UNIVERSITÄT WÜRZBURG INSTITUT FÜR MATHEMATIK PROF. DR. DANIEL WACHSMUTH BASTIAN DITTRICH

Wintersemester 2023/24

5. Übung zur Vertiefung Analysis

15. November 2023

Abgabe bis spätestens Mittwoch 22. November 2023 um 18 Uhr per WueCampus (maximal zu dritt).

Aufgabe 5.1 (positive Funktion, 3 Punkte) Sei (X, \mathcal{A}, μ) ein Maßraum und $f: X \to \mathbb{R}$ nichtnegativ und messbar. Es existiere eine Menge $A \in \mathcal{A}$ mit $\mu(A) > 0$ und f(x) > 0 für alle $x \in A$. Zeigen Sie, dass ein $\varepsilon > 0$ und eine Menge $B \in \mathcal{A}$ mit $\mu(B) > 0$ existieren, sodass $f(x) > \varepsilon$ für alle $x \in B$ gilt.

Aufgabe 5.2 (fast überall konvergent, 4 Punkte) Sei (X, \mathcal{A}, μ) ein vollständiger Maßraum und $f_n : X \to \mathbb{R}$ messbar für alle $n \in \mathbb{N}$. Außerdem sei (f_n) punktweise μ -fast überall konvergent, d.h. es existiert eine μ -Nullmenge $N \in \mathcal{A}$ und eine Funktion $f : X \to \mathbb{R}$, sodass $\lim_{n \to \infty} f_n(x) = f(x)$ für alle $x \in X \setminus N$ gilt. Zeigen Sie, dass f messbar ist.

Aufgabe 5.3 (messbare Funktionen, 4 Punkte) Sei $A \subseteq \mathbb{R}$ nichtleer. Bestimmen Sie alle Funktionen $f : \mathbb{R} \to \mathbb{R}$, welche bezüglich der σ -Algebra $\mathcal{A} := \{\emptyset, A, A^c, \mathbb{R}\}$ messbar sind.

Aufgabe 5.4 (Borel-Maßraum, 6 Punkte) Der Beweis von Lemma 1.83 funktioniert anstelle von [0,1] auch analog für jede beliebige Lebesgue-messbare Menge in \mathbb{R} , die keine Nullmenge ist. Das heißt für jede solche Menge existiert eine Teilmenge, die nicht Lebesgue-messbar ist.

Sei nun f die Cantor-Funktion aus Präsenzübung 3 und definiere $g:[0,1]\to[0,2],\ x\mapsto x+f(x)$.

- (a) Zeigen Sie, dass g bijektiv und die Umkehrfunktion g^{-1} messbar ist.
- (b) Zeigen Sie nun, dass der Maßraum $(\mathbb{R}, \mathcal{B}^1, \lambda_1|_{\mathcal{B}^1})$ nicht vollständig ist.

Hinweis: Nutzen Sie eine geeignete nicht Lebesgue-messbare Menge.