

Index

- Problem Introduction
- Research Questions
- Methodology
- Experiments and Evaluation
- Conclusion

Problem Introduction

- Cardiovascular diseases, such as Atrial Fibrillation, are among the leading causes of death in the population, resulting in an increased demand for cardiac assessment
- Deep learning can improve medical monitoring and can be used to develop multiclassification models for arrhythmia detection
- Today, much research and accurate models are available for simpler arrhythmia classification tasks, e.g. AFIB classification (binary) or common arrhythmia groups classification (AAMI standard)

Problem Introduction

- Problem: Professional treatment requires individual and detailed ECG assessment
- In recent years, Transformer models have gained considerable popularity due to a mechanism called self-attention and research papers show promising results for applying Transformer models on less comprehensive ECG arrhythmia detection
- However, there are few public research and accurate models available for for comprehensive fined-graned arrhythmia classification, including Transformer models and rare types, such as Atrial Flutter, Premature Ventricular Contractions, Prolonged QT interval etc.

Related Work

Data: Physionet 2021 Challenge database

Dataset source	Average ECG length (seconds)	Data samples
Ningbo database	$10\mathrm{s}$	34,905
PTB-XL database	10s	21,837
Chapman-Shaoxing database	10s	10,247
Georgia 12-lead challenge data	$9\mathrm{s}$	10,344
CPSC database	15s	6. 877
CPSC-extra database	15s	3,453
PTB database	110s	516
INCART database	1800s	74

about 89.000 12-lead ECGS

Physionet 2021 data distribution

Physionet 2021 scored challenge data distribution (subset)

Research Questions

- 1. How well does a Transformer-based model perform on the Physionet 2021 challenge data compared to a feature-based model or a Convolutional Network?
- 2. Can an ensemble Transformer model and Convolutional Network effectively capture spatio-temporal information and improve accuracy?
- 3. Which model performs best at discriminating SR, AF, AFL, PAC and PVC on both datasets?
- 4. What are the challenges in transferring the pre-trained models from the Physionet 2021 challenge data to the MyDiagnostick database? Do the models generalise well, even though different ECG devices were used?

Methodology 1: Transformer with equal-sized segments as input

Methodology 1: Transformer with trainable embedding matrix

Methodology 2: Ensemble Model

Experiments and Evaluation

Evaluation: Physionet 2021

Evaluation: Physionet 2021 metrics

Evaluation: Physionet 2021 metrics

Conclusion

