

Exercice 1 - Mouvement RT *

B2-13

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$.

Question 1 Déterminer $\overline{V(B,2/0)}$ par dérivation vectorielle.

Question 2 Déterminer $\overrightarrow{V(B,2/0)}$ par composition.

Question 3 Donner le torseur cinématique $\{\mathcal{V}(2/0)\}\$ au point B.

Question 4 Déterminer $\Gamma(B,2/0)$.

Indications: 1. V(B,2/

1.
$$\overrightarrow{V(B,2/0)} = \dot{\lambda}(t)\overrightarrow{i_1} + \lambda(t)\dot{\theta}(t)\overrightarrow{j_1}$$
.

2.
$$\overrightarrow{V(B,2/0)} = \dot{\lambda}(t)\overrightarrow{i_1} + \lambda(t)\dot{\theta}(t)\overrightarrow{j_1}$$
.

3.
$$\{\mathcal{V}(2/0)\} = \begin{cases} \dot{\theta}(t)\overrightarrow{k_0} \\ \dot{\lambda}(t)\overrightarrow{k_1} + \lambda(t)\dot{\theta}(t)\overrightarrow{k_1} \end{cases}$$

4.
$$\overline{\Gamma(B,2/0)} = (\ddot{\lambda}(t) - \lambda(t)\dot{\theta}(t)^2) \overrightarrow{i_1}
(\dot{\lambda}(t)\dot{\theta}(t) + \dot{\lambda}(t)\dot{\theta}(t)) \overrightarrow{j_1}.$$

Corrigé voir 2.

Exercice 2 - Mouvement RT * B2-13

Question 1 Déterminer $\overline{V(B,2/0)}$ par dérivation vectorielle.

$$\overrightarrow{V(B,2/0)} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{AB}\right]_{\mathcal{R}_0} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\lambda(t)\overrightarrow{i_1}\right]_{\mathcal{R}_0} = \dot{\lambda}(t)\overrightarrow{i_1} + \lambda(t)\dot{\theta}(t)\overrightarrow{j_1}.$$

Question 2 Déterminer $\overrightarrow{V(B,2/0)}$ par composition.

$$\overrightarrow{V(B,2/0)} = \overrightarrow{V(B,2/1)} + \overrightarrow{V(B,1/0)}.$$

$$\forall P, \overrightarrow{V(P,2/1)} = \dot{\lambda}(t)\overrightarrow{i_1}.$$

Par ailleurs $\overrightarrow{V(B,1/0)} = \overrightarrow{V(A,1/0)} + \overrightarrow{BA} \wedge \overrightarrow{\Omega(1/0)} = -\lambda(t)\overrightarrow{i_1} \wedge \dot{\theta}(t)\overrightarrow{k_0} = \lambda(t)\dot{\theta}(t)\overrightarrow{j_1}.$

Au final, $\overrightarrow{V(B,2/0)} = \dot{\lambda}(t)\overrightarrow{i_1} + \lambda(t)\dot{\theta}(t)\overrightarrow{j_1}$.

Question 3 Donner le torseur cinématique $\{\mathcal{V}(2/0)\}\$ au point B.

$$\{\mathcal{V}(2/0)\} = \left\{ \begin{array}{l} \dot{\theta}(t)\overrightarrow{k_0} \\ \dot{\lambda}(t)\overrightarrow{i_1} + \lambda(t)\dot{\theta}(t)\overrightarrow{j_1} \end{array} \right\}_{R}.$$

Question 4 Déterminer $\Gamma(B, 2/0)$.

$$\begin{array}{lll} \overrightarrow{\Gamma(B,2/0)} &=& \frac{\mathrm{d}}{\mathrm{d}t} \Big[\overrightarrow{V(B,2/0)} \Big]_{\mathcal{R}_0} &=& \ddot{\lambda}(t) \overrightarrow{i_1} \, + \dot{\lambda}(t) \dot{\theta} \, \overrightarrow{j_1} \, + \\ \dot{\lambda}(t) \dot{\theta} \, \overrightarrow{j_1} \, - & \lambda(t) \dot{\theta}(t)^2 \, \overrightarrow{i_1} &=& \left(\ddot{\lambda}(t) - \lambda(t) \dot{\theta}(t)^2 \right) \overrightarrow{i_1} \, + \\ \left(\dot{\lambda}(t) \dot{\theta}(t) + \dot{\lambda}(t) \dot{\theta}(t) \right) \overrightarrow{j_1}. \end{array}$$

Exercice 3 - Mouvement RT *

B2-14

B2-15

C1-05 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_1}$ et $\overrightarrow{AC} = R \overrightarrow{i_1}$. De plus :

- G_1 désigne le centre d'inertie de 1 et $\overrightarrow{AG_1} = L_1 \overrightarrow{i_1}$, on note m_1 la masse de 1;
- G₂ = B désigne le centre d'inertie de 2, on note m₂ la masse de 2.

Un moteur électrique positionné entre **0** et **1** permet de maintenir **1** en équilibre. Un vérin électrique positionné entre **1** et **2** permet de maintenir **2** en équilibre.

L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Donner le torseur de chacune des actions mécaniques.

Question 3 Simplifier les torseurs dans l'hypothèse des problèmes plans.

Question 4 Proposer une démarche permettant de déterminer le couple et l'effort que doivent développer chacun des actionneurs pour maintenir le mécanisme en équilibre.

Question 5 Proposer une démarche permettant de déterminer les efforts inconnus dans les liaisons.

Corrigé voir 4.

Exercice 4 - Mouvement RT *

B2-14

B2-15

C1-05 Pas de corrigé pour cet exercice.

Question 1 Réaliser le graphe d'analyse en faisa apparaître l'ensemble des actions mécaniques.

Question 2 Donner le torseur de chacune des actions mécaniques.

- liaison glissière : $\{\mathcal{T}(1 \to 2)\} = \left\{\begin{array}{c} Y_{12} \overrightarrow{j_1} + Z_{12} \overrightarrow{k_1} \\ L_{12} \overrightarrow{i_1} + M_{12} \overrightarrow{j_1} + N_{12} \overrightarrow{k_1} \end{array}\right\}$
- pesanteur sur 2: $\{\mathcal{T}(\text{pes} \to 2)\} = \left\{\begin{array}{c} -m_2 g \overrightarrow{j_0} \\ \overrightarrow{0} \end{array}\right\}_B;$
- action du vérin $\{\mathcal{T}(\text{Vérin} \to 2)\} = \left\{\begin{array}{c} F_{\nu} \overrightarrow{i_1} \\ \overrightarrow{0} \end{array}\right\}_A$.
- liaison pivot: $\{\mathcal{T}(0 \to 1)\} = \begin{cases} X_{01} \overrightarrow{i_1} + Y_{01} \overrightarrow{j_1} + Z_{01} \overrightarrow{k_1} \\ L_{01} \overrightarrow{i_1} + M_{01} \overrightarrow{j_1} \end{cases}$
- pesanteur sur 1: $\{\mathcal{T}(\text{pes} \to 1)\} = \left\{\begin{array}{c} -m_1 g \overrightarrow{j_0} \\ \overrightarrow{0} \end{array}\right\}_{G}$;
- action du moteur $\{\mathcal{T}(\text{Moteur} \to 1)\} = \left\{ \begin{array}{c} \overrightarrow{0} \\ C_m \overrightarrow{k_0} \end{array} \right\}_A$

Question 3 Simplifier les torseurs dans l'hypothèse des problèmes plans.

- liaison glissière : $\{\mathcal{T}(1 \to 2)\} = \left\{\begin{array}{c} Y_{12} \overrightarrow{j_1} \\ N_{12} \overrightarrow{k_1} \end{array}\right\}_C$;
- pesanteur sur 2: $\{\mathcal{T}(\text{pes} \to 2)\} = \left\{\begin{array}{c} -m_2 g \overrightarrow{j_0} \\ \overrightarrow{0} \end{array}\right\}_B$;
- action du vérin $\{\mathcal{T}(\text{Vérin} \to 2)\} = \left\{\begin{array}{c} F_v \overrightarrow{i_1} \\ \overrightarrow{0} \end{array}\right\}_A$.
- liaison pivot: $\{\mathcal{T}(0 \to 1)\} = \left\{\begin{array}{c} X_{01} \overrightarrow{i_1} + Y_{01} \overrightarrow{j_1} \\ \overrightarrow{0} \end{array}\right\}_C$
- pesanteur sur 1: $\{\mathcal{T}(\text{pes} \to 1)\} = \left\{\begin{array}{c} -m_1 g \overrightarrow{j_0} \\ \overrightarrow{0} \end{array}\right\}_{G_1}$
- action du moteur $\{\mathcal{T}(\text{Moteur} \to 1)\} = \left\{ \begin{array}{c} \overrightarrow{0} \\ C_m \overrightarrow{k_0} \end{array} \right\}_{0}$

Question 4 Proposer une démarche permettant de déterminer le couple et l'effort que doivent développer chacun des actionneurs pour maintenir le mécanisme en équilibre.

- On isole {1}. On réalise un théorème de la résultante statique en projection sur $\overrightarrow{i_1}: \overrightarrow{R(1 \to 2)} \cdot \overrightarrow{i_1} + \overrightarrow{R(F_{\nu} \to 2)} \cdot \overrightarrow{i_1} + \overrightarrow{R(Pes \to 2)} \cdot \overrightarrow{i_1} = 0.$
- On isole $\{1+2\}$. On réalise un théorème du moment statique en A en projection sur $\overrightarrow{k_0} : \overline{\mathcal{M}(A, 0 \to 1)}$.

$$\overrightarrow{k_0} + \overrightarrow{\mathcal{M}(A, \operatorname{Mot} \to 1)} \cdot \overrightarrow{k_0} + \overrightarrow{\mathcal{M}(A, \operatorname{Pes} \to 2)} \cdot \overrightarrow{k_0} + \overrightarrow{\mathcal{M}(A, \operatorname{Pes} \to 2)} \cdot \overrightarrow{k_0} + \overrightarrow{\mathcal{M}(A, \operatorname{Pes} \to 1)} \cdot \overrightarrow{k_0} = 0.$$

Question 5 Proposer une démarche permettant de déterminer les efforts inconnus dans les liaisons.

- On isole {1}. On réalise un théorème de la résultante statique en projection sur $\overrightarrow{j_1}$ et un théorème du moment statique C en projection sur $\overrightarrow{k_1}$.
- On isole $\{1+2\}$. On réalise un théorème de la résultante statique en projection sur $\overrightarrow{i_1}$ et $\overrightarrow{j_1}$.

Exercice 5 - Mouvement RT *

B2-14

B2-15

C2-07 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_1}$. De plus : $\overrightarrow{G_1}$ désigne le centre d'inertie de $\mathbf{1}$ et $\overrightarrow{AG_1} = L_1 \overrightarrow{i_1}$, on note m_1 la masse de $\mathbf{1}$;

• $G_2 = B$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2**.

Un moteur électrique positionné entre 0 et 1 permet de maintenir 1 en équilibre. Un vérin électrique positionné entre 1 et 2 permet de maintenir 2 en équilibre.

 $\begin{cases} \dot{g} : L' \text{ accélération de la pesanteur est donnée par } \overrightarrow{g} = \\ \dot{g} : \overrightarrow{j_0} : \end{cases}$

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Donner le couple moteur et l'effort à fournir par le vérin pour maintenir le système à l'équilibre.

Question 3 Donner les actions mécaniques dans chacune des liaisons.

Corrigé voir 6.

Exercice 6 - Mouvement RT *

B2-14

B2-15

C2-07 Pas de corrigé pour cet exercice.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Donner le couple moteur et l'effort à fournir par le vérin pour maintenir le système à l'équilibre.

Question 3 *Donner les actions mécaniques dans* chacune des liaisons.

Exercice 7 - Mouvement RT *

C2-08

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$. De plus :

- G_1 désigne le centre d'inertie de $\mathbf{1}$ et $\overrightarrow{AG_1} = L_1 \overrightarrow{i_1}$, on note m_1 la masse de **1** et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathcal{B}_1};$
- $G_2 = B$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2** et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}$.

RESULTAT A VERIFIER!!!!! Par ailleurs, on donne $\{\mathcal{V}(2/0)\} = \left\{ \begin{array}{l} \dot{\theta}(t)\overrightarrow{k_0} \\ \dot{\lambda}(t)\overrightarrow{i_1} + \lambda(t)\dot{\theta}(t)\overrightarrow{j_1} \end{array} \right\}_{R}$ et $\overrightarrow{\Gamma(B,2/0)} =$ $(\ddot{\lambda}(t) - \lambda(t)\dot{\theta}(t)^2)\vec{i_1} + (\dot{\lambda}(t)\dot{\theta}(t) + \dot{\lambda}(t)\dot{\theta}(t))\vec{j_1}$

Question 1 Exprimer le torseur dynamique $\{\mathcal{D}(1/0)\}\ en\ A.$

Question 2 Déterminer
$$\overrightarrow{\delta(A, 1+2/0)} \cdot \overrightarrow{k_0}$$

Corrigé voir 8.

Exercice 8 - Mouvement RT *

C2-08

Pas de corrigé pour cet exercice.

Question 1 Exprimer le torseur dynamique $\{\mathcal{D}(1/0)\}\ en\ A.$

On a
$$\{\mathscr{D}(1/0)\} = \left\{ \begin{array}{c} \overrightarrow{R_d(1/0)} \\ \overleftarrow{\delta(A, 1/0)} \end{array} \right\}_A$$
. Calculons $\overrightarrow{R_d(1/0)}$

$$\overrightarrow{R_d(1/0)} = m_1 \overrightarrow{\Gamma(G_1, 1/0)}$$

Question 2 Déterminer $\overrightarrow{\delta}(A, 1+2/0) \cdot \overrightarrow{k_0}$

Exercice 9 - Mouvement RT *

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_1}$. De plus :

Soit le mécanisme suivaire. On a $\overrightarrow{AB} = \underbrace{r(v_1, v_1, \dots, v_n)}_{P_1}$ • G_1 désigne le centre d'inertie de $\mathbf{1}$ et $\overrightarrow{AG_1} = L_1 \overrightarrow{i_1}$, on note m_1 la masse de $\mathbf{1}$ et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathscr{B}_1}$; $\overrightarrow{i_1} = m_2 \frac{\mathrm{d}}{\mathrm{d}t} \left[\dot{\lambda}(t) \overrightarrow{i_1} + \lambda(t) \dot{\theta}(t) \overrightarrow{j_1} \right]_{\mathscr{R}_0} \cdot \overrightarrow{i_1} = m_2 \frac{\mathrm{d}^2}{\mathrm{d}t^2} \left[\lambda(t) \overrightarrow{i_1} \right]_{\mathscr{R}_0}$

• $G_2 = B$ désigne le centre d'inertie de **2**, on note m_2

la masse de **2** et
$$I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{\mathcal{B}_2}.$$

Un moteur électrique positionné entre 0 et 1 permet d'actionner le solide 1. Un vérin électrique positionné entre 1 et 2 permet d'actionner le solide 2

L'accélération de la pesanteur est donnée par \overrightarrow{g} =

Question 1 Dans le but d'obtenir les lois de mouvement, appliquer le théorème de la résultante dynamique au solide **2** en projection sur $\overrightarrow{i_1}$.

Question 2 Dans le but d'obtenir les lois de mouvement, appliquer le théorème du moment dynamique à l'ensemble 1+2 au point A en projection sur k_0 .

Eléments de correction :

- 1. $F_v m_2 g \sin \theta = m_2 (\ddot{\lambda}(t) \lambda(t)\dot{\theta}^2(t))$.
- 2. $C_m (m_1 L_1 + m_2 \lambda(t)) g \cos \theta(t) = C_1 \ddot{\theta}(t) + m_1 L_1^2 \ddot{\theta}(t) +$ $C_2\ddot{\theta}(t) + 2m_2\lambda(t)\dot{\lambda}(t)\dot{\theta}(t) + m_2\lambda^2(t)\ddot{\theta}(t).$

Corrigé voir 10.

Exercice 10 - Mouvement RT * C2-09

Ouestion 1 Dans le but d'obtenir les lois de mouvement, appliquer le théorème de la résultante dynamique au solide **2** en projection sur $\overrightarrow{i_1}$.

On isole le solide 2.

On réalise le BAME :

- liaison glissière : $\{\mathcal{T}(1 \to 2)\}\$ tel que $\overrightarrow{R(1 \to 2)} \cdot \overrightarrow{i_1} =$
- pesanteur sur 2 : $\{\mathcal{T}(\text{pes} \to 2)\} = \left\{\begin{array}{c} -m_2 g \overrightarrow{j_0} \\ \overrightarrow{0} \end{array}\right\}_{a}$ avec $-m_2g \overrightarrow{j_0} \cdot \overrightarrow{i_1} = -m_2g \sin \theta$;
- action du vérin $\{\mathcal{T}(\text{Vérin} \to 2)\} = \left\{\begin{array}{c} F_{v} \overrightarrow{i_{1}} \\ \overrightarrow{0} \end{array}\right\}_{i=1}^{n}$

On applique le théorème de la résultante dynamique au solide 2 en projection sur $\overrightarrow{i_1}$: $\overrightarrow{R(1 \to 2)} \cdot \overrightarrow{i_1} + \left(-m_2 g \overrightarrow{j_0}\right)$

$$\overrightarrow{i_1} + F_{\nu} \overrightarrow{i_1} \cdot \overrightarrow{i_1} = \overrightarrow{R_d(2/0)} \cdot \overrightarrow{i_1}.$$
Calcul de $\overrightarrow{R_d(2/0)} \cdot \overrightarrow{i_1}$:

$$\overrightarrow{R_d(2/0)} \cdot \overrightarrow{i_1} = m_2 \frac{\mathrm{d}^2}{\mathrm{d}t^2} \left[\overrightarrow{AG_2} \right]_{\mathscr{R}_0} \cdot \overrightarrow{i_1} = m_2 \frac{\mathrm{d}^2}{\mathrm{d}t^2} \left[\lambda(t) \overrightarrow{i_1} \right]_{\mathscr{R}_0}$$

$$\overrightarrow{i_1} = m_2 \frac{\mathrm{d}}{\mathrm{d}t} \left[\dot{\lambda}(t) \overrightarrow{i_1} + \lambda(t) \dot{\theta}(t) \overrightarrow{j_1} \right]_{\mathscr{R}_0} \cdot \overrightarrow{i_1}$$

$$= m_2 \Big(\ddot{\lambda}(t) \overrightarrow{i_1} + \dot{\lambda}(t) \dot{\theta}(t) \overrightarrow{j_1} + \dot{\lambda}(t) \dot{\theta}(t) \overrightarrow{j_1} + \lambda(t) \ddot{\theta}(t) \overrightarrow{j_1} - \lambda \overrightarrow{l_0} \dot{\theta}^2(t) \overrightarrow{i_1} \Big) \cdot \overrightarrow{i_1} = m_2 \Big(\ddot{\lambda}(t) - \lambda(t) \dot{\theta}^2(t) \Big)$$

Au final, l'application du TRD à 2 en projection sur $\overrightarrow{i_1}$ donne:

$$F_v - m_2 g \sin \theta = m_2 (\ddot{\lambda}(t) - \lambda(t) \dot{\theta}^2(t)).$$

Question 2 Dans le but d'obtenir les lois de mouvement, appliquer le théorème du moment dynamique à l'ensemble 1+2 au point A en projection sur k_0 . On isole le solide 1+2.

On réalise le BAME :

- liaison pivot: $\{\mathscr{T}(0 \to 1)\}\ \text{tel que } \overrightarrow{\mathscr{M}(A, 0 \to 1)} \cdot \overrightarrow{k_0} = \left| \operatorname{car} \frac{\mathbf{d}}{\mathbf{d}t} \left[\overrightarrow{k_0} \right]_0 = \overrightarrow{0}.$
- pesanteur sur 2 : $\{\mathcal{T}(\text{pes} \to 2)\} = \left\{\begin{array}{c} -m_2 g \overrightarrow{j_0} \\ \overrightarrow{0} \end{array}\right\}_B$ avec $\overrightarrow{\mathcal{M}(A, \text{pes} \to 2)} \cdot \overrightarrow{k_0} = \left(\overrightarrow{AB} \land -m_2 g \overrightarrow{j_0}\right) \cdot \overrightarrow{k_0} =$
- $(L_1 \overrightarrow{i_1} \wedge -m_1 g \overrightarrow{j_0}) \cdot \overrightarrow{k_0} = -m_1 g L_1 \cos \theta(t);$
- action du moteur $\{\mathcal{T}(\text{Moteur} \to 1)\} = \left\{\begin{array}{c} \overrightarrow{0} \\ C_{m} \overrightarrow{k_{0}} \end{array}\right\} \cdot \left| \operatorname{car} \frac{d}{dt} \left[\overrightarrow{k_{0}}\right]_{0} = \overrightarrow{0} \cdot \right|$

On applique le théorème du moment dynamique au solide 1+2 en projection sur $\overrightarrow{k_0}$: $\overline{\mathcal{M}(A,0 \to 1)}$. $\overrightarrow{k_0} + \overrightarrow{\mathcal{M}}(A, \text{pes} \to 2) \cdot \overrightarrow{k_0} + \overrightarrow{\mathcal{M}}(A, \text{pes} \to 1) \cdot \overrightarrow{k_0} + C_m \overrightarrow{k_0} =$ $\overrightarrow{\delta(A,1+2/0)}\cdot\overrightarrow{k_0}$.

Calcul de
$$\overrightarrow{\delta(A,1+2/0)} \cdot \overrightarrow{k_0} = \overrightarrow{\delta(A,1/0)} \cdot \overrightarrow{k_0} + \overrightarrow{\delta(A,2/0)} \cdot \begin{vmatrix} C_m - (m_1L_1 + m_2\lambda(t))g\cos\theta(t) = C_1\ddot{\theta}(t) + m_1L_1^2\ddot{\theta}(t) + C_2\ddot{\theta}(t) + 2m_2\lambda(t)d\theta(t) \end{vmatrix}$$

$$-\lambda \vec{kt})\dot{\theta}^2(t)\vec{i_1}$$

$$\begin{split} & \underset{\overline{\delta}(A,1/0)}{\operatorname{Calcul}} \operatorname{de} \, \overline{\delta(A,1/0)} \cdot \overrightarrow{k_0} : \\ & \underset{\overline{\delta}(A,1/0)}{\overline{\delta}(A,1/0)} \cdot \overrightarrow{k_0} = \left(\overline{\delta(G_1,1/0)} + \overrightarrow{AG_1} \wedge \overrightarrow{R_d(1/0)} \right) \cdot \overrightarrow{k_0} = \\ & \left(\frac{\operatorname{d}}{\operatorname{d}t} \left[\overline{\sigma(G_1,1/0)} \right]_0 + m_1 \overrightarrow{AG_1} \wedge \frac{\operatorname{d}^2}{\operatorname{d}t^2} \left[\overrightarrow{AG_1} \right]_0 \right) \cdot \overrightarrow{k_0} \\ & = \left(\frac{\operatorname{d}}{\operatorname{d}t} \left[\overline{\sigma(G_1,1/0)} \right]_0 \cdot \overrightarrow{k_0} + \left(m_1 \overrightarrow{AG_1} \wedge \frac{\operatorname{d}^2}{\operatorname{d}t^2} \left[\overrightarrow{AG_1} \right]_0 \right) \cdot \overrightarrow{k_0} \right) \\ & = \left(\frac{\operatorname{d}}{\operatorname{d}t} \left[\overline{\sigma(G_1,1/0)} \cdot \overrightarrow{k_0} \right]_0 + \left(m_1 L_1 \overrightarrow{i_1} \wedge \left(L_1 \ddot{\theta}(t) \overrightarrow{j_1} - L_1 \dot{\theta}^2(t) \overrightarrow{i_1} \right) \right) \cdot \overrightarrow{k_0} \right) \\ & \operatorname{car} \, \frac{\operatorname{d}}{\operatorname{d}t} \left[\overrightarrow{k_0} \right]_0 = \overrightarrow{0} \, . \\ & = C_1 \ddot{\theta}(t) + m_1 L_1^2 \ddot{\theta}(t) \end{split}$$

• pesanteur sur 2:
$$\{\mathscr{T}(\operatorname{pes} \to 2)\} = \{\overrightarrow{0} \ \overrightarrow{0}\}_{B}$$
 avec $\overline{\mathscr{M}}(A, \operatorname{pes} \to 2) \cdot \overrightarrow{k_0} = (\overrightarrow{AB} \land -m_2 g \overrightarrow{j_0}) \cdot \overrightarrow{k_0} = ((\lambda(t)\overrightarrow{i_1} \land -m_2 g \overrightarrow{j_0}) \cdot \overrightarrow{k_0}) = ((\lambda(t)\overrightarrow{i_1} \land -m_2 g \overrightarrow{j_0}) \cdot \overrightarrow{k_0} = -m_2 g \lambda(t) \cos \theta(t);$
• pesanteur sur 1: $\{\mathscr{T}(\operatorname{pes} \to 1)\} = \{\overrightarrow{0} \ \overrightarrow{0}\}_{G_1}$ avec $\overline{\mathscr{M}}(A, \operatorname{pes} \to 1) \cdot \overrightarrow{k_0} = (\overrightarrow{AG_1} \land -m_1 g \overrightarrow{j_0}) \cdot \overrightarrow{k_0} = ((L_1 \overrightarrow{i_1} \land -m_1 g \overrightarrow{j_0}) \cdot \overrightarrow{k_0}) = ((L_1 \overrightarrow{i_1} \land -m_1 g \overrightarrow{j_0}) \cdot \overrightarrow{k_0} = -m_1 g L_1 \cos \theta(t);$
• action du moteur $\{\mathscr{T}(\operatorname{Moteur} \to 1)\} = \{\overrightarrow{0} \ C_m \overrightarrow{k_0}\}_A$.
• action du moteur $\{\mathscr{T}(\operatorname{Moteur} \to 1)\} = \{\overrightarrow{0} \ C_m \overrightarrow{k_0}\}_A$.

On a donc (j'espère ...):

$$C_m - m_1 g L_1 \cos \theta(t) - m_2 g \lambda(t) \cos \theta(t) = C_1 \ddot{\theta}(t) + m_1 L_1^2 \ddot{\theta}(t) + C_2 \ddot{\theta}(t) + m_2 g \lambda(t) \cos \theta(t)$$

$$C_m - (m_1 L_1 + m_2 \lambda(t)) g \cos \theta(t) = C_1 \ddot{\theta}(t) + m_1 L_1^2 \ddot{\theta}(t) + C_2 \ddot{\theta}(t) + 2 m_2 \lambda(t)$$