MPI 异步通信小作业 实验报告

方科晨 2021013400

任务一

InfiniBand:

编号	消息长度	延迟 (us)	带宽(MB/s)
1	1	1.17	4.47
2	2	1.12	9.02
3	4	1.09	18.07
4	8	1.08	36.91
5	16	1.08	74.12
6	32	1.14	145.08
7	64	1.26	266.05
8	128	1.33	510.82
9	256	1.90	1054.00
10	512	1.97	1961.77
11	1024	2.24	3200.68
12	2048	2.71	5101.64
13	4096	3.67	6999.82
14	8192	5.26	6281.77
15	16384	7.20	10400.56
16	32768	9.86	10980.91
17	65536	15.39	11609.82
18	131072	26.65	11839.04

19	262144	32.08	11951.09
20	524288	57.47	12009.64
21	1048576	99.99	12042.31
22	2097152	187.16	12051.28
23	4194304	361.40	12059.36

以太网:

~^			
编号	消息长度	延迟 (us)	带宽(MB/s)
1	1	44.96	0.30
2	2	45.18	0.60
3	4	45.04	1.20
4	8	45.25	2.35
5	16	45.33	5.08
6	32	45.57	9.22
7	64	46.56	16.71
8	128	48.14	33.43
9	256	52.67	55.64
10	512	58.52	80.81
11	1024	70.49	95.72
12	2048	87.91	105.16
13	4096	109.89	110.78
14	8192	186.04	114.19
15	16384	214.58	116.05
16	32768	359.24	116.76
17	65536	635.69	117.12
18	131072	1197.96	117.39

19	262144	2415.12	117.52
20	524288	4644.44	117.57
21	1048576	9090.01	117.60

• 请描述当消息长度增加时,带宽和延迟分别呈现出什么样的趋势?

随着消息长度的增加,带宽和延迟都会逐渐上升。随着消息长度的成倍增加,延迟开始时上升地较慢,之后上升也逐渐成倍上升。而带宽则是先和消息长度近似同步成倍增加,之后接近不变

• 该趋势在两种网络下有何不同?

相较而言,延迟上InfiniBand较低,但是增长速度略快于以太网;带宽上InfiniBand更高,增长速度也越快

• 为什么会有这样的趋势?

因为消息长度是在成倍增加,刚开始不超过某个阈值时,一次传输时长接近不便,因此带宽随着消息长度成倍增加。之后消息长度超过阈值,不能单次便传输完成,使得传输延迟也随着消息长度成倍增加,两者相抵消使得带宽近乎不变

• 对比InfiniBand和以太网络下的带宽和延迟、它们之间的差距是多少?

以消息长度1048576为例,InfiniBand的带宽约为以太网络的102倍,延迟只约有以太网络的1/25

任务二

编号	消息长度	计算量	mpi_sync 总耗时	mpi_async 总耗时
1	100000000	10	970.839 ms	844.019 ms
2	100000000	20	1037.9 ms	666.629 ms
3	100000000	40	1376.42 ms	1038.93 ms
4	100000000	80	1681.11 ms	841.468 ms
5	100000000	160	2481.1 ms	1600.72 ms

• 通信时间和计算时间满足什么关系时, 非阻塞通信程序能完美掩盖通信时间?

当计算时间大于通信时间时, 非阻塞通信程序可以完美覆盖通信时间

• 简述两份代码的不同之处。

mpi_sync.cpp 使用的是阻塞通信,0号进程向1号进程发送信息完毕之后才开始计算,而mpi_async.cpp 使用的是非阻塞通信,可以一边传输信息一边进行计算。