Y' = $Y \cot(x) + 2x - x^2 \cot(x)$ * PASSO T: COLOGO A FOLIAÇÃO NA FORMA Y'' + p(x)Y' = f(x) $(-\cot(x)) = 2x - x^2 \cot(x)$ * PASSO II: CALWILLE O FATOR INTEGRANTE IL(X) $\mu(x) = \exp(\int p(x) \, dx) = \exp(\int -\ln(x) \, dx) = \exp(-\ln(x) \, dx)$ $\mu(x) = exc(x)$ * PASSO ITT: MULTIPLICAR DELO FATOR INTEGRANTE E INTEGRAR $exc(x)(y) + (-cot(x))y) = cxc(x)(2x - x^2 cot(x))$ = 3 4(x) Y $\int_{\partial x} \left(\operatorname{crc}(x) y \right) = \operatorname{crc}(x) \left(2x - x^2 \operatorname{ext}(x) \right)$ \neq cx(x) y = $\int ex(x) (2x - x^2 \cot(x)) dx$ \Rightarrow exc(x) $y = exc(x) x^2 + C$ $y = x^2 + C = x^2 + C xen(x)$ y = x2 + C ren(x)

EDRO SADER AZEVEDO RA: 243 245

(2) $y' = y'' exer(x) + y tan(x)$	
* PASSO I: COLOCAR A GOURGEO NA FORMA $Y'' + p(x) y = f(x) y^n$	
y'' + (-tam(x))y' = eeq(x)y''	
* PASSO II : APLICAR A JUBSTITUIÇÃO DE BERNOULI	
$V = y^{1-\eta} \Rightarrow V = y^{1-4} = y^{-3}$	
$\eta = 4$	
ASSIM OBTEMOS A SEGUINTE ECRAÇÃO:	
$y' + 3\tan(x)y = -3\cos(x)$	
* PASSO III : RESOURER A NOVA EQUAÇÃO USANDO UM FATOR ÎNTEGRANTE M	
$\mu = \exp(\int p(x) dx) = \exp(\int 3 \tan(x) dx) = \exp(\int x \cos^3(x) dx)$	
·	
$\psi(x) = xe^{3}(x)$	
3	
$\int_{\mathbb{R}^3} (x) \sqrt{1 - 3} \int_{\mathbb{R}^3} (x) \exp(x) dx$	
$V = -3\cos^3(x) \int \sec^3(x) \cos(x) dx = -3\cos^3(x) \int \sec^2(x) dx$	
$V = -3 \cos^3(x) \left(\tan(x) + (x) \right)$	
* DASSO IZ; DESOLVER PARA Y	3
$y = y^{-3} \neq y^{-\frac{1}{3}} = y \neq y = (-3 \cos^{3}(x) (\tan(x) + C))^{\frac{1}{3}}$	
\mathcal{D}	
EDRO JADER HZEVEDO PA: 243245	

Scanned with CamScanner

Scanned with CamScanner

(4) $y(y^3+1) dx + x(y^3-2) dy = 0$ M(x,y) N(x,y)* PASSO I: VEFIFICAR SE A EQUARAD É EXATA $\frac{\partial}{\partial y} M = 4y^3 + 1$ $\frac{\partial}{\partial x} N = y^3 - 2$ SYM \$ SXN, ENTRO A EQUAÇÃO NÃO É EXATA * PASSO IT: CALCULAR UM FATOR INTEGRANTE QUE TORNE A EQUAÇÃO EXATA $\frac{\partial}{\partial x} N - \frac{\partial}{\partial y} M = (y^3 - 2) - (y^3 + 1) = -3(y^3 + 1) = -3$ $y(y^3+1)$ $y(y^3+1)$ Y $\mu = \exp(\int_{-3}^{-3} dy) = \exp(-3 \ln(y)) = y^{-3}$ * PASSO III : VERFICA QUE A GOURGO É AGOSA EXASA $\frac{\partial}{\partial x} \mu(x) \mu(x,y) = \frac{\partial}{\partial x} y^{-3} y(y^{3}+1) = 1 - 2y^{-3}$ $\frac{1}{2}$ $\frac{1}$ * PASSO IT: INTEGRAR M con PENEZO A X SEDA F A EUNERO SORUÇÃO IMPLÍCITA PARA O PRODUCHA, TAL DUE: $F = \int M \partial_x = \int (y + y^{-2}) \partial_x = xy + xy^{-2} + C(y)$ PASSO I DEPUND F con PECRETO A Y PREA EXECULAR C(X) $\frac{1}{84}F = \frac{1}{84}(xy + xy^{-2} + C(y)) = x - 2xy^{-3} + C'(y) + K$ $\frac{3}{3}$ F = N(x/y) \Rightarrow x - 2xy⁻³ + C'(y) + = x - 2xy⁻³ \neq C'(y) = 0 \neq [C'(y) \forall y = K $F = xy + xy^{-2} + K$ one $K \in \mathbb{R}$

PEDRO SADER AZEVEDO RA: 243245