

ISO/IEC17025Accredited Lab.

Report No: FCC 07011090 File reference No: 2007-12-04

Applicant: BLUEACTION COMMUNICATIONS CO., LTD

Product: BLUETOOTH HANDSFREE CAR KIT

Model No: BAC-200D

Trademark: N/A

Test Standards: FCC Part 15 Subpart C, Paragraph 15.247

Test result:

It is herewith confirmed and found to comply with the

requirements set up by ANSI C63.4&FCC Part 15 Subpart C, Paragraph 15.247 regulations for the evaluation of

electromagnetic compatibility

Approved By

Jack Chung

Jack Chung Manager

Dated: Dec 04,2007

Results appearing herein relate only to the sample tested The technical reports is issued errors and omissions exempt and is subject to withdrawal at

SHENZHEN TIMEWAY TECHNOLOGY CONSULTING CO LTD

5/F,Block 4, Anhua Industrial Zone.,No.8 TaiRan Rd.CheGongMiao,FuTian District, Shenzhen,CHINA.

Tel (755) 83448688 Fax (755) 83442996

Report No: 07011090 Page 2 of 65

Date: 2007-12-04

Special Statement:

The testing quality ability of our laboratory meet with "Quality Law of People's Republic of China" Clause 19.

The testing quality system of our laboratory meets with ISO/IEC-17025 requirements, which is approved by CNAS. This approval result is accepted by MRA of APLAC.

Our test facility is recognized, certified, or accredited by the following organizations:

CNAS-LAB Code: L2292

The EMC Laboratory has been assessed and in compliance with CNAS-CL01 accreditation criteria for testing Laboratories (identical to ISO/IEC 17025:1999 General Requirements) for the Competence of testing Laboratories.

FCC-Registration No.: 899988

The EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications commission. The acceptance letter from the FCC is maintained in our files. Registration No.:899988.

IC- Registration No.: IC5205A-01

The EMC Laboratory has been registered and fully described in a report filed with the (IC) Industry Canada. The acceptance letter from the IC is maintained in our files. Registration No.: IC 5205A-01.

Report No: 07011090 Date: 2007-12-04

Test Report Conclusion Content

1.0	General Details	3
1.1	Test Lab Details	3
1.2	Applicant Details	3
1.3	Description of EUT	3
1.4	Submitted Sample	3
1.5	Test Duration.	4
1.6	Test Uncertainty.	4
1.7	Test By	4
2.0	List of Measurement Equipment.	4
3.0	Technical Details	7
3.1	Summary of Test Results	7
3.2	Test Standards.	7
4.0	EUT Modification.	7
5.0	Power Line Conducted Emission Test.	8
5.1	Schematics of the Test.	8
5.2	Test Method and Test Procedure.	8
5.3	Configuration of the EUT	8
5.4	EUT Operating Condition.	9
5.5	Conducted Emission Limit.	9
5.6	Test Result.	9
6.0	Radiated Emission test.	12
5.1	Test Method and Test Procedure.	12
6.2	Configuration of the EUT	12
5.3	EUT Operation Condition.	12
5.4	Radiated Emission Limit.	13
7.0	20dB Bandwidth Measurement.	30
8.0	Maximum Peak Output Power	34
9.0	Power Spectral Density Measurement.	36
10.0	Carrier Frequency Separation.	40
11.0	Number of Hopping Channel.	42
12.0	Time of Occupancy (Dwell Time)	45
13.0	Out of Band Measurement.	50
14.0	Antenna Requirement.	55
15.0	RF Exposure.	56
16.0	FCC ID Label.	57
17.0	Photo of Test Setup and EUT View.	58

Report No: 07011090 Page 4 of 65

Date: 2007-12-04

1.0 General Details

1.1 Test Lab Details

Name: SHENZHEN TIMEWAY TECHNOLOGY CONSULTING CO LTD

Address: 5/F,Block 4, Anhua Industrial Zone.,No.8 TaiRan Rd.CheGongMiao,FuTian District,

Shenzhen, CHINA.

Telephone: (755) 83448688 Fax: (755) 83442996

Site on File with the Federal Communications Commission – United Sates

Registration Number: 899988

For 3m & 10 m OATS

Site Listed with Industry Canada of Ottawa, Canada

Registration Number: IC: 5205

For 3m & 10 m OATS

1.2 Applicant Details

Applicant: BLUEACTION COMMUNICATIONS CO., LTD

Address: RM1801A, 18/F, SAIGEPLAZA, HUAQIANGNORTHRD., FUTIAN DISTRICT, PC518031,

HENZHEN GUANGDONG PROVINCE P.R. CHINA

Telephone: 86-755-83688018 Fax: 86-755-83682098

1.3 Description of EUT

Product: BLUETOOTH HANDSFREE CAR KIT

Manufacturer: BLUEACTION COMMUNICATIONS CO., LTD

Brand Name: BLUEACTION
Model Number: BAC-200D
Additional Model Name BAC-300D

Additional Trade Name N/A

Rating: Input: DC 5V; 500mA

Type of Modulation FHSS

Frequency range 2402-2480MHz

Number of Channel 79

Frequency Selection By software

Antenna type chip dielectric antenna, the antenna gain is 2.3dBi

1.4 Submitted Sample: 2 Sample

1.5 Test Duration

2007-11-19 to 2007-12-04

1.6 Test Uncertainty

Conducted Emissions Uncertainty = ± 2.4 dB Radiated Emissions Uncertainty = ± 6.0 dB

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen Timeway Technology Consulting Co.,Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the Shenzhen Timeway Technology Consulting co.,Ltd to his customer. Supplier or others persons directly concerned. Shenzhen Timeway Technology Consulting co.,Ltd will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The Shenzhen Timeway Technology Consulting co.,Ltd reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

Page 5 of 65

Report No: 07011090 Date: 2007-12-04

1.7 Test Engineer

The sample tested by

Print Name: Terry Tang

2.0	Test Equipments							
Instrument Type	Manufacturer	Model	Serial No.	Date of Cal.	Due Date			
ESPI Test Receiver	ROHDE&SCHWARZ	ESPI 3	100379	2006-12-06	2007-12-05			
Absorbing Clamp	ROHDE&SCHWARZ	MDS-21	100126	2006-12-06	2007-12-05			
TWO Line-V-NETW	ROHDE&SCHWARZ	EZH3-Z5	100294	2006-12-06	2007-12-05			
TWO Line-V-NETW	ROHDE&SCHWARZ	EZH3-Z5	100253	2006-12-06	2007-12-05			
Ultra Broadband ANT	ROHDE&SCHWARZ	HL562	100157	2006-12-06	2007-12-05			
ESDV Test Receiver	ROHDE&SCHWARZ	ESDV	100008	2007-03-30	2008-03-29			
4-WIRE ISN	ROHDE&SCHWARZ	ENY 41	830663/044	2007-02-19	2008-02-18			
GG ENY22 Double 2-Wire ISN	ROHDE&SCHWARZ	ENY22	83066/016	2007-02-19	2008-02-18			
Impuls-Begrenzer	ROHDE&SCHWARZ	ESH3-Z2	100281	2007-02-19	2008-02-18			
System Controller	CT	SC100	-	2007-02-19	2008-02-18			
Printer	EPSON	РНОТО ЕХЗ	CFNH234850	2007-02-19	2008-02-18			
FM-AM Signal Generator	JUNGJIN	SG-150M	389911177	2007-02-19	2008-02-18			
Color TV Pattern Generator	PHILIPS	PM5418	LO621747	2007-02-19	2008-02-18			
Computer	IBM	8434	1S8434KCE99BLX LO*	-	-			
Oscillator	KENWOOD	AG-203D	3070002	2007-02-23	2008-02-22			
Spectrum Analyzer	HAMEG	HM5012	-	-	-			
Power Supply	LW	APS1502	-	-	-			

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen Timeway Technology Consulting Co.,Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the Shenzhen Timeway Technology Consulting co .,Ltd to his customer. Supplier or others persons directly concerned. Shenzhen Timeway Technology Consulting co., Ltd will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The Shenzhen Timeway Technology Consulting co .,Ltd reserves the rights to withdraw it and to

Page 6 of 65

Report No: 07011090 Date: 2007-12-04

		13	<>//		
5K VA AC Power Source	California Instruments	5001iX	56060	2007-02-19	2008-02-18
CDN	EM TEST	CDN M2/M3	-	2007-02-19	2008-02-18
Attenuation	EM TEST	ATT6/75	-	2007-02-19	2008-02-18
Resistance	EM TEST	R100	-	2007-02-19	2008-02-18
Electromagnetic Injection Clamp	LITTHI	EM101	35708	2007-02-19	2008-02-18
Inductive Components	EM TEST	MC2630	-	2007-02-19	2008-02-18
Antenna	EM TEST	MS100	-	2007-02-19	2008-02-18
Signal Generator	ROHDE&SCHWARZ	SMT03	100029	2007-02-05	2008-02-04
Power Amplifier	AR	150W1000	300999	2007-02-05	2008-02-04
Field probe	Holaday	HI-6005	105152	2007-02-05	2008-02-04
Bilog Antenna	Chase	CBL6111C	2576	2007-02-05	2008-02-04
Loop Antenna	EMCO	6502	00042960	2007-02-05	2008-02-04
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170265	2007-08-16	2008-08-15
ESPI Test Receiver	ROHDE&SCHWARZ	ESI26	838786/013	2007-02-05	2008-02-04
3m OATS			N/A	2007-02-05	2008-02-04
Horn Antenna	SCHWARZBECK	BBHA 9120 D	9120D-631	2007-07-03	2008-07-02
Spectrum Analyzer	ROHDE&SCHWARZ	FSEM	8485971001	2007-06-05	2008-06-04

Page 7 of 65

Report No: 07011090 Date: 2007-12-04

3.0 Technical Details

3.1 Summary of test results

The EUT has been tested according to the following specifications:

Requirement	CFR 47 Section	Result	Notes
Antenna Requirement	15.203, 15.247(b)(4)	PASS	Complies
Maximum Peak Out Power	15.247 (b)(1), (4)	PASS	Complies
Carrier Frequency Separation	15.247(a)(1)	PASS	Complies
20dB Channel Bandwidth	15.247 (a)(1)	PASS	Complies
Number of Hopping Channels	15.247(a)(iii), 15.247(b)(1)	PASS	Complies
Time of Occupancy (Dwell Time)	15.247(a)(iii)	PASS	Complies
Spurious Emission, Band Edge, and	15.247(d),15.205(a),	PASS	Complies
Restricted bands	15.209 (a)		
Peak Power Spectral Density	15.247(e)	PASS	Complies
Conducted Emissions	15.207(a)	PASS	Complies
RF Exposure	15.247(i), 1.1307(b)(1)	PASS	Complies

3.2 Test Standards

FCC Part 15 Subpart & Subpart C, Paragraph 15.247

4.0 EUT Modification

No modification by Shenzhen Timeway Technology Consulting Co.,Ltd

Report No: 07011090 Date: 2007-12-04

5.

5.1 Schematics of the test

EUT: Equipment Under Test

5.2 Test Method and test Procedure

The EUT was tested according to ANSI C63.4-2003. The Frequency spectrum From 0.15MHz to 30MHz was investigated. The LISN used was 50ohm/50uH as specified by section 5.1 of ANSI C63.4 -2003.

Block diagram of Test setup

5.3 Configuration of The EUT

The EUT was configured according to ANSI C63.4-2003. All interface ports were connected to the appropriate peripherals. All peripherals and cables are listed below.

79 channels are provided to the EUT

Page 9 of 65

Report No: 07011090 Date: 2007-12-04

A. EUT

Device	Manufacturer	Model	FCC ID
Bluetooth	BLUEACTION	BAC-200D	VTWBAC-200
Handsfree Car	COMMUNICATIONS CO., LTD		
Kit			

B. Internal Device

Device	Manufacturer	Model	FCC ID/DOC
N/A			

C. Peripherals

Device	Manufacturer	Model	FCC ID/DOC	Cable
N/A				

5.4 EUT Operating Condition

Operating condition is according to ANSI C63.4 -2001.

- A Setup the EUT and simulators as shown on follow
- B Enable AF signal and confirm EUT active to normal condition

5.5 Power line conducted Emission Limit according to Paragraph 15.207

Frequency	Class A Lim	its (dB µ V)	Class B Limits (dB µ V)		
(MHz)	Quasi-peak Level	Average Level	Quasi-peak Level	Average Level	
$0.15 \sim 0.50$	79.0	66.0	66.0~56.0*	56.0~46.0*	
$0.50 \sim 5.00$	73.0	60.0	56.0	46.0	
5.00 ~ 30.00	73.0	60.0	60.0	50.0	

Notes:

- 1. *Decreasing linearly with logarithm of frequency.
- 2. The tighter limit shall apply at the transition frequencies

5.6 Test Results

The frequency spectrum from 0.15MHz to 30MHz was investigated. All reading are quasi-peak values with a resolution bandwidth of 9kHz.

Note: the worse cases was selected to conducted the test

The report refers only to the sample tested and does not apply to the bulk.

Report No: 07011090 Date: 2007-12-04

A Conducted Emission on Line Terminal of the power line (150kHz to 30MHz)

EUT set Condition: Charging

Results: Pass

Please refer to following diagram for individual

Date: 21.NOV.2007 11:07:30

Ero	Frequency		Reading	Limi	t		
		Line		Neutral		(dB µ V)	
	(MHz)	Quasi-peak	Average	Quasi-peak	Average	Quasi-peak	Average

Note: The test level is 10dB less than the Limit

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen Timeway Technology Consulting Co.,Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the Shenzhen Timeway Technology Consulting co.,Ltd to his customer. Supplier or others persons directly concerned. Shenzhen Timeway Technology Consulting co.,Ltd will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

30 MHz

Conducted Emission on Neutral Terminal of the power line (150kHz to 30MHz)

EUT set Condition: Charging

Results: Pass

Please refer to following diagram for individual

Date: 21.NOV.2007 11:06:20

150 kHz

Frequency	Reading(dB µ V)				Limi	t
(MHz)	Live		Neutral		(dB µ V)	
(WITIZ)	Quasi-peak	Average	Quasi-peak	Average	Quasi-peak	Average

Note: The test level is 10dB less than the Limit

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen Timeway Technology Consulting Co.,Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the Shenzhen Timeway Technology Consulting co.,Ltd to his customer. Supplier or others persons directly concerned. Shenzhen Timeway Technology Consulting co.,Ltd will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

Page 12 of 65

Report No: 07011090 Date: 2007-12-04

6 Radiated Emission Test

- 6.1 Test Method and test Procedure:
- (1) The EUT was tested according to ANSI C63.4 –2003. The radiated test was performed at Timeway Laboratory. This site is on file with the FCC laboratory division, Registration No.899988
- (2) The EUT, peripherals were put on the turntable which table size is 1m x 1.5 m, table high 0.8 m. All set up is according to ANSI C63.4-2003.
- (3) The frequency spectrum from 30 MHz to 1 GHz was investigated. All readings from 30 MHz to 1 GHz are quasi-peak values with a resolution bandwidth of 120 kHz. All readings are above 1 GHz, peak values with a resolution bandwidth of 1 MHz. Measurements were made at 3 meters.
- (4) The antenna high is varied from 1 m to 4 m high to find the maximum emission for each frequency.
- (5) Maximizing procedure was performed on the six (6) highest emissions to ensure EUT compliance is with all installation combinations. All data was recorded in the peak detection mode. Quasi-peak readings was performed only when an emission was found to be marginal (within -4 dB of specification limit), and are distinguished with a "QP" in the data table.
- (6) The antenna polarization: Vertical polarization and Horizontal polarization.

Block diagram of Test setup Distance = 3m Computer Pre -Amplifier Furn-table Receiver

- 6.2 Configuration of The EUT
 Same as section 5.3 of this report
- 6.3 EUT Operating Condition
 Same as section 5.4 of this report.

Report No: 07011090 Page 13 of 65

Date: 2007-12-04

6.4 Radiated Emission Limit

All emission from a digital device, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strength specified below:

Frequencies in restricted band are complied to limit on Paragraph 15.209.

Frequency Range (MHz)	Distance (m)	Field strength (dB µ V/m)
30-88	3	40.0
88-216	3	43.5
216-960	3	46.0
Above 960	3	54.0

Note:

- 1. RF Voltage (dBuV) = 20 log RF Voltage (uV)
- 2. In the Above Table, the higher limit applies at the band edges.
- 3. Distance refers to the distance in meters between the measuring instrument antenna and the EUT

Report No: 07011090 Page 14 of 65

Date: 2007-12-04

Test result

General Radiated Emission Data and Harmonics Radiated Emission Data

Radiated Emission In Horizontal (30MHz----1000MHz)

High Channel **EUT set Condition:**

Results: Pass

Frequency (MHz)	Level@3m (dB \u03b4 V/m)	Antenna Polarity	Limit@3m (dB \u03b4 V/m)
		V	
-		V	
		V	
	1	Н	1
		Н	

Report No: 07011090 Date: 2007-12-04

Test Figure: High Channel

Radiated Emission Measurement

Radiated Emission Measurement

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen Timeway Technology Consulting Co.,Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the Shenzhen Timeway Technology Consulting co.,Ltd to his customer. Supplier or others persons directly concerned. Shenzhen Timeway Technology Consulting co.,Ltd will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The Shenzhen Timeway Technology Consulting co .,Ltd reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

Report No: 07011090 Page 16 of 65

Date: 2007-12-04

Results: Pass

Frequency (MHz)	Level@3m (dB \u03b4 V/m)	Antenna Polarity	Limit@3m (dB \u03b4 V/m)	
		Н		
		Н		
		V		
		V		
		V		
		V		

Report No: 07011090 Date: 2007-12-04 H DEVICE OF THE PROPERTY OF TH

Test Figure: Middle Channel

Radiated Emission Measurement

Radiated Emission Measurement

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen Timeway Technology Consulting Co.,Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the Shenzhen Timeway Technology Consulting co.,Ltd to his customer. Supplier or others persons directly concerned. Shenzhen Timeway Technology Consulting co.,Ltd will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The Shenzhen Timeway Technology Consulting co .,Ltd reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

Report No: 07011090 Page 18 of 65

Date: 2007-12-04

Results: Pass

Frequency (MHz)	Level@3m (dB \u03b4 V/m)	Antenna Polarity	Limit@3m (dB \u03b4 V/m)	
		Н		
		Н		
		V		
		V		
		V		
		V		

Report No: 07011090 Date: 2007-12-04

Test Figure: Low Channel

Radiated Emission Measurement

Radiated Emission Measurement

Note: 1. Emission level $(dB\mu V/m)$ = Antenna Factor (dB/m) + Cable loss (dB) + Meter Reading $(dB\mu V)$.

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen Timeway Technology Consulting Co.,Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the Shenzhen Timeway Technology Consulting co.,Ltd to his customer. Supplier or others persons directly concerned. Shenzhen Timeway Technology Consulting co.,Ltd will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The Shenzhen Timeway Technology Consulting co .,Ltd reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

Report No: 07011090 Page 20 of 65

Operation Mode: Transmitting under Low Channel (2402MHz)

Date: 2007-12-04

Operation vious. Iransmitting under 50% Charact (240211112)							
Frequency (MHz)	Level@3m (dB \u03b4 V/m)	Antenna Polarity	Limit@3m (dB \(\mu \)V/m)				
2402.014	80.3 (PK) /72.0 (AV)	V	Fundamental Frequency				
2402.014	77.6 (PK) /69.3 (AV)	Н	Fundamental Frequency				
4804		H/V	74(Peak)/ 54(AV)				
7206		H/V	74(Peak)/ 54(AV)				
9608		H/V	74(Peak)/ 54(AV)				
12010		H/V	74(Peak)/ 54(AV)				
14412		H/V	74(Peak)/ 54(AV)				
16814		H/V	74(Peak)/ 54(AV)				
19216		H/V	74(Peak)/ 54(AV)				
21618		H/V	74(Peak)/ 54(AV)				
24020		H/V	74(Peak)/ 54(AV)				

Note: 1. Level = Reading + AF + Cable - Preamp + Filter - Dist, Margin = Level - Limit

2. Remark "---" means that the emissions level is too low to be measured

Operation Mode: Transmitting g under Middle Channel (2441MHz)

Frequency (MHz)	Level@3m (dB \u03b4 V/m)	Antenna Polarity	Limit@3m (dB \(\mu \) V/m)	
2441.032	80.1 (PK) /70.0 (AV)	Н	Fundamental Frequency	
2441.032	82.4 (PK) /74.7 (AV)	V	Fundamental Frequency	
4882.054		H/V	74(Peak)/ 54(AV)	
7323		H/V	74(Peak)/ 54(AV)	
9764		H/V	74(Peak)/ 54(AV)	
12205		H/V	74(Peak)/ 54(AV)	
14646		H/V	74(Peak)/ 54(AV)	
17087		H/V	74(Peak)/ 54(AV)	
19528		H/V	74(Peak)/ 54(AV)	
21969		H/V	74(Peak)/ 54(AV)	
24410		H/V	74(Peak)/ 54(AV)	

Note: 1. Level = Reading + AF + Cable - Preamp + Filter - Dist, Margin = Level - Limit

2. Remark "---" means that the emissions level is too low to be measured

Report No: 07011090 Page 21 of 65

Date: 2007-12-04

Operation Mode: Transmitting under High Channel						
Frequency (MHz)	Level@3m (dB \u03b4 V/m)	Antenna Polarity	Limit@3m (dB \u03b4 V/m)			
2480.030	81.6 (PK) /74.5 (AV)	Н	Fundamental Frequency			
2480.030	85.2 (PK) /77.5 (AV)	V	Fundamental Frequency			
4960.011		H/V	74(Peak)/ 54(AV)			
7440		H/V	74(Peak)/ 54(AV)			
9920		H/V	74(Peak)/ 54(AV)			
12400		H/V	74(Peak)/ 54(AV)			
14880		H/V	74(Peak)/ 54(AV)			
17360		H/V	74(Peak)/ 54(AV)			
19840		H/V	74(Peak)/ 54(AV)			
22320		H/V	74(Peak)/ 54(AV)			
24800		H/V	74(Peak)/ 54(AV)			

Note: 1. Level = Reading + AF + Cable - Preamp + Filter - Dist, Margin = Level - Limit

^{2.} Remark "---" means that the emissions level is too low to be measured

Report No: 07011090 Date: 2007-12-04

Please refer to the following test plots for details

Low Channel: Horizontal

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen Timeway Technology Consulting Co.,Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the Shenzhen Timeway Technology Consulting co.,Ltd to his customer. Supplier or others persons directly concerned. Shenzhen Timeway Technology Consulting co.,Ltd will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

Page 23 of 65

Report No: 07011090 Date: 2007-12-04

Low Channel: Vertical

Page 24 of 65

Report No: 07011090 Date: 2007-12-04

Middle Channel: Horizontal

Page 25 of 65

Report No: 07011090 Date: 2007-12-04

Middle Channel :: Vertical

Page 26 of 65

Report No: 07011090 Date: 2007-12-04

High Channel: Horizontal

Page 27 of 65

Report No: 07011090 Date: 2007-12-04

High Channel: Vertical

Page 28 of 65

Report No: 07011090 Date: 2007-12-04

18G-25G Horizontal

Page 29 of 65

Report No: 07011090 Date: 2007-12-04

18G-25G Vertical

Report No: 07011090 Page 30 of 65

Date: 2007-12-04

7.0 20dB Bandwidth Measurement

7.1 Regulation

According to §15.247(b)(1), for frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts. According to §15.247(b)(4), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

7.2 Limits of 20dB Bandwidth Measurement

The minimum of 20dB Bandwidth Measurement is <1MHz

7.3 Test Procedure.

- 1. Check the calibration of the measuring instrument (spectrum analyzer) using either an internal calibrator or a known signal from an external generator.
- 2. Set the spectrum analyzer as follows: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold
- 3. Measure the highest amplitude appearing on spectral display and record the level to calculate results. 6. Repeat above procedures until all frequencies measured were complete.

7.4 Test Result

EU'	Γ	BLUETOOTH HANDSFREE Model		lel	BAC-2	00D				
		C	AT KIT							
Mod	le	Keep	Transmitting Input Voltage DC:		Transmitting Input Voltage DC		Input Voltage		DC 5V	
Temper	ature	24	4 deg. C, Humidity 56% F		24 deg. C, Humidity 56% RH		Humidity		RH	
Channel		el Frequency (MHz)	20 dB Bandw (kHz)			Maximum Limit (kHz)				
Low		2402	861		<1000		Pass			
Middle		2441	845		<1000		Pass			
High		2480	853		<	<1000	Pass			

Page 31 of 65

Report No: 07011090 Date: 2007-12-04

Test Figure:

1. Condition: Low Channel

Date: 19.NOV.2007 17:31:51

Page 32 of 65

Report No: 07011090 Date: 2007-12-04

2. Condition: Middle Channel

Date: 19.NOV.2007 17:30:12

Page 33 of 65

Report No: 07011090 Date: 2007-12-04

3. High Channel

Date: 19.NOV.2007 17:35:04

Report No: 07011090 Page 34 of 65

Date: 2007-12-04

8. Maximum Peak Output Power

8.1 Regulation

According to §15.247(b)(1), for frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5MHz band:0.125 watts. According to §15.247(b)(4), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

8.2 Limits of Maximum Peak Output Power

The Maximum Peak Output Power Measurement is 30dBm.

8.3 Test Procedure

- 1. Check the calibration of the measuring instrument (spectrum analyzer) using either an internal calibrator or a known signal from an external generator.
- 2. Set the spectrum analyzer as follows: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel; RBW > the 20 dB bandwidth of the emission being measured; VBW \geq RBW; Sweep = auto; Detector function = peak; Trace = max hold
- 3. Measure the highest amplitude appearing on spectral display and record the level to calculate results.
- 4. Repeat above procedures until all frequencies measured were complete.

Page 35 of 65

Report No: 07011090 Date: 2007-12-04

8.4Test Results

EUT		BLUETOOTH I		Model		BA	.C-200D
		CAT I	XII .				
Mode	Keeping Transmitting Input Voltage		Keeping Transmitting Input Voltage		DC5V		
Temperature	e	24 deg. C, Humidity		lity 56% RH		6% RH	
Channel	Ch	nannel Frequency Peak Power Output (MHz) (dBm)		Peak P Lin (dB:	nit	Pass/ Fail	
Low		2402	-11.67		30		Pass
Middle		2441 -11.52		30)	Pass
High		2480 -11.44		30		Pass	

Note: 1. the result basic equation calculation as follow:

Peak Power Output = Peak Power Reading + Cable loss + Attenuator

Report No: 07011090 Page 36 of 65

Date: 2007-12-04

9. Power Spectral Density Measurement

9.1 Regulation

According to §15.247(e), for digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

9.2 Limits of Power Spectral Density Measurement

The Maximum Power Spectral Density Measurement is 8dBm.

9.3 Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Set the spectrum analyzer to MAX HOLD mode with RBW = 3 kHz.
- 3. Measure the highest amplitude appearing on spectral display and record the level to calculate results.
- 4. Repeat above procedures until all frequencies measured were complete.

9.4Test Result

EUT		BLUETOOTH HANDSFREE Mo		odel	BA	C-200D	
	CAT KIT						
Mode	Keeping Transmitting Input Voltage		put Voltage		DC5V		
Temperature	e	24 deg	g. C,	Humidi	dity 56% RI		5% RH
Channel	Ch	annel Frequency (MHz)	Final RF Po Level in 3kH (dBm)		Maximum Limit (dBm)		Pass/ Fail
Low		2402	-16.40		8		Pass
Middle		2441	-16.80	8			Pass
High		2480	-16.26	8		8	

Date: 2007-12-04

9.5Photo of Power Spectral Density Measurement

1.Low Channel

Date: 19.NOV.2007 17:43:04

Page 38 of 65

Report No: 07011090 Date: 2007-12-04

2. Middle Channel

Date: 19.NOV.2007 17:40:21

Page 39 of 65

Report No: 07011090 Date: 2007-12-04

3. High Channel

Date: 19.NOV.2007 17:45:10

Report No: 07011090 Page 40 of 65

Date: 2007-12-04

10. Carrier Frequency Separation

10.1 Regulation

According to §15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

10.2 Limits of Carrier Frequency Separation

The Maximum Power Spectral Density Measurement is 25kHz or two-thirds of the 20dB bandwidth of the hopping Channel which is great.

10.3 Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Set the spectrum analyzer as follows: Span = wide enough to capture the peaks of two adjacent channels: Resolution (or IF) Bandwidth (RBW) \geq 1% of the span; Video (or Average) Bandwidth (VBW) \geq RBW; Sweep = auto; Detector function = peak; Trace = max hold
- 3. Measure the separation between the peaks of the adjacent channels using the marker-delta function.
- 4. Repeat above procedures until all frequencies measured were complete.

10.4Test Result

EUT		BLUETOOTH I	HANDSFREE	Model		BAC-200D	
		CAT I	KIT				
Mode		Keeping Transmitting		Input Voltage		DC5V	
Temperature		24 deg. C,		Humidity		56% RH	
Channel	Cha	annel Frequency (MHz)	Carrier Frequency Separation		Limit		Pass/ Fail
Middle		2441	0.992MHz		≥ 25 kHz or 20 dB bandwidth		Pass

Page 41 of 65

Report No: 07011090 Date: 2007-12-04

Test Plots

Middle Channel

Date: 19.NOV.2007 18:04:30

Report No: 07011090 Page 42 of 65

Date: 2007-12-04

11. Number of Hopping Channels

11.1 Regulation

According to §15.247(a)(1)(iii), frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used. According to §15.247(b)(1), for frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

11.2 Limits of Number of Hopping Channels

The frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

11.3 Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Set the spectrum analyzer as follows: Span = the frequency band of operation; RBW \geq 1% of the span; VBW \geq RBW; Sweep = auto; Detector function = peak; Trace = max hold
- 3. Record the number of hopping channels.

11.4Test Result

EUT	BLUETOOTH HANDSFREE			Model		.C-200D
		CAT KIT				
Mode	K	Leeping Transmitting	Input Voltage		DC5V	
Temperature		24 deg. C,	Humidity		56% RH	
Operating Frequency		Number of hopping cha	nnels	Lin	nit	Pass/ Fail
2402-2480MHz		79		≥ 15		Pass

Page 43 of 65

Report No: 07011090 Date: 2007-12-04

Test Plot

Page 44 of 65

Report No: 07011090 Date: 2007-12-04

Date: 19.NOV.2007 18:11:50

Report No: 07011090 Page 45 of 65

Date: 2007-12-04

12. Time of Occupancy (Dewell Time)

12.1 Regulation

According to §15.247(a)(1)(iii), frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

12.2 Limits of Carrier Frequency Separation

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed

12.3 Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Set the spectrum analyzer as follows: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW \geq RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold
- 3. Measure the dwell time using the marker-delta function.
- 4. Repeat above procedures until all frequencies measured were complete.
- 5. Repeat this test for different modes of operation (e.g., data rate, modulation format, etc.), if applicable.

Report No: 07011090 Page 46 of 65

Date: 2007-12-04

12.4Test Result

EUT BL		BLUETOOTH HANDSFREE		Model		BAC-200D	
		CAT KIT					
Mode		Keeping Transmitting		Input Voltage		DC5V	
Temperature		24 deg. C,		Humidity		56% RH	
Channel		Reading	Hoping Rate		Acti	ual	Limit
Low		2.9058	266.667 hop/s		0.3	1	0.4s
Middle		2.9058	266.667 hop/s		0.31		0.4s
High		2.9058	266.667 hop/s		0.31		0.4s

Actual = Reading \times (Hopping rate / Number of channels) \times Test period Test period = 0.4 [seconds / channel] \times 79 [channel] = 31.6 [seconds] NOTE: The EUT makes worst case 1600 hops per second or 1 time slot has a length of 625 μ s with 79 channels. A DH1 Packet needs 5 time slot for transmitting and 1 time slot for receiving. Then the EUT makes worst case 266.667 hops per second with 79 channels.

Page 47 of 65

Report No: 07011090 Date: 2007-12-04

Test Plots: Low Channel:

Date: 19.NOV.2007 19:06:37

Page 48 of 65

Report No: 07011090 Date: 2007-12-04

Middle Channel:

Date: 19.NOV.2007 19:04:31

Page 49 of 65

Report No: 07011090 Date: 2007-12-04

High Channel

Date: 19.NOV.2007 19:02:26 Report No: 07011090

Date: 2007-12-04

Page 50 of 65

13 Out of Band Measurement

10.1 Test Setup

The same as 6.1

13.2 Limits of Out of Band Emissions Measurement

- 1. Below –20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).
- 2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

13.3 Test Procedure

For signals in the restricted bands above and below the 2.4-2.483GHz allocated band a measurement was made of the amplitude of the spurious emissions with respect to the intentional signals. The relative amplitude, in dBc, was applied to the average and peak filed strength of the intentional signal made on the OATS to calculate the field strength of the unintentional signals.

The spectrum plots (Peak RBW=VBW=100kHz; Average RBW=1MHz, VBW=10Hz) are attached on the following pages.

Report No: 07011090 Page 51 of 65

Date: 2007-12-04

13.4 Out of Band Test Result

Product:	Bluetooth Ha	ndsfree Car Kit	Test Mode:	Low Channel
Mode	Keeping	Γransmitting	Input Voltage	DC5V
Temperature	24 deg. C,		Humidity	56% RH
Test Result:	Pass		Detector	PK
The Max. FS in	PK (dB µ V/m)	33.13	- Limit	74(dB µ V/m)
Restrict Band	AV(dB μ V/m)	24.05		54(dB μ V/m)

Test Figure: Vertical

Date: 03.DEC.2007 19:27:14

Note: 1. FS= Field Strength

2. Band-edge measurement are made in the conventional manner

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen Timeway Technology Consulting Co.,Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the Shenzhen Timeway Technology Consulting co.,Ltd to his customer. Supplier or others persons directly concerned. Shenzhen Timeway Technology Consulting co.,Ltd will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

Report No: 07011090 Page 52 of 65

Date: 2007-12-04

13.4 Out of Band Test Result

Product:	Bluetooth Ha	ndsfree Car Kit	Test Mode:	Low Channel
Mode	Keeping	Γransmitting	Input Voltage	DC5V
Temperature	24 deg. C,		Humidity	56% RH
Test Result:	Pass		Detector	PK
The Max. FS in	PK (dB µ V/m)	32.54	Limit	74(dB µ V/m)
Restrict Band	AV(dB μ V/m)	23.62		54(dB μ V/m)

Test Figure: Horizontal

Date: 04.DEC.2007 10:56:10

Note: 1. FS= Field Strength

2. Band-edge measurement are made in the conventional manner

Report No: 07011090 Page 53 of 65

Date: 2007-12-04

13.4 Out of Band Test Result

Product:	Bluetooth Ha	ndsfree Car Kit	Test Mode:	High Channel
Mode	Keeping	Γransmitting	Input Voltage	DC5V
Temperature	24 deg. C,		Humidity	56% RH
Test Result:	Pass		Detector	PK
The Max. FS in	PK (dB µ V/m)	43.8	Limit	74(dB µ V/m)
Restrict Band	AV(dB μ V/m)	36.9	Lillill	54(dB μ V/m)

Test Figure: Vertical

Date: 03.DEC.2007 19:33:39

Note: 1. FS= Field Strength

2. Band-edge measurement are made in the conventional manner

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen Timeway Technology Consulting Co.,Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the Shenzhen Timeway Technology Consulting co.,Ltd to his customer. Supplier or others persons directly concerned. Shenzhen Timeway Technology Consulting co.,Ltd will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

Report No: 07011090 Page 54 of 65

Date: 2007-12-04

13.4 Out of Band Test Result

Product:	Bluetooth Ha	ndsfree Car Kit	Test Mode:	High Channel
Mode	Keeping	Γransmitting	Input Voltage	DC5V
Temperature	24 deg. C,		Humidity	56% RH
Test Result:	Pass		Detector	PK
The Max. FS in	PK (dB µ V/m)	45.7	- Limit	74(dB µ V/m)
Restrict Band	AV(dB μ V/m)	37.5		54(dB μ V/m)

Test Figure: Horizontal

Date: 03.DEC.2007 19:57:17

Note: 1. FS= Field Strength

2. Band-edge measurement are made in the conventional manner

Report No: 07011090

Date: 2007-12-04

Page 55 of 65

14.0 Antenna Requirement

14.1 Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (b), if transmitter antennas of directional gain greater than 6 dBi

are used, the power shall be reduced by the mount in dB that the directional gain of the antenna exceeds 6 dBi.

14.2 Antenna Connected construction

The antenna is chip dielectric antenna. The maximum Gain of this antenna is 2.3dBi

Report No: 07011090 Page 56 of 65

Date: 2007-12-04

15.0 Maximum Permissible Exposure

Applicable Standard

According to §1.1307(b)(5), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline. This is a Portable device.

According to §1.1310 and §2.1093 RF exposure is calculated.

Measurement Result

This is a portable device and the Max peak output power is -11.44dBm (0.07mW), so the EIRP is 0.07*2.3=0.161mW which is lower than low threshold 60/fGHz mW (25mW), d<2.5cm in general population category;

The SAR measurement is not necessary.

Page 57 of 65

Report No: 07011090 Date: 2007-12-04

16.0 FCC ID Label

This device complies with part 15 of the FCC rules. Operation is subject to the following two conditions (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

The label must not be a stick-on paper label. The label on these products must be permanently affixed to the product and readily visible at the time of purchase and must last the expected lifetime of the equipment not be readily detachable.

Mark Location:

Page 58 of 65

Report No: 07011090 Date: 2007-12-04

17.0 Photo of testing

17.1 Conducted test View—N/A

17.2 Emission Radiated test View--

Page 59 of 65

Report No: 07011090 Date: 2007-12-04

17.3 Photo for the EUT

Page 60 of 65

Report No: 07011090 Date: 2007-12-04

17.4 Photo for the EUT

Inside View

Page 61 of 65

Report No: 07011090 Date: 2007-12-04

Report No: 07011090 Page 62 of 65

Date: 2007-12-04

Inside View

Page 63 of 65

Report No: 07011090 Date: 2007-12-04

Page 64 of 65

Report No: 07011090 Date: 2007-12-04

Page 65 of 65

Report No: 07011090 Date: 2007-12-04

Inside View

End of the report