The Mathematical Association of Victoria

Trial Examination 2020

MATHEMATICAL METHODS

Trial Written Examination 1 - SOLUTIONS

Question 1

$$h(x) = \frac{x^2}{\tan(2x)}$$
 Use the quotient rule.

$$h'(x) = \frac{2x \tan(2x) - 2x^2 \sec^2(2x)}{\tan^2(2x)}$$
 1A

Other forms

OR

$$h'(x) = \frac{2x\left(\sin(2x)\cos(2x) - x\right)}{\sin^2(2x)}$$
 1A

Question 2

$$f(x) = \log_e(\sin(2x))$$
 Use the chain rule.

$$f'(x) = \frac{2\cos(2x)}{\sin(2x)}$$
 1A

$$f'\left(\frac{\pi}{3}\right) = \frac{2\cos\left(\frac{2\pi}{3}\right)}{\sin\left(\frac{2\pi}{3}\right)}$$

$$=\frac{2}{\frac{\sqrt{3}}{2}}$$

$$=\frac{-2}{\sqrt{3}}$$
1A

OR

$$f'\left(\frac{\pi}{3}\right)$$

$$=\frac{2}{\tan\left(\frac{2\pi}{3}\right)}$$

$$=\frac{-2}{\sqrt{3}}$$
1A

$$\int_{0}^{a} \left(\frac{x}{x^{2}+4}\right) dx = 3.$$

$$\frac{1}{2} \int_{0}^{a} \left(\frac{2x}{x^{2}+4}\right) dx = 3$$

$$\frac{1}{2} \left[\log_{e} \left(x^{2}+4\right)\right]_{0}^{a} = 3$$

$$1M$$

$$\frac{1}{2} \left(\log_{e} \left(a^{2}+4\right)-\log_{e}(4)\right) = 3$$

$$\log_{e} \left(\frac{a^{2}+4}{4}\right) = 6$$

$$1M$$

$$\frac{a^{2}+4}{4} = e^{6}$$

$$a = \pm \sqrt{4e^{6}-4} = \pm 2\sqrt{e^{6}-1}$$

$$1A$$

Question 4

$$f(x) = \frac{1}{9}(3x - 1)e^{3x}$$
a. $f'(x) = \frac{3}{9}e^{3x} + \frac{3}{9}(3x - 1)e^{3x}$ product rule
$$= \frac{1}{3}e^{3x} + xe^{3x} - \frac{1}{3}e^{3x}$$

$$= xe^{3x} \text{ as required} \qquad 1M \text{ Show that}$$

b.
$$h:[0,\log_e(2)] \to R, h(x) = \frac{3}{7}e^{3x}$$

 $y = xh(x)$

$$\frac{3}{7} \int_{0}^{\log_e(2)} \left(x e^{3x} \right) dx$$
 1M

$$= \frac{3}{7} \times \frac{1}{9} \left[(3x - 1)e^{3x} \right]_{0}^{\log_{e}(2)}$$

$$= \frac{1}{21} \left((3\log_{e}(2) - 1)e^{3\log_{e}(2)} + 1 \right)$$

$$e^{3\log_{e}(2)} = e^{\log_{e}(2^{3})} = e^{\log_{e}(8)} = 8$$
1M

$$e^{-1/2} = e^{-1/2} = e^{-1/2} = 8$$

$$= \frac{1}{21} (24 \log_e(2) - 8 + 1)$$

$$= \frac{8}{7} \log_e(2) - \frac{1}{3}$$
1A

$$f:[0,\infty) \to R, f(x) = e^{2x} \text{ and } g(x) = x^2 - 1$$

a. Test to see if g(f(x)) exists.

If g(f(x)) exists then $r_f \subset d_g$.

Range $f = [1, \infty)$ Domain g = R

$$[1,\infty)\subset R$$

Therefore g(f(x)) exists.

1A

 $g_1: D \to R, g_1(x) = x^2 - 1$, where D is the maximal domain of g_1 such that $h(x) = f(g_1(x))$ exists.

b. Test to see if $f(g_1(x))$ exists.

If f(g(x)) exists then $r_g \subset d_f$.

Range $g = [-1, \infty)$, Domain $f = [0, \infty)$

$$[-1,\infty) \not\subset [0,\infty)$$

Restrict Range $g = [-1, \infty)$ to Range $g_1 = [0, \infty)$

1**M**

Giving Domain $g_1 = (-\infty, -1] \cup [1, \infty)$

$$D = (-\infty, -1] \cup [1, \infty) \text{ OR } R \setminus (-1, 1)$$

c. Rule
$$h(x) = e^{2(x^2-1)}$$
 1A

$$h'(x) = 4xe^{2(x^2-1)}$$

$$h'(2) = 8e^6$$
 1A

Ouestion 6

$$f:[-1,\infty) \to R, f(x) = a\sqrt{x+b} + c$$

a.
$$f(x) = a\sqrt{x+1} + 3$$

1 A

Substitue (0, 5) into f(x).

$$a\sqrt{0+1}+3=5, a=2$$

$$f(x) = 2\sqrt{x+1} + 3$$

b.
$$T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} m & 0 \\ 0 & n \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} p \\ q \end{bmatrix}$$

$$f(x) = 2\sqrt{x+1} + 3$$
, $g(x) = -\sqrt{2x-1} - 1 = -\sqrt{2\left(x - \frac{1}{2}\right)} - 1$

- 1. Dilate by a factor of $\frac{1}{2}$ from the x-axis. $f_1(x) = \sqrt{x+1} + \frac{3}{2}$
- 2. Reflect in the x-axis. $f_2(x) = -\sqrt{x+1} \frac{3}{2}$
- 3. Dilate by a factor of $\frac{1}{2}$ from the *y*-axis. $f_3(x) = -\sqrt{2x+1} \frac{3}{2} = -\sqrt{2(x+\frac{1}{2})} \frac{3}{2}$
- 4. Translate 1 unit to the right and a $\frac{1}{2}$ unit up. $g(x) = -\sqrt{2\left(x \frac{1}{2}\right)} 1$

$$n = -\frac{1}{2}$$
 (from 1 and 2), $m = \frac{1}{2}$ (from 3), $p = 1$ and $q = \frac{1}{2}$ (from 4)

A correct method 1M, 2 correct 2H, all correct 3A

OR

$$x' = mx + p, \ x = \frac{x' - p}{m}$$

$$y' = ny + q, \ y = \frac{y' - q}{n}$$

$$y' = 2n\sqrt{\frac{x' - p}{m} + 1 + 3n + q}$$

$$y' = 2n\sqrt{\frac{x'}{m} + 1 - \frac{p}{m}} + 3n + q$$

$$y = -\sqrt{2x - 1} - 1$$

$$2n = -1, \ n = -\frac{1}{2}, \ \frac{1}{m} = 2, \ m = \frac{1}{2}, \ 1 - 2p = -1, \ p = 1, \ -\frac{3}{2} + q = -1, \ q = \frac{1}{2}$$

A correct method 1M, 2 correct 2H, all correct 3A

$$X \sim \text{Bi}\left(10, \frac{1}{10}\right)$$

$$\Pr(X \le 2) = \Pr(X = 0) + \Pr(X = 1) + \Pr(X = 2)$$

$$= \binom{10}{0} \left(\frac{1}{10}\right)^0 \left(\frac{9}{10}\right)^{10} + \binom{10}{1} \left(\frac{1}{10}\right)^1 \left(\frac{9}{10}\right)^9 + \binom{10}{2} \left(\frac{1}{10}\right)^2 \left(\frac{9}{10}\right)^8$$

$$= \left(\frac{9}{10}\right)^8 \left(\left(\frac{9}{10}\right)^2 + 10\left(\frac{1}{10}\right)\left(\frac{9}{10}\right) + 45\left(\frac{1}{10}\right)^2\right)$$

$$= \left(\frac{9}{10}\right)^8 \left(\frac{81}{100} + \frac{9}{10} + \frac{45}{100}\right)$$

$$= \left(\frac{216}{100}\right) \left(\frac{9}{10}\right)^8$$

$$= \left(\frac{54}{25}\right) \left(\frac{9}{10}\right)^8$$

$$1A$$

OR

$$\Pr(X \le 2) = \Pr(X = 0) + \Pr(X = 1) + \Pr(X = 2)$$

$$= \binom{10}{0} \left(\frac{1}{10}\right)^0 \left(\frac{9}{10}\right)^{10} + \binom{10}{1} \left(\frac{1}{10}\right)^1 \left(\frac{9}{10}\right)^9 + \binom{10}{2} \left(\frac{1}{10}\right)^2 \left(\frac{9}{10}\right)^8$$

$$= \left(\frac{9}{10}\right)^8 \left(\left(\frac{9}{10}\right)^2 + 10\left(\frac{1}{10}\right)\left(\frac{9}{10}\right) + 45\left(\frac{1}{10}\right)^2\right)$$

$$= \left(\frac{9}{10}\right)^{10} \left(1 + \frac{10}{9} + \frac{5}{9}\right)$$

$$= \left(\frac{8}{3}\right) \left(\frac{9}{10}\right)^{10}$$

$$1A$$

a.
$$y = \tan(x)$$
 for $x \in \left(-\frac{\pi}{2}, \frac{3\pi}{2}\right) \setminus \left\{\frac{\pi}{2}\right\}$

Shape **1A**Asymptotes and intercepts labelled **1A**

Evidence of addition of ordinates either graphically or a table of values. 1M

x	$-\frac{\pi}{2}$	$-\frac{\pi}{4}$	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π	$\frac{5\pi}{4}$	$\frac{3\pi}{2}$
tan(x)	undefined	-1	0	1	undefined	-1	0	1	undefined
$-\sin(x)$	undefined	$\sqrt{2}$	0	$-\frac{\sqrt{2}}{}$	-1	$-\frac{\sqrt{2}}{}$	0	$\frac{\sqrt{2}}{2}$	undefined
		2		2		2		2	
$\tan(x) - \sin(x)$	undefined	$-1 + \frac{\sqrt{2}}{2}$	0	$1-\frac{\sqrt{2}}{2}$	undefined	$-1-\frac{\sqrt{2}}{2}$	0	$1+\frac{\sqrt{2}}{2}$	undefined

c.
$$x = 0, x = \pi$$
 1A

[©] The Mathematical Association of Victoria, 2020

a.
$$x^{2}(2x-3) = 11x-6$$

 $2x^{3} - 3x^{2} - 11x + 6 = 0$ **1M**
 $(x+2)\left(x - \frac{1}{2}\right)(2x-6) = 0$
 $x = 3$ **1A**

b. Area enclosed by the graphs of $y = 2x^3 - 3x^2$ and y = 11x - 6

The bounded areas are equal.

The bounded areas are equal.

Area =
$$2\int_{-2}^{\frac{1}{2}} ((2x^3 - 3x^2) - (11x - 6)) dx$$

IM

$$= 2\left[\frac{1}{2}x^4 - x^3 - \frac{11}{2}x^2 + 6x\right] \frac{1}{2}$$

$$= 2\left(\left(\frac{1}{32} - \frac{1}{8} - \frac{11}{8} + 3\right) - (8 + 8 - 22 - 12)\right)$$

$$= 2\left(\left(-\frac{47}{32} + 3\right) + 18\right)$$

$$= 2\left(-\frac{47}{32} + \frac{672}{32}\right)$$

$$= \frac{625}{16} = 39.0625 = 39\frac{1}{16} \quad \text{(any correct form)}$$

$$f:(-\infty,1)\to R, f(x)=\frac{2}{(x-1)^2}-\frac{20}{9}$$

a. Let
$$y = \frac{2}{(x-1)^2} - \frac{20}{9}$$
.

Inverse swap x and y.

Inverse swap x and y.

$$x = \frac{2}{(y-1)^2} - \frac{20}{9}$$

$$x + \frac{20}{9} = \frac{2}{(y-1)^2}$$

$$\left(x + \frac{20}{9}\right)(y-1)^2 = 2$$

$$(y-1)^2 = \frac{2}{\left(x + \frac{20}{9}\right)}$$

$$y = \pm \sqrt{\frac{2}{\left(x + \frac{20}{9}\right)}} + 1$$

$$y = -\sqrt{\frac{2}{\left(x + \frac{20}{9}\right)}} + 1$$
 as range is $\left(-\infty, 1\right)$.

$$f^{-1}(x) = -\sqrt{\frac{2}{\left(x + \frac{20}{9}\right)}} + 1 = -\sqrt{\frac{18}{9x + 20}} + 1$$
 1A

Domain
$$\left(-\frac{20}{9},\infty\right)$$
 1A

b. Solve
$$\frac{2}{(x-1)^2} - \frac{20}{9} = x$$
 for x . 1M
$$\frac{2}{(x-1)^2} = x + \frac{20}{9}$$

$$2 = \left(x + \frac{20}{9}\right)(x-1)^2$$

$$x^3 + \frac{20}{9}x^2 - 2x^2 - \frac{40}{9}x + x + \frac{20}{9} - 2 = 0$$

$$x^3 + \frac{20}{9}x^2 - 2x^2 - \frac{40}{9}x + x + \frac{20}{9} - 2 = 0$$

$$x^3 + \frac{2}{9}x^2 - \frac{31}{9}x + \frac{2}{9} = 0$$
1M

$$(x+2)\left(x^2 - \frac{16}{9}x + \frac{1}{9}\right) = 0$$

$$(x+2)\left(9x^2 - 16x + 1\right) = 0$$

$$x = -2, (-2, -2)$$

$$x = \frac{16 \pm \sqrt{256 - 36}}{18} = \frac{16 \pm \sqrt{220}}{18} = \frac{8 \pm \sqrt{55}}{9}$$

Select the negative branch as the range is $(-\infty,1)$.

$$x = \frac{8 - \sqrt{55}}{9}, \left(\frac{8 - \sqrt{55}}{9}, \frac{8 - \sqrt{55}}{9}\right)$$
 1A

END OF SOLUTIONS