Chapitre: II

Les puissances résumé

Fait par: ahmed barahna

I- Puissance d'un nombre relatif

I- définition

Définition I:

a est un nombre relatif, et n un nombre entier non nul.

$$a \times a \times \cdots \dots \times a = a^n$$

La base de la puissance a^n

γ

n facteurs

L' exposant de la puissance a^n

aⁿ: se lit a exposant n ou bien a puissance n

exemple

$$(-2,5) \times (-2,5) \times (-2,5) = (-2,5)^3$$

 $(-2,5)^3$: se lit -2,5 exposant 3 ou bien -2,5 puissance 3

Cas particuliers

a un nombre relatif:

$$a^{1} = a$$
 et $a^{0} = 1$ si $a \neq 0$
 $a^{2} = a \times a$ a^{2} : est le carré de $a^{3} = a \times a \times a$ a^{3} : est le cube de a^{3}

2- le signe d'une puissance

Règle I:

a est un nombre relatif, et n un nombre entier non nul. Si l'exposant n est pair alors la puissance a^n est positive Si l'exposant n est impair alors la puissance a^n prend le signe de la base a.

Exemple:

$$(-5)^8$$
: est un nombre positif car l'exposant est pair

$$(-5,8)^3$$
: est un nombre négatif car l'exposant 3 est impair et -5.8 est négatif

Remarque 1:

Si n est un nombre pair , alors
$$(-a)^n = a^n$$

Exemple:
$$(-5)^{10} = 5^{10}$$

II- les opérations sur les puissances

I-Produit de deux puissances de même base

Règle 2:

Soit a un nombre relatif, et n, m deux nombres entiers naturels non nuls.

$$a^n \times a^m = a^{n+m}$$

Exemple:

$$5^2 \times 5^{13} = 5^{2+13}$$

= 5^{15}

2- Puissance d'une puissance

Régle 3:

Soit a un nombre relatif, n et m deux nombres entiers naturels non nuls.

$$(a^n)^m = a^{n \times m}$$

 $(a^n)^m$: puissance d'une puissance

Exemple:

$$((-3,4)^4)^5 = (-3,4)^{4\times5}$$

= $(-3,4)^{20}$
= $3,4^{20}$

3-Produit de deux puissances de même exposant

Règle 4:

Soient a et b deux nombres relatifs, et, n un nombre entier naturel non nul.

$$a^n \times b^n = (a \times b)^n$$

Exemple:

$$(-7)^{10} \times (-3)^{10} = (-7 \times (-3))^{10}$$

= 21^{10}

4- Quotient de deux puissances de même base

Règle 5:

Soit a un nombre relatif non nul et, n et m deux nombres entiers naturels non nuls.

$$\frac{a^m}{a^n} = a^{m-n}$$

$$\frac{12^7}{12^3} = 12^{7-3}$$
$$= 12^4$$

5- Quotient de deux puissances de même exposant

Règle 4:

Soient a et b deux nombres relatifs et, n un nombre entier naturel non nul.

$$\frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n \quad , \quad b \neq 0$$

Exemple:

$$\frac{15^4}{5^4} = \left(\frac{15}{5}\right)^4$$
$$=3^4$$

$$\left(\frac{a}{5}\right)^2 = \frac{a^2}{5^2}$$

$$= \frac{a^2}{25}$$

III- l'écriture scientifique

I-Puissances de I0:

Prpriéte I:

n un nombre entier naturel non nul.

$$\underbrace{1000\ldots0}_{\text{n z\'ero}} = 10^n$$

$$10000000 = 10^7$$

2- l'écriture scientifique

Définition 2:

X un nombre décimal

Toute écriture sous la forme $X = a \times 10^n$, tel que a est un nombre décimal $1 \le a < 10$ est appelée l'écriture scientifique de nombre X

Exemple:

$$-5598 = -5,598 \times 10^3$$