

Technology Constraints

TO SERVICE STATE OF THE SERVIC

Technology Constraints

Constraints in technology push architecture too

- Power Wall: Thermal Design Power (TDP) constraint
- Memory Wall: Constraint in bandwidth to memory
- Variability: Limits in the precision of manufacturing technology
- Processor must be designed to meet all constraints

Power Wall

- Power_{CPU} = Power_{dynamic} + Power_{leakage} Power_{dynamic} \propto A * N * CFV² Power_{leakage} \propto f(N, V, V_{th}) \propto N * V * e^{-Vth}
 - Leakage power is also called static power
 - This total CPU power cannot exceed TDP
- Moore's Law transistor scaling means two things:
 - N = Number of transistors ($\propto 1/\text{transistor size}^2$) 企 企

 - Reductions in C does not compensate for increases in N
- Architects must use tricks to keep power in check
 - To keep packing more transistors to increase performance

THI CAN THE STREET

1. Reducing Dynamic Power

- Power_{dynamic} (\propto A * N * CFV²) + Power_{leakage} (\propto N * V * e^{-Vth})
- Reducing A (Activity): Clock gating
 - Disables the clock signal to unused parts of the chip (idle cores)
 - Wake-up is instantaneous (the moment clock signal goes in)
- Reducing F (Frequency) and V (Supply Voltage)
 - When F is reduced, V can also be reduced (Transistor 101 and water pressure, remember?)
 - Dynamic Voltage Frequency Scaling (DVFS) done on multi-cores
 - ☐ Slow down low-priority cores, speed up high-priority cores

DVFS and Transistor Speed

RC Charging Curve of V_G

- $ightharpoonup V_{dd1}
 ightarrow V_{dd2}$ saves power, but slows down $T_1
 ightarrow T_2$
- $ightharpoonup V_{dd2}
 ightharpoonup V_{dd1}$ uses more power, but speeds up $T_2
 ightharpoonup T_1$
- $Arr V_{dd} \propto 1/T \propto F (V_{dd} \text{ is proportional to frequency})$

THI CAN THE STREET

2. Reducing Leakage Power

- Power_{dynamic} (\propto A * N * CFV²) + Power_{leakage} (\propto N * V * e^{-Vth})
- Reducing N (Transistor Number): Power gating
 - Disables power to unused parts of the chip (unused cores)
 - Eliminates dynamic power and leakage power to those parts
 - Drawback: wake-up takes a much longer time than clock gating
 - ☐ Delay for supply voltage to stabilize
 - ☐ Delay to backup and restore CPU state to/from memory
- Reducing V (Supply Voltage): DVFS also helps here

PRSITE OF THE PROPERTY OF THE

OS Manages Power

- Who decides which cores to clock gate and power gate?
- Who decides how to apply DVFS to the cores?
- ACPI (Advanced Configuration and Power Interface)
 - OS performs power management using this interface
 - □ OS knows best which threads to prioritize for best user experience
 - Open standard interface to system firmware
 - ☐ Firmware sends signals to processor cores to control them

3. Simpler Processor Design

- Plenty of transistors but not enough power
 - Power becomes the ultimate currency in processor design
- Complex logic for performance is power hungry
 - Not easy to eke out the last bit of performance out of a program
 - Diminishing returns on performance for power investment
- Push towards simpler architectures:
 - Multi-cores: Run multiple programs (threads) on simple cores
 - GPUs: Run each instruction on massively parallel compute units
 - Caches: Memory caches are power efficient (low dynamic power)

Memory Wall

- Refers to both latency (ns) and bandwidth (GB/s)
 - CPU frequency and overall performance increased dramatically
 - Memory (DRAM) latency and bandwidth have lagged far behind

■ Why?

Limit on the number of CPU / DRAM pins that can be soldered on

- DRAM manufacturers have traditionally prioritized capacity
- DDR1 (1998): 1.6 GB/s → DDR4 (2014): 25.6 GB/s (Impressive? Not so much compared to CPU performance)

Memory Wall

Source: SC16 Invited Talk ""Memory Bandwidth and System Balance in HPC Systems" by John D. McCalpin

FLOPS vs Memory Bandwidth: 4.5x/decade

FLOPS = floating point operations per second (performance)

THE STATE OF THE S

Memory Wall

- Where did the Memory Wall push architecture?
- Caches: If hit in cache, no need to go to memory
 - Caching reduces both data access latency/bandwidth
- 3D-Stacked Memory: Stack CPU on top of memory
 - Drill vias, or holes, through silicon to bond CPU with memory
 - Through silicon vias (TSVs) have low latency / high bandwidth

Variability

- Variability: differences in speed of individual transistors
 - If fab can't ensure uniformity of transistors, speeds will differ
 - Speed differences mostly come from variations in V_{th}: low V_{th} → cycle time ↓ but leakage power ↑ high V_{th} → cycle time ↑ but leakage power ↓
- If unlucky and a logic path has lots of *slow* transistors
 - → CPU may miss clock cycle time if path is exercised
 - → CPU must be discarded, since it malfunctions
- If unlucky and a region has too many *fast* transistors
 - \rightarrow Region may generate too much heat due to low V_{th}
 - → CPU must be discarded, due to overheating
- Leads to low chip yield

Wafer Yield

Lower yield leads to higher production cost

THE CONTROL OF THE CO

Variability

- Where did Variability push architecture?
- Product binning: Sell slower CPUs at a cheaper "bin"
 - And rate slower CPUs at a lower CPU frequency
 - Instead of discarding them as "malfunctioning"
- Multi-cores: Easy to disable one or two buggy cores
 - Compared to single core where subcomponents must be disabled
 - Used when one or two cores are extremely slow
- Limited pipelining: pipelining exacerbates variability
 - With long stages, many transistors so tend to even each other out
 - With short stages, few transistors so probable all are slow

_	VERSI	T	
September 2	I SEU		

Model	# Cores	# Threads	Base Clock	All Core Turbo	Turbo Boost	Total L3 Cache	PL1 TDP
i9-10900K	10	20	3.7	4.8	5.1	20	125
i9-10900KF	10	20	3.7	4.8	5.1	20	125
i9-10900	10	20	2.8	4.5	5.0	20	65
i9-10900F	10	20	2.8	4.5	5.0	20	65
i9-10900T	10	20	1.9	3.7	4.5	20	35
i7-10700K	8	16	3.8	4.7	5.0	16	125
i7-10700KF	8	16	3.8	4.7	5.0	16	125
i7-10700	8	16	2.9	4.6	7.7	16	65
i7-10700F	8	16	2.9	4.6	4.7	16	65
i7-10700T	8	16	2.0	3.7	4.4	16	35
i5-10600K	6	12	4.1	4.5	4.8	12	125
i5-10600K	6	12	4.1	4.5	4.8	12	125
i5-10600	6	12	3.3	4.4	4.8	12	65
i5-10600T	6	12	2.4	3.7	4.0	12	35
i5-10500	6	12	3.1	4.2	4.5	12	65
i5-10500T	6	12	2.3	3.5	3.8	12	35
i5-10400	6	12	2.9	4.0	4.3	12	65
i5-10400F	6	12	2.9	4.0	4.3	12	65
i5-10400T	6	12	2.0	3.2	3.6	12	35

Why the close to 4X difference? Clock difference is just 2X!

Produced from one wafer

Source: https://www.techspot.com/article/2039-chip-binning/

^{*} TDP is calculated using the Base Clock frequency at a nominal supply voltage

Opportunities for Speed Improvement

- So Dennard Scaling is dead
 - Free CPU frequency gains are no longer there
- And we are walled in by technology constraints
 - Power wall
 - Memory wall
 - Variability
 - ...

Where do architects go look for performance?

Improving Execution Time

Execution time =
$$\frac{\text{instructions}}{\text{program}}$$
 X $\frac{\text{cycles}}{\text{instructions}}$ X $\frac{\text{seconds}}{\text{cycle}}$

- Improving $\frac{\text{seconds}}{\text{cycle}}$:
 - Pipelining can lead to higher frequencies
- Improving $\frac{\text{cycles}}{\text{instructions}}$:
 - Caching can reduce cycles for memory instructions
 - Superscalars can execute multiple instructions per cycle
 - Multi-cores execute multi-instructions from multi-threads
- Improving $\frac{\text{instructions}}{\text{program}}$:
 - GPUs are SIMD (Single Instruction Multiple Data) processors

What about Other Performance Goals?

- We talked a lot about execution speed
- But there are other performance goals such as:
 - Energy efficiency
 - Reliability
 - Security
 - ...
- In this class, we will mainly focus on speed
 - Not that other goals are not important
 - We will touch upon other goals when relevant
 - Performance will be used synonymously with speed

Textbook Chapters

Please review Chapter 1 of the textbook.