Dynamic Heuristics

Benedict Guttman-Kenney

University of Chicago, Booth School of Business

Kellogg-Booth Student Symposium (KBSS)

5 May 2023

Research Question:

• (How) do consumer heuristics respond to prices?

Research Question:

- (How) do consumer heuristics respond to prices?
- How do consumers respond to petrol (gas) prices?

Research Question:

- (How) do consumer heuristics respond to prices?
- How do consumers respond to petrol (gas) prices?

Data:

- UK credit card transaction-level data.
- Daily petrol price data.

Empirics:

- Describe heuristics in transaction-level data.
- Responses of heuristics & visits to price changes.

Research Question:

- (How) do consumer heuristics respond to prices?
- How do consumers respond to petrol (gas) prices?

Data:

- UK credit card transaction-level data.
- Daily petrol price data.

Empirics:

- Describe heuristics in transaction-level data.
- Responses of heuristics & visits to price changes.

Who cares about UK?

CULTURE

More Than 4.1 Billion Watch Queen's Funeral, Surpassing Every Royal Wedding

BY JON JACKSON ON 9/19/22 AT 3:14 PM EDT

Heuristics Important To Study

Decades of psychology literature studying **heuristics** 'mental rules-of-thumb used to simplify decisions'. Gilovich, Griffin & Kahneman, 12

Many economic studies find consumers use heuristics across domains:

- Naive diversification in pensions
 (e.g. Read & Loewenstein, 95; Benartzi & Thaler, 01)
- Left-digit bias in used car purchases
 (e.g. Lacetera, Pope, & Sydnor, 12)
- Balance-matching heuristic in credit cards
 (e.g. Gathergood, Mahoney, Stewart & Weber, 21)

Heuristics in financial domains often find money non-fungible:

Mental accounting (e.g. Thaler, 85, 90, 99).

e.g. Hastings & Shapiro (13) evidence in US gas: when $P \uparrow$, choose regular-share more.

UK consumers face volatile petrol prices. Large squeeze on consumer finances.

In old money...peaked at 192 pence per litre in July 2022.

Institutional Details: How to to Pay for Petrol in UK

- *P* is price per litre.
- As you fill the (PQ) and Q (Litres) update.

- No 'hold-open clips'. Need to physically keep holding to keep pumping. Can stop & restart.

Study using UK credit card transaction data where observe pay at pump expenditures & visits.

Petrol Expenditures Commonly at Round Numbers

- Expenditures (XXX.XX)

UK Petrol (Gas) Expenditures Commonly at Round Numbers

- Pounds (X.XX)

UK Petrol (Gas) Expenditures Commonly at Round Numbers - Pence (.XX)

External Validity Check

British Reddit

- Replicates psychology study of 1,301 US pay at pump transactions at 1 convenience store in New York, 2005 (Ly, Flynn & Helion, 13).

1. Highly-prevalent

- 33% end in .00 (vs. 1% if chance).
- \bullet 50% end in .00, .01, .02 (vs. 3% if chance).

1. Highly-prevalent

- 33% end in .00 (vs. 1% if chance).
- 50% end in .00, .01, .02 (vs. 3% if chance).
- ⇒ Consumers have revealed preference for roundness.

Occurs in other domains (e.g. stock prices, auto & credit card payments, linguistics, wages).

1. Highly-prevalent

- 33% end in .00 (vs. 1% if chance).
- 50% end in .00, .01, .02 (vs. 3% if chance).
- ⇒ Consumers have revealed preference for roundness.

Occurs in other domains (e.g. stock prices, auto & credit card payments, linguistics, wages).

2. Asymmetric

• 12% end in .01 vs. 1% end in .99!

1. Highly-prevalent

- 33% end in .00 (vs. 1% if chance).
- 50% end in .00, .01, .02 (vs. 3% if chance).
- ⇒ Consumers have revealed preference for roundness.

Occurs in other domains (e.g. stock prices, auto & credit card payments, linguistics, wages).

2. Asymmetric

- 12% end in .01 vs. 1% end in .99!
- \Rightarrow Consumers exerting effort to achieve: budgeting goals / reference-dependence preferences.

1. Highly-prevalent

- 33% end in .00 (vs. 1% if chance).
- 50% end in .00, .01, .02 (vs. 3% if chance).
- ⇒ Consumers have revealed preference for roundness.

Occurs in other domains (e.g. stock prices, auto & credit card payments, linguistics, wages).

2. Asymmetric

- 12% end in .01 vs. 1% end in .99!
- \Rightarrow Consumers exerting effort to achieve: budgeting goals / reference-dependence preferences.

3. Clustered at a few round-numbered expenditure amounts

- 27% end in 0.00 or 5.00 (vs. 0.2% if chance)
- 41% end in 0.00, 0.01, 0.02, 5.00, 5.01 or 5.02 (vs. 0.6% if chance)

1. Highly-prevalent

- 33% end in .00 (vs. 1% if chance).
- 50% end in .00, .01, .02 (vs. 3% if chance).
- ⇒ Consumers have revealed preference for roundness.

Occurs in other domains (e.g. stock prices, auto & credit card payments, linguistics, wages).

2. Asymmetric

- 12% end in .01 vs. 1% end in .99!
- ⇒ Consumers exerting effort to achieve: budgeting goals / reference-dependence preferences.

3. Clustered at a few round-numbered expenditure amounts

- 27% end in 0.00 or 5.00 (vs. 0.2% if chance)
- 41% end in 0.00, 0.01, 0.02, 5.00, 5.01 or 5.02 (vs. 0.6% if chance)
- ⇒ Targeting (PQ) ending in 5.00 or 0.00 is a common budgeting heuristic.

Define H % using round-numbered heuristic.

Define Round-Numbered Heuristic if (PQ) ending in 0.00 or 5.00 (can relax).

Define *H* % using round-numbered heuristic.

Define Round-Numbered Heuristic if (PQ) ending in 0.00 or 5.00 (can relax).

Stories (theoretical predictions) when $P \uparrow$:

1. (Strict) Mental Accounting: $\frac{\partial log(H)}{\partial log(P)} = 0$.

$$-(PQ)=K.$$

Define *H* % using round-numbered heuristic.

Define Round-Numbered Heuristic if (PQ) ending in 0.00 or 5.00 (can relax).

Stories (theoretical predictions) when $P \uparrow$:

- 1. (Strict) Mental Accounting: $\frac{\partial log(H)}{\partial log(P)} = 0$.
 - -(PQ) = K.
- 2. Flexible Heuristics: Switch to another round-number $\frac{\partial log(H)}{\partial log(P)} = 0$.
 - Higher amount if budget constraint non-binding.
 - Lower amount if budget constraint binds.

Define *H* % using round-numbered heuristic.

Define Round-Numbered Heuristic if (PQ) ending in 0.00 or 5.00 (can relax).

Stories (theoretical predictions) when $P \uparrow$:

- 1. (Strict) Mental Accounting: $\frac{\partial log(H)}{\partial log(P)} = 0$.
 - -(PQ)=K.
- 2. Flexible Heuristics: Switch to another round-number $\frac{\partial log(H)}{\partial log(P)} = 0$.
 - Higher amount if budget constraint non-binding.
 - Lower amount if budget constraint binds.
- 3. Stop Using Heuristic $\frac{\partial log(H)}{\partial log(P)} < 0$
 - If budget constraint binding, consume constrained max.
 - If budget constraint non-binding & $E[P_{t+j}] > 0$ then switch to filling tank.
 - More attentive to budget.

Define H % using round-numbered heuristic.

Define Round-Numbered Heuristic if (PQ) ending in 0.00 or 5.00 (can relax).

Stories (theoretical predictions) when $P \uparrow$:

- 1. (Strict) Mental Accounting: $\frac{\partial log(H)}{\partial log(P)} = 0$.
 - -(PQ) = K.
- 2. **Flexible Heuristics:** Switch to another round-number $\frac{\partial log(H)}{\partial log(P)} = 0$.
 - Higher amount if budget constraint non-binding.
 - Lower amount if budget constraint binds.
- 3. Stop Using Heuristic $\frac{\partial log(H)}{\partial log(P)} < 0$
 - If budget constraint binding, consume constrained max.
 - If budget constraint non-binding & $E[P_{t+j}] > 0$ then switch to filling tank.
 - More attentive to budget.
- 4. Start Using Heuristic $\frac{\partial log(H)}{\partial log(P)} > 0$
 - Consumers previously filling tank, become more attentive or consume constrained max.

Weekly Petrol Prices (orange) Vs. Round Number Expenditures (blue)

Correlation: -0.86

Weekly Petrol Prices (orange) Vs. Round Number Expenditures (blue)

Correlation: -0.86

Relationship holds in regression with individual-level F.E.

'Demand' for Round Number Heuristics

When $\uparrow P \Rightarrow$ Gas Station Visits $\uparrow 50\%$

Regression run separately for rounders (R) vs. non-rounders (NR).

$$Y_{i,t} = \delta log(P_t) + \theta_i + u_{i,t}$$

	# visits in 28 days			
	Rounders	Non-Rounders		
	(1)	(2)		
$log(P_t)$	1.988***	1.232***		
	(0.196)	(0.084)		
Baseline Mean	4.00	2.58		
% Change	50%	48%		

^{***} where significant at 0.1%. Balanced panel, August 2020 - 2022. S.E. clustered card & day.

^{&#}x27;Rounders' defined as consumer rounded in days t-1 to t-29.

Interim Conclusions

So Far

- Consumers Use Heuristics.
- Heuristics Respond to Changes in Prices.
- When \uparrow Prices \Rightarrow Visits \uparrow

Not shown today:

- Ruled out alternative heuristics (e.g. Quantity-Targeting, % Tank-Targeting).
- Heuristics have similar estimated incomes. i.e. learn about behavioral types.

Thank you!

☑ benedict@chicagobooth.edu

www.benedictgk.com

Motivation in Literature

- Petrol macroeconomically important household expenditure (with volatile prices) (e.g. Hastings & Shapiro, 13; Lynn, Flynn & Helion, 13; Levin et al., 17; Gelman et al., 22; Gelman & Roussanov, 22)
- Large literature on **heuristics** / mental accounts...

(e.g. Thaler, 85; Loewenstein & Prelec, 98; Heath, Larrick & Wu, 99; Pope & Simonsohn, 10; Lacetera, Pope & Sydnor, 12; Drexler, Fischer & Schoar, 14; Gathergood, Mahoney, Stewart & Weber, 19; Argyle, Nadauld & Palmer, 20; Köszegi & Matejka, 20; Dube, Manning & Naidu, 20; Akepanidtaworn, Di Mascio, Imas & Schmidt, 22; Strulov-Shlain, 22; Zhang, Sussman, Wang-Ly & Lyu, 22)

...but little known about dynamics.

(e.g. Hastings & Shapiro, 13; Thakral & Lo, 20)

• Large macroeconomics literature estimating consumption showing heterogeneity matters (e.g. Shapiro, 05; Parker, 14, Kaplan & Violante, 14; Kueng, 18; Ganong & Noel, 19; Fagereng, Holm & Natvik, 20, Havranek & Sokolova, 20; Ganong et al. 21; Golosov et al., 21)

Hastings & Shapiro (13 QJE)

- Uses US data. (1) monthly aggregated national data and (2) transaction data from US grocery retailer with gasoline station: panel covers 2006 - 2009. Data includes fuel choice.
- When prices ↑, consumers substitute towards lower quality fuel.
- Effect larger than can be explained by income effects.
- Data most consistent with category budgeting (gas money non-fungible).

Suppose consumer uses petrol expenditure heuristic:

$$(PQ) = £30$$
 each petrol station visit.

What happens when $P \uparrow$?

Suppose consumer uses petrol expenditure heuristic:

$$(PQ) = £30$$
 each petrol station visit.

What happens when $P \uparrow$ **?** Lots of potential margins of adjustment:

1. Keep heuristic \rightarrow purchase \downarrow Q per visit & \uparrow # visits.

Suppose consumer uses petrol expenditure heuristic:

$$(PQ) = £30$$
 each petrol station visit.

What happens when $P \uparrow$ **?** Lots of potential margins of adjustment:

- 1. Keep heuristic \rightarrow purchase \downarrow Q per visit & \uparrow # visits.
- 2. Change (or stop using) heuristic \rightarrow purchase $\uparrow\downarrow$ PQ per visit & $\uparrow\downarrow$ Q.

Suppose consumer uses petrol expenditure heuristic:

$$(PQ) = £30$$
 each petrol station visit.

What happens when $P \uparrow$ **?** Lots of potential margins of adjustment:

- 1. **Keep heuristic** \rightarrow purchase \downarrow Q per visit & \uparrow # visits.
- 2. Change (or stop using) heuristic \rightarrow purchase $\uparrow\downarrow$ PQ per visit & $\uparrow\downarrow$ Q.
 - Switch heuristic value e.g. (PQ) = £30 to £20 or £40, target Q, filling tank.
 - Stop filling tank ightarrow start using heuristic.
- Change driving → ↓ # visits
 (e.g. ↓ miles, ↑ efficiency, ↑ search for cheaper fuel).

Suppose consumer uses petrol expenditure heuristic:

$$(PQ) = £30$$
 each petrol station visit.

What happens when $P \uparrow$ **?** Lots of potential margins of adjustment:

- 1. **Keep heuristic** \rightarrow purchase \downarrow Q per visit & \uparrow # visits.
- 2. Change (or stop using) heuristic \rightarrow purchase $\uparrow\downarrow$ PQ per visit & $\uparrow\downarrow$ Q.
 - Switch heuristic value e.g. (PQ) = £30 to £20 or £40, target Q, filling tank.
 - Stop filling tank ightarrow start using heuristic.
- Change driving → ↓ # visits
 (e.g. ↓ miles, ↑ efficiency, ↑ search for cheaper fuel).

Petrol heuristic choice may also spill-over to non-petrol expenditures.

Datasets

1. Real-time transaction data

- UK credit card expenditures (2017 2022).
- Data fully disaggregated at transaction-level (e.g. £30.00 spent at Shell on 5 January 2020.)
- Repeated cross-section. Additional data follows cards over time.
- Observe (PQ), # visits. Imputing Q & max fuel tank capacity (L).

2. Petrol price data

• Daily (RAC Foundation) & weekly (BEIS) UK road fuel retail pump prices.

Consumers Don't Appear to Be Targeting Round Numbers of Quantity

Consumers Don't Appear to Be Targeting Round Numbers of Quantity

Round Number Expenditures (% Pay at Pump Expenditures) Over Time

Rounders is 7 day moving average.

Consumer Responses Estimated on Daily Balanced Panel

$$Y_{i,t} = \delta \log(P_t) + \theta_i + u_{i,t} \tag{1}$$

	Heuristic	Visits	(PQ)	\hat{Q}
$log(P_t)$	-0.191***	0.009***	2.219***	-0.051
	(0.009)	(0.002)	(0.119)	(0.082)
Baseline Mean	0.169	0.054	2.343	1.678
Card F.E.	X	Х	Х	X
R^2	0.26	0.02	0.02	0.05

^{***} where significant at 0.1%. Balanced panel, August 2020 - 2022. S.E. clustered card & day.

Heuristic estimated conditional on visit.

Low vs. High P Comparison

- Pence (.XX)

Low vs. High P Comparison

- Pounds (X.XX)

Low vs. High P Comparison

- Expenditures (XXX.XX)

What (PQ) are consumers changing to? Within-person, 7-days 21 vs. 22

- 1. $P \uparrow \rightarrow Pr(H=1) \downarrow$
- 2. $P \uparrow \rightarrow (PQ) \uparrow$ and if still choose round number is generally larger one.

 ΔP from £1.25 (March 2021) to £1.65 (March 2022) per litre.