Ejercicios 43-53

Luis Gerardo Arruti Sebastian Sergio Rosado Zúñiga

- **Ej 43.** Sea $\{\pi_i: A \to A_i\}_{i=1}^n$ una familia de morfismos en una categoría semiaditiva \mathscr{C} . Las siguientes condiciones son equivalentes
 - a) $A y \{\pi_i : A \to A_i\}_{i=1}^n$ son un producto para $\{A_i\}_{i=1}^n$ en \mathscr{C} ;

b)
$$\exists \{\mu_i : A_i \to A\}_{i=1}^n \text{ en } \mathscr{C} \text{ tal que } \sum_{i=1}^n \mu_i \pi_i = 1_A \text{ y, } \forall i, j \in [1, n],$$

 $\pi_i \mu_j = \delta_{i,j}^A.$

Demostración. Se tiene el siguiente resultado

Proposición (1.9.2). Sea $\{\mu_i : A_i \to A\}_{i=1}^n$ una familia de morfismos en una categoría semiaditiva \mathscr{C} . Las siguientes condiciones son equivalentes

- a) $A y \{\mu_i : A_i \to A\}_{i=1}^n$ son un coproducto para $\{A_i\}_{i=1}^n$ en \mathscr{C} ;
- b) $\exists \{\pi_i : A \to A_i\}_{i=1}^n$ en $\mathscr C$ tal que $\sum_{i=1}^n \mu_i \pi_i = 1_A$ y, $\forall i, j \in [1, n]$, $\pi_i \mu_j = \delta_{i,j}^A$.

Así, considerando que

$$\left(\delta_{i,j}^{A}\right)^{op} = \begin{cases} 0^{op}, & i \neq j \\ 1_{A_{i}}^{op}, & i = j \end{cases}$$

$$= \begin{cases} 0, & i \neq j \\ 1_{A_{i}}, & i = j \end{cases}$$

$$= \delta_{i,j}^{A}$$

y pasando a la categoría opuesta, se tiene:

Proposición (1.9.2°). Sea $\{\mu_i^{op}: A_i \to A\}_{i=1}^n$ una familia de morfismos en una categoría semiaditiva \mathscr{C}^{op} . Las siguientes condiciones son equivalentes

- $a)\ A$ y $\{\mu_i^{op}:A_i\to A\}_{i=1}^n$ son un coproducto para $\{A_i\}_{i=1}^n$ en $\mathscr{C}^{op};$
- b) $\exists \{\pi_i^{op}: A \to A_i\}_{i=1}^n \text{ en } \mathscr{C}^{op} \text{ tal que } \sum_{i=1}^n \mu_i^{op} \pi_i^{op} = 1_A \text{ y}, \forall i, j \in [1, n],$ $\pi_i^{op} \mu_j^{op} = \delta_{i,j}^A.$

Lo cual, sabiendo que la noción dual de coproducto es producto, nos da el siguiente resultado dual

Proposición (1.9.2*). Sea $\{\mu_i : A \to A_i\}_{i=1}^n$ una familia de morfismos en una categoría semiaditiva \mathscr{C}^{op} . Las siguientes condiciones son equivalentes

a)
$$A y \{\mu_i : A \to A_i\}_{i=1}^n$$
 son un producto para $\{A_i\}_{i=1}^n$ en \mathscr{C} ;

b)
$$\exists \{\pi_i : A_i \to A\}_{i=1}^n$$
 en $\mathscr E$ tal que $\sum_{i=1}^n \pi_i \mu_i = 1_A$ y, $\forall i, j \in [1, n]$, $\mu_j \pi_i = \delta_{i,j}^A$.

Podemos reescribir la proposición anterior intercambiando μ por π y viceversa, con lo cual por el principio de dualidad se tiene lo deseado.

Ej 44. Sean $\mathscr C$ una categoría semiaditiva, $A=\coprod_{i=1}^n A_i$ y $B=\coprod_{i=1}^n B_i$ en $\mathscr C$. Si la aplicación + está dada por

$$+: Mat_{m \times n} (A, B) \times Mat_{m \times n} (A, B) \to Mat_{m \times n(A, B)}$$
$$(\alpha, \beta) \mapsto \gamma,$$
$$[\gamma]_{i,j} := [\alpha]_{i,j} + [\beta]_{i,j}, \quad \forall i, j \in [1, n]$$

con + al lado derecho de la igualdad anterior siendo la operación suma en $Hom_{\mathscr{C}}(A_j, B_i)$, entonces $(Mat_{m \times n}(A, B), +)$ es un monoide abeliano.

Demostración. Sean $\alpha, \beta, \gamma \in Mat_{m \times n}(A, B)$. Dado que \mathscr{C} es semiaditiva se tiene que $\forall (r,t) \in [1,m] \times [1,n] \ Hom_{\mathscr{C}}(A_t, B_r)$ tiene estructura de monoide abeliano, en patícular su operación es asociativa. Así

$$\begin{split} [(\alpha+\beta)+\gamma]_{r,t} &= [\alpha+\beta]_{r,t} + [\gamma]_{r,t} \\ &= \left([\alpha]_{r,t} + [\beta]_{r,t} \right) + [\gamma]_{r,t} \\ &= [\alpha]_{r,t} + \left([\beta]_{r,t} + [\gamma]_{r,t} \right) \\ &= [\alpha+(\beta+\gamma)]_{r,t}; \qquad \forall \, (r,t) \in [1,m] \times [1,n] \\ \Longrightarrow &+ \text{en } Mat_{m \times n} \, (A,B) \text{ es asociativa.} \end{split}$$

En forma análoga a lo anterior, empleando ahora que la operación en cada $Hom_{\mathscr{C}}(A_t, B_r)$ es conmutativa, se verifica que + en $Mat_{m\times n}(A, B)$ también lo es y que, si $(r,t) \in [1,m] \times [1,n]$ e_{A_t,B_r} es el neutro en $Hom_{\mathscr{C}}(A_t,B_r)$ y E la matriz en $Mat_{m\times n}(A,B)$ dada por $[E]_{r,t}=e_{A_t,B_r}$, entonces E es el neutro de + en $Mat_{m\times n}(A,B)$.

Ej 45. Sean $\{R_i\}_{i=1}^n$ una familia de anillos (asociativos con 1). Considere el conjunto $R := \underset{i=1}{\overset{n}{\times}} R_i$, con las operaciones suma y producto dadas coordenada a coordenada, i.e., para $x = (x_i)_{i=1}^n$ y $y = (y_i)_{i=1}^n$ en R, definimos $x + y := (x_i + y_i)_{i=1}^n$ y $xy = (x_iy_i)_{i=1}^n$.

Pruebe que

- a) Con las operaciones anteriores R es un anillo con $1_R = (1_{R_i})_{i=1}^n$.
- b) Para cada $j \in [1, n]$, la j-ésima pritección $proy_j : R \to R_j$, $x = (x_i)_{i=1}^n \mapsto x_j$, es un morfismo en Rings y suryectivo en Sets.
- c) R y $\{proy_j: R \to R_i\}_{i=1}^n$ son un producto en Rings para $\{R_i\}_{i=1}^n$.

Demostración. a) Sean $x, y \in R$, con $x = (x_i)_{i=1}^n$, $y = (y_i)_{i=1}^n$, $z = (z_i)_{i=1}^n$ y $0_R = (0_i)_{i=1}^n$ donde 0_i es el neutro aditivo de R_i para cada $i \in I = \{1, 2, ..., n\}$.

Grupo con respecto a la suma

- i) Como $x_i, y_i \in R_i \ \forall i \in I$ entonces $x_i + y_i \in R_i \ \forall i \in I$, así $x + y := (x_i + y_i)_{i=1}^n \in R$. Mas aún, $(x_i + y_i)_{i=1}^n = (y_i + x_i)_{i=1}^n$, por lo que x + y = y + x.
- ii) Como Res anillo para toda $i \in I,$ entonces

$$(x+y)+z=[(x_i+y_i)+z_i]_{i=1}^n=[x_i+(y_i+z_i)]_{i=1}^n=x+(y+z).$$

- iii) $0_R + x = (0_i + x_i)_{i=1}^n = (x_i)_{i=1}^n = x$.
- iv) Definimos para cada $x \in R$ $-x := (-x_i)_{i=1}^n$, entonces $x + (-x) = (x_i + (-x_i))_{i=1}^n = (0_i)_{i=1}^n = 0_R$.

Por lo tanto R es un grupo abeliano con la suma.

Monoide con respecto a la multiplicación:

Como R_i es un anillo para cada $i \in I$ se tiene que

- i) $xy = (x_i y_i)_{i=1}^n \in R$ pues $x_i y_i \in R_i \quad \forall i \in I$.
- ii) $(xy)z = [(x_iy_i)z_i]_{i=1}^n = [x_i(y_iz_i)]_{i=1}^n = x(yz).$
- iii) $x1_R = (x_i 1_{R_i})_{i=1}^n = (x_i)_{i=1}^n = x = (x_i)_{i=1}^n = (1_{R_i} x_i)_{i=1}^n = 1_R x.$
- iv) $(x+y)z = [(x_i+y_i)z_i]_{i=1}^n = [x_iz_i+y_iz_i]_{i=1}^n = xz+yz.$

Por lo tanto R es un anillo con $1_R = (1_{R_i})_{i=1}^n$.

b) Sea $j \in \{1, 2, ..., n\}$, tomamos $proy_j : R \to R_j$ tal que $z = (z_i)_{i=1}^n \mapsto z_j$ y sean x, y descritos como en el inciso a).

Entonces $proy_{j}(x+y) = proy_{j}[(x_{i}+y_{i})_{i=1}^{n}] = x_{j}+y_{j} = proy_{j}(x)+proy_{j}(y)$ y $proy_{j}(xy) = proy_{j}[(x_{i}y_{i})_{i=1}^{n}] = x_{j}y_{j} = proy_{j}(x)proy_{j}(y).$

Además, si $a \in R_j$ para alguna $j \in \{1, 2, ..., n\}$, se tiene el elemento $\hat{a} \in R$ tal que $\hat{a} = (a_i)_{i=1}^n$ donde $a_i = 0 \quad \forall i \neq j \quad \text{y} \quad a_j = a$. Así $proy_j(\hat{a}) = a$ y en consecuencia $proy_j$ es un morfismo de anillos suprayectivo.

c) Sea P un anillo y $\{p_i: P \to R_i\}_{i=1}^n$ una familia de morfismos de anillos. Sea $\varphi: P \to R$ tal que $\varphi(x) = x_p$ donde x es el elemento de R tal que $x_p = (x_i)_{i=1}^n$ con $x_i = p_i(x)$ para cada $i \in \{1, 2, ..., n\}$. Veamos que es morfismo de anillos.

Como p_i es morfismo de anillos y $p_i(x) \in R_i \quad \forall i \in \{1, 2, ..., n\}$ y para cada $x \in P$, entonces si $(a_i)_{i=1}^n = \varphi(x)$ se tiene que $a_i = p_i(x)$ para cada $i \in \{1, 2, ..., n\}$ por lo tanto φ está bien definida.

Sean $x, y \in P$, entonces

$$\varphi(x+y) = (x+y)_p = (p_i(x+y))_{i=1}^n = (p_i(x) + p_i(y))_{i=1}^n$$
$$= (p_i(x))_{i=1}^n + (p_i(y))_{i=1}^n = x_p + y_p = \varphi(x) + \varphi(y)$$

у

$$\varphi(xy) = (xy)_p = (p_i(xy))_{i=1}^n = (p_i(x)p_i(y))_{i=1}^n$$

= $(p_i(x))_{i=1}^n (p_i(y))_{i=1}^n = x_p y_p = \varphi(x)\varphi(y).$

Por lo tanto φ es un morfismo de anillos. Notemos que, para toda $x \in P$, $proy_j \circ \varphi(x) = proy_j(x_p) = p_j(x)$ para cada $j \in \{1, 2, ..., n\}$, por lo tanto $p_j = proy_j \circ \varphi$.

Por último si existiera $\eta: P \to R$ tal que $p_j = proy_j \eta$ para cada $j \in \{1, 2, ..., n\}$, entonces para cada $x \in P$ se tiene que $\eta(x) \in R$, es decir, $\eta(x) = (x_i)_{i=1}^n$ con $x_i \in R_i \quad \forall i \in \{1, 2, ..., n\}$. Ahora, como $proy_j \eta(x) = p_j(x)$, entonces $x_j = p_j(x) \quad \forall j \in \{1, 2, ..., n\}$, es decir, $\eta(x) = (p_i(x))_{i=1}^n = x_p = \varphi(x)$.

Por lo tanto φ es único y así R y $\{proy_j : R \to R_i\}_{i=1}^n$ son un producto en Rings para $\{R_i\}_{i=1}^n$.

- **Ej 46.** Para una categoría \mathscr{C} , pruebe que las siguientes condiciones son equivalentes
 - a) \mathscr{C} tiene objeto cero y biproductos $A \coprod A$ en \mathscr{C} , $\forall A \in \mathscr{C}$.
 - b) \mathscr{C}^{op} tiene objeto cero y biproductos $A \coprod A$ en \mathscr{C}^{op} , $\forall A \in \mathscr{C}$.

Demostración. Notemos que $\mathscr C$ tiene objeto cero si y sólo si $\mathscr C^{op}$ tiene objeto cero, pues si $\mathscr C$ tiene objeto cero 0, entonces $|\operatorname{Hom}_{\mathscr C}(X,0)|=1=|\operatorname{Hom}_{\mathscr C}(0,X)|, \quad \forall X\in\mathscr C$, pero esto pasa si y sólo si $|\operatorname{Hom}_{\mathscr C}(0,X)|=1=|\operatorname{Hom}_{\mathscr C}(X,0)|, \quad \forall X\in\mathscr C^{op}$.

 $a)\Rightarrow b)$ Como $\mathscr C$ y $\mathscr C^{op}$ tienen objeto cero, si $A\coprod A$ es biproducto en $\mathscr C$, entonces existe $A\prod A$ en $\mathscr C$ y $\delta:A\coprod A\longrightarrow A\prod A$ un isomorfismo. Sean $\{\mu_1,\mu,2:A\longrightarrow A\coprod A\}$ y $\{\pi_1,\pi_2:A\prod A\longrightarrow A\}$ los morfismos canonicos del coproducto y producto respectivamente, entonces por el ejercicio $40\ A\coprod A$ con $\{\mu_1^{op},\mu_2^{op}:A\coprod A\longrightarrow A\}$ y $A\prod A$ con $\{\pi_1^{op},\pi_2^{op}:A\longrightarrow A\prod A\}$ son un producto y un coproducto en $\mathscr C^{op}$ respectivamente tales que $\delta^{op}:A\prod A\longrightarrow A\coprod A$ es un isomorfismo al ser δ iso. Por lo tanto $A\coprod A$ es un biproducto en $\mathscr C^{op}$.

 $b) \Rightarrow a)$ Es análogo a lo anterior pues $(\mathscr{C}^{op})^{op} = \mathscr{C}$.

Ej 47. Sean $\mathscr C$ una categoría preaditiva, $A \in \mathscr C$ y $\theta \in End_{\mathscr C}(A)$. Si θ es idempotente, entonces $1_A - \theta$ también lo es.

Demostración. Se tiene que $\theta^2 = \theta$ y, como \mathscr{C} es preaditiva, la composición de morfismos en \mathscr{C} es bilineal con respecto a + en $End_{\mathscr{C}}(A)$. Así

$$(1_A - \theta)^2 = (1_A - \theta)(1_A - \theta) = 1_A^2 - 1_A \theta - \theta 1_A + \theta^2$$

= 1_A - \theta - \theta + \theta
= 1_A - \theta.

Ej 48. Sea $\mathscr C$ una categoría, entonces:

- a) ${\mathscr C}$ es abeliana si y sólo si ${\mathscr C}^{op}$ es abeliana.
- b) Supongamos que $\mathscr C$ es abeliana y sean $\alpha:A\to B,\beta:C\to B$ en $\mathscr C$. Si α , o β , es epi, entonces λ el morfismo asociado a la matriz $(\alpha\ \beta)$ es epi.

Demostraci'on. a) Se tiene del Teorema 1.10.1 d) que una categoría es abeliana si y sólo si satisface las siguientes dos condiciones

- C1) \mathscr{C} es normal y conormal,
- C2) \mathscr{C} tiene pull-backs y push-outs.

Dado que C1) y C2) son condiciones autoduales, pues (normal)*=conormal y (pull-back)*=push-out, entonces una categoría $\mathscr C$ las satisface si y sólo si $\mathscr C^{op}$ las satisface.

b) Sean $\{\pi_1, \pi_2\}$ las proyecciones naturales y $\{\mu_1, \mu_2\}$ las inclusiones naturales del biproducto $A \coprod C$. Entonces $\lambda = \alpha \pi_1 + \beta \pi_2 \in Hom_{\mathscr{C}}(A \coprod C, B)$. Supongamos que $f, g \in Hom_{\mathscr{C}}(B, D)$ son tales que $f\lambda = g\lambda$. Así

$$f(\alpha \pi_1 + \beta \pi_2) = g(\alpha \pi_1 + \beta \pi_2),$$

$$\implies f(\alpha \pi_1 + \beta \pi_2) \mu_1 = f(\alpha \pi_1 + \beta \pi_2) \mu_1$$

$$\implies f(\alpha (\pi_1 \mu_1) + \beta (\pi_2 \mu_1)) = g(\alpha (\pi_1 \mu_1) + \beta (\pi_2 \mu_1))$$

$$\implies f(\alpha (1_A) + \beta 0) = g(\alpha 1_A + \beta 0)$$

$$\implies f\alpha = g\alpha.$$

De lo anterior se sigue que f=g si α es epi. La prueba es análoga, componiendo por μ_2 a derecha, si suponemos que β es epi.

 \mathbf{Ej} 49. Pruebe que, para un anillo R

- a) Mod(R) es abeliana.
- b) mod(R) es abeliana si R es un anillo artiniano izquierdo, donde mod(R) es la subcategoría de Mod(R), cuyos objetos son los R-módulos finitamente generados.

Demostración. a Por los ejercicios 29 y 30, Mod(R) tiene kerneles y cokerneles, por el ejercicio 32 es normal y conormal y por el ejercicio 41 tiene productos y coproductos (en particular tiene productos y coproductos finitos) entonces por el teorema 1.10.1 c) se tiene que Mod(R) es abeliana.

- **Ej 50.** Sean $\mathscr A$ y $\mathscr B$ categorías aditivas y $F:\mathscr A\to\mathscr B$ un funtor de cualquier varianza. Pruebe que los siguientes son equivalentes:
 - a) F es aditivo.
 - b) $F_{op} := F \circ D_{\mathscr{A}^{op}} : \mathscr{A}^{op} \longrightarrow \mathscr{B}$ es aditivo.
 - c) $F^{op} := D_{\mathscr{B}} \circ F : \mathscr{A} \longrightarrow \mathscr{B}^{op}$ es aditivo.
 - d) $F_{op}^{op} := D_{\mathscr{B}} \circ F \circ D_{\mathscr{A}^{op}} : \mathscr{A}^{op} \longrightarrow \mathscr{B}^{op}$ es aditivo.

(Se cambió ligeramente el enunciado para fines practicos de la demostración.)

Demostración. Recordemos que \mathscr{A}^{op} y \mathscr{B}^{op} son categorías abelianas por 1.9.15, también que $D_{\mathscr{A}^{op}}: \mathscr{A}^{op} \longrightarrow \mathscr{A}$ es un funtor contravariante tal que ($A \xrightarrow{f} B$) \mapsto ($B \xrightarrow{f^{op}} A$) y, como $\operatorname{Hom}_{\mathscr{A}}(X,Y)$ es un grupo abeliano, $\operatorname{Hom}_{\mathscr{A}^{op}}(Y,X)$ es también un grupo abeliano.

Se probará el caso en que F es covariante

 $a \Rightarrow b$ Supongamos F es aditivo. Entonces

 $F: \operatorname{Hom}_{\mathscr{A}}(X,Y) \longrightarrow \operatorname{Hom}_{\mathscr{B}}(F(X),F(Y))$ es un morfismo en Ab para toda $X,Y \in \mathscr{A}$. Así para cualesquiera $f^{op}: \operatorname{Hom}_{\mathscr{A}^{op}}(B,A)$ y $g^{op}: \operatorname{Hom}_{\mathscr{A}^{op}}(C,B)$, entonces

$$F_{op}(f^{op} \circ g^{op}) = F \circ D_{\mathscr{A}^{op}}(f^{op} \circ g^{op}) = F \circ D_{\mathscr{A}^{op}}((g \circ f)^{op}) = F(g \circ f)$$

= $F(g) \circ F(f) = F \circ D_{\mathscr{A}^{op}}(g^{op}) \circ F \circ D_{\mathscr{A}^{op}}(f^{op}) = F_{op}(g^{op}) \circ F_{op}(f^{op}).$

Es decir, F_{op} es un funtor aditivo (pues es contravariante).

 $b \Rightarrow c$ Supongamos F_{op} es aditivo. Entonces

 $F_{op}: \overline{\operatorname{Hom}}_{\mathscr{A}^{op}}(Y,X) \longrightarrow \operatorname{Hom}_{\mathscr{B}}(F(X),F(Y))$ es un morfismo en Ab para toda $X,Y \in \mathscr{A}$. Así para cualesquiera $f: \operatorname{Hom}_{\mathscr{A}}(B,C)$ y $g: \operatorname{Hom}_{\mathscr{A}}(A,B)$, entonces

$$\begin{split} F^{op}(f\circ g) &= D_{\mathscr{B}}\circ F(f\circ g) = D_{\mathscr{B}}(F(f\circ g)) = (F(f\circ g))^{op} = [F((g^{op}\circ f^{op})^{op})]^{op} \\ &= [F\circ D_{\mathscr{A}^{op}}(g^{op}\circ f^{op})]^{op} = [F\circ D_{\mathscr{A}^{op}}(f^{op})\circ F\circ D_{\mathscr{A}^{op}}(g^{op})]^{op} \\ &= [F(f)\circ F(g)]^{op} = (F(g))^{op}\circ (F(f))^{op} = D_{\mathscr{B}}\circ F(g)\circ D_{\mathscr{B}}\circ F(f) = F^{op}(g)\circ F^{op}(f). \end{split}$$

Es decir, F^{op} es un funtor aditivo (pues es contravariante).

 $\fbox{ \ \ \, c)\Rightarrow d)}$ Supongamos F^{op} es aditivo. Entonces

 $F^{op}: \operatorname{Hom}_{\mathscr{A}}(X,Y) \longrightarrow \operatorname{Hom}_{\mathscr{B}^{op}}(F(Y),F(X))$ es un morfismo en Ab para toda $X,Y \in \mathscr{A}$. Así para cualesquiera $g: \operatorname{Hom}_{\mathscr{A}}(A,B)$ y $f: \operatorname{Hom}_{\mathscr{A}}(B,C)$, entonces

$$\begin{split} F^{op}_{op}(f^{op} \circ g^{op}) &= D_{\mathscr{B}} \circ F \circ D_{\mathscr{A}^{op}}(f^{op} \circ g^{op}) = D_{\mathscr{B}} \circ F \circ D_{\mathscr{A}^{op}}((g \circ f)^{op}) \\ &= D_{\mathscr{B}} \circ F(g \circ f) = D_{\mathscr{B}} \circ F(f) \circ D_{\mathscr{B}} \circ F(g) \\ &= D_{\mathscr{B}} \circ F \circ D_{\mathscr{A}^{op}}(f^{op}) \circ D_{\mathscr{B}} \circ F \circ D_{\mathscr{A}^{op}}(g^{op}) \\ &= F^{op}_{op}(f^{op}) \circ F^{op}_{op}(g^{op}). \end{split}$$

Es decir, F_{op}^{op} es un funtor aditivo covariante.

 $\boxed{d)\Rightarrow a)}$ Supongamos F_{op}^{op} es aditivo. Entonces

 $F_{op}^{op}: \operatorname{Hom}_{\mathscr{A}^{op}}(X,Y) \longrightarrow \operatorname{Hom}_{\mathscr{B}^{op}}(F(X),F(Y))$ es un morfismo en Ab para toda $X,Y \in \mathscr{A}$. Así para cualesquiera $g: \operatorname{Hom}_{\mathscr{A}}(A,B)$ y $f: \operatorname{Hom}_{\mathscr{A}}(B,C)$, entonces

$$\begin{split} F(f\circ g) &= F\circ D_{\mathscr{A}^{op}}(g^{op}\circ f^{op}) = [D_{\mathscr{B}}\circ F\circ D_{\mathscr{A}^{op}}(g^{op}\circ f^{op})]^{op} \\ &= [D_{\mathscr{B}}\circ F\circ D_{\mathscr{A}^{op}}(g^{op})\circ D_{\mathscr{B}}\circ F\circ D_{\mathscr{A}^{op}}(f^{op})]^{op} = [D_{\mathscr{B}}\circ F(g)\circ D_{\mathscr{B}}\circ F(f)]^{op} \\ &= (D_{\mathscr{B}}\circ F(f))^{op}\circ (D_{\mathscr{B}}\circ F(g))^{op} = F(f)\circ F(g). \end{split}$$

Es decir, F_{op}^{op} es un funtor aditivo covariante.

El caso en que F es contravariante es análogo a esta demostración.

Ej 51. Sean \mathscr{A} una categoría aditiva y $A \in \mathscr{A}$ tal que $1_A = 0_{A,A}$. Entonces A es un objeto cero en \mathscr{A} .

Demostración. Como $\mathscr A$ es aditiva, en partícular es una $\mathbb Z$ -categoría, con lo cual por la Observación 1,9,1(2) todo objeto inicial en $\mathscr A$ es un objeto cero en $\mathscr A$. Así pues basta con verificar que bajo estas condiciones A es un objeto inicial en $\mathscr A$.

Sea $X \in \mathcal{A}$ y $f \in Hom_{\mathscr{A}}(A,X)$. Como \mathscr{A} tiene objeto cero, por ser aditiva, entonces existe un (único) morfismo cero $0_{A,X} \in Hom_{\mathscr{A}}(A,X)$. Además

$$f = f1_A = f0_{A,A} = 0_{A,X},$$

$$\implies Hom_{\mathscr{A}}(A,X) = \{0_{A,X}\}.$$

Ej 52. Sean \mathscr{A},\mathscr{B} categorías aditivas, $X=\coprod_{i=1}^n X_i, Y=\coprod_{j=1}^m Y_i$ en \mathscr{A}, F un funtor que preserva coproductos finitos, $\alpha\in Mat_{m\times n}(X,Y)$ y $\overline{\alpha}$ el morfismo en $Hom_{\mathscr{A}}(X,Y)$ asociado a α . Entonces la matriz asociada al morfismo $F(\overline{\alpha}), \varphi_{FY,FX}(F(\overline{\alpha}))\in Mat_{m\times n}(FX,FY)$, está dada por

$$\left[\varphi_{FY,FX}\left(F\left(\overline{\alpha}\right)\right)\right]_{i,j} = F\left(\left[\alpha\right]_{i,j}\right), \qquad \forall i,j$$

 $\begin{array}{l} \textit{Demostraci\'on.} \ \ \text{Dado que} \ \mathscr{A} \ \text{es abeliana}, \ X \ Y \ \text{son biproductos en} \ \mathscr{A}, \ \text{al} \ \text{igual que} \ FX \ y \ FY \ \text{lo son en} \ \mathscr{B} \ \text{por ser esta} \ \text{última abeliana} \ y \ \text{ser} \ F \ \text{un} \ \text{funtor que} \ \text{preserva coproductos finitos.} \ \text{Más a\'un, si} \ \left\{\mu_{i}^{X}_{i}\right\}_{i=1}^{n}, \left\{\mu_{i}^{Y}_{i}\right\}_{i=1}^{m}, \left\{\mu_{i}^{Y}_{i}\right\}_{i=1}^{m}, \left\{\pi_{i}^{X}_{i}\right\}_{i=1}^{n}, \left\{\pi_{i}^{X}_{i}\right\}_{i=1}^{n}, \left\{F\left(\mu_{i}^{X}\right)_{i}\right\}_{i=1}^{n}, \left\{F\left(\pi_{i}^{X}\right)_{i}\right\}_{i=1}^{n}, \left\{F$

8

rales de FX y FY. Así

$$\begin{split} \left[\varphi_{FY,FX}\left(F\left(\overline{\alpha}\right)\right)\right]_{i,j} &= F\left(\pi_{i}^{Y}\right)F\left(\overline{\alpha}\right)F\left(\mu_{j}^{X}\right) \\ &= F\left(\pi_{i}^{Y}\overline{\alpha}\mu_{j}^{X}\right) \\ &= F\left(\pi_{i}^{Y}\left(\sum_{r,t}\mu_{t}^{Y}\left[\alpha\right]_{i,j}\pi_{r}^{X}\right)\mu_{j}^{X}\right) \\ &= F\left(\sum_{r,t}\left(\left(\pi_{i}^{Y}\mu_{t}^{Y}\right)\left[\alpha\right]_{i,j}\left(\pi_{r}^{X}\mu_{j}^{X}\right)\right)\right) \\ &= F\left(\sum_{r,t}\delta_{i,t}^{Y}\left[\alpha\right]_{i,j}\delta_{r,j}^{X}\right) \\ &= F\left(1_{Y_{i}}\left[\alpha\right]_{i,j}1_{X_{j}}\right) \\ &= F\left(\left[\alpha\right]_{i,j}\right). \end{split}$$

Ej 53. Sea $G: \mathscr{A} \longrightarrow \mathscr{B}$ un funtor contravariante entre categorías aditivas. Pruebe que G s aditivo si y sólo si manda productos finitos en \mathscr{A} a coproductos finitos en \mathscr{B} .

Demostración. Decimos que un funtor contravariante $G: \mathscr{A} \longrightarrow \mathscr{B}$ entre categorías aditivas manda productos finitos en \mathscr{A} a coproductos finitos en \mathscr{B} si el funtor $G_{op} := G \circ D_{\mathscr{A}^{op}}$ preserva coproductos finitos en \mathscr{A}^{op} .

Supongamos G es aditivo, entonces $G_{op} := G \circ D_{\mathscr{A}^{op}}$ es aditivo por el ejercicio 50. Así, por 1.10.2 G_{op} preserva coproductos finitos en \mathscr{B} .

Ahora, si suponemos que G manda productos finitos de \mathscr{A} en coproductos finitos de \mathscr{B} se tiene por definición que $G \circ D_{\mathscr{A}^{op}}$ preserva coproductos finitos en \mathscr{A}^{op} , entonces por 1.10.2 G_{op} es aditivo, así G es aditivo.