Lecture 16: Dynamic Memory Network

2018年8月5日

1 Introduction

其实 NLP 的许多问题都可以被转化为 QA 问题,比如情感分析,词性标注和机器翻译,非常厉害。

I: Mary walked to the bathroom.
I: Sandra went to the garden.
I: Daniel went back to the garden.
I: Sandra took the milk there.
I: Jane has a baby in Dresden.
I: Jane - person, Dresden - location
I: Jane has a baby in Dresden.
II Jane has a baby in

Q: What's the sentiment? Q: In French?

A: positive A: Je pense que ce modèle est incroyable.

然而当时所有的 QA 模型都是针对具体的问题,首先没有人探讨过如何生成一个 General 的 model 去学习所有的任务; 其次, Fully Joint multitask learning 共享所有的参数 (所有任务 参数设置相同), 这非常困难。

2 Dynamic Memory network

大体思路:带着问题和阅读第一次的记忆,阅读第二次,不断加深记忆。

2.1 Input

输入 Embedding, encoder 就是传统的 GRU, 文章以句子分割获得 T_C 个 fact representations c_t , 问题获得最后一个 hidden state q.

2.2 Episodic Memory

先上公式, 其中 g 是 Attention weight:

$$h_t^i = g_t^i GRU(c_t, h_{t-1}^i) + (1 - g_t^i) h_{t-1}^i$$

$$e_i = h_{T_C}^i$$

这一层我称之为 Attention Gated GRU, 通过 Attention weight 控制当前 hidden state 来自上一步 GRU 和原文的比例。其中 Attention weight 取决于 candidate fact c_t , a previous memory m^{i-1} , and the question q.

$$g_t^i = G(c_t, m^{i-1}, q)$$

$$G(c, m, q) = softmax(W^{(2)}tanh(W^{(1)}z(c, m, q) + b^{(1)}) + b^{(2)})$$

$$z(c, m, q) = [c, m, q, c \circ q, c \circ m, |c - q|, |c - m|, c^T W^{(b)}q, c^T W^{(b)}m]$$

z 向量是一个超长拼接向量,经过一层 perceptron layer,一层线性层,然后 softmax 获得 对不同部分关注权重。

2.3 Answer layer

简单的 GRU, a_0 初始化为最后一个 pass 的 memory $a_0 = m^{T_M}$.

$$a_t = GRU([y_{t-1}, q], a_{t-1})$$
$$y_t = softmax(W^{(a)}a_t)$$

3 Performance

Max	task 3	task 7	task 8	sentiment
passes	three-facts	count	lists/sets	(fine grain)
0 pass	0	48.8	33.6	50.0
1 pass	0	48.8	54.0	51.5
2 pass	16.7	49.1	55.6	52.1
3 pass	64.7	83.4	83.4	50.1
5 pass	95.2	96.9	96.5	N/A

task3 是三段论,整体来看 DMN 的表现非常好,而且针对不同任务需选择不同次数的 pass。

不光文字可以使用 DMN,图像也可以,通过 CNN encode 图片作为输入,训练模型后可 视化 Attention part。

