RNA-Seq Analysis of Tumor Resistance in Knockout (KT) vs Wild-Type (WT) Mice

- Lohit Marla

Agenda

- 1. Steps Accomplished
- 2. Data Quality Reports
- 3. Results
- 4. Current Progress
- 5. Achievements

Steps Accomplished - High Level

- 1. Transferred 757 GB Data to HPC Clusters
- 2. Unzipping and FastQC, MultiQc reports
- 3. Trimming using multiple techniques
- 4. Verifying with data quality reports
- 5. Read Alignment using STAR
- 6. Collected statistics of Bam using Samtools
- 7. Generated featurecounts by GRCm39
- 8. Loaded the data into Rstudio
- 9. Processed the raw counts for analysis
- 10. Applied Deseq2
- 11. Filtered significant genes
- 12. Visualized the genes
- 13. Performed the Gene Ontology
- 14. Applied Kegg Pathway Analysis

Data Quality Checks - Raw Data

Data Quality Checks - Dedup Reads

FastQC: Status Checks

K10-LCL9055_L1_R1_00 K12-LCL9056_L1_R2_00 K15-LCL9058_L1_R1_00 K16-LCL9059_L1_R2_00 K18-LCL9061_L1_R1_00 K19-LCL9052 L1 R2 00 K21-LCL9054_L1_R1_00 K6-LCL9048_L1_R2_001 K8-LCL9051_L1_R1_001 K9-LCL9050_L1_R2_001 W10-LCL9040_L1_R1_00 W11-LCL9041_L1_R2_00 W16-LCL9043_L1_R1_00 W17-LCL9044_L1_R2_00 W19-LCL9046_L1_R1_00 W2-LCL9035_L1_R2_001 W3-LCL9036_L1_R1_001 W4-LCL9037_L1_R2_001

Data Quality Checks - Trimmomatic Min Len - 80%

Data Quality Check - Filtered Reads

Data Quality Check - Recalibrated Reads

Data Quality Check - Tile Filtered

Data Quality Checks - Final

Export Plot

K12-LCL9056_L1_R2_fi K15-LCL9058_L1_R1_fi K16-LCL9059_L1_R2_fi K18-LCL9061_L1_R1_fi K19-LCL9052_L1_R2_fi K21-LCL9054_L1_R1_fi K6-LCL9048_L1_R2_fin K8-LCL9051_L1_R1_fin K9-LCL9050_L1_R2_fin W10-LCL9040_L1_R1_fi W11-LCL9041_L1_R2_fi W16-LCL9043_L1_R1_fi W17-LCL9044_L1_R2_fi W19-LCL9046_L1_R1_fi W2-LCL9035_L1_R2_fin W3-LCL9036_L1_R1_fin W4-LCL9037_L1_R2_fin

Data Quality Check - Samtools

Samtools is a suite of programs for interacting with high-throughput sequencing data. DOI: 10.1093/bioinformatics/btp352.

Samtools Flagstat

This module parses the output from samtools flagstat . All numbers in millions.

	Hover over a data point for n	nore informa	tion												
	Total Reads	•				25	•	50		• 7%	< n	••• •>			
	Total Passed QC	8				25	•	50		75	<u></u>	>			
	Mapped					25		 K = 6		75					
•	Secondary Alignments		•	offi		25		50		75					
	Duplicates					25		50		75					
	Paired in Sequencing	•			•	25		50	4%;	6 75					
	Properly Paired	. {				25		50		75					
	Self and mate mapped	. {				25		50		75					
	Singletons	8	•			25	e- % -n;	50		75					

Results

Volcano Plot of Differentially Expressed Genes

EnhancedVolcano

total = 23420 variables

GO Biological Process Enrichment

Gene Ontology (GO) Analysis

Key findings:

- "GO analysis revealed a strong immune system activation signature.
- The top enriched biological processes included:
 - Defense response to virus
 - Antigen processing and presentation
 - Leukocyte and lymphocyte proliferation
 - Regulation of innate immune response
 - Leukocyte cell-cell adhesion"

Interpretation:

- "These results suggest that the KO gene plays a role in immune regulation.
- The upregulation of antigen presentation and leukocyte activity indicates a heightened immune response, possibly due to autoimmune activation or infection susceptibility."

KEGG Pathway Enrichment - Mouse

KEGG Pathway Enrichment Analysis

1. Epstein-Barr Virus Infection (Top Pathway)

- "This pathway is highly enriched, suggesting that the KO gene may impact the immune response to viral infections."
- "This could indicate an altered susceptibility to latent viral infections."

2. Herpes Simplex Virus Infection

- "Similar to Epstein-Barr virus, this pathway suggests that the KO gene may play a role in antiviral defense mechanisms."
- "Changes in this pathway may influence susceptibility or immune response to herpesviruses."

3. Cell Adhesion Molecules (CAMs)

- "This pathway is critical for immune cell communication and migration."
- "The enrichment of this pathway suggests that the KO might be affecting immune cell adhesion, trafficking, or signaling."

4. Antigen Processing and Presentation

- "This is a key pathway in adaptive immunity, affecting how the immune system recognizes and responds to foreign antigens."
- "If the KO gene disrupts antigen presentation, it could impact T-cell activation and immune surveillance."

5. Staphylococcus aureus Infection

- "This indicates a potential change in bacterial immune defense mechanisms."
- "The KO may alter how the host immune system recognizes and clears bacterial infections."

Why KO Mice Are Protected from Cancer?

Based on pathway enrichment findings, we can hypothesize that KO mice have:

- Stronger immune surveillance via enhanced antigen presentation and T-cell activation
- Increased immune system activation, reducing tumor immune escape
- Reduced viral oncogenesis, preventing infection-driven cancers
- A pro-inflammatory immune environment, making it harder for tumors to establish
- A potential autoimmunity-tumor trade-off, where increased immune activation protects against cancer

Current Progress

- Revisit the data quality checks and improve the score on fastqc reports.
- 2. Rerun the pipeline once the data quality checks are well established.
- 3. Resume the analysis on the data for finding insights.
- 4. Analyse the data on different scenarios such as:
 - a. With genes starting with "Ig".
 - b. WT small tissue samples VS WT large tissue samples.
 - c. KO small tissue samples VS KO large tissue samples.
 - d. WT small tissue samples VS KO small tissue samples.
 - e. WT large tissue samples VS KO large tissue samples.

Achievements

- Globus Transfer to transfer 757 GB data in minutes from hours(scp, rsync).
- End to End pipeline development from reading data to visualising insights.
- On average 60% mapping unique read with Genome (yet to improve more).
- Reduced fastgc generation on all files from 1.5 hours to under 26 mins.
 - Utilised parallel module to achieve this feet on the HPC clusters

Thank You