SEQUENCE LISTING

- <110> F. Hoffmann-La Roche AG
- <120> A nucleic acid which is upregulated in human tumor cells, a protein encoded thereby and a process for tumor diagnosis
- <130> Case 20678
- <140>
- <141>
- <150> EP00110953.7
- <151> 2000-05-26
- <150> EP00115369.1
- <151> 2000-07-15
- <160> 12
- <170> PatentIn Ver. 2.1
- <210> 1
- <211> 2342
- <212> DNA
- <213> Homo sapiens
- <220>
- <221> CDS
- <222> (459)..(848)
- <400> 1
- aacctccacc acaacgctca cccttacaga cacactattg caggtctccg agggcctttg 60

ggaggccctg cttcctgcga gctgtcccgg caggacagag actcttcccg ccgcggccct 120
gccattccag gctgaggctg tgagcagcac catgacaagc tccggccgca gtggctctca 180
acagtgtggg tctctgacca cccgacgagc tggaagtgca gaccgctgac ctcccttgag 240
aacctactgg gttcttgcag taggctcctc agcggtgtct aaacacgcca ctcaggtgat 300
tctatgcacc atcacattgg aaacttttt cattgactgt tacttaatga gaagacttcc 360
ctccgggatg gttctgaagc ttccttcata ggagcaagcc tttggcggag agcactgagc 420
agacgtgcag catctttgct ggcttctacc gaaacacc atg gat cca gac gtg gtt 476
Met Asp Pro Asp Val Val
1 5

ttg tgg tcc tgc acg tgg aag cca gcc ctg cgt ggg gtg agc ctg gga 524 Leu Trp Ser Cys Thr Trp Lys Pro Ala Leu Arg Gly Val Ser Leu Gly 10 15 20

ctg	tgg	gca	gag	aac	ctc	aag	cac	cgg	gcc	ggc	acc	caa	gtg	cag	aga	572
Leu	Trp	Ala	Glu	Asn	Leu	Lys	His	Arg	Ala	Gly	Thr	Gln	Val	Gln	Arg	
		25					30					35				
ctg	cat	cgt	ccc	agc	agg	agg	cgc	tgc	ttc	cag	gct	ccc	tgg	acg	gac	620
Leu	His	Arg	Pro	Ser	Arg	Arg	Arg	Cys	Phe	Gln	Ala	Pro	Trp	Thr	Asp	
	40					45					50					
tcc	ggg	agg	gcg	gcc	ttt	ccc	ccc	agc	ccc	aga	ggt	ggg	cct	gcc	ctt	668
Ser	Gly	Arg	Ala	Ala	Phe	Pro	Pro	Ser	Pro	Arg	Gly	Gly	Pro	Ala	Leu	
55					60					65					70	
ttc	cga	gca	tgg	gac	aca	gcc	cag	gaa	aac	gca	tgg	ctt	gtc	ctc	cag	716
Phe	Arg	Ala	Trp	Asp	Thr	Ala	Gln	Glu	Asn	Ala	Trp	Leu	Val	Leu	Gln	
				75					80					85		
aca	cag	gtg	cta	aca	ggg	ccg	tca	gac	aag	ggc	cag	gga	ctc	agg	ctt	764
Thr	Gln	Val	Leu	Thr	Gly	Pro	Ser	Asp	Lys	Gly	Gln	Gly	Leu	Arg	Leu	
			90					95					100			
tta	gga	att	tca	gct	сса	gag	cca	cca	tgc	agt	ggg	acc	agg	ggt	ctg	812
Leu	Gly	Ile	Ser	Ala	Pro	Glu	Pro	Pro	Cys	Ser	Gly	Thr	Arg	Gly	Leu	
		105					110					115				
cgt	gga	cag	gaa	gca	agc	tgt	gta	gac	ggg	ggt	cca	tgaa	agta	gag		858
Arg	Gly	Gln	Glu	Ala	Ser	Cys	Val	Asp	Gly	Gly	Pro					
	120					125					130					
acag	ggtt	tt ç	iggga	aggt	t gg	iggca	agggo	aag	ggagg	jaaa	agco	cacat	itt	acago	caattt	918
ctga	agto	tt t	tcat	tttt	t co	ccct	gaat	cac	egted	cata	atac	ggatt	itq	aattt	aataa	978
ctgaagtctt ttcatttttt ccccctgaat cacgtccata ataggatttg aatttaataa 978																
actg	ctga	ıag ç	ıttac	ctggd	c ct	gagt	ccca	a gto	jtcct	ccc	agco	cccc	jcc	cagct	gtggg	1038
						_					-	-	-	2	3 333	
tgtg	cato	igg ç	jagco	ggtac	g ag	ggag	ggta	a aaa	atggo	gccc	ctgo	gaco	gee	gcqto	gcagag	1098

cagagatgaa tggcccgaaa ccctcgcgct gctctgcgcc cttcgtcatc cagtcggggt 1158 ggttagggac tgtcagagaa aaataattta gcggccatgg ctctaactga tgtgctgcat 1218 tctggggtca aatgactttt acaaagtagt agtgctgcct ggtttctcta tcgtgagagc 1278 tcagggctga taacatgaaa gaaaaaggca ctgcagccag aattcactga cattcttcac 1338 atttcacatg agtgggacgc aggagggggg ctgggggggg tggagggatg tttcctgctt 1398 aacagattca acagaagagt ggcaggctca gctgggtgag caaggtatcc cagcgacggg 1458 ggacacgccc cagaccatgg gtggtggggc ttctcagagg aggtggcagg agacccgagc 1518 ctgccaaggt tgcacctaag gtcacgggca gcattaggag ggctctctcc cagtctcccc 1578 acceccegt eccectece ecaggetgea ggggtgaagt ggetteeagg acggteactg 1638 gcaagtttaa gctacagaga gtgtagaaac agggtgaaaa aggaagagag aggggagtaa 1698 ataagaagga ggtgtaagaa aagaccaagc caggccccag cgcccttgtg aggaagtgcc 1758 cagggactta tgtggaagcc gtccttgctg tctgccacct tgtttttact tacattgtgt 1818 ttttatttga gggcgagttt ggacggcaag actgatggag attgtggtct aaatgcctct 1878 aacccactcc ttaaaatgac caccggatgt tccacaagta cttgaaaatg aatgaatggc 1938 ttcccgagag gcagaaggca ggggtgtgcc ctaccccacg ccggccaaga gttcaacaag 1998 cattggttga caagtgaata gtgagcactt gaacccagtc acaattcaag atgagggctc 2058 tgccatgacg catgtggtct gtgtcaccct gcagtctccc tgagcagtgt ctgaggttcg 2118 agtgggaccc tacattcgtg aagagattta tcatctcccc aggaaaaata acagattctg 2178

tcctaggtgt tgtgatgtaa caatggtagc gatcacagcc ataacttaca attattgcat 2238
acttacgacg agtcccgcac tgggctaagt gctttttaac tatgtgaaat gtttcttcc 2298
ttgattgatg ccaaaatgaa taaagataat tttctgtatc tgct 2342

<210> 2

<211> 130

<212> PRT

<213> Homo sapiens

<400> 2

Met Asp Pro Asp Val Val Leu Trp Ser Cys Thr Trp Lys Pro Ala Leu

1 5 10 15

Arg Gly Val Ser Leu Gly Leu Trp Ala Glu Asn Leu Lys His Arg Ala
20 25 30

Gly Thr Gln Val Gln Arg Leu His Arg Pro Ser Arg Arg Cys Phe 35 40 45

Gln Ala Pro Trp Thr Asp Ser Gly Arg Ala Ala Phe Pro Pro Ser Pro 50 55 60

Arg Gly Gly Pro Ala Leu Phe Arg Ala Trp Asp Thr Ala Gln Glu Asn 65 70 75 80

Ala Trp Leu Val Leu Gln Thr Gln Val Leu Thr Gly Pro Ser Asp Lys
85 90 95

Gly Gln Gly Leu Arg Leu Leu Gly Ile Ser Ala Pro Glu Pro Pro Cys 100 105 110

Ser Gly Thr Arg Gly Leu Arg Gly Gln Glu Ala Ser Cys Val Asp Gly 115 120 125

65

```
Gly Pro
    130
<210> 3
<211> 285
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (1)..(285)
<400> 3
atg gat cca gac gtg gtt ttg tgg tcc tgc acg tgg aag cca gcc ctg
                                                                    48
Met Asp Pro Asp Val Val Leu Trp Ser Cys Thr Trp Lys Pro Ala Leu
  1
                  5
                                     10
                                                          15
cgt ggg gtg agc ctg gga ctg tgg gca gag aac ctc aag cac cgg gcc
Arg Gly Val Ser Leu Gly Leu Trp Ala Glu Asn Leu Lys His Arg Ala
             20
                                  25
                                                      30
ggc acc caa gtg cag aga ctg cat cgt ccc aac agg agg cgc tgc ttc
                                                                   144
Gly Thr Gln Val Gln Arg Leu His Arg Pro Asn Arg Arg Cys Phe
         35
                             40
                                                  45
cag gct ccc tgg acg gac tcc ggg agg gcg gcc ttt ccc ccc agc ccc
                                                                   192
Gln Ala Pro Trp Thr Asp Ser Gly Arg Ala Ala Phe Pro Pro Ser Pro
     50
                         55
                                              60
```

75

240

80

aga ggt ggg cct gcc ctt ttc cga gcg tgg gac aca gcc cag gaa aac

Arg Gly Gly Pro Ala Leu Phe Arg Ala Trp Asp Thr Ala Gln Glu Asn

70

gca	tgg	ctt	gtc	ctc	cag	aca	cag	ggc	gag	ttt	gga	cgg	caa	gac	
Ala	Trp	Leu	Val	Leu	Gln	Thr	Gln	Gly	Glu	Phe	Gly	Arg	Gln	Asp	
				85					90					95	
<21)> 4														
<21	<211> 95														
<212	<212> PRT														
<21	3> H	omo :	sapie	ens											
<400)> 4														
Met	Asp	Pro	Asp	Val	Val	Leu	Trp	Ser	Cys	Thr	Trp	Lys	Pro	Ala	Leu
1				5					10					15	
Arg	Gly	Val	Ser	Leu	Gly	Leu	Trp	Ala	Glu	Asn	Leu	Lys	His	Arg	Ala
			20					25					30		
Gly	Thr	Gln	Val	Gln	Arg	Leu	His	Arg	Pro	Asn	Arg	Arg	Arg	Cys	Phe
		35					40					45			
Gln	Ala	Pro	Trp	Thr	Asp	Ser	Gly	Arg	Ala	Ala	Phe	Pro	Pro	Ser	Pro
	50					55					60				
Arg	Gly	Gly	Pro	Ala	Leu	Phe	Arg	Ala	Trp	Asp	Thr	Ala	Gln	Glu	Asn
65					70					75					80
Ala	Trp	Leu	Val	Leu	Gln	Thr	Gln	Gly	Glu	Phe	Gly	Arg	Gln	Asp	

<	2210> 5	
<	2211> 19	
<	212> DNA	
<	2213> Artificial Sequence	
<	220>	
<	223> Description of Artificial Sequence:primer GSP1	
	<400> 5	1.0
t	tatctttat tcattttgg	19
<	<210> 6	
<	<211> 23	
<	<pre><212> DNA</pre>	
<	<pre><213> Artificial Sequence</pre>	
<	<220>	
<	<pre><223> Description of Artificial Sequence:primer GSP2</pre>	
	<400> 6	23
ţ	agegggaete gtegtaagta tge	23
<	<210> 7	
<	<211> 20	
<	<212> DNA	
<	<213> Artificial Sequence	
	<220>	
4	<223> Description of Artificial Sequence:primer AUAP	
	<400> 7	0.0
(ggccacgcgt cgactagtac	20

<210> 8	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence:primer RTR-5	
<400> 8	
ccattcattc attttcaag	19
<210> 9	
<211> 17	
<212> DNA	
<213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer RTF-6	
<2223> Description of Attiticial Sequence.primer Nii 0	
<400> 9	
aaaacgcatg gcttgtc	17
<210> 10	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: -actin reverse	
primer	
<400> 10	
agggtacatg gtggtgccgc cagac	25

<210> 11	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: -actin forward	
primer	
<400> 11	
ccaaggccaa ccgcgagaag atgac	25
<210> 12	
<211> 127	
<212> DNA	
<213> Homo sapiens	
<220>	
<223> fragment of sequence AQ548392, nuclotide 1	
correspond to nucleotide 304 and nucleotide 127	
correspond to nucleotide 430 of the complete	
sequence	
<300>	
<308> AQ548392	
<400> 12	
tggacccccg tctacacage ttgcttcctg tccactcaga cccctggtcc cactgcatgg	60
tggctctgga gctgaaattc ctaaaagcct gagtccctgg cccttgtctg acggccctgt	120
tagcacc	127