

Rappels : La pente d'une droite (non verticale) est le nombre relatif m qui indique de combien d'unités la droite monte (ou descend si m < 0) lorsqu'on avance d'une unité vers la droite.

La pente d'une droite d'équation « y = mx + p » est son coefficient directeur m.

Idée: La dérivée d'une fonction en un point (de sa courbe) est la pente de la fonction en ce point. C'est un nombre qui sert à mesurer la vitesse de variation de la fonction au point considéré.

La dérivée généralise la notion de pente à une fonction. Elle dépend du point. Elle n'existe pas toujours. **Définitions.** On se place en un point d'abscisse a de la courbe représentative d'une fonction f.

Si en faisant un zoom infini sur le point, la courbe se déforme et devient une droite (non verticale), alors :

- Cette droite est appelée tangente à la courbe représentative de f en a.
- On dit que la fonction f est **dérivable en** a, (elle admet une dérivée en a)
- La **dérivée de la fonction** f **en** a, notée f'(a) est la pente de la tangente (à f en a).

Définition précise. Soit *I* un intervalle. Soit $f:I \to \mathbb{R}$. Soit a et b des réels de l'intervalle I. On note A et B les points de la courbe C_f d'abscisses respectives $x_A = a$ et $x_B = b$. Donc A = (a; f(a)) et B = (b; f(b)). On note h = b - af est dérivable en a ssi $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h} \in \mathbb{R}$.

Si f est dérivable en a, la dérivée de f en a est $f'(a) = \lim_{h \to 0} \frac{f(a+h)-f(a)}{h} \in \mathbb{R}$

Déf. $\frac{f(a+h)-f(a)}{h} = \frac{f(b)-f(a)}{b-a}$ est le taux d'accroissement de f entre a et b.

Définition (Tangente). Si f est dérivable en a, la tangente à C_f en a est la droite passant par A = (a; f(a)) et de coefficient directeur f'(a). **Propriété.** L'équation de cette droite est : « y = f'(a)(x - a) + f(a) »

f(a+h) - f(a)

Définition. f est dérivable sur I si elle est dérivable en tout réel x de I.

Dans ce cas, on appelle fonction dérivée de la fonction f, la fonction $f': I \to \mathbb{R}: x \mapsto f'(x)$

Contre-exemple. Les fonctions $x \mapsto |x|$ et $x \mapsto \sqrt{x}$ ne sont pas dérivables en 0

Dérivées usuelles. A chaque ligne, f est définie et vaut l'expression de la colonne à gauche sur tout D_f . On déduit que f est dérivable sur $D_{f'}$, et f'(x) vaut | - On déduit que f est dérivable sur I.

Opérati	ions sur	les	dérivées.	Α	chaq	ue	liane	:

- On suppose que u et v sont dérivables.

	1)		. ,) ()	•		
l'expression	n dans la derni	ère co	lonne s	sur tout $D_{f'}$.			
f(x)	Conditions	D_f	$D_{f'}$	f'(x)	f	Conditions	f'
С	$c \in \mathbb{R}$	\mathbb{R}	\mathbb{R}	0	u + v	$u, v: I \to \mathbb{R}$	u' + v'
x		\mathbb{R}	\mathbb{R}	1	u - v	$u, v: I \to \mathbb{R}$	u'-v'
ax	$a \in \mathbb{R}$	\mathbb{R}	\mathbb{R}	а	$a \times u$	$a \in \mathbb{R}, \ u:I \to \mathbb{R}$	au'
ax + b	$a,b \in \mathbb{R}$	\mathbb{R}	\mathbb{R}	а	$u \times v$	$u, v: I \to \mathbb{R}$	u'v + v'u
<i>x</i> ²		\mathbb{R}	\mathbb{R}	2 <i>x</i>	<u>1</u>	$v:I\to\mathbb{R}^*$	-v'
x^3		\mathbb{R}	\mathbb{R}	$3x^2$	\overline{v}		$\overline{v^2}$
x^n	$n \in \mathbb{Z}, n \ge 0$	\mathbb{R}	\mathbb{R}	nx^{n-1}	<u>u</u>	$u:I\to\mathbb{R}$	$\underline{u'v-v'u}$
x^n	$n \in \mathbb{Z}, n < 0$	\mathbb{R}^*	\mathbb{R}^*	nx^{n-1}	υ	$v:I\to\mathbb{R}^*$	v^2
x^r	$r \in \mathbb{R}$	\mathbb{R}_+	\mathbb{R}_+^*	rx^{r-1}	$x \mapsto v(ax+b)$	$v: \mathbb{R} \to \mathbb{R}$	$x \mapsto av'(ax+b)$
1		\mathbb{R}^*	\mathbb{R}^*	1	e^u	$u:I\to\mathbb{R}$	u'e ^u
$\frac{1}{x} = x^{-1}$				$-\frac{1}{x^2} = -x^{-2}$			
$\sqrt{x} = x^{\frac{1}{2}}$		\mathbb{R}_+	\mathbb{R}_+^*	$\frac{1}{2\sqrt{x}} = \frac{1}{2}x^{-\frac{1}{2}}$			
$\sqrt{x} = x^2$				$\frac{1}{2\sqrt{x}} = \frac{1}{2}x^2$			
e^{x}		TR:	IR.	e^{x}			