Question 17 (11 marks)

Diagram 1 shows a network of pipes. The number on each edge gives the capacity of that pipe in L/min.

(a) State the capacities of the three cuts in Diagram 1. (3 marks)

Diagram 2 shows a possible flow for the network of pipes.

(b)	(i)	Explain why the value of x is 30.	(1 mark)
	(ii)	Calculate the values of y and z .	(2 marks)
(c)	State	which of the pipes are at full capacity in Diagram 2.	(2 marks)
(d)	State t	the value of the flow for the network in Diagram 2.	(1 mark)
(e)	(i)	The value of the flow for Diagram 2 can be increased by 2 L/min. List the pipes that could be used to achieve this.	e series of (1 mark)

(ii)	Show that the increased flow in part (e)(i) is a maximum for this network of pip (1 n	oes. nark)