弦上驻波实验报告

一、数据记录和处理

1.弦线线密度的测量

M=2.42g

 $\sigma m = 0.01g$

L=810.5cm

 $\sigma L=0.2cm$

D=0.795mm

得到线密度λ=2.98*10^-3kg/m

$$\sigma\lambda = \lambda \sqrt{\left(\frac{\sigma m}{m}\right)^2 + \left(\frac{\sigma L}{L}\right)^2} = 0.01 \times 10^{-3} \text{kg/m}$$

 $\lambda \pm \sigma \lambda = (2.98 \pm 0.01) *10^{-3} \text{kg/m}$

2.对同一弦线、固定有效长度和张力,测量共振频率与驻波波腹个数的关系系,并测定波速。L=60cm,T=3mg

表 1: f-n 数据记录表

n	f/Hz			
1	80.4			
2	162			
3	243.4			
4	325.4			
5	407.6			

由表 1 数据最小二乘法拟合得到 图 1。

f=vn/(2L)

于是由斜率可得 v=97.9m/s

$$\sigma v = v \sqrt{\left(\frac{\sigma a}{a}\right)^2 + \left(\frac{\sigma L}{L}\right)^2} = 0.2 \text{m/s}$$

 $v\pm\sigma v=(97.9\pm0.2) \text{ m/s}$

在测量过程中,频率逐步逼近共振频率时,弦线振幅明显增大,最终振幅肉眼可见,并发出该共振频率的声音。判据:在接近共振频率时以 0.1Hz 为分度调节,待弦的振动稳定,接收器波形振幅最大即发生了共振。

3. 对同一弦线、固定有效长度、改变张力测量共振频率(基频), 用最小二乘法作线性拟合处理数据。

表 2: f-T 数据记录表

根号T	T/mg	f/Hz	InT	Inf	f^2/Hz^2
1.00	1	48.4	0.00	3.88	2343
1.41	2	66	0.69	4.19	4356
1.73	3	81	1.10	4.39	6561
2.00	4	92	1.39	4.52	8464
2.24	5	103.6	1.61	4.64	10733

由表 2 数据最小二乘法拟合得到图 2,3,4。

图 2 的斜率=0.472,十分接近 0.5,说明 f^2 大致于 T 成正比,但有少量偏离 猜想:由于刀口摩擦力和杠杆系统的自重,T 需要加一个常数修正项 a, f^2 与 T+a 成正比 由图四 f_2 -T 关系的截距得 g_2 -T $g_$

修正后再对 Inf-In(T+a)使用最小二乘法分析得斜率=0.497, 说明猜想合理

4. 对同一弦线、固定张力、改变弦线有效长度测量共振频率(基频), 用最小二乘法作线性拟合处理数据。

表 3: f-L 数据记录表

1/L/cm^-	L/cm	f/Hz	InL	Inf		
1						
0.0167	60	81	4.09	4.39		
0.0182	55	87.4	4.01	4.47		
0.0200	50	96.2	3.91	4.57		
0.0222	45	107.2	3.81	4.67		
0.0250	40	121.2	3.69	4.80		
0.0286	35	138.6	3.56	4.93		
0.0333	30	161.8	3.40	5.09		

图 6 的 Inf-InL 斜率为-1.008(r=0.9999),十分接近-1,说明 f 与 L 成反比。

图 7 的 f-L^-1 斜率为

二、分析与讨论:

1.主要误差来源:

杠杆系统的自重、刀口摩擦力带来系统误差,这一部分可以被修正,在对 Inf-InT 关系的分析中我们做了成功的尝试。

由于弦线并非理想弦,其非线性效应可能产生误差

2.在共振振幅较大时,可以观察到倍频现象,正弦波的波峰不再左右对称。原因分析:

第一,由于弦线并非理想弦,其非线性效应产生倍频信号;

第二、驱动的电磁力经过小量近似后才是谐振的、它本身就含有倍频分量。

3. 分析讨论小振动条件满足程度对实验结果的影响。

测量中发现,弦的振动幅度越大,共振频率越向高处偏离。振幅过大时,不但弦线会产生非线性效应,空气阻力(与速度的二次方成正比)也会干扰实验。