Applied Machine Learning Course Schedule

DATE	MODULE	CHAPTER	TOPIC
2021-09-01	Module 1:Fundamentals of Programming	Python for DataScience	Keywords and identifiers, comments, indentation and statements, Variables and data types in Python, Standard Input and Output, Operators, Control flow: if else, Control flow: while loop
2021-09-02	Module 1:Fundamentals of Programming	Python for DataScience	Control flow: for loop, Control flow: break and continue, Revision Python for DataScience
2021-09-03	Module 1:Fundamentals of Programming	Python for DataScience:Data Structures	Lists, Tuples part 1, Tuples part-2, Sets, Dictionary, Strings
2021-09-04	Module 1:Fundamentals of Programming	Python for DataScience:Data Structures	Revision Python for DataScience:Data Structures
2021-09-05	Module 1:Fundamentals of Programming	Python for DataScience:Functions	Introduction, Types of functions, Function arguments, Recursive functions, Lambda functions, Modules, Packages, File Handling, Exception Handling, Debugging Python, Revision Python for DataScience: Functions
2021-09-06	Module 1:Fundamentals of Programming	Python for DataScience:Numpy	Numpy Introduction, Numerical operations on Numpy,Revision Python for DataScience:Numpy
2021-09-07	Module 1:Fundamentals of Programming	Python for DataScience:Matplotlib	Getting started with Matplotlib,Revision Python for DataScience:Matplotlib
2021-09-08	Module 1:Fundamentals of Programming	Python for DataScience:Pandas	Getting started with pandas, Data Frame Basics, Key Operations on Data Frames, Revision Python for DataScience: Pandas

2021-09-09	Module 1:Fundamentals of Programming	Python for DataScience:Compputational Complexity	Space and Time Complexity: Find largest number in a list, Binary search, Find elements common in two lists, Find elements common in two lists using a Hashtable/Dict,Revision Python for DataScience:Compputational Complexity
2021-09-10	Module 1:Fundamentals of Programming	SQL	Introduction to Databases, Why SQL?, Execution of an SQL statement., IMDB dataset, Installing MySQL, Load IMDB data., USE, DESCRIBE, SHOW TABLES
2021-09-11	Module 1:Fundamentals of Programming	SQL	SELECT, LIMIT, OFFSET, ORDER BY, DISTINCT, WHERE, Comparison operators, NULL, Logical Operators, Aggregate Functions: COUNT, MIN, MAX, AVG, SUM, GROUP BY, HAVING, Order of keywords., Join and Natural Join, Inner, Left, Right and Outer joins., Sub Queries/ Nested Queries/Inner
2021-09-12	Module 1:Fundamentals of Programming	SQL	Queries DML:INSERT, DML:UPDATE , DELETE, DDL:CREATE TABLE, DDL:ALTER: ADD, MODIFY, DROP, DDL:DROP TABLE, TRUNCATE, DELETE, Data Control Language: GRANT, REVOKE, Learning resources, Revision SQL
2021-09-13	Module 2: Datascience: Exploratory Data Analysis and Data Visualization	Plotting for exploratory data analysis (EDA)	Introduction to IRIS dataset and 2D scatter plot, 3D scatter plot, Pair plots, Limitations of Pair Plots, Histogram and Introduction to PDF(Probability Density Function), Univariate Analysis using PDF, CDF(Cumulative Distribution Function), Mean, Variance and Standard Deviation

Quantiles, IQR(Inter Quartile Range) and MAD(Median Absolute Deviation), Box-plot Module 2: with Whiskers, Violin Plots, Datascience: Exploratory Data Plotting for exploratory data Summarizing Plots, 2021-09-14 Univariate, Bivariate and Analysis and analysis (EDA) Multivariate analysis, Data Visualization Multivariate Probability Density, Contour Plot, Exercise: Perform EDA on Haberman dataset Module 2: Datascience: Revision Plotting for Exploratory Data Plotting for exploratory data 2021-09-15 exploratory data analysis Analysis and analysis (EDA) (EDA) Data Visualization Why learn it?, Introduction to Vectors(2-D, 3-D, n-D), Row Vector and Column Vector. Dot Product and Angle between 2 Vectors, Projection and Unit Vector, Equation of a line (2-D), Module 2: Plane(3-D) and Hyperplane Datascience: (n-D), Plane Passing through **Exploratory Data** origin, Normal to a Plane, 2021-09-16 Linear Algebra Analysis and Distance of a point from a Data Plane/Hyperplane, Half-Visualization Spaces, Equation of a Circle (2-D), Sphere (3-D) and Hypersphere (n-D), Equation of an Ellipse (2-D), Ellipsoid (3-D) and Hyperellipsoid (n-D), Square, Rectangle, Hyper Cube, Hyper Cuboid

Linear Algebra

Module 2: Datascience: Exploratory Data

Data

Analysis and

Visualization

2021-09-17

Median, Percentiles and

Revision Questions, Revision

Linear Algebra

2021-09-18

Module 2: Datascience: Exploratory Data Analysis and Data Visualization

Probability And Statistics

2021-09-19

Module 2: Datascience: Exploratory Data Analysis and Data Visualization

Probability And Statistics

Introduction to Probability and Statistics, Population and Sample, Gaussian/ Normal Distribution and its PDF(Probability Density Function), CDF(Cumulative Distribution function) of Gaussian/Normal distribution, Symmetric distribution, Skewness and Kurtosis. Standard normal variate (Z) and standardization. Kernel density estimation, Sampling distribution & Central Limit theorem, Q-Q plot:How to test if a random variable is normally distributed or not?, How distributions are used?, Chebyshev's inequality, Discrete and Continuous Uniform distributions, How to randomly sample data points (Uniform Distribution) Bernoulli and Binomial Distribution, Log Normal Distribution, Power law distribution, Box cox transform, Applications of non-gaussian distributions?, Co-variance, Pearson Correlation Coefficient, Spearman Rank Correlation Coefficient, Correlation vs Causation, How to use correlations?, Confidence interval (C.I) Introduction, Computing confidence interval given the underlying distribution. C.I for mean of a normal random variable, Confidence interval using bootstrapping, Hypothesis testing methodology, Null-

hypothesis, p-value

2021-09-20	Module 2: Datascience: Exploratory Data Analysis and Data Visualization	Probability And Statistics	Hypothesis Testing Intution with coin toss example, Resampling and permutation test, K-S Test for similarity of two distributions, Code Snippet K-S Test, Hypothesis testing: another example, Resampling and Permutation test: another example
2021-09-21	Module 2: Datascience: Exploratory Data Analysis and Data Visualization	Probability And Statistics	How to use hypothesis testing?, Propotional sampling, Revision Questions, Assignment: Python (without Numpy)
2021-09-22	Module 2: Datascience: Exploratory Data Analysis and Data Visualization	Probability And Statistics	Revision Probability And Statistics
2021-09-23	Module 2: Datascience: Exploratory Data Analysis and Data Visualization	Dimensionality Reduction And Visualization	What is Dimensionality reduction?, Row Vector and Column Vector, How to represent a data set?, How to represent a dataset as a Matrix., Data Preprocessing: Feature Normalisation, Mean of a data matrix, Data Preprocessing: Column Standardization, Covariance of a Data Matrix, MNIST dataset (784 dimensional)
2021-09-24	Module 2: Datascience: Exploratory Data Analysis and Data Visualization	Dimensionality Reduction And Visualization	Code to Load MNIST Data Set,Revision Dimensionality Reduction And Visualization

2021-09-25	Module 2: Datascience: Exploratory Data Analysis and Data Visualization	Principal Component Analysis	Why learn PCA?, Geometric intuition of PCA, Mathematical objective function of PCA, Alternative formulation of PCA: Distance minimization, Eigen values and Eigen vectors (PCA): Dimensionality reduction, PCA for Dimensionality Reduction and Visualization, Visualize MNIST dataset, Limitations of PCA, PCA Code example, PCA for dimensionality reduction (not-visualization), Revision Principal Component Analysis
2021-09-26	Module 2: Datascience: Exploratory Data Analysis and Data Visualization	T-Sne	What is t-SNE?, Neighborhood of a point, Embedding, Geometric intuition of t-SNE, Crowding Problem, How to apply t- SNE and interpret its output, t-SNE on MNIST, Code example of t-SNE, Revision Questions, Revision T-Sne
2021-09-27	Module 3: Foundations of Natural Language Processing and Machine Learning	Predict rating given product reviews on amazon	Dataset overview: Amazon Fine Food reviews(EDA), Data Cleaning: Deduplication, Why convert text to a vector?, Bag of Words (BoW), Text Preprocessing: Stemming, Stop-word removal, Tokenization, Lemmatization., uni-gram, bi-gram, n-grams.
2021-09-28	Module 3: Foundations of Natural Language Processing and Machine Learning	Predict rating given product reviews on amazon	tf-idf (term frequency- inverse document frequency), Why use log in IDF2 Word2Vec Avg-

2021-09-29	Module 3: Foundations of Natural Language Processing and Machine Learning	Predict rating given product reviews on amazon	Bi-Grams and n-grams (Code Sample), TF-IDF (Code Sample), Assignment :Implementing TFIDF vectorizer
2021-09-30	Module 3: Foundations of Natural Language Processing and Machine Learning	Predict rating given product reviews on amazon	Word2Vec (Code Sample), Avg-Word2Vec and TFIDF- Word2Vec (Code Sample),Revision Predict rating given product reviews on amazon
2021-10-01	Module 3: Foundations of Natural Language Processing and Machine Learning	Classification And Regression Models: K- Nearest Neighbors	How "Classification" works?, Data matrix notation, Classification vs Regression (examples), K- Nearest Neighbours Geometric intuition with a toy example, Failure cases of KNN, Distance measures: Euclidean(L2), Manhattan(L1), Minkowski, Hamming, Cosine Distance & Cosine Similarity, How to measure the effectiveness of k-NN?
2021-10-02	Module 3: Foundations of Natural Language Processing and Machine Learning	Classification And Regression Models: K- Nearest Neighbors	Test/Evaluation time and space complexity, KNN Limitations, Decision surface for K-NN as K changes, Overfitting and Underfitting, Need for Cross validation, K-fold cross validation, Visualizing train, validation and test datasets, How to determine overfitting and underfitting?, Time based splitting, k-NN for regression, Weighted k-NN, Voronoi diagram, Binary search tree, How to build a kd-tree

2021-10-03	Module 3: Foundations of Natural Language Processing and Machine Learning	Classification And Regression Models: K- Nearest Neighbors	Find nearest neighbours using kd-tree, Limitations of Kd tree, Extensions, Hashing vs LSH, LSH for cosine similarity, LSH for euclidean distance, Probabilistic class label, Code Sample:Decision boundary ., Code Sample:Cross Validation, Assignment : Implement RandomSearchCV with k fold cross validation on KNN
2021-10-04	Module 3: Foundations of Natural Language Processing and Machine Learning	Classification And Regression Models: K- Nearest Neighbors	Question and Answers, Revision Classification And Regression Models: K- Nearest Neighbors
2021-10-05	Module 3: Foundations of Natural Language Processing and Machine Learning	Classification Algorithms in Various Situations	Introduction, Imbalanced vs balanced dataset, Multi-class classification, k-NN, given a distance or similarity matrix, Train and test set differences, Impact of outliers, Local outlier Factor (Simple solution :Mean distance to Knn)
2021-10-06	Module 3: Foundations of Natural Language Processing and Machine Learning	Classification Algorithms in Various Situations	K-Distance(A),N(A), Reachability-Distance(A,B), Local reachability- density(A), Local outlier Factor(A), Impact of Scale & Column standardization, Interpretability, Feature Importance and Forward Feature selection, Handling categorical and numerical features
2021-10-07	Module 3: Foundations of Natural Language Processing and Machine Learning	Classification Algorithms in Various Situations	Handling missing values by imputation, Curse of dimensionality, Bias-Variance tradeoff, Intuitive understanding of biasvariance., Best and worst cases for an algorithm, Question and Answers

2021-10-08	Module 3: Foundations of Natural Language Processing and Machine Learning	Classification Algorithms in Various Situations	Revision Classification Algorithms in Various Situations
2021-10-09	Module 3: Foundations of Natural Language Processing and Machine Learning	Performance Measurement of Models	Accuracy, Confusion matrix, TPR, FPR, FNR, TNR, Precision and recall, F1-score, Receiver Operating Characteristic Curve (ROC) curve and AUC, Log-loss, R-Squared/Coefficient of determination, Median absolute deviation (MAD), Distribution of errors, Assignment:Compute Performance metrics without Sklearn
2021-10-10	Module 3: Foundations of Natural Language Processing and Machine Learning	Performance Measurement of Models	Revision Performance Measurement of Models
2021-10-11	Module 3: Foundations of Natural Language Processing and Machine Learning	Naive Bayes	Conditional probability, Independent vs Mutually exclusive events, Bayes Theorem with examples, Exercise problems on Bayes Theorem, Naive Bayes algorithm
2021-10-12	Module 3: Foundations of Natural Language Processing and Machine Learning	Naive Bayes	Toy example: Train and test stages, Naive Bayes on Text data, Laplace/Additive Smoothing, Log-probabilities for numerical stability, Bias and Variance tradeoff

data, Outliers, Missing values, Handling Numerical Module 3: features (Gaussian NB), Foundations of Multiclass classification. Natural 2021-10-13 Language **Naive Bayes** Similarity or Distance Processing and matrix, Large dimensionality, Best and Machine worst cases, Code example, Learning Assignment: Apply Multinomial NB on Donors Choose Dataset Module 3: Foundations of Natural 2021-10-14 Language Naive Bayes **Revision Naive Bayes** Processing and Machine Learning Module 3: Foundations of Geometric intuition of Logistic Regression, Sigmoid Natural 2021-10-15 Language function: Squashing, Logistic Regression Mathematical formulation of Processing and Machine Objective function Learning Weight vector, L2 Regularization: Overfitting and Underfitting, L1 regularization and sparsity, Probabilistic Interpretation: Gaussian Naive Bayes, Loss Module 3: minimization interpretation, Foundations of Hyperparameter search: Natural Grid Search and Random **2021-10-16** Language Logistic Regression Search, Column Processing and Standardization, Feature Machine importance and Model Learning interpretability, Collinearity of features, Test/Run time space and time complexity, Real world cases, Non-

Feature importance and interpretability, Imbalanced

linearly separable data &

feature engineering

2021-10-17	Module 3: Foundations of Natural Language Processing and Machine Learning	Logistic Regression	Code sample: Logistic regression, GridSearchCV, RandomSearchCV, Extensions to Logistic Regression: Generalized linear models, Revision Logistic Regression
2021-10-18	Module 3: Foundations of Natural Language Processing and Machine Learning	Linear Regression	Geometric intuition of Linear Regression, Mathematical formulation, Real world Cases, Code sample for Linear Regression, Question and Answers, Revision Linear Regression
2021-10-19	Module 3: Foundations of Natural Language Processing and Machine Learning	Solving Optimization Problems	Differentiation, Online differentiation tools, Maxima and Minima, Vector calculus: Grad, Gradient descent: geometric intuition, Learning rate, Gradient descent for linear regression
2021-10-20	Module 3: Foundations of Natural Language Processing and Machine Learning	Solving Optimization Problems	SGD algorithm, Constrained Optimization & PCA, Logistic regression formulation revisited, Why L1 regularization creates sparsity?, Assignment: Implement SGD Classifier with Log Loss and L2 regularization Using SGD: without using sklearn
2021-10-21	Module 3: Foundations of Natural Language Processing and Machine Learning	Solving Optimization Problems	Revision Solving Optimization Problems
2021-10-22	Module 4: Machine Learning-II (Supervised Learning Models)	Support Vector Machines	Geometric Intuition, Why we take values +1 and and -1 for Support vector planes, Mathematical derivation, Loss function (Hinge Loss) based interpretation, Dual form of SVM formulation

Module 4: Machine **2021-10-23** Learning-II

(Supervised Learning Models)

Support Vector Machines

Support Vector Machines

Kernel trick, Polynomial kernel, RBF-Kernel, Domain specific Kernels, Train and run time complexities, nu-SVM: control errors and support vectors, SVM Regression, Cases, Code Sample, Assignment: Behaviour of Linear Models

Module 4: Machine

2021-10-24 Learning-II (Supervised

Learning Models)

Revision Support Vector Machines

Geometric Intuition of decision tree: Axis parallel hyperplanes, Sample Decision tree, Building a decision Tree:Entropy, Building a decision Tree:Information Gain, Building a decision Tree: Gini Impurity, Building a decision Tree: Constructing a DT, Building a decision

Tree: Splitting numerical features, Feature

standardization, Building a decision Tree:Categorical features with many possible values, Overfitting and Underfitting, Train and Run time complexity, Regression

using Decision Trees, Cases,

Code Samples, Assignment : Apply Decision Trees on Donors Choose Dataset

Module 4: Machine

2021-10-25 Learning-II (Supervised

Learning Models)

Decision Trees

Module 4: Machine

2021-10-26 Learning-II

(Supervised Learning Models)

Decision Trees

Revision Decision Trees

2021-10-27	Module 4: Machine Learning-II (Supervised Learning Models)	Ensemble Models	What are ensembles?, Bootstrapped Aggregation (Bagging) Intuition, Random Forest and their construction, Bias-Variance tradeoff, Bagging:Train and Run-time Complexity., Bagging:Code Sample, Extremely randomized trees, Assignment: Application of Bootstrap samples in Random Forest
2021-10-28	Module 4: Machine Learning-II (Supervised Learning Models)	Ensemble Models	Random Tree :Cases, Boosting Intuition, Residuals, Loss functions and gradients, Gradient Boosting, Regularization by Shrinkage, Train and Run time complexity, XGBoost: Boosting + Randomization, AdaBoost: geometric intuition, Stacking models
2021-10-29	Module 4: Machine Learning-II (Supervised Learning Models)	Ensemble Models	Cascading classifiers, Kaggle competitions vs Real world, Assignment : Apply GBDT/XGBOOST/LIGHT- GBM on Donors Choose Dataset
2021-10-30	Module 4: Machine Learning-II (Supervised Learning Models)	Ensemble Models	Revision Ensemble Models
2021-10-31	Module 5: Feature Engineering, Productionization and Deployment of ML Models	Featurization And Feature Importance	Introduction, Moving window for Time Series Data, Fourier decomposition, Deep learning features: LSTM, Image histogram, Keypoints: SIFT., Deep learning features: CNN, Relational data, Graph data, Indicator variables, Feature binning, Interaction variables, Mathematical transforms, Model specific featurizations, Feature orthogonality

2021-11-01	Module 5: Feature Engineering, Productionization and Deployment of ML Models	Featurization And Feature Importance	Domain specific featurizations, Feature slicing, Kaggle Winners solutions, Revision Featurization And Feature Importance
2021-11-02	Module 5: Feature Engineering, Productionization and Deployment of ML Models	Miscellaneous Topics	Calibration of Models:Need for calibration, Calibration Plots., Platt's Calibration/Scaling., Isotonic Regression, Code Samples, Modeling in the presence of outliers: RANSAC, Productionizing models, Retraining models periodically., A/B testing.
2021-11-03	Module 5: Feature Engineering, Productionization and Deployment of ML Models	Miscellaneous Topics	Data Science Life cycle, Productionization and deployment of Machine Learning Models, Productionization and deployment + Spark
2021-11-04	Module 5: Feature Engineering, Productionization and Deployment of ML Models	Miscellaneous Topics	Hands on Live Session: Deploy an ML model using APIs on AWS
2021-11-05	Module 5: Feature Engineering, Productionization and Deployment of ML Models	Miscellaneous Topics	Building web apps for ML/AI using StreamLit
2021-11-06	Module 5: Feature Engineering, Productionization and Deployment of ML Models	Miscellaneous Topics	Building web apps for ML/AI using StreamLit-ii, VC dimension,Revision Miscellaneous Topics

Module 6: Machine **2021-11-07** Learning Real World Case studies

Ouora Ouestion Pair Similarity

2021-11-08 Learning Real

Module 6: Machine **World Case** studies

Personalized Cancer Diagnosis

Business/Real world problem : Problem definition , Business objectives and constraints., Mapping to an ML problem : Data overview, Mapping to an ML problem : ML problem and performance metric., Mapping to an ML problem : Train-test split, EDA: Basic Statistics.. EDA: Basic Feature Extraction, EDA: Text Preprocessing, EDA: Advanced Feature Extraction. EDA: Feature analysis., EDA: Data Visualization: T-SNE., EDA: TF-IDF weighted Word2Vec featurization., ML Models :Loading Data, ML Models: Random Model, ML Models : Logistic Regression and Linear SVM. ML Models: XGBoost.Revision Ouora Question Pair Similarity Business/Real world problem : Overview, Business objectives and constraints., ML problem formulation :Data, ML problem formulation: Mapping real world to ML problem., ML problem formulation: Train, CV and Test data construction, Exploratory Data Analysis:Reading data & preprocessing, **Exploratory Data** Analysis:Distribution of Class-labels, Exploratory Data Analysis: "Random" Model, Univariate

Analysis:Gene feature

2021-11-09	Module 6: Machine Learning Real World Case studies	Personalized Cancer Diagnosis	Analysis:Variation Feature, Univariate Analysis:Text feature, Machine Learning Models:Data preparation, Baseline Model: Naive Bayes, K-Nearest Neighbors Classification, Logistic Regression with class balancing, Logistic Regression without class balancing, Linear-SVM.
2021-11-10	Module 6: Machine Learning Real World Case studies	Personalized Cancer Diagnosis	Random-Forest with one-hot encoded features, Random- Forest with response-coded features, Stacking Classifier, Majority Voting classifier, Revision Personalized Cancer Diagnosis
2021-11-11	Module 6: Machine Learning Real World Case studies	Facebook Friend Recommendation Using Graph Mining	Problem definition., Overview of Graphs: node/ vertex, edge/link, directed- edge, path., Data format & Limitations., Mapping to a supervised classification problem., Business constraints & Metrics., EDA:Basic Stats
2021-11-12	Module 6: Machine Learning Real World Case studies	Facebook Friend Recommendation Using Graph Mining	EDA:Follower and following stats., EDA:Binary Classification Task, EDA:Train and test split., Feature engineering on Graphs:Jaccard & Cosine Similarities, PageRank
2021-11-13	Module 6: Machine Learning Real World Case studies	Facebook Friend Recommendation Using Graph Mining	Shortest Path, Connected- components, Adar Index, Kartz Centrality, HITS Score, SVD, Weight features, Modeling, Assignment: Facebook Friend Recommendation
2021-11-14	Module 6: Machine Learning Real World Case studies	Facebook Friend Recommendation Using Graph Mining	Assignment: SQL

Univariate

Module 6: Machine **2021-11-15** Learning Real World Case studies

Facebook Friend Recommendation Using **Graph Mining**

Revision Facebook Friend Recommendation Using **Graph Mining**

Module 6: Machine **2021-11-16** Learning Real World Case studies

Taxi Demand Prediction in New York City

Machine **2021-11-17** Learning Real **World Case**

Module 6: studies

Taxi Demand Prediction in New York City

Business/Real world problem Overview, Objectives and Constraints, Mapping to ML problem: Data, Mapping to ML problem :dask dataframes, Mapping to ML problem: Fields/Features.. Mapping to ML problem :Time series forecasting/ Regression, Mapping to ML problem:Performance metrics, Data Cleaning :Latitude and Longitude data, Data Cleaning: Trip Duration., Data Cleaning :Speed., Data Cleaning :Distance., Data Cleaning :Fare, Data Cleaning :Remove all outliers/ erroneous points, Data Preparation:Clustering/ Segmentation Data Preparation:Time

binning, Data Preparation: Smoothing timeseries data., Data Preparation: Smoothing timeseries data cont... Data Preparation: Time series and Fourier transforms., Ratios and previous-time-bin values, Simple moving average, Weighted Moving average.. Exponential weighted moving average, Results., Regression models: Train-Test split & Features, Linear regression., Random Forest regression, Xgboost Regression, Model comparison, Revision Taxi Demand Prediction in New York City

Module 6:
Machine
2021-11-18 Learning Real
World Case
studies

Stack Overflow Tag Predictor

Module 6: Machine 2021-11-19 Learning Real World Case studies

Stack Overflow Tag Predictor

Module 6:
Machine
2021-11-20 Learning Real
World Case
studies

Microsoft Malware Detection Business/Real world problem, Business objectives and constraints, Mapping to an ML problem: Data overview, Mapping to an ML problem:ML problem formulation., Mapping to an ML problem:Performance metrics., Hamming loss, EDA:Data Loading, EDA:Analysis of tags, EDA:Data Preprocessing, Data Modeling: Multi label Classification

Data preparation., Train-Test Split, Featurization, Logistic regression: One VS Rest, Sampling data and tags+Weighted models., Logistic regression revisited, Why not use advanced techniques, Revision Stack Overflow Tag Predictor Problem Definition, Objectives and Constraints, Data Overview, ML Problem, Train and Test Splitting, **Exploratory Data** Analysis:Class Distribution, **Exploratory Data** Analysis:Feature Extraction from Byte Files, Exploratory Data Analysis: Multivariate analysis of features from byte files, Train-Test class Distribution, ML models using byte files only :Random Model, K-NN, Logistic regression, Random Forest and XGBoost, Feature Extraction and Multi Threading, File Size Feature, Univariate Analysis, T-SNE Analysis, ML Models on ASM File features. Models on all features: t-SNE, Models on all features:

RandomForest and XGBoost,

Assignment : Microsoft Malware Detection

2021-11-21	Module 6: Machine Learning Real World Case studies	Microsoft Malware Detection	Revision Microsoft Malware Detection
2021-11-22	Module 7: Data Mining (Unsupervised Learning) and Recommender systems+Real World Case studies	Clustering	What is Clustering?, Unsupervised learning, Applications, Metrics for Clustering, K-Means: Geometric intuition, Centroids, K-Means: Mathematical formulation: Objective function, K-Means Algorithm., How to initialize: K-Means++
2021-11-23	Module 7: Data Mining (Unsupervised Learning) and Recommender systems+Real World Case studies	Clustering	Failure cases/Limitations, K-Medoids, Determining the right K, Code Samples, Time and space complexity, Assignment :Clustering on Graph Dataset
2021-11-24	Module 7: Data Mining (Unsupervised Learning) and Recommender systems+Real World Case studies	Clustering	Revision Clustering
2021-11-25	Module 7: Data Mining (Unsupervised Learning) and Recommender systems+Real World Case studies	Hierarchical Clustering	Agglomerative & Divisive, Dendrograms, Agglomerative Clustering, Proximity methods: Advantages and Limitations., Time and Space Complexity, Limitations of Hierarchical Clustering, Code sample,Revision Hierarchical Clustering

2021-11-26	Module 7: Data Mining (Unsupervised Learning) and Recommender systems+Real World Case studies	DBSCAN Technique	Density based clustering, MinPts and Eps: Density, Core, Border and Noise points, Density edge and Density connected points., DBSCAN Algorithm, Hyper Parameters: MinPts and Eps, Advantages and Limitations of DBSCAN, Time and Space Complexity, Code samples., Question and Answers, Revision DBSCAN Technique
2021-11-27	Module 7: Data Mining (Unsupervised Learning) and Recommender systems+Real World Case studies	Recommender Systems and Matrix Factorization	Problem formulation: IMDB Movie reviews, Content based vs Collaborative Filtering, Similarity based Algorithms, Matrix Factorization: PCA, SVD, Matrix Factorization: NMF, Matrix Factorization for Collaborative filtering, Matrix Factorization for feature engineering, Clustering as MF, Hyperparameter tuning, Matrix Factorization for recommender systems: Netflix Prize Solution, Cold Start problem, Word vectors as MF
2021-11-28	Module 7: Data Mining (Unsupervised Learning) and Recommender systems+Real World Case studies	Recommender Systems and Matrix Factorization	Eigen-Faces, Code example., Assignment: Recommendation Systems and Truncated SVD: Implement SGD algorithm to predict the ratings
2021-11-29	Module 7: Data Mining (Unsupervised Learning) and Recommender systems+Real World Case	Recommender Systems and Matrix Factorization	Revision Recommender Systems and Matrix Factorization

studies

2021-11-30

Module 7: Data Mining (Unsupervised Learning) and Recommender systems+Real World Case studies

Amazon Fashion Discovery Engine

Problem Statement: Recommend similar apparel products in e-commerce using product descriptions and Images, Plan of action, Amazon product advertising API, Data folders and paths, Overview of the data and Terminology, Data cleaning and understanding: Missing data in various features. Understand duplicate rows, Remove duplicates: Part 1, Remove duplicates: Part 2, Text Pre-Processing: Tokenization and Stop-word removal, Stemming, Text based product similarity :Converting text to an n-D vector: bag of words, Code for bag of words based product similarity, TF-IDF: featurizing text based on word-importance, Code for TF-IDF based product similarity

2021-12-01

Module 7: Data Mining (Unsupervised Learning) and Recommender systems+Real World Case studies

Amazon Fashion Discovery Engine

2021-12-02

Module 7: Data Mining (Unsupervised Learning) and Recommender systems+Real World Case studies

Netflix Movie Recommendation system

Code for IDF based product similarity, Text Semantics based product similarity: Word2Vec(featurizing text based on semantic similarity), Code for Average Word2Vec product similarity, TF-IDF weighted Word2Vec, Code for IDF weighted Word2Vec product similarity, Weighted similarity using brand and color, Code for weighted similarity, Building a real world solution, Deep learning based visual product similarity:ConvNets: How to featurize an image: edges, shapes, parts, Using Keras + Tensorflow to extract features, Visual similarity based product similarity, Measuring goodness of our solution :A/ B testing, Exercise: Build a weighted Nearest neighbor model using Visual, Text, Brand and Color.Revision Amazon Fashion Discovery Engine

Business/Real World Problem: Problem Definition, Objectives and Constraints, Mapping to ML problem: Data Overview, Mapping to ML problem : ML problem formulation, Exploratory Data Analysis: Data preprocessing, Exploratory Data Analysis: Temporal Train-Test split, Exploratory Data Analysis: Preliminary Data Analysis, Exploratory Data Analysis: Sparse matrix representation, Exploratory Data Analysis: Average ratings for various slices, **Exploratory Data** Analysis:Cold start problem, Computing Similarity matrices:User-User similarity matrix

2021-12-03	Module 7: Data Mining (Unsupervised Learning) and Recommender systems+Real World Case studies	Netflix Movie Recommendation system	Computing Similarity matrices:Movie-Movie similarity, Computing Similarity matrices:Does movie-movie similarity work?, ML Models:Surprise library, Overview of the modelling strategy., Data Sampling., Google drive with intermediate files, Featurizations for regression., Data transformation for Surprise., Xgboost with 13 features, Surprise Baseline model., Xgboost + 13 features +Surprise baseline model, Surprise KNN predictors, Matrix Factorization models using Surprise, SVD ++ with implicit feedback
2021-12-04	Module 7: Data Mining (Unsupervised Learning) and Recommender systems+Real World Case studies	Netflix Movie Recommendation system	Final models with all features and predictors., High Level + End-End Design of a Music Recommendation system - I, High Level + End-End Design of a Music Recommendation system - II
2021-12-05	Module 7: Data Mining (Unsupervised Learning) and Recommender systems+Real World Case studies	Netflix Movie Recommendation system	Building a simple Youtube recommendation using basic Math,Revision Netflix Movie Recommendation system
2021-12-06	Module 8: Neural Networks, Computer Vision and Deep Learning	Neural Networks	History of Neural networks and Deep Learning., How Biological Neurons work?, Growth of biological neural networks, Diagrammatic representation: Logistic Regression and Perceptron, Multi-Layered Perceptron (MLP).

2021-12-07	Module 8: Neural Networks, Computer Vision and Deep Learning	Neural Networks	Notation, Training a single- neuron model., Training an MLP: Chain Rule, Training an MLP:Memoization
2021-12-08	Module 8: Neural Networks, Computer Vision and Deep Learning	Neural Networks	Backpropagation., Activation functions, Vanishing Gradient problem., Bias-Variance tradeoff., Decision surfaces: Playground
2021-12-09	Module 8: Neural Networks, Computer Vision and Deep Learning	Neural Networks	Revision Neural Networks
2021-12-10	Module 8: Neural Networks, Computer Vision and Deep Learning	Deep Multi Layer Perceptrons	Deep Multi-layer perceptrons:1980s to 2010s, Dropout layers & Regularization., Rectified Linear Units (ReLU)., Weight initialization., Batch Normalization.
2021-12-11	Module 8: Neural Networks, Computer Vision and Deep Learning	Deep Multi Layer Perceptrons	Optimizers:Hill-descent analogy in 2D, Optimizers:Hill descent in 3D and contours., SGD Recap, Batch SGD with momentum., Nesterov Accelerated Gradient (NAG), Optimizers:AdaGrad, Optimizers: Adadelta andRMSProp, Adam, Which algorithm to choose when?, Gradient Checking and clipping, Softmax and Cross- entropy for multi-class classification., How to train a Deep MLP?, Auto Encoders.
2021-12-12	Module 8: Neural Networks, Computer Vision and Deep Learning	Deep Multi Layer Perceptrons	Word2Vec :CBOW, Word2Vec: Skip-gram, Word2Vec :Algorithmic Optimizations., Assignment : Backpropagation and Gradient Checking

2021-12-13	Module 8: Neural Networks, Computer Vision and Deep Learning	Deep Multi Layer Perceptrons	Revision Deep Multi Layer Perceptrons
2021-12-14	Module 8: Neural Networks, Computer Vision and Deep Learning	Tensorflow And Keras	Tensorflow and Keras overview, GPU vs CPU for Deep Learning., Google Colaboratory., Install TensorFlow, Online documentation and tutorials, Softmax Classifier on MNIST dataset.
2021-12-15	Module 8: Neural Networks, Computer Vision and Deep Learning	Tensorflow And Keras	MLP: Initialization, Model 1: Sigmoid activation., Model 2: ReLU activation., Model 3: Batch Normalization., Model 4: Dropout., MNIST classification in Keras., Hyperparameter tuning in Keras., Assignment: Working with Callbacks
2021-12-16	Module 8: Neural Networks, Computer Vision and Deep Learning	Tensorflow And Keras	Exercise: Try different MLP architectures on MNIST dataset.,Revision Tensorflow And Keras
2021-12-17	Module 8: Neural Networks,	Convolutional Neural Nets	Biological inspiration: Visual Cortex, Convolution:Edge Detection on images., Convolution:Padding and strides, Convolution over RGB images., Convolutional layer.
2021-12-18	Module 8: Neural Networks, Computer Vision and Deep Learning	Convolutional Neural Nets	Max-pooling., CNN Training: Optimization, Example CNN: LeNet [1998], ImageNet dataset., Data Augmentation., Convolution Layers in Keras, AlexNet, VGGNet, Residual Network., Inception Network., What is Transfer learning., Code example: Cats vs Dogs., Code Example: MNIST dataset., Assignment: Transfer Learning - (Given an rvl-cdip dataset, classify the given document using transfer learning)

2021-12-19	Module 8: Neural Networks, Computer Vision and Deep Learning	Convolutional Neural Nets	Assignment : Document Classification with CNN
2021-12-20	Module 8: Neural Networks, Computer Vision and Deep Learning	Convolutional Neural Nets	Revision Convolutional Neural Nets
2021-12-21	Module 8: Neural Networks, Computer Vision and Deep Learning	Long Short-Term Memory(LSTMS)	Why RNNs?, Recurrent Neural Network., Training RNNs: Backprop., Types of RNNs., Need for LSTM/GRU.
2021-12-22	Module 8: Neural Networks, Computer Vision and Deep Learning	Long Short-Term Memory(LSTMS)	LSTM., GRUs., Deep RNN., Bidirectional RNN., Code example : IMDB Sentiment classification
2021-12-23	Module 8: Neural Networks, Computer Vision and Deep Learning	Long Short-Term Memory(LSTMS)	Assignment : LSTM on Donors Choose - (LSTM with Text and categorical data)
2021-12-24	Module 8: Neural Networks, Computer Vision and Deep Learning	Long Short-Term Memory(LSTMS)	Assignment: CNN on CIFR - (Classifying CIFAR-10 dataset images with DenseNet and work with optimization)
2021-12-25	Module 8: Neural Networks, Computer Vision and Deep Learning	Long Short-Term Memory(LSTMS)	Exercise: Amazon Fine Food reviews LSTM model., Deep Learning: Generative Adversarial Networks (GANs):Live session on Generative Adversarial Networks (GAN), Encoder-Decoder Models:LIVE: Encoder-Decoder Models
2021-12-26	Module 8: Neural Networks, Computer Vision and Deep Learning	Long Short-Term Memory(LSTMS)	Attention Models in Deep Learning:Attention Models in Deep Learning, Assignment : NLP Attention Mechanism
2021-12-27	Module 8: Neural Networks, Computer Vision and Deep Learning	Long Short-Term Memory(LSTMS)	Deep Learning: Transformers and BERT:Transformers and BERT

2021-12-28	Module 8: Neural Networks, Computer Vision and Deep Learning	Long Short-Term Memory(LSTMS)	Assignment : NLP with Transfer Learning - (Classification of reviews using BERT embeddings)
2021-12-29	Module 8: Neural Networks, Computer Vision and Deep Learning	Long Short-Term Memory(LSTMS)	Deep Learning: Image Segmentation:Live session on Image Segmentation
2021-12-30	Module 8: Neural Networks, Computer Vision and Deep Learning	Long Short-Term Memory(LSTMS)	Assignment: Computer Vision: Segmentation - (Self Driving Cars: Detect the Objects on the road using Semantic Segmentation)
2021-12-31	Module 8: Neural Networks, Computer Vision and Deep Learning	Long Short-Term Memory(LSTMS)	Deep Learning: Object Detection:Object Detection
2022-01-01	Module 8: Neural Networks, Computer Vision and Deep Learning	Long Short-Term Memory(LSTMS)	Object Detection YOLO V3, Generative Adversarial Networks (GANs)
2022-01-02	Module 8: Neural Networks, Computer Vision and Deep Learning	Long Short-Term Memory(LSTMS)	Encoder Decoder Models, Attention Models in Deep Learning, Transformers and BERT
2022-01-03	Module 8: Neural Networks, Computer Vision and Deep Learning	Long Short-Term Memory(LSTMS)	Image Segmentation
2022-01-04	Module 8: Neural Networks, Computer Vision and Deep Learning	Long Short-Term Memory(LSTMS)	Object Detection
2022-01-05	Module 8: Neural Networks, Computer Vision and Deep Learning	Long Short-Term Memory(LSTMS)	Object Detection YOLO V3

2022-01-06	Module 8: Neural Networks, Computer Vision and Deep Learning	Long Short-Term Memory(LSTMS)	GPT-1, 2 and GPT-3 Models
2022-01-07	Module 8: Neural Networks, Computer Vision and Deep Learning	Long Short-Term Memory(LSTMS)	Design and Build a smart store,Revision Long Short- Term Memory(LSTMS)
2022-01-08	Module 9: Deep Learning Real World Case Studies	Human Activity Recognition	Human Activity Recognition Problem definition, Dataset understanding, Data cleaning & preprocessing, EDA:Univariate analysis., EDA:Data visualization using t-SNE, Classical ML models., Deep-learning Model., Exercise: Build deeper LSTM models and hyper-param tune them,Revision Human Activity Recognition Problem Definition,
2022-01-09	Module 9: Deep Learning Real World Case Studies	Self Driving Car	Datasets., Data understanding & Analysis :Files and folders., Dash-cam images and steering angles., Split the dataset: Train vs Test, EDA: Steering angles, Mean Baseline model: simple, Deep-learning model:Deep Learning for regression: CNN, CNN+RNN, Batch load the dataset., NVIDIA's end to end CNN model., Train the model., Test and visualize the output., Extensions., Revision
2022-01-10	Module 9: Deep Learning Real World Case Studies	Music Generation Using Deep Learning	Self Driving Car Real-world problem, Music representation, Char-RNN with abc-notation:Char- RNN model, Char-RNN with abc-notation:Data preparation.

2022-01-11	Module 9: Deep Learning Real World Case Studies	Music Generation Using Deep Learning	,TimeDistributed-Dense layer, Char-RNN with abcnotation: State full RNN, Char-RNN with abcnotation: Model architecture, Model training., Char-RNN with abcnotation: Music generation., Char-RNN with abcnotation: Generate tabla music, MIDI music generation., Case Study 13: Semantic Search Engine for Q&A [Design + Code]: Semantic Search for Q&A [Design + Code] Part 1
2022-01-12	Module 9: Deep Learning Real World Case Studies	Music Generation Using Deep Learning	Case Study 13: Semantic Search Engine for Q&A [Design + Code]:Semantic Search for Q&A [Design + Code] Part 2 , Case Study 13: Semantic Search Engine for Q&A [Design + Code]:Semantic Search for Q&A [Design + Code] Part 3, Case Study 13: Semantic Search Engine for Q&A [Design + Code]:Semantic Search for Q&A [Design + Code] Part 4 , Survey blog, Assignment : Spoken Digit Recognition - (Working with Audio Dataset: Detect the sounds using spectrograms and Deep Learning)
2022-01-13	Learning Real World Case	Music Generation Using Deep Learning	Revision Music Generation Using Deep Learning

Char-RNN with abc-

notation: Many to Many RNN

Applied AI Course Wishes You All The Best

Studies

Please mail us to team@appliedaicourse.com if you have any queries