← Recurrent Neural Networks

10/10 points (100.00%)

Quiz, 10 questions

✓ Congratulations! You passed!

Next Item

1/1 points

1.

Suppose your training examples are sentences (sequences of words). Which of the following refers to the j^{th} word in the i^{th} training example?

 $x^{(i) < j >}$

Correct

We index into the i^{th} row first to get the i^{th} training example (represented by parentheses), then the j^{th} column to get the j^{th} word (represented by the brackets).

- $igcap x^{< i > (j)}$
- $igcap x^{(j) < i>}$
- $igcap x^{< j > (i)}$

Recurrent Neural Networks

Consider this RNN: Quiz, 10 questions 10/10 points (100.00%)

This specific type of architecture is appropriate when:

$$\bigcirc \quad T_x = T_y$$

Correct

It is appropriate when every input should be matched to an output.

- $T_x < T_y$
- $\bigcap T_x > T_y$
- $T_x = 1$

10/10 points (100.00%)

Quiz, 10 questions

To which of these tasks would you apply a many-to-one RNN architecture? (Check all that apply).

Speech recognition (input an audio clip and output a transcript)

Un-selected is correct

Sentiment classification (input a piece of text and output a 0/1 to denote positive or negative sentiment)

Correct

Correct!

Image classification (input an image and output a label) Recurrent Neural Networks Un-selected is correct Quiz, 10 questions	10/10 points (100.00%)
Gender recognition from speech (input an audio clip and output a label Correct Correct!	indicating the speaker's gender)
1/1 points 4.	

You are training this RNN language model.

At the t^{th} time step, what is the RNN doing? Choose the best answer.

- $igcap ext{Estimating } P(y^{<1>},y^{<2>},\ldots,y^{< t-1>})$
- $igcap ext{Estimating } P(y^{< t>})$
- Calculating $P(y^{< t>} \mid y^{< 1>}, y^{< 2>}, \dots, y^{< t-1>})$

Correct

Yes, in a language model we try to predict the next step based on the knowledge of all prior steps.

Consisting $P(y^{< t>} \mid y^{< 1>}, y^{< 2>}, \ldots, y^{< t>})$

Recurrent Neural Networks

10/10 points (100.00%)

Qui 2.10 questions

You have finished training a language model RNN and are using it to sample random sentences, as follows:

What are you doing at each time step t?

- (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass the ground-truth word from the training set to the next time-step.
- (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass the ground-truth word from the training set to the next time-step.
- (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass this selected word to the next time-step.
- (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass this selected word to the next time-step.

Correct

Yes!

← Recurrent Neural Networks

10/10 points (100.00%)

	10, 10 points (100.00
Quiz, 10 questions/ 1 points	
6. You are training an RNN, and find that your weights and activations are all taking on the Number"). Which of these is the most likely cause of this problem?	e value of NaN ("Not a
Vanishing gradient problem.	
Exploding gradient problem.	
Correct	
ReLU activation function g(.) used to compute g(z), where z is too large.	
Sigmoid activation function g(.) used to compute g(z), where z is too large.	
$7.$ Suppose you are training a LSTM. You have a 10000 word vocabulary, and are using an activations $a^{< t>}$. What is the dimension of Γ_u at each time step?	LSTM with 100-dimensional

100

Correct

Correct, Γ_u is a vector of dimension equal to the number of hidden units in the LSTM.

← Recurrent Neural Networks

10/10 points (100.00%)

Quiz, 10 questions

1/1 points

8.

Here're the update equations for the GRU.

GRU

$$\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c)$$

$$\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u)$$

$$\Gamma_r = \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r)$$

$$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t-1>}$$

$$a^{< t>} = c^{< t>}$$

Alice proposes to simplify the GRU by always removing the Γ_u . I.e., setting Γ_u = 1. Betty proposes to simplify the GRU by removing the Γ_r . I. e., setting Γ_r = 1 always. Which of these models is more likely to work without vanishing gradient problems even when trained on very long input sequences?

Alice's model (removing Γ_u), because if $\Gamma_r \approx 0$ for a timestep, the gradient can propagate back through that timestep without much decay.

← Recurrent Neural Networks

10/10 points (100.00%)

Quiz, 10 questions Alice's model (removing Γ_u), because if $\Gamma_r \approx 1$ for a timestep, the gradient can propagate back through that timestep without much decay.

Betty's model (removing Γ_r), because if $\Gamma_u pprox 0$ for a timestep, the gradient can propagate back through that timestep without much decay.

Correct

Yes. For the signal to backpropagate without vanishing, we need $c^{< t>}$ to be highly dependant on $c^{< t-1>}$.

Betty's model (removing Γ_r), because if $\Gamma_u \approx 1$ for a timestep, the gradient can propagate back through that timestep without much decay.

1/1 points

9.

Here are the equations for the GRU and the LSTM:

← Recurrent Neurath Neuroks

LSTOMP points (100.00%)

Quiz, 10 questions

$$\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c) \qquad \qquad \tilde{c}^{< t>} = \tanh(W_c[a^{< t-1>}, x^{< t>}] + b_c)$$

$$\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u) \qquad \qquad \Gamma_u = \sigma(W_u[a^{< t-1>}, x^{< t>}] + b_u)$$

$$\Gamma_r = \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r) \qquad \qquad \Gamma_f = \sigma(W_f[a^{< t-1>}, x^{< t>}] + b_f)$$

$$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t-1>} \qquad \qquad \Gamma_o = \sigma(W_o[a^{< t-1>}, x^{< t>}] + b_o)$$

$$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + \Gamma_f * c^{< t-1>}$$

$$a^{< t>} = \Gamma_u * \tilde{c}^{< t>} + \Gamma_f * c^{< t-1>}$$

$$a^{< t>} = \Gamma_o * c^{< t>}$$

From these, we can see that the Update Gate and Forget Gate in the LSTM play a role similar to _____ and ____ in the GRU. What should go in the the blanks?

$$\Gamma_u$$
 and $1-\Gamma_u$

Correct

Yes, correct!

- \bigcap Γ_u and Γ_r
- \bigcap $1-\Gamma_u$ and Γ_u
- \bigcap Γ_r and Γ_u

Recurrent Neural Networks

10/10 points (100.00%)

Qui**z**,**0**0 questions

You have a pet dog whose mood is heavily dependent on the current and past few days' weather. You've collected data for the past 365 days on the weather, which you represent as a sequence as $x^{<1>},\ldots,x^{<365>}$. You've also collected data on your dog's mood, which you represent as $y^{<1>},\ldots,y^{<365>}$. You'd like to build a model to map from $x\to y$. Should you use a Unidirectional RNN or Bidirectional RNN for this problem?

- Bidirectional RNN, because this allows the prediction of mood on day t to take into account more information.
- Bidirectional RNN, because this allows backpropagation to compute more accurate gradients.
- Unidirectional RNN, because the value of $y^{< t>}$ depends only on $x^{< 1>},\dots,x^{< t>}$, but not on $x^{< t+1>},\dots,x^{< 365>}$

Correct

Yes!

Unidirectional RNN, because the value of $y^{< t>}$ depends only on $x^{< t>}$, and not other days' weather.

