

Ex
$$X \in Exp(\lambda)$$
, $f(x) = \lambda e^{-\lambda x}$, $x \neq 0$

Bestelm $\mu = E(x)$.

$$A : E(X) = \int_{-\infty}^{\infty} x f(x) dx = \int_{0}^{\infty} \lambda e^{\lambda x} dx.$$

$$= \left[x \left(-e^{\lambda x} \right) \right] + \int_{0}^{\infty} e^{-\lambda x} dx.$$

$$= \left[x \left(-e^{\lambda x} \right) \right] + \int_{0}^{\infty} e^{-\lambda x} dx.$$

$$= \left[x \left(-e^{\lambda x} \right) \right] + \int_{0}^{\infty} e^{-\lambda x} dx.$$

$$= \left[x \left(-e^{\lambda x} \right) \right] + \int_{0}^{\infty} e^{-\lambda x} dx.$$

$$= \left[x \left(-e^{\lambda x} \right) \right] + \int_{0}^{\infty} e^{-\lambda x} dx.$$

$$= \left[x \left(-e^{\lambda x} \right) \right] + \int_{0}^{\infty} e^{-\lambda x} dx.$$

$$= \left[x \left(-e^{\lambda x} \right) \right] + \int_{0}^{\infty} e^{-\lambda x} dx.$$

$$= \left[x \left(-e^{\lambda x} \right) \right] + \int_{0}^{\infty} e^{-\lambda x} dx.$$

$$= \left[x \left(-e^{\lambda x} \right) \right] + \int_{0}^{\infty} e^{-\lambda x} dx.$$

$$= \left[x \left(-e^{\lambda x} \right) \right] + \int_{0}^{\infty} e^{-\lambda x} dx.$$

$$= \left[x \left(-e^{\lambda x} \right) \right] + \int_{0}^{\infty} e^{-\lambda x} dx.$$

$$= \left[x \left(-e^{\lambda x} \right) \right] + \int_{0}^{\infty} e^{-\lambda x} dx.$$

$$= \left[x \left(-e^{\lambda x} \right) \right] + \int_{0}^{\infty} e^{-\lambda x} dx.$$

$$= \left[x \left(-e^{\lambda x} \right) \right] + \int_{0}^{\infty} e^{-\lambda x} dx.$$

$$= \left[x \left(-e^{\lambda x} \right) \right] + \int_{0}^{\infty} e^{-\lambda x} dx.$$

$$= \left[x \left(-e^{\lambda x} \right) \right] + \int_{0}^{\infty} e^{-\lambda x} dx.$$

$$= \left[x \left(-e^{\lambda x} \right) \right] + \int_{0}^{\infty} e^{-\lambda x} dx.$$

$$= \left[x \left(-e^{\lambda x} \right) \right] + \int_{0}^{\infty} e^{-\lambda x} dx.$$

$$= \left[x \left(-e^{\lambda x} \right) \right] + \int_{0}^{\infty} e^{-\lambda x} dx.$$

$$= \left[x \left(-e^{\lambda x} \right) \right] + \int_{0}^{\infty} e^{-\lambda x} dx.$$

$$= \left[x \left(-e^{\lambda x} \right) \right] + \int_{0}^{\infty} e^{-\lambda x} dx.$$

$$= \left[x \left(-e^{\lambda x} \right) \right] + \int_{0}^{\infty} e^{-\lambda x} dx.$$

$$= \left[x \left(-e^{\lambda x} \right) \right] + \int_{0}^{\infty} e^{-\lambda x} dx.$$

$$= \left[x \left(-e^{\lambda x} \right) \right] + \int_{0}^{\infty} e^{-\lambda x} dx.$$

$$= \left[x \left(-e^{\lambda x} \right) \right] + \int_{0}^{\infty} e^{-\lambda x} dx.$$

$$= \left[x \left(-e^{\lambda x} \right) \right] + \int_{0}^{\infty} e^{-\lambda x} dx.$$

$$= \left[x \left(-e^{\lambda x} \right) \right] + \left[x \left(-e^{\lambda x} \right) \right]$$

$$= \left[x \left(-e^{\lambda x} \right) \right] + \left[x \left(-e^{\lambda x} \right) \right]$$

$$= \left[x \left(-e^{\lambda x} \right) \right] + \left[x \left(-e^{\lambda x} \right) \right]$$

$$= \left[x \left(-e^{\lambda x} \right) \right] + \left[x \left(-e^{\lambda x} \right) \right]$$

$$= \left[x \left(-e^{\lambda x$$