

Motivation

The informal specification

The sequence of actions $a_1 \dots a_n$ must be carried out cyclically starting with a_1

cannot be formalised in HML (or CTL⁻)

• More natural way of specifying this: When all actions but a_1,\ldots,a_n are restricted, the system should "behave like" the process P, defined by

$$P \stackrel{\text{def}}{=} a_1.a_2.\dots.a_n.P$$

- Generally: Many systems are informally specified by "behave like" statements.
 Example: When using telnet our machine should "behave like" the remote machine (abstracting from delays).
- But how to formalise "behavioural equivalence"?

The wish-list

- 1. Behavioural equivalence should be a reflexive, symmetric, and transitive relation.
- Processes that may terminate (deadlock) should not be equivalent to processes that may not terminate (deadlock).
- 3. If a component Q of P is replaced by an equivalent component Q' yielding P', then P and P' should also be equivalent.
- Two processes should be equivalent iff they satisfy exactly the same properties expressible in a nice modal or temporal logic.
- 5. It should abstract from silent actions.

We deal first with conditions (1)-(3), conditions (4) and (5) are considered later.

A first candidate: Trace equivalence

A trace of a process P is a sequence of actions $\sigma=\alpha_1,\ldots,\alpha_n$ such that $P\stackrel{\sigma}{\longrightarrow} Q=P\stackrel{\alpha_1}{\longrightarrow}\ldots\stackrel{\alpha_n}{\longrightarrow} Q$ for some process Q.

Two processes ${\cal P}$ and ${\cal Q}$ are trace-equivalent if they have the same traces.

This notion satisfies (1) but not (2). The following two clocks are trace-equivalent

Cl
$$\stackrel{\mathrm{def}}{=}$$
 tick.Cl Cl₅ $\stackrel{\mathrm{def}}{=}$ tick.Cl₅ + tick.O

A second candidate:

Completed-trace equivalence

A completed trace of a process P is a sequence σ of actions such that $P \stackrel{\sigma}{\longrightarrow} Q$ for some process Q that cannot execute any action.

Two processes P and Q are completed-trace equivalent if they are trace equivalent and have the same completed traces.

This notion satisfies (1) and (2), but not (3). Consider the processes

$$\begin{array}{lll} \text{Ven}_1 & \stackrel{\mathrm{def}}{=} & 1 \text{p.1p.} (\text{tea.Ven}_1 + \text{coffee.Ven}_1) \\ \\ \text{Ven}_2 & \stackrel{\mathrm{def}}{=} & 1 \text{p.} (1 \text{p.tea.Ven}_2 + 1 \text{p.coffee.Ven}_2) \\ \\ \text{Use} & \stackrel{\mathrm{def}}{=} & \overline{1 \text{p.}} \overline{1 \text{p.}} \overline{1 \text{p.}} \overline{\text{tea.ok.}} 0 \end{array}$$

 Ven_1 and Ven_2 are completed-trace equivalent, but new $K\left(\operatorname{Ven}_1\mid\operatorname{Use}\right)$ and new $K\left(\operatorname{Ven}_2\mid\operatorname{Use}\right)$, where $K=\{\operatorname{1p},\operatorname{tea},\operatorname{coffee}\}$, are not.

A third candidate: Bisimulation equivalence

A binary relation B between processes is a (strong) bisimulation provided that, whenever $(P,Q)\in B$ and α an action,

- if $P \xrightarrow{\alpha} P'$ then $Q \xrightarrow{\alpha} Q'$ for some Q' such that $(P',Q') \in B$, and
- if $Q \xrightarrow{\alpha} Q'$ then $P \xrightarrow{\alpha} P'$ for some P' such that $(P',Q') \in B$

Two processes P and Q are bisimulation equivalent (or bisimilar) if there is a bisimulation relation B such that $(P,Q)\in B$. We write $P\sim Q$ if P and Q are bisimilar.

Showing Bisimilarity

To establish $P \sim Q$,

- 1. present a candidate relation B with $(P,Q)\in B$;
- 2. prove that B is a bisimulation.

Example

Consider the processes

$$ext{Cl} \stackrel{ ext{def}}{=} ext{tick.Cl}$$
 $ext{Cl}_2 \stackrel{ ext{def}}{=} ext{tick.tick.Cl}_2$

$$B_1=\{(\mathtt{Cl},\mathtt{Cl_2})\}$$
 is not a bisimulation. $B_2=\{(\mathtt{Cl},\mathtt{Cl_2}),(\mathtt{Cl},\mathtt{tick}.\mathtt{Cl_2})\}$ is a bisimulation.

Exercise Prove that B_2 is a bisimulation.

Consider the processes

$$egin{array}{lll} \operatorname{Sem} & \stackrel{\mathrm{def}}{=} & \operatorname{\mathtt{get.Sem'}} \ & \operatorname{\mathtt{Sem'}} & \stackrel{\mathrm{def}}{=} & \operatorname{\mathtt{put.Sem}} \ & \operatorname{\mathtt{Sem2_0}} & \stackrel{\mathrm{def}}{=} & \operatorname{\mathtt{get.Sem2_1}} \ & \operatorname{\mathtt{Sem2_1}} & \stackrel{\mathrm{def}}{=} & \operatorname{\mathtt{get.Sem2_2}} + \operatorname{\mathtt{put.Sem2_0}} \ & \operatorname{\mathtt{Sem2_2}} & \stackrel{\mathrm{def}}{=} & \operatorname{\mathtt{put.Sem2_1}} \ & \operatorname{\mathtt{Sem2_2}} & \stackrel{\mathrm{def}}{=} & \operatorname{\mathtt{put.Sem2_1}} \ & \end{array}$$

The relation

$$B = \{ (\operatorname{Sem2_0}, \operatorname{Sem} \mid \operatorname{Sem}), \\ (\operatorname{Sem2_1}, \operatorname{Sem'} \mid \operatorname{Sem}), \\ (\operatorname{Sem2_1}, \operatorname{Sem} \mid \operatorname{Sem'}), \\ (\operatorname{Sem2_2}, \operatorname{Sem'} \mid \operatorname{Sem'}) \}$$

is a bisimulation.

Exercise Prove that \boldsymbol{B} is a bisimulation.

The processes a.(b.0 + c.0) and a.b.0 + a.c.0 are not bisimilar.

Assume there is a bisimulation B containing the pair

$$(a.(b.0 + c.0), a.b.0 + a.c.0)$$

Then B also contains

$$((b.0 + c.0), b.0)$$

The left process can do a c, but the right one cannot. Contradiction.

Consider the processes $\ \ \operatorname{new}\ c\left(A|B\right)$ and C_1 where

$$A \stackrel{\text{def}}{=} a.\overline{c}.A$$
 $B \stackrel{\text{def}}{=} c.\overline{b}.B$
 $C_0 \stackrel{\text{def}}{=} \overline{b}.C_1 + a.C_2$
 $C_1 \stackrel{\text{def}}{=} a.C_3$
 $C_2 \stackrel{\text{def}}{=} \overline{b}.C_3$
 $C_3 \stackrel{\text{def}}{=} \tau.C_0$

The relation

$$B = \{ (\text{new } c(A|B), C_1), (\text{new } c(\overline{\mathbf{c}}.A|B), C_3)$$

$$(\text{new } c(A|\overline{\mathbf{b}}.B), C_0), (\text{new } c(\overline{\mathbf{c}}.A|\overline{\mathbf{b}}.B), C_2) \}$$

is a bisimulation.

Exercise Prove that B is a bisimulation.

Exercise

Which of the following are bisimilar?

		Y/N
a.0	a.a.0	
a.0	a.0 + a.0	
a.0	a.0 a.0	
a.a.0	a.0 a.0	
a.b.0	a.0 b.0	
a.b.0 + b.a.0	a.0 b.0	
$a.\overline{a}.0 + \overline{a}.a.0$	a.0 <u>a</u> .0	
$a.\overline{a}.0 + \overline{a}.a.0 + \tau.0$	a.0 a .0	
au.0	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	

A Bigger Example

$$\mathtt{Cnt} \sim \mathtt{Ct}_0$$

$$egin{array}{lll} ext{Cnt} & \stackrel{ ext{def}}{=} & ext{up.(Cnt} \mid ext{down.0}) \ ext{Ct}_0 & \stackrel{ ext{def}}{=} & ext{up.Ct}_1 \ ext{Ct}_{i+1} & \stackrel{ ext{def}}{=} & ext{up.Ct}_{i+2} + ext{down.Ct}_i \ i \geq 0. \end{array}$$

Let Proc_i be the following families of processes for $i \geq 0$ (when brackets are dropped between parallel components)

$$egin{aligned} extstyle extstyle$$

where
$$Q \mid \mathbf{0}^0 = Q$$
 and $Q \mid \mathbf{0}^{i+1} = Q \mid \mathbf{0}^i \mid \mathbf{0}$.

$$B = \{(P, Ct_i) : i \ge 0 \text{ and } P \in Proc_i\}$$

is a bisimulation.

Bisimilarity is an equivalence relation

Theorem: For all processes P, Q and R

- 1. $P \sim P$:
- 2. if $P \sim Q$ then $Q \sim P$;
- 3. if $P \sim Q$ and $Q \sim R$, then $P \sim R$.

Proof of 3: Since $P \sim Q$, $(P,Q) \in B_1$ for some bisimulation B_1 . Since $Q \sim R$, $(Q,R) \in B_2$ for some bisimulation B_2 . So $(P,R) \in B_1 \circ B_2$ where \circ is relation composition. We show that $B_1 \circ B_2$ is a bisimulation. Let $(S_1,S_2) \in B_1 \circ B_2$ and $S_1 \stackrel{\alpha}{\longrightarrow} S_1'$. We must find S_2' st. $S_2 \stackrel{\alpha}{\longrightarrow} S_2'$ and $(S_1',S_2') \in B_1 \circ B_2$. As $(S_1,S_2) \in B_1 \circ B_2$, there is S such that $(S_1,S) \in B_1$ and $(S,S_2) \in B_2$. Since S_1 is bisimulation, there is S' such that $S \stackrel{\alpha}{\longrightarrow} S'$ and $(S_1',S_2') \in B_1$. Since S_2 is bisimulation, there is S_2' such that $S_2 \stackrel{\alpha}{\longrightarrow} S_2'$ and $(S_1',S_2') \in S_2$. Since $(S_1',S_2') \in S_1$ and $(S_1',S_2') \in S_2$, we have $(S_1',S_2') \in S_1 \circ S_2$.

Now check the case when $(S_1,S_2)\in B_1\circ B_2$ and $S_2 \xrightarrow{\alpha} S_2'$. It is very similar.

Bisimilarity is a congruence

Proposition

The relation \sim is a **congruence**: that is, given arbitrary processes P and Q with $P \sim Q$, then for any process R, for any set of actions K, for any action α and action names a, b,

1.
$$\alpha.P \sim \alpha.Q$$

2.
$$P+R\sim Q+R$$

3.
$$P \mid R \sim Q \mid R$$

3.
$$P \mid R \sim Q \mid R$$
 4. $P[b/a] \sim Q[b/a]$

5.
$$(\text{new } K) P \sim (\text{new } K) Q$$

The proof of case 3 is the most interesting case. It is given on the next slide.

Largest bisimulation

Proposition \sim is the largest bisimulation.

The proof is easy and left as an exercise.

Proof of case 3 We show that

$$B = \{ (P \mid R, Q \mid R) : P \sim Q \}$$

is a bisimulation. Suppose that

$$((P \mid R), (Q \mid R)) \in B$$
 and

 $P \mid R \xrightarrow{\alpha} P' \mid R'$. There are three possibilities:

- $P \stackrel{\alpha}{\longrightarrow} P'$ and R = R'. Because $P \sim Q$, we know that $Q \stackrel{\alpha}{\longrightarrow} Q'$ and $P' \sim Q'$ for some Q'. Therefore $Q \mid R \stackrel{\alpha}{\longrightarrow} Q' \mid R$, and so $((P' \mid R), (Q' \mid R)) \in B$.
- $R \xrightarrow{\alpha} R'$ and P' = P. So $Q \mid R \xrightarrow{\alpha} Q \mid R'$, and by definition $((P \mid R'), (Q \mid R')) \in B$.
- $P \mid R \stackrel{\tau}{\longrightarrow} P' \mid R'$ and $P \stackrel{a}{\longrightarrow} P'$ and $R \stackrel{\overline{a}}{\longrightarrow} R'$ (or vice versa). $Q \stackrel{a}{\longrightarrow} Q'$ for some Q' such that $P' \sim Q'$, so $Q \mid R \stackrel{\tau}{\longrightarrow} Q' \mid R'$, and therefore $((P' \mid R'), (Q' \mid R')) \in B$.

Observe that the symmetric case for $Q \mid R \stackrel{\alpha}{\longrightarrow} Q' \mid R'$ is similar.

More Properties

Proposition

1.
$$P+Q\sim Q+P$$

2.
$$P + (Q + R) \sim (P + Q) + R$$

3.
$$P + 0 \sim P$$

4.
$$P+P\sim P$$

5.
$$P | Q \sim Q | P$$

6.
$$P | (Q | R) \sim (P | Q) | R$$

7.
$$P \mid 0 \sim P$$

8.
$$\operatorname{new} K(P+Q) \sim \operatorname{new} K(P) + \operatorname{new} K(Q)$$

9.
$$\operatorname{new} K(a.P) \sim 0 \text{ if } a \in K$$

10.
$$\operatorname{new} K(a.P) \sim a.(\operatorname{new} KP)$$
 if $a \notin K$

Introduction to the Expansion Law

The expansion law states that a process with parallel compositions is bisimilar to a (possibly huge) process without parallel compositions.

Example

Given

$$P_1 \sim a.P_{11} + b.P_{12} + a.P_{13}$$

 $P_2 \sim \overline{a}.P_{21} + c.P_{22},$

then

$$P_1|P_2 \sim a.(P_{11}|P_2) + b.(P_{12}|P_2) + a.(P_{13}|P_2)$$

 $+ \overline{a}.(P_1|P_{21}) + c.(P_1|P_{22})$
 $+ \tau.(P_{11}|P_{21}) + \tau.(P_{13}|P_{21})$

Expansion law

Generalised Choice

$$\Sigma_{i \in I} P_i \text{ or } \Sigma\{P_i : i \in I\}$$

Transition Rule

$$\frac{P_i \xrightarrow{\alpha} P_i'}{\sum_{i \in I} P_i \xrightarrow{\alpha} P_i'}$$

$$P_i \sim \sum \{\alpha_{ij}.P_{ij} : 1 \leq j \leq n_i\}, \text{ every } 1 \leq i \leq m$$

$$P_1 \mid \ldots \mid P_m \sim$$

$$\sum \{\alpha_{ij}.Q_{ij} : 1 \le i \le m \text{ and } 1 \le j \le n_i\} +$$

$$\sum \{\tau. Q_{klij} : 1 \le k < i \le m \text{ and } \alpha_{kl} = \overline{\alpha}_{ij} \ne \tau\},\$$

$$Q_{ij} = P_1 \mid \dots \mid P_{i-1} \mid P_{ij} \mid P_{i+1} \mid \dots \mid P_m$$

$$Q_{klij} = P_1 \mid \dots \mid P_{k-1} \mid P_{kl} \mid P_{k+1} \mid \dots \mid P_{i-1} \mid P_{ij} \mid P_{i+1} \mid \dots \mid P_m.$$

 $(\alpha_{kl} = \overline{\alpha}_{ij} \neq \tau \text{ means } \alpha_{kl} = a \text{ and } \alpha_{ij} = \overline{\mathbf{a}} \text{ or } \alpha_{ij} = a \text{ and } \alpha_{kl} = \overline{\mathbf{a}}, \text{ for action name } a)$

Bisimilarity and Hennessy-Milner Logic

Say $P \equiv_{HM} Q$ if P and Q satisfy exactly the same formulae of HM-Logic.

Proposition If $P \sim Q$ then $P \equiv_{HM} Q$.

Proof By induction on modal formulae Φ , we show that, for any P and Q, if $P\sim Q$, then $P\models\Phi$ iff $Q\models\Phi$.

Basis $\Phi = \mathsf{tt}$ or $\Phi = \mathsf{ff}$. Clear.

Induction step We consider only the case $\Phi = [L]\Psi.$ By symmetry, it suffices to show that $P \models [L]\Psi$ implies $Q \models [L]\Psi.$ Assume $P \models [L]\Psi$ and let $Q \stackrel{\alpha}{\longrightarrow} Q'$ for arbitrary $\alpha \in L.$ Since $P \sim Q$, there is a P' such that $P \stackrel{\alpha}{\longrightarrow} P'$ and $P' \sim Q'.$ Since $P \models [L]\Psi,$ it follows that $P' \models \Psi.$ By the induction hypothesis $Q' \models \Psi,$ and so $Q \models \Phi.$

A process P is immediately image-finite if, for each action α , the set $\{Q: P \stackrel{\alpha}{\longrightarrow} Q\}$ is finite.

P is **image-finite** if all processes reachable from it are immediately image-finite.

Proposition If P and Q are image-finite and $P \equiv_{\mathrm{HM}} Q$, then $P \sim Q$.

Proof We show that the following relation is a bisimulation.

$$\{(P,Q): P \equiv_{\mathrm{HM}} Q \text{ and } P, Q \text{ are image-finite}\}$$

Suppose not. Then there exists ${\cal R}$ and ${\cal S}$ such that

$$R \equiv_{\mathrm{HM}} S$$
, $R \stackrel{\alpha}{\longrightarrow} R'$ for some α and R' , $R' \not\equiv_{\mathrm{HM}} S'$ for any S' such that $S \stackrel{\alpha}{\longrightarrow} S'$.

Case 1 The set $\{S': S \xrightarrow{\alpha} S'\}$ is empty. Then $R \models \langle \alpha \rangle$ tt but $S \not\models \langle \alpha \rangle$ tt, contradiction.

Case 2 The set $\{S': S \xrightarrow{\alpha} S'\}$ is non-empty. By image-finiteness, the set is $\{S_1, \ldots, S_n\}$ for some n. Since $R' \not\equiv_{\mathrm{HM}} S_i$ for each $i: 1 \leq i \leq n$, there are formulae Φ_1, \ldots, Φ_n such that $R' \models \Phi_i$ and $S_i \not\models \Phi_i$. (Here we use the fact that HML is closed under complement.)

Let $\Psi = \Phi_1 \wedge \ldots \wedge \Phi_n$.

 $R \models \langle \alpha \rangle \Psi$ but $S \not\models \langle \alpha \rangle \Psi$ because each S_i fails to have property Ψ . Contradiction.

Here is an example to show that the image-finiteness condition is necessary.

Consider the processes

$$extstyle{Cl}^1 \stackrel{ ext{def}}{=} ext{tick.}0$$
 $ext{Cl}^{i+1} \stackrel{ ext{def}}{=} ext{tick.} ext{Cl}^i, i \geq 1$ $ext{Cl} \stackrel{ ext{def}}{=} ext{tick.} ext{Cl}$

Now consider the processes

$$\begin{array}{lcl} P & = & \Sigma\{\mathtt{Cl}^i: i \geq 1\} \\ Q & \stackrel{\mathrm{def}}{=} & P + \mathtt{Cl} \end{array}$$

 ${\cal P}$ and ${\cal Q}$ are not image finite.

 ${\cal P}$ and ${\cal Q}$ are not bisimilar exercise

However, $P \equiv_{HM} Q$ a proof is in Stirling's book