

Lecture on

Dependable Computer Systems

Stefan Poledna TTTech Computertechnik AG www.tttech.com

Overview

Overview on lectures

- Dependable systems and incidents
- Basic concepts and terminology
- Fault-tolerance and modelling
- Failure modes and models
- Processes, Certification, Standards with an Aerospace focus
- System aspects
- Conclusion

Part 1:

Dependable systems and incidents

The "Dependability Problem"

Our society depends on a broad variety of computer controlled systems where failures are critical and may have severe consequences on property, environment, or even human life.

Aims of this lectures

- to understand the attributes and concepts of dependability,
- to understand reasons for low dependability and
- gain knowledge on how to build dependable computer systems

"Fly-by-wire"

- pilot commands are transmitted as electrical commands
- a flight control system (FCS computer) is used
- the pilot flies the FCS and the FCS flies the plane
- military planes require FCS to get artificial stability
- for civilian use the advantages are:
 - weight savings
 - enhanced control qualities
 - enhanced safety

The SAAB JAS Gripen:

- 1989: Crash after sixth test flight due to exceeded stability margins at critical frequency, software was updated
- 1993: Crash on a display flight over the Water Festival in Stockholm, again due to pilot commands the plane became instable
- the cycle time of the Gripen FCS is 200 ms
- the probability of instability was estimated by the engineers as "sufficiently low"

The Airbus A320:

- 4 hull losses (plane crashes)
- all crashes are attributed to a mixture of pilot and computer or interface failures

Patriot vs. Scud

During gulf war a Scud missile broke through the Patriot anti-missile defense barrier and hit American forces killing 28 people and injuring 98

A software problem

- time is represented as an 32 bit integer and converted to 24 bit real number
- with the advent of time this conversion loses accuracy
- tracking of enemy missiles becomes therefore faulty
- the software problem was already known, and the update was delivered the next day

Bank of America financial system:

- development during 4 years costs \$20 millions
- \$60 millions in overtime expenses
- \$1.5 billion in lost business
- system was abandoned after nearly one year in service

Airport of Denver, Colorado

- one of the largest airports worldwide
- intelligent luggage transportation system with 4000 "Telecars", 35 km rails, controlled by a network of 100 computers with 5000 sensors, 400 radio antennas, and 56 barcode readers
- due to software problems about one year delay which costs
 1.1 million \$ per day

Harsh environment:

- The "bug": On a Mark II in 1945 a moth came between relay contacts
- train cars were changed form external to disc brakes, trains vanished from display
- near a broadcast transmission tower it was possible to "hear rock and roll on the toaster"
- an overripe tomato hung over an answering machine, dripping tomato juice into the machine which caused repeated call to the emergency line
- pigeons may deposit a "white dielectric substance" in an antenna horn

Examples may seem funny but:

- system are designed to endure within a given operational conditions
- it is very hard to anticipate the operational conditions correctly
- illustrates difficulties of good system design

The Therac-25 accidents

- Therac-25 is a machine for radiation therapy (to treat cancer)
- Between June 1985 and January 1987 (at least) six patients received severe overdoses:
 - two died shortly afterwards
 - two might have died but died because of cancer
 - the remaining two suffered of permanent disabilities

Functional principle

- "scanning magnets" are used to spread the beam and vary the beam energy
- Therac is a "dual-mode" machine
- electron beams are used for surface tumors
- X-ray for deep tumors

X-ray and electron mode

- a tungsten target and a "beam flattener" is moved in the path to the rotating turntable
- the target generates the Xrays but absorbs most of the beam energy
- the required energy has to be increased by a factor of 100, compared to electron mode

Typical Therac-25 facility

Major event time line

•			
		1985	
Jun	+	3rd: Marietta, Georgia, overdose. Later in the month, Tim Still calls AECL and asks if overdose by Therac-25 is possible.	
Jul + 26th: Hamilton, Ontario, Canada, overdose; AE		26th: Hamilton, Ontario, Canada, overdose; AECL notified and determines microswitch failure was the cause.	
Sep	1	AECL makes changes to microswitch and notifies users of increased safety. Independent consultant (for Hamilton Clinic) recommends potentiometer on turntable.	
		Georgia patient files suit against AECL and hospital.	
Oct Nov	+	8th: Letter from Canadian Radiation Protection Bureau to AECL asking for additional hardware interlocks and software changes.	
	T	Yakima, Washington, clinic overdose.	
Dec	+	1986	
Jan	+	Attorney for Hamilton clinic requests that potentiometer be installed on turntable. 31st: Letter to AECL from Yakima reporting overdose possibility.	
Feb	+	24th: Letter from AECL to Yakima saying overdose was impossible and no other incidents had occurred.	
	•		

Major event time line (cont. 1986)

Mar -	21st: Tyler, Texas, overdose. AECL notified; claims overdose impossible accidents had occurred previously. AECL suggests hospital might have a problem.			
Apr -	_	7th: Tyler machine put back in service after no electrical problem could be found.11th: Second Tyler overdose. AECL again notified. Software problem found.15th: AECL files accident report with FDA.		
May -	2nd: FDA declares Therac-25 defective. Asks for CAP and proper renotificat ay + Therac-25 users.			
_		13th: First version of CAP sent to FDA.		
Jun - Jul -	<u> </u>	23rd: FDA responds and asks for more information. First user group meeting.		
Aug .		 26th: AECL sends FDA additional information. 30th: FDA requests more information. 12th: AECL submits revision of CAP. 		
Aug - Sep -				
Nov -	<u> </u>			
Dec -		Therac-20 users notified of a software bug. 11th: FDA requests further changes to CAP. 22nd: AECL submits second revision of CAP.	FDA = US Food and Drug Administration CAP = Corrective Action Plan	

Major event time line (1987)

Lessons learned from Therac-25 accident:

- Accidents are seldom simple
- Accidents are often blamed to single source
- Management inadequacies, lack of following incident reports
- Overconfidence in software
- Involvement of management, technicians, users, and government
- Unrealistic risk assessment
- Less-than-acceptable software-engineering practices

Reasons for low dependability:

- Chips with everything:
 - Computers are increasingly used for all types of devices and services.
- Interface design:
 - Complex systems must have a "friendly" interface that is easy to understand and must not confuse or mislead the user.
- The "system" includes the operator:

 The total system requires some functions to be carried out by the operator.
- The "system" includes the documentation:
 Operator failures may occur due to hard to understand or misleading documentation.
- The "system" includes its operating procedures:

 Just as the operator and the documentation are regarded as part of the system, so must the procedures for using it.

Reasons for low dependability (cont.):

"System" failures are human failure:

Not only the operator, but other humans and ultimately the designer are causing system failures.

Complexity:

Problem inherent complexity—not solution induced complexity—is hard to handle.

System Structure:

Unsuitable system structures can lead to low dependability

Wrong assessment of peak load scenario:

Systems can only be designed to handle a priori known peak load scenarios.

Wrong assessment of fault hypothesis:

Systems can only be designed to handle a priori known fault hypothesis.

Reasons for low dependability (cont.):

- Low dependability of components:
 - "A system is as strong as its weakest link"
- Misunderstanding of application:

Customer and system manufacturer have different understandings of the services

- Incomplete problem description:
 Unintended system function due to incomplete problem description
- Coupling and interactive complexity:
 - cf. next slide
- Discontinuous behavior of computers:
 - cf. foil after slide
- No system is fool-proof

Concept of coupling and interactive complexity

The concept of coupling and interactive complexity is a model to explain what type of systems are potentially hazardous [Perrow 1984].

Tightly coupled systems:

In a tightly coupled system components affect one another automatically with great rapidity, so that errors propagate too quickly for a human operator to detect, contain and correct them.

• Interactive complex systems:

In an interactive complex system components interact in many ways simultaneously, so that the behavior of the system (as a whole) is inherently difficult to understand.

Problem of discontinuous behavior

or the Problem of Software

- discrete computers are symbol manipulating machines
- symbols are represented in binary form of 0's and 1's
- computers are finite state machines
- large state space (combinatorial explosion)
- mapping of actual state and input to new state
- in contrast to analogue systems there is no continuos trajectory
- discontinuous trajectories are intractable by simple mathematics
- is worse than chaotic behavior (of analog systems)
- continuous or analog systems have an infinite number of stable states while discrete systems have only a small (finite) number of stable states