Basic constrained gradient-based optimization

Penalty = 1024

				First-order
Iteration	Func-count	f(x)	Step-size	optimality
0	4	-132.906		49.9
1	12	-133.032	0.0020032	40
2	16	-134.237	1	9.03
3	20	-134.318	1	7.97
4	24	-134.572	1	12.8
5	32	-136.466	0.213174	50.3
6	36	-136.793	1	45
7	40	-138.176	1	21.6
8	44	-138.457	1	4.78
9	48	-138.472	1	1.98
10	52	-138.474	1	0.0365
11	56	-138.474	1	0.00865
12	60	-138.474	1	7.63e-05
13	64	-138.474	1	1.91e-06

Optimization completed: The first-order optimality measure, 3.745774e-08, is less than options.OptimalityTolerance = 1.000000e-06.

Unconstrained solution:

 $r = 0.073978 \mid | r = -0.080944 \mid | theta = 0.46882$

Penalty = 2048

,				First-order
Iteration	Func-count	f(x)	Step-size	optimality
0	4	-121.364		185
1	16	-130.336	0.000438598	32.1
2	20	-130.533	1	17.5
3	24	-130.592	1	8.59
4	28	-130.62	1	5.65
5	32	-130.654	1	4.85
6	36	-130.725	1	9.55
7	40	-130.803	1	11.6
8	44	-130.867	1	8.44
9	48	-130.905	1	4.1
10	84	-137.641	17.3358	42.3
11	100	-137.641	0.001	42.5
12	108	-142.127	10	14.2
13	112	-142.2	1	3.21
14	116	-142.208	1	0.8
15	120	-142.209	1	0.00978
16	124	-142.209	1	0.000156

Optimization completed: The first-order optimality measure, 8.369223e-07, is less

than options.OptimalityTolerance = 1.000000e-06.

Unconstrained solution:

 $r_1 = 0.074277 \mid | r_2 = 0.30852 \mid | theta = 3.2284$

Penalty = 4096

-				First-order
Iteration	Func-count	f(x)	Step-size	optimality
0	4	-140.749		56.6
1	20	-141.468	0.000225393	4.49
2	24	-141.476	1	4
3	28	-141.482	1	3.56
4	32	-141.496	1	4.39
5	36	-141.502	1	2.97
6	40	-141.504	1	0.746
7	44	-141.504	1	0.0622
8	48	-141.504	1	0.00258
9	52	-141.504	1	0.000267
10	56	-141.504	1	7.63e-06

Optimization completed: The first-order optimality measure, 1.324285e-07, is less than options.OptimalityTolerance = 1.000000e-06.

Unconstrained solution:

 $r_1 = 0.087709 \mid \mid r_2 = 0.29343 \mid \mid theta = 3.1838$

Penalty = 8192

Iteration 0	Func-count 4	f(x) -140.825	Step-size	First-order optimality 55
1	20	-140.994	0.000207343	39.6
2	24	-141.163	1	2.12
3	32	-141.168	10	1.37
4	36	-141.171	1	0.138
5	40	-141.171	1	0.00661
6	44	-141.171	1	5.72e-06

Optimization completed: The first-order optimality measure, 1.021538e-07, is less than options.OptimalityTolerance = 1.000000e-06.

Unconstrained solution:

r 1 = 0.094001 || r 2 = 0.28559 || theta = 3.1623

Penalty = 16384

				First-order
Iteration	Func-count	f(x)	Step-size	optimality
0	4	-140.846		54
1	24	-141.006	5.35499e-05	6.32
2	28	-141.008	1	1.09
3	36	-141.009	10	0.971
4	40	-141.01	1	1.41
5	44	-141.01	1	0.47
6	48	-141.01	1	0.0444
7	52	-141.01	1	0.00077
8	56	-141.01	1	6.65e-05
9	60	-141.01	1	3.8e-06

Optimization completed: The first-order optimality measure, 6.907372e-08, is less than options.OptimalityTolerance = 1.000000e-06.

Unconstrained solution:

 $r_1 = 0.097037 \mid | r_2 = 0.28162 \mid | theta = 3.1519$

Penalty = 32768

				First-order
Iteration	Func-count	f(x)	Step-size	optimality
0	4	-140.851		53.5
1	24	-140.929	3.50041e-05	8.07
2	28	-140.93	1	0.55

3	36	-140.931	10	0.501
4	40	-140.931	1	0.455
5	44	-140.931	1	0.0911
6	48	-140.931	1	0.00128
7	52	-140.931	1	1.14e-05

Optimization completed: The first-order optimality measure, 2.098964e-07, is less than options.OptimalityTolerance = 1.000000e-06.

Unconstrained solution:

 $r_1 = 0.098528 \mid \mid r_2 = 0.27963 \mid \mid theta = 3.1467$

Penalty = 65536

				First-order
Iteration	Func-count	f(x)	Step-size	optimality
0	4	-140.852		53.3
1	28	-140.892	1.52483e-05	0.278
2	36	-140.892	9.69499	0.48
3	40	-140.892	1	0.68
4	44	-140.892	1	1.09
5	48	-140.892	1	0.591
6	52	-140.892	1	0.0888
7	56	-140.892	1	0.00442
8	60	-140.892	1	0.000269
9	64	-140.892	1	1.91e-05

Optimization completed: The first-order optimality measure, 3.515795e-07, is less than options.OptimalityTolerance = 1.000000e-06.

Unconstrained solution:

r 1 = 0.099266 || r 2 = 0.27863 || theta = 3.1441

Penalty = 131072

				First-order
Iteration	Func-count	f(x)	Step-size	optimality
0	4	-140.853		53.1
1	28	-140.872	6.82629e-06	5.55
2	32	-140.872	1	0.139
3	44	-140.872	91	0.173
4	48	-140.872	1	0.107
5	52	-140.872	1	0.0123
6	56	-140.872	1	4.96e-05

Optimization completed: The first-order optimality measure, 9.164427e-07, is less than options.OptimalityTolerance = 1.000000e-06.

Unconstrained solution:

 $r_1 = 0.099634 \mid | r_2 = 0.27813 \mid | theta = 3.1429$

				First-order
Iteration	Func-count	f(x)	Step-size	optimality
0	4	-140.853		53
1	28	-140.862	4.7281e-06	12.7
2	32	-140.862	1	0.0694
3	48	-140.862	820	0.17
4	52	-140.862	1	0.00298
5	56	-140.862	1	1.14e-05

Optimization completed: The first-order optimality measure, 2.117170e-07, is less than options.OptimalityTolerance = 1.000000e-06.

Unconstrained solution:

Penalty = 524288

				First-order
Iteration	Func-count	f(x)	Step-size	optimality
0	4	-140.853		53

```
1
           32
                    -140.858 1.85698e-06
                                               1.39
   2
           36
                    -140.858 1
                                            0.0347
   3
            52
                    -140.858
                                    820
                                             0.388
   4
            56
                    -140.858
                                    1
                                              0.213
   5
            60
                    -140.858
                                     1
                                             0.0131
            64
                    -140.858
                                     1
                                            0.000639
Optimization stopped because the norm of the current step, 3.742823e-07, is
less than options.StepTolerance = 1.000000e-06.
  Unconstrained solution:
r_1 = 0.099909 \mid \mid r_2 = 0.27775 \mid \mid theta = 3.1419
Penalty = 1048576
                                           First-order
Iteration Func-count
                     f(x)
                               Step-size
                                           optimality
   0
          4
                    -140.853
                                                 53
                    -140.855
   1
            32
                              8.78939e-07
                                               4.15
   2
            36
                    -140.855
                                    1
                                             0.0174
                                    820
   3
            52
                                             0.0338
                    -140.855
            56
                    -140.855
                                    1
                                            0.00575
                    -140.855
                                            0.000204
Optimization stopped because the norm of the current step, 1.351273e-07, is
less than options.StepTolerance = 1.000000e-06.
  Unconstrained solution:
r_1 = 0.099954 \mid \mid r_2 = 0.27769 \mid \mid theta = 3.1418
```

Function definitions

Lagrangian evaluation

```
function LAG = computeLagrangian(x, penalty)
r1 = x(1);
r2 = x(2);
theta = x(3);

f = -1*computeFreq(r1, r2, pi*theta);
g = constraintFunctions(r1, r2, theta);

LAG_F = f;
LAG_G = sum(g.^2);
LAG = LAG_F + penalty/2 * LAG_G;
end
```

Function evaluation (additive inverse is objective function)

Constraint functions

```
function g = constraintFunctions(r1, r2, theta)
    g(1) = max(0, r1 - 0.9); % Radius < 0.9
    g(2) = max(0, r2 - 0.9); % Radius < 0.9
    g(3) = max(0, 0.1 - r1); % Radius > 0.1
    g(4) = max(0, 0.1 - r2); % Radius > 0.1
    g(5) = max(0, 0.1 - sqrt(r1^2 + r2^2 - 2*r1*r2*cos(pi*theta))); % Minimum distance between g(6) = max(0, -theta); % Theta > 0
    g(7) = max(0, theta - 1); % Theta < 1*pi
end</pre>
```