FICHA 02 – resolução

DPC

- 1. Considere os eventos A e B, com P(A) > 0 e P(B) > 0. Quais das seguintes afirmações são correctas? Justifique.
 - (a) $P(A \cap B') = P(A \cup B) P(B)$
 - (b) Se A e B mutuamente exclusivos, então $P(A \mid B) = 0$
 - (c) Se $P(A \mid B) > P(A)$, então $P(B \mid A) > P(B)$
 - (d) $P(A \cap B \cap C) \ge P(A) + P(B) + P(C) 1$

Resolução:

(a)

$$P(A) = P(A \cap B) + P(A \cap B') \Leftrightarrow P(A \cap B') = P(A) - P(A \cap B)$$

$$P(A \cap B) = P(A) + P(B) - P(A \cup B)$$

$$\Rightarrow P(A \cap B') = P(A \cup B) - P(B),$$

logo a afirmação é verdadeira.

- (b) A e B mutuamente exclusivos significa que $A \cap B = \emptyset$, logo $P(A \cap B) = 0$. Visto que P(B) > 0, temos $P(A \mid B) = \frac{P(A \cap B)}{P(B)} = 0$, pelo que a afirmação é verdadeira.
- (c) $P(A \mid B) > P(A) \Leftrightarrow \frac{P(A \cap B)}{P(B)} > P(A) \Leftrightarrow \frac{P(A \cap B)}{P(A)} > P(B) \Leftrightarrow P(B \mid A) > P(B),$

logo a afirmação é verdadeira.

- (d) A afirmação é falsa. Contra-exemplo: Seja Ω o espaço amostral e $A=B=C=\Omega$. Neste caso, teríamos P(A)=P(B)=P(C)=1 o que, se a desigualdade dada fosse verdadeira, implicaria $P(A\cap B\cap C)\geq 2$.
- 2. Um estudante deve responder a 12 de 14 perguntas de um teste.
 - (a) Quantas possibilidades tem?
 - (b) Quantas possibilidades tem, se tiver de responder às 4 primeiras?
 - (c) Quantas possibilidades tem, se tiver de responder pelo menos 5 das 7 primeiras?

Resolução:

- (a) $\binom{14}{12} = 91$.
- (b) $\binom{4}{4}\binom{10}{8} = 45$.
- (c) $\binom{7}{5}\binom{7}{7} + \binom{7}{6}\binom{7}{6} + \binom{7}{7}\binom{7}{5} = 91.$
- 3. Um número é escolhido de $\{1, 2, 3, \dots\}$ com probabilidade

$$P[i] = \begin{cases} 4/7 & i = 1\\ 2/7 & i = 2\\ (r)^{i-2} & i \ge 3 \end{cases}$$

(a) Calcule r que forma a que P[i] seja uma função de probabilidade.

(b) Calcule a $P[i \ge 4]$.

Resolução:

(a) Para que P seja uma função de probabilidade, r deve ser tal que $0 \le P[i] \le 1$, $\forall i \in \{1, 2, 3, \dots\}$, e $\sum_{i=1}^{\infty} P[i] = 1$. A primeira condição implica $0 \le r \le 1$. Utilizando agora a segunda, temos:

$$\sum_{i=1}^{\infty} P[i] = 1 \Leftrightarrow \sum_{i=3}^{\infty} r^{i-2} = \frac{1}{7} \Leftrightarrow \sum_{i=1}^{\infty} r^i = \frac{1}{7}.$$

A soma do lado esquerdo da igualdade é uma série geométrica, que sabemos ser convergente se e só se |r| < 1, pelo que nos basta aplicar a respetiva fórmula:

$$\frac{1}{7} = \sum_{i=1}^{\infty} r^i = \frac{r}{1-r} \Leftrightarrow r = \frac{1}{8}.$$

Note que o valor encontrado é válido pois satisfaz as restrições impostas anteriormente $(0 \le r \le 1 \text{ e} | r | < 1)$.

(b)
$$P[i \ge 4] = 1 - P[i \le 3] = 1 - \frac{4}{7} - \frac{2}{7} - \frac{1}{8} = \frac{1}{56}.$$

4. O comandante de um sistema anti-míssil afirma o seguinte: "Dispomos de três barreiras defensivas contra um míssil inimigo. A probabilidade de um míssil ser destruído na primeira barreira é de 15%, na segunda é de 35% e na terceira é de 50%. Afigura-se pois impossível que um míssil penetre o nosso sistema de defesa, já que a soma daquelas três probabilidades é de 100%." Concorda?

Resolução:

 D_i — míssil destruído na barreira $i, i \in \{1, 2, 3\}$. O enunciado dá-nos as probabilidades de o míssil ser destruído em cada barreira quando utilizada isoladamente (isto é, sem as outras duas), pelo que as probabilidades dadas são $P(D_1) = 0.15$, $P(D_2 \mid D_1') = 0.35$ e $P(D_3 \mid D_1' \cap D_2') = 0.50$. A probabilidade de um míssil penetrar no sistema de defesa é a probabilidade de não ser destruído em nenhuma das três barreiras, ou seja, é $P(D_1' \cap D_2' \cap D_3')$. Podemos utilizar a regra da cadeia do cálculo de probabilidades (ver ex. 10 da Ficha 1) para a obter imediatamente:

$$P(D_1' \cap D_2' \cap D_3') = P(D_1')P(D_2' \mid D_1')P(D_3' \mid D_1' \cap D_2') = (1 - 0.15)(1 - 0.35)(1 - 0.50) \approx 0.276 > 0$$

pelo que a afirmação do comandante é falsa.

- 5. Sabe-se que 0.001% da população tem um dado tipo de cancro. Um paciente visita o médico queixando-se de sintomas que podem indicar a presença de cancro. O médico faz um exame sanguíneo que permite confirmar o cancro com probabilidade 0.99 se o paciente tiver de facto cancro. Contudo, o teste também pode produzir falsos positivos, ou seja, dizer que uma pessoa tem cancro quando de facto não tem. Isto ocorre com probabilidade 0.2.
 - (a) Se o teste der positivo, qual é a probabilidade que a pessoa tenha cancro?
 - (b) Refaça os cálculos assumindo que a probabilidade do doente ter cancro antes de saber o resultado do exame é de 0.5 (pois o paciente tem sintomas consistentes com o cancro).

Resolução:

C- ter cancro; E- exame dá resultado positivo.

$$P(C \mid E) = \frac{P(E \cap C)}{P(E)} = \frac{P(E \cap C)}{P(E \cap C) + P(E \cap C')} = \frac{P(E \mid C)P(C)}{P(E \mid C)P(C) + P(E \mid C')P(C')}$$

- (a) Pelo enunciado, $P(C) = 0.001\% = 10^{-5}$, $P(E \mid C) = 0.99$ e $P(E \mid C') = 0.2$, logo $P(C \mid E) \approx 4.95 \times 10^{-5}$.
- (b) Agora, P(C) = 0.5 e as restantes mantêm-se, logo $P(C \mid E) \approx 0.83$.

- 7. Um automobilista costuma fazer, ao fim-de-semana, o trajecto Porto Póvoa de Varzim. A sua experiência anterior permite-lhe ter a certeza de que, na sua viagem, a Brigada de Trânsito (BT) irá aparecer. Existem três locais onde a BT poderá estar: A, B e C. O automobilista sabe, também por experiência passada, que a BT apenas aparece uma vez no trajecto. A probabilidade de a BT estar em qualquer um dos locais, A, B, ou C, é igual. A BT está equipada com radares de velocidade que falham em 10% das vezes em A, 20% em B e nunca em C.
 - (a) Determine a probabilidade de o automobilista, em excesso de velocidade, ser apanhado no trajecto Porto Póvoa de Varzim.
 - (b) Calcule a probabilidade de o automobilista, circulando com velocidade excessiva, se ter cruzado com a BT no local A ou B, sabendo que foi multado.
 - (c) Calcule a probabilidade de o automobilista ser multado, sabendo que viaja com excesso de velocidade e que se cruzou com a BT no local A ou B.
 - (d) Resolva a alínea a) admitindo que o automobilista, em 40% das viagens, faz um desvio evitando passar em B. Assuma que no desvio nunca se encontra com a BT.

Resolução:

Sejam $A, B \in C$ os acontecimentos "BT estar no local A/B/C", respetivamente, e seja F o acontecimento "radar falhar". Sabemos que a BT aparece sempre uma e uma só vez no trajeto, logo $P(A \cup B \cup C) = 1$ e $P(A \cap B) = P(B \cap C) = P(A \cap C) = 0$. Assim, temos necessariamente P(A) + P(B) + P(C) = 1. Sabemos também que a probabilidade de a BT estar em qualquer dos três locais é igual, logo P(A) = P(B) = P(C) = 1/3. O enunciado dá-nos ainda $P(F \mid A) = 0.10, P(F \mid B) = 0.20$ e $P(F \mid C) = 0$.

(a) Como o automobilista faz todo o trajeto em excesso de velocidade, será multado desde que o radar não falhe (onde quer que este esteja). Assim, a probabilidade pedida é:

$$P(F') = P(F' \cap A) + P(F' \cap B) + P(F' \cap C)$$

$$= P(F' \mid A)P(A) + P(F' \mid B)P(B) + P(F' \mid C)P(C)$$

$$= (1 - 0.10) \times \frac{1}{3} + (1 - 0.20) \times \frac{1}{3} + (1 - 0) \times \frac{1}{3} = 0.90.$$

(b)

$$\begin{split} P(A \cup B \mid F') &= \frac{P((A \cup B) \cap F')}{P(F')} = \frac{P((A \cap F') \cup (B \cap F'))}{P(F')} \\ &= \frac{P(A \cap F') + P(B \cap F')}{P(F')} = \frac{P(F' \mid A)P(A) + P(F' \mid B)P(B)}{P(F')} \\ &= \frac{(1 - 0.10) \times 1/3 + (1 - 0.20) \times 1/3}{0.90} \approx 0.63. \end{split}$$

(c)

$$P(F' \mid A \cup B) = \frac{P(F' \cap (A \cup B))}{P(A \cup B)} = \frac{P(F' \mid A)P(A) + P(F' \mid B)P(B)}{P(A) + P(B)}$$
$$= \frac{(1 - 0.10) \times 1/3 + (1 - 0.20) \times 1/3}{1/3 + 1/3} = 0.85.$$

(d) Seja D o acontecimento "automobilista faz um desvio, evitando passar em B". Temos P(D) = 0.40. Se o automobilista faz o desvio, então nunca será multado em B, pelo que podemos considerar $P(F \mid B \cap D) = 1$ (ou seja, fazer o desvio é o mesmo que dizer que o radar falha sempre em B). Agora, temos:

$$P(F') = P(F' \cap D) + P(F' \cap D') = P(F' \mid D)P(D) + P(F' \mid D')P(D').$$

A probabilidade $P(F' \mid D')$ é a probabilidade de o automobilista ser multado (ou seja, de o radar não falhar) dado que não fez o desvio, que é precisamente a probabilidade calculada em (a), logo $P(F' \mid D') = 0.90$. Resta-nos calcular a probabilidade de ser multado quando faz o desvio, $P(F' \mid D)$:

$$\begin{split} P(F'\mid D) &= P(F'\mid A\cap D)P(A\mid D) + P(F'\mid B\cap D)P(B\mid D) + P(F'\mid C\cap D)P(C\mid D) \\ &= P(F'\mid A)P(A) + P(F'\mid B\cap D)P(B) + P(F'\mid C)P(C) \\ &= (1-0.10)\times\frac{1}{3} + (1-1)\times\frac{1}{3} + (1-0)\times\frac{1}{3} \approx 0.633. \end{split}$$

Finalmente, $P(F') = 0.633 \times 0.40 + 0.90 \times (1 - 0.40) \approx 0.79$.

- 8. Numa cadeira há 3 épocas de exame, I, II e III, só se podendo repetir o exame na época III. Sejam 1/2, 2/3 e 3/4, respectivamente, as respectivas probabilidades de aprovação e 4/10 e 5/10 as proporções de alunos que vão a exame nas duas primeiras épocas. Admita-se ainda que todos os alunos reprovados repetem o exame na época III.
 - (a) Qual a probabilidade de um aluno passar?
 - (b) Encontra-se um aluno que já fez a cadeira. Qual a probabilidade de a ter feito na I época?

Resolução:

A— aluno aprovado (em qualquer época); A_i — aluno aprovado na época i; E_i — aluno faz o exame da época i, $i \in \{1,2,3\}$. Do enunciado, temos $P(A_1 \mid E_1) = 1/2$, $P(A_2 \mid E_2) = 2/3$, $P(A_3 \mid E_3) = 3/4$, $P(E_1) = 4/10$ e $P(E_2) = 5/10$.

(a) A probabilidade de um aluno passar é a probabilidade do aluno ser aprovado em qualquer das épocas de exame, ou seja, a probabilidade pedida é:

$$\begin{split} P(A) &= P(A_1 \cup A_2 \cup A_3) \\ &= P(A_1) + P(A_2) + P(A_3) \\ &= P(E_1 \cap A_1) + P(E_2 \cap A_2) + P(E_3 \cap A_3) \\ &= P(A_1 \mid E_1) P(E_1) + P(A_2 \mid E_2) P(E_2) + P(A_3 \mid E_3) P(E_3) \end{split} \tag{$A_i \cap A_j = \emptyset$}$$

Todos os valores na expressão acima são dados, à exceção de $P(E_3)$, que teremos de calcular. O enunciado diz-nos que os alunos que fazem o exame da época 3 são todos aqueles que não foram aprovados nas duas épocas anteriores. Entre estes, contam-se: os que foram à primeira época e não foram aprovados $(E_1 \cap A'_1)$, os que foram à segunda época e não foram aprovados $(E_2 \cap A'_2)$ e os que não realizaram qualquer dos exames das duas épocas anteriores $(E'_1 \cap E'_2)$. Assim,

$$P(E_3) = P((E_1 \cap A_1') \cup (E_2 \cap A_2') \cup (E_1' \cap E_2')).$$

Como só se pode repetir o exame na terceira época, E_1 e E_2 são acontecimentos disjuntos, logo:

$$P(E_3) = P(E_1 \cap A_1') + P(E_2 \cap A_2') + P(E_1' \cap E_2')$$

= $P(A_1' \mid E_1)P(E_1) + P(A_2' \mid E_2)P(E_2) + 1 - P(E_1) - P(E_2) = \frac{7}{15}$.

Assim, P(A) = 53/60.

(b)
$$P(A_1 \mid A) = \frac{P(A_1)}{P(A)} = \frac{P(A_1|E_1)P(E_1)}{P(A)} = 12/53.$$

9. Cada uma das n urnas $urna_1, urna_2, \dots, urna_n$ contém α bolas brancas e β bolas pretas. Uma bola é retirada da $urna_1$ e posta na $urna_2$; em seguida, uma bola é retirada da $urna_2$ e posta na $urna_3$, e assim por diante. Finalmente, uma bola é retirada da $urna_n$. Se a primeira bola transferida for branca, qual será a probabilidade que a última bola escolhida seja branca? Que acontece se $n \to \infty$? [sugestão: faça p_n =Prob(a n-ésima bola transferida seja branca) e exprima p_n em termos de p_{n-1}]

Resolução:

 B_i bola retirada da urna i é branca, $i \in \{1, 2, \dots, n\}$. Seja então p_n a probabilidade de a n-ésima bola ser branca, dado que a primeira era branca. Tem-se, assim:

$$p_{n} = P(B_{n} | B_{1})$$

$$= P(B_{n} \cap B_{n-1} | B_{1}) + P(B_{n} \cap B'_{n-1} | B_{1})$$

$$= P(B_{n} | B_{1} \cap B_{n-1})P(B_{n-1} | B_{1}) + P(B_{n} | B_{1} \cap B'_{n-1})P(B'_{n-1} | B_{1})$$

$$= P(B_{n} | B_{1} \cap B_{n-1})p_{n-1} + P(B_{n} | B_{1} \cap B'_{n-1})(1 - p_{n-1}).$$

Observe que, para $n \geq 2$, temos $P(B_n \mid B_1 \cap B_{n-1}) = P(B_n \mid B_{n-1})$ e $P(B_n \mid B_1 \cap B'_{n-1}) = P(B_n \mid B'_{n-1})$ (porquê?). Para além disso, se a urna n tem inicialmente α bolas brancas e β bolas pretas, então passará a ter $\alpha + 1$ bolas brancas quando B_{n-1} e $\beta + 1$ bolas pretas quando B'_{n-1} . Assim,

$$P(B_n \mid B_{n-1}) = \frac{\alpha + 1}{\alpha + \beta + 1}, \quad P(B_n \mid B'_{n-1}) = \frac{\alpha}{\alpha + \beta + 1},$$

e, portanto,

$$p_n = \frac{\alpha + 1}{\alpha + \beta + 1} p_{n-1} + \frac{\alpha}{\alpha + \beta + 1} (1 - p_{n-1}) = \frac{1}{\alpha + \beta + 1} p_{n-1} + \frac{\alpha}{\alpha + \beta + 1}, \quad n \ge 2.$$

Pretende-se agora encontrar uma fórmula não recursiva para p_n . Para simplificar a notação, vamos definir $r = \frac{1}{\alpha + \beta + 1}$ e, assim, $p_n = rp_{n-1} + \alpha r$. Temos,

$$p_1 = 1,$$

 $p_2 = r + \alpha r,$
 $p_3 = r^2 + \alpha r^2 + \alpha r,$
 $p_4 = r^3 + \alpha r^3 + \alpha r^2 + \alpha r,$
 \vdots

Torna-se assim evidente (e pode ser provado por indução) que:

$$p_n = r^{n-1} + \alpha \sum_{i=1}^{n-1} r^i = r^{n-1} + \alpha \frac{r^n - r}{r - 1}, \quad n \ge 2,$$

onde a segunda igualdade resulta do uso da fórmula da soma dos termos de uma progressão geométrica de razão $r \neq 1$.

O exercício pede-nos ainda para estudarmos o limite da sucessão p_n :

$$\lim_{n \to \infty} p_n = \lim_{n \to \infty} \left(r^{n-1} + \alpha \frac{r^n - r}{r - 1} \right) = -\alpha \frac{r}{r - 1} = \frac{\alpha}{\alpha + \beta},$$

onde a segunda igualdade resulta de $r^n \to 0$, visto que 0 < r < 1. O limite obtido mostra que, quando n é suficientemente grande, a probabilidade de retirar uma bola branca da n-ésima urna (B_n) dado que a bola retirada da primeira urna era branca (B_1) aproxima-se da proporção de bolas brancas inicialmente presentes na n-ésima urna. Assim, a informação de que a primeira bola era branca (B_1) torna-se menos relevante à medida que n aumenta. Consegue encontrar uma explicação intuitiva para isto?