lourt Vectorizer >> lount

- 1) Le ore rearning Data Science.
- 2) Data Science is a combination of Deep learning and Machine learning.

After Preprocessing

- 1) learning data science
- 2) data science combination deep learning machine learning

unique mords

[learning, data, science, combination, deep, machine]

İ	learning	dota	science	combination	deep	machine	000
$\overline{\bigcirc}$				O	Ø	0	
	,	1	J	,	l	1	
2)	2		1		y I	1	+ + -2
3	2	0		n at term	o matr	ix.	

> Representation of a Doc Diragle document

Document term matrix

oor -> out of nocobulary

Test data: 3 NLP needs both machine learning and deep learning.

Jest data: 3) NLP needs book machine remains.

and deep learning.

After preprocessing

nip needs machine learning deep learning

Drawbacks of count vectorizer:

- 1 lurse of dimensionality
- 2) Order is not maintained
- 3 It is not considering actual meaning of words.

TF-IDF -> londination of 2 things L> Term brequency Inverse Documents frequency

Dern frequercy = Frequercy of term't' in a document Total no. of words in that document

Data Science is a combination of Machine barning and Deep learning.

After preprocessing

data science combination machine learning deep warning

Term frequency (learning) = 2 7

$$TF(data) = \frac{1}{7}$$

I DF -> Inverse Documents frequency

Documents = Nov. of documents containing term 't'

frequency

Total no. of documents

1) NLP needs deep learning and machine learning.

@ data science contains lots of things like NLP.

Documents brequency (NLP) =
$$\frac{2}{2}$$
 = 1
DF (borning) = $\frac{1}{2}$

IPF = $log \left(\frac{1}{Documents} brequercy \right)$

= log (Jotal no. of documents No. of documents containing term't')

$$IDF(NLP) = log(1) = log(1) = 0$$

IDF (borning) =
$$\log\left(\frac{1}{2}\right) = \log^2(2)$$

1) We are learning NLP.

2) Data Science is a combination of Deep learning and Machine learning.

3) NLP needs both machine learning and deep

3) NLP needs both machine learning and deep learning.

After preprocessing

- 1 learning nip
- D'data science combination deep learning machine
- 3 np needs machine learning deep learning Unique words

	learning	nipl	data	science/	combination	deep	machine	needs
1	0	$\frac{1}{2}$ $\log\left(\frac{3}{2}\right)$		0	0	0	Ō	0
2	$\frac{2}{7}\log\left(\frac{3}{3}\right)$	0	- 10g (3)	$\frac{1}{7} \log \left(\frac{3}{1}\right)$	力109 (3)	$\frac{1}{7} \log \left(\frac{3}{2}\right)$	$\frac{1}{7}\log\left(\frac{3}{2}\right)$	6
3	$\frac{2}{6}$ $\left(\frac{3}{3}\right)$	$\sqrt{\frac{1}{6}} \log \left(\frac{3}{2}\right)$	0	0	0	$\frac{1}{6} \cos \left(\frac{3}{2} \right) $	$\frac{1}{6}\log\left(\frac{3}{2}\right)$	$\frac{1}{6}\log\left(\frac{3}{1}\right)$

1st document
TF-IDF (worning) =
$$\frac{1}{2} \times \log\left(\frac{3}{3}\right) = \frac{1}{2} \times \log(1)$$

= $\frac{1}{2} \times 0 = 0$

F-IDF -> Meightage

frequency of mored 1 => meightage of 1

word

Movie Reviews => 1) Bad Movie ~

Movie Reviews -> 1 Bad Movie ~

- 2 Amesone Movie
- 3 Fabrilous Movie ~

Drawbacks of TFIDF

- D larse of dimensionality
- 2) Order is not maintained
- 3 It is not considering actual meaning of words.

Dimitarities between C.V. and TF-IDF:

- 1) Drawbacks of both are some
- 2) When we initiate their models, the parameters used are some.

Difference between C.V. and TFIDF

Count Vectorizer -> bount

TFIDF —> Weightage