8100 Problem Set 2.

September 9, 2021

- 1. Cars have any real number $[0,\infty)$ of horsepower and any integer number of cup holders $\{0,1,\ldots\}$.
- a) Suppose \succsim is such that a car is preferred to another if it has strictly more cup holders or the same cup holders but more horsepower. Find a utility function that represents these preferences.
- b) Show that \succsim (x) and \precsim (x) are closed for these preferences.
- c) Show that one of these sets is not closed if the preferences are such that horsepower is the priority, rather than than cup holders.
- 2. X is a finite set. Suppose a computer program constructs a relation \succ as follows: For every combination $(x, x') \in X \times X$ with $(x \neq x')$, the pair (x, x') is included in the set \succ with 50% chance.
- a) When #(X) = n, what is the probability that \succ is asymmetric?
- b) When #(X) = n, what is the probability that \succ is asymmetric, and complete?
- c¹) When #(X) = n, what is the probability that \succ is asymmetric, complete, and transitive?
- 3. Prove that if U(x) represents preference relation \succeq , and V(y) is a *strictly* increasing function that maps $\mathbb{R} \to \mathbb{R}$, then V(U(x)) represents \succeq .
- 4. Let $A_i, i \in I$ be a collection (not necessarily finite) of convex sets. Prove that $\bigcap_{i \in I} A_i$ is convex.

¹This might be a bit tricky.