Import Libraries

```
    import pandas as pd

In [2]:
          import numpy as np
          import matplotlib.pyplot as plt
          import seaborn as sns
          import plotly.express as px
          from sklearn.cluster import KMeans
          from sklearn.model_selection import train_test_split
          from sklearn.preprocessing import StandardScaler
          from sklearn.preprocessing import MinMaxScaler
          import regex as r
          from datetime import datetime, time, date
          from dateutil import parser
          from sklearn.preprocessing import LabelEncoder
          from sklearn.decomposition import PCA
          from sklearn.manifold import TSNE
In [3]:
        ## Read the csv file by impoting into pandas
In [4]:
        df.shape
   Out[4]: (2240, 29)
```

```
In [5]:

    df.head()

    Out[5]:
                                                                                                                  MntWines ... NumWebVisitsM
                    ID Year Birth
                                    Education Marital Status Income Kidhome Teenhome Dt Customer Recency
               0 5524
                             1957
                                   Graduation
                                                      Single 58138.0
                                                                             0
                                                                                             2012-09-04
                                                                                                              58
                                                                                                                        635 ...
               1
                  2174
                             1954
                                    Graduation
                                                      Single 46344.0
                                                                                             2014-03-08
                                                                                                              38
                                                                                                                         11 ...
               2 4141
                             1965
                                   Graduation
                                                    Together 71613.0
                                                                                             2013-08-21
                                                                                                                        426 ...
               3 6182
                             1984
                                   Graduation
                                                    Together 26646.0
                                                                                             2014-02-10
                                                                                                              26
                                                                                                                         11 ...
               4 5324
                             1981
                                         PhD
                                                     Married 58293.0
                                                                                             2014-01-19
                                                                                                              94
                                                                                                                        173 ...
```

5 rows × 29 columns

◀

PREPROCESSING

check null values

drop null values

```
In [7]: ► df.dropna(inplace= True)
```

Just checking columns

lets sum up all the columns with common features

```
In [9]:
         print(dict(df.dtypes))
            {'ID': dtype('int64'), 'Year Birth': dtype('int64'), 'Education': dtype('0'), 'Marital Status': dtype('0'),
            'Income': dtype('float64'), 'Kidhome': dtype('int64'), 'Teenhome': dtype('int64'), 'Dt Customer': dtype
            ('0'), 'Recency': dtype('int64'), 'MntWines': dtype('int64'), 'MntFruits': dtype('int64'), 'MntMeatProduct
            s': dtype('int64'), 'MntFishProducts': dtype('int64'), 'MntSweetProducts': dtype('int64'), 'MntGoldProds':
            dtype('int64'), 'NumDealsPurchases': dtype('int64'), 'NumWebPurchases': dtype('int64'), 'NumCatalogPurchase
            s': dtype('int64'), 'NumStorePurchases': dtype('int64'), 'NumWebVisitsMonth': dtype('int64'), 'AcceptedCmp
            3': dtype('int64'), 'AcceptedCmp4': dtype('int64'), 'AcceptedCmp5': dtype('int64'), 'AcceptedCmp1': dtype
            ('int64'), 'AcceptedCmp2': dtype('int64'), 'Complain': dtype('int64'), 'Z CostContact': dtype('int64'), 'Z
            Revenue': dtype('int64'), 'Response': dtype('int64')}
          In [10]:
   Out[10]: Index(['MntWines', 'MntFruits', 'MntMeatProducts', 'MntFishProducts',
                   'MntSweetProducts', 'MntGoldProds'],
                  dtype='object')
```

Out[11]:

	MntWines	MntFruits	MntMeatProducts	MntFishProducts	MntSweetProducts	MntGoldProds	mnt_total
0	635	88	546	172	88	88	1617
1	11	1	6	2	1	6	27
2	426	49	127	111	21	42	776
3	11	4	20	10	3	5	53
4	173	43	118	46	27	15	422

```
In [12]:  df.columns[df.columns.str.contains('Num')]
```

Out[13]:

	NumDealsPurchases	NumWebPurchases	NumCatalogPurchases	NumStorePurchases	num_total
0	3	8	10	4	25
1	2	1	1	2	6
2	1	8	2	10	21
3	2	2	0	4	8
4	5	5	3	6	19

```
M df_n = df.loc[:,['ID', 'Year_Birth', 'Education', 'Marital_Status', 'Income', 'Kidhome', 'Teenhome', 'Dt_Cus
In [14]:
              df_n.head()
    Out[14]:
                                   Education Marital Status Income Kidhome Teenhome Dt Customer Recency
                       Year Birth
                                                                                                               NumWebVisitsMonth
               0 5524
                             1957
                                   Graduation
                                                     Single 58138.0
                                                                                           2012-09-04
                                                                                                           58
                                                                                                                               7
                                                                                                                                5
                  2174
                                                     Single 46344.0
                                                                                                           38
                             1954
                                   Graduation
                                                                                           2014-03-08
               2 4141
                             1965
                                   Graduation
                                                   Together 71613.0
                                                                                           2013-08-21
                                                                                                           26
                                                                                                                               4
               3 6182
                             1984
                                                   Together 26646.0
                                                                                           2014-02-10
                                                                                                                                6
                                   Graduation
                                                                                                           26
                                                                                                                                5
                4 5324
                             1981
                                        PhD
                                                    Married 58293.0
                                                                                           2014-01-19
                                                                                                           94
```

Concat the Mnt and Purchase data frames

lets get the current age from the data

```
In [17]:
             current year = 2022
              df2['age'] = current_year - df2.Year_Birth
              df2.head()
    Out[17]:
                                  Education Marital_Status Income Kidhome Teenhome Dt_Customer Recency NumWebVisitsMonth num_tota
                    ID Year_Birth
               0 5524
                             1957
                                  Graduation
                                                    Single 58138.0
                                                                         0
                                                                                         2012-09-04
                                                                                                        58
                                                                                                                             7
                                                                                                                                      2!
               1 2174
                             1954
                                  Graduation
                                                    Single 46344.0
                                                                                         2014-03-08
                                                                                                         38
                                                                                                                             5
               2 4141
                                                                                                                                      2
                             1965
                                  Graduation
                                                  Together 71613.0
                                                                                         2013-08-21
                                                                                                        26
               3 6182
                             1984
                                  Graduation
                                                  Together 26646.0
                                                                                        2014-02-10
                                                                                                        26
                                                                                                                             6
                                                                                                                             5
               4 5324
                             1981
                                        PhD
                                                   Married 58293.0
                                                                                         2014-01-19
                                                                                                        94
                                                                                                                                      1!
In [18]:
             df2.Marital_Status.value_counts()
    Out[18]:
              Married
                            857
              Together
                            573
              Single
                            471
              Divorced
                            232
              Widow
                             76
              Alone
              Absurd
                              2
              YOLO
              Name: Marital_Status, dtype: int64
```

lets group marital status into couple and single

```
In [19]:
           marital_state = []
              for i in df2.Marital_Status:
                  if i == 'Married' or i =='Together':
                       i = 'couple'
                       marital_state.append(i)
                   else:
                       i ='single'
                       marital_state.append(i)

    df2['marital_class'] = marital_state

In [20]:
           df2.head()
In [21]:
    Out[21]:
                                  Education Marital_Status Income Kidhome Teenhome Dt_Customer Recency NumWebVisitsMonth num_tota
                    ID Year Birth
               0 5524
                                                                                                                            7
                                                                                                                                     2!
                            1957
                                  Graduation
                                                    Single 58138.0
                                                                         0
                                                                                        2012-09-04
                                                                                                        58
               1 2174
                            1954
                                  Graduation
                                                    Single 46344.0
                                                                                        2014-03-08
                                                                                                        38
                                                                                                                            5
               2 4141
                            1965 Graduation
                                                  Together 71613.0
                                                                                        2013-08-21
                                                                                                        26
                                                                                                                                     2
               3 6182
                            1984
                                                  Together 26646.0
                                                                                        2014-02-10
                                  Graduation
                                                                                                        26
                                                                                                                            5
               4 5324
                            1981
                                       PhD
                                                   Married 58293.0
                                                                                        2014-01-19
                                                                                                                                     11
                                                                                                        94
```

lets add the total number of children for each customer

```
In [22]: ► df2['total_kids'] = df2.Kidhome + df2.Teenhome
```

now lets pust together the required dfs

In [24]: ▶	df	2.head	I()									
Out[24]:		ID	Year_Birth	Education	Marital_Status	Income	Kidhome	Teenhome	Dt_Customer	Recency	NumWebVisitsMonth	num_tota
	0	5524	1957	Graduation	Single	58138.0	0	0	2012-09-04	58	7	2
	1	2174	1954	Graduation	Single	46344.0	1	1	2014-03-08	38	5	•
	2	4141	1965	Graduation	Together	71613.0	0	0	2013-08-21	26	4	2
	3	6182	1984	Graduation	Together	26646.0	1	0	2014-02-10	26	6	1
	4	5324	1981	PhD	Married	58293.0	1	0	2014-01-19	94	5	1!
	4											•

lets drop the cell we dont need

	ID	Education	Income	Recency	NumWebVisitsMonth	purchase_channel	total_purchases	age	marital_class	total_kids
0	5524	Graduation	58138.0	58	7	25	1617	65	single	0
1	2174	Graduation	46344.0	38	5	6	27	68	single	2
2	4141	Graduation	71613.0	26	4	21	776	57	couple	0
3	6182	Graduation	26646.0	26	6	8	53	38	couple	1
4	5324	PhD	58293.0	94	5	19	422	41	couple	1

lets label encode the non numerical columns

Out[27]:

	ID	Education	Income	Recency	NumWebVisitsMonth	num_total	mnt_total	age	marital_class	total_kids
0	5524	2	58138.0	58	7	25	1617	65	1	0
1	2174	2	46344.0	38	5	6	27	68	1	2
2	4141	2	71613.0	26	4	21	776	57	0	0
3	6182	2	26646.0	26	6	8	53	38	0	1
4	5324	4	58293.0	94	5	19	422	41	0	1

```
M X= df3.drop(['ID', 'Education', 'Recency', 'marital_class', 'age'], axis =1)
In [28]:
              X.head()
    Out[28]:
                  Income NumWebVisitsMonth num_total mnt_total total_kids
               0 58138.0
                                          7
                                                   25
                                                           1617
                                                                       0
               1 46344.0
                                                            27
                                          5
                                                    6
                                                                       2
               2 71613.0
                                                   21
                                                            776
                                                                       0
               3 26646.0
                                                    8
                                                            53
                                                                       1
               4 58293.0
                                                   19
                                                            422
                                                                       1
```

correlation of features

normalizing with standard sclar

```
In [30]:
          mc= MinMaxScaler()
             scaledX = mc.fit transform(X)
             scaledX
   Out[30]: array([[0.08483222, 0.35
                                           , 0.56818182, 0.63968254, 0.
                                                                                ٦,
                    [0.06709518, 0.25
                                           , 0.13636364, 0.00873016, 0.66666667],
                    [0.10509733, 0.2
                                           , 0.47727273, 0.30595238, 0.
                    . . . ,
                    [0.08309221, 0.3
                                           , 0.43181818, 0.49047619, 0.
                                           , 0.52272727, 0.33253968, 0.33333333],
                    [0.10153609, 0.15
                    [0.07690815, 0.35
                                                       , 0.06626984, 0.66666667]])
                                           , 0.25
```

feature reduction with PCA

```
# Lets reduce the features
In [31]:
             pca = PCA(n_components=None, random_state=42)
             pcaX= pca.fit_transform(scaledX)
             pcaX
   Out[31]: array([[ 5.26546470e-01, 3.58640445e-02, 1.80453378e-01,
                      9.53195421e-02, -1.20990349e-02],
                    [-4.37776547e-01, 7.51054634e-02, -1.39229133e-01,
                      2.23122976e-02, 6.37150995e-03],
                    [ 3.03045503e-01, -1.45329334e-01, 5.41650875e-02,
                     -1.11907310e-01, 1.74903757e-02],
                    [ 3.85784959e-01, -9.29040199e-02, 1.00247411e-01,
                      7.35753066e-02, -4.36745840e-03],
                    [ 1.48830599e-01, 1.42503837e-01, -4.30425763e-02,
                     -1.13631521e-01, -2.38711406e-04],
                    [-3.76970293e-01, 1.56696120e-01, -1.35249518e-02,
                      2.45280681e-02, 1.89987126e-02]])
          pca.explained variance ratio .cumsum()
In [32]:
   Out[32]: array([0.64638856, 0.88458113, 0.95084549, 0.99603164, 1.
                                                                             1)
```

```
▶ pca = PCA(n_components=3)
In [33]:
              pcaX = pca.fit_transform(X)
              pcaX = pd.DataFrame(pcaX,)
              pcaX
   Out[33]:
                               0
                                           1
                                                    2
                      5906.147280 -915.635431 1.367594
                      -5911.774259 485.648253 -3.699403
                     19365.974464 140.756546
                                             3.921406
                    -25606.838986
                                 144.613853 -1.270508
                      6042.016524
                                  281.695662 5.476505
```

2216 rows × 3 columns

2214 16999.349138

11762.637071

2211 2212

2213

2215

8986.337937 -590.284703 -3.469384

4743.281414 -558.150217 -1.438181

614.710798 444.982378 -0.002728

351.170032 8.317024

35.879669 5.366465

elbow method to determine optimum number of clusters

Using yellow bricks to validate the optimum number of clusters

Predicting the clusters

```
▶ km = KMeans(n_clusters=3, random_state=42)
In [37]:
              predict = km.fit_predict(pcaX)
              (predict)
   Out[37]: array([0, 1, 0, ..., 0, 0, 0])
In [38]:
             km = KMeans(n_clusters=3, random_state=42)
              km.fit transform(pcaX)
              final = pd.concat([pcaX,pd.DataFrame({"clusters" : km.labels_})],axis =1)
              final
   Out[38]:
                               0
                                          1
                                                   2 clusters
                     5906.147280 -915.635431 1.367594
                                                            0
                     -5911.774259 485.648253 -3.699403
                                                            1
                    19365.974464 140.756546 3.921406
                                                            0
                  3 -25606.838986 144.613853 -1.270508
                                                            1
                      6042.016524 281.695662 5.476505
                                                            0
               2211
                      8986.337937 -590.284703 -3.469384
                                                            0
               2212
                     11762.637071
                                  351.170032 8.317024
                                                            0
               2213
                     4743.281414 -558.150217 -1.438181
                                                            0
               2214
                    16999.349138
                                   35.879669 5.366465
                                                            0
```

2216 rows × 4 columns

614.710798 444.982378 -0.002728

2215

Plotting the clusters

```
In [39]: plt.subplots(figsize =(10,7)) sns.scatterplot (data = final , x= 0, y= 1, palette= ['red','blue', 'black'], hue = 'clusters', s = 150)
```

Out[39]: <AxesSubplot:xlabel='0', ylabel='1'>

Out[40]:

	0	1	2	3	4
0	58138.0	7.0	25.0	1617.0	0.0
1	46344.0	5.0	6.0	27.0	2.0
2	71613.0	4.0	21.0	776.0	0.0
3	26646.0	6.0	8.0	53.0	1.0
4	58293.0	5.0	19.0	422.0	1.0
2211	61223.0	5.0	18.0	1341.0	1.0
2212	64014.0	7.0	22.0	444.0	3.0
2213	56981.0	6.0	19.0	1241.0	0.0
2214	69245.0	3.0	23.0	843.0	1.0
2215	52869.0	7.0	11.0	172.0	2.0

2216 rows × 5 columns

Out[41]:

	ID	Education	Income	Recency	NumWebVisitsMonth	num_total	mnt_total	age	marital_class	total_kids	clusters
0	5524	2	58138.0	58	7	25	1617	65	1	0	0
1	2174	2	46344.0	38	5	6	27	68	1	2	1
2	4141	2	71613.0	26	4	21	776	57	0	0	0
3	6182	2	26646.0	26	6	8	53	38	0	1	1
4	5324	4	58293.0	94	5	19	422	41	0	1	0
2211	10870	2	61223.0	46	5	18	1341	55	0	1	0
2212	4001	4	64014.0	56	7	22	444	76	0	3	0
2213	7270	2	56981.0	91	6	19	1241	41	1	0	0
2214	8235	3	69245.0	8	3	23	843	66	0	1	0
2215	9405	4	52869.0	40	7	11	172	68	0	2	0

2216 rows × 11 columns

Trying out with TSNE

```
In [42]:
          tsne = TSNE(n components=2, random state= 42, verbose=3)
             tsneX = tsne.fit transform(scaledX)
             C:\Users\godwi\anaconda3\envs\ML\lib\site-packages\sklearn\manifold\_t_sne.py:800: FutureWarning: The defau
             It initialization in TSNE will change from 'random' to 'pca' in 1.2.
               warnings.warn(
             C:\Users\godwi\anaconda3\envs\ML\lib\site-packages\sklearn\manifold\_t_sne.py:810: FutureWarning: The defau
             It learning rate in TSNE will change from 200.0 to 'auto' in 1.2.
               warnings.warn(
             [t-SNE] Computing 91 nearest neighbors...
             [t-SNE] Indexed 2216 samples in 0.002s...
             [t-SNE] Computed neighbors for 2216 samples in 0.065s...
             [t-SNE] Computed conditional probabilities for sample 1000 / 2216
             [t-SNE] Computed conditional probabilities for sample 2000 / 2216
             [t-SNE] Computed conditional probabilities for sample 2216 / 2216
             [t-SNE] Mean sigma: 0.034931
             [t-SNE] Computed conditional probabilities in 0.066s
             [t-SNE] Iteration 50: error = 69.9984665, gradient norm = 0.0988166 (50 iterations in 0.987s)
             [t-SNE] Iteration 100: error = 61.0957375, gradient norm = 0.0297444 (50 iterations in 0.626s)
             [t-SNE] Iteration 150: error = 59.2795029, gradient norm = 0.0179695 (50 iterations in 0.616s)
             [t-SNE] Iteration 200: error = 58.4945107, gradient norm = 0.0120632 (50 iterations in 0.616s)
             [t-SNE] Iteration 250: error = 58.0402832, gradient norm = 0.0106805 (50 iterations in 0.564s)
             [t-SNE] KL divergence after 250 iterations with early exaggeration: 58.040283
             [t-SNE] Iteration 300: error = 0.8368104, gradient norm = 0.0009693 (50 iterations in 0.683s)
             [t-SNE] Iteration 350: error = 0.5914299, gradient norm = 0.0003614 (50 iterations in 0.707s)
             [t-SNE] Iteration 400: error = 0.5135034, gradient norm = 0.0002293 (50 iterations in 0.714s)
             [t-SNE] Iteration 450: error = 0.4824732, gradient norm = 0.0001763 (50 iterations in 0.714s)
             [t-SNE] Iteration 500: error = 0.4674979, gradient norm = 0.0001491 (50 iterations in 0.712s)
             [t-SNE] Iteration 550: error = 0.4592229, gradient norm = 0.0001312 (50 iterations in 0.677s)
             [t-SNE] Iteration 600: error = 0.4537871, gradient norm = 0.0001204 (50 iterations in 0.682s)
             [t-SNE] Iteration 650: error = 0.4487277, gradient norm = 0.0001081 (50 iterations in 0.689s)
             [t-SNE] Iteration 700: error = 0.4440266, gradient norm = 0.0001053 (50 iterations in 0.680s)
             [t-SNE] Iteration 750: error = 0.4406740, gradient norm = 0.0000993 (50 iterations in 0.654s)
             [t-SNE] Iteration 800: error = 0.4376967, gradient norm = 0.0000953 (50 iterations in 0.659s)
             [t-SNE] Iteration 850: error = 0.4354333, gradient norm = 0.0000943 (50 iterations in 0.664s)
             [t-SNE] Iteration 900: error = 0.4338987, gradient norm = 0.0000849 (50 iterations in 0.657s)
             [t-SNE] Iteration 950: error = 0.4315650, gradient norm = 0.0000887 (50 iterations in 0.656s)
             [t-SNE] Iteration 1000: error = 0.4300393, gradient norm = 0.0000795 (50 iterations in 0.659s)
```

[t-SNE] KL divergence after 1000 iterations: 0.430039

```
In [43]: ItsneX = pd.DataFrame(tsneX, columns=['tsne1','tsne2'])
tsneX = pd.concat([tsneX,final.clusters],axis = 1)
tsneX
```

Out[43]:

	tsne1	tsne2	clusters
0	-26.703539	-33.247257	0
1	-61.791782	17.564610	1
2	-11.895851	-47.110191	0
3	48.885406	-18.003819	1
4	31.025066	23.141819	0
2211	-1.630843	45.372974	0
2212	-30.124926	45.089470	0
2213	-23.241371	-34.825668	0
2214	28.525305	37.963932	0
2215	-46.438347	11.595510	0

2216 rows × 3 columns

Out[44]:

	tsne1	tsne2	clusters	tsne_clusters
0	-26.703539	-33.247257	0	2
1	-61.791782	17.564610	1	0
2	-11.895851	- 47.110191	0	2
3	48.885406	-18.003819	1	1
4	31.025066	23.141819	0	3
2211	-1.630843	45.372974	0	3
2212	- 30.124926	45.089470	0	0
2213	-23.241371	-34.825668	0	2
2214	28.525305	37.963932	0	3
2215	-46.438347	11.595510	0	0

2216 rows × 4 columns

Out[45]: <AxesSubplot:xlabel='tsne1', ylabel='tsne2'>


```
In [46]:
         group_tsne[group_tsne.clusters==3]
   Out[46]:
              ID Education Income Recency NumWebVisitsMonth num total mnt total age marital class total kids clusters
In [47]:

■ group pca.head()
   Out[47]:
                ID Education Income Recency NumWebVisitsMonth num_total mnt_total age marital_class total_kids clusters
            0 5524
                         2 58138.0
                                                       7
                                                              25
                                                                                             0
                                      58
                                                                    1617
                                                                          65
                                                                                     1
                                                                                                    0
            1 2174
                         2 46344.0
                                                       5
                                                               6
                                                                                             2
                                      38
                                                                      27
                                                                          68
                                                                                     1
                                                                                                    1
            2 4141
                         2 71613.0
                                      26
                                                              21
                                                                     776
                                                                          57
                                                                                                    0
            3 6182
                         2 26646.0
                                                       6
                                                               8
                                                                                     0
                                      26
                                                                      53
                                                                         38
                                                                                                    1
            4 5324
                         4 58293.0
                                      94
                                                       5
                                                              19
                                                                     422
                                                                         41
                                                                                     0
                                                                                             1
                                                                                                    0
In [48]:

    | group_pca.clusters.value_counts()
   Out[48]: 1
                1137
                1078
            2
                   1
            Name: clusters, dtype: int64
In [49]:
         Out[49]: 1
                1137
            0
                1078
            2
                   1
            Name: clusters, dtype: int64
In [ ]:
```