Sketching Dynamic User-Item Interactions for Online Item Recommendation

Takuya Kitazawa The University of Tokyo, Japan

Problem & Requirements

Persistent cold-start in real-world services online ad [1], hotel reservation [2], golf package [3]

→ Online learning for **feature vectors** (e.g. [1])

Still incomplete in terms of some of:

- 1. Online-updating
- 2. Implicit feedback
- 3. Feature expressiveness
- 4. **Usability** (simple, interpretable) *
- 5. Parallelizability

Connect to Anomaly Detection

State-of-the-art anomaly detector [4]:

- Subspace method
- **\$\limes** Efficient **matrix sketching**: $AA^T \approx BB^T$ for $A \in \mathbb{R}^{m \times n}$ $(m \ll n)$, $B \in \mathbb{R}^{m \times \ell} (\ell < m)$

Task: Find | similar (recommend) | dissimilar (anomaly) |

vectors

Characteristics of Proposed Method

- **✓** Feature representation: $\mathbf{x} \in \mathbb{R}^m$
- ✓ Single hyper-parameter: ℓ (e.g., \sqrt{m})
- ✓ Time & space efficient: $\ell \ll n$
- ✓ Parallelizable: $B' = \text{sketch}([B_1, B_2])$

Experimental Results

Incremental *test-then-learn* evaluation

- ❖ iMF [5]: matrix-based classical method
- ❖ iFMs [6]: feature-based, but complex
- x = [age | sex | geo (state) | (ad ID) | category]
- x = [(user ID) | demographics | (movie ID) | genre |
 last rated genre | day of week | last rated day of week]

10.00	racea germe	day of week		
	Method	Recall@N	Update [sec]	
	S	ynthetic Click	(@1)	
	iMF	0.27251	0.00003	
best	iFMs	0.29612	0.00026	
	Sketch	0.30092	0.00066	
	MovieLens 100k (@10)			
x 0.41	iMF	0.02318	0.00003	
x 0.81	iFMs	0.03349	0.00142	
× 0.51	Sketch	0.03005	0.00039	
	MovieLens 1M (@10) ef			
	iMF	0.01249	0.00003	
	iFMs	0.01379	0.00605	
	Sketch	0.02451	0.00044	
robu	robust			

- [1] M. Aharon et al. In *Proc. of RecSys 2013*, pp. 375-378.
- [2] L. Bernardi et al. In *Proc. of CBRecSys 2015*, pp. 30-33.
- [3] R. Swezey and Y. Chung. In *Proc. of CIKM 2015*, pp. 1779-1782.
- [3] R. Swezey and Y. Chung. In *Proc. of CIKM 2015*, pp. 1779-1782. [4] H. Huang and S. P. Kasiviswanathan. *PVLDB*, 9(3):192–203, 2015.
- [5] J. Vinagre et al. In *Proc. of UMAP 2014*, pp. 459-470.
- [6] T. Kitazawa. *RecProfile 2016* (arXiv:1607.02858 [cs.LG]).