149 447 169 507

449 267 267 267 109 327 327 387

GAAA CGC CGC CGC CTG AACA V V V CAG CAG CAG CCT ACC GAG GAG CTG CTG AGC S AGC CTG AAC AAC 3CG 3CG 1CTC T T ACT S CTC CTC CAA CAA CTG CTC CTC CTC CGC CGC CGC CGC GAG GAG GTG N N GTG CTG CTG CTG CTG CTG CTG CTG CTG A A GCC CTG TTT S AGC CGG CCGG CTG CTG CTG CTG CTG CTG CGC CAC CTG CTG CTG CTG CGG CGG SCC GGC GGG SCT SCT SCT SCT SCT CGG CGG GCG GCG GCA I I ATC ATC CAC CAC GTC GAC GTC GTC CGC CGC GCT GCT GGG CGG

FIG. 1A.

209 627 627 687 687 747 747 807 807 309 927 V GTC K AAA GAG CTC CTC TTC 7 7 7 7 7 7 7 7 7 7 7 7 6 7 6 7 6 ATC ATC CTG CTG CTC CTC E GAG V GTG S AGC CGC L ATC GGA I ATT GTA GTA TTC TTC TTC PCTC STC ACC CTC CTC CTC G CCC ACC

G CCC ACC

G CCA GGA

G AAG AGG 1

G AAC ACC

TGAC TTC (

TGC CCG 1 W TGG V GTG AGG CAG CAG I ATT S S TCA CAG CAG V CAG CTC CTG
F
TTC
A
GCA
CCA
A
CCC
CTG
CTG
CTG ACA N N AAC AAG GTG GTG GAC E I S
GAA ATT TCG A
S F TT GTT A
ATT TTA CAG A
S H Q
AGC CAC CAG A
ATG GTC TCC
Q N F
CAG AAC TTC

FROM FIG. 1B.

F A N S A L N P' I L Y N M T L C RG AGG AAT GAG 987

K K I F C C F W F P E K G A I L T B T 349

AAG AAA ATT TTT TGC TGC TTC TGG TTC CCA GAA AAG GGA GCC ATT TTA ACA GAC ACA 1047

V K R N D L S I I S G 367

O C AAA AGA AAT GAC TTG TCG ATT ATT TCT GGC TAA 1088

TCCATCTTAAAAAAAAAAAAAAAAAGATTTGTTATGGGTTCCTTTTAAATGTGAACTTTTTAGTGTGTTTGTAATATG CTCTTGAACCTGGGAGGCAGAGGTTGCAGTGAGCCGAGATCGTGCCATTGCACT.CCAACCAGGGCAACAAGAGTGAAAC GTTTCATAATATTTTCCCTTTATAAAAGGATTTGTTGGCCAGGTGCAGTGGTTCATGCCTGTAATCCCAGCAGTTTGGG AGGCTGAGGTGGGTTGATL ACCTGAGGTCAGGAGTTCGAGACCAACCTGACCAACATGGTGAGACCCCCGTCTCTACTA TTTTCTTTATAGCCGAGTTTCTCACACCTGGCGAGCTGTGGCATGCTTTTAAACAGAGTTCATTTCCAGTACCCTCCA TCAGTGCACCCTGCTTTAAGAAAATGAACCTATGCAAATAGACATCCACAGCGTCGGTAAATTAAGGGGGTGATCACCAA AAAATAAAAAAAAAATTAGCTGGGĄĞTGGTGGTGGCACCTGTAATCCTAGCTACTTGGGAGGCTGAACCAGGAGAAA

TA01/2057957v1

<u>-1G. 1C.</u>

4/15

```
Sequence Description
                                                          E-value
7tm_1
           PF00001 7 transmembrane receptor (rhodopsin 119.9
                                                          4. 7e-37
Parsed for domains:
Sequence Domain seq-f seq-t hmm-f hmm-t
                                              score
                  57 321
                                      259 [] 119.9
7tm 1
Alignments of top-scoring domains:
7tm_1: domain 1 of 1, from 57 to 321: score 119.9, E = 4.7e-37
                 *->GN1LVi1vi1rtkk1rtptnifi1NLAVADLLf11t1ppwa1yy1vg
                    GN+ ++++++ +++ ++ ++ ++ ++ ADLLf + p++ ++ -+
                    GNVCALVLVAR-RRRGATACLVLNLFCADLLFISAIPLVLAVR-WT 101
  F1h14273, 57
                 gaadWpfGsa1Ck1vtaldvvnmyaSi11Lta1SiDRY1A1vhP1ryrrr
                   e W++G++ C+1+ ++++++ + i1+L+a"S++R + Iv 1+ +r
  F1h14373, 102 -- EAWLLGPVACHLLFYYMTLSGSVTILTLAAVSLERMVCIV-HLQRGVR 148
                 rtsprrAkvvillvwvlallls1Pp11fswvktveegngt1nvnvevCli
                    fr +v+++1+W +++++1P +f+ v+ ++ ++ ++ +C++
  F1h14273, 149 GPGRRARAVLLALIVGYSAVAALPLCVFFRVVPQRLPG--ADQEISICTL 196
                 dfpccstasvstwlrsyv11st1wgF11P11vilvcYtrI1rt1r.....
                              ++5+ +++ ++ F1+P 1vi++ Y+ I1 + + ++++
  F1h14273, 197 IWPTIPG-----EISWDVSFVTLNFLVPGLVIVISYSKILQITKasrkr 240
                   .....kaakt11vvvvvFv1CV1Pvf;v111dt1c
                  + + +++++ + ++++ ++ +t1++++v F++ \( \mathbb{P} \) \( \parallel{1} \) ++11 +
  F1h14273, 241 icvslayseehgirvsqqdfRLFRTLFLLMVSFFIMWSPIIITILLILIQ 290
                 .1siimsstCelerv1pta11vt1wLayvNsc1NPi1Y<-*
                           + + p ++++ + ++++Na+1NP;+Y
  F1h14273, 291 nFK-----QDLVIWPSLFFWVVAPTFANSALNPILY 321
```

FIG. 2.

>F1h14273, 1086 bases, 1825 checksum.
MSPECARAAQDAPLRSLEQANRTRFPFFSDVKGDHRLVLAAVETTVLVLEFAVSLLGNVC
ALVLVARRRRRGATAQLVLNLFCADLLFYSAIPLVLAVRWTEAVLLGPVACHLLFYVMTL
SGSVTILTLAAVSLERMVCIVHLQRCVRGPGRRARAVLLALIWGYSAVAALPLCVFFRVV
PQRLPGADQEISICTLIWPTIPGEISWDVSFVTLNFLVPGLVIVISYSKILQITKASRKR
LTVSLAYSESHQIRVSQQDFRLFRTLFLLMVSFFIMWSPIIITILLILIQNFKQDLVIWP
SLFFWVVAFTFANSALNPILYNMTLCRNEWKKIFCCFWFGPEKGAILTDTSVKRNDLSIIS
G+

FIG. 4.

Prosite Pattern Matches for F1h14273

>PS00001/PDEC00001/ASN_GLYCESYLATIEN N-glycosylation site.

Query: 21

NRTR NMTL Query: 322

>PS0004/PDDC00004/CAMP_PHDSPHD_SITE cAMP- and cGMP-dependent protein kinase phosphorylatic

KRLT 242 Query: 239

><u>PS00005</u>/PDEC00005/PKC_PHESPHE_SITE Protein kinase C phosphorylation site.

SRK SVK Query: 237

><u>PS00006</u>/PDDC00006/CK2_PHDSPHD_SITE Casien kinase II phosphorylation site.

SQQD 259 Query: 256 >PS00008/PDDC00008/MYRISTYL N-myristoylation site.

GNVCAL 62 GATACL 77 GAILTD 348 Query: 57 Query: 72

Query: 343

>PS00009/PDDC00009/AMIDATION Amidation site.

PCRR 153 Query: 150 >PSO0029/PDOCO0029/LEUCINE_ZIPPER Leucine zipper pattern. 127 LGPVACHLLFYVMTLSGSVTIL Query: 106

8/15

Transmembrane Segments Predicted by MEMSAT

Start	End	Orient	Score
46	66	out->ins	5.1
75	98	ins->out	4.0
113	134	out->ins	4.0
156	177	ins->out	4.9
209	227	out->ins	3.7
266	289	ins->out	6.5
297	321	out->ins	3.2

>F1h14273,

MSPECARAAGDAPLRSLEQANRTRFPFFSDVKGDHRLVLAAVETTVLVLIPAVSLLGNVC ALVLVARRRRGATACLVLNLFCADLLFISAWPLVLAVRWTEAWLLGPVACHLLFYVMTL SGSVTILTLAAVSLERMVCIVHLQRGVRGPGRRARAVLLALIWGYSAVAALPLCVFFRVV PQRLPGADQEISICTLIWPTIPGEISWDVSFVTLNFLVPGLVIVISYSKILQITKASRKR LTVSLAYSESHQIRVSQQDFRLFRTLFLLMVSFFIMWSPIIITILLILIQNFKQDLVIWP SLFFWVVAFTFANSALNPILYNMTLCRNEWKKIFCCFWFPEKGAILTDTSVKRNDLSIIS G

Transmembrane Segments for Presumed Mature Peptide

Start	End	Orient	Score	
14	37	ins->out	4.0	
52	73	out->ins	4.0	
95	116	ins->out	4.9	
148	166	out->ins	3.7	
205	228	ins->out	6.5	
236	260	out->ins	3.2	

>F1h14273, _mature

LVLVARRRRRGATACLVLNLFCADLLFISAIPLVLAVRWTEAWLLGPVACHLLPYVMTLS GSVTILTLAAVSLERMVCIVHLQRGVRGPGRRARAVLLALIWGYSAVAALPLCVFFRVVP QRLPGADQEISICTLIWPTIPGEISWDVSFVTLNFLVPGLVIVISYSKILQITKASRKRL TVSLAYSESHQIRVSQQDFRLFRTLFLLMVSFFIMWSPIIITILLILIQNFKQDLVIWPS LFFWVVAFTFANSALNPILYNMTLCRNEWKKIPCCFWFPEKGAILTDTSVKRNDLSIISG Input file 14273m; Output File 14273mtrα Sequence length 1560

TTGCCAAGCTCAGCGTAAGCCTCTTCCACTGCAATCTCACAGAAGGGGTTCATGGAGTGCTTCACACCATCAGTGACCA

130 390 150 450 210 270 270 270 330 GAT

I
ATC
R
CGC
S
AGC
V
GTC
A
A
GCC ACG S TCG L CTC CGG TC CTG GTC CTG F TTC GGA R CGT F TT T ACA AGC F L CTG CGC CGC CTC CTC L L CTC F ACC ACC CTG CTG ACC ACC ACC ACC ACC ACC CTG TAC H CAC T CCTG CCTG V V GCG CGG M CGCCATCTTCCCGGACGCGTGGGCCGGGCGCCCGGC ATG CAA L TTG V GTG CTC CTC CTG CTG CTG CTG GGG GTG V GTG GTG ACC CGG CTG CTG CTC CTC CTC CTC CGC CAC CAC CLG CTG GCC A GCC GTG S TCG JD JS TCA TCA CTA CTC GCT K AAG V GTC GGG GGG GGG CAC CAC 2CT 2CT 37C 51C 56T 56T 56G 66G

TO FIG. 7B.

FIG. 7A

190 627	210 630	230 690	250 750	270 810	290 870	310 930	330 990	350 1050	362 1086
E GAA	41	I ATT	S AGC	M ATC	CAA	T ACG	¥ 766	S TCT	
Q CAG	۷ 576	X AAA	E GAG	L CTC	$_{\rm ATC}^{\rm I}$	F 11C	E GAA	T ACG	
D . GAC							AAC		
_							R AGG		
							F 17C		
_							CTG		
\sim	_	_					S TCG		
							M ATG		_
								A AAG	
, —								E GAG	S AGC
< 570	AAC						CTG		200
\sim	ر درد	_		_			I ATA		I ATT
_								7 TTT	
F TTC	D GAT	L CTG	S TCG	CAA CAA	¥ TGG	۷ 570	AAC	F TTC	S TCT
ا 176	L . 776	F TTC	A GCA	S TCC	A A T G	L CTG	L. CTA	2 7 1 6 0	L 7TG
I ATC	_ ACA	AAC	AAA	۷ 15	I ATC	GAC	A C C	2 20 1	GAC
Y	•							4 <u>F</u>	
							AAC		R CGA
							A GCC		_
	I ATT	L	TTA TTA	CAC	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	A P C	7 7 7 7 7 7	R AGG	۷ 6TC

7A.

FROM FIG.

CTAGCCTCTGGTGCCAGGTGAACCACGGTGTGCATGTAAAGCGAGTTAACTTCAAGGAAAGCCCACCAGTGCGCCTGC TTTAAAAATACCCGACTTCCAACAGCAGGCATCTACGGAGCCAGCAAATTAAGGAATGATCGCTCAGTATAAAAATAT TTTCCTTAAAAGAACTTTCTATGGGTTCCTTTTGTGAACTTTTTTAAGTGTTTTGTAATATGATCTAGTTAAAATI

11/15

```
Query:
            14273m,
Scores for sequence family classification (score includes all domains):
Sequence Description
                                                Score
          PF00001 7 transmembrane receptor (rhodopsin 118.8
                                                      1e-35
7tm 1
Parsed for domains:
Sequence Domain seq-f seq-t hmm-f hmm-t
                                            score
                      321 ...
                                   259 [ ] 118.8
                                                  1e-36
                 57
                               1
Alignments of top-scoring domains:
7tm_1: domain 1 of 1, from 57 to 321: score 118.8, E = 1e-36
                *->GN1LVilvilrtkk1rtptnifilNLAvADLLf11t1ppwa1yy1vg
                   GN+ ++++++ +++ ++ +++1NL ADLLf+ + D++ ++ ++
                   GNVCALVLVAR-RRRRGASASLVLNLFCADLLFTSAIPLVLVVR-WT 101
   14273m, 57
                gaadWpfGaa1Ck1vta1dvvnmyaSi111Lta1SiDRY1A1vhP1ryrrr
                  e W++G+++C+1+ ++++++ + i1+L+a S++R + Iv 1r
   14273m, 102 -- EAWLLGPVVCHLLPYVMTMSGSVTILTLAAVSLERMVCIV-RLRRGLS 148
                rtsprrA, kvvillvWvlallls1Pp11fswvktveagngt1nvnvtvC1
                  rr++++++++\\_ ++1++1P ++++ v +
  14273m, 149 GP-GRRTQAALLAFÜWGYSALAALPLYILFRVVPQRLPGGD--QEITPCT 195
                idfpeestasvstw1rsyv11st1vgF21P11vi1voYtr11rt1r....
                             ++5+ +++ ++ F1+P 1vi++ Y+ 11 + + +++
                +d+p++ +
   14273m, 196 LDWPNRIG----EISWDVFFETLNFLVPGLVIVISYSKILQITKasrk 239
                   .....kaakt11vvvvvFv1CW1Pyfiv111dt-
                14273m, 240 ritislayseshqirvsqqdyRLFRTLFLLMVSFFIMWSPIIITILLILI 289
                c, lalimestCelerv1ptal1vt1wLayvNsc1NPi1Y<-*
                             + p ++++ + ++++Ns+1NPi+Y
  14273m, 290 QnFR-----QDLVIVPSLFFVVVAFTFANSALNPILY 321
```

FIG. 8.

>14273m, 1086 bases, 6943 checksum.
MSPECAQTTGPCPSHTLDQVNRTHFPFFSDVKGDHRLVLSVVETTVLGLIFVVSLLGNVC
ALVLVARRRRRGASASLVLNLFCADLLFTSAIPLVLVVRWTEAWLLGPVVCHLLFVVMTM
SGSVTILTLAAVSLERMVCIVRLRRGLSGPGRRTQAALLAFIWGYSALAALPLYILFRVV
PQRLPGGDQEIPICTLDWPNRIGEISWDVFFETLNFLVPGLVIVISYSKILQITKASRKR
LTLSLAYSESHQIRVSQQDYRLFRTLFLLMVSFFIMWSPIIITILLILIQNFRQDLVIWP
SLFFWVVAFTFANSALNPILYNMSLFRNEWRKIFCCFPFPEKGAIFTDTSVRRNDLSVIS
S*

FIG. 10.

14/15

Prosite Pattern Matches for 14273m,

>PS00001/PD0C00001; ASN_GLYCOSYLATION N-glycosylation site.

Query: 21 NRTH 24 Query: 322 NRTH 325

>PS00002/PDDC00002/GLYCDSAMINDGLYCAN Glycosaminoglycan attachment site.

RU Additional rules:

RU There must be at least two acidic amino acids (Glu or Asp) from -2 to -4 relative to the serine.

Query: 148 SGPG 151

>PS00004/PDDC00004/CAMP_PHDSPHD_SITE cAMP- and cGMP-dependent protein kinase phosphorylation

Query: 239 KRLT 242

>PS00005/PDDC00005/PKC_PHDSPHD_SITE Protein kinase C phosphorylation site.

Query: 237 SRK 239 Query: 350 SVR 352

 $\parbox{$>$PS00006$/PDDC00006/CK2_PHDSPHD_SITE Case in kinase II phosphorylation site.}$

Query: 40 SVVE 43 Query: 256 SQQD 259

 $\parbox{$>$PS00008$/PDDC00008/MYRISTYL N-myristoylation site.}$

Query: 57 GNVCAL 62 Query: 72 GASASL 77 Query: 343 GAIFTD 348

>PS00009/PDDC00009/AMIDATION Amidation site.

Query: 150 PGRR 153

FIG. 11.

15/15

Transmembrane Segments Predicted by MEMSAT

Start	End	Orient	Score	
46	66	out->ins	5.1	
77	98	ins->out	3.3	
113	134	out->ins	3.8	
156	177	ins->out	4.5	
209	227	out->ins	2.4	
266	289	ins->out	6.5	
297	321	out->ins	3.2	

>14273m,

MSPECAQTTGPGPSHTLDQVNRTHFPFFSDVKGDHRLVLSVVETTVLGLIFVVSLLGNVC ALVLVARRRRGASASLVLNLFCADLLFTSAIPLVLVVRWTEAWLLGPVVCHLLFYVMTM SGSVTILTLAAVSLERMVCIVRLRRGLSGPGRRTQAALLAFIWGYSALAALPLYILFRVV PQRLPGGDQEIPICTLDWPNRIGEISWDVFFETLNFLVPGLVIVISYSKILQITKASRKR LTLSLAYSESHQIRVSQQDYRLFRTLFLLMVSFFIMWSPIIITILLILIQNFRQDLVIWP SLFFWVVAFTFANSALNPILYMMSLFRNEWRKIFCCFFFPEKGAIFTDTSVRRNDLSVIS

Transmembrane Segments for Presumed Mature Peptide

Start	End	Orient	Score	
16	37	ins->out	3.3	
52	73	out->ins	3.8	
95	116	ins->out	4.5	
148	166	out->ins	2.4	
205	228	ins->out	6.5	
236	260	out->ins	3.2	

>14273m, _mature

LVLVARRRRRGASASLVLNLFCADLLFTSAIPLVLVVRWTEAWLLGPVVCHLLFYVMGMS GSVTILTLAAVSLERMVCIVRLRRGLSGPGRRTQAAIIAFIWGYSALAALPLYILFRVVP QRLPGGDQEIPICTLDWPNRIGEISWCVFFETLNFLVPGLVIVISYSKILQITKASRKRL TLSLAYSESKQIRVSQQDYRLFRTLFLLMVSFFTMWSPIIITILLILIQNFRQDLVIWPS LFFWVVAFTFANSALNPILYNMSLFRNEWRKIFCCFFFPEKGAIFTDTSVRRNDLSVISS