Keshav Dandeva #11

Numerical Methods (ENUME) – Project Assignment C: Solving ordinary differential equations

1. Program the functions implementing the system of differential-algebraic equations of the form:

$$\frac{d\mathbf{v}(t)}{dt} = \mathbf{A} \cdot \mathbf{v}(t) + \mathbf{b} \cdot x(t)$$
where: $\mathbf{A} = \begin{bmatrix} 0 & 1 & -1 \\ 0 & 1 & -2 \\ 1200 & -282 & -62 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix}$ and $\mathbf{c} = \begin{bmatrix} 820 \\ -296.5 \\ -8 \end{bmatrix}$

2. Solve this system of equations with zero initial conditions for:

$$x(t) = \begin{cases} 0 & \text{dla } t \le 0 \\ 1 & \text{dla } t > 0 \end{cases} \quad \text{for } t \in (0,5),$$

and for:

$$x(t) = \begin{cases} 0 & \text{dla } t \le 0 \\ \exp(-t) & \text{dla } t > 0 \end{cases} \text{ for } t \in (0,5)$$

using the *ode45* procedure, setting the parameters 'AbsTol' and 'RelTol' to the values guaranteeing the maximum accuracy of the solution.

3. Solve the system of equations for both functions x(t), defined in Section 2, using the following methods:

- the explicit Adams-Bashwithth method:
$$\mathbf{v}_n = \mathbf{v}_{n-1} + h \sum_{k=1}^K \beta_k f(t_{n-k}, \mathbf{v}_{n-k})$$
 with $K = 2$;

- the implicit Gear method:
$$\mathbf{v}_n = \sum_{k=1}^K \alpha_k \mathbf{v}_{n-k} + h \cdot \beta_0 f(t_n, \mathbf{v}_n)$$
 with $K = 5$;

for various values of the integration step $h \in [h_{\min}, h_{\max}]$. For the multistep methods, determine the first K values of the vector \mathbf{v} by means of the lower-order methods belonging to the same family. Choose the range $[h_{\min}, h_{\max}]$ in such a way as to illustrate and explain the phenomenon of numerical instability for excessive values of h. Compute the estimate $\hat{y}(t)$ of y(t) and determine the following indicators of its uncertainty:

$$\delta_{2}(h) = \frac{\left\|\hat{y}(t;h) - \dot{y}(t)\right\|_{2}}{\left\|\dot{y}(t)\right\|_{2}} \quad \text{and} \quad \delta_{\infty}(h) = \frac{\left\|\hat{y}(t;h) - \dot{y}(t)\right\|_{\infty}}{\left\|\dot{y}(t)_{2}\right\|_{\infty}}$$

 $\dot{y}(t)$ is the solution obtained in Section 2. Plot the graphs of $\delta_2(h)$ and $\delta_\infty(h)$ for both methods and both functions x(t).

	Adams-Bashforth Methods						Adams-Moulton Methods							Implicit Gear Methods							
K	β_1	eta_2	β_3	$eta_{\scriptscriptstyle 4}$	$eta_{\scriptscriptstyle 5}$	β_6	$oldsymbol{eta}_0$	β_1	$oldsymbol{eta}_2$	β_3	$oldsymbol{eta_4}$	$eta_{\scriptscriptstyle 5}$	$oldsymbol{eta_6}$	$oldsymbol{eta}_0$	α_1	$\alpha_{\scriptscriptstyle 2}$	α_3	$lpha_{\scriptscriptstyle 4}$	$\alpha_{\scriptscriptstyle 5}$	$\alpha_{\scriptscriptstyle 6}$	
1	1						$\frac{1}{2}$	$\frac{1}{2}$						1	1						
2	$\frac{3}{2}$	$-\frac{1}{2}$					$\frac{5}{12}$	$\frac{8}{12}$	$-\frac{1}{12}$					$\frac{2}{3}$	$\frac{4}{3}$	$-\frac{1}{3}$					
3	$\frac{23}{12}$	$-\frac{16}{12}$	$\frac{5}{12}$				$\frac{9}{24}$	$\frac{19}{24}$	$-\frac{5}{24}$	$\frac{1}{24}$				$\frac{6}{11}$	$\frac{18}{11}$	$-\frac{9}{11}$	$\frac{2}{11}$				
4	$\frac{55}{24}$	$-\frac{59}{24}$	$\frac{37}{24}$	$-\frac{9}{24}$			$\frac{251}{720}$	$\frac{646}{720}$	$-\frac{264}{720}$	$\frac{106}{720}$	$-\frac{19}{720}$			$\frac{12}{25}$	$\frac{48}{25}$	$-\frac{36}{25}$	$\frac{16}{25}$	$-\frac{3}{25}$			
5	$\frac{1901}{720}$	$-\frac{2774}{720}$	$\frac{2616}{720}$	$-\frac{1274}{720}$	$\frac{251}{720}$		$\frac{475}{1440}$	$\frac{1427}{1440}$	$-\frac{798}{1440}$	$\frac{482}{1440}$	$-\frac{173}{1440}$	$\frac{27}{1440}$		$\frac{60}{137}$	$\frac{300}{137}$	$-\frac{300}{137}$	$\frac{200}{137}$	$-\frac{75}{137}$	$\frac{12}{137}$		
6	$\frac{4277}{1440}$	$-\frac{7923}{1440}$	$\frac{9982}{1440}$	$-\frac{7298}{1440}$	$\frac{2877}{1440}$	$-\frac{475}{1440}$	$\frac{19087}{60480}$	$\frac{65112}{60480}$	$-\frac{46461}{60480}$	$\frac{37504}{60480}$	$-\frac{20211}{60480}$	$\frac{6312}{60480}$	$-\frac{863}{60480}$	$\frac{60}{147}$	$\frac{360}{147}$	$-\frac{450}{147}$	$\frac{400}{147}$	$-\frac{225}{147}$	$\frac{72}{147}$	$-\frac{10}{147}$	