

(19)

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11)

EP 0970815 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:
12.01.2000 Bulletin 2000/02

(51) Int Cl. 7: B41J 2/205, B41J 2/21

(21) Application number: 99305230.7

(22) Date of filing: 01.07.1999

(84) Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE
Designated Extension States:
AL LT LV MK RO SI

(30) Priority: 03.07.1998 JP 20439398

(71) Applicant: SEIKO EPSON CORPORATION
Shinjuku-ku, Tokyo 163-0811 (JP)

(72) Inventors:

- Zhou, Shixin
Suwa-shi, Nagano-ken 392-8502 (JP)
- Otsuki, Koichi
Suwa-shi, Nagano-ken 392-8502 (JP)

(74) Representative: Sturt, Clifford Mark et al
Miller Sturt Kenyon
9 John Street
London WC1N 2ES (GB)

(54) Printer and recording medium

(57) In a conventional printer that enables creation of different types of dots having different sizes, banding often appears in a certain area where only small-diametral dots are created. In a multi-value printer that enables creation of both a large dot and a small dot, the technique of the present invention stores in advance the relations between the recording ratios of the large dot and the small dot and the tone value into a ROM and carries out a multi-valuing process based on the relations. In a certain area where only small dots are created, a conspicuous banding often appears when the re-

cording ratio of the small dot exceeds a certain upper limit value. Large dots are accordingly mixed with small dots in a specific area where the recording ratio of the small dot exceeds the upper limit value. The upper limit value depends upon a printing condition including the type of a printing medium, so that the recording ratios of the respective dots are set corresponding to each printing condition. This arrangement enables small dots to be used effectively in the range that does not cause any conspicuous banding and thereby ensures the high picture quality of a resulting printed image.

Fig. 12B

Description**BACKGROUND OF THE INVENTION****Field of the Invention**

[0001] The present invention relates to a printer that prints an image with a head having nozzles that enable creation of dots having different quantities of ink.

Description of the Related Art

[0002] Ink jet printers that create dots with a plurality of color inks ejected from a plurality of nozzles formed on a head to record an image have been proposed as an output apparatus of a computer. The ink jet printers are widely used to print images processed by the computer in a multi-color, multi-tone manner. In such printers, each pixel is generally expressed by two tones, that is, the dot-on state and the dot-off state. The image is accordingly printed after the halftone processing, which is the image processing to enable the tones of original image data to be expressed by dispersibility of dots.

[0003] Multi-value printers, which are ink jet printers that enable expression of two or more tones, have recently been proposed to enrich the tone expression. Such printers include a printer that enables expression of three or more different densities by changing the quantity of ink or the density of ink and a printer that enables multi-tone expression by creating a plurality of dots in an overlapping manner in each pixel. The halftone processing is still required in such printers, since the tone of the original image data is not sufficiently expressible in each pixel.

[0004] In the multi-value printer, it is required to determine the recording ratio of each type of dot according to the tone value of the original image data in the course of the halftone processing. The conventional technique sets the recording ratio of each type of dot to appropriately express a variation in tone value and ensure the favorable granularity of the resulting printed image. Especially from the viewpoint of the improved granularity, there is a tendency of creating a large number of dots having a less quantity of ink.

[0005] In the multi-value printer that changes the quantity of ink, however, when a large number of a specific type of dot, which has a substantially identical size with a recording pitch of dots, banding often appears because of the reason discussed below.

[0006] Fig. 23 shows a state of recording only the specific type of dots in a predetermined image area. The rectangle shown on the left side of Fig. 23 represents a head with five nozzles. The open circles shown on the right side represent the specific type of dots. The hatched square denotes one pixel. In order to enable the whole image area to be filled with dots, the size of the specific type of dot is set to be substantially identical with or more precisely only a little greater than each side

of the pixel, that is, the recording pitch of dots. In the example of Fig. 23, dots are created at the most ideal positions in the respective pixels. In this case, the predetermined image area can be filled uniformly with the dots.

[0007] In the ink jet printer, the respective nozzles generally have different ink ejecting characteristics, which cause a deviation of the dot recording positions. Fig. 24 shows a state of recording the specific type of dots with a deviation of the dot recording positions. In the illustrated example, ink is ejected in oblique directions from the first nozzle and the second nozzle, so that the positions of the dots created by the first nozzle and the second nozzle are deviated from the expected positions. The deviation of the dot recording positions causes unevenness of density or banding in the resulting printed image as clearly shown in Fig. 24. In an extreme case, there is a dropout between adjoining rows of dots.

[0008] Fig. 25 shows a state of recording another type of dots, which has a greater area than that of the specific type of dot, with a deviation of the dot recording positions. The symbols in Fig. 25 have the same meanings as those explained in Figs. 23 and 24. Since there are significant overlaps of dots in the example of Fig. 25, the dots are expressed by the solid line and the dotted line alternately, for the clarity of illustration. There is no practical difference between the dots by the solid line and the dots by the dotted line. As clearly understood from the comparison with the example of Fig. 23, the dots shown in Fig. 25 have the greater size than each side of the pixel or the recording pitch of dots. This increases the overlapped area of the adjoining dots and thereby makes the unevenness of density, which is due to the deviation of the dot recording positions, relatively inconspicuous in the example of Fig. 25, compared with the example of Fig. 24. In the case of the specific type of dot having the substantially identical size with the recording pitch, even a little deviation of the dot recording positions makes the banding significantly conspicuous. The multi-value printer has been developed to enrich the tone expression and enable the high quality printing. The occurrence of the banding, which results in lowering the picture quality, is thus not negligible.

SUMMARY OF THE INVENTION

[0009] The object of the present invention is thus to provide a technique that ensures high-quality printing while reducing the occurrence of banding due to recording of a specific type of dot in a multi-value printer.

[0010] At least part of the above and the other related objects is attained by a printer with a head having a plurality of nozzles that enable creation of at least two different types of dots having different sizes. The printer determines which of the at least two different types of dots is to be created in each pixel according to a printing condition and a tone value of image data and creates

dots based on a result of the determination with the head, thereby printing an image on a printing medium. The printer includes: a memory unit that stores relations between the recording ratio of each type of dot and the tone value with regard to printing conditions; a printing condition input unit that inputs a specified printing condition; and a decision unit that determines whether or not each type of dots is to be created in each pixel, based on the recording ratio corresponding to the specified printing condition stored in the memory unit. Different values are set to a limit recording ratio of a specific type of dot, which is selected among the at least two different types of dots and enables independent expression of a certain tone value, corresponding to the printing conditions. The limit recording ratio is specified against a limit tone value, at which a recording ratio of another type of dot having a greater size than the specific type of dot practically starts recording to have a significant value as a recording ratio thereof.

[0011] It is preferable that the specific type of dot has a size that is substantially identical with a dot pitch in printing.

[0012] It is also preferable that the limit recording ratio is set based on a possibility of occurrence of banding.

[0013] The following describes the relation between the recording ratio of the specific type of dot and the banding, prior to description of the functions and effects of the printer of the present invention. As described above with Fig. 24, the banding often appears in the case of recording the specific type of dots. The possibility of the occurrence of banding depends upon the recording ratio of the specific type of dot as discussed below.

[0014] Fig. 15 shows a state of recording the specific type of dots. The open circles in Fig. 15 represent the specific type of dots. The example of Fig. 15 regards a relatively low recording ratio and there are a large number of pixels in which no dot is created. Like the example of Fig. 24, there is a deviation of the dot recording positions in the example of Fig. 15. The presence of a gap B2, which is ascribed to pixels where no dot is created, makes a gap B1, which is due to the deviation of the dot recording positions, relatively inconspicuous. This means that the banding is relatively inconspicuous when the specific type of dot has a low recording ratio. Fig. 16 shows a state of recording the specific type of dots at a little greater recording ratio than that of Fig. 15. The hatched circles represent newly created dots in addition to those of Fig. 15. In this case, the banding B1, which is due to the deviation of the dot recording positions, is rather conspicuous.

[0015] The inventors have noted the relation between the possibility of the occurrence of banding and the recording ratio of the specific type of dot and completed the present invention. The specific type of dot has a relatively small size and is not readily recognized with naked eyes. From the viewpoint of the granularity of a printed image, it is thus preferable to increase the recording

ratio of the specific type of dot. As discussed previously, however, there is an upper limit in increased recording ratio of the specific type of dot to enable recording of the specific type of dot without causing any conspicuous

5 banding. In order to record the specific type of dots at a recording ratio exceeding the upper limit, it is required to mix another type of dots having a greater size than that of the specific type of dot at a significant recording ratio. The upper limit depends upon the printing condition. The arrangement of changing the recording ratio of the specific type of dot according to the printing condition reduces the occurrence of banding corresponding to the printing condition.

[0016] The specific type of dot here represents the dot 15 having a size that is substantially identical with each side of the pixel. In the actual state, a variety of other dots may also be regarded as the specific type of dot. For example, the specific type of dot may be any dot that is created alone to express a certain tone value.

[0017] As mentioned above, it is preferable that the 20 limit recording ratio is set based on the possibility of the occurrence of banding. Namely the limit recording ratio is set not to cause any conspicuous banding. The limit recording ratio depends upon the printing condition and is thereby set corresponding to each printing condition.

[0018] In the printer of the present invention, this arrangement prevents the occurrence of conspicuous banding due to recording of the specific type of dot with regard to any printing condition. The technique of setting 25 the recording ratio of the specific type of dot according to the printing condition enables recording of the specific type of dot at a maximum recording ratio that is allowable in the range where banding does not occur with regard to the printing condition. Such setting thus prevents 30 the occurrence of banding and ensures the high picture quality of the resulting printed image, while keeping the favorable granularity of the printed image, with respect to each printing condition.

[0019] In the printer of the present invention, the 35 recording ratio of the specific type of dot is set corresponding to each printing condition. This does not mean that different recording ratios are set corresponding to all the available printing conditions. The recording ratio of the specific type of dot is set equal to a preferable value 40 corresponding to each printing condition by taking into account the possible occurrence of banding. The same recording ratio may thus be set corresponding to some printing conditions.

[0020] The 'significant recording ratio' in the specification hereof means that the recording ratio of another type of dot having the greater size than that of the specific type of dot affects the banding due to recording of the specific type of dot.

[0021] The dot created by ejecting ink does not always have the shape of a true circle. In the event that dots are created in a shape other than the true circle, such as an ellipse, the dot size implies a mean size. In the stricter definition, the dot size means a size of an

equivalent dot of a true circular shape that has an identical area with the area of the dot created by ejecting a certain quantity of ink.

[0022] In accordance with one preferable application of the printer, the specified printing condition is the size of a dot created with a certain quantity of ink on said printing medium, and the recording ratio of the specific type of dot increases with an increase in size of the dot.

[0023] The size of the specific type of dot created by a fixed quantity of ink generally varies with a variation in type of printing medium, because of a difference in various factors, such as a blot depending upon the quantity of ink absorption. The greater dot size causes a greater overlap of the adjoining dots and makes the banding, which is due to the deviation of the dot recording positions, relatively inconspicuous. The printing medium that causes the dot created by a fixed quantity of ink to have the greater size ensures the higher recording ratio of the specific type of dot without causing any conspicuous banding. The printer of the above arrangement sets the recording ratio of the specific type of dot based on this characteristic. The specific type of dots are thus created at an appropriate recording ratio that is free from the banding, according to the size of the dot created by a fixed quantity of ink. This arrangement ensures the high-quality printing. The fixed quantity of ink may be any value that is commonly used for the purpose of comparison between various printing media, and is, for example, equal to the quantity of ink used for creating the specific type of dot.

[0024] The size of the dot created by the fixed quantity of ink is basically correlated to the quantity of ink absorption of the printing medium. The correlation is not always expressed as a linear relationship. The recording ratio of the specific type of dot may be set according to the quantity of ink absorption of the printing medium, based on the correlation. In the printer of the present invention, the size of the dot created by the fixed quantity of ink may be replaced with the quantity of ink absorption of the printing medium.

[0025] In accordance with one preferable application of the present invention, the printer further includes a unit that causes each raster line, which is an array of dots aligned in one direction on said printing medium, to be formed by a plurality of divisional scans with said head, and carries out a sub-scan that moves said printing medium relative to said head in a direction that crosses the direction of the alignment of dot in the raster line, in order to enable each raster line to be formed with different nozzles. The specified printing condition is a number of divisional scans required for forming each raster line, and the recording ratio of the specific type of dot increases with an increase in number of divisional scans.

[0026] The printer of this arrangement forms each raster line by a plurality of divisional scans with different nozzles. The structure of forming each raster line with different nozzles causes a variation in deviation of the

dot recording positions on the raster line according to the characteristics of the respective nozzles. This makes the banding, which is due to the deviation of the dot recording positions, relatively inconspicuous. This is

5 the general effect exerted in the case where each raster line is formed by a plurality of divisional scans. The increase in number of divisional scans makes the banding more inconspicuous.

[0027] The increase in number of divisional scans to
10 complete each raster line increases the recording ratio of the specific type of dot created without causing any conspicuous banding. The printer of the above arrangement sets the recording ratio of the specific type of dot based on this characteristic. The specific type of dots are thus created at an appropriate recording ratio that is free from the banding, according to the number of divisional scans to complete each raster line. This arrangement ensures the high-quality printing.

[0028] In accordance with another preferable application
20 of the printer, the specified printing condition is a printing resolution, and the recording ratio of the specific type of dot increases with an increase in printing resolution.

[0029] The printing resolution implies the number of
25 pixels, where dots can be created, per unit area. In the case of a low printing resolution, the positions of recording the specific type of dot are relatively restricted and have a low degree of freedom. The degree of freedom in positions of recording the specific type of dot is heightened with an increase in printing resolution. Fig. 20 shows an example of dot recording in the case of the relatively low degree of freedom in positions of recording the specific type of dot. The closed circles represent the specific type of dots. The lattices of the broken line represent an arrangement of pixels. Fig. 21 shows an example of dot recording the case of a high resolution. The example of Fig. 21 has the pixels in the lateral direction double the number of the pixels in the example of Fig. 20.

[0030] In the case of the low resolution, the dot recording positions are limited, so that the positional relationship between the adjoining dots is relatively restricted. This increases the occurrence of the portions in
40 which dots are aligned in a regular manner and the portions where dots face to each other in the vertical direction as shown in Fig. 20. These portions make the banding conspicuous. In the case of the high resolution, on the other hand, there is a high degree of freedom in dot recording positions. This decreases the occurrence of
45 the portions in which dots are aligned in a regular manner and the like and reduces the occurrence of banding.

[0031] The recording ratio of the specific type of dot created without causing any conspicuous banding increases with an increase in resolution. The printer of the
50 above arrangement sets the recording ratio of the specific type of dot based on this characteristic. The specific type of dots are thus created at an appropriate recording ratio that is free from the banding, according to the print-

ing resolution. This arrangement ensures the high-quality printing.

[0032] In accordance with one preferable embodiment of the printer, the head enables creation of the at least two different types of dots having different sizes with inks of different densities having an identical hue, and

the recording ratio of the specific type of dot is set for each ink having a different density.

[0033] The specific type of dots are thus created at an appropriate recording ratio that is free from the banding, according to the density of ink. This arrangement improves the picture quality of the resulting printed image.

[0034] In the printer of the above arrangement, it is preferable that the recording ratio of the specific type of dot increases with an increase in density of ink.

[0035] The higher-density ink is generally used for relatively high tone values, that is, for relatively dark portions in the printed image. In such dark portions, before the specific type of dots are created with the higher-density ink, a large number of dots have already been created with the lower density ink of the same hue. Even if there is a deviation of the recording positions of the specific type of dots created with the higher-density ink, the large number of dots created with the lower-density ink of the same hue make the banding inconspicuous. In the case where the specific type of dots are created with the lower-density ink, on the other hand, the dots of the same hue have not been created previously, so that the banding is rather conspicuous.

[0036] The recording ratio of the specific type of dot created without causing any conspicuous banding increases with an increase in density of ink. The printer of the above arrangement sets the recording ratio of the specific type of dot based on this characteristic. The specific type of dots are thus created at an appropriate recording ratio that is free from the banding, according to the density of ink. This arrangement ensures the high-quality printing.

[0037] In accordance with another preferable embodiment of the printer, the head enables creation of the at least two different types of dots having different sizes with inks of different hues, and the recording ratio of the specific type of dot is set for each ink having a different hue.

[0038] The specific type of dots are thus created at an appropriate recording ratio that is free from the banding, according to the hue of ink. This arrangement improves the picture quality of the resulting printed image.

[0039] In the printer having any of the arrangements discussed above, a variety of known multi-valuing means may be applied for the decision unit that determines whether or not a certain type of dot is to be created in each pixel based on the recording ratio. The multi-valuing means may adopt the error diffusion method or the dither method.

[0040] Possible applications of the present invention other than the printer discussed above include a pro-

gram that attains the above functions to drive the printer and a recording medium in which such a program is recorded. Typical examples of the recording media include flexible disks, CD-ROMs, magneto-optic discs, IC

5 cards, ROM cartridges, punched cards, prints with bar-codes or other codes printed thereon, internal storage devices (memories like a RAM and a ROM) and external storage devices of the computer, and a variety of other computer readable media. Still another application of
10 the invention is a program supply apparatus that supplies a computer program, which causes a computer to attain the multi-valuing function of the printer, to the computer via a communication path.

[0041] These and other objects, features, aspects, and advantages of the present invention will become more apparent from the following detailed description of the preferred embodiment with the accompanying drawings.

20 BRIEF DESCRIPTION OF THE DRAWINGS

[0042]

Fig. 1 is a block diagram schematically illustrating the structure of a printing system including a printer 22 as one embodiment according to the present invention;

25 Fig. 2 is a block diagram illustrating a software configuration of the printing system;

30 Fig. 3 schematically illustrates the structure of the printer 22;

Fig. 4 schematically illustrates the internal structure of a print head in the printer 22;

35 Fig. 5 shows the principle of dot creation in the printer 22;

Fig. 6 shows an arrangement of nozzles in the printer 22;

40 Fig. 7 shows the principle of creating dots having different dot sizes in the printer 22;

Fig. 8 shows driving waveforms of nozzles in the printer 22 and dots created in response to the driving waveforms;

45 Fig. 9 is a block diagram schematically illustrating the internal structure of the printer 22;

Fig. 10 is a flowchart showing a dot creation control routine;

50 Fig. 11 is a flowchart showing details of the multi-valuing process carried out at step S200 in the flowchart of Fig. 10;

Figs. 12A and 12B show examples of dot percent tables DT;

Fig. 13 shows the concept of determining the on-off state of dots by the dither method;

55 Fig. 14 shows a dither matrix used for determination of the on-off state of the large dot and a dither matrix used for determination of the on-off state of the small dot;

Fig. 15 shows a state of recording small dots at a

first dot recording ratio;
 Fig. 16 shows a state of recording small dots at a second dot recording ratio;
 Fig. 17 shows a state of recording small dots mixed with large dots;
 Fig. 18 is a graph showing a dot percent table set according to the printing condition;
 Fig. 19 shows a state of recording small dots at the second dot recording ratio on a printing medium where the dots created by a fixed quantity of ink have greater sizes;
 Fig. 20 shows a state of recording small dots at a first resolution;
 Fig. 21 shows a state of recording small dots at a second resolution;
 Fig. 22 is a graph showing the dot recording ratios with regard to the light ink and the deep ink;
 Fig. 23 shows a state of recording small dots without any deviation of the dot recording positions;
 Fig. 24 shows a state of recording small dots with some deviation of the dot recording positions; and
 Fig. 25 shows a state of recording large dots with some deviation of the dot recording positions.

DESCRIPTION OF THE PREFERRED EMBODIMENT

(1) Structure of Apparatus

[0043] Referring now to the drawings, wherein like reference numerals designate identical or corresponding parts throughout the several views, and more particularly to Figure 1 thereof, the printing system includes a computer 90 connected to a scanner 12 and a color printer 22. The computer 90 reads and executes predetermined programs to function as the image processing apparatus and in combination with the printer 22 as the printing apparatus. The computer 90 includes a CPU 81, which executes a variety of operations for controlling processes relating to image processing according to the programs, and the following constituents mutually connected via a bus 80. A ROM 82 stores in advance a variety of programs and data required for the execution of the various operations by the CPU 81. A variety of programs and data required for the execution of the various operations by the CPU 81 are temporarily written in and read from a RAM 83. An input interface 84 is in charge of input of signals from the scanner 12 and a keyboard 14, whereas an output interface 85 is in charge of output of data to the printer 22. CRTC 86 controls output of signals to a color CRT display 21. A disk controller (DDC) 87 controls transmission of data to and from a hard disk 16, a flexible disk drive 15, and a CD-ROM drive (not shown). A variety of programs loaded to the RAM 83 and executed as well as a variety of other programs provided in the form of a device driver are stored in the hard disk 16.

[0044] A serial input-output interface (SIO) 88 is also connected to the bus 80. The SIO 88 is connected to a

modem 18 and further to a public telephone network PNT via the modem 18. The computer 90 is connected with an external network via the SIO 88 and the model 18 and may gain access to a specific server SV to download the programs required for the image processing into the hard disk 16. Another possible application reads the required programs from a flexible disk FD or a CD-ROM and causes the computer 90 to execute the input programs.

- 5 10 [0045] Fig. 2 is a block diagram illustrating a software configuration of the printing system. The computer 90 executes an application program 95 under a specific operating system. A video driver 91 and a printer driver 96 are incorporated in the operating system. Image data are output from the application program 95 via the printer driver 96 to be transferred to the printer 22. The application program 95, which implements required image processing, such as retouching of images, reads an image from the scanner 12, causes the input image to be subjected to the required image processing, and displays the processed image on the CRT display 21 via the video driver 91. The scanner 12 reads color image data from a color original and outputs the color image data as original color image data ORG, which consists of three color components, red (R), green (G), and blue (B), to the application program 95.

[0046] When the application program 95 issues an instruction of printing, the printer driver 96 in the computer 90 receives the image data from the application program 95 and converts the input image data into signals processible by the printer 22 (in this embodiment, multi-value signals with respect to four colors, cyan, magenta, yellow, and black). In the example of Fig. 2, the printer driver 96 includes a resolution conversion module 97, a color correction module 98, a color correction table LUT, a halftone module 99, a rasterizer 100, and a printing conditions input module 101.

- 20 25 30 35 40 45 50 55 [0047] The printing conditions input module 101 inputs printing conditions specified by the user through operations of the keyboard 14 and a mouse (not shown). The input conditions are sent to the resolution conversion module 97 and used as parameters for specifying the details of the respective processes executed by the respective modules in the printer driver 96 as discussed later. The printing conditions that may be specified by the user include a specification of whether or not color printing is performed and a specification of execution or non-execution of printing according to the overlap method. The printing by the overlap method forms each raster line by two or more main scans as is known to the ordinary skilled in the art. By way of example, in the configuration of printing each raster line by two main scans, a first main scan prints odd pixels on each raster line with some nozzles and a second main scan prints even pixels on the same raster line with different nozzles. In the description hereinafter, the number of main scans required for forming each raster line is referred to as the number of passes.

[0048] The resolution conversion module 97 converts the resolution of the color image data processed by the application program 95, that is, the number of pixels per unit length, into the resolution processible by the printer driver 96. The image data with the converted resolution are still image information consisting of three color components, R, G, and B. The color correction module 98 refers to the color correction table LUT and further converts the resolution-converted image data with respect to each pixel into color data cyan (C), magenta (M), yellow (Y), and black (K) printable by the printer 22. When a printing condition representing non-execution of color printing is specified by the user, the procedure omits this color correction process.

[0049] The color correction data have tone values, for example, in the range of 256 tones. The halftone module 99 carries out a halftone process to create dots in a dispersed manner and enables the expression of the specified tone values by the printer 22. The printer 22 of this embodiment is a multi-value printer that enables creation of dots having both a greater size and a smaller size with a higher-density ink and a lower-density ink as discussed later. The halftone module 99 refers to a dot percent table DT, sets dot recording ratios or dot percents of the respective sizes according to the tone values of the image data and the printing conditions, and implements the halftone processing to attain the dot percents. The processed image data are rearranged by the rasterizer 100 to a sequence of data to be transferred to the printer 22 and output as final image data FNL. In this embodiment, the printer 22 only plays a role of creating dots based on the image data FNL and does not carry out the image processing. In accordance with an alternative application, the printer 22 may, however, carry out the image processing as well as the creation of dots.

[0050] The schematic structure of the printer 22 used in this embodiment is described with the drawing of Fig. 3. As illustrated in Fig. 3, the printer 22 has a mechanism for causing a sheet feed motor 23 to feed a sheet of printing paper P, a mechanism for causing a carriage motor 24 to move a carriage 31 forward and backward along an axis of a platen 26, a mechanism for driving a print head 28 mounted on the carriage 31 to control the ejection of ink and creation of dots, and a control circuit 40 that controls transmission of signals to and from the sheet feed motor 23, the carriage motor 24, the print head 28, and a control panel 32.

[0051] The mechanism for reciprocating the carriage 31 along the axis of the platen 26 includes a sliding shaft 34 arranged in parallel with the axis of the platen 26 for slidably supporting the carriage 31, a pulley 38, an endless drive belt 36 spanned between the carriage motor 24 and the pulley 38, and a position sensor 39 that detects the position of the origin of the carriage 31.

[0052] A black ink cartridge 71 for black ink (Bk) and a color ink cartridge 72 in which five color inks, that is, cyan (C1), light cyan (C2), magenta (M1), light magenta (M2), and yellow (Y), are accommodated may be mount-

ed on the carriage 31 of the printer 22. A total of six ink ejection heads 61 through 66 are formed on the print head 28 that is disposed in the lower portion of the carriage 31, and ink supply conduits 67 (see Fig. 4) are ar-

5 ranged upright in the bottom portion of the carriage 31 for leading supplies of inks from ink tanks to the respective ink ejection heads 61 through 66. When the black ink cartridge 71 and the color ink cartridge 72 are attached downward to the carriage 31, the ink supply conduits 67 are inserted into connection apertures (not shown) formed in the respective ink cartridges 71 and 72. This enables supplies of inks to be fed from the respective ink cartridges 71 and 72 to the ink ejection heads 61 through 66.

[0053] The following briefly describes the mechanism of ejecting ink and creating dots. Fig. 4 schematically illustrates the internal structure of the print head 28. When the ink cartridges 71 and 72 are attached to the carriage 31, supplies of inks in the ink cartridges 71 and

20 72 are sucked out by capillarity through the ink supply conduits 67 and are led to the ink ejection heads 61 through 66 formed in the print head 28 arranged in the lower portion of the carriage 31 as shown in Fig. 4. In the event that the ink cartridges 71 and 72 are attached to the carriage 31 for the first time, a pump works to suck first supplies of inks into the respective ink ejection heads 61 through 66. In this embodiment, the structure of the pump for suction and a cap for covering the print head 28 during the suction is not illustrated nor de-

30 scribed specifically.

[0054] An array of forty-eight nozzles Nz (see Fig. 6) is formed in each of the ink ejection heads 61 through 66 as discussed later. A piezoelectric element PE, which is one of electrically distorting elements and has an ex-
35 cellent response, is arranged for each nozzle Nz. Fig. 5 illustrates a configuration of the piezoelectric element PE and the nozzle Nz. As shown in the upper drawing of Fig. 5, the piezoelectric element PE is disposed at a position that comes into contact with an ink conduit 68

40 for leading ink to the nozzle Nz. As is known by those skilled in the art, the piezoelectric element PE has a crystal structure that is subjected to mechanical stress due to application of a voltage and thereby carries out extremely high-speed conversion of electrical energy in-
45 to mechanical energy. In this embodiment, application of a voltage between electrodes on both ends of the piezoelectric element PE for a predetermined time period causes the piezoelectric element PE to extend for the predetermined time period and deform one side wall of

50 the ink conduit 68 as shown in the lower drawing of Fig. 5. The volume of the ink conduit 68 is reduced with an extension of the piezoelectric element PE, and a certain amount of ink corresponding to the reduced volume is sprayed as an ink particle Ip from the end of the nozzle Nz at a high speed. The ink particles Ip soak into the sheet of paper P set on the platen 26, so as to implement printing.

[0055] Fig. 6 shows an arrangement of the ink jet noz-

zles Nz in each of the ink ejection heads 61 through 66. The arrangement of nozzles shown in Fig. 6 includes six nozzle arrays, wherein each nozzle array ejects ink of each color and includes forty-eight nozzles Nz arranged in zigzag at a fixed nozzle pitch k. The positions of the nozzles in the sub-scanning direction are identical in the respective nozzle arrays. The forty-eight nozzles Nz included in each nozzle array may be arranged in alignment, instead of in zigzag. The zigzag arrangement shown in Fig. 6, however, allows a small value to be set to the nozzle pitch k in the manufacturing process.

[0056] The printer 22 can create three different types of dots having different dot sizes with the nozzles Nz of a fixed diameter shown in Fig. 6. The following describes the principle of such dot creation technique. Fig. 7 shows the relationship between the driving waveform of the nozzle Nz and the size of the ink particle Ip ejected from the nozzle Nz. The driving waveform shown by the broken line in Fig. 7 is used to create standard-sized dots. A decrease in voltage applied to the piezoelectric element PE in a division d2 deforms the piezoelectric element PE in the direction of increasing the cross section of the ink conduit 68, contrary to the case discussed previously with the drawing of Fig. 5. Due to the restriction of the supply rate of ink through the ink supply conduit 67, the quantity of ink supply becomes insufficient relative to the expansion of the ink conduit 68. As shown in a state A of Fig. 7, an ink interface Me, which is generally referred to as meniscus, is thus slightly concaved inward the nozzle Nz. When the driving waveform shown by the solid line in Fig. 7 is used to abruptly lower the voltage in a division d1, on the other hand, the quantity of ink supply becomes more insufficient. The meniscus is thus more significantly concaved inward the nozzle Nz as shown in a state 'a', compared with the state A. A subsequent increase in voltage applied to the piezoelectric element PE in a division d3 causes the ink to be ejected, based on the principle described previously with the drawing of Fig. 5. As shown in states B and C, a large ink droplet is ejected when the meniscus is only slightly concaved inward (state A). As shown in states 'b' and 'c', on the other hand, a small ink droplet is ejected when the meniscus is significantly concaved inward (state 'a').

[0057] Based on the above principle, the dot size may be varied according to the rate of change in the divisions d1 and d2 where the driving voltage applied to the piezoelectric element PE is lowered. This embodiment provides two different driving waveforms, that is, one for creating small dots IP1 having the smallest size and the other for creating medium dots IP2 having the intermediate size, based on the relationship between the driving waveform and the dot size. Fig. 8 shows driving waveforms used in this embodiment. A driving waveform W1 is used to create the small dots IP1, whereas a driving waveform W2 is used to create the medium dots IP2. These two driving waveforms enable two different types of dots having different dot sizes, that is, the small dot and the medium dot, to be created with the nozzles Nz

of an identical size. In the printer 22 of this embodiment, these driving waveforms are consecutively and periodically output in the sequence of W1 and W2 accompanied with the movement of the carriage 31.

- 5 **[0058]** Large dots are created by using both the driving waveforms W1 and W2 shown in Fig. 8. The lower part of Fig. 8 shows the process of hitting an ink droplet IPs for the small dot and an ink droplet IPm for the medium dot ejected from the nozzle against the printing paper P. When both the small dot and the medium dot are created in response to the driving waveforms of Fig. 8, a greater quantity of ink is supplied to the ink conduit 68 in the case of creation of the medium dot than in the case of creation of the small dot as clearly understood from the states of the meniscus shown in Fig. 7. The ink droplet IPm for the medium dot accordingly has a higher jet than the ink droplet IPs for the small dot. Namely there is a difference in jet speed between these two types of ink droplets. Regulation of the scanning speed 10 of the carriage 31 in the main scanning direction and the timings for successively ejecting the ink droplet IPs for the small dot and the ink droplet IPm for the medium dot according to the distance between the carriage 31 and the printing paper P enables both the ink droplets to reach the printing paper P at a substantially identical timing. In this manner, the embodiment creates a large dot having the greatest dot size with the two driving waveforms shown in the upper part of Fig. 8.
- 15 **[0059]** In this embodiment, only the two types of dots, the large dot and the small dot, are used for printing among the three different types of dots, for the simplicity of the control. All the three different types of dots may, however, be used for printing images. The size of the small dot is substantially equal to the recording pitch of dots in the sub-scanning direction in this embodiment. As clearly shown in Fig. 15, the size of the small dot is substantially equal to but more precisely, very slightly greater than the length of one side of each pixel.
- 20 **[0060]** - The following describes the internal structure of the control circuit 40 in the printer 22 and the method of driving the print head 28 with the plurality of nozzles Nz arranged as shown in Fig. 6 in response to the driving waveforms discussed above. Fig. 9 illustrates the internal structure of the control circuit 40. The control circuit 40 includes a CPU 41, a PROM 42, a RAM 43, a PC interface 44 that transmits data to and from the computer 90, a peripheral equipment input-output unit (PIO) 45 that transmits signals to and from the peripheral equipment, such as the sheet feed motor 23, the carriage motor 24, and the control panel 32, a timer 46 that counts the time, and a drive buffer 47 that outputs dot on-off signals to the ink ejection heads 61 through 66. These elements and circuits are mutually connected via a bus 48. The control circuit 40 further includes an oscillator 51 that outputs driving waveforms at selected frequencies (see Fig. 8) and a distributor 55 that distributes the outputs from the oscillator 51 to the ink ejection heads 61 through 66 at selected timings. The control

circuit 40 receives dot data processed by the computer 90, temporarily stores the processed dot data in the RAM 43, and outputs the dot data to the drive buffer 47 at a preset timing.

[0061] Each nozzle array on one of the ink ejection heads 61 through 66 is arranged in a circuit that includes the drive buffer 47 as the source and the distributor 55 as the sink. The piezoelectric elements PE corresponding to the nozzles included in the nozzle array have one electrodes respectively connected to the output terminals of the drive buffer 47 and the other electrodes collectively connected to the output terminal of the distributor 55. The driving waveforms of the oscillator 51 are output from the distributor 55. When the CPU 41 outputs the dot on/off signals of the respective nozzles to the terminals of the drive buffer 47, only the piezoelectric elements PE receiving the ON signal from the drive buffer 47 are driven in response to the output driving waveforms. The ink particles I_p are thus ejected from the nozzles corresponding to the piezoelectric elements PE that have received the ON signal from the drive buffer 47. The voltage as the driving waveform is applied to the piezoelectric elements corresponding to all the nozzles, irrespective of creation or non-creation of dots. Regulation of the voltage output from the drive buffer 47 with regard to each nozzle controls the effectiveness or ineffectiveness of the driving waveform for each nozzle.

[0062] The ink ejection heads 61 through 66 are arranged in the moving direction of the carriage 31 as shown in Fig. 6, so that the respective nozzle arrays reach a specific position on the printing paper P at different timings. Although not being illustrated, a delay circuit is mounted on the output side of the distributor 55. The driving waveform is output at a specific timing that aligns the positions of dots in the main scanning direction formed by the respective nozzles according to the positional difference between the corresponding nozzles included in the ink ejection heads 61 through 66 and the scanning speed of the carriage 31. The CPU 41 accordingly outputs the dot on-off signals at required timings via the drive buffer 47 to create the dots of the respective colors by taking into account the positional difference between the corresponding nozzles included in the ink ejection heads 61 through 66. The CPU 41 also controls the output of the dot on-off signals by considering the two-line arrangement of each nozzle array on each of the ink ejection heads 61 through 66 as shown in Fig. 6.

[0063] In the printer 22 of the embodiment having the hardware structure discussed above, while the sheet feed motor 23 feeds the sheet of paper P (hereinafter referred to as the sub-scan), the carriage motor 24 drives and reciprocates the carriage 31 (hereinafter referred to as the main scan), simultaneously with actuation of the piezoelectric elements PE on the respective ink ejection heads 61 through 66 of the print head 28. The printer 22 accordingly sprays the respective color inks to create dots and thereby forms a multi-color im-

age on the sheet of paper P.

[0064] In this embodiment, the printer 22 has the head that uses the piezoelectric elements PE to eject ink as discussed previously. The printer may, however, adopt

5 another technique for ejecting ink. One alternative structure of the printer supplies electricity to a heater installed in an ink conduit and utilizes the bubbles generated in the ink conduit to eject ink.

10 (2) Control of Dot Creation

[0065] Fig. 10 is a flowchart showing a dot creation control routine executed in this embodiment. The dot creation control routine is carried out by the CPU 81 of the computer 90.

[0066] When the program enters the routine, the CPU 81 first inputs image data and specified printing conditions at step S100. The image data input here are transmitted from the application program 95 shown in Fig. 2 and have 256 tone values in the range of 0 to 255 with regard to the colors R, G, and B for the respective pixels included in an image. The resolution of image data is varied, for example, with a variation in resolution of the original image data ORG. The printing conditions include the type of printing paper, the specification of whether or not color printing is carried out, and the specification of execution or non-execution of printing according to the overlap method.

[0067] The CPU 81 then converts the resolution of the input image data into the printing resolution of the printer 22 at step S105. In the case where the resolution of the image data is lower than the printing resolution, linear interpolation is applied to create a new piece of data between adjoining pieces of the existing original image data and thereby implement conversion of the resolution. In the event that the resolution of the image data is higher than the printing resolution, on the contrary, existing pieces of the original image data are skipped at a certain ratio, for the purpose of conversion of the resolution. The process of converting the resolution is not essential in this embodiment, and printing may be carried out without the conversion of the resolution.

[0068] The CPU 81 subsequently carries out a color correction process at step S110. The color correction process converts image data consisting of the tone values of R, G, and B into data consisting of the tone values of C, M, Y, and K, which are colors used in the printer 22. The color correction process refers to the color correction table LUT (see Fig. 2), which stores a combination of C, M, Y, and K that enables the printer 22 to express the color specified by each combination of R, G, and B. A variety of known techniques are applicable to the color correction process using the color correction table LUT. For example, the interpolation technique may be applied for the color correction process.

[0069] The CPU 81 causes the color-corrected image data to be subjected to a multi-valuing process at step S200. The multi-valuing process converts the tone value

of the original image data (expressed by 256 tones in this embodiment) into the tone value expressible by the printer 22 with regard to each pixel. As discussed later, the multi-valuing process carried out in this embodiment converts 256 tones into 3 tones, 'creation of no dot', 'creation of a small dot', and 'creation of a large dot'. The multi-valuing process may, however, implement conversion into a greater number of tones. The details of the multi-valuing process executed in this embodiment are described with the flowchart of Fig. 11.

[0070] When the program enters the multi-valuing process, the CPU 81 first inputs image data CD and printing conditions at step S210. The image data CD input here have been subjected to the color correction (step S110 in the flowchart of Fig. 10) and have the tone values expressed by 256 tones with regard to the colors C, M, Y, and K for each pixel.

[0071] The process sets level data LVL of the large dot with respect to the input image data CD at step S220. The procedure of setting the level data LVL of the large dot is described with the drawings of Figs. 12A and 12B. Fig. 12A is a graph showing the recording ratios of the large dot and the small dot plotted against the tone value. In the graph of Fig. 12A, a curve SD shown by the solid line represents the recording ratio of the small dot and a curve LD shown by the dotted line represents the recording ratio of the large dot. The dot recording ratio implies the ratio of dots created in a solid area having a fixed tone value to pixels included in the solid area.

[0072] The level data LVL are obtained by converting the dot recording ratios into 256 level values in the range of 0 to 255. The process of step S220 reads the level data LVL corresponding to the tone values of the input image data CD from the curve LD. When the tone value of the image data CD is equal to gr as shown in Fig. 12A, for example, the level data LVL is read to be Id from the curve LD. The actual procedure stores the curve LD in advance as a one-dimensional table into the ROM 82 and refers to the table to determine the level data LVL. This one-dimensional table corresponds to the dot percent table DT shown in Fig. 1.

[0073] This embodiment provides different tables for the six different color inks and for the respective combinations of printing conditions. Fig. 12B shows an image of arrangement of the tables provided for each color ink in this embodiment. There are four options of the printing paper, and four tables are thereby provided according to the four options of the printing paper. In a similar manner, there are two options of the printing resolution, and two tables are provided according to the two options of the printing resolution. There are three options of the number of main scans required for formation of each raster line, that is, the number of passes, and three tables are provided according to the three options of the number of passes. The printing conditions are specified by each combination of these options. Namely a total of 24 ($4 \times 2 \times 3$) different types of dot percent tables DT are provided in this embodiment. The process of step S220

sets the level data LVL using the table that corresponds to the printing conditions input at step S210 and is selected among these 24 different dot percent tables DT. The relationship between the printing conditions and the dot recording ratio will be discussed later.

[0074] The level data LVL of the large dot set in the above manner is compared with a threshold value THL with respect to each pixel at step S230. The process of step S230 accordingly determines the on-off state of the large dot in each pixel by the dither method. Different threshold values THL are set for the respective pixels according to a dither matrix. This embodiment uses a blue noise matrix where the values of 0 to 255 appear in the pixels included in a 16×16 square.

[0075] Fig. 13 shows the concept of determining the on-off state of dots by the dither method. The process compares the level data LVL of the respective pixels with the corresponding threshold values THL in the dither table. When the level data LVL is greater than the threshold value THL of the dither table in a certain pixel, the dot is set in the on state in the pixel. When the level data LVL is not greater than the threshold value THL in a certain pixel, on the other hand, the dot is set in the off state in the pixel. The hatched pixels in Fig. 13 represent the pixels in which the dot is set in the on state.

[0076] In the case where the level data LVL of the large dot is greater than the threshold value THL in a certain pixel at step S230, the program determines that the large dot is to be created in the pixel. The CPU 81 accordingly sets a binary number 11 to a variable RE that represents a resulting value at step S280. The respective bits in the resulting value RE correspond to the on-off conditions of the driving waveforms W1 and W2 shown in Fig. 8. When the resulting value RE equal to 11 is transferred to the drive buffer 47, the printer 22 ejects ink droplets in response to both the driving waveforms W1 and W2 to create a large dot.

[0077] -- In the case where the level data LVL of the large dot is not greater than the threshold value THL in a certain pixel at step S230, on the other hand, the program determines that the large dot is not to be created in the pixel. The CPU 81 accordingly proceeds to step S240 to set level data LVS of the small dot. The level data LVS of the small dot are read from the dot percent table DT shown in Fig. 12 according to the tone values and the printing conditions. The procedure of setting the level data LVS of the small dot is identical with that of setting the level data LVL of the large dot.

[0078] The process then compares the level data LVS of the small dot with a threshold value THS to determine the on-off state of the small dot in each pixel at step S250. While the same process as that for the large dot is applied to determine the on-off state of the small dot, the threshold values THS used for the determination with regard to the small dot are different from the threshold values THL used for the determination with regard to the large dot.

[0079] In the event that the same dither matrix is used

to determine the on-off state of both the large dot and the small dot, the pixels that are probably set in the on state with regard to the large dot often coincide with those with regard to the small dot. Namely when the large dot is set in the off state in a certain pixel, it is highly probable that the small dot is also set in the off state in the same pixel. This may result in undesirably making the actual recording ratio of the small dot lower than a desired recording ratio. In order to avoid this problem, the procedure of this embodiment uses the different dither matrixes for the large dot and the small dot. This makes the positions of the pixels that are probably set in the on state with regard to the large dot different from those with regard to the small dot, thereby ensuring creation of both the large dot and the small dot in an appropriate manner. This embodiment uses a dither matrix TM shown in Fig. 14 for the large dot and another dither matrix UM, which is obtained by symmetrically shifting the respective threshold values or elements of the dither matrix TM in the sub-scanning direction as shown in Fig. 14, for the small dot. Although 4x4 matrixes are shown in Fig. 14 for convenience of illustration, the procedure of this embodiment actually uses 64x64 matrixes as mentioned previously. In accordance with another possible application, completely different dither matrixes may be used for the large dot and the small dot.

[0080] In the case where the level data LVS of the small dot is greater than the threshold value THS in a certain pixel at step S250, the program determines that the small dot is to be created in the pixel. The CPU 81 accordingly sets a binary number 10 to the resulting value RE at step S270. When the resulting value RE equal to 10 is transferred to the drive buffer 47, the driving waveform W2 is masked and the printer ejects an ink droplet in response to only the driving waveform W1 shown in Fig. 8 and thereby creates a small dot. In the case where the level data LVS of the small dot is not greater than the threshold value THS in a certain pixel at step S250, on the other hand, the program determines that the small dot is not to be created in the pixel. The CPU 81 accordingly sets a binary number 00 to the resulting value RE at step S260. When the resulting value RE equal to 00 is transferred to the drive buffer 47, both the driving waveforms W1 and W2 are masked and the printer 22 does not create any dot.

[0081] The above procedure determines which type of the dot is to be created in each pixel. The CPU 81 repeats the processing of steps S220 through S280 until the processing is completed for all the pixels at step S290. When the processing has been concluded for all the pixels, the program exits from the multi-valuing process shown in the flowchart of Fig. 11 and returns to the dot creation control routine shown in the flowchart of Fig. 10.

[0082] Referring back to the flowchart of Fig. 10, the CPU 81 carries out rasterization at step S300. The rasterization rearranges data for one raster line in a sequence of data transfer to the print head 28 of the printer

22. There are a variety of recording modes, in which the printer 22 forms raster lines. In the simplest mode, all the dots included in each raster line are created by one main scan of the print head 28 in the forward direction.

- 5 In this case, the data for one raster line are output to the print head 28 in the sequence of the processing. Another possible mode is the overlap mode. In the overlap mode, for example, the first main scan creates alternate dots in each raster line, and the second main scan creates the residual dots in the raster line. In this case, each raster lines is formed by two main scans. When the overlap mode is applied for recording, it is required to pick up the alternate dots in each raster line and transfer the corresponding data to the print head 28. The rasterization of step S300 accordingly creates the dots to be transferred to the print head 28 according to the recording method adopted in the printer 22. The detailed process of the rasterization is specified corresponding to the printing conditions input at step S100. After the rasterization, the CPU 81 outputs the data, which are printable by the printer 22, to the printer 22 at step S310. The printer 22 receives the transferred data and creates the corresponding dots in the respective pixels to print an image.

- 25 [0083] The following describes the process of setting the dot recording ratio in this embodiment. The recording ratios of the small dot and the large dot are set to express the respective tone values by taking into account the possible occurrence of banding. Fig. 15 shows a state of dot creation at a certain recording ratio. The rectangle shown on the left side of Fig. 15 represents a head with five nozzles. The open circles shown on the right side represent small dots. In the example of Fig. 15, ink is ejected in oblique directions from some of the nozzles on the head, so that the positions of the dots created by such nozzles are deviated from the expected positions. In the illustrated example, the positions of the dots created by the first nozzle and the second nozzle are deviated from the expected positions.

- 30 40 [0084] In the case where small dots are recorded at a low recording ratio as shown in Fig. 15, there are relatively many gaps between rows of dots. In other words, there are relatively many pixels in which no dots are created. This makes the banding, which is caused by the deviation of the dot recording positions, relatively inconspicuous. In the example of Fig. 15, the presence of a gap B2, which is ascribed to the low recording density of dots, makes a banding B1 inconspicuous.

- 45 50 [0085] Fig. 16 shows a state of dot creation at a little greater recording ratio. The hatched circles in Fig. 16 represent dots newly created in addition to the dots of Fig. 15. An increase in recording density of dots lessens the number of gaps between rows of dots and makes the banding rather conspicuous. In the example of Fig. 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 555 560 565 570 575 580 585 590 595 600 605 610 615 620 625 630 635 640 645 650 655 660 665 670 675 680 685 690 695 700 705 710 715 720 725 730 735 740 745 750 755 760 765 770 775 780 785 790 795 800 805 810 815 820 825 830 835 840 845 850 855 860 865 870 875 880 885 890 895 900 905 910 915 920 925 930 935 940 945 950 955 960 965 970 975 980 985 990 995 1000 1005 1010 1015 1020 1025 1030 1035 1040 1045 1050 1055 1060 1065 1070 1075 1080 1085 1090 1095 1100 1105 1110 1115 1120 1125 1130 1135 1140 1145 1150 1155 1160 1165 1170 1175 1180 1185 1190 1195 1200 1205 1210 1215 1220 1225 1230 1235 1240 1245 1250 1255 1260 1265 1270 1275 1280 1285 1290 1295 1300 1305 1310 1315 1320 1325 1330 1335 1340 1345 1350 1355 1360 1365 1370 1375 1380 1385 1390 1395 1400 1405 1410 1415 1420 1425 1430 1435 1440 1445 1450 1455 1460 1465 1470 1475 1480 1485 1490 1495 1500 1505 1510 1515 1520 1525 1530 1535 1540 1545 1550 1555 1560 1565 1570 1575 1580 1585 1590 1595 1600 1605 1610 1615 1620 1625 1630 1635 1640 1645 1650 1655 1660 1665 1670 1675 1680 1685 1690 1695 1700 1705 1710 1715 1720 1725 1730 1735 1740 1745 1750 1755 1760 1765 1770 1775 1780 1785 1790 1795 1800 1805 1810 1815 1820 1825 1830 1835 1840 1845 1850 1855 1860 1865 1870 1875 1880 1885 1890 1895 1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065 2070 2075 2080 2085 2090 2095 2100 2105 2110 2115 2120 2125 2130 2135 2140 2145 2150 2155 2160 2165 2170 2175 2180 2185 2190 2195 2200 2205 2210 2215 2220 2225 2230 2235 2240 2245 2250 2255 2260 2265 2270 2275 2280 2285 2290 2295 2300 2305 2310 2315 2320 2325 2330 2335 2340 2345 2350 2355 2360 2365 2370 2375 2380 2385 2390 2395 2400 2405 2410 2415 2420 2425 2430 2435 2440 2445 2450 2455 2460 2465 2470 2475 2480 2485 2490 2495 2500 2505 2510 2515 2520 2525 2530 2535 2540 2545 2550 2555 2560 2565 2570 2575 2580 2585 2590 2595 2600 2605 2610 2615 2620 2625 2630 2635 2640 2645 2650 2655 2660 2665 2670 2675 2680 2685 2690 2695 2700 2705 2710 2715 2720 2725 2730 2735 2740 2745 2750 2755 2760 2765 2770 2775 2780 2785 2790 2795 2800 2805 2810 2815 2820 2825 2830 2835 2840 2845 2850 2855 2860 2865 2870 2875 2880 2885 2890 2895 2900 2905 2910 2915 2920 2925 2930 2935 2940 2945 2950 2955 2960 2965 2970 2975 2980 2985 2990 2995 3000 3005 3010 3015 3020 3025 3030 3035 3040 3045 3050 3055 3060 3065 3070 3075 3080 3085 3090 3095 3100 3105 3110 3115 3120 3125 3130 3135 3140 3145 3150 3155 3160 3165 3170 3175 3180 3185 3190 3195 3200 3205 3210 3215 3220 3225 3230 3235 3240 3245 3250 3255 3260 3265 3270 3275 3280 3285 3290 3295 3300 3305 3310 3315 3320 3325 3330 3335 3340 3345 3350 3355 3360 3365 3370 3375 3380 3385 3390 3395 3400 3405 3410 3415 3420 3425 3430 3435 3440 3445 3450 3455 3460 3465 3470 3475 3480 3485 3490 3495 3500 3505 3510 3515 3520 3525 3530 3535 3540 3545 3550 3555 3560 3565 3570 3575 3580 3585 3590 3595 3600 3605 3610 3615 3620 3625 3630 3635 3640 3645 3650 3655 3660 3665 3670 3675 3680 3685 3690 3695 3700 3705 3710 3715 3720 3725 3730 3735 3740 3745 3750 3755 3760 3765 3770 3775 3780 3785 3790 3795 3800 3805 3810 3815 3820 3825 3830 3835 3840 3845 3850 3855 3860 3865 3870 3875 3880 3885 3890 3895 3900 3905 3910 3915 3920 3925 3930 3935 3940 3945 3950 3955 3960 3965 3970 3975 3980 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 4035 4040 4045 4050 4055 4060 4065 4070 4075 4080 4085 4090 4095 4100 4105 4110 4115 4120 4125 4130 4135 4140 4145 4150 4155 4160 4165 4170 4175 4180 4185 4190 4195 4200 4205 4210 4215 4220 4225 4230 4235 4240 4245 4250 4255 4260 4265 4270 4275 4280 4285 4290 4295 4300 4305 4310 4315 4320 4325 4330 4335 4340 4345 4350 4355 4360 4365 4370 4375 4380 4385 4390 4395 4400 4405 4410 4415 4420 4425 4430 4435 4440 4445 4450 4455 4460 4465 4470 4475 4480 4485 4490 4495 4500 4505 4510 4515 4520 4525 4530 4535 4540 4545 4550 4555 4560 4565 4570 4575 4580 4585 4590 4595 4600 4605 4610 4615 4620 4625 4630 4635 4640 4645 4650 4655 4660 4665 4670 4675 4680 4685 4690 4695 4700 4705 4710 4715 4720 4725 4730 4735 4740 4745 4750 4755 4760 4765 4770 4775 4780 4785 4790 4795 4800 4805 4810 4815 4820 4825 4830 4835 4840 4845 4850 4855 4860 4865 4870 4875 4880 4885 4890 4895 4900 4905 4910 4915 4920 4925 4930 4935 4940 4945 4950 4955 4960 4965 4970 4975 4980 4985 4990 4995 5000 5005 5010 5015 5020 5025 5030 5035 5040 5045 5050 5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120 5125 5130 5135 5140 5145 5150 5155 5160 5165 5170 5175 5180 5185 5190 5195 5200 5205 5210 5215 5220 5225 5230 5235 5240 5245 5250 5255 5260 5265 5270 5275 5280 5285 5290 5295 5300 5305 5310 5315 5320 5325 5330 5335 5340 5345 5350 5355 5360 5365 5370 5375 5380 5385 5390 5395 5400 5405 5410 5415 5420 5425 5430 5435 5440 5445 5450 5455 5460 5465 5470 5475 5480 5485 5490 5495 5500 5505 5510 5515 5520 5525 5530 5535 5540 5545 5550 5555 5560 5565 5570 5575 5580 5585 5590 5595 5600 5605 5610 5615 5620 5625 5630 5635 5640 5645 5650 5655 5660 5665 5670 5675 5680 5685 5690 5695 5700 5705 5710 5715 5720 5725 5730 5735 5740 5745 5750 5755 5760 5765 5770 5775 5780 5785 5790 5795 5800 5805 5810 5815 5820 5825 5830 5835 5840 5845 5850 5855 5860 5865 5870 5875 5880 5885 5890 5895 5900 5905 5910 5915 5920 5925 5930 5935 5940 5945 5950 5955 5960 5965 5970 5975 5980 5985 5990 5995 6000 6005 6010 6015 6020 6025 6030 6035 6040 6045 6050 6055 6060 6065 6070 6075 6080 6085 6090 6095 6100 6105 6110 6115 6120 6125 6130 6135 6140 6145 6150 6155 6160 6165 6170 6175 6180 6185 6190 6195 6200 6205 6210 6215 6220 6225 6230 6235 6240 6245 6250 6255 6260 6265 6270 6275 6280 6285 6290 6295 6300 6305 6310 6315 6320 6325 6330 6335 6340 6345 6350 6355 6360 6365 6370 6375 6380 6385 6390 6395 6400 6405 6410 6415 6420 6425 6430 6435 6440 6445 6450 6455 6460 6465 6470 6475 6480 6485 6490 6495 6500 6505 6510 6515 6520 6525 6530 6535 6540 6545 6550 6555 6560 6565 6570 6575 6580 6585 6590 6595 6600 6605 6610 6615 6620 6625 6630 6635 6640 6645 6650 6655 6660 6665 6670 6675 6680 6685 6690 6695 6700 6705 6710 6715 6720 6725 6730 6735 6740 6745 6750 6755 6760 6765 6770 6775 6780 6785 6790 6795 6800 6805 6810 6815 6820 6825 6830 6835 6840 6845 6850 6855 6860 6865 6870 6875 6880 6885 6890 6895 6900 6905 6910 6915 6920 6925 6930 6935 6940 6945 6950 6955 6960 6965 6970 6975 6980 6985 6990 6995 7000 7005 7010 7015 7020 7025 7030 7035 7040 7045 7050 7055 7060 7065 7070 7075 7080 7085 7090 7095 7100 7105 7110 7115 7120 7125 7130 7135 7140 7145 7150 7155 7160 7165 7170 7175 7180 7185 7190 7195 7200 7205 7210 7215 7220 7225 7230 7235 7240 7245 7250 7255 7260 7265 7270 7275 7280 7285 7290 7295 7300 7305 7310 7315 7320 7325 7330 7335 7340 7345 7350 7355 7360 7365 7370 7375 7380 7385 7390 7395 7400 7405 7410 7415 7420 7425 7430 7435 7440 7445 7450 7455 7460 7465 7470 7475 7480 7485 7490 7495 7500 7505 7510 7515 7520 7525 7530 7535 7540 7545 7550 7555 7560 7565 7570 7575 7580 7585 7590 7595 7600 7605 7610 7615 7620 7625 7630 7635 7640 7645 7650 7655 7660 7665 7670 7675 7680 7685 7690 7695 7700 7705 7710 7715 7720 7725 7730 7735 7740 7745 7750 7755 7760 7765 7770 7775 7780 7785 7790 7795 7800 7805 7810 7815 7820 7825 7830 7835 7840 7845 7850 7855 7860 7865 7870 7875 7880 7885 7890 7895 7900 7905 7910 7915 7920 7925 7930 7935 7940 7945 7950 7955 7960 7965 7970 7975 7980 7985 7990 7995 8000 8005 8010 8015 8020 8025 8030 8035 8040 8045 8050 8055 8060 8065 8070 8075 8080 8085 8090 8095 8100 8105 8110 8115 8120 8125 8130 8135 8140 8145 8150 8155 8160 8165 8170 8175 8180 8185 8190 8195 8200 8205 8210 8215 8220 8225 8230 8235 8240 8245 8250 8255 8260 8265 8270 8275 8280 8285 8290 8295 8300 8305 8310 8315 8320 8325 8330 8335 8340 8345 8350 8355 8360 8365 8370 8375 8380 8385 8390 8395 8400 8405 8410 8415 8420 8425 8430 8435 8440 8445 8450 8455 8460 8465 8470 8475 8480 8485 8490 8495 8500 8505 8510 8515 8520 8525 8530 8535 8540 8545 8550 8555 8560 8565 8570 8575 8580 8585 8590 8595 8600 8605 8610 8615 8620 8625 8630 8635 8640 8645 8650 8655 8660 8665 8670 8675 8680 8685 8690 8695 8700 8705 8710 8715 8720 8725 8730 8735 8740 8745 8750 8755 8760 8765 8770 8775 8780 8785 8790 8795 8800 8805 8810 8815 8820 8825 8830 8835 8840 8845 8850 8855 8860 8865 8870 8875 8880 8885 8890 8895 8900 8905 8910 8915 8920 8925 8930 8935 8940 8945 8950 8955 8960 8965 8970 8975 8980 8985 8990 8995 9000 9005 9010 9015 9020 9025 9030 9035 9040 9045 9050 9055 9060 9065 9070 9075 9080 9085 9090 9095 9100 9105 9110 9115 9120 9125 9130 9135 9140 9145 9150 9155 9160 9165 9170 9175 9180 9185 9190 9195 9200 9205 9210 9215 9220 9225 9230 9235 9240 9245 9250 9255 9260 9265 9270 9275 9280 9285 9290 9295 9300 9305 9310 9315 9320 9325 9330 9335 9340 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390 9395 9400 9405 9410 9415 9420 9425 9430 9435 9440 9445 9450 9455 9460 9465 9470 9475 9480 9485 9490 9495 9500 9505 9510 9515 9520 9525 9530 9535 9540 9545 9550 9555 9560 9565 9570 9575 9580 9585 9590 9595 9600 9605 9610 9615 9620 9625 9630 9635 9640 9645 9650 9655 9660 9665 9670 9675 9680 9685 9690 9695 9700 9705 9710 9715 9720 9725 9730 9735 9740 9745 9750 9755 9760 9765 9770 9775

shown in Fig. 16. Fig. 16 shows only one example, and dots created at the identical recording ratio may have a pattern that makes the banding B1 relatively inconspicuous. The increase in recording ratio of the small dot generally makes the banding conspicuous, because of the reason discussed above. By taking into account the granularity of a printed image, on the other hand, it is preferable to increase the proportion of the small dot, which is not readily recognizable with naked eyes. There is, however, an upper limit in increased recording ratio of the small dot, in order to prevent the occurrence of banding and ensure the high picture quality.

[0086] In an area of relatively low tones, only small dots are created. When the tone value increases to naturally increase the recording ratio of the small dot, the banding is made to be conspicuous at or above a certain tone value. In this embodiment, the certain tone value is set as a limit tone value, up to which only small dots are used for recording. In the concrete example discussed above, the limit tone value is present between the tone value expressed by the recording ratio of Fig. 15 and the tone value expressed by the recording ratio of Fig. 16. The limit tone value is equal to a tone value g_1 in the dot percent table DT shown in Fig. 12. DS1 denotes a limit recording ratio of the small dot specified against the limit tone value g_1 .

[0087] At the tone values of not less than g_1 , it is required to mix large dots with small dots, in order to prevent the occurrence of the conspicuous banding. The limit recording ratio DS1 is adopted in the case where only small dots are used for recording. When large dots are mixed with small dots, the recording ratio of the small dot can be heightened without causing the conspicuous banding. Fig. 17 shows a state of dot creation in the case where large dots are mixed with small dots. The hatched circles in Fig. 17 represent dots newly created in addition to the dots of Fig. 15. The large-diametral dot represents a large dot. In this example, the density expressed by one large dot coincides with the density expressed by two small dots. The dots of Fig. 17 as the whole area accordingly express the same density as that of Fig. 16.

[0088] The method of mixing large dots with small dots as shown in Fig. 17 keeps the banding inconspicuous even if the recording ratio of the small dot increases. This is ascribed to the greater size of the large dot. Even if there is a deviation of the dot recording positions as shown in Fig. 17, the greater size of the large dot eliminates the gap between adjoining rows of dots. In the case of a low recording ratio of the large dot, the banding is made to be conspicuous because of the reason discussed above with the drawings of Figs. 15 and 16. In the area of the tone values of not less than g_1 where large dots are mixed with small dots, the recording ratios of the small-dot and the large dot are set to satisfy the three conditions, that is, to express each tone value, to avoid the occurrence of banding, and to improve the granularity of the printed image.

[0089] The following describes one concrete procedure of setting the recording ratios. In this example, it is assumed that the recording ratios are set against a certain tone value g_2 . The recording ratio of the large dot

5 is set equal to a value DL1 as a first setting. Setting the recording ratio of the large dot automatically determines the recording ratio of the small dot required to express the tone value g_2 . The procedure creates dots at the preset recording ratios of the large dot and the small dot 10 and determines whether or not a conspicuous banding occurs. From the viewpoint of the improved granularity, it is preferable that the small dot has a greater recording ratio. In the case where no banding occurs at the first setting, a value that is a little lower than the first value 15 DL1 is set to the recording ratio of the large dot as a second setting. When a banding occurs at the first setting, on the other hand, it is required to lower the recording ratio of the small dot. A value that is a little greater than the first value DL1 is accordingly set to the recording 20 ratio of the large dot as the second setting. In this manner, the recording ratio that satisfies the three conditions mentioned above, that is, the conditions regarding the tone expression, the inconspicuous banding, and the improvement in granularity, is refined consecutively. The procedure of this embodiment carried out such setting at some tone values and smoothly joined them to obtain the curves of the recording ratios shown 25 in Fig. 12.

[0090] As described previously, this embodiment provides the different dot percent tables DT for the respective combinations of printing conditions. By way of example, Fig. 18 shows recording ratios with regard to two different types of printing paper among the four options of the printing paper in this embodiment. The recording ratios shown by the solid curves regard the printing paper on which the dots created by a fixed quantity of ink have smaller diameters, that is, the special paper having a greater quantity of ink absorption per unit area. The recording ratios shown by the dotted curves regard the 30 printing paper on which the dots created by the fixed quantity of ink have greater diameters, that is, the standard paper having a less quantity of ink absorption per unit area. When the area of the dot created by a fixed quantity of ink is referred to as a rate of dot coverage, the former corresponds to the printing paper having a low rate of dot coverage and the latter corresponds to the printing paper having a high rate of dot coverage. The recording ratios regarding the special paper have been discussed previously with the graph of Fig. 12A. 35 As clearly shown in the graph of Fig. 18, the standard paper has the greater recording ratio of the small dot than the special paper. The limit tone value with regard to the standard paper, at which recording of the large dot starts, is equal to a value g_3 , which is greater than the limit tone value g_1 with regard to the special paper. This is ascribed to the following reason.

[0091] Fig. 19 shows a state of dot creation on the standard paper. The symbols in Fig. 19 have the same

meanings as those explained in Figs. 15 through 17. In the example of Fig. 19, small dots are created in the same pattern as that of Fig. 16. Since the standard paper has the higher rate of dot coverage than the special paper, the respective dots created on the standard paper have greater diameters than the dots on the special paper. This causes a relatively narrow gap B3 in the example of Fig. 19, while there is a relatively large gap B1 due to the deviation of the dot recording positions in the example of Fig. 16. The frequency of the occurrence of banding is lower on the standard paper than on the special paper, when small dots are recorded at a fixed recording ratio. This widens the range of the tone values in which only small dots are created on the standard paper. According to this reason, in the case of the standard paper, the process of this embodiment sets the limit recording ratio against a tone value g3, at which recording of the large dot starts and up to which only the small dot is created, equal to a value DS3, which is greater than the limit recording ratio DS1 with regard to the special paper. Because of the same reason, after the start of recording of the large dot, the standard paper has the higher recording ratio of the small dot and the lower recording ratio of the large dot than the special paper.

[0092] As described previously, there are four options of the printing paper according to the quantity of ink absorption in this embodiment. The respective dot percent tables DT corresponding to the four options of the printing paper are set to heighten the recording ratio of the small dot with an increase in quantity of ink absorption because of the reason discussed above.

[0093] As described previously, there are two options of the printing resolution in this embodiment. The following briefly describes the process of setting the dot recording ratio according to the printing resolution. Figs. 20 and 21 show states of dot creation at different printing resolutions. The lattices of the broken line represent pixels in both Figs. 20 and 21. Fig. 20 shows the case of a low resolution, and Fig. 21 shows the case of a high resolution. The example of Fig. 21 has the pixels in the lateral direction double the number of the pixels in the example of Fig. 20.

[0094] In the case of the low resolution (Fig. 20), the dot recording positions are limited, so that the positional relationship between the adjoining dots is relatively restricted. This increases the occurrence of the portions in which dots are aligned in a regular manner and the portions where dots face to each other in the vertical direction. These portions make the banding conspicuous. In the case of the high resolution (Fig. 21), on the other hand, there is a high degree of freedom in dot recording positions. This decreases the occurrence of the portions in which dots are aligned in a regular manner and the like and makes the banding inconspicuous. In the case of the high resolution, the range of tone values in which only small dots are created can thus be widened.

[0095] Because of the reasons discussed above, the

process of this embodiment sets a greater value to the limit tone value, at which recording of the large dot starts, with an increase in resolution. The dot recording ratios may be set according to the resolution as shown

5 in the graph of Fig. 18. In this case, the curves of the solid line regard the case of the low resolution and the curves of the dotted line regard the case of the high resolution.

[0096] As described previously, there are three options of the number of passes required to form each raster line in the course of printing in this embodiment. The three options in this embodiment include the case without the overlap recording (the number of passes =1), the case of overlap recording by the number of 10 passes =2, and the case of overlap recording by the number of passes =4.

[0097] The increase in number of passes means the increase in number of nozzles used for formation of each raster line. In the case where one raster line is

20 formed with a plurality of different nozzles, there is a difference in deviation of the recording positions of the dots on each raster line between the respective nozzles. This makes the banding, which is caused by the deviation of the dot recording positions, inconspicuous.

[0098] In one example, a certain raster line is formed by one pass only with one nozzle A. If ink is ejected in an oblique direction from the nozzle A, the recording positions of all the dots on the raster line are deviated from the expected positions. In another example, a certain raster line is formed by two passes with two nozzles A and B. It is assumed that ink is ejected in an oblique direction from the nozzle A but in a normal direction from the nozzle B. The recording positions of half the dots on the raster line are deviated from the expected positions, 30 while the residual dots on the raster line are created at the expected positions. The banding is accordingly less conspicuous in the case of the raster line formation by two passes than in the case of the raster line formation by one pass. In general, the banding becomes less conspicuous with an increase in number of divisions of each raster line. With an increase in number of divisions of each raster line, the range of tone values in which only small dots are created is accordingly widened.

[0099] Because of the reason discussed above, the process of this embodiment sets a greater value to the limit tone value, at which recording of the large dot starts, with an increase in number of passes. The dot recording ratios may be set according to the number of passes as shown in the graph of Fig. 18. In this case, 45 the curves of the solid line regard the recording ratios in the case of the less number of passes and the curves of the dotted line regard the recording ratios in the case of the greater number of passes.

[0100] As described previously with Fig. 6, this embodiment provides the higher-density ink and the lower-density ink with regard to cyan and magenta. The curves of dot recording ratios as shown in Fig. 12 are set for the respective inks. The dot recording ratios with regard

to cyan, light cyan, magenta, and light magenta are thus set according to the respective combinations of the printing conditions. The following describes the dot recording ratios with regard to the higher-density ink and the lower-density ink having the same hue.

[0101] Fig. 22 is a graph showing the dot recording ratios of the lower-density ink (light ink) and the higher-density ink (deep ink). The graph of Fig. 22 is set corresponding to a certain printing condition. The higher-density ink is generally used for relatively high tone values, that is, for relatively dark portions in the printed image. As clearly seen from the graph of Fig. 22, the recording ratios of the deep small dot and the deep large dot are equal to zero in the area of low tone values.

[0102] In a certain range of tone values where the deep ink is used for creation of dots, before a specific type of dots are created with the higher-density ink, a large number of dots have already been created with the lower-density ink. As shown in Fig. 22, at a specific tone value where recording of the deep small dot starts, light small dots and light large dots have already been recorded at certain recording ratios. Even if there is a deviation of the recording positions of dots created with the deep ink, the large number of dots created with the light ink make the banding inconspicuous. This is because there is a possibility of creating light large dots to compensate for the deviation of the recording positions of the deep small dots. In the area of low tone values where only light small dots are created, on the other hand, the deep ink is not used for creation of dots. The above effect is accordingly not expected and there may be a conspicuous banding in the area of low tone values.

[0103] Based on the reason discussed above, as shown in Fig. 22, the process of this embodiment sets a recording ratio DDK of the deep small dot against a limit tone value gdk, at which recording of the deep large dot starts, to be greater than a recording ratio DLT of the light small dot against a limit tone value glt, at which recording of the light large dot starts. The possibility of the occurrence of banding depends upon not only the density of ink but the hue. As described with Fig. 6, this embodiment provides six color inks. When dots are created at a fixed recording ratio, the banding is more conspicuous in some of the colors and less conspicuous in other colors. This embodiment sets the dot recording ratios (see Fig. 12) for the respective color inks by taking into account this point.

[0104] The printing system of this embodiment sets the dot recording ratios corresponding to the variety of printing conditions by taking into account the possibility of the occurrence of banding. This arrangement prevents the conspicuous banding from appearing under any printing condition. The method of setting the recording ratio of a specific type of dot according to the printing condition enables recording of the small dot at a maximum recording ratio that is allowable in the range where banding does not occur with regard to the printing condition. The printing system of this embodiment thus pre-

vents the occurrence of banding and ensures the high picture quality of the resulting printed image, while keeping the favorable granularity of the printed image, with respect to each printing condition.

5 [0105] In this embodiment, the dither method is adopted in the multi-valuing process. A variety of other methods, for example, the error diffusion method, are, however, applicable to the multi-valuing process. The above embodiment specifies the twenty-four printing condi-

10 tions as the combinations of the three elements, the printing medium, the resolution, and the number of passes. The printing conditions may otherwise be specified as combinations of a greater number of elements. Alternatively the number of options regarding each ele-

15 ment may be increased; for example, the options of the printing medium may be increased.

[0106] In the above embodiment, the dot recording ratio is set according to the printing condition. In one modified arrangement, the recording ratio may be set to a fixed value, regardless of the difference in some ele-

20 ments of the printing condition. By way of example, the dot recording ratio may be set only corresponding to specific elements that remarkably improve the picture quality with a variation in dot recording ratio, among a variety of elements that specify the printing condition.

25 This modified arrangement saves the storage capacity for storing the dot percent tables. This arrangement also shortens the time period required for referring to the dot percent table in the multi-valuing process and thereby improves the processing speed as a whole.

[0107] The above embodiment regards the printer that enables three-valued expression for each pixel by creating two different types of dots, that is, the large dot and the small dot. The principle of the present invention

35 may, however, be applied to the other multi-value printers that enable expression of a greater number of tone values. The principle of the invention is also applicable to the printers that enable creation of a greater number of different types of dots having different sizes and to

40 the printers that enable creation of dots with a greater number of different inks having different densities. The embodiment relates to the ink jet printer with piezoelectric elements. The principle of the present invention is also applicable to a variety of printers and other printing apparatuses, for example, a printer that supplies electricity to a heater attached to the nozzles and utilizes the bubbles generated in the ink to eject ink.

[0108] The printing system described above includes the processes implemented by the computer, such as

50 the processes shown in the flowcharts of Figs. 10 and 11. One possible application of the present invention is accordingly a recording medium, in which a program for attaining the processing is recorded. Typical examples of the recording media include flexible disks, CD-ROMs,

55 magneto-optic discs, IC cards, ROM cartridges, punched cards, prints with barcodes or other codes printed thereon, internal storage devices (memories like a RAM and a ROM) and external storage devices of the

computer, and a variety of other computer readable media. Still another application of the invention is a program supply apparatus that supplies a computer program, which causes the computer to carry out the image processing and other processes discussed above, to the computer via a communication path.

[0109] The present invention is not restricted to the above embodiment or its modifications, but there may be many other modifications, changes, and alterations without departing from the scope or spirit of the main characteristics of the present invention. For example, a variety of control operations discussed above in the embodiment may be partly or totally attained by a hardware configuration.

[0110] The scope and spirit of the present invention are limited only by the terms of the appended claims.

Claims

1. A printer with a head having a plurality of nozzles that enable creation of at least two different types of dots having different sizes, said printer determining which of the at least two different types of dots is to be created in each pixel according to a printing condition and a tone value of image data and creating dots based on a result of the determination with said head, thereby printing an image on a printing medium, said printer comprising:

a memory unit that stores relations between the recording ratio of each type of dot and the tone value with regard to printing conditions; a printing condition input unit that inputs a specified printing condition; and a decision unit that determines whether or not each type of dots is to be created in each pixel, based on the recording ratio corresponding to the specified printing condition stored in said memory unit, wherein different values are set to a limit recording ratio of a specific type of dot, which is selected among the at least two different types of dots and enables independent expression of a certain tone value, corresponding to the printing conditions, and the limit recording ratio is specified against a limit tone value, at which a recording ratio of another type of dot having a greater size than the specific type of dot practically starts recording to have a significant value as a recording ratio thereof.

2. A printer in accordance with claim 1, wherein the specific type of dot has a size that is substantially identical with a dot pitch in printing.
3. A printer in accordance with claim 1, wherein the limit recording ratio is set based on a possibility of

occurrence of banding.

4. A printer in accordance with claim 1, wherein the specified printing condition is the size of a dot created with a certain quantity of ink on said printing medium, and

the recording ratio of the specific type of dot increases with an increase in size of the dot.

5. A printer in accordance with claim 1, said printer further comprising:

a unit that causes each raster line, which is an array of dots aligned in one direction on said printing medium, to be formed by a plurality of divisional scans with said head, and carries out a sub-scan that moves said printing medium relative to said head in a direction that crosses the direction of the alignment of dot in the raster line, in order to enable each raster line to be formed with different nozzles, wherein the specified printing condition is a number of divisional scans required for forming each raster line, and the recording ratio of the specific type of dot increases with an increase in number of divisional scans.

6. A printer in accordance with claim 1, wherein the specified printing condition is a printing resolution, and the recording ratio of the specific type of dot increases with an increase in printing resolution.

7. A printer in accordance with claim 1, wherein said head enables creation of the at least two different types of dots having different sizes with inks of different densities having an identical hue, and

the recording ratio of the specific type of dot is set for each ink having a different density.

8. A printer in accordance with claim 7, wherein the recording ratio of the specific type of dot increases with an increase in density of ink.

9. A printer in accordance with claim 1, wherein said head enables creation of the at least two different types of dots having different sizes with inks of different hues, and

the recording ratio of the specific type of dot is set for each ink having a different hue.

10. A printer with a head having a plurality of nozzles that enable creation of at least two different types of dots having different sizes, said printer determining which of the at least two different types of dots is to be created in each pixel according to a speci-

- fied printing condition and a tone value of image data and creating dots based on a result of the determination with said head, thereby printing an image on a printing medium,
- wherein the at least two different types of dots include a specific type of dot having a size that is substantially identical with a dot pitch in printing, and
 a limit recording ratio of the specific type of dot is specified against a limit tone value, at which a recording ratio of another type of dot having a greater size than the specific type of dot practically starts recording to have a significant value as a recording ratio thereof, and is set corresponding to each of printing conditions by taking into account a possibility of occurrence of banding.
11. A computer program that causes a computer to generate data, which are supplied to a printer that creates at least two different types of dots having different sizes and prints an image, based on input image data,
 said computer program comprising:
- at least specific data that specify relations between the recording ratios of the respective types of dots and the tone value corresponding to printing conditions, the specific data comprising different values set to a limit recording ratio, up to which only a specific type of dot that is selected among the at least two different types of dots and enables independent expression of a certain tone value is recorded, corresponding to the printing conditions,
 said computer program causing the computer to attain the functions of:
 inputting a tone value of each pixel and a printing condition; and
 specifying each type of dots to be created in each pixel based on the input tone value and the input printing condition, in order to attain the recording ratio stored in the specific data.
12. A computer program in accordance with claim 11, wherein the limit recording ratio included in the specific data increases with an increase in size of the specific type of dot created on said printing medium.
13. A computer program in accordance with claim 11, wherein the limit recording ratio included in the specific data increases with an increase in number of divisional scans to complete each raster line.
14. A computer program in accordance with claim 11, wherein the limit recording ratio included in the specific data increases with an increase in printing res-
- olution.
15. A computer program in accordance with claim 11, said computer program causing the computer to generate data, which are supplied to said printer that creates the at least two different types of dots having different sizes with inks of different densities having an identical hue and prints an image, and
 the limit recording ratio included in the specific data increases with an increase in density of ink.
16. A recording medium, in which a computer program is recorded, said computer program causing a computer to generate data, which are supplied to a printer that creates at least two different types of dots having different sizes and prints an image, based on input image data,
 wherein said computer program in accordance with any one of claims 11 through 15 is recorded in said recording medium.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

⊕ Ip

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12A

Fig. 12B

Fig. 13

Fig. 14

TM

1	9	3	11
13	5	15	7
4	12	2	10
16	8	14	6

UM

16	8	14	6
4	12	2	10
13	5	15	7
1	9	3	11

Fig. 15

Fig. 16

Fig. 17

Fig. 18

Fig. 19

Fig. 20

Fig. 21

Fig. 22

Fig. 23

Fig. 24

Fig. 25

European Patent
Office

EUROPEAN SEARCH REPORT

Application Number

EP 99 30 5230

DOCUMENTS CONSIDERED TO BE RELEVANT			
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.Cl.7)
A	EP 0 817 112 A (CANON KK) 7 January 1998 (1998-01-07) * page 11, line 29 - page 14, line 41; figures 11,16 * * column 19, line 28 - column 20, line 2 * ---	1,2,4,5, 11	B41J2/205 B41J2/21
A	EP 0 750 995 A (CANON KK) 2 January 1997 (1997-01-02) * page 7, line 22 - page 8, line 40; figures 8-10 *	1,7-10	
A	EP 0 719 647 A (CANON KK) 3 July 1996 (1996-07-03) * column 32, line 55 - column 33, line 52; figures 19,43-45 * * column 27, line 40 - line 47 * * column 36, line 6 - line 16 *	1-5	
A	EP 0 517 543 A (CANON KK) 9 December 1992 (1992-12-09) * column 1, line 37 - column 2, line 24 * * column 9; figure 5 * -----	1,3	TECHNICAL FIELDS SEARCHED (Int.Cl.7) B41J
<p>The present search report has been drawn up for all claims</p>			
Place of search	Date of completion of the search	Examiner	
THE HAGUE	4 October 1999	De Groot, R	
CATEGORY OF CITED DOCUMENTS X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background O : non-written disclosure P : intermediate document			
T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application L : document cited for other reasons & : member of the same patent family, corresponding document			

**ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEAN PATENT APPLICATION NO.**

EP 99 30 5230

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

04-10-1999

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
EP 0817112	A	07-01-1998	JP	10016251 A	20-01-1998
EP 0750995	A	02-01-1997	JP	9070989 A	18-03-1997
EP 0719647	A	03-07-1996	JP	8183180 A	16-07-1996
			JP	8183186 A	16-07-1996
			JP	8183187 A	16-07-1996
			JP	8183179 A	16-07-1996
			CN	1131612 A	25-09-1996
EP 0517543	A	09-12-1992	JP	2891799 B	17-05-1999
			JP	4361052 A	14-12-1992
			AT	158235 T	15-10-1997
			DE	69222228 D	23-10-1997
			DE	69222228 T	29-01-1998
			US	5384587 A	24-01-1995

EPO FORM P0459

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

This Page Blank (uspto)