LUNDS TEKNISKA HÖGSKOLA MATEMATIK

TENTAMENSSKRIVNING LINJÄR ALGEBRA 2015-08-27 kl 14–19

INGA HJÄLPMEDEL.

Lösningarna skall vara försedda med ordentliga motiveringar. Alla koordinatsystem får antas vara ortonormala och positivt orienterade om inget annat anges.

1. Bestäm skärningen mellan planet som innehåller punkterna P:(-1,1,-1), Q:(1,2,-4), R:(2,-6,3) och linjen som ges av

$$\begin{cases} x = 5 - t \\ y = 3 + 3t \\ z = 1 + 8t \end{cases}, \quad t \in \mathbb{R}.$$

- **2.** Bestäm en positivt orienterad ortonormal bas $\hat{\mathbf{e}}_1$, $\hat{\mathbf{e}}_2$, $\hat{\mathbf{e}}_3$ sådan att $\hat{\mathbf{e}}_1$ är parallell med (1,2,-2) och $\hat{\mathbf{e}}_2$ är vinkelrät mot (3,2,2). Avgör även vilka koordinater vektorn $\bar{\mathbf{v}}=(3,6,9)$ får i den nya basen.
- **3.** Låt

$$A = \begin{pmatrix} 1 & 2 & 5 & 3 \\ 2 & 6 & 14 & 8 \\ 3 & 0 & 3 & 4 \end{pmatrix}, \quad X_p = \begin{pmatrix} 1 \\ -2 \\ 3 \\ -4 \end{pmatrix} \quad \text{och} \quad Y = \begin{pmatrix} 0 \\ 0 \\ -4 \end{pmatrix}.$$

- a) Bestäm rangen, nolldimensionen och en bas för nollrummet till matrisen A. (0.7)
- **b**) Beräkna AX_p samt bestäm samtliga lösningar till AX = Y. (0.3)
- **4.** En linjär avbildning F avbildar vektorerna $\bar{\mathbf{u}}_1=(1,-2,1), \ \bar{\mathbf{u}}_2=(3,-5,1), \ \bar{\mathbf{u}}_3=(2,-2,-1)$ på $F(\bar{\mathbf{u}}_1)=(1,-2,3), \ F(\bar{\mathbf{u}}_2)=(-1,2,1), \ F(\bar{\mathbf{u}}_3)=(0,0,2).$ Bestäm avbildningsmatrisen till F samt avgör om den är inverterbar.

5. a) Beräkna

$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ -1 & 0 & 0 & 4 \\ 1 & 2 & 0 & 4 \\ -1 & 0 & 1 & 2 \end{vmatrix}.$$

(0.6)

(0.4)

b) Avgör om vektorerna $\bar{\mathbf{u}}=(1,-1,1,-1),\ \bar{\mathbf{v}}=(3,0,0,1)$ och $\bar{\mathbf{w}}=(4,4,4,2)$ är linjärt oberoende. (0.4)

6. Låt

$$A = \left(\begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array}\right).$$

- a) Diagonalisera A.
- **b)** Låt $p(x)=x^2-2x-3$ och beräkna $p(\lambda)$ för alla egenvärden till A. Beräkna även $p(A)=A^2-2A-3I$. (0.2)
- c) Låt

$$q(x) = x^{n} + \alpha_{n-1}x^{n-1} + \dots + \alpha_{1}x + \alpha_{0}$$

och

$$q(B) = B^{n} + \alpha_{n-1}B^{n-1} + \dots + \alpha_{1}B + \alpha_{0}I.$$

Visa att om B är diagonaliserbar och alla dess egenvärden uppfyller $q(\lambda)=0$ så är även q(B)=0. (0.4)

LYCKA TILL!