Calcul matriciel

1)Matrices

Définition 1

Soit n et p deux entiers naturels non nuls.

Une matrice $n \times p$ est un tableau à n lignes et p colonnes, que l'on note

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1p} \\ a_{21} & a_{22} & \cdots & a_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{np} \end{pmatrix} \quad \mathbf{ou} \quad A = (a_{ij})_{1 \le i \le n; 1 \le j \le p}$$

Le premier indice i désigne la ligne, le deuxième j la colonne.

Exemple

→ La matrice $A = \begin{pmatrix} 1 & 17 & 0 \\ \frac{1}{2} & \sqrt{5} & 5 \end{pmatrix}$ est une matrice 2×3 à deux lignes et trois colonnes.

 $\rightarrow a_{23}$ est le coefficient situé à l'intersection de la $2^{i \`{\rm e}me}$ ligne et de la $3^{i \`{\rm e}me}$ colonne, il vaut 5.

Définition 2

Soit A une matrice $n \times p$.

➤ Si p = 1, A est une matrice colonne : $A = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$

➤ Si n = 1, A est une matrice ligne : $A = \begin{pmatrix} a_1 & a_2 & \cdots & a_p \end{pmatrix}$

➤ Si n=p, A est une matrice carrée. Les coefficients a_{ii} sont appelés coefficients diagonaux :

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

▶ La matrice $n \times p$ dont tous les coefficients sont nuls s'appelle la matrice nulle.

Exemple

- → La matrice $M = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$ est une matrice colonne.
- → La matrice $N = \begin{pmatrix} -1 & 2 & 7 & 5 \end{pmatrix}$ est une matrice ligne.
- → La matrice $P = \begin{pmatrix} 2 & 21 & -3 \\ 1 & -1 & 6 \\ -4 & 0 & \pi \end{pmatrix}$ est une matrice carrée d'orde 3.
- → La matrice $O = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ est une matrice nulle.
 - 2) Matrices carrées particulières :

Soit $A = (a_{ij})$ une matrice carrée de taille n.

• Si $a_{ij} = 0$ dès que i > j, A est appelée matrice triangulaire supérieure :

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix}$$

ullet Si $a_{ij}=0$ dès que i < j, A est appelée matrice triangulaire inférieure :

$$A = \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{np} \end{pmatrix}$$

• Si $a_{ij} = 0$ dès que $i \neq j$, A est appelée matrice diagonale :

$$A = \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix}$$

• Si de plus les termes diagonaux sont tous égaux à 1, elle est appelée matrice unité :

$$A = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

Propriété 1

Les matrices $A = (a_{ij})$ et $B = (b_{ij})$ de dimension $n \times p$ sont égales ssi $a_{ij} = b_{ij}$ pour tous i, j.

3) Opérations sur les matrices

Propriété 2 (Multiplication d'une matrice par un scalaire)

Si $A = (a_{ij})$ et $\lambda \in \mathbb{R}$, on définit λA comme étant la matrice $C = (c_{ij})$ telle que $c_{ij} = \lambda a_{ij}$ pour tous i, j.

Exemple On considère la matrice $A = \begin{pmatrix} \frac{1}{2} & 1 \\ 0 & -\frac{3}{4} \end{pmatrix}$, alors -2A =

Propriété 3 (Somme de deux matrices de même taille)

Si $A = (a_{ij})$ et $B = (b_{ij})$ sont deux matrices $n \times p$, on définit la somme A + B comme étant la matrice $C = (c_{ij})$ de taille $n \times p$ telle que $c_{ij} = a_{ij} + b_{ij}$ pour tous i, j.

Exemple Somme de deux matrices 2×3 :

$$\begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & 4 \end{pmatrix} + \begin{pmatrix} 0 & -1 & -2 \\ -3 & 1 & 5 \end{pmatrix} =$$

Propriété 4 (Produit de deux matrices)

Soit $A=(a_{ij})$ de taille $n\times p$ et $B=(b_{jk})$ de taille $p\times q$, on définit le produit $A\times B$ (aussi noté AB) comme étant la matrice $C=(c_{ik})$ définie par $c_{ik}=\sum\limits_{j=1}^p a_{ij}b_{jk}$ pour $1\leq i\leq n$ et $1\leq k\leq q$.

Exemple

On a

$$\begin{pmatrix} 1 & 2 & -1 \\ 1 & 0 & 3 \end{pmatrix} \times \begin{pmatrix} 0 & 1 & 1 \\ 2 & 2 & 0 \\ -1 & 3 & 1 \end{pmatrix} =$$

Remarque 1

- ullet Le produit n'est défini que si le nombre de colonnes de A est égal au nombre de lignes de B.
- Le produit des matrices n'est pas commutatif.
- AB = AC n'implique pas que B = C.

Exercice:

Calculer

$$\begin{pmatrix} -1 & 0 & -2 \\ 1 & 0 & 4 \end{pmatrix} \times \begin{pmatrix} 0 & -1 & 10 \\ 1 & -2 & 0 \\ -1 & 1 & 1 \end{pmatrix} \text{ et } \begin{pmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{pmatrix} + \begin{pmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{pmatrix}$$

4) Déterminant d'une matrice

Le déterminant d'une matrice n'est définie que si la matrice est carrée.

4-1) Déterminant d'une matrice d'ordre 2

$$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc$$

4-2) Déterminant d'une matrice d'ordre 3

$$\det \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix} = \dots$$

Exemple:

4-3) Déterminant d'une matrice carrée d'ordre n

Exemple:

Calculons (dét d'une matrice 4×4)

Définition:

Soit
$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1p} \\ a_{21} & a_{22} & \cdots & a_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{np} \end{pmatrix}$$
 une matrice carrée d'ordre n

On choisi la ligne i, et on a :

 $det A = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} det A_{ij}$ où A_{ij} est la matrice extraite, obtenue de A en suppriment la ligne i et la colonne j.

- -Le nombre $det A_{ij}$ s'appelle un mineur de la matrice A.
- -Le nombre $(-1)^{i+j} det A_{ij}$ s'appelle un cofacteur de la matrice A.

4-4) Cas particuliers

- Si A est matrice diagonale alors $det A = a_{11}a_{22}...a_{nn}$
- Si A est matrice triangulaire alors $det A = a_{11}a_{22}...a_{nn}$
- 5) Inverse d'une matrice

On ne définira l'inverse d'une matrice A que si A est carrée.

Définition 3

Soit A une matrice carrée de taille $n \times n$. S'il existe une matrice carrée B de taille $n \times n$ telle que AB = I et BA = I, on dit que A est inversible, et B est l'inverse de A et on la note A^{-1} .

Proposition 1

Une matrice carrée de taille $n \times n$ est inversible si et seulement si $\det A \neq 0$

Exemple

On considère la matrice $A=\begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}$ Étudier si A est inversible

5.1.) matrice 2×2

Proposition 2

Une matrice $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ est inversible ssi $\det A=ad-bc\neq 0$.

et ona :
$$A^{-1} = \frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

5.2) Détermination de la matrice inverse par la méthode des cofacteurs

5.2.1) Comatrice

Soit A une matrice carrée d'ordre n. On appelle comatrice ou matrice des cofacteurs de A la matrice, notée \widetilde{A} ou comA, dans laquelle on remplace chaque élément par son cofacteur. Exemple :

Soit
$$A = \begin{pmatrix} 1 & 2 & -3 \\ 0 & 3 & 7 \\ 5 & 1 & 0 \end{pmatrix}$$

Alors $\widetilde{A} =$

5.2.2) Adjointe d'une matrice

La matrice adjointe de A est la matrice transposée de la comatrice de A, notée ${}^t\widetilde{A}$. Exemple :

5.2.3) Matrice inverse

Soit A une matrice carrée inversible. Soit ${}^t\widetilde{A}$ sa matrice adjointe. Alors la matrice inverse de A est $A^{-1} = \frac{1}{\det A} {}^t\widetilde{A}$.

Exemple:

5) Résolution des systèmes linéaires