14.4 Résistance des matériaux

	100000000000000000000000000000000000000

■ Condition de résistance $\sigma \leq Rp$

	N	: effort normal	
	S	: section de la poutre	mn
	σ	: contrainte normale	N/mm
٦	D	: limite électione	N/mm

	Contrainte normale	IN/mm
B	R _e : limite élastique	N/mm
$R_p = \frac{R_p}{R_p}$	R_p : résistance pratique	N/mm
<u> </u>	s : coefficient de sécurité	-

Valeurs de s:

 $\sigma = \frac{N}{S}$

Plancher d'usine	5 à 2
Charpente métallique avec vent ou neige 2	à3
Machines outils, réservoirs sous pression 3	à 4
Camions, autos, engins de manutention	5
Concasseurs, laminoirs, presses 6	à7
Ascenceurs, transports de personnes, câbles	12

■ Loi de déformation

σ	=	E.e

40	41: allongement	mm
$e = \frac{\Delta I}{I}$: longueur initiale	mm
	e : allongement unitaire	_

Acier 2	00000	Fonte 60000
Cuivre 1	25000	Magnésium 45000
		Etain 40000
Aluminium	70000	Nickel 22000

■ Concentration de contrainte

■ Condition de résistance dans le cas de concentration de contrainte

 $\sigma \leq R_{\rho}$

14.4 2 Compression

Condition dimensionnelle à respecter

d: diamètre du cercle inscrit dans la section.

■ Condition de résistance, loi de déformation Les relations sont identiques à celles de la traction à condition de remplacer allengement per

Les relations sont identiques à celles de la traction à condition de remplacer allongement par raccourcissement.

Remarque: Pour tous les matériaux homogènes et isotropes: $R_{e \text{ compression}} = R_{e \text{ traction}}$

Pour la fonte : $R_{e \text{ compression}} \approx 7 R_{e \text{ traction}}$

14.4 3 Cisaillement

Condition : $\Delta x \cong 0$.

■ Condition de résistance

$T_{\text{moy}} = \frac{T}{S}$ T_{moy}	: effort tranchant N : section cisaillée mm² : contrainte de glis N/mm²
---	---

	R
R =	eg
pg	S

· Hpg	: resistance pratique au
1 "	glisssement N/mm²
Reg	: limite élastique au
, ,	glissementN/mm²
s	: coefficient de sécurité -

Acier doux	$R_{eq} = 0.5 R_e$
Acier mi-dur	$R_{eq} = 0.7 R_e$
Acier dur	$R_{eq} = 0.8 R_{e}$

■ Loi de déformation

G: Module d'élasticité tranversale = 0.4E N/mm² y: angle de glissement rad

■ Moments quadratiques / mm⁴

b 19	$I_G = \frac{bh}{12} \left(b^2 + h^2 \right)$	2 17	$I_{\rm G} = \frac{\pi (D^4 - d^4)}{32}$
Rectangle	$I_{G_z} = \frac{bh^3}{12}$	Couronne	$I_{G_Z} = \frac{\pi (D^4 - d^4)}{64}$
P 15	$I_{\rm G} = \frac{\pi D^4}{32}$	N'	I _G =
Cercle	$I_{G_z} = \frac{\pi D^4}{64}$	Triangle	$I_{G_z} = \frac{ah^3}{36}$

Page 47/47

14.4 4 Torsion

■ Condition de résistance

	_		2.00
7	М	≤	R_{pg}

$\tau_{\rm M}$: Contrainte maximum	N/mm
M_t : moment de torsion	mm.l
I _G : moment quadr. polaire	mm
v: rayon de la poutre	mr
	$ au_{\mathrm{M}}$: Contrainte maximum $ au_{\mathrm{M}}$: moment de torsion $ au_{\mathrm{G}}$: moment quadr. polaire $ au$: rayon de la poutre

$R_{ ho_g}$: résistance pratique au glissement . . . N/mm²

■ Loi de déformation $M_t = G.\theta.I_G$

(G = 0,4E)	θ : angle unit. de torsion rad/mm
	I _G : moment quadr. polaire mm ⁴

■ Relation contrainte-déformation

•	Limite de déformation	$\theta_{\text{maxi}} \leq 1/4 \ d^{\circ}/m$

■ Concentration de contrainte

A	
T maxi =	= K TM

 $\tau_M = G.r.\theta$

$\tau_{\rm max}$	xi : contrainte maxi dûe à l'affaiblissemer	it de
	la section	
TM	: contrainte maxi calculée pour l'arbre	de
	rayon r	mm²

c : coefficient de concentration de contrainte

Vérifier que : $\tau_M \leq R_{p_q}$ et $\tau'_{\text{maxi}} \leq R_{e_q}$

■ Choix des axes

Les efforts $\vec{F_1}$, $\vec{F_2}$, $\vec{F_2}$ sont parallèles à \vec{Oy} .

Définitions

T: effort tranchant dans une section (S). C'est la somme algébrique des efforts parallèles à yy' situés à gauche de (S).

M₁: moment fléchissant dans une section (S).
 C'est la somme algébrique des moments des forces situées à gauche de (S) par rapport à GZ.

■ Condition de résistance

_		_	_
	σ.,	<	R
	O M		, .b

	· · · · · · · · · · · · · · · · · · ·
$\alpha = M_t$	I_{G_2} : moment fléchissant mm. N
I_{G_z}	I _{Gz} :moment quadr. axial mm ⁴
<u>v</u>	v :valeur de y _{max} <u>k</u> N/mm²

R _p :résistance pratique	N/mm²
σ _M : contrainte maxi	N/mm ²

■ Concentration de contrainte

$\sigma'_{\text{maxi}} = k \ \sigma_{M}$
--

afflaiblisse
N/mm²
N/mm ²

Déformations

La poutre chargée se déforme, la courbe de déformation du type y = f(x) est donné par l'équation différentielle ci-dessus.

Nota: la flèche est donnée en mesure algébrique.