R13

Code No: 126DV

1

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech III Year II Semester Examinations, May - 2017 FOUNDATION ENGINEERING

(Common to CE, CEE)

Time: 3 hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART - A

		(25 Marks)
1.a)	Define area ratio.	[2]
b)	Define outside clearance.	[3]
c)	What are types of slope failures?	[2]
d)	Write the Taylors stability number.	[3]
e)	What is earth pressure at rest?	[2]
f)	What are the different types of retaining walls?	[3]
g)	Define the net and gross bearing capacity.	[2]
h)	Define dynamic formulae of Danish.	[3]
i)	List the different shapes of well foundations.	[2]
j)	What is the permissible flit of well foundations?	[3]

PART - B

(50 Marks)

- 2.a) Explain briefly Standard penetration test.
 - b) Determine the passive pressure by Rankine's theory per unit run for a retaining wall 4m high, with i=15°, Φ' =30° and γ = 19 kN/m³. The back face of the wall is smooth and vertical. [5+5]

OR

- 3.a) Explain the need for soil exploration and Illustrate methods of it.
 - b) The field 'N' value in a deposit of fully submerged fine sand was 50 at a depth of 8 m. The average saturated unit weight of soil is 19 kN/m³. Calculate the corrected 'N' value. [5+5]
- 4.a) Explain Bishop's simplified method. Derive an expression for the factor of safety.
 - b) Determine the safe height of a slope which is to be constructed at an angle of 30^{0} with the horizontal. The required factor of safety with respect to both cohesion and angle of internal friction is 1.5, and the soil has the following properties: $C = 10 \text{ kN/m}^2$, $\Phi = 22.5^{0}$ and density = 20 kN/m^3 . Taylor's stability numbers for mobilized friction angles of 22.5^{0} and 15^{0} are, respectively, 0.016 and 0.046. [5+5]

OR

- 5.a) How a slope is analysed using Swedish circle method? Derive an expression for the factor of safety.
 - b) Determine the factor of safety with respect to cohesion, if an embankment of 20 m height and having a proper of 7450 is subjected to sudden drawdpyn. C=20 kN/m², Φ =300, γ _{sat}=18 kN/m³ (Take Taylor's stability number = 0.08). [5+5]

- 6.a) Describe the Culmann's graphical method of determining the active earth pressure in cohesion less soils.
 - b) A retaining wall with smooth vertical back is 8m high and retains a two layer sand back fill. The top layer is 3m high having $\emptyset=30^0$ and $\Upsilon=20$ kN/m³. The bottom layer is 5m having $\emptyset=35^0$ and $\Upsilon=22$ kN/m³. Determine the total active earth pressure and point of its application. [5+5]

OR

- 7.a) State the assumptions in Rankine's theory. Derive an expression for Active and Passive pressure.
 - b) Discuss the principles of the design of retaining walls.

[5+5]

- 8.a) Differentiate between general shear failure and local shear Failure.
 - b) A square footing of 1.8 m size is placed over a sand of bulk density 20 kN/m³ and saturated density 22 kN/m³ at a depth of 1.0 m below ground. The angle of internal friction of sand is 30⁰. The Terzaghi's bearing capacity factors N_c=30.14, N_q=18.4 and N_Y=15.1. Determine the ultimate bearing capacity of the soil when there is no effect of water table and when the water table is at base. [5+5]

OR

- 9.a) Discuss the uses of penetration tests for estimation of load-carrying capacity of piles.
 - b) A rectangular footing $3m \times 2m$ exerts pressure of 100 kN/m^2 on cohesive soils (Es= $5\times10^4 \text{ kN/m}^2$ and μ =0.50). Determine the immediate settlement at the centre; assuring (i) the footing is flexible I=1.36 (ii) the footing is rigid. I=1.06? [4+6]
- 10.a) Discuss the construction aspects of well foundations.
 - b) Discuss the various methods for the design of well foundations.

[5+5]

OR

- 11.a) Explain briefly sinking of wells.
 - b) Discuss the causes and remedies for tilts and shifts.

[5+5]

---00O00---