# BEGS: Quantitative Results

September 2013

#### Numerical exercise

Solve a N=5 agent economy with realistic level and movements in wage dispersion across booms and recessions

- Long run dynamics: Study settings that differ in covariance of interest rates and output
- Transient dynamics: Study outcomes in recessions that are accompanied by higher inequality

Aggregate shocks affect,

1. Wages:

$$\log \theta_i = \epsilon [1 + (.9 - i)m]$$

2. Payoffs:

$$P = 1 + \chi \epsilon$$

## Calibration

| Parameter         | Value                    | Description                                            |  |  |
|-------------------|--------------------------|--------------------------------------------------------|--|--|
| $\{ar{	heta}_i\}$ | {1, 1.4, 2.1, 3.24, 4.9} | Wages dispersion for                                   |  |  |
|                   |                          | {10,25,50,75,90} per-<br>centiles                      |  |  |
| $\gamma$          | 2                        | Average Frisch elasticity of                           |  |  |
|                   |                          | labor supply of 0.5                                    |  |  |
| β                 | 0.98                     | Average (annual) risk free                             |  |  |
|                   |                          | interest rate of 2%                                    |  |  |
| m                 | 1.5<br>.8                | Changes in dispersion                                  |  |  |
| $\chi$            | -0.06                    | covariance between holding                             |  |  |
|                   |                          | period returns and labor productivity%                 |  |  |
| $\sigma_e$        | 0.03                     | vol of labor productivity                              |  |  |
| g                 | .13 %                    | Average pre-transfer expenditure- output ratio of 12 % |  |  |

Table: Benchmark calibration

The Pareo weights and initial distribution of wealth is chosen to match

## Calibration: Interest rates

Let  $q_t^{(n)}$  be the log price of a nominal bond of maturity n. We can define the real holding period returns  $r_{t,t+1}^{(n)}$  as follows

$$r_{t,t+1}^{(n)} = q_{t+1}^{(n-1)} - q_t^{(n)} - \pi_{t+1}$$

With the transfromation  $y_t^{(n)}:-\frac{1}{n}q_t^{(n)}$  we can express  $r_{t,t+1}^{(n)}$  as follows:

$$r_{t,t+1}^{(n)} = \underbrace{y_t^{(n)}}_{\text{Ex-ante part}} - (n-1) \left[\underbrace{\left(y_{t+1}^{(n)} - y_t^{(n)}\right)}_{\text{Interest rate risk given } n} + \underbrace{\left(y_{t+1}^{(n-1)} - y_{t+1}^{(n)}\right)}_{\text{Term structure risk}}\right] - \underbrace{\pi_{t+1}}_{\text{Inflation risk}}$$

#### Calibration: Interest rates

- In the model the holding period returns are given by  $\log \left\lfloor \frac{P_{t+1}}{Q_t} \right\rfloor$  and  $Q_t = \frac{\beta \mathbb{E}_t u_{c,t+1} P_{t+1}}{u_{c,t}}$ .
- P<sub>t+1</sub> allows us to captures ex-post fluctuations in returns to the government's debt portfolio coming from maturity and inflation.
- ▶ Since  $\epsilon_t$  is i.i.d over time in our calibration  $\chi = \frac{\sigma_r}{\sigma_\epsilon} Corr(r, \epsilon)$

Using data on labor productivity  $\epsilon_t$  and  $\{q_t^n\}_n$  we can compute the correlation table as follows:

| Maturity (n)                                         | 2yr    | 3yr     | 4yr    | 5yr    |
|------------------------------------------------------|--------|---------|--------|--------|
| $Corr(\epsilon_{t+1}, r_{t,t+1}^{(n)})$              | -0.11  | -0.093  | -0.083 | -0.072 |
| $Corr(\epsilon_{t+1}, r_{t,t+1}^{(n)} - ny_t^{(n)})$ | 0.00   | -0.0463 | -0.080 | -0.091 |
| $Corr(\epsilon_{t+1}, y_t^{(n)} - \pi_{t+1})$        | -0.097 | -0.086  | -0.080 | -0.073 |

#### **Table**

Further  $Corr(\epsilon_{t+1}, \pi_{t+1}) = 0.068$  and for 3 month real tbill returns  $Corr(\epsilon_{t+1}, y_t^{1qtr} - \pi_{t+1}) = -0.11$ 

## Long run



Figure : The red, black and blue lines plot simulations for a common sequence of shocks for values of  $\chi=-1.5,0,1.5$  respectively

## Long run: Speed of convergence



Figure : The plot shows conditional mean paths for different values of  $\chi$ . The red (blue) lines have  $\chi < 0$  ( $\chi > 0$ ). The thicker lines represent larger values

## Spreading of taxes



Figure : Taxes for a sequence of -1 s.d shocks to aggregate productivity

#### Short run

Lets denote consecutive period of negative (positive) one s.d  $\epsilon$  shocks a "recession" (boom)

- Simulate a recession that is followed by no further shocks
- Decompose responses into TFP component and inequality component:

**Baseline:** 
$$\log \theta_i = \epsilon [1 + (.9 - i)m]$$

▶ Only TFP:

$$\log \theta_i = \epsilon$$

Only Ineq:

$$\log \theta_i = \epsilon [(.9 - i)m]$$

## Recessions with higher inequality



Figure: The bold line is the total response. The dashed (dotted) line reflects the only TFP (inequality) effect. The shaded region is the recession

# Tfp and Tfp+Ineq recessions: Sample moments

| Moments                     | Tfp   | Tfp + Ineq |
|-----------------------------|-------|------------|
| vol. of taxes               | 0.003 | 0.006      |
| vol. of transfers           | 0.01  | 0.02       |
| autocorr. in taxes          | 0.93  | 0.66       |
| autocorr. in transfers      | 0.17  | 0.18       |
| corr. of taxes with tfp     | 0.15  | -0.63      |
| corr. of transfers with tfp | 0.99  | -0.98      |

Table : These are sample moments averaged acrosss simulations of 100 periods

#### Redistribution in recessions

- ► TFP : Relative inequality is unchanged and planner redistributes by lowering tax-rates on impact.
- Only Ineq: Earnings gap increases by factor m. The planner mainly redistributes mainly through higher transfers and taxes.
- ► TFP + Ineq: For both tax rates and transfers are higher. Relative to the Tfp case the volatility of taxes and trasnfers is twice as much.