

آنالیز تابعی مقدماتی (۲۲۴۷۵۱)

تمرین سری ۶ بهار ۰۱-۱۴۰۰ دانشکد علوم ریاضی دانشگاه صنعتی شریف مدرس: جناب آقای دکتر فنایی تاریخ تحویل: ۱۴۰۰/۱۲/۲۷

۱ پرسش اول

فرض کنید $T\in B(\ell^2)$ باشد و برای دنباله ی $\{x_n\}\in \ell^2$ اپراتور $\{c_n\}\in \ell^\infty$ را به صورت $T\{x_n\}=\{c_nx_n\}$

تعريف كنيد.

- ا. T^* را محاسبه کنید.
- ۲. شرایط مناسبی روی $\{c_n\}$ بیابید به طوری که T خودالحاق شود.
 - ۳. شرایط مناسبی روی $\{c_n\}$ بیابید به طوری که T یکانی شود.

۲ پرسش دوم

P فضای هیلبرت و Y زیرفضای بسته ی آن است. اگر $\mathcal{H} \to \mathcal{H}$ یک اپراتور خطی کران دار باشد و \mathcal{H} . ۱ عملگر تصویر متعامد روی زیرفضای \mathcal{H} باشد، نشان دهید

$$TP = PT$$

 $T(Y^\perp)\subseteq Y^\perp$ و تنها اگر $Y(Y)\subseteq Y$ اگر و تنها

 $Im\ P_1\subseteq Im\ P_2$ دو عملگر تصویر باشند، نشان دهید $P=P_1-P_2$ تصویری است اگر و تنها اگر $P_1\subseteq Im\ P_2$. در این حالت P_1 را بر حسب $P_1\subseteq Im\ P_2$ و P_1 به دست آورید.

۳ پرسش سوم

اپراتور زیر را روی ℓ^1 در نظر بگیرید:

$$T: (\alpha_1, \alpha_2, \alpha_3, \dots) \mapsto (\alpha_1 + \alpha_2 + \alpha_3, \alpha_2 + \alpha_3 + \alpha_4, \alpha_3 + \alpha_4 + \alpha_5, \dots)$$

را توصیف کنید و اشتراکش با $\mathbb R$ را به دست آورید.

۴ پرسش چهارم

فرض کنید $T \in B(H)$ اپراتوری نرمال باشد.

- $T^*x \in \ker T$ نشان دهید T^* ناوردا است؛ به این معنی که برای هر $T^*x \in \ker T$ نشان دهید. ۱
 - ۲. نشان دهید $^{\perp}(ker\ T)^{\perp}$ ناور دا است.
 - $ker\ T=ker\ T^k\ (k\in\mathbb{N})$. ثابت کنید برای هر

۵ پرسش پنجم

- A_1A_2 دو عملگر مثبت باشند. ثابت کنید $A_1,A_2\in B(\mathcal{H})$ و غیلہ مثبت باشند. ثابت کنید $A_1A_2=A_2$ نیز مثبت است اگر و تنها اگر $A_1A_2=A_2$ جابه جا شوند. $A_1A_2=A_2$
- کنید $||A_n-A|| \to 0$ کنید $||A_n-A|| \to 0$ اپراتورهای مثبت باشند. نشان دهید اگر $||A_n-A|| \to 0$ آنگاه $||A_n-A|| \to 0$.

۶ سوال امتيازي

 $S,T \in B(\mathcal{X})$ فرض کنید \mathcal{X} یک فضای باناخ باشد و

نشان دهی*د*:

$$\{0\}\cup\sigma(ST)=\{0\}\cup\sigma(TS)$$