Linear Representations of Finite Groups

Homework #4

Due on 2022 年 12 月 1 日

苏可铮 2012604

Problem 1

设 A 是结合代数, e 是 A 中的幂等元, V 是 A-模, $Hom_A(Ae,V)$ 是从 Ae 到 V 的模同态组成的线性 空间。证明: $Hom_A(Ae,V)$ 作为线性空间同构于 eV

Proof. 定义如下映射 σ :

$$\sigma: eV \to Hom_A(Ae, V)$$
$$x \mapsto \{a \mapsto ax\}$$

容易验证,上述 eV 到 $Hom_A(Ae,V)$ 的映射为双射,且显然满足:

$$\sigma(x+y) = \sigma(x) + \sigma(y)$$
$$\sigma(kx) = k\sigma(x)$$

即 σ 保持加法和数乘封闭, 综上可知 $Hom_A(Ae, V) \cong eV$

Problem 2

设p是素数,证明: p^2 阶群G是交换群

Proof. 首先证明如下引理:

Lemma 2.1 p-群的中心不是平凡群

Proof of Lemma 2.1 不妨设 $|G| = p^e, e \ge 1$,类方程右边每一项都整除 p^e ,所以也是一个 p 的正幂,即可以被 p 整除;若中心是平凡的,则单位元的类 C_1 是方程右边唯一一个 1,那么方程将写成 $p^e = 1 + \sum k_i p, \, k_i \in \mathbb{Z}$,矛盾! 故必有更多的 1 在右侧,即 p-群的中心是非平凡的。

设 G 为阶为 p^2 的群,则由 Lemma 2.1 知:它的中心 Z 不是平凡群,故 Z 的阶为 p 或 p^2

- 若 Z 的阶为 p,则取 $x \in G$, $x \notin Z$,中心化子 Z(x) 包含 x 以及 Z,故严格大于 Z; 又由 |Z(x)| = |G|,则知 $|Z(x)| = p^2$,故有 Z(x) = G,即 x 与 G 的每个元素都交换,故 $x \in Z(x)$,矛盾! 故 Z 的阶不为 p
- 若 Z 的阶为 p^2 , 同理可得 Z = G, 故 G 为 Abelian 群

综上, p^2 阶群 G 为 Abelian 群

Problem 3

设 $V = \mathbb{C}S_5e$ 是划分 5=4+1 对应的 S_5 的不可约表示,证明: V 等价于 S_5 的约减表示

Figure 1: Young table of S_5

由 Hook-length 公式:

$$dimS^{\lambda} = f^{\lambda} = \frac{n!}{\prod_{u \in \lambda} h_{\lambda}(u)} = \frac{5!}{5 \cdot 3 \cdot 2} = 4$$

且对应置换群 S_5 的特征标表:

g_i	(1)	(12)	(123)	(12)(34)	(1234)	(12)(345)	(12345)
$ C_G(g_i) $	1	10	20	15	30	20	24
χ_1	1	1	1	1	1	1	1
χ_2	1	-1	1	1	-1	-1	1
χ_3	4	2	1	0	0	-1	-1
χ_4	4	-2	1	0	0	1	-1
χ_5	5	-1	-1	1	1	-1	0
χ_6	5	1	-1	1	-1	1	0
χ_7	6	0	0	2	0	0	1

可知上述对 S_5 的分划 5=(4,1) 为 4 维不可约表示,则为 S_5 的约减表示