FCAI fcai.fi

Goal:

 $\max_{\pi} \mathbb{E}_{\pi,P} \left[\sum_{s} \gamma^t r(s_t, a_t) \mid s_0 = s, \pi \right]$

 $\max_{\pi} \mathbb{E}_{\pi, P_{\phi}} \left[\sum_{s}^{\infty} \gamma^{t} r_{\xi}(s_{t}, a_{t}) \mid s_{0} = s, \pi \right]$

Reinforcement Learning (RL)

$a_t = \pi(s_t)$ Actions

$S_{t+1} \sim P(\cdot \mid S_t, a_t)$ Transition function

 $r(s_t, a_t)$ S_{t+1} , State, Reward

States $s \in \mathcal{S}$

Actions $a \in \mathcal{A}$

Policy $\pi:\mathcal{S}\to\mathcal{A}$

Transition function $P(s_{t+1} \mid s_t, a_t)$

Reward function $r_t = r(s_t, a_t)$

Discount factor $\gamma \in [0,1]$

Markov Decision Process (MDP)

In model-based RL these are the "model"

Goal:

hoal:
$$\max_{\pi} \mathbb{E}_{\pi,P} \left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \mid s_{0} = s, \pi \right]$$

Reinforcement Learning (RL)

Markov Decision Process (MDP)

States $s \in \mathcal{S}$

Actions $a \in \mathcal{A}$

Policy $\pi: \mathcal{S} \to \mathcal{A}$

Transition function $P(s_{t+1} \mid s_t, a_t)$

Reward function $r_t = r(s_t, a_t)$

Discount factor $\gamma \in [0,1]$

In model-based RL these are the "model"

$$S_{t+1} \sim P(\cdot \mid S_t, a_t)$$

Transition function

Goal:

$$\max_{\pi} \mathbb{E}_{\pi, P_{\phi}} \left[\sum_{t=0}^{\infty} \gamma^{t} r_{\xi}(s_{t}, a_{t}) \mid s_{0} = s, \pi \right]$$

FCAI

World Models

FCAI fcai.fi