相等).

- 证明: if $[a]_{\mathcal{R}_{\Pi}} \cap A_i \neq \emptyset$, then $[a]_{\mathcal{R}_{\Pi}} = A_i$:
 - ① 设 $b \in [a]_{\mathcal{R}_{\Pi}} \cap A_i$, 则 $a\mathcal{R}_{\Pi} b$;
 - ② 设 $\forall x \in [a]_{\mathcal{R}_{\Pi}}$, 则 $x \mathcal{R}_{\Pi} a$, $\therefore x \mathcal{R}_{\Pi} b$, 即 $\exists A_i \in \Pi$, $x, b \in A_i$, 这 样 $b \in A_i \cap A_i \neq \emptyset$, $\therefore A_i = A_i$, $px \in A_i$, $\therefore [a]_{\mathcal{R}_{TI}} \subseteq A_i$;
 - **③** 设 $x \in A_i$, $\therefore b \in A_i$, $\therefore x \mathcal{R}_{\Pi} b$, but $a \mathcal{R}_{\Pi} b$, $\therefore x \mathcal{R}_{\Pi} a$, $\mathbb{P} x \in [a]_{\mathcal{R}_{\Pi}}, \therefore A_i \subseteq [a]_{\mathcal{R}_{\Pi}};$
 - **4** 故 $A_i = [a]_{\mathcal{R}_{\pi i}}$
- $\bullet \Pi' = \{ [a]_{\mathcal{R}_{\mathsf{H}}} \mid a \in A \} \subseteq \Pi$
 - \bullet $\forall [a]_{\mathcal{R}_{\Pi}} \in \Pi', \text{ So } \exists A_i, a \in A_i;$
 - $a \in [a]_{\mathcal{R}_{\Pi}} \cap A_i \neq \emptyset, \ \mathfrak{P}[a]_{\mathcal{R}_{\Pi}} = A_i, \ \therefore [a]_{\mathcal{R}_{\Pi}} \subseteq \Pi$
- $\bullet \Pi \subseteq \Pi'$
 - **1** $\forall A_i \in \Pi, \therefore A_i \neq \emptyset$, So $\exists a \in A_i$, $\bowtie a \in [a]_{\mathcal{R}_{\Pi}}$;
 - $a \in A_i \cap [a]_{\mathcal{R}_{\Pi}} \neq \emptyset$; $a \in A_i \cap [a]_{\mathcal{R}_{\Pi}} : \therefore \Pi \subseteq \Pi'$.

商集合

Definition (商集合, Quotient Set)

设R是集合A上的等价关系,则由R诱导的划分称为关于关 系尺的商集合, 记为:

$$A/\mathcal{R} \triangleq \{ [a]_{\mathcal{R}} \mid a \in A \}$$

if A/R is finite set, |A/R| 称为关系R的秩(rank).

商集合

Definition (商集合, Quotient Set)

设R是集合A上的等价关系,则由R诱导的划分称为关于关 系尺的商集合, 记为:

$$A/\mathcal{R} \triangleq \{ [a]_{\mathcal{R}} \mid a \in A \}$$

if A/R is finite set, |A/R| 称为关系R的秩(rank).

Definition (商集合, Quotient Set)

设R是集合A上的等价关系,则由R诱导的划分称为关于关系R的商集合,记为:

 $A/\mathcal{R} \triangleq \{[a]_{\mathcal{R}} \mid a \in A\}$ if A/\mathcal{R} is finite set, $|A/\mathcal{R}|$ 称为关系 \mathcal{R} 的秩(rank).

- A/R = {{a,b},{c},{d,e,f}}, R秩为3;
- ℤ/ =₄ =, { [0]₌₄, [1]₌₄, [2]₌₄, [3]₌₄ }, *R*秩为4;
- 设P为n个原子 P_1 , P_2 ,..., P_n 的命题公式的集合,则: $P/\Leftrightarrow = \{n$ 布尔函数 $\}$,其秩为 2^{2^n} ;
- $\bullet \mathbb{Q} = \mathbb{Z} \times (\mathbb{Z} \{0\})/\mathcal{Q} = \{ [\langle a, b \rangle]_{\mathcal{Q}} \mid a \in \mathbb{Z} \wedge b \in \mathbb{Z} \{0\} \}$

商集合

关系的定义

Definition (商集合, Quotient Set)

设R是集合A上的等价关系,则由R诱导的划分称为关于关 系尺的商集合, 记为:

$$A/\mathcal{R} \triangleq \{[a]_{\mathcal{R}} \mid a \in A\}$$
 if A/\mathcal{R} is finite set, $|A/\mathcal{R}|$ 称为关系 \mathcal{R} 的秩(rank).

- A/R = {{a,b},{c},{d,e,f}}, R秩为3;
- ▼ / =4 =, { [0]=4, [1]=4, [2]=4, [3]=4 }, R秩为4;

关系的定义

Definition (商集合, Quotient Set)

设R是集合A上的等价关系,则由R诱导的划分称为关于关系R的商集合、记为:

$$A/\mathcal{R} \triangleq \{[a]_{\mathcal{R}} \mid a \in A\}$$
 if A/\mathcal{R} is finite set, $|A/\mathcal{R}|$ 称为关系 \mathcal{R} 的秩(rank).

- A/R = {{a,b},{c},{d,e,f}}, R秩为3;
- $\mathbb{Z}/=_4=$, { $[0]_{=_4}$, $[1]_{=_4}$, $[2]_{=_4}$, $[3]_{=_4}$ }, \mathcal{R} , \mathcal{R} , \mathcal{A} 4;
- 设P为n个原子 $P_1, P_2, ..., P_n$ 的命题公式的集合,则: $P/\Leftrightarrow = \{n$ 布尔函数 $\}$,其秩为 2^{2^n} ;
- $\bullet \ \mathbb{Q} = \mathbb{Z} \times (\mathbb{Z} \{0\})/\mathcal{Q} = \{ [\langle a, b \rangle]_{\mathcal{Q}} \mid a \in \mathbb{Z} \land b \in \mathbb{Z} \{0\} \}$
- $\mathbb{R} = \{\langle x_n \rangle\}/\mathcal{L} = \{[\langle x_n \rangle]_c \mid \langle x_n \rangle$ 是收敛序列 \

商集合

关系的定义

Definition (商集合, Quotient Set)

设R是集合A上的等价关系,则由R诱导的划分称为关于关系R的商集合,记为:

$$A/\mathcal{R} \triangleq \{[a]_{\mathcal{R}} \mid a \in A\}$$
 if A/\mathcal{R} is finite set, $|A/\mathcal{R}|$ 称为关系 \mathcal{R} 的秩(rank).

- A/R = {{a,b},{c},{d,e,f}}, R秩为3;
- $\mathbb{Z}/=_4=$, { $[0]_{=_4}$, $[1]_{=_4}$, $[2]_{=_4}$, $[3]_{=_4}$ }, \mathcal{R} , \mathcal{R} \mathcal{A} 4;
- 设P为n个原子 $P_1, P_2, ..., P_n$ 的命题公式的集合,则: $P/\Leftrightarrow = \{n$ 布尔函数 $\}$,其秩为 2^{2^n} ;
- $\bullet \ \mathbb{Q} = \mathbb{Z} \times (\mathbb{Z} \{0\})/\mathcal{Q} = \{ [\langle a, b \rangle]_{\mathcal{Q}} \mid a \in \mathbb{Z} \wedge b \in \mathbb{Z} \{0\} \}$
- ℝ = {⟨x_n⟩}/L = { [⟨x_n⟩]_C | ⟨x_n⟩是收敛序列 }

商集合

关系的定义

Definition (商集合, Quotient Set)

设R是集合A上的等价关系,则由R诱导的划分称为关于关 系尺的商集合, 记为:

$$A/\mathcal{R} \triangleq \{ [a]_{\mathcal{R}} \mid a \in A \}$$
 if A/\mathcal{R} is finite set, $|A/\mathcal{R}|$ 称为关系 \mathcal{R} 的秩(rank).

- A/R = {{a,b},{c},{d,e,f}}, R秩为3;
- ▼ Z/ =4 =, { [0]=4, [1]=4, [2]=4, [3]=4 }, R秩为4;
- 设P为n个原子 P_1, P_2, \ldots, P_n 的命题公式的集合、则: $\mathcal{P}/\Leftrightarrow = \{n\pi \cap \Lambda \otimes \mathcal{L}\}, \,$ 其秩为 2^{2^n} ;
- $\bullet \mathbb{Q} = \mathbb{Z} \times (\mathbb{Z} \{0\})/\mathcal{Q} = \{ [\langle a, b \rangle]_{\mathcal{Q}} \mid a \in \mathbb{Z} \land b \in \mathbb{Z} \{0\} \}$
- $\mathbb{R} = \{\langle x_n \rangle\}/\mathcal{L} = \{[\langle x_n \rangle]_{\mathcal{L}} | \langle x_n \rangle$ 是收敛序列 \}.

集合 $A = \{a, b, c, d\}$ 上共有多少个等价关系?

Solution

等价与A上有多少个划分.

- 一个分区: ∏ = {{a, b, c, d}}.....1种;
- 两个分区:
 - 1,3abla: $abla\Pi = \{\{a\}, \{b, c, d\}\} \dots C_4^1 = 4h;$
- 三人公区·
- 四个分区: II = {{a},{b},{c},{d}}......1种;
- 共计: 15种

n个元素的集合共有多少个秩为m的等价关系

即将n个元素放入m个桶中且每个桶中至少有一个元素共有多少种放置方法,

Solution

等价与A上有多少个划分.

- - $^{+}$ $^{-}$
- 两个分区:
- 三人分区:
- 四个分区: ∏ = {{a},{b},{c},{d}}.....1种;

n个元素的集合共有多少个秩为m的等价关系

即将n个元素放入m个桶中且每个桶中至少有一个元素共有多少种放置方法,

Solution

等价与A上有多少个划分.

● 两个分区:

如
$$\Pi = \{\{a\}, \{b\}, \{c,d\}\}\dots C_4^2 = 6$$
种;

Solution

等价与A上有多少个划分.

● 两个分区:

● 三个分区:

- a maakin = {{a} {b} {a} {d}}

n个元素的集合共有多少个秩为m的等价关系

即将n个元素放入m个桶中且每个桶中至少有一个元素共有多少种放置方法,按数数为Stirling数

集合 $A = \{a, b, c, d\}$ 上共有多少个等价关系?

Solution

等价与A上有多少个划分.

● 两个分区:

● 三个分区:

- 四个分区: Π = {{a},{b},{c},{d}}.....1种;
- 共计

15种

n个元素的集合共有多少个秩为m的等价关系

即将n个元素放入m个桶中且每个桶中至少有一个元素共有多少种放置方法 该数称为Stirling数.

Solution

等价与A上有多少个划分.

● 两个分区:

● 三个分区:

n个元素的集合共有多少个秩为m的等价关系

即将n个元素放入m个桶中且每个桶中至少有一个元素共有多少种放置方法该数称为Stirling数.

集合 $A = \{a, b, c, d\}$ 上共有多少个等价关系?

Solution

等价与A上有多少个划分.

- 一个分区: ∏ = {{a,b,c,d}}.....1种;
- 两个分区:

- 四个分区: Π = {{a},{b},{c},{d}}.....1种;

n个元素的集合共有多少个秩为m的等价关系

即将n个元素放入m个桶中且每个桶中至少有一个元素共有多少种放置方法,该数称为Stirling数.

- 引言

 - 关系的定义 ● 二元关系
- 集合表示法
 - 矩阵表示法
 - 关系图
- - 自反关系
 - 反自反关系
 - 对称关系
 - 反对称关系
 - 传递关系
- - 等价关系
 - 常用的等价关系
 - 等价类

 - 等价关系与划分 ● 商集合
- 5 偏序关系
 - 偏序关系的定义
 - 拟序
 - 字典序关系
 - 偏序关系的Hass图
 - 偏序关系的特殊元素
 - 良序关系

Definition (偏序关系, Partial order)

设R是集合A上的关系, 称R为偏序关系, iff, R满足下述三条件:

①自反性; ②传递性; ③反对称性;

二重组 $\langle A, \mathcal{R} \rangle$ 称为偏序集合(Partially ordered set, Poset);

记号: 偏序关系一般用 \leq 表示, 如: $\langle A, \leq \rangle$.

关系的定义

Definition (偏序关系, Partial order)

设R是集合A上的关系, 称R为偏序关系, iff, R满足下述三条件: ①自反性; ②传递性; ③反对称性;

二重组〈A, R〉称为偏序集合(Partially ordered set, Poset);

记号: 偏序关系一般用 \leq 表示, 如: $\langle A, \leq \rangle$.

- $\langle \mathcal{P}(A), \subseteq \rangle$ 是偏序集合;注:一般情况下不是A的任意两个子集合都有 \subseteq 关系,这也正是偏序偏的含义.
- 命题公式集合P上永真蕴涵关系⇒不是偏序关系,因为没有 反对称性;
- ⟨ℝ.≤⟩是偏序关系, 并且任意两个实数都能比较大小.

关系的定义

Definition (偏序关系, Partial order)

设R是集合A上的关系, 称R为偏序关系, iff, R满足下述三条件: ①自反性; ②传递性; ③反对称性;

二重组 $\langle A, \mathcal{R} \rangle$ 称为偏序集合(Partially ordered set, Poset);

记号: 偏序关系一般用≼表示, 如: ⟨A,≼⟩.

Example

- $\langle \mathcal{P}(A), \subseteq \rangle$ 是偏序集合;注:一般情况下不是A的任意两个子集合都有 \subseteq 关系,这也正是偏序<mark>偏</mark>的含义.
- 命题公式集合P上永真蕴涵关系⇒不是偏序关系,因为没有 反对称性;
- 〈ℝ,≤〉是偏序关系,并且任意两个实数都能比较大小.

- 45/68 -

关系的定义

Definition (偏序关系, Partial order)

设R是集合A上的关系, 称R为偏序关系, iff, R满足下述三条件: ①自反性; ②传递性; ③反对称性;

二重组〈A, R〉称为偏序集合(Partially ordered set, Poset);

记号: 偏序关系一般用 \leq 表示, 如: $\langle A, \leq \rangle$.

Example

- $\langle \mathcal{P}(A), \subseteq \rangle$ 是偏序集合;注:一般情况下不是A的任意两个子集合都有 \subseteq 关系,这也正是偏序<mark>偏</mark>的含义.
- 命题公式集合P上永真蕴涵关系⇒不是偏序关系,因为没有 反对称性;

● 〈ℝ、≤〉是偏序关系, 并且任意两个实数都能比较大小.

关系的定义

Definition (偏序关系, Partial order)

设R是集合A上的关系, 称R为偏序关系, iff, R满足下述三条件: ①自反性; ②传递性; ③反对称性;

二重组 $\langle A, \mathcal{R} \rangle$ 称为偏序集合(Partially ordered set, Poset); 记号: 偏序关系一般用 \leq 表示, 如: $\langle A, \leq \rangle$.

- $\langle \mathcal{P}(A), \subseteq \rangle$ 是偏序集合; 注: 一般情况下不是A的任意两个子 集合都有⊆关系,这也正是偏序偏的含义.
- 命题公式集合P上永真蕴涵关系⇒不是偏序关系,因为没有 反对称性;
- ⟨ℝ,≤⟩是偏序关系,并且任意两个实数都能比较大小.

可比较的

Definition (可比较的, Comparable)

设 $\langle A, \leq \rangle$ 是一偏序集合, $x, y \in A$, 称x和y是可比较的, iff $x \leq y \vee y \leq x$.

可比较的

Definition (可比较的, Comparable)

设 $\langle A, \leq \rangle$ 是一偏序集合, $x, y \in A$, 称x和y是可比较的, iff $x \leq y \vee y \leq x$.

可比较的

Definition (可比较的, Comparable)

设 $\langle A, \leq \rangle$ 是一偏序集合, $x, y \in A$, 称x和y是可比较的, iff $x \leq y \vee y \leq x$.

Example

- $\langle \mathcal{P}(\{1,2,3\}), \subseteq \rangle$ 偏序集合中, $\{1,2\}$ 和 $\{2\}$ 是可比较的; 而 $\{1,2\}$ 和 $\{2,3\}$ 是不可比较的;
- ⟨N. ≤⟩中, 任意两个自然数都是可比较的

Definition (线序关系, 全序关系, Linear order, Total order) 设 $\langle A, \preccurlyeq \rangle$ 是一偏序集合, 称该偏序为全序, iff, $\forall x, y \in A$, $x \Rightarrow Ay$ 是可比较的.

Definition (可比较的, Comparable)

设 $\langle A, \leq \rangle$ 是一偏序集合, $x, y \in A$, 称x和y是可比较的, iff $x \leq y \vee y \leq x$.

- $\langle \mathcal{P}(\{1,2,3\}), \subseteq \rangle$ 偏序集合中, $\{1,2\}$ 和 $\{2\}$ 是可比较的; 而 ${1,2}$ 和 ${2,3}$ 是不可比较的;
- ⟨N,≤⟩中,任意两个自然数都是可比较的.

关系的定义

Definition (可比较的, Comparable)

设 $\langle A, \leq \rangle$ 是一偏序集合, $x, y \in A$, 称x和y是可比较的, iff $x \leq y \vee y \leq x$.

Example

- $\langle \mathcal{P}(\{1,2,3\}), \subseteq \rangle$ 偏序集合中, $\{1,2\}$ 和 $\{2\}$ 是可比较的; 而 $\{1,2\}$ 和 $\{2,3\}$ 是不可比较的;
- ⟨N,≤⟩中,任意两个自然数都是可比较的.

Definition (线序关系, 全序关系, Linear order, Total order)

设 $\langle A, \leqslant \rangle$ 是一偏序集合, 称该偏序为全序, iff, $\forall x, y \in A$, $x \Rightarrow Ay$ 是可比较的.

偏序关系的Hass图

- □ 删除所有的自回路:
- ② 删除所有三角型的最长边;
- ◎ 有向边的始点在下,终点在上,从而删除所有边的箭头

偏序关系的Hass图

Description ($\langle \{2,4,6,8\}, | \rangle$ 的Hass图)

- 删除所有的自回路.
- ② 删除所有三角型的最长边;
- ◎ 有向边的始点在下,终点在上,从而删除所有边的箭头

4□ > 4□ > 4□ > 4 = > = 90

Description ($\langle \{2,4,6,8\}, | \rangle$ 的Hass图)

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶

偏序关系的Hass图

Description ($\langle \{2,4,6,8\}, | \rangle$ 的Hass图)

- 删除所有的自回路.
- ② 删除所有三角型的最长边;
- 有向边的始点在下,终点在上,从而删除所有边的箭头,

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ かへで

- □ 删除所有的自回路:
- ② 删除所有三角型的最长边;
- ◎ 有向边的始点在下,终点在上,从而删除所有边的箭头

- 删除所有的自回路;
- ② 删除所有三角型的最长边
- ③ 有向边的始点在下,终点在上,从而删除所有边的箭头

偏序关系的Hass图

- 删除所有的自回路;
- ② 删除所有三角型的最长边;
- ③ 有向边的始点在下,终点在上,从而删除所有边的箭头

- 删除所有的自回路;
- ② 删除所有三角型的最长边;
- ◎ 有向边的始点在下,终点在上,从而删除所有边的箭头.

关系的定义 000000000

关系的定义 000000000

- 线序的Hass图是一条垂直 的直线;
- 〈𝒯({a,b,c}),⊆⟩的Hass图 如右所示。

- 线序的Hass图是一条垂直 的直线;
- $\langle \mathcal{P}(\{a,b,c\}), \subseteq \rangle$ 的Hass图 如右所示.

- 线序的Hass图是一条垂直 的直线;
- 〈𝒯({a,b,c}),⊆⟩的Hass图 如右所示.

Definition (拟序关系, Strict order)

设R是集合A上的关系, 称<为拟序关系, iff, <满足下述三条件: (1)反自反性; (2)传递性; (3)反对称性.

Example

Remark

拟序定义中的反对称性实际上可以有反自反性+传递性推出来: 设, $x < y \land y < x$, 则,x < x, 而由反自反性得知: x < x是不可能的,因此条件不可能成立,即反对称性定义中的蕴涵式条件为假,蕴涵式为真,反对称性成立.

拟序

Definition (拟序关系, Strict order)

设R是集合A上的关系, 称<为拟序关系, iff, <满足下述三条件: (1)反自反性; (2)传递性; (3)反对称性.

Example

- $\mathscr{P}(A)$ 上的严格包含关系⊊是拟序;
- N上的严格小于关系<是拟序.

Remark

拟序定义中的反对称性实际上可以有反自反性+传递性推出来: 设,×<y∧y<×,则,×<×,而由反自反性得知:×<×是不可 能的,因此条件不可能成立,即反对称性定义中的蕴涵式条件为 假,蕴涵式为真,反对称性成立.

拟序

关系的定义

Definition (拟序关系, Strict order)

设R是集合A上的关系, 称<为拟序关系, iff, <满足下述三条件: ①反自反性; ②传递性; ③反对称性.

Example

- · 罗(A)上的严格包含关系⊊是拟序;
- N上的严格小于关系<是拟序.

Remark

拟序定义中的反对称性实际上可以有反自反性+传递性推出来:设, $x < y \land y < x$,则,x < x,而由反自反性得知:x < x是不可能的,因此条件不可能成立,即反对称性定义中的蕴涵式条件为假,蕴涵式为真,反对称性成立.

关系的定义

Definition (拟序关系, Strict order)

设R是集合A上的关系, 称<为拟序关系, iff, <满足下述三条件: ①反自反性; ②传递性; ③反对称性.

- · 罗(A)上的严格包含关系⊊是拟序;
- N上的严格小于关系<是拟序.

关系的定义

Definition (拟序关系, Strict order)

设R是集合A上的关系, 称<为拟序关系, iff, <满足下述三条件: ①反自反性; ②传递性; ③反对称性.

Example

- · 罗(A)上的严格包含关系⊊是拟序;
- N上的严格小于关系<是拟序.

Remark

拟序定义中的反对称性实际上可以有反自反性+传递性推出来: 设, $x < y \land y < x$, 则,x < x, 而由反自反性得知: x < x是不可能的,因此条件不可能成立,即反对称性定义中的蕴涵式条件为假,蕴涵式为真,反对称性成立.

拟序和偏序的关系

Theorem

- ① $\mathcal{Q}(A, \leq)$ 是poset, $\mathcal{M} \leq -\mathbb{1}_A$ 是拟序,记之为<
- ② 设<是A上的拟序,则< ∪11A是偏序,记之为≤.

Proof.

Theorem

- ① 设 $\langle A, \leqslant \rangle$ 是poset, 则 $\leqslant -1_A$ 是拟序, 记之为<;
- ② 设<是A上的拟序,则< ∪11A是偏序,记之为≤

Theorem

- ① 设 $\langle A, \leqslant \rangle$ 是poset, 则 $\leqslant -1_A$ 是拟序, 记之为<;
- ② 设<是A上的拟序,则< ∪1A是偏序,记之为≼.

Theorem

关系的定义

- ① 设 $\langle A, \leq \rangle$ 是poset, 则 $\leq -1_A$ 是拟序, 记之为 \leq ;
- ② 设<是A上的拟序,则< ∪1A是偏序,记之为≤.

Theorem

关系的定义

- ① 设 $\langle A, \leq \rangle$ 是poset, 则 $\leq -1_A$ 是拟序, 记之为 \leq :
- ② 设<是A上的拟序,则< ∪1A是偏序,记之为≤.

- -<是反自反的, trivial; - < 是传递的, if $x < y \land y < z$, then $x \le y \land y \le z$, $\therefore x \le z$, 但 是 $x \neq z$, 否则,根据≤的反对称性有: x = y,这与x < y矛盾, $\therefore x < z$:

Theorem

- ① 设 $\langle A, \leq \rangle$ 是poset, 则 $\leq -1_A$ 是拟序, 记之为<;
- ② 设<是A上的拟序,则< ∪1A是偏序,记之为≼.

- ① < 是反自反的, trivial; < 是传递的, if $x < y \land y < z$, then $x \le y \land y \le z$, $\therefore x \le z$, 但 是 $x \ne z$, 否则, 根据 \le 的反对称性有: x = y, 这与x < y矛盾, $\therefore x < z$;
- ② 一≼是自反的, trivial; 一≼是传递的, if $x \le y \land y \le z$, then (1) $x < y \land y < z$, $\therefore x < z$, So, $x \le y$; (2) $x = y \land y < z$, So, x < z, So, $x \le z$; (3) $x = y \land y = z$, So x = z, $x \le z$;
 - \le 是反对称的,if $x \le y \land y \le x$,由传递性得: $x \le x$,而x < x是不可能的,So x = y.

- 49/68 -

字典序关系

Notation

习惯上将偏序关系《对应的拟序关系记为<, 反之也然; 如: 《和<; ⊆和⊊ (⊂)等.

关系的定义

Notation

习惯上将偏序关系≤对应的拟序关系记为<, 反之也然; 如: \leq 和<; \subseteq 和 \subseteq (\subset)等.

Example (字典序关系, Lexicographical order)

设 $\langle \Sigma, \leqslant \rangle$ 是有限字母表集合, 其中: \leqslant 是字母表上的线序关系, 则 Σ *上的关系<定义如下:

 $\forall s = a_1 a_2 \cdots a_m, t = b_1 b_2 \cdots b_n \in \Sigma^*, s < t, iff, 下条件之一成立:$

- $\forall i = 1, 2, ..., k, \ a_i = b_i, a_{k+1} < b_{k+1}$
- if $k = m \land m < n$; (即5是t的前缀)
- if $a = \varepsilon \wedge b \neq \varepsilon$;

则, <是拟序, 对应的偏序关系 < 称为字典序关系; 该序关系是线序关系.

关系的定义

Notation

习惯上将偏序关系≤对应的拟序关系记为<, 反之也然; 如: \leq 和<; \subseteq 和 \subseteq (\subset) 等.

Example (字典序关系, Lexicographical order)

设 $\langle \Sigma, \leqslant \rangle$ 是有限字母表集合, 其中: \leqslant 是字母表上的线序关系, 则 Σ *上的关系<定义如下:

 $\forall s = a_1 a_2 \cdots a_m, t = b_1 b_2 \cdots b_n \in \Sigma^*, s < t, iff, 下条件之一成立:$

- if $\exists k, 1 \leq k < \min\{m, n\}$, and $\forall i = 1, 2 \dots, k, \ a_i = b_i, a_{k+1} < b_{k+1}$;
- if $k = m \land m < n$; ($ps \neq t$) 的前缀)
- if $a = \varepsilon \wedge b \neq \varepsilon$;

则, <是拟序, 对应的偏序关系≤称为字典序关系; 该序关系是线序关系.

Example

$$\Sigma = \{a, b\} \land a < b,$$
 则:
$$\varepsilon < abb \leqslant abba \leqslant abbb \leqslant abbba \leqslant abbbbabbb$$

$$\Sigma = \{0, 1\} \land 0 < 1, \text{ M}:$$

$$011 \leqslant 0110 \leqslant 0111 \leqslant 01110 \leqslant 011110111$$

$$0000001 \leqslant 000001 \leqslant 00001 \leqslant 0001 \leqslant 001 \leqslant 01 \leqslant 1$$

关系的定义

Example

$$\Sigma = \{a, b\} \land a < b$$
, 则:
$$\varepsilon < abb \leqslant abba \leqslant abbb \leqslant abbba \leqslant abbbbabbb$$

Example

$$\Sigma = \{\,0,1\,\} \,\wedge\, 0 < 1, \;$$
 M :
$$011 \leqslant 0110 \leqslant 0111 \leqslant 01110 \leqslant 011110111$$

$$0000001 \leqslant 000001 \leqslant 00001 \leqslant 0001 \leqslant 001 \leqslant 01 \leqslant 1$$

最大元素和最小元素

Definition (最大元素和最小元素, greatest(least) element)

设 $\langle A, \leq \rangle$ 为Poset, $B \subseteq A$, $b \neq B$ 中的最大 (Λ) 元素, iff, 下两条件 成立:

最大元素和最小元素

Definition (最大元素和最小元素, greatest(least) element)

设 $\langle A, \leq \rangle$ 为Poset, $B \subseteq A$, $b \neq B$ 中的最大 (Λ) 元素, iff, 下两条件 成立:

- \bullet $b \in B$;

最大元素和最小元素

Definition (最大元素和最小元素, greatest(least) element)

设 $\langle A, \leq \rangle$ 为Poset, $B \subseteq A$, $b \not\in B$ 中的最大 (Λ) 元素, iff, 下两条件 成立:

- \bullet $b \in B$;

b是最大元素,a是最小元素

没有最大元素, a是最小元素.

极大元素和极小元素

Definition (极大元素和极小元素, Maximum(Minimum) element)

设 $\langle A, \leq \rangle$ 为Poset, $B \subseteq A$, $b \not\in B$ 中的极大 (Λ) 元素, iff, 下两条件成立:

- b ∈ B;
- $\forall x \in B$, 或者x和b是不可比较的, 或者 $x \leq b(b \leq x)$.

极大元素和极小元素

Definition (极大元素和极小元素, Maximum(Minimum) element)

设 $\langle A, \leq \rangle$ 为Poset, $B \subseteq A$, $b \not\in B$ 中的极大 (Λ) 元素, iff, 下两条件 成立:

- \bullet $b \in B$;

极大元素和极小元素

Definition (极大元素和极小元素, Maximum(Minimum) element)

设 $\langle A, \leq \rangle$ 为Poset, $B \subseteq A$, $b \neq B$ 中的极大 (Λ) 元素, iff, 下两条件 成立:

- \bullet $b \in B$;
- $\forall x \in B$, 或者x和b是不可比较的, 或者 $x \leq b(b \leq x)$.

极大元素和极小元素-Example

b是最大元素,a是最小元素 b也是极大元素,a也是极小元素

没有最大元素,a是最小元素 c和d是极大元素,a也是极小元素

Theorem

 $\mathcal{C}\langle A, \leq \rangle$ 为 Poset, $B \subseteq A$,

Theorem

 $\mathcal{C}\langle A, \leq \rangle$ 为 Poset, $B \subseteq A$,

- ① if B有最大(小)元素, then 该元素是唯一的;

Theorem

- ① if B有最大(小)元素, then 该元素是唯一的;
- ② if B有最大(小)元素,则该元素一定也是极大(小)元素;
- ③ 极大(小)元素不一定唯一;
- ④ if B是有限集合,则B一定存在极大(小)元素.

Theorem

设 $\langle A, \leqslant \rangle$ 为 $Poset, B \subseteq A,$

- ① if B有最大(小)元素, then 该元素是唯一的;
- ② if B有最大(小)元素,则该元素一定也是极大(小)元素;
- ③ 极大(小)元素不一定唯一;
- ① if B是有限集合,则B一定存在极大(小)元素

Theorem

 $\mathcal{C}\langle A, \leq \rangle$ 为 Poset, $B \subseteq A$,

- ① if B有最大(小)元素, then 该元素是唯一的;
- ② if B有最大(小)元素,则该元素一定也是极大(小)元素;
- ③ 极大(小)元素不一定唯一;
- ❹ if B是有限集合,则B一定存在极大(小)元素.

Theorem

设 $\langle A, \leqslant \rangle$ 为 $Poset, B \subseteq A,$

- ① if B有最大(小)元素, then 该元素是唯一的;
- ② if B有最大(小)元素,则该元素一定也是极大(小)元素;
- ◎ 极大(小)元素不一定唯一;
- if B是有限集合,则B一定存在极大(小)元素.

Proof.

- ② 利用反对称性:设b和b'是B的最大元素,则: $b \le b' \land b' \le b$, $\therefore b = b'$;
- ① 设 $B = \{b_1, b_2, ..., b_m\}$, 按下述步骤求min:
 - ① k = 2; $min := b_1$
 - ② if (k > m) Stop;

else { $\{if(b_k < min) \text{ then } min := b_k;\} k := k+1; \text{ goto } 2;\}$ 由于B有限。该过程一定stop。最后得到的min一定是极小元素

Theorem

设 $\langle A, \leqslant \rangle$ 为 $Poset, B \subseteq A,$

- ① if B有最大(小)元素, then 该元素是唯一的;
- ② if B有最大(小)元素,则该元素一定也是极大(小)元素;
- ◎ 极大(小)元素不一定唯一;
- if B是有限集合,则B一定存在极大(小)元素.

Proof.

- ② 利用反对称性: 设b和b'是B的最大元素,则: $b \leq b' \land b' \leq b$, $\therefore b = b'$;
- 4 设 $B = \{b_1, b_2, ..., b_m\}$, 按下述步骤求min:
 - ① k = 2; $min := b_1$;
 - ② if (k > m) Stop;

else { {if $(b_k < min)$ then $min := b_k$;} k := k+1; goto 2;} 由于B有限、该过程一定stop,最后得到的min一定是极小元素.

关系的定义

Definition (上(下)界, Upper(Lower) bound)

- 设 $\langle A, \leq \rangle$ 为Poset, $B \subseteq A$, $a \in A \notin B$ 的上(下)界, iff, $\forall b \in B, b \leq a(a \leq b)$
- 最小上界(上确界)(Least upper bound, Supremum): 上界集 A = A = B的上界}的最小元素, 记为: A = A = B
- 最大下界(下确界)(Greatest lower bound, Infimum): 下界集

临界元素- Example

b,*i*是B的上界; *j*,*h*不是B的上界; *b* 是B的lub; *k*,*l*是B的下界.

没有glb;

Theorem

设 $\langle A, \leqslant \rangle$ 为Poset, $B \subseteq A$,

Theorem

 $\mathcal{U}\langle A, \leqslant \rangle$ 为Poset, $B \subseteq A$,

- ① a是B的lub, iff, a是ub, 并且∀a' 为B的ub, 有a ≤ a';

Theorem

 $\mathcal{U}\langle A, \leqslant \rangle$ 为Poset, $B \subseteq A$,

- ① a是B的lub, iff, a是ub, 并且∀a' 为B的ub, 有a ≤ a';
- ② a是B的glb, iff, a是lb, 并且 $\forall a' \rightarrow B$ 的lb, 有 $a' \leq a$;

Theorem

 $\mathcal{C}\langle A, \leqslant \rangle$ 为Poset, $B \subseteq A$,

- ① a是B的lub, iff, a是ub, 并且∀a' 为B的ub, 有a ≤ a';
- ② a是B的glb, iff, a是lb, 并且 $\forall a' \rightarrow B$ 的lb, 有 $a' \leq a$;
- ③ if B has lub(glb), then 该元素是唯一的;

Theorem

 $\mathcal{C}\langle A, \leqslant \rangle$ 为Poset, $B \subseteq A$,

- ① a是B的lub, iff, a是ub, 并且 $\forall a'$ 为B的ub, 有a ≤ a';
- ② a是B的glb, iff, a是lb, 并且 $\forall a' \rightarrow B$ 的lb, 有 $a' \leq a$;
- ③ if B has lub(glb), then 该元素是唯一的;
- if B有最大(小)元素,则该元素一定也是lub(glb).

Example

Example

- **1** $\langle \mathbb{R}, \leq \rangle$, $B = \{-1, -1/2, -1/3, \dots\}$, $lub(B) = 0 \notin B$;
- ② $\mathbb{R}^{\mathbb{R}} \triangleq \{ f \mid f : \mathbb{R} \longrightarrow \mathbb{R} \}, \ f \leq g, \ \text{iff,} \ \forall x \in \mathbb{R} \ f(x) \leq g(x), \ \mathbb{M} \setminus \mathbb{R}^{\mathbb{R}}, \leq \mathbb{R}$ 是Poset; $\mathcal{B} = \{ x \longmapsto \sin(nx) \mid n \in \mathbb{N} \},$ $\mathbb{M} \setminus \mathbb{R} \setminus \mathbb{R}$
- \bigcirc $\langle \mathscr{P}(A), \subseteq \rangle, \mathcal{B} \subseteq \mathscr{P}(A)$, then:

$$\mathsf{lub}(\mathcal{B}) = \bigcup_{C \in \mathcal{B}} C; \quad \mathsf{glb}(\mathcal{B}) = \bigcap_{C \in \mathcal{B}} C;$$

① $\langle \{a,b\}^*, \leqslant \rangle$, $B = \{ab,aab,aaab,...\}$, 则|ub(B) = ab, 而对任意n, $a^n \leqslant a^mb \in B$, 并且对型如: $a^nb^ma^p$ 的串都不可能是B的下界,二下 界集会是 $\{a^n \mid n \in \mathbb{N}\}$ 没有 a^nb^n

Example

Example

- $\{ \mathbb{R}, \leqslant \}, B = \{-1, -1/2, -1/3, \dots\}, \mathsf{lub}(B) = 0 \notin B;$
- ② $\mathbb{R}^{\mathbb{R}} \triangleq \{ f \mid f : \mathbb{R} \longrightarrow \mathbb{R} \}, f \leqslant g, \text{ iff, } \forall x \in \mathbb{R} \ f(x) \leqslant g(x), \ \mathbb{M} \backslash \mathbb{R}^{\mathbb{R}}, \leqslant \rangle$ $\text{ & } \mathcal{B} = \{ x \longmapsto \sin(nx) \mid n \in \mathbb{N} \},$
- $(\mathscr{P}(A),\subseteq), \mathcal{B}\subseteq\mathscr{P}(A),$ then:

$$\mathsf{lub}(\mathcal{B}) = \bigcup_{C \in \mathcal{B}} C; \quad \mathsf{glb}(\mathcal{B}) = \bigcap_{C \in \mathcal{B}} C;$$

① $\langle \{a,b\}^*, \leqslant \rangle$, $B = \{ab,aab,aaab,...\}$, 则lub(B) = ab, 而对任意n, $a^n \leqslant a^mb \in B$, 并且对型如: $a^nb^ma^p$ 的串都不可能是B的下界, ∴下 聚集合果 $\{a^n \mid n \in \mathbb{N}\}$ 没有 $\{a^nb^na^n$

Example

Example

- **1** $\langle \mathbb{R}, \leq \rangle$, $B = \{-1, -1/2, -1/3, \dots\}$, lub(B) = 0 ∉ B:
- ② $\mathbb{R}^{\mathbb{R}} \triangleq \{ f \mid f : \mathbb{R} \longrightarrow \mathbb{R} \}, f \leqslant g, \text{ iff, } \forall x \in \mathbb{R} f(x) \leqslant g(x), \, \mathbb{N} \langle \mathbb{R}^{\mathbb{R}}, \leqslant \rangle$ 是Poset:

设
$$B = \{x \longmapsto \sin(nx) \mid n \in \mathbb{N} \},$$
则lub $(B) = g, g(x) = 1 \text{ if } x \neq 0; g(0) = 0;$

$$lub(\mathcal{B}) = \bigcup_{C \in \mathcal{B}} C; \quad glb(\mathcal{B}) = \bigcap_{C \in \mathcal{B}} C;$$

关系的定义

Example

- **1** $\langle \mathbb{R}, \leq \rangle$, $B = \{-1, -1/2, -1/3, \dots\}$, $lub(B) = 0 \notin B$;
- ② $\mathbb{R}^{\mathbb{R}} \triangleq \{ f \mid f : \mathbb{R} \longrightarrow \mathbb{R} \}, f \leqslant g, \text{ iff, } \forall x \in \mathbb{R} | f(x) \leqslant g(x), \text{ } 烦 \langle \mathbb{R}^{\mathbb{R}}, \leqslant \rangle$ 是Poset:

设
$$B = \{x \longmapsto \sin(nx) \mid n \in \mathbb{N} \},$$
 则lub $(B) = g, g(x) = 1$ if $x \neq 0$; $g(0) = 0$;

$$lub(\mathcal{B}) = \bigcup_{C \in \mathcal{B}} C; \quad glb(\mathcal{B}) = \bigcap_{C \in \mathcal{B}} C;$$

④ $\langle \{a,b\}^*, \leqslant \rangle$, $B = \{ab,aab,aaab,...\}$, 则lub(B) = ab, 而对任意n, $a^n \leqslant a^mb \in B$, 并且对型如: $a^nb^ma^p$ 的串都不可能是B的下界, \triangle 下界集合是 $\{a^n \mid n \in \mathbb{N}\}$, 没有glb.

关系的定义

Example

- **1** $\langle \mathbb{R}, \leq \rangle$, $B = \{-1, -1/2, -1/3, \dots\}$, $lub(B) = 0 \notin B$;
- ② $\mathbb{R}^{\mathbb{R}} \triangleq \{ f \mid f : \mathbb{R} \longrightarrow \mathbb{R} \}, f \leqslant g, \text{ iff, } \forall x \in \mathbb{R} \ f(x) \leqslant g(x), \ \mathbb{M} \setminus \mathbb{R}^{\mathbb{R}}, \leqslant \mathbb{M} \in \mathbb{R}$ $\mathcal{B} = \{ x \longmapsto \sin(nx) \mid n \in \mathbb{N} \},$

$$g(B) = \{x \mapsto \sin(nx) \mid n \in \mathbb{N}\},$$
 则 $ub(B) = g, g(x) = 1$ if $x \neq 0$; $g(0) = 0$;

$$lub(\mathcal{B}) = \bigcup_{C \in \mathcal{B}} C; \quad glb(\mathcal{B}) = \bigcap_{C \in \mathcal{B}} C;$$

④ $\langle \{a,b\}^*, \leqslant \rangle$, $B = \{ab, aab, aaab, \ldots\}$, 则lub(B) = ab, 而对任意n, $a^n \leqslant a^m b \in B$, 并且对型如: $a^n b^m a^p$ 的串都不可能是B的下界, ∴下界集合是 $\{a^n \mid n \in \mathbb{N}\}$, 没有glb.

Description

 $\mathcal{L}\langle A, \leqslant \rangle$ 为Poset, $B \subseteq A$,

	是否存在	是否唯一	是否在B中	与其他特殊元素的关系
最大元素	NO	YES	YES	
极大元素	NO	NO	YES	最大元素是极大元素
上界	NO	NO	NO	最大元素是上界
最小上界	NO	YES	NO	最大元素是lub
最小元素	NO	YES	YES	
极小元素	NO	NO	YES	最小元素是极小元素
下界	NO	NO	NO	最小元素是下界
最大上界	NO	YES	NO	最小元素是glb

$$z = 3;$$

 $x = 5 * z + 2;$
 $u = 6 - z;$
 $t = z + x + 2 * u$
 $y = u * z + x;$
 $v = t + v * 3 * x;$

设有如下方程组:

$$z = 3;$$

 $x = 5 * z + 2;$
 $u = 6 - z;$
 $t = z + x + 2 * u$
 $y = u * z + x;$
 $v = t + y * 3 * x;$

对{ t, u, v, x, y, z } 定义关系<:

a < b, iff, b的计算依赖a

if 方程组没有循环依赖关系

(如: $a = f(b) \land b = g(a)$), 则 \leq 一定是

偏序关系;

设有如下方程组:

$$z = 3;$$

 $x = 5 * z + 2;$
 $u = 6 - z;$
 $t = z + x + 2 * u$
 $y = u * z + x;$
 $v = t + y * 3 * x;$

对{ t, u, v, x, y, z } 定义关系<:

a < b. iff. b的计算依赖a

if 方程组没有循环依赖关系

(如: $a = f(b) \land b = g(a)$), 则≼一定是

偏序关系:

方程组的求解次序<可以为:

Or:

≤满足:

 $\forall a, b \ a \leq b \Longrightarrow a \leq b$

相容关系和拓扑排序

Definition (拓扑排序, Topological Sorting)

 $\langle A, \leq \rangle$ a poset, 设 \leq 是A上的线序关系, 称 \leq 和 \leq 是相容的(compatible), iff,

$$\forall a, b \in A , a \leqslant b \Longrightarrow a \leqslant b$$

≤称为≤的拓扑排序.

相容关系和拓扑排序

Definition (拓扑排序, Topological Sorting)

 $\langle A, \leqslant \rangle$ a poset, 设《是A上的线序关系,称《和《是相容的(compatible), iff,

$$\forall a, b \in A , a \leqslant b \Longrightarrow a \leqslant b$$

≤称为≤的拓扑排序.

Algorithm

设
$$A = \{a_1, a_2, ..., a_n\}$$
, 求拓扑排序 $m_1, m_2, ..., m_n$

- **1** k := 1; S := A;

Definition (拓扑排序, Topological Sorting)

 $\langle A, \leqslant \rangle$ a poset, 设 \leqslant 是A上的线序关系, 称 \leqslant 和 \leqslant 是相容的(compatible), iff,

$$\forall a, b \in A , a \leqslant b \Longrightarrow a \leqslant b$$

≤称为≤的拓扑排序.

Algorithm

设
$$A = \{a_1, a_2, ..., a_n\}$$
, 求拓扑排序 $m_1, m_2, ..., m_n$

- **1** k := 1; S := A;
- ② $m_k := S$ 中的极小元素; $S := S \{m_k\}; k := k + 1;$ if $(S == \emptyset)$ Stop; else goto (2);

Definition (拓扑排序, Topological Sorting)

 $\langle A, \leq \rangle$ a poset, 设 \leq 是A上的线序关系, 称 \leq 和 \leq 是相容的(compatible), iff,

$$\forall a, b \in A , a \leq b \Longrightarrow a \leq b$$

≤称为≤的拓扑排序.

Algorithm

设
$$A = \{a_1, a_2, ..., a_n\}$$
, 求拓扑排序 $m_1, m_2, ..., m_n$

- **1** k := 1; S := A;
- ② mk := S中的极小元素; $S := S - \{ m_k \}; k := k + 1;$ if $(S == \emptyset)$ Stop; else goto (2);

良序关系

Definition (良序关系, Well order)

 $\langle \Sigma, \leqslant \rangle$ a poset, 称关系 \leqslant 为良序关系, iff, \leqslant 是线序, 并且, A的每个非空子集合都存在最小元素 $\langle \Sigma, \leqslant \rangle$ 也称为良序集(Well-ordered set)

Example

Theorem (Well-ordering theorem)

任意一个集合都可以在其上构造一个良序关系

良序关系

Definition (良序关系, Well order)

- $\langle \Sigma, \leqslant \rangle$ a poset, 称关系 \leqslant 为良序关系, iff, \leqslant 是线序, 并且, A的每个非空子集合都存在最小元素
- $\langle \Sigma, \leqslant \rangle$ 也称为良序集(Well-ordered set)

Example

- (N,≤), ({1,2,4,8},|)是良序集合;
- \bullet $\langle \mathbb{Z}, \leqslant \rangle$, $\langle \mathbb{Q}, \leqslant \rangle$, $\langle \mathbb{R}, \leqslant \rangle$ arzelef.
- ⟨Σ*,≤⟩不是良序集合
- Theorem (Well-ordering theorem)
- 任意一个集合都可以在其上构造一个良序关系

Definition (良序关系, Well order)

 $\langle \Sigma, \leq \rangle$ a poset, 称关系 \leq 为良序关系, iff, ≼是线序,并且,A的每个非空子集合都存在最小元素 ⟨Σ,≼⟩也称为良序集(Well-ordered set)

Example

- (N,≤), ⟨{1,2,4,8},|⟩是良序集合;

Definition (良序关系, Well order)

 $\langle \Sigma, \leqslant \rangle$ a poset, 称关系《为良序关系, iff, 《是线序, 并且, A的每个非空子集合都存在最小元素 $\langle \Sigma, \leqslant \rangle$ 也称为良序集(Well-ordered set)

Example

- ⟨ℕ,≤⟩, ⟨{1,2,4,8},|⟩是良序集合;
- \bullet $\langle \mathbb{Z}, \leqslant \rangle$, $\langle \mathbb{Q}, \leqslant \rangle$, $\langle \mathbb{R}, \leqslant \rangle$ arzek present ar $\langle \mathbb{Z}, \leqslant \rangle$.
- ⟨Σ*,≤⟩不是良序集合
 - ...,0000001,000001,00001,0001,001,01,1}没有最小元素

Theorem (Well-ordering theorem)

任意一个集合都可以在其上构造一个良序关系

等价关系与集合的划分

Definition (良序关系, Well order)

 $\langle \Sigma, \leq \rangle$ a poset, 称关系 \leq 为良序关系, iff, ≼是线序、并且、A的每个非空子集合都存在最小元素 ⟨Σ,≼⟩也称为良序集(Well-ordered set)

Example

- (N,≤), ⟨{1,2,4,8},|⟩是良序集合;
- $\langle \mathbb{Z}, \leq \rangle$, $\langle \mathbb{Q}, \leq \rangle$, $\langle \mathbb{R}, \leq \rangle$ 都不是良序集合;
- ⟨Σ*,≤⟩不是良序集合 {...,0000001,000001,00001,0001,01,1}没有最小元素.

良序关系

关系的定义

Definition (良序关系, Well order)

 $\langle \Sigma, \leqslant \rangle$ a poset, 称关系《为良序关系,iff, 《是线序,并且,A的每个非空子集合都存在最小元素 $\langle \Sigma, \leqslant \rangle$ 也称为良序集(Well-ordered set)

Example

- ⟨N,≤⟩, ⟨{1,2,4,8},|⟩是良序集合;
- $\langle \mathbb{Z}, \leqslant \rangle$, $\langle \mathbb{Q}, \leqslant \rangle$, $\langle \mathbb{R}, \leqslant \rangle$ arteral energy are a second of the sec
- ⟨Σ*,≤⟩不是良序集合{...,0000001,000001,00001,0001,001,01,1}没有最小元素.

Theorem (Well-ordering theorem)

任意一个集合都可以在其上构造一个良序关系.

- 关系的定义 ● 引言
 - 关系的定义
 - 二元关系
- 关系的表示方法
 - 集合表示法
 - 矩阵表示法 ● 关系图
- 关系的一般属性
- 自反关系
 - 反自反关系
 - 对称关系
 - 反对称关系
 - 传递关系
- 等价关系与集合的划分
 - 等价关系
 - 常用的等价关系
 - 等价类
 - 等价关系与划分
 - 商集合
- 偏序关系 ● 偏序关系的定义

 - 拟序
 - 字典序关系
 - 偏序关系的Hass图
 - 偏序关系的特殊元素 ● 良序关系

