Assignment Project Exam Help

https://eduassistpro.github.

Add Wechatmedu_assist_pr

```
Material derived from slides for the book
Mosignem Project Exam Help
McGraw-kup (1997)
http://www-2.cs.cmu.edu/ tom/mlbook.html
```

https://eduassistpro.github.

```
Material derived from slides by Eibe Frank
```

http://www.cs.waikato.ac.nz/ml/weka Material derived from slides for the book

"Machine Learning" by P. Flach

Cambridge University Press (2012)

http://cs.bris.ac.uk/~flach/mlbook

COMP9417 ML & DM Tree Learning Semester 1, 2018 2 / 98

Aims

This lecture will enable you to describe decision tree learning, the use of entropy and the problem of overfitting. Following it you should be able to:

ASSINGTIMENTE PROPOSTICCL EXAM HELP

- list representation properties of data and models for which decision tree
- * (T https://eduassistpro.github.
- define entropy in the context of learning a Boolea examples
- describe the database of the tasis of the algassist_pi
- define overfitting of a training set by a hypothesis
- describe developments of the basic TDIDT algorithm: pruning, rule generation, numerical attributes, many-valued attributes, costs, missing values
- describe regression and model trees

Brief History of Decision Tree Learning Algorithms

Assignment Project Exactin Help

- earl ncept
- late https://eduassistpro.github. effic
- early 1990s JD3 adds features, develops into C4.

 "defaut" Charling a prefit edu_assist_prefit.
- late 1990s C5.0, commercial version of C4.5 (av and www.rulequest.com)
- current widely available and applied; influential techniques

COMP9417 ML & DM Tree Learning Semester 1, 2018

Why use decision trees?

Assignment Project Exam Help Decision trees are probably the single most popular data mining tool

https://eduassistpro.github.

- There are some drawbacks, though e.g., high v
- They Cast fiction e. Print Could assist process and/or real inputs, or regr

Decision Tree for PlayTennis

Assignment Project Exam Help

A Tree to Predict C-Section Risk

Assignment Project Exam Help Negative

```
[833+,167-] .8
Fetal_Presentions = 0: [
| Previous_Cs_t | Prev
```

COMP9417 ML & DM Tree Learning Semester 1, 2018 7 / 98

Decision Tree for Credit Rating

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

Decision Tree for Fisher's Iris data

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

Decision Trees

Assignment Project Exam Help

- Each internal node tests an attribute
- Eac
- Eachttps://eduassistpro.github.

How would we represent the following expressions?

- $\begin{array}{l} \bullet \wedge, \vee, \mathbf{A} \text{ and } \mathbf{WeChat} \text{ edu_assist_pr} \\ \bullet (A \wedge B) \vee (C \wedge \neg D \wedge E) \end{array}$
- M of N

Assignment Project Exam Help

```
\begin{array}{l} \tiny \begin{array}{c} \text{X = t:} \\ \mid \text{Y = t: true} \\ \mid \text{Y = f: no} \end{array} \\ \text{x = f: no} \\ \text{https://eduassistpro.github.} \\ X \lor Y \end{array}
```

x = t: true x = f: | Y = t: true Add WeChat edu_assist_pr

Assignment Project Exam Help

```
| Y = t: true
| Y = f:
| | Z = t: true
| | Z = f: false
| Y = t:
| Y = t:
| | Z = f: false
| Y = f: false
```

Add WeChat edu_assist_pr

constraints on the attributes values of instances.

When are Decision Trees the Right Model?

Assignment-Project-Exame Help representation adopted by decision-trees allows us to represent Y as a Boo

- Giv https://eduassistpro.git្គាយូ២. these, and Y=0 to the rest
- Any Boolean Juntitor car be trivially represent assist place of U_assists So, for each combination of values with Y=1, have a path from root to a leaf with Y=1. All other leaves have Y=0

Tree Learning Semester 1, 2018 13 / 98

When are Decision Trees the Right Model?

- This is nothing but are-presentation of the truth-table, and will probable compactories may be possible by taking into paccount what is common between one or more rows with the same Y valu
 - But https://eduassistpro.github. are examples)
 - In general although possible in principle to expr function, our search and prior restrictions may n assist processor correct tree in practice.
 - BUT: If you want readable models that combine logical tests with a probability-based decision, then decision trees are a good start

When to Consider Decision Trees?

- Instances described by a mix of numeric features and discrete Settingthment Project Exam Help
 Target function is discrete valued (otherwise use regression trees)
 - Disj
 - · Poshttps://eduassistpro.github.

Examples Acetome Wue ous hautine du_assist_pr

- Equipment or medical diagnosis
- Credit risk analysis
- Modeling calendar scheduling preferences
- etc.

Top-Down Induction of Decision Trees (TDIDT)

Assignment Project Exam Help

- ullet A the "best" decision attribute for next node
- Assi
- For https://eduassistpro.github.
- Sort training examples to leaf nodes
- If training examples perfectly classified, Then S new left to WeChat edu_assist_pr

Essentially this is the "ID3" algorithm (Quinlan, 198 symbolic Machine Learning algorithm.

Which attribute is best?

Assignment Project Exam Help

https://eduassistpro.github.

COMP9417 ML & DM Tree Learning Semester 1, 2018 17 / 98

Assignment Project Exam Help You are Wetching a set of independent random samples of X You obser

P(X https://eduassistpro.github.

You transmit data over a binary serial link. You can with two he (1.0) A VV0 = 11 at 60 U1) assist_property of the control of

COMP9417 ML & DM Tree Learning Semester 1, 2018 18 / 98

Assignment Project Exam Help

```
Someon
```

```
P(X https://eduassistpro.github.
```

```
It's possible . . .
```

```
... to invert a toding fly you trabsmission thou assist_prayer average per symbol. How it trabsmission thou
```

Assignment of the property of

It's possibility in the possibil

(This is just one of several ways)

Assignment Project Exam Help

Here's a https://eduassistpro.github.

Add WeChat edu_assist_production and the state of the sta

Can you think of a coding that would need only 1.6 bits per symbol on average ?

Aussi genmentu Pitojeet Exam Help $P(X = A) = \frac{1}{3} | P(X = B) = \frac{1}{3} | P(X = C) = \frac{1}{3}$

per symbol ttps://eduassistpro.github.

Add WeChat edu_assist_pr

This gives us, on average $\frac{1}{3}\times 1$ bit for A and $2\times \frac{1}{3}\times 2$ bits for B and C, which equals $\frac{5}{3}\approx 1.6$ bits.

Is this the best we can do?

Assignment Project Exam Help

Suppose t

https://eduassistpro.github. From information theory, the optimal number of bits to encode a symbol

with probability p is $-\log_2 p$...

So the beat do to Cahato edu_assist_pr

C, or 1.5849625007211563 bits per symbol

General Case

Assignment Project Exam Help $P(X=V) = p \mid P(X=V) = p \mid \dots \mid P(X=V) = p_m$

What's thttps://eduassistpro.github.

$$\overrightarrow{Add} = V_{j=1}^{p_1 \log_2 p_1 - p_2 \log} \cot assist_pr$$

H(X) =the *entropy* of X

General Case

Assignment Project Exam Help

"High enhttps://eduassistpro.github.

Add WeChat edu_assist_pr

Entropy

Where:

S is a sample of training examples

 p_{\oplus} is the proportion of positive examples in S

 p_{\ominus} is the proportion of negative examples in S

Entropy

Assignment Project Exam Help

```
Entropy
```

https://eduassistpro.github.

```
A "pure" sample is one in which all examples are of the same Add\ WeChat\ edu\_assist\_pr
```

COMP9417 ML & DM Tree Learning Semester 1, 2018 27 /

Entropy

$$Entropy(S) =$$
expected number of bits needed to encode class of properties and one drawn member of S (under the optimal, shortest length code)

Why?

Informat https://eduassistpro.github.

So, expected number of bits to encode $\bigoplus_{p_{\oplus}(-\log_2 p_{\oplus})+p_{\ominus}(}$ edu_assist \subseteq pr

 $Entropy(S) \equiv -p_{\oplus} \log_2 p_{\oplus} - p_{\ominus} \log_2 p_{\ominus}$

Information Gain

[21+,5-]

[8+,30-]

 $\bullet \ Gain(S,A) = \mbox{expected reduction in entropy due to sorting on } A$

Assignment Project Exam Help Gain(S, A) Entropy(S) Exam Help

https://eduassistpro.github.

[18+,33-] [11+,2-]

Assignment Project Exam Help $S_t = S_t = S_t \text{ } tropy(S_t)$

https://eduassistpro.github.

= 0.2658

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

Assignment Project Exam Help

So we chattps://eduassistpro.github.

Add WeChat edu_assist_pr

Training Examples

	Day	Outlook	Temperature	Humidity	Wind	PlayTennis	
Δ	D1	Sunny	nt ^H Pro	High	Weak	m He	In
			TICHAT I U	Unght 1	Strang	III NOIC	rb
	D3	Overcast	Hot	High	Weak	Yes	
	D4	Rain	Mild	High	Weak	Yes	
	D5 📙	+Rain	:// <mark>é</mark> dua	Normal	↓ Weak	a Yesh	h
	D6	ILKIIJO.	.// @WUc	Docupa	trong	-9MIU	
	D7	Overcast	Cool	Normal	Strong	Yes	
	D8	Sunny	Mild	High	Weak	No	
	D9 /	4 50 m	We⊌Cha	Tores	Veak	SSIST	DI
	D10	Rain	Mild	Normal	Weak	Yes	_I~ .
	D11	Sunny	Mild	Normal	Strong	Yes	
	D12	Overcast	Mild	High	Strong	Yes	
	D13	Overcast	Hot	Normal	Weak	Yes	
	D14	Rain	Mild	High	Strong	No	

Information gain once more

Assignment Projects Exam Help

```
https://eduassistpro.github.
```

```
Gain (S, Humidity)
= .940 - (7/14).985 - (7/14).592
= 151
```

```
Gain (S, Wind)
= .940 - (8/14).811 - (6/14)1.0
= .048
```

Assignment Project Exam Help https://eduassistpro.github. Chat edu_assist_pr $Gain(S_{Sunny}, Temperature) = .970 - (2/5) 0.0 - (2/5) 1.0 - (1/5) 0.0 = .570$

 $Gain(S_{Sunny}, Wind) = .970 - (2/5) 1.0 - (3/5) .918 = .019$

Hypothesis Space Search by ID3

Assignment Project Exam Help

Attps://eduassistpro.github.

Add WeChat edussist_productions.

Hypothesis Space Search by ID3

As spison by the graph is a decision tree As spison by the graph is a decision tree

- Sup 2), and all
- the https://eduassistpro.github.

 differ in just the following way: one of the leaf-node
 has been replaced by a non-leaf node testing a feat
 appear deader (www.pavesnatedu_assist_pro-
- This is the full space of all decision trees (is it?). We wa for a single tree or a small number of trees in this space. How should we do this?

As desirangeaphese and the lampty tree (single leaf node)

- Gre gre
 - https://eduassistpro.github.
 - Most of the calculation will cancel out: so, we will o local computation at the leaf that was convert
- RESULT Cat of the set Crasa by Grand Box assist property of the set of the
 - $y' = \omega_1$, given input data \mathbf{x}

Assignment Peroject Exam-Help functions w.r.t attributes)

- * https://eduassistpro.github.
- No back tracking
- Statist (Deservation of the last edu_assist_pr
 - Robust to noisy data...
- Inductive bias: approx "prefer shortest tree"

Inductive Bias in ID3

Note H is the power set of instances X Ssignment Project Exam Help

Not really

- Pre https://eduassistpro.github.
- Bias is a *preference* for some hypotheses hypothesis spiceWeChat edu_assist_pre-an incomplete search of a complete hypothesis s
- complete search of an incomplete hypothesis space (as in learning conjunctive concepts)
- Occam's razor: prefer the shortest hypothesis that fits the data

Occam's Razor

Assignment-Project Exam Help

Entities should not be multiplied beyond necessity

why preshttps://eduassistpro.github.

Argument in favour:

- Fewe And of power and an analyse of u_assist_pr
- → a short hyp that fits data unlikely to be coincidence
- \rightarrow a long hyp that fits data might be coincidence

Occam's Razor

Assignment Project Exam Help

- The
 - https://eduassistpro.github.
- What's so special about small sets based on size of hypothesis??

Look back find claying on later to assist prusing Minimum Description Length (MDL)

COMP9417 ML & DM Tree Learning Semester 1, 2018 42 / 9

Why does overfitting occur?

- Greedy search can make mistakes. We know that it can end up in Special minimal content of the property of th
 - erro https://eduassistpro.github.
 - We will see why this is the case later (lectures on Ev
 - Suppose we have two models h_1 an and e_2 and e_1 if the true e_2 and e_2 and e_3 and e_4 and e_5 and e_6 and e_7 and e_8 and e_9 are two models e_9 and e_9 and e_9 are two models e_9 and e_9 and e_9 are two models e_9 are two models e_9 and e_9 are two models e_9 are two models e_9 and e_9 are two models e_9 are two models e_9 a
 - If $e_1 < e_2$ and $E_1 > E_2$, then we will say that h_1 has overfit then training data
 - So, a search method based purely on training data estimates may end overfitting the training data

Overfitting in Decision Tree Learning

Consider adding noisy training example #15:

Assignment-Project-ExameHelp

What effe

Overfitting in Decision Tree Learning

{D1, D2, ..., D14} [9+,5-1]Assignment Project Exam Help Overcast https://eduassistpro.github. Lib.WeChat edu_assist_pr $S_{sunnv} = \{D1,D2,D8,D9,D11\}$

> Gain (S_{Sunny} , Humidity) = .970 - (3/5) 0.0 - (2/5) 0.0 = .970 Gain (S_{Sunny} , Temperature) = .970 - (2/5) 0.0 - (2/5) 1.0 - (1/5) 0.0 = .570 Gain (S_{Sunny} , Wind) = .970 - (2/5) 1.0 - (3/5) .918 = .019

Overfitting in General

Assignment Project Exam Help

enti

Definiti https://eduassistpro.github. hypothesis $h' \in H$ such that

Add We@hatredu_assist_pr

and

$$error_{\mathcal{D}}(h) > error_{\mathcal{D}}(h')$$

Overfitting in Decision Tree Learning

Avoiding Overfitting

Assignment Project Exam Help

- pre-pruning stop growing when data split not statistically significant
- https://eduassistpro.github.

Post-pru

How to select "best" tree:

- · Meas Acod mwe Cthatedu_assist_pr
- Measure performance over separate validati
- MDL: minimize size(tree) + size(misclassifications(tree)) ?

- Can
- Sto https://eduassistpro.github.
- For example, in ID3: chi-squared test plus infor
 - Aly statistically again cantattributes werd u_assist_pr

- Sim low https://eduassistpro.github.
- In sklearn, this parameter is min_sa
- In sk Apart the barameter in a computer the stopping when the this falls below a lower-bound assist pr

- Pre-pruning may suffer from early stopping: may stop the growth of tree
- cia https://eduassistpro.github.
 - Target structure only visible in fully expande
- Prepruning won't expand the root node

 But: XXX type problems not a financial assist_problems not a financial assist_problems.
- And: pre-pruning faster than post-pruning

Avoiding Overfitting

Assignment Purotject dExam Help Attribute interactions are visible in fully-grown tree

- Pro
- •ffe https://eduassistpro.github.
 - Subtree replacement
- Possible Vie Cthat sedu_assist_pr principle
- We examine two methods: Reduced-error Pruning and Error-based Pruning

Reduced-Error Pruning

Assignment Project Exam Help Split data i

Do until https://eduassistpro.github.

- Eva (plus those below it)
- · Greech checke Whe hat hat time to u_assist racpi

- 60 https://eduassistpro.github.
- Not so good reduces effective size of training set

Add WeChat edu_assist_pr

Effect of Reduced-Error Pruning

Error-based pruning (C4.5 / J48 / C5.0)

- many extensions see below
- incl https://eduassistpro.github.
- also: pruning by converting tree to rules
- commercial version C5.0 is widely used
 Regus convector edu_assist_pr
- Weka version J48 also widely used

Pruning operator: Sub-tree replacement

Bottom-up:

Ace is in grid the project su Exsampe Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

Error-based pruning: error estimate

Assignment Project Exam Help

```
Goal is to im
```

https://eduassistpro.github.

Make the Atimute of We Chart edu_assist_pr

- App
- * deri https://eduassistpro.github.
 - Standard Bernoulli-process-based method
 - Note: statistically motivated, but not statis
 - ·Add WeChat edu_assist_pr

COMP9417 ML & DM Tree Learning Semester 1, 2018 59 / 98

Error-based pruning: error estimate

As the error estimate for a perode is the weighted sum of errelp

Upp

https://eduassistpro.github.

- ullet f is actual (empirical) error of tree on examples a
- · N is Acorder Weeperhart tedu_assist_pr
- ullet Z_c is a constant whose value depends on
- C4.5's default value for confidence c=0.25
- If c = 0.25 then $Z_c = 0.69$ (from standardized normal distribution)

Error-based pruning: error estimate

Assignment Project Exam Help

- Ho
- * https://eduassistpro.github.
- See example on next slide (note: values not calcul the although with the chat edu_assist_pr

Tree Learning Semester 1, 2018 61 / 98

https://eduassistpro.github.

Add WeChatredu_assist_pr

 sub-trees estimated to give greater error so prune away

46

Rule Post-Pruning

Assignment Project Exam Help

This method was introduced in Quinlan's C4.5

- https://eduassistpro.github.
- Sort final rules into desired sequence for use

```
For: simpler classifiers, people prefer rules to trees

Against: Against: Against: Against: Against: Against: Against: Against against
```

Tree Learning Semester 1, 2018 63 / 98

Converting A Tree to Rules

PlayTennis = Yes

IF

THEN

```
Outlook
Assignment Project Exam Help
     https://eduassistpro.github.
     Add WeChat edu_assist_pr
 IF
      (Outlook = Sunny) \land (Humidity = High)
 THEN
      PlayTennis = No
```

 $(Outlook = Sunny) \land (Humidity = Normal)$

COMP9417 ML & DM Tree Learning Semester 1, 2018 64 / 98

Rules from Trees (Rule Post-Pruning)

Assignment Project Exam Help Rules can be simpler than trees but just as accurate, e.g., in C4.5Rules:

- pat
- . can https://eduassistpro.github.
 - i.e., rules can be generalized while maintaining accuracy
- greedy rule simplification algorithm
 - · Addown Chatedu_assist_pr
 - continue while estimated error does not incre

- goal: remove rules not useful in terms of accuracy
- find a
- tradhttps://eduassistpro.github.
- stoc

Sets of rules can be ordered by class (C4.5Rules):

- · order Asidy Weschatt edu_assist_pr
- set as a default the class with the most training insta by any rule

Continuous Valued Attributes

Assignment Projects Exam. Help attributes.

Can creat

- * Te https://eduassistpro.github.
- Usual method: continuous attributes have a bin
 NoteAdd WeChat edu_assist_pr
 - discrete attributes one split exhausts all valu
 - continuous attributes can have many splits in a tree

Continuous Valued Attributes

Splits evaluated on all presible split points Exam Help in training set

- Fay
 - https://eduassistpro.github. $\frac{(48+60)}{2}$ and $\frac{(80+90)}{2}$
- Choose best splittpoint by info gain (or evaluation of assist property of the control of the c

Temperature: 40 48 60 90 Play Tennis: No No Yes Yes No

Axis-parallel Splitting

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

Fitting data that is not a good "match" to the possible splits in a tree.

"Pattern Classification" Duda, Hart, and Stork, (2001)

Splitting on Linear Combinations of Features

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

Reduced tree size by allowing splits that are a better "match" to the data.

"Pattern Classification" Duda, Hart, and Stork, (2001)

Attributes with Many Values

Assignment Project Exam Help Problem:

- If att
- whhttps://eduassistpro.github.
- Imagine using Date = March 21, 2018 as a
 High sing trail as a constant record assist property as a constant record as

Tree Learning Semester 1, 2018 71 /

Assignment Project Exam Help One approach: use GainRatio instead

https://eduassistpro.github.

Add WeChat edu_assist_pr

where S_i is subset of S for which A has val

Assignment Project Exam Help

Why does this help?

- act https://eduassistpro.github.
- therefore higher for many-valued attributes, e uniformly distributed access to the version of the control of

COMP9417 ML & DM Tree Learning Semester 1, 2018 73 / 98

Attributes with Costs

Assignment Project Exam Help

Consider

- * https://eduassistpro.github.
- How to learn a consistent/tree with low expected cost? assist_pr

Assignment Project Exam Help

One appr

• Exahttps://eduassistpro.github.

Preference for decisio Week using lower cost at rib assist pr

Assignment Project Exam Help Also: class (misclassification) costs, instance costs, ...

https://eduassistpro.github.

Forces a different receivement of the deriver of minimassistic process of the period o

Unknown Attribute Values

Assismements Project Exam Help Use training example anyway, sort through tree. Here are 3 possible approac

- * If not https://eduassistpro.github.
- assign most common value of A amo
- assig Ard blity Wte Chaste acu_assist_pr
 - assign fraction p_i of example to each desc

Note: need to classify new (unseen) examples in same fashion

Windowing

Assignment Project Exam Help As a solution ID3 implemented windowing:

- construttos://eduassistpro.github.
- 3. use tree to cla
- if all instances correctly classified then halt, else
- add second is welfied in threatto edinow assist_pr 5.
- 6.

Windowing retained in C4.5 because it can lead to *more accurate* trees. Related to ensemble learning.

Non-linear Regression with Trees

Aes Seison her copertes of the open test of the deal sensibly with unseen input patterns and robustness to losing neurons (predicti

• Bac https://eduassistpro.github.

- computing time; may have to be partitioned into separate modules that can be trained independently, e.g. NetTal
- Neural Cooks What last a edu_assist_prepresentation of what has been learned

Possible solution: exploit success of tree-structured approaches in ML

Regression trees

Assignment Project Exam Help Differences to decision trees:

- - https://eduassistpro.github.
- Can approximate piecewise constant functio
- EasyAdded*WeChat edu_assist_pr
- More sophisticated version: model trees

A Regression Tree and its Prediction Surface

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

"Elements of Statistical Learning" Hastie, Tibshirani & Friedman (2001)

Regression Tree on sine dataset

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

Regression Tree on CPU dataset

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

Tree learning as variance reduction

- The variance of a Boolean (i.e., Bernoulli) variable with success probability \dot{p} is $\dot{p}(1-\dot{p})$ which is half the Gini index. So we could standard deviation, in case of $\sqrt{\rm Gini}$ in the leaves.
 - In re

https://eduassistpro.github.

If a split partitions the set of target values ive sets A.dd (1) weight a green u_assist_preserved u_assist_

$$\operatorname{Var}(\{Y_1, \dots, Y_l\}) = \sum_{j=1}^{l} \frac{|Y_j|}{|Y|} \operatorname{Var}(Y_j) = \dots = \frac{1}{|Y|} \sum_{y \in Y} y^2 - \sum_{j=1}^{l} \frac{|Y_j|}{|Y|} \overline{y}_j^2$$

The first term is constant for a given set Y and so we want to maximise the weighted average of squared means in the children.

COMP9417 ML & DM Tree Learning Semester 1, 2018 84 / 98

Learning a regression tree

Imagine you are a collector of vintage Hammond tonewheel organs. You lave beingmonitoring an unli Pauction site fro Ewhich you colleded

https://eduassistpro.github. 1051good no 270 good no 20 assist pr excellent fair T202 99 no 8. A100 good 1900 yes fair 9. E112 77

no

Learning a regression tree

From this data, you want to construct a regression tree that will help you determine a reasonable price to your next purchase.

Help

Model = [A100, B3, E112, M102, T202]

Condition https://eduassistpro.github.

 $\mathsf{Leslie} = [\mathsf{yes}, \mathsf{no}] \ \ [625, 870, 1900] [77, 99, 2$

Learning a regression tree

```
Aostri Administration the Principles Exam Help Condition [excellent, good, fair] [170][1051, 1900][]

Leslie = [

Without gresults in lettps://eduassistpro.github.variance e follows:

Condition A [excellent Woe fir] 12019edu_assist_prolessie = [yes, no] [625][99, 270]
```

Again we see that splitting on Leslie gives tighter clusters of values. The learned regression tree is depicted on the next slide.

A regression tree

A regression tree learned from the Hammond organ dataset.

Model trees

Assignment Project Exam Help Like regression trees but with linear regression functions at each node

- I in
- . has https://eduassistpro.github.
 - Attributes occurring in subtree (+maybe at
- Fast Add for the root)
 Fast Add for the Reshart edula_assist_pr only a small subset of attributes is used in tree

Two uses of features

Assignment Project Exam Help

```
Suppose 1 \le x \le 1.
A linear ap y = 0. Hottps://eduassistpro.github.0 \le x \le 1
```

a regression value with that edu_assist_pr

A small model tree

Assignment Project Exam Help https://eduassistprp.github. Add WeChat edu_assist_pr

Model Tree on CPU dataset

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

Tree Learning Semester 1, 2018 92 / 98

Smoothing

Naïve prediction method - output value of LR model at Set small Project Exam Help Improve performance by smoothing predictions with internal LR

Improve performance by *smoothing* predictions with *internal* LR mo

https://eduassistpro.github.

- Sm
- n+k
- p' prediction passed up to next higher node
- Aprediction passed to the node free dow_assist_production by model at this model will be model at this model.
 - ullet number of instances that reach node belo
 - k smoothing constant
- Same effect can be achieved by incorporating the internal models into the leaf nodes

Building the tree

Assignment Project Exam Help

https://eduassistpro.github.

where T_1, T_2, \ldots are the sets from splits of dat

- Termination griterin (important when building predicted with the control of the
 - Standard deviation becomes smaller than ce training set (e.g. 5%)
 - Too few instances remain (e.g. less than four)

Pruning the tree

As Prining is based on estimate: Project Examella Help

https://eduassistpro.github.

- LR madels and prived by greddily remedied term assist_pression assist_pression and the control of the control
- Model trees allow for heavy pruning: often a single LR model can replace a whole subtree
- Pruning proceeds bottom up: error for LR model at internal node is compared to error for subtree

Discrete (nominal) attributes

Assignment Project Exam Help

- Nominal attributes converted to binary attributes and treated as nu
 - :https://eduassistpro.github.
 - the ith binary attribute is 0 if an instance's value is one of the first i in the ordering, 1 otherwise
- Best Anadolit Wei inalituted b_assist_properties on one of the new attributes

Summary – decision trees

• Decision tree learning is a practical method for many classifier

As Silver Hill a "Do 10" data mining algorithm - see Help

- TDIDT family descended from ID3 searches complete hypothesis spa
- · Use https://eduassistpro.github.
- Overfitting is inevitable with an expressive hyp data, Appropriate anthat edu_assist_pressive properties.
 Decades of research into extensions and refine
- approach, e.g., for numerical prediction, logical trees
- Often the "try-first" machine learning method in applications, illustrates many general issues
- Performance can be improved with use of "ensemble" methods

Summary – regression and model trees

A Selection trees were introduced in CART—R's implementation is solved in CART—R's implementation is for a basic version

- Qui
- M5'https://eduassistpro.github.
- Quinlan also investigated combining instanc
- CUBIAT Chilla Whe Carrin at ue du assist pr
- Interesting comparison: Neural nets vs. model trees both do non-linear regression
- other methods also can learn non-linear models

COMP9417 ML & DM Tree Learning Semester 1, 2018 98 / 98