CME 2201 - Assignment 1

INVERTED INDEX BY USING HASH TABLES

Table 1. Performance matrix

Load	Hash	Collisio	Collisio	Indexin	Avg.	Min.	Max.
Facto	Functio	n	n Count	g Time	Search	Search	Search
r	n	Handlin			Time	Time	Time
		g					
α=50 %	SSF	LP	187096	67.832	1608445	51	8555
				seconds	nanosecond	nanosecond	nanosecond
					S	S	S
		DH	177566	7.736	197000	44	3874
				seconds	nanosecond	nanosecond	nanosecond
					S	S	S
	PAF	LP	483919	6.004	198828	28	25014
				seconds	nanosecond	nanosecond	nanosecond
					S	S	S
		DH	483336	5.978	138281	22	7144
				seconds	nanosecond	nanosecond	nanosecond
					S	S	S
α=80 %	SSF	LP	187095	72.221	1659367	52	7501
				seconds	nanosecond	nanosecond	nanosecond
					S	S	S
		DH	175489	8.12	188995	44	2605
				seconds	nanosecond	nanosecond	nanosecond
					S	S	S
	PAF	LP	449459	6.393	166497	21	21553
				seconds	nanosecond	nanosecond	nanosecond
					S	S	S
		DH	450600	5.911	143400	22	13062
				seconds	nanosecond	nanosecond	nanosecond
					S	S	S

Prepared a table to help us understand which types of hashing are more efficient in the project. When we look at the table, the more the load factor increases, the more the hashing time increases but the number of collisions decreases. Other than that, there are minor changes in searching time. If we compare collision handling types, less collision occurs in DH and hashing happens faster. As a hash function, less collision occurs in SSF, but spends more

search time. Finally, hashing spends the least amount of time in the case of load factor 0.8, hash function type is PAF and collision handling type is DH;

Hüseyin Erdoğan

2017510031