Word2vec

박준형 데이터인텔리전스 연구실

irish07@korea.ac.kr

Class Lab - Schedule & Assignment

1. Neural Network Introduction (~10/14)

2. Skip-gram / CBOW (~10/30)(Basic) Softmax

3. Hierarchical Softmax / Negative sampling (~11/13) Subsampling

Class Lab - Schedule & Assignment

 T. Mikolov, K. Chen, G. Corrado, J. Dean, "Efficient Estimation of Word Representations in Vector Space", ICLR 2013

Class Lab - Schedule & Assignment

 T. Mikolov, I. Sutskever, K. Chen, G. Corrado, J. Dean, "Distributed Representations of Words and Phrases and their Compositionality", NIPS 2013

Method	Time [min]	Syntactic [%] Semantic [%]		Total accuracy [%]		
NEG-5	38	63 54		59		
NEG-15	97	63 58		61		
HS-Huffman	41	53	53 40			
NCE-5	38	60	45	53		
The following results use 10^{-5} subsampling						
NEG-5	14	61	58	60		
NEG-15	36	61	61	61		
HS-Huffman	21	52	59	55		

1. Determine forms of input and output

2. Define loss function

3. Training

Skip-gram

Skip-gram

Predict context words using a center word

Skip-gram

1. Word encoding

I eat an **orange** every day.

Word vector

Skip-gram

2. Predict

Word vector

Probabilities

 Each element represent probability of a word

Skip-gram

3. Update

I eat an **orange** every day.

$p(\text{word}_1)$ $p(\text{word}_2)$ $p(\text{word}_3)$

- Negative Log Likelihood Loss
- Backpropagation
- Stochastic Gradient Descent

Skip-gram

3. Update

I eat an **orange** every day.

$p(\text{word}_1)$ $p(\text{word}_2)$ $p(\text{word}_3)$... $p(\text{word}_n)$

- Negative Log Likelihood Loss
- Backpropagation
- Stochastic Gradient Descent

Skip-gram

3. Update

I eat an **orange** every day.

- Negative Log Likelihood Loss
- Backpropagation
- Stochastic Gradient Descent

Skip-gram

3. Update

I eat an **orange** every day.

Skip-gram

3. Update

I eat an **orange** every day.

Continuous Bag of Words

How frequent the center word occurs in some context?

I eat an **orange** every day.

center word

I eat an ??? every day.

CBOW

Continuous Bag of Words

1. Context encoding

l eat an ??? every day. an every day

Context

Continuous Bag of Words

1. Context encoding

Context

Continuous Bag of Words

1. Context encoding

Continuous Bag of Words

1. Context encoding

l eat an ???? every day.

an
every
day
day

Context

Context vector

Continuous Bag of Words

2. Prediction

Context vector

Probabilities

 Each element represent probability of a word

Continuous Bag of Words

3. Update

I eat an ???? every day.

Answer: orange

Probabilities

- Negative Log Likelihood Loss
- Backpropagation
- Stochastic Gradient Descent

Weight Matrix

V: vocabulary size

h: embedding dimension

$$y = softmax(W_{out}h)$$
 $\sigma(\mathbf{z})_j = \frac{e^{z_j}}{\sum_{k=1}^K e^{z_k}}$ for $j = 1, ..., K$.

$o = W_{out}h$

$$y = softmax(o) = \frac{e^o}{\sum_k e^k}$$

$$L = NLL(y, t) = -\log(y_t)$$

$$\frac{\partial L}{\partial h} = W_{out} e$$

$$\frac{\partial L}{\partial W_{out}} = he^T$$

CBOW

$$h = w_a + w_b + w_c + w_d$$

$$\frac{\partial h}{\partial w_a}$$
, $\frac{\partial h}{\partial w_b}$, $\frac{\partial h}{\partial w_c}$, $\frac{\partial h}{\partial w_d}$ = 1

$$w_a = w_a - \eta \frac{\partial L}{\partial w_a}$$

$$w_b = w_b - \eta \frac{\partial L}{\partial w_b}$$

$$w_c = w_c - \eta \frac{\partial L}{\partial w_c}$$

$$w_d = w_d - \eta \frac{\partial L}{\partial w_d}$$

$$W_{out} = W_{out} - \eta \frac{\partial L}{\partial W_{out}}$$

Skip-gram

$$h = w_k$$

$$w_k = w_k - \eta \frac{\partial L}{\partial h}$$

$$W_{out} = W_{out} - \eta \frac{\partial L}{\partial W_{out}}$$

CBOW vs Skip-gram

Model	Vector	Training	Accuracy [%]			Training time
	Dimensionality	words			[days]	
			Semantic	Syntactic	Total	
3 epoch CBOW	300	783M	15.5	53.1	36.1	1
3 epoch Skip-gram	300	783M	50.0	55.9	53.3	3
1 epoch CBOW	300	783M	13.8	49.9	33.6	0.3
1 epoch CBOW	300	1.6B	16.1	52.6	36.1	0.6
1 epoch CBOW	600	783M	15.4	53.3	36.2	0.7
1 epoch Skip-gram	300	783M	45.6	52.2	49.2	1
1 epoch Skip-gram	300	1.6B	52.2	55.1	53.8	2
1 epoch Skip-gram	600	783M	56.7	54.5	55.5	2.5

Better and Faster

Model	Semantic-Syntactic Wo	MSR Word Relatedness	
Architecture	Semantic Accuracy [%] Syntactic Accuracy [%]		Test Set [20]
RNNLM	9	36	35
NNLM	23	53	47
CBOW	24	64	61
Skip-gram	55	59	56

Model	Vector	Training	Accuracy [%]			Training time
	Dimensionality	words				[days x CPU cores]
			Semantic	Syntactic	Total	
NNLM	100	6B	34.2	64.5	50.8	14 x 180
CBOW	1000	6B	57.3	68.9	63.7	2 x 140
Skip-gram	1000	6B	66.1	65.1	65.6	2.5 x 125

Additive Compositionality

vec("Paris") - vec("France")

= vec("Berlin") - vec("Germany")

Word2vec is very slow...

Why?

No overhead(just load a vector instead of matrix multiplication)

The reason is...

$$y = softmax(o) = \frac{e^o}{\sum_k e^k}$$

Softmax function needs all values of the output vector

The reason is...

Output dimension : V Feature dimension : D

Complexity : O(V x D)

With 840B dataset

Output dimension : 2.2M Feature dimension : 300

 W_{out} : (2.2M, 300)

With 840B dataset

Output dimension : 2.2M

Feature dimension: 300

660M operations to calculate

 $y = softmax(W_{out}^T W_{emb}[k])$

With 840B dataset

Output dimension : 2.2M Feature dimension : 300

840B tokens with window size 5

10 training pairs each word

660M x 8.4 trillion operations an epoch

The reason is...

Output dimension : V Feature dimension : D

Complexity : O(V x D)

The idea is...

Use a portion of the output vector

Hierarchical Softmax

1. Give every word a binary code (Huffman coding recommended)

ex) apple: 000

banana: 001

cherry: 010

• • •

Hierarchical Softmax

2. Make a binary tree whose leaf nodes are the words

ex) apple: 000

banana: 001

cherry: 010

• • •

Suppose that 0 is the left and 1 is the right

Hierarchical Softmax

3. Predict probability of "each non-leaf node"

Hierarchical Softmax

3. Predict probability of "each non-leaf node"

sigmoid activation function instead of softmax

$$\sigma(x) = \frac{1}{1 + e^{-x}} = \frac{e^x}{e^x + 1}$$

Hierarchical Softmax

$$p(w|w_I) = \prod_{j=1}^{L(w)-1} \sigma\left([n(w, j+1) = \operatorname{ch}(n(w, j))] \cdot v'_{n(w, j)}^{\mathsf{T}} v_{w_I} \right)$$

4. The probability of a word is the product of nodes on the way

Hierarchical Softmax

$$p(w|w_I) = \prod_{j=1}^{L(w)-1} \sigma\left([n(w, j+1) = \operatorname{ch}(n(w, j))] \cdot v'_{n(w, j)}^{\mathsf{T}} v_{w_I} \right)$$

4. The probability of a word is the product of nodes on the way

Hierarchical Softmax

$$p(w|w_I) = \prod_{j=1}^{L(w)-1} \sigma\left([n(w, j+1) = \operatorname{ch}(n(w, j))] \cdot v'_{n(w, j)}^{\mathsf{T}} v_{w_I} \right)$$

5. Maximize the probability by gradient descent on negative log likelihood

Hierarchical Softmax

Hierarchical Softmax

6. Weights connected to the activated nodes are updated

Hierarchical Softmax

6. Weights connected to the activated nodes are updated

Hierarchical Softmax

On average, only log(V) nodes are activated

With 840B dataset

Output dimension : 2.2M Feature dimension : 300

Average activated nodes: 21

6.3k operation to calculate $y = softmax(W_{out}^{T}W_{emb}[k])$

Basic softmax: 660M

Word2vec is still slow...

Model	Vector	Training	Ac	Training time		
	Dimensionality	words			[days]	
			Semantic	Syntactic	Total	
3 epoch CBOW	300	783M	15.5	53.1	36.1	1
3 epoch Skip-gram	300	783M	50.0	55.9	53.3	3
1 epoch CBOW	300	783M	13.8	49.9	33.6	0.3
1 epoch CBOW	300	1.6B	16.1	52.6	36.1	0.6
1 epoch CBOW	600	783M	15.4	53.3	36.2	0.7
1 epoch Skip-gram	300	783M	45.6	52.2	49.2	1
1 epoch Skip-gram	300	1.6B	52.2	55.1	53.8	2
1 epoch Skip-gram	600	783M	56.7	54.5	55.5	2.5

Negative Sampling

0

1

2

3

4

5

6

1 of positive sample

V-1 of negative samples

Approximate the softmax function only using k negative samples

Negative Sampling

0

1

2

3

4

5

6

Sigmoid output

$$\sigma(x) = \frac{1}{1 + e^{-x}} = \frac{e^x}{e^x + 1}$$

k negative samples

1 2 4

How many samples

1?

5-10?

Half of the negatives?

How to sample

Uniformly?

Linearly?

With some heuristic function?

Negative Sampling

0

1

2

2

3

5

6

Sigmoid output

$$\sigma(x) = \frac{1}{1 + e^{-x}} = \frac{e^x}{e^x + 1}$$

k negative samples

2 2

How many samples

5~15 samples recommended 3~5 samples enough on big corpus

How to sample

Frequency^(3/4)

Negative Sampling

0

1

2

3

4

5

6

1 positive sample

5

k negative samples

Design loss function to maximize the positive and to minimize the negatives

$$L = -log(5) - log((1-1)(1-2)(1-4))$$

Then the gradient descent algorithm optimizes the network

$$L = -\log \sigma(y_5) - \log (1 - \sigma(y_1)) - \log (1 - \sigma(y_2)) - \log (1 - \sigma(y_4))$$

$$\frac{\partial L}{\partial y_5} = \sigma(y_5) - 1$$

$$\frac{\partial L}{\partial y_1} = \sigma(y_1)$$

$$\frac{\partial L}{\partial y_2} = \sigma(y_2)$$

$$\frac{\partial L}{\partial y_4} = \sigma(y_4)$$

Negative Sampling

0

1

2

3

4

5

6

Only k nodes are activated

With 840B dataset

Output dimension : 2.2M Feature dimension : 300

Average activated nodes: 1 + 5

1.8k operation to calculate $y = softmax(W_{out}^T W_{emb}[k])$

Basic softmax: 660M

Hierarchical softmax: 6.3k

Even faster but...

Method	Time [min]	Syntactic [%]	Semantic [%]	Total accuracy [%]
NEG-5	38	63	54	59
NEG-15	97	63	58	61
HS-Huffman	41	53	40	47
NCE-5	38	60	45	53

With 840B dataset

Window size: 5

Basic softmax: 660M x 8.4T

Hierarchical softmax : 6.3k x 8.4T Negative Sampling : 1.8k x 8.4T

Another idea is...

The orange is the fruit of the citrus species Citrus × sinensis in the family Rutaceae. It is also called sweet orange, to distinguish it from the related Citrus × aurantium, referred to as bitter orange. The sweet orange reproduces asexually varieties of sweet orange arise through mutations.

Highly frequent words are actually meaningful?

Subsampling

The orange is the fruit of the citrus species Citrus × sinensis in the family Rutaceae. It is also called sweet orange, to distinguish it from the related Citrus × aurantium, referred to as bitter orange. The sweet orange reproduces asexually varieties of sweet orange arise through mutations.

Discard frequent words with probability

$$P(w_i) = 1 - \sqrt{\frac{t}{f(w_i)}}$$

Subsampling

Method	Time [min]	Syntactic [%]	Semantic [%]	Total accuracy [%]						
NEG-5	38	63	54	59						
NEG-15	97	63	58	61						
HS-Huffman	41	53	40	47						
NCE-5	38	60	45	53						
The following results use 10^{-5} subsampling										
NEG-5	14	61	58	60						
NEG-15	36	61	61	61						
HS-Huffman	21	52	59	55						

- Word2Vec Implementation
 - Hierarchical Softmax
 - Assign binary code(Huffman coding)
 - Train with only weights connected to the activated nodes
 - Return : cost value and gradient of two word vectors
 - Negative Sampling
 - Frequency table
 - Random sampling during training
 - Return : cost value and gradient of two word vectors
 - Subsampling
 - Read(preprocess) corpus and make dictionary
 - Subsample corpus in every epoch

Activated Weight Matrix

```
if mode=="CBOW":
    if NS==0:
        #Only use the activated rows of the weight matrix
        #activated should be torch.tensor(K,) so that activated W_out has the form of torch.tensor(K, D)
        activated = None
        L, G_in, G_out = CBOW_HS(inputs, codes[output], W_in, W_out[activated])
        W in[inputs] -= learning rate*G in
        W_out[activated] -= learning_rate*G_out
    else:
        #Only use the activated rows of the weight matrix
```

Recommend to use a portion of W_out for the computational efficiency

- Hierarchical Softmax
 - Use given "huffman.py"
 - How to use
 - HuffmanCode().build(frequency)
 - Input: Dictionary(key: word, value: frequency)
 - Output: Dictionary(key: word, value: code), Dictionary(key: code, value: ID number)

- Negative Sampling
 - Use a table instead of random sampling functions

size: 20

0	1	1	1	2	2	2	2	2	2	3	3	3	3	3	3	3	4	4	4
		-	_		_		_	_									_	-	1

Probabilities

word0: 0.05

word1: 0.15

word2: 0.3

word3: 0.35

word4: 0.15

- Generate a random integer x [0,19]
- Pick the xth element

Word2Vec Experiment

Analogical reasoning task[1][2]

```
"Germany": "Berlin":: "France":?
```

vec(x) =vec("Berlin") - vec("Germany") + vec("France")

Find the word x using cosine similarity

Note: text8 only includes lower cases

^[1] http://code.google.com/p/word2vec/source/browse/trunk/questions-words.txt

^[2] Tomas Mikolov et al. Distributed Representations of Words and Phrases and their Compositionality, 2013

: capital-common-countries 2 Athens Greece Baghdad Iraq Assignment 3 Athens Greece Bangkok Thailand Athens Greece Beijing China Athens Greece Berlin Germany Athens Greece Bern Switzerland Athens Greece Cairo Egypt Athens Greece Canberra Australia Word2Vec Exper Athens Greece Hanoi Vietnam Athens Greece Havana Cuba Athens Greece Helsinki Finland Athens Greece Islamabad Pakistan Athens Greece Kabul Afghanistan Analogical reasoning task 14 Athens Greece London England Athens Greece Madrid Spain Athens Greece Moscow Russia Athens Greece Oslo Norway Athens Greece Ottawa Canada Athens Greece Paris France Athens Greece Rome Italy c("France") Athens Greece Stockholm Sweden Athens Greece Tehran Iran Athens Greece Tokyo Japan Baghdad Iraq Bangkok Thailand ŀity Baghdad Iraq Beijing China Baghdad Iraq Berlin Germany Baghdad Iraq Bern Switzerland Baghdad Iraq Cairo Egypt es Baghdad Iraq Canberra Australia Baghdad Iraq Hanoi Vietnam [1] http://code.google.com/p/word2vec/source/brows

^[2] Tomas Mikolov et al. Distributed Representations of Words and Phrases and their Compositionality, 2013

Word2Vec Experiment

Analogical reasoning task[1][2]

- CBOW or Skip-gram
- Hierarchical Softmax or Negative Sampling or Basic Softmax
- Subsampling or not

Corpus: text8, 1B tokens corpus(optional)

Submission 3

- Due Date: ~11/13(个) 23:59
- Submission: Submission: Online submission on blackboard
- word2vec.py + Report with analysis of word analogy task(.docx / .hwp)
- You must implement the components yourself!
- File name: StudentID Name.zip

Q&A

- Data intelligence lab.
- <u>irish07@korea.ac.kr</u> (박준형)
- saga9017@korea.ac.kr (이욱진)