Smart Factory Energy Prediction - Final Report

1. Project Approach

Objective: Develop a predictive model for equipment energy consumption using historical sensor and operational data.

Methodology

- 1. Exploratory Data Analysis (EDA)
 - o Analyzed data distributions, trends, and correlations.
 - o Identified non-linear relationships between variables (e.g., temperature/humidity vs. energy use).
- 2. Data Preprocessing
 - o Missing/Invalid Data: Retained all data points using time-series-friendly methods:
 - Forward/backward filling (superior to median imputation for temporal data).
 - o Outlier Handling: Applied IQR with a factor of 9 to minimize data loss.
- 3. Feature Engineering
 - o Extracted time-based features: hour, month, weekend from timestamps.
 - o Removed irrelevant features (*random variable 1/2*) with low correlation to target (≤ 0.47).
- 4. Model Selection
 - o Candidate Models: Random Forest, XGBoost, Multiple Linear Regression (discarded due to non-linearity).
 - o Final Model: Random Forest (outperformed XGBoost in cross-validation).

2. Key Insights

Data Patterns

- Energy Consumption Peaks:
 - o High in extreme temperature/humidity zones (see *Scatter Plot*).
 - o Non-linear relationship with sensor data (confirmed via heatmaps).

Feature Impact

- Critical Features: zone_temperature, humidity, hour_of_day.
- Discarded Features: Low-correlation variables to reduce noise.

3. Model Performance

Metric	Score	Interpretation
R²	0.56	Explains 56% of energy variance
RMSE	59.66	Moderate prediction error
MAE	30.30	Average absolute error is low

Performance is acceptable given sensor data noise.

4. Energy-Saving Recommendations

Operational Adjustments

- Maintenance Scheduling: Prioritize low-energy hours (per model predictions).
- Climate Control: Pre-emptively adjust equipment based on temperature/humidity forecasts.

Infrastructure Improvements

• Insulation/Ventilation: Target high-energy zones to stabilize ambient conditions.