CENG 306 Biçimsel Diller ve Otomatlar Formal Languages and Automata

Konular

- Düzenli ve Düzenli olmayan diller Regular and Non-regular Languages
- Pumping Lemma and Its Application to RE/Non-RE Languages

- Düzenli diller bazı işlemler (birleşim, kesişim, Kleene star, complement, concatenation) icin kapalıdır.
- Düzenli diller, düzenli ifadeler (regular expressions) ile veya sonlu otomatlar ile (deterministic veya nondeterministic) belirlenebilir.

- Düzenli diller bazı işlemler (birleşim, kesişim, Kleene star, complement, concatenation) icin kapalıdır.
- Düzenli diller, düzenli ifadeler (regular expressions) ile veya sonlu otomatlar ile (deterministic veya nondeterministic) belirlenebilir.

Örnek:

 $\Sigma = \{0, 1, 2, 3, ..., 9\}, \quad L \subseteq \Sigma^* \quad olarak tanımlı olsun ve sadece 2'ye veya 3'e bölünebilen ve önünde 0 olmayan pozitif sayılara sahip olsun.$

$$(0, 3, 6, 244 \in L \text{ ve } 1, 03, 00 \notin L)$$

Bu dilin regular olduğunun ispatı 4 kısımda yapılabilir.

Örnek: (devam)

- $\sum = \{0, 1, 2, 3, ..., 9\}$, $L \subseteq \sum^*$, 2'ye veya 3'e bölünebilen ve önünde 0 olmayan pozitif sayılara sahiptir
- 1 L_1 dili pozitif tamsayıların kümesi olsun

$$L_1 = 0 \cup \{1, 2, ... 9\} \sum^* (regular)$$

Örnek: (devam)

- $\sum = \{0, 1, 2, 3, ..., 9\}$, $L \subseteq \sum^*$, 2'ye veya 3'e bölünebilen ve önünde 0 olmayan pozitif sayılara sahiptir
- 1) L_1 dili pozitif tamsayıların kümesi olsun

$$L_1 = 0 \cup \{1, 2, ... 9\} \sum^* (regular)$$

2) L_2 dili 2'ye bölünebilen pozitif tamsayıların kümesi olsun

$$L_2 = L_1 \cap \sum^* \{0, 2, 4, 6, 8\}$$
 (regular)

Örnek: (devam)

■ $\sum = \{0, 1, 2, 3, ..., 9\}$, $L \subseteq \sum^*$, 2'ye veya 3'e bölünebilen ve önünde 0 olmayan pozitif sayılara sahiptir

3) 3'e bölünebilen pozitif tamsayıların kümesi olan dili aşağıdaki otomat tanır (regular)

Örnek: (devam)

■ $\sum = \{0, 1, 2, 3, ..., 9\}$, $L \subseteq \sum^*$, 2'ye veya 3'e bölünebilen ve önünde 0 olmayan pozitif sayılara sahiptir

3) 3'e bölünebilen pozitif tamsayıların kümesi olan dili yandaki otomat tanır (regular)

4) L_3 bu otomat ile L_1 'in kesişimidir. Sonuç olarak elde edilen dil regular dildir ve

 $L = L_2 \cup L_3$, şeklinde ifade edilir.

- Bir dilin düzenli dil olduğunu gösteren yöntemler vardırancak düzenli olmadığını göstermek için özel araçlara ihtiyaç vardır.
- İki özellik tüm düzenli dillerde bulunur, ancak düzenli olmayan dillerde bulunmaz;
 - Bir string soldan sağa doğru taranırken o string'in ilgili dile ait olup olmadığını belirlemek için gereken toplam hafızanın bir sınırı vardır, bu sınır sabittir ve ilgili string'e değil o dile bağlıdır.

Örnek: L= $\{a^nb^n: n \ge 0\}$ dili regular değildir. b'leri okumaya başladığında kaç tane a okuduğu belli değildir ve n için bir sınır değer yoktur.

- Bir dilin düzenli dil olduğunu gösteren yöntemler vardırancak düzenli olmadığını göstermek için özel araçlara ihtiyaç vardır.
- İki özellik tüm düzenli dillerde bulunur, ancak düzenli olmayan dillerde bulunmaz;
 - Bir string soldan sağa doğru taranırken o string'in ilgili dile ait olup olmadığını belirlemek için gereken toplam hafızanın bir sınırı vardır, bu sınır sabittir ve ilgili string'e degil o dile baglıdır.
 - Örnek: L= $\{a^nb^n: n \ge 0\}$ dili regular degildir. b'leri okumaya başladığında kaç tane a okuduğu belli değildir ven için sınır değer yoktur.
 - Sonsuz sayıdastring'e sahip olan düzenli diller, döngüye sahip otomatlar veya Kleene star içeren regular expression'lar tarafından gösterilebilir.
 - Örnek: L= { aⁿ: n ≥ 1 asal sayı} regular değildir. (ispatı daha sonra verilecektir.)

- $L = \{a^nb^n : n \ge 0\}$ şeklinde tanımlanmış olsun. Eğer bu dil regular ise bir sonlu otomat tarafından tanınır.
- n = 96 için $a^{96}b^{96}$ olur. Toplam 95 duruma sahip bir otomat bu dili tanıyor olsun.
- En az bir noktada yol daha önce geçtiği durumlara geri döner ve tekrar geçer.
- Bu tekrar geçişlere **loop** adı verilir.

- $L = \{a^nb^n : n \ge 0\}$ şeklinde tanımlanmış olsun. Eğer bu dil regular ise bir sonlu otomat tarafından tanınır.
- n = 96 için $a^{96}b^{96}$ olur. Toplam 95 duruma sahip bir otomat bu dili tanıyor olsun.
- En az bir noktada yol daha önce geçtiği durumlara geri döner ve tekrar geçer.
- Bu tekrar geçişlere loop adı verilir.
- Aşağıdaki 10 durumlu otomat a^9b^9 için geçişleri vermektedir. Otomatta sadece geçilen yollar verilmiştir.

• $a^{13}b^9$ için nasıl bir yol izlenir?

- $a^{13}b^9$ için 6-3-4-5 yolunda bir tur daha atılır.
- $a^9(a^4)^mb^9$, $m \ge 0$ şeklinde tanımlanan tüm stringleri tanır. (Örn: $a^{25}b^9$)
- Bu şekilde bir string'in önündeki ve sonundakine bakmadan ortasına ekleme yapmaya pumping denilmektedir.
- string'in önündeki ve/veya sonundaki katar boş olabilir.

Teorem: Sonsuz sayıda string'e sahip bir regular L dilinde, kendisini tanıyan otomatın durum sayısından fazla sembole sahip tüm stringler için x, y, z şeklinde üç substring tanımlanabilir ve tüm stringler xy^nz olarak parçalarla ifade edilebilir. (n = 1, 2, 3, ...)

ispat: L dilinde sonsuz string olduğu için bazı w stringleri kendisini tanıyan otomatın durum sayısından daha fazla sembole sahiptir. Bu stringler için otomat üzerinde **loop** oluşur. w string'leri x, y, z olarak üç kısımda incelenebilir;

- 1. x yeniden geçilen ilk duruma kadar olan sembolleri içersin. x eğer boş ise loop başlangıç durumunu da içine almıştır.
- 2. y string'i, x'den hemen sonra başlayıp loop'un sonuna kadar olan kısmı içersin. Bir loop oluştuğu için y boş olamaz.
- 3. z string'i loop'tan hemen sonra başlayıp w string'inin sonuna kadar olan kısmı içersin. z boş ise loop sonuç durumunu da içine almıştır.

Teorem: (devam) Sonsuz sayıda string'e sahip bir regular L dilindeki tüm stringler için

x, y, z şeklinde üç string tanımlanabilir ve

tüm stringler xy^nz olarak parçalarla ifade edilebilir. (n = 1, 2, 3, ...)

xyz, xyyz, xyyyz, ... xy^nz string 'leri tanınır.

XYZ

xyyz

 $\ddot{O}rnek$: Aşağıdaki otomatta "-" başlangıç ve "+" sonuç durumlarını göstermektedir ve w = bbbababa string'ini tanır.

Durum sayısından fazla sembol olduğu için loop olmak zorundadır.

x = b, y = bba ve z = baba alınabilir.

Örnek: $L = \{a^nb^n : n \ge 0\}$ dili regular değildir. Eger L regular olsaydı tüm string'ler x, y, z olarak üç parçaya ayrılabilirdi.

Tipik bir string aaa....aaaabbbb.....bbb şeklindedir.

- Eger y, a'ları içerirse xyyz şeklindeki string daha fazla a içerir ve elde edilen string L diline ait değildir.
- Eger y, b'leri içerirse xyyz şeklindeki string daha fazla b içerir ve elde edilen string L diline ait değildir.
- Eger y, ortadaki a ve b'leri içerirse xyyz string'i iki tane "ab" substringine sahiptir. L dilindeki tüm stringler sadece bir tane "ab" substringine sahip olabileceği için bu string L diline ait değildir.

Bunların sonucu olarak L dili regular değildir.

Teorem: L regular dil olsun. Dile bağlı olarak seçilen bir

 $n \ge 1$ için $|w| \ge n$ olacak şekilde bir $w \in L$ string'i vardır ve

$$w = xyz$$
,

$$|xy| \le n$$

olmak üzere yeniden yazılabilir. Her $i \ge 0$ için $xy^iz \in L$ olur.

İspat: L regular dil olduğundan deterministic finite automata M tarafından kabul edilir. M automata'nın n duruma sahip olduğunu varsayalım ve |w| = m, $m \ge n$ olsun.

M automata'nın ilk **m** adımı aşağıdaki gibidir;

ispat: (devam)

$$(q_0, w_1 w_2 ... w_m) \mid_{M} (q_1, w_2 ... w_m) \mid_{M} ... \mid_{M} (q_m, e)$$

- Burada q_0 başlangıç durumu ve $w_1w_2...w_m$ ilk m semboldür
- *M*, *n* adet duruma sahiptir ancak *m* ≥*n* adet konfigürasyon vardır.
- Pigeonhole prensibine göre $0 \le i < j \le m$ olacak şekilde i ve j sayıları vardır ve $q_i = q_j$ olur.
- $y = w_i w_{i+1} ... w_j$ vardır ve q_i durumundan tekrar q_i durumuna geçiş yapar.
- i < j oldugu için y boş olamaz.
- y string'i w'dan atılarak veya istendigi kadar tekrar edilerek bulunan stringler'de M tarafından tanınır.
- $i \ge 0$ olmak üzere $xy^iz \in L$ olur.

- Bir dilin regular olup olmadığını belirlemek icin kullanılır.
 - Öncelikle bir *n* sayısı belirlenir. (dili tanıyan ve en az duruma sahip otomat)
 - *n*'den uzun bir *w* string'i belirlenir.
 - w string'i xyz şeklinde parçalanır.
 - her $i \ge 0$ degeri için $xy^iz \in L$ olacak şekildebir xy^iz bulunuyorsa L regulardır..
 - Eger bu şekilde bir değer hiçbir xyⁱz için bulunamıyorsa *L* regular değildir.

 \ddot{O} rnek: $(tekrar) L = \{a^ib^i : i \ge 0\}$ dili regular degildir.

ispat:

- $\mathbf{w} = \mathbf{a} \cdot \mathbf{b} \cdot \mathbf{c} \cdot \mathbf{L}$ olduğunu varsayalım.
- Pumping teoreminden w = xyz yazılabilir.
- $|xy| \le n$ alınırsa ve $y \ne e$, $y = a^i$, i > 0 değerleri için,
- y'nin çıkarıldığı string olan $xz = a^{n-i}b^n$ olur ve L diline ait değildir.
- Bu sonuç $y = b^i$, i > 0 için de aynı şekilde geçerlidir.
- Böylece bu dil regular değildir.

 \ddot{O} rnek: $L = \{a^k : k \text{ asal sayi}\}\ dili regular degildir.$

ispat:

- Pumping teoreminden w = xyz yazılabilir.
- p, $r \ge 0$, q > 0 için $x = a^p$, $y = a^q$, ve $z = a^r olsun$.
- Teoremden $xy^nz \in L$ olduğundan $n \ge 0$ için p + nq + r asal sayı olmakzorundadır. (her n sayısı için sağlanmalıdır!)
- Özel olarak n = p + 2q + r + 2 için p + nq + r = (q + 1)(p + 2q + r) olur.
- Burada iki çarpan da 1'den büyüktür ve böylece p + nq + r asal sayı olamaz!
- $\mathbf{n} = \mathbf{p} + 2\mathbf{q} + \mathbf{r} + 2$ için elde edilen string \mathbf{L} diline ait değildir.
- Öyle ise L dili regular değildir.

Örnek: $L = \{ w \in a, b \}^* : w$ eşit sayıda a ve b'ye sahiptir $\}$ dili regular değildir.

i*spat:*

- Bu ispat closure özelliği ile yapılabilir.
- Eger L dili regular ise, regular bir dil ile kesişim işlemi kapalı olur.
- Ancak $L \cap a^*b^*$ kesişiminin sonucunda elde edilen dil $\{a^nb^n: n \ge 0\}$ olur.
- $\{a^nb^n: n \ge 0\}$ regular dil olmadığı için L dili de regular değildir.

```
Örnek: L = \{ab, abba, aabb, abab, aaabbb, ...\}, L(a^*b^*) = \{a, b, aa, ab, aab, bb, aabb, abbbb, aaabbb, ...\} L \cap a^*b^* = \{ab, aabb, aaabbb, ...\}
```