Homework 3

Math 198: Math for Machine Learning

Due Date: Name:

Student ID:

1 Practice with Determinant and Trace

1. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear map that sends $(1,0) \mapsto (2,0)$ and $(0,1) \mapsto (3,4)$. What is $\det(T)$? The matrix representation of T with respect to the standard basis is

$$\mathbf{T} = \begin{bmatrix} 2 & 3 \\ 0 & 4 \end{bmatrix}$$

Therefore, det(T) = det(T) = 2 * 4 - 3 * 0 = 8.

- 2. What is tr(T)? tr(T) = tr(T) = 2 + 4 = 6.
- 3. Let U be a proper subspace of a vector space V. Let \mathbf{P} be a map onto U. What is $\det(\mathbf{P})$?

 Because U is a proper subspace of V, it has lower dimension than V. Therefore, \mathbf{P} is not invertible, so its determinant is 0.

2 Proofs about Determinant and Trace

Let \mathbf{A} be an arbitrary square matrix.

- 1. Prove that, if **A** is invertible, then $\det(\mathbf{A}^{-1}) = \det(\mathbf{A})^{-1}$. Recall that $\det(\mathbf{A}\mathbf{B}) = \det(\mathbf{A}) \det(\mathbf{B})$. We have $1 = \det(\mathbf{I}) = \det(\mathbf{A}\mathbf{A}^{-1}) = \det(\mathbf{A}) \det(\mathbf{A}^{-1})$. Therefore, $\det(\mathbf{A}^{-1}) = \frac{1}{\det(\mathbf{A})}$.
- 2. Conclude that if $\det(\mathbf{A}) = 0$, \mathbf{A} is not invertible. Suppose toward a contradiction that \mathbf{A} is invertible and $\det(\mathbf{A}) = 0$. Then $\det(\mathbf{A}^{-1}) = \frac{1}{0}$, so the determinant for \mathbf{A}^{-1} is undefined. But the determinant is defined for all matrices. So, if $\det(\mathbf{A}) = 0$, then \mathbf{A} cannot be invertible.
- 3. Let **B** be an invertible matrix. Prove $\operatorname{tr}(\mathbf{A}) = \operatorname{tr}(\mathbf{B}\mathbf{A}\mathbf{B}^{-1})$. Since trace is invariant under cyclic permutations, $\operatorname{tr}(\mathbf{B}\mathbf{A}\mathbf{B}^{-1}) = \operatorname{tr}(\mathbf{B}^{-1}\mathbf{B}\mathbf{A}) = \operatorname{tr}(\mathbf{A})$.

3 Computing Eigenvalues and Eigenvectors

Let

$$\mathbf{A} = \begin{bmatrix} 4 & 1 & -1 \\ \frac{3}{2} & \frac{7}{2} & -\frac{3}{2} \\ \frac{1}{2} & \frac{-1}{2} & \frac{5}{2} \end{bmatrix}$$

1

1. Find $p_{\mathbf{A}}(\lambda)$, the characteristic polynomial of \mathbf{A} .

$$p_{\mathbf{A}}(\lambda) = \det(\mathbf{A} - \lambda \mathbf{I})$$

$$= \det\begin{bmatrix} 4 - \lambda & 1 & -1 \\ \frac{3}{2} & \frac{7}{2} - \lambda & -\frac{3}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{5}{2} - \lambda \end{bmatrix}$$

$$= (4 - \lambda) \det\begin{bmatrix} \frac{7}{2} - \lambda & -\frac{3}{2} \\ -\frac{1}{2} & \frac{5}{2} - \lambda \end{bmatrix} - \det\begin{bmatrix} \frac{3}{2} & -\frac{3}{2} \\ \frac{1}{2} & \frac{5}{2} - \lambda \end{bmatrix} - \det\begin{bmatrix} \frac{3}{2} & \frac{7}{2} - \lambda \\ \frac{1}{2} & \frac{5}{2} - \lambda \end{bmatrix}$$

$$= (4 - \lambda) \left((\frac{7}{2} - \lambda) (\frac{5}{2} - \lambda) - \frac{3}{4} \right) - \left(\frac{3}{2} (\frac{5}{2} - \lambda) + \frac{3}{4} \right) + \left(\frac{3}{4} + \frac{1}{2} (\frac{7}{2} - \lambda) \right)$$

$$= (4 - \lambda) (\lambda^2 - 6\lambda + 8) - \left(\frac{9}{2} - \frac{3\lambda}{2} \right) + \left(\frac{5}{2} - \frac{\lambda}{2} \right)$$

$$= -\lambda^3 + 10\lambda^2 - 31\lambda + 30$$

2. Using $p_{\mathbf{A}}(\lambda)$, compute the eigenvalues of \mathbf{A} .

Observe that 30 = 2 * 3 * 5. Therefore, to factor $p_{\mathbf{A}}(\lambda)$, we can start by seeing if any of these values are roots. Using polynomial long division (omitted), we find

$$\frac{-\lambda^3 + 10\lambda^2 - 31\lambda + 30}{\lambda - 2} = -\lambda^2 + 8\lambda - 15 = -(\lambda - 3)(\lambda - 5)$$

So, we have $p_{\mathbf{A}}(\lambda) = -(\lambda - 2)(\lambda - 3)(\lambda - 5)$. Therefore, the eigenvalues of **A** are 2, 3, and 5.

3. Find the eigenvectors of **A**.

We first find the eigenvector corresponding to $\lambda_1 = 5$:

$$\mathbf{v}_{1} \in \ker(\mathbf{A} - 5\mathbf{I})$$

$$\in \ker\begin{bmatrix} -1 & 1 & -1 \\ \frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} \\ \frac{1}{2} & -\frac{1}{2} & -\frac{5}{2} \end{bmatrix}$$

Observe that $(\mathbf{A} - 5\mathbf{I})_1 = -(\mathbf{A} - 5\mathbf{I})_2$. Therefore,

$$\begin{bmatrix} -1 & 1 & -1 \\ \frac{3}{2} & -\frac{3}{2} & -\frac{3}{2} \\ \frac{1}{2} & -\frac{1}{2} & -\frac{5}{2} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \mathbf{0}$$

so $[1\ 1\ 0]^{\top}$ is an eigenvector of **A** corresponding to $\lambda_1 = 5$. We turn next to $\lambda_2 = 3$:

$$\mathbf{v}_1 \in \ker(\mathbf{A} - 3\mathbf{I})$$

$$\in \ker \begin{bmatrix} 1 & 1 & -1 \\ \frac{3}{2} & \frac{1}{2} & -\frac{3}{2} \\ \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \end{bmatrix}$$

Observe that $(\mathbf{A} - 3\mathbf{I})_1 = -(\mathbf{A} - 3\mathbf{I})_3$. Therefore,

$$\begin{bmatrix} 1 & 1 & -1 \\ \frac{3}{2} & \frac{1}{2} & -\frac{3}{2} \\ \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \mathbf{0}$$

so $[1\ 0\ 1]^{\top}$ is an eigenvector of **A** corresponding to $\lambda_2=3$. Finally, for $\lambda_3=2$:

$$x_1 \in \ker(\mathbf{A} - 2\mathbf{I})$$

$$\in \ker \begin{bmatrix} 2 & 1 & -1 \\ \frac{3}{2} & \frac{3}{2} & -\frac{3}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

Observe that $(\mathbf{A} - 2\mathbf{I})_2 = -(\mathbf{A} - 2\mathbf{I})_3$. Therefore,

$$\begin{bmatrix} 2 & 1 & -1 \\ \frac{3}{2} & \frac{3}{2} & -\frac{3}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} = \mathbf{0}$$

so $[0\ 1\ 1]^{\top}$ is an eigenvector of **A** corresponding to $\lambda_3 = 2$.

Proofs about Eigenvalues

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a square matrix such that the eigenvectors of \mathbf{A} are a basis for \mathbb{R}^n . Additionally, let λ_i , $1 \le i \le n$ be the eigenvalues of **A**.

1. Prove that $\det(\mathbf{A}) = \prod_{i=1}^{n} \lambda_i$. Let $\mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{-1}$ be the eigendecomposition of \mathbf{A} . Then $\det(\mathbf{A}) = \det(\mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{-1}) = \det(\mathbf{Q}) \det(\mathbf{\Lambda}) \det(\mathbf{Q}^{-1}) = \frac{\det(\mathbf{Q})}{\det(\mathbf{Q})} \det(\mathbf{\Lambda}) = \det(\mathbf{\Lambda})$. But $\mathbf{\Lambda}$ is diagonal, so $\det(\mathbf{\Lambda}) = \prod_{i=1}^{n} \mathbf{\Lambda}_{ii}$. The diagonal elements of $\mathbf{\Lambda}$ are the eigenvalues of **A**, so therefore $\det(\mathbf{A}) = \prod_{i=1}^{n} \lambda_i$.

2. Prove that $\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{n} \lambda_i$.

Recall that trace is invariant under similarity. Since $\mathbf{A} \sim \mathbf{\Lambda}$, $\operatorname{tr}(\mathbf{A}) = \operatorname{tr}(\mathbf{\Lambda}) = \sum_{i=1}^{n} \mathbf{\Lambda}_{ii} = \sum_{i=1}^{n} \lambda_{i}$.