Efeito fotoeléctrico, Espectros Electrónicos, Modelo de Bohr, Equação de De Broglie, Princípio de Incerteza de Heisenberg, Equação de Schrödinger

- **1.** A energia mínima necessária à remoção de electrões do metal magnésio, ¹²Mg, é de 738 kJ mol⁻¹.
 - **1.1** Determine a energia cinética de um electrão ejectado da superfície do magnésio se sobre ele incidir radiação electromagnética de frequência $v = 2,63 \times 10^{16} \text{Hz}$. (101.12 eV)
 - 1.2 Indique, Justificando, o valor lógico da seguinte afirmação:"Quanto maior for a intensidade da radiação incidente num metal, maior será a energia cinética de cada electrão ejectado por efeito fotoeléctrico".
- 2. Os electrões podem ser emitidos de uma superfície metálica por emissão fotoeléctrica. O gráfico mostra como varia a energia cinética máxima dos fotoelectrões emitidos por um determinado metal, quando nele incide radiação electromagnética com os comprimentos de onda indicados.
 - 2.1 Utilizar o gráfico para calcular a quantidade de energia necessária à remoção do electrão do metal. (2.65 x 10⁻¹⁹ J)
 - **2.2** Calcular o comprimento de onda máximo capaz de remover um fotoelectrão. (750 nm)
 - **2.3** Descrever o efeito do aumento de intensidade da radiação incidente.

- 3. Calcule a energia de um mole de fotões se o comprimento de onda da correspondente radiação é:
 - **3.1** 600 nm (199.38 kJ mol⁻¹) **3.2** 200 nm (598.13 kJ mol⁻¹) **3.3** 150 pm (797502.13 kJ mol⁻¹) **3.4** 1 cm (11.96 J mol⁻¹)
- **4.** Deduza as equações para o raio da órbita, para a velocidade e para energia do electrão num átomo de hidrogénio, utilizando os postulados de Bohr.
- **5.** A energia correspondente à primeira risca da série de Balmer, no espectro de emissão do átomo de hidrogénio, é 3,03x10⁻¹⁹J. Com base nesta informação, selecione a opção correta.
 - **A.** No átomo de hidrogénio, a energia do electrão no nível n=2 é -3,03x10⁻¹⁹J.
 - **B.** No átomo de hidrogénio, a energia do electrão no nível n=3 é 3,03x10⁻¹⁹J.
 - **C.** No átomo de hidrogénio, a diferença entre a energia do electrão no nível n=2 e a energia no nível n=1 é de $-3.03x10^{-19}$ J.
 - **D.** A energia cinética do electrão fora da ação do núcleo do átomo de hidrogénio é de $3.03 \times 10^{-19} \text{J}$.
 - **E.** No átomo de hidrogénio, a diferença entre a energia do electrão no nível n=3 e a energia no nível n=2 é 3,03x10⁻¹⁹J.

- **6.** Observou-se que um átomo emite radiação electromagnética a 100 nm, 125 nm e 500 nm. Considerações teóricas indicam que há apenas dois estados excitados envolvidos.
 - **6.1** Explique porque se observam três riscas.
 - **6.2** Quanto acima do estado fundamental está a energia de cada estado excitado? (1.99 x 10^{-18} J e 1.59×10^{-18} J)
- **7.** Um átomo de hidrogénio, no estado fundamental foi irradiado com fotões de energia igual a 1,75x10⁻¹⁸J. A que nível passou o electrão? Justifique.
- 8. Usando a teoria de Bohr:
 - **8.1** Calcule a energia de ionização de um átomo hidrogénio. (13.61 eV)
 - **8.2** Calcule a energia cinética de um electrão arrancado a um átomo de hidrogénio com luz de comprimento de onda igual a 90 nm. (2.72 x 10⁻²⁰ J)
- **9.** Considere dois átomos de hidrogénio, A e B. O electrão do primeiro átomo (A) está numa órbita de Bohr correspondente a n=1. O electrão do segundo átomo (B) está na órbita correspondente a n=4.
 - 9.1 Qual dos átomos tem uma configuração electrónica de estado fundamental?
 - 9.2 Em qual dos átomos o electrão se move com maior velocidade?
 - 9.3 Qual das órbitas tem um raio maior?
 - **9.4** Qual dos átomos tem menor energia potencial?
 - 9.5 Qual dos átomos tem maior energia de ionização?
- **10.** Explique, com base na interpretação de Louis de Broglie, o significado do terceiro postulado de Bohr.
- 11. Com base no modelo de Bohr:
 - **11.1** Calcule a energia libertada quando um átomo de hidrogénio decai do estado com número quântico principal n=3 para o estado com número quântico principal n=2. (3.03 x 10⁻¹⁹ J)
 - 11.2 Calcule a frequência da luz emitida. (4.57 x 10¹⁴ Hz)
 - **11.3** Calcule o número de onda da luz emitida. (15242 cm⁻¹)
- 12. Escreva uma expressão para o comprimento de onda da radiação emitida por um ião He^+ quando decai de um estado excitado com n=4 para um estado excitado com n=3. A expressão deve dar o comprimento de onda em função da massa do electrão (m_e) e da sua carga (e), de π e das constantes ϵ_0 (permissividade do vácuo) e c (velocidade da luz). Calcule o valor numérico do comprimento de onda da radiação emitida em nanometros.

- 13. Considere o átomo de sódio (Na=11).
 - **13.1** Calcule a 1ª energia de ionização do átomo de sódio usando o modelo de Bohr (considere que cada electrão do cerne blinda um protão). (2.42 x 10⁻¹⁹ J)
 - **13.2** Calcule a energia de ionização, admitindo que a carga nuclear não é afectada pela presença dos electrões do cerne do átomo. (Se Z = 11, EI = $2.93 \times 10^{-17} \text{ J}$)
 - 13.3 Compare os valores calculados nas alíneas anteriores com o valor experimental (5.14 eV). Calcule o factor de blindagem (α) dado que Zeff=Z-αN, em que Z é o número de protões e N o número de electrões do cerne. (0.92)
- 14. Calcule o comprimento de onda associado:
 - **14.1** A uma bola de pingue-pongue com a massa de 2.0 g ao ser rebatida com uma velocidade de 5.0 ms⁻¹. (6.65x10⁻³² m)
 - **14.2** A um electrão com energia cinética de 10 keV. (1.2x10⁻¹¹ m)
 - 14.3 Comente os resultados obtidos em 14.1 e 14.2.
- **15.** A velocidade de um projétil de massa 1.0 g é conhecida com a aproximação de 1x10⁻⁶ ms⁻¹. Calcular a incerteza mínima na posição do projétil. (5.27x10⁻²⁶ m)
- **16.** Estimar a incerteza mínima na velocidade de um electrão no átomo de hidrogénio (considere 100 pm o diâmetro do átomo). (~ 576 kms⁻¹)
- 17. Calcular a incerteza mínima na velocidade de uma bola com 500g, que está a uma distância de no mínimo $1.0 \, \mu m$ de um certo ponto. $(1.1 \times 10^{-28} \, m.s^{-1})$
- **18.** Qual a incerteza mínima de um projétil de 5.0 g cuja velocidade está entre 350.00001 ms⁻¹ e 350.00000 m.s⁻¹? (1x10⁻27 m)
- **19.** Calcule a incerteza no valor da velocidade de um electrão que descreve uma órbita a 1.4x10⁷ m.s⁻¹, considerando que a incerteza na posição corresponde ao comprimento de onda do fotão que com ele colide:400 nm. (145 m.s⁻¹).
- **20.** Calcule a probabilidade de encontrar uma partícula de massa m numa caixa de potencial unidimensional de comprimento L = a, entre os pontos 0 e a/2. (0.5)
- **21.** Se dividimos em duas partes iguais uma caixa de potencial unidimensional, a probabilidade de encontrar a partícula em cada uma delas é a mesma para quaisquer número quântico n?

22. Considere uma partícula numa caixa unidimensional de tamanho L representada na figura. O potencial (V) nas paredes e fora da caixa é infinito. Dentro da caixa o potencial é zero.

A equação de Schrödinger a uma dimensão relaciona a energia da partícula com as suas propriedades ondulatórias: $\frac{d^2\psi}{dx^2} + \frac{8\pi^2 m}{h^2}(E-V)\psi = 0.$

- **22.1** Verifique se as funções de onda do tipo , $\psi = \sqrt{\frac{2}{L}} sen \frac{n\pi}{L} x$ com $n = 1, 2, 3, ..., \infty$, cumprem as condições fronteira para o sistema.
- **22.2** Qual o significado físico da função $\psi^2 = \frac{2}{L} sen^2 \frac{n\pi}{L} x$
- **22.3** Como a segunda derivada de $\psi = \sqrt{\frac{2}{L}} sen \frac{n\pi}{L} x$ em ordem a x é $\frac{d^2\psi}{dx^2} = -\sqrt{\frac{2}{L}} \frac{n^2\pi^2}{L^2} sen \frac{n\pi}{L} x$ calcule uma expressão para os valores possíveis de energia para a partícula na caixa.
- 22.4 Qual é o valor da energia da partícula no estado de menor energia?
- 23. Suponhamos a molécula do hexatriino, molécula linear de comprimento L = 0.73 nm.
 - 23.1 Calcular a energia dos quatro primeiros níveis dum electrão com liberdade de movimento pela molécula. (n = 1 \rightarrow 1.13x10⁻¹⁹J; n = 2 \rightarrow 4.52x10⁻¹⁹J; n = 3 \rightarrow 1.01x10⁻¹⁸J; n = 4 \rightarrow 1.81x10⁻¹⁸J)
 - **23.2** Calcular a frequência da luz necessária para promover o electrão do terceiro ao quarto nível. (1.19x10¹⁵)
 - **23.3** Comparar os resultados com o obtido para uma bola de 1g de massa contida numa caixa monodimensional de 10 cm.
- **24.** Verifique em que condições a função de onda Asen(kx) + Bcos(kx) pode ser solução da equação de Shrödinger aplicada a uma partícula numa caixa (uma dimensão e potencial V=0).
 - **24.1** Escreva a função que representa a probabilidade de encontrar a partícula no ponto x.
 - 24.2 Calcule uma expressão para os valores possíveis de energia para a partícula na caixa.

Constantes físicas:

h =
$$6.626 \times 10^{-34}$$
 J.s; q(carga do electrão) = 1.6022×10^{-19} C; $m_e = 9.109 \times 10^{-31}$ kg;
 $\epsilon_0 = 8.85419 \times 10^{-12} \text{C}^2 \text{J}^{-1} \text{m}^{-1}$; $c = 2.9979 \times 10^8$ m.s⁻¹; $1 = 6.24151 \times 10^{18}$ eV; $1 \text{ eV} = 1.6 \times 10^{-19}$ J