Отчет по выполнению лабораторной работы №7

Дисциплина: архитектура компьютеров

Намруев Максим Саналович

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы 4.1 Изуение структуры файла листинга	8 13
5	Задание для самостоятельной работы	16
6	Выводы	23
Сп	Список литературы	

Список иллюстраций

4.1	Создание файла	8
4.2	Ввод текста из листинга 7.1	9
4.3	Запуск файла	9
4.4	Изменение файла	10
4.5	Запуск измененного файла	10
4.6	Редактирование файла	11
4.7	Запуск программы	11
4.8	Ввод текста из листинга 7.3	12
4.9	Запуск программы	13
4.10	Создание файла листинга	13
	Открывание файла листинга	14
	Удаление операнда	15
4.13	Попытка создание файла	15
5.1	Создание файла для самостотельной работы	16
5.2	Написание программы	17
5.3	Проверка работы программы	17
5.4	Создание файла	19
5.5	Написание программы	20
5.6	Проверка программы	20

Список таблиц

1 Цель работы

Изучение команд условного и безусловного переходов. Приобретение навыков написания программ с использованием переходов. Знакомство с назначением и структурой файла листинга

2 Задание

- 1. Реализация переходов в NASM
- 2. Изучение структуры файлы листинга

3 Теоретическое введение

Для реализации ветвлений в ассемблере используются так называемые команды передачи управления или команды перехода. Можно выделить 2 типа переходов: • условный переход – выполнение или не выполнение перехода в определенную точку программы в зависимости от проверки условия. • безусловный переход – выполнение передачи управления в определенную точку программы без каких-либо условий. Листинг (в рамках понятийного аппарата NASM) — это один из выходных файлов, созда- ваемых транслятором. Он имеет текстовый вид и нужен при отладке программы, так как кроме строк самой программы он содержит дополнительную информацию.

4 Выполнение лабораторной работы

##Реализация переходов в NASM

Открываю терминал и создаю каталог для программ лабораторной работы, перехожу в него и создаю файл lab7-1.asm (рис. [4.1]).

```
msnamruev@dk8n60 ~ $ mkdir ~/work/arch-pc/lab07
msnamruev@dk8n60 ~ $ cd ~/work/arch-pc/lab07
msnamruev@dk8n60 ~/work/arch-pc/lab07 $ touch lab7-1.asm
msnamruev@dk8n60 ~/work/arch-pc/lab07 $ ls
lab7-1.asm
msnamruev@dk8n60 ~/work/arch-pc/lab07 $
```

Рис. 4.1: Создание файла

Ввожу в файл lsb7-1.asm текст программы из листинга 7.1.(рис. [4.2])

```
lab7-1.asm
             \oplus
 Открыть 🔻
                                              ~/work/arch-pc/lab07
1 %include 'in_out.asm' ; подключение внешнего файла
2 SECTION .data
3 msg1: DB 'Сообщение No 1',0
4 msg2: DB 'Сообщение No 2',0
5 msg3: DB 'Сообщение No 3',0
6 SECTION .text
7 GLOBAL _start
8 _start:
9 jmp _label2
10 _label1:
|1 mov eax, msg1 ; Вывод на экран строки
|2 call sprintLF ; 'Сообщение No 1'
13 _label2:
14 mov eax, msg2 ; Вывод на экран строки
I5 call sprintLF ; 'Сообщение No 2'
16 _label3:
17 mov eax, msg3 ; Вывод на экран строки
18 call sprintLF ; 'Сообщение No 3'
19 _end:
20 call quit ; вызов подпрограммы завершения
```

Рис. 4.2: Ввод текста из листинга 7.1

Создаю исполняемый файл и запускаю его.(рис. [4.3])

```
msnamruev@dk8n60 -/work/arch-pc/lab07 $ nasm -f elf lab7-1.asm
msnamruev@dk8n60 -/work/arch-pc/lab07 $ ld -m elf_i386 -o lab7-1 lab7-1.o
msnamruev@dk8n60 -/work/arch-pc/lab07 $ ./lab7-1
Сообщение No 2
Сообщение No 3
msnamruev@dk8n60 -/work/arch-pc/lab07 $
```

Рис. 4.3: Запуск файла

Изменяю текст программы в соответствии с листингом 7.2.(рис. [4.4])

```
1 %include 'in_out.asm' ; подключение внешнего файла
2 SECTION .data
3 msg1: DB 'Сообщение No 1',0
4 msg2: DB 'Сообщение No 2',0
5 msg3: DB 'Сообщение No 3',0
6 SECTION .text
7 GLOBAL _start
8 _start:
9 jmp _label2
0 _label1:
1 mov eax, msg1 ; Вывод на экран строки
2 call sprintLF ; 'Сообщение No 1'
3 jmp _end
4 _label2:
5 mov eax, msg2 ; Вывод на экран строки
6 call sprintLF ; 'Сообщение No 2'
7 jmp _label1
8 _label3:
9 mov eax, msg3 ; Вывод на экран строки
!O call sprintLF ; 'Сообщение No 3'
2 call quit ; вызов подпрограммы завершения
```

Рис. 4.4: Изменение файла

Создаю исполняемый файл и запускаю его.(рис. [4.5])

```
msnamruev@dk8n60 ~/work/arch-pc/lab07 $ nasm -f elf lab7-1.asm
msnamruev@dk8n60 ~/work/arch-pc/lab07 $ ld -m elf_i386 -o lab7-1 lab7-1.o
msnamruev@dk8n60 ~/work/arch-pc/lab07 $ ./lab7-1
Сообщение No 2
Сообщение No 1
```

Рис. 4.5: Запуск измененного файла

Далее изменяю файл так, чтобы он выводил "Сообщения" в обратном поряд-ке.(рис. [4.6])

```
1 %include 'in_out.asm' ; подключение внешнего файла
2 SECTION .data
3 msg1: DB 'Сообщение No 1',0
4 msg2: DB 'Сообщение No 2',0
5 msg3: DB 'Сообщение No 3',0
6 SECTION .text
7 GLOBAL _start
8 _start:
9 jmp _label3
0 _label1:
1 mov eax, msg1 ; Вывод на экран строки
2 call sprintLF ; 'Сообщение No 1'
3 jmp _end
4 _label2:
5 mov eax, msg2 ; Вывод на экран строки
6 call sprintLF ; 'Сообщение No 2'
7 jmp _label1
8 _label3:
9 mov eax, msg3 ; Вывод на экран строки
0 call sprintLF ; 'Сообщение No 3'
1 jmp _label2
2 _end:
3 call quit ; вызов подпрограммы завершения
```

Рис. 4.6: Редактирование файла

Создаю исполняемый файл и запускаю его.(рис. [4.7])

```
msnamruev@dk8n60 ~/work/arch-pc/lab07 $ nasm -f elf lab7-1.asm
msnamruev@dk8n60 ~/work/arch-pc/lab07 $ ld -m elf_i386 -o lab7-1 lab7-1.o
msnamruev@dk8n60 ~/work/arch-pc/lab07 $ ./lab7-1
Сообщение No 3
Сообщение No 2
Сообщение No 1
msnamruev@dk8n60 ~/work/arch-pc/lab07 $
```

Рис. 4.7: Запуск программы

Убеждаюсь, что всё работает верно.

Создаю файл lab7-2.asm в каталоге ~/work/arch-pc/lab07 и вставляю в него текст программы из листинга 7.3.(рис. [4.8])

```
lab/-2.asm
ткрыть 🔻 🛨
                                         ~/work/arch-pc/lab07
%include 'in_out.asm'
section .data
msg1 db 'Введите В: ',0h
msg2 db "Наибольшее число: ",0h
A dd '20'
C dd '50'
section .bss
max resb 10
B resb 10
section .text
global _start
_start:
; ----- Вывод сообщения 'Введите В: '
mov eax, msg1
call sprint
; ----- Ввод 'В'
mov ecx,B
mov edx,10
call sread
; ----- Преобразование 'В' из символа в число
mov eax,B
call atoi ; Вызов подпрограммы перевода символа в число
mov [B],eax ; запись преобразованного числа в 'В'
; ----- Записываем 'А' в переменную 'тах'
mov ecx,[A] ; 'ecx = A'
mov [max],ecx ; 'max = A'
; ----- Сравниваем 'А' и 'С' (как символы)
стр есх,[С] ; Сравниваем 'А' и 'С'
jg check_B ; если 'A>C', то переход на метку 'check_B',
mov ecx,[C] ; иначе 'ecx = C'
mov [max],ecx ; 'max = C'
; ----- Преобразование 'max(A,C)' из символа в число
mov eax, max
call atoi ; Вызов подпрограммы перевода символа в число
mov [max],eax ; запись преобразованного числа в 'max'
; ----- Сравниваем 'max(A,C)' и 'В' (как числа)
mov ecx,[max]
cmp ecx,[B] ; Сравниваем 'max(A,C)' и 'B'
jg fin ; если 'max(A,C)>B', то переход на 'fin',
mov ecx,[B] ; иначе 'ecx = B'
mov [max],ecx
```

Рис. 4.8: Ввод текста из листинга 7.3

Создаю исполняемый файл и запускаю его.(рис. [4.9])

```
msnamruev@dk8n60 ~/work/arch-pc/lab07 $ ./lab7-2
Введите В: 3
Наибольшее число: 50
msnamruev@dk8n60 ~/work/arch-pc/lab07 $ ./lab7-2
Введите В: 60
Наибольшее число: 60
msnamruev@dk8n60 ~/work/arch-pc/lab07 $ ./lab7-2
Введите В: 50
Наибольшее число: 50
msnamruev@dk8n60 ~/work/arch-pc/lab07 $
```

Рис. 4.9: Запуск программы

4.1 Изуение структуры файла листинга

Создаю файл лситинга для программы из файла lab7-2.asm.(рис. [4.10])

msnamruev@dk6n66 ~/work/arch-pc/lab07 \$ nasm -f elf -l lab7-2.lst lab7-2.asm

Рис. 4.10: Создание файла листинга

Далее открываю файл листинга lab7-2.lst с помощью текстового редактора gedit.(рис. [4.11])

Рис. 4.11: Открывание файла листинга

Опишу строчку номер 16:

Здесь "15"-это номер строчки в коде программы "0000000D"- это адрес "5В"это машинный код "ret" - исходный кол программы

Опишу строчку номер 36:

Здесь "35"-это номер строчки в коде программы "00000027"- это адрес "CD80"это машинный код "int" - исходный кол программы

Опишу строчку номер 24:

Здесь "23"-это номер строчки в коде программы "0000000F"- это адрес "52"- это машинный код "push" - исходный кол программы

Теперь открываю файл с программой lab7-2.asm и удаляю один операнд в случайном месте.(рис. [4.12])

```
JIS CHECK_В; если AZC, то переход на метку спеск

Э mov есх; иначе 'ecx = C'
```

Рис. 4.12: Удаление операнда

Пытаюсь создать файл листинга, но он не создается из-за ошибки.(рис. [4.13])

msnamruev@dk6n66 ~/work/arch-pc/lab07 \$ nasm -f elf -l lab7-2.lst lab7-2.asm lab7-2.asm:30: error: invalid combination of opcode and operands

Рис. 4.13: Попытка создание файла

5 Задание для самостоятельной работы

1. Создаю файл test.asm.(рис. [5.1])

Рис. 5.1: Создание файла для самостотельной работы

Далее открываю его и пишу программу для нахождения наименьшей из переменных а,b,с в соответствии с моим вариантом (вариант 16).(рис. [5.2])

```
test.asm
Открыть 🔻
                                         ~/work/arch-pc/lab07
           report.md
                                            report.md
1 %include 'in_out.asm'
2 section .data
3 msg2 db "Наименьшее число: ",0h
4 A dd '44'
5 B dd '74'
6 C dd '17'
7 section .bss
8 min resb 10
9 section .text
0 global _start
1 _start:
2 mov ecx,[A]
3 mov [min],ecx ;
4 cmp ecx,[C];
5 jg check_B
6 mov ecx,[C];
7 mov [min],ecx;
8 check_B:
9 mov eax, min
0 call atoi ;
1 mov [min],eax ;
2 mov ecx,[min]
3 cmp ecx,[B];
4 jl fin ;
5 mov ecx,[B];
6 mov [min],ecx
7 fin:
8 mov eax, msg2
9 call sprint ;
0 mov eax,[min]
1 call iprintLF ;
2 call quit
```

Рис. 5.2: Написание программы

Создаю исполняемый файл и запускаю его.(рис. [5.3])

```
msnamruev@dk3n40 ~/work/arch-pc/lab07 $ nasm -f elf test.asm
msnamruev@dk3n40 ~/work/arch-pc/lab07 $ ld -m elf_i386 -o test test.o
msnamruev@dk3n40 ~/work/arch-pc/lab07 $ ./test
Наименьшее число: 17
```

Рис. 5.3: Проверка работы программы

Программа работает верно

Код программы: %include 'in out.asm'

```
section .data
msg2 db "Наименьшее число:",0h
A dd '44'
B dd '74'
C dd '17'
section .bss
min resb 10
section .text
global _start
_start:
mov ecx,[A]
mov [min],ecx ;
cmp ecx,[C];
jg check_B
mov ecx,[C];
mov [min],ecx;'
check_B:
mov eax,min
call atoi;
mov [min],eax ;
mov ecx,[min]
cmp ecx,[B];
jl fin;
mov ecx,[B];
mov [min],ecx
fin:
mov eax, msg2
call sprint;
mov eax,[min]
```

call iprintLF ;
call quit

2. Создаю файл test2.asm.(рис. [5.4])

msnamruev@dk3n40 ~/work/arch-pc/lab07 \$ touch test2.asm
msnamruev@dk3n40 ~/work/arch-pc/lab07 \$

Рис. 5.4: Создание файла

Начинаю написание программы, которая для введенных с клавиатуры значение x и а вычисляет значение заданной функции f(x) и выводит результат вычислений.(рис. [5.5])

```
%include 'in_out.asm'
section .data
msg1 db 'Введите X: ',0h
msg2 db 'Введите A: ',0h
msg3 db "Результат: ",0h
section .bss
x resb 10
a resb 10
f resb 10
section .text
global _start
_start:
mov eax, msg1
call sprint
mov ecx,x
mov edx,10
call sread
mov eax, msg2
call sprint
mov ecx,a
mov edx,10
call sread
mov eax,x
call atoi
mov [x],eax
mov eax,a
call atoi
mov [a],eax
mov edi,[x]
mov ecx,edi
add ecx,4
mov [f],ecx
cmp edi,4
jl fin ;
mov ebx,[a]
mov edi [v]
```

Рис. 5.5: Написание программы

Создаю исполняемый файл и запускаю его.(рис. [5.6])

```
msnamruev@dk3n40 ~/work/arch-pc/lab07 $ nasm -f elf test2.asm
msnamruev@dk3n40 ~/work/arch-pc/lab07 $ ld -m elf_i386 -o test2 test2.o
msnamruev@dk3n40 ~/work/arch-pc/lab07 $ ./test2

Введите X: 1
Введите A: 1
Результат: 5
msnamruev@dk3n40 ~/work/arch-pc/lab07 $ ./test2

Введите X: 7
Введите A: 1
Результат: 7
msnamruev@dk3n40 ~/work/arch-pc/lab07 $
```

Рис. 5.6: Проверка программы

Программы работает верно

Код программы:

%include 'in_out.asm'

section .data

msg1 db 'Введите X:',0h

msg2 db 'Введите A:',0h

msg3 db "Результат:",0h

section .bss

x resb 10

a resb 10

f resb 10

section .text

global _start

_start:

mov eax,msg1

call sprint

mov ecx,x

mov edx,10

call sread

mov eax,msg2

call sprint

mov ecx,a

mov edx,10

call sread

mov eax,x

call atoi

mov [x],eax

mov eax,a

call atoi

```
mov [a],eax
mov edi,[x]
mov ecx,edi
add ecx,4
mov [f],ecx
cmp edi,4
jl fin;
mov ebx,[a]
mov edi,[x]
mul edi;
mov [f],eax;
fin:
mov eax, msg3
call sprint
mov eax,[f]
call iprintLF;
call quit
```

6 Выводы

После выполнения данной лабораторной работы я изучил команды условного и безусловного переходов, приобрел навыки написания программ с использованием переходов и познакомился с назнчением и структурой файла листинга.

Список литературы