Data Visualization III Download the Iris flower dataset or any other dataset into a DataFrame. (e.g., https://archive.ics.uci.edu/ml/datasets/Iris). Scan the dataset and give the inference as:

- 1. List down the features and their types (e.g., numeric, nominal) available in the dataset.
- 2. Create a histogram for each feature in the dataset to illustrate the feature distributions.
- 3. Create a boxplot for each feature in the dataset.
- 4. Compare distributions and identify outliers.

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

df = pd.read_csv('Iris.csv')
```

df.head()

₽		Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	0	1	5.1	3.5	1,4	0.2	Iris-setosa
	1	2	4.9	3.0	1.4	0.2	Iris-setosa
	2	3	4.7	3.2	1.3	0.2	Iris-setosa
	3	4	4.6	3.1	1.5	0.2	Iris-setosa
	4	5	5.0	3.6	1.4	0.2	Iris-setosa

df.describe() Saved successfully! X SepallengthCm SepalWidthCm PetalLengthCm PetalWidthCm

	10	Sepailengthum	Sepaiwidthcm	Petailengthum	PetaiwidthCm
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	75.500000	5.843333	3.054000	3.758667	1.198667
std	43.445368	0.828066	0.433594	1.764420	0.763161
min	1.000000	4.300000	2.000000	1.000000	0.100000
25%	38.250000	5.100000	2.800000	1.600000	0.300000
50%	75.500000	5.800000	3.000000	4.350000	1.300000
75%	112.750000	6.400000	3.300000	5.100000	1.800000
max	150.000000	7.900000	4.400000	6.900000	2.500000

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 6 columns):
                  Non-Null Count Dtype
#
   Column
---
    -----
                   -----
0 Id
                  150 non-null
                                  int64
    SepalLengthCm 150 non-null
                                  float64
    SepalWidthCm 150 non-null
                                  float64
    PetalLengthCm 150 non-null
                                  float64
    PetalWidthCm 150 non-null
                                  float64
    Species
                  150 non-null
                                  object
dtypes: float64(4), int64(1), object(1)
memory usage: 7.2+ KB
```

df.columns

\$

```
df['SepalLengthCm'].min()
```

4.3

df['SepalLengthCm'].hist(bins = 30)

df['PetalLengthCm'].max()

1.0

df['PetalLengthCm'].hist(bins = 30)

df['PetalWidthCm'].max()

2.5

df['PetalWidthCm'].min()

0.1

df['PetalWidthCm'].hist(bins = 30)

df['SepalWidthCm'].max()

4.4

df['SepalWidthCm'].min()

2.0


```
df['Species'].value_counts()
```

Iris-setosa 50
Iris-versicolor 50
Iris-virginica 50
Name: Species, dtype: int64

df['Species'].hist(bins = 30)

sns.boxplot(x = 'SepalLengthCm' ,data = df)

<Axes: xlabel='SepalLengthCm'>

sns.boxplot(x = 'SepalWidthCm', data = df)

<Axes: xlabel='SepalWidthCm'>

sns.boxplot(x = 'PetalWidthCm' , data = df)

<Axes: xlabel='PetalWidthCm'>

