

5-79847

Cited Reference No.10 in PCT/IPEA/408 and PCT/IPEA/409

Laid-open Patent Application No. 5-79847 laid open on March 30, 1993

Patent Application No. 3-241243 filed on September 20, 1991

Applicant: Fujitsu Ten Kabushiki Kaisha

Inventor: Akira IWAI

Title: AVM System

[Abstract]

[Constitution] An automatic vehicle monitoring system for monitoring the present position of a mobile station, in which

average speed calculating means for calculating the average speed of said mobile station based on the information of a vehicle speed sensor provided on said mobile station is provided, and

said average speed is displayed on the display of a base station together with the present position of said mobile station.

[Effect] The traffic condition of roadways in which each mobile station is positioned can be precisely obtained.

Reference numerals in drawing figures

- 11...location process unit, 12...AMV process unit
- 13...location process part, 14...GPS receiver,
- 21...antenna/sensor unit, 22...antenna,
- 23...geomagnetic sensor, 24...gyro,
- 25...vehicle speed sensor,
- 26...wireless machine for data waves
- 27...average speed calculating part,
- 31...AVM operating unit
- 32...wireless machine for telephone waves
- 33...charge meter (vehicle with or without a passenger therein)
 - 41...wireless machine
 - 42...modem for the wireless machine
 - 43...work station

Column 3, lines 20-22

The indication information transmitted from the base station to the mobile station is received by the wireless machine for telephone waves and displayed on the display of AVM operating unit.

984 特異平5-7

(43)公開日 平成5年(1993)3月30日

(51) Int. Cl. 6	黝明号	斤内整理番号	<u>.</u>	技術表示
G01C 21/00	N	6964-2F		
G01S 5/14		4240-53		
6080 1/0969		7103-3H		
	•	6942-5K		

(全6頁) 番荷散 光散 請求項の数1

(11)出類人 000237592 富七面テン技式会社		
(11)出題人	(12)発姆	
特願平3-241243	平成3年(1991)9月20日	
(21)出願番号	(22) 出頭日	

(54) 【発明の名称】AVMシステム

の システムにおいて、移動局に備えた車速センサの情 報に基づいて前部が独局の平均越度を算出する平均速度 算出手段を備え、前記平均恵度が移動局の現在位置とと **もに基地局のディスプレイに表示されるように構成され** 【構改】 移動局の現在位置をモニタリングすることが できるAVM(オートマチック・ピークル・モニタリン ていることを特徴とするAVMシステム。

【効果】 各移動局が位置する道路の段階状況を的確に 日間することができる。

結結散がの原用

と情報に描く、と記訳を動品の平均速度を算出する平均 とともに基地局のディスプレイに表示されるように構成 (海水項1) 移動局の現在位置をモニタリングするこ リング)システムにおいて、移動局に備えた車速センサ **恵安算出手段を備え、前記平均速度が移動局の現在位置** とができるAVM(オートマチック・ビークル・モニタ されていることを特徴とするAVMシステム。

、発明の詳細な説明 [0000]

ができ、主にタクシー会社等で採用されるAVMシステ より詳細には移動局の現在位置をモニタリングすること 【産業上の利用分野】本発明はAVMシステムに関し、 ムに関する。

[0002]

哲手)からの不定期に報告される道路情報に基づいて道 【従来の技術】従来のAVMシステムでは、移動局(運 路の混雑状況が半断されていた。

[0003]

【発明が解決しようとする課題】このため基地局で刻々 と変化する道路状況を的確に把握することは不可能であ 局の誘導等を合理がに行なうことができず、配車・実車 った。また、移動局側では師召道路情報を例えば運転手 が入力しなければならず、面倒であった。そのため従来 のAVMシステムでは道路状況が十分把握しきれないの で、適正な配車ルートの選択、目的地、顧客等への移動 数率を向上させることが困難であった。

【0004】本発明は上記課題に鑑みなされたものであ り、道路の混雑状況を的確に把握することができるAV Mシステムを提供することを目的としている。

8

[0005]

【課題を解決するための手段】上記目的を遠成するため に本発明に係るAVMシステムは、移動局の現在位置を ・ピークル・モニタリング)システムにおいて、移動局 5年制品の現在位置とともに基地局のディスプレイに表 モニタリングすることができるAVM (オートマチック に備えた車速センサの情報に基づいた前記移動局の平均 **速を算出する平均速度算出手段を備え、前記平均速度** 示されるように構成されていることを特徴としている。 (9000)

助局の平均速度を算出する前記平均速度産出手段により タリングすることができる前記AVMシステムにより移 (作用) 上記時成によれば、移動局の現在位置をモニタ た車速センサの情報に基ムに大師は独別局の平均速を 算出する平均速度算出手段を備え、前記平均速度が移動 **品の現在位置とともに基地局のディスプレイに表示され** るように構成されているので、移動局の現在位置をモニ クル・モニタリング) システムにおいて、移動局に備え リングすることができるAVM(オートマチック・ピー 動局の位置情報(現在位置と走行方向)が把握され、

情報・平均速度にもとつ、下道路の混雑状況が把握され る。把握された道路の混雑状況は基地局から移動局に対 して配車指示・走行ルートの試導等を行なう場合の判断 移動局の最新の平均速度が算出される。算出された移動 局の平均越度は移動局の位置情報とともに基地局で収集 る。基地局のディスプレイ上に表示された移動局の位置 され、基地局のディスプレイ上に地図形式で表示され 資料として利用される。

[0007]

2

【実施別】以下、本発明に係るAVMシステムの実施例 **を図面に基心に行説明する。図1は実施例に係るAVM** システムを粧路的に示した構成図であり、移動局の現在 <u>位置をモニタリングすることができる手段としてGPS</u> (グローバル・ポジショニング・システム)

(a) 図は移動局の構成を示し、(b) 図は **サを用いた推測航法とを組み合わせて使用**

【0008】(a) 図において、移動局は大きく分けて 主にロケーション処理ユニット11、アンテナ/センサ ユニット21、AVM操作器31から構成されており、 成を示している。

ຂ

おり、AVM操作器31には通話使用無線機32と料金 2、ロケーション処理部13、GPS受信機14を含ん で構成されている。アンテナ/センサユニット21はア ンテナ22、地磁気センサ23、ジャイロ24を備えて メーター(空車、実車)33が接続されている。ロケー ション処理ユニット11は車速センサ25、車速センサ センサユニット21内のアンテナ22各センサ23、2 4 およびA V M操作器 3 1 と結ばれており、またデータ ロケーション処理ユニット11はAVM処理ユニット1 25に接続されている平均恵度算出部27、アンテナ、 夜用無線機26とも結ばれている。

RG P 【0009】 均磁気センサ23、ジャイロ24、 車速セ ンサ25からの情報はロケーション処理部13に入力さ PS衛星からの情報に基心にロケーション処理部13 S 受信機14に入力される。これら単両セン れ、GPS衛星からの電波はアンテナ22~ で移動局の位置決定が行なわれる。

算出部27~も入力される。車速センサ25からの情報 定時間ごとに貸出される。 つまり 車速センサ25 からの 質分値が消記一定時間で終算されて平均速度が求められ 【0010】また車速センサ25からの情報は平均速度 **楢軸が一定時間(たとえば3分間) 積分され、得られた** に描く、
に平均越度
は出記27万移動局の
平均速度

9

報(目的地、現燈、待期、実車、空車等配車に必要な情 朝) とともにAVM処理ユニット12を介してデータ彼 【0011】ロケーション処理部13で決定された位置 情報と平均速度算出部27で算出された平均速度は、A V M操作器31から入力される車両の活動状況を示す情

田無線機26から期地局へ間送される。

S

(7)

応じて読み出され、ワークステーション43のディスプ され、無線用モデム装置42でコンピューター用信号に 、情報が入力されることに更新され、常に最新の情報が メモリに記載される。こうして記載された情報は必要に [0012] (b) 図は基地局の構成を示しており、4 は無線機、42は無線用モデム装置、43はワークス **アーションである。データ液用無線機26から送られて** きた移動局の位置情報と平均速度は、無線機41で受信 **変換されてメモリに格納される。格納された情報は新**日 レイ43a上に表示される。

- 用信号から無線用信号に変換されて無線機41から移 場に電送される。基地局から移動局へ電送された指示 局で常時総合的に管理され、移動局に対し配車・走行ル ート等の指示を行なう場合の判断資料となる。ワークス 【0013】ワークステーション43のディスプレイ4 3 a 上に表示された位置情報と平均速度にもとついて移 が推定・把握される。推定・把握された道路状況は基地 曹和は通話皮用無線機32で受信されてAVM操作器3 テーション43 において入力された
基地局から移動局へ の配車等の指示は無線用モデム装置42でコンピュータ が局が位置するポイントの道路状況(道路の混雑程度) 1のディスプレイ上に表示される。

(0014)以上説明したように、各移動局の現在位置 平均速度が各移動局において決定・算出されて自動的 に基地局へ電送されるので、基地局では各移動局が位置 するポイントの適格が況(混雑程度)を常時把握するこ

利用できる場合、GPSアンテナ22を通してGPS受 定の方法を示す概略図である。3個以上のGPS衛星が にロケーション処理部13で絶対位置(経度、緯度)の 行なわれる。GPS衛星から送信されてくる各衛星の軌 道情報と正確な時刻情報をもとに各衛星の瞬時の位置お よび各衛星と移動局との距離が算出される。そして算出 された各衛星と移動局との距離を半径にもち各衛星を中 **心とする円が猫かれる。 描かれた円の交点が経度・緯度** 【0015】図2はロケーション処理部13での位置決 信機14で受信されたGPS衛星からの位置情報をもと 計算が行なわれ、移動局の現在位置が決定される。GP S衛星を用いた移動局の絶対位置の算出は以下の手順で で算出されて、移動局の絶対位置が決定される。

【0016】GPS衛星が建物のかげ、地下、トンネル 等で利用できない場合、車両センサの情報をもとに推測 サ25から走行距離の情報がロケーション処理部13に V力され、一定時間走行ごとに各センサからの情報が累 積算出される。累積算出された結果とGPS衛星が利用 できなくなる直前の絶対位置とが組み合わされて移動局 3から絶対方位、ジャイロ24から相対方位、車速セン **抗法で移動局の現在位置が算出される。地磁気センサ2** の現在位置が決定される。

【0017】図3にGPS衛星による衛星測位システム

S

はお磁気センサ23、ジャイロ24、車速センサ25の をもとにして、

車速センサやら状められた

車両の走行距 離が一定時間走行ごとに順次領算されて現在位置B点が と車両センサを用いた推測的法との組み合わせによる位 置決定の方法を示す。図3において、A点はGPSで求 めた絶対位置しまり起点であり、B点は推測的法により 求められた移動局の現在位置である。 図中、実線の矢印 **膚報から計算された車両の走行軌跡であり、点線は走行 時状の算出方法を示したものである。地磁気もソキ、ジ** + イロ (角速度センサ) から求められた車両の走行方向

れて推測航法で算出されたB点の位置との間でズンが生 とが可能となった場合、GPSにより絶対位置が算出さ 【0018】なお、B点で再びGPS衡星を受信するこ バインれば、絶対位置にB点が補正される。

決定される。

たGPS衛星の信号が受信できない場合でも、車両のセ 電送される。したがって基地局はいかなる場所において 【0019】以上説明した実施例にあっては、GPS衛 星を利用することで絶対位置を確定することができ、ま ンサからの情報にもとついた推測的法により現在位置を 決定することができる。こうして把握された移動局の位 置情報はAVM処理ユニットを通じて基地局へ自動的に **も移動局の現在位置をポイントで把握することができ**

ន

【0020】図4は移動局の位置情報と平均速度が基地 局のディスプレイ43a上に表示される場合の一表示力 し、画面ほぼ中央を左右に走る点線は鉄道を示してい 法を示した図である。図4において、実線は道路を示

る。▲は実車の移動局、△は空車の移動局の現在位置を 示している。各移動局に付与された数字は各移動局の車 ている。各移動局の走行方向は道路と三角形で示される 番であり、()内の数字は各移動局の平均速度を示し 矢印の方向である。

【0021】例えば配車センターAからポイントFの題 32の移動局の平均速度は5で、区間 (d-c)を走行 の中心
画度
かい
学
断
し
に
、
ポ
イ
ン
ト
ド
へ
の
走
行
ル
ー
ト
カ したがって合理性を求める基地局では、これらの情報か トFに向わせる場合、車番132と車番110の移動局 **約翌尺するように基地局によって車番109の移動局を** – b – c – e – F とA – b – d – e – F の2 通りが考え ら区間(b-c)を含むA-b-c-e-Fが配車ルー (0022) 同様に車番109の移動局を目的地ポイン 客へ配車を行なおうとする場合、配車ルートとしてはA られる。ところが区間(d - e)を走行している車番1 している車番110の移動局の平均速度は40である。 トとして適切であると判断して指示することができる。 、て区間 (d – e) よりも区間 (b – c) を含むルー **秀導することができる。**

8

各移動局の現在位置・走行方向とともに各移動局の平均 【0023】以上、上記芸施例で示されているように、

載をディスプレイ上に表示されるので、基地局は各移 助局が位置する道路の混雑状況を的確に把握することが できる。これにより基地局は移動局の誘導、配車ルート の選択等の配車・実車効率にかかわる決定を合理的に行 なうことができる。

モニタリング システムにおいて、移動局に備えた車速 【発明の効果】以上詳述したように本発明に係るAVM システムにあっては、移動局の現在位置をモニタリング に構成されているので、各移動局の位置情報(現在位置 と走行方句)と平均速度から各移動局が位置する道路の することができるAVM(オートマチック・ビークル・ カンチの指性に描して、下語が動配の平位規度や貸出す る平均速度算出手段を備え、前記平均速度が移動局の現 在位置とともに基地局のディスプレイに表示されるよう **混雑状況を的確に把握することができ、配車効率を向上**

20 た群略図であり、(a)図は複動局の構成を、(b)図 【図1】本発明に係るA V Mシステムの一実施例を示し は基地局の構成を示している。 区面の簡単な説明

【図2】移動局の現在位置決定方法を説明するためのロ アーション処理部間込を示した観路図である。

[⊠]

[図 3

7144 JS-49

(7)

機軒5-79847

【図4】移動局の位置情報と平均速度が基地局のディス 【図3】GPS衛星からの電波が受信できない場合の移 助局の位置決定方法を示した図である。

プレイに表示される場合の一表示方法を示した図であ

作号の説明

0024

1.1 ロケーション処財ユリット AVM処理ユニット ۲

ロケーション処理語 3 GPS母舗 4

2

アンアナ/センチロニット

アンテナ 2 2

与類似カンチ ンナイロ 3 2

車速センサ 3

デーク液用無線機 9

させることができる。

中约速度算出部

AVM整語

通話用無線機 33

料金メータ(空車・実車) 33

無談報

無線用モデム装置

ワークスヤーション

[32]

 6PS街屋
 GPS街屋

 226PS
 14

 23 (経費権度)計算
 23 (投産者度)計算

 24 (投産者度)計算
 24 (投産者度)計算

 25 (単建センサ 起対が仕 類 位置決定