Exercícios #07 Solução

Questão 1

Considere a Questão 6 dos Exercícios #1, cujo modelo de PL no formato LINGO é dado abaixo:

```
min = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11;
[H_1] x1 >= 4;
[H_2]
       x1 + x2 >= 4;
[H_3]
      x1 + x2 + x3 >= 6;
[H 4] x1 + x2 + x3 + x4 >= 6;
[H 5]
      x2 + x3 + x4 + x5 >= 8;
[H_6] x3 + x4 + x5 + x6 >= 8;
[H_7]
      x4 + x5 + x6 + x7 >= 18;
[H_8]
      x5 + x6 + x7 + x8 >= 18;
[H_9] x6 + x7 + x8 + x9 >= 16;
[H 10] x7 + x8 + x9 + x10 >= 16;
[H_11] \times 8 + \times 9 + \times 10 + \times 11 >= 18;
[H_12] \times 9 + \times 10 + \times 11 >= 18;
[H_13] \times 10 + \times 11 >= 20;
[H_14] \times 11 >= 20;
```

Obtenha a solução completa e a Análise de Sensibilidade (AS) pelo LINGO.

Objective value:	48.00000	
Variable	Value	Reduced Cost
X1	4.000000	0.000000
X2	0.00000	1.000000
X3	6.000000	0.000000
X4	0.00000	0.000000
X5	2.000000	0.000000
X6	0.000000	0.000000
X7	16.00000	0.000000
X8	0.00000	0.000000
X 9	0.00000	0.000000
X10	0.00000	0.000000
X11	20.00000	0.000000
Row	Slack or Surplus	Dual Price
Row H_1	Slack or Surplus 0.000000	Dual Price -1.00000
	· · · · · · · · · · · · · · · · · · ·	
H_1	0.000000	-1.000000
H_1 H_2	0.000000 0.000000	-1.000000 0.000000
H_1 H_2 H_3	0.000000 0.000000 4.000000	-1.000000 0.000000 0.000000
H_1 H_2 H_3 H_4	0.000000 0.000000 4.000000 4.000000	-1.000000 0.000000 0.000000 0.000000
H_1 H_2 H_3 H_4 H_5	0.000000 0.000000 4.000000 4.000000	-1.000000 0.000000 0.000000 0.000000 0.000000
H_1 H_2 H_3 H_4 H_5 H_6	0.000000 0.000000 4.000000 4.000000 0.000000	-1.000000 0.000000 0.000000 0.000000 0.000000
H_1 H_2 H_3 H_4 H_5 H_6 H_7	0.000000 0.000000 4.000000 4.000000 0.000000 0.000000	-1.000000 0.000000 0.000000 0.000000 -1.000000 0.000000
H_1 H_2 H_3 H_4 H_5 H_6 H_7 H_8	0.000000 0.000000 4.000000 4.000000 0.000000 0.000000 0.000000	-1.000000 0.000000 0.000000 0.000000 -1.000000 0.000000
H_1 H_2 H_3 H_4 H_5 H_6 H_7 H_8 H_9	0.000000 0.000000 4.000000 4.000000 0.000000 0.000000 0.000000 0.000000	-1.000000 0.000000 0.000000 0.000000 0.000000
H_1 H_2 H_3 H_4 H_5 H_6 H_7 H_8 H_9 H_10	0.000000 0.000000 4.000000 4.000000 0.000000 0.000000 0.000000 0.000000	-1.000000 0.000000 0.000000 0.000000 -1.000000 0.000000 0.000000 0.000000
H_1 H_2 H_3 H_4 H_5 H_6 H_7 H_8 H_9 H_10 H_11	0.000000 0.000000 4.000000 0.000000 0.000000 0.000000 0.000000	-1.000000 0.000000 0.000000 0.000000 -1.000000 0.000000 0.000000 -1.000000

Ranges in which the basis is unchanged:

Objective Coefficient Ranges:

Current	Allowable	Allowable	
Variable	Coefficient	Increase	Decrease
X1	1.000000	INFINITY	1.000000
X2	1.000000	INFINITY	1.000000
X3	1.000000	0.000000	1.000000
X4	1.000000	0.000000	0.000000
X5	1.000000	0.000000	0.000000
X6	1.000000	INFINITY	0.000000
X7	1.000000	0.000000	1.000000
X8	1.000000	INFINITY	0.000000
X9	1.000000	INFINITY	0.000000
X10	1.000000	INFINITY	0.000000
X11	1.000000	INFINITY	1.000000

Righthand Side Ranges:

Current	Allowable	Allowable	
Row	RHS	Increase	Decrease
H_1	4.000000	INFINITY	0.000000
H_2	4.000000	0.000000	INFINITY
H_3	6.000000	4.000000	INFINITY
H_4	6.000000	4.000000	INFINITY
H_5	8.000000	0.000000	INFINITY
H_6	8.000000	INFINITY	0.000000
H_7	18.00000	4.000000	0.000000
H_8	18.00000	0.000000	2.000000
H_9	16.00000	0.000000	INFINITY
H_10	16.00000	2.000000	0.000000
H_11	18.00000	2.000000	INFINITY
H_12	18.00000	2.000000	INFINITY
H_13	20.00000	0.000000	INFINITY
H_14	20.00000	INFINITY	0.000000

Para cada afirmação a seguir, marque "FALSO" ou "VERDADEIRO", e justifique cada uma das respostas usando apenas as informações obtidas pelo LINGO.

a) O hospital consegue inserir um voluntário para iniciar às 13h sem que o total de voluntários sofra aumento.

[] FALSO [X] VERDADEIRO

Justificativa: Como o custo reduzido de x6 é zero, isso significa que x6 pode entrar na Base sem que a FO sofra alteração. Além disso, a AS permite esse aumento no x6.

b) Se o hospital for forçado a chamar algum voluntário para iniciar às 9h, o número total de voluntários irá aumentar.

[] FALSO [X] VERDADEIRO

Justificativa: Como o custo reduzido de $\times 2$ é 1, isso significa que se $\times 2$ entrar na Base, a FO sofrerá aumento de uma unidade para cada voluntário que entrar.

c) A solução obtida pelo LINGO parece ser a única solução ótima possível.

[X] FALSO [] VERDADEIRO

Justificativa: Podemos observar a existência de VNBs contendo custo reduzido ou preço dual igual a zero. Com isso não podemos afirmar que essa solução ótima é única.

d) Se a quantidade mínima de voluntários para o horário de 13-14h aumentar para 12, o hospital terá que chamar mais 4 voluntários, empregando um total de 52.

[] FALSO [X] VERDADEIRO

Justificativa: O preço dual do H-6 é -1, e a AS indica que o limite dessa restrição pode aumentar indefinidamente sem alterar a Base. Com isso, o aumento de 4 unidades aumentará a FO também em 4.

e) Se a quantidade mínima de voluntários para o horário de 8-9h diminuir para 2, o hospital poderá dispensar 2 voluntários, empregando um total de 46.

[X] FALSO [] VERDADEIRO

Justificativa: Apesar do preço dual do H-1 ser -1, a AS indica que o limite dessa restrição não pode ser reduzido sem que haja alteração na Base. Com isso, não podemos fazer essa afirmação.

Questão 2

A compradora, Mary Posa, da Aerovia Voanoite, deve decidir sobre as quantidades de combustível para jato para comprar de três possíveis vendedores. A companhia reabastece seus aviões regularmente em quatro aeroportos servidos por ela.

As companhias de petróleo disseram que elas podem fornecer até as seguintes quantidades de combustível durante o próximo mês: 275.000 galões para a Companhia 1; 550.000 galões para a Companhia 2; 660.000 para a Companhia 3. A quantidade necessária de combustível para jato é de 110.000 galões para o Aeroporto 1; 220.000 galões para o Aeroporto 2; 330.000 galões para o Aeroporto 3; e 440.000 galões para o Aeroporto 4.

O custo por galão para o transporte de combustível de cada companhia para cada aeroporto específico é mostrado no quadro abaixo.

	Aeroporto 1	Aeroporto 2	Aeroporto 3	Aeroporto 4
Companhia 1	10	10	9	11
Companhia 2	7	11	12	13
Companhia 3	8	14	4	9

Estude o seguinte modelo de Programação Linear para este problema:

Variáveis de decisão:

x_{ii} = número de galões enviados da companhia i para o aeroporto j.

$$\begin{aligned} \text{Minimizar f} &= 10x_{11} + 10x_{12} + 9x_{13} + 11x_{14} + \\ &7x_{21} + 11x_{22} + 12x_{23} + 13x_{24} + \\ &8x_{31} + 14x_{32} + 4x_{33} + 9x_{34} \end{aligned} \\ \text{s.a.} \\ \begin{aligned} &\text{Cia_1)} \ x_{11} + x_{12} + x_{13} + x_{14} <= 275000 \\ &\text{Cia_2)} \ x_{21} + x_{22} + x_{23} + x_{24} <= 550000 \\ &\text{Cia_3)} \ x_{31} + x_{32} + x_{33} + x_{34} <= 660000 \end{aligned}$$

Aer_2)
$$x_{12} + x_{22} + x_{32} = 220000$$

Aer_3) $x_{13} + x_{23} + x_{33} = 330000$
Aer_4) $x_{14} + x_{24} + x_{34} = 440000$

 $Aer_1) x_{11} + x_{21} + x_{31} = 110000$

Obtenha a solução completa e a Análise de Sensibilidade pelo LINGO.

Objective value:	8525000.	
Variable	Value	Reduced Cost
X11	0.00000	4.000000
X12	165000.0	0.000000
X13	0.00000	3.000000
X14	110000.0	0.000000
X21	110000.0	0.000000
X22	55000.00	0.000000
X23	0.00000	5.000000
X24	0.00000	1.000000
X31	0.00000	4.000000
X32	0.00000	6.000000
X33	330000.0	0.000000
X34	330000.0	0.000000
Row	Slack or Surplus	Dual Price
CIA_1	0.000000	1.000000

CIA_2	385000.0	0.000000
CIA_3	0.000000	3.000000
AER_1	0.000000	-7.000000
AER_2	0.000000	-11.00000
AER_3	0.000000	-7.000000
AER 4	0.000000	-12.00000

Ranges in which the basis is unchanged:

Objective Coefficient Ranges:

	Current	Allowable	Allowable
Variable	Coefficient	Increase	Decrease
X11	10.00000	INFINITY	4.000000
X12	10.00000	1.000000	1.000000
X13	9.000000	INFINITY	3.000000
X14	11.00000	1.000000	3.000000
X21	7.000000	4.000000	INFINITY
X22	11.00000	1.000000	1.000000
X23	12.00000	INFINITY	5.000000
X24	13.00000	INFINITY	1.000000
X31	8.000000	INFINITY	4.000000
X32	14.00000	INFINITY	6.000000
X33	4.000000	3.000000	INFINITY
X34	9.000000	3.000000	3.000000
	Right	chand Side Ranges:	
	Current	Allowable	Allowable
Row	RHS	Increase	Decrease
CIA 1	275000.0	55000.00	165000.0
CIA 2	550000.0	INFINITY	385000.0
CIA 3	660000.0	55000.00	165000.0
AER 1	110000.0	385000.0	110000.0
AER 2	220000.0	385000.0	55000.00

Para cada afirmação a seguir, marque "FALSO" ou "VERDADEIRO", e justifique cada uma das respostas usando apenas as informações obtidas pelo LINGO.

165000.0

165000.0

55000.00

55000.00

a) Só será interessante enviar combustível da companhia 1 para o aeroporto 3 se o custo por galão para esse transporte for de no máximo \$6,00.

[] FALSO [X] VERDADEIRO

330000.0

440000.0

AER 3

AER 4

Justificativa: Como o custo reduzido de x13 é igual a 3, isso significa que x13 só entrará na Base se o valor de c13 melhorar em pelo menos 3. Na prática, isso significa que o custo de transporte da companhia 1 para o aeroporto 3 deve ser de no máximo 9 - 3 = 6.

b) Se houver um aumento de \$2,00 no custo de transporte por galão da companhia 2 para o aeroporto 1 (por causa de um desvio, por exemplo), o custo total de transporte aumentará em \$220.000,00.

[] FALSO [X] VERDADEIRO

Justificativa: De acordo com a análise de sensibilidade, o valor de c21 pode ser reduzido em até 4 sem que haja mudança na Base. Portanto, uma redução de 2 apenas fará com que o custo total aumente de $2 \times 110000 = 220000$.

c) Se houver um aumento de \$2,00 no custo de transporte por galão da companhia 2 para o aeroporto 2 (por causa de um desvio, por exemplo), o custo total de transporte aumentará em \$110.000,00. [X] FALSO [] VERDADEIRO Justificativa: De acordo com a análise de sensibilidade, se reduzirmos o valor de c22 em 2, haverá mudança na Base. d) Se a Mary Posa puder construir um tanque com capacidade de 50 mil galões na companhia 1, por um custo de \$20.000,00, ela ainda economizará \$30.000,00 naquele mês. [X] VERDADEIRO [] FALSO Justificativa: De acordo com a análise de sensibilidade, o valor de b1 pode ser aumentado em até 55000 sem que haja mudança na Base. Portanto, um aumento de 50000 apenas fará com que o custo total diminua de 50000×1 (preço dual de b_1) = 50000. Se o tanque custar 20 mil, então ela ainda terá uma economia de 30 mil apenas naquele mês. e) Se houver um aumento de 200 mil galões na demanda do aeroporto 3, o custo total de transporte aumentará em \$1.400.000,00. [X] FALSO [] VERDADEIRO

Justificativa: De acordo com a análise de sensibilidade, se aumentarmos o valor de b₁ em mais do que 165 mil, haverá mudança na Base.

f) Não existe outra solução ótima para o problema além do calculado pelo LINGO.

[] FALSO [X] VERDADEIRO

Justificativa: Como temos 7 restrições, a Base ótima deve conter 7 variáveis. Neste caso podemos facilmente identificar as variáveis da Base, pois temos exatamente 7 variáveis com valor maior que zero na solução: x12, x14, x21, x22, x33, x34, s2 (variável de folga da restrição Cia_2). Vemos também que todas as outras variáveis, que obviamente são VNBs, possuem custo reduzido ou preço dual diferente de zero. Portanto, não há outra solução ótima.