

BFO Deep Dive Part 2

John Beverley

Assistant Professor, University at Buffalo Co-Director, National Center for Ontological Research Affiliate Faculty, Institute of Artificial Intelligence and Data Science

Basic Formal Ontology

Created by **Barry Smith**, BFO is that top-level architecture, used by over 700 open-source projects, including various ontology Foundry efforts

Beethoven's #9th Symphony

Material Entity

Material Entity

• Many independent continuants discussed thus far depend on instances falling under the class **Material Entity**, which includes all independent continuants having matter as part

• Apples, people, cars, blankets, viruses, tanks, etc. thus fall

• Subclasses include objects, object aggregates, and fiat object parts

Subclasses of Material Entity

- Examples of causal unity:
 - Physical covering, e.g. interior of the object are covered by a connected membrane

- Examples of causal unity:
 - Physical covering, e.g. interior of the object are covered by a connected membrane
 - Internal forces, e.g. ionic bonds holding together molecules

- Examples of causal unity:
 - Physical covering, e.g. interior of the object are covered by a connected membrane
 - Internal forces, e.g. ionic bonds holding together molecules
 - Engineered assembly, e.g. mechanical assembly through screws or fasteners

Rule of Thumb

If moving a proper part of some material entity requires moving other material parts of that entity, there is likely causal unity between them

- To say x is maximal with respect to causal unity is to say x is:
 - causally unified by that causal unity

- An object is a material entity that manifests causal unity, where its instances are **maximal** with respect to that causal unity
- To say x is maximal with respect to causal unity is to say x is:
 - causally unified by that causal unity
 - if x is part of some y and y is causally unified in precisely the same way, then x is identical to y

- An object is a material entity that manifests causal unity, where its instances are **maximal** with respect to that causal unity
- To say x is maximal with respect to causal unity is to say x is:
 - causally unified by that causal unity
 - if x is part of some y and y is causally unified in precisely the same way, then x is identical to y
- For example, relative to causal unity by covering, your torso is not maximal, but the whole of you as an organism is maximal

Object Aggregate

• Defined such that any and all members of the aggregate are objects which do not share any parts in common, i.e. are pairwise disjoint

• For example, one can define the object aggregate that is all instruments in an orchestra, or all members of a band

• More generally, the "X aggregate" is intended to be a recipe that may be applied to other classes, e.g. "aggregate of roles"

Fiat Object Part

• Certain parts of objects that are not themselves objects, warrant catergorization beyond merely being identified as parts

- For example, a so-called **bona fide** object part of the Earth, which would be an object, such as an island, may be divided into northern and southern **fiat** object parts
- Northern and southern portions of a given island exist regardless of whether we delineate them so

Immaterial Entity

Any entity that has a material entity as part is a material entity

But material entities may have immaterial entities as parts

Immaterial Entity

• Not all independent continuants have matter as parts

• Territorial boundaries, internal hulls of ships, interiors of capsules, etc. are not identical to whatever material is often associated with them

• For example, an archaeologist seeking the site through which a contemporary river used to flow, is not looking for the material the river used to flow through, for that is lost to time

Continuant Fiat Boundary

• Continuant Fiat Boundary = $_{def}$ An immaterial entity such that there is no time t when it has a spatial region as continuant part & whose location is determined in relation to some material entity

national center for ontological research **NCO** academy

Continuant Fiat Boundary

• Continuant Fiat Boundary = $_{def}$ An immaterial entity such that there is no time t when it has a spatial region as continuant part & whose location is determined in relation to some material entity

• In BFO, **objects** are three-dimensional and have two-dimensional boundaries, e.g. surfaces

• There are no three-dimensional boundaries, because boundaries are always entities of some lower dimension

Dimension Constraint

- x has a lower dimension than y
 - irreflexive
 - asymmetric
 - transitive

Dimension Constraint

- x has a lower dimension than y
 - irreflexive
 - asymmetric
 - transitive

If x is boundary of y then x has lower dimension than y

Site

Site

• $Site =_{def} A$ three-dimensional immaterial entity whose boundaries either (partially or wholly) coincide with the boundaries of one or more material entities or have locations determined in relation to some material entity

Site

• $Site =_{def} A$ three-dimensional immaterial entity whose boundaries either (partially or wholly) coincide with the boundaries of one or more material entities or have locations determined in relation to some material entity

• Examples:

- A rabbit hole
- The interior of your bedroom
- The hold of a ship
- The cockpit of an aircraft

• Spatial Region $=_{def}$ A continuant that is continuant part of the spatial projection of a portion of spacetime at a given time

• Spatial Region $=_{def}$ A continuant that is continuant part of the spatial projection of a portion of spacetime at a given time

Cosmological Principle: Spatial distribution of matter in the universe is uniformly isotropic and homogeneous.

• Spatial Region $=_{def}$ A continuant that is continuant part of the spatial projection of a portion of spacetime at a given time

Figure 1.5 Illustrations of how homogeneity and isotropy are not equivalent in (a) three dimensions and (b) two dimensions. In the first example of each, a unique direction is picked out but translation invariance is maintained. In the second example of each, all directions are the same (rotation invariance) but a radial gradient exists.

• Spatial Region $=_{def}$ A continuant that is continuant part of the spatial projection of a portion of spacetime at a given time

• *spatially projects onto* $=_{\text{def}}$ Holds between spatiotemporal region s and spatial region r at some time t such that r is the spatial extent of s at t

• Spatial Region $=_{def}$ A continuant that is continuant part of the spatial projection of a portion of spacetime at a given time

• *spatially projects onto* $=_{\text{def}}$ Holds between spatiotemporal region s and spatial region r at some time t such that r is the spatial extent of s at t

spatial projection is exact, i.e. there is no r' of which r is proper part such that s spatially projects onto r'

Dependence

• For certain entities, their existence depends on the existence of something else

• Other entities do not depend on any other entities for their existence

• The latter are categorized in BFO as independent continuants

• The former include specifically dependent and generically dependent entities, as well as processes

Process

Process

Continuant

Independent GD
Continuant Continuant

Occurrent

process, event

Some occurrent entities depend on continuants

apple

temp measure

Process

Processes

• Are where happenings live...

• All processes in BFO have at least one temporal part and are such that there is some material entity which participates in the process

• participates in is a minimal relationship connecting specifically, generically, and independent continuants to process

• A given **process** may have realization some realizable entity, which inheres in some independent continuant

• A given **process** may **have realization** some realizable entity, which inheres in some independent continuant

• A given process may have realization some realizable entity, which inheres in some independent continuant

• A given process may have realization some realizable entity, which inheres in some independent continuant

national center for ontological research

COF
academy

• A given process may have realization some realizable entity, which inheres in some independent continuant

History

History

- Is the sum total of all processes associated with a given material entity
- Every instance of history corresponds to one and only one instance of material entity; any instance of material entity corresponds to one and only one instance of history
- For example, the history that is my life is my history and mine alone, just as the history of the material entity that is this building belongs to the building

• In BFO, instances of material entities:

- In BFO, instances of material entities:
 - Have matter as parts

- In BFO, instances of material entities:
 - Have matter as parts
 - Gain or lose qualities,

- In BFO, instances of material entities:
 - Have matter as parts
 - Gain or lose qualities, parts,

- In BFO, instances of material entities:
 - Have matter as parts
 - Gain or lose qualities, parts, occupy different locations, etc.

- In BFO, instances of material entities:
 - Have matter as parts
 - Gain or lose qualities, parts, occupy different locations, etc. over the course of their history

- In BFO, instances of material entities:
 - Have matter as parts
 - Gain or lose qualities, parts, occupy different locations, etc. over the course of their history

• An apple in an orchard ripens, reddens, and sweetens, before spoiling, developing blotches, etc. on a fruit basket

Processes Do Not Change

• An intuitive understanding of change is the gain or loss of specifically dependent continuants

• In BFO, occurrents do not bear specifically dependent continuants, and so cannot – strictly speaking – gain or lose them

Processes are Changes

- As a consequence, characterizing:
 - increasing velocity of this vehicle
 - changing direction of this airplane
 - lowered volume of this alarm
- Are not understood in terms of properties of processes
- In BFO, processes do not change, they are changes

CASE 3: A flower is red in the summer. As time passes, the color changes. In autumn the flower is brown.

GOAL: The example aims to show if and how the ontology models change in qualities/properties.

FOCUS: The change of the color of a flower.

Figure 6: Petal Changing Color in Case 3

• The history of a material entity occupies some spatiotemporal region

- Which is an occurrent part of the instance spacetime_R
- Spatiotemporal regions have both **spatial** and **temporal** extents

• The apple occupies a spatial region r

- The history of that apple occupies a temporal region t
- The history of that apple occupies a spatiotemporal region s
 - s spatially projects onto r
 - s temporally projects onto t

• The apple occupies a spatial region r

- The history of that apple occupies a temporal region t
- The history of that apple occupies a spatiotemporal region s
 - s spatially projects onto r
 - s temporally projects onto t

Spatial Regions

• Spatial Region $=_{def}$ A continuant that is continuant part of the spatial projection of a portion of spacetime at a given time

• *spatially projects onto* $=_{\text{def}}$ Holds between spatiotemporal region s and spatial region r at some time t such that r is the spatial extent of s at t

Spatial Regions

• Spatial Region $=_{def}$ A continuant that is continuant part of the spatial projection of a portion of spacetime at a given time

• *spatially projects onto* $=_{\text{def}}$ Holds between spatiotemporal region s and spatial region r at some time t such that r is the spatial extent of s at t

Spatiotemporal regions are useful and described in terms of spatial regions, so spatial regions are useful

Information

• Maps, geospatial coordinate systems, etc. fall under information in BFO

• Instances of information are patterns that are about something

Information

• Maps, geospatial coordinate systems, etc. fall under information in BFO

• Instances of information are patterns that are about something

Geospatial information must be about something; spatial regions are what such information is about

Temporal Region

• The apple occupies a spatial region r

- The history of that apple occupies a temporal region t
- The history of that apple occupies a spatiotemporal region s
 - s spatially projects onto r
 - s temporally projects onto t

Temporal Region

Temporal Region

• BFO does not distinguish between processes and events

• The process of baking of an apple pie has proper parts, such as cutting apples, preparing pastry crust, etc.

• Proper process parts may be further divided, e.g. cutting of specific apples

^{*} Image from Galton, 2016: Processes and Events in BFO and DOLCE

Changing in Time

• How might we describe something moving faster over time?

An instance of motion process p has proper temporal parts x, y such that x is an instance of motion-with-speed-n at t_1 and y is an instance of motion-with-speed-n at t_2 where t_1 precedes t_2 and n

Dimensions of Temporal Region

Entities are located_at spatial regions

Entities exist_at temporal regions

Entities are located_at spatial regions

Partial: If x is located at r then x is located at least at r

Entities exist_at temporal regions

Partial: If x exists at t then x exists at least at t

Processes occupy spatiotemporal regions

Spatiotemporal regions project on spatial and temporal regions

Processes occupy spatiotemporal regions

Exact: If p occupies temporal region t then p occupies only t

Spatiotemporal regions project on spatial and temporal regions

Exact: If s projects on temporal region t then s projects on only t

national center for ontological research **NCO**I academy