L3 A, intégration: M363

- I - Exercices préliminaires

On présente ici quelques méthodes de raisonnement qui seront utilisées en théorie de la mesure.

Exercice 1 Pour tout entier naturel non nul n, on définit les fonctions symétriques élémentaires $\sigma_{n,k}: \mathbb{R}^n \to \mathbb{R}$, l'entier k étant compris entre 0 et n, par :

$$\forall \alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n, \ \sigma_{n,k}(\alpha) = \begin{cases} 1 \ si \ k = 0 \\ \sum_{1 \le i_1 < \dots < i_k \le n} \alpha_{i_1} \alpha_{i_2} \cdots \alpha_{i_k} \ si \ k \in \{1, \dots, n\} \end{cases}$$

Soit $P(X) = \prod_{k=1}^{n} (X - \alpha_k)$ un polynôme scindé unitaire de degré $n \ge 1$ dans $\mathbb{R}[X]$.

Montrer que l'on a $P(X) = \sum_{k=0}^{n} a_k X^{n-k}$ avec :

$$\forall k \in \{0, 1, \dots, n\}, \ a_k = (-1)^k \sigma_{n,k} (\alpha_1, \dots, \alpha_n)$$

Exercice 2 Soit Ω un ensemble non vide.

À toute partie A de Ω , on associe la fonction indicatrice (ou caractéristique) de A définie par :

$$\mathbf{1}_A: \ \Omega \to \left\{ \begin{array}{l} \{0,1\} \\ x \mapsto \left\{ \begin{array}{l} 1 \ si \ x \in A \\ 0 \ si \ x \notin A \end{array} \right. \end{array} \right.$$

On note $\mathcal{P}(\Omega)$ l'ensemble de toutes les parties de Ω .

- 1. Montrer que l'application qui associe à une partie A de Ω sa fonction indicatrice $\mathbf{1}_A$ réalise une bijection de $\mathcal{P}(\Omega)$ sur $\{0,1\}^{\Omega}$ (ensemble des applications de Ω dans $\{0,1\}$). Préciser son inverse.
- 2. Soient A, B deux parties de Ω . Exprimer $\mathbf{1}_{\Omega\setminus A}$, $\mathbf{1}_{A\cap B}$, $\mathbf{1}_{AUB}$, $\mathbf{1}_{B\setminus A}$, $\mathbf{1}_{A\Delta B}$, en fonction de $\mathbf{1}_A$ et $\mathbf{1}_B$.
- 3. Plus généralement, pour toute suite finie $(A_k)_{1 \leq k \leq n}$ de parties de Ω , exprimer $\mathbf{1}_{\bigcap_{k=1}^{n} A_k}$ et $\mathbf{1}_{\bigcap_{k=1}^{n} A_k}$ en fonction des $\mathbf{1}_{A_k}$.
- 4. Montrer qu'il n'existe pas de bijection de Ω sur $\mathcal{P}(\Omega)$ (théorème de Cantor). On en déduit en particulier que $\mathcal{P}(\mathbb{N})$ et $\{0,1\}^{\mathbb{N}}$ ne sont pas dénombrables.
- 5. Soient $(A_k)_{1 \leq k \leq n}$ une suite finie de parties de Ω et A une partie de Ω . Montrer que :

$$((A_k)_{1 \le k \le n} \text{ est une partition de } A) \Leftrightarrow \left(\mathbf{1}_A = \sum_{k=1}^n \mathbf{1}_{A_k}\right)$$

Exercice 3 On dit qu'une série numérique (réelle ou complexe) $\sum u_n$ est commutativement convergente si, pour toute permutation σ de \mathbb{N} , la série $\sum u_{\sigma(n)}$ est convergente.

Montrer qu'une série $\sum u_n$ absolument convergente est commutativement convergente et que pour toute permutation σ de \mathbb{N} , on a $\sum_{n=0}^{+\infty} u_{\sigma(n)} = \sum_{n=0}^{+\infty} u_n$ (cela justifie l'écriture $\sum_{n\in\mathbb{N}} u_n$ dans le cas d'une série absolument convergente, ce qui est utilisé implicitement dans la définition d'une mesure).

Exercice 4

- 1. Soit $(u_{n,m})_{(n,m)\in\mathbb{N}^2}$ une suite de réels positifs ou nuls indexée par (n,m) dans \mathbb{N}^2 . On suppose que :
 - pour tout $n \in \mathbb{N}$, la série $\sum_{m} u_{n,m}$ est convergente de somme S_n ;
 - la série $\sum_{n} S_n$ étant convergente de somme S.

Montrer alors que dans ces conditions :

- pour tout $m \in \mathbb{N}$, la série $\sum_{n} u_{n,m}$ est convergente de somme T_m ;
- la série $\sum_{m} T_{m}$ est convergente de somme S, soit :

$$\sum_{n=0}^{+\infty} \left(\sum_{m=0}^{+\infty} u_{n,m} \right) = \sum_{m=0}^{+\infty} \left(\sum_{n=0}^{+\infty} u_{n,m} \right)$$

Dans le cas où l'une des sommes $\sum_{n=0}^{+\infty} \left(\sum_{m=0}^{+\infty} u_{n,m}\right)$ ou $\sum_{m=0}^{+\infty} \left(\sum_{n=0}^{+\infty} u_{n,m}\right)$ est finie, on dit que la série

double $\sum u_{n,m}$ est convergente et on note $\sum_{(n,m)\in\mathbb{N}^2} u_{n,m}$ la valeur commune de $\sum_{n=0}^{+\infty} \left(\sum_{m=0}^{+\infty} u_{n,m}\right)$

$$et \sum_{m=0}^{+\infty} \left(\sum_{n=0}^{+\infty} u_{n,m} \right).$$

Étant donnée une suite double $(u_{n,m})_{(n,m)\in\mathbb{N}^2}$ de nombres complexes, on dit que la série double $\sum u_{n,m}$ est absolument convergente (ou que la suite $(u_{n,m})_{(n,m)\in\mathbb{N}^2}$ est sommable) si la série double $\sum |u_{n,m}|$ est convergente.

2. Soit $(u_{n,m})_{(n,m)\in\mathbb{N}^2}$ une suite double telle que la série double $\sum u_{n,m}$ soit absolument convergente.

Montrer alors que dans ces conditions, pour tout $n \in \mathbb{N}$ [resp. pour tout $m \in \mathbb{N}$], la série $\sum_{m} u_{n,m}$ [resp. $\sum_{n} u_{n,m}$] est absolument convergente et en notant S_n [resp. T_m] la somme de

cette série, la série $\sum S_n$ [resp. $\sum T_m$] est absolument convergente et on a $\sum_{n=0}^{+\infty} S_n = \sum_{m=0}^{+\infty} T_m$, soit :

$$\sum_{n=0}^{+\infty} \left(\sum_{m=0}^{+\infty} u_{n,m} \right) = \sum_{m=0}^{+\infty} \left(\sum_{n=0}^{+\infty} u_{n,m} \right)$$

- 3. En justifiant la convergence, calculer la somme $\sum_{m=2}^{+\infty} \sum_{n=2}^{+\infty} \frac{1}{n^m}$.
- 4. Soit $(u_{n,m})_{(n,m)\in\mathbb{N}^*\times\mathbb{N}^*}$ la suite double définie par :

$$\forall (n,m) \in \mathbb{N}^* \times \mathbb{N}^*, \ u_{n,m} = \begin{cases} 0 \ si \ n = m \\ \frac{1}{n^2 - m^2} \ si \ n \neq m \end{cases}$$

Montrer, en les calculant, que les sommes $\sum_{n=1}^{+\infty} \left(\sum_{m=1}^{+\infty} u_{n,m}\right)$ et $\sum_{m=1}^{+\infty} \left(\sum_{n=1}^{+\infty} u_{n,m}\right)$ sont définies et différentes.

2

Exercice 5 Soient E un espace vectoriel normé complet et a < b deux réels.

Une fonction $f:[a,b] \to E$ est dite réglée si elle admet une limite à droite en tout point de [a,b] et une limite à gauche en tout point de [a,b].

On notera $f(x^-)$ [resp. $f(x^+)$] la limite à gauche [resp. à droite] en $x \in [a, b]$ [resp. en $x \in [a, b]$].

- 1. Montrer qu'une fonction réglée est bornée.
- 2. Montrer qu'une limite uniforme de fonctions réglées de [a, b] dans E est réglée.
- 3. Soit $f:[a,b]\to E$ une fonction réglée et $\varepsilon>0$. On note :

$$E_{\varepsilon} = \left\{ x \in \left] a, b \right] \mid il \text{ existe } \varphi \text{ en escaliers sur } \left[a, x \right] \text{ telle que } \sup_{t \in \left[a, x \right]} \left\| f \left(t \right) - \varphi \left(t \right) \right\| < \varepsilon \right\}$$

Montrer que $E_x \neq \emptyset$, puis que $b = \max(E_{\varepsilon})$.

- 4. Montrer qu'une fonction $f:[a,b] \to E$ est réglée si, et seulement si, elle est limite uniforme sur [a,b] d'une suite de fonctions en escaliers.
- 5. Rappeler comment le résultat de la question précédente est utilisé pour définir l'intégrale de Riemann d'une fonction réglée $f:[a,b]\to E$.
- 6. Montrer qu'une fonction réglée $f:[a,b] \to E$ est continue sur [a,b] privé d'un ensemble D dénombrable (éventuellement vide).
- 7. La fonction $f = \mathbf{1}_{\mathbb{Q} \cap [0,1]}$ est-elle réglée?
- 8. En désignant par E(t) la partie entière d'un réel t, montrer que la fonction f définie sur [0,1] par :

$$f(x) = \sum_{n=1}^{+\infty} \frac{E(nx)}{2^n}$$

est réglée, puis calculer $\int_0^1 f(x) dx$ (il s'agit d'une intégrale de Riemann).

Exercice 6 [a,b] est un intervalle fermé borné fixé avec a < b réels.

1. Montrer que les fonctions en escaliers positives sur [a, b] sont exactement les fonctions du type :

$$\varphi = \sum_{k=1}^{n} a_k \mathbf{1}_{I_k}$$

où $n \in \mathbb{N}^*$, les a_k sont des réels positifs ou nuls et les I_k sont des intervalles contenus dans [a,b].

- 2. Montrer que si $(\varphi_k)_{1 \leq k \leq n}$ est une suite finie de fonctions en escaliers sur [a,b], alors la fonction $\varphi = \max_{1 \leq k \leq n} \varphi_k$ est aussi en escaliers.
- 3. Soit f une fonction réglée définie sur [a,b] et à valeurs positives.
 - (a) Montrer qu'il existe une suite $(\varphi_n)_{n\in\mathbb{N}}$ de fonctions en escaliers qui converge uniformément vers f sur [a,b] et telle que :

$$\forall n \in \mathbb{N}, \ \forall x \in [a, b], \ \varphi_n(x) \le f(x)$$

(b) On désigne par $(\psi_n)_{n\in\mathbb{N}}$ la suite de fonctions définie sur [a,b] par $\psi_0=0$ et pour tout $n\geq 1$:

$$\psi_n = \max(0, \varphi_1, \cdots, \varphi_n)$$

Monter que $(\psi_n)_{n\in\mathbb{N}}$ est une suite croissante de fonctions en escaliers qui converge uniformément vers f sur [a,b].

- (c) Montrer qu'il existe une suite $(f_n)_{n\in\mathbb{N}}$ de fonctions en escaliers à valeurs positives telle que la série $\sum f_n$ converge uniformément vers f sur [a,b].
- 4. Montrer que les fonctions réglées à valeurs positives sur [a,b] sont exactement les fonctions de la forme :

$$f = \sum_{n=0}^{+\infty} a_n \mathbf{1}_{I_n}$$

où les $(a_n)_{n\in\mathbb{N}}$ est une suite de réels positifs ou nuls, $(I_n)_{n\in\mathbb{N}}$ est une suite d'intervalles contenus dans [a,b] et la série considérée converge uniformément sur [a,b].

5. Avec les notations de la question précédente, justifier l'égalité :

$$\int_{a}^{b} f(x) dx = \sum_{n=0}^{+\infty} a_{n} \ell(I_{n})$$

 $où \ell(I_n)$ est la longueur de l'intervalle I_n .

Exercice 7 La longueur d'un intervalle réel I est définie par :

$$\ell(I) = \sup(I) - \inf(I) \in [0, +\infty] = \mathbb{R}^+ \cup \{+\infty\}$$

1. Soient I = [a, b] un intervalle fermé, borné et $(I_k)_{1 \le k \le n}$ une famille finie d'intervalles telle que :

$$I \subset \bigcup_{k=1}^{n} I_k$$

Montrer que :

$$\ell\left(I\right) \le \sum_{k=1}^{n} \ell\left(I_{k}\right)$$

2. Soient I=[a,b] un intervalle fermé, borné et $(I_n)_{n\in\mathbb{N}}$ une suite d'intervalles telle que :

$$I \subset \bigcup_{n \in \mathbb{N}} I_n$$

Montrer que :

$$\ell\left(I\right) \leq \sum_{n \in \mathbb{N}} \ell\left(I_n\right)$$

3. Soient I un intervalle et $(I_n)_{n\in\mathbb{N}}$ une suite d'intervalles telle que :

$$I \subset \bigcup_{n \in \mathbb{N}} I_n$$

Montrer que :

$$\ell\left(I\right) \leq \sum_{n \in \mathbb{N}} \ell\left(I_n\right)$$

4. Soit $(I_n)_{n\in\mathbb{N}}$ une suite d'intervalles deux à deux disjoints inclus dans un intervalle I. Montrer que :

$$\ell\left(I\right) \ge \sum_{n \in \mathbb{N}} \ell\left(I_n\right)$$

Exercice 8 Pour tous réels a < b, on désigne par $C^0([a,b],\mathbb{R})$ l'espace des fonctions continues de [a,b] dans \mathbb{R} .

- Soit (f_n)_{n∈ℕ} une suite croissante dans C⁰ ([a,b],ℝ) qui converge simplement vers une fonction f∈ C⁰ ([a,b],ℝ).
 Montrer que la convergence est uniforme sur [a,b] (théorème de Dini). On donnera deux démonstrations de ce résultat, l'une utilisant la caractérisation des compacts de Bolzano-Weierstrass et l'autre utilisant celle de Borel-Lebesque.
- 2. Le résultat précédent est-il encore vrai dans $C^0(I,\mathbb{R})$ si on ne suppose plus l'intervalle I compact ?
- 3. Soit $(f_n)_{n\in\mathbb{N}}$ une suite dans $C^0([a,b],\mathbb{R}^+)$ telle que la série de fonctions $\sum f_n$ converge simplement vers une fonction $f \in C^0([a,b],\mathbb{R})$.

 Montrer que:

$$\int_{a}^{b} f(t) dt = \sum_{n=0}^{+\infty} \int_{a}^{b} f_{n}(t) dt$$

4. On désigne par A la famille des parties de \mathbb{R}^2 de la forme :

$$A(f,g) = \{(x,y) \in [a,b] \times \mathbb{R} \mid f(x) \le y \le g(x)\}$$

où f,g sont dans $C^{0}\left(\left[a,b\right],\mathbb{R}\right)$ telles que $f\leq g$ et on note :

$$\mu\left(A\left(f,g\right)\right) = \int_{a}^{b} \left(g\left(t\right) - f\left(t\right)\right) dt$$

Montrer que cette application μ est σ -additive sur \mathcal{A} , c'est-à-dire que pour toute suite $(A_n)_{n\in\mathbb{N}}$ d'éléments de \mathcal{A} deux à deux disjoints (i. e. $A_n \cap A_m = \emptyset$ pour $n \neq m$ dans \mathbb{N}), on a :

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right) = \sum_{n\in\mathbb{N}}\mu\left(A_n\right)$$

- II - Mesures et probabilités élémentaires

X est un ensemble non vide et $\mathcal{P}(X)$ est l'ensemble des parties de X.

Définition : Une σ -algèbre (ou tribu) sur X est une partie \mathcal{A} de $\mathcal{P}(X)$ telle que :

- $-\emptyset\in\mathcal{A}$;
- $\forall A \in \mathcal{A}, X \setminus A \in \mathcal{A}$ (\mathcal{A} est stable par passage au complémentaire);
- Si $I \subset \mathbb{N}$ et $(A_i)_{i \in I}$ est une famille d'éléments de \mathcal{A} alors $\bigcup_{i \in I} A_i \in \mathcal{A}$ (\mathcal{A} est stable par réunion

dénombrable).

Définition: Si \mathcal{A} est une σ -algèbre sur X, on dit alors que le couple (X, \mathcal{A}) est un espace mesurable.

Définition: Une mesure sur l'espace mesurable (X, \mathcal{A}) est une application

$$\mu: \mathcal{A} \to [0, +\infty] = \mathbb{R}^+ \cup \{+\infty\}$$

telle que :

- $-\mu(\emptyset)=0$;
- pour toute suite $(A_n)_{n\in\mathbb{N}}$ d'éléments de \mathcal{A} deux à deux disjoints (i. e. $A_n \cap A_m = \emptyset$ pour $n \neq m$ dans \mathbb{N}), on a :

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right) = \sum_{n\in\mathbb{N}}\mu\left(A_n\right)$$

 $(\sigma$ -additivité de μ).

Avec ces conditions, on dit que le triplet (X, \mathcal{A}, μ) est un espace mesuré.

Dans le cas où $\mu(X) = 1$, on dit que μ est une probabilité sur (X, \mathcal{A}) et que (X, \mathcal{A}, μ) est un espace probabilisé.

Dans ce cas, on notera \mathbb{P} la mesure de probabilité μ , les éléments de X sont appelés éventualités, ceux de \mathcal{A} sont appelés événements, les singletons sont les événements élémentaires et $\mathbb{P}(A)$ est la probabilité de A.

Deux événements disjoints sont dits incompatibles.

Soit $(A_i)_{i\in I}$ une famille d'événements, où I est un ensemble d'indices. On dit que ces événements sont mutuellement indépendants dans \mathcal{A} si pour toute partie J non vide de I, on a :

$$\mathbb{P}\left(\bigcap_{j\in J}A_{j}\right)=\prod_{j\in J}\mathbb{P}\left(A_{j}\right)$$

Définition : Si \mathcal{A} est une famille de parties de X, on dit alors que l'intersection de toutes les σ -algèbres sur X qui contiennent \mathcal{A} est la σ -algèbre engendrée par \mathcal{A} . C'est aussi la plus petite σ -algèbre sur X (pour l'ordre de l'inclusion sur $\mathcal{P}(X)$) qui contient \mathcal{A} .

On la note $\sigma(A)$ et on a :

$$\sigma\left(\mathcal{A}\right) = \bigcap_{\substack{\mathcal{B} \text{ tribu sur } X\\ \mathcal{A} \subset \mathcal{B}}} \mathcal{B}$$

Si $f: X \to X'$ est une application de X dans un ensemble X', alors pour toute tribu \mathcal{A}' sur X', l'image réciproque :

$$f^{-1}(A') = \{ f^{-1}(A') \mid A' \in A' \}$$

est une tribu sur X.

Pour toute famille \mathcal{A}' de parties de X', on a :

$$\sigma\left(f^{-1}\left(\mathcal{A}'\right)\right) = f^{-1}\left(\sigma\left(\mathcal{A}'\right)\right)$$

Définition : Si X est un espace topologique, la tribu de Borel sur X est la σ -algèbre engendrée par les ouverts de X.

On la note $\mathcal{B}(X)$ et ses éléments sont les boréliens de X.

Pour $X = \mathbb{R}^p$, on peut vérifier que $\mathcal{B}(\mathbb{R}^p)$ est la tribu engendré par les pavés ouverts du type :

$$P = \prod_{k=1}^{p} \left[a_k, b_k \right]$$

les $a_k < b_k$, pour k compris entre 1 et p, étant tous rationnels.

Une mesure de Borel sur X est une mesure sur $\mathcal{B}(X)$.

Exercice 9 Soit A une tribu sur X. Montrer que :

- 1. $X \in \mathcal{A}$;
- 2. $si\ A, B\ sont\ dans\ A$, $alors\ A \cup B$, $A \cap B$, $A \setminus B\ et\ A \triangle B\ sont\ dans\ A$;
- 3. si $(A_n)_{n\in\mathbb{N}}$ est une suite d'éléments de \mathcal{A} alors $\bigcap_{n\in\mathbb{N}} A_n \in \mathcal{A}$ (\mathcal{A} est stable par intersection dénombrable).

Exercice 10 Soient (X, \mathcal{A}, μ) un espace mesuré et $(A_k)_{1 \leq k \leq n}$ une suite d'éléments de \mathcal{A} telle que $\mu\left(\bigcup_{k=1}^{n} A_k\right) < +\infty$.

Montrer que :

$$\mu\left(\bigcup_{k=1}^{n} A_{k}\right) = \sum_{k=1}^{n} (-1)^{k-1} \mu_{k,n}$$

où on a noté pour $1 \le k \le n$:

$$\mu_{k,n} = \sum_{1 \le i_1 < \dots < i_k \le n} \mu \left(A_{i_1} \cap \dots \cap A_{i_k} \right)$$

(formule de Poincaré).

Exercice 11 Soit $(X, \mathcal{A}, \mathbb{P})$ un espace probabilisé et $(A_i)_{i \in I}$ une famille d'événements deux à deux incompatibles.

Montrer que l'ensemble d'indice :

$$D = \{k \in I \mid \mathbb{P}(A_k) \in]0, 1]\}$$

est dénombrable (fini ou infini).

Exercice 12

1. Montrer que, pour tout $x \in X$, l'application :

$$\delta_x: \mathcal{P}(X) \rightarrow \{0,1\}$$
 $A \mapsto \mathbf{1}_A(x)$

est une mesure de probabilité sur $(X, \mathcal{P}(X))$ (mesure de Dirac en x).

2. On suppose que $X = \{x_n \mid n \in \mathbb{N}\}$ est un ensemble dénombrable.

Montrer que pour toute suite $(p_n)_{n\in\mathbb{N}}$ de réels positifs ou nuls tels que $\sum_{n=0}^{+\infty} p_n = 1$, l'application :

$$\mathbb{P}: \mathcal{P}(X) \to \mathbb{R}^{+}$$

$$A \mapsto \sum_{n=0}^{+\infty} p_{n} \delta_{x_{n}}(A)$$
(1)

est une mesure de probabilité sur $(X, \mathcal{P}(X))$.

3. Réciproquement, montrer que toute mesure de probabilité \mathbb{P} sur $(X, \mathcal{P}(X))$ peut s'exprimer sous la forme (1).

Exercice 13 Soient A une partie de P(X) telle que :

- $-\emptyset\in\mathcal{A}$;
- $\forall A \in \mathcal{A}, \ X \setminus A \in \mathcal{A} \ (A \ est \ stable \ par \ passage \ au \ complémentaire);$
- $\forall (A, B) \in \mathcal{A}^2, A \cap B \in \mathcal{A} \ (A \ est \ stable \ par \ intersection \ finie);$

 $(\mathcal{A} \text{ est une algèbre de Boole}) \text{ et } \mu : \mathcal{A} \to [0, +\infty] \text{ une application telle que } :$

- $-\mu\left(\emptyset\right)=0;$
- μ est σ -additive (i. e. $\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right)=\sum_{n\in\mathbb{N}}\mu\left(A_n\right)$ pour toute suite $(A_n)_{n\in\mathbb{N}}$ d'éléments de \mathcal{A} deux à deux disjoints telle que $\bigcup_{n\in\mathbb{N}}A_n\in\mathcal{A}$).
- 1. Montrer que, pour toute suite finie $(A_k)_{1 \le k \le n}$ d'éléments de \mathcal{A} , on a $\bigcap_{k=1}^n A_k \in \mathcal{A}$, $\bigcup_{k=1}^n A_k \in \mathcal{A}$ et $A_n \setminus \bigcup_{k=1}^{n-1} A_k \in \mathcal{A}$ (dans le cas où $n \ge 2$).
- 2. Montrer que μ est croissante
- 3. Soient $A \in \mathcal{A}$ et $(A_n)_{n \in \mathbb{N}}$ une suite d'éléments de \mathcal{A} telle que $A \subset \bigcup_{n \in \mathbb{N}} A_n$. Montrer que :

$$\mu\left(A\right) \leq \sum_{n \in \mathbb{N}} \mu\left(A_n\right)$$

(inégalité de Boole).

Exercice 14 On se propose de montrer qu'une tribu dénombrable sur X est nécessairement finie de cardinal égal à une puissance de 2.

Ce qui revient aussi à dire qu'une tribu infinie est non dénombrable.

Soit A une σ -algèbre dénombrable sur X.

Pour tout $x \in X$, on note:

$$A\left(x\right) = \bigcap_{\substack{A \in \mathcal{A} \\ x \in A}} A$$

 $(atome \ de \ x).$

- 1. Montrer que, pour tout $x \in X$, A(x) est le plus petit élément de A qui contient x.
- 2. Soient x, y dans X. Montrer que si $y \in A(x)$, on a alors A(x) = A(y).
- 3. Montrer que, pour tous x, y dans X, on a $A(x) \cap A(y) = \emptyset$ ou A(x) = A(y).
- 4. En désignant par $(x_i)_{i\in I}$ la famille des éléments de X telle que les $A(x_i)$ soient deux à deux disjoints, montrer que cette famille est dénombrable et que pour tout $A \in \mathcal{A}$, on a une partition $A = \bigcup_{i\in I} A(x_i)$, où J est une partie de I.
- 5. En déduire que A est finie, son cardinal étant une puissance de 2.

Exercice 15 Soit X un ensemble dénombrable.

Montrer que la σ -algèbre engendrée par les singletons de X est $\mathcal{P}(X)$.

Exercice 16 Soit X un ensemble non dénombrable.

- 1. Montrer que la famille A formée des parties A de X telles que A ou ou $X \setminus A$ est dénombrable est une σ -algèbre sur X.
- 2. Montrer que A est la σ -algèbre engendrée par les singletons de X.
- 3. Montrer que l'application :

est une mesure de probabilité sur (X, A).

Exercice 17 Soit (X, \mathcal{A}, μ) un espace mesuré.

1. Montrer que si A, B sont des éléments de A tels que $A \subset B$ et $\mu(B) < +\infty$, on a alors :

$$\mu(B \setminus A) = \mu(B) - \mu(A)$$

- 2. Soient $(A_n)_{n\in\mathbb{N}}$ une suite croissante d'éléments de \mathcal{A} et $A = \bigcup_{n\in\mathbb{N}} A_n$. Montrer que la suite $(\mu(A_n))_{n\in\mathbb{N}}$ converge en croissant vers $\mu(A)$ (continuité croissante de μ).
- 3. Soient $(A_n)_{n\in\mathbb{N}}$ une suite décroissante d'éléments de A et $A = \bigcap_{n\in\mathbb{N}} A_n$. En supposant qu'il existe $n_0 \in \mathbb{N}$ tel que $\mu(A_{n_0}) < +\infty$, montrer que la suite $(\mu(A_n))_{n\in\mathbb{N}}$ converge en décroissant vers $\mu(A)$ (continuité décroissante de μ).

Exercice 18 Soient μ une mesure finie sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ et F la fonction définie sur \mathbb{R} par :

$$\forall x \in \mathbb{R}, \ F(x) = \mu([x, +\infty[)$$

1. Montrer que F est décroissante avec, pour tout réel x :

$$\lim_{\substack{t \to x \\ t < x}} F\left(t\right) = F\left(x\right), \ \lim_{\substack{t \to x \\ t > x}} F\left(t\right) = F\left(x\right) - \mu\left(\left\{x\right\}\right)$$

et:

$$\lim_{t \to -\infty} F(t) = \mu(\mathbb{R}), \ \lim_{t \to +\infty} F(t) = 0$$

2. Montrer que l'ensemble :

$$\mathcal{D} = \{x \in \mathbb{R} \mid \mu\left(\{x\}\right) > 0\}$$

est dénombrable.

Exercice 19 Soit (Ω, A) un espace probabilisable.

Montrer qu'une application $\mathbb{P}: \mathcal{A} \to [0,1]$ est une probabilité sur (Ω, \mathcal{A}) si, et seulement si :

- $-\mathbb{P}(\Omega)=1$;
- pour tous événements A, B incompatibles dans A, on a $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$ (on dit que l'application \mathbb{P} est additive);
- $si(A_n)_{n\in\mathbb{N}}$ est une suite croissante dans \mathcal{A} , alors:

$$\mathbb{P}\left(\bigcup_{n\in\mathbb{N}}A_n\right) = \lim_{n\to+\infty}\mathbb{P}\left(A_n\right)$$

(continuité croissante).

Exercice 20 Soit n > 2 un entier naturel.

On considère l'espace probabilisé $(\Omega, \mathcal{P}(\Omega), \mathbb{P})$, où $\Omega = \{1, \dots, n\}$ et :

$$\forall k \in \Omega, \ \mathbb{P}(\{k\}) = \frac{1}{n}$$

ce qui revient à considérer l'expérience aléatoire qui consiste à choisir de manière équiprobable un entier compris entre 1 et n.

Pour tout diviseur positif d de n, on désigne par A_d l'événement :« le nombre choisi est divisible par $d \gg$.

- 1. Calculer $\mathbb{P}(A_d)$ pour tout diviseur positif d de n.
- 2. Montrer que si $2 \le p_1 < p_2 < \cdots < p_r$ sont tous les diviseurs premiers de n, les événements A_{p_1}, \cdots, A_{p_r} sont alors mutuellement indépendants.
- 3. Soient $(\Omega, \mathcal{B}, \mathbb{P})$ un espace probabilisé et A_1, \dots, A_n , où $n \geq 2$, des événements mutuellement indépendants dans \mathcal{B} .
 - (a) Montrer que $\Omega \setminus A_1, A_2, \cdots, A_n$ sont mutuellement indépendants.
 - (b) En déduire que pour tout entier k compris entre 1 et n, les événements $\Omega \setminus A_1, \dots, \Omega \setminus A_k, A_{k+1}, \dots, A_n$ sont mutuellement indépendants.
- 4. On désigne par φ la fonction indicatrice d'Euler définie sur \mathbb{N}^* par

$$\varphi(n) = \operatorname{card} \left\{ k \in \{1, \cdots, n\} \mid k \wedge n = 1 \right\}$$

Montrer que

$$\varphi\left(n\right) = n \prod_{k=1}^{r} \left(1 - \frac{1}{p_k}\right)$$

- 5. Soit d'un diviseur positif d'de n. Calculer la probabilité de l'événement B_d : « le nombre a choisi est tel que $a \wedge n = d$ ».
- 6. En déduire que :

$$n = \sum_{d/n} \varphi\left(\frac{n}{d}\right)$$

Exercice 21 On munit l'ensemble \mathbb{N}^* de la tribu $\mathcal{P}(\mathbb{N}^*)$.

On rappelle que la fonction dzéta de Riemann est définie par :

$$\forall \alpha > 1, \ \zeta(\alpha) = \sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}$$

On note:

$$2 = p_1 < p_2 < \dots < p_n < p_{n+1} < \dots$$

la suite infinie des nombres premiers rangée dans l'ordre strictement croissant.

1. Montrer que l'on définit une probabilité sur $(\mathbb{N}^*, \mathcal{P}(\mathbb{N}^*))$ en posant :

$$\forall n \in \mathbb{N}^*, \ \mathbb{P}\left(\{n\}\right) = \frac{1}{\zeta\left(\alpha\right)} \frac{1}{n^{\alpha}}$$

2. Montrer que :

$$\forall p \in \mathbb{N}^*, \ \mathbb{P}\left(p\mathbb{N}^*\right) = \frac{1}{n^{\alpha}}$$

où on a noté $p\mathbb{N}^*$ l'ensemble de tous les multiples positifs de p.

3. Montrer que :

$$\mathbb{P}\left(\bigcap_{n=1}^{+\infty} \left(\mathbb{N}^* \setminus p_n \mathbb{N}^*\right)\right) = \frac{1}{\zeta\left(\alpha\right)}$$

4. En déduire que :

$$\forall \alpha > 1, \ \prod_{n=1}^{+\infty} \frac{1}{1 - \frac{1}{p_n^{\alpha}}} = \sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}$$

Montrer que $\lim_{\alpha \to 1^+} \zeta(\alpha) = +\infty$ et déduire du résultat précédent que $\sum_{n=1}^{+\infty} \frac{1}{p_n} = +\infty$.

Exercice 22 Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle strictement décroissante et de limite nulle. Déterminer un réel λ pour lequel il existe une probabilité \mathbb{P} sur $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$ telle que :

$$\forall n \in \mathbb{N}, \ \mathbb{P}\left(\mathbb{N} \cap [n, +\infty[\right) = \lambda u_n\right)$$

Exercice 23 Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé. Pour tous A, B dans \mathcal{A} , on note :

$$d(A, B) = \mathbb{P}(A \triangle B)$$

1. Montrer que, pour tous A, B, C dans A, on a:

$$d(A,C) \le d(A,B) + d(B,C)$$

2. Montrer que, pour tous A, B dans A, on a:

$$|\mathbb{P}(B) - \mathbb{P}(A)| \le \mathbb{P}(A \triangle B)$$

Exercice 24 Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé. Montrer que, pour toute suite $(A_n)_{n \in \mathbb{N}}$ d'événements deux à deux incompatibles, on a $\lim_{n \to +\infty} \mathbb{P}(A_n) = 0$.

Exercice 25 Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé. Montrer que, pour toute suite finie $(A_k)_{1 \leq k \leq n}$ d'événements, on a :

$$\mathbb{P}\left(\bigcup_{k=1}^{n} A_{k}\right) \leq \sum_{k=1}^{n} \mathbb{P}\left(A_{k}\right) \leq \mathbb{P}\left(\bigcap_{k=1}^{n} A_{k}\right) + (n-1)$$

Exercice 26 Soient $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé et $(A_n)_{n \in \mathbb{N}}$ une suite d'événements mutuellement indépendants.

 $On \ note:$

$$\lim_{n \to +\infty} \sup A_n = \bigcap_{p \in \mathbb{N}} \bigcup_{n \ge p} A_n \text{ et } \lim_{n \to +\infty} \inf A_n = \bigcup_{p \in \mathbb{N}} \bigcap_{n \ge p} A_n$$

Montrer que:

- 1. Si la série $\sum \mathbb{P}(A_n)$ converge, alors $\mathbb{P}\left(\limsup_{n\to+\infty} A_n\right)=0$.
- 2. Si la série $\sum \mathbb{P}(A_n)$ diverge, alors $\mathbb{P}\left(\limsup_{n\to+\infty}A_n\right)=1$ (loi du zéro-un de Kolmogorov).

11

- III - Fonctions mesurables

Soient (X, \mathcal{A}) et (Y, \mathcal{B}) deux espaces mesurables. On dit qu'une fonction $f: X \to Y$ est mesurable si, pour tout $B \in \mathcal{B}$, $f^{-1}(B) \in \mathcal{A}$.

Dans le cas où X, Y sont deux espaces topologiques et \mathcal{A}, \mathcal{B} sont les tribus de Borel, une fonction mesurable de X dans Y est dite borélienne.

Une fonction continue est mesurable (i. e. borélienne).

Une fonction $f:(X,\mathcal{A})\to(\mathbb{R},\mathcal{B}(\mathbb{R}))$ est mesurable si, et seulement si, $f^{-1}(]-\infty,a[)\in\mathcal{A}$.

La composée, la somme, le produit et une limite simple de fonctions mesurables est mesurable.

Les fonctions réglées de [a, b] dans un espace de Banach sont mesurables (par exemples, les fonctions continues par morceaux et les fonctions monotones de [a, b] dans \mathbb{R}).

Si $f:(X,\mathcal{A},\mu)\to\mathbb{R}^+$ est mesurable, il existe alors une suite $(a_n)_{n\in\mathbb{N}}$ de réels positifs et une suite $(A_n)_{n\in\mathbb{N}}$ de parties mesurables de X telles que $f=\sum_{n\in\mathbb{N}}a_n\mathbf{1}_{A_n}$ et :

$$\int_{X} f d\mu = \sum_{n \in \mathbb{N}} a_n \mu \left(A_n \right) \le +\infty$$

Soit (X, \mathcal{A}, μ) un espace mesuré. On dit que $f: X \to \mathbb{R}$ est intégrable (ou sommable) si elle est mesurable et $\int_X |f| \, d\mu < +\infty$.

Dans ce cas, on a:

$$\int_X f d\mu = \int_X f^+ d\mu - \int_X f^- d\mu$$

où $f^+ = \max(f, 0)$ et $f^- = \max(-f, 0)$.

L'ensemble des fonctions intégrables de (X, \mathcal{A}, μ) dans \mathbb{R} est un espace vectoriel et l'application $f \mapsto \int_X f d\mu$ est une forme linéaire positive avec :

$$\left| \int_{X} f d\mu \right| \le \int_{X} |f| \, d\mu < +\infty$$

La mesure ℓ des intervalles réels se prolonge de manière unique en une mesure sur la tribu $\mathcal{B}(\mathbb{R})$ des boréliens, cette mesure étant invariante par translation. C'est la mesure de Lebesgue sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

Exercice 27 Nous allons vérifier que la mesure de Lebesgue sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ ne peut pas se prolonger en une mesure invariante par translation sur $\mathcal{P}(\mathbb{R})$. On désigne par \mathcal{C} le groupe quotient \mathbb{R}/\mathbb{Q} .

1. Vérifier que, pour toute classe d'équivalence $c \in C$, on peut trouver un représentant x dans [0,1[.

Pour tout $c \in C$, on se fixe un représentant x_c de c dans [0,1[(axiome du choix) et on désigne par A l'ensemble de tous ces réels x_c .

2. Montrer que les translatés r+A, où r décrit $[-1,1]\cap \mathbb{Q}$, sont deux à deux disjoints et que :

$$[0,1] \subset \bigcup_{r \in [-1,1] \cap \mathbb{Q}} (r+A) \subset [-1,2]$$

- 3. En déduire que A n'est pas borélien et que ℓ ne peut pas se prolonger en une mesure invariante par translation sur $\mathcal{P}(\mathbb{R})$.
- 4. Donner un exemple de fonction $f : \mathbb{R} \to \mathbb{R}$ non mesurable (\mathbb{R} étant muni de la tribu de Borel) telle que |f| soit mesurable.

Exercice 28 \mathbb{R} est muni de la tribu de Borel.

Soit $f : \mathbb{R} \to \mathbb{R}$. Montrer que f est mesurable si, et seulement si, la restriction de f à tout segment [a,b] est mesurable.

Exercice 29 Soient E un espace vectoriel normé complet et a < b deux réels. Montrer qu'une fonction réglée $f : [a,b] \to E$ est borélienne.

Exercice 30 Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction dérivable. Montrer que sa dérivée f' est borélienne.

Exercice 31

- 1. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions continues de \mathbb{R} dans \mathbb{R} . L'ensemble des réels x tels que la suite $(f_n(x))_{n\in\mathbb{N}}$ soit convergente est-il ouvert ? fermé ?
- 2. Soient (X, A) un espace mesurable et $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions mesurables de X dans \mathbb{R} $(\mathbb{R} \text{ \'etant muni de la tribu bor\'elienne}).$ Montrer que l'ensemble des éléments x de X tels que la suite $(f_n(x))_{n\in\mathbb{N}}$ soit convergente est mesurable.

Exercice 32 Soient (X, A), (Y, B) deux espaces mesurables et f une application de X vers Y.

1. Montrer que la famille :

$$\mathcal{C} = \left\{ B \in \mathcal{B} \mid f^{-1}(B) \in \mathcal{A} \right\}$$

est une σ -algèbre.

2. On suppose que \mathcal{B} est engendrée par une famille \mathcal{F} de parties de Y ($\mathcal{B} = \sigma(\mathcal{F})$). Montrer que f est mesurable si, et seulement si, $f^{-1}(F) \in \mathcal{A}$ pour tout $F \in \mathcal{F}$.

Exercice 33 Soit $f : \mathbb{R} \to \mathbb{R}$ une application continue et bijective, \mathbb{R} étant muni de la tribu de Borel $\mathcal{B}(\mathbb{R})$.

1. Montrer que la famille :

$$\mathcal{A} = \{ A \in \mathcal{P} (\mathbb{R}) \mid f (A) \in \mathcal{B} (\mathbb{R}) \}$$

est une σ -algèbre qui contient tous les intervalles fermés bornés.

2. Montrer que l'image par f de tout borélien de \mathbb{R} est un borélien.

Exercice 34 Soient (X, A) un espace mesurable et $(\mu_n)_{n \in \mathbb{N}}$ une famille de mesures sur X telle que pour tout $A \in A$, la suite $(\mu_n(A))_{n \in \mathbb{N}}$ est croissante.

- 1. Montrer que, pour tout $A \in \mathcal{A}$, la suite $(\mu_n(A))_{n \in \mathbb{N}}$ converge vers un élément $\mu(A)$ de $\mathbb{R}^+ \cup \{+\infty\}$.
- 2. Montrer que l'application :

$$\mu: A \to \mathbb{R}^+ \cup \{+\infty\}$$

$$A \mapsto \lim_{n \to \infty} \mu_n(A)$$

définit une mesure sur X.

Exercice 35 (X, \mathcal{A}, μ) est un espace mesuré avec $\mu \neq 0$ et \mathbb{R} est muni de la tribu de Borel.

- 1. Montrer que si f est une fonction mesurable de X dans \mathbb{R} , la fonction |f| est alors mesurable.
- 2. En supposant qu'il existe des parties non mesurables dans X, donner un exemple de fonction $f: X \to \mathbb{R}$ non mesurable telle que |f| soit mesurable.
- 3. En supposant qu'il existe des parties non mesurables dans X, donner un exemple de fonctions $f: X \to \mathbb{R}$ et $g: X \to \mathbb{R}$ non mesurables telles que f+g et fg soient mesurables.

4. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions mesurables de X dans \mathbb{R} . On dit que $(f_n)_{n\in\mathbb{N}}$ converge en mesure vers une fonction mesurable $f:X\to\mathbb{R}$ si:

$$\forall \varepsilon > 0, \lim_{n \to +\infty} \mu \left\{ x \in X \mid |f_n(x) - f(x)| > \varepsilon \right\} = 0$$

On suppose que $(f_n)_{n\in\mathbb{N}}$ converge en mesure vers les fonctions mesurables $f:X\to\mathbb{R}$ et $g:X\to\mathbb{R}$.

(a) Montrer que :

$$\forall \varepsilon > 0, \ \mu \left\{ x \in X \mid |f(x) - g(x)| > \varepsilon \right\} = 0$$

(b) Montrer que f = g presque partout.

Exercice 36 Soient (X, \mathcal{A}, μ) un espace mesuré, la mesure μ étant finie, et f une fonction mesurable de X dans \mathbb{R}^+ (\mathbb{R} est muni de la tribu de Borel). On définit les suites $(A_n)_{n\in\mathbb{N}}$ et $(B_n)_{n\in\mathbb{N}}$ de parties mesurables de X par :

$$A_n = f^{-1}([n, +\infty[), B_n = f^{-1}([n, n+1[)$$

et g est la fonction définie sur X par :

$$g = \sum_{n=1}^{+\infty} n \mathbf{1}_{B_n}$$

1. Montrer que, pour tout entier $n \in \mathbb{N}$, on a :

$$\mu\left(A_{n}\right) = \sum_{k=n}^{+\infty} \mu\left(B_{k}\right)$$

- 2. Montrer que $g \le f < g + 1$.
- 3. Montrer que f est intégrable si, et seulement si, la série $\sum_{n>1} n\mu(B_n)$ est convergente.
- 4. Montrer que, pour tout entier $n \in \mathbb{N}^*$, on a :

$$\sum_{k=1}^{n} k\mu(B_k) = \sum_{k=1}^{n} \mu(A_k) - n\mu(A_{n+1})$$

- 5. Montrer que la suite $(\mu(A_n))_{n\in\mathbb{N}}$ est décroissante et converge vers 0.
- 6. Montrer que f est intégrable si, et seulement si, la série $\sum_{n\geq 1} \mu\left(A_n\right)$ est convergente.
- 7. Le résultat précédent est-il valable dan le cas où $\mu(X) = +\infty$?

Exercice 37 On se place sur $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$ muni de la mesure de comptage :

$$\forall A \in \mathcal{P}(\mathbb{N}), \ \mu(A) = \operatorname{card}(A) \in \mathbb{N} \cup \{+\infty\}$$

Calculer $\int_{\mathbb{N}} x d\mu$ pour toute suite réelle positive $x = (x_n)_{n \in \mathbb{N}}$.

Donner une condition nécessaire et suffisante pour qu'une suite $x = (x_n)_{n \in \mathbb{N}}$ à valeurs complexes soit sommable.

Exercice 38 On se place sur $(X, \mathcal{P}(X))$ muni d'une mesure de Dirac $\mu = \delta_x$, où $x \in X$ est fixé. Calculer $\int_X f d\mu$ pour toute fonction $f: X \to \mathbb{R}^+$.

Exercice 39 Soient X, Y deux espaces métriques munis de leur tribu borélienne respective. Montrer qu'une fonction $f: X \to Y$ qui est continue sur X privé d'un ensemble D dénombrable est borélienne.

Exercice 40 On se place sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$, où λ est la mesure de Lebesgue.

- 1. Montrer que pour tout réel $\varepsilon > 0$, on peut trouver un ouvert \mathcal{O} dense dans \mathbb{R} tel que $\lambda(\mathcal{O}) < \varepsilon$.
- 2. Montrer qu'une partie mesurable bornée de $\mathbb R$ est de mesure finie. La réciproque est-elle vraie ?
- 3. Montrer qu'une partie mesurable de \mathbb{R} d'intérieur non vide est de mesure non nulle. La réciproque est-elle vraie?
- 4. Montrer qu'une partie mesurable A de [0, 1] de mesure égale à 1 est dense dans [0, 1] . Réciproquement un ouvert dense de [0, 1] est-il de mesure égale à 1 ?

Exercice 41 (X, \mathcal{A}, μ) est un espace mesuré avec $\mu \neq 0$, \mathbb{R} est muni de la tribu de Borel et les fonctions considérées sont à valeurs réelles.

- 1. Montrer que si f, g sont deux fonctions mesurables de X dans \mathbb{R} , les fonctions f + g et fg sont mesurables.
- 2. Montrer que la somme de deux fonctions intégrables est intégrable.
- 3. Le produit de deux fonctions intégrables est-il intégrable?
- 4. La composée de deux fonctions intégrables est-il intégrable?
- 5. Soit $f: X \to \mathbb{R}$ une fonction intégrable positive. Montrer que pour tout réel $\varepsilon > 0$, il existe un réel $\eta > 0$ tel que :

$$(A \in \mathcal{A} \ et \ \mu(A) < \eta) \Rightarrow \int_{A} f d\mu < \varepsilon$$

- 6. Soit $f: X \to \mathbb{R}$ une fonction mesurable. Montrer que pour tout réel $\varepsilon > 0$, il existe une partie mesurable A de X telle que $\mu(A) > 0$ et $|f(y) f(x)| < \varepsilon$ pour tous x, y dans A.
- 7. Soit $f: X \to \mathbb{R}$ une fonction mesurable positive. Montrer que pour tout réel $\alpha > 0$, on a :

$$\mu\left(f^{-1}\left(\left[\alpha,+\infty\right[\right)\right) \le \frac{1}{\alpha} \int_{X} f d\mu$$

- 8. Soit $f: X \to \mathbb{R}$ une fonction mesurable positive. Montrer que $\int_X f d\mu = 0$ si, et seulement si, f est nulle presque partout.
- 9. Soit $f: X \to \mathbb{R}$ une fonction mesurable positive. Montrer que si $\int_X f d\mu < +\infty$, on a alors $f(x) < +\infty$ presque partout.

- 10. Soient f, g deux fonctions mesurables positives sur X. Montrer que si f = g presque partout, alors $\int_{X} f d\mu = \int_{X} g d\mu$.
- 11. Soit $f: X \to \mathbb{R}$ une fonction mesurable. Montrer qu'il existe une partie mesurable A de X telle que $\mu(A) > 0$ et f est bornée sur A.
- 12. Soit $f: X \to \mathbb{R}$ une fonction mesurable telle que $f \neq 0$ presque partout. Montrer qu'il existe une partie mesurable A de X telle que $\mu(A) > 0$ et |f| est minorée sur A par une constante strictement positive.
- 13. Soit $f: X \to \mathbb{R}$ une fonction intégrable. Montrer que si $\int_A f d\mu = 0$ pour toute partie A mesurable dans X, alors la fonction f est nulle presque partout.

Exercice 42 Soient (X, \mathcal{A}, μ) un espace mesuré et $f: X \to \mathbb{R}$ une fonction mesurable.

- 1. Montrer que s'il existe une fonction intégrable $\varphi: X \to \mathbb{R}^+$ telle $|f| \leq \varphi$ presque partout, la fonction f est alors intégrable.
- 2. Montrer que si f est bornée presque partout et $\mu(X)$ est fini, la fonction f est alors intégrable. En particulier, une fonction $f:[a,b] \to \mathbb{R}$ qui est mesurable et bornée presque partout est intégrable.

Exercice 43

1. Soient I un intervalle réel non réduit à un point et $a \in I$. Pour tout $x \in I$, on désigne par $I_{a,x}$ l'intervalle fermé d'extrémités a et x.

On se donne une fonction mesurable bornée, $f:I\to\mathbb{R}$ et on désigne par F la fonction définie sur I par :

$$\forall x \in I, \ F(x) = \int_{I_{a,x}} f(t) dt$$

soit:

$$F(x) = \begin{cases} \int_{a}^{x} f(t) dt & si \ a \leq x \\ \int_{x}^{a} f(t) dt & si \ x \leq a \end{cases}$$

Montrer que F est lipschitzienne (donc uniformément continue) sur I et qu'elle est dérivable en tout point $x_0 \in I$ où la fonction f est continue avec $F'(x_0) = f(x_0)$.

2. Montrer que si $f:[a,b] \to \mathbb{R}$ est une fonction dérivable de dérivée bornée, alors f' est intégrable sur [a,b] et :

$$\int_{a}^{b} f'(t) dt = f(b) - f(a)$$

3. En considérant la fonction f définie $sur\left[-\frac{1}{2},\frac{1}{2}\right]$ par $f\left(0\right)=0$ et :

$$f(x) = \frac{x}{\ln(|x|)}\cos\left(\frac{1}{x}\right)$$

pour $x \neq 0$, vérifier que le résultat précédent n'est plus valable pour f dérivable de dérivée non bornée.