NFA, DFA, and regular expressions 204213 Theory of Computation

Jittat Fakcharoenphol

Kasetsart University

November 12, 2008

Outline

- Review
- 2 Nondeterminism
- 3 Equivalence of NFAs and DFAs
- 4 Closure under the regular operations
- Regular expressions
- 6 Equivalence between regular expressions and finite automata

Regular operations

Last time, we defined 3 regular operations:

- Union: $A \cup B = \{x | x \in A \text{ or } x \in B\}$,
- Concatenation: $A \circ B = \{xy | x \in A \text{ and } y \in B\},$
- Star: $A^* = \{x_1x_2 \cdots x_k | k \ge 0 \text{ and each } x_i \in A\},$

Regular operations

Last time, we defined 3 regular operations:

- Union: $A \cup B = \{x | x \in A \text{ or } x \in B\},\$
- Concatenation: $A \circ B = \{xy | x \in A \text{ and } y \in B\},\$
- Star: $A^* = \{x_1x_2 \cdots x_k | k \ge 0 \text{ and each } x_i \in A\}$,

and proved the following theorem.

Theorem 1

The class of regular languages is closed under the union operation.

• We prove Theorem 1 by simulating two finite automata with one finite automaton.

- We prove Theorem 1 by simulating two finite automata with one finite automaton.
- This approach cannot be used directly to prove that the set of regular languages is closed under concatenation. Why?

- We prove Theorem 1 by simulating two finite automata with one finite automaton.
- This approach cannot be used directly to prove that the set of regular languages is closed under concatenation. Why?
 - For string $w \in A_1 \circ A_2$, there exists a pair x and y such that w = xy and $x \in A_1$ and $y \in A_2$.

- We prove Theorem 1 by simulating two finite automata with one finite automaton.
- This approach cannot be used directly to prove that the set of regular languages is closed under concatenation. Why?
 - For string $w \in A_1 \circ A_2$, there exists a pair x and y such that w = xy and $x \in A_1$ and $y \in A_2$.
 - To construct a finite automaton M for $A_1 \circ A_2$ from M_1 and M_2 that recognize A_1 and A_2 we need to simulate M_1 to the end of x and start simulating M_2 right after that.

- We prove Theorem 1 by simulating two finite automata with one finite automaton.
- This approach cannot be used directly to prove that the set of regular languages is closed under concatenation. Why?
 - For string $w \in A_1 \circ A_2$, there exists a pair x and y such that w = xy and $x \in A_1$ and $y \in A_2$.
 - To construct a finite automaton M for $A_1 \circ A_2$ from M_1 and M_2 that recognize A_1 and A_2 we need to simulate M_1 to the end of x and start simulating M_2 right after that. And it is hard to "tell" where x ends.

• Suppose that our machine can guess where *x* ends.

- Suppose that our machine can guess where *x* ends.
- It can
 - simulate M_1 on the input string up to the end of x,

- Suppose that our machine can guess where x ends.
- It can
 - simulate M_1 on the input string up to the end of x,
 - jump to the start state in M_2 right after x ends, and

- Suppose that our machine can guess where x ends.
- It can
 - simulate M_1 on the input string up to the end of x,
 - ullet jump to the start state in M_2 right after x ends, and
 - accept string w = xy when the machine stops at some accept state in M_2 .

- Suppose that our machine can guess where x ends.
- It can
 - simulate M_1 on the input string up to the end of x,
 - jump to the start state in M_2 right after x ends, and
 - accept string w = xy when the machine stops at some accept state in M_2 .
- Can machine guess?

- Suppose that our machine can guess where x ends.
- It can
 - simulate M_1 on the input string up to the end of x,
 - jump to the start state in M_2 right after x ends, and
 - accept string w = xy when the machine stops at some accept state in M_2 .
- Can machine guess?
 - Maybe?

- Suppose that our machine can guess where x ends.
- It can
 - simulate M_1 on the input string up to the end of x,
 - jump to the start state in M_2 right after x ends, and
 - accept string w = xy when the machine stops at some accept state in M_2 .
- Can machine guess?
 - Maybe?
 - But guess correctly?

- Suppose that our machine can guess where x ends.
- It can
 - simulate M_1 on the input string up to the end of x,
 - jump to the start state in M_2 right after x ends, and
 - accept string w = xy when the machine stops at some accept state in M_2 .
- Can machine guess?
 - Maybe?
 - But guess correctly?
 - Ummm...

- Suppose that our machine can guess where *x* ends.
- It can
 - simulate M_1 on the input string up to the end of x,
 - jump to the start state in M_2 right after x ends, and
 - accept string w = xy when the machine stops at some accept state in M_2 .
- Can machine guess?
 - Maybe?
 - But guess correctly?
 - Ummm.. it definitely can,

- Suppose that our machine can guess where *x* ends.
- It can
 - simulate M_1 on the input string up to the end of x,
 - jump to the start state in M_2 right after x ends, and
 - accept string w = xy when the machine stops at some accept state in M_2 .
- Can machine guess?
 - Maybe?
 - But guess correctly?
 - Ummm.. it definitely can, in theory.

Example: Nondeterministic Finite Automaton N_1

Note: e in the figure is ε .

Differences

- Duplicate symbols
- Missing symbols
- ullet Empty string: arepsilon

 Previously, we only consider finite automata whose next states are determined by their input alphabet and their current states.

- Previously, we only consider finite automata whose next states are determined by their input alphabet and their current states.
- Computation where each next step is fully determined is called **deterministic** computation.

- Previously, we only consider finite automata whose next states are determined by their input alphabet and their current states.
- Computation where each next step is fully determined is called deterministic computation.
- On the other hand, in nondeterministic computation, many choices may exist.

- Previously, we only consider finite automata whose next states are determined by their input alphabet and their current states.
- Computation where each next step is fully determined is called deterministic computation.
- On the other hand, in nondeterministic computation, many choices may exist.
- Therefore, we have deterministic finite automata (DFA) and nondeterministic finite automata (NFA).

How does N_1 compute?

At any point where there are many choices for the next step, the machine **splits** itself into many copies and follow all possible steps in parallel.

How does N_1 compute?

At any point where there are many choices for the next step, the machine **splits** itself into many copies and follow all possible steps in parallel.

Think about Kage Bunshin no Jutsu!.

How does N_1 compute?

At any point where there are many choices for the next step, the machine **splits** itself into many copies and follow all possible steps in parallel.

Think about *Kage Bunshin no Jutsu!*. See simulation.

• If there are many choices, split.

- If there are many choices, split.
- Copies die if they can't move according to the input.

- If there are many choices, split.
- Copies die if they can't move according to the input.
- When to accept a string:

- If there are many choices, split.
- Copies die if they can't move according to the input.
- When to accept a string:
 - At the end of the input, if any of the copies is in an accept state, it accept the input.

N_1 on 010110

N_1 on 010110

NFA N_2 : what are the strings accepted by N_2 ?

NFA N_3 : what are the strings accepted by N_3 ?

Let $\{0\}$ be the alphabet for N_3 .

- The transition function δ :
 - takes

- The transition function δ :
 - takes the current state and a symbol in

- The transition function δ :
 - takes the current state and a symbol in $\Sigma \cup \{\varepsilon\}$, and

- The transition function δ :
 - takes the current state and a symbol in $\Sigma \cup \{\varepsilon\}$, and
 - outputs

- The transition function δ :
 - takes the current state and a symbol in $\Sigma \cup \{\varepsilon\}$, and
 - ullet outputs a subset of states Q.

- The transition function δ :
 - takes the current state and a symbol in $\Sigma \cup \{\varepsilon\}$, and
 - outputs a subset of states Q.
- Let $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$.
- Denote by $\mathcal{P}(Q)$ the **power set** of set Q.

- The transition function δ :
 - takes the current state and a symbol in $\Sigma \cup \{\varepsilon\}$, and
 - outputs a subset of states Q.
- Let $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$.
- Denote by $\mathcal{P}(Q)$ the **power set** of set Q.
- ullet We have that the state transition δ for an NFA is a function from

- The transition function δ :
 - takes the current state and a symbol in $\Sigma \cup \{\varepsilon\}$, and
 - outputs a subset of states Q.
- Let $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$.
- Denote by $\mathcal{P}(Q)$ the **power set** of set Q.
- We have that the state transition δ for an NFA is a function from $Q \times \Sigma_{\varepsilon}$ to $\mathcal{P}(Q)$.

Definition [NFA]

A nondeterministic finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- Q is a finite set of states,
- **3** $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,
- \bullet $q_0 \in Q$ is the start state, and
- **5** $F \subseteq Q$ is the set of accept states.

Example: N₁

Example: N₁

 N_1 is $(Q, \Sigma, \delta, q_1, F)$ where

$$\Sigma = \{0, 1\},$$

 $oldsymbol{\delta}$ is defined as

	0	1	Ø
q_1	$\{q_1\}$	$\{q_1,q_2\}$	Ø
q_2	$\{q_3\}$	Ø	$\{q_3\}$
q_3	Ø	$\{q_4\}$	Ø
q_4	$\{q_4\}$	$\{q_4\}$	Ø

$$F = \{q_4\}.$$

Formal definition of computation of NFAs

Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA and let w be a string over alphabet Σ .

We say that N accepts w if we can write $w = w_1 w_2 \cdots w_n$ where each w_i is a member of Σ_{ε} and

Formal definition of computation of NFAs

Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA and let w be a string over alphabet Σ .

We say that N accepts w if we can write $w = w_1 w_2 \cdots w_n$ where each w_i is a member of Σ_{ε} and there exists a sequence of states r_0, r_1, \ldots, r_n in Q such that

Formal definition of computation of NFAs

Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA and let w be a string over alphabet Σ .

We say that N accepts w if we can write $w = w_1 w_2 \cdots w_n$ where each w_i is a member of Σ_{ε} and there exists a sequence of states r_0, r_1, \ldots, r_n in Q such that

- $r_{i+1} \in \delta(r_i, w_{i+1})$ for i = 0, ..., n-1, and
- \circ $r_n \in F$.

Are NFAs more powerful than DFAs?

 With the power of nondeterminism, NFAs seem to be more powerful.

Are NFAs more powerful than DFAs?

- With the power of nondeterminism, NFAs seem to be more powerful.
- In fact, DFAs and NFAs recognize the same class of languages!

Are NFAs more powerful than DFAs?

- With the power of nondeterminism, NFAs seem to be more powerful.
- In fact, DFAs and NFAs recognize the same class of languages!
- We say that two machines are equivalent if they recognize the same language.

Two directions:

 Given a DFA, construct an NFA recognizing the same language.

Two directions:

- Given a DFA, construct an NFA recognizing the same language.
 - Easy! DFA is also an NFA.

Two directions:

- Given a DFA, construct an NFA recognizing the same language.
 - Easy! DFA is also an NFA.
- Given an NFA, construct a DFA recognizing the same language.

Two directions:

- Given a DFA, construct an NFA recognizing the same language.
 - Easy! DFA is also an NFA.
- Given an NFA, construct a DFA recognizing the same language.
 - No that easy.

Theorem 2

Every nondeterministic finite automaton has an equivalent deterministic finite automaton.

Theorem 2

Every nondeterministic finite automaton has an equivalent deterministic finite automaton.

How can we prove that?

Theorem 2

Every nondeterministic finite automaton has an equivalent deterministic finite automaton.

How can we prove that?

Recall "reader as automaton"?

Theorem 2

Every nondeterministic finite automaton has an equivalent deterministic finite automaton.

How can we prove that?

- Recall "reader as automaton"?
- Given an NFA N, think of a DFA M as a manager who operates N.

Theorem 2

Every nondeterministic finite automaton has an equivalent deterministic finite automaton.

How can we prove that?

- Recall "reader as automaton"?
- Given an NFA N, think of a DFA M as a manager who operates N.
- What does M have to remember in order to simulate N correctly?

Proof of Theorem 2

Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA.

Proof of Theorem 2

Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA. We shall construct a DFA $M = (Q', \Sigma, \delta', q'_0, F')$ recognizing the same language.

- ② If N is at state $q \in Q$ and receives input symbol $a \in \Sigma$, N may moves to any states in $\delta(q, a)$.

- ② If N is at state $q \in Q$ and receives input symbol $a \in \Sigma$, N may moves to any states in $\delta(q,a)$. Now M pretends to be on many states in N, i.e., M's state is some $R \subseteq Q$.

- If N is at state q ∈ Q and receives input symbol a ∈ Σ, N may moves to any states in δ(q, a).
 Now M pretends to be on many states in N, i.e., M's state is some R ⊆ Q. Given a as a input, its possible next state is

$$\delta'(R,a) = \bigcup_{q \in R} \delta(q,a)$$

Easy case: *N* has no ε arrows.

- ② If N is at state $q \in Q$ and receives input symbol $a \in \Sigma$, N may moves to any states in $\delta(q, a)$. Now M pretends to be on many states in N, i.e., M's state is some $R \subseteq Q$. Given a as a input, its possible next state is

$$\delta'(R,a) = \bigcup_{q \in R} \delta(q,a)$$

 $q_0' = \{q_0\}, \text{ and }$

- If N is at state q ∈ Q and receives input symbol a ∈ Σ, N may moves to any states in δ(q, a).
 Now M pretends to be on many states in N, i.e., M's state is some R ⊆ Q. Given a as a input, its possible next state is

$$\delta'(R,a) = \bigcup_{q \in R} \delta(q,a)$$

- $q_0' = \{q_0\}, \text{ and }$
- $F' = \{R \in Q' | R \text{ contains an accept state of } N\}.$

Proof of Theorem 2: dealing with ε (1)

• It's time to deal with ε .

- It's time to deal with ε .
- With that symbol on a arrow, N can move freely on that arrow (without taking any input).

- It's time to deal with ε .
- With that symbol on a arrow, N can move freely on that arrow (without taking any input).
- Define, for state $q \in Q$, D(q) to be a set of states in Q that can be reached from q by traveling along 0 or more ε arrows.

- It's time to deal with ε .
- With that symbol on a arrow, N can move freely on that arrow (without taking any input).
- Define, for state $q \in Q$, D(q) to be a set of states in Q that can be reached from q by traveling along 0 or more ε arrows.
- If N is at q, it can move freely to any states in D(q).

• Consiser M at state $R \in Q'$.

- Consiser M at state $R \in Q'$.
- M simulates many copies of N at states in R.

- Consiser M at state $R \in Q'$.
- M simulates many copies of N at states in R.
- Define E(R) to be a collection of states reachable from any states in R by traveling along 0 or more ε arrows.

- Consiser M at state $R \in Q'$.
- M simulates many copies of N at states in R.
- Define E(R) to be a collection of states reachable from any states in R by traveling along 0 or more ε arrows.
- Formally, $E(R) = \{q | q \text{ can be reached from states in } R \text{ by traveling along 0 or more } \varepsilon \text{ arrows } \}$

- Consiser M at state $R \in Q'$.
- M simulates many copies of N at states in R.
- Define E(R) to be a collection of states reachable from any states in R by traveling along 0 or more ε arrows.
- Formally, $E(R) = \{q | q \text{ can be reached from states in } R \text{ by traveling along 0 or more } \varepsilon \text{ arrows } \}$
- Combining these moves to the previous construction of δ' :

- Consiser M at state $R \in Q'$.
- M simulates many copies of N at states in R.
- Define E(R) to be a collection of states reachable from any states in R by traveling along 0 or more ε arrows.
- Formally, $E(R) = \{q | q \text{ can be reached from states in } R \text{ by traveling along 0 or more } \varepsilon \text{ arrows } \}$
- Combining these moves to the previous construction of δ' :

$$\delta'(R,a) = \bigcup_{q \in R} E(\delta(q,a)).$$

- Consiser M at state $R \in Q'$.
- M simulates many copies of N at states in R.
- Define E(R) to be a collection of states reachable from any states in R by traveling along 0 or more ε arrows.
- Formally, $E(R) = \{q | q \text{ can be reached from states in } R \text{ by traveling along 0 or more } \varepsilon \text{ arrows } \}$
- Combining these moves to the previous construction of δ' :

$$\delta'(R,a) = \bigcup_{q \in R} E(\delta(q,a)).$$

• Fix start states $q'_0 = E(\lbrace q_0 \rbrace)$.

Finishing the proof

• At any point on the computation of M, the state of M is the set of all possible states that N can be in at that point.

Finishing the proof

- At any point on the computation of M, the state of M is the set of all possible states that N can be in at that point.
- M correctly simulates N.

Finishing the proof

- At any point on the computation of M, the state of M is the set of all possible states that N can be in at that point.
- M correctly simulates N.
- Thus, our proof is complete.

Note on the correctness proof

- Our previous proof of Theorem 2 is quite short and does not give out all the details.
- This is okay for now, since our construction is simple enough so that it is quite obvious that it is correct.
- For more complicated constructions, we need to be more formal.

A more general definition of regular languages

Corollary 3

A language is regular iff some nondeterministic finite automaton recognizes it.

Example

Closure under the regular operations

• Using NFA-DFA equivalence, it is much easy to prove that the set of regular languages is closed under the regular operations.

Closure under the regular operations

- Using NFA-DFA equivalence, it is much easy to prove that the set of regular languages is closed under the regular operations.
- We'll look at each operation.

Union

Union

Concatenation

Concatenation

Star

Star

- Let alphabet $\Sigma = \{0, 1\}$.
- $A_1 = \{w | w \text{ contains even number of 1's } \}$.

- Let alphabet $\Sigma = \{0, 1\}$.
- $A_1 = \{ w | w \text{ contains even number of 1's } \}$. Find an FA M_1 that recognizes A_1 .

- Let alphabet $\Sigma = \{0, 1\}$.
- $A_1 = \{ w | w \text{ contains even number of 1's } \}$. Find an FA M_1 that recognizes A_1 .
- $A_2 = \{w | w \text{ contains odd number of 0's } \}$.

- Let alphabet $\Sigma = \{0, 1\}$.
- $A_1 = \{ w | w \text{ contains even number of 1's } \}$. Find an FA M_1 that recognizes A_1 .
- $A_2 = \{w | w \text{ contains odd number of 0's }\}$. Find an FA M_2 that recognizes A_2 .

- Let alphabet $\Sigma = \{0, 1\}$.
- $A_1 = \{ w | w \text{ contains even number of 1's } \}$. Find an FA M_1 that recognizes A_1 .
- $A_2 = \{w | w \text{ contains odd number of 0's }\}$. Find an FA M_2 that recognizes A_2 .
- Construct an NFA N_1 recognizing $A_1 \cup A_2$.
- Construct an NFA N_2 recognizing $A_1 \circ A_2$.
- Construct an NFA N_3 recognizing $(A_1^*) \circ A_2$.

 Regular operations can be used to build expressions describing languages.

- Regular operations can be used to build expressions describing languages.
- For example,

$$({0} \cup {1}) \circ {0}^*,$$

- Regular operations can be used to build expressions describing languages.
- For example,

$$({0} \cup {1}) \circ {0}^*,$$

or in a shorter form $(0 \cup 1)0^*$

- Regular operations can be used to build expressions describing languages.
- For example,

$$({0} \cup {1}) \circ {0}^*,$$

or in a shorter form $(0 \cup 1)0^*$

- This is called a regular expression.
- Note: 0 denotes {0}, 1 denotes {1}, and is omitted.

Another examples

 $(0 \cup 1)^*$

Another examples

$$(0 \cup 1)^*$$

• All possible strings (including ε).

Another examples

$$(0 \cup 1)^*$$

- All possible strings (including ε).
- If $\Sigma = \{0, 1\}$, we can write Σ for $(0 \cup 1)$, and write Σ^* for any strings from alphabet Σ .

Definition [regular expression]

R is a **regular expression** if R is

- **1** a for some $a \in \Sigma$,
- $\mathbf{2} \ \varepsilon$,
- **◎** ∅,
- \bullet $(R_1 \cup R_2)$ where R_1 and R_2 are regular expressions,
- (R_1^*) where R_1 is a regular expression.

Definition [regular expression]

R is a **regular expression** if R is

- **1** a for some $a \in \Sigma$,
- **②** ε,
- **③** Ø,
- $(R_1 \cup R_2)$ where R_1 and R_2 are regular expressions,
- \bullet $(R_1 \circ R_2)$ where R_1 and R_2 are regular expressions, and
- $oldsymbol{0}$ (R_1^*) where R_1 is a regular expression.

This is an inductive definition.

Precedence

Operations are performed in this order:

- *
- 0
- U

Shorthands

RR*

Shorthands

- RR^* can be written as R^+
- RRRR

Shorthands

- RR^* can be written as R^+
- RRRR can be written as R^4 , in general R^k is the concatenation of R to itself for k times.

1 0*10*.

- **1** 0*10*.
- $\Sigma^*1\Sigma^*$.

- **1** 0*10*.
- $\Sigma^*1\Sigma^*$.

- **1** 0*10*.
- $2 \Sigma^* 1 \Sigma^*$.
- **3** $\Sigma^* 001 \Sigma^*$.
- **4** (01⁺)*

- **1** 0*10*.
- $\Sigma^*1\Sigma^*$.
- **3** $\Sigma^* 001 \Sigma^*$.
- **4** (01⁺)*
- $(\Sigma\Sigma)^*$

- **1** 0*10*.
- $2 \Sigma^* 1 \Sigma^*$.
- **4** (01⁺)*
- $(\Sigma\Sigma)^*$
- **o** 01 ∪ 10

- **1** 0*10*.
- $2 \Sigma^* 1 \Sigma^*$.
- **4** (01⁺)*
- $(\Sigma\Sigma)^*$
- **o** 01 ∪ 10
- $\bigcirc 0\Sigma^*0 \cup 1\Sigma^*1 \cup 0 \cup 1$

- **1** 0*10*.
- $2 \Sigma^* 1 \Sigma^*$.
- **4** (01⁺)*
- $(\Sigma\Sigma)^*$
- **0** 01 ∪ 10
- \bigcirc $0\Sigma^*0 \cup 1\Sigma^*1 \cup 0 \cup 1$
- 1*∅

- **1** 0*10*.
- $2 \Sigma^* 1 \Sigma^*$.
- **4** (01⁺)*
- $(\Sigma\Sigma)^*$
- **o** 01 ∪ 10
- $0 \Sigma^* 0 \cup 1 \Sigma^* 1 \cup 0 \cup 1$
- **3** $1*\emptyset = \emptyset$
- **9** Ø*

- **1** 0*10*.
- $2 \Sigma^* 1 \Sigma^*$.
- **4** (01⁺)*
- $(\Sigma\Sigma)^*$
- **○** 01 ∪ 10
- $0 \Sigma^* 0 \cup 1 \Sigma^* 1 \cup 0 \cup 1$
- $1^*\emptyset = \emptyset$

R ∪ ∅

•
$$R \cup \emptyset = R$$

•
$$R \cup \emptyset = R$$

•
$$R \circ \varepsilon$$

•
$$R \cup \emptyset = R$$

•
$$R \circ \varepsilon = R$$

•
$$R \cup \emptyset = R$$

•
$$R \circ \varepsilon = R$$

•
$$R \cup \varepsilon$$

- $R \cup \emptyset = R$
- $R \circ \varepsilon = R$
- $R \cup \varepsilon$ might not equal R.

- $R \cup \emptyset = R$
- $R \circ \varepsilon = R$
- $R \cup \varepsilon$ might not equal R.
- $\bullet \ R \circ \emptyset$

- $R \cup \emptyset = R$
- $R \circ \varepsilon = R$
- $R \cup \varepsilon$ might not equal R.
- $R \circ \emptyset$ might not equal R.

Equivalence

Theorem 4

A language is regular iff some regular expression describes it.

Equivalence

Theorem 4

A language is regular iff some regular expression describes it.

There are two directions to prove the theorem:

- If a language is described by a regular expression, then it is regular.
- If a language is regular, then it can be described by a regular expression.

Equivalence

Theorem 4

A language is regular iff some regular expression describes it.

There are two directions to prove the theorem:

- If a language is described by a regular expression, then it is regular.
- If a language is regular, then it can be described by a regular expression.

Today we'll prove only the first direction.

• Let alphabet $\Sigma = \{0, 1\}$.

- Let alphabet $\Sigma = \{0, 1\}$.
- Find an FA M_1 that recognizes 01⁺

- Let alphabet $\Sigma = \{0, 1\}$.
- Find an FA M_1 that recognizes 01⁺
- Find an FA M_2 that recognizes (10)*

- Let alphabet $\Sigma = \{0, 1\}$.
- Find an FA M_1 that recognizes 01⁺
- Find an FA M_2 that recognizes (10)*
- Find an FA M_3 that recognizes $(01^+) \cup (10)^*$

- Let alphabet $\Sigma = \{0, 1\}$.
- Find an FA M₁ that recognizes 01⁺
- Find an FA M₂ that recognizes (10)*
- Find an FA M_3 that recognizes $(01^+) \cup (10)^*$
- Find an FA M_4 that recognizes $1^+ \circ ((01^+) \cup (10)^*)$

A regular expression describes a regular language

Lemma 5

If a language is described by a regular expression, then it is regular.

A regular expression describes a regular language

Lemma 5

If a language is described by a regular expression, then it is regular.

To prove this, we'll look at how we a regular expression is constructed.

Rule 1

R is a regular expression if R is a for some $a \in \Sigma$.

Rule 1

R is a **regular expression** if R is a for some $a \in \Sigma$.

What is a DFA that recognizes R?

R is a **regular expression** if *R* is ε .

R is a regular expression if R is ε .

What is a DFA that recognizes R?

R is a **regular expression** if R is \emptyset .

R is a regular expression if R is \emptyset .

What is a DFA that recognizes R?

R is a **regular expression** if R is $(R_1 \cup R_2)$ where R_1 and R_2 are regular expressions.

R is a **regular expression** if R is $(R_1 \cup R_2)$ where R_1 and R_2 are regular expressions.

Given an NFA N_1 and N_2 that recognize R_1 and R_2 , what is a NFA that recognizes R?

R is a **regular expression** if R is $(R_1 \circ R_2)$ where R_1 and R_2 are regular expressions.

R is a **regular expression** if R is $(R_1 \circ R_2)$ where R_1 and R_2 are regular expressions.

Given an NFA N_1 and N_2 that recognize R_1 and R_2 , what is a NFA that recognizes R?

R is a **regular expression** if R is (R_1^*) where R_1 is a regular expression.

R is a **regular expression** if R is (R_1^*) where R_1 is a regular expression.

Given an NFA N_1 that recognizes R_1 , what is a NFA that recognizes R?

 In proving Lemma 5, we show how to construct an NFA of a regular expression given NFAs of its subexpressions.

- In proving Lemma 5, we show how to construct an NFA of a regular expression given NFAs of its subexpressions.
- The proof is again

- In proving Lemma 5, we show how to construct an NFA of a regular expression given NFAs of its subexpressions.
- The proof is again an inductive proof.

- In proving Lemma 5, we show how to construct an NFA of a regular expression given NFAs of its subexpressions.
- The proof is again an inductive proof.
- Sometimes, this kind of inductive proofs is called structural induction.

- In proving Lemma 5, we show how to construct an NFA of a regular expression given NFAs of its subexpressions.
- The proof is again an inductive proof.
- Sometimes, this kind of inductive proofs is called structural induction.
 - Inductive Hypothesis (when considering a regular expression R): Assume that for all smaller regular expressions R', the language described by R' can be recognized by some NFA N'.

Practice

• Find an NFA recognizing $(01 \cup 0)^*$.

Practice

• Find an NFA recognizing $(01 \cup 0)^*$. Try to build an NFA using the construction discussed in class.

Practice

- Find an NFA recognizing $(01 \cup 0)^*$. Try to build an NFA using the construction discussed in class.
- ② Find an NFA recognizing $(0 \cup 1)*010$.