```
In [200...
           #!pip install -U scikit-learn
           #!pip install numpy
           #!pip install pandas
           #!pip install matplotlib
           #!pip install seaborn
In [200...
           import numpy as np
           import pandas as pd
           import matplotlib.pyplot as plt
           import seaborn as sns
           import math
In [200...
           df=pd.read csv(r"C:\Users\vaibhav kumar\Downloads\Boston Train Test.csv", encoding= 'unicode escape
           df
Out[200...
                Unnamed: 0
                               crim
                                          indus chas
                                                                rm
                                                                             dis rad
                                                                                      tax ptratio
                                                                                                    black Istat medy
                                       7n
                                                        nox
                                                                    age
             0
                            0.00632
                                     18.0
                                            2.31
                                                       0.538
                                                             6.575
                                                                    65.2 4.0900
                                                                                      296
                                                                                                   396.90
                                                    0
                                                                                   1
                                                                                              15.3
                                                                                                           4.98
                                                                                                                  24.0
                            0.02731
                                      0.0
                                            7.07
                                                       0.469
                                                              6.421
                                                                    78.9
                                                                         4.9671
                                                                                   2 242
                                                                                              17.8
                                                                                                   396.90
                                                                                                           9.14
                                                                                                                  21.6
             2
                            0.02729
                                      0.0
                                            7.07
                                                       0.469
                                                             7.185
                                                                    61.1
                                                                         4.9671
                                                                                   2 242
                                                                                                   392.83
                                                                                                                  34.7
                                                                                              17.8
                                                                                                           4.03
             3
                             0.03237
                                      0.0
                                            2.18
                                                       0.458
                                                              6.998
                                                                    45.8
                                                                          6.0622
                                                                                   3 222
                                                                                              18.7
                                                                                                   394.63
                                                                                                           2.94
                                                                                                                  33.4
                                                                                                           5.33
             4
                             0.06905
                                      0.0
                                            2.18
                                                       0.458
                                                             7.147
                                                                    54.2 6.0622
                                                                                   3 222
                                                                                              18.7
                                                                                                   396.90
                                                                                                                  36.2
                            0.06263
           501
                                           11.93
                                                    0 0.573 6.593
                                                                                   1 273
                        501
                                      0.0
                                                                    69.1 2.4786
                                                                                              21.0 391.99
                                                                                                           9.67
                                                                                                                  22.4
           502
                        502
                             0.04527
                                      0.0
                                           11.93
                                                       0.573
                                                              6.120
                                                                    76.7 2.2875
                                                                                   1 273
                                                                                              21.0
                                                                                                   396.90
                                                                                                           9.08
                                                                                                                  20.6
           503
                        503
                             0.06076
                                      0.0
                                           11.93
                                                       0.573
                                                              6.976
                                                                    91.0
                                                                         2.1675
                                                                                   1 273
                                                                                              21.0
                                                                                                   396.90
                                                                                                           5.64
                                                                                                                  23.9
           504
                        504
                            0.10959
                                      0.0
                                           11.93
                                                       0.573
                                                             6.794
                                                                    89.3
                                                                         2.3889
                                                                                   1 273
                                                                                              21.0
                                                                                                  393.45
                                                                                                           6.48
                                                                                                                  22.0
           505
                        505
                            0.04741
                                      0.0
                                          11.93
                                                    0 0.573 6.030
                                                                    80.8 2.5050
                                                                                   1 273
                                                                                              21.0 396.90
                                                                                                           7.88
                                                                                                                  11.9
          506 rows × 15 columns
In [201...
           df.info()
           <class 'pandas.core.frame.DataFrame'>
           RangeIndex: 506 entries, 0 to 505
          Data columns (total 15 columns):
                Column
                             Non-Null Count Dtype
           0
                Unnamed: 0
                             506 non-null
                                                int64
                              506 non-null
                                                float64
           1
                crim
           2
                              506 non-null
                                                float64
                zn
                             506 non-null
           3
                                                float64
                indus
                              506 non-null
           4
                                                int64
                chas
           5
                              506 non-null
                                                float64
                nox
                             506 non-null
                                                float64
           6
                rm
           7
                              506 non-null
                                                float64
                age
           8
                dis
                              506 non-null
                                                float64
           9
                rad
                              506 non-null
                                                int64
           10
                             506 non-null
                                                int64
                tax
           11
                ptratio
                             506 non-null
                                                float64
           12
                black
                              506 non-null
                                                float64
           13
                lstat
                              506 non-null
                                                float64
```

14 medv 506 non-null float64

dtypes: float64(11), int64(4)

memory usage: 59.4 KB

In [201...

df.describe()

Out[201...

	Unnamed: 0	crim	zn	indus	chas	nox	rm	age	dis	
coun	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	5(
mear	252.500000	3.613524	11.363636	11.136779	0.069170	0.554695	6.284634	68.574901	3.795043	
sto	I 146.213884	8.601545	23.322453	6.860353	0.253994	0.115878	0.702617	28.148861	2.105710	
mir	0.000000	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	1.129600	
25%	126.250000	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.025000	2.100175	
50%	252.500000	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	77.500000	3.207450	
75%	378.750000	3.677083	12.500000	18.100000	0.000000	0.624000	6.623500	94.075000	5.188425	ï
max	505.000000	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	12.126500	7

In [201...

df.corr()

Out[201...

	Unnamed: 0	crim	zn	indus	chas	nox	rm	age	dis	rad
Unnamed: 0	1.000000	0.407407	-0.103393	0.399439	-0.003759	0.398736	-0.079971	0.203784	-0.302211	0.686002
crim	0.407407	1.000000	-0.200469	0.406583	-0.055892	0.420972	-0.219247	0.352734	-0.379670	0.625505
zn	-0.103393	-0.200469	1.000000	-0.533828	-0.042697	-0.516604	0.311991	-0.569537	0.664408	-0.311948
indus	0.399439	0.406583	-0.533828	1.000000	0.062938	0.763651	-0.391676	0.644779	-0.708027	0.595129
chas	-0.003759	-0.055892	-0.042697	0.062938	1.000000	0.091203	0.091251	0.086518	-0.099176	-0.007368
nox	0.398736	0.420972	-0.516604	0.763651	0.091203	1.000000	-0.302188	0.731470	-0.769230	0.611441
rm	-0.079971	-0.219247	0.311991	-0.391676	0.091251	-0.302188	1.000000	-0.240265	0.205246	-0.209847
age	0.203784	0.352734	-0.569537	0.644779	0.086518	0.731470	-0.240265	1.000000	-0.747881	0.456022
dis	-0.302211	-0.379670	0.664408	-0.708027	-0.099176	-0.769230	0.205246	-0.747881	1.000000	-0.494588
rad	0.686002	0.625505	-0.311948	0.595129	-0.007368	0.611441	-0.209847	0.456022	-0.494588	1.000000
tax	0.666626	0.582764	-0.314563	0.720760	-0.035587	0.668023	-0.292048	0.506456	-0.534432	0.910228
ptratio	0.291074	0.289946	-0.391679	0.383248	-0.121515	0.188933	-0.355501	0.261515	-0.232471	0.464741
black	-0.295041	-0.385064	0.175520	-0.356977	0.048788	-0.380051	0.128069	-0.273534	0.291512	-0.444413
Istat	0.258465	0.455621	-0.412995	0.603800	-0.053929	0.590879	-0.613808	0.602339	-0.496996	0.488676
medv	-0.226604	-0.388305	0.360445	-0.483725	0.175260	-0.427321	0.695360	-0.376955	0.249929	-0.381626
4										•

In [201...

sns.heatmap(df.corr())

plt.show()

X y Split

```
In [201... X = df.drop("medv", axis = 1)
    y = df["medv"]
```

Test Train Splitting

In [201	<pre>from sklearn.model_selection import train_test_split</pre>														
In [201	<pre>X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)</pre>														
In [201	X_t	rain													
Out[201		Unnamed: 0	crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	black	Istat
	240	240	0.11329	30.0	4.93	0	0.428	6.897	54.3	6.3361	6	300	16.6	391.25	11.38
	380	380	88.97620	0.0	18.10	0	0.671	6.968	91.9	1.4165	24	666	20.2	396.90	17.21
	212	212	0.21719	0.0	10.59	1	0.489	5.807	53.8	3.6526	4	277	18.6	390.94	16.03
	2	2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.03
	104	104	0.13960	0.0	8.56	0	0.520	6.167	90.0	2.4210	5	384	20.9	392.69	12.33
	•••														
	458	458	7.75223	0.0	18.10	0	0.713	6.301	83.7	2.7831	24	666	20.2	272.21	16.23
	91	91	0.03932	0.0	3.41	0	0.489	6.405	73.9	3.0921	2	270	17.8	393.55	8.20
	390	390	6.96215	0.0	18.10	0	0.700	5.713	97.0	1.9265	24	666	20.2	394.43	17.11
	295	295	0.12932	0.0	13.92	0	0.437	6.678	31.1	5.9604	4	289	16.0	396.90	6.27
	23	23	0.98843	0.0	8.14	0	0.538	5.813	100.0	4.0952	4	307	21.0	394.54	19.88

354 rows × 14 columns

```
In [201... y_train
```

```
240
                 22.0
Out[201...
          380
                 10.4
                 22.4
          212
          2
                  34.7
          104
                  20.1
                  . . .
          458
                 14.9
          91
                  22.0
          390
                 15.1
                  28.6
          295
          23
                  14.5
          Name: medv, Length: 354, dtype: float64
In [201...
           # Splliting of Train data \, is done randomly to avoid potential selection biases arising. This is be
           # non-biased resuts, it also means that results can differ from run to run.
In [202...
           X test
Out[202...
               Unnamed: 0
                                     zn indus chas
                              crim
                                                       nox
                                                              rm
                                                                  age
                                                                          dis rad
                                                                                   tax ptratio
                                                                                                 black
                                                                                                       Istat
```

504 504 0.10959 0.0 11.93 0.573 6.794 89.3 2.3889 1 273 21.0 393.45 6.48 393 8.64476 0.0 18.10 0.693 6.193 92.6 1.7912 24 666 20.2 396.90 15.17 248 248 0.16439 22.0 5.86 0.431 6.433 49.1 7.8265 7 330 19.1 374.71 9.52 134 0.97617 0.0 21.89 0.624 5.757 98.4 2.3460 4 437 262.76 17.31 134 212 317 317 0.24522 0.0 9.90 0.544 5.782 71.7 4.0317 4 304 18.4 396.90 15.94 ••• ... 343 0.02543 55.0 3.78 0.484 6.696 56.4 5.7321 5 370 17.6 396.90 7.18 61 0.17171 25.0 5.13 0.453 5.966 93.4 6.8185 284 19.7 378.08 14.44 105 0.13262 0.0 8.56 0.520 5.851 96.7 2.1069 5 384 20.9 394.05 16.47 499 499 0.17783 0.0 9.69 0.585 5.569 73.5 2.3999 6 391 19.2 395.77 15.10 450 450 6.71772 0.0 18.10 0 0.713 6.749 92.6 2.3236 24 666 20.2 0.32 17.44

152 rows × 14 columns

```
In [202..
           y_test
          504
                 22.0
Out[202...
          393
                 13.8
          248
                 24.5
          134
                 15.6
          317
                 19.8
                  . . .
          343
                 23.9
                 16.0
          61
          105
                 19.5
          499
                 17.5
          450
                 13.4
          Name: medv, Length: 152, dtype: float64
In [202...
           # Splliting of Test data is done randomly to avoid potential selection biases arising. This is ber
           # non-biased resuts, it also means that results can differ from run to run.
```

Normalization

```
In [202...
           from sklearn.preprocessing import MinMaxScaler
           sc = MinMaxScaler()
In [202...
           sc.fit(X_train)
          X_train = sc.transform(X_train)
           X_test = sc.transform(X_test)
In [202..
          X train.shape
          (354, 14)
Out[202...
In [202...
           X train
          array([[0.47524752, 0.00120232, 0.3
                                                     , ..., 0.42553191, 0.98567372,
Out[202...
                  0.273758871,
                 [0.75247525, 1.
                                                      , ..., 0.80851064, 1.
                                         , 0.
                  0.43914894],
                 [0.41980198, 0.00237013, 0.
                                                      , ..., 0.63829787, 0.98488767,
                  0.40567376],
                 [0.77227723, 0.07818185, 0.
                                                     , ..., 0.80851064, 0.993737 ,
                  0.43631206],
                 [0.58415842, 0.00138249, 0.
                                                     , ..., 0.36170213, 1.
                  0.12879433],
                 [0.04554455, 0.01103868, 0.
                                                      , ..., 0.89361702, 0.99401592,
                  0.51489362]])
In [202..
          X test
          array([[ 0.9980198 , 0.00116073, 0.
                                                                 0.89361702,
                                                         , ...,
                   0.99125209, 0.13475177],
                 [ 0.77821782, 0.09709398, 0.
                                                                 0.80851064,
                 1. , 0.3812766 ], [ 0.49108911, 0.00177667, 0.22
                                                                 0.69148936,
                                                         , . . . ,
                   0.94373447, 0.22099291],
                 [ 0.20792079, 0.00141958, 0.
                                                                 0.88297872,
                   0.99277347, 0.41815603],
                 [ 0.98811881, 0.00192773, 0.
                                                                 0.70212766,
                   0.99713474, 0.37929078],
                 [ 0.89108911, 0.07543452, 0.
                                                         , ..., 0.80851064,
                  -0.00557838, 0.44567376]])
In [202..
          X_test.shape
          (152, 14)
Out[202...
```

Linear Regression

```
In [202... from sklearn.linear_model import LinearRegression
    reg = LinearRegression()
In [203... X = df["nox"]
```

```
y = df["dis"]
In [203...
           from sklearn.model selection import train test split
           X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
In [203...
           X train = np.array(X train).reshape(-1, 1)
           X_test = np.array(X_test).reshape(-1, 1)
In [203...
           #X train
In [203...
           model = reg.fit(X_train, y_train)
In [203...
           model.coef_
          array([-13.58585091])
Out[203...
In [203...
           model.intercept_
          11.268763847893577
Out[203...
In [203...
           y pred = model.predict(X test)
In [203...
           plt.scatter(X_test, -y_pred, c = "r")
           plt.scatter(X_test, -y_test, c = "b")
           plt.show()
             0
            -2
            -4
            -6
           -8
          -10
          -12
                 0.4
                          0.5
                                    0.6
                                             0.7
                                                       0.8
In [203...
           from sklearn.metrics import mean_absolute_error
           from sklearn.metrics import mean squared error
           from sklearn.metrics import r2 score
In [204...
           mean_absolute_error(y_test, y_pred)
          1.1609318877854597
Out[204...
In [204...
           mean_squared_error(y_test, y_pred)
```

```
Out[204... 2.281290171525275

In [204... np.sqrt(mean_squared_error(y_test, y_pred))

Out[204... 1.510394045117126

In [204... p=r2_score(y_test, y_pred)

In [204... p

Out[204... 0.5644595318232439
```

Multiple Linear Regression

```
In [204...
            X = df.drop("medv", axis = 1)
            y = df["medv"]
In [204...
Out[204...
                 Unnamed: 0
                                 crim
                                             indus chas
                                                                                dis
                                                                                           tax ptratio
                                         zn
                                                                                    rad
                                                                                                         black Istat
                                                           nox
                                                                   rm
                                                                        age
             0
                             0.00632
                                                                       65.2 4.0900
                                       18.0
                                              2.31
                                                          0.538 6.575
                                                                                       1
                                                                                          296
                                                                                                   15.3 396.90
                                                                                                                4.98
                              0.02731
                                        0.0
                                              7.07
                                                          0.469
                                                                 6.421
                                                                        78.9
                                                                            4.9671
                                                                                          242
                                                                                                        396.90
                                                                                                                9.14
             2
                              0.02729
                                        0.0
                                              7.07
                                                          0.469
                                                                 7.185
                                                                        61.1
                                                                             4.9671
                                                                                         242
                                                                                                        392.83
                                                                                                   17.8
                                                                 6.998
                                                                                                   18.7 394.63
                              0.03237
                                        0.0
                                              2.18
                                                          0.458
                                                                       45.8
                                                                            6.0622
                                                                                       3 222
                                                                                                                2.94
                                                                                       3 222
             4
                              0.06905
                                        0.0
                                              2.18
                                                         0.458 7.147 54.2 6.0622
                                                                                                   18.7 396.90
                                                                                                                5.33
                              0.06263
                                                                6.593
                                                                       69.1 2.4786
           501
                         501
                                        0.0
                                             11.93
                                                          0.573
                                                                                       1
                                                                                          273
                                                                                                   21.0
                                                                                                       391.99
                                                                                                                9.67
           502
                              0.04527
                                        0.0
                                             11.93
                                                          0.573 6.120
                                                                       76.7 2.2875
                                                                                       1 273
                                                                                                   21.0 396.90
                                                                                                                9.08
           503
                             0.06076
                                        0.0
                                             11.93
                                                         0.573 6.976
                                                                       91.0 2.1675
                                                                                       1 273
                                                                                                  21.0 396.90
                                                                                                                5.64
           504
                             0.10959
                                        0.0
                                             11.93
                                                          0.573
                                                                6.794
                                                                       89.3
                                                                            2.3889
                                                                                       1 273
                                                                                                   21.0
                                                                                                       393.45
                                                                                                                6.48
           505
                         505 0.04741
                                        0.0 11.93
                                                       0 0.573 6.030 80.8 2.5050
                                                                                       1 273
                                                                                                  21.0 396.90
                                                                                                                7.88
```

506 rows × 14 columns

```
8.58633637e-03, -5.37874887e-01])
In [205...
           model.intercept_
          39.62322051209671
Out[205...
In [205...
           y_pred = model.predict(X_test)
In [205...
           mean absolute error(y test, y pred)
          2.9495942985662755
Out[205...
In [205...
           mean_squared_error(y_test, y_pred)
          17.836167010161777
Out[205...
In [205...
           np.sqrt(mean_squared_error(y_test, y_pred))
          4.223288648690944
Out[205...
In [205...
           r2_score(y_test, y_pred)
          0.753625070837884
Out[205...
```

-1.58644494e+00, 3.26202485e-01, -1.27117387e-02, -9.64352356e-01,

Polynomial Regression

```
In [205...
           X = df["nox"]
           y = df["dis"]
In [205...
           X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
In [205..
           p_test = X_test
In [205...
           from sklearn.preprocessing import PolynomialFeatures
In [206..
           poly = PolynomialFeatures(2)
In [206...
           X_train = np.array(X_train).reshape(-1, 1)
           X_test = np.array(X_test).reshape(-1, 1)
In [206...
           poly.fit(X_train)
Out[206...
          ▼ PolynomialFeatures
          PolynomialFeatures()
```

```
X_train = poly.transform(X_train)
In [206...
           X_test = poly.transform(X_test)
In [206...
           #X_test
In [206...
           reg = LinearRegression()
In [206...
           model = reg.fit(X_train, y_train)
In [206...
           model.coef_
          array([ 0.
                               , -73.89605897, 50.02247161])
Out[206...
In [206...
           model.intercept_
          28.746142405931856
Out[206...
In [206...
           y_pred = model.predict(X_test)
In [207...
           plt.scatter(X_test[:, 1], y_pred, c = "r")
           plt.scatter(X_test[:, 1], y_test, c = "b")
           plt.show()
          10
           8
           6
           4
           2
                0.4
                          0.5
                                   0.6
                                                       0.8
In [207...
           mean_absolute_error(y_test, y_pred)
          0.8763119152067171
Out[207...
In [207...
           mean_squared_error(y_test, y_pred)
          1.3003165078669456
Out[207...
In [207..
           np.sqrt(mean_squared_error(y_test, y_pred))
          1.140314214533409
Out[207...
In [207...
```

r2_score(y_test, y_pred)

Out[207...

0.7193327117492254

Observations

In [207...

In case of Multiple Liner Regression the r2 value comes near to 0.754 that # means 75% data is reliable so house prediction(Medv) in Boston.
It is nearly a Good data but not perfect.

THANK YOU