CGS - Hugo Miranda

2021





### **Faults**

A distributed system is one that prevents you from working because of the failure of a machine that you had never heard of.

Leslie Lamport

#### The impact of faults

- How users "judge" how good a team is
  - There's always a problem
  - Users don't care about the complexity/time to fix ratio



|C|



### Faults of What?



Motivation

### Learn $\rightarrow$ Identify $\rightarrow$ Resolve

- Monitoring infrastructure reports **Events**
- One or more events are translated into Symptoms
- Symptoms point to Causes
- Causes are fixed



Motivation

- The information arriving to the monitoring infrastructure
- Delivered by the system
  - Users ⊂ System
- "No News" ⇒ "Good News"
  - "No News" must be converted in "Bad News"
  - E.g. ping



### Symptoms

- The expression of a problem
  - Typically expressed by events
  - Not necessarily  $1 \iff 1$
- Example:

```
Symptom Server down
```

**Event** Ping failed

Event Webserver cannot reach the database

Event Phone call from user

complaining to be unable to read client record



- The reason why symptom(s) exist
  - The problem to be addressed
  - Diagnostic: identifying the cause from symptoms



### Classes of Causes

#### Permanent

- Infrastructure failure
  - Power outage
  - Overheating
- Component failure
  - Hardware, software, user
- Configuration problem
  - Wrong configuration
  - Software bugs
  - Wrong requests



### Classes of Causes

#### **Transient**

- Component restarting
- Component or system reconfiguration
  - Route changes
  - Request redirection



Motivation

# Making a Diagnostic

- Given a set of symptoms  $s_0, ..., s_n$ 
  - observed on moments ts<sub>0</sub>,...,ts<sub>n</sub>
- Identify a set of root causes c<sub>0</sub>,...,c<sub>m</sub>
  - that occurred on moments tc<sub>0</sub>,...tc<sub>m</sub>
- Such that  $tc_i$  happens before  $ts_j$ ,  $\forall s_j$  associated to  $c_i$



# A Timeline





# Diagnostic Approaches Library

- No single approach fits all
- Sometimes cause is obvious
- Frameworks can/should help



- Graph shows dependencies/connectivity status
- Narrow down possibilities until causes can be found





# Library of Rules

- Set of if/then clauses
- Then returns either root causes or other symptoms

#### Example

- $\blacksquare \mathsf{If}\; \mathsf{s}_0 \, \wedge \, \mathsf{s}_1 \to \mathsf{s}_{10}$
- $\blacksquare \mathsf{If} (\mathsf{s}_2 \wedge \mathsf{s}_{10}) \vee (\mathsf{s}_9 \wedge \mathsf{s}_5) \to \mathsf{c}_5$



### Decision Tree

- Workflow tree
- Decisions on symptoms
- Root causes are leafs



### Decision Tree



# Dependency Graph

- Symptoms on the left
- Root causes on the right
- $lue{}$  1 symptom ightarrow N causes
- 1 root cause  $\rightarrow$  N symptoms
- Typically represented as a bipartite graph



# Bipartite graph



Motivation

■ Projection of bipartite graph on a table

Rows symptoms

Columns Root causes

Cells 1 if the link exists/0 otherwise

Hamming Distance helps to automate diagnostic



#### Example

|                       | $c_0$ | $c_1$ | $c_2$ | C <sub>3</sub> | C <sub>4</sub> | C <sub>5</sub> |
|-----------------------|-------|-------|-------|----------------|----------------|----------------|
| s <sub>0</sub>        | 1     | 0     | 0     | 0              | 0              | 0              |
| $s_1$                 | 1     | 0     | 0     | 0              | 0              | 0              |
| $s_2$                 | 0     | 1     | 0     | 1              | 0              | 0              |
| <b>S</b> <sub>3</sub> | 0     | 1     | 0     | 0              | 0              | 0              |
| $S_4$                 | 0     | 0     | 1     | 0              | 0              | 1              |
| <b>S</b> 5            | 1     | 0     | 0     | 0              | 1              | 1              |



Local

Motivation

- Ticket Troubling Service (TTS)
- Incident reports
- Documentation produced by the team
  - If it exists
- Vendors
  - Web service mapping error codes on problems and solutions
- Web search engines
  - Google the error code or symptoms
  - Developers forum
  - . . . .



- If the symptoms were observed in the past
  - the cause is likely the same
- TTS/Incident reports
  - Knowledge Base



# Redundancy

cold standby boot when necessary warm standby periodic updates

■ E.g. DNS servers, databases

hot standby permanently updated

■ E.g. RAID



### RAID Levels

- 0 Merge hard drives on a single virtual one. No redundancy.
- 1 Mirror pairs of hard drives. 50% space for redundancy.
- 5 Recovers from the failure of one drive from the group. 1/N for redundancy
- 6 Recovers from the failure of two drives of the group. 2/N for redundancy
- 10 1+0



### **RAID** Levels









С

### Prevention

- Automatic reboots
- Redundancy management
  - centralized on a single master node
  - distributed



### Conclusions

- Faults are the most visible activity of IT administration
  - Most users believe it is (almost) the only one
- Infrastructure doesn't choose the adequate moment for failing
  - That's why "Prevention status" exist
- Redundancy is key to mitigate problems
- Many things can happen and symptoms can be confusing

