

SW개발/HW제작 설계서

프로젝트 명 : [20_HF001] loT를 이용한 차량정보 전송 및 활용

2020. 07. 30 (CAN) – 정홍석, 강혜인, 우창민 Mentor 최무석

| 시장/기술 동향 분석

<표1> EU와 한국 서비스 시장의 비교

단위: 점/100,0점

EU			PI	#17	CI	CMPI	
			순위	한국	점수	순위	
서비스 시장 평균(31개 시장)		75,6		서비스 시장 평균 (29개 시장)	73.7		
Personal care services	이미용서비스	82,9	1	이미용서비스-미용실	75.2	2	
Culture and entertainment	문화/오락	82,2	2	영화관람서비스	75.2	2	
Commercial sport services	스포츠시설 이용	81,2	3	스포츠시설이용	74.1	13	
Holiday accommodation	숙박서비스	81,0	4	숙박시설-펜션,콘도	74.4	10	
Vehicle maintenance and repair	자동차수리서비스	75.1	15	자동차수리서비스	71,1	29	

- 한국자동차 기술신문의 자동차 서비스시장과 변화대응에 따르면 한국의 자동차 수리서비스의 CMPI점수는 71.1이고 29위로 CMPI의 평균값인 73.7에도 미치지 못함.
- 이는 한국 뿐만이 아니라 유럽도 같은 현상을 보이며, EU 자동차수리서비스가 서비스분야 15위로 중위권 평가를 받고 있음.
- 따라서, 자동차 수리 서비스의 문제점을 느끼고 있는 것은 한국뿐 만이 아니라는 걸 알 수 있음.

| 시장/기술 동향 분석

<표2> 소비자 피해 발생 원인과 소비자지향성(요약)

단위: 건

원인	소비자지향성	총합계
품질 (1,043)	만족도	1,043
O - I all of	신뢰성	188
부당행위 (274)	가격	3
(2/4)	소비자문제	83
의무 (62)	사업자선택가능성	62
14.00	신뢰성	8
정보 (42)	가격	32
(42)	소비자문제	2
안전	소비자문제	1
577	총 합계	1,422

- 2015년 한국소비원에 접수된 자동차 서비스 불만신고들을 정리한 표를 보면 불만의 86.6%는 사업자가 자신의 일을 제대로 하지 않았기 때문에 생긴 것으로 나타남.
- 이는 자동차 서비스 센터에 대한 소비자들의 신뢰성이 떨어져 있음을 나타냄.
- 따라서, 자동차 수리 서비스의 문제점을 해결하기 위해 소비자들은 자신들의 차의 정보에 관심이 증대될 것 이다.

시장/기술 동향 분석

- 해외에선 에프터 마켓이 활성화 되어 소비자가 직접 부품을 구매하여 자동차를 관리하는 추세.
- 국내 자동차 에프터 마켓 시장의 규모는 이미 87조원대를 기록했으며, 현재 100조원대를 뛰어넘음.
- 미국의 에프터 마켓 시장은 2017년에 약 414조원대를 기록했으며, 2020년에는 약 473조의 크기의 시장을 가질 것이라고 예상됨

따라서, 저희 작품은 **타이어의 교체주기와 자동차의 부품시기를 예측하고 알려주는 기능**을 가지고 있어 **자동차 에프터 마켓을 이용하여 직접 수리하는 소비자들**에게 필수적인 장비가 될 것이라고 생각됨.

| 요구사항 정의서_1

요구사항 ID	요구사항명	기능 ID	기능명	세부사항	예외사항
A01	차량 데이터	A01_B01	RPM	RPM 값 표현	Χ
	값	A01_B02	Speed	Speed 값 표현	Χ
		A01_B03	ODO	ODO 값 표현	X
		A01_B04	Engine Temperature	엔진 냉각수 온도 값 표현	X
A02	차량 데이터	A02_B01	RPM	RPM 그래프 표현	Χ
	그래프	A02_B02	Speed	Speed 그래프 표현	Χ
		A02_B03	ODO	ODO 그래프 표현	X
		A02_B04	Engine Temperature	엔진 냉각수 온도 그래프 표현	X
A03	차량 부품 교 체 정보	A03_B01 ~ A03_B11	엔진오일, 오토 미션오일, 파워 오일 등	교체 장비명과 교체 위험도를 표현	X
A04	고장 정보	A04_B01 ~ A04_B04	파워트레인(P) 통신(U) 섀시 시스템(C) 바디 시스템(B)	고장코드, 고장 위험도, 고장 내용 상세, 해결방법 표현	X

| 요구사항 정의서_2

요구사항 ID	요구사항명	기능 ID	기능명	세부사항	예외사항
A05	CAN/ UDS 통 신	A05_B01	SID	차량 데이터를 받기 위한 service ID	Χ
		A05_B02	PID	차량 데이터를 받기 위한 parameter ID	X
A06	인터넷 통신	A06_B01	HTTP	WIFI 서버와 데이터 교환	Χ
		A06_B02	PHP	WIFI 서버와 데이터 교환	X
		A06_B03	MQTT	WIFI 서버와 데이터 교환	X

|서비스 구성도 - 서비스 시나리오

서비스 구성도 - 서비스 시나리오

Back-end

- CAN 통신: 차량에서 데이터 수신
- TCP/IP 통신: 수신한 데이터 DB에 송신 및 저장 후 가공할 데이터는 파이썬을 통해 가공하고 일반 데이터는 그대로 WEBSERVER에 송신

Front-end

- 초기 데이터 요청: 부품 교체 시기
- 데이터 전달
- 데이터를 그래프화해서 전달

서비스 구성도 - 서비스 시나리오

- 1. 차량 데이터 요청
- 2. 차량 데이터 송신(Simulator-> Translator)
- 3. 차량데이터 송신(Translator->DB)
- 4. 데이터 가공/제공(파이썬을 통해 데이터 가공/웹 서버로 가공한 데이터 제공)

| 메뉴 구성도

| 엔티티관계도 - ERD

한이음 ▶ 프로그램 설계서

실무 산출물 형식

프로그램 ID	ESP32_1	프로그램 명	OBD2_ECU_Simulator.ino	작성일	2020.07.30	Page	1/8
개요	차량과 OBD 및 UDS 통신을	수행하여 실시간	으로 차량 운행 데이터를 수집하고	DB에 전송하	는 프로그램	작성자	정홍석

기능 흐름도

<차량 시뮬레이터>

실무 산출물 형식

프로그램 ID	ESP32_2	프로그램 명	hanium_from_esp32_DB.ino	작성일	2020.07.30	Page	2/8
개요	차량과 OBD 및 UDS 통신을	· 수행하여 실시간	으로 차량 운행 데이터를 수집하고 !	DB에 전송하-	는 프로그램	작성자	정홍석

기능 흐름도

<차량 운행 데이터 수집 및 저장 연 계도> 프로그램 실행 Ν CAN 초기화 데이터 수신 Υ 데이터 파싱 WIFI 연결 DB로 데이터 전송 IGN ON 확인 차량 데이터 DB 데이터 요청

						실무 산술	물 영식
프로그램 ID	Rasp_server_1	프로그램 명	Main.php	작성일	2020.07.30	Page	3/8
개요	수집된 데이터를 DB에서 가져와 웹상에 표시해주는 프로그램				작성자	정홍석	

기능 흐름도

<Main.php 기능 흐름도>

신므	산출물	성시
		\circ

프로그램 ID	Rasp_server_2	프로그램 명	statistics.php	작성일	2020.07.30	Page	4/8
개요	일평균 데이터를 DB에서 기	져와 웹상에 그래	프로 표시해주는 프로그램			작성자	정홍석

기능 흐름도

<statistics.php 기능 흐름도>

신므.	산출물	성시
		\circ

프로그램 ID	Rasp_server_3	프로그램 명	exchange.php	작성일	2020.07.30	Page	5/8
개요	차량의 총 운행 거리에 따른	- 소모품 교체 알림	님을 시각적으로 보여주기 위한 프로.	그램		작성자	정홍석

기능 흐름도

<exchange.php 기능 흐름도>

						실무 산술	굴 영식
프로그램 ID	Rasp_server_4	프로그램 명	error.php	작성일	2020.07.30	Page	6/8
개요	UDS 프로토콜을 통해 DB에 저장된 고장코드 정보를 웹에 표시하는 프로그램					작성자	정홍석

기능 흐름도

<error.php 기능 흐름도>

시	무	사	추드	⊒ ਰ	ᆟ	Ų.
			— ;	_	o -	

프로그램 ID	Rasp_server_5	프로그램 명	dbtest.php	작성일	2020.07.30	Page	7/8
개요	Esp32에서 전송되는 차량 원	Esp32에서 전송되는 차량 운행 데이터를 DB에 저장					정홍석

기능 흐름도

<dbtest.php 기능 흐름도>

<u>알고리</u>즘 명세서_Simulator

- 1. 값들을 초기화
- 2. CAN 통신연결
- 3. 엔진이 켜져 있는지 체크
- 4. 가변저항을 통해 차량 obd 값 세팅&저장
- 5. 스위치를 통해 DTC 값 세팅&저장
- 6. Translator 측으로부터 요청이 왔는지 체 크하고 안 왔으면 1번으로 돌아가고 왔으면 다음
- 7. SID= 1(Show Current Data)
 SID= 3(Read DTC)
- 8. SID=1이면 OBD2 값들을 전송
- 9. SID=3이면 DTC 값들을 전송

| 알고리즘 명세서_Translator

- 1. 값들을 초기화
- 2. CAN 통신이 가능한지 체크
- 3. 시스템 정상인지?
- 4. WIFI 연결
- 5. 시스템 정상인지?
- 6. 엔진이 켜져 있는지?
- 7. DATA 요청-1)원하는 데이터 ID 프레임화
 - 2)프레임 전송
 - 3)데이터 수신 대기
- 8. 데이터 수신
- 9. 데이터 파싱
- 10. DB로 전송

알고리즘 명세서_WEB

- 1. 첫 페이지인 main에 접속
- 2. 차량 정보 등록을 했었는지 체크
- 2-no. 차량 식별 ID 입력->현재 총 주행거리 입력
- 3. 차량 식별 ID 입력
- 4. 차량 식별 ID를 통해 사용자의 정보를 main에 실시간 출력
- 4-1. 통계 페이지 접속
- 5-1. 데이터 차트 출력
- 4-2. 소모품 교체 페이지 접속
- 5-2. 소모품 교체 위험도 표시
- 4-3. 고장 코드 페이지 접속
- 5-3. 고장 코드 정보 표시

| 하드웨어 설계도

| 프로그램 - 목록

기능 분류	기능번호	기능 명
Cove	Sav-01	Php에서 차량 운행 데이터 DB에 전송
Sav	Sav-02	Python을 이용하여 가공된 데이터 DB에 전송
Care	Cmc-01	ESP32에서 OBD2, UDS를 통한 데이터 송수신
Cmc	Cmc-02	ESP32에서 WIFI 연결 및 데이터 전송
Cala	Calc-01	각 데이터 일 평균 계산
Calc	Calc-02	급가속, 급감속 계산
	Web-01	데이터 웹에 표시
NA/-I-	Web-02	데이터를 그래프로 웹에 표시
Web	Web-03	차량 부품 교체 정보 표시
	Web-04	차량 고장 정보 표시

Env_data

테이블 설명: Car enviroment data using Can Protocol...

컬럼명	종류	Null	기본값	링크 대상	설명	MIME
id <i>(기본)</i>	int(32)	아니 오				
DT	timestamp	아니 오	current_timestamp()			
IGN	int(2)	예	NULL			
RPM	int(38)	예	NULL			
D	int(38)	예	NULL			
V	int(38)	예	NULL			
Eng_temp	int(38)	예	NULL			
Fuel_level	int(38)	예	NULL			

인덱스

키 이름	류 종	고유값	압축됨	컬럼명	관계성	데이터정렬방식	Null	설명
PRIMARY	BTREE	예	아니오	id	0	Α	아니오	

avg_data

테이블 설명: save calculated data...

컬럼명	종류	Null	기본값	링크 대상	설명	MIME
id <i>(기본)</i>	int(32)	아 오				
Env_data_id	int(32)	여	NULL			
DT	date	아니 오	current_timestamp()			
avg_rpm	int(38)	여	NULL			
avg_speed	int(38)	예	NULL			
avg_Distance	int(38)	여	NULL			
avg_Eng_temp	int(38)	예	NULL			
avg_Fuel	int(38)	예	NULL			

인덱스

키 이름	류 종	고유값	압축됨	컬럼명	관계성	데이터정렬방식	Null	설명
PRIMARY	BTREE	ਲ	아	id	0	Α	아니오	

error_code

테이블 설명: error_code and resolve

컬럼명	종류	Null	기본값	링크 대상	설명	MIME
id <i>(기본)</i>	int(32)	아니				
(*/L)	1111(32)	오				
Env_data_id	int(32)	两	NULL			
DT	timestamp	两	current_timestamp()			
code	varchar(32)	ਲ	NULL			
Danger	int(3)	ਲ	NULL			
Detail	varchar(32)	两	NULL			
res	varchar(32)	两	NULL			

인덱스

키 이름	종류	고유값	압축됨	컬럼명	관계성	데이터정렬방식	Null	설명
PRIMARY	BTREE	평	아니오	id	4	А	아니오	

핵심소스코드(1)

```
#include <esp32_can.h>
#include <iso-tp-esp32.h>
#include <uds-esp32.h>
ESP32 CAN CANO;
IsoTp isotp(&CAN0);
UDS uds (&isotp);
//가변저항
const int CoolantTemp_pin = 34;
const int Odometer_pin = 35;
const int EngineRpm_pin = 32;
const int VehicleSpeed_pin = 33;
const int EngineFuelRate_pin = 25;
//스위치
const int Error_Codel_pin = 5;
const int Error_Code2_pin = 22;
const int Error Code3 pin = 18;
const int IGN_ON_pin = 21;
const int Auto_Simulator_pin = 19;
struct Session_t session;
//8비트로 잘라서 배열에 넣어주는 함수
void hex_converter_8(int num, uint8_t bitarray[], int digit); //들어몬 값 , 값을 분해해서 넣을 배열, 배열이 몇 digit으로 구성되어 있는지
void RandomNumGenerator(int Max, uint8_t bitarray[], int digit );
//uint32_t map_32(uint32_t x, uint32_t in_min, uint32_t in_max, uint32_t out_min, uint32_t out_max);
uint8_t pidSupport0x01To0x20[] = {0x08, 0x18, 0x00, 0x00};
uint8_t pidSupport0x81To0xA0[] = {0x00, 0x00, 0x00, 0x08};
uint8_t pidSupport0xAlTo0xC0[] = {0x04, 0x00, 0x00, 0x00};
uint8_t pid0x05CoolantTemp[] = {0x78}; // 0x78 = 120 => 120 - 40 = 80 C
uint8_t pid0x0CEngineRpm[] = {0x1F, 0x40}; // 0x1F 40 = 8000 => 8000/ 4 = 2000 rpm
uint8_t pid0x0DVehicleSpeed[] = {0x64}; // 0x64 = 100 Km/h
uint8_t pid0x9DEngineFuelRate[] = {0x3C}; //0x3C=60L
uint8_t pid0xA6Odometer[] = {0x00,0x01, 0x86, 0xA0}; //0x00 01 86 A0=100000km
                             MAX
11
                             215
                                        A-40
    temperature
                   -40
//
      RPM
                   0
                           16383.75
                                        (256*A+B)/4
                                                                 -> 4digit
                           255
      Speed
                   0
                                         A
11
      Fuel
                          5000000
                                    {A(2^24)+B(2^16)+C(2^8)+D}/10 ->8digit
      Odometer
#define NUM PIDS 8
struct {
  uint8_t pid;
  uint8_t* Data;
} responseData[NUM_PIDS] = {{0x00, pidSupport0x01To0x20},
              {0x05, pid0x05CoolantTemp},
              {0x0C, pid0x0CEngineRpm},
              {0x0D, pid0x0DVehicleSpeed},
              {0x80, pidSupport0x81To0xA0},
              {0x9D, pid0x9DEngineFuelRate},
              {0xA0, pidSupport0xAlTo0xC0},
              {0xA6, pid0xA6Odometer}
              };
```

핵심소스코드(2)

void loop() uint8_t rxData[LEN_DATA]; uint8_t txData[LEN_DATA]; struct Session_t diag; uint16_t retval = 0; uint8_t pid; Serial.println(F("OBD2 ECU server: ")); $diag.tx_id = 0x7E8;$ diag.rx id = 0x7E0;diag.Data = rxData; //IGN이 on됬으므로 자동차 정보 값들 배열에 저장 int reading_Odometer = analogRead(Odometer_pin); uint32_t Odometer = map(reading_Odometer, 0, 4095, 0, 50000000); Serial.println("Odometer"); hex converter 8 (Odometer, pid0xA6Odometer , 8); Serial.println(); // TODO : Need to consider fomular, min, max of PDI tabale. //temperature=A-40 int reading_CoolantTemp = analogRead(CoolantTemp_pin); int CoolantTemp = map(reading_CoolantTemp, 0, 4095, 0, 255); // Serial.println("Engine Temperature"); // hex_converter_8(CoolantTemp,pid0x05CoolantTemp , 2); // Serial.println(); //RPM = A - 40int reading_EngineRpm = analogRead(EngineRpm_pin); uint32_t EngineRpm = map_32(reading_EngineRpm, 0, 4095, 0, 65535); // Serial.println("Engine RPM"); // hex_converter_8 (EngineRpm, pid0x0CEngineRpm , 4); // Serial.println(); int reading_VehicleSpeed = analogRead(VehicleSpeed_pin); int VehicleSpeed = map(reading_VehicleSpeed, 0, 4095, 0, 255); // Serial.println("Vehicle Speed"); // hex_converter_8 (VehicleSpeed, pid0x0DVehicleSpeed , 2); // Serial.println(); int reading EngineFuelRate = analogRead (EngineFuelRate pin); int EngineFuelRate = map (reading_EngineFuelRate, 0, 4095, 0, 60); // Serial.println("Engine Fuel Rate"); // hex_converter_8(EngineFuelRate,pid0x9DEngineFuelRate , 2); // Serial.println(); int reading Error Codel = digitalRead(Error Codel pin); int reading_Error_Code2 = digitalRead(Error_Code2_pin); int reading Error Code3 = digitalRead(Error Code3 pin); int reading_Auto_Simulator = digitalRead(Auto_Simulator_pin);

핵심소스코드(3)

```
if (retval = uds.SessionServer(&diag))
   Serial.println(F("No OBD request from tool."));
  else
   Serial.print(F("request SID: ")); Serial.println(diag.sid);
   pid = diag.Data[0];
   Serial.print(F("request PID: ")); Serial.println(pid);
   Serial.print(F("request data: "));
   for (uint8_t i = 1; i < diag.len; i++)
     Serial.print(diag.Data[i]); Serial.print(F(" "));
   Serial.println();
   memset(txData, 0, LEN_DATA);
   for (uint8_t i = 0; i < NUM_PIDS; i++)
     if (responseData[i].pid == pid) // Find the required pid data
     €
       diag.sid = diag.sid + 0x40; // Add 0x40 to received sid
       txData[0] = pid;
       uint8_t lenPidValue = sizeof(responseData[i].Data);
       memcpy(txData + 1, responseData[i].Data, lenPidValue);
       diag.Data = txData;
       diag.len = lenPidValue + 1;
       retval = uds.serverResponse(&diag);
 delay(1000);
void hex_converter_8(uint32_t num, uint8_t bitarray[], int digit) { //들어몬 값 , 값을 분해해서 넣을 배열, 배열이 8bit로 몇개 구성되어 있는지
  int pos = digit;
                            // 16진수로 된 문자열을 임시저장할 배열 (순서 제대로임)
  int temp[digit] = { 0 };
 uint32_t decimal = num;
  for(int i=0; i<pos;i++) {
   if(decimal<16){
     temp[pos-i-1]=decimal;
   temp[pos-i-1]=decimal%16;
   decimal=decimal/16;
  Serial.print(" 0x");
  for (int j = 0; j < pos/ 2; j++) {
     bitarray[j] = temp[2 * j] * 16 + temp[2 * j + 1]; //int로 잘려져있는 값들을 8비트 배열메 차곡차곡 넣어줌
       Serial.print(bitarray[j], HEX); Serial.print(" ");
```


| 참조- 개발 환경 및 설명

	구분	항목	적용내역
	CAN Simulator/ CAN Translator 개발	Arduino IDE (1.8.9)	차량 역할을 할 CAN Simulator와 차량에서 Data를 받아오는 CAN Translator 개발
S/W		PHP(5.3.3)	서버 관리자 웹 페이지 처리 모듈 작성
개발환경	서버	MySQL(5.1.73)	차량 데이터를 저장, 관리하는 데이터베이스
	애플리케이션	Apache(1.7.1)	관리자 웹 페이지를 구동하는 웹 서버
	개발	서버 운영체제	리눅스 Rasbian OS
		Putty	Rasbian OS 원격 접속용 툴
		스마트폰 (안드로이드, 아이폰)	사용자에게 서비스를 직접적으로 제공하는 End Device
H/W	디바이스	ESP 32	CAN Simulator, CAN Translator 제작에 필요한 MCU
구성장비	통신	WIFI	ESP32와 Rasberry Pi 4 통신
	<u> </u>	무선 랜 어댑터	스마트폰과 웹서버 통신
	서버	Rasberry Pi 4	웹 호스팅 및 DB 정보를 변환해 다시 저장해주는 서버

Thank you