COMP6247: Reinforcement and Online Learning

Mahesan Niranjan

School of Electronics and Computer Science University of Southampton

Markov Decision Processes, Dynamic Programming

Chapters 3 and 4, Sutton and Barto

Spring Semester 2020/21

Mahesan Niranjan (UoS)

COMP6247 MDP/DP

Spring Semester 2020/21

1/20

Foundations

- S_0 , A_0 , R_1 , S_1 , A_1 , R_2 , S_2 , A_2 , R_3 ...
- Dynamics of the Markov Decision Process $p(s', r | s, a) = Pr(S_t = s', R_t = r | S_{t-1} = s, A_{t-1} = a)$
- p is a function of four spaces: $S \times R \times A \times S$, mapping to [0, 1]
- $\sum_{s' \in \mathcal{S}} \sum_{r \in \mathcal{R}} p(s', r | s, a) = 1 \ \forall s \in \mathcal{S}, a \in \mathcal{A}(s)$

(Eqn 3.3 in S & B)

- This being a joint probability, we can extract other probabilities:
 - State transition: $p(s'|s,a) = \sum_{r \in \mathcal{R}} p(s',r|s,a)$
 - Expected Reward: $r(s, a) = \sum_{r \in \mathcal{R}} r \sum_{s' \in \mathcal{S}} p(s', r | s, a)$
 - Expected reward for state action next state $p(r, a, s') = \sum_{r \in \mathcal{R}} \frac{p(s', r|s, a)}{p(s'|s, a)}$

Example: Recycling Robot

Page 52, Sutton and Barto

s	a	s'	p(s' s,a)	r(s, a, s')
high	search	high	α	rsearch
high	search	low	$1-\alpha$	rsearch
low	search	high	$1-\beta$	-3
low	search	low	β	$r_{\mathtt{search}}$
high	wait	high	1	rwait
high	wait	low	0	-
low	wait	high	0	-
low	wait	low	1	$r_{\mathtt{wait}}$
low	recharge	high	1	0
low	recharge	low	0	-

- Robot collects garbage cans
- Finite battery life, needs to recharge
- Search to collect or wait for can
- Reward when can collected

Mahesan Niranjan (UoS)

COMP6247 MDP/DP

Spring Semester 2020/21

3/20

Example: Recycling Robot

State Transition Diagram

Example: Recycling Robot

States, Actions and Rewards

s	\boldsymbol{a}	s'	p(s' s,a)	r(s, a, s')
high	search	high	α	$r_{\mathtt{search}}$
high	search	low	$1-\alpha$	$r_{ m search}$
low	search	high	$1-\beta$	-3
low	search	low	β	$r_{\mathtt{search}}$
high	wait	high	1	rwait
high	wait	low	0	-
low	wait	high	0	-
low	wait	low	1	$r_{\mathtt{wait}}$
low	recharge	high	1	0
low	recharge	low	0	-

Homework: Read Example 3.3 in detail.

Mahesan Niranjan (UoS)

COMP6247 MDP/DP

Spring Semester 2020/21

5/20

Returns and Episodes

Of interest: expected return (not immediate reward)

$$G_t = R_{t+1} + R_{t+2} + ... + R_T$$

- Assumed episodes: start to finish subsequences
- Each episode ends in terminal state
- Continuous tasks

$$G_t = R_{t+1} + \gamma R_{t+2}, + \gamma^2 R_{t+3}, + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

- Discounting: $0 \le \gamma \le 1$
- Recursive Structure:

$$G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+4} + \dots$$

$$= R_{t+1} + \gamma \left(R_{t+2} + \gamma^{R}_{t+3} + \gamma^{2} R_{t+4} + \dots \right)$$

$$= R_{t+1} + \gamma G_{t+1} \qquad \text{Eqn.3.9, S\&B}$$

Value Functions

• Value function of a state $(v_{\pi}(s))$, under a policy π :

$$egin{array}{lcl} v_{\pi}(s) &=& E_{\pi} \left[G_{t} | S_{t} = s
ight] \ &=& E_{\pi} \left[\sum_{k=1}^{\infty} \gamma^{k} \, R_{t+k+1} \, | \, S_{t} = s
ight] \end{array}$$

- Note: total, expected
- If you start from this state (s at time t) and execute policy π, what is your expected total reward?
- Similarly, value of action (at a state):

$$q_{\pi}(s, a) = E_{\pi} [G_t | S_t = s, A_t = a]$$

$$= E_{\pi} \left[\sum_{k=1}^{\infty} \gamma^k R_{t+k+1} | S_t = s, A_t = a \right]$$

Mahesan Niranjan (UoS)

COMP6247 MDP/DP

Spring Semester 2020/21

7/20

Recursive Structure and Bellman Equations

$$v(s) = E_{\pi} [G_{t}|S_{t} = s]$$

$$= E_{\pi} [R_{t+1} + \gamma G_{t+1}|S_{t} = s]$$

$$= \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s', r|s, a) [r + \gamma E_{\pi} [G_{t+1}|S_{t+1} = s']]$$

$$= \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s', r|s, a) [r + \gamma v_{\pi}(s')] \quad \forall s$$

- v(s) written in terms of expectation over all actions and v(s'), the values of resulting states.
- Simultaneous equations with v(s) as unknowns.

Gridworld Example

3.3	8.8	4.4	5.3	1.5
1.5	3.0	2.3	1.9	0.5
0.1	0.7	0.7	0.4	-0.4
-1.0	-0.4	-0.4	-0.6	-1.2
-1.9	-1.3	-1.2	-1.4	-2.0

- Rewards: -1 for going off grid; +10, +5 at A and B; 0 for all others
- Homework: Exercise 3.15, Page 61, S & B: "Adding a constant to all rewards does not change the relative values of states".

Mahesan Niranjan (UoS)

COMP6247 MDP/DP

Spring Semester 2020/21

9/20

Optimal Policies and Value Functions

- $v_*(s) = \max_{\pi} v_{\pi}(s)$
- Which policy gives us largest value at every state?
- Similarly: $q_*(s, a) = \max_{\pi} q_{\pi}(s, a)$
- $q_*(s, a) = E[R_{t+1} + \gamma v_*(S_{t+1}) | S_t = s, A_t = a]$

Bellman Equations for Optimal Value Functions

For optimal state values

$$egin{array}{lll} v_*(s) &=& \max_{a \in \mathcal{A}(s)} q_{\pi_*}(s,a) \ &=& \max_{a} E_{\pi_*} \left[G_t \, | \, S_t = s, \, A_t = a
ight] \ &=& \max_{a} E_{\pi_*} \left[R_{t+1} \, + \, \gamma G_{t+1} \, | \, S_t = s, \, A_t = a
ight] \ &=& \max_{a} E \left[R_{t+1} \, + \, \gamma \, v_*(S_{t+1}) \, | \, S_t = s, \, A_t = a
ight] \ &=& \max_{a} \sum_{s',r} p(s',r|s,a) \left[r \, + \, \gamma \, v_*(s')
ight] \end{array}$$

Similarly for optimal action values

$$q_{*}(s, a) = E \left[R_{t+1} + \gamma \max_{a'} q_{*}(S_{t+1}, a') \mid S_{t} = s, A_{t} = a \right]$$

$$= \sum_{s', r} p(s', r \mid s, a) \left[r + \gamma \max_{a'} q_{*}(s', a') \right]$$

Mahesan Niranjan (UoS)

COMP6247 MDP/DP

Spring Semester 2020/21

11/20

Gridworld Example

Gridworld

$$v_*$$

 π_*

Recycling Robot: Bellman Equations

Example 3.9, S & B

$$\begin{array}{ll} v_*(\mathbf{h}) & = & \max \left\{ \begin{array}{l} p(\mathbf{h} | \mathbf{h}, \mathbf{s}) [r(\mathbf{h}, \mathbf{s}, \mathbf{h}) + \gamma v_*(\mathbf{h})] + p(\mathbf{1} | \mathbf{h}, \mathbf{s}) [r(\mathbf{h}, \mathbf{s}, \mathbf{1}) + \gamma v_*(\mathbf{1})], \\ p(\mathbf{h} | \mathbf{h}, \mathbf{w}) [r(\mathbf{h}, \mathbf{w}, \mathbf{h}) + \gamma v_*(\mathbf{h})] + p(\mathbf{1} | \mathbf{h}, \mathbf{w}) [r(\mathbf{h}, \mathbf{w}, \mathbf{1}) + \gamma v_*(\mathbf{1})] \end{array} \right\} \\ & = & \max \left\{ \begin{array}{l} \alpha [r_{\mathtt{s}} + \gamma v_*(\mathbf{h})] + (1 - \alpha) [r_{\mathtt{s}} + \gamma v_*(\mathbf{1})], \\ 1 [r_{\mathtt{w}} + \gamma v_*(\mathbf{h})] + 0 [r_{\mathtt{w}} + \gamma v_*(\mathbf{1})] \end{array} \right\} \\ & = & \max \left\{ \begin{array}{l} r_{\mathtt{s}} + \gamma [\alpha v_*(\mathbf{h}) + (1 - \alpha) v_*(\mathbf{1})], \\ r_{\mathtt{w}} + \gamma v_*(\mathbf{h}) \end{array} \right\}. \end{array}$$

$$v_*(\mathbf{1}) = \max \left\{ \begin{array}{l} \beta r_{\mathrm{s}} - 3(1-\beta) + \gamma[(1-\beta)v_*(\mathbf{h}) + \beta v_*(\mathbf{1})], \\ r_{\mathrm{w}} + \gamma v_*(\mathbf{1}), \\ \gamma v_*(\mathbf{h}) \end{array} \right\}.$$

$$v_*(s) = \max_{a} \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_*(s')\right]$$

Mahesan Niranjan (UoS)

COMP6247 MDP/DP

Spring Semester 2020/21

13/20

Dynamic Programming

- Family of algorithms
- Policy Evaluation State value function v(s) for given policy π
- Bellman equations:

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} \rho(s',r|s,a) [r + \gamma v_{\pi}(s')]$$

Turn the above into an iterative assignment iterative policy evaluation:

$$v_{k+1}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_k(s')\right]$$

- Variations in implementing updates
 - expected updates (after seeing all future states)
 - sweeps (in place) overwrite at every state visited

Iterative Policy Evaluation Algorithm

S & B, Page 75

• Evaluating a policy \longrightarrow What is v(s) under this policy?

Iterative Policy Evaluation, for estimating $V \approx v_{\pi}$

Input π , the policy to be evaluated

Algorithm parameter: a small threshold $\theta > 0$ determining accuracy of estimation Initialize V(s), for all $s \in S^+$, arbitrarily except that V(terminal) = 0

Loop:

$$\begin{array}{l} \Delta \leftarrow 0 \\ \text{Loop for each } s \in \mathbb{S} \colon \\ v \leftarrow V(s) \\ V(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \big[r + \gamma V(s') \big] \\ \Delta \leftarrow \max(\Delta,|v-V(s)|) \\ \text{until } \Delta < \theta \end{array}$$

Mahesan Niranjan (UoS)

COMP6247 MDP/DP

Spring Semester 2020/21

15/20

Gridworld Example

S & B, Page 76

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

$$R_t = -1$$
 on all transitions

- p(6, -1|5, right) = 1, p(7, -1|7, right) = 1, p(10, r|5, right) = 0
- Undiscounted episodic tasks, terminal states at (shaded) corners.
- Iterate to improve policy

Gridworld Example

Mahesan Niranjan (UoS)

COMP6247 MDP/DP

Spring Semester 2020/21

17/20

Policy Iteration Algorithm

Page 80, S & B

Evaluate, improve...

$$\pi_0 \rightarrow V_{\pi_0} \rightarrow \pi_1 \rightarrow V_{\pi_1} \rightarrow ...\pi_* \rightarrow V_*$$

1. Initialization

 $V(s) \in \mathbb{R}$ and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in S$

2. Policy Evaluation

Repeat

$$\Delta \leftarrow 0$$

For each $s \in S$:

$$v \leftarrow V(s)$$

$$V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s)) [r + \gamma V(s')]$$

 $\Delta \leftarrow \max(\Delta, |v - V(s)|)$

until $\Delta < \theta$ (a small positive number)

3. Policy Improvement

policy- $stable \leftarrow true$

For each $s \in S$:

$$a \leftarrow \pi(s)$$

$$\pi(s) \leftarrow \arg\max_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

If $a \neq \pi(s)$, then policy-stable \leftarrow false

If policy-stable, then stop and return V and π ; else go to 2

Mahesan Niranjan (UoS)

COMP6247 MDP/DP

Spring Semester 2020/21

Value Iteration Algorithm

Page 83, S & B

$$v_{k+1}(s) = \max_{a} E[R_{t+1} + \gamma v_{k}(S_{t+1}) | S_{t} = s, A_{t} = a]$$

$$= \max_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma v_{k}(s')]$$

```
Initialize array V arbitrarily (e.g., V(s) = 0 for all s \in S^+)

Repeat
\Delta \leftarrow 0
For each s \in S:
v \leftarrow V(s)
V(s) \leftarrow \max_a \sum_{s',r} p(s',r|s,a) \left[r + \gamma V(s')\right]
\Delta \leftarrow \max(\Delta, |v - V(s)|)
until \Delta < \theta (a small positive number)

Output a deterministic policy, \pi, such that
```

Mahesan Niranjan (UoS)

COMP6247 MDP/DP

Spring Semester 2020/21

19/20

Summary

- Markov Decision Processes (MDP) in which we have knowledge of the environment
- Task is to evaluate a given policy and to find an optimal policy
- Solved by dynamic programming
- Next: What if the environment is not known?

Mahesan Niranjan (UoS)