درس جبرخطی ۱۳۹۸ نیم سال دوم ۱۳۹۸

تمرین سری اول

- ۱. ثابت کنید هر زیرمیدان $\mathbb C$ شامل اعداد گویا است.
- ۲. ثابت کنید که اگر دو دستگاه معادلات خطی همگن دو مجهولی، مجموعه جوابهای یکسان داشته باشند، همارزند.
 - ۳. فرض کنید C یک ماتریس ۲ × ۲ باشد. میخواهیم ماتریسهای $A_{\mathsf{T} \times \mathsf{T}}$ و چنان بیابیم که

$$C = AB - BA$$

 $tr(C) = \circ$ ثابت کنید شرط لازم و کافی آن است که

- ۴. فرض کنید R و R'X = O و RX = O و باشند به نحویکه RX = O و باشند به نحویکه RX = O و باشند به نحویکه RX = O مجموعه جوابهای بکسان داشته باشند. ثابت کنید R = R'
- $1 \leq i \leq n$ فرض کنید در ماتریس $A_{n imes n}$ جمع درایههای هر سطر و جمع درایههای هر ستون برابر عدد ثابت C شده است؛ یعنی برای هر C داریم:

$$\sum_{j=1}^{n} a_{ij} = \sum_{j=1}^{n} a_{ji} = C$$

ثابت کنید برای هر $m \in N$ ماتریس A^m نیز این خاصیت را دارد، یعنی جمع درایههای هر سطر و هر ستون آن عددی ثابت است.

- و. اگر $M_n(\mathbb{R})$ و دستگاه AX=O جواب نابدیهی در \mathbb{C} داشته باشد، ثابت کنید جواب نابدیهی در \mathbb{R} نیز دارد. همچنین اگر AX=O و دستگاه AX=O جواب نابدیهی در \mathbb{R} داشته باشد، ثابت کنید جواب نابدیهی در \mathbb{R} نیز دارد.
 - ۷. فرض کنید A ماتریسی $n \times n$ باشد. گزارههای زیر را ثابت کنید:
 - AB=O برای یک ماتریس $B_{n imes n}$ ، آنگاه و AB=O برای یک ماتریس $B_{n imes n}$ باشد و
 - AB = O ولی AB = O وجود دارد بهطوریکه $B_{n \times n}$ ولی ماتریس باشد، آنگاه ماتریس $B_{n \times n}$
- ۸. ماتریس $A_{n \times n}$ بالامثلثی نامیده می شود هرگاه $a_{ij} = A_{ij}$ برای $a_{ij} = A_{ij}$ برای طرح درایه واقع در زیر قطر اصلی صفر باشد. ثابت کنید یک ماتریس بالامثلثی وارون پذیر است اگر و تنها اگر هر درایه ی قطر اصلی ناصفر باشد.
 - ۹. $(\tilde{\mathbf{I}})$ اگر A یک ماتریس $\mathbf{I} \times \mathbf{I}$ و B یک ماتریس $\mathbf{I} \times \mathbf{I}$ باشد، ثابت کنید C = AB وارونیذیر نیست.
 - (ب) اگر A یک ماتریس m imes n و B یک ماتریس m imes m باشد که m imes n، آنگاه B وارونپذیر نیست.