УДК 621.313.17:519.87

МИНИМИЗАЦИЯ ПУЛЬСАЦИЙ КРУТЯЩЕГО МОМЕНТА В ВЕНТИЛЬНО-ИНДУКТОРНОМ ПРИВОДЕ

MINIMIZATION OF TORQUE RIPPLES IN THE SWITCHED RELUCTANCE MOTOR

Мещеряков Виктор Николаевич

доктор технических наук, профессор, заведующий кафедрой, кафедра электропривода, факультет автоматизации и информатики, Липецкий государственный технический университет mesherek@yandex.ru

Марков Алексей Сергеевич

аспирант,

Липецкий государственный технический университет malex0796@gmail.com

Аннотация. Вентильно-индукторный привод (ВИП) идеально подходит для промышленного применения на механизмах с регулируемой скоростью. ВИП наиболее предназначен для простых, и в то же время требующих регулирования скорости, операций. Основным недостатком электродвигателя является высокая пульсация крутящего момента, механическая вибрация и акустический шум. Из-за его нелинейности и двузначной структуры пульсация крутящего момента становится неизбежной. В статье представлен обзор вариантов минимизации пульсаций крутящего момента.

Ключевые слова: вентильно-индукторный привод, минимизация пульсаций, крутящийся момент.

Meshcheryakov Viktor Nikolaevich

PhD in Engineering, Professor, Head of the Department, Department of Electric Drive, Faculty of Automation and Computer Science, Lipetsk State Technical University mesherek@yandex.ru

Markov Alexey Sergeevich

Graduate Student, Lipetsk State Technical University malex0796@gmail.com

Annotation. The switched reluctance motor (SRM) is ideal for industrial applications with adjustable speed. SRM is most designed for low-cost and regulated operations. The main disadvantage of an electric motor with adjustable resistance is high torque ripple, mechanical vibration and acoustic noise. Due to its non-linearity and two-digit structure, torque ripple becomes unavoidable. The article provides an overview of options for minimizing torque ripples.

Keywords: the switched reluctance motor, minimization of torque ripple.

Введение

уществует ряд исследований, предлагающих внедрение вентильно-индукторного привода (ВИП) в качестве исполнительного двигателя насосного агрегата, в том числе и для нефтегазовой отрасли. Имеющиеся разработки касаются преимущественно конструктивных особенностей ВИП и его модернизации [1].

Коммутируемый ВИП относится к простейшим электрическим машинам. ВИП отличается прочностью, а стоимость изготовления ниже по сравнению с другими электрическими машинами [2]. Статор и ротор ВИП имеют выступающие полюса. Обмотка статора создает магнитное поле, а ротор не имеет обмоток, коллектора и щеток. Скорость ВИП больше по сравнению с шаговым двигателем. В этом двигателе сочетаются предпочтительные качества приводов асинхронных двигателей и приводов постоянного тока [3]. Модель ВИП была сделана с использованием пакета Matlab Simulink и построена для сравнительного моделирования (рис. 1). Крутящий момент, создаваемый в этом двигателе, пропорционален квадрату тока обмотки (рис. 2). Благодаря своей простой конструкции, ВИП становится более привлекательным, чем другие типы двигателей для промышленного применения.

Рисунок 1 – Модель ВИП с использованием пакета Matlab Simulink

Рисунок 2 – Вращающий момент в функции от положения ротора при различной нагрузке

Основным недостатком ВИП является неравномерное и импульсное создание крутящего момента, которое приводит к его увеличению, что в свою очередь, вызывает вибрацию и акустический шум. Данное явление возникает из-за структурной деформации и гармонических магнитных моментов, наводящиеся в результате взаимодействия статора и ротора [2].

Пульсации крутящего момента

Минимизация пульсаций должна рассматриваться как в конструкции, так и в электронной контрольной точке [4]. В ВИП также может произойти несколько неисправностей во время его работы, которые могут быть электрическими и механическими. Электрические неисправности могут быть следующими: короткое замыкание в одной катушке фазы (все витки или несколько витков), вся катушка замкнута коротким замыканием, вся фаза закорочена, обрыв в одной катушке фазы, одной фазы обрыв, короткое замыкание между двумя разными фазами, короткое замыкание одной обмотки на массу [5]. Все эти неисправности могут увеличить пульсацию крутящего момента.

Одновременно с этим данное явление приводит к сокращению срока службы механических узлов. Сюда же добавляется относительное резкое изменение индуктивности в зависимости от положения ротора и нелинейного управления. Из-за протекания тока через фазную обмотку ротор имеет тенденцию совпадать со статором, он создает крутящий момент, который стремится выровнять ротор в положение с наименьшим сопротивлением. Крутящий момент обеспечивается способностью его универсальной части приспосабливаться к области значений меньшего сопротивления. По трем причинам в ВИП возникает выброс крутящего момента. Основная причина заключается в его магнитномеханической структуре. Вторая причина связана с его непрямыми атрибутами индуктивности, а третья причина — отрицательный крутящий момент из-за «хвостового» тока. Выражение для крутящего момента может быть получено с использованием производной энергии магнитного поля с положением ротора при заданном значении тока. В ходе преобразований [6] получается формула для определения крутящего момента в ВИП (форм. 1).

$$M = \frac{1}{2} \cdot i^2 \frac{dL}{d\theta}; \tag{1}$$

где i – заданное значение тока; θ – положение ротора.

Из (1) видно, что крутящий момент не зависит от направления тока, он зависит только от полярности $\frac{\mathrm{dL}}{\mathrm{d}\theta}$. Когда ротор совмещен со статором, создается положительный (двигательный) крутящий момент, независимо от направления тока. Когда ротор выходит из центровки, крутящий момент отрицательный (тормозной или рекуперативный). Ток должен включаться и выключаться синхронно с положением ротора. Период проводимости не должен превышать угол ступеньки. В момент коммутации желательно допустить небольшое перекрытие, чтобы свести к минимуму выброс крутящего момента в виде выемок на мгновенной форме волны крутящего момента. Слишком большое перекрытие коммутации приводит к положительным импульсам крутящего момента, что увеличивает средний крутящий момент и усиливает переходные процессы на муфте, валу и нагрузке [7]. По этой причине из-за изменения тока между фазными обмотками ВИП имеет очень высокую пульсацию крутящего момента, которая в основном зависит от углов включения и выключения.

Пульсации крутящего момента также можно определить, как разницу между максимальным и минимальным мгновенным крутящим моментом, выраженную в процентах от среднего крутящего момента во время устойчивого состояния [6].

Методы минимизации пульсаций

1. Текущее профилирование ВИП

В [2] исследуется 4 способа минимизации пульсаций крутящего момента в ВИП: гистерезисное регулирование тока ВИП с ПИ-регулятором скорости, метод управления ШИМ, мгновенное управление крутящим моментом ВИП с ограничением тока и ПИ-регулятором скорости и текущее профилирование ВИП. Последний метод контроля, описанный в этой статье, означает, что форма волны фазного тока модулируется таким образом, чтобы достичь плавного крутящего момента без пульсаций. Текущие профили рассчитываются в автономном режиме и сохраняются в таблице как ток в зависимости от крутящего момента и положения ротора. Фактическое значение крутящего момента интерполируется из существующих значений за заданное время. Это может занять больше памяти в процессоре. Для расчета профилей тока использовались статические характеристики крутящего момента по результатам измерений из-за точности этого метода, но для определенных условий, описанных в данной статье по этому методу ВИП не может создавать крутящий момент.

2. Интеллектуальная техника управления

В [7] произведен обзор методов косвенного управления пульсациями крутящего момента. У каждого из рассмотренных им методов есть свои преимущество и недостатки, а также выбор метода зависит от области применения системы.

В системах с нечеткой логикой, нейронными сетями и нейро-нечеткими системами проводятся наблюдения и формируются определенные правила. Управление крутящим моментом на основе ANFIS было предложено в [8]. Профили тока генерируются для конкретного задания крутящего момента путем онлайн-обучения, чтобы уменьшить пульсации крутящего момента. В текущем управляемом контуре управления скоростью к выходу ПИ-регулятора добавляется компенсационный сигнал, так что был проведен анализ эффектов изменения функций принадлежности нейро-нечеткой компенсации. Метод с применением интеллектуальных техник управления, в отличие от рассмотренного с ПИД регулятором, позволяющем снижать пульсации на 21 %, сокращает пульсации крутящего момента на 52 %. В рассмотренном примере пульсации крутящего момента ВИП составляют 77 % и к примеру, с одним лишь только прямым управлением крутящим моментом, пульсации будут сокращены всего на 10 % [7].

3. Контроллер Continuous Solutions для ВИП

Инженеры Continuous Solutions разработали детальные модели перспективных вариантов ВИП, определенных программой оптимизации в ANSYS Maxwell. Использовался шаблонно-ориентированный инструмент проектирования RMxprt для быстрого определения геометрии двигателя. Использовались возможности параметрического проектирования в RMxprt для определения магнитной системы ВИП: количество полюсов, обмоточные данные и т.д.[9]

Вместо поиска конструкционного решения для минимизации пульсаций момента, вибрации, был разработан алгоритм управления для подачи тока в обычно неактивные обмотки в точное время, чтобы нейтрализовать отклоняющиеся векторы силы от активных полюсов. Алгоритм управления сделан в своих собственных аналитических инструментах и встроен в обычный инвертор ВИП, собранный в ANSYS TwinBuilder. Инвертор был подключен к модели двигателя ANSYS Maxwell, рассматривалось взаимодействие ВИП со схемой управления с разработанным алгоритмом. Результаты замеров подробно рассматриваются в [9]. Графики нестационарного режима позволили сгладить колебания вращающего момента: как только ротор ВИП собирается дергаться влево, контроллер вводит сигнал для рывка вправо, подавляя сопротивление движению в нужном направлении, удаляя волну пульсаций вращающего момента,

Заключение

В статье представлен обзор различных методов минимизации пульсаций крутящего момента. Объясняется причина концепции создания крутящего момента, а также рассматриваются методы косвенного управления крутящим моментом.

Из рассмотренных источников информации особо отмечены метод минимизации с использованием интеллектуальных контроллеров. Пульсации крутящего момента также можно минимизировать с помощью текущего профилирования, но метод ограничивается определенными условиями функционирования ВИП, но тем не менее метод может быть использован в будущем для управления во многих промышленных приложениях или электромобилях с приводом ВИП. Минимизация пульсаций должна рассматриваться как в конструкции, так и в электронной контрольной точке. А также целесообразно продолжить исследования минимизации пульсаций крутящего момента с использованием с учетом вза-имной индуктивности и использования композитного материал для конструкции статора в ВИП.

Статья написана при поддержке гранта РФФИ 19-48-480001 «Разработка, исследование и оптимизация энергосберегающих электротехнических и электроприводных автоматизированных комплексов для плазменных, электрометаллошлаковых и индукционных технологий и агрегатов».

Литература:

- 1. Нгуен Куанг Кхоа. Исследование электромеханического комплекса: вентильно-индукторный электропривод центробежный насос // Известия высших учебных заведений. Электромеханика. 2016.
- 2. Dubravka P. «Control Techniques for Torque Ripple Minimization in Switched Reluctance Drives under Faults» // International Symposium on Power Electronics, Electrical Drives, Automation and Motion, 2016.
 - 3. Miller T.J.E. «Switched Reluctance Motors and their Control» // Magna Physics, 1992.
- 4. Jebarani Evangeline. S. «Torque ripple minimization of switched reluctance drives a survey» // 5th IET International Conference on Power Electronics, Machines and Drives (PEMD), 2010
- 5. Christos Mademalis, Iordanis Kioskeridis, «Performance Optimization in Switched Reluctance Motor Drives with online commutation angle control» // IEEE Transaction on Energy Conversion, 2003. Vol.18. № 3.
 - 6. Miller T.J.E. «Electronic Control of Switched Reluctance Machines» // Oxford (U.K.): Newnes, 2001.
- 7. Mahalakshmi G., Ganesh Dr.C. «A Review of Torque Ripple Control Strategies of Switched Reluctance Motor» // International Journal of Applied Engineering Research ISSN 0973-4562. 2018. Vol. 13. № 7. P. 4688–4692.
- 8. Fei Peng, Jin Ye, Ali Elmadi. «A Digital PWM Controller for Switched Reluctance motor Drives» // IEEE Transacions on Power Electronics.2015. Vol. 31. № 10.
- 9. Электронный ресурс // Следующее поколение электродвигателей электромобилей. Бесшумная обработка. URL: https://www.ansys.com/about-ansys/advantage-magazine/volume-xiii-issue-1-2019/next-generation-of-electric-vehicle-motors (дата обращения: 3.03.2021).

References:

- 1. Nguyen Quang Khoa. Investigation of electromechanical complex: valve-inductor electric drive centrifugal pump // Proceedings of Higher Educational Institutions. Electromechanics. 2016.
- 2. Dubravka P. «Control Techniques for Torque Ripple Minimization in Switched Reluctance Drives under Faults» // International Symposium on Power Electronics, Electrical Drives, Automation and Motion, 2016.
 - 3. Miller T.J.E. «Switched Reluctance Motors and their Control» // Magna Physics, 1992.
- 4. Jebarani Evangeline. S. «Torque ripple minimization of switched reluctance drives a survey» // 5th IET International Conference on Power Electronics, Machines and Drives (PEMD), 2010.
- 5. Christos Mademalis, Iordanis Kioskeridis, «Performance Optimization in Switched Reluctance Motor Drives with online commutation angle control» // IEEE Transaction on Energy Conversion, 2003. Vol. 18. № 3.
 - 6. Miller T.J.E. «Electronic Control of Switched Reluctance Machines» // Oxford (U.K.): Newnes, 2001.
- 7. Mahalakshmi G., Ganesh Dr.C. «A Review of Torque Ripple Control Strategies of Switched Reluctance Motor» // International Journal of Applied Engineering Research ISSN 0973-4562. 2018. Vol. 13. № 7. P. 4688–4692.
- 8. Fei Peng, Jin Ye, Ali Elmadi. «A Digital PWM Controller for Switched Reluctance Motor Drives» IEEE Transacions on Power Electronics, 2015. Vol. 31. № 10.
- 9. Electronic resource // The next generation of electric motors for electric cars. Silent processing. URL: https://www.ansys.com/about-ansys/advantage-magazine/volume-xiii-issue-1-2019/next-generation-of-electric-vehicle-motors (accessed 3.03.2021).