Code No. 7015

For Scheme-I Candidates only

Time: 2 Hours

Cool-off time: 15 Minutes

Second Year - March 2015

Part - III

PHYSICS

Maximum: 60 Scores

General Instructions to Candidates:

- There is a 'cool-off time' of 15 minutes in addition to the writing time of 2 hrs.
- You are not allowed to write your answers nor to discuss anything with others during the 'cool-off time'.
- Use the 'cool-off time' to get familiar with questions and to plan your answers.
- Read questions carefully before answering.
- All questions are compulsory and only internal choice is allowed.
- When you select a question, all the sub-questions must be answered from the same question itself.
- Calculations, figures and graphs should be shown in the answer sheet itself.
- Malayalam version of the questions is also provided.
- Give equations wherever necessary.
- Electronic devices except non-programmable calculators are not allowed in the Examination Hall.

നിർദ്ദേശങ്ങൾ :

- നിർദ്ദിഷ്ട സമയത്തിന് പുറമെ 15 മിനിറ്റ് 'കൂൾ ഓഫ് ടൈം' ഉണ്ടായിരിക്കും. ഈ സമയത്ത് ചോദ്യങ്ങൾക്ക് ഉത്തരം എഴുതാനോ, മറ്റുളളവരുമായി ആശയവിനിമയം നടത്താനോ പാടില്ല.
- 🖲 ഉത്തരങ്ങൾ എഴുതുന്നതിന് മുമ്പ് ചോദ്യങ്ങൾ ശ്രദ്ധാപൂർവ്വം വായിക്കണം.
- എല്ലാ ചോദ്യങ്ങൾക്കും ഉത്തരം എഴുതണം.
- ഒരു ചോദ്യനമ്പർ ഉത്തരമെഴുതാൻ തെരഞ്ഞെടുത്തു കഴിഞ്ഞാൽ ഉപചോദ്യങ്ങളും അതേ ചോദ്യനമ്പരിൽ നിന്ന് തന്നെ തെരഞ്ഞെടുക്കേണ്ടതാണ്.
- കണക്ക് കൂട്ടലുകൾ, ചിത്രങ്ങൾ, ഗ്രാഫുകൾ എന്നിവ ഉത്തരപേപ്പറിൽ തന്നെ ഉണ്ടായിരിക്കണം.
- ചോദ്യങ്ങൾ മലയാളത്തിലും നൽകിയിട്ടുണ്ട്.
- ആവശ്യമുള്ള സ്ഥലത്ത് സമവാകൃങ്ങൾ കൊടുക്കണം.
- പ്രോഗ്രാമുകൾ ചെയ്യാനാകാത്ത കാൽക്കുലേറ്ററുകൾ ഒഴികെയുള്ള ഒരു ഇലക്ട്രോണിക് ഉപകരണവും പരീക്ഷാഹാളിൽ ഉപയോഗിക്കുവാൻ പാടില്ല.

- 1. (A) Permanent magnets should have
 - (a) high retentivity and low coercivity.
 - (b) low retentivity and high coercivity.
 - (c) high retentivity and high coercivity.

(d) low retentivity and low coercivity.

(Score : ½)

(B) Distinguish between Para, Ferro and Diamagnetism.

(Scores: 1½)

- 2. (A) Work function of a metal is the
 - (a) energy required by an electron to get absorbed in the metal surface.
 - (b) minimum energy required by an electron to escape from the metal surface.
 - (c) energy required by an electron to be retained in the metal surface.
 - (d) maximum energy required by an electron to escape from the metal surface.

(Score : ½)

- (B) Write Einstein's Photo-Electric Equation and explain the terms in it. (Scores: 1½)
- (C) All Photo electrons are not emitted with the same energy as the incident photons.

Why? (Score: 1)

3. The truth table of a logic gate is given below:

A	В	Y
0	0	1
0	1	0
1	0	0
1	1	0

(A) Identify the gate.

(Score: ½)

(B) Draw the logic symbol of the gate.

(Score: ½)

(C) Explain why NAND gate is known as universal gate.

(Score: 1)

4.	(A)	The electric field of a plane electromagnetic wave travelling Z-direction is described by	in the +ve	
		(a) $Ex = E_0 \sin(kz + \omega t)$		
		(b) $Ex = E_0 \sin(kz - \omega t)$		
		(c) $Ex = E_0 \sin(2kz)$		
		(d) $Ex = E_0 \sin(kz)$	(Score : ½)	
	(B)	We feel excessive sweating on a cloudy day. Why?	(Score: 1)	
5.	Electric field lines are a pictorial representation of the electric field around charges.			
	(A)	State Gauss's Law in Electrostatics.	(Score: 1)	
	(B)	Using this law derive an expression for the electric field intensit uniformly charged thin spherical shell at a point.	y due to a	
		(i) Outside the shell	(Scores: 2)	
		(ii) Inside the shell	(Score: 1)	
	(C)	Suppose that you are in a cave deep within the earth. Are you safe for	rom thunder	
		and lightning? Why?	(Score: 1)	
6.	(A)	Interference of light from two sources can be observed if		
		(a) the sources are independent		
		(b) the sources are of different frequencies and random phases		
r		(c) the sources are of different frequency		

(d) the sources are coherent

(Score: ½)

	(B)	Draw Young's arrangement to produce interference pattern.	(Score : 1)
	(C) Derive an expression for the fringe width of interference pattern		med on the
		screen.	(Scores: 2½)
	(D)	Write the condition to produce good interference bands.	(Score : 1)
7.	(A)	Range of an electronic communication system is the	
		(a) distance to the nearest TV station.	•
		(b) distance to the nearest radio station.	
		(c) largest distance the signal can travel.	
		(d) largest distance between a source and destination up to which t	he signal is
		received with sufficient strength.	(Score: 1)
	(B)	If the height of TV transmitting antenna is increased its coverage	e increases.
		Why?	(Score: 1)
8.	Tran	sformers either increase or decrease AC voltage.	
	(A)	State the principle of a transformer.	(Score : ½)
	(B)	Explain with the help of a labelled diagram the working of a transform	er.
			(Scores: 2)
	(C)	Explain briefly any three energy losses in a transformer.	(Scores: 1½)
9.	(A)	A device to store electrical charge is called	
		(a) Transformer	
		(b) Capacitor	
		(c) Resistor	
		(d) Inductor	(Score: ½)
7015	5	6	

	(C)	Derive an expression for the energy stored in a parallel plate capacitor.	(Scores: 2)
٠	(D)	D) What is the area of the plates of a 0.1 µF parallel plate air capacitor, give	
		separation between the plates is 0.1 mm.	(Scores: 1½)
10.	[The	following is a choice question. Answer any one]	
	(A)	A convex lens	
		(a) is thicker at the edges than at the middle.	. •
		(b) is thicker at the middle than at the edges.	
		(c) diverges rays of light.	
		(d) is of uniform thickness everywhere.	(Score: 1)
	(B)	With the help of a ray diagram sketch the image formation of a convex	lens when
		the object is between C and F.	(Score: 1)
	(C)	Derive the lens maker's formula.	(Scores: 2)
•		OR	
	(A)	A ray of light travels from a denser to a rarer medium then, the ray	
		(a) doesn't bend at all.	
		(b) bends towards the normal.	
		(c) bends away from the normal.	
		(d) goes along the normal.	(Score: 1)
	(B)	Draw a diagram showing the path of a monochromatic light through a	a triangular
		prism.	(Score: 1)
7015	;	8	

(B) What is meant by energy density of a parallel plate capacitor?

(Score: 1)

- 11. (A) Potentiometer measures the potential difference more accurately than a voltmeter, because the potentiometer
 - (a) does not draw current from external circuit.
 - (b) has a wire of high resistance.
 - (c) draws a heavy current from external circuit.
 - (d) has a wire of low resistance.

(Score: 1)

- (B) With the help of a diagram explain the principle of a potentiometer. (Scores: 1½)
- (C) Using a potentiometer how do you determine the internal resistance of a cell?

(Scores: 1½)

12. (A) What is de Broglie hypothesis?

(Score: 1)

(B) Write the formula for de Broglie wavelength.

(Score: 1)

(C) Calculate de Broglie wavelength associated with an electron accelerated by a potential difference of 100 volts.

Given mass of the electron = 9.1×10^{-31} kg, h = 6.634×10^{-34} JS, 1 eV = 1.6×10^{-19} J

(Scores: 1½)

13.	3. A current carrying wire produces a magnetic field in its surrounding space.			
	(A)	The S.I. unit of magnetic flux density is		
		(a) henry		
		(b) tesla		
		(c) Am ²		
		(d) A-m	(Score: 1)	
	(B)	(B) With the help of a diagram, derive an expression for the magnetic field at a poin		
		on the axis of a circular current loop.	(Scores: 2)	
	(C)	Consider a tightly wound 100 turn coil of radius 10 cm, carrying a curre	nt of IA.	
		What is the magnitude of the magnetic field at the centre of the coil?	(Scores: 2)	
14.	[The	following is a choice question. Answer any one.]		
	(A)	Draw the circuit diagram of transistor as an amplifier in common	n emitter	
		configuration.	(Scores: 2)	
	(B)	Obtain the expression for the voltage gain.	(Scores: 2)	
	OR			
	(A)	What do you mean by barrier potential of a diode?	(Score: 1)	
	(B)	With the help of a diagram explain the working of a full wave rectifier.	(Scores: 3)	
15.	Whe	on the magnetic flux associated with a coil changes an emf is induced in the	circuit.	
	(A)	State Faraday's law of electromagnetic induction.	(Score: 1)	
	(B)	Mention the physical significance of Lenz's law with an example.	(Score: 1)	
	(C)	When an electrical appliance is switched off, sparking occurs. Why?	(Score: 1)	
7015		12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13		

- 16. (A) Obtain an expression for the number of radioactive nuclei present at any instant in terms of the decay constant and initial number of nuclei. (Scores: 2)
 - (B) The half life of radioactive radon is 3.8 days. Find the time during which $\frac{1}{20}$ of radon sample will remain undecayed. (Scores: 2)
- 17. Kirchhoff's rules are very useful for analysis of electrical circuits.
 - (A) State Kirchhoff's junction rule.

(Score: 1)

(B) Find the effective resistance of the circuit given below:

(Scores: 2)

