

PRESENTED BY

M.M.D.SAMARANAYAKE

S16533

SUPERVISED BY

DR. H.A.USOOF

OUTLINE

Introduction

Brain tumors are a cancerous/non-cancerous mass or growth of abnormal cells in the brain

Gliomas are the most common brain tumors

- · Glioblastoma- GBM (Higher Grade Glioma-HGG)
- · Lower Grade Glioma (LGG)

Multimodal Magnetic Resonance Imaging (MRI) is commonly used in radiology to portray the heterogeneity of gliomas

Multimodal brain MRI scans consist of,

- · T1-weighted
- · Contrast enhanced T1-weighted
- · T2-weighted
- · Fluid Attenuation Inversion Recovery (FLAIR)

Multimodal Scans - Data | Manually-segmented mask - Target

Research Problem

Segmentation of gliomas using all the modalities would consume more time

Brain tumor
segmentation
necessitates expert
knowledge to identify
unhealthy from healthy
tissues, those tasks are
both costly and timeconsuming

In some clinical scenarios all the modalities cannot be obtained through MRI machines

Research Objectives

Identifying Neural Network models available for brain tumor image segmentation

Extracting handcrafted features or image segments of MRI data which can be used to identify brain tumors

Combination of MRI modalities having a significant impact on the accuracy

Techniques to be used to reconstruct the missing MRI modalities to mitigate the accuracy drop

Literature Review

Glioblastoma Multiforme Prognosis: MRI Missing Modality Generation, Segmentation and Radio genomic Survival Prediction

Brain Tumor Segmentation on MRI with Missing Modalities

Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions

Context Aware 3D UNet for Brain Tumor Segmentation

Brain Tumor Segmentation and Survival Prediction Using Multimodal MRI Scans With Deep Learning _ Enhanced Reader

Dataset

Utilized the MICCAI BraTS 2020 dataset to evaluate the performance the used methods

The dataset contains the brain MRIs, patient age, survival days and resection status

Training dataset contains 369 images with 293 High Grade Gliomas and 76 Low Grade Gliomas

Validation set contained 125 scans of patients with brain tumors

Test set contained images from 191 patients with a brain tumor, in which 119 patients had a resection state of Gross Total Resection (GTR)

Data Pre-Processing

Images were skull stripped and resampled to an isotropic 1mm3 resolution

Data augmentations to increase images

Segmentation annotations comprise of the following tumor subtypes

- Necrotic/non-enhancing tumor(NCR)
- · Peritumoral edema (ED)
- Gd-enhancing tumor (ET)

Methodology

3D U-net Architecture

ResNet50 Architecture

Cascaded Anisotropic Convolutional Networks Architecture

Ensemble Architecture

15

Evaluation Metrics

Dice Coefficient (F1 Score)

Dice coefficient
$$(A, B) = \frac{2 \times |A \cap B|}{|A| + |B|}$$

Intersection Over Union (Jaccard Index)

Finding the CNN Architecture with a Higher Accuracy

Model	Metric	Enhancing Tumor (ET)	Whole Tumor (WT)	Tumor Core (TC)
CA-CNN	Mean Dice	0.72682	0.80282	0.78343
	Sensitivity	0.81258	0.93045	0.85305
	Specificity	0.99807	0.99336	0.99786
3D Attention U-Net	Mean Dice	0.72088	0.88762	0.82567
	Sensitivity	0.84281	0.90188	0.81913
	Specificity	0.99743	0.99416	0.99813
ResNet50	Mean Dice	0.70524	0.86485	0.82531
	Sensitivity	0.87452	0.88864	0.79658
	Specificity	0.83243	0.91056	091069
Ensemble Model	Mean Dice	0.74687	0.89152	0.85392
	Sensitivity	0.83064	0.90688	0.83156
	Specificity	0.99815	0.99549	0.99863

Segmentation Results on all 4 modalities using the Ensemble Model

Training Results on the Segmented Tumor

Metric	Score
Training Loss	0.1669
Training Dice	84.54%
Training Jacaard	73.94%

train loss 0.16697238027975334

train jaccard score 0.7394925951957703 val jaccard score 0.7391489148139954

3D Cross Section of a Segmented Brain Tumor using the Ensemble Model

Ground Truth vs Predictions of the Ensemble

Segmentation Results on missing T2 Modality

Training Results on the Segmented Tumor

Metric	Score
Training Loss	1.379
Training Dice	27.6%
Training Jacaard	19.54%

train dice score 0.27607986330986023 val dice score 0.5297863483428955

train loss 1.3798450403545626

train jaccard score 0.19542807340621948 val jaccard score 0.371977835893631

Segmentation Results on missing Post Contrast T1-weighted (T1ce) Modality

Training Results on the Segmented Tumor

Metric	Score
Training Loss	1.554
Training Dice	14.71%
Training Jacaard	9.67%

train dice score 0.14716815948486328 val dice score 0.5713640451431274

train jaccard score 0.09676816314458847 val jaccard score 0.4234415590763092

Segmentation Results on missing T1 Modality

Training Results on the Segmented Tumor

Metric	Score
Training Loss	1.548
Training Dice	21.25%
Training Jacaard	14.03%

train loss 1.5482987972041267

train jaccard score 0.14030571281909943 val jaccard score 0.39227527379989624

24

Segmentation Results on missing FLAIR Modality

Training Results on the Segmented Tumor

Metric	Score
Training Loss	1.3802
Training Dice	13.81%
Training Jacaard	8.63%

train loss 1.3802552739186074

train jaccard score 0.08634994924068451 val jaccard score 0.13366281986236572

Sub Regions of a Brain Tumor

Challenges and Deviations

Configuring the dataset for each segmentation and classification model used in the research.

Downloading and loading the image dataset for training and testing.

Finding pre trained segmentation models with better accuracies for MRI scans.

Missing modality generation using GANs

Limitations of the Interpretation of Results

Number of images were insufficient for training.

Lack of GPU power.

Time constraint on developing a GAN.

CONCLUSION

Missing FLAIR modality and the T2-weighted modalities had a greater impact on the segmentation

Missing FLAIR modality significantly shows a very low percentage of Dice and Jaccard coefficients of the whole tumor and no score from the Tumor core and Enhancing Tumor

T2 modality shows a slight drop in Dice and Jaccard coefficients of the whole tumor and no score from the Tumor core and Enhancing Tumor

T1ce modality has a lower impact on the segmentation and is important in detecting the Enhancing Tumor

FUTURE WORK

Reconstruction of missing FLAIR and T2 modalities using a Generative Adversarial Network

Survival Prediction of patients with Higher Grade Gliomas

REFERENCES

M. Islam, N. Wijethilake, and H. Ren, "Glioblastoma Multiforme Prognosis: MRI Missing Modality Generation, Segmentation and Radiogenomic Survival Prediction," Mar. 2021, [Online]. Available: http://arxiv.org/abs/2104.01149.

M. Islam, V. VS, V. J. M. Jose, N. Wijethilake, U. Utkarsh, and H. Ren, "Brain Tumor Segmentation and Survival Prediction using 3D Attention UNet," Apr. 2021, [Online]. Available: http://arxiv.org/abs/2104.00985.

Z. Akkus, A. Galimzianova, A. Hoogi, D. L. Rubin, and B. J. Erickson, "Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions," *J. Digit. Imaging*, vol. 30, no. 4, pp. 449–459, 2017, doi: 10.1007/s10278-017-9983-4.

A. Işin, C. Direkoğlu, and M. Şah, "Review of MRI-based Brain Tumor Image Segmentation Using Deep Learning Methods," in *Procedia Computer Science*, 2016, vol. 102, pp. 317–324, doi: 10.1016/j.procs.2016.09.407.

