Validation

Idea: once you pick an hypothesis, use new data to estimate its true error

Assume we have picked a predictor h (e.g., by ERM rule on a \mathcal{H}_d).

Let $V = (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_{m_v}, y_{m_v})$ be a set of m_v fresh samples from \mathcal{D} and let $L_V(h) = \frac{1}{m_V} \sum_{i=1}^{m_V} \ell(h, (\mathbf{x}_i, y_i))$

Assume the loss function is in [0,1]. Then by Hoeffding inequality we have the following.

Proposition

For every $\delta \in (0,1)$, with probability $\geq 1-\delta$ (over the choice of V) we have

$$|L_V(h) - L_D(h)| \leq \sqrt{\frac{\log(2/\delta)}{2m_V}}$$

Note: possible only because we use *fresh* (new) samples...

In practice:

- we have only 1 dataset
- we split it into 2 parts:
 - training set
 - hold out or validation set

A similar approach can be used for model selection, i.e. to pick one hypothesis (or class of hypothesis, or value of a parameter) among hypothesis in several classes...

Validation for Model Selection

Assume we have $\mathcal{H} = \bigcup_{i=1}^{r} \mathcal{H}_i$

Given a training set S, let h_i be the hypothesis obtained by ERM rule from \mathcal{H}_i using S

 \Rightarrow how do we pick a final hypothesis from $\{h_1, h_2, \dots, h_r\}$?

Validation set: $V = (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_{m_v}, y_{m_v})$ be a set of *fresh* m_v samples from \mathcal{D}

 \Rightarrow choose final hypothesis (or class or value of the parameter) from $\{h_1, h_2, \dots, h_r\}$ by ERM over validation set

Assume loss function is in [0,1]. Then we have the following.

Proposition

With probability $\geq 1 - \delta$ over the choice of V we have

$$\forall h \in \{h_1,\ldots,h_r\}: |L_{\mathcal{D}}(h)-L_{\mathcal{V}}(h)| \leq \sqrt{\frac{\log(2r/\delta)}{2m_{\mathcal{V}}}}$$

Example

Model-Selection Curve

Shows the training error and validation error as a function of the complexity of the model considered

Example

Training error decreases but validation error increases ⇒ overfitting

What if we have one or more parameters with values in \mathbb{R} ?

- 1 Start with a rough grid of values
- 2 Plot the corresponding model-selection curve
- 3 Based on the curve, zoom in to the correct regime
- 4 Restart from 1) with a finer grid

Note: the empirical risk on the validation set *is not* an estimate of the true risk, in particular if r is large (i.e., we choose among many models)!

Question: how can we estimate the true risk after model selection?

Train-Validation-Test Split

Assume we have $\mathcal{H} = \bigcup_{i=1}^{r} \mathcal{H}_{i}$

Idea: instead of splitting data in 2 parts, divide into 3 parts

- 1 training set: used to learn the best model h_i from each \mathcal{H}_i
- 2 validation set: used to pick one hypothesis h from $\{h_1, h_2, \ldots, h_r\}$
- 3 test set: used to estimate the true risk $L_{\mathcal{D}}(h)$
- ⇒ the estimate from the test set has the guarantees provided by the proposition on estimate of $L_{\mathcal{D}}(h)$ for 1 class

Note: / you was volidation to pick the value of a parameter:

you have the best model for the piven value value trainer valid.

• the test set is not involved in the choice of h

- if after using the test set to estimate $L_{\mathcal{D}}(h)$ we decide to choose another hypothesis (because we have seen the estimate of $L_{\mathcal{D}}(h)$ from the test set...)
 - \Rightarrow we cannot use the test set again to estimate $L_{\mathcal{D}}(h)!$

k-Fold Cross Validation

When data is not plentiful, we cannot afford to use a *fresh* validation set \Rightarrow cross validation

- \Rightarrow k-fold cross validation:
 - 1 partition (training) set into k folds of size m/k
 - 2 for each fold:
 - train on union of other folds
 - estimate error (for learned hypothesis) from the fold
 - 3 estimate of the true error = average of the estimated errors above

Leave-one-out cross validation: k = m

Often cross validation is used for model selection

 at the end, the final hypothesis is obtained from training on the entire training set

k-Fold Cross Validation for Model Selection

```
input:
      training set S = (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)
      set of parameter values \Theta
      learning algorithm A
      integer k
partition S into S_1, S_2, \ldots, S_k
foreach \theta \in \Theta
      for i = 1 \dots k
            h_{i,\theta} = A(S \setminus S_i;\theta)
      \operatorname{error}(\theta) = \frac{1}{k} \sum_{i=1}^{k} L_{S_i}(h_{i,\theta})
output
  \theta^* = \operatorname{argmin}_{\theta} [\operatorname{error}(\theta)]
   h_{\theta^{\star}} = A(S; \theta^{\star})
```

What if learning fails?

You use training data S and validation to pick a model h_S ... everything looks good! But then, on test set results are bad...

What can we do?

Need to understand where the error comes from!

Two cases:

- $L_S(h_s)$ is large
- $L_S(h_s)$ is small

$$L_S(h_s)$$
 is large

Let $h^* \in \arg\min_{h \in \mathcal{H}} L_{\mathcal{D}}(h)$.

Note that:

$$L_{S}(h_{S}) = (L_{S}(h_{S}) - L_{S}(h^{*})) + (L_{S}(h^{*}) - L_{D}(h^{*})) + L_{D}(h^{*})$$

and

- $L_S(h_S) L_S(h^*) \leqslant 0$
- $L_S(h^*) \approx L_D(h^*)$

Therefore:

 $L_S(h_S)$ large $\Rightarrow L_D(h^*)$ is large \Rightarrow approximation error is large

$$L_S(h_S)$$
 is small

Need to understand if $L_{\mathcal{D}}(h^*)$ is large or not!

How?

Learning curves: plot of training error and validation error when we run our algorithms on prefixes of the data of increasing size m

Case 1

 \Rightarrow There is no evidence that the approximation error of ${\cal H}$ is good (i.e., that is small)

Case 2

 \Rightarrow $\mathcal H$ may have a good approximation error but maybe we do not have enough data

Summarizing

Some potential steps to follow if learning fails:

- if you have parameters to tune, plot model-selection curve to make sure they are tuned appropriately
- if training error is excessively large consider:
 - enlarge \mathcal{H}
 - change ${\cal H}$
 - change feature representation of the data
- if training error is small, use learning curves to understand whether problem is approximation error (or estimation error)
 - if approximation error seems small:
 - get more data
 - reduce complexity of H
 - if approximation error seems large:
 - change H
 - change feature representation of the data

Machine Learning

Regularization and Feature Selection

Fabio Vandin

November 13th, 2023

Learning Model

- A: learning algorithm for a machine learning task
- S: m i.i.d. pairs $z_i = (x_i, y_i), i = 1, ..., m$, with $z_i \in Z = \mathcal{X} \times Y$, generated from distribution \mathcal{D} \Rightarrow training set available to A to produce A(S);
- \mathcal{H} : the hypothesis (or model) set for A
- loss function: $\ell(h,(x,y))$, $\ell:\mathcal{H}\times Z\to\mathbb{R}^+$
- $L_S(h)$: empirical risk or training error of hypothesis $h \in \mathcal{H}$

$$L_{S}(h) = \frac{1}{m} \sum_{i=1}^{m} \ell(h, z_i)$$

• $L_{\mathcal{D}}(h)$: true risk or generalization error of hypothesis $h \in \mathcal{H}$:

$$L_{\mathcal{D}}(h) = \mathbb{E}_{z \in \mathcal{D}}[\ell(h, z)]$$

Learning Paradigms

We would like A to produce A(S) such that $L_{\mathcal{D}}(A(S))$ is *small*, or at least close to the smallest generalization error $L_{\mathcal{D}}(h^*)$ achievable by the "best" hypothesis h^* in \mathcal{H} :

$$h^* = \arg\min_{h \in \mathcal{H}} L_{\mathcal{D}}(h)$$

We have seen a learning paradigm: Empirical Risk Minimization

We will now see another learning paradigm...

Regularized Loss Minimization

Assume h is defined by a vector $\mathbf{w} = (w_1, \dots, w_d)^T \in \mathbb{R}^d$ (e.g., linear models)

Regularization function $R: \mathbb{R}^d \to \mathbb{R}$

Regularized Loss Minimization (RLM): pick h obtained as

$$\underset{\mathbf{w}}{\operatorname{arg\,min}}\left(L_{S}(\mathbf{w})+R(\mathbf{w})\right)$$

Intuition: $R(\mathbf{w})$ is a "measure of complexity" of hypothesis h defined by \mathbf{w}

⇒ regularization balances between low empirical risk and "less complex" hypotheses

We will see some of the most common regularization function

ℓ_1 Regularization

Regularization function: $R(\mathbf{w}) = \lambda ||\mathbf{w}||_1$

- $\lambda \in \mathbb{R}, \lambda > 0$
- ℓ_1 norm: $||\mathbf{w}||_1 = \sum_{i=1}^d |w_i|$

Therefore the learning rule is: pick

$$A(S) = \arg\min_{\mathbf{w}} \left(L_S(\mathbf{w}) + \lambda ||\mathbf{w}||_1 \right)$$

Intuition:

- |w| | measures the "complexity" of hypothesis defined by w
- λ regulates the tradeoff between the empirical risk $(L_S(\mathbf{w}))$ or overfitting and the complexity $(||\mathbf{w}||_1)$ of the model we pick

LASSO

Linear regression with squared loss $+ \ell_1$ regularization \Rightarrow LASSO (least absolute shrinkage and selection operator)

LASSO: pick

$$\mathbf{w} = \arg\min_{\mathbf{w}} \lambda ||\mathbf{w}||_1 + \sum_{i=1}^m (\langle \mathbf{w}, \mathbf{x}_i \rangle - y_i)^2$$

How?

Notes:

- no closed form solution!
- ℓ₁ norm is a convex function and squared loss is convex
 ⇒ problem can be solved efficiently! (true for every convex loss function)

LASSO and Sparse Solutions: Example

(Equivalent) one dimensional regression problem with squared loss:

$$\arg\min_{w\in\mathbb{R}}\left(\frac{1}{2m}\sum_{i=1}^{m}(x_iw-y_i)^2+\lambda|w|\right)$$

Is equivalent to:

$$\arg\min_{w\in\mathbb{R}} \left(\frac{1}{2} \left(\frac{1}{m} \sum_{i=1}^{m} x_i^2 \right) w^2 - \left(\frac{1}{m} \sum_{i=1}^{m} x_i y_i \right) w + \lambda |w| \right)$$

Assume for simplicity that $\frac{1}{m} \sum_{i=1}^{m} x_i^2 = 1$, and let $\sum_{i=1}^{m} x_i y_i = \langle \mathbf{x}, \mathbf{y} \rangle$.

Then the optimal solution is

$$w = \operatorname{sign}(\langle \mathbf{x}, \mathbf{y} \rangle)[\langle \mathbf{x}, \mathbf{y} \rangle / m - \lambda]_{+}$$

where $[a]_{+} = ^{(def)} \max\{a, 0\}.$

Tikhonov regularization

Regularization function: $R(\mathbf{w}) = \lambda ||\mathbf{w}||^2$

- $\lambda \in \mathbb{R}, \lambda > 0$
- ℓ_2 norm: $||\mathbf{w}||^2 = \sum_{i=1}^d w_i^2$

Therefore the *learning rule* is: pick

$$A(S) = \arg\min_{\mathbf{w}} \left(L_S(\mathbf{w}) + \lambda ||\mathbf{w}||^2 \right)$$

Intuition:

- $||\mathbf{w}||^2$ measures the "complexity" of hypothesis defined by \mathbf{w}
- λ regulates the tradeoff between the empirical risk ($L_S(\mathbf{w})$) or overfitting and the complexity ($||\mathbf{w}||^2$) of the model we pick

Ridge Regression

Linear regression with squared loss + Tikhonov regularization \Rightarrow ridge regression

Linear regression with squared loss:

- given: training set $S = ((\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m))$, with $\mathbf{x}_i \in \mathbb{R}^d$ and $y_i \in \mathbb{R}$
- want: w which minimizes empirical risk:

$$\mathbf{w} = \arg\min_{\mathbf{w}} \frac{1}{m} \sum_{i=1}^{m} (\langle \mathbf{w}, \mathbf{x}_i \rangle - y_i)^2$$

equivalently, find w which minimizes the residual sum of squares RSS(w)

$$\mathbf{w} = \arg\min_{\mathbf{w}} RSS(\mathbf{w}) = \arg\min_{\mathbf{w}} \sum_{i=1}^{m} (\langle \mathbf{w}, \mathbf{x}_i \rangle - y_i)^2$$

Linear regression: pick

$$\mathbf{w} = \arg\min_{\mathbf{w}} RSS(\mathbf{w}) = \arg\min_{\mathbf{w}} \sum_{i=1}^{m} (\langle \mathbf{w}, \mathbf{x}_i \rangle - y_i)^2$$

Ridge regression: pick

$$\mathbf{w} = \arg\min_{\mathbf{w}} \left(\lambda ||\mathbf{w}||^2 + \sum_{i=1}^{m} (\langle \mathbf{w}, \mathbf{x}_i \rangle - y_i)^2 \right)$$

RSS: Matrix Form

Let

$$\mathbf{X} = \begin{bmatrix} \cdots & \mathbf{x}_1 & \cdots \\ \cdots & \mathbf{x}_2 & \cdots \\ \cdots & \vdots & \cdots \\ \cdots & \mathbf{x}_m & \cdots \end{bmatrix}$$

X: design matrix

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$$

⇒ we have that RSS is

$$\sum_{i=1}^{m} (\langle \mathbf{w}, \mathbf{x}_i \rangle - y_i)^2 = (\mathbf{y} - \mathbf{X}\mathbf{w})^T (\mathbf{y} - \mathbf{X}\mathbf{w})$$

Ridge Regression: Matrix Form

Linear regression: pick

$$\underset{\mathbf{w}}{\operatorname{arg\,min}} (\mathbf{y} - \mathbf{X}\mathbf{w})^T (\mathbf{y} - \mathbf{X}\mathbf{w})$$

Ridge regression: pick

$$\arg\min_{\mathbf{w}} \left(\lambda ||\mathbf{w}||^2 + (\mathbf{y} - \mathbf{X}\mathbf{w})^T (\mathbf{y} - \mathbf{X}\mathbf{w}) \right)$$

Want to find w which minimizes

$$f(\mathbf{w}) = \lambda ||\mathbf{w}||^2 + (\mathbf{y} - \mathbf{X}\mathbf{w})^T (\mathbf{y} - \mathbf{X}\mathbf{w}).$$

How?

Compute gradient $\frac{\partial f(\mathbf{w})}{\partial \mathbf{w}}$ of objective function w.r.t \mathbf{w} and compare it to 0.

$$\frac{\partial f(\mathbf{w})}{\partial \mathbf{w}} = 2\lambda \mathbf{w} - 2\mathbf{X}^T (\mathbf{y} - \mathbf{X}\mathbf{w})$$

Then we need to find w such that

$$2\lambda \mathbf{w} - 2\mathbf{X}^T(\mathbf{y} - \mathbf{X}\mathbf{w}) = 0$$