Supporting Information

Precious Metal Free Hydrogen Evolution Catalyst Design and Application

Anders A. Feidenhans'l 1, Yagya N Regmi 2,3, Chao Wei 1, Dong Xia 2,3, Jakob Kibsgaard 1, Laurie A. King 2,3*

¹Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark

²Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK

³Manchester Fuel Cell Innovation Centre, Manchester Metropolitan University, Manchester M1 5GD, UK

*l.king@mmu.ac.uk

Table of contents

- **Table S1**. Transition metal phosphide hydrogen evolution reaction electrocatalyst activities.
- Table S2. Transition metal sulfide hydrogen evolution reaction electrocatalyst activities.
- Table S3. Transition metal carbide hydrogen evolution reaction electrocatalyst activities.
- Table S4. Platinum-based hydrogen evolution reaction electrocatalyst activities.

The data provided in this supporting information file was used to prepare Figures 18 and 19 in the main text.

Table S1. Transition metal phosphide hydrogen evolution reaction electrocatalyst activities.

Date of publica tion	Catalyst	Electrolyte	Loading [mg cm ⁻²]	Overpotenti al to achieve TOF [mV] vs RHE	TOF [H ₂ s ⁻¹ site ⁻¹]	Overpotential to achieve geometric current density and mass activity [mV] vs RHE	Geometric current density [mA cm ⁻²]	Mass activity [A mg ⁻¹]	DOI
03/06/ 2013	Nanoporous FeP nanosheets	0.5 M H2SO4	0.28			237	10	3.57E- 02	https://doi.org/10.1016/j.ele ctacta.2019.134798
13/06/ 2013	Nanostructured Ni2P/Ti	0.5 M H2SO4	1.00	100.00	1.50E- 02	130	20	2.00E- 02	https://doi.org/10.1021/ja40 3440e
13/06/ 2013	Nanostructured Ni2P/Ti	0.5 M H2SO4	1.00	200.00	5.00E- 01	180	100	1.00E- 01	https://doi.org/10.1021/ja40 3440e
11/04/ 2014	Nanostructured CoP	0.5 M H2SO4	0.90	100.00	4.20E- 02	95	20	2.22E- 02	https://doi.org/10.1002/anie. 201402646
11/04/ 2014	Nanostructured CoP	0.5 M H2SO4	2.00			85	20	1.00E- 02	https://doi.org/10.1002/anie. 201402646
15/05/ 2014	Cobalt Phosphide Nanowire Arrays	0.5 M H2SO4	0.92	75.00	7.25E- 01	67	10	1.09E- 02	https://doi.org/10.1021/ja50 3372r
15/05/ 2014	Cobalt Phosphide Nanowire Arrays	0.5 M H2SO4	0.92	240.00	4.00E+ 00	100	20	2.17E- 02	https://doi.org/10.1021/ja50 3372r
15/05/ 2014	Cobalt Phosphide Nanowire Arrays	0.5 M H2SO4	0.92			204	100	1.09E- 01	https://doi.org/10.1021/ja50 3372r
21/07/ 2014	CoP nanotube	0.5 M H2SO4	0.20	106.00	1.00E+ 00	72	2	1.00E- 02	https://doi.org/10.1039/C4T A02368D

21/07/	CoP nanotube	0.5 M	0.20			129	10	5.00E-	https://doi.org/10.1039/C4T
2014	COI Hariotabe	H2SO4	0.20			123	10	02	A02368D
21/07/	СоР	0.5 M	0.20	172.00	1.00E+	200	2	1.00E-	https://doi.org/10.1039/C4T
2014	nanoparticles	H2SO4	0.20	172.00	00	200	2	02	
21/07/	CoP	0.5 M	0.20			297	10	5.00E-	https://doi.org/10.1039/C4T
2014	nanoparticles	H2SO4	0.20			23,	10	02	
23/07/	СоР	0.5 M	2.00			90	10	<u>~_</u>	https://doi.org/10.1021/acsc
2014		H2SO4							atal.8b04291
23/07/	СоР	0.5 M	2.00			146	100		https://doi.org/10.1021/cm5
2014		H2SO4							01273s
01/08/	Ni2P	1.0 M	2.00	205.00	7.25E-	120	10	5.00E-	https://doi.org/10.1039/C4N
2014	nanoparticle	H2SO4			01			03	R03037K
	films								
01/08/	Ni2P	1.0 M	2.00			138	20	1.00E-	https://doi.org/10.1039/C4N
2014	nanoparticle	H2SO4						02	R03037K
	films								
01/08/	Ni2P	1.0 M	2.00			188	100	5.00E-	https://doi.org/10.1039/C4N
2014	nanoparticle	H2SO4						02	R03037K
	films								
11/08/	MoP	0.5 M	0.07	100.00	4.80E-	246	10	1.41E-	https://doi.org/10.1039/C4C
2014		H2SO4			02			01	С05936К
11/08/	Ni2P	0.5 M	0.07	100.00	2.50E-	346	10	1.41E-	https://doi.org/10.1039/C4C
2014		H2SO4			02			01	C05936K
20/08/	FeP Nanorod	0.5 M	0.60	85.00	2.58E+	85	10	1.67E-	https://doi.org/10.1039/C4T
2014	array/Ti	H2SO4			00			02	
20/08/	FeP Nanorod	0.5 M	0.60			183	240	4.00E-	https://doi.org/10.1039/C4T
2014	array/Ti	H2SO4						01	A03638G
26/08/	Co2P nanorod	0.5 M	1.00	143.00	7.25E-	167	20	2.00E-	https://doi.org/10.1016/j.nan
2014		H2SO4			01			02	oen.2014.08.013
04/09/	Amorphous W	0.5 M	1.50	100.00	7.25E-	110	20	1.33E-	https://doi.org/10.1039/C4T
2014	doped nickel P	H2SO4			01			02	A04434G
04/09/	Amorphous W	0.5 M	1.50			180	100	6.67E-	https://doi.org/10.1039/C4T
2014	doped nickel P	H2SO4						02	A04434G

18/09/	NiP2nanosheet	0.5 M	4.30			75	10	2.33E-	https://doi.org/10.1039/C5T
2014	arrays	H2SO4	4.30			/3	10	2.33L ⁻	A02128F
18/09/	NiP2nanosheet	0.5 M	4.30			99	20	4.65E-	https://doi.org/10.1039/C4N
2014		H2SO4	4.50			99	20	4.03E-	R04866K
18/09/	arrays NiP2nanosheet	0.5 M	4.30			204	100	2.33E-	https://doi.org/10.1039/C4N
		H2SO4	4.30			204	100		R04866K
2014	arrays		1.00	100.00	2 775		10	02	
01/10/	Nanostructured	0.5 M	1.00	100.00	2.77E-	50	10	1.00E-	https://doi.org/10.1021/nn50
2014	FeP/Ti	H2SO4	4.00		01		20	02	48553
01/10/	Nanostructured	0.5 M	1.00			61	20	2.00E-	https://doi.org/10.1021/nn50
2014	FeP/Ti	H2SO4						02	48553
17/10/	FeP Nanorod	0.5 M	1.50			58	10	6.67E-	https://doi.org/10.1039/C4T
2014	Array	H2SO4						03	A04867A
30/10/	MoP S	0.5 M	1.00	100.00	1.20E-	86	10	1.00E-	https://doi.org/10.1002/anie.
2014		H2SO4			01			02	201408222
30/10/	MoP S	0.5 M	1.00	150.00	7.50E-			0.00E+0	https://doi.org/10.1002/anie.
2014		H2SO4			01			0	201408222
30/10/	MoP S	0.5 M	3.00			64	10	3.33E-	https://doi.org/10.1002/anie.
2014		H2SO4						03	201408222
30/10/	MoP S	0.5 M	3.00			78	20	6.67E-	https://doi.org/10.1002/anie.
2014		H2SO4						03	201408222
30/10/	MoP S	0.5 M	3.00			120	100	3.33E-	https://doi.org/10.1002/anie.
2014		H2SO4						02	201408222
30/10/	MoP in H2	0.5 M	1.00			90	10	1.00E-	https://doi.org/10.1002/anie.
2014	anneal	H2SO4						02	201408222
30/10/	MoP	0.5 M	1.00	100.00	2.40E-	117	10	1.00E-	https://doi.org/10.1002/anie.
2014		H2SO4			02			02	201408222
30/10/	MoP	0.5 M	1.00	150.00	1.90E-	180	100	1.00E-	https://doi.org/10.1002/anie.
2014		H2SO4			01			01	201408222
04/11/	Ni12P5 NC	0.5 M	1.99			208	10	5.03E-	https://doi.org/10.1039/C4N
2014		H2SO4				200		03	R04866K
04/11/	Ni2P NC	0.5 M	1.99			137	10	5.03E-	https://doi.org/10.1039/C4T
2014		H2SO4	2.33			13,		03	A04867A
2017	1	112307						0.5	7.0 100771

04/11/	Ni5P4 NC	0.5 M	1.99			118	10	5.03E-	https://doi.org/10.1039/C4T
2014	11.51 1110	H2SO4	1.33			110	10	03	A04867A
09/01/	Ni5P4 (pellet)	1.0 M	176.56	100.00	3.50E+	23	10	5.66E-	https://doi.org/10.1039/C4EE
2015	(1000)	H2SO4			00			05	02940B
09/01/	Ni5P4 (pellet)	1.0 M	176.56	200.00	9.80E+	62	100	5.66E-	https://doi.org/10.1039/C4EE
2015	, ,	H2SO4			00			04	
09/01/	Ni2P (pellet)	1.0 M	177.27	100.00	1.50E-	42	10	5.64E-	https://doi.org/10.1039/C4EE
2015		H2SO4			02			05	02940B
09/01/	Ni2P (pellet)	1.0 M	177.27	200.00		101	100	5.64E-	https://doi.org/10.1039/C4EE
2015		H2SO4						04	02940B
12/01/	CoP-OMC	0.5 M	0.29	200.00	2.70E+	112	10	3.51E-	https://doi.org/10.1039/C4T
2015		H2SO4			00			02	A06630H
12/01/	CoP NPs	0.5 M	0.29	200.00	1.70E+	212	10	3.51E-	https://doi.org/10.1039/C4T
2015		H2SO4			00			02	A06630H
16/01/	Highly	0.5 M	1.00	100.00	1.90E-	117	20	2.00E-	https://doi.org/10.1039/C4T
2015	Branched	H2SO4			02			02	A06642A
	CoP/Ti								
27/03/	Ni2P	1.0 M	1.42			133	10	7.04E-	https://doi.org/10.1002/adm
2015	nanowires	H2SO4						03	a.201800140
20/04/	Ni2P/CNT	0.5 M	0.18			98	2	1.09E-	https://doi.org/10.1021/acs.n
2015		H2SO4						02	anolett.6b02203
20/04/	Ni2P/CNT	0.5 M	0.18			124	10	5.43E-	https://doi.org/10.1039/C5T
2015		H2SO4						02	
20/04/	Ni12P5/CNT	0.5 M	0.18			240	10	5.43E-	https://doi.org/10.1039/C5T
2015		H2SO4						02	
05/02/	CoP/NCNTs	0.5 M	0.20			79	10	5.03E-	https://doi.org/10.1039/C5C
2016		H2SO4						02	P01065A
05/02/	CoP/NCNTs	0.5 M	0.20			99	20	1.01E-	https://doi.org/10.1039/C6T
2016		H2SO4						01	A00575F
05/02/	Co2P/NCNTs	0.5 M	0.20			171	20	1.01E-	https://doi.org/10.1039/C6T
2016		H2SO4						01	A00575F

07/06/	Co2P@NPG	0.5 M	0.50	4	5 1	2.00E-	https://doi.org/10.1002/smll.
2016	001.60	H2SO4			_	03	,
07/06/	Co2P@NPG	0.5 M	0.50	10	3 10	2.00E-	https://doi.org/10.1021/acs.n
2016		H2SO4				02	anolett.6b02203
07/06/	Co2P@NPG	0.5 M	0.50	12	3 20	4.00E-	https://doi.org/10.1021/acs.n
2016		H2SO4				02	
07/06/	Co2P@NPG	0.5 M	0.50	22	100	2.00E-	https://doi.org/10.1021/acs.n
2016		H2SO4				01	anolett.6b02203
07/07/	MoP@PC	0.5 M	0.41	15	3 10	2.44E-	https://doi.org/10.1021/acsc
2016		H2SO4				02	atal.7b00555
01/02/	CoP-CNTs	0.5 M	0.28	13	10	3.53E-	https://doi.org/10.1039/C6T
2017		H2SO4				02	
29/03/	MoP/SN	0.5 M	90.50	5	7 1	1.10E-	https://doi.org/10.1021/acsc
2017	nanoparticles	H2SO4				05	atal.7b00555
29/03/	MoP/SN	0.5 M	0.50	10	10	2.00E-	https://doi.org/10.1021/acsc
2017	nanoparticles	H2SO4				02	atal.7b00555
17/12/	Ni2P@NPCNFs	0.5 M	0.34	6	10	2.97E-	https://doi.org/10.1002/anie.
2017		H2SO4				02	201710150
17/12/	Ni2P@NPCNFs	0.5 M	0.34	8	5 20	5.93E-	https://doi.org/10.1002/anie.
2017		H2SO4				02	201710150
17/12/	Ni2P@NPCNFs	0.5 M	0.34	17	100	2.97E-	https://doi.org/10.1002/anie.
2017		H2SO4				01	201710150
26/12/	Co2P@NPC/CC	0.5 M	5.00	11	5 10	2.00E-	https://doi.org/10.1039/C7N
2017		H2SO4				03	
26/12/	Co2P@NPC/CC	0.5 M	5.00	13	20	4.00E-	https://doi.org/10.1039/C7N
2017		H2SO4				03	
26/12/	Co2P@NPC/CC	0.5 M	5.00	15	50	1.00E-	https://doi.org/10.1039/C7N
2017		H2SO4				02	R08148K
03/04/	PANI/CoP	0.5 M	0.80	5	7 10	1.25E-	https://doi.org/10.1021/jacs.
2018	HNWs-CF	H2SO4				02	
03/04/	PANI/CoP	0.5 M	0.80	8	2 20	2.50E-	https://doi.org/10.1021/jacs.
2018	HNWs-CF	H2SO4				02	7b12968

	1	T =	T T		1				11 11 1 1 1
03/04/	PANI/CoP	0.5 M	0.80			101	50	6.25E-	https://doi.org/10.1021/jacs.
2018	HNWs-CF	H2SO4						02	
03/04/	PANI/CoP	0.5 M	0.80			122	100	1.25E-	https://doi.org/10.1021/jacs.
2018	HNWs-CF	H2SO4						01	7b12968
16/05/	Co2P@CP	0.5 M	3.20			120	10	3.13E-	https://doi.org/10.1021/acse
2018		H2SO4						03	nergylett.8b00514
17/05/	СоР	0.5 M	1.12	50.00	3.10E-	85	10	8.93E-	https://doi.org/10.1021/cm5
2018		H2SO4			03			03	01273s
17/05/	N-doped CoP	0.5 M	1.08	50.00	1.99E-	42	10	9.26E-	https://doi.org/10.1002/adm
2018		H2SO4			02			03	a.201800140
05/07/	MoP@HCC	0.5 M	0.26			129	10	3.85E-	https://doi.org/10.1002/anie.
2018		H2SO4						02	201604315
08/11/	3D-NiCoP	0.5 M				80	10		https://doi.org/10.1007/s122
2018		H2SO4							74-018-2226-2
19/12/	S-MoP NPL	0.5 M				86	10		https://doi.org/10.1021/acsc
2018		H2SO4							atal.8b04291
19/12/	S-MoP NPL	0.5 M				104	20		https://doi.org/10.1021/acsc
2018		H2SO4							atal.8b04291
19/12/	S-MoP NPL	0.5 M				145	100		https://doi.org/10.1021/acsc
2018		H2SO4							atal.8b04291
15/02/	Ni-doped FeP	0.5 M	0.40			72	10	2.50E-	https://doi.org/10.1126/sciad
2019		H2SO4						02	v.aav6009
15/02/	Ni-doped FeP	0.5 M	0.40			89	20	5.00E-	https://doi.org/10.1126/sciad
2019		H2SO4						02	v.aav6009
15/02/	Ni-doped FeP	0.5 M	0.40			115	50	1.25E-	https://doi.org/10.1126/sciad
2019		H2SO4						01	v.aav6009
15/02/	Ni-doped FeP	0.5 M	0.40			138	100	2.50E-	https://doi.org/10.1126/sciad
2019	·	H2SO4						01	v.aav6009
15/03/	N-Co2P/CC	0.5 M	5.00			27	10	2.00E-	https://doi.org/10.1021/acsc
2019	,	H2SO4						03	atal.9b00407
20/03/	Ni5P4@Nickel	0.5 M				66	10		https://doi.org/10.1016/j.apc
2019	hydr(oxy)oxide	H2SO4							atb.2019.03.037
	· · · · · · · · · · · · · · · · · · ·	•	•						

25/02/	C-DODC 750	0.5.4	1.00			72	40	4.005	hu // h /40 4002 / II
25/03/	CoP@PC-750	0.5 M	1.00			72	10	1.00E-	https://doi.org/10.1002/smll.
2019	,	H2SO4						02	
15/04/	N-CoP/CC	0.5 M	5.00			25	10	2.00E-	https://doi.org/10.1016/j.apc
2019		H2SO4						03	
02/09/	LC-WP	0.5 M	0.21	200.00	3.60E-	105	1	4.69E-	https://doi.org/10.1016/j.apc
2019		H2SO4			01			03	atb.2019.118358
02/09/	LC-WP	0.5 M	0.21			170	10	4.69E-	https://doi.org/10.1016/j.ele
2019		H2SO4						02	ctacta.2019.134798
02/09/	LC-WP	0.5 M	0.21			300	81	3.78E-	https://doi.org/10.1016/j.ele
2019		H2SO4						01	ctacta.2019.134798
02/11/	MoP@NPCS	0.5 M	0.25			113	10	4.00E-	https://doi.org/10.1016/j.apc
2019		H2SO4						02	, , ,
08/11/	MoP@NC	0.5 M	0.28			96	10	3.57E-	https://doi.org/10.1039/C8N
2019		H2SO4						02	
25/04/	CP@NCNT)	0.5 M	0.27			94	10	3.70E-	https://doi.org/10.1016/j.jec
2020	,	H2SO4						02	
25/04/	CP@NCNT)	0.5 M	0.27			174	50	1.85E-	https://doi.org/10.1016/j.jec
2020	,	H2SO4						01	hem.2020.04.005
06/10/	hierarchical	0.5 M				83	10		https://doi.org/10.1016/j.apc
2020	porous Ni12P5-	H2SO4							atb.2020.119609
	Ni2P								333.2020.223000
15/10/	NiCoP/NPC	0.5 M				108	10		https://doi.org/10.1016/j.apc
2020	11100171110	H2SO4				100	10		atb.2020.119635
17/11/	Co2P/Ni2P	0.5 M				46	20		https://doi.org/10.1016/j.mt
2020	nanohybrid	H2SO4				.0	20		phys.2020.100314
08/02/	P-MoP/Mo2N	0.5 M		100.00	6.50E-	89	10		https://doi.org/10.1002/anie.
2021	1 10101 / 1010210	H2SO4		100.00	0.302	03	10		202016102
24/02/	Ni-graphene-	0.5 M	11.25	100.00	1.00E+	12	10	8.89E-	https://doi.org/10.1021/acsn
2021	CNTs-Ni2P-	H2SO4	11.23	100.00	00	12	10	0.831	ano.1c00647
2021	CuP2 heterostr	112304						04	4110.1200047
	ucture								
24/02/	Ni-graphene-	0.5 M	11.25	142.00	2.00E+	124	100	8.89E-	https://doi.org/10.1021/acsn
24/02/	CNTs-Ni2P-	H2SO4	11.23	142.00	00	124	100	0.09E-	ano.1c00647
2021	CIVIS-IVIZP-	п2304			00			03	a110.1c00047

	CuP2 heterostr								
	ucture								
24/02/	Ni-graphene-	0.5 M	11.25	174.00	3.00E+	174	200	1.78E-	https://doi.org/10.1021/acsn
2021	CNTs-Ni2P-	H2SO4			00			02	ano.1c00647
	CuP2 heterostr								
	ucture								
27/03/	CoP@N,S-3D-	0.5 M	0.20			118	10	5.00E-	https://doi.org/10.1016/j.ele
2021	GN	H2SO4						02	ctacta.2021.138262
27/03/	CoP@3D-GN	0.5 M	0.20			198	10	5.00E-	https://doi.org/10.1016/j.ele
2021		H2SO4						02	ctacta.2021.138262

 Table S2. Transition metal sulfide hydrogen evolution reaction electrocatalyst activities.

Date of publica tion	Catalyst	Electrolyte	Loading [mg cm ⁻²]	Overpotenti al for TOF [mV] vs RHE	TOF [H ₂ s ⁻¹ site ⁻¹]	Overpotential to achieve geometric current density and mass activity [mV] vs RHE	Geometric current density [mA cm ⁻²]	Mass activity [A mg ⁻¹]	DOI
06/07/	UHV MoS2 -	0.5 M	0.00	150	9.37E+	150	0	3.30E+0	https://doi.org/10.1126/scien
2007	edges	H2SO4			00			0	ce.1141483
06/07/	UHV MoS2 - all	0.5 M		150	2.70E+				https://doi.org/10.1126/scien
2007	sites	H2SO4			00				ce.1141483
14/04/	Amorphous	0.5 M				242	10		https://doi.org/10.1039/C1SC
2011	molybdenum	H2SO4							00117E
	sulfide								
21/04/	MoS2 RGO	0.5 M	0.28	200	1.00E-	200	33	1.18E-	https://doi.org/10.1021/ja20
2011		H2SO4			01			01	1269b
21/04/	MoS2 RGO	0.5 M	0.28	250	3.00E-	250	101	3.60E-	https://doi.org/10.1021/ja20
2011		H2SO4			01			01	1269b

14/09/	Core–shell	0.5 M				254	10		https://doi.org/10.1021/nl20
2011	MoO3-	H2SO4							20476
	MoS2 Nanowir								
	es								
14/09/	Core-shell	0.5 M		272	4.00E+	272	20		https://doi.org/10.1021/nl20
2011	MoO3-	H2SO4			00				20476
	MoS2 Nanowir								
	es								
10/08/	Amorphous	0.5 M		200	3.00E-	200	10		https://doi.org/10.1021/cs30
2012	Molybdenum	H2SO4			01				0451q
	Sulfide								
07/10/	DG MoS2	0.5 M				206	10		https://doi.org/10.1038/nma
2012		H2SO4	0.01		1 225				t3439
12/02/	MoS2	0.5 M	0.01	0	1.30E-	300	1	7.06E-	https://doi.org/10.1021/nl40
2013		H2SO4			02			02	0258t
11/04/	MoSx/GP	0.5 M				194	10		https://doi.org/10.1039/C3C
2013	14 62 / : 1	H2SO4				475			C41945B
11/04/	MoS2/piranha	0.5 M				175	6		https://doi.org/10.1039/C3C
2013	GP	H2SO4				454	40		C41945B
11/04/	MoS2/piranha	0.5 M				154	10		https://doi.org/10.1039/C3C
2013	GP	H2SO4	0.00	200	7.605	200	12	7.675	C41945B
06/08/	Electro	1.0 M	0.02	200	7.60E-	200	12	7.67E-	https://doi.org/10.1021/cs40
2013	deposited	H2SO4			01			01	0441u
06/00/	MoS2+x Electro	1.0 M	0.03	250	1 205	250	100	1 215.0	https://dei.org/10.1021/cs.10
06/08/		_	0.02	250	1.30E+	250	196	1.31E+0	https://doi.org/10.1021/cs40
2013	deposited	H2SO4			01			1	0441u
21/11/	MoS2+x	0.5 M	0.05	150	1.55E+	201	10	2.00E-	https://dei.org/10.1031/pl40
21/11/ 2013	1T basal plane	H2SO4	0.05	150	1.55E+ 00	201	10	2.00E-	https://doi.org/10.1021/nl40 3661s
	1T becal plans		0.05	100		217	20		
21/11/2013	1T basal plane	0.5 M	0.05	180	8.72E+	217	20	4.00E-	https://doi.org/10.1021/nl40 3661s
	Lithiatad	H2SO4	0.13		00	1.00	40	01	
03/12/	Lithiated	0.5 M	0.12			168	10	8.33E-	https://doi.org/10.1073/pnas
2013	ALDMoS2t	H2SO4						02	.1316792110

03/12/	Lithiated	0.5 M	0.12			216	100	8.33E-	https://doi.org/10.1073/pnas
2013	ALDMoS2t	H2SO4	0.12			210	100	0.552	.1316792110
03/12/	lithiated	0.5 M	0.02			200	7	3.06E-	https://doi.org/10.1073/pnas
2013	MoS2on MPGC	H2SO4	0.02			200	,	01	.1316792110
03/12/	lithiated	0.5 M	0.02			113	0	4.55E-	https://doi.org/10.1073/pnas
2013	MoS2on MPGC	H2SO4	0.02			110		03	.1316792110
26/01/	Mo3S13 HOPG	0.5 M	0.00	200	3.12E+	200	0	2.58E+0	https://doi.org/10.1038/nche
2014		H2SO4			00			0	m.1853
26/01/	Mo3S13 HOPG	0.5 M	0.00	250	2.15E+	250	0	1.77E+0	
2014		H2SO4			01			1	m.1853
26/01/	Mo3S13 GP	0.5 M	0.01	214	1.21E+	214	10	1.00E+0	
2014		H2SO4			00			0	m.1853
26/01/	Mo3S13 GP	0.5 M	0.02	196	6.08E-	196	10	5.00E-	https://doi.org/10.1038/nche
2014	·	H2SO4			01			01	
26/01/	Mo3S13 GP	0.5 M	0.05	183	2.44E-	183	10	2.00E-	https://doi.org/10.1038/nche
2014		H2SO4			01			01	m.1853
26/01/	Mo3S13 GP	0.5 M	0.10	176	1.21E-	176	10	1.00E-	https://doi.org/10.1038/nche
2014		H2SO4			01			01	m.1853
06/02/	MoSx /N-CNT	0.5 M	0.10	200	3.50E+	110	10	9.80E-	https://doi.org/10.1021/nl40
2014		H2SO4			00			02	4108a
09/04/	1T MoS2	0.5 M	3.40			118	10	2.94E-	https://doi.org/10.1021/nn50
2014		H2SO4						03	0959v
09/04/	1T MoS2	0.5 M	3.40			200	200	5.88E-	https://doi.org/10.1021/nn50
2014		H2SO4						02	0959v
08/10/	Mo3S13	0.5 M				149	10		ttps://doi.org/10.1021/cs500
2014	anodized GP	H2SO4							923c
09/01/	ALD MoS2 film	0.5 M		200	1.45E+	200	1		https://doi.org/10.1021/la50
2015		H2SO4			00				4162u
09/01/	ALD MoS2 film	0.5 M		215	3.00E+				https://doi.org/10.1021/la50
2015		H2SO4			00				4162u
03/11/	1T@2H-MoS2	0.5 M	0.32			64	10	3.13E-	https://doi.org/10.1039/C5T
2015		H2SO4						02	A08520A

09/11/	SV-MoS2	0.5 M		0	3.10E-				https://doi.org/10.1038/nma
2015		H2SO4			01				t4465
09/11/	SV-MoS2	0.5 M		50	9.88E-	170	10		https://doi.org/10.1038/nma
2015		H2SO4			01				t4465
09/11/	SV-MoS2	0.5 M		100	5.42E+				https://doi.org/10.1038/nma
2015		H2SO4			00				t4465
09/11/	SV-MoS2	0.5 M		150	1.79E+				https://doi.org/10.1038/nma
2015		H2SO4			01				t4465
09/11/	V-MoS2	0.5 M		50	2.78E-	250	10		https://doi.org/10.1038/nma
2015		H2SO4			01				t4465
09/11/	V-MoS2	0.5 M		100	9.03E-				https://doi.org/10.1038/nma
2015		H2SO4			01				t4465
09/11/	V-MoS2	0.5 M		150	3.32E+				https://doi.org/10.1038/nma
2015		H2SO4			00				t4465
09/11/	S-MoS2	0.5 M		237	1.01E+				https://doi.org/10.1038/nma
2015		H2SO4			00				t4465
09/11/	S-MoS2	0.5 M		297	5.00E+				https://doi.org/10.1038/nma
2015		H2SO4			00				t4465
09/11/	MoS2	0.5 M		248	1.00E+				https://doi.org/10.1038/nma
2015		H2SO4			00				t4465
09/11/	MoS2	0.5 M		316	5.01E+				https://doi.org/10.1038/nma
2015		H2SO4			00				t4465
25/04/	MoS2/N-RGO-	0.5 M	0.14			56	10	7.14E-	https://doi.org/10.1002/aen
2016	180	H2SO4						02	m.201600116
15/12/	MoS2 - edge	0.5 M		0	7.50E+				https://doi.org/10.1021/jacs.
2016	sites	H2SO4			00				6b05940
15/12/	MoS2 - sulfur	0.5 M		0	3.20E+				https://doi.org/10.1021/jacs.
2016	vacancies	H2SO4			00				6b05940
15/12/	MoS2 - grain	0.5 M		0	1.00E-				https://doi.org/10.1021/jacs.
2016	boundaries	H2SO4			01				6b05940

15/12/	7% densities	0.5 M				163	10		https://doi.org/10.1021/jacs.
2016	of sulfur	H2SO4				103	10		6b05940
2010	vacancies	112304							0003340
15/12/	10% densities	0.5 M				187	10		https://doi.org/10.1021/jacs.
2016	of sulfur	H2SO4				107	10		6b05940
2010	vacancies	П2304							6005940
15/12/	12% densities	0.5 M				201	10		https://dei.org/10.1031/ioss
15/12/						261	10		https://doi.org/10.1021/jacs.
2016	of sulfur	H2SO4							6b05940
45/40/	vacancies	0.5.4				204	40		111 // // // // // // // // // // // //
15/12/	14% densities	0.5 M				304	10		https://doi.org/10.1021/jacs.
2016	of sulfur	H2SO4							6b05940
4=/40/	vacancies	0.5.4							111 // // // // // // // // // // // //
15/12/	4% densities	0.5 M				325	10		https://doi.org/10.1021/jacs.
2016	of sulfur	H2SO4							6b05940
	vacancies								
15/12/	2% densities	0.5 M				366	10		https://doi.org/10.1021/jacs.
2016	of sulfur	H2SO4							6b05940
	vacancies								
02/03/	P-doped MoS2	0.5 M	0.32	100	1.40E+	43	10	3.13E-	,
2017	(P3)	H2SO4			00			02	07
07/03/	MoS2 nanowall	0.5 M	0.88			95	10	1.14E-	https://doi.org/10.1007/s122
2017		H2SO4						02	74-017-1421-x
07/03/	MoS2 nanowall	0.5 M	0.88			300	311	3.53E-	https://doi.org/10.1007/s122
2017		H2SO4						01	74-017-1421-x
12/04/	MoS2 foam	0.5 M	0.50			210	10	2.00E-	https://doi.org/10.1038/nco
2017		H2SO4						02	mms14430
12/04/	Co-MoS2 foam	0.5 M	0.50			156	10	2.00E-	https://doi.org/10.1038/nco
2017		H2SO4						02	mms14430
24/04/	MoS2/Ti3C2-	0.5 M	0.40			135	10		https://doi.org/10.1002/adm
2017	MXene@C	H2SO4							a.201607017
08/05/	1TMoS2/SWNT	0.5 M				108	10		https://doi.org/10.1021/acs.c
2017		H2SO4							hemmater.7b00446

02/00/	N'C2 /NA - C2 LINI	0.5.14	0.20			225	40	F 00F	hu // h.' /40 4024 /
03/08/	NiS2/MoS2 HN	0.5 M	0.20			235	10	5.00E-	https://doi.org/10.1021/acsc
2017	W	H2SO4						02	atal.7b02225
18/01/	MoS2/HG	0.5 M	0.13	220	7.80E+	124	10	7.87E-	https://doi.org/10.1021/acsc
2018		H2SO4			00			02	atal.7b03316
07/02/	MoSx polymer	1.0 M	0.04	200	1.30E+	211	1	1.43E-	https://doi.org/10.1021/acsa
2018	brush	H2SO4			00			02	mi.7b16679
	composite								
07/02/	MoSx polymer	1.0 M	0.04	250	4.90E+				https://doi.org/10.1021/acsa
2018	brush	H2SO4			00				mi.7b16679
	composite								
18/03/	Co-MoS2-0.5	0.5 M	2.00			60	10	5.00E-	https://doi.org/10.1039/C8C
2018	00 11100_ 010	H2SO4						03	•
20/03/	1T-MoS2	0.5 M	0.29	200	2.50E-	76	10	3.51E-	https://doi.org/10.1007/s122
2018	11 141032	H2SO4	0.23	200	01	, 0	10	02	74-018-2026-8
20/03/	1T-MoS2	0.5 M	0.29		01	164	100	3.51E-	https://doi.org/10.1007/s122
20/03/	11-101032	H2SO4	0.23			104	100	3.51L- 01	_
02/04/	1T'-MoS2	0.5 M				400	607	01	https://doi.org/10.1038/s415
	11 -101052					400	607		57-018-0035-6
2018	011.14.00	H2SO4				400			
02/04/	2H-MoS2	0.5 M				400	43		https://doi.org/10.1038/s415
2018		H2SO4							57-018-0035-6
02/04/	1T'-MoS2	0.5 M				175	10		https://doi.org/10.1038/s415
2018		H2SO4							57-018-0035-6
02/04/	1T'-MoS2	0.5 M				400	607		https://doi.org/10.1038/s415
2018		H2SO4							57-018-0035-6
17/01/	MoS2/Mo2C	0.5 M	0.30			227	1000	3.33E+0	https://doi.org/10.1038/s414
2019		H2SO4						0	67-018-07792-9
23/01/	1T-MoS2	0.5 M	1.70			151	10	5.88E-	https://doi.org/10.1016/j.apc
2019		H2SO4						03	atb.2019.01.062
01/03/	L-MoS2	0.5 M	0.20	250	7.67E+	178	10	5.00E-	https://doi.org/10.1021/acss
2019		H2SO4	0.20	230	00	1,0		02	uschemeng.8b06717
01/03/	P-MoS2	0.5 M	0.20	250	4.19E-	256	10	5.00E-	https://doi.org/10.1021/acss
2019	F-IVIU3Z	H2SO4	0.20	230	4.196-	230	10	02	uschemeng.8b06717
2019		п2304			01			02	uscheilleng.8000/1/

05/40/	V d d \$4 . C2	0.5.14	0.50			101	40	2.005	1.11 · · · // 1.1 · · · · /40 4046/1 · · · ·
05/10/	V-doped MoS2	0.5 M	0.50			194	10	2.00E-	https://doi.org/10.1016/j.apc
2019		H2SO4						02	
02/11/	MoS2@NSCS	0.5 M	0.25			158	10	4.00E-	, ,, ,, ,, ,, ,,
2019		H2SO4						02	
06/11/	N-MoS2/CN	0.5 M	0.29	114	3.62E-	114	10		https://doi.org/10.1021/jacs.
2019		H2SO4			01				9b09932
19/11/	Co1 1T-MoS2	0.5 M	0.07	100	7.82E+	42	10	1.43E-	https://doi.org/10.1038/s414
2019		H2SO4			00			01	67-019-12997-7
01/12/	1T-2H MoS2	0.5 M	0.29			79	1	3.51E-	https://doi.org/10.1021/acsa
2020		H2SO4						03	mi.0c16537
01/12/	1T-2H MoS2	0.5 M	0.29	150	1.51E+	157	10	3.51E-	https://doi.org/10.1021/acsa
2020		H2SO4			02			02	mi.0c16537
01/12/	1T-2H MoS2	0.5 M	0.29			211	100	3.51E-	https://doi.org/10.1021/acsa
2020		H2SO4						01	mi.0c16537
01/04/	V0.05Mo0.95S	0.5 M	0.26			156	10	3.85E-	https://doi.org/10.1016/j.cej.
2021	2	H2SO4						02	2020.128158
05/05/	MoS2-	0.5 M	0.38	150	1.28E+	98	10	2.67E-	https://doi.org/10.1016/j.apc
2021	Ti3C2 MXene	H2SO4			00			02	• • •
05/05/	MoS2-	0.5 M	0.38	200	2.60E+				https://doi.org/10.1016/j.apc
2021	Ti3C2 MXene	H2SO4			00				atb.2019.04.028
12/11/	1T-MoS2@Ti	0.5 M	0.10			230	10	1.00E-	https://doi.org/10.1016/j.jec
2021		H2SO4						01	hem.2021.10.031
12/11/	1T-	0.5 M	0.30			146	10	3.33E-	https://doi.org/10.1016/j.jec
2021	MoS2/TiO2-x	H2SO4						02	hem.2021.10.031
	@Ti							-	
22/04/	Frenkel-	0.5 M				164	10		https://doi.org/10.1038/s414
2022	defected	H2SO4							67-022-29929-7
	monolayer								0, 011 13010 1
	MoS2								
22/04/	pristine MoS2	0.5 M				358	10		https://doi.org/10.1038/s414
2022		H2SO4				330			67-022-29929-7
	1	1	1						-: -== .

Table S3. Transition metal carbide hydrogen evolution reaction electrocatalyst activities.

Date of publicat ion	Catalyst	Electrolyte	Loading [mg cm ⁻²]	Overpotenti al for TOF [mV] vs RHE	TOF [H ₂ s ⁻¹ site ⁻¹]	Overpotential to achieve geometric current density and mass activity [mV] vs RHE	Geometric current density [mA cm ⁻²]	Mass activity [A mg ⁻¹]	DOI
09/11/2 012	Mo2C	1 M H2SO4	1.40			210	10	7.14E- 03	https://doi.org/10.1002/anie. 201207111
31/01/2 013	Mo2C/CNT	1 M HClO4	2.00			152	10	5.00E- 03	https://doi.org/10.1039/C2EE 23891H
17/10/2 013	np-Mo2C NW	0.5 M H2SO4	0.21			200	60	2.86E- 01	https://doi.org/10.1039/C3EE 42441C
23/05/2 014	MoxC/Ni-30- 725-5	0.5 M H2SO4	38.40	250	8.60E- 01	250	35	9.04E- 04	https://doi.org/10.1002/cctc. 201402000
08/07/2 014	Mo2C/GCSs	0.5 M H2SO4	0.36			200	10	2.78E- 02	https://doi.org/10.1021/cs50 05294
08/07/2 014	Mo2C/GCSs	0.5 M H2SO4	0.36			150	2	5.56E- 03	https://doi.org/10.1021/cs50 05294
30/07/2 014	WP/Ti	0.5 M H2SO4	1.00			120	10	1.00E- 02	https://doi.org/10.1039/C4C C04709E
30/07/2 014	WP/Ti	0.5 M H2SO4	1.00			149	20	2.00E- 02	https://doi.org/10.1039/C4C C04709E
11/03/2 015	MoCx nano- octahedrons	0.5 M H2SO4	0.80			87	1	1.25E- 03	https://doi.org/10.1038/nco mms7512
11/03/2 015	MoCx nano- octahedrons	0.5 M H2SO4	0.80			142	10	1.25E- 02	https://doi.org/10.1038/nco mms7512
20/03/2 015	a-Mo2C	0.5 M H2SO4	0.10	200	5.00E- 01	198	10	9.80E- 02	https://doi.org/10.1039/C5T A00139K
30/06/2 015	Fe3C-GNRs	0.5 M H2SO4	0.14			49	10	7.09E- 02	https://doi.org/10.1021/acsn ano.5b02420

30/06/2	Co3C-GNRs	0.5 M	0.14			91	10	7.09E-	https://doi.org/10.1021/acsn
015	Cose Givis	H2SO4	0.11			31	10	02	ano.5b02420
30/06/2	Ni3C-GNRs	0.5 M	0.14			48	10	7.09E-	https://doi.org/10.1021/acsn
015	THIS CITE	H2SO4	0.1.			.0		02	ano.5b02420
30/06/2	Fe3C-GNRs	0.5 M	0.14			200	167	1.18E+0	https://doi.org/10.1021/acsn
015		H2SO4						0	ano.5b02420
30/06/2	Co3C-GNRs	0.5 M	0.14			200	80	5.65E-	https://doi.org/10.1021/acsn
015		H2SO4						01	ano.5b02420
30/06/2	Ni3C-GNRs	0.5 M	0.14			200	116	8.26E-	https://doi.org/10.1021/acsn
015		H2SO4						01	ano.5b02420
16/10/2	Mo2C NP	0.5 M	0.25			78	10	4.00E-	https://doi.org/10.1002/anie.
015		H2SO4						02	201506727
22/10/2	MoSx@Mo2C	0.5 M	0.21	400	1.10E+	400	146	6.85E-	https://doi.org/10.1021/acsc
015		H2SO4			00			01	atal.5b01803
22/10/2	pure Mo2C	0.5 M	0.21	400	3.70E-	400	178	8.36E-	https://doi.org/10.1021/acsc
015		H2SO4			01			01	atal.5b01803
05/11/2	β-Mo2C	0.5 M	0.75			172	10	1.33E-	https://doi.org/10.1002/anie.
015	Nanotubes	H2SO4						02	201508715
05/11/2	β-Mo2C	0.5 M	0.75			197	20	2.67E-	https://doi.org/10.1002/anie.
015	Nanotubes	H2SO4						02	201508715
01/12/2	0.27Mo2.4Ni@	0.5 M	1.10			75	10	9.09E-	https://doi.org/10.1021/jacs.
015	900	H2SO4						03	5b07924
01/04/2	Mo2C@NPC/N	0.5 M	0.14			34	10	7.14E-	https://doi.org/10.1038/nco
016	PRGO	H2SO4						02	mms11204
22/11/2	Mo2C/NCF	0.5 M	0.28			85	1	3.57E-	https://doi.org/10.1021/acsn
016		H2SO4						03	ano.6b06580
22/11/2	Mo2C/NCF	0.5 M	0.28			144	10	3.57E-	https://doi.org/10.1021/acsn
016		H2SO4						02	ano.6b06580
19/04/2	P-Mo2C@C	0.5 M	1.30			89	10	7.69E-	https://doi.org/10.1039/C7EE
017	nanowires	H2SO4						03	00388A
13/10/2	Mo2C	0.5M	16.00			140	10	6.25E-	https://doi.org/10.1016/j.apc
017	nanobelts	H2SO4						04	atb.2017.10.025

31/10/2	Ni2PMo2C	0.5 M	0.20	200	2.78E+	154	10	5.00E-	https://doi.org/10.1021/acs.c
017	IVIZI IVIOZC	H2SO4	0.20	200	00	134	10	02	hemmater.7b03377
31/10/2	CoPMo2C	0.5 M	0.20	200	1.61E+	158	10	5.00E-	https://doi.org/10.1021/acs.c
017	CO1 10102C	H2SO4	0.20	200	00	130		02	hemmater.7b03377
31/10/2	FePMo2C	0.5 M	0.20	200	1.30E+	169	10	5.00E-	https://doi.org/10.1021/acs.c
017	101111020	H2SO4	0.20	200	00	103	10	02	
31/10/2	Mo2C	0.5 M	0.20	200	4.30E-	206	10	5.00E-	https://doi.org/10.1021/acs.c
017	141020	H2SO4	0.20	200	01	200	10	02	hemmater.7b03377
22/11/2	Mo2N-Mo2C	0.5M	0.34	100	8.60E-	157	10	2.97E-	https://doi.org/10.1002/adm
017	100214 101020	H2SO4	0.5 .	100	02	23,		02	a.201704156
03/01/2	Mo2C-carbon	0.5M	0.57			70	10	1.75E-	https://doi.org/10.1002/advs
018		H2SO4	0.07			, •		02	.201700733
02/03/2	N-doped WC	0.5M	16.00			89	10	6.25E-	https://doi.org/10.1038/s414
018		H2SO4						04	67-018-03429-z
02/03/2	N-WC	0.5 M	10.00			113	10	1.00E-	https://doi.org/10.1038/s414
018	nanoarray	H2SO4						03	67-018-03429-z
02/03/2	N-WC	0.5 M	10.00			310	200	2.00E-	https://doi.org/10.1038/s414
018	nanoarray	H2SO4						02	67-018-03429-z
05/03/2	N-Mo2C@C	0.5M	0.53			72	10	1.88E-	https://doi.org/10.1016/j.apc
018		H2SO4						02	atb.2017.10.025
05/03/2	Co-Mo2C@C	0.5M	0.53			122	10	1.88E-	https://doi.org/10.1016/j.apc
018		H2SO4						02	atb.2017.10.025
05/03/2	Fe-Mo2C@C	0.5M	0.53			129	10	1.88E-	https://doi.org/10.1016/j.apc
018		H2SO4						02	atb.2017.10.025
05/03/2	Cr-Mo2C@C	0.5M	0.53			147	10	1.88E-	https://doi.org/10.1016/j.apc
018		H2SO4						02	atb.2017.10.025
24/05/2	Ni/WC	0.5M	0.70			52	10	1.43E-	https://doi.org/10.1039/C8EE
018		H2SO4						02	01129J
10/06/2	W-C single	0.5M	0.41	52	1.00E+	105	10	2.45E-	https://doi.org/10.1002/adm
018	atom catalyst	H2SO4			00			02	a.201800396
01/09/2	MoS2/Ti3C2Tx	0.5M	0.28			152	10	3.53E-	https://doi.org/10.1016/j.apc
018		H2SO4						02	atb.2018.08.083

22/12/2	1.4.001	0.514	4.00	2=2	0.00=	4.00	4.0	4 00=	11 // // // // // // // // // // // //
20/12/2	Mo2C-basal	0.5M	1.00	250	3.00E-	189	10	1.00E-	https://doi.org/10.1021/acsa
018	functionalized	H2SO4			03			02	em.7b00054
21/12/2	Co-	0.5M	0.83			143	10	1.20E-	https://doi.org/10.1016/j.nan
018	carbon@Mo2C	H2SO4						02	
17/01/2	MoS2/Mo2C	0.5M	0.30			220	1000	3.33E+0	https://doi.org/10.1038/s414
019		H2SO4						0	67-018-07792-9
26/01/2	Ti3C2Ox	0.5M	0.40			190	10	2.50E-	https://doi.org/10.1002/cssc.
019		H2SO4						02	201803032
06/05/2	Fe3W3C	0.5 M	0.82	100	2.30E-	57	10	1.22E-	https://doi.org/10.1016/j.nan
019	NRs/RGO	H2SO4			01			02	oen.2019.05.009
06/05/2	WC NRs/RGO	0.5 M	0.82	100	2.00E-	151	10	1.22E-	https://doi.org/10.1016/j.nan
019		H2SO4			02			02	oen.2019.05.009
20/09/2	Mo2C-Co	1M H2SO4	0.10	250	1.00E-	250	10	1.00E-	https://doi.org/10.1021/jacs.
019					01			01	9b08897
02/11/2	Mo2C	0.5M	0.25			132	10	4.00E-	https://doi.org/10.1016/j.apc
019		H2SO4						02	atb.2019.118352
02/11/2	Mo2C@NPCS	0.5 M	0.25			132	10	4.00E-	https://doi.org/10.1016/j.apc
019		H2SO4						02	atb.2019.118352
13/12/2	MoSe2 –Mo2C	0.5M				73	10		https://doi.org/10.1016/j.apc
019		H2SO4							atb.2019.118531
27/12/2	Mo2C-	1M HClO4	1.80			60	10	5.56E-	https://doi.org/10.1002/anie.
019	MoOx/CC							03	201914752
25/02/2	Co-doped	1M HClO4	0.39			125	10	2.55E-	https://doi.org/10.1002/adf
020	Mo2C							02	m.202000561
02/08/2	Ni/vanadium	0.5 M	2.11	150	2.40E-	111	10	4.74E-	https://doi.org/10.1002/aen
020	carbide	H2SO4			01			03	m.202002260
02/08/2	Ni/Fe3C	0.5 M	2.53			112	10	3.95E-	https://doi.org/10.1002/aen
020		H2SO4						03	m.202002260
02/08/2	Ni/vanadium	0.5 M	2.11			270	150	7.11E-	https://doi.org/10.1002/aen
020	carbide	H2SO4						02	m.202002260
02/08/2	Ni/Fe3C	0.5 M	2.53			291	150	5.93E-	https://doi.org/10.1002/aen
020		H2SO4						02	m.202002260
ll	L.		l l					1	l .

02/08/2	Ni/VC	0.5M	2.11	150	2.40E-	111	10	4.74E-	https://doi.org/10.1002/aen
020		H2SO4			01			03	m.202002260
02/08/2	Ni/Fe3C	0.5M	2.53			112	10	3.95E-	https://doi.org/10.1002/aen
020		H2SO4						03	m.202002260
24/11/2	Co-Mo2C/N-	0.5M	1.13			116	10	8.83E-	https://doi.org/10.1016/j.apc
020	doped carbon	H2SO4						03	atb.2020.119738
29/03/2	Mo2C/CFP	0.5M	2.00			56	10	5.00E-	https://doi.org/10.1039/D1N
021		H2SO4						03	R00169H
07/04/2	WC650	0.5 M	0.53			120	10	1.89E-	https://doi.org/10.1088/2632
021		H2SO4						02	-959X/abf2ad
13/11/2	β-Mo2C	0.5 M	0.41	200	3.09E+	156	100	2.46E-	https://doi.org/10.1021/acsa
021		H2SO4			00			01	nm.1c02770
22/11/2	MoC-Mo2C-	0.5M		250	1.30E+	114	10		https://doi.org/10.1038/s414
021	790 oC	H2SO4			00				67-021-27118-6
18/07/2	Ni-doped	0.5M	2.00			56	10	5.00E-	https://doi.org/10.1007/s401
022	Mo2C@CFP	H2SO4						03	45-022-0610-6

 Table S4. Platinum-based hydrogen evolution reaction electrocatalyst activities.

Date of publica tion	Catalyst	Electrolyte	Loading [mg cm ⁻²]	Overpotenti al for TOF [mV] vs RHE	TOF [H2 s ⁻¹ site ⁻¹]	Overpotential to achieve geometric current density and mass activity [mV] vs RHE	Geometric current density [mA cm ⁻²]	Mass activity [A mg ⁻¹]	TOF [H ₂ s ⁻¹ site ⁻¹] at j = 10mA cm ⁻²	DOI
05/07/ 1905	Pt on Floating	4 M HClO4	8.40E-04	1.00E-01	3.01E+0 3	0.10	1260	1.29E+03		https://doi.org/10. 1149/05801.0039e
	electrode									cst
05/07/ 1905	Pt on Floating	4 M HClO4	8.40E-04	2.00E-01	7.43E+0 3	0.20	3040	3.18E+03		https://doi.org/10. 1149/05801.0039e
1905	electrode				3					cst

	T						1			
27/08/	Pt-TiO2–Ti-	1 M HClO4	1.00E-03			32.00	10	1.00E+01		https://doi.org/10.
2015	pn+Si									1039/C5EE02188J
17/03/	400-	0.5 M	5.70E-04			27.00	10	1.75E+01		https://doi.org/10.
2017	SWNT/Pt	H2SO4								1021/acscatal.7b00
										199
30/07/	Pt-GT-1	0.5 M	1.40E-03			18.00	10	7.14E+00	7.20E+00	https://doi.org/10.
2018		H2SO4								1038/s41560-018-
										0209-x
22/11/	PtNP/OMC	0.5 M	1.10E-03			33.00	10	9.09E+00		https://doi.org/10.
2018		H2SO4								1016/j.jcat.2018.11
										.006
12/12/	Mo ₂ TiC ₂ T _x -	0.5 M	1.20E-02			30.00	10	8.33E-01		https://doi.org/10.
2018	Pt _{SA}	H2SO4								1038/s41929-018-
										0195-1
19/03/	UHV Pt NP	0.5 M	1.30E-05	1.50E-02	3.10E+0	133.00	10	7.69E+02	6.60E+03	https://doi.org/10.
2021	- Small	H2SO4			2					1021/acsenergylett
	raster									.1c00246
19/03/	UHV Pt NP	0.5 M	1.90E-05	1.50E-02	2.60E+0	115.00	10	5.26E+02	4.20E+03	https://doi.org/10.
2021	- Small	H2SO4			2					1021/acsenergylett
	raster									.1c00246
19/03/	UHV Pt NP	0.5 M	5.00E-05	1.50E-02	1.10E+0	85.00	10	2.00E+02	1.40E+03	https://doi.org/10.
2021	- Small	H2SO4			2					1021/acsenergylett
	raster									.1c00246
19/03/	UHV Pt NP	0.5 M	1.00E-04	1.50E-02	7.90E+0	61.00	10	1.00E+02	7.50E+02	https://doi.org/10.
2021	- Small	H2SO4			1					1021/acsenergylett
	raster									.1c00246
19/03/	UHV Pt NP	0.5 M	1.70E-05	1.50E-02	2.40E+0	120.00	10	5.88E+02	4.60E+03	https://doi.org/10.
2021	- Small	H2SO4			2					1021/acsenergylett
	raster									.1c00246
19/03/	UHV Pt NP	0.5 M	5.00E-05	1.50E-02	9.80E+0	83.00	10	2.00E+02	1.20E+03	https://doi.org/10.
2021	- Small	H2SO4			1					1021/acsenergylett
	raster									.1c00246

19/03/ 2021	UHV Pt NP - Small raster	0.5 M H2SO4	1.00E-04	1.50E-02	7.30E+0 1	54.00	10	1.00E+02	6.30E+02	https://doi.org/10. 1021/acsenergylett .1c00246
19/03/ 2021	UHV Pt NP - Small raster	0.5 M H2SO4	2.00E-04	1.50E-02	4.80E+0 1	41.00	10	5.00E+01	3.00E+02	https://doi.org/10. 1021/acsenergylett .1c00246
19/03/ 2021	UHV Pt NP - Small raster	0.5 M H2SO4	2.00E-04	1.50E-02	5.80E+0 1	48.00	10	5.00E+01	3.90E+02	https://doi.org/10. 1021/acsenergylett .1c00246
19/03/ 2021	UHV Pt NP - Small raster	0.5 M H2SO4	5.00E-04	1.50E-02	2.80E+0 1	35.00	10	2.00E+01	1.20E+02	https://doi.org/10. 1021/acsenergylett .1c00246
19/03/ 2021	UHV Pt NP - Small raster	0.5 M H2SO4	5.00E-04	1.50E-02	3.60E+0 1	34.00	10	2.00E+01	1.30E+02	https://doi.org/10. 1021/acsenergylett .1c00246
19/03/ 2021	UHV Pt NP - Small raster	0.5 M H2SO4	1.00E-03	1.50E-02	2.20E+0 1	29.00	10	1.00E+01	7.10E+01	https://doi.org/10. 1021/acsenergylett .1c00246
19/03/ 2021	UHV Pt NP - Small raster	0.5 M H2SO4	5.00E-03	1.50E-02	9.00E+0 0	20.00	10	2.00E+00	1.80E+01	https://doi.org/10. 1021/acsenergylett .1c00246
19/03/ 2021	UHV Pt NP - Large raster	0.5 M H2SO4	5.65E-04	1.50E-02	4.70E+0 1	24.00	10	1.77E+01	1.00E+02	https://doi.org/10. 1021/acsenergylett .1c00246
19/03/ 2021	UHV Pt NP - Large raster	0.5 M H2SO4	1.00E-03	1.50E-02	2.40E+0 1	21.00	10	1.00E+01	4.40E+01	https://doi.org/10. 1021/acsenergylett .1c00246
19/03/ 2021	UHV Pt NP - Large raster	0.5 M H2SO4	5.00E-03	1.50E-02	1.30E+0 1	16.00	10	2.00E+00	1.30E+01	https://doi.org/10. 1021/acsenergylett .1c00246
19/03/ 2021	Commercia I Pt/C	0.5 M H2SO4	5.00E-04	1.50E-02	4.00E+0 1	30.00	10	2.00E+01	1.30E+02	https://doi.org/10. 1021/acsenergylett .1c00246

19/03/	Commercia	0.5 M	1.00E-03	1.50E-02	1.70E+0	30.00	10	1.00E+01	5.50E+01	https://doi.org/10.
2021	I Pt/C	H2SO4			1					1021/acsenergylett
										.1c00246
19/03/	Commercia	0.5 M	5.00E-03	1.50E-02	5.00E+0	21.00	10	2.00E+00	8.80E+00	https://doi.org/10.
2021	I Pt/C	H2SO4			0					1021/acsenergylett
										.1c00246
19/03/	Commercia	0.5 M	5.00E-02	1.50E-02	3.00E-	21.00	10	2.00E-01	6.90E-01	https://doi.org/10.
2021	I Pt/C	H2SO4			01					1021/acsenergylett
										.1c00246
19/03/	Commercia	0.5 M	1.00E-01	1.50E-02	4.00E-	18.00	10	1.00E-01	6.00E-01	https://doi.org/10.
2021	I Pt/C	H2SO4			01					1021/acsenergylett
										.1c00246