Total No. of Questions : 10] P2953			estions: 10]	SEAT No.:
				[Total No. of Pages : 4
			[5669] 542	
			T.E. (E & TC)	
			DIGITAL SIGNAL PROCE	SSING
			(2015 Pattern)	
Time	2:21/2	Hou	rs]	[Max. Marks : 70
Instr	ructio	ns to	the condidates:	
	<i>1</i>)		mpt 0.4 or 0.2, & Q.3 or Q.4, & Q.5 or Q.0	6, & Q.7 or Q.8, & Q.9 or Q.10.
	2)		w suitable diagrams where necessary.	9
	<i>3</i>)	Figu	res to the right indicate full marks.	
Q 1)	a)	Sho	w relationship between analog frequenci	es and digital frequencies.[4]
	b)	Ana	inalog signal contains frequencies upto	10kHz [6]
		i)	What is range of sampling frequencies	must be selected for faithful
	6	× × ×	reconstruction of signal?	×
		ii)	If signal is sampled with sampling free	quency 8kHz what is folding
			frequency?	
		iii)	Does aliasing occours if i/p is 5kl	Hz? if yes calculate alised
			frequencies from original frequencies	
			(Consider sampling freq to be 8k)	300
			Does aliasing occours at i/p frequency	if i/p is 9kHz? if yes calculate
			aliased.	
			OR	
Q2)	a)	Con	sider signal $x(t) = 5 \sin(500 \text{ mt})$ if signal	is sampled at $F_S = 5500 \text{ Hz}[4]$
۷-/	u)	i)	What is DT signal obtained after samp	0.
		ii)	Find frequency of DT signal.	
		iii)	Find DT signal for sampling frequency	$vF_{\rm S} = 300$
	b)		e & Prove following properties in Z train	
	U)			sform [6]
		i)	Scaling property.	
		ii)	Time shift property.	, · · · · · · · · · · · · · · · · · · ·
				D. W. C.
			×,	P.T.O.

[8]

i)
$$X(z) = \frac{(8z-19)}{(z-2)(z-3)}$$

x(n) is causal

ii)
$$\frac{z^3 + z^2}{(z-1)(z-3)} = x(z) & \text{ROC } |z| > 3$$

b) Obtain z transform of following

$$x(n) = (0.5)^n u(n) + (-0.2)^n u(n-3)$$
 [2]

OR

Q4) a) Compute IDFT by matrix method

 $X(k) = \{10, -2 + 2j, -2, -2 - 2j\}$

b) Compute 8 point DFT of sequence [6]

 $x(n) = \{0,1,2,3\}$ & draw magnitude & phase plot

Q5) a) Compare IIR & Fir filters on following points.

[6]

[4]

- i) Filter governing mathematical equation
- ii) Memory requirment
- iii) Stability
- iv) Recursiveness
- v) Phase response
- vi) Processing time
- b) What is warping effect in bilinear transform? What is it's effect on magnitude & phase response? [4]
- c) Convert analog filter with system function H(s) into digital IIR filter using impulse invariance method [6]

$$H(s) = \frac{10}{S^2 + 75 + 10}$$

		OR %		
Q6) a)		Compare butterworth filter & chebyshev filter on following points. [4]	.]	
		i) Frequency response		
		ii) Order for given specification		
		iii) Transition band		
		iv) Phase response & pole location		
	b)	Design Butter worth filter for following specification. [8]	[
		$0.8 \le H_a(S) \le 1$ $0 \le F \le 1000Hz$		
		$ H_a(s) \le 0.2 F \ge 5000 Hz$		
	c)	Draw direct form 2 realization for the following [4]	.]	
	$H(z) = \frac{1+3z^{-1}}{1+3z^{-1}}$			
		$2 + z^{-1} - 4z^{-3}$		
		J. V.i.		
<i>Q7</i>)	a) '	Explain following window functions [6]]	
		i) Rectangular window		
		ii) Hamming window		
		iii) Hanning window		
	b)	Design linear phase FIR filter using hamming window with cutoff freq.	C	
		0.2 rad/sec and 0.3 rad/sec		
		use $M = 7$		
	Calculate 1st two filter coefficients only (n=0 & n=1)			
		OR OR		
Q 8)	a)	What is gibbs phenomenon? How the effect of gibbs phenomenon is	S	
		reduced? [4]		
	b)	Using frequency sampling method design law pass FIR filter to mee	t	
		following specification.		
		Pass band - 0-5kHz Filter length = 9		
		Sampling frequency \rightarrow 18kHz		
		Obtain $h(n)$ for $n = 0.1$ only [12]	.]	

Q9)	a)	Write a note on digital cross over audio system. [6]			
	b)	With the help of block diagram explain enhancement of ECG signal for			
		heart rate detection.	[6]		
	c)	Explain speech compression & decompression with block diagram. [6]			
		OR			
Q10))a)	Explain compact disc recording system.	[6]		
	b)	Compare digital signal processing & analog s/g processing on following			
		points.			
		→ Accuracy & component tolerance			
		\rightarrow Cost			
		→ Upgradation adaptation			
		→ Implementation			
		Repeatability			
	7	Versatility Versatility	[6]		
	c) Explain how the defective gear tooth can be identified using v				
		analysis?	[6]		
			\cdot)		
		2 0, 8;			
		6·*			
		9.			
[<i>E</i> 4 4	(O) 5	542 4 S. A.			
[200	69]-5	4 🐑			