Chapitre 2

Fonctions: limites et continuité

1 Rappels sur la dérivation

Dérivées des fonctions de référence

Propriété

On note D_f l'ensemble de définition de la fonction f et D_{f^\prime} son ensemble de dérivabilité.

Fonction f définie par :	D_f	Fonction dérivée f^\prime définie par :	$D_{f'}$
$f(x)=k$, avec $k\in\mathbf{R}$	R	f'(x) = 0	R
$f(x) = mx + p$, avec $m, p \in \mathbf{R}$	R	f'(x) = m	R
$f(x) = x^2$	R	f'(x) = 2x	R
$f(x)=x^n$, avec $n\in \mathbf{N}^*$	R	$f'(x) = nx^{n-1}$	R
$f(x) = \frac{1}{x}$	R \{0}	$f'(x) = -\frac{1}{x^2}$	R \{0}
$f(x)=rac{1}{x^n}$, avec $n\in \mathbf{N}^*$	R \{0}	$f'(x) = -\frac{n}{x^{n+1}}$	R \{0}
$f(x) = \sqrt{x}$	$[0; +\infty[$	$f'(x) = \frac{1}{2\sqrt{x}}$	$]0; +\infty[$

Fonctions dérivées et opérations

Propriété

Soient u et v deux fonctions définies et dérivables sur un même intervalle ouvert I et k un nombre réel.

- La fonction u + v est dérivable sur I et (u + v)' = u' + v'.
- La fonction ku est dérivable sur I et (ku)' = ku'.
- La fonction $u \times v$ est dérivable sur I et $(u \times v)' = u'v + uv'$.
- Si, pour tout $x \in I, v(x) \neq 0$, alors :
 - la fonction $\frac{1}{v}$ est dérivable sur I et $\left(\frac{1}{v}\right)' = -\frac{v'}{v^2}$.
 - la fonction $\frac{u}{v}$ est dérivable sur I et $\left(\frac{u}{v}\right)' = \frac{u'v uv'}{v^2}$.

Propriété

Soit g une fonction définie et dérivable sur un intervalle I.

Soient a et b deux réels et soit J l'intervalle tel que pour tout $x \in J$, $ax + b \in I$.

La fonction $f: x \mapsto g(ax+b)$ est définie et dérivable sur J et $f'(x) = a \times g'(ax+b)$.

Sens de variation, extremum local et dérivée

Propriété

Soit f une fonction dérivable sur un intervalle I.

- Si, pour tout réel x de I, f'(x) > 0 (sauf éventuellement en un nombre fini de point où elle s'annule), alors la fonction f est **strictement croissante** sur I.
- Si, pour tout réel x de I, f'(x) < 0 (sauf éventuellement en un nombre fini de point où elle s'annule), alors la fonction f est **strictement décroissante** sur I.

Propriété

Soient f une fonction dérivable sur un intervalle ouvert i et c un réel appartenant à I. Si f' s'annule et change de signe en c, alors f(c) est un extremum local de f.

Exemples

On considère une fonction f définie sur un intervalle $]a\ ;\ b[$ contenant c.

x	a	c	b
f'(x)		- 0	+
f	/	f(c)	

f(c) est un minimum local.

x	a		c		b
f'(x)		+	0	_	
f			f(c)		•

f(c) est un maximum local.

2 La fonction exponentielle

Définition de la fonction exponentielle

Propriété

Il existe une unique fonction f définie et dérivable sur $\mathbf R$ vérifiant :

pour tout nombre réel
$$x$$
 $f'(x) = f(x)$ et $f(0) = 1$.

Définition

La fonction exponentielle est la fonction, notée exp, définie et dérivable sur $\bf R$ telle que $\exp(0)=1$ et $\exp'=\exp$.

Propriétés algébriques

Propriété

La fonction exponentielle est **strictement positive** : pour tout $x \in \mathbb{R}, \ \exp(x) > 0$.

Propriété: Relation fonctionnelle

Pour tous nombres réels x et y, $exp(x + y) = exp(x) \times exp(y)$

Preuve

Soit y un nombre réel fixé.

On définit la fonction f par : pour tout $x \in \mathbf{R}$, $f(x) = \frac{\exp(x+y)}{\exp(x)}$.

f est dérivable sur ${\bf R}$ comme quotient de fonctions dérivables sur ${\bf R}$ et, pour tout réel x,

$$f'(x) = \frac{\exp(x+y)\exp(x) - \exp(x+y)\exp(x)}{[\exp(x)]^2} = 0$$

On en déduit que f est une fonction **constante**. Ainsi, pour tout $x \in \mathbb{R}, \ f(x) = f(0) = \exp(y)$. On a donc montré que $\frac{\exp(x+y)}{\exp(x)} = \exp(y)$. Ainsi $\exp(x+y) = \exp(x) \times \exp(y)$.

Propriété

Pour tout nombre réel x, $\exp(x) \times \exp(-x) = 1$ et $\exp(-x) = \frac{1}{\exp(x)}$.

Preuve

Soit x un nombre réel. On applique le théorème précédent à x et -x. On obtient :

$$\exp(x) \times \exp(-x) = \exp(x - x)$$
$$= \exp(0)$$
$$= 1$$

Ainsi, pour tout $x \in \mathbb{R}$, $\exp(x)$ et $\exp(-x)$ sont inverses l'un de l'autre. Donc $\exp(-x) = \frac{1}{\exp(x)}$.

Propriété

Pour tous nombres réels x et y, $\exp(x-y) = \frac{\exp(x)}{\exp(y)}$.

Propriété (admise)

Pour tout réel x et tout entier relatif n, $\left[\exp(x)\right]^n = \exp(nx)$

Exemples

•
$$\exp(3) \times \exp(7) = \exp(3+7)$$
 • $\exp(-5) = \frac{1}{\exp(5)}$ • $(\exp(2))^4 = \exp(4 \times 2)$
= $\exp(8)$

Le nombre e

Définition

On note $\exp(1) = e$

Remarques

- \cdot e est un nombre réel irrationnel.
- $e \approx 2,718$
- Pour tout $n \in \mathbb{N}$, $\exp(n) = \exp(n \times 1) = [\exp(1)]^n = e^n$.

Notation

Par extension, pour tout $x \in \mathbf{R}$, on notera : $\exp(x) = e^x$.

Propriété

Avec cette notation, les propriétés vues précédemment s'écrivent : Pour tous x,y réels et tout n entier relatif,

Exemple

$$\frac{\left(e^7\right)^4 \times e^3}{e^4} = \frac{e^{7 \times 4} \times e^3}{e^4}$$
$$= \frac{e^{28} \times e^3}{e^4}$$
$$= e^{28+3-4}$$
$$= e^{27}$$

Variations de la fonction exponentielle

Propriété

La fonction exponentielle est strictement croissante sur R.

Preuve

Pour tout $x \in \mathbf{R}, \exp'(x) = \exp(x) > 0$.

la fonction dérivée de la la fonction exponentielle est strictement positive sur R donc la fonction exponentielle est strictement croissante sur R.

Propriété

Soient a et b deux nombres réels. On définit la fonction f sur \mathbf{R} par $f(x) = e^{ax+b}$. La fonction f est dérivable sur \mathbf{R} et pour tout $x \in \mathbf{R}$, $f'(x) = a e^{ax+b}$.

Preuve

Soient a et b deux nombres réels.

La dérivée de f définie par f(x) = g(ax + b) était donnée par : $f'(x) = a \ g'(ax + b)$. On applique cette propriété avec $g = \exp$ et on obtient le résultat.

6

Exemple

Étude des variations d'une fonction :

La fonction h définie sur **R** par $h(x) = -3 \ e^{2x-5} + 1$ est dérivable sur **R** et pour tout $x \in \mathbf{R}$,

$$h'(x) = 2 \times (-3 e^{2x-5}) + 0$$

= $-6 e^{2x-5}$

 $\text{Pour tout } x \in \mathbf{R}, \quad e^{2x-5} > 0, \quad \text{ donc } h'(x) < 0.$

La fonction h est donc strictement décroissante sur R.

Applications : résolutions d'équations et d'inéquations

Propriétés

Pour tous nombres réels a et b:

$$\cdot e^a = e^b \iff a = b$$

•
$$e^a < e^b \Leftrightarrow a < b$$

Exemples

· Résolution d'équation :

Résoudre dans $\mathbf{R} \quad e^{2x} = \frac{1}{e}$ Soit $x \in \mathbf{R}$

$$e^{2x} = \frac{1}{e} \quad \Leftrightarrow \quad e^{2x} = e^{-1}$$
$$\Leftrightarrow \quad 2x = -1$$
$$\Leftrightarrow \quad x = -\frac{1}{2}$$

L'équation $e^{2x} = \frac{1}{e}$ a pour unique solution $-\frac{1}{2}$.

· Résolution d'inéquation :

Résoudre dans $\mathbf{R} \quad e^{-3x+4}+1\geqslant 2.$ Soit $x\in\mathbf{R}.$

$$e^{-3x+4} + 1 \geqslant 2 \quad \Leftrightarrow \quad e^{-3x+4} \geqslant 1$$

$$\Leftrightarrow \quad e^{-3x+4} \geqslant e^{0}$$

$$\Leftrightarrow \quad -3x+4 \geqslant 0$$

$$\Leftrightarrow \quad x \leqslant \frac{4}{3}$$

L'ensemble des solutions de l'inéquation $e^{-3x+4}+1\geqslant 2 \text{ est l'intervalle } \left]-\infty \ ; \ \frac{4}{3}\right].$

À retenir

3 Limite d'une fonction en l'infini

Dans cette partie, on considère une fonction f définie sur l'intervalle considéré. La courbe représentative de f est notée \mathcal{C}_f et n désigne un entier naturel non nul.

Définition: Limite infinie

On dit que la fonction f a pour $\liminf +\infty +\infty +\infty$ lorsque tout intervalle M; $+\infty$ [contient toutes les valeurs de f(x) pour x suffisamment grand (c'est à dire lorsque x appartient à un intervalle A; $+\infty$ [). On note alors :

$$\lim_{x \to +\infty} f(x) = +\infty$$

Remarque

On définit de façon analogue : $\lim_{x\to +\infty} f(x) = -\infty \; ; \quad \lim_{x\to -\infty} f(x) = +\infty \; ; \quad \lim_{x\to -\infty} f(x) = -\infty.$

Définitions: Limite finie et asymptote horizontale

Soit ℓ un nombre réel.

$$\lim_{x \to +\infty} f(x) = \ell$$

La droite Δ d'équation $y=\ell$ est alors **asymptote horizontale** à la courbe \mathcal{C}_f .

Remarque

On définit de façon analogue : $\lim_{x \to -\infty} f(x) = \ell$.

Propriété: limites des fonctions usuelles

f(x)	x^2	x^3	x^n	\sqrt{x}	e^x	e^{ax}	$\frac{1}{x}$	$\frac{1}{x^2}$	$\frac{1}{x^n}$	$\frac{1}{\sqrt{x}}$
$\lim_{x o +\infty} f(x)$	$+\infty$	$+\infty$	$+\infty$	$+\infty$	$+\infty$	$+\infty$ Si $a > 0$ 0 Si $a < 0$	0	0	0	0
$\lim_{x o -\infty} f(x)$	$+\infty$	$-\infty$	$+\infty$ si n pair $-\infty$ si n impair			$0 \operatorname{Si} a > 0$ $-\infty \operatorname{Si} a < 0$	0	0	0	non définie $\sup]-\infty \; ; \; 0]$

4 Limite d'une fonction en un nombre réel

Dans cette partie, on considère une fonction f définie sur l'intervalle considéré. Le nombre réel a appartient ou est une borne de l'ensemble de définition de f. La courbe représentative de f est notée \mathcal{C}_f et n désigne un entier naturel non nul.

Limite infinie en un réel

Définitions : Limite infinie et asymptote verticale

On dit que la fonction f a pour $\liminf +\infty$ en a lorsque tout intervalle M; $+\infty$ [contient toutes les valeurs de f(x) pour x suffisamment proche de a (c'est-à-dire pour totus les x d'un intervalle ouvert contenant a). On note alors :

$$\lim_{x \to a} f(x) = +\infty$$

La droite Δ d'équation x=a est alors une asympote verticale à la courbe \mathcal{C}_f .

Remarques

- On définit de manière analoque $\lim_{x\to a}f(x)=-\infty$.
- Lorsque la limite en a n'existe pas, on peut définir une limite à droite ou à gauche de a. On les note :

$$\lim_{\substack{x \to a \\ x > a}} f(x) \quad \text{et} \quad \lim_{\substack{x \to a \\ x < a}} f(x) \quad \left(\text{ou} \ \lim_{x \to a^+} f(x) \ \text{et} \ \lim_{x \to a^-} f(x) \right)$$

5 Opérations sur les limites

Dans cette partie, f et g sont deux fonctions, a est un nombre réel, $+\infty$ ou $-\infty$ et ℓ et ℓ' sont deux réels.

Propriété: Limite d'une somme

$\lim_{x o a}f(x)$	ℓ	ℓ	ℓ	$+\infty$	$-\infty$	$+\infty$
$\lim_{x o a}g(x)$	ℓ'	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$-\infty$
$\lim_{x\to a}[f(x)+g(x)]$	$\ell + \ell'$	$+\infty$	$-\infty$	$+\infty$	$-\infty$	FI

Exemples

$$\bullet \ \, \text{On a} \quad \lim_{x\to +\infty} x+3=+\infty \qquad \text{ et } \qquad \lim_{x\to +\infty} \frac{1}{x}=0.$$

Par somme, $\lim_{x\to +\infty} x+3+\frac{1}{x}=+\infty.$

$$\cdot \text{ On a } \lim_{x \to -\infty} x^2 = +\infty \qquad \text{ et } \lim_{x \to -\infty} x = -\infty.$$

On ne peut pas conclure pour $\lim_{x\to -\infty} x^2 + x$. On a affaire à une **forme indéterminée**.

Propriété: Limite d'un produit

$\lim_{x o a}f(x)$	ℓ	$\ell > 0$	$\ell < 0$	$\ell > 0$	$\ell < 0$	$+\infty$	$+\infty$	$-\infty$	0
$\lim_{x o a}g(x)$	ℓ'	$+\infty$	·		$-\infty$	$+\infty$	$-\infty$	$-\infty$	$+\infty$ ou $-\infty$
$\lim_{x o a} [f(x) imes g(x)]$	$\ell \times \ell'$	$+\infty$	$-\infty$	$-\infty$	$+\infty$	$+\infty$	$-\infty$	$+\infty$	FI

Exemple

On a
$$\lim_{x \to -\infty} x^2 = +\infty$$
 et $\lim_{x \to -\infty} 1 + \frac{1}{x} = 1$.

Par produit,
$$\lim_{x\to -\infty} x^2 \left(1+\frac{1}{x}\right) = +\infty.$$

Remarque

On a levé la forme indéterminée vue lors de l'exemple page 9.

Pour
$$x < 0$$
, on a: $x^2 + x = x^2 \left(1 + \frac{1}{x} \right)$.

• Pour lever l'indétermination dans le cas d'un polynôme, on met en facteur le terme de plus haut degré.

Propriété: Limite d'un quotient

• Cas où
$$\lim_{x \to a} g(x) \neq 0$$

$\lim_{x o a}f(x)$	ℓ	ℓ	$+\infty$	$+\infty$	$-\infty$	$-\infty$	$+\infty$ ou $-\infty$
$\lim_{x o a}g(x)$	ℓ'	$+\infty$ ou $-\infty$	$\ell' > 0$	$\ell' < 0$	$\ell' > 0$	$\ell' < 0$	$+\infty$ ou $-\infty$
$\lim_{x o a}rac{f(x)}{g(x)}$	$rac{\ell}{\ell'}$	0	$+\infty$	$-\infty$	$-\infty$	$+\infty$	FI

$$\cdot \ \operatorname{Cas} \ \operatorname{ou} \quad \lim_{x \to a} g(x) = 0$$

$\lim_{x \to a} f(x)$	$\ell > 0$ ou $+\infty$	$\ell < 0$ ou $-\infty$	$\ell > 0$ ou $+\infty$	$\ell < 0$ ou $-\infty$
$\lim_{x o a} g(x)$	0 en restant positif	0 en restant positif	0 en restant négatif	0 en restant négatif
$\lim_{x o a} rac{f(x)}{g(x)}$	+∞	$-\infty$	$-\infty$	$+\infty$

Exemples

• On a
$$\lim_{x \to -2^-} 2x + 1 = -3$$
 et $\lim_{x \to -2^-} x + 2 = 0^-$.

Par quotient
$$\lim_{x \to -2^-} \frac{2x+1}{x+2} = +\infty.$$

$$\bullet \text{ On a } \lim_{x \to +\infty} 2x + 1 = +\infty \qquad \text{ et } \lim_{x \to +\infty} x + 2 = +\infty.$$

On ne peut pas conclure pour $\lim_{x\to +\infty} \frac{2x+1}{x+2}$. On a affaire à une **forme indéterminée**.

Exercice 1

- 1. Pour $x \in \mathbb{R} \setminus \{-2\}$, réécrire le quotient $\frac{2x+1}{x+1}$ en factorisant par le terme de plus haut degré au numérateur et au dénominateur.
- 2. En déduire $\lim_{x\to +\infty} \frac{2x+1}{x+2}$.

Déterminer des limites par comparaison

Théorème des gendarmes

Soient f,g et h trois fonctions définies sur un intervalle $]a \; ; \; +\infty[$ (avec a réel) et ℓ un nombre réel.

Si: • pour tout $x \in [a; +\infty[, g(x) \le f(x) \le h(x)]$

$$\cdot \lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} h(x) = \ell$$

alors $\lim_{x \to +\infty} f(x) = \ell$.

Théorème de comparaison

Soient f, g et h trois fonctions définies sur un intervalle a; $+\infty$ (avec a réel).

Si: • pour tout $x \in [a; +\infty[, f(x) \ge g(x)]$ Si: • pour tout $x \in [a; +\infty[, f(x) \le h(x)]$

 $\cdot \lim_{x \to +\infty} g(x) = +\infty \qquad \qquad \cdot \lim_{x \to +\infty} h(x) = -\infty$

alors $\lim_{x \to +\infty} f(x) = +\infty$. alors $\lim_{x \to +\infty} f(x) = -\infty$.

Remarque

On a des propriétés similaires de limites en $-\infty$ et en a.

6 Continuité d'une fonction

Définitions

Définition: Limite finie

Soit ℓ un nombre réel.

On dit que la fonction f a pour **limite** ℓ **en** a lorsque tout intervalle ouverte contenant ℓ contient toute les valeurs de f(x) pour x suffisamment proche de a. On note alors :

$$\lim_{x \to a} f(x) = \ell$$

Définitions

Soient f une fonction définie sur un intervalle I et a un réel appartenant à I.

- On dit que f est **continue en** a lorsque f a une limite en a égale à f(a) (c'est-à-dire lorsque $\lim_{x\to a} f(x) = f(a)$).
- \cdot On dit que f est continue sur l'intervalle I lorsque f est continue en tout réel a de I.

Remarque

Graphiquement, la continuité d'une fonction f sur un intervalle I se traduit par le fait que la courbe représentative de f peut se tracer « sans lever le crayon ».

Exemples

La fonction f est continue sur son intervalle de définition.

La fonction f n'a pas de limite en 2. f n'est pas continue en 2, elle n'est donc pas continue sur son intervalle de définition.

Propriété: Continuité et dérivabilité

Soient f sur fonction définie sur un intervalle I et a un réel appartenant à I.

- Si f est dérivable en a, alors f est continue en a.
- Si f est dérivable sur I, alors f est continue sur I.

Remarques

- · La réciproque de cette propriété est fausse.
- L'intérêt de cette propriété est de pouvoir affirmer qu'une fonction est continue sachant que cette fontion est dérivable.

Théorème des valeurs intermédiaires

Théorème des valeurs intermédiaires

Soient f une fonction **continue** sur un intervalle I et a et b deux réels appartenant à I avec a < b.

Pour tout réel k compris entre f(a) et f(b), il existe au moins un réel c compris entre a et b tel que f(c)=k.

En d'autres termes, cela signifie que pour tout réel k compris entre f(a) et f(b), l'équation f(x) = k admet au moins une solution comprise entre a et b.

Fonctions continues strictement monotones

Propriété: Théorème des valeurs intermédiaires pour les fonctions strictement monotones

Soit f une fonction **continue** et **strictement monotone** sur un intevalle I et a et b deux réels appartenant à I avec a < b.

Pour tout réel k compris entre f(a) et f(b), il existe **un unique** réel c compris entre a et b tel que f(c) = k.

En d'autres termes, cela signifie que pour tout réel k compris entre f(a) et f(b), l'équation f(x) = k admet une unique solution comprise entre a et b.

Exemple

L'équation $x^3=20\,$ admet une unique solution sur $]-\infty\;;\;+\infty[$ car :

- la fonction cube $x\mapsto x^3$ est strictement croissante et continue sur $]-\infty\;;\;+\infty[\;;\;$
- 20 est compris entre $\lim_{x\to -\infty} = -\infty$ et $\lim_{x\to +\infty} = +\infty$.

Méthode: Résoudre une équation à l'aide d'une fonction

Soit f la fonction définie sur $I=[-2\ ;\ +\infty[$ par $\ f(x)=x^3-3x^2+3.$ On veut montrer que l'équation $\ f(x)=5$ admet une unique solution dans $[-2\ ;\ +\infty[.$

· On commence par étudier les variations de la fonction f sur $[-2\ ;\ +\infty[$:

Soit
$$x \in [-2 ; +\infty[$$
.

$$f'(x) = 3x^2 - 3 \times 2x$$
$$= 3x^2 - 6x$$
$$= 3x(x - 2)$$

$$f'(x) = 0 \iff x = 0 \text{ ou } x = 2$$

On a donc le tableau de variations :

x	-2		0		2	$+\infty$
Signe de $f'(x)$		+	0	_	0	+
Variations de f		/	<i>x</i> \		× /	

On le complète avec les extremums locaux et les limites.

On a:
$$f(-2) = -17$$
; $f(0) = 3$ et $f(2) = -1$.

On calcule la limite de f en $+\infty$:

On a $\lim_{x\to +\infty} x^3 = +\infty$ et $\lim_{x\to +\infty} -3x^2 = -\infty$, on ne peut pas conclure à l'aide de somme de limites.

 \P On factorise le polynôme f par son terme de plus haut degré.

Soit
$$x \in [-2 \; ; \; +\infty[$$
 $f(x) = x^3 \left(1 - \frac{3}{x} + \frac{3}{x^3}\right).$ On a $\lim_{x \to +\infty} x^3 = +\infty$ et $\lim_{x \to +\infty} 1 - \frac{3}{x} + \frac{3}{x^3} = 1.$

Par produit de limites, on a donc $\lim_{x \to +\infty} f(x) = +\infty$.

On a finalement le tableau de variations :

x	-2	0	2	$+\infty$
Variations de f	-17	3	-1	+∞

· On applique le théorème des valeurs intermédiaires

Sur l'intervalle [-2; 2], la fonction f est majorée par 3, donc l'équation f(x) = 5 n'admet pas de solution dans [-2; 2].

Sur l'intervalle $[2; +\infty[$, la fonction f est **continue** et **strictement croissante**. De plus 5 est compris entre f(2) = -1 et $\lim_{x \to +\infty} f(x) = +\infty$.

Donc, d'après le théorème des valeurs intermédiaires l'équation f(x)=5 admet une unique solution α dans $[2; +\infty[$.

En utilisant le tableau de valeurs de la calculatrice avec un pas de 0,1 on trouve $3,1<\alpha<3,2.$

Propriété et définition : Fonction réciproque

Soit f une fonction continue et strictement monotone sur un intervalle I, à valeurs dans un intervalle J.

Il existe une fonction définie sur J et à valeurs dans I, appelée fonction réciproque de f et notée f^{-1} telle que

pour tous réels $x \in I$ et $y \in J$, l'égalité f(x) = y est équivalente à $x = f^{-1}(y)$.

Exemple

La fonction f définie sur $I=[0\;;\;+\infty[$ par $\;f(x)=x^2\;$ est dérivable donc **continue** sur I et strictement croissante sur I.

Elle prend ses valeurs dans $J = [0; +\infty[$.

Pour tous $x \in I$ et $y \in J$, $y = x^2 \iff \sqrt{y} = x$.

Donc la fonction réciproque de f est f^{-1} la fonction racine carrée.

