NATIONAL UNIVERSITY OF SINGAPORE

SEMESTER 1, 2014/2015

MA1101R Linear Algebra 1

Tutorial 2

- 1. Let A and B be $m \times n$ and $n \times p$ matrices respectively.
 - (a) Suppose the homogeneous linear system $B\mathbf{x} = \mathbf{0}$ has infinitely many solutions, how many solutions does the system $AB\mathbf{x} = \mathbf{0}$ have?
 - (b) Suppose $B\mathbf{x} = \mathbf{0}$ has only the trivial solution. Can we tell how many solutions are there for $AB\mathbf{x} = \mathbf{0}$?

(Textbook, p. 71, Problem 10)

- 2. Let $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Consider the matrix
- (1) AX = XA

where X is a 2×2 matrix.

(a) Determine which of the following matrices satisfy (1):

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

- (b) Prove that if P and Q satisfy (1) then P+Q and PQ also satisfy (1).
- (c) Find conditions on p,q,r,s which determine precisely when $\begin{pmatrix} p & q \\ r & s \end{pmatrix}$ satisfy (1).

(Textbook, p. 72, Problem 14)

3. Given that A is a 3×3 matrix such that

$$A \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \quad \text{and} \quad A \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

Find a matrix X such that

$$AX = \begin{pmatrix} 1 & 0 & 4 \\ 1 & 0 & 4 \\ 1 & 0 & 7 \end{pmatrix}.$$

(Textbook, p. 74, Problem 21)

- 4. Determine which of the following statements are true. Justify your answer.
 - (a) If A an B are symmetric matrices of the same size, then A-B is symmetric.
 - (b) If A and B are symmetric matrices of the same size, then AB is symmetric.
 - (c) If A is a square matrix such that $A^2 = \mathbf{O}$ then $A = \mathbf{O}$.
 - (d) If A is a matrix such that $AA^T = \mathbf{O}$ then $A = \mathbf{O}$.

(Textbook, p. 75, Problem 24)

- 5. Let A be a square matrix.
 - (a) Show that if $A^2 = \mathbf{O}$ then I A is invertible and $(I A)^{-1} = I + A$.
 - (b) Show that if $A^3 = \mathbf{O}$ then I A is invertible and $(I A)^{-1} = I + A + A^2$.
 - (c) If $A^n = \mathbf{O}$ for $n \ge 4$, is I A invertible?

(Textbook, p. 75, Problem 26)