CC0323: Otimização Unidimensional

Michael Souza

michael@ufc.br

Problema de Otimização Não-Linear

Dado um conjunto $\Omega\subset\mathbb{R}^n$ e uma função $f:\Omega\to\mathbb{R}$, o problema de otimização não-linear consiste em encontrar um ponto $x^*\in\Omega$ que minimize (ou maximize) a função f. Ou seja, desejamos encontrar

$$x^* = rg\min_{x \in \Omega} f(x).$$

Mínimo vs Minimizador

O ponto x^* é chamado de *minimizador* (ou *maximizador*) de f em Ω , enquanto o valor $f(x^*)$ é chamado de *mínimo* (ou *máximo*) de f em Ω .

Exemplo:

1. Considere a função $f(x)=(x-1)^2-2$ e o conjunto $\Omega=\mathbb{R}.$ O ponto $x^*=1$ é o minimizador de f em Ω , enquanto o valor $f(x^*)=f(1)=-2$ é o mínimo de f em $\Omega.$

2. Considere a mesma função do exemplo anterior, mas $\Omega[-1,0]$. Neste caso, x=1 *não é viável* (não pertence a Ω) e o mimizador x^* passa a ser 0 e o mínimo será $f(x^*)=f(0)=-1$.

Observação:

O minimizador depende tanto da função f quanto do conjunto viável Ω .

3. Agora, considere a função

 $f(x_1,x_2)=x_1^2+(x_2-1)^2$. Como f é uma soma de quadrados, temos que $f(x)\geq 0$ para todo $x\in \mathbb{R}^2$.

Portanto, o minizador de f em \mathbb{R}^2 é $x^*=(0,1)$, pois $f(x^*)=0$.

Curva de Nível

A curva de nível de uma função $f:\mathbb{R}^n o\mathbb{R}$ é o conjunto de pontos (x_1,x_2,\dots,x_n) onde f(x)=c para algum $c\in\mathbb{R}$.

Observações:

As curvas de nível são úteis para visualizar funções de duas variáveis, cujos gráficos são pontos $(x_1,x_2,f(x_1,x_2))\in\mathbb{R}^3.$

Exemplo:

Para a função $f(x_1,x_2)=x_1^2+(x_2-1)^2$, uma curva de nível c é o conjunto solução da equação $f(x)=x_1^2+(x_2-1)^2=c$, ou seja, é o círculo de raio \sqrt{c} centrado em (0,1).

Problema de Otimização Irrestrita

Quando o conjunto Ω é todo o espaço \mathbb{R}^n , dizemos que o problema de otimização é *irrestrito* (sem restrições).

Ideia Básica

Dado um ponto inicial x_0 , a ideia é gerar uma sequência de pontos $\{x_k\}$ tal que $f(x_k) o f(x^*)$.

Em cada ponto teremos uma direção d_k e um passo α_k que nos levará a um novo ponto x_{k+1} .

$$x_k = x_{k-1} + lpha_k d_k$$
 e $f(x_k) < f(x_{k-1})$

Otimização Unidimensional

Em cada passo do método geral, precisamos resolver um problema de otimização unidimensional. Ou seja, dado um ponto x_k e uma direção d_k , precisamos encontrar um passo (minimizador)

$$lpha_k = rg \min_lpha \phi_k(lpha) = rg \min_lpha f(x_k + lpha d_k).$$

Portanto, precisamos de um método para resolver problemas de otimização unidimensional.

Método da Seção Áurea

O método da seção áurea serve para encontrar o mínimo de uma função unimodal em um intervalo $[a_0,b_0]\subset\mathbb{R}.$

Figure 7.1 Unimodal function.

Algoritmo

1. Escolhemos a_1 e b_1 tais que

$$a_0 < a_1 < b_1 < b_0,$$
 $b_1 - a_1 =
ho(b_0 - a_0),$ onde $ho = rac{3-\sqrt{5}}{2} pprox 0.382.$

Figure 7.3 The case where $f(a_1) < f(b_1)$; the minimizer $x^* \in [a_0, b_1]$.

2. Calculamos $f(a_1)$ e $f(b_1)$.

Figure 7.3 The case where $f(a_1) < f(b_1)$; the minimizer $x^* \in [a_0, b_1]$.

3. Se $f(a_1) < f(b_1)$, então o mínimo está no intervalo $[a_0,b_1]$. Caso contrário, o mínimo está no intervalo $[a_1,b_0]$.

Figure 7.3 The case where $f(a_1) < f(b_1)$; the minimizer $x^* \in [a_0, b_1]$.

4. Agora, repetimos o processo até que o intervalo seja suficientemente pequeno.

Figure 7.3 The case where $f(a_1) < f(b_1)$; the minimizer $x^* \in [a_0, b_1]$.

O valor $\rho=0.382$ decorre de duas ideias simples:

• Simetria, pois não temos razão para preferirmos um dos lados.

$$\frac{b_0-b_1}{b_0-a_0}=\frac{a_1-a_0}{b_0-a_0}=
ho<rac{1}{2}$$

ullet Reuso, queremos reduzir o número de avaliações de f.

$$\frac{b_1 - b_2}{b_1 - a_0} = \rho$$

A cada passo, o intervalo de incerteza é reduzido por um fator

$$(1-
ho)pprox 0.61803$$

Então, após N passos o intervalo original será reduzido por um fator

$$(1-\rho)^N = (0.61803)^N$$

E, como consequência, os erros $\epsilon_k=x_k-x^*$ satisfazem a relação $\epsilon_{k+1}=(1ho)\epsilon_k.$

Exemplo

Suponha que queremos utilizar a seção áurea para encontrar o mínimo da função $f(x)=x^4-14x^3+60x^2-70x$ no intervalo [0,2]. Desejamos uma precisão de 10^{-3} , ou seja, $|b_k-a_k|<10^{-3}$.

Método de Newton

Quando a função f é duas vezes diferenciável, podemos utilizar o método de Newton para encontrar seu mínimo.

A ideia é aproximar a função f por uma função quadrática q e encontrar o mínimo da aproximação.

Figure 7.6 Newton's algorithm with f''(x) > 0.

A aproximação quadrática q é dada pelo polinômio de Taylor de segunda ordem de f em torno de x_k .

$$q(x) = f(x_k) + f'(x_k)(x-x_k) + rac{1}{2}f''(x_k)(x-x_k)^2.$$

Cujo mínimo (vértice) é dado por

$$x_{k+1}=x_k-rac{f'(x_k)}{f''(x_k)}.$$

Taxa de Convergência do Método de Newton

Se f é duas vezes diferenciável, x^* é um mínimo de f, $f''(x^*) > 0$ e as demais derivadas são limitadas, então o método de Newton converge para x^* com taxa quadrática, ou seja,

$$\epsilon_{k+1} \leq C \epsilon_k^2$$

onde $\epsilon_k = |x_k - x^*|$ e C é uma constante positiva.

Prova

Uma vez que
$$x_{k+1} = x_k - rac{f'(x_k)}{f''(x_k)}$$
, então

$$x_{k+1}-x^*=x_k-x^*-rac{f'(x_k)}{f''(x_k)}\longrightarrow \epsilon_{k+1}=\epsilon_k-rac{f'(x_k)}{f''(x_k)}.$$

Agora, tomando a expansão em série de Taylor de f' e f'' em torno de x^{st} , temos

$$f'(x_k) = f'(x^*) + f''(x^*)(x_k - x^*) + rac{1}{2}f'''(x^*)(x_k - x^*)^2 + \dots \ = f'(x^*) + f''(x^*)\epsilon_k + rac{1}{2}f'''(x^*)\epsilon_k^2 + \dots$$

Uma vez que x^* é um mínimo, temos que $f'(x^*)=0$ e $f''(x^*)>0$. Portanto, podemos escrever

$$f'(x_k)=f''(x^*)\epsilon_k+rac{1}{2}f'''(x^*)\epsilon_k^2+\ldots.$$

Por outro lado, podemos escrever a expansão em série de Taylor de $f^{\prime\prime}$ em torno de x^* como

$$f''(x_k) = f''(x^*) + f'''(x^*)(x_k - x^*) + \frac{1}{2}f''''(x^*)(x_k - x^*)^2 + \dots$$

$$= f''(x^*) + f'''(x^*)\epsilon_k + \frac{1}{2}f''''(x^*)\epsilon_k^2 + \dots$$

E, colocando $f''(x^*)$ em evidência, temos

$$f''(x_k)=f''(x^*)\left(1+rac{f'''(x^*)}{f''(x^*)}\epsilon_k+\ldots
ight).$$

Combinando as duas equações, temos

$$egin{aligned} \epsilon_{k+1} &= \epsilon_k - rac{\left(f''(x^*)\epsilon_k + rac{1}{2}f'''(x^*)\epsilon_k^2 + \ldots
ight)}{f''(x^*)} imes \left(1 + rac{f'''(x^*)}{f''(x^*)}\epsilon_k + \ldots
ight)^{-1} \ &= \epsilon_k - \left(\epsilon_k + rac{1}{2}rac{f'''(x^*)}{f''(x^*)}\epsilon_k^2 + \ldots
ight) imes \left(1 + rac{f'''(x^*)}{f''(x^*)}\epsilon_k + \ldots
ight)^{-1} \end{aligned}$$

Como $\epsilon_k \to 0$, devemos nos ater apenas aos termos de maior ordem. Mais especificamente, vamos mostrar que o termo ϵ_k do lado direito da equação acima é cancelado e, como consequência, o termo ϵ_k^2 domina a convergência.

Agora, para 0 < x < 1, temos $(1+x)^{-1} = 1-x+x^2-x^3+\ldots$, e, uma vez que as derivadas de f em x^* são limitadas, então podemos substituir a inversa, obtendo

$$egin{aligned} \epsilon_{k+1} &= \epsilon_k - \left(\epsilon_k + rac{1}{2} rac{f'''(x^*)}{f''(x^*)} \epsilon_k^2 + \ldots
ight) imes \left(1 - rac{f'''(x^*)}{f''(x^*)} \epsilon_k + \ldots
ight). \ &= \epsilon_k - \epsilon_k + rac{1}{2} rac{f'''(x^*)}{f''(x^*)} \epsilon_k^2 + O(\epsilon_k^3) \ &= C \epsilon_k^2 + O(\epsilon_k^3) \ pprox C \epsilon_k^2. \end{aligned}$$

Observação

Isto significa que cada passo do método de Newton dobra o número de dígitos corretos do minimizador.*

Limitações do método de Newton

 O método de Newton é sensível à escolha do ponto inicial.

Figure 7.7 Newton's algorithm with f''(x) < 0.

Limitações do método de Newton

- O método de Newton é sensível à escolha do ponto inicial.
- O método de Newton pode ciclar ou divergir.

Na imagem ao lado, g(x) = f'(x).

Figure 7.9 Example where Newton's method of tangents fails to converge to the root x^* of g(x) = 0.

Método da Secante

O método da secante é uma aproximação do método de Newton para funções unidimensionais.

A ideia é aproximar

$$f''(x_k)pprox rac{f'(x_k)-f'(x_{k-1})}{x_k-x_{k-1}}.$$

Assim, a iteração de Newton se torna

$$egin{aligned} x_{k+1} &= x_k - rac{f'(x_k)(x_k - x_{k-1})}{f'(x_k) - f'(x_{k-1})} \ &= rac{f'(x_k)x_{k-1} - f'(x_{k-1})x_k}{f'(x_k) - f'(x_{k-1})}. \end{aligned}$$

Figure 7.10 Secant method for root finding.

Newton vs Secante

Figure 7.8 Newton's method of tangents.

Figure 7.10 Secant method for root finding.

Newton vs Secante

O método de Newton e da Secante são ajustes quadráticos.

- No método de Newton, a aproximação quadrática ajusta $f, f' \in f'' \text{ em } x_k.$
- No método da Secante, a aproximação quadrática ajusta f em x_k e f' em x_k e x_{k-1} .

Otimização Inexata

No algoritmo geral, a otimização unidimensional é utilizada para encontrar o passo α_k que minimiza a função f ao longo da direção d_k .

$$lpha_k = rg \min_lpha \phi_k(lpha),$$

onde
$$\phi_k(\alpha) = f(x_k + \alpha d_k)$$
.

Na prática, a solução exata de cada problema unidimensional é custosa e desnecessária, portanto, podemos utilizar métodos aproximados.

Regra de Armijo

A regra de Armijo é um critério de parada, onde

• um passo relativamente menor não reduz significativamente o valor da função.

$$\phi_k(\alpha_k) \leq \phi_k(0) + \epsilon \alpha_k \phi_k'(0),$$

• um passo relativamente maior não reduz significativamente o valor da função.

$$\phi_k(\gamma lpha_k) \geq \phi_k(0) + \gamma \epsilon lpha_k \phi_k'(0),$$

onde $\epsilon \in (0,1)$ e $\gamma > 1$ são constantes.

Perguntas?