Enunciado

Si $\mathbb P$ es un procedimiento efectivo cuyo conjunto de datos de entrada es $\omega x \Sigma^*$, entonces el conjunto $\{(x,\alpha)\in\omega x\Sigma^*:\mathbb P \ termina\ partiendo\ de\ (x,\alpha)\}$ es Σ -efectivamente enumerable.

1

Planteo

• Supongamos $\mathbb P$ un procedimiento efectivo cuyo conjunto de datos de entrada es $\omega x \Sigma^*$.

Planteo

- Supongamos \mathbb{P} un procedimiento efectivo cuyo conjunto de datos de entrada es $\omega x \Sigma^*$.
- Probaremos entonces, que el conjunto $S = \{(x, \alpha) \in \Sigma^* : \mathbb{P} \text{ termina partiendo de } (x, \alpha)\}$ es Σ -efectivamente enumerable.

Prueba: dos casos

• Si $S = \emptyset$, entonces S es Σ -efectivamente enumerable por definición.

Prueba: dos casos

- Si $S = \emptyset$, entonces S es Σ -efectivamente enumerable por definición.
- Si $S \neq \emptyset$, entonces daremos un procedimiento efectivo, \mathbb{P}_s que enumere a S.

Por definición, como \mathbb{P}_s debe enumerar a S, entonces debe cumplir que:

1. El conjunto de entrada de \mathbb{P}_s es ω .

Por definición, como \mathbb{P}_s debe enumerar a S, entonces debe cumplir que:

- 1. El conjunto de entrada de \mathbb{P}_s es ω .
- 2. \mathbb{P}_s siempre termina.

Por definición, como \mathbb{P}_s debe enumerar a S, entonces debe cumplir que:

- 1. El conjunto de entrada de \mathbb{P}_s es ω .
- 2. \mathbb{P}_s siempre termina.
- 3. El conjunto de salida de \mathbb{P}_s es S.

Daremos explicitamente el procedimiento \mathbb{P}_s

• Como $S \neq \emptyset$ entonces existe, al menos, un elemento en S. Sea (x_1, α_1) un elemento de S.

Daremos explicitamente el procedimiento \mathbb{P}_s

- Como $S \neq \emptyset$ entonces existe, al menos, un elemento en S. Sea (x_1, α_1) un elemento de S.
- Supongamos < un orden sobre Σ^* .

Daremos explicitamente el procedimiento \mathbb{P}_s

- Como $S \neq \emptyset$ entonces existe, al menos, un elemento en S. Sea (x_1, α_1) un elemento de S.
- Supongamos < un orden sobre Σ^* .
- Recordemos: $(x)_i = max_t(pr(i)^t \text{ divide a } x)$.

 \mathbb{P}_s : Toma como entrada un valor $x \in \omega$.

Etapa 1: Si el valor de entrada, x, es igual a 0, devolver (x_1, α_1) y detenerse.

Si no, correr $\mathbb P$ una cantidad $(x)_1$ pasos con entrada $((x)_2, *^<((x)_3))$. Si luego de una cantidad $(x)_1$ de pasos, $\mathbb P$ termina, devolver $((x)_2, *^<((x)_3))$ y detenerse. Si no termina, devolver (x_1, α_1) y detenerse.

Dado que \mathbb{P}_s es claramente efectivo, veamos que cumple con 1, 2 y 3.

• 1 y 2 se cumplen trivialmente. Veamos 3:

- 1 y 2 se cumplen trivialmente. Veamos 3:
 - Si (x, α) es un elemento cualquiera de S, por definición, \mathbb{P} termina partiendo de (x, α) .

- 1 y 2 se cumplen trivialmente. Veamos 3:
 - Si (x, α) es un elemento cualquiera de S, por definición, \mathbb{P} termina partiendo de (x, α) .
 - Sea p la cantidad de pasos que necesita $\mathbb P$ para terminar partiendo de (x,α) .

- 1 y 2 se cumplen trivialmente. Veamos 3:
 - Si (x, α) es un elemento cualquiera de S, por definición, \mathbb{P} termina partiendo de (x, α) .
 - Sea p la cantidad de pasos que necesita \mathbb{P} para terminar partiendo de (x, α) .
 - Entonces, para el valor de entrada $z=2^{p+1}*3^x*5^{\#<(\alpha)}$, \mathbb{P}_s termina y da como salida (x,α) .

- 1 y 2 se cumplen trivialmente. Veamos 3:
 - Si (x, α) es un elemento cualquiera de S, por definición, \mathbb{P} termina partiendo de (x, α) .
 - Sea p la cantidad de pasos que necesita \mathbb{P} para terminar partiendo de (x, α) .
 - Entonces, para el valor de entrada $z=2^{p+1}*3^x*5^{\#<(\alpha)}$, \mathbb{P}_s termina y da como salida (x,α) .
- Luego, se cumple 1, 2 y 3.

Como dimos un procedimiento efectivo, \mathbb{P}_s que cumple con 1, 2 y 3, este enumera a S.

Por lo tanto, S es efectivamente enumerable.