Elements of DeFi

https://web3.princeton.edu/elements-of-defi/

Professor Pramod Viswanath

Princeton University

Lecture 9

Oracles

Last lecture: MEV and DeFi

- Ethereum allows proposer freedom to reorder
- Examples of MEV: Frontrunning, Sandwiching, JIT liquidity, etc.
- MEV as a centralizing force
- Priority gas auctions, Flashbots auctions
- Proposer-Builder separation
- Decentralized builders

This Lecture: Oracles

- Importing off-chain data
 - Token prices (e.g., BTC price for a BTC-ETH AMM on Ethereum)
- Price oracles
 - Oracle enabled DeFi applications
- Oracles designs
- Security, cost of manipulation and incentives
 - Dispute resolution

Data access for smart contracts

- Smart contracts access data stored within the chain
 - access state storage
- Accessing data on-chain is secure
 - Due to consensus: state data is created by transactions and nodes have consensus on the order of transactions

- Accessing data outside the blockchain requires additional infrastructure Oracles
- Oracles can be thought of as any blockchain's "internet connection"

Need for importing external data

- Limited storage of on-chain data: can't run the whole internet
- Need a reliable source of external events
 - Who won the super bowl?
 - Which flights were cancelled?
- Need to know state of other ledgers such as:
 - Other blockchains
 - Government land records
- Source of randomness

Oracle enabled DeFi applications

Borrow-lending protocols:

Enables liquidations of loans if collateral price drops

Betting markets:

Enables the betting contract to know the final result of an event

Oracle enabled DeFi applications

Flight insurance:

Enables contract to keep track of flight schedules

Query for reimbursement Refund Flight schedule Oracle

Real world asset synthetics:

Enables tokenization of realworld asset by proving ownership

Strawman oracle design

Run every hour

Consider an oracle providing weather in Princeton

A single authorized user is responsible for updating the state of an oracle contract that stores weather data

Security vulnerabilities

The single weather monitoring station might malfunction

The authorized user may go offline resulting in stale data

The authorized user can act adversarially -- input incorrect data

- Objective:
 - Remove single point of failure
 - Ensure robust data aggregation
 - Ensure reliable updates

General oracle architecture

Ground truth

External data to be gathered by the oracle

 Ground truth should be visible to all participants in the oracle system

- Oracle is used if importing ground truth to the blockchain in a provable manner is either:
 - Impossible Weather data
 - Expensive State of another public blockchain

Data sources

Measure and store ground truth

- Depending on the type of ground truth
 - Noise in measurements is tolerated different weather monitoring stations
 - Noise may not be tolerated winner of a publicized game, state of a finalized ledger

Examples: Sensors, humans, other smart contracts, databases

Data feeder

Reports off-chain data to on-chain oracle contracts

 Incentivized by collateralization with staking rewards proportional to collateral or reputation

Collateralization prevents sybil attacks

 Data feeder reporting may be periodic or triggered by an on-chain request

Data feeder selection

The process of selecting what data-feeders report

 Selection needed for reputation incentivization and reducing onchain transaction load

Centralized selection: Restricts to a selected set of data feeders

 Decentralized selection: Random selection proportional to collateral/reputation

Aggregation

- Oracle contract receives a lot of reports from data feeders
- All inputs need to be aggregated to be used by a DeFi contract
- Two types of input reporting:

Direct reporting

Off-chain reporting

Aggregation: Robust statistics

- How to aggregate input:
- Option 1: Mean easy to manipulate
- Princeton temperature: [32, 31, 32, 33, 150] -> Mean = 55.5 F
- Option 2: Median Robust to changes by minority adversaries
- Princeton temperature: [32, 31, 32, 33, 150] -> Median = 32
- Option 3: Mode Used for non-numerical data
- Flight status: [on-time, on-time, on-time, on-time, delayed] -> on-time

Dispute phase (optional)

- Dispute can be reported within a time-frame to revert data
- Dispute phase involves utilizing an expensive data feeding option such as:
 - Select a larger set of data feeders
 - Provide proofs of inclusion, finalization on another chain
- Successful dispute may penalize original data feeders and reward challengers
- Penalty may involve slashing data feeder collateral

Oracle security

Oracle interaction models

Feed

Used by most Price feed oracles

Oracle interaction models

Request-Response

Subscribe-Response

Similar to client-server API

Subscription is pre-arranged

ChainLink price feed oracle design

- Reports are submitted at fixed intervals or when price deviates a threshold percentage from last reported price
- Data feeders maintain a consensus amongst themselves and the leader reports data to the aggregator (off-chain reporting)

MakerDAO oracle design

- Oracle Security module reveals a delayed price to ensure that oracle attack can be constrained within Median aggregator
- DeFi contracts can choose to get the more secure delayed data via the poke() call or a less secure current data using a peek() call

Compound oracle design

- If (Price feed posted price close to anchoring oracle price):
 - Filtered price = Price feed posted price
- else:
 - Filtered price = anchoring oracle price
- Anchoring oracle is typically an on-chain AMM (protection against price feed oracle attacks)

AMMs as price oracles

- AMMs maintain price between two assets by arbitrage
- Example:
 - If ETH/USD price is below the off-chain market value, buy ETH and sell it off-chain
 - If ETH/USD price is above the off-chain market value, buy ETH off-chain and sell it on the AMM
- Arbitrageurs add information of off-chain price on-chain through this process
- We can use this as a price-feed oracle
- Covered in detail in next

AMMs as price oracles

 Can DeFi elements serve as accurate price reporters?

CFMMs! - reserves move to match price

 Use the aggregate data across multiple CFMMs

 What ensures that the prices stay in line?

Strawman price oracle

- Naïve way: Query price of CFMM and use it for your purposes
- Problem?

Security vulnerability of strawman oracle

LAST TIME'S LAB

• Can be manipulated by capital-rich trader or flash loan

Profitable if gain dwarfs the cost of manipulation

TWAP feed

TIME WEIGHTED AVERAGE PRCING

Need to make price robust to manipulation

 Take weighted average over recent history

Costlier to manipulate – why?

Cannot use "flash" loans

TWAP feed

TIME WEIGHTED AVERAGE PRCING

What's wrong with it?

- Tradeoff?
 - Accuracy vs Manipulability
- TWAP price is more robust but not as fresh as AMM price
- Market coverage limited by one AMM
- Thinly traded/illiquid tokens still easy to manipulate

VWAP feed

VOLUME WEIGHTED AVERAGE PRCING

- Need to ensure freshness and robustness to manipulation
- Aggregate data from multiple AMMs and weight them by trade volume or liquidity

$$P_{oracle}^{t} = \frac{\sum_{exchanges} v_i^t P_i^t}{\sum_{exchanges} v_i^t}$$

- Provides market coverage
- No tradeoff between freshness and accuracy
- Need to change market price everywhere for successful manipulation

VWAP feed

• E.g. Chainlink – uses multiple exchange and protocol price

sources + ETH/USD

Attacks: BzX Oracle manipulation -2020

 Step 1: Borrow 7500 ETH from bZX – promise to repay in same block (flash loan)

Step 2 : Sell 900 ETH on Kyber pool

• Step 3 : Get 943k sUSD for 3518 ETH on Synthetix

Attacks: BzX Oracle manipulation

 Step 4: Borrow 6796 ETH from bZX – post collateral which is priced through Kyber – 1099k sUSD

 Step 5 : Repay 7500 ETH flash loan

Step 6: Run away with 2378 ETH profit!

Attacks: BzX Oracle manipulation

Main flaws exploited?

Lending relied on only one AMM as oracle

Oracle lacked sufficient liquidity

sUSD Token very thinly traded

Attacks: Mango attack - 2022

 Similar attack happened on the thinly traded MNGO token of the Mango lending protocol on Solana

Attack :

- Drive up MNGO price to make it valuable on an AMM
 - AMM was the sole oracle for the Mango lending protocol
- Borrow large amount of USDC by posting MNGO as collateral
- Run away with USDC
- Over \$100M stolen

Attacks: Mango attack - 2022

- Attacker confessed on twitter, agreed to pay back
- Mango DAO refuses deal sues attacker for "unlawful bargaining"
- Arrested by FBI in Dec 2022 on counts of commodities fraud and manipulation
- SEC, CFTC added charges of market manipulation as well
- First person to be arrested for manipulating a decentralized market

Open problems

- Formalized cost and profit analysis
- Dispute resolution for cross-chain oracles
- Multi-block MEV attacks price manipulation of oracles easier if proposer controls multiple blocks in a row
- Legal framework around DeFi attacks?
- Privacy preserving Oracles?

LECTURE ENDS