Clasificación de células de la sangre a través de aprendizaje automático

Paula Adaglio (Cs. de Datos)
Eric Lützow Holm (Biología - Computación)
Kevin Maldonado (Cs. de Datos)

Agenda

1. Objetivo

2. Datos

3. Preguntas iniciales

1. ¿Cómo encaramos el problema?

5. Métodos

6. Resultados

7. Discusiones y conclusiones

1.Objetivo

 Clasificar imágenes de frotis de sangre teñidas, vistas a través de un microscopio, según su forma y color.

2. Datos

- Aproximadamente 17 mil imágenes etiquetadas divididas en 8 clases
 no balanceadas.
- Casi todas las imágenes son de 363 x 360 píxeles, RGB. Por lo tanto, cada imagen se puede pensar como un vector de 392 mil dimensiones, con valores enteros entre el 0 y 255.
- Dataset descargado de Mendeley Data.

2. Datos

Las 8 clases son:

Eritroblastos (precursores de glóbulos rojos)

Granulocitos

maduros

- Trombocitos o plaquetas
- Basófilos
- Eosinófilos
- Neutrófilos
- Linfocitos
- Monocitos
- Granulocitos inmaduros

Son o darán glóbulos blancos

3. Preguntas Iniciales

- ¿Podríamos separar correctamente las imágenes sin leer las etiquetas?
- ¿Podríamos entrenar a una máquina para reconocer los tipos celulares usando las etiquetas?
- ¿Cuán buenas son esas diferenciaciones o predicciones?

4. ¿Cómo encaramos el problema?

Paso I: No supervisado

Paso II: Supervisado Paso III: Supervisado Paso IV: Supervisado

PCA, para reducir dimensionalidad

K-Means para agrupar

Red neuronal convolucional

Aprendizaje por transferencia

Otros modelos de clasificación

5. Métodos I

Aprendizaje no supervisado: PCA y K-means

- Descargamos y extrajimos los archivos de Mendeley Data.
- Separamos los datos de manera aleatoria, con el objetivo de tener un set de entrenamiento, otro de validación y otro de prueba.
- A partir de un subconjunto de imágenes, realizamos una reducción de la dimensionalidad con PCA incremental de sklearn.
- Por último, nuevamente con la biblioteca sklearn, probamos varios modelos de agrupamiento utilizando K-means para 8 grupos.

5. Métodos II

Aprendizaje supervisado: redes neuronales y otros modelos

- Probamos una red neuronal convolucional basada en VGG16:
 - 1,6 millones de parámetros totales, todos entrenables
 - Lotes (batches) de 10, 10 períodos (epochs)
 - (Aproximadamente 2,5 horas de corrida en Google Colab)
- Luego, utilizamos una red neuronal pre-entrenada:
 - 3,2 millones de parámetros totales, 8 mil entrenables
 - Data augmentation: agregado de datos artificiales
 - Lotes (batches) de 32, 20 períodos (epochs) + 10 de ajuste fino
 - (Aproximadamente 1,5 + 2,5 horas de entrenamiento)
- Finalmente, comparamos estos con otros modelos: KNN, regresión logística y máquinas de soporte vectorial (SVM).

Data augmentation

Arquitectura de VGG 16

6. Resultados: descomposición y agrupamiento

Los primeros dos componentes principales explican ~20% de la variabilidad.

Se diferencian bien las plaquetas y los eritroblastos, pero los glóbulos blancos y sus precursores están muy solapados entre sí.

Aún con diferentes versiones de K means los agrupamientos son espurios, por lo que no alcanza con esto para diferenciarlos bien.

6. Resultados: Redes Profundas

- Primera red convolucional: 92% de aciertos.
- Segunda red convolucional: primero 96% y luego 98% de aciertos.

Matriz de confusión para la primera red

Matriz de confusión final para la segunda red

6. Resultados: Comparación de modelos

7. Discusiones y conclusiones

- Las primeras dos componentes principales con K-means no distinguen bien los grupos: los mezcla o los separa indebidamente.
- La red neuronal pre-entrenada fue la que mejor clasificó, pero también hay que tener en cuenta la eficiencia (tiempo/energía vs. puntaje).
- Otras cosas para probar: modificar los hiperparámetros, usar t-SNE en vez de PCA, centrar las imágenes automáticamente, random forests, otras formas de k-means, etcétera.
- Problemas al correr: conjunto muy grande, con muchos parámetros, que necesita de más poder de procesamiento que el que ofrece Google Colab.

