

Continuous Wavelet Transformation for Spectroscopy

J. Antonio Guzmán Q., Ph.D. University of Minnesota

Continuous Wavelet Transformation

CWT is a powerful tool for analyzing signals that vary over time (e.g., spectrum).

• It provides an overcomplete representation of a signal (t) by letting the translation (b) and scale (a) parameter of the wavelets (f) vary **continuously**.

$$ext{CWT}(a,b) = rac{1}{\sqrt{|a|}} \int_{-\infty}^{\infty} f(t) \psi^*\left(rac{t-b}{a}
ight) dt$$

Continuous Wavelet Transformation

Continuous Wavelet Transformation

Important elements of CWT:

- Wavelet function (mother wavelet)
- Scale factor
- Translation (how the wavelet moves though the signal)

Wavelet function

Wavelet function

Mexican hat wavelet is also known as second derivative gaussian or Ricker wavelet.

Scale factor

Scale factor

Principles associated with the scales:

- It must be non-zero
- It must be applied on regular time-series (regularly spaced intervals)
- It can not be smaller than the spaced intervals

Scalogram

Some papers applied CWT:

Rivard et al. 2002

www.elsevier.com/locate/rse

Remote Sensing

Remote Sensing of Environment 112 (2008) 2850-2862

Continuous wavelets for the improved use of spectral libraries and hyperspectral data

B. Rivard*, J. Feng, A. Gallie, A. Sanchez-Azofeifa

Some papers applied CWT:

- Rivard et al. 2002
- Chen et al. 2011
- Chen et al. 2012
- Chen et al. 2014

Journal of Plant Physiology
Volume 169, Issue 12, 15 August 2012, Pages 1134-1142

Predicting leaf gravimetric water content from foliar reflectance across a range of plant species using continuous wavelet analysis

Remote Sensing of Environment

Volume 115, Issue 2, 15 February 2011, Pages 659-670

Spectroscopic determination of leaf water content using continuous wavelet analysis

ISPRS Journal of Photogrammetry and Remote
Sensina

Volume 87, January 2014, Pages 28-38

Deriving leaf mass per area (LMA) from foliar reflectance across a variety of plant species using continuous wavelet analysis

<u>Tao Cheng</u>^a 凡 , <u>Benoit Rivard</u>^b, <u>Arturo G. Sánchez-Azofeifa</u>^{b c}, <u>Jean-Baptiste Féret</u>^d, <u>Stéphane Jacquemoud</u>^e, <u>Susan L. Ustin</u>^a

- Rivard et al. 2002
- Chen et al. 2011
- Chen et al. 2012
- Chen et al. 2014

- Rivard et al. 2002
- Chen et al. 2011
- Chen et al. 2012
- Chen et al. 2014
- Ullah et al. 2012

- Rivard et al. 2002
- Chen et al. 2011
- Chen et al. 2012
- Chen et al. 2014
- Ullah et al. 2012
- Cheng et al. 2014

- Rivard et al. 2002
- Chen et al. 2011
- Chen et al. 2012
- Chen et al. 2014
- Ullah et al. 2012
- Cheng et al. 2014
- Harrison et al. 2018
- Guzmán et al. 2018

- Rivard et al. 2002
- Chen et al. 2011
- Chen et al. 2012
- Chen et al. 2014
- Ullah et al. 2012
- Cheng et al. 2014
- Harrison et al. 2018
- Guzmán et al. 2018
- Adams Chlu's dissertation 2020

Figure 1.7 Correlation matrix showing mean wavelet correlations across all scales for each trait and spectral measurement type.

Some papers applied CWT:

- Rivard et al. 2002
- Chen et al. 2011
- Chen et al. 2012
- Chen et al. 2014
- Ullah et al. 2012
- Cheng et al. 2014
- Harrison et al. 2018
- Guzmán et al. 2018
- Adams Chlu's dissertation 2020
- Guzmán and Sanchez-Azofeifa 2021

Remote Sensing of Environment

Volume 259, 15 June 2021, 112406

Prediction of leaf traits of lianas and trees via the integration of wavelet spectra in the visible-near infrared and thermal infrared domains

J. Antonio Guzmán Q. 🖾 , G. Arturo Sanchez-Azofeifa 🙎 🖾

Some papers applied CWT:

Guzmán and Sanchez-Azofeifa 2021

Some papers applied CWT:

Guzmán and Sanchez-Azofeifa 2021

Some papers applied CWT:

Guzmán and Sanchez-Azofeifa 2021

Let's play with wavelets

The goal:

- Apply wavelet spectra to evaluate its properties
- Evaluate the integration of wavelet spectra with PLSR to predict leaf traits

https://github.com/ASCEND-BII/wavelets-training

wavelets-training

A repository for the use training on "Continuous Wavelet Transformation for Spectroscopy" at ASCEND summer training 2024

Requirements

Users will need to have R (>= 4.0.0) and RStudio installed in their computers. Users will also have to clone though Github or download this repository in their local computer. Then, install the following libraries:

```
install.packages("data.table")
install.packages("CWT")
install.packages("ccrtm")
install.packages("pls")
install.packages("plsVarSel")
install.packages("parallel")
install.packages("ggplot2")
install.packages("viridis")
```

