(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 6 January 2005 (06.01.2005)

PCT

(10) International Publication Number WO 2005/001103 A2

(51) International Patent Classification⁷: C12N 15/86, 5/10, 7/01, C07K 14/075, A61K 39/235, 48/00, C12N 15/34

(21) International Application Number:

PCT/US2004/016614

(22) International Filing Date: 15 June 2004 (15.06.2004)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

10/465,302	20 June 2003 (20.06.2003)	US
60/566,212	28 April 2004 (28.04.2004)	US
60/575,429	28 May 2004 (28.05.2004)	US

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier application:

US 10/465,302 (CIP) Filed on 20 June 2003 (20.06.2003)

(71) Applicant (for all designated States except US): THE TRUSTEES OF THE UNIVERSITY OF PENN-SYLVANIA [US/US]; 3160 Chestnut Street, Suite 200, Philadelphia, PA 19104 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): ROY, Soumitra [US/US]; 240 Pugh Road, Wayne, PA 19087 (US). WILSON, James, M. [US/US]; 1350 N. Avignon Drive, Gladwyne, PA 19035 (US).

- (74) Agents: KODROFF, Cathy, A. et al.; Howson and Howson, Spring House Corporate Center, P.O. Box 457, Spring House, PA 19477 (US).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: METHODS OF GENERATING CHIMERIC ADENOVIRUSES AND USES FOR SUCH CHIMERIC ADENOVIRUSES

(57) Abstract: A method for providing an adenovirus from a serotype which does not grow efficiently in a desired cell line with the ability to grow in that cell line is described. The method involves replacing the left and right termini of the adenovirus with the corresponding termini from an adenovirus which grow efficiently in the desired cell line. At a minimum, the left terminus spans the (5') inverted terminal repeat, the left terminus spans the E4 region and the (3') inverted terminal repeat. The resulting chimeric adenovirus contains the internal regions spanning the genes encoding the penton, hexon and fiber from the serotype which does not grow efficiently in the desired cell. Also provided are vectors constructed from novel simian adenovirus sequences and proteins, host cells containing same, and uses thereof.

METHODS OF GENERATING CHIMERIC ADENOVIRUSES AND USES FOR SUCH CHIMERIC ADENOVIRUSES

BACKGROUND OF THE INVENTION

The presence of humoral immunity (circulating antibodies) to adenovirus capsid proteins is a barrier to the use of adenovirus vectors for gene therapy. The prototype adenovirus vectors that have been developed for gene therapy are based on subgroup C adenoviruses such as that of serotype 5. The prevalence of neutralizing antibodies against subgroup C adenoviruses is generally high in human populations as a result of frequent exposure to these pathogens. This fact is likely to greatly limit the effectiveness of gene therapy vectors based on serotypes such as Ad5.

Analysis of the nature of the protective antibodies against adenoviruses has indicated that the most important target is the major capsid protein, hexon [Wolfhart (1988) J. Virol 62, 2321; Gall et al. (1996) J. Virol. 70, 2116]. Several efforts have been made to engineer the hexon so as to evade the anti-hexon antibodies by making chimeric adenoviruses harboring hexons from other serotypes [Roy et al. (1998) J. Virol. 72, 6875; US Patent No 5,922,315; Gall et al. (1998) J. Virol. 72, 10260; Youil et al. (2002) Hum. Gene Ther. 13, 311; Wu et al. (2002) J. Virol. 76, 12775]. However, this has been largely unsuccessful when exchanges among distant serotypes are attempted.

Alternatively, investigators have proposed using adenovirus vectors that rarely cause human infections or using adenoviruses from non-human sources. However, the lack of a practical manner in which to produce large numbers of such vectors has proved to be a hindrance to developing such vectors.

25

30

5

10

15

20

٠,

SUMMARY OF THE INVENTION

The present invention provides a method of modifying adenoviruses having capsids, and particularly, including hexons, from serotypes which are not well adapted for growth in cells useful for adenoviral virion production. The method is useful for production of scalable amounts of adenoviruses. The resulting chimeric adenovirus genomes are useful for a variety of purposes which are described herein.

The invention further provides novel, isolated, adenovirus SA18 nucleic acid and amino acid sequences, vectors containing same, cell lines containing such SA18 sequences and/or vectors, and uses thereof.

Other aspects and advantages of the present invention will be readily apparent from the following detailed description of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 provides the map of the genome of the simian adenovirus generated by shotgun cloning as described in the examples below.

Fig. 2 provides the map of the recombinant Adhu5-SV25 chimeric virus, termed H5S25H5.

DETAILED DESCRIPTION OF THE INVENTION

15

20

25

30

The present invention provides chimeric adenovirus genomes composed of the left terminal end and right terminal end of an adenovirus which can be cultured in the selected host cell, and the internal regions encoding, at a minimum, the capsid proteins of another adenovirus serotype. This invention is particularly advantageous for generating adenoviruses having serotypes which are difficult to culture in a desired cell type. The invention thus permits generation of chimeric adenoviruses vectors of varying serotypes.

In the embodiments illustrated herein, chimeric adenoviruses have been constructed where most structural proteins, and not merely the hexon or fiber, are derived from an adenovirus of an unrelated serotype, thereby preserving the majority of the protein-protein interactions that are involved in capsid assembly. Most of the early genes such as those encoded by the adenovirus E1 and E4 regions that are responsible for transcription regulation and regulation of the host cell cycle, are retained from a different serotype that is known to result in high titer virus generation in the commonly used cell types, such as HEK 293 which supplies the Ad5 E1 proteins in *trans*.

In another embodiment, the invention provides novel nucleic acid and amino acid sequences from Ad SA18, which was originally isolated from vervet monkey [ATCC VR-943]. The present invention further provides novel adenovirus vectors and packaging cell lines to produce those vectors for use in the *in vitro* production of

recombinant proteins or fragments or other reagents. The invention further provides compositions for use in delivering a heterologous molecule for therapeutic or vaccine purposes. Such therapeutic or vaccine compositions contain the adenoviral vectors carrying an inserted heterologous molecule. In addition, novel sequences of the invention are useful in providing the essential helper functions required for production of recombinant adeno-associated viral (AAV) vectors. Thus, the invention provides helper constructs, methods and cell lines which use these sequences in such production methods.

5

10

15

20

25

30

The term "substantial homology" or "substantial similarity," when referring to a nucleic acid or fragment thereof, indicates that, when optimally aligned with appropriate nucleotide insertions or deletions with another nucleic acid (or its complementary strand), there is nucleotide sequence identity in at least about 95 to 99% of the aligned sequences.

The term "substantial homology" or "substantial similarity," when referring to amino acids or fragments thereof, indicates that, when optimally aligned with appropriate amino acid insertions or deletions with another amino acid (or its complementary strand), there is amino acid sequence identity in at least about 95 to 99% of the aligned sequences. Preferably, the homology is over full-length sequence, or a protein thereof, or a fragment thereof which is at least 8 amino acids, or more desirably, at least 15 amino acids in length. Examples of suitable fragments are described herein.

The term "percent sequence identity" or "identical" in the context of nucleic acid sequences refers to the residues in the two sequences that are the same when aligned for maximum correspondence. The length of sequence identity comparison may be over the full-length of the genome (e.g., about 36 kbp), the full-length of an open reading frame of a gene, protein, subunit, or enzyme [see, e.g., the tables providing the adenoviral coding regions], or a fragment of at least about 500 to 5000 nucleotides, is desired. However, identity among smaller fragments, e.g., of at least about nine nucleotides, usually at least about 20 to 24 nucleotides, at least about 28 to 32 nucleotides, at least about 36 or more nucleotides, may also be desired. Similarly, "percent sequence identity" may be readily determined for amino acid sequences, over the full-length of a protein, or a fragment thereof. Suitably, a fragment is at least

about 8 amino acids in length, and may be up to about 700 amino acids. Examples of suitable fragments are described herein.

Identity is readily determined using such algorithms and computer programs as are defined herein at default settings. Preferably, such identity is over the full length of the protein, enzyme, subunit, or over a fragment of at least about 8 amino acids in length. However, identity may be based upon shorter regions, where suited to the use to which the identical gene product is being put.

5

10

15

20

25

30

As described herein, alignments are performed using any of a variety of publicly or commercially available Multiple Sequence Alignment Programs, such as "Clustal W", accessible through Web Servers on the internet. Alternatively, Vector NTI utilities are also used. There are also a number of algorithms known in the art that can be used to measure nucleotide sequence identity, including those contained in the programs described above. As another example, polynucleotide sequences can be compared using Fasta, a program in GCG Version 6.1. Fasta provides alignments and percent sequence identity of the regions of the best overlap between the query and search sequences. For instance, percent sequence identity between nucleic acid sequences can be determined using Fasta with its default parameters (a word size of 6 and the NOPAM factor for the scoring matrix) as provided in GCG Version 6.1, herein incorporated by reference. Similarly programs are available for performing amino acid alignments. Generally, these programs are used at default settings, although one of skill in the art can alter these settings as needed. Alternatively, one of skill in the art can utilize another algorithm or computer program that provides at least the level of identity or alignment as that provided by the referenced algorithms and programs.

As used throughout this specification and the claims, the term "comprise" and its variants including, "comprises", "comprising", among other variants, is inclusive of other components, elements, integers, steps and the like. The term "consists of" or "consisting of" are exclusive of other components, elements, integers, steps and the like.

Except where otherwise specified, the term "vector" includes any genetic element known in the art which will deliver a target molecule to a cell, including, naked DNA, a plasmid, phage, transposon, cosmids, episomes, viruses, etc.

By "minigene" is meant the combination of a selected heterologous gene and the other regulatory elements necessary to drive translation, transcription and/or expression of the gene product in a host cell.

As used herein, the term "transcomplement" refers to when a gene (gene product) of one adenovirus serotype supplies an adenovirus serotype lacking this gene (gene product) from another serotype with the missing function. For example, human adenovirus serotype 5 E1a and E1b functions are known to transcomplement E1-deleted chimpanzee adenovirus Pan 9. Similarly, the inventors have found that human Ad5 E1 transcomplements E1-deleted chimpanzee adenovirus serotypes Pan5, Pan6, Pan7, and simian adenovirus serotypes SV1, SV25 and SV39. Other examples of transcomplementing serotypes include human Ad5 and human Ad2, Ad3, Ad4, Ad5, Ad7, and Ad12.

The term "functionally deleted" or "functional deletion" means that a sufficient amount of the gene region is removed or otherwise damaged, e.g., by mutation or modification, so that the gene region is no longer capable of producing functional products of gene expression. If desired, the entire gene region may be removed. Other suitable sites for gene disruption or deletion are discussed elsewhere in the application.

The term "functional" refers to a product (e.g., a protein or peptide) which performs its native function, although not necessarily at the same level as the native product. The term "functional" may also refer to a gene which encodes and from which a desired product can be expressed.

I. Chimeric Adenoviral Vectors

5

10

15

20

The compositions of this invention include chimeric adenoviral vectors that deliver a heterologous molecule to cells. For delivery of such a heterologous molecule, the vector can be a plasmid or, preferably, a chimeric adenovirus. The chimeric adenoviruses of the invention include adenovirus DNA from at least two source serotypes, a "donating serotype" and a "parental adenovirus" as described in more detail herein, and a minigene.

Because the adenoviral genome contains open reading frames on both strands, in many instances reference is made herein to 5' and 3' ends of the various regions to avoid confusion between specific open reading frames and gene regions. Thus, when

reference is made herein to the "left" and "right" end of the adenoviral genome, this reference is to the ends of the approximately 36 kb adenoviral genome when depicted in schematic form as is conventional in the art [see, e.g., Horwitz, "Adenoviridae and Their Replication", in VIROLOGY, 2d ed., pp. 1679-1721 (1990)]. Thus, as used herein, the "left terminal end" of the adenoviral genome refers to portion of the adenoviral genome which, when the genome is depicted schematically in linear form, is located at the extreme left end of the schematic. Typically, the left end refers to be portion of the genome beginning at map unit 0 and extending to the right to include at least the 5' inverted terminal repeats (ITRs), and excludes the internal regions of the genome encoding the structural genes. As used herein, the "right terminal end" of the adenoviral genome refers to portion of the adenoviral genome which, when the genome is depicted schematically in linear form, is located at the extreme right end of the schematic. Typically, the right end of the adenoviral genome refers to be portion of the genome ending at map unit 36 and extending to the left to include at least the 3' ITRs, and excludes the internal regions of the genome encoding the structural genes.

A. Adenovirus Regulatory Sequences

1. Serotype

5

10

15

20

25

30

The selection of the adenovirus serotype donating its left terminal end and right terminal end can be readily made by one of skill in the art from among serotypes which can readily be cultured in the desired cell line. Among other factors which may be considered in selecting the serotype of the donating serotype is compatibility with the adenovirus serotype which will be supplying the internal regions at the location at which their sequences are hybridized.

Suitable adenoviruses for donating their left and right termini are available from the American Type Culture Collection, Manassas, Virginia, US (ATCC), a variety of academic and commercial sources, or the desired regions of the donating adenoviruses may be synthesized using known techniques with reference to sequences published in the literature or available from databases (e.g., GenBank, etc.). Examples of suitable donating adenoviruses include, without limitation, human adenovirus serotypes 2, 3, 4, 5, 7, and 12, and further including any of the presently identified human types [see, e.g., Horwitz, "Adenoviridae and Their Replication", in VIROLOGY, 2d ed., pp. 1679-1721 (1990)] which can be cultured in the desired cell. Similarly adenoviruses known to infect non-human primates (e.g., chimpanzees,

rhesus, macaque, and other simian species) or other non-human mammals and which grow in the desired cell can be employed in the vector constructs of this invention. Such serotypes include, without limitation, chimpanzee adenoviruses Pan 5 [VR-591], Pan6 [VR-592], Pan7 [VR-593], and C68 (Pan9), described in US Patent No. 6,083,716; and simian adenoviruses including, without limitation SV1 [VR-195]; 5 SV25 [SV-201]; SV35; SV15; SV-34; SV-36; SV-37, and baboon adenovirus [VR-275], among others. The sequences of Pan 5 (also termed C5), Pan 6 (also termed C6), Pan 7 (also termed C7), SV1, SV25, and SV39 have been described [WO 03/046124, published 5 June 2003; and in US Patent Application No. 10/739,096, filed December 19, 2003)], which are incorporated by reference. In the following 10 examples, the human 293 cells and adenovirus type 5 (Ad5), Pan9, and Ad40 are used for convenience. However, one of skill in the art will understand that other cell lines and/or comparable regions derived from other adenoviral strains may be readily selected and used in the present invention in the place of (or in combination with) 15 these serotypes.

2. Sequences

20

25

30

The minimum sequences which must be supplied by the adenovirus donating its left terminal end and its right terminal end include the 5' ciselements and the 3' cis-elements necessary for replication and packaging. Typically, the 5' cis-elements necessary for packaging and replication include the 5' inverted terminal repeat (ITR) sequences (which functions as origins of replication) and the native 5' packaging enhancer domains (that contain sequences necessary for packaging linear Ad genomes and enhancer elements for the E1 promoter). The right end of the adenoviral genome includes the 3' cis-elements (including the ITRs) necessary for packaging and encapsidation. Desirably, the adenovirus serotype donating its left and right termini and/or an adenovirus serotype which transcomplements the serotype of the donating adenovirus, further provides the functions of the necessary adenovirus early genes, including E1 (E1a and E1b), E2 (E2a and E2b), and E4 (including at least the ORF6 region). E3 is not essential and may be deleted as desired, e.g., for insertion of a transgene in this region or to provide space for a transgene inserted in another region (typically for packaging it is desirable for the total adenoviral genome to be under 36 kb).

In certain embodiments, the necessary adenovirus early genes are contained in the chimeric construct of the invention. In other embodiment, one or more of the necessary adenovirus early genes can be provided by the packaging host cell or in *trans*.

In general, the chimeric adenovirus of the invention contains regulatory sequences from the donating adenovirus serotype, or a transcomplementing serotype, to provide the chimeric adenovirus with compatible regulatory proteins. Optionally, one or more of the necessary adenoviral structural genes is provided by the adenovirus donating its left terminal and its right terminal end.

5

10

15

20

In certain embodiments, the chimeric adenovirus further contains one or more functional adenovirus genes, including, the Endoprotease open reading frame, DNA binding protein, 100 kDa scaffolding protein, 33 kDa protein, protein VIII, pTP, 52/55 kDa protein, protein VII, Mu and/or protein VI from the adenovirus serotype donating its left and right termini. Where all of these genes are derived from the adenovirus serotype donating the 5' and 3' ITRs, a "pseudotyped" virus is formed. In one embodiment, the chimeric adenovirus contains the left end of the adenovirus genome from the donating serotype, from the 5' ITR through the end of the pol gene (or the pTP). In another embodiment, the chimeric adenovirus contains the left end of the donating adenovirus serotype, from the 5' ITR through the penton. In yet another embodiment, the chimeric adenovirus contains the left end of the donating adenovirus serotype, e.g., through the end of pTP, but contains an ITR from an adenovirus serotype heterologous to the donating adenovirus serotype. Still other embodiments will be readily apparent from the present disclosure.

Optionally, one or more of the genes can be hybrids formed
from the fusion of the donating adenovirus serotype and the parental adenovirus
serotype providing the capsid proteins (e.g., without limitation, polymerase, terminal
protein, IIIa protein). Suitably, these genes express functional proteins which permit
packaging of the adenovirus genes into the capsid. Alternatively, one or more of
these proteins (whether hybrid or non-hybrid) can be functionally deleted in the
chimeric adenovirus. Where desired, any necessary proteins functionally deleted in
the chimeric adenovirus can be expressed in trans in the packaging cell.

B. Parental Adenovirus Structural Proteins

1. Serotypes

5

25

30

This invention is particularly well adapted for use in generating chimeric adenoviruses in which the capsid proteins are from a parental adenovirus which does not efficiently grow in a desirable host cell. The selection of the parental adenovirus serotype providing the internal regions can be readily made by one of skill in the art based on the information provided herein.

A variety of suitable adenoviruses can serve as a parental adenovirus supplying the regions encoding the structural (i.e., capsid proteins). Many 10 of such adenoviruses can be obtained from the same sources as described above for the donating adenovirus serotypes. Examples of suitable parental adenovirus serotypes includes, without limitation, human adenovirus serotype 40, among others [see, e.g., Horwitz, "Adenoviridae and Their Replication", in VIROLOGY, 2d ed., pp. 1679-1721 (1990)], and adenoviruses known to infect non-human primates (e.g., 15 chimpanzees, rhesus, macaque, and other simian species) or other non-human mammals, including, without limitation, chimpanzee adenovirus C1, described in US Patent No. 6,083,716, which is incorporated by reference; simian adenoviruses, and baboon adenoviruses, among others. In addition, the parental adenovirus supplying the internal regions may be from a non-naturally occurring adenovirus serotype, such 20 as may be generated using a variety of techniques known to those of skill in the art.

In one embodiment illustrated herein, a chimeric virus that was constructed was that between the chimpanzee adenoviruses Pan-5 and C1 exhibited a higher titer in human 293 cells than the wild-type parental virus. However, the invention is not limited to the use of these chimpanzee adenoviruses, or to the combination of simian-simian, human-human, or simian-human chimeric adenoviruses. For example, it may be desirable to utilize bovine or canine adenoviruses, or other non-human mammalian adenoviruses which do not naturally infect and/or replicate in human cells.

In the following examples, the human adenovirus type 40 (Ad40) and the chimpanzee adenovirus C1, simian Pan 5 and Ad40, and Pan 5 and simian adenovirus SA18, are used. However, one of skill in the art will understand that other adenoviral serotypes may be readily selected and used in the present invention in the place of (or in combination with) these serotypes.

2. Sequences

The parental adenovirus provides to the chimeric construct of the invention its internal regions which includes structural proteins necessary for generating a capsid having the desired characteristics of the parental adenovirus. 5 These desired characteristics include, but are not limited to, the ability to infect target cells and delivery a heterologous transgene, the ability to elude neutralizing antibodies directed to another adenovirus serotype (i.e., avoiding clearance due to cross-reactivity), and/or the ability to infect cells in the absence of an immune response to the chimeric adenovirus. The advantages of such characteristics may be 10 most readily apparent in a regimen which involves repeat delivery of adenoviral vectors. The left and right termini of the parent adenovirus, including at least the 5' ITRs, the E1 region, the E4 region and the 3' ITRs are non-functional and, preferably, completely absent. Optionally, all adenovirus regulatory proteins from this parental adenovirus are non-functional and only the structural proteins (or selected structural 15 proteins) are retained.

At a minimum, the parental adenovirus provides the adenoviral late region encoding the hexon protein. Suitably, the parental adenovirus further provides the late regions encoding the penton and the fiber. In certain embodiments, all of the functional adenoviral late regions, including L1 (encoding 52/55 Da, IIIa proteins), L2 (encoding penton, VII, V, Mu proteins), L3 (encoding VI, hexon, Endoprotease), L4 (encoding 100 kD, 33 kD, VIII proteins) and L5 (encoding fiber protein) are supplied by the parental adenovirus. Optionally, one or more of these late gene functions, with the exception of those encoding the hexon, penton and fiber proteins, can be functionally deleted. Any necessary structural proteins may be supplied in *trans*.

20

25

30

Thus, in certain embodiments, the chimeric adenovirus further contains one or more functional adenovirus genes, including, the Endoprotease open reading frame, DNA binding protein, 100 kDa scaffolding protein, 33 kDa protein, protein VIII, pTP, 52/55 kDa protein, protein VII, Mu and/or protein VI from the parental adenovirus donating its internal regions. Optionally, one or more of the genes can be hybrids formed from the fusion of the donating adenovirus serotype and the parental adenovirus serotype providing the capsid proteins, as described above.

C. The "Minigene"

5

10

15

20

25

30

Typically, an adenoviral vector of the invention is designed to contain a minigene which may be inserted into the site of a partially deleted, fully deleted (absent), or disrupted adenoviral gene. For example, the minigene may be located in the site of such a functional E1 deletion or functional E3 deletion, or another suitable site.

The methods employed for the selection of the transgene, the cloning and construction of the "minigene" and its insertion into the viral vector are within the skill in the art given the teachings provided herein.

1. The transgene

The transgene is a nucleic acid sequence, heterologous to the vector sequences flanking the transgene, which encodes a polypeptide, protein, or other product, of interest. The nucleic acid coding sequence is operatively linked to regulatory components in a manner which permits transgene transcription, translation, and/or expression in a host cell.

The composition of the transgene sequence will depend upon the use to which the adenoviral vector will be put. For example, the adenoviral vector may be used as a helper virus in production of recombinant adeno-associated viruses or in production of recombinant adenoviruses deleted of essential adenoviral gene functions which are supplied by the adenoviral vector, or for a variety of production uses. Alternatively, the adenoviral vector may be used for diagnostic purposes.

One type of transgene sequence includes a reporter sequence, which upon expression produces a detectable signal. Such reporter sequences include, without limitation, DNA sequences encoding β-lactamase, β-galactosidase (LacZ), alkaline phosphatase, thymidine kinase, green fluorescent protein (GFP), chloramphenicol acetyltransferase (CAT), luciferase, membrane bound proteins including, for example, CD2, CD4, CD8, the influenza hemagglutinin protein, and others well known in the art, to which high affinity antibodies directed thereto exist or can be produced by conventional means, and fusion proteins comprising a membrane bound protein appropriately fused to an antigen tag domain from, among others, hemagglutinin or Myc. These coding sequences, when associated with regulatory elements which drive their expression, provide signals detectable by conventional means, including enzymatic, radiographic, colorimetric, fluorescence or other

spectrographic assays, fluorescent activating cell sorting assays and immunological assays, including enzyme linked immunosorbent assay (ELISA), radioimmunoassay (RIA) and immunohistochemistry. For example, where the marker sequence is the LacZ gene, the presence of the vector carrying the signal is detected by assays for beta-galactosidase activity. Where the transgene is GFP or luciferase, the vector carrying the signal may be measured visually by color or light production in a luminometer.

5

10

15

20

25

30

However, desirably, the transgene is a non-marker sequence encoding a product which is useful in biology and medicine, such as proteins, peptides, RNA, enzymes, or catalytic RNAs. Desirable RNA molecules include tRNA, dsRNA, ribosomal RNA, si RNAs, small hairpin RNAs, trans-splicing RNAs, catalytic RNAs, and antisense RNAs. One example of a useful RNA sequence is a sequence which extinguishes expression of a targeted nucleic acid sequence in the treated animal.

The transgene may be used for treatment, e.g., of genetic deficiencies, as a cancer therapeutic or vaccine, for induction of an immune response, and/or for prophylactic vaccine purposes. As used herein, induction of an immune response refers to the ability of a molecule (e.g., a gene product) to induce a T cell and/or a humoral immune response to the molecule. The invention further includes using multiple transgenes, e.g., to correct or ameliorate a condition caused by a multisubunit protein. In certain situations, a different transgene may be used to encode each subunit of a protein, or to encode different peptides or proteins. This is desirable when the size of the DNA encoding the protein subunit is large, e.g., for an immunoglobulin, the platelet-derived growth factor, or a dystrophin protein. In order for the cell to produce the multi-subunit protein, a cell is infected with the recombinant virus containing each of the different subunits. Alternatively, different subunits of a protein may be encoded by the same transgene. In this case, a single transgene includes the DNA encoding each of the subunits, with the DNA for each subunit separated by an internal ribozyme entry site (IRES). This is desirable when the size of the DNA encoding each of the subunits is small, e.g., the total size of the DNA encoding the subunits and the IRES is less than five kilobases. As an alternative to an IRES, the DNA may be separated by sequences encoding a 2A peptide, which self-cleaves in a post-translational event. See, e.g., M.L. Donnelly, et al, J. Gen.

Virol., 78(Pt 1):13-21 (Jan 1997); Furler, S., et al, Gene Ther., 8(11):864-873 (June 2001); Klump H., et al., Gene Ther., 8(10):811-817 (May 2001). This 2A peptide is significantly smaller than an IRES, making it well suited for use when space is a limiting factor. However, the selected transgene may encode any biologically active product or other product, e.g., a product desirable for study.

Suitable transgenes may be readily selected by one of skill in the art. The selection of the transgene is not considered to be a limitation of this invention.

5

10

15

20

25

30

2. Vector and Transgene Regulatory Elements

In addition to the major elements identified above for the minigene, the adenoviral vector also includes conventional control elements which are operably linked to the transgene in a manner that permits its transcription, translation and/or expression in a cell transfected with the plasmid vector or infected with the virus produced by the invention. As used herein, "operably linked" sequences include both expression control sequences that are contiguous with the gene of interest and expression control sequences that act in trans or at a distance to control the gene of interest.

Expression control sequences include appropriate transcription initiation, termination, promoter and enhancer sequences; efficient RNA processing signals such as splicing and polyadenylation (polyA) signals; sequences that stabilize cytoplasmic mRNA; sequences that enhance translation efficiency (*i.e.*, Kozak consensus sequence); sequences that enhance protein stability; and when desired, sequences that enhance secretion of the encoded product. A great number of expression control sequences, including promoters which are native, constitutive, inducible and/or tissue-specific, are known in the art and may be utilized.

Examples of constitutive promoters include, without limitation, the retroviral Rous sarcoma virus (RSV) LTR promoter (optionally with the RSV enhancer), the cytomegalovirus (CMV) promoter (optionally with the CMV enhancer) [see, e.g., Boshart et al, Cell, 41:521-530 (1985)], the SV40 promoter, the dihydrofolate reductase promoter, the β-actin promoter, the phosphoglycerol kinase (PGK) promoter, and the EF1α promoter [Invitrogen].

Inducible promoters allow regulation of gene expression and can be regulated by exogenously supplied compounds, environmental factors such as

5

10

15

20

temperature, or the presence of a specific physiological state, e.g., acute phase, a particular differentiation state of the cell, or in replicating cells only. Inducible promoters and inducible systems are available from a variety of commercial sources, including, without limitation, Invitrogen, Clontech and Ariad. Many other systems have been described and can be readily selected by one of skill in the art. For example, inducible promoters include the zinc-inducible sheep metallothionine (MT) promoter and the dexamethasone (Dex)-inducible mouse mammary tumor virus (MMTV) promoter. Other inducible systems include the T7 polymerase promoter system [WO 98/10088]; the ecdysone insect promoter [No et al, Proc. Natl. Acad. Sci. USA, 93:3346-3351 (1996)], the tetracycline-repressible system [Gossen et al. Proc. Natl. Acad. Sci. USA, 89:5547-5551 (1992)], the tetracycline-inducible system [Gossen et al, Science, 268:1766-1769 (1995), see also Harvey et al, Curr. Opin. Chem. Biol., 2:512-518 (1998)]. Other systems include the FK506 dimer, VP16 or p65 using castradiol, diphenol murislerone, the RU486-inducible system [Wang et al. Nat. Biotech., 15:239-243 (1997) and Wang et al, Gene Ther., 4:432-441 (1997)] and the rapamycin-inducible system [Magari et al, J. Clin. Invest., 100:2865-2872 (1997)]. The effectiveness of some inducible promoters increases over time. In such cases one can enhance the effectiveness of such systems by inserting multiple repressors in tandem, e.g., TetR linked to a TetR by an IRES. Alternatively, one can wait at least 3 days before screening for the desired function. One can enhance expression of desired proteins by known means to enhance the effectiveness of this system. For example, using the Woodchuck Hepatitis Virus Posttranscriptional Regulatory Element (WPRE).

In another embodiment, the native promoter for the transgene
will be used. The native promoter may be preferred when it is desired that expression
of the transgene should mimic the native expression. The native promoter may be
used when expression of the transgene must be regulated temporally or
developmentally, or in a tissue-specific manner, or in response to specific
transcriptional stimuli. In a further embodiment, other native expression control
elements, such as enhancer elements, polyadenylation sites or Kozak consensus
sequences may also be used to mimic the native expression.

Another embodiment of the transgene includes a transgene operably linked to a tissue-specific promoter. For instance, if expression in skeletal

muscle is desired, a promoter active in muscle should be used. These include the promoters from genes encoding skeletal β -actin, myosin light chain 2A, dystrophin, muscle creatine kinase, as well as synthetic muscle promoters with activities higher than naturally occurring promoters (see Li *et al.*, Nat. Biotech., 17:241-245 (1999)).

- Examples of promoters that are tissue-specific are known for liver (albumin, Miyatake et al., J. Virol., 71:5124-32 (1997); hepatitis B virus core promoter, Sandig et al., Gene Ther., 3:1002-9 (1996); alpha-fetoprotein (AFP), Arbuthnot et al., Hum. Gene Ther., 7:1503-14 (1996)), bone osteocalcin (Stein et al., Mol. Biol. Rep., 24:185-96 (1997)); bone sialoprotein (Chen et al., J. Bone Miner. Res., 11:654-64
 (1996)), lymphocytes (CD2, Hansal et al., J. Immunol., 161:1063-8 (1998); immunoglobulin heavy chain; T cell receptor chain), neuronal such as neuron-specific enolase (NSE) promoter (Andersen et al., Cell. Mol. Neurobiol., 13:503-15 (1993)), neurofilament light-chain gene (Piccioli et al., Proc. Natl. Acad. Sci. USA, 88:5611-5 (1991)), and the neuron-specific vgf gene (Piccioli et al., Neuron, 15:373-84 (1995)),
- Optionally, vectors carrying transgenes encoding therapeutically useful or immunogenic products may also include selectable markers or reporter genes may include sequences encoding geneticin, hygromicin or purimycin resistance, among others. Such selectable reporters or marker genes (preferably located outside the viral genome to be packaged into a viral particle) can be used to signal the presence of the plasmids in bacterial cells, such as ampicillin resistance. Other components of the vector may include an origin of replication. Selection of these and other promoters and vector elements are conventional and many such sequences are available [see, e.g., Sambrook et al, and references cited therein].

15

30

among others.

These vectors are generated using the techniques and sequences provided herein, in conjunction with techniques known to those of skill in the art. Such techniques include conventional cloning techniques of cDNA such as those described in texts [Sambrook et al, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, Cold Spring Harbor, NY], use of overlapping oligonucleotide sequences of the adenovirus genomes, polymerase chain reaction, and any suitable method which provides the desired nucleotide sequence.

II. Production of the Recombinant Viral Particle

5

10

15

20

25

30

In one embodiment, the invention provides a method of generating recombinant chimeric adenoviral particles in which the capsid of the chimeric adenovirus is of a serotype incapable of efficient growth in the selected host cell. A vector suitable for production of recombinant chimeric adenoviral particles can be generated by direct cloning. Alternatively, such particles can be generated by homologous recombination between a first vector containing the left end of the chimeric adenoviral genome and a second vector containing the right end of the chimeric adenoviral genome. However, any suitable methodology known to those of skill in the art can be readily utilized to generate a vector suitable to generate a production vector, preferably which contains the entire chimeric adenoviral genome, including a minigene. This production vector is then introduced into a host cell in which the adenoviral capsid protein is assembled and the chimeric adenoviral particle assembled as described.

The chimeric adenoviruses of the invention include those in which one or more adenoviral genes are absent, or otherwise rendered non-functional. If any of the missing gene functions are essential to the replication and infectivity of the adenoviral particle, these functions are supplied by a complementation (or transcomplementing) cell line or a helper vector expressing these functions during production of the chimeric adenoviral particle.

Examples of chimeric adenoviruses containing such missing adenoviral gene functions include those which are partially or completely deleted in the E1a and/or E1b gene. In such a case, the E1 gene functions can be supplied by the packaging host cell, permitting the chimeric construct to be deleted of E1 gene functions and, if desired, for a transgene to be inserted in this region. Optionally, the E1 gene can be of a serotype which transcomplements the serotype providing the other adenovirus sequences in order to further reduce the possibility of recombination and improve safety. In other embodiments, it is desirable to retain an intact E1a and/or E1b region in the recombinant adenoviruses. Such an intact E1 region may be located in its native location in the adenoviral genome or placed in the site of a deletion in the native adenoviral genome (e.g., in the E3 region).

In another example, all or a portion of the adenovirus delayed early gene E3 may be eliminated from the chimeric adenovirus. The function of adenovirus E3 is

believed to be irrelevant to the function and production of the recombinant virus particle. Chimeric adenovirus vectors may also be constructed having a deletion of at least the ORF6 region of the E4 gene, and more desirably because of the redundancy in the function of this region, the entire E4 region. Still another vector of this invention contains a deletion in the delayed early gene E2a. Similarly, deletions in the intermediate genes IX and IVa₂ may be useful for some purposes. Optionally, deletions may also be made in selected portions of the late genes L1 through L5, as described above.

5

10

15

20

25

30

Other deletions may be made in the other structural or non-structural adenovirus genes. The above-discussed deletions may be used individually, *i.e.*, an adenovirus sequence for use in the present invention may contain deletions in only a single region. Alternatively, deletions of entire genes or portions thereof effective to destroy their biological activity may be used in any combination. For example, in one exemplary vector, the adenovirus sequence may have deletions of the E1 genes and the E4 gene, or of the E1, E2a and E3 genes, or of the E1 and E3 genes, or of E1, E2a and E4 genes, with or without deletion of E3, and so on. As discussed above, such deletions may be used in combination with other mutations, such as temperature-sensitive mutations, to achieve a desired result.

Examples of suitable transcomplementing serotypes are provided above. The use of transcomplementing serotypes can be particularly advantageous where there is diversity between the Ad sequences in the vector of the invention and the human AdE1 sequences found in currently available packaging cells. In such cases, the use of the current human E1-containing cells prevents the generation of replication-competent adenoviruses during the replication and production process. However, in certain circumstances, it will be desirable to utilize a cell line which expresses the E1 gene products can be utilized for production of an E1-deleted simian adenovirus. Such cell lines have been described. See, e.g., US Patent 6,083,716.

A. Packaging Host Cells

Suitably, the packaging host cell is selected from among cells in which the adenovirus serotype donating the left and right terminal ends of the chimeric genome are capable of efficient growth. The host cells are preferably of mammalian origin, and most preferably are of non-human primate or human origin.

Particularly desirable host cells are selected from among any mammalian species, including, without limitation, cells such as A549 [ATCC Accession No. CCL 185], 911 cells, WEHI, 3T3, 10T1/2, HEK 293 cells or PERC6 (both of which express functional adenoviral E1) [Fallaux, FJ et al, (1998), Hum

5 Gene Ther, 9:1909-1917], Saos, C2C12, L cells, HT1080, HepG2, HeLa [ATCC Accession No. CCL 2], KB [CCL 17], Detroit [e.g., Detroit 510, CCL 72] and WI-38 [CCL 75] cells, and primary fibroblast, hepatocyte and myoblast cells derived from mammals including human, monkey, mouse, rat, rabbit, and hamster. These cell lines are all available from the American Type Culture Collection, 10801 University

10 Boulevard, Manassas, Virginia 20110-2209. Other suitable cell lines may be obtained from other sources. The selection of the mammalian species providing the cells is not a limitation of this invention; nor is the type of mammalian cell, i.e., fibroblast, hepatocyte, tumor cell, etc.

As described above, a chimeric adenovirus of the invention can lack one or more functional adenoviral regulatory and/or structural genes which are supplied either by the host cell or in *trans* to effect packaging of the chimeric adenovirus into the viral capsid to generate the viral particle. Thus, the ability of a selected host cell to supply transcomplementing adenoviral sequences may be taken into consideration in selecting a desired host cell.

15

20

25

30

In one example, the cells are from a stable cell line which expresses adenovirus E1a and E1b functions from a cell line which transcomplements the adenovirus serotype which donates the left and right termini to the chimera of the invention, permitting the chimera to be E1-deleted. Alternatively, where the cell line does not transcomplement the adenovirus donating the termini, E1 functions may be provided by the chimera, or in trans.

If desired, one may utilize the sequences provided herein to generate a packaging cell or cell line that expresses, at a minimum, the adenovirus E1 gene from the adenovirus serotype donating the 5' ITR under the transcriptional control of a promoter for expression, or a transcomplementing serotype, in a selected parent cell line. Inducible or constitutive promoters may be employed for this purpose. Examples of such promoters are described in detail elsewhere in this specification. A parent cell is selected for the generation of a novel cell line expressing any desired adenovirus or adenovirus gene, including, e.g., a human Ad5, AdPan5, Pan6, Pan7,

SV1, SV25 or SV39 gene. Without limitation, such a parent cell line may be HeLa [ATCC Accession No. CCL 2], A549 [ATCC Accession No. CCL 185], HEK 293, KB [CCL 17], Detroit [e.g., Detroit 510, CCL 72] and WI-38 [CCL 75] cells, among others. Many of these cell lines are all available from the ATCC. Other suitable parent cell lines may be obtained from other sources.

Such E1-expressing cell lines are useful in the generation of chimeric adenovirus E1 deleted vectors. Additionally, or alternatively, the invention provides cell lines that express one or more simian adenoviral gene products, e.g., E1a, E1b, E2a, and/or E4 ORF6, can be constructed using essentially the same procedures for use in the generation of chimeric viral vectors. Such cell lines can be utilized to transcomplement adenovirus vectors deleted in the essential genes that encode those products, or to provide helper functions necessary for packaging of a helper-dependent virus (e.g., adeno-associated virus). The preparation of a host cell according to this invention involves techniques such as assembly of selected DNA sequences. This assembly may be accomplished utilizing conventional techniques. Such techniques include cDNA and genomic cloning, which are well known and are described in Sambrook et al., cited above, use of overlapping oligonucleotide sequences of the adenovirus genomes, combined with polymerase chain reaction, synthetic methods, and any other suitable methods which provide the desired nucleotide sequence.

In still another alternative, the essential adenoviral gene products are provided in *trans* by the adenoviral vector and/or helper virus. In such an instance, a suitable host cell can be selected from any biological organism, including prokaryotic (*e.g.*, bacterial) cells, and eukaryotic cells, including, insect cells, yeast cells and mammalian cells. Particularly desirable host cells are selected from among any mammalian species, including, without limitation, cells such as A549, WEHI, 3T3, 10T1/2, HEK 293 cells or PERC6 (both of which express functional adenoviral E1) [Fallaux, FJ et al, (1998), Hum Gene Ther, 9:1909-1917], Saos, C2C12, L cells, HT1080, HepG2 and primary fibroblast, hepatocyte and myoblast cells derived from mammals including human, monkey, mouse, rat, rabbit, and hamster. The selection of the mammalian species providing the cells is not a limitation of this invention; nor is the type of mammalian cell, *i.e.*, fibroblast, hepatocyte, tumor cell, etc.

B. Helper Vectors

Thus, depending upon the adenovirus gene content of the adenoviral vectors and any adenoviral gene functions expressed from the host cell, a helper vector may be necessary to provide sufficient adenovirus gene sequences necessary to produce an infective recombinant viral particle containing the minigene. See, for example, the techniques described for preparation of a "minimal" human Ad vector in International Patent Application WO96/13597, published May 9, 1996, and incorporated herein by reference. Suitably, these helper vectors may be non-replicating genetic elements, a plasmid, or a virus.

Useful helper vectors contain selected adenovirus gene sequences not present in the adenovirus vector construct and/or not expressed by the packaging cell line in which the vector is transfected. In one embodiment, the helper virus is replication-defective and contains a variety of adenovirus genes in addition to the sequences described above. Such a helper vector is desirably used in combination

with an E1-expressing cell line.

5

20

25

30

Helper vectors may be formed into poly-cation conjugates as described in Wu et al, J. Biol. Chem., 264:16985-16987 (1989); K. J. Fisher and J. M. Wilson, Biochem. J., 299:49 (April 1, 1994). A helper vector may optionally contain a second reporter minigene. A number of such reporter genes are known to the art. The presence of a reporter gene on the helper virus which is different from the transgene on the adenovirus vector allows both the Ad vector and the helper vector to be independently monitored. This second reporter is used to enable separation between the resulting recombinant virus and the helper virus upon purification.

C. Assembly of Viral Particle and Transfection of a Cell Line

Generally, when delivering the vector comprising the minigene by transfection, the vector is delivered in an amount from about 5 μ g to about 100 μ g DNA, and preferably about 10 to about 50 μ g DNA to about 1 x 10⁴ cells to about 1 x 10¹³ cells, and preferably about 10⁵ cells. However, the relative amounts of vector DNA to host cells may be adjusted, taking into consideration such factors as the selected vector, the delivery method and the host cells selected.

Introduction into the host cell of the vector may be achieved by any means known in the art or as disclosed above, including transfection, and infection.

One or more of the adenoviral genes may be stably integrated into the genome of the

host cell, stably expressed as episomes, or expressed transiently. The gene products may all be expressed transiently, on an episome or stably integrated, or some of the gene products may be expressed stably while others are expressed transiently.

Furthermore, the promoters for each of the adenoviral genes may be selected independently from a constitutive promoter, an inducible promoter or a native adenoviral promoter. The promoters may be regulated by a specific physiological state of the organism or cell (*i.e.*, by the differentiation state or in replicating or quiescent cells) or by exogenously added factors, for example.

5

10

15

20

25

30

Introduction of the molecules (as plasmids or viruses) into the host cell may also be accomplished using techniques known to the skilled artisan and as discussed throughout the specification. In preferred embodiment, standard transfection techniques are used, e.g., CaPO₄ transfection or electroporation.

Assembly of the selected DNA sequences of the adenovirus (as well as the transgene and other vector elements) into various intermediate plasmids, and the use of the plasmids and vectors to produce a recombinant viral particle are all achieved using conventional techniques. Such techniques include direct cloning as described [G. Gao et al, Gene Ther. 2003 Oct; 10(22):1926-1930; US Patent Publication No. 2003-0092161-A, published May 15, 2003; International Patent Application No. PCT/US03/12405]. Other cloning techniques of cDNA such as those described in texts [Sambrook et al, cited above], use of overlapping oligonucleotide sequences of the adenovirus genomes, polymerase chain reaction, and any suitable method which provides the desired nucleotide sequence can be utilized. Standard transfection and co-transfection techniques are employed, e.g., CaPO₄ precipitation techniques. Other conventional methods employed include homologous recombination of the viral genomes, plaquing of viruses in agar overlay, methods of measuring signal generation, and the like.

For example, following the construction and assembly of the desired minigene-containing viral vector, the vector is transfected *in vitro* in the presence of an optional helper vector into the packaging cell line. The functions expressed from the plasmid, packaging cell line and helper virus, if any, permits the adenovirus-transgene sequences in the vector to be replicated and packaged into virion capsids, resulting in the chimeric viral particles. The current method for producing such virus particles is transfection-based. However, the invention is not limited to such

methods. The resulting chimeric adenoviruses are useful in transferring a selected transgene to a selected cell.

III. Use of the Chimeric Adenovirus Vectors

5

10

15

20

25

30

The chimeric adenovirus vectors of the invention are useful for gene transfer to a human or veterinary subject (including, non-human primates, non-simian primates, and other mammals) in vitro, ex vivo, and in vivo.

The recombinant adenovirus vectors described herein can be used as expression vectors for the production of the products encoded by the heterologous genes *in vitro*. For example, the recombinant adenoviruses containing a gene inserted into the location of an E1 deletion may be transfected into an E1-expressing cell line as described above. Alternatively, replication-competent adenoviruses may be used in another selected cell line. The transfected cells are then cultured in the conventional manner, allowing the recombinant adenovirus to express the gene product from the promoter. The gene product may then be recovered from the culture medium by known conventional methods of protein isolation and recovery from culture.

A chimeric adenoviral vector of the invention provides an efficient gene transfer vehicle that can deliver a selected transgene to a selected host cell *in vivo* or *ex vivo* even where the organism has neutralizing antibodies to one or more AAV serotypes. In one embodiment, the rAd and the cells are mixed *ex vivo*; the infected cells are cultured using conventional methodologies; and the transduced cells are reinfused into the patient. These compositions are particularly well suited to gene delivery for therapeutic purposes and for immunization, including inducing protective immunity.

More commonly, the chimeric adenoviral vectors of the invention will be utilized for delivery of therapeutic or immunogenic molecules, as described below. It will be readily understood for both applications that the recombinant adenoviral vectors of the invention are particularly well suited for use in regimens involving repeat delivery of recombinant adenoviral vectors. Such regimens typically involve delivery of a series of viral vectors in which the viral capsids are alternated. The viral capsids may be changed for each subsequent administration, or after a pre-selected number of administrations of a particular serotype capsid (e.g., one, two, three, four

or more). Thus, a regimen may involve delivery of a rAd with a first capsid, delivery with a rAd with a second capsid, and delivery with a third capsid. A variety of other regimens which use the Ad capsids of the invention alone, in combination with one another, or in combination with other Ad serotypes will be apparent to those of skill in the art. Optionally, such a regimen may involve administration of rAd with capsids of non-human primate adenoviruses, human adenoviruses, or artificial (e.g., chimeric) serotypes such as are described herein. Each phase of the regimen may involve administration of a series of injections (or other delivery routes) with a single Ad serotype capsid followed by a series with another Ad serotype capsid. Alternatively, the recombinant Ad vectors of the invention may be utilized in regimens involving other non-adenoviral-mediated delivery systems, including other viral systems, non-viral delivery systems, protein, peptides, and other biologically active molecules.

5

10

15

20

25

30

The following sections will focus on exemplary molecules which may be delivered via the adenoviral vectors of the invention.

A. Ad-Mediated Delivery of Therapeutic Molecules

In one embodiment, the Ad vectors described herein are administered to humans according to published methods for gene therapy. A viral vector of the invention bearing the selected transgene may be administered to a patient, preferably suspended in a biologically compatible solution or pharmaceutically acceptable delivery vehicle. A suitable vehicle includes sterile saline. Other aqueous and non-aqueous isotonic sterile injection solutions and aqueous and non-aqueous sterile suspensions known to be pharmaceutically acceptable carriers and well known to those of skill in the art may be employed for this purpose.

The adenoviral vectors are administered in sufficient amounts to transduce the target cells and to provide sufficient levels of gene transfer and expression to provide a therapeutic benefit without undue adverse or with medically acceptable physiological effects, which can be determined by those skilled in the medical arts. Conventional and pharmaceutically acceptable routes of administration include, but are not limited to, direct delivery to the retina and other intraocular delivery methods, direct delivery to the liver, inhalation, intranasal, intravenous, intramuscular, intratracheal, subcutaneous, intradermal, rectal, oral and other parenteral routes of administration. Routes of administration may be combined, if

desired, or adjusted depending upon the transgene or the condition. The route of administration primarily will depend on the nature of the condition being treated.

5

10

15

20

25

30

Dosages of the viral vector will depend primarily on factors such as the condition being treated, the age, weight and health of the patient, and may thus vary among patients. For example, a therapeutically effective adult human or veterinary dosage of the viral vector is generally in the range of from about 100 µL to about 100 mL of a carrier containing concentrations of from about 1 x 10⁶ to about 1 \times 10¹⁵ particles, about 1 \times 10¹¹ to 1 \times 10¹³ particles, or about 1 \times 10⁹ to 1 \times 10¹² particles. Dosages will range depending upon the size of the animal and the route of administration. For example, a suitable human or veterinary dosage (for about an 80 kg animal) for intramuscular injection is in the range of about 1 x 10⁹ to about 5 x 10¹² particles per mL, for a single site. Optionally, multiple sites of administration may be delivered. In another example, a suitable human or veterinary dosage may be in the range of about 1 x 10¹¹ to about 1 x 10¹⁵ particles for an oral formulation. One of skill in the art may adjust these doses, depending the route of administration, and the therapeutic or vaccinal application for which the recombinant vector is employed. The levels of expression of the transgene, or for an immunogen, the level of circulating antibody, can be monitored to determine the frequency of dosage administration. Yet other methods for determining the timing of frequency of administration will be readily apparent to one of skill in the art.

An optional method step involves the co-administration to the patient, either concurrently with, or before or after administration of the viral vector, of a suitable amount of a short acting immune modulator. The selected immune modulator is defined herein as an agent capable of inhibiting the formation of neutralizing antibodies directed against the recombinant vector of this invention or capable of inhibiting cytolytic T lymphocyte (CTL) elimination of the vector. The immune modulator may interfere with the interactions between the T helper subsets (T_{H1} or T_{H2}) and B cells to inhibit neutralizing antibody formation. Alternatively, the immune modulator may inhibit the interaction between T_{H1} cells and CTLs to reduce the occurrence of CTL elimination of the vector. A variety of useful immune modulators and dosages for use of same are disclosed, for example, in Yang *et al.*, *J. Virol.*, 70(9) (Sept 1996); International Patent Application No. WO96/12406, published May 2, 1996; and International Patent Application No.PCT/US96/03035,

all incorporated herein by reference. Typically, such immune modulators would be selected when the transgene is a therapeutic which requires repeat delivery.

1. Therapeutic Transgenes

Useful therapeutic products encoded by the transgene include 5 hormones and growth and differentiation factors including, without limitation, insulin, glucagon, growth hormone (GH), parathyroid hormone (PTH), growth hormone releasing factor (GRF), follicle stimulating hormone (FSH), luteinizing hormone (LH), human chorionic gonadotropin (hCG), vascular endothelial growth factor (VEGF), angiopoietins, angiostatin, granulocyte colony stimulating factor (GCSF). erythropoietin (EPO), connective tissue growth factor (CTGF), basic fibroblast 10 growth factor (bFGF), acidic fibroblast growth factor (aFGF), epidermal growth factor (EGF), transforming growth factor a (TGF a), platelet-derived growth factor (PDGF), insulin growth factors I and II (IGF-I and IGF-II), any one of the transforming growth factor superfamily, including TGF, activins, inhibins, or any of 15 the bone morphogenic proteins (BMP) BMPs 1-15, any one of the heregluin/neuregulin/ARIA/neu differentiation factor (NDF) family of growth factors, nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophins NT-3 and NT-4/5, ciliary neurotrophic factor (CNTF), glial cell line derived neurotrophic factor (GDNF), neurturin, agrin, any one of the family of 20 semaphorins/collapsins, netrin-1 and netrin-2, hepatocyte growth factor (HGF), ephrins, noggin, sonic hedgehog and tyrosine hydroxylase.

Other useful transgene products include proteins that regulate the immune system including, without limitation, cytokines and lymphokines such as thrombopoietin (TPO), interleukins (IL) IL-1 through IL-25 (including, e.g., IL-2, IL-4, IL-12 and IL-18), monocyte chemoattractant protein, leukemia inhibitory factor, granulocyte-macrophage colony stimulating factor, Fas ligand, tumor necrosis factors and, interferons, and, stem cell factor, flk-2/flt3 ligand. Gene products produced by the immune system are also useful in the invention. These include, without limitation, immunoglobulins IgG, IgM, IgA, IgD and IgE, chimeric immunoglobulins, humanized antibodies, single chain antibodies, T cell receptors, chimeric T cell receptors, single chain T cell receptors, class I and class II MHC molecules, as well as engineered immunoglobulins and MHC molecules. Useful gene products also include

25

30

complement regulatory proteins such as complement regulatory proteins, membrane cofactor protein (MCP), decay accelerating factor (DAF), CR1, CF2 and CD59.

Still other useful gene products include any one of the receptors for the hormones, growth factors, cytokines, lymphokines, regulatory proteins and 5 immune system proteins. The invention encompasses receptors for cholesterol regulation, including the low density lipoprotein (LDL) receptor, high density lipoprotein (HDL) receptor, the very low density lipoprotein (VLDL) receptor, proteins useful in the regulation of lipids, including, e.g., apolipoprotein (apo) A and its isoforms (e.g., ApoAI), apoE and its isoforms including E2, E3 and E4), SRB1, 10 ABC1, and the scavenger receptor. The invention also encompasses gene products such as members of the steroid hormone receptor superfamily including glucocorticoid receptors and estrogen receptors, Vitamin D receptors and other nuclear receptors. In addition, useful gene products include transcription factors such as jun, fos, max, mad, serum response factor (SRF), AP-1, AP2, myb, MyoD and 15 myogenin, ETS-box containing proteins, TFE3, E2F, ATF1, ATF2, ATF3, ATF4, ZF5, NFAT, CREB, HNF-4, C/EBP, SP1, CCAAT-box binding proteins, interferon regulation factor (IRF-1), Wilms tumor protein, ETS-binding protein, STAT, GATAbox binding proteins, e.g., GATA-3, and the forkhead family of winged helix proteins.

20 Other useful gene products include, carbamoyl synthetase I, ornithine transcarbamylase, arginosuccinate synthetase, arginosuccinate lyase, arginase, fumarylacetacetate hydrolase, phenylalanine hydroxylase, alpha-1 antitrypsin, glucose-6-phosphatase, porphobilinogen deaminase, cystathione beta-synthase, branched chain ketoacid decarboxylase, albumin, isovaleryl-coA dehydrogenase, 25 propionyl CoA carboxylase, methyl malonyl CoA mutase, glutaryl CoA dehydrogenase, insulin, beta-glucosidase, pyruvate carboxylate, hepatic phosphorylase, phosphorylase kinase, glycine decarboxylase, H-protein, T-protein, a cystic fibrosis transmembrane regulator (CFTR) sequence, and a dystrophin cDNA sequence. Other useful gene products include those useful for treatment of hemophilia A (e.g., Factor VIII and its variants, including the light chain and heavy 30 chain of the heterodimer, optionally operably linked by a junction), and the B-domain deleted Factor VIII, see US 6,200,560 and 6,221,349], and useful for treatment of hemophilia B (e.g., Factor IX).

Still other useful gene products include non-naturally occurring polypeptides, such as chimeric or hybrid polypeptides having a non-naturally occurring amino acid sequence containing insertions, deletions or amino acid substitutions. For example, single-chain engineered immunoglobulins could be useful in certain immunocompromised patients. Other types of non-naturally occurring gene sequences include antisense molecules and catalytic nucleic acids, such as ribozymes, which could be used to reduce overexpression of a target.

5

25

30

Reduction and/or modulation of expression of a gene are particularly desirable for treatment of hyperproliferative conditions characterized by 10 hyperproliferating cells, as are cancers and psoriasis. Target polypeptides include those polypeptides which are produced exclusively or at higher levels in hyperproliferative cells as compared to normal cells. Target antigens include polypeptides encoded by oncogenes such as myb, myc, fyn, and the translocation gene bcr/abl, ras, src, P53, neu, trk and EGRF. In addition to oncogene products as 15 target antigens, target polypeptides for anti-cancer treatments and protective regimens include variable regions of antibodies made by B cell lymphomas and variable regions of T cell receptors of T cell lymphomas which, in some embodiments, are also used as target antigens for autoimmune disease. Other tumor-associated polypeptides can be used as target polypeptides such as polypeptides which are found 20 at higher levels in tumor cells including the polypeptide recognized by monoclonal antibody 17-1A and folate binding polypeptides.

Other suitable therapeutic polypeptides and proteins include those which may be useful for treating individuals suffering from autoimmune diseases and disorders by conferring a broad based protective immune response against targets that are associated with autoimmunity including cell receptors and cells which produce self-directed antibodies. T-cell mediated autoimmune diseases include rheumatoid arthritis (RA), multiple sclerosis (MS), Sjögren's syndrome, sarcoidosis, insulin dependent diabetes mellitus (IDDM), autoimmune thyroiditis, reactive arthritis, ankylosing spondylitis, scleroderma, polymyositis, dermatomyositis, psoriasis, vasculitis, Wegener's granulomatosis, Crohn's disease and ulcerative colitis. Each of these diseases is characterized by T cell receptors (TCRs) that bind to endogenous antigens and initiate the inflammatory cascade associated with autoimmune diseases.

The chimeric adenoviral vectors of the invention are particularly well suited for therapeutic regimens in which multiple adenoviral-mediated deliveries of transgenes is desired, e.g., in regimens involving redelivery of the same transgene or in combination regimens involving delivery of other transgenes. Such regimens may involve administration of a chimeric adenoviral vector, followed by re-administration 5 with a vector from the same serotype adenovirus. Particularly desirable regimens involve administration of a chimeric adenoviral vector of the invention, in which the serotype of the viral vector delivered in the first administration differs from the serotype of the viral vector utilized in one or more of the subsequent administrations. 10 For example, a therapeutic regimen involves administration of a chimeric vector and repeat administration with one or more adenoviral vectors of the same or different serotypes. In another example, a therapeutic regimen involves administration of an adenoviral vector followed by repeat administration with a chimeric vector of the invention which differs from the serotype of the first delivered adenoviral vector, and 15 optionally further administration with another vector which is the same or, preferably, differs from the serotype of the vector in the prior administration steps. These regimens are not limited to delivery of adenoviral vectors constructed using the chimeric serotypes of the invention. Rather, these regimens can readily utilize chimeric or non-chimeric vectors of other adenoviral serotypes, which may be of 20 artificial, human or non-human primate, or other mammalian sources, in combination with one or more of the chimeric vectors of the invention. Examples of such serotypes are discussed elsewhere in this document. Further, these therapeutic regimens may involve either simultaneous or sequential delivery of chimeric adenoviral vectors of the invention in combination with non-adenoviral vectors, non-25 viral vectors, and/or a variety of other therapeutically useful compounds or molecules. The present invention is not limited to these therapeutic regimens, a variety of which will be readily apparent to one of skill in the art.

B. Ad-Mediated Delivery of Immunogenic Transgenes

The adenoviruses of the invention may also be employed as

immunogenic compositions. As used herein, an immunogenic composition is a composition to which a humoral (e.g., antibody) or cellular (e.g., a cytotoxic T cell) response is mounted to a transgene product delivered by the immunogenic composition following delivery to a mammal, and preferably a primate. The present

invention provides an Ad that can contain in any of its adenovirus sequence deletions a gene encoding a desired immunogen. Chimeric adenoviruses based on simian or other non-human mammalian primate serotypes are likely to be better suited for use as a live recombinant virus vaccine in different animal species compared to an adenovirus of human origin, but is not limited to such a use. The recombinant adenoviruses can be used as prophylactic or therapeutic vaccines against any pathogen for which the antigen(s) crucial for induction of an immune response and able to limit the spread of the pathogen has been identified and for which the cDNA is available.

5

10

15

20

25

30

Such vaccinal (or other immunogenic) compositions are formulated in a suitable delivery vehicle, as described above. Generally, doses for the immunogenic compositions are in the range defined above for therapeutic compositions. The levels of immunity of the selected gene can be monitored to determine the need, if any, for boosters. Following an assessment of antibody titers in the serum, optional booster immunizations may be desired.

Optionally, a vaccinal composition of the invention may be formulated to contain other components, including, e.g. adjuvants, stabilizers, pH adjusters, preservatives and the like. Such components are well known to those of skill in the vaccine art. Examples of suitable adjuvants include, without limitation, liposomes, alum, monophosphoryl lipid A, and any biologically active factor, such as cytokine, an interleukin, a chemokine, a ligands, and optimally combinations thereof. Certain of these biologically active factors can be expressed in vivo, e.g., via a plasmid or viral vector. For example, such an adjuvant can be administered with a priming DNA vaccine encoding an antigen to enhance the antigen-specific immune response compared with the immune response generated upon priming with a DNA vaccine encoding the antigen only.

The adenoviruses are administered in "an immunogenic amount", that is, an amount of adenovirus that is effective in a route of administration to transfect the desired cells and provide sufficient levels of expression of the selected gene to induce an immune response. Where protective immunity is provided, the recombinant adenoviruses are considered to be vaccine compositions useful in preventing infection and/or recurrent disease.

Alternatively, or in addition, the vectors of the invention may contain a transgene encoding a peptide, polypeptide or protein which induces an immune response to a selected immunogen. The recombinant adenoviruses of this invention are expected to be highly efficacious at inducing cytolytic T cells and antibodies to the inserted heterologous antigenic protein expressed by the vector.

5

10

15

20

25

30

For example, immunogens may be selected from a variety of viral families. Example of desirable viral families against which an immune response would be desirable include, the picornavirus family, which includes the genera rhinoviruses, which are responsible for about 50% of cases of the common cold; the genera enteroviruses, which include polioviruses, coxsackieviruses, echoviruses, and human enteroviruses such as hepatitis A virus; and the genera apthoviruses, which are responsible for foot and mouth diseases, primarily in non-human animals. Within the picornavirus family of viruses, target antigens include the VP1, VP2, VP3, VP4, and VPG. Another viral family includes the calcivirus family, which encompasses the Norwalk group of viruses, which are an important causative agent of epidemic gastroenteritis. Still another viral family desirable for use in targeting antigens for inducing immune responses in humans and non-human animals is the togavirus family, which includes the genera alphavirus, which include Sindbis viruses, RossRiver virus, and Venezuelan, Eastern & Western Equine encephalitis, and rubivirus, including Rubella virus. The flaviviridae family includes dengue, yellow fever, Japanese encephalitis, St. Louis encephalitis and tick borne encephalitis viruses. Other target antigens may be generated from the Hepatitis C or the coronavirus family, which includes a number of non-human viruses such as infectious bronchitis virus (poultry), porcine transmissible gastroenteric virus (pig), porcine hemagglutinatin encephalomyelitis virus (pig), feline infectious peritonitis virus (cats), feline enteric coronavirus (cat), canine coronavirus (dog), and human respiratory coronaviruses, which may cause the common cold and/or non-A, B or C hepatitis. In addition, the human coronaviruses include the putative causative agent of sudden acute respiratory syndrome (SARS). Within the coronavirus family, target antigens include the E1 (also called M or matrix protein), E2 (also called S or Spike protein), E3 (also called HE or hemagglutin-elterose) glycoprotein (not present in all coronaviruses), or N (nucleocapsid). Still other antigens may be targeted against the rhabdovirus family, which includes the genera vesiculovirus (e.g., Vesicular

Stomatitis Virus), and the general lyssavirus (e.g., rabies). Within the rhabdovirus family, suitable antigens may be derived from the G protein or the N protein. The family filoviridae, which includes hemorrhagic fever viruses such as Marburg and Ebola virus, may be a suitable source of antigens. The paramyxovirus family 5 includes parainfluenza Virus Type 1, parainfluenza Virus Type 3, bovine parainfluenza Virus Type 3, rubulavirus (mumps virus), parainfluenza Virus Type 2, parainfluenza virus Type 4, Newcastle disease virus (chickens), rinderpest, morbillivirus, which includes measles and canine distemper, and pneumovirus, which includes respiratory syncytial virus. The influenza virus is classified within the 10 family orthomyxovirus and is a suitable source of antigen (e.g., the HA protein, the N1 protein). The bunyavirus family includes the genera bunyavirus (California encephalitis, La Crosse), phlebovirus (Rift Valley Fever), hantavirus (puremala is a hemahagin fever virus), nairovirus (Nairobi sheep disease) and various unassigned bungaviruses. The arenavirus family provides a source of antigens against LCM and 15 Lassa fever virus. The reovirus family includes the genera reovirus, rotavirus (which causes acute gastroenteritis in children), orbiviruses, and cultivirus (Colorado Tick fever), Lebombo (humans), equine encephalosis, blue tongue.

The retrovirus family includes the sub-family oncorivirinal which encompasses such human and veterinary diseases as feline leukemia virus, HTLVI and HTLVII, lentivirinal (which includes human immunodeficiency virus (HIV), simian immunodeficiency virus (SIV), feline immunodeficiency virus (FIV), equine infectious anemia virus, and spumavirinal). Among the lentiviruses, many suitable antigens have been described and can readily be selected. Examples of suitable HIV and SIV antigens include, without limitation the gag, pol, Vif, Vpx, VPR, Env, Tat, Nef, and Rev proteins, as well as various fragments thereof. For example, suitable fragments of the Env protein may include any of its subunits such as the gp120. gp160, gp41, or smaller fragments thereof, e.g., of at least about 8 amino acids in length. Similarly, fragments of the tat protein may be selected. [See, US Patent 5,891,994 and US Patent 6,193,981.] See, also, the HIV and SIV proteins described in D.H. Barouch et al, J. Virol., 75(5):2462-2467 (March 2001), and R.R. Amara, et al, Science, 292:69-74 (6 April 2001). In another example, the HIV and/or SIV immunogenic proteins or peptides may be used to form fusion proteins or other immunogenic molecules. See, e.g., the HIV-1 Tat and/or Nef fusion proteins and

20

25

30

immunization regimens described in WO 01/54719, published August 2, 2001, and WO 99/16884, published April 8, 1999. The invention is not limited to the HIV and/or SIV immunogenic proteins or peptides described herein. In addition, a variety of modifications to these proteins have been described or could readily be made by one of skill in the art. See, e.g., the modified gag protein that is described in US Patent 5,972,596. Further, any desired HIV and/or SIV immunogens may be delivered alone or in combination. Such combinations may include expression from a single vector or from multiple vectors. Optionally, another combination may involve delivery of one or more expressed immunogens with delivery of one or more of the immunogens in protein form. Such combinations are discussed in more detail below.

5

10

15

20

25

30

The papovavirus family includes the sub-family polyomaviruses (BKU and JCU viruses) and the sub-family papillomavirus (associated with cancers or malignant progression of papilloma). The adenovirus family includes viruses (EX, AD7, ARD, O.B.) which cause respiratory disease and/or enteritis. The parvovirus includes family feline parvovirus (feline enteritis), feline panleucopeniavirus, canine parvovirus, and porcine parvovirus. The herpesvirus family includes the sub-family alphaherpesvirinae, which encompasses the genera simplexvirus (HSVI, HSVII). varicellovirus (pseudorabies, varicella zoster) and the sub-family betaherpesyirinae. which includes the genera cytomegalovirus (HCMV, muromegalovirus) and the sub-family gammaherpesvirinae, which includes the genera lymphocryptovirus, EBV (Burkitts lymphoma), infectious rhinotracheitis, Marek's disease virus, and rhadinovirus. The poxvirus family includes the sub-family chordopoxvirinae, which encompasses the genera orthopoxvirus (Variola (Smallpox) and Vaccinia (Cowpox)), parapoxvirus, avipoxvirus, capripoxvirus, leporipoxvirus, suipoxvirus, and the sub-family entomopoxvirinae. The hepadnavirus family includes the Hepatitis B virus. One unclassified virus which may be suitable source of antigens is the Hepatitis delta virus. Still other viral sources may include avian infectious bursal disease virus and porcine respiratory and reproductive syndrome virus. The alphavirus family includes equine arteritis virus and various Encephalitis viruses.

The viruses of the present invention may also carry immunogens which are useful to immunize a human or non-human animal against other pathogens including bacteria, fungi, parasitic microorganisms or multicellular parasites which infect human and non-human vertebrates, or from a cancer cell or tumor cell.

5

10

15

20

25

30

Examples of bacterial pathogens include pathogenic gram-positive cocci include pneumococci; staphylococci; and streptococci. Pathogenic gram-negative cocci include meningococcus; gonococcus. Pathogenic enteric gram-negative bacilli include enterobacteriaceae; pseudomonas, acinetobacteria and eikenella; melioidosis; salmonella; shigella; haemophilus; moraxella; H. ducreyi (which causes chancroid): brucella; Franisella tularensis (which causes tularemia); yersinia (pasteurella); streptobacillus moniliformis and spirillum; Gram-positive bacilli include listeria monocytogenes; erysipelothrix rhusiopathiae; Corynebacterium diphtheria (diphtheria); cholera; B. anthracis (anthrax); donovanosis (granuloma inguinale); and bartonellosis. Diseases caused by pathogenic anaerobic bacteria include tetanus; botulism; other clostridia; tuberculosis; leprosy; and other mycobacteria. Pathogenic spirochetal diseases include syphilis; treponematoses: yaws, pinta and endemic syphilis; and leptospirosis. Other infections caused by higher pathogen bacteria and pathogenic fungi include actinomycosis; nocardiosis; cryptococcosis, blastomycosis, histoplasmosis and coccidioidomycosis; candidiasis, aspergillosis, and mucormycosis; sporotrichosis; paracoccidiodomycosis, petriellidiosis, torulopsosis, mycetoma and chromomycosis; and dermatophytosis. Rickettsial infections include Typhus fever, Rocky Mountain spotted fever, Q fever, and Rickettsialpox. Examples of mycoplasma and chlamydial infections include: mycoplasma pneumoniae; lymphogranuloma venereum; psittacosis; and perinatal chlamydial infections. Pathogenic eukaryotes encompass pathogenic protozoans and helminths and infections produced thereby include: amebiasis; malaria; leishmaniasis; trypanosomiasis; toxoplasmosis; Pneumocystis carinii; Trichans; Toxoplasma gondii; babesiosis; giardiasis; trichinosis; filariasis; schistosomiasis; nematodes; trematodes or flukes; and cestode (tapeworm) infections.

Many of these organisms and/or toxins produced thereby have been identified by the Centers for Disease Control [(CDC), Department of Heath and Human Services, USA], as agents which have potential for use in biological attacks. For example, some of these biological agents, include, *Bacillus anthracis* (anthrax), *Clostridium botuli*num and its toxin (botulism), *Yersinia pestis* (plague), variola major (smallpox), *Francisella tularensis* (tularemia), and viral hemorrhagic fevers [filoviruses (e.g., Ebola, Marburg], and arenaviruses [e.g., Lassa, Machupo]), all of which are currently classified as Category A agents; *Coxiella burnetti* (Q fever);

Brucella species (brucellosis), Burkholderia mallei (glanders), Burkholderia pseudomallei (meloidosis), Ricinus communis and its toxin (ricin toxin), Clostridium perfringens and its toxin (epsilon toxin), Staphylococcus species and their toxins (enterotoxin B), Chlamydia psittaci (psittacosis), water safety threats (e.g., Vibrio cholerae, Crytosporidium parvum), Typhus fever (Richettsia powazekii), and viral encephalitis (alphaviruses, e.g., Venezuelan equine encephalitis; eastern equine encephalitis; western equine encephalitis); all of which are currently classified as Category B agents; and Nipan virus and hantaviruses, which are currently classified as Category C agents. In addition, other organisms, which are so classified or differently classified, may be identified and/or used for such a purpose in the future. It will be readily understood that the viral vectors and other constructs described herein are useful to deliver antigens from these organisms, viruses, their toxins or other by-products, which will prevent and/or treat infection or other adverse reactions with these biological agents.

5

10

15

20

25

30

Administration of the vectors of the invention to deliver immunogens against the variable region of the T cells elicit an immune response including CTLs to eliminate those T cells. In RA, several specific variable regions of TCRs which are involved in the disease have been characterized. These TCRs include V-3, V-14, V-17 and V α -17. Thus, delivery of a nucleic acid sequence that encodes at least one of these polypeptides will elicit an immune response that will target T cells involved in RA. In MS, several specific variable regions of TCRs which are involved in the disease have been characterized. These TCRs include V-7 and V α -10. Thus, delivery of a nucleic acid sequence that encodes at least one of these polypeptides will elicit an immune response that will target T cells involved in MS. In scleroderma, several specific variable regions of TCRs which are involved in the disease have been characterized. These TCRs include V-6, V-8, V-14 and V α -16, V α -3C, V α -7, V α -14, V α -15, V α -16, V α -28 and V α -12. Thus, delivery of a chimeric adenovirus that encodes at least one of these polypeptides will elicit an immune response that will target T cells involved in scleroderma.

C. Ad-Mediated Delivery Methods

The therapeutic levels, or levels of immunity, of the selected gene can be monitored to determine the need, if any, for boosters. Following an assessment of CD8+ T cell response, or optionally, antibody titers, in the serum, optional booster

immunizations may be desired. Optionally, the adenoviral vectors of the invention may be delivered in a single administration or in various combination regimens, e.g., in combination with a regimen or course of treatment involving other active ingredients or in a prime-boost regimen. A variety of such regimens have been described in the art and may be readily selected.

5

10

15

20

25

30

For example, prime-boost regimens may involve the administration of a DNA (e.g., plasmid) based vector to prime the immune system to a second or further, booster, administration with a traditional antigen, such as a protein or a recombinant virus carrying the sequences encoding such an antigen. See, e.g., WO 00/11140, published March 2, 2000, incorporated by reference. Alternatively, an immunization regimen may involve the administration of a chimeric adenoviral vector of the invention to boost the immune response to a vector (either viral or DNA-based) carrying an antigen, or a protein. In still another alternative, an immunization regimen involves administration of a protein followed by booster with a vector encoding the antigen.

In one embodiment, the invention provides a method of priming and boosting an immune response to a selected antigen by delivering a plasmid DNA vector carrying said antigen, followed by boosting with an adenoviral vector of the invention. In one embodiment, the prime-boost regimen involves the expression of multiproteins from the prime and/or the boost vehicle. See, e.g., R.R. Amara, Science, 292:69-74 (6 April 2001) which describes a multiprotein regimen for expression of protein subunits useful for generating an immune response against HIV and SIV. For example, a DNA prime may deliver the Gag, Pol, Vif, VPX and Vpr and Env, Tat, and Rev from a single transcript. Alternatively, the SIV Gag, Pol and HIV-1 Env is delivered in a recombinant adenovirus construct of the invention. Still other regimens are described in WO 99/16884 and WO 01/54719.

However, the prime-boost regimens are not limited to immunization for HIV or to delivery of these antigens. For example, priming may involve delivering with a first vector of the invention followed by boosting with a second vector, or with a composition containing the antigen itself in protein form. In one example, the prime-boost regimen can provide a protective immune response to the virus, bacteria or other organism from which the antigen is derived. In another desired embodiment, the prime-boost regimen provides a therapeutic effect that can

be measured using convention assays for detection of the presence of the condition for which therapy is being administered.

5

10

15

20

25

30

The priming composition may be administered at various sites in the body in a dose dependent manner, which depends on the antigen to which the desired immune response is being targeted. The invention is not limited to the amount or situs of injection(s) or to the pharmaceutical carrier. Rather, the regimen may involve a priming and/or boosting step, each of which may include a single dose or dosage that is administered hourly, daily, weekly or monthly, or yearly. As an example, the mammals may receive one or two doses containing between about 10 µg to about 50 µg of plasmid in carrier. A desirable amount of a DNA composition ranges between about 1 µg to about 10,000 µg of the DNA vector. Dosages may vary from about 1 µg to 1000 µg DNA per kg of subject body weight. The amount or site of delivery is desirably selected based upon the identity and condition of the mammal. The dosage unit of the vector suitable for delivery of the antigen to the mammal is described herein. The vector is prepared for administration by being suspended or dissolved in a pharmaceutically or physiologically acceptable carrier such as isotonic saline; isotonic salts solution or other formulations that will be apparent to those skilled in such administration. The appropriate carrier will be evident to those skilled in the art and will depend in large part upon the route of administration. The compositions of the invention may be administered to a mammal according to the routes described above, in a sustained release formulation using a biodegradable biocompatible polymer, or by on-site delivery using micelles, gels and liposomes. Optionally, the priming step of this invention also includes administering with the priming composition, a suitable amount of an adjuvant, such as are defined herein.

Preferably, a boosting composition is administered about 2 to about 27 weeks after administering the priming composition to the mammalian subject. The administration of the boosting composition is accomplished using an effective amount of a boosting composition containing or capable of delivering the same antigen as administered by the priming DNA vaccine. The boosting composition may be composed of a recombinant viral vector derived from the same viral source (e.g., adenoviral sequences of the invention) or from another source. Alternatively, the "boosting composition" can be a composition containing the same antigen as encoded in the priming DNA vaccine, but in the form of a protein or peptide, which

composition induces an immune response in the host. In another embodiment, the boosting composition contains a DNA sequence encoding the antigen under the control of a regulatory sequence directing its expression in a mammalian cell, e.g., vectors such as well-known bacterial or viral vectors. The primary requirements of the boosting composition are that the antigen of the composition is the same antigen, or a cross-reactive antigen, as that encoded by the priming composition.

In another embodiment, the adenoviral vectors of the invention are also well suited for use in a variety of other immunization and therapeutic regimens. Such regimens may involve delivery of adenoviral vectors of the invention simultaneously or sequentially with Ad vectors of different serotype capsids, regimens in which adenoviral vectors of the invention are delivered simultaneously or sequentially with non-Ad vectors, regimens in which the adenoviral vectors of the invention are delivered simultaneously or sequentially with proteins, peptides, and/or other biologically useful therapeutic or immunogenic compounds. Such uses will be readily apparent to one of skill in the art.

IV. Simian Adenovirus 18 Sequences

5

10

15

20

25

The invention provides nucleic acid sequences and amino acid sequences of Ad SA18, which are isolated from the other viral material with which they are associated in nature. These sequences are useful in preparing heterologous molecules containing the nucleic acid sequences and amino acid sequences, and regions or fragments thereof as are described herein, viral vectors which are useful for a variety of purposes, including the constructs and compositions, and such methods as are described herein for the chimeric adenoviruses, including, e.g., in host cells for production of viruses requiring adenoviral helper functions, as delivery vehicles for heterologous molecules such as those described herein. These sequences are also useful in generating the chimeric adenoviruses of the invention.

A. Nucleic Acid Sequences

The SA18 nucleic acid sequences of the invention include nucleotides

SEQ ID NO: 12, nt 1 to 31967. See, Sequence Listing, which is incorporated by reference herein. The nucleic acid sequences of the invention further encompass the strand which is complementary to the sequences of SEQ ID NO: 12, as well as the RNA and cDNA sequences corresponding to the sequences of these sequences figures

and their complementary strands. Further included in this invention are nucleic acid sequences which are greater than 95 to 98%, and more preferably about 99 to 99.9% homologous or identical to the Sequence Listing. Also included in the nucleic acid sequences of the invention are natural variants and engineered modifications of the sequences provided in SEQ ID NO: 12 and their complementary strands. Such modifications include, for example, labels that are known in the art, methylation, and substitution of one or more of the naturally occurring nucleotides with a degenerate nucleotide.

5

20

The invention further encompasses fragments of the sequences of

SA18, their complementary strand, cDNA and RNA complementary thereto. Suitable
fragments are at least 15 nucleotides in length, and encompass functional fragments,
i.e., fragments which are of biological interest. For example, a functional fragment
can express a desired adenoviral product or may be useful in production of
recombinant viral vectors. Such fragments include the gene sequences and fragments

listed in the tables below.

The following tables provide the transcript regions and open reading frames in the simian adenovirus sequences of the invention. For certain genes, the transcripts and open reading frames (ORFs) are located on the strand complementary to that presented in SEQ ID NO: 12. See, e.g., E2b, E4 and E2a. The calculated molecular weights of the encoded proteins are also shown.

Adenovirus	Protein	Ad SA18,		
Gene		SEQ ID NO:12		
Region				
		start	End	M.W.
ITR		1	180	
Ela	138	916	1765	27264
	12S	916	1765	24081
E1b	Small T	1874	2380	19423
	LargeT	2179	3609	52741
	IX ·	3678	4079	13701
E2b	IVa2	5478	4126	51295
	Polymerase	13745	5229	128392
	PTP	13745	8597	75358
	Agnoprotein	8007	8705	23610
L1	52/55 kD	10788	11945	43416
	IIIa	11966	13699	63999
L2	Penton	13796	15322	57166
	VII	15328	15873	20352
	V	15920	17050	42020
L3	VI	17348	18154	29222
	Hexon	18257	21010	102912
	Endoprotease	21029	21640	23015

Adenovirus	Protein	Ad SA1	8,	
Gene Region		SEQ ID NO:12		
2a	DBP	23147	21711	53626
L4	100kD	23175	25541	87538
	22 kD	25204	25797	22206
	homolog			
	33 kD	25204	26025	24263
	homolog			
	VIII	26107	26817	25490
E3	Orf#1	26817	27125	11814
L5	Fiber	27192	29015	65455
E4	Orf 6/7	30169	29067	13768
	Orf 6	30169	29303	33832
	Orf 4	30464	30099	14154
	Orf 3	30816	30466	13493
	Orf 2	31205	30813	14698
	Orf 1	31608	31231	14054
ITR		31788	31967	

The SA18 adenoviral nucleic acid sequences are useful as therapeutic and immunogenic agents and in construction of a variety of vector systems and host cells.

Such vectors are useful for any of the purposes described above for the chimeric adenovirus. Additionally, these SA18 sequences and products may be used alone or in combination with other adenoviral sequences or fragments, or in combination with elements from other adenoviral or non-adenoviral sequences. The adenoviral sequences of the invention are also useful as antisense delivery vectors, gene therapy vectors, or vaccine vectors, and in methods of using same. Thus, the invention further provides nucleic acid molecules, gene delivery vectors, and host cells which contain the Ad sequences of the invention.

For example, the invention encompasses a nucleic acid molecule containing simian Ad ITR sequences of the invention. In another example, the invention provides a nucleic acid molecule containing simian Ad sequences of the invention

15

encoding a desired Ad gene product. Still other nucleic acid molecule constructed using the sequences of the invention will be readily apparent to one of skill in the art, in view of the information provided herein.

5

10

15

20

25

30

In one embodiment, the simian Ad gene regions identified herein may be used in a variety of vectors for delivery of a heterologous molecule to a cell. Examples of such molecules and methods of delivery are provided in Section III herein. For example, vectors are generated for expression of an adenoviral capsid protein (or fragment thereof) for purposes of generating a viral vector in a packaging host cell. Such vectors may be designed for expression in trans. Alternatively, such vectors are designed to provide cells which stably contain sequences which express desired adenoviral functions, e.g., one or more of E1a, E1b, the terminal repeat sequences, E2a, E2b, E4, E4ORF6 region.

In addition, the adenoviral gene sequences and fragments thereof are useful for providing the helper functions necessary for production of helper-dependent viruses (e.g., adenoviral vectors deleted of essential functions or adeno-associated viruses (AAV)). For such production methods, the simian adenoviral sequences of the invention are utilized in such a method in a manner similar to those described for the human Ad. However, due to the differences in sequences between the simian adenoviral sequences of the invention and those of human Ad, the use of the sequences of the invention essentially eliminate the possibility of homologous recombination with helper functions in a host cell carrying human Ad E1 functions, e.g., 293 cells, which may produce infectious adenoviral contaminants during rAAV production.

Methods of producing rAAV using adenoviral helper functions have been described at length in the literature with human adenoviral serotypes. See, e.g., US Patent 6,258,595 and the references cited therein. See, also, US Patent 5,871,982; WO 99/14354; WO 99/15685; WO 99/47691. These methods may also be used in production of non-human serotype AAV, including non-human primate AAV serotypes. The simian adenoviral gene sequences of the invention which provide the necessary helper functions (e.g., E1a, E1b, E2a and/or E4 ORF6) can be particularly useful in providing the necessary adenoviral function while minimizing or eliminating the possibility of recombination with any other adenoviruses present in the rAAV-packaging cell which are typically of human origin. Thus, selected genes or open

reading frames of the adenoviral sequences of the invention may be utilized in these rAAV production methods.

Alternatively, recombinant adenoviral simian vectors of the invention may be utilized in these methods. Such recombinant adenoviral simian vectors may include, e.g., a hybrid simian Ad/AAV in which simian Ad sequences flank a rAAV expression cassette composed of, e.g., AAV 3' and/or 5' ITRs and a transgene under the control of regulatory sequences which control its expression. One of skill in the art will recognize that still other simian adenoviral vectors and/or gene sequences of the invention will be useful for production of rAAV and other viruses dependent upon adenoviral helper.

5

10

15

20

25

30

In still another embodiment, nucleic acid molecules are designed for delivery and expression of selected adenoviral gene products in a host cell to achieve a desired physiologic effect. For example, a nucleic acid molecule containing sequences encoding an adenovirus E1a protein of the invention may be delivered to a subject for use as a cancer therapeutic. Optionally, such a molecule is formulated in a lipid-based carrier and preferentially targets cancer cells. Such a formulation may be combined with other cancer therapeutics (e.g., cisplatin, taxol, or the like). Still other uses for the adenoviral sequences provided herein will be readily apparent to one of skill in the art.

In addition, one of skill in the art will readily understand that the Ad sequences of the invention can be readily adapted for use for a variety of viral and non-viral vector systems for *in vitro*, *ex vivo* or *in vivo* delivery of therapeutic and immunogenic molecules, including any of those identified as being deliverable via the chimeric adenoviruses of the invention. For example, the simian Ad genome of the invention can be utilized in a variety of rAd and non-rAd vector systems. Such vectors systems may include, *e.g.*, plasmids, lentiviruses, retroviruses, poxviruses, vaccinia viruses, and adeno-associated viral systems, among others. Selection of these vector systems is not a limitation of the present invention.

The invention further provides molecules useful for production of the simian and simian-derived proteins of the invention. Such molecules which carry polynucleotides including the simian Ad DNA sequences of the invention can be in the form of a vector.

B. Simian Adenoviral Proteins of the Invention

The invention further provides gene products of the above adenoviruses, such as proteins, enzymes, and fragments thereof, which are encoded by the adenoviral nucleic acids of the invention. The invention further encompasses SA18 proteins, enzymes, and fragments thereof, having the amino acid sequences encoded by these nucleic acid sequences which are generated by other methods. Such proteins include those encoded by the open reading frames identified in the tables above, and fragments thereof.

Thus, in one aspect, the invention provides unique simian adenoviral proteins which are substantially pure, *i.e.*, are free of other viral and proteinaceous proteins. Preferably, these proteins are at least 10% homogeneous, more preferably 60% homogeneous, and most preferably 95% homogeneous.

10

15

20

25

30

In one embodiment, the invention provides unique simian-derived capsid proteins. As used herein, a simian-derived capsid protein includes any adenoviral capsid protein that contains a SA18 capsid protein or a fragment thereof, as defined above, including, without limitation, chimeric capsid proteins, fusion proteins, artificial capsid proteins, synthetic capsid proteins, and recombinantly capsid proteins, without limitation to means of generating these proteins.

Suitably, these simian-derived capsid proteins contain one or more SA18 regions or fragments thereof (e.g., a hexon, penton, fiber or fragment thereof) in combination with capsid regions or fragments thereof of different adenoviral serotypes, or modified simian capsid proteins or fragments, as described herein. A "modification of a capsid protein associated with altered tropism" as used herein includes an altered capsid protein, i.e, a penton, hexon or fiber protein region, or fragment thereof, such as the knob domain of the fiber region, or a polynucleotide encoding same, such that specificity is altered. The simian-derived capsid may be constructed with one or more of the simian Ad of the invention or another Ad serotypes which may be of human or non-human origin. Such Ad may be obtained from a variety of sources including the ATCC, commercial and academic sources, or the sequences of the Ad may be obtained from GenBank or other suitable sources.

The amino acid sequences of the simian adenoviruses penton proteins of the invention are provided herein. The AdSA18 penton protein is provided in SEQ ID NO: 13. Suitably, any of these penton proteins, or unique fragments thereof, may

be utilized for a variety of purposes. Examples of suitable fragments include the penton having N-terminal and/or C-terminal truncations of about 50, 100, 150, or 200 amino acids, based upon the amino acid numbering provided above. Other suitable fragments include shorter internal, C-terminal, or N-terminal fragments. Further, the penton protein may be modified for a variety of purposes known to those of skill in the art.

5

10

15

20

25

30

The invention further provides the amino acid sequences of the hexon protein of SA18, SEQ ID NO:14. Suitably, this hexon protein, or unique fragments thereof, may be utilized for a variety of purposes. Examples of suitable fragments include the hexon having N-terminal and/or C-terminal truncations of about 50, 100, 150, 200, 300, 400, or 500 amino acids, based upon the amino acid numbering provided above and in SEQ ID NO: 14. Other suitable fragments include shorter internal, C-terminal, or N-terminal fragments. For example, one suitable fragment the loop region (domain) of the hexon protein, designated DE1 and FG1, or a hypervariable region thereof. Such fragments include the regions spanning amino acid residues about 125 to 443; about 138 to 441, or smaller fragments, such as those spanning about residue 138 to residue 163; about 170 to about 176; about 195 to about 203; about 233 to about 246; about 253 to about 264; about 287 to about 297; about 404 to about 430, about 430 to 550, about 545 to 650; of the simian hexon proteins, with reference to SEQ ID NO: 14. Other suitable fragments may be readily identified by one of skill in the art. Further, the hexon protein may be modified for a variety of purposes known to those of skill in the art. Because the hexon protein is the determinant for serotype of an adenovirus, such artificial hexon proteins would result in adenoviruses having artificial serotypes. Other artificial capsid proteins can also be constructed using the chimp Ad penton sequences and/or fiber sequences of the invention and/or fragments thereof.

In one example, it may be desirable to generate an adenovirus having an altered hexon protein utilizing the sequences of a hexon protein of the invention. One suitable method for altering hexon proteins is described in US Patent 5,922,315, which is incorporated by reference. In this method, at least one loop region of the adenovirus hexon is changed with at least one loop region of another adenovirus serotype. Thus, at least one loop region of such an altered adenovirus hexon protein is a simian Ad hexon loop region of the invention. In one embodiment, a loop region

of the SA18 hexon protein is replaced by a loop region from another adenovirus serotype. In another embodiment, the loop region of the SA18 hexon is used to replace a loop region from another adenovirus serotype. Suitable adenovirus serotypes may be readily selected from among human and non-human serotypes, as described herein. SA18 is selected for purposes of illustration only; the other simian Ad hexon proteins of the invention may be similarly altered, or used to alter another Ad hexon. The selection of a suitable serotype is not a limitation of the present invention. Still other uses for the hexon protein sequences of the invention will be readily apparent to those of skill in the art.

The invention further encompasses the fiber proteins of the simian adenoviruses of the invention. The fiber protein of AdSA18 has the amino acid sequence of SEQ ID NO: 15. Suitably, this fiber protein, or unique fragments thereof, may be utilized for a variety of purposes. One suitable fragment is the fiber knob, which spans about amino acids 247 to 425 of SEQ ID NO: 15. Examples of other suitable fragments include the fiber having N-terminal and/or C-terminal truncations of about 50, 100, 150, or 200 amino acids, based upon the amino acid numbering provided above and in SEQ ID NO: 15. Still other suitable fragments include internal fragments. Further, the fiber protein may be modified using a variety of techniques known to those of skill in the art.

The invention further encompasses unique fragments of the proteins of the invention which are at least 8 amino acids in length. However, fragments of other desired lengths can be readily utilized. In addition, the invention encompasses such modifications as may be introduced to enhance yield and/or expression of an SA18 gene product, e.g., construction of a fusion molecule in which all or a fragment of the SA18 gene product is fused (either directly or via a linker) with a fusion partner to enhance. Other suitable modifications include, without limitation, truncation of a coding region (e.g., a protein or enzyme) to eliminate a pre- or proprotein ordinarily cleaved and to provide the mature protein or enzyme and/or mutation of a coding region to provide a secretable gene product. Still other modifications will be readily apparent to one of skill in the art. The invention further encompasses proteins having at least about 95% to 99% identity to the SA18 proteins provided herein.

As described herein, vectors of the invention containing the adenoviral capsid proteins of the invention are particularly well suited for use in applications in which the neutralizing antibodies diminish the effectiveness of other Ad serotype based vectors, as well as other viral vectors. The rAd vectors of the invention are particularly advantageous in readministration for repeat gene therapy or for boosting immune response (vaccine titers). Examples of such regimens are provided herein.

5

10

15

20

25

30

Under certain circumstances, it may be desirable to use one or more of the SA18 gene products (e.g., a capsid protein or a fragment thereof) to generate an antibody. The term "an antibody," as used herein, refers to an immunoglobulin molecule which is able to specifically bind to an epitope. Thus, the antibodies of the invention bind, preferably specifically and without cross-reactivity, to a SA18 epitope. The antibodies in the present invention exist in a variety of forms including, for example, high affinity polyclonal antibodies, monoclonal antibodies, synthetic antibodies, chimeric antibodies, recombinant antibodies and humanized antibodies. Such antibodies originate from immunoglobulin classes IgG, IgM, IgA, IgD and IgE.

Such antibodies may be generated using any of a number of methods know in the art. Suitable antibodies may be generated by well-known conventional techniques, e.g. Kohler and Milstein and the many known modifications thereof. Similarly desirable high titer antibodies are generated by applying known recombinant techniques to the monoclonal or polyclonal antibodies developed to these antigens [see, e.g., PCT Patent Application No. PCT/GB85/00392; British Patent Application Publication No. GB2188638A; Amit et al., 1986 Science, 233:747-753; Queen et al., 1989 Proc. Nat'l. Acad. Sci. USA, 86:10029-10033; PCT Patent Application No. PCT/WO9007861; and Riechmann et al., Nature, 332:323-327 (1988); Huse et al, 1988a Science, 246:1275-1281]. Alternatively, antibodies can be produced by manipulating the complementarity determining regions of animal or

"Humanization of Monoclonal Antibodies", Chapter 4, The Handbook of Experimental Pharmacology, Vol. 113, The Pharmacology of Monoclonal Antibodies, Springer-Verlag (June, 1994); Harlow et al., 1999, Using Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, NY; Harlow et al., 1989, Antibodies: A Laboratory Manual, Cold Spring Harbor, New York; Houston et al., 1988, Proc. Natl. Acad. Sci. USA 85:5879-5883; and Bird et al., 1988, Science 242:423-426.

human antibodies to the antigen of this invention. See, e.g., E. Mark and Padlin,

Further provided by the present invention are anti-idiotype antibodies (Ab2) and anti-anti-idiotype antibodies (Ab3). See, e.g., M. Wettendorff et al., "Modulation of anti-tumor immunity by anti-idiotypic antibodies." In Idiotypic Network and Diseases, ed. by J. Cerny and J. Hiernaux, 1990 J. Am. Soc. Microbiol., Washington DC: pp. 203-229]. These anti-idiotype and anti-anti-idiotype antibodies are produced using techniques well known to those of skill in the art. These antibodies may be used for a variety of purposes, including diagnostic and clinical methods and kits.

5

30

Under certain circumstances, it may be desirable to introduce a detectable label or a tag onto a SA18 gene product, antibody or other construct of the invention. As used herein, a detectable label is a molecule which is capable, alone or 10 upon interaction with another molecule, of providing a detectable signal. Most desirably, the label is detectable visually, e.g. by fluorescence, for ready use in immunohistochemical analyses or immunofluorescent microscopy. For example, suitable labels include fluorescein isothiocyanate (FITC), phycoerythrin (PE), allophycocyanin (APC), coriphosphine-O (CPO) or tandem dyes, PE-cyanin-5 (PC5), 15 and PE-Texas Red (ECD). All of these fluorescent dyes are commercially available, and their uses known to the art. Other useful labels include a colloidal gold label. Still other useful labels include radioactive compounds or elements. Additionally, labels include a variety of enzyme systems that operate to reveal a colorimetric signal 20 in an assay, e.g., glucose oxidase (which uses glucose as a substrate) releases peroxide as a product which in the presence of peroxidase and a hydrogen donor such as tetramethyl benzidine (TMB) produces an oxidized TMB that is seen as a blue color. Other examples include horseradish peroxidase (HRP) or alkaline phosphatase (AP), and hexokinase in conjunction with glucose-6-phosphate dehydrogenase which reacts with ATP, glucose, and NAD+ to yield, among other products, NADH that is 25 detected as increased absorbance at 340 nm wavelength.

Other label systems that are utilized in the methods of this invention are detectable by other means, e.g., colored latex microparticles [Bangs Laboratories, Indiana] in which a dye is embedded are used in place of enzymes to form conjugates with the target sequences provide a visual signal indicative of the presence of the resulting complex in applicable assays.

Methods for coupling or associating the label with a desired molecule are similarly conventional and known to those of skill in the art. Known methods of

label attachment are described [see, for example, Handbook of Fluorescent probes and Research Chemicals, 6th Ed., R. P. M. Haugland, Molecular Probes, Inc., Eugene, OR, 1996; Pierce Catalog and Handbook, Life Science and Analytical Research Products, Pierce Chemical Company, Rockford, IL, 1994/1995]. Thus, selection of the label and coupling methods do not limit this invention.

5

10

15

20

25

30

The sequences, proteins, and fragments of the invention may be produced by any suitable means, including recombinant production, chemical synthesis, or other synthetic means. Suitable production techniques are well known to those of skill in the art. See, e.g., Sambrook et al, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press (Cold Spring Harbor, NY). Alternatively, peptides can also be synthesized by the well known solid phase peptide synthesis methods (Merrifield, J. Am. Chem. Soc., 85:2149 (1962); Stewart and Young, Solid Phase Peptide Synthesis (Freeman, San Francisco, 1969) pp. 27-62). These and other suitable production methods are within the knowledge of those of skill in the art and are not a limitation of the present invention.

In addition, one of skill in the art will readily understand that the Ad sequences of the invention can be readily adapted for use for a variety of viral and non-viral vector systems for in vitro, ex vivo or in vivo delivery of therapeutic and immunogenic molecules. For example, in one embodiment, the simian Ad capsid proteins and other simian adenovirus proteins described herein are used for non-viral, protein-based delivery of genes, proteins, and other desirable diagnostic, therapeutic and immunogenic molecules. In one such embodiment, a protein of the invention is linked, directly or indirectly, to a molecule for targeting to cells with a receptor for adenoviruses. Preferably, a capsid protein such as a hexon, penton, fiber or a fragment thereof having a ligand for a cell surface receptor is selected for such targeting. Suitable molecules for delivery are selected from among the therapeutic molecules described herein and their gene products. A variety of linkers including, lipids, polyLys, and the like may be utilized as linkers. For example, the simian penton protein may be readily utilized for such a purpose by production of a fusion protein using the simian penton sequences in a manner analogous to that described in Medina-Kauwe LK, et al, Gene Ther. 2001 May; 8(10):795-803 and Medina-Kauwe LK, et al, Gene Ther. 2001 Dec; 8(23): 1753-1761. Alternatively, the amino acid sequences of simian Ad protein IX may be utilized for targeting vectors to a cell

surface receptor, as described in US Patent Appln 20010047081. Suitable ligands include a CD40 antigen, an RGD-containing or polylysine-containing sequence, and the like. Still other simian Ad proteins, including, *e.g.*, the hexon protein and/or the fiber protein, may be used for used for these and similar purposes.

Still other adenoviral proteins of the invention may be used as alone, or in combination with other adenoviral protein, for a variety of purposes which will be readily apparent to one of skill in the art. In addition, still other uses for the adenoviral proteins of the invention will be readily apparent to one of skill in the art.

The compositions of this invention include vectors that deliver a heterologous molecule to cells, either for therapeutic or vaccine purposes. Such vectors, containing simian adenovirus DNA of SA18 and a minigene, can be constructed using techniques such as those described herein for the chimeric adenoviruses and such techniques as are known in the art. Alternatively, SA19 may be a source for sequences of the chimeric adenoviruses are described herein.

15

10

5

The following examples illustrate construction and use of several chimeric viruses, including Pan5/C1, hu5/Pan7 and hu5/SV25, and Pan6/Pan7. However, these chimera are illustrative only and are not intended to limit the invention to those illustrated embodiments.

20

25

Example 1 - Construction of Pan5/C1 Chimeric Simian Viruses

Five different adenoviruses initially isolated from the chimpanzee, AdC68 [US Patent 6,083,716], AdPan5, AdPan7, AdPan6 and AdC1 [US Patent 6,083,716] have been sequenced. See, International Application No. PCT/US02/33645, filed November 2002 for the sequences of Pan5 [SEQ ID NO:1], Pan7 [SEQ ID NO:3], and Pan6 [SEQ ID NO:2]. This application also provides sequences for SV1, SV25 and SV39 [SEQ ID No. 4, 5, 6, respectively]. Sequence comparison of the capsid protein sequences predicted that AdC1 clearly belonged to a different serological subgroup than the other four chimpanzee derived adenoviruses.

30

However, attempts to cultivate AdC1 in HEK293 cells revealed it to be fastidious in its growth characteristics (data not shown) and therefore possibly unsuitable for use as a vector using the currently available E1 complementing cell lines. However, because of the obvious sequence dissimilarity of AdC1 capsid

5

10

15

20

protein sequence from the other chimpanzee derived adenoviruses (as well as the huAd5), chimeric adenovirus vectors were generated with the capsid characteristics of AdC1. In view of the above-mentioned drawbacks associated with only making hexon changes, more extensive replacements were made in the chimera described herein, *i.e.*, construction of chimeras where the replacement went beyond just the hexon, to achieve two goals. The first was to determine whether making extended replacements would allow for the rescue of viruses containing hexons of unrelated serotypes that may not otherwise be amenable to rescue. The second goal was to test whether the growth characteristics of adenovirus vectors such as AdPan5, that have been found in our laboratory to be able to be grown to high titer for the purpose of manufacture, would also be present in the chimeric virus, particularly when the hexon (and other capsid proteins) are derived from a virus such as AdC1 that are difficult to grow to a high yield in cell lines such as HEK293. An added bonus of extending the replacement to include the fiber protein would be to further increase the antigenic dissimilarity to beyond that afforded by a hexon change alone.

As an alternative to obtaining purified virus as source for adenoviral DNA to sequence, we have resorted to cloning restriction fragments of viral DNA obtained from infected cells ("Hirt prep"). The first adenovirus we have sequenced in this way is Simian Adenovirus. EcoRI digestion of the Simian Adenovirus yielded 7 fragments. Shotgun cloning yielded clones of the 5 internal fragments, which were cloned and sequenced. Completion of the sequencing was carried out by walking towards each of the ends of the genome. The map of the genome is shown in Figure 1.

A. Construction of Two Pan5/C1 Chimeric Plasmids

The overall approach towards constructing chimeric viruses was to first assemble the complete E1 deleted virus DNA into a single plasmid flanked by recognition sites for the restriction enzyme SwaI, digest the plasmid DNA with SwaI to release the virus DNA ends, and transfect the DNA into HEK293 cells to determine whether viable chimeric adenovirus could be rescued. Two chimeric virus plasmids were constructed, p5C1short and p5C1long.

The plasmid p5C1short harbors an E1 deleted Pan5 virus where an internal 15226 bp segment (18332-33557) has been replaced by a functionally analogous 14127 bp (18531-32657) from AdC1. This results in the replacement of

the Pan5 proteins hexon, endoprotease, DNA binding protein, 100 kD scaffolding protein, 33 kD protein, protein VIII, and fiber, as well as the entire E3 region, with the homologous segment from AdC1. The ClaI site at the left end of the AdC1 fragment is at the beginning of the hexon gene and the resulting protein is identical to the C1 hexon. The EcoRI site which constitutes the right end of the AdC1 fragment is within the E4 orf 7 part of the AdC1. The right end was ligated to a PCR generated right end fragment from AdPan5 such that the regenerated orf 7-translation product is chimeric between AdPan5 and AdC1.

5

10

20

25

30

The plasmid p5C1long harbors an E1 deleted Pan5 virus where an internal 25603 bp segment (7955 – 33557) has been replaced by a functionally analogous 24712 bp (7946 - 32657) from AdC1. This results in the replacement of the AdPan5 pre-terminal protein, 52/55 kD protein, penton base protein, protein VII, Mu, and protein VI with those from AdC1 in addition to those replaced in p5C1short. The AscI site at the left end of the AdC1 fragment is at the beginning of the DNA polymerase gene and results in a chimeric protein where the first 165 amino acids of 15 the AdPan5 DNA polymerase has been replaced by a 167 amino acid segment from AdC1 DNA polymerase. In this N-terminal region, the homology between the AdPan5 and AdC1 DNA polymerase proteins is 81% (72% identity).

The plasmid pDVP5Mlu which contains the left end of AdPan5 was used as the starting plasmid for the chimeric vector construction.

The plasmid pDVP5Mlu was made as follows. A synthetic DNA fragment harboring recognition sites for the restriction enzymes SmaI, MluI, EcoRI and EcoRV respectively was ligated into pBR322 digested with EcoRI and NdeI so as to retain the origin of replication and the beta-lactamase gene. The left end of Pan5 extending to the MluI site (15135 bp) was cloned into this plasmid between the SmaI and MluI sites. The E1 gene was functionally deleted and replaced by a DNA fragment harboring recognition sites for the extremely rare cutter restriction enzyme sites I-CeuI and PI-SceI). The 2904 base pairs of the right end of Pan-5 was PCR amplified using the primers P5L [GCG CAC GCG TCT CTA TCG ATG AAT TCC ATT GGT GAT GGA CAT GC, SEQ ID NO:7] and P5ITR [GCG CAT TTA AAT CAT CAT CAA TAA TAT ACC TCA AAC, SEQ ID NO:8] using Tgo polymerase (Roche). The PCR product was cut with MluI and SwaI, and cloned between MluI and EcoRV of pDVP5Mlu to yield pPan5Mlu+RE. A 3193 bp fragment extending

from the MluI site (15135) to the ClaI (18328) site of Pan5 was then inserted between the same sites of pPan5Mlu+RE to yield pPan5Cla+RE. The 3671 bp ClaI (18531) to EcoRI (22202) fragment of the adenovirus C1 was cloned into pPan5Cla+RE between ClaI (16111) and EcoRI (16116) to yield pPan5CldelRI. The 10452 bp internal

5 EcoRI fragment of the adenovirus C1 (22202 – 32653) was cloned into the EcoRI site of pPan5CldelRI to yield p5Clshort. To construct p5Cllong, the AdC1 replacement was further extended by replacing the AscI – ClaI 10379 bp fragment of AdPan5 in p5Clshort with the AdC1 AscI – ClaI 10591 bp fragment. Finally a green fluorescent protein (GFP) expression cassette was inserted into both p5Clshort and p5Cllong between the I-CeuI and PI-SceI sites to yield p5ClshortGFP and p5CllongGFP respectively.

B. Rescue of chimeric Pan5/C1 recombinant vector adenoviruses

The plasmids p5C1shortGFP and p5C1longGFP were digested with
the restriction enzyme Swal and transfected into HEK 293 cells. A typical adenovirus
induced cytopathic effect was observed. The rescue of recombinant chimeric
adenovirus from the p5C1longGFP transfection was confirmed by collecting the
supernatant from the transfection and re-infecting fresh cells which were found to be
transduced as determined by GFP expression. Viral DNA prepared from the chimeric
recombinant virus was digested with several restriction enzymes and found to have
the expected pattern on electrophoresis (data not shown).

15

20

25

30

The chimeric adenoviral construct with the shorter replacement p5C1short encodes the C1 proteins hexon and fiber as well as the intervening open reading frames for endoprotease, DNA binding protein, 100 kDa scaffolding protein, 33 kDa protein, and protein VIII. (The E3 region is also included within this region but is unlikely to impact on the viability of the chimeric virus). When the replacement was extended to include the additional AdC1 proteins pTP (pre-terminal protein), 52/55 kDa protein, penton base, protein VII, Mu, and protein VI, there was no difficulty in rescuing viable chimeric virus. In this experiment, the chimeric adenovirus construction strategy utilized the presence of AscI and ClaI restriction enzyme sites present on the genes for DNA polymerase and hexon respectively on both AdPan5 and AdC1.

The reasons for the relatively higher yield of the chimeric virus compared to the wild-type AdC1 virus are not clear. In the growth of the 5C1

chimeric virus in 293 cells, the adenoviral early region gene products of E1 and E4 are derived from Ad5 and AdPan5 respectively. The E1 and E4 gene products bind, regulate and de-repress several cellular transcription complexes and coordinate their activity towards viral multiplication. Thus it is possible that the E1 gene products supplied in *trans* from the 293 cells and the E4 gene products from AdPan5 are more optimal in the human 293 cell background than are the equivalent AdC1 gene products. This may also apply to the activity of the major late promoter whose activity is responsible for the transcription of the capsid protein genes. In the chimeric virus, the major late promoter, and the protein IVa2 which transactivates it, are derived from AdPan5. However the E2 gene products required for adenoviral DNA replication pTP and single-stranded DNA – binding protein are derived from AdC1. The adenoviral DNA polymerase, which complexes with pTP, is chimeric in Ad5C1 but mostly AdPan5 derived.

15 Example 2 - Construction of Ad5 Chimeric Simian Viruses

5

10

20

25

30

Plasmids have been constructed where the structural proteins derive from the chimpanzee adenovirus Pan 7 and the flanking sequences are derived from human Ad5 (the commonly used vector strain). The Adhu5-Pan7 chimeric adenovirus has been rescued, demonstrating that the chimeric virus construction method used to derive the chimeric virus is broadly applicable.

A plasmid was constructed which harbors the complete (E1 deleted) chimeric genome in order to establish that the chimeric adenovirus is viable, and then transfected the plasmid into the E1 complementing cell line HEK 293. It was found that the recombinant virus could be rescued. The chimeric adenovirus genome that was constructed is composed of a left end segment derived from Ad5 that contributes the ITR, the E1 deletion region containing the transgene expression cassette, the pIX and IVa2 genes and 954 C-terminal amino acids of the polymerase gene (which is transcribed in the right to left direction from the bottom strand). Ad5 also contributes the right end of the chimeric genome containing the E4 genes and the right ITR. All the other genes present in the central part of the chimeric construct are derived from the chimpanzee adenovirus Pan 7 including the N-terminal 235 amino acids of a chimeric DNA polymerase.

In order to construct the plasmid which harbors the complete (E1 deleted) chimeric genome, the starting plasmid was pBRAd5lere which is comprised of three parts; the bacterial origin of replication and ampicillin resistance gene derived from the plasmid pBR322, the left end of an Ad5 derived E1 deleted vector extending from the left ITR to the StuI site located at base pair number 5782 of the wild-type Ad5 genome (the E1 deletion extends from base pair 342 to 3533 of the wild-type Ad5 genome), and the right end of Ad5 extending from the StuI site at base pair number 31954 of the wild-type Ad5 genome to the right end of the right ITR. The PacI sites located adjacent to the two ITRs are used to release the Ad5 genome from the bacterial plasmid backbone. The fragment containing I-CeuI and the PI-SceI sites which is located in place of the E1 deletion is used to insert transgene cassettes.

A synthetic DNA oligomer was inserted at the StuI site containing sites for AscI, XbaI and EcoRI, which allowed the creation of the plasmid pAd5endsAscRI where using PCR, the Ad5 polymerase gene was extended to base pair #8068 of the wild-type Ad5 genome and incorporating a newly created AscI site at this location by silent mutagenesis of the polymerase gene (translated from the bottom strand) as depicted below.

Original sequence

5

10

15

20

30

GCG ACG GGC CGA [SEQ ID NO:16]

CGC TGC CCG GCT

Arg Arg Ala Ser [SEQ ID NO:17]

Mutated sequence (The AscI recognition site is underlined)

GCG GCG CGC CGA [SEQ ID NO:18]

CGC TGC CCG GCT

25 Arg Arg Ala Ser [SEQ ID NO: 17]

The Pan 7 fiber containing region was amplified by PCR (mutating the fiber stop codon from TGA to TAA to provide a polyadenylation signal similar to that in Ad5) and inserted into the EcoRI site to yield pAd5endsP7fib. Several cloning steps led to the construction of pH5C7H5 where the complete chimeric adenoviral genome has been assembled A transgene cassette expressing GFP (green fluorescent protein) was inserted between the I-CeuI and PI-SceI sites of pH5C7H5. The final construct was digested with PacI to separate the adenoviral genome from the plasmid

backbone and transfected into HEK 293 cells. The cell lysate was harvested 2 weeks later, and the chimeric adenovirus was amplified and purified by standard methods.

B. Construction of the Ad5 – Simian virus 25 (SV-25) chimeric adenovirus

[N.B. Simian virus 25 (ATCC catalog number VR-201) is distinct from the chimpanzee adenovirus Simian adenovirus 25 ATCC catalog number VR-594]

5

The construction of the Ad5 based chimeric adenovirus where 10 the left and right end segments are derived from Ad5 and the central portion was derived from the monkey adenovirus SV-25 was carried out in a manner completely analogous to that described above for the chimeric adenovirus described above that is chimeric between Ad5 and the chimpanzee adenovirus Pan 7. Thus, the chimeric adenovirus genome that was constructed is composed of a left end segment derived 15 from Ad5 that contributes the ITR, the E1 deletion region containing the transgene expression cassette, the pIX and IVa2 genes and 956 C-terminal amino acids of the polymerase gene. Ad5 also contributes the right end of the chimeric genome containing the E4 genes and the right ITR. [Additionally, the left end of the Ad5 genome was extended beyond that present in pH5C7H5 so that 454 base pairs of the 20 Ad5 left end was present. Although not absolutely essential, this was done in order to improve packaging efficiency.] All the genes present in the central part of the chimeric construct are derived from the monkey adenovirus SV-25 including the Nterminal 230 amino acids of a chimeric DNA polymerase. The starting plasmid for the construction of the chimeric genome was pAd5endsAscRI which contains both 25 the left and right ends of Ad5 as well as the created (by silent mutation) AscI site in the polymerase gene where Ad5-SV25 chimeric fusion was made (as was done for the Ad5 – Pan 7 chimeric adenovirus). In the final construct pH5S25H5, the SV25 genome segment has been incorporated by sequential cloning steps, including creation of an AscI site at the ligation junction within the polymerase coding 30 sequence. A transgene cassette expressing GFP (green fluorescent protein) was inserted between the I-CeuI and PI-SceI sites of pH5S25H5. The final construct was digested with PacI to separate the adenoviral genome from the plasmid backbone and

transfected into HEK 293 cells. The cell lysate was harvested 2 weeks later, and the chimeric adenovirus was amplified and purified by standard methods.

Fig. 2 provides the map of the recombinant Adhu5-SV25 chimeric virus. The portion of the genome replaced by DNA from Pan7 is indicated.

5

10

15

20

25

Example 3 – Pan5 - C1 chimeric vector of invention as a delivery vehicle for immunogenic compositions

A Pan 5 (Simian adenovirus 22, a subgroup E adenovirus, also termed C5) - C1 (Simian adenovirus 21, a subgroup B adenovirus) chimeric expressing the Ebola virus (Zaire) glycoprotein (C5C1C5-CMVGP) was constructed as a model antigen in order to test the efficacy of the vector C5C1C5-CMVGP as a vaccine; this vector has been compared it to the Adhu5 based vector (H5-CMVGP). Compared to H5-CMVGP, the C5C1-CMVGP vector yielded only a slightly decreased level of GP expression in transduced A549 cells.

Thereafter, GP-specific T cell and B cell responses elicited in B10BR mice vaccinated intramuscularly with either 5 x 10^{10} H5-CMVGP or C5C1-CMVGP vectors were compared.

The C5C1C5-CMVGP vector appeared to induce lower frequencies of gamma interferon producing CD8+ T cells with kinetics slower than the H5-CMVGP vector as determined by intracellular cytokine staining using a H-2k restricted GP-specific peptide as stimulant. The total IgG response to GP, measured by ELISA, was equivalent in serum from mice vaccinated with the C5C1C5-CMVGP or the H5-CMVGP vectors. However, the C5C1C5-CMVGP vector induced a more potent Th1 type response while the H5-CMVGP vector stimulated a more balanced Th1/Th2 type response. In a survival study, mice were vaccinated as above and challenged 28 days later with 200 LD/50 mouse-adapted Ebola Zaire virus. 100% survival was seen for both groups.

Example 4 – Generation of Chimeric Pan6/Pan7 Vectors

A panel of GFP expressing vectors were generated. This panel includes vectors that are chimeric between Pan 6 and Pan 7 where (a) the hexon protein of Pan 7 was replaced by that of Pan 6 (termed C767), (b), the fiber protein of Pan 7 was

replaced by that of Pan 6 (termed C776), (c) both the hexon and fiber proteins of the Pan 7 vector have been replaced by those from Pan 6 (termed C766).

The chimeric virus termed C767 was constructed essentially as described above for the C5C1C5 virus in Example 1. However, due to substantial homology between the Pan6 and Pan7 sequences 5' to the hexon sequence, it was not necessary to substitute the 5' end of the genome between the penton and the pol gene.

The chimeric vector C767 was compared to the C776, C766, the parent C6, and the parent C7, each expressing GFP.

Balb/C mice (25 per group) were immunized intramuscularly with either Pan 6 or Pan 7 (10¹⁰ particles). Re-administration (10¹¹ particles i.v., by tail vein injection) was attempted 3 weeks later using each of the five GFP expressing vectors (C6-GFP, C7-GFP, and the three chimeric vectors). Three days later the level of liver transduction was estimated qualitatively by examining liver sections for the presence of GFP expression and quantitatively by estimating copies of GFP DNA by Taqman analysis. Administration of either one of the two chimpanzee adenovirus vectors does not affect the transduction efficiency of the other vector, while re-administration of the same vector is severly compromised. The data showed that antibodies to both hexon and fiber are important in preventing re-administration of adenoviral vectors.

20

25

15

5

10

All publications cited in this specification are incorporated herein by reference, as are the priority documents, US Patent Application 60/575,429, filed March 28, 2004; US Patent Application No. 60/566,212, filed April 28, 2004, and US Patent Application No. 10/465,302, filed June 20, 2003. While the invention has been described with reference to a particularly preferred embodiment, it will be appreciated that modifications can be made without departing from the spirit of the invention. Such modifications are intended to fall within the scope of the appended claims.

What is claimed is:

1. A method of efficiently culturing a chimeric adenovirus in a selected host cell, said chimeric adenovirus being from a parental adenovirus strain incapable of efficient growth in said host cell, said method comprising the steps of:

- (a) generating a chimeric adenovirus comprising:
- (i) adenovirus sequences of the left terminal end and right terminal end of a first adenovirus which grows in a selected host cell type, said left end region comprising the 5' inverted terminal repeat (ITRs), and said right end region comprising the 3' inverted terminal repeat (ITRs); and
- (ii) the internal regions from a parental adenovirus which lacks its native 5' and 3' terminal regions, said internal regions comprising the late genes encoding the penton, hexon, and fiber;

wherein the resulting chimeric adenovirus comprises, from 5' to 3', a left terminal region of the first adenovirus, the internal region of the parental adenovirus, and the right terminal region of the first adenovirus; and

- b) culturing said chimeric adenovirus in the presence of functional adenovirus E1a, E1b, and E4 ORF6 genes from the first adenovirus or from an adenovirus serotype which transcomplements the first adenovirus, and further in the presence of necessary adenoviral structural genes from the left end of the adenovirus.
- 2. The method according to claim 1, wherein the internal region of the parental adenovirus further comprises one or more functional adenovirus genes selected from the group consisting of Endoprotease open reading frame, DNA binding protein, 100 kDa scaffolding protein, 33 kDa protein, protein VIII, pTP, 52/55 kDa protein, protein VII, Mu and protein VI.
- 3. The method according to claim 1, wherein the polymerase, terminal protein and 52/55 kDa protein functions are provided in *trans*.

4. The method according to claim 1, wherein the first adenovirus further comprises the polymerase, terminal protein and 52/55 kDa protein functions.

- 5. The method according to claim 1, wherein the chimeric adenovirus comprises the adenoviral late genes 1, 2, 3, 4, and 5 of the parental adenovirus.
- 6. The method according to claim 1, wherein the selected host cell stably contains one or more of the adenovirus E1a, E1b or E4 ORF6 functions.
- 7. The method according to claim 1, wherein the chimeric adenovirus comprises one or more of the adenovirus E1a, E1b or E4 ORF6 of the first adenovirus.
- 8. The method according to claim 1, wherein the first adenovirus is of human origin.
- 9. The method according to claim 1, wherein the first adenovirus is of simian origin.
- 10. The method according to claim 1, further comprising the step of isolating the chimeric adenovirus.
- 11. A method for generating a chimeric adenovirus for growth in a selected host cell, said chimeric adenovirus being derived from a parental adenovirus strain incapable of efficient growth in said host cell, said method comprising the step of generating a chimeric adenovirus comprising:
- 5' and 3' terminal regions of a first adenovirus which grows in a selected host cell type, said 5' terminal regions comprising the 5' inverted terminal repeat (ITRs) and necessary E1 gene functions, and said 3' terminal regions comprising inverted terminal repeat (ITRs) and necessary E4 gene functions; and

internal regions from a parental adenovirus which lacks its native 5' and 3' terminal regions, said internal regions comprising the hexon, penton base and fiber;

wherein the resulting chimeric adenovirus comprises, from 5' to 3', the 5' terminal region of the first adenovirus, the internal region of the parental adenovirus, and the 3' terminal regions of the first adenovirus.

- 12. A chimeric adenovirus produced according to the method of claim 1.
- 13. A chimeric adenovirus comprising a hexon protein of a selected adenovirus serotype which is incapable of efficient growth in a selected host cell, said modified adenovirus comprising:
- (a) adenovirus sequences of the left terminal end of a first adenovirus which grows in a selected host cell type, said left end region comprising the E1a, E1b and 5' inverted terminal repeat (ITRs);
- (b) adenovirus sequences of the internal region of the selected adenovirus serotype which is incapable of efficient growth in the selected host cell, said internal region comprising the genes encoding the penton, hexon and fiber of the selected adenovirus;
- (c) adenovirus sequences of the right terminal end of the first adenovirus, said right end region comprising the necessary E4 gene functions and the 3' inverted terminal repeat (ITRs),

wherein the resulting chimeric adenovirus comprises adenoviral structural and regulatory proteins necessary for infection and replication.

- 14. The chimeric adenovirus according to claim 13, wherein the chimeric adenovirus further comprises the IIIa, 52/55kDa and terminal protein (pTP) of the selected adenovirus serotype.
- 15. The chimeric adenovirus according to claim 13, wherein chimeric adenovirus comprises the polymerase of the first adenovirus.
- 16. The chimeric adenovirus according to claim 13, wherein the chimeric adenovirus expresses a functional chimeric protein formed from the first adenovirus and the selected adenovirus, said chimeric protein is selected from the group consisting of polymerase, terminal protein, 52/55 kDa protein, and IIIa.

17. The chimeric adenovirus according to claim 13, wherein the chimeric adenovirus comprises the terminal protein, 52/55 kDa, and/or IIIa of the selected adenovirus.

- 18. A host cell comprising a chimeric adenovirus according to claim 12.
- 19. The host cell according to claim 18, wherein said host cell is a human cell.
- 20. An isolated simian adenovirus nucleic acid sequence selected from the group consisting of:
- (a) SA18 having the sequence of nucleic acids 1 to 31967 of SEQ ID NO:12 and
- (b) a nucleic acid sequence complementary to the sequence of any of (a) to (f).
- 21. An isolated simian adenovirus serotype nucleic acid sequence selected from one or more of the group consisting of:
 - (a) 5' inverted terminal repeat (ITR) sequences;
- (b) the adenovirus E1a region, or a fragment thereof selected from among the 13S, 12S and 9S regions;
- (c) the adenovirus E1b region, or a fragment thereof selected from among the group consisting of the small T, large T, IX, and IVa2 regions;
 - (d) the E2b region;
- (e) the L1 region, or a fragment thereof selected from among the group consisting of the 28.1 kD protein, polymerase, agnoprotein, 52/55 kD protein, and IIIa protein;
- (f) the L2 region, or a fragment thereof selected from the group consisting of the penton, VII, VI, and Mu proteins;
- (g) the L3 region, or a fragment thereof selected from the group consisting of the VI, hexon, or endoprotease;
 - (h) the 2a protein;

(i) the L4 region, or a fragment thereof selected from the group consisting of the 100 kD protein, the 33 kD homolog, and VIII;

- (j) the E3 region, or a fragment thereof selected from the group consisting of E3 ORF1, E3 ORF2, E3 ORF3, E3 ORF4, E3 ORF5, E3 ORF6, E3 ORF7, E3 ORF8, and E3 ORF9;
- (k) the L5 region, or a fragment thereof selected from a fiber protein;
- (l) the E4 region, or a fragment thereof selected from the group consisting of E4 ORF7, E4 ORF6, E4 ORF4, E4 ORF3, E4 ORF2, and E4 ORF1; and
- (m) the 3' ITR, of any of SA18 SEQ ID NO:12, or a sequence complementary to any of (a) to (m).
- 22. A simian adenovirus protein encoded by the nucleic acid sequence according to claim 21.
- 23. A composition comprising a simian adenovirus capsid protein according to claim 22 linked to a heterologous molecule for delivery to a selected host cell.
- 24. A method for targeting a cell having an adenoviral receptor comprising delivering to a subject a composition according to claim 23.
- 25. A nucleic acid molecule comprising a heterologous simian adenoviral sequence according to claim 21.
- 26. The nucleic acid molecule according to claim 25, wherein said simian adenoviral sequence encodes an adenoviral gene product and is operatively linked to regulatory control sequences which direct expression of the adenoviral gene product in a host cells.
- 27. The nucleic acid molecule according to claim 25, wherein said simian adenoviral sequence comprises the E1a region of SA18 SEQ ID NO:12.

28. A pharmaceutical composition comprising the nucleic acid molecule according to claim 27 and a physiologically compatible carrier.

- 29. A recombinant adenovirus having a capsid comprising a protein selected from the group consisting of:
- (a) a hexon protein of SA18, SEQ ID NO 13, or a unique fragment thereof;
- (b) a penton protein of SA18, SEQ ID NO: 14, or a unique fragment thereof;
- (c) a fiber protein of SA18, SEQ ID NO: 15, or a unique fragment thereof.
- 30. The recombinant adenovirus according to claim 29, wherein the capsid is of an artificial serotype.
- 31. The recombinant adenovirus according to claim 29, wherein said virus further comprises a heterologous gene operatively linked to sequences which direct expression of said gene in a host cell.
- 32. The recombinant adenovirus according to claim 29, further comprising 5' and 3' adenovirus cis-elements necessary for replication and encapsidation.
- 33. The recombinant adenovirus according to claim 29, wherein said vector lacks all or a part of the E1 gene.
- 34. A host cell comprising a heterologous nucleic acid molecule comprising the nucleic acid sequence according to claim 21.
- 35. The host cell according to claim 34, wherein said host cell is stably transformed with the nucleic acid molecule.

36. The host cell according to claim 34, wherein said host cell expresses one or more adenoviral gene products from said nucleic acid molecule, said adenoviral gene products selected from the group consisting of E1a, E1b, E2a, and E4 ORF6.

- 37. The host cell according to claim 34, wherein said host cell is stably transformed with a nucleic acid molecule comprising the simian adenovirus inverted terminal repeats.
- 38. A composition comprising a recombinant virus according to claim 29 in a pharmaceutically acceptable carrier.
- 39. A method for delivering a heterologous gene to a mammalian cell comprising introducing into said cell an effective amount of the recombinant virus according to claim 29.
- 40. A method for repeat administration of a heterologous gene to a mammal comprising the steps of:
 - (a) introducing into said mammal a first vector which comprises the heterologous gene and
 - (b) introducing into said mammal a second vector which comprises the heterologous gene; wherein at least the first virus or the second vector is a virus according to claim 29 and wherein the first and second recombinant vector are different.
- 41. A method for producing a selected gene product comprising infecting a mammalian cell with the recombinant virus according to claim 29, culturing said cell under suitable conditions and recovering from said cell culture the expressed gene product.
- 42. A method for eliciting an immune response in a mammalian host against an infective agent comprising administering to said host an effective amount of the

recombinant adenovirus of claim 29, wherein said heterologous gene encodes an antigen of the infective agent.

43. The method according to claim 42, comprising the step of priming the host with a DNA vaccine comprising the heterologous gene prior to administering the recombinant adenovirus.

Fig. 1

Simian Adenovirus 34302 bp

Fig. 2

Ad H5S25H5eGFP 31518 bp

SEQUENCE LISTING

The Trustees of the University of Pennsylvania <110> Roy, Soumitra Wilson, James M. Methods of Generating Chimeric Adenoviruses and Uses For Such <120> Chimeric Adenoviruses UPN-P3067PCT <130> <150> US 10/465,302 2003-06-20 <151> <150> US 60/566,212 2004-04-28 <151> US 60/575,429 <150> <151> 2004-05-28 <160> 18 <170> PatentIn version 3.2 <210> <211> 36462 <212> DNA chimpanzee adenovirus serotype Pan5 <213> <400> 1 60 catcatcaat aatatacctc aaacttttgg tgcgcgttaa tatgcaaatg aggtatttga 120 tgacgttttg atgacgtggc cgtgaggcgg agccggtttg caagttctcg tgggaaaagt 180 gacgtcaaac gaggtgtggt ttgaacacgg aaatactcaa ttttcccgcg ctctctgaca 240 300 ggaaatgagg tgtttctggg cggatgcaag tgaaaacggg ccattttcgc gcgaaaactg 360 aatqaqqaaq tqaaaatctg agtaattccg cgtttatggc agggaggagt atttgccgag 420 ggccgagtag actttgaccg attacgtggg ggtttcgatt accgtatttt tcacctaaat 480 ttccqcqtac qqtqtcaaaq tccqqtqttt ttacqtaggt gtcagctgat cgccagggta 540 tttaaacctq cgctctctag tcaagaggcc actcttgagt gccagcgagt agagttttct 600 cctccqcqcc qcqaqtcaqa tctacacttt gaaagatgag gcacctgaga gacctgcccg 660 qtaatqtttt cctqqctact qqqaacqaqa ttctqqaact qqtqqtqqac qccatgatgq gtgacgaccc tccggagccc cctaccccat ttgaagcgcc ttcgctgtac gatttgtatg 720 atctggaggt ggatgtgccc gagaacgacc ccaacgagga ggcggtgaat gatttgttta 780 qcqatqccqc qctqctgqct gccgagcagg ctaatacgga ctctggctca gacagcgatt 840 900 cctctctcca taccccgaga cccggcagag gtgagaaaaa gatccccgag cttaaagggg 960 aagagctcga cctgcgctgc tatgaggaat gcttgcctcc gagcgatgat gaggaggacg 1020 aggaggcgat tcgagctgca gcgaaccagg gagtgaaaac agcgagcgag ggctttagcc 1080 tggactgtcc tactctgccc ggacacggct gtaagtcttg tgaatttcat cgcatgaata 1140 ctggagataa gaatgtgatg tgtgccctgt gctatatgag agcttacaac cattgtgttt acagtaagtg tgattaactt tagctgggga ggcagagggt gactgggtgc tgactggttt 1200

Page 1

atttatgtat	atgttttta	tgtgtaggtc	ccgtctctga	cgtagatgag	acccccacta	1260
cagagtgcat	ttcatcaccc	ccagaaattg	gcgaggaacc	gcccgaagat	attattcata	1320
gaccagttgc	agtgagagtc	accgggcgta	gagcagctgt	ggagagtttg	gatgacttgc	1380
tacagggtgg	ggatgaacct	ttggacttgt	gtacccggaa	acgccccagg	cactaagtgc	1440
cacacatgtg	tgtttactta	aggtgatgtc	agtatttata	gggtgtggag	tgcaataaaa	1500
tccgtgttga	ctttaagtgc	gtggtttatg	actcaggggt	ggggactgtg	ggtatataag	1560
caggtgcaga	cctgtgtggt	cagttcagag	caggactcat	ggagatctgg	acagtcttgg	1620
aagactttca	ccagactaga	cagctgctag	agaactcatc	ggagggagtc	tcttacctgt	1680
ggagattctg	cttcggtggg	cctctagcta	agctagtcta	tagggccaag	caggattata	1740
aggatcaatt	tgaggatatt	ttgagagagt	gtcctggtat	ttttgactct	ctcaacttgg	1800
gccatcagtc	tcactttaac	cagagtattc	tgagagccct	tgacttttct	actcctggca	1860
gaactaccgc	cgcggtagcc	ttttttgcct	ttatccttga	caaatggagt	caagaaaccc	1920
atttcagcag	ggattaccgt	ctggactgct	tagcagtagc	tttgtggaga	acatggaggt	1980
gccagcgcct	gaatgcaatc	tccggctact	tgccagtaca	gccggtagac	acgctgagga	2040
tcctgagtct	ccagtcaccc	caggaacacc	aacgccgcca	gcagccgcag	caggagcagc	2100
agcaagagga	ggaccgagaa	gagaacctga	gagccggtct	ggaccctccg	gtggcggagg	2160
aggaggagta	gctgacttgt	ttcccgagct	gcgccgggtg	ctgactaggt	cttccagtgg	2220
acgggagagg	gggattaagc	gggagaggca	tgaggagact	agccacagaa	ctgaactgac	2280
tgtcagtctg	atgagtcgca	ggcgcccaga	atcggtgtgg	tggcatgagg	tgcagtcgca	2340
ggggatagat	gaggtctcag	tgatgcatga	gaaatattcc	ctagaacaag	tcaagacttg	2400
ttggttggag	cccgaggatg	attgggaggt	agccatcagg	aattatgcca	agctggctct	2460
gaggccagac	aagaagtaca	agattaccaa	actgattaat	atcagaaatt	cctgctacat	2520
ttcagggaat	ggggccgagg	tggagatcag	tacccaggag	agggtggcct	tcagatgctg	2580
catgatgaat	atgtacccgg	gggtggtggg	catggaggga	gtcaccttta	tgaacgcgag	2640
gttcaggggt	gatgggtata	atggggtggt	ctttatggcc	aacaccaagc	tgacagtgca	2700
cggatgctcc	ttctttggct	tcaataacat	gtgcattgag	gcctggggca	gtgtttcagt	2760
gaggggatgc	agtttttcag	ccaactggat	gggggtcgtg	ggcagaacca	agagcatggt	2820
gtcagtgaag	aaatgcctgt	tcgagaggtg	ccacctgggg	gtgatgagcg	agggcgaagc	2880
caaagtcaaa	cactgcgcct	ctaccgagac	gggctgcttt	gtactgatca	agggcaatgc	2940
caaagtcaag	cataatatga	tctgtggggc	ctcggatgag	cgcggctacc	agatgctgac	3000
ctgcgccggt	gggaacagcc	atatgctagc	caccgtgcat	gtggcctcgc	acccccgcaa	3060
gacatggccc	gagttcgagc	acaacgtcat	gacccgctgc	aatgtgcacc	tggggtcccg	3120
ccgaggcatg	ttcatgccct	accagtgcaa	catgcaattt	gtgaaggtgc	tgctggagcc	3180
cgatgccatg	tccagagtga	gcctgacggg	ggtgtttgac	atgaatgtgg	agctgtggaa	3240

aattctgaga	tatgatgaat	ccaagaccag	gtgccgggcc	tgcgaatgcg	gaggcaagca	3300
cgccaggctt	cagcccgtgt	gtgtggaggt	gacggaggac	ctgcgacccg	atcatttggt	3360
gttgtcctgc	aacgggacgg	agttcggctc	cagcggggaa	gaatctgact	agagtgagta	3420
gtgtttggga	ctgggtggga	gcctgcatga	tgggcagaat	gactaaaatc	tgtgttttc	3480
tgcgcagcag	catgagcgga	agcgcctcct	ttgagggagg	ggtattcagc	ccttatctga	3540
cggggcgtct	cccctcctgg	gcgggagtgc	gtcagaatgt	gatgggatcc	acggtggacg	3600
gccggcccgt	gcagcccgcg	aactcttcaa	ccctgaccta	cgcgaccctg	agctcctcgt	3660
ccgtggacgc	agctgccgcc	gcagctgctg	cttccgccgc	cagcgccgtg	cgcggaatgg	3720
ccctgggcgc	cggctactac	agctctctgg	tggccaactc	gagttccacc	aataatcccg	3780
ccagcctgaa	cgaggagaag	ctgctgctgc	tgatggccca	gctcgaggcc	ctgacccagc	3840
gcctgggcga	gctgacccag	caggtggctc	agctgcaggc	ggagacgcgg	gccgcggttg	3900
ccacggtgaa	aaccaaataa	aaaatgaatc	aataaataaa	cggagacggt	tgttgatttt	3960
aacacagagt	cttgaatctt	tatttgattt	ttcgcgcgcg	gtaggccctg	gaccaccggt	4020
ctcgatcatt	gagcacccgg	tggatctttt	ccaggacccg	gtagaggtgg	gcttggatgt	4080
tgaggtacat	gggcatgagc	ccgtcccggg	ggtggaggta	gctccattgc	agggcctcgt	4140
gctcgggggt	ggtgttgtaa	atcacccagt	catagcaggg	gcgcagggcg	tggtgctgca	4200
cgatgtcctt	gaggaggaga	ctgatggcca	cgggcagccc	cttggtgtag	gtgttgacga	4260
acctgttgag	ctgggaggga	tgcatgcggg	gggagatgag	atgcatcttg	gcctggatct	4320
tgagattggc	gatgttcccg	cccagatccc	gccgggggtt	catgttgtgc	aggaccacca	4380
gcacggtgta	tccggtgcac	ttggggaatt	tgtcatgcaa	cttggaaggg	aaggcgtgaa	4440
agaatttgga	gacgcccttg	tgaccgccca	ggttttccat	gcactcatcc	atgatgatgg	4500
cgatgggccc	gtgggcggcg	gcttgggcaa	agacgtttcg	ggggtcggac	acatcgtagt	4560
tgtggtcctg	ggtgagctcg	tcataggcca	ttttaatgaa	tttggggcgg	agggtgcccg	4620
actgggggac	gaaggtgccc	tcgatcccgg	gggcgtagtt	gccctcgcag	atctgcatct	4680
cccaggcctt	gagctcggag	ggggggatca	tgtccacctg	cggggcgatg	aaaaaacgg	4740
tttccggggc	gggggagatg	agctgggccg	aaagcaggtt	ccggagcagc	tgggacttgc	4800
cgcagccggt	ggggccgtag	atgaccccga	tgaccggctg	caggtggtag	ttgagggaga	4860
gacagctgcc	gtcctcgcgg	aggaggggg	ccacctcgtt	catcatctcg	cgcacatgca	4920
tgttctcgcg	cacgagttcc	gccaggaggc	gctcgccccc	aagcgagagg	agctcttgca	4980
gcgaggcgaa	gtttttcagc	ggcttgagcc	cgtcggccat	gggcattttg	gagagggtct	5040
gttgcaagag	ttccagacgg	tcccagagct	cggtgatgtg	ctctagggca	tctcgatcca	5100
gcagacctcc	tcgtttcgcg	ggttggggcg	actgcgggag	tagggcacca	ggcgatgggc	5160
gtccagcgag	gccagggtcc	ggtccttcca	ggggcgcagg	gtccgcgtca	gcgtggtctc	5220
cgtcacggtg	aaggggtgcg	cgccgggctg	ggcgcttgcg	agggtgcgct	tcaggctcat	5280
ccggctggtc	gagaaccgct	cccggtcggc	gccctgcgcg Page 3		agcaattgag	5340

catgagttcg	tagttgagcg	cctcaaccac	ataaccctta	gcgcggagct	tacctttgga	5400
	cagacgggac					5460
	ggggcgtagg					5520
	aggtctggcc					5580
	cctctggtct					5640
	tagaccgact					5700
	cccgcccact					5760
	gggtagcggt					5820
	ccctcgtcca					5880
	ccggccgggg					5940
	ctgtccagga					6000
	gcactcaggt					6060
gccgttggag	acgcctttca	tgagcccctc	gtccatctgg	tcagaaaaga	cgatcttttt	6120
gttgtcgagc	ttggtggcga	aggagccgta	gagggcgttg	gagagcagct	tggcgatgga	6180
gcgcatggtc	tggttctttt	ccttgtcggc	gcgctccttg	gcggcgatgt	tgagctgcac	6240
gtactcgcgc	gccacgcact	tccattcggg	gaagacggtg	gtgagcttgt	cgggcacgat	6300
tctgacccgc	cagccgcggt	tgtgcagggt	gatgaggtcc	acgctggtgg	ccacctcgcc	6360
gcgcaggggc	tcgttggtcc	agcagaggcg	cccgcccttg	cgcgagcaga	aggggggcag	6420
cgggtccagc	atgagctcgt	cgggggggtc	ggcgtccacg	gtgaagatgc	cgggcaggag	6480
ctcggggtcg	aagtagctga	tgcaggtgcc	cagatcgtcc	agcgccgctt	gccagtcgcg	6540
cacggccagc	gcgcgctcgt	aggggctgag	gggcgtgccc	cagggcatgg	ggtgcgtgag	6600
cgcggaggcg	tacatgccgc	agatgtcgta	gacgtagagg	ggctcctcga	ggacgccgat	6660
gtaggtgggg	tagcagcgcc	ccccgcggat	gctggcgcgc	acgtagtcgt	acagctcgtg	6720
cgagggcgcg	aggagcccgg	tgccgaggtt	ggagcgctgc	ggcttttcgg	cgcggtagac	6780
gatctggcgg	aagatggcgt	gggagttgga	ggagatggtg	ggcctctgga	agatgttgaa	6840
gtgggcgtgg	ggcagtccga	ccgagtccct	gatgaagtgg	gcgtaggagt	cctgcagctt	6900
ggcgacgagc	tcggcggtga	cgaggacgtc	cagggcgcag	tagtcgaggg	tctcttggat	6960
gatgtcgtac	ttgagctggc	ccttctgctt	ccacagctcg	cggttgagaa	ggaactcttc	7020
gcggtccttc	cagtactctt	cgagggggaa	cccgtcctga	tcggcacggt	aagagcccac	7080
catgtagaac	tggttgacgg	ccttgtaggc	gcagcagccc	ttctccacgg	ggagggcgta	7140
agcttgcgcg	gccttgcgca	gggaggtgtg	ggtgagggcg	aaggtgtcgc	gcaccatgac	7200
cttgaggaac	tggtgcttga	agtcgaggtc	gtcgcagccg	ccctgctccc	agagctggaa	7260
gtccgtgcgc	ttcttgtagg	cggggttggg	caaagcgaaa	gtaacatcgt	tgaagaggat	7320
cttgcccgcg	cggggcatga	agttgcgagt	gatgcggaaa	ggctggggca	cctcggcccg	7380

gttgttgatg	acctgggcgg	cgaggacgat	ctcgtcgaag	ccgttgatgt	tgtgcccgac	7440
gatgtagagt	tccacgaatc	gcgggcggcc	cttgacgtgg	ggcagcttct	tgagctcgtc	7500
gtaggtgagc	tcggcggggt	cgctgaggcc	gtgctgctcg	agggcccagt	cggcgaggtg	7560
ggggttggcg	ccgaggaagg	aagtccagag	atccacggcc	agggcggtct	gcaagcggtc	7620
ccggtactga	cggaactgct	ggcccacggc	cattttttcg	ggggtgacgc	agtagaaggt	7680
gcgggggtcg	ccgtgccagc	ggtcccactt	gagctggagg	gcgaggtcgt	gggcgagctc	7740
gacgagcggc	gggtccccgg	agagtttcat	gaccagcatg	aaggggacga	gctgcttgcc	7800
gaaggacccc	atccaggtgt	aggtttccac	gtcgtaggtg	aggaagagcc	tttcggtgcg	7860
aggatgcgag	ccgatgggga	agaactggat	ctcctgccac	cagttggagg	aatggctgtt	7920
gatgtgatgg	aagtagaaat	gccgacggcg	cgccgagcac	tcgtgcttgt	gtttatacaa	7980
gcgtccgcag	tgctcgcaac	gctgcacggg	atgcacgtgc	tgcacgagct	gtacctgggt	8040
tcctttgacg	aggaatttca	gtgggcagtg	gagcgctggc	ggctgcatct	ggtgctgtac	8100
tacgtcctgg	ccatcggcgt	ggccatcgtc	tgcctcgatg	gtggtcatgc	tgacgaggcc	8160
gcgcgggagg	caggtccaga	cctcggctcg	gacgggtcgg	agagcgagga	cgagggcgcg	8220
caggccggag	ctgtccaggg	tcctgagacg	ctgcggagtc	aggtcagtgg	gcagcggcgg	8280
cgcgcggttg	acttgcagga	gcttttccag	ggcgcgcggg	aggtccagat	ggtacttgat	8340
ctccacggcg	ccgttggtgg	cgacgtccac	ggcttgcagg	gtcccgtgcc	cctggggcgc	8400
caccaccgtg	ccccgtttct	tcttgggtgc	tggcggcggc	ggctccatgc	ttagaagcgg	8460
cggcgaggac	gcgcgccggg	cggcaggggc	ggctcggggc	ccggaggcag	gggcggcagg	8520
ggcacgtcgg	cgccgcgcgc	gggcaggttc	tggtactgcg	cccggagaag	actggcgtga	8580
gcgacgacgc	gacggttgac	gtcctggatc	tgacgcctct	gggtgaaggc	cacgggaccc	8640
gtgagtttga	acctgaaaga	gagttcgaca	gaatcaatct	cggtatcgtt	gacggcggcc	8700
tgccgcagga	tctcttgcac	gtcgcccgag	ttgtcctggt	aggcgatctc	ggtcatgaac	8760
tgctcgatct	cctcctcctg	aaggtctccg	cgaccggcgc	gctcgacggt	ggccgcgagg	8820
tcgttggaga	tgcggcccat	gagctgcgag	aaggcgttca	tgccggcctc	gttccagacg	8880
cggctgtaga	ccacggctcc	gtcggggtcg	cgcgcgcgca	tgaccacctg	ggcgaggttg	8940
agctcgacgt	ggcgcgtgaa	gaccgcgtag	ttgcagaggc	gctggtagag	gtagttgagc	9000
gtggtggcga	tgtgctcggt	gacgaagaag	tacatgatcc	agcggcggag	cggcatctcg	9060
ctgacgtcgc	ccagggcttc	caagcgctcc	atggcctcgt	agaagtccac	ggcgaagttg	9120
aaaaactggg	agttgcgcgc	cgagacggtc	aactcctcct	ccagaagacg	gatgagctcg	9180
gcgatggtgg	cgcgcacctc	gcgctcgaag	gccccggggg	gctcctcttc	ttccatctcc	9240
tcctcctctt	ccatctcctc	cactaacatc	tcttctactt	cctcctcagg	aggcggcggc	9300
gggggagggg	ccctgcgtcg	ccggcggcgc	acgggcagac	ggtcgatgaa	gcgctcgatg	9360
gtctccccgc	gccggcgacg	catggtctcg	gtgacggcgc	gcccgtcctc	gcggggccgc	9420
agcgtgaaga	cgccgccgcg	catctccagg	tggccgccgg Page 5	gggggtctcc	gttgggcagg	9480

gagagggcgc	tgacgatgca	tcttatcaat	tggcccgtag	ggactccgcg	caaggacctg	9540
agcgtctcga	gatccacggg	atccgaaaac	cgctgaacga	aggcttcgag	ccagtcgcag	9600
tcgcaaggta	ggctgagccc	ggtttcttgt	tcttcgggta	tttggtcggg	aggcgggcgg	9660
gcgatgctgc	tggtgatgaa	gttgaagtag	gcggtcctga	gacggcggat	ggtggcgagg	9720
agcaccaggt	ccttgggccc	ggcttgctgg	atgcgcagac	ggtcggccat	gccccaggcg	9780
tggtcctgac	acctggcgag	gtccttgtag	tagtcctgca	tgagccgctc	cacgggcacc	9840
tcctcctcgc	ccgcgcggcc	gtgcatgcgc	gtgagcccga	acccgcgctg	cggctggacg	9900
agcgccaggt	cggcgacgac	gcgctcggcg	aggatggcct	gctggatctg	ggtgagggtg	9960
gtctggaagt	cgtcgaagtc	gacgaagcgg	tggtaggctc	cggtgttgat	ggtgtaggag	10020
cagttggcca	tgacggacca	gttgacggtc	tggtggccgg	ggcgcacgag	ctcgtggtac	10080
ttgaggcgcg	agtaggcgcg	cgtgtcgaag	atgtagtcgt	tgcaggtgcg	cacgaggtac	10140
tggtatccga	cgaggaagtg	cggcggcggc	tggcggtaga	gcggccatcg	ctcggtggcg	10200
ggggcgccgg	gcgcgaggtc	ctcgagcatg	aggcggtggt	agccgtagat	gtacctggac	10260
atccaggtga	tgccggcggc	ggtggtggag	gcgcgcggga	actcgcggac	gcggttccag	10320
atgttgcgca	gcggcaggaa	gtagttcatg	gtggccgcgg	tctggcccgt	gaggcgcgcg	10380
cagtcgtgga	tgctctagac	atacgggcaa	aaacgaaagc	ggtcagcggc	tcgactccgt	10440
ggcctggagg	ctaagcgaac	gggttgggct	gcgcgtgtac	cccggttcga	gtccctgctc	10500
gaatcaggct	ggagccgcag	ctaacgtggt	actggcactc	ccgtctcgac	ccaagcctgc	10560
taacgaaacc	tccaggatac	ggaggcgggt	cgttttggcc	attttcgtca	ggccggaaat	10620
gaaactagta	agcgcggaaa	gcggccgtcc	gcgatggctc	gctgccgtag	tctggagaaa	10680
gaatcgccag	ggttgcgttg	cggtgtgccc	cggttcgagc	ctcagcgctc	ggcgccggcc	10740
ggattccgcg	gctaacgtgg	gcgtggctgc	cccgtcgttt	ccaagacccc	ttagccagcc	10800
gacttctcca	gttacggagc	gagcccctct	ttttcttgtg	tttttgccag	atgcatcccg	10860
tactgcggca	gatgcgcccc	caccctccac	cacaaccgcc	cctaccgcag	cagcagcaac	10920
agccggcgct	tctgcccccg	ccccagcagc	agcagccagc	cactaccgcg	gcggccgccg	10980
tgagcggagc	cggcgttcag	tatgacctgg	ccttggaaga	gggcgagggg	ctggcgcggc	11040
tgggggcgtc	gtcgccggag	cggcacccgc	gcgtgcagat	gaaaagggac	gctcgcgagg	11100
cctacgtgcc	caagcagaac	ctgttcagag	acaggagcgg	cgaggagccc	gaggagatgc	11160
gcgcctcccg	cttccacgcg	gggcgggagc	tgcggcgcgg	cctggaccga	aagcgggtgc	11220
tgagggacga	ggatttcgag	gcggacgagc	tgacggggat	cagccccgcg	cgcgcgcacg	11280
tggccgcggc	caacctggtc	acggcgtacg	agcagaccgt	gaaggaggag	agcaacttcc	11340
aaaaatcctt	caacaaccac	gtgcgcacgc	tgatcgcgcg	cgaggaggtg	accctgggcc	11400
tgatgcacct	gtgggacctg	ctggaggcca	tcgtgcagaa	ccccacgagc	aagccgctga	11460
cggcgcagct	gtttctggtg	gtgcagcaca	gtcgggacaa	cgagacgttc	agggaggcgc	11520

11580 tgctgaatat caccgagccc gagggccgct ggctcctgga cctggtgaac attctgcaga gcatcgtggt gcaggagcgc gggctgccgc tgtccgagaa gctggcggcc atcaacttct 11640 cggtgctgag cctgggcaag tactacgcta ggaagatcta caagaccccg tacgtgccca 11700 tagacaagga ggtgaagatc gacgggtttt acatgcgcat gaccctgaaa gtgctgaccc 11760 11820 tgagcgacga tctgggggtg taccgcaacg acaggatgca ccgcgcggtg agcgccagcc 11880 gccggcgcga gctgagcgac caggagctga tgcacagcct gcagcgggcc ctgaccgggg 11940 ccgggaccga gggggagagc tactttgaca tgggcgcgga cctgcgctgg cagcctagcc 12000 gccgggcctt ggaagctgcc ggcggttccc cctacgtgga ggaggtggac gatgaggagg aggagggcga gtacctggaa gactgatggc gcgaccgtat ttttgctaga tgcagcaaca 12060 12120 gccaccgccg cctcctgatc ccgcgatgcg ggcggcgctg cagagccagc cgtccggcat 12180 taactcctcg gacgattgga cccaggccat gcaacgcatc atggcgctga cgacccgcaa tcccgaagcc tttagacagc agcctcaggc caaccgactc tcggccatcc tggaggccgt 12240 12300 ggtgccctcg cgctcgaacc ccacgcacga gaaggtgctg gccatcgtga acgcgctggt 12360 ggagaacaag gccatccgcg gcgacgaggc cgggctggtg tacaacgcgc tgctggagcg 12420 cgtggcccgc tacaacagca ccaacgtgca gacgaacctg gaccgcatgg tgaccgacgt 12480 gcgcgaggcg gtgtcgcagc gcgagcggtt ccaccgcgag tcgaacctgg gctccatggt 12540 ggcgctgaac gccttcctga gcacgcagcc cgccaacgtg ccccggggcc aggaggacta 12600 caccaacttc atcagcgcgc tgcggctgat ggtggccgag gtgccccaga gcgaggtgta 12660 ccagtcgggg ccggactact tcttccagac cagtcgccag ggcttgcaga ccgtgaacct 12720 gagccaggct ttcaagaact tgcagggact gtggggcgtg caggccccgg tcggggaccg 12780 cgcgacggtg tcgagcctgc tgacgccgaa ctcgcgcctg ctgctgctgc tggtggcgcc 12840 cttcacggac agcggcagcg tgagccgcga ctcgtacctg ggctacctgc ttaacctgta 12900 ccgcgaggcc atcgggcagg cgcacgtgga cgagcagacc taccaggaga tcacccacgt 12960 gagccgcgcg ctgggccagg aggacccggg caacctggag gccaccctga acttcctgct gaccaaccgg tcgcagaaga tcccgcccca gtacgcgctg agcaccgagg aggagcgcat 13020 13080 cctgcgctac gtgcagcaga gcgtggggct gttcctgatg caggaggggg ccacgcccag 13140 cgccgcgctc gacatgaccg cgcgcaacat ggagcccagc atgtacgccc gcaaccgccc gttcatcaat aagctgatgg actacttgca tcgggcggcc gccatgaact cggactactt 13200 13260 taccaacgcc atcttgaacc cgcactggct cccgccgccc gggttctaca cgggcgagta 13320 cgacatgccc gaccccaacg acgggttcct gtgggacgac gtggacagca gcgtgttctc gccgcgcccc accaccacca ccgtgtggaa gaaagagggc ggggaccggc ggccgtcctc 13380 13440 ggcgctgtcc ggtcgcgcgg gtgctgccgc ggcggtgccc gaggccgcca gccccttccc 13500 gagcctgccc ttttcgctga acagcgtgcg cagcagcgag ctgggtcggc tgacgcggcc gcgcctgctg ggcgaggagg agtacctgaa cgactccttg cttcggcccg agcgcgagaa 13560 13620 gaacttcccc aataacggga tagagagcct ggtggacaag atgagccgct ggaagacgta Page 7

_ ----

cgcgcacgag cacagggacg	agccccgagc	tagcagcagc	accggcgcca	cccgtagacg	13680
ccagcggcac gacaggcagc	ggggtctggt	gtgggacgat	gaggattccg	ccgacgacag	13740
cagcgtgttg gacttgggtg	ggagtggtgg	tggtaacccg	ttcgctcacc	tgcgcccccg	13800
tatcgggcgc ctgatgtaag	aatctgaaaa	aataaaagac	ggtactcacc	aaggccatgg	13860
cgaccagcgt gcgttcttct	ctgttgtttg	tagtagtatg	atgaggcgcg	tgtacccgga	13920
gggtcctcct ccctcgtacg	agagcgtgat	gcagcaggcg	gtggcggcgg	cgatgcagcc	13980
cccgctggag gcgccttacg	tgcccccgcg	gtacctggcg	cctacggagg	ggcggaacag	14040
cattcgttac tcggagctgg	cacccttgta	cgataccacc	cggttgtacc	tggtggacaa	14100
caagtcggcg gacatcgcct	cgctgaacta	ccagaacgac	cacagcaact	tcctgaccac	14160
cgtggtgcag aacaacgatt	tcacccccac	ggaggccagc	acccagacca	tcaactttga	14220
cgagcgctcg cggtggggcg	gccagctgaa	aaccatcatg	cacaccaaca	tgcccaacgt	14280
gaacgagttc atgtacagca	acaagttcaa	ggcgcgggtg	atggtctcgc	gcaagacccc	14340
caacggggtc acagtaacag	atggtagtca	ggacgagctg	acctacgagt	gggtggagtt	14400
tgagctgccc gagggcaact	tctcggtgac	catgaccatc	gatctgatga	acaacgccat	14460
catcgacaac tacttggcgg	tggggcggca	gaacggggtg	ctggagagcg	acatcggcgt	14520
gaagttcgac acgcgcaact	tccggctggg	ctgggacccc	gtgaccgagc	tggtgatgcc	14580
gggcgtgtac accaacgagg	ccttccaccc	cgacatcgtc	ctgctgcccg	gctgcggcgt	14640
ggacttcacc gagagccgcc	tcagcaacct	gctgggcatc	cgcaagcggc	agcccttcca	14700
ggagggcttc cagatcctgt	acgaggacct	ggagggggc	aacatccccg	cgctgctgga	14760
cgtggacgcc tacgagaaaa	gcaaggagga	tagcgccgcc	gcggcgaccg	cagccgtggc	14820
caccgcctct accgaggtgc	ggggcgataa	ttttgctagc	gccgcgacac	tggcagcggc	14880
cgaggcggct gaaaccgaaa	gtaagatagt	gatccagccg	gtggagaagg	acagcaagga	14940
gaggagctac aacgtgctcg	cggacaagaa	aaacaccgcc	taccgcagct	ggtacctggc	15000
ctacaactac ggcgaccccg	agaagggcgt	gcgctcctgg	acgctgctca	ccacctcgga	15060
cgtcacctgc ggcgtggagc	aagtctactg	gtcgctgccc	gacatgatgc	aagacccggt	15120
caccttccgc tccacgcgtc	aagttagcaa	ctacccggtg	gtgggcgccg	agctcctgcc	15180
cgtctactcc aagagcttct	tcaacgagca	ggccgtctac	tcgcagcagc	tgcgcgcctt	15240
cacctcgctc acgcacgtct	tcaaccgctt	ccccgagaac	cagatcctcg	ttcgcccgcc	15300
cgcgcccacc attaccaccg	tcagtgaaaa	cgttcctgct	ctcacagatc	acgggaccct	15360
gccgctgcgc agcagtatcc	ggggagtcca	gcgcgtgacc	gtcactgacg	ccagacgccg	15420
cacctgcccc tacgtctaca	aggccctggg	cgtagtcgcg	ccgcgcgtcc	tctcgagccg	15480
caccttctaa aaaatgtcca	ttctcatctc	gcccagtaat	aacaccggtt	ggggcctgcg	15540
cgcgcccagc aagatgtacg	gaggcgctcg	ccaacgctcc	acgcaacacc	ccgtgcgcgt	15600
gcgcgggcac ttccgcgctc	cctggggcgc	cctcaagggc	cgcgtgcgct	cgcgcaccac	15660

cgtcgacgac gtgatcgacc aggtggtggc cgacgcgcgc aactacacgc ccgccgccgc 15780 gcccgtctcc accgtggacg ccgtcatcga cagcgtggtg gccgacgcgc gccggtacgc 15840 ccgcgccaag agccggcggc ggcgcatcgc ccggcggcac cggagcaccc ccgccatgcg 15900 cgcggcgcga gccttgctgc gcagggccag gcgcacggga cgcagggcca tgctcagggc 15960 ggccagacgc gcggcctccg gcagcagcag cgccggcagg acccgcagac gcgcggccac ggcggcggcg gcggccatcg ccagcatgtc ccgcccgcgg cgcggcaacg tgtactgggt 16020 16080 gcgcgacgcc gccaccggtg tgcgcgtgcc cgtgcgcacc cgcccccctc gcacttgaag 16140 atgctgactt cgcgatgttg atgtgtccca gcggcgagga ggatgtccaa gcgcaaattc 16200 aaggaagaga tgctccaggt catcgcgcct gagatctacg gcccggcggc ggtgaaggag 16260 gaaagaaagc cccgcaaact gaagcgggtc aaaaaggaca aaaaggagga ggaagatgtg 16320 gacggactgg tggagtttgt gcgcgagttc gcccccggc ggcgcgtgca gtggcgcggg 16380 cggaaagtga aaccggtgct gcgacccggc accacggtgg tcttcacgcc cggcgagcgt 16440 tccggctccg cctccaagcg ctcctacgac gaggtgtacg gggacgagga catcctcgag 16500 caggcggccg aacgtctggg cgagtttgct tacggcaagc gcagccgccc cgcgcccttg 16560 aaagaggagg cggtgtccat cccgctggac cacggcaacc ccacgccgag cctgaagccg 16620 16680 ggcgaggatc tgtacccgac catgcagctg atggtgccca agcgccagaa gctggaggac 16740 gtgctggagc acatgaaggt ggaccccgag gtgcagcccg aggtcaaggt gcggcccatc 16800 aagcaggtgg ccccgggcct gggcgtgcag accgtggaca tcaagatccc cacggagccc 16860 atggaaacgc agaccgagcc cgtgaagccc agcaccagca ccatggaggt gcagacggat 16920 ccctggatgc cggcaccggc ttccaccacc cgccgaagac gcaagtacgg cgcggccagc ctgctgatgc ccaactacgc gctgcatcct tccatcatcc ccacgccggg ctaccgcggc 16980 acgcgcttct accgcggcta caccagcagc cgccgccgca agaccaccac ccgccgccgc 17040 17100 cgtcgtcgca cccgccgcag cagcaccgcg acttccgccg ccgccctggt gcggagagtg taccgcagcg ggcgcgagcc tctgaccctg ccgcgcgcgc gctaccaccc gagcatcgcc 17160 atttaactac cgcctcctac ttgcagatat ggccctcaca tgccgcctcc gcgtccccat 17220 17280 tacgggctac cgaggaagaa agccgcgccg tagaaggctg acggggaacg ggctgcgtcg ccatcaccac cggcggcggc gcgccatcag caagcggttg gggggaggct tcctgcccgc 17340 17400 gctgatgccc atcatcgccg cggcgatcgg ggcgatcccc ggcatagctt ccgtggcggt gcaggcctct cagcgccact gagacacagc ttggaaaatt tgtaataaaa aatggactga 17460 17520 cgctcctggt cctgtgatgt gtgtttttag atggaagaca tcaatttttc gtccctggca ccgcgacacg gcacgcggcc gtttatgggc acctggagcg acatcggcaa cagccaactg 17580 aacgggggcg ccttcaattg gagcagtctc tggagcgggc ttaagaattt cgggtccacg 17640 ctcaaaacct atggcaacaa ggcgtggaac agcagcacag ggcaggcgct gagggaaaag 17700 ctgaaagagc agaacttcca gcagaaggtg gtcgatggcc tggcctcggg catcaacggg 17760

Page 9

17820 gtggtggacc tggccaacca ggccgtgcag aaacagatca acagccgcct ggacgcggtc 17880 ccgcccgcgg ggtccgtgga gatgccccag gtggaggagg agctgcctcc cctggacaag 17940 cgcggcgaca agcgaccgcg tcccgacgcg gaggagacgc tgctgacgca cacggacgag 18000 ccgccccgt acgaggaggc ggtgaaactg ggtctgccca ccacgcggcc cgtggcgcct 18060 ctggccaccg gggtgctgaa acccagcagc agcagcagcc agcccgcgac cctggacttg 18120 cctccgcctg cttcccgccc ctccacagtg gctaagcccc tgccgccggt ggccgtcgcg 18180 tegegegeee ecegaggeeg ecceeaggeg aactggeaga geactetgaa cageategtg 18240 ggtctgggag tgcagagtgt gaagcgccgc cgctgctatt aaaagacact gtagcgctta 18300 acttgcttgt ctgtgtgtat atgtatgtcc gccgaccaga aggaggagga agaggcgcgt 18360 cgccgagttg caagatggcc accccatcga tgctgcccca gtgggcgtac atgcacatcg ccggacagga cgcttcggag tacctgagtc cgggtctggt gcagttcgcc cgcgccacag 18420 18480 acacctactt cagtctgggg aacaagttta ggaaccccac ggtggcgccc acgcacgatg 18540 tgaccaccga ccgcagccag cggctgacgc tgcgcttcgt gcccgtggac cgcgaggaca 18600 acacctactc gtacaaagtg cgctacacgc tggccgtggg cgacaaccgc gtgctggaca 18660 tggccagcac ctactttgac atccgcggcg tgctggatcg gggccctagc ttcaaaccct 18720 actccggcac cgcttacaac agcctggctc ccaagggagc gcccaacact tgccagtgga 18780 catataaagc tgatggtgat actggtacag aaaaaaccta tacatatgga aatgcgcctg 18840 tgcaaggcat tagtattaca aaagatggta ttcaacttgg aactgacact gatgatcagc ccatttatgc agataaaact tatcaaccag agcctcaagt gggtgatgct gaatggcatg 18900 acatcactgg tactgatgaa aaatatggag gcagagctct caagcctgac accaaaatga 18960 agccctgcta tggttctttt gccaagccta ccaataaaga aggaggtcag gcaaatgtga 19020 19080 aaaccgaaac aggcggtacc aaagaatatg acattgacat ggcattcttc gataatcgaa gtgcagctgc ggctggcctg gccccagaaa ttgttttgta tactgagaat gtggatctgg 19140 19200 aaactccaga tactcatatt gtatacaagg cgggcacaga tgacagcagc tcttctatca 19260 atttgggtca gcagtccatg cccaacagac ccaactacat tggctttaga gacaacttta 19320 tegggeteat gtactacaac ageactggea acatgggegt getggetggt caggeetece 19380 agctgaatgc tgtggtggac ttgcaggaca gaaacactga actgtcctac cagctcttgc 19440 ttgactctct gggcgacaga accaggtatt tcagtatgtg gaatcaggcg gtggacagct 19500 atgaccccga tgtgcgcatt attgaaaatc acggtgtgga ggatgaactc cctaactatt 19560 gcttccccct ggatgctgtg ggtagaactg atacttacca gggaattaag gccaatggtg 19620 ctgatcaaac cacctggacc aaagatgata ctgttaatga tgctaatgaa ttgggcaagg 19680 gcaatccttt cgccatggag atcaacatcc aggccaacct gtggcggaac ttcctctacg cgaacgtggc gctgtacctg cccgactcct acaagtacac gccggccaac atcacgctgc 19740 cgaccaacac caacacctac gattacatga acggccgcgt ggtggcgccc tcgctggtgg 19800

acgcctacat	caacatcggg	gcgcgctggt	cgctggaccc	catggacaac	gtcaacccct	19860
tcaaccacca	ccgcaacgcg	ggcctgcgct	accgctccat	gctcctgggc	aacgggcgct	19920
acgtgccctt	ccacatccag	gtgccccaaa	agttcttcgc	catcaagagc	ctcctgctcc	19980
tgcccgggtc	ctacacctac	gagtggaact	tccgcaagga	cgtcaacatg	atcctgcaga	20040
gctccctcgg	caacgacctg	cgcacggacg	gggcctccat	cgccttcacc	agcatcaacc	20100
tctacgccac	cttcttcccc	atggcgcaca	acaccgcctc	cacgctcgag	gccatgctgc	20160
gcaacgacac	caacgaccag	tccttcaacg	actacctctc	ggcggccaac	atgctctacc	20220
ccatcccggc	caacgccacc	aacgtgccca	tctccatccc	ctcgcgcaac	tgggccgcct	20280
tccgcggatg	gtccttcacg	cgcctcaaga	cccgcgagac	gccctcgctc	ggctccgggt	20340
tcgaccccta	cttcgtctac	tcgggctcca	tcccctacct	cgacggcacc	ttctacctca	20400
accacacctt	caagaaggtc	tccatcacct	tcgactcctc	cgtcagctgg	cccggcaacg	20460
accgcctcct	gacgcccaac	gagttcgaaa	tcaagcgcac	cgtcgacgga	gaggggtaca	20520
acgtggccca	gtgcaacatg	accaaggact	ggttcctggt	ccagatgctg	gcccactaca	20580
acatcggcta	ccagggcttc	tacgtgcccg	agggctacaa	ggaccgcatg	tactccttct	20640
tccgcaactt	ccagcccatg	agccgccagg	tcgtggacga	ggtcaactac	aaggactacc	20700
aggccgtcac	cctggcctac	cagcacaaca	actcgggctt	cgtcggctac	ctcgcgccca	20760
ccatgcgcca	gggacagccc	taccccgcca	actaccccta	cccgctcatc	ggcaagagcg	20820
ccgtcgccag	cgtcacccag	aaaaagttcc	tctgcgaccg	ggtcatgtgg	cgcatcccct	20880
tctccagcaa	cttcatgtcc	atgggcgcgc	tcaccgacct	cggccagaac	atgctctacg	20940
ccaactccgc	ccacgcgcta	gacatgaatt	tcgaagtcga	ccccatggat	gagtccaccc	21000
ttctctatgt	tgtcttcgaa	gtcttcgacg	tcgtccgagt	gcaccagccc	caccgcggcg	21060
tcatcgaggc	cgtctacctg	cgcacgccct	tctcggccgg	caacgccacc	acctaagccc	21120
cgctcttgct	tcttgcaaga	tgacggcctg	tgcgggctcc	ggcgagcagg	agctcagggc	21180
catcctccgc	gacctgggct	gcgggccctg	cttcctgggc	accttcgaca	agcgcttccc	21240
gggattcatg	gccccgcaca	agctggcctg	cgccatcgtc	aacacggccg	gccgcgagac	21300
cgggggcgag	cactggctgg	ccttcgcctg	gaacccgcgc	tcccacacct	gctacctctt	21360
cgaccccttc	gggttctcgg	acgagcgcct	caagcagatc	taccagttcg	agtacgaggg	21420
cctgctgcgc	cgcagcgccc	tggccaccga	ggaccgctgc	gtcaccctgg	aaaagtccac	21480
ccagaccgtg	cagggtccgc	gctcggccgc	ctgcgggctc	ttctgctgca	tgttcctgca	21540
cgccttcgtg	cactggcccg	accgccccat	ggacaagaac	cccaccatga	acttgctgac	21600
gggggtgccc	aacggcatgc	tccagtcgcc	ccaggtggaa	cccaccctgc	gccgcaacca	21660
ggaggcgctc	taccgcttcc	tcaacgccca	ctccgcctac	tttcgctccc	accgcgcgcg	21720
catcgagaag	gccaccgcct	tcgaccgcat	gaatcaagac	atgtaaaccg	tgtgtgtatg	21780
tgaatgcttt	attcataata	aacagcacat	gtttatgcca	ccttttctga	ggctctgact	21840
ttatttagaa	atcgaagggg	ttctgccggc	tctcggcgtg Page 11		agggatacgt	21900

21960 tgcggaactg gtacttgggc agccacttga actcggggat cagcagcttc ggcacgggga 22020 ggtcggggaa cgagtcgctc cacagcttgc gcgtgagttg cagggcgccc agcaggtcgg 22080 gcgcggagat cttgaaatcg cagttgggac ccgcgttctg cgcgcgggag ttgcggtaca 22140 cggggttgca gcactggaac accatcaggg ccgggtgctt cacgctcgcc agcaccgtcg 22200 cgtcggtgat gccctccacg tccagatcct cggcgttggc catcccgaag ggggtcatct 22260 tgcaggtctg ccgccccatg ctgggcacgc agccgggctt gtggttgcaa tcgcagtgca 22320 gggggatcag catcatctgg gcctgctcgg agctcatgcc cgggtacatg gccttcatga 22380 aagcctccag ctggcggaag gcctgctgcg ccttgccgcc ctcggtgaag aagaccccgc 22440 aggacttgct agagaactgg ttggtggcgc agccggcgtc gtgcacgcag cagcgcgcgt 22500 cgttgttggc cagctgcacc acgctgcgcc cccagcggtt ctgggtgatc ttggcccggt cggggttctc cttcagcgcg cgctgcccgt tctcgctcgc cacatccatc tcgatcgtgt 22560 22620 gctccttctg gatcatcacg gtcccgtgca ggcatcgcag cttgccctcg gcctcggtgc 22680 acccgtgcag ccacagcgcg cagccggtgc actcccagtt cttgtgggcg atctgggagt 22740 gcgagtgcac gaagccctgc aggaagcggc ccatcatcgt ggtcagggtc ttgttgctgg 22800 tgaaggtcag cgggatgccg cggtgctcct cgttcacata caggtggcag atgcggcggt 22860 acacctcgcc ctgctcgggc atcagctgga aggcggactt caggtcgctc tccacgcggt 22920 accggtccat cagcagcgtc atgacttcca tgcccttctc ccaggccgag acgatcggca 22980 ggctcagggg gttcttcacc gccgttgtca tcttagtcgc cgccgctgag gtcagggggt 23040 cgttctcgtc cagggtctca aacactcgct tgccgtcctt ctcggtgatg cgcacggggg gaaagctgaa gcccacggcc gccagctcct cctcggcctg cctttcgtcc tcgctgtcct 23100 23160 ggctgatgtc ttgcaaaggc acatgcttgg tcttgcgggg tttctttttg ggcggcagag 23220 gcggcggcgg agacgtgctg ggcgagcgcg agttctcgct caccacgact atttcttctt cttggccgtc gtccgagacc acgcggcggt aggcatgcct cttctggggc agaggcggag 23280 23340 gcgacgggct ctcgcggttc ggcgggcggc tggcagagcc ccttccgcgt tcgggggtgc 23400 gctcctggcg gcgctgctct gactgacttc ctccgcggcc ggccattgtg ttctcctagg gagcaacaag catggagact cagccatcgt cgccaacatc gccatctgcc cccgccgccg 23460 23520 ccgacgagaa ccagcagcag aatgaaagct taaccgcccc gccgcccagc cccacctccg 23580 acgccgccgc ggccccagac atgcaagaga tggaggaatc catcgagatt gacctgggct acgtgacgcc cgcggagcac gaggaggagc tggcagcgcg cttttcagcc ccggaagaga 23640 23700 atggcgacta cctgagcggg gcagaggacg tgctcatcaa gcatctggcc cgccaatgca 23760 tcatcgtcaa ggacgcgctg ctcgaccgcg ccgaggtgcc cctcagcgtg gcggagctca 23820 23880 gccgcgccta cgagcgcaac ctcttctcgc cgcgcgtgcc ccccaagcgc cagcccaacg gcacctgcga gcccaacccg cgcctcaact tctacccggt cttcgcggtg cccgaggccc 23940

tggccaccta	ccacctcttt	ttcaagaacc	aaaggatccc	cgtctcctgc	cgcgccaacc	24000
gcacccgcgc	cgacgccctg	ctcaacctgg	gtcccggcgc	ccgcctacct	gatatcgcct	24060
ccttggaaga	ggttcccaag	atcttcgagg	gtctgggcag	cgacgagact	cgggccgcga	24120
acgctctgca	aggaagcgga	gaggagcatg	agcaccacag	cgccctggtg	gagttggaag	24180
gcgacaacgc	gcgcctggcg	gtgctcaagc	gcacggtcga	gctgacccac	ttcgcctacc	24240
cggcgctcaa	cctgccccc	aaggtcatga	gcgccgtcat	ggaccaggtg	ctcatcaagc	24300
gcgcctcgcc	cctctcggat	gaggacatgc	aggaccccga	gagctcggac	gagggcaagc	24360
ccgtggtcag	cgacgagcag	ctggcgcgct	ggctgggagc	gagtagcacc	ccccagagct	24420
tggaagagcg	gcgcaagctc	atgatggccg	tggtcctggt	gaccgtggag	ctggagtgtc	24480
tgcgccgctt	cttcgccgac	gcagagaccc	tgcgcaaggt	cgaggagaac	ctgcactacc	24540
tcttcaggca	cgggtttgtg	cgccaggcct	gcaagatctc	caacgtggag	ctgaccaacc	24600
tggtctccta	catgggcatc	ctgcacgaga	accgcctggg	gcagaacgtg	ctgcacacca	24660
ccctgcgcgg	ggaggcccgc	cgcgactaca	tccgcgactg	cgtctacctg	tacctctgcc	24720
acacctggca	gacgggcatg	ggcgtgtggc	agcagtgcct	ggaggagcag	aacctgaaag	24780
agctctgcaa	gctcctgcag	aagaacctga	aggccctgtg	gaccgggttc	gacgagcgca	24840
ccaccgcctc	ggacctggcc	gacctcatct	tccccgagcg	cctgcggctg	acgctgcgca	24900
acggactgcc	cgactttatg	agtcaaagca	tgttgcaaaa	ctttcgctct	ttcatcctcg	24960
aacgctccgg	gatcctgccc	gccacctgct	ccgcgctgcc	ctcggacttc	gtgccgctga	25020
ccttccgcga	gtgccccccg	ccgctctgga	gccactgcta	cctgctgcgc	ctggccaact	25080
acctggccta	ccactcggac	gtgatcgagg	acgtcagcgg	cgagggtctg	ctcgagtgcc	25140
actgccgctg	caacctctgc	acgccgcacc	gctccctggc	ctgcaacccc	cagctgctga	25200
gcgagaccca	gatcatcggc	accttcgagt	tgcaaggccc	cggcgagggc	aaggggggtc	25260
tgaaactcac	cccggggctg	tggacctcgg	cctacttgcg	caagttcgtg	cccgaggact	25320
accatccctt	cgagatcagg	ttctacgagg	accaatccca	gccgcccaag	gccgaactgt	25380
cggcctgcgt	catcacccag	ggggccatcc	tggcccaatt	gcaagccatc	cagaaatccc	25440
gccaagaatt	tctgctgaaa	aagggccacg	gggtctacct	ggacccccag	accggagagg	25500
agctcaaccc	cagcttcccc	caggatgccc	cgaggaagca	gcaagaagct	gaaagtggag	25560
ctgccgccgc	cggaggattt	ggaggaagac	tgggagagca	gtcaggcaga	ggaggaggag	25620
atggaagact	gggacagcac	tcaggcagag	gaggacagcc	tgcaagacag	tctggaagac	25680
gaggtggagg	aggaggcaga	ggaagaagca	gccgccgcca	gaccgtcgtc	ctcggcggag	25740
aaagcaagca	gcacggatac	catctccgct	ccgggtcggg	gtcgcggcga	ccgggcccac	25800
agtaggtggg	acgagaccgg	gcgcttcccg	aaccccacca	cccagaccgg	taagaaggag	25860
cggcagggat	acaagtcctg	gcgggggcac	aaaaacgcca	tcgtctcctg	cttgcaagcc	25920
tgcgggggca	acatctcctt	cacccgccgc	tacctgctct	tccaccgcgg	ggtgaacttc	25980
ccccgcaaca	tcttgcatta	ctaccgtcac	ctccacagcc Page 13	cctactactg	tttccaagaa	26040

26100 gaggcagaaa cccagcagca gcagaaaacc agcggcagca gcagctagaa aatccacagc 26160 ggcggcaggt ggactgagga tcgcagcgaa cgagccggcg cagacccggg agctgaggaa ccggatcttt cccaccctct atgccatctt ccagcagagt cgggggcagg agcaggaact 26220 26280 gaaagtcaag aaccgttctc tgcgctcgct cacccgcagt tgtctgtatc acaagagcga 26340 agaccaactt cagcgcactc tcgaggacgc cgaggctctc ttcaacaagt actgcgcgct 26400 cactcttaaa gagtagcccg cgcccgccca cacacggaaa aaggcgggaa ttacgtcacc acctgcgccc ttcgcccgac catcatcatg agcaaagaga ttcccacgcc ttacatgtgg 26460 26520 agctaccagc cccagatggg cctggccgcc ggcgccgccc aggactactc cacccgcatg 26580 aactggctca gcgccgggcc cgcgatgatc tcacgggtga atgacatccg cgcccgccga aaccagatac tcctagaaca gtcagcgatc accgccacgc cccgccatca ccttaatccg 26640 26700 cgtaattggc ccgccgccct ggtgtaccag gaaattcccc agcccacgac cgtactactt 26760 ccgcgagacg cccaggccga agtccagctg actaactcag gtgtccagct ggccggcggc 26820 gccgccctgt gtcgtcaccg ccccgctcag ggtataaagc ggctggtgat ccgaggcaga 26880 ggcacacagc tcaacgacga ggtggtgagc tcttcgctgg gtctgcgacc tgacggagtc 26940 ttccaactcg ccggatcggg gagatcttcc ttcacgcctc gtcaggccgt cctgactttg 27000 gagagttcgt cctcgcagcc ccgctcgggt ggcatcggca ctctccagtt cgtggaggag 27060 ttcactccct cggtctactt caaccccttc tccggctccc ccggccacta cccggacgag 27120 ttcatcccga acttcgacgc catcagcgag tcggtggacg gctacgattg aatgtcccat 27180 ggtggcgcag ctgacctagc tcggcttcga cacctggacc actgccgccg cttccgctgc 27240 ttcgctcggg atctcgccga gtttgcctac tttgagctgc ccgaggagca ccctcagggc 27300 ccggcccacg gagtgcggat catcgtcgaa gggggcctcg actcccacct gcttcggatc 27360 ttcagccagc gaccgatcct ggtcgagcgc gagcaaggac agacccttct gaccctgtac 27420 tgcatctgca accacccgg cctgcatgaa agtctttgtt gtctgctgtg tactgagtat 27480 aataaaagct gagatcagcg actactccgg actcgattgt ggtgttcctg ctatcaaccg gtccctgttc ttcaccggga acgagaccga gctccagctt cagtgtaagc cccacaagaa 27540 gtacctcacc tggctgttcc agggctcccc gatcgccgtt gtcaaccact gcgacaacga 27600 27660 cggagtcctg ctgagcggcc ccgccaacct tactttttcc acccgcagaa gcaagctcca 27720 gctcttccaa cccttcctcc ccgggaccta tcagtgcgtc tcgggaccct gccatcacac cttccacctg atcccgaata ccacagcgcc gctccccgct actaacaacc aaactaccca 27780 ccatcgccac cgtcgcgacc tttctgaatc taacactacc acccacaccg gaggtgagct 27840 27900 ccgaggtcga ccaacctctg ggatttacta cggcccctgg gaggtggtgg ggttaatagc gctaggccta gttgtgggtg ggcttttggc tctctgctac ctatacctcc cttgctgttc 27960 28020 gtacttagtg gtgctgtgtt gctggtttaa gaaatgggga agatcaccct agtgagctgc ggtgcgctgg tggcggtggt ggtgttttcg attgtgggac tgggcggcgc ggctgtagtg 28080

aaggagaagg ccgatccctg cttgcatttc aatcccgaca attgccagct gagttttcag 28140 28200 cccgatggca atcggtgcgc ggtgctgatc aagtgcggat gggaatgcga gaacgtgaga atcgagtaca ataacaagac tcggaacaat actctcgcgt ccgtgtggca gcccggggac 28260 28320 cccqaqtqqt acaccgtctc tgtccccggt gctgacggct ccccgcgcac cgtgaacaat 28380 actttcattt ttqcqcacat qtqcqacacg gtcatgtgga tgagcaagca gtacgatatg tggccccca cgaaggagaa catcgtggtc ttctccatcg cttacagcgc gtgcacggcg 28440 ctaatcaccg ctatcgtgtg cctgagcatt cacatgctca tcgctattcg ccccagaaat 28500 aatgccgaaa aagagaaaca gccataacac gttttttcac acaccttttt cagaccatgg 28560 28620 cctctgttaa atttttgctt ttatttgcca gtctcattac tgttataagt aatgagaaac 28680 tcactattta cattggcact aaccacactt tagacggaat tccaaaatcc tcatggtatt 28740 qctattttga tcaagatcca gacttaacta tagaactgtg tggtaacaag ggaaaaaata caagcattca tttaattaac tttaattgcg gagacaattt gaaattaatt aatatcacta 28800 28860 aagagtatgg aggtatgtat tactatgttg cagaaaataa caacatgcag ttttatgaag 28920 ttactgtaac taatcccacc acacctagaa caacaacaac caccaccaca aaaactacac ctgttaccac tatgcagctc actaccaata acatttttgc catgcgtcaa atggtcaaca 28980 atagcactca acccacccca cccagtgagg aaattcccaa atccatgatt ggcattattg 29040 29100 ttgctgtagt ggtgtgcatg ttgatcatcg ccttgtgcat ggtgtactat gccttctgct 29160 acagaaagca cagactgaac gacaagctgg aacacttact aagtgttgaa ttttaatttt 29220 ttagaaccat gaagatccta ggccttttaa ttttttctat cattacctct gctctatgca 29280 attctgacaa tgaggacgtt actgtcgttg tcggaaccaa ttatacactg aaaggtccag 29340 cgaagggtat gctttcgtgg tattgctggt ttggaactga cgagcaacag acagagctct gcaatgctca aaaaggcaaa acctcaaatt ctaaaatctc taattatcaa tgcaatggca 29400 29460 ctgacttagt actgctcaat gtcacgaaag catatgctgg cagctacacc tgccctggag 29520 atgatactga gaacatgatt ttttacaaag tggaagtggt tgatcccact actccacctc cacccaccac aactactcac accacacaca cagaacaaac cacagcagag gaggcagcaa 29580 agttagcctt gcaggtccaa gacagttcat ttgttggcat tacccctaca cctgatcagc 29640 29700 ggtgtccggg gctgctcgtc agcggcattg tcggtgtgct ttcgggatta gcagtcataa tcatctgcat gttcattttt gcttgctgct atagaaggct ttaccgacaa aaatcagacc 29760 29820 cactgctgaa cctctatgtt taattttttc cagagccatg aaggcagtta gcactctagt tttttgttct ttgattggca ctgtttttag tgttagcttt ttgaaacaaa tcaatgttac 29880 29940 tgagggggaa aatgtgacac tggtaggcgt agagggtgct caaaatacca cctggacaaa attccatcta gatgggtgga aagaaatttg cacctggaat gtcagtactt atacatgtga 30000 aggagttaat cttaccattg tcaatgtcag ccaaattcaa aagggttgga ttaaagggca 30060 30120 atctgttagt gttagcaata gtgggtacta tacccagcat actcttatct atgacattat agttatacca ctgcctacac ctagcccacc tagcactacc acacagacaa cccacactac 30180 Page 15

30240 acaaacaacc acatacagta catcaaatca gcctaccacc actacaacag cagaggttgc 30300 cagctcgtct ggggtccgag tggcattttt gatgttggcc ccatctagca gtcccactgc 30360 tagtaccaat gagcagacta ctgaattttt gtccactgtc gagagccaca ccacagctac ctcgagtgcc ttctctagca ccgccaatct atcctcgctt tcctctacac caatcagtcc 30420 30480 cgctactact cctacccccg ctattctccc cactcccctg aagcaaacag acggcgacat gcaatggcag atcaccctgc tcattgtgat cgggttggtc atcctggccg tgttgctcta 30540 ctacatcttc tgccgccgca ttcccaacgc gcaccgcaag ccggcctaca agcccatcgt 30600 30660 tgtcgggcag ccggagccgc ttcaggtgga agggggtcta aggaatcttc tcttctcttt 30720 tacagtatgg tgattgaatt atgattccta gacaaatctt gatcactatt cttatctgcc 30780 tcctccaagt ctgtgccacc ctcgctctgg tggccaacgc cagtccagac tgtattgggc ccttcgcctc ctacgtgctc tttgccttca tcacctgcat ctgctgctgt agcatagtct 30840 30900 gcctgcttat caccttcttc cagttcattg actggatctt tgtgcgcatc gcctacctgc 30960 gccaccaccc ccagtaccgc gaccagcgag tggcgcggct gctcaggatc ctctgataag 31020 catgcgggct ctgctacttc tcgcgcttct gctgttagtg ctcccccgtc ccgtcgaccc 31080 ccggaccccc acccagtccc ccgaggaggt ccgcaaatgc aaattccaag aaccctggaa 31140 attcctcaaa tgctaccgcc aaaaatcaga catgcatccc agctggatca tgatcattgg gatcgtgaac attctggcct gcaccctcat ctcctttgtg atttacccct gctttgactt 31200 31260 tggttggaac tcgccagagg cgctctatct cccgcctgaa cctgacacac caccacagca acctcaggca cacgcactac caccaccacc acagcctagg ccacaataca tgcccatatt 31320 agactatgag gccgagccac agcgacccat gctccccgct attagttact tcaatctaac 31380 31440 Cggcggagat gactgaccca ctggccaaca acaacgtcaa cgaccttctc ctggacatgg acggccgcgc ctcggagcag cgactcgccc aacttcgcat tcgccagcag caggagagag 31500 ccgtcaagga gctgcaggac ggcatagcca tccaccagtg caagaaaggc atcttctgcc 31560 tggtgaaaca ggccaagatc tcctacgagg tcacccagac cgaccatcgc ctctcctacg 31620 agctcctgca gcagcgccag aagttcacct gcctggtcgg agtcaacccc atcgtcatca 31680 cccagcagtc gggcgatacc aaggggtgca tccactgctc ctgcgactcc cccgactgcg 31740 tccacactct gatcaagacc ctctgcggcc tccgcgacct cctccccatg aactaatcac 31800 CCCCttatcc agtgaaataa agatcatatt gatgatttga gtttaataaa aataaagaat 31860 31920 cacttacttg aaatctgata ccaggtctct gtccatgttt tctgccaaca ccacttcact cccctcttcc cagctctggt actgcaggcc ccggcgggct gcaaacttcc tccacaccct 31980 32040 gaaggggatg tcaaattcct cctgtccctc aatcttcatt ttatcttcta tcagatgtcc aaaaagcgcg tccgggtgga tgatgacttc gaccccgtct acccctacga tgcagacaac 32100 gcaccgaccg tgcccttcat caacccccc ttcgtctctt cagatggatt ccaagagaag 32160 CCCCtggggg tgctgtccct gcgtctggcc gatcccgtca ccaccaagaa cggggaaatc 32220

32280 acceteaage tgggagatgg ggtggacete gacteetegg gaaaacteat etceaacacg gccaccaagg ccgccgccc tctcagtttt tccaacaaca ccatttccct taacatggat 32340 32400 accccttttt acaacaacaa tqqaaaqtta qqcatqaaaq tcactgctcc actgaagata ctagacacag acttgctaaa aacacttgtt gtagcttatg gacaaggttt aggaacaaac 32460 accactggtg cccttgttgc ccaactagca tccccacttg cttttgatag caatagcaaa 32520 32580 attgccctta atttaggcaa tggaccattg aaagtggatg caaatagact gaacatcaat tgcaatagag gactctatgt tactaccaca aaagatgcac tggaagccaa tataagttgg 32640 32700 gctaatgcta tgacatttat aggaaatgcc atgggtgtca atattgatac acaaaaaggc 32760 ttgcaatttg gcaccactag taccgtcgca gatgttaaaa acgcttaccc catacaaatc aaacttggag ctggtctcac atttgacagc acaggtgcaa ttgttgcatg gaacaaagat 32820 32880 gatgacaagc ttacactatg gaccacagcc gacccctctc caaattgtca catatattct 32940 gaaaaggatg ctaagcttac actttgcttg acaaagtgtg gcagtcagat tctgggcact 33000 gtttccctca tagctgttga tactggcagt ttaaatccca taacaggaac agtaaccact 33060 gctcttgtct cacttaaatt cgatgcaaat ggagttttgc aaagcagctc aacactagac 33120 tcagactatt ggaatttcag acagggagat gttacacctg ctgaagccta tactaatgct ataggtttca tgcccaatct aaaagcatac cctaaaaaca caagtggagc tgcaaaaagt 33180 33240 cacattgttg ggaaagtgta cctacatggg gatacaggca aaccactgga cctcattatt actttcaatg aaacaagtga tgaatcttgc acttactgta ttaactttca atggcagtgg 33300 33360 ggggctgatc aatataaaaa tgaaacactt gccgtcagtt cattcacctt ttcctatatt gctaaagaat aaaccccact ctgtacccca tctctgtcta tggaaaaaac tctgaaacac 33420 aaaataaaat aaagttcaag tgttttattg attcaacagt tttacaggat tcgagcagtt 33480 33540 atttttcctc caccctccca ggacatggaa tacaccaccc tctcccccg cacagccttg aacatctgaa tgccattggt gatggacatg cttttggtct ccacgttcca cacagtttca 33600 gagcgagcca gtctcgggtc ggtcagggag atgaaaccct ccgggcactc ccgcatctgc 33660 acctcacage teaacagetg aggattgtee teggtggteg ggateaeggt tatetggaag 33720 33780 aagcagaaga gcggcggtgg gaatcatagt ccgcgaacgg gatcggccgg tggtgtcgca tcaggccccg cagcagtcgc tgtcgccgcc gctccgtcaa gctgctgctc agggggtccg 33840 ggtccaggga ctccctcagc atgatgccca cggccctcag catcagtcgt ctggtgcggc 33900 gggcgcagca gcgcatgcgg atctcgctca ggtcgctgca gtacgtgcaa cacaggacca 33960 34020 ccaggttgtt caacagtcca tagttcaaca cgctccagcc gaaactcatc gcgggaagga 34080 tgctacccac gtggccgtcg taccagatcc tcaggtaaat caagtggcgc cccctccaga acacgctgcc catgtacatg atctccttgg gcatgtggcg gttcaccacc tcccggtacc 34140 acatcaccct ctggttgaac atgcagcccc ggatgatcct gcggaaccac agggccagca 34200 CCGCCCCGCC cgccatgcag cgaagagacc ccgggtcccg acaatggcaa tggaggaccc 34260 accgctcgta cccgtggatc atctgggagc tgaacaagtc tatgttggca cagcacaggc 34320 Page 17

atatgct	cat	gcatctcttc	agcactctca	gctcctcggg	ggtcaaaacc	atatcccagg	34380
gcacggg	gaa	ctcttgcagg	acagcgaacc	ccgcagaaca	gggcaatcct	cgcacataac	34440
ttacatt	gtg	catggacagg	gtatcgcaat	caggcagcac	cgggtgatcc	tccaccagag	34500
aagcgcg	ggt	ctcggtctcc	tcacagcgtg	gtaagggggc	cggccgatac	gggtgatggc	34560
gggacgc	ggc	tgatcgtgtt	cgcgaccgtg	ttatgatgca	gttgctttcg	gacattttcg	34620
tacttgc	tgt	agcagaacct	ggtccgggcg	ctgcacaccg	atcgccggcg	gcggtcccgg	34680
cgcttgg	aac	gctcggtgtt	gaagttgtaa	aacagccact	ctctcagacc	gtgcagcaga	34740
tctaggg	cct	caggagtgat	gaagatccca	tcatgcctga	tggctctaat	cacatcgacc	34800
accgtgg	aat	gggccagacc	cagccagatg	atgcaatttt	gttgggtttc	ggtgacggcg	34860
ggggagg	gaa	gaacaggaag	aaccatgatt	aacttttaat	ccaaacggtc	tcggagcact	34920
tcaaaat	gaa	gatcgcggag	atggcacctc	tcgcccccgc	tgtgttggtg	gaaaataaca	34980
gccaggt	caa	aggtgatacg	gttctcgaga	tgttccacgg	tggcttccag	caaagcctcc	35040
acgcgca	cat	ccagaaacaa	gacaatagcg	aaagcgggag	ggttctctaa	ttcctcaatc	35100
atcatgt [.]	tac	actcctgcac	catccccaga	taattttcat	ttttccagcc	ttgaatgatt	35160
cgaacta	gtt	cctgaggtaa	atccaagcca	gccatgataa	agagctcgcg	cagagcgccc	35220
tccaccg	gca	ttcttaagca	caccctcata	attccaagat	attctgctcc	tggttcacct	35280
gcagcag	att	gacaagcgga	atatcaaaat	ctctgccgcg	atccctaagc	tcctccctca	35340
gcaataa	ctg	taagtactct	ttcatatcct	ctccgaaatt	tttagccata	ggaccaccag	35400
gaataag	att	agggcaagcc	acagtacaga	taaaccgaag	tcctccccag	tgagcattgc	35460
caaatgc	aag	actgctataa	gcatgctggc	tagacccggt	gatatcttcc	agataactgg	35520
acagaaa	atc	gcccaggcaa	tttttaagaa	aatcaacaaa	agaaaaatcc	tccaggtgca	35580
cgtttag	agc	ctcgggaaca	acgatggagt	aaatgcaagc	ggtgcgttcc	agcatggtta	35640
gttagct	gat	ctgtagaaaa	aaacaaaaat	gaacattaaa	ccatgctagc	ctggcgaaca	35700
ggtgggta	aaa	tcgttctctc	cagcaccagg	caggccacgg	ggtctccggc	acgaccctcg	35760
taaaaat	tgt	cgctatgatt	gaaaaccatc	acagagagac	gttcccggtg	gccggcgtga	35820
atgattc	gac	aagatgaata	caccccgga	acattggcgt	ccgcgagtga	aaaaaagcgc	35880
ccaaggaa	agc	aataaggcac	tacaatgctc	agtctcaagt	ccagcaaagc	gatgccatgc	35940
ggatgaag	gca	caaaattctc	aggtgcgtac	aaaatgtaat	tactcccctc	ctgcacaggc	36000
agcaaag	ccc	ccgatccctc	caggtacaca	tacaaagcct	cagcgtccat	agcttaccga	36060
gcagcag	cac	acaacaggcg	caagagtcag	agaaaggctg	agctctaacc	tgtccacccg	36120
ctctctg	ctc	aatatatagc	ccagatctac	actgacgtaa	aggccaaagt	ctaaaaatac	36180
ccgccaaa	ata	atcacacacg	cccagcacac	gcccagaaac	cggtgacaca	ctcaaaaaaa	36240
tacgcgca	act	tcctcaaacg	cccaaactgc	cgtcatttcc	gggttcccac	gctacgtcat	36300
caaaatto	cga	ctttcaaatt	ccgtcgaccg	ttaaaaacgt	cgcccgcccc	gcccctaacg	36360

36420

gtcgccgctc ccgcagccaa tcaccgcccc gcatccccaa attcaaatac ctcatttgca

36462 tattaacgcg caccaaaagt ttgaggtata ttattgatga tg <210> 2 36604 chimpanzee adenovirus serotype Pan6 <400> 60 catcatcaat aatatacctc aaacttttgg tgcgcgttaa tatgcaaatg agctgtttga 120 180 tqacqttttq atqacqtgqc tatgaggcgg agccggtttg caagttctcg tgggaaaagt 240 gacgtcaaac gaggtgtggt ttgaacacgg aaatactcaa ttttcccgcg ctctctgaca ggaaatgagg tgtttctggg cggatgcaag tgaaaacggg ccattttcgc gcgaaaactg 300 aatgaggaag tgaaaatctg agtaatttcg cgtttatggc agggaggagt atttgccgag 360 420 ggccgagtag actttgaccg attacgtggg ggtttcgatt accgtatttt tcacctaaat 480 ttccgcgtac ggtgtcaaag tccggtgttt ttacgtaggc gtcagctgat cgccagggta 540 tttaaacctg cgctctctag tcaagaggcc actcttgagt gccagcgagt agagttttct 600 cctccgcgcc gcgagtcaga tctacacttt gaaagatgag gcacctgaga gacctgcccg 660 gtaatgtttt cctggctact gggaacgaga ttctggaatt ggtggtggac gccatgatgg 720 gtgacgaccc tccagagccc cctaccccat ttgaggcgcc ttcgctgtac gatttgtatg 780 atctqqaqqt qqatqtqccc qagaqcqacc ctaacgagga ggcggtgaat gatttgttta gcgatgccgc gctgctggct gccgagcagg ctaatacgga ctctggctca gacagcgatt 840 900 cctctctcca taccccgaga cccggcagag gtgagaaaaa gatccccgag cttaaagggg 960 aagagctcga cctgcgctgc tatgaggaat gcttgcctcc gagcgatgat gaggaggacg aggaggcgat tcgagctgcg gtgaaccagg gagtgaaaac tgcgggcgag agctttagcc 1020 tggactgtcc tactctgccc ggacacggct gtaagtcttg tgaatttcat cgcatgaata 1080 1140 ctggagataa gaatgtgatg tgtgccctgt gctatatgag agcttacaac cattgtgttt 1200 acagtaagtg tgattaactt tagttgggaa ggcagagggt gactgggtgc tgactggttt atttatgtat atgttttttt atgtgtaggt cccgtctctg acgtagatga gacccccact 1260 1320 tcagagtgca tttcatcacc cccagaaatt ggcgaggaac cgcccgaaga tattattcat 1380 agaccagttg cagtgagagt caccgggcgg agagcagctg tggagagttt ggatgacttg 1440 ctacagggtg gggatgaacc tttggacttg tgtacccgga aacgccccag gcactaagtg 1500 ccacacatgt gtgtttactt aaggtgatgt cagtatttat agggtgtgga gtgcaataaa 1560 atccqtqttq actttaagtg cgtgttttat gactcaqqqq tggqgactgt gggtatataa 1620 gcaggtgcag acctgtgtgg tcagttcaga gcaggactca tggagatctg gactgtcttg 1680 gaagactttc accagactag acagttgcta gagaactcat cggagggagt ctcttacctq tggagattct gcttcggtgg gcctctagct aagctagtct atagggccaa acaggattat 1740

1800 aaggaacaat ttgaggatat tttgagagag tgtcctggta tttttgactc tctcaacttg 1860 ggccatcagt ctcactttaa ccagagtatt ctgagagccc ttgacttttc tactcctggc 1920 agaactaccg ccgcggtagc cttttttgcc tttattcttg acaaatggag tcaagaaacc 1980 catttcagca gggattaccg tctggactgc ttagcagtag ctttgtggag aacatggagg 2040 tgccagcgcc tgaatgcaat ctccggctac ttgccagtac agccggtaga cacgctgagg atcctgagtc tccagtcacc ccaggaacac caacgccgcc agcagccgca gcaggagcag 2100 2160 cagcaagagg aggaccgaga agagaacccg agagccggtc tggaccctcc ggtggcggag 2220 gaggaggagt agctgacttg tttcccgagc tgcgccgggt gctgactagg tcttccagtg 2280 2340 ctgtcagtct gatgagccgc aggcgcccag aatcggtgtg gtggcatgag gtgcagtcgc 2400 aggggataga tgaggtctcg gtgatgcatg agaaatattc cctagaacaa gtcaagactt 2460 gttggttgga gcccgaggat gattgggagg tagccatcag gaattatgcc aagctggctc 2520 tgaagccaga caagaagtac aagattacca aactgattaa tatcagaaat tcctgctaca tttcagggaa tggggccgag gtggagatca gtacccagga gagggtggcc ttcagatgtt 2580 2640 gtatgatgaa tatgtacccg ggggtggtgg gcatggaggg agtcaccttt atgaacacga 2700 ggttcagggg tgatgggtat aatggggtgg tctttatggc caacaccaag ctgacagtgc 2760 acggatgctc cttctttggc ttcaataaca tgtgcatcga ggcctggggc agtgtttcag 2820 tgaggggatg cagcttttca gccaactgga tgggggtcgt gggcagaacc aagagcaagg 2880 tgtcagtgaa gaaatgcctg ttcgagaggt gccacctggg ggtgatgagc gagggcgaag 2940 ccaaagtcaa acactgcgcc tctaccgaga cgggctgctt tgtgctgatc aagggcaatg 3000 cccaagtcaa gcataacatg atctgtgggg cctcggatga gcgcggctac cagatgctga 3060 cctgcgccgg tgggaacagc catatgctgg ccaccgtgca tgtggcctcg cacccccgca 3120 agacatggcc cgagttcgag cacaacgtca tgacccgctg caatgtgcac ctgggctccc 3180 gccgaggcat gttcatgccc taccagtgca acatgcaatt tgtgaaggtg ctgctggagc ccgatgccat gtccagagtg agcctgacgg gggtgtttga catgaatgtg gagctgtgga 3240 3300 aaattctgag atatgatgaa tccaagacca ggtgccgggc ctgcgaatgc ggaggcaagc acgccaggct tcagcccgtg tgtgtggagg tgacggagga cctgcgaccc gatcatttgg 3360 3420 tgttgtcctg caacgggacg gagttcggct ccagcgggga agaatctgac tagagtgagt agtgtttggg gctgggtgtg agcctgcatg aggggcagaa tgactaaaat ctgtggtttt 3480 3540 ctgtgtgttg cagcagcatg agcggaagcg cctcctttga gggaggggta ttcagccctt 3600 atctgacggg gcgtctcccc tcctgggcgg gagtgcgtca gaatgtgatg ggatccacgg tggacggccg gcccgtgcag cccgcgaact cttcaaccct gacctacgcg accctgagct 3660 cctcgtccgt ggacgcagct gccgccgcag ctgctgcttc cgccgccagc gccgtgcgcg 3720 gaatggccct gggcgccggc tactacagct ctctggtggc caactcgagt tccaccaata 3780 atcccgccag cctgaacgag gagaagctgc tgctgctgat ggcccagctc gaggccctga 3840 Page 20

3900 cccagcgcct gggcgagctg acccagcagg tggctcagct gcaggcggag acgcgggccg 3960 cggttgccac ggtgaaaacc aaataaaaaa tgaatcaata aataaacgga gacggttgtt 4020 gattttaaca cagagtcttg aatctttatt tgatttttcg cgcgcggtag gccctggacc 4080 accggtctcg atcattgagc acccggtgga tcttttccag gacccggtag aggtgggctt 4140 ggatgttgag gtacatgggc atgagcccgt cccgggggtg gaggtagctc cattgcaggg 4200 cctcgtgctc ggggatggtg ttgtaaatca cccagtcata gcaggggcgc agggcgtggt 4260 gctgcacgat gtccttgagg aggagactga tggccacggg cagccccttg gtgtaggtgt 4320 tgacgaacct gttgagctgg gagggatgca tgcgggggga gatgagatgc atcttggcct 4380 ggatcttgag attggcgatg ttcccgcca gatcccgccg ggggttcatg ttgtgcagga 4440 4500 cgtgaaagaa tttggagacg cccttgtgac cgcccaggtt ttccatgcac tcatccatga 4560 tgatggcgat gggcccgtgg gcggcggcct gggcaaagac gtttcggggg tcggacacat 4620 cgtagttgtg gtcctgggtg agctcgtcat aggccatttt aatgaatttg gggcggaggg 4680 tgcccgactg ggggacgaag gtgccctcga tcccgggggc gtagttgccc tcgcagatct 4740 gcatctccca ggccttgagc tcggaggggg ggatcatgtc cacctgcggg gcgatgaaaa 4800 aaacggtttc cggggcgggg gagatgagct gggccgaaag caggttccgg agcagctggg 4860 acttgccgca accggtgggg ccgtagatga ccccgatgac cggctgcagg tggtagttga 4920 gggagagaca gctgccgtcc tcgcggagga ggggggccac ctcgttcatc atctcgcgca 4980 catgcatgtt ctcgcgcacg agttccgcca ggaggcgctc gcccccagc gagaggagct 5040 cttgcagcga ggcgaagttt ttcagcggct tgagtccgtc ggccatgggc attttggaga 5100 gggtctgttg caagagttcc agacggtccc agagctcggt gatgtgctct agggcatctc 5160 gatccagcag acctcctcgt ttcgcgggtt ggggcgactg cgggagtagg gcaccaggcg atgggcgtcc agcgaggcca gggtccggtc cttccagggc cgcagggtcc gcgtcagcgt 5220 5280 ggtctccgtc acggtgaagg ggtgcgcgcc gggctgggcg cttgcgaggg tgcgcttcag 5340 gctcatccgg ctggtcgaga accgctcccg gtcggcgccc tgcgcgtcgg ccaggtagca attgagcatg agttcgtagt tgagcgcctc ggccgcgtgg cccttggcgc ggagcttacc 5400 5460 tttggaagtg tgtccgcaga cgggacagag gagggacttg agggcgtaga gcttgggggc 5520 gaggaagacg gactcggggg cgtaggcgtc cgcgccgcag ctggcgcaga cggtctcgca 5580 ctccacgagc caggtgaggt cggggcggtt ggggtcaaaa acgaggtttc ctccgtgctt tttgatgcgt ttcttacctc tggtctccat gagctcgtgt ccccgctggg tgacaaagag 5640 5700 gctgtccgtg tccccgtaga ccgactttat gggccggtcc tcgagcgggg tgccgcggtc 5760 ctcgtcgtag aggaaccccg cccactccga gacgaaggcc cgggtccagg ccagcacgaa 5820 ggaggccacg tgggaggggt agcggtcgtt gtccaccagc gggtccacct tctccagggt 5880 atgcaagcac atgtccccct cgtccacatc caggaaggtg attggcttgt aagtgtaggc

5940 cacgtgaccg ggggtcccgg ccggggggt ataaaagggg gcgggcccct gctcgtcctc 6000 actgtcttcc ggatcgctgt ccaggagcgc cagctgttgg ggtaggtatt ccctctcgaa 6060 ggcgggcatg acctcggcac tcaggttgtc agtttctaga aacgaggagg atttgatatt 6120 gacggtgccg ttggagacgc ctttcatgag cccctcgtcc atttggtcag aaaagacgat 6180 ctttttgttg tcgagcttgg tggcgaagga gccgtagagg gcgttggaga gcagcttggc gatggagcgc atggtctggt tcttttcctt gtcggcgcgc tccttggcgg cgatgttgag 6240 6300 ctgcacgtac tcgcgcgcca cgcacttcca ttcggggaag acggtggtga gctcgtcggg 6360 cacgattctg acccgccagc cgcggttgtg cagggtgatg aggtccacgc tggtggccac ctcgccgcgc aggggctcgt tggtccagca gaggcgcccg cccttgcgcg agcagaaggg 6420 6480 gggcagcggg tccagcatga gctcgtcggg ggggtcggcg tccacggtga agatgccggg 6540 caggageteg gggtegaagt agetgatgea ggtgeecaga ttgteeageg eegettgeea gtcgcgcacg gccagcgcgc gctcgtaggg gctgaggggc gtgccccagg gcatggggtg 6600 6660 cgtgagcgcg gaggcgtaca tgccgcagat gtcgtagacg tagaggggct cctcgaggac 6720 gccgatgtag gtggggtagc agcgcccccc gcggatgctg gcgcgcacgt agtcgtacag 6780 ctcgtgcgag ggcgcgagga gccccgtgcc gaggttggag cgttgcggct tttcggcgcg 6840 gtagacgatc tggcggaaga tggcgtggga gttggaggag atggtgggcc tttggaagat gttgaagtgg gcgtggggca ggccgaccga gtccctgatg aagtgggcgt aggagtcctg 6900 6960 cagcttggcg acgagctcgg cggtgacgag gacgtccagg gcgcagtagt cgagggtctc ttggatgatg tcatacttga gctggccctt ctgcttccac agctcgcggt tgagaaggaa 7020 7080 ctcttcgcgg tccttccagt actcttcgag ggggaacccg tcctgatcgg cacggtaaga 7140 gcccaccatg tagaactggt tgacggcctt gtaggcgcag cagcccttct ccacggggag ggcgtaagct tgcgcggcct tgcgcaggga ggtgtgggtg agggcgaagg tgtcgcgcac 7200 7260 catgacettg aggaactggt gettgaagte gaggtegteg cageegeeet geteecagag 7320 ttggaagtcc gtgcgcttct tgtaggcggg gttaggcaaa gcgaaagtaa catcgttgaa gaggatettg cccgcgcggg gcatgaagtt gcgagtgatg cggaaagget ggggcacete 7380 ggcccggttg ttgatgacct gggcggcgag gacgatctcg tcgaagccgt tgatgttgtg 7440 7500 cccgacgatg tagagttcca cgaatcgcgg gcggcccttg acgtggggca gcttcttgag ctcgtcgtag gtgagctcgg cggggtcgct gagcccgtgc tgctcgaggg cccagtcggc 7560 7620 gacgtggggg ttggcgctga ggaaggaagt ccagagatcc acggccaggg cggtctgcaa gcggtcccgg tactgacgga actgttggcc cacggccatt ttttcggggg tgacgcagta 7680 7740 gaaggtgcgg gggtcgccgt gccagcggtc ccacttgagc tggagggcga ggtcgtggqc gagctcgacg agcggcgggt ccccggagag tttcatgacc agcatgaagg ggacgagctg 7800 cttgccgaag gaccccatcc aggtgtaggt ttccacatcg taggtgagga agagcctttc 7860 ggtgcgagga tgcgagccga tggggaagaa ctggatctcc tgccaccagt tggaggaatg 7920 gctgttgatg tgatggaagt agaaatgccg acggcgcgcc gagcactcgt gcttgtgttt 7980 Page 22

_ ____

atacaagcgt	ccgcagtgct	cgcaacgctg	cacgggatgc	acgtgctgca	cgagctgtac	8040
ctgggttcct	ttggcgagga	atttcagtgg	gcagtggagc	gctggcggct	gcatctcgtg	8100
ctgtactacg	tcttggccat	cggcgtggcc	atcgtctgcc	tcgatggtgg	tcatgctgac	8160
gagcccgcgc	gggaggcagg	tccagacctc	ggctcggacg	ggtcggagag	cgaggacgag	8220
ggcgcgcagg	ccggagctgt	ccagggtcct	gagacgctgc	ggagtcaggt	cagtgggcag	8280
cggcggcgcg	cggttgactt	gcaggagctt	ttccagggcg	cgcgggaggt	ccagatggta	8340
cttgatctcc	acggcgccgt	tggtggctac	gtccacggct	tgcagggtgc	cgtgcccctg	8400
gggcgccacc	accgtgcccc	gtttcttctt	gggcgctgct	tccatgtcgg	tcagaagcgg	8460
cggcgaggac	gcgcgccggg	cggcaggggc	ggctcggggc	ccggaggcag	gggcggcagg	8520
ggcacgtcgg	cgccgcgcgc	gggcaggttc	tggtactgcg	cccggagaag	actggcgtga	8580
gcgacgacgc	gacggttgac	gtcctggatc	tgacgcctct	gggtgaaggc	cacgggaccc	8640
gtgagtttga	acctgaaaga	gagttcgaca	gaatcaatct	cggtatcgtt	gacggcggcc	8700
tgccgcagga	tctcttgcac	gtcgcccgag	ttgtcctggt	aggcgatctc	ggtcatgaac	8760
tgctcgatct	cctcctcctg	aaggtctccg	cggccggcgc	gctcgacggt	ggccgcgagg	8820
tcgttggaga	tgcggcccat	gagctgcgag	aaggcgttca	tgccggcctc	gttccagacg	8880
cggctgtaga	ccacggctcc	gtcggggtcg	cgcgcgcgca	tgaccacctg	ggcgaggttg	8940
agctcgacgt	ggcgcgtgaa	gaccgcgtag	ttgcagaggc	gctggtagag	gtagttgagc	9000
gtggtggcga	tgtgctcggt	gacgaagaag	tacatgatcc	agcggcggag	cggcatctcg	9060
ctgacgtcgc	ccagggcttc	caagcgttcc	atggcctcgt	agaagtccac	ggcgaagttg	9120
aaaaactggg	agttgcgcgc	cgagacggtc	aactcctcct	ccagaagacg	gatgagctcg	9180
gcgatggtgg	cgcgcacctc	gcgctcgaag	gccccggggg	gctcctcttc	catctcctcc	9240
tcttcctcct	ccactaacat	ctcttctact	tcctcctcag	gaggcggtgg	cgggggaggg	9300
gccctgcgtc	gccggcggcg	cacgggcaga	cggtcgatga	agcgctcgat	ggtctccccg	9360
cgccggcgac	gcatggtctc	ggtgacggcg	cgcccgtcct	cgcggggccg	cagcatgaag	9420
acgccgccgc	gcatctccag	gtggccgccg	ggggggtctc	cgttgggcag	ggagagggcg	9480
ctgacgatgc	atcttatcaa	ttgacccgta	gggactccgc	gcaaggacct	gagcgtctcg	9540
agatccacgg	gatccgaaaa	ccgctgaacg	aaggcttcga	gccagtcgca	gtcgcaaggt	9600
aggctgagcc	cggtttcttg	ttcttcgggt	atttggtcgg	gaggcgggcg	ggcgatgctg	9660
ctggtgatga	agttgaagta	ggcggtcctg	agacggcgga	tggtggcgag	gagcaccagg	9720
tccttgggcc	cggcttgctg	gatgcgcaga	cggtcggcca	tgccccaggc	gtggtcctga	9780
cacctggcga	ggtccttgta	gtagtcctgc	atgagccgct	ccacgggcac	ctcctcctcg	9840
cccgcgcggc	cgtgcatgcg	cgtgagcccg	aacccgcgct	gcggctggac	gagcgccagg	9900
tcggcgacga	cgcgctcggt	gaggatggcc	tgctggatct	gggtgagggt	ggtctggaag	9960
tcgtcgaagt	cgacgaagcg	gtggtaggct	ccggtgttga	tggtgtagga	gcagttggcc	10020

atgacggacc agttgacggt ctggtggccg ggtcgcacga gctcgtggta cttgaggcgc 10080 10140 gagtaggcgc gcgtgtcgaa gatgtagtcg ttgcaggcgc gcacgaggta ctggtatccg acgaggaagt gcggcggcgg ctggcggtag agcggccatc gctcggtggc gggggcgccg 10200 10260 ggcgcgaggt cctcgagcat gaggcggtgg tagccgtaga tgtacctgga catccaggtg 10320 atgccggcgg cggtggtgga ggcgcgcggg aactcgcgga cgcggttcca gatgttgcgc agcggcagga agtagttcat ggtggccgcg gtctggcccg tgaggcgcgc gcagtcgtgg 10380 atgctctaga catacgggca aaaacgaaag cggtcagcgg ctcgactccg tggcctggag 10440 10500 gctaagcgaa cgggttgggc tgcgcgtgta ccccggttcg aatctcgaat caggctggag ccgcagctaa cgtggtactg gcactcccgt ctcgacccaa gcctgctaac gaaacctcca 10560 10620 ggatacggag gcgggtcgtt ttttggcctt ggtcgctggt catgaaaaac tagtaagcgc 10680 ggaaagcggc cgcccgcgat ggctcgctgc cgtagtctgg agaaagaatc gccagggttg cgttgcggtg tgccccggtt cgagcctcag cgctcggcgc cggccggatt ccgcggctaa 10740 10800 cgtgggcgtg gctgccccgt cgtttccaag accccttagc cagccgactt ctccagttac 10860 ggagcgagcc cctctttttt tttcttgtgt ttttgccaga tgcatcccgt actgcggcag 10920 atgcgccccc accctccacc acaaccgccc ctaccgcagc agcagcaaca gccggcgctt ctgccccgc cccagcagca gccagccact accgcggcgg ccgccgtgag cggagccggc 10980 gttcagtatg acctggcctt ggaagagggc gaggggctgg cgcggctggg ggcgtcgtcg 11040 11100 ccggagcggc acccgcgcgt gcagatgaaa agggacgctc gcgaggccta cgtgcccaag cagaacctgt tcagagacag gagcggcgag gagcccgagg agatgcgcgc ctcccgcttc 11160 11220 cacgcggggc gggagctgcg gcgcggcctg gaccgaaagc gggtgctgag ggacgaggat 11280 ttcgaggcgg acgagctgac ggggatcagc cccgcgcgcg cgcacgtggc cgcggccaac ctggtcacgg cgtacgagca gaccgtgaag gaggagagca acttccaaaa atccttcaac 11340 aaccacgtgc gcacgctgat cgcgcgcgag gaggtgaccc tgggcctgat gcacctgtgg 11400 gacctgctgg aggccatcgt gcagaacccc acgagcaagc cgctgacggc gcagctgttt 11460 ctggtggtgc agcacagtcg ggacaacgag acgttcaggg aggcgctgct gaatatcacc 11520 11580 gagcccgagg gccgctggct cctggacctg gtgaacattt tgcagagcat cgtggtgcag gagcgcgggc tgccgctgtc cgagaagctg gcggccatca acttctcggt gctgagtctg 11640 11700 ggcaagtact acgctaggaa gatctacaag accccgtacg tgcccataga caaggaggtg aagatcgacg ggttttacat gcgcatgacc ctgaaagtgc tgaccctgag cgacgatctq 11760 ggggtgtacc gcaacgacag gatgcaccgc gcggtgagcg ccagccgccg gcgcgagctg 11820 agcgaccagg agctgatgca cagcctgcag cgggccctga ccggggccgg gaccgaggg 11880 gagagctact ttgacatggg cgcggacctg cgctggcagc ccagccgccg ggccttggaa 11940 gctgccggcg gttcccccta cgtggaggag gtggacgatg aggaggagga gggcgagtac 12000 ctggaagact gatggcgcga ccgtattttt gctagatgca gcaacagcca ccgccgccgc 12060 ctcctgatcc cgcgatgcgg gcggcgctgc agagccagcc gtccggcatt aactcctcgg 12120 Page 24

12180 acgattggac ccaggccatg caacgcatca tggcgctgac gacccgcaat cccgaagcct ttagacagca gcctcaggcc aaccggctct cggccatcct ggaggccgtg gtgccctcgc 12240 12300 gctcgaaccc cacgcacgag aaggtgctgg ccatcgtgaa cgcgctggtg gagaacaagg 12360 ccatccgcgg tgacgaggcc gggctggtgt acaacgcgct gctggagcgc gtggcccgct 12420 acaacagcac caacgtgcag acgaacctgg accgcatggt gaccgacgtg cgcgaggcgg 12480 tgtcgcagcg cgagcggttc caccgcgagt cgaacctggg ctccatggtg gcgctgaacg 12540 ccttcctgag cacgcagccc gccaacgtgc cccggggcca ggaggactac accaacttca 12600 tcagcgcgct gcggctgatg gtggccgagg tgccccagag cgaggtgtac cagtcggggc 12660 cggactactt cttccagacc agtcgccagg gcttgcagac cgtgaacctg agccaggctt 12720 tcaagaactt gcagggactg tggggcgtgc aggccccggt cggggaccgc gcgacggtgt cgagcctgct gacgccgaac tcgcgcctgc tgctgctgct ggtggcgccc ttcacggaca 12780 gcggcagcgt gagccgcgac tcgtacctgg gctacctgct taacctgtac cgcgaggcca 12840 12900 teggacagge geacgtggae gageagaeet accaggagat cacceaegtg ageegege 12960 tgggccagga ggacccgggc aacctggagg ccaccctgaa cttcctgctg accaaccggt 13020 cgcagaagat cccgccccag tacgcgctga gcaccgagga ggagcgcatc ctgcgctacg 13080 tgcagcagag cgtggggctg ttcctgatgc aggagggggc cacgcccagc gcggcgctcg 13140 acatgaccgc gcgcaacatg gagcccagca tgtacgcccg caaccgcccg ttcatcaata 13200 agctgatgga ctacttgcat cgggcggccg ccatgaactc ggactacttt accaacgcca 13260 tcttgaaccc gcactggctc ccgccgcccg ggttctacac gggcgagtac gacatgcccg 13320 accccaacga cgggttcctg tgggacgacg tggacagcag cgtgttctcg ccgcgtccag 13380 gaaccaatgc cgtgtggaag aaagagggcg gggaccggcg gccgtcctcg gcgctgtccg 13440 gtcgcgcggg tgctgccgcg gcggtgcccg aggccgccag ccccttcccg agcctgccct 13500 tttcgctgaa cagcgtgcgc agcagcgagc tgggtcggct gacgcgaccg cgcctgctgg gcgaggagga gtacctgaac gactccttgt tgaggcccga gcgcgagaag aacttcccca 13560 13620 ataacgggat agagagcctg gtggacaaga tgagccgctg gaagacgtac gcgcacgagc 13680 acagggacga gccccgagct agcagcgcag gcacccgtag acgccagcgg cacgacaggc 13740 agcggggact ggtgtgggac gatgaggatt ccgccgacga cagcagcgtg ttggacttgg gtgggagtgg tggtaacccg ttcgctcacc tgcgcccccg tatcgggcgc ctgatgtaag 13800 13860 aatctgaaaa aataaaagac ggtactcacc aaggccatgg cgaccagcgt gcgttcttct ctgttgtttg tagtagtatg atgaggcgcg tgtacccgga gggtcctcct ccctcgtacg 13920 agagcgtgat gcagcaggcg gtggcggcgg cgatgcagcc cccgctggag gcgccttacg 13980 tgccccgcg gtacctggcg cctacggagg ggcggaacag cattcgttac tcggagctgg 14040 Cacccttgta cgataccacc cggttgtacc tggtggacaa caagtcggca gacatcgcct 14100 Cgctgaacta ccagaacgac cacagcaact tcctgaccac cgtggtgcag aacaacgatt 14160

tcaccccac ggaggccagc acccagacca tcaactttga cgagcgctcg cggtggggcg 14220 14280 gccagctgaa aaccatcatg cacaccaaca tgcccaacgt gaacgagttc atgtacagca 14340 acaagttcaa ggcgcgggtg atggtctcgc gcaagacccc caacggggtg gatgatgatt atgatggtag tcaggacgag ctgacctacg agtgggtgga gtttgagctg cccgagggca 14400 14460 acttctcggt gaccatgacc atcgatctga tgaacaacgc catcatcgac aactacttgg 14520 cqqtqqqqcq qcaqaacggg gtgctggaga gcgacatcgg cgtgaagttc gacacgcgca 14580 acttccggct gggctgggac cccgtgaccg agctggtgat gccgggcgtg tacaccaacg 14640 aggccttcca ccccgacatc gtcctgctgc ccggctgcgg cgtggacttc accgagagcc 14700 gcctcagcaa cctgctgggc atccgcaagc ggcagccctt ccaggagggc ttccagatcc tgtacgagga cctggagggg ggcaacatcc ccgcgctctt ggatgtcgaa gcctacgaga 14760 14820 aaagcaagga ggatagcacc gccgcggcga ccgcagccgt ggccaccgcc tctaccgagg tgcggggcga taattttgct agcgctgcgg cagcggccga ggcggctgaa accgaaagta 14880 14940 agatagtcat ccagccggtg gagaaggaca gcaaggacag gagctacaac gtgctcgcgg acaagaaaaa caccgcctac cgcagctggt acctggccta caactacggc gaccccgaga 15000 15060 agggcgtgcg ctcctggacg ctgctcacca cctcggacgt cacctgcggc gtggagcaag 15120 tctactggtc gctgcccgac atgatgcaag acccggtcac cttccgctcc acgcgtcaag 15180 ttagcaacta cccggtggtg ggcgccgagc tcctgcccgt ctactccaag agcttcttca 15240 acgagcaggc cgtctactcg cagcagctgc gcgccttcac ctcgctcacg cacgtcttca 15300 accgcttccc cgagaaccag atcctcgtcc gcccgcccgc gcccaccatt accaccgtca 15360 gtgaaaacgt tcctgctctc acagatcacg ggaccctgcc gctgcgcagc agtatccggg 15420 qaqtccaqcq cqtqaccgtc actgacgcca gacgccgcac ctgcccctac gtctacaagg ccctgggcgt agtcgcgccg cgcgtcctct cgagccgcac cttctaaaaa atgtccattc 15480 15540 tcatctcgcc cagtaataac accggttggg gcctgcgcgc gcccagcaag atgtacggag 15600 gcgctcgcca acgctccacg caacaccccg tgcgcgtgcg cgggcacttc cgcgctccct ggggcgccct caagggccgc gtgcgctcgc gcaccaccgt cgacgacgtg atcgaccagg 15660 15720 tggtggccga cgcgcgcaac tacacgcccg ccgccgcgcc cgtctccacc gtggacgccg 15780 tcatcgacag cgtggtggcc gacgcgcgcc ggtacgcccg caccaagagc cggcggcggc 15840 gcatcgcccg gcggcaccgg agcacccccg ccatgcgcgc ggcgcgagcc ttgctgcgca 15900 gggccaggcg cacgggacgc agggccatgc tcagggcggc cagacgcgcg gcctccggca 15960 gcagcagcgc cggcaggacc cgcagacgcg cggccacggc ggcggcggcg gccatcgcca 16020 gcatgtcccg cccgcggcgc ggcaacgtgt actgggtgcg cgacgccgcc accggtgtgc 16080 gcgtgcccgt gcgcacccgc ccccctcgca cttgaagatg ctgacttcgc gatgttgatg 16140 tgtcccagcg gcgaggagga tgtccaagcg caaatacaag gaagagatgc tccaggtcat 16200 cgcgcctgag atctacggcc ccgcggcggc ggtgaaggag gaaagaaagc cccgcaaact gaagcgggtc aaaaaggaca aaaaggagga ggaagatgac ggactggtgg agtttgtgcg 16260 Page 26

cgagttcgcc ccccggcggc gcgtgcagtg gcgcgggcgg aaagtgaaac cggtgctgcg 16320 16380 gcccggcacc acggtggtct tcacgcccgg cgagcgttcc ggctccgcct ccaagcgctc 16440 ctacgacgag gtgtacgggg acgaggacat cctcgagcag gcggtcgagc gtctgggcga 16500 gtttgcgtac ggcaagcgca gccgccccgc gcccttgaaa gaggaggcgg tgtccatccc 16560 gctggaccac ggcaacccca cgccgagcct gaagccggtg accctgcagc aggtgctacc 16620 gagcgcggcg ccgcgccggg gcttcaagcg cgagggcggc gaggatctgt acccgaccat gcagctgatg gtgcccaagc gccagaagct ggaggacgtg ctggagcaca tgaaggtgga 16680 16740 ccccgaggtg cagcccgagg tcaaggtgcg gcccatcaag caggtggccc cgggcctggg 16800 cgtgcagacc gtggacatca agatccccac ggagcccatg gaaacgcaga ccgagcccgt 16860 gaagcccagc accagcacca tggaggtgca gacggatccc tggatgccag caccagcttc caccagcact cgccgaagac gcaagtacgg cgcggccagc ctgctgatgc ccaactacgc 16920 gctgcatcct tccatcatcc ccacgccggg ctaccgcggc acgcgcttct accgcggcta 16980 17040 caccagcage egeogecgea agaccaccae eegeogecgt egtegeagee geogeageag caccgcgact tccgccttgg tgcggagagt gtatcgcagc gggcgcgagc ctctgaccct 17100 17160 gccgcgcgcg cgctaccacc cgagcatcgc catttaacta ccgcctccta cttgcagata 17220 tggccctcac atgccgcctc cgcgtcccca ttacgggcta ccgaggaaga aagccgcgcc gtagaaggct gacggggaac gggctgcgtc gccatcacca ccggcggcgg cgcgccatca 17280 gcaagcggtt ggggggaggc ttcctgcccg cgctgatccc catcatcgcc gcggcgatcg 17340 gggcgatccc cggcatagct tccgtggcgg tgcaggcctc tcagcgccac tgagacacaa 17400 aaaagcatgg atttgtaata aaaaaaaaaa tggactgacg ctcctggtcc tgtgatgtgt 17460 gtttttagat ggaagacatc aatttttcgt ccctggcacc gcgacacggc acgcggccgt 17520 ttatgggcac ctggagcgac atcggcaaca gccaactgaa cgggggcgcc ttcaattgga 17580 gcagtctctg gagcgggctt aagaatttcg ggtccacgct caaaacctat ggcaacaagg 17640 cgtggaacag cagcacaggg caggcgctga gggaaaagct gaaagaacag aacttccagc 17700 agaaggtggt tgatggcctg gcctcaggca tcaacggggt ggttgacctg gccaaccagg 17760 ccgtgcagaa acagatcaac agccgcctgg acgcggtccc gcccgcgggg tccgtggaga 17820 tgccccaggt ggaggaggag ctgcctcccc tggacaagcg cggcgacaag cgaccgcgtc 17880 ccgacgcgga ggagacgctg ctgacgcaca cggacgagcc gccccgtac gaggaggcgg 17940 tgaaactggg cctgcccacc acgcggcccg tggcgcctct ggccaccgga gtgctgaaac 18000 ccagcagcag ccagcccgcg accctggact tgcctccgcc tcgccctcc acagtggcta 18060 agcccctgcc gccggtggcc gtcgcgtcgc gcgccccccg aggccgcccc caggcgaact 18120 ggcagagcac tctgaacagc atcgtgggtc tgggagtgca gagtgtgaag cgccgccgct 18180 gctattaaaa gacactgtag cgcttaactt gcttgtctgt gtgtatatgt atgtccgccg 18240 accagaagga ggagtgtgaa gaggcgcgtc gccgagttgc aagatggcca ccccatcgat 18300

gctgccccag	tgggcgtaca	tgcacatcgc	cggacaggac	gcttcggagt	acctgagtcc	18360
gggtctggtg	cagttcgccc	gcgccacaga	cacctacttc	agtctgggga	acaagtttag	18420
gaaccccacg	gtggcgccca	cgcacgatgt	gaccaccgac	cgcagccagc	ggctgacgct	18480
gcgcttcgtg	cccgtggacc	gcgaggacaa	cacctactcg	tacaaagtgc	gctacacgct	18540
ggccgtgggc	gacaaccgcg	tgctggacat	ggccagcacc	tactttgaca	tccgcggcgt	18600
gctggaccgg	ggccctagct	tcaaacccta	ctctggcacc	gcctacaaca	gcctagctcc	18660
caagggagct	cccaattcca	gccagtggga	gcaagcaaaa	acaggcaatg	ggggaactat	18720
ggaaacacac	acatatggtg	tggccccaat	gggcggagag	aatattacaa	aagatggtct	18780
tcaaattgga	actgacgtta	cagcgaatca	gaataaacca	atttatgccg	acaaaacatt	18840
tcaaccagaa	ccgcaagtag	gagaagaaaa	ttggcaagaa	actgaaaact	tttatggcgg	18900
tagagctctt	aaaaaagaca	caaacatgaa	accttgctat	ggctcctatg	ctagacccac	18960
caatgaaaaa	ggaggtcaag	ctaaacttaa	agttggagat	gatggagttc	caaccaaaga	19020
attcgacata	gacctggctt	tctttgatac	tcccggtggc	accgtgaacg	gtcaagacga	19080
gtataaagca	gacattgtca	tgtataccga	aaacacgtat	ttggaaactc	cagacacgca	19140
tgtggtatac	aaaccaggca	aggatgatgc	aagttctgaa	attaacctgg	ttcagcagtc	19200
tatgcccaac	agacccaact	acattgggtt	cagggacaac	tttatcggtc	ttatgtacta	19260
caacagcact	ggcaatatgg	gtgtgcttgc	tggtcaggcc	tcccagctga	atgctgtggt	19320
tgatttgcaa	gacagaaaca	ccgagctgtc	ctaccagctc	ttgcttgact	ctttgggtga	19380
cagaacccgg	tatttcagta	tgtggaacca	ggcggtggac	agttatgacc	ccgatgtgcg	19440
catcatcgaa	aaccatggtg	tggaggatga	attgccaaac	tattgcttcc	ccttggacgg	19500
ctctggcact	aacgccgcat	accaaggtgt	gaaagtaaaa	gatggtcaag	atggtgatgt	19560
tgagagtgaa	tgggaaaatg	acgatactgt	tgcagctcga	aatcaattat	gtaaaggtaa	19620
cattttcgcc	atggagatta	atctccaggc	taacctgtgg	agaagtttcc	tctactcgaa	19680
cgtggccctg	tacctgcccg	actcctacaa	gtacacgccg	accaacgtca	cgctgccgac	19740
caacaccaac	acctacgatt	acatgaatgg	cagagtgaca	cctcctcgc	tggtagacgc	19800
ctacctcaac	atcggggcgc	gctggtcgct	ggaccccatg	gacaacgtca	accccttcaa	19860
ccaccaccgc	aacgcgggcc	tgcgctaccg	ctccatgctc	ctgggcaacg	ggcgctacgt	19920
gcccttccac	atccaggtgc	cccaaaagtt	tttcgccatc	aagagcctcc	tgctcctgcc	19980
cgggtcctac	acctacgagt	ggaacttccg	caaggacgtc	aacatgatcc	tgcagagctc	20040
cctaggcaac	gacctgcgca	cggacggggc	ctccatcgcc	ttcaccagca	tcaacctcta	20100
cgccaccttc	ttccccatgg	cgcacaacac	cgcctccacg	ctcgaggcca	tgctgcgcaa	20160
cgacaccaac	gaccagtcct	tcaacgacta	cctctcggcg	gccaacatgc	tctaccccat	20220
cccggccaac	gccaccaacg	tgcccatctc	catcccctcg	cgcaactggg	ccgccttccg	20280
cggatggtcc	ttcacgcgcc	tgaagacccg	cgagacgccc	tcgctcggct	ccgggttcga	20340
cccctacttc	gtctactcgg	gctccatccc	ctacctagac Page 28		acctcaacca	20400

20460 caccttcaag aaggtctcca tcaccttcga ctcctccgtc agctggcccg gcaacgaccg cctcctgacg cccaacgagt tcgaaatcaa gcgcaccgtc gacggagagg gatacaacgt 20520 20580 ggcccagtgc aacatgacca aggactggtt cctggtccag atgctggccc actacaacat cggctaccag ggcttctacg tgcccgaggg ctacaaggac cgcatgtact ccttcttccg 20640 20700 caacttccag cccatgagcc gccaggtcgt ggacgaggtc aactacaagg actaccaggc 20760 cgtcaccctg gcctaccagc acaacaactc gggcttcgtc ggctacctcg cgcccaccat 20820 gcgccagggc cagccctacc ccgccaacta cccctacccg ctcatcggca agagcgccgt 20880 cgccagcgtc acccagaaaa agttcctctg cgaccgggtc atgtggcgca tccccttctc 20940 cagcaacttc atgtccatgg gcgcgctcac cgacctcggc cagaacatgc tctacgccaa 21000 ctccgcccac gcgctagaca tgaatttcga agtcgacccc atggatgagt ccacccttct ctatgttgtc ttcgaagtct tcgacgtcgt ccgagtgcac cagccccacc gcggcgtcat 21060 21120 cgaagccgtc tacctgcgca cgcccttctc ggccggcaac gccaccacct aagccgctct 21180 tgcttcttgc aagatgacgg cgggctccgg cgagcaggag ctcagggcca tcctccgcga 21240 cctgggctgc gggccctgct tcctgggcac cttcgacaag cgcttccctg gattcatggc 21300 cccgcacaag ctggcctgcg ccatcgtgaa cacggccggc cgcgagaccg ggggcgagca ctggctggcc ttcgcctgga acccgcgctc ccacacatgc tacctcttcg accccttcgg 21360 21420 gttctcggac gagcgcctca agcagatcta ccagttcgag tacgagggcc tgctgcgtcg 21480 cagcgccctg gccaccgagg accgctgcgt caccctggaa aagtccaccc agaccgtgca gggtccgcgc tcggccgcct gcgggctctt ctgctgcatg ttcctgcacg ccttcgtgca 21540 ctggcccgac cgccccatgg acaagaaccc caccatgaac ttactgacgg gggtgcccaa 21600 cggcatgctc cagtcgcccc aggtggaacc caccctgcgc cgcaaccagg aagcgctcta 21660 ccgcttcctc aatgcccact ccgcctactt tcgctcccac cgcgcgcgca tcgagaaggc 21720 caccgccttc gaccgcatga atcaagacat gtaaaaaacc ggtgtgtgta tgtgaatgct 21780 21840 ttattcataa taaacagcac atgtttatgc caccttctct gaggctctga ctttatttag 21900 aaatcgaagg ggttctgccg gctctcggca tggcccgcgg gcagggatac gttgcggaac 21960 tggtacttgg gcagccactt gaactcgggg atcagcagct tgggcacggg gaggtcgggg 22020 aacgagtcgc tccacagctt gcgcgtgagt tgcagggcgc ccagcaggtc gggcgcggag atcttgaaat cgcagttggg acccgcgttc tgcgcgcgag agttgcggta cacggggttg 22080 cagcactgga acaccatcag ggccgggtgc ttcacgcttg ccagcaccgt cgcgtcggtg 22140 atgccctcca cgtccagatc ctcggcgttg gccatcccga agggggtcat cttgcaggtc 22200 tgccgcccca tgctgggcac gcagccgggc ttgtggttgc aatcgcagtg cagggggatc 22260 agcatcatct gggcctgctc ggagctcatg cccgggtaca tggccttcat gaaagcctcc 22320 22380 agctggcgga aggcctgctg cgccttgccg ccctcggtga agaagacccc gcaggacttg ctagagaact ggttggtggc gcagccggcg tcgtgcacgc agcagcgcgc gtcgttgttg 22440

gccagctgca ccacgctgcg cccccagcgg ttctgggtga tcttggcccg gttggggttc 22560 tccttcagcg cgcgctgccc gttctcgctc gccacatcca tctcgatagt gtgctccttc 22620 tggatcatca cggtcccgtg caggcaccgc agcttgccct cggcttcggt gcagccgtgc 22680 agccacagcg cgcagccggt gcactcccag ttcttgtggg cgatctggga gtgcgagtgc 22740 acqaagccct gcaggaagcg gcccatcatc gcggtcaggg tcttgttgct ggtgaaggtc agcgggatgc cgcggtgctc ctcgttcaca tacaggtggc agatgcggcg gtacacctcg 22800 ccctgctcgg gcatcagctg gaaggcggac ttcaggtcgc tctccacgcg gtaccggtcc 22860 22920 atcagcagcg tcatcacttc catgcccttc tcccaggccg aaacgatcgg caggctcagg gggttcttca ccgccattgt catcttagtc gccgccgccg aggtcagggg gtcgttctcg 22980 23040 tccagggtct caaacactcg cttgccgtcc ttctcgatga tgcgcacggg gggaaagctg 23100 aagcccacgg ccgccagctc ctcctcggcc tgcctttcgt cctcgctgtc ctggctgatg tcttgcaaag gcacatgctt ggtcttgcgg ggtttctttt tgggcggcag aggcggcggc 23160 gatgtgctgg gagagcgcga gttctcgttc accacgacta tttcttcttc ttggccgtcg 23220 23280 tccgagacca cgcggcggta ggcatgcctc ttctggggca gaggcggagg cgacgggctc tcgcggttcg gcgggcggct ggcagagccc cttccgcgtt cgggggtgcg ctcctggcgg 23340 cgctgctctg actgacttcc tccgcggccg gccattgtgt tctcctaggg agcaacaaca 23400 agcatggaga ctcagccatc gtcgccaaca tcgccatctg cccccgccgc caccgccgac 23460 23520 gagaaccagc agcagaatga aagcttaacc gccccgccgc ccagccccac ctccgacgcc gcggccccag acatgcaaga gatggaggaa tccatcgaga ttgacctggg ctacgtgacg 23580 23640 cccgcggagc acgaggagga gctggcagcg cgcttttcag ccccggaaga gaaccaccaa 23700 gagcagccag agcaggaagc agagaacgag cagaaccagg ctgggcacga gcatggcgac tacctgagcg gggcagagga cgtgctcatc aagcatctgg cccgccaatg catcatcgtc 23760 23820 aaggacgcgc tgctcgaccg cgccgaggtg cccctcagcg tggcggagct cagccgcgcc tacgagcgca acctcttctc gccgcgcgtg ccccccaagc gccagcccaa cggcacctgt 23880 gagcccaacc cgcgcctcaa cttctacccg gtcttcgcgg tgcccgaggc cctggccacc 23940 24000 taccacctct ttttcaagaa ccaaaggatc cccgtctcct gccgcgccaa ccgcacccgc 24060 gccgacgccc tgctcaacct gggccccggc gcccgcctac ctgatatcac ctccttggaa gaggttccca agatcttcga gggtctgggc agcgacgaga ctcgggccgc gaacgctctg 24120 24180 caaggaagcg gagaggagca tgagcaccac agcgccctgg tggagttgga aggcgacaac 24240 gcgcgcctgg cggtcctcaa gcgcacggtc gagctgaccc acttcgccta cccggcgctc aacctgcccc ccaaggtcat gagcgccgtc atggaccagg tgctcatcaa gcgcgcctcg 24300 24360 CCcctctcgg aggaggagat gcaggacccc gagagttcgg acgagggcaa gcccgtggtc agcgacgagc agctggcgcg ctggctggga gcgagtagca ccccccagag cctggaagag 24420 Cggcgcaagc tcatgatggc cgtggtcctg gtgaccgtgg agctggagtg tctgcgccgc 24480 ttctttgccg acgcggagac cctgcgcaag gtcgaggaga acctgcacta cctcttcagg 24540 Page 30

24600 cacgggttcg tgcgccaggc ctgcaagatc tccaacgtgg agctgaccaa cctggtctcc 24660 tacatgggca tcctgcacga gaaccgcctg gggcaaaacg tgctgcacac caccctgcgc 24720 ggggaggccc gccgcgacta catccgcgac tgcgtctacc tgtacctctg ccacacctgg 24780 cagacgggca tgggcgtgtg gcagcagtgc ctggaggagc agaacctgaa agagctctgc 24840 aagctcctgc agaagaacct caaggccctg tggaccgggt tcgacgagcg taccaccgcc 24900 tcggacctgg ccgacctcat cttccccgag cgcctgcggc tgacgctgcg caacgggctg 24960 cccgacttta tgagccaaag catgttgcaa aactttcgct ctttcatcct cgaacgctcc 25020 gggatcctgc ccgccacctg ctccgcgctg ccctcggact tcgtgccgct gaccttccgc 25080 gagtgccccc cgccgctctg gagccactgc tacttgctgc gcctggccaa ctacctggcc 25140 taccactcgg acgtgatcga ggacgtcagc ggcgagggtc tgctggagtg ccactgccgc 25200 tgcaacctct gcacgccgca ccgctccctg gcctgcaacc cccagctgct gagcgagacc 25260 cagatcatcg gcaccttcga gttgcaaggc cccggcgacg gcgagggcaa ggggggtctg 25320 aaactcaccc cggggctgtg gacctcggcc tacttgcgca agttcgtgcc cgaggactac 25380 catcccttcg agatcaggtt ctacgaggac caatcccagc cgcccaaggc cgagctgtcg 25440 gcctgcgtca tcacccaggg ggccatcctg gcccaattgc aagccatcca gaaatcccgc 25500 caagaatttc tgctgaaaaa gggccacggg gtctacttgg acccccagac cggagaggag 25560 ctcaacccca gcttccccca ggatgccccg aggaagcagc aagaagctga aagtggagct 25620 gccgccgccg gaggatttgg aggaagactg ggagagcagt caggcagagg aggaggagat 25680 ggaagactgg gacagcactc aggcagagga ggacagcctg caagacagtc tggaggagga 25740 agacgaggtg gaggaggcag aggaagaagc agccgccgcc agaccgtcgt cctcggcgga 25800 gaaagcaagc agcacggata ccatctccgc tccgggtcgg ggtcgcggcg gccgggccca 25860 cagtaggtgg gacgagaccg ggcgcttccc gaaccccacc acccagaccg gtaagaagga 25920 gcggcaggga tacaagtcct ggcgggggca caaaaacgcc atcgtctcct gcttgcaagc 25980 ctgcgggggc aacatctcct tcacccggcg ctacctgctc ttccaccgcg gggtgaactt 26040 cccccgcaac atcttgcatt actaccgtca cctccacagc ccctactact gtttccaaga 26100 agaggcagaa acccagcagc agcagaaaac cagcggcagc agcagctaga aaatccacag 26160 cggcggcagg tggactgagg atcgcggcga acgagccggc gcagacccgg gagctgagga 26220 accggatctt tcccacctc tatgccatct tccagcagag tcgggggcag gagcaggaac 26280 tgaaagtcaa gaaccgttct ctgcgctcgc tcacccgcag ttgtctgtat cacaagagcg 26340 aagaccaact tcagcgcact ctcgaggacg ccgaggctct cttcaacaag tactgcgcgc 26400 tcactcttaa agagtagccc gcgcccgccc acacacggaa aaaggcggga attacgtcac 26460 cacctgcgcc cttcgcccga ccatcatgag caaagagatt cccacgcctt acatgtggag ctaccagccc cagatgggcc tggccgccgg cgccgcccag gactactcca cccgcatgaa 26520 ctggctcagt gccgggcccg cgatgatctc acgggtgaat gacatccgcg cccaccgaaa 26580

26640 ccagatactc ctagaacagt cagcgatcac cgccacgccc cgccatcacc ttaatccgcg taattggccc gccgccctgg tgtaccagga aattccccag cccacgaccg tactacttcc 26700 gcgagacgcc caggccgaag tccagctgac taactcaggt gtccagctgg ccggcggcgc 26760 cgccctgtgt cgtcaccgcc ccgctcaggg tataaagcgg ctggtgatcc gaggcagagg 26820 26880 cacacagete aacgacgagg tggtgagete ttegetgggt etgegaeetg aeggagtett ccaactcgcc ggatcgggga gatcttcctt cacgcctcgt caggccgtcc tgactttgga 26940 27000 gagttcgtcc tcgcagcccc gctcgggcgg catcggcact ctccagttcg tggaggagtt 27060 cactccctcg gtctacttca accccttctc cggctccccc ggccactacc cggacgagtt 27120 catcccgaac ttcgacgcca tcagcgagtc ggtggacggc tacgattgaa tgtcccatgg tggcgcagct gacctagctc ggcttcgaca cctggaccac tgccgccgct tccgctgctt 27180 27240 cgctcgggat ctcgccgagt ttgcctactt tgagctgccc gaggagcacc ctcagggccc agcccacgga gtgcggatca tcgtcgaagg gggcctcgac tcccacctgc ttcggatctt 27300 27360 cagccagcga ccgatcctgg tcgagcgcga acaaggacag acccttctta ctttgtactg 27420 catctgcaac cacccggcc tgcatgaaag tctttgttgt ctgctgtgta ctgagtataa taaaagctga gatcagcgac tactccggac tcgattgtgg tgttcctgct atcaaccggt 27480 27540 ccctgttctt caccgggaac gagaccgagc tccagctcca gtgtaagccc cacaagaagt acctcacctg gctgttccag ggctccccga tcgccgttgt caaccactgc gacaacgacg 27600 gagtcctgct gagcggccct gccaacctta ctttttccac ccgcagaagc aagctccagc 27660 tcttccaacc cttcctcccc gggacctatc agtgcgtctc aggaccctgc catcacacct 27720 27780 tccacctgat cccgaatacc acagcgccgc tccccgctac taacaaccaa actacccacc 27840 aacgccaccg tcgcgacctt tcctctgaat ctaataccac taccggaggt gagctccgag gtcgaccaac ctctgggatt tactacggcc cctgggaggt ggtggggtta atagcgctag 27900 27960 gcctagttgc gggtgggctt ttggttctct gctacctata cctcccttgc tgttcgtact 28020 tagtggtgct gtgttgctgg tttaagaaat ggggaagatc accctagtga gctgcggtgc 28080 gctggtggcg gtgttgcttt cgattgtggg actgggcggc gcggctgtag tgaaggagaa 28140 ggccgatccc tgcttgcatt tcaatcccaa caaatgccag ctgagttttc agcccgatgg 28200 caatcggtgc gcggtactga tcaagtgcgg atgggaatgc gagaacgtga gaatcgagta caataacaag actcggaaca atactctcgc gtccgtgtgg cagcccggggg accccgagtg 28260 28320 gtacaccgtc tctgtccccg gtgctgacgg ctccccgcgc accgtgaata atactttcat 28380 ttttgcgcac atgtgcaaca cggtcatgtg gatgagcaag cagtacgata tgtggccccc 28440 cacgaaggag aacatcgtgg tcttctccat cgcttacagc ctgtgcacgg cgctaatcac 28500 cgctatcgtg tgcctgagca ttcacatgct catcgctatt cgccccagaa ataatgccga 28560 gaaagagaaa cagccataac acgttttttc acacaccttg tttttacaga caatgcgtct gttaaatttt ttaaacattg tgctcagtat tgcttatgcc tctggttatg caaacataca 28620 gaaaaccctt tatgtaggat ctgatggtac actagagggt acccaatcac aagccaaggt 28680 Page 32

But House H 23 Arest resett them to be seened and record in

WO 2005/001103

28740 tgcatggtat ttttatagaa ccaacactga tccagttaaa ctttgtaagg gtgaattgcc 28800 gcgtacacat aaaactccac ttacatttag ttgcagcaat aataatctta cacttttttc 28860 aattacaaaa caatatactg gtacttatta cagtacaaac tttcatacag gacaagataa 28920 atattatact gttaaggtag aaaatcctac cactcctaga actaccacca ccaccactac 28980 tgcaaagccc actgtgaaaa ctacaactag gaccaccaca actacagaaa ccaccaccag cacaacactt gctgcaacta cacacacaca cactaagcta accttacaga ccactaatga 29040 tttgatcgcc ctgctgcaaa agggggataa cagcaccact tccaatgagg agatacccaa 29100 29160 atccatgatt ggcattattg ttgctgtagt ggtgtgcatg ttgatcatcg ccttgtgcat 29220 ggtgtactat gccttctgct acagaaagca cagactgaac gacaagctgg aacacttact aagtgttgaa ttttaatttt ttagaaccat gaagatccta ggccttttta gtttttctat 29280 29340 cattacctct gctctttgtg aatcagtgga tagagatgtt actattacca ctggttctaa 29400 ttatacactg aaagggccac cctcaggtat gctttcgtgg tattgctatt ttggaactga 29460 cactgatcaa actgaattat gcaattttca aaaaggcaaa acctcaaact ctaaaatctc 29520 taattatcaa tgcaatggca ctgatctgat actactcaat gtcacgaaag catatggtgg 29580 cagttattat tgccctggac aaaacactga agaaatgatt ttttacaaag tggaagtggt 29640 29700 agaggcaaca qaaqcagagt tggccttcca ggttcacgga gattcctttg ctgtcaatac 29760 ccctacaccc gatcagcggt gtccggggcc gctagtcagc ggcattgtcg gtgtgctttc gggattagca gtcataatca tctgcatgtt catttttgct tgctgctata gaaggcttta 29820 ccgacaaaaa tcagacccac tgctgaacct ctatgtttaa tttttccag agccatgaag 29880 29940 gcagttagcg ctctagtttt ttgttctttg attggcattg tttttaatag taaaattacc 30000 agagttagct ttattaaaca tgttaatgta actgaaggag ataacatcac actagcaggt gtagaaggtg ctcaaaacac cacctggaca aaataccatc taggatggag agatatttgc 30060 30120 acctggaatg taacttatta ttgcatagga gttaatctta ccattgttaa cgctaaccaa 30180 tctcagaatg ggttaattaa aggacagagt gttagtgtga ccagtgatgg gtactatacc 30240 cagcatagtt ttaactacaa cattactgtc ataccactgc ctacgcctag cccacctagc 30300 actaccacac agacaaccac atacagtaca tcaaatcagc ctaccaccac tacagcagca gaggttgcca gctcgtctgg ggtccgagtg gcatttttga tgttggcccc atctagcagt 30360 cccactgcta gtaccaatga gcagactact gaatttttgt ccactgtcga gagccacacc 30420 acagctacct ccagtgcctt ctctagcacc gccaatctct cctcgctttc ctctacacca 30480 30540 atcagccccg ctactactcc tagccccgct cctcttccca ctcccctgaa gcaaacagac ggcggcatgc aatggcagat caccctgctc attgtgatcg ggttggtcat cctggccgtg 30600 30660 ttgctctact acatcttctg ccgccgcatt cccaacgcgc accgcaagcc ggcctacaag cccatcgtta tcgggcagcc ggagccgctt caggtggaag ggggtctaag gaatcttctc 30720

30780 ttctctttta cagtatggtg attgaactat gattcctaga caattcttga tcactattct 30840 tatctgcctc ctccaagtct gtgccaccct cgctctggtg gccaacgcca gtccagactg tattgggccc ttcgcctcct acgtgctctt tgccttcgtc acctgcatct gctgctgtag 30900 catagtctgc ctgcttatca ccttcttcca gttcattgac tggatctttg tgcgcatcgc 30960 31020 ctacctgcgc caccacccc agtaccgcga ccagcgagtg gcgcagctgc tcaggctcct ctgataagca tgcgggctct gctacttctc gcgcttctgc tgttagtgct cccccgtccc 31080 gtcgaccccc ggtcccccac tcagtccccc gaggaggttc gcaaatgcaa attccaagaa 31140 ccctggaaat tcctcaaatg ctaccgccaa aaatcagaca tgcatcccag ctggatcatg 31200 atcattggga tcgtgaacat tctggcctgc accctcatct cctttgtgat ttacccctgc 31260 tttgactttg gttggaactc gccagaggcg ctctatctcc cgcctgaacc tgacacca 31320 ccacagcagc aacctcaggc acacgcacta ccaccaccac agcctaggcc acaatacatg 31380 cccatattag actatgaggc cgagccacag cgacccatgc tccccgctat tagttacttc 31440 aatctaaccg gcggagatga ctgacccact ggccaataac aacgtcaacg accttctcct 31500 31560 ggacatggac ggccgcgcct cggagcagcg actcgcccaa cttcgcattc gtcagcagca ggagagagcc gtcaaggagc tgcaggacgg catagccatc caccagtgca agagaggcat 31620 cttctqcctq qtqaaacaqq ccaaqatctc ctacqaqqtc acccaqaccq accatcqcct 31680 ctcctacgag ctcctgcagc agcgccagaa gttcacctgc ctggtcggag tcaaccccat 31740 cgtcatcacc cagcagtcgg gcgataccaa ggggtgcatc cactgctcct gcgactcccc 31800 cgactgcgtc cacactctga tcaagaccct ctgcggcctc cgcgacctcc tccccatgaa 31860 31920 ctaatcaccc ccttatccag tgaaataaag atcatattga tgatgattta aataaaaaa ataatcattt gatttgaaat aaagatacaa tcatattgat gatttgagtt taacaaaaat 31980 aaagaatcac ttacttgaaa tctgatacca ggtctctgtc catgttttct gccaacacca 32040 cctcactccc ctcttcccag ctctggtact gcaggccccg gcgggctgca aacttcctcc 32100 acacgctgaa ggggatgtca aattcctcct gtccctcaat cttcatttta tcttctatca 32160 gatgtccaaa aagcgcgtcc gggtggatga tgacttcgac cccgtctacc cctacgatgc 32220 agacaacgca ccgaccgtgc ccttcatcaa ccccccttc gtctcttcag atggattcca 32280 agagaagccc ctgggggtgt tgtccctgcg actggctgac cccgtcacca ccaagaacgg 32340 ggaaatcacc ctcaagctgg gagagggggt ggacctcgac tcgtcgggaa aactcatctc 32400 caacacggcc accaaggccg ccgccctct cagtatttca aacaacacca tttcccttaa 32460 aactgctgcc cctttctaca acaacaatgg aactttaagc ctcaatgtct ccacaccatt 32520 agcagtattt cccacattta acactttagg cataagtctt ggaaacggtc ttcagacttc 32580 aaataagttg ttgactgtac aactaactca tcctcttaca ttcagctcaa atagcatcac 32640 agtaaaaaca gacaaagggc tatatattaa ctccagtgga aacagaggac ttgaggctaa 32700 tataagccta aaaagaggac tagtttttga cggtaatgct attgcaacat atattggaaa 32760 tggcttagac tatggatctt atgatagtga tggaaaaaca agacccgtaa ttaccaaaat 32820 Page 34

En Boar I of York touch floor to a many more reason.

tggagcagga	ttaaattttg	atgctaacaa	agcaatagct	gtcaaactag	gcacaggttt	32880
aagttttgac	tccgctggtg	ccttgacagc	tggaaacaaa	caggatgaca	agctaacact	32940
ttggactacc	cctgacccaa	gccctaattg	tcaattactt	tcagacagag	atgccaaatt	33000
tactctctgt	cttacaaaat	gcggtagtca	aatactaggc	actgtggcag	tggcggctgt	33060
tactgtagga	tcagcactaa	atccaattaa	tgacacagtc	aaaagcgcca	tagttttcct	33120
tagatttgat	tccgatggtg	tactcatgtc	aaactcatca	atggtaggtg	attactggaa	33180
ctttagggag	ggacagacca	ctcaaagtgt	agcctataca	aatgctgtgg	gattcatgcc	33240
aaatataggt	gcatatccaa	aaacccaaag	taaaacacct	aaaaatagca	tagtcagtca	33300
ggtatattta	actggagaaa	ctactatgcc	aatgacacta	accataactt	tcaatggcac	33360
tgatgaaaaa	gacacaaccc	cagttagcac	ctactctatg	acttttacat	ggcagtggac	33420
tggagactat	aaggacaaaa	atattacctt	tgctaccaac	tcattctctt	tttcctacat	33480
cgcccaggaa	taatcccacc	cagcaagcca	accccttttc	ccaccacctt	tgtctatatg	33540
gaaactctga	aacagaaaaa	taaagttcaa	gtgttttatt	gaatcaacag	ttttacagga	33600
ctcgagcagt	tatttttcct	ccaccctccc	aggacatgga	atacaccacc	ctctccccc	33660
gcacagcctt	gaacatctga	atgccattgg	tgatggacat	gcttttggtc	tccacgttcc	33720
acacagtttc	agagcgagcc	agtctcggat	cggtcaggga	gatgaaaccc	tccgggcact	33780
cccgcatctg	cacctcacag	ctcaacagct	gaggattgtc	ctcggtggtc	gggatcacgg	33840
ttatctggaa	gaagcagaag	agcggcggtg	ggaatcatag	tccgcgaacg	ggatcggccg	33900
gtggtgtcgc	atcaggcccc	gcagcagtcg	ctgccgccgc	cgctccgtca	agctgctgct	33960
cagggggttc	gggtccaggg	actccctcag	catgatgccc	acggccctca	gcatcagtcg	34020
tctggtgcgg	cgggcgcagc	agcgcatgcg	aatctcgctc	aggtcactgc	agtacgtgca	34080
acacaggacc	accaggttgt	tcaacagtcc	atagttcaac	acgctccagc	cgaaactcat	34140
cgcgggaagg	atgctaccca	cgtggccgtc	gtaccagatc	ctcaggtaaa	tcaagtggcg	34200
ctccctccag	aagacgctgc	ccatgtacat	gatctccttg	ggcatgtggc	ggttcaccac	34260
ctcccggtac	cacatcaccc	tctggttgaa	catgcagccc	cggatgatcc	tgcggaacca	34320
cagggccagc	accgccccgc	ccgccatgca	gcgaagagac	cccggatccc	ggcaatgaca	34380
atggaggacc	caccgctcgt	acccgtggat	catctgggag	ctgaacaagt	ctatgttggc	34440
acagcacagg	catatgctca	tgcatctctt	cagcactctc	agctcctcgg	gggtcaaaac	34500
catatcccag	ggcacgggga	actcttgcag	gacagcgaac	cccgcagaac	agggcaatcc	34560
tcgcacataa	cttacattgt	gcatggacag	ggtatcgcaa	tcaggcagca	ccgggtgatc	34620
ctccaccaga	gaagcgcggg	tctcggtctc	ctcacagcgt	ggtaaggggg	ccggccgata	34680
cgggtgatgg	cgggacgcgg	ctgatcgtgt	tctcgaccgt	gtcatgatgc	agttgctttc	34740
ggacattttc	gtacttgctg	tagcagaacc	tggtccgggc	gctgcacacc	gatcgccggc	34800
ggcggtctcg	gcgcttggaa	cgctcggtgt	taaagttgta	aaacagccac	tctctcagac	34860

cgtgcagcag atctagggcc tcaggagtga tgaagatccc atcatgcctg atagctctga tcacatcgac caccgtggaa tgggccaggc ccagccagat gatgcaattt tgttgggttt 34980 cggtgacggc gggggaggga agaacaggaa gaaccatgat taacttttaa tccaaacggt 35040 ctcggagcac ttcaaaatga aggtcacgga gatggcacct ctcgcccccg ctgtgttggt 35100 35160 ggaaaataac agccaggtca aaggtgatac ggttctcgag atgttccacg gtggcttcca gcaaagcctc cacgcgcaca tccagaaaca agacaatagc gaaagcggga gggttctcta 35220 attcctcaac catcatgtta cactcctgca ccatccccag ataattttca tttttccagc 35280 cttgaatgat tcgaactagt tcctgaggta aatccaagcc agccatgata aaaagctcgc 35340 35400 gcagagcacc ctccaccggc attcttaagc acaccctcat aattccaaga tattctgctc 35460 ctggttcacc tgcagcagat tgacaagcgg aatatcaaaa tctctgccgc gatccctgag ctcctcctc agcaataact gtaagtactc tttcatatcg tctccgaaat ttttagccat 35520 aggaccccca ggaataagag aagggcaagc cacattacag ataaaccgaa gtccccccca 35580 35640 gtgagcattg ccaaatgtaa gattgaaata agcatgctgg ctagacccgg tgatatcttc 35700 cagataactg gacagaaaat cgggtaagca atttttaaga aaatcaacaa aagaaaaatc ttccaggtgc acgtttaggg cctcgggaac aacgatggag taagtgcaag gggtgcgttc 35760 35820 cagcatggtt agttagctga tctgtaaaaa aacaaaaaat aaaacattaa accatgctag 35880 cctggcgaac aggtgggtaa atcgttctct ccagcaccag gcaggccacg gggtctccgg cgcgaccctc gtaaaaattg tcgctatgat tgaaaaccat cacagagaga cgttcccggt 35940 36000 ggccggcgtg aatgattcga gaagaagcat acacccccgg aacattggag tccgtgagtg aaaaaaagcg gccgaggaag caatgaggca ctacaacgct cactctcaag tccagcaaag 36060 36120 cgatgccatg cggatgaagc acaaaatttt caggtgcgta aaaaatgtaa ttactcccct 36180 cctgcacagg cagcgaagct cccgatccct ccagatacac atacaaagcc tcagcgtcca tagcttaccg agcggcagca gcagcggcac acaacaggcg caagagtcag agaaaagact 36240 gagctctaac ctgtccgccc gctctctgct caatatatag ccccagatct acactgacgt 36300 36360 aaaggccaaa gtctaaaaat acccgccaaa taatcacaca cgcccagcac acgcccagaa accggtgaca cactcagaaa aatacgcgca cttcctcaaa cggccaaact gccgtcattt 36420 ccqqqttccc acqctacqtc atcaaaacac gactttcaaa ttccgtcgac cgttaaaaac 36480 36540 atcaccegce eegecectaa eggtegeege teeegeagee aatcacette eteeeteeee aaattcaaac agctcatttg catattaacg cgcaccaaaa gtttgaggta tattattgat 36600 36604 gatg

Part Barte II pi' Sant Sant Crede

(400> 3

catcatcaat aatatacctc aaacttttgg tgcgcgttaa tatgcaaatg agctgtttga

60

<210> 3 <211> 36535 <212> DNA

<213> chimpanzee adenovirus serotype Pan7

II., tress II is tress above come

120 180 tgacgttttt aatacgtggc cgtgaggcgg agccggtttg caagttctcg tgggaaaagt 240 gacgtcaaac gaggtgtggt ttgaacacgg aaatactcaa ttttcccgcg ctctctgaca 300 ggaaatgagg tgtttctggg cggatgcaag tgaaaacggg ccattttcgc gcgaaaactg 360 aatgaggaag tgaaaatctg agtaatttcg cgtttatggc agggaggagt atttgccgag ggccgagtag actttgaccg attacgtggg ggtttcgatt accgtatttt tcacctaaat 420 480 ttccgcgtac ggtgtcaaag tccggtgttt ttacgtaggc gtcagctgat cgccagggta 540 tttaaacctg cgctctctag tcaagaggcc actcttgagt gccagcgagt agagttttct 600 cctccgcgcc gcgagtcaga tctacacttt gaaagatgag gcacctgaga gacctgcccg 660 gtaatgtttt cctggctact gggaacgaga ttctggaatt ggtggtggac gccatgatgg 720 gtggcgaccc tcctgagccc cctaccccat ttgaggcgcc ttcgctgtac gatttgtatg 780 atctggaggt ggatgtgccc gagaacgacc ccaacgagga ggcggtgaat gatttgttta 840 gcgatgccgc gctgctggct gccgagcagg ctaatacgga ctctggctca gacagcgatt 900 cctctctcca taccccgaga cccggcagag gtgagaaaaa gatccccgag cttaaagggg aagagctcga cctgcgctgc tatgaggaat gcttgcctcc gagcgatgat gaggaggacg 960 1020 aggaggcgat tcgagctgca tcgaaccagg gagtgaaagc tgcgggcgaa agctttagcc 1080 tggactgtcc tactctgccc ggacacggct gtaagtcttg tgaatttcat cgcatgaata 1140 ctggagataa gaatgtgatg tgtgccctgt gctatatgag agcttacaac cattgtgttt 1200 acagtaagtg tgattaactt tagttgggaa ggcagagggt gactgggtgc tgactggttt 1260 atttatgtat atgtttttt atgtgtaggt cccgtctctg acgtagatga gacccccact 1320 tcagagtgca tttcatcacc cccagaaatt ggcgaggaac cgcccgaaga tattattcat 1380 agaccagttg cagtgagagt caccgggcgg agagcagctg tggagagttt ggatgacttg 1440 ctacagggtg gggatgaacc tttggacttg tgtacccgga aacgccccag gcactaagtg 1500 ccacacatgt gtgtttactt aaggtgatgt cagtatttat agggtgtgga gtgcaataaa 1560 atccgtgttg actttaagtg cgtggtttat gactcagggg tggggactgt gggtatataa 1620 gcaggtgcag acctgtgtgg tcagttcaga gcaggactca tggagatctg gacggtcttg 1680 gaagactttc accagactag acagctgcta gagaactcat cggagggggt ctcttacctg 1740 tggagattct gcttcggtgg gcctctagct aagctagtct atagggccaa acaggattat 1800 aaggatcaat ttgaggatat tttgagagag tgtcctggta tttttgactc tctcaacttg 1860 ggccatcagt ctcactttaa ccagagtatt ctgagagccc ttgacttttc tactcctggc 1920 agaactaccg ccgcggtagc cttttttgcc tttatccttg acaaatggag tcaagaaacc 1980 catttcagca gggattaccg tctggactgc ttagcagtag ctttgtggag aacatggagg 2040 tgccagcgcc tgaatgcaat ctccggctac ttgccagtac agccggtaga cacgctgagg 2100 atcctgagtc tccagtcacc ccaggaacac caacgccgcc agcagccgca gcaggagcag 2160 cagcaagagg aggaggagga tcgagaagag aacccgagag ccggtctgga ccctccggtg Page 37

PCT/US2004/016614

2220 gcggaggagg aggagtagct gacttgtttc ccgagctgcg ccgggtgctg actaggtctt 2280 ccagtggacg ggagaggggg attaagcggg agaggcatga ggagactagc cacagaactg 2340 aactgactgt cagtctgatg agccgcaggc gcccagaatc ggtgtggtgg catgaggttc agtcgcaggg gatagatgag gtctcggtga tgcatgagaa atattccctg gaacaagtca 2400 2460 agacttgttg gttggagcct gaggatgatt gggaggtagc catcaggaat tatgccaagc 2520 tggctctgaa gccagacaag aagtacaaga ttaccaaact gattaatatc agaaattcct 2580 gctacatttc agggaatggg gccgaggtgg agatcagtac ccaggagagg gtggccttca 2640 gatgttgtat gatgaatatg tacccggggg tggtgggcat ggagggagtc acctttatga 2700 acgcgaggtt caggggtgat gggtataatg gggtggtctt tatggccaac accaagctga 2760 cagtgcacgg atgctccttc tttgggttca ataacatgtg catcgaggcc tggggcagtg 2820 tttcagtgag gggatgcagc ttttcagcca actggatggg ggtcgtgggc agaaccaaga 2880 gcaaggtgtc agtgaagaaa tgcctgttcg agaggtgcca cctgggggtg atgagcgagg 2940 gcgaagccaa agtcaaacac tgcgcctcta ctgagacggg ctgctttgtg ctgatcaagg 3000 gcaatgccca agtcaagcat aacatgatct gtggggcctc ggatgagcgc ggctaccaga 3060 tgctgacctg cgccggtggg aacagccata tgctggccac cgtgcatgtg acctcgcacc 3120 cccgcaagac atggcccgag ttcgagcaca acgtcatgac ccgatgcaat gtgcacctgg 3180 ggtcccgccg aggcatgttc atgccctacc agtgcaacat gcaatttgtg aaggtgctgc 3240 tggagcccga tgccatgtcc agagtgagcc tgacgggggt gtttgacatg aatgtggagc 3300 tgtggaaaat tctgagatat gatgaatcca agaccaggtg ccgggcctgc gaatgcggag 3360 gcaagcacgc caggcttcag cccgtgtgtg tggaggtgac ggaggacctg cgacccgatc 3420 atttggtgtt gtcctgcaac gggacggagt tcggctccag cggggaagaa tctgactaga 3480 gtgagtagtg tttgggggag gtggagggct tgtatgaggg gcagaatgac taaaatctgt 3540 gtttttctgt gtgttgcagc agcatgagcg gaagcgcctc ctttgaggga ggggtattca 3600 gcccttatct gacggggcgt ctcccctcct gggcgggagt gcgtcagaat gtgatgggat 3660 ccacggtgga cggccggccc gtgcagcccg cgaactcttc aaccctgacc tacgcgaccc tgagctcctc gtccgtggac gcagctgccg ccgcagctgc tgcttccgcc gccagcgccg 3720 3780 tgcgcggaat ggccctgggc gccggctact acagctctct ggtggccaac tcgacttcca 3840 ccaataatcc cgccagcctg aacgaggaga agctgctgct gctgatggcc cagctcgagg ccctgaccca gcgcctgggc gagctgaccc agcaggtggc tcagctgcag gcggagacgc 3900 gggccgcggt tgccacggtg aaaaccaaat aaaaaatgaa tcaataaata aacggagacg 3960 4020 gttgttgatt ttaacacaga gtcttgaatc tttatttgat ttttcgcgcg cggtaggccc 4080 tggaccaccg gtctcgatca ttgagcaccc ggtggatttt ttccaggacc cggtagaggt 4140 gggcttggat gttgaggtac atgggcatga gcccgtcccg ggggtggagg tagctccatt 4200 gCagggcctc gtgctcgggg gtggtgttgt aaatcaccca gtcatagcag gggcgcaggg

Ham direct to be, agent, should alread to be become name on the contract of

4260 cgtggtgctg cacgatgtcc ttgaggagga gactgatggc cacgggcagc cccttggtgt 4320 aggtgttgac gaacctgttg agctgggagg gatgcatgcg gggggagatg agatgcatct 4380 tggcctggat cttgagattg gcgatgttcc cgcccagatc ccgccggggg ttcatgttgt 4440 gcaggaccac cagcacggtg tatccggtgc acttgggggaa tttgtcatgc aacttggaag 4500 ggaaggcgtg aaagaatttg gagacgccct tgtgaccgcc caggttttcc atgcactcat ccatgatgat ggcgatgggc ccgtgggcgg cggcctgggc aaagacgttt cgggggtcgg 4560 4620 acacatcgta gttgtggtcc tgggtgagct cgtcataggc cattttaatg aatttggggc 4680 qqaqqtqcc cqactqqgqq acgaaggtgc cctcgatccc gggggcgtag ttgccctcgc 4740 agatctgcat ctcccaggcc ttgagctcgg agggggggat catgtccacc tgcggggcga tgaaaaaaac ggtttccggg gcgggggaga tgagctgggc cgaaagcagg ttccggagca 4800 4860 gctgggactt gccgcagccg gtggggccgt agatgacccc gatgaccggc tgcaggtggt 4920 agttgaggga gagacagctg ccgtcctcgc ggaggagggg ggccacctcg ttcatcatct 4980 cgcgcacatg catgttctcg cgcacgagtt ccgccaggag gcgctcgccc cccagcgaga 5040 ggagctcttg cagcgaggcg aagtttttca gcggcttgag yccgtcggcc atgggcattt 5100 tggagagggt ctgttgcaag agttccagac ggtcccagag ctcggtgatg tgctctaggg 5160 catctcgatc cagcagacct cctcgtttcg cgggttgggg cgactgcggg agtagggcac 5220 caggcgatgg gcgtccagcg aggccagggt ccggtccttc cagggtcgca gggtccgcgt 5280 cagcgtggtc tccgtcacgg tgaaggggtg cgcgccgggc tgggcgcttg cgagggtgcg 5340 cttcaggctc atccggctgg tcgagaaccg ctcccggtcg gcgccctgcg cgtcggccag 5400 gtagcaattg agcatgagtt cgtagttgag cgcctcggcc gcgtggccct tggcgcggag cttacctttg gaagtgtgtc cgcagacggg acagaggagg gacttgaggg cgtagagctt 5460 5520 gggggcgagg aagacggact cgggggcgta ggcgtccgcg ccgcagctgg cgcagacggt 5580 ctcgcactcc acgagccagg tgaggtcggg ccggttgggg tcaaaaacga ggtttcctcc 5640 gtgctttttg atgcgtttct tacctctggt ctccatgagc tcgtgtcccc gctgggtgac 5700 aaagaggctg tccgtgtccc cgtagaccga ctttatgggc cggtcctcga gcggggtgcc 5760 gcggtcctcg tcgtagagga accccgccca ctccgagacg aaggcccggg tccaggccag 5820 cacgaaggag gccacgtggg aggggtagcg gtcgttgtcc accagcgggt ccaccttctc 5880 cagggtatgc aagcacatgt ccccctcgtc cacatccagg aaggtgattg gcttgtaagt gtaggccacg tgaccggggg tcccggccgg gggggtataa aagggggcgg gcccctgctc 5940 gtcctcactg tcttccggat cgctgtccag gagcgccagc tgttggggta ggtattccct 6000 6060 ctcgaaggct ggcataacct cggcactcag gttgtcagtt tctagaaacg aggaggattt 6120 gatattgacg gtgccgttgg agacgccttt catgagcccc tcgtccatct ggtcagaaaa 6180 gacgatcttt ttgttgtcga gcttggtggc gaaggagccg tagagggcgt tggagaggag 6240 cttggcgatg gagcgcatgg tctggttctt ttccttgtcg gcgcgctcct tggcggcgat gttgagctgc acgtactcgc gcgccacgca cttccattcg gggaagacgg tggtgagctc Page 39 6300

gtcgggcacg	attctgaccc	gccagccgcg	gttgtgcagg	gtgatgaggt	ccacgctggt	6360
ggccacctcg	ccgcgcaggg	gctcgttggt	ccagcagagg	cgcccgccct	tgcgcgagca	6420
gaaggggggc	agcgggtcca	gcatgagctc	gtcggggggg	tcggcgtcca	cggtgaagat	6480
gccgggcaga	agctcggggt	cgaagtagct	gatgcaggtg	tccagatcgt	ccagcgccgc	6540
ttgccagtcg	cgcacggcca	gcgcgcgctc	gtaggggctg	aggggcgtgc	cccagggcat	6600
ggggtgcgtg	agcgcggagg	cgtacatgcc	gcagatgtcg	tagacgtaga	ggggctcctc	6660
gaggacgccg	atgtaggtgg	ggtagcagcg	cccccgcgg	atgctggcgc	gcacgtagtc	6720
gtacagctcg	tgcgagggcg	cgaggagccc	cgtgccgagg	ttggagcgtt	gcggcttttc	6780
ggcgcggtag	acgatctggc	ggaagatggc	gtgggagttg	gaggagatgg	tgggcctctg	6840
gaagatgttg	aagtgggcgt	ggggcaggcc	gaccgagtcc	ctgatgaagt	gggcgtagga	6900
gtcctgcagc	ttggcgacga	gctcggcggt	gacgaggacg	tccagggcgc	agtagtcgag	6960
ggtctcttgg	atgatgtcgt	acttgagctg	gcccttctgc	ttccacagct	cgcggttgag	7020
aaggaactct	tcgcggtcct	tccagtactc	ttcgaggggg	aacccgtcct	gatcggcacg	7080
gtaagagccc	accatgtaga	actggttgac	ggccttgtag	gcgcagcagc	ccttctccac	7140
ggggagggcg	taagcttgtg	cggccttgcg	cagggaggtg	tgggtgaggg	cgaaggtgtc	7200
gcgcaccatg	accttgagga	actggtgctt	gaagtcgagg	tcgtcgcagc	cgccctgctc	7260
ccagagctgg	aagtccgtgc	gcttcttgta	ggcggggttg	ggcaaagcga	aagtaacatc	7320
gttgaagagg	atcttgcccg	cgcggggcat	gaagttgcga	gtgatgcgga	aaggctgggg	7380
cacctcggcc	cggttgttga	tgacctgggc	ggcgaggacg	atctcgtcga	agccgttgat	7440
gttgtgcccg	acgatgtaga	gttccacgaa	tcgcgggcgg	cccttaacgt	ggggcagctt	7500
cttgagctcg	tcgtaggtga	gctcggcggg	gtcgctgagc	ccgtgctgct	cgagggccca	7560
gtcggcgacg	tgggggttgg	cgctgaggaa	ggaagtccag	agatccacgg	ccagggcggt	7620
ctgcaagcgg	tcccggtact	gacggaactg	ctggcccacg	gccattttt	cgggggtgac	7680
gcagtagaag	gtgcgggggt	cgccgtgcca	gcggtcccac	ttgagctgga	gggcgaggtc	7740
gtgggcgagc	tcgacgagcg	gcgggtcccc	ggagagtttc	atgaccagca	tgaaggggac	7800
gagctgcttg	ccgaaggacc	ccatccaggt	gtaggtttcc	acatcgtagg	tgaggaagag	7860
cctttcggtg	cgaggatgcg	agccgatggg	gaagaactgg	atctcctgcc	accagttgga	7920
ggaatggctg	ttgatgtgat	ggaagtagaa	atgccgacgg	cgcgccgagc	actcgtgctt	7980
gtgtttatac	aagcgtccgc	agtgctcgca	acgctgcacg	ggatgcacgt	gctgcacgag	8040
ctgtacctgg	gttcctttga	cgaggaattt	cagtgggcag	tggagcgctg	gcggctgcat	8100
ctggtgctgt	actacgtcct	ggccatcggc	gtggccatcg	tctgcctcga	tggtggtcat	8160
gctgacgagc	ccgcgcggga	ggcaggtcca	gacttcggct	cggacgggtc	ggagagcgag	8220
gacgagggcg	cgcaggccgg	agctgtccag	ggtcctgaga	cgctgcggag	tcaggtcagt	8280
gggcagcggc	ggcgcgcggt	tgacttgcag	gagcttttcc	agggcgcgcg	ggaggtccag	8340

atggtacttg	atctccacgg	cgccgttggt	ggcgacgtcc	acggcttgca	gggtcccgtg	8400
cccctggggc	gccaccaccg	tgccccgttt	cttcttgggc	gctgcttcca	tgccggtcag	8460
aagcggcggc	gaggacgcgc	gccgggcggc	aggggcggct	cgggacccgg	aggcaggggc	8520
ggcaggggca	cgtcggcgcc	gcgcgcgggc	aggttctggt	actgcgcccg	gagaagactg	8580
gcgtgagcga	cgacgcgacg	gttgacgtcc	tggatctgac	gcctctgggt	gaaggccacg	8640
ggacccgtga	gtttgaacct	gaaagagagt	tcgacagaat	caatctcggt	atcgttgacg	8700
gcggcctgcc	gcaggatctc	ttgcacgtcg	cccgagttgt	cctggtaggc	gatctcggtc	8760
atgaactgct	cgatctcctc	ctcctgaagg	tctccgcggc	cggcgcgctc	gacggtggcc	8820
gcgaggtcgt	tggagatgcg	gcccatgagc	tgcgagaagg	cgttcatgcc	ggcctcgttc	8880
cagacgcggc	tgtagaccac	ggctccgtcg	gggtcgcgcg	cgcgcatgac	cacctgggcg	8940
aggttgagct	cgacgtggcg	cgtgaagacc	gcgtagttgc	agaggcgctg	gtagaggtag	9000
ttgagcgtgg	tggcgatgtg	ctcggtgacg	aagaagtaca	tgatccagcg	gcggagcggc	9060
atctcgctga	cgtcgcccag	ggcttccaag	cgctccatgg	cctcgtagaa	gtccacggcg	9120
aagttgaaaa	actgggagtt	gcgcgccgag	acggtcaact	cctcctccag	aagacggatg	9180
agctcagcga	tggtggcgcg	cacctcgcgc	tcgaaggccc	cggggggctc	ctcttcttcc	9240
atctcttcct	cctccactaa	catctcttct	acttcctcct	caggaggcgg	cggcggggga	9300
ggggccctgc	gtcgccggcg	gcgcacgggc	agacggtcga	tgaagcgctc	gatggtctcc	9360
ccgcgccggc	gacgcatggt	ctcggtgacg	gcgcgcccgt	cctcgcgggg	ccgcagcgtg	9420
aagacgccgc	cgcgcatctc	caggtggccg	ccgggggggt	ctccgttggg	cagggagagg	9480
gcgctgacga	tgcatcttat	caattggccc	gtagggactc	cgcgcaagga	cctgagcgtc	9540
tcgagatcca	cgggatccga	aaaccgctga	acgaaggctt	cgagccagtc	gcagtcgcaa	9600
ggtaggctga	gcccggtttc	ttgttcttcg	gggatttcgg	gaggcgggcg	ggcgatgctg	9660
ctggtgatga	agttgaagta	ggcggtcctg	agacggcgga	tggtggcgag	gagcaccagg	9720
tccttgggcc	cggcttgctg	gatgcgcaga	cggtcggcca	tgccccaggc	gtggtcctga	9780
cacctggcga	ggtccttgta	gtagtcctgc	atgagccgct	ccacgggcac	ctcctcctcg	9840
cccgcgcggc	cgtgcatgcg	cgtgagcccg	aacccgcgct	ggggctggac	gagcgccagg	9900
tcggcgacga	cgcgctcggc	gaggatggcc	tgctgtatct	gggtgagggt	ggtctggaag	9960
tcgtcgaagt	cgacgaagcg	gtggtaggct	ccggtgttga	tggtatagga	gcagttggcc	10020
atgacggacc	agttgacggt	ctggtggccg	ggtcgcacga	gctcgtggta	cttgaggcgc	10080
gagtaggcgc	gcgtgtcgaa	gatgtagtcg	ttgcaggtgc	gcacgaggta	ctggtatccg	10140
acgaggaagt	gcggcggcgg	ctggcggtag	agcggccatc	gctcggtggc	gggggcgccg	10200
ggcgcgaggt	cctcgagcat	gaggcggtgg	tagccgtaga	tgtacctgga	catccaggtg	10260
atgccggcgg	cggtggtgga	ggcgcgcggg	aactcgcgga	cgcggttcca	gatgttgcgc	10320
agcggcagga	agtagttcat	ggtggccgcg	gtctggcccg	tgaggcgcgc	gcagtcgtgg	10380
atgctctaga	catacgggca	aaaacgaaag	cggtcagcgg Page 4:	ctcgactccg 1	tggcctggag	10440

gctaagcgaa	cgggttgggc	tgcgcgtgta	ccccggttcg	aatctcgaat	caggctggag	10500
ccgcagctaa	cgtggtactg	gcactcccgt	ctcgacccaa	gcctgctaac	gaaacctcca	10560
ggatacggag	gcgggtcgtt	ttttggcctt	ggtcgctggt	catgaaaaac	tagtaagcgc	10620
ggaaagcgac	cgcccgcgat	ggctcgctgc	cgtagtctgg	agaaagaatc	gccagggttg	10680
cgttgcggtg	tgccccggtt	cgagcctcag	cgctcggcgc	cggccggatt	ccgcggctaa	10740
cgtgggcgtg	gctgccccgt	cgtttccaag	accccttagc	cagccgactt	ctccagttac	10800
ggagcgagcc	cctcttttc	ttgtgttttt	gccagatgca	tcccgtactg	cggcagatgc	10860
gcccccaccc	tccacctcaa	ccgcccctac	cgccgcagca	gcagcaacag	ccggcgcttc	10920
tgccccgcc	ccagcagcag	ccagccacta	ccgcggcggc	cgccgtgagc	ggagccggcg	10980
ttcagtatga	cctggccttg	gaagagggcg	aggggctggc	gcggctgggg	gcgtcgtcgc	11040
cggagcggca	cccgcgcgtg	cagatgaaaa	gggacgctcg	cgaggcctac	gtgcccaagc	11100
agaacctgtt	cagagacagg	agcggcgagg	agcccgagga	gatgcgcgcc	tcccgcttcc	11160
acgcggggcg	ggagctgcgg	cgcggcctgg	accgaaagcg	ggtgctgagg	gacgaggatt	11220
tcgaggcgga	cgagctgacg	gggatcagcc	ccgcgcgcgc	gcacgtggcc	gcggccaacc	11280
tggtcacggc	gtacgagcag	accgtgaagg	aggagagcaa	cttccaaaaa	tccttcaaca	11340
accacgtgcg	cacgctgatc	gcgcgcgagg	aggtgaccct	gggcctgatg	cacctgtggg	11400
acctgctgga	ggccatcgtg	cagaacccca	cgagcaagcc	gctgacggcg	cagctgtttc	11460
tggtggtgca	gcacagtcgg	gacaacgaga	cgttcaggga	ggcgctgctg	aatatcaccg	11520
agcccgaggg	ccgctggctc	ctggacctgg	tgaacattct	gcagagcatc	gtggtgcagg	11580
agcgcgggct	gccgctgtcc	gagaagctgg	cggctatcaa	cttctcggtg	ctgagcctgg	11640
gcaagtacta	cgctaggaag	atctacaaga	ccccgtacgt	gcccatagac	aaggaggtga	11700
agatcgacgg	gttttacatg	cgcatgaccc	tgaaagtgct	gaccctgagc	gacgatctgg	11760
gggtgtaccg	caacgacagg	atgcaccgcg	cggtgagcgc	cagccgccgg	cgcgagctga	11820
gcgaccagga	gctgatgcac	agcctgcagc	gggccctgac	cggggccggg	accgaggggg	11880
agagctactt	tgacatgggc	gcggacctgc	gctggcagcc	cagccgccgg	gccttggaag	11940
ctgccggcgg	ttcccctac	gtggaggagg	tggacgatga	ggaggaggag	ggcgagtacc	12000
tggaagactg	atggcgcgac	cgtatttttg	ctagatgcag	caacagccac	cgcctcctga	12060
tcccgcgatg	cgggcggcgc	tgcagagcca	gccgtccggc	attaactcct	cggacgattg	12120
gacccaggcc	atgcaacgca	tcatggcgct	gacgacccgc	aatcccgaag	cctttagaca	12180
gcagcctcag	gccaaccggc	tctcggccat	cctggaggcc	gtggtgccct	cgcgctcgaa	12240
ccccacgcac	gagaaggtgc	tggccatcgt	gaacgcgctg	gtggagaaca	aggccatccg	12300
cggcgacgag	gccgggctgg	tgtacaacgc	gctgctggag	cgcgtggccc	gctacaacag	12360
caccaacgtg	cagacgaacc	tggaccgcat	ggtgaccgac	gtgcgcgagg	cggtgtcgca	12420
gcgcgagcgg	ttccaccgcg	agtcgaacct	gggctccatg	gtggcgctga	acgccttcct	12480

gagcacgcag	cccgccaacg	tgccccgggg	ccaggaggac	tacaccaact	tcatcagcgc	12540
gctgcggctg	atggtggccg	aggtgcccca	gagcgaggtg	taccagtcgg	ggccggacta	12600
cttcttccag	accagtcgcc	agggcttgca	gaccgtgaac	ctgagccagg	ctttcaagaa	12660
cttgcaggga	ctgtggggcg	tgcaggcccc	ggtcggggac	cgcgcgacgg	tgtcgagcct	12720
gctgacgccg	aactcgcgcc	tgctgctgct	gctggtggcg	cccttcacgg	acagcggcag	12780
cgtgagccgc	gactcgtacc	tgggctacct	gcttaacctg	taccgcgagg	ccatcgggca	12840
ggcgcacgtg	gacgagcaga	cctaccagga	gatcacccac	gtgagccgcg	cgctgggcca	12900
ggaggacccg	ggcaacctgg	aggccaccct	gaacttcctg	ctgaccaacc	ggtcgcagaa	12960
gatcccgccc	cagtacgcgc	tgagcaccga	ggaggagcgc	atcctgcgct	acgtgcagca	13020
gagcgtgggg	ctgttcctga	tgcaggaggg	ggccacgccc	agcgccgcgc	tcgacatgac	13080
cgcgcgcaac	atggagccca	gcatgtacgc	tcgcaaccgc	ccgttcatca	ataagctgat	13140
ggactacttg	catcgggcgg	ccgccatgaa	ctcggactac	tttaccaacg	ccatcttgaa	13200
cccgcactgg	ctcccgccgc	ccgggttcta	cacgggcgag	tacgacatgc	ccgaccccaa	13260
cgacgggttc	ctgtgggacg	acgtggacag	cagcgtgttc	tcgccgcgcc	ccgccaccac	13320
cgtgtggaag	aaagagggcg	gggaccggcg	gccgtcctcg	gcgctgtccg	gtcgcgcggg	13380
tgctgccgcg	gcggtgcctg	aggccgccag	ccccttcccg	agcctgccct	tttcgctgaa	13440
cagcgtgcgc	agcagcgagc	tgggtcggct	gacgcggccg	cgcctgctgg	gcgaggagga	13500
gtacctgaac	gactccttgt	tgaggcccga	gcgcgagaag	aacttcccca	ataacgggat	13560
agagagcctg	gtggacaaga	tgagccgctg	gaagacgtac	gcgcacgagc	acagggacga	13620
gccccgagct	agcagcagcg	caggcacccg	tagacgccag	cgacacgaca	ggcagcgggg	13680
tctggtgtgg	gacgatgagg	attccgccga	cgacagcagc	gtgttggact	tgggtgggag	13740
tggtggtggt	aacccgttcg	ctcacttgcg	ccccgtatc	gggcgcctga	tgtaagaatc	13800
tgaaaaaata	aaaaacggta	ctcaccaagg	ccatggcgac	cagcgtgcgt	tcttctctgt	13860
tgtttgtagt	agtatgatga	ggcgcgtgta	cccggagggt	cctcctccct	cgtacgagag	13920
cgtgatgcag	caggcggtgg	cggcggcgat	gcagcccccg	ctggaggcgc	cttacgtgcc	13980
cccgcggtac	ctggcgccta	cggaggggcg	gaacagcatt	cgttactcgg	agctggcacc	14040
cttgtacgat	accacccggt	tgtacctggt	ggacaacaag	tcggcggaca	tcgcctcgct	14100
gaactaccag	aacgaccaca	gcaacttcct	gaccaccgtg	gtgcagaaca	acgatttcac	14160
ccccacggag	gccagcaccc	agaccatcaa	ctttgacgag	cgctcgcggt	ggggcggcca	14220
gctgaaaacc	atcatgcaca	ccaacatgcc	caacgtgaac	gagttcatgt	acagcaacaa	14280
gttcaaggcg	cgggtgatgg	tctcgcgcaa	gacccccaat	ggggtcgcgg	tggatgagaa	14340
ttatgatggt	agtcaggacg	agctgactta	cgagtgggtg	gagtttgagc	tgcccgaggg	14400
caacttctcg	gtgaccatga	ccatcgatct	gatgaacaac	gccatcatcg	acaactactt	14460
ggcggtgggg	cgtcagaacg	gggtgctgga	gagcgacatc	ggcgtgaagt	tcgacacgcg	14520
caacttccgg	ctgggctggg	accccgtgac	cgagctggtg Page 4	atgccgggcg 3	tgtacaccaa	14580

cgaggccttc	caccccgaca	tcgtcctgct	gcccggctgc	ggcgtggact	tcaccgagag	14640
ccgcctcagc	aacctgctgg	gcatccgcaa	gcggcagccc	ttccaggagg	gcttccagat	14700
cctgtacgag	gacctggagg	ggggcaacat	cccgcgctc	ttggatgtcg	aagcctatga	14760
gaaaagcaag	gaggaggccg	ccgcagcggc	gaccgcagcc	gtggccaccg	cctctaccga	14820
ggtgcggggc	gataattttg	ctagcgccgc	ggcagtggcc	gaggcggctg	aaaccgaaag	14880
taagatagtc	atccagccgg	tggagaagga	cagcaaggac	aggagctaca	acgtgctcgc	14940
ggacaagaaa	aacaccgcct	accgcagctg	gtacctggcc	tacaactacg	gcgaccccga	15000
gaagggcgtg	cgctcctgga	cgctgctcac	cacctcggac	gtcacctgcg	gcgtggagca	15060
agtctactgg	tcgctgcccg	acatgatgca	agacccggtc	accttccgct	ccacgcgtca	15120
agttagcaac	tacccggtgg	tgggcgccga	gctcctgccc	gtctactcca	agagcttctt	15180
caacgagcag	gccgtctact	cgcagcagct	gcgcgccttc	acctcgctca	cgcacgtctt	15240
caaccgcttc	cccgagaacc	agatcctcgt	ccgcccgccc	gcgcccacca	ttaccaccgt	15300
cagtgaaaac	gttcctgctc	tcacagatca	cgggaccctg	ccgctgcgca	gcagtatccg	15360
gggagtccag	cgcgtgaccg	tcactgacgc	cagacgccgc	acctgcccct	acgtctacaa	15420
ggccctgggc	gtagtcgcgc	cgcgcgtcct	ctcgagccgc	accttctaaa	aaatgtccat	15480
tctcatctcg	cccagtaata	acaccggttg	gggcctgcgc	gcgcccagca	agatgtacgg	15540
aggcgctcgc	caacgctcca	cgcaacaccc	cgtgcgcgtg	cgcgggcact	tccgcgctcc	15600
ctggggcgcc	ctcaagggcc	gcgtgcgctc	gcgcaccacc	gtcgacgacg	tgatcgacca	15660
ggtggtggcc	gacgcgcgca	actacacgcc	cgccgccgcg	cccgcctcca	ccgtggacgc	15720
cgtcatcgac	agcgtggtgg	ccgatgcgcg	ccggtacgcc	cgcgccaaga	gccggcggcg	15780
gcgcatcgcc	cggcggcacc	ggagcacccc	cgccatgcgc	gcggcgcgag	ccttgctgcg	15840
cagggccagg	cgcacgggac	gcagggccat	gctcagggcg	gccagacgcg	cggcctccgg	15900
cagcagcagc	gccggcagga	cccgcagacg	cgcggccacg	gcggcggcgg	cggccatcgc	15960
cagcatgtcc	cgcccgcggc	gcggcaacgt	gtactgggtg	cgcgacgccg	ccaccggtgt	16020
gcgcgtgccc	gtgcgcaccc	gccccctcg	cacttgaaga	tgctgacttc	gcgatgttga	16080
tgtgtcccag	cggcgaggag	gatgtccaag	cgcaaataca	aggaagagat	gctccaggtc	16140
atcgcgcctg	agatctacgg	ccccgcggtg	aaggaggaaa	gaaagccccg	caaactgaag	16200
cgggtcaaaa	aggacaaaaa	ggaggaggaa	gatgtggacg	gactggtgga	gtttgtgcgc	16260
gagttcgccc	cccggcggcg	cgtgcagtgg	cgcgggcgga	aagtgaaacc	ggtgctgcgg	16320
cccggcacca	cggtggtctt	cacgcccggc	gagcgttccg	gctccgcctc	caagcgctcc	16380
tacgacgagg	tgtacgggga	cgaggacatc	ctcgagcagg	cggtcgagcg	tctgggcgag	16440
tttgcttacg	gcaagcgcag	ccgccccgcg	cccttgaaag	aggaggcggt	gtccatcccg	16500
ctggaccacg	gcaaccccac	gccgagcctg	aagccggtga	ccctgcagca	ggtgctgccg	16560
agcgcggcgc	cgcgccgggg	cttcaagcgc	gagggcggcg	aggatctgta	cccgaccatg	16620

cagctgatgg	tgcccaagcg	ccagaagctg	gaggacgtgc	tggagcacat	gaaggtggac	16680
cccgaggtgc	agcccgaggt	caaggtgcgg	cccatcaagc	aggtggcccc	gggcctgggc	16740
gtgcagaccg	tggacatcaa	gatccccacg	gagcccatgg	aaacgcagac	cgagcccgtg	16800
aagcccagca	ccagcaccat	ggaggtgcag	acggatccct	ggatgccggc	gccggcttcc	16860
accactcgcc	gaagacgcaa	gtacggcgcg	gccagcctgc	tgatgcccaa	ctacgcgctg	16920
catccttcca	tcatccccac	gccgggctac	cgcggcacgc	gcttctaccg	cggctacacc	16980
agcagccgcc	gcaagaccac	cacccgccgc	cgccgtcgtc	gcacccgccg	cagcagcacc	17040
gcgacttccg	ccgccgccct	ggtgcggaga	gtgtaccgca	gcgggcgcga	gcctctgacc	17100
ctgccgcgcg	cgcgctacca	cccgagcatc	gccatttaac	tctgccgtcg	cctcctactt	17160
gcagatatgg	ccctcacatg	ccgcctccgc	gtccccatta	cgggctaccg	aggaagaaag	17220
ccgcgccgta	gaaggctgac	ggggaacggg	ctgcgtcgcc	atcaccaccg	gcggcggcgc	17280
gccatcagca	agcggttggg	gggaggcttc	ctgcccgcgc	tgatccccat	catcgccgcg	17340
gcgatcgggg	cgatccccgg	catagcttcc	gtggcggtgc	aggcctctca	gcgccactga	17400
gacacagctt	ggaaaatttg	taataaaaaa	atggactgac	gctcctggtc	ctgtgatgtg	17460
tgtttttaga	tggaagacat	caatttttcg	tccctggcac	cgcgacacgg	cacgcggccg	17520
tttatgggca	cctggagcga	catcggcaac	agccaactga	acgggggcgc	cttcaattgg	17580
agcagtctct	ggagcgggct	taagaatttc	gggtccacgc	tcaaaaccta	tggcaacaag	17640
gcgtggaaca	gcagcacagg	gcaggcgctg	agggaaaagc	tgaaagagca	gaacttccag	17700
cagaaggtgg	tcgatggcct	ggcctcgggc	atcaacgggg	tggtggacct	ggccaaccag	17760
gccgtgcaga	aacagatcaa	cagccgcctg	gacgcggtcc	cgcccgcggg	gtccgtggag	17820
atgccccagg	tggaggagga	gctgcctccc	ctggacaagc	gcggcgacaa	gcgaccgcgt	17880
cccgacgcgg	aggagacgct	gctgacgcac	acggacgagc	cgcccccgta	cgaggaggcg	17940
gtgaaactgg	gtctgcccac	cacgcggccc	gtggcgcctc	tggccaccgg	ggtgctgaaa	18000
cccagcagca	gcagccagcc	cgcgaccctg	gacttgcctc	cgcctgcttc	ccgcccctcc	18060
acagtggcta	agcccctgcc	gccggtggcc	gtcgcgtcgc	gcgccccccg	aggccgcccc	18120
caggcgaact	ggcagagcac	tctgaacagc	atcgtgggtc	tgggagtgca	gagtgtgaag	18180
cgccgccgct	gctattaaaa	gacactgtag	cgcttaactt	gcttgtctgt	gtgtatatgt	18240
atgtccgccg	accagaagga	ggaagaggcg	cgtcgccgag	ttgcaagatg	gccaccccat	18300
cgatgctgcc	ccagtgggcg	tacatgcaca	tcgccggaca	ggacgcttcg	gagtacctga	18360
gtccgggtct	ggtgcagttc	gcccgcgcca	cagacaccta	cttcagtctg	gggaacaagt	18420
ttaggaaccc	cacggtggcg	cccacgcacg	atgtgaccac	cgaccgcagc	cagcggctga	18480
cgctgcgctt	cgtgcccgtg	gaccgcgagg	acaacaccta	ctcgtacaaa	gtgcgctaca	18540
cgctggccgt	gggcgacaac	cgcgtgctgg	acatggccag	cacctacttt	gacatccgcg	18600
gcgtgctgga	tcgggggccc	agcttcaaac	cctactccgg	caccgcctac	aacagcctgg	18660
ctcccaaggg	agcgcccaac	acttgccagt	ggacatataa Page 4	agctggtgat	actgatacag	18720

aaaaaaccta	tacatatgga	aatgcacctg	tgcaaggcat	tagcattaca	aaggatggta	18780
ttcaacttgg	aactgacagc	gatggtcagg	caatctatgc	agacgaaact	tatcaaccag	18840
agcctcaagt	gggtgatgct	gaatggcatg	acatcactgg	tactgatgaa	aaatatggag	18900
gcagagctct	taagcctgac	accaaaatga	agccttgcta	tggttctttt	gccaagccta	18960
ccaataaaga	aggaggccag	gcaaatgtga	aaaccgaaac	aggcggtacc	aaagaatatg	19020
acattgacat	ggcattcttc	gataatcgaa	gtgcagctgc	cgccggccta	gccccagaaa	19080
ttgttttgta	tactgagaat	gtggatctgg	aaactccaga	tacccatatt	gtatacaagg	19140
caggtacaga	tgacagtagc	tcttctatca	atttgggtca	gcagtccatg	cccaacagac	19200
ccaactacat	tggcttcaga	gacaacttta	tcggtctgat	gtactacaac	agcactggca	19260
atatgggtgt	actggctgga	caggcctccc	agctgaatgc	tgtggtggac	ttgcaggaca	19320
gaaacaccga	actgtcctac	cagctcttgc	ttgactctct	gggtgacaga	accaggtatt	19380
tcagtatgtg	gaatcaggcg	gtggacagtt	atgaccccga	tgtgcgcatt	attgaaaatc	19440
acggtgtgga	ggatgaactt	cctaactatt	gcttcccct	ggatgctgtg	ggtagaactg	19500
atacttacca	gggaattaag	gccaatggtg	ataatcaaac	cacctggacc	aaagatgata	19560
ctgttaatga	tgctaatgaa	ttgggcaagg	gcaatccttt	cgccatggag	atcaacatcc	19620
aggccaacct	gtggcggaac	ttcctctacg	cgaacgtggc	gctgtacctg	cccgactcct	19680
acaagtacac	gccggccaac	atcacgctgc	ccaccaacac	caacacctac	gattacatga	19740
acggccgcgt	ggtggcgccc	tcgctggtgg	acgcctacat	caacatcggg	gcgcgctggt	19800
cgctggaccc	catggacaac	gtcaacccct	tcaaccacca	ccgcaacgcg	ggcctgcgat	19860
accgctccat	gctcctgggc	aacgggcgct	acgtgccctt	ccacatccag	gtgccccaaa	19920
agtttttcgc	catcaagagc	ctcctgctcc	tgcccgggtc	ctacacctac	gagtggaact	19980
tccgcaagga	cgtcaacatg	atcctgcaga	gctccctcgg	caacgacctg	cgcacggacg	20040
gggcctccat	cgccttcacc	agcatcaacc	tctacgccac	cttcttcccc	atggcgcaca	20100
acaccgcctc	cacgctcgag	gccatgctgc	gcaacgacac	caacgaccag	tccttcaacg	20160
actacctctc	ggcggccaac	atgctctacc	ccatcccggc	caacgccacc	aacgtgccca	20220
tctccatccc	ctcgcgcaac	tgggccgcct	tccgcggctg	gtccttcacg	cgcctcaaga	20280
cccgcgagac	gccctcgctc	ggctccgggt	tcgaccccta	cttcgtctac	tcgggctcca	20340
tcccctacct	cgacggcacc	ttctacctca	accacacctt	caagaaggtc	tccatcacct	20400
tcgactcctc	cgtcagctgg	cccggcaacg	accgcctcct	gacgcccaac	gagttcgaaa	20460
tcaagcgcac	cgtcgacgga	gaggggtaca	acgtggccca	gtgcaacatg	accaaggact	20520
ggttcctggt	ccagatgctg	gcccactaca	acatcggcta	ccagggcttc	tacgtgcccg	20580
agggctacaa	ggaccgcatg	tactccttct	tccgcaactt	ccagcccatg	agccgccagg	20640
tcgtggacga	ggtcaactac	aaggactacc	aggccgtcac	cctggcctac	cagcacaaca	20700
actcgggctt	cgtcggctac	ctcgcgccca	ccatgcgcca	gggccagccc	taccccgcca	20760

actaccccta	cccgctcatc	ggcaagagcg	ccgtcgccag	cgtcacccag	aaaaagttcc	20820
tctgcgaccg	ggtcatgtgg	cgcatcccct	tctccagcaa	cttcatgtcc	atgggcgcgc	20880
tcaccgacct	cggccagaac	atgctctacg	ccaactccgc	ccacgcgcta	gacatgaatt	20940
tcgaagtcga	ccccatggat	gagtccaccc	ttctctatgt	tgtcttcgaa	gtcttcgacg	21000
tcgtccgagt	gcaccagccc	caccgcggcg	tcatcgaggc	cgtctacctg	cgcacgccct	21060
tctcggccgg	caacgccacc	acctaagcct	cttgcttctt	gcaagatgac	ggcctgcgcg	21120
ggctccggcg	agcaggagct	cagggccatc	ctccgcgacc	tgggctgcgg	gccctgcttc	21180
ctgggcacct	tcgacaagcg	cttcccggga	ttcatggccc	cgcacaagct	ggcctgcgcc	21240
atcgtcaaca	cggccggccg	cgagaccggg	ggcgagcact	ggctggcctt	cgcctggaac	21300
ccgcgctccc	acacctgcta	cctcttcgac	cccttcgggt	tctcggacga	gcgcctcaag	21360
cagatctacc	agttcgagta	cgagggcctg	ctgcgtcgca	gcgccctggc	caccgaggac	21420
cgctgcgtca	ccctggaaaa	gtccacccag	accgtgcagg	gtccgcgctc	ggccgcctgc	21480
gggctcttct	gctgcatgtt	cctgcacgcc	ttcgtgcact	ggcccgaccg	ccccatggac	21540
aagaacccca	ccatgaactt	gctgacgggg	gtgcccaacg	gcatgctcca	gtcgccccag	21600
gtggaaccca	ccctgcgccg	caaccaggag	gcgctctacc	gcttcctcaa	cgcccactcc	21660
gcctactttc	gctcccaccg	cgcgcgcatc	gagaaggcca	ccgccttcga	ccgcatgaat	21720
caagacatgt	aatccggtgt	gtgtatgtga	atgctttatt	catcataata	aacagcacat	21780
gtttatgcca	ccttctctga	ggctctgact	ttatttagaa	atcgaagggg	ttctgccggc	21840
tctcggcatg	gcccgcgggc	agggatacgt	tgcggaactg	gtacttgggc	agccacttga	21900
actcggggat	cagcagcttc	ggcacgggga	ggtcggggaa	cgagtcgctc	cacagcttgc	21960
gcgtgagttg	cagggcgccc	agcaggtcgg	gcgcggagat	cttgaaatcg	cagttgggac	22020
ccgcgttctg	cgcgcgagag	ttacggtaca	cggggttgca	gcactggaac	accatcaggg	22080
ccgggtgctt	cacgctcgcc	agcaccgtcg	cgtcggtgat	gccctccacg	tccagatcct	22140
cggcgttggc	catcccgaag	ggggtcatct	tgcaggtctg	ccgccccatg	ctgggcacgc	22200
agccgggctt	gtggttgcaa	tcgcagtgca	gggggatcag	catcatctgg	gcctgctcgg	22260
agctcatgcc	cgggtacatg	gccttcatga	aagcctccag	ctggcggaag	gcctgctgcg	22320
ccttgccgcc	ctcggtgaag	aagaccccgc	aggacttgct	agagaactgg	ttggtggcgc	22380
agccagcgtc	gtgcacgcag	cagcgcgcgt	cgttgttggc	cagctgcacc	acgctgcgcc	22440
cccagcggtt	ctgggtgatc	ttggcccggt	cggggttctc	cttcagcgcg	cgctgcccgt	22500
tctcgctcgc	cacatccatc	tcgatcgtgt	gctccttctg	gatcatcacg	gtcccgtgca	22560
ggcaccgcag	cttgccctcg	gcctcggtgc	acccgtgcag	ccacagcgcg	cagccggtgc	22620
tctcccagtt	cttgtgggcg	atctgggagt	gcgagtgcac	gaagccctgc	aggaagcggc	22680
ccatcatcgt	ggtcagggtc	ttgttgctgg	tgaaggtcag	cggaatgccg	cggtgctcct	22740
cgttcacata	caggtggcag	atacggcggt	acacctcgcc	ctgctcgggc	atcagctgga	22800
aggcggactt	caggtcgctc	tccacgcggt	accggtccat Page 4	cagcagcgtc 7	atcacttcca	22860

tgcccttctc ccaggccgaa acgatcggca ggctcagggg gttcttcacc gttgtcatct 22920 22980 tagtcgccgc cgccgaagtc agggggtcgt tctcgtccag ggtctcaaac actcgcttgc 23040 cgtccttctc ggtgatgcgc acggggggaa agctgaagcc cacggccgcc agctcctcct cggcctgcct ttcgtcctcg ctgtcctggc tgatgtcttg caaaggcaca tgcttggtct 23100 23160 tgcggggttt ctttttgggc ggcagaggcg gcggcggaga cgtgctgggc gagcgcgagt tctcgctcac cacgactatt tcttctctt ggccgtcgtc cgagaccacg cggcggtagg 23220 catgcctctt ctggggcaga ggcggaggcg acgggctctc gcggttcggc gggcggctgg 23280 cagagcccct tccgcgttcg ggggtgcgct cctggcggcg ctgctctgac tgacttcctc 23340 23400 cgcggccggc cattgtgttc tcctagggag caagcatgga gactcagcca tcgtcgccaa catcgccatc tgccccgcc gccgccgacg agaaccagca gcagcagaat gaaagcttaa 23460 23520 ccgccccgcc gcccagcccc acctccgacg ccgcagcccc agacatgcaa gagatggagg 23580 aatccatcga gattgacctg ggctacgtga cgcccgcgga gcacgaggag gagctggcag cgcgcttttc agccccggaa gagaaccacc aagagcagcc agagcaggaa gcagagagcg 23640 23700 agcagaacca ggctgggctc gagcatggcg actacctgag cggggcagag gacgtgctca 23760 tcaagcatct ggcccgccaa tgcatcatcg tcaaggacgc gctgctcgac cgcgccgagg 23820 tgcccctcag cgtggcggag ctcagccgcg cctacgagcg caacctcttc tcgccgcgcg 23880 tgcccccaa gcgccagccc aacggcacct gcgagcccaa cccgcgcctc aacttctacc 23940 cggtcttcgc ggtgcccgag gccctggcca cctaccacct ctttttcaag aaccaaagga 24000 tccccgtctc ctgccgcgcc aaccgcaccc gcgccgacgc cctgctcaac ctgggccccg 24060 gcgcccgcct acctgatatc gcctccttgg aagaggttcc caagatcttc gagggtctgg 24120 gcagcgacga gactcgggcc gcgaacgctc tgcaaggaag cggagaggag catgagcacc acagcgccct ggtggagttg gaaggcgaca acgcgcgcct ggcggtcctc aagcgcacgg 24180 24240 tcgagctgac ccacttcgcc tacccggcgc tcaacctgcc ccccaaggtc atgagcgccg 24300 tcatggacca ggtgctcatc aagcgcgcct cgcccctctc ggaggaggag atgcaggacc 24360 ccgagagctc ggacgagggc aagcccgtgg tcagcgacga gcagctggcg cgctggctgg gagcgagtag cacccccag agcctggaag agcggcgcaa gctcatgatg gccgtggtcc 24420 24480 tggtgaccgt ggagctggag tgtctgcgcc gcttcttcgc cgacgcggag accctgcgca 24540 aggtcgagga gaacctgcac tacctcttca gacacgggtt cgtgcgccag gcctgcaaga 24600 tctccaacgt ggagctgacc aacctggtct cctacatggg catcctgcac gagaaccgcc 24660 tggggcagaa cgtgctgcac accaccctgc gcggggaggc ccgccgcgac tacatccgcg 24720 actgcgtcta cctgtacctc tgccacacct ggcagacggg catgggcgtg tggcagcagt 24780 gcctggagga gcagaacctg aaagagctct gcaagctcct gcagaagaac ctcaaggccc tgtggaccgg gttcgacgag cgcaccaccg ccgcggacct ggccgacctc atcttccccg 24840 agcgcctgcg gctgacgctg cgcaacgggc tgcccgactt tatgagccaa agcatgttgc 24900

aaaactttcg	ctctttcatc	ctcgaacgct	ccgggatcct	gcccgccacc	tgctccgcgc	24960
tgccctcgga	cttcgtgccg	ctgaccttcc	gcgagtgccc	cccgccgctc	tggagccact	25020
gctacctgct	gcgcctggcc	aactacctgg	cctaccactc	ggacgtgatc	gaggacgtca	25080
gcggcgaggg	cctgctcgag	tgccactgcc	gctgcaacct	ctgcacgccg	caccgctccc	25140
tggcctgcaa	cccccagctg	ctgagcgaga	cccagatcat	cggcaccttc	gagttgcaag	25200
gccccggcga	gggcaagggg	ggtctgaaac	tcaccccggg	gctgtggacc	tcggcctact	25260
tgcgcaagtt	cgtgcccgag	gactaccatc	ccttcgagat	caggttctac	gaggaccaat	25320
cccagccgcc	caaggccgag	ctgtcggcct	gcgtcatcac	ccagggggcc	atcctggccc	25380
aattgcaagc	catccagaaa	tcccgccaag	aatttctgct	gaaaaagggc	cacggggtct	25440
acttggaccc	ccagaccgga	gaggagctca	accccagctt	ccccaggat	gccccgagga	25500
agcagcaaga	agctgaaagt	ggagctgccg	ccgccgccgg	aggatttgga	ggaagactgg	25560
gagagcagtc	aggcagagga	ggaggagatg	gaagactggg	acagcactca	ggcagaggag	25620
gacagcctgc	aagacagtct	ggaggaggaa	gacgaggtgg	aggaggcaga	ggaagaagca	25680
gccgccgcca	gaccgtcgtc	ctcggcggag	gaggagaaag	caagcagcac	ggataccatc	25740
tccgctccgg	gtcggggtcg	cggcggccgg	gcccacagta	gatgggacga	gaccgggcgc	25800
ttcccgaacc	ccaccaccca	gaccggtaag	aaggagcggc	agggatacaa	gtcctggcgg	25860
gggcacaaaa	acgccatcgt	ctcctgcttg	caagcctgcg	ggggcaacat	ctccttcacc	25920
cggcgctacc	tgctcttcca	ccgcggggtg	aacttccccc	gcaacatctt	gcattactac	25980
cgtcacctcc	acagccccta	ctactgtttc	caagaagagg	cagaaaccca	gcagcagcag	26040
cagcagcaga	aaaccagcgg	cagcagctag	aaaatccaca	gcggcggcag	gtggactgag	26100
gatcgcggcg	aacgagccgg	cgcagacccg	ggagctgagg	aaccggatct	ttcccaccct	26160
ctatgccatc	ttccagcaga	gtcgggggca	agagcaggaa	ctgaaagtca	agaaccgttc	26220
tctgcgctcg	ctcacccgca	gttgtctgta	tcacaagagc	gaagaccaac	ttcagcgcac	26280
tctcgaggac	gccgaggctc	tcttcaacaa	gtactgcgcg	ctcactctta	aagagtagcc	26340
cgcgcccgcc	cacacacgga	aaaaggcggg	aattacgtca	ccacctgcgc	ccttcgcccg	26400
accatcatca	tgagcaaaga	gattcccacg	ccttacatgt	ggagctacca	gccccagatg	26460
ggcctggccg	ccggcgccgc	ccaggactac	tccacccgca	tgaactggct	cagtgccggg	26520
cccgcgatga	tctcacgggt	gaatgacatc	cgcgcccacc	gaaaccagat	actcctagaa	26580
cagtcagcga	tcaccgccac	gccccgccat	caccttaatc	cgcgtaattg	gcccgccgcc	26640
ctggtgtacc	aggaaattcc	ccagcccacg	accgtactac	ttccgcgaga	cgcccaggcc	26700
gaagtccagc	tgactaactc	aggtgtccag	ctggccggcg	gcgccgccct	gtgtcgtcac	26760
cgccccgctc	agggtataaa	gcggctggtg	atccgaggca	gaggcacaca	gctcaacgac	26820
gaggtggtga	gctcttcgct	gggtctgcga	cctgacggag	tcttccaact	cgccggatcg	26880
gggagatctt	ccttcacgcc	tcgtcaggcc	gtcctgactt	tggagagttc	gtcctcgcag	26940
ccccgctcgg	gtggcatcgg	cactctccag	ttcgtggagg Page 49		ctcggtctac	27000

ttcaacccct	tctccggctc	ccccggccac	tacccggacg	agttcatccc	gaacttcgac	27060
gccatcagcg	agtcggtgga	cggctacgat	tgaatgtccc	atggtggcgc	ggctgaccta	27120
gctcggcttc	gacacctgga	ccactgccgc	cgcttccgct	gcttcgctcg	ggatctcgcc	27180
gagtttgcct	actttgagct	gcccgaggag	caccctcagg	gcccggccca	cggagtgcgg	27240
atcgtcgtcg	aagggggtct	cgactcccac	ctgcttcgga	tcttcagcca	gcgtccgatc	27300
ctggccgagc	gcgagcaagg	acagaccctt	ctgaccctgt	actgcatctg	caaccacccc	27360
ggcctgcatg	aaagtctttg	ttgtctgctg	tgtactgagt	ataataaaag	ctgagatcag	27420
cgactactcc	ggacttccgt	gtgttcctgc	tatcaaccag	tccctgttct	tcaccgggaa	27480
cgagaccgag	ctccagctcc	agtgtaagcc	ccacaagaag	tacctcacct	ggctgttcca	27540
gggctctccg	atcgccgttg	tcaaccactg	cgacaacgac	ggagtcctgc	tgagcggccc	27600
tgccaacctt	actttttcca	cccgcagaag	caagctccag	ctcttccaac	ccttcctccc	27660
cgggacctat	cagtgcgtct	cgggaccctg	ccatcacacc	ttccacctga	tcccgaatac	27720
cacagcgtcg	ctccccgcta	ctaacaacca	aactacccac	caacgccacc	gtcgcgacct	27780
ttcctctggg	tctaatacca	ctaccggagg	tgagctccga	ggtcgaccaa	cctctgggat	27840
ttactacggc	ccctgggagg	tggtagggtt	aatagcgcta	ggcctagttg	cgggtgggct	27900
tttggctctc	tgctacctat	acctcccttg	ctgttcgtac	ttagtggtgc	tgtgttgctg	27960
gtttaagaaa	tggggaagat	caccctagtg	agctgcggtg	tgctggtggc	ggtggtgctt	28020
tcgattgtgg	gactgggcgg	cgcggctgta	gtgaaggaga	aggccgatcc	ctgcttgcat	28080
ttcaatcccg	acaaatgcca	gctgagtttt	cagcccgatg	gcaatcggtg	cgcggtgctg	28140
atcaagtgcg	gatgggaatg	cgagaacgtg	agaatcgagt	acaataacaa	gactcggaac	28200
aatactctcg	cgtccgtgtg	gcagcccggg	gaccccgagt	ggtacaccgt	ctctgtcccc	28260
ggtgctgacg	gctccccgcg	caccgtgaat	aatactttca	tttttgcgca	catgtgcgac	28320
acggtcatgt	ggatgagcaa	gcagtacgat	atgtggcccc	ccacgaagga	gaacatcgtg	28380
gtcttctcca	tcgcttacag	cgtgtgcacg	gcgctaatca	ccgctatcgt	gtgcctgagc	28440
attcacatgc	tcatcgctat	tcgccccaga	aataatgccg	aaaaagaaaa	acagccataa	28500
cacgttttt	cacacacctt	tttcagacca	tggcctctgt	taaatttttg	cttttatttg	28560
ccagtctcat	tgccgtcatt	catggaatga	gtaatgagaa	aattactatt	tacactggca	28620
ctaatcacac	attgaaaggt	ccagaaaaag	ccacagaagt	ttcatggtat	tgttatttta	28680
atgaatcaga	tgtatctact	gaactctgtg	gaaacaataa	caaaaaaaat	gagagcatta	28740
ctctcatcaa	gtttcaatgt	ggatctgact	taaccctaat	taacatcact	agagactatg	28800
taggtatgta	ttatggaact	acagcaggca	tttcggacat	ggaattttat	caagtttctg	28860
tgtctgaacc	caccacgcct	agaatgacca	caaccacaaa	aactacacct	gttaccacta	28920
tacagctcac	taccaatggc	tttcttgcca	tgcttcaagt	ggctgaaaat	agcaccagca	28980
ttcaacccac	cccacccagt	gaggaaattc	ccagatccat	gattggcatt	attgttgctg	29040

tagtggtgtg	catgttgatc	atcgccttgt	gcatggtgta	ctatgccttc	tgctacagaa	29100
agcacagact	gaacgacaag	ctggaacact	tactaagtgt	tgaattttaa	ttttttagaa	29160
ccatgaagat	cctaggcctt	ttagtttttt	ctatcattac	ctctgctcta	tgcaattctg	29220
acaatgagga	cgttactgtc	gttgtcggat	caaattatac	actaaaaggt	ccagcaaaag	29280
gtatgctttc	gtggtattgt	tggttcggaa	ctgacgagca	acagacagaa	ctttgcaatg	29340
ctcaaaaagg	caaaacctca	aattctaaaa	tctctaatta	tcaatgcaat	ggcactgact	29400
tagtattgct	caatgtcacg	aaagcatatg	ctggcagtta	cacctgccct	ggagatgatg	29460
ccgacaatat	gatttttac	aaagtggaag	tggttgatcc	cactactcca	ccgcccacca	29520
ccacaactac	tcataccaca	cacacagaac	aaacaccaga	ggcagcagaa	gcagagttgg	29580
ccttccaggt	tcacggagat	tcctttgctg	tcaatacccc	tacacccgat	cagcggtgtc	29640
cggggctgct	cgtcagcggc	attgtcggtg	tgctttcggg	attagcagtc	ataatcatct	29700
gcatgttcat	ttttgcttgc	tgctatagaa	ggctttaccg	acaaaaatca	gacccactgc	29760
tgaacctcta	tgtttaattt	tttccagagc	catgaaggca	gttagcgctc	tagttttttg	29820
ttctttgatt	ggcattgttt	ttagtgctgg	gtttttgaaa	aatcttacca	tttatgaagg	29880
tgagaatgcc	actctagtgg	gcatcagtgg	tcaaaatgtc	agctggctaa	aataccatct	29940
agatgggtgg	aaagacattt	gcgattggaa	tgtcactgtg	tatacatgta	atggagttaa	30000
cctcaccatt	actaatgcca	cccaagatca	gaatggtagg	tttaagggcc	agagtttcac	30060
tagaaataat	gggtatgaat	cccataacat	gtttatctat	gacgtcactg	tcatcagaaa	30120
tgagactgcc	accaccacac	agatgcccac	tacacacagt	tctaccacta	ctaccatgca	30180
aaccacacag	acaaccacta	catcaactca	gcatatgacc	accactacag	cagcaaagcc	30240
aagtagtgca	gcgcctcagc	cccaggcttt	ggctttgaaa	gctgcacaac	ctagtacaac	30300
tactaggacc	aatgagcaga	ctactgaatt	tttgtccact	gtcgagagcc	acaccacagc	30360
tacctccagt	gccttctcta	gcaccgccaa	tctctcctcg	ctttcctcta	caccaatcag	30420
tcccgctact	actcccaccc	cagctcttct	ccccactccc	ctgaagcaaa	ctgaggacag	30480
cggcatgcaa	tggcagatca	ccctgctcat	tgtgatcggg	ttggtcatcc	tggccgtgtt	30540
gctctactac	atcttctgcc	gccgcattcc	caacgcgcac	cgcaaaccgg	cctacaagcc	30600
catcgttatc	gggcagccgg	agccgcttca	ggtggaaggg	ggtctaagga	atcttctctt	30660
ctcttttaca	gtatggtgat	tgaactatga	ttcctagaca	attcttgatc	actattctta	30720
tctgcctcct	ccaagtctgt	gccaccctcg	ctctggtggc	caacgccagt	ccagactgta	30780
ttgggccctt	cgcctcctac	gtgctctttg	ccttcatcac	ctgcatctgc	tgctgtagca	30840
tagtctgcct	gcttatcacc	ttcttccagt	tcattgactg	gatctttgtg	cgcatcgcct	30900
acctgcgcca	ccacccccag	taccgcgacc	agcgagtggc	gcggctgctc	aggctcctct	30960
gataagcatg	cgggctctgc	tacttctcgc	gcttctgctg	ttagtgctcc	cccgccccgt	31020
cgacccccgg	tccccactc	agtcccccga	agaggtccgc	aaatgcaaat	tccaagaacc	31080
ctggaaattc	ctcaaatgct	accgccaaaa	atcagacatg Page 5:	cttcccagct l	ggatcatgat	31140

cattgggatc	gtgaacattc	tggcctgcac	cctcatctcc	tttgtgattt	acccctgctt	31200
tgactttggt	tggaactcgc	cagaggcgct	ctatctcccg	cctgaacctg	acacaccacc	31260
acagcaacct	caggcacacg	cactaccacc	accacagcct	aggccacaat	acatgcccat	31320
attagactat	gaggccgagc	cacagcgacc	catgctcccc	gctattagtt	acttcaatct	31380
aaccggcgga	gatgactgac	ccactggcca	acaacaacgt	caacgacctt	ctcctggaca	31440
tggacggccg	cgcctcggag	cagcgactcg	cccaacttcg	cattcgccag	cagcaggaga	31500
gagccgtcaa	ggagctgcag	gacggcatag	ccatccacca	gtgcaagaaa	ggcatcttct	31560
gcctggtgaa	acaggccaag	atctcctacg	aggtcacccc	gaccgaccat	cgcctctcct	31620
acgagctcct	gcagcagcgc	cagaagttca	cctgcctggt	cggagtcaac	cccatcgtca	31680
tcacccagca	gtcgggcgat	accaaggggt	gcatccactg	ctcctgcgac	tccccgact	31740
gcgtccacac	tctgatcaag	accctctgcg	gcctccgcga	cctcctcccc	atgaactaat	31800
caccccctta	tccagtgaaa	taaatatcat	attgatgatg	atttaaataa	aaaataatca	31860
tttgatttga	aataaagata	caatcatatt	gatgatttga	gttttaaaaa	ataaagaatc	31920
acttacttga	aatctgatac	caggtctctg	tccatgtttt	ctgccaacac	cacctcactc	31980
ccctcttccc	agctctggta	ctgcagaccc	cggcgggctg	caaacttcct	ccacacgctg	32040
aaggggatgt	caaattcctc	ctgtccctca	atcttcattt	tatcttctat	cagatgtcca	32100
aaaagcgcgt	ccgggtggat	gatgacttcg	accccgtcta	cccctacgat	gcagacaacg	32160
caccgaccgt	gcccttcatc	aacccccct	tcgtctcttc	agatggattc	caagagaagc	32220
ccctgggggt	gctgtccctg	cgactggctg	accccgtcac	caccaagaac	ggggaaatca	32280
ccctcaagct	gggagagggg	gtggacctcg	actcctcggg	aaaactcatc	tccaacacgg	32340
ccaccaaggc	cgccgcccct	ctcagttttt	ccaacaacac	catttccctt	aacatggata	32400
cccctcttta	taccaaagat	ggaaaattat	ccttacaagt	ttctccaccg	ttaaacatat	32460
taaaatcaac	cattctgaac	acattagctg	tagcttatgg	atcaggttta	ggactgagtg	32520
gtgġcactgc	tcttgcagta	cagttggcct	ctccactcac	ttttgatgaa	aaaggaaata	32580
ttaaaattaa	cctagccagt	ggtccattaa	cagttgatgc	aagtcgactt	agtatcaact	32640
gcaaaagagg	ggtcactgtc	actacctcag	gagatgcaat	tgaaagcaac	ataagctggc	32700
ctaaaggtat	aagatttgaa	ggtaatggca	tagctgcaaa	cattggcaga	ggattggaat	32760
ttggaaccac	tagtacagag	actgatgtca	cagatgcata	cccaattcaa	gttaaattgg	32820
gtactggcct	tacctttgac	agtacaggcg	ccattgttgc	ttggaacaaa	gaggatgata	32880
aacttacatt	atggaccaca	gccgacccct	cgccaaattg	caaaatatac	tctgaaaaag	32940
atgccaaact	cacactttgc	ttgacaaagt	gtggaagtca	aattctgggt	actgtgactg	33000
tattggcagt	gaataatgga	agtctcaacc	caatcacaaa	cacagtaagc	actgcactcg	33060
tctccctcaa	gtttgatgca	agtggagttt	tgctaagcag	ctccacatta	gacaaagaat	33120
attggaactt	cagaaaggga	gatgttacac	ctgctgagcc	ctatactaat	gctataggtt	33180

						22240
	cataaaggcc					33240
	ttatctcaat					33300
atgaaactga	ggatgcaact	tgcacctaca	gtatcacttt	tcaatggaaa	tgggatagta	33360
ctaagtacac	aggtgaaaca	cttgctacca	gctccttcac	cttctcctac	atcgcccaag	33420
aatgaacact	gtatcccacc	ctgcatgcca	acccttccca	ccccactctg	tctatggaaa	33480
aaactctgaa	gcacaaaata	aaataaagtt	caagtgtttt	attgattcaa	cagttttaca	33540
ggattcgagc	agttatttt	cctccaccct	cccaggacat	ggaatacacc	accctctccc	33600
cccgcacagc	cttgaacatc	tgaatgccat	tggtgatgga	catgcttttg	gtctccacgt	33660
tccacacagt	ttcagagcga	gccagtctcg	ggtcggtcag	ggagatgaaa	ccctccgggc	33720
actcccgcat	ctgcacctca	cagctcaaca	gctgaggatt	gtcctcggtg	gtcgggatca	33780
cggttatctg	gaagaagcag	aagagcggcg	gtgggaatca	tagtccgcga	acgggatcgg	33840
ccggtggtgt	cgcatcaggc	cccgcagcag	tcgctgccgc	cgccgctccg	tcaagctgct	33900
gctcaggggg	tccgggtcca	gggactccct	cagcatgatg	cccacggccc	tcagcatcag	33960
tcgtctggtg	cggcgggcgc	agcagcgcat	gcggatctcg	ctcaggtcgc	tgcagtacgt	34020
gcaacacagg	accaccaggt	tgttcaacag	tccatagttc	aacacgctcc	agccgaaact	34080
catcgcggga	aggatgctac	ccacgtggcc	gtcgtaccag	atcctcaggt	aaatcaagtg	34140
gcgctccctc	cagaacacgc	tgcccacgta	catgatctcc	ttgggcatgt	ggcggttcac	34200
cacctcccgg	taccacatca	ccctctggtt	gaacatgcag	ccccggatga	tcctgcggaa	34260
ccacagggcc	agcaccgccc	cgcccgccat	gcagcgaaga	gaccccgggt	cccggcaatg	34320
gcaatggagg	acccaccgct	cgtacccgtg	gatcatctgg	gagctgaaca	agtctatgtt	34380
ggcacagcac	aggcatatgc	tcatgcatct	cttcagcact	ctcagctcct	cgggggtcaa	34440
aaccatatcc	cagggcacgg	ggaactcttg	caggacagcg	aaccccgcag	aacagggcaa	34500
tcctcgcaca	taacttacat	tgtgcatgga	cagggtatcg	caatcaggca	gcaccgggtg	34560
atcctccacc	agagaagcgc	gggtctcggt	ctcctcacag	cgtggtaagg	gggccggccg	34620
atacgggtga	tggcgggacg	cggctgatcg	tgttcgcgac	cgtgtcatga	tgcagttgct	34680
ttcggacatt	ttcgtacttg	ctgtagcaga	acctggtccg	ggcgctgcac	accgatcgcc	34740
ggcggcggtc	ccggcgcttg	gaacgctcgg	tgttgaaatt	gtaaaacagc	cactctctca	34800
gaccgtgcag	cagatctagg	gcctcaggag	tgatgaagat	cccatcatgc	ctgatagctc	34860
tgatcacatc	gaccaccgtg	gaatgggcca	gacccagcca	gatgatgcaa	ttttgttggg	34920
tttcggtgac	ggcgggggag	ggaagaacag	gaagaaccat	gattaacttt	taatccaaac	34980
ggtctcggag	cacttcaaaa	tgaaggtcgc	ggagatggca	cctctcgccc	ccgctgtgtt	35040
ggtggaaaat	aacagccagg	tcaaaggtga	tacggttctc	gagatgttcc	acggtggctt	35100
	ctccacgcgc					35160
	aatcatcatg					35220
	gattcgaact					35280
-	_		Page 53		_ _	

cgcgcagagc gccctccacc	ggcattctta	agcacaccct	cataattcca	agatattctg	35340
ctcctggttc acctgcagca	gattgacaag	cggaatatca	aaatctctgc	cgcgatccct	35400
aagctcctcc ctcagcaata	actgtaagta	ctctttcata	tcctctccga	aatttttagc	35460
cataggacca ccaggaataa	gattagggca	agccacagta	cagataaacc	gaagtcctcc	35520
ccagtgagca ttgccaaatg	caagactgct	ataagcatgc	tggctagacc	cggtgatatc	35580
ttccagataa ctggacagaa	aatcacccag	gcaattttta	agaaaatcaa	caaaagaaaa	35640
atcctccagg tgcacgttta	gagcctcggg	aacaacgatg	aagtaaatgc	aagcggtgcg	35700
ttccagcatg gttagttagc	tgatctgtaa	aaaacaaaaa	ataaaacatt	aaaccatgct	35760
agcctggcga acaggtgggt	aaatcgttct	ctccagcacc	aggcaggcca	cggggtctcc	35820
ggcgcgaccc tcgtaaaaat	tgtcgctatg	attgaaaacc	atcacagaga	gacgttcccg	35880
gtggccggcg tgaatgatto	gacaagatga	atacaccccc	ggaacattgg	cgtccgcgag	35940
tgaaaaaaag cgcccgagga	agcaataagg	cactacaatg	ctcagtctca	agtccagcaa	36000
agcgatgcca tgcggatgaa	gcacaaaatc	ctcaggtgcg	tacaaaatgt	aattactccc	36060
ctcctgcaca ggcagcgaag	ccccgatcc	ctccagatac	acatacaaag	cctcagcgtc	36120
catagcttac cgagcagcag	cacacaacag	gcgcaagagt	cagagaaagg	ctgagctcta	36180
acctgtccac ccgctctctg	ctcaatatat	agcccagatc	tacactgacg	taaaggccaa	36240
agtctaaaaa tacccgccaa	ataatcacac	acgcccagca	cacgcccaga	aaccggtgac	36300
acactcaaaa aaatacgcgc	acttcctcaa	acgcccaaac	tgccgtcatt	tccgggttcc	36360
cacgctacgt catcggaatt	cgactttcaa	attccgtcga	ccgttaaaaa	cgtcacccgc	36420
cccgccccta acggtcgccc	gtctctcggc	caatcacctt	cctccctccc	caaattcaaa	36480
cagctcattt gcatattaac	gcgcaccaaa	agtttgaggt	atattattga	tgatg	36535
<210> 4 <211> 34264 <212> DNA <213> simian adenovi	rus SV-1				
tccttattct ggaaacgtgc	caatatgata	atgagcgggg	aggagcgagg	cggggccggg	60
gtgacgtgcg gtgacgtggg	gtgacgcggg	gtggcgcgag	ggcggggcgg	gagtggggag	120
gcgcttagtt tttacgtatg	cggaaggagg	ttttataccg	gaagttgggt	aatttgggcg	180
tatacttgta agttttgtgt	aatttggcgc	gaaaaccggg	taatgaggaa	gttgaggtta	240
atatgtactt tttatgactg	ggcggaattt	ctgctgatca	gcagtgaact	ttgggcgctg	300
acggggaggt ttcgctacgt	ggcagtacca	cgagaaggct	caaaggtccc	atttattgta	360
ctcctcagcg ttttcgctgg	gtatttaaac	gctgtcagat	catcaagagg	ccactcttga	420
gtgccggcga gtagagtttt	ctcctccgcg	ctgccgcgat	gaggctggtt	cccgagatgt	480
acggtgtttt ctgcagcgag	acggcccgga	actcagatga	gctgcttaat	acagatctgc	540
tggatgttcc caactcgcct	gtggcttcgc	ctccgtcgct Page 5		ttcgatgtgg	600

aagtggatcc	accgcaagat	cccaacgagg	acgcggtaaa	cagtatgttc	cctgaatgtc	660
tgtttgaggc	ggctgaggag	ggttctcaca	gcagtgaaga	gagcagacgg	ggagaggaac	720
tggacttgaa	atgctacgag	gaatgtctgc	cttctagcga	ttctgaaacg	gaacagacag	780
ggggagacgg	ctgtgagtcg	gcaatgaaaa	atgaacttgt	attagactgt	ccagaacatc	840
ctggtcatgg	ctgccgtgcc	tgtgcttttc	atagaaatgc	cagcggaaat	cctgagactc	900
tatgtgctct	gtgttatctg	cgccttacca	gcgattttgt	atacagtaag	taaagtgttt	960
tcattggcgt	acggtagggg	attcgttgaa	gtgctttgtg	acttattatg	tgtcattatt	1020
tctaggtgac	gtgtccgacg	tggaagggga	aggagataga	tcaggggctg	ctaattctcc	1080
ttgcactttg	ggggctgtgg	ttccagttgg	catttttaaa	ccgagtggtg	gaggagaacg	1140
agccggagga	gaccgagaat	ctgagagccg	gcctggaccc	tccagtggaa	gactaggtgc	1200
tgaggatgat	cctgaagagg	ggactagtgg	gggtgctagg	aaaaagcaaa	aaactgagcc	1260
tgaacctaga	aactttttga	atgagttgac	tgtaagccta	atgaatcggc	agcgtcctga	1320
gacggtgttt	tggactgagt	tggaggatga	gttcaagaag	ggggaattaa	acctcttgta	1380
caagtatggg	tttgagcagt	tgaaaactca	ctggttggag	ccgtgggagg	atatggaaat	1440
ggctctagac	acctttgcta	aagtggctct	gcggccggat	aaagtttaca	ctattcgccg	1500
cactgttaat	ataaaaaaga	gtgtttatgt	tatcggccat	ggagctctgg	tgcaggtgca	1560
gaccccagac	cgggtggctt	tcaattgcgg	catgcagagt	ttgggccccg	gggtgatagg	1620
tttgaatgga	gttacatttc	aaaatgtcag	gtttactggt	gatgatttta	atggctctgt	1680
gtttgtgact	agcacccagc	taaccctcca	cggtgtttac	ttttttaact	ttaacaatac	1740
atgtgtggag	tcatggggta	gggtgtctct	gaggggctgc	agttttcatg	gttgctggaa	1800
ggcggtggtg	ggaagaatta	aaagtgtcat	gtctgtgaag	aaatgcatat	ttgaacgctg	1860
tgtgatagct	ctagcagtag	aggggtacgg	acggatcagg	aataacgccg	catctgagaa	1920
tggatgtttt	cttttgctga	aaggtacggc	cagcgttaag	cataatatga	tttgcggcag	1980
cggcctgtgc	ccctcgcagc	tcttaacttg	cgcagatgga	aactgtcaca	ccttgcgcac	2040
cgtgcacata	gtgtcccact	cgcgccgcac	ctggccaaca	tttgagcaca	atatgctcat	2100
gcgttgcgcc	gttcacctag	gtgctagacg	cggcgtgttt	atgccttatc	aatgtaactt	2160
tagtcatact	aagattttgc	tggaaactga	ttccttccct	cgagtatgtt	tcaatggggt	2220
gtttgacatg	tcaatggaac	tttttaaagt	gataagatat	gatgaaacca	agtctcgttg	2280
tcgctcatgt	gaatgcggag	ctaatcattt	gaggttgtat	cctgtaaccc	tgaacgttac	2340
cgaggagctg	aggacggacc	accacatgct	gtcttgcctg	cgtaccgact	atgaatccag	2400
cgatgaggag	tgaggtgagg	ggcggagcca	caaagggtat	aaaggggcat	gaggggtggg	2460
cgcggtgttt	caaaatgagc	gggacgacgg	acggcaatgc	gtttgagggg	ggagtgttca	2520
gcccatatct	gacatctcgt	cttccttcct	gggcaggagt	tcgtcagaat	gtagtgggct	2580
ccaccgtgga	cggacggccg	gtcgcccctg	caaattccgc	caccctcacc	tatgccaccg	2640

tgggatcatc	gttggacact	gccgcggcag	ctgccgcttc	tgctgccgct	tctactgctc	2700
gcggcatggc	ggctgatttt	ggactatata	accaactggc	cactgcagct	gtggcgtctc	2760
ggtctctggt	tcaagaagat	gccctgaatg	tgatcttgac	tcgcctggag	atcatgtcac	2820
gtcgcctgga	cgaactggct	gcgcagatat	cccaagctaa	ccccgatacc	gcttcagaat	2880
cttaaaataa	agacaaacaa	atttgttgaa	aagtaaaatg	gctttatttg	ttttttttgg	2940
ctcggtaggc	tcgggtccac	ctgtctcggt	cgttaaggac	tttgtgtatg	ttttccaaaa	3000
cacggtacag	atgggcttgg	atgttcaagt	acatgggcat	gaggccatct	ttggggtgga	3060
gataggacca	ctgaagagcg	tcatgttccg	gggtggtatt	gtaaatcacc	cagtcgtagc	3120
agggttttg	agcgtggaac	tggaatatgt	ccttcaggag	caggctaatg	gccaagggta	3180
gacccttagt	gtaggtgttt	acaaagcggt	tgagctggga	gggatgcatg	cggggggaga	3240
tgatatgcat	cttggcttgg	attttgaggt	tagctatgtt	accacccagg	tctctgcggg	3300
ggttcatgtt	atgaaggacc	accagcacgg	tatagccagt	gcatttgggg	aacttgtcat	3360
gcagtttgga	ggggaaggcg	tggaagaatt	tagatacccc	cttgtgcccc	cctaggtttt	3420
ccatgcactc	atccataata	atggcaatgg	gacccctggc	ggccgcttta	gcaaacacgt	3480
tttgggggtt	ggaaacatca	tagttttgct	ctagagtgag	ctcatcatag	gccatcttta	3540
caaagcgggg	taggagggtg	cccgactggg	ggatgatagt	tccatctggg	cctggagcgt	3600
agttgccctc	acagatctgc	atctcccagg	ccttaatttc	cgagggggg	atcatgtcca	3660
cctggggggc	gataaaaaac	acggtttctg	gcggggggtt	aatgagctgg	gtggaaagca	3720
agttacgcaa	cagctgggat	ttgccgcaac	cggtgggacc	gtagatgacc	ccgatgacgg	3780
gttgcagctg	gtagttcaga	gaggaacagc	tgccgtcggg	gcgcaggagg	ggagctacct	3840
cattcatcat	gcttctgaca	tgtttatttt	cactcactaa	gttttgcaag	agcctctccc	3900
cacccaggga	taagagttct	tccaggctgt	tgaagtgttt	cagcggtttc	aggccgtcgg	3960
ccatgggcat	cttttcaagc	gactgacgaa	gcaagtacag	tcggtcccag	agctcggtga	4020
cgtgctctat	ggaatctcga	tccagcagac	ttcttggttt	cgggggttgg	gccgactttc	4080
gctgtagggc	accagccggt	gggcgtccag	ggccgcgagg	gttctgtcct	tccagggtct	4140
cagcgttcgg	gtgagggtgg	tctcggtgac	ggtgaaggga	tgagccccgg	gctgggcgct	4200
tgcgagggtg	cgcttcaggc	tcatcctgct	ggtgctgaag	cgggcgtcgt	ctccctgtga	4260
gtcggccaga	tagcaacgaa	gcatgaggtc	gtagctgagg	gactcggccg	cgtgtccctt	4320
ggcgcgcagc	tttcccttgg	aaacgtgctg	acatttggtg	cagtgcagac	acttgagggc	4380
gtagagtttt	ggggccagga	agaccgactc	gggcgagtag	gcgtcggctc	cgcactgagc	4440
gcagacggtc	tcgcactcca	ccagccacgt	gagctcgggt	ttagcgggat	caaaaaccaa	4500
gttgcctcca	tttttttga	tgcgtttctt	accttgcgtc	tccatgagtc	tgtgtcccgc	4560
ttccgtgaca	aaaaggctgt	cggtatcccc	gtagaccgac	ttgagggggc	gatcttccaa	4620
aggtgttccg	aggtcttccg	cgtacaggaa	ctgggaccac	tccgagacaa	aggctcgggt	4680
ccaggctaac	acgaaggagg	cgatctgcga	ggggtatctg Page 50		tgagggggtc	4740

caccttttcc	agggtgtgca	gacacaggtc	gtcctcctcc	gcgtccacga	aggtgattgg	4800
cttgtaagtg	taggtcacgt	gacccgcacc	ccccaaggg	gtataaaagg	gggcgtgccc	4860
actctccccg	tcactttctt	ccgcatcgct	gtggaccaga	gccagctgtt	cgggtgagta	4920
ggccctctca	aaagccggca	tgatttcggc	gctcaagttg	tcagtttcta	caaacgaggt	4980
ggatttgata	ttcacgtgcc	ccgcggcgat	gcttttgatg	gtggaggggt	ccatctgatc	5040
agaaaacacg	atctttttat	tgtcaagttt	ggtggcgaaa	gacccgtaga	gggcgttgga	5100
aagcaacttg	gcgatggagc	gcagggtctg	atttttctcc	cgatcggccc	tctccttggc	5160
ggcgatgttg	agttgcacgt	actcgcgggc	cacgcaccgc	cactcgggga	acacggcggt	5220
gcgctcgtcg	ggcaggatgc	gcacgcgcca	gccgcggttg	tgcagggtga	tgaggtccac	5280
gctggtggcc	acctccccgc	ggaggggctc	gttggtccaa	cacaatcgcc	ccccttttct	5340
ggagcagaac	ggaggcaggg	gatctagcaa	gttggcgggc	ggggggtcgg	cgtcgatggt	5400
aaatatgccg	ggtagcagaa	ttttattaaa	ataatcgatt	tcggtgtccg	tgtcttgcaa	5460
cgcgtcttcc	cacttcttca	ccgccagggc	cctttcgtag	ggattcaggg	gcggtcccca	5520
gggcatgggg	tgggtcaggg	ccgaggcgta	catgccgcag	atgtcgtaca	cgtacagggg	5580
ctccctcaac	accccgatgt	aagtggggta	acagcgcccc	ccgcggatgc	tggctcgcac	5640
gtagtcgtac	atctcgtgag	agggagccat	gagcccgtct	cccaagtggg	tcttgtgggg	5700
tttttcggcc	cggtagagga	tctgcctgaa	gatggcgtgg	gagttggaag	agatagtggg	5760
gcgttggaag	acgttaaagt	tggctccggg	cagtcccacg	gagtcttgga	tgaactgggc	5820
gtaggattcc	cggagcttgt	ccaccagggc	tgcggttacc	agcacgtcga	gagcgcagta	5880
gtccaacgtc	tcgcggacca	ggttgtaggc	cgtctcttgt	tttttctccc	acagttcgcg	5940
attgaggagg	tattcctcgc	ggtctttcca	gtactcttcg	gcgggaaatc	ctttttcgtc	6000
cgctcggtaa	gaacctaaca	tgtaaaattc	gttcacggct	ttgtatggac	aacagccttt	6060
ttctaccggc	agggcgtacg	cttgagcggc	ctttctgaga	gaggtgtggg	tgagggcgaa	6120
ggtgtcccgc	accatcactt	tcaggtactg	atgtttgaag	tccgtgtcgt	cgcaggcgcc	6180
ctgttcccac	agcgtgaagt	cggtgcgctt	tttctgcctg	ggattgggga	gggcgaatgt	6240
gacgtcgtta	aagaggattt	tcccggcgcg	gggcatgaag	ttgcgagaga	tcctgaaggg	6300
tccgggcacg	tccgagcggt	tgttgatgac	ttgcgccgcc	aggacgatct	cgtcgaagcc	6360
gttgatgttg	tggcccacga	tgtaaagttc	gataaagcgc	ggctgtccct	tgagggccgg	6420
cgcttttttc	aactcctcgt	aggtgagaca	gtccggcgag	gagagaccca	gctccgcccg	6480
ggcccagtcg	gagagctgag	ggttagccgc	gaggaaagag	ctccacaggt	caagggctag	6540
cagagtttgc	aagcggtcgc	ggaactcgcg	aaacttttc	cccacggcca	ttttctccgg	6600
cgtcaccacg	tagaaagtgc	aggggcggtc	gttccagacg	tcccatcgga	gctctagggc	6660
cagctcgcag	gcttgacgaa	cgagggtctc	ctcgcccgag	acgtgcatga	ccagcatgaa	6720
gggtaccaac	tgtttcccga	acgagcccat	ccatgtgtag	gtttctacgt	cgtaggtgac	6780

aaagagccgc	tgggtgcgcg	cgtgggagcc	gatcgggaag	aagctgatct	cctgccacca	6840
gttggaggaa	tgggtgttga	tgtggtgaaa	gtagaagtcc	cgccggcgca	cagagcattc	6900
gtgctgatgt	ttgtaaaagc	gaccgcagta	gtcgcagcgc	tgcacgctct	gtatctcctg	6960
aatgagatgc	gcttttcgcc	cgcgcaccag	aaaccggagg	gggaagttga	gacgggggct	7020
tggtggggcg	gcatcccctt	cgccttggcg	gtgggagtct	gcgtctgcgc	cctccttctc	7080
tgggtggacg	acggtgggga	cgacgacgcc	ccgggtgccg	caagtccaga	tctccgccac	7140
ggaggggcgc	aggcgttgca	ggaggggacg	cagctgcccg	ctgtccaggg	agtcgagggc	7200
ggccgcgctg	aggtcggcgg	gaagcgtttg	caagttcact	ttcagaagac	cggtaagagc	7260
gtgagccagg	tgcacatggt	acttgatttc	caggggggtg	ttggaagagg	cgtccacggc	7320
gtagaggagg	ccgtgtccgc	gcggggccac	caccgtgccc	cgaggaggtt	ttatctcact	7380
cgtcgagggc	gagcgccggg	gggtagaggc	ggctctgcgc	cggggggcag	cggaggcagt	7440
ggcacgtttt	cgtgaggatt	cggcagcggt	tgatgacgag	cccggagact	gctggcgtgg	7500
gcgacgacgc	ggcggttgag	gtcctggatg	tgccgtctct	gcgtgaagac	caccggcccc	7560
cgggtcctga	acctgaaaga	gagttccaca	gaatcaatgt	ctgcatcgtt	aacggcggcc	7620
tgcctgagga	tctcctgtac	gtcgcccgag	ttgtcttgat	aggcgatctc	ggccatgaac	7680
tgctccactt	cttcctcgcg	gaggtcgccg	tggcccgctc	gctccacggt	ggcggccagg	7740
tcgttggaga	tgcgacgcat	gagttgagag	aaggcgttga	ggccgttctc	gttccacacg	7800
cggctgtaca	ccacgtttcc	gaaggagtcg	cgcgctcgca	tgaccacctg	ggccacgttg	7860
agttccacgt	ggcgggcgaa	gacggcgtag	tttctgaggc	gctggaagag	gtagttgagc	7920
gtggtggcga	tgtgctcgca	gacgaagaag	tacatgatcc	agcgccgcag	ggtcatctcg	7980
ttgatgtctc	cgatggcttc	gagacgctcc	atggcctcgt	agaagtcgac	ggcgaagttg	8040
aaaaattggg	agttgcgggc	ggccaccgtg	agttcttctt	gcaggaggcg	gatgagatcg	8100
gcgaccgtgt	cgcgcacctc	ctgctcgaaa	gcgccccgag	gcgcctctgc	ttcttcctcc	8160
ggctcctcct	cttccagggg	cacgggttcc	tccggcagct	ctgcgacggg	gacggggcgg	8220
cgacgtcgtc	gtctgaccgg	caggcggtcc	acgaagcgct	cgatcatttc	gccgcgccgg	8280
cgacgcatgg	tctcggtgac	ggcgcgtccg	ttttcgcgag	gtcgcagttc	gaagacgccg	8340
ccgcgcagag	cgcccccgtg	cagggagggt	aagtggttag	ggccgtcggg	cagggacacg	8400
gcgctgacga	tgcattttat	caattgctgc	gtaggcactc	cgtgcaggga	tctgagaacg	8460
tcgaggtcga	cgggatccga	gaacttctct	aggaaagcgt	ctatccaatc	gcagtcgcaa	8520
ggtaagctga	ggacggtggg	ccgctggggg	gcgtccgcgg	gcagttggga	ggtgatgctg	8580
ctgatgatgt	aattaaagta	ggcggtcttc	aggcggcgga	tggtggcgag	gaggaccacg	8640
tctttgggcc	cggcctgttg	aatgcgcagg	cgctcggcca	tgccccaggc	ctcgctctga	8700
	ggtctttgta				-	8760
	ccatgcgagt					8820
gccacgaccc	tctcggccag	cacggcctgt	tggatctgcg Page 58	tgagggtggt J	ctggaagtcg	8880

tccaggtcca	cgaagcggtg	ataggccccc	gtgttgatgg	tgtaggtgca	gttggccatg	8940
acggaccagt	tgacgacttg	catgccgggt	tgggtgatct	ccgtgtactt	gaggcgcgag	9000
taggcgcggg	actcgaacac	gtagtcgttg	catgtgcgta	ccagatactg	gtagccaacc	9060
aggaagtggg	gaggcggttc	tcggtacagg	ggccagccga	ctgtggcggg	ggcgccgggg	9120
gacaggtcgt	ccagcatgag	gcgatggtag	tggtagatgt	agcgggagag	ccaggtgatg	9180
ccggccgagg	tggtcgcggc	cctggtgaat	tcgcggacgc	ggttccagat	gttgcgcagg	9240
gggcgaaagc	gctccatggt	gggcacgctc	tgccccgtga	ggcgggcgca	atcttgtacg	9300
ctctagatgg	aaaaaagaca	gggcggtcat	cgactccctt	ccgtagctcg	gggggtaaag	9360
tcgcaagggt	gcggcggcgg	ggaaccccgg	ttcgagaccg	gccggatccg	ccgctcccga	9420
tgcgcctggc	cccgcatcca	cgacgtccgc	gtcgagaccc	agccgcgacg	ctccgcccca	9480
atacggaggg	gagtcttttg	gtgtttttc	gtagatgcat	ccggtgctgc	ggcagatgcg	9540
acctcagacg	cccaccacca	ccgccgcggc	ggcagtaaac	ctgagcggag	gcggtgacag	9600
ggaggaggag	gagctggctt	tagacctgga	agagggagag	gggctggccc	ggctgggagc	9660
gccgtcccca	gagagacacc	ctagggttca	gctcgtgagg	gacgccaggc	aggcttttgt	9720
gccgaagcag	aacctgttta	gggaccgcag	cggtcaggag	gcggaggaga	tgcgcgattg	9780
caggtttcgg	gcgggtagag	agctgagggc	gggcttcgat	cgggagcggc	tcctgagggc	9840
ggaggatttc	gagcccgacg	agcgttctgg	ggtgagcccg	gcccgcgctc	acgtctcggc	9900
ggccaacctg	gtgagcgcgt	acgagcagac	ggtgaacgag	gagcgcaact	tccaaaagag	9960
ctttaacaat	cacgtgagga	ccctgatcgc	gagggaggag	gtgaccatcg	ggctgatgca	10020
tctgtgggac	ttcgtggagg	cctacgtgca	gaacccggcc	agcaaacctc	tgacggccca	10080
gctgttcctg	atcgtgcagc	acagccgcga	caacgagacg	ttccgcgacg	ccatgttgaa	10140
catcgcggag	cccgagggtc	gctggctctt	ggatctgatt	aacatcctgc	agagcatcgt	10200
ggtgcaggag	aggggcctca	gcttagcgga	caaggtggcg	gccattaact	attcgatgca	10260
gagcctgggg	aagttctacg	ctcgcaagat	ctacaagagc	ccttacgtgc	ccatagacaa	10320
ggaggtgaag	atagacagct	tttacatgcg	catggcgctg	aaggtgctga	cgctgagcga	10380
cgacctcggc	gtgtaccgta	acgacaagat	ccacaaggcg	gtgagcgcca	gccgccggcg	10440
ggagctgagc	gacagggagc	tgatgcacag	cctgcagagg	gcgctggcgg	gcgccgggga	10500
cgaggagcgc	gaggcttact	tcgacatggg	agccgatctg	cagtggcgtc	ccagcgcgcg	10560
cgccttggag	gcggcgggct	accccgacga	ggaggatcgg	gacgatttgg	aggaggcagg	10620
cgagtacgag	gacgaagcct	gaccgggcag	gtgttgtttt	agatgcagcg	gccggcggac	10680
ggggccaccg	cggatcccgc	acttttggca	tccatgcaga	gtcaaccttc	gggcgtgacc	10740
gcctccgatg	actgggcggc	ggccatggac	cgcattatgg	cgctgactac	ccgcaacccc	10800
gaggctttta	gacagcaacc	ccaggccaac	cgtttttcgg	ccatcttgga	agcggtggtg	10860
ccctcccgca	ccaaccccac	acacgagaaa	gtcctgacta	tcgtgaacgc	cctggtagac	10920

						40000
	tccgccgcga					10980
gcgcgctaca	acagcactaa	cgttcagacc	aatctggatc	gcctcaccac	cgacgtgaag	11040
gaggcgctgg	ctcagaagga	gcggtttctg	agggacagca	atctgggctc	tctggtggca	11100
ctcaacgcct	tcctgagcac	gcagccggcc	aacgtgcccc	gcgggcagga	ggactacgtg	11160
agcttcatca	gcgctctgag	gctgctggtg	tccgaggtgc	cccagagcga	ggtgtatcag	11220
tctgggccgg	attacttctt	ccagacgtcc	cgacagggct	tgcaaacggt	gaacctgact	11280
caggccttta	aaaacttgca	aggcatgtgg	ggcgttaagg	ccccggtggg	cgatcgagcc	11340
accatctcca	gtctgctgac	ccccaacact	cgcctgctgc	tgctcttgat	cgcgccgttc	11400
accaacagta	gcactatcag	ccgtgactcg	tacctgggtc	atctcatcac	tttgtaccgc	11460
gaggccatcg	gtcaggctca	gatcgacgag	cacacatatc	aggagatcac	taacgtgagc	11520
cgggccctgg	gtcaggaaga	taccggcagc	ctggaagcca	cgttgaactt	tttgctaacc	11580
aaccggaggc	aaaaaatacc	ctcccagttt	acgttaagcg	ccgaggagga	gaggattctg	11640
cgatacgtgc	agcagtccgt	gagtctgtac	ttgatgcggg	agggcgccac	cgcttccacg	11700
gctttagaca	tgacggctcg	gaacatggaa	ccgtcctttt	actccgccca	ccggccgttc	11760
attaaccgtc	tgatggacta	cttccatcgc	gcggccgcca	tgaacgggga	gtacttcacc	11820
aatgccatcc	tgaatccgca	ttggatgccc	ccgtccggct	tctacaccgg	cgagtttgac	11880
ctgcccgaag	ccgacgacgg	ctttctttgg	gacgacgtgt	ccgacagcat	tttcacgccg	11940
ggcaatcgcc	gattccagaa	gaaggagggc	ggagacgagc	tcccctctc	cagcgtggag	12000
gcggcctcta	ggggagagag	tccctttccc	agtctgtctt	ccgccagcag	tggtcgggta	12060
acgcgcccgc	ggttgccggg	ggagagcgac	tacctgaacg	accccttgct	gcggccggct	12120
aggaagaaaa	atttccccaa	caacggggtg	gaaagcttgg	tggataaaat	gaatcgttgg	12180
aagacctacg	cccaggagca	gcgggagtgg	gaggacagtc	agccgcgacc	gctggttccg	12240
ccgcactggc	gtcgtcagag	agaagacccg	gacgactccg	cagacgatag	tagcgtgttg	12300
gacctgggag	ggagcggagc	caaccccttt	gctcacttgc	aacccaaggg	gcgttccagt	12360
cgcctctact	aataaaaaag	acgcggaaac	ttaccagagc	catggccaca	gcgtgtgtcc	12420
tttcttcctc	tctttcttcc	tcggcgcggc	agaatgagaa	gagcggtgag	agtcacgccg	12480
gcggcgtatg	agggtccgcc	cccttcttac	gaaagcgtga	tgggatcagc	gaacgtgccg	12540
gccacgctgg	aggcgcctta	cgttcctccc	agatacctgg	gacctacgga	gggcagaaac	12600
agcatccgtt	actccgagct	ggcacccctg	tacgatacca	ccaaggtgta	cctggtggac	12660
aacaagtcgg	cggacatcgc	ctccctgaat	tatcaaaacg	atcacagcaa	ttttctgact	12720
accgtggtgc	agaacaatga	cttcaccccg	acggaggcgg	gcacgcagac	cattaacttt	12780
gacgagcgtt	cccgctgggg	cggtcagctg	aaaaccatcc	tgcacaccaa	catgcccaac	12840
atcaacgagt	tcatgtccac	caacaagttc	agggccaggc	tgatggttaa	aaaggctgaa	12900
aaccagcctc	ccgagtacga	atggtttgag	ttcaccattc	ccgagggcaa	ctattccgag	12960
accatgacta	tcgatctgat	gaacaatgcg	atcgtggaca Page 60		agtggggagg	13020

cagaacgggg	tattggaaag	cgatatcggc	gtaaaatttg	ataccagaaa	cttccgactg	13080
gggtgggatc	ccgtgaccaa	gctggtgatg	ccaggcgtgt	acaccaacga	ggcttttcac	13140
cccgacatcg	tgctgctgcc	ggggtgcggt	gtggacttca	ctcagagccg	tttgagtaac	13200
ctgttaggga	tcagaaagcg	ccgccccttc	caagagggct	ttcagatcat	gtatgaggac	13260
ctggaaggag	gtaacattcc	aggtttgcta	gacgtgccgg	cgtatgaaga	gagtgttaaa	13320
caggcggagg	cgcagggacg	agagattcga	ggcgacacct	ttgccacgga	acctcacgaa	13380
ctggtaataa	aacctctgga	acaagacagt	aaaaaacgga	gttacaacat	tatatccggc	13440
actatgaata	ccttgtaccg	gagctggttt	ctggcttaca	actacgggga	tcccgaaaag	13500
ggagtgagat	catggaccat	actcaccacc	acggacgtga	cctgcggctc	gcagcaagtg	13560
tactggtccc	tgccggatat	gatgcaagac	ccggtcacct	tccgcccctc	cacccaagtc	13620
agcaacttcc	cggtggtggg	caccgagctg	ctgcccgtcc	atgccaagag	cttctacaac	13680
gaacaggccg	tctactcgca	actcattcgc	cagtccaccg	cgcttaccca	cgtgttcaat	13740
cgctttcccg	agaaccagat	tctggtgcgc	cctcccgctc	ctaccattac	caccgtcagt	13800
gaaaacgttc	ccgccctcac	agatcacgga	accctgccgc	tgcgcagcag	tatcagtgga	13860
gttcagcgcg	tgaccatcac	cgacgccaga	cgtcgaacct	gtccctacgt	ttacaaagct	13920
cttggcgtag	tggctcctaa	agtgctctct	agtcgcacct	tctaaacatg	tccatcctca	13980
tctctcccga	taacaacacc	ggctggggac	tgggctccgg	caagatgtac	ggcggagcca	14040
aaaggcgctc	cagtcagcac	ccagttcgag	ttcggggcca	cttccgtgct	ccctggggag	14100
cttacaagcg	aggactctcg	ggccgaacgg	cggtagacga	taccatagat	gccgtgattg	14160
ccgacgcccg	ccggtacaac	cccggaccgg	tcgctagcgc	cgcctccacc	gtggattccg	14220
tgatcgacag	cgtggtagct	ggcgctcggg	cctatgctcg	ccgcaagagg	cggctgcatc	14280
ggagacgtcg	ccccaccgcc	gccatgctgg	cagccagggc	cgtgctgagg	cgggcccgga	14340
gggtaggcag	aagggctatg	cgccgcgctg	ccgccaacgc	cgccgccggg	agggcccgcc	14400
gacaggctgc	ccgccaggct	gctgccgcca	tcgctagcat	ggccagaccc	aggagaggga	14460
acgtgtactg	ggtgcgcgat	tctgtgacgg	gagtccgagt	gccggtgcgc	agccgacctc	14520
cccgaagtta	gaagatccaa	gctgcgaaga	cggcggtact	gagtctccct	gttgttatca	14580
gcccaacatg	agcaagcgca	agtttaaaga	agaactgctg	cagacgctgg	tgcctgagat	14640
ctatggccct	ccggacgtga	agcctgacat	taagccccgc	gatatcaagc	gtgttaaaaa	14700
gcgggaaaag	aaagaggaac	tcgcggtggt	agacgatggc	ggagtggaat	ttattaggag	14760
tttcgccccg	cgacgcaggg	ttcaatggaa	agggcggcgg	gtacaacgcg	ttttgaggcc	14820
gggcaccgcg	gtagttttta	ccccgggaga	gcggtcggcc	gttaggggtt	tcaaaaggca	14880
gtacgacgag	gtgtacggcg	acgaggacat	attggaacag	gcggctcaac	agatcggaga	14940
atttgcctac	ggaaagcgtt	cgcgtcgcga	agacctggcc	atcgctttag	acagcggcaa	15000
ccccacgccc	agcctcaaac	ctgtgacgct	gcagcaggtg	ctccccgtga	gcgccagcac	15060

ggacagcaag	aggggaataa	aaagagaaat	ggaagatctg	cagcccacca	tccagctcat	15120
ggtccctaaa	cggcagaggc	tggaagaggt	cctggagaaa	atgaaagtgg	acccaagcat	15180
agagccggac	gtcaaagtca	ggccgatcaa	agaagtggcc	cctggtctcg	gggtgcagac	15240
ggtggatatc	cagatccccg	tcacgtcagc	ttcgaccgcc	gtggaagcca	tggaaacgca	15300
aacggaaacc	cctgccgcga	tcggtaccag	ggaagtggcg	ttgcaaaccg	acccctggta	15360
cgaatacgcc	gcccctcggc	gtcagaggcg	acccgctcgt	tacggccccg	ccaacgccat	15420
catgccagaa	tatgcgctgc	atccgtctat	cctgcccacc	cccggctacc	ggggagtgac	15480
gtatcgcccg	tcaggaaccc	gccgccgaac	ccgtcgccgc	cgccgctccc	gtcgtgctct	15540
ggcccccgtg	tcggtgcgcc	gcgtaacacg	ccggggaaag	acagttacca	ttcccaaccc	15600
gcgctaccac	cctagcatcc	tttaatgact	ctgccgtttt	gcagatggct	ctgacttgcc	15660
gcgtgcgcct	tcccgttccg	cactatcgag	gaagatctcg	tcgtaggaga	ggcatggcgg	15720
gtagtggtcg	ccggcgggct	ttgcgcaggc	gcatgaaagg	cggaatttta	cccgctctga	15780
tacccataat	cgccgccgcc	atcggtgcca	tacccggcgt	cgcttcagtg	gccttgcaag	15840
cagctcgtaa	taaataaacg	aaggcttttg	cacttatgtc	ctggtcctga	ctattttatg	15900
cagaaagagc	atggaagaca	tcaattttac	gtcgctggct	ccgcggcacg	gctcgcggcc	15960
gctcatgggc	acctggaacg	acatcggcac	cagtcagctc	aacgggggcg	ctttcaattg	16020
ggggagcctt	tggagcggca	ttaaaaactt	tggctccacg	attaaatcct	acggcagcaa	16080
agcctggaac	agtagtgctg	gtcagatgct	ccgagataaa	ctgaaggaca	ccaacttcca	16140
agaaaaagtg	gtcaatgggg	tggtgaccgg	catccacggc	gcggtagatc	tcgccaacca	16200
agcggtgcag	aaagagattg	acaggcgttt	ggaaagctcg	cgggtgccgc	cgcagagagg	16260
ggatgaggtg	gaggtcgagg	aagtagaagt	agaggaaaag	ctgccccgc	tggagaaagt	16320
tcccggtgcg	cctccgagac	cgcagaagcg	acccaggcca	gaactagaag	aaactctggt	16380
gacggagagc	aaggagcctc	cctcgtacga	gcaagccttg	aaagagggcg	cctctccacc	16440
ctacccaatg	acaaaaccga	tcgcgcctat	ggctcggccg	gtgtacggga	aggactacaa	16500
gcctgtcacg	ctagagctcc	cccgccgcc	accgccgccc	cccacgcgcc	cgaccgttcc	16560
cccccctg	ccggctccgt	cggcgggacc	cgtgtccgca	cccgtcgccg	tgcctctgcc	16620
agccgcccgc	ccagtggccg	tggccactgc	cagaaacccc	agaggccaga	gaggagccaa	16680
ctggcaaagc	acgctgaaca	gcatcgtggg	cctgggagtg	aaaagcctga	aacgccgccg	16740
ttgctattat	taaaagtgta	gctaaaaaat	ttcccgttgt	atacgcctcc	tatgttaccg	16800
ccagagacgc	gtgactgtcg	ccgcgagcgc	cgctttcaag	atggccaccc	catcgatgat	16860
gccgcagtgg	tcttacatgc	acatcgccgg	gcaggacgcc	tcggagtacc	tgagccccgg	16920
tctcgtgcag	ttcgcccgcg	ccaccgacac	ctacttcagc	ttgggaaaca	agtttagaaa	16980
ccccaccgtg	gccccaccc	acgatgtaac	cacggaccgc	tcgcaaaggc	tgaccctgcg	17040
	gtagaccggg					17100
cgtaggggac	aaccgagtgc	tggacatggc	cagcacctac Page 62	tttgacatcc ?	ggggagtgct	17160

	ggatcgcggt	cccagtttta	agccctactc	gggtaccgcg	tacaattccc	tggctcccaa	17220
	gggcgctccc	aaccctgcag	aatggacgaa	ttcagacagc	aaagttaaag	tgagggcaca	17280
	ggcgcctttt	gttagctcgt	atggtgctac	agcgattaca	aaagagggta	ttcaggtggg	17340
	agtaacctta	acagactccg	gatcaacacc	acagtatgca	gataaaacgt	atcagcctga	17400
	gccgcaaatt	ggagaactac	agtggaacag	cgatgttgga	accgatgaca	aaatagcagg	17460
	aagagtgcta	aagaaaacaa	cgcccatgtt	cccttgttac	ggctcatatg	ccaggcccac	17520
	taatgaaaaa	ggaggacagg	caacaccgtc	cgctagtcaa	gacgtgcaaa	atcccgaatt	17580
	acaatttttt	gcctctacta	atgtcgccaa	tacaccaaaa	gcagttctat	atgcggagga	17640
	cgtgtcaatt	gaagcgccag	acactcactt	ggtgttcaaa	ccaacagtca	ctgaaggcat	17700
	tacaagttca	gaggctctac	tgacccaaca	agctgctccc	aaccgtccaa	actacatagc	17760
	ctttagagat	aattttattg	gtctcatgta	ctacaatagc	acaggtaaca	tgggagtact	17820
	ggcaggccag	gcttctcagc	taaatgcagt	tgttgacctg	caagacagaa	atactgagct	17880
	gtcctaccaa	ctcatgttgg	acgccctcgg	agaccgcagt	cggtactttt	ctatgtggaa	17940
	ccaagctgtg	gatagttacg	atcctgatgt	aagaatcata	gaaaaccatg	gcgtagaaga	18000
	tgaattgcct	aattattgct	ttcctttggg	aggcatggca	gtaaccgaca	cctactcgcc	18060
	tataaaggtt	aatggaggag	gcaatggatg	ggaagccaat	aacggcgttt	tcaccgaaag	18120
	aggagtggaa	ataggttcag	ggaacatgtt	tgccatggag	attaacctgc	aagccaacct	18180
	atggcgtagc	tttctgtact	ccaatattgg	gctgtacctg	ccagactctc	tcaaaatcac	18240
	tcctgacaac	atcacactcc	cagagaacaa	aaacacctat	cagtatatga	acggtcgcgt	18300
	gacgccaccc	gggctggttg	acacctacgt	taacgtgggc	gcgcgctggt	ccccgatgt	18360
•	catggacagt	attaaccctt	ttaatcacca	ccgcaacgcc	ggactccgct	accgttccat	18420
	gctcctggga	aacggacgct	acgtgccctt	ccacatccag	gtgccccaga	aattctttgc	18480
	aattaaaaac	ctgctgctgc	tccccggttc	ctacacctac	gagtggaact	tccgcaagga	18540
	cgtgaacatg	atcttgcaga	gctcgctggg	caatgacctg	cgagtggacg	gggccagcat	18600
	ccgcttcgac	agcatcaacc	tgtacgccaa	ctttttcccc	atggcccaca	acacggcctc	18660
	caccctggaa	gccatgctgc	gcaacgacac	caacgaccaa	tctttcaacg	actacctgtg	18720
	cgcggccaac	atgctgtacc	ccatccccgc	caacgccacc	agcgtgccca	tctccattcc	18780
	ctctcgcaac	tgggcagcct	tcaggggctg	gagtttcacc	cgcctcaaaa	ccaaggagac	18840
	cccctcgctg	ggctccgggt	tcgaccccta	cttcgtctac	tccggctcca	tcccctacct	18900
	ggacggcacc	ttctacctca	accatacttt	caaaaaggtg	tcaatcatgt	tcgactcctc	18960
	cgtcagctgg	cccggcaacg	accgtctgct	gacgcccaac	gagttcgaaa	tcaagcgttc	19020
	ggtggacggt	gaagggtaca	acgtggctca	gagcaacatg	accaaggact	ggttcctgat	19080
	tcagatgctc	agccactaca	acatcggcta	ccagggcttc	tacgtgcccg	aaaattacaa	19140
	ggaccgcatg	tactctttct	tcagaaactt	ccaacccatg	agccgccaaa	ttgtagattc	19200

aacggcttac	actaattatc	aggatgtgaa	actgccatac	cagcataaca	actcagggtt	19260
cgtgggctac	atgggaccca	ccatgcgaga	ggggcaggcc	tacccggcca	actatcccta	19320
tcccctgatt	ggggccaccg	ccgtgcccag	cctcacgcag	aaaaagttcc	tctgcgaccg	19380
ggtgatgtgg	aggatcccct	tctctagcaa	cttcatgtct	atgggctccc	tcaccgacct	19440
ggggcagaac	atgctgtacg	ccaactccgc	tcacgccttg	gatatgacct	ttgaggtgga	19500
tcccatggat	gagcccacgc	ttctctatgt	tctgtttgaa	gtcttcgacg	tggtgcgcat	19560
ccaccagccg	caccgcggcg	tcatcgaggc	cgtctacctg	cgcacacctt	tctctgccgg	19620
taacgccacc	acctaaagaa	gccgatgggc	tccagcgaac	aggagctgca	ggccattgtt	19680
cgcgacctgg	gctgcgggcc	ctactttttg	ggcaccttcg	acaagcgttt	tcccggcttc	19740
atgtccccc	acaagccggc	ctgtgccatc	gttaacacgg	ccggacggga	gaccgggggg	19800
gtccactggc	tcgccttcgc	ctggaacccg	cgtaaccgca	cctgctacct	gttcgaccct	19860
tttggtttct	ccgacgaaag	gctgaagcag	atctaccagt	tcgagtacga	ggggctcctc	19920
aagcgcagcg	ctctggcctc	cacgcccgac	cactgcgtca	ccctggaaaa	gtccacccaa	19980
acggtccagg	ggcccctctc	ggccgcctgc	gggctcttct	gttgcatgtt	tttgcacgcc	20040
ttcgtgcact	ggcctcacac	ccccatggat	cacaacccca	ccatggatct	gctcaccgga	20100
gtgcccaaca	gcatgcttca	cagcccccag	gtcgccccca	ccctgcgccg	taaccaggaa	20160
cacctgtatc	gctttctggg	gaaacactct	gcctattttc	gccgccaccg	gcagcgcatc	20220
gaacgggcca	cggccttcga	aagcatgagc	caaagagtgt	aatcaataaa	aaacattttt	20280
atttgacatg	atacgcgctt	ctggcgtttt	attaaaaatc	gaagggttcg	agggaggggt	20340
cctcgtgccc	gctggggagg	gacacgttgc	gatactggaa	acgggcgctc	caacgaaact	20400
cggggatcac	cagccgcggc	aggggcacgt	cttctaggtt	ctgcttccaa	aactgccgca	20460
ccagctgcag	ggctcccatg	acgtcgggcg	ccgatatctt	gaagtcgcag	ttagggccgg	20520
agctcccgcg	gctgttgcgg	aacacggggt	tggcacactg	gaacaccagc	acgccggggt	20580
tgtggatact	ggccagggcc	gtcgggtcgg	tcacctccga	cgcatccaga	tcctcggcgt	20640
tgctcagggc	aaacggggtc	agcttgcaca	tctgccgccc	aatctggggt	actaggtcgc	20700
gcttgttgag	gcagtcgcag	cgcagaggga	tcaggatgcg	tcgctgcccg	cgttgcatga	20760
tagggtaact	cgccgccagg	aactcctcca	tttgacggaa	ggccatctgg	gctttgccgc	20820
cctcggtgta	gaatagcccg	caggacttgc	tagagaatac	gttatgaccg	cagttgacgt	20880
cctccgcgca	gcagcgggcg	tcttcgttct	tcagctgaac	cacgttgcgg	ccccaacggt	20940
tctggaccac	cttggctcta	gtggggtgct	ccttcagcgc	ccgctgtccg	ttctcgctgg	21000
ttacatccat	ttccaacacg	tgctccttgc	agaccatctc	cactccgtgg	aagcaaaaca	21060
ggacgccctc	ctgctgggta	ctgcgatgct	cccatacggc	gcatccggtg	ggctcccagc	21120
tcttgtgttt	tacccccgcg	taggcttcca	tgtaagccat	aaggaatctg	cccatcagct	21180
cggtgaaggt	cttctggttg	gtgaaggtta	gcggcaggcc	gcggtgctcc	tcgttcaacc	21240
aagtttgaca	gatcttgcgg	tacaccgctc	cctggtcggg Page 6	cagaaactta 4	aaagccgctc	21300

tgctgtcgtt	gtctacgtgg	aacttctcca	ttaacatcat	catggtttcc	atacccttct	21360
cccacgctgt	caccagtggt	ttgctgtcgg	ggttcttcac	caacacggcg	gtagaggggc	21420
cctcgccggc	cccgacgtcc	ttcatggtca	ttctttgaaa	ctccacggag	ccgtccgcgc	21480
gacgtactct	gcgcaccgga	gggtagctga	agcccacctc	caccacggtg	ccttcgccct	21540
cgctgtcgga	gacaatctcc	ggggatggcg	gcggcgcggg	tgtcgccttg	cgagccttct	21600
tcttgggagg	gagctgaggc	gcctcctgct	cgcgctcggg	gctcatctcc	cgcaagtagg	21660
gggtaatgga	gctgcctgct	tggttctgac	ggttggccat	tgtatcctag	gcagaaagac	21720
atggagctta	tgcgcgagga	aactttaacc	gccccgtccc	ccgtcagcga	cgaagatgtc	21780
atcgtcgaac	aggacccggg	ctacgttacg	ccgcccgagg	atctggaggg	gcctgaccgg	21840
cgcgacgcta	gtgagcggca	ggaaaatgag	aaagaggagg	cctgctacct	cctggaaggc	21900
gacgttttgc	taaagcattt	cgccaggcag	agcaccatag	ttaaggaggc	cttgcaagac	21960
cgctccgagg	tgcccttgga	cgtcgccgcg	ctctcccagg	cctacgaggc	gaaccttttc	22020
tcgcctcgag	tgcctccgaa	gagacagccc	aacggcacct	gcgagcccaa	cccgcgactc	22080
aacttctacc	ccgtgttcgc	cgtaccagag	gcgctggcca	cctatcacat	ttttttcaaa	22140
aaccaacgca	tcccctatc	gtgccgggcc	aaccgcaccg	cggccgatag	gaatctcagg	22200
cttaaaaacg	gagccaacat	acctgatatc	acgtcgctgg	aggaagtgcc	caagattttc	22260
gagggtctgg	gtcgagatga	gaagcgggcg	gcgaacgctc	tgcagaaaga	acagaaagag	22320
agtcagaacg	tgctggtgga	gctggagggg	gacaacgcgc	gtctggccgt	cctcaaacgc	22380
tgcatagaag	tctcccactt	cgcctacccc	gccctcaact	tgccacccaa	agttatgaaa	22440
tcggtcatgg	atcagctgct	catcaagaga	gctgagcccc	tggatcccga	ccaccccgag	22500
gcggaaaact	cagaggacgg	aaagcccgtc	gtcagcgacg	aggagctcga	gcggtggctg	22560
gaaaccaggg	acccccaaca	gttgcaagag	aggcgcaaga	tgatgatggc	ggccgtgctg	22620
gtcaccgtgg	agctggaatg	cctgcaacgg	tttttcagcg	acgtggagac	gctacgcaaa	22680
atcggggaat	ccctgcacta	caccttccgc	cagggctacg	tccgccaggc	ctgcaagatc	22740
tccaacgtgg	agctcagcaa	cctggtctcc	tacatgggca	tcctccacga	gaaccggctg	22800
gggcagagcg	tgctgcactg	caccttgcaa	ggcgaggcgc	ggcgggacta	cgtgcgagac	22860
tgcatctacc	tcttcctcac	cctcacctgg	cagaccgcca	tgggcgtctg	gcagcagtgc	22920
ttggaagaga	gaaacctcaa	agagctagac	aaactcctct	gccgccagcg	gcgcgccctg	22980
tggtccggtt	tcagcgagcg	cacggtcgcc	agcgctctgg	cggacatcat	cttcccggag	23040
cgcctgatga	aaaccttgca	aaacggcctg	ccggatttca	tcagtcaaag	cattttgcaa	23100
aacttccgct	cttttgtcct	ggaacgctcc	gggatcttgc	ccgccatgag	ctgcgcgcta	23160
ccttctgact	ttgtccccct	ctcctaccgc	gagtgccctc	ccccactgtg	gagccactgc	23220
tacctcttcc	aactggccaa	ctttctggcc	taccactccg	acctcatgga	agacgtaagc	23280
ggagagggtt	tactggagtg	ccactgccgc	tgcaacctgt	gcacccccca	cagatcgctg	23340

acctacaaca	ccanactact	cancuaaaacc	canatcatan	atacetteaa	astersagga	23400
	ccgagctact					23460
	aagagggtgc					
_	aatttgtagc					23520
	caccgaaagc					23580
gcccaattgc	aatccatcaa	ccaagcgcgc	cgcgatttcc	ttttgaaaaa	gggtcggggg	23640
gtgtacctgg	acccccagac	cggcgaggaa	ctcaacccgt	ccacactctc	cgtcgaagca	23700
gccccccga	gacatgccgc	ccaagggaac	cgccaagcag	ctgatcgctc	ggcagagagc	23760
gaagaagcaa	gagctgctcc	agcagcaggt	ggaggacgag	gaagagatgt	gggacagcca	23820
ggcagaggag	gtgtcagagg	acgaggagga	gatggaaagc	tgggacagcc	tagacgagga	23880
ggaggacgag	ctttcagagg	aagaggcgac	cgaagaaaaa	ccacctgcat	ccagcgcgcc	23940
ttctctgagc	cgacagccga	agccccggcc	cccgacgccc	ccggccggct	cactcaaagc	24000
cagccgtagg	tgggacgcca	ccgaatctcc	agcggcagcg	gcaacggcag	cgggtaaggc	24060
caaacgcgag	cggcgggggt	attgctcctg	gcgggcccac	aaaagcagta	ttgtgaactg	24120
cttgcaacac	tgcgggggaa	acatctcctt	tgcccgacgc	tacctcctct	tccatcacgg	24180
tgtggccttc	cctcgcaacg	ttctctatta	ttaccgtcat	ctctacagcc	cctacgaaac	24240
gctcggagaa	aaaagctaag	gcctcctccg	ccgcgaggaa	aaactccgcc	gccgctgccg	24300
ccgccaagga	tccaccggcc	accgaagagc	tgagaaagcg	catctttccc	actctgtatg	24360
ctatctttca	gcaaagccgc	gggcagcacc	ctcagcgcga	actgaaaata	aaaaaccgct	24420
ccttccgctc	gctcacccgc	agctgtctgt	accacaagag	agaagaccag	ctgcagcgca	24480
ccctggacga	cgccgaagca	ctgttcagca	aatactgctc	agcgtctctt	aaagactaaa	24540
agacccgcgc	tttttccccc	tcggccgcca	aaacccacgt	catcgccagc	atgagcaagg	24600
agattcccac	cccctacatg	tggagctatc	agccccagat	gggcctggcc	gcgggggccg	24660
cccaggacta	ctccagcaag	atgaactggc	tcagcgccgg	ccccacatg	atctcacgag	24720
ttaacggcat	ccgagcccac	cgaaaccaga	ttctcttaga	acaggcggca	atcaccgcca	24780
caccccggcg	ccaactcaac	ccgcctagtt	ggcccgccgc	ccaggtgtat	caggaaaatc	24840
cccgcccgac	cacagtcctc	ctgccacgcg	acgcggaggc	cgaagtcctc	atgactaact	24900
ctggggtaca	attagcgggc	gggtccaggt	acgccaggta	cagaggtcgg	gccgctcctt	24960
actctcccgg	gagtataaag	agggtgatca	ttcgaggccg	aggtatccag	ctcaacgacg	25020
agacggtgag	ctcctcaacc	ggtctcagac	ctgacggagt	cttccagctc	ggaggagcgg	25080
gccgctcttc	cttcaccact	cgccaggcct	acctgaccct	gcagagctct	tcctcgcagc	25140
cgcgctccgg	gggaatcggc	actctccagt ⁽	_ t'cgtggaaga	gttcgttccc	tccgtctact	25200
	ctccggctcg					25260
	atccgtggac					25320
	ctgcatcact					25380
	gagctgccgg					25440
-		- -	Page 6			

gatcgagaac gcgctcgagt ctcgcctcat cgacaccttc accgcccgac ctctcctggt 25500 25560 agaaatccaa cgggggatca ctaccatcac cctgttctgc atctgcccca cgcccggatt 25620 acatgaagat ctgtgttgtc atctttgcgc tcagtttaat aaaaactgaa ctttttgccg caccttcaac gccatctgtg atttctacaa caaaaagttc ttctggcaaa ggtacacaaa 25680 25740 ctgtatttta ttctaattct acctcatcta tcgtgctgaa ctgcgcctgc actaacgaac ttatccagtg gattgcaaac ggtagtgtt gcaagtactt ttggggggaac gatatagtta 25800 gtagaaataa cagcctttgc gagcactgca actcctccac actaatcctt tatcccccat 25860 25920 ttgttactgg atggtatatg tgcgttggct ccggtttaaa tcctagttgc tttcataagt ggtttctaca aaaagagacc cttcccaaca attctgtttc ttttttcgcc ctatcctact 25980 gctgttctcc ctctggttac tctttcaaac ctctaattgg tattttagct ttgatactca 26040 26100 taatctttat taactttata ataattaaca acttacagta aacatgcttg ttctactgct 26160 cgccacatct ttcgctctct ctcacgccag aacaagtatt gttggcgcag gttacaatgc aactcttcaa tctgcttaca tgccagattc cgaccagata ccccatatta cgtggtactt 26220 26280 acaaacctcc aaacctaatt cttcatttta tgaaggaaac aaactctgcg atgactccga caacagaacg cacacatttc cccacccttc actacaattc gaatgcgtaa acaaaagctt 26340 gaagctttac aacttaaagc cttcagattc tggcttgtac catgctgtag ttgaaaaaag 26400 26460 taatttagaa gtccacagtg attacattga attgacggtt gtggacctgc cacctccaaa atgtgaggtt tcctcctctt accttgaagt tcaaggcgtg gatgcctact gcctcataca 26520 26580 cattaactgc agcaactcta aatatccagc tagaatttac tataatggac aggaaagtaa 26640 tcttttttat tatttaacaa caagcgctgg taacggtaaa cagttacctg actattttac 26700 tgctgttgtt gaattttcca cctacagaga aacgtatgcc aagcggcctt acaatttctc atacccqttt aacgaccttt gcaatgaaat acaagcgctc gaaactggaa ctgattttac 26760 26820 tccaattttc attgctgcca ttgttgtaag cttaattacc attattgtca gcctagcatt ttactgcttt tacaagccca aaaaccctaa gtttgaaaaa cttaaactaa aacctgtcat 26880 tcaacaagtg tgattttgtt ttccagcatg gtagctgcat ttctacttct cctctgtcta 26940 27000 cccatcattt tcgtctcttc aactttcgcc gcagtttccc acctggaacc agagtgccta 27060 ccgccttttg acgtgtatct gattctcacc tttgtttgtt gtatatccat ttgcagtata gcctgctttt ttataacaat ctttcaagcc gccgactatt tttacgtgcg aattgcttac 27120 tttagacacc atcctgaata cagaaatcaa aacgttgcct ccttactttg tttggcatga 27180 27240 ttaagttatt gctgatactt aattatttac ccctaatcaa ctgtaattgt ccattcacca aaccctggtc attctacacc tgttatgata aaatccccga cactcctgtt gcttggcttt 27300 27360 acgcagccac cgccgctttg gtatttatat ctacttgcct tggagtaaaa ttgtatttta 27420 ttttacacac tgggtggcta catcccagag aagatttacc tagatatcct cttgtaaacg cttttcaatt acagcctctg cctcctcctg atcttcttcc tcgagctccc tctattgtga 27480

gctactttca	actcaccggt	ggagatgact	gactctcagg	acattaatat	tagtgtggaa	27540
agaatagctg	ctcagcgtca	gcgagaaacg	cgagtgttgg	aatacctgga	actacagcaa	27600
cttaaagagt	cccactggtg	tgagaaagga	gtgctgtgcc	atgttaagca	ggcagccctt	27660
tcctacgatg	tcagcgttca	gggacatgaa	ctgtcttaca	ctttgccttt	gcagaaacaa	27720
accttctgca	ccatgatggg	ctctacctcc	atcacaatca	cccaacaagc	cgggcctgta	27780
gagggggcta	tcctctgtca	ctgtcacgca	cctgattgca	tgtccaaact	aatcaaaact	27840
ctctgtgctt	taggtgatat	ttttaaggtg	taaatcaata	ataaacttac	cttaaatttg	27900
acaacaaatt	tctggtgaca	tcattcagca	gcaccacttt	accctcttcc	cagctctcgt	27960
atgggatgcg	atagtgggtg	gcaaacttcc	tccaaaccct	aaaagaaata	ttggtatcca	28020
cttccttgtc	ctcacccaca	attttcatct	tttcatagat	gaaaagaacc	agagttgatg	28080
aagacttcaa	ccccgtctac	ccctatgaca	ccacaaccac	tcctgcagtt	ccctttatat	28140
caccccctt	tgtaaacagc	gatggtcttc	aggaaaaccc	cccaggtgtt	ttaagtctgc	28200
gaatagctaa	acccctatat	ttcgacatgg	agagaaaact	agccctttca	cttggaagag	28260
ggttgacaat	taccgccgcc	ggacaattag	aaagtacgca	gagcgtacaa	accaacccac	28320
cgttgataat	taccaacaac	aacacactga	ccctacgtca	ttctccccc	ttaaacctaa	28380
ctgacaatag	cttagtgcta	ggctactcga	gtcctctccg	cgtcacagac	aacaaactta	28440
catttaactt	cacatcacca	ctccgttatg	aaaatgaaaa	ccttactttt	aactatacag	28500
agcctcttaa	acttataaat	aacagccttg	ccattgacat	caattcctca	aaaggcctta	28560
gtagcgtcgg	aggctcacta	gctgtaaacc	tgagttcaga	cttaaagttt	gacagcaacg	28620
gatccatagc	ttttggcata	caaaccctgt	ggaccgctcc	gacctcgact	ggcaactgca	28680
ccgtctacag	cgagggcgat	tccctactta	gtctctgttt	aaccaaatgc	ggagctcacg	28740
tcttaggaag	tgtaagttta	accggtttaa	caggaaccat	aacccaaatg	actgatattt	28800
ctgtcaccat	tcaatttaca	tttgacaaca	atggtaagct	actaagctct	ccacttataa	28860
acaacgcctt	tagtattcga	cagaatgaca	gtacggcctc	aaaccctacc	tacaacgccc	28920
tggcgtttat	gcctaacagt	accatatatg	caagaggggg	aggtggtgaa	ccacgaaaca	28980
actactacgt	ccaaacgtat	cttaggggaa	atgttcaaaa	accaatcatt	cttactgtaa	29040
cctacaactc	agtcgccaca	ggatattcct	tatcttttaa	gtggactgct	cttgcacgtg	29100
aaaagtttgc	aaccccaaca	acctcgtttt	gctacattac	agaacaataa	aaccgtgtac	29160
cccaccgttt	cgttttttc	agatgaaacg	ggcgagagtt	gatgaagact	tcaacccagt	29220
gtacccttat	gaccccccac	atgctcctgt	tatgcccttc	attactccac	cttttacctc	29280
ctcggatggg	ttgcaggaaa	aaccacttgg	agtgttaagt	ttaaactaca	gagatcccat	29340
tactacgcaa	aatgagtctc	ttacaattaa	actaggaaac	ggcctcactc	tagacaacca	29400
gggacaacta	acatcaaccg	ctggcgaagt	agaacctcca	ctcactaacg	ctaacaacaa	29460
acttgcactg	gtctatagcg	atcctttagc	agtaaagcgc	aacagcctaa	ccttatcgca	29520
caccgctccc	cttgttattg	ctgataactc	tttagcattg Page 6		agcctatttt	29580
			raye 0	U		

29640 tataaatgac aaggacaaac tagccctgca aacagccgcg ccccttgtaa ctaacgctgg 29700 caccettege ttacaaageg cegeceettt aggeattgea gaccaaacee taaaacteet 29760 gtttaccaac cctttgtact tgcagaataa ctttctcacg ttagccattg aacgacccct 29820 tgccattacc aatactggaa agctggctct acagctctcc ccaccgctac aaacagcaga 29880 cacaggettg actttgcaaa ccaacgtgcc attaactgta agcaacggga ccctaggett 29940 agccataaag cgcccactta ttattcagga caacaacttg tttttggact tcagagctcc 30000 cctgcgtctt ttcaacagcg acccagtact agggcttaac ttttacaccc ctcttgcggt 30060 acgcgatgag gcgctcactg ttaacacagg ccgcggcctc acagtgagtt acgatggttt aattttaaat cttggtaagg atcttcgctt tgacaacaac accgtttctg tcgctcttag 30120 30180 tgctgctttg cctttacaat acactgatca gcttcgcctt aacgtgggcg ctgggctgcg 30240 ttacaatcca gtgagtaaga aattggacgt gaaccccaat caaaacaagg gtttaacctg ggaaaatgac tacctcattg taaagctagg aaatggatta ggttttgatg gcgatggaaa 30300 30360 catagetgtt tetecteaag ttacategee tgacacetta tggaccaetg cegacceate 30420 ccccaattgt tccatctaca ctgatttaga tgccaaaatg tggctctcgt tggtaaaaca 30480 agggggtgtg gttcacggtt ctgttgcttt aaaagcattg aaaggaaccc tattgagtcc tacggaaagc gccattgtta ttatactaca ttttgacaat tatggagtgc gaattctcaa 30540 30600 ttatcccact ttgggcactc aaggcacgtt gggaaataat gcaacttggg gttataggca 30660 gggagaatct gcagacacta atgtactcaa tgcactagca tttatgccca gttcaaaaag gtacccaaga gggcgtggaa gcgaagttca gaatcaaact gtgggctaca cttgtataca 30720 30780 gggtgacttt tctatgcccg taccgtacca aatacagtac aactatggac caactggcta 30840 ctcctttaaa tttatttgga gaactgtttc aagacaacca tttgacatcc catgctgttt tttctcttac attacggaag aataaaacaa ctttttcttt ttattttctt tttattttac 30900 30960 acgcacagta aggcttcctc cacccttcca tctcacagca tacaccagcc tctccccctt 31020 catggcagta aactgttgtg agtcagtccg gtatttggga gttaagatcc aaacagtctc tttggtgatg aaacatggat ccgtgatgga cacaaatccc tgggacaggt tctccaacgt 31080 31140 ttcggtaaaa aactgcatgc cgccctacaa aacaaacagg ttcaggctct ccacgggtta 31200 tctccccgat caaactcaga cagagtaaag gtgcgatgat gttccactaa accacgcagg 31260 tggcgctgtc tgaacctctc ggtgcgactc ctgtgaggct ggtaagaagt tagattgtcc 31320 agcagcctca cagcatggat catcagtcta cgagtgcgtc tggcgcagca gcgcatctga 31380 atctcactga gattccggca agaatcgcac accatcacaa tcaggttgtt catgatccca tagctgaaca cgctccagcc aaagctcatt cgctccaaca gcgccaccgc gtgtccgtcc 31440 aaccttactt taacataaat caggtgtctg ccgcgtacaa acatgctacc cgcatacaga 31500 acctcccggg gcaaacccct gttcaccacc tgcctgtacc agggaaacct cacatttatc 31560 agggagccat agatagccat tttaaaccaa ttagctaaca ccgccccacc agctctacac 31620

tgaagagaac	cgggagagtt	acaatgacag	tgaataatcc	atctctcata	acccctaatg	31680
gtctgatgga	aatccagatc	taacgtggca	cagcagatac	acactttcat	atacattttc	31740
atcacatgtt	tttcccaggc	cgttaaaata	caatcccaat	acacgggcca	ctcctgcagt	31800
acaataaagc	taatacaaga	tggtatactc	ctcacctcac	taacattgtg	catgttcata	31860
ttttcacatt	ctaagtaccg	agagttctcc	tctacaacag	cactgccgcg	gtcctcacaa	31920
ggtggtagct	ggtgacgatt	gtaaggagcc	agtctgcagc	gataccgtct	gtcgcgttgc	31980
atcgtagacc	agggaccgac	gcacttcctc	gtacttgtag	tagcagaacc	acgtccgctg	32040
ccagcacgtc	tccaagtaac	gccggtccct	gcgtcgctca	cgctccctcc	tcaacgcaaa	32100
gtgcaaccac	tcttgtaatc	cacacagatc	cctctcggcc	tccggggcga	tgcacacctc	32160
aaacctacag	atgtctcggt	acagttccaa	acacgtagtg	agggcgagtt	ccaaccaaga	32220
cagacagcct	gatctatccc	gacacactgg	aggtggagga	agacacggaa	gaggcatgtt	32280
attccaagcg	attcaccaac	gggtcgaaat	gaagatcccg	aagatgacaa	cggtcgcctc	32340
cggagccctg	atggaattta	acagccagat	caaacattat	gcgattttcc	aggctatcaa	32400
tcgcggcctc	caaaagagcc	tggacccgca	cttccacaaa	caccagcaaa	gcaaaagcgt	32460
tattatcaaa	ctcttcgatc	atcaagctgc	aggactgtac	aatgcccaag	taattttcat	32520
ttctccactc	gcgaatgatg	tcgcggcaaa	tagtctgaag	gttcatgccg	tgcatattaa	32580
aaagctccga	aagggcgccc	tctatagcca	tgcgtagaca	caccatcatg	actgcaagat	32640
atcgggctcc	tgagacacct	gcagcagatt	taacagaccc	aggtcaggtt	gctctccgcg	32700
atcgcgaatc	tccatccgca	aagtcatttg	caaataatta	aatagatctg	cgccgactaa	32760
atctgttaac	tccgcgctag	gaactaaatc	aggtgtggct	acgcagcaca	aaagttccag	32820
ggatggcgcc	aaactcacta	gaaccgctcc	cgagtagcaa	aactgatgaa	tgggagtaac	32880
acagtgtaaa	atgttcagcc	aaaaatcact	aagctgctcc	tttaaaaagt	ccagtacttc	32940
tatattcagt	tcgtgcaagt	actgaagcaa	ctgtgcggga	atatgcacag	caaaaaaaat	33000
agggcggctc	agatacatgt	tgacctaaaa	taaaaagaat	cattaaacta	aagaagcctg	33060
gcgaacggtg	ggatatatga	cacgctccag	cagcaggcaa	gcaaccggct	gtccccggga	33120
accgcggtaa	aattcatccg	aatgattaaa	aagaacaaca	gagacttccc	accatgtact	33180
cggttggatc	tcctgagcac	agagcaatac	cccctcaca	ttcatatccg	ctacagaaaa	33240
aaaacgtccc	agatacccag	cgggaatatc	caacgacagc	tgcaaagaca	gcaaaacaat	33300
ccctctggga	gcaatcacaa	aatcctccgg	tgaaaaaagc	acatacatat	tagaataacc	33360
ctgttgctgg	ggcaaaaagg	cccgtcgtcc	cagcaaatgc	acataaatat	gttcatcagc	33420
cattgccccg	tcttaccgcg	taaacagcca	cgaaaaaatc	gagctaaaat	ccacccaaca	33480
gcctatagct	atatatacac	tccacccaat	gacgctaata	ccgcaccacc	cacgaccaaa	33540
gttcacccac	acccacaaaa	cccgcgaaaa	tccagcgccg	tcagcacttc	cgcaatttca	33600
gtctcacaac	gtcacttccg	cgcgcctttt	cactttccca	cacacgccct	tcgcccgccc	33660
gccctcgcgc	caccccgcgt	caccccacgt	caccgcacgt Page 70	caccccggcc)	ccgcctcgct	33720

cctccccgct cattat	tcata ttggcacgt	t tccagaataa	ggtatattat	tgatgcagca	33780
aaacaatccc tctggg	gagca atcacaaaa	t cctccggtga	aaaaagcaca	tacatattag	33840
aataaccctg ttgctg	ggggc aaaaaggcc	c gtcgtcccag	caaatgcaca	taaatatgtt	33900
catcagccat tgcccc	cgtct taccgcgta	a acagccacga	aaaaatcgag	ctaaaatcca	33960
cccaacagcc tatago	ctata tatacactc	c acccaatgac	gctaataccg	caccacccac	34020
gaccaaagtt caccca	acacc cacaaaacc	c gcgaaaatcc	agcgccgtca	gcacttccgc	34080
aatttcagtc tcacaa	acgtc acttccgcg	c gccttttcac	tttcccacac	acgcccttcg	34140
cccgcccgcc ctcgcg	gccac cccgcgtca	c cccacgtcac	cgcacgtcac	cccggccccg	34200
cctcgctcct ccccgc	ctcat tatcatatt	g gcacgtttcc	agaataaggt	atattattga	34260
tgca					34264
<210> 5 <211> 31044 <212> DNA <213> simian ade	enovirus SV-25				
catcatcaat aatata	acctt attctggaa	a cgtgccaata	tgataatgag	cggggaggag	60
cgaggcgggg ccgggg	gtgac gtgcggtga	c gcggggtggc	gcgagggcgg	ggcgaagggc	120
gcgggtgtgt gtgtgg	ggagg cgcttagtt	t ttacgtatgc	ggaaggaggt	tttataccgg	180
aagatgggta atttgg	ggcgt atacttgta	a gttttgtgta	atttggcgcg	aaaactgggt	240
aatgaggaag ttgagg	yttaa tatgtactt	t ttatgactgg	gcggaatttc	tgctgatcag	300
cagtgaactt tgggcg	gctga cggggaggt	t tcgctacgtg	acagtaccac	gagaaggctc	360
aaaggtccca tttatt	gtac tcttcagcg	t tttcgctggg	tatttaaacg	ctgtcagatc	420
atcaagaggc cactct	tgag tgctggcga	g aagagttttc	tcctccgtgc	tgccacgatg	480
aggctggtcc ccgaga	itgta cggtgtttt	t agcgacgaga	cggtgcgtaa	ctcagatgac	540
ctgctgaatt cagacg	gcgct ggaaatttc	aattcgcctg	tgctttcgcc	gccgtcactt	600
cacgacctgt ttgtgt	tttg gctcaacgc	tagcaacgtg	ttatataggg	tcaagaagga	660
gcaggagacg cagttt	gcta ggctgttgg	cgatactcct	ggagtttttg	tggctctgga	720
tctaggccat cactct	cttt tccaagagaa	a aattatcaaa	aacttaactt	ttacgtctcc	780
tggtcgcacg gttgct	tccg ctgcctttat	tacctatatt	ttggatcaat	ggagcaacag	840
cgacagccac ctgtcg	rtggg agtacatgc	ggattacatg	tcgatggcgc	tgtggagggc	900
catgctgcgg aggagg	gttt gcatttact	gcgggcgcag	cctccgcggc	tggaccgagt	960
ggaggaggag gacgag	ccgg gggagaccga	a gaacctgagg	gccgggctgg	accctccaac	1020
ggaggactag gtgctg	agga tgatcccgaa	ı gaggggacta	gtggggctag	gaagaagcaa	1080
aagactgagt ctgaac	ctcg aaacttttt	aatgagttga	ctgtgagttt	gatgaatcgt	1140
cagcgtccgg agacaa	tttt ctggtctgaa	ttggaggagg	aattcaggag	gggggaactg	1200
aacctgctat acaagt	atgg gtttgaacag	ttaaaaactc Page 71	actggttgga l	gccgtgggag	1260

gattttgaaa	ccgccttgga	cacttttgct	aaagtggctc	tgcggccgga	taaggtttac	1320
actatccgcc	gcactgttaa	cataaagaag	agtgtttatg	ttataggcca	tggagctctg	1380
gtgcaggtgc	aaaccgtcga	ccgggtggcc	tttagttgcg	gtatgcaaaa	tctgggcccc	1440
ggggtgatag	gcttaaatgg	tgtaacattt	cacaatgtaa	ggtttactgg	tgaaagtttt	1500
aacggctctg	tgtttgcaaa	taacacacag	ctgacgctcc	acggcgttta	cttttttaac	1560
tttaataaca	catgtgtgga	gtcgtggggc	agggtgtctt	tgaggggctg	ctgttttcac	1620
ggctgctgga	aggcggtggt	gggaagactt	aaaagtgtaa	catctgtaaa	aaaatgcgtg	1680
tttgagcggt	gtgtgttggc	tttaactgtg	gagggctgtg	gacgcattag	gaataatgcg	1740
gcgtctgaga	atggatgttt	tcttttgcta	aaaggcacgg	ctagtattaa	gcataacatg	1800
atatgcggca	gcggtctgta	cccttcacag	ctgttaactt	gcgcggatgg	aaactgtcag	1860
accttgcgca	ccgtgcacat	agcgtcccac	cagcgccgcg	cctggccaac	attcgagcac	1920
aatatgctta	tgcgttgtgc	cgtccacttg	ggccctaggc	gaggcgtgtt	tgtgccttac	1980
cagtgtaact	ttagccatac	caagatttta	ctagaacctg	ataccttctc	tcgagtgtgt	2040
ttcaatgggg	tgtttgacat	gtcaatggaa	ctgtttaaag	tgataagata	tgatgaatcc	2100
aagtctcgtt	gtcgcccatg	tgaatgcgga	gctaatcatc	tgaggttgta	tcctgtaacc	2160
ctaaacgtta	ccgaggagct	gaggacggat	caccacatgt	tgtcctgcct	gcgcaccgac	2220
tatgaatcca	gcgacgagga	gtgaggtgag	gggcggagcc	acaaagggta	taaaggggcg	2280
tgaggggtgg	gtgtgatgat	tcaaaatgag	cgggacgacg	gacggcaacg	cgtttgaggg	2340
tggagtgttc	agcccttatc	tgacatctcg	tcttccttcc	tgggcaggag	tgcgtcagaa	2400
tgtagtgggc	tccaccgtgg	acggacgacc	ggtcgcccct	gcaaattccg	ccaccctcac	2460
ctatgccacc	gtgggatcat	cgttggacac	tgccgcggca	gctgccgctt	ctgctgccgc	2520
ttctactgct	cgcggcatgg	cggctgattt	tggactgtat	aaccaactgg	ccactgcagc	2580
tgtggcgtct	cggtctctgg	ttcaagaaga	tgccctgaat	gtgatcctga	ctcgcctgga	2640
gatcatgtca	cgtcgcttgg	acgaactggc	tgcgcagata	tcccaagcta	accccgatac	2700
cacttcagaa	tcctaaaata	aagacaaaca	aatatgttga	aaagtaaaat	ggctttattt	2760
gtttttttg	gctcggtagg	ctcgggtcca	cctgtctcgg	tcgttaagaa	ctttgtgtat	2820
gttttccaaa	acacggtaca	gatgggcttg	gatgttcaag	tacatgggca	tgaggccatc	2880
tttggggtga	agataggacc	attgaagagc	gtcatgctcc	ggggtggtgt	tgtaaattac	2940
ccagtcgtag	cagggtttct	gggcgtggaa	ctggaagatg	tcctttagga	gtaggctgat	3000
ggccaagggc	aggcccttag	tgtaggtgtt	tacaaagcgg	ttaagctggg	agggatgcat	3060
gcggggggag	atgatatgca	tcttggcttg	gatcttgagg	ttagctatgt	taccacccag	3120
gtctctgcgg	gggttcatgt	tatgaaggac	caccagcacg	gtgtagccgg	tgcatttggg	3180
gaacttgtca	tgcagtttgg	aggggaaggc	gtggaagaat	ttagagaccc	ccttgtggcc	3240
ccctaggttt	tccatgcact	catccataat	gatggcaatg	ggacccctgg	cggccgcttt	3300

ggcaaacacg	ttttgggggt	tggaaacatc	atagttttgc	tctagagtga	gctcatcata	3360
ggccatctta	acaaagcggg	gtaggagggt	gcccgactgg	gggatgatag	ttccatctgg	3420
gcctggggcg	tagttaccct	cacagatctg	catctcccag	gccttaattt	ccgagggggg	3480
tatcatgtcc	acctgggggg	caataaagaa	cacggtttct	ggcgggggat	tgatgagctg	3540
ggtggaaagc	aagttacgca	gcagttgaga	tttgccacag	ccggtggggc	cgtagatgac	3600
cccgatgacg	ggttgcagct	ggtagttgag	agaggaacag	ctgccgtcgg	ggcgcaggag	3660
gggggctacc	tcattcatca	tgcttctaac	atgtttattt	tcactcacta	agttttgcaa	3720
gagcctctcc	ccacccaggg	ataagagttc	ttccaggctg	ttgaagtgtt	tcagcggttt	3780
taggccgtcg	gccatgggca	tcttttcgag	cgactgacga	agcaagtaca	gtcggtccca	3840
gagctcggtg	acgtgctcta	tggaatctcg	atccagcaga	cttcttggtt	gcgggggttg	3900
ggtcgacttt	cgctgtaggg	caccagccgg	tgggcgtcca	gggccgcgag	ggttctgtcc	3960
ttccagggtc	tcagcgtccg	ggtgagggtg	gtctcggtga	cggtgaaggg	atgagccccg	4020
ggctgggcgc	ttgcgagggt	gcgcttcagg	ctcatcctgc	tggtgctgaa	gcggacgtcg	4080
tctccctgtg	agtcggccag	atagcaacga	agcatgaggt	cgtagctgag	ggactcggcc	4140
gcgtgtccct	tggcgcgcag	ctttcccttg	gaaacgtgct	gacatttggt	gcagtgcaga	4200
cattggaggg	cgtagagttt	gggggccagg	aagaccgact	cgggcgagta	ggcgtcggct	4260
ccgcactgag	cgcagacggt	ctcgcactcc	actagccacg	tgagctcggg	tttagcggga	4320
tcaaaaacca	agttgcctcc	atttttttg	atgcgtttct	taccttgcgt	ttccatgagt	4380
ttgtggcccg	cttccgtgac	aaaaaggctg	tcggtgtctc	cgtagacaga	cttgaggggg	4440
cgatcttcca	aaggtgttcc	gaggtcttcc	gcgtacagga	actgggacca	ctccgagacg	4500
aaggctctgg	tccaggctaa	cacgaaggag	gcaatctgcg	aggggtatct	gtcgttttca	4560
atgagggggt	ccaccttttc	cagggtgtgc	agacacaggt	cgtcctcctc	cgcgtccacg	4620
aaggtgattg	gcttgtaagt	gtaggtcacg	tgatctgcac	ccccaaagg	ggtataaaag	4680
ggggcgtgcc	caccctctcc	gtcactttct	tccgcatcgc	tgtggaccag	agccagctgt	4740
tcgggtgagt	aggccctctc	aaaagccggc	atgatctcgg	cgctcaagtt	gtcagtttct	4800
acaaacgagg	tggatttgat	attcacgtgc	cccgcggcga	tgcttttgat	ggtggagggg	4860
tccatctgat	cagaaaacac	gatctttttg	ttgtcaagtt	tggtggcgaa	agacccgtag	4920
agggcgttgg	aaagcaactt	ggcgatggag	cgcagggtct	gatttttctc	ccgatcggcc	4980
ctctccttgg	cggcgatgtt	gagttgcacg	tactcccggg	ccgcgcaccg	ccactcgggg	5040
aacacggcgg	tgcgctcgtc	gggcaggatg	cgcacgcgcc	agccgcgatt	gtgcagggtg	5100
atgaggtcca	cgctggtagc	cacctccccg	cggaggggct	cgttggtcca	acacaatcgc	5160
ccccttttc	tggagcagaa	cggaggcagg	ggatctagca	agttggcggg	cggggggtcg	5220
gcgtcgatgg	tgaagatacc	gggtagcagg	atcttattaa	aataatcgat	ttcggtgtcc	5280
gtgtcttgca	acgcgtcttc	ccacttcttc	accgccaggg	ccctttcgta	gggattcagg	5340
ggcggtcccc	agggcatggg	gtgggtcagg	gccgaggcgt Page 73	acatgccgca	gatgtcatac	5400

acgtacaggg	gttccctcaa	caccccgatg	taagtggggt	aacagcgccc	cccgcggatg	5460
ctggctcgca	cgtagtcgta	catctcgcgc	gagggagcca	tgaggccgtc	tcccaagtgg	5520
gtcttgtggg	gtttttcggc	ccggtagagg	atctgtctga	agatggcgtg	ggagttggaa	5580
gagatggtgg	ggcgttggaa	gacgttaaag	ttggccccgg	gtagtcccac	ggagtcttgg	5640
atgaactggg	cgtaggattc	ccggagtttg	tccaccaggg	cggcggtcac	cagcacgtcg	5700
agagcgcagt	agtccaacgt	ctcgcggacc	aggttgtagg	ccgtctcttg	ttttttctcc	5760
cacagttcgc	ggttgaggag	gtattcctcg	cggtctttcc	agtactcttc	ggcgggaaat	5820
cctttttcgt	ccgctcggta	agaacctaac	atgtaaaatt	cgttcaccgc	tttgtatgga	5880
caacagcctt	tttctaccgg	cagggcgtac	gcttgagcgg	cctttctgag	agaggtgtgg	5940
gtgagggcga	aggtgtcccg	caccatcact	ttcaggtact	gatgtttgaa	gtccgtgtcg	6000
tcgcaggcgc	cctgttccca	cagcgtgaag	tcggtgcgct	ttttctgcct	gggattgggg	6060
agggcgaagg	tgacatcgtt	aaagagtatt	ttcccggcgc	ggggcatgaa	gttgcgagag	6120
atcctgaagg	gcccgggcac	gtccgagcgg	ttgttgatga	cctgcgccgc	caggacgatc	6180
tcgtcgaagc	cgttgatgtt	gtgacccacg	atgtaaagtt	cgatgaagcg	cggctgtccc	6240
ttgagggccg	gcgcttttt	caactcctcg	taggtgagac	agtccggcga	ggagagaccc	6300
agctcagccc	gggcccagtc	ggagagttga	ggattagccg	caaggaagga	gctccataga	6360
tccaaggcca	ggagagtttg	caagcggtcg	cggaactcgc	ggaacttttt	ccccacggcc	6420
attttctccg	gtgtcactac	gtaaaaggtg	ttggggcggt	tgttccacac	gtcccatcgg	6480
agctctaggg	ccagctcgca	ggcttggcga	acgagggtct	cctcgccaga	gacgtgcatg	6540
accagcataa	agggtaccaa	ctgtttcccg	aacgagccca	tccatgtgta	ggtttctacg	6600
tcgtaggtga	caaagagccg	ctgggtgcgc	gcgtgggagc	cgatcggaaa	gaagctgatc	6660
tcctgccacc	agctggagga	atgggtgtta	atgtggtgga	agtagaagtc	ccgccggcgc	6720
acagagcatt	cgtgctgatg	tttgtaaaag	cgaccgcagt	agtcgcagcg	ctgcacgctc	6780
tgtatctcct	gaacgagatg	cgcttttcgc	ccgcgcacca	gaaaccggag	ggggaagttg	6840
agacgggggg	ctggtggggc	gacatcccct	tcgccttggc	ggtgggagtc	tgcgtctgcg	6900
tcctccttct	ctgggtggac	gacggtgggg	acgacgacgc	cccgggtgcc	gcaagtccag	6960
atctccgcca	cggaggggtg	caggcgctgc	aggaggggac	gcagctgccc	gctgtccagg	7020
gagtcgaggg	aagtcgcgct	gaggtcggcg	ggaagcgttt	gcaagttcac	tttcagaaga	7080
ccggtaagag	cgtgagccag	gtgcagatgg	tacttgattt	ccaggggggt	gttggatgaa	7140
gcgtccacgg	cgtagaggag	tccgtgtccg	cgcggggcca	ccaccgtgcc	ccgaggaggt	7200
tttatctcac	tcgtcgaggg	cgagcgccgg	ggggtagagg	cggctctgcg	ccggggggca	7260
gcggaggcag	aggcacgttt	tcgtgaggat	tcggcagcgg	ttgatgacga	gcccggagac	7320
tgctggcgtg	ggcgacgacg	cggcggttga	ggtcctggat	gtgccgtctc	tgcgtgaaga	7380
ccaccggccc	ccgggtcctg	aacctaaaga	gagttccaca	gaatcaatgt	ctgcatcgtt	7440

aacggcggcc	tgcctgagga	tctcctgcac	gtcgcccgag	ttgtcctgat	aggcgatctc	7500
ggccatgaac	tgttccactt	cttcctcgcg	gaggtcaccg	tggcccgctc	gctccacggt	7560
ggcggccagg	tcgttggaga	tgcggcgcat	gagttgagag	aaggcgttga	ggccgttctc	7620
gttccacacg	cggctgtaca	ccacgtttcc	gaaggagtcg	cgcgctcgca	tgaccacctg	7680
ggccacgttg	agttccacgt	ggcgggcgaa	gacggcgtag	tttctgaggc	gctggaagag	7740
gtagttgagc	gtggtggcga	tgtgctcgca	gacgaagaag	tacataatcc	agcgccgcag	7800
ggtcatctcg	ttgatgtctc	cgatggcttc	gagacgctcc	atggcctcgt	agaagtcgac	7860
ggcgaagttg	aaaaattggg	agttgcgggc	ggccaccgtg	agttcttctt	gcaggaggcg	7920
gatgagatcg	gcgaccgtgt	cgcgcacctc	ctgttcgaaa	gcgccccgag	gcgcctctgc	7980
ttcttcctcc	ggctcctcct	cttccagggg	ctcgggttcc	tccggcagct	ctgcgacggg	8040
gacggggcgg	cgacgtcgtc	gtctgaccgg	caggcggtcc	acgaagcgct	cgatcatttc	8100
gccgcgccgg	cgacgcatgg	tctcggtgac	ggcgcgtccg	ttttcgcgag	gtcgcagttc	8160
gaagacgccg	ccgcgcagag	cgcccccgtg	cagggagggt	aagtggttag	ggccgtcggg	8220
cagggacacg	gcgctgacga	tgcattttat	caattgctgc	gtaggcactc	cgtgcaggga	8280
tctgagaacg	tcgaggtcga	cgggatccga	gaacttctct	aggaaagcgt	ctatccaatc	8340
gcaatcgcaa	ggtaagctga	gaacggtggg	tcgctggggg	gcgttcgcgg	gcagttggga	8400
ggtgatgctg	ctgatgatgt	aattaaagta	ggcggtcttc	aggcggcgga	tggtggcgag	8460
gaggaccacg	tctttgggcc	cggcctgttg	aatgcgcagg	cgctcggcca	tgccccaggc	8520
ctcgctctga	cagcgacgca	ggtctttgta	gaagtcttgc	atcagtctct	ccaccggaac	8580
ctctgcttct	cccctgtctg	ccatgcgagt	cgagccgaac	ccccgcaggg	gctgcagcaa	8640
cgctaggtcg	gccacgaccc	tttcggccag	cacggcctgt	tgaatctgcg	tgagggtggc	8700
ctggaagtcg	tccaggtcca	cgaagcggtg	ataggccccc	gtgttgatgg	tgtaggtgca	8760
gttggccatg	acggaccagt	tgacgacttg	catgccgggt	tgggtgatct	ccgtgtactt	8820
gaggcgcgag	taggccctgg	actcgaacac	gtagtcgttg	catgtgcgca	ccagatactg	8880
gtagccgacc	aggaagtgag	gaggcggctc	tcggtacagg	ggccagccaa	cggtggcggg	8940
ggcgccgggg	gacaggtcgt	ccagcatgag	gcggtggtag	tggtagatgt	agcgggagag	9000
ccaggtgatg	ccggccgagg	tggttgcggc	cctggtgaat	tcgcggacgc	ggttccagat	9060
gttgcgcagg	ggaccaaagc	gctccatggt	gggcacgctc	tgccccgtga	ggcgggcgca	9120
atcttgtacg	ctctagatgg	aaaaaagaca	gggcggtcat	cgactccttt	ccgtagcttg	9180
gggggtaaag	tcgcaagggt	gcggcggcgg	ggaaccccgg	ttcgagaccg	gccggatccg	9240
ccgctcccga	tgcgcctggc	cccgcatcca	cgacgtccgc	gccgagaccc	agccgcgacg	9300
ctccgcccca	atacggaggg	gagtcttttg	gtgtttttc	gtagatgcat	ccggtgctgc	9360
ggcagatgcg	accccagacg	cccactacca	ccgccgtggc	ggcagtaaac	ctgagcggag	9420
gcggtgacag	ggaggaggaa	gagctggctt	tagacctgga	agagggagag	gggctggccc	9480
ggctgggagc	gccatcccca	gagagacacc	ctagggttca Page 7	gctcgtgagg 5	gacgccaggc	9540

aggcttttgt	gccgaagcag	aacctgttta	gggaccgcag	cggtcaggag	gcggaggaga	9600
tgcgcgattg	caggtttcgg	gcgggcagag	agctcagggc	gggcttcgat	cgggagcggc	9660
tcctgagggc	ggaggatttc	gagcccgacg	agcgttctgg	ggtgagcccg	gcccgcgctc	9720
acgtatcggc	ggccaacctg	gtgagcgcgt	acgagcagac	ggtgaacgag	gagcgcaact	9780
tccaaaagag	ctttaacaat	cacgtgagga	ccctgatcgc	gagggaggag	gtgaccatcg	9840
ggctgatgca	tctgtgggac	ttcgtggagg	cctacgtgca	gaacccggct	agcaaacccc	9900
tgacggccca	gctgttcctg	atcgtgcagc	acagccgcga	caacgagacg	ttccgcgacg	9960
ccatgttgaa	catcgcggag	cccgagggtc	gctggctctt	ggatctgatt	aacatcctgc	10020
agagcatcgt	ggtgcaggag	aggggcctga	gtttagcgga	caaggtggcg	gccattaact	10080
attcgatgca	gagcctgggg	aagttctacg	ctcgcaagat	ctacaagagc	ccttacgtgc	10140
ccatagacaa	ggaggtgaag	atagacagct	tttacatgcg	catggcgctg	aaggtgctga	10200
cgctgagcga	cgacctcggc	gtgtaccgta	acgacaagat	ccacaaggcg	gtgagcgcca	10260
gccgccggcg	ggagctgagc	gacagggagc	tgatgcacag	cctgcagagg	gcgctggcgg	10320
gcgccgggga	cgaggagcgc	gaggcttact	tcgacatggg	agccgatctg	cagtggcgtc	10380
ccagcgcgcg	cgccttggag	gcggcgggtt	atcccgacga	ggaggatcgg	gacgatttgg	10440
aggaggcagg	cgagtacgag	gacgaagcct	gaccgggcag	gtgttgttt	agatgcagcg	10500
gccggcggac	gggaccaccg	cggatcccgc	acttttggca	tccatgcaga	gtcaaccttc	10560
gggcgtgacc	gcctccgatg	actgggcggc	ggccatggac	cgcatcatgg	cgctgaccac	10620
ccgcaacccc	gaggctttta	ggcagcaacc	ccaggccaac	cgtttttcgg	ccatcttgga	10680
agcggtggtg	ccgtcgcgca	ccaacccgac	gcacgagaaa	gtcctgacta	tcgtgaacgc	10740
cctggtagac	agcaaggcca	tccgccgtga	cgaggcgggc	ttgatttaca	acgctctttt	10800
ggaacgcgtg	gcgcgctaca	acagcactaa	cgtgcagacc	aatctggacc	gcctcaccac	10860
cgacgtgaag	gaggcgctgg	cgcagaagga	gcggtttctg	agggacagta	atctgggctc	10920
tctggtggca	ctgaacgcct	tcctgagctc	acagccggcc	aacgtgcccc	gcgggcagga	10980
ggattacgtg	agcttcatca	gcgctctgag	actgctggtg	tccgaggtgc	cccagagcga	11040
ggtgtaccag	tctgggccgg	attacttttt	ccagacgtcc	cgacagggct	tgcaaacggt	11100
gaacctgact	caggccttta	aaaacttgca	aggcatgtgg	ggggtcaagg	cccggtggg	11160
cgatcgcgcc	actatctcca	gtctgctgac	ccccaacact	cgcctgctgc	tgctcttgat	11220
cgcaccgttt	accaacagta	gcactatcag	ccgtgactcg	tacctgggtc	atctcatcac	11280
tctgtaccgc	gaggccatcg	gccaggctca	gatcgacgag	catacgtatc	aggagattac	11340
taacgtgagc	cgtgccctgg	gtcaggaaga	taccggcagc	ctggaagcca	cgttgaactt	11400
tttgctaacc	aaccggaggc	aaaaaatacc	ctcccagttc	acgttaagcg	ccgaggagga	11460
gaggattctg	cgatacgtgc	agcagtccgt	gagcctgtac	ttgatgcgcg	agggcgccac	11520
cgcttccacg	gctttagaca	tgacggctcg	gaacatggaa	ccgtcctttt	actccgccca	11580

ccggccgttc	attaaccgtc	tgatggacta	cttccatcgc	gcggccgcca	tgaacgggga	11640
gtacttcacc	aatgccatcc	tgaatccgca	ttggatgccc	ccgtccggct	tctacaccgg	11700
ggagtttgac	ctgcccgaag	ccgacgacgg	ctttctgtgg	gacgacgtgt	ccgatagcat	11760
tttcacgccg	gctaatcgcc	gattccagaa	gaaggagggc	ggagacgagc	tcccctctc	11820
cagcgtggaa	gcggcctcaa	ggggagagag	tccctttcca	agtctgtctt	ccgccagtag	11880
cggtcgggta	acgcgtccac	ggttgccggg	ggagagcgac	tacctgaacg	accccttgct	11940
gcgaccggct	agaaagaaaa	attttcccaa	taacggggtg	gaaagcttgg	tggataaaat	12000
gaatcgttgg	aagacgtacg	cccaggagca	gcgggagtgg	gaggacagtc	agccgcggcc	12060
gctggtaccg	ccgcattggc	gtcgccagag	agaagacccg	gacgactccg	cagacgatag	12120
tagcgtgttg	gacctgggag	ggagcggagc	caaccccttt	gctcacttgc	aacccaaggg	12180
gcgctcgagt	cgcctgtatt	aataaaaaag	acgcggaaac	ttaccagagc	catggccaca	12240
gcgtgtgtgc	tttcttcctc	tctttcttcc	tcggcgcggc	agaatgagaa	gagcggtgag	12300
agtcacgccg	gcggcgtatg	agggcccgcc	cccttcttac	gaaagcgtga	tgggatcagc	12360
gaacgtgccg	gccacgctgg	aggcgcctta	cgttcctccc	agatacctgg	gacctacgga	12420
gggcagaaac	agcatccgtt	actccgagct	ggcgcccctg	tacgatacca	ccaaggtgta	12480
cctggtggac	aacaagtcgg	cggacatcgc	ctccctgaat	taccaaaacg	atcacagtaa	12540
ctttctgact	accgtggtgc	agaacaatga	cttcaccccg	acggaggcgg	gcacgcagac	12600
cattaacttt	gacgagcgtt	cccgctgggg	cggtcagctg	aaaaccatcc	tgcacaccaa	12660
catgcccaac	atcaacgagt	tcatgtccac	caacaagttc	agggctaagc	tgatggtaga	12720
aaaaagtaat	gcggaaactc	ggcagccccg	atacgagtgg	ttcgagttta	ccattccaga	12780
gggcaactat	tccgaaacta	tgactatcga	tctcatgaat	aacgcgatcg	tggacaatta	12840
cctgcaagtg	gggagacaga	acggggtgct	ggaaagcgat	atcggcgtga	aattcgatac	12900
cagaaacttc	cgactggggt	gggatcccgt	gaccaagctg	gtgatgccag	gcgtgtacac	12960
caacgaggct	tttcacccgg	acatcgtgct	gctgccgggg	tgcggtgtgg	acttcactca	13020
gagccgtttg	agtaacctgt	taggaattag	aaagcgccgc	cccttccaag	agggctttca	13080
aatcatgtat	gaggacctgg	agggaggtaa	tatacccgcc	ttactggacg	tgtcgaagta	13140
cgaagctagc	atacaacgcg	ccaaagcgga	gggtagagag	attcggggag	acacctttgc	13200
ggtagctccc	caggacctgg	aaatagtgcc	tttaactaaa	gacagcaaag	acagaagcta	13260
caatattata	aacaacacga	cggacaccct	gtatcggagc	tggtttctgg	cttacaacta	13320
cggagacccc	gagaaaggag	tgagatcatg	gaccatactc	accaccacgg	acgtgacctg	13380
tggctcgcag	caagtgtact	ggtccctgcc	ggatatgatg	caagacccgg	tcaccttccg	13440
ccctccacc	caagtcagca	acttcccggt	ggtgggcacc	gagctgctgc	ccgtccatgc	13500
caagagcttc	tacaacgagc	aggccgtcta	ctcgcaactt	attcgccagt	ccaccgcgct	13560
tacccacgtg	ttcaatcgct	ttcccgagaa	ccagattctg	gtgcgccctc	ccgctcctac	13620
cattaccacc	gtcagtgaaa	acgttcccgc	cctcacagat Page 77	cacggaaccc '	tgccgctgcg	13680

cagcagtatc	agtggagttc	agcgcgtgac	catcaccgac	gccagacgtc	gaacctgccc	13740
ctacgtttac	aaagcgcttg	gcgtggtggc	tcctaaagtt	ctttctagtc	gcaccttcta	13800
aaaacatgtc	catcctcatc	tctcccgata	acaacaccgg	ctggggactg	ggctccggca	13860
agatgtacgg	cggagccaaa	aggcgctcca	gtcagcaccc	agttcgagtt	cggggccact	13920
tccgcgctcc	ttggggagct	tacaagcgag	gactctcggg	tcgaacggct	gtagacgata	13980
ccatagatgc	cgtgattgcc	gacgcccgcc	ggtacaaccc	cggaccggtc	gctagcgccg	14040
cctccaccgt	ggattccgtg	atcgacagcg	tggtagccgg	cgctcgggcc	tatgctcgcc	14100
gcaagaggcg	gctgcatcgg	agacgtcgcc	ccaccgccgc	catgctggca	gccagggccg	14160
tgctgaggcg	ggcccggagg	gcaggcagaa	gggctatgcg	ccgcgctgcc	gccaacgccg	14220
ccgccgggag	ggcccgccga	caggctgccc	gccaggctgc	cgctgccatc	gctagcatgg	14280
ccagacccag	gagagggaac	gtgtactggg	tgcgtgattc	tgtgacggga	gtccgagtgc	14340
cggtgcgcag	ccgacctccc	cgaagttaga	agatccaagc	tgcgaagacg	gcggtactga	14400
gtctccctgt	tgttatcagc	ccaacatgag	caagcgcaag	tttaaagaag	aactgctgca	14460
gacgctggtg	cctgagatct	atggccctcc	ggacgtgaag	ccagacatta	agccccgcga	14520
tatcaagcgt	gttaaaaagc	gggaaaagaa	agaggaactc	gcggtggtag	acgatggcgg	14580
agtggaattt	attaggagtt	tcgccccgcg	acgcagggtt	caatggaaag	ggcggcgggt	14640
acaacgcgtt	ttgaggccgg	gcaccgcggt	agtttttacc	ccgggagagc	ggtcggccgt	14700
taggggtttc	aaaaggcagt	acgacgaggt	gtacggcgac	gaggacatat	tggaacaggc	14760
ggctcaacag	atcggagaat	ttgcctacgg	aaagcgttcg	cgtcgcgaag	acctggccat	14820
cgccttagac	agcggcaacc	ccacgcccag	cctcaaaccc	gtgacgctgc	agcaggtgct	14880
tcccgtgagc	gccagcacgg	acagcaagag	ggggattaag	agagaaatgg	aagatctgca	14940
tcccaccatc	caactcatgg	tccctaaacg	gcagaggctg	gaagaggtcc	tggagaagat	15000
gaaagtggac	cccagcatag	agccggatgt	aaaagtcaga	cctattaagg	aagtggcccc	15060
cggtcttggg	gtgcaaacgg	tggacattca	aatccccgtc	accaccgctt	caaccgccgt	15120
ggaagctatg	gaaacgcaaa	cggagacccc	tgccgcgatc	ggtaccaggg	aagtggcgtt	15180
gcaaacggag	ccttggtacg	aatacgcagc	ccctcggcgt	cagaggcgtt	ccgctcgtta	15240
cggccccgcc	aacgccatca	tgccagaata	tgcgctgcat	ccgtctattc	tgcccactcc	15300
cggataccgg	ggtgtgacgt	atcgcccgtc	tggaacccgc	cgccgaaccc	gtcgccgccg	15360
ccgctcccgt	cgcgctctgg	ccccgtgtc	ggtgcggcgt	gtgacccgcc	ggggaaagac	15420
agtcgtcatt	cccaacccgc	gttaccaccc	tagcatcctt	taataactct	gccgttttgc	15480
agatggctct	gacttgccgc	gtgcgccttc	ccgttccgca	ctatcgagga	agatctcgtc	15540
gtaggagagg	catgacgggc	agtggtcgcc	ggcgggcttt	gcgcaggcgc	atgaaaggcg	15600
gaattttacc	cgccctgata	cccataattg	ccgccgccat	cggtgccata	cccggcgttg	15660
cttcagtggc	gttgcaagca	gctcgtaata	aataaacaaa	ggcttttgca	cttatgacct	15720

ggtcctgact	attttatgca	gaaagagcat	ggaagacatc	aattttacgt	cgctggctcc	15780
gcggcacggc	tcgcggccgc	tcatgggcac	ctggaacgac	atcggcacca	gtcagctcaa	15840
cgggggcgct	ttcaattggg	ggagcctttg	gagcggcatt	aaaaactttg	gctccacgat	15900
taaatcctac	ggcagcaaag	cctggaacag	tagtgctggt	cagatgctcc	gagataaact	15960
gaaggacacc	aacttccaag	aaaaagtggt	caatggggtg	gtgaccggca	tccacggcgc	16020
ggtagatctc	gccaaccaag	cggtgcagaa	agagattgac	aggcgtttgg	aaagctcgcg	16080
ggtgccgccg	cagagagggg	atgaggtgga	ggtcgaggaa	gtagaagtag	aggaaaagct	16140
gcccccgctg	gagaaagttc	ccggtgcgcc	tccgagaccg	cagaagcggc	ccaggccaga	16200
actagaagag	actctggtga	cggagagcaa	ggagcctccc	tcgtacgagc	aagccttgaa	16260
agagggcgcc	tctccaccct	cctacccgat	gactaagccg	atcgcaccca	tggctcgacc	16320
ggtgtacggc	aaggattaca	agcccgtcac	gctagagctg	ccccaccgc	ccccacgcg	16380
cccgaccgtc	cccccctgc	cgactccgtc	ggcggccgcg	gcgggacccg	tgtccgcacc	16440
atccgctgtg	cctctgccag	ccgcccgtcc	agtggccgtg	gccactgcca	gaaaccccag	16500
aggccagaga	ggagccaact	ggcaaagcac	gctgaacagc	atcgtgggcc	tgggagtgaa	16560
aagcctgaaa	cgccgccgtt	gctattatta	aaaaagtgta	gctaaaaagt	ctcccgttgt	16620
atacgcctcc	tatgttaccg	ccagagacga	gtgactgtcg	ccgcgagcgc	cgctttcaag	16680
atggccaccc	catcgatgat	gccgcagtgg	tcttacatgc	acatcgccgg	ccaggacgcc	16740
tcggagtacc	tgagtcccgg	cctcgtgcag	tttgcccgcg	ccaccgacac	ctacttcagc	16800
ttgggaaaca	agtttagaaa	ccccaccgtg	gccccaccc	acgatgtgac	cacggaccgc	16860
tcgcagaggc	tgaccctgcg	ctttgtgccc	gtagaccggg	aggacaccgc	gtactcttac	16920
aaagtgcgct	acacgttggc	cgtaggggac	aaccgagtgc	tggacatggc	cagcacctac	16980
tttgacatcc	ggggggtgct	ggatcggggt	cccagcttca	agccctattc	cggcaccgct	17040
tacaactccc	tggcccccaa	gggagctccc	aacccctcgg	aatggacgga	cacttccgac	17100
aacaaactta	aagcatatgc	tcaggctccc	taccagagtc	aaggacttac	aaaggatggt	17160
attcaggttg	ggctagttgt	gacagagtca	ggacaaacac	cccaatatgc	aaacaaagtg	17220
taccaacccg	agccacaaat	tggggaaaac	caatggaatt	tagaacaaga	agataaagcg	17280
gcgggaagag	tcctaaagaa	agatacccct	atgtttccct	gctatgggtc	atatgccagg	17340
cccacaaacg	aacaaggagg	gcaggcaaaa	aaccaagaag	tagatttaca	gttttttgcc	17400
actccgggcg	acacccagaa	cacggctaaa	gtggtacttt	atgctgaaaa	tgtcaacctg	17460
gaaactccag	atactcactt	agtgtttaaa	cccgatgacg	acagcaccag	ttcaaaactt	17520
cttcttgggc	agcaggctgc	acctaacaga	cccaactaca	taggttttag	agataatttt	17580
attggtttaa	tgtactacaa	tagcactgga	aacatgggcg	tgctggccgg	acaggcttct	17640
caattgaatg	ccgtagtcga	cttgcaggac	agaaacaccg	agttgtccta	ccagctgatg	17700
ctggacgcac	tgggggatcg	cagccgatat	ttttcaatgt	ggaatcaggc	agtagacagc	17760
tatgacccag	acgttagaat	tatagaaaac	cacggagtgg Page 79	aagacgaact 9	gccaaactat	17820

tgttttcctc	tgggaggaat	ggtggtgact	gacaattaca	actctgtgac	gcctcaaaat	17880
ggaggcagtg	gaaatacatg	gcaggcagac	aatactacat	ttagtcaaag	aggagcgcag	17940
attggctccg	gaaacatgtt	tgccctggaa	attaacctac	aggccaacct	ctggcgcggc	18000
ttcttgtatt	ccaatattgg	gttgtatctt	ccagactctc	tgaaaatcac	ccccgacaac	18060
atcacgctgc	cagaaaacaa	aaacacttat	cagtacatga	acggtcgcgt	aacgccaccc	18120
gggctcatag	acacctatgt	aaacgtgggc	gcgcgctggt	ccccgatgt	catggacagc	18180
attaacccct	tcaaccacca	ccgtaacgcg	ggcttgcgct	accgctccat	gctcttgggc	18240
aacggccgtt	atgtgccttt	tcacattcag	gtgccccaaa	aattctttgc	cattaaaaac	18300
ctgctgcttc	tccccggttc	ctatacctat	gagtggaact	tccgcaagga	tgtcaacatg	18360
atcctgcaga	gctcgctggg	taatgacctg	cgagtggacg	gggccagcat	acgctttgac	18420
agcattaacc	tgtatgccaa	cttttttccc	atggcccaca	acacggcctc	taccctggaa	18480
gccatgctgc	gcaacgacac	caatgaccag	tccttcaacg	actacctgtg	cgcggctaac	18540
atgctgtacc	ccatccccgc	caacgccacc	agcgtgccca	tttctattcc	ttctcggaac	18600
tgggctgcct	tcaggggctg	gagttttact	cgcctcaaaa	ccaaggagac	tccctcgctg	18660
ggctccggtt	ttgaccccta	ctttgtttac	tccggctcca	ttccctacct	agatggcacc	18720
ttttacctca	accacacttt	caaaaaggtg	tctattatgt	ttgactcctc	ggttagctgg	18780
cccggcaacg	accgcctgct	aacgcccaac	gagttcgaaa	ttaagcgttc	cgtggacggt	18840
gaagggtaca	acgtggccca	gagcaacatg	accaaggact	ggtttctaat	tcaaatgctc	18900
agtcactata	atataggtta	ccagggcttc	tatgtgcccg	agaactacaa	ggaccgcatg	18960
tactccttct	tccgcaactt	ccaaccaatg	agccggcagg	tggtagatac	cgtgacttat	19020
acagactaca	aagatgtcaa	gctcccctac	caacacaaca	actcagggtt	cgtgggctac	19080
atgggaccca	ccatgcgaga	gggacaggcc	tacccggcca	actatcccta	cccctgatc	19140
ggagagactg	ccgtacccag	cctcacgcag	aaaaagttcc	tctgcgaccg	ggtgatgtgg	19200
aggataccct	tctctagcaa	ctttatgtcg	atgggctccc	tcaccgacct	ggggcagaac	19260
atgctgtacg	ccaactccgc	tcacgccttg	gacatgactt	ttgaggtgga	tcccatggat	19320
gagcccacgc	ttctctatgt	tctgtttgaa	gtcttcgacg	tggtgcgcat	ccaccagccg	19380
caccgcggcg	tcatcgaggc	cgtctacctg	cgcacacctt	tctctgccgg	taacgccacc	19440
acctaaagaa	gctgatgggt	tccagcgaac	aggagttgca	ggccattgtt	cgcgacctgg	19500
gctgcgggcc	ctgctttttg	ggcaccttcg	acaagcgttt	tcccggattc	atgtccccc	19560
acaagccggc	ctgcgccatc	gttaacacgg	ccggacggga	gacagggggg	gtgcactggc	19620
tcgccttcgc	ctggaacccg	cgcaaccgca	cctgctacct	gttcgaccct	tttggtttct	19680
ccgacgaaag	gctgaagcag	atctaccaat	tcgagtacga	ggggctcctc	aagcgcagcg	19740
ctctggcctc	cacgcccgac	cactgcgtca	ccctggaaaa	gtccacccag	acggtccagg	19800
ggcccctctc	ggccgcctgc	gggcttttct	gttgcatgtt	tttgcacgcc	ttcgtgcact	19860

ggcctcacac	ccccatggag	cgcaacccca	ccatggatct	gctcaccgga	gtgcccaaca	19920
gcatgcttca	cagtccccag	gtcgccccca	ccctgcgtcg	caatcaggac	cacctgtatc	19980
gctttctggg	gaaacactct	gcctatttcc	gccgccaccg	gcagcgcatc	gaacaggcca	20040
cggccttcga	aagcatgagc	caaagagtgt	aatcaataaa	aaccgttttt	atttgacatg	20100
atacgcgctt	ctggcgtttt	tattaaaaat	cgaagggttc	gagggagggg	tcctcgtgcc	20160
cgctggggag	ggacacgttg	cggtactgga	atcgggcgct	ccaacgaaac	tcggggatca	20220
ccagccgcgg	cagggccacg	tcttccatgt	tctgcttcca	aaactgtcgc	accagctgca	20280
gggctcccat	cacgtcgggc	gctgagatct	tgaagtcgca	gttagggccg	gagcccccgc	20340
ggctgttgcg	gaacacgggg	ttggcacact	ggaacaccaa	cacgctgggg	ttgtggatac	20400
tagccagggc	cgtcgggtcg	gtcacctccg	atgcatccag	atcctcggca	ttgctcaggg	20460
cgaacggggt	cagcttgcac	atctgccgcc	cgatctgggg	taccaggtcg	cgcttgttga	20520
ggcagtcgca	gcgcagaggg	atgaggatgc	gacgctgccc	gcgttgcatg	atggggtaac	20580
tcgccgccag	gaactcctct	atctgacgga	aggccatctg	ggccttgacg	ccctcggtga	20640
aaaatagccc	acaggacttg	ctggaaaaca	cgttattgcc	acagttgatg	tcttccgcgc	20700
agcagcgcgc	atcttcgttc	ttcagctgaa	ccacgttgcg	accccagcgg	ttctgaacca	20760
ccttggcttt	cgtgggátgc	tccttcagcg	cccgctgtcc	gttctcgctg	gtcacatcca	20820
tttccaccac	gtgctccttg	cagaccatct	ccactccgtg	gaaacagaac	agaatgccct	20880
cctgttgggt	attgcgatgc	tcccacacgg	cgcacccggt	ggactcccag	ctcttgtgtt	20940
tcacccccgc	gtaggcttcc	atgtaagcca	ttagaaatct	gcccatcagc	tcagtgaagg	21000
tcttctggtt	ggtgaaggtt	agcggcaggc	cgcggtgttc	ctcgttcaac	caagtttgac	21060
agatcttgcg	gtacacggct	ccctggtcgg	gcagaaactt	aaaagtcgtt	ctgctctcgt	21120
tgtccacgtg	gaacttctcc	atcaacatcg	tcatgacttc	catgcccttc	tcccaggcag	21180
tcaccagcgg	cgcgctctcg	gggttcttca	ccaacacggc	ggtggagggg	ccctcgccgg	21240
ccccgacgtc	cttcatggac	attttttgaa	actccacggt	gccgtccgcg	cggcgtactc	21300
tgcgcatcgg	agggtagctg	aagcccacct	ccatgacggt	gctttcgccc	tcgctgtcgg	21360
agacgatctc	cggggagggc	ggcggaacgg	gggcagactt	gcgagccttc	ttcttgggag	21420
ggagcggagg	cacctcctgc	tcgcgctcgg	gactcatctc	ccgcaagtag	ggggtgatgg	21480
agcttcctgg	ttggttctga	cggttggcca	ttgtatccta	ggcagaaaga	catggagctt	21540
atgcgcgagg	aaactttaac	cgccccgtcc	cccgtcagcg	acgaagaggt	catcgtcgaa	21600
caggacccgg	gctacgttac	gccgcccgag	gatctggagg	ggcccttaga	cgaccggcgc	21660
gacgctagtg	agcggcagga	aaatgagaaa	gaggaggagg	agggctgcta	cctcctggaa	21720
ggcgacgttt	tgctaaagca	tttcgccagg	cagagcacca	tactcaagga	ggccttgcaa	21780
gaccgctccg	aggtgccctt	ggacgtcgcc	gcgctctccc	aggcctacga	ggcgaacctt	21840
ttctcgcccc	gagtgcctcc	gaagagacag	cccaacggca	cctgcgagcc	caacccgcga	21900
ctcaacttct	accccgtgtt	cgccgtgccc	gaggcgctgg Page 81	ccacctacca L	catctttttc	21960

	gcattcccct					22020
acactcagaa	acggagtcag	catacctgat	atcacgtcac	tggaggaagt	gcctaagatc	22080
ttcgagggtc	tgggtcgaga	tgagaagcgg	gcggcgaacg	ctctgcagaa	agaacagaaa	22140
gagagtcaga	acgtgctggt	ggagctggag	ggggacaacg	cgcgtctgac	cgtcctcaaa	22200
cgttgcatag	aagtttccca	cttcgcctac	ccggccctca	acctgccgcc	caaagttatg	22260
aaatcggtca	tggaccagct	actcatcaag	agagctgagc	ccctgaatcc	cgaccaccct	22320
gaggcggaaa	actcagagga	cggaaagccc	gtcgtcagcg	acgaggagct	cgagcggtgg	22380
ctggaaacca	gggaccccca	gcagttgcaa	gagaggcgca	agatgatgat	ggcggccgtg	22440
ctggtcacgg	tggagctaga	atgcctgcaa	cggtttttca	gcgacgtgga	gacgctacgc	22500
aaaatcgggg	agtccctgca	ctacaccttc	cgccagggct	acgttcgcca	ggcctgcaaa	22560
atctccaacg	tagagctcag	caacctggtt	tcctacatgg	gcatcctcca	cgagaaccgg	22620
ctggggcaga	gcgtgctgca	ctgcaccttg	caaggcgagg	cgcgaaggga	ctacgtccga	22680
gactgcgtct	acctcttcct	caccctcacc	tggcagaccg	ccatgggcgt	gtggcagcag	22740
tgcttggaag	agagaaacct	caaagagctg	gacaaactcc	tctgccgcca	gcggcgggcc	22800
ctctggaccg	gcttcagcga	gcgcacggtc	gcctgcgccc	tggcagacat	cattttccca	22860
gaacgcctga	tgaaaacctt	gcagaacggc	ctgccggatt	tcatcagtca	gagcatcttg	22920
caaaacttcc	gctccttcgt	cctggagcgc	tccgggatct	tgcccgccat	gagctgcgcg	22980
ctgccttctg	actttgtccc	cctttcctac	cgcgagtgcc	ctccccact	gtggagccac	23040
tgctacctct	tccaactggc	caactttctg	gcctaccact	ccgacctcat	ggaagacgtg	23100
agcggagagg	ggctgctcga	gtgccactgc	cgctgcaacc	tctgcacccc	ccacagatcg	23160
ctggcctgca	acaccgagct	gctcagcgaa	acccaggtca	taggtacctt	cgagatccag	23220
gggccccagc	agcaagaggg	tgcttccggc	ttgaagctca	ctccggcgct	gtggacctcg	23280
gcttacttac	gcaaatttgt	agccgaggac	taccacgccc	acaaaattca	gttttacgaa	23340
gaccaatctc	gaccaccgaa	agccccctc	acggcctgcg	tcatcaccca	gagcaaaatc	23400
ctggcccaat	tgcaatccat	caaccaagcg	cgccgagatt	tccttttgaa	aaagggtcgg	23460
ggggtgtacc	tggaccccca	gaccggcgag	gaactcaacc	cgtccacact	ttccgtcgaa	23520
gcagcccccc	cgagacatgc	cacccaaggg	aaccgccaag	cagctgatcg	ctcggcagag	23580
agcgaagaag	caagagctgc	tccagcagca	ggtggaggac	gaggaagagc	tgtgggacag	23640
ccaggcagag	gaggtgtcag	aggacgagga	ggagatggaa	agctgggaca	gcctagacga	23700
ggaggacgag	ctttcagagg	aagaggcgac	cgaagaaaaa	ccacctgcat	ccagcgcgcc	23760
ttctctgagc	cgacagccga	agccccggcc	cccgacgccc	ccggccggct	cactcaaagc	23820
cagccgtagg	tgggacgcca	ccggatctcc	agcggcagcg	gcaacggcag	cgggtaaggc	23880
caaacgcgag	cggcgggggt	attgctcctg	gcggacccac	aaaagcagta	tcgtgaactg	23940
cttgcaacac	tgcgggggaa	acatctcctt	tgcccgacgc	tacctcctct	tccatcacgg	24000

tgtggccttc	cctcgcaacg	ttctctatta	ttaccgtcat	ctctacagcc	cctacgaaac	24060
gctcggagaa	aaaagctaag	gcctcctctg	ccgcgaggaa	aaactccgcc	gccgctgccg	24120
ccaaggatcc	gccggccacc	gaggagctga	gaaagcgcat	ctttcccact	ctgtatgcta	24180
tctttcagca	aagccgcggg	cagcaccctc	agcgcgaact	gaaaataaaa	aaccgctcct	24240
tccgctcact	cacccgcagc	tgtctgtacc	acaagagaga	agaccagctg	cagcgcaccc	24300
tggacgacgc	cgaagcactg	ttcagcaaat	actgctcagc	gtctcttaaa	gactaaaaga	24360
cccgcgcttt	ttcccctcg	ggcgccaaaa	cccacgtcat	cgccagcatg	agcaaggaga	24420
ttcccacccc	ttacatgtgg	agctatcagc	cccagatggg	cctggccgcg	ggggccgccc	24480
aggactactc	cagcaaaatg	aactggctca	gcgccggccc	ccacatgatc	tcacgagtta	24540
acggcatccg	agcccaccga	aaccagatcc	tcttagaaca	ggcggcaatc	accgccacac	24600
cccggcgcca	actcaacccg	cccagttggc	ccgccgccca	ggtgtatcag	gaaactcccc	24660
gcccgaccac	agtcctcctg	ccacgcgacg	cggaggccga	agtcctcatg	actaactctg	24720
gggtacaatt	agcgggcggg	tccaggtacg	ccaggtacag	aggtcgggcc	gctccttact	24780
ctcccgggag	tataaagagg	gtgatcattc	gaggccgagg	tatccagctc	aacgacgagg	24840
cggtgagctc	ctcaaccggt	ctcagacctg	acggagtctt	ccagctcgga	ggagcgggcc	24900
gctcttcctt	caccactcgc	caggcctacc	tgaccctgca	gagctcttcc	tcgcagccgc	24960
gctccggggg	aatcggcact	ctccagttcg	tggaagagtt	cgtcccctcc	gtctacttca	25020
acccgttttc	cggctcacct	ggacgctacc	cggacgcctt	cattcccaac	tttgacgcag	25080
tgagtgaatc	cgtggacggc	tacgactgat	gacagatggt	gcggccgtga	gagctcggct	25140
gcgacatctg	catcactgcc	gccagcctcg	ctgctacgct	cgggaggcga	tcgtgttcag	25200
ctactttgag	ctgccggacg	agcaccctca	gggaccggct	cacgggttga	aactcgagat	25260
tgagaacgcg	cttgagtctc	acctcatcga	cgccttcacc	gcccggcctc	tcctggtaga	25320
aaccgaacgc	gggatcacta	ccatcaccct	gttctgcatc	tgccccacgc	ccggattaca	25380
tgaagatctg	tgttgtcatc	tttgcgctca	gtttaataaa	aactgaactt	tttgccgtac	25440
cttcaacgcc	acgcgttgtt	tctccttgtg	aaaaaacccc	aggagtcctt	aacttacaca	25500
tagcaaaacc	cttgtatttt	accatagaaa	aacaactagc	cctttcaatt	ggaaaagggt	25560
taacaatttc	tgctacagga	cagttggaaa	gcacagcaag	cgtacaggac	agcgctacac	25620
cacccctacg	tggtatttcc	cctttaaagc	tgacagacaa	cggtttaaca	ttaagctatt	25680
cagatcccct	gcgtgtggta	ggtgaccaac	ttacgtttaa	ttttacttct	ccactacgtt	25740
acgaaaatgg	cagtcttaca	ttcaactaca	cttctcccat	gacactaata	aacaacagtc	25800
ttgctattaa	cgtcaatacc	tccaaaggcc	tcagtagtga	caacggcaca	ctcgctgtaa	25860
atgttactcc	agattttaga	tttaacagct	ctggtgcctt	aacttttggc	atacaaagtc	25920
tatggacttt	tccaaccaaa	actcctaact	gtaccgtgtt	taccgaaagt	gactccctgc	25980
tgagtctttg	cttgactaaa	tgcggagctc	acgtacttgg	aagcgtgagt	ttaagcggag	26040
tggcaggaac	catgctaaaa	atgacccaca	cttctgttac Page 8	cgttcagttt 3	tcgtttgatg	26100

				**		26160
				ttggggtgtt		26160
				tatgccaaac		26220
attctagagg	agcaagtaac	gaacctcaaa	acaattatta	tgtccagacg	tatcttagag	26280
gcaacgtgcg	aaagccaatt	ctactaactg	ttacctacaa	ctcagttaat	tcaggatatt	26340
ccttaacttt	taaatgggat	gctgtcgcca	atgaaaaatt	tgccactcct	acatcttcgt	26400
tttgctatgt	tgcagagcaa	taaaaccctg	ttaccccacc	gtctcgtttt	tttcagatga	26460
aacgagcgag	agttgatgaa	gacttcaacc	cagtgtaccc	ttatgacccc	ccatacgctc	26520
ccgtcatgcc	cttcattact	ccgcctttta	cctcctcgga	tgggttgcag	gaaaaaccac	26580
ttggagtgtt	aagtttaaac	tacagggatc	ccattactac	acaaaatggg	tctctcacgt	26640
taaaactagg	aaacggcctc	actctaaaca	accagggaca	gttaacatca	actgctggcg	26700
aagtggagcc	tccgctcact	aatgctaaca	acaaacttgc	actagcctat	agcgaaccat	26760
tagcagtaaa	aagcaaccgc	ctaactctat	cacacaccgc	tccccttgtc	atcgctaata	26820
attctttagc	gttgcaagtt	tcagagccta	tttttgtaaa	tgacgatgac	aagctagccc	26880
tgcagacagc	cgccccctt	gtaaccaacg	ctggcaccct	tcgcttacag	agcgctgccc	26940
ctttaggatt	ggttgaaaat	actcttaaac	tgctgttttc	taaacccttg	tatttgcaaa	27000
atgattttct	tgcattagcc	attgaacgcc	ccctggctgt	agcagccgca	ggtactctga	27060
ccctacaact	tactcctcca	ttaaagacta	acgatgacgg	gctaacacta	tccacagtcg	27120
agccattaac	tgtaaaaaac	ggaaacctag	gcttgcaaat	atcgcgccct	ttagttgttc	27180
aaaacaacgg	cctttcgctt	gctattaccc	ccccgctgcg	tttgtttaac	agcgaccccg	27240
ttcttggttt	gggcttcact	tttcccctag	ctgtcacaaa	caacctcctc	tccttaaaca	27300
tgggagacgg	agttaaactt	acctataata	aactaacagc	caatttgggt	agggatttac	27360
aatttgaaaa	cggtgcgatt	gccgtaacgc	ttactgccga	attacctttg	caatacacta	27420
acaaacttca	actgaatatt	ggagctggcc	ttcgttacaa	tggagccagc	agaaaactag	27480
atgtaaacat	taaccaaaat	aaaggcttaa	cttgggacaa	cgatgcagtt	attcccaaac	27540
taggatcggg	cttacaattt	gaccctaatg	gcaacatcgc	tgttatccct	gaaaccgtga	27600
agccgcaaac	gttatggacg	actgcagatc	cctcgcctaa	ctgctcagtg	taccaggact	27660
tggatgccag	gctgtggctc	gctcttgtta	aaagtggcga	catggtgcat	ggaagcattg	27720
ccctaaaagc	cctaaaaggg	acgttgctaa	atcctacagc	cagctacatt	tccattgtga	27780
tatattttta	cagcaacgga	gtcaggcgta	ccaactatcc	aacgtttgac	aacgaaggca	27840
ccttagctaa	cagcgccact	tggggatacc	gacaggggca	atctgctaac	actaatgtga	27900
ccaatgccac	tgaatttatg	cccagctcaa	gcaggtaccc	cgtgaataaa	ggagacaaca	27960
ttcaaaatca	atctttttca	tacacctgta	ttaaaggaga	ttttgctatg	cctgtcccgt	28020
tccgtgtaac	atataatcac	gccctggaag	ggtattccct	taagttcacc	tggcgcgttg	28080
tagccaatca	ggcctttgat	attccttgct	gttcattttc	atacatcaca	gaataaaaaa	28140

ccactttttc	2++++22+++	ctttttattt	tacacnaaca	ntnanacttc	ctccaccctt	28200
						28260
		gcctctcccc				
		tccaaacagt				28320
		ggttttccaa				28380
		tctccacggg				28440
aaggtgcggt	ggtgttccac	taaaccacgc	aggtggcgct	gtctgaacct	ctcggtgcga	28500
ctcctgtgag	gctggtaaga	agttagattg	tccagtagcc	tcacagcatg	tatcatcagt	28560
ctacgagtgc	gtctggcgca	gcagcgcatc	tgaatctcac	tgagattccg	gcaagaatcg	28620
cacaccatca	caatcaggtt	gttcatgatc	ccatagctga	acacgctcca	gccaaagctc	28680
attcgctcca	acagcgccac	cgcgtgtccg	tccaacctta	ctttaacata	aatcaggtgt	28740
ctgccgcgta	caaacatgct	acccacatac	agaacttccc	ggggcaggcc	cctgttcacc	28800
acctgtctgt	accagggaaa	cctcacattt	atcagggagc	catagatggc	cattttaaac	28860
caattagcta	ataccgcccc	accagctcta	cactgaagag	aaccgggaga	gttacaatga	28920
cagtgaataa	tccatctctc	ataacccctg	atggtctgat	gaaaatctag	atctaacgtg	28980
gcacaacaaa	tacacacttt	catatacatt	ttcataacat	gtttttccca	ggccgttaaa	29040
atacaatccc	aatacacggg	ccactcctgc	agtacaataa	agctaataca	agatggtata	29100
ctcctcacct	cactgacact	gtgcatgttc	atattttcac	attctaagta	ccgagagttc	29160
tcctctacag	cagcactgct	gcggtcctca	caaggtggta	gctggtgatg	attgtagggg	29220
gccagtctgc	agcgataccg	tctgtcgcgt	tgcatcgtag	accaggaacc	gacgcacctc	29280
ctcgtacttg	tggtagcaga	accacgtccg	ctgccagcac	gtctccacgt	aacgccggtc	29340
cctgcgtcgc	tcacgctccc	tcctcaatgc	aaagtgcaac	cactcttgta	atccacacag	29400
atccctctcg	gcctccgggg	tgatgcacac	ctcaaaccta	cagatgtctc	ggtacagttc	29460
caaacacgta	gtgagggcga	gttccaacca	agacagacag	cctgatctat	cccgacacac	29520
tggaggtgga	ggaagacacg	gaagaggcat	gttattccaa	gcgattcacc	aacgggtcga	29580
aatgaagatc	ccgaagatga	caacggtcgc	ctccggagcc	ctgatggaat	ttaacagcca	29640
gatcaaacgt	tatgcgattc	tccaagctat	cgatcgccgc	ttccaaaaga	gcctggaccc	29700
gcacttccac	aaacaccagc	aaagcaaaag	cactattatc	aaactcttca	atcatcaagc	29760
tgcaggactg	tacaatgcct	aagtaatttt	cgtttctcca	ctcgcgaatg	atgtcgcggc	29820
agatagtctg	aaggttcatc	ccgtgcaggg	taaaaagctc	cgaaagggcg	ccctctacag	29880
ccatgcgtag	acacaccatc	atgactgcaa	gatatcgggc	tcctgagaca	cctgcagcag	29940
		gttgctctcc		•		30000
		ctatgccgac				30060
		acaaaagttc				30120
		gaatgggagt			_	30180
		agtccagtac				30240
		uytut	Page 8)	-y cac cyaay	JUL-10

caactgtgcg	ggaatatgca	caacaaaaaa	aatagggcgg	ctcagataca	tgttgaccta	30300
aaataaaaag	aatcattaaa	ctaaagaagc	ttggcgaacg	gtgggataaa	tgacacgctc	30360
cagcagcaga	caggcaaccg	gctgtccccg	ggaaccgcgg	taaaattcat	ccgaatgatt	30420
aaaaagaaca	acagaaactt	cccaccatgt	actcggttgg	atctcctgag	cacacagcaa	30480
taccccctc	acattcatgt	ccgccacaga	aaaaaaacgt	cccagatacc	cagcggggat	30540
atccaacgac	agctgcaaag	acagcaaaac	aatccctctg	ggagcgatca	caaaatcctc	30600
cggtgaaaaa	agcacataca	tattagaata	accctgttgc	tggggcaaaa	aggcccggcg	30660
tcccagcaaa	tgcacataaa	tatgttcatc	agccattgcc	ccgtcttacc	gcgtaatcag	30720
ccacgaaaaa	atcgagctaa	aattcaccca	acagcctata	gctatatata	cactccgccc	30780
aatgacgcta	ataccgcacc	acccacgacc	aaagttcacc	cacacccaca	aaacccgcga	30840
aaatccagcg	ccgtcagcac	ttccgcaatt	tcagtctcac	aacgtcactt	ccgcgcgcct	30900
tttcacattc	ccacacacac	ccgcgccctt	cgccccgccc	tcgcgccacc	ccgcgtcacc	30960
gcacgtcacc	ccggccccgc	ctcgctcctc	cccgctcatt	atcatattgg	cacgtttcca	31020
gaataaggta	tattattgat	gatg				31044

<210> 6 <211> 34115

<212> DNA

<213> simian adenovirus SV-39

<400> 6 60 catcatcaat ataacaccgc aagatggcga ccgagttaac atgcaaatga ggtgggcgga 120 gttacgcgac ctttgtcttg ggaacgcgga agtgggcgcg gcgggtttcg gggaggagcg 180 cggggcgggg cgggcgtgtc gcgcggcggt gacgcgccgg ggacccggaa attgagtagt 240 ttttattcat tttgcaagtt tttctgtaca ttttggcgcg aaaactgaaa cgaggaagtg 300 aaaagtgaaa aatgccgagg tagtcaccgg gtggagatct gacctttgcc gtgtggagtt 360 tacccgctga cgtgtgggtt tcggtctcta ttttttcact gtggttttcc gggtacggtc 420 aaaggtcccc attttatgac tccacgtcag ctgatcgcta gggtatttaa tgcgcctcag 480 accgtcaaga ggccactctt gagtgccggc gagaagagtt ttctcctccg cgttccgcca actgtgaaaa aatgaggaac ttcttgctat ctccggggct gccagcgacc gtagccgccg 540 600 agctgttgga ggacattgtt accggagctc tgggagacga tcctcaggtg atttctcact 660 tttgtgaaga ttttagtctt catgatctct atgatattga tccgggtgtt gaggggcaag 720 aggatgaatg gctggagtct gtggatgggt tttttccgga cgctatgctg ctagaggctg 780 atttgccacc acctcacaac tctcacactg agcccgagtc agctgctatt cctgaattgt 840 catcaggtga acttgacttg gcttgttacg agactatgcc tccggagtcg gatgaggagg 900 acagcgggat cagcgatccc acggctttta tggtctctaa ggcgattgct atactaaaag 960 aagatgatga tggcgatgat ggatttcgac tggacgctcc ggcggtgccg gggagagact 1020 gtaagtcctg tgaataccac cgggatcgta ccggagaccc gtctatgttg tgttctctgt Page 86

gttatctccg	tcttaacgct	gcttttgtct	acagtaagtg	ttttgtgctt	ttttaccctg	1080
tggctttgtt	gagtttattt	ttttctgtgt	ctcatagggt	gttgtttatt	ataggtcctg	1140
tttcagatgt	ggaggaacct	gatagtacta	ctggaaatga	ggaggaaaag	ccctccccgc	1200
cgaaactaac	tcagcgctgc	agacctaata	ttttgagacc	ctcggcccag	cgtgtgtcat	1260
cccggaaacg	tgctgctgtt	aattgcatag	aagatttatt	ggaagagccc	actgaacctt	1320
tggacttgtc	cttaaagcga	cccgcccgc	agtagggcgc	ggtgccagtt	ttttctctct	1380
agcttccggg	tgactcagtg	caataaaaat	tttcttggca	acaggtgtat	gtgtttactt	1440
tacgggcggg	aagggattag	gggagtataa	agctggaggg	gaaaaatctg	aggctgtcag	1500
atcgagtgag	aagttccatg	gacttgtacg	agagcctaga	gaatctaagt	tctttgcgac	1560
gtttgctgga	ggaggcctcc	gacagaacct	cttacatttg	gaggtttctg	ttcggttccc	1620
ctctgagtcg	ctttttgcac	cgggtgaagc	gagagcacct	gacggaattt	gatgggcttt	1680
tagagcagct	gcctggactg	tttgattctt	tgaatctcgg	ccaccggacg	ctgctagagg	1740
agaggctttt	tccacaattg	gacttttcct	ctccaggccg	tctgtgttca	gcgcttgctt	1800
ttgctgtaca	tctgttggac	agatggaacg	agcagacgca	gctcagcccg	ggttacactc	1860
tggacttcct	gacgctatgc	ctatggaagt	tcggaatcag	gagggggagg	aagctgtacg	1920
ggcgcttggt	ggagaggcat	ccgtctctgc	gccagcagcg	tctgcaagct	caagtgctgc	1980
tgaggcggga	ggatctggaa	gccatttcgg	aggaggagag	cggcatggaa	gagaagaatc	2040
cgagagcggg	gctggaccct	ccggcggagg	agtagggggg	ataccggacc	cttttcctga	2100
gttggctttg	ggggcggtgg	ggggcgcttc	tgtggtacgt	gaggatgaag	aggggcgcca	2160
acgcggtcag	aagagggagc	attttgagtc	ctcgactttc	ttggctgatg	taaccgtggc	2220
cctgatggcg	aaaaacaggc	tggaggtggt	gtggtacccg	gaagtatggg	aggactttga	2280
gaagggggac	ttgcacctgc	tggaaaaata	taactttgag	caggtgaaaa	catactggat	2340
gaacccggat	gaggactggg	aggtggtttt	gaaccgatac	ggcaaggtag	ctctgcgtcc	2400
cgactgtcgc	taccaggttc	gcgacaaggt	ggtcctgcga	cgcaacgtgt	acctgttggg	2460
caacggcgcc	accgtggaga	tggtggaccc	cagaaggggt	ggttttgtgg	ccaatatgca	2520
agaaatgtgc	cctggggtgg	tgggcttgtc	tggggtgact	tttcatagtg	tgaggtttag	2580
cggtagcaat	tttgggggtg	tggttattac	cgcgaacact	cctgtggtcc	tgcataattg	2640
ctacttttt	ggcttcagca	acacctgtgt	ggaaatgagg	gtgggaggca	aagtgcgcgg	2700
gtgttccttt	tacgcttgct	ggaagggggt	ggtgagccag	ggtaaggcta	aagtgtctgt	2760
tcacaagtgt	atgttggaga	gatgcacctt	gggcatttcc	agtgagggct	tcctccacgc	2820
cagcgacaac	gtggcttctg	acaacggctg	cgcctttctt	atcaagggag	ggggtcgcat	2880
ctgtcacaac	atgatatgcg	gccctgggga	tgtcccccca	aagccttacc	agatggttac	2940
ctgcacagat	ggcaaggtgc	gcatgctcaa	gcctgtgcac	attgtgggcc	accggcgcca	3000
ccgctggcca	gagtttgaac	acaatgtgat	gacccgctgt	agcttgtacc	tgggaggcag	3060

gcgaggagtt	ttcttgccca	gacagtgtaa	cctggcccac	tgcaacgtga	tcatggaaca	3120
atccgccgct	acccaggttt	gctttggagg	aatatttgat	ataagcatgg	tggtgtataa	3180
gatcctgcgc	tacgacgact	gtcgggctcg	tactcgaacc	tgcgactgcg	gagcctctca	3240
cctgtgtaac	ctgactgtga	tggggatggt	gactgaggag	gtgcgactgg	accactgtca	3300
gcactcttgc	ctgcgggagg	agttttcttc	ctcggacgag	gaggactagg	taggtggttg	3360
gggcgtggcc	agcgagaggg	tgggctataa	aggggaggtg	tcggctgacg	ctgtcttctg	3420
tttttcaggt	accatgagcg	gatcaagcag	ccagaccgcg	ctgagcttcg	acggggccgt	3480
gtacagcccc	tttctgacgg	ggcgcttgcc	tgcctgggcc	ggagtgcgtc	agaatgttac	3540
cggttcgacc	gtggacggac	gtcccgtgga	tccatctaac	gctgcttcta	tgcgctacgc	3600
tactatcagc	acatctactc	tggacagcgc	cgctgccgcc	gcagccgcca	cctcagccgc	3660
tctctccgcc	gccaagatca	tggctattaa	cccaagcctt	tacagccctg	tatccgtgga	3720
cacctcagcc	ctggagcttt	accggcgaga	tctagctcaa	gtggtggacc	aactcgcagc	3780
cgtgagccaa	cagttgcagc	tggtgtcgac	ccgagtggag	caactttccc	gccctcccca	3840
gtaaccgcaa	aaattcaata	aacagaattt	aataaacagc	acttgagaaa	agtttaaact	3900
tgtggttgac	tttattcctg	gatagctggg	gggagggaac	ggcgggaacg	gtaagacctg	3960
gtccatcgtt	cccggtcgtt	gagaacacgg	tggattttt	ccaagacccg	atagaggtgg	4020
gtctgaacgt	tgagatacat	gggcatgagc	ccgtctcggg	ggtggaggta	ggcccactgc	4080
agggcctcgt	tttcaggggt	ggtgttgtaa	atgatccagt	cgtaggcccc	ccgctgggcg	4140
tggtgctgga	agatgtcctt	cagcagcaag	ctgatggcaa	cgggaagacc	cttggtgtag	4200
gtgttgacaa	agcggttgag	ttgggagggg	tgcatgcggg	gactgatgag	gtgcattttg	4260
gcctggatct	tgaggttggc	tatgttgccg	cccagatcgc	gcctgggatt	catgttatgc	4320
aagaccacca	gcaccgagta	accggtgcag	cgggggaatt	tgtcgtgcag	cttggaaggg	4380
aaagcgtgga	agaatttgga	gacccctcgg	tgcccgccta	ggttttccat	gcactcatcc	4440
atgatgatgg	cgatgggccc	ccgggaggca	gcctgggcaa	aaacgttgcg	ggggtccgtg	4500
acatcgtagt	tgtggtcctg	ggtgagttca	tcataggaca	ttttgacaaa	gcgcgggcag	4560
agggtcccag	actggggaat	gatggttcca	tccggtccgg	gggcgtagtt	gccctcgcag	4620
atttgcattt	cccaggcttt	gatttcagag	ggagggatca	tgtcaacctg	gggggcgatg	4680
aaaaaaatgg	tctctggggc	gggggtgatg	agctgggtgg	aaagcaggtt	gcgcaagagc	4740
tgtgacttgc	cgcagccggt	gggcccgtag	atgacagcta	tgacgggttg	cagggtgtag	4800
tttagagagc	tacaactgcc	atcatccttc	aaaagcgggg	ccacactgtt	taaaagttct	4860
ctaacatgta	agttttcccg	cactaagtcc	tgcaggagac	gtgaccctcc	tagggagaga	4920
agttcaggaa	gcgaagcaaa	gtttttaagt	ggcttgaggc	catcggccaa	gggcaagttc	4980
ctgagagttt	gactgagcag	ttccagccgg	tcccagagct	cggttacgtg	ctctacggca	5040
tctcgatcca	gcagacctcc	tcgtttcggg	ggttggggcg	gctctggctg	tagggaatga	5100
ggcggtgggc	gtccagctgg	gccatggtgc	ggtccctcca Page 88		gttctcttca	5160

gggtggtctc	ggtcacggtg	aatgggtggg	ccccgggctg	ggcgctggcc	agggtgcgct	5220
tgaggctgag	gcggctggtg	gcgaaccgtt	gcttttcgtc	tccctgcaag	tcagccaaat	5280
agcaacggac	catgagctca	tagtccaggc	tctctgcggc	atgtcctttg	gcgcgaagct	5340
tgcctttgga	aacgtgcccg	cagtttgagc	agagcaagca	ttttagcgcg	tagagttttg	5400
gcgccaagaa	cacggattcc	ggggaataag	catccccacc	gcagttggag	caaacggttt	5460
cgcattccac	cagccaggtc	agctgaggat	cttttgggtc	aaaaaccaag	cgcccgccgt	5520
tttttttgat	gcgcttccta	cctcgggtct	ccatgaggcg	gtgcccgcgt	tcggtgacga	5580
agaggctgtc	ggtgtctccg	tagacggagg	tcagggcgcg	ctcctccagg	ggggtcccgc	5640
ggtcctcggc	gtagagaaac	tcgcaccact	ctgacataaa	cgcccgggtc	caggctagga	5700
cgaatgaggc	gatgtgggaa	gggtaccggt	cgttatcgat	gagggggtcg	gttttttcca	5760
aggtgtgcag	gcacatgtcc	ccctcgtccg	cttccaaaaa	tgtgattggc	ttgtaggtgt	5820
aagtcacgtg	atcctgtcct	tccgcggggg	tataaaaggg	ggcgtttccc	ccctcctcgt	5880
cactctcttc	cggttcgctg	tcgccaaagg	ccagctgttg	gggtacgtaa	acgcgggtga	5940
aggcgggcat	gacctgtgcg	ctgaggttgt	cagtttctat	atacgaggaa	gatttgatgg	6000
cgagcgcccc	cgtggagatg	cccttgaggt	gctcggggcc	catttggtca	gaaaacacaa	6060
tctgtcggtt	atcaagcttg	gtggcaaaag	acccgtagag	ggcgttggag	agcaacttgg	6120
cgatggagcg	ctgggtttgg	ttttttccc	ggtcggcttt	ttccttggcc	gcgatgttga	6180
gctggacgta	ctccctggcc	acgcacttcc	agccgggaaa	aacggccgtg	cgctcgtccg	6240
gcaccagcct	cacgctccat	ccgcggttgt	gcagggtgat	gacgtcgatg	ctggtggcca	6300
cctctccgcg	caggggctcg	ttggtccagc	agaggcgacc	gcccttgcga	gagcagaagg	6360
ggggcagggg	gtcaagcagg	cgctcgtccg	gggggtcggc	gtcgatggta	aagatggcgg	6420
gcagcaggtg	tttgtcaaag	taatcgatct	gatgcccggg	gcaacgcagg	gcggtttccc	6480
agtcccgcac	cgccaaggcg	cgctcgtatg	gactgagggg	ggcgccccag	ggcatgggat	6540
gcgtcagggc	cgaggcgtac	atgccgcaga	tgtcatagac	gtaaaggggc	tcctccagga	6600
cgccgaggta	ggtggggtag	cagcgccccc	cgcggatgct	ggcccgtacg	tagtcgtaga	6660
gctcgtgcga	gggggccaga	aggtggcggc	tgaggtgagc	gcgctggggc	ttttcatctc	6720
ggaagaggat	ctgcctgaag	atggcgtggg	agttggagga	gatggtgggc	cgctgaaaaa	6780
tgttgaagcg	ggcgtcgggc	agacccacgg	cctcgccgat	aaagtgggcg	taggactctt	6840
gcagcttttc	caccagggag	gcggtgacca	gcacgtccag	agcgcagtag	tccagggttt	6900
cccgcacgat	gtcataatgc	tcttcctttt	tttccttcca	gaggtctcgg	ttgaagagat	6960
actcttcgcg	gtctttccag	tactcttgga	gaggaaaccc	gttttcgtct	ccacggtaag	7020
agcccaacat	gtaaaactgg	ttgacggcct	gatagggaca	gcatcccttc	tccacgggca	7080
gcgagtaggc	cagggcggcc	ttgcgcaggg	aggtgtgagt	cagggcaaag	gtgtcgcgga	7140
ccataacttt	tacaaactgg	tacttaaagt	cccggtcgtc	gcacatgcct	cgctcccagt	7200

ctgagtagtc	tgtgcgcttt	ttgtgcttgg	ggttaggcag	ggagtaggtg	acgtcgttaa	7260
agaggatttt	gccacatctg	ggcataaagt	tgcgagagat	tctgaagggg	ccgggcacct	7320
ccgagcggtt	gttgatgact	tgggcagcca	ggagaatttc	gtcgaagccg	ttgatgttgt	7380
gccccacgac	gtagaactct	atgaaacgcg	gagcgccgcg	cagcaggggg	cacttttcaa	7440
gttgctggaa	agtaagttcc	cgcggctcga	cgccgtgttc	cgtgcggctc	cagtcctcca	7500
ccgggtttcg	ctccacaaaa	tcctgccaga	tgtggtcgac	tagcaagagc	tgcagtcggt	7560
cgcgaaattc	gcggaatttt	ctgccgatgg	cttgcttctg	ggggttcaag	caaaaaaagg	7620
tgtctgcgtg	gtcgcgccag	gcgtcccagc	cgagctcgcg	agccagattc	agggccagca	7680
gcaccagagc	cggctcaccg	gtgattttca	tgacgaggag	aaagggcacc	agctgttttc	7740
cgaacgcgcc	catccaggtg	taggtctcca	cgtcgtaggt	gagaaacaga	cgttcggtcc	7800
gcgggtgcga	tcccaggggg	aaaaacttga	tgggctgcca	ccattgggag	ctctgggcgt	7860
ggatgtgatg	gaagtaaaag	tcccggcggc	gcgtggaaca	ttcgtgctgg	tttttgtaaa	7920
agcggccgca	gtggtcgcag	cgcgagacgg	agtgaaggct	gtgaatcagg	tgaatcttgc	7980
gtcgctgagg	gggccccaga	gccaaaaagc	ggagcgggaa	cgaccgcgcg	gccacttcgg	8040
cgtccgcagg	caagatggat	gagggttcca	ccgttccccg	cccgcggacc	gaccagactt	8100
ccgccagctg	cggcttcagt	tcttgcacca	gctctcgcag	cgtttcgtcg	ctgggcgaat	8160
cgtgaatacg	gaagttgtcg	ggtagaggcg	ggaggcggtg	gacttccagg	aggtgtgtga	8220
gggccggcag	gagatgcagg	tggtacttga	tttcccacgg	atgacggtcg	cgggcgtcca	8280
aggcgaagag	atgaccgtgg	ggccgcggcg	ccaccagcgt	tccgcggggg	gtctttatcg	8340
gcggcgggga	cgggctcccg	gcggcagcgg	cggctcggga	cccgcgggca	agtcgggcag	8400
cggcacgtcg	gcgtggagct	cgggcagggg	ctggtgctgc	gcgcggagct	gactggcaaa	8460
ggctatcacc	cggcgattga	cgtcctggat	ccggcggcgc	tgcgtgaaga	ccaccggacc	8520
cgtggtcttg	aacctgaaag	agagttcgac	agaatcaatc	tcggcatcgt	taaccgcggc	8580
ctggcgcagg	atttcggcca	cgtccccgga	gttgtcttga	tacgcgattt	ctgccatgaa	8640
ctggtcgatt	tcctcttcct	gcaagtctcc	gtgaccggcg	cgttcgacgg	tggccgcgag	8700
atcgttggag	atgcggccca	tgagctggga	aaaggcattg	atgccgacct	cgttccacac	8760
tcggctgtac	accacctctc	cgtgaacgtc	gcgggcgcgc	atcaccacct	gggcgagatt	8820
gagttccacg	tggcgggcga	aaaccggata	gtttcggagg	cgctgataca	gatagttgag	8880
ggtggtggcg	gcgtgctcgg	ccacaaaaaa	atacatgatc	cagcggcgga	gggtcagctc	8940
gttgatgtcg	cccagcgcct	ccaggcgttc	catggcctcg	taaaagtcca	cggcaaagtt	9000
gaaaaattgg	ctgttcctgg	ccgagaccgt	gagctcttct	tccaagagcc	gaatgagatc	9060
cgccacggtg	gccctgactt	cgcgttcgaa	agccccgggt	gcctcctcca	cctcttcctc	9120
ctcgacttct	tcgaccgctt	cgggcacctc	ctcttcctcg	accaccacct	caggcggggc	9180
tcggcggcgc	cggcggcgga	cgggcaggcg	gtcgacgaaa	cgctcgatca	tttccccct	9240
ccgtcgacgc	atggtctcgg	tgacggcgcg	accctgttcg Page 9	cgaggacgca)	gggtgaaggc	9300

gccgccgccg	agcggaggta	acagggagat	cggggggcgg	tcgtggggga	gactgacggc	9360
gctaactatg	catctgatca	atgtttgcgt	agtgacctcg	ggtcggagcg	agctcagcgc	9420
ttgaaaatcc	acgggatcgg	aaaaccgttc	caggaacgcg	tctagccaat	cacagtcgca	9480
aggtaagctg	aggaccgtct	cgggggcttg	tctgttctgt	cttcccgcgg	tggtgctgct	9540
gatgaggtag	ttgaagtagg	cgctcttgag	gcggcggatg	gtggacagga	gaaccacgtc	9600
tttgcgccca	gcttgctgta	tccgcaggcg	gtcggccatg	ccccacactt	ctccttgaca	9660
gcggcggagg	tccttgtagt	attcttgcat	cagcctttcc	acgggcacct	cgtcttcttc	9720
ttccgctcgg	ccggacgaga	gccgcgtcag	gccgtacccg	cgctgcccct	gtggttggag	9780
cagggccagg	tcggccacga	cgcgctcggc	cagcacggcc	tgctggatgc	gggtgagggt	9840
gtcctgaaag	tcgtcgagat	ccacaaagcg	gtggtacgcg	ccagtgttga	tggtgtaggt	9900
gcagttgctc	atgacggacc	agtttacggt	ctgggtgcca	tggcccacgg	tttccaggta	9960
gcggagacgc	gagtaggccc	gcgtctcgaa	gatgtagtcg	ttgcaggtcc	gcagcaggta	10020
ctggtagccc	accagcagat	gcggcggcgg	ctggcggtag	aggggccacc	gctgggtggc	10080
gggggcgttg	ggggcgagat	cttccaacat	gaggcggtga	tagccgtaga	tgtagcgcga	10140
catccaagtg	atgccgctgg	ccgtggtgct	ggcgcgggcg	tagtcgcgaa	cgcggttcca	10200
gatgtttcgc	agcggctgga	agtactcgat	ggtggggcga	ctctgccccg	tgaggcgggc	10260
gcagtcggcg	atgctctacg	gggaaaaaga	agggccagtg	aacaaccgcc	ttccgtagcc	10320
ggaggagaac	gcaagggggt	caaagaccac	cgaggctcgg	gttcgaaacc	cgggtggcgg	10380
cccgaatacg	gagggcggtt	ttttgctttt	ttctcagatg	catcccgtgc	tgcggcagat	10440
gcgtccgaac	gcggggtccc	agtccccggc	ggtgcctgcg	gccgtgacgg	cggcttctac	10500
ggccacgtcg	cgctccaccc	cgcctaccac	ggcccaggcg	gcggtggctc	tgcgcggcgc	10560
aggggaaccc	gaagcagagg	cggtgttgga	cgtggaggag	ggccaggggt	tggctcggct	10620
gggggccctg	agtcccgagc	ggcacccgcg	cgtggctctg	aagcgcgacg	cggcggaggc	10680
gtacgtgccg	cggagcaatc	tgtttcgcga	ccgcagcggc	gaggaggccg	aggagatgcg	10740
agacttgcgt	tttcgggcgg	ggagggagtt	gcgtcacggg	ctggaccggc	agagggttct	10800
gagagaggag	gactttgagg	cggacgagcg	cacgggggtg	agtcccgcgc	gggctcacgt	10860
ggcggccgcc	aacctggtga	gcgcgtacga	gcagacggtc	aaggaggaga	tgaacttcca	10920
gaagagcttc	aatcatcacg	tgcgcacgct	gattgcgcgc	gaagaggtgg	ccatcggcct	10980
catgcatctg	tgggattttg	tggaggcgta	cgttcagaac	cccagcagca	agccgctgac	11040
ggctcagctg	ttcctcatcg	tgcaacatag	tcgagacaac	gaaacgttca	gggaggccat	11100
gctgaacatt	gcagagcctg	aggggcgctg	gctcttggat	ctcattaaca	tcttgcagag	11160
tatcgtagtg	caggagcgct	cgctgagcct	ggccgacaag	gtggctgcca	tcaactacag	11220
catgctgtcg	ctgggcaaat	tttacgcccg	caagatctac	aagtctccgt	tcgtccccat	11280
agacaaggag	gtgaagatag	acagctttta	catgcgcatg	gcgctcaagg	tgctgactct	11340

aagcgacgac	ctgggggtgt	accgcaacga	ccgcatacac	aaggcggtga	gcgccagccg	11400
ccggcgcgag	ctgagcgacc	gcgagctttt	gcacagcctg	catcgggcgt	tgactggtgc	11460
cggcagcgcc	gaggcggccg	agtactttga	cgccggagcg	gacttgcgct	ggcagccatc	11520
ccgacgcgcg	ctggaggcgg	ctggcgtcgg	ggagtacggg	gtcgaggacg	acgatgaagc	11580
ggacgacgag	ttgggcattg	acttgtagcc	gtttttcgtt	agatatgtcg	gcgaacgagc	11640
cgtctgcggc	cgccatggtg	acggcggcgg	gcgcgcccca	ggacccggcc	acgcgcgcgg	11700
cgctgcagag	tcagccttcc	ggagtgacgc	ccgcggacga	ctggtccgag	gccatgcgtc	11760
gcatcctggc	gctgacggcg	cgcaaccccg	aggcttttcg	gcagcagccg	caggcaaacc	11820
ggtttgcggc	cattttggaa	gcggtggtgc	cctccagacc	caaccccacc	cacgaaaagg	11880
tgctggccat	cgtcaacgcc	ctggcggaga	ccaaggccat	ccgcccagac	gaggccgggc	11940
aggtttacaa	cgcgctgcta	gaaagggtgg	gacgctacaa	cagctccaac	gtgcagacca	12000
atctggaccg	cttggtgacg	gacgtgaagg	aggccgtagc	ccagcgagag	cggtttttca	12060
aggaagccaa	tctgggctcg	ctggtggccc	tcaacgcctt	cctgagcacg	ctgccggcga	12120
acgtgccccg	cggtcaggag	gactacgtga	actttctgag	cgccctccgc	ctgatggtgg	12180
ccgaggtgcc	gcagagcgag	gtgtaccagt	ctggccccaa	ctactacttc	cagacctccc	12240
ggcagggcct	gcagacggta	aacctgacgc	aggcctttca	gaacctgcag	ggcctttggg	12300
gggtgcgcgc	tccgctgggc	gaccgcagca	cggtgtccag	cctgctgacc	cccaatgccc	12360
ggctgctctt	gcttctcatt	gctccgttca	ccgacagcgg	ttccatcagc	cgcgactctt	12420
acctgggaca	cctgctcacc	ctgtaccggg	aggccatcgg	gcaggcgcgg	gtggacgagc	12480
agacgtacca	ggaaatcacc	agcgtgagcc	gcgcgctggg	gcaggaggac	acgggcagct	12540
tggaggcgac	tctgaacttc	ctgctgacca	accggcggca	gcgcctacct	ccccagtacg	12600
cgctgaacgc	ggaggaggag	cgcatcctgc	gtttcgtgca	gcagagcacc	gcgctgtact	12660
tgatgcggga	aggcgcctct	cccagcgctt	cgctggacat	gacggcggcc	aacatggagc	12720
catcgttcta	cgccgccaac	cgtcccttcg	tcaaccggct	aatggactat	ttgcatcggg	12780
cggcggccct	gaacccggaa	tactttacta	acgtcatcct	gaacgaccgt	tggctgccac	12840
ctcccggctt	ctacacgggg	gagttcgacc	tcccggaggc	caacgacggt	ttcatgtggg	12900
acgacgtgga	cagcgtgttc	ctgcccggca	agaaggaggc	gggtgactct	cagagccacc	12960
gcgcgagcct	cgcagacctg	ggggcgaccg	ggcccgcgtc	tccgctgcct	cgcctgccga	13020
gcgccagcag	cgccagcgtg	gggcgggtga	gccgtccgcg	cctcagcggt	gaggaggact	13080
ggtggaacga	tccgctgctc	cgtccggccc	gcaacaaaaa	cttccccaac	aacgggatag	13140
aggatttggt	agacaaaatg	aaccgttgga	agacgtatgc	ccaggagcat	cgggagtggc	13200
aggcgaggca	acccatgggc	cctgttctgc	cgccctctcg	gcgcccgcgc	agggacgaag	13260
acgccgacga	ttcagccgat	gacagcagcg	tgttggatct	gggcgggagc	gggaacccct	13320
ttgcccacct	gcaacctcgc	ggcgtgggtc	ggcggtggcg	ctaggaaaaa	aaattattaa	13380
aagcacttac	cagagccatg	gtaagaagag	caacaaaggt Page 92	gtgtcctgct 2	ttcttcccgg	13440

tagcaaaatg	catcaaacaa	tggcagttcc	ctccgcggca	atggcgttag	gcccgccccc	13500
		cagcggccac				13560
		ctacgggcgg				13620
		gcctgtacct				13680
		acagcaactt				13740
		cgcagaccat				13800
		acactaacat				13860
		tggtggcgca				13920
		aggggaactt				13980
		acctggcggt				14040
		cgcgcaactt				14100
_		cgaacgaagc				14160
		acagccggtt				14220
gccctttcag	gaagggtttc	agatcctgta	cgaggacctg	gagggcggta	acatcccggc	14280
cctgctggac	gtgccggcgt	acgaggagag	catcgccaac	gcaagggagg	cggcgatcag	14340
gggcgataat	ttcgcggcgc	agccccaggc	ggctccaacc	ataaaacccg	ttttggaaga	14400
ctccaaaggg	cggagctaca	acgtaatagc	caacaccaac	aacacggctt	acaggagctg	14460
gtatctggct	tataactacg	gcgacccgga	gaagggggtt	agggcctgga	ccctgctcac	14520
cactccggac	gtgacgtgcg	gttcagagca	ggtctactgg	tcgctgcctg	acatgtacgt	14580
ggaccctgtg	acgtttcgct	ccacgcagca	agttagcaac	tacccagtgg	tgggagcgga	14640
gcttatgccg	attcacagca	agagctttta	caacgagcag	gccgtctact	cacagctcat	14700
tcgtcagacc	accgccctaa	cgcacgtttt	caaccgcttc	cccgagaacc	aaatcctagt	14760
gcgacctcca	gcgcccacca	tcaccaccgt	cagcgagaac	gtgcccgctc	taaccgatca	14820
cgggacgctg	cctttgcaga	acagcatccg	cggagttcag	cgagttacca	tcacggacgc	14880
ccgtcgtcgg	acctgtccct	acgtctacaa	agccttggga	atcgtggccc	cgcgcgtcct	14940
gtcgagtcgc	actttctaga	tgtccatcct	catctctccc	agcaacaata	ccggttgggg	15000
tctgggcgtg	accaaaatgt	acggaggcgc	caaacgacgg	tccccacaac	atcccgtgcg	15060
agtgcgcggg	cactttagag	ccccatgggg	gtcgcacacg	cgcgggcgca	ccggccgaac	15120
caccgtcgac	gacgtgatcg	atagcgtggt	ggccgacgcc	cgcaactacc	agcccgctcg	15180
atccacggtg	gacgaagtca	tcgacggcgt	ggtggccgac	gccagggcct	acgcccgcag	15240
aaagtctcgt	ctgcgccgcc	gccgttcgct	aaagcgcccc	acggccgcca	tgaagccgc	15300
tcgctctctg	ctgcgtcgcg	cacgtatcgt	gggtcgccgc	gccgccagac	gcgcagccgc	15360
caacgccgcc	gccggccgag	tgcgccgccg	ggccgcccag	caggccgccg	ccgccatctc	15420
cagtctatcc	gcccccgac	gcgggaatgt	gtactgggtc	agggactcgg	ccaccggcgt	15480

gcgagttccc	gtgagaaccc	gtcctcctcg	tccctgaata	aaaagttcta	agcccaatcg	15540
gtgttccgtt	gtgtgttcag	ctcgtcatga	ccaaacgcaa	gtttaaagag	gagctgctgc	15600
aagcgctggt	ccccgaaatc	tatgcgccgg	cgccggacgt	gaaaccgcgt	cgcgtgaaac	15660
gcgtgaagaa	gcaggaaaag	ctagagacaa	aagaggaggc	ggtggcgttg	ggagacgggg	15720
aggtggagtt	tgtgcgctcg	ttcgcgccgc	gtcggcgagt	gaattggaag	gggcgcaagg	15780
tgcaacgggt	gctgcgtccc	ggcacggtgg	tgtctttcac	cccgggtgaa	aaatccgcct	15840
ggaagggcat	aaagcgcgtg	tacgatgagg	tgtacgggga	cgaagacatt	ctggagcagg	15900
cgctggatag	aagcggggag	tttgcttacg	gcaagagggc	gaggacgggc	gagatcgcca	15960
tcccgctgga	cacttccaac	cccaccccca	gtctgaaacc	cgtgacgctg	caacaggtgt	16020
tgccggtgag	cgcccctcg	cgacgcggca	taaaacgcga	gggcggcgag	ctgcagccca	16080
ccatgcagct	cctggttccc	aagaggcaga	aactagagga	cgtactggac	atgataaaaa	16140
tggagcccga	cgtgcagccc	gatattaaaa	tccgtcccat	caaagaagtg	gcgccgggaa	16200
tgggcgtgca	gaccgtggac	atccagattc	ccatgaccag	cgccgcacag	gcggtagagg	16260
ccatgcagac	cgacgtgggg	atgatgacgg	acctgcccgc	agctgctgcc	gccgtggcca	16320
gcgccgcgac	gcaaacggaa	gccggcatgc	agaccgaccc	gtggacggag	gcgcccgtgc	16380
agccggccag	aagacgcgtc	agacggacgt	acggccccgt	ttctggcata	atgccggagt	16440
acgcgctgca	tccttccatc	atccccaccc	ccggctaccg	ggggcgcacc	taccgtccgc	16500
gacgcagcac	cactcgccgc	cgtcgccgca	cggcacgagt	cgccaccgcc	agagtgagac	16560
gcgtaacgac	acgtcgcggc	cgccgcttga	ccctgcccgt	ggtgcgctac	catcccagca	16620
ttctttaaaa	aaccgctcct	acgttgcaga	tgggcaagct	tacttgtcga	ctccgtatgg	16680
ccgtgcccgg	ctaccgagga	agatcccgcc	gacgacggac	tttgggaggc	agcggtttgc	16740
gccgccgtcg	ggcggttcac	cggcgcctca	agggaggcat	tctgccggcc	ctgatcccca	16800
taatcgccgc	agccatcggg	gccattcccg	gaatcgccag	cgtagcggtg	caggctagcc	16860
agcgccactg	attttactaa	ccctgtcggt	cgcgccgtct	ctttcggcag	actcaacgcc	16920
cagcatggaa	gacatcaatt	tctcctctct	ggccccgcgg	cacggcacgc	ggccgtatat	16980
ggggacgtgg	agcgagatcg	gcacgaacca	gatgaacggg	ggcgctttca	attggagcgg	17040
tgtgtggagc	ggcttgaaaa	atttcggttc	cactctgaaa	acttacggca	accgggtgtg	17100
gaactccagc	acggggcaga	tgctgaggga	caagctaaag	gacacgcagt	ttcagcaaaa	17160
ggtggtggac	ggcatcgctt	cgggcctcaa	cggcgccgtc	gacctggcca	accaggccat	17220
tcaaaaggaa	attaacagcc	gcctggagcc	gcggccgcag	gtggaggaga	acctgccccc	17280
tctggaggcg	ctgccccca	agggagagaa	gcgcccgcgg	cccgacatgg	aggagacgct	17340
agttactaag	agcgaggagc	cgccatcata	cgaggaggcg	gtgggtagct	cgcagctgcc	17400
gtccctcacg	ctgaagccca	ccacctatcc	catgaccaag	cccatcgcct	ccatggcgcg	17460
ccccgtggga	gtcgacccgc	ccatcgacgc	ggtggccact	ttggacctgc	cgcgccccga	17520
acccggcaac	cgcgtgcctc	ccgtccccat	cgctccgccg Page 94		ccgccatccg	17580

ccccgtcgcc	gtggccactc	cccgctatcc	gagccgcaac	gccaactggc	agaccaccct	17640
caacagtatt	gtcggactgg	gggtgaagtc	tctgaagcgc	cgtcgctgtt	tttaaagcac	17700
aatttattaa	acgagtagcc	ctgtcttaat	ccatcgttgt	atgtgtgcct	atatcacgcg	17760
ttcagagcct	gaccgtccgt	caagatggcc	actccgtcga	tgatgccgca	gtggtcgtac	17820
atgcacatcg	ccgggcagga	cgcctcggag	tacctgagcc	cgggtctggt	gcagtttgcc	17880
cgtgcgacgg	aaacctactt	ctcactgggc	aacaagttca	ggaaccccac	cgtggcgccc	17940
acccacgacg	tcaccaccga	tcggtcccag	cgactgacaa	tccgcttcgt	ccccgtggac	18000
aaggaagaca	ccgcttactc	ctacaaaacc	cgcttcacgc	tggccgtggg	cgacaaccgg	18060
gtgctagaca	tggccagtac	ctactttgac	atccgcggcg	tgatcgaccg	cggacctagc	18120
ttcaagcctt	actccggcac	ggcttacaac	tcactggctc	ccaaaggggc	gcccaacaac	18180
agccaatgga	acgccacaga	taacgggaac	aagccagtgt	gttttgctca	ggcagctttt	18240
ataggtcaaa	gcattacaaa	agacggagtg	caaatacaga	actcagaaaa	tcaacaggct	18300
gctgccgaca	aaacttacca	accagagcct	caaattggag	tttccacctg	ggataccaac	18360
gttaccagta	acgctgccgg	acgagtgtta	aaagccacca	ctcccatgct	gccatgttac	18420
ggttcatatg	ccaatcccac	taatccaaac	gggggtcagg	caaaaacaga	aggagacatt	18480
tcgctaaact	ttttcacaac	aactgcggca	gcagacaata	atcccaaagt	ggttctttac	18540
agcgaagatg	taaaccttca	agcccccgat	actcacttag	tatataagcc	aacggtggga	18600
gaaaacgtta	tcgccgcaga	agccctgcta	acgcagcagg	cgtgtcccaa	cagagcaaac	18660
tacataggtt	tccgagataa	ctttatcggt	ttaatgtatt	ataacagcac	agggaacatg	18720
ggagttctgg	caggtcaggc	ctcgcagtta	aacgcagttg	tagacctgca	agatcgaaac	18780
acggaactgt	cctatcagct	aatgctagat	gctctgggtg	acagaactcg	atatttctca	18840
atgtggaatc	aggccgtgga	cagctacgat	ccagacgtta	ggattatcga	gaaccatggg	18900
gtggaagacg	agctgcccaa	ttactgtttt	ccactcccag	gcatgggtat	ttttaactcc	18960
tacaaggggg	taaaaccaca	aaatggcggt	aatggtaact	gggaagcaaa	cggggaccta	19020
tcaaatgcca	atgagatcgc	tttaggaaac	atttttgcca	tggaaattaa	cctccacgca	19080
aacctgtggc	gcagcttctt	gtacagcaat	gtggcgctgt	acctgccaga	cagctataaa	19140
ttcactcccg	ctaacatcac	tctgcccgcc	aaccaaaaca	cctacgagta	tatcaacggg	19200
cgcgtcactt	ctccaaccct	ggtggacacc	tttgttaaca	ttggagcccg	atggtcgccg	19260
gatcccatgg	acaacgtcaa	cccctttaac	catcaccgga	acgcgggcct	ccgttaccgc	19320
tccatgctgc	tgggaaatgg	acgcgtggtg	cctttccaca	tacaagtgcc	gcaaaaattt	19380
ttcgcgatta	agaacctcct	gcttttgccc	ggctcctaca	cttacgagtg	gagcttcaga	19440
aaagacgtga	acatgattct	gcagagcacc	ctgggcaatg	atcttcgagt	ggacggggcc	19500
agcgtccgca	ttgacagcgt	caacttgtac	gccaactttt	tccccatggc	gcacaacacc	19560
gcttctacct	tggaagccat	gctgcgaaac	gacaccaacg	accagtcgtt	taacgactac	19620

ctcagcgcgg	ccaacatgct	ttatcccatt	ccggccaacg	ccaccaacgt	tcccatttcc	19680
attccctccc	gcaactgggc	ggccttccgg	ggatggagct	tcacccgcct	taaagccaag	19740
gaaacgcctt	ccttgggctc	cggctttgac	ccctactttg	tgtactcagg	caccattcct	19800
tacctggacg	gcagctttta	cctcaaccac	actttcaaac	gtctgtccat	catgttcgat	19860
tcttccgtaa	gttggccggg	caacgaccgc	ctcctgacgc	cgaacgagtt	cgaaattaag	19920
cgcattgtgg	acggggaagg	ctacaacgtg	gctcaaagta	acatgaccaa	agactggttt	19980
ttaattcaaa	tgctcagcca	ctacaacatc	ggctaccaag	gcttctatgt	tcccgagggc	20040
tacaaggatc	ggatgtattc	tttcttccga	aactttcagc	ccatgagccg	ccaggtgccg	20100
gatcccaccg	ctgccggcta	tcaagccgtt	cccctgccca	gacaacacaa	caactcgggc	20160
tttgtggggt	acatgggccc	gaccatgcgc	gaaggacagc	catacccggc	caactacccc	20220
tatcccctga	tcggcgctac	cgccgtcccc	gccattaccc	agaaaaagtt	tttgtgcgac	20280
cgcgtcatgt	ggcgcatacc	tttttccagc	aactttatgt	caatgggggc	cctgaccgac	20340
ctcggacaga	acatgcttta	cgctaactcc	gcccatgccc	tggatatgac	ttttgaggtg	20400
gaccccatga	acgagcccac	gttgctgtac	atgctttttg	aggtgttcga	cgtggtcaga	20460
gtgcaccagc	cgcaccgcgg	tattatcgag	gccgtgtacc	tgcgcacccc	cttctctgcg	20520
ggcaatgcca	ccacataagc	cgctgaacta	gctggttttt	accccagatc	ccatgggctc	20580
cacggaagac	gaactgcggg	ccattgtgcg	agacctgggc	tgcggaccct	acttcctggg	20640
cacctttgac	aagcggtttc	ccgggttcgt	gtctcctcgc	aaactcgcgt	gcgcgatcgt	20700
gaataccgcc	ggccgagaga	ccggaggaga	gcattggcta	gctctgggct	ggaacccccg	20760
ctcgtccacg	tttttcctgt	tcgacccctt	tggcttttca	gaccaacgct	tgaagcagat	20820
ctatgcattt	gaatatgagg	gtctactcaa	gcgaagcgcg	ctggcctcct	ccgccgatca	20880
ctgtctaacc	ctggtaaaga	gcactcagac	ggttcagggc	cctcacagcg	ccgcctgtgg	20940
ccttttttgt	tgcatgtttt	tgcacgcctt	tgtgaactgg	ccggacaccc	ccatggaaaa	21000
caaccccacc	atggacctcc	tgactggcgt	tcccaactcc	atgctccaaa	gccccagcgt	21060
gcagaccacc	ctcctccaaa	accagaaaaa	tctgtacgcc	tttctgcaca	agcactctcc	21120
ctactttcgc	cgccatcggg	aacaaataga	aaatgcaacc	gcgtttaaca	aaactctgta	21180
acgtttaata	aatgaacttt	ttattgaact	ggaaaacggg	tttgtgattt	ttaaaaatca	21240
aaggggttga	gctggacatc	catgtgggag	gccggaaggg	tggtgttctt	gtactggtac	21300
ttgggcagcc	acttaaactc	tggaatcaca	aacttgggca	gcggtatttc	tgggaagttg	21360
tcgtgccaca	gctggcgggt	cagctgaagt	gcctgcagaa	catcgggggc	ggagatcttg	21420
aagtcgcagt	ttatctggtt	cacggcacgc	gcgttgcggt	acatgggatt	ggcacactga	21480
aacaccagca	ggctgggatt	cttgatgcta	gccagggcca	cggcgtcggt	cacgtcaccg	21540
gtgtcttcta	tgttggacag	cgaaaaaggc	gtgactttgc	aaagctggcg	tcccgcgcga	21600
ggcacgcaat	ctcccaggta	gttgcactca	cagcggatgg	gcagaagaag	atgcttgtgg	21660
ccgcgggtca	tgtagggata	ggccgctgcc	ataaaagctt Page 9	cgatctgcct 6	gaaagcctgc	21720

ttggccttgt	gcccttcggt	ataaaaaaca	ccgcaggact	tgttggaaaa	ggtattactg	21780
gcgcaagcgg	catcgtgaaa	gcaagcgcgt	gcgtcttcgt	ttcgtaactg	caccacgctg	21840
cggccccacc	ggttctgaat	caccttggcc	ctgccggggt	tttccttgag	agcgcgctgg	21900
ccggcttcgc	tgcccacatc	catttccacg	acatgctcct	tgttaatcat	ggccagaccg	21960
tggaggcagc	gcagctcctc	gtcatcgtcg	gtgcagtgat	gctcccacac	gacgcagcca	22020
gtgggctccc	acttgggctt	ggaggcctcg	gcaatgccag	aatacaggag	aacgtagtgg	22080
tgcagaaaac	gtcccatcat	ggtgccaaag	gttttctggc	tgctgaaggt	catcgggcag	22140
tacctccagt	cctcgttaag	ccaagtgttg	cagatcttcc	tgaagaccgt	gtactgatcg	22200
ggcataaagt	ggaactcatt	gcgctcggtc	ttgtcgatct	tatacttttc	catcagacta	22260
tgcataatct	ccatgccctt	ttcccaggcg	caaacaatct	tggtgctaca	cgggttaggt	22320
atggccaaag	tggttggcct	ctgaggcggc	gcttgttctt	cctcttgagc	cctctcccga	22380
ctgacggggg	ttgaaagagg	gtgccccttg	gggaacggct	tgaacacggt	ctggcccgag	22440
gcgtcccgaa	gaatctgcat	cgggggattg	ctggccgtca	tggcgatgat	ctgaccccgg	22500
ggctcctcca	cttcgtcctc	ctcgggactt	tcctcgtgct	tttcggggga	cggtacggga	22560
gtagggggaa	gagcgcggcg	cgccttcttc	ttgggcggca	gttccggagc	ctgctcttga	22620
cgactggcca	ttgtcttctc	ctaggcaaga	aaaacaagat	ggaagactct	ttctcctcct	22680
cctcgtcaac	gtcagaaagc	gagtcttcca	ccttaagcgc	cgagaactcc	cagcgcatag	22740
aatccgatgt	gggctacgag	actcccccg	cgaacttttc	gccgccccc	ataaacacta	22800
acgggtggac	ggactacctg	gccctaggag	acgtactgct	gaagcacatc	aggcggcaga	22860
gcgttatcgt	gcaagatgct	ctcaccgagc	gactcgcggt	tccgctggaa	gtggcggaac	22920
ttagcgccgc	ctacgagcga	accctcttct	ccccaaagac	tcccccaag	aggcaggcta	22980
acggcacctg	cgagcctaac	cctcgactca	acttctaccc	tgcctttgcc	gtgccagagg	23040
tactggctac	gtaccacatt	tttttccaaa	accacaaaat	ccctctctcg	tgccgcgcca	23100
accgcaccaa	agccgatcgc	gtgctgcgac	tggaggaagg	ggctcgcata	cctgagattg	23160
cgtgtctgga	ggaagtccca	aaaatctttg	aaggtctggg	ccgcgacgaa	aagcgagcag	23220
caaacgctct	ggaagagaac	gcagagagtc	acaacagcgc	cttggtagaa	ctcgagggcg	23280
acaacgccag	actggccgtc	ctcaaacggt	ccatagaagt	cacgcacttc	gcctaccccg	23340
ccgttaacct	ccctccaaaa	gttatgacag	cggtcatgga	ctcgctgctc	ataaagcgcg	23400
ctcagccctt	agacccagag	cacgaaaaca	acagtgacga	aggaaaaccg	gtggtttctg	23460
atgaggagtt	gagcaagtgg	ctgtcctcca	acgaccccgc	cacgttggag	gaacgaagaa	23520
aaaccatgat	ggccgtggtg	ctagttaccg	tgcaattaga	atgtctgcag	aggttctttt	23580
cccacccaga	gaccctgaga	aaagtggagg	aaacgctgca	ctacacattt	aggcacggct	23640
acgtgaagca	agcctgcaag	atttccaacg	tagaacttag	caacctcatc	tcctacctgg	23700
ggatcttgca	cgaaaaccgc	ctcggacaaa	acgtgctgca	cagcacactg	aaaggagaag	23760

cccgccgaga	ctatgtgcga	gactgcgtgt	tcctagcgct	agtgtacacc	tggcagagcg	23820
gaatgggagt	ctggcagcag	tgcctggagg	acgaaaacct	caaagagctt	gaaaagctgc	23880
tggtgcgctc	cagaagggca	ctgtggacca	gttttgacga	gcgcaccgcc	gcgcgagacc	23940
tagctgatat	tatttttcct	cccaagctgg	tgcagactct	ccgggaagga	ctgccagatt	24000
ttatgagtca	aagcatcttg	caaaacttcc	gctctttcat	cttggaacgc	tcgggaatct	24060
tgcccgccac	tagctgcgcc	ctacccacag	attttgtgcc	tctccactac	cgcgaatgcc	24120
caccgccgct	gtggccgtac	acttacttgc	ttaaactggc	caactttcta	atgttccact	24180
ctgacctggc	agaagacgtt	agcggcgagg	ggctgctaga	atgccactgc	cgctgcaacc	24240
tgtgcacccc	ccaccgctct	ctagtatgca	acactcccct	gctcaatgag	acccagatca	24300
tcggtacctt	tgaaatccag	ggaccctccg	acgcggaaaa	cggcaagcag	gggtctgggc	24360
taaaactcac	agccggactg	tggacctccg	cctacttgcg	caaatttgta	ccagaagact	24420
atcacgccca	ccaaattaaa	ttttacgaaa	accaatcaaa	accacccaaa	agcgagttaa	24480
cggcttgcgt	cattacgcag	agcagcatag	ttgggcagtt	gcaagccatt	aacaaagcgc	24540
ggcaagagtt	tctcctaaaa	aaaggaaaag	gggtctactt	ggacccccag	accggcgagg	24600
aactcaacgg	accctcctca	gtcgcaggtt	gtgtgcccca	tgccgcccaa	aaagaacacc	24660
tcgcagtgga	acatgccaga	gacggaggaa	gaggagtgga	gcagtgtgag	caacagcgaa	24720
acggaggaag	agccgtggcc	cgaggggtgc	aacggggaag	aggacacgga	gggacggcga	24780
agtcttcgcc	gaagaactct	cgccgctgcc	cccgaagtcc	cagccggccg	cctcggccca	24840
agatcccgca	cacacccgta	gatgggatag	caagaccaaa	aagccgggta	agagaaacgc	24900
tcgcccccgc	cagggctacc	gctcgtggag	aaagcacaaa	aactgcatct	tatcgtgctt	24960
gctccagtgc	ggcggagacg	tttcgttcac	ccgtagatac	ttgcttttta	acaaaggggt	25020
ggccgtcccc	cgtaacgtcc	tccactacta	ccgtcactct	tacagctccg	aagcggacgg	25080
ctaagaaaac	gcagcagttg	ccggcgggag	gactgcgtct	cagcgcccga	gaacccccag	25140
ccaccaggga	gctccgaaac	cgcatatttc	ccaccctcta	cgctatcttt	cagcaaagcc	25200
gggggcagca	gcaagaactg	aaaataaaaa	accgcacgct	gaggtcgctt	acccgaagct	25260
gcctctatca	caagagcgaa	gagcagctgc	agcgaaccct	ggaggacgca	gaagcgctgt	25320
tccagaagta	ctgcgcgacc	accctaaata	actaaaaaag	cccgcgcgcg	ggacttcaaa	25380
ccgtctgacg	tcaccagccg	cgcgccaaaa	tgagcaaaga	gattcccacg	ccttacatgt	25440
ggagttacca	gccgcagatg	ggattagccg	ccggcgccgc	ccaggattac	tccacgaaaa	25500
tgaactggct	cagcgccggg	ccccacatga	tttcccgcgt	aaacgacatt	cgcgcccacc	25560
gcaatcagct	attgttagaa	caggctgctc	tgaccgccac	gccccgtaat	aacctgaacc	25620
ctcccagctg	gccagctgcc	ctggtgtacc	aggaaacgcc	tccacccacc	agcgtacttt	25680
tgccccgtga	cgcccaggcg	gaagtccaga	tgactaacgc	gggcgcgcaa	ttagcgggcg	25740
gatcccggtt	tcggtacaga	gttcacggcg	ccgcacccta	tagcccaggt	ataaagaggc	25800
tgatcattcg	aggcagaggt	gtccagctca	acgacgagac Page 98	agtgagctct }	tcgcttggtc	25860

tacgaccaga	cggagtgttc	cagctcgcgg	gctcgggccg	ctcttcgttc	acgcctcgcc	25920
aggcatacct	gactctgcag	agctctgcct	ctcagcctcg	ctcgggagga	atcggacccc	25980
ttcagtttgt	ggaggagttt	gtgccctcgg	tctactttca	gcctttctcc	ggatcgcccg	26040
gccagtaccc	ggacgagttc	atccccaact	tcgacgcggt	gagtgactct	gtggacggtt	26100
atgactgatg	tcgagcccgc	ttcagtgcta	gtggaacaag	cgcggctcaa	tcacctggtt	26160
cgttgccgcc	gccgctgctg	cgtggctcgc	gacttgagct	tagctctcaa	gtttgtaaaa	26220
aacccgtccg	aaaccgggag	cgctgtgcac	gggttggagc	tagtgggtcc	tgagaaggcc	26280
accatccacg	ttctcagaaa	ctttgtggaa	aaacccattt	tggttaaacg	agatcagggg	26340
ccttttgtaa	tcagcttact	ctgcacctgt	aaccatgttg	accttcacga	ctattttatg	26400
gatcatttgt	gcgctgaatt	caataagtaa	agcgaattct	taccaagatt	atgatgtcca	26460
tgactgttcc	tcgccactat	acgatgttgt	gccagtaaac	tctcttgtcg	acatctatct	26520
gaactgttcc	ttttggtccg	cacagcttac	ttggtactac	ggtgacaccg	tcctttctgg	26580
ctcactgggc	agctcacacg	gaataacact	tcacctcttt	tcgccgtttc	gatacggaaa	26640
ctacagctgt	cgtgccggta	cctgcctcca	cgttttcaat	cttcagccct	gtccaccgac	26700
caaacttgta	tttgtcgact	ctaagcactt	acagctcaac	tgcagcattc	taggccccag	26760
tatcttgtgg	acatacaata	aaatcaggtt	ggtggaattt	gtctactacc	cacccagcgc	26820
ccgcggtttt	ggggaaattc	ctttccagat	ctactacaac	tatcttgcca	cacattatgc	26880
aagtcaacag	caactaaact	tgcaagcacc	cttcacgcca	ggagagtact	cctgtcacgt	26940
aggctcctgc	acagaaactt	ttattctctt	caacagatct	tctgccattg	aacgcttcac	27000
tactaactac	tttagaaacc	aagttgtgct	tttcactgac	gaaaccccta	acgtcaccct	27060
ggactgtgca	tgtttttctc	atgacaccgt	aacttggact	cttaacaata	ctctctggct	27120
cgcgttcgat	aaccaaagct	tgattgttaa	aaattttgat	ttaaccttta	ctaaaccctc	27180
tcctcgcgaa	atagttatct	ttgctccttt	taatccaaaa	actaccttag	cctgtcaggt	27240
tttgtttaag	ccttgccaaa	caaactttaa	gtttgtttat	ttgcctccgc	aatctgtcaa	27300
actcatagaa	aaatacaaca	aagcgcccgt	cttggctcct	aaaaccttct	accactggct	27360
aacctacacg	gggctgtttg	cactaattgt	ttttttccta	attaacattt	ttatatgttt	27420
cttgccttcc	tccttcttt	cgcgaacacc	gttgccgcag	aaagacctct	ccttattact	27480
gtagcgcttg	ctatacaaaa	ccaagagtgg	tcaaccgtgc	tctcaatcta	ttttcaattt	27540
ttcattttgt	ccttaatact	ttctcttatt	gtcgttaaca	atgatctgga	gcattggtct	27600
cgcctttttt	tggctgctta	gtgcaaaagc	cactatttt	cacaggtatg	tggaagaagg	27660
aactagcacc	ctctttacga	tacctgaaac	aattaaggcg	gctgatgaag	tttcttggta	27720
caaaggctcg	ctctcagacg	gcaaccactc	attctcagga	cagacccttt	gcatccaaga	27780
aacttatttt	aaatcagaac	tacaatacag	ctgcataaaa	aactttttcc	atctctacaa	27840
catctcaaaa	ccctatgagg	gtatttacaa	tgccaaggtt	tcagacaact	ccagcacacg	27900

assettttse	tttaatetea	canttattaa	ancaatttcc	attcctatct	atazattza	27960
						28020
				aactgcacta		28080
				gttttaaacc		
				tctaacataa		28140
tggcttttac	tatcctttcc	acgaactgtg	cgaaataatt	gaagccgaat	atgaaccaga	28200
ctactttact	tacattgcca	ttggtgtaat	cgttgtttgc	ctttgctttg	ttattggggg	28260
gtgtgtttat	ttgtacattc	agagaaaaat	attgctctcg	ctgtgctcct	gcggttacaa	28320
agcagaagaa	agaattaaaa	tctctacact	ttattaatgt	tttccagaaa	tggcaaaact	28380
aacgctccta	cttttgcttc	tcacgccggt	gacgcttttt	accatcactt	tttctgccgc	28440
cgccacactc	gaacctcaat	gtttgccacc	ggttgaagtc	tactttgtct	acgtgttgct	28500
gtgctgcgtt	agcgtttgca	gtataacatg	ttttaccttt	gtttttcttc	agtgcattga	28560
ctacttctgg	gtcagactct	actaccgcag	acacgcgcct	cagtatcaaa	atcaacaaat	28620
tgccagacta	ctcggtctgc	catgattgtc	ttgtatttta	ccctgatttt	ttttcacctt	28680
acttgcgctt	gtgattttca	cttcactcaa	ttttggaaaa	cgcaatgctt	cgacccgcgc	28740
ctctccaacg	actggatgat	ggctcttgca	attgccacgc	ttggggcgtt	tggacttttt	28800
agtggttttg	ctttgcatta	caaatttaag	actccatgga	cacatggctt	tctttcagat	28860
tttccagtta	cacctactcc	gccgcctccc	ccggccatcg	acgtgcctca	ggttccctca	28920
ccttctccat	ctgtctgcag	ctactttcat	ctgtaatggc	cgacctagaa	tttgacggag	28980
tgcaatctga	gcaaagggct	atacacttcc	aacgccagtc	ggaccgcgaa	cgcaaaaaca	29040
gagagctgca	aaccatacaa	aacacccacc	aatgtaaacg	cgggatattt	tgtattgtaa	29100
aacaagctaa	gctccactac	gagcttctat	ctggcaacga	ccacgagctc	caatacgtgg	29160
tcgatcagca	gcgtcaaacc	tgtgtattct	taattggagt	ttcccccatt	aaagttactc	29220
aaaccaaggg	tgaaaccaag	ggaaccataa	ggtgctcatg	tcacctgtca	gaatgccttt	29280
acactctagt	taaaacccta	tgtggcttac	atgattctat	cccctttaat	taaataaact	29340
tactttaaat	ctgcaatcac	ttcttcgtcc	ttgtttttgt	cgccatccag	cagcaccacc	29400
ttcccctctt	cccaactttc	atagcatatt	ttccgaaaag	aggcgtactt	tcgccacacc	29460
ttaaagggaa	cgtttacttc	gctttcaagc	tctcccacga	ttttcattgc	agatatgaaa	29520
cgcgccaaag	tggaagaagg	atttaacccc	gtttatccct	atggatattc	tactccgact	29580
gacgtggctc	ctccctttgt	agcctctgac	ggtcttcaag	aaaacccacc	tggggtcttg	29640
tccctaaaaa	tatccaaacc	tttaactttt	aatgcctcca	aggctctaag	cctggctatt	29700
ggtccaggat	taaaaattca	agatggtaaa	ctagtggggg	agggacaagc	aattcttgca	29760
aacctgccgc	ttcaaatcac	caacaacaca	atttcactac	gttttgggaa	cacacttgcc	29820
ttgaatgaca	ataatgaact	ccaaaccaca	ctaaaatctt	catcgcccct	taaaatcaca	29880
gaccagactc	tgtcccttaa	cataggggac	agccttgcaa	ttaaagatga	caaactagaa	29940
agcgctcttc	aagcgaccct	cccactctcc		acaccatcag	cctcaacgtg	30000
			Page 10	U		

uucaccuuac	tcaccataaa	togaaacott	ttacaagctg	ttcccttaaa	tactctaaat	30060
			ctgcgctatg			30120
			cactcccctt			30180
_						30240
			agaatcgaga			30300
			aacagtggct			
			acattaagat			30360
			aaagtaaaca			30420
			ggaggtggat			30480
			ttatctgaaa			30540
ggtagtggtc	taacttttag	agatggtgcc	ttggtagcca	cgggaaccgc	atttacgcaa	30600
acactgtgga	ctacggctga	tccgtctccc	aactgcacaa	ttatacagga	ccgcgacaca	30660
aaatttactt	tggcgcttac	cattagtggg	agccaagtgc	tggggacggt	ttccattatt	30720
ggagtaaaag	gccccctttc	aagtagcata	ccgtcagcta	ccgttacagt	acaacttaac	30780
tttgattcca	acggagccct	attgagctcc	tcttcactta	aaggttactg	ggggtatcgc	30840
caaggtccct	caattgaccc	ttaccccata	attaatgcct	taaactttat	gccaaactca	30900
ctggcttatc	ccccgggaca	agaaatccaa	gcaaaatgta	acatgtacgt	ttctactttt	30960
ttacgaggaa	atccacaaag	accaatagtt	ttaaacatca	cttttaataa	tcaaaccagc	31020
gggttttcca	ttagatttac	atggacaaat	ttaaccacag	gagaagcatt	tgcaatgccc	31080
ccatgcactt	tttcctacat	tgctgaacaa	caataaacta	tgtaaccctc	accgttaacc	31140
cgcctccgcc	cttccatttt	attttataaa	ccacccgatc	caccttttca	gcagtaaaca	31200
attgcatgtc	agtaggggca	gtaaaacttt	tgggagttaa	aatccacaca	ggttcttcac	31260
aagctaagcg	aaaatcagtt	acacttataa	aaccatcgct	aacatcggac	aaagacaagc	31320
atgagtccaa	agcttccggt	tctggatcag	atttttgttc	attaacagcg	ggagaaacag	31380
cttctggagg	attttccatc	tccatctcct	tcatcagttc	caccatgtcc	accgtggtca	31440
tctgggacga	gaacgacagt	tgtcatacac	ctcataagtc	accggtcgat	gacgaacgta	31500
cagatctcga	agaatgtcct	gtcgccgcct	ttcggcagca	ctgggccgaa	ggcgaaagcg	31560
cccatgttta	acaatggcca	gcaccgcccg	cttcatcagg	cgcctagttc	ttttagcgca	31620
acagcgcatg	cgcagctcgc	taagactggc	gcaagaaaca	cagcacagaa	ccaccagatt	31680
gttcatgatc	ccataagcgt	gctgacacca	gcccatacta	acaaattgtt	tcactattct	31740
agcatgaatg	tcatatctga	tgttcaagta	aattaaatgg	cgcccctta	tgtaaacact	31800
tcccacgtac	aacacctcct	ttggcatctg	ataattaacc	acctcccgat	accaaataca	31860
tctctgatta	atagtcgccc	cgtacactac	ccgattaaac	caagttgcca	acataatccc	31920
ccctgccata	cactgcaaag	aacctggacg	gctacaatga	cagtgcaaag	tccacacctc	31980
gttgccatgg	ataactgagg	aacgccttaa	gtcaatagtg	gcacaactaa	tacaaacatg	32040
					•	

taaatagtgt	ttcaacaagt	gccactcgta	tgaggtgagt	atcatgtccc	agggaacggg	32100
ccactccata	aacactgcaa	aaccaacaca	tcctaccatc	ccccgcacgg	cactcacatc	32160
gtgcatggtg	ttcatatcac	agtccggaag	ctgaggacaa	ggaaaagtct	cgggagcatt	32220
ttcatagggc	ggtagtgggt	actccttgta	ggggttcagt	cggcaccggt	atctcctcac	32280
cttctgggcc	ataacacaca	agttgagatc	tgatttcaag	gtactttctg	aatgaaaacc	32340
aagtgctttc	ccaacaatgt	atccgatgtc	ttcggtcccc	gcgtcggtag	cgctccttgc	32400
agtacacacg	gaacaaccac	tcacgcaggc	ccagaagaca	gttttccgcg	gacggtgaca	32460
agttaatccc	cctcagtctc	agagccaata	tagtttcttc	cacagtagca	taggccaaac	32520
ccaaccagga	aacacaagct	ggcacgtccc	gttcaacggg	aggacaagga	agcagaggca	32580
gaggcatagg	caaagcaaca	gaatttttat	tccaactggt	cacgtagcac	ttcaaacacc	32640
aggtcacgta	aatggcagcg	atcttgggtt	tcctgatgga	acataacagc	aagatcaaac	32700
atgagacgat	tctcaaggtg	attaaccaca	gctggaatta	aatcctccac	gcgcacattt	32760
agaaacacca	gcaatacaaa	agcccggttt	tctccgggat	ctatcatagc	agcacagtca	32820
tcaattagtc	ccaagtaatt	ttcccgtttc	caatctgtta	taatttgcag	aataatgccc	32880
tgtaaatcca	agccggccat	ggcgaaaagc	tcagataatg	cactttccac	gtgcattcgt	32940
aaacacaccc	tcatcttgtc	aatccaaaaa	gtcttcttct	tgagaaacct	gtagtaaatt	33000
aagaatcgcc	aggttaggct	cgatgcctac	atcccggagc	ttcattctca	gcatgcactg	33060
caaatgatcc	agcagatcag	aacagcaatt	agcagccagc	tcatccccgg	tttccagttc	33120
cggagttccc	acggcaatta	tcactcgaaa	cgtgggacaa	atcgaaataa	catgagctcc	33180
cacgtgagca	aaagccgtag	ggccagtgca	ataatcacag	aaccagcgga	aaaaagattg	33240
cagctcatgt	ttcaaaaagc	tctgcagatc	aaaattcagc	tcatgcaaat	aacacagtaa	33300
agtttgcggt	atagtaaccg	aaaaccacac	gggtcgacgt	tcaaacatct	cggcttacct	33360
aaaaaagaag	cacattttta	aaccacagtc	gcttcctgaa	caggaggaaa	tatggtgcgg	33420
cgtaaaacca	gacgcgccac	cggatctccg	gcagagccct	gataatacag	ccagctgtgg	33480
ttaaacagca	aaacctttaa	ttcggcaacg	gttgaggtct	ccacataatc	agcgcccaca	33540
aaaatcccat	ctcgaacttg	ctcgcgtagg	gagctaaaat	ggccagtata	gccccatggc	33600
acccgaacgc	taatctgcaa	gtatatgaga	gccaccccat	tcggcgggat	cacaaaatca	33660
gtcggagaaa	acaacgtata	caccccggac	tgcaaaagct	gttcaggcaa	acgcccctgc	33720
ggtccctctc	ggtacaccag	caaagcctcg	ggtaaagcag	ccatgccaag	cgcttaccgt	33780
gccaagagcg	actcagacga	aaaagtgtac	tgaggcgctc	agagcagcgg	ctatatactc	33840
tacctgtgac	gtcaagaacc	gaaagtcaaa	agttcacccg	gcgcgcccga	aaaaacccgc	33900
gaaaatccac	ccaaaaagcc	cgcgaaaaac	acttccgtat	aaaatttccg	ggttaccggc	33960
gcgtcaccgc	cgcgcgacac	gcccgccccg	ccccgcgctc	ctccccgaaa	cccgccgcgc	34020
ccacttccgc	gttcccaaga	caaaggtcgc	gtaactccgc	ccacctcatt	tgcatgttaa	34080
ctcggtcgcc	atcttgcggt	gttatattga	tgatg Page 10	2		34115

	7 44 DNA Artificial	
<220> <223>	primer P5L	
<400> gcgcac	7 gcgt ctctatcgat gaattccatt ggtgatggac atgc	44
	8 36 DNA Artificial	
<220> <223>	primer P5ITR	
<400> gcgcat	8 ttaa atcatcatca ataatatacc tcaaac	36
<210> <211> <212> <213>		
<220> <223>	primer P5XTOP	
	9 tagg aacgaggagg atttgatatt g	31
<210> <211> <212> <213>	10 20 DNA Artificial	
<220> <223>	primer P5XBOT	
<400> atgtac	10 gcct ccgcgctcac	20
<210> <211> <212> <213>	11 31 DNA Artificial	
<220> <223>	primer P5E4	
<400> gatcga	11 attc ccactctgta ccccatctct g	31
<210> <211> <212> <213>	12 31967 DNA Simian adenovirus	
<220>		

<221> CDS <222> (13796)(15322)											
	<221> CDS										
<220> <221> CDS <222> (27	192)(2901	5)									
<400> 12 catcatcata	atatacctta	tttgggaacg	gtgccaatat	gataatgagg	aggcggggtt	60					
aggggtggag	tgagggtggg	gtgcggatga	cgcgggcgcg	gggcggggtg	ggagtctgac	120					
gtggggcgcg	gggtggagcg	cgagggtgag	ggcggggcga	gggcggcggg	cgcggcggaa	180					
ttgacgtaca	cggtagtaag	tttgagcgga	aattaagtga	attgggcgtg	ttttttgtaa	240					
ctttttgacg	tacacggtag	taagtttgag	cggaaattaa	gtgaattggg	cgtgttttt	300					
gtaactttt	gacgtacacg	gtagtaagtt	tgagcggaaa	ttaagtgaat	tgggcgtgtt	360					
ttttgtaact	ttttgacgta	cacggtagta	agtttgagcg	gaaattaagt	gaattgggcg	420					
tgttttttgt	aactttttga	cgtacacggt	agtaagtttg	agcggaaatt	aagtgaattg	480					
ggcgtgtttt	ttgtaacttt	ttgacgtaca	cggtagtaag	tttgagcgga	aattaagtga	540					
attgggcgtg	ttttttgtaa	ctttttgacg	tacacggtag	taagtttgag	cggaaattaa	600					
gtgaattggg	cgtgttttt	gtaacttttt	ggtcattttg	gcgcgaaaac	tgagtaatga	660					
ggaagtgaga	cggactctgc	ccttttttac	ggttgggagg	gaaaactgct	gatcagcgct	720					
gaactttggg	ctctgacgcg	gtggtttccc	tacgtggcag	tgccacgaga	aggctcaaag	780					
tcctcgtttt	attgtgtgct	cagccttttt	gagggtattt	aaacaccgtc	agaccgtcaa	840					
gaggccactc	ttgagtgcga	gcgagtagag	ttttctcctc	cgtcgctgcc	gcggctgctc	900					
agtcttaccg	ccaggatgcg	aatgctgccg	gagatcttca	ccgggtcctg	ggaagatgtt	960					
ttccagggac	ttttagaatc	tgaagacaac	tttccccaac	ctcctgagcc	ggaggagcta	1020					
cctgaggttt	cgcttcacga	tctgtttgac	gtggaggtgg	agagccccga	cggagatccg	1080					
aacgaggaag	ctgttgatgg	tatgttcccc	gactggatga	tatctcagag	cgagagtgct	1140					
gaaggcagtg	cggactcggg	cgtttctggg	gttggaaacc	tggtggaggt	ggatctggac	1200					
ttgaagtgtt	acgaggaagg	ttttcctcct	agcgactcag	agactgatga	agcctcagaa	1260					
gcggaaggtc	aagaggagtc	tgtgtgtggt	tatgtgaaga	ttaatgaggg	ggagaacctg	1320					
ctggtgttgg	actgtccgga	ccaacctgga	catggctgtc	gagcctgtga	ctttcaccgg	1380					
gggaccagcg	gaaacccgga	agctatctgt	gctttgtgct	acatgcgtct	gaacgagcac	1440					
tgcatataca	gtgagtgtta	ttcatgggtt	atttatgggg	aaagttgggg	gaaagtcttg	1500					
agaaggggaa	aagtttaaca	tgtcattttt	gtacttgata	ggtccagttt	cggacgctga	1560					
gggggattct	gagtcccctg	ctggtccttc	ccagccctca	ccctgctctt	tgaccgccac	1620					
gcccgcacct	gacctagtta	gaccaacgcc	ctgccgagtg	tcctgtagac	gacgtgcagc	1680					
tgttaattgc	atagaagatt	tattggcccc	tgatgacgag Page 10	aacgcacctt 4	tgaacctgtg	1740					

cctgaaacgc	cctaagacat	cttgagtgtt	tatgctgtta	ataaaagtgt	tgacccttag	1800
atcctgtgtt	tattccttgg	gcgtgtgcgc	gggtatataa	agcagctgcg	ggctggagtg	1860
ttagtttatt	ctgatggagt	actggagtga	gctgcagaat	taccagagcc	tccggcgcct	1920
gctggagttg	gcctctgcca	gaacatccac	ctgctggagg	ttctgttttg	gctcgactct	1980
cagtaacgtg	gtgtatcggg	tgaagcaaga	gtacagctcg	cgcttttctg	agctgttggc	2040
ccgctacccg	gctgtttttg	tttctctgga	tctaggccat	cacgtttatt	tccaagaagc	2100
tgtagtcaga	tatttggatt	tttctactcc	cgggcgtgcg	gtttctgcga	ttgccttcat	2160
ctgctttgtg	ctagatcgat	ggagcgccca	aacccgcctg	agcccggggt	acaccctgga	2220
ctacctgacc	atgtccctgt	ggagggccat	gctgcggaag	aggagggtct	caggcttctc	2280
gccggcgcgg	cctccgcacg	gactggatcc	ggtgctggag	gagtcggagc	tggaggagga	2340
ggagaacccg	agggccggcc	tggaccctcc	ggcggaatag	tgacggaacc	ggaggatccc	2400
caagagggta	ctagtcaggg	gggagggggg	ccgaagagaa	agcgggatga	agaggaggcg	2460
atggaccccg	acaggtttct	aaaagaactg	actttaagct	taatgtctaa	gagaagaccc	2520
gagacggtgt	ggtggtctga	tttggagaag	gagttccacc	agggggagat	gaatctgttg	2580
tacaagtatg	ggtttgagca	ggtgaagact	cactggctgg	aagcctggga	ggactgggag	2640
atggctttta	acatgtttgc	caaggtggcg	ctgcgcccgg	acactattta	caccgtgact	2700
aagacggtgg	aaatccgcaa	gcctgtgtat	gtgattggca	acggggccgt	ggttcggttc	2760
cagaccaccg	accgggtggc	ctttaattgc	tgtatgcaga	acctgggccc	gggggtgatt	2820
aatcttaatg	gagtgacctt	ttgcaatgtc	agattcgcgg	gggatggatt	caacgggacg	2880
gtgtttgccg	ccaccaccca	gataacccta	cacggggtgt	tcttccagca	tgtaggcggg	2940
gcttgtgtag	atacctgggc	gagggcctct	gtgaggggct	gcacctttgt	gggctgttgg	3000
aaagcggtgg	tgggtcgacc	caagagtgtg	ctgtctgtga	agaaatgtgt	gtttgagaga	3060
tgtctgatgg	ccatggtggt	ggagggccag	ggtaggatcc	gccataacgc	gggctccgag	3120
aatacctgtt	ttgccctgct	gaagggtacg	gcgaccgtga	agcataacat	gatctgcggg	3180
gtgggtcact	cgcagctgct	gacctgtgcg	gatggcaact	gccaggccct	gcgcacggtg	3240
catgtggtgt	cccaccggcg	ccgcccctgg	ccggtgtttg	aacataacat	gctgatgcgc	3300
tgtaccatgc	acctgggcta	ccgccgcggc	gtgtttgtgc	cccatcagtg	taacctgacc	3360
cacaccaagg	tgttgctgga	gacggatgct	ttttcgcgag	tgaatctgaa	tggggtgttc	3420
gatctgacta	tggagatgta	caagatagtg	agatttgatg	aatcaaagac	ccgttgtcgc	3480
ccctgcgagt	gcggtgccaa	tcacctgagg	atgtatcccg	tgaccctgaa	cgtgacggag	3540
gagctgcgcc	cggaccacca	gatgctgtcc	tgtctgcgca	ccgattacga	aagcagcgat	3600
gaggattaag	aggtgagggg	cggggcttgc	atggggtata	aaggtggggg	aggaggtggg	3660
gagggggaaa	acccaaaatg	agcggatcga	tggaagggag	cgctgtgagt	tttgagggcg	3720
gggtgttcag	cccatatctg	acaacccgtc	tccccgcctg	ggcaggagtg	cgtcagaatg	3780

						2040
		ggacgtccgg				3840
		ctggacaccg				3900
ctactgctcg	cggtatggca	gctgatttcg	gactgtatca	gcaactggct	gcgcctcgct	3960
cgtcgctgag	agaagatgat	gccctgtccg	tggtgctgac	ccgcctggag	gagctgtccc	4020
agcagctgca	agagctgtct	gccaaagtgg	atgcacagaa	cgtccccgct	acccaatgaa	4080
taaataaacg	agacaccgag	tgtgtttgga	aatcaaaatg	tgtttttatt	tgttttttct	4140
ggcgcggtag	gcccttgacc	acctgtcgcg	gtcgttaagg	accttgtgga	tgttttccag	4200
cacccggtag	aggtgggctt	ggatgttgag	gtacatgggc	atgagcccgt	ctcgggggtg	4260
gaggtagcac	cactggaggg	cgtcgtgctc	gggggtggtg	ttgtagataa	tccagtcgta	4320
gcagggtttt	tgggcatgga	agcggaagat	gtctttgaga	agcaggctga	tggccagggg	4380
gaggcccttg	gtgtaggtgt	tcacaaagcg	gttgagctgg	gagggatgca	tgcgggggga	4440
gatgagatgc	atcttggcct	gaatcttgag	gttggcgatg	ttgccgccca	gatcccgccg	4500
ggggctcatg	ttgtgcagga	ccaccaggac	ggtgtagccg	gtgcacttgg	ggaatttgtc	4560
atgcaacttg	gaagggaagg	cgtggaagaa	cttggagacc	cccttgtggc	cgccgaggtt	4620
ctccatgcat	tcgtccatga	tgatggcgat	gggacccctg	gcggccgccc	tggcgaagac	4680
gttgtcgggg	tgggagacgt	cgtagttctg	ttccagggtg	agctcgtcgt	aggccatttt	4740
gacgaagcgg	gggagcaggg	tgcccgactg	ggggacgatg	gtaccttcgg	gacccggggc	4800
gtagttgccc	tcgcagattt	gcatctccca	ggccttgatc	tccgaggggg	ggatcatgtc	4860
cacctggggc	gcgatgaaga	agacggtctc	cggggcgggg	ttgatgagct	gggaggagag	4920
gaggttgcgg	agcagctgcg	acttgccgca	cccggtgggc	ccgtagatga	ccccgatgac	4980
gggttgcagc	tggtagttta	aggagctgca	gctgccgtcc	tcgcgcagga	acggggcgac	5040
ctcgttcatc	atgcttctga	cgtgatggtt	ttccctgacg	aggtcttgca	agagccgctc	5100
gccgcccagg	gagagaagct	cttccaggct	gcggaaatgc	ttgaggggtt	tgaggccgtc	5160
ggccatggtc	atcttttcca	gggactggcg	gagcaggtac	aggcggtccc	agagctcggt	5220
gacgtgttct	acggcatctc	gatccagcag	acttcttggt	tgcgggggtt	ggggcggctt	5280
tggctgtagg	ggaccagccg	gtgcgcgtcc	agggaggcga	gggtgacgtc	tttccagggc	5340
cgcagcgttc	gcgtgagggt	ggtctcggtg	acggtgaagg	gatgcgctcc	cggttgggcg	5400
ctggccaggg	tcctcttgag	actcatcctg	ctggtgtgga	agcgggcgtc	ttctccctgg	5460
gagtcggcca	ggtagcattt	gagcatgagg	tcgtagctga	gggcctcggc	cgcgtggccc	5520
ttggcgcgca	gcttgccttt	ggagacgtgt	ccgcaggcgg	gacagtgcag	gcacttgagg	5580
gcgtagagct	tgggggccag	gaagacggac	tcgggggagt	aggcgtcggc	gccgcactga	5640
gcgcacgtgg	tctcgcactc	gacgagccag	gtgagctccg	ggtgttgggg	atcaaaaacc	5700
agctggcccc	cgtgttttt	gatgcgcttc	ttacctcggg	tctccatgag	gcggcgtccg	5760
		gtcggtgtcg				5820
		cgcgtgcagg	aactcggacc	actctgagac		5880
			Page 10	6		

gtccacgcga	ggacaaagga	ggcgatctgg	gacgggtagc	ggtcgttctc	caccagggga	5940
tccaccttct	ccagggtgtg	caggcagagg	tcgtcctcct	ccgcgtccat	gaaggtgatt	6000
ggcttgtaag	tgtatgtcac	gtgaccgtcg	gggtcgcgcg	tgggcttata	aaagggggcg	6060
tgcccggcct	ccccgtcact	ttcttccgca	tcgctgtgga	cgagatccag	ctgctcgggt	6120
gagtaggcgc	gctggaaggc	gggcatgacc	tcggcgctga	gggtgtcagt	ttccacgaac	6180
gaggtggatt	tgatattgac	ctgtccggcg	gcgatgcttt	tgacggtggc	ggggtccatc	6240
tggtcagaaa	agacgatctt	tttgttgtcc	agcttggtgg	cgaacgaccc	gtagagggcg	6300
ttggagagca	gcttggcgat	ggagcgcagg	gtctggttct	tctcgcggtc	ggcgcgctcc	6360
ttggcggcga	tgttgagctg	gacgtactcg	cgggccacgc	agcgccattc	ggggaagacg	6420
gtggcgcgct	cgtccggcag	gaggcgcacg	cgccagccgc	ggttgtgcag	ggtgatgagg	6480
tccacgctgg	tggccacctc	gccgcgcagt	ggctcgttgg	tccagcagag	gcgcccgccc	6540
ttgcgcgagc	agaagggggg	caggacgtcg	agctggtcct	ccgcggggg	gtcggcgtcg	6600
atggtgaaga	tgcccggtag	caggtggcgg	tcgaagtagt	cgatggcgac	cgcggggtcg	6660
gcgagggcgc	gttcccagtc	cctgaccgcc	agggcgcgct	cgtaggggtt	gaggggcgcc	6720
ccccagggca	tgggatgggt	gagggccgag	gcgtacatgc	cgcagatgtc	gtagacgtag	6780
aggggctcgc	ggagcacgcc	gaggtaggtg	ggatagcagc	gtccgccgcg	gatgctggcg	6840
cgcacgtagt	cgtacatctc	gtgcgagggg	gcgaggaggc	cgcctccgag	gtcgccgcgc	6900
tgcggtctga	cggcccggta	ggtgacctgg	cggaagatgg	cgtgcgagtt	ggaggagatg	6960
gtgggccgct	ggaagatgtt	gaagctggcc	tcggggagtc	cgacggcgtc	gtggacgaac	7020
tgggcgtagg	agtcgcgcag	cttctgcacg	agcgcggcgg	tgacgagcac	gtccagggcg	7080
cagtagtcga	gggtctcgcg	gacgaggtcg	taacggggct	cttgcttctt	ttcccagagt	7140
tcgcggttga	ggaggtactc	ctcgcgatcc	ttccagtact	cttcggccgg	aaagccgcgt	7200
tcgtccgcca	ggtaagaacc	cagcatgtag	aagcggttga	cggctcggta	gggacagcag	7260
cccttctcga	cgggcaggga	gtaggcctgc	gcggccttcc	tgagcgaggt	gtgggtgagg	7320
gcgaaggtgt	cgcgcaccat	gaccttgagg	aactggaacc	tgaagtcggt	gtcgtcgcag	7380
gcgccccgct	cccagagccc	gtagtcggtg	cgtttctggc	tgcgggggtt	gggcagggcg	7440
aaggtgacgt	cgttgaagag	gatcttgccg	gcgcgcggca	tgaagttgcg	ggtgatcctg	7500
aagggccccg	gcacgtccga	gcggttgtta	atgacctggg	ccgcgaggac	gatctcgtcg	7560
aagccgttga	tgttgtggcc	gacgatgtag	agctcgacga	agcgcgggcg	cccctgcagc	7620
ttgggggcct	tcttgagctc	ctcgtaggtg	aggcagtcgg	gcgagtagag	gcccagctcc	7680
tgtcgggccc	attcggccac	ctgggggttg	gcttgcaaga	agccccgcca	gagctgcagg	7740
gcgagctggg	tctggaggcg	gtcgcggtag	tcgcggaact	ttttgcccac	cgccatcttc	7800
tcgggggtga	ccacgtagaa	ggtgcggccg	tcctggcccc	aggcgtccca	gttctgctcg	7860
cgggcgagac	ggcaggcctc	ctcgacgagg	gcctcctccc	cggagagatg	catgactagc	7920

atgaagggga	cgagttgctt	gccgaaggca	cccatccacg	tgtaggtctc	tacgtcgtag	7980
gtgacgaaga	gacgttcggt	gcgaggatgc	gagccgagag	gaaagaagtt	gatctcctgc	8040
caccagccgg	aggagtgggc	gttgacgtgg	tggaagtaga	agtcacgccg	gcggaccgtg	8100
cattcgtgct	gatatttgta	aaagcgggcg	cagtactcgc	agcgctgcac	gctctgcact	8160
tcctgaacga	gatgcacccg	gcgcccgcgc	accaggaggc	ggagggggca	gtccagtgga	8220
gcttcggcgc	gctgtccttc	agcctcgtca	tgctcttctg	cacctgcacg	ctcctgctgt	8280
gggtggagga	cggagggagt	gacgacgccg	cgcgagccgc	aggtccagat	gtcgacgcgc	8340
ggcggcctga	ggctcagcgc	cagggtgcgg	atctgagcgg	cgtccaggga	gtcgaggaag	8400
gcctcgctga	ggtcgacggg	cagcgtccgc	cggtggactt	gcaggagacg	ggtaagggcc	8460
ggcgccaggc	gctgatggta	cttgatctcg	agcggttcgt	tggtggaggt	gtcgatggcg	8520
tagagcaggg	cctgaccgcg	ggcggcgacg	atggtgccgc	ggtgccggcg	gtaggtggcg	8580
tattcggggg	ggctcgttac	atcacccgcc	tgggcctggc	gccgggcggc	agcgggggtt	8640
ctggtcccgc	cggcatgggc	ggcagcggca	cgtcggcgcg	gggctccggc	agcggctggt	8700
gctgagctcg	cagctgactg	gcgtgcgcga	cgacgcggcg	gttgaggtcc	tggatgtgcc	8760
tccgctgcgt	gaagaccacc	ggtccccgga	ctcggaacct	gaaagagagt	tcgacagaat	8820
caatctcggc	atcgttgacg	gccgcctgac	gcaggatctc	ctgcacgtcg	cccgagttgt	8880
cctggtaggc	gatctcggac	atgaactggt	cgatctcttc	ctcctggagt	tcgccgcgtc	8940
cggcgcgttc	gacggtggcc	gcgaggtcgt	tggagatgcg	agccatgagc	tgggagaagg	9000
cgttgaggcc	gttctcgttc	cacacgcgac	tgtagacgac	gttgccgacg	gcgtcccggg	9060
cgcgcatgac	cacctgcgcg	acgttgagct	ccacgtgtcg	cgcgaagacg	gcgtagttgc	9120
gcaggcgctg	gaagaggtag	ttgagggtgg	tggcgatgtg	ctcgcagacg	aagaagtaca	9180
tgacccagcg	gcgcagcgtc	atctcgttga	tgtctccgag	ggcttccaag	cgctccatgg	9240
cctcgtagaa	gtcgacggcg	aagttgaaga	actgggagtt	gcgcgccgcg	accgtcagct	9300
cgtcttgcaa	gagccggatc	agctgggcca	cggtctcccg	cacctcgcgt	tcgaaggccc	9360
ccggcgcttc	ttcctcctct	ggttcctcgg	cggcctcttc	ttccatgacg	gcttcctctt	9420
cctccggttc	ctcgggcacg	ggcctccggc	ggcgacggcg	cctgatgggc	aggcggtcca	9480
cgaagcgttc	gatgatctct	ccgcggcggc	ggcgcatggt	ttcggtgacg	gcgcggccgt	9540
tctctcgggg	ccgcagttcg	aagacgcccc	cgcgcaggcc	gccggcgccg	ccgagagggg	9600
gcaggaggtg	ggggccttcg	ggcagcgaga	gggcgctgac	gatgcaccgt	atcatctgtt	9660
gcgtaggtac	agctctccag	gagtcgttga	gcgagtccag	ttggacggga	tccgagaact	9720
tttcgaggaa	agcttcgatc	caatcgcagt	cgcaaggtaa	gctgaggacg	gtgggatgag	9780
gggcttggcg	ggaggcggag	gcggcagaag	aggaggagga	gggcaggctg	gaggtgatgc	9840
tgctgatgat	gtaattgaag	taggcggttt	tcaaacggcg	gatggtggcg	aggaggacga	9900
cgtctttggg	cccggcctgc	tggatgcgca	ggcggtcggc	catgccccag	gcgtggctct	9960
ggcatcggcg	caggtccttg	tagtagtctt	gcatgagtct	ctcgacgggg	acgtcgtctt	10020
			Page 10	8		

cgtcggcccg	gtcggccatg	cgggtggagc	cgaacccgcg	caggggctgc	agcagggcca	10080
ggtcggcgac	cacgcgttcg	gccagcacgg	cctgctggat	ctgggtgagc	gtggtctgga	10140
agtcgtccag	gtccacgaag	cggtggtagg	agcccgtgtt	gatggtgtag	gtgcagttgg	10200
ccatgacgga	ccagttgacg	acttgcatgc	cgggctgggt	gatctcggtg	tagcggaggc	10260
gcgagtaggc	ccgcgactcg	aagacgtagt	cgttgcaggt	gcgcacgagg	tactggtagc	10320
cgacgaggaa	gtgcggcggc	ggctcgcggt	agaggggcca	gcgcacggtg	gcgggggcgc	10380
cgggggccag	gtcctccagc	atgaggcggt	ggtagtggta	gacgtagcgc	gagagccagg	10440
tgatgccggc	ggcggaggtg	gcggcgcggg	cgaagtcgcg	gacgcggttc	cagatgttgc	10500
gcaagggggc	gaagcgctcc	atggtgggca	cgctctggcc	ggtgaggcgg	gcgcagtcct	10560
gcacgctcta	gacgggacag	agagcgggag	gttagcggct	ccgctccgtg	gcctggggga	10620
cagaccgcca	gggtgcgacg	gcggggaacc	ccggttcgag	accggctgga	tccgtccgtc	10680
cccgacgcgc	cggccccgcg	tccacgaccc	caccagaggc	cgagacccag	ccgcggtgcc	10740
cggaccccag	atacggaggg	gagccttttt	gtggttttt	cccgtagatg	catccggtgt	10800
tgcgacagat	gcgtccgtcg	ccagcgccgc	cgacgcagcc	gccgctcccg	cccccacta	10860
gcgccgcgga	ggctctgtcc	ggcggccgcg	gcgacccgga	ggaggaggcc	atcctcgact	10920
tggaagaagg	cgagggcctg	gcccggctgg	gagcgccctc	ccccgagcgc	catccccgcg	10980
tgcagctggc	gagagactcg	cgccaggcct	acgtgccgcc	gcagaatctg	ttcagggacc	11040
gcagcggcca	ggagcccgag	gagatgaggg	accgcaggtt	tcacgcgggg	cgggagctgc	11100
gcgcgggctt	cgaccgtcgg	cgggtgttgc	gcgccgaaga	cttcgagccc	gacgagcgca	11160
gcggagtaag	tccggcacgg	gcgcacgtgt	cggcggccaa	cctggtgacc	gcgtacgagc	11220
agacggtgaa	cgaggagcgg	agctttcaga	aaagcttcaa	caaccacgtg	cgcaccctga	11280
tcgcgcgcga	ggaggtggcc	atcggcctga	tgcatctgtg	ggactttgtg	gaggcgtacg	11340
tgcagaaccc	gtcgagcaag	ccgctgacgg	cgcagttgtt	cctgatcgtg	cagcacagtc	11400
gggacaacga	gacgttccgc	gaggcgatgc	tgaacatcgc	ggagcccgag	ggccgctggc	11460
tcttggacct	gattaacatc	ctgcagagca	tcgtggtgca	ggagcgcagc	ctgagcctgg	11520
ccgacaaggt	ggcggccatc	aactacagca	tgttgagcct	gggcaagttt	tacgcccgca	11580
agatctacaa	gagcccctac	gtgcccatag	acaaggaggt	gaagatcgac	agcttttaca	11640
tgcggatggc	gctgaaagtg	ctgacgctga	gcgacgatct	gggggtgtac	cgcaacgacc	11700
gcatccacaa	ggccgtgagc	gccagccgcc	ggcgcgagct	gagcgaccgc	gagctgatgc	11760
acagcctgcg	gagggcgctg	gcgggcgccg	gcggcggcga	ggaggccgag	tcctacttcg	11820
acatgggggc	ggacttgcag	tggcagccca	gcgcgcgggc	cctggaggcg	gcgggctacc	11880
gcggcggcgg	cggcgtggtc	gaggcggagg	acgaggacga	ggtggagtac	gaggaggagg	11940
actgatcggc	gaggtgtttt	cgtagatgca	gcgcgcgacg	gcggcggcga	gcgggccgca	12000
gggggacccc	gccgtgctgg	cggccctgca	gagccaacct	tcgggcgtga	acgcctccga	12060

tgactgggcg	gcggccatgg	accgcatttt	ggccttgacc	acccgcaacc	ccgaggcctt	12120
tagacagcag	ccgcaggcca	accgcttttc	ggccatcttg	gaagccgtgg	tgccctcgcg	12180
caccaacccc	acgcacgaga	aggtcctggc	ggtggtgaac	gcgctgctgg	agagcaaggc	12240
gatccgcaag	gacgaggcgg	ggctgattta	caacgccctg	ctggagcggg	tggcgcgcta	12300
caacagcacc	aacgtgcagg	ccaacctgga	ccgtctgacg	acggacgtgc	gggaggcggt	12360
ggcgcagcgg	gagcgcttca	tgcgcgacac	gaacctgggc	tcgcaggtgg	ccctgaacgc	12420
cttcctgagc	acgcagccgg	ccaacgtgcc	gcgcgggcag	gaggactacg	tcagtttcat	12480
cagcgcgctg	cgcctcctgg	tggccgaggt	gccgcagagc	gaggtgtacc	agtcgggtcc	12540
ggactacttc	ttccagacct	cgcggcaggg	cctgcagacg	gtgaacctga	cgcaggcctt	12600
caagaacctg	gaaggcatgt	ggggcgtgcg	ggcccccgtg	ggcgaccggg	cgacgatctc	12660
cagcttgctg	acgccgaaca	cgcggctgct	gctgctgctg	atcgcgccct	tcaccaatag	12720
cagtaccatc	agccgcgact	cgtacctggg	ccacctgatc	acgctgtacc	gcgaggccat	12780
cgggcaggcg	caggtggacg	agcagacctt	ccaggagatt	acgagcgtga	gccgggccct	12840
ggggcagcag	gacacgggta	gcctggaggc	gacgctgaat	tttctgctga	ccaaccggcg	12900
gcagaagatc	ccctcccagt	acacgctgag	cacggaggag	gagcgcatct	tgcgctacgt	12960
gcagcagtcc	gtgagcctgt	atctgatgcg	cgagggggcg	agcccctcgt	cggcgctgga	13020
catgacggcc	cgtaacatgg	agccgtcgct	gtacgcggcc	caccggccgt	tcgtgaaccg	13080
cctgatggac	tacctgcacc	gcgccgccgc	catgaacggc	gagtacttta	cgaacgccat	13140
cctgaacccg	cactggatgc	cgccgtccgg	tttctacacg	ggggactttg	acatgcccga	13200
gggcgacgac	gggttcctgt	gggacgacgt	gtcggacagc	gtgttcgcgc	cggtgcgtcc	13260
gggcaagaag	gagggcggcg	acgagctgcc	gctgtccgtg	gtggaggcgg	cgtcgcgcgg	13320
ccagagcccg	ttccccagcc	tcccgtcgtt	gtcggcgagc	agcagcagcg	gccgggtctc	13380
gcgcccgcgg	ctggagggcg	actacctgaa	cgacccgctg	ctgcgccccg	cccggcccaa	13440
gaactttccc	aacaacgggg	tggagagcct	agtggataag	atgaatcgct	ggaagaccta	13500
cgcccaggag	cagcgggagt	gggaggagag	tcagccccgc	cccctgcctc	cgccgcgctc	13560
caggtggcgc	cggcgggaag	aagacccgga	agactcggcg	gacgatagca	gcgtgttgga	13620
cttggggggg	accggtgccg	cctcgacaaa	cccgttcgcc	cacctgcgcc	cgcagggccg	13680
gctgggtcgg	ctgtattgag	gaaagaaact	aataaaagaa	aaaagagctt	gcttaccaga	13740
gccatggtcg	cagcgtcggt	ccctttgtgt	gtgttttctc	ctccccggta	gcgaa atg Met 1	13798
agg cgc gcg Arg Arg Ala	g gtg gga gt I Val Gly Va 5	ll Pro Pro \	gtg atg gcg /al Met Ala LO	tac gcc gag Tyr Ala Gli 15	ggt cct Gly Pro	13846
cct cct tct Pro Pro Ser 20	tac gaa ac Tyr Glu Th	g gtg atg g ir Val Met 0 25	ggc gcc gcg Sly Ala Ala	gat tcg ccg Asp Ser Pro 30	gcc acg Ala Thr	13894
ctg gag gcg	ctc tac gt	c cct ccc o	gc tac ctg Page 11	ggg cct acg O	gag ggg	13942

Leu	Glu 35	Ala	Leu	Tyr	٧a٦	Pro 40	Pro	Arg	Tyr	Leu	G]y 45	Pro	Thr	Glu	Gly	
													gac Asp			13990
cgc Arg	gtg Val	tac Tyr	ctg Leu	gtg Val 70	gat Asp	aac Asn	aag Lys	tcg Ser	gcg Ala 75	gac Asp	atc Ile	gcg Ala	tcg Ser	ctg Leu 80	aac Asn	14038
tac Tyr	cag Gln	aac Asn	gac Asp 85	cat His	agc Ser	aac Asn	ttt Phe	ctg Leu 90	acc Thr	acg Thr	gtg Val	gtg Val	cag Gln 95	aac Asn	aat Asn	14086
gac Asp	ttt Phe	acc Thr 100	ccg Pro	gtg Val	gag Glu	gcg Ala	ggc Gly 105	acg Thr	cag Gln	acc Thr	ata Ile	aat Asn 110	ttc Phe	gac Asp	gag Glu	14134
													acc Thr			14182
ccc Pro 130	aac Asn	atc Ile	aac Asn	gag Glu	ttc Phe 135	atg Met	tcc Ser	acc Thr	aac Asn	aag Lys 140	ttc Phe	agg Arg	gcc Ala	cgg Arg	ttg Leu 145	14230
atg Met	gta Val	gag Glu	aaa Lys	gtg Val 150	aac Asn	aag Lys	gaa Glu	acc Thr	aat Asn 155	gcc Ala	cct Pro	cga Arg	tac Tyr	gag Glu 160	tgg Trp	14278
													atg Met 175			14326
gac Asp	ctg Leu	atg Met 180	aat Asn	aac Asn	gcg Ala	atc Ile	gtg Val 185	gac Asp	aac Asn	tac Tyr	ttg Leu	gaa Glu 190	gtg val	ggg Gly	cgg Arg	14374
cag Gln	aac Asn 195	ggg Gly	gtg val	ctg Leu	gag Glu	agc Ser 200	gac Asp	atc Ile	ggg Gly	gtg Val	aag Lys 205	ttt Phe	gac Asp	acg Thr	cgc Arg	14422
aac Asn 210	ttc Phe	cgg Arg	ctg Leu	ggc Gly	tgg Trp 215	gac Asp	ccg Pro	gtc Val	acc Thr	aag Lys 220	ctg Leu	gtc val	atg Met	ccc Pro	ggc Gly 225	14470
gtg Val	tac Tyr	acc Thr	aac Asn	gag Glu 230	gcc Ala	ttc Phe	cac His	ccc Pro	gac Asp 235	atc Ile	gtc Val	ctg Leu	ctg Leu	ccc Pro 240	ggc Gly	14518
tgc Cys	ggc Gly	gtg Val	gac Asp 245	ttc Phe	acg Thr	cag Gln	agc Ser	cgg Arg 250	ctg Leu	agc Ser	aac Asn	ctg Leu	ctg Leu 255	ggg Gly	atc Ile	14566
cgc Arg	aag Lys	cgg Arg 260	atg Met	ccc Pro	ttc Phe	cag Gln	gcg Ala 265	ggt Gly	ttt Phe	cag Gln	atc Ile	atg Met 270	tac Tyr	gag Glu	gac Asp	14614
ctg Leu	gag Glu 275	ggc Gly	ggc Gly	aac Asn	atc Ile	ccc Pro 280	gcc Ala	ttg Leu	cta Leu	gac Asp	gtg Val 285	gcg Ala	aaa Lys	tac Tyr	gag Glu	14662
gcc Ala 290	agc Ser	att Ile	cag Gln	aag Lys	gcg Ala 295	cgg Arg	gag Glu	cag Gln	ggc Gly	cag G1n 300	gag Glu	atc Ile	cgc Arg	ggc Gly	gac Asp 305	14710
aac Asn	ttt Phe	acc Thr	gtc Val	atc Ile	ccc Pro	cgg Arg	gac Asp	gtg Val	Glu	atc Ile e 11	Va I	ccc Pro	gtg Val	gag Glu	aag Lys	14758

310		315	320
gat agc aag gac cgc a Asp Ser Lys Asp Arg S 325	gt tac aac cta er Tyr Asn Leu 330	ctc ccc ggc gac ca Leu Pro Gly Asp G	n Thr Asn
acg gcc tac cgc agc t Thr Ala Tyr Arg Ser T 340	gg ttc ctg gcc rp Phe Leu Ala 345	tac aac tac ggc ga Tyr Asn Tyr Gly As 350	c ccc gag 14854 p Pro Glu
aag ggc gtc agg tcc t Lys Gly Val Arg Ser T 355	gg acg ctg ctg rp Thr Leu Leu 360	acc acc acg gac gt Thr Thr Thr Asp Va 365	c acc tgc 14902 I Thr Cys
ggc tcg cag cag gtg t Gly Ser Gln Gln Val T 370 3	ac tgg tcg ctc yr Trp Ser Leu 75	ccg gac atg atg ca Pro Asp Met Met G 380	a gac ccc 14950 n Asp Pro 385
gtg acc ttc cgg ccc t Val Thr Phe Arg Pro S 390	cc agc caa gtc er Ser Gln Val	agc aac tac ccc gt Ser Asn Tyr Pro Va 395	g gtg gga 14998 1 Val Gly 400
gtc gag ctc ctg ccg g Val Glu Leu Leu Pro V 405	tg cac gcc aag al His Ala Lys 410	agc ttt tac aac ga Ser Phe Tyr Asn G 43	ù Gln Ala
gtc tac tcg cag ctc a Val Tyr Ser Gln Leu I 420			
aac cgc ttc ccc gag a Asn Arg Phe Pro Glu A 435	ac cag atc ctg sn Gln Ile Leu 440	gtg cgc ccg ccc gg Val Arg Pro Pro A 445	t ccg acc 15142 a Pro Thr
att acc acc gtc agt g Ile Thr Thr Val Ser G 450 4	aa aac gtt ccc lu Asn Val Pro 55	gcc ctc aca gat ca Ala Leu Thr Asp H 460	ic gga acc 15190 s Gly Thr 465
ctg ccg ctg cgc agc a Leu Pro Leu Arg Ser S 470			
gac gcc cgg cga agg a Asp Ala Arg Arg Arg T 485	cc tgc ccc tac or Cys Pro Tyr 490	Val His Lys Āla Le	eŭ Gly Ile
gtc gct ccc aaa gtg c Val Ala Pro Lys Val L 500	tc tct agc cgc eu Ser Ser Arg 505	acc ttt taa caagca Thr Phe	15332
cattctcatc tcgcccgaca	acaacaccgg ct	ggggcctg cgctcggccg	gcatgtacgg 15392
cggcgccaag cggcgctcca	gcgagcaccc cg	tccgcgtc cgcggccact	accgggcccc 15452
ctggggcgcc cacaagcgcg	gcgtctccac gc	gcaccacc gtcgacgac	ccatcgacgc 15512
cgtcgtggcc caggccagac	gctaccgccg gc	ccaagtcg acggtggacg	ccgtcatcga 15572
cagcgtggtg gccgacgcgc	ggcgatacgc tc	gacgcaag cggcgtctgo	accgccgtcg 15632
ccgtcccacc gccgccatgc	tggccgccag ag	cggtcctg agacgcgcg	gccgcgtggg 15692
ccgccgagcc atgcgccgag	ccgcggccaa cg	ccagcgcg ggtcgcgcc	gtcgtcaggc 15752
cgcccggcag gccgccgccg	ccatcgccaa cc	tggcccaa ccccgccggg	gaaacgtgta 15812
ctgggtgcga gacgcgtcgg	gcgtgcgcgt gc	cggtgcgc acccgcccc	ctcggagtta 15872
gaagacaaaa agacggacga	agactgagtt to	cctgtcgt tgccagcat <u>c</u> Page 112	agcaagcgca 15932

agttcaaaga	agagctgctg	gaggccctcg	tgcccgagat	ctacggcccg	gccgccgctg	15992
ccgccgcggt	ggcggacgtc	aagcccgaag	ttaagccccg	cgcgctgaag	cgggttaaaa	16052
agcgggaaaa	gaaagaggag	aagcaggaag	cagggttgct	agacgtcgac	gacggcgtgg	16112
agttcgtgcg	gtccttcgcg	ccccgtcgcc	gggtgcagtg	gcggggtcgc	cgcgtcaagc	16172
tcgtcccgcg	gccgggcacc	gtggtgtctt	tcacccccgg	cctgcgttcg	gccacgcgcg	16232
gcctgaagcg	cgagtacgac	gaggtctatg	gcgacgaaga	catcctggag	caggccgccc	16292
agcagctcgg	ggagtttgct	tacggcaagc	gcggccgcta	cggggaggtg	gcgctggcgc	16352
tggaccaggg	caatcccacg	cccagcctca	agcccgtcac	gctgcagcag	gtgctgcccg	16412
tgagcgcgtc	gaccgagagc	aagcggggca	tcaagaggga	gatgggcgac	ctgcagccca	16472
ccatgcaact	catggtgccc	aaacggcaga	agctggagga	cgtgctggag	aacatgaaag	16532
tggatcccag	catcgagccc	gaagtgaaag	tgcgacccat	caaggaagtg	ggcccgggcc	16592
taggcgtgca	gacggtggac	attcagatcc	ccgtgcgcgc	ctccccgtt	tctgccacca	16652
ctacgacggc	cgtggaggcc	atggaaacgc	agacggagct	gcccgcggcc	ttggcggcag	16712
ccgccaccgc	cgccgcggct	acccgagaga	tgggcatgca	gaccgacccc	tggtacgagt	16772
tcgccggccc	cgcccgtcgt	ccacgagccc	gtcggtacgc	ggcgaccacc	tcccggctcc	16832
ctgactacgt	cttgcatcct	tccatcacgc	cgacgcccgg	ctaccgcgga	acgaccttcc	16892
gccccggtcg	cgcgcgcacc	accacccgcc	gtcgtcgcac	cacccgccgc	cgtcgcagcc	16952
gtcgcgcact	ggctcccatc	gcggttcgcc	gcgtcgtccg	ccggggtcgc	acgctgaccc	17012
tgcccaccgc	gcgttaccac	cccagcatcg	tcatttaacc	tgcgctgccg	ttttgcagat	17072
ggctctgacg	tgccgctttc	gcttccccgt	tcggcactac	cgaggaagat	ctcgccgtag	17132
gactggtcta	gcgggcagcg	gtctccgacg	ccgccgccgc	gcggtgcacc	ggcgcatgaa	17192
gggcggcatt	ctgcccgcgc	tgatccccat	tatcgccgcc	gccatcgggg	cgatccccgg	17252
cgtggcctcg	gtggccttgc	aagcagctcg	caaaaattaa	ataaagaagg	cttgacactc	17312
actgcctggt	cctgactgtt	tcatgcagac	aagacatgga	agacatcaat	tttgcgtcgt	17372
tggccccgcg	gcacggctcg	cggccgttca	tgggcacctg	gaacgagatc	ggcaccagcc	17432
agctcaacgg	gggcgctttc	agttggagca	gcctgtggag	cggcattaaa	aactttgggt	17492
ccacgattaa	gacctatggc	aacaaggcgt	ggaacagtag	cactggtcag	atgctccgcg	17552
ataagctgaa	ggaccagaac	ttccagcaga	aagtggtaga	cggtctggcc	tcgggcatca	17612
acggggtggt	ggacctggcc	aaccaggcgg	tgcagaacca	gatcaaccag	cgtctggaga	17672
acagccgcca	gccgcccgcg	gccctgcagc	agcgtccgca	ggtggaggag	gtggaagtgg	17732
aggagaagct	gccgcccctg	gagacggtgt	cgccggtggg	cgtgcctagc	aagggggaga	17792
agcggccgcg	gcccgagctc	gaggagaccc	tagtgaccga	gaccctggag	ccgccctcgt	17852
acgagcaggc	cttgaaagag	ggggccacgc	ccctgcccat	gacccggccc	atcggaccca	17912
tggcccgacc	ggtctacggc	aaggaacaca	aagccgtgac	gctagagctg	cctccgccgg	17972

cgc	ccac	cgt	accc	ccga [.]	tg c	ccgg [.]	tccc	a cc	ctgg	gcac	cgc	cgtg	cct	cgtc	ccgccg	18032
ccc	cgcc	ggt	cgcc	gtgg	cc a	cgcc	cgcg	c gc	ccga	gtcg	cgg	agcca	aac	tggc	agagca	18092
ctc	tgaa	cag	catc	gtgg	gc c	tggg	agtga	a aaa	agcc	tgaa	acg	ccgc	cgg	tgtt	actatt	18152
aaa	gcca	gct	aaata	accc	at g	tgtt	gtate	g cg	cctc	ctgt	gtc	acgc	cag	aaaa	agccag	18212
ccg	agtga	acg (ggtc	accg	cc g	ccgc	caaga	a gc	gccg	cttt	caa			a Thi	c ccc r Pro	18268
tcg Ser	atg Met	atg Met 515	ccg Pro	cag Gln	tgg Trp	tct Ser	tac Tyr 520	atg Met	cac His	atc Ile	gcc Ala	ggg Gly 525	cag Gln	gac Asp	gcc Ala	18316
tcg Ser	gag Glu 530	tac Tyr	ctg Leu	agc Ser	ccg Pro	ggc Gly 535	ctg Leu	gtg Val	cag Gln	ttc Phe	gcc Ala 540	cgc Arg	gcc Ala	acc Thr	gac Asp	18364
														gcc Ala		18412
acc Thr	cac His	gac Asp	gtg Val	acg Thr 565	acg Thr	gac Asp	cgg Arg	tcc Ser	cag Gln 570	cgg Arg	ctg Leu	acg Thr	ctg Leu	cgg Arg 575	ttc Phe	18460
gtg Val	ccc Pro	gtc Val	gac Asp 580	cgc Arg	gag Glu	gac Asp	acc Thr	gcg Ala 585	tac Tyr	tcg Ser	tac Tyr	aaa Lys	gtg Val 590	cgc Arg	ttc Phe	18508
acg Thr	ctg Leu	gcc Ala 595	gtg Val	ggc Gly	gac Asp	aac Asn	cgc Arg 600	gtg Val	ctg Leu	gac Asp	atg Met	gcc Ala 605	agc Ser	acg Thr	tac Tyr	18556
ttt Phe	gac Asp 610	atc Ile	cgc Arg	ggc Gly	gtg Val									ccc Pro		18604
tcc Ser 625	ggc Gly	acc Thr	gcc Ala	tac Tyr	aac Asn 630	tcc Ser	ctg Leu	gcc Ala	ccc Pro	aag Lys 635	ggc Gly	gcc Ala	ccc Pro	aac Asn	ccg Pro 640	18652
tca Ser	gaa Glu	tgg Trp	aag Lys	ggc Gly 645	tca Ser	gac Asp	aac Asn	aaa Lys	att Ile 650	agt Ser	gta Val	aga Arg	ggt Gly	cag Gln 655	gct Ala	18700
ccg Pro	ttt Phe	ttt Phe	agt Ser 660	aca Thr	tcc Ser	att Ile	aca Thr	aag Lys 665	gat Asp	ggt Gly	att Ile	caa Gln	gtg Val 670	gcc Ala	act Thr	18748
gat Asp	act Thr	tct Ser 675	agc Ser	gga Gly	gct Ala	gtg Val	tat Tyr 680	gct Ala	aaa Lys	aag Lys	gaa Glu	tat Tyr 685	cag Gln	cct Pro	gaa Glu	18796
cca Pro	caa Gln 690	gta Val	ggg Gly	caa Gln	gaa Glu	caa Gln 695	tgg Trp	aac Asn	agc Ser	gaa Glu	gcc Ala 700	agt Ser	gat Asp	agt Ser	gat Asp	18844
aaa Lys 705	gta Val	gct Ala	ggt Gly	agg Arg	att Ile 710	cta Leu	aaa Lys	gac Asp	aca Thr	aca Thr 715	ccc Pro	atg Met	ttc Phe	cct Pro	tgt Cys 720	18892
tac Tyr	ggt Gly	tcc Ser	tac Tyr	gcc Ala 725	aag Lys	CCC Pro	aca Thr	aat Asn	gaa Glu 730	cag Gln	ggg Gly	ggg Gly	caa Gln	ggc Gly 735	act Thr	18940
aat	act	gta	gat	ctg	cag	ttc	ttt	gcc		tca e 11		gct	acc	tct	acg	18988

Asn	Thr	٧a٦	Asp 740	Leu	Gln	Phe	Phe	Ala 745	Ser	Ser	Ser	Ala	Thr 750	Ser	Thr	
cct Pro	aaa Lys	gcc Ala 755	gta Val	ctc Leu	tat Tyr	gcc Ala	gag Glu 760	gac Asp	gtg Val	gca Ala	ata Ile	gaa Glu 765	gca Ala	cca Pro	gac Asp	19036
acc Thr	cat His 770	ttg Leu	gtg Val	tac Tyr	aaa Lys	ccg Pro 775	gca Ala	gtt Val	aca Thr	acc Thr	acg Thr 780	acc Thr	act Thr	agt Ser	tcc Ser	19084
caa Gln 785	gac Asp	ctg Leu	cta Leu	act Thr	cag Gln 790	cag Gln	gct Ala	gct Ala	ccc Pro	aac Asn 795	cga Arg	ccc Pro	aac Asn	tac Tyr	att Ile 800	19132
ggc Gly	ttc Phe	agg Arg	gat Asp	aat Asn 805	ttt Phe	atc Ile	ggt Gly	ctc Leu	atg Met 810	tat Tyr	tac Tyr	aac Asn	tcc Ser	act Thr 815	ggc Gly	19180
aat Asn	atg Met	ggt Gly	gtt Val 820	ttg Leu	gca Ala	ggg Gly	caa Gln	gct Ala 825	tct Ser	cag Gln	cta Leu	aac Asn	gcg Ala 830	gtg Val	gtt Val	19228
gac Asp	ttg Leu	caa Gln 835	gac Asp	aga Arg	aac Asn	acc Thr	gag Glu 840	ctg Leu	tcc Ser	tac Tyr	cag Gln	ctc Leu 845	atg Met	ctt Leu	gat Asp	19276
gct Ala	ttg Leu 850	ggc Gly	gac Asp	cgc Arg	agt Ser	cgt Arg 855	tac Tyr	ttc Phe	tcc Ser	atg Met	tgg Trp 860	aac Asn	cag Gln	gcc Ala	gta Val	19324
gac Asp 865	agc Ser	tat Tyr	gac Asp	cct Pro	gat Asp 870	gtc Val	aga Arg	att Ile	att Ile	gaa Glu 875	aat Asn	cat His	ggt Gly	gtg Val	gag Glu 880	19372
gat Asp	gag Glu	ctg Leu	cca Pro	aac Asn 885	tac Tyr	tgt Cys	ttc Phe	ccg Pro	cta Leu 890	gga Gly	ggg Gly	tcg Ser	cta Leu	gta Val 895	act Thr	19420
											agt Ser					19468
acc Thr	gac Asp	agc Ser 915	acc Thr	acc Thr	tat Tyr	gca Ala	act Thr 920	aga Arg	ggg Gly	gtg Val	gaa Glu	atc Ile 925	ggc Gly	tct Ser	ggc Gly	19516
aac Asn	atg Met 930	ttc Phe	gcc Ala	atg Met	gaa Glu	att Ile 935	aat Asn	ttg Leu	gcg Ala	gcc Ala	aat Asn 940	cta Leu	tgg Trp	agg Arg	agt Ser	19564
											gac Asp					19612
											aac Asn					19660
atg Met	aac Asn	ggc Gly	cgc Arg 980	gtg Val	gcc Ala	gcc Ala	CCC Pro	agc Ser 985	tcc Ser	ctc Leu	gac Asp	acc Thr	tac Tyr 990	gtc Val	aac Asn	19708
								Pro			c aac o Ası]_ A		cc ttc ro Phe	19756
aac Asn	cac His	cac His	cgo S Arg	aad G Asi	gcg n Ala	g gga a Gly	a ci	tg co eu Ai	rg Ty	ac co /r Ai e 11	gc to rg Se .5	cc a er M	atg (Met I	ctg (Leu I	ctg Leu	19801

1	1010					1015					1020				
Gly A	aac Asn 1025	ggc Gly	cgc Arg	tac Tyr	gta Val	ccc Pro 1030	ttc Phe	cac His	atc Ile	caa Gln	gtg Val 1035	ccc Pro	cag Gln	aaa Lys	19846
Phe F						ctc Leu 1045							tac Tyr		19891
Tyr	gag Glu 1055	tgg Trp	aac Asn	ttc Phe	cgc Arg	aag Lys 1060	gac Asp	gtc Val	aac Asn	atg Met	atc Ile 1065	ctc Leu	cag Gln	agc Ser	19936
Ser L	ctg Leu 1070	ggt Gly	aac Asn	gac Asp	ctc Leu	cgc Arg 1075	gtc Val	gac Asp	ggg Gly	gcc Ala	agc Ser 1080	gtc Val	agg Arg	ttc Phe	19981
Asp S	agc Ser 1085	atc Ile	aac Asn	ctg Leu	tac Tyr	gcc Ala 1090	aac Asn	ttc Phe	ttc Phe	ccc Pro	atg Met 1095	gcc Ala	cac His	aac Asn	20026
Thr A	gcc 41a 1100	tcc Ser	acg Thr	ctc Leu	gag Glu	gcc Ala 1105	atg Met	ctg Leu	cgc Arg	aac Asn	gac Asp 1110	acc Thr	aac Asn	gac Asp	20071
Gln S	tcg Ser 1115	ttc Phe	aac Asn	gac Asp	tac Tyr	ctc Leu 1120	tgc Cys	gct Ala	gcc Ala	aac Asn	atg Met 1125	ctc Leu	tac Tyr	ccc Pro	20116
	ccc Pro 1130	gcc Ala	aac Asn	gcc Ala	acc Thr	agc Ser 1135	gtg val	ccc Pro	atc Ile	tcc Ser	att Ile 1140	ccc Pro	tcg Ser	cgg Arg	20161
Asn 7	tgg Trp 1145	gcc Ala	gcc Ala	ttc Phe	cgg Arg	ggc Gly 1150	tgg Trp	agc Ser	ttc Phe	acc Thr	cgg Arg 1155	ctc Leu	aag Lys		20206
Lys (gag Glu 1160	acc Thr	ccc Pro	tct Ser	ctg Leu	ggc Gly 1165	tcc Ser	ggc Gly	ttc Phe	gat Asp	ccc Pro 1170	tac Tyr	ttc Phe	acc Thr	20251
Tyr S	tcg Ser 1175	ggc Gly	tcc Ser	atc Ile	ccc Pro	tac Tyr 1180	ctg Leu	gac Asp	ggc Gly	acc Thr	ttc Phe 1185	tac Tyr	ctc Leu	aac Asn	20296
His T						tcc ser 1195									20341
Trp F	ccc Pro 1205	ggc Gly	aac Asn	gac Asp	cgc Arg	ctg Leu 1210	ctg Leu	acc Thr	ccc Pro	aac Asn	gag Glu 1215	ttc Phe	gag Glu		20386
aag o Lys A 1	cgc Arg 1220	acc Thr	gtg Val	gac Asp	ggg Gly	gaa Glu 1225	ggg Gly	tac Tyr	aac Asn	gtg Val	gcc Ala 1230	cag Gln	tgc Cys	aac Asn	20431
Met T						ctc Leu 1240	atc Ile	cag Gln	atg Met	ctc Leu	agc Ser 1245	cac His	tac Tyr	aac Asn	20476
Ile G	ggc Ty L250	tac Tyr	cag Gln	ggc Gly	ttc Phe	tac Tyr 1255	gtg Val	CCC Pro	gag Glu	ggc Gly	tac Tyr 1260	aag Lys	gac Asp	agg Arg	20521
Met T	tac Tyr L265	tct Ser	ttc Phe	ttc Phe	cgc Arg	aac Asn 1270	ttc Phe	Gln	ccc Pro age	Met	agc Ser 1275	cgc Arg	cag Gln	gtg Val	20566

gtc gac acc acc tac acc gac tac aaa aac gtc acc ctc ccc Val Asp Thr Thr Thr Tyr Thr Asp Tyr Lys Asn Val Thr Leu Pro 1280 1285 1290	20611
ttc cag cac aac tcg ggg ttc gtg gga tac atg ggc ccc acc Phe Gln His Asn Asn Ser Gly Phe Val Gly Tyr Met Gly Pro Thr 1295 1300 1305	20656
atg cgc gag ggg cag gcc tac ccc gcc aac tac ccc tac ccc ctg Met Arg Glu Gly Gln Ala Tyr Pro Ala Asn Tyr Pro Tyr Pro Leu 1310 1315 1320	20701
atc ggc aag acc gcc gtg ccc agc ctc acg cag aaa aag ttc ctc Ile Gly Lys Thr Ala Val Pro Ser Leu Thr Gln Lys Lys Phe Leu 1325 1330 1335	20746
tgc gac cgc acc atg tgg cgc atc ccc ttc tcc agt aac ttc atg Cys Asp Arg Thr Met Trp Arg Ile Pro Phe Ser Ser Asn Phe Met 1340 1345 1350	20791
tcc atg ggg gcg ctc acc gac ctg ggg cag aac atg ctg tac gcc Ser Met Gly Ala Leu Thr Asp Leu Gly Gln Asn Met Leu Tyr Ala 1355 1360 1365	20836
aac tcc gcc cac gcc ctc gac atg acc ttc gag gtg gac ccc atg Asn Ser Ala His Ala Leu Asp Met Thr Phe Glu Val Asp Pro Met 1370 1375 1380	20881
gat gag ccc acg ctt ctc tat gtt ctg ttc gaa gtg ttc gac gtc Asp Glu Pro Thr Leu Leu Tyr Val Leu Phe Glu Val Phe Asp Val 1385 1390 1395	20926
gtg cgc atc cac cag ccg cac cgc ggc gtc atc gag gcc gtc tac Val Arg Ile His Gln Pro His Arg Gly Val Ile Glu Ala Val Tyr 1400 1405 1410	20971
ctg cgc acg ccg ttc tcg gcc ggt aac gcc acc acc taa ggaggggcc Leu Arg Thr Pro Phe Ser Ala Gly Asn Ala Thr Thr 1415 1420 1425	21020
gccgacggat gggctccagc gagccggagc tggtcgccat cgcgcgcgac ctgggctgcg	21080
ggccctactt cctgggcacc tttgacaaac gcttcccggg cttcgtggcg ccgcacaagc	21140
tggcctgcgc catcgtcaac accgccggac gcgagaccgg cggcgtccac tggctggccc	21200
tggcctggaa cccccgcagc cgaacctgct acctcttcga ccccttcggc ttctcggacg	21260
acaggctcag gcagatctac cagttcgagt acgaaggcct gctccggcgc agcgccctcg	21320
cctccacccc cgaccactgc gtcaccctcg tcaagtccac ccagaccgtc caggggcccc	21380
gctcggccgc ctgcggcctc ttctgctgca tgttcctgca cgccttcgtg cgctggcccg	21440
cctccccat ggacggcaac cccaccatgg acctccttac gggcgttccc aacagcatgc	21500
ttcagagtcc ccaggtcgag cccaccctcc accgcaacca ggaggaactc tacgccttcc	21560
tggctcggca ctccccctac tttcgccgcc accgcgagcg catagaaaag gccaccgcgt	21620
ttgacaaaat gaacgactag attttctgtg aaaaacactc aataaagcct ttattggttc	21680
accacacgtg cacgcatgca gactttttat ttaaaagggc tccgcctcct cgtcgccgtg	21740
gctggtgggg agggagacgt tgcgatactg caggcgggag ctccatctga actcgggaat	21800
cagcagcttg ggcagggggc cctcgacgtt ctcgctccac agcttgcgca ccagctgcag	21860

ggcgcccagc	aggtcgggcg	cggagatctt	gaagtcgcag	ttggggccct	ggttgccgcg	21920
ggagttgcgg	tacaccgggt	tggcgcactg	gaacaccagc	acgctggggt	gctcgatgct	21980
ggccagcgcc	gtcttgtcgg	tcacctcgtc	gccgcgcagg	gactccgcgt	tgctcagcgc	22040
gaaggcggtc	agcttgcaca	gctgccgacc	cagcacgggc	accccgctcg	gctggttcag	22100
gcagtcgcag	cgcatagcca	tcagcagccg	cttctgcccg	tgctgcatct	tcggatagtc	22160
ggctcgcatg	aaggcctcca	tctgccggaa	ggccgtctgc	gccttgctgc	cctccgagaa	22220
gaacagcccg	caggacttgc	cggagaacac	gttgttgccg	cagctcacgt	cttccacgca	22280
gcagcgcgcg	tcgtcgttct	tcagctgcac	cacgctgcgg	ccccagcggt	tctgcaccac	22340
cttggtcttg	ccgggatgtt	ccttcagggc	ccgctggccg	ttctcgctgg	tcacgtccat	22400
ctccaccacc	tgctccttct	ggatcatctc	cagcccgtgg	tagcagcgca	gcacgccctc	22460
ctgctcggtg	cacccgtgca	gccagacggc	gcagccggtc	ggctccagct	gttgaggttt	22520
caccccggcg	taggtctcca	cgtacgcccg	caggaagcgg	cccatcatct	ccacaaaggt	22580
cttctgaccg	gtgaaggtca	gctgcagccc	gcgatgctcc	tcgttgagcc	acgtctgaca	22640
gatcttgcgg	tacaccttgc	cctgctcggg	cagaaacttg	aaagcggcct	tctcctcggg	22700
ctccacgtgg	tacttctcca	tcagcgccga	catcagctcc	atgcccttct	cccaggccga	22760
caccagcggc	tccgcgcggg	ggttcaccac	cgccatgcct	cgggaagtgc	cggggcgctc	22820
atcttcctcc	tcctcctcgt	cttcttcttg	aggcggcggt	ggcggcagtt	gtctcacgaa	22880
tctcttgccg	ttggccttct	ggacgatctc	cacgccgggg	tgggtgaacc	cgtgggccac	22940
caccacttcg	tcctcttcct	cttcgctgtc	gggcacgact	tcgggagagg	gaggcggcgg	23000
aggaaccggt	gcggccactg	cggccatcgc	ggcgttcttg	cgcgccttct	tggggggcag	23060
aggcggcgtc	tcgcgctccg	ggctggtctc	ttgcaggtag	ggcgtgatgg	tgtgggaggt	23120
ggggcgctct	ggctgacggc	cggccatgct	gatgcttgac	tcctaggcga	aaagatggag	23180
gaggatctta	gacagccgca	gcccgtctcc	gaaaccttaa	ccacccccgc	ctctgaggtc	23240
ggcgccggcg	agctagacat	gcaacgggag	gaggaggagg	acgtgcgagt	ggagcaagac	23300
ccgggctacg	tgacgccgcc	cgaggacggc	gaggagccgc	aggcaccggc	gccaacgctc	23360
agcgaagccg	actacctggg	aggggaggac	gacgtgctgc	tgaagcacct	ggcgcggcag	23420
agcaccatcg	tgcaggaggc	cctcaaggag	cgcgaggagg	tcccgctgac	ggtggaggag	23480
ctcagccggg	cctacgaagc	caacctcttc	tcgccgcggg	tgcccccaa	gaagcaggcc	23540
aacggcacct	gcgagcccaa	ccccgcctc	aacttctacc	ccgtctttgc	ggtgcccgag	23600
gcgctggcca	cctatcacat	cttcttcaag	aaccagcgca	tcccctctc	gtgccgcgcc	23660
aaccgcaccc	gcgccgaccg	cctcctgcat	ctccgagccg	gcgccgccat	acctgagatc	23720
gcctccctgg	aggaagtccc	caagatcttc	gaaggtctcg	gcaaggacga	gaagcgcgcg	23780
gcaaacgctc	tggaaaagaa	cgagagcgag	ggtcagaacg	tgctggtcga	gctggaaggc	23840
gacaacgcgc	gtctggccgt	gctcaaacgc	accatcgaag	tctcccactt	cgcctacccc	23900
gcgctcaacc	ttccccccaa	ggtcatgcgc	tcggtcatgg Page 11	atcagctgct 8	catcaagcgc	23960

gccgagcccc	tcgagaacga	ctccgaggtg	gattccgagg	acggaaaacc	cgtggtctcg	24020
gacgaggagc	tcgcgcgctg	gctgggcacg	caggaccccg	ccgagttgca	agagcggcgc	24080
aagatgatga	tggcggccgt	gctggtcacc	gccgagctcg	agtgcctgca	gcgcttcttc	24140
gccgaccccc	agaccctgcg	caaggtcgag	gagtccctgc	actacgcctt	ccgccacggc	24200
tacgtgcgcc	aggcctgcaa	gatctccaac	gtggagctta	gcaacctggt	ctcctacatg	24260
ggcatcctgc	acgagaaccg	cctcgggcag	aacgtcctcc	actgcaccct	gaccggggag	24320
gcccgccgcg	actacgtccg	cgactgcatc	tacctctttc	tcaccctcac	ctggcagacc	24380
gccatggggg	tctggcagca	gtgtctggag	gagcgcaacc	ttcgcgagct	cgacaagcta	24440
ctgagccgcg	agcgccgcga	gctctggacg	gctttcagcg	agcgcaccgc	cgcctgccgt	24500
ctggccgacc	tcatcttccc	cgagcgactc	aggcaaaccc	tccagaacgg	cctgcccgac	24560
tttgtcagcc	agagcatgct	gcaaaacttt	cgctccttca	tcctggagcg	atccggcatc	24620
ttgcccgcca	tgagctgcgc	cctgccctcc	gatttcgtcc	ccctctatta	tcgcgagtgc	24680
ccccgccgc	tctggagcca	ctgctacctg	ctgcgtctgg	ccaactacct	cgcccaccac	24740
tccgacctca	tggaagactc	cagcggcgag	gggctgctgg	agtgccactg	ccgctgcaac	24800
ctctgcaccc	cccaccgctc	gctggtctgc	aacaccgagc	tgctcagcga	gacgcaagtg	24860
atcggtacct	ttgagatcca	gggaccagag	gggccggagg	gtgcttccaa	cctcaagctc	24920
agcccggcgc	tctggacttc	cgcctacctg	cgcaaattta	tccccgagga	ctatcacgcc	24980
caccagatcc	aattctacga	agaccaatcg	cgacccccca	aagcccccct	cacggcctgt	25040
gtcatcaccc	agagccagat	tctggcccaa	ttgcaagcca	tccagcaggc	ccgccaagag	25100
ttcctcctga	aaaagggtca	cggggtctat	ctggaccccc	agaccggcga	ggaactcaac	25160
accccgtcac	cctccgccgc	cgcttcgtgc	cgcccgcaga	accatgccgc	ccaaagggaa	25220
caagcaggcc	atcgcccagc	ggcgggccaa	gaagcagcaa	gagctccagg	agcagtggga	25280
cgaggagtcc	tgggacagcc	aggcggagga	agtctcagac	gaggaggagg	acatggagag	25340
ctgggacagc	ctagacgagg	aggaggaggc	cgaggagcta	gaggacgagc	ctctcgagga	25400
ggaagagccc	agcagcgccg	cggcaccatc	ggcttccaaa	gaagcggctc	ggagccggcc	25460
ggccccgaag	cagcagaagc	agcaacagcc	gccaccgtcg	ccccgacgc	caccaccagg	25520
ctcactcaaa	gccagccgta	ggtgggacgc	ggtgtccatc	gcgggatcgc	ccaaagcccc	25580
agtcggtaag	ccacccgggc	ggtcgcggcg	ggggtactgt	tcctggcgcc	cccacaagag	25640
caagatcgtc	gcctgcctcc	agcactgccg	gggcaacatc	tccttcgcgc	ggcgctactt	25700
gctcttccac	gacggggtgg	cggtgccgcg	caacgtcctc	tactattacc	gtcatctcta	25760
cagcccctac	gagacagaag	gcccggcctc	cgcgtaagac	cagccgccag	acggtctcct	25820
ccgccatcgc	gacccgccag	gactcggccg	ccacgcagga	gctcagaaaa	cgcatctttc	25880
ccaccctgta	tgctatcttc	cagcagagcc	gcggccagca	gctggaactg	aaagtaaaaa	25940
accgctccct	gcgttcgctc	acccgcagct	gtctgtacca	caggagggaa	gaccaactgc	26000

agcgcacgct cg	aggacgcc g	aggcactgt	tcaataaata	ctgctcggtg	tctcttaagg	26060
actgaaagcc cg	cgcttttt c	agaggctca	ttacgtcatc	atcatcatga	gcaaggacat	26120
tcccacgcct ta	catgtgga g	ctaccagcc	gcagatggga	ctggcggccg	gcgcctccca	26180
ggattactcc ag	tcgcatga a	ctggctgag	tgccggcccc	cacatgatcg	ggcgggtcaa	26240
tgggattcgt gc	cacccgca a	tcagatact	gctggaacag	gccgccctca	cctccacccc	26300
gcgacgtcag ct	gaacccgc c	cgcttggcc	cgccgcccag	gtgtaccagg	aaaaccccgc	26360
cccgaccaca gt	cctcctgc c	acgcgacgc	ggaggccgaa	gtccagatga	ctaactccgg	26420
ggcgcaatta gc	gggcggcg c	ccgccacgt	cgtcgctccc	gggtacagag	gtcggcccgc	26480
accctacccc to	cggcccta t	aaagaggct	gatcattcga	ggccgaggta	tccagctcaa	26540
cgacgaggtg gtg	gagctcct c	gaccggtct	tcggcccgac	ggagtcttcc	agcttggagg	26600
cgccggccgc tc	ttccttca c	cactcgcca	ggcctacctg	acgctccaga	gctcttcctc	26660
ccagcctcgc tc	cggcggca t	cggcaccct	ccagttcgtg	gaggagttcg	tgccctcggt	26720
ctacttcaac cc	gttctccg g	ctctcccgg	ccgctacccg	gacagcttca	tccccaacta	26780
cgacgcggtg age	cgaatccg t	ggacggcta	cgattgatga	ccgatggtgc	ggccgtaact	26840
gcgcggcggc aa	catctgca t	cactgccat	cgtcctcggt	gcttcgcccg	ggaggcctgt	26900
gagttcatct act	ttccagct c	gccccggac	cagcttcagg	gcccttcgca	cggcgttaag	26960
ctcgtgatag agg	gaagagct c	gagagtagc	tgcctgcgct	gttttacctc	gcgccccatc	27020
ctagtcgaga ggg	gaacgcgg t	aggaccacc	ctcaccctct	actgcatctg	tgactccccg	27080
gaattacatg aag	gatctgtg t	tgccttcta	tgtgccgaac	aataacccct	cttgtaacta	27140
cctacatcca caa	ataaacca g	aatttggaa	actcctttcg	tttgtttgca	g atg aaa Met Lys	27197
	ctc gac ga	c gac ttc	aac ccc g		tat gac	27242
Arg Āla Arg 1 1430	Leu Āsp Ās _ļ	o Asp Phe 1435	Asn Pro V	al Tyr Pro 1440	Tyr Āsp	
act ccc aac of Thr Pro Asn A 1445	gct ccc tc Ala Pro Se	t gtt ccc r Val Pro 1450	Phe Ile T	ct cct ccc hr Pro Pro 1455	ttc gtc Phe Val	27287
tcc tcg gac	gc ttg ca	a gaa aaa	cca ccc g	ga atg ctc	agt ctc	27332
Ser Ser Asp (1460	Gly Leu Gli	1 GIU Lys 1465		ly Met Leu 1470	Ser Leu	
aac tac caa c Asn Tyr Gln A 1475	gat cct att Asp Pro Ile	acc acc Thr Thr 1480	Gln Asn G	gg gca tta ly Ala Leu 1485	act cta Thr Leu	27377
aag ctt ggc a	ac aas cto			•	ctt acc	27422
Lys Leu Gly S 1490	ser Gly Lei	Asn Ile 1495	Asn Gln As	sp Gly Glu 1500	Leu Thr	21422
tca gac gcc a Ser Asp Ala S 1505	agc gtt cto Ser Val Leo	gtc act Val Thr 1510	Pro Pro I	tt aca aaa le Thr Lys 1515	gcc aac Ala Asn	27467
aac aca ata g Asn Thr Ile 6 1520	ggc cta gco ly Leu Ala	ttc aat Phe Asn 1525	gca cct ct Ala Pro Le	tt acc ttg eu Thr Leu 1530	caa agc Gln Ser	27512
			Dana 12	0		

Page 120

gat Asp	act Thr	tta Leu 1535	aat Asn	ctt Leu	gct Ala	tgt Cys	aac Asn 1540	gcc Ala	cca Pro	ctt Leu	acc Thr	gtg Val 1545	caa Gln	gac Asp	27557
aat Asn	agg Arg	ttg Leu 1550	Ğ1y	ata Ile	aca Thr	tac Tyr	aac Asn 1555	tct Ser	ccc Pro	ctc Leu	acc Thr	ttg Leu 1560	caa Gln	aac Asn	27602
agc Ser	gaa Glu	ctt Leu 1565	gcc Ala	cta Leu	gcg Ala	gtc Val	acc Thr 1570	ccg Pro	cct Pro	ctt Leu	gac Asp	act Thr 1575	gcc Ala	aat Asn	27647
aac Asn	aca Thr	ctt Leu 1580	gcg Ala	ctt Leu	aaa Lys	acc Thr	gcc Ala 1585	cgg Arg	cct Pro	ata Ile	att Ile	aca Thr 1590	aac Asn	tct Ser	27692
		gag Glu 1595												agc Ser	27737
acg Thr	ggt Gly	acc Thr 1610	ctc Leu	cgc Arg	cta Leu	caa Gln	agc Ser 1615	gca Ala	gca Ala	cca Pro	ctg Leu	ggg Gly 1620	cta Leu	gtt Val	27782
gac Asp	caa Gln	acc Thr 1625	ctg Leu	cga Arg	gtg Val	ctt Leu	ttt Phe 1630	tct Ser	aac Asn	cca Pro	ctc Leu	tac Tyr 1635	ttg Leu	caa Gln	27827
aac Asn	aac Asn	ttt Phe 1640	ctc Leu	tca Ser	cta Leu	gcc Ala	att Ile 1645	gaa Glu	cgc Arg	cca Pro	ttg Leu	gct Ala 1650	tta Leu		27872
acc Thr	act Thr	ggt Gly 1655	tct Ser	atg Met	gct Ala	atg Met	cag Gln 1660	att Ile	tcc Ser	caa Gln	cca Pro	tta Leu 1665	aaa Lys		27917
gaa Glu	gac Asp	gga Gly 1670	agc Ser	tta Leu	agc Ser	ttg Leu	agc Ser 1675	att Ile	gaa Glu	agc Ser	cct Pro	cta Leu 1680	aat Asn	cta Leu	27962
aaa Lys	aac Asn	gga Gly 1685	aat Asn	ctt Leu	act Thr	tta Leu	gga Gly 1690	acc Thr	caa Gln	agt Ser	ccc Pro	cta Leu 1695	act Thr	gtc Val	28007
act Thr	ggt Gly	aac Asn 1700	aac Asn	ctc Leu	agc Ser	ctt Leu	aca Thr 1705	aca Thr	aca Thr	gcc Ala	cca Pro		acg Thr		28052
cag Gln	aac Asn	aac Asn 1715	gct Ala	cta Leu	gcc Ala	ctc Leu	tca Ser 1720	gtg Val	tta Leu	ctg Leu	ccg Pro	ctt Leu 1725	aga Arg	cta Leu	28097
		aac Asn 1730		tca Ser	ctg Leu	gga Gly	gtg Val 1735	gca Ala	ttc Phe	aac Asn	cca Pro	ccc Pro 1740	att Ile		28142
		aac Asn 1745	aac Asn	ggg Gly	ctg Leu	tct Ser	ctt Leu 1750	gac Asp	att Ile	gga Gly	aat Asn	ggc Gly 1755	ctt Leu	aca Thr	28187
ctg Leu	caa Gln	tac Tyr 1760	aac Asn	agg Arg	ctc Leu	gta Val	gtg Val 1765	aac Asn	att Ile	ggc Gly	ggc Gly	ggg Gly 1770	cta Leu	cag Gln	28232
ttt Phe	aac Asn	aac Asn 1775	ggt Gly	gct Ala	att Ile	acc Thr	gct Ala 1780	tcc Ser	ata Ile	aat Asn	gca Ala	gct Ala 1785	ctg Leu	ccg Pro	28277

ttg Leu	cag Gln	tat Tyr 1790	Ser	aat Asn	aac Asn	cag Gln	ctt Leu 1795	Ser	ctt Leu	aat Asn	att Ile	gga Gly 1800	ggc Gly	ggg Gly	28322
ctg Leu	cga Arg	tac Tyr 1805	Asn	ggc Gly	act Thr	tac Tyr	aaa Lys 1810	Asn	tta Leu	gcc Ala	gtc Val	aaa Lys 1815	acc Thr	gac Asp	28367
tct Ser	ttt Phe	agg Arg 1820	Ğly	ctt Leu	gaa Glu	att Ile	gac Asp 1825	agt Ser	aat Asn	cag Gln	ttc Phe	ctg Leu 1830	gtg Val	cca Pro	28412
aga Arg	ctg Leu	ggt Gly 1835	tct Ser	ggt Gly	cta Leu	aag Lys	ttt Phe 1840	Asp	caa Gln	tat Tyr	ggg Gly	tac Tyr 1845		agc Ser	28457
gtc Val	ata Ile	cct Pro 1850	cca Pro	act Thr	gtt Val	acg Thr	cca Pro 1855	aca Thr	aca Thr	ctt Leu	tgg Trp	act Thr 1860	aca Thr	gca Ala	28502
gac Asp	cct Pro	tct Ser 1865	ccc Pro	aac Asn	gct Ala	act Thr	ttt Phe 1870	tac Tyr	gac Asp	agc Ser	tta Leu	gat Asp 1875	gct Ala		28547
gta Val	tgg Trp	ctg Leu 1880	gcc Ala	tta Leu	gta Val	aaa Lys	tgc Cys 1885	aac Asn	ggc Gly	atg Met	gtt Val	aat Asn 1890	gga Gly	acc Thr	28592
ata Ile	gcc Ala	ata Ile 1895	aag Lys	gct Ala	tta Leu	aaa Lys	ggt Gly 1900	act Thr	ctg Leu	ctc Leu	caa Gln	cct Pro 1905	acg Thr	gct Ala	28637
agt Ser	ttt Phe	att Ile 1910	tct Ser	ttt Phe	gtt Val	atg Met	tat Tyr 1915	ttt Phe	tac Tyr	agc Ser	aat Asn	ggc Gly 1920		aga Arg	28682
aga Arg	act Thr	aac Asn 1925	tac Tyr	ccc Pro	acg Thr	ttt Phe	gaa Glu 1930	aat Asn	gaa Glu	ggc Gly	ata Ile	cta Leu 1935	gct Ala		28727
agt Ser	gct Ala	aca Thr 1940	tgg Trp	ggt Gly	tat Tyr	cgt Arg	caa Gln 1945	gga Gly	aac Asn	tcg Ser	gca Ala	aac Asn 1950	acc Thr	aac Asn	28772
	acc Thr	agt Ser 1955	gcc Ala	gtt Val	gaa Glu	ttt Phe	atg Met 1960	cct Pro	agc Ser	tcc Ser	aca Thr	aga Arg 1965	tat Tyr		28817
	aac Asn	aag Lys 1970	ggt Gly	act Thr	gag Glu	gtt Val	cag Gln 1975	aac Asn	atg Met	gaa Glu	ctc Leu	acc Thr 1980	tac Tyr	act Thr	28862
ttc Phe	ttg Leu	cag Gln 1985	gga Gly	gac Asp	ccc Pro	act Thr	atg Met 1990	gcc Ala	ata Ile	tca Ser	ttt Phe	caa Gln 1995	gct Ala	att Ile	28907
tat Tyr	aac Asn	cat His 2000	gct Ala	ttg Leu	gaa Glu	ggt Gly	tac Tyr 2005	tct Ser	tta Leu	aaa Lys	ttt Phe	acc Thr 2010	tgg Trp	. •	28952
gtt Val	cgc Arg	aac Asn 2015	agg Arg	gaa Glu	cgc Arg	ttt Phe	gat Asp 2020	atc Ile	ccc Pro	tgc Cys	tgt Cys	tct Ser 2025	ttt Phe		28997
tac Tyr	ata Ile		gaa Glu	gaa Glu	taa	acac	tgttt	t to	tttt	caat	gtt	tttat	tc		29045
+				.											

tgctttttta cacagttcga accgtcagac tccctcccc cttccacttc acccggtaca 29105 Page 122

cctcccgctc	cccctggatc	gctgcgtaca	actgcagttt	ggtgttcaga	cacgggttct	29165
taggtgacag	tatccacacg	gcctctttgc	cggccaggcg	ctggtccgta	atgctcacaa	29225
atccctccga	cacgtcctcc	agacacacgg	tggaatccaa	ggcgcccgtc	tacaaaacaa	29285
acacagtcat	gctctccacg	ggttctctcc	tcggtcgtac	tgcgccagcg	tgaacgggcg	29345
atggtgctcc	atcagggctc	gcagcaaccg	ctgtcggcgc	ggctcaccca	ggctccggcg	29405
aaaagcgccc	cgtctgggag	tgctattcaa	aaaacgcacc	gcctttatca	acagtctcct	29465
cgtgcggcgg	gcgcagcagc	gcacctggat	ctctgtcagg	tctttacaat	aggtacagcc	29525
catcaccacc	atgttgttta	aaatcccaaa	gctaaacacg	ctccacccaa	atgacatgaa	29585
ttccagcacc	gccgcggcgt	ggccatcata	caatatgcgg	aggtaaatca	ggtgccgccc	29645
cctaatacaa	acgctcccca	tatacatcac	ctccttaggc	agttgataat	taaccacctc	29705
ccggtaccag	ggaaacctca	cgtttactaa	agccccaaac	accaacattt	taaaccagtt	29765
agccagcacc	acccctcccg	ccttacactg	cagcgacccc	ggctgtttac	aatgacagtg	29825
aatcacccac	ctctcatacc	ccctaatgac	ctggcgtggc	tccacatcta	tagtagcaca	29885
gcacacgcac	accctcatgt	aatgcttcat	cacaaatctt	tcccaagggg	ttagtatcat	29945
gtcccagggt	acgggccact	cctgcagcac	ggtgaaaggt	acgcaggcgg	gaacagtcct	30005
cacctcggac	acataatgca	tattcagatg	ttcacactct	aaaaccccgg	ggcttccctc	30065
caacgcagcc	actggcaagt	tctcagaggg	tggtgtaagg	cggtggtgct	gatagggact	30125
caatctgtgt	cgacaccgtc	tgtcgcgttg	catcgtagac	caacgcttgg	cgcaccgcct	30185
cgtacttcgc	ccaaagaaaa	cgggtgcgac	gccaacacac	ttccgcgtac	cgtgggttcc	30245
gcactcgagc	tcgctcagtt	ctcaacgcat	aatgcagcca	ttcctgtaat	ccacacaaca	30305
gtcgctcggc	ttccaaagag	atgtgcacct	cgtatcttat	aacgtcccga	tatatatcca	30365
agcaggcagt	cagggccact	tgcaaccagt	gcacgcaggc	ggactgatcg	cgacacactg	30425
gaggtggagg	gagagacgga	agaggcatgt	tactccagac	ggtcgaaaag	cggatcaaag	30485
tgcagatcgc	gaagatggca	gcgatccccg	ccgctacgct	ggtgatagat	cacagccagg	30545
tcaaacataa	tgcggttttc	caaatgacct	attaccgcct	ccaccagagc	cgccacgcgc	30605
acttccagaa	acaccagcac	ggctacggca	ttctcctcaa	aatcttcaaa	cattaagctg	30665
catgattgaa	tcacccccaa	ataattctcc	tccttccatt	ctcgcaaaat	ttgagtaaaa	30725
acctctcgca	gattagctcc	gtggcgttca	aaaaggtcac	ttagagcgcc	ctccaccgcc	30785
atgcgcaagc	acaccctcat	gattgaaaaa	tgccagtctc	ctgaaccacc	tgcagttgat	30845
ttaaaagacc	tatattagga	tcaattccac	tctcccgcag	ctccacgcgt	agcattagct	30905
gcaaaaagtc	atttaaatct	tcgcaaacta	gcgcggtaag	ctcgccgccg	ggaattaggt	30965
ctgaagcagt	caccacacac	ataatttcca	gtgaaggagt	cagtctaagc	agcaaaaagc	31025
cgcatgagca	gtgttgaaaa	ggaggggtca	cgcaatgtaa	catatgcagc	caaaaatctc	31085
caaggtgtct	gtgcataaac	tccaccactg	aaaagtccaa	atcatgtaaa	tatgccatca	31145

ccgcctcagg aaccaccacg gacacaaaaa cgggccgtag caaatacatg gtgtcctgca 31205 aagcaaaaac acatttatac catagaggcg cgaattactt ggggaaaaaat cactcgctcc 31265 31325 aaaactaaac aggccaccgt ctgaccgcgc cagccataaa aaaagcggtt cgaatgatta aaaagaataa tagacacctc ccaccaggta ctcggctgca actcgtgcgc ccctatcaaa 31385 accccgcgga cgttcatgtc ggccatagaa aaaatgcggc ccaaatatcc caccggaatc 31445 tccacggcca gctgcagtga tagcaaaaga acgccatgag gagcaatcac aaaattttca 31505 ggcgataaaa gcacataaag gttagaatag ccctgctgca caggtaataa agcccgcgag 31565 ctcagcaaat gcacataaac cgcttcagcc atcccgtctt accgcgaaca aaaggctcac 31625 agtacacagt tactcaaccc acacgccaca cagtatttat acactcctca atcgccacgt 31685 caccegeec gaacaaacte caaaagteca aaaagtecaa aaegeeegeg taaaageeeg 31745 ccaaaacagc acttcctcat ttactctccc acagtacgtc acttccgccg cgcccgccgc 31805 cctcgccccg ccctcaccct cgcgctccac cccgcgcccc acgtcagact cccacccgc 31865 cccgcgcccg cgtcatccgc accccacct cactccaccc ctaaccccgc ctcctcatta 31925 31967 tcatattggc accgttccca aataaggtat attatgatga tg

<210> 13 <211> 508 <212> PRT

<213> Simian adenovirus

<400> 13

Met Arg Arg Ala Val Gly Val Pro Pro Val Met Ala Tyr Ala Glu Gly
1 10 15

Pro Pro Pro Ser Tyr Glu Thr Val Met Gly Ala Ala Asp Ser Pro Ala 20 25 30

Thr Leu Glu Ala Leu Tyr Val Pro Pro Arg Tyr Leu Gly Pro Thr Glu 35 40 45

Gly Arg Asn Ser Ile Arg Tyr Ser Glu Leu Ala Pro Leu Tyr Asp Thr 50 60

Thr Arg Val Tyr Leu Val Asp Asn Lys Ser Ala Asp Ile Ala Ser Leu 65 70 75 80

Asn Tyr Gln Asn Asp His Ser Asn Phe Leu Thr Thr Val Val Gln Asn 85 90 95

Asn Asp Phe Thr Pro Val Glu Ala Gly Thr Gln Thr Ile Asn Phe Asp 100 105 110

Glu Arg Ser Arg Trp Gly Gly Asp Leu Lys Thr Ile Leu Arg Thr Asn 115 120 125

Met Pro Asn Ile Asn Glu Phe Met Ser Thr Asn Lys Phe Arg Ala Arg Page 124

130 135 140

Leu Met Val Glu Lys Val Asn Lys Glu Thr Asn Ala Pro Arg Tyr Glu 145 150 155 160 Trp Phe Glu Phe Thr Leu Pro Glu Gly Asn Tyr Ser Glu Thr Met Thr 165 170 175 Ile Asp Leu Met Asn Asn Ala Ile Val Asp Asn Tyr Leu Glu Val Gly 180 185 190 Arg Gln Asn Gly Val Leu Glu Ser Asp Ile Gly Val Lys Phe Asp Thr 195 200 205 Asn Phe Arg Leu Gly Trp Asp Pro Val Thr Lys Leu Val Met Pro 210 220 Gly Val Tyr Thr Asn Glu Ala Phe His Pro Asp Ile Val Leu Leu Pro 225 230 235 240 Gly Cys Gly Val Asp Phe Thr Gln Ser Arg Leu Ser Asn Leu Leu Gly 245 250 255 Ile Arg Lys Arg Met Pro Phe Gln Ala Gly Phe Gln Ile Met Tyr Glu 260 265 270 Asp Leu Glu Gly Gly Asn Ile Pro Ala Leu Leu Asp Val Ala Lys Tyr 275 280 285 Glu Ala Ser Ile Gln Lys Ala Arg Glu Gln Gly Gln Glu Ile Arg Gly 290 295 300 Asp Asn Phe Thr Val Ile Pro Arg Asp Val Glu Ile Val Pro Val Glu 305 310 315 Lys Asp Ser Lys Asp Arg Ser Tyr Asn Leu Leu Pro Gly Asp Gln Thr 325 330 335 Asn Thr Ala Tyr Arg Ser Trp Phe Leu Ala Tyr Asn Tyr Gly Asp Pro 340 345 350 Glu Lys Gly Val Arg Ser Trp Thr Leu Leu Thr Thr Asp Val Thr 355 360 365 Cys Gly Ser Gln Gln Val Tyr Trp Ser Leu Pro Asp Met Met Gln Asp 370 380 Pro Val Thr Phe Arg Pro Ser Ser Gln Val Ser Asn Tyr Pro Val Val 385 390 395 400 Gly Val Glu Leu Leu Pro Val His Ala Lys Ser Phe Tyr Asn Glu Gln 405 410 415

Page 125

Ala Val Tyr Ser Gln Leu Ile Arg Gln Ser Thr Ala Leu Thr His Val 420 425 430

Phe Asn Arg Phe Pro Glu Asn Gln Ile Leu Val Arg Pro Pro Ala Pro 435 440 445

Thr Ile Thr Thr Val Ser Glu Asn Val Pro Ala Leu Thr Asp His Gly
450 455 460

Thr Leu Pro Leu Arg Ser Ser Ile Ser Gly Val Gln Arg Val Thr Ile 465 470 475 480

Thr Asp Ala Arg Arg Arg Thr Cys Pro Tyr Val His Lys Ala Leu Gly
485 490 495

Ile Val Ala Pro Lys Val Leu Ser Ser Arg Thr Phe 500 505

<210> 14

<211> <212> 917

PRT

Simian adenovirus

<400>

Met Ala Thr Pro Ser Met Met Pro Gln Trp Ser Tyr Met His Ile Ala 1 5 10 15

Gly Gln Asp Ala Ser Glu Tyr Leu Ser Pro Gly Leu Val Gln Phe Ala 20 25 30

Arg Ala Thr Asp Thr Tyr Phe Ser Leu Gly Asn Lys Phe Arg Asn Pro 35 40 45

Thr Val Ala Pro Thr His Asp Val Thr Thr Asp Arg Ser Gln Arg Leu 50 60

Thr Leu Arg Phe Val Pro Val Asp Arg Glu Asp Thr Ala Tyr Ser Tyr 65 70 75 80

Lys Val Arg Phe Thr Leu Ala Val Gly Asp Asn Arg Val Leu Asp Met
85 90 95

Ala Ser Thr Tyr Phe Asp Ile Arg Gly Val Leu Asp Arg Gly Pro Ser 100 105 110

Phe Lys Pro Tyr Ser Gly Thr Ala Tyr Asn Ser Leu Ala Pro Lys Gly 115 120 125

Ala Pro Asn Pro Ser Glu Trp Lys Gly Ser Asp Asn Lys Ile Ser Val 130 135 140

Arg Gly Gln Ala Pro Phe Phe Ser Thr Ser Ile Thr Lys Asp Gly Ile 145 150 155 160 Gln Val Ala Thr Asp Thr Ser Ser Gly Ala Val Tyr Ala Lys Lys Glu 165 170 175 Tyr Gln Pro Glu Pro Gln Val Gly Gln Glu Gln Trp Asn Ser Glu Ala 180 185 190 Ser Asp Ser Asp Lys Val Ala Gly Arg Ile Leu Lys Asp Thr Thr Pro 195 200 205 Phe Pro Cys Tyr Gly Ser Tyr Ala Lys Pro Thr Asn Glu Gln Gly 210 220 Gly Gln Gly Thr Asn Thr Val Asp Leu Gln Phe Phe Ala Ser Ser Ser 225 230 235 240 Ala Thr Ser Thr Pro Lys Ala Val Leu Tyr Ala Glu Asp Val Ala Ile 245 250 255 Glu Ala Pro Asp Thr His Leu Val Tyr Lys Pro Ala Val Thr Thr 260 265 270 Thr Thr Ser Ser Gln Asp Leu Leu Thr Gln Gln Ala Ala Pro Asn Arg 275 280 285 Pro Asn Tyr Ile Gly Phe Arg Asp Asn Phe Ile Gly Leu Met Tyr Tyr 290 295 300 Asn Ser Thr Gly Asn Met Gly Val Leu Ala Gly Gln Ala Ser Gln Leu 305 310 315 320 Asn Ala Val Val Asp Leu Gln Asp Arg Asn Thr Glu Leu Ser Tyr Gln 325 330 335 Leu Met Leu Asp Ala Leu Gly Asp Arg Ser Arg Tyr Phe Ser Met Trp 340 345 350Asn Gln Ala Val Asp Ser Tyr Asp Pro Asp Val Arg Ile Ile Glu Asn 355 360 365 His Gly Val Glu Asp Glu Leu Pro Asn Tyr Cys Phe Pro Leu Gly Gly 370 380 Ser Leu Val Thr Glu Thr Tyr Thr Gly Leu Ser Pro Gln Asn Gly Ser 385 390 395 400 Asn Thr Trp Thr Thr Asp Ser Thr Thr Tyr Ala Thr Arg Gly Val Glu 405 410 415 Ile Gly Ser Gly Asn Met Phe Ala Met Glu Ile Asn Leu Ala Ala Asn Page 127

420 425 430

Leu Trp Arg Ser Phe Leu Tyr Ser Asn Val Ala Leu Tyr Leu Pro Asp 435 440 445

Glu Tyr Lys Leu Thr Pro Asp Asn Ile Thr Leu Pro Asp Asn Lys Asn 450 455 460

Thr Tyr Asp Tyr Met Asn Gly Arg Val Ala Ala Pro Ser Ser Leu Asp 465 470 475 480

Thr Tyr Val Asn Ile Gly Ala Arg Trp Ser Pro Asp Pro Met Asp Asn 485 490 495

Val Asn Pro Phe Asn His His Arg Asn Ala Gly Leu Arg Tyr Arg Ser 500 510

Met Leu Gly Asn Gly Arg Tyr Val Pro Phe His Ile Gln Val Pro 515 520 525

Gln Lys Phe Phe Ala Ile Lys Asn Leu Leu Leu Pro Gly Ser Tyr 530 540

Thr Tyr Glu Trp Asn Phe Arg Lys Asp Val Asn Met Ile Leu Gln Ser 545 550 555 560

Ser Leu Gly Asn Asp Leu Arg Val Asp Gly Ala Ser Val Arg Phe Asp 565 570 575

Ser Ile Asn Leu Tyr Ala Asn Phe Phe Pro Met Ala His Asn Thr Ala 580 585 590

Ser Thr Leu Glu Ala Met Leu Arg Asn Asp Thr Asn Asp Gln Ser Phe 595 600 605

Asn Asp Tyr Leu Cys Ala Ala Asn Met Leu Tyr Pro Ile Pro Ala Asn 610 620

Ala Thr Ser Val Pro Ile Ser Ile Pro Ser Arg Asn Trp Ala Ala Phe 625 630 635

Arg Gly Trp Ser Phe Thr Arg Leu Lys Thr Lys Glu Thr Pro Ser Leu 645 650 655

Gly Ser Gly Phe Asp Pro Tyr Phe Thr Tyr Ser Gly Ser Ile Pro Tyr 660 670

Leu Asp Gly Thr Phe Tyr Leu Asn His Thr Phe Lys Lys Val Ser Ile 675 680 685

Met Phe Asp Ser Ser Val Ser Trp Pro Gly Asn Asp Arg Leu Leu Thr 690 695 700
Page 128

Pro Asn Glu Phe Glu Ile Lys Arg Thr Val Asp Gly Glu Gly Tyr Asn 705 710 715 720

Val Ala Gln Cys Asn Met Thr Lys Asp Trp Phe Leu Ile Gln Met Leu 725 730 735

Ser His Tyr Asn Ile Gly Tyr Gln Gly Phe Tyr Val Pro Glu Gly Tyr 740 745 750

Lys Asp Arg Met Tyr Ser Phe Phe Arg Asn Phe Gln Pro Met Ser Arg 765 760 765

Gln Val Val Asp Thr Thr Thr Tyr Thr Asp Tyr Lys Asn Val Thr Leu 770 780

Pro Phe Gln His Asn Asn Ser Gly Phe Val Gly Tyr Met Gly Pro Thr 785 790 795 800

Met Arg Glu Gly Gln Ala Tyr Pro Ala Asn Tyr Pro Tyr Pro Leu Ile 805 810 815

Gly Lys Thr Ala Val Pro Ser Leu Thr Gln Lys Lys Phe Leu Cys Asp 820 825 830

Arg Thr Met Trp Arg Ile Pro Phe Ser Ser Asn Phe Met Ser Met Gly 835 840

Ala Leu Thr Asp Leu Gly Gln Asn Met Leu Tyr Ala Asn Ser Ala His 850 855 860

Ala Leu Asp Met Thr Phe Glu Val Asp Pro Met Asp Glu Pro Thr Leu 865 870 875 880

Leu Tyr Val Leu Phe Glu Val Phe Asp Val Val Arg Ile His Gln Pro 885 890 895

His Arg Gly Val Ile Glu Ala Val Tyr Leu Arg Thr Pro Phe Ser Ala $900 \hspace{1.5cm} 905 \hspace{1.5cm} 910$

Gly Asn Ala Thr Thr 915

<210> 15

<211> 607

<212> PRT

<213> Simian adenovirus

<400> 15

Met Lys Arg Ala Arg Leu Asp Asp Phe Asn Pro Val Tyr Pro Tyr
1 10 15

Asp Thr Pro Asn Ala Pro Ser Val Pro Phe Ile Thr Pro Pro Phe Val 20 25 30 Ser Ser Asp Gly Leu Gln Glu Lys Pro Pro Gly Met Leu Ser Leu Asn 35 40 45Tyr Gln Asp Pro Ile Thr Thr Gln Asn Gly Ala Leu Thr Leu Lys Leu 50 55 60 Gly Ser Gly Leu Asn Ile Asn Gln Asp Gly Glu Leu Thr Ser Asp Ala 65 70 75 80 Ser Val Leu Val Thr Pro Pro Ile Thr Lys Ala Asn Asn Thr Ile Gly 85 90 95 Leu Ala Phe Asn Ala Pro Leu Thr Leu Gln Ser Asp Thr Leu Asn Leu 100 105 110Ala Cys Asn Ala Pro Leu Thr Val Gln Asp Asn Arg Leu Gly Ile Thr 115 120 125 Tyr Asn Ser Pro Leu Thr Leu Gln Asn Ser Glu Leu Ala Leu Ala Val 130 135 140 Thr Pro Pro Leu Asp Thr Ala Asn Asn Thr Leu Ala Leu Lys Thr Ala 145 150 155 160 Arg Pro Ile Ile Thr Asn Ser Asn Asn Glu Leu Thr Leu Ser Ala Asp 165 170 175 Ala Pro Leu Asn Thr Ser Thr Gly Thr Leu Arg Leu Gln Ser Ala Ala 180 185 190 Pro Leu Gly Leu Val Asp Gln Thr Leu Arg Val Leu Phe Ser Asn Pro 195 200 205 Leu Tyr Leu Gln Asn Asn Phe Leu Ser Leu Ala Ile Glu Arg Pro Leu 210 220 Ala Leu Thr Thr Gly Ser Met Ala Met Gln Ile Ser Gln Pro Leu 225 230 235 240 Lys Val Glu Asp Gly Ser Leu Ser Leu Ser Ile Glu Ser Pro Leu Asn 245 250 255 Leu Lys Asn Gly Asn Leu Thr Leu Gly Thr Gln Ser Pro Leu Thr Val 260 265 270 Thr Gly Asn Asn Leu Ser Leu Thr Thr Ala Pro Leu Thr Val Gln 275 280 285 Asn Asn Ala Leu Ala Leu Ser Val Leu Leu Pro Leu Arg Leu Phe Asn

Page 130

300

290 295

Asn Thr Ser Leu Gly Val Ala Phe Asn Pro Pro Ile Ser Ser Ala Asn 305 310 315 320 Asn Gly Leu Ser Leu Asp Ile Gly Asn Gly Leu Thr Leu Gln Tyr Asn 325 330 335 Arg Leu Val Val Asn Ile Gly Gly Gly Leu Gln Phe Asn Asn Gly Ala 340 345 350 Ile Thr Ala Ser Ile Asn Ala Ala Leu Pro Leu Gln Tyr Ser Asn Asn 355 360 365 Gln Leu Ser Leu Asn Ile Gly Gly Gly Leu Arg Tyr Asn Gly Thr Tyr 370 375 380 Lys Asn Leu Ala Val Lys Thr Asp Ser Phe Arg Gly Leu Glu Ile Asp 385 390 395 400 Ser Asn Gln Phe Leu Val Pro Arg Leu Gly Ser Gly Leu Lys Phe Asp 405 410 415 Gln Tyr Gly Tyr Ile Ser Val Ile Pro Pro Thr Val Thr Pro Thr Thr 420 430 Leu Trp Thr Thr Ala Asp Pro Ser Pro Asn Ala Thr Phe Tyr Asp Ser 435 440 445 Leu Asp Ala Lys Val Trp Leu Ala Leu Val Lys Cys Asn Gly Met Val 450 460 Asn Gly Thr Ile Ala Ile Lys Ala Leu Lys Gly Thr Leu Leu Gln Pro 465 470 475 480 Thr Ala Ser Phe Ile Ser Phe Val Met Tyr Phe Tyr Ser Asn Gly Thr 485 490 495 Arg Arg Thr Asn Tyr Pro Thr Phe Glu Asn Glu Gly Ile Leu Ala Ser 500 510 Ser Ala Thr Trp Gly Tyr Arg Gln Gly Asn Ser Ala Asn Thr Asn Val 515 520 525 Thr Ser Ala Val Glu Phe Met Pro Ser Ser Thr Arg Tyr Pro Val Asn 530 540 Lys Gly Thr Glu Val Gln Asn Met Glu Leu Thr Tyr Thr Phe Leu Gln 545 550 555 560 Gly Asp Pro Thr Met Ala Ile Ser Phe Gln Ala Ile Tyr Asn His Ala 565 570 575 570 Page 131

Leu Glu Gly Tyr Ser Leu Lys Phe Thr Trp Arg Val Arg Asn Arg Glu 580 585 590 Arg Phe Asp Ile Pro Cys Cys Ser Phe Ser Tyr Ile Thr Glu Glu 595 600 605 <210> 16 <211> 24 <212> DNA <213> Artificial <220> <223> synthetic oligomer <400> 16 24 gcgacggcc gacgctgccc ggct <210> 17 <211> 4 <212> PRT <213> Artificial <220> <223> artifical <400> 17 Arg Arg Ala Ser <210> 18 <211> 24 <212> DNA <213> Artificial <220> <223> synthetic oligomer <400> 18 gcggcgccc gacgctgccc ggct 24