

Název a adresa školy:	Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01
IČO:	47813121
Projekt:	OP VK 1.5
Název operačního programu:	OP Vzdělávání pro konkurenceschopnost
Typ šablony klíčové aktivity:	III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (20
	vzdělávacích materiálů)
Název sady vzdělávacích materiálů:	Technologie grafiky I
Popis sady vzdělávacích materiálů:	Technologie grafiky I, 1. ročník
Sada číslo:	A-02
Pořadové číslo vzdělávacího materiálu:	08
Označení vzdělávacího materiálu: (pro záznam v třídní knize)	VY_32_INOVACE_A-02-08
Název vzdělávacího materiálu:	Plasty (plastické hmoty)
Zhotoveno ve školním roce:	2011/2012
Jméno zhotovitele:	Mgr. Lenka Kašpárková

Plasty (plastické hmoty)

Plán učiva

- Dělení plastů.
- Dělení podle použitých surovin.
- Dělení podle chemické reakce, kterou vznikly.
- Podle chování za tepla.
- Termoplasty.
- Termosety.
- Elastomery.
- Zpracování plastů.
- Otázky a úkoly pro zopakování učiva.

Plasty (plastické hmoty)

Jsou to synteticky vyrobené, makromolekulární, organické sloučeniny z makromolekul, které obsahují velké množství atomu uhlíku, vodíku, aj. Kromě těchto makromolekul obsahují také přísady: barviva, stabilizátory, urychlovače, změkčovadla, skelná vlákna, tvrdidla, papír, asbest, apod.

Dělení plastů

1. Podle použitých výchozích surovin

- a) Plasty vzniklé zušlechtěním přírodních makromolekulárních látek (např. estery celulózy).
- b) Látky vyráběné zcela synteticky (např. polyvinylchlorid).

2. Podle druhu chemické reakce, kterou vznikly

a) Polymerace

Polymerace je chemická reakce, při níž se molekuly jednoduché organické sloučeniny slučují a tvoří makromolekulární látky bez vzniku vedlejšího produktu.

MONOMER + MONOMER = POLYMER (např.: polyvinylacetát, polyakrylát, polyvinyletylen).

b) Polykondenzace

Polykondenzace je reakce při, které reagují dva stejné nebo různé monomery, které obsahují dvě nebo více reakčních funkčních skupin. V průběhu reakce nevzniká jenom polymer, ale i nízkomolekulární produkt (např. voda, metanol, amoniak).

c) Polyadice

Chemická reakce, při níž vznikají za vhodných podmínek makromolekulární látky postupným spojováním molekul monomeru, a to je jich vzájemnou, mnohokrát se opakující adicí, bez vzniku vedlejší nízkomolekulární látky.

3. Podle chování za tepla

- a) **Termoplasty** teplem tvarovatelné materiály, které za tepla měknou a ochlazováním tuhnou. Změknutí a ztuhnutí lze opakovat (polyetylen, polyvinylchlorid).
- b) **Termosety** plasty teplem tvrditelné- působením tepla vzniká chemická reakce, při které se materiál vytvrdí a přechází nevratně do netavitelného a nerozpustného stavu (epoxidové, fenolové pryskyřice).
- c) **Elastomery** jsou materiály pružné i za normální teploty. Za normální teploty probíhá deformace vratně, za tepla nevratně (syntetický kaučuk, silikon).

Termoplasty

Polyetylen (PE)

Vyrábí se polymerací etylenu za vysokého tlaku a teploty 400°C.

Vlastnosti:

Pevná, houževnatá látka parafínového vzhledu, bez zápachu, chemicky netečná, zdravotně nezávadná. Teplota stálá od - 80°C do + 60°C, nad + 60°C začne prudce měknout.

Použití:

Sáčky, hračky, obaly, lana, trubky, laminování papírů.

Polypropylen (PP)

Připravuje se polymerací propylenu.

Vlastnosti:

Podobné jako PE, je ale pevnější a tepelně stálejší, časem ho rozkládá UV záření.

Použití:

Výroba fólií, lan, desek, trubek, lahví, nádobí ...

Polyisobutylen (PIB)

Vyrábí se polymerací isobutylenu za velmi nízkých teplot.

Vlastnosti:

Chemicky netečná látka bez zápachu, pružná od 60 do 90°C. Tepelně se upravuje při 200°C.

Použití:

Fólie, trubky, umělá kůže, potahování kovů (proti korozi).

Polyvinylchlorid (PVC)

Připravuje se polymerací vinylchloridu za přítomnosti peroxidu.

Vlastnosti:

Bílá hmota bez zápachu, měkne při 60 – 80°C. Tvaruje se při 150°C, při teplotě nad 180°C se rozkládá.

Použití:

PVC krytiny, hračky, fólie, lepidla, odpadní trubky (tvrdé PVC – Novodur) atd.

Polystyren (PS)

Vzniká polymerací styrenu za přítomnosti peroxidu.

Vlastnosti:

Je rozpustný v organických rozpouštědlech.

Tvrdý polystyren – bílý, křehký, pevný.

Pěnový polystyren – bílý, lehký, tepelně izolační, drolivý.

Polymetylmetakrylát – plexisklo (PMMA)

Nerozbitná náhrada skla. Je lehčí a méně křehké než sklo, ale více náchylné k poškrábání. Propouští sluneční paprsky.

Polyakryláty (akrylátové pryskyřice)

Jsou to polymery kyseliny akrylové a octové.

Vlastnosti:

Mohou být polotekuté, měkké, tuhé, i tvrdé. Většinou jsou bezbarvé a stálé.

Použití:

Výroba lepidel a akrylových barev, k výrobě filmů a fólií, a také je to textilní vlákno.

Polyvinylacetát (PVAC)

Při jeho výrobě se vychází z acetylénu a kyseliny octové.

Vlastnosti:

Rozpouští se v některých organických rozpouštědlech.

Použití:

Výroba lepidel a laků.

Polyamidy (PA)

Vlastnosti:

Velmi pevná, ale rozměrově nestálá látka (tuhnutím se smršťuje).

Použití:

Syntetická vlákna (nylon, silikon, kepron, peron, dederon), sítotisková síta (síťoviny), výroba laků, lepidel a tmelu.

Polyestery (PES)

Vyrobené na bázi polyetylenretaftalátu.

Vlastnosti:

Jsou to rozměrově stálé, průhledné látky.

Použití:

Výroba syntetických tkanin.

Termosety

Fenolplasty

Fenolformaldehydová pryskyřice (Bakelit)

Vyrábí se polymerací fenolu s katalyzátory (formaldehyd). Kvůli nepříjemnému zápachu je není možné použít k uchovávání potravin. Fenoplasty mají tmavou barvu, používají se jen tam, kde se nepožaduje jiné zbarvení výrobku.

Použití:

Výroba dřevotřísky, dvousložkových lepidel, nátěrových hmot a také výroba bakelitu a laminátu.

Aminoplasty

Jsou plasty vzniklé polykondenzací formaldehydu s aminosloučeninami. Jsou to bezbarvé nebo bílé látky, na rozdíl od fenoplastů jsou zcela bez zápachu. Nanášením na vhodný podklad vzniká vrstvený materiál užívaný k obkládání nábytku a ve stavebnictví. Jsou známé pod názvy Umakur, Umakart nebo Dukol.

Použití:

V elektronice nebo k výrobě nátěrových hmot, tmelů, lepidel atd.

Elastomery

Kaučuk

Polymerní materiál přírodního nebo syntetického původu, vyznačující se velkou pružností, tedy schopností se účinkem vnější síly výrazně deformovat a poté opět zaujmout původní tvar. Kaučuky jsou základní surovinou pro výrobu pryží, nesprávně označovaných i jako guma.

Přírodní kaučuk se získává z tropického stromu kaučukovníku brazilského (Hevea Brasiliensis). Po naříznutí jeho kůry vytéká surový kaučuk (latex). Ten se upravuje srážením např. kyselinou mravenčí, pere vodou a suší na materiál zvaný krepa. Jeho dalšími úpravami (přídavkem plniv, dalších aditiv a vulkanizací) se vyrábí "přírodní kaučuk" čili přírodní pryž.

Syntetické kaučuky se vyrábí se polymerací nebo kopolymerací některých nenasycených uhlovodíků. Mohou mít různé složení. Jsou chemickou obdobou přírodního kaučuku.

Silikon

Charakteristickými vlastnostmi silikonů je chemická a teplotní odolnost. Díky svému umělému původu jsou silikony poměrně netečné vůči živým organizmům. Z dalších vlastností je dobré zmínit relativní nehořlavost, dobré elektoizoloační vlastnosti, dlouhodobou odolnost vůči UV záření a povětrnostním podmínkám a vodoodpudivost.

Použití:

Vyrábějí se v různých formách oleje, pasty, tmely atd. Používají se tam, kde by kaučuk ztratil svoje vlastnosti díky vysokým teplotám nebo chemikáliím.

Zpracování plastů

Lisováním

Používá se zejména u plastů tvrditelných teplem. Do dvoudílné formy se vkládá hmota v podobě prášku, granulí nebo tablet. Tlakem a teplem hmota změkne a vyplní formu. Poté se vytvrdí.

Vstřikováním

Roztavený plast se vystřikuje do chladné ocelové formy, ve které ztuhne.

Tvarování teplem

Tvarují se různé polotovary např.: desky nebo trubky a poté se nechají ztuhnout v požadovaném tvaru.

Vakuové tvarování

Deska ze speciálního plastu se nanese proudem vzduchu na zahřátou formu a spolu s ní se nechá vychladnout.

Lepením

K lepení plastů se používají různá lepidla na bázi syntetických pryskyřic a kaučuku.

Svařováním

Nejčastěji horkým plynem, impulsivním ohřevem nebo vysokofrekvenčním svařováním (sáčky).

Otázky a úkoly pro zopakování učiva

- 1. Jak dělíme dřevo?
- 2. Jaká znáš měkká a tvrdá dřeva? Čím se od sebe liší?
- 3. Který strom má nejtvrdší dřevo ze všech jehličnanů?
- 4. Vysvětli, jak se vyrábí překližka, dřevotříska, sololit a laťovka.
- 5. Jaké vlastnosti má hobra?
- 6. K jakým účelům se v malbě a grafice využívá dřevo?

Seznam použité literatury

 BŘÍŽĎALA, J. Syntetické makromolekulární látky. [online]. Dostupné z: http://www.chemweb.info/Study/3/Synteticke_makromolekularni_latky.pdf.