Übung 3

Aufgabe 1:

Beweisen oder widerlegen Sie folgende Behauptung über Sprachen:

$$orall L_1,L_2,L_3:L_1(L_2-L_3)=L_1L_2-L_1L_3$$
 Gegenbeispiel: $L_1=\{b,bb\};L_2=\{a,ba\};L_3=\{a\}$
$$\{b,bb\}\{ba\}\neq\{ba,bba,bbba\}-\{ba,bba\}$$
 $\{bba,bbba\}\neq\{bbba\}$

Aufgabe 2:

Gegeben seien die folgenden Zustandsübergangsdiagramme endlicher Automaten M1 und M2:

Geben Sie formale Beschreibungen der Automaten M1 und M2 an. Beantworten Sie die folgenden Fragen für jeden der beiden Automaten:

- M Automat
- K Menge der Zustände
- F Menge Endzustände ($F\subseteq K$)
- \(\sum_{\text{-}} \) Alphabet (nicht leere, engliche Menge von Zeichen)
- L Sprache (Menge der Wörter)
- δ Überführungsfunktion
- s Startzustand ($s \in K$)
- ⊢ "überführt "

allg.:
$$M = (K, \sum, \delta, s, F)$$

$$M_1=\{K_1,\sum,\delta_1,q_1,F_1\}$$

$$K_1 = \{q_1, q_2, q_3\}$$

$$F_1=\{q_2\}$$

$$\sum = \{a, b\}$$

Überführungsfunktion δ_1

δ_1	а	b
q_1	q_2	q_1
q_2	q_3	q_3
q_3	q_2	q_1

$$M_2 = \{K_2, \sum, \delta_2, s, F_2\}$$

$$K_2=\{q_1,q_2,q_3,q_4\}$$

$$s = q_1$$

$$F_2=\{q_1,q_4\}$$

$$\sum = \{a,b\}$$

Überführungsfunktion δ_2

δ_2	а	b
q_1	q_1	q_2
q_2	q_3	q_4
q_3	q_2	q_1
q_4	q_3	q_4

a) Was ist die Folge der Zustände, die bei Eingabe aabb erreicht werden?

$$M_1: (q1, aabb) \vdash_{M1} (q2, abb)) \vdash_{M1} (q3, bb)) \vdash_{M1} (q1, b)) \vdash_{M1} (q1, \epsilon))$$

ightarrow nicht akzeptiert, da $q_1
ot\in F$

$$M_2:\left(q1,aabb
ight)dash_{M2}\left(q1,abb
ight)
ight)dash_{M2}\left(q1,bb
ight)
ight)dash_{M2}\left(q2,b
ight)
ight)dash_{M2}\left(q4,\epsilon
ight)$$

ightarrow akzeptiert, da $q_4 \in F_2$

· b) Wird das Wort aabb akzeptiert?

$$M_1$$
: Nein, $q_1 \notin F$

$$M_2$$
 : Ja, $q_4 \in F$

- c) Wird das leere Wort ϵ akzeptiert?

Nur bei M_2 da Startzustand q1 auch Endzustand

Aufgabe 3:

Sei M durch folgendes Zustandsübergangsdiagramm gegeben. Was ist L(M)? Beweisen Sie ihre Antwort!

Aufgabe 4:

Geben Sie deterministische endliche Automaten an, die die folgenden Sprachen akzeptieren:

• a) $\{w \in \{a,b\}^* | w ext{ beginnt mit aba} \}$

• b) $\{w \in \{a,b\}^* | w ext{ enthaelt genau 2 a} \}$

Aufgabe 5:

Geben Sie deterministische endliche Automaten an, die die folgenden Sprachen akzeptieren:

• a) $\{w \in \{a,b\}^* | \text{ in w folgt auf jedes a unmittelbar ein b} \}$

• b) $\{w \in \{a,b\}^* | w \text{ enthalt das Teilwort aabab}\}$

Aufgabe 6:

Geben Sie jeweils (nichtdeterministische) endliche Automaten an, die die folgenden Sprachen akzeptieren:

Unterschied zur deterministischem Automaten: Statt δ Überführungsfunktion ist's eine Überführungsrelation.

- a) $\{w \in \{a,b\}^* | w ext{ beginnt mit b und endet mit a} \}$

• b) $\{w \in \{0,7\}^* | w ext{ enthaelt das Teilwort 007} \}$

Aufgabe 7:

Geben Sie jeweils (nichtdeterministische) endliche Automaten an, die die folgenden Sprachen akzeptieren:

• a) $\{w\in\{a,b\}^*||w|\leq 3\}$

• b) $\{w \in \{a,b\}^* | w$ an jeder ungeraden Position in w
 steht ein b}

