

INSTITUTO TECNOLOGICO DE TIJUANA

CARRERA INGENIERÍA EN SISTEMAS COMPUTACIONALES

MATERIA

MINERÍA DE DATOS

TAREA

PRÁCTICA #2, UNIDAD #3

18/05/2022

ALUMNO(A)

HOWARD HERRERA ERWIN #18210716

PÉREZ LÓPEZ ALICIA GUADALUPE #18210514

DOCENTE

JOSE CHRISTIAN ROMERO HERNANDEZ

Importamos el archivo "csv" con el nombre "50_Startups.csv", luego tenemos una columna de estados con 3 diferentes, para poder hacerlos numéricos usaremos "factor" el número 1 para New York, 2 para California, 3 para Florida.

```
> dataset <- read.csv(file.choose())</pre>
> dataset$State = factor(dataset$State,
                         levels = c('New York', 'California', 'Florida'),
                         labels = c(1,2,3))
> dataset
   R.D.Spend Administration Marketing.Spend State
                                                      Profit
  165349.20
                  136897.80
                                   471784.10
                                                 1 192261.83
   162597.70
                  151377.59
                                   443898.53
                                                 2 191792.06
  153441.51
                  101145.55
                                   407934.54
                                                 3 191050.39
  144372.41
                  118671.85
                                   383199.62
                                                 1 182901.99
  142107.34
                   91391.77
                                   366168.42
                                                 3 166187.94
  131876.90
                   99814.71
                                   362861.36
                                                 1 156991.12
  134615.46
                                   127716.82
                                                 2 156122.51
                  147198.87
  130298.13
                  145530.06
                                   323876.68
                                                 3 155752.60
   120542.52
                  148718.95
                                   311613.29
                                                 1 152211.77
                  108679.17
                                                 2 149759.96
10 123334.88
                                   304981.62
                                                 3 146121.95
11 101913.08
                  110594.11
                                   229160.95
12 100671.96
                   91790.61
                                   249744.55
                                                 2 144259.40
13
   93863.75
                  127320.38
                                   249839.44
                                                 3 141585.52
14
   91992.39
                                   252664.93
                                                 2 134307.35
                  135495.07
15 119943.24
                  156547.42
                                   256512.92
                                                 3 132602.65
16 114523.61
                  122616.84
                                   261776.23
                                                 1 129917.04
17
   78013.11
                  121597.55
                                   264346.06
                                                 2 126992.93
   94657.16
                  145077.58
18
                                   282574.31
                                                 1 125370.37
   91749.16
                  114175.79
                                   294919.57
                                                 3 124266.90
```

Utilizaremos la librería "caTools" para la función aleatoria con "seed" y la dividiremos 0.8, y con el training set probará si es verdadero o falso.

```
> library(caTools)
> set.seed(123)
> split <- sample.split(dataset$Profit, SplitRatio = 0.8)
> training_set <- subset(dataset, split == TRUE)
> test_set <- subset(dataset, split == FALSE)</pre>
```

Ahora tendremos un filtro para la regresión lineal múltiple con lm del modelo lineal tomando el perfil y todas las demás columnas de nuestro conjunto de entrenamiento. Y obtenemos nuestro resumen o resumen de los datos.


```
Call:
```

lm(formula = Profit ~ ., data = training_set)

Residuals:

Min 1Q Median 3Q Max -33128 -4865 5 6098 18065

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	4.965e+04	7.637e+03	6.501	1.94e-07	***
R.D.Spend	7.986e-01	5.604e-02	14.251	6.70e-16	***
Administration	-2.942e-02	5.828e-02	-0.505	0.617	
Marketing.Spend	3.268e-02	2.127e-02	1.537	0.134	
State2	1.213e+02	3.751e+03	0.032	0.974	
State3	2.376e+02	4.127e+03	0.058	0.954	
Signif. codes:	0 '***' 0.0	0.00 (***)	1 '*' 0.	05 '.' 0.	1 ' ' 1

Residual standard error: 9908 on 34 degrees of freedom Multiple R-squared: 0.9499, Adjusted R-squared: 0.9425 F-statistic: 129 on 5 and 34 DF, p-value: < 2.2e-16

>

Hacemos la predicción

Ahora vemos que el valor de P tenemos que elegir los más cercanos a 0 y el modelo nos dice que eliminemos las variables mayores a 0,05, que es el valor significativo.

Y estamos haciendo el modelo con todas las variables independientes.

```
> regressor = lm(formula = Profit ~ R.D.Spend + Administration + Marketing.Spend
+ State,
               data = dataset )
> summary(regressor)
call:
lm(formula = Profit ~ R.D.Spend + Administration + Marketing.Spend +
    State, data = dataset)
Residuals:
   Min
           1Q Median
                          3Q
                                Max
-33504 -4736
                  90
                        6672
                              17338
Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
                 5.008e+04 6.953e+03
                                         7.204 5.76e-09 ***
(Intercept)
                 8.060e-01
                                        17.369 < 2e-16 ***
R.D.Spend
                            4.641e-02
Administration -2.700e-02
                             5.223e-02
                                        -0.517
                                                   0.608
                            1.714e-02
Marketing.Spend 2.698e-02
                                         1.574
                                                   0.123
                 4.189e+01
                             3.256e+03
                                         0.013
                                                   0.990
State2
                 2.407e+02
                            3.339e+03
                                         0.072
                                                   0.943
State3
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 9439 on 44 degrees of freedom Multiple R-squared: 0.9508, Adjusted R-squared: 0.9452 F-statistic: 169.9 on 5 and 44 DF, p-value: < 2.2e-16

Eliminamos el estado por su valor P.

```
> regressor = lm(formula = Profit ~ R.D.Spend + Administration + Marketing.Spend,
+ data = dataset )
```

> summary(regressor)

call:

lm(formula = Profit ~ R.D.Spend + Administration + Marketing.Spend,
 data = dataset)

Residuals:

Min 1Q Median 3Q Max -33534 -4795 63 6606 17275

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.012e+04 6.572e+03 7.626 1.06e-09 ***
R.D.Spend 8.057e-01 4.515e-02 17.846 < 2e-16 ***
Administration -2.682e-02 5.103e-02 -0.526 0.602
Marketing.Spend 2.723e-02 1.645e-02 1.655 0.105
--Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

Residual standard error: 9232 on 46 degrees of freedom Multiple R-squared: 0.9507, Adjusted R-squared: 0.9475 F-statistic: 296 on 3 and 46 DF, p-value: < 2.2e-16

Eliminamos el valor de la administración por el valor significativo de 0.05

Call:

lm(formula = Profit ~ R.D.Spend + Marketing.Spend, data = dataset)

Residuals:

Min 1Q Median 3Q Max -33645 -4632 -414 6484 17097

Coefficients:

Residual standard error: 9161 on 47 degrees of freedom Multiple R-squared: 0.9505, Adjusted R-squared: 0.9483 F-statistic: 450.8 on 2 and 47 DF, p-value: < 2.2e-16

Aquí tenemos el gasto en marketing que está muy cerca de 0,05 pero el modelo nos dice que tenemos que eliminarlo.

```
> regressor = lm(formula = Profit ~ R.D.Spend,
                data = dataset )
> summary(regressor)
call:
lm(formula = Profit ~ R.D.Spend, data = dataset)
Residuals:
           1Q Median
   Min
                        3Q
                              Max
-34351 -4626 -375
                      6249
                            17188
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
                                          <2e-16 ***
(Intercept) 4.903e+04 2.538e+03
                                  19.32
R.D.Spend 8.543e-01 2.931e-02
                                  29.15
                                          <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 9416 on 48 degrees of freedom
Multiple R-squared: 0.9465, Adjusted R-squared: 0.9454
F-statistic: 849.8 on 1 and 48 DF, p-value: < 2.2e-16
```

Y con esto tenemos nuestro regresor.

Ya tenemos nuestra predicción

Esta función lo que hace es tomar los parámetros del conjunto de entrenamiento que son nuestros datos y SL o el valor significativo de 0.05 y lo que hace es un ciclo que comienza en 1 y numvars que toma la cantidad de datos en el conjunto de entrenamiento, y con esto obtiene el regresor con el modelo lineal entre la ganancia y las otras columnas de nuestra x que será el conjunto de entrenamiento, a continuación, establece maxVar con el coeficiente máximo que se extraerá del resumen del regresor y pasa a la condición si este valor es mayor que el SL o valor significativo de 0. O5 asigna a la variable J la columna que tiene ese valor y en x que es el dataset la quitará y restará numVars por 1 hasta que se quede con las variables que no superen el valor significativo y devolverá el resumen con las columnas con el valor significativo menor a 0.05.

> training_set

	craining_se				- 61
	R.D.Spend	Administration	Marketing.Spend	State	
1	165349.20	136897.80	471784.10	1	192261.83
2	162597.70	151377.59	443898.53	2	191792.06
3	153441.51	101145.55	407934.54	3	191050.39
6	131876.90	99814.71	362861.36	1	156991.12
7	134615.46	147198.87	127716.82	_	156122.51
9	120542.52			1	
		148718.95	311613.29	_	152211.77
10	123334.88	108679.17	304981.62	2	149759.96
12	100671.96	91790.61	249744.55	2	144259.40
13	93863.75	127320.38	249839.44	3	
14	91992.39	135495.07	252664.93	2	134307.35
15	119943.24	156547.42	256512.92	3	132602.65
17	78013.11	121597.55	264346.06	2	126992.93
18	94657.16	145077.58	282574.31	$\bar{1}$	125370.37
19	91749.16	114175.79	294919.57	3	124266.90
22	78389.47	153773.43	299737.29	1	111313.02
	73994.56		303319.26	3	
23		122782.75		_	110352.25
25	77044.01	99281.34	140574.81	1	108552.04
26	64664.71	139553.16	137962.62	2	107404.34
27	75328.87	144135.98	134050.07	3	
28	72107.60	127864.55	353183.81	1	105008.31
29	66051.52	182645.56	118148.20	3	103282.38
30	65605.48	153032.06	107138.38	1	101004.64
33	63408.86	129219.61	46085.25	2	97427.84
			.0000120	_	07.127.10.
34	55493.95	103057.49	214634.81	3	96778.92
35	46426.07	157693.92	210797.67	2	96712.80
36	46014.02	85047.44	205517.64	1	96479.51
37	28663.76	127056.21	201126.82	3	90708.19
38	44069.95	51283.14	197029.42	2	89949.14
39	20229.59	65947.93	185265.10	1	81229.06
40	38558.51	82982.09	174999.30	2	81005.76
41	28754.33	118546.05	172795.67	2	78239.91
42	27892.92	84710.77	164470.71	3	77798.83
43	23640.93	96189.63	148001.11	2	71498.49
44	15505.73	127382.30	35534.17	1	69758.98
45	22177.74	154806.14	28334.72	2	65200.33
46	1000.23	124153.04	1903.93	1	64926.08
47	1315.46	115816.21	297114.46	3	49490.75
48	0.00	135426.92	0.00	2	42559.73
49	542.05	51743.15	0.00	1	35673.41
50	0.00	116983.80	45173.06	2	14681.40

> backwardElimination(training_set, SL)

Call:

 $lm(formula = Profit \sim ., data = x)$

Residuals:

Min 1Q Median 3Q Max -34334 -4894 -340 6752 17147

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.902e+04 2.748e+03 17.84 <2e-16 ***
R.D.Spend 8.563e-01 3.357e-02 25.51 <2e-16 ***
--Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 9836 on 38 degrees of freedom Multiple R-squared: 0.9448, Adjusted R-squared: 0.9434 F-statistic: 650.8 on 1 and 38 DF, p-value: < 2.2e-16