Japan

POPULATION SIZE, MIGRATION, DIVERGENCE, ASSIGNMENT, HISTORY

Bayesian inference using the structured coalescent

Migrate-n version 5.0.7 [May-01-2025]

Program started at Sat May 3 12:25:39 2025

Program finished at Sat May 3 12:30:10 2025 [Runtime:0000:00:04:31]

Options

Datatype: Single nucleotide polymorphism data(Hapmap formatting)

Inheritance multipliers in use for Thetas:

All loci use an inheritance multiplier of 1.0

Random number seed: (with internal timer) 79826771

Start parameters:

Theta values were generated Using a percent value of the prior

M values were generated Using a percent value of the prior

Connection matrix:

m = average (average over a group of Thetas or M,

s = symmetric migration M, S = symmetric 4Nm,

0 = zero, and not estimated,

* = migration free to vary, Thetas are on diagonal

d = row population split off column population, D = split and then migration

Population 1

1 Japan *

Order of parameters:

1 Θ_1 <displayed>

Mutation rate among loci: Mutation rate is constant for all loci

Analysis strategy: Bayesian inference

-Population size estimation: Exponential Distribution

Proposal distributions for parameter

Parameter Proposal Theta Metropolis sampling

M Metropolis sampling
Genealogy Metropolis-Hastings

Prior distribution for parameter

 Parameter
 Prior
 Minimum
 Mean*
 Maximum
 Delta
 Bins
 UpdateFreq

 1
 Theta
 *
 *
 Uniform
 0.000000
 0.050
 0.100
 0.010000
 1500
 0.50000

[* * means priors were set globally]

Posterior distribution:

Parameter values were collected using MCMC, these values were then used to generate the posterior histograms using KERNEL SMOOTHING (window=41) and subsequent SAVITZKY-GOLAY SMOOTHING (window=41) for combination over loci

Markov chain settings:Long chainNumber of chains1Recorded steps [a]10000Increment (record every x step [b]100Number of concurrent chains (replicates) [c]1Visited (sampled) parameter values [a*b*c]1000000Number of discard trees per replicate (burn-in * b)1000000

Multiple Markov chains:

Static heating scheme 4 chains with temperatures

1000000.00 3.00

1.50 1.00

Swapping interval is 1

Print options:

Data file: infile.hapmap

parmfile.hapmap

Haplotyping is turned on:

Output file: outfile_hapmap
Posterior distribution raw histogram file: bayesfile

Raw data from the MCMC run: bayesallfile.txt
Print data: No

Print genealogies [only some for some data type]:

Data summary

Data file: infile.hapmap
Datatype: SNP data (Hapmap data)
Number of loci: 9

Mutationmodel parameters

Mutationmodel:				
Locus Sublocus				

1	1	Jukes-Cantor	[Basefreq: =0.25]
2	1	Jukes-Cantor	[Basefreq: =0.25]
3	1	Jukes-Cantor	[Basefreq: =0.25]
4	1	Jukes-Cantor	[Basefreq: =0.25]
5	1	Jukes-Cantor	[Basefreq: =0.25]
6	1	Jukes-Cantor	[Basefreq: =0.25]
7	1	Jukes-Cantor	[Basefreq: =0.25]
8	1	Jukes-Cantor	[Basefreq: =0.25]
9	1	Jukes-Cantor	[Basefreq: =0.25]

Mutationmodel

Sites per locus

Locus	Sites
1	1
2	1
3	1
4	1
5	1
6	1
7	1
8	1
9	1

Site rate variation and probabilities:

Locus Sublocus Region type Rate of change Probability Patch size

1	1	1	1.000	1.000	1.000
2	1	1	1.000	1.000	1.000
3	1	1	1.000	1.000	1.000
4	1	1	1.000	1.000	1.000
5	1	1	1.000	1.000	1.000
6	1	1	1.000	1.000	1.000
7	1	1	1.000	1.000	1.000
8	1	1	1.000	1.000	1.000

1 Japan	cus Gene copies
1 Japan	cus Gene copies
	1 72
	2 90
	3 88
	4 90
	5 90
	6 88
	7 90
	8 90
	9 90
Total of all populations	1 72
	2 90
	3 88
	4 90
	5 90
	6 88
	7 90
	8 90
	9 90

All	
0.542	
0.458	
0.000	
0.000	
4	
72	
0.497	
All	
1.000	
0.000	
0.000	
0.000	
4	
72	
0.000	
All	
1.000	
0.000	
0.000	
0.000	
4	
72	
0.000	
All	
0.125	
0.000	
	0.542 0.458 0.000 0.000 4 72 0.497 All 1.000 0.000 4 72 0.000 All 1.000 0.000 4 72 0.000 All 1.000 0.000 0.000 0.000 0.000 4 72 0.000 All

0.000

Allele	Pop1	All
Alleles	2	4
Samplesize	72	72
H _{exp}	0.219	0.219
Locus 5		
Allele	Pop1	All
Т	1.000	1.000
С	-	0.000
	-	0.000
	-	0.000
Alleles	1	4
Samplesize	72	72
H _{exp}	0.000	0.000
Locus 6		
Allele	Pop1	All
С	1.000	1.000
T	-	0.000
	-	0.000
	_	0.000
Alleles	1	4
Samplesize	72	72
H _{exp}	0.000	0.000
Locus 7		
Allele	Pop1	All
C	1.000	1.000
	-	0.000
	_	0.000
	_	0.000
Alleles	1	4
Samplesize	72	72
H _{exp}	0.000	0.000
ехр	-	
Locus 8		
Allele	Pop1	All
G	1.000	1.000
Т	-	0.000
	-	0.000

Allele	Pop1	All
	-	0.000
Alleles	1	4
Samplesize	72	72
H _{exp}	0.000	0.000
Locus 9		
Allele	Pop1	All
A	1.000	1.000
G	-	0.000
	-	0.000
	-	0.000
Alleles	1	4
Samplesize	72	72
H _{exp}	0.000	0.000
Average expe	cted hete	erozygosity
Po	p1 All	
H _{exp} 0.0	0.0	079

Bayesian Analysis: Posterior distribution table

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	Θ_1	0.04427	0.06433	0.07523	0.08753	0.09993	0.07397	0.07296
2	Θ_1	0.03273	0.05293	0.06503	0.07827	0.09460	0.06337	0.06295
3	Θ_1	0.04900	0.08867	0.09610	0.09873	0.09993	0.08383	0.08096
4	Θ_1	0.04927	0.07367	0.08370	0.09247	0.09993	0.07810	0.07663
5	Θ_1	0.05213	0.07407	0.08263	0.08853	0.09887	0.07650	0.07491
6	Θ_1	0.05000	0.07193	0.07623	0.08753	0.09993	0.07723	0.07620
8	Θ_1	0.05933	0.09013	0.09530	0.09880	0.09993	0.07943	0.07904
9	Θ_1	0.05080	0.08200	0.09210	0.09627	0.09993	0.08050	0.07860
All	Θ_1	0.06773	0.07713	0.08257	0.08667	0.09700	0.08223	0.08219

Citation suggestions:

Beerli P., 2006. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341-345

Beerli, P., H. Ashki, S. Mashayekhi, and M. Palczewski, 2022. Population divergence time estimation using individual lineage label switching. G3 Genesâ Genomesâ Genetics, 12(4), 02 2022.

Beerli P., 2009. How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use? In Population Genetics for Animal Conservation, G. Bertorelle, M. W. Bruford, H. C. Hauffe, A. Rizzoli, and C. Vernesi, eds., vol. 17 of Conservation Biology, Cambridge University Press, Cambridge UK, pp. 42-79.

Beerli, P., S. Mashayekhi, M. Sadeghi, M. Khodaei, and K. Shaw, 2019. Population genetic inference with migrate Current Protocols in Bioinformatics, 68(1):e87.

Bayesian Analysis: Posterior distribution over all loci

Log-Probability of the data given the model (marginal likelihood)

Use this value for Bayes factor calculations:

BF = Exp[In(Prob(D | thisModel) - In(Prob(D | otherModel) or as LBF = 2 (In(Prob(D | thisModel) - In(Prob(D | otherModel)) shows the support for thisModel]

Locus	TI(1a)	BTI(1b)	HS(3)	
1	-61.38	-39.68	-16.03	
2	-8.20	-8.04	-8.18	
3	-43.69	-36.15	-15.29	
4	-34.27	-31.28	-16.07	
5	-16.70	-16.29	-14.98	
6	-16.67	-16.33	-14.97	
8	-24.45	-23.01	-14.56	
9	-28.86	-26.96	-15.67	
All	-238.99	-202.50	-120.52	

(1a) TI: Thermodynamic integration: log(Prob(D|Model)): Good approximation with many temperatures

(1b) BTI: Bezier-approximated Thermodynamic integration: when using few temperatures USE THIS!

(3) HS: Harmonic mean approximation: Overestimates the marginal likelihood, poor variance [Scaling factor = -4.763097]

Citation suggestions:

Beerli P. and M. Palczewski, 2010. Unified framework to evaluate panmixia and migration direction among multiple sampling locations, Genetics, 185: 313-326.

Palczewski M. and P. Beerli, 2014. Population model comparison using multi-locus datasets.

In M.-H. Chen, L. Kuo, and P. O. Lewis, editors, Bayesian Phylogenetics: Methods, Algorithms, and Applications, pages 187-200. CRC Press, 2014.

Acceptance ratios for all parameters and the genealogies

Parameter	Accepted changes	Ratio	
Θ_1 Genealogies	2516714/3998514 3342303/4001486	0.62941 0.83527	

MCMC-Autocorrelation and Effective MCMC Sample Size

Parameter	Autocorrelation	Effective Sampe Size
Θ_1	0.78504	10388.93
Genealogies	0.78504	10388.93

Average temperatures during the run

Chain	- emperatures
1 2	1.00000 0.66667
3 4	0.33333 0.00000

Potential Problems

This section reports potential problems with your run, but such reporting is often not very accurate. With many parameters in a multilocus analysis, it is common that some parameters for some loci will not be informative.

These parameters then trigger suggestions to increase the prior range that are not sensible. Do not blindly follow
the suggestions given. If some parameters are flagged, inspect the tables carefully and judge whether an action
is required. Suppose you run a Bayesian inference with sequence data for macroscopic species. In that case,
there is rarely the need to increase the prior for Theta beyond 0.1. If you use microsatellites data, it is rather
common that your prior distribution for Theta should have a range from 0.0 to 100 or more. With many
populations (>3), it is also very common that some migration routes are estimated poorly because the data
contains little or no information for that route. Increasing the prior range will not help in such situations, but
reducing the number of parameters may help.
readoing the number of parameters may help.
No warning was recorded during the run
The warming was resoluted during the run