

Topics

Definitions

- Deep Learning
- Convolutional Neural Networks

Motivation: Why care about Deep Learning?

Image classification

- Definition
- Challenges
- Datasets

Definitions Deep Learning

Learn to solve problems in hierarchical fashion [1]

- ► Learn hierarchy of concepts
- ▶ Later concepts build upon earlier (simpler) ones

Graph of concepts has many layers

► Hence Deep Learning (DL)

Definitions Convolutional Neural Networks (CNNs)

DL models for data with grid-like structure (e.g. images)

- Deep feedforward neural networks
- Include layers that perform convolutions

Most important models for image analysis

► Focus of this course

Definitions Convolutional Neural Networks (CNNs)

Motivation

Why care about Deep Learning?

- Significantly better performance on many tasks
- ► Flexible (can do alot more than classification)
- Companies want people with experience

Let's see some examples of what Deep Learning can do

Motivation Image Classification (LSVRC)

Motivation Image Classification

Motivation Object Detection

Image from kaiminghe.com

Motivation Object Detection

Image from youtube

Motivation Image Colorization

Image from richzhang.github.io

Motivation Style Transfer

Image from [2]

Motivation Facial Landmark Detection

Image from [3]

Motivation 3D Models from Single Images

Image from [4]

Motivation Scene Understanding

Motivation Scene Understanding

A little girl in a pink shirt is looking at a toy doll.

A woman is riding a bicycle on the pavement.

Image from [5]

A girl with a red cap, hair tied up and a gray shirt is fishing in a calm lake.

One of main image analysis tasks

Task definition

- ► Given a set of class labels (e.g. {bird, cat, dog})
- ▶ Which class does the given image belong to?

mage from youtube.com

Image belongs to exactly one class in the set

- Comparatively easy task
- On some datasets, machines now outperform humans!

But still very challenging

Image Classification Challenges – Pose and Viewpoint

Image adapted from warrenphotographic.co.uk

Image Classification Challenges – Illumination

Image from studioddt.com

Image Classification Challenges – Deformation

Image from cs231n.github.io

Image Classification Challenges – Occlusion

Image from cs231n.github.io

Image Classification Challenges – Background

Image from cs231n.github.io

Challenges – Intraclass Variation

Image from cs231n.github.io

Computer vision research is dataset-driven

- ▶ Data required for developing and testing
- ► Collecting and annotating takes lots of effort

Public image classification datasets available

- Frees us from having to collect data
- Facilitates method comparison

Image Classification Datasets – CIFAR10

10 classes, 60k images

Image from cs.toronto.edu

Image Classification Datasets – Pascal VOC

20 classes, 29k images

lmage from cs.adelaide.edu.au

Image Classification Datasets – ImageNet (LSVRC)

1000 classes, 1.4m images

▶ Subset for annual image classification challenge

Image from umich.edu

We always require three disjoint subsets

- ► Training set: for training (duh)
- ► Validation set: for tuning hyperparameters
- ► Test set: for a final performance analysis

We know the problem and have data

How can we "solve" the image classification problem?

Next lecture

Bibliography I

- [1] Deep learning, 2016, [Online]. Available: http://www.deeplearningbook.org.
- [2] Image Style Transfer Using Convolutional Neural Networks, CVPR, 2016.
- [3] A Recurrent Encoder-Decoder Network for Sequential Face Alignment, ECCV, 2016.
- [4] Multi-View 3D Models from Single Images with a Convolutional Network, ECCV, 2016.
- [5] Grounding of Textual Phrases in Images by Reconstruction, ECCV, 2016.

