EE-677: Foundation of CAD for VLSI

Virendra Singh

Computer Architecture and Dependable Systems Lab

Department of Electrical Engineering Indian Institute of Technology Bombay

http://www.ee.iitb.ac.in/~viren/

E-mail: viren@ee.iitb.ac.in

INDIAN INSTITU

History of Electronics

- Electronics is the most important invention in the 20th cent.
- Electronic Circuits in 100 years

Vacuum tube \rightarrow VLSI

12 yeas ago, it was the 100 year anniversary

Wanted: CUSTOMERS, who breathe, eat, and live in.....

Motivation: Moore's Law Complexity Growth of VLSI circuits

Moore's Law (1959/1.5, Sources: Intel, IBM, TI, Polsson) 1e+14 X 1 MHz 10 MHz 100 MHz 1 GHz P-III 0.18 um 1e+12 Fransistor Count per Die [-] 1e+10 i386 Copper 1e+08 O Aluminium VLIW 4004 Moore's Law (1.5) 1e+06 RISC Superscalar 10000 BJT **CMOS BiCMOS** 100 1970 1980 1990 2000 2010 2020 Source (Copp, Int. AOC EW Conf., 2002)

Design Complexity

VLSI Realization Process

Customer's need

Determine requirements

Write specifications

Design synthesis and Verification

Test development

Fabrication

Manufacturing test

Chips to customer

Design Validation Complexity

CADSL

Conventional SoC Design Flow

Bug Fix

Bug Localization

Verification/Sim ulation

Pre-Silicon RTL Verification

High-Level Description

High-Level Synthesis

Machine-Generated RTL

Logic Synthesis Place & Route

SoC (Social Control Co

Design

EE-677@IITB

75% of the whole development time [Source: Intel 2007]

Respin

Need to Understand RTL **Bug Fix**

Bug Localization

Error Detection

Post-Silicon RTL Validation

Verification challenge

Bottlenecks in Design Cycles: Survey of 545 engineers by EETIMES 2000

Challenges under deep submicron technologies

Chip size decreases

Source: Wang et al. ISPD2003
Chip becomes hotter

Power density increases

Leakage power make it worse

Coping with Complexity

- How to design System-on-Chip?
 - Billions of transistors
 - Tens to hundreds of engineers
- Structured Design
- Design Partitioning

Structured Design

- Hierarchy: Divide and Conquer
 - Recursively system into modules
- Regularity
 - Reuse modules wherever possible
 - Ex: Standard cell library
- Modularity: well-formed interfaces
 - Allows modules to be treated as black boxes
- Locality
 - Physical and temporal

Gajski Y-Chart

13

Definitions

- Design synthesis: Given an I/O function, develop a procedure to manufacture a device using known materials and processes.
- Verification: Predictive analysis to ensure that the synthesized design, when manufactured, will perform the given I/O function.
- Test: A manufacturing step that ensures that the physical device, manufactured from the synthesized design, has no manufacturing defect.

Course Outline

- VLSI Design Flow
- High Level Synthesis
- Logic Synthesis
- Physical Design
- Hardware Software Co-design [if time permits]
- Reversible Circuit Design [if time permits]

Course Schedule

Class Hours: Slot 13

Monday (7:00 pm to 8:30 pm)

Tuesday (7:00 pm to 8:30 pm)

Office Hours

TBD

Course Evaluation

- Mid Term Exam (10%)
 - Open Book/Notes Exam
- Final Exam (25%)
 - Open Book/Notes Exam
- Assignments (15%)
 - Set of assignments will be given periodically
- Course Projects (20%)
 - Projects to implement CAD algorithm
- Continuous Evaluations (25%)
 - Weekly (THursday) tests (90% best will be counted)
- Presentation/Viva (5%)
- [Bonus] Research Project (15%)
- > [Bonus] Course notes (5%)

Grades

Absolute Grade

- > 90: AA
- 81 90: AB
- 71 80: BB
- 61 70: BC
- 51 60: CC
- 45 50: CD
- 40 44: DD
- < 40 : FR

Books (Design Verification)

- Synthesis and Optimization of Digital Circuits
 - Giovanni De Michelli
- Logic Synthesis and Verification
 - Hatchel & Somanzi
- Algorithm for Physical Design Automation
 - Naveed Shervani
- Current Literature (IEEE TC/TCAD/TVLSI)

Acknowledgement

- Prof. Hideo Fujiwara, NAIST, Japan
- Prof. Kewal Saluja, Univ. of Wisconsin-Madison
- Prof. Masahiro Fujita, Tokyo University
- Prof. Jacob Abraham, UT Austin
- Prof. Vishwani Agrawal, Auburn Univ.
- Prof. Adit Singh, Auburn Univ.
- Prof. Samiha Mourad, Santa Clara Univ.
- Prof. Michiko Inoue, NAIST
- Prof. Erik Larsson, Linkoping Univ.
- Dr. Subir Roy, Texas Instruments, India
- Dr. Rubin Parekhji, TI, India

Thank You

