

Carlos III de Madrid

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

EVALUACIÓN PARA EL ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO

Curso 2020-21

MATERIA: FÍSICA

INSTRUCCIONES GENERALES Y CALIFICACIÓN

Después de leer atentamente el examen, responda a <u>cinco</u> preguntas cualesquiera a elegir entre las diez que se proponen.

CALIFICACIÓN: Cada pregunta se valorará sobre 2 puntos (1 punto cada apartado).

TIEMPO: 90 minutos.

Pregunta A.1.- Una nave espacial ha quedado atrapada en una órbita circular en torno a un planeta esférico desconocido. Los sistemas de navegación de la nave indican que su velocidad orbital es de 25000 km h⁻¹ y que tarda 5 horas en dar una vuelta completa alrededor del planeta.

- a) Determine el radio de la órbita circular de la nave y la masa del planeta.
- b) Si la densidad del planeta es de 16150 kg m⁻³, calcule el radio del planeta y el valor de la aceleración de la gravedad en su superficie.

Dato: Constante de Gravitación Universal, $G = 6.67 \cdot 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$.

Pregunta A.2.- Anacleto, el agente secreto, está grabando con un teléfono inteligente, a través de una pared, una conversación muy delicada del malvado Vázquez. La distancia entre ambos es de 5 m y, por efecto de la pared, al teléfono solo llega un 2 % de la intensidad que llegaría si no hubiese pared. Se sabe que el nivel de intensidad sonora de una conversación a 1 metro es de 50 dB.

- a) Calcule el nivel de intensidad sonora que llega al teléfono inteligente.
- b) Si el teléfono es capaz de grabar conversaciones a 100 metros de distancia, ¿cuál es el nivel más bajo de intensidad sonora que es capaz de medir?

*Dato: Intensidad umbral de audición, I*₀ = 10^{-12} W m⁻².

Pregunta A.3.- Se tienen tres hilos indefinidos de corriente (ver figura). Los hilos de intensidades $I_1 = 2$ A e $I_2 = 2$ A son paralelos al eje x y pasan por los puntos (0, 0, 0) y (0, 0, 4) m, respectivamente. El tercer hilo, con una intensidad $I_3 = 3$ A pasa por el origen de coordenadas y es paralelo al eje y. En todos los casos la corriente va en el sentido positivo de los ejes. Calcule:

- a) El campo magnético total creado por los tres hilos en el punto (0, 0, 2) m.
- b) La fuerza magnética por unidad de longitud que ejerce el hilo de intensidad I_1 sobre el hilo de intensidad I_2 . ¿La fuerza es atractiva o repulsiva?

Dato: Permeabilidad magnética del vacío, $\mu_0 = 4\pi \cdot 10^{-7} \text{ N A}^{-2}$.

Pregunta A.4.-. Sea un sistema óptico formado por dos lentes convergentes, una lente A de distancia focal $f_A^{'}$ y otra B, situada 80 cm a la derecha de A, de distancia focal $f_B^{'}$ = 30 cm. Un objeto de 5 cm de altura está situado 15 cm a la izquierda de la lente A.

- a) Si la imagen del objeto formada por el sistema de lentes aparece 75 cm a la derecha de la lente B, ¿cuánto vale la distancia focal de la lente A y el tamaño de la imagen formada por el sistema de lentes?
- b) ¿Dónde hay que situar el objeto a la izquierda de la lente A, para que el sistema de lentes forme la imagen en el infinito?

Pregunta A.5.- En un experimento realizado en un acelerador de partículas se han originado un electrón relativista de velocidad 0,75c, siendo c la velocidad de la luz, y un fotón de 15 MeV de energía.

- a) Calcule la masa relativista y la energía cinética del electrón.
- b) Determine la longitud de onda del fotón y la longitud de de Broglie del electrón.

Datos: Valor absoluto de la carga del electrón, $e = 1,6\cdot10^{-19}$ C; Masa del electrón en reposo, $m_e = 9,1\cdot10^{-31}$ kg; Constante de Planck, $h = 6,63\cdot10^{-34}$ J s; Velocidad de la luz en el vacío, $c = 3\cdot10^8$ m s⁻¹.

Pregunta B.1.- Una partícula de masa m se encuentra en el origen de coordenadas de un sistema de referencia (x, y). La componente x del campo gravitatorio creado por la partícula en el punto (2, 2) m es $-1,18\cdot10^{-11}$ N kg⁻¹.

- a) Calcule el valor de la masa m.
- b) ¿Cuál es el trabajo que realiza el campo para llevar una partícula de masa M = 5 kg desde el punto (4, 0) m al punto (2, 2) m?

Dato: Constante de Gravitación Universal, $G = 6.67 \cdot 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$.

Pregunta B.2.- Una onda transversal se propaga en una cuerda situada a lo largo del eje x. La propagación de la onda es en el sentido positivo del eje x. La expresión matemática de la onda en los instantes t=0 s y t=2 s es $y(x,0)=0,1\cos(\pi-4\pi x)$ m e $y(x,2)=0,1\cos(11\pi-4\pi x)$ m, respectivamente, donde todas las magnitudes están expresadas en el SI de unidades. Calcule:

- a) La frecuencia angular y la expresión matemática de la onda.
- b) La velocidad de propagación de la onda y la aceleración máxima de oscilación de un punto de la cuerda.

Pregunta B.3.- Un espectrómetro de masas es un dispositivo que mide la masa de los iones y cuyo esquema se muestra en la figura. Consta de un selector de velocidades, en el que, mediante un campo eléctrico y un campo magnético mutuamente perpendiculares, se seleccionan únicamente los iones que viajan en línea recta paralela al eje x de la figura y con un valor determinado de la velocidad. A continuación, los iones pasan a una segunda región con un campo magnético perpendicular a la velocidad de los iones, de forma que éstos realizan una trayectoria circular. En el experimento se usan iones positivos de oxígeno $^{18}O^+$ cuya masa es $2,7\cdot 10^{-26}$ kg y su carga es +e. En el

selector de velocidades los campos eléctrico y magnético son $\vec{E}=4,0\cdot10^5\,\vec{j}\,\,\mathrm{V}\,\,\mathrm{m}^{\text{-}1}\,\,\mathrm{y}\,\,\vec{B}_1=2\,\,\vec{k}\,\,\mathrm{T}$. El campo magnético en la segunda región del espectrómetro de masas es $\vec{B}_2=5\,\vec{k}\,\,\mathrm{T}$. Calcule:

- a) La velocidad de los iones de oxígeno que viajan en línea recta a lo largo del eje x en el selector de velocidades.
- b) El radio de la órbita circular descrita por los iones en la segunda región del espectrómetro de masas donde el campo magnético es B_2 .

Dato: Valor absoluto de la carga de electrón, e = $1.6 \cdot 10^{-19}$ C.

Pregunta B.4.- Sean dos medios A y B de índices de refracción n_A y n_B , respectivamente. Un rayo de luz de frecuencia $6,04\cdot10^{14}$ Hz incide desde el medio A hacia el medio B, verificándose que el ángulo límite para la reflexión total es $45,58^{\circ}$. Sabiendo que n_A - n_B = 0,6, determine:

- a) Los índices de refracción n_A y n_B de ambos medios.
- b) Las longitudes de onda del rayo de luz incidente en los medios A y B.

Dato: Velocidad de la luz en el vacío, $c = 3.10^8$ m s⁻¹.

Pregunta B.5.- El patrón del kilogramo es un cilindro hecho con una aleación de platino-iridio (90 % en masa de Pt) que se encuentra en un museo de París. El platino está formado por diversos isótopos, uno de ellos, el ¹⁹⁰Pt, es radiactivo siendo su tiempo de semidesintegración de 6,5·10¹¹ años. El porcentaje del isótopo ¹⁹⁰Pt en una muestra de platino es del 0,012 % en masa.

- a) Calcule la actividad inicial del patrón del kilogramo.
- b) ¿Cuál será la masa final del platino ¹⁹⁰Pt que queda en el patrón del kilogramo transcurridos mil millones de años?

Datos: Masa atómica del isótopo ¹⁹⁰Pt; M = 189,96 u; Número de Avogadro, $N_A = 6,02 \cdot 10^{23}$ mol⁻¹.

CRITERIOS ESPECÍFICOS DE CORRECCIÓN

FÍSICA

- * Las preguntas deben contestarse razonadamente, valorando en su resolución una adecuada estructuración y el rigor en su desarrollo.
- * Se valorará positivamente la inclusión de pasos detallados, así como la realización de diagramas, dibujos y esquemas.
- * En la corrección de las preguntas se tendrá en cuenta el proceso seguido en la resolución de las mismas, valorándose positivamente la identificación de los principios y leyes físicas involucradas.
- * Se valorará la destreza en la obtención de resultados numéricos y el uso correcto de las unidades en el Sistema Internacional.
- * Cada pregunta, debidamente justificada y razonada con la solución correcta, se calificará con un máximo de 2 puntos.
- * En las preguntas que consten de varios apartados, la calificación máxima será la misma para cada uno de ellos (desglosada en múltiplos de 0,25 puntos).

FÍSICA SOLUCIONES

(Documento de trabajo orientativo)

Pregunta A.1.- Una nave espacial ha quedado atrapada en una órbita circular en torno a un planeta esférico desconocido. Los sistemas de navegación de la nave indican que su velocidad orbital es de 25000 km h⁻¹ y que tarda 5 horas en dar una vuelta completa alrededor del planeta.

- a) Determine el radio de la órbita circular de la nave y la masa del planeta.
- b) Si la densidad del planeta es de 16150 kg m⁻³, calcule el radio del planeta y el valor de la aceleración de la gravedad en su superficie.

Dato: Constante de Gravitación Universal, $G = 6.67 \cdot 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$.

Solución:

 a) En primer lugar, determinamos el radio de la órbita. Dado que la velocidad orbital es constante y la órbita es circular, se cumple:

$$v = \frac{2\pi r}{T} \Rightarrow r = \frac{Tv}{2\pi} = \frac{25000 \cdot 10^3}{3600} \frac{5 \cdot 3600}{2\pi} = 19894,37 \cdot 10^3 \text{ m} \Rightarrow \boxed{r = 19894,37 \text{ km}}$$

Determinamos la masa del planeta. Para que la órbita sea circular debe verificarse:

$$m\frac{v^2}{r} = G\frac{Mm}{r^2} \Rightarrow v^2 = \frac{GM}{r} \Rightarrow M = \frac{rv^2}{G}$$

Luego:

$$M = 19,89437 \cdot 10^{6} \left(\frac{25000 \cdot 10^{3}}{3600} \right)^{2} \frac{1}{6,67 \cdot 10^{-11}} = 1,44 \cdot 10^{25} \text{ kg} \Rightarrow \boxed{M = 1,44 \cdot 10^{25} \text{ kg}}$$

b) Calculamos el radio del planeta. Dado que el planeta es esférico, se cumple:

$$\rho = \frac{M}{\frac{4}{3}\pi R^3} \Rightarrow R = \left(\frac{3M}{4\pi\rho}\right)^{1/3} = \left(\frac{3\cdot1,44\cdot10^{25}}{4\pi\cdot16150}\right)^{1/3} = 5968,60\cdot10^3 \text{ m}$$
$$\Rightarrow \boxed{R = 5968,60 \text{ km}}$$

Para determinar la constante gravitatoria en la superficie del planeta tenemos en cuenta que, la fuerza atractiva que aparece sobre un cuerpo de masa *m* en la superficie del planeta es:

$$F = mg = \frac{GMm}{R^2} \Rightarrow g = \frac{GM}{R^2}$$

Luego el valor de g es:

$$g = \frac{GM}{R^2} \Rightarrow g = \frac{6,67 \cdot 10^{-11} \cdot 1,44 \cdot 10^{25}}{\left(5968,60 \cdot 10^3\right)^2} = 26,931 \text{ m s}^{-2} \Rightarrow \boxed{g = 26,93 \text{ m s}^{-2}}$$

Pregunta A.2.- Anacleto, el agente secreto, está grabando con un teléfono inteligente, a través de una pared, una conversación muy delicada del malvado Vázquez. La distancia entre ambos es de 5 m y, por efecto de la pared, al teléfono solo llega un 2 % de la intensidad que llegaría si no hubiese pared. Se sabe que el nivel de intensidad sonora de una conversación a 1 metro es de 50 dB.

- a) Calcule el nivel de intensidad sonora que llega al teléfono inteligente.
- b) Si el teléfono es capaz de grabar conversaciones a 100 metros de distancia, ¿cuál es el nivel más bajo de intensidad sonora que es capaz de medir?

*Dato: Intensidad umbral de audición, I*₀ = 10^{-12} W m⁻².

Solución:

a) En primer lugar, calculamos la potencia del sonido para una conversación normal:

$$\beta = 10 \log \frac{I}{I_0} \Rightarrow \frac{I}{I_0} = 10^{\frac{\beta}{10}} \Rightarrow I = I_0 10^{\frac{\beta}{10}} = 10^{-12} \cdot 10^{\frac{50}{10}} = 10^{-7} \text{ Wm}^{-2}$$

Luego:

$$I = \frac{P}{S} = \frac{P}{4\pi r^2} \Rightarrow P = 4\pi r^2 I \Rightarrow P = 4\pi \cdot 1^2 \cdot 10^{-7} = 4\pi \cdot 10^{-7} \text{ W}$$

La intensidad correspondiente a una conversación a 5 m será:

$$I' = \frac{P}{4\pi r^2} = \frac{4\pi \cdot 10^{-7}}{4\pi 5^2} = \frac{10^{-7}}{25} \text{ Wm}^{-2}$$

La intensidad real que llega al teléfono inteligente es:

$$I_{\rm R} = 0.02 \cdot \frac{10^{-7}}{25} = \frac{2}{25} \cdot 10^{-9} \text{ Wm}^{-2}$$

El nivel de intensidad sonora que llega al teléfono es:

$$\beta = 10 \log \frac{I}{I_0} = 10 \log \left(\frac{\frac{2}{25} \cdot 10^{-9}}{1,0 \cdot 10^{-12}} \right) = 19,03 \text{ dB}$$

$$\Rightarrow \overline{\beta} = 19,03 \text{ dB}$$

b) El teléfono es capaz de grabar conversaciones a 100 m. Determinamos la intensidad que llegaría a esa distancia proveniente de una conversación:

$$I = \frac{P}{4\pi r^2} = \frac{4\pi \cdot 10^{-7}}{4\pi 100^2} = 10^{-11} \text{ Wm}^{-2}$$

El nivel de intensidad sonora que llega al teléfono es:

$$\beta = 10 \log \frac{I}{I_0} = 10 \log \left(\frac{10^{-11}}{1,0.10^{-12}} \right) = 10 \text{ dB}$$

Luego el nivel de intensidad sonora más bajo que es capaz de medir es:

$$\beta = 10 \text{ dB}$$

Pregunta A.3.- Se tienen tres hilos indefinidos de corriente (ver figura). Los hilos de intensidades $I_1 = 2$ A e $I_2 = 2$ A son paralelos al eje x y pasan por los puntos (0, 0, 0) y (0, 0, 4) m, respectivamente. El tercer hilo, con una intensidad $I_3 = 3$ A pasa por el origen de coordenadas y es paralelo al eje y. En todos los casos la corriente va en el sentido positivo de los ejes. Calcule:

- a) El campo magnético total creado por los tres hilos en el punto (0, 0, 2) m.
- b) La fuerza magnética por unidad de longitud que ejerce el hilo de intensidad I_1 sobre el hilo de intensidad I_2 . ¿La fuerza es atractiva o repulsiva?

Dato: Permeabilidad magnética del vacío, $\mu_0 = 4\pi \cdot 10^{-7} \text{ N A}^{-2}$.

Solución:

a) El campo magnético creado por un hilo indefinido es:

$$\vec{B} = \frac{\mu_0 I}{2\pi r} \vec{u}_{\varphi}$$

Los campos magnéticos creados por cada uno de los hilos de corriente en el punto (0, 0, 2) m es:

$$\vec{B}_1 = -\frac{\mu_0 I_1}{2\pi r_1} \vec{j} = -\frac{4\pi \cdot 10^{-7} \cdot 2}{2\pi \cdot 2} \vec{j} = -2 \cdot 10^{-7} \vec{j} \text{ T}$$

$$\vec{B}_2 = \frac{\mu_0 I_2}{2\pi r_2} \vec{j} = \frac{4\pi \cdot 10^{-7} \cdot 2}{2\pi \cdot 2} \vec{j} = 2 \cdot 10^{-7} \vec{j} \text{ T}$$

$$\vec{B}_3 = \frac{\mu_0 I_3}{2\pi r_3} \vec{i} = \frac{4\pi \cdot 10^{-7} \cdot 3}{2\pi \cdot 2} \vec{i} = 3 \cdot 10^{-7} \vec{i} \text{ T}$$

Por tanto, el campo magnético total en el punto (0, 0, 2) m es

$$\vec{B} = \vec{B}_1 + \vec{B}_2 + \vec{B}_3 = -2.10^{-7} \,\vec{j} + 2.10^{-7} \,\vec{j} + 3.10^{-7} \,\vec{i} = 3.10^{-7} \,\vec{i} \, \text{T} \Rightarrow \boxed{\vec{B} = 3.10^{-7} \,\vec{i} \, \text{T}}$$

b) La fuerza magnética que ejerce el hilo conductor de intensidad I_1 sobre el conductor I_2 , es $\vec{F} = I_2 \vec{L}_2 \times \vec{B}_1$

Donde B_1 es el campo creado por el hilo de corriente I_1 en los puntos del hilo conductor I_2 : Luego:

$$\frac{\vec{F}}{L} = (2\vec{i}) \times \left(-\frac{4\pi \cdot 10^{-7} \cdot 2}{2\pi \cdot 4} \vec{j} \right) = -2,0 \cdot 10^{-7} (\vec{i} \times \vec{j}) = -2,0 \cdot 10^{-7} \vec{k} \text{ N m}^{-1} \Rightarrow \boxed{\frac{\vec{F}}{L} = -2,0 \cdot 10^{-7} \vec{k} \text{ N m}^{-1}}$$

La fuerza es atractiva.

Pregunta A.4.-. Sea un sistema óptico formado por dos lentes convergentes, una lente A de distancia focal $f_A^{'}$ y otra B, situada 80 cm a la derecha de A, de distancia focal $f_B^{'}$ = 30 cm. Un objeto de 5 cm de altura está situado 15 cm a la izquierda de la lente A.

- a) Si la imagen del objeto formada por el sistema de lentes aparece 75 cm a la derecha de la lente B, ¿cuánto vale la distancia focal de la lente A y el tamaño de la imagen formada por el sistema de lentes?
- b) ¿Dónde hay que situar el objeto a la izquierda de la lente A, para que el sistema de lentes forme la imagen en el infinito?

Solución:

a) Según los datos del problema, para la lente B, $s_B^{'}$ = 75 cm. La ecuación de las lentes delgadas para B es:

$$\frac{1}{s_{B}^{'}} - \frac{1}{s_{B}} = \frac{1}{f_{B}^{'}} \Rightarrow \frac{1}{75} - \frac{1}{s_{B}} = \frac{1}{30} \Rightarrow \frac{1}{s_{B}} = \frac{1}{75} - \frac{1}{30} = \frac{30 - 75}{75 \cdot 30} \Rightarrow s_{B} = \frac{75 \cdot 30}{30 - 75} = -50 \text{ cm}$$

Luego la imagen formada por la lente A está 50 cm a la izquierda de la lente B. Como ambas lentes están separadas 80 cm, entonces:

$$s_{4} = 80 - 50 = 30$$
 cm

Aplicando la ecuación de las lentes para la lente A:

$$\frac{1}{s_{A}'} - \frac{1}{s_{A}} = \frac{1}{f_{A}'} \Rightarrow \frac{1}{30} - \frac{1}{-15} = \frac{1}{30} + \frac{1}{15} = \frac{1}{f_{A}'} \Rightarrow \frac{1}{f_{A}'} = \frac{1+2}{30} \Rightarrow f_{A}' = \frac{30}{3} = 10 \text{ cm} \Rightarrow \boxed{f_{A}' = 10 \text{ cm}}$$

Determinamos el tamaño del objeto formado por el sistema de lentes. En primer lugar, el tamaño del objeto formado por la lente A será:

$$M_A = \frac{\dot{s_A}}{s_A} = \frac{\dot{y_A}}{v_A} \Rightarrow \dot{y_A} = \frac{\dot{y_A}\dot{s_A}}{s_A} = \frac{5.30}{-15} = -10 \text{ cm}$$

Para la lente B:

$$y_B' = \frac{y_B s_B'}{s_B} = \frac{-10.75}{-50} = 15 \text{ cm} \Rightarrow y_B' = 15 \text{ cm}$$

b) La imagen formada por el sistema de lentes aparece en el infinito si la imagen formada por la lente A se encuentra en el foco objeto de B. Esto significa que:

$$s_A' = 80 - 30 = 50$$
 cm

Por consiguiente:

$$\frac{1}{s_A'} - \frac{1}{s_A} = \frac{1}{f_A'}; \Rightarrow \frac{1}{50} - \frac{1}{s_A} = \frac{1}{10} \Rightarrow \frac{1}{s_A} = \frac{1}{50} - \frac{1}{10} = \frac{1-5}{50} \Rightarrow s_A = \frac{50}{-4} = -12,5 \text{ cm} \Rightarrow \boxed{s_A = -12,5 \text{ cm}}$$

Pregunta A.5.- En un experimento realizado en un acelerador de partículas se han originado un electrón relativista de velocidad 0,75c, siendo c la velocidad de la luz, y un fotón de 15 MeV de energía.

- a) Calcule la masa relativista y la energía cinética del electrón.
- b) Determine la longitud de onda del fotón y la longitud de de Broglie del electrón.

Datos: Valor absoluto de la carga del electrón, $e = 1,6\cdot10^{-19}$ C; Masa del electrón en reposo, $m_e = 9,1\cdot10^{-31}$ kg; Constante de Planck, $h = 6,63\cdot10^{-34}$ J s; Velocidad de la luz en el vacío, $c = 3\cdot10^8$ m s⁻¹.

Solución:

a) La masa relativista del electrón viene dada por la expresión:

$$m = \frac{m_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}} = \frac{9.1 \cdot 10^{-31}}{\sqrt{1 - \left(\frac{0.75c}{c}\right)^2}} = \frac{9.1 \cdot 10^{-31}}{\sqrt{1 - 0.75^2}} = 13.76 \cdot 10^{-31} \text{ kg} \Rightarrow \boxed{m = 1.38 \cdot 10^{-30} \text{ kg}}$$

La energía cinética del electrón es:

$$E_c = mc^2 - m_0c^2 = 13,76\cdot10^{-31} \cdot \left(3,0\cdot10^8\right)^2 - 9,1\cdot10^{-31} \cdot \left(3,0\cdot10^8\right)^2 = 41,92\cdot10^{-15} \text{ J}$$

$$\Rightarrow \boxed{E_c = 4,19\cdot10^{-14} \text{ J}}$$

b) Determinamos la longitud de onda del fotón. Se cumple:

$$E_f = \frac{hc}{\lambda_f} \Rightarrow \lambda_f = \frac{hc}{E} = \frac{6.63 \cdot 10^{-34} \cdot 3 \cdot 10^8}{15 \cdot 10^6 \cdot 1.6 \cdot 10^{-19}} = 0.829 \cdot 10^{-13} \text{ m} \Rightarrow \boxed{\lambda_f = 8.29 \cdot 10^{-14} \text{ m}}$$

Para el electrón debemos utilizar la ecuación de de Broglie:

$$\lambda_e = \frac{h}{mv} = \frac{6,63 \cdot 10^{-34}}{13,76 \cdot 10^{-31} \cdot 0,75 \cdot 3,0 \cdot 10^8} = 0,2142 \cdot 10^{-11} \text{ m} \Rightarrow \boxed{\lambda_e = 2,14 \cdot 10^{-12} \text{ m}}$$

Pregunta B.1.- Una partícula de masa m se encuentra en el origen de coordenadas de un sistema de referencia (x, y). La componente x del campo gravitatorio creado por la partícula en el punto (2, 2) m es $-1,18\cdot10^{-11}$ N kg⁻¹.

- a) Calcule el valor de la masa m.
- b) ¿Cuál es el trabajo que realiza el campo para llevar una partícula de masa M = 5 kg desde el punto (4, 0) m al punto (2, 2) m?

Dato: Constante de Gravitación Universal, $G = 6.67 \cdot 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$.

Solución:

a) El campo gravitatorio creado por la masa m es:

$$\vec{g} = -\frac{Gm}{r^2} \vec{u}_{r}$$

Según la figura, el vector está dirigido a lo largo de la diagonal del cuadrado de lado 2 m.

La componente x del campo gravitatorio es:

$$g_x = -\frac{Gm}{r^2}\cos\theta \Rightarrow m = -\frac{g_x r^2}{G\cos\theta} = -\frac{\left(-1,18\cdot10^{-11}\right)\cdot(2^2 + 2^2)}{6,67\cdot10^{-11}\cdot\cos(45)} = \frac{1,18\cdot8}{6,67}\left(\frac{2}{\sqrt{2}}\right) = 2,0015 \text{ kg}$$

$$\Rightarrow \boxed{m = 2 \text{ kg}}$$

b) El trabajo que realiza el campo es:

$$W = -\left[E_P(B) - E_P(A)\right] = -\left[MV(B) - MV(A)\right]$$

Donde B es el punto (2, 2) m y A es el punto (4, 0) m. El potencial gravitatorio creado por la masa m situada en el origen es:

$$V = -\frac{Gm}{r}$$

Para los puntos A y B

$$V(A) = -\frac{Gm}{r_A} = -\frac{6.67 \cdot 10^{-11} \cdot 2}{4} = -\frac{6.67 \cdot 10^{-11}}{2} \text{ J kg}^{-1}$$

$$V(B) = -\frac{Gm}{r_B} = -\frac{6,67 \cdot 10^{-11} \cdot 2}{\sqrt{2^2 + 2^2}} = -\frac{6,67 \cdot 10^{-11} \sqrt{2}}{2} \text{ J kg}^{-1}$$

Luego el trabajo será:

$$W = -5 \left[-\frac{6,67 \cdot 10^{-11} \sqrt{2}}{2} + \frac{6,67 \cdot 10^{-11}}{2} \right] = -5 \left[\frac{6,67 \cdot 10^{-11} (1 - \sqrt{2})}{2} \right] = 6,907 \cdot 10^{-11} \text{ J}$$

$$\Rightarrow W = 6,91 \cdot 10^{-11} \text{ J}$$

Pregunta B.2.- Una onda transversal se propaga en una cuerda situada a lo largo del eje x. La propagación de la onda es en el sentido positivo del eje x. La expresión matemática de la onda en los instantes t=0 s y t=2 s es $y(x,0)=0,1\cos(\pi-4\pi x)$ m e $y(x,2)=0,1\cos(11\pi-4\pi x)$ m, respectivamente, donde todas las magnitudes están expresadas en el SI de unidades. Calcule:

- a) La frecuencia angular y la expresión matemática de la onda.
- b) La velocidad de propagación de la onda y la aceleración máxima de oscilación de un punto de la cuerda.

Solución:

a) La expresión matemática de una onda transversal que se propaga en el eje x es:

$$y(x,t) = A\cos(\omega t - kx + \phi)$$

Según el enunciado del problema:

$$y(x,0) = 0.1\cos(\pi - 4\pi x) = A\cos(\omega \cdot 0 - kx + \phi)$$

$$y(x,2) = 0.1\cos(11\pi - 4\pi x) = A\cos(\omega \cdot 2 - kx + \phi)$$

Por tanto, se cumple que:

 $A = 0.1 \text{ m y } k = 4\pi \text{ rad m}^{-1}.$

Además, debe cumplirse:

$$\pi - 4\pi x = \omega \cdot 0 - kx + \phi = -kx + \phi$$

$$11\pi - 4\pi x = \omega \cdot 2 - kx + \phi = 2\omega - kx + \phi$$

Teniendo en cuenta que $k = 4\pi$ rad m⁻¹, se tienen las siguientes ecuaciones:

$$\pi - 4\pi x = -4\pi x + \phi \Longrightarrow \phi = \pi$$

$$11\pi - 4\pi x = 2\omega - kx + \phi = 2\omega - 4\pi x + \pi \Rightarrow 2\omega = 10\pi \Rightarrow \omega = \frac{10\pi}{2} = 5\pi \text{ rad s}^{-1} \Rightarrow \omega = 5\pi \text{ rad s}^{-1}$$

La expresión matemática de la onda es:

$$y(x,t) = 0.1\cos(5\pi t - 4\pi x + \pi) \text{ m}$$

b) La velocidad de propagación de la onda es:

$$v = \frac{\lambda}{T} = \frac{\left(\frac{2\pi}{k}\right)}{\left(\frac{2\pi}{\omega}\right)} = \frac{\omega}{k} = \frac{5\pi}{4\pi} = 1,25 \text{ m s}^{-1} \Rightarrow \boxed{v = 1,25 \text{ m s}^{-1}}$$

La aceleración máxima de un punto de la cuerda se obtiene si se tiene en cuenta que:

$$v(x,t) = \frac{dy(x,t)}{dt} = -A\omega sen(\omega t - kx + \phi) \Rightarrow a(x,t) = \frac{dv(x,t)}{dt} = -A\omega^2 \cos(\omega t - kx + \phi)$$

El valor máximo de la aceleración es:

$$a_{\text{max}} = A\omega^2 = 0.1(5\pi)^2 = 24,674011 \Rightarrow \boxed{a_{\text{max}} = 24,67 \text{ m s}^{-2}}$$

Pregunta B.3.- Un espectrómetro de masas es un dispositivo para medir la masa de los iones y cuyo esquema se muestra en la figura. Consta de un selector de velocidades, en el que, mediante un campo eléctrico y un campo magnético mutuamente perpendiculares, se seleccionan únicamente los iones que viajan en línea recta paralela al eje x de la figura y con un valor determinado de la velocidad. A continuación, los iones pasan a una segunda región con un campo magnético perpendicular a la velocidad de los iones, de forma que éstos realizan una trayectoria circular. En el experimento se usan iones positivos de oxígeno $^{18}\text{O}^+$ cuya masa es $2,7\cdot 10^{-26}\,\text{kg}$ y su carga es +e. En el selector de velocidades los campos eléctrico y magnético son $\vec{E}=4,0\cdot 10^5\,\vec{j}\,\text{V}$

m-1 y $\vec{B}_1=2~\vec{k}~$ T. El campo magnético en la segunda región del espectrómetro de masas es $\vec{B}_2=5~\vec{k}~$ T . Calcule:

- a) La velocidad de los iones de oxígeno que viajan en línea recta a lo largo del eje x en el selector de velocidades.
- b) El radio de la órbita circular descrita por los iones en la segunda región del espectrómetro de masas donde el campo magnético es *B*₂.

Dato: Valor absoluto de la carga de electrón, $e = 1,6 \cdot 10^{-19} \text{ C}$.

Solución:

 a) En el selector de velocidades, para que la carga se mueva en línea recta debe cumplirse que:

$$\vec{F}_e + \vec{F}_{mag} = 0 \Longrightarrow q\vec{E} + q\vec{v} \times \vec{B}_1 = 0 \Longrightarrow \left| \vec{E} \right| = \left| \vec{v} \times \vec{B}_1 \right|$$

Como \vec{v} y \vec{B}_1 son perpendiculares, sólo los iones cuya velocidad sea paralela al eje x saldrán del selector de velocidades. Por tanto:

$$|\vec{E}| = |\vec{v}| |\vec{B}_1| \Rightarrow |\vec{v}| = \frac{|\vec{E}|}{|\vec{B}_1|} = \frac{4.10^5}{2} = 2,0.10^5 \text{ m s}^{-1} \Rightarrow \boxed{v = 2,0.10^5 \text{ m s}^{-1}}$$

b) A la salida del selector de velocidades se cumple:

$$F_{mag} = |q|vB_2 = ma_n = m\frac{v^2}{r} \Rightarrow r = \frac{mv}{|q|B_2}$$

Para el ¹⁸O⁺, su masa es 2,7·10⁻²⁶ kg, luego el radio de la órbita será:

$$r = \frac{mv}{|q|B_2} = \frac{2,7.10^{-26} \cdot 2.10^5}{1,6.10^{-19} \cdot 5} = 0,675.10^{-2} \text{ m} \Rightarrow \boxed{r = 0,67 \text{ cm}}$$

Pregunta B.4.- Sean dos medios A y B de índices de refracción n_A y n_B , respectivamente. Un rayo de luz de frecuencia $6,04\cdot10^{14}$ Hz incide desde el medio A hacia el medio B, verificándose que el ángulo límite para la reflexión total es $45,58^{\circ}$. Sabiendo que n_A - n_B = 0,6, determine:

- a) Los índices de refracción n_A y n_B de ambos medios.
- b) Las longitudes de onda del rayo de luz incidente en los medios A y B.

Dato: Velocidad de la luz en el vacío, $c = 3.10^8$ m s⁻¹.

Solución:

a) Determinamos los índices de refracción de ambos medios. Como el ángulo límite para la reflexión total para un rayo que va de A hacia B es de 45,58°, se cumple, según la ley de Snell:

$$n_A \operatorname{sen} \theta_i = n_B \operatorname{sen} \theta_r \Rightarrow n_A \operatorname{sen} (45,58^\circ) = n_B \operatorname{sen} (90^\circ) = n_B \Rightarrow n_B = n_A \operatorname{sen} (45,58^\circ)$$

Por otro lado, sabemos que:

$$n_A - n_B = 0,6$$

Por consiguiente:

$$n_A - n_B = n_A - n_A \operatorname{sen}(45,58^\circ) = n_A \left[1 - \operatorname{sen}(45,58^\circ)\right] = 0,6$$

$$\Rightarrow n_A = \frac{0.6}{\left[1 - \sin\left(45.58^{\circ}\right)\right]} = 2.10 \Rightarrow \boxed{n_A = 2.10}$$

Luego:

$$n_B = n_A - 0, 6 = 2, 10 - 0, 6 = 1, 5 \Rightarrow \boxed{n_B = 1, 5}$$

b) Para calcular la longitud de onda del rayo de luz en ambos medios tenemos en cuenta las siguientes relaciones:

$$n_i = \frac{c}{V_i}; \ V_i = \lambda_i f \Rightarrow n_i = \frac{c}{\lambda_i f} \Rightarrow \lambda_i = \frac{c}{n_i f}$$

Donde, V_i y λ_i son la velocidad y la longitud de onda del rayo de luz en el medio i. La frecuencia es independiente del medio. Por tanto:

$$\lambda_A = \frac{c}{n_A f} = \frac{3.10^8}{2.1 \cdot (6.04 \cdot 10^{14})} = 236.518 \cdot 10^{-9} \text{ m} \Rightarrow \boxed{\lambda_A = 236.52 \text{ nm}}$$

$$\lambda_B = \frac{c}{n_B f} = \frac{3.10^8}{1,5(6.04.10^{14})} = 331,126.10^{-9} \text{ m} \Rightarrow \boxed{\lambda_B = 331,13 \text{ nm}}$$

Pregunta B.5.- El patrón del kilogramo es un cilindro hecho con una aleación de platino-iridio (90 % en masa de Pt) que se encuentra en un museo de París. El platino está formado por diversos isótopos, uno de ellos, el ¹⁹⁰Pt, es radiactivo siendo su tiempo de semidesintegración de 6,5·10¹¹ años. El porcentaje del isótopo ¹⁹⁰Pt en una muestra de platino es del 0,012 % en masa.

- a) Calcule la actividad inicial del patrón del kilogramo.
- b) ¿Cuál será la masa final del platino ¹⁹⁰Pt que queda en el patrón del kilogramo transcurridos mil millones de años?

Datos: Masa atómica del isótopo ¹⁹⁰Pt; M = 189,96 u; Número de Avogadro, $N_A = 6,02 \cdot 10^{23}$ mol⁻¹.

Solución:

a) La actividad inicial de una muestra radiactiva es:

$$A = \lambda N$$

 λ es la constante de desintegración y N el número de átomos. Calculamos la constante de desintegración y el número de isótopos radiactivos en el patrón del kilogramo.

$$m = m_0 e^{-\lambda t} \Rightarrow \frac{m_0}{2} = m_0 e^{-\lambda t_{1/2}} \Rightarrow \lambda = \frac{\ln 2}{t_{1/2}}$$

En el patrón del kilogramo hay 0,9 kg de Pt y 0,9x0,012·10⁻² kg del isótopo ¹⁹⁰Pt. Luego el número de átomos será:

$$N = moles \cdot N_A = \frac{m(g)}{P_M} N_A = \frac{0.9 \cdot 0.012 \cdot 10^{-2} \cdot 10^3}{189.96} (6.02 \cdot 10^{23}) = 3.42 \cdot 10^{20} \text{ isótopos}$$

Por consiguiente:

$$A = \frac{\ln 2(3,42\cdot10^{20})}{6,5\cdot10^{11}\cdot365\cdot24\cdot3600} = 11,573 \text{ Bq} \Rightarrow \boxed{A = 11,57 \text{ Bq}}$$

b) Calculamos la masa del platino ¹⁹⁰Pt que queda en el patrón del kilogramo transcurridos mil millones de años. La masa inicial correspondiente a los isótopos de ¹⁹⁰Pt es:

$$m_0 = 0,9.0,012.10^{-2} = 108.10^{-6} \text{ kg}$$

La masa del platino ¹⁹⁰Pt que queda en el patrón del kilogramo transcurridos mil millones de años será:

$$m = m_0 e^{-\lambda t} \Rightarrow m = 108 \cdot 10^{-6} e^{-\frac{\ln 2}{6.5 \cdot 10^{11}} \cdot 1.0 \cdot 10^9} = 108 \cdot 10^{-6} e^{-0.106638 \cdot 10^{-2}} = 107,885 \cdot 10^{-6} \text{ kg}$$
$$\Rightarrow \boxed{m = 1,07 \cdot 10^{-4} \text{ kg}}$$