

NCT7904D H/W Monitor

Date: 2014/2/10 Revision: 1.44

Table of Content-

1.			PTION	
2.				
	2.1		pecific Interfaces	
	2.2	•	tems	
	2.3		orm Environment Control Interface)	
	2.4	SMARTFAN	N TM PWM Output Control	8
	2.5		ıt	
	2.6		ation	
	2.7		ter	
	2.8			
3.			ONS	
4.			ON	
5.	PIN D			
	5.1		escription	
	5.2	Pin Descript	ion List	12
6.	FUNC	TIONAL DES	CRIPTION	17
	6.1	Access Inter	face	17
		6.1.1 D	Oata write to the internal register	17
		6.1.2 D	Oata read from the internal register	17
	6.2	Address Set	ting	18
	6.3	Temperature	e Monitor Data Format	18
		The temperat	ure data with 11-bit 2`s complement format	18
	6.4	Voltage Sen	se Data Format	18
	6.5	FAN_IN Cou	unt Calculation	18
	6.6	FAN_OUT D	Outy Cycle/DC output Calculation	19
	6.7	Fan Speed (Control	19
		6.7.1 S	Step Up Time / Step Down Time	19
		6.7.2 F	an Output Nonstop Value	19
		6.7.3 S	Smart Fan Control Table	19
		6.7.4 D	OTS (Sensor) Based Fan Control	2
	6.8	PECI		21
		6.8.1 C	Operation Mode	2
			CPU Temperature and Power Reporting	
			PRAM Thermal Data Reporting	
			PECI Listening	
	6.9		t	
			emperature	24
			'oltage	
			an	
	6.10		elf-Initialization	
			EPROM Format	
			Chip Initialization	
	6.11		al Data Report	
		6.11.1 P	PCH Thermal Read	27

		6.11.2	PCH Thermal Data Format	
	6.12	SMBus M	laster Auto Read External Thermal Sensor	27
		6.12.1	External Thermal Sensor Setting	27
		6.12.2	Temperature Read Process	27
	6.13	PROCHO	T# Behavior	28
		6.13.1	PROCHOT# Input	28
		6.13.2	PROCHOT# Output	28
	6.14	LED Beha	avior	28
		6.14.1	Event Trigger LED	28
		6.14.2	Programmable LED	28
	6.15	BEEP Fu	nction	28
		6.15.1	Output Signaling	28
		6.15.2	BEEP Activation	28
	6.16	THERMT	RIP# Function	29
		6.16.1	Power by VSB	
		6.16.2	Power Only by VBAT	29
7.	REGI	STER DES	CRIPTION	30
	7.1	Bank 0 R	EGISTER DETAIL	30
		7.1.1	Global Control Register	
		7.1.2	SMB Slave Address Register	
		7.1.3	Nuvoton Vendor ID Register	
		7.1.4	Nuvoton Chip ID Register	
		7.1.5	Nuvoton Device ID Register	
		7.1.6	Programmable LED Register	
		7.1.7	Event Control LED Register	
		7.1.8	Monitor Enable Control Register	
		7.1.9	Monitor Configuration Register	37
		7.1.10	Voltage Channel and Temperature Monitored Value Register	
		7.1.11	PROCHOT Monitored Value Register	41
		7.1.12	Nuvoton Vendor ID Register	41
		7.1.13	Nuvoton Chip ID Register	41
		7.1.14	Nuvoton Device ID Register	41
		7.1.15	FAN Tachometer Monitored Value Register	42
		7.1.16	DTS Temperature Monitored Value Register	42
		7.1.17	Virtual Temperature Value Register	
		7.1.18	External and Virtual Temperature Value Register	45
		7.1.19	SMI Control Register	46
		7.1.20	SMI Status Register	46
		7.1.21	SMI Mask Register	48
		7.1.22	Beep Control Register	50
		7.1.23	Beep Source Selection Register	50
		7.1.24	Lock Watch Dog Register	51
		7.1.25	Watch Dog Enable Register	52
		7.1.26	Watch Dog Status Register	
		7.1.27	Watch Dog Timer Register	
		7.1.28	GPIO Control Register	
		7.1.29	PCH DTS Monitored Value Register	
Nuv	oton C	onfidential	9/A	2014/2/10

	7.1.30	Bank Select Register	57
7.2	Bank 1 F	REGISTER DETAIL	59
	7.2.1	Voltage and Temperature Channel Limitation Register	59
	7.2.2	PROCHOT Limitation Register	62
	7.2.3	FAN Input Channel Limitation Register	62
	7.2.4	DTS Temperature Power Limitation Registers	63
	7.2.5	PROCHOT Control Registers	65
	7.2.6	PROCHOT Source Selection Registers	
	7.2.7	Voltage Fault Control Registers	67
	7.2.8	Voltage Fault Source Selection Registers	68
	7.2.9	Fan Fault Control Registers	70
	7.2.10	Fan Fault Source Selection Registers	70
	7.2.11	Temperature Fault Control Registers	71
	7.2.12	Temperature Fault Source Selection Registers	71
	7.2.13	THERMTRIP Control and Status Register	73
7.3	Bank 2 F	REGISTER DETAIL	74
	7.3.1	PECI Function Enable Register (PFE)	74
	7.3.2	PECI Timing Configure Register (PTC)	74
	7.3.3	PECI Agent and Domain Configure Register (PADC)	75
	7.3.4	PECI Relative Temperature Scale Register (PRTS)	76
	7.3.5	DTS Power Source Control Register	76
	7.3.6	TBit Width Register (TBW)	77
	7.3.7	PECI Listening Mode Configuration Register (PLMC)	77
	7.3.8	PECI VTT Power Detect Configuration Register (PVCR)	78
	7.3.9	PECI Agent Tbase Temperature Register (PATB)	78
	7.3.10	PECI Power Averaging Configure Register (PPAC)	79
	7.3.11	Averaging DTS Based Thermal Spec Configure Register (ADBTSC)	80
	7.3.12	PECI Manual Mode Configure Register (PMMC)	
	7.3.13	PECI Manual Mode Write Data Register (PMMWD)	82
	7.3.14	PECI Manual Mode Read Data Register (PMMRD)	
	7.3.15	Agent Relative Temperature Registers (ARTR)	
	7.3.16	TSI Control Registers	
	7.3.17	TSI Client Enable Registers	
	7.3.18	TSI Manual Configuration Registers	
	7.3.19	TSI Test Mode Registers	
	7.3.20	TSI Manual Address Registers	
	7.3.21	TSI Manual Command Registers	
	7.3.22	TSI Manual Write Data Registers	
	7.3.23	TSI Manual Read Data Registers	
	7.3.24	PCH Read Control Registers	
	7.3.25	PCH Client Address Registers	
	7.3.26	PCH Command Registers	
	7.3.27	PCH Read Byte Count Registers	
	7.3.28	SMBUS Master Manual Configuration Registers	
	7.3.29	SMBUS Master Manual Address Registers	
	7.3.30	SMBUS Master Manual Command Registers	
	7.3.31	SMBUS Master Manual Write Data Registers	91

	7.3.32	SMBUS Master Manual Read Data Registers	9
	7.3.33	External Read Control Registers	
	7.3.34	External Read Address and Command Register	92
	7.3.35	Power Unit Status	93
	7.3.36	Energy Unit Status	9
	7.3.37	Retrieving Margin Status Control Registers	94
	7.3.38	Tjmax Temperature Target Read/Write for CPU Agent (Address : 30h ~ 33h)	
	7.3.39	Tcontrol Temperature Target Read/Write for CPU Agent (Address: 30h ~ 33h)	9
	7.3.40	Thermal Design Power (TDP) Status for CPU Agent (Address: 30h ~ 33h)	9
	7.3.41	Margin Status for CPU Agent (Address : 30h ~ 33h)	96
	7.3.42	Power Reporting Factor for CPU Agent (Address: 30h ~ 33h)	9
	7.3.43	DTS DRAM Temperature Monitor Enable Control Register	98
	7.3.44	DRAM Temperature Value Register (Reterived by PECI RdPkgConfig comr	nand
7.4	Bank 3 F	REGISTER DETAIL	. 108
	7.4.1	Temperature to Fan Mapping Relationships (TFMR)	108
	7.4.2	Default Fan Speed at Power-on (DFSP)	108
	7.4.3	SmartFan Output Step Up Time (SFOSUT)	109
	7.4.4	SmartFan Output Step Down Time (SFOSDT)	109
	7.4.5	3-Wire Fan Enable and Fan Output Mode Control (FOMC)	109
	7.4.6	Close-Loop Fan control RPM mode and Tolerance (CLFR)	110
	7.4.7	Temperature Source Selection (TSS)	110
	7.4.8	Power Accumulate Enable (PAE)	112
	7.4.9	Close-Loop Fan Control RPM mode for High Speed Fan Register (RHSF)	112
	7.4.10	PROCHOT Fan Select (PFS)	113
	7.4.11	Fan Output Value (FOV)	113
	7.4.12	Fan Output PWM Frequency Prescalar (FOPFP)	114
	7.4.13	Fan Output Nonstop Enable (FONE)	11
	7.4.14	Fan Tachometer Source Selection (FTSS)	11
	7.4.15	Fan Tachometer Source Selection (FTSS)	116
	7.4.16	Critical Temperature to Full Speed all fan (CTFS)	116
	7.4.17	Hysteresis of Temperature (HT)	117
	7.4.18	Fan Output Nonstop Value(FONV)	117
	7.4.19	SMART FAN TM IV Temperature and DC/PWM Table (SFIV)	118
	7.4.20	Configure Register of PECI Error (CRPE)	119
	7.4.21	Fan Output Min Value when PECI Error (FOMV)	119
	7.4.22	Mask Register of PECI Error (MRPE)	120
	7.4.23	PECI T_DTS Slope Value (PTSV)	120
	7.4.24	PECI T_DTS Offset Value (PTOV)	12
	7.4.25	Tcontrol_Offset Value for CPU Agent (Address : 30h ~ 33h) (TOV)	12
	7.4.26	DTS Delta Tolerance Value (DDTV)	122
	7.4.27	DTS Margin Divisor (DMD)	122
7.5	Bank 4 F	REGISTER DETAIL	. 123
	7.5.1	Temperature to Fan Mapping Relationships (TFMR)	123
	7.5.2	Temperature Source Selection (TSS)	123
	7.5.3	Critical Temperature to Full Speed all fan (CTFS)	12
	7.5.4	Hysteresis of Temperature (HT)	12

NCT7904D

		7.5.5 SM/	ART FAN TM IV Temperature and DC/PWM Table (SFIV)	126
8.	ELEC	TRICAL CHARA	ACTERISTICS	128
	8.1	Absolute Maxii	mum Ratings	128
	8.2	DC Specification	on	128
	8.3	AC Specification	on	129
9.	ORD	ER INFORMATIO	ON	131
10.	TOP	MARKING SPEC	DIFICATIONS	132
11.	PACI	KAGE DRAWING	AND DIMENSIONS	133
12.	REVI	SION HISTORY.		134

1. GENERAL DESCRIPTION

NCT7904D is an evolving version of the Nuvoton popular Hardware Monitor IC family. NCT7904D provides several innovative features, Intel PECI1.1/2.0/3.0 interface, and PROCESSOR HOT feature. Conventionally, NCT7904D can be used to monitor several critical hardware parameters of the system, including power supply voltages, fan speeds, and temperatures, which are very important for a high-end computer system, such as server, workstation...etc, to work stably and efficiently.

A 10-bit analog-to-digital converter (ADC) is built inside NCT7904D. NCT7904D can simultaneously monitor 20 analog voltage inputs (including power 3VDD / 3VSB / VBAT / VTT monitoring), 12 fan tachometer inputs, 4 fan output control, and 4 remote temperature sensor inputs, 2 of which support current mode (dual current source) temperature measurement method, it also supports caseopen detection, Watch Dog Timer function, and GPIO pins. The sense of remote temperature can be performed by thermistors, or directly from thermal diode. NCT7904D provides PWM (pulse width modulation) for each fan control output pin, and DC fan output mode is supported on PWM4 pin. Meanwhile, the NCT7904D provides SMART FANTM control, the "SMART FANTM IV" mode equips with 4 sets of temperatures setting point each could control fan's duty cycle, to make the fans could be operated at the lowest possible speed and the acoustic could be balanced. As for warning mechanism, NCT7904D provides SMI#, TEMP ALM#, VOLT ALM#, and FAN ALM# to protect the system. NCT7904D has 1 specific pin to provide address selection so that 2 NCT7904D could be wired through SMBus interface at the same time.

All of the monitored parameters of the system could be read from time to time through the BIOS or any management application software. Nuvoton supports the software - "Health Manager" to provide an easy way to monitor and show the hardware parameters, such as temperature, voltage and fan speed inputs, furthermore, it provides a convenient method to do the fan control. It can also show the alarm message when the monitored hardware parameter exceeds the limit, and recodes the history events.

2. FEATURES

2.1 Equipped Specific Interfaces

- I²C / SMBus2.0 Serial Bus Master (max. 400KHz Clock)
- I²C / SMBus2.0 Serial Bus Slave (max. 400KHz Clock)
- Intel® PECI (PLATFORM ENVIRONMENT CONTROL INTERFACE) 1.0 / 2.0 / 3.0
- AMD SB-TSI

2.2 Monitoring Items

VOLTAGE

Up to 20 voltage sensing inputs

- 16 general voltage inputs
- 4 power pins. (3VDD, 3VSB, VBAT and VTT)
- 4 multi-functions with thermistor temperature inputs (on VSEN2, VSEN4, VSEN6, VSEN8)
- 2 multi-functions with thermal diode pair (on VSEN2, VSEN3, VSEN4 and VSEN5)

TEMPERATURE

Up to 4 methodologies for capturing temperature information

- ADC
 - => 2-pair thermal diode channel (current mode) / 4-channel thermistor mode temperature
 - => 1 channel on-chip temperature sensor
- Intel® PECI interface
 - => Automatically retrieving CPU temperature
- AMD SB-TSI interface
 - => Automatically retrieving CPU temperature
- SMBus Master
 - => Reading MCH, PCH, CPU and DIMMs temperature through PCH
 - => Reading specific external at most 4 thermal sensors.

FAN SPEED

Up to 12 fan tachometer inputs

2.3 PECI (Platform Environment Control Interface)

- Support PECI 1.0 / 2.0 / 3.0 full commands
- Automatically retrieve CPU temperature and power status
- Automatically retrieve DRAM thermal data which is provided by CPU0 and CPU1 only (Address: 30h and 31h)
- Support 4 CPU sockets (eq. 4 PECI address) and 2 domains per CPU address

2.4 SMART FANTM PWM Output Control

- Up to 4 PWM Outputs
- Support 2 modes of fan speed control: SMART FANTM IV mode and Closed Loop Fan Control Mode (RPM mode)
- Provide up to 10 SMART FANTM tables to characterize 10 relationships between temperature and output fan speed
- The temperature source of table could come from any of temperature information captured from ADC, PECI, TSI and SMBus Master
- Multiple temperature sources could affect multiple fan control outputs
- Up to 4 virtual temperature sources feed by host as the parts of fan temperature sources
- Up to 4 external temperature sources read from SMBus master I/F which can be the part of fan temperature sources
- Support Fan Control for Intel Sandy Bridge-EP/EX DTS specification
- Support DTS (Sensor) Based Thermal Ver. 1.0/2.0 Spec to optimize fan speed control and acoustics at processor run time

2.5 Alarm Output

- Issue SMI# signal to activate system protection
- Issue voltage, temperature and fan alarm signals to activate system protection

2.6 Self-initialization

Self-configuration by reading external EEPROM with SMBus interface

2.7 SMBus Master

- Support SMBus master function to read EEPROM configuration data and other SMBus devices
- Support SMBus master manual byte read and byte write
- Support accessing PCH Thermal Reporting
- Support accessing external thermal sensors

2.8 General

- Provide up to 11 GPIO pins (GPIO13~16, GPIOA~G, multi-function with other function pins)
- LED indication with programmable blinking frequency
- Event trigger LED by the external signal with programmable blinking frequency
- I²C / SMBus2.0 serial bus interface (max. 400KHz Clock)
- Watch Dog Timer function with an output signal(WDT_RSTOUT#)
- 1 address selection pins provide 2 selectable SMBus addresses
- 3.3V operationPackage
- Packaged in 48-LQFP(7mm x 7mm) type, RoHS-Compliant and Halogen free

3. KEY SPECIFICATIONS

Voltage monitoring accuracy

VSEN inputs ± 10 mV Power inputs and VSEN17,18,19 inputs ± 60 mV

Temperature Sensor Accuracy

Remote Diode Sensor Accuracy (25~85°C) \pm 1°C typ. On-chip Temperature Sensor Accuracy (25~70°C) \pm 1°C typ. Remote Diode Sensor Resolution 0.125 °C On-chip Temperature Sensor Resolution 0.125 °C

● Supply Voltage 3.3V ± 5%

Operating Supply Current
 15 mA typ.

● Operating Temperature Range -20°C ~ 100°C *1

^{*1} Guaranteed by design from -20~100 degree C, 100% tested at 85 degree C.

5. PIN DESCRIPTION

5.1 Pin Type Description

SYMBOL	DESCRIPTION					
TTL	TTL level	* * * * * *				
GTL	VTT level	100 200				
TSI	TSI level					
I	Input	90,00				
0	Output (Push-pull)					
OD	Open-drain output					
AIN	Input pin(Analog)	2007				

5.2 Pin Description List

PIN NAME	PIN NO.	POWER PLANE	TYPE	DESCRIPTION
VREF	1	3VSB	AOUT	Reference voltage output. This pin is for thermistor application
TR1				Thermistor 1 sensing input
D1+	2	3VSB	AIN	Thermal diode 1 D+
VSEN2				Voltage sensing input. Detection range is 0~2.048V. (default)
D1-	3	3\/SB	3VSB AIN	Thermal diode 1 D-
VSEN3		3735		Voltage sensing input. Detection range is 0~2.048V
TR2	4	3VSB	AIN	Thermistor 2 sensing input
D2+				Thermal diode 2 D+
VSEN4	> _			Voltage sensing input. Detection range is 0~2.048V.(default)
D2-	5	3VSB	AIN	Thermal diode 2 D-
VSEN5		3730	Ally	Voltage sensing input. Detection range is 0~2.048V
TR3	6	3VSB	AIN	Thermistor 3 sensing input

PIN NAME	PIN NO.	POWER PLANE	TYPE	DESCRIPTION
VSEN6			- 2	Voltage sensing input. Detection range is 0~2.048V
VSEN7	7	3VSB	AIN	Voltage sensing input. Detection range is 0~2.048V
TR4	8	3VSB	AIN	Thermistor 4 sensing input
VSEN8		3,00	All	Voltage sensing input. Detection range is 0~2.048V
VSEN9	9	3VSB	AIN	Voltage sensing input. Detection range is 0~2.048V
VSEN10	10	3VSB	AIN	Voltage sensing input. Detection range is 0~2.048V
VSEN11	11	3VSB	AIN	Voltage sensing input. Detection range is 0~2.048V
VSEN12	12	3VSB	AIN	Voltage sensing input. Detection range is 0~2.048V
VSEN13	13	3VSB	AIN	Voltage sensing input. Detection range is 0~2.048V
VSEN14	14	3VSB	AIN	Voltage sensing input. Detection range is 0~2.048V
3VDD	15		POWE R	+3V VDD power. It is also a voltage monitor channel Bypass with the parallel combination of 10μF (electrolytic or tantalum) and 0.1μF (ceramic) bypass capacitors
3VSB	16	-	POWE R	+3V VSB power. It is also a voltage monitor channel Bypass with the parallel combination of 10μF (electrolytic or tantalum) and 0.1μF (ceramic) bypass capacitors
GPIOF	47	3VSB	TTL I/OD	General Purpose I/O F (default)
SMI#	17	3VSB	TTL OD	System Management Interrupt.
P1_PROCHOT#	18	3VSB	GTL I/O	CPU1 PROCHOT# signal
VTT (VSEN1)	19		POWE R	VTT power pin. This power will be also monitored as VSEN1
PECI	00	VTT	GTL I/O	Intel [®] PECI interface signal. The power source is pin 19 (VTT)
GPIO16	- 20	3VSB	TTL I/OD	General Purpose I/O 16

PIN NAME	PIN NO.	POWER PLANE	TYPE	DESCRIPTION
SCL_TSI		3VSB	TSI OD	Clock line of AMD® SB_TSI interface
P1_THERMTRIP#	21	3VSB	GTL I	CPU1 THERMTRIP# signal. Pull-down it when unused.
SDA_TSI	21	3VSB	TSI I/OD	Data line of AMD [®] SB_TSI interface
CLKIN(33M, 14.318M, 48M)	22	3VSB	TTLI	Clock input. 14.318MHz or 33MHz or 48MHz could be applied to this pin with corresponding register configuration. Default setting is for 33MHz This clock is for PECI and fan speed monitor
S_SMB_CLK	23	3VSB	TTLI	SMBus clock line for this device being slave device
S_SMB_DATA	24	3VSB	TTL I/OD	SMBus data line for this device being slave device
M_SMB_CLK			TTL OD	SMBus clock line for this device being master device
FANIN_11	25	3VSB	TTLI	Fan tachometer input
LED_EVNT_IN#			TTLI	An input event to trigger LED_OUT
M_SMB_DATA			TTL I/OD	SMBus data line for this device being master device
FANIN_12	26	3VSB	TTLI	Fan tachometer input
LED_OUT			TTL OD	When pin LED_EVNT_IN is asserted a low pulse, this pin will output a pulse to drive LED on or blinking
ADDR	27	3VSB	TTLI	SMBus slave address strap selection pin Strapped to low, the 7-bit address is 0101101 Strapped to high, the 7-bit address is 0101110
WDT_RSTOUT#			TTL OD	Watch dog timer reset output
GPIOG	28	3VSB	TTL I/OD	General Purpose I/O G (default)
VSEN17			AIN	Voltage sensing input. Detection range is 0~3.3V
FANIN_1	29	3VSB	TTLI	Fan tachometer input
PWM1	30	3VSB	TTL OD	Fan speed control PWM output. This is 5V tolerant
FANIN_2	31	3VSB	TTLI	Fan tachometer input

PIN NAME	PIN NO.	POWER PLANE	TYPE	DESCRIPTION
PWM2	32	3VSB	TTL OD	Fan speed control PWM output. This is 5V tolerant
FANIN_3	33	3VSB	TTLI	Fan tachometer input
PWM3	34	3VSB	TTL OD	Fan speed control PWM output. This is 5V tolerant
VSEN18		3,00	AIN	Voltage sensing input. Detection range is 0~3.3V
FANIN_4	35	3VSB	TTLI	Fan tachometer input
PWM4/DCOUT	36	3VSB	TTL OD AOUT	Fan speed control PWM or DC output. A register bit could be programmed to select PWM or DC mode. DC output is default mode. This is without 5V tolerant
VSEN19			AIN	Voltage sensing input. Detection range is 0~3.3V
FANIN_5	07	3VSB	TTLI	Fan tachometer input.(default)
GPIO13	37	3VSB	TTL I/OD	General Purpose I/O 13
FANIN_6	00	3VSB	TTLI	Fan tachometer input (default)
GPIO14	- 38	3VSB	TTL I/OD	General Purpose I/O 14
FANIN_7	00	3VSB	TTLI	Fan tachometer input (default)
GPIO15	39	3VSB	TTL I/OD	General Purpose I/O 15
FANIN_8	40	3VSB	TTLI	Fan tachometer input (default)
GPIOA	- 40	3VSB	TTL I/OD	General Purpose I/O A
VOLT_ALM#		3VSB	TTL OD	Voltage abnormal alert output signal (active low)
FANIN_9	41	3VSB	TTLI	Fan tachometer input (default)
GPIOB	SE	3VSB	TTL I/OD	General Purpose I/O B
FAN_ALM#	42	3VSB	TTL OD	Fan speed abnormal alert output signal (active low)
FANIN_10	72	3VSB	TTLI	Fan tachometer input (default)

PIN NAME	PIN NO.	POWER PLANE	TYPE	DESCRIPTION
GPIOC		3VSB	TTL I/OD	General Purpose I/O C
GND	43		POWE R	GROUND
TEMP_ALM#	44	3\/\$B	TTL OD	Temperature abnormal alert output signal (active low)
GPIOD	44	3VSB	TTL I/OD	General Purpose I/O D (default)
LED			TTL OD	Programmable frequency LED output signal
GPIOE	45	3VSB	TTL I/OD	General Purpose I/O E (default)
BEEP			TTL OD	Beeper signal output when over heat event happens
RESETIN#	46	3VSB	TTLI	System reset input
CASEOPEN#	47	VBAT	TTLI	Case Open detection input signal. An active low input from an external device when case is opened. This event will be latched even when the case is closed. Pull-down it when unused.
VBAT	48		POWE R	VBAT power for Case Open detection and status log

* The recommended connection for Unused Pin

- (1) For digital input pin, pull down to GND.
- (2) For digital output pin, keep floating.
- (3) For analog input pin, keep floating.
- (4) For analog output pin, keep floating.
- (5) For VTT pin, keep floating.
- (6) For VBAT pin, connect to 3VSB.

6. FUNCTIONAL DESCRIPTION

6.1 Access Interface

NCT7904D provides SMBus interface, which is compliant with SMBus 2.0 specification. The 7-bit serial address is selected to be 0101101 or 0101110 by pin ADDR. When pin ADDR is strapped to low, the SMBus address is 0x5A(write)/0x5B(read); when pin ADDR is strapped to high, the SMBus address is 0x5C(write)/0x5D(read).

NCT7904D supports the bus speed with 0~400KHz.

6.1.1 Data write to the internal register

6.1.2 Data read from the internal register

6.2 Address Setting

NCT7904D has one address selection pin, the SMBus address will be strapped when 3VSB ready. The address will be retained as long as the 3VSB of NCT7904D is maintained. The pull-up power plane must be the same as the 3VSB power of NCT7904D.

ADDR	ADDRESS
0	0101 101X
1	0101 110X

X=Read/Write Bit

6.3 Temperature Monitor Data Format

The temperature data with 11-bit 2's complement format

		- AV 101
TEMPERATURE	8-BIT DIGITAL OUTPUT HIGH BYTE	3-BIT DIGITAL OUTPUT LOW BYTE
+127.875°C	0111,1111	XXXX,X111
+25.750°C	0001,1001	XXXX,X110
+2.250°C	0000,0010	XXXX,X010
+1.125°C	0000,0001	XXXX,X001
+0.000°C	0000,0000	XXXX,X000
- 1.125°C	1111,1110	XXXX,X111
- 2.250°C	1111,1101	XXXX,X110
- 25.750°C	1110,0110	XXXX,X010
- 127.875°C	1000,0000	XXXX,X001

6.4 Voltage Sense Data Format

VSEN Low Byte together with VSEN High Byte forms the 11-bit count value. If VSEN High Byte readout is read successively, the NCT7904D will latch the VSEN Low Byte for next read. Then voltage readout high byte and low byte are combined to 11-bitVoltageValue.

For voltage monitoring, real voltage calculations should follow the formula:

$$VSEN1~14: Voltage(V) = 11bitCountValue \times 0.002$$

 $3VSB,3VDD,VBAT,VSEN17,18,19: Voltage(V) = 11bitCountValue \times 0.006$

6.5 FAN_IN Count Calculation

The FAN_IN tachometer high byte and low byte are combined to 13-bitCountValue. Real RPM (Rotate per Minute) calculation should follow the formula:

$$FanSpeed(RPM) = \frac{1.35 \times 10^{6}}{(13 - bitCountValue) \times (FanPoles/4)}$$

^{*} VSEN17,18,19 are embedded internal voltage divider resistors.

In this formula, FanPole stands for the number of NS pole pairs inside the fan. Normally an N-S-N-S Fan (FanPole=4) generates 2 pulses after completing one rotation.

6.6 FAN_OUT Duty Cycle/DC output Calculation

The NCT7904D provides 4 set of PWM and 1 set of DC output for fan speed control. The duty cycle of PWM can be programmed by an 8-bit register. The expression of duty cycle can be represented as follow formula:

$$Duty - cycle(\%) = \frac{Programmed 8 - bit Register Value}{255} \times 100\%$$

The DC output can be programmed by an 8-bit register. The expression of DC level can be represented as follow formula:

DC output (V) =
$$3VDD \times \frac{\text{Programmed 8 - bit Register Value}}{255}$$

6.7 Fan Speed Control

Except for traditional Fan Duty control, the latest closed loop fan control (RPM Mode) has been provided by the NCT7904D. Due to PECI negative temperature format, the fan control also supports negative temperature representation. It would be much easy to implement fan control by PECI reading. In addition to PECI CPU temperature, the NCT7904D also supports fan control, which is responded to CPU power.

In Smart Fan Mode, there are some Fan control parameters as below descriptions:

6.7.1 Step Up Time / Step Down Time

Smart Fan is designed for the smooth operation of the fan. The Up Time / Down Time register defines the time interval between successive duty increases or decreases. If this value is set too small, the fan will not have enough time to speed up after tuning the duty and sometimes may result in unstable fan speed. On the other hand, if Up Time / Down Time is set too large, the fan may not work fast enough to dissipate the heat. This register should never be set to 0, otherwise, the fan duty will be abnormal.

6.7.2 Fan Output Nonstop Value

It takes some time to bring a fan from still to working state. Therefore, Nonstop value are designed with a minimum fan output to keep the fan working when the system does not require the fan to help reduce heat but still want to keep the fast response time to speed up the fan.

6.7.3 Smart Fan Control Table

SMART FANTM IV and Close Loop Fan Control Mode offer 4 slopes to control the fan speed. The 3 slopes can be obtained by setting FanDuty/RPM1~FanDuty/RPM4 and T1~T4 through the registers. When the temperature rises, FAN Output will calculate the target Fan Duty/RPM based on the current slope. For example, assuming Tx is the current temperature and Fan Duty/RPMy is the target, then the slope:

$$X2 = \frac{(FanDuty3/RPM3) - (FanDuty2/RPM2)}{(T3-T2)}$$

Fan Output:

$$T \operatorname{arg} \operatorname{et} \operatorname{FanDuty} \operatorname{or} \operatorname{RPM} = (\operatorname{FanDuty2} \operatorname{or} \operatorname{RPM} 2) + (\operatorname{Tx} - \operatorname{T2}) \cdot \operatorname{X2}$$

In addition, SMART FANTM IV & Close Loop Fan Control can also set up Critical Temperature and Hysteresis. If the current temperature exceeds Critical Temperature, external fan will be forced by maximum Fan Duty to meet the largest target Fan Duty or RPM, Which is 0xFF. The target Fan Duty & RPM value will be determined in accordance to the slope only when the temperature falls below (TCritical – Critical Hyst.)

NCT7904D provides several temperature sources selects to map the fan, the algorithm will make a decision to control the fan as below figure:

6.7.4 DTS (Sensor) Based Fan Control

NCT7904D fully follows Intel latest DTS Based Thermal Spec to come out an easy used fan speed control algorithm which has involved traditional thermal cruise mode concept. Users are supposed to have related document to capture Intel's concept.

The principle of DTS based fan control behavior will be described with the figure in the below. First of all, there are two mainly behaviors, which is distinguished by whether Tsensor is larger than Tcontrol_spec.

If Tcontrol_spec is larger than Tsensor, the fan control behavior will obey left plane and thermal cruise mode's Target_Temp is set as Target_Reg. Once Tsensor > Target_Reg, the fan out duty will continuously increases by one duty until Tsensor is under Target_Reg. In contrary, if Tsensor < (Target_Reg – Tolerance), the fan out duty will continuously decreases by one duty until Tsensor is over (Target_Reg – Tolerance).

If Tcontrol_spec is smaller than Tsensor, the fan control behavior will obey right plane and thermal cruise mode's Target_Temp is set as TDTS which just is Intel's DTS thermal profile. Once Tsensor > TDTS, the fan out duty will continuously increases by (1+|M|) duty until Tsensor is under TDTS. The symbol of M represents "Margin". It could be provided by NCT7904D itself. In contrary, if Tsensor < (TDTS – Tolerance), the fan out duty will continuously decreases by (1+|M|) duty until Tsensor is over (TDTS – Tolerance).

For both of plane, the gray region means that the fan out duty is unchanged at this moment.

Thermal Cruise Mode

6.8 PECI

PECI (Platform Environment Control Interface) is a new digital interface to read plentiful information of Intel® CPUs. With a bandwidth ranging from 2 Kbps to 2 Mbps, PECI uses a single wire for self-clocking and data transfer.

6.8.1 Operation Mode

NCT7904D provides two operation modes. One is active mode, the other is passive.

For active mode, NCT7904D serves as a host to initiate a message transaction. NCT7904D provides automatic polling procedure for CPU temperature, CPU power and DRAM temperature. These thermal data could be continuously updated without any firmware intervention. In contrarily, except for what mentioned above, user still could write out or read in data to / from CPU by practicing manual commands which are pre-configured by external firmware.

In passive mode, NCT7904D just monitor the message over the PECI bus with silence and then only extract CPU's DTS thermal data for its fan speed control purpose.

6.8.2 CPU Temperature and Power Reporting

In NCT7904D, it supports CPU temperature and power reporting. And both of reading could be associated to NCT7904D's fan control algorithm.

For CPU temperature, by interfacing to the Digital Thermal Sensor (DTS) in the Intel® CPU, PECI reports a negative temperature (in counts) relative to the processor's temperature at which the thermal control circuit (TCC) is activated. At the TCC Activation temperature, the Intel CPU will operate at reduced performance to prevent the device from thermal damage.

The PECI temperature values returning from the CPU are in "counts" which are approximately linear in relation to changes in temperature in degrees centigrade. However, this linearity is approximate and cannot be guaranteed over the entire range of PECI temperatures. For further information, refer to the PECI specification. However NCT7904D has a biasing factor for customer to characterize the relation between "counts" and "temperature".

Figure A shows a typical fan speed (PWM duty cycle) and PECI temperature relationship. SMART FANTM IV

Fig. A PECI Temperature

In this illustration, when PECI temperature is -20, the PWM duty cycle for fan control is at Duty2. When CPU is getting hotter and the PECI temperature is -10, the PWM duty cycle is at Duty1.

At Tcontrol PECI temperature, the recommendation from Intel is to operate the CPU fan at full speed. Therefore Duty1 is 100% if this recommendation is followed. The value of Tcontrol can be obtained by reading the related Machine Specific Register (MSR) in the Intel CPU. The Tcontrol MSR address is usually in the BIOS Writer's guide for the CPU family in question. Refer to the relevant CPU documentation from Intel for more information. In this example, Tcontrol is -10.

When the PECI temperature is below -20, the duty cycle is fixed at Duty2 to maintain a minimum (and constant) RPM for the CPU fan.

For CPU power reporting, the NCT7904D routinely retrieves CPU energy and then convert it to power. The refreshing rate of power is 0.3 sec. In order to minimize the effect of suddenly huge power changing, the running time average algorithm has been implemented.

6.8.3 DRAM Thermal Data Reporting

NCT7904D can automatically report all 24 DIMMs thermal status which are provided by Intel CPU0 and CPU1 agent. In addition to each DIMM temperature, NCT7904D also records the highest DIMM temperature in the specific channel. Here is the relationship among CPU, Channel and DIMM.

Both the Channel Index<2:0> and DIMM Index<5:3> follow PECI3.0 RdPkgConfig() command format

Agent Address	Channel_Index<2:0>	DIMM Index<5:3>	Register Location
	Channel_0	DIMM_0	T_D0C0_C0
		DIMM_1	T_D1C0_C0
		DIMM_2	T_D2C0_C0
		DIMM_0	T_D0C1_C0
	Channel_1	DIMM_1	T_D1C1_C0
CPU0_30h		DIMM_2	T_D2C1_C0
CF00_3011		DIMM_0	T_D0C2_C0
	Channel_2	DIMM_1	T_D1C2_C0
		DIMM_2	T_D2C2_C0
		DIMM_0	T_D0C2_C0
	Channel_3	DIMM_1	T_D1C2_C0
		DIMM_2	T_D2C2_C0
	Channel_0	DIMM_0	T_D0C0_C1
		DIMM_1	T_D1C0_C1
		DIMM_2	T_D2C0_C1
		DIMM_0	T_D0C1_C1
	Channel_1	DIMM_1	T_D1C1_C1
CPU1 31h		DIMM_2	T_D2C1_C1
CFU1_3111		DIMM_0	T_D0C2_C1
	Channel_2	DIMM_1	T_D1C2_C1
		DIMM_2	T_D2C2_C1
		DIMM_0	T_D0C3_C1
	Channel_3	DIMM_1	T_D1C3_C1
)-	DIMM_2	T_D2C3_C1

6.8.4 PECI Listening

It provides another way to obtain CPU's DTS thermal data. NCT7904D only recognizes GetTemp() command. Once GetTemp() appears on PECI bus and entire message is without FCS error, the CPU's DTS temperature will be extracted and recorded. These data could be temperature source of fan speed control.

6.9 SMI# Output

6.9.1 Temperature

SMI# for temperature monitoring provides 3 modes.

6.9.1.1. Comparator Interrupt Mode

Temperature exceeding Twarning causes an interrupt and this interrupt will be reset when reading all of the Interrupt Status Registers. Once an interrupt event has occurred by exceeding Twarning, then reset, if the temperature remains above the Twarning Hysteresis, the interrupt will occur again when the next conversion has completed. If an interrupt event has occurred by exceeding Twarning and not reset, the interrupts will not occur again. The interrupts will continue to occur in this manner until the temperature goes below Twarning Hysteresis.

6.9.1.2. Two-Times Interrupt Mode

Temperature exceeding Tcritical / Twarning causes an interrupt and then temperature going below Tcritical Hysteresis / Twarning Hysteresis will also cause an interrupt if the previous interrupt has been reset by reading all the Interrupt Status Register. Once an interrupt event has occurred by exceeding Tcritical / Twarning, then reset, if the temperature remains above the Tcritical Hysteresis / Twarning Hysteresis, the interrupt will not occur.

6.9.1.3. One-Time Interrupt Mode

Temperature exceeding Tcritical / Twarning causes an interrupt and then temperature going below Tcritical Hysteresis / Twarning Hysteresis will not cause an interrupt. Once an interrupt event has occurred by exceeding Tcritical / Twarning, then going below Tcritical Hysteresis / Twarning Hysteresis an interrupt will not occur again until the temperature exceeding Tcritical / Twarning.

SMI comparator mode

6.9.2 Voltage

SMI# interrupt for voltage is Two-Times Interrupt Mode. Voltage exceeds high limit or going below low limit, it will causes an interrupt if the previous interrupt has been reset by reading all the interrupt Status Register.

6.9.3 Fan

SMI# interrupt for fan is Two-Times Interrupt Mode. Fan count exceeds the limit, or exceeding and then going below the limit, it will cause an interrupt if the previous interrupt has been reset by reading all the interrupt Status Register.

6.10 EEPROM Self-Initialization

6.10.1 EEPROM Format

The content of the EEPROM can be loaded to the registers of NCT7904D for self-initialization should obey this data format.

An example for Default Fan Speed set to FF(hex) in bank 2:

Address	Data	Example
00h	ID_1	79h
01h	ID_2	61h
02h	Register Address 1	FFh
03h	Register Data 1	02h
04h	Register Address 2	04h
05h	Register Data 2	FFh
260	···	
40° 2	ID_1	79h
	ID_2	61h

6.10.2 Chip Initialization

When NCT7904D detects power-on-reset, initialization process will start loading data from EEPROM. NCT7904D SMBUS (M_SMB_CLK, M_SMB_DATA) will be a master and issue consecutive read byte commands (EEPROM address is A0h). NCT7904D will check receive data to decide that which actions should be followed.

<u>Case 1</u>: No acknowledge in first transaction, NCT7904D will terminate the initialization process to normal. And set LD FAIL and LD FINISH to 1 to note host the load status.

<u>Case 2</u>: NCT7904D will check first two bytes by ID_1 and ID_2. If match, the process will continue. Otherwise, the process will terminate like Case 1.

<u>Case 3</u>: Two bytes as a unit. NCT7904D will see first as the address of the register and second as the data. Sequentially, NCT7904D will write the data to the specific address.

<u>Case 4</u>: When receiving the unit which store the data (ID_2 following ID_1), NCT7904D will stop initialization and back to normal and set LD_FAIL to 0 and LD_FINISH to 1 to note host the load status. Otherwise, the access will keep going.

The EEPROM loading would be started from NCT7904D power-on immediately, when implements the EEPROM self-initialization, the requested 3VSB power rising time must less than 60uS.

Note:

1. LD_FAIL and LD_FINISH are in address 00h in bank 0.

6.11 PCH Thermal Data Report

6.11.1 PCH Thermal Read

When enable PCH read function (set EN_PCH_RD to 1), NCT7904D SMBUS (M_SMB_CLK, M_SMB_DATA) will be a master and issue consecutive block read commands (PCH address can be configuration). NCT7904D will store the received data to the registers (F0h~FDh in bank 0) by PCH data format.

6.11.2 PCH Thermal Data Format

The PCH Thermal data may appear in either Byte 0 or Byte 1 depending on the specific ME firmware in use. Please contact Intel directly for information on your specific ME Firmware implementation.

6.12 SMBus Master Auto Read External Thermal Sensor

6.12.1 External Thermal Sensor Setting

Before using this function, there are several registers must be set:

- 1. Configuration external sensor SMBus address and command where temperature store in. (6Ch ~ 73h in bank 2).
- 2. Set relative port enable and enable external temperature read (6Ah in bank 2).

6.12.2 Temperature Read Process

After proper setting, NCT7904D will auto read, by setting, external sensor temperature from SMBus master I/F. The read temperature will be stored in the registers (BCh ~ BFh in bank 0), respectively. These temperatures can be the sources of the fan controller in NCT7904D. Any not enable port can normally be the virtual temperature simply written by host to do advanced fan control.

Nuvoton Confidential - 27 - 2014/2/10

6.13 PROCHOT# Behavior

6.13.1 PROCHOT# Input

When enable PROCHOT# input monitor function (set EN_PH1 to 1 in bank 0, PH1_MD to 1 in bank 1), NCT7904D will monitor P1_PROCHOT# pin, count the time between two falling edge as P1_PROCHOT#_DVAL[7:0] and the time between one rising edge to one falling edge P1_PROCHOT#_NVAL[7:0], and stores these two to the registers. System management can monitor these two values to know the thermal status for relative CPU. The timer to the counter is settable from register, and the default is 22us.

6.13.2 PROCHOT# Output

When enable PROCHOT# output function (set EN_PH1 to 1 in bank 0, PH1_MD to 0 in bank 1), NCT7904D will drive low to P1_PROCHOT# pin based on several thermal events over heat.

There are three temperature sources listed as blow,

Source 1: 4 remote temperature inputs or build-in thermal diode temperature

Source 2: Up to 8 CPU temperatures

Source 3: Up to 4 CPU Powers (by PECI)

The frequency and duty cycle of PROCHOT# output are settable by PH1_FSEL[1:0] and PH1_DC[3:0], respectively.

6.14 LED Behavior

6.14.1 Event Trigger LED

When enable LED function (set EN_E_LED to 1), NCT7904D will detect LED_EVNT_IN# pin as the drive condition for LED_OUT. LED pin will be float when LED_EVNT_IN# pin is detected high, and LED pin will drive low when LED_EVNT_IN# is detected low. LED driving low frequency and polarity can be settable.

6.14.2 Programmable LED

When enable programmable LED function (set EN_P_LED to 1), NCT7904D will drive register data P_LED_DATA to LED pin. Drive low frequency and polarity can be settable.

6.15 BEEP Function

6.15.1 Output Signaling

Output signaling for BEEP is controlled by an internal signal mixer. The baseband signal is a period signal which is at frequency 1Hz with duty cycle 50% (i.e. the period for high and low level is 500ms.) The high level of the baseband signal will mix the signal which is at frequency 700Hz with duty cycle 50%, and the low level of the baseband signal will mix the signal which is at frequency 350Hz with duty cycle 50%, causing the ambulance sound for alarm to users.

6.15.2 BEEP Activation

When enable BEEP function (set EN_BEEP to 1), NCT7904D will drive the signal to BEEP pin when BEEP sources selected and over limitation. Otherwise, NCT7904D will float the pin. The sources are defined in relative registers.

6.16 THERMTRIP# Function

6.16.1 Power by VSB

When enable THERMTRIP function (set EN_THRM to 1), NCT7904D will detect low and log the signal to THRM_STS register. The THRM_STS register will be cleared by setting the CLR_THRM register to 1 and the CLR_THRM will be auto cleared.

6.16.2 Power Only by VBAT

NCT7904D will keep the THRM_STS register when VBAT power-on, losing the data when VBAT power-off.

7. REGISTER DESCRIPTION

7.1 Bank 0 REGISTER DETAIL

7.1.1 Global Control Register

Location: Bank 0 Address 00_{HEX}

Type: Read/Write Reset: Power On Reset

Default Value: 01_{HEX}

BIT	DESCRIPTION	
7	INIT_RST	
	Registers initial reset (Auto be cleared when reset process completed)	
6	Reserved	
	LD_FAIL	
5	0 = EEPROM present and no error happened	
	1 = EEPROM not present or error happened	
	LD_FINISH	
4	0 = EEPROM data load processing	
	1 = EEPROM data load finished	
	LOCK	
3	0 = RESETIN# will reset registers	
3	1 = RESETIN# will not reset registers	
	(This bit will be also cleared when set INIT_RST)	
2	Reserved	
	CLKIN_SEL[1:0]	
1-0	$00_{BIN} = 14.318MHz$	
	01 _{BIN} = 33MHz (default)	
11115	10 _{BIN} = 48MHz	
The The	11 _{BIN} = Reserved	

7.1.2 SMB Slave Address Register

Location: Bank 0 Address 0CHEX

Type: Read Only Reset: Power On Reset Default Value: 5AHEX/5CHEX

BIT	DESCRIPTION
7-0	SMB_SLV_ADDR[7:0]
	5A _{HEX} = ADDR pin strapped low
	5CHEX = ADDR pin strapped high

7.1.3 Nuvoton Vendor ID Register

Location: Bank 0 Address 0D_{HEX}

Type: Read Only
Reset: Power On Reset
Default Value: 50_{HEX}

BIT		DESCRIPTION
7-0	VENDOR_ID[7:0]	150 C. S. C.

7.1.4 Nuvoton Chip ID Register

Location: Bank 0 Address 0E_{HEX}

Type: Read Only
Reset: Power On Reset
Default Value: C5_{HEX}

BIT	DESCRIPTION
7-0	CHIP_ID[7:0]

7.1.5 Nuvoton Device ID Register

Location: Bank 0 Address 0F_{HEX}

Type: Read Only Reset: Power On Reset

Default Value: $5x_{HEX}$

BIT	DESCRIPTION
7-0	DEVICE_ID[7:0]

7.1.6 Programmable LED Register

Location: Bank 0 Address 18_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

Default Value: 00_{HEX}

BIT	DESCRIPTION
7	EN_P_LED
	0 = Disable
(63	1 = Enable
6	P_LED_POL
	0 = LED output active low
	1 = LED output active high
5	P_LED_DATA
	0 = Output don't drive
	1 = Output drive
4-3	Reserved
2-0	P_LED_FSEL[2:0]

BIT		DESCRIPTION
	000віn = 4Hz	
	001віn = 2Hz	
	010 _{ВІN} = 1Hz	On Am
	$011_{BIN} = 0.5Hz$	
	100віn = 0.25Hz	The Third
	$101_{BIN} = 0.125Hz$	
	110 _{ВІN} = 0.0625Hz	160 march
	111віn = 0Hz	100 500

7.1.7 Event Control LED Register

Location: Bank 0 Address 19_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

Default Value: 00_{HEX}

BIT	DESCRIPTION
7	EN_E_LED
	0 = Disable
	1 = Enable (LED_OUT will controlled by LED_EVNT_IN#)
6	E_LED_POL
	0 = LED output active low
	1 = LED output active high
5-3	Reserved
2-0	E_LED_FSEL[2:0]
	000віn = 4Hz
	001 _{BIN} = 2Hz
	$010_{\text{BIN}} = 1\text{Hz}$
C 17	$011_{BIN} = 0.5Hz$
Do.	100віn = 0.25Hz
Alb.	101 _{BIN} = 0.125Hz
Mi	110віn = 0.0625Hz
2.182	111 _{віл} = 0Hz

7.1.8 Monitor Enable Control Register

Location:

VT_ADC_CTRL0	- Bank 0 Address 20 _{HEX}
VT_ADC_CTRL1	- Bank 0 Address 21 _{HEX}
VT_ADC_CTRL2	- Bank 0 Address 22 _{HEX}
PH_CTRL0	- Bank 0 Address 23 _{HEX}
FANIN_CTRL0	- Bank 0 Address 24 _{HEX}
FANIN_CTRL1	- Bank 0 Address 25 _{HEX}
DTS_T_CTRL0	- Bank 0 Address 26 _{HEX}
DTS_T_CTRL1	- Bank 0 Address 27 _{HEX}
DTS_P_CTRL0	- Bank 0 Address 28 _{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

VT_ADC_CTRL0 - Voltage Temperature Monitoring Control Register

Location: Bank 0 Address 20_{HEX}

Default Value: FF_{HEX}

BIT	DESCRIPTION
7	EN_VSEN8 - Enable VSEN8 voltage monitoring.
	0 = Disable
	1 = Enable
6	EN_VSEN7 – Enable VSEN7 voltage monitoring.
	0 = Disable
	1 = Enable
5	EN_VSEN6 – Enable VSEN6 voltage monitoring.
	0 = Disable
	1 = Enable
4	EN_VSEN5 – Enable VSEN5 voltage monitoring.
	0 = Disable
	1 = Enable
3	EN_VSEN4 - Enable VSEN4 voltage monitoring.
	0 = Disable
	1 = Enable
2	EN_VSEN3 – Enable VSEN3 voltage monitoring.
	0 = Disable
	1 = Enable
1	EN_VSEN2 - Enable VSEN2 voltage monitoring.
	0 = Disable
	1 = Enable
0	EN_VSEN1 - Enable VSEN1 voltage monitoring.
	0 = Disable
	1 = Enable

VT_ADC_CTRL1 - Voltage Temperature Monitoring Control Register

Location: Bank 0 Address 21_{HEX}

Default Value: 7F_{HEX}

BIT	DESCRIPTION
7	EN_VBAT – Enable VBAT voltage monitoring. 0 = Disable 1 = Enable
6	EN_3VDD - Enable 3VDD voltage monitoring.0 = Disable1 = Enable
5	EN_VSEN14 – Enable VSEN14 voltage monitoring. 0 = Disable

BIT	DESCRIPTION
	1 = Enable
4	EN_VSEN13 - Enable VSEN13 voltage monitoring.
	0 = Disable
	1 = Enable
3	EN_VSEN12 - Enable VSEN12 voltage monitoring.
	0 = Disable
	1 = Enable
2	EN_VSEN11 - Enable VSEN11 voltage monitoring.
	0 = Disable
	1 = Enable
1	EN_VSEN10 - Enable VSEN10 voltage monitoring.
	0 = Disable
	1 = Enable
0	EN_VSEN9 - Enable VSEN9 voltage monitoring.
	0 = Disable
	1 = Enable

VT_ADC_CTRL2 - Voltage Temperature Monitoring Control Register

Location: Bank 0 Address 22_{HEX}

Default Value: 03_{HEX}

BIT	DESCRIPTION
7-5	Reserved
4	EN_VSEN19 - Enable VSEN19 voltage monitoring.
	0 = Disable (This pin will change to PWM4/DCOUT) 1 = Enable
3	EN_VSEN18 – Enable VSEN18 voltage monitoring.
	0 = Disable (This pin will change to PWM3)
	1 = Enable
2	EN_VSEN17 – Enable VSEN17 voltage monitoring.
Y with	0 = Disable (This pin will change to WDT_RSTOUT#/GPIOG)
0 3	1 = Enable
1	EN_LTD – Enable local temperature monitoring.
10	0 = Disable
97	1 = Enable
0	EN_V3VSB - Enable V3VSB voltage monitoring.
135	0 = Disable
	1 = Enable

PH_CTRL0 - PROCHOT Monitoring Control Register

Location: Bank 0 Address 23_{HEX}

Default Value: 01_{HEX}

BIT	DESCRIPTION
	AZAX EZ

BIT	DESCRIPTION
7-1	Reserved
0	EN_PH1 – Enable P1_PROCHOT# monitoring.
	0 = Disable
	1 = Enable

FANIN_CTRL0 - FANIN Monitoring Control Register

Location: Bank 0 Address 24_{HEX}

Default Value: FF_{HEX}

	I
BIT	DESCRIPTION
7	EN_FANIN_8 – Enable FANIN_8 monitoring.
	0 = Disable
	1 = Enable
6	EN_FANIN_7 – Enable FANIN_7 monitoring.
	0 = Disable
	1 = Enable
5	EN_FANIN_6 - Enable FANIN_6 monitoring.
	0 = Disable
	1 = Enable
4	EN_FANIN_5 - Enable FANIN_5 monitoring.
	0 = Disable
	1 = Enable
3	EN_FANIN_4 - Enable FANIN_4 monitoring.
	0 = Disable
	1 = Enable
2	EN_FANIN_3 – Enable FANIN_3 monitoring.
	0 = Disable
	1 = Enable
1	EN_FANIN_2 – Enable FANIN_2 monitoring.
N	0 = Disable
	1 = Enable
0	EN_FANIN_1 - Enable FANIN_1 monitoring.
727	0 = Disable
(N. V.	1 = Enable

FANIN_CTRL1 - FANIN Monitoring Control Register

Location: Bank 0 Address 25_{HEX}

Default Value: 03_{HEX}

	TIEX
BIT	DESCRIPTION
7-4	Reserved
3	EN_FANIN_12 - Enable FANIN_12 monitoring.
	0 = Disable
	1 = Enable
2	EN_FANIN_11 - Enable FANIN_11 monitoring.

BIT	DESCRIPTION
	0 = Disable
	1 = Enable
1	EN_FANIN_10 – Enable FANIN_10 monitoring.
	0 = Disable
	1 = Enable
0	EN_FANIN_9 - Enable FANIN_9 monitoring.
	0 = Disable
	1 = Enable

DTS_T_CTRL0 - Digital Temperature Monitoring Control Register

Location: Bank 0 Address 26_{HEX}

Default Value: 0F_{HEX}

BIT	DESCRIPTION
7-4	Reserved
3	EN_TCPU4 – Enable DTS CPU4 temperature monitoring (PECI/TSI).
	0 = Disable
	1 = Enable
2	EN_TCPU3 – Enable DTS CPU3 temperature monitoring (PECI/TSI).
	0 = Disable
	1 = Enable
1	EN_TCPU2 – Enable DTS CPU2 temperature monitoring (PECI/TSI).
	0 = Disable
	1 = Enable
0	EN_TCPU1 – Enable DTS CPU1 temperature monitoring (PECI/TSI).
	0 = Disable
	1 = Enable

DTS_T_CTRL1 - Digital Temperature Monitoring Control Register

Location: Bank 0 Address 27_{HEX}

Default Value: 0F_{HEX}

BIT	DESCRIPTION
7-4	Reserved
3	EN_TCPU8 – Enable DTS CPU8 temperature monitoring (TSI). 0 = Disable
	1 = Enable
2	EN_TCPU7 – Enable DTS CPU7 temperature monitoring (TSI). 0 = Disable 1 = Enable
1	EN_TCPU6 – Enable DTS CPU6 temperature monitoring (TSI). 0 = Disable 1 = Enable
0	EN_TCPU5 – Enable DTS CPU5 temperature monitoring (TSI). 0 = Disable 1 = Enable

DTS_P_CTRL0 - Digital Power Monitoring Control Register

Location: Bank 0 Address 28_{HEX}

Default Value: 0F_{HEX}

BIT	DESCRIPTION							
7-4	Reserved							
3	EN_PCPU4 – Enable DTS CPU4 power monitoring (PECI).							
	0 = Disable							
	1 = Enable							
2	EN_PCPU3 – Enable DTS CPU3 power monitoring (PECI).							
	0 = Disable							
	1 = Enable							
1	EN_PCPU2 – Enable DTS CPU2 power monitoring (PECI).							
	0 = Disable							
	1 = Enable							
0	EN_PCPU1 – Enable DTS CPU1 power monitoring (PECI).							
	0 = Disable							
	1 = Enable							

7.1.9 Monitor Configuration Register

Location:

VT_ADC_VOL_PO - Bank 0 Address 2C_{HEX}
VT_ADC_LTD_PO - Bank 0 Address 2D_{HEX}
VT_ADC_MD - Bank 0 Address 2E_{HEX}
VT_ADC_PO0 - Bank 0 Address 2F_{HEX}
VT_ADC_PO1 - Bank 0 Address 30_{HEX}
VT_ADC_PO2 - Bank 0 Address 31_{HEX}
VT_ADC_PO3 - Bank 0 Address 32_{HEX}

Type: Read / Write Reset: Power On Reset

RESETIN# with LOCK=0

VT_ADC_VOL_PO - Voltage Post Offset Register

Location: Bank 0 Address 2CHEX

Default Value: 00_{HEX}

BIT	DESCRIPTION			
7-0	VT_ADC_VOL_PO[7:0] Post offset adjustment in voltage			

VT_ADC_LTD_PO - LTD Temperature Post Offset Register

Location: Bank 0 Address 2D_{HEX}

BIT	DESCRIPTION	
-----	-------------	--

BIT	DESCRIPTION					
7-0	VT_ADC_LTD_PO[7:0]					
	Post offset adjustment in LTD temperature					

VT_ADC_MD - Voltage Temperature Mode Control Register

Location: Bank 0 Address 2E_{HEX}

Default Value: 00_{HEX}

BIT	DESCRIPTION					
7-6	VSEN89_MD[1:0]					
	00віN = Voltage monitoring					
	01 _{BIN} = Reserved					
	10 _{BIN} = Reserved					
	11 _{BIN} = Temperature monitoring (thermistor)					
	When set to thermistor mode, the Pin.8 will be TR4 function, the Pin.9 will be VSEN9 function.					
5-4	VSEN67_MD[1:0]					
	00вім = Voltage monitoring					
	01 _{BIN} = Reserved					
	10 _{BIN} = Reserved					
	11вім = Temperature monitoring (thermistor)					
	When set to thermistor mode, the Pin.6 will be TR3 function, the Pin.7 will be VSEN7 function.					
3-2	VSEN45_MD[1:0]					
	00вім = Voltage monitoring					
	01вім = Temperature monitoring (thermal diode current mode)					
	10 _{BIN} = Reserved					
	11 _{BIN} = Temperature monitoring (thermistor)					
	When set to thermistor mode, the Pin.4 will be TR2 function, the Pin.5 will be VSEN5 function.					
1-0	VSEN23_MD[1:0]					
100	00віх = Voltage monitoring					
1700	01віл = Temperature monitoring (thermal diode current mode)					
135	10віл = Reserved					
(X	11 _{BIN} = Temperature monitoring (thermistor)					
CO.	When set to thermistor mode, the Pin.2 will be TR1 function, the Pin.3 will be VSEN3 function.					

VT_ADC_PO0 - Voltage Temperature Post Offset Register

Location: Bank 0 Address 2F_{HEX}

Default Value: 00_{HFX}

	TIEX				
BIT	DESCRIPTION				
7-0	0 VSEN23_PO[7:0]				
	Post offset adjustment when VSEN23_MD[1:0] in temperature mode				

VT_ADC_PO1 - Voltage Temperature Post Offset Register

Location: Bank 0 Address 30_{HEX}

Default Value: 00_{HEX}

BIT	DESCRIPTION					
7-0	VSEN45_PO[7:0]					
	Post offset adjustment when VSEN45_MD[1:0] in temperature mode					

VT_ADC_PO2 - Voltage Temperature Post Offset Register

Location: Bank 0 Address 31_{HEX}

Default Value: 00_{HEX}

BIT	DESCRIPTION					
7-0	VSEN67_PO[7:0]					
	Post offset adjustment when VSEN67_MD[1:0] in temperature mode					

VT_ADC_PO3 - Voltage Temperature Post Offset Register

Location: Bank 0 Address 32_{HEX}

Default Value: 00_{HEX}

BIT	DESCRIPTION					
7-0	VSEN89_PO[7:0]					
	Post offset adjustment when VSEN89_MD[1:0] in temperature mode					

7.1.10 Voltage Channel and Temperature Monitored Value Register

Location:

VSEN1_HV	- Bank 0 Address 40 _{HEX}
VSEN1_LV	- Bank 0 Address 41 _{HEX}
VSEN2_HV / TEMP_CH1_HV	- Bank 0 Address 42 _{HEX}
VSEN2_LV / TEMP_CH1_LV	- Bank 0 Address 43 _{HEX}
VSEN3_HV	- Bank 0 Address 44 _{HEX}
VSEN3_LV	- Bank 0 Address 45 _{HEX}
VSEN4_HV / TEMP_CH2_HV	- Bank 0 Address 46 _{HEX}
VSEN4_LV/TEMP_CH2_LV	- Bank 0 Address 47 _{HEX}
VSEN5_HV	- Bank 0 Address 48 _{HEX}
VSEN5_LV	- Bank 0 Address 49 _{HEX}
VSEN6_HV / TEMP_CH3_HV	- Bank 0 Address 4A _{HEX}
VSEN6_LV / TEMP_CH3_LV	- Bank 0 Address 4B _{HEX}
VSEN7_HV	- Bank 0 Address 4C _{HEX}
VSEN7_LV	- Bank 0 Address 4D _{HEX}
VSEN8_HV / TEMP_CH4_HV	- Bank 0 Address 4E _{HEX}
VSEN8_LV/TEMP_CH4_LV	- Bank 0 Address 4F _{HEX}
VSEN9_HV	- Bank 0 Address 50 _{HEX}
VSEN9_LV	- Bank 0 Address 51 _{HEX}
VSEN10_HV	- Bank 0 Address 52 _{HEX}
VSEN10_LV	- Bank 0 Address 53 _{HEX}
VSEN11_HV	- Bank 0 Address 54 _{HEX}
VSEN11_LV	- Bank 0 Address 55 _{HEX}

VSEN12_HV	- Bank 0 Address 56 _{HEX}
VSEN12_LV	- Bank 0 Address 57 _{HEX}
VSEN13_HV	- Bank 0 Address 58 _{HE}
VSEN13_LV	- Bank 0 Address 59 _{HEX}
VSEN14_HV	- Bank 0 Address 5A _{HEX}
VSEN14_LV	- Bank 0 Address 5B _{HEX}
3VDD_HV	- Bank 0 Address 5C _{HEX}
3VDD_LV	- Bank 0 Address 5D _{HEX}
VBAT_HV	- Bank 0 Address 5E _{HEX}
VBAT_LV	- Bank 0 Address 5F _{HEX}
V3VSB_HV	- Bank 0 Address 60 _{HEX}
V3VSB_LV	- Bank 0 Address 61 _{HEX}
LTD_HV	- Bank 0 Address 62 _{HEX}
LTD_LV	- Bank 0 Address 63_{HEX}
VSEN17_HV	- Bank 0 Address 64 _{HEX}
VSEN17_LV	- Bank 0 Address 65 _{HEX}
VSEN18_HV	- Bank 0 Address 66 _{HEX}
VSEN18_LV	- Bank 0 Address 67 _{HEX}
VSEN19_HV	- Bank 0 Address 68 _{HEX}
VSEN19_LV	- Bank 0 Address 69 _{HEX}

Type: Read Only
Reset: Power On Reset

VOLTAGE HIGH VALUE

BIT	7	6	5	4	3	2	1	0
NAME	Voltage High Value 11-bit voltage value bit[10:3]							

VOLTAGE LOW VALUE

BIT	7	6	5	4	3	2	1	0
NAME			Reserved			Voltage L 11-bit volt	ow Value age value l	oit[2:0]

TEMPERATURE HIGH VALUE

BIT	7	6	5	4	3	2	1	0			
NAME	Temperature High Value. The real temperature value calculation is referred to Temperature Monitor Data Format description. 11-bit 2's complement bit[10:3]										
VALUE	SIGN	64	32	16	8	4	2	1			

TEMPERATURE LOW VALUE

BIT	7	6	5	4	3	2	1	0
NAME			Reserved		ture Low Va			
VALUE		Reserved					0.25	0.125

7.1.11 PROCHOT Monitored Value Register

 $\label{eq:Location: P1_PH_NV - Bank 0 Address 70_{HEX}} \quad \text{- Bank 0 Address 70}_{\text{HEX}}$

P1_PH_DV - Bank 0 Address 71_{HEX}

Type: Read Only
Reset: Power On Reset

P1_PH_NV - CPU1 PROCHOT# Numerator Value Register

Location: Bank 0 Address 70_{HEX}

Default Value: N/A

BIT	DESCRIPTION	
7-0	P1_PROCHOT#_NVAL[7:0]	92. W.
	CPU1 PROCHOT# Numerator Value	

P1 PH_DV - CPU1 PROCHOT# Denominator Value Register

Location: Bank 0 Address 71_{HEX}

Default Value: N/A

BIT	DESCRIPTION
7-0	P1_PROCHOT#_DVAL[7:0]
	CPU1 PROCHOT# Denominator Value

7.1.12 Nuvoton Vendor ID Register

Location: Bank X Address 7A_{HEX}

Type: Read Only
Reset: Power On Reset

Default Value: 50_{HEX}

BIT	DESCRIPTION						
7-0	VENDOR_ID[7:0]						
	Duplicate of data found in Bank 0 Address 0Dh. Data at Address 7Ah is available in all Bank Settings.						

7.1.13 Nuvoton Chip ID Register

Location: Bank X Address 7BHEX

Type: Read Only Reset: Power On Reset

Default Value: C5_{HEX}

BIT	DESCRIPTION						
7-0	CHIP_ID[7:0] Duplicate of data found in Bank 0 Address 0Eh. Data at Address 7Bh is available in all Bank Settings.						

7.1.14 Nuvoton Device ID Register

Location: Bank X Address 7CHEX

Type: Read Only
Reset: Power On Reset

Default Value: 5x_{HFX}

BIT	DESCRIPTION						
7-0	DEVICE_ID[7:0] Duplicate of data found in Bank 0 Address 0Fh. Data at Address 7Ch is available in all Bank Settings.						

aister

7.1.15 FAN Tachome	eter Monitored Value Reg
Location: FANIN1_HV	- Bank 0 Address 80 _{HEX}
FANIN1_LV	- Bank 0 Address 81 _{HEX}
FANIN2_HV	- Bank 0 Address 82 _{HEX}
FANIN2_LV	- Bank 0 Address 83 _{HEX}
FANIN3_HV	- Bank 0 Address 84 _{HEX}
FANIN3_LV	- Bank 0 Address 85 _{HEX}
FANIN4_HV	- Bank 0 Address 86 _{HEX}
FANIN4_LV	- Bank 0 Address 87 _{HEX}
FANIN5_HV	- Bank 0 Address 88 _{HEX}
FANIN5_LV	- Bank 0 Address 89 _{HEX}
FANIN6_HV	- Bank 0 Address 8A _{HEX}
FANIN6_LV	- Bank 0 Address 8B _{HEX}
FANIN7_HV	- Bank 0 Address 8C _{HEX}
FANIN7_LV	- Bank 0 Address 8D _{HEX}
FANIN8_HV	- Bank 0 Address 8E _{HEX}
FANIN8_LV	- Bank 0 Address 8F _{HEX}
FANIN9_HV	- Bank 0 Address 90 _{HEX}
FANIN9_LV	- Bank 0 Address 91 _{HEX}
FANIN10_HV	- Bank 0 Address 92 _{HEX}
FANIN10_LV	- Bank 0 Address 93 _{HEX}
FANIN11_HV	- Bank 0 Address 94 _{HEX}
FANIN11_LV	- Bank 0 Address 95 _{HEX}
FANIN12_HV	- Bank 0 Address 96 _{HEX}

Type: Read Only Reset: Power On Reset

FANIN HIGH VALUE

BIT	7	6	5	4	3	2	1	0
NAME		Count High						

FANIN LOW VALUE

BIT	7	6	5	4	3	2	1	0		
NAME	00	Reserved			Fan Input Count Low Value 13-bit fan count value bit[4:0]					

7.1.16 DTS Temperature Monitored Value Register

FANIN12_LV - Bank 0 Address 97_{HEX}

Location:

T CPU1 HV - Bank 0 Address A0_{HEX} - Bank 0 Address A1_{HEX} T CPU1 LV - Bank 0 Address A2_{HEX} T_CPU2_HV T CPU2 LV - Bank 0 Address A3_{HEX} T CPU3 HV - Bank 0 Address A4_{HEX} - Bank 0 Address A5_{HEX} T CPU3 LV T_CPU4_HV - Bank 0 Address A6HEX - Bank 0 Address A7_{HEX} T CPU4 LV T CPU5 HV - Bank 0 Address A8_{HEX} - Bank 0 Address A9_{HEX} T CPU5 LV T_CPU6_HV - Bank 0 Address AA_{HEX} - Bank 0 Address ABHEX T CPU6 LV - Bank 0 Address ACHEX T_CPU7_HV T CPU7 LV - Bank 0 Address ADHEX T CPU8 HV - Bank 0 Address AE_{HEX} - Bank 0 Address AFHEX T CPU8 LV P CPU1 - Bank 0 Address B0_{HFX} P CPU2 - Bank 0 Address B1_{HEX} P CPU3 - Bank 0 Address B2_{HFX} P CPU4 - Bank 0 Address B3_{HEX}

Type: Read/Write (Writable DTS Source Selection is host)

Reset: Power On Reset

TEMPERATURE HIGH VALUE

BIT	7	6	5	4	3	2	1	0			
NAME	Temperature High Value. The real temperature value calculation is referred to Temperature Monitor Data Format description. 11-bit 2's complement bit[10:3] (From PECI, TSI, or Host)										
VALUE	SIGN	64	32	16	8	4	2	1			

TEMPERATURE LOW VALUE

BIT	7	6	5	4	3	2	1	0
NAME	S. Carlo		Reserved			11-bit 2's	ture Low Va complement CI, TSI, or	nt bit[2:0]
VALUE	0 40		Reserved			0.5	0.25	0.125

P_CPU1 - CPU1 Power Value Register

Location: Bank 0 Address B0_{HFX}

Default Value: N/A

BIT	DESCRIPTION
7-0	POWER_CPU1[7:0]
	CPU1 Power Value (From PECI or Host)

P_CPU2 - CPU2 Power Value Register

Location: Bank 0 Address B1_{HEX}

Default Value: N/A

BIT	DESCRIPTION
7-0	POWER_CPU2[7:0]
	CPU2 Power Value (From PECI or Host)

P_CPU3 - CPU3 Power Value Register

Location: Bank 0 Address B2_{HEX}

Default Value: N/A

BIT	DESCRIPTION	K ~ V
7-0	POWER_CPU3[7:0]	200
	CPU3 Power Value (From PECI or Host)	220

P CPU4 - CPU4 Power Value Register

Location: Bank 0 Address B3_{HEX}

Default Value: N/A

BIT	DESCRIPTION
7-0	POWER_CPU4[7:0]
	CPU4 Power Value (From PECI or Host)

7.1.17 Virtual Temperature Value Register

Location:

VRT_TEMP1_V - Bank 0 Address B8_{HEX}
VRT_TEMP2_V - Bank 0 Address B9_{HEX}
VRT_TEMP3_V - Bank 0 Address BA_{HEX}
VRT_TEMP4_V - Bank 0 Address BB_{HEX}

Type: Read / Write Reset: Power On Reset

RESETIN# with LOCK=0

BIT	DESCRIPTION
7-0	VRT_TEMP1_V[7:0]
	Virtual Temperature 1 Value
	(It can be one of temperature sources for the FAN controller)

BIT	DESCRIPTION
7-0	VRT_TEMP2_V[7:0]
	Virtual Temperature 2 Value
	(It can be one of temperature sources for the FAN controller)

BIT	DESCRIPTION

BIT	DESCRIPTION
7-0	VRT_TEMP3_V[7:0]
	Virtual Temperature 3 Value
	(It can be one of temperature sources for the FAN controller)

BIT	DESCRIPTION
7-0	VRT_TEMP4_V[7:0]
	Virtual Temperature 4 Value
	(It can be one of temperature sources for the FAN controller)

7.1.18 External and Virtual Temperature Value Register

Location:

EXT_VRT_TEMP1_V - Bank 0 Address BC_{HEX}
EXT_VRT_TEMP2_V - Bank 0 Address BD_{HEX}
EXT_VRT_TEMP3_V - Bank 0 Address BE_{HEX}
EXT_VRT_TEMP4_V - Bank 0 Address BF_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

BIT	DESCRIPTION
7-0	EXT_VRT_TEMP1_V[7:0]
	External Temperature 1 or Virtual Temperature 5 Value
	(It can be one of temperature sources for the FAN controller)

BIT	DESCRIPTION		
7-0	EXT_VRT_TEMP2_V[7:0]		
	External Temperature 2 or Virtual Temperature 6 Value		
100	(It can be one of temperature sources for the FAN controller)		

BIT	DESCRIPTION						
7-0	EXT_VRT_TEMP3_V[7:0]						
NO	External Temperature 3 or Virtual Temperature 7 Value						
	(It can be one of temperature sources for the FAN controller)						

BIT	DESCRIPTION							
7-0	EXT_VRT_TEMP4_V[7:0]							
	External Temperature 4 or Virtual Temperature 8 Value							
	(It can be one of temperature sources for the FAN controller)							

7.1.19SMI Control Register

Location: Bank 0 Address C0_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

Default Value: 10_{HEX}

BIT	DESCRIPTION
7	RTSACS.
	0 = Read Interrupt status from <u>CRC1~CRCA</u> . (Default)
	1 = Read real-time status from <u>CRC1~CRCA</u> .
6-5	Reserved.
4	SMI_MD.
	0 = SMI# outputs low level signal and active high.
	1 = SMI# outputs 200 us low pulse signal. (Default)
3-2	TEMP_SMI_MD.
	Temperature SMI Mode Select.
	00 _{BIN} = Comparator Interrupt Mode. (Default)
	01 _{BIN} = Two Time Interrupt Mode.
	10 _{BIN} = One Time Interrupt Mode.
	11 _{BIN} = Two Time Non-related Interrupt Mode.
1	EN_SMI.
	0 = disable SMI# signal output. (Default)
	1 = enable SMI# signal output.
0	SMI_POL.
	0 = SMI# polarity follows SMI_MD. (Default)
	1 = SMI# polarity is inverted.

7.1.20 SMI Status Register

Location:

SMI_STS1	- Bank 0 Address C1 _{HEX}
SMI_STS2	- Bank 0 Address C2 _{HEX}
SMI_STS3	- Bank 0 Address C3 _{HEX}
SMI_STS4	- Bank 0 Address C4 _{HEX}
SMI_STS5	- Bank 0 Address C5 _{HEX}
SMI_STS6	- Bank 0 Address C6 _{HEX}
SMI_STS7	- Bank 0 Address C7 _{HEX}
SMI_STS8	- Bank 0 Address C8 _{HEX}
SMI_STS9	- Bank 0 Address C9 _{HEX}
SMI_STS10	- Bank 0 Address CA _{HEX}

Type: Read Only Reset: Power On Reset

BIT	7	6	5	4	3	2	1	0
NAME	S_VSEN8	S_VSEN7	S_VSEN6	S_VSEN5	S_VSEN4	S_VSEN3	S_VSEN2	S_VSEN1
DEFAULT	0	0	0	0	0	0	0	0

SMI_STS2

BIT	7	6	5	4	3	2	1	0
NAME	S_VBAT	S_3VDD	S_VSEN1 4	S_VSEN1 3	S_VSEN1 2	S_VSEN1 1	S_VSEN1 0	S_VSEN9
DEFAULT	0	0	0	0	0	0	0	0

SMI_STS3

BIT	7	6	5	4	3	2	2010	0
NAME	Reserved	Reserved	Reserved	S_VSEN1 9	S_VSEN1 8	S_VSEN1 7	S_LTD	S_V3VSB
DEFAULT	0	0	0	0	0	0	0	0

SMI_STS4

BIT	7	6	5	4	3	2	1	0
NAME	Reserved	S_PH1						
DEFAULT	0	0	0	0	0	0	0	0

SMI_STS5

BIT	7	6	5	4	3	2	1	0
NAME	S_FANIN 8	S_FANIN 7	S_FANIN 6	S_FANIN 5	S_FANIN 4	S_FANIN 3	S_FANIN 2	S_FANIN 1
DEFAULT	0	0	0	0	0	0	0	0

SMI_STS6

É	BIT	7	6	5	4	3	2	1	0
	NAME	Reserved	Reserved	Reserved	Reserved	S_FANIN 12	S_FANIN 11	S_FANIN 10	S_FANIN 9
	DEFAULT	0	0	0	0	0	0	0	0

SMI_STS7

BIT	7	6	5	4	3	2	1	0
NAME	Reserved	Reserved	Reserved	Reserved	S_TCPU4	S_TCPU3	S_TCPU2	S_TCPU1
DEFAULT	0	0	0	0	0	0	0	0

SMI_STS8

BIT	7	6	5	4	3	2	1	0
NAME	Reserved	Reserved	Reserved	Reserved	S_TCPU8	S_TCPU7	S_TCPU6	S_TCPU5
DEFAULT	0	0	0	0	0	0	0	0

SMI_STS9

BIT	7	6	5	4	3	2	1	0
NAME	Reserved	Reserved	Reserved	Reserved	S_PCPU4	S_PCPU3	S_PCPU2	S_PCPU1
DEFAULT	0	0	0	0	0	0	0	0

SMI_STS10

BIT	7	6	5	4	3	2	1	0
NAME	Reserved	S_CHAS SIS	Reserved	Reserved	S_TART4	S_TART3	S_TART2	S_TART1
DEFAULT	0	0	0	0	0	00	0	0

^{*}TART: When the Smart fan is driving the fan in full speed over 3 minutes, the TART will be asserted.

7.1.21 SMI Mask Register

Location:

SMI_MSK1 - Bank 0 Address CB_{HEX} SMI MSK2 - Bank 0 Address CC_{HEX} SMI_MSK3 - Bank 0 Address CD_{HEX} SMI_MSK4 - Bank 0 Address CE_{HEX} SMI_MSK5 - Bank 0 Address CF_{HEX} - Bank 0 Address D0_{HEX} SMI_MSK6 - Bank 0 Address D1_{HEX} SMI_MSK7 - Bank 0 Address D2_{HEX} SMI_MSK8 SMI_MSK9 - Bank 0 Address D3_{HEX} - Bank 0 Address D4_{HEX} SMI_MSK10

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

SMI MSK1

BIT	7	6	5	4	3	2	1	0
NAME	M_VSEN 8	M_VSEN 7	M_VSEN 6	M_VSEN 5	M_VSEN 4	M_VSEN 3	M_VSEN 2	M_VSEN 1
DEFAULT	1	1	1	1	1	1	1	1

SMI_MSK2

BIT	7	6	5	4	3	2	1	0
NAME	M_VBAT	M_3VDD	M_VSEN 14	M_VSEN 13	M_VSEN 12	M_VSEN 11	M_VSEN 10	M_VSEN 9
DEFAULT	W 1, W	1 1	1	1	1	1	1	1

SMI_MSK3

BIT	7	6	5	4	3	2	1	0
NAME	Reserved	Reserved	Reserved	M_VSEN 19	M_VSEN 18	M_VSEN 17	M_LTD	M_V3VS B
DEFAULT	0	0	0	1	1	1	1	1

SMI_MSK4

BIT	7	6	5	4	3	2	1	0
NAME	Reserved	M_PH1						
DEFAULT	0	0	0	0	0	0	0	1

SMI_MSK5

BIT	7	6	5	4	3	2	1	0
NAME	M_FANIN 8	M_FANIN 7	M_FANIN 6	M_FANIN 5	M_FANIN 4	M_FANIN 3	M_FANIN 2	M_FANIN 1
DEFAULT	1	1	1	1	1 4	77.1 40) 1	1

SMI_MSK6

BIT	7	6	5	4	3	2	0,15	0
NAME	Reserved	Reserved	Reserved	Reserved	M_FANIN 12	M_FANIN 11	M_FANIN 10	M_FANIN 9
DEFAULT	0	0	0	0	1	1	19	(0)

SMI_MSK7

BIT	7	6	5	4	3	2	1	0
NAME	Reserved	Reserved	Reserved	Reserved	M_TCPU 4	M_TCPU 3	M_TCPU 2	M_TCPU 1
DEFAULT	0	0	0	0	1	1	1	1

SMI_MSK8

BIT	7	6	5	4	3	2	1	0
NAME	Reserved	Reserved	Reserved	Reserved	M_TCPU 8	M_TCPU 7	M_TCPU 6	M_TCPU 5
DEFAULT	0	0	0	0	1	1	1	1

SMI_MSK9

	BIT	7	6	5	4	3	2	1	0
	NAME	Reserved	Reserved	Reserved	Reserved	M_PCPU 4	M_PCPU 3	M_PCPU 2	M_PCPU 1
<	DEFAULT	0	0	0	0	1	1	1	1

SMI_MSK10

BIT	2700	6	5	4	3	2	1	0
NAME	CLR_CH ASSIS	M_CHAS SIS	Reserved	Reserved	M_TART4	M_TART3	M_TART2	M_TART1
DEFAULT	0	(1)	0	0	1	1	1	1

CLR_CHASSIS is clear chassis event. When write 1, the internal chassis event will be cleared. M_CHASSIS is mask chassis event. When set to 1, the chassis SMI event will be masked.

7.1.22Beep Control Register

Location: Bank 0 Address D6_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

Default Value: 00_{HEX}

BIT	DESCRIPTION
7	EN_BEEP
	0 = Disable
	1 = Enable
6	BEEP_WNC
	0 = Temperature BEEP boundary is critical level (Default)
	1 = Temperature BEEP boundary is warning level
5-0	Reserved

7.1.23 Beep Source Selection Register

Location:

BEEP_SEL1 - Bank 0 Address D7_{HEX}
BEEP_SEL 2 - Bank 0 Address D8_{HEX}
BEEP_SEL 3 - Bank 0 Address D9_{HEX}
BEEP_SEL 4 - Bank 0 Address DA_{HEX}
BEEP_SEL 5 - Bank 0 Address DB_{HEX}
BEEP_SEL 6 - Bank 0 Address DC_{HEX}
BEEP_SEL 7 - Bank 0 Address DD_{HEX}
BEEP_SEL 8 - Bank 0 Address DE_{HEX}
BEEP_SEL 9 - Bank 0 Address DF_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

BEEP_SEL1

BIT	7	6	5	4	3	2	1	0
NAME	B_VSEN8	B_VSEN7	B_VSEN6	B_VSEN5	B_VSEN4	B_VSEN3	B_VSEN2	B_VSEN1
DEFAULT	0	0	0	0	0	0	0	0

BEEP_SEL2

BIT	700	6	5	4	3	2	1	0
NAME	B_VBAT	B_3VDD	B_VSEN1 4	B_VSEN1 3	B_VSEN1 2	B_VSEN1 1	B_VSEN1 0	B_VSEN9
DEFAULT	0	0	0	0	0	0	0	0

BEEP_SEL3

BIT	7	6	5	4	3	2	1	0
NAME	Reserved	Reserved	Reserved	B_VSEN1 9	B_VSEN1 8	B_VSEN1 7	B_LTD	B_V3VSB

DEFAULT	0	0	0	0	0	0	0	0
---------	---	---	---	---	---	---	---	---

BEEP_SEL4

BIT	7	6	5	4	3	2	1	0
NAME	Reserved	B_PH1						
DEFAULT	0	0	0	0	0	0	0	0

BEEP_SEL5

BIT	7	6	5	4	3	2	1	0
NAME	B_FANIN 8	B_FANIN 7	B_FANIN 6	B_FANIN 5	B_FANIN 4	B_FANIN 3	B_FANIN 2	B_FANIN 1
DEFAULT	0	0	0	0	0	0	0	0

BEEP_SEL6

BIT	7	6	5	4	3	2	(0)	0
NAME	Reserved	Reserved	Reserved	Reserved	B_FANIN 12	B_FANIN 11	B_FANIN 10	B_FANIN 9
DEFAULT	0	0	0	0	0	0	0	0

BEEP_SEL7

BIT	7	6	5	4	3	2	1	0
NAME	Reserved	Reserved	Reserved	Reserved	B_TCPU4	B_TCPU3	B_TCPU2	B_TCPU1
DEFAULT	0	0	0	0	0	0	0	0

BEEP_SEL8

BIT	7	6	5	4	3	2	1	0
NAME	Reserved	Reserved	Reserved	Reserved	B_TCPU8	B_TCPU7	B_TCPU6	B_TCPU5
DEFAULT	0	0	0	0	0	0	0	0

BEEP_SEL9

BIT	7	6	5	4	3	2	1	0
NAME	Reserved	B_CHAS SIS	Reserved	Reserved	B_PCPU4	B_PCPU3	B_PCPU2	B_PCPU1
DEFAULT	0	0	0	0	0	0	0	0

7.1.24 Lock Watch Dog Register

Location: Bank 0 Address E0_{HEX}

Type: Write Only
Reset: Power On Reset
Default Value: 00_{HEX}

BIT	DESCRIPTION
7-0	UNLOCK CODE
	Write 55 _{HEX} , Enables Soft Watch Dog Timer

Write AA _{HEX} , Disables Soft Watch Dog Timer
Write 33 _{HEX} , Enables Hard Watch Dog Timer
Write CC _{HEX} , Disables Hard Watch Dog Timer

7.1.25 Watch Dog Enable Register

Location: Bank 0 Address E1_{HEX}

Type: Read Only
Reset: Power On Reset
Default Value: 00_{HEX}

BIT	DES	CRIPTION
7-2	Reserved.	. D. C.
1	HARD	-W - W
	0 = Hard Watch Dog is disabled	200
	1 = Hard Watch Dog is enabled	30 (0)
0	SOFT	
	0 = Soft Watch Dog is disabled	
	1 = Soft Watch Dog is enabled	

7.1.26 Watch Dog Status Register

Location: Bank 0 Address E2_{HEX}

Type: Read Only Reset: Power On Reset Default Value: 00_{HEX}

BIT	DESCRIPTION	
7-4	Reserved	
	WDT_ST	
3-2	These 2 bits record last WDT stage for BIOS readout. The information is used to help BIOS to identify WDT timeout issuance	
1	HARD_TO	
	1 = A hard timeout occurs. This bit will be cleared after reading	
0	SOFT_TO	
	1 = A soft timeout occurs. This bit will be cleared after reading	

7.1.27 Watch Dog Timer Register

Location: Bank 0 Address E3_{HEX}

Type: Read / Write
Reset: Power On Reset
Default Value: 00_{HEX}

DESCRIPTION	
WDT TIMER – Timeout timer	
To write 00 _{HEX} can disable the timer while in Hard Watch Dog Timer mode. To set Timeout Time for SOFT Watch Dog Timer, the unit is minute	
١	

7.1.28 GPIO Control Register

Reset: Power On Reset

RESETIN# with LOCK=0

GPIO G0 EN - GPIO Group 0 I/O Enable Control Register

Location: Bank 0 Address E8_{HEX}

Default Value: 60_{HEX} Type: Read / Write

BIT	DESCRIPTION	
7	Reserved	
6-0	GPIO G0 EN – Select GPIOG-GPIOA I/O Enable. 0 = GPIOG-A are disable. 1 = GPIOG-A are enable.	

GPIO G0 DIR - GPIO Group 0 I/O Direction Control Register

Location: Bank 0 Address E9_{HEX}

Default Value: 7F_{HEX} Type: Read / Write

BIT	DESCRIPTION
7	Reserved
6-0	GPIO G0 DIR – Select GPIOG-GPIOA I/O Direction.
	0 = GPIOG-A are programming as output pins.
	1 = GPIOG-A are programming as input pins. (default)

GPIO G0 OUT - GPIO Group 0 Output Data Register

Location: Bank 0 Address EA_{HEX}

Default Value: 00_{HEX} Type: Read / Write

BIT	DESCRIPTION
7-0	GPIO G0 OUT - Output GPIOG-GPIOA Data. For output ports, it needs to set
Y 334	GPIO_G0_EN register and the respective bits can be read/written and produced to pins.

GPIO G0 IN - GPIO Group 0 Input Data Register

Location: Bank 0 Address $\mathsf{EB}_{\mathsf{HEX}}$

Default Value: N.A. Type: Read Only

BIT	DESCRIPTION	
7-0	GPIO G0 IN – Input GPIOG-GPIOA Data. The respective bits can be read only from pins. Write accesses will be ignored.	

GPIO G1 EN - GPIO Group 1 I/O Enable Control Register

Location: Bank 0 Address EC_{HEX}

Default Value: 00_{HEX} Type: Read / Write

BIT	DESCRIPTION
7-4	Reserved
3-0	GPIO G1 EN – Select GPIO16-GPIO13 I/O Enable.
	0 = GPIO16-13 are disable.
	1 = GPIO16-13 are enable.

GPIO G1 DIR - GPIO Group 1 I/O Direction Control Register

Location: Bank 0 Address ED_{HEX}

Default Value: 0F_{HEX} Type: Read / Write

BIT	DESCRIPTION	
7-4	Reserved	- 2. 11 (C
3-0	GPIO G1 DIR – Select GPIO16-GPIO13 I/O Direction.	16.27
	0 = GPIO16-13 are programming as output pins.	023
	1 = GPIO16-13 are programming as input pins. (default)	U

GPIO G1 OUT - GPIO Group 1 Output Data Register

Location: Bank 0 Address EE_{HEX}

Default Value: 00_{HEX} Type: Read / Write

BIT	DESCRIPTION	
3-0	GPIO G1 OUT - Output GPIO16-GPIO13 Data. For output ports, it needs to set	
	GPIO_G1_EN register and the respective bits can be read/written and produced to pins.	

GPIO G1 IN - GPIO Group 1 Input Data Register

Location: Bank 0 Address EFHEX

Default Value: N.A. Type: Read Only

BIT	DESCRIPTION
3-0	GPIO G1 IN – Input GPIO16-GPIO13 Data. The respective bits can be read only from pins. Write accesses will be ignored.

7.1.29 PCH DTS Monitored Value Register

Location: PCH_MAX
PCH_PCH
PCH_CPU_F
PCH_CPU_I
PCH_MCH
PCH_DIMM0
PCH_DIMM1
- Bank 0 Address F3
PCH_DIMM1
- Bank 0 Address F4
PCH_BANK
- Bank 0 Address F4
PCH_BANK
- Bank 0 Address F5
PCH_BANK
- Bank 0 Address F5
PCH_BANK
- Bank 0 Address F5
PCH_BANK
- Bank 0 Address F6
PCH_BANK
- Bank 0 Address F0
PCH_BANK
- Bank 0 Address F0
PCH_BANK
- Bank 0 Address F1
PCH_BANK
- Bank 0 Address F3
PCH_BANK
- Bank 0 Address F4

nuvoton

PCH_DIMM2 - Bank 0 Address F7_{HEX}
PCH_DIMM3 - Bank 0 Address F8_{HEX}
PCH_SN - Bank 0 Address F9_{HEX}
PCH_CPU_EG0 - Bank 0 Address FA_{HEX}
PCH_CPU_EG1 - Bank 0 Address FB_{HEX}
PCH_CPU_EG2 - Bank 0 Address FC_{HEX}
PCH_CPU_EG3 - Bank 0 Address FD_{HEX}

Type: Read Only Reset: Power On Reset

According to different Intel ME firmware version, the PCH temperature could be placed in either address F0h or F1h.

PCH_MAX - PCH PCH_0 Temperature Value Register

Location: Bank 0 Address F0_{HEX}

Default Value: N/A

BIT	DESCRIPTION	100 V
7-0	PCH_PCH_0_TEMP[7:0]	1 10
	PCH PCH_0 Temperature Value	15.55
	(It can be one of temperature sources for the FAN controller)	000

PCH_PCH - PCH PCH_1 Temperature Value Register

Location: Bank 0 Address $F1_{\text{HEX}}$

Default Value: N/A

BIT	DESCRIPTION
7-0	PCH_PCH_1_TEMP[7:0] PCH PCH_1 Temperature Value (It can be one of temperature sources for the FAN controller)

PCH_CPU_F - PCH CPU Fractional Temperature Value Register

Location: Bank 0 Address F2_{HEX}

Default Value: N/A

BIT	DESCRIPTION
7-0	PCH_CPU_FRA_TEMP[7:0] PCH CPU Fractional Temperature Value

PCH_CPU_I - PCH CPU Integer Temperature Value Register

Location: Bank 0 Address F3_{HEX}

Default Value: N/A

BIT	DESCRIPTION
7-0	PCH_CPU_INT_TEMP[7:0]
	PCH CPU Integer Temperature Value
	(It can be one of temperature sources for the FAN controller)

PCH MCH - PCH MCH Temperature Value Register

Location: Bank 0 Address F4_{HEX}

Default Value: N/A

BIT	DESCRIPTION
7-0	PCH_MCH_TEMP[7:0]
	PCH MCH Temperature Value
	(It can be one of temperature sources for the FAN controller)

PCH_DIMM0 - PCH DIMM0 Temperature Value Register

Location: Bank 0 Address F5_{HEX}

Default Value: N/A

BIT	DESCRIPTION	50° (C)
7-0	PCH_DIMM0_TEMP[7:0]	S ~ M
	PCH DIMM0 Temperature Value	
	(It can be one of temperature sources for the FAN controller)	12 Or

PCH_DIMM1 - PCH DIMM1 Temperature Value Register

Location: Bank 0 Address F6_{HEX}

Default Value: N/A

BIT	DESCRIPTION
7-0	PCH_DIMM1_TEMP[7:0]
	PCH DIMM1 Temperature Value
	(It can be one of temperature sources for the FAN controller)

PCH_DIMM2 - PCH DIMM2 Temperature Value Register

Location: Bank 0 Address F7_{HEX}

Default Value: N/A

BIT	DESCRIPTION
7-0	PCH_DIMM2_TEMP[7:0]
	PCH DIMM2 Temperature Value
	(It can be one of temperature sources for the FAN controller)

PCH_DIMM3 - PCH DIMM3 Temperature Value Register

Location: Bank 0 Address F8_{HEX}

Default Value: N/A

BIT	DESCRIPTION
7-0	PCH_DIMM3_TEMP[7:0] PCH DIMM3 Temperature Value
	(It can be one of temperature sources for the FAN controller)

PCH_SN – PCH Sequence Number Value Register

Location: Bank 0 Address F9_{HEX}

Default Value: N/A

BIT	DESCRIPTION
-----	-------------

BIT	DESCRIPTION
7-0	PCH_SEQ_NUM[7:0]
	PCH Sequence Number Value

PCH_CPU_EG0 - PCH CPU Latest Energy Value Register

Location: Bank 0 Address FA_{HEX}

Default Value: N/A

BIT	DESCRIPTION					
7-0	PCH_CPU_ERG[7:0]	GN F				
	PCH CPU Latest Energy Value	((D ₂ \)) ₂				

PCH_CPU_EG1 - PCH CPU Latest Energy Value Register

Location: Bank 0 Address FB_{HEX}

Default Value: N/A

BIT	DESCRIPTION	
7-0	PCH_CPU_ERG[15:8]	(1) 1)
	PCH CPU Latest Energy Value	

PCH_CPU_EG2 - PCH CPU Latest Energy Value Register

Location: Bank 0 Address FC_{HEX}

Default Value: N/A

BIT	DESCRIPTION
7-0	PCH_CPU_ERG[23:16]
	PCH CPU Latest Energy Value

PCH_CPU_EG3 - PCH CPU Latest Energy Value Register

Location: Bank 0 Address FD_{HEX}

Default Value: N/A

BIT	DESCRIPTION
7-0	PCH_CPU_ERG[31:24]
~ 78 H	PCH CPU Latest Energy Value

7.1.30 Bank Select Register

Location: Bank 0, 1, 2, 3 Address FF_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

BIT	DESCRIPTION
7-3	Reserved.
2-0	BANK_SEL[2:0]
	000вім = Bank 0

BIT		DESCRIPTION
	001віn = Bank 1	30
	010віn = Bank 2	
	011віn = Bank 3	
	100віn = Bank 4	
	101віл ~ 111віл = Reserved	Salar Mark

7.2 Bank 1 REGISTER DETAIL

7.2.1 Voltage and Temperature Channel Limitation Register Location:

cation:	
VSEN1_HV_HL	- Bank 1 Address 00 _{HEX}
VSEN1_LV_HL	- Bank 1 Address 01 _{HEX}
VSEN1_HV_LL	- Bank 1 Address 02 _{HEX}
VSEN1_LV_LL	- Bank 1 Address 03 _{HEX}
VSEN2_HV_HL/TEMP_CH1_C	- Bank 1 Address 04 _{HEX}
VSEN2_LV_HL/TEMP_CH1_CH	- Bank 1 Address 05 _{HEX}
VSEN2_HV_LL/TEMP_CH1_W	- Bank 1 Address 06 _{HEX}
VSEN2_LV_LL / TEMP_CH1_WH	- Bank 1 Address 07 _{HEX}
VSEN3_HV_HL	- Bank 1 Address 08 _{HEX}
VSEN3_LV_HL	- Bank 1 Address 09 _{HEX}
VSEN3_HV_LL	- Bank 1 Address 0A _{HEX}
VSEN3_LV_LL	- Bank 1 Address 0B _{HEX}
VSEN4_HV_HL/TEMP_CH2_C	- Bank 1 Address 0C _{HEX}
VSEN4_LV_HL / TEMP_CH2_CH	- Bank 1 Address 0D _{HEX}
VSEN4_HV_LL / TEMP_CH2_W	- Bank 1 Address 0E _{HEX}
VSEN4_LV_LL / TEMP_CH2_WH	- Bank 1 Address 0F _{HEX}
VSEN5_HV_HL	- Bank 1 Address 10 _{HEX}
VSEN5_LV_HL	- Bank 1 Address 11 _{HEX}
VSEN5_HV_LL	- Bank 1 Address 12 _{HEX}
VSEN5_LV_LL	- Bank 1 Address 13 _{HEX}
VSEN6_HV_HL/TEMP_CH3_C	- Bank 1 Address 14 _{HEX}
VSEN6_LV_HL/TEMP_CH3_CH	- Bank 1 Address 15 _{HEX}
VSEN6_HV_LL/TEMP_CH3_W	- Bank 1 Address 16 _{HEX}
VSEN6_LV_LL / TEMP_CH3_WH	- Bank 1 Address 17 _{HEX}
VSEN7_HV_HL	- Bank 1 Address 18 _{HEX}
VSEN7_LV_HL	- Bank 1 Address 19 _{HEX}
VSEN7_HV_LL	- Bank 1 Address 1A _{HEX}
VSEN7_LV_LL	- Bank 1 Address 1B _{HEX}
VSEN8_HV_HL / TEMP_CH4_C	- Bank 1 Address 1C _{HEX}
VSEN8_LV_HL/TEMP_CH4_CH	- Bank 1 Address 1D _{HEX}
VSEN8_HV_LL / TEMP_CH4_W	- Bank 1 Address 1E _{HEX}
VSEN8_LV_LL / TEMP_CH4_WH	- Bank 1 Address 1F _{HEX}
VSEN9_HV_HL	- Bank 1 Address 20 _{HEX}
VSEN9_LV_HL	- Bank 1 Address 21 _{HEX}
VSEN9_HV_LL	- Bank 1 Address 22 _{HEX}
VSEN9_LV_LL	- Bank 1 Address 23 _{HEX}
VSEN10_HV_HL	- Bank 1 Address 24 _{HEX}
VSEN10_LV_HL	- Bank 1 Address 25 _{HEX}
VSEN10_HV_LL	- Bank 1 Address 26 _{HEX}
VSEN10_LV_LL	- Bank 1 Address 27 _{HEX}
VSEN11_HV_HL	- Bank 1 Address 28 _{HEX}

VSEN11 LV HL - Bank 1 Address 29_{HEX} VSEN11 HV LL - Bank 1 Address 2A_{HEX} - Bank 1 Address 2B_{HFX} VSEN11 LV LL VSEN12_HV_HL - Bank 1 Address 2CHEX - Bank 1 Address 2DHEY VSEN12 LV HL VSEN12 HV LL - Bank 1 Address 2EHEX - Bank 1 Address 2F_{HEX} VSEN12 LV LL - Bank 1 Address 30_{HEX} VSEN13_HV_HL - Bank 1 Address 31_{HEX} VSEN13 LV HL - Bank 1 Address 32_{HEX} VSEN13 HV LL - Bank 1 Address 33_{HEX} VSEN13 LV LL VSEN14_HV_HL - Bank 1 Address 34_{HEX} - Bank 1 Address 35_{HEX} VSEN14_LV_HL - Bank 1 Address 36_{HEX} VSEN14 HV LL - Bank 1 Address 37_{HEX} VSEN14 LV LL 3VDD HV HL - Bank 1 Address 38_{HEX} - Bank 1 Address 39_{HEX} 3VDD LV HL - Bank 1 Address 3A_{HEX} 3VDD_HV_LL - Bank 1 Address 3B_{HEX} 3VDD_LV_LL - Bank 1 Address 3CHEX **VBAT HV HL** - Bank 1 Address 3DHEX **VBAT LV HL** - Bank 1 Address 3E_{HEX} VBAT_HV_LL VBAT_LV_LL - Bank 1 Address 3FHEX - Bank 1 Address 40_{HEX} V3VSB HV HL - Bank 1 Address 41_{HEX} V3VSB LV HL - Bank 1 Address 42_{HEX} V3VSB_HV_LL - Bank 1 Address 43_{HEX} V3VSB_LV_LL - Bank 1 Address 44_{HEX} LTD_HV_HL - Bank 1 Address 45HEY LTD LV HL - Bank 1 Address 46_{HEX} LTD_HV_LL - Bank 1 Address 47_{HEX} LTD LV LL - Bank 1 Address 80_{HEX} VSEN17_HV_HL - Bank 1 Address 81_{HEX} VSEN17 LV HL - Bank 1 Address 82_{HEX} VSEN17_HV_LL - Bank 1 Address 83_{HEX} VSEN17 LV LL - Bank 1 Address 84_{HEX} VSEN18_HV_HL - Bank 1 Address 85_{HEX} VSEN18 LV HL - Bank 1 Address 86_{HEX} VSEN18_HV_LL - Bank 1 Address 87_{HEX} VSEN18 LV LL VSEN19 HV HL - Bank 1 Address 88_{HEX} VSEN19_LV_HL - Bank 1 Address 89_{HEX} - Bank 1 Address 8A_{HEX} VSEN19 HV LL - Bank 1 Address 8BHEX VSEN19 LV LL

Type: Read / Write Reset: Power On Reset

RESETIN# with LOCK=0

Revision 1.44

HIGH VALUE HIGH LIMITATION

Default Value: FF_{HEX}

BIT	7	6	5	4	3	2	1	0
NAME		e High Limi age value b		90		334		

LOW VALUE HIGH LIMITATION

Default Value: 07_{HEX}

BIT	7	6	5	4	3	2	1	0
NAME			Reserved			-	ie High Lim tage value l	

HIGH VALUE LOW LIMITATION

Default Value: 00_{HEX}

BIT	7	6	5	4	3	2	1	0
NAME		e Low Limit age value b						Carlo C

LOW VALUE LOW LIMITATION

Default Value: 00_{HEX}

BIT	7	6	5	4	3	2	1	0
NAME			Reserved			•	e Low Limi age value l	

CRITICAL TEMPERATURE

Default Value: FF_{HEX}

BIT	7	6	5	4	3	2	1	0		
NAME	Critical Temperature									
	The forma	The format of Temperature is 8-bit 2's complement and the range is −128°C ~127°C.								

CRITICAL TEMPERATURE HYSTERESIS

Default Value: 07_{HEX}

BIT	7	6	5	4	3	2	1	0			
NAME	Critical Te	Critical Temperature Hysteresis									
	The forma	The format of Temperature is 8-bit 2's complement and the range is $-128^{\circ}\text{C} \sim 127^{\circ}\text{C}$.									

WARNING TEMPERATURE

BIT	7	7 6 5 4 3 2 1 0									
NAME	Warning Temperature										
	The forma	The format of Temperature is 8-bit 2's complement and the range is −128°C ~127°C.									

WARNING TEMPERATURE HYSTERESIS

Default Value: 00_{HEX}

BIT	7	6	5	4	3	2	1	0		
NAME	AME Warning Temperature Hysteresis									
	The format of Temperature is 8-bit 2's complement and the range is −128°C ~127°C.									

7.2.2 PROCHOT Limitation Register

Location: Bank 1 Address 50_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

Default Value: FF_{HEX}

BIT	DESCRIPTION	SO 0
7-0	P1_PROCHOT#_NV_HL[7:0]	(O) //
	CPU1 PROCHOT# Numerator High Limitation	

7.2.3 FAN Input Channel Limitation Register

Location: FANIN1 HV HL - Bank 1 Address 60_{HEX} - Bank 1 Address 61_{HEX} FANIN1 LV HL - Bank 1 Address 62_{HEX} FANIN2_HV_HL FANIN2 LV HL - Bank 1 Address 63_{HEX} FANIN3 HV HL - Bank 1 Address 64_{HEX} - Bank 1 Address 65_{HEX} FANIN3 LV HL - Bank 1 Address 66_{HEX} FANIN4_HV_HL - Bank 1 Address 67_{HEX} FANIN4 LV HL - Bank 1 Address 68_{HEX} FANIN5_HV_HL - Bank 1 Address 69_{HEX} FANIN5_LV_HL FANIN6_HV_HL - Bank 1 Address 6A_{HEX} - Bank 1 Address 6BHEX FANIN6 LV HL FANIN7_HV_HL - Bank 1 Address 6CHEX - Bank 1 Address 6DHEX FANIN7_LV_HL FANIN8_HV_HL - Bank 1 Address 6E_{HEX} - Bank 1 Address 6FHEX FANIN8 LV HL FANIN9_HV_HL - Bank 1 Address 70_{HEX} FANIN9_LV_HL - Bank 1 Address 71_{HEX} - Bank 1 Address 72_{HEX} FANIN10_HV_HL - Bank 1 Address 73_{HEX} FANIN10 LV HL FANIN11_HV_HL - Bank 1 Address 74_{HEX} - Bank 1 Address 75_{HEX} FANIN11_LV_HL - Bank 1 Address 76_{HEX} FANIN12_HV_HL - Bank 1 Address 77_{HEX} FANIN12 LV HL

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

FANIN HIGH VALUE HIGH LIMITATION

BIT	7	6	5	4	3	2	1	0
NAME		Count High age value b	J	h Limitation		1,		

FANIN LOW VALUE HIGH LIMITATION

BIT	7	6	5	4	3	2	1	0		
NAME		Reserved		Fan Input Count Low Value High Limitation						
				13-bit voltage value bit[4:0]						

7.2.4 DTS Temperature Power Limitation Registers

Location:

DTS_T_CPU1_C	- Bank 1 Address 90 _{HEX}
DTS_T_CPU1_CH	- Bank 1 Address 91 _{HEX}
DTS_T_CPU1_W	- Bank 1 Address 92 _{HEX}
DTS_T_CPU1_WH	- Bank 1 Address 93 _{HEX}
DTS_T_CPU2_C	- Bank 1 Address 94 _{HEX}
DTS_T_CPU2_CH	- Bank 1 Address 95 _{HEX}
DTS_T_CPU2_W	- Bank 1 Address 96 _{HEX}
DTS_T_CPU2_WH	- Bank 1 Address 97 _{HEX}
DTS_T_CPU3_C	- Bank 1 Address 98 _{HEX}
DTS_T_CPU3_CH	- Bank 1 Address 99 _{HEX}
DTS_T_CPU3_W	- Bank 1 Address 9A _{HEX}
DTS_T_CPU3_WH	- Bank 1 Address 9B _{HEX}
DTS_T_CPU4_C	- Bank 1 Address 9C _{HEX}
DTS_T_CPU4_CH	- Bank 1 Address 9D _{HEX}
DTS_T_CPU4_W	- Bank 1 Address 9E _{HEX}
DTS_T_CPU4_WH	- Bank 1 Address 9F _{HEX}
DTS_T_CPU5_C	- Bank 1 Address A0 _{HEX}
DTS_T_CPU5_CH	- Bank 1 Address A1 _{HEX}
DTS_T_CPU5_W	- Bank 1 Address A2 _{HEX}
DTS_T_CPU5_WH	- Bank 1 Address A3 _{HEX}
DTS_T_CPU6_C	- Bank 1 Address A4 _{HEX}
DTS_T_CPU6_CH	- Bank 1 Address A5 _{HEX}
DTS_T_CPU6_W	- Bank 1 Address A6 _{HEX}
DTS_T_CPU6_WH	- Bank 1 Address A7 _{HEX}
DTS_T_CPU7_C	- Bank 1 Address A8 _{HEX}
DTS_T_CPU7_CH	- Bank 1 Address A9 _{HEX}
DTS_T_CPU7_W	- Bank 1 Address AA _{HEX}
DTS_T_CPU7_WH	- Bank 1 Address AB _{HEX}
DTS_T_CPU8_C	- Bank 1 Address AC _{HEX}
DTS_T_CPU8_CH	- Bank 1 Address AD _{EX}
DTS_T_CPU8_W	- Bank 1 Address AE _{HEX}
DTS_T_CPU8_WH	- Bank 1 Address AF _{HEX}
DTS_P_CPU1_C	- Bank 1 Address B0 _{HEX}

DTS_P_CPU1_CH	- Bank 1 Address B1 _{HEX}
DTS_P_CPU1_W	- Bank 1 Address B2 _{HEX}
DTS_P_CPU1_WH	- Bank 1 Address B3 _{HEX}
DTS_P_CPU2_C	- Bank 1 Address B4 _{HEX}
DTS_P_CPU2_CH	- Bank 1 Address B5 _{HEX}
DTS_P_CPU2_W	- Bank 1 Address B6 _{HEX}
DTS_P_CPU2_WH	- Bank 1 Address B7 _{HEX}
DTS_P_CPU3_C	- Bank 1 Address B8 _{HEX}
DTS_P_CPU3_CH	- Bank 1 Address B9 _{HEX}
DTS_P_CPU3_W	- Bank 1 Address BA _{HEX}
DTS_P_CPU3_WH	- Bank 1 Address BB _{HEX}
DTS_P_CPU4_C	- Bank 1 Address BC _{HEX}
DTS_P_CPU4_CH	- Bank 1 Address BD _{HEX}
DTS_P_CPU4_W	- Bank 1 Address BE _{EX}
DTS_P_CPU4_WH	- Bank 1 Address BF _{HEX}

Reset: Power On Reset

RESETIN# with LOCK=0

CRITICAL TEMPERATURE

BIT	7	6	5	4	3	2	1	0				
NAME	Critical T	Critical Temperature										
	The format of Temperature is 8-bit 2's complement and the range is $-128^\circ\!$											
VALUE	SIGN	64	32	16	8	4	2	1				
DEFAULT	64 _{HEX} (100°ℂ)											

CRITICAL TEMPERATURE HYSTERESIS

BIT	7	6	5	4	3	2	1	0				
NAME	Critical Temperature Hysteresis											
	The forma	The format of Temperature is 8-bit 2's complement and the range is $-128^{\circ}\text{C} \sim 127^{\circ}\text{C}$.										
VALUE	SIGN	64	32	16	8	4	2	1				
DEFAULT		5F _{HEX} (95℃)										

WARNING TEMPERATURE

BIT	7	6	5	4	3	2	1	0				
NAME	Warning Temperature											
~/m	The forma	The format of Temperature is 8-bit 2's complement and the range is $-128^{\circ}\text{C} \sim 127^{\circ}\text{C}$.										
VALUE	SIGN	64	32	16	8	4	2	1				
DEFAULT	55 _{HEX} (85 ℃)											

WARNING TEMPERATURE HYSTERESIS

BIT	7 (6	5	4	3	2	1	0			
NAME	NAME Warning Temperature Hysteresis										
	The format of Temperature is 8-bit 2's complement and the range is $-128^\circ\!$										
VALUE	SIGN	64	32	16	8	4	2	1			

DEFAULT	50 _{HEX} (80 °C)
---------	---------------------------

7.2.5 PROCHOT Control Registers

Location: Bank 1 Address D0_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

BIT	DESCRIPTION
7	Reserved
6	PH1_MD – Set the PROCHOT1# mode.
	0 = Output mode
	1 = Input mode (default)
5-4	PH1_FSEL – Set the PROCHOT1# sample period time.
	00 = 22us (default)
	01 = 44us
	10 = 88us
	11 = 176us
3-0	PH1_DC – Set the PROCHOT1# output duty cycle.
	0000 = 1 sample time low
	0001 = 2 sample times low
	0010 = 3 sample times low
	0011 = 4 sample times low
	0100 = 5 sample times low
	0101 = 6 sample times low
	0110 = 7 sample times low
	0111 = 8 sample times low
	1000 = 9 sample times low
	1001 = 10 sample times low
	1010 = 11 sample times low
A	1011 = 12 sample times low
	1100 = 13 sample times low
1700	1101 = 14 sample times low
~ 75 W	1110 = 15 sample times low
7 _ 3/	1111 = all low (default)

7.2.6 PROCHOT Source Selection Registers

Location:

PH1_VT_ADC - Bank 1 Address D1_{HEX}
PH1_DTS_T0 - Bank 1 Address D2_{HEX}
PH1_DTS_T1 - Bank 1 Address D3_{HEX}
PH1_DTS_P - Bank 1 Address D4_{HEX}

Type: Read / Write Reset: Power On Reset

RESETIN# with LOCK=0

PH1_VT_ADC - P1_PROCHOT Temperature Select Register

Location: Bank 1 Address D1_{HEX}

Default Value: 20_{HEX}

BIT	DESCRIPTION
7-5	Reserved
4	PH1_LTD – Enable P1_PROCHOT# for LTD
	0 = Disable
	1 = Enable
3	PH1_VSEN89 - Enable P1_PROCHOT# for VSEN89
	0 = Disable
	1 = Enable
2	PH1_VSEN67 - Enable P1_PROCHOT# for VSEN67
	0 = Disable
	1 = Enable
1	PH1_VSEN45 - Enable P1_PROCHOT# for VSEN45
	0 = Disable
	1 = Enable
0	PH1_VSEN23 - Enable P1_PROCHOT# for VSEN23
	0 = Disable
0.7	1 = Enable

PH1_DTS_T0 - P1_PROCHOT DTS Temperature 0 Select Register

Location: Bank 1 Address D2_{HFX}

Default Value: 00HEY

BIT	DESCRIPTION
7-4	Reserved
3	PH1_TCPU4 - Enable P1_PROCHOT# for TCPU4
	0 = Disable
	1 = Enable
2	PH1_TCPU3 - Enable P1_PROCHOT# for TCPU3
	0 = Disable
	1 = Enable
1	PH1_TCPU2 - Enable P1_PROCHOT# for TCPU2
	0 = Disable
	1 = Enable
0	PH1_TCPU1 - Enable P1_PROCHOT# for TCPU1

BIT		DESCRIPTION
	0 = Disable	30.
	1 = Enable	

PH1_DTS_T1 - P1_PROCHOT DTS Temperature 1 Select Register

Location: Bank 1 Address D3_{HEX}

Default Value: 00_{HEX}

BIT	DESCRIPTION
7-4	Reserved
3	PH1_TCPU8 - Enable P1_PROCHOT# for TCPU8
	0 = Disable
	1 = Enable
2	PH1_TCPU7 – Enable P1_PROCHOT# for TCPU7
	0 = Disable
	1 = Enable
1	PH1_TCPU6 – Enable P1_PROCHOT# for TCPU6
	0 = Disable
	1 = Enable
0	PH1_TCPU5 – Enable P1_PROCHOT# for TCPU5
	0 = Disable
	1 = Enable

PH1_DTS_P - P1_PROCHOT DTS Power Select Register

Location: Bank 1 Address D4_{HEX}

Default Value: 00_{HEX}

BIT	DESCRIPTION
7-4	Reserved
3	PH1_PCPU4 - Enable P1_PROCHOT# for PCPU4
	0 = Disable
	1 = Enable
2	PH1_PCPU3 – Enable P1_PROCHOT# for PCPU3
	0 = Disable
100	1 = Enable
1	PH1_PCPU2 – Enable P1_PROCHOT# for PCPU2
2 "	0 = Disable
NO.	1 = Enable
0	PH1_PCPU1 – Enable P1_PROCHOT# for PCPU1
37	0 = Disable
~ (1 = Enable

7.2.7 Voltage Fault Control Registers

Location: Bank 1 Address D8_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

BIT	DESCRIPTION
7	EN_VFAULT – Enable voltage fault function.
	0 = Disable
	1 = Enable
6-0	Reserved

7.2.8 Voltage Fault Source Selection Registers

Location:

VF_SEL0 - Bank 1 Address D9_{HEX}
VF_SEL1 - Bank 1 Address DA_{HEX}
VF_SEL2 - Bank 1 Address DB_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

VF_SEL0 - Voltage Fault Select Register

Location: Bank 1 Address D9_{HEX}

BIT	DESCRIPTION	4)
7	VF_VSEN8 - Enable VOLT_ALM# for VSEN8 0 = Disable 1 = Enable	
6	VF_VSEN7 - Enable VOLT_ALM# for VSEN7 0 = Disable 1 = Enable	
5	VF_VSEN6 – Enable VOLT_ALM# for VSEN6 0 = Disable 1 = Enable	
4	VF_VSEN5 - Enable VOLT_ALM# for VSEN5 0 = Disable 1 = Enable	
3	VF_VSEN4 - Enable VOLT_ALM# for VSEN4 0 = Disable 1 = Enable	
2	VF_VSEN3 – Enable VOLT_ALM# for VSEN3 0 = Disable 1 = Enable	
1	VF_VSEN2 - Enable VOLT_ALM# for VSEN2 0 = Disable 1 = Enable	
0	VF_VSEN1 – Enable VOLT_ALM# for VSEN1 0 = Disable 1 = Enable	

VF_SEL1 – Voltage Fault Select Register

Location: Bank 1 Address DA_{HEX}

Default Value: 00_{HEX}

BIT	DESCRIPTION
7	VF_VBAT – Enable VOLT_ALM# for VBAT
	0 = Disable
	1 = Enable
6	VF_3VDD – Enable VOLT_ALM# for 3VDD
	0 = Disable
	1 = Enable
5	VF_VSEN14 - Enable VOLT_ALM# for VSEN14
	0 = Disable
	1 = Enable
4	VF_VSEN13 – Enable VOLT_ALM# for VSEN13
	0 = Disable
	1 = Enable
3	VF_VSEN12 – Enable VOLT_ALM# for VSEN12
	0 = Disable
	1 = Enable
2	VF_VSEN11 – Enable VOLT_ALM# for VSEN11
	0 = Disable
	1 = Enable
1	VF_VSEN10 – Enable VOLT_ALM# for VSEN10
	0 = Disable
	1 = Enable
0	VF_VSEN9 - Enable VOLT_ALM# for VSEN9
	0 = Disable
	1 = Enable

VF_SEL2 - Voltage Fault Select Register

Location: Bank 1 Address DB_{HEX}

BIT	DESCRIPTION	
7-5	Reserved	
23%	VF_VSEN19 - Enable VOLT_ALM# for VSEN19	
4	0 = Disable	
2.5	1 = Enable	
SUD.	VF_VSEN18 – Enable VOLT_ALM# for VSEN18	
3	0 = Disable	
-0/	1 = Enable	
	VF_VSEN17 – Enable VOLT_ALM# for VSEN17	
2	0 = Disable	
	1 = Enable	
1	Reserved	
	VF_V3VSB - Enable VOLT_ALM# for 3VSB	
0	0 = Disable	
	1 = Enable	

7.2.9 Fan Fault Control Registers

Location: Bank 1 Address DC_{HEX}

Type: Read / Write
Reset: Power On Reset
Default Value: 00_{HEX}

BIT	DESCRIPTION
7	EN_FFAULT – Enable fan fault function. 0 = Disable 1 = Enable
6-0	Reserved

7.2.10 Fan Fault Source Selection Registers

Location:

FF_SEL0 - Bank 1 Address DD_{HEX}
FF_SEL1 - Bank 1 Address DE_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0 FF_SEL0 – Fan Fault Select Register

Location: Bank 1 Address DD_{HEX}

BIT	DESCRIPTION		
7	FF_FANIN8 – Enable FAN_ALM# for FANIN8		
	0 = Disable		
	1 = Enable		
6	FF_FANIN7 – Enable FAN_ALM# for FANIN7		
	0 = Disable		
	1 = Enable		
5	FF_FANIN6 – Enable FAN_ALM# for FANIN6		
400	0 = Disable		
V. 37	1 = Enable		
4	FF_FANIN5 – Enable FAN_ALM# for FANIN5		
() B	0 = Disable		
(11)2	1 = Enable		
3	FF_FANIN4 – Enable FAN_ALM# for FANIN4		
	0 = Disable		
	1 = Enable		
2	FF_FANIN3 – Enable FAN_ALM# for FANIN3		
	0 = Disable		
	1 = Enable		
1	FF_FANIN2 – Enable FAN_ALM# for FANIN2		
	0 = Disable		
	1 = Enable		
0	FF_FANIN1 – Enable FAN_ALM# for FANIN1		
	0 = Disable		

BIT		DESCRIPTION
	1 = Enable	

FF_SEL1 – Fan Fault Select Register Location: Bank 1 Address DE_{HEX}

Default Value: 00_{HEX}

BIT	DESCRIPTION
7-4	Reserved
3	FF_FANIN12 - Enable FAN_ALM# for FANIN12
	0 = Disable
	1 = Enable
2	FF_FANIN11 - Enable FAN_ALM# for FANIN11
	0 = Disable
	1 = Enable
1	FF_FANIN10 – Enable FAN_ALM# for FANIN10
	0 = Disable
	1 = Enable
0	FF_FANIN9 – Enable FAN_ALM# for FANIN9
	0 = Disable
	1 = Enable

7.2.11 Temperature Fault Control Registers

Location: Bank 1 Address $E0_{HEX}$

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

Default Value: 00_{HEX}

BIT	DESCRIPTION	
7	EN_TFAULT – Enable temperature fault function.	
A	0 = Disable (Default)	
DA.	1 = Enable	
6	TF_WNC	
286	0 = Temperature fault boundary is critical level (Default)	
27.3	1 = Temperature fault boundary is warning level	
5-0	Reserved.	

7.2.12 Temperature Fault Source Selection Registers

Location:

 $\begin{array}{lll} \textbf{TF_SEL0} & - \ \, \text{Bank 1 Address E1}_{\text{HEX}} \\ \textbf{TF_SEL1} & - \ \, \text{Bank 1 Address E2}_{\text{HEX}} \\ \textbf{TF_SEL2} & - \ \, \text{Bank 1 Address E3}_{\text{HEX}} \\ \end{array}$

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

TF_SEL0 - Temperature Fault Select Register

Location: Bank 1 Address E1_{HEX}

Default Value: 00_{HFX}

BIT	DESCRIPTION
7-5	Reserved
	TF_LTD - Enable TEMP_ALM# for LTD
4	0 = Disable
	1 = Enable
	TF_VSEN89 - Enable TEMP_ALM# for VSEN89
3	0 = Disable
	1 = Enable
	TF_VSEN67 - Enable TEMP_ALM# for VSEN67
2	0 = Disable
	1 = Enable
	TF_VSEN45 – Enable TEMP_ALM# for VSEN45
1	0 = Disable
	1 = Enable
	TF_VSEN23 – Enable TEMP_ALM# for VSEN23
0	0 = Disable
	1 = Enable

TF_SEL1 - Temperature Fault Select Register

Location: Bank 1 Address E2_{HEX}

Default Value: 00_{HEX}

BIT	DESCRIPTION
7-4	Reserved
3	TF_TCPU4 - Enable TEMP_ALM# for TCPU4
	0 = Disable
	1 = Enable
2	TF_TCPU3 - Enable TEMP_ALM# for TCPU3
188	0 = Disable
200	1 = Enable
121	TF_TCPU2 - Enable TEMP_ALM# for TCPU2
	0 = Disable
5/17	1 = Enable
0	TF_TCPU1 - Enable TEMP_ALM# for TCPU1
-0	0 = Disable
(1 = Enable

TF_SEL2 - Temperature Fault Select Register

Location: Bank 1 Address E3_{HEX}

BIT	DESCRIPTION
7-4	Reserved
3	TF_TCPU8 - Enable TEMP_ALM# for TCPU8

BIT	DESCRIPTION
	0 = Disable
	1 = Enable
2	TF_TCPU7 - Enable TEMP_ALM# for TCPU7
	0 = Disable
	1 = Enable
1	TF_TCPU6 - Enable TEMP_ALM# for TCPU6
	0 = Disable
	1 = Enable
0	TF_TCPU5 - Enable TEMP_ALM# for TCPU5
	0 = Disable
	1 = Enable

7.2.13 THERMTRIP Control and Status Register

Location: Bank 1 Address E8_{HEX}

Default Value: 00_{HEX}
Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

BIT	DESCRIPTION
7-3	Reserved.
2	CLR_THRM – Clear the thermal trip status. If write 1, to clear thermal trip status.
1	EN_THRM – Enable thermal trip event. 0 = Disable 1 = Enable
0	THRM_STS – Thermal trip event status. (Read Only) (Power by VBAT) 0 = Thermal trip event not occurred or be cleared. 1 = Thermal trip event occurred. (It will always be shown no matter what EN_THRM is)

7.3 Bank 2 REGISTER DETAIL

7.3.1 PECI Function Enable Register (PFE)

Location:

PFE - Bank 2 Address 00_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

PFE

BIT	7	6	5	4	3	2	(1, 1)	0
NAME	PECI_En		Rese	erved		Manual_En	BiasRTH_En	GetPower_En
DEFAULT						18 _{HEX}	~ (3)	16

BIT	DESCRIPTION
7	Enable PECI Host Function. (PECI_En)
6-3	Reserved
2	Enable PECI Manual Mode Transaction (Manual_En) Fill in command content into PMMC and PMMWD registers defined in 7.3.8 and 7.3.9 section before enable this bit.
1	Enable function of weighting "Count" retrieved from GetTemp() to form CPU temperature 0 _{BIN} => Disable (It means that Temperature = "Count") 1 _{BIN} => Enable (It means that Temperature = "Count" * Scale , Scale is defined by Scale_Sel[2:0] in Bank2 Index03)
0	Get Power Function (GetPower_En) This function can routinely return the total energy consumed by the processor. 0 _{BIN} = Disable get CPU Power Function. 1 _{BIN} = Enable get CPU Power Function.

7.3.2 PECI Timing Configure Register (PTC)

Location:

PTC - Bank 2 Address 01_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

PTC

BIT	7	6	5 4		3	2	1	0	
NAME	RtHigher	Clamp	ATR		Reserved				
DEFAULT	7	SOV A	01 _{HEX}						

	11733
BIT	DESCRIPTION
	22001111 11011

BIT		DESCRIPTION					
7	Return Higher Ter 0_{BIN} = The temper It depends 1_{BIN} = Return the h	ature of each agei on control register	nt is returned from Bit[3:0] in Bank 2	domain 0 or doma Address 03 _{HEX.}			
6	PECI clamping fur 0 = DTS values ar 1 = DTS values ar	e fully transparent		G"count" value. (Cl	amp)		
5-4	Adjust Transaction CLKIN 00 _{BIN} 01 _{BIN} 10 _{BIN}	14.318MHz Tbit = 1.1us Tbit = 2.2us Tbit = 4.5us Tbit = 8.9us	33MHz Tbit = 0.5us Tbit = 1us Tbit = 2us Tbit = 4us	48MHz Tbit = 0.5us Tbit = 1us Tbit = 2us Tbit = 4us			
3-0	Reserved				(B)		

7.3.3 PECI Agent and Domain Configure Register (PADC)

Location:

PADC - Bank 2 Address 02_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

PADC

BIT	7	7 6 5 4				3 2 1 0				
NAME		En_A	gt[3:0]			Dmn1_	Agt[3:0]			
DEFAULT				00	HEX					

BIT	DESCRIPTION
7-4	Assign which agent will be approached by PECI host
	[Bit7] = CPU agent 3
67	[Bit6] = CPU agent 2
	[Bit5] = CPU agent 1
	[Bit4] = CPU agent 0
3-0	Indicate which agent equips with domain1.
	[Bit3] = Agent 3 with / without Domain1
	[Bit2] = Agent 2 with / without Domain1
	[Bit1] = Agent 1 with / without Domain1
	[Bit0] = Agent 0 with / without Domain1

7.3.4 PECI Relative Temperature Scale Register (PRTS)

Location:

PRTS - Bank 2 Address 03_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

PRTS

BIT	7	6	5	4	3	2	1	0
NAME	Reserved	Sc	cale_Sel[2:	:0]		RtDmn	_Agt[3:0]	
DEFAULT				40 _H	EX	40	200	

BIT	DESCRIPTION
7	Reserved
6-4	Weighting "count" to form temperature. It is available only while BIASRTH (Bank 2 Address 00_{HEX} Bit[1]=1) is asserted, Through this, the final Temperature = "count" * Scale_Sel[2:0]. $000_{\text{BIN}} = 0.78125$ $001_{\text{BIN}} = 0.84375$ $010_{\text{BIN}} = 0.90625$ $011_{\text{BIN}} = 0.96875$ $100_{\text{BIN}} = 1.03125$ $101_{\text{BIN}} = 1.09375$ $110_{\text{BIN}} = 1.15625$ $111_{\text{BIN}} = 1.21875$
3-0	Agent 3 – Agent 0 always return relative temperature in ARTR registers defined by 7.3.11. These bits specify that these relative temperatures are come from domain 0 or domain1. However this configuration is available only while RtHigher (Bank 2 Address 01_{HEX} Bit[7]) is de-asserted. [bit3] = $0/1$ => Agent3 will return the relative temperature from domain $0/domain 1$. [bit2] = $0/1$ => Agent2 will return the relative temperature from domain $0/domain 1$. [bit1] = $0/1$ => Agent1 will return the relative temperature from domain $0/domain 1$. [bit0] = $0/1$ => Agent0 will return the relative temperature from domain $0/domain 1$.

7.3.5 DTS Power Source Control Register

Location: Bank 2 Address 04_{HEX}

Default Value: 01_{HEX}
Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

DPSC

BIT 7 6 5 4 3 2 1 0

NAME	Reserved	DTS_SRC_SEL	T_RTA_EN
DEFAULT	01 _{HEX}		

BIT	DESCRIPTION						
7-3	Reserved.						
2-1	DTS_SRC_SEL - DTS Source Selection						
	00 = All from PECI						
	01 = All from Host (LSN_EN must be disable)						
	10 = Reserved						
	11 = Temperature from PECI and Power from Host (LSN_EN must be enable)						
0	T_RTA_EN – PECI Temperature Running Time Average Enable						
	0 = Disable						
	1 = Enable (Default)						

7.3.6 TBit Width Register (TBW)

Location: Bank 2 Address 05_{HEX}

Type: Read

Reset: Power On Reset

RESETIN# with LOCK=0

TBW

BIT	7	6	5	4	3	2	1	0
NAME		LSN_RST_CNT[6:0]						
DEFAULT		00 _{HEX}						

BIT	DESCRIPTION
7-0	Record TBit time in PECI Listening mode. The allowable lowest PECI transaction speed is 125Kz.

7.3.7 PECI Listening Mode Configuration Register (PLMC)

Location: Bank 2 Address 06_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

TBW

BIT	7	6	5	4	3	2	1	0	
NAME	Reserved		LSN_CMD_ERR Reserved		LSN_EN	LSN_TBI	Γ_LW[1:0]		
DEFAULT	3	11	2	01 _{HEX}					

BIT	DESCRIPTION
7-5	Reserved
4	LSN_CMD_ERR: Indicator for command error while PECI listening mode is active

3	Reserved
2	LSN_EN: Enable PECI listening mode
1-0	LSN_TBIT_LW: Idle state period selection 00b = 2-TBit 01b = 3-TBit 10b = 4-TBit 11b = 5-TBit

7.3.8 PECI VTT Power Detect Configuration Register (PVCR)

Location: Bank 2 Address 07_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

TBW

BIT	7	6	5	4	3	2	1	0
NAME	VTT_OK	Reserved				VTT_CRC	VTT_CLR	VTT_INIT_STS
DEFAULT		03 _{HEX}						

BIT	DESCRIPTION
7	VTT_OK : VTT power OK indicator. (read only)
	'0': VTT is not OK.
	'1': VTT is OK.
6-3	Reserved
2	VTT_CRC : CRC input source selection
	'0' : The input source of CRC is purely from PECI physical bus
	'1' : The input source of CRC comes from host's internal write-out data and PECI physical bus
1	VTT_CLR : Retention control for absolute temperature data
	'0' : Keep last data while VTT is loss
Die.	'1' : Clear absolute temperature data to default value while VTT is loss
0	VTT_INIT_STS : PECI transaction control while VTT is shut off
CA No.	'0' : PECI transaction never stop even though VTT is loss
1957 4	'1': Suspend PECI transaction while VTT is power loss

7.3.9 PECI Agent Tbase Temperature Register (PATB)

Location:

 PATB 0
 - Bank 2 Address 08_{HEX}

 PATB 1
 - Bank 2 Address 09_{HEX}

 PATB 2
 - Bank 2 Address 0A_{HEX}

 PATB 3
 - Bank 2 Address 0B_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

P	Δ	٦	Г	R	n
_	_	١п			·

BIT	7	6	5	4	3	2	1	0
NAME	Reserved		Tbase0[6:0]					
DEFAULT			00 _{HEX}					
				PATB1	10 pm	320		
BIT	7	6	5	4	3	2	1	0
NAME	Reserved		Tbase1[6:0]					
DEFAULT		00 _{HEX}						
				PATB2		(62	V)	
BIT	7	6	5	4	3	2	10	0
NAME	Reserved			1	base2[6:0]	100	= 1
DEFAULT		00 _{HEX}						
				PATB3			10)	1
BIT	7	6	5	4	3	2	1	0

BIT	DESCRIPTION
7	Reserved
6-0	Agent0 ~ Agent3 Tbase Temperature setting. With these setting, the PECI negative temperature format could be translated into positive format.

Tbase3[6:0]

 00_{HEX}

7.3.10 PECI Power Averaging Configure Register (PPAC)

Location:

NAME

DEFAULT

Reserved

Address - Bank 2 Address 0C_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

PPAC

BIT	7	6	5	4	3	2	1	0	
NAME	RST_PECI DTS_En		IvyBridge_ GetDRAM_ En En		Reserved		P_AVG_SE L[1:0]		
DEFAULT	0F _{HEX}								

BIT	DESCRIPTION
7	Reset PECI Function
6	Enabling DTS (Sensor) Based Thermal Spec supporting; in addition to PECI transaction, it also affects fan speed control. 1: Enable supporting DTS based thermal spec

BIT	DESCRIPTION
	0: Disable supporting
5	Margin source selection of DTS (Sensor) Based fan control.
	1: Margin is provided by CPU directly
	0: Margin is calculated by NCT7904D
4	Enable Get DRAM Temperature
	1: Enable
	0: Disable (Default)
3-2	Reserved
1-0	Running Time Average algorithm has been involved in CPU power reporting.
	$00_{BIN} = Power_{N+1} = Power_Inst$
	$01_{BIN} = Power_{N+1} = (Power_N \cdot \frac{1}{2}) + (Power_Inst \cdot \frac{1}{2})$
	$10_{BIN} = Power_{N+1} = (Power_N \cdot \frac{3}{4}) + (Power_Inst \cdot \frac{1}{4})$
	$11_{BIN} = Power_{N+1} = (Power_N \cdot \frac{7}{8}) + (Power_Inst \cdot \frac{1}{8})$

7.3.11 Averaging DTS Based Thermal Spec Configure Register (ADBTSC)

Location:

Alpha_f - Bank 2 Address 0D_{HEX}
Alpha_s - Bank 2 Address 0E_{HEX}
Factor_C - Bank 2 Address 0F_{HEX}

Type: Read / Write Reset: Power On Reset

RESETIN# with LOCK=0

Alpha_f / Alpha_s / Factor_C

BIT	7	6	5	4	3	2	1	0		
NAME		Alpha_f / Alpha_s / Factor_C								
DEFAULT	Č.	FF _{HEX} / 12 _{HEX} / 62 _{HEX}								

BIT	DESCRIPTION
7-0	Alpha_f / Alpha_s: the time constant coefficient (unit : 1/second) Factor_C: The scale factor for each average
	The averaging formula is as following. Tdts_f = Alpha_f X Tdts_max + Tdts_f_previous X (1 - Alpha_f) Tdts_s = Alpha_s X Tdts_max + Tdts_s_previous X (1 - Alpha_s) Tdts_ave = Factor_C X Tdts_f + (1 - Factor_C) X Tdts_s

BIT	DESCRIPTION
	Where:
	Tdts_max is the instantaneous DTS Based Thermal Spec. NCT7904D will automatically calculate it.
	Tdts_f_previous is the previous value of Tdts_f.
	Tdts_s_previous is the previous value of Tdts_s.
	TI
	The parameter value is to sum up each bit weighting. The weighting of each bit is defined as following.
	[7] = 0.5
	[6] = 0.25
	[5] = 0.125
	[4] = 0.0625
	[3] = 0.03125
	[2] = 0.015625
	[1] = 0.0078125
	[0] = 0.00390625

7.3.12 PECI Manual Mode Configure Register (PMMC)

Location:

NAME

DEFAULT

- Bank 2 Address 10_{HEX} **Address** Write_Length - Bank 2 Address 11_{HEX} - Bank 2 Address 12_{HEX} Read_Length Command_Code - Bank 2 Address 13_{HEX}

Type: Read / Write Power On Reset Reset:

RESETIN# with LOCK=0

				PMMC							
BIT	7	7 6 5 4 3 2 1 0									
NAME		Address									
DEFAULT				00	HEX						
BIT	7	7 6 5 4 3 2 1 0									
NAME		Write Length									
DEFAULT	74			00	HEX						
637	· (2)										
BIT	70	6	5	4	3	2	1	0			
NAME		Read Length									
DEFAULT	(0)	00 _{HEX}									
	Ti	200	100								
BIT	7	6	5	4	3	2	1	0			

Command Code

 00_{HEX}

BIT	DESCRIPTION
7-0	These settings are necessary while manual mode transaction is required. Please refer to formal PECI spec for more information on them. It should be setup in advance before Manual Mode enable (Bank 2 Address 00 _{HEX} Bit[2] =1),

7.3.13 PECI Manual Mode Write Data Register (PMMWD)

Location:

- Bank 2 Address 14_{HEX} PMMWD 1 PMMWD 2 - Bank 2 Address 15_{HEX} PMMWD 3 - Bank 2 Address 16_{HEX} PMMWD 4 - Bank 2 Address 17_{HEX} PMMWD 5 - Bank 2 Address 18_{HEX} PMMWD 6 - Bank 2 Address 19_{HEX} PMMWD 7 - Bank 2 Address 1A_{HEX} PMMWD 8 - Bank 2 Address 1B_{HEX} - Bank 2 Address 1C_{HEX} PMMWD 9 PMMWD 10 - Bank 2 Address 1D_{HEX} - Bank 2 Address 1E_{HEX} PMMWD 11 **PMMWD 12** - Bank 2 Address 1F_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

PMMWD1 ~ PMMWD12

BIT	7	6	5	4	3	2	1	0		
NAME		Write Data 1 ~ Write Data 12								
DEFAULT		00 _{HEX}								

BIT	DESCRIPTION
7-0	These settings are necessary while manual mode transaction is required. Please refer to formal PECI spec for more information on them. It should be setup in advance before Manual Mode enable (Bank 2 Address 00_{HEX} Bit[2] =1),

7.3.14 PECI Manual Mode Read Data Register (PMMRD)

Location:

PMMRD 1	- Bank 2 Address 20 _{HEX}
PMMRD 2	- Bank 2 Address 21 _{HEX}
PMMRD 3	- Bank 2 Address 22 _{HEX}
PMMRD 4	- Bank 2 Address 23 _{HEX}
PMMRD 5	- Bank 2 Address 24 _{HEX}
PMMRD 6	- Bank 2 Address 25 _{HEX}
PMMRD 7	- Bank 2 Address 26 _{HEX}
PMMRD 8	- Bank 2 Address 27 _{HEX}

Nuvoton Confidential - 82 - 2014/2/10

PMMRD 9 - Bank 2 Address 28_{HEX}

Type: Read Only
Reset: Power On Reset

PMMRD1 ~ PMMRD9

BIT	7	6	5	4	3	2	1	0	
NAME	Read Data 1 ~ Read Data 9								
DEFAULT		00 _{HEX}							

BIT	DESCRIPTION
7-0	These data are meaningful just after manual mode transaction is finished. Please refer to formal PECI spec for more information on them.

PECI Manual Mode Support Command and Data

Command	Address	Write Length	Read Length	Command Code
Bank 2	CR 10 _{HEX}	CR 11 _{HEX}	CR 12 _{HEX}	CR 13 _{HEX}
Ping		00	00	
Get DIB		01	08	F7
Get Temp		01	02	01
PCIRd30		06	02 / 03 / 05	61
PCIWr30	30/	08 / 09 / 0B	01	65
PCIRdLocal30	31/ 32/	05	02 / 03 / 05	E1
PCIWrLocal30	33	07 / 08 / 0A	01	E5
PKGRd30		05	02 / 03 / 05	A1
PKGWr30		07 / 08 / 0A	01	A5
IAMSRRd30		05	02 / 03 / 05 / 09	B1
IAMSRWr30		07 / 08 / 0A / 0E	01	B5

PECI Manual Mode Read Data Table

Command	PCI Rd30	PCI Wr30	PCIRd Local3 0	PCIWr Local30	PKG Rd30	PKG Wr30	IAMSR Rd30	IAMSR Wr30	GetDIB	GetTe mp
Command Code	61	65	E1	E5	A 1	A5	B1	В5	F7	01
RdData 1 CR 20 _{HEX}	Ccode	Ccode	Ccode	Ccode	Ccode	Ccod e	Ccode	Ccode	*	*
RdData 2 CR 21 _{HEX}	*	5.0	*	*	*	*	Data LSB_1	*	Device Info	*
RdData 3 CR 22 _{HEX}	*	*\(\)	(*)	*	*	*	Data LSB_2	*	Revision Number	*
RdData 4	*	*	*	*	*	*	Data	*	Reserved	*

Command	PCI Rd30	PCI Wr30	PCIRd Local3 0	PCIWr Local30	PKG Rd30	PKG Wr30	IAMSR Rd30	IAMSR Wr30	GetDIB	GetTe mp
CR 23 _{HEX}				0	m d		LSB_3		1	
RdData 5 CR 24 _{HEX}	*	*	*	*		*	Data LSB_4	*	Reserved 2	*
RdData 6 CR 25 _{HEX}	Data LSB_1	*	Data LSB_1	*	Data LSB_1	*	Data LSB_5	*	Reserved 3	*
RdData 7 CR 26 _{HEX}	Data LSB_2	*	Data LSB_2	*	Data LSB_2	100	Data LSB_6	*	Reserved 4	*
RdData 8 CR 27 _{HEX}	Data LSB_3	*	Data LSB_3	*	Data LSB_3	*	Data LSB_7	Son.	Reserved 5	Temp_ LB
RdData 9 CR 28 _{HEX}	Data MSB	*	Data MSB	*	Data MSB	*	Data MSB		Reserved 6	Temp_ HB

^{*}mean do not care

PECI Manual Command Write Data Table

Command	PCI Rd30	PCI Wr30	PCIRd Local30	PCIWr Local30	PKG Rd30	PKG Wr30	IAMSR Rd30	IAMSR Wr30
Command Code	61	65	E1	E5	A1	A5	B1	B5
WrData 1 CR 14 _{HEX}	Host ID	Host ID	Host ID	Host ID	Host ID	Host ID	Host ID	Host ID
WrData 2 CR 15 _{HEX}	Addr LSB_1	Addr LSB_1	Addr LSB_1	Addr LSB_1	Index	Index	Processor ID	Processor ID
WrData 3 CR 16 _{HEX}	Addr LSB_2	Addr LSB_2	Addr LSB_2	Addr LSB_2	Param LSB	Param LSB	Addr LSB	Addr LSB
WrData 4 CR 17 _{HEX}	Addr LSB_3	Addr LSB_3	Addr MSB	Addr MSB	Param MSB	Param MSB	Addr MSB	Addr MSB
WrData 5 CR 18 _{HEX}	Addr MSB	Addr MSB	*	Data LSB_1	*	Data LSB_1	*	Data LSB_1
WrData 6 CR 19 _{HEX}	* 12	Data LSB_1	*	Data LSB_2	*	Data LSB_2	*	Data LSB_2
WrData 7 CR 1A _{HEX}	20.	Data LSB_2	*	Data LSB_3	*	Data LSB_3	*	Data LSB_3
WrData 8 CR 1B _{HEX}		Data LSB_3	*	Data MSB	*	Data MSB	*	Data LSB_4
WrData 9 CR 1C _{HEX}	16	Data MSB	*	*	*	*	*	Data LSB_5
WrData10 CR 1D _{HEX}	*	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	*	*	*	*	*	Data LSB_6

WrData11 CR 1E _{HEX}	*	*	*	*	*	*	*	Data LSB_7
WrData12 CR 1F _{HEX}	*	*	*	*	*	*	*	Data MSB

^{*}mean do not care

7.3.15 Agent Relative Temperature Registers (ARTR)

Location:

A0D0RTH - Bank 2 Address 30_{HEX} A0D0RTL - Bank 2 Address 31_{HEX} A0D1RTH - Bank 2 Address 32_{HEX} A0D1RTL - Bank 2 Address 33_{HEX} A1D0RTH - Bank 2 Address 34_{HEX} - Bank 2 Address 35_{HEX} A1D0RTL A1D1RTH - Bank 2 Address 36_{HEX} A1D1RTL - Bank 2 Address 37_{HEX} A2D0RTH - Bank 2 Address 38_{HEX} A2D0RTL - Bank 2 Address 39_{HEX} A2D1RTH - Bank 2 Address 3A_{HEX} A2D1RTL - Bank 2 Address 3B_{HEX} A3D0RTH - Bank 2 Address 3CHEX A3D0RTL - Bank 2 Address 3D_{HEX} A3D1RTH - Bank 2 Address 3E_{HEX} A3D1RTL - Bank 2 Address 3F_{HEX}

Type: Read Only Reset: Power On Reset

BIT	15	14	13	12	11	10	9	8	
NAME	A0D0RTH	A0D0RTH - A3D0RTH: Agent 0- Agent 3 Domain0 Relative Temperature High byte							
	A0D1RTH	I – A3D1R1	「H : Agent	0- Agent 3 I	Domain1 R	elative Tem	perature H	igh byte	
	Refer the	PECI Temp	perature for	mat to calc	ulate tempe	rature data			
gar.	Sign	Sign Temperature[8:2]							
DEFAULT		F8 _{HEX}							

BIT	7	6	5	4	3	2	1	0
NAME	A0D1RTL -	A0D0RTL - A3D0RTL: Agent 0- Agent 3 Domain0 Relative Temperature Low byte A0D1RTL - A3D1RTL: Agent 0- Agent 3 Domain1 Relative Temperature Low byte Refer the PECI Temperature format to calculate temperature data.						
	Temperatu	Temperature[1:0] TEMP_2 TEMP_4 TEMP_8 TEMP_1 TEMP_3 TEMP_6						
DEFAULT	80 _{HEX}							

GetTemp() PECI Temperature format:

BIT	DESCRIPTION
15	Sign Bit. (Sign) In PECI Protocol, this bit should always be 1 to represent a negative temperature.
14-6	The integer part of the relative temperature. (Temperature[8:0])
5	TEMP_2 . 0.5℃ unit.
4	TEMP_4 . 0.25°C unit.
3	TEMP_8 . 0.125°C unit.
2	TEMP_16 . 0.0625℃ unit.
1	TEMP_32 . 0.03125℃ unit.
0	TEMP_64 . 0.015625℃ unit.

GetTemp() Response Definition:

RESPONSE	MEANING
General Sensor Error (GSE)	Thermal scan did not complete in time. Retry is appropriate.
0x0000	Processor is running at its maximum temperature or is currently being reset.
All other data	Valid temperature reading, reported as a negative offset from the TCC activation temperature. The valide temperature reading is referred to GetTemp() PECI Temperature format

On some occasions, PECI will return the abnormal states of the PECI bus in addition to the temperature. All the information will be recorded. In some cases, the NCT7904D will also do further processing for the alert mechanism. The following describes these codes and their effects to the NCT7904D.

Error Code	Description	NCT7904D host operation
8000 _{HEX}	General Sensor Error	No further processing
8001 _{HEX}	Sensing Device Missing	No further processing.
8002 _{HEX}	Operational, but the temperature is lower than the sensor operation range (underflow).	Compulsorily write -128℃ back to the temperature readouts.
8003 _{HEX}	Operational, but the temperature is higher than the sensor operation range. (overflow)	compulsorily write 127°C back to the temperature readouts.
8004 _{HEX}	Reserved.	No further operation.
81FF _{HEX}		

7.3.16 TSI Control Registers

Location: Bank 2 Address 50_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

Default Value: 00_{HEX}

BIT	DESCRIPTION
7	EN_TSI - Enable TSI function (* Set Bank2 Addr[53h] to 00h, before set EN_TSI=1)
	0 = Disable
	1 = Enable
6	LSN_MD – Enable TSI Listening function
	0 = Disable
	1 = Enable
	(Listened temperatures will override the CPU temperatures)
5-4	TSI_SPD[1:0] - TSI channel speed
	00ыn = 250KHz
	01 _{BIN} = 100KHz
	10 _{BIN} = 50KHz
	11 _{BIN} = 10KHz
3-0	Reserved

7.3.17 TSI Client Enable Registers

Location: Bank 2 Address 51_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

Default Value: FF_{HEX}

BIT	DESCRIPTION
7-0	EN_CLIENT[7:0] – Enable TSI clients 0 = Disable 1 = Enable

7.3.18 TSI Manual Configuration Registers

Location: Bank 2 Address 52_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

BIT	DESCRIPTION
7	EN_MANU – Enable TSI manual mode 0 = Disable 1 = Enable
6	MANU_RNW - TSI manual read / write 0 = Write 1 = Read
5	MANU_STEP – Enable TSI manual mode Set to do manual command one time then auto be cleared
4	MANU_STS – Report TSI Status (Read Only) 0 = Transaction OK

BIT	DESCRIPTION
	1 = Transaction fail
3	MANU_DONE - TSI Manual Done Status (Read Only)
	0 = Transaction done
	1 = Transaction still processing
2-0	Reserved

7.3.19 TSI Test Mode Registers

Location: Bank 2 Address 53_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

Default Value: 02_{HEX}

BIT	DESCRIPTION
7-0	Internal Test Mode Register[7:0] – Set this register to 00h before enable TSI function.

7.3.20 TSI Manual Address Registers

Location: Bank 2 Address 54_{HEX}

Type: Read / Write Reset: Power On Reset

RESETIN# with LOCK=0

Default Value: 00_{HEX}

BIT	DESCRIPTION
7-0	MANU_ADDR[7:0] - TSI manual command address

7.3.21 TSI Manual Command Registers

Location: Bank 2 Address 55_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

Default Value: 00_{HEX}

BIT	DESCRIPTION
7-0	MANU_CMD[7:0] - TSI manual command data

7.3.22 TSI Manual Write Data Registers

Location: Bank 2 Address 56_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

Default Value: 00_{HEX}

BIT	DESCRIPTION
7-0	MANU_WDATA[7:0] - TSI manual write data

7.3.23 TSI Manual Read Data Registers

Location: Bank 2 Address 57_{HEX}

Type: Read Only
Reset: Power On Reset
Default Value: 00_{HEX}

BIT	DESCRIPTION
7-0	MANU_RDATA[7:0] - TSI manual read data

7.3.24 PCH Read Control Registers

Location: Bank 2 Address 60_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

Default Value: 20_{HEX}

BIT	DESCRIPTION
7	EN_PCH_RD – Enable PCH read function
	0 = Disable
	1 = Enable
6	Reserved
5-4	PCH_RD_SPD[1:0] - PCH channel read speed
	00 _{BIN} = 250KHz
	01 _{BIN} = 100KHz
	10 _{BIN} = 50KHz
	11 _{BIN} = 10KHz
3-0	Reserved

7.3.25 PCH Client Address Registers

Location: Bank 2 Address 61_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

Default Value: 00_{HEX}

BIT	DESCRIPTION
7-0	PCH_ADDR[7:0] – PCH client address

7.3.26 PCH Command Registers

Location: Bank 2 Address 62_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

Default Value: 00_{HEX}

BIT	DESCRIPTION
7-0	PCH_CMD[7:0] – PCH command data

7.3.27 PCH Read Byte Count Registers

Location: Bank 2 Address 63_{HEX}

Type: Read Only
Reset: Power On Reset
Default Value: 00_{HEX}

BIT	DESCRIPTION
7-0	PCH_BYTE_CNT[7:0] - PCH read byte count

7.3.28 SMBUS Master Manual Configuration Registers

Location: Bank 2 Address 64_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

Default Value: 08_{HEX}

BIT	DESCRIPTION
7	EN_SM_MANU – Enable SMBUS Master manual mode
	0 = Disable
	1 = Enable
6	SM_RNW – SMBUS Master manual read / write
	0 = Write
	1 = Read
5	SM_STEP - Enable SMBUS Master manual mode
	Set to do manual command one time then auto be cleared
4	SM_STS - Report SMBUS Master Status (Read Only)
	0 = Transaction OK
	1 = Transaction fail
3	SM_DONE - SMBUS Master Manual Done Status (Read Only)
	0 = Transaction done
	1 = Transaction still processing
2-0	Reserved

7.3.29 SMBUS Master Manual Address Registers

Location: Bank 2 Address 65_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

Default Value: 00_{HEX}

BIT	DESCRIPTION
7-0	SM_ADDR[7:0] – SMBUS Master manual command address

7.3.30 SMBUS Master Manual Command Registers

Location: Bank 2 Address 66_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

BIT	DESCRIPTION
7-0	SM_CMD[7:0] – SMBUS Master manual command data

7.3.31 SMBUS Master Manual Write Data Registers

Location: Bank 2 Address 67_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

Default Value: 00_{HEX}

BIT	DESCRIPTION
7-0	SM_WDATA[7:0] – SMBUS Master manual write data

7.3.32 SMBUS Master Manual Read Data Registers

Location: Bank 2 Address 68_{HEX}

Type: Read Only
Reset: Power On Reset
Default Value: 00_{HEX}

BIT	DESCRIPTION
7-0	SM_RDATA[7:0] – SMBUS Master manual read data

7.3.33 External Read Control Registers

Location: Bank 2 Address 6A_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

BIT	DESCRIPTION
7	EN_EXT_RD – Enable External Read function.
N	0 = Disable
	1 = Enable
6-4	Reserved
3	EN_EXT_P3 – Enable EXT_P3 read function.
Care	0 = Disable
100	1 = Enable
2	EN_EXT_P2 – Enable EXT_P2 read function.
0	0 = Disable
1	1 = Enable
1	EN_EXT_P1 – Enable EXT_P1 read function.
	0 = Disable
	1 = Enable
0	EN_EXT_P0 – Enable EXT_P0 read function.
	0 = Disable
	1 = Enable

7.3.34 External Read Address and Command Register

Location:

EXT ADDR P0 - Bank 0 Address 6CHEX EXT CMD P0 - Bank 0 Address 6DHEX EXT_ADDR_P1 - Bank 0 Address 6E_{HEX} EXT_CMD_P1 - Bank 0 Address 6F_{HFX} EXT_ADDR_P2 - Bank 0 Address 70_{HEX} - Bank 0 Address 71_{HEX} EXT CMD P2 - Bank 0 Address 72_{HEX} EXT_ADDR_P3 EXT_CMD_P3 - Bank 0 Address 73_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

EXT_ADDR_P0 - Port 0 external SMBUS address

Location: Bank 2 Address 6C_{HEX}

Default Value: 00_{HEX}

BIT	DESCRIPTION
7-0	EXT_ADDR_P0 - Port 0 external SMBUS address

EXT CMD P0 - Port 0 external SMBUS command

Location: Bank 2 Address 6D_{HEX}

Default Value: 00_{HEX}

BIT	DESCRIPTION
7-0	EXT_CMD_P0 - Port 0 external SMBUS command

EXT_ADDR_P1 - Port 1 external SMBUS address

Location: Bank 2 Address 6E_{HEX}

Default Value: 00_{HEX}

BIT	DESCRIPTION
7-0	EXT_ADDR_P1 - Port 1 external SMBUS address

EXT_CMD_P1 - Port 1 external SMBUS command

Location: Bank 2 Address 6F_{HEX}

Default Value: 00_{HEX}

BIT	DESCRIPTION
7-0	EXT_CMD_P1 - Port 1 external SMBUS command

EXT_ADDR_P2 - Port 2 external SMBUS address

Location: Bank 2 Address 70_{HEX}

Default Value: 00_{HEX}

BIT	DESCRIPTION
7-0	EXT_ADDR_P2 - Port 2 external SMBUS address

EXT_CMD_P2 - Port 2 external SMBUS command

Location: Bank 2 Address 71_{HEX}

BIT	DESCRIPTION
7-0	EXT_CMD_P2 - Port 2 external SMBUS command

EXT_ADDR_P3 - Port 3 external SMBUS address

Location: Bank 2 Address 72_{HEX}

Default Value: 00_{HEX}

BIT	DESCRIPTION
7-0	EXT_ADDR_P3 – Port 3 external SMBUS address

EXT_CMD_P3 - Port 3 external SMBUS command

Location: Bank 2 Address 73_{HEX}

Default Value: 00_{HEX}

BIT	DESCRIPTION	
7-0	EXT_CMD_P3 - Port 3 external SMBUS command	(a) (a)

7.3.35 Power Unit Status

Location: Bank 2 Address 80_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

Power_Unit

BIT	7	6	5	4	3	2	1	0
NAME	Reserved			Power_Unit[3:0]				
DEFAULT	03 _{HEX}							

BIT	DESCRIPTION			
7-4	Reserved			
3-0	Power_Unit[3:0] – Unit index for power data retrieved from CPU over PECI			
	The calculation of unit is 1W / 2^Power_Unit. Default is 03h.			
	The manufacture setting will be loaded into as soon as PECI_En assertion.			
1000	However user could override it by anytime.			

7.3.36 Energy Unit Status

Location: Bank 2 Address 81_{HEX}

Type: Read / Write Reset: Power On Reset

RESETIN# with LOCK=0

Energy_Unit

BIT	10 70	6	5	4	3	2	1	0
NAME	Reserved		Energy_Unit[4:0]					
DEFAULT			10 _H	EX				

BIT	DESCRIPTION

BIT	DESCRIPTION
7-5	Reserved
4-0	Energy_Unit[4:0] – Unit index for energy data retrieved from CPU over PECI The calculation of unit is 1J / 2^Energy_Unit. Default is 10h. The manufacture setting will be loaded into as soon as PECI_En assertion. However user could override it by anytime.

7.3.37 Retrieving Margin Status Control Registers

Location:

CFG - Bank 2 Address 84_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

CFG

BIT	7	6	5	4	3	2	10	0
NAME	Reserved MARGIN_BSEL[1:0]						BSEL[1:0]	
DEFAULT	00 _{HEX}							

BIT	DESCRIPTION
7-2	Reserved
1-0	MARGIN_BSEL[1:0]: Pick-up selection of margin value among returned four bytes data from RdPkgConfig(). The pick-up data will be put into CR98 ~ CR9B Bit[1:0] = 11 => Select last retrieved byte, MSB Bit[1:0] = 10 => Select 3 rd retrieved byte Bit[1:0] = 01 => Select second retrieved byte Bit[1:0] = 00 => Select first retrieved byte, LSB

Location:

MARGIN_INDEX - Bank 2 Address 85_{HEX}

Type: Read / Write Reset: Power On Reset

RESETIN# with LOCK=0

Default: 00_{HEX}

BIT	DESCRIPTION
7-0	MARGIN_INDEX: Index data for executing RdPkgConfig()

Location:

MARGIN_PARA_L - Bank 2 Address 86_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

Default: 00_{HEX}

BIT	DESCRIPTION
-----	-------------

7-0 N	MARGIN_PARA_L: Low byte of parameter data for executing RdPkgConfig()
--------------	---

Location:

MARGIN_PARA_H - Bank 2 Address 87_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

Default: 00_{HEX}

BIT	DESCRIPTION
7-0	MARGIN_PARA_H: High byte of parameter data for executing RdPkgConfig()

7.3.38 Tjmax Temperature Target Read/Write for CPU Agent (Address: 30h ~ 33h)

Location:

Tjmax_CPU0 - Bank 2 Address 88_{HEX}
Tjmax_CPU1 - Bank 2 Address 89_{HEX}
Tjmax_CPU2 - Bank 2 Address 8A_{HEX}
Tjmax_CPU3 - Bank 2 Address 8B_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

BIT	DESCRIPTION
7-0	Tjmax_CPU0[7:0] - Tjmax data for agent address 30h
	Tjmax_CPU1[7:0] - Tjmax data for agent address 31h
	Tjmax_CPU2[7:0] - Tjmax data for agent address 32h
	Tjmax_CPU3[7:0] - Tjmax data for agent address 33h
	The manufacture setting will be loaded into as soon as PECI_En assertion.
	However user could override it by anytime.
Default	00 _{HEX}

7.3.39 Tcontrol Temperature Target Read/Write for CPU Agent (Address : 30h ~ 33h)

Location:

Tjmax_CPU0 - Bank 2 Address 8C_{HEX}
Tjmax_CPU1 - Bank 2 Address 8D_{HEX}
Tjmax_CPU2 - Bank 2 Address 8E_{HEX}
Tjmax_CPU3 - Bank 2 Address 8F_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

BIT	DESCRIPTION
7-0	Tcontrol_CPU0[7:0] - Tcontrol data for agent address 30h
	Tcontrol_CPU1[7:0] - Tcontrol data for agent address 31h
	Tcontrol_CPU2[7:0] - Tcontrol data for agent address 32h
	Tcontrol_CPU3[7:0] - Tcontrol data for agent address 33h
	The manufacture setting will be loaded into as soon as PECI_En assertion.

BIT	DESCRIPTION
	However user could override it by anytime.
Default	00 _{HEX}

7.3.40 Thermal Design Power (TDP) Status for CPU Agent (Address: 30h ~ 33h)

Location:

TDP_HB_CPU0 - Bank 2 Address 90_{HEX}
TDP_LB_CPU1 - Bank 2 Address 91_{HEX}
TDP_LB_CPU1 - Bank 2 Address 93_{HEX}
TDP_LB_CPU2 - Bank 2 Address 94_{HEX}
TDP_LB_CPU2 - Bank 2 Address 95_{HEX}
TDP_LB_CPU2 - Bank 2 Address 95_{HEX}
TDP_HB_CPU3 - Bank 2 Address 96_{HEX}
TDP_LB_CPU3 - Bank 2 Address 97_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

TDP_HB_CPUx

BIT	7	6	5	4	3	2	1	0	
NAME	Reserved		TDP_HB_CPUx[6:0]						
DEFAULT			00 _{HEX}						

BIT	DESCRIPTION					
7	Reserved					
6-0	High Byte Data of TDP[14:8]					
	The manufacture setting will be loaded into as soon as PECI_En assertion.					
	However user could override it by anytime.					

TDP LB CPUx

BIT	7	6	5	4	3	2	1	0
NAME		TDP_HB_CPUx						
DEFAULT		00 _{HEX}						

BIT	DESCRIPTION
7-0	Low Byte Data of TDP[7:0] The manufacture setting will be loaded into as soon as PECI_En assertion.
	However user could override it by anytime.

7.3.41 Margin Status for CPU Agent (Address : 30h ~ 33h)

Location:

Margin_CPU1 - Bank 2 Address 98_{HEX}
Margin_CPU2 - Bank 2 Address 99_{HEX}
Margin_CPU3 - Bank 2 Address 9A_{HEX}

Margin_CPU4 - Bank 2 Address 9B_{HEX}

Type: Read

Reset: Power On Reset

RESETIN# with LOCK=0

Margin_CPUx

BIT	7	6	5	4	3	2	1	0	
NAME		Margin_CPUx							
DEFAULT		00 _{HEX}							

BIT	DESCRIPTION
7-0	Margin status for DTS (Sensor) Based Thermal Spec.
	If Margin is positive, then CPU die temperature is in relative safe operating region.
	If margin is negative, then CPU is working with higher temperature risk.

7.3.42 Power Reporting Factor for CPU Agent (Address: 30h ~ 33h)

Location:

Factor_CPU1 - Bank 2 Address 9C_{HEX}
Factor_CPU2 - Bank 2 Address 9D_{HEX}
Factor_CPU3 - Bank 2 Address 9E_{HEX}
Factor_CPU4 - Bank 2 Address 9F_{HEX}

Type: Read

Reset: Power On Reset

RESETIN# with LOCK=0

Factor_CPUx

BIT	7	6	5	4	3	2	1	0	
NAME		Factor_CPUx							
DEFAULT		FF _{HEX}							

BIT	DESCRIPTION
7-0	Factor_CPUx : Power reporting factor.
	Power reported over PECI is always higher than actual power.
	The Factor is to sum up each bit weighting. The weighting of each bit is defined as
	following.
	[7] = 0.5
	[6] = 0.25
	[5] = 0.125
	[4] = 0.0625
	[3] = 0.03125
	[2] = 0.015625
	[1] = 0.0078125
	[0] = 0.00390625

7.3.43 DTS DRAM Temperature Monitor Enable Control Register

Location:

 $\begin{array}{lll} \textbf{EN_MT_CTRL0} & - \ \, \text{Bank 2 Address C0}_{\text{HEX}} \\ \textbf{EN_MT_CTRL1} & - \ \, \text{Bank 2 Address C1}_{\text{HEX}} \\ \textbf{EN_T_DM_CTRL} & - \ \, \text{Bank 2 Address C2}_{\text{HEX}} \\ \end{array}$

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

EN_MT_CTRL0 – Digital Channel Highest Temperature Monitoring Control Register

Location: Bank 2 Address CO_{HEX}

Default Value: 00_{HEX}

BIT	DESCRIPTION
7	EN_MT_C3_C1 – Enable DTS CPU1 Channel3 highest DIMM temperature monitoring. 0 = Disable 1 = Enable
6	EN_MT_C2_C1 - Enable DTS CPU1 Channel2 highest DIMM temperature monitoring. 0 = Disable 1 = Enable
5	EN_MT_C1_C1 – Enable DTS CPU1 Channel1 highest DIMM temperature monitoring. 0 = Disable 1 = Enable
4	EN_MT_C0_C1 – Enable DTS CPU1 Channel0 highest DIMM temperature monitoring. 0 = Disable 1 = Enable
3	EN_MT_C3_C0 – Enable DTS CPU0 Channel3 highest DIMM temperature monitoring. 0 = Disable 1 = Enable
2	EN_MT_C2_C0 – Enable DTS CPU0 Channel2 highest DIMM temperature monitoring. 0 = Disable 1 = Enable
1	EN_MT_C1_C0 – Enable DTS CPU0 Channel1 highest DIMM temperature monitoring. 0 = Disable 1 = Enable
0	EN_MT_C0_C0 – Enable DTS CPU0 Channel0 highest DIMM temperature monitoring. 0 = Disable 1 = Enable

EN_MT_CTRL1 - Digital Channel Highest Temperature Monitoring Control Register

Location: Bank 2 Address C1_{HEX}

BIT	DESCRIPTION
7-3	Reserved
2	EN_MT_SYS – Enable DTS CPU0 and CPU1 highest DIMM temperature monitoring. 0 = Disable

BIT	DESCRIPTION	
	1 = Enable	
1	EN_MT_C1 - Enable DTS CPU1 highest DIMM temperature monitoring.	
	0 = Disable	
	1 = Enable	
0	EN_MT_C0 - Enable DTS CPU0 highest DIMM temperature monitoring.	
	0 = Disable	
	1 = Enable	

EN_T_DM_CTRL – Digital DIMM Temperature Monitoring Control Register

Location: Bank 2 Address C2_{HEX}

BIT	DESCRIPTION
7	EN_T_C3_C1 – Enable DTS CPU1 Channel3 DIMMs temperature monitoring. 0 = Disable 1 = Enable
6	EN_T_C2_C1 – Enable DTS CPU1 Channel2 DIMMs temperature monitoring. 0 = Disable 1 = Enable
5	EN_T_C1_C1 - Enable DTS CPU1 Channel1 DIMMs temperature monitoring. 0 = Disable 1 = Enable
4	EN_T_C0_C1 – Enable DTS CPU1 Channel0 DIMMs temperature monitoring. 0 = Disable 1 = Enable
3	EN_T_C3_C0 – Enable DTS CPU0 Channel3 DIMMs temperature monitoring. 0 = Disable 1 = Enable
2	EN_T_C2_C0 – Enable DTS CPU0 Channel2 DIMMs temperature monitoring. 0 = Disable 1 = Enable
70	EN_T_C1_C0 – Enable DTS CPU0 Channel1 DIMMs temperature monitoring. 0 = Disable 1 = Enable
0	EN_T_C0_C0 – Enable DTS CPU0 Channel0 DIMMs temperature monitoring. 0 = Disable 1 = Enable

7.3.44 DRAM Temperature Value Register (Reterived by PECI RdPkgConfig command)

Location:

Jalion.	
MT_C0_C0	- Bank 2 Address C4 _{HEX}
MT_C1_C0	- Bank 2 Address C5 _{HEX}
MT_C2_C0	- Bank 2 Address C6 _{HEX}
MT_C3_C0	- Bank 2 Address C7 _{HEX}
MT_C0_C1	- Bank 2 Address C8 _{HEX}
MT_C1_C1	- Bank 2 Address C9 _{HEX}
MT_C2_C1	- Bank 2 Address CA _{HEX}
MT_C3_C1	- Bank 2 Address CB _{HEX}
MT_C0	- Bank 2 Address CC _{HEX}
MT_C1	- Bank 2 Address CD _{HEX}
MT_SYS	- Bank 2 Address CE _{HEX}
T_D0C0_C0	- Bank 2 Address D0 _{HEX}
T_D1C0_C0	- Bank 2 Address D1 _{HEX}
T_D2C0_C0	- Bank 2 Address D2 _{HEX}
EN_C0_C0	- Bank 2 Address D3 _{HEX}
T_D0C1_C0	- Bank 2 Address D4 _{HEX}
T_D1C1_C0	- Bank 2 Address D5 _{HEX}
T_D2C1_C0	- Bank 2 Address D6 _{HEX}
EN_C1_C0	- Bank 2 Address D7 _{HEX}
T_D0C2_C0	- Bank 2 Address D8 _{HEX}
T_D1C2_C0	- Bank 2 Address D9 _{HEX}
T_D2C2_C0	- Bank 2 Address DA _{HEX}
EN_C2_C0	- Bank 2 Address DB _{HEX}
T_D0C3_C0	- Bank 2 Address DC _{HEX}
T_D1C3_C0	- Bank 2 Address DD _{HEX}
T_D2C3_C0	- Bank 2 Address DE _{HEX}
EN_C3_C0	- Bank 2 Address DF _{HEX}
T_D0C0_C1	- Bank 2 Address E0 _{HEX}
T_D1C0_C1	- Bank 2 Address E1 _{HEX}
T_D2C0_C1	- Bank 2 Address E2 _{HEX}
EN_C0_C1	- Bank 2 Address E3 _{HEX}
T_D0C1_C1	- Bank 2 Address E4 _{HEX}
T_D1C1_C1	- Bank 2 Address E5 _{HEX}
T_D2C1_C1	- Bank 2 Address E6 _{HEX}
EN_C1_C1	- Bank 2 Address E7 _{HEX}
T_D0C2_C1	- Bank 2 Address E8 _{HEX}
T_D1C2_C1	- Bank 2 Address E9 _{HEX}
T_D2C2_C1	- Bank 2 Address EA _{HEX}
EN_C2_C1	- Bank 2 Address EB _{HEX}
T_D0C3_C1	- Bank 2 Address EC _{HEX}
T_D1C3_C1	- Bank 2 Address ED _{HEX}
T_D2C3_C1	- Bank 2 Address EE _{HEX}
EN_C3_C1	- Bank 2 Address EF _{HEX}

Type: Read / Write

Reset: Power On Reset

RESETIN# with LOCK=0

MT_C0_C0 - CPU0 Channel0 Highest DIMM Temperature Value Register

Location: Bank 2 Address C4_{HEX}

Default Value: 00_{HEX}

BIT	DESCRIPTION
7-0	MT_C0_C0 [7:0]
	CPU0 Channel0 Highest DIMM Temperature

MT_C1_C0 - CPU0 Channel1 Highest DIMM Temperature Value Register

Location: Bank 2 Address C5_{HEX}

Default Value: 00_{HEX}

BIT	DESCRIPTION	25 00
7-0	MT_C1_C0 [7:0]	
	CPU0 Channel1 Highest DIMM Temperature	

MT_C2_C0 - CPU0 Channel2 Highest DIMM Temperature Value Register

Location: Bank 2 Address C6_{HEX}

Default Value: 00_{HEX}

BIT	DESCRIPTION
7-0	MT_C2_C0 [7:0]
	CPU0 Channel2 Highest DIMM Temperature

MT_C3_C0 - CPU0 Channel3 Highest DIMM Temperature Value Register

Location: Bank 2 Address C7_{HEX}

Default Value: 00_{HEX}

BIT	DESCRIPTION
7-0	MT_C3_C0 [7:0]
	CPU0 Channel3 Highest DIMM Temperature

MT_C0_C1 - CPU1 Channel0 Highest DIMM Temperature Value Register

Location: Bank 2 Address C8_{HEX}

Default Value: 00_{HEX}

BIT	DESCRIPTION
7-0	MT_C0_C1 [7:0] CPU1 Channel0 Highest DIMM Temperature

MT_C1_C1 - CPU1 Channel1 Highest DIMM Temperature Value Register

Location: Bank 2 Address C9_{HEX}

BIT	DESCRIPTION
-----	-------------

BIT	DESCRIPTION
7-0	MT_C1_C1 [7:0]
	CPU1 Channel1 Highest DIMM Temperature

MT_C2_C1 - CPU1 Channel2 Highest DIMM Temperature Value Register

Location: Bank 2 Address CA_{HEX}

Default Value: 00_{HEX}

BIT	DESCRIPT	ION
7-0	MT_C2_C1 [7:0]	Children Control
	CPU1 Channel2 Highest DIMM Temperature	(() ₂ ') ₂

MT_C3_C1 - CPU1 Channel3 Highest DIMM Temperature Value Register

Location: Bank 2 Address CB_{HEX}

Default Value: 00_{HEX}

BIT	DESCRIPTION	£07.00
7-0	MT_C3_C1 [7:0] CPU1 Channel3 Highest DIMM Temperature	

MT_C0 - CPU0 Highest DIMM Temperature Value Register

Location: Bank 2 Address CC_{HEX}

Default Value: 00_{HEX}

BIT	DESCRIPTION
7-0	MT_C0 [7:0]
	CPU0 Highest DIMM Temperature

MT_C1 - CPU1 Highest DIMM Temperature Value Register

Location: Bank 2 Address CD_{HEX}

Default Value: 00_{HEX}

BIT	DESCRIPTION
7-0	MT_C1 [7:0] CPU1 Highest DIMM Temperature

MT_SYS - CPU0 and CPU1 Highest DIMM Temperature Value Register

Location: Bank 2 Address CE_{HEX}

Default Value: 00_{HEX}

BIT	DESCRIPTION
7-0	MT_SYS [7:0]
	CPU0 and CPU1 Highest DIMM Temperature

T DxC0 C0 - CPU0 Channel0 DIMM0~DIMM2 Temperature Value Register

Location: Bank 2 Address D0_{HEX} ~ D2_{HEX}

BIT	DESCRIPTION
7-0	T_D0C0_C0 [7:0] ~ T_D2C0_C0 [7:0]
	T_D0C0_C0 : CPU0 Channel0 DIMM0 Temperature
	T_D1C0_C0 : CPU0 Channel0 DIMM1 Temperature
	T_D2C0_C0 : CPU0 Channel0 DIMM2 Temperature

EN_C0_C0 – Enable Read CPU0 Channel0 DIMM Temperature Register

Location: Bank 2 Address D3_{HEX}

Default Value: 07_{HEX}

BIT	DESCRIPTION
7-3	Reserved
2	EN_T_DIMM2_CH0_C0 – Enable DTS CPU0 Channel0 DIMM2 temperature monitoring. 0 = Disable 1 = Enable
1	EN_T_DIMM1_CH0_C0 – Enable DTS CPU0 Channel0 DIMM1 temperature monitoring. 0 = Disable 1 = Enable
0	EN_T_DIMM0_CH0_C0 – Enable DTS CPU0 Channel0 DIMM0 temperature monitoring. 0 = Disable 1 = Enable

T_DxC1_C0 - CPU0 Channel1 DIMM0~DIMM2 Temperature Value Register

Location: Bank 2 Address $D4_{HEX} \sim D6_{HEX}$

Default Value: 00_{HEX}

BIT	DESCRIPTION
	T_D0C1_C0 [7:0] ~ T_D2C1_C0 [7:0]
7-0	T_D0C1_C0 : CPU0 Channel1 DIMM0 Temperature
7-0	T_D1C1_C0 : CPU0 Channel1 DIMM1 Temperature
	T_D2C1_C0 : CPU0 Channel1 DIMM2 Temperature

EN_C1_C0 - Enable Read CPU0 Channel1 DIMM Temperature Register

Location: Bank 2 Address D7_{HEX}

BIT	DESCRIPTION
7-3	Reserved
2	EN_T_DIMM2_CH1_C0 – Enable DTS CPU0 Channel1 DIMM2 temperature monitoring. 0 = Disable 1 = Enable
1	EN_T_DIMM1_CH1_C0 – Enable DTS CPU0 Channel1 DIMM1 temperature monitoring. 0 = Disable 1 = Enable
0	EN_T_DIMM0_CH1_C0 – Enable DTS CPU0 Channel1 DIMM0 temperature monitoring. 0 = Disable

BIT		DESCRIPTION
	1 = Enable	

T_DxC2_C0 - CPU0 Channel2 DIMM0~DIMM2 Temperature Value Register

Location: Bank 2 Address D8_{HEX} ~ DA_{HEX}

Default Value: 00_{HEX}

BIT	DESCRIPTION
7-0	T_D0C2_C0 [7:0] ~ T_D2C2_C0 [7:0]
	T_D0C2_C0 : CPU0 Channel2 DIMM0 Temperature
	T_D1C2_C0 : CPU0 Channel2 DIMM1 Temperature
	T_D2C2_C0 : CPU0 Channel2 DIMM2 Temperature

EN_C2_C0 - Enable Read CPU0 Channel2 DIMM Temperature Register

Location: Bank 2 Address DB_{HEX}

Default Value: 07_{HEX}

BIT	DESCRIPTION
7-3	Reserved
2	EN_T_DIMM2_CH2_C0 – Enable DTS CPU0 Channel2 DIMM2 temperature monitoring.
	0 = Disable
	1 = Enable
1	EN_T_DIMM1_CH2_C0 – Enable DTS CPU0 Channel2 DIMM1 temperature monitoring.
	0 = Disable
	1 = Enable
0	EN_T_DIMM0_CH2_C0 – Enable DTS CPU0 Channel2 DIMM0 temperature monitoring.
	0 = Disable
	1 = Enable

T_DxC3_C0 - CPU0 Channel3 DIMM0~DIMM2 Temperature Value Register

Location: Bank 2 Address DC_{HEX} ~ DE_{HEX}

Default Value: 00_{HEX}

BIT	DESCRIPTION
7-0	T_D0C3_C0 [7:0] ~ T_D2C3_C0 [7:0]
100	T_D0C3_C0 : CPU0 Channel3 DIMM0 Temperature
0 13	T_D1C3_C0 : CPU0 Channel3 DIMM1 Temperature
0.0	T_D2C3_C0 : CPU0 Channel3 DIMM2 Temperature

EN_C3_C0 - Enable Read CPU0 Channel3 DIMM Temperature Register

Location: Bank 2 Address DF_{HEX}

BIT	DESCRIPTION
7-3	Reserved
2	EN_T_DIMM2_CH3_C0 – Enable DTS CPU0 Channel3 DIMM2 temperature monitoring. 0 = Disable 1 = Enable
1	EN_T_DIMM1_CH3_C0 - Enable DTS CPU0 Channel3 DIMM1 temperature monitoring.

BIT	DESCRIPTION	
	0 = Disable	
	1 = Enable	
	EN_T_DIMM0_CH3_C0 - Enable DTS CPU0 Channel3 DIMM0 temperature monitoring.	
0	0 = Disable	
	1 = Enable	

T_DxC0_C1 - CPU1 Channel0 DIMM0~DIMM2 Temperature Value Register

Location: Bank 2 Address E0_{HEX} ~ E2_{HEX}

Default Value: 00_{HEX}

BIT	DESCRIPTION	(1) (1)
7-0	T_D0C0_C1 [7:0] ~ T_D2C0_C1 [7:0]	
	T_D0C0_C1 : CPU1 Channel0 DIMM0 Temperature	
	T_D1C0_C1 : CPU1 Channel0 DIMM1 Temperature	200
	T_D2C0_C1 : CPU1 Channel0 DIMM2 Temperature	20 (0)

EN_C0_C1 - Enable Read CPU1 Channel0 DIMM Temperature Register

Location: Bank 2 Address E3_{HEX}

Default Value: 07_{HEX}

BIT	DESCRIPTION
7-3	Reserved
2	EN_T_DIMM2_CH0_C1 – Enable DTS CPU1 Channel0 DIMM2 temperature monitoring.
	0 = Disable
	1 = Enable
1	EN_T_DIMM1_CH0_C1 – Enable DTS CPU1 Channel0 DIMM1 temperature monitoring.
	0 = Disable
	1 = Enable
0	EN_T_DIMM0_CH0_C1 - Enable DTS CPU1 Channel0 DIMM0 temperature monitoring.
	0 = Disable
	1 = Enable

T_DxC1_C1 - CPU1 Channel1 DIMM0~DIMM2 Temperature Value Register

Location: Bank 2 Address E4_{HEX} ~ E6_{HEX}

Default Value: 00_{HEX}

BIT	DESCRIPTION
7-0	T_D0C1_C1 [7:0] ~ T_D2C1_C1 [7:0]
	T_D0C1_C1 : CPU1 Channel1 DIMM0 Temperature
	T_D1C1_C1 : CPU1 Channel1 DIMM1 Temperature
- 3	T_D2C1_C1 : CPU1 Channel1 DIMM2 Temperature

EN_C1_C1 - Enable Read CPU1 Channel1 DIMM Temperature Register

Location: Bank 2 Address E7_{HEX}

BIT	DESCRIPTION
7-3	Reserved

BIT	DESCRIPTION
2	EN_T_DIMM2_CH1_C1 – Enable DTS CPU1 Channel1 DIMM2 temperature monitoring.
	0 = Disable
	1 = Enable
1	EN_T_DIMM1_CH1_C1 - Enable DTS CPU1 Channel1 DIMM1 temperature monitoring.
	0 = Disable
	1 = Enable
0	EN_T_DIMM0_CH1_C1 - Enable DTS CPU1 Channel1 DIMM0 temperature monitoring.
	0 = Disable
	1 = Enable

T_DxC2_C1 - CPU1 Channel2 DIMM0~DIMM2 Temperature Value Register

Location: Bank 2 Address E8_{HEX} ~ EA_{HEX}

Default Value: 00_{HEX}

BIT	DESCRIPTION	(O) (O)
7-0	T_D0C2_C1 [7:0] ~ T_D2C2_C1 [7:0]	(0)
	T_D0C2_C1 : CPU1 Channel2 DIMM0 Temperature	
	T_D1C2_C1 : CPU1 Channel2 DIMM1 Temperature	100
	T_D2C2_C1 : CPU1 Channel2 DIMM2 Temperature	15.25

EN_C2_C1 - Enable Read CPU1 Channel2 DIMM Temperature Register

Location: Bank 2 Address EB_{HEX}

Default Value: 07_{HEX}

BIT	DESCRIPTION
7-3	Reserved
2	EN_T_DIMM2_CH2_C1 – Enable DTS CPU1 Channel2 DIMM2 temperature monitoring.
	0 = Disable
	1 = Enable
1	EN_T_DIMM1_CH2_C1 – Enable DTS CPU1 Channel2 DIMM1 temperature monitoring.
	0 = Disable
	1 = Enable
0	EN_T_DIMM0_CH2_C1 – Enable DTS CPU1 Channel2 DIMM0 temperature monitoring.
Ills.	0 = Disable
1960	1 = Enable

T_DxC3_C1 - CPU1 Channel3 DIMM0~DIMM2 Temperature Value Register

Location: Bank 2 Address EC_{HEX} ~ EE_{HEX}

Default Value: 00_{HEX}

BIT	DESCRIPTION
7-0	T_D0C3_C1 [7:0] ~ T_D2C3_C1 [7:0]
	T_D0C3_C1 : CPU1 Channel3 DIMM0 Temperature
	T_D1C3_C1 : CPU1 Channel3 DIMM1 Temperature
	T_D2C3_C1 : CPU1 Channel3 DIMM2 Temperature

EN_C3_C1 - Enable Read CPU1 Channel3 DIMM Temperature Register

Location: Bank 2 Address EF_{HEX}

BIT	DESCRIPTION
7-3	Reserved
2	EN_T_DIMM2_CH3_C1 – Enable DTS CPU1 Channel3 DIMM2 temperature monitoring.
	0 = Disable
	1 = Enable
1	EN_T_DIMM1_CH3_C1 – Enable DTS CPU1 Channel3 DIMM1 temperature monitoring.
	0 = Disable
	1 = Enable
0	EN_T_DIMM0_CH3_C1 – Enable DTS CPU1 Channel3 DIMM0 temperature monitoring.
	0 = Disable
	1 = Enable

7.4 Bank 3 REGISTER DETAIL

7.4.1 Temperature to Fan Mapping Relationships (TFMR)

Location:

 $extbf{T1FMR}$ - Bank 3 Address $00_{ extbf{HEX}}$ $extbf{T2FMR}$ - Bank 3 Address $02_{ extbf{HEX}}$ $extbf{T3FMR}$ - Bank 3 Address $02_{ extbf{HEX}}$ $extbf{T4FMR}$ - Bank 3 Address $03_{ extbf{HEX}}$

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

T1FMR - T4FMR

BIT	7	6	5	4	3	2	1	0
NAME	Reserved				F4SF	F3SF	F2SF	F1SF
DEFAULT	00 _{HEX}							

BIT	DESCRIPTION
7-4	Reserved
3-0	F4SF – F1SF setting involves two purposes. The one is building up the relation between temperature source 1~4 and FANCTL1~4, the other is Fan Control mode assignment.
	0 = Related FANCTL will operate in manual mode and have no relationship with temperature (Default)
	1 = Related FANCTL will operate with SmartFan control mode and be linked to relative temperature source 1 ~ 4.

7.4.2 Default Fan Speed at Power-on (DFSP)

Location: **DFSP** - Bank 3 Address 04_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

DFSP

BIT	7	6	5	4	3	2	1	0
NAME		DefaultSpeed						
DEFAULT	2-00	7F _{HEX}						

BIT	DESCRIPTION
7-0	Specify default fan output duty cycle after 3VDD is available

7.4.3 SmartFan Output Step Up Time (SFOSUT)

Location: SFOSUT - Bank 3 Address 05_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

SFOSUT

BIT	7	6	5	4	3	2	1	0
NAME		UpTime						
DEFAULT				0A	HEX	(C)	(D)	

BIT	DESCRIPTION	
7-0	The update rate for increasing fan output duty cycle.	Unit: 0.1sec.

7.4.4 SmartFan Output Step Down Time (SFOSDT)

Location: SFOSDT - Bank 3 Address 06_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

SFOSUT

BIT	7	6	5	4	3	2	1	0
NAME		DownTime						
DEFAULT		0A _{HEX}						

	BIT	DESCRIPTION	
I	7-0	The update rate for decreasing fan output duty cycle.	Unit: 0.1sec.

7.4.5 3-Wire Fan Enable and Fan Output Mode Control (FOMC)

Location: FOMC - Bank 3 Address 07_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

FOMC

BIT	7//	6	5	4	3	2	1	0
NAME	3WireFan_En[3:0]				F4OMC		Reserved	
DEFAULT	467	00 _{HEX}						

BIT	DESCRIPTION
7-4	Enable ultra-low speed DC fan control. It means that DC fan could be driven by very small PWM output frequency or fewer duty cycles.

BIT	DESCRIPTION					
	3WireFan_En[3]: Enable FANCTL4 with this function					
	3WireFan_En[2]: Enable FANCTL3 with this function					
	3WireFan_En[1]: Enable FANCTL2 with this function					
	3WireFan_En[0]: Enable FANCTL1 with this function					
3	F40MC: FANCTL4 output mode control.					
	0 = PWM output (Default)					
	1 = DC output					
2-0	Reserved					

7.4.6 Close-Loop Fan control RPM mode and Tolerance (CLFR)

Location: CLFR - Bank 3 Address 08_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

CLFR

BIT	7	6	5	4	3	2	1	0
NAME		RPM_E	En[3:0]		Generic_Tol_RPM			
DEFAULT	02 _{HEX}							

BIT	DESCRIPTION
7-4	Close loop (RPM) or Open loop (Fan Duty) Smart Fan control mode selection
	RPM_En[3] = 1 => Configure FANCTL4 as Close Loop mode, otherwise, it is open loop mode.
	RPM_En[2] = 1 => Configure FANCTL3 as Close Loop mode, otherwise, it is open loop mode.
	RPM_En[1] = 1 => Configure FANCTL2 as Close Loop mode, otherwise, it is open loop mode.
	RPM_En[0] = 1 => Configure FANCTL1 as Close Loop mode, otherwise, it is open loop mode.
3-0	RPM tracking target tolerance. It could suppress the oscillation phenomenon in target RPM lock period.
2 23	Generic_Tol_RPM: Tolerance of RPM mode, unit is 50 RPMs.
(A))	If Enable RHSF - Bank 3 Address 0E _{HEX} , unit is 100 RPM.

7.4.7 Temperature Source Selection (TSS)

Location:

 $extbf{F1TSS}$ - Bank 3 Address 09_{HEX} $extbf{F2TSS}$ - Bank 3 Address 08_{HEX} $extbf{F3TSS}$ - Bank 3 Address 08_{HEX} $extbf{F4TSS}$ - Bank 3 Address 08_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

F1TSS - F4TSS

BIT	7	6	5	4	3	2	1	0	
NAME	Reserved		TSS[5:0]						
DEFAULT		00 _{HEX}							

BIT	DESCRIPTION
7-6	Reserved
5-0	TSS: Temperature source selection
	00_0000: VSEN2_HV/TEMP_CH1_HV - Bank 0 Address 42 _{HEX}
	00_0001: VSEN4_HV/TEMP_CH2_HV - Bank 0 Address 46 _{HEX}
	00_0010: VSEN6_HV/TEMP_CH3_HV - Bank 0 Address 4A _{HEX}
	00_0011: VSEN8_HV/TEMP_CH4_HV - Bank 0 Address 4E _{HEX}
	00_0100: LTD_HV -Bank 0 Address 62 _{HEX}
	00_0101: T_CPU1_HV - Bank 0 Address A0 _{HEX}
	00_0110: T_CPU2_HV - Bank 0 Address A2 _{HEX}
	00_0111: T_CPU3_HV - Bank 0 Address A4 _{HEX}
	00_1000: T_CPU4_HV - Bank 0 Address A6 _{HEX}
	00_1001: T_CPU5_HV - Bank 0 Address A8 _{HEX}
	00_1010: T_CPU6_HV - Bank 0 Address AA _{HEX}
	00_1011: T_CPU7_HV - Bank 0 Address AC _{HEX}
	00_1100: PCH_PCH_0 - Bank 0 Address F0 _{HEX}
	00_1101: PCH_PCH_1 - Bank 0 Address F1 _{HEX}
	00_1110: PCH_CPU_I - Bank 0 Address F3 _{HEX}
	00_1111: PCH_MCH - Bank 0 Address F4 _{HEX}
	01_0000: PCH_DIMM0 - Bank 0 Address F5 _{HEX}
Dr.	01_0001: PCH_DIMM1 - Bank 0 Address F6 _{HEX}
an -	01_0010: PCH_DIMM2 - Bank 0 Address F7 _{HEX}
Wit.	01_0011: PCH_DIMM3 - Bank 0 Address F8 _{HEX}
CAX.	01_0100: VRT_TEMP1_V - Bank 0 Address B8 _{HEX}
SAP.	01_0101: VRT_TEMP2_V - Bank 0 Address B9 _{HEX}
623	01_0110: VRT_TEMP3_V - Bank 0 Address BA _{HEX}
(6	01_0111: VRT_TEMP4_V - Bank 0 Address BB _{HEX}
	01_1000: MT_C0_C0 - Bank 2 Address C4 _{HEX}
	01_1001: MT_C1_C0 - Bank 2 Address C5 _{HEX}
	01_1010: MT_C2_C0 - Bank 2 Address C6 _{HEX}
	01_1011: MT_C3_C0 - Bank 2 Address C7 _{HEX}
	01_1100: MT_C0_C1 - Bank 2 Address C8 _{HEX}
	01_1101: MT_C1_C1 - Bank 2 Address C9 _{HEX}

BIT	DESCRIPTION
	01_1110: MT_C2_C1 - Bank 2 Address CA _{HEX}
	01_1111: MT_C3_C1 - Bank 2 Address CB _{HEX}
	10_0000: MT_C0 - Bank 2 Address CC _{HEX}
	10_0001: MT_C1 - Bank 2 Address CD _{HEX}
	10_0010: MT_SYS - Bank 2 Address CE _{HEX}
	10_0011: EXT_VRT_TEMP1_V - Bank 0 Address BC _{HEX}
	10_0100: EXT_VRT_TEMP2_V - Bank 0 Address BD _{HEX}
	10_0101: EXT_VRT_TEMP3_V - Bank 0 Address BE _{HEX}
	10_0110: EXT_VRT_TEMP4_V - Bank 0 Address BF _{HEX}
	10_0111 ~ 11_1111: Reserved

7.4.8 Power Accumulate Enable (PAE)

Location: PAE - Bank 3 Address 0D_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

PAE

BIT	7	6	5	4	3	2	1	0
NAME		Rese	erved		PWR_MD[3:0]			
DEFAULT				00	HEX			

BIT	DESCRIPTION
7-4	Reserved.
3-0	Sensor based fan control mode enabling.
	PWR_MD[3] = 1 => FANCTL4 supports sensor based fan control. Otherwise, it is driven by other traditional fan control mode.
gh.	PWR_MD[2] = 1 => FANCTL3 supports sensor based fan control. Otherwise, it is driven by other traditional fan control mode.
N.	PWR_MD[1] = 1 => FANCTL2 supports sensor based fan control. Otherwise, it is driven by other traditional fan control mode.
Sales of the sales	PWR_MD[0] = 1 => FANCTL1 supports sensor based fan control. Otherwise, it is driven by other traditional fan control mode.

7.4.9 Close-Loop Fan Control RPM mode for High Speed Fan Register (RHSF)

Location: RHSF - Bank 3 Address 0E_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

RHSF

BIT	7	6	5	4	3	2	1	0
NAME	SF_TM_U	THE	Reserved			RPM_H	HS[3:0]	

DEFAULT	00 _{HEX}
	TIEX

BIT	DESCRIPTION
7	Smart FAN IV PWM values update rate.
	SF_TM_U = 0 => Update rate is 10 times/sec.
	SF_TM_U = 1 => Update rate is 20 times/sec.
6-4	Reserved.
3-0	Changing default unit of all RPM setting from 50 RPMs to 100 RPMs. It benefits to control ultra-high RPM fan.
	RPM_HS[3] = 1 => FANCTL4 supports ultra-high RPM fan control.
	RPM_HS[2] = 1 => FANCTL3 supports ultra-high RPM fan control.
	RPM_HS[1] = 1 => FANCTL2 supports ultra-high RPM fan control.
	RPM_HS[0] = 1 => FANCTL1 supports ultra-high RPM fan control.

7.4.10 PROCHOT Fan Select (PFS)

Location: **PFS** - Bank 3 Address 0F_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

PFS

BIT	7	6	5	4	3	2	1	0	
NAME	Reserved				PHOT_FAN_SEL[3:0]				
DEFAULT		00 _{HEX}							

BIT	DESCRIPTION
7-4	Reserved.
3-0	Select targeted FANCTL to react to specific thermal alert event.
	PHOT_FAN_SEL[3] = 1 => FANCTL4 will respond to specific thermal alert event.
Sh.	PHOT_FAN_SEL[2] = 1 => FANCTL3 will respond to specific thermal alert event.
mr.	PHOT_FAN_SEL[1] = 1 => FANCTL2 will respond to specific thermal alert event.
- 28G	PHOT_FAN_SEL[0] = 1 => FANCTL1 will respond to specific thermal alert event.
COLUMN ST	These settings are available only while asserting PH_CTRL0 defined in Bank 0 Address 23 _{HEX}

7.4.11 Fan Output Value (FOV)

Location:

F10V - Bank 3 Address 10_{HEX} F20V - Bank 3 Address 11_{HEX} F30V - Bank 3 Address 12_{HEX} F40V - Bank 3 Address 13_{HEX}

Type: Read / Write (in Manual Mode)

Read Only (in the Smart Fan mode)

Reset: Power On Reset

RESETIN# with LOCK=0

F10V - F40V

BIT	7	6	5	4	3	2	1	0
NAME	Output Value							
DEFAULT			Depe	end on <u>Defa</u>	ultSpeed.	7F _{HEX.}		

BIT	DESCRIPTION
7-0	Output Value involves two meaning. The one is current out fan duty in Smart Fan mode, the other is fixed fan output duty cycle in manual mode. If 3VDD is loss, these registers are set back to zero by hardware.

7.4.12 Fan Output PWM Frequency Prescalar (FOPFP)

Location:

F10PFP - Bank 3 Address 14_{HEX} **F20PFP** - Bank 3 Address 15_{HEX} **F30PFP** - Bank 3 Address 16_{HEX} **F40PFP** - Bank 3 Address 17_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

F10PFP - F40PFP

BIT	7	6	5	4	3	2	1	0
NAME	CKSEL	Divisor						
DEFAULT	1	0	0	0	0	1	0	0

BIT	DESCRIPTION								
7	CKSEL - C	CKSEL – Clock source select.							
Con.			CLKIN Frequency						
600	CLKSEL	14.318MHz	33MHz	48MHz					
V	0	1.024KHz	1.024KHz	1KHz					
O Party	1	55.93Kz	130.21KHz	125KHz					
6-0	Divisor - C	Divisor – Clock frequency Divisor.							

The clock source selected by CKSEL will be divided by the divisor and used as a fan PWM output frequency. There are 2 divisors depending on CKSEL.

If CKSEL equals 1, then the output clock is simply equal to 130.21/ (Divisor+1) KHz (@ frequency of CLKIN is 33MHz).

If CKSEL equals 0, the output clock is 1KHz/MappedDivisor. MappedDivisor depends on Divisor[3:0] and is described in the table below.

Divisor[3:0]	Mapped Divisor	Output Frequency	Divisor[3:0]	Mapped Divisor	Output Frequency
0000	1	1024Hz	1000	12	85Hz
0001	2	512Hz	1001	16	64Hz

Divisor[3:0]	Mapped Divisor	Output Frequency	Divisor[3:0]	Mapped Divisor	Output Frequency
0010	3	341Hz	1010	32	32Hz
0011	4	256Hz	1011	64	16Hz
0100	5	205Hz	1100	128	8Hz
0101	6	171Hz	1101	256	4Hz
0110	7	146Hz	1110	512	2Hz
0111	8	128Hz	1111	1024	1Hz

7.4.13 Fan Output Nonstop Enable (FONE)

Location: FONE - Bank 3 Address 18_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

FONE

BIT	7	6	5	4	3	2	1	0
NAME		Rese	erved		NON_STOP_En[3:0]			
DEFAULT	00 _{HEX}							

BIT	DESCRIPTION
7-4	Reserved.
3-0	Enabling the feature that fan could be stopped with special condition. This feature also requires other setting, including Bank 3 Address 2C _{HEX} , 2D _{HEX} , 2E _{HEX} and 2F _{HEX} in FONV (Fan Output Nonstop Value) NON_STOP_En[3] = 1 => Enable FANCTL4 stop function. NON_STOP_En[2] = 1 => Enable FANCTL3 stop function. NON_STOP_En[1] = 1 => Enable FANCTL2 stop function. NON_STOP_En[0] = 1 => Enable FANCTL1 stop function.

7.4.14 Fan Tachometer Source Selection (FTSS)

Location: FTSS - Bank 3 Address 1B_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

FTSS

BIT	7 (6	5	4	3	2	1	0	
NAME	8	FAN2	_SEL		FAN1_SEL				
DEFAULT	00 _{HEX}								

BIT	DESCRIPTION
7-4	F2FTSS: Fan2 Tachometers Source Selection
3-0	F1FTSS: Fan1 Tachometers Source Selection

0000: Source Select FANIN_1	
0001: Source Select FANIN_2	200
0010: Source Select FANIN_3	
0011: Source Select FANIN_4	
0100: Source Select FANIN_5	
0101: Source Select FANIN_6	
0110: Source Select FANIN_7	- (7) W 14
0111: Source Select FANIN_8	
1000: Source Select FANIN_9	
1001: Source Select FANIN_10	12 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1010: Source Select FANIN_11	A STATE OF THE STA
1011: Source Select FANIN_12	672

7.4.15 Fan Tachometer Source Selection (FTSS)

Location: FTSS - Bank 3 Address 1CHEX

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

FTSS

BIT	7	6	5	4	3	2	1	0
NAME		FAN4	_SEL		FAN3_SEL			
DEFAULT	00 _{HEX}							

BIT	DESCRIPTION
7-4	F4FTSS: Fan4 Tachometers Source Selection
3-0	F3FTSS: Fan3 Tachometers Source Selection
	0000: Source Select FANIN_1 0001: Source Select FANIN_2 0010: Source Select FANIN_3 0011: Source Select FANIN_4 0100: Source Select FANIN_5 0101: Source Select FANIN_6 0110: Source Select FANIN_7 0111: Source Select FANIN_8 1000: Source Select FANIN_9 1001: Source Select FANIN_9 1001: Source Select FANIN_10 1010: Source Select FANIN_11

7.4.16 Critical Temperature to Full Speed all fan (CTFS)

Location:

T1CTFS - Bank 3 Address 20_{HEX}
T2CTFS - Bank 3 Address 21_{HEX}
T3CTFS - Bank 3 Address 22_{HEX}
T4CTFS - Bank 3 Address 23_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

T1CTFS - T4CTFS

BIT	7	6	5	4	3	2	1	0
NAME		Critical Temperature						
DEFAULT		5A _{HEX} (90°C)						

BIT	DESCRIPTION
7-0	Critical Temperature setting for each Smart Fan Table. While temperature source exceeds the critical temperature, the relative FANCTL will output full duty cycle. Unit in $^\circ\!\mathbb{C}$.

7.4.17 Hysteresis of Temperature (HT)

Location:

 $extbf{HT1}$ - Bank 3 Address $24_{ extbf{HEX}}$ $extbf{HT2}$ - Bank 3 Address $26_{ extbf{HEX}}$ $extbf{HT3}$ - Bank 3 Address $27_{ extbf{HEX}}$ $extbf{HT4}$ - Bank 3 Address $27_{ extbf{HEX}}$

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

HT1 - HT4

BIT	7	6	5	4	3	2	1	0	
NAME	Reserved	Hysteresis of Critical Temperature			Reserved		Hysteresis of Operation Temperature		
DEFAULT	5 _{HEX} (5°C)			3 _{HEX} (3°C)					

BIT	DESCRIPTION
7	Reserved
6-4	Hysteresis of Critical Temperature: Hysteresis for critical temperature on Smart Fan Table 1 ~ 4. The range is 0°C ~7°C
3	Reserved
2-0	Hysteresis of Operation Temperature: Hysteresis for normal temperature on Smart Fan Table 1 ~ 4. The range is 0°C ~7°C

7.4.18 Fan Output Nonstop Value(FONV)

Location:

FONV1 - Bank 3 Address $2C_{HEX}$ FONV2 - Bank 3 Address $2D_{HEX}$ FONV3 - Bank 3 Address $2E_{HEX}$ FONV4 - Bank 3 Address $2F_{HEX}$

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

FONV1 -FONV4

BIT	7	6	5	4	3	2	1	0	
NAME		Fan Output Nonstop Value							
DEFAULT		14 _{HEX}							

BIT	DESCRIPTION
7-0	Fan Output Nonstop Value for each FANCTL output. If enable FONE - Bank 3 Address 18 _{HEX} , the relative FANCTL will output FONV duty cycle.

7.4.19 SMART FANTM IV Temperature and DC/PWM Table (SFIV)

Location:

Relative Register-at SMART FANTM IV Control Mode Table

RELATIVE TEMPERAUTRE	NNEMONIC	ADD (Hex)	TYPE
Tomp1	T1 – T4	30-33	RW
Temp1	PWM1 – PWM4	34-37	RW
Tomp?	T1 – T4	38-3B	RW
Temp2	PWM1 – PWM4	3C-3F	RW
Tomp?	T1 – T4	40-43	RW
Temp3	PWM1 – PWM4	44-47	RW
Town	T1 – T4	48-4B	RW
Temp4	DC/PWM1 – DC/PWM4	4C-4F	RW

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

T1 – T4

BIT	7	6	5	4	3	2	1	0		
NAME		SMART FAN [™] IV Temperature								
DEFAULT		Table T1 = 19 _{HEX} (25°C)								
110/2		Table T2 = 23 _{HEX} (35°C)								
(V)		Table T3 = 2D _{HEX} (45°C)								
Q			Т	able T4 = 3	7 _{HEX} (55°C	C)				

DC/PWM1 - DC/PWM4

BIT	7	6	5	4	3	2	1	0	
NAME	46	SMART FAN TM IV DC/PWM							
DEFAULT		Table P1 = 8C _{HEX} (140 Duty)							
		Table P2 = AA _{HEX} (170 Duty)							
		T	Tab	le P3 = C8 ₁	HEX (200 D	uty)			

Table P4 = $E6_{HEX}$ (230 Duty)

7.4.20 Configure Register of PECI Error (CRPE)

Location: CRPE - Bank 3 Address 50_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

CRPE

BIT	7	6	5	4	3	2	1	0		
NAME	PECI_ERR_FAN4 BIT[1-0]		PECI_ERR_FAN3 BIT[1-0]		PECI_ERR_FAN2 BIT[1-0]		PECI_ERR_FAN1 BIT[1-0]			
		Refer to PECI Error Condition Table for fan output value.								
DEFAULT		00 _{HEX}								

BIT	DESCRIPTION
7-6	FANCTL4 output state selection while PECI served as temperature source happens any abnormal condition.
5-4	FANCTL3 output state selection while PECI served as temperature source happens any abnormal condition.
3-2	FANCTL2 output state selection while PECI served as temperature source happens any abnormal condition.
1-0	FANCTL1 output state selection while PECI served as temperature source happens any abnormal condition.

PECI Error Condition Table:

BIT [1-0] PECI Error Condition

 00_{BIN} Fan output value keeps at its current value.

01_{BIN} Fan output value will be set to **FOMV** (Fan Output Min Value when PECI

Error).

 $1x_{BIN}$ Fan output value will be set to the full speed value (FFh).

7.4.21 Fan Output Min Value when PECI Error (FOMV)

Location: FOMV - Bank 3 Address 51_{HEX}

Type: Read / Write Reset: Power On Reset

RESETIN# with LOCK=0

FOMV

BIT	7	7 6 5 4 3 2 1 0								
NAME	(C)	FanMin								
DEFAULT	90	80 _{HEX}								

BIT	DESCRIPTION
-----	-------------

BIT	DESCRIPTION
7-0	FanMin: control the FANCTL1-FANCTL4 fan output min value when PECI error condition is occurred. Also see CRPE (Configure Register of PECI Error)

7.4.22 Mask Register of PECI Error (MRPE)

Location: MRPE - Bank 3 Address 52_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

MRPE

BIT	7	6	5	4	3	2	40 ~	0	
NAME		Rese	rved		PECI_ERR_MSK[3:0]				
DEFAULT				00	HEX		200	(A)	

BIT	DESCRIPTION
7-4	Reserved.
3-0	PECI_ERR_MSK[3:0]: Mask CRPE setting for FANCTL1-FANCTL4. It means that Fan output value keeps at its current value.

7.4.23 PECI T_DTS Slope Value (PTSV)

Location:

P1TSV - Bank 3 Address 64_{HEX} **P2TSV** - Bank 3 Address 65_{HEX} **P3TSV** - Bank 3 Address 66_{HEX} **P4TSV** - Bank 3 Address 67_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

P1TSV - P4TSV

BIT	7	6	5	4	3	2	1	0
NAME		PECI T_DTS_Slope						
DEFAULT		00 _{HEX}						

BIT	DESCRIPTION
-----	-------------

BIT		DESCRIPTION
7-0		ope of specific CPU's DTS Thermal Profile. DTS igured before enabling sensor based fan control
	Slope[7]=0.5	Slope[3]=0.03125
	Slope[6]=0.25	Slope[2]=0.015625
	Slope[5]=0.125	Slope[1]=0.0078125
	Slope[4]=0.0625	Slope[0]=0.00390625
	Example: PECI T_DTS_Slope[7:0]=8'h46, me	ean slope=0.273

7.4.24 PECI T_DTS Offset Value (PTOV)

Location:

P1TOV - Bank 3 Address 68_{HEX} **P2TOV** - Bank 3 Address 69_{HEX} **P3TOV** - Bank 3 Address $6A_{\text{HEX}}$ **P4TOV** - Bank 3 Address $6B_{\text{HEX}}$

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

P1TOV - P4TOV

BIT	7	6	5	4	3	2	1	0
NAME		PECI T_DTS Offset						
DEFAULT		00 _{HEX}						

	BIT	DESCRIPTION
A COLUMN TO SERVICE STATE OF THE PERSON SERVICE STATE OF T	7-0	This setting is used to define initial offset temperature of specific CPU's DTS Thermal Profile. DTS Thermal profile need to be configured before enabling sensor based fan control algorithm.

7.4.25 Tcontrol_Offset Value for CPU Agent (Address: 30h ~ 33h) (TOV)

Location:

 $extbf{TOV1}$ - Bank 3 Address $extbf{70}_{HEX}$ $extbf{TOV2}$ - Bank 3 Address $extbf{72}_{HEX}$ $extbf{TOV3}$ - Bank 3 Address $extbf{72}_{HEX}$ $extbf{TOV4}$ - Bank 3 Address $extbf{73}_{HEX}$

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

TOV1 - TOV4

BIT	7	6	5	4	3	2	1	0
NAME		Sol	10	Tcontro	I_Offset			

DEFAULT 00 _{HEX}	
---------------------------	--

BIT	DESCRIPTION
7-0	Tcontrol_Offset value is required to adjust the Tcontrol_spec desined in DTS(Sensor) Based Thermal Spec. Tcontrol_Offset: Unit in °ℂ and 2's complement representation.

7.4.26 DTS Delta Tolerance Value (DDTV)

Location:

DDTV1 - Bank 3 Address 80_{HEX} **DDTV2** - Bank 3 Address 81_{HEX} **DDTV3** - Bank 3 Address 82_{HEX} **DDTV4** - Bank 3 Address 83_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

DDTV1 - DDTV4

BIT	7	6	5	4	3	2	1	0
NAME		DTS Delta Tolerance Value						
DEFAULT		00 _{HEX}						

BIT	DESCRIPTION
7-0	This setting is used to define Tolerance of DTS (Sensor) Based Fan Control.

7.4.27 DTS Margin Divisor (DMD)

Location: DMD - Bank 3 Address 84_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

DMD

BIT	7	6	5	4	3	2	1	0	
NAME	St.	DTS_M_	DIV[3:0]		Reserved				
DEFAULT	1	00 _{HEX}							

BIT	DESCRIPTION
7-4	Enabling the DTS Margin Divisor. DTS_M_DIV [3] = 1 => Enable FANCTL4 Margin/2. DTS_M_DIV [2] = 1 => Enable FANCTL3 Margin/2. DTS_M_DIV [1] = 1 => Enable FANCTL2 Margin/2. DTS_M_DIV [0] = 1 => Enable FANCTL1 Margin/2.
3-0	Reserved.

7.5 Bank 4 REGISTER DETAIL

7.5.1 Temperature to Fan Mapping Relationships (TFMR)

Location:

 $\begin{array}{l} \textbf{T5FMR} - \text{Bank 4 Address } 00_{\text{HEX}} \\ \textbf{T6FMR} - \text{Bank 4 Address } 01_{\text{HEX}} \\ \textbf{T7FMR} - \text{Bank 4 Address } 02_{\text{HEX}} \\ \textbf{T8FMR} - \text{Bank 4 Address } 03_{\text{HEX}} \\ \textbf{T9FMR} - \text{Bank 4 Address } 04_{\text{HEX}} \\ \textbf{T10FMR} - \text{Bank 4 Address } 05_{\text{HEX}} \\ \end{array}$

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

T5FMR - T10FMR

BIT	7	6	5	4	3	2	1 %	0
NAME	Reserved			F4SF	F3SF	F2SF	F1SF	
DEFAULT		00 _{HEX}						

BIT	DESCRIPTION
7-4	Reserved
3-0	F4SF – F1SF setting involves two purposes. The one is building up the relation between temperature source 5~10 and FANCTL1~4, the other is Fan Control mode assignment.
	0 = Related FANCTL will operate in manual mode and have no relationship with temperature (Default) 1 = Related FANCTL will operate with SmartFan control mode and be linked to relative temperature source 5 ~ 10.

7.5.2 Temperature Source Selection (TSS)

Location:

TSS5 - Bank 4 Address 08_{HEX}
TSS6 - Bank 4 Address 09_{HEX}
TSS7 - Bank 4 Address 0A_{HEX}
TSS8 - Bank 4 Address 0B_{HEX}
TSS9 - Bank 4 Address 0C_{HEX}
TSS10 - Bank 4 Address 0D_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

F5TSS - F10TSS

BIT	7	6	5	4	3	2	1	0		
NAME	Reserved		TSS[5:0]							

DEFAULT	00 _{HEX}
	TIEX

BIT	DESCRIPTION
7-6	Reserved.
5-0	TSS: Temperature source selection
	00_0000: VSEN2_HV/TEMP_CH1_HV - Bank 0 Address 42 _{HEX}
	00_0001: VSEN4_HV/TEMP_CH2_HV - Bank 0 Address 46 _{HEX}
	00_0010: VSEN6_HV/TEMP_CH3_HV - Bank 0 Address 4A _{HEX}
	00_0011: VSEN8_HV/TEMP_CH4_HV - Bank 0 Address 4E _{HEX}
	00_0100: LTD_HV -Bank 0 Address 62 _{HEX}
	00_0101: T_CPU1_HV - Bank 0 Address A0 _{HEX}
	00_0110: T_CPU2_HV - Bank 0 Address A2 _{HEX}
	00_0111: T_CPU3_HV - Bank 0 Address A4 _{HEX}
	00_1000: T_CPU4_HV - Bank 0 Address A6 _{HEX}
	00_1001: T_CPU5_HV - Bank 0 Address A8 _{HEX}
	00_1010: T_CPU6_HV - Bank 0 Address AA _{HEX}
	00_1011: T_CPU7_HV - Bank 0 Address AC _{HEX}
	00_1100: PCH_PCH_0 - Bank 0 Address F0 _{HEX}
	00_1101: PCH_PCH_1 - Bank 0 Address F1 _{HEX}
	00_1110: PCH_CPU_I - Bank 0 Address F3 _{HEX}
	00_1111: PCH_MCH - Bank 0 Address F4 _{HEX}
	01_0000: PCH_DIMM0 - Bank 0 Address F5 _{HEX}
	01_0001: PCH_DIMM1 - Bank 0 Address F6 _{HEX}
	01_0010: PCH_DIMM2 - Bank 0 Address F7 _{HEX}
	01_0011: PCH_DIMM3 - Bank 0 Address F8 _{HEX}
On.	01_0100: VRT_TEMP1_V - Bank 0 Address B8 _{HEX}
Zille -	01_0101: VRT_TEMP2_V - Bank 0 Address B9 _{HEX}
~ 72 Til	01_0110: VRT_TEMP3_V - Bank 0 Address BA _{HEX}
(V) X	01_0111: VRT_TEMP4_V - Bank 0 Address BB _{HEX}
SAD.	01_1000: MT_C0_C0 - Bank 2 Address C4 _{HEX}
977	01_1001: MT_C1_C0 - Bank 2 Address C5 _{HEX}
(3	01_1010: MT_C2_C0 - Bank 2 Address C6 _{HEX}
	01_1011: MT_C3_C0 - Bank 2 Address C7 _{HEX}
	01_1100: MT_C0_C1 - Bank 2 Address C8 _{HEX}
	01_1101: MT_C1_C1 - Bank 2 Address C9 _{HEX}
	01_1110: MT_C2_C1 - Bank 2 Address CA _{HEX}
	01_1111: MT_C3_C1 - Bank 2 Address CB _{HEX}
	10_0000: MT_C0 - Bank 2 Address CC _{HEX}

BIT	DESCRIPTION						
	10_0001: MT_C1 - Bank 2 /	Address CD _{HEX}					
	10_0010: MT_SYS - Bank 2	Address CE _{HEX}					
	10_0011: EXT_VRT_TEMP1_V	- Bank 0 Address BC _{HEX}					
	10_0100: EXT_VRT_TEMP2_V	- Bank 0 Address BD _{HEX}					
	10_0101: EXT_VRT_TEMP3_V	- Bank 0 Address BE _{HEX}					
	10_0110: EXT_VRT_TEMP4_V	- Bank 0 Address BF _{HEX}					
	10_0111 ~ 11_1111: Reserved	C3 12.					

7.5.3 Critical Temperature to Full Speed all fan (CTFS)

Location:

T5CTFS - Bank 4 Address 10_{HEX}
T6CTFS - Bank 4 Address 11_{HEX}
T7CTFS - Bank 4 Address 12_{HEX}
T8CTFS - Bank 4 Address 13_{HEX}
T9CTFS - Bank 4 Address 14_{HEX}
T10CTFS - Bank 4 Address 15_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

T5CTFS - T10CTFS

BIT	7	6	5	4	3	2	1	0	
NAME	Critical Temperature								
DEFAULT		5A _{HEX} (90°C)							

BIT	DESCRIPTION
7-0	Critical Temperature setting for each Smart Fan Table 5 ~ 10.
ike All	While temperature source exceeds the critical temperature, the relative FANCTL will output full duty cycle. Unit in ${}^\circ\!\mathbb{C}$.

7.5.4 Hysteresis of Temperature (HT)

Location:

HT5 - Bank 4 Address 20_{HEX}
HT6 - Bank 4 Address 21_{HEX}
HT7 - Bank 4 Address 22_{HEX}
HT8 - Bank 4 Address 23_{HEX}
HT9 - Bank 4 Address 24_{HEX}
HT10 - Bank 4 Address 25_{HEX}

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

HT5 - HT10

Nuvoton Confidential - 125 - 2014/2/10

BIT	7	6	5	4	3	2	1	0
NAME	Reserved	-	Hysteresis of Critical Temperature			Hysteresis of Operation Temperature		
DEFAULT	5 _{HEX} (5°C)			3 _{HEX} (3 °C)				

BIT	DESCRIPTION
7	Reserved
6-4	Hysteresis of Critical Temperature: Hysteresis for critical temperature on Smart Fan Table 5 ~ 10. The range is 0°C ~7°C
3	Reserved
2-0	Hysteresis of Operation Temperature: Hysteresis for normal temperature on Smart Fan Table 5 ~ 10. The range is 0°C ~7°C

7.5.5 SMART FANTM IV Temperature and DC/PWM Table (SFIV)

Location:

Relative Register-at SMART FANTM IV Control Mode Table

RELATIVE TEMPERAUTRE	NNEMONIC	ADD (Hex)	TYPE
TompE	T1 – T4	30-33	RW
Temp5	PWM1 – PWM4	34-37	RW
Temp6	T1 – T4	38-3B	RW
	PWM1 – PWM4	3C-3F	RW
T7	T1 – T4	40-43	RW
Temp7	PWM1 – PWM4	44-47	RW
Tomp ⁰	T1 – T4	48-4B	RW
Temp8	DC/PWM1 – DC/PWM4	4C-4F	RW
Tomp0	T1 – T4	50-53	RW
Temp9	DC/PWM1 – DC/PWM4	54-57	RW
Temp10	T1 – T4	58-5B	RW
rempio	DC/PWM1 – DC/PWM4	5C-5F	RW

Type: Read / Write
Reset: Power On Reset

RESETIN# with LOCK=0

T1 – T4

BIT	70	6	5	4	3	2	1	0	
NAME	SMART FAN [™] IV Temperature								
DEFAULT	Table T1 = 19 _{HEX} (25°ℂ)								
	Table T2 = 23_{HEX} (35°C)								
		10) Ta	able T3 = 2	D _{HEX} (45°	C)			

	Table T4 = 37 _{HEX} (55°C)							
DC/PWM1 – DC/PWM4								
BIT	7	6	5	4	3	2	1	0
NAME	SMART FAN TM IV DC/PWM							
DEFAULT	Table P1 = 8C _{HEX} (140 Duty)							
	Table P2 = AA_{HEX} (170 Duty)							
	Table P3 = C8 _{HEX} (200 Duty)							
			Tab	ole P4 = $E6_{HE}$	x (230 D	outy)		

8. ELECTRICAL CHARACTERISTICS

8.1 Absolute Maximum Ratings

PARAME	TER	RATING	UNIT
Power Supply Voltage	3VSB,3VDD,VBAT	$3.3 \pm 5\%$	V
117	VTT	VTT 2.048	
Input Vol	tage	-0.3 to +3.6	V
Operating Ter	nperature	-20 to +100 *1	° C
Storage Tem	perature	-55 to +150	° C

 $^{^{*}1}$ Guaranteed by design from -20~100 degree C, 100% tested at 85 degree C.

8.2 DC Specification

(Ta = 0° C to 70° C, 3VDD = $3.3\text{V} \pm 5\%$, 3VSB = $3.3\text{V} \pm 5\%$, GND = 0V)

PARAMETER	SYM.	MIN.	TYP.	MAX.	UNIT	CONDITIONS
OD – Open-drain output pin with source-sink capability of 12 mA						
Output Low Voltage	V _{OL}			0.4	V	I _{OL} = 12 mA
		TSI – For	AMD TM T	SI design		
Input Low Voltage	V _{IL}		0.6		V	
Input High Voltage	V _{IH}		1		V	
Output Low Voltage	V _{OL}			0.285	V	
	PEC	I – Bi-directi	on pin foi	· INTEL™ PE	ECI	
Input Low Voltage	V _{IL}	0.275V _{tt}		0.5V _{tt}	V	
Input High Voltage	V _{IH}	0.55V _{tt}		0.725V _{tt}	V	
Output Low Voltage	V _{OL}			0.25V _{tt}	V	
Output High Voltage	V _{OH}	0.75V _{tt}			V	
GTL -For PROCHOT,THERMTRIP						
Input Low Voltage	V _{IL}	S		0.4	V	

PARAMETER	SYM.	MIN.	TYP.	MAX.	UNIT	CONDITIONS
Input High Voltage	V _{IH}	0.8			V	
Output Low Voltage	V _{OL}		EU.	0.2	V	
	ļ-	TTL level So	chmitt-trig	gered input	pin	
Input Low Voltage	V _{IL}			0.8	V	3VSB = 3.3V
Input High Voltage	V _{IH}	2.0		7	V	3VSB = 3.3V
Input High Leakage	I _{LIH}			+10	μА	VIN=3.3V
Input Low Leakage	I _{LIL}			-10	μА	VIN=0V
		AIN -	Analog in	put pin		16 N
Input High Leakage	I _{LIH}			+1	μА	VIN=3.3V
Input Low Leakage	I _{LIL}			-1	μА	VIN=0V
AIN – VSEN17 , VSEN18 , VSEN19						
Input High Leakage	I _{LIH}			+36	μА	VIN=3.3V
Input Low Leakage	I _{LIL}			-10	μА	VIN=0V

8.3 AC Specification

SMBus Interface

Serial Bus Timing Diagram

PARAMETER	SYMBOL	MIN.	MAX.	UNIT
SCL clock period	t-SCL	10		uS
Start condition hold time	t _{HD;SDA}	4.0		uS

- 129 –

Stop condition setup-up time	t _{su;sto}	4.0		uS
DATA to SCL setup time	t _{SU;DAT}	150		nS
DATA to SCL hold time	t _{HD;DAT}	270		nS
SCL and SDA rise time	t _R	10 100	1.0	uS
SCL and SDA fall time	t _F	X2/X	300	nS

Clock Input Timing

DESCRIPTION	CLKIN			
DESCRIPTION	MIN	TYP	MAX	
Clock cycle time	(1/CLKIN) x0.97	1/CLKIN	(1/CLKIN) x1.03	
Duty cycle	45%		55%	

9. ORDER INFORMATION

PART NO.	PACKAGE	REMARKS
NCT7904D	48 LQFP (Halogen free)	

10. TOP MARKING SPECIFICATIONS

NUVOTON

NCT7904D 28201234-01 138GBBA

C

1st line: Nuvoton logo

2nd line: part number: NCT7904D

3rd line: wafer production series lot number: 28201234-01

4th line: tracking code: 138GBBA

138: packages made in '11, week 38

G: assembly house ID

B: Chip Version

BA: Nuvoton internal use

11. PACKAGE DRAWING AND DIMENSIONS

48-pin LQFP (7 mm X7 mm X1.4mm)

12. REVISION HISTORY

VERSION	DATE	PAGE	DESCRIPTION
0.2	08/17/2010		Preliminary Released.
0.3	10/12/2010	ALL	Fixed the typos.
0.4	02/25/2011	ALL	Updated for new A2 version sample.
0.8	05/04/2011	ALL	Updated Top Marketing & Part No.
0.9	08/08/2011	ALL	Update for new A3 version sample.
0.91	09/21/2011		The content is the same as v0.9. Just update the version to v0.91 for new A4 version sample.
0.95	11/15/2011	29, 31, 32, 39, 40, 43, 114, 127, 134	 Update PCH thermal data description (section 6.11.2) Update Device ID information Update LOCK description Update Bank0 Addr[2Eh] Mode Control Register description. Change Temperature Source Selection Table configuration of 00_1100 : from Bank0 Address AEh to F0h Update Order Information (Item 1, 2, 5 are updated for rev.B chip)
1.0	1/5/2012	ALL	Public Released. All versions before 1.0 are preliminary versions
1.1	5/31/2012	11,93	Fixed the typo. Added External Read Control Register description.
1.2	7/20/2012	114	1.Updated Fan Output PWM Frequency Pre-scalar register.
1.3	2/4/2013	87,88	 Fixed typo. Updated TSI register descriptions.
1.41	4/11/2013	10,14,15,18,12 9	1.Modified descriptions for VSEN17,18,19. 2.Fixed typo of VSEN17,18,19 formula. 3.Added DC specification for VSEN17,18,19.
1.42	4/29/2013	27,128	1.Added power ramp request on EEPROM self-initialization function. 2.Modified Absolute Maximum Ratings.
1.43	6/24/2013	13,16	Added recommendations for unused pin.
1.44	2/10/2014	80	Updated description of PECI Power Averaging Configure Register Bit[5].

Important Notice

Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any malfunction or failure of which may cause loss of human life, bodily injury or severe property damage. Such applications are deemed, "Insecure Usage".

Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and other applications intended to support or sustain life.

All Insecure Usage shall be made at customer's risk, and in the event that third parties lay claims to Nuvoton as a result of customer's Insecure Usage, customer shall indemnify the damages and liabilities thus incurred by Nuvoton.

Please note that all data and specifications are subject to change without notice.

All the trademarks of products and companies mentioned in this datasheet belong to their respective owners.