AMSC 460 - HW 3

Table of Contents

Problem 1	1
Problem 2	1
Problem 3	2

Problem 1

(a) Express $x = (12.8)_{10}$ as a double-precision IEEE float fl(x), using the round-tonearest rule.

```
 (12.8)\_10 = (12)\_10 + (0.8)\_10 \text{ Integer part: } 12/2 = 6 \text{ remainder} = 0.6/2 = 3 \text{ remainder} = 0.3/2 = 1 \text{ remainder} = 1.1/2 = 0 \text{ remainder} = 1.2/2 = 0 \text{ remainder} = 1.2/2 = 0 \text{ remainder} = 1.2/2 = 0.2 + 1.6/2 = 0.4/2 = 0.4/2 = 0.4/2 = 0.4/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 = 0.8/2 =
```

Sine b_53 = 1 and the rest of bits are Not all zero, 1. By truncating, __ _ _ [in base 10] we lose $R = (0.1001) \times 2^{(-52)} \times 2^{3} = (0.1001) \times 2^{(-49)} = 0.6 \times 2^{(-49)}$

(b) Compute the relative error d = x # fl(x)/|x| exactly as a base-10 number, and show that d satisfies the upper bound $d \#_mach/2$.

```
d = abs(0.4 * 2^(-49))/abs(12.8)
eps/2 - d

d =
    5.5511e-17

ans =
    5.5511e-17
```

ans = 5.551115123125783e-17 > 0 so the d satisfies the upper bound d ##_

Problem 2

(a) Explain why between 2^53 and 2^54, the only double precision floating point numbers that exist are the even numbers.

```
eps(2^53)

ans =
```

2

We got $eps(2^53) = 2$ and we know 2^53 is an even number. So the smalles # for 2^53 is 2, which means we can add 2 to 2^53 to get floating point, the distance between each floating point is 2. 2^53 is a and even number plus 2 is also enen, thus the only double precision floa numbers between 2^53 and 2^54 are the even numbers.

(b) Suppose we type the following into the MATLAB command prompt $x = 2^{53}+1$ What will MATLAB store in x? Explain.

```
syms x
x = 2^53+1
x =
   9.0072e+15
```

x = 9.0072e+15 since in matlab we can only rounded up to decimal point 15 digits. Therefore, $9.0072*10^{15}$

Problem 3

Express $(12.8)_{10}$ as a computer word.

2.810 in Decimal number system and want to translate it into Binary. Taking whole part of a number is obtained by dividing on the basis new We get 12 using 2 as a denominator we get 1100_2 as 12_10 in binary. The fractional part will be rounded by multiplying the basis

```
8/2=4....0

6/2=3....1

2/2=1....1

4/2=2....0

8/2=4....0

6/2=3....1

2/2=1....1

4/2=2....0

8/2=4....0

6/2=3....1

2/2=1....1

4/2=2....0

0.8_10 = 0.11001100110_2

Adding two parts will be 1100.11001100110_2

Done
```

Published with MATLAB® R2020b