

Hak Cipta pada Departemen Pendidikan Nasional Dilindungi Undang-undang

MATEMATIKA

Untuk Sekolah Menengah Kejuruan(SMK) Kelas XII

Tim Penyusun

Penulis To'ali

Ukuran Buku : 21 x 29,7

510.07

TOA

TO'ALI

Matematika : Sekolah Menengah Kejuruan (SMK) untuk kelas XII/ Oleh To'ali – Jakarta: Pusat Perbukuan Departemen Pendidikan

Nasional, 2007

vii, 206 hlm.: 29,7 cm.

Bibliografi

ISBN 979-462-816-6

1. Matematika-Studi dan Pengajaran I. Judul

Cetakan I Tahun 2008

Diterbitkan oleh Pusat Perbukuan Departemen Pendidikan Nasional Tahun 2007-03-30

Duiperbanyak oleh

SAMBUTAN

Buku teks pelajaran ini merupakan salah satu dari buku teks pelajaran yang telah dilakukan penilaian oleh Badan Standar Nasional Pendidikan dan telah ditetapkan sebagai buku teks pelajaran yang memenuhi syarat kelayakan untuk digunakan dalam proses pembelajaran melalui Peraturan Menteri Pendidikan Nasional Nomor 46 Tahun 2007.

Buku teks pelajaran ini telah dibeli hak ciptanya oleh Departemen Pendidikan Nasional pada tahun 2007. saya menyampaikan penghargaan tinggi kepada para penulis buku teks pelajaran ini, yang telah berkenan mengalihkan hak cipta karyanya kepada Departemen Pendidikan Nasional untuk digunakan secara luas oleh para pendidik dan peserta didik di seluruh Indonesia.

Buku-buku teks pelajaran yang telah dialihkan hak ciptanya kepada Departemen Pendidikan Nasional ini dapat diunduh (down load), digandakan, dicetak, dialih mediakan, atau di fotokopi oleh masyarakat. Namun untuk penggandaan yang bersifat komersial, harus memenuhi ketentuan yang ditetapkan oleh Pemerintah antara lain dengan harga eceran tertinggi. Diharapkan buku teks pelajaran ini akan lebih mudah dijangkau masyarakat sehingga peserta didik dan pendidik di seluruh Indonesia dapat memperoleh sumber belajar yang bermutu.

Program pengalihan/pembelian hak cipta buku teks pelajaran ini merupakan satu program terobosan yang ditempuh pemerintah melalui Departemen Pendidikan Nasional.

Kami berharap, semua pihak dapat mendukung kebijakan ini agar anak didik memperoleh kesempatan belajar dengan baik. Kepada para siswa, kami menyampaikan selamat belajar, manfaatkan buku ini sebaik-baiknya. Kepada para guru, kami menghimbau agar dapat memberdayakan buku ini seluas-luasnya bagi keperluan pembelajaran di sekolah.

Akhir kata, saya menyampaikan Selamat Mereguk Ilmu Pengetahuan Melalui Buku Teks Pelajaran Bermutu.

Jakarta, 25 Pebruari 2008

Kepala Pusat Perbukuan

Sugijanto

Dengan mengucap syukur pada Allah SWT yang telah memberikan rahmat begitu besar pada kita semua, sehingga Alhamdulillah, buku matematika SMK untuk kelas XII Kelompok Penjualan dan Akuntansi Sekolah Menengah Kejuruan dapat terselesaikan dengan baik.

Buku ini disusun berdasarkan Kurikulum Tingkat Satuan Pendidikan SMK/MAK yang sesuai dengan Peraturan Menteri Pendidikan Nasional Republik Indonesia No. 22 dan 23 Tahun 2006 Tentang Standar Isi dan Standar Kompetensi Lulusan untuk Satuan Pendidikan Dasar dan Menengah dengan pengembangannya yang mudah-mudahan dapat melengkapi pemahaman konsep-konsep dasar matematika dan dapat menggunakannya baik dalam mempelajari pelajaran yang berkaitan dengan matematika, pelajaran lain maupun dalam kehidupan sehari-hari.

Tiap bab berisi ringkasan teori yang melandasi kompetensi yang harus dipahami secara benar oleh siswa-siswi peserta didik dan disertai contoh-contoh soal yang relevan dengan teori tersebut. Soal-soal dibuat didasarkan pada teori dan sebagai latihan untuk dapat menyelesaikan uji kemampuan yang digunakan sebagai parameter atau indikator bahwa peserta diklat sudah kompeten atau belum pada materi yang dipelajarinnya.

Kami menyadari bahwa tersediannya buku-buku referensi atau sumber bacaan dari berbagai penulis dan penerbit sangat membantu penulis dalam menyajikan konsep-konsep dasar yang sesuai dengan kaidah-kaidah matematika. Dan mudah-mudahan buku ini dapat bermanfaat secara khusus untuk anak-anak didik di Sekolah Menengah Kejuruan dan bagi siapapun yang berkenan menggunakan buku ini.

Akhir kata "Tidak Ada Gading yang Tak Retak", tidak ada karya manusia yang sempurna selain dari karya-Nya. Demikian pula dengan buku ini masih jauh dari apa yang kita harapkan bersama. Oleh karena itu segala kritik dan saran demi kebaikan bersama sangat diharapkan sebagai bahan evaluasi atau revisi dari buku ini.

Jakarta, September 2007

Penulis

BAB 1	Teori Peluang A. Pendahuluan B. Kompetensi Dasar B.1 Kaidah Pencacahan, Permutasi, dan Kombinasi B.2 Peluang Suatu Kejadian Uji Kemampuan	
BAB 2	A. Pendahuluan B. Kompetensi Dasar B.1 Pengertian Statistik, Statistika, Populasi dan Sampel B.2 Penyajian Data B.3 Ukuran Pemusatan (Tendensi Sentral) B.4 Ukuran Penyebaran (Dispersi) Uji Kemampuan	
BAB 3	Matematika Keuangan A. Pendahuluan B. Kompetensi Dasar B.1 Bunga Tunggal dan Bunga Majemuk B.2 Rente B.3 Anuitas B.3 Penyusutan Nilai Barang Uji Kemampuan Daftar Bunga	

PETUNJUK PENGGUNAAN BUKU

A. Deskripsi Umum

Matematika SMK Kelompok Penjualan dan Akuntansi kelas XII terdiri atas 3 standar kompetensi, yaitu:

- 1. Standar kompetensi Teori Peluang
- 2. Standar kompetensi Statistika
- 3. Standar kompetensi Matematika Keuangan

Setelah mempelajari buku ini, kompetensi yang diharapkan adalah peserta didik dapat menerapkan konsep Teori Peluang, Konsep Statistika, dan Matematika Keuangan dalam menunjang program keahlian, yaitu program keahlian pada kelompok Penjualan dan Akuntansi.

Pendekatan yang digunakan dalam menyelesaikan buku ini menggunakan pendekatan siswa aktif melalui metode: Pemberian tugas, diskusi pemecahan masalah serta presentasi. Guru merancang pembelajaran yang memberikan kesempatan seluas-luasnya kepada peserta didik untuk berperan aktif dalam membangun konsep secara mandiri ataupun bersama-sama.

B. Prasyarat Umum

Dalam mempelajari buku ini, setiap standar kompetensi yang satu dengan standar kompetensi yang lain saling berkaitan dan anda boleh mempelajari kompetensi ini tidak harus berurutan sesuai dengan daftar isi. Jadi untuk dapat mempelajari kompetensi berikutnya harus menguasai secara mendasar kompetensi sebelumnya. Standar kompetensi yang paling mendasar dan harus benar-benar dikuasai adalah standar kompetensi sistem bilangan real.

C. Petunjuk Penggunaan Buku

1. Penjelasan Bagi Peserta Didik

- a. Bacalah buku ini secara berurutan dari kata pengantar sampai cek kemampuan, lalu pahami benar isi dari setiap babnya.
- b. Laksanakan semua tugas-tugas yang ada dalam buku ini agar kompetensi anda berkembang sesuai standar.
- c. Buatlah rencana belajar anda dalam mempelajari buku ini, dan konsultasikan rencana anda dengan guru.
- d. Lakukan kegiatan belajar untuk memdapatkan kompetensi sesuai dengan rencana kegiatan belajar yang telah anda susun.

- e. Setiap mempelajari satu sub kompetensi, anda harus mulai dari menguasai pengetahuan pendukung (uraian materi), membaca rangkumannya dan mengerjakan soal latihan baik melalui bimbingan guru ataupun tugas di rumah.
- f. Dalam mengerjakan soal-soal latihan, anda jangan melihat kunci jawaban terlebih dahulu, sebelum anda menyelesaikannya.
- g. Diakhir kompetensi, selesaikan Uji Kemampuan untuk menghadapi tes evaluasi yang diberikan oleh guru.

2. Peranan Guru

- a. Membantu peserta didik dalam merencanakan proses belajar.
- b. Membimbing peserta didik melalui tugas-tugas pelatihan yang dijelaskan dalam tahap belajar.
- c. Membantu peserta didik dalam memahami konsep dan menjawab pertanyaan mengenai proses belajar peserta didik.
- d. Membantu peserta didik dalam menentukan dan mengakses sumber tambahan lain yang diperlukan untuk belajar.
- e. Mengorganisasikan kegiatan belajar kelompok jika diperlukan.
- f. Melaksanakan penilaian.
- g. Menjelaskan kepada peserta didik mengenai bagian yang perlu untuk dibenahi dan merundingkan rencana pemelajaran selanjutnya.
- h. Mencatat pencapaian kemajuan peserta didik dengan memberikan evaluasi. Pemberian evaluasi kepada siswa diharapkan diambil dari soal-soal Uji Kemampuan yang tersedia.

D. Cek Kemampuan

Untuk mengetahui tingkat penguasaan anda terhadap materi. Rumus :

Arti tingkat penguasaan yang anda capai:

```
90% - 100% = baik sekali
76% - 89% = baik
60% - 75% = sedang
< 60% = kurang
```

Jika anda mencapai tingkat penguasaan 60% ke atas, anda dapat meneruskan dengan kompetensi dasar berikutnya. Tetapi jika nilai anda di bawah 60%, anda harus mengulangi materi tersebut terutama yang belum dikuasai.

Sumber: Art and Gallery

Standar Kompetensi	Kompetensi Dasar		
1. Memecahkan masalah dengan konsep teori peluang	9. 1 Mendeskripsikan kaidah pencacahan, permutasi, dan kombinasi9. 2 Menghitung peluang suatu kejadian		

A. PENDAHULUAN

Standar Kompetensi **Teori Peluang** terdiri dari dua (2) Kompetensi Dasar. Pada penyajian dalam buku ini, setiap Kompetensi Dasar memuat Tujuan, Uraian materi, Rangkuman dan Latihan. Kompetensi Dasar dalam Standar Kompetensi ini adalah **Kaidah Pencacahan, Permutasi dan Kombinasi,** dan **Peluang Suatu Kejadian** Standar Kompetensi ini digunakan untuk menyelesaikan masalah—masalah peluang suatu kejadian pada kehidupan sehari-hari dalam rangka untuk menunjang program keahliannya.

Sebelum mempelajari kompetensi ini diharapkan anda telah menguasai standar kompetensi Sistem Bilangan Real terutama tentang perkalian, pembagian, penjumlahan dan pengurangan bilangan real.

Pada setiap akhir Kompetensi dasar tercantum soal-soal latihan yang disusun dari soal-soal yang mudah sampai soal-soal yang sukar. Latihan soal ini digunakan untuk mengukur kemampuan anda terhadap kompetensi dasar ini, artinya setelah mempelajari kompetensi dasar ini secara mandiri dengan bimbingan guru sebagai fasilitator, ukur sendiri kemampuan anda dengan mengerjakan soal-soal latihan tersebut.

Untuk melancarkan kemampuan anda supaya lebih baik dalam mengerjakan soal, disarankan semua soal dalam latihan ini dikerjakan baik di sekolah dengan bimbingan guru maupun di rumah.

Untuk mengukur standar kompetensi lulusan tiap peserta didik, di setiap akhir kompetensi dasar, guru akan memberikan evaluasi apakah anda layak atau belum layak mempelajari standar Kompetensi berikutnya. Anda dinyatakan layak jika anda dapat mengerjakan soal 60% atau lebih soal-soal evaluasi yang akan diberikan guru.

B. KOMPETENSI DASAR

B.1. Kaidah Pencacahan, Permutasi, dan Kombinasi

a. Tuiuan

Setelah mempelajari uraian kompetensi dasar ini, anda dapat:

- Menjelaskan pengertian kaidah pencacahan, faktorial, permutasi, dan kombinasi
- Menentukan banyaknya cara meyelesaikan masalah dengan kaidah pencacahan, permutasi, dan kombinasi
- Menyelesaikan masalah dengan menggunakan kaidah pencacahan, permutasi, dan kombinasi

b. Uraian Materi

Perhitungan peluang yang sering dipopulerkan dengan istilah *Probabilitas* pertama kali dikenalkan oleh *Blaise Pascal* dan *Pierre de Fermat* pada abad ke-17 melalui permainan dadu. Dari permainan dadu inilah akhirnya berkembang permainan-

BABI Peluang

permainan yang lain seperti pelemparan koin, permainan kartu bridge (remi) dan permainan lainnya. Oleh karena itu, konsep peluang lahir melalui suatu permainan.

Dalam perkembangannya, perhitungan peluang mendapatkan perhatian yang serius dari para ilmuwan karena mempunyai peran yang sangat penting dalam perkembangan ilmu pengetahuan lainnya, seperti Ilmu fisika modern, Statistika, dan lain-lain.

1). Pengertian Kaidah Pencacahan (Caunting Slots)

Kaidah pencacahan atau Caunting Slots adalah suatu kaidah yang digunakan untuk menentukan atau menghitung berapa banyak cara yang terjadi dari suatu peristiwa. Kaidah pencacahan terdiri atas :

- a. Pengisian tempat yang tersedia (Filling Slots),
- b. Permutasi, dan
- c. Kombinasi.

2). Pengisian Tempat yang Tersedia (Filling Slots)

Apabila suatu peristiwa pertama dapat dikerjakan dengan k_1 cara yang berbeda, peristiwa kedua dapat dikerjakan dengan k_2 yang berbeda dan seterusnya sampai peristiwa ke-n, maka banyaknya cara yang berbeda dari semua peristiwa tersebut adalah K, di mana :

$$K = k_1 x k_2 x \dots x k_n$$

K sering disebut dengan istilah banyaknya tempat yang tersedia dengan *aturan perkalian* atau *Kaidah perkalian*. Untuk menentukan banyaknya tempat yang tersedia selain menggunakan aturan perkalian, juga menggunakan diagram pohon, tabel silang, dan pasangan berurutan

Contoh 1

Misalkan ada dua celana berwarna hitam dan biru serta empat baju berwarna kuning, merah, putih, dan ungu. Ada berapa banyak pasangan warna celana dan baju yang dapat dibentuk?

Jawab:

Dari masalah di atas dapat diselesaikan dengan kaidah pencacahan, banyak cara yang mungkin terjadi dari peristiwa tersebut dapat ditentukan dengan menggunakan metode berikut ini:

Dengan tabel silang

Warna baju Warna celana	Kuning (k)	Merah (m)	Putih (p)	Ungu (u)
Hitam (h)	(h, k)	(h, m)	(h, p)	(h, u)
Biru (b)	(b,k)	(b, m)	(b,p)	(b, u)

Dengan Diagram Pohon

Dari tabel silang dan diagram pohon di atas tampak ada 8 macam pasangan warna celana dan baju yang dapat dibentuk, yaitu : (h,k,), (h,m), (h,p), (h,u), (b,k), (b,m), (b,p), dan (b,u),

Dengan Pasangan Terurut

Misalkan himpunan warna celana dinyatakan dengan $A = \{h,b\}$ dan himpunan warna baju dinyatakan $B = \{k,m,p,u\}$. Himpunan pasangan terurut dari himpunan A dan himpunan B dapat ditulis $\{(h,k),(h,m),(h,p),(h,u),(b,k),(b,m),(b,p),(b,u)\}$. Banyak unsur dalam himpunan pasangan terurut ada 8 macam warna.

Contoh 2

Misalkan dari Semarang ke Bandung ada dua jalan dan dari Bandung ke Jakarta ada 3 jalan. Berapa banyak jalan yang dapat ditempuh untuk bepergian dari Semarang ke Jakarta melalui Bandung?

Jawab:

Dari Semarang ke Bandung ada 2 jalan dan dari Bandung ke Jakarta ada 3 jalan. Jadi, seluruhnya ada $2 \times 3 = 6$ jalan yang dapat ditempuh.

Contoh 3

Dari lima buah angka 0, 1, 2, 3, dan 4 hendak disusun suatu bilangan yang terdiri atas 4 angka. Berapa banyak bilangan yang dapat disusun apabila angka-angka itu tidak boleh berulang?

Jawab:

Angka pertama (sebagai ribuan) dapat dipilih dari *4 angka* yaitu 1, 2, 3, dan 4. Misalnya terpilih angka 1. Karena angka-angka itu tidak boleh berulang, maka angka kedua (sebagai ratusan) dapat dipilih dari *4 angka*, yaitu 0, 2, 3 dan 4. Misalnya terpilih angka 0. Angka ketiga (sebagai puluhan) dapat dipilih dari *3 angka*, yaitu 2, 3,

BABI Peluang 5

dan 4. Misalkan yang terpilih angka 2. Angka keempat (sebagai satuan) dapat dipilih dari 2 angka, yaitu 3, dan 4. Jadi, seluruhnya ada $4 \times 4 \times 3 \times 2 = 96$ bilangan yang dapat disusun dengan angka-angka yang tidak boleh berulang.

Contoh 4

Dari angka-angka 0, 1, 2, 3, 4, 5, dan 7 akan dibentuk bilangan dengan 4 angka dan tidak boleh ada angka yang diulang.

- a. Berapa banyak bilangan dapat dibentuk?
- b. Berapa banyak bilangan ganjil yang dapat dibentuk?
- c. Berapa banyak bilangan yang nilainya kurang dari 5.000 yang dapat dibentuk?
- d. Berapa banyak bilangan genap dan lebih besar dari 2.000 yang dapat dibentuk?

Jawab:

- a. Angka ribuan ada 6 angka yang mungkin, yaitu 1, 2, 3, 4, 5, dan 7. Misalkan terpilih angka 1. Angka ratusan ada 6 angka yang mungkin, yaitu 0, 2, 3, 4, 5, dan 7. Misal terpilih angka 2. Angka puluhan ada 5 angka yang mungkin, yaitu 0, 3, 4, 5, dan 7. Misalkan terpilih angka 3. Angka satuan ada 4 angka yang mungkin, yaitu 0, 4, 5, dan 7. Jadi, banyak bilangan yang dapat dibentuk = 6 x 6 x 5 x 4 = 720 angka.
- b. Bilangan ganjil apabila angka satuannya merupakan angka ganjil.
 Angka satuan ada 4 angka yang mungkin, yaitu 1, 3, 5, dan 7. Misalkan terpilih angka 1. Angka ribuan ada 5 angka yang mungkin yaitu 2, 3, 4, 5, dan 7. Misalkan terpilih angka 2. Angka ratusan ada 5 angka yang mungkin, yaitu 0, 3, 4, 5, dan 7. Misalkan terpilih angka 3. Angka puluhan ada 4 angka yang mungkin yaitu 0, 4, 5, dan 7. Jadi, banyak bilangan ganjil yang dapat dibentuk = 4 x 5 x 5 x 4 = 400 angka.
- c. Bilangan yang kurang dari 5.000, maka: Angka ribuan ada 4 angka yang mungkin, yaitu 1, 2, 3, dan 4. Misalkan terpilih angka 1. Angka ratusan ada 6 angka yang mungkin yaitu 0, 2, 3, 4, 5, dan 7. Misal terpilih angka 2. Angka puluhan ada 5 angka yang mungkin yaitu 0, 3, 4, 5, dan 7. Misalkan terpilih angka 3. Angka satuan ada 4 angka yang mungkin, yaitu 0, 4, 5, dan 7. Jadi, banyak bilangan dapat dibentuk = 4 x 6 x 5 x 4 = 480 angka.
- d. Bilangan genap apabila satuannya merupakan angka genap, yaitu 0, 2 atau 4. Bilangan lebih besar dari 2.000 dan angka satuannya 0, maka: Angka ribuan ada *4 angka* yang mungkin, yaitu 3, 4, 5, dan 7. Misalkan terpilih angka 3. Angka ratusan ada *5 angka* yang mungkin, yaitu 1, 2, 4, 5, dan 7. Misal terpilih angka 2. Angka puluhan ada *4 angka* yang mungkin, yaitu 1, 4, 5, dan 7.

Bilangan lebih besar dari 2.000 dan angka satuannya 2, maka: Angka ribuan ada *4 angka* yang mungkin, yaitu 3, 4, 5, dan 7. Misalkan terpilih angka 3. Angka ratusan ada *5 angka* yang mungkin, yaitu 0, 1, 4, 5, dan 7. Misal terpilih angka 0. Angka puluhan ada *4 angka* yang mungkin, yaitu 1, 4, 5, dan 7.

Bilangan lebih besar dari 2.000 dan angka satuannya 4, maka: Angka ribuan ada *4 angka* yang mungkin, yaitu 2, 3, 5, dan 7. Misal terpilih angka 3. Angka ratusan ada 5 angka yang mungkin, yaitu 0, 1, 2, 5, dan 7. Misalkan terpilih angka 0. Angka puluhan ada 4 angka yang mungkin, yaitu 1, 2, 5, dan 7. Jadi, banyak bilangan genap dan lebih besar dari 2.000 yang dapat dibentuk adalah = $(4 \times 5 \times 4) + (4 \times 5 \times 4) + (4 \times 5 \times 4) = 240$ angka.

3). Pengertian dan Notasi Faktorial

n faktorial adalah hasil kali bilangan bulat positif dari 1 sampai dengan n. Notasi dari n faktorial dilambangkan dengan n! (dibaca: "n faktorial")

$$n! = 1.2.3...(n-2).(n-1).n$$

Contoh 5

Tentukanlah nilai dari 0!

Jawab:

Dari definisi faktorial :
$$n ! = 1 . 2 . 3 (n-2) . (n-1) . n 1), (n-1) ! = 1 . 2 . 3 (n-2) . (n-1) 2).$$

Jika persamaan 2) kita substitusikan ke persamaan 1), maka akan diperoleh:

$$n ! = (n-1) ! . n$$
 atau $n = \frac{n!}{(n-1)!}$. Jika $n = 1$ maka akan diperoleh kesamaan:

$$1 = \frac{1!}{(1-1)!}$$
 atau $1 = \frac{1!}{0!}$, Jadi, **0! = 1! = 1**

Contoh 6

Hitunglah nilai dari:

a. 5! b.
$$\frac{7!}{4!}$$
 c. $\frac{10!}{6! \cdot 4!}$

Jawab:

a.
$$5! = 1.2.3.4.5 = 120$$

b. $\frac{7!}{4!} = \frac{1.2.3.4.5.6.7}{1.2.3.4} = 5.6.7 = 210.$
c. $\frac{10!}{6!} = \frac{6!.7.8.9.10}{6!1.2.3.4} = 210.$

Contoh 7

Tulislah dengan notasi faktorial:

a.
$$\frac{1}{9.10.11.12}$$
 b. $n.(n-1).(n-2)...(n-8)$ c. $\frac{n.(n-1).(n-2).(n-3)}{1 \cdot 2 \cdot 3 \cdot 4}$

Jawab:

a.
$$\frac{1}{9.10.11.12} = \frac{1.2.3...8}{1.2.3...8.9.10.11.12} = \frac{8!}{12!}$$
b.
$$n.(n-1).(n-2)...(n-8) = \frac{n.(n-1).(n-2)...(n-8).(n-9)...3.2.1}{(n-9)...3.2.1} = \frac{n!}{(n-9)!}$$

BABI Peluang 7

c.
$$\frac{n.(n-1).(n-2).(n-3)}{1\cdot 2\cdot 3\cdot 4} = \frac{n.(n-1).(n-2).(n-3).(n-4).(n-5)...3.2.1}{1\cdot 2\cdot 3\cdot 4.(n-4).(n-5)...3.2.1} = \frac{n!}{4!.(n-4)!}$$

Contoh 8

Sederhanakanlah bentuk : $\frac{(n+1)!}{(n-1)!}$, untuk $n \ge 1$

Jawab:

$$\frac{(n+1)!}{(n-1)!} = \frac{(n+1).n.(n-1)!}{(n-1)!} = (n+1). n = n^2 + n$$

Contoh 9

Hitunglah n dari: $\frac{(n-1)!}{(n-3)!} = 30.$

Jawab:

$$\frac{(n-1)!}{(n-3)!} = 30$$

$$\frac{(n-1).(n-2).(n-3)!}{(n-3)!} = 30$$

$$(n-1).(n-2) = 30$$

$$n^2 - 3n + 2 - 30 = 0$$

$$n^2 - 3n - 28 = 0$$

$$(n-7)(n+4) = 0$$

$$n = 7 \text{ atau } n = -4 \text{ (tidak memenuhi)}$$

LATIHAN

- 1. Dalam suatu penelitian akan ditanam 4 jenis padi (p_1, p_2, p_3, p_4) pada 5 petak sawah yang berbeda $(s_1, s_2, s_3, s_4, s_5)$
 - a. Buatlah diagram pohon dan tabel silang pada penelitian itu!
 - b. Berapa macam cara penanaman 4 jenis padi di 5 petak sawah yang berbeda?
- 2. Dari kota A ke Kota B ada 5 jalan yang dapat dilalui. Dari Kota B ke Kota C ada 7 jalan yang dapat dilalui. Dengan berapa cara seseorang dapat pergi:
 - a. Dari Kota A ke C melalui B?
 - b. Dari Kota A ke C melalui B dan kembali lagi ke A melalui B?
 - c. Dari Kota A ke C melalui B dan kembali lagi ke A melalui B tetapi jalan yang ditempuh pada waktu kembali tidak boleh sama dengan jalan yang dilalui ketika berangkat?
- 3. Berapa banyak lambang bilangan dapat dibentuk dari angka-angka 1, 2, 3, 4, 5, dan 6:
 - a. Jika bilangan tersebut terdiri dari 3 angka dan ada angka yang sama?
 - b. Jika bilangan tersebut terdiri dari 4 angka yang berlainan dan genap?

- 4. Berapa banyak pasang pakaian yang dapat dipakai seorang siswa apabila ia mempunyai 6 celana dan 8 kemeja?
- 5. Dari angka 4, 5, 6, 7, 8, dan 9 dibuat bilangan yang terdiri atas 4 angka yang berbeda. Berapakah banyaknya bilangan yang dapat disusun apabila bilangan itu kurang dari 5000 dan tanpa pengulangan?
- 6. Pengurus suatu organisasi terdiri dari 4 orang, yaitu seorang ketua, seorang sekretaris, seorang bendahara, dan seorang pembantu umum. Untuk jabatan ketua ada 5 calon, untuk sekretaris ada 7 calon, untuk bendahara ada 4 calon, dan untuk pembantu umum ada 3 calon. Jika dalam susunan pengurus itu tidak boleh seorang pun yang dicalonkan pada 2 jabatan atau lebih. Dengan berapa cara susunan pengurus itu dapat dibentuk?
- 7. Untuk mengikuti lomba KEMAMPUAN MIPA di tingkat Kabupaten, akan dipilih wakil untuk pelajaran matematika, fisika, kimia, dan biologi. Masing-masing untuk 1 pelajaran ditempatkan seorang wakil. Bila untuk matematika tersedia 8 calon, Fisika 5 calon, Kimia 6 calon, dan Biologi 4 calon. Ada berapa cara pemilihan pasangan dapat dilakukan?
- 8. Berapa banyaknya huruf dapat dibentuk dari kata SHOLAT, apabila:
 - a. Huruf terakhir adalah konsonan?
 - b. Huruf terakhir adalah huruf A?
- 9. Berapakah banyaknya bilangan antara 500 dan 900 yang dapat disusun dari angka 2, 3, 4, 5, dan 6, jika pada penyusunan bilangan itu tidak boleh ada pengulangan angka?
- 10. Delapan orang terdiri atas 2 pria dan 6 wanita. Mereka mendapatkan 8 kursi sebaris ketika menonton pertunjukan. Jika pria harus menempati di ujung-ujung kursi, ada berapa cara mereka duduk?
- 11. Dari kotak A, B, dan C berturut turut berisi 5 bola merah, 6 bola kuning, dan 4 bola hijau. Seorang mengambil sebuah bola dari masing masing kotak sehingga mendapat 3 bola yang berlainan warna. Berapa cara agar mendapatkan 3 bola yang berlainan warna tersebut?
- 12. Seorang karyawan dalam bertugas setiap harinya melewati 4 gedung. Dari gedung 1 ke gedung 2 ada 5 jalan, dari gedung 2 ke gedung 4 ada 6 jalan, dari gedung 1 ke gedung 3 ada 5 jalan, dari gedung 3 ke gedung 4 ada 2 jalan, namun dari gedung 2 ke gedung 3 tidak ada jalan. Setelah sampai dari gedung 4 orang tersebut kembali ke gedung 1 melalui gedung 3 atau gedung 2. Ada berapa cara orang tersebut untuk keluar dari gedung tempat dia bekerja?
 - a. Jika waktu pulang boleh melalui jalan yang sama.
 - b. Ketika pulang tidak boleh melalui ialah yang sudah dilewati.
- 13. Dari angka-angka 0, 1, 2, 4, 5, 6, 7, dan 9 akan disusun suatu bilangan puluhan ribu. Berapa banyaknya bilangan yang dapat disusun apabila bilangan tersebut:
 - a. Merupakan bilangan yang habis dibagi 10 dan angka tidak berulang?
 - b. Merupakan bilangan genap dan kurang dari 60.000?

14. Nyatakan dengan notasi faktorial:

c.
$$\frac{8.7.6}{1.2.3.4}$$

b.
$$p.(p-1).(p-2).(p-3)$$

d.
$$(k+2).(k+1).k.(k-1).(k-2)$$

15. Seseorang akan pergi dari kota A ke kota F seperti gambar di bawah ini:

Ada berapa jalan yang mungkin di lalui dari kota A ke kota F tersebut?

16. Hitunglah:

d.
$$\frac{17!}{15!.2!}$$

g.
$$\frac{20!}{(20-3)!}$$

e.
$$\frac{4!.5!}{2!.3!}$$

h.
$$\frac{100!}{98!}$$

c.
$$\frac{8!}{5!}$$

f.
$$\frac{3!.4!.5!}{2!.2!}$$

i.
$$\frac{10!}{(10-2)}$$

17. Sederhanakan:

a.
$$\frac{(n-1)!}{(n+3)!}$$

c.
$$\frac{(n-1)!}{(n+2)!}$$

b.
$$\frac{(n-1)!}{(n+2)!} = \frac{3(n-3)!}{(n+1)!}$$

d.
$$\frac{(n-2)!}{(n-4)!} = \frac{5!}{3!}$$

18. Hitunglah n dari:

a.
$$\frac{(n+2)!}{n!} = 42$$

d.
$$\frac{(n+1)!}{2!.(n-1)!} = \frac{n!}{(n-2)!}$$

b.
$$\frac{n!}{(n-2)!} = \frac{2.(n-1)!}{(n-3)!}; n \ge 3$$

e.
$$\frac{n!}{(n-2)!} = 6$$

4). Pengertian Permutasi

a). Permutasi dari unsur-unsur yang berbeda

Misalkan dari empat huruf yang berbeda A, B, C, dan D akan disusun :

- a. Satu huruf, maka diperoleh susunan huruf A, B, C, dan D. Jumlahnya susunan ada 4 kemungkinan = $\frac{4.3.2.1}{3.2.1} = \frac{4!}{3!} = \frac{4!}{(4-1)!}$
- b. Dua huruf yang berbeda, maka diperoleh susunan: AB, BA, AC, CA, AD, DA, BC, CB, BD, DB, CD, dan DC. Jumlah susunan ada $12 = 4.3 = \frac{4.3.2.1}{2.1} = \frac{4!}{2!} = \frac{4!}{(4-2)!}$
- c. Tiga huruf yang berbeda, maka dengan menggunakan aturan perkalian, yaitu huruf pertama dapat ditempati 4 huruf yang tersedia, huruf kedua dapat ditempati 3 huruf sisa yang tersedia, dan huruf ketiga dapat ditempati dua 2 huruf sisa yang tersedia. Jumlah susunan ada $24 = 4 \cdot 3 \cdot 2 = \frac{4!}{1!} = \frac{4!}{(4-3)!}$
- d. Empat huruf yang berbeda, maka dengan menggunakan aturan perkalian diperoleh jumlah susunan sebanyak 24 = 4 . 3 . 2 . 1 = $\frac{4!}{0!}$ = $\frac{4!}{(4-4)!}$

Dari ilustrasi di atas, maka jika jumlah objek ada n, akan disusun k objek yang berbeda dengan $k \le n$ diperoleh jumlah susunan:

$$\frac{n.(n-1).(n-2)\ldots(n-k+1)=}{\frac{n.(n-1).(n-2)\ldots(n-k+1).(n-k).(n-k-1)\ldots3.2.1}{(n-k).(n-k-1)\ldots3.2.1}} = \frac{n!}{(n-k)!}$$

Susunan k objek yang berbeda dari n objek yang tersedia di mana k \leq n sering di dipopulerkan dengan istilah Permutasi k objek yang berbeda dari n objek yang tersedia.

Banyak permutasi k objek dari n objek di tulis $_n$ P_k , atau P_k^n dapat dirumuskan :

$$_{n}P_{k}=\frac{n!}{(n-k)!}$$

Contoh 9

Berapa banyak permutasi 2 huruf yang diambil dari huruf-huruf A, B, C, D, dan E.

Jawab:

- Sebagai huruf pertama dalam susunan itu dapat dipilih dari 5 huruf yang tersedia, yaitu A, B, C, D, atau E. Misalkan terpilih huruf A.
- Setelah huruf pertama dipilih, ada 4 huruf untuk memilih huruf ke dua, yaitu B, C, D, dan E. Berdasarkan kaidah perkalian, banyak susunan seluruhnya adalah = 5 x 4 = 20.

Dengan menggunakan permutasi, berarti permutasi 2 objek dari 5 objek yang tersedia:

$$_{5}P_{2} = \frac{5!}{(5-2)!} = \frac{5.4.3.2.1}{3.2.1} = 5.4 = 20.$$

BABI Peluang

Contoh 10

Berapa banyak susunan yang terdiri atas 4 huruf yang di ambil dari huruf-huruf T, O, S, E, R, B, dan A?

11

Jawab:

Banyaknya susunan huruf-huruf itu adalah permutasi 4 huruf berbeda yang diambil dari 7 huruf yang tersedia adalah:

$$_{7}P_{4} = \frac{7!}{(7-4)!} = \frac{7.6.5.4.3.2.1}{3.2.1} = 7.6.5.4 = 840.$$

Contoh 11

Hitunglah nilai dari 6 P 6!

Jawab:

$$_{6}P_{6} = \frac{6!}{(6-6)!} = \frac{6!}{0!} = 6! = 6.5.4.3.2.1 = 720.$$

b). Permutasi yang memuat beberapa unsur yang sama

Banyaknya permutasi $_n$ P $_n$ di mana ada a objek yang sama, b objek yang sama, dan seterusnya adalah P, maka nilai P:

$$P = \frac{n!}{a!.b! \dots}$$

Contoh 12

Carilah banyak permutasi berikut ini:

- a. 5 objek yang memuat 3 objek yang sama
- b. 10 objek memuat 2 objek yang sama, 4 objek lainnya sama dan 3 objek lainnya lagi sama.

Jawab:

a.
$$P = \frac{5!}{3!} = \frac{1.2.3.4.5}{1.2.3} = 20.$$

b.
$$P = \frac{10!}{2!.4!.3!} = \frac{4!.5.6.7.8.9.10}{1.2.4!.1.2.3} = 12.600.$$

Contoh 13

Berapa banyak susunan huruf yang berbeda yang dibentuk dari huruf-huruf *MATEMATIKA*?

Jawab:

Pada kata " MATEMATIKA " terdapat 10 huruf dengan 2 huruf M, 3 huruf A, dan 2 huruf T. Jika banyak susunan yang diminta adalah P, maka:

$$P = \frac{10!}{2!.3!.2!} = \frac{3!.4.5.6.7.8.9.10}{3!.1.2.1.2} = 151.200.$$

Contoh 14

Dari 10 kelereng, 5 berwarna merah, 3 berwarna hitam dan 2 berwarna putih. Berapa banyak cara untuk menyusun kelereng tersebut berdampingan?

Jawab:

$$P = \frac{10!}{5!.3!.2!} = \frac{5!.6.7.8.9.10}{5!.1.2.3.1.2} = 2.520.$$

c). Permutasi Siklik

Jika ada 2 objek duduk melingkar, maka banyak susunan ada 1 = (2 - 1)!, yaitu:

Jika ada 3 objek duduk melingkar, maka banyak susunan ada 2 = (3 - 1)!, yaitu:

Jika ada 4 objek duduk melingkar, maka banyak susunan ada 6 = (4 - 1)!, yaitu:

Dari ilustrasi di atas, maka:

Jika ada n objek duduk melingkar, maka banyak susunan yang terjadi ada (n-1)!

Sehingga diperoleh definisi:

Jika ada n objek yang berbeda dan disusun dalam bentuk siklik, maka banyaknya susunan yang terjadi (permutasi siklik atau P siklik) adalah:

P siklik =
$$(n - 1)!$$

Contoh 15

Dari 8 peserta konferensi akan menempati kursi pada meja bundar, berapa macam susunan posisi duduk yang dapat terjadi?

Jawab:

Banyak objek n = 8, maka banyak permutasi sikliknya:

P siklik =
$$(8-1)! = 7! = 5.040$$
.

Contoh 16

Dari 8 anggota Karang Taruna dimana Hanif, Nisa, dan Azzam ada di dalamnya, akan duduk mengelilingi meja bundar. Ada berapa susunan yang terjadi, jika:

- a. Semua anggota Karang Taruna bebas untuk memilih tempat duduk
- b. Hanif, Nisa, dan Azzam harus duduk berdampingan
- c. Hanif, Nisa, dan Azzam tidak boleh ketiganya duduk berdampingan

BABI Peluang 13

Jawab:

a. Jika semua anggota Karang Taruna bebas untuk memilih, maka banyak susunan siklik = (8-1)! = 5.040.

- b. Jika Hanif, Nisa, dan Azzam harus duduk berdampingan, maka mereka bertiga dianggap satu objek dalam susunan siklik. Jumlah objek dalam susunan siklik tinggal 6 objek, maka banyak susunan siklik = (6-1)! = 120. Namun Hanif, Nisa, dan Azzam dapat bertukar tempat sebanyak 3! = 6. Jadi, susunan siklik dimana Hanif, Nisa, dan Azzam duduk berdampingan adalah = $120 \times 6 = 720$.
- c. Hanif, Nisa, dan Azzam tidak boleh bertiganya duduk berdampingan = 5.040 720 = 4.320.

5). Pengertian Kombinasi

Misalkan dari empat huruf yang berbeda A, B, C, dan D akan disusun:

- a. Satu huruf, maka diperoleh huruf A, B, C, dan D. Jumlahnya ada $4 = \frac{4!}{(4-1)! \cdot 1!}$
- b. Dua huruf dengan urutan tidak diperhatikan, maka diperoleh susunan: AB = BA, AC = CA, AD = DA, BC = CB, BD = DB, dan CD = DC. Jumlah susunan ada 6 = $\frac{4!}{(4-2)!.2!}$
- c. Tiga huruf dengan urutan tidak diperhatikan, maka diperoleh susunan: ABC, ABD, BCD, dan ACD. Jumlah susunan ada $4 = \frac{4!}{(4-3)! \cdot 3!}$
- d. Empat huruf dengan urutan tidak diperhatikan, maka diperoleh susunan hanya 1, yaitu ABCD, $1 = \frac{4!}{(4-4)! \cdot 4!}$

Dari ilustrasi di atas, maka jika jumlah objek ada n, akan disusun k objek dengan urutan tidak diperhatikan, dan k \leq n diperoleh jumlah susunan = $\frac{n!}{(n-k)!.k!}$.

Susunan k objek dengan urutan tidak diperhatikan dari n objek yang tersedia di mana $k \le n$ sering dipopulerkan dengan istilah Kombinasi k objek dari n objek yang tersedia.

Banyaknya kombinasi k objek dari n objek di tulis $_n$ C $_k$, atau C_k^n dan dapat di rumuskan:

$$_{n}C_{k}=\frac{n!}{(n-k)!.k!}$$

Contoh 17

Tentukanlah nilai kombinasi di bawah ini:

c.
$$\frac{{}_{5}C_{2}.{}_{7}C_{2}}{{}_{12}C_{2}}$$

Jawab:

a.
$${}_{4}C_{2} = \frac{4!}{(4-2)! \cdot 2!} = \frac{1 \cdot 2 \cdot 3 \cdot 4}{1 \cdot 2 \cdot 1 \cdot 2} = 6$$
.
b. ${}_{12}C_{7} = \frac{12!}{(12-7)! \cdot 7!} = \frac{12!}{5! \cdot 7!} = \frac{7! \cdot 8 \cdot 9 \cdot 10 \cdot 11 \cdot 12}{7! \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} = 792$.

c.
$$\frac{5C_2 \cdot {}_{7}C_2}{{}_{12}C_4} = \frac{\frac{5!}{3!.2!} \cdot \frac{7!}{5!.2!}}{\frac{12!}{8!.4!}} = \frac{\frac{3!.4.5.}{3!.12.} \cdot \frac{5!.6.7}{5!.1.2}}{\frac{8!.9.10.11.12}{8!.1.2.3.4}} = \frac{\frac{4.5.6.7}{1.2.1.2}}{\frac{9.10.11.12}{1.2.3.4}} = \frac{210}{495} = \frac{14}{33}.$$

Contoh 18

Carilah nilai n dari persamaan (n+1) C $_3$ = 4 . $_n$ C $_2$

Jawab:

Catatan:

Perbedaan permutasi dan kombinasi dalam menyelesaikan soal-soal verbal:

- Soal verbal diselesaikan dengan permutasi, jika urutan unsur dibalik bernilai berbeda atau unsur dalam soal tersebut memiliki status.
- Soal verbal diselesaikan dengan kombinasi, jika urutan unsur dibalik bernilai sama atau unsur dalam soal tersebut tidak memiliki status.

Contoh 19

- a. Dari 12 orang anggota Karang Taruna akan dipilih 3 orang sebagai petugas ronda. Ada berapa susunan petugas ronda yang dapat dibentuk?
- b. Dari 35 siswa akan dipilih 3 siswa sebagai ketua kelas, bendahara, dan sekretaris. Ada berapa susunan pengurus kelas yang dapat dibentuk?
- c. Suatu rapat dihadiri oleh 10 orang anggota. Pada kesempatan ini dipilih 3 orang untuk berbicara. Berapa banyak cara untuk memilih ketiga orang tersebut?
- d. Pada sebuah tes seorang peserta hanya diwajibkan mengerjakan 6 dari 10 soal yang diberikan. Berapa jenis pilihan soal yang mungkin untuk dikerjakan?
- e. Berapa banyak bilangan yang terdiri dari 3 angka dapat disusun dari angka 4, 5, 6, 7, dan 8 tanpa pengulangan?
- f. Berapa macam susunan pengurus RT yang terdiri atas ketua, sekretaris, dan bendahara dari 8 calon pengurus?

15

Jawab:

a. Objek tidak punya status atau urutan objek dibalik sama, maka menyelesaikannya dengan menggunakan kombinasi:

$$_{12}C_3 = \frac{12!}{(12-3)!.3!} = \frac{12!}{9!.3!} = \frac{9!.10.11.12}{9!.12.3} = 220.$$

b. Objek memiliki status yaitu sebagai ketua, sekretaris dan bendahara. Penyelesaiannya dengan menggunakan permutasi:

$$_{35} P_3 = \frac{35!}{(35-3)!} = \frac{35!}{32!} = \frac{32!.33.34.35}{32!} = 39.270.$$

 Objek tidak punya status atau urutan objek dibalik sama, maka menyelesaikannya dengan menggunakan kombinasi:

$$_{10} \, \text{C}_{3} = \frac{10!}{(10-3)!.3!} = \frac{10!}{7!.3!} = \frac{7!.8.9.10}{7!.1.2.3} = 120.$$

 d. Urutan objek dibalik sama, maka menyelesaikannya dengan menggunakan kombinasi:

$$_{10} C_{6} = \frac{10!}{(10-6)!.6!} = \frac{10!}{4!.6!} = \frac{6!.7.8.9.10}{6!.1.2.3.4} = 210.$$

e. Urutan objek dibalik tidak sama, maka menyelesaikannya dengan menggunakan permutasi:

$$_{5}P_{3} = \frac{5!}{(5-3)!} = \frac{5!}{2!} = \frac{1.2.3.4.5}{1.2} = 60.$$

f. Objek memiliki status, yaitu sebagai ketua, sekretaris, dan bendahara.

Penyelesaiannya dengan menggunakan permutasi:

$$_{8}P_{3} = \frac{8!}{(8-3)!} = \frac{8!}{5!} = \frac{5!.6.7.8}{5!} = 336.$$

Contoh 20

Dari suatu kotak terdapat 20 bola dimana 8 warnanya merah, 7 warnanya putih, dan sisanya berwarna hitam. Jika diambil 4 bola dari kotak tersebut, berapa banyak cara untuk mendapatkan warna:

- a. Dua merah dan dua putih?
- b. Semuanya hitam?
- c. Paling sedikit dua merah?

Jawab:

- a. Mengambil 2 merah dari 8 merah sebanyak $_8C_2$ cara dan mengambil 2 putih dari 7 putih sebanyak $_7C_2$ cara. Banyaknya cara untuk mendapatkan 2 merah, dan dua putih adalah : $_8C_2$ x $_7C_2 = \frac{8!}{6!.2!}$ x $\frac{7!}{5!.2!} = \frac{7.8}{2}$ x $\frac{6.7}{2} = 588$.
- b. Mengambil 4 hitam dari 5 hitam sebanyak ${}_5C_4$ cara = $\frac{5!}{4! \cdot 1!} = 5$.

c. Mengambil paling sedikit 2 merah memiliki beberapa kemungkinan, yaitu:

2 merah dan 2 hitam =
$${}_{8}C_{2} \times {}_{5}C_{2} = \frac{8!}{6! \cdot 2!} \times \frac{5!}{3! \cdot 2!} = \frac{7.8}{2} \times \frac{4.5}{2} = 280.$$

2 merah dan 2 putih =
$${}_{8}C_{2} \times {}_{7}C_{2} = \frac{8!}{6! \cdot 2!} \times \frac{7!}{5! \cdot 2!} = \frac{7.8}{2} \times \frac{6.7}{2} = 588.$$

2 merah, 1 putih, dan 1 hitam =
$${}_{8}C_{2} \times {}_{7}C_{1} \times {}_{5}C_{1} = \frac{8!}{6! \cdot 2!} \times \frac{7!}{6! \cdot 1!} \times \frac{5!}{4! \cdot 1!} = 980.$$

3 merah dan 1 putih =
$${}_{8}C_{3}$$
 x ${}_{7}C_{1}$ = $\frac{8!}{5! \cdot 3!}$ x $\frac{7!}{6! \cdot 1!}$ = $\frac{6.7.8}{6}$ x 7 = 392.

3 merah dan 1 hitam =
$$_8C_3$$
 x $_5C_1$ = $\frac{8!}{5!.3!}$ x $\frac{5!}{4!.1!}$ = $\frac{6.7.8}{6}$ x 5 = 290.

4 merah =
$$_{8}C_{4} = \frac{8!}{4! \cdot 4!} = \frac{5.6.7.8}{1.2.3.4} = 70.$$

Jadi, banyaknya cara paling sedikit 2 merah adalah :

$$= 280 + 588 + 980 + 392 + 290 + 70 = 2.600$$
 cara.

c. Rangkuman

1. Apabila suatu peristiwa pertama dapat dikerjakan dengan k_1 cara yang berbeda, peristiwa kedua dapat dikerjakan dengan k_2 yang berbeda dan seterusnya sampai peristiwa ke-n, maka banyaknya cara yang berbeda dari semua peristiwa tersebut adalah K di mana:

$$K = k_1 \times k_2 \times \ldots \times k_n$$

2. n faktorial adalah hasil kali bilangan bulat positif dari 1 sampai dengan n.

$$n! = 1.2.3...(n-2).(n-1).n$$

- 3. Permutasi k dari n unsur: ${}_{n}P_{k} = \frac{n!}{(n-k)!}$
- 4. Banyaknya permutasi $_n$ P_n di mana ada a objek yang sama, b objek yang sama dan seterusnya adalah P, maka $P = \frac{n!}{a!.b!...}$
- 5. Permutasi siklik atau P siklik = (n 1)!
- 6. Kombinasi k dari n unsur: ${}_{n}C_{k} = \frac{n!}{(n-k)!.k!}$
- 7. Perbedaan permutasi dan kombinasi dalam menyelesaikan soal-soal verbal:
 - Soal verbal diselesaikan dengan permutasi, jika urutan unsur dibalik bernilai berbeda atau unsur dalam soal tersebut memiliki status.
 - Soal verbal diselesaikan dengan kombinasi, jika urutan unsur dibalik bernilai sama atau unsur dalam soal tersebut tidak memiliki status.

LATIHAN

_ 2

- 1. Hitunglah:
 - a. ₆P₁

- d_{. 5}P₅ e_{. 7}C₅
- $\begin{array}{ll} g_{.} & _{15}\,P_{2} \\ h_{.} & _{11}\,C_{6} \end{array}$

b. ₅C₄

- e_{. 7}C₅ f_{. 6}C₂. ₅C₂
- i. $\frac{_{20}C_{2}._{20}C_{20}}{C}$

- c. $\frac{4._{5}P_{2}}{_{12}C_{2}}$
- 11
- 2. Tentukanlah nilai n jika:
 - a. ${}_{0}C_{3} = {}_{20}C_{17}$
- c. ${}_{n}C_{5} = 2. {}_{n}C_{2}$
- b. $_{n}P_{2} = 2. _{n-1}P_{3}$
- d. $_{(n+1)}P_3 = _{n}P_4$
- 3. Dengan berapa cara 5 orang dapat duduk pada:
 - a. Lima kursi berdampingan
 - b. Lima kursi yang terletak di sekeliling meja bundar?
- 4. Berapa banyak susunan huruf yang dapat disusun dari tiap huruf berikut ini:
 - a. P, A, L, A, P, dan A
 - b. M, O, N, O, T, O, dan N
 - c. A, M, B, U, R, A, D, U, dan L?
- 5. Berapa banyak cara duduk yang dapat terjadi jika 9 orang disediakan hanya 4 kursi, sedangkan salah seorang dari mereka harus selalu duduk di kursi tertentu?
- 6. Ada 3 orang Belanda, 4 orang Jerman, 3 orang Inggris dan 2 orang Jepang. Disediakan 12 kursi berdampingan. Dengan berapa cara mereka dapat duduk, jika yang sebangsa berdampingan?
- 7. Tentukanlah berapa banyak:
 - a. Garis lurus yang dapat dibuat dari 20 titik yang tidak segaris
 - b. Diagonal segi-10 yang dapat dibentuk
 - c. Segitiga yang dapat di tarik dari 15 titik yang tidak segaris?
- 8. Dari 12 orang Jenderal akan dipilih 4 orang sebagai Kapolda untuk ditempatkan di 4 provinsi, yaitu DKI Jakarta, Jabar, Jateng, dan Yogyakarta. Berapa cara pemilihan dapat dilakukan?
- 9. Dari suatu kotak terdapat 25 bola, 10 warnanya merah, 9 warnanya putih, dan sisanya berwarna hitam. Jika diambil 4 bola dari kotak tersebut, berapa banyak cara untuk mendapatkan warna:
 - a. Tiga merah dan satu putih
- d. Paling banyak dua hitam

b. Semuanya hitam

e. Tidak ada yang merah?

- c. Paling sedikit dua putih
- Dari 10 anggota Karang Taruna di mana Tutik, Susan, Yusuf, dan Azzam ada didalamnya, akan duduk mengelilingi meja bundar. Ada berapa susunan yang terjadi jika:
 - a. Semua anggota Karang Taruna bebas untuk memilih tempat duduk?
 - b. Tutik, Susan, Yusuf, dan Azzam harus duduk berdampingan?
 - c. Tutik, Susan, Yusuf, dan Azzam tidak boleh keempatnya duduk berdampingan?

- 11. Suatu pertemuan diikuti oleh 10 orang peserta yang akan duduk mengelilingi meja bundar. Jika dalam peserta tersebut ada Ani, Badu, dan Cecep. Tentukan banyak susunan yang terjadi:
 - a. Jika semua peserta bebas memilih tempat duduk
 - b. Ani dan badu duduk berdampingan
 - c. Ani, Badu, dan Cecep duduk berdampingan
- 12. Berapa banyak warna campuran yang terdiri atas 4 warna yang dapat dipilih dari 8 warna dasar yang berbeda?
- 13. Dari 40 siswa suatu sekolah, ditunjuk 3 siswa untuk mengikuti penyuluhan NARKOBA di Kelurahan. Ada berapa susunan siswa yang terpilih?
- 14. Dari 45 anggota DPRD akan ditunjuk 3 orang untuk mengunjungi 3 daerah bencana, yaitu Tanah longsor di Jember, Tanah longsor di Banjarnegara, dan banjir di Kendal. Ada berapa susunan utusan yang dapat dibentuk yang terjadi?
- 15. Dari 100 orang peserta demo di PT X ditunjuk 5 orang sebagai wakil untuk berbicara dengan Direktur. Ada beberapa susunan yang terjadi apabila Badu, dan Dodi sebagai penggerak demo sudah pasti terpilih sebagai wakil?
- 16. Dari 30 peserta kontes akan dipilih 3 kontestan sebagai juara 1, juara 2, juara 3, dan juara harapan. Ada berapa susunan yang terjadi jika:
 - a. Ada peserta yang mengundurkan diri, dan Ani sebagai peserta kontes sudah pasti juara 1?
 - b. Tidak ada peserta yang mau dijadikan juara harapan?
- 17. Berapa banyak permutasi berikut ini:
 - a. 3 unsur diambil dari 20 unsur yang tersedia?
 - b. 4 unsur diambil dari 50 unsur yang tersedia?
- 18. Carilah banyaknya kombinasi berikut ini:
 - a. 4 unsur diambil dari 15 unsur yang tersedia?
 - b. 3 unsur diambil dari 100 unsur yang tersedia?
- 19. Dari 16 orang pengurus sebuah organisasi akan dipilih seorang Ketua, Wakil ketua, Sekretaris, dan Bendahara. Tentukan banyaknya cara pemilihan pengurus sebuah organisasi tersebut?
- 20. Dari 10 orang anggota Karang taruna di mana Hanif, Aldi, dan Muslim ada di dalamnya akan dipilih untuk satu team bola voli. Tentukan banyaknya susunan team yang dapat dibentuk apabila:
 - a. Semua anggota bebas untuk dipilih?
 - b. Hanif sebagai Kapten harus dipilih?
 - c. Hanif sebagai kapten harus dipilih dan Muslim tidak masuk untuk dipilih?
 - d. Hanif dan Aldi harus dipilih?
 - e. Aldi harus dipilih, Hanif dan Muslim tidak ikut untuk dipilih?

BABI Peluang

B.2 Peluang Suatu Kejadian

a. Tujuan

Setelah mempelajari uraian kompetensi dasar ini, anda dapat:

- Menjelaskan pengertian kejadian dan ruang sampel
- > Menghitung frekuensi harapan suatu kejadian
- Menghitung peluang suatu kejadian
- Menghitung peluang kejadian saling lepas
- > Menghitung peluang kejadian saling bebas
- Menerapkan konsep peluang dalam menyelesaikan masalah program keahlian.

b. Uraian Materi

1). Pengertian Ruang Sampel dan Kejadian

Pada percobaan melempar sekeping mata uang logam, hasil yang muncul dapat dituliskan dengan memakai notasi himpunan. Misalkan "G" dimaksudkan munculnya gambar dan "A" munculnya angka. Himpunan dari semua hasil di atas yang mungkin muncul pada percobaan ditulis $S = \{G, A\}$, S disebut ruang sampel atau ruang.

Misalkan pada percobaan melempar sebuah dadu bersisi enam, himpunan dari semua hasil yang mungkin muncul pada percobaan ditulis $S = \{1, 2, 3, 4, 5, 6\}$. S disebut ruang sampel atau ruang contoh.

Jadi, ruang sampel adalah Himpunan S dari semua kejadian atau peristiwa yang mungkin muncul dari suatu percobaan. Ruang sampel biasanya dilambangkan dengan huruf "S" yang disebut sebagai himpunan semesta. Anggota-anggota ruang contoh disebut titik sampel atau titik contoh. Misalnya ruang contoh $S = \{G, A\}$ mempunyai 2 titik contoh, yaitu G dan A yang disebut sebagai anggota-anggota dari himpunan semesta. Banyaknya anggota ruang sampel biasanya dilambangkan dengan n(S).

Setiap kali melakukan percobaan akan diperoleh *hasil kejadian* atau peristiwa. Misalnya, kegiatan melempar sekeping uang logam akan muncul sisi gambar (G) atau munculnya sisi angka (A). Kegiatan melempar sebuah dadu bersisi enam, akan diperoleh hasil kejadian yang mungkin muncul salah satu dari enam sisi mata dadu 1, 2, 3, 4, 5, atau 6.

Jadi, hasil kejadian adalah himpunan bagian dari ruang sampel. Suatu kejadian A adalah suatu himpunan dari titik sampel atau merupakan himpunan bagian dari ruang sampel S. Himpunan kosong ϕ atau $\{\ \}$ dan S sendiri adalah himpunan bagian dari S, sehingga merupakan kejadian-kejadian. ϕ disebut kejadian yang tak mungkin (mustahil), sedangkan S disebut kejadian yang pasti.

Contoh 21

Dua uang logam dilempar bersamaan, tentukan:

- a. Ruang Sampel dan banyaknya ruang sampel?
- b. Titik sample?

Jawab:

a. Ruang sampel diperlihatkan pada tabel di bawah ini:

	Α	G
Α	(A, A)	(A, G)
G	(G, A)	(G, G)

Jadi, ruang sampelnya adalah $S = \{(A,A), (A,G), (G,A), (G,G)\}$ dan n(S) = 4

b. Titik sampelnya ada 4, yaitu: (A,A), (A,G), (G,A), (G,G).

Contoh 22

Pada percobaan pelemparan 3 mata uang logam sekaligus 1 kali, jika P adalah kejadian muncul 2 angka, tentukanlah ruang sampel S, banyaknya ruang sampel, dan himpunan kejadian P.

Jawab:

 $S = \{AAA, AAG, AGA, GAA, GAG, AGG, GGA, GGG\} dan n(S) = 8$ $P = \{AAG, AGA, GAA\}$

2). Pengertian Peluang Suatu Kejadian

Sebelum mengetahui definisi dari peluang suatu kejadian, sebaiknya diketahui dahulu pengertian frekuensi relatif.

Frekuensi relatif adalah perbandingan antara banyaknya hasil yang muncul dengan banyaknya percobaan yang dilakukan.

Misalnya percobaan melempar sekeping uang logam sebanyak 12 kali. Jika muncul "G" 7 kali dan muncul "A" 5 kali, maka frekuensi relatif (Fr) dari $G = \frac{7}{12}$ dan frekuensi

relatif (Fr) dari A = $\frac{5}{12}$ atau dapat ditulis: Fr(G) = $\frac{7}{12}$ dan Fr(A) = $\frac{5}{12}$. Dengan

demikian nilai frekuensi relatif sekeping mata uang dari G atau A akan mendekati $\frac{1}{2}$.

Peluang munculnya G atau A adalah $\frac{1}{2}$ ditulis P(G) = P(A) = $\frac{1}{2}$.

Jadi, suatu percobaan yang mempunyai beberapa hasil, masing-masing mempunyai peluang yang sama, dapat dirumuskan sebagai berikut :

$$P(A) = \frac{n(A)}{n(S)}$$

Keterangan:

P(A) = Peluang munculnya suatu kejadian A

n(A) = Banyaknya anggota dalam kejadian A

n(S) = Banyaknya anggota dalam himpunan ruang sampel.

Nilai P(A) berkisar antara 0 sampai 1, P(A) = 1 adalah suatu kepastian dan P(A) = 0 adalah suatu mustahil.

21

Contoh 23

Pada pelemparan sebuah dadu, tentukanlah peluang kejadian muncul:

- a. Bilangan 2?
- b. Bilangan prima?

Jawab:

$$S = \{1, 2, 3, 4, 5, 6\}, \text{ maka } n(S) = 6$$

- a. Misalkan A adalah kejadian muncul bilangan 2, maka A ={2}, dan n(A) = 1 $Jadi, P(A) = \frac{n(A)}{n(S)} = \frac{1}{6}.$
- b. Misalkan B adalah kejadian muncul bilangan prima, maka B = {2, 3, 5}, n(B) = 3 Jadi, P(B) = $\frac{n(B)}{n(S)} = \frac{3}{6} = \frac{1}{2}$.

Contoh 24

Pada pelemparan suatu uang logam dan sebuah dadu, berapakah peluang munculnya:

- a. Gambar pada uang logam dan bilangan genap pada dadu?
- b. Angka pada uang logam dan bilangan komposit pada dadu?

Jawab:

dadu Uang logam	1	2	3	4	5	6
A (Angka)	(A, 1)	(A, 2)	(A, 3)	(A, 4)	(A, 5)	(A, 6)
G (Gambar)	(G, 1)	(G, 2)	(G, 3)	(G, 4)	(G, 5)	(G, 6)

Dari tabel di atas:

$$S = \{(A, 1), (A, 2), \dots, (G, 6)\}, \text{ maka } n(S) = 12$$

- a. Misalkan A kejadian muncul gambar pada uang logam dan bilangan genap pada dadu, maka $A = \{(G, 2), (G, 4), (G, 6)\}, dan n(A) = 3. Jadi, P(A) = <math>\frac{n(A)}{n(S)} = \frac{3}{12} = \frac{1}{4}$.
- b. Misalkan B kejadian muncul Angka pada uang logam dan bilangan komposit pada dadu, maka B = {(A, 4), (A, 6)}, n(B) = 2. Jadi, $P(B) = \frac{n(B)}{n(S)} = \frac{2}{12} = \frac{1}{6}$.

Contoh 25

Suatu kotak berisi 6 bola putih dan 4 bola merah. Dari kotak itu diambil sebuah bola secara acak. Berapa peluang yang terambil itu:

- a. Sebuah bola putih?
- b. Sebuah bola merah?

Jawab:

Bola putih dan bola merah seluruhnya ada 10 buah, jadi, n(S) = 10

a. Bola putih ada 6, jadi, n(bola putih) = 6 jadi, peluang terambilnya sebuah bola putih adalah:

P (1 bola putih) =
$$\frac{\text{n(bola putih)}}{\text{n(S)}} = \frac{6}{10} = \frac{3}{5}$$
.

Bola merah ada 4, jadi, n(bola merah) = 4jadi, peluang yang terambil sebuah bola merah adalah :

P (1 bola merah) =
$$\frac{\text{n(bola merah)}}{\text{n(S)}} = \frac{4}{10} = \frac{2}{5}$$
.

Contoh 26

Di dalam sebuah kotak ada 9 bola yang diberi nomor 1 sampai 9. Apabila 2 bola diambil secara acak (random), tentukan peluang terambilnya:

- a. Kedua bola bernomor ganjil
- b. Kedua bola bernomor genap
- c. Satu bola bernomor ganjil dan satu bola bernomor genap?

Jawab:

Banyaknya ruang sampel: memilih 2 bola dari 9 bola adalah ${}_{9}C_{2} = \frac{9!}{7! \cdot 2!} = \frac{8.9}{2} = 36$

a. Misalkan A kejadian muncul bola bernomor ganjil, maka A memilih 2 bola dari 5 bola yang bernomor ganjil, $n(A) = {}_5C_2 = \frac{5!}{3! \cdot 2!} = 10$

$$P(A) = \frac{n(A)}{n(S)} = \frac{10}{36} = \frac{5}{18}$$

b. Misalkan B kejadian muncul bola bernomor genap, maka B memilih 2 bola dari 4 bola yang bernomor genap, $n(B) = {}_{4}C_{2} = \frac{4!}{2! \cdot 2!} = 6$ dan $P(B) = \frac{n(B)}{n(S)} = \frac{6}{36} = \frac{1}{6}$

c. Misalkan C kejadian muncul 1 bola bernomor ganjil dan 1 bola bernomor genap, $n(C) = {}_5C_1 \times {}_4C_1 = 4 \times 5 = 20$

$$P(B) = \frac{n(C)}{n(S)} = \frac{20}{36} = \frac{5}{9}$$

Contoh 27

Pasangan suami istri berencana memiliki 3 orang anak. Tentukan peluang 3 anak tersebut:

- a. Laki-laki semua
- b. Dua laki-laki
- c. Paling sedikit 1 perempuan?

Tawah:

Misalkan laki-laki dilambangkan dengan L, dan perempuan dengan P, maka: $S = \{LLL, LLP, LPL, PLL, LPP, PLP, PPL, PPP\}$, sehingga n(S) = 8

a. Jika A = semua laki-laki, maka A = {LLL} ,
$$n(A) = 1$$
 jadi, $P(A) = \frac{n(A)}{n(S)} = \frac{1}{8}$

b. Jika B kejadian dua anak laki-laki, maka B = {LLP, LPL, PLL} , n(B) = 3 $P(B) = \frac{n(B)}{n(S)} = \frac{3}{8}$

23 BAB I Peluang

Catatan:

Pola segitiga Pascal dapat juga digunakan untuk menyelesaikan berbagai soal peluang dimana kejadian sederhananya memiliki titik sampel 2.

Jumlah ruang sampel n(S) dari n objek yang mempunyai dua sisi apabila ditos bersama-sama adalah 2^n , atau $n(S) = 2^n$.

Contoh 28

Sepuluh uang logam yang bersisi G dan A dilempar bersama, tentukanlah:

- Banyaknya ruang sampel
- b. Peluang munculnya 3 gambar
- Peluang munculnya 7 angka
- d. Peluang munculnya paling sedikit 8 gambar!

Jawab:

Jumlah n(S) dari 10 keping uang logam jika dilempar bersama = 2^{10} = 1.024

b. n(3 gambar) dari pola segitiga Pascal =
$${}_{10}C_3 = \frac{10!}{7! \cdot 3!} = \frac{8.9 \cdot 10}{1 \cdot 2 \cdot 3} = 120$$
,

jadi, P(3 gambar) =
$$\frac{n(3 \text{ gambar})}{n(S)} = \frac{120}{1.024} = \frac{15}{128}$$

c. n(7 angka) dari pola segitiga Pascal =
$$_{10}$$
C₇ = $\frac{10!}{7!.3!}$ = $\frac{8.9.10}{1.2.3}$ = 120,

jadi, P(7 angka) =
$$\frac{n(7 \text{ angka})}{n(S)} = \frac{120}{1.024} = \frac{15}{128}$$

d. Paling sedikit 8 gambar(> 8 gambar), berarti yang memungkinkan:

$$n(8 \text{ gambar}) = {}_{10}C_8 = \frac{10!}{8! \cdot 2!} = 45,$$

n(8 gambar) =
$${}_{10}C_8 = \frac{10!}{8! \cdot 2!} = 45$$
, n(9 gambar) = ${}_{10}C_9 = \frac{10!}{9! \cdot 1!} = 10$, dan

$$n(10 \text{ gambar}) = {}_{10}C_{10} = \frac{10!}{10!.0!} = 1.$$

Sehingga $n(\ge 8 \text{ gambar}) = 45 + 10 + 1 = 56.$

Jadi, P(
$$\ge$$
 8 gambar) = $\frac{n(\ge 8 \text{ gambar})}{n(S)} = \frac{56}{1.024} = \frac{7}{128}$.

Contoh 29

Dari seperangkat kartu bridge, jika diambil 1 kartu secara acak, tentukanlah peluang munculnya:

Kartu As

c. Kartu hati

Kartu merah

d. Kartu King wajik!

Jawab:

Kartu Bridge terdiri dari 52 kartu dengan perincian:

Sesuai warnanya : 26 merah dan 26 hitam

Sesuai motifnya: 13 kartu daun, 13 kriting, 13 hati, dan 13 wajik

Sesuai jenisnya: Masing-masing 4 kartu dari: King, Jack, Queen, As, 2, 3, 4, 5, 6, 7, 8, 9, dan 10.

Jika diambil 1 kartu secara acak, maka n(S) = 52

a.
$$P(As) = \frac{n(As)}{n(S)} = \frac{4}{52} = \frac{1}{13}$$

b.
$$P(Merah) = \frac{n(Merah)}{n(S)} = \frac{26}{52} = \frac{1}{2}$$

c.
$$P(Hati) = \frac{n(Hati)}{n(S)} = \frac{13}{52} = \frac{1}{4}$$

d. P(King Wajik) =
$$\frac{n(King wajik)}{n(S)} = \frac{1}{52}$$

3). Frekuensi Harapan Suatu Kejadian

Frekuensi harapan suatu kejadian Fh dari suatu percobaan adalah hasil kali peluang P(A) dengan banyaknya percobaan n:

$Fh = P(A) \times n$

Contoh 30

Tiga buah uang logam yang bersisi gambar (G) dan angka (A) dilempar bersama-sama sebanyak 80 kali, tentukan harapan munculnya:

a. Tiga-tiganya angka?

b. 2 gambar?

c. Tidak ada angka?

Jawab:

 $S = \{GGG, GGA, GAG, AGG, AAG, AGA, GAA, AAA\}, sehingga n(S) = 8$

a. Tiga-tiganya angka A = {AAA}, n(A) = 1 sehingga P(A) = $\frac{1}{8}$ Fh (tiga-tiganya angka) = n x P(A) = $80 \times \frac{1}{8} = 10$

b. 2 gambar, B = {GGA, GAG, AGG}, n(B) = 3 sehingga P(B) =
$$\frac{3}{8}$$

Fh (2 gambar) = n x P(B) = 80 x $\frac{3}{8}$ = 30

c. Tidak ada angka
$$C = \{GGG\}$$
, $n(C) = 1$ jadi, $P(C) = \frac{1}{8}$
Fh (tidak ada angka) = $n \times P(C) = 80 \times \frac{1}{8} = 10$

Contoh 31

Tiga dadu dilempar bersama-sama sebanyak 432 kali, tentukan harapan munculnya jumlah mata ketiga dadu adalah 7?

Jawab:

Tiga dadu dilempar bersama-sama memiliki $n(s) = 6^3 = 216$

Tiga mata dadu yang berjumlah 7 terdiri dari mata-mata dadu :

1, 2, dan 4. Banyaknya permutasi dari angka-angka tersebut = 3! = 6

1, 3, dan 3. Banyaknya permutasi dari angka-angka tersebut = 3

1, 1, dan 5. Banyaknya permutasi dari angka-angka tersebut = 3

2, 2, dan 3. Banyaknya permutasi dari angka-angka tersebut = 3

BAB I Peluang 25

Jadi, n(berjumlah 7) = 6 + 3 + 3 + 3 = 15
Fh jumlah 7 = P(berjumlah 7) x n =
$$\frac{15}{216}$$
 x 432 = 30

4). Peluang Komplemen Suatu Kejadian

Misalkan banyaknya ruang sampel adalah n(S), banyaknya suatu kejadian A adalah n(A). Banyaknya kejadian yang bukan A atau *komplemen* A dilambangkan A^c adalah: $n(A^c) = n(S) - n(A)$, jika ruas kiri dan kanan dibagi n(S), maka akan diperoleh persamaan:

$$\frac{\mathsf{n}(\mathsf{A}^{\mathsf{c}})}{\mathsf{n}(\mathsf{S})} = \frac{\mathsf{n}(\mathsf{S}) - \mathsf{n}(\mathsf{A})}{\mathsf{n}(\mathsf{S})} \iff \frac{\mathsf{n}(\mathsf{A}^{\mathsf{c}})}{\mathsf{n}(\mathsf{S})} = \frac{\mathsf{n}(\mathsf{S})}{\mathsf{n}(\mathsf{S})} - \frac{\mathsf{n}(\mathsf{A})}{\mathsf{n}(\mathsf{S})} \iff \mathbf{P}(\mathbf{A}^{\mathsf{c}}) = \mathbf{1} - \mathbf{P}(\mathbf{A})$$

Contoh 32

Peluang bahwa esok hari akan hujan adalah 0,26. Tentukanlah peluang bahwa esok hari tidak hujan!

Jawab:

P(esok hari tidak hujan) =
$$1 - P(esok hari hujan)$$

= $1 - 0.26 = 0.74$

Contoh 33

Dari suatu kotak terdapat 7 bola hijau, 3 bola merah, dan 5 bola kuning. Jika diambil 2 bola sekaligus, tentukanlah peluang yang muncul bukan keduanya bola hijau!

Jawab:

Untuk menentukan peluang keduanya bukan bola hijau, tentukan terlebih dahulu peluang kedua-duanya hijau.

$$n(S) = memilih 2 bola dari 15 bola = $_{15}C_2 = \frac{15!}{13!.2!} = 105$$$

n(2 bukan hijau) = memilih 2 bola dari 8 bola bukan hijau = $_8C_2 = \frac{8!}{6!.2!} = 28$

P(keduanya bukan hijau) =
$$\frac{n(2 \text{ bukan hijau})}{n(S)} = \frac{28}{105} = \frac{4}{15}$$

Contoh 34

Dari hasil penelitian pada suatu rumah sakit di Jakarta diperoleh bahwa dari tiap 150 pasien yang diteliti ternyata terdapat 6 orang terkena virus HIV. Jika di rumah sakit A terdapat 200 pasien, berapa pasien yang terbebas dari virus HIV?

Jawab:

$$P(\text{terbebas virus HIV}) = 1 - P(\text{terkena virus HIV}) \\ = 1 - \frac{n(\text{terkena virus HIV})}{n(S)} = 1 - \frac{6}{150} = \frac{24}{25}$$
 Fh terbebas virus HIV = P(terbebas virus HIV) x n
$$= \frac{24}{25} \times 200 = 192 \text{ pasien}$$

LATIHAN

1.	 a. Dua dadu dilempar sekali? b. Mata uang logam dilempar 4 kali? c. Suami istri yang mempunyai rencana d. Dadu dan koin dilempar bersama-san e. Tiga dadu yang dilempar bersama-sa 	a memiliki 8 orang anak? na?
2.	Sebuah dadu di lempar sekali. Berapa pelua. Munculnya jumlah mata dadu kurang b. Munculnya jumlah mata dadu lebih da	dari 3?
3.	Dari seperangkat kartu bridge (Remi) di peluang terambilnya: a. Kartu berwarna hitam? b. Kartu Jack merah?	ambil satu kartu secara acak, tentukan c. Kartu Wajik? d. Kartu As hati?
4.	Dari huruf-huruf pembentuk "PRACIMANT acak. Berapa peluang yang terambilnya: a. Huruf hidup (vokal)? b. Huruf mati (konsonan)?	TORO" akan diambil sebuah huruf secara
5.	Dalam sebuah kantong terdapat 4 kele kelereng kuning. Dari kantong diambil peluang yang terambil sebuah kelereng : a. Berwarna putih? b. Berwarna merah?	sebuah kelereng secara acak. Berapa
6.	Sebuah kotak berisi 6 bola merah, 5 bol diambil 3 bola sekaligus secara acak. Bera a. Semua merah ? b. Semua putih?	· · · · · · · · · · · · · · · · · · ·
7.	Dua dadu dilempar secara bersamaan munculnya jumlah kedua mata dadu sama a. 5 b. 10	
8.	Tiga buah dadu di lempar secara bersam munculnya tiga mata dadu berjumlah : a. 4 b. 5	naan sebanyak satu kali. Berapa peluang c. 16 d. lebih dari 12?
9.	Delapan uang logam yang bersisi G dan A a. Banyaknya ruang sampel b. Peluang munculnya 3 gambar	dilempar bersama-sama, tentukanlah: c. Peluang munculnya 4 angka d. Peluang munculnya ≤ 4 gambar?
10.	Sepasang suami istri berencana memiliki i anaknya: a. Semuanya laki-laki b. Tiga perempuan	7 orang anak, tentukanlah peluang anak- c. Paling sedikit 2 laki-laki d. Paling banyak 3 perempuan?

27 BAB I Peluang

11. Di dalam sebuah kotak ada 9 tiket yang diberi nomor 1 sampai 9. Apabila 2 tiket diambil secara acak (random), tentukan peluang terambilnya:

Kedua duanya bernomor ganjil c. Satu ganjil satu genap Kedua duanya adalah genap d. Keduanya bukan ganjil

Kedua duanya adalah genap

d. Keduanya bukan ganjil?

12. Tiga kartu diambil secara acak dari 1 set kartu bridge. Tentukan peluang yang terambil:

a. Tiga-tiganya kartu berwarna hitam

c. As, King, dan kartu 9

b. Dua kartu wajik dan 1 As

d. Dua kartu king dan 1 kartu 10?

13. Sebuah dadu di lempar sebanyak 60 kali. Berapa frekuensi harapan muncul:

Bilangan prima

c. Bilangan yang habis dibagi 3

Bilangan yang habis dibagi 2 b.

d. Bilangan komposit?

- 14. Dua keping mata uang logam dilempar sebanyak 800 kali. Berapa frekuensi harapan muncul semuanya sisi angka?
- 15. Suatu bibit tanaman memiliki peluang tumbuh 0,78. Bibit tanaman itu ditanam pada suatu lahan sebanyak 2.000 bibit. Berapa perkiraan tanaman yang tidak tumbuh?
- 16. Dua buah dadu dilempar secara bersamaan sebanyak 180 kali. Berapa frekuensi harapan munculnya mata dadu:

a. Kedua-duanya bilangan prima

c. Berjumlah kurang dari 5

b. Berselisih 3

d. Bermata sama?

17. Dalam sebuah kotak terdapat 10 buah bola, 7 bola diantaranya berwarna putih dan 3 bola yang lainnya berwarna hitam. Dari kotak itu diambil 2 bola secara acak. Tiap kali kedua bola itu diambil, dikembalikan lagi kedalam kotak. Jika pengambilan seperti itu dilakukan sebanyak 180 kali. Berapa frekuensi harapan yang terambil itu:

a. Keduanya bola putih

c. Satu bola putih dan satu hitam

b. Keduanya bola hitam

d. Bukan kedua-duanya hitam?

- 18. Dua buah dadu besisi enam dilempar sekali. berapa peluang munculnya bilangan dadu pertama tidak sama dengan bilangan dadu kedua?
- 19. Dari hasil diagnosa suatu rumah sakit di Jakarta, 2,5% pasiennya terinveksi virus Flu Burung. Jika di RS X terdapat 350 pasien, berapa pasien yang terbebas dari virus Flu burung?
- 20. Hasil survey yang dilakukan pada suatu wilayah terhadap kepemilikan mobil dan sepeda diperoleh data sebagai berikut: 15% penduduk tidak memiliki mobil, 40% penduduk memiliki sepeda. Kalau dari wilayah itu diambil satu orang secara acak, berapa peluang ia memiliki mobil tetapi tidak memiliki sepeda?

5). Peluang Kejadian Majemuk

Kejadian majemuk adalah kejadian yang dibentuk dengan cara menggabungkan dua atau lebih kejadian sederhana. Dengan memanfaatkan operasi antar himpunan, kita akan menentukan peluang kejadian majemuk. Operasi antar himpunan tersebut adalah gabungan dua himpunan dan irisan dua himpunan.

a). Aturan Penjumlahan dalam Peluang Kejadian Majemuk

Misalkan pada percobaan melempar dadu bersisi enam sebanyak satu kali. Kejadian A muncul bilangan prima, yaitu $A = \{2, 3, 5\}$ dan kejadian B muncul bilangan genap, yaitu $B = \{2, 4, 6\}$. Dalam diagram Venn, dua kejadian di atas dapat dilukiskan sebagai berikut:

Gambar: 1.1

Tampak bahwa kejadian A dan B tidak saling lepas (memiliki irisan A \cap B = $\{2\}$)

Dari operasi gabungan dua himpunan diperoleh :

$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$

$$P(A \cup B) = \frac{n(A \cup B)}{n(S)}$$

$$= \frac{n(A) + n(B) - n(A \cap B)}{n(S)}$$

$$= \frac{n(A)}{n(S)} + \frac{n(B)}{n(S)} - \frac{n(A \cap B)}{n(S)}$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Misalkan kejadian A muncul bilangan 1 atau 3, ditulis A = $\{1, 3\}$ sedangkan kejadian B muncul bilangan 2 atau 4, ditulis B = $\{2, 4\}$. Dalam diagram Venn, himpunan A dan B digambarkan:

Gambar: 1.2

Dari diagram Venn tampak bahwa A dan B adalah dua himpunan saling lepas atau saling asing, karena $A \cap B = \emptyset$ atau $n(A \cap B) = 0$

Dari operasi gabungan dua himpunan yang saling lepas diperoleh:

$$n(A \cup B) = n(A) + n(B)$$
 (karena $n(A \cap B) = 0$),

$$P(A \cup B) = \frac{n(A \cup B)}{n(S)}$$

BABI Peluang 29

$$= \frac{n(A) + n(B)}{n(S)}$$
$$= \frac{n(A)}{n(S)} + \frac{n(B)}{n(S)}$$

$$P(A \cup B) = P(A) + P(B)$$

Contoh 35

Sebuah dadu dilempar sekali. Berapa peluang munculnya bilangan ≤ 2 atau ≥ 5?

Jawab:

Misal A kejadian munculnya bilangan \leq 2 maka A = $\{1, 2\}$, $P(A) = \frac{2}{6} = \frac{1}{3}$

dan B kejadian munculnya bilangan ≥ 5 maka B = $\{5, 6\}$, P(B) = $\frac{2}{6} = \frac{1}{3}$

Karena n(A \cap B)= 0, maka A dan B adalah kejadian yang saling lepas, sehingga

$$P(A \cup B) = P(A) + P(B) = \frac{1}{3} + \frac{1}{3} = \frac{2}{3}$$

Contoh 36

Dua dadu dilempar bersama-sama, tentukan peluang munculnya:

- a. Dua dadu berjumlah 6 atau berjumlah 10
- b. Dua dadu berjumlah 6 atau muncul mata dadu bernomor lima!

Jawab:

Dadu 1 Dadu 2	1	2	3	4	5	6
1	(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)
2	(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)
3	(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)
4	(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)
5	(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)
6	(6,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)

- a. Misalkan A kejadian munculnya dua dadu berjumlah 6, maka A = {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)}, n(A) = 5 dan B kejadian munculnya dua dadu berjumlah 10, maka B = {(4, 6), (5, 5), (6, 4)}, n(B) = 3. Karena A dan B adalah kejadian yang saling lepas, maka: $P(A \cup B) = P(A) + P(B) = \frac{6}{36} + \frac{3}{36} = \frac{9}{36} = \frac{1}{4}$
- b. Misalkan A kejadian munculnya dua dadu berjumlah 6, maka n(A) = 5 dan B kejadian munculnya dadu bermata lima, maka $B = \{(1, 5), (2, 5), (3, 5), (5, 5), (5, 5), (5, 1), (5, 2), (5, 3), (5, 4), (5, 6)\}, n(B) = 11. A dan B bukan kejadian yang saling lepas karena <math>A \cap B$ ada, yaitu $\{(1, 5), (5, 1)\}, n(A \cap B) = 2,$ maka:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{n(A)}{n(S)} + \frac{n(B)}{n(S)} - \frac{n(A \cap B)}{n(S)}$$
$$= \frac{5}{36} + \frac{11}{36} - \frac{2}{36} = \frac{14}{36} = \frac{7}{18}$$

Contoh 37

Jika A dan B dua kejadian yang tidak saling lepas, tentukanlah P(A), jika P(B) = $\frac{2}{3}$,

$$P(A \cup B) = \frac{3}{4} \text{ dan } P(A \cap B) = \frac{5}{12}$$
?

Jawab:

P(A U B) = P(A) + P(B) - P(A \cap B)

$$\frac{3}{4} = P(A) + \frac{2}{3} - \frac{5}{12} \Leftrightarrow P(A) = \frac{3}{4} - \frac{2}{3} + \frac{5}{12} = \frac{1}{2}$$

b). Aturan Perkalian dalam Peluang Kejadian Majemuk

1. Kejadian saling bebas

Misalkan A dan B adalah kejadian-kejadian pada ruang sampel S. A dan B disebut dua kejadian saling bebas apabila kemunculan kejadian yang satu tidak dipengaruhi oleh kemunculan kejadian lainnya.

Dengan demikian dapat dikatakan bahwa:

Kejadian A dan B saling bebas jika dan hanya jika $P(A \cap B) = P(A) \times P(B)$ Jika $P(A \cap B) \neq P(A) \times P(B)$, maka kejadian A dan B tidak saling bebas.

Contoh 38

Dua dadu berwarna biru dan putih dilempar bersama-sama. A adalah kejadian muncul bilangan 4 pada dadu biru dan B adalah kejadian muncul bilangan 4 pada dadu putih. Apakah kejadian A dan B merupakan dua kejadian saling bebas?

Jawab:

Dadu biru Dadu putih	1	2	3	4	5	6
1	(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)
2	(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)
3	(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)
4	(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)
5	(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)
6	(6,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)

Pada ruang contoh S, diperoleh:

$$P(A) = P(4 \text{ biru}) = \frac{6}{36} = \frac{1}{6}$$
 (Perhatikan pada baris ke-4)

BABI Peluang 31

$$P(B) = P(4 \text{ putih}) = \frac{6}{36} = \frac{1}{6}$$
 (Perhatikan pada kolom ke-4)

$$P(A \cap B) = P(4 \text{ biru dan 4 putih}) = P(4,4) = \frac{1}{36}$$
 (baris dan kolom ke-4)

Dari rumus: P(A \cap B) = P(A) x P(B) =
$$\frac{1}{6}$$
 x $\frac{1}{6}$ = $\frac{1}{36}$

Oleh karena $P(A \cap B) = P(A) \times P(B)$, maka A dan B merupakan dua kejadian yang saling bebas.

Contoh 39

Dua keping mata uang logam dilempar secara serentak sebanyak sekali. Kejadian A munculnya sisi angka pada mata uang pertama dan kejadian B munculnya sisi yang sama untuk kedua mata uang logam itu. Periksalah apakah kejadian A dan B merupakan kejadian yang saling bebas!

Jawab:

Keping1 Keping2	А	G		
Α	(A,A)	(A,G)		
G	(G,A)	(G,G)		

Ruang sampel S = {(A,A), (A,G), (G,A), (G,G)}
$$\Rightarrow$$
 n(S) = 4

Kejadian A =
$$\{(A,A);(A,G)\} \Rightarrow P(A) = \frac{2}{4} = \frac{1}{2}$$

Kejadian B =
$$\{(A,A);(G,G)\}$$
 \Rightarrow P(B) = $\frac{2}{4} = \frac{1}{2}$

Kejadian A
$$\cap$$
 B ={(A, A)} \Rightarrow P(A \cap B) = $\frac{1}{4}$ = P(A) x P(B)

Karena $P(A \cap B) = P(A) \times P(B)$, maka A dan B merupakan dua kejadian yang saling bebas.

Contoh 40

A dan B kejadian yang saling bebas, P(A) = 0.3 dan P(B) = 0.4. Carilah $P(A \cap B)!$

Jawab:

$$P(A \cap B) = P(A) \times P(B) = 0.3 \times 0.4 = 0.12$$

Contoh 41

Jika kejadian A mempunyai peluang $P(A) = \frac{1}{3}$, kejadian B mempunyai peluang $P(B) = \frac{2}{3}$, dan kejadian A atau B mempunyai peluang $P(A \cup B) = \frac{7}{9}$, tunjukkan bahwa kejadian A dan B adalah kejadian saling bebas!

Jawab:
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$\frac{3}{5} = \frac{1}{3} + \frac{2}{3} - P(A \cap B) \Leftrightarrow P(A \cap B) = \frac{1}{3} + \frac{2}{3} - \frac{7}{9} = \frac{2}{9}$$

$$P(A) \times P(B) = \frac{1}{3} \times \frac{2}{3} = \frac{2}{9}.$$

Ternyata $P(A \cap B) = P(A) \times P(B)$, sehingga kejadian A dan B saling bebas.

2. Kejadian Bersyarat

Dua kejadian dimana kejadian yang satu saling mempengaruhi kejadian yang lain, maka dikatakan bahwa dua kejadian itu *tidak saling bebas* atau *kejadian bersyarat.*

Peluang munculnya kejadian A dengan syarat kejadian B telah muncul adalah:

$$P(A/B) = \frac{P(A \cap B)}{P(B)}$$
 atau $P(A \cap B) = P(B) \cdot P(A/B)$

Peluang munculnya kejadian B dengan syarat kejadian A telah muncul adalah :

$$P(B/A) = \frac{P(A \cap B)}{P(A)}$$
 atau $P(A \cap B) = P(A) \cdot P(B/A)$

Contoh 42

Dari seperangkat kartu Bridge, diambil satu per satu dua kali tanpa pengembalian, tentukan peluang munculnya:

- a. Dua-duanya kartu merah
- b. Kartu pertama As dan kartu kedua wajik?

Jawab:

Apabila A kejadian mendapatkan kartu merah pada pengambilan pertama, maka kejadian B pada pengambilan kedua tidak saling bebas terhadap kejadian A, sebab tanpa pengembalian. Jadi, kejadian B terjadi dengan syarat kejadian A, sehingga:

a.
$$P(A) = \frac{n(\text{merah})}{n(S)} = \frac{26}{52} = \frac{1}{2}$$
, $dan\ P(B/A) = \frac{n(\text{merah} - 1)}{n(S) - 1} = \frac{25}{51}$
 $P(A \cap B) = P(A) \cdot P(B/A) = \frac{1}{2} \times \frac{25}{51} = \frac{25}{102}$
b. $P(A) = \frac{n(As)}{n(S)} = \frac{4}{52} = \frac{1}{13}$, $dan\ P(B/A) = \frac{n(\text{wajik})}{n(S) - 1} = \frac{13}{51}$
 $P(A \cap B) = P(A) \cdot P(B/A) = \frac{1}{13} \times \frac{13}{51} = \frac{1}{51}$

Contoh 43

Dua buah dadu bersisi enam dilempar sekali, misalkan:

A adalah kejadian munculnya jumlah kedua mata dadu sama dengan 7,

B adalah kejadian munculnya selisih kedua mata dadu sama dengan 3,

C adalah kejadian munculnya perkalian kedua mata dadu sama dengan 12. Carilah!

33 BAB I Peluang

Jawab:

$$n(S) = 36$$

A = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}, n(A) = 6, P(A) =
$$\frac{6}{36}$$
 = $\frac{1}{6}$

B = {(1, 4), (2, 5), (3, 6), (4, 1), (5, 2), (6, 3)}, n(A) = 6, P(A) =
$$\frac{6}{36}$$
 = $\frac{1}{6}$

C = {(2, 6), (3, 4), (4, 3), (6, 2)}, n(A) = 4, P(A) =
$$\frac{4}{36}$$
 = $\frac{1}{9}$

$$A \cap B = \{(2, 5), (5, 2)\}, n(A \cap B) = 2, P(A \cap B) = \frac{2}{36} = \frac{1}{18}$$

$$A \cap C = \{(3, 4), (4, 3)\}, \quad n(A \cap C) = 2, \quad P(A \cap C) = \frac{2}{36} = \frac{1}{18}$$

$$B \cap C = \{ \}, \quad n(B \cap C) = 0, \quad P(B \cap C) = 0$$

a.
$$P(A/B) = \frac{P(A \cap B)}{P(B)} = \frac{1}{18} \times \frac{6}{1} = \frac{1}{3}$$

c.
$$P(A/C) = \frac{P(A \cap C)}{P(C)} = \frac{1}{18} \times \frac{9}{1} = \frac{1}{2}$$

a.
$$P(A/B) = \frac{P(A \cap B)}{P(B)} = \frac{1}{18} \times \frac{6}{1} = \frac{1}{3}$$
 c. $P(A/C) = \frac{P(A \cap C)}{P(C)} = \frac{1}{18} \times \frac{9}{1} = \frac{1}{2}$ b. $P(B/A) = \frac{P(A \cap B)}{P(A)} = \frac{1}{18} \times \frac{6}{1} = \frac{1}{3}$ d. $P(C/B) = \frac{P(B \cap C)}{P(B)} = 0 \times \frac{6}{1} = 0$

d.
$$P(C/B) = \frac{P(B \cap C)}{P(B)} = 0 \times \frac{6}{1} = 0$$

c. Rangkuman

- Ruang sampel adalah Himpunan S dari semua kejadian atau peristiwa yang mungkin muncul dari suatu percobaan. Hasil kejadian adalah himpunan bagian dari ruang sampel.
- Suatu percobaan yang mempunyai beberapa hasil, masing-masing mempunyai peluang yang sama, yaitu: $P(A) = \frac{n(A)}{n(S)}$
- Jumlah ruang sampel n(S) dari n objek yang mempunyai dua sisi apabila ditos bersama-sama adalah 2^n atau $n(S) = 2^n$
- Frekuensi harapan suatu kejadian Fh dari suatu percobaan adalah hasil kali peluang P(A) dengan banyaknya percobaan n:

$$Fh = P(A) \times n$$

- Jika A suatu kejadian, maka peluang bukan A: $P(A^c) = 1 P(A)$
- 6. Jika A dan B suatu kejadian, maka berlaku: $P(A \cup B) = P(A) + P(B) P(A \cap B)$ dan jika A dan B dua kejadian saling lepas, berlaku $:P(A \cup B) = P(A) + P(B)$
- Kejadian A dan B saling bebas jika dan hanya jika $P(A \cap B) = P(A) \times P(B)$ Jika $P(A \cap B) \neq P(A) \times P(B)$, maka kejadian A dan B tidak saling bebas.

LATIHAN

- 1. Tiga mata uang logam dilemparkan sekali. Kejadian A adalah kejadian munculnya 2 sisi angka dan B adalah kejadian munculnya 2 sisi gambar. Apakah kejadian A dan B merupakan dua kejadian yang saling lepas?
- 2. Sekeping mata uang logam dan sebuah dadu dilempar sekali. A adalah kejadian munculnya gambar pada mata uang logam, B adalah munculnya angka pada mata uang logam, C adalah munculnya bilangan prima pada dadu, D adalah munculnya bilangan kelipatan 3 pada dadu, serta E adalah munculnya bilangan 2 atau 4 pada dadu. Tunjukanlah bahwa pasangan kejadian berikut ini merupakan kejadian yang saling bebas:
 - a. A dan C
 - b. B dan D
 - c. A dan E?
- 3. Dua dadu berwarna putih dan merah dilempar sekali. A adalah kejadian munculnya bilangan 5 pada dadu putih, B adalah kejadian munculnya bilangan genap pada dadu merah, C adalah kejadian munculnya jumlah kedua mata dadu 7 serta D adalah kejadian munculnya jumlah kedua mata dadu 10. Diantara pasangan kejadian berikut ini, manakah yang merupakan kejadian yang saling bebas?

a. A dan B d. B dan C b. A dan C e. C dan D?

c. A dan D

- 4. Sebuah dadu di lempar sekali. Berapa peluang munculnya bilangan \leq 3 atau \geq 3?
- 5. Lima belas kartu ditandai dengan nomor dari 1 sampai dengan 15. Diambil sebuah kartu secara acak, berapa peluang yang terambil itu:
 - a. Kartu bernomor bilangan ganjil atau kartu bernomor bilangan genap.
 - b. Kartu bernomor bilangan prima atau kartu bernomor bilangan ganjil.
 - c. Kartu bernomor bilangan komposit atau kartu bernomor bilangan ganjil < 6?
- 6. Sebuah kartu diambil secara acak dari satu set kartu bridge. Berapa peluang yang terambil:
 - a. Kartu king atau kartu berwarna hitam
 - b. Kartu wajik dan kartu As
 - c. Kartu bernomor 6 atau kartu As
 - d. Kartu merah dan kartu As
 - e. Kartu bernomor bilangan komposit atau kartu bernomor bilangan prima
 - f. Kartu bernomor bilangan komposit dan kartu As?
- 7. Dua buah dadu berwarna putih dan hitam dilempar secara bersamaan sekali. Berapa peluang kejadian munculnya mata dadu bernomor < 4 untuk dadu putih atau bilangan < 3 untuk dadu hitam?

8.	Dua	buah	dadu	berisi	enam	dilempar	secara	bersan	naan	sebanyak	satu	kali.
	Bera	pa pelı	uang k	ejadian	munci	ulnya juml	ah angk	a kedua	a dadı	u itu sama	denga	ın:

a. 4 atau 8?

d. 2 atau 3 atau 9?

b. 3 atau 5?

e. 2 atau 3 atau 5?

c. 6 atau 12?

f. 8 atau 10 atau 12?

- 9. Pada kotak A terdapat 4 bola merah dan 6 bola putih, sedangkan pada kotak B terdapat 7 bola merah dan 3 bola hitam. Dari tiap kotak itu diambil sebuah bola. Berapa peluang yang terambil itu:
 - a. Bola merah dari kotak A maupun dari kotak B?
 - b. Bola merah dari kotak A dan bola hitam dari kotak B?
 - c. Bola putih dari kotak A dan bola merah dari kotak B?
 - d. Bola putih dari kotak A dan bola merah dari kotak B?
- 10. Kejadian A mempunyai peluang $P(A) = \frac{1}{3}$, kejadian B mempunyai peluang $P(B) = \frac{1}{3}$
 - $\frac{3}{4}$, dan kejadian A atau B mempunyai peluang $P(A \cup B) = \frac{7}{12}$, tunjukkan bahwa kejadian A dan B tidak lepas, dan juga tidak bebas!
- 11. Tiga keping mata uang logam dilempar sekali. Misalkan: A adalah kejadian munculnya sekurang-kurangnya dua sisi gambar dan B adalah kejadian munculnya mata uang pertama sisi gambar. Carilah:

a. P(AB)

b. P(A/B)

12. Kejadian A dan B adalah kejadian yang saling bebas. Carilah P(A∪B), jika:

a.
$$P(A) = 0.5 \text{ dan } P(B) = 0.25$$

b.
$$P(A) = 0.4 \text{ dan } P(B) = 0.6$$

13. Kejadian A dan B adalah kejadian yang saling bebas. Apabila P(A) = 0.3 dan P(B) = 0.6 carilah:

a. $P(A \cap B)$

c. $P(A^c \cap B^c)$

b. $P(A \cup B)$

d. $P(A^c \cup B^c)$

14. Dua dadu merah dan biru dilempar bersama-sama sekali. Jika A adalah kejadian munculnya jumlah kedua mata dadu 9, B adalah kejadian munculnya mata dadu 3, dan C adalah kejadian munculnya selisih kedua mata dadu 1. Carilah:

a. P(A/B)

d. P(C/A)

b. P(B/A)

e. P(B/C)

c. P(A/C)

f. P(C/B)

15. Misalkan A dan B adalah dua kejadian dengan P(A) = 0,4, P(B) = 0,5 dan $P(A \cup B) = 0,8$. Carilah:

a. $P(A \cap B)$

d. $P(A^c \cap B^c)$

b. P(A/B)

e. $P(A^{c}/B^{c})$

c. P(B/A)

f. $P(B^c/A^c)$

Petunjuk : $P(A^c \cap B^c) = P[(A \cup B)^c]$

При веннянировии

Soal Pilihan Ganda

1.	Ada 8 jalan dari P ke Q dan adberjalan dari P ke R melewati Q sama adalah a. 32 b. 64		
2.	Mona dan Nisa mengikuti suatu berturut-turut adalah adalah 0,8 lulus adalah	dan 0,75. Peluang Nisa lulus	tetapi Mona tidak
	a. 0,15 b. 0,20	c. 0,25 d. 0,45	e. 0,65
3.	Dari 10 siswa akan dipilih seora sekretaris. Banyaknya pilihan terja a. 640 b. 720		etua, dan seorang e. 880
4.	Suatu himpunan A memiliki 8 a memiliki paling banyak 4 anggota a. 163		n bagian A yang e. 250
	b. 219	d. 247	e. 250
5.	Dari 20 siswa akan dibentuk satu ada	tim bola basket, banyaknya c	ara pembentukan
	a. 4.845 b. 14.400	c. 15.504 d. 16.504	e. 38.760
6.	Dari angka-angka 0, 1, 2, 3, 4, kurang dari 5.000 dan angka tida yang terjadi adalah	6, 7, dan 9 akan dibentuk a	
	a. 480 b. 560	c. 810 d. 840	e. 1.050
7.	Banyaknya kata yang dapat disust a. 820 b. 840		ah e. 1.260
8.	Enam orang termasuk A, B dan C boleh tiga-tiganya duduk berdan ada		
	a. 36 b. 84	c. 108 d. 120	e. 720
9.	Dari 40 siswa akan diberi tugas, Seorang membersihkan kamar Banyaknya pilihan ada		
	a. 9.800 b. 9.880	c. 58.980 d. 59.080	e. 59.280

10.	Tiga dadu dilempar sebanyak 64 berjumlah 6 adalah a. 9	18 kali. Frekuensi harapan m c. 30	nuncul mata dadu e. 56
	b. 21	d. 36	0.00
11.	Dua dadu dilempar bersama. I bilangan genap lebih dari 8 adalah	_	yang berjumlah
	a. $\frac{1}{9}$	c. $\frac{7}{36}$	e. $\frac{1}{4}$
	b. $\frac{5}{36}$	d. $\frac{2}{9}$	
12.	Sebuah kantong berisi 10 kelereng kelereng sekaligus. Peluang tera adalah		
	a. $\frac{36}{95}$	c. $\frac{71}{190}$	e. $\frac{77}{153}$
	b. $\frac{73}{190}$	d. $\frac{73}{153}$	
13.	Jika A dan B kejadian tidak saling	g lepas dengan P(A U B) = $\frac{3}{4}$	$\frac{3}{4}$, P(A) =0,6 dan
	$P(A \cap B) = 0.25$, maka $P(B) =$	1	
	a. $\frac{-}{5}$	c. $\frac{1}{2}$	e. 0,8
	a. $\frac{1}{5}$ b. $\frac{2}{5}$	c. $\frac{1}{2}$ d. $\frac{2}{3}$	
14.	Percobaan pelemparan dadu putih dadu putih dan bilangan genap pa	da dadu biru adalah	angan prima pada
	a. $\frac{1}{4}$ b. 0,3	c. $\frac{1}{2}$ d. 0,55	e. 0,65
15.	Sekeping uang logam dilemparkar	a 4 kali. Poluana muncul anak:	a 3 kali adalah
13.	a. $\frac{1}{5}$	c. $\frac{1}{4}$	e. 0,5
	_	•	e. 0,5
	b. 0,24	d. 0,3	
16.	Sebuah kotak berisi 8 bola mer Peluang terambil dua bola biru ada	alah	_
	a. $\frac{5}{78}$	c. $\frac{14}{39}$	e. $\frac{10}{13}$
	b. $\frac{5}{39}$	c. $\frac{14}{39}$ d. $\frac{5}{13}$	

17.	Banyaknya bilangan yang terdiri a dari angka-angka: 0, 1, 2, 3,4, d a. 24 b. 36		e. 80
18.	Jika $_{n}C_{2}=2n$, maka nilai dari $_{(3n)}$ a. 20 b. 346	_{– 1)} C ₃ adalah c. 364 d. 455	e. 463
19.	Banyaknya permutasi dari kata "P a. 120 b. 240	RAHARA" adalah c. 320 d. 420	e. 450
20.	Tiga buah mata uang logam diler bukan dua gambar adalah a. $\frac{1}{8}$ b. $\frac{3}{8}$	mpar bersama-sama. Nilai ken c. $\frac{5}{8}$ d. $\frac{3}{4}$	mungkinan muncul e. $\frac{7}{8}$
21.	Dari lemparan 2 buah mata uan muncul kejadian 2 gambar dan m kali adalah a. 10 b. 15		
22.	Sebuah dadu dilempar sekali, mak genap adalah a. $\frac{1}{3}$ b. $\frac{1}{2}$	ka peluang muncul bilangan p c. $\frac{2}{3}$ d. $\frac{5}{6}$	rima atau bilangan e. 1
23.	Jika pasangan pengantin baru ing dari kejadian tersebut adalah a. 10 b. 16	in memiliki 5 anak, banyaknya c. 20 d. 32	e. 64
24.	Dalam suatu kelas ada 8 murid la 3 orang diantara mereka. Peluang a. $\frac{5}{13}$ b. $\frac{6}{13}$		
25.	Jika $_{n}$ P ₅ = 10 x $_{n}$ P ₄ , maka nilai $_{n}$ a. 132 b. 156	P ₂ adalah c. 182 d. 210	e. 240

26.	Koefisien suku x^{11} dari $(x^2 + \frac{1}{x})^{10}$	adalah	
	a. 120 b. 150	c. 210 d. 230	e. 245
27.	Sebuah panitia yang beranggotak dan 6 wanita. Bila dalam panitia wanita, maka banyaknya cara mer a. 190 b. 205	tersebut diharuskan ada palir	
28.	Dari sebuah kantong terdapat 8 satu-satu sampai tiga kali, dim Peluang bahwa pengambilan pertakuning adalah a. $\frac{28}{225}$ b. $\frac{448}{3.375}$	nana setiap pengambilan tid ama dan kedua merah dan pe	lak dikembalikan.
29.	Seratus orang akan mengadaka terjadi adalah a. 445 b. 455	an salam-salaman, banyakny c. 910 d. 1.820	va salaman yang e. 4.950
30.	Seorang pengamat transportasi te jalan Pantura. Diperoleh data bah motor, 8 % pengguna jalan mer motor. Banyaknya orang yang medalah% a. 8 b. 65	wa 65 % pengguna jalan ada ngalami kecelakaan dan 6% i	alah berkendaraan nya berkendaraan
31.	Banyaknya diagonal segi-10 adala a. 30 b. 35	h c. 40 d. 45	e. 90
32.	Seorang marketing memperediksi barang yang dijual 90.000 unit, adalah unit a. 8.800 b. 10.000		
33.	Sebuah kantong berisi 6 bola na sekaligus, maka peluang yang terata. $\frac{1}{30}$ b. $\frac{5}{30}$	•	

34. Dari seperangkat kartu Bridge, diambil satu kartu secara acak. Peluang terambil kartu As atau kartu berwarna merah adalah

a.
$$\frac{17}{52}$$

c.
$$\frac{7}{13}$$

e.
$$\frac{8}{13}$$

b.
$$\frac{1}{2}$$

d.
$$\frac{15}{26}$$

35. Misalkan A dan B adalah dua kejadian dengan $P(A) = \frac{8}{15}$, $P(A \cap B) = \frac{1}{3}$, dan $P(A/B) = \frac{4}{7}$. Nilai P(B/A) adalah

a.
$$\frac{1}{8}$$

c.
$$\frac{3}{8}$$

e.
$$\frac{5}{8}$$

b.
$$\frac{2}{8}$$

d.
$$\frac{3}{8}$$

B. Soal Essay

- 1. Terdapat 4 bendera merah, 5 bendera biru, dan 6 bendera kuning. Berapa macam komposisi warna bendera apabila dipasang berjejer di sepanjang jalan?
- 2. Parlemen suatu negara mempunyai 30 anggota dari partai Republik dan 15 anggota dari partai Demokrat. Jika akan dibentuk suatu komisi yang terdiri dari 3 orang dari partai Republik dan 2 orang dari partai Demokrat. Berapa jenis komposisi komisi yang dapat dibentuk?
- 3. Dari 9 buku yang berbeda terdiri dari 5 buku cerita dan 4 buku politik tersusun dalam sebuah rak. Jika diambil secara acak 4 buah buku, tentukan peluang mendapatkan dua buku cerita dan dua buku politik?
- 4. Dua dadu dilempar sebanyak 360 kali. Berapa frekuensi harapan muncul mata dadu kembar?
- 5. Dua dadu dilemparkan bersama-sama. Berapa peluang muncul mata dadu:
 - a. Berjumlah 7 atau 11
 - b. Berjumlah 9 atau kembar
 - c. Berjumlah 10 atau kembar
 - d. Berjumlah 7 atau prima?
- 6. Empat keping mata uang logam dilempar secara bersamaan sebanyak 160 kali. Berapa frekuensi harapan munculnya:
 - Semuanya sisi gambar
 - b. Paling sedikit 2 sisi angka
 - c. Paling banyak 3 sisi gambar?
- 7. Arman dan Budi mengikuti SPMB di UGM dengan berpeluang lulus masing-masing 0,85 dan 0,75. Tentukanlah peluangnya bahwa:
 - a. Arman tidak lulus
 - b. Arman lulus tetapi Budi
 - c. Budi lulus tetapi Arman tidak lulus?
- 8. Kejadian A dan B adalah kejadian yang saling bebas. Kalau P(A) = 0.25 dan P(B) = 0.7 carilah:
 - a. $P(A \cap B)$

c. $P(A^c \cap B^c)$

b. $P(A \cup B)$

d. $P(A^c \cup B^c)$

Sumber : Art and Gallery

Standar Kompetensi	Kompetensi Dasar
8. Menerapkan aturan konsep statistik dalam pemecahan masalah	8. 1 Mengidentifikasi pengertian statistik, statistika, populasi, dan sampel
pemeeanan masaran	8. 2 Menyajikan data dalam bentuk tabel dan diagram
	8. 3 Menentukan ukuran pemusatan data
	8. 4 Menentukan ukuran penyebaran data

A. PENDAHULUAN

Standar Kompetensi **Statistika** terdiri dari empat (4) Kompetensi Dasar. Dalam penyajian pada buku ini setiap Kompetensi Dasar memuat Tujuan, Uraian materi, Rangkuman dan Latihan. Kompetensi Dasar dalam Standar Kompetensi ini adalah **Pengertian Statistik, Statistika, Populasi dan Sampel; Penyajian Data; Ukuran Pemusatan Data dan Ukuran Penyebaran Data. Standar Kompetensi ini digunakan untuk menyelesaikan masalah –masalah Statistika pada kehidupan seharihari dalam rangka untuk menunjang program keahliannya.**

Sebelum mempelajari kompetensi ini diharapkan anda telah menguasai standar kompetensi Sistem Bilangan Real terutama tentang perkalian, pembagian, penjumlahan dan pengurangan bilangan real dan fungsi.

Pada setiap akhir Kompetensi dasar tercantum soal-soal latihan yang disusun dari soal-soal yang mudah sampai soal-soal yang sukar. Latihan soal ini digunakan untuk mengukur kemampuan anda terhadap kompetensi dasar ini, artinya setelah mempelajari kompetensi dasar ini secara mandiri dengan bimbingan guru sebagai fasilitator, ukur sendiri kemampuan anda dengan mengerjakan soal-soal latihan tersebut.

Untuk melancarkan kemampuan anda supaya lebih baik dalam mengerjakan soal, disarankan semua soal dalam latihan ini dikerjakan baik di sekolah dengan bimbingan guru maupun di rumah.

Untuk mengukur standar kompetensi lulusan tiap siswa, di setiap akhir kompetensi dasar, guru akan memberikan evaluasi apakah anda layak atau belum layak mempelajari standar Kompetensi berikutnya. Anda dinyatakan layak jika anda dapat mengerjakan soal 60% atau lebih soal-soal evaluasi yang akan diberikan guru.

B. KOMPETENSI DASAR

B.1. Pengertian Statistik, Statistika, Populasi dan Sampel

a. Tujuan

Setelah mempelajari uraian kompetensi dasar ini, anda dapat:

- Menjelaskan pengertian dan kegunaan statistika
- > Membedakan pengertian populasi dan sampel
- Menyebutkan macam-macam data dan memberi contohnya

b. Uraian Materi

1). Pengertian dan Kegunaan Statistika

Statistika banyak digunakan dalam kehidupan sehari-hari. Pernyataan-pernyataan seperti: pada bulan maret tahun 2006 terjadi kecelakaan di jalan tol Jagorawi sebanyak 15 kali, dengan korban meninggal dunia sebanyak 6 orang dan lainnya luka-

BAB II Statistika 43

luka. Ada sekitar 20 % usia produktif penduduk Indonesia menganggur, setiap 20 detik sebuah perusahaan sepeda motor menghasilkan satu produk dan sebagainya, yang sering kita dengar, baik dari media elektronik maupun dari media cetak. Instansi terkait menggunakan statistika untuk menilai progress dari perusahaannya dimasa lalu dan juga dapat membuat rencana untuk masa yang akan datang.

Demikian pentingnya peranan statistika dalam kehidupan ini, baik dalam kegiatan pemerintahan, perusahaan maupun dalam kehidupan sehari-hari, sehingga kita juga perlu mengetahui apa yang dimaksud dengan statistika tersebut. Untuk keperluan praktis statistika dapat diartikan sebagai berikut:

- a. Dalam arti sempit, statistika berarti statistik yang berarti sekumpulan data. Misalnya statistik tentang penduduk, yang dimaksudkan adalah data atau keterangan berbentuk angka ringkasan mengenai penduduk (jumlahnya, rata-rata umur, distribusinya, jumlah balita, jumlah angkatan kerja, jumlah usia sekolah, distribusi pekerjaan dan sebagainya).
- b. Dalam arti luas, statistika berarti pengetahuan yang berhubungan dengan pengumpulan data, penyajian data, pengolahan data, penarikan kesimpulan dan pengambilan keputusan secara logis dan rasional tentang data tersebut.

Karena begitu panjang kegiatan dalam ilmu statistika tersebut, maka dalam pembahasannya Statistika dibagi menjadi 2, yaitu:

- a. Statistika Deskriptif/Deduktif adalah statistika yang kegiatannya dimulai dari pengumpulan sampai pada analisis data yang paling sederhana, bersifat memberi gambaran suatu data apa adanya dan meringkas data agar mudah dibaca.
- Statistika Inferensial/Induktif adalah statistika yang kegiatannya dimulai dari pengumpulan data sampai pada pengambilan kesimpulan secara logis dan rasional. Statistika ini dilakukan untuk menentukan kebijakan atau penelitian.

Kegunaan Statistika secara umum antara lain sebagai berikut:

- Memberikan cara mencatat data secara sistematis.
- Memberi petunjuk pada penelitian supaya berpola pikir dan bekerja secara pasti dan mantap.
- Dapat meringkas data dalam bentuk yang mudah dianalisis.
- Alat untuk memprediksi secara ilmiah dari suatu kejadian yang akan datang.
- Dapat menyelesaikan suatu gejala sebab akibat yang rumit.

Seorang pemimpin perusahaan mengambil manfaat dari statistika untuk melakukan tindakan-tindakan yang perlu dalam menjalankan tugasnya, diantaranya: perlukah mengangkat pegawai baru, sudah waktunyakah untuk merevitalisasi mesin-mesin yang ada, bermanfaatkah jika pegawai yang ada ditraining, berapa banyak produk yang diproduksi dan yang dapat diserap oleh pasar, berapa barang harus diproduksi pada tahun yang akan datang guna memenuhi kebutuhan konsumennya dan sebagainya. Jika dikaitkan dengan masalah manajemen, statistika dapat dipergunakan sebagai berikut:

a. Dasar suatu perencanaan, agar perencanaan sesuai dengan kemampuan yang ada, sehingga dapat menghindari perencanaan yang ambisius yang menyebabkan tidak mudah untuk dilaksanakan.

- Alat pengendali terhadap pelaksanaan atau implementasi perencanaan sehingga dapat diketahui sesegera mungkin terhadap kesalahan atau penyimpangan yang terjadi dan dapat segera diperbaiki atau dikoreksi.
- c. Dasar evaluasi hasil kerja akhir. Apakah hasil kerja yang telah ditargetkan dapat tercapai sesuai dengan rencana? Berapa persenkah ketercapaiannya? Hambatan-hambatan apa yang muncul dalam pelaksanaan rencana tersebut?

2). Data Statistika

Data adalah sekumpulan keterangan yang dapat menjelaskan sesuatu hal. Tidak mungkin ada kegiatan statistika tanpa adanya data. Data tidak memiliki arti yang signifikan tanpa adanya kegiatan statistika. Oleh karena itu pada kegiatan statistika mulai dari pengumpulan data sampai pada pengambilan kesimpulan secara logis dan rasional membutuhkan data yang baik.

Syarat-syarat data yang baik, yang dapat menganalisis untuk mendapatkan kesimpulan yang valid, adalah sebagai berikut:

- Data harus objektif, yaitu data harus apa adanya dan tidak adanya rekayasa.
- Data harus representatif, yaitu data harus dapat mewakili dari keseluruhan objek pengamatan.
- Data harus reliabel, yaitu data yang memiliki kesalahan baku relatif kecil, sehingga jika membuat suatu perkiraan selisih antara perkiraan dengan sebenarnya sangat kecil.
- Data harus relevan, yaitu data harus sesuai dengan penelitian yang dikehendaki.
- Data harus uptodate, yaitu data yang digunakan harus data terbaru/terkini.

Sebelum pengumpulan data, seorang peneliti harus menentukan dahulu apakah data dalam bentuk **populasi**, *yaitu keseluruhan data yang akan diteliti*, atau data dalam bentuk sampel. Hal ini tergantung dari maksud dan tujuan dari penelitian tersebut. Untuk keperluan praktis, pengumpulan data biasanya dilakukan dengan cara pengambilan *sebagian dari populasi* yang dikenal dengan *sampel. Sampling* adalah cara pengumpulan data. Data yang diperoleh hasil sampling merupakan data perkiraan *(estimate value)*. Jadi, misalnya dari 200 SMK di DKI Jakarta akan diteliti hanya 20 sekolah yang sama, maka hasil penelitian terhadap 20 sekolah tersebut merupakan suatu perkiraan.

Untuk keperluan penelitian yang variatif, dibutuhkan juga data yang variatif sehingga dapat menunjang dari hasil penelitian tersebut. Untuk itu data dibedakan beberapa macam antara lain:

- Data menurut penyajiannya, terbagi menjadi:
 - Data tunggal, yaitu data yang disajikan satu per satu.
 - Data kelompok, yaitu data yang disajikan berdasarkan interval tertentu (dikelompok-kelompokkan)
- Data berdasarkan pengukurannya, terbagi menjadi:
 - Data diskrit, yaitu data yang diperoleh dari hasil menghitung, misalkan jumlah rata-rata guru setiap SMK di Pulau Jawa ada 30 orang.
 - o data kontinu, yaitu data yang diperoleh dari hasil mengukur, misalkan ratarata tinggi siswa SMK di DKI Jakarta adalah 160 cm.

BAB II Statistika 45

- Data berdasarkan sifatnya:
 - o Data kuantitatif, yaitu data yang berupa angka atau bilangan.
 - o Data kualitatif, yaitu data yang bukan berbentuk angka, melainkan hanya keterangan, misalkan data tentang jenis kelamin, hobi, agama, dan lain-lain.

Data berdasarkan sumbernya:

- Data internal, yaitu data yang diperoleh dari instansinya sendiri, misalkan untuk keperluan identitas pegawai suatu perusahaan, diambil data tentang personalia.
- Data eksternal, yaitu data yang diperoleh dari luar instansinya sendiri, misalkan untuk keperluan tentang perkembangan harga produk suatu perusahaan, data yang diambil diluar perusahaan dengan tujuan untuk membandingkan harga produknya.
- Data berdasarkan cara memperolehnya:
 - Data primer, yaitu data yang dikumpulkan langsung dari objeknya kemudian di olah sendiri, misalkan ingin mengetahui rata-rata produk sabun yang terpakai tiap bulan, langsung memberikan wawancara atau memberi kuesioner kepada masyarakat tertentu.
 - Data sekunder, yaitu data yang diperoleh dari data yang sudah dikelola pihak lain yang sudah dipublikasikan, misalkan dari majalah, Biro Pusat Statistik, dan lain-lain.

3) Pengumpulan Data

Yang perlu diperhatikan dalam pengumpulan data adalah terlebih dahulu harus mengetahui untuk apa data tersebut dikumpulkan. Apakah data tersebut sekadar untuk mendapatkan gambaran mengenai suatu keadaan/permasalahan atau untuk memecahkan suatu permasalahan. Apapun tujuan pengumpulan data, terlebih dahulu harus diketahui jenis elemen atau objek yang akan diselidiki.

Tujuan pengumpulan data selain untuk mengetahui jumlah/banyaknya elemen juga untuk mengetahui karakteristik dari elemen-elemen tersebut. Karakteristik adalah sifatsifat, ciri-ciri atau hal-hal yang dimiliki oleh elemen tersebut, yaitu keterangan mengenai elemen. Misalnya, elemen itu pegawai suatu perusahaan, maka karakteristik yang perlu diketahui antara lain jenis kelamin, pendidikan, usia masa kerja, gaji, golongan dan sebagainya. Seringkali data yang dikumpulkan menyebar pada wilayah yang luas dan sangat variatif, misalnya data tentang penduduk dan biasa disebut dengan populasi, yakni kumpulan data yang sejenis akan tetapi dapat dibedakan satu sama lain. Misalnya, seluruh siswa di DKI Jakarta merupakan suatu populasi. Elemen dari data adalah orang, yaitu siswa di DKI Jakarta. Walaupun jenisnya sama tetapi karakteristik secara keseluruhan akan berlainan, misalnya siswa sekolah dasar (SD), SMP, SMA, dan SMK, usia, tempat tinggal, dan sebagainya.

Ada beberapa cara pengumpulan data, antara lain:

a. Penelitian langsung di lapangan atau laboratorium Penelitian di lapangan biasanya disebut dengan observasi atau pengamatan merupakan teknik pengumpulan data dengan cara pengamatan terhadap objek, baik secara langsung maupun tidak langsung, misalnya penelitian terhadap situssitus purbakala dan penelitian di dalam laboratorium. Pelaksanaan pengamatan dapat dilakukan dengan:

- Pengamatan langsung, yaitu pengamatan yang dilakukan tanpa perantara (secara langsung) terhadap objek yang diteliti.
- Pengamatan tak langsung, yaitu pengamatan yang dilakukan terhadap objek melalui perantaraan suatu alat atau cara.
- Pengamatan partisipasif, yaitu pengamatan yang dilakukan dengan cara ikut ambil bagian atau melibatkan diri dalam situasi yang dialami oleh responden. Cara ini banyak dilakukan terutama dalam penelitian psikologi, sosiologi maupun antropologi.

b. Interview (wawancara)

Teknik pengumpulan data yang dilakukan dengan cara mengadakan tanya jawab, baik secara langsung maupun tidak langsung dengan responden. Pada wawancara langsung, peneliti mengadakan tatap muka langsung dengan responden, sedangkan pada wawancara tidak langsung, peneliti mewawancarai perantara yang tahu persis tentang objek yang diteliti.

c. Kuesioner (Angket)

Angket dapat dipandang sebagai teknik pengumpulan data yang banyak kesamaannya dengan wawancara. Perbedaannya adalah wawancara dilakukan secara lisan, sedangkan angket dilakukan secara tertulis. Bentuk penyusunan angket ada dua macam, yaitu:

- Angket berstruktur, yaitu angket yang menyediakan kemungkinan jawaban.
- Angket tak berstruktur, yaitu angket yang tidak menyediakan kemungkinan jawaban.

Contoh 1

Data hasil penelitian tingkat atau kualifikasi pendidikan dari karyawan/pegawai perusahaan asing di Jakarta. Setelah data terkumpul dan disajikan seperti tampak pada gambar berikut.

Gambar 2-1

Dari diagram di samping dapat diambil suatu kesimpulan secara kasar bahwa rata-rata tingkat pendidikan pegawai atau karyawan perusahaan asing di Jakarta adalah berpendidikan setingkat SMA.

Lebih lanjut dimungkinkan pihak manajemen perusahaan-perusahan akan mengambil kebijakan tertentu untuk meningkatkan kualitas sumber daya manusia di perusahaannya.

Contoh 2

Data tentang pergerakan nilai tukar rupiah terhadap dollar Amerika Serikat yang disajikan sebagai berikut:

BAB II Statistika 47

Kurs tengah Bank IndonesiaKurs tengah Bloomberg

Gambar 2-2

Grafik pada gambar di samping menunjukkan pergerakan nilai tukar rupiah terhadap dollar Amerika Serikat selama 5 hari pengamatan dari tanggal 9 sampai 13 Oktober tahun 2006 (Kompas, 14 Oktober 2006). Nilai tukar pada kurs tengah dari lembaga keuangan Bank Indonesia dan Bloomberg.

Dari grafik dapat kita simpulkan bahwa pergerakan nilai tukar rupiah selama lima hari berkisar antara Rp9.205 hingga Rp 9.230 atau fluktuasi nilai tukar rupiah tidak terlalu besar. Pada tanggal 13 mengalami penguatan tertinggi selama lima hari pengamatan, yaitu Rp9.205/dollar.

Contoh 3

Beberapa pernyataan dapat dibuat dari gambar grafik hasil pengumpulan data selama 6 tahun di samping, antara lain yaitu volume ekspor tertinggi selama enam tahun adalah pada tahun 2002, tetapi nilai ekspornya terendah. Nilai ekspor tertinggi pada tahun 2000, yakni sebesar 66,3 ribuan dollar AS. Padahal volumenya hanya merupakan sekitar ratarata ekspor selama kurun waktu tersebut.

c. Rangkuman

- 1. Statistika adalah pengetahuan mengenai pengumpulan data, penyajian data, analisis data, penarikan kesimpulan secara logis dan rasional.
- 2. Statistika dibagi menjadi dua, yaitu statistika deskriptif dan statistika inferensial.
- Populasi adalah keseluruhan data yang akan diteliti.
- 4. Sampel adalah sebagian dari data yang akan dileliti.
- 5. Data adalah sekumpulan keterangan yang dapat menjelaskan suatu hal.
- 6. Data terbagi menjadi data: tunggal, kelompok, diskrit, kontinu, kualitatif, kuantitatif, internal, eksternal, primer, dan sekunder.
- 7. Syarat-syarat data yang baik adalah: objektif, representatif, reliabel, relevan, dan *up to date*.
- 8. Beberapa cara mengumpulkan data, yaitu: observasi, angket, dan wawancara.

LATIHAN

1

- 1. Jelaskan apakah yang dimaksud dengan:
 - a. Statistik

c. Sampel

b. Statistika

- d. Populasi
- 2. Jelaskan tentang pembagian statistika!
- 3. Sebutkan kegunaan statistika secara umum dan berikan contohnya!
- 4. Sebutkan kegunaan statistika dalam bidang manajemen!
- 5. Sebutkan jenis-jenis data dan berikan contohnya!
- 6. Sebutkan beberapa cara yang dapat dilakukan dalam pengumpulan data dan jelaskan masing-masing cara tersebut!
- 7. Buatlah contoh angket terstruktur dan tidak terstruktur pada pengumpulan data dalam kegiatan sensus penduduk!
- 8. Data kecelakaan lalu lintas di kota "Baru" pada tahun 2001 sampai dengan 2005 adalah sebagai berikut:

Tahun	2001	2002	2003	2004	2005
Banyaknya kecelakaan	400	351	404	320	260

- a. Tahun berapakah angka kecelakaan tertinggi?
- b. Berapa persenkah kenaikan angka kecelakaan tertinggi?
- c. Berapakah penurunan terbesar angka kecelakaan selama 5 tahun tersebut?
- 9. Jumlah kendaraan roda empat di suatu "kota Indah" pada tahun 2006 berjumlah 15.545, yang terdiri atas jenis sedan, bus, pick up, dan Jip. Data kendaraan disajikan dalam bentuk diagram lingkaran seperti pada gambar di bawah ini:

Tentukanlah:

- a. Banyaknya mobil jenis sedan
- b. Jenis mobil yang paling banyak ditemui di kota tersebut dan berapa banyaknya!
- c. Jenis mobil yang jarang ditemui serta berapakah banyaknya!
- 10. Laba penjualan bersih PT Asahimas Flat Glass Tbk selama lima tahun yang dimuat dalam laporan tahunan pada tahun 2007 berturut-turut disajikan dalam diagram batang berikut:

Cobalah buatkan pernyataan atau uraian menurut kata-katamu sendiri tentang laporan penjualan yang disajikan pada gambar di samping, kemudian kesimpulan kasar tentang perusahaan yang didasarkan pada data tersebut!

- 11. Diagram di samping menunjukkan angka kelahiran dan kematian di kota A dalam pengamatan selama 10 tahun.
 - a. Pada tahun berapakah angka kelahiran paling besar dan berapakah banyaknya kelahiran tersebut?
 - Pada tahun berapakah angka kematian paling kecil dan berapakah orang yang meninggal pada tahun itu?

- c. Pada tahun berapakah penduduk pada kota tidak bertambah apabila dilihat dari angka kematian dan kelahirannya?
- 12. Nilai aktiva bersih dan unit penyertaan modal reksa dana di bursa efek selama sebelas tahun disajikan dalam gambar berikut (Kompas, 5 Desember 2006):

- a. Kapankah lonjakan nilai aktiva bersih dan berapakah volume sahamnya?
- Taksirlah berapakah penurunan volume saham tertinggi selama kurun waktu tersebut!
- c. Pada tahun berapa penyertaan reksa dana paling rendah dan taksirlah berapa nilai aktiva bersihnya?

B.2 Penyajian Data

a. Tujuan

Setelah mempelajari uraian kompetensi dasar ini, anda dapat:

- > Menjelaskan jenis-jenis tabel
- Menjelaskan macam-macam diagram (batang, lingkaran, garis, gambar), histogram, poligon frekuensi, kurva ogive
- Mengumpulkan dan mengolah data serta menyajikannya dalam bentuk tabel dan diagram

b. Uraian Materi

Data yang telah dikumpulkan, baik dari populasi maupun sampel untuk keperluan laporan dan atau analisis selanjutnya, perlu diatur, disusun, disajikan dalam bentuk yang jelas dan baik. Secara garis besar penyajian data dibagi menjadi dua cara, yaitu dalam bentuk tabel atau daftar dan grafik atau diagram. Buku ini hanya akan menguraikan: diagram garis, diagram batang, diagram lingkaran, piktogram, histogram, poligon frekuensi atau tabel distribusi frekuensi.

1). Diagram Garis

Untuk menggambarkan keadaan yang berkesinambungan atau kontinu, misalnya produksi minyak tiap tahun, jumlah penduduk dalam suatu negara, keadaan temperatur tiap jam di suatu daerah, dibuat diagram garis. Untuk meggambar diagram garis diperlukan sumbu mendatar (horizontal) dan sumbu tegak (vertikal). Sumbu mendatar menyatakan waktu, sedang sumbu tegak menyatakan kuantum data tiap waktu.

Contoh 4

Berikut menyatakan gambaran perkiraan produksi tenaga listrik yang menggunakan bahan bakar minyak (BBM) sebagai bahan bakar utama untuk pembangkit tenaga listrik di Indonesia dari tahun 2006 sampai dengan tahun 2010 (Kompas, 14 Oktober 2006).

Tahun	2006	2007	2008	2009	2010
Produksi (GWh)	28.009	9.104	5.978	4.350	4.950

Data tersebut dapat disajikan dalam bentuk diagram garis dengan sumbu vertikal menyatakan banyaknya produksi dan sumbu horisontal menyatakan tahun, seperti tampak pada **gambar 2-4**.

Dari diagram terlihat bahwa perkiraan produksi tenaga listrik dengan menggunakan bahan bakar minyak (BBM) sampai dengan tahun 2010 mengalami penurunan. Penurunan produksi paling besar terjadi pada tahun 2007. Ada kemungkinan pengalihan bahan bakar untuk memproduksi listrik guna mencukupi kebutuhan listrik secara nasional. Bahan bakar lain yang banyak digunakan antara lain batubara dan gas pada pembangkit tenaga listrik tenaga uap dan gas.

Contoh 5

Berikut merupakan data perkembangan tenaga kerja dan kegiatan ekonomi sektor pertambangan dan penggalian non migas Indonesia selama kurun waktu delapan tahun (1997 – 2003).

Perkembangan Tenaga Kerja dan Kegiatan Ekonomi Sektor Pertambangan dan Penggalian Non Migas (Kompas 14 Oktober 2006)

Tahun	1997	1998	1999	2000	2001	2002	2003
Nilai Ekonomi (Rp. milliar)	22.650,7	45.444,8	37.500,4	45.560,4	66.672,7	67.931,8	74.755,2
Tenaga Kerja (orang)	42.276	45.728	45.594	38.331	40.651	44.958	40.628

Berdasarkan data tersebut dapat dibuat diagramnya. Untuk membuat diagram garis, nilai pada sumbu vertikal dapat langsung ditulis pada titik yang bersesuaian seperti tampak pada **Gambar 2-5**.

Dari diagram terlihat nilai kegiatan ekonomi sektor pertambangan nonmigas (emas, batubara, timah dsb) mengalami kenaikan kecuali pada tahun 1999.

Sejak tahun 1997 hingga tahun 2003 telah mengalami kenaikan sebesar Rp52.104,5 milliar, sedangkan jumlah tenaga kerja pada sektor ini mengalami fluktuasi dan adanya kecenderungan penurunan.

Perkembangan Tenaga Kerja dan Kegiatan Ekonomi Sektor Pertambangan dan Penggalian Nonmigas

2). Diagram Batang

Seperti halnya pada diagram garis, untuk data yang variabelnya berbentuk kategori atau atribut (mempunyai ciri-ciri khusus) dapat disajikan dalam bentuk diagram batang.

Contoh 6

Berikut merupakan contoh keadaan penduduk menurut tingkat pendidikan dan jenis kelamin di suatu daerah tertentu.

Keadaan Penduduk Menurut Tingkat Pendidikan dan Jenis Kelamin Tahun 2006

Tingkat	Kom	Jumlah	
Pendidikan	Laki-laki	Perempuan	Juilliali
TK	35	40	75
SD	55	67	122
SMP	46	53	99
SMA	34	40	74
PT	20	25	45
Jumlah	190	225	415

Diagram batang yang menunjukkan jumlah penduduk menurut tingkat pendidikan tanpa merinci komposisi dari jenis kelaminnya ditunjukkan pada diagram berikut.

BAB II Statistika 53

Jelas terlihat dari diagram bahwa tingkat pendidikan sekolah dasar (SD) merupakan kualifikasi pendidikan yang terbanyak yang dimiliki oleh penduduk daerah tersebut, sedangkan jumlah penduduk yang pernah mengikuti kuliah di perguruan tinggi menduduki jumlah yang paling sedikit.

Jika jenis kelamin diperhatikan dan digambarkan diagramnya, maka didapat diagram batang dua komponen seperti tampak pada diagram berikut.

Komposisi penduduk pada semua tingkatan pendidikan selalu lebih banyak perempuan dibandingkan dengan jumlah laki-laki.

3). Diagram Lingkaran

Pada penyajian data dalam bentuk diagram lingkaran, lingkaran dibagi dalam bentuk juring-juring lingkaran sesuai dengan data yang bersangkutan. Luas masing-masing juring sebanding dengan prosentase data yang bersangkutan.

Contoh 7

Penelusuran tamatan sebuah sekolah menengah yang berjumlah 1000 orang, diperoleh data sebagai berikut:

Data 1000 Tamatan SMA "Nasional" Tahun 2005

Pekerjaan	PNS	ABRI	Peg. Swasta	Wiraswasta	Belum Kerja
Banyaknya	225	125	400	150	100

Untuk membuat diagram lingkaran, ditentukan sudut pusat sektor lingkaran sebagai berikut:

PNS =
$$\frac{225}{1000} \times 100\% = 22,5\%$$
 (dalam derajat = 22,5% x 360° = 81°)
ABRI = $\frac{125}{1000} \times 100\% = 12,5\%$ (dalam derajat = 12,5% x 360° = 45°)
Peg. Swasta = $\frac{400}{1000} \times 100\% = 40\%$ (dalam derajat = 40% x 360° = 144°)
Wiraswasta = $\frac{150}{1000} \times 100\% = 15\%$ (dalam derajat = 15% x 360° = 54°)
Belum Kerja = $\frac{100}{1000} \times 100\% = 10\%$ (dalam derajat = 10% x 360° = 36°)

Diagram lingkaran yang dimaksud adalah sebagai berikut:

Gambar 2-8

4). Piktogram (Diagram Gambar)

Diagram gambar menunjukkan keterangan secara kasar sesuatu hal dan sebagai alat visual dengan menggunakan gambar-gambar. Sangat menarik dilihat, terlebih jika simbol yang digunakan cukup baik dan menarik. Setiap gambar atau lambang digunakan sebagai ukuran satuan, misalnya untuk data mengenai jiwa, penduduk, dan pegawai dibuat gambar orang, misalnya 1 orang mewakili 5000 jiwa. Kesulitan yang dihadapi adalah ketika menggambar simbol untuk satuan yang tidak penuh. Diagram gambar disebut juga piktogram.

Contoh 8

Pertumbuhan kendaraan bermotor roda empat jenis sedan di suatu negara selama empat tahun (2000 – 2003) ditunjukkan pada tabel berikut:

Produksi Kendaraan Jenis Sedan tahun 2000 – 2003 (ribuan unit)

Tahun	2000	2001	2002	2003
Produksi (ribuan unit)	600	800	1000	1200

Hasil tersebut dapat digambarkan dalam bentuk piktogram sebagai berikut:

Produksi Kendaraan Jenis Sedan tahun 2000 – 2003 (ribuan unit)

Tahun	Produksi
2000 2001 2002 2003	
	= 200.000 unit

Cara penyajian data berbentuk simbol ini sangat terbatas dan lebih cocok untuk menunjukkan perbandingan dan kurang baik apabila digunakan untuk menunjukkan ukuran satuan.

5). Tabel distribusi Frekuensi

Biasanya data yang terkumpul belumlah terurut, untuk itu data diurutkan terlebih dahulu menurut besarnya dalam urutan naik atau turun, sehingga didapat sebuah jajaran dalam suatu tabel.

Sebagai contoh, nilai ujian matematika dari 30 siswa diperoleh data sebagai berikut:

Dari catatan itu tidak tampak adanya pola tertentu dari data tersebut, oleh karena itu penyusunan atau pengelompokan data dalam bentuk tabel akan dapat memberikan informasi yang jelas dari data tersebut.

Tabel Nilai Ujian Matematika

Nilai	Tally (turus)	Frekuensi
3		1
4		1
5	JM	6
6	NU II	7
7	I IM II	7
8	l M	5
9		3
7	Jumlah	

Dari tabel dapat dibaca dengan mudah, misalnya banyaknya siswa yang mendapat nilai 6 pada ujian sebanyak 7 orang, yang mendapatkan nilai 8 sebanyak 5 orang. Daftar tersebut sering disebut sebagai distribusi frekuensi. Karena datanya tunggal maka disebut tabel distribusi frekuensi tunggal.

Untuk data yang sangat banyak, rentangannya tinggi dan tidak memungkinkan disajikan dalam daftar distribusi tunggal, maka dibuat tabel distribusi data yang berkelompok atau bergolong, data dikumpulkan dalam kelompok-kelompok yang disebut interval.

a). Membuat Daftar Distribusi Frekuensi

Perhatikan nilai ujian matematika untuk 80 siswa berikut:

Untuk membuat daftar distribusi frekuensi dengan panjang kelas yang sama dilakukan langkah-langkah berikut:

- Tentukan Rentangan (R) atau jangkauan, yaitu data terbesar dikurangi data terkecil. Data terbesar dari data di atas adalah 99, sedangkan data terkecil = 35, maka Rentangan (R) = 99 - 35 = 64
- Tentukan banyaknya kelas yang diperlukan, misalnya 5 kelas atau 10 kelas sesuai dengan keperluan. Cara lain dengan menggunakan aturan **Sturges**:

Banyaknya kelas (k) =
$$1 + 3.3 \log n$$
, dimana n = banyaknya data Pada data di atas: k = $1 + 3.3 \log 80$

$$= 1 + (3,3)(1,9031) = 7,2802$$

Kita dapat membuat daftar dengan banyaknya kelas 7 atau 8.

• Tentukan panjang kelas interval (p) secara perkiraan ditentukan dengan aturan berikut:

$$p = \frac{rentangan}{banyak \ kelas} = \frac{64}{7} = 9,14$$

Panjang kelas dapat diambil 9 atau 10

Pilih batas bawah kelas interval pertama

Batas bawah interval kelas pertama dapat diambil dari data yang terkecil atau data yang lebih kecil dari data terkecil tetapi selisihnya kurang dari panjang kelas dan kelas pertama tidak boleh mempunyai frekuensi sama dengan nol.

Dengan mengambil banyak kelas 7, panjang kelas 10 dan dimulai dengan batas bawah interval pertama sama dengan 31 diperoleh tabel distribusi frekuensi berikut:

Nilai ujian	<i>Tally</i> (Turus)	Frekuensi
31 – 40		2
41 – 50	III	3
51 – 60	J.M.	5
61 – 70	JAN HAI IIII	14
71 – 80	M M M M III	24
81 – 90	M M M M	20
91 – 100	M M II	12

Beberapa istilah yang digunakan dalam tabel distribusi frekuensi antara lain:

Interval kelas

Tiap-tiap kelompok disebut dengan interval kelas. Pada tabel di atas terdiri atas 7 interval atau kelas.

- Batas atas dan bawah
- Bilangan paling kiri pada tiap kelas disebut batas bawah, sedangkan bilangan yang paling kanan pada tiap interval disebut batas atas kelas. Bilangan-bilangan 31, 41, 51, . . . dan 91 merupakan batas bawah. 41 merupakan batas bawah interval kedua sedangkan 81 merupakan batas bawah interval keenam. Bilangan-bilangan 40, 50, 60, . . . dan 100 merupakan batas atas. 50 merupakan batas atas interval kedua, sedangkan 100 merupakan batas atas interval ketujuh.
- Tepi kelas (Tepi atas dan tepi bawah)
 Tepi atas dan tepi bawah dihitung berdasarkan ketelitian data yang digunakan.
 Jika data dicatat teliti hingga satuan, maka tepi bawah diperoleh dengan cara mengurangi batas bawah dengan 0,5 (tepi bawah = batas bawah 0,5) untuk kelas yang bersangkutan, sedangkan untuk tepi atas, batas atas ditambah dengan 0,5 (tepi atas = batas atas + 0,5).

b). Tabel Distribusi Relatif dan Kumulatif

Jika banyaknya frekuensi pada tiap interval dibandingkan dengan jumlah data keseluruhan dan dinyatakan dalam bentuk persen, maka akan didapat frekuensi relatif

 $(f_{\text{rel.}})$. Frekuensi relatif interval pertama pada tabel di atas adalah

$$\frac{2}{80}.100\% = 2,5\%$$
.

Distribusi Frekuensi Relatif Ujian Matematika

Nilai ujian	Frekuensi	F _{rel} . (%)
31 – 40	2	2,5
41 – 50	3	3,75
51 – 60	5	6,25
61 – 70	14	17,50
71 – 80	24	30,00
81 – 90	20	25,00
91 – 100	12	15,00
Jumlah	80	100

Daftar distribusi kumulatif dapat dibentuk dari daftar distribusi frekuensi dengan cara menjumlahkan frekuensi demi frekuensi. Ada dua macam frekuensi kumulatif, yaitu frekuensi kumulatif kurang dari dan frekuensi kumulatif lebih dari. Frekuensi kumulatif kurang dari adalah frekuensi yang diperoleh dari jumlah frekuensi yang kurang dari atau sama dengan tepi atas kelas yang bersangkutan, sedangkan frekuensi kumulatif lebih dari diperoleh dari jumlah frekuensi yang lebih dari atau sama dengan tepi bawah kelas yang bersangkutan.

Perhatikan tabel sebelumnya, kemudian dibuat tabel frekuensi kumulatif (f_{kum}) kurang dari dan lebih dari seperti pada tabel di bawah ini.

Daftar Frekuensi Kumulatif Kurang Dari

Daftar Frekuensi Kumulatif Lebih Dari

Nilai ujian	f _{kum} kurang dari
<u><</u> 40,5	2
<u><</u> 50,5	5
<u><</u> 60,5	10
<u><</u> 70,5	24
<u><</u> 80,5	48
<u><</u> 90,5	68
<u><</u> 100,5	80

Nilai ujian	f _{kum} lebih dari
<u>></u> 30,5	80
<u>></u> 40,5	78
<u>></u> 50,5	75
<u>></u> 60,5	70
<u>></u> 70,5	56
<u>></u> 80,5	32
<u>></u> 90,5	12

Grafik yang menggambarkan frekuensi kumulatif disebut ogive .

BAB II Statistika 59

6). Histogram dan Poligon Frekuensi

Histogram merupakan diagram untuk menyajikan data dalam bentuk distribusi frekuensi. Sumbu tegak untuk menyatakan frekuensi dan sumbu mendatar untuk menyatakan batas interval kelas. Batas yang digunakan merupakan tepi atas dan tepi bawah pada setiap intervalnya.

Contoh 9

Dengan menggunakan data dari tabel pada halaman 57 dapat dibuat histogram seperti yang tertera pada diagram di bawah ini.

Poligon frekuensi diperoleh dari histogram dengan cara menghubungkan titik tengah dari masing-masing puncak batang histogram. Poligon frekuensi dapat juga digambar tepisah dengan poligon, dimana letak titik-titik merupakan koordinat antara titik tengah dengan frekuensi yang bersesuaian, seperti tampak pada grafik berikut.

Gambar 2-12

Untuk mendapatkan kesimpulan sederhana dapat dilakukan dengan mencari ukuran pemusatan (tendensi sentral), distribusi frekuensi, dan ukuran penyebarannya (dispersi).

c. Rangkuman

- 1. Setelah data diperoleh, maka data dikelola dan disajikan dalam bentuk:
 - Daftar/tabel terdiri dari: Daftar distribusi frekuensi tunggal dan daftar distribusi frekuensi kelompok
 - Diagram, terdiri atas:
 - Diagram Batang
 - Diagram Lambang (Piktogram) 0
 - Diagram Garis 0
 - Diagram Lingkaran
 - Grafik terdiri atas:
 - Histogram, yaitu diagram batang yang saling berimpit sumbu vertikalnya dengan nilai frekuensi data dan sumbu horizontalnya merupakan tepi bawah kelas.
 - Poligon Frekuensi, yaitu diagram garis yang ujungnya tertutup sehingga membentuk bangun poligon, sumbu horizontalnya merupakan nilai tengah data dan sumbu vertikalnya adalah nilai frekuensi
 - Ogive, yaitu diagram garis yang diperoleh dari daftar distribusi frekuensi kumulatif, terdiri atas:
 - Ogive positif dari f <
 - Ogive negatif dari f >

 Langkah-langkah untuk membuat daftar distribusi frekuensi kelompok, yaitu dengan menentukan rentangan data, banyaknya kelas dengan menggunakan aturan Sturgess, panjang interval kelas, nilai tengah data dan banyaknya frekuensi masingmasing kelas.

LATIHAN (2)

1. Data kecelakaan lalu lintas di suatu daerah selama lima tahun (2000 – 2004) sebagai berikut:

Tahun	2000	2001	2002	2003	2004
Banyaknya kecelakaan	400	325	450	300	250

- a. Gambarlah diagram batang dari data di atas!
- b. Pada tahun berapakah terjadi kenaikan angka kecelakaan tertinggi?
- c. Berapa persenkah penurunan terbesar yang terjadi?
- d. Berapakah jumlah angka kecelakaan dari tahun 2002 sampai dengan 2004?
- 2. Banyaknya murid sekolah dan mahasiswa di kabupaten "Taruna Tiga" menurut tingkat sekolah dan jenis kelaminnya pada tahun 2005 sebagai berikut:

Jenis Kelamin Tingkat Pendidikan				Jumlah	Jumlah	
Jenis Reidinin	SD	SMP	SMA	SMK	PT	Juilliali
Laki-laki	4.758	2.795	1.459	955	468	10.435
Perempuan	4.032	2.116	1.256	1.005	575	8.984
Jumlah	8.790	4.911	2.715	1.960	1.043	19.419

- a. Buatlah diagram garis dari data tersebut!
- b. Berapa persenkah jumlah murid sekolah dasar di kabupaten tersebut?
- c. Buatlah komentar tentang kemungkinan siswa sekolah menengah yang melanjutkan ke perguruan tinggi!
- 3. Hasil tangkapan ikan nelayan selama enam bulan adalah sebagai berikut:

Januari sebanyak 300 ton Pebruari sebanyak 250 ton Maret sebanyak 350 ton April sebanyak 200 ton sebanyak 400 ton Mei 300 ton Juni sebanyak

Buatlah diagram lingkaran dan piktogram dari data tersebut!

4. Hasil pengujian kadar lumpur dari macam-macam jenis pasir dibedakan oleh kadar lumpur yang bercampur pada pasir yang dinyatakan dalam bentuk persen sebagai berikut :

> 3% 1% 11% 6% 8% 1% 5% 2% 10% 9% 2% 7% 4% 5% 8% 7% 5% 7% 4% 4% 3% 5% 8% 6% 2% 5% 12% 6% 4% 6%

- a. Buatlah tabel distribusi frekuensi dengan ketentuan berikut ini:
 - 1) Banyaknya interval kelas = 6
 - 2) Panjang interval kelas = 2
- b. Buatlah kurva *ogive* kurang dari dan lebih dari.
- c. Apabila pasir yang baik adalah pasir yang mempunyai kadar lumpur tidak lebih dari 4,5 %. Berapa persenkah sampel yang diuji dikategorikan sebagai pasir yang baik atau mempunyai kadar lumpur yang rendah?
- 5. Suatu penelitian modal usaha kecil terhadap 100 perusahaan di wilayah tertentu disajikan dalam tabel berikut:

Interval Modal	Banyaknya
(Jutaan rupiah)	Perusahaan
30 – 39	2
40 – 49	3
50 – 59	11
60 – 69	20
70 – 79	32
80 – 89	25
90 – 99	7
Jumlah	100

Dari tabel di samping, tentukanlah!

- a. Banyaknya interval
- b. Panjang interval kelas
- c. Batas bawah tiap interval
- d. Batas atas tiap interval
- e. Titik tengah tiap interval
- f. Tepi bawah
- g. Tepi atas!
- h. Buatlah frekuensi kumulatif kurang dari dan lebih dari beserta grafiknya!
- i. Buatlah daftar frekuensi relatifnya!
- 6. Dari tabel pada **soal nomor 5**, tentukanlah!
 - a. Interval modal usaha yang paling banyak dimiliki perusahaan
 - b. Banyaknya perusahaan yang memiliki modal lebih dari 59,5 juta
 - c. Banyaknya perusahaan yang memilik modal kurang dari 89,5 juta
 - d. Buatlah histogran dan poligon frekuensinya!
- 7. Nilai ujian matematika kelas XI untuk 80 siswa sebagai berikut:

```
79 80 70 68 90 92 80 70 63 76 49 84 71 72 35 93 91 74 60 63 48 90 92 85 83 76 61 99 83 88 74 70 38 51 73 71 72 95 82 70 81 91 56 65 74 90 97 80 60 66 98 93 81 93 43 72 91 59 67 88 87 82 74 83 86 67 88 71 89 79 80 78 73 86 68 75 81 77 63 75
```

Buatlah tabel distribusi dengan ketentuan berikut:

- a. Tentukanlah rentang/jangkauan dari data tersebut
- b. Gunakan aturan Sturges untuk menentukan banyaknya kelas/interval (bulatkan ke bawah)
- c. Menentukan panjang kelas (bulatkan ke atas)
- d. Pilihlah batas bawah interval pertama sama dengan 31.

Dari tabel yang telah dibuat, kemudian buatlah histogram, poligon frekuensi, dan ogive nya!

Dari ogive kurang dari yang telah dibuat, tentukanlah:

BAB II Statistika 63

- i. Banyaknya siswa yang mendapat nilai kurang dari 60,5!
- ii. Banyaknya siswa yang mendapat nilai lebih dari 80,5!
- iii. Jika batas kelulusan yang disyaratkan minimum mendapat nilai 70,5, berapa persenkah jumlah siswa yang lulus pada ujian tersebut?
- 8. Buatlah daftar distribusi frekuensi kelompok lengkap (nilai tengah data, frekuensi relatif, frekuensi kumulatif, tepi atas, dan tepi bawah) data di bawah ini, kemudian tentukan pula histogram, poligon frekuensi, dan ogivenya.

Data berikut menunjukkan nilai ujian mata pelajaran Statistika 60 siswa SMK X

36 44 53 58 63 67 69 74 83 89 40 50 55 60 64 68 70 78 95 89 90 83 75 69 67 63 59 53 45 37 39 49 55 60 63 68 70 77 86 95 95 85 76 69 68 63 59 53 45 37 39 48 55 60 63 68 70 78 88 95

B.3 Ukuran Pemusatan (Tendensi Sentral)

a. Tujuan

Setelah mempelajari uraian kompetensi dasar ini, anda dapat:

- Menghitung mean data tunggal dan data kelompok
- Menghitung median data tunggal dan data kelompok
- > Menghitung modus data tunggal dan data kelompok

b. Uraian Materi

Untuk mendapatkan informasi yang jelas dari sekumpulan data baik dalam sampel maupun populasi selain data tersebut disajikan dalam bentuk tabel maupun diagram, masih diperlukan ukuran-ukuran yang menunjukkan sifat atau ciri dari kumpulan data tersebut. Ukuran-ukuran tersebut meliputi: rata-rata (mean), data yang sering muncul (modus), dan data yang berada ditengah-tengah sekumpulan data yang terurut (median). Ukuran-ukuran tersebut disebut ukuran pemusatan (Tendensi Sentral)

Ukuran pemusatan memberikan gambaran bagaimana suatu data itu cenderung memusat ke suatu ukuran atau nilai tertentu. Misalkan sekumpulan data dari hasil ujian matematika dalam satu kelas mempunyai rata-rata 7, maka data hasil ujian tersebut berkecenderungan berada di sekitar 7, untuk itu rata-rata merupakan salah satu ukuran pemusatan.

1). Rata-Rata

Dalam kehidupan sehari-hari, rata-rata lebih banyak dikenal, misalnya rata-rata gaji pegawai suatu perusahaan tiap bulan, rata-rata pendapatan perkapita masyarakat Indonesia, rata-rata usia siswa SMA kelas XI, dan sebagainya.

Nilai rata-rata yang akan dibahas dalam buku in meliputi rata-rata hitung, rata-rata ukur (rata-rata geometrik), dan rata-rata harmonik.

a). Rata-Rata hitung (Mean)

Dari sekumpulan data $x_1, x_2, x_3, x_4, \ldots, x_n$, maka rata-rata hitung dari data tersebut adalah:

$$\overline{X} = \frac{X_1 + X_2 + X_3 + ... + X_n}{n} = \frac{\sum X_i}{n}$$

Contoh 10

Tentukan nilai rata-rata hitung dari data 6, 4, 8, 10, 11, 10, 7

Jawab:

Rata-rata hitung =
$$\bar{x} = \frac{6+4+8+10+11+10+7}{7} = 8$$

Contoh 11

Nilai rata-rata ujian matematika dari 34 siswa adalah 49. Jika nilai dari seorang siswa lainnya yang bernama Dodo digabung dengan kelompok ini, maka nilai rata-ratanya menjadi 50. Berapakah nilai ujian dari Dodo tersebut?

Jawab:

$$\overline{x} = \frac{\sum x_i}{n} = \frac{\sum x_i}{34} = 49$$

 $\sum x_i = 34.49 = 1666$

Misalkan nilai ujian Dodo adalah x. Setelah nilai tersebut digabungkan nilai rataratanya menjadi 50, sehingga

$$\overline{X} = \frac{\sum x_i + x}{35} = 50$$

$$\sum x_i + x = 35.50 = 1760$$

$$x = 1760 - \sum x_i$$

$$= 1760 - 1666 = 84$$

Contoh 12

Terdapat dua kelompok siswa, laki-laki dan perempuan dalam suatu ujian matematika. Kelompok laki-laki yang berjumlah 20 anak mempunyai rata-rata 6, sedangkan kelompok perempuan mempunyai rata-rata ujian 8 dan banyaknya anak 30. Andaikan kedua kelompok tersebut digabung, berapakah rata-ratanya yang baru?

Jawab:

Untuk kelompok laki-laki (i)

$$\overline{X}_i$$
 = 6 dan n_i = 20, sehingga $\sum X_i$ = 6 . 20 = 120

Untuk kelompok perempuan (p)

$$\bar{X}_p = 8 \text{ dan } n_p = 30, \text{ sehingga } \sum x_p = 8 . 30 = 240$$

Setelah digabung

$$n = n_i + n_p = 20 + 30 = 50$$

 $\sum x = \sum x_i + \sum x_p = 120 + 240 = 360,$

maka:

$$\bar{x} = \frac{\sum x}{n} = \frac{360}{50} = 7.2$$

Jadi, rata-rata yang baru (data gabungan) adalah 7,2.

Untuk data yang berfrekuensi, maka rata-rata dihitung dengan menggunakan rumus berikut.

$$\overline{x} = \frac{f_1.x_1 + f_2.x_2 + f_3.x_3 + ... + f_n.x_n}{n} = \frac{\sum f_i.x_i}{\sum f_i}$$

Contoh 13

Tentukan nilai rata-rata dari data di bawah ini:

Х	2	3	4	5
f	1	4	3	2

Jawab:

$$\overline{X} = \frac{f_1.X_1 + f_2.X_2 + f_3.X_3 + f_4.X_4}{n} = \frac{1.2 + 4.3 + 3.4 + 2.5}{1 + 4 + 3 + 2}$$
$$= \frac{2 + 12 + 12 + 10}{10}$$
$$= 3,6$$

Contoh 14

Nilai ujian dari 40 siswa dapat dilihat pada tabel berikut:

Nilai	frekuensi
3 - 5	3
6 - 8	4
9 – 11	11
12 – 14	4
15 – 17	8
18 – 20	5
21 – 23	5

Tentukan rata-ratanya!

Jawab:

Untuk menghitung rata-rata dari data yang disajikan dalam bentuk distribusi frekuensi, terlebih dahulu dicari nilai tengah dari tiap intervalnya (x_i) . Nilai tengah interval adalah

setengah dari jumah batas bawah	dan batas atas pada tiap kelas yang bersangkutan.
Misalnya nilai tengah interval perta	ma adalah $0.5(3 + 5) = 4$ dan seterusnya.

Nilai	Nilai tengah (x _i)	Frekuensi (f _i)	x _i f _i
3 - 5	4	3	12
6 - 8	7	4	28
9 - 11	10	11	110
12 – 14	13	4	52
15 – 17	16	8	128
18 – 20	19	5	95
21 – 23	22	5	110
Jumlah		40	535

Nilai rata-rata adalah
$$\overline{x} = \frac{\sum f_i \cdot x_i}{\sum f_i} = \frac{535}{40} = 13,38$$
 .

Selain menggunakan rumus seperti di atas dapat juga menghitung rata-rata dengan terlebih dahulu menetapkan rata-rata sementara, kemudian rata-rata dihitung dengan menggunakan rumus sebagai berikut:

Untuk menghitung rata-rata dari data yang disajikan dalam bentuk distribusi frekuensi dapat juga dilakukan dengan menggunakan rata-rata sementara, yaitu dengan rumus

$$\overline{\mathbf{x}} = \overline{\mathbf{x}}_{s} + \frac{\sum f_{i} \cdot d_{i}}{\sum f_{i}}$$

Keterangan:

- d_i = simpangan yang ke-i (selisih antara nilai tengah dengan rata-rata sementara), yaitu $d_i = x_i \overline{x}_s$
- \overline{x}_s = Rata-rata sementara.

Contoh 15

Tentukan rata-rata dari data yang disajikan dalam tabel berikut dengan menggunakan rata-rata sementara.

Interval	Frekuensi (fi)
119 – 127	3
128 – 136	6
137 – 145	10
146 – 154	11
155 – 163	5
164 – 172	3
173 – 181	2
	40

Jawab:

Ditentukan terlebih dahulu nilai rata-rata sementaranya, misalkan $\bar{x}_s = 150$. Untuk mempermudah \bar{x}_s diusahakan diambil dari salah satu nilai tengah interval (x_i).

Interval	Frekuensi (fi)	Nilai tengah (x _i)	Simpangan (d _i)	f _i .d _i
119 – 127	3	123	-27	-81
128 – 136	6	132	-18	-108
137 – 145	10	141	-9	-90
146 – 154	11	150	0	0
155 – 163	5	159	9	45
164 – 172	3	168	18	54
173 – 181	2	177	27	54
	40		_	-126

Jadi, rata-rata sesungguhnya adalah:

$$\overline{x} = \overline{x}_s + \frac{\sum f_i d_i}{\sum f_i}$$

$$= 150 + \frac{-126}{40} = 146,85$$

Untuk menyederhanakan penghitungan, rata-rata dapat dihitung dengan menggunakan cara pengkodean (coding). Kode (u) untuk setiap interval dicari dengan rumus $u = \left(\frac{d_i}{c}\right)$ dengan d_i merupakan simpangan dan c panjang kelas. Rata-rata sesungguhnya dihitung dengan menggunakan rumus

$$\overline{X} = \overline{X}_s + \frac{\sum f_i \cdot u_i}{\sum f_i} c$$

Keterangan:

- \overline{X}_s = rata-rata sementara
- d_i = simpangan ke i
- $u_i = kode ke i$
- c = panjang kelas

Contoh 16

Dari data pada tabel contoh 15 , hitunglah rata-ratanya dengan menggunakan cara coding.

Jawab:

Seperti dengan menggunakan cara rata-rata sementara, cara coding juga terlebih dahulu menentukan rata-rata sementaranya, dalam hal ini $\overline{x}_s = 150$.

Interval	Frekuensi (fi)	Nilai tengah (x _i)	Simpangan (d _i)	Kode (u _i)	f _i .u _i
119 – 127	3	123	-27	-3	-9
128 – 136	6	132	-18	-2	-12
137 – 145	10	141	-9	-1	-10
146 – 154	11	150	0	0	0
155 – 163	5	159	9	1	5
164 – 172	3	168	18	2	6
173 – 181	2	177	27	3	6
	40				-14

Rata-rata sesungguhnya adalah:

$$\overline{x} = \overline{x}_s + \frac{\sum f_i \cdot u_i}{\sum f_i} c$$

$$= 150 + \frac{-14}{40}.9$$

$$= 146,85$$

b). Rata-rata Ukur (Rata-rata Geometrik)

Jika perbandingan tiap dua data berurutan tetap atau hampir tetap, rata-rata ukur lebih baik digunakan dari pada rata-rata hitung, apabila dikehendaki rata-ratanya. Untuk data $x_1, x_2, x_3, x_4, \ldots, x_n$ maka rata-rata ukur (U) didefinisikan sebagai berikut:

$$U = \sqrt[n]{X_1 \cdot X_2 \cdot X_3 \cdot \dots \cdot X_n}$$

Contoh 17

Hitunglah rata-rata ukur data berikut: 2, 4, 8, 16!

Jawab:

$$U = \sqrt[n]{X_1 \cdot X_2 \cdot X_3 \cdot X_4}$$
$$= \sqrt[4]{2 \cdot 4 \cdot 8 \cdot 16}$$
$$= 4\sqrt{2}$$

c). Rata-rata Harmonik

Untuk data x_1 , x_2 , x_3 , x_4 , . . . , x_n , maka rata-rata harmonik (H) didefinisikan sebagai berikut:

$$H = \frac{n}{\sum \frac{1}{x_i}}$$

Contoh 18

Hitunglah rata-rata harmonik dari data berikut: 3, 5, 6, 6, 7, 10, 12!

Banyaknya data (n) = 7, sehingga
$$H = \frac{n}{\sum \frac{1}{x_i}} = \frac{7}{\frac{1}{3} + \frac{1}{5} + \frac{1}{6} + \frac{1}{6} + \frac{1}{7} + \frac{1}{10} + \frac{1}{12}} = 5,87$$

2). Modus (Mo)

Modus dari suatu data adalah data yang sering muncul atau data yang mempunyai frekuensi tertinggi.

a). Modus Data Tunggal

Contoh 19

Tentukan modus dari data di bawah ini:

69

a. 3, 4, 4, 5, 5, 5, 6, 7

b. 5, 6, 6, 6, 7, 7, 7, 8

c. 5, 5, 5, 6, 6, 6, 7, 7, 7

Jawab:

a. modus data adalah 5

b. modus data adalah 6 dan 7

c. tidak mempunyai modus

b). Modus Data Berkelompok

Untuk menentukan modus dari data yang disajikan dalam bentuk tabel distribusi frekuensi digunakan rumus yang dapat dicari dengan menggunakan histogram berikut:

Pada gambar di samping Mo = Tb + TU TU dapat dicari dengan cara berikut: Δ PUS \sim Δ RUQ, dan berluku hubungan

TU : UV = PS : RQ

$$TU = \frac{UV \cdot PS}{RQ} = \frac{(SR - TU)(f_{Mo} - fb)}{f_{Mo} - fa}$$
$$= \frac{(c - TU)(f_{Mo} - fb)}{f_{Mo} - fa}$$
$$\frac{TU}{c - TU} = \frac{f_{Mo} - fb}{f_{Mo} - fa}$$

$$\frac{c - TU}{TU} = \frac{f_{Mo} - fa}{f_{Mo} - fb}$$

$$\frac{c}{TU} - 1 = \frac{f_{Mo} - fa}{f_{Mo} - fb}$$

Gambar 2-13

$$\begin{split} \frac{c}{TU} &= \frac{f_{Mo} - fa}{f_{Mo} - fb} + 1 = \frac{f_{Mo} - fa}{f_{Mo} - fb} + \frac{f_{Mo} - fb}{f_{Mo} - fb} \\ &= \frac{(f_{Mo} - fa) + (f_{Mo} - fb)}{f_{Mo} - fb} \\ \frac{TU}{c} &= \frac{f_{Mo} - fb}{(f_{Mo} - fa) + (f_{Mo} - fb)} \\ TU &= \frac{f_{Mo} - fb}{(f_{Mo} - fa) + (f_{Mo} - fb)} c \end{split}$$

Mo = Tb + TU = Tb +
$$\frac{f_{Mo} - fb}{(f_{Mo} - fa) + (f_{Mo} - fb)}c$$
,

untuk mempermudah mengingat, rumus disederhanakan sebagai berikut:

$$Mo = Tb + \frac{d_1}{d_1 + d_2} c$$

Keterangan:

Mo = Modus

Tb = Tepi bawah kelas modus (Kelas dengan frekuensi tertinggi)

 d_1 = Selisih antara frekuensi modus dengan frekuensi sebelumnya (f_{Mo} – fb)

 d_2 = Selisih antara frekuensi modus dengan frekuensi sesudahnya (f_{Mo} – fa)

c = Panjang kelas

Contoh 20

Dari data pada tabel di samping, tentukan modus data tersebut!

Jawab:

Dari tabel, frekuensi yang tertinggi adalah 17 dan terletak pada interval 45 – 49, sehingga diperoleh,

$$Tb = 45 - 0,5 = 44,5$$

$$d_1 = 17 - 13 = 4$$

$$d_2 = 17 - 14 = 3$$

$$c = 35 - 30 = 5$$

Mo = Tb +
$$\frac{d_1}{d_1 + d_2}$$
 c
= 44,5 + $\frac{3}{3+4}$.5
= 44,5 + $\frac{15}{7}$
= 46,64

Interval	frekuensi (fi)
30 – 34	8
35 – 39	10
40 – 44	13
45 – 49	17
50 – 54	14
55 – 59	11
60 – 64	7

3). Median

a). Median Data Tunggal

Median (Me) adalah nilai pertengahan dari sekelompok data yang telah diurutkan menurut besarnya. Untuk sekumpulan data $x_1, x_2, x_3, x_4, \ldots, x_n$ dimana data $x_1 < x_2 < x_3 < x_4 < \ldots < x_n$

Jika banyaknya data ganjil, maka median sama dengan data yang ditengah atau data yang ke $\left(\frac{n+1}{2}\right)$. Jika banyaknya data genap, maka median adalah nilai rata-rata dari

data yang ke $\left(\frac{n}{2}\right)$ dan data ke $\left(\frac{n}{2}+1\right)$.

$$Me = x_{\frac{n+1}{2}}$$
 untuk n ganjil

$$Me = \frac{X_{\frac{n}{2}} + X_{\frac{n+1}{2}}}{2}, \text{ untuk n genap.}$$

Contoh 21

Tentukan median dari data:

Jawab:

- a. Data harus diurutkan terlebih dahulu, sehingga didapat:
 - 3 4
- 4
- 6
- 8
- 8

Banyaknya data atau n = 9 (ganjil), maka median (Me) = $x_{\frac{n+1}{2}} = x_{\frac{9+1}{2}} = x_5 = 6$

- (letak median pada data ke lima, dihitung dari kiri, yaitu 6).
- b. 3
- 4
- 5 5
- 8
- 8
- 10

Banyaknya data atau n = 10 (genap), maka median (Me)

$$Me = \frac{x_{\frac{10}{2}} + x_{\frac{10}{2}+1}}{2} = \frac{x_5 + x_6}{2} = \frac{5+6}{2} = 5,5$$

(letak median pada data ke lima dan ke enam, dihitung dari kiri, yaitu 5 dan 6)

b). Median Data Berkelompok

Untuk data yang berkelompok, median dicari dengan menggunakan rumus sebagai berikut:

$$Me = Tb + \frac{\frac{1}{2}n - F}{f}c$$

Keterangan:

Me = Median

Tb = Tepi bawah kelas median

n = Jumlah frekuensi

f = frekuensi median (frekuensi pada kelas median)

F = Jumlah frekuensi sebelum frekuensi median

Contoh 22

Tentukan median dari data pada tabel di bawah ini:

Interval	Frekuensi (fi)
30 – 34	8
35 – 39	10
40 – 44	13
45 – 49	17
50 – 54	14
55 – 59	11
60 – 64	7
	80

Me = Tb +
$$\frac{\frac{1}{2}n - F}{f}c$$

= 44,5 + $\frac{\frac{1}{2}.80 - 31}{17}.5$
= 44,5 + $\frac{9}{17}.5$ = 47,15

Jawab:

Untuk mencari median, terlebih dahulu mencari letak median, yaitu $\frac{1}{2}n=\frac{1}{2}.80=40$. Hal ini berarti median

terletak pada data yang ke 40 dan dicari dari frekuensi, ternyata data yang ke 40 ada pada frekuensi 17 yang terletak pada interval ke 4 yaitu 45 – 49, sehingga

$$f = 17$$
 $F = 8 + 10 + 13 = 31$

$$Tb = 44,5$$
 $c = 5$

c. Rangkuman

- 1. Dari sekumpulan data $x_1, x_2, x_3, x_4, \ldots, x_n$, maka rata-rata hitung (mean) dari data tersebut adalah $\overline{X} = \frac{X_1 + X_2 + X_3 + \ldots + X_n}{n} = \frac{\sum X_i}{n}$
- 2. Untuk data yang berfrekuensi, mean: $\bar{X} = \frac{f_1.x_1 + f_2.x_2 + f_3.x_3 + ... + f_n.x_n}{n}$
- 3. Untuk data berkelompok, mean:

a.
$$\overline{x} = \frac{\sum x_i . f_i}{n}$$

b.
$$\overline{x} = \overline{x}_s + \frac{\sum fi \cdot di}{\sum fi}$$

$$c. \quad \overline{x} \quad = \quad \overline{x}_s + \frac{\sum f_i \cdot u_i}{\sum f_i} c$$

Keterangan:

- d_i = simpangan yang ke-i (selisih antara nilai tengah dengan rata-rata sementara), yaitu $d_i = x_t \overline{x}_s$
- \bar{x}_s = Rata-rata sementara.
- u_i = kode ke i (bilangan bulat . . . -2, -1, 0, 1, 2, . . .)
- c = panjang kelas
- 4. Untuk data $x_1, x_2, x_3, x_4, \ldots, x_n$, maka rata-rata ukur (U) didefinisikan sebagai berikut $U = \sqrt[n]{x_1. x_2. x_3...x_n}$
- 5. Untuk data $x_1, x_2, x_3, x_4, \ldots, x_n$, maka rata-rata harmonik (H) didefinisikan sebagai berikut $H = \frac{n}{\sum \frac{1}{x_i}}$
- 6. Modus dari suatu data adalah data yang sering muncul atau data yang mempunyai frekuensi tertinggi.
- 7. Modus data kelompok: Mo = Tb + $\frac{d_1}{d_1 + d_2}$ c

Tb = Tepi bawah kelas modus

d₁ = Selisih antara frekuensi modus dengan frekuensi sebelumnya

d₂ = Selisih antara frekuensi modus dengan frekuensi sesudahnya

- 8. Median (Me) adalah nilai pertengahan dari sekelompok data yang telah diurutkan menurut besarnya
- 9. Untuk data yang berkelompok: Me = Tb + $\frac{\frac{1}{2}n F}{f}$ c

f = frekuensi median (frekuensi pada kelas median)

F = Jumlah frekuensi sebelum frekuensi median

LATIHAN

- 1. Rata-rata nilai ujian matematika 39 siswa adalah 45. Apabila nilai ujian Ahmad yang ikut susulan ditambahkan, maka rata-ratanya sekarang menjadi 45,875. Berapakan nilai ujian yang diperoleh Ahmad?
- 2. Nilai ujian dari 10 orang mempunyai rata-rata 6,9. Dengan masuknya seorang anak, rata-ratanya menjadi 7. Berapakah nilai ujian anak yang baru masuk?
- 3. Rata-rata gaji 10 karyawan PT Sejahtera adalah Rp2.500.000,00. Jika gaji seorang manajer digabungkan rata-ratanya menjadi Rp2.800.000,00. Berapakah gaji manajer tersebut?
- 4. Karyawan bagian administrasi sebanyak 5 orang mempunyai rata-rata gaji sebesar Rp1.500.000,00, sedangkan bagian produksi yang berjumlah 20 orang rata-ratanya Rp900.000,00. Berapakan rata-rata seluruh pegawai perusahaan tersebut
- Nilai rata-rata ulangan matematika kelas I, II, dan II masing-masing 6, 7, dan 8. Jumlah murid masing-masing kelas adalah 25, 30, dan 45. Hitunglah nilai rata-rata ulangan matematika dari ketiga kelas tersebut!
- 6 Nilai rata-rata ujian dalam suatu kelas adalah 5. Jika ditambah nilai siswa baru yang nilainya 7, maka rata-ratanya menjadi 5,1. Tentukan banyaknya siswa semula!
- 7 Tinggi rata-rata 10 orang siswa adalah 162, jika digabung dengan 5 murid lagi maka rata-ratanya menjadi 160. Berapakah rata-rata tinggi kelima siswa tersebut?
- 8. Tentukan rata-rata hitung, rata-rata ukur, dan rata-rata harmonik dari data berikut:

a. 1, 3, 5, 7, 9, 11

c. 1, 3, 9, 27, 81

b. 2, 4, 6, 8, 10

d. 4, 1, 16, 64, 128

- 9. Tentukan rata-rata hitung, median, dan modus dari data berikut:
 - a. 8, 9, 12, 14, 5, 12, 9, 3, 9, 10, 5, 3
 - b. 4, 4, 7, 8, 5, 10, 5, 3, 6, 9, 5, 11, 7
 - c. 75, 82, 66, 57, 64, 56, 92, 94, 86, 52, 60, 70
 - d. 2, 3, 3, 4, 4, 5, 5, 7, 4, 4, 2, 3, 3, 2, 5, 5, 5, 5, 7
- 10. Hitunglah rata-rata hitung, median, dan modus dari data berikut:

a.

Х	f
2	5
3	8
4	6
5	3

b.

Х	f
4	6
5	10
6	7
7	4
8	2

C.

Х	f
10	4
20	8
30	7
40	8
50	3

11. Tentukan mean, rata-rata harmonis, median dan modus data di bawah ini!

a	Х	4	5	6	7	8	9
	f	4	3	3	2	2	1
•					ı		

C.	Х	5	6	7	8	9	10
	f	1	2	3	3	2	2

12. Carilah rata-rata hitung, median, dan modus dari data berikut:

a.

Interval	f
1 – 20	3
21 – 40	12
41 – 60	25
61 – 80	16
81 – 100	4

b.

Interval	f
1 – 5	4
6 – 10	7
11 – 15	15
16 – 20	3
21 – 25	1

c.

Interval	f
141 – 144	2
145 – 149	7
150 – 154	8
155 – 159	12
160 – 164	6
165 – 169	3
170 – 174	2

- 13. Hasil ujian akhir untuk mata pelajaran Matematika, Bahasa Indonesia, dan Bahasa Inggris, yaitu 3 orang mendapatkan nilai 8,2 untuk matematika, 5 orang mendapatkan nilai 8,6 untuk bahasa Inggris, dan 7 orang mendapatkan nilai 9 untuk bahasa Indonesia. Hitunglah rata-rata nilai ujian tersebut?
- 14. Sekelompok data disajikan seperti gambar berikut. Hitunglah rata-rata, median, dan modus data tersebut!

a.

b. Data gaji 200 pegawai perbulan

BAB II Statistika 75

B.4 Ukuran Penyebaran (Dispersi)

a. Tujuan

Setelah mempelajari uraian kompetensi dasar ini, anda dapat:

Menentukan: Jangkauan, simpangan rata-rata, simpangan baku, kuartil, jangkauan semi interkuartil, desil, persentil, dan jangkauan persentil dari data yang disajikan.

- Menentukan nilai standar (Z-score) dari suatu data yang diberikan.
- Menentukan koefisien variasi dari suatu data yang diberikan.

b. Uraian Materi

Dalam kehidupan sehari-hari kita sering mendengar orang atau dari media cetak atau elektronik menyebut data statistik, misalnya pendapatan rata-rata pegawai suatu perusahaan Rp1.350.000,00, rata-rata nilai tukar rupiah dalam satu minggu terakhir Rp9.035 per dollar Amerika, rata-rata ujian nasional provinsi DKI Jakarta untuk mata pelajaran matematika sebesar 7,4, dan sebagainya.

Apabila kita mendengar rata-rata maka secara otomatis pikiran kita membayangkan sederetan data disekitar rata-rata tersebut. Ada yang sama dengan rata-rata, ada yang kurang dari dan ada yang lebih dari rata-rata. Dengan perkataan lain ada variasi dari nilai-nilai tersebut, baik terhadap rata-rata maupun terhadap nilai lainnya.

Apabila sederetan data itu sama satu dengan yang lainnya, maka data tersebut disebut data yang *homogen* (tidak bervariasi). Apabila perbedaaan satu dengan lainnya sangat besar, maka dikatakan data tersebut sangat *heterogen* (sangat bervariasi) atau dikatakan penyebaran data tersebut sangat besar atau sangat variatif. Ada beberapa ukuran penyebaran (dispersi), yaitu jangkauan (range), simpangan kuartil, simpangan rata-rata, simpangan baku, dan variansi.

1). Jangkauan/Range (R)

Ukuran penyebaran yang paling sederhana adalah jangkauan atau range. Apabila sekumpulan data sudah terurut dari yang terkecil sampai yang terbesar, maka range dari data adalah selisih data terbesar (x_{max}) dengan data yang terkecil (x_{min}) .

Range = data terbesar – data terkecil =
$$x_{max} - x_{min}$$

Contoh 23

Tentukan range dari data: 20, 30, 35, 40, 50, 56, 60!

$$x_{max} = 60$$
 $x_{min} = 20$ maka $R = 60 - 20 = 40$

Untuk data yang disajikan dalam bentuk tabel distribusi frekuensi, range dapat dicari dengan cara sebagai berikut:

- a. R = Nilai tengah kelas terakhir Nilai tengah kelas pertama
- b. R = Tepi atas kelas terakhir tepi bawah kelas pertama

Contoh 24

Tentukan range dari data pada contoh 22

Jawah:

Nilai tengah kelas pertama =
$$\frac{30 + 34}{2}$$
 = 32

Nilai tengah kelas terakhir =
$$\frac{60 + 64}{2}$$
 = 62

Range =
$$62 - 32 = 30$$

Dapat juga menggunakan cara yang kedua, yaitu:

Tepi bawah kelas pertama = 30 - 0.5 = 29.5

Tepi atas kelas terakhir = 64 + 0.5 = 64.5

Range = tepi atas kelas terakhir – tepi bawah kelas pertama = 64,5 - 29,5 = 35.

Untuk data dalam bentuk distribusi frekuensi, data tertinggi dan terendah tidaklah pasti, sehingga dalam range dengan dua cara tersebut (walaupun hasilnya berbeda) diharapkan dapat memberikan gambaran perkiraan tentang rentang dari sekumpulan data tersebut.

2). Rata-Rata Simpangan (RS)

Untuk sekumpulan data $x_1, x_2, x_3, x_4, \ldots, x_n$ yang mempunyai rata-rata x dan nilai mutlak simpangan tiap data $|x_1 - x|, |x_2 - x|, |x_3 - x|, \ldots, |x_n - x|$ di jumlahkan kemudian dibagi dengan banyaknya data maka diperoleh rata-rata simpangan yang dirumuskan sebagai berikut:

$$RS = \frac{1}{n} \sum |x_i - \overline{x}|$$

Keterangan:

 x_i = data yang ke i

x = rata-rata

n = banyaknya data

Contoh 25

Tentukan rata-rata simpangan data 6, 4, 8, 10, 11, 10, 7!

Jawab:

$$\overset{-}{x} = \frac{6+4+8+10+11+10+7}{7} = 8$$

Simpangan rata-ratanya adalah:

SR =
$$\frac{1}{7}$$
 (| 6 - 8 | + | 4 - 8 | + | 8 - 8 | + | 10 - 8 | + | 11 - 8 | + | 10 - 8 | + | 7 - 8 |)
= $\frac{1}{7}$ (2 + 4 + 0 + 2 + 3 + 2 + 1)
= 2

Untuk data yang berbobot atau data berkelompok, simpangan rata-rata dihitung dengan menggunakan rumus berikut:

$$RS = \frac{1}{n} \sum f_i \mid x_i - \overline{x} \mid$$

Keterangan:

 x_i = data yang ke i

x = rata-rata

fi = frekuensi data yang ke i

 $n = banyaknya data (\Sigma f)$

Contoh 26

Hitunglah simpangan rata-rata data berikut:

Х	4	5	6	7
f	3	8	10	4

Jawab:

-			
f	$x_i f_i$	$ x_i - \overline{x} $	$f_i x_i - x $
3	12	1,6	4,8
8	40	0,6	4,8
10	60	0,4	4,0
4	28	1,4	5,6
Σ 25	Σ 140		Σ 19,2
	10 4	3 12 8 40 10 60 4 28	3 12 1,6 8 40 0,6 10 60 0,4 4 28 1,4

$$\overline{x} = \frac{140}{25} = 5.6$$

$$RS = \frac{1}{n} \sum_{i} f_{i} | x_{i} - \overline{x} |$$

$$= \frac{1}{25} (19.2) = 0.77$$

3). Simpangan Baku (Deviasi Standar)

Barangkali ukuran simpangan yang paling banyak digunakan adalah simpangan baku atau deviasi standar, karena mempunyai sifat-sifat matematik (mathematical property) yang sangat penting dan berguna untuk pembahasan teori dan analisis statistik selanjutnya.

Untuk sekumpulan data $x_1, x_2, x_3, x_4, \ldots, x_n$ yang mempunyai rata-rata \overline{x} dan nilai kuadrat simpangan tiap data $(x_1 - \overline{x})^2$, $(x_2 - \overline{x})^2$, $(x_3 - \overline{x})^2$, . . . , $(x_n - \overline{x})^2$, simpangan baku atau deviasi standar (s) dirumuskan sebagai berikut:

$$s = \sqrt{\frac{1}{n} \sum (x_i - \overline{x})^2} \quad \text{atau} \quad s = \sqrt{\frac{1}{n} \left(\sum x_i^2 - \frac{(\sum x_i)^2}{n} \right)}$$

Keterangan:

s = simpangan baku

 $x_i = data yang ke i$

x = rata-rata

n = banyaknya data

Contoh 27

Tentukan simpangan baku dari data: 6, 4, 8, 10, 11, 10, 7!

Jawab:

$$\overset{-}{x} = \frac{6+4+8+10+11+10+7}{7} = 8$$

Simpangan bakunya adalah:

$$S = \sqrt{\frac{1}{n}} \sum (x_i - \overline{x})^2$$

$$S = \sqrt{\frac{1}{7}} \left((6 - 8)^2 + (4 - 8)^2 + (8 - 8)^2 + (10 - 8)^2 + (11 - 8)^2 + (10 - 8)^2 + (7 - 8)^2 \right)$$

$$= \sqrt{\frac{1}{7}} (4 + 16 + 0 + 4 + 9 + 4 + 1)$$

$$= \sqrt{\frac{38}{7}}$$

$$= 2,33$$

Contoh 28

Nilai ujian matematika dari tiga kelompok siswa sebagai berikut:

a. Kelompok I: 50, 50, 50, 50, 50 b. Kelompok II: 50, 40, 30, 60, 70 c. Kelompok III: 100, 40, 80, 20, 10

Hitunglah simpangan baku dari data-data tersebut!

Jawab:

Jarrabi				
Kelompok I			Kelo	mpok II
Х	\mathbf{x}^2		Х	x ²
50	2.500		50	2.500
50	2.500		40	1.600
50	2.500		30	900
50	2.500		60	3.600
50	2.500		70	4.900
Σ 250	Σ 12.500		Σ 250	Σ 13.500

Kelompok III			
Χ	χ^2		
100	10.000		
40	1.600		
80	6.400		
20	400		
10	100		
Σ 250	Σ 18.500		

$$\label{eq:Kelompok} \begin{array}{ll} \text{Kelompok} & \text{I,} & s = \sqrt{\frac{1}{n} \left(\sum x_i^2 - \frac{\left(\sum x_i \right)^2}{n} \right)} = \sqrt{\frac{1}{5} \left(12.500 - \frac{250^2}{5} \right)} = 0 \\ \\ \text{Kelompok II,} & s = \sqrt{\frac{1}{5} \left(13.500 - \frac{\left(250 \right)^2}{5} \right)} = 14,14 \\ \\ \text{Kelompok III,} & s = \sqrt{\frac{1}{5} \left(19.500 - \frac{\left(250 \right)^2}{5} \right)} = 34,64 \end{array}$$

Perhatikan nilai simpangan baku untuk tiap kelompok data. Semakin heterogen (bervariasi) akan mempunyai nilai simpangan baku yang relatif tinggi. Untuk data homogen (sama) mempunyai simpangan baku 0.

Untuk data yang berbobot atau berkelompok, simpangan baku dihitung dengan menggunakan rumus:

$$s = \sqrt{\frac{1}{n} \sum f_i (x_i - \overline{x})^2}$$

Keterangan:

s = simpangan baku

 $x_i = data yang ke i$

x = rata-rata

 $n = banyaknya data (\Sigma f)$

f_i = frekuensi data/interval ke-i

Contoh 29

Hitunglah deviasi standar dari data berikut!

Χ	4	5	6	7
f	3	8	10	4

lawah.

Jamas	•			
Х	f	x _i f _i	$(x_i - \bar{x})^2$	$f_i(x_i - \overline{x})^2$
4	3	12	2,56	3,78
5	8	40	0,36	2,88
6	10	60	0,16	1,60
7	4	28	1,96	7,84
	Σ 25	Σ 140		Σ 16,1

Deviasi Standar

$$s = \sqrt{\frac{1}{n} \sum_{i} f_{i} (x_{i} - \overline{x})^{2}}$$
$$= \sqrt{\frac{1}{25} 16,1}$$
$$= 0,80$$

Rata-rata data: $\bar{x} = \frac{140}{25} = 5,6$

Apabila simpangan baku dikuadratkan, maka akan diperoleh:

$$s^2 = \frac{1}{n} \sum_i (x_i - \overline{x})^2$$
 atau $s^2 = \sum_i x_i^2 - \frac{(\sum_i x_i)^2}{n}$

$$s^2 = \sum x_i^2 - \frac{\left(\sum x_i\right)^2}{n}$$

Untuk data tunggal berbobot atau data berkelompok:

$$s^2 = \frac{1}{n} \sum f_i (x_i - \overline{x})^2$$

Rumus ini dikenal dengan variansi.

Contoh 30

Tentukan variansi dari data: 6, 4, 8, 10, 11, 10, 7!

Simpangan baku data tersebut adalah s = 2,33, sehingga variansi dari data adalah s^2 $= 2,33^2 = 5,43$

LATIHAN

- Tentukan range, rata-rata simpangan, simpangan baku, dan variansi dari data di bawah ini!
 - a. 4, 6, 8, 5, 5, 15, 9, 8, 10, 12, 14, 17, 16, 11
 - b. 6, 6, 7, 8, 9, 9, 10, 11, 11, 12, 7, 7, 12, 10, 10, 13, 14, 15
 - c. 2, 2, 4, 5, 5, 6, 6, 7, 7, 8, 8, 5, 6, 9, 4, 4, 9, 10, 7, 6
 - d. 10, 11, 12, 13, 14, 18, 18, 20, 15, 15, 18, 13, 12

2. Tentukan range, rata-rata simpangan, dan simpangan baku dari data di bawah:

a.	Х	f
	2	3
	3	7
	4	6
	5	4

Х	f
4	6
5	10
6	14
7	16
8	4

Х	f
10	15
20	28
30	37
40	12
50	8

3. Tentukan range, rata-rata simpangan, dan simpangan baku dari data di bawah:

a.	Interval	f
u.	1 – 20	9
	21 – 40	16
	41 – 60	25
	61 – 80	7
	81 - 100	3

b.	Interval	f
	2 – 5	8
	5 – 9	12
	10 – 13	10
	14 – 17	6
	18 – 21	4

Interval	f
31 – 40	10
41 – 50	12
51 – 60	25
61 – 70	22
71 – 80	20
81 – 90	6
91 – 100	5

- 4. Tinggi badan yang tertinggi dari 25 orang siswa adalah 190 cm. Apabila range dari data tersebut 26 cm. Berapakah tinggi badan siswa yang terpendek?
- 5. Kelompok belajar terdiri atas 5 orang siswa. Siswa yang termuda umurnya x tahun dan yang tertua berumur 2x. Jika tiga anak yang lain berturut-turut berumur x+1, x+5, dan 2x-3 tahun. Rata-rata hitung umur mereka adalah 16 tahun.
 - a. Berapakah umur yang termuda dan tertua?
 - b. Berapakah varian dari umur mereka?
- 6. Tiga kelompok siswa masing-masing terdiri atas 5 orang mengikuti ujian matematika dengan nilai berikut:

Kelompok I : 5, 5, 5, 5, 5, Kelompok II : 5, 6, 6, 5, 6 Kelompok III : 4, 5, 7, 9, 2

- a. Tentukanlah simpangan baku tiap kelompok data.
- b. Buatlah kesimpulan dari ketiga kelompok data tersebut.
- 7. Sekelompok data sebanyak n, mempunyai simpangan baku s. Tiap data sekarang:
 - a. ditambah dengan 10
 - b. Dikurangi dengan 10
 - c. Dikalikan 10

Apakah yang terjadi tehadap simpangan baku untuk data yang baru dalam keadaan masing-masing di atas?

- 8. Sekelompok data mempunyai rata-rata x dan simpangan baku s. Tiap data dikurangi x lalu dibagi s. Berapakah rata-rata dan simpangan data baru? Bagaimana jadinya jika tiap data dibagi s kemudian dikurangi s?
- 9. Dari data pada soal nomor 2 dan 3, hitunglah variansi pada masing-masing data tersebut!

BAB II Statistika 81

4). Kuartil (Q)

a). Kuartil Data Tunggal

Kuartil membagi data menjadi empat bagian yang sama banyak dari data yang telah terurut yang masing-masing 25% . Kuartil (Q) ada tiga yaitu Q_1 (kuartil bawah), Q_2 (kuartil tengah atau median) dan Q_3 (kuartil atas), yang apabila digambarkan dalam garis bilangan akan tampak seperti berikut:

Beberapa langkah yang ditempuh untuk mencari kuartil adalah sebagai berikut:

- Susunlah data menurut urutannya
- Tentukan letak kuartil dan
- Tentukan nilai kuartilnya

Letak kuartil ke i dapat dicari dengan menggunakan rumus berikut:

Letak
$$Q_i$$
 = data ke $\frac{i(n+1)}{4}$ dengan i = 1, 2, dan 3

Contoh 31

Tentukan nilai kuartil dari data di bawah ini:

Jawab.

Untuk menentukan nilai kuartil, maka data harus diurutkan terlebih dahulu.

a. 1 3 5 6 8 9 10
Letak
$$Q_1$$
 = data ke $\frac{1(7+1)}{4}$ = data ke-2, sehingga Q_1 = 3
Letak Q_2 = data ke $\frac{2(7+1)}{4}$ = data ke-4, sehingga Q_2 = 6
Letak Q_3 = data ke $\frac{3(7+1)}{4}$ = data ke-6, sehingga Q_3 = 9

b. 3 4 7 8 9 11 13 14 15
Letak
$$Q_1$$
 = data ke $\frac{1(9+1)}{4}$ = data ke 2,5
 Q_1 = data ke 2 + $\frac{1}{2}$ (data ke 3 – data ke 2) = 4 + $\frac{1}{2}$ (7 – 4) = 5,5
Letak Q_2 = data ke $\frac{2(9+1)}{4}$ = data ke-5, sehingga Q_2 = 9.
Letak Q_3 = data ke $\frac{3(9+1)}{4}$ = data ke-7,5
 Q_3 = data ke 7 + $\frac{1}{2}$ (data ke 8 – data ke 7) = 13 + $\frac{1}{2}$ (14 – 13) = 13,5

b). Kuartil Data Berkelompok

Untuk data bekelompok yang disajikan dalam bentuk tabel distribusi frekuensi, digunakan rumus sebagai berikut:

$$Q_{i} = Tb_{i} + \frac{\frac{i}{4}n - F_{i}}{f_{i}}c$$

Keterangan:

Tb_i = Tepi bawah kuartil ke-i.

= Jumlah frekuensi sebelum frekuensi kuartil ke-i.

= Frekuensi kuartil ke-i. i = 1, 2, 3

= Jumlah seluruh frekuensi.

= panjang interval kelas.

Contoh 32

Tentukan Q_1 , Q_2 , dan Q_3 dari data pada tabel:

Jawab:

Untuk Q_1 , maka i = 1

n = Jumlah seluruh frekuensi = 80

Letak
$$Q_1 = \frac{1}{4}n = \frac{1}{4}80 = 20$$

(data yang ke 20), sehingga letak Q₁ pada interval ke 3, yaitu 40 - 44, maka

$$Tb_1 = 40 - 0.5 = 39.5$$

$$f_1 = 13$$

$$F_1 = 8 + 10 = 18$$

$$c = 35 - 30 = 5$$

Interval	frekuensi (fi)
30 – 34	8
35 – 39	10
40 – 44	13
45 – 49	17
50 – 54	14
55 – 59	11
60 – 64	7
	80

$$Q_1 = Tb_1 + \frac{\frac{1}{4}n - F_1}{f_2}c = 39.5 + \frac{\frac{1}{4}80 - 18}{13}.5 = 39.5 + \frac{2}{13}.5 = 40.27$$

Untuk Q_2 , maka i = 2

n = Jumlah seluruh frekuensi = 40

Letak $Q_2 = \frac{2}{4}n = \frac{2}{4}80 = 40$, (data yang ke 40), sehingga letak Q_2 pada interval ke

$$f_2 = 45 - 0.5 = 44.5$$

 $f_2 = 17$

$$Tb_2 = 45 - 0.5 = 44.5$$
 $F_2 = 8 + 10 + 13 = 31$ $f_2 = 17$ $c = 5$

$$Q_2 = Tb_2 + \frac{\frac{2}{4}n - F_2}{f_2}c = 44.5 + \frac{\frac{2}{4}80 - 31}{17}.5 = 44.5 + \frac{9}{17}.5 = 47.15$$

Untuk Q_3 , maka i = 3

n = Jumlah seluruh frekuensi = 40

Letak $Q_3=\frac{3}{4}n=\frac{3}{4}80=60$, (data yang ke 60), sehingga letak Q_3 pada interval ke 5 interval 50 – 54, maka

$$Tb_3 = 50 - 0.5 = 49.5$$
 $F_3 = 8 + 10 + 13 + 17 = 48$ $c = 5$

$$Q_3 = Tb_3 + \frac{\frac{3}{4}n - F_3}{f_3}c = 49,5 + \frac{60 - 48}{14}.5 = 49,5 + \frac{12}{14}.5 = 53,79$$

c). Jangkauan Kuartil dan Simpangan Kuartil atau Jangkauan Semi Inter Kuartil

Dari sekumpulan data yang mempunyai kuartil bawah Q_1 dan kuartil atas Q_3 , Jangkauan kuartil dan simpangan kuartil atau Jangkauan semi Inter kuartil dari data adalah sebagai berikut:

$$JQ = Q_3 - Q_1$$
 dan $Qd = \frac{1}{2}(Q_3 - Q_1)$

Keterangan:

JQ = Simpangan kuartil

Qd = Jangkauan semi inter kuartil atau simpangan kuartil.

 Q_1 = Kuartil ke-1 (Kuartil bawah)

 Q_3 = Kuartil ke-3 (Kuartil atas)

Contoh 33

Dari data pada contoh 32 didapat

$$JQ = Q3 - Q1$$
 $Qd = \frac{1}{2}(Q_3 - Q_1) = \frac{1}{2}(53,79 - 40,27) = 6,76$
= 53,79 - 40,27 = 13,52 = 6,76

- 5). Desil (D)
- a). Desil Data Tunggal

Kumpulan data yang dibagi menjadi sepuluh bagian yang sama, maka diperoleh sembilan pembagi dan tiap pembagi dinamakan **desil**. Desil1, desil 2, . . . desil 9 dan untuk menyederhanakan disingkat dengan D_1 , D_2 , . . . D_9 . Untuk mendapatkan desildesil digunakan langkah sebagai berikut:

- Susunlah data menurut urutan nilainya
- ii) Tentukan letak desilnya
- iii) Hitung nilai desilnya

Letak desil ke i dapat ditentukan dengan rumus berikut:

Letak
$$D_i = data \text{ ke } \frac{i(n+1)}{10} dengan i = 1, 2, \dots, 9$$

Contoh 34

Tentukan nilai D₃ dan D₇ dari data berikut: 10, 8, 15, 12, 12, 8, 13, 14, 16, 17, 12, 8, 10, 11, 14

Jawab:

8, 8, 8, 10, 10, 11, 12, 12, 12, 13, 14, 14, 15, 16, 17

Letak
$$D_3 = \text{data ke } \frac{3(15+1)}{10} = \text{data ke } 4\frac{4}{5}$$
 $D_3 = \text{data ke } 4 + \frac{4}{5}(\text{data ke } 5 - \text{data ke } 4) = 10 + \frac{4}{5}(10-10) = 10$

Letak $D_7 = \text{data ke } \frac{7(15+1)}{10} = \text{data ke } 11\frac{1}{5}$
 $D_7 = \text{data ke } 11 + \frac{1}{5}(\text{data ke } 12 - \text{data ke } 11) = 14 + \frac{1}{5}(14-14) = 14$

b). Desil Data Berkelompok

Data yang disajikan dalam bentuk tabel distribusi frekuensi dihitung dengan rumus berikut:

$$D_{i} = Tb_{i} + \frac{\frac{i}{10}n - F_{i}}{f_{i}}c$$

Contoh 35

Tentukan nilai desil ke 4 (D₄) dan desil ke 9 (D₉) dari data pada contoh 32

Jawab:

Untuk D_4 , maka i=4 n= Jumlah seluruh frekuensi=80Letak $D_4=$ data ke- $\frac{4}{10}$ n= data ke-32 sehingga letak D_4 pada interval ke-4, yaitu 45-49, maka $Tb_4=45-0,5=44,5$ $f_4=17$ $F_4=8+10+13=31$ c=35-30=5

Interval	frekuensi (fi)
30 – 34	8
35 – 39	10
40 – 44	13
45 – 49	17
50 – 54	14
55 – 59	11
60 – 64	7
	80

$$D_4 = Tb_4 + \frac{\frac{4}{10}n - F_4}{f_4}c = 44,5 + \frac{32 - 31}{17}.5 = 44,5 + \frac{1}{17}.5 = 44,79$$

Untuk D_9 , maka i = 9

n = Jumlah seluruh frekuensi = 80

Letak
$$D_9 = data \text{ ke } \frac{9}{10}n = data \text{ ke } 72$$

sehingga letak D₉ pada interval ke 6, yaitu 55 – 59, maka

$$Tb_1 = 55 - 0.5 = 54.5$$

 $f_9 = 11$
 $F_9 = 8 + 10 + 13 + 17 + 14 = 62$

$$D_9 = Tb_9 + \frac{\frac{9}{10}n - F_9}{f_0}c = 54,5 + \frac{72 - 62}{11}.5 = 54,5 + \frac{10}{11}.5 = 59,05$$

6). Persentil (P)

Kumpulan data yang dibagi menjadi seratus bagian yang sama, maka diperoleh sembilan puluh sembilan pembagi dan tiap pembagi dinamakan *persentil*, yaitu persentil 1, persentil 2, . . . persentil 99 dan untuk menyederhanakan disingkat dengan $P_1, P_2, \ldots P_{99}$. Untuk mendapatkan persentil digunakan langkah sebagai berikut:

- a. Susunlah data menurut urutan nilainya.
- b. Tentukan letak persentilnya.
- c. Hitung nilai persentilnya.

Letak persentil ke i dapat ditentukan dengan rumus berikut:

Letak
$$P_i = data \text{ ke } \frac{i(n+1)}{100} dengan i = 1, 2, \dots, 99$$

Persentil dari data yang disajikan dalam bentuk tabel distribusi frekuensi dihitung dengan rumus berikut:

$$\mathsf{P}_{\dot{\mathsf{I}}} = \mathsf{Tb} + \frac{\frac{\mathsf{i}}{100}\mathsf{n} - \mathsf{F}_{\dot{\mathsf{I}}}}{\mathsf{f}_{\dot{\mathsf{I}}}}\mathsf{c}$$

Contoh 36

Tentukan persentil ke 30 (P₃₀) dari data berikut:

Interval	f
140 – 144	5
145 – 149	15
150 – 154	20
155 – 159	30
160 – 164	16
165 – 169	8
170 – 174	6

Jawab:

Untuk P_{30} , maka i = 30

n = Jumlah seluruh frekuensi = 100

Letak $P_{30} = \text{data ke} \frac{30}{100} n = \text{data ke } 30$, sehingga letak P_{30} pada interval ke 3, yaitu

Tb =
$$150 - 0.5 = 149.5$$

$$f_{30} = 20$$

$$F_{30} = 5 + 15 = 20$$

$$P_{30} = Tb + \frac{\frac{30}{100}n - F_{30}}{f_{30}}c$$
$$= 149,5 + \frac{30 - 20}{20}.5$$
$$= 149,5 + \frac{10}{20}.5 = 152$$

Jangkauan persentil dari sekumpulan data yang mempunyai persentil ke-10 (P_{10}) dan Persentil ke-90 (P_{90}) adalah sebagai berikut:

$$\mathsf{JP} = \mathsf{P}_{90} - \mathsf{P}_{10}$$

Keterangan:

JP = Jangkauan Persentil

 P_{10} = Persentil ke-10

 P_{90} = persentil ke-90

Contoh 37

Dari data pada contoh 36, tentukan jangkauan persentilnya:

Jawab:

Interval	f
140 – 144	5
145 – 149	15
150 – 154	20
155 – 159	30
160 – 164	16
165 – 169	8
170 – 174	6

Untuk P_{10} , maka i = 10 n = Jumlah seluruh frekuensi = 100 Letak P_{10} = data ke $\frac{10}{100}$ n = data ke-10,

sehingga letak P_{10} pada interval ke 2, yaitu 145 – 149, maka

Tb =
$$145 - 0.5 = 144.5$$

$$f_{10} = 15$$

$$F_{10} = 5$$

$$P_{10} = Tb + \frac{\frac{10}{100}n - F_{10}}{f_{10}}c$$

$$= 144,5 + \frac{10 - 5}{15}.5$$

$$= 144,5 + 1,67 = 146,17$$

Jadi,
$$JP = P90 - P10$$

= 167,0 - 146,17 = 20,83

7). Angka Baku

Angka baku adalah nilai yang menyatakan perbandingan antara selisih data dengan rata-ratanya berbanding simpangan baku data tersebut. Angka baku disebut juga Z score, oleh karena itu angka baku dilambangkan dengan huruf Z.

Untuk P₉₀, maka i = 90
n = Jumlah seluruh frekuensi = 100
Letak P₉₀ = data ke
$$\frac{90}{100}$$
n = data ke-90,
sehingga letak P₉₀ pada interval ke 6,
yaitu 165 – 169, maka
Tb = 165 – 0,5 = 164,5
f₉₀ = 8
F₉₀ = 5 + 15 + 20 + 30 + 16 = 86

$$P_{90} = Tb + \frac{90}{100}n - F_{90}$$

$$f_{90}$$

$$= 144,5 + \frac{90 - 86}{8}.5$$

$$= 144,5 + 2,5 = 167,0$$

BAB II Statistika 87

Kegunaan angka baku ini adalah untuk mengetahui perbedaan suatu kejadian dibanding dengan kebiasaannya. Semakin besar angka bakunya semakin baik nilai tersebut dibandingkan dengan nilai lain yang memiliki angka baku lebih kecil. Angka baku dirumuskan sebagai berikut:

$$Z = \frac{x_i - \overline{x}}{S}$$

Dengan Z = angka baku

x_i = nilai suatu data

 \bar{x} = rata-rata hitung

S = Simpangan baku

Contoh 38

Diketahui data: 2, 7, 8, 10, 4, dan 5. Tentukan Angka baku dari data 2 dan 7!

Jawab:

Untuk menentukan angka baku suatu data, ditentukan dahulu rata-rata dan simpangan bakunya.

$$\bar{x} = \frac{2+7+8+10+4+5}{6} = 6$$

Simpangan bakunya adalah:

$$s = \sqrt{\frac{1}{n} \sum (x_i - \overline{x})^2}$$

$$s = \sqrt{\frac{1}{6} ((2-6)^2 + (7-6)^2 + (8-6)^2 + (10-6)^2 + (4-6)^2 + (5-6)^2)}$$

$$= \sqrt{\frac{1}{6} (16+1+4+16+4+1)}$$

$$= \sqrt{7} = 2,65$$

Angka baku dari data 2 :
$$Z = \frac{x_i - \overline{x}}{S} = \frac{2 - 6}{\sqrt{7}} = -\frac{4}{\sqrt{7}} = -\frac{4}{7}\sqrt{7}$$

Angka baku dari data 7 :
$$Z = \frac{x_i - \overline{x}}{S} = \frac{7 - 6}{\sqrt{7}} = -\frac{1}{\sqrt{7}} = = \frac{1}{7}\sqrt{7}$$

Contoh 39

Rata-rata dan standar deviasi nilai ujian matematika suatu kelas masing-masing adalah 6,5 dan 1,5. Jika Ani adalah siswa kelas tersebut dan mendapat nilai 6,0 tentukan angka baku dari nilai matematika Ani.

Jawab:

$$Z = \frac{x_i - \overline{x}}{S} = \frac{6,0 - 6,5}{1,5} = -\frac{0,5}{1,5} = -\frac{1}{3}$$

Contoh 40

Seorang siswa mendapat nilai 81 dalam Agama dan 53 dalam Matematika. Jika nilai rata-rata dan simpangan baku Agama adalah 78 dan 12. Nilai rata-rata dan simpangan baku Matematika 51 dan 6. Mana yang lebih baik, nilai Agama atau nilai matematika siswa tersebut?

Jawab:

Angka baku nilai Agama:
$$Z = \frac{x_i - \overline{x}}{S} = \frac{81 - 78}{12} = \frac{3}{12} = 0,25$$

Angka baku nilai Matematika:
$$Z = \frac{x_i - \overline{x}}{S} = \frac{53 - 51}{6} = \frac{2}{6} = 0,33$$

Dari angka baku kedua nilai di atas, angka baku nilai Matematika lebih besar dari angka baku nilai Agama, sehingga nilai Matematika 53 lebih baik dari nilai Agama 81

8). Koefisien variasi

Koefisien variasi adalah perbandingan antara simpangan baku dengan rata-rata suatu data dan dinyatakan dalam %.

Koefisien variasi dirumuskan sebagai berikut:

$$KV = \frac{S}{\overline{x}} . 100\%$$

Keterangan: KV = koefisien variasi

Semakin kecil nilai KV semakin seragam (homogen) data, dan semakin baik data tersebut. Semakin besar nilai KV semakin tidak seragam (heterogen) data, dan semakin kurang baik data tersebut.

Contoh 41

Lampu neon rata-rata dapat dipakai selama 2.800 jam dengan simpangan baku 700 jam, sedang lampu pijar dapat dipakai rata-rata selama 3.500 jam dengan simpangan baku 1.050 jam. Dari data di atas lampu manakah yang lebih baik.

Jawab:

Koefisien variasi pemakaian lampu neon: KV =
$$\frac{S}{\overline{x}}$$
 . 100% = $\frac{700}{2.800}$.100% = 25% Koefisien variasi pemakaian lampu pijar: KV = $\frac{S}{\overline{x}}$. 100%

$$=\frac{1.050}{3.500}.100\%=30\%$$

Dari perhitungan koefisien variasi, lampu neon lebih baik dari lampu pijar, karena KV neon < KV lampu pijar

c. Rangkuman

- 1. Range = data terbesar data terkecil = $x_{max} x_{min}$
- 2. Rata-Rata Simpangan dirumuskan: $RS = \frac{1}{n} \sum |x_i \overline{x}|$

Untuk data yang berbobot atau data berkelompok: $RS = \frac{1}{n} \sum f_i | x_i - \overline{x} |$

3. Simpangan baku atau deviasi standar (S) dirumuskan :

$$S = \sqrt{\frac{1}{n} \sum_{i} (x_i - \overline{x})^2} \quad \text{atau} \quad S = \sqrt{\frac{1}{n} \left(\sum_{i} x_i^2 - \frac{(\sum_{i} x_i)^2}{n} \right)}$$

Untuk data yang berbobot atau berkelompok, menggunakan rumus

$$S = \sqrt{\frac{1}{n} \sum f_i (x_i - \overline{x})^2}$$
, sedangkan varians = S^2

4. Kuartil data berkelompok dirumuskan: $Q_i = Tb_i + \frac{\frac{i}{4}n - F_i}{f_i}c$

Tb_i = Tepi bawah kuartil ke-i.

F_i = Jumlah frekuensi sebelum frekuensi kuartil ke-i.

 f_i = Frekuensi kuartil ke-i. i = 1, 2, 3

n = Jumlah seluruh frekuensi.

C = Panjang interval kelas.

5. Jangkauan kuartil dan simpangan kuartil dirumuskan:

$$JQ = Q_3 - Q_1 \text{ dan } Qd = \frac{1}{2}(Q_3 - Q_1)$$

- 6. Desil data kelompok dirumuskan: $D_{i} = Tb_{i} + \frac{\frac{i}{10}n F_{i}}{f_{i}}c$
- 7. Kuartil data kelompok dirumuskan: $P_i = Tb + \frac{\frac{1}{100}n F_i}{f_i}c$ Jangkauan persentil dirumuskan: $JP = P_{90} - P_{10}$
- 8. Angka baku dirumuskan: $Z = \frac{x_i \overline{x}}{S}$
- 9. Koefisien variasi dirumuskan: $KV = \frac{S}{\overline{x}}$. 100%

LATIHAN

- Tentukan Kuartil bawah, kuartil atas, jangkauan kuartil, simpangan kuartil, , desil ke-4, desil ke-8, dan jangkauan persentil dari data di bawah ini!
 - a. 4, 6, 8, 5, 5, 15, 9, 8, 10, 12, 14, 17, 16
 - b. 6, 6, 7, 8, 9, 9, 10, 11, 11, 12, 7, 7, 12, 10, 10, 13, 14, 15
 - c. 2, 2, 4, 5, 5, 6, 6, 7, 7, 8, 8, 5, 6, 9, 4, 4, 9, 10
 - d. 10, 11, 12, 13, 14, 18, 18, 20, 15, 15, 18, 13, 12
- 2. Tentukan simpangan kuartil, desil ke 3, desil ke 6, persentil ke 45, persentil ke 65, persentil ke 90, dan jangkauan persentil (persentil hanya data pada 2c) dari data di bawah ini:

6

4

4

5

b.

f
6
10
24
16
4

c.

Х	f
10	15
20	28
30	37
40	12
50	8

3. Tentukan, simpangan kuartil, desil ke 3, desil ke 6, persentil ke 45, persentil ke 65, dan jangkauan persentil dari data di bawah ini:

a.

Interval f
1 - 20 9
21 - 40 16
41 - 60 25
61 - 80 7
81 - 100 3

b.

Interval	f
2 – 5	8
6 – 9	12
10 – 13	10
14 – 17	6
18 – 21	4

c.

Interval	f
31 – 40	10
41 – 50	12
51 – 60	25
61 – 70	22
71 – 80	20
81 – 90	6
91 – 100	5

- 4. Lampu A rata-rata dapat dipakai selama 2.900 jam dengan simpangan baku 650 jam, sedang lampu B dapat dipakai rata-rata selama 3.200 jam dengan simpangan baku 950 jam, dan lampu C dapat dipakai rata-rata 3.700 dengan simpangan baku 1.175 jam. Dari data tersebut lampu manakah yang lebih baik?
- 5. Dari soal no.3, tentukan masing-masing koefisien variasinya dan simpulkan dari koefisien variasi tersebut!
- 6. Dari data: 6, 10, 2, 12, 4, 7, dan 8
 - a. Rata-rata dan simpangan baku
 - b. Angka baku dari data 2 dan 8
 - c. Koefisien variasi
- 7. Lakukan hal yang sama seperti nomor 6 dari data:

Х	2	4	6	8	10	12
f	2	3	5	6	3	1

8. Hasil tes seorang siswa dari 5 bidang studi diperoleh data sebagai berikut:

	Matematika	Agama	PKn	Kewirausahaan	B. Indo
Nilai	52	74	67	82	81
Rata-rata	45	69	61	76	85
Simpangan baku	5	8	7,5	12	4,5

Dari data di atas, tentukan:

- a. Angka baku dan koefisien variasi masing-masing bidang studi
- b. Bidang studi manakah yang paling homogen dan bidang studi manakah yang lebih baik?

III i Le mannipuam

a. $\sqrt{5,2}$

c. √6

e. √7

b. $\sqrt{5,25}$

d. $\sqrt{6.5}$

2. Dihawah ini adalah tahel tinggi hadan 20 anak halita:

<u> </u>	Dibawan ini dadian tabel tinggi badan 20 anak banta.					
	Tinggi (cm)	60	65	70	75	80
	f	1	2	8	6	3

Rata-rata tinggi anak balita tersebut adalah

a. 68 cm

c. 70 cm

e. 72 cm

e. 16

b. 69 cm

d. 71 cm

3. Rata-rata geometrik dari data: 2, 4, 1, 8, 1, 1 adalah

a. 1 b. 2 c. 4

d. 8

4. Dari hasil pengukuran tinggi badan siswa pada sebuah kelas diperoleh tinggi badan rata-rata siswa laki-laki 160 cm dan siswa wanita 150 cm. Jika jumlah siswa laki-laki adalah 25 orang dan wanita 15 orang, maka tinggi rata-rata gabungan siswa kelas tersebut adalah

a. 153,75 cm

c. 156,00 cm

e. 156,50 cm

b. 155,00 cm

d. 156,25 cm

5. Diagram berikut menunjukkan frekuensi produksi suatu barang yang dihasilkan oleh sebuah pabrik selama 12 bulan. Rata-rata produksi barang tiap bulan adalah:

a. 35,00 ton

b. 35,63 ton

c. 37,50 ton

d. 38,33 ton

e. 50,00 ton

Tinggi badan 34 siswa suatu kelas tercatat seperti dalam tabel berikut:

Setelah data diurutkan, tinggi badan yang membagi data di atas menjadi 2 kelompok sama banyak adalah

a. 155,25 cm

b. 155,68 cm

c. 155,74 cm

d. 157,63 cm

e. 158,25 cm

Tinggi (cm)	frekuensi
145 – 149	3
150 – 154	5
155 – 159	12
160 – 164	7
165 – 169	5
170 – 174	2
Jumlah	34

7. Hasil pendataan usia dari 12 balita (dalam tahun) diketahui sebagai berikut:

4, 3, 4, 4, 2, 1, 1, 2, 1, 3, 3, 4 . Kuartil atas dari data di samping adalah

a. 1,0

c. 2,0

e. 4,0

b. 1,5

d. 3,5

- 8. Banyaknya sepeda motor yang terjual dalam 5 minggu terakhir pada suatu dealer dalam unit adalah 3, 4, 6, 7, 5. Rata-rata simpangan data tersebut adalah
- a. 1,2

c. 1,5

e. 2,3

b. 1,4

d. 1,8

9. Berat badan 50 siswa tercatat seperti pada tabel berikut:

Jumlah siswa paling banyak mempunyai

Berat badan

- a. 43,5 kg
- b. 46,0 kg
- c. 47,0 kg
- d. 47,4 kg
- e. 51,0 kg

Berat (kg)	F
35 – 39	3
40 – 44	14
45 – 49	17
50 – 54	10
55 – 59	6

- 10. Diagram disamping menunjukkan cara yang ditempuh oleh 180 siswa SMA untuk berangkat sekolah. Jumlah siswa yang tidak naik mobil ke sekolah adalah
- a. 18 siswa
- b. 36 siswa
- c. 45 siswa
- d. 72 siswa
- e. 171 siswa

20% ja	motor
	40%
sepeda 25%	
\	87
55% m	**

- 11. Tabel di samping merupakan hasil tes calon karyawan PT X. Jika yang tidak lulus 60 %, batas tertinggi nilai yang tidak lulus adalah
 - a. 52,5
 - b. 53,7
 - c. 54,4
 - d. 55,1
 - e. 56,0

Nilai	Frekuensi
41 – 45	1
46 – 50	6
51 – 55	12
56 – 60	8
61 – 65	3
jumlah	30

- 12. Nilai hasil ulangan matematika dari 12 siswa adalah sebagai berikut:
 - 6, 8, 5, 7, 6, 8, 5, 9, 6, 6, 8, 7. Median dari data tersebut adalah
 - a. 6

c. 7

e. 8,5

b. 6,5

- d. 8
- 13. Rataan harmonik dari data: 3, 2, 12, 6, 1 adalah
 - a. $\frac{5}{12}$

c. $\frac{7}{12}$

e. $\frac{12}{5}$

b. $\frac{12}{25}$

- d. $\frac{12}{7}$
- 14. Jika rata-rata sementara data pada tabel di samping adalah 67, maka nilai rata-rata kelompok tersebut adalah
 - a. 66,7
- d. 70,0
- b. 67,3
- e. 71,2
- c. 67,6

Nilai	f	Х	d	f.d
55 – 59	4		-10	
60 – 64	10		-5	
65 – 69	17	67	0	
70 – 74	14		5	
75 – 79	5		10	
	50			

15. Diagram batang di samping menggambarkan lulusan SMA dari tahun 1992 sampai 1996. Banyaknya lulusan yang tidak menganggur selama 1992 sampai 1995 adalah

d. 1.600 orang

e. 1.675 orang

Nilai rata-rata pada tabel di samping sama dengan 7, maka nilai x adalah

_		4	0
А		- 1	×

d. 10

b. 16

e. 7

c. 12

17.Hasil pengukuran panjang potongan besi disajikan pada tabel di samping. Desil ke 8 dari data tersebut adalah

- a. 121,50
- b. 121,72
- c. 122,72
- d. 123,12
- e. 123,72

Nilai	5	6	7	8	9
f	6	8	10	Х	4

Panjang (cm)	Frekuensi
101 – 105	2
106 – 110	8
111 – 115	22
116 – 120	40
121 – 125	18
126 – 130	7
131 – 135	3

18. Hasil tes pelajaran matematika 15 orang siswa adalah sebagai berikut:

30, 45, 55, 60, 60, 65, 85, 75, 75, 55, 60, 35, 30, 50. Jangkauan semi inter kuartil (Qd) data tersebut adalah

19.Nilai ulangan mata pelajaran matematika 15 siswa adalah 5, 6, 7, 9, 7, 4, 7, 6, 8,

b. 6,5

20.Perhatikan nilai ulangan pada tabel di samping. Rata-rata hitung dari ulangan tersebut adalah

- a. 6.00
- c. 6,59
- e. 7,37

- b. 6,27
- d. 7,27

Nilai	4	5	6	7	8	9
f	3	6	8	8	3	2

21. Nilai ulangan mata pelajaran matematika pada suatu kelas seperti tampak pada tabel di samping. Modus data tersebut adalah

- a. 73,5
- c. 74,5
- e. 75,9

- b. 74,0
- d. 75,0

Nilai	frekuensi	
40 – 49	2	
50 – 59	4	
60 – 69	5	
70 – 79	7	
80 – 89	4	
90 – 99	3	

22. Keadaan siswa suatu sekolah seperti terlihat pada gambar di samping.
Jumlah siswa perempuan sekolah tersebut adalah

23. Umur rata-rata dari sekelompok data terdiri dari guru dan karyawan adalah 40 tahun. Jika umur rata-rata para guru adalah 35 tahun dan umur rata-rata karyawan adalah 50 tahun, perbandingan banyaknya guru dan karyawan adalah....

24. Gaji rata-rata karyawan di sebuah perusahaan sebesar Rp2.000.000,00 dan gaji Pak karta Rp1.400.000,00 perbulan. Jika nilai Z score Pak Karta = -15, maka simpangan bakunya adalah

25. Gaji rata-rata karyawan di sebuah perusahaan sebesar Rp2.500.000,00 dan koefisien variasi 3,2% , maka simpangan baku adalah

B. Essay

1. Nilai ujian matematika dari 10 orang siswa disajikan pada tabel berikut:

Tentukanlah!

- a. Banyaknya siswa yang mendapat nilai lebih dari 70,5
- b. Banyaknya siswa yang mendapat nilai kurang dari 80,5
- c. Jika batas lulus yang disyaratkan adalah 65, berapakah jumlah siswa yang lulus pada ujian tersebut?
- d. Jika 25 % siswa dinyatakan mendapat nilai terbaik, berapakah nilai minimum yang harus diperoleh siswa agar mendapat predikat terbaik?

THICHVAL	ı
31 – 40	10
41 – 50	12
51 – 60	25
61 – 70	22
71 – 80	20
81 – 90	6
91 – 100	5

Intorval

2. Tentukan Simpangan kuartil, jangkauan persentil, desil ke-7, rata-rata hitung, median dan modusnya dari data:

Berat badan	frekuensi
(kg)	
41-45	5
46-50	8
51-55	12
56-60	7
61-65	6
66-70	2

Standar Kompetensi	Kompetensi Dasar		
11. Memecahkan masalah keuangan menggunakan konsep matematika	 11. 1 Menyelesaikan masalah bunga tunggal dan bunga majemuk dalam keuangan 11. 2 Menyelesaikan masalah rente dalam keuangan 11. 3 Menyelesaikan masalah anuitas dalam sistem pinjaman 11. 4 Menyelesaikan masalah penyusutan nilai barang 		

A. PENDAHULUAN

Standar Kompetensi **Matematika Keuangan** terdiri atas empat (4) Kompetensi Dasar. Dalam penyajian pada buku ini setiap Kompetensi Dasar memuat Tujuan, Uraian materi, Rangkuman dan Latihan. Kompetensi Dasar dalam Standar Kompetensi ini adalah **Bunga Tunggal dan Bunga Majemuk**, **Rente**, **Anuitas**, dan **Penyusutan Nilai Barang**. Standar Kompetensi ini digunakan sebagai penunjang dalam mempelajari standar kompetensi produktif maupun diaplikasikan pada kehidupan sehari-hari terutama pada masalah bunga pinjaman dan simpanan di Bank, cicilan kredit rumah, dan masalah keuangan lainnya.

Pada setiap akhir Kompetensi dasar tercantum soal-soal latihan yang disusun dari soal-soal yang mudah sampai soal-soal yang sukar. Latihan soal ini digunakan untuk mengukur kemampuan anda terhadap kompetensi dasar ini, artinya setelah mempelajari kompetensi dasar ini secara mandiri dengan bimbingan guru sebagai fasilitator, ukur sendiri kemampuan anda dengan mengerjakan soal-soal latihan tersebut.

Untuk melancarkan kemampuan anda supaya lebih baik dalam mengerjakan soal, disarankan semua soal dalam latihan ini dikerjakan baik di sekolah dengan bimbingan guru maupun di rumah.

Untuk mengukur standar kompetensi lulusan tiap siswa, di setiap akhir kompetensi dasar, guru akan memberikan evaluasi apakah anda layak atau belum layak mempelajari standar Kompetensi berikutnya. Anda dinyatakan layak jika anda dapat mengerjakan soal 65% atau lebih soal-soal evaluasi yang akan diberikan guru.

B. KOMPETENSI DASAR

B.1 Bunga Tunggal dan Bunga Majemuk

a. Tujuan

Setelah mempelajari uraian kompetensi dasar ini, anda dapat:

- Menyelesaikan soal persen di atas seratus dan persen dibawah seratus
- Menghitung bunga tunggal harian, bulanan maupun tahunan
- > Menyelesaikan soal-soal diskonto
- Menghitung bunga tunggal dengan metode:
 - o angka bunga dan pembagi tetap
 - o persen sebanding
 - o persen seukuran
- Menghitung Nilai Akhir Modal bunga majemuk
- Menghitung Nilai Akhir Modal dengan masa bunga majemuk pecahan
- Menghitung Nilai Tunai Modal bunga majemuk
- Menghitung Nilai Tunai modal dengan masa bunga majemuk pecahan

b. Uraian materi

1). Pengertian Bunga

Mengapa banyak orang yang berbondong-bondong menyimpan atau mendepositokan uangnya di Bank. Di samping karena masalah keamanan, juga karena mendapatkan jasa dari simpanan tersebut, yang dinamakan bunga.

Mengapa banyak dealer mobil maupun motor menawarkan kredit kepada konsumen. Karena dengan kredit, dealer akan mendapatkan tambahan modal dari sejumlah modal yang telah ditanamkan. Tambahan modal tersebut dinamakan bunga. Jadi, *Bunga adalah jasa dari pinjaman* atau *simpanan yang dibayarkan pada akhir jangka waktu yang telah disepakati bersama.*

Jika besarnya bunga suatu pinjaman atau simpanan dinyatakan dengan persen (%), maka persen tersebut dinamakan *suku bunga*.

Suku bunga =
$$\frac{\text{bunga}}{\text{pinjaman mula} - \text{mula}} \times 100\%$$

Contoh 1

Wulan meminjam uang dari Koperasi sebesar Rp1.000.000,00. Setelah satu bulan, maka Wulan harus mengembalikan modal beserta bunganya sebesar Rp1.020.000,00. Tentukan besarnya bunga dan suku bunganya?

Jawab:

Bunga = Rp1.020.000,00 - Rp1.000.000,00 = Rp20.000,00
Suku bunga =
$$\frac{\text{bunga}}{\text{pinjaman mula} - \text{mula}} \times 100\%$$

$$= \frac{20.000,00}{1.000.000,00} \times 100\% = 2\%$$

Contoh 2

Fulan menyimpan uangnya di Bank ABC sebesar Rp500.000,00. Bank memberikan bunga 1.5% tiap bulan. Jika bank membebankan biaya administrasi Rp1.000,00 setiap bulan, tentukan jumlah simpanan Fulan setelah satu bulan!

Jawab:

Jumlah simpanan Fulan setelah satu bulan

- = simpanan mula-mula + bunga biaya administrasi
- $= Rp500.000,00 + 1.5\% \times Rp500.000,00 Rp1.000,00 =$

2). Persen di atas seratus dan Persen di bawah seratus

Untuk menentukan nilai persentase dari suatu bilangan jika diketahui bilangan dan persennya, hanya mengalikan bilangan tersebut dengan persen yang diketahui. Misalkan:

Untuk menentukan besarnya laba jika persentase laba dan harga beli diketahui, maka laba = persen laba x harga beli.

Untuk menentukan besarnya diskon jika persentase diskon dan harga sebelum diskon diketahui, maka besarnya diskon = persen diskon x harga sebelum diskon.

Bagaimana menentukan laba jika persentase laba dan harga jual yang diketahui. Juga bagaimana menentukan besarnya diskon jika persentase diskon dan harga setelah diskon diketahui. Ternyata besarnya laba dan diskon tidak dapat langsung dikalikan persentase masing-masing dengan nilai yang diketahui. Dari ilustrasi di atas, maka dibutuhkan persen yang lain, yaitu *persen di atas seratus* maupun *persen di bawah seratus*.

Persen di atas seratus adalah bentuk pecahan yang selisih antara penyebut dan pembilangnya sama dengan seratus. Secara umum ditulis:

p% di atas seratus =
$$\frac{p}{100 + p}$$

Persen di bawah seratus adalah bentuk pecahan yang jumlah antara penyebut dan pembilangnya sama dengan seratus. Secara umum ditulis:

p% di bawah seratus =
$$\frac{p}{100 - p}$$

Contoh 3

Ubahlah dalam bentuk pecahan!

- a. 25%
- b. 10% di bawah 100
- c. 15% di atas 100

Jawab:

a.
$$25\% = \frac{25}{100} = \frac{1}{4}$$

b. 10% di bawah 100 =
$$\frac{10}{100-10}$$
 = $\frac{10}{90}$ = $\frac{1}{9}$

c. 15% di atas
$$100 = \frac{15}{100 + 15} = \frac{15}{115} = \frac{3}{23}$$

Contoh 4

Tentukan Nilainya!

- a. 7% di atas 100 dari Rp428.000,00
- b. 12% di bawah 100 dari Rp4.400.000,00

Jawab:

a. 7% di atas 100 dari Rp428.000,00 =
$$\frac{7}{100+7}$$
 x 428.000,00 = $\frac{7}{107}$ x Rp428.000,00 = Rp28.000,00 b. 12% di bawah 100 dari Rp4.400.000,00 = $\frac{12}{100-12}$ x Rp4.400.000,00

$$= \frac{12}{88} \times Rp4.400.000,00$$

$$= Rp600.000,00$$

Contoh 5

Ubahlah 10% di atas 100 ke dalam:

- a. Persen
- b. Persen di bawah 100

Jawab:

a.
$$\frac{10}{100+10} = \frac{P}{100}$$
$$\frac{10}{110} = \frac{P}{100}$$
$$11P = 100$$
$$P = \frac{100}{11} = 9.09,$$

Jadi, 10% di atas 100 = 9.09%

b.
$$\frac{10}{100+10} = \frac{P}{100-P}$$

$$\frac{10}{110} = \frac{P}{100-P}$$

$$\frac{1}{11} = \frac{P}{100-P}$$

$$100-P = 11P$$

$$100 = 11P+P$$

$$100 = 12P$$

$$P = \frac{100}{12} = 8.33,$$

Jadi, 10% di atas 100 = 8.33% di bawah 100

Contoh 6

Ubahlah 20% di bawah 100 menjadi persen di atas 100

Jawab:

$$\frac{20}{100 - 20} = \frac{P}{100 + P}$$

$$\frac{20}{80} = \frac{P}{100 + P}$$

$$2(100 + P) = 8P$$

$$200 + 2P = 8P$$

$$200 + 2P = 8P$$

$$200 = 8P - 2P$$

$$P = \frac{200}{6} = 33.33$$

Jadi, 10% di atas 100 = 8.33% di bawah 100

3). Aplikasi Persen di atas seratus dan di bawah seratus

Persen di atas seratus digunakan jika nilai yang diketahui lebih besar dari nilai mulamula. Misalkan % laba dengan harga jual, % bonus dengan harga setelah bonus. % bunga dengan modal setelah bunga dan lain-lain.

Persen di bawah seratus digunakan jika nilai yang diketahui lebih kecil dari nilai mulamula. Misalkan % rugi dengan harga jual, % diskon dengan harga setelah diskon, dan lain-lain.

Contoh 7

Harga jual suatu barang adalah Rp5.980.000,00. Jika barang dijual dengan untung 15%. Tentukan untung dan harga belinya!

Jawab:

Besarnya untung = 15% di atas 100 x harga jual
=
$$\frac{15}{100+15}$$
 x Rp5.980.000,00
= $\frac{15}{115}$ x Rp5.980.000,00
= Rp780.000,00

Contoh 8

Gaji seorang karyawan Rp1.500.000,00. Karena prestasinya baik, maka ia mendapatkan bonus 17% dari gajinya. Tentukan besarnya bonus dan gaji karyawan setelah dapat bonus!

Jawab:

Besar bonus = persen bonus x gaji mula-mula
(bukan persen di bawah atau di atas 100)
=
$$\frac{17}{100}$$
 x Rp1.500.000,00
= Rp255.000,00

Contoh 9

harga barang setelah dikenai pajak adalah Rp2.800.000,00. Jika besarnya pajak 12%, tentukan besar pajak dan harga sebelum pajak!

Jawab:

Pajak =
$$\frac{12}{100 + 12}$$
 x Rp2.800.000,00

$$= \frac{12}{112} \times Rp2.800.000,00$$
$$= 12 \times 25.000,00$$
$$= Rp300.000,00$$

Harga barang setelah rabat adalah Rp492.800,00. Jika besarnya rabat 23%, tentukan rabat dan harga sebelum rabat! *Jawab:*

Rabat =
$$\frac{23}{100-23}$$
 x Rp492.800,00
= $\frac{23}{73}$ x Rp492.800,00
= Rp147.200,00

Contoh 11

Harga beras tiap kilogram setelah mendapatkan subsidi dari pemerintah adalah Rp1.575,00. Jika pemerintah memberikan subsidi sebesar 37%, tentukan subsidi yang ditentukan pemerintah dan harga beras sebelum subsidi!

Jawab:

Subsidi =
$$\frac{37}{100-37}$$
 x Rp1.575,00
= $\frac{37}{63}$ x Rp1575,00
= 37 x 25
= Rp925,00

4). Bunga Tunggal

Bunga tunggal adalah bunga yang diperoleh pada setiap akhir jangka waktu tertentu yang tidak mempengaruhi besarnya modal yang dipinjam. Perhitungan bunga setiap periode selalu dihitung berdasarkan besarnya modal yang tetap, yaitu:

Bunga = suku bunga tiap periode x banyaknya periode x modal

Suatu modal sebesar Rp1.000.000,00 dibungakan dengan suku bunga tunggal 2%/bulan. Tentukan bunga setelah 1 bulan, 2 bulan, dan 5 bulan!

Jawab:

```
Setelah 1 bulan besar bunga = 2\% \times 1 \times Rp1.000.000,00 = Rp20.000,00
Setelah 2 bulan besar bunga = 2\% \times 2 \times Rp1.000.000,00 = Rp40.000,00
Setelah 5 bulan besar bunga = 2\% \times 5 \times Rp1.000.000,00 = Rp100.000,00
```

Jika suatu modal M dibungakan dengan suku bunga tunggal i% tiap tahun, maka berlaku:

Setelah t tahun besarnya bunga: B =
$$\frac{M \times i \times t}{100}$$

Setelah t bulan besarnya bunga: B = $\frac{M \times i \times t}{1.200}$
Setelah t hari besarnya bunga: B = $\frac{M \times i \times t}{36.000}$. untuk 1 tahun = 360 hari
Setelah t hari besarnya bunga: B = $\frac{M \times i \times t}{36.500}$. untuk 1 tahun = 365 hari
Setelah t hari besarnya bunga: B = $\frac{M \times i \times t}{36.600}$. untuk 1 tahun = 366 hari

Modal akhir = Modal awal + bunga
$$Ma = M + B$$

Contoh 13

Suatu modal sebesar Rp1.000.000,00 dibungakan dengan bunga tunggal selama 3 tahun dengan suku bunga 18%/tahun. Tentukan bunga yang diperoleh dan modal setelah dibungakan!

Jawab:

$$M = Rp1.000.000,00$$

 $i = 18\%/tahun$
 $t = 3 tahun$

Bunga: B =
$$\frac{\text{M x i x t}}{100}$$

= $\frac{1.000.000 \times 18 \times 3}{100}$
= Rp540.000,00

Modal akhir : Ma = M + B
=
$$Rp1.000.000,00 + Rp540.000,00 = Rp1.540.000,00$$

Contoh 14

Modal sebesar Rp2.500.000,00 dibungakan dengan bunga tunggal 3%/cawu selama 1 tahun 7 bulan. Tentukan:

- a. Bunga yang diperoleh
- b. Modal akhir

Jawab:

M = Rp2.500.000,00

 $i = 3\%/cawu = 3 \times 3\%/tahun = 9\%/tahun$

t = 1 tahun 7 bulan

a. Setelah 1 tahun bunga =
$$\frac{2.500.000 \times 9 \times 1}{100}$$
 = Rp225.000,00
Setelah 7 bulan bunga = $\frac{2.500.000 \times 9 \times 7}{1200}$ = Rp131.250,00

Dapat juga diselesaikan dengan mengubah tahun menjadi bulan, yaitu: 1 tahun 7 bulan = 19 bulan. Setelah itu, bunga diselesaikan dengan menggunakan rumus bunga bulanan. Silakan dicoba!!!

Contoh 15

Pinjaman sebesar Rp1.250.000,00 dibungakan dengan bunga tunggal 0.5%/bulan selama 2 tahun 5 bulan dan 18 hari (jika dianggap 1 tahun =360 hari). Tentukan:

- a. Bunga yang diperoleh
- b. Modal akhir!

Jawab:

M = Rp1.250.000,00

i = 0.5%/bulan = 0.5% x 12/tahun = 6%/tahun

t = 2 tahun 5 bulan 18 hari (1 tahun = 360 hari) = 29 bulan 18 hari

a. Setelah 29 bulan, bunga =
$$\frac{1.250.000 \times 6 \times 29}{1.200}$$
 = Rp181.250,00
Setelah 18 hari, bunga = $\frac{1.250.000 \times 6 \times 18}{36.000}$ = Rp3.750,00

Bunga total =
$$Rp181.250,00 + Rp3.750,00 = Rp185.000,00$$

Dapat juga diselesaikan dengan mengubah tahun dan bulan menjadi hari, yaitu: 2 tahun 5 bulan 18 hari = (720 + 150 + 18) hari = 888 hari. Setelah itu bunga diselesaikan dengan menggunakan rumus bunga harian B = $\frac{M \times i \times t}{36.000}$. Silakan dicoba!

Suatu pinjaman sebesar Rp2.500.000,00 dibungakan dengan bunga tunggal selama 2 tahun 3 bulan. Ternyata bunga yang diperoleh Rp450.000,00. Tentukan suku bunganya tiap tahun dan tiap triwulan!

Jawab:

M = Rp2.500.000.00 t = 2 tahun 3 bulan = 27 bulanB = Rp450.000,00

Setelah t bulan, besar bunga:

$$B = \frac{\text{M.i.t}}{1.200}$$

$$450.000 = \frac{2.500.000 \times i \times 27}{1.200}$$

$$45 \times 1.200 = 6.750 i$$

$$i = \frac{45 \times 1.200}{6.750}$$

$$i = 8\%/\text{tahun}$$

$$i = \frac{8\%}{4}/\text{triwulan} = 2\%/\text{triwulan}$$

Contoh 17

Suatu pinjaman sebesar Rp1.500.000,00 dibungakan dengan suku bunga tunggal 7.5%/semester. Ternyata modal tersebut menjadi Rp1.800.000,00. Setelah berapa bulan bunga tersebut dibungakan?

Jawab:

M = Rp1.500.000,00 i = 7.5%/semester = 7.5% x 2/tahun = 15%/tahun Ma = Rp1.800.000,00 Bunga = Modal akhir – Modal awal = Rp1.800.000,00 – Rp 1.500.000,00 = Rp300.000,00

Setelah t tahun, besarnya bunga:

$$B = \frac{M \times i \times t}{1.200}$$

$$300.000 = \frac{1.500.000 \times 15 \times t}{1.200}$$
(di bagi 100.000)
$$3 \times 1.200 = 225 t$$

$$t = \frac{3600}{225} = 16 \text{ bulan}$$

Suatu modal setelah dibungakan dengan bunga tunggal 15%/tahun selama 2 tahun modal tersebut menjadi Rp6.110.000,00. Tentukan:

- a. Bunga yang diperoleh
- b. Modal mula-mula!

Jawab:

Contoh di atas diselesaikan dengan cepat menggunakan persen di atas 100. (baca lagi tentang penggunaan persen di bawah 100 dan persen di atas 100) Ma = Rp6.110.000,00

i = 15%/tahun = 30% selama 2 tahun

a. Bunga = 30% di atas 100 x Rp6.110.000,00
=
$$\frac{30}{100 + 30}$$
 x Rp6.110.000,00
= $\frac{30}{130}$ x Rp6.110.000,00
= Rp1.410.000,00

5). Diskonto

Diskonto adalah bunga yang dibayarkan oleh peminjam pada saat menerima pinjaman. Proses perhitungan diskonto menggunakan sistem bunga tunggal, sehingga untuk menghitung besarnya diskonto hampir sama dengan perhitungan besarnya bunga tunggal jika besarnya pinjaman dan % diskonto diketahui. Besarnya nilai pinjaman pada sistem diskonto nilainya sama dengan jumlah modal yang harus dibayar saat jatuh tempo. Misalkan seorang meminjam Rp100.000,00 dengan diskonto 2% tiap bulan, maka diskontonya = 2% x Rp100.000,00 tiap bulan = Rp2.000,00.

Jika pinjaman akan dikembalikan 1 bulan yang akan datang, maka di awal pinjaman orang tersebut hanya menerima = Rp100.000,00 - Rp2.000,00 = Rp98.000,00 dan 1 bulan yang akan datang ia harus membayar Rp100.000,00.

Jika pinjaman akan dikembalikan 3 bulan yang akan datang, maka di awal pinjaman orang tersebut hanya menerima = $Rp100.000,00 - 3 \times Rp2.000,00 = Rp94.000,00 dan$ 3 bulan yang akan datang ia harus membayar Rp100.000,00.

Dalam kasus di atas, bagaimanakah jika pinjaman akan dikembalikan 50 bulan yang akan datang, apa yang terjadi?

Jika pinjaman M dengan diskonto i%/bulan dan akan dikembalikan setelah t bulan. maka:

Diskonto : $D = M \times i \times t$

besarnya modal yang diterima di awal pinjaman : $Mt = M - M \times i \times t$

Rumus di atas berlaku juga untuk diskonto i%/tahun dan akan dikembalikan setelah t tahun. Bagaimanakah jika diskonto i%/bulan dan akan dikembalikan dalam t tahun atau diskonto i%/tahun akan dikembalikan dalam t bulan ...?

Nilai diskonto untuk besarnya pinjaman M dengan suku bunga i%/tahun.

akan di bayar t tahun yang akan datang: D =
$$\frac{M \times I \times t}{100}$$

akan di bayar t bulan yang akan datang : D = $\frac{M \times I \times t}{1.200}$

akan di bayar t hari yang akan datang:
$$D = \frac{M \times i \times t}{36.000}$$
. (1 tahun = 360 hari)

Bagaimanakah menentukan nilai diskontonya jika yang diketahui besarnya modal yang diterima peminjam (Mt) dan i% diskonto? Jika hal itu terjadi, maka nilai diskontonya adalah:

$$D = i \%$$
 di bawah 100 x Modal yang diterima

Contoh 19

Pinjaman sebesar Rp2.000.000,00 dengan sistem diskonto 3%/bulan dan akan dikembalikan setelah 5 bulan. Tentukan:

- a. Nilai diskonto
- b. Modal yang diterima peminjam!

Jawab:

M = Rp2.000.000,00i = 3 % / bulan

t = 5 bulan

a. Diskonto: D = M x i x t = $2.000.000 \times 3\% \times 5 = Rp300.000,00$

b. Modal yang diterima = M - D= Rp2.000.000,00 - Rp300.000,00= Rp1.700.000,00

Contoh 20

Pinjaman sebesar Rp5.000.000,00 dengan sistem diskonto 18%/tahun dan akan dikembalikan setelah 9 bulan. Tentukan:

- a. Nilai diskonto
- b. Modal yang diterima peminjam!

Jawab:

M = Rp5.000.000,00 i = 18 %/tahun t = 9 bulan

a. Diskonto: D =
$$\frac{\text{M x i x t}}{1.200}$$

= $\frac{5.000.000 \times 18 \times 9}{1.200}$ = Rp675.000,00

b. Modal yang diterima =
$$M - D$$

= $Rp5.000.000,00 - Rp675.000,00$
= $Rp4.325.000,00$

Pinjaman sebesar Rp10.000.000,00 dengan sistem diskonto 30%/tahun dan akan dikembalikan setelah 45 hari. Tentukan modal yang diterima peminjam jika dianggap 1 tahun 360 hari?

```
Jawab:

M = Rp10.000.000.00

i = 30\%/tahun
```

t = 9 bulan

Diskonto: D =
$$\frac{M \times i \times t}{36.000}$$

= $\frac{10.000.000 \times 30 \times 45}{36.000}$ = Rp375.000,00

Modal yang diterima = M - D

= Rp10.000.000,00 - Rp375.000,00

= Rp9.625.000,00

Contoh 22

Suatu pinjaman akan dilunasi dengan sistem diskonto 14%/tahun dan akan dikembalikan dalam waktu 1.5 tahun. Jika modal yang diterima peminjam di awal periode sebesar Rp5.135.000,00. Tentukan:

- a. Nilai diskonto
- b. Besarnya pinjaman yang harus dikembalikan saat jatuh tempo!

Jawab:

$$\begin{array}{ll} \text{Mt} = & \text{Rp } 5.135.000,\!00 \\ \text{i} & = & 14 \, \%/\text{tahun} \\ \text{t} & = & 1.5 \, \text{tahun. Jadi, i total} = & 14\% \, \text{x} \, 1.5 = & 21\% \\ \text{a. Diskonto: D} & = & i\% \, \text{di bawah } 100 \, \text{x} \, \text{Mt} \\ & = & \frac{21}{100-21} \, \, \text{x} \, \text{Rp} 5.135.000,\!00 \\ & = & \frac{21}{79} \, \text{x} \, \text{Rp} 5.135.000,\!00 = \text{Rp} 1.365.000,\!00 \end{array}$$

b. Modal yang dibayar =
$$Mt + D$$

= $Rp5.135.000,00 + Rp1.365.000,00$
= $Rp6.500.000,00$

Contoh 23

Suatu pinjaman akan dilunasi dengan sistem diskonto 6%/cawu dan akan dikembalikan dalam waktu 10 bulan. Jika Modal yang diterima peminjam di awal periode sebesar Rp5.312.500,00. Tentukan:

- a. Nilai diskonto?
- b. Besarnya pinjaman yang harus dikembalikan saat jatuh tempo!

Jawab:

$$\begin{array}{ll} \text{Mt} = & \text{Rp } 5.312.500,00 \\ \text{i} & = 6 \% \text{ / cawu} = 1.5 \% \text{/bulan} \\ \text{t} & = 10 \text{ bulan. Jadi, i total} = 1.5\% \times 10 = 15\% \\ \text{a. Diskonto: D} & = & \text{i}\% \text{ di bawah } 100 \times \text{Mt} \\ & = & \frac{15}{100-15} \times \text{Rp } 5.312.500,00 \\ & = & \frac{15}{85} \times \text{Rp } 5.312.500,00 = \text{Rp937.500,00} \end{array}$$

b. Modal yang dibayar =
$$Mt + D$$

= $Rp 5.312.500,00 + Rp937.500,00$
= $Rp6.250.000,00$

6). Metode Perhitungan Bunga Tunggal

Pada dasarnya perhitungan bunga tunggal dapat diselesaikan dengan menggunakan rumus yang sudah dipelajari. Namun, bagaimanakah caranya andaikan ada suatu koperasi simpan pinjam yang memiliki banyak nasabah dimana perhitungannya menggunakan sistem bunga tunggal. Tentunya tidak efisien jika bunga yang diperoleh koperasi dari masing-masing nasabah dihitung satu persatu dengan menggunakan rumus di atas. Oleh karena itu perlu kiranya metode yang lebih efisien dalam perhitungan multi bunga tersebut.

a). Metode pembagi tetap

Metode ini digunakan jika suku bunga tunggal merupakan pembagi dari 360, 1 tahun dianggap 360 hari, suku bunga i%/tahun dan jangka waktu pengembalian t hari. Bunga yang diperoleh setelah t hari:

$$B = \frac{M \times i \times t}{36.000} = \frac{M \times t}{100} \cdot \frac{i}{360} = \frac{M \times t}{100} \cdot \frac{360}{i}$$
Jika $\frac{M \times t}{100} = \text{angka bunga dan } \frac{360}{i} = \text{pembagi tetap, maka:}$

$$B = \frac{\text{angka bunga}}{\text{pembagi tetap}} \text{ dan Jumlah bunga} = \frac{\text{jumlah angka bunga}}{\text{pembagi tetap}}$$

Contoh 24

Di bawah ini adalah tabel dari nasabah Koperasi Simpan Pinjam " X " dengan suku bunga tunggal i=9%/tahun dan 1 tahun dianggap 360 hari:

No	Nama Nasabah	Jumlah pinjaman (M)	Jangka waktu pengembalian (t)
1	Α	Rp5.000.000,00	45 hari
2	В	Rp4.000.000,00	100 hari
3	С	Rp2.500.000,00	80 hari
4	D	Rp6.000.000,00	120 hari
5	Е	Rp7.500.000,00	25 hari

Tentukanlah:

a. Pembagi tetapnya

- b. Jumlah angka bunganya
- c. Bunga total yang diperoleh koperasi!

Jawab:

a. Pembagi tetap =
$$\frac{360}{i} = \frac{360}{9} = 40$$

b. Untuk menentukan jumlah angka bunga, perhatikan tabel di bawah ini:

No	М	t	$\frac{\text{M x t}}{100}$
1	Rp 5.000.000,00	45 hari	2.250.000
2	Rp 4.000.000,00	100 hari	4.000.000
3	Rp 2.500.000,00	80 hari	2.000.000
4	Rp 6.000.000,00	120 hari	7.200.000
5	Rp 7.500.000,00	25 hari	1.875.000
		jumlah	17.325.000

Jumlah angka bunga = 17.325.000

c. Jumlah bunga =
$$\frac{\text{jumlah angka bunga}}{\text{pembagi tetap}}$$

= $\frac{17.325.000}{40}$ = Rp433.125,00

Silakan anda coba jika suku bunga tunggalnya 1.5%/bulan ...!

b. Metode Persen yang Sebanding

Metode ini digunakan jika suku bunga tunggal bukan merupakan pembagi dari 360, 1 tahun dianggap 360 hari, suku bunga i%/tahun dan waktu pengembalian t hari.

Contoh 25

Di bawah ini adalah tabel dari nasabah Koperasi Simpan Pinjam "Z" dengan suku bunga tunggal i = 11%/tahun dan 1 tahun diangap 360 hari:

No	Nama Nasabah	Jumlah pinjaman (M)	Jangka waktu pengembalian (t)
1	Р	Rp1.000.000,00	50 hari
2	Q	Rp8.000.000,00	100 hari
3	R	Rp4.500.000,00	60 hari
4	S	Rp2.000.000,00	120 hari
5	T	Rp2.500.000,00	90 hari

Tentukanlah bunga total yang diperoleh koperasi

Jawab:

Suku bunga i = 11% diuraikan menjadi = 10% + 1% atau 9% + 2% Ditentukan dahulu jumlah angka bunga untuk i = 10%.

No	М	t	$\frac{\text{M x t}}{100}$
1	Rp1.000.000,00	50 hari	500.000
2	Rp8.000.000,00	100 hari	8.000.000
3	Rp4.500.000,00	60 hari	2.700.000
4	Rp2.000.000,00	120 hari	2.400.000
5	Rp2.500.000,00	90 hari	2.250.000
		iumlah	15.850.000

jumlah 15.850.00

Pembagi tetap =
$$\frac{360}{i} = \frac{360}{10} = 36$$

Jumlah angka bunga = 15.850.000

Jumlah bunga
$$=\frac{\text{jumlah angka bunga}}{\text{pembagi tetap}} = \frac{15.850.000}{36} = \text{Rp440.277,78}$$

Bunga yang sebanding dengan 1% =
$$\frac{1\%}{10\%}$$
 x Rp440.277,78 = Rp44.027,78

Silakan anda coba jika suku bunga tunggalnya 7.5% ...! (petunjuk: uraikan 7.5% menjadi 6% dan 0.5% atau 5% dan 2.5%)

c). Metode Persen yang Seukuran

Metode ini digunakan jika 1 tahun dianggap 365 hari, sehingga tidak banyak suku bunga yang memberikan hasil bagi bulat terhadap 365, maka biasanya diambil suku bunga 5% sehingga pembagi tetapnya = $\frac{365}{5}$ = 73.

Bunga yang diperoleh setelah t hari:

$$B = \frac{M \times i \times t}{36.500} = \frac{M \times t}{100} \cdot \frac{5}{365} = \frac{M \times t}{100} \times \frac{1}{73}$$

$$B = \frac{\text{angka bunga}}{73} \text{ dan Jumlah bunga} = \frac{\text{jumlah angka bunga}}{73}$$

Untuk menghitung suku bunga sisanya digunakan metode persen yang sebanding.

Contoh 26

Di bawah ini adalah tabel dari nasabah Koperasi Simpan Pinjam " T " dengan suku bunga tunggal i = 6.5%/tahun dan 1 tahun dianggap 365 hari.

No	Nama Nasabah	Jumlah pinjaman (M)	Jangka waktu pengembalian (t)
1	Р	Rp5.000.000,00	40 hari
2	Q	Rp6.000.000,00	80 hari
3	R	Rp7.500.000,00	60 hari
4	S	Rp3.000.000,00	100 hari
5	Т	Rp4.500.000,00	20 hari

Tentukanlah bunga total yang diperoleh koperasi

Jawab:

Suku bunga i = 6.5% diuraikan menjadi = 5% + 1.5%Ditentukan dahulu iumlah angka bunga untuk i = 5%

<u> </u>			
No	М	t	$\frac{\text{M x t}}{100}$
1	Rp 5.000.000,00	40 hari	2.000.000
2	Rp 6.000.000,00	80 hari	4.800.000
3	Rp 7.500.000,00	60 hari	4.500.000
4	Rp 3.000.000,00	100 hari	3.000.000
5	Rp 4.500.000,00	20 hari	900.000
		iumlah	15.200.000

Pembagi tetap =
$$\frac{365}{i} = \frac{365}{5} = 73$$

Jumlah angka bunga = 15.200.000

Jumlah bunga =
$$\frac{\text{jumlah angka bunga}}{\text{pembagi tetap}} = \frac{15.200.000}{73} = \text{Rp208.219,18}$$

Bunga yang sebanding dengan 1.5% =
$$\frac{1,5\%}{5\%}$$
 x Rp208.219,18
= $\frac{3}{10}$ x Rp208.219,18 = Rp62.465,75

Silakan anda coba jika suku bunga tunggalnya 7.5%!

7). Bunga Majemuk

Jika X menyimpan uang di bank kemudian setiap akhir periode, bunga yang diperoleh tersebut tidak diambil, maka bunga itu akan bersama-sama modal menjadi modal baru yang akan berbunga pada periode berikutnya. Bunga yang diperoleh nilainya menjadi lebih besar dari bunga pada periode sebelumnya. Proses bunga berbunga pada ilustrasi ini dinamakan **Bunga Majemuk.**

Contoh 27

Hanif menyimpan uang di bank sebesar Rp1.000.000.00 dan bank memberikan bunga 10%/tahun. Jika bunga tidak pernah diambil dan dianggap tidak ada biaya administrasi bank. Tentukan jumlah bunga yang diperoleh Hanif setelah modal mengendap selama 3 tahun.

Akhir tahun pertama, bunga yang diperoleh: B = suku bunga x modal =
$$10\%$$
 x Rp1.000.000,00 = Rp100.000,00 Awal tahun ke dua, modal menjadi: $M_2 = M + B$ = Rp1.000.000,00 + Rp100.000,00 = Rp1.100.000,00

Akhir tahun kedua, bunga yang diperoleh: $B_2 = i \times M_2$ $= 10\% \times Rp1.100.000,00$ = Rp110.000,00Awal tahun ketiga, modal menjadi: $M_3 = M_2 + B_2$ = Rp1.100.000,00 + Rp110.000,00 = Rp1.210.000,00Akhir tahun ketiga, bunga yang diperoleh: $B_3 = i \times M_3$ $= 10\% \times Rp1.210.000,00$ = Rp121.000,00

Jumlah bunga yang diperoleh setelah mengendap tiga tahun: = Rp100.000,00 + Rp110.000,00 + Rp121.000,00 = Rp331.000,00.

8). Nilai Akhir Bunga Majemuk

Suatu modal M dengan bunga i%/bulan, maka setelah:

1 bulan modal menjadi = M + bunga

$$M_1 = M + M.i$$
$$= M(1 + i)$$

2 bulan modal menjadi $= M_1 + bunga$

$$M_2 = M(1 + i) + M(1 + i).i$$

= $M(1 + i)(1 + i) = M(1 + i)^2$

3 bulan modal menjadi $= M_2 + bunga$

$$M_3 = M(1 + i)^2 + M(1 + i)^2 i$$

= $M(1 + i)^2(1 + i) = M(1 + i)^3$

Dari pola uraian di atas, maka pada n bulan modal menjadi: $M_n = M(1 + i)^n$.

Jadi, dapat disimpulkan jika suatu modal M dibungakan dengan bunga majemuk i%/periode selama n periode, maka modal akhir M_n:

$$M_n = M(1+i)^n$$

Contoh 28

Modal sebesar Rp5.000.000,00 dibungakan dengan bunga majemuk 10%/tahun. Tentukan modal akhir dan bunga yang diperoleh setelah 6 tahun!

Jawab:

M = Rp5.000.000,00 i = 10%/tahun = 0.1/tahun n = 6 tahun M_n = M (1 + i)ⁿ = 5.000.000,00 (1 + 0.1)⁶ = 5.000.000,00 (1.1)⁶ Menentukan nilai (1.1)⁶ dengan kalkulator scientific sebagai berikut: 1,1 \longrightarrow x^y \longrightarrow 6 \longrightarrow = diperoleh 1,771561 = 5.000.000 x 1,771561 = Rp8.857.805,00

Bunga = Rp885.780,50 - Rp5.000.000,00 = Rp385.780,50

Modal sebesar Rp2.000.000,00 dibungakan dengan suku bunga majemuk 5%/semester selama 5 tahun. Tentukan modal akhir!

```
Jawab:
```

```
M = Rp2.000.000,00

i = 5\%/semester = 0.05/semester

n = 5 tahun = 10 semester

M_n = M(1 + i)^n

= 2.000.000,00 (1 + 0.05)^{10}
```

 $= 2.000.000,00 \times 1.05^{10}$

= 2.000.000 x 1,628894627

= Rp3.257.789,25

(Menentukan nilai $1,05^{10}$ dari daftar II pada lampiran buku ini diperoleh dengan cara melihat nilai pada daftar baris 10 dan kolom 5%).

dengan Daftar II maupun kalkulator diperoleh:

Contoh 30

Modal sebesar Rp1.500.000,00 dibungakan dengan bunga majemuk 4%/triwulan selama 3 tahun 9 bulan. Tentukan modal akhir!

Jawab:

```
M = Rp1.500.000,00

i = 4% / triwulan = 0.04/triwulan

n = 3 tahun 9 bulan = 15 triwulan

M_n = M(1 + i)^n

= 1.500.000,00 (1+0.04)<sup>15</sup>

= 1.500.000,00 x 1.04<sup>15</sup> dengan tabel maupun kalkulator diperoleh:

= 1.500.000,00 x 1,800943506

= Rp2.701.415,26
```

Contoh 31

Modal sebesar Rp3.000.000,00 dibungakan dengan suku bunga majemuk 4%/semester, setelah berapa tahun modal akhir menjadi = Rp4.440.732,87?

```
Jawab:
```

```
\begin{array}{ll} M &= Rp3.000.000.00\\ i &= 4\%/semester = 0.04/semester\\ M_n &= Rp4.440.732,87\\ &\qquad M_n &= M(1+i)^n\\ 4.440.732,87 &= 3.000.000,00 \times (1+0.04)^n\\ &\frac{4.440.732,87}{3.000.000} &= 1.04^n\\ 1.48024429 &= 1.04^n & \text{di logaritmakan dengan bilangan pokok } 10\\ \log 1.48024429 &= n. \log 1.04\\ n &= \frac{\log 1,48024429}{\log 1.04} &= 10 \text{ semester} = 5 \text{ tahun} \end{array}
```

Pinjaman sebesar Rp2.500.000,00 dibungakan dengan bunga majemuk tiap bulan. Setelah 2 tahun modal menjadi Rp4.021.093,12. Tentukan suku bunganya!

Jawab:

$$\begin{array}{ll} M &= Rp2.500.000,00 \\ n &= 2 \ tahun = 24 \ bulan \\ M_n &= Rp4.021.093,12 \\ &\qquad M_n &= M \ (1+i)^n \\ 4.021.093,12 &= 2.500.000,00 \ x \ (1+i)^{24} \\ &\qquad \frac{4.021.093,12}{2.500.000} = (1+i)^{24} \\ &\qquad 1,608437249 = (1+i)^{24} \\ (1+i) &= \frac{24}{1},608437249 \end{array}$$

Untuk menentukan (1 + i) gunakan kalkulator Scientific dengan langkah:

Klik:
$$24 \longrightarrow \text{shift} \longrightarrow x^y \longrightarrow 1,608437249 \longrightarrow =$$

Jika kalkulator yang menggunakan kursor. Tapi jika tidak menggunakan kursor. langkahnya sebagai berikut: klik:

1,430302812
$$\rightarrow$$
 shift \rightarrow \times^{y} \rightarrow 24 \rightarrow =
$$(1+i) = 1.02$$

$$i = 1.02 - 1$$

$$= 0.02 = 2\%$$

Jadi, suku bunganya = 2 %/bulan.

9). Nilai Akhir Bunga Majemuk Dengan Masa Bunga Pecahan

Jangka waktu proses berbunganya suatu modal tidak hanya merupakan bilangan bulat. Jika jangka waktu bukan merupakan bilangan bulat, maka cara menentukan nilai $(1 + i)^n$ dapat dilakukan dengan beberapa cara, antara lain:

- Dengan menggunakan kalkulator yang dilengkapi dengan tombol x^y
- Sisa masa bunga yang belum dihitung, digunakan untuk menghitung bunga berdasarkan bunga tunggal dari nilai akhir masa bunga yang bulat. Jika disederhanakan dalam rumus adalah sebagai berikut:

$$M_n = M(1 + i)^n (1 + p.i)$$
 Dengan p masa bunga pecahan

Terdapat perbedaan sedikit modal akhir yang diperoleh dari dua cara di atas.

Contoh 33

Modal sebesar Rp4.500.000,00 dibungakan dengan suku bunga majemuk 3%/bulan. Tentukanlah modal akhir setelah berbunga selama 5.75 bulan!

Dengan menggunakan kalkulator:

$$M_n = M(1 + i)^n$$

$$M_n = 4.500.000,00 (1 + 0.03)^{5.75}$$

$$M_n = 4.500.000,00(1.03)^{5.75}$$

Dengan menggunakan cara kedua untuk n = 5 dan p = 0,75:

Dihitung dahulu untuk n = 5. yaitu:

$$M_n = M(1+i)^n$$

$$M_n = 4.500.000,00 (1 + 0.03)^5$$

$$M_n = 4.500.000,00 (1,03)^5$$

$$M_n = 4.500.000,00 \text{ x} \dots = \dots$$

Untuk menghitung bunga p = 0,75. yaitu:

$$B_{pecahan} = 0.75 \times 0.03 \times M_n$$

=

$$M_{akhir} = M_n + B_{pecahan}$$

Dapat juga diselesaikan dengan menggunakan rumus langsung, yaitu:

$$M_n = M(1 + i)^n (1 + p.i)$$

$$M_n = 4.500.000,00(1 + 0.03)^5 (1 + 0.75 \times 0.03)$$

$$M_n = 4.500.000,00 (1,03)^5 (1,0225)$$

$$M_n = 4.500.000,00 \text{ x} \dots x 1,0225$$

$$M_n = \dots$$

Cara 2 dan 3 menghasilkan nilai yang sama, namun berbeda dengan cara 1.

Contoh 34

Modal sebesar Rp5.000.000,00 dibungakan dengan suku bunga majemuk 10%/tahun. Tentukanlah modal akhir setelah berbunga selama 6 tahun 3 bulan.

Jawab:

$$M = Rp5.000.000,00$$

$$i = 12\%/tahun = 0.12/tahun$$

n = 6 tahun 3 bulan = 6
$$\frac{3}{12}$$
 tahun = 6.25 tahun

Diselesaikan dengan menggunakan rumus langsung, yaitu:

$$M_n = M(1 + i)^n (1 + p.i)$$

$$M_n = 5.000.000,00 (1 + 0.12)^6 (1 + 0.25 \times 0.12)$$

$$M_n = 5.000.000,00 (1,12)^6 (1,03)$$

$$M_n = 5.000.000 \text{ x } \dots \text{ x } \dots$$

$$M_n = \dots$$

10). Nilai Tunai Bunga Majemuk

Apabila n periode seseorang harus melunasi pinjamannya sebesar M dengan perhitungan suku bunga i%/periode dan ternyata orang tersebut mampu untuk melunasi hutangnya sekarang, maka dikatakan orang tersebut membayar dengan tunai.

Dari rumus nilai akhir bunga majemuk: $M_n = M(1 + i)^n$ dapat di ubah menjadi:

$$M = \frac{M_n}{(1+i)^n}$$
, dengan $M = \text{modal mula-mula atau sering disebut nilai tunai dan } M_n = \frac{M_n}{(1+i)^n}$

modal setelah n jangka waktu selanjutnya ditulis dengan M. Jadi, rumus nilai tunai adalah:

Nt =
$$\frac{M}{(1+i)^n}$$
 atau Nt = M(1 + i)⁻ⁿ

Contoh 35

Tentukan modal mula-mula jika suatu modal setelah dibungakan dengan bunga majemuk sebesar 15%/tahun selama 12 tahun modal menjadi Rp13.375.625,26!

Jawab:

$$M_n = Rp13375625.26$$

 $i = 15\%/tahun = 0,15/tahun$
 $n = 12 tahun$

$$M = \frac{M_n}{(1+i)^n}$$

$$= \frac{13.375.625,26}{(1+0,15)^{12}}$$

$$= \frac{13.375.625,26}{1,15^{12}}$$

$$= \frac{13.375.625,26}{5,350250105} = Rp2.500.000,00$$

Contoh 36

Tentukan modal mula-mula (Nilai Tunai dari suatu modal) jika nilai akhir modal sebesar Rp17.262.804.24 setelah dibungakan selama 4 tahun 9 bulan dengan suku bunga 8%/kwartal!

M = Rp17.262.804.24
i = 8%/kwartal = 0.08/kwartal
n = 4 tahun 9 bulan = 19 kwartal (1 tahun = 4 kwartal)
Nt =
$$\frac{M}{(1+i)^n}$$

= $\frac{17.262.804,24}{(1+0.08)^{19}}$

$$= \frac{17.262.804,24}{(1,08)^{19}}$$

$$= \frac{17262804,24}{4,315701059} = Rp4.000.000,00$$

Tentukan nilai tunai dari suatu modal Rp5.000.000,00 yang dibungakan dengan bunga majemuk 2%/bulan selama 2 tahun!

Jawab:

M = Rp5.000.000,00
i = 2%/ bulan = 0,02 bulan
n = 2 tahun = 24 bulan
Nt = M(1 + i)⁻ⁿ
= 5.000.000,00 (1+0.02)⁻²⁴
= 5.000.000,00 x 1.02⁻²⁴ menggunakan kalkulator Scientific dengan
langkah
$$x^y$$
 (-) x^y diperoleh:
= 5.000.000,00 x 0,621721487
= Rp3.108.607,44

Atau dengan rumus:

Nt =
$$\frac{M}{(1+i)^n}$$

= $\frac{5.000.000}{(1+0.02)^{24}}$
= $\frac{5.000.000}{1,608437249}$
= Rp3.108.607,44

Dengan menggunakan daftar:

Nt =
$$M(1 + i)^{-n}$$

= 5.000.000,00 (1 + 2%) ⁻²⁴ dengan daftar III, kolom 2% baris 24 diperoleh:
= 5.000.000,00 x 0,621721487
= Rp3.108.607,44

11). Nilai Tunai Bunga Majemuk Dengan Masa Bunga Pecahan

Jika jangka waktu (n) bukan merupakan bilangan bulat, maka cara menentukan nilai $(1 + i)^{-n}$ dapat dilakukan dengan beberapa cara. antara lain:

- Menggunakan kalkulator yang dilengkapi dengan tombol x^y
- Menggunakan rumus : Nt = $\frac{M}{(1+i)^n(1+p.i)}$ dengan p = suku bunga pecahan.

Terdapat perbedaan sedikit modal akhir yang diperoleh dari dua cara di atas.

Tentukanlah nilai tunai setelah berbunga selama 6.5 bulan. Modal menjadi Rp3.500.000,00 jika dibungakan dengan suku bunga majemuk 3%/bulan!

Jawab:

$$M = Rp3.500.000,00$$

 $i = 3\%/bulan = 0,03/bulan$
 $n = 6,5 bulan$

Dengan menggunakan kalkulator Scientific:

Nt = 3.500.000,00 x =

Dengan menggunakan rumus: Nt =
$$\frac{M}{(1+i)^n(1+p.i)}$$
 dengan n = 6 dan p = 0,5
Nt = $\frac{3.500.000,00}{(1+0,03)^6(1+0,5\times0,03)}$
Nt = $\frac{3.500.000,00}{(1,03)^6(1,015)}$
Nt = $\frac{3.500.000,00}{1,194052297\times1,015}$
Nt = $\frac{3.500.000,00}{1,194052297\times1,015}$

Contoh 39

Modal setelah dibungakan selama 4 tahun 9 bulan dengan suku bunga majemuk 10%/tahun menjadi Rp6.500.000,00. Tentukanlah nilai tunai modal!

Jawab:

M = Rp6.500.000.00
i = 10%/tahun = 0.1/tahun
n = 4 Tahun 9 bulan =
$$4\frac{9}{12}$$
 tahun = 4,75 tahun

Dengan menggunakan kalkulator scientific:

Nt =
$$M(1 + i)^{-n}$$

Nt = $6.500.000 (1 + 0.1)^{4,75}$
Nt = $6.500.000 (1.1)^{4,75}$
Nt = $6.500.000 \times ... = ...$

Dengan menggunakan rumus: Nt =
$$\frac{M}{(1+i)^n(1+p.i)}$$
 dengan n = 4 dan p = 0,75
Nt = $\frac{6.500.000,00}{(1+0,1)^4(1+0,75\times0,1)}$
Nt = $\frac{6.500.000,00}{(1,1)^4(1,075)}$
Nt = $\frac{6.500.000,00}{......x1,075}$ =

c. Rangkuman

1. Suku bunga =
$$\frac{\text{bunga}}{\text{pinjaman mula} - \text{mula}} \times 100\%$$

2. Persen di atas seratus adalah bentuk pecahan yang selisih antara penyebut dan pembilangnya sama dengan seratus. Secara umum ditulis:

p% di atas seratus =
$$\frac{p}{100 + p}$$

3. Persen di bawah seratus adalah bentuk pecahan yang jumlah antara penyebut dan pembilangnya sama dengan seratus. Secara umum ditulis:

p% di bawah seratus =
$$\frac{p}{100 - p}$$

4. Persen di atas seratus digunakan jika nilai yang diketahui lebih besar dari nilai mula-mula. Misalkan % laba dengan harga jual. % bonus dengan harga setelah bonus. % bunga dengan modal setelah bunga dan lain-lain.

Persen di bawah seratus digunakan jika nilai yang diketahui lebih kecil dari nilai mula-mula. Misalkan % rugi dengan harga jual. % diskon dengan harga setelah diskon dan lain-lain.

- 5. Bunga = suku bunga tiap periode x banyaknya periode x modal
- 6. Jika suatu modal M dibungakan dengan suku bunga tunggal i% tiap tahun, maka berlaku:

> Setelah t tahun besarnya bunga: B =
$$\frac{M \times i \times t}{100}$$

> Setelah t bulan besarnya bunga: B =
$$\frac{M \times i \times t}{1.200}$$

> Setelah t hari besarnya bunga: B =
$$\frac{M \times i \times t}{36.000}$$
. untuk 1 tahun = 360 hari

> Setelah t hari besarnya bunga: B =
$$\frac{M \times i \times t}{36.500}$$
. untuk 1 tahun = 365 hari

> Setelah t hari besarnya bunga: B =
$$\frac{M \times i \times t}{36.600}$$
. untuk 1 tahun = 366 hari

7. Jika pinjaman M dengan diskonto i%/bulan dan akan dikembalikan setelah t bulan, maka:

$$\triangleright$$
 Diskonto : **D** = **M** x i x t

besarnya modal yang diterima di awal pinjaman : Mt = M - M x i x t

Rumus di atas berlaku juga untuk diskonto i%/tahun dan akan dikembalikan setelah t tahun. Bagaimanakah jika diskonto i%/bulan dan akan dikembalikan.

8. Nilai diskonto untuk besarnya pinjaman M dengan suku bunga i%/tahun.

Akan di bayar t tahun yang akan datang: D =
$$\frac{M \times i \times t}{100}$$

- \rightarrow Akan di bayar t bulan yang akan datang : D = $\frac{M \times i \times t}{1.200}$
- > Akan di bayar t hari yang akan datang: $D = \frac{M \times i \times t}{36.000}$. (1 tahun = 360 hari)
- 9. Diskonto juga dapat dicari dengan rumus:

- 10. Metode menentukan bunga tunggal:
 - a. Metode pembagi tetap

Metode ini digunakan jika suku bunga tunggal merupakan pembagi dari 360, 1 tahun dianggap 360 hari, suku bunga i%/tahun dan jangka waktu pengembalian t hari.

Jika
$$\frac{M \times t}{100}$$
 = angka bunga dan $\frac{360}{i}$ = pembagi tetap, maka:

$$B = \frac{\text{angka bunga}}{\text{pembagi tetap}} \text{ dan Jumlah bunga} = \frac{\text{jumlah angka bunga}}{\text{pembagi tetap}}$$

b. Metode persen yang sebanding

Metode ini digunakan jika suku bunga tunggal bukan merupakan pembagi dari 360. 1 tahun dianggap 360 hari. Suku bunga i%/tahun dan jangka waktu pengembalian t hari.

c. Metode persen yang seukuran

Metode ini digunakan jika 1 tahun = 365 hari. Pembagi tetapnya = 73

$$B = \frac{\text{angka bunga}}{73} \text{ dan Jumlah bunga} = \frac{\text{jumlah angka bunga}}{73}$$

11. Jika suatu modal M dibungakan dengan bunga majemuk i%/periode selama n periode, maka modal akhir M_n :

$$M_n = M(1+i)^n$$

12. Rumus nilai akhir bunga majemuk dengan masa bunga pecahan:

$$M_n = M(1 + i)^n (1 + p.i)$$
 Dengan p masa bunga pecahan

13. Rumus nilai tunai bunga majemuk adalah:

Nt =
$$\frac{M}{(1+i)^n}$$
 atau Nt = M(1 + i)⁻ⁿ

14. Rumus nilai tunai bunga majemuk dengan masa bunga pecahan

$$Nt = \frac{M}{(1+i)^n(1+p.i)}$$
 dengan p = suku bunga pecahan

LATIHAN

- 1. Ubahlah menjadi persen dan persen di atas 100:
 - a. 5% di bawah 100

- b. 18% di bawah 100
- 2. Ubahlah menjadi persen dan persen di bawah 100:
 - a. 27% di atas 100

b. 16% di atas 100

- 3. Ubahlah menjadi persen:
 - a. 2,5% di atas 100

- b. 25% di bawah 100
- 4. Ubahlah menjadi pecahan yang paling sederhana:
 - a. 2,5% di atas 100

c. 12,5%

b. 30% di bawah 100

d. 25 % di bawah 100

- 5. Tentukan nilainya:
 - a. 2,5% di atas 100 dari Rp51.250,00 c. 12,5% dari Rp300.000,00
 - b. 3% di bawah 100 dari Rp630.500,00 d. 33% di bawah 100 dari 201
- 6. Selesaikan:
 - a. Harga barang setelah diskon 17% adalah Rp43.990,00. Tentukanlah besar diskon dan harga sebelum diskon!
 - b. Harga jual suatu barang setelah untung sebesar 13% adalah Rp706.250,00. Tentukanlah besarnya untung dan harga belinya!
 - c. Harga barang setelah dikenai pajak 28% adalah Rp806.400,00. Tentukanlah besar pajak dan harga sebelum pajak!
 - d. Harga jual suatu barang setelah rugi sebesar 24% adalah Rp638.400,00 Tentukanlah besarnya rugi dan harga belinya!
 - e. Harga barang setelah dikenai pajak 23% adalah Rp553.500,00. Tentukanlah besar pajak dan harga sebelum pajak!
 - f. Harga bensin disubsidi oleh pemerintah sebesar 9% dan harganya per liter menjadi Rp4.550,00. Tentukanlah besarnya subsidi perliter dan harga sebelum subsidi!
- 7. Suatu modal sebesar Rp2.000.000,00 dibungakan dengan bunga tunggal selama 5 tahun dengan suku bunga 15%/tahun. Tentukan bunga yang diperoleh dan modal setelah dibungakan!
- 8. Modal sebesar Rp4.600.000,00 dibungakan dengan bunga tunggal selama 2 tahun 5 bulan, dengan suku bunga 4,5%/cawu. Tentukan:
 - a. Bunga yang diperoleh!
 - b. Modal akhir!
- 9. Pinjaman Rp6.750.000,00 dibungakan dengan bunga tunggal 0,75%/bulan selama 1 tahun 2 bulan dan 24 hari (jika dianggap 1 tahun =360 hari). Tentukan:
 - a. Bunga yg diperoleh!
 - b. Modal akhir!
- 10. Modal sebesar Rp360.000 dibungakan dengan suku bunga tunggal 1.5%/bulan. ternyata modal menjadi Rp516.600. Setelah berapa bulan modal itu dibungakan?

- 11. Pinjaman sebesar Rp2.800.000,00 dibungakan dengan bunga tunggal 2 tahun, 5 bulan dan 10 hari (1 tahun = 360 hari), dengan suku bunga 2%/bulan. Tentukanlah bunga yang diperoleh!
- 12. Modal sebesar Rp4.600.000,00 setelah dibungakan dengan bunga tunggal selama 1 tahun 10 bulan menjadi Rp5.106.000,00. Tentukanlah suku bunganya tiap semester!
- 13. Pinjaman sebesar Rp3.000.000,00 dibungakan dengan bunga tunggal selama 1 tahun 7 bulan dengan suku bunga 3%/triwulan . Tentukan bunga yang diperoleh!
- 14. Pinjaman sebesar Rp4.200.000,00 dibungakan dengan bunga tunggal 3 tahun. 1 bulan dan 20 hari (1 tahun = 360 hari), dengan suku bunga 1%/bulan. tentukanlah bunga yang diperoleh!
- 15. Modal sebesar Rp800.000,00 setelah dibungakan dengan bunga tunggal selama 1 tahun 8 bulan menjadi Rp1.120.000,00. Tentukanlah suku bunganya tiap triwulan?
- 16. Modal sebesar Rp2.400.000,00 dibungakan dengan suku bunga tunggal 5 %/ semester, ternyata modal menjadi Rp3.060.000,00. Setelah berapa bulan modal itu dibungakan!
- 17. Pinjaman sebesar Rp3.500.000,00 dibungakan dengan bunga tunggal selama 8 bulan 10 hari (1 tahun = 360 hari) dengan suku bunga 6%/cawu. Tentukan bunga yang diperoleh!
- 18. Pinjaman sebesar Rp2.000.000,00 dibungakan dengan bunga tunggal selama 3 tahun 2 bulan dengan suku bunga 6%/semester. Tentukan bunga yang diperoleh!
- 19. Pinjaman sebesar Rp1.500.000,00 dibungakan dengan bunga tunggal 1 tahun, 2 bulan dan 18 hari (1 tahun = 360 hari) dengan suku bunga 6%/cawu. Tentukanlah bunga yang diperoleh?
- 20. Modal Rp 4.000.000.00 setelah dibungakan dengan bunga tunggal selama 2 tahun 7 bulan menjadi Rp 4.930.000,00. Tentukan suku bunganya tiap semester?
- 21. Modal Rp2.500.000,00 dibungakan dengan suku bunga tunggal 0.5 %/bulan. Setelah berapa bulan modal itu menjadi Rp2.762.500,00?
- 22. Suatu pinjaman sebesar Rp4.500.000,00 dibungakan dengan bunga tunggal selama 1 tahun 7 bulan. Ternyata bunga yang diperoleh Rp570.000,00. Tentukan suku bunganya tiap tahun dan tiap triwulan!
- 23. Suatu pinjaman sebesar Rp2.400.000,00 dibungakan dengan suku bunga tunggal 4.5%/semester. ternyata modal tersebut menjadi Rp2.634.000,00. Setelah berapa bulan bunga tersebut dibungakan?
- 24. Suatu modal setelah dibungakan dengan bunga tunggal 11%/tahun selama 2 tahun modal tersebut menjadi Rp6.832.000,00. Tentukan bunga yang diperoleh dan modal mula-mula!

- 25. Pinjaman sebesar Rp4.500.000,00 dengan sistem diskonto 1,5%/bulan dan akan dikembalikan setelah 7 bulan. Tentukan:
 - a. Nilai diskontonya
 - b. Modal yang diterima peminjam!
- 26. Pinjaman sebesar Rp1.250.000,00 dengan sistem diskonto 15%/tahun dan akan dikembalikan setelah 7 bulan. Tentukan:
 - a. Nilai diskontonya
 - b. Modal yang diterima peminjam!
- 27. Pinjaman sebesar Rp8.000.000,00 dengan sistem diskonto 18 %/tahun dan akan dikembalikan setelah 2 bulan 10 hari. Tentukan modal yang diterima peminjam jika dianggap 1 tahun = 360 hari!
- 28. Suatu pinjaman akan dilunasi dengan sistem diskonto 6.5%/tahun dan akan dikembalikan dalam waktu 3 tahun. Jika Modal yang diterima peminjam di awal periode sebesar Rp4.182.500,00. Tentukan nilai diskonto dan besarnya pinjaman yang harus dikembalikan saat jatuh tempo!
- 29. Suatu pinjaman akan dilunasi dengan sistem diskonto 4,5%/kwartal dan akan dikembalikan dalam waktu 14 bulan. Jika Modal yang diterima peminjam di awal periode sebesar Rp734.700,00. Tentukan besarnya pinjaman yang harus dikembalikan saat jatuh tempo!

30. Di bawah ini adalah tabel dari nasabah Koperasi Simpan Pinjam "Sejahtera "dengan suku bunga tunggal i = 12%/tahun dan 1 tahun dianggap 360 hari:

No	Nama Nasabah	Jumlah pinjaman (M)	Jangka waktu pengembalian (t)	
1	Arif	Rp7.000.000,00	50 hari	
2	Budiman	Rp4.500.000,00	120 hari	
3	Сесер	Rp8.500.000,00	40 hari	
4	Dwi	Rp2.500.000,00	150 hari	
5	Endang	Rp5.500.000,00	70 hari	

Tentukanlah:

- a. Pembagi tetap dan jumlah angka bunganya
- b. Bunga total yang diperoleh koperasi!

31. Di bawah ini adalah tabel dari nasabah Koperasi Mutiara dengan suku bunga tunggal i = 13 % / tahun dan 1 tahun diangap 360 hari:

No	Nama Nasabah	Jumlah pinjaman (M)	Jangka waktu pengembalian (t)
1	Puput	Rp2.800.000,00	45 hari
2	Qalam	Rp1.750.000,00	90 hari
3	Risma	Rp4.500.000,00	60 hari
4	Syukur	Rp3.600.000,00	80 hari
5	Titin	Rp2.500.000,00	90 hari
6	Upik	Rp1.500.000,00	150 hari

Dengan menggunakan persen yang sebanding. Tentukan bunga total yang diperoleh koperasi!

32. Di bawah ini adalah tabel dari nasabah Koperasi "Maju Bersama" dengan suku

bunga tunggal i = 7.5%/tahun dan 1 tahun dianggap 365 hari.

No	Nama Nasabah	Jumlah pinjaman (M)	Jangka waktu pengembalian (t)
1	Kunti	Rp2.400.000,00	40 hari
2	Lina	Rp4.800.000,00	75 hari
3	Mira	Rp3.500.000,00	50 hari
4	Nunik	Rp2.500.000,00	90 hari
5	Ophi	Rp1.800.000,00	80 hari
6	Puspita	Rp7.000.000,00	150 hari

Tentukan bunga total yang diperoleh koperasi dengan mengunakan persen yang seukuran!

- 33. Modal Rp2.500.000,00 dibungakan dengan bunga majemuk 12%/tahun. Tentukan modal akhir dan bunga yang diperoleh setelah 8 tahun!
- 34. Modal sebesar Rp4.800.000,00 dibungakan dengan suku bunga majemuk 6%/triwulan selama 3.5 tahun. Tentukan modal akhir!
- 35. Modal sebesar Rp4.500.000,00 dibungakan dengan bunga majemuk 4%/caturwulan selama 5 tahun 4 bulan. Tentukan modal akhir!
- 36. Modal sebesar Rp3.250.000,00 dibungakan dengan suku bunga majemuk 5%/semester, setelah berapa tahun modal akhir menjadi = Rp7.094.342.41?
- 37. Modal sebesar Rp5.500.000,00 dibungakan dengan suku bunga majemuk 2,5%/triwulan, setelah berapa triwulan modal akhir menjadi = Rp7.040.464,99?
- 38. Pinjaman Rp2.800.000,00 dibungakan dengan bunga majemuk tiap semester. Setelah 4,5 tahun modal menjadi Rp3.985.273,08. Tentukan suku bunganya!
- 39. Modal sebesar Rp5.500.000,00 dibungakan dengan suku bunga majemuk 2,5%/bulan. Tentukanlah modal akhir setelah berbunga selama 6,25 bulan!
- 40. Modal sebesar Rp7.500.000,00 dibungakan dengan suku bunga majemuk 12%/tahun. Tentukanlah modal akhir setelah berbunga selama 5 tahun 8 bulan!
- 41. Tentukan modal mula-mula jika suatu modal setelah dibungakan dengan bunga majemuk 11.5%/tahun selama 12 tahun modal menjadi Rp5.538.468,22!
- 42. Tentukan modal mula-mula (Nilai Tunai dari suatu modal) jika nilai akhir modal sebesar Rp8.959.233,86, setelah dibungakan selama 2 tahun 8 bulan dengan suku bunga 4,5%/caturwulan!
- 43. Tentukan nilai tunai dari suatu modal Rp800.000,00 yang dibungakan dengan bunga majemuk 2,5%/bulan selama 10 bulan!
- 44. Tentukanlah nilai tunai dari modal sebesar Rp8.500.000,00 dibungakan dengan suku bunga majemuk 1,75%/bulan selama 8.5 bulan!
- 45. Tentukan nilai tunai dari modal sebesar Rp1.650.000,00 dibungakan dengan suku bunga majemuk 7%/tahun setelah berbunga selama 3 tahun 8 bulan!

B.2. Rente

a. Tujuan

Setelah mempelajari uraian kompetensi dasar ini, anda dapat:

- > Menjelaskan pengertian dan macam-macam Rente
- Menghitung Nilai Akhir Rente Pra numerando
- Menghitung Nilai Akhir Rente Post Numerando
- > Menghitung Nilai Tunai Rente Pra numerando
- Menghitung Nilai Tunai Rente Post Numerando
- Menghitung Nilai Tunai Rente Kekal

b. Uraian Materi

1). Pengertian dan macam-macam Rente

Andaikan anda menyimpan sejumlah uangnya setiap awal bulan di bank dengan jumlah yang sama, dan bank memberikan bunga terhadap simpanan anda. Setelah sekian bulan anda akan menghitung jumlah tabungan yang telah tersimpan. Andaikan bank tidak membebani biaya administrasi, dapatkah anda menghitung jumlah keseluruhan simpanan uang anda? Untuk menghitung jumlah tabungan dari ilustrasi di atas. dibutuhkan ilmu tentang **Rente.**

Rente adalah sederatan modal atau angsuran yang dibayarkan atau diterima pada setiap jangka waktu tertentu yang tetap besarnya.

Pada hakikatnya ada tiga macam rente, yaitu:

- a. Rente berdasarkan saat pembayaran angsuran terdiri dari:
 - > Rente Pra numerando adalah rente yang dibayarkan atau diterima di awal periode.
 - > Rente Post Numerando adalah rente yang dibayarkan atau diterima di akhir periode.
- b. Rente berdasarkan banyaknya angsuran terdiri dari:
 - > Rente terbatas adalah rente yang jumlah angsurannya terbatas.
 - > Rente kekal adalah rente yang jumlah angsurannya tidak terbatas.
- c. Rente berdasarkan langsung tidaknya pembayaran pertama terdiri dari:
 - > Rente langsung adalah rente yang pembayaran pertamanya langsung sesuai perjanjian.
 - > Rente yang ditangguhkan adalah rente yang pembayaran pertamanya ditangguhkan beberapa periode.

2). Nilai Akhir Rente Pra numerando

Rente Pra numerando adalah rente yang dibayarkan di awal periode, sehingga angsuran terakhir sudah mengalami pembungaan satu periode.

Misalkan modal yang dibayarkan adalah M dengan bunga i%/periode selama n periode, maka proses pembungannya perhatikan skema di bawah ini:

Jika Nilai akhir Rente Pra numerando dilambangkan dengan Na, dari skema di atas diperoleh suatu deret, yaitu:

$$\begin{aligned} \text{Na} &= \text{M}(1+i) + \text{M}(1+i)^2 + \ldots + \text{M}(1+i)^{n-2} + \text{M}(1+i)^{n-1} + \text{M}(1+i)^n \\ \text{Ternyata deret di atas adalah deret geometri dengan suku pertama a} &= \text{M}(1+i) \text{ dan} \\ \text{rasio } r &= \frac{\text{M}(1+i)^2}{\text{M}(1+i)} = (1+i) \text{, sehingga:} \end{aligned}$$

Na =
$$\frac{a(r^n - 1)}{r - 1}$$

= $\frac{M(1+i)((1+i)^n - 1)}{(1+i)-1} = \frac{M(1+i)((1+i)^n - 1)}{i}$

Nilai akhir rente Pra numerando dengan angsuran M dan suku bunga i% Selama n periode adalah:

Na =
$$\frac{M(1+i)((1+i)^n - 1)}{i}$$

Dengan menggunakan tabel:

$$\begin{split} Na &= M(1+i) + M(1+i)^2 + \ldots + M(1+i)^{n-2} + M(1+i)^{n-1} + M(1+i)^n \\ Na &= M[(1+i) + (1+i)^2 + \ldots + (1+i)^{n-2} + (1+i)^{n-1} + (1+i)^n] \\ Na &= M. \sum_{k=1}^n (1+i)^k \end{split}$$

$Na = M \times Daftar Nilai akhir rente$

Keterangan:

- > Daftar nilai akhir rente adalah daftar V dan VI pada lampiran buku ini
- ➤ Nilai dari daftar adalah kolom ke-i % dan baris ke-n

Setiap awal tahun Nisa menyimpan uang di Bank ABC sebesar Rp1.000.000,00. Jika bank memberikan bunga 6%/tahun, tentukan uang Nisa setelah menabung 20 tahun!

Jawab:

M = Rp1.000.000.00
i = 6% / tahun = 0.06/tahun
n = 20 tahun
Na =
$$\frac{M(1+i)[(1+i)^n - 1]}{i}$$

= $\frac{1.000.000(1+0.06)[(1+0.06)^{20} - 1]}{0.06}$
= $\frac{1.060.000 \times (1.06^{20} - 1)}{0.06}$
= $\frac{1.060.000 \times 2.207135472}{0.06}$ = Rp38.992.726,68

Dengan Daftar:

Na = Modal x Tabel VI kolom 6% dan baris 20

 $= Rp1.000.000 \times 38,99272668$

= Rp38.992.726,68

Contoh 41

Seorang karyawan setiap awal bulan menyimpan uang di bank sebesar Rp500.000,00. Bank memberikan bunga 1,5%/bulan selama 2 tahun. Tentukan simpanan karyawan selama 2 tahun!

Jawab:

M = Rp 500.000,00

i =1,5%/bulan = 0,015/bulan
n = 2 tahun = 24 bulan
Na =
$$\frac{M(1+i)[(1+i)^n - 1]}{i}$$

= $\frac{500.000,00 \times (1+0,015)[(1+0,015)^{24} - 1]}{0,015}$
= $\frac{507.500,00 \times (1,015^{24} - 1)}{0,015}$
= $\frac{507.500,00 \times 0,429502811}{0,015}$ = Rp14.531.511,80

Dengan daftar:

3). Nilai Akhir Rente Post Numerando

Rente Post Numerando adalah rente yang dibayarkan di akhir periode, sehingga angsuran terakhirnya tidak mengalami pembungaan.

Misalkan modal yang dibayarkan adalah M dengan bunga i%/periode selama n periode, maka proses pembungaannya perhatikan skema di bawah ini:

Jika Nilai akhir Rente Post Numerando dilambangkan dengan Na, dari skema di atas diperoleh suatu deret, yaitu:

$$Na = M + M(1+i) + M(1+i)^{2} \dots + M(1+i)^{n-3} + M(1+i)^{n-2} + M(1+i)^{n-1}$$

Ternyata deret di atas adalah deret geometri dengan suku pertama a = M dan rasio r = $\frac{M(1+i)}{M}$ = (1 + i), sehingga:

Na =
$$\frac{a(r^n - 1)}{r - 1}$$

= $\frac{M((1 + i)^n - 1)}{(1 + i) - 1} = \frac{M((1 + i)^n - 1)}{i}$

Nilai akhir rente Post Numerando dengan angsuran M dan suku bunga i% Selama n periode adalah:

Na =
$$\frac{M((1+i)^n - 1)}{i}$$

Dengan menggunakan tabel:

Na = M + M(1 + i) + M(1 + i)² . . . + M(1 + i)ⁿ⁻³ + M(1 + i)ⁿ⁻² + M(1 + i)ⁿ⁻¹
Na = M + M[(1 + i) + (1 + i)² . . . + (1 + i)ⁿ⁻³ + (1 + i)ⁿ⁻² + (1 + i)ⁿ⁻¹]
Na = M + M.
$$\sum_{k=1}^{n-1} (1+i)^k$$

 $Na = M + M \times Daftar Nilai akhir rente$

Keterangan:

- > Daftar nilai akhir rente adalah daftar V dan VI pada lampiran buku ini.
- Nilai dari daftar adalah kolom ke-i % dan baris ke-(n − 1).

Contoh 42

Setiap akhir tahun Ayah menyimpan uangnya di bank ABC sebesar Rp800.000,00 selama 25 tahun. Jika bank memberikan bunga 5%/tahun, tentukan jumlah simpanan total Ayah!

Jawab:

M = Rp800.000,00

i = 5%/tahun = 0,05/tahun
n = 25 tahun
Na =
$$\frac{M((1+i)^n - 1)}{i}$$

= $\frac{800.000,00 \times (1+0,05)^{25} - 1}{0,05}$
= $\frac{800.000,00 \times (1,05^{25} - 1)}{0,05}$
= $\frac{800.000,00 \times 2,386354941}{0.05}$ = Rp38.181.678,05

Dengan daftar:

Contoh 43

Setiap akhir bulan Yenny menyimpan uang di bank Rp500.000,00 selam 2 tahun. Jika bank memberikan suku bunga 1.5%/bulan, tentukan simpanan total Yenny di bank tersebut!

$$\begin{aligned} M &= \text{Rp500.000,00} \\ i &= 1,5\% \text{ / bulan} = 0,015 \text{ bulan} \\ n &= 2 \text{ tahun} = 24 \text{ bulan} \\ \text{Na} &= \frac{M((1+i)^n-1)}{i} \\ &= \frac{500.000,00 \times ((1+0,015)^{24}-1)}{0,015} \\ &= \frac{500.000,00 \times ((1,015)^{24}-1)}{0,015} \\ &= \frac{500.000,00 \times 0,429502811}{0,015} = \text{Rp14.316.760,40} \end{aligned}$$

Dengan daftar:

Na = M + M x Daftar V kolom 1.5% dan baris ke-(24 - 1) = baris ke-23 = $500.000,00 + 500.000,00 \times 27,63352080$ = Rp 14.316.760,40

4). Nilai Tunai Rente Pra Numerando

Nilai tunai rente Pra numerando adalah jumlah semua nilai tunai angsuran yang dihitung pada awal masa bunga yang pertama. Nilai tunai angsuran pertama adalah nilai angsuran itu sendiri, yaitu M:

Jika Nilai tunai Rente Pra numerando dilambangkan dengan Nt, dari skema di atas. diperoleh suatu deret, yaitu:

$$Nt = M + M(1+i)^{-1} + M(1+i)^{-2} \dots + M(1+i)^{n-3} + M(1+i)^{n-2} + M(1+i)^{n-1}$$

Deret di atas adalah deret geometri dengan suku pertama a = M dan rasio $r=\frac{M(1+i)^{-1}}{M}=(1+i)^{-1}<1, \text{ sehingga:}$

$$Nt = \frac{a(1-r^{n})}{1-r}$$

$$= \frac{M(1-(1+i)^{-n})}{1-(1+i)^{-1}} \times \frac{(1+i)}{(1+i)}$$

$$= \frac{M(1+i)(1-(1+i)^{-n})}{(1+i)-1} = \frac{M(1+i)(1-(1+i)^{-n})}{i}$$

Nilai tunai rente Pra numerando dengan angsuran M dan suku bunga i% selama n periode adalah:

Nt =
$$\frac{M(1+i)(1-(1+i)^{-n})}{i}$$

Dengan menggunakan daftar:

$$\begin{aligned} &\text{Nt} = \text{M} + \text{M}(1+i)^{-1} + \text{M}(1+i)^{-2} \dots + \text{M}(1+i)^{n-3} + \text{M}(1+i)^{n-2} + \text{M}(1+i)^{n-1} \\ &\text{Nt} = \text{M} + \text{M}[(1+i)^{-1} + (1+i)^{-2} \dots + (1+i)^{n-3} + (1+i)^{n-2} + (1+i)^{n-1}] \\ &\text{Nt} = \text{M} + \text{M}. \sum_{k=1}^{n-1} (1+i)^{-k} \end{aligned}$$

Nt = M + M x Daftar Nilai tunai rente

Keterangan:

- Daftar nilai tunai rente adalah daftar VII dan VIII pada lampiran buku ini.
- ➤ Nilai dari daftar adalah kolom ke-i % dan baris ke-(n 1).

Contoh 44

Seorang siswa akan mendapat beasiswa pada setiap awal bulan dari PT UNILEVER sebesar Rp250.000,00 selama 3 tahun. Jika pemberian itu akan diberikan sekaligus di awal bulan pertama dengan dikenai bunga 2%/bulan, tentukan besarnya beasiswa total yang diterima siswa!

Jawab:

$$\begin{aligned} &M &= \text{Rp250.000,00} \\ &i &= 2\%/\text{bulan} = 0,02/\text{bulan} \\ &n &= 3 \text{ tahun} = 36 \text{ bulan} \end{aligned}$$

$$&\text{Nt} &= \frac{M(1+i)[1-(1+i)^{-n}]}{i} \\ &= \frac{250.000,00x(1+0,02)[1-(1+0,02)^{-36}]}{0,02} \\ &= \frac{250.000,00x(1,02)[1-(1,02)^{-36}]}{0,02} \\ &= \frac{250.000,00x(1,02)[1-0,49022315]}{0,02} \\ &= \frac{255.000,00x(1,02)[1-0,49022315]}{0,02} \\ &= \frac{255.000,00x(1,02)[1-0,49022315]}{0,02} \end{aligned}$$

Dengan daftar:

Nt = M + M x daftar VII kolom 2% dan baris
$$(36 - 1)$$
 = baris 35
= 250.000,00 + 250.000,00 x 24,99861933
= 250.000,00 + 6249654,83
= Rp6.499.654,83

Contoh 45

Tentukan nilai tunai rente Pra numerando dari suatu angsuran Rp4.000.000,00 selama 20 tahun dengan suku bunga 9%/tahun!

$$M = Rp4.000.000,00$$

 $i = 9\%/tahun = 0.09/tahun$

n = 20 tahun
Nt =
$$\frac{M(1+i)[1-(1+i)^{-n}]}{i}$$

= $\frac{4.000.000,00x(1+0,09)[1-(1+0,09)^{-20}]}{0,09}$
= $\frac{4.000.000,00x(1,09)[1-(1,09)^{-20}]}{0,09}$
= $\frac{4.000.000,00x(1,09)[1-0,178430889]}{0,09}$
= $\frac{4.360.000,00x(1,09)[1-0,178430889]}{0,09}$ = Rp39.800.459,11

5). Nilai Tunai Rente Post numerando

Perhatikan skema jumlah semua nilai tunai total di bawah ini:

Jika nilai tunai Rente Post Numerando dilambangkan dengan Nt, dari skema di atas diperoleh suatu deret, yaitu:

$$Nt = M(1+i)^{-1} + M(1+i)^{-2} ... + M(1+i)^{n-2} + M(1+i)^{n-1} + M(1+i)^{n}$$

Deret di atas adalah deret geometri dengan suku pertama a = $M(1 + i)^{-1}$ dan rasio $r = \frac{M(1+i)^{-2}}{M(1+i)^{-1}} = (1+i)^{-1} < 1$. sehingga:

Nt =
$$\frac{a(1-r^n)}{1-r}$$

= $\frac{M(1+i)^{-1}[1-(1+i)^{-n}]}{1-(1+i)^{-1}} \times \frac{(1+i)}{(1+i)}$

$$=\frac{M(1-(1+i)^{-n})}{(1+i)-1}\ =\ \frac{M(1-(1+i)^{-n})}{i}$$

Nilai tunai rente Post Numerando dengan angsuran M dan suku bunga i% selama n periode adalah:

Nt =
$$\frac{M(1-(1+i)^{-n})}{i}$$

Dengan menggunakan tabel:

$$\begin{aligned} &\text{Nt} &= M(1+i)^{-1} + M(1+i)^{-2} \dots + M(1+i)^{n-2} + M(1+i)^{n-1} + M(1+i)^n \\ &\text{Nt} &= M[(1+i)^{-1} + (1+i)^{-2} \dots + (1+i)^{n-2} + (1+i)^{n-1} + (1+i)^n] \\ &\text{Nt} &= M. \sum_{k=1}^{n} (1+i)^{-k} \end{aligned}$$

Nt = M x Daftar Nilai tunai rente

Keterangan:

- > Daftar nilai tunai rente adalah daftar VII dan VIII pada lampiran buku ini.
- Nilai dari daftar adalah kolom ke-i % dan baris ke-n.

Contoh 46

M = Rp300.000.00

Tentukan nilai tunai rente Post Numerando dari suatu modal Rp300.000/bulan selama 2.5 tahun dengan suku bunga 1.75%/bulan!

Jawab:

i = 1.75%/bulan = 0.0175/bulan
n = 2 tahun 6 bulan = 30 bulan
Nt =
$$\frac{M[1 - (1+i)^{-n}]}{i}$$
=
$$\frac{300.000,00 \times [1 - (1+0,0175)^{-30}]}{0,0175}$$
=
$$\frac{300.000,00 \times 0,405752363}{0.0175}$$
 = Rp6.955.754,79

Contoh 47

Tiap akhir bulan Yayasan *Cinta Damai* mendapatkan sumbangan dari Badan Perdamaian Dunia sebesar Rp5.000.000,00 selama 3 tahun berturut-turut. Jika sumbangan akan diberikan sekaligus dan dikenai bunga sebesar 2%/bulan, tentukan sumbangan total yg diterima yayasan!

$$\begin{array}{ll} M & = Rp5.000.000,00 \\ i & = 2\% \ / \ bulan = 0.02 \ / \ bulan \\ n & = 3 \ tahun = 36 \ bulan \\ Nt & = \frac{M[1-(1+I)^{-n}]}{i} \\ \end{array}$$

$$= \frac{5.000.000,00 \times [1 - (1 + 0,02)^{-30}]}{0,02}$$

$$= \frac{5.000.000,00 \times [1 - 1,02^{-30}]}{0,02}$$

$$= \frac{5.000.000,00 \times (1 - 0,552070889)}{0,02}$$

$$= \frac{5.000.000,00 \times 0,447929111}{0.02} = Rp111.982.277,80$$

Dengan daftar:

Nt = M x daftar VII kolom 2% dan baris 30 = 5.000.000.00 x 22,396455551 = Rp111.982.277,80

6). Nilai Tunai Rente Kekal

Rente kekal adalah rente yang jumlah angsurannya tidak terbatas. Nilai akhir rente merupakan deret geometri naik. Oleh karena itu rente kekal tidak ada nilai akhirnya. Nilai tunai rente merupakan deret geometri turun, sehingga nilai tunai rente kekal memiliki nilai.

a). Nilai Tunai Rente Kekal Pra numerando

Deret nilai tunai modal rente Pra numerando yang sudah dipelajari adalah:

Jika jumlah angsurannya tidak terbatas, maka deret di atas menjadi deret geometri tak berhingga, yaitu:

dengan suku pertama a = M dan rasio r = $\frac{M(1+i)^{-1}}{M}$ = $(1+i)^{-1}$ < 1. sehingga:

Nt =
$$\frac{a}{1-r}$$

= $\frac{M}{1-(1+i)^{-1}} \times \frac{(1+i)}{(1+i)}$
= $\frac{M(1+i)}{(1+i)-1} = \frac{M(1+i)}{i}$

Nilai tunai rente Pra numerando dengan angsuran M dan suku bunga i%:

$$Nt = \frac{M(1+i)}{i} \quad atau \quad Nt = \frac{M}{i} + M$$

Contoh 48

Tentukan nilai tunai Rente kekal Pra numerando dari suatu modal Rp500.000,00/bulan dengan suku bunga 2.5%/bulan!

Jawab:

M = Rp500.000,00i = 2.5%/bulan = 0.025/bulan

$$Nt = M + \frac{M}{i}$$

$$= 500.000,00 + \frac{500.000,00}{0,025}$$

$$= 500.000,00 + 20.000.000,00$$

$$= Rp20.500.000,00$$

Setiap awal bulan, Fulan akan mendapatkan beasiswa dari PT UNILEVER sebesar Rp175.000,00 dalam jangka waktu yang tak terbatas. PT.UNILEVER tak mau repot. Oleh karena itu, beasiswa akan diberikan sekaligus namun harus dikenai bunga sebesar 1%/ bulan. Tentukan beasiswa total yg diterima Fulan!

Jawab:

Soal di atas merupakan rente kekal pra numerando karena memuat kata " setiap awal bulan " dan " jangka waktu yang tak terbatas".

$$M = Rp175.000,00$$

$$i = 1\%/bulan = 0,01/bulan$$

$$Nt = M + \frac{M}{i}$$

$$= 175.000,00 + \frac{175.000,00}{0,01}$$

$$= 175.000,00 + 17.500.000,00$$

$$= Rp17.675.000,00$$

Contoh 50

Nt = Rp15.300.000,00

Nilai tunai dari rente kekal Pra numerando adalah Rp15.300.000,00. Jika suku bunga 2%/bulan, tentukan besarnya angsuran!

Jawab:

i = 2%/bulan = 0,02/bulan
Nt =
$$\frac{M(1+i)}{i}$$

15.300.000,00 = $\frac{M(1+0,02)}{0,02}$
15.300.000,00 x 0,02 = M x1.02
306.000,00 = M x 1.02
M = $\frac{306.000,00}{1,02}$
= Rp300.000,00

Jadi, besarnya angsuran adalah Rp300.000,00.

Contoh 51

Chandra mendapatkan tunjangan dari orang tua asuh Rp175.000.00 tiap awal bulan sampai jangka waktu yang tidak terbatas. Namun, tunjangan akan diberikan sekaligus

sebesar Rp10.175.000.00 dengan dikenai bunga. Berapakah besar suku bunganya setiap bulan?

Jawab:

$$Nt = Rp10.175.000,00$$

 $M = Rp175.000,00$

$$Nt = M + \frac{M}{i}$$

$$10.175.000,00 = 175.000.00 + \frac{175.000,00}{i}$$

$$10.175.000,00 - 175.000,00 = \frac{175.000,00}{i}$$

$$10.000.000,00 = \frac{175.000,00}{i}$$

$$i = \frac{175.000,00}{10.000.000,00}$$

$$i = 0,0175 = 1.75\%$$

Jadi, suku bunga tiap bulan = 1.75%.

b). Nilai Tunai Rente Kekal Post Numerando

Deret nilai tunai modal rente Post numerando yang sudah dipelajari adalah: Nt = $M(1 + i)^{-1} + M(1 + i)^{-2} \dots + M(1 + i)^{n-3} + M(1 + i)^{n-2} + M(1 + i)^{n-1}$ Jika jumlah angsurannya tidak terbatas, maka deret di atas menjadi deret geometri tak berhingga, yaitu:

$$Nt = M(1 + i)^{-1} + M(1 + i)^{-2} + M(1 + i)^{-3} \dots$$

dengan suku pertama a = $M(1 + i)^{-1}$ dan rasio $r = \frac{M(1+i)^{-1}}{M} = (1 + i)^{-1}$, sehingga:

Nt =
$$\frac{a}{1-r}$$

= $\frac{M(1+i)^{-1}}{1-(1+i)^{-1}} \times \frac{(1+i)}{(1+i)}$
= $\frac{M}{(1+i)-1} = \frac{M}{i}$

Nilai tunai rente Post numerando dengan angsuran M dan suku bunga i%:

$$Nt = \frac{M}{i}$$

Contoh 52

Tentukan nilai tunai rente post numerando dari suatu modal Rp40.000.00 dengan suku bunga 0.75% / bulan!

$$Nt = \frac{M}{i}$$
= $\frac{40.000,00}{0,075}$ = Rp533.333,33

Contoh 53

Setiap akhir tahun yayasan X akan mendapatkan sumbangan dari Bank Dunia Sebesar Rp3.500.000,00 dalam jangka waktu yang tidak terbatas. Jika Bank Dunia akan memberikan sumbangan sekaligus dengan bunga 17,5%/tahun, tentukan jumlah sumbangan total yg diterima yayasan X tersebut!

Jawab:

$$M = Rp3.500.000,00$$

$$i = 17,5\%/tahun = 0,175/tahun$$

$$Nt = \frac{M}{i}$$

$$= \frac{3.500.000,00}{0,175}$$

$$= Rp20.000.000,00$$

Contoh 54

Nilai tunai dari rente kekal post numerando adalah Rp5.000.000,00. Jika besar angsurannya Rp200.000.00 tiap bulan, tentukan suku bunganya!

Jawab:

Nt = Rp5.000.000,00
M = Rp200.000,00
Nt =
$$\frac{M}{i}$$

 $5.000.000,00 = \frac{200.000,00}{i}$
 $i = \frac{200.000,00}{5.000.000,00} \times 100\% = 4\%$

Jadi, suku bunganya 4% / bulan.

c. Rangkuman

1. Nilai akhir rente pra numerando dengan angsuran M dan suku bunga i% selama n periode adalah:

Na =
$$\frac{M(1+i)((1+i)^n - 1)}{i}$$

Dengan menggunakan tabel:

Nilai dari daftar adalah kolom ke-i % dan baris ke-n

2. Nilai akhir rente post numerando dengan angsuran M dan suku bunga i% Selama n periode adalah:

Na =
$$\frac{M((1+i)^n - 1)}{i}$$

Dengan menggunakan daftar:

$$Na = M + M \times Daftar Nilai akhir rente$$

Nilai dari daftar adalah kolom ke-i % dan baris ke-(n - 1).

3. Nilai tunai rente pra numerando dengan angsuran M dan suku bunga i% Selama n periode adalah:

Nt =
$$\frac{M(1+i)(1-(1+i)^{-n})}{i}$$

Dengan menggunakan daftar:

$$Nt = M + M \times Daftar Nilai tunai rente$$

Nilai dari daftar adalah kolom ke-i % dan baris ke-(n - 1).

4. Nilai tunai rente post numerando dengan angsuran M dan suku bunga i% Selama n periode adalah:

Nt =
$$\frac{M(1-(1+i)^{-n})}{i}$$

Dengan menggunakan daftar:

Nilai dari daftar adalah kolom ke-i % dan baris ke-n.

5. Nilai tunai rente kekal Pra numerando dengan angsuran M dan suku bunga i% adalah:

$$Nt = \frac{M(1+i)}{i}$$
 atau $Nt = \frac{M}{i} + M$

6. Nilai tunai rente Post numerando dengan angsuran M dan suku bunga i%:

$$Nt = \frac{M}{i}$$

- 7. Kata-kata yang dapat membantu untuk membedakan masing-masing rente dalam soal-soal verbal antara lain:
 - > Rente pra numerando: di awal bulan, di awal tahun, dan lain-lain.
 - > Rente post numerando: di akhir bulan, di akhir tahun, dan lain-lain.
 - Nilai akhir rente: menyimpan, menabung, dan lain-lain.
 - > Nilai tunai rente: menerima, mendapat, dan lain-lain.
 - > Rente kekal: selama-lamanya, abadi, jangka waktu yang tidak terbatas, dan lain-lain.

- 1. Tentukanlah nilai akhir dari rente pra numerando dengan angsuran Rp125.000,00 tiap semester selama 10 tahun dengan suku bunga 4,75%/semester!
- 2. Tentukanlah nilai akhir dari rente pra numerando dengan angsuran Rp300.000,00 tiap bulan selama 4 tahun dengan suku bunga 2%/bulan!
- 3. Tentukanlah nilai akhir dari rente post numerando dengan angsuran Rp4.000.000,00 tiap tahun selama 15 tahun dengan suku bunga 11%/tahun!
- 4. Tentukan nilai tunai post numerando dari modal Rp150.000.00 selama 1,5 tahun dengan suku bunga 3,5%/bulan!
- 5. Tentukanlah nilai akhir dari rente post numerando dengan angsuran Rp600.000,00 tiap semester selama 8 tahun dengan suku bunga 4,6%/semester!
- 6. Tentukanlah nilai tunai rente kekal pra numerando dari suatu modal Rp125.000,00 tiap bulan dengan suku bunga 1,25%/bulan!
- 7. Tentukan nilai tunai post numerando dari modal Rp150.000,00 tiap bulan selama 2,5 tahun dengan suku bunga 2,5%/bulan!
- 8. Nilai tunai rente kekal post numerando adalah Rp10.000.000,00. Jika angsurannya tiap bulan Rp200.000,00, tentukanlah suku bunganya!
- 9. Nilai tunai dari rente kekal pra numerando adalah Rp20.350.000,00. Jika suku bunganya 1,75%/bulan, tentukanlah angsuran tiap bulannya!
- 10. Seorang siswa akan mendapat beasiswa pada setiap awal bulan dari Yayasan Super Semar sebesar Rp350.000,00 selama 3 tahun 7 bulan. Jika beasiswa akan diberikan sekaligus di awal bulan pertama dengan dikenai bunga 3,25%/bulan, tentukan besarnya beasiswa total yang diterima siswa!
- 11. Tutik mendapatkan tunjangan dari orang tua asuh dengan besarnya tetap tiap awal bulan sampai meninggal dunia. Namun, tunjangan akan diberikan sekaligus sebesar Rp20.450.000,00 dengan suku bunga 2,25%. Berapakah besar tunjangan setiap bulannya?
- 12. Setiap awal tahun Azzam menyimpan uang di Bank BRI sebesar Rp1.500.000,00. Jika bank memberikan bunga 8,5%/tahun, tentukan jumlah simpanan Azzam setelah menabung 20 tahun!
- 13. Tiap akhir bulan Yayasan Cinta Damai mendapatkan sumbangan dari Badan Perdamaian Dunia sebesar Rp5.500.000,00 selama 4,5 tahun. Jika sumbangan akan diberikan sekaligus dan dikenai bunga sebesar 2%/bulan, tentukan sumbangan total yg diterima yayasan!
- 14. Setiap akhir tahun Yayasan ABC akan mendapatkan sumbangan dari Bank Dunia sebesar Rp3.250.000,00 dalam jangka waktu yang tidak terbatas. Jika Bank Dunia akan memberikan sumbangan sekaligus dengan bunga 10%/tahun, tentukan jumlah sumbangan total yang diterima yayasan ABC tersebut!

- 15. Setiap akhir bulan Susan menyimpan uangnya di bank Rp225.000,00 selam 5 tahun. Jika Bank memberikan suku bunga 0,75%/bulan, tentukan simpanan total Susan di Bank tersebut!
- 16. Seorang karyawan setiap awal bulan menyimpan uang di bank sebesar Rp650.000,00 bank memberikan bunga 1,8%/bulan selama 2 tahun. Tentukan simpanan total karyawan tersebut!
- 17. Nilai tunai rente kekal post numerando adalah Rp5.000.000,00. Jika angsurannya tiap bulan Rp300.000,00, tentukanlah suku bunganya.
- 18. Setiap awal tahun Yayasan Khartika akan mendapatkan sumbangan dari luar negeri sebesar Rp2.250.000,00 dalam jangka waktu yang tidak terbatas. Jika Bank Dunia akan memberikan sumbangan sekaligus dengan bunga 5%/tahun, tentukan jumlah sumbangan total yang diterima yayasan tersebut!
- 19. Seorang siswa akan mendapat beasiswa pada setiap akhir bulan dari Yayasan Super Semar sebesar Rp50.000,00 selam 2 tahun 3 bulan. Jika beasiswa akan diberikan sekaligus di awal bulan pertama dengan dikenai bunga 1,25%/bulan, tentukan besarnya beasiswa total yang diterima siswa!
- 20. Tiap awal bulan Yayasan Keadilan Sejahtera mendapatkan sumbangan dari negara Saudi Arabia sebesar Rp7.500.000,00 selama 5 tahun. Jika sumbangan akan diberikan sekaligus dan dikenai bunga sebesar 1,75%/bulan, tentukan sumbangan total yg diterima yayasan!
- 21. Setiap awal bulan Sisca menyimpan uangnya di bank Rp 75.000,00 selama 4,5 tahun. Jika bank memberikan suku bunga 0,75%/bulan, tentukan simpanan total Sisca di bank tersebut!
- 22. Tutik mendapatkan tunjangan dari orang tua asuh dengan besarnya tetap tiap awal bulan sampai meninggal dunia. Namun, tunjangan akan diberikan sekaligus sebesar Rp18.450.000,00 dengan suku bunga 2,5%/bulan. Berapakah besar tunjangan setiap bulannya?
- 23. Seorang karyawan setiap awal bulan menyimpan uang di bank sebesar Rp650.000,00 bank memberikan bunga 1.8 %/ bulan selama 2 tahun. Tentukan simpanan total karyawan tersebut!
- 24. Setiap awal tahun Nissa menyimpan uang di Bank BRI sebesar Rp 475.000,00 Jika bank memberikan bunga 7,5%/tahun, tentukan jumlah simpanan Nissa setelah menabung 25 tahun!
- 25. Nilai akhir rente pra numerando dari suatu modal yang diberikan setiap bulan selama 3 tahun dengan suku bunga 2,5% adalah Rp21.144.221,26. Tentukan besarnya modal yang diberikan tiap bulannya!

B.3. Anuitas

a. Tujuan

Setelah mempelajari uraian kompetensi dasar ini, anda dapat:

- Menjelaskan pengertian anuitas.
- Menghitung anuitas.
- Menghitung besar sisa pinjaman.
- Menghitung anuitas yang dibulatkan.
- Menghitung rencana angsuran dengan sistem pembulatan.
- > Menghitung anuitas pinjaman obligasi.

b. Uraian Materi

1). Pengertian Anuitas

Pernahkah anda menghitung sendiri cicilan yang harus dibayar setiap bulan jika akan membeli rumah dengan cara angsuran? Dapatkah anda menghitung sisa pinjaman anda, jika sudah mencicil selama n tahun dari pembayaran rumah yang anda cicil? Itu semua akan di bahas dalam kompetensi dasar **Anuitas**.

Anuitas adalah sejumlah pembayaran pinjaman yang sama besarnya yang dibayarkan setiap jangka waktu tertentu, dan terdiri atas bagian bunga dan bagian angsuran.

Anuitas = Angsuran + Bunga

$$A = a_n + b_n$$

Untuk
$$n = bilangan asli: 1. 2. 3. . . .$$

Jika suatu pinjaman sebesar M dilunasi dengan sistem anuitas tahunan selama n tahun dengan suku bunga i%/tahun, dan setiap anuitas sama besarnya, maka berlaku:

```
a_{n+1} + b_{n+1} = a_n + b_n
             a_{n+1} = a_n + b_n - b_{n+1}

a_{n+1} = a_n + a_n, i
             a_{n+1} = a_n (1 + i), sehingga:
a_2
      = a_1 (1 + i).
      = a_2 (1 + i).
      = a_1 (1 + i)(1 + i).
a_3
      = a_1 (1 + i)^2.
a₃
      = a_3 (1 + i).
a_4
      = a_1 (1 + i)^2 (1 + i).
a_4
      = a_1 (1 + i)^3, dan seterusnya. Sehingga diperoleh rumus:
                        a_n = a_1 (1 + i)^{n-1} atau a_n = a_k (1 + i)^{n-k}
```

Contoh 55

Suatu pinjaman akan dilunasi dengan sistem anuitas bulanan. Jika besarnya Anuitas Rp400.000.00, tentukan:

- a. Besarnya angsuran pertama jika bunga pertama = Rp250.000,00!
- b. Besarnya bunga ke-5 jika angsuran ke-5 adalah Rp315.000,00!

```
Jawab:
```

```
A = Rp400.000,00
a. A = a_1 + b_1
a_1 = A - b_1
a_1 = Rp400.000,00 - Rp250.000,00
a_1 = Rp150.000,00
b. A = a_5 + b_5
b_5 = A - a_5
a_1 = Rp400.000,00 - Rp315.000,00
a_1 = Rp85.000,00
```

Contoh 56

Suatu pinjaman akan dilunasi dengan anuitas tahunan. Tentukan besarnya anuitas jika besarnya angsuran ke-6 dan bunga ke-6 masing-masing adalah Rp215.000,00 dan Rp85.000,00!

```
Jawab:
```

```
a_6 = Rp215.000,00

b_6 = Rp85.000,00

A = a_6 + b_6

A = Rp215.000,00 + Rp85.000,00 = Rp400.000,00
```

Contoh 57

Suatu pinjaman Rp10.000.000,00 akan dilunasi dengan anuitas bulanan Rp500.000,00. Jika suku bunga 3%/ bulan, tentukan:

 $a_9 = 200.000,00 \times (1 + 0,03)^8$ $a_9 = 200.000,00 \times 1,03^8$

- a. Besarnya bunga pertama dan angsuran pertama
- b. Besarnya angsuran ke-7
- c. Besarnya bunga ke-9!

```
Jawab:
M = Rp10.000.000,00
A = Rp500.000,00
i = 3\% bulan = 0,03 / bulan
    a. bunga pertama: b_1 = M \cdot i
                             b_1 = 10.000.000,00 \times 0,03
                             b_1 = Rp300.000,00
                                a_1 = A - b_1
       angsuran pertama:
                                 a_1 = 500.000,00 - 300.000,00
                                 a_1 = Rp200.000,00
   b. angsuran ke-7: a_7 = a_1 (1 + i)^{7-1}
                             a_7 = 200.000,00 \times (1 + 0.03)^6
                             a_7 = 200.000,00 \times 1,03^6
                             a_7 = 200.000,00 \times 1,194052297
                             a_7 = Rp238.810,46
   c. angsuran ke-9: a_9 = a_1 (1 + i)^{9-1}
```

$$a_9 = 200.000,00 \times 1,266770081$$

$$a_7 = Rp253.354,02$$
 bunga ke-9:
$$b_9 = A - a_9$$

$$b_9 = 500.000,00 - 253.354,02$$

$$b_9 = Rp246.645,98$$

2). Nilai anuitas

Besarnya pinjaman = jumlah semua angsuran

M =
$$a_1 + a_2$$
 + a_3 + $a_4 + \dots + a_n$
M = $a_1 + a_1 (1 + i) + a_1 (1 + i)^2 + a_1 (1 + i)^3 + \dots + a_1 (1 + i)^{n-1}$
M = Jumlah barisan geometri dengan suku pertama = a_1 dan rasio = $(1 + i)$
M = $\frac{a_1((1+i)^n - 1)}{(1+i)-1}$
M = $\frac{a_1((1+i)^n - 1)}{i}$
 $a_1 = \frac{M \cdot i}{((1+i)^n - 1)}$
A - M. $i = \frac{M \cdot i}{((1+i)^n - 1)}$
A = M · $i + \frac{M \cdot i}{((1+i)^n - 1)} = \frac{M \cdot i \cdot ((1+i)^n - 1) + M \cdot i}{((1+i)^n - 1)}$
A = $\frac{M \cdot i \cdot ((1+i)^n}{((1+i)^n - 1)} \times \frac{1}{(1+i)^n}$
A = $\frac{M \cdot i}{(1-\frac{1}{(1+i)^n})}$ atau A = $\frac{M \cdot i}{(1-(1+i)^{-n})}$

Besarnya anuitas dari suatu pinjaman M dengan suku bunga i%/periode selama n periode adalah:

$$A = \frac{M.i}{(1-(1+i)^{-n})}$$

Dengan menggunakan daftar anuitas:

$$A = \frac{M.i}{(1-(1+i)^{-n})}$$

$$A = M. \frac{i}{(1-(1+i)^{-n})}$$

A = M x daftar anuitas baris ke-n dan kolom i %

Bagaimanakah hubungan antara anuitas dan angsuran pertama?

Dari pembuktian di atas diperoleh:
$$a_1 = \frac{M.i}{((1+i)^n - 1)} dan A = \frac{M.i.(1+i)^n}{((1+i)^n - 1)}$$

$$\frac{A}{a_1} = \frac{M.i.(1+i)^n}{((1+i)^n - 1)} : \frac{M.i}{((1+i)^n - 1)}$$

$$\frac{A}{a_1} = (1+i)^n . \text{ sehingga diperoleh:}$$

$$A = a_1 \times (1 + i)^n$$

Contoh 58

Tentukan nilai anuitas dari suatu pinjaman sebesar Rp5.000.000,00 selama 2 tahun dengan suku bunga 2%/bulan!

Jawab:

$$M = Rp5.000.000,00$$

$$n = 2 tahun = 24 bulan$$

$$i = 2\% / bulan = 0.02 / bulan$$

$$A = \frac{M \times i}{1 - (1+i)^{-n}}$$

$$= \frac{5.000.000,00 \times 0,02}{1 - (1+0,02)^{-24}}$$

$$= \frac{100.000,00}{1 - 1,02^{-24}}$$

$$= \frac{100.000,00}{0,378278512}$$

$$= Rp 264.355,49$$

Dengan daftar anuitas:

A = M x Tabel anuitas baris ke-24 kolom 2% = 5.000.000,00 x 0,052871097 = Rp264.355,49

Contoh 59

Pinjaman sebesar Rp10.000.000,00 dilunasi dengan anuitas bulanan selama 3 tahun dengan suku bunga 2,5%/bulan. Tentukan:

- a. Anuitasnya
- b. Bunga dan angsuran pertama
- c. Bunga dan angsuran ke-24!

Jawab:

M = Rp10.000.000,00 n = 3 tahun = 36 bulan i = 2,5% / bulan = 0,025/bulan

a. A =
$$\frac{M \times i}{1 - (1 + i)^{-n}}$$

= $\frac{10.000.000,00 \times 0,025}{1 - (1 + 0,025)^{-36}}$

$$= \frac{250.000,00}{1-1,025^{-36}}$$

$$= \frac{250.000,00}{1-0,411093723} = \text{Rp } 424.515,77$$

Dengan daftar anuitas:

A = M x Tabel anuitas baris ke-36 kolom 2,5% = 10.000.000,00 x 0,042451577 = Rp 424.515,77

b. Bunga pertama: $b_1 = M \cdot i$

 $b_1 = 10.000.000,00 \times 0,025$

 $b_1 = Rp250.000,00$

angsuran pertama: $a_1 = A - b_1$

 $a_1 = 424.515,77 - 250.000,00$

 $a_1 = Rp174.515,77$

c. Angsuran ke-24: $a_{24} = a_1 (1 + i)^{24-1}$ $a_{24} = 174.515,77 (1 + 0,025)^{23}$

 $a_{24} = 174.515,77 (1170,025)$ $a_{24} = 174.515,77 \times 1,025^{23}$

 $a_{24} = 174.515,77 \times 1,764610683$

 $a_{24} = Rp 307.952,39$

bunga ke-24: $b_{24} = A - a_{24}$

 $b_{24} = 424.515,77 - 307.952,39$

 $b_{24} = Rp116.563,38$

Contoh 60

Hafsah bersama suaminya berencana mengambil rumah di VILLA INDAH dengan harga Rp250.000.000,00. Hafsah hanya memiliki uang muka Rp 100.000.000,00. Sisanya akan dicicil dengan sistem anuitas tahunan selama 10 tahun dengan suku bunga 18%/tahun. Tentukan:

- a. Nilai anuitasnya
- b. Cicilan setiap bulan
- c. Sisa pinjaman setelah mengangsur 1 tahun dan 2 tahun!

Jawab:

$$\begin{array}{lll} M & = & Rp250.000.000,00 - Rp100.000.000,00 = Rp150.000.000,00 \\ n & = & 10 \ tahun \end{array}$$

i = 18%/tahun = 0,18/tahun

a. A =
$$\frac{\text{M.i}}{1 - (1 + i)^{-n}}$$

= $\frac{150.000.000,00 \times 0,18}{1 - (1 + 0,18)^{-10}}$
= $\frac{27.000.000,00}{1 - 1,18^{-10}}$
= $\frac{27.000.000,00}{0,808935533}$ = Rp 33.377.196,20

b. Cicilan setiap bulannya =
$$\frac{\text{Rp.33.377.196,20}}{12}$$
 = Rp2.781.433,02

c. Setelah pembayaran anuitas pertama atau setelah mengangsur 1 tahun:

 $b_1 = M x i$

 $= 150.000.000,00 \times 18\%$

= Rp27.000.000,00

 $a_1 = A - b_1$

= 33.377.196,20 - 27.000.000,00

= Rp6.377.196,80

Sisa pinjaman setelah mengangsur 1 tahun:

 $S_1 = 150.000.000,00 - 6.377.196,80$

= Rp143.622.803,20

Setelah pembayaran anuitas kedua atau setelah mengangsur 2 tahun:

 $b_2 = M x i$

 $b_2 = 143.622.803,20 \times 18\%$

= Rp25.852.104,58

 $a_2 = A - b_2$

 $a_2 = 33.377.196,20 - 25.852.104,58$

= Rp7.525.091,62

Sisa pinjaman setelah mengangsur 2 tahun:

 $S_2 = 143.622.803,20 - 7.525.091,62$

= Rp136.097.711,58

3). Sisa pinjaman anuitas

Jika S_{1} , S_{2} , S_{3} S_{m} berturut-turut merupakan sisa pinjaman setelah pembayaran anuitas pertama, kedua, ketiga... ke-m, maka ada beberapa cara untuk menentukan sisa pinjaman setelah pembayaran anuitas ke-m.

Cara 1

Sisa pinjaman dapat dihitung sebagai berikut:

 $b_1 = i.M$

 $b_2 = i.S_1$

 $b_3 = i.S_2$

. .

. .

 $b_{m+1} = i \cdot S_m \cdot \text{sehingga:} \quad S_m = \frac{b_{m+1}}{i}$

Contoh 61

Pinjaman sebesar Rp10.000.000,00 akan dilunasi dengan sistem anuitas bulanan dengan suku bunga 3%/bulan selama 2,5 tahun. Tentukan:

- a. Besarnya anuitas!
- b. Sisa pinjaman setelah mengangsur 10 bulan!

Jawab:

a. A =
$$\frac{\text{M.i}}{1 - (1 + i)^{-n}}$$

= $\frac{10.000.000,00 \times 0,03}{1 - (1 + 0,03)^{-30}}$
= $\frac{300.000,00}{1 - 1,03^{-30}}$
= $\frac{300.000,00}{1 - 0,411986759}$ = Rp 510.192,59

dengan menggunakan daftar anuitas:

 $A = M \times daftar anuitas baris ke-30 kolom 3%$

$$A = 10.000.000,00 \times 0,051019259 = Rp 510.192,59$$

- b. Langkah-langkah menentukan sisa pinjaman setelah angsuran ke-10 (S₁₀):
 - > Tentukan bunga pertama:

$$b_1 = M \times i$$

= Rp10.000.000,00 x 0.03 = Rp300.000,00

> Tentukan angsuran pertama:

$$a_1 = A - b_1$$

= Rp510.192,59 - Rp300.000,00 = Rp210.192,59

➤ Tentukan angsuran ke-(10 + 1) atau angsuran ke-11 :

$$a_{11} = a_1 (1 + i)^{11-1}$$

 $a_{11} = 210.192,59 (1 + 0,03)^{10}$
 $a_{11} = 210.192,59 (1,03)^{10}$
 $a_{11} = 210.192,59 \times 1,343916379$
 $a_{11} = Rp282.481,26$

> Tentukan bunga ke-11:

$$\begin{array}{ll} b_{11} &= A - a_{11} \\ b_{11} &= Rp\ 510.192,59 - Rp282.481,26 = Rp227.711,33 \\ S_m &= \frac{b_{m+1}}{i} \\ S_{10} &= \frac{b_{11}}{i} \\ &= \frac{227.711,33}{0,03} = Rp7.590.377,67 \end{array}$$

Silakan di coba setelah pembayaran anuitas ke-15 ...!

Cara 2:

Sisa pinjaman setelah pembayaran anuitas ke-k = pokok pinjaman dikurangi jumlah k angsuran yang sudah dibayar.

$$\begin{split} S_m &= M - (a_1 + a_2 + a_3 + \ldots + a_k) \\ S_m &= M - (a_1 + a_1(1+i) + a_1(1+i)^2 + a_1 (1+i)^3 + \ldots + a_1(1+i)^{k-1}) \\ S_m &= M - (a_1 + a_1[(1+i) + (1+i)^2 + (1+i)^3 + \ldots + (1+i)^{k-1}]) \\ S_m &= M - (a_1 + a_1[\sum_{k=1}^{m-1} (1+i)^k]) \\ S_m &= M - (a_1 + a_1 \times daftar\ nilai\ akhir\ rente\ kolom\ i\%\ baris\ (m-1)) \end{split}$$

Contoh 62

Pinjaman sebesar Rp10.000.000,00 akan dilunasi dengan sistem anuitas bulanan dengan suku bunga 3%/bulan selama 2,5 tahun. Tentukan sisa pinjaman setelah mengangsur 10 bulan!

Jawab:

Dari contoh 61. diperoleh $a_1 = Rp210.192,59$, sehingga:

 $S_m = M - (a_1 + a_1 x daftar nilai akhir rente kolom 3% baris(10-1))$

 $S_m = 10.000.000,00 - (210.192,59 + 210.192,59 \times 10,463879311)$

 $S_m = 10.000.000,00 - (210.192,59 + 2.199.429,89)$

 $S_m = Rp 7.590.377,52$ (hampir sama dengan cara 1)

Silahkan di coba untuk M = Rp15.000.000,00, suku bunga 2,5%/bulan selama 3 tahun dan sisa pinjaman setelah pembayaran anuitas ke-20 ...!

Cara 3:

Sisa pinjaman setelah pembayaran anuitas ke-m = jumlah semua angsuran yang masih harus dibayar.

$$\begin{split} S_m &= \ a_{k+1} + a_{k+2} + a_{k+3} + \ldots + a_n) \\ S_m &= \left[a_1 + a_2 + a_3 + \ldots + a_k + a_{k+1} + a_{k+2} + a_{k+3} + \ldots + a_n \right] - \left[a_1 + a_2 + a_3 + \ldots + a_k \right] \\ S_m &= \left[a_1 + a_1 (1+i) + a_1 (1+i)^2 + \ldots + a_1 (1+i)^{n-1} \right] - \left[a_1 + a_1 (1+i) + a_1 (1+i)^2 + \ldots + a_1 (1+i)^{k-1} \right] \\ &= a_1 + a_1 (1+i)^{k-1} \end{bmatrix}$$

$$S_{m} = [a_{1} + a_{1}[\sum_{k=1}^{n-1} (1+i)^{k}] - [a_{1} + a_{1}[\sum_{k=1}^{m-1} (1+i)^{k}]$$

$$S_{m} = a_{1} \times \sum_{k=1}^{n-1} (1+i)^{k} - a_{1} \times \sum_{k=1}^{m-1} (1+i)^{k}$$

 $S_m = a_1 \times [daftar nilai akhir rente kolom i% baris(n -1) - daftar nilai akhir rente kolom i% baris (m -1)]$

Contoh 63

Pinjaman sebesar Rp10.000.000,00 akan dilunasi dengan sistem anuitas bulanan dengan suku bunga 3%/bulan selama 2,5 tahun. Tentukan sisa pinjaman setelah mengangsur 10 bulan!

Jawab:

$$n = 30, m = 10, dan i = 3%$$

Dari contoh 61, diperoleh $a_1 = Rp210.192,59$, sehingga:

 $S_{10} = a_1 \times [daftar nilai akhir rente kolom 3% baris 29 - daftar nilai akhir rente kolom 3% baris 9]$

 $S_{10} = 210.192,59 \times [46,575415706 - 10,463879311]$

 $S_{10} = 210.192,59 \times 36,111536395$

 $S_{10} = Rp 7.590.377,36 \text{ (hampir sama dengan cara 1)}$

Silahkan di coba untuk M = Rp12.000.000,00, suku bunga 1,5%/ bulan selama 4 tahun dan sisa pinjaman setelah pembayaran anuitas ke-25 ...!

Cara 4:

Sisa pinjaman setelah pembayaran anuitas ke-m = nilai dari semua anuitas yang belum dibayar dihitung pada akhir tahun ke-m:

$$\begin{split} S_m &= \frac{A}{(1+i)} + \frac{A}{(1+i)^2} + \frac{A}{(1+i)^3} + \frac{A}{(1+i)^4} + \ldots + \frac{A}{(1+i)^{m-n}} \\ S_m &= A[(1+i)^{-1} + (1+i)^{-2} + (1+i)^{-3} + \ldots + (1+i)^{n-m}] \\ S_m &= A \times \sum_{k=1}^{n-m} (1+i)^{-k} \end{split}$$

 $S_m = A \times [daftar nilai tunai rente kolom i % baris(n - m)]$

Contoh 64

Pinjaman sebesar Rp10.000.000,00 akan dilunasi dengan sistem anuitas bulanan dengan suku bunga 3%/bulan selama 2,5 tahun. Tentukan sisa pinjaman setelah mengangsur 10 bulan!

Jawab:

n = 30, m = 10 dan i = 3%

Dari contoh 61, diperoleh A = Rp510.192,59, sehingga:

 $S_{10} = A \times [daftar nilai tunai rente kolom 3% baris (30 - 10)]$

 $S_{10} = 510.192,59 \times 14,877474860$

 $S_{10} = Rp 7.590.377,43$ (hampir sama dengan cara 1)

Silakan dicoba untuk M = Rp20.000.000,00, suku bunga 4%/bulan, selama 3,5 tahun dan sisa pinjaman setelah pembayaran anuitas ke-18 ...!

Contoh 65

Pinjaman Rp15.000.000,00 akan dilunasi dengan anuitas bulanan selama 3 tahun 4 bulan dengan suku bunga 3,5%/bulan. Tentukan sisa pinjaman setelah pembayaran anuitas ke-15!

Jawab:

Keempat cara untuk menentukan sisa pinjaman setelah pembayaran anuitas ke-m membutuhkan nilai anuitas. Jadi, nilai anuitas harus dicari dahulu.

M = Rp15.000.000,00

n = 3 tahun 4 bulan = 40 bulan

i = 3,5% / bulan

 $A = M \times Daftar$ anuitas baris ke-40 kolom 3,5%

 $A = 15.000.000,00 \times 0,046827282 = Rp702.409,23$

```
Cara 3
A = a_1 (1 + i)^n
a_1 = A (1 + i)^{-n}
a_1 = 702.409,23 (1 + 0.035)^{-40}
a_1 = 702.409,23 \times 0,252572468 = Rp177.409,23
S_m = a_1 x [daftar nilai akhir rente kolom i% baris(n -1) – daftar nilai akhir rente
     kolom i % baris (m-1)
S_{15} = 177.409,23 \times [daftar nilai akhir rente baris ke-39 kolom 3,5% - daftar nilai
     akhir rente baris ke-14 kolom 3.5 % ]
S_{15} = 177.409,23 \times (83,550277748 - 18,295680879)
S_{15} = 177.409,23 \times 65,25459687
S_{15} = Rp11.576.767,78
Cara 4
n = 30, m = 10 dan i = 3\%
S_{15} = A \times [daftar nilai tunai rente baris (40 - 15) kolom 3,5 %]
S_{15} = 702.409,23 \times 16,481514592
S_{10} = Rp \ 11.576.767,79 ( hampir sama dengan cara 3)
```

4). Anuitas yang dibulatkan

Dalam transaksi perbankan, pembayaran pinjaman baik menggunakan sistem anuitas maupun lainnya nilainya bulat. Oleh karena itu, besarnya anuitas dibulatkan ke atas atau ke bawah dengan kelipatan berdasarkan persetujuan penerima hutang dengan pihak perbankan, dengan tujuan agar pembayaran mudah untuk dilaksanakan. Misalkan anuitas dibulatkan ke bawah atau ke atas dengan kelipatan Rp1.000,00 atau Rp100,00 dan lain-lain.

Jika anuitas di bulatkan ke atas, maka akan terjadi kelebihan pembayaran. Sebaliknya jika anuitas dibulatkan ke bawah, maka akan terjadi kekurangan pembayaran. Kelebihan atau kekurangan pembayaran tersebut akan diperhitungkan pada pembayaran anuitas terakhir.

a). Anuitas dibulatkan ke atas

Setiap bilangan yang akan dibulatkan ke atas dalam puluhan, ratusan, ribuan, puluhan ribu atau yang lainnya selalu ditambah satu dari nilai sebelumnya. Lambang untuk pembulatan anuitas ke atas adalah: A⁺

Contoh 66

Hasil perhitungan nilai anuitas diperoleh A = Rp2.351.405,78.

Bulatkan anuitas di atas dalam:

a. Puluhan ke atas

c. Ribuan ke atas

b. Ratusan ke atas

d. Puluhan ribu ke atas

Jawab:

- a. Dibulatkan puluhan ke atas: $A^+ = Rp2.351.410,00$
- b. Dibulatkan ratusan ke atas: $A^+ = Rp2.351.500,00$
- c. Dibulatkan ribuan ke atas: $A^+ = Rp2.352.000,00$
- d. Dibulatkan puluhan ribu ke atas: $A^+ = Rp2.360.000,00$

Jika $a_1 = A^+ - b_1 = A^+ - M$. i, maka kelebihan pembayaran dari semua angsuran adalah:

$$\begin{split} NL &= (a_1 + a_2 + a_3 + \ldots + a_n) - M. & \text{lihat halaman } \ldots \\ &= (a_1 + a_1(1+i) + a_1(1+i)^2 + a_1(1+i)^3 + \ldots + a_1(1+i)^{k-1}) - M \\ &= (a_1 + a_1[\sum_{k=1}^{n-1} (1+i)^k]) - M \end{split}$$

 $NL = (a_1 + a_1 \times daftar nilai akhir rente kolom i% baris (n -1)) - M$

Keterangan: NL = Nilai Lebih.

Dengan cara lain, jika $L = A^+ - A$, maka nilai akhir kelebihan dari anuitas pertama sampai anuitas terakhir = nilai akhir rente post numerando, yaitu:

$$\begin{aligned} &\text{NL} = \text{L} + \text{L}(1+i) + \text{L}(1+i)^2 \dots + \text{L}(1+i)^{n-3} + \text{L}(1+i)^{n-2} + \text{L}(1+i)^{n-1} \\ &\text{NL} = \text{L} + \text{L}[(1+i) + (1+i)^2 \dots + (1+i)^{n-3} + (1+i)^{n-2} + (1+i)^{n-1}] \end{aligned}$$

$$\text{NL} = \text{L} + \text{L} \cdot \sum_{k=1}^{n-1} (1+i)^k$$

 $NL = L + L \times Daftar Nilai akhir rente kolom i% baris (n - 1)$

Besarnya anuitas terakhir: At = A - NL

Contoh 67

Suatu pinjaman Rp20.000.000.00 akan dilunasi dengan anuitas tahunan dengan suku bunga 6%/tahun selama 20 tahun. Jika pembayaran anuitas dibulatkan ke atas dalam puluhan ribu, tentukan:

- a. Besarnya nilai anuitas sebelum dan sesudah dibulatkan
- b. Total kelebihan pembayaran anuitas
- c. Pembayaran anuitas terakhir!

Jawab:

M = Rp20.000.000,00

i = 6 %/tahun

n = 20 tahun

a. A = M x tabel anuitas kolom 6% baris 20

 $A = 20.000.000,00 \times 0,087184557$

A = Rp1.743.691,14

Dibulatkan puluhan ribu ke atas: $A^+ = Rp1.750.000,00$

b. Kelebihan tiap anuitas : L =
$$A^+ - A$$

= Rp 1.750.000,00 - Rp1.743.691,14
= Rp6.308,86

Total kelebihan pembayaran anuitas:

 $NL = L + L \times Daftar Nilai akhir rente kolom i % baris (n - 1)$

NL = 6.308,86 + 6.308,86 x Daftar Nilai akhir rente kolom 6 % baris 19

 $NL = 6.308,86 + 6.308,86 \times 35,785591204$

NL = Rp232.075,14

Dengan menggunakan cara lain:

Jika
$$a_1 = A^+ - M$$
. i.
$$= 1.750.000,00 - 20.000.000,00 \times 6\%$$
$$= 1.750.000,00 - 1.200.000,00 = Rp550.000,00$$
NL = $(a_1 + a_1 \times daftar \ nilai \ akhir \ rente \ kolom \ 6\% \ baris \ (20 - 1)) - M$
NL = $550.000,00 \ (1 + 35,785591204) - 20.000.000,00$
NL = $20.232.075,16 - 20.000.000,00 = Rp232.075,14$

c. Pembayaran anuitas terakhir:

Besarnya anuitas terakhir: At
$$= A - NL$$

 $= 1.743.691.14 - 232.075.14$
 $= Rp 1.511.616.00$

b). Anuitas dibulatkan ke bawah

Setiap bilangan yang akan dibulatkan ke bawah dalam puluhan, ratusan, ribuan, puluhan ribu atau yang lainnya selalu tetap dari nilai sebelumnya. Lambang untuk pembulatan anuitas ke bawah adalah: A⁻

Contoh 68

Hasil perhitungan nilai anuitas diperoleh A = Rp4.357.895,78 Bulatkan anuitas di atas dalam:

a. Puluhan ke bawah

c. Ribuan ke bawah

b. Ratusan ke bawah

d. Puluhan ribu ke bawah

Jawab:

- a. Dibulatkan puluhan ke bawah: $A^- = Rp4.357.890,00$
- b. Dibulatkan ratusan ke bawah: $A^- = Rp4.357.800,00$
- c. Dibulatkan ribuan ke bawah: $A^- = Rp4.357.000,00$
- d. Dibulatkan puluhan ribu ke bawah : $A^- = Rp4.350.000,00$

Jika $a_1 = A^- - b_1 = A^- - M$. i, maka kekurangan pembayaran dari semua angsuran adalah:

NK = M -
$$(a_1 + a_2 + a_3 + ... + a_n)$$
. (lihat cara 2 sisa pinjaman)
= M - $(a_1 + a_1(1 + i) + a_1(1 + i)^2 + a_1(1 + i)^3 + ... + a_1(1 + i)^{k-1})$
= M - $(a_1 + a_1[\sum_{k=1}^{n-1} (1+i)^k])$

NK =
$$M - (a_1 + a_1 \times daftar nilai akhir rente kolom i% baris (n -1))$$

Keterangan: NK = Total nilai kurang.

Dengan cara lain. jika $L = A - A^{-}$, maka nilai akhir kekurangan dari anuitas pertama sampai anuitas terakhir = nilai akhir rente post numerando, yaitu:

$$\begin{aligned} NK &= K + K(1+i) + K(1+i)^2 \dots + K(1+i)^{n-3} + K(1+i)^{n-2} + K(1+i)^{n-1} \\ NK &= K + K \left[(1+i) + (1+i)^2 \dots + (1+i)^{n-3} + (1+i)^{n-2} + (1+i)^{n-1} \right] \\ NK &= K + K \cdot \sum_{p=1}^{n-1} (1+i)^p \end{aligned}$$

 $NK = K + K \times Daftar Nilai akhir rente kolom i% baris (n - 1)$

Besarnya anuitas terakhir: At = A + NK

Contoh 69

Suatu pinjaman Rp12.000.000,00 akan dilunasi dengan anuitas tahunan dengan suku bunga 5%/tahun selama 15 tahun. Jika pembayaran anuitas dibulatkan ke bawah dalam ratusan ribu, tentukan:

- a. Besarnya nilai anuitas sebelum dan sesudah dibulatkan
- b. Total kekurangan pembayaran anuitas
- c. Pembayaran anuitas terakhir!

```
Jawab:
```

```
M = Rp12.000.000,00
i = 5 \%/tahun
n = 15 tahun
```

a. $A = M \times tabel$ anuitas kolom 5% baris 15 $A = 12.000.000,00 \times 0,096342288 = Rp1.156.107.46$

Dibulatkan ratusan ribu ke bawah: $A^- = Rp 1.100.000,00$

```
b. Kekurangan tiap anuitas : K = A - A^{-}
                                = Rp1.156.107,46 - Rp 1.100.000,00
                                = Rp56.107,46
```

Total kekurangan pembayaran anuitas:

```
NK = K + K \times Daftar Nilai akhir rente kolom i% baris (n - 1)
NK = 56.107.46 + 56.107.46 x Daftar Nilai akhir rente kolom 5% baris 14
NK = 56.107.46 + 56.107.46 \times 20.578563588 = Rp1.210.718.39
```

Dengan menggunakan cara lain:

```
Jika a_1 = A^- - M \cdot i.
           = 1.100.000,00 - 12.000.000,00 \times 5\%
           = 1.100.000,00 - 600.000,00 = Rp500.000,00
   NK = M - (a_1 + a_1 \times daftar nilai akhir rente kolom 5% baris (15 -1))
   NK = 12.000.000,00 - 500.000,00 (1 + 20,578563588)
   NK = 12.000.000,00 - 10.789.281,79 = Rp1.210.718,21
c. Pembayaran anuitas terakhir:
```

```
Besarnya anuitas terakhir: At = A + NK
                           = Rp1.156.107,46 + 232.075,14= Rp 1.511.616,00
```

5). Tabel Pelunasan Anuitas

Untuk memberi gambaran bagi peminjam terhadap rencana pelunasannya, biasanya digunakan tabel pelunasan anuitas dan biasanya anuitas yang dicantumkan dalam tabel merupakan anuitas pembulatan.

Contoh 70

Suatu pinjaman Rp10.000.000,00 akan dilunasi dengan anuitas tahunan dengan suku bunga 12%/tahun selama 8 tahun. Jika pembayaran anuitas dibulatkan ke atas dalam ratusan ribu, tentukan:

a. Besarnya nilai anuitas sebelum dan sesudah dibulatkan

- b. Tabel rencana pelunasan anuitas
- c. Pembayaran anuitas terakhir!

Jawab:

a. A =
$$\frac{M \cdot i}{1 - (1 + i)^{-n}}$$

= $\frac{10.000.000,00 \times 0,12}{1 - (1 + 0,12)^{-8}}$
= $\frac{1.200.000,00}{1 - 1,12^{-8}}$
= $\frac{1.200.000,00}{1 - 0.403883228}$ = Rp2.013.028,41

Jika dibulatkan ke atas dalam ratusan ribu. maka $A^+ = Rp2.100.000,00$

b. Tabel rencana pelunasan anuitas:

Tahun	Pinjaman awal	Anuitas A ⁺ =	Sisa pinjaman	
ke	tahun	Bunga (12%)	angsuran	akhir tahun
1	Rp10.000.000.00	Rp1.200.000.00	Rp 900.000.00	Rp9.100.000.00
2	Rp 9.100.000.00	Rp1.092.000.00	Rp1.008.000.00	Rp8.092.000.00
3	Rp 8.092.000.00	Rp 971.040.00	Rp1.128.960.00	Rp6.963.040.00
4	Rp 6.963.040.00	Rp 835.564.80	Rp1.264.435.20	Rp5.698.604.80
5	Rp 5.698.604.80	Rp 683.832.58	Rp1.416.167.42	Rp4.282.437.38
6	Rp 4.282.437.38	Rp 513.892.49	Rp1.586.107.51	Rp2.696.329.86
7	Rp 2.696.329.86	Rp 323.559.58	Rp1.776.440.42	Rp 919.889.44
8	Rp919.889.44	Rp 110.386.73	Rp919.889.44	0

Keterangan Tabel:

- Pinjaman awal tahun ke-2 = sisa pinjaman akhir tahun ke-1. Pinjaman awal tahun ke-3 = sisa pinjaman akhir tahun ke-2, dan seterusnya.
- Bunga + angsuran masing-masing kelas = anuitas hasil pembulatan (A⁺), kecuali pada baris terakhir (baris ke-8).
- Sisa pinjaman akhir tahun ke-1 = pinjaman awal tahun ke-1 angsuran ke-1. Sisa pinjaman akhir tahun ke-2 = pinjaman awal tahun ke-2 angsuran ke-2.
- Angsuran terakhir = pinjaman awal tahun terakhir.
- c. Pembayaran anuitas terakhir = 110.386.73 + 919.889.44 = Rp 1.030.276.17.

Pembayaran anuitas terakhir tidak sama dengan anuitas hasil pembulatan, mengapa?

Contoh 71

Suatu pinjaman Rp12.000.000,00 akan dilunasi dengan anuitas tahunan dengan suku bunga 15%/tahun selama 7 tahun. Jika pembayaran anuitas dibulatkan ke bawah dalam ratusan ribu. Tentukan:

a. Besarnya nilai anuitas sebelum dan sesudah dibulatkan

- b. Tabel rencana pelunasan anuitas
- c. Pembayaran anuitas terakhir!

Jawab:

$$M = Rp12.000.000.00$$

 $i = 15 \%/tahun = 0,15/tahun$
 $n = 7 tahun$

a. A =
$$\frac{\text{M.i}}{1 - (1 + i)^{-n}}$$

= $\frac{12.000.000,00 \times 0,15}{1 - (1 + 0,15)^{-7}}$
= $\frac{1.800.000,00}{1 - 1,15^{-7}}$
= $\frac{1.800.000,00}{1 - 0.375937040}$ = Rp2.884.324.36

Jika dibulatkan ke bawah dalam ratusan ribu. maka $A^- = Rp2.800.000.00$

b. Tabel rencana pelunasan anuitas:

Tahun	Pinjaman awal	Anuitas A ⁻ = R	Sisa pinjaman		
ke	tahun	bunga (15%)	angsuran	akhir tahun	
1	Rp12.000.000,00	Rp1.800.000,00	Rp1.000.000,00	Rp11.000.000,00	
2	Rp11.000.000,00	Rp1.650.000,00	Rp1.150.000,00	Rp .9.850.000,00	
3	Rp .9.850.000,00	Rp1.477.500,00	Rp1.322.500,00	Rp .8.527.500,00	
4	Rp .8.527.500,00	Rp1.279.125,00	Rp1.520.875,00	Rp .7.006.625,00	
5	Rp .7.006.625,00	Rp1.050.993,75	Rp1.749.006,25	Rp .5.257.618,75	
6	Rp .5.257.618,75	Rp 788.642,81	Rp2.011.357,19	Rp .3.246.261,56	
7	Rp .3.246.261,56	Rp 486.939,23	Rp3.246.261,56	0	

c. Pembayaran anuitas terakhir = 486.939,23+3.246.261,56 = Rp3.733.200,79

Pembayaran anuitas terakhir tidak sama dengan anuitas hasil pembulatan, mengapa? dan silakan dicoba untuk pinjaman Rp15.000.000,00 dengan waktu 8 tahun dan anuitas dibulatkan ke bawah dalam puluhan ribu dengan suku bunga 15%/tahun.

6). Anuitas Pinjaman Obligasi

Obligasi adalah surat berharga yang merupakan perjanjian pinjaman tertulis. Obligasi ini biasanya digunakan untuk mendapatkan jumlah pinjaman yang besar. Pada surat obligasi terdapat tanggal pengeluaran, nilai nominal, tingkat bunga, tanggal pembebasan dan nilai emisi. Jika pinjaman obligasi ini akan dilunasi dengan sistem anuitas atau suatu pinjaman anuitas akan dilunasi dengan obligasi, maka biasanya nilai nominal obligasi akan dipecah menjadi nilai nominal yang lebih kecil, misalkan pinjaman obligasi Rp10.000.000,00 dipecah menjadi Rp10.000,00 sehingga banyaknya obligasi adalah 1.000.

Jika jumlah yang dicicil bukan merupakan kelipatan dari pecahan nominal obligasi, maka sisa yang bukan merupakan kelipatan obligasi akan dibayarkan pada anuitas berikutnya. Menentukan besarnya angsuran dapat dihitung sebagai berikut:

```
Angsuran ke-n : Anuitas
sisa pembayaran ke-(n - 1)
sisa x suku bunga
Jumlah
sisa pinjaman x suku bunga
Angsuran
Jumlah obligasi terpakai = . . . x nilai nominal = . . . -
Sisa pemayaran ke-n
```

Contoh 72

Pinjaman obligasi Rp12.000.000,00 yang terpecah menjadi 1.200 lembar obligasi yang masing-masing sebesar Rp10.000,00 akan dilunasi dengan anuitas tahunan dengan suku bunga 10%/tahun selama 5 tahun. Tentukan tabel rencana pelunasannya!

```
Jawab:
```

```
M = Rp12.000.000.00

i = 10 %/tahun = 0,1/tahun

n = 5 tahun

A = \frac{M \cdot i}{1 - (1 + i)^{-n}}
= \frac{12.000.000,00 \times 0,1}{1 - (1 + 0,1)^{-5}}
= \frac{1.200.000,00}{1 - 1,1^{-5}}
= \frac{1.200.000,00}{1 - 0.620921323} = Rp 3.165.569,77
```

Rencana pelunasannya sebagai berikut:

```
Angsuran ke-1: Anuitas
                                           = Rp 3.165.569,77
              sisa pembayaran belum ada
                                           = Rp 3.165.569,77
              Jumlah
    Bunga = Rp12.000.000,00 \times 10\%
                                         = Rp 1.200.000,00 -
              Angsuran
                                        = Rp 1.965.569,77
<u>Jumlah obligasi terpakai = 196 x Rp10.000,00 = Rp 1.960.000,00 - </u>
                     Sisa pembayaran ke-1
                                           = Rp
                                                     5.569,77
                                            = Rp 3.165.569,77
Angsuran ke-2: Anuitas
              sisa pembayaran ke-1
                                           = Rp
                                                   5.569,77
              sisa x 10%
                                            = Rp
                                                     556,98
                                            = Rp3.171.696,52
                    Jumlah
```

```
Sisa pinjaman setelah angsuran ke-1
= 12.000.000,00 - 1.960.000,00 = Rp 10.040.000,00
```

```
Bunga
                 = Rp 10.040.000,00 \times 10\% = Rp 1.004.000,00 -
                   Angsuran
                                             = Rp 2.167.696,52
Jumlah obligasi terpakai = 216 x Rp10.000,00 = Rp 2.160.000,00 -
                      sisa pembayaran ke-2
                                             = Rp
                                                       7.696,52
                                              = Rp 3.165.569,77
Angsuran ke-3: Anuitas
                sisa pembayaran ke-2
                                              = Rp
                                                       7.696,52
                sisa x 10%
                                              = Rp
                                                         769,65 +
                    Jumlah
                                              = Rp 3.174.035,94
Sisa pinjaman setelah angsuran ke-2
= 10.040.000,00 - 2.160.000,00 = Rp 7.880.000,00
        Bunga
                 = Rp 7.880.000,00 \times 10\%
                                            = Rp 788.000,00 -
        Angsuran
                                              = Rp 2.386.035,94
<u>Jumlah obligasi terpakai = 238 x Rp10.000,00 = Rp 2.380.000,00 - </u>
                      sisa pembayaran ke-3
                                                 Rp
                                                       6.035,94
Angsuran ke-4: Anuitas
                                              = Rp 3.165.569,77
               sisa pembayaran ke-3
                                              = Rp
                                                       6.035,94
               sisa x 10%
                                              = Rp
                                                         603,59 +
                                              = Rp3.172.209,30
                    Jumlah
Sisa pinjaman setelah angsuran ke-3
= 7.880.000,00 - 2.380.000,00 = Rp 5.500.000,00
                 = Rp 5.500.000,00 \times 10\%
        Bunga
                                             = Rp 550.000,00 -
                   Angsuran
                                             = Rp 2.622.209,30
Jumlah obligasi terpakai = 262 \times Rp10.000,00 = Rp 2.620.000,00 -
                      sisa pembayaran ke-4
                                             = Rp
                                                       2.209,30
                                              = Rp 3.165.569,77
Angsuran ke-5: Anuitas
                sisa pembayaran ke-4
                                              = Rp
                                                       2.209,30
                                                         220,93 +
                sisa x 10%
                                              = Rp
                  Jumlah
                                              = Rp 3.168.000,00
Sisa pinjaman setelah angsuran ke-3
= 5.500.000,00 - 2.620.000,00 = Rp 2.880.000,00
                 = Rp 2.880.000,00 \times 10\%
                                             = Rp 288.000,00 -
        Bunga
                                             = Rp 2.880.000,00
                   Angsuran
Jumlah obligasi terpakai = 288 x Rp10.000,00 = Rp 2.880.000,00 -
                      sisa pembayaran ke-5
                                             = Rp
```

Tabel angsurannya sebagai berikut:

ranger and general region and and an area and an area and an area and area area.						
th	Pinjaman Awal	Jumlah obligasi	Besar angsuran	Sisa pinjaman		
ke	tahun	yang diangsur	besai aliysulali	Akhir tahun		
1	Rp12.000.000,00	196 lembar	Rp1.960.000,00	Rp10.040.000,00		
2	Rp10.040.000,00	216 lembar	Rp2.160.000,00	Rp 7.880.000,00		
3	Rp 7.880.000,00	238 lembar	Rp2.380.000,00	Rp 5.500.000,00		
4	Rp 5.500.000,00	262 lembar	Rp2.620.000,00	Rp 2.880.000,00		
5 Rp 2.880.000,00		288 lembar	Rp2.880.000,00	0		
Jumlah		1. 200 lembar	Rp12.000.000,00			

Silahkan dicoba untuk pinjaman obligasi Rp20.000.000,00 dipecah dalam 10.000 lembar dan akan dilunasi dengan anuitas 5 tahun dengan suku bunga 12%/tahun ...!

c. Rangkuman

- 1. Anuitas adalah sejumlah pembayaran pinjaman yang sama besarnya yang dibayarkan setiap jangka waktu tertentu, dan terdiri atas bagian bunga dan bagian angsuran.
- 2. Hubungan antara angsuran yang satu dengan angsuran yang lainnya:

$$a_n = a_1 (1 + i)^{n-1}$$
 atau $a_n = a_k (1 + i)^{n-k}$

3. Nilai anuitas dari pinjaman M, suku bunga i%/periode selama n periode:

$$A = \frac{M.i}{(1-(1+i)^{-n})}$$

Dengan menggunakan daftar anuitas:

A = M x daftar anuitas baris ke-n dan kolom i %

4. Hubungan antara anuitas dan angsuran pertama

$$A = a_1 \times (1 + i)^n$$

3. Sisa pinjaman anuitas

Jika S_1 . S_2 . S_3 S_m berturut-turut merupakan sisa pinjaman setelah pembayaran anuitas pertama, kedua, ketiga . . . ke-m, maka ada beberapa cara untuk menentukan sisa pinjaman setelah pembayaran anuitas ke-m.

Cara 1:
$$S_m = \frac{b_{m+1}}{i}$$

Cara 2: $S_m = M - (a_1 + a_1 x \text{ daftar nilai akhir rente kolom i% baris (m-1)})$

Cara 3: $S_m = a_1 \times [\text{daftar nilai akhir rente kolom i% baris}(n-1) - \text{daftar nilai akhir rente kolom i% baris}(m-1)]$

Cara 4: $S_m = A \times [daftar nilai tunai rente kolom i % baris(n - m)]$

6. Kelebihan pembayaran karena anuitas dibulatkan ke atas adalah:

$$NL = (a_1 + a_1 x daftar nilai akhir rente kolom i% baris $(n-1)$) – M atau$$

$$NL = L + L \times Daftar Nilai akhir rente kolom i % baris (n - 1)$$

Besarnya anuitas terakhir: At = A - NL

7. Kekurangan pembayaran karena anuitas dibulatkan ke bawah adalah:

NK = M -
$$(a_1 + a_1 \times daftar nilai akhir rente kolom i% baris (n -1))$$

atau

 $NK = K + K \times Daftar Nilai akhir rente kolom i % baris (n - 1)$

- 1. Suatu pinjaman akan dilunasi dengan sistem anuitas Rp550.000,00. Tentukan:
 - a. Besarnya angsuran pertama jika bunga pertama = Rp450.000,00!
 - b. Besarnya bunga ke-8 jika angsuran ke-8 adalah Rp412.000,00!
- 2. Suatu pinjaman akan dilunasi dengan anuitas tahunan. Tentukan besarnya anuitas jika besarnya angsuran ke-10 dan bunga ke-10 masing-masing adalah Rp318.000,00 dan Rp27.000,00!
- 3. Suatu pinjaman Rp2.600.000,00 akan dilunasi dengan anuitas bulanan Rp 250.000,00. Jika suku bunga 4%/bulan, tentukan:
 - a. Besarnya bunga pertama dan angsuran pertama!
 - b. Besarnya angsuran ke-5!
 - c. Besarnya bunga ke-8!
- 4. Angsuran ke-5 suatu anuitas Rp300.000,00 dan bunga pertamanya Rp320.000,00. Jika suku bunganya 2,5%, tentukan:
 - a. Besarnya pinjaman!
 - b. Besarnya angsuran pertama!
 - c. Besarnya anuitas!
 - d. Besarnya angsuran ke-8!
- 5. Tentukan nilai anuitas bulanan dari suatu pinjaman sebesar Rp 8.000.000.00 selama 2 tahun dengan suku bunga 2,5%/bulan!
- 6. Pinjaman sebesar Rp 2.800.000.00 dilunasi dengan anuitas bulanan selama 1 tahun 7 bulan dengan suku bunga 2,25%/bulan. Tentukan:
 - a. Anuitasnya!
 - b. Bunga dan angsuran pertama!
 - c. Bunga dan angsuran ke-24!
- 7. Nissa bersama suaminya berencana membeli rumah di VILLA IMPIAN dengan harga Rp300.000.000.00 dan Nissa hanya memiliki uang muka Rp 50.000.000.00. Sisanya akan dicicil dengan sistem anuitas tahunan selama 15 tahun dengan suku bunga 14%/tahun. Tentukan:
 - a. Nilai anuitasnya!
 - b. Cicilan setiap bulan!
 - c. Sisa pinjaman setelah mengangsur 10 tahun!
- 8. Pinjaman sebesar Rp12.500.000.00 akan dilunasi dengan sistem anuitas bulanan dengan suku bunga 3%/bulan selama 3,25 tahun. Tentukan:
 - a. Besarnya anuitas!
 - b. Sisa pinjaman setelah mengangsur 20 bulan!
- 9. Pinjaman sebesar Rp10.000.000.00 akan dilunasi dengan anuitas bulanan dengan suku bunga 3,5%/bulan selama 3 tahun. Tentukan sisa pinjaman setelah mengangsur 25 bulan!

- 10. Pinjaman sebesar Rp15.000.000.00 akan dilunasi dengan sistem anuitas tiap bulan dengan suku bunga 1.5%/bulan selama 2.75 tahun. Tentukan sisa pinjaman setelah mengangsur 2 tahun.
- 11. Pinjaman sebesar Rp4.000.000.00 akan dilunasi dengan sistem anuitas tiap semester dengan suku bunga 7.5%/semester selama 7.5 tahun. Tentukan sisa pinjaman setelah mengangsur 10 semester!
- 12. Pinjaman Rp18.000.000.00 akan dilunasi dengan anuitas bulanan selama 3.25 tahun dengan suku bunga 2.5%/bulan. Tentukan sisa pinjaman setelah pembayaran anuitas ke-12!
- 13. Pinjaman Rp25.000.000.00 akan dilunasi dengan anuitas bulanan selama 4.25 tahun dengan suku bunga 3.25%/bulan. Tentukan sisa pinjaman setelah pembayaran anuitas ke-25!
- 14. Suatu pinjaman dilunasi dengan anuitas bulanan sebesar Rp500.000 dengan suku bunga 2.5%/bulan selama 2.5 tahun. Tentukan besar pinjaman tersebut!
- 15. Pinjaman Rp12.500.000.00 akan dilunasi dengan sistem anuitas tahunan selama 8 tahun dengan suku bunga 12.5%/tahun. Tentukan nilai anuitasnya dan bulatkan anuitas di atas dalam:

a. Puluhan ke atas

c. Ribuan ke atas

b. Ratusan ke atas

- d. Puluhan ribu ke atas
- 16. Suatu pinjaman Rp25.000.000.00 akan dilunasi dengan anuitas tahunan dengan suku bunga 5.5%/tahun selama 18 tahun. Jika pembayaran anuitas dibulatkan ke atas dalam ratusan ribu, tentukan:
 - a. Besarnya nilai anuitas sebelum dan sesudah dibulatkan!
 - b. Total kelebihan pembayaran anuitas!
 - c. Pembayaran anuitas terakhir!
- 17. Suatu pinjaman Rp22.500.000.00 akan dilunasi dengan anuitas tahunan dengan suku bunga 12%/tahun selama 15 tahun. Jika pembayaran anuitas dibulatkan ke atas dalam ratusan ribu, tentukan:
 - a. Besarnya nilai anuitas sebelum dan sesudah dibulatkan!
 - b. Total kelebihan pembayaran anuitas!
 - c. Pembayaran anuitas terakhir!
- 18. Pinjaman sebesar Rp14.000.000.00 akan dilunasi dengan anuitas tahunan selama 8 tahun dengan suku bunga 15%/tahun. Tentukan nilai anuitasnya dan bulatkan anuitas di atas dalam:

a. Ratusan ke bawah

c. Ribuan ke bawah

b. Ratusan ribu ke bawah

- d. Puluhan ribu ke bawah
- 19. Suatu pinjaman Rp15.000.000.00 akan dilunasi dengan anuitas tahunan dengan suku bunga 4.5% / tahun selama 25 tahun. Jika pembayaran anuitas dibulatkan ke bawah dalam puluhan ribu, tentukan:
 - a. Besarnya nilai anuitas sebelum dan sesudah dibulatkan!
 - b. Total kekurangan pembayaran anuitas!
 - c. Pembayaran anuitas terakhir!

- 20. Suatu pinjaman Rp25.000.000.00 akan dilunasi dengan anuitas tahunan dengan suku bunga 10%/tahun selama 12 tahun. Jika pembayaran anuitas dibulatkan ke bawah dalam ratusan ribu, tentukan:
 - a. Besarnya nilai anuitas sebelum dan sesudah dibulatkan!
 - b. Total kekurangan pembayaran anuitas!
 - c. Pembayaran anuitas terakhir!
- 21. Suatu pinjaman obligasi Rp20.000.000.00 terpecah dalam nilai nominal Rp10.000,00 akan dilunasi dengan anuitas tahunan dengan suku bunga 12%/tahun selama 5 tahun. Susunlah rencana dan tabel pelunasannya!
- 22. Suatu pinjaman Rp25.000.000.00 akan dilunasi dengan anuitas tahunan dengan suku bunga 20%/tahun selama 8 tahun. Jika pembayaran anuitas dibulatkan ke bawah dalam ratusan ribu, tentukan:
 - a. Besarnya nilai anuitas sebelum dan sesudah dibulatkan!
 - b. Tabel rencana pelunasanya!
 - c. Pembayaran anuitas terakhir!
- 23. Suatu pinjaman Rp50.000.000,00 dalam bentuk obligasi. Karena akan dilunasi dengan anuitas dengan suku bunga 15%, maka obligasi tersebut dipecah menjadi 1.000 lembar. Buatlah rencana pelunasannya!
- 24. Suatu pinjaman Rp5.000.000.00 akan dilunasi dengan anuitas tahunan dengan suku bunga 8% / tahun selama 7 tahun. Jika pembayaran anuitas dibulatkan ke atas dalam puluhan ribu, tentukan:
 - a. Besarnya nilai anuitas sebelum dan sesudah dibulatkan!
 - b. Tabel rencana pelunasanya!
 - c. Pembayaran anuitas terakhir!
- 25. Suatu pinjaman dilunasi dengan anuitas sebesar Rp725.000,00 tiap bulan selama 3,75 tahun dengan suku bunga 2,75%/bulan. Tentukan:
 - a. Besarnya pinjaman!
 - b. Angsuran ke-10!
 - c. Sisa pinjaman setelah anuitas ke-15!

B. 4. Penyusutan Nilai Barang

a. Tujuan

Setelah mempelajari uraian kompetensi dasar ini, anda dapat:

- Mengidentifikasikan pengertian penyusutan, aktiva, nilai sisa, dan umur manfaat
- Menghitung besar penyusutan dengan metode:
 - Metode garis lurus atau metode persentase tetap dari harga pembelian.
 - Metode persentase tetap dari nilai buku atau metode saldo menurun.
 - Metode satuan hasil produksi atau metode unit produksi.
 - Metode satuan jasa kerja aktiva.
 - Metode jumlah bilangan tahun.

b. Uraian Materi

1). pengertian penyusutan, aktiva, nilai sisa dan umur manfaat

Penyusutan atau Depresi adalah berkurangnya nilai ekonomi suatu aktiva. Berkurangnya nilai tersebut biasanya disebabkan karena aus dipakai atau umur manfaatnya.

Aktiva adalah segala sumber daya ekonomi dari suatu perusahaan yang berupa harta maupun hak-hak yang di miliki berdasarkan kekuatan hukum. Aktiva perusahan dapat dibedakan menjadi dua, yaitu aktiva lancar dan aktiva tetap.

Aktiva lancar adalah suatu aktiva perusahaan yang digunakan untuk membantu kelancaran proses kegiatan oprasional perusahaan. Misalnya uang tunai dan aktiva lain yang secara layak dapat diubah menjadi uang tunai dengan cara dijual atau dipakai habis dalam satu siklus operasi perusahaan yang normal.

Aktiva tetap adalah suatu aktiva perusahaan yang sifatnya relatif permanan yang digunakan dalah meyelenggarakan operasi perusahaan. Aktiva tetap ini dibedakan menjadi dua, yaitu: aktiva tetap berwujud dan aktiva tetap tidak berwujud.

Aktiva tetap berwujud contohnya tanah, gedung bangunan, peralatan, mesin kendaraan, dan lain-lain. Aktiva tetap tidak berwujud adalah suatu aktiva tetap tidak memiliki sifat-sifat, tetapi memiliki nilai uang karena hak secara hukum. Contohnya hak paten, hak cipta, copyright, goodwiil, dan merek dagang.

Biaya perolehan suatu aktiva adalah besarnya biaya yang dikeluarkan untuk memperoleh aktiva tersebut. Nilai sisa atau residu adalah taksiran nilai aktiva setelah masa manfaat dari aktiva tersebut. Umur manfaat suatu aktiva adalah perkiraan lamanya suatu aktiva dapat dimanfaatkan.

Agar perusahaan dapat tumbuh berkembang secara seimbang, maka salah satunya perusahaan tersebut perlu mengetahui atau memperkirakan penyusutan-penyusutan aktivanya secara baik dan tepat hingga pada gilirannya perusahaan dapat mengunakan hasil-hasil prakiraan ini sebagai dasar tidak lanjut operasional.

2). Menghitung Besar Penyusutan

Pada kompetensi dasar ini, objek peyusutan aktiva perusahaan hanyalah pada aktiva tetap berwujud. Contohnya penyusutan pada mesin produksi, penyusutan pada kendaraan operasional dan penyusutan aktiva tetap berwujud lainnya.

Untuk menentukan besarnya beban penyusutan dalam tiap-tiap periode, ada beberapa metode yang dapat digunakan, antara lain:

- Metode garis lurus atau metode persentase tetap dari harga pembelian.
- Metode persentase tetap dari nilai buku atau metode saldo menurun.
- Metode satuan hasil produksi atau metode unit produksi.
- Metode satuan jasa kerja aktiva.
- Metode jumlah bilangan tahun.

Ada beberapa faktor yang harus diperhitungkan untuk mempermudah penulisan di dalam menentukan besarnya penyusutan, yaitu:

- A = Biaya perolehan aktiva yaitu besarnya biaya yang dikeluarkan perusahaan untuk memperoleh aktiva sampai aktiva itu siap di operasikan.
- S = Perkiraan nilai sisa aktiva yaitu nilai taksir yang mungkin dapat di peroleh melalui aktiva yang sudah lewat masa pemakaiannya.
- r = Tingkat peyusutan atau presentase peyusutan.
- n = umur manfaat /umur ekonomis aktiva dalam tahun.
- D = Beban peyusutan tiap periode.
- a). Metode Garis Lurus (straight line method).

Metode garis lurus disebut juga metode presentase tetap dari harga pembelian aktiva. Berdasarkan metode garis lurus besarnya beban peyusutan tiap tahun adalah tetap yang didefinisikan oleh rumus:

$$D = \frac{A - S}{n}$$

Besarnya tingkat peyusutan r di definisikan oleh rumus:

$$r = \frac{D}{A} \times 100\%$$

Contoh 73

Sebuah aktiva dengan biaya perolehan sebesar Rp5.000.000,00. Diperkirakan aktiva itu dapat dimanfaatkan selama 6 tahun dengan perkiraan nilai sisa Rp 2.000.000,00. Dengan mengunakan metode garis lurus, tentukan:

- a. Besarnya beban penyusutan tiap tahun!
- b. Tingkat peyusutan atau persentase peyusutan per tahun!
- c. Nilai buku atau harga aktiva pada akhir tahun ke-3!
- d. Buatlah daftar peyusutan lengkap dengan akumulasi penyusutannya!

Jawab:

A = Rp5.000.000,00

S = Rp2.000.000,00 dan n = 6 tahun

a. Beban penyusutan tiap tahun:

$$D = \frac{A - S}{n}$$

$$= \frac{5.000.000,00 - 2.000.000,00}{5} = Rp600.000,00$$

jadi, besarnya penyusutan tiap tahun adalah Rp 600.000,00.

b. Persentase penyusutan (r)

$$r = \frac{D}{A} \times 100\%$$

$$r = \frac{600.000,00}{5.000.000,00} \times 100\% = 12\%$$

Jadi, tingkat penyusutan tiap tahun sebesar 12% dari harga pembelian

c. Nilai buku atau harga aktiva pada akhir tahun ke-3 misalkan S₃, maka:

$$S_3 = A - 3D$$

 $S_3 = 5.000.000,00 - 3 \times 600.000,00$

 $S_3 = Rp3.200.000,00$

Jadi, harga aktiva pada akhir tahun ke-3 adalah Rp3.200.000,00.

d. Daftar penyusutan aktiva menurut metode garis lurus:

Tahun ke	Biaya perolehan	Beban peyusutan	Akumulasi peyusutan	Nilai buku akhir tahun
1	5.000.000,00	600.000,00	600.000,00	4.400.000,00
2	4.400.000,00	600.000,00	1.200.000,00	3.800.000,00
3	3.800.000,00	600.000,00	1.800.000,00	3.200.000,00
4	3.200.000,00	600.000,00	2.400.000,00	2.600.000,00
5	2.600.000,00	600.000,00	3.000.000,00	2.000.000,00

Contoh 74

Pada awal tahun 2005 PT Adil dan Sejahtera membeli sebuah aktiva seharga Rp15.000.000,00. Aktiva tersebut menyusut 12,5% tiap tahun dari harga beli. Tentukan:

- a. Nilai aktiva pada akhir awal tahun 2010!
- b. Akumulasi penyusutan selama 6 tahun!
- c. Umur aktiva jika aktiva tidak bernilai lagi!

Jawab:

A = Rp15.000.000,00

r = 12,5% (metode garis lurus) = 0,125

a. Dari awal tahun 2005 sampai awal tahun 2010 = 5 tahun (n = 5) Nilai buku atau harga aktiva untuk n = 5, misalkan S_5 , maka:

$$S_5 = A - 5D$$

$$S_5 = A - 5 x (r. A)$$

$$S_5 = 15.000.000,00 - 5 \times (0,125 \times 15.000.000,00)$$

$$S_5 = 15.000.000,00 - 9.375.000,00 = Rp5.625.000,00$$

Jadi, harga aktiva pada awal tahun 2010 adalah Rp5.625.000,00.

b. Total persentase akumulasi penyusutan $\Sigma r = n. r$

$$= 6 \times 12,5\% = 75\%$$

Total akumulasi penyusutan = $\sum r$. A

 $= 75\% \times Rp15.000.000,00 = Rp11.250.000,00.$

c. Umur aktiva pada saat S=0, atau $\Sigma r=100\%$

$$n = \frac{\sum r}{r} = \frac{100\%}{12,5\%} = 8$$

b). Metode persentase tetap dari nilai buku (Metode Saldo Menurun)

Metode saldo menurun dinamakan juga dengan declining balance method. Di dalam metode ini besarnya beban penyusutan tiap-tiap tahun diperoleh dari perkalian tingkat penyusutan (r) dengan nilai buku awal tahun pada tahun yang bersangkutan. Nilai buku dari tiap-tiap tahun dapat dicari sebagai berikut:

Nilai buku pada akhir tahun ke-1

$$S_1 = A - r.A = A (1 - r)$$

Nilai buku pada akhir tahun ke-2

$$S_2 = S_1 - r. S_1$$

= $S_1 (1 - r)$
= $A (1 - r) (1 - r)$
 $S_2 = A (1 - r)^2$

NIlai buku pada akhir tahun ke-3

$$S_3 = S_2 - r.S_2$$

= $S_2 (1 - r)$
= $A (1 - r)^2 (1 - r)$

 $S_3 = A(1-r)^3$, sehingga pada tahun ke-n nilai aktiva diperoleh:

$$S_n = A (1 - r)^n$$

Jika
$$S_n=A(1-r)^n$$
, maka $(1-r)^n=\frac{S_n}{A}$
$$(1-r)=\sqrt[n]{\frac{S_n}{A}}$$

$$r=1-\sqrt[n]{\frac{S_n}{\Delta}}$$

Jika dinyatakan dalam %, maka tingkat penyusutan atau persentase penyusutan berdasarkan persentase tetap dari nilai buku atau metode saldo menurun adalah:

$$r = (1 - \sqrt[n]{\frac{S}{A}}) \times 100\%$$

Contoh 75

Sebuah aktiva dengan biaya perolehan Rp20.000.000,00. Setelah beroperasi selama 6 tahun ditaksir nilai sisanya Rp5.000.000,00. Dengan mengunakan metode persentase tetap dari nilai buku, tentukan:

- a. Tingkat penyusutan tiap tahun!
- b. Nilai buku atau harga aktiva pada akhir tahun ke-4!
- c. Daftar penyusutannya!

Jawab:

A = Rp20.000.000,00

S = Rp5.000.000,00

n = 6 tahun

a.
$$r = (1 - \sqrt[n]{\frac{S}{A}}) \times 100\%$$

 $r = (1 - \sqrt[6]{\frac{5.000.000,00}{20.000.000,00}}) \times 100\%$

 $r = (1 - \sqrt[6]{0,25}) \times 100\%$ dengan menggunakan kalkulator scientiffic, diperoleh:

$$r = (1 - 0.7937) \times 100\% = 20.63\%$$

Jadi, besar penyusutan tiap tahun adalah 20,63% dari nilai buku.

b. Nilai buku pada akhir tahun ke-4:

 $S_n = A (1 - r)^n$

 $S_n = 20.000.000,00 \times (1 - 20,63\%)^4$

 $S_n = 20.000.000,00 \times 0,7937^4$

 $S_n = 20.000.000,00 \times 0,396849211$

 $S_n = Rp 7.936.984,22$

Jadi, nilai buku pada akhir tahun ke-4 adalah Rp7.936.984,22.

c. Daftar penyusutan aktiva menurut metode persentase tetap dari nilai buku.

Tahun ke	Biaya perolehan	Persentase penyusutan	Beban penyusutan	Akumulasi penyusutan	Nilai buku akhir tahun
1	20.000.000,00	20,63%	4.126.000,00	4.126.000,00	15.874.000,00
2	15.874.000,00	20,63%	3.274.806,20	7.400.806,20	12.599.193,80
3	12.599.193,80	20,63%	2.599.213,68	10.000.019,88	9.999.980,12
4	9.999.980,12	20,63%	2.062.995,90	12.063.015,78	7.936.984,22
5	7.936.984,22	20,63%	1.637.399,84	13.700.415,62	6.299.584,38
6	6.299.584,38	20,63%	1.299.604,26	15.000.019,88	4.999.980,12

Contoh 76

Pada awal tahun 2005 PT Adil dan Sejahtera membeli sebuah aktiva seharga Rp15.000.000,00. Aktiva tersebut menyusut 7,5% tiap tahun dari nilai buku. Tentukan:

- Nilai aktiva setelah menyusut selama 5 tahun!
- Setelah berapa tahun nilai aktiva menjadi Rp 11.871.796,88? b.

Jawab:

$$A = Rp15.000.000,00$$

$$r = 5,5\%$$

a.
$$S_n = A (1 - r)^n$$

$$S_n = 15.000.000,00 \times (1 - 7.5\%)^5$$

$$S_n = 15.000.000,00 \times 0.925^5$$

$$S_n = 15.000.000,00 \times 0,677187080$$

 $S_n = Rp 10.157.806,20.$

b. Untuk $S_n = Rp 11.871.796,88$, maka:

$$\begin{array}{rcl} S_n & = A \, (1-r)^n \\ 11.871.796,88 & = 15.000.000,00 \, x \, (1-7,5\%)^n \\ \frac{11.871.796,88}{15.000.000,00} & = 0,925^n \\ 0,791453125 & = 0,925^n \\ \text{di logaritmakan dengan bilangan pokok } 10 \\ \log 0,791453125 & = n. \, \log 0,925 \\ n & = \frac{\log 0,791453125}{\log 0,925} & = 3 \, \text{tahun.} \end{array}$$

c). Metode satuan hasil produksi (production output method)

Besarnya tingkat penyusutan mengunakan metode satuan hasil produksi dihitung berdasarkan tiap satuan hasil produksi (shp). Jika suatu aktiva dengan biaya perolehan sebesar A, masa manfaat selama n tahun, memproduksi sebanyak Q unit produksi (Q = $q_1 + q_2 + q_3 + \ldots + q_n$ dengan $q_1 + q_2 + q_3 + \ldots + q_n$ berturut-turut merupakan jumlah satuan hasil produksi dari tahun pertama sampai dengan tahun ke-n) dan nilai residu sebesar S, maka besarnya tingkat penyusutan r tiap satuan hasil produksi adalah:

$$r = \frac{A - S}{Q}$$

Jika D_1 , D_2 , D_3 , . . . D_k merupakan beban penyusutan tahun pertama, ke-2, ke-3 . . . ke-k, maka jumlah kumulatif beban peyusutan pada akhir tahun ke-k adalah:

Dan nilai buku pada akhir tahun ke-k adalah: $Sk = A - \sum D$

Contoh 77

Suatu aktiva dengan biaya perolehan Rp25.000.000,00. Diperkirakan umur manfaat aktiva selama 6 tahun dengan jumlah produksinya 10.000 unit dan memiliki nilai sisa Rp5.000.000,00. Jika jumlah produksi tiap tahun berturut-turut adalah 2.500 unit, 2.250 unit, 2.000 unit, 1.750 unit, 1.000 unit, dan 500 unit. Tentukan:

- a. Tingkat penyusutan tiap satuan unit produksi!
- b. Beban penyusutan pada tahun ke-3!
- c. Jumlah kumulatif beban penyusutan pada akhir tahun ke-4!
- d. Nilai buku pada akhir tahun ke-5!
- e. Susunan daftar penyusutannya!

Jawab:

$$A = Rp25.000.000,00$$

$$n = 6$$
 tahun

$$Q = 10.000$$
 unit $(q_1 = 2.500, \ q_2 = 2.250, \ q_3 = 2.000, \ q_4 = 1.750, \ q_5 = 1.000$ dan $q_6 = 500)$

$$S = Rp5.000.000,00$$

a.
$$r = \frac{A - S}{Q}$$

$$r = \frac{25.000.000,00 - 5.000.000,00}{10.000} = Rp2.000,00$$

b.
$$D_3 = r \cdot q_3$$

= 2.000,00 x 2.000 = Rp2.000.000,00

c. Jumlah kumulatif beban penyusutan pada akhir tahun ke-4:

$$\sum D = r(q_1 + q_2 + q_3 + q_4)$$

 $\sum D = 2.000,00 \times (2.500 + 2.250 + 2.000 + 1.750)$
 $\sum D = 2.000,00 \times 8.500 = Rp17.000.000,00$

d. Jumlah kumulatif beban penyusutan pada akhir tahun ke-5:

$$\sum D = r(q_1 + q_2 + q_3 + q_4 + q_5)$$

$$\Sigma D = 2.000,00 \times (2.500 + 2.250 + 2.000 + 1.750 + 1.000)$$

$$\Sigma D = 2.000,00 \times 9.500 = Rp19.000.000,00$$

Nilai buku pada akhir tahun ke-5:

$$Sk = A - \sum D$$

$$Sk = 25.000.000,00 - 19.000.000,00 = Rp6.000.000,00$$

e. Susunan daftar penyusutannya sebagai berikut:

			r = Rp2		
Tahun ke	Nilai buku awal tahun	Jumlah Produksi	Beban Penyusutan	Akumulasi penyusutan	Nilai Buku Akhir tahun
1	25.000.000,00	2.500	5.000.000,00	5.000.000,00	20.000.000,00
2	20.000.000,00	2.250	4.500.000,00	9.500.000,00	15.500.000,00
3	15.500.000,00	2.000	4.000.000,00	13.500.000,00	11.500.000,00
4	11.500.000,00	1.750	3.500.000,00	17.000.000,00	8.000.000,00
5	8.000.000,00	1.000	2.000.000,00	19.000.000,00	6.000.000,00
6	6.000.000,00	500	1.000.000,00	20.000.000,00	5.000.000,00
	Jumlah		20.000.000,00		

Contoh 78

Sebuah mesin foto copy dibeli dengan harga Rp 6.500.000,00. Mesin itu diperkirakan mempunyai tingkat penyusutan Rp900 tiap 1000 lembar foto copy yang dihasilkan.

- a. Jika tahun tertentu mesin foto copy itu dapat menghasilkan 565.500 lembar foto copy, berapakah beban penyusutan pada tahun tersebut?
- b. Berapakah harga mesin foto copy itu setelah mesin tersebut memproduksi 950.000 lembar foto copy?

Jawab:

$$A = Rp6.500.000,00$$

r = Rp900/1.000 lembar

a. D = r · q
=
$$\frac{900}{1000}$$
 x 565.500 = Rp508.950,00

b.
$$\Sigma D = r \cdot \Sigma q$$

= $\frac{900}{1000} \times 950.000 = Rp855.000,00$

Nilai buku setelah memproduksi 950.000 lembar:

$$Sk = A - \sum D$$

$$Sk = 6.500.000,00 - 855.000,00 = Rp5.645.000,00$$

Contoh 79

Suatu mesin dapat berproduksi sebagai berikut:

Tahun ke-1 = 3.000 satuan hasil produksi

Tahun ke-2 = 2.500 satuan hasil produksi

Tahun ke-3 = 1.500 satuan hasil produksi

Tahun ke-4 = 2.000 satuan hasil produksi

Tahun ke-5 = 1.000 satuan hasil produksi

Setelah 5 tahun, mesin tersebut ditaksir mempunyai nilai Rp 2.500.000,00. Jika dengan metode satuan hasil produksi besarnya penyusutan adalah Rp75,00 per unit. Tentukan:

- a. Biaya perolehan mesin!
- b. Besarnya nilai buku pada akhir tahun ke-3!

Jawab:

S = Rp2.500.000,00

n = 5 tahun

Q = 10.000 unit $(q_1 = 3.000, \ q_2 = 2.500, \ q_3 = 1.500, \ q_4 = 2.000$ dan $\ q_5 = 1.000)$ r = Rp75,00

$$r = \frac{A - S}{Q}$$

$$75 = \frac{A - 2.500.000,00}{10.000}$$

750.000,00 = A - 2.500.000,00

A = 750.000,00 + 2.500.000,00 = Rp 3.250.000,00

d. Jumlah kumulatif beban penyusutan pada akhir tahun ke-3:

$$\sum D = r(q_1 + q_2 + q_3)$$

$$\Sigma D = 75,00 \text{ x} (3.000 + 2.500 + 1.500)$$

$$\Sigma D = 75,00 \times 7.000 = Rp 525.000,00$$

Nilai buku pada akhir tahun ke-5:

$$Sk = A - \sum D$$

$$Sk = 3.250.000,00 - 525.000,00 = Rp 2.725.000,00$$

d) . Metode satuan jam kerja aktiva (service hours method)

Besarnya tingkat penyusutan mengunakan metode satuan jam kerja aktiva dihitung berdasarkan tiap satuan jam kerja aktiva. Jika suatu aktiva dengan biaya perolehan sebesar A, masa manfaat selama n tahun, berproduksi sebanyak Q jam kerja ($Q = q_1 + q_2 + q_3 + \ldots + q_n$ dengan $q_1 + q_2 + q_3 + \ldots + q_n$ berturut-turut merupakan jumlah jam kerja aktiva dari tahun pertama sampai dengan tahun ke-n) dan nilai residu sebesar S, maka besarnya tingkat penyusutan r tiap jam kerja aktiva adalah:

$$r = \frac{A - S}{Q}$$

Jika D_1 , D_2 , D_3 , . . . D_k merupakan beban penyusutan tahun pertama, ke-2, ke-3 . . . ke-k, maka jumlah kumulatif beban penyusutan pada akhir tahun ke-k adalah:

$$\sum D = D_1 + D_2 + D_3 + \dots + D_k$$

$$\sum D = r. q_1 + r. q_2 + r. q_3 + \dots + r q_k$$

$$\sum D = r(q_1 + q_2 + q_3 + \dots + q_k)$$

Nilai buku pada akhir tahun ke-k adalah: $S_k = A - \sum D$

Contoh 80

Suatu aktiva dengan biaya perolehan Rp30.000.000,00. Diperkirakan umur manfaat aktiva selama 7 tahun dengan pengoperasian mesin selama 40.000 jam dan memiliki nilai sisa Rp6.000.000,00. Jika jumlah jam kerja aktiva tiap tahun berturut-turut adalah 10.000 jam, 8.500 jam, 6.000 jam, 5.500 jam, 5.000 jam, 3.000 jam, dan 2.000 jam. Tentukan:

- a. Tingkat penyusutan tiap jam kerja aktiva!
- b. Beban penyusutan pada tahun ke-4!
- c. Jumlah kumulatif beban penyusutan pada akhir tahun ke-5!
- d. Nilai buku pada akhir tahun ke-6!
- e. Susunan daftar penyusutannya!

Jawab:

A = Rp30.000.000,00

n = 7 tahun

$$Q=40.000$$
 jam (q $_1=10.000,\ q_2=8.500,\ q_3=6.000,\ q_4=5.500,\ q_5=5.000$ dan $q_6=3.000$ dan $q_6=2.000$)

S = Rp6.000.000,00

a.
$$r = \frac{A - S}{Q}$$

$$r = \frac{30.000.000,00 - 6.000.000,00}{40.000} = Rp600,00$$

b.
$$D_4 = r \cdot q_4$$

= 600,00 x 5.500 = Rp 3.300.000,00

c. Jumlah kumulatif beban penyusutan pada akhir tahun ke-5:

d. Jumlah kumulatif beban penyusutan pada akhir tahun ke-6:

Nilai buku pada akhir tahun ke-6:

$$Sk = A - \sum D$$

 $Sk = 30.000.000,00 - 22.800.000,00 = Rp7.200.000,00$

e. Susunan daftar penyusutannya sebagai berikut:

		Jumlah	r = Rp		
Tahun ke	Nilai Buku Awal Tahun	Jam Kerja	Beban Penyusutan	Akumulasi Penyusutan	Nilai Buku Akhir tahun
1	30.000.000,00	10.000	6.000.000,00	6.000.000,00	24.000.000,00
2	24.000.000,00	8.500	5.100.000,00	11.100.000,00	18.900.000,00
3	18.900.000,00	6.000	3.600.000,00	14.700.000,00	15.300.000,00
4	15.300.000,00	5.500	3.300.000,00	18.000.000,00	12.000.000,00
5	12.000.000,00	5.000	3.000.000,00	21.000.000,00	9.000.000,00
6	9.000.000,00	3.000	1.800.000,00	22.800.000,00	7.200.000,00
7	7.200.000,00	2.000	1.200.000,00	24.000.000,00	6.000.000,00
	Jumlah		24.000.000,00		

e). Metode Jumlah Bilangan Tahun (sum of the year's digits method)

Jika suatu aktiva mempuyai umur manfaat n tahun, maka tingkat penyusutan r merupakan bilangan pecahan dari tahun ke tahun semakin menurun dengan penyebut pecahan merupakan jumlah n bilangan asli.

Jumlah bilangan tahun dari n tahun adalah: JBT= 1 + 2 + 3 + ... + n Beban penyusutan akhir tiap-tiap tahun adalah:

$$D_{1} = \frac{n}{JBT} (A - S),$$

$$D_{2} = \frac{n - 1}{JBT} (A - S),$$

$$D_{3} = \frac{n - 2}{JBT} (A - S),$$

$$\vdots$$

$$D_{k} = \frac{n - k + 1}{JBT} (A - S)$$

Jumlah kumulatif beban penyusutan pada akhir tahun ke-k adalah:

$$\sum D = D_1 + D_2 + D_3 + \ldots + D_k$$

Nilai buku pada akhir tahun ke-k adalah: $S_k = A - \sum D$

Contoh 81

Sebuah aktiva dengan biaya perolehan sebesar Rp5.000.000,00 diperkirakan mempunyai umur manfaat selama 6 tahun dengan nilai sisa Rp800.000,00 dengan menggunakan metode jumlah bilangan tahun:

- a. Tentukan beban penyusutan tiap-tiap tahun!
- b. Tentukan akumulasi beban penyusutan pada 3 tahun pertama!
- c. Tentukan nilai buku pada akhir tahun ke-5!
- d. Buatlah daftar penyusutannya!

Jawab:

$$A = 5.000.000,00$$

$$S = Rp800.000,00$$

$$n = 6 \text{ tahun}$$

$$JBT = 6 + 5 + 4 + 3 + 2 + 1 = 21$$

$$a. D_1 = \frac{6}{21}(5.000.000,00 - 800.000,00)$$

$$= \frac{6}{21} \times 4.200.000,00 - 800.000,00$$

$$D_2 = \frac{6-1}{JBT}(A-S)$$

$$= \frac{5}{21}(5.000.000,00 - 800.000,00)$$

$$= \frac{5}{21} \times 4.200.000,00 - 800.000,00$$

$$D_3 = \frac{6-2}{JBT}(A-S)$$

$$= \frac{4}{21}(5.000.000,00 - 800.000,00)$$

$$= \frac{4}{21} \times 4.200.000,00 - 800.000,00$$

$$D_4 = \frac{6-3}{JBT}(A-S)$$

$$= \frac{3}{21}(5.000.000,00 - 800.000,00)$$

$$= \frac{3}{21} \times 4.200.000,00 - 800.000,00$$

$$D_5 = \frac{6-4}{JBT}(A-S)$$

$$= \frac{2}{21}(5.000.000,00 - 800.000,00)$$

$$= \frac{2}{21} \times 4.200.000,00 - 800.000,00$$

$$D_6 = \frac{6-5}{JBT}(A-S)$$

$$= \frac{1}{21}(5.000.000,00 - 800.000,00)$$

$$= \frac{1}{21} \times 4.200.000,00 - 800.000,00$$

$$D_6 = \frac{6-5}{JBT}(A-S)$$

$$= \frac{1}{21}(5.000.000,00 - 800.000,00)$$

$$= \frac{1}{21} \times 4.200.000,00 - 800.000,00$$

b. Jumlah kumulatif beban penyusutan pada akhir tahun ke-3 adalah:

$$\sum D = D_1 + D_2 + D_3$$

= 1.200.000,00 + 1.000.00,00 + 800.000,00 = Rp3.000.000,00

atau:

$$\sum D = D_1 + D_2 + D_3$$

$$\sum D = \frac{6+5+4}{JBT} (A-S)$$

$$\sum D = \frac{15}{21} (5.000.000,00-800.000,00)$$

$$\sum D = \frac{15}{21} \times 4.200.000,00 = Rp3.000.000,00$$

c. Nilai buku pada akhir tahun ke-5 adalah:

$$\begin{split} S_5 &= A - \sum D \\ S_5 &= 5.000.000,00 - \frac{6 + 5 + 4 + 3 + 2}{JBT} \ (5.000.000,00 - 800.000,00) \\ S_5 &= 5.000.000,00 - \frac{20}{21} \times 4.200.000,00 \\ S_5 &= 5.000.000,00 - 4.000.000,00 = Rp1.000.000,00 \end{split}$$

d. Daftar Penyusutannya:

Dartai T	Dartai Ferryusutarinya.					
Tahun ke	Nilai Buku Awal Tahun	Beban Penyusutan	Akumulasi Penyusutan	Nilai Buku Akhir Tahun		
1	5.000.000,00	1.200.000,00	1.200.000,00	3.800.000,00		
2	24.000.000,00	1.000.000,00	2.200.000,00	2.800.000,00		
3	18.900.000,00	800.000,00	3.000.000,00	2.000.000,00		
4	15.300.000,00	600.000,00	3.600.000,00	1.400.000,00		
5	12.000.000,00	400.000,00	4.000.000,00	1.000.000,00		
6	9.000.000,00	200.000,00	4.200.000,00	800.000,00		
Jumlah		4.200.000,00				

Contoh 82

Sebuah aktiva mempunyai umur manfaat selama 8 tahun. Menurut metode jumlah tahun beban penyusutan tahun keempat adalah Rp3.000.000,00 dan nilai buku pada akhir tahun ke-6 adalah Rp5.200.000,00. Tentukan biaya perolehan dan residu aktiva!

Jawab:

n = 8 tahun, maka JBT = 8 + 7 + 6 + 5 + 4 + 3 + 2 = 1 = 36
D₄ = Rp3.000.000,00
S₆ = Rp 5.200.000,00

$$D_4 = \frac{8 - 4 + 1}{JBT}(A - S)$$

$$3.000.000,00 = \frac{5}{36}(A - S)$$

$$A - S = 3.000.000,00 \times \frac{36}{5}$$

 $A - S = 21.600.000,00 \dots 1)$

$$S_6 = A - \sum D$$

$$5.200.000,00 = A - \frac{8+7+6+5+4+3}{36} (S-A)$$

$$5.200.000,00 = A - \frac{33}{36} \times 21.600.000,00 \qquad \text{(dari persamaan 1)}$$

$$5.200.000,00 = A - 19.800.000,00$$

$$A = 5.200.000,00 + 19.800.000,00 = Rp25.000.000,00$$

$$A - S = 21.600.000,00 \qquad \text{(dari persamaan 1)}$$

$$S = 25.000.000,00 - 21.600.000,00 = Rp3.400.000,00$$

3). Penyusutan Aktiva Tetap Tidak Berwujud

Aktiva tidak berwujud adalah suatu aktiva tetap yang tidak memiliki sifat fisik. Contoh: hak paten, hak cipta *(copy right)*, merek dagang, dan nama baik *(goodwill)*. Semua biaya yang dikeluarkan untuk mendapatka aktiva sehingga aktiva itu dapat digunakan di dalam operasional perusahaan, maka biaya-biaya itu dimasukan ke dalam biaya perolehan aktiva itu.

Proses penyusutan pada aktiva tetap tak terwujud disebut *amortisasi*. Umur manfaat aktiva tak terwujud, sesuai dengan ketentuan atau peraturan yang telah ditetapkan. Jika aktiva tak berwujud dikeluarkan oleh pemerintah maka masa berlaku aktiva itu ditetapkan oleh pemerintah sesuai dengan peraturan pemerintah. Misalnya *hak paten* masa berlaku dalam jangka waktu 15 tahun.

Perhitungan amortisasi biasanya dilakukan dengan metode garis lurus. Dalam hal ini nilai sisa setelah masa manfaat dari aktiva itu habis adalah nol (S=0). Jadi, beban penyusutan tiap tahun:

$$D = \frac{A - S}{n} = \frac{A - 0}{n} = \frac{A}{n}$$

A = biaya perolehan aktiva tak berwujud.

n = masa berlakunya aktiva tak berwujud.

Contoh 83

Perusahaan pertambangan Batu bara mendapat hak paten menambang batu bara selama 15 tahun dengan biaya perizinan sebesar Rp150.000.000,00. Tentukan:

- a. Beban penyusutan tiap tahun dari hak paten tersebut
- b. Nilai buku pada akhir tahun ke-8!

Jawab:

A = Rp150.000.000,00

n = 15 tahun

a.
$$D = \frac{A}{n} = \frac{150.000.000,00}{15} = Rp10.000.000,00$$

b. Nilai buku pada akhir tahun ke-8:

$$S_8 = A - \Sigma D$$

$$S_8 = 15.000.000,00 - 8 \times 10.000.000,00 = Rp70.000.000,00$$

- 1. Sebuah aktiva dengan biaya perolehan sebesar Rp15.000.000,00. Diperkirakan aktiva itu dapat dimanfaatkan selama 8 tahun dengan perkiraan nilai sisa Rp 3.000.000,00. Dengan mengunakan metode garis lurus, tentukan:
 - a. Besarnya beban penyusutan tiap tahun
 - b. Persentase penyusutan per tahun
 - c. Harga aktiva pada akhir tahun ke-5
 - d. Buatlah daftar penyusutan lengkap dengan akumulasi penyusutannya!
- 2. Pada awal tahun 2006 CV Sejahtera membeli sebuah aktiva seharga Rp12.000.000,00. Aktiva tersebut menyusut 10% tiap tahun dari harga beli. Tentukan:
 - a. Nilai aktiva pada akhir tahun 2010
 - b. Akumulasi penyusutan sampai akhir tahun 2012
 - c. Umur aktiva jika aktiva tidak bernilai lagi!
- 3. Sebuah aktiva dengan biaya perolehan Rp25.000.000,00. Setelah beroperasi selama 7 tahun ditaksir nilai sisanya Rp7.000.000,00. Dengan mengunakan metode persentase tetap dari nilai buku, tentukan:
 - a. Tingkat penyusutan tiap tahun
 - b. Harga aktiva pada akhir tahun ke-5
 - c. Buatlah daftar penyusutanya!
- 4. Pada awal tahun 2005 PT Adil dan Sejahtera membeli sebuah aktiva seharga Rp20.000.000,00. Aktiva tersebut menyusut 10% tiap tahun dari nilai buku. Tentukan:
 - a. Nilai aktiva pada akhir tahun 2010
 - b. Setelah berapa tahun nilai aktiva menjadi Rp9.565.938,00!
- 5. Suatu aktiva dengan biaya perolehan Rp35.000.000,00. Diperkirakan umur manfaat aktiva selama 8 tahun dengan jumlah produksinya 165.000 unit dan memiliki nilai sisa Rp2.000.000,00. Jika jumlah produksi tiap tahun berturut-turut adalah 30.500 unit, 25.250 unit, 23.000 unit, 20.750 unit, 19.000 unit, 18.500 unit, 18.000 unit dan 10.000 unit. Tentukan:
 - a. Tingkat penyusutan tiap satuan unit produksi!
 - b. Beban penyusutan pada tahun ke-6!
 - c. Jumlah kumulatif beban penyusutan pada akhir tahun ke-5!
 - d. Nilai buku pada akhir tahun ke-4!
 - e. Susunan daftar penyusutannya.
- 6. Sebuah mesin foto copy dibeli dengan harga Rp8.500.000,00. Mesin itu diperkirakan mempunyai tingkat penyusutan Rp85 tiap 100 lembar foto copy yang di hasilkan.
 - a. Jika tahun tertentu mesin foto copy itu dapat menghasilkan 250.000 lembar foto copy, berapakah beban penyusutan pada tahun tersebut?
 - b. Berapakah harga mesin foto copy itu setelah mesin tersebut memproduksi 600.000 lembar foto copy?

7. Suatu mesin dapat berproduksi sebagai berikut:

Tahun ke-1 = 5.000 unit

Tahun ke-2 = 4.500 unit

Tahun ke-3 = 3.500 unit

Tahun ke-4 = 3.000 unit

Tahun ke-5 = 2.000 unit

Setelah 5 tahun, mesin tersebut ditaksir mempunyai nilai Rp 2.500.000,00. Jika dengan metode satuan hasil produksi besarnya penyusutan adalah Rp105,00 per unit. Tentukan:

- a. Biaya perolehan mesin!
- b. Besarnya nilai buku pada akhir tahun ke-4!
- 8. Suatu aktiva dengan biaya perolehan Rp45.000.000,00. Diperkirakan umur manfaat aktiva selama 6 tahun dengan pengoperasian mesin selama 42.000 jam dan memiliki nilai sisa Rp3.000.000,00. Jika jumlah jam kerja aktiva tiap tahun berturut-turut adalah 11.000 jam, 8.500 jam, 7.000 jam, 5.500 jam, 5.000 jam dan sisanya tahun ke-6. Tentukan:
 - a. Tingkat penyusutan tiap jam kerja aktiva!
 - b. Beban penyusutan pada tahun ke-3!
 - c. Jumlah kumulatif beban penyusutan pada akhir tahun ke-6!
 - d. Nilai buku pada akhir tahun ke-2!
 - e. Susunan daftar penyusutannya!
- 10. Sebuah aktiva mempunyai umur manfaat selama 6 tahun menurut metode jumlah bilangan tahun, beban penyusutan tahun kedua adalah Rp2.200.000,00 dan nilai buku pada akhir tahun ke-3 adalah Rp 6.000.000,00
 - a. Tentukan biaya perolehan dan residu!
 - b. Buat daftar penyusutan!
- 11. Perusahaan pertambangan timah mendapat hak paten menambang timah selama 12 tahun dengan biaya perizinan sebesar Rp180.000.000,00. Tentukan:
 - a. Beban penyusutan tiap tahun dari hak paten tersebut!
 - b. Nilai buku pada akhir tahun ke-8!
- 12. Sebuah mobil dibeli dengan harga Rp100.000.000,00. Dengan perkiraan umur manfaat selama 15 tahun. Berdasarkan metode jumlah bilangan tahun, beban penyusutan pada tahun ke-6 adalah Rp6.750.000,00. Tentukan:
 - a. Besar residunya!
 - b. Nilai buku pada akhir tahun ke-10!
- 13. Suatu aktiva dengan metode saldo menurun, nilai buku akhir tahun ke-2 adalah Rp2.250.000,00 dan masa manfaat selama 8 tahun. Hitunglah:
 - a. Persentase penyusutannya!
 - b. Harga beli aktiva!
- 14. Suatu aktiva dengan harga Rp12.000.000,00. Tiap tahun harganya tinggal
 - $\frac{3}{4}$ nya dari nilai buku, tentukan harga aktiva pada akhir tahun ke-5!

- 15. Suatu aktiva setiap tahun nilainya menyusut hanya tinggal 0,85 nya dari nilai buku. Jika nilai aktiva pada akhir tahun ke-5 adalah Rp2.218.526,56. Tentukan nilai aktiva pada akhir tahun ke-3!
- 16. Selama jangka waktu 10 tahun *PT Hasil Alam* menghasilkan batu bara sebanyak 50.000 ton dengan hasil tahun pertama sampai dengan tahun ke-10 berturut-turut adalah 5.000 ton, 5.000 ton, 3.000 ton, 4.000 ton, 5.000 ton 7000 ton, 7000 ton, 5000 ton dan 4000 ton. Dengan metode satuan hasil produksi:
 - a. Tentukan tingkat penyusutan setiap satu ton batu bara yang dihasilkan!
 - b. Tentukan nilai buku pada akhir tahun ke-8!
- 17. Sebuah mesin pabrik dibeli dengan harga Rp60.000.000,00. Nilai sisa jika mesin tersebut habis masa manfaatnya adalah Rp4.000.000,00 dan ditaksir akan dapat digunakan selama 56.000 jam dengan taksiran sebagai berikut:

Tahun I = 12.000 jam

Tahun II = 10.500 jam

Tahun III = 9.500 jam

Tahun IV = 8.000 jam

Tahun V = 6.500 jam

Tahun VI = 5.500 jam

Tahun VII = 4.000 jam

Dengan metode satuan jam kerja, tentukan:

- a. Tingkat penyusutan setiap jam kerja
- b. Akumulasi penyusutan selama 3 tahun pertama
- c. Harga mesin setelah beroperasi selama 5 tahun
- d. Susunan daftar penyusutan!
- 18. Suatu aktiva dengan harga Rp6.500.000,00. Dengan metode persentase tetap dari harga beli besarnya persentase penyusutan 6,25% per tahun. Hitunglah:
 - a. Beban penyusutan aktiva tiap tahun
 - b. Jumlah akumulasi nilai penyusutan 10 tahun pertama
 - c. Harga aktiva setelah beroperasi selama 8 tahun
 - d. Masa manfaat aktiva sehingga aktiva tidak bernilai lagi!
- 19. Sebuah aktiva dengan biaya perolehan Rp500.000.000,00 diperkirakan selama 5 tahun dapat memproduksi dengan rincian sebagai berikut:

Tahun pertama dapat memproduksi 1.200 unit.

Tahun kedua dapat memproduksi 800 unit.

Tahun ketiga dapat memproduksi 600 unit.

Tahun keempat dapat memproduksi 400 unit.

Selanjutnya aktiva itu tidak dapat dimanfaatkan lagi kemudian dijual dan laku sebesar Rp5.000.000,00.

- a. Hitunglah tingkat penyusutan tiap satu unit produksi!
- b. Berapa harga aktiva seandainya pada akhir tahun ke-2 dijual?
- c. Buat daftar penyusutan!

20. Data suatu aktiva sebagai berikut:

Biaya perolehan Rp20.000.000,00

Perkiraan aktiva:

Masa manfaat aktiva..... 8

- a. Hitunglah beban penyusutan dan persentase penyusutan tiap tahun dengan menggunakan metode garis lurus!
- b. Hitunglah tingkat penyusutan tiap jam kerja!
- c. Hitunglah tingkat penyusutan tiap unit produksi!
- d. Dengan metode satuan hasil produksi dan satuan jam kerja, hitunglah beban penyusutan untuk tahun kedua (tahun kedua dihasilkan 7.600 unit dan bekerja selama 8.500 jam kerja)!

A. Pilihan Ganda

15% di atas 100 senilai dengan

a. $\frac{3}{23}$

c. $\frac{3}{20}$

e. $\frac{3}{17}$

b. $\frac{3}{22}$

d. $\frac{3}{18}$

2. 12% dibawah 100 dari Rp 4.400.000,00 adalah

a. Rp682.000,00

c. Rp600.000,00

e. Rp471.428,00

b. Rp628.000,00

d. Rp528.000,00

3. 10% diatas 100 senilai dengan persen di bawah 100

a. 9.09 %

c. 8.53 %

e. 8.33 %

b. 8.83 %

d. 8.43 %

4. Harga jual suatu barang adalah Rp5.980.000,00. Jika barang dijual dengan untung 15%, maka untungnya adalah

a. Rp760.000,00

c. Rp880.000,00

e. Rp5.200.000,00

b. Rp780.000,00

d. Rp5.100.000,00

5. Suatu modal sebesar Rp1.000.000,00 dibungakan dengan bunga tunggal selama 3 tahun dengan suku bunga tunggal 18%/tahun, maka modal setelah dibungakan adalah

a. Rp1.240.000,00

c. Rp1.450.000,00

e. Rp1.550.000,00

b. Rp1.440.000,00

d. Rp1.540.000,00

6.	Modal sebesar Rp2.500.000,0 tahun 7 bulan dengan suku bu a. Rp356.250,00 b. Rp366.250,00	nga 3%/cawu. Bunga yang c. Rp536.250,00	
7.	Suatu pinjaman sebesar Rp2 selama 2 tahun 3 bulan dan bunganya tiap tahun adalah	bunga yang diperoleh Rp4 	50.000,00, maka suku
	a. 6% b. 6,5%	c. 7% d. 7,5%	e. 8%
8.	Suatu pinjaman sebesar Rp1.5 7,5%/semester dan modal ters selama t bulan, nilai t adalah	sebut menjadi Rp1.800.000	,00. Setelah dibungakan
	a. 14 bulan b. 16 bulan	c. 18 bulan d. 20 bulan	e. 21 bulan
9.	Suatu pinjaman setelah dibung tahun modal tersebut menja adalah		
	a. Rp 4.400.000,00 b. Rp 4.500.000,00	c. Rp 4.600.000,00 d. Rp 4.700.000,00	e. Rp 7.400.000,00
10.	Modal sebesar Rp2.000.000, 5%/semester selama 5 tahun,		
	a. Rp4.257.789,25 b. Rp3.752.789,25		e. Rp3.257.897,25
11.	Modal sebesar Rp1.500.000,00 selama 3 tahun 9 bulan, maka		a majemuk 4%/triwulan
	a. Rp3.711.415,26 b. Rp3.701.415,26		e. Rp2.701.415,26
12.	Pinjaman sebesar Rp2.500.000 selama 2 tahun ternyata mod adalah		
	a. 1,2%/bulan b. 1,4%/bulan	c. 1,5%/bulan d. 1,6%/bulan	e. 1,8%/bulan
13.	•	, .	ulk cobocar 150//tahun
13.	Suatu modal setelah dibunga selama 12 tahun modal menjadalah		
	a. Rp2.500.000,00 b. Rp2.550.000,00	c. Rp2.600.000,00 d. Rp2.700.000,00	e. Rp2.800.000,00
14.	Nilai tunai dari suatu modal majemuk 2%/bulan selama 2 t		ıngakan dengan bunga
	a. Rp3.008.706,44		e. Rp3.810.607,44

180	Matematika XII SMK Kelompok: Penjualan dan Akuntansi
15.	Seorang karyawan setiap awal bulan menyimpan uang di bank sebesar Rp 500.000,00. Jika bank memberikan bunga 1,5%/bulan, maka simpanan karyawan selama 2 tahun adalah
	a. Rp14.135.511,80 c. Rp14.531.521,80 e. Rp15.631.511,80 b. Rp14.531.511,80 d. Rp15.531.511,80
16.	Setiap akhir tahun Susan menyimpan uangnya di bank sebesar Rp800.000,00 selama 25 tahun di Bank ABC. Jika bank memberikan bunga 5%/tahun, maka jumlah simpanan total Susan di bank tersebut adalah a. Rp38.181.679,06 c. Rp39.181.679,06 e. Rp39.881.979,06 b. Rp38.811.679,06 d. Rp39.811.679,06

17. Seorang siswa akan mendapat beasiswa pada setiap awal bulannya dari PT.UNILEVER sebesar Rp250.000,00 selama 3 tahun. Jika beasiswa akan diberikan sekaligus diawal bulan pertama dengan dikenai bunga 2%/bulan, maka beasiswa total yang diterima siswa tersebut adalah

beasiswa total yang diterima siswa tersebut adalah

a. Rp6.349.654,83 c. Rp6.994.654,83 e. Rp7.949.654,83
b. Rp6.499.654,83 d. Rp7.499.654,83

18. Setiap akhir tahun *Yayasan Kasih Ibu* akan mendapatkan sumbangan dari Bank Dunia sebesar Rp3.500.000,00 dalam jangka waktu yang tidak terbatas. Jika Bank dunia akan memberikan sumbangan sekaligus dengan bunga 17,5%/tahun, maka jumlah sumbangan total yang diterima yayasan tersebut adalah

a. Rp19.500.000,00 c. Rp23.500.000,00 e. Rp24.000.000,00 b. Rp23.000.000,00 d. Rp20.000.000,00

19. Nilai tunai Rente kekal pra numerando dari suatu modal Rp500.000,00 tiap bulan dengan suku bunga 2,5%/bulan adalah

a. Rp19.500.000,00 c. Rp20.500.000,00 e. Rp22.500.000,00 b. Rp20.000.000,00 d. Rp21.500.000,00

20. Setiap awal bulan Azzam akan mendapatkan beasiswa dari Yayasan Supersemar sebesar Rp175.000,00 dalam jangka waktu yang tak terbatas. Yayasan tak mau repot, oleh karena itu beasiswa akan diberikan sekaligus namun harus dikenai bunga sebesar 1%/bulan, maka beasiswa total yang diterima Azzam adalah

a. Rp16.275.000,00 c. Rp16.765.000,00 e. Rp17.675.000,00 b. Rp16.500.000,00 d. Rp17.500.000,00

21. Nilai tunai dari rente kekal Post Numerando adalah Rp5.000.000,00, jika angsurannya sebesar Rp200.000,00 tiap bulan, maka suku bunganya tiap bulan adalah

a. 3,5% c. 4,5% e. 6% b. 4% d. 5%

22. Mia bersama suaminya berencana mengambil rumah di VILLA BANDARA INDAH dengan harga Rp250.000.000,00, ternyata Mia hanya memiliki uang muka Rp100.000.000,00 sisanya akan dicicil dengan sistem anuitas tahunan selama 10 tahun dengan suku bunga 18%/tahun. Nilai anuitasnya adalah

ahun dengan suku bunga 18%/tahun . Nilai anuitasnya adalah a. Rp33.377.196,2 c. Rp34.337.196,2 e. Rp34.773.196,2 b. Rp33.773.196,2 d. Rp34.377.196,2

23.	Nilai anuitas dari suatu pinjaman sebesar Rp5.000.000,00 selama 2 tahun dengar
	suku bunga 2%/bulan adalah

a. Rp 262.335,49

c. Rp 264.355,49

e. Rp 265.355,49

b. Rp 263.355,49

d. Rp 264.553,49

24. Suatu aktiva dibeli dengan harga Rp1.500.000,00 dengan menggunakan metode persentase tetap dari harga beli. Besarnya penyusutan tiap 6 bulan adalah Rp100.000,00 dan aktiva tersebut sekarang berharga Rp300.000,00. maka umur manfaat aktiva tersebut adalah

a. 6 tahun

c. 8 tahun

e. 10 tahun

b. 7 tahun

d. 9 tahun

25. Suatu mesin dapat berproduksi sebagai berikut:

Tahun ke-1=3.000 satuan hasil produksi

Tahun ke-2=2.500 satuan hasil produksi

Tahun ke-3=1.500 satuan hasil produksi

Tahun ke-4=2.000 satuan hasil produksi

Tahun ke-5=1.000 satuan hasil produksi

Mesin itu ditaksir mempunyai nilai Rp150.000,00. Jika dengan metode satuan hasil produksi besarnya penyusutan adalah Rp55.00 per unit, maka harga beli mesin tersebut adalah

a.Rp580.000,00

d. Rp700.000,00

e. Rp800.000,00

b.Rp600.000,00

e. Rp750.000,00

26. Biaya perolehan aktiva sebesar Rp3.000.000,00 mempunyai taksiran masa manfaat selama 10 tahun dengan nilai residu Rp500.000,00. Persentase penyusutan aktiva tersebut menurut straight line method adalah

a.
$$6\frac{1}{2}\%$$

c.
$$8\frac{1}{2}\%$$

e.
$$8\frac{1}{3}\%$$

b.
$$7\frac{1}{2}\%$$

27. Seorang anggota meminjam uang dari koperasi sebesar Rp5.000.000,00 dengan suku bunga tunggal 1,5% setiap bulan. Besar bunga selama setengah tahun adalah

a. Rp225.000,00

c. Rp500.000,00

e. Rp 750.000,00

b. Rp450.000,00

d. Rp550.000,00

28. Marina meminjam uang dengan sistem diskonto 5% setahun. Jika pada saat meminjam ia menerima uang sebesar Rp532.000,00, maka besar uang yang harus dikembalikan Sabrina setelah satu tahun adalah

a. Rp26.600,00

c. Rp558.600,00

e. Rp600.000,00

b. Rp28.000,00

d. Rp560.000,00

29. Setiap awal semester Umi menabungkan uangnya sebesar Rp200.000,00 pada sebuah bank yang memberikan suku bunga majemuk 5,5% setiap semester. Dengan bantuan tabel di bawah, jumlah tabungan Umi pada akhir tahun ke-4 adalah

a. Rp888.000,00

b. Rp916.220,00

c. Rp1.644.000,00

d. Rp1.688.000,00

e. Rp2.051.260,00

n	5,5 %
2	2,1680
4	4,5811
8	10,2563

30. Perhatikan tabel rencana pelunasan dengan sebagian data berikut

Bulan	Pinjaman	Anuitas =Rp		Sisa
ke	Awal	Bunga = 2 %	Angsuran	Pinjaman
1	-	Rp60.000,00	-	Rp2.960.000,00
2	-		-	-

Berdasarkan data di atas, besar angsuran pada bulan ke-2 adalah . . .

a. Rp40.000,00

c. Rp58.384,00

e. Rp400.000,00

b. Rp40.800,00

d. Rp59.200,00

31. Tabel rencana pelunasan hutang:

Bulan	Pinjaman	Anuitas		
ke-	Awal	Bunga 2 ½%	Angsuran	Sisa Hutang
1	Rp6.000.000,00	-	-	Rp4.850.000,00
2	-	Rp121.250,00	-	Rp3.671.250,00

Besar anuitas pada tabel di atas adalah

a. Rp1.125.000,00

c. Rp1.300.000,00

e. Rp1.600.000,00

b. Rp1.205.000,00

d. Rp1.475.000,00

- 32. Nilai beli suatu aktiva sebesar Rp8.400.000,00. Setelah dipakai 5 tahun diperkirakan mempunyai nilai sisa Rp4.150.000,00. Jika dihitung dengan metode garis lurus, maka beban penyusutan setiap tahunnya adalah
 - a. Rp168.000,00

c. Rp830.000,00

e. Rp1.050.000,00

b. Rp320.000,00

d. Rp850.000,00

- 33. Pada setiap awal tahun, seorang menabung sebesar Rp100.000,00 pada sebuah bank yang memberikan bunga majemuk 20% setiap tahun. Jumlah tabungan tersebut pada akhir tahun ke-2 adalah
 - a. Rp220.000,00

c. Rp260.000,00

e. Rp336.000,00

b. Rp240.000,00

d. Rp264.000,00

- 34. Seorang pedagang meminjam uang dengan sistem diskonto 20%/tahun. Ia menerima pinjaman tersebut sebesar Rp960.000,00. Besar uang yang harus dikembalikan setelah satu tahun adalah
 - a. Rp1.000.000,00

c. Rp1.152.000,00

e. Rp1.250.000,00

b. Rp1.250.000,00

d. Rp1.200.000,00

35. Berikut ini adalah tabel rencana pelunasan suatu pinjaman dengan sebagian data:

Bulan	Pinjaman Awal	Anuitas		Sisa Pinjaman
ke		Bunga 5 %	Angsuran	Sisa Pirijarriari
1	Rp. 200.000,00	-	-	Rp. 170.000,00
2	Rp. 170.000,00	Rp. 8.500,00	-	Rp. 138.000,00
3	Rp. 138.500,00	-	Rp. 33.075,00	Rp. 105.425,00
4	dst			

Besarnya Anuitas adalah

a. Rp40.000,00

c. Rp30.000,00

e. Rp6.925,00

b. Rp31.500,00

d. Rp10.000,00

C.2. Soal Essay

- 1. Harga barang setelah dikenai pajak adalah Rp2.800.000,00 jika besarnya pajak 12%. Tentukanlah besarnya pajak dan harga sebelum pajak!
- Pinjaman sebesar Rp1.250.000,00 dibungakan dengan bunga tunggal 0.5%/bulan selama 2 tahun 5 bulan dan 18 hari (1 tahun = 360 hari). Tentukanlah bunga yang diperoleh!
- 3. Modal sebesar Rp3.000.000,00 dibungakan dengan suku bunga majemuk 4%/semester. Tentukanlah setelah berapa tahun modal menjadi Rp 4.440.732,87!
- 4. Setiap awal tahun Tutik menyimpan uangnya di Bank Asia sebesar Rp1.000.000,00, jika Bank memberikan bunga 9%/tahun. Tentukanlah uang Tutik setelah menabung 20 tahun!
- 5. Pinjaman sebesar Rp10.000.000,00 akan dilunasi dengan anuitas bulanan selama 3 tahun dengan suku bunga 2.5%/bulan. Tentukan:
 - a. Anuitasnya
 - b. Bunga dan angsuran pertama!
- 6. Pada awal tahun 2004 PT TEKNIK JAYA membeli sebuah aktiva termasuk biayabiaya lain sehingga aktiva itu siap dioperasikan sebesar Rp15.0000.000,00 aktiva itu setiap tahun disusutkan 40% dari nilai buku dan diperkirakan mempunyai umur manfaat selama 6 tahun.
 - a. Tentukan beban penyusutan pada tahun 2008!
 - b. Tentukan nilai buku pada akhir tahun 2007!
 - c. Tentukan nilai residu!

7. Suatu mesin yang dibeli dengan harga Rp600.000.000,00 ditaksir mempinyai nilai sisa Rp40.000.000,00. Mesin ini selama umur manfaatnya akan memberi hasil sebagai berikut:

Tahun I = 10.000 jam Tahun II = 8.000 jam Tahun III = 6.000 jam Tahun IV = 4.000 jam

Dengan metode satuan hasil produksi, tentukan:

- a. beban penyusutan tiap-tiap unit, dan
- b. beban penyusutan pada tahun ke-2!
- 8. Suatu aktiva dengan harga Rp6.500.000,00 dan ditaksir nilai sisanya Rp1.300.000,00. Dengan metode persentase tetap dari harga beli jika besarnya persentase penyusutan 20% per tahun, maka hitunglah:
 - a. masa manfaat aktiva,
 - b. beban penyusutan aktiva, dan
 - c. nilai buku setelah tahun ke-2!
- 9. Hitunglah angsuran ke-5 dari suatu pinjaman Rp2.000.000,00 dengan anuitas Rp800.000,00 dan bunga 4% per tahun!
- 10. Utang Rp10.000.000,00 diangsur dengan 10 anuitas dengan bunga 3% setahun. Tentukan sisa pinjaman setelah anuitas ke-6!

Daftar Bunga

Daftar I untuk $(1,015)^n$; $(1,02)^n$; $(1,025)^n$; $(1,03)^n$; $(1,035)^n$

n	1,5%	2%	2,5%	3%	3,5%
1	1,015	1,02	1,025	1,03	1,035
2	1,030225	1,0404	1,050625	1,0609	1,071225
3	1,045678375	1,061208000	1,076890625	1,092727000	1,108717875
4	1,061363551	1,082432160	1,103812891	1,125508810	1,147523001
5	1,077284004	1,104080803	1,131408213	1,159274074	1,187686306
6	1,093443264	1,126162419	1,159693418	1,194052297	1,229255326
7	1,109844913	1,148685668	1,188685754	1,229873865	1,272279263
8	1,126492587	1,171659381	1,218402898	1,266770081	1,316809037
9	1,143389975	1,195092569	1,248862970	1,304773184	1,362897353
10	1,160540825	1,218994420	1,280084544	1,343916379	1,410598761
11	1,177948937	1,243374308	1,312086658	1,384233871	1,459969717
12	1,195618171	1,268241795	1,344888824	1,425760887	1,511068657
13	1,213552444	1,293606630	1,378511045	1,468533713	1,563956060
14	1,231755731	1,319478763	1,412973821	1,512589725	1,618694522
15	1,250232067	1,345868338	1,448298166	1,557967417	1,675348831
16	1,268985548	1,372785705	1,484505621	1,604706439	1,733986040
17	1,288020331	1,400241419	1,521618261	1,652847632	1,794675551
18	1,307340636	1,428246248	1,559658718	1,702433061	1,857489196
19	1,326950745	1,456811173	1,598650186	1,753506053	1,922501317
20	1,346855007	1,485947396	1,638616440	1,806111235	1,989788863
21	1,367057832	1,515666344	1,679581851	1,860294572	2,059431474
22	1,387563699	1,545979671	1,721571398	1,916103409	2,131511575
23	1,408377155	1,576899264	1,764610683	1,973586511	2,206114480
24	1,429502812	1,608437249	1,808725950	2,032794106	2,283328487
25	1,450945354	1,640605994	1,853944098	2,093777930	2,363244984
26	1,472709534	1,673418114	1,900292701	2,156591268	2,445958559
27	1,494800177	1,706886477	1,947800018	2,221289006	2,531567108
28	1,517222180	1,741024206	1,996495019	2,287927676	2,620171957
29	1,539980513	1,775844690	2,046407394	2,356565506	2,711877976
30	1,563080220	1,811361584	2,097567579	2,427262471	2,806793705
31	1,586526424	1,847588816	2,150006769	2,500080345	2,905031484
32	1,610324320	1,884540592	2,203756938	2,575082756	3,006707586
33	1,634479185	1,922231404	2,258850861	2,652335238	3,111942352
34	1,658996373	1,960676032	2,315322133	2,731905296	3,220860334
35	1,683881318	1,999889553	2,373205186	2,813862454	3,333590446
36	1,709139538	2,039887344	2,432535316	2,898278328	3,450266111
37	1,734776631	2,080685091	2,493348699	2,985226678	3,571025425
38	1,760798281	2,122298792	2,555682416	3,074783478	3,696011315
39	1,787210255	2,164744768	2,619574476	3,167026983	3,825371711
40	1,814018409	2,208039664	2,685063838	3,262037792	3,959259721
41	1,841228685	2,252200457	2,752190434	3,359898926	4,097833811
42	1,868847115	2,297244466	2,820995195	3,460695894	4,241257995
43	1,896879822	2,343189355	2,891520075	3,564516770	4,389702025
44	1,925333019	2,390053142	2,963808077	3,671452273	4,543341595
45	1,954213014	2,437854205	3,037903279	3,781595842	4,702358551
46	1,983526210	2,486611289	3,113850861	3,895043717	4,866941101
47	2,013279103	2,536343515	3,191697132	4,011895028	5,03728 4 039
48	2,043478289	2,587070385	3,271489561	4,132251879	5,213588981
49	2,074130464	2,638811793	3,353276800	4,256219436	5,396064595
50	2,105242421	2,691588029	3,437108720	4,383906019	5,584926856

Daftar II untuk $(1,04)^n$; $(1,045)^n$; $(1,05)^n$; $(1,055)^n$; $(1,06)^n$

n	4%	4,5%	5%	5,5%	6%
1	1,04	1,045	1,05	1,055	1,06
2	1,0816	1,092025	1,1025	1,113025	1,1236
3	1,124864000	1,141166125	1,157625000	1,174241375	1,191016000
4	1,169858560	1,192518601	1,215506250	1,238824651	1,262476960
5	1,216652902	1,246181938	1,276281563	1,306960006	1,338225578
6	1,265319018	1,302260125	1,340095641	1,378842807	1,418519112
7	1,315931779	1,360861830	1,407100423	1,454679161	1,503630259
8	1,368569050	1,422100613	1,477455444	1,534686515	1,593848075
9	1,423311812	1,486095140	1,551328216	1,619094273	1,689478959
10	1,480244285	1,552969422	1,628894627	1,708144458	1,790847697
11	1,539454056	1,622853046	1,710339358	1,802092404	1,898298558
12	1,601032219	1,695881433	1,795856326	1,901207486	2,012196472
13	1,665073507	1,772196097	1,885649142	2,005773897	2,132928260
14	1,731676448	1,8519 44 922	1,979931599	2,116091462	2,260903956
15	1,800943506	1,935282443	2,078928179	2,232476492	2,396558193
16	1,872981246	2,022370153	2,182874588	2,355262699	2,540351685
17	1,947900496	2,113376810	2,292018318	2,484802148	, 2,692772786
18	2,025816515	2,208478766	2,406619234	2,621466266	2,854339153
19	2,106849176	2,307860311	2,526950195	2,765646911	3,025599502
20	2,191123143	2,411714025	2,653297705	2,917757491	3,207135472
21	2,278768069	2,520241156	2,785962590	3,078234153	3,399563601
22	2,369918792	2,633652008	2,925260720	3,247537031	3,603537417
23	2,464715543	2,752166348	3,071523756	3,426151568	3,819749662
24	2,563304165	2,876013834	3,225099944	3,614589904	4,048934641
25	2,665836331	3,005434457	3,386354941	3,813392349	4,291870720
26	2,772469785	3,140679007	3,555672688	4,023128928	4,549382963
27	2,883368576	3,282009562	3,733456322	4,244401019	4,822345941
28	2,998703319	3,429699993	3,920129138	4,477843075	5,111686697
29	3,118651452	3,584036492	4,116135595	4,724124444	5,418387899
30	3,243397510	3,745318135	4,321942375	4,983951288	5,743491173
31	3,373133410	3,913857451	4,538039494	5,258068609	6,088100643
32	3,508058747	4,089981036	4,764941469	5,547262383	6,453386682
33	3,648381097	4,274030182	5,003188542	5,852361814	6,840589883
34	3,794316341	4,466361541	5,253347969	6,174241714	7,251025276
35	3,946088994	4,667347810	5,516015368	6,513825008	7,686086792
36	4,103932554	4,877378461	5,791816136	6,872085383	8,147252000
37	4,268089856	5,096860492	6,081406943	7,250050079	8,636087120
38	4,438813450	5,326219214	6,385477290	7,648802834	9,154252347
39	4,616365988	5,565899079	6,704751154	8,069486990	9,703507488
40	4,801020628	5,816364538	7,039988712	8,513308774	10,285717937
41	4,993061453	6,078100942	7,391988148	8,981540757	10,902861013
42	5,192783911	6,351615484	7,761587555	9,475525498	11,557032674
43	5,400495268	6,637438181	8,149666933	9,996679401	12,250454635
44	5,616515078	6,936122899	8,557150280	10,546496768	12,985481913
45	5,841175681	7,248248430	8,985007793	11,126554090	13,764610827
46	6,074822709	7,57 44 19609	9,434258183	11,738514565	14,590487477
47	6,317815617	7,915268491	9,905971092	12,384132866	15,465916726
48	6,570528242	8,271455573	10,401269647	13,065260173	16,393871729
49	6,833349371	8,643671074	10,921333129	13,783849483	17,377504033
50	7,106683346	9,032636273	11,467399786	14,541961205	18,420154275

Daftar Bunga

Daftar III untuk (1,015)⁻ⁿ; (1,02)⁻ⁿ; (1,025)⁻ⁿ; (1,03)⁻ⁿ; (1,035)⁻ⁿ

n	1,5%	2%	2,5%	3%	3,5%
1	0,985221675	0,980392157	0,975609756	0,970873786	0,966183575
2	0,970661749	0,961168781	0,951814396	0,942595909	0,933510700
3	0,956316994	0,942322335	0,928599411	0,915141659	0,901942706
4	0,942184230	0,923845426	0,905950645	0,888487048	0,871442228
5	0,928260325	0,905730810	0,883854288	0,862608784	0,841973167
6	0,914542193	0,887971382	0,862296866	0,837484257	0,813500644
7	0,901026791	0,870560179	0,841265235	0,813091511	0,785990961
8	0,887711124	0,853490371	0,820746571	0,789409234	0,759411556
9	0,874592240	0,836755266	0,800728362	0,766416732	0,733730972
10	0,861667232	0,820348300	0,781198402	0,744093915	0,708918814
11	0,848933233	0,804263039	0,762144782	0,722421277	0,684945714
12	0,836387422	0,788493176	0,743555885	0,701379880	0,661783298
13	0,824027017	0,773032525	0,725420376	0,680951340	0,639404153
14	0,811849277	0,757875025	0,707727196	0,661117806	0,617781790
15	0,799851505	0,743014730	0,690465557	0,641861947	0,596890619
16	0,788031039	0,728445814	0,673624934	0,623166939	0,576705912
17		0,714162562	0,657195057	0,605016446	0,557203779
18	0,776385260	0,700159375	0,641165909	0,587394608	0,538361140
19	0,764911587	0,686430760		*	·
20	0,753607474		0,625527716	0,570286027	0,520155690
21	0,742470418 0,731497949	0,672971333	0,610270943	0,553675754	0,502565884
22	· ·	0,659775817	0,595386286	0,537549276	0,485570903
	0,720687634	0,646839036	0,580864669	0,521892501	0,469150631
23	0,710037078	0,634155918	0,566697238	0,506691748	0,453285634
24	0,699543920	0,621721488	0,552875354	0,491933736	0,437957134
25	0,689205832	0,609530871	0,539390589	0,477605569	0,423146989
26	0,679020524	0,597579285	0,526234721	0,463694727	0,408837671
27	0,668985738	0,585862044	0,513399728	0,450189056	0,395012242
28	0,659099249	0,574374553	0,500877784	0,437076753	0,381654340
29	0,649358866	0,563112307	0,488661252	0,424346362	0,368748155
30	0,639762430	0,552070889	0,476742685	0,411986760	0,356278411
31	0,630307813	0,541245970	0,465114815	0,399987145	0,344230348
32	0,620992919	0,530633304	0,453770551	0,388337034	0,332589709
33	0,611815684	0,520228729	0,442702977	0,377026247	0,321342714
34	0,602774073	0,510028166	0,431905343	0,366044900	0,310476052
35	0,593866081	0,500027613	0,421371066	0,355383398	0,299976862
36	0,585089735	0,490223150	0,411093723	0,345032425	0,289832717
37	0,576443089	0,480610932	0,401067047	0,334982937	0,280031610
38	0,567924226	0,471187188	0,391284924	0,325226152	0,270561942
39	0,559531257	0,461948223	0,381741389	0,315753546	0,261412505
40	0,551262322	0,452890415	0,372430624	0,306556841	0,252572468
41	0,543115588	0,444010211	0,363346950	0,297628001	0,244031370
42	0,535089249	0,435304128	0,354484829	0,288959224	0,235779102
43	0,527181526	0,426768753	0,345838858	0,280542936	0,227805895
44	0,519390666	0,418400739	0,337403764	0,272371782	0,220102314
45	0,511714942	0,410196803	0,329174404	0,264438624	0,212659241
46	0,504152653	0,402153728	0,321145760	0,256736528	0,205467866
47	0,496702121	0,394268361	0,313312936	0,249258765	0,198519677
48	0,489361695	0,386537609	0,305671157	0,241998801	0,191806451
49	0,482129749	0,378958440	0,298215763	0,234950292	0,185320243
50	0,475004679	0,371527882	0,290942208	0,228107080	0,179053375

Daftar IV untuk $(1,04)^{-n}$; $(1,045)^{-n}$; $(1,05)^{-n}$; $(1,055)^{-n}$; $(1,06)^{-n}$

n	4%	4,5%	5%	5,5%	6%
1	0,961538462	0,956937799	0,952380952	0,947867299	0,943396226
2	0,924556213	0,915729951	0,907029478	0,898452416	0,889996440
3	0,888996359	0,876296604	0,863837599	0,851613664	0,839619283
4	0,854804191	0,838561344	0,822702475	0,807216743	0,792093663
5	0,821927107	0,802451047	0,783526166	0,765134354	0,747258173
6	0,790314526	0,767895738	0,746215397	0,725245833	0,704960540
7	0,759917813	0,734828458	0,710681330	0,687436809	0,665057114
8	0,730690205	0,703185127	0,676839362	0,651598871	0,627412371
9	0,702586736	0,672904428	0,644608916	0,617629261	0,591898464
10	0,675564169	0,643927682	0,613913254	0,585430579	0,558394777
11	0,649580932	0,616198739	0,584679289	0,554910502	0,526787525
12	0,624597050	0,589663865	0,556837418	0,525981518	0,496969364
13	0,600574086	0,564271641	0,530321351	0,498560681	0,468839022
14	0,577475083	0,539972862	0,505067953	0,472569366	0,442300964
15	0,555264503	0,516720442	0,481017098	0,447933048	0,417265061
16	0,533908176	0,494469323	0,458111522	0,424581088	0,393646284
17	0,513373246	0,473176385	0,436296688	0,402446529	0,371364419
18	0,493628121	0,452800369	0,415520655	0,381465904	0,350343791
19	0,474642424	0,433301788	0,395733957	0,361579056	0,330513010
20	0,456386946	0,414642860	0,376889483	0,342728963	0,311804727
21	0,438833602	0,396787426	0,358942365	0,324861577	0,294155403
22	0,421955387	0,379700886	0,341849871	0,307925665	0,277505097
23	0,405726333	0,363350130	0,325571306	0,291872668	0,261797261
24	0,390121474	0,347703474	0,310067910	0,276656558	0,246978548
25	0,375116802	0,332730597	0,295302772	0,262233704	0,232998631
26	0,360689233	0,318402485	0,281240735	0,248562753	0,219810029
27	0,346816570	0,304691373	0,267848319	0,235604505	0,207367952
28	0,333477471	0,291570692	0,255093637	0,223321805	0,195630143
29	0,320651415	0,279015016	0,242946321	0,211679436	0,184556739
30	0,308318668	0,267000016	0,231377 44 9	0,200644016	0,174110131
31	0,296460258	0,255502 4 07	0,220359475	0,190183901	0,164254840
32	0,2850579 4 0	0,244499911	0,209866167	0,180269101	0,15 4 957397
33	0,274094173	0,233971207	0,1998725 4 0	0,170871185	0,146186223
34	0,263552090	0,223895892	0,190354800	0,161963209	0,137911531
35	0,253415471	0,214254442	0,181290285	0,153519629	0,130105218
36	0,243668722	0,205028174	0,172657415	0,145516236	0,122740772
37	0,234296848	0,196199210	0,164435633	0,137930082	0,115793181
38	0,225285431	0,187750440	0,156605365	0,130739414	0,109238850
39	0,216620606	0,179665493	0,149147966	0,123923615	0,103055519
40	0,208289045	0,171928701	0,142045682	0,117463142	0,097222188
41	0,200277928	0,164525073	0,135281602	0,111339471	0,091719045
42	0,192574930	0,157 44 0261	0,128839621	0,105535044	0,086527401
43	0,185168202	0,150660537	0,122704401	0,100033217	0,081629624
44	0,178046348	0,144172763	0,116861334	0,094818215	0,077009079
45	0,171198412	0,137964366	0,111296509	0,089875085	0,072650074
46	0,164613858	0,132023317	0,105996675	0,085189654	0,068537806
47	0,158282555	0,126338102	0,100949214	0,080748488	0,064658308
48	0,152194765	0,120897706	0,096142109	0,076538851	0,060998403
49	0,146341120	0,115691584	0,091563913	0,072548674	0,057545664
50	0,140712615	0,110709650	0,087203727	0,068766515	0,054288362

Daftar Bunga

Daftar V untuk $\Sigma (1,015)^n$; $\Sigma (1,02)^n$; $\Sigma (1,025)^n$; $\Sigma (1,03)^n$; $\Sigma (1,035)^n$

n	1,5%	2%	2,5%	3%	3,5%
1	1,015000000	1,020000000	1,025000000	1,030000000	1,035000000
2	2,045225000	2,060400000	2,075625000	2,090900000	2,106225000
3	3,090903375	3,121608000	3,152515625	3,183627000	3,214942875
4	4,152266926	4,204040160	4,256328516	4,309135810	4,362465876
5	5,229550930	5,308120963	5,387736729	5,468409884	5,550152181
6	6,322994193	6,434283382	6,547430147	6,662462181	6,779407508
7	7,432839106	7,582969050	7,736115900	7,892336046	8,051686770
8	8,559331693	8,754628431	8,954518798	9,159106128	9,368495807
9	9,702721668	9,949721000	10,203381768	10,463879311	10,731393161
10	10,863262493	11,168715420	11,483466312	11,807795691	12,141991921
11	12,041211431	12,412089728	12,795552970	13,192029562	13,601961638
12	13,236829602	13,680331523	14,140441794	14,617790448	15,113030296
13	14,450382046	14,973938153	15,518952839	16,086324162	16,676986356
14	15,682137777	16,293416916	16,931926660	17,598913887	18,295680879
15	16,932369844	17,639285255	18,380224826	19,156881303	19,971029709
16	18,201355391	19,012070960	19,864730447	20,761587742	21,705015749
17	19,489375722	20,412312379	21,386348708	22,414435375	23,499691300
18	20,796716358	21,840558626	22,946007426	24,116868436	25,357180496
19	22,123667103	23,297369799	24,544657612	25,870374489	27,279681813
20	23,470522110	24,783317195	26,183274052	27,676485724	29,269470677
21	24,837579942	26,298983539	27,862855903	29,536780295	31,328902150
22	26,225143641	27,844963210	29,584427301	31,452883704	33,460413726
23	27,633520795	29,421862474	31,349037983	33,426470215	35,666528206
24	29,063023607	31,030299723	33,157763933	35,459264322	37,949856693
25	30,513968961	32,670905718	35,011708031	37,553042251	40,313101678
26	31,986678496	34,344323832	36,912000732	39,709633519	42,759060236
27	33,481478673	36,051210309	38,859800750	41,930922525	45,290627345
28	34,998700853	37,792234515	40,856295769	44,218850200	47,910799302
29	36,538681366	39,568079205	42,902703163	46,575415706	50,622677277
30	38,101761587	41,379440789	45,000270742	49,002678178	53,429470982
31	39,688288010	43,227029605	47,150277511	51,502758523	56,334502466
32	41,298612331	45,111570197	49,354034449	54,077841279	59,341210053
33	42,933091515	47,033801601	51,612885310	56,730176517	62,453152404
34	44,592087888	48,994477633	53,928207443	59,462081812	65,674012739
35	46,275969207	50,994367186	56,301412629	62,275944267	69,007603184
36	47,985108745	53,034254530	58,733947944	65,174222595	72,457869296
37	49,719885376	55,114939620	61,227296643	68,159449273	76,028894721
38	51,480683656	57,237238412	63,782979059	71,234232751	79,724906037
39	53,267893911	59,401983181	66,402553536	74,401259733	83,550277748
40	55,081912320	61,610022844	69,087617374	77,663297525	87,509537469
41	56,923141005	63,862223301	71,839807808	81,023196451	91,607371280
42	58,791988120	66,159467767	74,660803004	84,483892345	95,848629275
43	60,688867942	68,502657123	77,552323079	88,048409115	100,238331300
44	62,614200961	70,892710265	80,516131156	91,719861388	104,781672895
45	64,568413975	73,330564470	83,554034434	95,501457230	109,484031447
46	66,551940185	75,817175760	86,667885295	99,396500947	114,350972547
47	68,565219288	78,353519275	89,859582428	103,408395975	119,388256586
48	70,608697577	80,940589660	93,131071988	107,540647855	124,601845567
49	72,682828040	83,579401454	96,484348788	111,796867290	129,997910162
50	74,788070461	86,270989483	99,921457508	116,180773309	135,582837017

Daftar VI untuk Σ (1,04)ⁿ; Σ (1,045)ⁿ; Σ (1,055)ⁿ; Σ (1,06)ⁿ

n	4%	4,5%	5%	5,5%	6%
1	1,040000000	1,045000000	1,050000000	1,055000000	1,060000000
2	2,121600000	2,137025000	2,152500000	2,168025000	2,183600000
3	3,246464000	3,278191125	3,310125000	3,342266375	3,374616000
4	4,416322560	4,470709726	4,525631250	4,581091026	4,637092960
5	5,632975462	5,716891663	5,801912813	5,888051032	5,975318538
6	6,898294481	7,019151788	7,142008453	7,266893839	7,393837650
7	8,214226260	8,380013619	8,549108876	8,721573000	8,897467909
8	9,582795311	9,802114231	10,026564320	10,256259515	10,491315983
9	11,006107123	11,288209372	11,577892536	11,875353788	12,180794942
10	12,486351408	12,841178794	13,206787162	13,583498247	13,971642639
11	14,025805464	14,464031839	14,917126520	15,385590650	15,869941197
12	15,626837683	16,159913272	16,712982846	17,286798136	17,882137669
13	17,291911190	17,932109369	18,598631989	19,292572033	20,015065929
14	19,023587638	19,784054291	20,578563588	21,408663495	22,275969885
15	20,824531143	21,719336734	22,657491768	23,641139987	24,672528078
16	22,697512389	23,741706887	24,840366356	25,996402687	27,212879763
17	24,645412884	25,855083697	27,132384674	28,481204835	29,905652549
18	26,671229400	28,063562463	29,539003908	31,102671100	32,759991701
19	28,778078576	30,371422774	32,065954103	33,868318011	35,785591204
20	30,969201719	32,783136799	34,719251808	36,786075502	38,992726676
21	33,247969788	35,303377955	37,505214398	39,864309654	42,392290276
22	35,617888579	37,937029963	40,430475118	43,111846685	45,995827693
23	38,082604122	40,689196311	43,501998874	46,537998253	49,815577354
24	40,645908287	43,565210145	46,727098818	50,152588157	53,864511996
25	43,311744619	46,5706 44 602	50,113453759	53,965980505	58,156382715
26	46,084214403	49,711323609	53,669126 44 7	57,989109 4 33	62,705765678
27	48,967582980	52,993333171	57, 4 02582769	62,233510 4 52	67,528111619
28	51,966286299	56,423033164	61,322711908	66,711353527	72,639798316
29	55,084937751	60,007069656	65,438847503	71,435477971	78,058186215
30	58,328335261	63,752387791	69,760789878	76,419429259	83,801677388
31	61,701468671	67,666245242	74,298829372	81,677497868	89,889778031
32	65,209527418	71,756226277	79,063770841	87,224760251	96,343164713
33	68,857908515	76,030256460	84,066959383	93,077122065	103,183754596
34	72,652224855	80,496618001	89,320307352	99,251363779	110,434779872
35	76,598313850	85,163965811	94,836322719	105,765188786	118,120866664
36	80,702246403	90,041344272	100,628138855	112,637274170	126,268118664
37	84,970336260	95,138204764	106,709545798	119,887324249	134,904205784
38	89,409149710	100,464423979	113,095023088	127,536127083	144,058458131
39	94,025515698	106,030323058	119,799774242	135,605614072	153,761965619
40	98,826536326	111,846687595	126,839762955	144,118922846	164,047683556
41	103,819597779	117,924788537	134,231751102	153,100463603	174,950544569
42	109,012381691	124,276404021	141,993338657	162,575989101	186,507577243
43	114,412876958	130,913842202	150,143005590	172,572668502	198,758031878
44	120,029392037	137,849965101	158,700155870	183,119165269	211,743513791
45	125,870567718	145,098213531	167,685163663	194,245719359	225,508124618
46	131,945390427	152,672633140	177,119421847	205,984233924	240,098612095
47	138,263206044	160,587901631	187,025392939	218,368366789	255,564528821
48	144,833734286	168,859357204	197,426662586	231,433626963	271,958400550
49	151,667083657	177,503028279	208,347995715	245,217476446	289,335904583
50	158,773767003	186,535664551	219,815395501	259,759437650	307,756058858

Daftar Bunga 191

Daftar VII untuk Σ (1,015)⁻ⁿ; Σ (1,025)⁻ⁿ; Σ (1,035)⁻ⁿ; Σ (1,035)⁻ⁿ

n	1,5%	2%	2,5%	3%	3,5%
1	0,985221675	0,980392157	0,975609756	0,970873786	0,966183575
2	1,955883424	1,941560938	1,927424152	1,913469696	1,899694275
3	2,912200417	2,883883273	2,856023563	2,828611355	2,801636981
4	3,854384648	3,807728699	3,761974208	3,717098403	3,673079209
5	4,782644973	4,713459509	4,645828496	4,579707187	4,515052375
6	5,697187165	5,601430891	5,508125362	5,417191444	5,328553020
7	6,598213956	6,471991069	6,349390597	6,230282955	6,114543980
8	7,485925080	7,325481440	7,170137167	7,019692190	6,873955537
9	8,360517320	8,162236706	7,970865529	7,786108922	7,607686509
10	9,222184552	8,982585006	8,752063931	8,530202837	8,316605323
11	10,071117785	9,786848045	9,514208713	9,252624113	9,001551036
12	10,907505207	10,575341221	10,257764598	9,954003994	9,663334335
13	11,731532224	11,348373746	10,983184974	10,634955334	10,302738488
14	12,543381501	12,106248771	11,690912170	11,296073139	10,920520278
15	13,343233006	12,849263501	12,381377726	11,937935087	11,517410896
16	14,131264045	13,577709314	13,055002660	12,561102026	12,094116808
17	14,907649306	14,291871877	13,712197717	13,166118472	12,651320588
18	15,672560892	14,992031252	14,353363626	13,753513079	13,189681727
19	16,426168367	15,678462011	14,978891343	14,323799106	13,709837418
20	17,168638785	16,351433345	15,589162286	14,877474860	14,212403302
21	17,900136734	17,011209161	16,184548571	15,415024136	14,697974205
22	18,620824369	17,658048197	16,765413240	15,936916637	15,167124836
23	19,330861447	18,292204115	17,332110478	16,443608386	15,620410469
24	20,030405366	18,913925603	17,884985833	16,935542122	16,058367603
25	20,719611198	19,523456474	18,424376422	17,413147691	16,481514592
26	21,398631723	20,121035758	18,950611143	17,876842419	16,890352263
27	22,067617461	20,706897802	19,464010872	18,327031474	17,285364505
28	22,726716710	21,281272355	19,964888655	18,764108228	17,6670188 4 6
29	23,376075576	21,844384662	20,453549908	19,188454590	18,035767001
30	24,015838006	22,396455551	20,930292593	19,600441349	18,392045411
31	24,646145819	22,937701521	21,395407408	20,000428495	18,736275760
32	25,267138738	23,468334824	21,849177959	20,388765529	19,068865468
33	25,87895 44 22	23,988563553	22,291880935	20,765791776	19,390208182
34	26,481728494	24,498591719	22,723786278	21,131836675	19,700684234
35	27,075594576	24,998619332	23,145157345	21,487220073	20,000661095
36	27,660684311	25,488842482	23,556251068	21,832252498	20,290493812
37	28,237127400	25,969453414	23,957318115	22,167235435	20,570525422
38	28,805051625	26,440640602	24,348603039	22,492461587	20,841087365
39	29,364582882	26,902588826	24,730344428	22,808215133	21,102499869
40	29,915845204	27,355479241	25,102775052	23,114771974	21,355072337
41	30,458960792	27,799489452	25,466122002	23,412399975	21,599103708
42	30,994050042	28,234793580	25,820606831	23,701359199	21,834882809
43	31,521231568	28,661562333	26,166445689	23,981902135	22,062688705
44	32,040622235	29,079963072	26,503849453	24,254273917	22,282791019
45	32,552337177	29,490159875	26,833023856	24,518712541	22,495450260
46	33,056489830	29,892313602	27,154169616	24,775449069	22,700918125
47	33,553191950	30,286581963	27,467482552	25,024707834	22,899437802
48	34,042553646	30,673119572	27,773153709	25,266706635	23,091244253
49	34,524683395	31,052078012	28,071369473	25,501656927	23,276564496
50	34,999688074	31,423605894	28,362311681	25,729764007	23,455617871

Daftar VIII untuk Σ (1,04)⁻ⁿ; Σ (1,045)⁻ⁿ; Σ (1,05)⁻ⁿ; Σ (1,055)⁻ⁿ; Σ (1,06)⁻ⁿ

n	4%	4,5%	5%	5,5%	6%
1	0,961538462	0,956937799	0,952380952	0,947867299	0,943396226
2	1,886094675	1,872667750	1,859410431	1,846319714	1,833392666
3	2,775091033	2,748964354	2,723248029	2,697933378	2,673011949
4	3,629895224	3,587525698	3,545950504	3,505150122	3,465105613
5	4,451822331	4,389976744	4,329476671	4,270284476	4,212363786
6	5,242136857	5,157872483	5,075692067	4,995530309	4,917324326
7	6,002054670	5,892700940	5,786373397	5,682967117	5,582381440
8	6,732744875	6,595886067	6,463212759	6,334565988	6,209793811
9	7,435331611	7,268790495	7,107821676	6,952195249	6,801692274
10	8,110895779	7,912718177	7,721734929	7,537625829	7,360087051
11	8,760476711	8,528916916	8,306414218	8,092536330	7,886874577
12	9,385073760	9,118580781	8,863251636	8,618517849	8,383843940
13	9,985647847	9,682852422	9,393572987	9,117078530	8,852682963
14	10,563122929	10,222825284	9,898640940	9,589647895	9,294983927
15	11,118387432	10,739545726	10,379658038	10,037580943	9,712248988
16	11,652295608	11,234015049	10,837769560	10,462162032	10,105895271
17	12,165668854	11,707191435	11,274066248	10,864608561	10,477259690
18	12,659296975	12,159991803	11,689586903	11,246074465	10,827603481
19	13,133939399	12,593293592	12,085320860	11,607653522	11,158116492
20	13,590326345	13,007936451	12,462210343	11,950382485	11,469921219
21	14,029159947	13,404723877	12,821152707	12,275244062	11,764076621
22	14,451115334	13,784424763	13,163002578	12,583169727	12,041581718
23	14,856841667	14,147774893	13,488573884	12,875042395	12,303378979
24	15,246963141	14,495478366	13,798641794	13,151698952	12,550357528
25	15,622079944	14,828208963	14,093944566	13,413932656	12,783356158
26	15,982769177	15,146611448	14,375185301	13,662495409	13,003166187
27	16,329585747	15,451302821	14,643033620	13,898099914	13,210534139
28	16,663063218	15,742873513	14,898127257	14,121421719	13,406164282
29	16,983714633	16,021888529	15,141073578	14,333101156	13,590721021
30	17,292033301	16,2888885 44	15,372451027	14,533745171	13,764831151
31	17,588 4 93558	16,5 44 390951	15,592810502	14,723929072	13,929085992
32	17,873551498	16,788890863	15,802676668	14,904198173	14,084043389
33	18,147645672	17,022862070	16,002549208	15,075069358	14,230229612
34	18, 4 11197761	17,246757961	16,192904008	15,237032567	14,368141143
35	18,664613232	17,461012403	16,374194293	15,390552196	14,498246362
36	18,908281954	17,666040577	16,546851708	15,536068432	14,620987134
37	19,142578802	17,862239787	16,711287341	15,673998514	14,736780315
38	19,367864232	18,049990227	16,867892705	15,804737928	14,846019165
39	19,584484839	18,229655719	17,017040672	15,928661543	14,949074684
40	19,792773883	18,401584420	17,159086354	16,046124685	15,046296872
41	19,993051811	18,566109493	17,294367956	16,157464157	15,138015917
42	20,185626741	18,723549754	17,423207577	16,262999201	15,224543317
43	20,370794944	18,874210291	17,545911978	16,363032418	15,306172941
44	20,548841292	19,018383054	17,662773313	16,457850633	15,383182020
45	20,720039704	19,156347420	17,774069822	16,547725718	15,455832094
46	20,884653561	19,288370737	17,880066497	16,632915373	15,524369900
47	21,042936117	19,414708839	17,981015711	16,713663861	15,589028208
48	21,195130881	19,535606544	18,077157820	16,790202711	15,650026611
49	21,341472001	19,651298129	18,168721734	16,862751385	15,707572275
50	21,482184617	19,762007779	18,255925461	16,931517901	15,761860636

Daftar Bunga

Daftar IX untuk $\frac{1}{\Sigma(1,015)^{-n}}$, $\frac{1}{\Sigma(1,02)^{-n}}$, $\frac{1}{\Sigma(1,025)^{-n}}$, $\frac{1}{\Sigma(1,035)^{-n}}$, $\frac{1}{\Sigma(1,035)^{-n}}$

		$\Sigma(1,015)$ $\Sigma(1,0)$	2) Σ(1,025)	$\Sigma(1,03)$ $\Sigma(1,03)$,035)
n	1,5%	2%	2,5%	3%	3,5%
1	1,015000000	1,020000000	1,025000000	1,030000000	1,035000000
2	0,511277916	0,515049505	0,518827160	0,522610837	0,526400491
3	0,343382960	0,346754673	0,350137167	0,353530363	0,356934181
4	0,259444786	0,262623753	0,265817878	0,269027045	0,272251139
5	0,209089323	0,212158394	0,215246861	0,218354571	0,221481373
6	0,175525215	0,178525812	0,181549971	0,184597500	0,187668209
7	0,151556165	0,154511956	0,157495430	0,160506354	0,163544494
8	0,133584025	0,136509799	0,139467346	0,142456389	0,145476647
9	0,119609823	0,122515437	0,125456890	0,128433857	0,131446005
10	0,108434178	0,111326528	0,114258763	0,117230507	0,120241368
11	0,099293844	0,102177943	0,105105956	0,108077448	0,111091966
12	0,091679993	0,094559597	0,097487127	0,100462085	0,103483949
13	0,085240357	0,088118353	0,091048271	0,094029544	0,097061573
14	0,079723319	0,082601970	0,085536525	0,088526339	0,091570729
15	0,074944356	0,077825472	0,080766456	0,083766580	0,086825069
16	0,070765078	0,073650126	0,076598989	0,079610849	0,082684831
17	0,067079657	0,069969841	0,072927770	0,075952529	0,079043132
18	0,063805782	0,066702102	0,069670081	0,072708696	0,075816841
19	0,060878470	0,063781766	0,066760615	0,069813881	0,072940325
20	0,058245736	0,061156718	0,064147129	0,067215708	0,070361077
21	0,055865495	0,058784769	0,061787327	0,064871776	0,068036587
22	0,053703315	0,056631401	0,059646606	0,062747395	0,065932074
23	0,051730752	0,054668098	0,057696378	0,060813903	0,064018804
24	0,049924102	0,052871097	0,055912820	0,059047416	0,062272830
25	0,048263454	0,051220438	0,054275921	0,057427871	0,060674035
26	0,046731960	0,049699231	0,052768747	0,055938290	0,059205396
27	0,045315268	0,048293086	0,051376872	0,054564210	0,057852410
28	0,044001076	0,046989672	0,050087933	0,053293233	0,056602645
29	0,042778780	0,045778355	0,048891268	0,052114671	0,055445382
30	0,041639188	0,044649922	0,047777641	0,051019259	0,054371332
31	0,040574295	0,043596347	0,046739002	0,049998929	0,053372400
32	0,039577097	0,042610607	0,045768312	0,049046618	0,052441505
33	0,038641438	0,041686531	0,0 44 859382	0,048156122	0,051572422
34	0,037761886	0,040818673	0,044006751	0,047321963	0,050759658
35	0,036933630	0,040002209	0,043205582	0,046539292	0,049998347
36	0,036152396	0,039232853	0,042451577	0,045803794	0,049284163
37	0,035414367	0,038506779	0,041740899	0,045111624	0,048613245
38	0,034716133	0,037820566	0,041070118	0,044459340	0,047982141
39	0,034054630	0,037171144	0,040436153	0,043843852	0,047387751
40	0,033427102	0,036555748	0,039836233	0,043262378	0,046827282
41	0,032831061	0,035971884	0,039267856	0,042712409	0,046298217
42	0,032264257	0,035417295	0,038728757	0,042191673	0,045798276
43	0,031724649	0,034889933	0,038216883	0,041698110	0,045325391
44	0,031210380	0,034387939	0,037730368	0,041229847	0,044877682
45	0,030719760	0,033909616	0,037267511	0,040785176	0,044453433
46	0,030251246	0,033453416	0,036826757	0,040362538	0,044051082
47	0,029803424	0,033017922	0,036406686	0,039960506	0,043669194
48	0,029375000	0,032601836	0,036005994	0,039577774	0,043306458
49	0,028964784	0,032203964	0,035623485	0,039213138	0,042961666
50	0,028571683	0,031823210	0,035258057	0,038865494	0,042633710

 $\text{Daftar X untuk } \frac{1}{\Sigma(1,04)^{-n}}, \frac{1}{\Sigma(1,045)^{-n}}, \frac{1}{\Sigma(1,05)^{-n}}, \frac{1}{\Sigma(1,055)^{-n}}, \frac{1}{\Sigma(1,065)^{-n}}$

	۷(۱)	,0 4) Σ(1,045) Σ(1,05)	Σ(1,055) Σ	(1,06)
n	4%	4,5%	5%	5,5%	6%
1	1,040000000	1,045000000	1,050000000	1,055000000	1,060000000
2	0,530196078	0,533997555	0,537804878	0,541618005	0,545436893
3	0,360348539	0,363773360	0,367208565	0,370654075	0,374109813
4	0,275490045	0,278743648	0,282011833	0,285294485	0,288591492
5	0,224627113	0,227791640	0,230974798	0,234176436	0,237396400
6	0,190761903	0,193878388	0,197017468	0,200178948	0,203362628
7	0,166609612	0,169701468	0,172819818	0,175964418	0,179135018
8	0,148527832	0,151609653	0,154721814	0,157864012	0,161035943
9	0,134492993	0,137574470	0,140690080	0,143839458	0,147022235
10	0,123290944	0,126378822	0,129504575	0,132667769	0,135867958
11	0,114149039	0,117248182	0,120388891	0,123570653	0,126792938
12	0,106552173	0,109666189	0,112825410	0,116029231	0,119277029
13	0,100143728	0,103275353	0,106455765	0,109684259	0,112960105
14	0,094668973	0,097820316	0,101023969	0,104279115	0,107584909
15	0,089941100	0,093113808	0,096342288	0,099625598	0,102962764
16	0,085819999	0,089015369	0,092269908	0,095582538	0,098952144
17	0,082198522	0,085417583	0,088699142	0,092041972	0,095444804
18	0,078993328	0,082236898	0,085546222	0,088919916	0,092356541
19	0,076138618	0,079407344	0,082745010	0,086150056	0,089620860
20	0,073581750	0,076876144	0,080242587	0,083679330	0,087184557
21	0,071280105	0,074600567	0,077996107	0,081464775	0,085004547
22	0,069198811	0,072545646	0,075970509	0,079471232	0,083045569
23	0,067309057	0,070682493	0,074136822	0,077669647	0,081278485
24	0,065586831	0,068987030	0,072470901	0,076035804	0,079679005
25	0,064011963	0,067439028	0,070952457	0,074549353	0,078226718
26	0,062567380	0,066021367	0,069564321	0,073193071	0,076904347
27	0,061238541	0,064719462	0,068291860	0,071952282	0,075697166
28	0,060012975	0,063520805	0,067122530	0,070814400	0,074592552
29	0,058879934	0,062414615	0,066045515	0,069768572	0,073579614
30	0,057830099	0,061391543	0,065051435	0,068805390	0,072648911
31	0,056855352	0,060443446	0,064132120	0,067916654	0,071792220
32	0,055948590	0,059563196	0,063280419	0,067095189	0,071002337
33	0,055103566	0,058744528	0,062490044	0,066334687	0,070272935
34	0,054314772	0,057981912	0,061755445	0,065629577	0,069598425
35	0,053577322	0,057270448	0,061071707	0,064974927	0,068973859
36	0,052886878	0,056605780	0,060434457	0,064366349	0,068394835
37	0,052239566	0,055984021	0,059839794	0,063799929	0,067857427
38	0,051631919	0,055401692	0,059284228	0,063272166	0,067358124
39	0,051060827	0,054855671	0,058764624	0,062779914	0,066893772
40	0,050523489	0,054343147	0,058278161	0,062320343	0,066461536
41	0,050017377	0,053861580	0,057822292	0,061890900	0,066058855
42	0,049540201	0,053408676	0,057394713	0,061489273	0,065683415
43	0,049089886	0,052982349	0,056993333	0,061113367	0,065333118
44	0,048664544	0,052580706	0,056616251	0,060761276	0,065006057
45	0,048262456	0,052202018	0,056261735	0,060431265	0,064700496
46	0,047882049	0,051844711	0,055928204	0,060121751	0,064414853
47	0,047521885	0,051507340	0,055614211	0,059831286	0,064147680
48	0,047180648	0,051188582	0,055318431	0,059558542	0,063897655
49	0,046857124	0,050887224	0,055039645	0,059302303	0,063663562
50	0,046550200	0,050602146	0,054776735	0,059061450	0,063444286
- 50	3/0 10330200	3/030002110	3/03 1//0/33	3/032001 130	3,003 111200

KUNCI JAWABAN BAB 1 TEORI PELUANG

Latihan 1

- 1. b. 20
- 3. a. 216
- b. 60
- 5. 20
- 7. 960
- 9. 24
- 11. 120
- 13. a. 210
- 15. 138

Latihan 2

- c. $\frac{40}{33}$ e. 21 h. 462 1. a. 6

- 3. a. 120
- b. 24
- 5. 336
- 7. a. 190
- c. 455
- 9. a. 1.080
- c. 5.124
- 11. a. 362.880 b. 80.640 c. 30.240

- 13. 9.880
- 15. 152.096
- 17. a. 6.840
- b. 5.527.200
- 19. 43.680

Latihan 3

- 1. a. 36 b. 16 c. 256 d. 12 e. 216

- 3. a. $\frac{1}{2}$ b. $\frac{1}{52}$ c. $\frac{1}{4}$ d. $\frac{1}{52}$ 5. a. $\frac{1}{5}$ b. $\frac{1}{2}$ c. $\frac{3}{10}$ d. $\frac{4}{5}$

7. a.
$$\frac{1}{9}$$
 b. $\frac{1}{12}$ c. 0

b.
$$\frac{1}{12}$$

d.
$$\frac{7}{12}$$

c.
$$\frac{35}{128}$$

11. a.
$$\frac{5}{18}$$

c.
$$\frac{5}{9}$$

18.
$$\frac{5}{6}$$

Uji Kemampuan

1	D	8	В
2	Α	9	Ε
3	В	10	С
4	Α	11	Α
5	С	12	В
6	D	13	В
7	Е	14	Α

KUNCI JAWABAN BAB 2 STATISTIKA

Latihan 3

- 1. 80
- 3. Rp5.800.000,00
- 5. 7,2
- 7. 156
- 9. a. Modus = 9, median = 9, mean = 8,25
 - c. Modus = tidak ada, median = 68, mean = 71,17
- 11. mean = 3,6; rata-rata harmonis = 3,35; median = 3,5 dan modus = 3
- 13.8,71

Latihan 4

1. a. Jangkauan = 13, simpangan rata-rata =
$$\frac{25}{7}$$

Simpangan baku = 4,16 dan variansi = 17,29

b. Jangkauan = 2, simpangan rata-rata =
$$1,7$$

Simpangan baku = $\sqrt{4,6}$ dan variansi = 4,6

b.
$$variansi = 17,2$$

Latihan 5

Desil ke-3 = 5,83

Desil ke-6 = 11,1

Persentil ke-45 = 8,83

Persentil ke-65 = 11,9

Jangkauan persentil = 7,5

6. a. Rata-rata = 7 dan simpangan baku =
$$\sqrt{10}$$

b.
$$Z(2) = -\frac{1}{2}\sqrt{10} \text{ dan } Z(8) = \frac{1}{10}\sqrt{10}$$

c.
$$KV = 45,2 \%$$

8. b. Data paling homogen adalah hasil tes Bahasa Indonesia Data paling baik adalah hasil tes matematika

Uji Kemampuan

1	Α	6	Ε	11	D	16	С	21	Α
2	E	7	Ε	12	В	17	C	22	С
3	В	8	Α	13	Ε	18	D	23	D
4	D	9	В	14	С	19	C	24	Α
5	D	10	Е	15	Ε	20	В	25	D

KUNCI JAWABAN BAB 3 MATEMATIKA KEUANGAN

Latihan 1

- 1. a. 5% di bawah 100 = 5,56 % di atas 100
 - b. 18% di bawah 100 = 28,125 % di atas 100
- 3. a. 2,5% di atas 100 = 2,56 %
 - b. 30% di bawah 100 = 14,29 %
- 6. a. diskon = Rp9.010,00 dan harga sebelum diskon Rp53.000,00
 - c. pajak = Rp176.400,00 dan harga sebelum pajak Rp630.000,00
- 7. Bunga = Rp1.500.000,00 dan modal setelah bunga Rp3.500.000,00
- 9. a. Rp749.250,00
 - b. Rp7.499.250,00
- 11. Rp1.642.666,67
- 13. Rp570.000,00
- 15. 2% tiap bulan
- 17. Rp437.500,00
- 21. 21 bulan
- 25. a. Rp472.500,00 b. Rp4.027.500,00
- 27. Rp7.720.000,00
- 29. Rp930.000,00
- 33. Rp6.189.907,94
- 35. Rp8.428.415,61
- 37. 10 triwulan

Latihan 2

- 1. Rp4.216.925,29
- 3. Rp1367.621.435,90
- 7. Rp3.139.543,89
- 9. Rp350.000,00
- 11. Rp450.000,00
- 13. 180.610,558,00

- 17. 6 %
- 21. Rp5.007.662,57
- 25. Rp360.000,00

Latihan 3

- 1. a. Rp100.000,00
 - b. Rp138.000,00
- 3. a. bunga pertama Rp104.000,00 dan angsuran pertama Rp146.000,00
 - b. Rp170.799,35
- 5. Rp447.302,56
- 7. a. Rp40.702.240,74
 - b. Rp3.391.853,40

Uji Kemampuan

1	Α	8	В	15	В	22	Α	29	9 E
2	С	g) D	16	Α	23	С	30	0 B
3	Ε	1	.0 D	17	В	24	Α	3	1 C
4	В	1	.1 E	18	D	25	D	37	2 D
5	D	1	.2 C	19	С	26	Ε	33	3 C
6	Α	1	.3 A	20	Ε	27	В	34	4 D
7	Е	1	.4 C	21	В	28	D	3.	5 A

Glosarium

Kaidah pencacahan	:	Suatu kaidah yang digunakan untuk menentukan atau menghitung berapa banyak cara yang terjadi dari suatu peristiwa	3
n faktorial	:	Hasil kali bilangan bulat positif dari 1 sampai dengan n	6
Permutasi	:	Susunan k obyek yang berbeda dari n obyek yang tersedia dimana	10
Kombinasi	:	Susunan k obyek dengan urutan tidak diperhatikan dari n obyek yang tersedia	13
Ruang sampel	:	Peristiwa yang mungkin muncul dari suatu percobaan	19
Hasil kejadian	:	Himpunan bagian dari ruang sampel	19
Frekuensi harapan	:	Hasil kali peluang P(A) dengan banyaknya percobaan n	24
Komplemen A	:	Banyaknya kejadian yang bukan A	25
Kejadian majemuk	:	Kejadian yang dibentuk dengan cara menggabungkan dua atau lebih kejadian sederhana	28
Kejadian saling bebas	:	Apabila kemunculan kejadian yang satu tidak dipengaruhi oleh kemunculan kejadian lainnya.	30
Statistika	:	Pengetahuan yang berhubungan dengan pengumpulan data , penyajian data , pengolahan data , penarikan kesimpulan dan pengambilan keputusan secara logis dan rasional tentang data tersebut	43
Deskriptif	:	Gambaran suatu data apa adanya	43
Inferensial	:	Kegiatan statistika dimulai dari pengumpulan data sampai pada pengambilan keputusan secara logis dan rasional.	43
Data	:	Sekumpulan keterangan yang dapat menjelaskan sesuatu hal.	44
Reliabel	:	Kesalahan baku kecil, dapat terpercaya	44
Representatif	:	Dapat mewakili	44
Up to date	:	Terkini	44
Populasi	:	Keseluruhan data yang akan diteliti	44

Glosarium		201
Observasi	: Pengumpulan data melalui pengamatan	46
Interview	: Pengumpulan data melalui wawancara	46
kuesioner	: Pengumpulan data melalui angket	46
Piktogram	: Nama lain diagram lambang	55
Ogive	: Diagram garis yang diperolegh dari daftar distribusi frekuensi kumulatif	58
Histogram	: Diagram batang yang saling berimpit yang diperoleh dari daftar distribusi frekuensi	59
Foligon frekuensi	 Diagram garis yang tertutup yang diperoleh dari daftar distribusi frekuensi. 	59
Mean	: Rata-rata hitung	64
Modus	: Nilai data yang sering muncul	68
Median	: Nilai data yang terletak di tengah setelah da diurutkan	ata 70
Rata-rata simpangan	: Perbandingan harga mutlak selisih data den rata-ratanya <i>dengan</i> banyaknya data	gan 76
Simpangan baku	: Ukuran dispersi dengan rumus $s = \sqrt{\frac{1}{n} \sum (x_i - \overline{x})^2}$	77
Varians	: Simpangan baku kuadrat	79
Kuaril	: Nilai data yang membagi data menjadi 4 bagian sama besar setelah data diurutkan	81
Desil	: Nilai data yang membagi data menjadi 10 bagian sama besar setelah data diurutkan	83
Persentil	: Nilai data yang membagi data menjadi 100 bagian sama besar setelah data diurutkan	85
Angka baku	 Nilai yang menyatakan perbandingan antara selisih data dengan rata-ratanya dengan simpangan baku data tersebut 	a 86
Koefisien variasi	: Perbandingan antara simpangan baku deng rata-rata suatu data dan dinyatakan dalam	
Bunga	: Jasa dari pinjaman	97
Persen di atas 100	: Bentuk pecahan yang selisih antara penyeb dan pembilangnya sama dengan seratus	ut 98
Persen di bawah 100	 Bentuk pecahan yang jumlah antara penyet dan pembilangnya sama dengan seratus 	out 98

Bunga tunggal	:	Bunga yang diperoleh pada setiap akhir jangka waktu tertentu yang tidak mempengaruhi besarnya modal yang dipinjam	101
Diskonto	:	Bunga yang dibayarkan oleh peminjam pada saat menerima pinjaman	105
Bunga majemuk	:	Proses bunga berbunganya suatu modal	111
Rente	:	Sederatan modal atau angsuran yang dibayarkan atau diterima pada setiap jangka waktu tertentu yang tetap besarnya	125
Rente pranumerando	:	Rente yang dibayarkan atau diterima di awal periode.	125
Rente postnumerando	:	Rente yang dibayarkan atau diterima di akhir periode	125
Rente kekal	:	Rente yang jumlah angsurannya tidak terbatas	125
Anuitas	:	Sejumlah pembayaran pinjaman yang sama besarnya. yang dibayarkan setiap jangka waktu tertentu. dan terdiri atas bagian bunga dan bagian angsuran	141
Obligasi	:	Surat berharga yang merupakan perjanjian pinjaman tertulis	155
Depresi(penyusutan)	:	Perkurangnya nilai ekonomi suatu aktiva.	162
Aktiva	:	Segala sumber daya ekonomi dari suatu perusahan yang berupa harta maupun hak- hak yang di miliki berdasarkan kekuatan hukum	162

Indeks

A	
Aktiva	89, 90, 92, 93
В	
Bunga majemuk 96, 97, 102, 103, 104, 105, 106, 109, 111, 112, 113, 115, 11 148, 158, 160, 161, 163, 187, 188, 189 tunggal 96, 97, 102, 103, 104, 105, 106, 109, 111, 112, 113, 115, 11 148, 158, 160, 161, 163, 187, 188, 189	
D	
Data	
batang	50, 52, 53, 54, 55, 61, 94, 95, 96 50, 52, 53, 54, 55, 61, 94, 95, 96 50, 52, 53, 54, 55, 61, 94, 95, 96 106, 107, 108, 120, 121, 187
F Faktorial Fermat Frekuensi 56, 57, 58, 59, 60, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61	3 62, 67, 68, 69, 73, 84, 91, 95, 96
G Garis lurus	167
Н	
Hasil produksi	
I	
Induktif	
Interval	

nterview	.46
am kerja	96
aidah pencacahan	42 42 42 93 17 .25 .45
lean	96
ilai akhir96, 97, 106, 107, 108, 113, 115, 116, 117, 118, 121, 124, 126, 127, 128, 129, 130, 131, 132, 1 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 146, 149, 154, 155, 156, 157, 162, 163 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 180, 181, 182, 183, 184, 185, 186, 188 sisa .96, 97, 106, 107, 108, 113, 115, 116, 117, 118, 121, 124, 126, 127, 128, 129, 130, 131, 132, 1 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 146, 149, 154, 155, 156, 157, 162, 163, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 180, 181, 182, 183, 184, 185, 186, 188 tunai96, 97, 106, 107, 108, 113, 115, 116, 117, 118, 121, 124, 126, 127, 128, 129, 130, 131, 132, 1 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 146, 149, 154, 155, 156, 157, 162, 163, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 180, 181, 182, 183, 184, 185, 186, 188	.33,
bligasigive	
ascal	

Indeks 205

Pembagi tetap
sebanding
R
Rente kekal
<u>s</u>
Saldo menurun 169 Sampel 42, 48 Simpangan 68, 69, 77, 78, 79, 81, 82, 85, 89, 91, 93, 97 kuartil 68, 69, 77, 78, 79, 81, 82, 85, 89, 91, 93, 97 Statistika 42, 43, 44, 48, 64
T
Tabel distribusi
U
Ukuran pemusatan

DAFTAR PUSTAKA

Alders, C.J. 1987. Ilmu Aljabar. Jakarta: Pradnya Paramita.

Anton, Howard. 1988. Aljabar Linear Elementer. Jakarta: Erlangga.

Ayres, Frank. Jr. 1972. *Calculus 2 edition, Schum Outline Series:* Mc. Graw Hill London, Book Company.

Departemen Pendidikan dan Kebudayaan. 1976. Matematika 8. Jakarta.

Departemen Pendidikan dan Kebudayaan. 1976. Matematika 11. Jakarta.

Departemen Pendidikan dan Kebudayaan. 2003. Kurikulum SMA dan MA. Jakarta.

Holiger, Siegbert. Matematika Teknik untuk Kejuruan Logam. Jakarta: Katalis.

Ilman, M. Oetjoep. Gunawan dkk. 1968. *Aljabar dan Ilmu Ukur Analitik.* Jakarta: Widjaya.

Purcell, Edwin J. Varberg Dole. 1999. Kalkulus dan Geometri Analitis. Jakarta: Erlangga.

Sadler. A.J. 1999. *Introductory Calculus Second Edition*. Australia: Sadler Family Trust.

Sadler, A.J. 1999. *Geometry and Trigonometry*. Australia: Sadler Family Trust.

Spiegel, Murray R. 1993. Matematika Dasar. Jakarta: Erlangga.

