Handout: Restricted Numerical Ranges of Digraph Laplacians

Michael Robertson

April 30^{th} 2020

• For a graph G on n vertices, the adjacency matrix A(G) is the $n \times n$ matrix with entry $a_{ij} = 1$ if $ij \in E(G)$ and $a_{ij} = 0$ otherwise. The degree matrix D(G) is the $n \times n$ diagonal matrix with entry $a_{ii} = d^+(v_i)$ and 0 elsewhere. The Laplacian Matrix L(G) is then the $n \times n$ matrix given by

$$L(G) = D(G) - A(G)$$

or, shortening our notation,

$$L = D - A. (1)$$

• Let A be an $n \times n$ matrix acting on vectors $x \in \mathbb{C}^n$. The numerical range of A is a set of scalar values in \mathbb{C} defined as in

$$W(A) = \{x^*Ax : x \in \mathbb{C}^n, ||x|| = 1\},\tag{2}$$

- We define Q matrices as the class of real $n \times (n-1)$ orthonormal matrices whose columns are perpendicular to $e = (1, 1 \dots 1)$.
- Using the above definition of Q matrices, the restricted numerical range (of a graph Lapacian L), defined as

$$W_r(L) = \{x^*Lx : x \perp e, ||x|| = 1, x \in \mathbb{C}^n\},\$$

may be written as

$$W_r(L) = W(Q^T L Q). (3)$$

• A graph G is 3-balanced if for any three distinct vertices $i,j,k\in V(G),$ we have

$$a_{ij} + a_{jk} + a_{ki} = a_{ji} + a_{ik} + a_{kj}, (4)$$