

Seguridad Ambiental y del Trabajo (97.04)

Resumen

Índice

1.	Introducción - Higiene y Seguridad en el Trabajo	3
2.	Salud y Seguridad Ocupacional	4
3.	Accidentes de Trabajo (AT)	4
4.	Sustancias Químicas (Contaminación en Ambiente) 4.1. Límites Admisibles	8
5.	Contaminación Atmosférica 5.1. Fases de la Contaminación	8
6.	Contaminantes y Equipos	11
7.	Contaminación de Aguas y Efluentes Líquidos	12
8.	Equipos de Retención	14
9.	Efluentes Líquidos	15
10	.Estrés Térmico	16
11	Prevención de Incendio 11.1. Agentes Extintores	
12	Residuos 12.1. Residuos peligrosos e industriales	21 23
13	.Gestión Ambiental y Salud y Seguridad	25
14	Agentes de Riesgo Físico	26
15	Residuos de aparatos eléctricos y electrónicos	29
16	.Trastornos musculoesqueléticos (TME)	29

1. Introducción - Higiene y Seguridad en el Trabajo

Se estudia la interacción entre la mano de obra y la materia prima, los insumos, las máquinas y equipos, los edificios. Esta interacción genera riesgo. El risgo es la probabilidad de ocurrencia de un evento. Pueden ser riesgos físicos, químicos, biológicos, mecánicos, eléctricos, ergonómicos, de incendio ...

- Físicos: Radiaciones, ruido, iluminación insuficiente.
- Mecánicos: Incluye riesgos de caídas a nivel y altur, atrapamientos (ej: cinta transportadora).
- <u>Eléctricos</u>: Contacto directo (ej: cable energizado expuesto) o indirecto.
- Químicos: Se manipulan sustancias químicas como gases, vapores o partículas.

Todos estos riesgos puede generar accidentes de trabajo y/o enfermedades profesionales. El accidente es un hecho puntual e involuntario que interrumpe la actividad laboral y genera lesión en el trabajador. Si no hay lesión es un incidente. La enfermedad laboral es la que aparece por exposición continua y prolongada a algún agente de riesgo. La excepción es el agente biológico. Además las enfermedades tienen que estar reconocidas por el sistema legal (listado de enfermedades).

La Salud y Seguridad Ocupacional o Higiene y Seguridad en el Trabajo es la disciplina que se encarga de estudiar, evaluar, corregir y controlar aquellos riesgos en el ambiente de trabajo que pueden generar accidentes y/o enfermedades profesionales.

El objetivo es evitar y/o ALGUNA PALABRA los accidentes y las enfermedades. Se busca lograr los más altos estándares.

En el proceso de producción del prodducto se generan residuos. Pueden ser

La Ingeniería Ambiental es la disciplina que se ocupa de detectar, evaluar, corregir y controlar los impactos

negativos de una actividad de producción de bienes o servicios. Analiza el efecto sobre el medio de todo el ciclo de vida.

El ruido medido externo forma parte de los impactos, las radiaciones también. Estos son impáctos de tipo físico.

2. Salud y Seguridad Ocupacional

Hace referencia a la prevención de accidentes y/o enfermedades profesionales. Se define accidente de trabajo como todo acontecimiento súbito, violento, involuntario, imprevisto que interrumpe la actividad laboral y genera daño o lesión en el trabajador. Tiene que ocurrir en el lugar de trabajo, en ocasión del trabajo o el trayecto entre el lugar de trabajo y el domicilio del trabajo (accidente in itinere).

El incidente es el hecho puntual que interrumpe la actividad laboral también pero no hay daño en el trabajador.

La seguridad ocupacional se encarga de la prevención de accidentes e incidentes. La salud ocupacional se encarga de la prevención de accidentes profesionales. La enfermedad ocupacional es una alterción de la salud del trabajador que se manifiesta de forma gradual por exposición a determinados agentes de riesgo.

De todos los tipos de riesgo, el único que puede generar enfermedad con una sola exposición es el agente de riesgo biológico.

El Estado tiene la obligación de regular/reglamentar todas las normas referidas a la salud y seguridad en el trabajo. El organismo que se encarga es el Ministerio de Trabajo de la Nación a través de la Superintendencia de Riesgos de Trabajo. Hay leyes, decretos y resoluciones. También tiene que controlar su cumplimiento.

El empleador puede ser de tipo uniperosnal o una razón social. Tiene como obligación cunplir con las leyes/decretos/resoluciones vigentes; gestionar lo SSO (entregar EPP adecuados al riesgo), contratar a la ART.

El trabajador tiene como obligación cumplir con las normas de salud y seguridad ocupacional (internas) y también utilizar los elementos de protección profesional (EPP) que le entreguen.

Las ART son empresas privadas cuyo producto es un servicio. Responden económicamente en TODA la atención médica en un accidente de trabajo y/o en enfermedad profesional. En caso de que haya alguna incapacidad, lo tiene que indemnizar. En caso de enfermedad, una vez "denunciada", se hace un estudio para determinar la relación entre el agente y la patología. Se busca que haya relación casual.

El trabajaor puede iniciar acciones legales contra la ART si la indemnización no le resulta suficiente.

3. Accidentes de Trabajo (AT)

- La investigación estudia los causales de los accidentes e incidentes de trabajo para generar acciones correctivas y/o preventivas.
- El análisis de riesgos, por sector o por puesto de trabajo tiene le mismo fin.
- Los índices de siniestrabilidad de empleados son tres:

• Índice de frecuencia :
$$IF = \frac{\text{\# accidentes} \times 1000000}{\text{hs hombre trabajadas}}$$

• Índice de gravedad: $IG = \frac{\text{total de días perdios} \times 1000}{\text{hs hombre trabajadas}}$

• Índice de incidencia: $II = \frac{\# \text{ accidentes} \times 1000000}{\text{n}^{\text{o}} \text{ promedio de trabajadores}}$

La pirámide de siniestrabilidad establece que de 300 accidentes/inicidentes, 29 generan lesiones y 1 de ellos es mortal.

Triangulo Sinistro

Cada empresa tiene la obligación de llevar la ceunta de los accidentes y etc. La ART tiene tdos los datos (días perdidos, etc) y luego la SRT genera los índices por sector y de cada empresa.

Hay programas especiales de reducción de siniestrabilidady los programas de acción (PAPE). Ambos se especializan en los causales y también en los potenciales riesgos. Son planes de reducción de sinistrabilidad. La SRT deriva a las empresas a su ART cuando requieren de estos planes.

El análisis de AT usa como metodología el árbol de causas. Es un método secuencial de análisis de los datos, que usa compuertas lógicas para describir eventos. La primera etapa es recolectar la información. Luego se construye el árbol y finalmente se implementan medidas correctivas y preventivas y se hace el seguimiento.

Puede haber causas inmediatas y causas básicas. La lesión se enlaza con el o los hechos que derivan en eso. Las medidas correctivas se completan con el control de verificar que dichas medidas sean eficaces para que ese siniestro no vuelva a ocurrir.

Clasificación

- Forma del incidente : Caída de altura, caída a nivel, caída con desnivel, quemadura con fuego, quemadura con sustancias químicas, choque de vehículos, atrapamientos.
- Parte del cuerpo afectada : ojos, cabeza, múltiples.
- Naturaleza de la lesión: quemaduras, cortes.
- Agente causante : del accidente o de la lesión → Instalaciones edilicias, máquinas o herramientas.

4. Sustancias Químicas (Contaminación en Ambiente)

- Toxicología : Ciencia que estudia los efectos adversos producidos por diversos agentes en seres vivos.
- Agente: Sustancia o producto químico; energía o un ser vivo presente en un medio en cantidad que puede afectar la salud

Los agente químicos pueden ser gases, vapores, partículas, polvo, líquido, etc. Los biológicos son los seres vivos (virus, bacterias). Los físicos están relacionados con la energía.

Las sustancias son tóxicas cuando son nocivas y provocan trastornos en el equilibrio biomolecular. Depende de la dosis. El efecto depende de la concentración y de la exposición en tiempo a esa concentración. Ésta se expresa en mg/m^3 , es la masa de la sustancia dividido volúmen de la concentración.

Por ejemplo, si un obrero está expuesto a altas concentraciones de monóxido de carbono por un cierto tiempo, puede sufrir dolor de cabeza (cefalea), vómitos, desmayo o muerte. Depende de la concentración y del tiempo. Además, depende de cuanto de lo que hay en el ambiente ingresa al organismo. El efecto tóxico se distribuye al torrente sanguíneo y vence barreras de protección de las células del órgano más afectado, llamado *órgano blanco*.

• <u>Toxicidad</u>: Capacidad que tiene una sustancia o sus productos metabólicos, en determinadas dósis, de ocasionar un daño (a la salud). Puede ser AGUDA o CRÓNICA.

Factores que conducen a la toxicidad:

- Naturaleza química y física del agente.
- Deposición.
- Exposición.
- Vías de ingreso del tóxico.

- Variabilidad genética.
- Condiciones biológicas.

Ley de Herber, el producto de la concentración por el tiempo es constante

$$k = n \times t$$

n: Concentración en el aire, t: tiempo de exposición

Las vías de ingreso son: inhalación (gas,vapor,aerosol), es la más común; vía dérmica, cuando se vencen las barreras protectoras de la piel o hay heridas (benceno, solventes); oral o digestiva.

Para determinar la toxicidad se utilizan dos parámetros DL50 y DL100 (es la mínima dósis por la cual muere medio o todo el lote). La dósis letal media (DL50) puede ser por inhalación, por vía dérmica u oral:

- <u>Dérmica</u>: Se pone una cantidad de tóxico en contacto con la piel durante 24 hs. La DL50 dérmica es la que mata a la mitad de la población estudiada en un lapso de 14 días(mg/kg).
- Por inhalación: Concentración de tóxico en le aire respirada durante no más de 1 hora, capaz de matar durante un lapso de 14 días a la mitad o más de una población compuesta por al menos 10 animales (mg/l ppm).
- Oral: Cantidad de sustancia suministrada por vía oral en una dósis única, capaz de matar a la mitad de la población, estudiada al menos tres semanas y no más de cuatro (mq/kq).

Las sustancias se clasifican en:

- <u>Irritentes</u>: Producen irritación, en general en mucosas de vías respiratorias. Puede generar ademas de pulmón en gran concentración. Ejemplo: amoníaco (que se usa como refrigerante en cámaras frigoríficas), dióxido de azufre, bromo, cloro, ozono.
- Asfixiantes: Interfieren con el proceso de oxigenación celular. Ejemplo: monóxido de carbono, ácido sulfihídrico.
- Anestésicos y narcóticos: Actúan en el sistema nervioso central. Ejemplos: hidrocarburos, alcoholes, acetonas
- <u>Sensibilizantes</u>: La exposición genera sensibilidad (dermatitis por ejemplo). SUele afectar el hígado. Ejemplo: asocianatos, resina epoxi, proteínas.
- Cancerígenos: Generan cáncer. Ejeplo: cloruro de vinilo, benceno, óxido de etileno. Las sustancias posiblemente cancerígenas se identifican con una "A"; los que efectivamente son cancerígenos "A1". También las sustancias incluídas en res. 310 y 415 (Lista de las sustancias cancerígenas reconocidas como tales en Argentina. Obliga a informar que los empleados de las empresas están expuestos a sustancias cancerígenas. Se busca modificar, de ser posible).
- Terátogenicos: El efecto no es en la persona sino en su descendencia. Implican en cambio en determinados cromosomas.

Las partículas que ingresan por inhalación siguen como recorrido: fosas nasales, faringe, laringe, esófago, alvéolos, El área va incrementándose, por lo que la velocidad va disminuyendo.

Los gases se solubilizan en los alvéolos y luego se distribuyen en la sangre. En el caso de las partículas, hay que tener en cuenta el tamaño o diámetro. Si es mayor a 100 micrones, sedimenta en el aire y no ingresa al sistema respiratorio (que además tiene un sistema de protección).

El sistema respiratorio consta de un epitelio calumnar ciliado y además tiene células secretoras de mucus. Las partículas de entre $20\mu m$ y $100\mu m$ de diámetro que son retenidas por la parte traqueobronquial. Las más pequeñas (menos de $5\mu m$) sufren retención alveolar, sedimentan allí. Las partículas que llegan al alvéolo pulmonar constituyen la fracción respirable. En esa zona ya no hay epitelio ciliado, sino células libres fagócitas, que transportan esas partículas hacia afuera.

En caso de que sea silicie, se pueden formar nódulos en los alvéolos pulmonares. Se denomina silicosis. Las paredes son muy finas para que pasen los gases. Al tener nódulos no cumple su función, por lo que disminuye la capacidad pulmonar. Puede derivar en cáncer.

4.1. Límites Admisibles

El uso de las sustancias es inevitable, aunque se intente modificar o suplantar. Para la protección de los trabajadores se adoptaron límites admisibles. En Argentina se adoptan los de la ACGIH (American Conference of Governamental Industial Hygienists). Se establecen efectos adversos en base a estudios epidemiológicos y toxicológicos. Se adoptan medidas de seguridad.

"Criterio de daño": se determina la dosis mínima que produce efectos comprobables y estadísticamente válidas. Se divide por un factor de seguridad que va entre 10 y 5000 (depende de la dispersión por ejemplo). Ejemplo: Hexano: 500 ppm; Benceno 0.5 ppm (es cancerígeno).

La resolución 295/03 fija los límites admisibles:

- CMP : Concentración máxima permisible ponderada en el tiempo.
- CMP CTP: Concentración máxima permisible para cortos períodos de tiempo.
- CMP C: Concentración máxima permisible valor techo.

$$C = \frac{\text{masa sustancia}}{\text{volumen aire}} \quad \frac{[mg]}{[m^3]}$$

$$C_{promedio} = \frac{\sum C_i}{n}$$
 n es el número de muestras si los t_i son iguales

$$\Rightarrow C_{promedio} = \frac{\sum C_i}{\sum t_i}$$

La CMP-CTP tiene en cuenta que puede haber picos de concentración elevaos durante ciertos períodos de tiempo. Se pueden alcanzar como máximo cuatro veces durante la jornada laboral, durar menos de 15 minutos y estar distanciados uno del otro mínimo por una hora. El CMP-C inidica qué valor no puede ser superado en ningún momento de la jornada laboral.

Para la concentración en el aire se emplean las siguientes unidades:

- Gases y Vapores : masa (volúmen, volúmen/volúmen (ppm)).
- Partículas: masa/volúmen

Ejemplo: $CMP_{hexano} = 500ppm$. Se tiene $C_{prom} = 400ppm$. Se ve que $C_{prom} > 50 \% CMP_{hexano}$. Cuando ocurre esto se dice que se está en el *nivel de acción*. Hay que implementar alguna acción. Es un nivel de alerta. Hay que hacer exámenes médicos periódicos al personal expuesto, mediciones ambientales. En caso de tener $C_{prom} > CMP$ también hay que hacer exámenes médicos y tomar mediciones, además de corregir.

4.2. Plan de Control Ambiental

- 1. Identificación de agentes: Se analizan las materias primas y los insumos que se usan en el proceso, los productos, los subproductos, etc. Hay que disponer de las hojas de seguridad, que tienen la composición del producto y los recaudos en su manipulación. Así se identifican las sustancias que se espera encontrar en ese ambiente laboral.
- 2. Evaluación de Riesgo: Implica hacer mediciones ambientales, determinar si se está en nivel de acción (concentración ambiental laboral, $C_m > 50 \%$ CMP), los límites admisible, etc.
- 3. Gestión e Implementación de Medidas Correctivas y Preventivas: Sustituir y modificar procesos de ser posible. Si no, implementar medidas de ventilación localizada o general. Implica usar elementos de protección personal adecuados (EPP), etiquetar las sustancias, capacitar al personal, realizar exámenes médicos periódicos.
- 4. <u>Seguimiento y Control</u>: Se busca determinar si las acciones preventivas y correctivas son efectivas y si se mantienen en el tiempo.

El decreto 658/96 enumera los agentes de riesgo(que pueden ser físicos, biológicos, químicos, ergonómicos) que, si se superan los límites, hacen que a los obreros haya que hacerles exámenes físicos períodicos. De esto se encarga la ART. El empleador tiene que informar el listaado de personal expuesto a la ART, que tiene que asesorar. Con ese exámen se busca detectar si ese o esos agentes de riesgo están generando algún efecto nocivo en su salud. Son específicos según cuál sea el agente de riesgo.

4.3. Contaminantes

Primero hay que ver si el contaminante es gas/vapor o pertículas. En el último caso hay que evaluar el diámetro, además de la sustancia en sí. Lo que llega al alvéolo pulmonar tiene menos de $5\mu m$. En caso de gas o vapor hay que determinar si la sustancia es de naturaleza orgánica o inorgánica.

Suponiendo que la sustancia es amoníaco, se hacen los estudios y se obtiene la $C_{prom} = \frac{\sum C_i t_i}{\sum t_i}$ donde t_i son los tiempos de muestreo. Si los t_i son iguales entonces $C_{prom} = \frac{\sum C_i t_i}{n}$ donde n es el número de muestras. Esto se obtiene de mediciones en el medio ambiente laboral. Implica toma de muestras y nañalisis en laboratorio; ambos tienen incertezas. Suponiendo que $C_{prom} = 20ppm$, hay que compararlo con los límites admisibles (Res 295/03). La CMP es 25 ppm. Como es una sustancia irritante tiene límite para cortos períodos de tiempo. CMP - CTP = 35ppm. El efecto crítico en este caso es la irritación (de mucosas). Para analizar hay que ver si hay picos, no alcanza sólo con el promedio. La CMP cumple pero estando dentro del nivel de acción.

¿Qué ocurre si el personal está expuesto a más de un contaminante? Hay que ver el efecto de todos los contaminantes. Si son independientes, es decir, cada uno hace efecto en órganos distintos, se analizan por separado. Si el efecto es aditivo (hacen efecto en el mismo órgano o sistema) hay que verificar además del cumplimiento individual una cuestión más general.

Por ejemplo, $C_{acetato} = 400ppm$ y $C_{acetona} = 150ppm$, $CMP_{acetato} = 500ppm$ y $CMP_{acetona} = 200ppm$ $\Rightarrow \frac{400}{400} + \frac{150}{200} \ge 1$. Hay que verificar que $\sum_{CMP}^{CC} < 1$. Si es menor a 1 cumple, si es mayor no.

5. Contaminación Atmosférica

- Nivel de inmisión: altura superficial (baja atmósfera)
- Contaminación: Es la presencia de cualquier agente físico, químico, biológico o combinación que impidan o sean nocivos para la salud, bienestar o seguridad de las personas/vida vegetal /vida animal.

• Causas Antropogénicas: Se clasifican por origen, en primarios (se generan directamente en su fuente) o secundarios (aparece un contaminante primario que en la atmósfera se combina).

5.1. Fases de la Contaminación

■ Fuente: Emisión contaminate

■ Medio: Transporte, dispersión, transformación

■ Receptor: Inmisión.

Por ejemplo, el dióxido de azufre genera efectos nocivos en plantas, lluvia ácida, irritación de mucosas.

Al receptor llega el contaminante pero atenuado por la dispersión que se genera al alejarse de la fuente. Ésta puede ser fija o móvil, continua o intermitente. Puede clasificarse también en predecible o impredecible.

Es puntual cuando su proyección es un punto (ej: chimenea). Es lineal cuando su pryección es una línea (ej: claraboyas de fábricas que ocupan galpones largos). Es de área cuando la proyección horizontal es un espacio entero (ej: laguna). El medio es la atmósfera. Los fenómenos de dispersión se estudian en la capa límite o de mezcla.

El efecto depende de la toxicidad del contaminante, de la susceptibilidad individual, del tiempo de exposición y de la concentración.

Las variables climatológicas que afectan son:

- Vientos → transporte y dispersión.
- Luvias
- Insolación
- Temperaturas → dispersión

Por las propiedades termodinámicas del aire, al tomar un "globo" de aire y se lo eleva 100m desde la altura Z_1 a Z_2 , la presión dismuye, por lo que la masa de aire se expande y baja su temperatura de forma adiabática en $1^{\circ}C$.

Se busca correlacionar los factores que determinan la concentración de contaminantes en un punto. Influyen variables de tipo climático, la topografía la fuente, las reacciones químicas y fotoquímicas.

Un modelo de dispersión atmosférica busca predecir cómo se dispersan los contaminates en la atmósfera. Se emplea para estimar si una fuente cumple con las reglamentaciones (niveles de calidad de aire), para ubicar puntos de muestreo en torno a una fuente y relacionar emisiones con la calidad de aire (concentración del contaminante en la zona de inmisión).

La emisión es la masa del contaminante por unidad de tiempo.

La concentración es la masa de contaminante por volúmen de aire en la zona de inmisión

Hay que determinar dónde tomar las muestras, a que distancia de la fuente. Esto se hace teniendo en cuenta que el modelo matemático establece a qué distancia de la fuente están las concentraciones máximas. Así se determinan los puntos de la grilla a analizar.

Se empleará un modelo gaussinao que es para fuentes puntuales fijas. Permite hallar la concentración máxima a una distancia X_{MAX} de la fuente. Se compara este valor con la norma de calidad de aire (que da el valor recomendable dada cierta concentración aceptable para tanto tiempo). No necesariamente coincide con el CMP para ambiente laboral; es más estricto para ambiente externo.

$$\chi(x,y,z,H) = \frac{E}{2\pi\sigma_y\sigma_z\mu} e^{-\frac{1}{2}(y/\sigma_y)^2} \left[e^{-1/2\left(\frac{Z-H}{\sigma_Z}\right)^2} + e^{-1/2\left(\frac{Z+H}{\sigma_Z}\right)^2} \right]$$

 σ_y , σ_z : coeficientes de dispersión, función de χ y de coeficientes adimensionlaes y experimentales, función de las clases de estabilidad atmosférica.

 μ : velocidad del viento.

 Δh : Sobreelevación del penacho.

El ascenso del penacho dependerá de las condiciones atmosféricas y de la primacía del efecto de elevación por la flotación o por la velocidad de salida de los gases.

 Δh es función de :

- Diferencia de temperatura entre los gases y el aire atmosférico. (Si $\uparrow \Rightarrow \Delta h \uparrow$)
- Velocidad de salida de los gases de escape. (Si $\uparrow \Rightarrow \Delta h \uparrow$)
- velocidad del viento. (Si $\uparrow \Rightarrow \Delta h \downarrow$)

Se establecen supuestos básicos y limitaciones: fuente puntual y fija, emisión continua y contasnte, variables metereológicas constantes en el período de estudio, contaminante gaseoso o partículas con $\emptyset < 20 \mu m$ (comportamiento aerodinámico como gases/vapores), velocidad de vient constante, la distribución de la concentración es de tipo gaussiano, contaminante conservativo, contaminante con igual densidad que la masa gaseosa que los contiene.

Para aplicar el modelo hay que conocer determinados parámetros. El máximo se produce sobre el eje X. El nivel de inmisión y=0. Entonces la concentración máxima a nivel suelo está dada por:

$$\begin{split} C(x,0,0,H)(\mu g/m^3) &= \frac{10^6 E(g/s)}{\pi \sigma_Z \sigma_y \mu(m/s)} e^{-\frac{1}{2} \left(\frac{H}{\sigma_Z}\right)^2} \\ \Rightarrow & \boxed{C_{max}(\mu g/m^3) = \frac{0.234 \times 10^6 E}{\mu(m/s) H^2} \frac{\sigma_Z}{\sigma_Y}} \end{split}$$

Las atmósferas se clasifican en seis grados dependiendo del grado de contaminación (estable, neutra, inestable, etc).

$$\sigma_Y = ax^n$$
 $\sigma_Z = bx^n$ a,b,n:coeficientes adimencionales

Cuando el perfil real coincide con el adiabático se dice que la atmósfera es neutra. Si disminuve más de $1^{\circ}C$ en 100m es inestable. Favorece la mezcla vertical del aire. En las atmósferas estables el perfil indica que se oponen al movimiento vertical de las masas de aire.

 Δh no varía la cantidad de emisión con respecto a h (altura real) pero sí aumenta la altura. $H=h+\Delta h$.

A mayor diferencia de T entre la salida de los gases y el aire que los rodea, mayor será el Δh . También aumenta al aumentar la velocidad de salida de los gases. Disminuye al aumentar la velocidad del viento.

La norma de calidad de aire (Nº 242/97 Pcia. Bs. As.) limita concentración del contaminante a nivel inmisión, no a nivel emisión. Los límites son para distintos períodos de tiempo.

Si $C_{max/tiempo}$ es mayor a lo admisible, no cumple. Si es menor o igual, hay que corregir si está por encima del 50 % de concentración admisible.

Las chimeneas tienen que tener orificios para introducir sondas y tomar muestras.

$$E(g/s) = C(g/m^3)Q_g(m^3/s)$$
 Q_g : caudal de gases

El rendimiento de un euipo es: $\boxed{\eta = \frac{E_{real} - E_{admisible}}{E_{real}}}$ Para hallar la $E_{admisible}$ se reemplaza en la ecuación de C_{max} reemplazando la E_{real} por la $E_{admisible}$:

$$C_{adm} = \frac{0.234 \times 10^6 E_{admis}(g/s)}{\mu(m/s)H^2} \frac{b}{a}$$

$$\frac{50\%0,365}{fh} = \frac{0,234 \times 10^6 E_{admis}(g/s)}{\mu(m/s)H^2} \frac{b}{a}$$

Afectarlo por el 50 % y dividirlo por el factor horario que corresponda.

6. Contaminantes y Equipos

El equipo se selecciona de acuerdo al contaminante. Hay que saber qué tipo de sustancia es y cuál es rendimiento necesario.

Para gases o vapores hay dos métodos para retener el contaminante:

- <u>Absorsión</u>: Operación unitaria por medio de la cual un gas o un vapor pasa al seno de un líquido. El queipo más utilizado son las torres de absorción, se usa sobre todo para sustancia inorgánicas (ej:SO₂).
- Adsorción: Es un fenómeno de superficie. El gas o vapor queda en la superficie de un sólido (sílica gel o algo similar). Se usa en general con contaminantes orgánicos. Un material adsorbente es carbón activado (el más usado.)

Estas operaciones unitarias retienen los contaminantes.

Para filtrar partículas, afectan: la gravedad, la fuerza centrífuga, el impulso incercial, el moviemiento browniano, el efecto tamiz, interacción directa, fuerzas electroestáticas. Los equipo emplean uno o varios de estos efectos.

- Efecto Tamíz: Como un colador, partículas que no pasan por una tela.
- Impacto Inercial: Partículas que se devían y quedan retenidas.
- Movimiento Browniano: Partículas en movimiento zigzagueante, quedan retenidas.

Cómo equipos de retención se emplean:

- Ciclón: Separa partículas. Eficiente por granulometría (es decir por tamaño). Se emplea fuerza centrífuga.
- Filtros
- Cámara de Sedimentación. Para amlio rango de diámetro de partículas.
- Filtros Electroestáticos
- Mediante Líquidos. Torres lavadoras de gases.

A mayor diámetro, mayor eficiencia de retención. Los filtros electrosestáticos y de manga tienen muy alto rendimiento.

7. Contaminación de Aguas y Efluentes Líquidos

Un cuerpo de agua es un medio líquido limitado por un medio sólido en el findo y los laterales (sólido poroso) y en la parte superior por un medio sólido (cuerpo de agua subterráneo - napas-)o gasesoso (cuerpo de agua superficial - ríos, mares, arroyos, lagos, lagunas-).

Es un ecosistema en el que habrá factores bióticos y abióticos. Los bióticos (seres vivos) pueden ser autótrofos (hacen fotosíntesis+ respiración) o heterótrofos (sólo respiración), dependiendo de cómo obtienen energía. Los autótrofos pueden ser fotosintetizadores (generar sustancias orgánicas a través de sustancias inorgánicas y como producto se genera oxígeno), $CO_2 + H_2O \rightarrow \text{Mat. Orgánica} + O_2(g)$. Son organismos que tienen dosofila (ej: plantas). Otros autótrofos son quimiosintetizadores, hacen procesos quñimicos para gennerar materia orgánica (bacterias). Los heterótrofos requieren materia orgánica para crear nueva (bacterias no quimiosintetizadoras, peces, hongos). Los autótrofos realizan fotosíntesis y respiración. Los heterótrofos realizan respiración.

Hay un intercambio de materia y/o energía entre el cuerpo de agua y el exterior (energía sola,r por ejemplo). Entre los factores abióticis están: gases disuletos (O_2, CO_2, N) , aniones, cationes, sólidos (disueltos, en suspención o sedimentación).

La concentración de oxígeno de saturación del líquido depende de la presión, la temperatura y el grado de salinidad. Al aumentar la presión, aumenta $[O_2]$; al aumentar la T disminuye $[O_2]$; al aumentar el grado de salinidad disminuye $[O_2]$. A $T=20^{\circ}C$ y presión atmosférica normal y H_2O dulce, la concentración es $[O_2]_{sat}=9,2mg/l$.

Se supone que una concentración similar a la de saturación $[O_2] \simeq [O_2]_{sat}$. Habrá organismos más desarrollados (ej:peces) y también bacterias. Estas se clasifican en: aeróbicas, facultativas y anaeróbicas. Cumplen un

rol importante en la autodepuración de los cursos de agua. Los aeróbicos toman materia orgánica y la degradan (cumple un importante rol de naturaleza biodegradante) o descomponen en sustancias simples y nuevas bacterias aeróbicas.

AUTODEPURACIÓN
$$\begin{cases} \text{Mat. Orgánica} \\ \text{biodegradable} \end{cases} + O_2(\mathbf{g}) \rightarrow CO_2 + H_20 + \text{Nuevas bacterias}$$

Las bacterias aeróbicas realizan este proceso también pero con oxígeno combinado:

$$\text{Mat. Orgánico} + \text{Oxígeno combinado} \rightarrow \left\{ \begin{matrix} \text{Metano}(CH_4) \\ \text{Amoníaco}(NH_3) \\ \text{Ácido Sulfhídrico}(SH_2) \end{matrix} \right\} + \text{Nuevas bacterias}$$

En este caso no se formas sustancias simples. No viven en medios aeróbicos.

Las bacterias facultativas se adaptana a ambas situaciones: vivir en medios tanto aeróbicos (cuando hay oxígeno) como anaérobicos (si hay poco oxígeno).

Se agerga un efluente líquido que contiene material biodegradable. Puede provenir de una industria, de una población, etc. Se agrega al curso de agua. Habrá un incremento del número de bacterias (aeróbicas). Aguas abajo se verá este incremento. Estos organismos comienzan aconsumir oxígeno. El curso de agua puede recuperar O_2 mediante la interfaz agua-aire y mediante fotosíntesis. De esto depende si el curso tendrá $[O_2] \simeq 0$ o no. Los ríos más caudalosos tienen más

capacidad de "reponer" oxígeno. El número de peces también disminuye. SI no hay nuevos efluentes, eventualmente va a disminuir la cantidad de bacterias (porque ya no tienen alimento), aumentará $[O_2]$ hasta llegar al valor original y por ende se reestablecerá el número de peces.

Como consecuencia de todo esto se limitan los efluentes, mediante los parámetros de descarga. La demanda bioquímica de oxígeno define la matería orgánica disuelta. Se mide un consumo de oxígeno para determinar esto. Se limita para proteger al medio. Se toma una muestra del efluente, a la que se le calcula la concentración de oxígeno disuelto (inicial). Se incuba 12 días. Luego se determina la $[O_2]$ final. Se mide así cuál fue el consumo de oxígeno. Esto da la $DBO_{n,t}$ (n: días, T: temperatura de incubación).

$$DBO_{n,t} = [O_2]_i - [O_2]_f$$

Está normalizado a $T=20^{\circ}C$ y n=5 días. La DBO es la cantidad de O_2 disuelto que necesita una población de bacterias heterogéneas para degradar la materia orgánica disuelta y biodegradable en una mezcla.

Para evitar de que la DBO dé cero a los cinco días (no se sabría cuanto se consumió), se diluye la muestra con agua del curso. Se calcula entonces como:

$$DBO_{5,20} = \frac{[O_2]_i - [O_2]_f}{\% \text{disoluci\'on}}$$

La DBO es la medición **indirecta** para medir la materia orgánica. Realmente mido la diferencia de oxígeno, pero lo que yo quiero es la materia orgánica. La DBO se encuentra regulada según el cuerpo de agua:

Medio Receptor:	Cuerpo de Agua Superficial	Colector Cloacal	Mar	Colector Pluvial
$DBO_{5,20}$	$50~\mathrm{mg/l}$	$200~\mathrm{mg/l}$	$200~\mathrm{mg/l}$	$50~\mathrm{mg/l}$

Si el $DBO_{5,20}$ es mayor a estos vaores, hay que realizat un tratamiento de rmoción de DBO con un porcentaje

$$DBO = \left(\frac{DBO_{5,20_{efluente}} - DBO_{5,20_{legal}}}{DBO_{5,20_{efluente}}}\right)$$

Hay otro factores que influyen. POr ejemplo, PHs altos o bajos limitan la posibilidad de vivir de las bacterias a más de 40° C. Si el efluente contiene cromo hexevalente el proceso no se lleva a cabo porque éste mata o inhibe a las bacterias. Las sustancias en éter etílico (SSEE) son derivadas de grasas y aceites. Tienen δ menor al del oxígeno. También se limitan los sólidos sedimentables, que se dividen en:

- <u>Granulares</u>: Cada partícula sedimenta independientemente de las otras. Sedimentan con velocidad de sedimentación constante.
- <u>Floculentos:</u> El volúmen aumenta al sedimentar y varía la velocidad de sedimentación, se agrupan al sedimentar.

Esto se mide con el cono de ALGUNA PALABRA. Se mide a los 10 minutos (SS_{10min}) y a las 2hs (SS_{2hs}) . Las normas de calidad de agua están en función de su utilización. Varían según la jurisdicción. Paara fines recreativos se dan límites para la $DBO_{5,20}$ y cantidad de O_2 disuelto. Si es para extracción de agua de consumo, se dan para $DBO_{5,20}$ y $[O_2]$ también.

No es lo mismo que las normas de emisión (límites de vuelco de efluentes).

El grado de saturación es la relación entre la concentración de oxígeno real y de la que tendría idealmente,

$$G_{sat} = rac{[O_2]_{real}}{[O_2]_{ideal_{sat}}}$$
 $[O_2]_{ideal_{sat}}
ightarrow$ este dato está tabulado

Si se conoel el grado de saturación, se despeja $[O_2]_{real}$.

La tabla relaciona el tipo de corriente y consumo unitario de oxígeno (g/m^2) día). Para buscar en la tabla hay que hallar el sonsumo unitario:

$$CU = 0.3 \frac{DBO_{5,20}/\text{río abajo} \times Q}{\text{sup. de contacto}}$$

Con esto y la tabla se calcula el grado de saturación: $G_{sat} = 5,7$ (por ejemplo) $\Rightarrow [O_2]_{real} = 5,7[O_2]_{sat} = 5,79,2mg/l = ...$

Esto se compara con el límite del enunciado para ver si está en regla o no. Por norma se sabe que $DBO_{5,20_{1\,\mathrm{día}}}=50mg/l$. En este caso da $DBO_{5,20}=270mg/l\Rightarrow$ no cumple con la norma (no se cumple con la norma en la descarga, no importa río abajo). El porcentaje de remoción de DBO es :

$$\% Re_{DBO} = \frac{270 - 50}{270}$$

8. Equipos de Retención

• <u>Ciclón</u>: Retiene partículas de acuerdo con la fuerza centrífuga. El fluido forma un helicoide hasta la parte inferior (que es cónica). Las partículas más gruesas chocan con las paredes y caen. En la parte baja, se coloca una válvula de tipo estrella para "descargar" lsa partículas que se van reteniendo.

El rendimiento aumenta al aumentar el díametro de la partícula. El rendimiento de retención es del 80 %. Retiene partículas de diámetro menos a 5 micrones. Los de menor granulometría se retienen en un ciclo de manga.

• Filtro de Manga: Intervienen los principios físicos de intercepción directa, impacgto inercial, movimiento browniano, etc.

Hay una chapa con "bocas" en la que se insertan mangas. Ingresa el gas con las partículas. Las más pesadas y las otras siguen el recorrido del gas. Van quedando retenidas en la superficie de la tela. Aumenta la η de retención y también la pérdida de carga. Eventualmente hay que parar el ventilador que mueve el gas y limpiar la manga. Tiene un rendimiento del 90 %. Hay establecidos grosores de mangas según material.

- Cámaras de Sedimentación: No son muy empleadas. La velocidad de sedimentación está relacionada con la densiidad y el diámetro de la partícula. Se limita a partículas de entre 100 y 200μm.
- Separación de partículas Mediante Líquidos: El líquido ingresa por la parte superior de la torre, como microgotas. Por la parte inferior ingresa el gas arrastrando parículas. Éstas se devían por movimiento browniano e impacto inercial. Quedan adheridas a las gotas y caen. Tiene alto rendimiento de retención.
- Adsorción: Es la separación basada en la capacidad de algunos sólidos de adherir las partículas.
- Absorción: Es una operación unitaria mediante la cual un gas pasa al seno de un líquido (torres de relleno). En general se usa para gases inorgánicos. El líquido se reutiliza.

Los gases orgánicos se pueden tratar en una cámara de combustión también, como por ejemplo metano.

9. Efluentes Líquidos

El tratamiento de efluentes líquidos hace alusición al conjunto de operaciones y/o procesos tendientes a eliminar del líquido efluente aquellos agentes que generan contaminación o perturbación en el medio receptor.

Las ioperaciones/procesos pueden ser físicos, químicos y/o biológicos, Otra clasificación los divide en primarios, secundarios y terciarios. En general los físicos son primarios (ej: decantación, separación, sedimentación, flotación). Los secundarios incluyen tratamientos de naturaleza biológica. Los terciarios hacen alusión a la eliminación de algún compuesto por ejemplo por ósmosis inversa.

- Físicos: Elimina sólidos gruesos
 - Rejas: Atrapan sólidos de diámetro mayor que la distancia entre barrotes. Es para no obstruir etapas siguientes.
 - Hay que limpiar las rejas, de modo manual o mecánico. Se eligen en función de las características del efluente.
 - <u>Decantación</u>: Se retienen sólidos inorgáinicos. Puede ser de sección rectangular o circular. Puede haber un succionador para extraer lo sedimentado, o se puede tener que hacer manualmente. Cada partícula sedimenta independientemente de las demás, por lo que la velocidad de sedimentación es constante.
 - <u>Sedimentación</u>: El grueso de las pertículas son floculentas. Al sedimentar se aglutinan con otras partículas, por lo que la velocidad de sedimentación va aumnetando. Ocurre con materia orgánica. Lo sedimentado forma "barros". Puede tener una rasqueta superficial, un brazo que elimina grasas y aceitas que sobrenadas.
- Biológicos: Reactor biológico que tiene microorganismos (bacterias, hongos, protozoos).

$$\begin{array}{|c|c|c|c|c|c|}\hline & \text{Materia} & O_2\\\hline \text{Anaer\'obicos} : & \text{Org\'anica} & + & O_2\\ & \text{Biodegradable} & + & \text{concentrado} & \rightarrow \left\{ \begin{array}{c} CH_4\\NH_3\\SH_2 \end{array} \right.$$

- <u>Barros Activados</u>: Las bacterias sobrenadan el líquido. Tienen que estar em constante agitación (aireadores superciales), para que los microorganismos se agrupen formando "flogs". Hay que garantizar la presencia de oxígeno molecular (proceso aeróbico) en toda la masa de líquido. Los flogs ya maduros sedimentan. Parte recircula, vuelve a la cabecera del reactor para mantener la masa microbiana. Lo que sobra va al tratamiento de barros. Se obtienen buenos rendimientos de remoción de DBO. Las pantas son bastante compactas. Como ventaja, se necesita energía, aireadores superficiales y laboratorios in situ.
- <u>Lecho Percolador</u>: La biomasa no sobrenada, sino que está adherido al lecho o filtro. Se ve un cilindro de hormigón con con caño central por el que entra el efluente. A contracorriente circula aire; si no alcanza se ponen ventiladores. El proceso es aeróbico. Se forman zoogleas con los microorganismos (con el material portante). Hay un sedimentador primario previo al reactor, para no sobrecargarlo. Se ponen lechos en serie para aumentar la eficiencia. A continuación del lecho percolador hay un sedimentador secundario. También requiere O_2 en el medio.
- <u>Lagunas</u>: Pueden ser anaeróbicas, aeróbicas o facultativas. Es un piletón cuyo fondo y laterales están impermeabilizados. Tienen un alto η de remoción de DBO y requieren poco mantenimiento. Se requiere sí un espacio, por o que para zonas urbanas y semiurbanas es complicado.
- Químicos: Es previo al tratamiento biológico. Se aplica cuando hay una sustancia química a eliminar, Implica introducir un reactivo para ello. Luego hay que analizarlo por separado (ej: cromo hexavalente).
 También se emplea para desinfección. En Argentina se emplea cloro (biocida). La desinfección del tratamiento se hace al final de éste.

Se hace porque puede haber bacterias patógenas en el efluente, por lo que se busca que no lleguen a un curso de agua superficial.

• Físicoquímico:

• <u>Floculación - Decantación:</u> Se agrega un reactivo para desactuivar cargas en la sustancia. Eso se hace en turbulencia (floculación). Luego sedimentan por grevedad.

10. Estrés Térmico

Puede ser por exposición al calor o al frío. El marco legal está en la Resolución 295/03, en especial en el Anexo III.

El hombre es un ser homotermo, es decir, su T° varía poco en relación a los cambios externos de la temperatura. Mantiene su T° corporal estable. Tiene T° interna (de lo organos internos) y una T° externa (de la piel). Las reacciones metabólicas del hombre son exotérmicas, se genera calor. Se intercambia calor con el medio por cuatro métodos: conducción (c), convección (C), ventilación (v) y radiación (R).

M: calor metabólico, siempre >0.

La ecuación de balance energético es: $M\pm R\pm C\pm \overbrace{c-V}^{
m se~desprecia}$

$$\Rightarrow \boxed{ M \pm R \pm C \left\{ \begin{array}{ll} <0 & \text{estr\'es por fr\'io} \\ =0 & \text{equilibrio} \\ >0 & \text{estr\'es por calor} \end{array} \right.}$$

La temperatura de la piel se considera $35^{\circ}C = t_p$. Si hay equilibrio, lo que gana el hombre por metabólico/conbección/radiación lo transfiere al medio por alguno/s de esos medios. Cuando $M \pm R \pm C > 0$ se pone en marcha el mecanismo de autoregulación. Al ser mayor a cero, aumenta la temperatura del cuerpo ($\uparrow t_p$). Los mecanismos para disminuir la temperatura involucran la sudoración. Esto genera pérdida de calor, pérdida de

sal (\Rightarrow calámbres) y deshidratación, que genera finalmente golpes de claor. Además al aumentar t_p también se produce vasodilatación.

Esto redunda en problemas con el sistema cardiovascular.

Las respuestas fisiológicas al calor son:

- Dilatación de los vasos sanguíneos
- Sudoración
- lacktriangle Cambios en la frecuancia de ritmo cardíaco ightarrow se puede controlar al trabajador
- Presíon sanguínea.

La alimentación es la adpatación fisiológica adquirida durnate el trabajo en ambientes calurosos. Se determinó que al cabo de 9 días de exposición disminuye la frecuencia cardíaca y la temperatura interna, mientras que aumentó la sudoración (mecanismo de pérdidad de calor, de autoregulación) con menor pérdida de sales (el ambiente tiene que ser capaz de evaporar esa sudoración).

Los efectos adversos de la carga térmica (estrés térmico) son: hipertensión, cataratas, enfermedades gastro-intestinales, susceptibilidad aumentada a quuímicos, enfermedades de las glándulas sudoríparas, descenso de rendimiento en el trabajo, incremento de accidentes e incidentes.

Las etapas en el plan de control de reducción del estrés térmico son: identifiación, evaluación, correción y control.

- 1. <u>Identificación:</u>Puede darse por malestar operario, por juicio profesional, por las enfermedades profesionlaes listadas en el decreto 658/96 (la tempreatura del aire tiene que ser mayor a 28°C y la presión mayor al 90 %).
- 2. Evaluación: Hay que tener en cuanta las características del ambiente térmico (fáciles de medir): $T_a \to \text{temperatura}$ ambiente, $T_g \to \text{T}^o$ de globo, $T_{bhn} \to \text{T}^o$ bulbo húmedo natural, $t_{bhs} \to \text{T}^o$ búlbo húmedo psicométrico, $v \to \text{velocidad}$ del aire. Las características de los individuos expuestos y su actividad en el trabajo para determinar el calor metabólico (tiene que ver con el esfuerzo físico), y las características de la ropa empleada (relacionado con la posibilidad de evacuación del sudor).

Mediciones Ambientales:
$$TGBH = \underbrace{0.7tbhn + 0.2tg}_{\text{sin carga solar}} + 0.1tbs$$

Cuando se trabaja en distintos ambientes (pero es el mismo trabajo), el TGBH se calcula haciendo una ponderación:

$$\left\lceil \frac{\sum TGBH_it_i}{\sum t_i} \right
vert
ight.
ig$$

Cuando se hacen ponderaciones, siempre hay que comparar con la tabla con aquellos valores que son del 100% del trabajo. No se puede hacer con los valores que tienen descansos.

Si los trabajos son distintos:
$$\Rightarrow \boxed{M = \frac{\sum M_i t_i}{\sum t_i}} \quad \to \quad \begin{array}{c} \text{CALOR} \\ \text{METABÓLICO} \\ \text{PONDERADO} \end{array}$$

- 3. Corrección: Hay todo un proceso en la toma de desiciones estipulado en la ley.
- 4. <u>Control</u>: Los controles generales implican informar al trabajador, fomentar la ingesta de agua, autolimitación del trabajador. Además hay controles de trabajo específico: de ingeniería, administrativos y de protección del personal (los elementos de protección se usan para cuestiones puntuales). Implica automatización y la mecanización, rotar el persoal expuesto, limitar el tiempo de exposición.

Existen otros índices, tales como el índice de Beldinf y Hatch. Requiere de más datos para el cálculo.

El estrés térmico por frío se puede dar en el exterior o en ambientes cerrados. La protección del trabajador se da con ropa adecuada y reglando tiempos e exposición. Existe una T^o equivalente de enfriamiento en función de la T^o y la velocidad del viento. La legislación exige ropa de proytección para temperaturas por bajo de los 4°C.

En resumen: Para el estrés térmico por calor hay índices: con el TGBH se determina tbh_{nat} (protegerlo de radiación y velocidad de aire), t_g y t_a y tbs (protegerlo de radiación); y M se estima con el tipo de trabajo. También hay que ver el período de trabajo (por la aclimatación) y la vestimenta.

Con la tabla se determina el régimen de descanso/trabajo por hora.

Ponderación $TGBH_p = \frac{\sum TGBH_it_i}{\sum t_i} \leftrightarrow 100\%$ trabajo.

La correción se da con: control de ingeniería, administrativos, EPP. Además con capacitación e ingesta de agua.

11. Prevención de Incendio

Se rige por la legislación del decreto 351/79. Se van a estudiar modelos, principios que rigen el incendio, objetivos de prevención y agentes extintores.

Un incendio es un fenómeno que implica fuego fuera de control (afecta la integridad física de personas y puede generar daños materiales). El fuego es un proceso de combustión caracterizado por una reacción química de oxidación de combustible, que emite luz, calor y en general, llamas.

Hay modelos geométricos que grafican el fenómenos. El triángulo es un modelo incompleto. En cada vértice hay: combustible, comburente, temperatura. Sus tres elemenots presentes (falta uno, por ello "incompleto"). El combustible cede electrones. Puede se líquido (hay llamas), sólido o gaseoso (genera explosiones). En caso líquido es superficial, en los otros casos es de masa. El comburente es el receptorde esos electrones. Muchas veces es le oxígeno presente en el aire. Además, hace falta una determinada temperatura para que se produzca este fenómeno. Con este triángulo del fuego se ve cómo es el proceso y se puede eliminar uno de esos componentes para apagar el fue-

go. De todos modos, se ùede producir una reacción en cadena (reacciones químicas) en el frente de llamas \rightarrow "cuadrado de fuego".

La temperatura es la mínima a la que una sustancia debe ser calentada a fin de iniciar una combustión que se mantenga por sí misma, se definen (con ensayos) tres temperaturas:

■ Temperatura de Inflamación (Flash Point): Es la menor temperatura a la que hay que elevar un líquido combustible para que los vapores que despendan formen con el aire una mezcla que se inflame al acercársele una llama (la combustión no continua al retirar la llama).

- Temperatura de Ignición/Combustión: Si se continua calentando la mezcla por sobre el FP, se llegará a una temperatura a la cual los vapores continuaran ardiendo, aunque se haya retirado la llama o fuente de ignición.
- Temperatura de Autoignición o Autocombustión: Es la mínima temperatura a la cual debe elevarse una mezcla de vapores inflamables y aire, para que ésta se encienda espontáneamente, sin necesidad de una fuente de ignición externa.

Rango de inflamabilidad: El porcentaje de la relación combustiblecomburente tiene que estar dentro de los límites de inflamabilidad para que se produzca el fenómeno.

Clases de fuegos:

- Clase A: Fuego sonre combustible sólido.
- Clase B: Fuego sobre combutíbles líquidos y/o gases inflamables.
- Clase C: Fuego sobre instalaciones eléctricas y/o equipos conectados a energía eléctrica.
- Clase D: Fuego en metales, (polvo de aluminio, virutas de hierro, etc.)

Sirve esta clasificación para relacionar con agentes extintores.

Por ejemplo, cuando hay que extinguirlo en toda su masa, puede generar explosiones. Hay que inertizar. Para extinguir incendios clase B hay que sofocar. La arena NO es un agente extintor. La sofocación implica eliminar el vértice "comburente", poner una barrera entre el oxígeno del aire y el combustible.

Lo más apropiado son los agentes extintores espumígenos (espumas químicas o mecánicas).

Los fuego de clase C se caracterizan porque interviene la energía eléctrixa. Si se desenergiza, pasa a ser fuego A o B. El agente extintor no puede ser conductor de electricidad.

El extintor de incendio es el aparato (matafuegos portátil) que contiene adentro al agente extintor. Éste es una sustancia que puede variar dependiendo que clase de fuego extingue. Cuando el matafuegos tiene la letra A, es un extintor de agua presurizada. La letra C indica que es un agente extintor de anhídrido carbónico \Rightarrow no hay riego para el operador porque no hay riesgos de elctrocutación al aplicarlo en un sistema eléctrico. Si tiene las tres letras, el extintor es un polvo químico triclase.

11.1. Agentes Extintores

Sustancia que extingue el fuego.

■ Agua prezurizada: Es el agente extintor por excelencia. Apta para combustibles A (fuegos sobre combustibles sólidos). Actúa por enfiramiento de T°.

Los agentes extintores pueden estar en extintores portátiles (sirven para extinguir focos de incendio, es decir cuando está controlado) o en instalaciones fijas.

- Espumas: Pueden ser químicas o mecánicas. Sirven paa fuegos de clase B y en menor medida para clase A. Actúan por separación y enfriamiento. Ni las espumas ni el agua se puede usar en fuegos clase C.
- <u>Dióxido de Carbono:</u> Para fuegos B. Actúa por sofocación (elimina el comburente) y también produce enfriamiento. Se puede usar en fuegos C. El problema es que desplza el oxígeno, por lo que no se puede usar en espacios confinadps, salvo casos particulares donde haya alarmas para evacuar y luego inundar con CO_2 \rightarrow agente tóxico (sala de máquina de un barco).
- Polvos Químicos: Sirven para fuegos A, B y C. Son agentes sucios (pueden dañar elementos del lugar), es decir pueden deteriorar el elemento. Cortan la reacción en cadena.

- Agentes Halógenos: Sirven para fuegos A, B y C. Actúan cortando la reacción en cadena. Son agentes limpios y no es tóxico para el operador (se puede usar en espacios cerrados). No tienen bromo. Son hidrocarburos.
- <u>Halones:</u> (Agentes Halógenos \neq Halones). Son hidrocarburos. Extintores de incendio portátiles o en instalaciones fijas. Tienen bromo, que se combina con el oxígeo en la estratósfera y se forma menos O_3 , una disminuación en la concentración de ozono estratosférico.
 - En el protocolo de Montreal (1993) se eliminan los halones, Queda su uso restringido a situaciones críticas (salas de máquinas de buques de guerra por ejemplo).
- Gases Inertes: Nitrógeno, argón, mezclas. Se usan en instalaciones fijas y con inundación total en general.

11.2. Objetivos de la protección

- 1. Dificultadr la iniciación del incendio.
- 2. Evitar la propagación del fuego y los efectos de los gases tóxicos. Éstos producen desplazamiento del oxígeno que puede generar muerte por asfixia.
 - La propagación se evita haciendo sectorización con muros cortafuegos resistentes al fuego (por detreminado tiempo). Puede haber sectorización por altura.
- 3. Asegurar la evacuación de las personas \rightarrow primero la gente, luego los bienes. Hay que tener rutas de evacuación previamnete planeadas.
 - Importan los anchos de las puertas y las escaleras. La ruta de evacación debe mantenerse libre de humo, para lo cual debe haber doble puerta de acceso a la escalera, y presurizar la zona para que el humo no ingrese.
- 4. Facilitar el acceso y las tareas de extinción al personal de bomberos, por ejemplo, escaleras con ancho adeacudo.
- 5. Proveer instalaciones de detección y extinción. Que haya instalaciones fijas no exime de la obligatoriedad de extintores móviles (que se usan para focos de incendio). En establecimientos de más de 900 m^2 de superficie cubierta y más de dos pisos tiene que haber detectores de humo por ley.

Potencial extintor mínimo de los extintores: Tiene un número y una letra (1A, 2B, etc). Se obtiene por ensayos. Indica la capacidad extintora del conjunto "equipo + agente extintor". Importa el agnete pero también cómo se descarga, etc (cuestiones del aparato).

Carga de fuego:

1	2	3	4=2+3
Materiales	Peso	Peso Calorífico (inferior)	
Madera	60kg	4400 m kcal/kg	264000 kcal
Papel	300	500 kcal/kg	150000 kcal

$$Q_{fuego} = \frac{P_{madera}}{\text{sup. local}} \frac{kg}{m^2}$$

El riesgo de incendio se determina de acuerdo al tipo de material prdominante en el sector de incendio. Hay distintos tipos. Se mira en la tabla el tipo de riesgo y la carga de fuego. A partir de ahí se saca el potencial extintor mínimo para el caso. En el ejemplo, es de riesgo 3 (R3), por lo que el potencial extintor es el 2A. Es "A" porque es sólido.

Además, no puede hbaer más de 20 meros de distancia al exterior en clase A. En clase B se reduce a 15 metrs la distancia de cualquier punto local. Se intenta ubicar los matafuegos en la salidas.

El plan de evacuación es un texto que presenta cómo hay que actuar en caso de emergencia. Tienen que estar definidas las situaciones que ai; umenten una evacuación, los roles de los individuos en el proceso de evacuación (asignación de responsabilidades), el punto de reunión (el responsable tiene que verificar quienes están y quienes no y avisar).

12. Residuos

Se estudiarán residuos sólidos y semisólidos (barros).

Un residuo es el resto de operaciones y los procesos generados por acción humana. Se desechan por inútiles en ese contexto. No significa que no tengan valor económico (ej: tirar una botella de agua una vez que se terminó). Puede ser residuo en un caso y materia prima en otro. Se busca que sea mínimo el volúmen de basura a disposición final ("basura cero").

Se clasifican según **estado** como:

- Sólidos
- Semisólidos
- Líquidos
 Coscosos
 tienen que estar contenidos, sería efluente sino

Según el **orígen** puede ser:

- **Domiciliarios**: Es heterogéneo el residuo, perdomina la materia orgánica de naturalez biodegradable, plástico, papel, cartón.
- Industriales : Puede haber residuos asimilables a los domiciliarios, otros propios de la actividad industrial (depende del proceso) y otros que corresponden al mantenimiento y/o modificaciones.
- Construcción y Demolición : Son pesados e inertes (no reaccionan con el medio ⇒ no generan contaminación). Suelen habilitarse zonas bajas para su deposición.
- Hospitalarios: Residuos asimilables a los domicialiarios y también residuos patogénicos (todo lo contaminado con fluidos corporales). Hay que desinfectarlos: incineración o autoclave.
- Comerciales
- Institucionales

Los residuos sólids pueden ser peligrosos o especiales, o no peligrosos. La composiciónhace referencia a l porcentaje de componentes. Pueden ser orgánicos o inorgánicos. Importa la composición para determinar los planes de gestión. Hay que ver si se puede reinsertar algo del proceso.

El peso específico sirve para saber que volúmen de transporte se requiere desde el generador al tratador o a deposición final, además de cuánto va a ocupar en deposición final-

El porcentaje de humedad se requiere para saber tanto a la hora de incinerar (cuanto más alto sea,c uesta más) como si va a deposición final.

Hay una fórmula para calcularlo. Se genera un líquido llamado lixiviado (líquido que percola con DCO alto). La tasa de generación (tg) es el peso generado por habitante y por día. Es variable. Depende de la época del año, de la situación socioeconómica y de los hábitos de consumo. La recolección es domiciliaria. Se pasa todo lo que ingresa a los camiones y se suma por camiones y días. Al cabo de un año se saca el promedio. En una ciudad como CABA, tg = 1.5kg/habdia.

Para que no se contamine el material reciclable hay que hacer segregación en el origen (que los separe el generador).

La gestión Integral de Residuos Sólidos Urbanos (GIRSU) tiene etapas:

- 1. Generación: Segregación en orígen o no dependiendo de los planes de tratamiento de residuos que haya.
- 2. Recolección y Transporte: Domiciliaria

- 3. Estación de Transferencia: Puede haber o no, dependiendo del resultado de cálculos técnicoeconómicos. Cuando el predio de disposición final está lejos, el camión recolector tiene muchos tiempos muertos, no es eficiente. En ese caso se intala una estación de transferencia, para que el camión descargue. Puede haber separación allí (si no es recolección diferenciada). Si hay que mandar resiuos al relleno sanitario, se los compacta.
- 4. **Tratamientos:** Físico, tratamiento térmico (incineración), biológico (compostaje). Para residuos domiciliarios no se suele incinerar porque es caro. Si se aplica a los peligrosos, que tienen componentes orgánicos. Se hace sí un tratamiento de compostaje. Éste es un proceso de degradación bacteriana.

En materia orgánica biodegradable en presencia de aire. El compost es un producto para mejorar los suelos. Para comercializarlo tiene que haber un mercado y estar cerca. El proceso es bacteriano. Hay un proceso de degradación biológica de carácter aeróbico en las "parvas" que se generan. Durante 40 y 60 días. Puede haber caños que inyectan aire debajo de esas parvas. Hay tres tipos de compostaje. Hay que controlar el PH, la temperatura y la relación C/N. La temperatura indica cómo va el proceso y que microorganismos actúan. Los termofílicos haen la desinfección, entre 55°C y 60°C. Cuando se estabiliza la T° se dice que el compost está maduro (indicador de no que hay actividad biológica).

5. **Deposición Final:** Los residuos sólidos urbanos o asimilables a estos van a rellenos sanitarios, en tanto que los peligrosos y/o especiales van a rellenos de seguridad.

El relleno sanitario es una obra de ingeniería para la deposición final de residuos. Tiene que preservar el medio ambiente y la salud. Tiene etapas: diseño, contrucción, operación, cierre y controles post cierre.

El lixiviado se genera con los aportes de agua de lluvia, con el agua propia del residuo (aumenta a mayor humedad) y con el proceso biológio de degradación que genera agua. Hay que recolectarlo y tratarlo. La capa inferior del relleno tiene que estar impermeabilizada para evitar que el lixiviado percole y llegue a la tierra. Se coloca una geomembrana (depende de si el suelo es arcilloso), material plástico que se coloca en forma solapada y con doble costura. Sobre ésto se coloca una capa de tierra de portección mecánica. Sobre ésta se coloca una capa de tierra permeable. Se colocan tuberías transversales hacía un central de recolección.

Los residuos van sobre estas capas. El lixiviado va por los tubos hasta un tanque de achique y luego una pileta para su tratamiento. Además, el fondo de relleno y la napa freática (no debe usarse para agua de consumo porque suele estar contaminada, para agua se utiliza la $2^{\rm o}$ napa) tienen que estar a una distancia de $1,5{\rm m}$ aproximadamente.

Otro problema es que el relleno tiene un proceso de degradación anaeróbica. En la masa se genera una mezcla de gases (biogas) cuyo principal componente es el metano. Se forman "bolsones" de este gas explosivo. Hay que colocar chimeneas para al extracción del gas hacia el exterior. Se puede

Relleno Sanitario

quemar el metano para pasar de CH_4 a CO_2 (contribuye menos al efecto invernadero), o utilizarlo para generar energía.

Para estimar la superficie de terreno necesario para el relleno sanitario hay que estimar la cantidad de residuos a disponer.

vida útil: 20/30 años

(kg) peso total de residuos a disponer = $RS_{anual} \times vida$ útil

$$V_{TR} = V_{total}$$
 de residuos a disponer $(m^3) = \frac{P_{total(kg)}}{\gamma(kg/m^3)}$ γ : densidad de residuo compactado

 V_{TR} no tiene en cuenta las chimeneas, etc. por lo que se agrega un 20 % de volúmen

$$\Rightarrow V_{TOTAL} = V_{TR} + 20\%V_{TR}$$

La altura del relleno está limitada por el tipo de terreno y por la napa freática:

sup. relleno =
$$\frac{V_T}{h_{relleno}}$$

A la superficie de relleno hay que sumarle caminos, talleres, etc (es $25\,\%$ o $30\,\%$ más)

$$S_T = S_R + 25 \% S_R$$
 (o 30 %)

Para la localización del relleno sanitario hay que tener en cuenta:

- Distancia de transporte
- Restricciones: relacionadas con la distancia a los pozos de extracción de agua subterránea
- Condiciones del suelo y topografía: Si hay depresiones, se aprovechan.
- Hirología de aguas superficiales
- Condiciones geológicas e hidrogeológicas
- Costos del terreno: Si está cerca de zonas reseidenciales va a disminuir el precio de los terrenos.

En teoría en la provincia de Buenos Aires se piden 80mts de perímetro de distancia al relleno, luego árboles y luego alambre olímpico.

La EPA aconsjea cerrar el relleno con una capa permeable y por encima el relleno con una tierra de 15cm.

12.1. Residuos peligrosos e industriales

En estos residuos tienen resposabilidad los generadores, sean personas físicas o jurídicas. La responsabilidad es compartida con el transportista, el tratador y la deposicón final.

Hay una ley de residuos peligrosos (N° 24051) que implica reglamentar el tema a nivel nacional. En la provincia de Buenos Aires hay otra ley, N° 11720, de residuos especiales. Se aplica çesta cuando el proceso es dentro de la provincia.

La ley establece la responsabilidad civil de los residuos.

En el 2002 se establecuó una nueva ley (Nº 25612) que habla de responsabilidad penal. No está reglamentada.

Un residuo peligroso o especial es quel que puede causar daño directa o indirectamente sobre un individuo. Excluye los residuos domiciliarios (forman los RSU), los radioactivos y los derivados de las operaciones normales de los barcos. Estos tienen normativas especiales internacionales.

En la ley 24051 aparece la clasificación de los residuos (sale del convenio de Basilea). El generador tiene que: estar inscripto en un registro, adoptar medidas para disminuir la cantidad de residuos generados, no mezclar los residuos, identificarlos, intentar que los tratamientos se hagan in situ y si no llevarlo a una planta de tratamiento con un tranposrtista autorizado. El transportista tiene que estar inscripto en el "manifiesto de carga" se fija qué se transporta (tipo de residuo), en qué catidad y a dónde. Se incluye e plan de contingencia. Luego tiene que entregar al generador un certificado de disposición final o destrucción.

Los tratamientos pueden ser:

- <u>Estabilización o Inertización</u>: Tratamiento por el cual se inmovilizan contaminantes formando un producto sólido estable. Convierte a los residuos en menos solubles. Con cemento *portland* en un relleno de seguridad que contiene al residuo.
- <u>Incineración</u>: Para lo orgánico: Se trabaja cpm exceso de aire. Los patogénicos también se tratan de este modo (salvo en CABA, donde está prohibido). Se aplica también a reiduos domiciliarios.
- Landfarming: Tratamiento de residuos industriales orgánicos. Se usa también para residuos no peligrosos.
- Relleno de Seguridad: Para deposición final.

El **relleno de seguridad** es similar al relleno sanitario pero tien un doble sistema: la celda se impermeabiliza con la geomembrana y con arcilla. Luego hay tuberías de recolección (por ejemplo recolectan el agua de lluvia que cae). Luego otra capa por encima tmabién impermeable y neuvas.

El ensayo de lixiviado está establecido en una norma. Sirve para determinar si hay metales pesados en el reiduo.

PAra brindar asesoramiento para poner un relleno sanitario se necesitan ciertos datos. El suelo arcilloso es conveniente para esto. Se requiere el número de habitantes, la tasa de crecimiento, la tasa de generación.

Esto permite saber los kg por día que se van a disponer. Se requiere el peso específico también (según el tipo de residuo, grado de compactación, etc.), para estimar el volúmen. Con esto y la vida útil se calcula la superficie necesaria.

La incineración sirve para residuos domésticos y peligrosos. Para los residuos domiciliarios en Argentina no se usa por costos, las cenizas van a un relleno de seguridad si el residuo era peligroso, y a uno sanitario si son domiciliarios. Disminuye el volúmen delr esiduo.

El compost se hace con residuos orgánicos. No se usa para residuos peligrosos. Los otros son landfarming, vertido en relleno de seguirdad e inertización.

Ley de presupuesto mínimos – Ley 25612:

Los objetivos de la ley son los siguientes:

- a) Garantizar la preservación ambiental, la protección de los recursos naturales, la calidad de vida de la población, la conservación de la biodiversidad, y el equilibrio de los ecosistemas;
- b) Minimizar los riesgos potenciales de los residuos en todas las etapas de la gestión integral;
- c) Reducir la cantidad de los residuos que se generan;
- d) Promover la utilización y transferencia de tecnologías limpias y adecuadas para la preservación ambiental y el desarrollo sustentable;
- e) Promover la cesación de los vertidos riesgosos para el ambiente.

RESIDUO INDUSTRIAL Ley presupuestos mínimos - Ley 25612

Se entiende por residuo industrial a cualquier elemento, sustancia u objeto en estado sólido, semisólido, líquido o gaseoso, obtenido como resultado de un proceso industrial, por la realización de una actividad de servicio, o por estar relacionado directa o indirectamente con la actividad, incluyendo eventuales emergencias o accidentes, del cual su poseedor productor o generador no pueda utilizarlo, se desprenda o tenga la obligación legal de hacerlo.

13. Gestión Ambiental y Salud y Seguridad

En la gestión de salud y seguridad hay varios actores:

- Empresa
- ART
- Trabajador
- SRT: Es la autoridad que se encarga de emitir resoluciones que se aplican en <u>todo</u> el país. Supervisa las actividades de la ART, reglamenta, inspecciona y supervisa lo que hacen las empresas.

Las ART se encargan de la parte médica, de la prevención y de la administración. El área de prevención es la que controla a las empresas. El cumplimiento de los requisitos de la reducción es un requerimiento legal. El empleador siempre denuncia los accidentes a la ART, por lo que ésta tiene toda la información. Estos datos pasan por la SRT y se elaboran los índices (índice de incidencia: por empresa o por sector de actividad, con los datos del año enterior). Las empresas que superan en un 10 % el ínidice de incidencia del sector entran en los planes de reducción de siniestralidad.

Hay riesgos potenciales y riesgos causales. Los causales dieron origen a accidentes, en tanto que los potenciales están latentes aunque no hayan generado accidentes aún. Hay que analizar los ucesos y sus riesgos sobre las personas y/o cosas materiales.

En los planes de reducción de siniestrabilidad se hace la verificación de las condiciones de higiene y seguridad en el trabajo. hay unos 160 items que se pueden cumplir, incumplir o no aplicar en el trabajo. Todos los "no" se toman como riesgos potenciales siempre que no hayan generado accidentes en el período anterior. Los planes de gestión buscan reducir estos riesgos potenciales de accidentes y/o enfermedades proesionales. Hay que hacer una tabla (tiene que figuarar la medida a implementar y en que tiempo) para riesgos potenciales y otra análoga para los riesgos causales. Hay que hacer un seguimiento.

La ART informa a la SRT. Ésta audita el seguimiento. Audita que la aseguradora cumpla con el cronograma de seguimiento. Si la ART no cumple con el seguimiento previsto tiene multas. El cronograma involucra entre 1 y 2 años dependiendo de la empresa. El objetivo es reducir la siniestrabilidad de la empresa y adecuarla a la normativa. Se toma el índice de incidencia como parámetro para ello; Estos planes se ponen en práctica en las empresas cuyo índice es mayor en un 10 % a la media del sector.

Además, las empresas tienen obligaciones legales: tienen que tener servicios de higiene y seguriad y srvicios de medicina laboral. Dependiendo de los riesgos y de la cantidad de trabajadores, los servicios pueden ser externos o internos. La resolución 105/2015 buscó integrar ambos servicios, que trabajen en forma conjunta. Tienen que asesorar ala empleador en las políticas de higiene y seguridad.

La ART tiene que realizar los exámenes médicos periódicos a los trabajadores que tienen algún riesgo. Son exámenes preventivos y específicos (ej: audiometría a quien está espuesto a ruido). El control y la verificación lo realizan los servicios. Existen las normas OHSAS.

En cuanto a la gestión ambiental se tienen como sectores:

- Medio
- Empresa
- Autoridad de aplicación
- Público en general: Consumidores el producto que genera la empresa.

A diferencua de la gestiónd e salud y seguridad, en la que lo establecido por la SRT se aplica a todas las empresas, en este caso la autoridad de aplicación depende de dónde está remplazado el establecimiento, por que puede variar de una jurisdicción a otra.

En la proviencia de Buenos Aires está el Organismo Provincial para el Desarrollo Sostenible (OPDS). Las empresas tienen que obtener un certificado de aptitud ambiental. Para ello, primero se categoriza a la empresa según su nivel de complejidad ambiental, que es un valor numérico. Para determinarlo se tiene en cuenta el rubro de actividad, los efluentes y residuos, el risgo del establecimiento, la localización y dimensionamiento (cantidad de personal, potencia, etc.).

Con todo esto se obtiene el valor numérico que tdetermina si la empresa es de categoría 1, 2 ó 3. Los de 1º categoría presentan el formulario de aplicación; los de 2º y 3º categoría tienen que presentar un estudio de impacto ambiental. Las de 2º categoría lo presentan en el municipio correspondiente. Los de 3º categoría en el OPDS. Tiene que ser aprobado por al autoridad.

Un estado de impacto ambiental es un estudio de carácter interdisciplianario que busca predecir, identificar, valorar y corregir las consecuencias o efectos ambientales que ciertas acciones generan sobre la calidad de vida del hombre y su entorno. Esos impactos puedens er positivos o negativos. En genral los negativos (hay que incluir el cronograma de mejoras) son en el entorno físico o natural. Los positivos en el medio social o socioeconómico. Hay que rpesentar este estudio jiunto con un manual de gestión ambiental, una vez que esto es aprobado por la autoridad de aplicación, se le da a la empresa el certificado deaptitud ambiental, que tiene una duración de 5 años. La OPDS hace controles periódicos para verificar su cumplimiento.

La serie ISO14000 fija normas para la gestión ambiental de la empresa. Son normas voluntarias, se cumplen por exigencia comercial en general. El certificado lo otorgan organismos constituidos a tal fin (en Argentina es la IRAM). Las ISO son normas internacionales, Para hacerlas se forma un comité que presiden los organismos de un país que impulse la cuestió, y/o ya tenga normativaal respecto. Los comités de cada país miembro tienen que aprobar el borrador o modificarlo. Sacar una norma lleva 2 años aproximadamente. Hay un organismo de certificación que verifica que la empresa cumpla con los requisitos de la normamediante auditorías.

En función de la política ambiental en base a esto. Hay auditorías internas que permiten hacer una revisión general. Esto busca que haya mejoras continuamente. Esto es el modelo de gestión ambiental basado en la norma 14001 de ISO.

La política ambiental tiene que ser pública. Tiene que haber una declaración de compromiso con la mejora continua y la dismunución de la contaminación.

Hay que tener en cuenta el aspecto ambiental (causa) y el impacto ambiental (efecto). Los recursos sin humanos, tecnológicos y económicos.

En cuanto a al salud y seguridad ocuupacional, no hay una normativa ISO al respeto. Hay normas OHSAS 18000 que la ISO toma como base para elaborar su normativa.

El paralelismo hace que se involucren los tres aspectos: gestión ambiental, salud y seguridad, calidad.

La gestión tiene que tener un aspecto legal de cumplimiento obligatorio. La autoridad de aplicación controla esto. También hay normas de gestión voluntarias que son útiles para demostrar que la empresa tiene un sistema de gestión ambiental eficiente. La certificadora se selecciona según rama de actividad

14. Agentes de Riesgo Físico

Los agentes de ruido físico son exposición a ruido y radiaciones (que pueden ser ionizantes o no ionizantes). Ambos agentes de riesgo se contemplan en la resolución 295/03.

El ruido es un contaminante a nivel ambiental también. Se estudiará lo que corresponde al ámbito laboral puntualmente. El ruido es un sonido indeseable o molesto, falta de armonía en un sonido. El sonido es una onda transmitida por el aire, que impacata en la membrana del tímpano (que forma parte del tracto auditivo). Se transmite de modo mecánico a través del martillo, yunque y estribo. Luego pasa al oído interno, donde hay células que captan las distintas frecuencias, son selectivas. Esto se transmite al cerebro, donde se procesa la información.

El oído humano capta sonidos en un rango amplio de frecuencias. La curva de umbral auditivo muestra el nivel de presión sonora en función de la frecuencia. Fue una experiencia de laboratorio: se expuso a grupos de personas a sonidos (una sola frecuencia), de forma individual. Se determina para cada frecuencia el nivel mínimo tal que el sonido es percibido por las personas (de modo estadístico).

El ruido es uno de los agentes que aparecen con mayor frecuencia en ambientes laborales. Los niveles de presión sonora pueden ser muy elevados.

Este parámetro se expresa en dB. Al estar exúesto a niveles de presión elevados, se desplaza el umbral auditivo, no de modo

proporcional sino que es mayor el desplazamiento a las frecuencias un poco mayores a las del ruido (a la

frecuencia predominante). El ruido se mide con un decibelímetro en "bandas de octavas". La frecuencia central va cambiando y se obtiene el espectro de ese ruido (tomando la frecuencia duplicada de la anterior).

El oído humano está mejor preparado para los sonidos graves (bajas frecuencias), donde el NPS es más bajo. A altas frecuencias (sonidos agudos) aumenta el nivel de presión sonora. El oído humano capta entre 20Hz y 20000Hz.

El aumento del umbral es un desplazamiento transitorio. Luego de determinadas horas (12/10hs) se vuelve al nivel original. Este desplazamiento ocurre entonces durante la exposición.

Las audiometrías muchas veces se hacen sacando al trabajador del lugar de trabajo, y dan resultados malos por este tiempo de transición.

Cuando el individuo está todo el tiempo expuesto a este ruido, el desplazamiento transitorio pasa a ser permanente y deviene en hipoacusia o sordera profesional. Las células de la cóclea del aparato auditivo se empiezan a dañar y el individuo no distingue qué le dicen al hablar (sí es que le hablan). Se llama "trauma acústico" cuando es un evento que lo genera (ej: explosión). Además, genera efectos fisiológicos no relacionados con la audición, interferencia en la comunicación hablada y cuestiones psicológi-

cas

El desplazamiento permanente tiene un umbral como el temporario. El ruido puede ser permanente o temporario.

En ambiente laboral se emplea la "escala A" para medir el ruido. Hace correcciones a la escala lineal, dependiendo de la frecuencia. Suma dBo resta dB al valor obtenido. A bajas frecuencias resta y suma a altas. Es lo que mejor representa la respuesta del oído frebte al ruido.

Se puede medir en escala lineal o en escala A. El resultado hay que expresarlo en escala A proque los límites están dados en esa escala.

Los límites están tabulados y depende del tiempo de exposición. Son valores diarios, indica la suma máxima diaria de exposición. Cuando la exposición no es siempre igual, hay que medir los NPS de cada una, por ejemplo:

En cada sector el orpeario está expuesto un determinado tiempo. Hay que utilizar:

$$\sum_{i} \frac{C_i}{t_i} \le 1$$

donde los C_i son los tiempos en los que el individuo está expuesto en esa situación (tiempo real de exposición) y los t_i son los tiempos a lso que legalmente podría estar expuesto. En el ejemplo:

$$\underbrace{\frac{2 \text{ hs}}{24 \text{ hs}}}_{\text{sector 1}} + \underbrace{\frac{4 \text{ hs}}{8 \text{ hs}}}_{\text{sector 2}} + \underbrace{\frac{2 \text{ hs}}{2 \text{ hs}}}_{\text{sector 3}} > 1 \qquad \Rightarrow \text{Hay exposición y no se cumple con el límite legal}$$

Si el ruido es continuo en un sector, es decir que no hay variaciones, hay que realizar mediciones de ruido en el secotr colocando el instrumental cerca del oído del trabajador y se compara con el límite admisible.

Si hay variaciones de rido en el sector (ej: algo intermitente) o el operario trabaja en varios sectores, hay que hacer mediciones y verificar que la expresión previa sea menor a 1 para que haya cumplimiento.

Correcciones

- \bullet Si el NPS > 80 dBA hay que hacer audiometrías periódicas a los trabajadores a modo preventivo, para detectar dificultades.
- Controles de ingeniería: Se puede aislar la fuente (cuando sea posible, con materiales que absorban el sonido) o bien (cuando el proceso está automatizado), mantenimiento preventivo y correctivo que ayuda a prevenir y disminuir los niveles.
 - Controles administrativos: Rotación de personal por caso.
 - Uso de protectores auditivos.

Los protectores auditivos reducen el sonido que llega a la membrana del timpano. El material atenúa o filtra por frecuencia. En general filtran entre 1000Hz y 2000Hz, y no los sonidos del rango de la palabra. Pueden ser externos "de copa" o de inserción. Los externos pueden generar presiòn como desventaja. Los de inserción puedens er descartables, son más cómodos pero pueden generar infecciones. Los protectores tienen s propia curva de atenuación, dada en dB.

Ejemplo:	sector	Α

Frecuencia (Hz)	NPS (dB)	$A_T (dB)$	$NPS-A_T (dB)$	esc. A	NPS - A_T (dbA)
63	84	0	84	-26	58
125	87	6.9	80.1	-16	64.1
250	90	14.7	75.3	-9	66.3
500	92	22.2	69.8	-3	66.8
1000	94	26.8	68.2	0	67.2
2000	93	28.5	64.5	1	65.5
4000	90	26.8	63.2	1	64.2
8000	93	0	63.7	-1	62.4

Frecuencia (Hz)	125	250	500	1000	2000	4000
Atenuación media (A_{prom})	8.9	18.3	25	30.1	32.1	30.2
Desvío estandar (Ss)	2	3.6	2.8	3.3	3.6	3.4
Atenuación real (A_T)	6.9	14.7	22.2	26.8	28. 5	26.8

La atenuación total va a estar data por $A_T = A_{prim} - Ss$. Esto se da en dB. En la primera tabla se resta entonces la atenuación del protector, para obtener el valor del ruido que obtiene el NPS que llega a la membrana auditiva. Estos valores hay que transformarlos a escala A.

El nivelde presión sonora total está dado por:

$$NPS = 10log \sum 10^{0,1~NPS_i}$$

El cálculo para el ejemplo da 725dB con protección auditiva y 99dBA sin protección. Influye el NPS y la frecuencia en el efecto.

Las radiaciones se dividen en ionizantes y no ionizantes. Tanto en el ruido como en las radiaciones ionizantes están bien definidas las causas y efectos, en tanto que faltan estudios respecto a las no ionizantes.

Las radiaciones ionizantes (rayos x, rayos gamma) tienen energía para modificar la estructura celular (RI). Las no ionizantes (rayos laser, ondas EM) son las que no tienen esta capacidad (RNI).

Los daños que produce la radiación ionizante pueden ser estocásticos o no estocásticos. Hay efectos en el individuo irradiado y también en las células germinales, es decir que se transmite a la descendencia. Cualquier dosis puede generar un efecto estocástico; en cambio para los efectos determiniísticos sí hay dosis umbral.

Todos los individuos absorben radiación natural. La luz solar es fuente natral de radiación UV, y hay fuentes artificiales también.

Los rayos láser tienen distintas catergorías, de 1 a 4. Suele afectar la vista.

Las radiofreceuncias y microondas generan un aumneto de temperatura de los sistemas biológicos. No se tiene información detallada del efecto que esto produce en el individuo.

15. Residuos de aparatos eléctricos y electrónicos

Tienen componentes no peligrosos y otros que sí lo son. Hubo un gran crecimiento de estos RAEE en el último tiempo. Se busca reutilizar lo máximo posible. Hay distintas categorías de RAEE.

La denominación RAEE incluye a todos los paratos eléctricos y electrónicos que se acercan al final de su "vida útilz pasan a ser residuos, considerando todos aquellos componentes y subconjuntos que forman parte del producto en el momento que se desecha. Muchos de estos productos se puede reutilizar, restaurar o reciclar.

- La línea blanca: electrodomésticos relacionados con el frío, el lavado, la cocción y el confort.
- La línea marrón: comprende a los aparatos de consumo: televisión, radio, videos
- La línea gris: abarca a todos los equipos de informática y comunicación: computadoras, teléfonos, celulares, monitores, etc.

Los RAEE pueden contener en mayor cantidad son: Plomo, Estaño, Cobre, Silicio, Carbono, Hierro y Aluminio.

16. Trastornos musculoesqueléticos (TME)

Tiene que ver con posiciones forzadas y gestos repetitivos on miembros superiores o ineriores, así como cualquier otro transtorno en articulaciones y otros tejidos.

En enero del 2014 se reconocieron a las hernias (por peso), a las várices (trabajo sedentario) y a las lumbalgias (problema en la región lumbosacra, relacionada también con levantamientos, arrastre y transporte de carga) como TME. Luego de este derecho la Superintendencia sacó el "protocolo de ergonomía" (resolución 886/15). Determina que todo empleador tiene que presentar un protocolo que determina si en el ambiente laboral hay agantes de riesgo ergonómicos. Busca detectar patologías que pueden aparecer con el tiempo.