## Least Squares Examples Quiz

6/6 points (100%)

Quiz, 6 questions

# **✓** Congratulations! You passed!

Next Item



1/1 points

1.

Consider two design matrices, let  $J_{2n}$  be an  $2n \times 1$  vector of ones,  $X_1$  be a vector with the first n entries are 1 and the latter n are 0, and  $X_2$  be a vector with the first n entries as 0 and the latter n as 1. Consider three design matrices  $X = \begin{bmatrix} J_{2n} \ X_1 \end{bmatrix}$ ,  $W = \begin{bmatrix} J_{2n} \ X_2 \end{bmatrix}$  and  $Z = \begin{bmatrix} X_1 \ X_2 \end{bmatrix}$ . Let Y be an outcome vector. What can be said about the least squares fitted values (  $\hat{Y}$ ) with design matrices X, W and Z?



All three will be equal.

### Correct

The column space of the three matrices is the same.

- All three will be different.
- Whether or not they are equal can't be determined from the information given.
- At least two will be unequal.



1/1 points

2.

Consider the setting of the previous two problems. What would the coefficient estimates be when the design matrix is Z?

 $igcup ar{Y}_1$  and  $ar{Y}_2 - ar{Y}_1$ 

$$igcup ar{Y}_1 - ar{Y}_2$$
 and  $ar{Y}_2 - ar{Y}_1$ 

# Least Squares Examples Quiz

6/6 points (100%)

Quiz, 6 questions

## Correct

The fitted values for all three models will be  $\bar{Y}_1$  for the first n entries and  $\bar{Y}_2$  for the latter n entries. You can use this to compare the coefficient values for the different models.

$$igcup ar{Y}_1 - ar{Y}_2$$
 and  $ar{Y}_2$ 



1/1 points

3.

Consider the setting of the previous three problems. What would the coefficient estimates be when the design matrix is X?

$$igcap ar{Y}_1 - ar{Y}_2$$
 and  $ar{Y}_2 - ar{Y}_1$ 

$$igcup ar{Y}_1$$
 and  $ar{Y}_2$ 

$$igcup ar{Y}_1$$
 and  $ar{Y}_2 - ar{Y}_1$ 

$$igcirc$$
  $ar{Y_1} - ar{Y_2}$  and  $ar{Y_2}$ 

#### Correct

The fitted values for all three models will be  $\bar{Y}_1$  for the first n entries and  $\bar{Y}_2$  for the latter n entries. You can use this to compare the coefficient values for the different models.



1/1 points

4.

Consider the setting of the previous four problems. What would the coefficient estimates be when the design matrix is W?



 $ar{Y}_1$  and  $ar{Y}_2 - ar{Y}_1$ 

### Correct

Least Squares Text in piles Quil three models will be  $ar{Y}_1$  for the first n entries and  $\overline{Y}_2$  for the latter n entries. You can use this to compare the coefficient values for the different models.

6/6 points (100%)

Quiz, 6 questions

| _                | _                   | _                 | _            |
|------------------|---------------------|-------------------|--------------|
| $V_1$ _          | $-\mathbf{V}_{2}$ : | and $Y_2$ -       | $_{-}V_{-}$  |
| 1 1 <sup>-</sup> | - 120               | ana $lpha$ $_2$ - | - <i>1</i> 1 |

- $ar{Y}_1 ar{Y_2}$  and  $ar{Y_2}$
- $ar{Y_1}$  and  $ar{Y_2}$



1/1 points

Consider the mtcars dataset. Fit a model that includes a group effect for vs and wt as predictors and mpg as the outcome. The vs variable is 1 for V type engines and 0 for straight. What is the estimate for the change in intercept for the mpg versus wt line going from vs = 1 minus vs = 0? Fit the model without using Im.





Correct



1/1 points

6.

Refer to the previous question. What is the estimated expected \*decrease\* in mpg per 1,000 pound increase in weight? (Fit the model without using lm.)

- 4,442 miles per gallon
- 3.154 miles per gallon

→ 33.0042 miles per gallon

# Least Squares Examples Quizion

6/6 points (100%)

Quiz, 6 questions

Correct

**-**/3



