ACH2011 – Cálculo I

Lista de Exercícios 02

Exercícios

Calcular os seguintes limites; tomar $n \in \mathbb{N} := \{1, 2, 3, \ldots\}$.

001)
$$\lim_{x \to 0^{+}} \frac{x}{x}$$

002)
$$\lim_{x \to 0^{-}} \frac{x}{x}$$

003)
$$\lim_{x\to 0^+} \frac{1}{|x|}$$

$$001) \lim_{x \to 0^{+}} \frac{x}{x} \qquad 002) \lim_{x \to 0^{-}} \frac{x}{x} \qquad 003) \lim_{x \to 0^{+}} \frac{1}{|x|} \qquad 004) \lim_{x \to 0^{-}} \frac{1}{|x|} \qquad 005) \lim_{x \to 0^{+}} \frac{x}{|x|}$$

005)
$$\lim_{x \to 0^+} \frac{x}{|x|}$$

006)
$$\lim_{x \to 0^-} \frac{x}{|x|}$$

$$007) \lim_{x \to 0^+} \frac{1}{x^{2n-1}}$$

$$006) \lim_{x \to 0^{-}} \frac{x}{|x|} \qquad 007) \lim_{x \to 0^{+}} \frac{1}{x^{2n-1}} \quad 008) \lim_{x \to 0^{-}} \frac{1}{x^{2n-1}} \quad 009) \lim_{x \to 0^{+}} \frac{1}{x^{2n}} \quad 010) \lim_{x \to 0^{-}} \frac{1}{x^{2n}}$$

009)
$$\lim_{r\to 0^+} \frac{1}{r^{2n}}$$

$$010) \lim_{x \to 0^{-}} \frac{1}{x^{2n}}$$

011)
$$\lim_{x \to \pi/2^+} \tan x$$

012)
$$\lim_{x \to \pi/2^-} \tan x$$

$$013) \lim_{x \to 0^+} \cot x$$

014)
$$\lim_{x\to 0^-} \cot x$$

011)
$$\lim_{x \to \pi/2^+} \tan x$$
 012) $\lim_{x \to \pi/2^-} \tan x$ 013) $\lim_{x \to 0^+} \cot x$ 014) $\lim_{x \to 0^-} \cot x$ 015) $\lim_{x \to 0^+} \frac{x + |x|}{x}$

$$016) \lim_{x \to 0^{-}} \frac{x + |x|}{x} \quad 017) \lim_{x \to 0^{+}} 3^{1/x} \qquad 018) \lim_{x \to 0^{-}} 3^{1/x} \qquad 019) \lim_{x \to 0^{+}} \log_{2} x \quad 020) \lim_{x \to 0^{+}} \log_{x} 2^{1/x} = 018$$

017)
$$\lim_{x\to 0^+} 3^{1/x}$$

018)
$$\lim_{x \to 0^{-}} 3^{1/x}$$

019)
$$\lim_{x \to 0^+} \log_2 x$$

020)
$$\lim_{x\to 0^+} \log_x 2$$

Calcular os seguintes limites; assuma a > 0.

021)
$$\lim_{y \to 1^+} \frac{y-1}{\sqrt{y-1}}$$

022)
$$\lim_{y \to 1^+} \frac{\sqrt{y-1}}{y-1}$$

$$021) \lim_{y \to 1^{+}} \frac{y-1}{\sqrt{y-1}} \qquad 022) \lim_{y \to 1^{+}} \frac{\sqrt{y-1}}{y-1} \qquad 023) \lim_{y \to 2} \frac{y^{2}-6y+8}{y-2} \qquad 024) \lim_{y \to -1} \frac{y^{3}+1}{y+1}$$

$$024) \lim_{y \to -1} \frac{y^3 + 1}{y + 1}$$

$$025) \lim_{y \to 0^+} \frac{\sin y}{\sqrt{1 - \cos y}}$$

$$026) \lim_{y \to 0} \frac{1 - \cos y}{\tan y}$$

$$027) \lim_{y \to a} \frac{y - a}{\sqrt{y} - \sqrt{a}}$$

$$025) \lim_{y \to 0^+} \frac{\sin y}{\sqrt{1 - \cos y}} \qquad 026) \lim_{y \to 0} \frac{1 - \cos y}{\tan y} \qquad 027) \lim_{y \to a} \frac{y - a}{\sqrt{y} - \sqrt{a}} \qquad 028) \lim_{y \to a} \frac{y^2 - ay - y + a}{y^2 - a^2}$$

$$029) \lim_{y \to \infty} \frac{y^2 - y^3 + 1}{y^3 + 2y^2 - 1} \qquad 030) \lim_{y \to \infty} \frac{y^2 - y^3 + 1}{y^4 + 2y^2 - 1} \qquad 031) \lim_{y \to \infty} \frac{y^2 - y^4 + 1}{y^3 + 2y^2 - 1} \qquad 032) \lim_{y \to \infty} \frac{y^2 - y^3 + 1}{y^2 + 2y - 1}$$

$$030) \lim_{y \to \infty} \frac{y^2 - y^3 + 1}{y^4 + 2y^2 - 1}$$

031)
$$\lim_{y \to \infty} \frac{y^2 - y^4 + 1}{y^3 + 2y^2 - 1}$$

032)
$$\lim_{y \to \infty} \frac{y^2 - y^3 + 1}{y^2 + 2y - 1}$$

033)
$$\lim_{y \to -\infty} \frac{y^2 - y^3 + 1}{y^3 + 2y^2 - 1}$$
 034) $\lim_{y \to -\infty} \frac{y^2 - y^3 + 1}{y^4 + 2y^2 - 1}$ 035) $\lim_{y \to -\infty} \frac{y^2 - y^4 + 1}{y^3 + 2y^2 - 1}$ 036) $\lim_{y \to -\infty} \frac{y^2 - y^3 + 1}{y^2 + 2y - 1}$

034)
$$\lim_{y \to -\infty} \frac{y^2 - y^3 + 1}{y^4 + 2y^2 - 1}$$

035)
$$\lim_{y \to -\infty} \frac{y^2 - y^4 + 1}{y^3 + 2y^2 - 1}$$

036)
$$\lim_{y \to -\infty} \frac{y^2 - y^3 + 1}{y^2 + 2y - 1}$$

Problemas

Por $\lim x_n = a$ (ou $\lim_{n \to \infty} x_n = a$), entende-se que

$$\forall \epsilon > 0, \exists n_0 \in \mathbb{N} : n > n_0 \Rightarrow |x_n - a| < \epsilon.$$

Quando existe tal limite, diz-se que a sequência é **convergente**. Ademais, uma sequência (x_n) é **limitada** se existem $m, M \in \mathbb{R}$ tais que $m \leq x_n \leq M$ para todo $n \in \mathbb{N}$. Esta definição pode também ser formulada como existindo um $c \in \mathbb{R}$ positivo tal que $|x_n| \leq c$ para todo $n \in \mathbb{R}$.

Um resultado útil para alguns dos problemas abaixo é a desigualdade triangular

$$|x+y| \le |x| + |y|$$
 para todo $x, y \in \mathbb{R}$.

Este resultado pode ser mostrado lembrando que $z \leq |z|, \forall z \in \mathbb{R}$, e considerando duas situações disjuntas e exaustivas:

• Se
$$x + y > 0$$
: $|x + y| = x + y < |x| + |y|$

• Se
$$x + y < 0$$
: $|x + y| = -(x + y) = (-x) + (-y) \le |x| + |y|$

p1) Mostrar a unicidade do limite. Em outras palavras, se lim $x_n = a$, mostrar que não se pode ter lim $x_n = b$ para $b \neq a$.

1

- p2) Mostrar que toda sequência convergente é limitada.
- p3) Se $\lim x_n = 0$ e (y_n) for limitada, mostrar que $\lim x_n y_n = 0$.
- p4) Se $\lim x_n = a$ e c < a, mostrar que $x_n > c$ para n suficientemente grande.
- p5) Se $\lim x_n = a$ e c > a, mostrar que $x_n < c$ para n suficientemente gramde.
- p6) Existindo $\lim x_n = a$ e $\lim x_n = b$, mostrar que $\lim (x_n + y_n) = a + b$.
- p7) Existindo $\lim x_n = a$ e dado $\lambda \in \mathbb{R}$, mostrar que $\lim(\lambda x_n) = \lambda a$.
- p8) Existindo $\lim x_n = a$ e $\lim x_n = b$, mostrar que $\lim x_n y_n = ab$.
- p9) Existindo $\lim x_n = a$ e $\lim x_n = b \neq 0$, mostrar que $\lim \frac{x_n}{y_n} = \frac{a}{b}$.

Naturalmente, uma sequência não necessariamente é convergente. Quando (x_n) divergir não sendo limitada superiormente, escreve-se

$$\lim x_n = \infty$$
, que significa $\forall M > 0, \exists n_0 \in \mathbb{N} : n > n_0 \Rightarrow x_n > M$.

De forma análoga,

$$\lim x_n = -\infty$$
 significa $\forall M > 0, \exists n_0 \in \mathbb{N} : n > n_0 \Rightarrow x_n < -M$.

- p10) Mostrar que se $\lim x_n = \infty$ e (y_n) for limitada inferiormente, então $\lim (x_n + y_n) = \infty$.
- p
11) Mostrar que se $\lim x_n = \infty$ e existir c > 0 tal que $y_n > c$ para todo $n \in \mathbb{N}$, então $\lim x_n y_n = \infty$.
- p
12) Mostrar que se $x_n>c>0$ e $y_n>0$ $(\forall n\in\mathbb{N})$ e $\lim y_n=0$, então $\lim \frac{x_n}{y_n}=\infty$.
- p13) No exercício anterior, por que não é suficiente assumir apenas $x_n > 0$ (no lugar de $x_n > c > 0$)?
- p
14) Mostrar que se (x_n) for limitada e $\lim y_n = \infty$, então $\lim \frac{x_n}{y_n} = 0$.

Um ponto a é um **ponto** de acumulação do conjunto X se toda vizinhança V de a possuir algum ponto de X diferente de a; em outros termos, $V \cap (X \setminus \{a\}) \neq \emptyset$. Indica-se por X' o conjundot dos pontos de acumulação de X.

Dado $f: X \to \mathbb{R}, L \in \mathbb{R}$ é o **limite** de f(x) quando x tende para $a \in X'$,

$$\lim_{x \to a} f(x) = L \quad \text{se} \quad \forall \epsilon > 0, \exists \delta > 0 : 0 < |x - a| < \delta \Rightarrow |f(x) - L| < \epsilon.$$

Notar que x poder assumir a (ou não) é irrelevante na definição acima.

- p15) Mostrar que o limite $\lim_{x\to a} f(x) = L$ é único.
- p16) Para $f: X \to \infty \mathbb{R}$ e $a \in X'$, mostrar que $\lim_{x \to a} f(x) = L$ se, e somente se, para toda sequência de pontos $x_n \in X \setminus \{a\}$ com $\lim x_n = a$, tem-se $\lim f(x_n) = L$.

Este último resultado estabelece a correspondência entre limite de funções e certas sequências. Uma função $f: X \to \mathbb{R}$ é **contínua** em $a \in X$ se

$$\forall \epsilon > 0, \exists \delta > 0 : x \in X, |x - a| < \delta \Rightarrow |f(x) - f(a)| < \epsilon.$$

Se $a \in X'$, então f é contínua em $a \in X$ se $\lim_{x\to a} f(x) = f(a)$. Ademais, uma função é dita comtínua se for contínua em todos os pontos de seu domínio.

p17) Mostrar que a composição de funções contínuas é contínua.

Número de Euler (e)

Prova por indução (matemática)

Uma proposição P(n), associada a números naturais $n \in \mathbb{N}$, pode ser provada por **indução** mediante os seguintes passos:

- 1. Base de indução: Prova do primeiro caso P(1).
- 2. Passo de indução: <u>Assumindo</u> a proposição ser verdadeira para n=k (hipótese de indução), provar para o caso n=k+1.

Duas observações são pertinentes.

- \bullet O primeiro caso na base de indução não necessariamente ocorre atribuindo n=1 na proposição.
- Existe uma formulação equivalente onde na hipótese de indução assume-se P(n) sendo válida para todo $n \in [1, k] \in \mathbb{N}$ para, então, provar P(k+1).
- e1) Mostrar que para $n \in \mathbb{N}$, $n! \geq 2^{n-1}$.
- e2) Mostrar que para $n \in \mathbb{N}$ e $x \ge -1$, $(1+x)^n \ge 1 + nx$.

Defina

$$a_n := \left(1 + \frac{1}{n}\right)^n$$

- e3) Mostrar que (a_n) é uma sequência crescente.
- e4) Mostrar que $a_n \in [2,3]$ para $n \in \mathbb{N}$ (a sequência (a_n) é, portanto, limitada).

Dado um conjunto não vazio $X \subset \mathbb{R}$, X é limitado superiormente se existe $b \in \mathbb{R}$ tal que $b \geq x$ para todo $x \in X$; neste caso, diz-se que b é um **majorante** (ou **cota superior**) de X. O menor dos majorantes é o **supremo** de X, denotado por sup X. Analogamente, X é limitado inferiormente se existe $a \in \mathbb{R}$ tal que $a \leq x$ para todo $x \in X$; neste caso, diz-se que a é um **minorante** (ou **cota inferior**) de X. O maior dos minorantes é o **infimo** de X, denotado por inf X. Em outros termos,

- 1. $b = \sup X$ se
 - $\forall x \in X, x < b$
 - Se $x_0 \in \mathbb{R}$ tal que $x_0 \ge x$ para todo $x \in X$, então $b \le x_0$ (ou, se $x_0 < b$, então $\exists x \in X : x > x_0$)
- 2. $a = \inf X$ se
 - $\forall x \in X, x \ge a$
 - Se $x_0 \in \mathbb{R}$ tal que $x_0 \le x$ para todo $x \in X$, então $a \ge x_0$ (ou, se $x_0 > a$, então $\exists x \in X : x < x_0$)

3

e5) Mostrar que toda sequência monotonicamente crescente e limitada é convergente.

Denota-se
$$e := \lim_{n \to \infty} a_n$$
.