Time Series Forecasting Models in Python

Time Series Forecasting Models in Python

Introduction to forecasting **Seasonal Decomposition Exponential Smoothing and Holt-Winters TBATS Arima, Sarima and Sarimax Tensorflow Structural Time Series Facebook Prophet** Facebook Prophet + XGBoost **Ensemble**

Introduction to Forecasting

Predictions that were just wrong

Thomas Watson, chairman of IBM

When: 1943

I think there is a world market for maybe five computers.

Steve Ballmer

There's no chance that the iPhone is going to get any significant market share.

Jonh Maynard Keynes

Three hour shifts or a fifteen-hour work week

Einstein

There is not the slightest indication that nuclear energy will ever be obtainable. That would mean that the atom would have to be shattered at will.

Analytics is key to drive Forecasting

Description

- 1 Bringing Science to a sometimes gut-feeling job
- 2 Barometer for the company -> Quantifies direction
- 3 Understanding turning points
- 4 Can uncover opportunities

What is Time Series Data?

Visualization

Diogo Resende | Time Series Forecasting Models in Python

Key ideas

- Sequence of data points in time order (oldest to newest)
- Most commonly, it is data recorded in equally distanced time periods
- Type of Panel Data (multidimensional dataset)

Case Study Briefing – Demand Forecasting

Bike Sharing

How many rides are done per day?

- 1 Holidays and weather KPIs included
- 2 Time periods: 2011 and 2013
- Forecast December 2012 to assess each forecasting model

[1] Fanaee-T, Hadi, and Gama, Joao, "Event labeling combining ensemble detectors and background knowledge", Progress in Artificial Intelligence (2013): pp. 1-15, Springer Berlin Heidelberg, doi:10.1007/s13748-013-0040-3.

Seasonal Decomposition

Seasonal Decomposition: the actuals values to be decomposed

Visualization

Diogo Resende | Time Series Forecasting Models in Python

Key ideas

A seasonal Time Series can be decomposed into:

- Trend
- Seasonality
- Error

We try to use external regressors to model the remaining error term.

Seasonal Decomposition: Trend

Visualization

Diogo Resende | Time Series Forecasting Models in Python

Seasonal Decomposition: Seasonality

Visualization

Diogo Resende | Time Series Forecasting Models in Python

Seasonal Decomposition: Error

Visualization

Error

Diogo Resende | Time Series Forecasting Models in Python

Additive vs. Multiplicative

Additive

Multiplicative

Key ideas

If we talk about seasonality in terms of percentage, then we should consider a multiplicative seasonality.

If it is in adding absolute values, then it is additive.

If trend is exponential, then it is multiplicative

Forecasting is all about error modelling

Descrition

- The essential part of forecasting
- Understanding what else can explain the Error
- How? Usually in the form of external regressors
- High errors in the beginning of dataset?
 Consider discarding that part of the data.

Data without patterns: Stocks

Key Idea

- If there is no pattern, you should not use forecasting models
- Forecasting models work best with consistent seasonality and trends

Trend

Heavily dependent on the company

Seasonality

Depends more on the industry, thus it is more predictable.

Exponential Smoothing & Holt-Winters

Let's imagine this is our full data set

Description

Splitting between training and test enables an unbiased model assessment

Training and Test set in Time series

Key Ideas

Forecasting Models are usually split into a pre and post period from a time perspective. The Test Set should be of the size of a real-world forecast.

What is Exponential Smoothing?

Key Ideas

Weighted averages of past observations, with the weights decaying exponentially as the observations get older

Visualization

Holt-Winters is a Triple split Exponential Smoothing

Splits the time series into 3:

- Level
- Trend
- Seasonality

Key Ideas

- Performs Exponential Smoothing in each of the 3 levels
- Holt-Winters is also called Triple Exponential Smoothing
- There are 2 variants: Additive and Multiplicative

Mean Absolut Error (MAE) vs Root Squared Mean Error (RSME)

Visualization

Key ideas

 MAE and RSME are performance indicators for Regression models with continuous dependent variables

$$MAE = \frac{\sum |y - \hat{y}|}{n}$$
 $\times RSME = \sqrt{\frac{\sum (\hat{y} - y)^2}{n}}$

- RSME is quite useful for models with extremes / outliers
- MAE is more interpretable.

Mean Absolut Percent Error (MAPE)

Visualization

Key ideas

MAPE represents a very interpretable way of measuring errors

$$MAPE = \frac{\sum \frac{|y - \hat{y}|}{x}}{n}$$

- Clear downside is that all error has the same relevance, regardless of the magnitude, if the percent error is the same
- There is no universal good accuracy measure.
 It will depend on your problem and business need!

Pros and Cons

Challenge

Description

Use Holt-Winters to predict the amount of airmiles

- 1 Set Index frequency to Monthly. Use "MS"
- Visualize data
- Create Training and Test Set. Test Set should be 12 months
- 4 Create Holt-Winters Model
- Predict 12 months and visualize them, together with the training and test set
- 6 Assess Model based on MAE

Dataset: TSA package

TBATS

Meaning of TBATS

Description

- 1 Trigonometrics seasonality
- 2 Box-Cox transformation
- 3 AutoRegressive Moving Average
- 4 Trend
- 5 Seasonality

Origin

Created in 2011 Similar to Exponential Smoothing

Why

The math behind has several similarities

AutoRegressive components

Key Idea

Past values, the lags, contain information that help predict future values

Visualization

$$Y_t = c + \alpha_1^* Y_{t-1} + \alpha_2^* Y_{t-2} + \dots + \alpha_n^* Y_{t-n}$$

$$Today$$
Time

How to determine how many lags

We will do it **automatically** in the practice tutorials

Moving Average components

Visualization of the errors

Methodological Framework

$$\overline{y_t = c + \alpha_1^* \varepsilon_{t-1}^+ \dots + \alpha_n^* \varepsilon_{t-n}}$$

What it is?

Past error lags, contain information that help predict future values

How to do it?

We will do it **automatically** in the practice tutorials

Trigonometric seasonality

Visualization

Description

- Trigonometry is part of the modelling.
- Seasonality equation contain the Sine and Cosine
- In practical terms, we do not need to do anything

BOX-COX

Visualization

What is it?

Transforming the dependent variable into a normal distribution

Why do we care?

Normal distribution is a requirement or assumption of many statistical techniques

Key Idea

Box Cox is part of the modelling. In practical terms, we do not need to do anything

Pros and Cons

Challenge

Description

Use TBATS to predict weekly store footfall

- 1 Transform Index to have weekly frequency. Use "W"
- 2 Visualize data. Something will be off;)
- Create Training and Test Set. Test Set should be 5 weeks
- 4 Create TBATS Model
- Predict 5 weeks and visualize them, together with the training and test set
- 6 Assess Model based on RMSE

ARIMA, SARIMA & SARIMAX

What does it all mean?

Acronym

Description

ARIMA

AutoRegregressive Integrated Moving Average

SARIMA

Seasonal + ARIMA

SARIMAX

SARIMA + Exogenous variables

What is ARIMA?

Component

Description

AutoRegressive

The output is regressed on its own lagged values

Integrated

Number of times we need to do differencing to make our time series stationary

Moving Average

Instead of using the past values, the MA model uses past forecast errors.

ARMA recap

AutoRegressive

Past values, the lags, contain information that help predict future values

Visualization

Moving Average

Past error lags, contain information that help predict future values

Visualization

Stationarity

Key idea

Mean, variance and covariance are not time dependent

Stationary Time Series have a clearly defined pattern

Statistical test:

Dickey-Fuller test. If p-value is less than 0.05, time series is considered stationary

Making Data Stationary

SARIMAX

External Regressors

- The goal of the regressors is to model the remaining error.
- Information that is not recurrent over time or modifies itself.

Examples

Moving seasonality

Events like Black Friday or seasonal holidays like Easter or Diwali are not in the same dates every year.

- Events outside the company control
 Factors like weather or corona interfere with the usual
 seasonality or trend, thus you need to model them in
 your forecast to decrease errors
- Events caused by the company
 Major investment or strategy shifts affect the normal
 development of a KPI. You need to try to find a metric
 that represents any of these factors

3 factors to optimize in ARIMA(p,d,q)

Order	Description	Explanation
р	Order of the Autoregressive	Number of unknown terms that multiply your signal at past times
d	Degree of first Differencing involved	Number of differences to make time series stationary
q	Order of the Moving Average part	Number of unknown terms that multiply your forecast errors at past times
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Key Idea	

No extra work, there are functions to optimize the factors automatically

P, d, and q are non-negative integers.

6 factors to optimize in SARIMA

Key Idea

Despite having 3 more factors to optimize, they mirror the classic ARIMA (p, d, q) No extra work, there are functions to optimize the factors automatically

Akaike's Information Criterion (AIC) and Bayesian Information Criterion (BIC)

Key Ideas

- AIC and BIC provide a means to select a model
- Trade-off between simplicity and goodness of fit

Deal with overfitting and underfitting

Pseudo-visualization

Pros and Cons

Challenge

Description

Use SARIMAX to predict interest in Churrasco

- 1 Transform Index to have weekly frequency. Use "W"
- Visualize data.
- Create Training and Test Set. Test Set should be 10 weeks
- Extract Exogenous Variables and Create SARIMAX model
- Predict 10 weeks and visualize them, together with the training and test set
- 6 Assess Model based on MAPE

Source: Google Trends

Tensorflow Probabilities Structural Time Series

Structural Time Series

Trend

Seasonality

Exogenous impacts

Description

- Structural Time Series is the decomposition of the data in at least:
 - Trend
 - Seasonality
 - Exogenous impacts
 - Leftovers: noise

Methodological framework

$$y(t) = c(t) + s(t) + x(t) + \epsilon$$

Tensorflow Structural Time series

Decomposition

- Trend
- Seasonality multiple
- Exogenous impacts
- AutoRegressive
- Noise

Seasonality

- Weekly
- Monthly
- Yearly

Autoregressive

 Focus on giving weight to recent information

Hamiltonian Monte Carlo

Description

Simulation used for Bayesian Inference

Causal inference problem statement

We know what happenened, but we do not know what led to it

Bayes Theorem

$$P(buy|impression) = \frac{P(impression|buy) * P(buy)}{P(impression)}$$
$$= \frac{P(impression|buy) * P(buy)}{\int P(impression|buy) * P(buy)d(buy)}$$

Problem statement

It is not possible to solve the equation and thus we simulate outcomes

Tensorflow Structural Time Series Pros and Cons

Challenge

Description

Udemy wikipedia page visits

- 1 Set as regressors Easter and Christmas variables
- 2 Split into training and test set and isolate Y
- 3 Create weekly and monthly seasonality objects
- 4 Create Trend and Autoregressive components
- Create Tensorflow model and fit it with Hamiltonion Monte Carlo
- 6 Predict 30 days and add index to the predictions.
- 7 Visualize forecast, trainining and test data

Dataset: TSA package

Facebook Prophet

Facebook Prophet quick facts

Which?

Description

- 1 Built by facebook
- Stan background probabilistic programming language for statistical inference
- 3 Dynamic Holidays
- Prophet forecasts are customizable in ways that are intuitive to non-experts
- 5 Built-in Cross Validation & Hyperparameter Tuning

Prophet Mechanics

Methodological framework

$$y(t) = c(t) + s(t) + h(t) + x(t) + \epsilon$$

Where:	
c(t)	Trend +
s(t)	Seasonality +
h(t)	Holiday effects +
x(t)	External regressors +
е	error

Visualization

Dynamic Holidays – Valentine's example

Visualization

Facebook Prophet

You state Valentine's as a key event and specify how many days before/after to quantify

Other models:

You must create dummy variables for each day, if you believe they have different impacts

Facebook Prophet Model

Component	Description
Growth	Linear or Logistic
Holidays	Dataframe that we prepared
Seasonality	Yearly, weekly or daily. True or False
Seasonality_mode	Multiplicative or additive
Seasonality_prior_scale	Strength of the seasonality
Holiday_prior_scale	Larger values allow the model to fit larger seasonal fluctuations
Changepoint_prior_scale	flexibility of the automatic changepoint selection

Cross Validation

Key Idea

Repeating the assessment of our model reinforces its evaluation

Parameters to tune

Component

Description

Seasonality_prior_scale

Strength of the seasonality

Holiday_prior_scale

Larger values allow the model to fit larger seasonal fluctuations

Changepoint_prior_scale

flexibility of the automatic changepoint selection

Pros and Cons

Diogo Resende | Time Series Forecasting Models in Python

Challenge

Description

Demand for Shelter in New York City

- 1 Rename Dependent and Time Variable to y and ds
- Declare Easter and Thanksgiving as holidays. Combine them. Use pd.concat
- 3 Create Prophet model. Christmas is a regressor
- 4 Cross Validation. Horizon = 31, initial = 2400. Assess via MAE
- 5 Create Parameter Grid for Tuning
- Perform Hyperparameter Tuning. Use MAE as the KPI to optimize. Gather Results

Facebook Prophet + XGBoost

Prophet and XGBoost step by step

XGBoost is a state-of-art **Machine** Learning **Algorithm**

Description

- 1 Stands for Extreme Gradient Boosting
- Can be contructed with a tree based algorithm or linear (worse results)
- 3 It is an emsemble algorithm
- Each new model is built upon the precedent one -> continuous improvement
- 5 Can be used for both Regression and Classification

XGBoost gives different weights depending on how difficult it is to predict

First Tree

Outcome		Predictor	Weight
1	•	— X	25%
V 0	•	X	25%
X 0	←	X	25%
X 1	•	X	25%

Second Tree

ght
%
%
%
%

Third Tree

Outcome	Predictor	Weight
X 1 ←	X	23%
✓ 0 ←	X	15%
✓ 0 ←	X	35%
✓ 1 ←	X	27%

XGBoost looks at parts of the observations at a time

First Tree

Outcome	e Predictor	Weight
√ 1 •	X1	25%
✓ 0 •	X2	25%
X 1 •	X4	25%

Second Tree

Outco	me	Predictor	Weight
X 1	←	X1	20%
✓ 0	←	X2	20%
X 0	←	—— X3	30%

Third Tree

Outcome		ne	Predictor	Weight
×	1	•	—— X1	23%
/	0	•	— ХЗ	35%
/	1	•	—— X4	27%

Key Idea

XGBoost only looks at a fraction of the observation at the time Observations that are more difficult to predict are given a bigger weight

The logic is similar for Regression-based tasks

First Tree

Error	Outcome	Predictor	Weight
- 5	15 ←	—— X1	33%
2	22 ←	—— X2	33%
4	34 ←	—— X4	33%

Second tree

Error	Outcome	Predictor	Weight
- 1	19 ←	X1	40%
-1	25 ←	— X2	30%
3	35 ←	—— X4	35%

XGBoost also gives different weights to different predictors

First Tree

Error	Outcome	X1	X2	Х3	Weight				
-5	15				33%				
2	22	50%	50	50	50	50	50%		33%
			%						
4	34				33%				

Second Tree

Error	Outcome	X1	X2	Х3	Weight
-1	19			50%	40%
		50%			
-1	25	%			30%
3	35				35%

Third Tree

Error	Outcome	X1	X2	Х3	Weight
1	21				35%
			40%	60%	
0	24)%	%	30%
2	36 iogo Resende Tir		о Г очески	in a Mad	40%

Key Idea

Predictors also have different weights if they yield different model results

XGBoost quirks

Description

Which?

NA:

Unlike other regression models, XGBoost treats NA's as information

Non-linearity:

XGBoost is excellent dealing with non-linearity relationship between the dependent and the independent variables.

Which parameters are there?

Parameter	Description				
Minimum Child weight	Relates to the sum of the weights of each observation. Low values can mean that maybe not a lot of observations are in the round				
ETA	Learning Rate. How fast do you want the model to learn?				
Max depth	How big should the tree be? Bigger trees go into more detail				
Gamma	How fast should the tree be split?				
Subsample	Share of observations in each tree?				
Colsample by tree	How much of the tree should be analysed per round?				
Number of rounds	How many times do we want the analysis to be run?				

Prophet + XGBoost Pros and Cons

Challenge

Description

Demand for Shelter in New York City

- 1 Create future DF with test set length. Add regressor
- Forecast and create a DF with: trend, weekly, yearly, holidays, multiplicative_terms
- 3 Concatenate with df. Drop Easter and Thanksgiving
- 4 Generate Training and Test Set. Isolate X and Y and form XGBoost Matrices
- 5 Set Parameters and Create XGBoost model
- Predict. Visualize Test Set and Predictions.
 Assess model using MAPE

Ensemble

Ensemble mechanism

Example								
Date	Υ	Holt- Winters	SARIMAX	TBATS	TFP	Prophet	XGBoost	Ensemble
t	50	48	49	51	50.5	53	51	50.5

Key Idea

Ensemble is an average of models. The goal models have flaws, but if you group all of them, then some models will average out the error

To consider:

• Dynamic average. You give more weight to models that have less errors, punish the ones that are not performing as well.

Why Ensemble

Deep dives

The research on combining forecasts to achieve better accuracy is extensive, persuasive, and consistent.

Essam Mahmoud,

"Accuracy in Forecasting: A Survey," *Journal of Forecasting*, April–June 1984, p. 139;

Spyros Makridakis and Robert L. Winkler,

"Averages of Forecasts: Some Empirical Results," Management Science, September 1983, p. 987

Victor Zarnowitz,

"The Accuracy of Individual and Group Forecasts from Business Outlook Surveys," Journal of Forecasting, January–March 1984, p. 10.

Pros and Cons

