Logic

Luka Ilić

October 5, 2018

Contents

1 Propositional logic

3

1 Propositional logic

Convention: In this course we write T for true and F for false.

Definition. 1.1. The language of propositional logic consists of following symbols: propositional variables denoted (mostly) by p, q, \ldots or $p_1, p_2, \ldots, q_1, q_2, \ldots$ and the connectives $\land, \lor, \neg, \rightarrow, \leftrightarrow$.

Definition. 1.2. A propositional formula is a string of symbols obatained in the following way

- 1. Any variable is a formula
- 2. If ϕ and ψ are formulas then so are $(\phi \land \psi), (\phi \lor \psi), (\neg \phi), (\phi \to \psi), (\phi \leftrightarrow \psi)$
- 3. Any formula is obtained in this way.

Definition. 1.3. A truth function of n variables is a function

$$f: \{T, F\}^n \to \{T, F\}$$
.

Exercise. How many functions are there for n variables?

Definition. 1.4. Suppose ϕ is a formula with variables p_1, \ldots, p_n then we obtain a truth function $F_{\phi}: \{T, F\}^n \to \{T, F\}$ whose value at (x_1, \ldots, x_n) $x_i \in \{T, F\}$ is the truth value of ϕ when p_i has value x_i . The function F_{ϕ} is the truth function of ϕ .

Example. What is the truth function of

$$(((p \to q) \land (q \to (\neg p))) \to (\neg p))$$
?

It is always true.

Definition. 1.5. A propositional formula ϕ whose truth function F_{ϕ} is always true is called tautology. Say that formulas ϕ, ψ are logically equivalent (l.e.) if they have the same truth function.

Remark. ϕ, ψ are l.e. iff $(\phi \leftrightarrow \psi)$ is a tautology. Also, suppose that we got some formula ϕ with variables p_1, \ldots, p_n and ϕ_1, \ldots, ϕ_n are formulas with variables q_1, \ldots, q_r . For each $i \leq n$ substitute ϕ in place of p_i in ϕ . Then the result is a formula ψ and if ϕ is a tautology, then so is ψ .

Proof. The first statement is easy. For the second remark that

$$F_{\psi}(q_1,\ldots,q_r) = F_{\phi}(F_{\phi_1}(q_1,\ldots,q_r),\ldots,F_{\phi_n}(q_1,\ldots,q_r))$$

by the induction on the number of connectives in ϕ .

Example. 1. $(p_1 \wedge (p_2 \wedge p_3))$ is l.e. to $((p_1 \wedge p_2) \wedge p_3)$,

- 2. same with \vee ,
- 3. $(p_1 \lor (p_2 \land p_3))$ is l.e. to $((p_1 \lor p_2) \land (p_1 \lor p_3))$
- 4. similar the other way around.
- 5. etc.

Remark. Note that by the remark above, we can boost these equivalences bz substituting formulas for the variables.