

COURSE DESCRIPTION FORM

INSTITUTION National University of Computer and Emerging Sciences (NUCES-FAST) BS(CS)

PROGRAM (S) TO BE EVALUATED

A. Course Description

Course Code	CS2001		
Course Title	Data Structures		
Credit Hours	3+1		
Prerequisites by Course(s) and Topics	Object-oriented Programming (CS217)		
Assessment Instruments with Weights (homework, quizzes, midterms, final, programming assignments, lab work, etc.)	Midterm Exam 1: 15 (1 Hour written exam) Midterm Exam 2: 15 (1 Hour written exam) Project: 10 Quizzes: 10 (Four Surprise quizzes – best three counted) Final: 50 (3 Hours Written Exam)		
Course Coordinator	Dr. Jawwad A Shamsi		
URL (if any)	-		
Current Catalog Description	-		
Textbook (or Laboratory Manual for Laboratory Courses)	Textbook: Data Structures and Algorithms in C++ 4th Edition by Adam Drozdek Reference books: Data Structure and Algorithms Analysis in C++ Mark Allen		

	Using C++ A Pract Tripathy	tical Implementation by Sachi Nandan Mohanty and Pabi	tra Kumar		
Reference Material					
Course Goals	A Course Learnin	g Outcomes (CLOs)			
	1. Use & explosed describe their usage [Bloom's Taxonom	ain concepts related to basic and advanced data structures in terms of common algorithmic operations by Level: 3, Learning Domain: Cognitive]	and		
		sive problems efficiently using Backtracking by Level: 3, Learning Domain: Cognitive			
	3. Compare different data structures in terms of their relative efficiency and design effective solutions and algorithms that make use of them. [Bloom's Taxonomy Level: 6, Learning Domain: Cognitive & Psychomotor]				
	4. Transform cycling-bearing graphs into acyclic tree structures for minimum cost traversal [Bloom's Taxonomy Level: 6, Learning Domain: Cognitive & Psychomotor]				
	B. Program	Learning Outcomes			
	1. Computing Knowledge	Apply knowledge of mathematics, natural sciences, computing fundamentals, and a computing specialization to the solution of complex computing problems.	CLO-1		
	2. Problem Analysis	Identify, formulate, research literature, and analyze complex computing problems, reaching substantiated conclusions using first principles of mathematics, natural sciences, and computing sciences.	CLO-2		

3.Design/Develop Solutions	Design solutions for complex computing problems and design systems, components, and processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.	CLO-3	
4. Investigation & Experimentation	Conduct investigation of complex computing problems using research based knowledge and research based methods	CLO-4	

C.	CLO: Course Learning Outcome, PLOs: Program Learning Outcomes)												
	PLOs												
		1	2	3	4	5	6	7	8	9	10	11	12
	1	>											
C	2		~										
O s	3			~									
	4				~								

Topics Covered in the Course, with Number of Lectures on Each Topic (assume 15-week instruction and one-hour lectures)

1. Topics to be covered:					
List of Topics	No. of Weeks	Contact Hours	CLO		
ADT, C++ Language Specification, Pointers revisited, Rule of Three, Dynamic Safe Arrays	1	3	1		
Recursion, it's types, issues and Backtracking (with examples)	1	3	2		
List (Singly Linked List), List (Doubly Linked List), List (Circular Linked List)	2	6	1, 3		
Elementary Sorting Techniques	1	3	1, 3		

====== Mid-term	1 Exam ==	======	
Advanced Sorting Techniques and Binary &	1	3	3
Stack, Queue, their implementation strategies and applications(Simulation of recursion)	1	3	1, 3
Priority Queues, Heaps as Priority Queues	1	3	1, 3
Binary trees and their properties (Full Binary Tree, Complete Binary Tree), Multi-way Trees/Tries Binary Search Trees, their operations and applications, skewness and issues	2	7	1, 2, 3
====== M id-term	2 Exam ==	======	
Balance in Binary Search Trees, AVL Trees	1	3	2, 3
Hashing, Hash Functions, Collision-resolution Techniques, Rehashing	1	3	1, 3
Graphs and their representation and traversal, Shortest Path Problem, Minimum Spanning Trees, Graph Algorithms, Topological Sort	1	3	4
Revision	1	3	
======= Final	Exam ====	=====	
Total	14	43	

Laboratory Projects/Experiments Done in the Course

There will be weekly labs starting from the first week.

The following is a summary of the Lab exercises given to Students:

- Introduction to Data Structures and their implementation.
- Writing & using dynamic safe arrays
- Solving recursive problems using Backtracking in programs
- Implementation of Linked Lists
- Linked List based implementation of primitive Data Structures
- Implementing Sorting Algorithms
- Implementing Binary Trees and writing functions for their properties

	 Implementing Binary Search Trees using Structures and Classes Writing functions for tree traversal and maintaining balance g graphs and writing functions for their traversal 					
Programming Assignments Done in the Course	Assignments related to Backtracking, Stacks & Queues, Binary Search Trees and traversal					
Class Time Spent on (in credit hours)	Theory Problem Analysis Solution Design Social and Ethical Issues					
	15 15 13 0					
Oral and Written Communications	Every student is required to submit at least1_ written report of typically _6_ pages and to make _1_ oral presentations of typically10_ minute's duration. Include only material that is graded for grammar, spelling, style, and so forth, as well as for technical content, completeness, and accuracy.					

Instructor Name:	
Instructor Signature:	
Date:	