

Universidad de Cádiz

FACULTAD DE CIENCIAS

ON TWO PROBLEMS OF THE ANALYTIC THEORY OF POLYNOMIALS

Jorge Rivero Dones

ON TWO PROBLEMS OF THE ANALYTIC THEORY OF POLYNOMIALS

Director: Dr. Francisco Javier García Pacheco

Firma del Doctorando

Firma del Director

Cádiz, December 2023

Acknowledgements

Contents

1	Abstract	vii
	1.1 Abstract	vii
	1.2 Resumen	vii
2	Introduction	ix
3	Materials and Methods	1
4	Chapter 1	3
5	Chapter 2	5
6	Chapter 3	7
A	Conclusions	9
В	Notation	11
C	Appendix	15

Abstract

First thing, a summary of this dissertation in both English and Spanish will be presented.

1.1 Abstract

1.2 Resumen

Introduction

Materials and Methods

Chapter 1

Chapter 2

Chapter 3

APPENDIX

Conclusions

APPENDIX B

Notation

Next, we will proceed to explain the main notation followed in this dissertation:

B_X	the closed unit ball in X
U_X	the open unit ball in X
S_X	\dots the unit sphere in X
$B_X(x,r)$	the closed ball of center x and radius r in X
$U_X(x,r)$	\dots the open ball of center x and radius r in X
$S_X(x,r)$	the sphere of center x and radius r in X
int(<i>M</i>)	the topological interior of M
$\operatorname{int}_A(M)$	the topological interior of M relative to A
cl(M)	the topological closure of M
cl _A (M)	the topological closure of M relative to A
bd(<i>M</i>)	the topological boundary of M

B. NOTATION

$\mathrm{bd}_A(M)$	\dots the topological boundary of M relative to A
ext(<i>M</i>)	the set of extreme points F
X*	\dots the topological dual of X
X**	\dots the topological bidual of X
F(f,A) th	e supporting hyperplane relative to $f \in X^*$ in A
F(f)	. the supporting hyperplane relative to f in B_X
$\exp(B_X)$	the set of exposed points of B_X
E(f) is	the edge of the unit ball with respect to $f \in S_{X^*}$
$rot(B_X)$	the set of rotund points of B_X
$pexp(B_X)$	the set of proper exposed points of B_X
\mathscr{C}_X	the set of facets of B_X
$\operatorname{st}(x,B_X)$	\dots the starlike set of center x
$smo(B_X)$	the set of the smooth points of B_X
$\mathscr{P}(\mathscr{X})$	the power set of ${\mathcal X}$
ν	the spherical image map from S_X to S_{X^*}
$frm(B_X)$	the frame of the unit ball
inn(<i>M</i>)	\dots the set of inner points of M
span(M)	\dots the linear span of M
span(M)	\dots the closed linear span of M
co(<i>M</i>)	\dots the convex hull of M
co (<i>M</i>)	the closed convex hull of M
inter(<i>M</i>)	the set of the internal points of M
$\operatorname{adj}(M)$	\dots the set of the adjacent elements of M
sadj(<i>M</i>)	the set of the strongly adjacent elements of M
suppv(<i>T</i>)	the set of supporting vectors of the operator T
$suppv_1(x^*)$ the	set of 1-supporting vectors of the functional x^*

nsupp(M)the set of non-support points of M μ_A the Minkowski functional of AMUpthe Mazur-Ulman propertyPpthe P-property or property PIpthe I-property or inner propertyFpthe F-property or flat property

APPENDIX

Appendix