# Differential Geometry I

Lecture notes

Andriy Haydys

September 22, 2023

This is a draft. If you spot a mistake, please let me know.

# **Contents**

| 1 | Smooth surfaces |                                |   |
|---|-----------------|--------------------------------|---|
|   | 1.1             | The notion of a smooth surface | 2 |
|   | 1.2             | The change of coordinates maps | 8 |
|   | 1.3             | Smooth functions on surfaces   | 9 |

## **Chapter 1**

## **Smooth surfaces**

#### 1.1 The notion of a smooth surface

Let  $U \subset \mathbb{R}^n$  be an open subset and  $f \in C^1(U)$ . It is known from analysis that  $x_0 \in U$  is a point of extremum for f if

$$\frac{\partial f}{\partial x_i}(x_0) = 0$$

holds for all i = 1, ..., n. Notice that this is a necessary condition, which is not sufficient in general.

A more general type of problems does not fit into this scheme. For example, consider the following.

**Problem.** Among all rectangular parallelepipeds, whose diagonal has a fixed length, say 1, find the one with maximal volume.



Figure 1.1: A parallelepiped

Thus, we want to find a point of maximum of the function f(x, y, z) = xyz on the set

$$V = \{(x, y, z) \in \mathbb{R}^3 \mid x > 0, y > 0, z > 0 \quad \text{and} \quad x^2 + y^2 + z^2 = 1\} \subset S^2.$$
 (1.1)

However, V is *not* an open subset of  $\mathbb{R}^3$  so that the receipy known from the analysis course is not readily applicable.



Figure 1.2: The spherical triangle x, y, z > 0

This problem is relatively easy to solve, however. Indeed, since z > 0, we obtain  $z = \sqrt{1 - x^2 - y^2}$  so that we are essentially interested in the function

$$F(x,y) := f(x,y,\sqrt{1-x^2-y^2}) = xy\sqrt{1-x^2-y^2}$$

More precisely, we want to find points of maximum of F on the set  $\{(x,y) \mid x^2 + y^2 < 1, x > 0, y > 0\}$ , which is an open subset of  $\mathbb{R}^2$ .

We compute

$$\frac{\partial F}{\partial x} = y\sqrt{1 - x^2 - y^2} - xy\frac{x}{\sqrt{1 - x^2 - y^2}} = 0, 
\frac{\partial F}{\partial y} = x\sqrt{1 - x^2 - y^2} - xy\frac{y}{\sqrt{1 - x^2 - y^2}} = 0.$$
(1.2)

Since  $x \neq 0$  and  $y \neq 0$ , we have

(1.2) 
$$\iff \frac{1-x^2-y^2=x^2}{1-x^2-y^2=y^2} \implies x^2=y^2 \implies x=y$$

$$\implies 3x^2=1 \implies x=y=\frac{1}{\sqrt{3}}$$

$$\implies z=\frac{1}{\sqrt{3}}.$$

Hence, if there is a parallelepiped maximizing the volume among all rectangular parallelepipeds with the given length of the diagonal, this must be the cube.

**Exercise 1.3.** Show that  $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$  is a point of maximum indeed.

Consider a more general problem of constrained maximum/minimum. Given  $f, \varphi \in C^{\infty}(\mathbb{R}^n)$  find a point of maximum/minimum of f on the set

$$S := \{ x \in \mathbb{R}^n \mid \varphi(x) = 0 \}.$$

**Proposition 1.4.** Assume that for  $p \in S$  we have

$$\frac{\partial \varphi}{\partial x_n}(p) \neq 0. \tag{1.5}$$

Then there is a neighbourhood W of p in  $\mathbb{R}^n$ , an open subset  $V \subset \mathbb{R}^{n-1}$ , and a smooth function  $\psi \colon V \to \mathbb{R}$  such that for  $x = (y, z) \in \mathbb{R}^{n-1} \times \mathbb{R}$  we have

$$x \in S \cap W \iff y \in V \text{ and } z = \psi(y).$$

This is a celebrated implicit function theorem, whose proof was given in the analysis course.

**Theorem 1.6.** Let  $p \in S$  be a point of (local) maximum of f on S. If (1.5) holds, then there exists some  $\lambda \in \mathbb{R}$  such that

$$\frac{\partial f}{\partial x_{i}}(p) = \lambda \frac{\partial \varphi}{\partial x_{i}}(p) \iff \nabla f(p) = \lambda \nabla \varphi(p)$$
(1.7)

holds for each  $j = 1, \ldots, n$ .

*Proof.* Let  $p = (y_0, z_0)$  be a local maximum for f on S. Hence,  $y_0$  is a local maximum for the function

$$F \colon V \to \mathbb{R}, \qquad F(y) \coloneqq f(y, \psi(y))$$

This yields

$$\frac{\partial F}{\partial y_{i}}(y_{0}) = \frac{\partial f}{\partial y_{i}}(p) + \frac{\partial f}{\partial x_{n}}(p) \frac{\partial \psi}{\partial y_{i}}(y_{0}) = 0$$

for all  $j \leq n - 1$ .

Furthermore, since  $\varphi(y, \psi(y)) \equiv 0$ , we have

$$\frac{\partial \varphi}{\partial y_i} + \frac{\partial \varphi}{\partial x_n} \frac{\partial \psi}{\partial y_i} \equiv 0.$$

This yields in turn

$$\frac{\partial \psi}{\partial y_j}\left(y_0\right) = -\frac{\partial \varphi}{\partial y_j}\left(p\right) \bigg/ \frac{\partial \varphi}{\partial x_n}\left(p\right) \qquad \Longrightarrow \qquad \frac{\partial f}{\partial y_j}\left(p\right) = \left(\frac{\partial f}{\partial x_n}\left(p\right) \bigg/ \frac{\partial \varphi}{\partial x_n}\left(p\right)\right) \cdot \frac{\partial \varphi}{\partial y_j}\left(p\right).$$

Thus, (1.7) holds for all  $j \leq n-1$  with  $\lambda := \frac{\partial f}{\partial x_n}(p) / \frac{\partial \varphi}{\partial x_n}(p)$  independent of j. For j = n we have

$$\frac{\partial f}{\partial x_n}(p) = \left(\frac{\partial f}{\partial x_n}(p) \middle/ \frac{\partial \varphi}{\partial x_n}(p)\right) \cdot \frac{\partial \varphi}{\partial x_n}(p) = \lambda \frac{\partial \varphi}{\partial x_n}(p).$$

Thus, (1.7) holds also for j = n with the same  $\lambda$ .

Let us come back to the example about maximal value of parallelepipeds with a fixed length of the diagonal. Thus, if (x,y,z) is a point of maximum of f on (1.1), then there exists  $\lambda \in \mathbb{R}$  such that

$$yz = 2\lambda x$$
  
 $xz = 2\lambda y$   $\Longrightarrow$   $(xyz)^2 = 8\lambda^3 xyz$   $\Longrightarrow$   $xyz = 8\lambda^3$ .  
 $xy = 2\lambda z$ 

This yields in turn

$$8\lambda^3 = xyz = x(yz) = 2\lambda x^2.$$

Notice that  $\lambda \neq 0$ , since otherwise x = 0 or y = 0 or z = 0. Hence, we obtain  $x = 2\lambda$ .

A similar argument yields also  $y = 2\lambda$  and  $z = 2\lambda$ . Therefore we obtain

$$4\lambda^2 + 4\lambda^2 + 4\lambda^2 = 1$$
  $\Longrightarrow$   $\lambda = \frac{1}{2\sqrt{3}}$   $\Longrightarrow$   $x = y = z = \frac{1}{\sqrt{3}}$ 

which is in agreement with our previous computation.

Coming back to Proposition 1.28, it is clear that it is only important that one of the partial derivatives of  $\varphi$  does not vanish. This leads to the following definition.

**Definition 1.8** (Surface). A non-empty set  $S \subset \mathbb{R}^3$  is called a (smooth) *surface*, if for any  $p \in S$  there exists an open set  $V \subset \mathbb{R}^2$  and a smooth map  $\psi : V \to \mathbb{R}^3$  such that the following holds:

- (i)  $\psi(V) =: U$  is a neighbourhood of p in S; in particular,  $\psi(V) \subset S$ .
- (ii)  $\psi \colon V \to U$  is a homeomorphism.
- (iii)  $D_q \psi \colon \mathbb{R}^2 \to \mathbb{R}^3$  is injective  $\forall q \in V$ .

**Example 1.9.** Assume  $\varphi \in C^{\infty}(\mathbb{R}^3)$  satisfies

$$\frac{\partial \varphi}{\partial z}(p) \neq 0$$
 for all  $p \in S := \varphi^{-1}(0)$ .

Let  $\psi$  be as in Proposition 1.28. Define  $\Psi(x,y) := (x,y,\psi(x,y))$ . If U and V are also as in Proposition 1.28, then  $\Psi \colon V \to S \cap U$  is a homeomorphism, since  $\pi \colon S \cap U \to V, \pi(x,y,z) = (x,y)$  is a continuous inverse. Furthermore,

$$D\Psi = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \partial_x \psi & \partial_y \psi \end{pmatrix}$$

is clearly injective at all points. Hence, S is a surface.

Again, the same conclusion holds if we assume only that  $\nabla \varphi(p) \neq 0$  for all  $p \in \varphi^{-1}(0)$ . In particular,

- the sphere  $S^2 = \{x^2 + y^2 + z^2 = 1\}$
- the cylinder  $C = \{(x, y, z) \mid x^2 + y^2 = 1\}$
- the hyperboloid  $H = \{x^2 + y^2 z^2 = 1\}$

are surfaces

**Example 1.10** (Torus). Let C be the circle of radius r in the yz-plane centered at the point (0, a, 0) as shown on Fig. 1.4, where a > r.

More formally,

$$T := \{(\sqrt{x^2 + y^2} - a)^2 + z^2 = r^2\}.$$

**Exercise 1.11.** Check that T is a surface indeed.



Figure 1.3: The cylinder and hyperboloid



Figure 1.4: The torus as a circle rotated with respect to an axis

**Example 1.12** (A non-example). The double cone  $C_0 := \{x^2 + y^2 - z^2 = 0\}$  is not a surface. Indeed, assume  $C_0$  is a surface. Then the tip of the cone p must have a neighbourhood U homeomorphic to an open disc in  $\mathbb{R}^2$ .

Let  $f: U \to D$  be a homeomorphism. Then  $f: U \setminus \{p\} \to D \setminus \{f(p)\}$  is also a homeomorphism. However, this is impossible, since the punctured disc is connected but  $U \setminus \{p\}$  is disconnected. Hence, p does not have a neighbourhood homeomorphic to a disc (or any open subset of  $\mathbb{R}^2$ ).

**Exercise 1.13.** Show that a straight line is not a surface.

Remark 1.14.

- 1) The map  $\psi$  in the definition of the surface is called a *parametrization*.
- 2) Condition (iii) is equivalent to the following:

$$\partial_u \psi$$
 and  $\partial_v \psi$  are linearly independent

at each point  $(u, v) \in V$ .

**Proposition 1.15.** Let S be a surface. For any  $p \in S$  there exists a neighbourhood  $W \subset \mathbb{R}^3$  and  $\varphi \in C^{\infty}(W)$  such that

$$S \cap W = \{x \in W \mid \varphi(x) = 0\}$$
 and  $\nabla \varphi(x) \neq 0$ 

for any  $x \in S \cap W$ .



Figure 1.5: The torus



Figure 1.6: The double cone

*Proof.* Choose a parametrization  $\psi \colon V \to U \subset S$ . Let  $(u_0, v_0) \in V$  be a unique point such that  $\psi(u_0, v_0) = p$ . Choose a vector  $n \in \mathbb{R}^3$  such that

$$\partial_u \psi (u_0, v_0), \quad \partial_v \psi (u_0, v_0), \quad n$$
 (1.16)

are linearly independent. Consider the map

$$\Psi \colon \mathbf{V} \times \mathbb{R} \to \mathbb{R}^3, \qquad \Psi(u, v, w) = \psi(u, v) + w \cdot n$$

The linear independence of (1.16) yields  $\det D\Psi (u_0, v_0, 0) \neq 0$ . By the inverse map theorem, there exists an open neighbourhood  $W \subset \mathbb{R}^3$  of p and a smooth map  $\Phi \colon W \to V \times \mathbb{R} \subset \mathbb{R}^3$  such that

$$\Psi \circ \Phi(x) = x \quad \forall x \in W.$$

If  $\Phi = (\varphi_1, \varphi_2, \varphi_3)$ , then

$$\Psi \circ \Phi(x) = \psi(\varphi_1(x), \varphi_2(x)) + \varphi_3(x) \cdot n = x.$$

Observe that

$$x \in S \cap W \iff \exists (u, v) \in V \text{ such that } \psi(u, v) = x$$

and consequently

$$\Psi(u, v, 0) = \psi(u, v) = x = \Psi(\varphi_1(x), \varphi_2(x), \varphi_3(x)).$$

Since  $\Psi$  is injective (on an open neighbourhood of  $(u_0, v_0, 0)$ ), we have

$$x \in S \cap W \iff \varphi_3(x) = 0.$$

Furthermore, since  $\det D\Phi\left(x\right)\neq0$  for all  $x\in W$ , the vectors  $\nabla\varphi_{1}\left(x\right),\nabla\varphi_{2}\left(x\right),\nabla\varphi_{3}\left(x\right)$  are linearly independent at each  $x\in W$ . In particular,  $\nabla\varphi_{3}\left(x\right)\neq0$  for all  $x\in W$ .

The following corollary follows immediately from Proposition 1.15.

**Corollary 1.17.** Any surface is locally the graph of a smooth function.  $\Box$ 

**Example 1.18** (A non-example). The union of two intersecting planes in  $\mathbb{R}^3$  is *not* a surface. Indeed, assume that

$$S := \{z = 0\} \cup \{x = 0\}$$

is a surface. Then there exists a smooth function  $\varphi$  defined in a neighbourhood W of the origin such that  $\varphi$  vanishes on S and  $\nabla \varphi(0) \neq 0$  by Proposition 1.15. Notice that  $\varphi$  vanishes identically along S, hence  $\varphi$  vanishes identically along all three coordinate axes (at least in a neighbourhood of the origin). This yields in turn  $\nabla \varphi(0) = 0$ , which is a contradiction.

**Exercise 1.19.** Show that the cone  $C := \{x^2 + y^2 - z^2 = 0, z \ge 0\}$  is not a smooth surface, cf. Example 1.12 above.

## 1.2 The change of coordinates maps

Neither parametrizations, nor local functions as in the Proposition 1.15 are unique. Our next goal is to understand a relation between different parametrizations.

Thus, let

$$\psi_1: V_1 \longrightarrow U_1 \subset S$$
 and  $\psi_2: V_2 \longrightarrow U_2 \subset S$ 

be two parametrizations such that  $U_1 \cap U_2 \neq 0$ . Since both  $\psi_1$  and  $\psi_2$  are homeomorphisms, we have a well-defined continuous map

$$\psi_{21} := \psi_2^{-1} \circ \psi_1 \colon V_{12} \longrightarrow V_{21}$$

which is called "a transition map" or "a change of coordinates map".

Notice that  $\psi_{21}$  is a map  $\mathbb{R}^2 \longrightarrow \mathbb{R}^2$  defined on an open subset. Therefore, transition maps can be studied by the tools familiar from the analysis course.

**Example 1.20.** Consider the sphere  $S^2$ , which can be covered by the images of two parametrizations as follows. The inverse of the steregraphic projection from the north pole N is given by

$$(u,v) \longmapsto \psi_N(u,v) = \frac{1}{1+u^2+v^2} (2u, 2v, -1 + u^2 + v^2)$$

This is a homeomorphism viewed as a map  $\mathbb{R}^2 \longrightarrow S^2 \setminus \{N\}$  and is clearly smooth.

**Exercise 1.21.** Show that  $D\psi_N$  is injective at each point.

Thus,  $\psi_N$  is a parametrization (at each point  $p \in S^2 \setminus \{N\}$ ). Of course, we have also the inverse  $\psi_S$  of the stereographic projection from the south pole S. The images of these two parametrizations cover together the whole sphere  $S^2$ . A straightforward computation shows that the change of coordinates map  $\psi_{SN} := \psi_S^{-1} \circ \psi_N \colon \mathbb{R}^2 \setminus \{0\} \longrightarrow \mathbb{R}^2 \setminus \{0\}$  is given by

$$\psi_{SN}(u,v) = \frac{1}{u^2 + v^2}(u,v)$$



Figure 1.7: The transition map

Exercise 1.22. Show that the sphere can not be covered by the image of a single parametrization.

**Theorem 1.23.** Let S be a surface. For any two parametrizations  $\psi_1$  and  $\psi_2$  as above, the change of coordinates map  $\psi_{12}$  is smooth.

*Proof.* Since smoothness is a local property, it suffices to show that for all  $(u_0, v_0) \in V_{12}$  there exists a neighbourhood  $V_0 \subset V_{12}$  such that  $\psi_{21}\big|_{V_0}$  is smooth.

Thus, set  $p_0 := \psi_1(u_0, v_0)$ . For this  $p_0$  and  $\psi_2$  construct a smooth map  $\Phi_2 : W \longrightarrow V_2 \times \mathbb{R}$  as in the proof of the Proposition 1.15. Recall that

$$\Phi_2\big|_{S\cap W}\colon S\cap W\longrightarrow \mathcal{V}_2\times\{0\}=\mathcal{V}_2$$

equals  $\psi_2^{-1}$ .

The map  $\Phi_2 \circ \psi_1 \colon \psi_1^{-1} \left( S \cap W \right) \to V_2$  is clearly smooth as a composition of smooth maps. Set  $V_0 \coloneqq V_{12} \cap \psi_1^{-1} \left( S \cap W \right)$ . Since the image of  $\psi_1$  lies in S, we obtain that

$$\Phi_2 \circ \psi_1 \big|_{V_0} = \psi_2^{-1} \circ \psi_1 \big|_{V_0} = \psi_{21} \big|_{V_0}$$

is smooth.  $\Box$ 

### 1.3 Smooth functions on surfaces

**Definition 1.24.** Let S be a surface. A function  $f: S \to \mathbb{R}$  is said to be smooth, if for any parametrization  $\psi: V \to U$  the composition

$$F := f \circ \psi \colon \mathbf{V} \longrightarrow \mathbb{R}$$



Figure 1.8: The inverse of the stereographic projection

is smooth. The function  $F := f \circ \psi$  is called a local (coordinate) representation of f.

Remark 1.25. Theorem 1.23 imples that if  $f \circ \psi_1$  is smooth, then  $f \circ \psi_2$  is also smooth on  $V_{21} = \psi_2^{-1} (U_1 \cap U_2)$ . Indeed,

$$f \circ \psi_2 = f \circ \psi_1 \circ \left(\psi_1^{-1} \circ \psi_2\right) = \left(f \circ \psi_1\right) \circ \psi_{12}$$

 $f \circ \psi_1$  and  $\psi_{12}$  are smooth. Hence, if  $(V_i, \psi_i)$  is a collection of parametrizations such that  $\psi_i(V_i)$  covers all of S, it suffices to check that  $f \circ \psi_i$  is smooth for all i.

**Example 1.26.** Let  $h: \mathbb{R}^3 \to \mathbb{R}$  be an arbitrary smooth function. Define  $f: S \to \mathbb{R}$  as the restriction of h. Then f is smooth, since for any parametrization  $\psi$  we have  $f \circ \psi = h \circ \psi$  and the right hand side is clearly smooth.

For example, for any fixed  $a \in \mathbb{R}^3$  the height function

$$f_a(x) = \langle a, x \rangle \qquad x \in S$$

is a smooth function on S. In particular, set  $S=S^2$  and  $h\left(x,y,z\right)=z$ . Then the coordinate representation of  $f=h\big|_{S^2}$  with respect to  $\psi_N$  is

$$F(u,v) = f \circ \psi_N(u,v) = \frac{-1 + u^2 + v^2}{1 + u^2 + v^2}$$

This can be seen as a sanity check: This function is smooth indeed.

**Example 1.27.** Let  $\psi \colon V \to U$  be a parametrization of a surface S. Since  $\psi$  is a homeomorphism, we have the inverse map

$$\varphi \coloneqq \psi^{-1} \colon \mathcal{U} \longrightarrow \mathcal{V}.$$

Since U itself is a surface (with a single parametrization  $\psi$ ), it makes sense to ask if  $\varphi$  viewed as a map  $U \to \mathbb{R}^2$  is smooth, which means by definition that both components of  $\varphi$  are smooth functions. This is the case indeed, since the local representation of  $\varphi$  is nothing else but  $\varphi \circ \psi = \mathrm{id}$ , which is surely smooth. Any such pair  $(U, \varphi)$  is called a *chart* on S.

**Proposition 1.28.** Let S be a surface. Then the set  $C^{\infty}(S)$  of all smooth functions on S is a vector space, that is

$$f, g \in C^{\infty}(S)$$
  $\Longrightarrow$   $\lambda f + \mu g \in C^{\infty}(S)$ .

In fact, we also have

$$f, g \in C^{\infty}(S) \implies f \cdot g \in C^{\infty}(S)$$

where  $f \cdot g$  is the product-function  $p \mapsto f(p) \cdot g(p)$ .

*Proof.* We prove the last statement only, while the first one is left as an exercise to the reader. If  $\psi \colon U \to V$  is a parametrization, then  $(f \cdot g) \circ \psi = (f \circ \psi) \cdot (g \circ \psi)$ . Since  $(f \circ \psi) \in C^{\infty}(V)$  and  $(g \circ \psi) \in C^{\infty}(V)$ , the function  $(f \cdot g) \circ \psi$  is smooth as the product of smooth functions of two variables.

Let  $W \subset \mathbb{R}^n$  be an open set.

**Definition 1.29.** A continuous map  $f: W \longrightarrow S$ , where S is a surface, is called *smooth*, if for any parametrization  $\psi: V \to U \subset S$  the map

$$\varphi \circ f = \psi^{-1} \circ f \colon f^{-1}(\mathbf{U}) \longrightarrow \mathbf{V} \subset \mathbb{R}^2$$

is smooth.

In the above definition we require that f is continuous to ensure that  $f^{-1}(U)$  is an open subset so that it makes sense to talk about smoothness of the coordinate representation  $\varphi \circ f$ .



Figure 1.9: A map into a surface and its coordinate representation

**Proposition 1.30.**  $f: W \to S$  is smooth if and only if f is smooth as a map  $W \to \mathbb{R}^3$ . More formally, this means the following: If  $\iota: S \to \mathbb{R}^3$  denotes the natural inclusion map, then

$$f \in C^{\infty}(W; S) \qquad \Longleftrightarrow \qquad \iota \circ f \in C^{\infty}(W; \mathbb{R}^3)$$

*Proof.* Pick a parametrization  $\psi$  of S and construct a smooth map  $\Phi \colon X \to \mathbb{R}^3$  just as in the proof of Proposition 1.15, where  $X \subset \mathbb{R}^3$  is an open set. Assume  $f \colon W \to \mathbb{R}^3$  is smooth. Then  $\Phi \circ f$  is also smooth as the composition of smooth maps. However, since f takes values in S and  $\Phi|_S = \varphi = \psi^{-1}$ , we obtain that  $\varphi \circ f = \Phi \circ f \colon \mathbb{R}^2 \to \mathbb{R}^2$  is smooth.

Conversely, assume that  $f: W \to S$  is smooth. Then

$$f|_{f^{-1}(\mathbf{U})} = (\psi \circ \varphi) \circ f|_{f^{-1}(\mathbf{U})} = \psi \circ (\varphi \circ f)|_{f^{-1}(\mathbf{U})}$$

is again smooth as the composition of smooth maps.

The following class of maps will be particularly important in the sequel.

**Definition 1.31.** Let  $I \subset \mathbb{R}$  be an (open) interval. A smooth map  $\gamma \colon I \to S$  is called a smooth curve on S.

If  $0 \in I$ , we say that  $\gamma$  is a smooth curve through  $p := \gamma(0) \in S$ .



Figure 1.10: A smooth curve on a surface

**Example 1.32.** Let  $p \in S^2$  and  $v \in \mathbb{R}^3$  such that  $\langle p, v \rangle = 0$  and ||v|| = 1. Define  $\gamma_v \colon \mathbb{R} \to \mathbb{R}^3$  by  $\gamma_v(t) = (\cos t) \cdot p + (\sin t) \cdot v$ . Since

$$\|\gamma_v(t)\|^2 = \langle \cos t \cdot p + \sin t \, v, \cos t \, p + \sin t \cdot v \rangle$$
  
=  $\cos^2 t \cdot \|p\|^2 + 0 + \sin^2 t \cdot \|v\|^2$   
=  $\cos^2 t + \sin^2 t = 1$ ,

we obtain that  $\gamma_v \colon \mathbb{R} \to S^2$  is a smooth curve through p. Of course, the image of  $\gamma_v$  is a great circle on  $S^2$ .

Even more generally, we can define smooth maps between surfaces as follows.

**Definition 1.33.** Let  $S_1$  and  $S_2$  be two surfaces. A continuous map  $f: S_1 \to S_2$  is said to be smooth, if for any parametrizations  $\psi \colon V \to U \subset S_1$  and  $\chi \colon W \to X \subset S_2$  the map

$$\chi^{-1} \circ f \circ \psi \colon \psi^{-1} \left( f^{-1} \left( X \right) \right) \longrightarrow W \tag{1.34}$$

is smooth. Just like in the case of functions, (1.34) is called the coordinate (or local) representation of f.

Remark 1.35. Since parametrizations and charts contain the same amount of information, we can also define smoothness of a map  $f: S_1 \to S_2$  in terms of charts as follows: f is smooth if and only if for any chart  $(U, \varphi)$  on  $S_1$  and any chart  $(X, \xi)$  on  $S_2$  the map

$$\xi \circ f \circ \varphi^{-1} \colon \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

is smooth (on an open subset where defined). The map  $\xi \circ f \circ \varphi^{-1}$  is also called a coordinate representation of f (with respect to charts  $(U, \varphi)$  and  $(X, \xi)$ ).



Figure 1.11: A smooth map between surfaces and its coordinate representation

Remark 1.36. Just like in the case of functions, it suffices to find two collections  $\{\psi_i\colon V_i\to U_i\}$  and  $\{\chi_j\colon W_j\to X_j\}$  of parametrizations such that

$$\bigcup_{i} U_{i} = S_{1} \qquad and \qquad \bigcup_{j} X_{j} = S_{2}$$

and check that all coordinate representations  $\chi_j^{-1} \circ f \circ \psi_i$  are smooth.

Consider the antipodal map

$$a \colon S^2 \to S^2, \quad a(x) = -x.$$

For any  $(u, v) \in \mathbb{R}^2$  we have

$$a \circ \psi_N(u, v) = -\frac{1}{1 + u^2 + v^2} (2u, 2v, -1 + u^2 + v^2)$$

Since  $\psi_S^{-1} \colon S^2 \backslash \{S\} \to \mathbb{R}^2$  is given by

$$(x, y, z) \longmapsto \left(\frac{x}{1+z}, \frac{y}{1+z}\right),$$

we obtain

$$\psi_S^{-1} \circ a \circ \psi_N(u, v) = \frac{1}{1 + \frac{1 - u^2 - v^2}{1 + u^2 + v^2}} \left( -\frac{2u}{1 + u^2 + v^2}, -\frac{2v}{1 + u^2 + v^2} \right)$$
$$= -\frac{1 + u^2 + v^2}{2} \left( \frac{2u}{1 + u^2 + v^2}, \frac{-2v}{1 + u^2 + v^2} \right)$$
$$= -(u, v)$$

It follows in a similar manner, that  $\psi_S^{-1} \circ a \circ \psi_S$ ,  $\psi_N^{-1} \circ a \circ \psi_N$ , and  $\psi_N^{-1} \circ a \circ \psi_S$  are also smooth. Hence, a is smooth.

**Proposition 1.37.** Let  $h: \mathbb{R}^3 \to \mathbb{R}^3$  be a smooth map such that  $h(S_1) \subset S_2$ , where  $S_1$  and  $S_2$  are surfaces. Then  $h|_{S_1}: S_1 \to S_2$  is also smooth.

The proof of this proposition is similar to the proof of Proposition 1.30 and is left as an exercise to the reader.

To construct a more interesting example, pick a polynomial

$$p(z) := z^n + a_{n-1}z^{n-1} + \dots + a_1z + a_0$$

with complex coefficients. Identifying  $\mathbb{R}^2$  with  $\mathbb{C}$ , we can view p as a smooth map  $\mathbb{R}^2 \to \mathbb{R}^2$ . Define  $f \colon S^2 \to S^2$  by

$$f(p) = \begin{cases} \psi_N \circ p \circ \psi_N^{-1}(p) & \text{if } p \neq N, \\ N & \text{if } p = N. \end{cases}$$
 (1.38)

I claim that f is smooth. Indeed, since by the construction of f, the coordinate representation of f with respect to the pair  $(\mathbb{R}^2, \psi_N)$  and  $(\mathbb{R}^2, \psi_N)$  of parametrizations (the first one on the source of f, the second one on the target), is

$$\psi_N^{-1} \circ f \circ \psi_N = \underbrace{\psi_N^{-1} \circ \psi_N}_{\text{id}} \circ p \circ \underbrace{\psi_N^{-1} \circ \psi_N}_{\text{id}} = p.$$

Hence f is smooth at each point  $p \in S^2 \setminus \{N\}$ . To check that f is also smooth at N too, consider

$$\psi_S \circ f \circ \psi_S^{-1}(z) = \begin{cases} \psi_S \circ \psi_N^{-1} \circ p \circ \psi_N \circ \psi_S^{-1} & \text{if } z \neq 0, \\ 0 & \text{if } z = 0. \end{cases}$$

We know that

$$\psi_{SN}(z) = \psi_S \circ \psi_N^{-1}(z) = \frac{1}{|z|^2} z = \frac{1}{z \cdot \bar{z}} \cdot z = \frac{1}{\bar{z}}$$

$$\implies \psi_{NS}(z) = \psi_{SN}^{-1}(z) = \frac{1}{\bar{z}}.$$

Hence, we compute

$$\psi_{SN} \circ p \circ \psi_{NS}(z) = \psi_{SN} \left( \frac{1}{\overline{z}^n} + \frac{a_{n-1}}{\overline{z}^{n-1}} + \dots + a_0 \right)$$

$$= \psi_{SN} \left( \frac{1 + a_{n-1}\overline{z} + \dots + a_0\overline{z}^n}{\overline{z}^n} \right)$$

$$= \frac{z^n}{1 + \overline{a}_{n-1}z + \dots + \overline{a}_0z^n} , \quad \text{if } z \neq 0.$$

This yields that  $\psi_S \circ f \circ \psi_S^{-1}$  is smooth even at z=0, that is f is smooth everywhere on S (or, simply, f is smooth).

**Theorem 1.39.** Suppose  $f: S_1 \to S_2$  and  $g: S_2 \to S_3$  are smooth maps between surfaces. Then  $g \circ f: S_1 \to S_3$  is also smooth.

*Proof.* Pick a point  $p_1 \in S_1$  and denote  $p_2 \coloneqq f(p_1) \in S_2$ ,  $p_3 \coloneqq g(p_2) = g(f(p_1)) \in S_3$ . Pick parametrizations

$$\psi_i \colon \mathbf{V}_i \longrightarrow \mathbf{U}_i \subset S_i$$
.



In a sufficiently small neighbourhood of  $p_1$  we have

$$\psi_3^{-1} \circ (g \circ f) \circ \psi_1 = \underbrace{\psi_3^{-1} \circ g \circ \psi_2}_{G \in C^{\infty}} \circ \underbrace{\psi_2^{-1} \circ f \circ \psi_1}_{F \in C^{\infty}}.$$

Hence,  $g \circ f$  is smooth in a neighbourhood of  $p_1$ . Since  $p_1$  was arbitrary,  $g \circ f$  is smooth everywhere.

*Remark* 1.40. The proof shows that the coordinate representation of the composition is the composition of coordinate representations.

Notice that Theorem 1.39 yields in particular the following: If  $\gamma: I \to S_1$  is a smooth curve and  $f: S_1 \to S_2$  is a smooth map, then  $f \circ \gamma: I \to S_2$  is also a smooth curve.

**Definition 1.41.** A smooth map  $f: S_1 \to S_2$  is called a diffeomorphism, if there exists a smooth map  $g: S_2 \to S_1$  such that

$$g \circ f = \mathrm{id}_{S_1}$$
 and  $f \circ g = \mathrm{id}_{S_2}$ 

**Example 1.42.** The antipodal map  $a: S^2 \to S^2$  is a diffeomorphism.

**Example 1.43.** The hyperboloid  $H = \{x^2 + y^2 - z^2 = 1\}$  and cylinder  $C = \{x^2 + y^2 = 1\}$  are diffeomorphic, that is there exists a diffeomorphism  $f \colon H \to C$ . Explicitly, define

$$h: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$
 by  $h(x, y, z) = \left(\frac{x}{\sqrt{1+z^2}}, \frac{y}{\sqrt{1+z^2}}, z\right)$ 

Clearly,  $h \in C^{\infty}(\mathbb{R}^3; \mathbb{R}^3)$ . If  $(x, y, z) \in H$ , then  $\left(\frac{x}{\sqrt{1+z^2}}\right)^2 + \left(\frac{y}{\sqrt{1+z^2}}\right)^2 = \frac{x^2+y^2}{1+z^2} = 1$ , that is  $f \coloneqq h\big|_H \colon H \to C$  is smooth.

**Exercise 1.44.** Show that the restriction of  $h^{-1}: \mathbb{R}^3 \to \mathbb{R}^3$  given explicitly by

$$h^{-1}(u, v, w) = \left(\sqrt{1 + w^2} u, \sqrt{1 + w^2} v, w\right)$$

yields a smooth inverse of f.

Remark 1.45. A map  $f: S_1 \to S_2$  may fail to be a diffeomorphism in the following two ways: either  $f^{-1}$  does not exist or  $f^{-1}$  exists but is not smooth.

Example 1.46 (A non-example). Consider a map

$$f: C \longrightarrow C, \quad f(x, y, z) = (x, y, z^3),$$

which is smooth. The inverse  $f^{-1}: C \to C$  exists:

$$f^{-1}(x, y, z) = (x, y, \sqrt[3]{z}).$$

It is continuous, but fails to be smooth.

**Exercise 1.47.** Compute a coordinate representation of  $f^{-1}$  and check that this fails to be smooth indeed.