

Modellbildung mechatronischer Systeme (MMS)

Mechatronische Wandler

Elementarnetzwerke

Annahmen

RC-Glied als Zweitor aus der Aufgabenstellung:

Zerlegung in Elementarnetzwerke (Teilaufgabe 1)

Elementarnetzwerk 1

$$I_{X1}$$
 I_{X2} Y_1 Z Y_2

Netzwerkparameter

$$G_{11} = \left(\frac{I_{X1}}{Y_1}\right)_{Y_2 = 0} = \frac{1}{Z}$$

$$G_{12} = \left(\frac{I_{X1}}{Y_2}\right)_{Y_1 = 0} = -\frac{1}{Z}$$

Symmetrie

$$G_{11}\!=\!G_{22}$$

 G_{12} = G_{21}

Leitwertmatrix G

$$G = \begin{bmatrix} \frac{1}{Z} & -\frac{1}{Z} \\ -\frac{1}{Z} & \frac{1}{Z} \end{bmatrix}$$

Kettenmatrix (A-Matrix)

$$A_1 = \begin{bmatrix} 1 & Z \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & Z_1 \\ 0 & 1 \end{bmatrix}$$

				1			
— I4	മന	മന	rar	nat	-714	erk/	, ,
		C. I I	ucai	110.1		/CIP	· ~

 Y_1 Z Y_2

Netzwerkparameter

$$Z_{11} = \left(\frac{Y_1}{I_{X1}}\right)_{I_{X2} = 0} = Z$$

$$Z_{12} = \left(\frac{Y_1}{I_{X2}}\right)_{I_{X2} = 0} = Z$$

Symmetrie

$$Z_{11} = Z_{22}$$

$$Z_{12} = Z_{21}$$

Impedanzmatrix Z

$$Z = \begin{bmatrix} Z & Z \\ Z & Z \end{bmatrix}$$

Kettenmatrix (A-Matrix)

$$A_2 = \begin{bmatrix} 1 & 0 \\ \frac{1}{Z} & 1 \end{bmatrix} = \begin{bmatrix} 1 & Z_1 \\ 0 & 1 \end{bmatrix}$$

Gesamtsystem aus Teilaufgabe 2

Produkt beider Kettenmatrizen

$$A = A_1 \cdot A_2$$

$$A = \begin{bmatrix} 1 & Z_1 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & Z_1 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 + \frac{Z_1}{Z_2} & Z_1 \\ \frac{1}{Z_2} & 1 \end{bmatrix}$$

Gleichungssystem des Gesamtsystems

$$U_1 = A_{11} \cdot U_2 + A_{12} \cdot I_2$$

$$I_1\!=\!A_{21}\!\cdot\!U_2\!+\!A_{22}\!\cdot\!I_2$$

Voraussetzung laut Aufgabenstellung

$$I_2 = 0$$

$$U_1 = A_{11} \cdot U_2$$

Übertragungsverhalten

$$\left(\frac{U_2}{U_1}\right)_{L_2=0} = \frac{1}{A_{11}}$$

Lösung für Teilaufgabe 3

Übertragungsverhalten
$$\left(\frac{U_2}{U_1} \right)_{I_2 = 0} = \frac{1}{1 + \frac{Z_1}{Z_2}}$$

Elementarnetzwerk 1
$$Z_1 = R_1$$

Elementarnetzwerk 2
$$Z_2 = \frac{1}{j\omega \cdot C}$$

$$\left(\frac{U_2}{U_1}\right)_{I_2=\,0} = \frac{1}{1+\frac{R_1}{\frac{1}{1-C}}} = \frac{1}{1+j\omega \cdot R_1C}$$

Lösung für Teilaufgabe 4

Gleichungssystem des Gesamtsystems
$$U_1 = A_{11} \cdot U_2 + A_{12} \cdot I_2$$

$$I_1 = A_{21} \cdot U_2 + A_{22} \cdot I_2$$

Last
$$I_2 = \frac{U_2}{R_2}$$

$$I_1 = A_{21} \cdot U_2 + A_{22} \cdot \frac{U_2}{R_2}$$

Ausgangsspannung
$$U_2 = \frac{R_2 \cdot U_1}{A_{11} \cdot R_2 + A_{12}}$$

A-Parameter
$$A_{12} = R_1$$

$$A_{11} = 1 + \frac{Z_1}{Z_2} = 1 + \frac{R_1}{\frac{1}{i\omega \cdot C}}$$

$$\ddot{\textbf{U}} \textbf{bertragungsverhalten unter Last} \qquad \left(\frac{U_2}{U_1}\right)_{R_1} = \frac{R_2}{R_1 \cdot R_2 \cdot j \omega \cdot C + R_2 + R_1}$$

Lösung für Teilaufgabe 5

Eingangsspannung $U_1 = 5 \ V$

Frequenz $f \coloneqq 1 \ kHz$

Widerstände $R_1\coloneqq 1$ $k\Omega$ $R_2\coloneqq 500$ Ω

Kapazität $C \coloneqq 1 \,\mu F$

Kreisfrequenz $\omega \coloneqq 2 \cdot \pi \cdot f$

Ausgangsspannung mit Last $U_{2L}\coloneqq \frac{R_2}{R_1 \cdot R_2 \cdot 1\mathrm{i} \ \omega \cdot C + R_2 + R_1} \cdot U_1$

Ausgangsspannung ohne Last $U_2\!\coloneqq\!\frac{1}{1+1\mathrm{i}\ \omega\!\cdot\! R_1\!\cdot\! C}\!\cdot\! U_1$

Ausgangsspannung mit Last $\left|U_{2L}\right| = 0.718 \; \textit{V} \qquad \arg\left(U_{2L}\right) = -64.477 \; \textit{deg}$

Ausgangsspannung ohne Last $\left|U_{2}\right|=0.786~V~{
m arg}\left(U_{2}\right)=-80.957~{\it deg}$