# MASTER HANDBOOK OF ELECTRONIC TABLES & FORMULAS

3rd Edition BY MARTIN CLIFFORD





### MASTER HANDBOOK OF ELECTRONIC TABLES & FORMULAS-3rd Edition

### Other TAB books by the author:

No. 118 Electronics Data Handbook-Rev. 2nd Edition

No. 131 Test Instruments for Electronics

No. 628 Basic Electricity & Beginning Electronics

No. 655 Modern Electronics Math

No. 875 Microphones-How They Work & How to Use Them

No. 1202 Basic Drafting

Dedication

To Kenneth, Paul, and Jerrold

## MASTER HANDBOOK OF ELECTRONIC TABLES & FORMULAS-3rd Edition BY MARTIN CLIFFORD

TAB BOOKS Inc.

BLUE RIDGE SUMMIT, PA. 17214

### THIRD EDITION-1980

### FIRST PRINTING-APRIL 1980

### Copyright © 1965, 1972, 1980 TAB BOOKS, Inc.

### Printed in the United States of America

All rights reserved. Printed in the United States of America. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission.

### Library of Congress Cataloging in Publication Data

Clifford, Martin, 1910-

Master handbook of electronic tables & formulas.

Second ed. published in 1972 under title: Handbook of electronic tables.

Includes index.

1. Electronics—Tables, calculations, etc.

I. Title. TK7825.C56 1980 621.381'0212 80-14358

ISBN 0-8306-9943-0

ISBN 0-8306-1225-4 (pbk.)

### **Table of Contents**

|   | Introduction                                                                                                                                                                                                                                    | 9   |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1 | Resistance and Conductance Eduvatert Resistance of Two Resistors in Parallel                                                                                                                                                                    | 1   |
| 2 | Voltage and Current                                                                                                                                                                                                                             | 35  |
| 3 | Capacitive Reactance         51           Capacitive Reactance at Spot Frequencies         54           Capacitive Reactance at Spot Frequencies         54                                                                                     | .51 |
| 4 | Inductance         63           Inductance Conversions         63           Inductive Flacatance         65           Inductive Flacatance         70           LO Product or Resonance         71           LO Product or Resonance         71 | .63 |
| 5 | Impedance                                                                                                                                                                                                                                       | .75 |

| 6  | Permeability91 Permabilities of Magnetic Materials91                                                                                                                  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7  | Power         93           Watts vs. Horsepower         94           Horsepower vs. Watts         95           Horsepower and Electrical Power Equivalents         98 |
| 8  | Decibels                                                                                                                                                              |
| 9  | Sensitivity                                                                                                                                                           |
| 10 | Sound and Acoustics                                                                                                                                                   |
| 1  | Time Constants of Magnetic Tapes                                                                                                                                      |
| 2  | Television         123           TV Channels and Frequencies         124           Worldwide Televisions Standards         127                                        |
| 3  | Antennas                                                                                                                                                              |

| 1/  | Electronics149                                                             |
|-----|----------------------------------------------------------------------------|
| 17  | Electronic Units, Abbreviations and Symbols149 Electronic Abbreviations150 |
|     | Electronic Abbreviations150 Electronic Formulas160                         |
|     | Electronic Formulas160                                                     |
| 4-  | Transistors175                                                             |
| 15  | Alpha vs. Beta                                                             |
|     | Method of Testing Transistors177                                           |
|     | Transistor Resistance Diagram178                                           |
|     | Transistor Resistance178                                                   |
| 40  | Dinital Louis                                                              |
| 16  | Digital Logic                                                              |
|     | OR Gate and its Truth Table                                                |
|     | Inverter Circuit                                                           |
|     | NAND gate and its Truth Table180                                           |
|     | NOR Gate and its Truth Table180                                            |
|     | Exclusive OR Gate181                                                       |
|     | Logic Diagrams                                                             |
|     | Theorems in Boolean Algebra182                                             |
|     | Boolean Algebra183                                                         |
|     | ***                                                                        |
| 17  | Wire185                                                                    |
| • • | Diameter in Mils and Area in<br>Circular Mils of Bare Copper Wire185       |
|     | Fusing Currents of Wires185                                                |
|     | Relationship of Circular and Square Mil Area188                            |
|     | Circular Mil Area vs. Square Mil Area188                                   |
|     | Square Mil Area vs. Circular Mil Area189                                   |
|     | 0.1 0-1                                                                    |
| 18  | Color Codes                                                                |
|     | Color Code for Resistors                                                   |
|     | Color Code for Power Transformers                                          |
|     | Resistor Markings192                                                       |
|     | Crystal193                                                                 |
|     |                                                                            |
| 19  | Heat vs. Energy                                                            |
|     | neat vs. energy195                                                         |
| 20  | Thermocouples197                                                           |
| 20  | Potentials of Thermocouples197                                             |
|     | Potentials of Thermocouples197                                             |
|     | Chemical Properties199                                                     |
| 21  | Metallic Elements199                                                       |
|     | Densities of Solids and Liquids                                            |
|     | in Cubic Centimeters and Cubic Feet200                                     |
|     | Crystal Data201                                                            |
| -   | Atmospheric Levers                                                         |
| 22  | Atmospheric Layers203 Troposphere, Stratosphere and lonosphere203          |
|     | Tropospriere, Stratospriere and tonospriere203                             |

| 23 | Lissajous Patterns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 205 |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 24 | Citizens Band and Amateur Radio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 207 |
|    | Vectors210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
|    | Time Constants         226           Multiples of Units for Time Constants         226           RC Time Constants         227           RL Time Constants         230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| 27 | Angular Velocity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 233 |
|    | Conversions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
| 29 | Numbers         Z72           Numerical Prefrixes         272           Numerical Data         273           Powers of Two         274           Decimal Integers to Pure Binaries         275           Decimal to Binary-Coded Decimal (ECD) Notation         276           Decimal to Pexadecimal Conversions         278           Hexadecimal to Decimal Integer Conversions         281           Counting in Different Number Systems         282           Powers of Numbers         283           Square Roots of Numbers         286           Cube Roots of Numbers         286           Cube Roots of Numbers         287           Numbers and Reciprocals         281 | 271 |

| 30 | Mathematics                                           | .293 |
|----|-------------------------------------------------------|------|
| 00 | Circumference and Area of Circles                     |      |
|    | Right Triangle297                                     |      |
|    | Angles and Their Functions                            |      |
|    | The Ration Tan X/R and                                |      |
|    | Corresponding Values of Phase Angle θ298              |      |
|    | Trigonometric Functions                               |      |
|    | Values of π300                                        |      |
|    | Mathematical Symbols300                               |      |
|    | Common Logarithms304                                  |      |
| -  | Combata Codes and All Library                         |      |
| 31 | Symbols, Codes and Alphabets                          | .307 |
| •  | Schematic Diagram Symbols308                          |      |
|    | American Standard Code for Information Interchange309 |      |
|    | American Standard Code                                |      |
|    | for Information Interchange Chart310                  |      |
|    | System Flowchart Symbols311                           |      |
|    | International Morse Code312                           |      |
|    | Phonetic Alphabet313                                  |      |



### Introduction

Problems in electronics can be solved in a number of ways. Possibly the most common method is to use a formula and to plug in or substitute numerical values. This technique calls for some arithmetic dexterity, and, quite often, a good working knowledge of algebraic and trigonometric functions, and sometimes a bit of calculus. Aside from the work involved, the use of a formula has the disadvantage in that it supplies a single solution.

This disadvantage is overcome by the use of nomographs. A nomograph not only gives the desired solution to a problem, but also supplies the user with a fairly good number of alternate possibilities. Thus, nomographs are well-suited for the designer who is not only interested in the solution to a problem, but is confronted with the need for specifying practical and easily-obtained components. The ideal solution to a problem is not always the most practical one.

This book represents still another way of solving electronics problems. It consists of electronics data arranged in tabular form. In a few instances some arithmetic may be needed, but for the most part, if the elements of a problem are known, the answer is supplied immediately by a table.

The tables in this book are based on formulas commonly used in electronics. Many of the tables supply answers with a much higher order of accuracy than is generally needed in the solution of problems in electronics. Also, as in the case of nomographs, the tables supply a number of possible solutions, allowing the user a

choice of practical component values that may be needed for a circuit.

There is a limit to the number of electronics tables that can be prepared. Tables are easily developed when only two variables are involved. Thus, it is simple enough to set up a table for capacitors in series or for resistance vs conductance. For involved formulas it is better to use the formulas directly, or to use nomographs if these are available.

What is the purpose of having a book of tables? Its function is to save time and work. Actually, there is no single best method for problem solving. Those who must solve problems in electronics as part of their educational training or work will find it helpful to be able to have a variety of techniques at their command—solving problems by formulas, solving problems by nomographs, by using a calculator and, with the help of this book, solving problems by table.

I wish to thank the Digital Equipment Corporation, Maynard, Maschusetts for their kind permission to use their "Powers of Two" table. My thanks also go to my friend Marcus G. Scroggie and to Iliffe Books Ltd. for granting permission to use the "Decibel" table that originally appeared in his Radio Laboratory Handbook, and to Dr. Bernhard Fischer and the Macmillan Company for the use of their "Vector Conversion" table.

Martin Clifford

### Chapter 1

### **Resistance and Conductance**

### EQUIVALENT RESISTANCE—RESISTORS IN PARALLEL

Whenever two resistors are connected in parallel, the total value of the shunt combination must always be less than that of the value of the smaller unit. From a practical viewpoint, if one of the two parallel resistors has a value that is 10 or more times that of the other resistor, the equivalent value can be taken as being approximately equal to that of the smaller resistor. Use Table 1-1 to find the equivalent resistance of two resistors in narallel.

The tables shown on the following pages can also be used to find the equivalent resistance of three or more resistors in parallel if the problem is handled on a step-by-step basis. First, take any two of the resistors, and, using the Tables, find the equivalent resistance. Consider this equivalent resistance just as though it were a physical unit and combine its value with the remaining resistor, again using the Tables.

Sometimes a design problem involving resistors will yield a value that is not practical—not practical in the sense that a resistor having such a value will be unavailable. In this instance the tables can again be used to advantage. Simply locate the nearest value in the Tables and then move left to get the value of R2 and upward to get the value of R1. R1 and R2 will be standard, available resistors, which can be connected in parallel to supply the required resistance.

### □Example:

What is the equivalent resistance of two resistors in parallel, one having a value of 5.6 ohms and the other a value of 9.1 ohms?

Locate 5.6 at the left, in the column marked R2. Move across and locate the column headed by 9.1. The equivalent resistance is shown to be 3.467 ohms.

### □Example:

What two resistors in parallel will give an equivalent value of 3 ohms?

The Table shows possible combinations. You could use 3.3 and 33 ohms, or 3.6 and 18 ohms, or 3.9 and 13 ohms.

### □Example:

What is the equivalent shunt resistance of a 68-ohm resistor and a 27-ohm resistor in parallel?

Locate 6.8 ohms in R1 row. Move the decimal point one place to the right so that 6.8 becomes 68. Locate 2.7 ohms in the R2 column and consider it now as 27 ohms. These two values meet at

Table 1-1. Equivalent Resistance of Two Resistors in Parallel.

| _   |       |       |       | R1    |       |       |       |       |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| R2  | 2.7   | 3.0   | 3.3   | 3.6   | 3.9   | 4.3   | 4.7   | 5.1   |
| 2.7 |       | 1.421 | 1.485 | 1.543 | 1.595 | 1.659 | 1.715 | 1.766 |
| 3.0 |       | 1.500 | 1.571 | 1.636 | 1.695 | 1.767 | 1.831 | 1.889 |
| 3.3 |       | 1.571 | 1.650 | 1.722 | 1.788 | 1.867 | 1.939 | 2.004 |
|     | 1.543 | 1.636 | 1.722 | 1.800 | 1.872 | 1.959 | 2.039 | 2.110 |
| 3.9 | 1.595 | 1.695 | 1.788 | 1.872 | 1.950 | 2.045 | 2.131 | 2.210 |
| 4.3 | 1.659 | 1.767 | 1.857 | 1.959 | 2.045 | 2.150 | 2,246 | 2.333 |
| 4.7 | 1.715 | 1.831 | 1.939 | 2.039 | 2.131 | 2.246 | 2.350 | 2.446 |
| 5.1 | 1.766 | 1.889 | 2.004 | 2.110 | 2.210 | 2.333 | 2.446 | 2.550 |
| 5.6 | 1.822 | 1.953 | 2.076 | 2.191 | 2.299 | 2.432 | 2.555 | 2.669 |
| 6.2 | 1.881 | 2.022 | 2.154 | 2.278 | 2.394 | 2.539 | 2.673 | 2.798 |
|     |       |       |       |       |       |       |       |       |
|     | 1.933 | 2.082 | 2.222 | 2.354 | 2.479 | 2.634 | 2.779 | 2.914 |
| 7.5 | 1.986 | 2.143 | 2.292 | 2.432 | 2.566 | 2.733 | 2.889 | 3.036 |
|     | 2.031 | 2.196 | 2.353 | 2.502 | 2.643 | 2.821 | 2.988 | 3.144 |
| 9.1 | 2.082 | 2.256 | 2.422 | 2.580 | 2.730 | 2.920 | 3.099 | 3.268 |
| 10  | 2.126 | 2.308 | 2.481 | 2.647 | 2.806 | 3.007 | 3.197 | 3.377 |
| 11  | 2.168 | 2.351 | 0 500 | 0.710 | 0.070 |       |       |       |
| 12  | 2.204 | 2.400 | 2.538 | 2.712 | 2.879 | 3.092 | 3.293 | 3.484 |
| 13  | 2.236 | 2.438 | 2.588 | 2.769 | 2.943 | 3.166 | 3.377 | 3.579 |
| 15  | 2.288 | 2.500 | 2.632 | 2.819 | 3.000 | 3.231 | 3.452 | 3.663 |
| 16  | 2.310 | 2.526 | 2.705 | 2.903 | 3.095 | 3.342 | 3.579 | 3.806 |
| 10  | 2.310 | 2.320 | 2.736 | 2.939 | 3.136 | 3.389 | 3.633 | 3.867 |

Table 1-1. Equivalent Resistance of Two Resistors in Parallel.

|            |       |       |       | R1    |       |       |       |       |
|------------|-------|-------|-------|-------|-------|-------|-------|-------|
| R2         | 2.7   | 3.0   | 3.3   | 3.6   | 3.9   | 4.3   | . 4.7 | 5.1   |
| 18         | 2.348 | 2.571 | 2.789 | 3.000 | 3.205 | 3.471 | 3.727 | 3.974 |
| 20         | 2.379 | 2.609 | 2.833 | 3.051 | 3.264 | 3.539 | 3.806 | 4.064 |
| 22         | 2.405 | 2.640 | 2.870 | 3.094 | 3.313 | 3.597 | 3.873 | 4.140 |
| 24         | 2.427 | 2.667 | 2.901 | 3.130 | 3.355 | 3.647 | 3.930 | 4.206 |
| 27         | 2.455 | 2.700 | 2.941 | 3.176 | 3.408 | 3.709 | 4.003 | 4.290 |
| 30         | 2.477 | 2.737 | 2.973 | 3.214 | 3.451 | 3.761 | 4.063 | 4.359 |
| 33         | 2.496 | 2.750 | 3.000 | 3.246 | 3.488 | 3.804 | 4.114 | 4.417 |
| 36         | 2.512 | 2.769 | 3.023 | 3.273 | 3.519 | 3.841 | 4.157 | 4.467 |
| 39         | 2.525 | 2.786 | 3.043 | 3.296 | 3.545 | 3.873 | 4.195 | 4.510 |
| 43         | 2.540 | 2.804 | 3.065 | 3.322 | 3.576 | 3.909 | 4.237 | 4.559 |
| 47         | 2.553 | 2.820 | 3.083 | 3.344 | 3.601 | 3.939 | 4.273 | 4.601 |
| 51         | 2.564 | 2.833 | 3.099 | 3.363 | 3.623 | 3.966 | 4.303 | 4.636 |
| 56         | 2.576 | 2.847 | 3.116 | 3.383 | 3.646 | 3.993 | 4.336 | 4.674 |
| 62         | 2.587 | 2.862 | 3.133 | 3.402 | 3.669 | 4.021 | 4.369 | 4.712 |
| 68         | 2.597 | 2.873 | 3.147 | 3.419 | 3.688 | 4.044 | 4.396 | 4.744 |
| 75         | 2.606 | 2.885 | 3.161 | 3.435 | 3.707 | 4.067 | 4.423 | 4.775 |
| 82         | 2.614 | 2.894 | 3.172 | 3.449 | 3.723 | 4.086 | 4.445 | 4.801 |
| 91         | 2.622 | 2.904 | 3.185 | 3.463 | 3.740 | 4.106 | 4.469 | 4.829 |
| 100        | 2.629 | 2.913 | 3.195 | 3.475 | 3.754 | 4.123 | 4.489 | 4.853 |
| R2         | 5.6   | 6.2   | 6.    |       | 7.5   | 8.2   | 9.1   | 10.   |
| 2.7        | 1.822 |       |       |       |       | 2.031 | 2.082 | 2.126 |
| 3.0        | 1.953 |       |       |       |       | 2.196 | 2.256 | 2.308 |
| 3.3        | 2.076 |       |       |       |       | 2.353 | 2.422 | 2.481 |
| 3.6        | 2.191 |       |       |       |       | 2.502 | 2.580 | 2.647 |
| 3.9        | 2.299 | 2.39  | 4 2.4 | 79 2. | 566   | 2.643 | 2.730 | 2.806 |
| 4.3        | 2.432 | 2.53  | 9 2.6 | 34 2  | 733   | 2.821 | 2.920 | 3.007 |
| 4.7        | 2.555 |       |       |       |       | 2.988 | 3.099 | 3.197 |
| 5.1        | 2.669 |       |       |       |       | 3.144 | 3.268 | 3.377 |
| 5.6        | 2.800 |       |       |       |       | 3.328 | 3.467 | 3.590 |
| 6.2        | 2.942 |       |       |       |       | 3.531 | 3.688 | 3.827 |
|            | 0.071 |       |       |       |       |       |       |       |
| 6.8        | 3.071 |       |       |       |       | 3.717 | 3.892 | 4.048 |
| 7.5        | 3.206 |       |       |       |       | 3.917 | 4.111 | 4.286 |
| 8.2<br>9.1 | 3.328 |       |       |       |       | 1.100 | 4.313 | 4.505 |
|            | 3.467 |       |       |       |       | 1.313 | 4.550 | 4.764 |
| 10         | 3.590 | 3.82  | 7 4.0 | 48 4. | 286 4 | 1.505 | 4.764 | 5.000 |

Table 1-1—Equivalent Resistance of Two Resistors in Parallel (cont'd)

|     |       |       |       | R1             |                |                |                |
|-----|-------|-------|-------|----------------|----------------|----------------|----------------|
| R2  | 5.6   | 6.2   | 6.8   | 7.5            | 8.2            | 9.1            | 10.            |
| 11  | 3.711 | 3.965 | 4.202 | 4.459          | 4.698          | 4.980          | 5.238          |
| 12  | 3.818 | 4.088 | 4.340 | 4.615          | 4.871          | 5.175          | 5.455          |
| 13  | 3.914 | 4.198 | 4.465 | 4.756          | 5.028          | 5.353          | 5.652          |
| 15  | 4.078 | 4.387 | 4.679 | 5.000          | 5.302          | 5.664          | 6.000          |
| 16  | 4.148 | 4.468 | 4.772 | 5.106          | 5.421          | 5.801          | 6.154          |
| 18  | 4.271 | 4.612 | 4.935 | 5.294          | 5.634          | 6.044          | 6.429          |
| 20  | 4.375 | 4.733 | 5.075 | 5.455          | 5.816          | 6.254          | 6.667          |
| 22  | 4.464 | 4.837 | 5.194 | 5.593          | 5.974          | 6.437          | 6.875          |
| 24  | 4.541 | 4.927 | 5.299 | 5.714          | 6.112          | 6.598          | 7.059          |
| 27  | 4.638 | 5.042 | 5.432 | 5.870          | 6.290          | 6.806          | 7.297          |
| 30  | 4.719 | 5.138 | 5.543 | 6.000          | 6.440          | 6.982          | 7.500          |
| 33  | 4.788 | 5.219 | 5.638 | 6.111          | 6.568          | 7.133          | 7.674          |
| 36  | 4.846 | 5.289 | 5.720 | 6.207          | 6.679          | 7.264          | 7.826          |
| 39  | 4.897 | 5.350 | 5.790 | 6.290          | 6.775          | 7.378          | 7.959          |
| 43  | 4.955 | 5.419 | 5.871 | 6.386          | 6.887          | 7.511          | 8.113          |
|     |       |       |       |                |                |                |                |
| 47  | 5.004 | 5.477 | 5.941 | 6.468          | 6.982          | 7.624          | 8.246          |
| 51  | 5.046 | 5.528 | 6.000 | 6.538          | 7.064          | 7.722          | 8.361          |
| 56  | 5.091 | 5.582 | 6.064 | 6.614          | 7.153          | 7.828          | 8.485          |
| 62  | 5.136 | 5.636 | 6.128 | 6.691          | 7.242          | 7.935          | 8.611          |
| 68  | 5.174 | 5.682 | 6.182 | 6.755          | 7.318          | 8.026          | 8.718          |
| 75  | 5.211 | 5.727 | 6.235 | / 010          | 7 000          | 0.315          | 0.004          |
| 82  | 5.242 | 5.764 | 6.279 | 6.818          | 7.392<br>7.455 | 8.115<br>8.191 | 8.824          |
| 91  | 5.275 | 5.805 | 6.327 | 6.929          | 7.433          | 8.191          | 8.913          |
| 100 | 5.303 | 5.838 | 6.367 | 6.977          | 7.579          | 8.273          | 9.010<br>9.091 |
| _   |       |       |       |                |                |                | 9.091          |
| R2  | - 11  | 12    | 13    | 15             | 16             | 18             | 20             |
| 2.7 | 2.168 | 2.204 | 2.236 | 2.288          | 2.310          | 2.348          | 2.379          |
| 3.0 | 2.357 | 2.400 | 2.438 | 2.500          | 2.526          | 2.571          | 2.609          |
| 3.3 | 2.538 | 2.588 | 2.632 | 2.705          | 2.736          | 2.789          | 2.833          |
| 3.6 | 2.712 | 2.769 | 2.819 | 2.903          | 2.939          | 3.000          | 3.051          |
| 3.9 | 2.879 | 2.943 | 3.000 | 3.095          | 3.136          | 3.205          | 3.264          |
| 4.3 | 3.092 | 3,166 | 3.231 | 2 240          | 2 200          | 2 477          | 2 520          |
| 4.7 | 3.092 | 3.100 | 3.452 | 3.342<br>3.579 | 3.389          | 3.471<br>3.727 | 3.539          |
| 5.1 | 3.484 | 3.579 | 3.452 |                |                |                |                |
| 5.6 | 3.464 | 3.818 | 3.003 | 3.806          | 3.867          | 3.974          | 4.064          |
| 6.2 | 3.965 | 4.088 |       | 4.078          | 4.148          | 4.271          | 4.375          |
| 0.2 | 3.703 | 4.088 | 4.198 | 4.387          | 4.468          | 4.612          | 4.733          |

Table 1-1. Equivalent Resistance of Two Resistors in Parallel (cont'd)

R1

| R2  | 11             | 12     | 13             | 15     | 16     | 18     | 20     |
|-----|----------------|--------|----------------|--------|--------|--------|--------|
| 6.8 | 4 000          |        |                |        |        |        |        |
| 7.5 | 4.202<br>4.459 | 4.340  | 4.465          | 4.679  | 4.772  | 4.935  | 5.075  |
| 8.2 | 4.459          | 4.615  | 4.756          | 5.000  | 5.106  | 5.294  | 5.455  |
| 9.1 | 4.980          | 4.871  | 5.028          | 5.302  | 5.421  | 5.634  | 5.816  |
| 10  | 5.238          | 5.175  | 5.353          | 5.664  | 5.801  | 6.044  | 6.254  |
| 10  | 3.238          | 5.455  | 5.652          | 6.000  | 6.154  | 6.429  | 6.667  |
| 11  | 5.500          | 5.739  | 5.958          | 6.346  | 6.519  | 6.828  | 7.097  |
| 12  | 5.739          | 6.000  | 6.240          | 6.667  | 6.857  | 7.200  | 7.500  |
| 13  | 5.958          | 6.240  | 6.500          | 6.964  | 7.172  | 7.548  | 7.879  |
| 15  | 6.346          | 6.667  | 6.964          | 7.500  | 7.742  | 8.182  | 8.571  |
| 16  | 6.519          | 6.857  | 7.172          | 7.742  | 8.000  | 8.471  | 8.889  |
| 18  | 6.828          | 7.200  | 7.5.00         | 0.100  |        |        |        |
| 20  | 7.097          | 7.500  | 7.548<br>7.879 | 8.182  | 8.471  | 9.000  | 9.474  |
| 22  | 7.333          | 7.765  | 8.171          | 8.571  | 8.889  | 9.474  | 10.000 |
| 24  | 7.543          | 8.000  |                | 8.919  | 9.263  | 9.900  | 10.476 |
| 27  | 7.816          | 8.308  | 8.432<br>8.775 | 9.231  | 9.600  | 10.286 | 10.909 |
| .,  | 7.010          | 8.308  | 8.775          | 9.643  | 10.047 | 10.800 | 11.489 |
| 30  | 8.049          | 8.571  | 9.070          | 10.000 | 10.435 | 11.250 | 12.000 |
| 33  | 8.250          | 8.800  | 9.326          | 10.313 | 10.776 | 11.647 | 12.543 |
| 36  | 8.426          | 9.000  | 9.551          | 10.588 | 11.077 | 12.000 | 12.857 |
| 39  | 8.580          | 9.176  | 9.750          | 10.833 | 11.345 | 12.316 | 13.220 |
| 43  | 8.759          | 9.382  | 9.982          | 11.121 | 11.661 | 12.689 | 13.651 |
| 47  | 8.914          | 9.559  | 10.183         | 11.371 | 11.937 | 13.015 | 14.030 |
| 51  | 9.048          | 9.714  | 10.359         | 11.591 | 12,179 | 13.304 | 14.366 |
| 56  | 9.194          | 9.882  | 10.551         | 11.831 | 12.444 | 13.622 | 14.737 |
| 62  | 9.342          | 10.054 | 10.747         | 12.078 | 12.718 | 13.950 | 15.122 |
| 68  | 9.468          | 10.200 | 10.914         | 12.289 | 12.952 | 14.233 | 15.455 |
| 75  | 9.593          | 10.345 | 11.080         | 12.500 | 13.187 | 14.516 | 15.789 |
| 82  | 9.699          | 10.468 | 11.221         | 12.680 | 13.388 | 14.760 | 16.078 |
| 91  | 9.814          | 10.602 | 11.375         | 12.877 | 13.607 | 15.028 | 16.396 |
|     |                | 10.714 |                | 13.043 |        |        |        |

Table 1-1. Equivalent Resistance of Two Resistors in Parallel (cont'd)

|          |         |                  |                  | Rı               |        |                  |                |                |
|----------|---------|------------------|------------------|------------------|--------|------------------|----------------|----------------|
| R        | 2 22    | 24               | 27               | 30               | 33     | 36               | 39             | 43             |
| 2.7      |         |                  | 2.455            |                  | 2.496  | 2.512            | 2.525          | 2.540          |
| 3.0      |         |                  | 2.700            |                  | 2.750  | 2.769            | 2.786          | 2.804          |
| 3.3      |         |                  | 2.941            |                  | 3.000  | 3.023            | 3.043          | 3.065          |
| 3.6      |         |                  |                  |                  | 3.246  | 3.273            | 3.296          | 3.322          |
| 3.9      | 3.313   | 3.355            | 3.408            | 3.451            | 3.488  | 3.519            | 3.545          | 3.576          |
| 4.3      | 3 3.597 | 3,647            | 3.709            | 3.761            | 3.804  | 3.841            | 0.070          |                |
| 4.7      |         | 3.930            | 4.003            |                  | 4.114  | 4.157            | 3.873<br>4.195 | 3.909<br>4.237 |
| 5.       |         | 4.206            | 4.290            |                  | 4.417  | 4.467            | 4.193          | 4.237          |
| 5.6      |         | 4.541            | 4.638            |                  | 4.788  | 4.846            | 4.897          | 4.955          |
| 6.3      |         | 4.927            | 5.042            |                  | 5.219  | 5.289            | 5.350          | 5.419          |
|          |         |                  |                  | 01.700           | 3.217  | 5.207            | 3.330          | J.417          |
| 6.8      | 3 5.194 | 5.299            | 5.432            | 5.543            | 5.638  | 5.720            | 5.790          | 5.871          |
| 7.5      |         | 5.714            | 5.870            | 6.000            | 6.111  | 6.207            | 6.290          | 6.386          |
| 8.2      |         | 6.112            | 6.290            | 6.440            | 6.568  | 6.679            | 6.775          | 6.887          |
| 9.       |         | 6.598            | 6.806            | 6.982            | 7.133  | 7.264            | 7.378          | 7.511          |
| 10       | 6.875   | 7.059            | 7.297            | 7.500            | 7.674  | 7.826            | 7.959          | 8.113          |
|          |         |                  |                  |                  |        |                  |                |                |
| 11       | 7.333   | 7.543            | 7.816            | 8.049            | 8.250  | 8.426            | 8.580          | 8.759          |
| 12       | 7.765   | 8.000            | 8.308            | 8.571            | 8.800  | 9.000            | 9.176          | 9.382          |
| 13       | 8.171   | 8.432            | 8.775            | 9.070            | 9.326  | 9.551            | 9.750          | 9.982          |
| 15       | 8.919   | 9.231            | 9.643            | 10.000           | 10.313 | 10.588           | 10.833         | 11.121         |
| 16       | 9.263   | 9.600            | 10.047           | 10.435           | 10.776 | 11.077           | 11.345         | 11.661         |
|          |         |                  |                  |                  |        |                  |                |                |
| 18       | 9.900   | 10.286           | 10.800           | 11.250           | 11.647 | 12.000           | 12.316         | 12.689         |
| 20       | 10.476  | 10.909           | 11.489           | 12.000           | 12.543 | 12.857           | 13.220         | 13.651         |
| 22       | 11.000  | 11.478           | 12.122           | 12.692           | 13.200 | 13.655           | 14.066         | 14.554         |
| 24       | 11.478  | 12.000           | 12.706           | 13.333           | 13.895 | 14.400           | 14.857         | 15.404         |
| 27       | 12.122  | 12.706           | 13.500           | 14.211           | 14.850 | 15.429           | 15.955         | 16.586         |
| 30       | 30 (00  | 10.000           |                  |                  |        |                  |                |                |
|          | 12.692  | 13.333           | 14.211           | 15.000           | 15.714 | 16.364           | 16.957         | 17.671         |
| 33<br>36 | 13.200  | 13.895           | 14.850           | 15.714           | 16.500 | 17.217           | 17.875         | 18.671         |
| 39       |         | 14.400<br>14.857 | 15.429           | 16.364           | 17.217 | 18.000           | 18./20         | 19.595         |
| 43       |         | 14.85/           | 15.955<br>16.586 | 16.957<br>17.671 | 17.875 | 18.720<br>19.595 | 19.500         | 20.451         |
| 43       | 14.554  | 15.403           | 10.586           | 17.6/1           | 18.671 | 17.595           | 20.451         | 21.500         |

Table 1-1. Equivalent Resistance of Two Resistors in Parallel (cont'd)

|      |        |        |        | F      | 21      |         |        |        |        |
|------|--------|--------|--------|--------|---------|---------|--------|--------|--------|
| R2   | 22     | 24     | 27     | 3      | 0 3     | 33      | 36     | 39     | 43     |
| 47   | 14.986 | 15.887 | 17.14  | 9 18.3 | 12 19.3 | 388 20. | 386 2  |        | 22.456 |
| 51   | 15.370 | 16.320 | 17.65  | 4 18.8 | 89 20.0 |         |        |        | 23.330 |
| 56   | 15.795 | 16.800 | 18.21  |        |         |         |        |        | 24.323 |
| 62   | 16.238 | 17.302 | 18.80  |        |         |         |        |        | 25.390 |
| 68   | 16.622 | 17.739 | 19.32  | 6 20.8 | 16 22.2 | 218 23. | 538 2  | 4.785  | 26.342 |
| 75   | 17.010 | 18.182 | 19.85  | 3 21.4 | 123 22. | 917 24  | .324 2 | 5.658  | 27.331 |
| 82   | 17.346 | 18.566 | 20.31  | 2 21.9 | 64 23.  | 530 25  | .017 2 | 6.430  | 28.208 |
| 91   | 17.717 | 18.991 | 20.82  | 2 22.5 | 62 24.  | 218 25  | .795 2 | 7.300  | 29.201 |
| 100  | 18.033 | 19.355 | 21.26  | 0 23.0 | 77 24.  | 812 26  | .471 2 | 8.058  | 30.070 |
| R2   | 47     | 51     | 56     | 62     | 68      | 75      | 82     | 91     | 100    |
|      |        |        |        |        |         |         | 0.434  | 0.400  | 0.400  |
| 2.7  | 2.553  | 2.564  | 2.576  |        | 2.597   | 2.606   | 2.614  | 2.622  | 2.629  |
| 3.0  | 2.820  | 2.833  | 2.847  |        | 2.873   | 2.885   | 3.172  | 3.185  | 3.195  |
| 3.3  | 3.083  | 3.099  |        | 3.133  | 3.147   | 3.161   | 3.1/2  | 3.463  | 3.475  |
| 3.6  | 3.344  | 3.623  |        | 3.402  | 3.419   | 3.707   | 3.723  |        | 3.754  |
| 3.9  | 3.601  | 3.023  | 3.040  | 3.009  | 3.000   | 3.707   | 3.723  | 3.740  | 3.734  |
| 4.3  | 3.939  | 3.966  | 3.993  | 4.021  | 4.044   | 4.067   | 4.086  | 4.106  | 4.123  |
| 4.7  | 4.273  | 4.303  | 4.336  | 4.369  | 4.396   | 4.423   | 4.445  | 4.469  | 4.489  |
| 5.1  | 4.601  | 4.636  | 4.674  | 4.712  | 4.744   | 4.775   | 4.801  | 4.829  | 4.853  |
| 5.6  | 5.004  | 5.046  | 5.091  | 5.136  | 5.174   | 5.211   | 5.242  |        | 5.303  |
| 6.2  | 5.477  | 5.528  | 5.582  | 5.636  | 5.682   | 5.727   | 5.764  | 5.805  | 5.838  |
| 6.8  | 5.941  | 6.000  | 6.064  | 6.128  | 6.182   | 6.235   | 6.279  |        | 6.367  |
| 7.5  | 6.468  | 6.538  | 6.614  | 6.691  | 6.755   | 6.818   | 6.872  |        |        |
| 8.2  | 6.982  | 7.064  | 7.153  | 7.242  | 7.318   | 7.392   | 7.455  |        | 7.579  |
| 9.1  | 7.624  | 7.722  | 7.828  | 7.935  | 8.026   | 8.115   | 8.191  |        |        |
| 10.0 | 8.246  | 8.361  | 8.485  | 8.611  | 8.718   | 8.824   | 8.913  | 9.010  | 9.091  |
| 11   | 8.914  | 9.048  |        | 9.342  | 9.468   | 9.593   | 9.699  |        | 9.910  |
| 12   | 9.559  | 9.714  |        | 10.054 | 10.200  |         |        | 10.602 |        |
| 13   | 10.183 | 10.359 |        |        | 10.914  | 11.080  |        | 11.375 |        |
| 15   | 11.371 | 11.591 |        |        | 12.289  | 12.500  |        | 12.877 |        |
| 16   | 11.937 | 12.179 | 12.444 | 12.718 | 12.952  | 13.187  | 13.388 | 13.607 | 13.793 |

Table 1-1. Equivalent Resistance of Two Resistors in Parallel (cont'd)

| _  |        |        |        | F        | ₹1     |         |        |        |        |
|----|--------|--------|--------|----------|--------|---------|--------|--------|--------|
| R2 | 47     | 51     | 56     | 62       | 68     | 75      | 82     | 91     | 100    |
| 18 | 13.015 | 13.304 | 13.622 | 2 13 950 | 14.233 | 14.516  | 14.76  | 15 02  | 15.254 |
| 20 |        |        |        |          | 15.455 | 15.789  |        |        | 16.667 |
| 22 | 14.986 |        |        |          | 16.622 |         |        |        | 18.033 |
| 24 | 15.887 | 16.320 | 16.800 |          | 17.739 |         |        |        | 19.355 |
| 27 | 17.149 |        | 18.217 |          | 19.326 |         |        |        | 21.260 |
| 30 | 18.312 | 18.889 | 19.535 | 20.217   | 20 814 | 21.423  | 21.964 | 22.562 | 23 077 |
| 33 | 19.388 | 20.036 | 20.764 |          |        | 22.917  |        | 24.218 |        |
| 36 | 20.836 | 21.103 | 21.913 |          |        | 24.324  |        | 25.795 |        |
| 39 | 21.314 |        | 22.989 | 23.941   | 24.785 | 25.658  |        | 27,300 |        |
| 43 | 22.456 | 23.330 | 24.323 | 25.390   | 26.342 | 27.331  |        | 29.201 |        |
| 47 | 23.500 | 24.459 | 25.553 | 26.734   | 27.791 | 28.893  | 29.876 | 30.993 | 31.973 |
| 51 | 24.459 | 25.500 | 26.692 | 27.982   | 29.143 | 30.357  |        |        | 33.775 |
| 56 | 25.553 | 26.692 | 28.000 | 29,424   | 30.710 | 32.061  |        |        | 35.897 |
| 62 | 26.734 | 27.982 | 29.424 | 31.000   | 32,431 | 33.942  |        |        | 38.272 |
| 68 | 27.791 | 29.143 | 30.710 | 32.431   | 34.000 | 35.664  | 37.173 | 38.918 | 40.476 |
| 75 | 28.893 | 30.357 | 32.061 | 33.942   | 35.664 | 37, 500 | 39.172 | 41.114 | 42.857 |
| 32 | 29.876 | 31.444 | 33.275 | 35.306   | 37.173 | 39 172  |        | 43.133 |        |
| 71 | 30.993 | 32.683 | 34.667 | 36.876   | 38.918 | 41.114  |        | 45.500 |        |
| 00 | 31.973 | 33.775 | 35.897 | 38.272   | 40.476 | 42.857  | 45.055 | 47.644 | 50.000 |
| 2  | 10     | 11     | 12     | 13       | 15     | 16      | 18     | 20     | 22     |
|    |        |        |        |          |        |         |        |        |        |
| 00 | 9.091  | 9.910  | 10.714 |          |        | 13.793  | 15.254 | 16.667 | 18.033 |
| 10 | 9.167  | 10.000 | 10.820 | 11.626   |        | 13.968  | 15.469 | 16.923 | 18.333 |
| 20 | 9.231  | 10.076 | 10.909 | 11.729   |        | 14.118  |        |        | 18.592 |
| 30 | 9.286  | 10.142 | 10.986 | 11.818   |        | 14.247  | 15.811 | 17.333 | 18.816 |
| 50 | 9.375  | 10.248 | 11.111 | 11.963   | 13.636 | 14.458  | 16.071 | 17.647 | 19.186 |
| 60 | 9.412  | 10.292 | 11.163 | 12.023   | 13.714 | 14.545  | 16.180 | 17.778 | 19.341 |
| В0 | 9.474  | 10.366 | 11.250 | 12.124   | 13.846 | 14.694  |        | 18.000 |        |
| 00 | 9.524  | 10.427 | 11.321 | 12.207   |        | 14.815  |        | 18.182 |        |
| 20 | 9.565  | 10.476 | 11.380 | 12.275   | 14.043 | 14.915  |        | 18.333 |        |
| 40 | 9.600  | 10.518 | 11,423 | 12.332   | 14.118 | 15.000  | 16.744 |        |        |

Table 1-1. Equivalent Resistance of Two Resistors in Parallel (cont'd)

| _        |        |        |        |        | Rı     |        |        |         |        |
|----------|--------|--------|--------|--------|--------|--------|--------|---------|--------|
| R        | 2 10   | 11     | 12     | 13     | 15     | 16     | 18     | 20      | 22     |
| 270      | 9.643  | 10 569 | 11.489 | 12 402 | 14 211 | 16 104 | 1/ 07/ | . 10 /0 |        |
| 300      | 9.677  | 10.611 | 11.538 | 12.460 | 14.286 |        |        |         | 20.342 |
| 330      | 9.706  | 10.645 |        |        | 14.348 |        | 17.060 | 10./30  | 20.497 |
|          | 9.730  |        | 11.613 |        |        | 15.319 | 17.143 | 18 947  | 20.023 |
| 390      | 9.750  | 10.698 | 11.642 | 12.581 | 14.444 | 15.369 | 17.206 | 19.024  | 20.825 |
| 430      | 9.773  | 10.726 | 11 674 | 12.619 | 14 404 | 15 404 | 17.077 |         |        |
| 470      | 9.792  | 10.748 | 11.701 | 12.650 | 14.474 |        |        |         | 20.929 |
| 510      |        | 10.768 |        | 12.677 |        |        | 17.330 | 19.184  | 21.016 |
| 560      | 9.825  | 10.788 | 11.748 | 12.705 | 14.609 |        | 17.300 | 10 210  | 21.168 |
| 620      | 9.841  | 10.808 | 11.772 |        |        | 15.597 | 17.492 | 19.375  | 21.108 |
| 400      | 0.055  | 10 000 | 11 700 |        |        |        |        |         |        |
| 750      | 0.040  | 10.825 | 11.792 |        |        |        |        |         | 21.311 |
| 820      |        |        |        |        | 14.706 |        |        |         | 21.373 |
| 910      |        | 10.869 |        | 12.797 | 14.731 |        | 17.613 | 19.524  | 21.425 |
|          |        |        | 11.858 |        | 14.757 |        |        |         | 21.481 |
|          |        | 101000 | 11.050 | 12.033 | 14.770 | 15.748 | 17.082 | 19.008  | 21.526 |
| R2       | 24     | 27     | 30     | 33     | 36     | 39     | 43     | 47      | 51     |
|          |        |        |        |        |        |        |        |         |        |
| 100      | 19.355 | 21.260 | 23.077 | 24.812 | 26.471 | 28.058 | 30.070 | 31.973  | 33.775 |
| 10       | 19.701 | 21.679 | 23.571 | 25.385 | 27,123 | 28,792 | 30.915 | 32.930  | 34.845 |
| 20       | 20.000 | 22.041 | 24.000 | 25.882 | 27.692 | 29.434 | 31.656 | 33.772  | 35 789 |
| 30       | 20.260 | 22.357 | 24.375 | 26.319 | 28.193 | 30.000 | 32.312 | 34.520  | 36.630 |
| 50       | 20.690 | 22.881 | 25.000 | 27.049 | 29.032 | 30.952 | 33.420 | 35.787  | 38.060 |
| 60       | 20.870 | 23.102 | 25.263 | 27.358 | 29.388 | 31.357 | 33.892 | 36.329  | 38.673 |
| 80       | 21.176 | 23.478 | 25.714 | 27.887 | 30.000 | 32.055 | 34.709 | 37.269  | 39.740 |
| 00       | 21.429 | 23.789 | 26.087 | 28.326 | 30.508 | 32.636 | 35.391 | 38.057  | 40.637 |
| 20<br>40 | 21.639 | 24.049 | 26.400 | 28.696 | 30.938 | 33.127 | 35.970 | 38.727  | 41.402 |
| 40       | 21.818 | 24.270 | 26.667 | 29.011 | 31.304 | 33.548 | 36.466 | 39.303  | 42.062 |
| 70       | 22.041 | 24.545 | 27.000 | 29.406 | 31.765 | 34.078 | 37.093 | 40.032  | 42.897 |
| 00       | 22.222 | 24.771 | 27.273 | 29.730 | 32.143 | 34.513 | 37.609 | 40.634  | 43 590 |
| 30       | 22.373 | 24.958 | 27.500 | 30,000 | 32.459 | 34 878 | 38 043 | 41 141  | 44 172 |
| 60       | 22.500 | 25.116 | 27.692 | 30.229 | 32,727 | 35,188 | 38 412 | 41 572  | 44 672 |
| 90       | 22.609 | 25.252 | 27.857 | 30.426 | 32.958 | 35.455 | 38.730 | 41.945  | 45.102 |
|          |        |        |        |        |        |        |        |         |        |

Table 1-1. Equivalent Resistance of Two Resistors in Parallel (cont'd)

| _  |    |    |    | F  | 21 |    |    |    |    |
|----|----|----|----|----|----|----|----|----|----|
| R2 | 24 | 27 | 30 | 33 | 36 | 39 | 43 | 47 | 51 |
|    |    |    |    |    |    |    |    |    |    |

430 22.731 25.405 28.043 30.648 33.219 35.757 99.071 42.369 45.597 40.028.34 25.533 28.200 30.835 33.439 36.012 39.396 42.727 46.008 510 22.921 25.642 28.333 30.994 33.626 36.230 39.655 43.034 46.346 500 23.014 25.758 28.475 31.164 33.826 36.461 39.793 43.361 46.745 600 23.106 25.873 28.615 31.332 34.024 36.059 40.211 46.388 47.124

680 23.182 25.969 28.732 31.473 34.190 36.885 40.443 43.961 47.442 750 23.255 26.042 28.846 31.609 34.351 37.072 40.668 44.228 47.753 820 23.318 26.139 28.941 31.723 34.486 37.229 40.685 74.452 48.014 910 23.383 26.222 29.043 31.845 34.630 37.397 41.060 44.692 48.291 000 23.438 26.209 29.216 31.946 34.749 37.55 46.1227 44.890 48.525

| R2  | 56     | 62     | 68     | 75     | 82     | 91     | 100    |
|-----|--------|--------|--------|--------|--------|--------|--------|
| 100 | 35.897 | 38.272 | 40,476 | 42.857 | 45.055 | 47.644 | 50.000 |
| 110 | 37.108 | 39.651 | 42.022 | 44.595 | 46.979 | 49.801 | 52.381 |
| 120 | 38.182 | 40.879 | 43.404 | 46.154 | 48,713 | 51.754 | 55.545 |
| 130 | 39.140 | 41.979 | 44.646 | 47.561 | 50.283 | 53.529 | 56.522 |
| 150 | 40.777 | 43.868 | 46.789 | 50.000 | 53.017 | 56.639 | 60.000 |
| 160 | 41.481 | 44.685 | 47.719 | 51.064 | 54.215 | 58.008 | 61.53  |
| 180 | 42.712 | 46.116 | 49.355 | 52.941 | 56.336 | 60,443 | 64.28  |
| 200 | 43.750 | 47.328 | 50.746 | 54.545 | 58,156 | 62,543 | 66.66  |
| 220 | 44.638 | 48.369 | 51.944 | 55.932 | 59.735 | 64.373 | 68.75  |
| 240 | 45.405 | 49.272 | 52.987 | 57.143 | 61.118 | 65.982 | 70.58  |
| 270 | 46.380 | 50.422 | 54.320 | 58.696 | 62.898 | 68.061 | 72.97  |
| 300 | 47.191 | 51.381 | 55.435 | 60.000 | 64.398 | 69.821 | 75.00  |
| 330 | 47.876 | 52.194 | 56.382 | 61.111 | 65.680 | 71.330 | 76.74  |
| 360 | 48.462 | 52.891 | 57.196 | 62.069 | 66.787 | 72.639 | 78.26  |
| 390 | 48.969 | 53.496 | 57.904 | 62.903 | 67.754 | 73.784 | 79.59  |
| 430 | 49.547 | 54.187 | 58.715 | 63.861 | 68.867 | 75.106 | 81.132 |
| 470 | 50.038 | 54.774 | 59.405 | 64.679 | 69.819 | 76.239 | 82.456 |
| 510 | 50.459 | 55.280 | 60.000 | 65.385 | 70.642 | 77.221 | 83.60  |
| 560 | 50.909 | 55.820 | 60.637 | 66.142 | 71.526 | 78.280 | 84.848 |
| 620 | 51.361 | 56.364 | 61.279 | 66.906 | 72,422 | 79.353 | 86.11  |

Table 1-1. Equivalent Resistance of Two Resistors in Parallel (cont'd)

|      | R1     |        |        |        |        |        |        |
|------|--------|--------|--------|--------|--------|--------|--------|
| R2   | 56     | 62     | 68     | 75     | 82     | 91     | 100    |
| 680  | 51.739 | 56.819 | 61.818 | 67.550 | 73.176 | 80.259 | 87.179 |
| 750  | 52.109 | 57.266 | 62.347 | 68.182 | 73.918 | 81.153 | 88.235 |
| 820  | 52.420 | 57.642 | 62.793 | 68.715 | 74.545 | 81.910 | 89.130 |
| 910  | 52.754 | 58.045 | 63.272 | 69.289 | 75.222 | 82.727 | 90.099 |
| 1000 | 53.030 | 58.380 | 63.670 | 69.767 | 75.786 | 83.410 | 90.909 |

1.93 in the Table. However, this is now 19.3 ohms, since you must again move the decimal point one place to the right.

This problem can also be done directly, in two ways. Locate 88 in the R2 column and then move to the right to find the answer in the 27 column under the general heading of R1. Or, locate 27 in the R2 column and move to the right to find the answer in the 68 column under the general heading of R1.

The values shown in Table 1-1 are median values and do not take tolerances into consideration. Resistor tolerances are usually 10 percent of less, and may be plus or minus. However, Table 1 does supply a practical guide for the quick determination of two resistors in parallel, or for finding parallel resistor combinations which will be equivalent to a desired resistance value.

### RESISTANCE VS CONDUCTANCE

The opposition to the movement of an electrical current can be expressed in terms of resistance (measured in ohms) or in terms of conductance (expressed in siemens). It is often very convenient to be able to move back and forth quickly and easily between resistance and conductance in the solution of electronics problems. This can be readily done since resistance and conductance are reciprocals.

Sometimes, in working with resistances you will find that the values are such that they are not covered by the tables and that using a formula to solve the problem will involve some laborious arithmetic. In that case it may be easier and quicker to work with conductances. To find the total conductance of resistors in parallel simply consider them as conductors and add the values of the individual units. Thus, if you have a number of resistors in parallel, use Table 1-2 to find the equivalent conductance of each resistor. Add the conductances and then use the table once again to find the equivalent resistance.

The symbol for resistance is R; that used for conductance is G. The relationship between the two is expressed as R equals 1/R. If you are considering a complete circuit, that is, a circuit consisting of a number of resistors in parallel, then the total resistance of the circuit is the reciprocal of the total conductance.

Conductance can be substituted into the different forms of ohm's law. Thus, for resistance, we would have R equals E/I. For

conductance we would have G equals I/E.

### □Example:

What is the conductance of a resistor whose value, as measured, is 64 ohms?

Locate 64 in the column marked ohms. The value of conductance, as shown in the column (siemens) to the right, is 0.0156 siemen.

### □Example:

What is the resistance of a component whose conductance is 0.0556 siemen.

The value of 0.0556, in the siemens column, corresponds to 18 ohms, as indicated in the ohms column.

□Example:

The values of four resistors, measured on a bridge, are 90 ohms, 83, 79, and 71 ohms, respectively. What is the equivalent esistance when these units are connected in parallel?

Using Table 1-2 you will find that the corresponding conductance values are 0.0111, 0.0120, 0.0127, and 0.0141 siemen, respectively. Adding these results in a total conductance of 0.0499 siemen. Using Table 1-2 once again, the closest conductance value is 0.0500 siemen, and, as shown by the table, corresponds to 20 ohms.

Table 1-2. Resistance (Ohms) vs Conductance (Siemens).

| Ohms | Siemens | Ohms | Siemens | Ohms | Siemens |
|------|---------|------|---------|------|---------|
| 0.1  | 10.0000 | 1.0  | 1.0000  | 10   | 0.1000  |
| 0.2  | 5.0000  | 2    | 0.5000  | 11   | 0.0909  |
| 0.3  | 3.3333  | 3    | 0.3333  | 12   | 0.0833  |
| 0.4  | 2.5000  | 4    | 0.2500  | 13   | 0.0769  |
| 0.5  | 2.0000  | 5    | 0.2000  | 14   | 0.0714  |
| 0.6  | 1.6667  | 6    | 0.1667  | 15   | 0.0667  |
| 0.7  | 1.4286  | 7    | 0.1429  | 16   | 0.0625  |
| 0.8  | 1.2500  | 8    | 0.1250  | 17   | 0.0588  |
| 0.9  | 1.1111  | 9    | 0.1111  | 18   | 0.0556  |

Table 1-2. Resistance (Ohms) vs Conductance (Siemens).

| Ohms     | Siemens | Ohms | Siemens | Ohms     | Siemens |
|----------|---------|------|---------|----------|---------|
| 19       | 0.0526  | 48   | 0.0208  | 74       | 0.0135  |
| 20       | 0.0500  | 49   | 0.0204  | 75       | 0.0133  |
| 21       | 0.0476  | 50   | 0.0200  | 76       | 0.0132  |
| 22       | 0.0455  | 51   | 0.0196  | 77       | 0.0130  |
| 23       | 0.0435  | 52   | 0.0192  | 78       | 0.0128  |
| 24       | 0.0417  |      |         |          |         |
| 25       | 0.0400  | 53   | 0.0189  | 79       | 0.0127  |
| 26       | 0.0385  | 54   | 0.0185  | 80       | 0.0125  |
| 27       | 0.0370  | 55   | 0.0182  | 81       | 0.0123  |
| 28       | 0.0357  | 56   | 0.0179  | 82       | 0.0122  |
| 29       | 0.0345  | 57   | 0.0175  | 83       | 0.0120  |
| 30       | 0.0333  |      |         |          |         |
| 31       | 0.0323  | 58   | 0.0172  | 84       | 0.0119  |
| 32       | 0.0313  | 59   | 0.0169  | 85       | 0.0118  |
| 33       | 0.0303  | 60   | 0.0167  | 86       | 0.0116  |
| 34       | 0.0294  | 61   | 0.0164  | 87       | 0.0115  |
| 35       | 0.0286  | 62   | 0.0161  | 88       | 0.0114  |
| 36       | 0.0278  | 63   | 0.0159  |          |         |
| 37       | 0.0270  |      |         | 89       | 0.0112  |
| 38       | 0.0263  | 64   | 0.0156  | 90       | 0.0111  |
| 39       | 0.0263  | 65   | 0.0154  | 91<br>92 | 0.0110  |
| 40       | 0.0250  | 66   | 0.0152  | 92       | 0.0109  |
| 41       | 0.0230  | 67   | 0.0149  |          |         |
| 42       | 0.0238  | 68   | 0.0147  | 94       | 0.0106  |
|          |         |      |         | 95       | 0.0105  |
| 43       | 0.0233  | 69   | 0.0145  | 96       | 0.0104  |
| 44       | 0.0227  | 70   | 0.0143  | 97       | 0.0103  |
| 45<br>46 | 0.0222  | 71   | 0.0141  | 98       | 0.0102  |
| 40       | 0.0217  | 72   | 0.0139  | 99       | 0.0101  |
| 4/       | 0.0213  | 73   | 0.0137  | 100      | 0.0100  |

### STANDARD EIA VALUES FOR COMPOSITION RESISTORS

Composition resistors are available in values based on the recommendations of the Electronics Industries Association (EIA). These values are shown in Table 1-3.

K means kilo, or multiply by 1000.120 K equals  $120 \times 1000$ , or 120,000 ohms. Meg means multiply by 1,000,000.1.8 Meg equals  $1.8 \times 1,000,000$ , or 1,800,000 ohms.

Table 1-3. Standard EIA Values for Composition Resistors.

| Ohms | Ohms | Ohms  | Ohms | Ohms    | Ohms    |
|------|------|-------|------|---------|---------|
| 2.7  | 39   | 560   | 8.2K | 120K    | 1.8 Meg |
| 3.0  | 43   | 620   | 9.1K | 130K    | 2.0 Meg |
| 3.3  | 47   | 680   | 10K  | 150K    | 2.2 Meg |
| 3.6  | 51   | 750   | 11K  | 160K    | 2.4 Meg |
| 3.9  | 56   | 820   | 12K  | 180K    | 2.7 Meg |
| 4.3  | 62   | 910   | 13K  | 200K    | 3.0 Meg |
| 4.7  | 68   | 1 K   | 15K  | 220K    | 3.3 Meg |
| 5.1  | 75   | 1.1K  | 16K  | 240K    | 3.6 Meg |
| 5.6  | 82   | 1.2K  | 18K  | 270K    | 3.9 Meg |
| 6.2  | 91   | 1.3K  | 20K  | 300K    | 4.3 Meg |
| 6.8  | 100  | 1.5K  | 22K  | 330K    | 4.7 Meg |
| 7.5  | 110  | 1.6K  | 24K  | 360K    | 5.1 Meg |
| 8.2  | 120  | 1.8K  | 27K  | 390K    | 5.6 Meg |
| 9.1  | 130  | 2K    | 30K  | 430K    | 6.2 Meg |
| 10   | 150  | 2.2K  | 33K  | 470K    | 6.8 Meg |
| 11   | 160  | 2.4K  | 36K  | 510K    | 7.5 Meg |
| 12   | 180  | 2.7K  | 39K  | 560K    | 8.2 Meg |
| 13   | 200  | 3 K   | 43K  | 620K    | 9.1 Meg |
| 15   | 220  | 3.3K  | 47K  | 680K    | 10 Meg  |
| 16   | 240  | 3.6K  | 51 K | 750K    | 11 Meg  |
| 18   | 270  | 3.9K  | 56K  | 820K    | 12 Meg  |
| 20   | 300  | 4.3K  | 62K  | 910K    | 13 Meg  |
| 22   | 330  | 4.7K  | 68K  | 1 Meg   | 15 Meg  |
| 24   | 360  | 5.1 K | 75K  | 1.1 Meg | 16 Meg  |
| 27   | 390  | 5.6K  | 82K  | 1.2 Meg | 18 Meg  |
| 30   | 430  | 6.2K  | 91K  | 1.3 Meg | 20 Meg  |
| 33   | 470  | 6.8K  | 100K | 1.5 Meg | 22 Meg  |
| 36   | 510  | 7.5K  | 110K | 1.6 Meg |         |

Table I - 4 shows conductance values for standard composition resistors. Column R indicates the resistance values in ohms; column G the corresponding conductance values in siemens. To find the conductance of any number of parallel resistors, add the conductances and then locate the nearest equivalent resistance value. Thus, 10-ohm, 18-ohm, and 30-ohm resistors in parallel have conductances of 0.1 siemen, 0.0555 eismen, and 0.3333 siemen. 0.14 + 0.0555 + 0.0333 equals 0.1889 siemen. The nearest value in the

G column corresponding to 0.1889 siemen is 0.19608 siemen, equivalent to a standard resistance value of 5.1 ohms.

To find a more accurate value of resistance, divide the sum of the conductances into 1. Thus, 1 divided by 0.1889 equals 5.294 ohms. However, this is not a standard value. The closest standard value is 5.1 ohms.

Table 1-4. Conductance of Standard EIA Values for Composition Resistors (Resistance, R, in Ohms; Conductance, G, in Siemens).

| _  |            |     |         |      |          |      | ,.       |
|----|------------|-----|---------|------|----------|------|----------|
| F  | R G        | R   | G       | R    | G        | R    | G        |
|    | .7 0.37037 | 47  | 0.02128 | 820  | 0.001220 | 15K  | 0.000066 |
|    | .0 0.33333 | 51  | 0.01961 | 910  | 0.001100 | 16K  | 0.000062 |
|    | .3 0.30303 | 56  | 0.01786 | 1K   | 0.001000 | 18K  | 0.000055 |
|    | .6 0.27778 | 62  | 0.01613 | 1.1K | 0.000909 | 20K  | 0.000050 |
| 3  | .9 0.25641 | 68  | 0.01471 | 1.2K | 0.000833 | 22 K | 0.000045 |
|    | .3 0.23256 | 75  | 0.01333 | 1.3K | 0.000769 | 24K  | 0.000041 |
|    | .7 0.21277 | 82  | 0.01220 | 1.5K | 0.000666 | 27 K | 0.000037 |
| 5  |            | 91  | 0.01099 | 1.6K | 0.000625 | 30K  | 0.000033 |
|    | .6 0.17857 | 100 | 0.01000 | 1.8K | 0.000555 | 33K  | 0.000030 |
| 6  | .2 0.16129 | 110 | 0.00909 | 2K   | 0.000500 | 36 K | 0.000027 |
| 6  | .8 0.14706 | 120 | 0.00833 | 2.2K | 0.000454 | 39K  | 0.000025 |
|    | .5 0.13333 | 130 | 0.00769 | 2.4K | 0.000416 | 43 K | 0.000023 |
|    | .2 0.12195 | 150 |         | 2.7K | 0.000370 | 47 K | 0.000021 |
| 9  |            | 160 | 0.00625 | 3K   | 0.000333 | 51K  | 0.000019 |
| 1  | 0.10000    | 180 | 0.00556 | 3.3K | 0.000303 | 56 K | 0.000017 |
| 1  | 1 0.09091  | 200 | 0.00500 | 3.6K | 0.000277 | 62K  | 0.000016 |
| 1: |            | 220 | 0.00455 | 3.9K | 0.000256 | 68K  | 0.000014 |
| 1  |            | 240 | 0.00417 | 4.3K | 0.000232 | 75K  | 0.000013 |
| 1. |            | 270 | 0.00370 | 4.7K | 0.000212 | 82K  | 0.000012 |
| 1  | 6 0.06250  | 300 | 0.00333 | 5.1K | 0.000196 | 91K  | 0.000011 |
| 1  | 8 0.05556  | 330 | 0.00303 | 5.6K | 0.000178 | 100K | 0.000010 |
| 2  | 0.05000    | 360 | 0.00278 | 6.2K | 0.000161 |      |          |
| 2  | 2 0.04545  | 390 | 0.00256 | 6.8K | 0.000147 |      |          |
| 2  |            | 430 | 0.00233 | 7.5K | 0.000133 | 1    |          |
| 2  | 7 0.03704  | 470 | 0.00213 | 8.2K | 0.000121 |      |          |
| 3  | 0 0.03333  | 510 | 0.00196 | 9.1K | 0.000109 |      |          |
| 3  | 3 0.03030  | 560 | 0.00179 | 10K  | 0.000100 |      |          |
| 3  | 6 0.02778  | 620 | 0.00161 | 11K  | 0.000090 |      |          |
| 3  |            | 680 | 0.00147 | 12 K | 0.000083 |      |          |
| 4  | 3 0.02326  | 750 | 0.00133 | 13K  | 0.000077 |      |          |

### CONDUCTANCE OF METALS

One of the distinquishing characteristics of metals is their ability to conduct electricity. As metals differ in hardness, ductility, density, tensile strength, malleability and melting point, they also differ in inherent conductance of electrical flow. See Table 1-5.

### Table 1-5. Relative Conductance of Various Metals. Substance Relative conductance

| Substance | Relative conductar |
|-----------|--------------------|
|           | (Silver= 100%)     |
| Silver    | 100                |
| Copper    | 98                 |
| Gold      | 78                 |
| Aluminum  |                    |
| Tungsten  | 32                 |
| Zinc      | 30                 |
| Platinum  | 17                 |
| Iron      | 16                 |
| Lead      | 15                 |
| Tin       | 9                  |
| Nickel    | 7                  |
| Mercury   | 1                  |
|           |                    |

### RESISTIVITIES OF CONDUCTORS

Yes, metals do conduct electricity, but some do it better than others. Table 1-6 shows how much resistance various conductors exhibit. Silver is the best electrical conductor and presents the least resistance to electrical flow. Although gold is the third best conductor, its rarity makes gold impractical to use as such. Consequently, gold has not been included in Table 1-6.

### Table 1-6. Resistivities of Conductors.

| Resistivities o                             | f Conductors | at 0° C      |                                |
|---------------------------------------------|--------------|--------------|--------------------------------|
|                                             |              | ohms         | Round Wires                    |
| Substance                                   | Centimeter   | Inch cube    | Ohms-Circular<br>mils per foot |
| Aluminum                                    | 3.21         | 1.26         | 19.3                           |
| Carbon400                                   | 0 to 10,000  | 1600 to 2800 | 24,00 to 42,000                |
| Constantan (Cu 60%, Ni 40%)                 | _ 49         | 19.3         | 295                            |
| Copper                                      | 1.72         |              |                                |
| Iron                                        |              | 4.7 to 5     | .5 72 to 84                    |
| Lead                                        | 20.8         | 8.2          | 125                            |
| Manganin (Cu 84%, Ni 4%, Mn 12%             | ) 43         | 16.9         | 258                            |
| Mercury<br>Nichrome (Ni 60%, Cr 12%, Fe 26% | ,            | 37.6         | 575                            |
| Mn 2%)                                      | 110          | 43           | 660                            |
| Platinum                                    |              | 4.3          | 66                             |
| Silver                                      |              | 0.65         | 9.9                            |
| Tungsten                                    | . 5.5        | 2.15         | 33                             |
| Zinc                                        | 6.1          | 2.4          | 36.7                           |

### OHM'S LAW FOR DC

Of all electronic formulas, Ohn's law is probably the best known and the most widely used. Basically set up as E=IR, it can be used to find an unknown value when the other two are known. It can also be used to determine the power being dissipated. The various arrangements of this law are shown in Table 1-7.

Table 1-7. Ohm's Law Formulas for DC.
Formula for Finding Unknown Valu

| Known  | Formula              | for Finding Unknown Values of |     |                  |  |
|--------|----------------------|-------------------------------|-----|------------------|--|
| Values | 1                    | R                             | E   | P                |  |
| 1 & R  |                      | _                             | IR  | I <sup>2</sup> R |  |
| 1 & E  |                      | E                             |     | El               |  |
| 1 & P  |                      | P<br>12                       | P   |                  |  |
| R & E  | ER                   |                               | '   | E2<br>R          |  |
| R & P  | $\sqrt{\frac{P}{R}}$ |                               | √PR |                  |  |
| E & P  | PE                   | E <sup>2</sup>                |     |                  |  |

### **Basic Units**

The basic units in Ohm's law are the volt, ampere and ohm. Multiples and submultiples of these units are also used in the solution of problems. See Table 1-8.

Table 1-8. Units and Symbols.

| Unit                                                   | Symbol | Multiple                                                                                    | Value                                                                                                               |
|--------------------------------------------------------|--------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| volt<br>volt<br>volt<br>ohm<br>ohm<br>ampere<br>ampere | EEERR  | kilovolt (kv) millivolt (mv) microvolt (μν) kilohm megohm milliampere (ma) microampere (μα) | 1000 volts<br>1/1000 volt<br>1/1,000,000 volt<br>1000 ohms<br>1,000,000 ohms<br>1/1000 ampere<br>1/1,000,000 ampere |

When large numbers are used in the solution of Ohm's law problems it is more convenient to use exponents. See Table 1-9.

### Table 1-9. Units in Exponential Notation.

| 1 volt        | = 103 millivolts       | = 106 microvolts             |
|---------------|------------------------|------------------------------|
|               | - 10° IIIIIIVOIIS      |                              |
| 1 millivolt   | = 10-3 volt            | = 10 <sup>3</sup> microvolts |
| 1 microvolt   | = 10-6 volt            | = 10-3 millivolt             |
| 1 ohm         | = 10-3 kilohm          | = 10-6 megohm                |
| 1 kilohm      | = 10 <sup>3</sup> ohms | = 10-3 megohm                |
| 1 megohm      | = 10 <sup>6</sup> ohms | = 103 kilohms                |
| 1 ampere      | = 103 milliampere      | = 106 microamperes           |
| 1 milliampere | = 10-3 ampere          | = 103 microamperes           |
| 1 microampere | = 10-6 ampere          | = 10-3 milliamperes          |

### Power

The basic unit of power is the watt. Large whole numbers or decimals may be involved in the solution of power problems. Using exponents can make the work easier. Power formulas are valid only for linear resistors; that is, resistors which follow Ohm's law. See Table 1-10.

Table 1-10. Symbols, Multiple and Exponential Values of DC Power.

| Unit                 | Symbol   | Multiple                           | Value                                              |
|----------------------|----------|------------------------------------|----------------------------------------------------|
| watt<br>watt<br>watt | P<br>P   | mlcrowatt<br>milliwatt<br>megawatt | 1/1,000,000 watt<br>1/1000 watt<br>1,000,000 watts |
|                      | In Terms | of Exponents                       |                                                    |

1 watt = 103 milliwatts = 106 microwatts 1 milliwatt = 10-3 watt = 103 microwatts 1 microwatt = 10-6 watt = 10-3 milliwatt

### **FIXED ATTENUATORS**

The insertion loss of a fixed attenuator network, or pad, is the ratio of the power input to power output, given in dB, and assuming equal impedances for the source and the load. Table 1-11 is for use where these impedances are the same. The values in the table are based on input and output impedances of 600 ohms. Figure 1-1 shows the types of pads for which Table 1-11 may be used.



Fig. 1-1. Attenuator pads. Design values for these networks are given in Table 1-11.

### □Example:

A simple pad is required to supply an insertion loss of 40 dB. How many resistors are needed and what is their value?

Table 1-11. Design Values for Attenuator Networks.

| T-PAD   |       | H-PAD |       | πΡ    | πPAD  |        |
|---------|-------|-------|-------|-------|-------|--------|
| Loss, o |       | R2    | R1    | R2    | RI    | R2     |
| 0.1     | 3.58  | 50204 | 1.79  | 50204 | 7.20  | 100500 |
| 0.2     | 6.82  | 26280 | 3.41  | 26280 | 13.70 | 57380  |
| 0.3     | 10.32 | 17460 | 5.16  | 17460 | 20.55 | 34900  |
| 0.4     | 13.79 | 13068 | 6.90  | 13068 | 27.50 | 26100  |
| 0.5     | 17.20 | 10464 | 8.60  | 10464 | 34.40 | 20920  |
| 0.6     | 20.9  | 8640  | 10.45 | 8640  | 41.7  | 17230  |
| 0.7     | 24.2  | 7428  | 12.1  | 7428  | 48.5  | 14880  |
| 0.8     | 27.5  | 6540  | 13.75 | 6540  | 55.05 | 13100  |
| 0.9     | 31.02 | 5787  | 15.51 | 5787  | 62.3  | 11600  |
| 1.0     | 34.5  | 5208  | 17.25 | 5208  | 68.6  | 10440  |
| 2.0     | 68.8  | 2582  | 34.4  | 2582  | 139.4 | 5232   |
| 3.0     | 102.7 | 1703  | 51.3  | 1703  | 212.5 | 3505   |
| 4.0     | 135.8 | 1249  | 67.9  | 1249  | 287.5 | 2651   |
| 5.0     | 168.1 | 987.6 | 84.1  | 987.6 | 364.5 | 2141   |
| 6.0     | 199.3 | 803.4 | 99.7  | 803.4 | 447.5 | 1807   |
| 7.0     | 229.7 | 685.2 | 114.8 | 685.2 | 537.0 | 1569   |
| 8.0     | 258.4 | 567.6 | 129.2 | 567.6 | 634.2 | 1393   |
| 9.0     | 285.8 | 487.2 | 142.9 | 487.2 | 738.9 | 1260   |
| 10.0    | 312.0 | 421.6 | 156.0 | 421.6 | 854.1 | 1154   |
| 11.0    | 336.1 | 367.4 | 168.1 | 367.4 | 979.8 | 1071   |
| 12.0    | 359.1 | 321.7 | 179.5 | 321.7 | 1119  | 1002   |
| 13.0    | 380.5 | 282.8 | 190.3 | 282.8 | 1273  | 946.1  |
| 14.0    | 400.4 | 249.4 | 200.2 | 249.4 | 1443  | 899.1  |
| 15.0    | 418.8 | 220.4 | 209.4 | 220.4 | 1632  | 859.6  |
| 16.0    | 435.8 | 195.1 | 217.9 | 195.1 | 1847  | 826.0  |
| 17.0    | 451.5 | 172.9 | 225.7 | 172.9 | 2083  | 797.3  |
| 18.0    | 465.8 | 152.5 | 232.9 | 152.5 | 2344  | 772.8  |
| 19.0    | 479.0 | 136.4 | 239.5 | 136.4 | 2670  | 751.7  |
| 20.0    | 490.4 | 121.2 | 245.2 | 121.2 | 2970  | 733.3  |
| 22.0    | 511.7 | 95.9  | 255.9 | 95.9  | 3753  | 703.6  |
| 24.0    | 528.8 | 76.0  | 264.4 | 76.0  | 4737  | 680.8  |
| 26.0    | 542.7 | 60.3  | 271.4 | 60.3  | 5985  | 663.4  |
| 28.0    | 554.1 | 47.8  | 277.0 | 47.8  | 7550  | 649.7  |
| 30.0    | 563.0 | 37.99 | 281.6 | 37.99 | 9500  | 639.2  |
| 32.0    | 570.6 | 30.16 | 285.3 | 30.16 | 11930 | 630.9  |
| 34.0    | 576.5 | 23.95 | 288.3 | 23.95 | 15000 | 624.4  |
| 36.0    | 581.1 | 18.98 | 290.6 | 18.98 | 18960 | 619.3  |
| 38.0    | 585.1 | 15.11 | 292.5 | 15.11 | 23820 | 615.3  |
| 40.0    | 588.1 | 12.00 | 294.1 | 12.00 | 30000 | 612.1  |

Table 1-11. Design Values for Attenuator Networks

| Loss, dB | R1    | R2     | R1    | R2     |
|----------|-------|--------|-------|--------|
| 0.1      | 3.60  | 100500 | 3.58  | 100500 |
| 0.2      | 6.85  | 57380  | 6.82  | 57380  |
| 0.3      | 10.28 | 34900  | 10.32 | 34900  |
| 0.4      | 13.80 | 26100  | 13.79 | 26100  |
| 0.5      | 17.20 | 20920  | 17.20 | 20920  |
| 0.6      | 20.85 | 17230  | 20.9  | 17230  |
| 0.7      | 24.25 | 14880  | 24.2  | 14880  |
| 0.8      | 27.53 | 13100  | 27.5  | 13100  |
| 0.9      | 31.2  | 11600  | 31.02 | 11600  |
| 1.0      | 34.3  | 10440  | 34.5  | 10440  |
| 2.0      | 69.7  | 5232   | 68.8  | 5232   |
| 3.0      | 106.2 | 3505   | 102.7 | 3505   |
| 4.0      | 143.8 | 2651   | 135.8 | 2651   |
| 5.0      | 182.3 | 2141   | 168.1 | 2141   |
| 6.0      | 223.8 | 1807   | 199.3 | 1807   |
| 7.0      | 268.5 | 1569   | 229.7 | 1569   |
| 8.0      | 317.1 | 1393   | 258.4 | 1393   |
| 9.0      | 369.4 | 1260   | 285.8 | 1260   |
| 10.0     | 427.0 | 1154   | 312.0 | 1154   |
| 11.0     | 489.9 | 1071   | 336.1 | 1071   |
| 12.0     | 559.5 | 1002   | 359.1 | 1002   |
| 13.0     | 636.3 | 946.1  | 380.5 | 946.1  |
| 14.0     | 721.5 | 899.1  | 400.4 | 899.1  |
| 15.0     | 816.0 | 859.6  | 418.8 | 859.6  |
| 16.0     | 923.2 | 826.0  | 435.8 | 826.0  |
| 17.0     | 1042  | 797.3  | 451.5 | 797.3  |
| 18.0     | 1172  | 772.8  | 465.8 | 772.8  |
| 19.0     | 1335  | 751.7  | 479.0 | 751.7  |
| 20.0     | 1485  | 733.3  | 490.4 | 733.3  |
| 22.0     | 1877  | 703.6  | 511.7 | 703.6  |
| 24.0     | 2369  | 680.8  | 528.8 | 680.8  |
| 26.0     | 2992  | 663.4  | 542.7 | 663.4  |
| 28.0     | 3775  | 649.7  | 554.1 | 649.7  |
| 30.0     | 4750  | 639.2  | 563.2 | 639.2  |
| 32.0     | 5967  | 630.9  | 570.6 | 630.9  |
| 34.0     | 7500  | 624.4  | 576.5 | 624.4  |
| 36.0     | 9480  | 619.3  | 581.1 | 619.3  |
| 38.0     | 11910 | 615.3  | 585.1 | 615.3  |
| 40.0     | 15000 | 612.1  | 588.1 | 612.1  |
|          |       |        |       |        |

Table 1-11. Design Values for Attenuator Networks

| Loss, dB | R1    | R2    | R1     | R2    |
|----------|-------|-------|--------|-------|
| 0.1      | 7.2   | 50000 | 3.6    | 50000 |
| 0.2      | 13.8  | 26086 | 6.9    | 26086 |
| 0.3      | 21.0  | 17143 | 10.5   | 17143 |
| 0.4      | 28.2  | 12766 | 14.1   | 12766 |
| 0.5      | 35.4  | 10169 | 17.7   | 10169 |
| 0.6      | 43.2  | 8333  | 21.6   | 8333  |
| 0.7      | 50.4  | 7143  | 25.2   | 7143  |
| 0.8      | 57.6  | 6250  | 28.8   | 6250  |
| 0.9      | 65.4  | 5504  | 32.7   | 5504  |
| 1.0      | 73.2  | 4918  | 36.6   | 4918  |
| 2.0      | 155.4 | 2316  | 77.7   | 2316  |
| 3.0      | 247.8 | 1452  | 123.9  | 1452  |
| 4.0      | 351.0 | 1025  | 175.5  | 1025  |
| 5.0      | 466.8 | 771.2 | 233.4  | 771.2 |
| 6.0      | 597.0 | 603.0 | 298.5  | 603.0 |
| 7.0      | 743.4 | 484.3 | 371.7  | 484.3 |
| 8.0      | 907.2 | 396.8 | 453.6  | 396.8 |
| 9.0      | 1091  | 329.9 | 545.5  | 329.9 |
| 10.0     | 1297  | 277.5 | 648.5  | 277.5 |
| 11.0     | 1529  | 235.5 | 764.5  | 235.5 |
| 12.0     | 1788  | 201.3 | 894    | 201.3 |
| 13.0     | 2080  | 173.1 | 1040   | 173.1 |
| 14.0     | 2407  | 149.6 | 1204   | 149.6 |
| 15.0     | 2773  | 129.8 | 1387   | 129.8 |
| 16.0     | 3186  | 113.0 | 1598   | 113.0 |
| 17.0     | 3648  | 98.68 | 1824   | 98.68 |
| 18.0     | 4166  | 86.4  | 2083   | 86.4  |
| 19.0     | 4748  | 75.8  | 2374   | 75.8  |
| 20.0     | 5400  | 66.66 | 2700   | 66.66 |
| 22.0     | 6954  | 51.72 | 3477   | 51.72 |
| 24.0     | 8910  | 40.4  | 4455   | 40.4  |
| 26.0     | 11370 | 31.66 | 5685   | 31.66 |
| 28.0     | 14472 | 24.87 | 7236   | 24.87 |
| 30.0     | 18372 | 19.58 | 9186   | 19.58 |
| 32.0     | 23286 | 15.46 | 11643  | 15.46 |
| 34.0     | 29472 | 12.21 | 14736  | 12.21 |
| 36.0     | 37260 | 9.66  | 18630  | 9.66  |
| 38.0     | 47058 | 7.65  | 23'529 | 7.65  |
| 40.0     | 59400 | 6.06  | 29700  | 6.06  |

A T-pad can be used to solve this problem. The circuit is a four-terminal network as shown in the corresponding circuit diagram. Locate 40 dB in the left-hand column of Table 11. To the right of this are the values for R1 and R2. R1 represents two resistors, each having a value of 588.1 ohms. R2 is shown as 12 ohms. Note that a  $\pi$  pad could also be used to supply the same insertion loss, except that 30,000 ohms is needed for R1 while R2 consists of two resistors, each of which is 612.1 ohms. The nearest standard values can be selected from Table 1-3, or series and parallel combinations can be used to obtain the required resistance.

It is necessary to drop the output voltage of a 600-ohm source by 3 dB. What type of pad can do this, and what are the values of the resistors in the attenuator?

Find the number 3 in the column headed Loss, dB. As shown in Table 1-11, a number of different pads can be used to get the same result. For an H pad four resistors (R1) will be needed, each having a value of 51.3 ohms. A single resistor (R2) of 1703 ohms will complete the network.

### OHM'S LAW FOR AC

When Ohm's law is used for AC circuits containing reactive components the phase angle (6) between voltage and current becomes part of the calculations. Table 1-12 is a summary of Ohm's law formulas for AC.

Table 1-12. Power and Ohm's law Formulas for AC.

| Watts                       | Amperes                        | Volts                           | Impedance                   |
|-----------------------------|--------------------------------|---------------------------------|-----------------------------|
| P =                         | I =                            | E =                             | Z =                         |
| I <sup>‡</sup> R            | E/Z                            | IZ                              | E/I                         |
| EI cos θ                    | $\frac{P}{E \cos \theta}$      | $\frac{P}{I\cos\theta}$         | $\frac{E^{*}\cos\theta}{P}$ |
| $\frac{E^2 \cos \theta}{Z}$ | $\sqrt{\frac{P}{Z\cos\theta}}$ | $\sqrt{\frac{PZ}{\cos \theta}}$ | $\frac{P}{I^2 \cos \theta}$ |
| PZ cos θ                    | $\sqrt{\frac{P}{R}}$           | $\frac{\sqrt{PR}}{\cos \theta}$ | $\frac{R}{\cos \theta}$     |

#### CONDUCTANCE

Conductance, the reciprocal of resistance, can be considered as resistive siemens while susceptance is reactive siemens.

A wire (or any other component) can be either resistive or conductive. While the terms are reciprocals they are two different ways of describing the same thing. See Table 1-13.

Table 1-13. Resistance and Related Symbols

|            | Symbol |             | Symbol |  |
|------------|--------|-------------|--------|--|
| Resistance | R      | Conductance | G      |  |
| Reactance  | X      | Susceptance | B      |  |
| Impedance  | Z      | Admittance  | Y      |  |



# Chapter 2 **Voltage and Current**

PEAK, PEAK-TO-PEAK, AVERAGE, AND RMS (EFFECTIVE) VALUES OF CURRENTS OR VOLTAGES OF SINE WAVES

The peak value of a sine wave of voltage or current is measured at either 90 degrees or 270 degrees. For this reason peak (or peak-to-peak) values can be considered as instantaneous values. The average of all the instantaneous values over a complete cycle is zero; hence, average is generally understood to be the average of the instantaneous values over a half cycle. The average value is also equal to 2 divided by  $\pi$ . Taking the value of  $\pi$  3.14159265, then the average value of a sine wave of voltage or current is 0.636619, generally rounded off to 0.637, the value used in this book. In some texts, however, you will find the average value given as 0.636. Average value in Table 2-1 is 0.637 times the peak value.

The effective or root-mean-square (rms) value is also a form of instantaneous value averaging. Arithmetically, the effective value is obtained by dividing 1 by the square root of 2. Taking the square root of 2 as equal to 1.414213, then the effective or rms value of a sine wave of voltage or current is equal to 1/1.414213, or 0.707107. In this text, as in other books on electricity and electronics, the rms value is rounded off to 0.707 times the peak value.

The data in Table 2-1 allows rapid movement among peak, peak-to-peak, average, and rms values of currents or voltages of

sine waves. Also see Fig. 2-1.



Fig. 2-1. Relationships between peak, peak-to-peak, average and rms values of sine waves of voltage or current.

# □Example:

What is the peak value of a sine wave current whose effective (rms) value is measured as 17½ volts?

Locate the nearest value in the rms (effective) column. This is 17.675. Move to the left along the same line and locate 25 as the answer in the column marked peak.

## □Example:

What is the average value of a voltage sine wave whose peak value is 160 volts?

The maximum peak value shown in Table 2-1 is 120. You can extend the table, however, by multiplying each value by 10. Do this yadding a zero to the right of each whole number. Thus, in the peak column, 16 becomes 160. Move to the right and locate 10.192 in the average column. Multiply this value by 10 by moving the decimal point one place to the right. The average value is 101.92 volts.

Table 2-1. Peak, Peak-to-Peak, Average and effective) Values of Sine Wave Currents or Voltages

|      | rms (effective) values of Sine Wave Currents or Voltages |         |       |  |  |  |  |
|------|----------------------------------------------------------|---------|-------|--|--|--|--|
| Peak | Peak-to-Peak                                             | Average | rms   |  |  |  |  |
| 1    | 2                                                        | 0.637   | 0.707 |  |  |  |  |
| 2    | 4                                                        | 1.274   | 1.414 |  |  |  |  |
| 3    | 6                                                        | 1.911   | 2.121 |  |  |  |  |
| 4    | 8                                                        | 2.548   | 2.828 |  |  |  |  |
| 5    | 10                                                       | 3.185   | 3.535 |  |  |  |  |
| 6    | 12                                                       | 3.822   | 4.242 |  |  |  |  |
| 7    | 14                                                       | 4.459   | 4.949 |  |  |  |  |
| 8    | 16                                                       | 5.096   | 5.656 |  |  |  |  |
| 9    | 18                                                       | 5.733   | 6.363 |  |  |  |  |
| 10   | 20                                                       | 6.370   | 7.070 |  |  |  |  |
|      |                                                          |         |       |  |  |  |  |

Table 2-1. Peak, Peak-to-Peak, Average and rms (effective) Values of Sine Wave, Currents or Voltages (cont'd).

| Peak | Peak-to-Peak | Average | rms    |
|------|--------------|---------|--------|
| 11   | 22           | 7.007   | 7.777  |
| 12   | 24           | 7.644   | 8.484  |
| 13   | 26           | 8.281   | 9.191  |
| 14   | 28           | 8.918   | 9.898  |
| 15   | 30           | 9.555   | 10.605 |
| 16   | 32           | 10.192  | 11.312 |
| 17   | 34           | 10.829  | 12.019 |
| 18   | 36           | 11.466  | 12.726 |
| 19   | 38           | 12.103  | 13.433 |
| 20   | 40           | 12.740  | 14.140 |
| 21   | 42           | 13.377  | 14.847 |
| 22   | 44           | 14.014  | 15.554 |
| 23   | 46           | 14.651  | 16.261 |
| 24   | 48           | 15.288  | 16.968 |
| 25   | 50           | 15.925  | 17.675 |
| 26   | 52           | 16.562  | 18.382 |
| 27   | 54           | 17.199  | 19.089 |
| 28   | 56           | 17.836  | 19.796 |
| 29   | 58           | 18.473  | 20.503 |
| 30   | 60           | 19.110  | 21.210 |
| 31   | 62           | 19.747  | 21.917 |
| 32   | 64           | 20.384  | 22.624 |
| 33   | 66           | 21.021  | 23.331 |
| 34   | 68           | 21.658  | 24.038 |
| 35   | 70           | 22.295  | 24.745 |
| 36   | 72           | 22.932  | 25.452 |
| 37   | 74           | 23.569  | 26.159 |
| 38   | 76           | 24.206  | 26.866 |
| 39   | 78           | 24.843  | 27.573 |
| 40   | 80           | 25.480  | 28.280 |
| 41   | 82           | 26.117  | 28.987 |
| 42   | 84           | 26.754  | 29.694 |
| 43   | 86           | 27.391  | 30.401 |
| 44   | 88           | 28.028  | 31.108 |
| 45   | 90           | 28.665  | 31.815 |

Table 2-1. Peak, Peak-to-Peak, Average and rms (effective) Values of Sine Wave Currents or Voltages (cont'd).

|      | (effective) Values of Sine V | Vave Currents or Voltages ( | cont'd). |
|------|------------------------------|-----------------------------|----------|
| Peak | Peak-to-Peak                 | Average                     | rms      |
| 46   | 92                           | 29.302                      | 32.522   |
| 47   | 94                           | 29.939                      | 33.229   |
| 48   | 96                           | 30.576                      | 33.936   |
| 49   | 98                           | 31.213                      | 34.643   |
| 50   | 100                          | 31.850                      | 35.350   |
| 51   | 102                          | 32.487                      | 36.057   |
| 52   | 104                          | 33.124                      | 36.764   |
| 53   | 106                          | 33.761                      | 37.471   |
| 54   | 108                          | 34.398                      | 38.178   |
| 55   | 110                          | 35.035                      | 38.885   |
| 56   | 112                          | 35.672                      | 39.592   |
| 57   | 114                          | 36.309                      | 40.299   |
| 58   | 116                          | 36.946                      | 41.006   |
| 59   | 118                          | 37.583                      | 41.713   |
| 60   | 120                          | 38.220                      | 42.420   |
| 61   | 122                          | 38.857                      | 43.127   |
| 62   | 124                          | 39.494                      | 43.834   |
| 63   | 126                          | 40.131                      | 44.541   |
| 64   | 128                          | 40.768                      | 45.248   |
| 65   | 130                          | 41.405                      | 45.955   |
| 66   | 132                          | 42.042                      | 46,662   |
| 67   | 134                          | 42.679                      | 47.369   |
| 68   | 136                          | 43.316                      | 48.076   |
| 69   | 138                          | 43.953                      | 48.783   |
| 70   | 140                          | 44.590                      | 49,490   |
| 71   | 142                          | 45.227                      | 50.197   |
| 72   | 144                          | 45.864                      | 50.904   |
| 73   | 146                          | 46.501                      | 51.611   |
| 74   | 148                          | 47.138                      | 52.318   |
| 75   | 150                          | 47.775                      | 53.025   |
| 76   | 152                          | 48.412                      | 53.732   |
|      |                              |                             |          |
| 77   | 154                          | 49.049                      | 54.439   |
| 78   | 156                          | 49.686                      | 55.146   |
| 79   | 158                          | 50.323                      | 55.853   |
| 80   | 160                          | 50.960                      | 56.560   |
| 81   | 162                          | 51.597                      | 57.267   |
| 82   | 164                          | 52.234                      | 57.974   |
| 38   |                              |                             |          |

Table 2-1. Peak, Peak-to-Peak, Average and rms (effective) Values of Sine Wave Currents or Voltages (control)

|      | (effective) Values of Sine Wave Currents or Voltages (cont'd). |         |        |  |  |  |  |
|------|----------------------------------------------------------------|---------|--------|--|--|--|--|
| Peak | Peak-to-Peak                                                   | Average | rms    |  |  |  |  |
| 83   | 166                                                            | 52.871  | 58.681 |  |  |  |  |
| 84   | 168                                                            | 53.508  | 59.388 |  |  |  |  |
| 85   | 170                                                            | 54.145  | 60.095 |  |  |  |  |
| 85   | 172                                                            | 54.782  | 60.802 |  |  |  |  |
| 87   | 174                                                            | 55.419  | 61.509 |  |  |  |  |
| 88   | 176                                                            | 56.056  | 62.216 |  |  |  |  |
| 89   | 178                                                            | 56.693  | 62.923 |  |  |  |  |
| 90   | 180                                                            | 57.330  | 63.630 |  |  |  |  |
| 91   | 182                                                            | 57.967  | 64.337 |  |  |  |  |
| 92   | 184                                                            | 58.604  | 65.044 |  |  |  |  |
| 93   | 186                                                            | 59.241  | 65.751 |  |  |  |  |
| 94   | 188                                                            | 59.878  | 66.458 |  |  |  |  |
| 95   | 190                                                            | 60.515  | 67.165 |  |  |  |  |
| 96   | 192                                                            | 61.152  | 67.872 |  |  |  |  |
| 97   | 194                                                            | 61.789  | 68.579 |  |  |  |  |
| 98   | 196                                                            | 62.426  | 69.286 |  |  |  |  |
| 99   | 198                                                            | 63.063  | 69.993 |  |  |  |  |
| 100  | 200                                                            | 63.700  | 70.700 |  |  |  |  |
| 101  | 202                                                            | 64.337  | 71.407 |  |  |  |  |
| 102  | 204                                                            | 64.974  | 72.114 |  |  |  |  |
| 103  | 206                                                            | 65.611  | 72.821 |  |  |  |  |
| 104  | 208                                                            | 66.248  | 73.528 |  |  |  |  |
| 105  | 210                                                            | 66.885  | 74.235 |  |  |  |  |
| 106  | 212                                                            | 67.522  | 74.942 |  |  |  |  |
| 107  | 214                                                            | 68.159  | 75.649 |  |  |  |  |
| 108  | 216                                                            | 68 796  | 76.356 |  |  |  |  |
| 109  | 218                                                            | 69.433  | 77.063 |  |  |  |  |
| 110  | 220                                                            | 70.070  | 77.770 |  |  |  |  |
| 111  | 222                                                            | 70.707  | 78.477 |  |  |  |  |
| 112  | 224                                                            | 71.344  | 79.184 |  |  |  |  |
| 113  | 226                                                            | 71.981  | 79.891 |  |  |  |  |
| 114  | 228                                                            | 72.618  | 80.598 |  |  |  |  |
| 115  | 230                                                            | 73.255  | 81.305 |  |  |  |  |
| 116  | 232                                                            | 73.892  | 82.012 |  |  |  |  |
| 117  | 234                                                            | 74.529  | 82.719 |  |  |  |  |
| 118  | 236                                                            | 75.166  | 83.426 |  |  |  |  |
| 119  | 238                                                            | 75.803  | 84.133 |  |  |  |  |
| 120  | 240                                                            | 76.440  | 84.840 |  |  |  |  |

#### VALUES OF VOLTAGE OR CURRENT OF SINE WAVES

Peak-to-peak, peak, rms and average values of voltage or current can be calculated from data in Table 2-2.

Table 2-2. Peak-to-Peak (p-p), rms (Effective) and Average Average AC Values of Sine Waves of Voltage or Current.

| Given This<br>Value | Multiply by this value to get |                 |       |       |  |  |
|---------------------|-------------------------------|-----------------|-------|-------|--|--|
| 1                   | Average                       | rms (Effective) | Peak  | р-р   |  |  |
| Average             | -                             | 1.11            | 1.57  | 1.274 |  |  |
| rms (Effective)     | 0.9                           | -               | 1.414 | 2.828 |  |  |
| Peak                | 0.637                         | 0.707           | -     | 2.0   |  |  |
| D-D                 | 0.3185                        | 0.3535          | 0.50  |       |  |  |

#### □Example:

The rms value of a sine wave is 3.14 volts. What is its peak value?

Locate rms in the left column of Table 2-2. Move across to the peak column. The multiplication factor is 1.414,  $1.414 \times 3.14 = 4.4399$  volts.

#### INSTANTANEOUS VALUES OF VOLTAGE OR CURRENT OF SINE WAVES

The instantaneous value of a wave is a function of the phase and R10 degrees, 180 degrees, and 360 degrees the instantaneous value of a sine wave is zero. It is a peak at 90 degrees and 270 degrees. See Fig. 2-2. These are the only values which may be known without the use of a table or formula. The instantaneous value of a sine voltage is E equals E max sin  $\theta$  t. Table 2-3 gives the instantaneous values of either voltage or current through a complete sine wave cycle of 360 degrees for values of voltage ranging from 1 to 10. Other ranges may be obtained by moving the decimal point.



Fig. 2-2. Sine Wave showing various instantaneous values of voltage or current.

The values given in Table 2-3 under the heading of Peak Voltage or Current are those obtained from a table of natural trigonometric functions, and represent sine values. Thus, the sine of 10 degrees equals 0.1736 as shown by locating 10 in the extreme left-hand column and moving to the right and stopping in column 1. Greater accuracy can be obtained by consulting tables of natural trigonometric functions that supply a larger number of decimal places. Thus, a 5-place table would show the sine of 10 degrees as 0.17365. For example, if a sine wave of voltage or current has a peak value of 1 volt, its instantaneous value when the wave reaches 10 degrees is 0.1736 or 0.17365 volt depending on the accuracy you want. For a 2-volt peak, the value would be  $2 \times 0.1736$  or 0.3472. For a 3-volt peak, the value would be  $3 \times 0.1736$  or 0.5208 volt, as shown in the respective columns headed 2 and 3 in Table 2-3. Using this technique, the instantaneous value of any sine wave or voltage can be found.

#### □Example:

What is the instantaneous value of a sine wave at 27 degrees if the peak value of the wave is 138.2 volts?

Locate 27 degrees in the table. Move to the right and in column 1 find 0.4540 volt. This is the instantaneous value at 27 degrees when the peak value is 1 volt. For 13.8. 2 volts, multiply 0.4540 by 138.2. That is, 0.4540 x 138.2 equals 62.7428 volts. A 5-place table of natural trigonometric functions shows the value of 27 degrees as 0.45399. 0.45399 x 138.2 equals 62.741418 volts. Whether this greater accuracy is desirable depends on the work being done. The actual difference is 62.7428 - 62.741418 equals 0.001382 volt. Although the example mentions peak in terms of volts, peak can be volts, millivolts, or microvolts, amperes, milliamperes or microamperes.

□Example:

What is the instantaneous value of current at a phase angle of 37 degrees when the peak value is 3 volts?

Locate 37 degrees in the left-hand column of the Table. Move horizontally until the 3-volt column is reached. The required voltage is 1.8054 volts.

□Example:

At what phase angles will the instantaneous voltage of a sine wave be 68 percent of its peak value?

Consider peak as 1 or 100 percent. Locate the nearest value to 68 in the column headed by the number 1. This value is 0.6820.

Move to the left of this number and you will see that the phase angle is 43 degrees. Multiples of this value are also given. We have 137 degrees (180 degrees - 43 degrees); 223 degrees (43 degrees + 180 degrees) and 317 degrees (360 degrees - 43 degrees). IExamble:

What is the instantaneous value of a sine wave of current at a phase angle of 77 degrees when its peak value is 30 mA?

Locate 77 degrees in the left-hand column of the table and move horizontally to the right to intercept 2.9232 in the column headed by the number 3. Multiply 3 by 10 to obtain the peak value specified in the question. However, since 3 was changed to 30 by multiplying it by 10 (or by moving the decimal point one place to the right) the answer must be similarly treated. The value is 29.232 mA.

Table 2-3. Instantaneous Values of Voltage or Current of Sine Waves

| Pha  |        |                         |     |       |       |        |        |        |  |  |
|------|--------|-------------------------|-----|-------|-------|--------|--------|--------|--|--|
| Ang  |        | Peak Valtage or Current |     |       |       |        |        |        |  |  |
| (deg | grees) |                         |     | 1     | 2     | 3      | 4      | 5      |  |  |
|      |        |                         |     |       |       |        |        |        |  |  |
| 0    | 180    | 180                     | 360 | .0000 | .0000 | .0000  | .0000  | .0000  |  |  |
| 1    | 179    | 181                     | 359 | .0175 | .0350 | .0525  | .0700  | .0875  |  |  |
| 2    | 178    | 182                     | 358 | .0349 | .0698 | .1047  | .1396  | .1745  |  |  |
| 3    | 177    | 183                     | 357 | .0523 | .1046 | .1569  | .2092  | .2615  |  |  |
| 4    | 176    | 184                     | 356 | .0698 | .1396 | .2094  | .2792  | .3490  |  |  |
| 5    | 175    | 185                     | 355 | .0872 | .1744 | .2616  | .3488  | .4360  |  |  |
|      |        |                         |     |       |       |        |        |        |  |  |
| 6    | 174    | 186                     | 354 | .1045 | .2090 | .3135  | .4180  | .5225  |  |  |
| 7    | 173    | 187                     | 353 | .1219 | .2438 | .3657  | .4876  | .6095  |  |  |
| 8    | 172    | 188                     | 352 | .1392 | .2784 | .4176  | .5568  | .6960  |  |  |
| 9    | 171    | 189                     | 351 | .1564 | .3128 | .4692  | .6256  | .7820  |  |  |
| 10   | 170    | 190                     | 350 | .1736 | .3472 | .5208  | .6944  | .8680  |  |  |
|      |        |                         |     |       |       |        |        |        |  |  |
| 11   | 169    | 191                     | 349 | .1908 | .3816 | .5724  | .7632  | .9540  |  |  |
| 12   | 168    | 192                     | 348 | .2079 | .4158 | .6237  | .8316  | 1.0395 |  |  |
| 13   | 167    | 193                     | 347 | .2250 | .4500 | .6750  | .9000  | 1.1250 |  |  |
| 14   | 166    | 194                     | 346 | .2419 | .4838 | .7257  | .9676  | 1.0095 |  |  |
| 15   | 165    | 195                     | 345 | .2588 | .5176 | .7764  | 1.0352 | 1.2940 |  |  |
|      |        |                         |     |       |       |        |        |        |  |  |
| 16   | 164    | 196                     | 344 | .2756 | .5512 | .8268  | 1.1024 | 1.3780 |  |  |
| 17   | 163    | 197                     | 343 | .2924 | .5848 | .8772  | 1.1696 | 1.4620 |  |  |
| 18   | 162    | 198                     | 342 | .3090 | .6180 | .9270  | 1.2360 | 1.5450 |  |  |
| 19   | 161    | 199                     | 341 | .3256 | .6512 | .9768  | 1.3024 | 1.6280 |  |  |
| 20   | 160    | 200                     | 340 | .3420 | .6840 | 1.0260 | 1.3680 | 1.7100 |  |  |
|      |        |                         |     |       |       |        |        |        |  |  |

Table 2-3. Instantaneous Values of Voltage or Current of Sine Waves (cont'd)

| Pho |        |     |     |       |                         |        |        |        |
|-----|--------|-----|-----|-------|-------------------------|--------|--------|--------|
| Ang |        |     |     |       | Peak Voltage or Current |        |        |        |
| (de | grees) |     |     | 1     | 2                       | 3      | 4      | 5      |
| 21  | 159    | 201 | 339 | .3584 | .7168                   | 1.0752 | 1.4336 | 1.7920 |
| 27  | 158    | 202 | 338 | .3746 | .7492                   | 1.1238 | 1.4984 | 1.8730 |
| 23  | 157    | 203 | 337 | .3907 | .7814                   | 1.1721 | 1.5628 | 1.9535 |
| 24  | 156    | 204 | 336 | .4067 | .8134                   | 1.2201 | 1.6268 | 2.0335 |
| 25  | 155    | 205 | 335 | .4226 | .8452                   | 1.2678 | 1.6904 | 2.1130 |
| 26  | 154    | 206 | 334 | .4384 | .8768                   | 1.3152 | 1.7536 | 2.1920 |
| 27  | 153    | 207 | 333 | .4540 | .9080                   | 1.3620 | 1.8160 | 2.2700 |
| 28  | 152    | 208 | 332 | .4695 | .9390                   | 1.4085 | 1.8780 | 2.3475 |
| 29  | 151    | 209 | 331 | .4848 | .9696                   | 1.4544 | 1.9392 | 2.4240 |
| 36  | 150    | 210 | 330 | .5000 | 1.0000                  | 1.5000 | 2.0000 | 2.5000 |
| 31  | 149    | 211 | 329 | .5150 | 1.0300                  | 1.5450 | 2.0600 | 2.5750 |
| 32  | 148    | 212 | 328 | .5299 | 1.0598                  | 1.5897 | 2.1196 | 2.6495 |
| 33  | 147    | 213 | 327 | .5446 | 1.0892                  | 1.6338 | 2.1784 | 2.7320 |
| 34  | 146    | 214 | 326 | .5592 | 1.1184                  | 1.6776 | 2.2368 | 2.7960 |
| 35  | 145    | 215 | 325 | .5736 | 1.1472                  | 1.7208 | 2.2944 | 2.8680 |
| 36  | 144    | 216 | 324 | .5878 | 1.1756                  | 1.7634 | 2.3512 | 2.9390 |
| 37  | 143    | 217 | 323 | .6018 | 1.2036                  | 1.8054 | 2.4072 | 3.0090 |
| 38  | 142    | 218 | 322 | .6157 | 1.2314                  | 1.8471 | 2.4628 | 3.0785 |
| 39  | 141    | 219 | 321 | .6293 | 1.2586                  | 1.8879 | 2.5172 | 3.1465 |
| 40  | 140    | 220 | 320 | .6428 | 1.2856                  | 1.9284 | 2.5712 | 3.2140 |
| 41  | 139    | 221 | 319 | .6561 | 1.3122                  | 1.9683 | 2.6244 | 3.2805 |
| 42  | 138    | 222 | 318 | .6691 | 1.3382                  | 2.0073 | 2.6764 | 3.3455 |
| 43  | 137    | 223 | 317 | .6820 | 1.3640                  | 2.0460 | 2.7280 | 3.4100 |
| 44  | 136    | 224 | 316 | .6947 | 1.3894                  | 2.0460 | 2.7788 | 3.4735 |
| 45  | 135    | 225 | 315 | .7071 | 1.4142                  | 2.1213 | 2.7788 | 3.4735 |
| 70  | 100    | 113 | 313 | ./0/1 | 1.4142                  | 2.1213 | 2.0204 | 3.3333 |
| 46  | 134    | 226 | 314 | .7193 | 1.4386                  | 2.1579 | 2.8772 | 3.5965 |
| 47  | 133    | 227 | 313 | .7314 | 1.4628                  | 2.1942 | 2.9256 | 3.6570 |
| 48  | 132    | 228 | 312 | .7431 | 1.4862                  | 2.2293 | 2.9724 | 3.7155 |
| 49  | 131    | 229 | 311 | .7547 | 1.5094                  | 2.2641 | 3.0188 | 3.7735 |
| 50  | 130    | 230 | 310 | .7660 | 1.5320                  | 2.2980 | 3.0640 | 3.8300 |
| 51  | 129    | 231 | 309 | .7771 | 1.5542                  | 2.3313 | 3.1084 | 3.8855 |
| 52  | 128    | 232 | 308 | .7880 | 1.5760                  | 2.3640 | 3.1520 | 3.9400 |
| 53  | 127    | 233 | 307 | .7986 | 1.5972                  | 2.3958 | 3.1954 | 3.9930 |
| 54  | 126    | 234 | 306 | .8090 | 1.6180                  | 2.4270 | 3.2360 | 4.0450 |
| 55  | 125    | 235 | 305 | .8192 | 1.6384                  | 2.4276 | 3.2768 | 4.0960 |
| 55  | .13    | 200 | 303 | .0172 | 1.0304                  | 2.43/0 | 3.2/08 | 4.0900 |

Table 2-3. Instantaneous Values of Voltage or Current of Sine Waves (cont'd)

| Pha |        |     |     |        |        |           |        |        |
|-----|--------|-----|-----|--------|--------|-----------|--------|--------|
| Ang |        |     |     |        |        | Voltage o |        | _      |
| (de | grees) |     |     | 1      | 2      | 3         | 4      | 5      |
| 56  | 124    | 236 | 304 | .8290  | 1.6580 | 2.4870    | 3.3160 | 4.1450 |
| 57  | 123    | 237 | 303 | .8387  | 1.6774 | 2.5161    | 3.3548 | 4.1935 |
| 58  | 122    | 238 | 302 | .8480  | 1.6960 | 2.5440    | 3.3920 | 4.2400 |
| 59  | 121    | 239 | 301 | .8572  | 1.7144 | 2.5716    | 3.4288 | 4.2860 |
| 60  | 120    | 240 | 300 | .8660  | 1.7320 | 2.5980    | 3.4640 | 4.3300 |
| 61  | 119    | 241 | 299 | .8746  | 1.7492 | 2.6238    | 3.4984 | 4.3730 |
| 62  | 118    | 242 | 298 | .8829  | 1.7658 | 2.6487    | 3.5316 | 4.4145 |
| 63  | 117    | 243 | 297 | .8910  | 1.7820 | 2.6730    | 3.5640 | 4.4550 |
| 64  | 116    | 244 | 296 | .8988  | 1.7976 | 2.6964    | 3.5952 | 4.4940 |
| 65  | 115    | 245 | 295 | .9063  | 1.8126 | 2.7189    | 3.6252 | 4.5315 |
| 66  | 114    | 246 | 294 | .9135  | 1.8270 | 2.7405    | 3.6540 | 4.5675 |
| 67  | 113    | 247 | 293 | .9205  | 1.8410 | 2.7615    | 3.6820 | 4.6025 |
| 68  | 112    | 248 | 292 | .9272  | 1.8544 | 2.7816    | 3.7088 | 4.6360 |
| 69  | 111    | 249 | 291 | .9336  | 1.8672 | 2.8008    | 3.7344 | 4.6680 |
| 70  | 110    | 250 | 290 | .9397  | 1.8794 | 2.8191    | 3.7588 | 4.6985 |
| 71  | 109    | 251 | 289 | .9455  | 1.8910 | 2.8365    | 3.7820 | 4.7275 |
| 72  | 108    | 252 | 288 | .9511  | 1.9022 | 2.8533    | 3.8044 | 4.7555 |
| 73  | 107    | 253 | 287 | .9563  | 1.9126 | 2.8689    | 3.8252 | 4.7815 |
| 74  | 106    | 254 | 286 | .9613  | 1.9226 | 2.8839    | 3.8452 | 4.8065 |
| 75  | 105    | 255 | 285 | .9659  | 1.9318 | 2.8977    | 3.8636 | 4.8295 |
|     |        |     |     |        |        |           |        |        |
| 76  | 104    | 256 | 284 | .9703  | 1.9406 | 2.9109    | 3.8812 | 4.8515 |
| 77  | 103    | 257 | 283 | .9744  | 1.9488 | 2.9232    | 3.8976 | 4.8720 |
| 78  | 102    | 258 | 282 | .9781  | 1.9562 | 2.9343    | 3.9124 | 4.8905 |
| 79  | 101    | 259 | 281 | .9816  | 1.9632 | 2.9448    | 3.9264 | 4.9080 |
| 80  | 100    | 260 | 280 | .9848  | 1.9696 | 2.9544    | 3.9392 | 4.9240 |
| 81  | 99     | 261 | 279 | .9877  | 1.9754 | 2.9631    | 3.9508 | 4.9385 |
| 82  | 98     | 262 | 278 | .9903  | 1.9806 | 2.9709    | 3.9612 | 4.9515 |
| 83  | 97     | 263 | 277 | .9925  | 1.9850 | 2.9775    | 3.9700 | 4.9625 |
| 84  | 96     | 264 | 276 | .9945  | 1.9890 | 2.9835    | 3.9780 | 4.9725 |
| 85  | 95     | 265 | 275 | .9962  | 1.9924 | 2.9886    | 3.9848 | 4.9810 |
| 86  | 94     | 266 | 274 | .9976  | 1.9952 | 2.9928    | 3.9904 | 4.9880 |
| 87  | 93     | 267 | 273 | .9986  | 1.9972 | 2.9958    | 3.9944 | 4.9930 |
| 88  | 92     | 268 | 272 | .9994  | 1.9988 | 2.9982    | 3.9976 | 4.9970 |
| 89  | 91     | 269 | 271 | .9998  | 1.9996 | 2.9994    | 3.9992 | 4.9990 |
| 90  | 90     | 270 | 270 | 1.0000 | 2.0000 | 3.0000    | 4.0000 | 5.0000 |
|     |        |     |     |        |        |           |        |        |

Table 2-3. Instantaneous Values of Voltage or Current of Sine Waves (cont'd)

|     | Phase Angle Peak Voltage or Current |            |            |        |        |        |        |        |
|-----|-------------------------------------|------------|------------|--------|--------|--------|--------|--------|
|     | grees)                              |            |            | 6      | 7      | 8      | 9      | 10     |
| ,   | y ,                                 |            |            |        | ,      | ۰      | ,      | 10     |
| 0   | 180                                 | 180        | 360        | .0000  | .0000  | .0000  | .0000  | .0000  |
| - 1 | 179                                 | 181        | 359        | .1050  | .1225  | .1400  | .1575  | .1750  |
| 2   | 178                                 | 182        | 358        | .2094  | .2443  | .2792  | .3141  | .3490  |
| 3   | 177                                 | 183        | 357        | .3138  | .3661  | .4184  | .4707  | .5230  |
| 4   | 176                                 | 184        | 356        | .4188  | .4886  | .5584  | .6282  | .6980  |
| 5   | 175                                 | 185        | 355        | .5232  | .6104  | .6976  | .7848  | .8720  |
| 6   | 174                                 | 186        | 354        | .6270  | .7315  | .8360  | .9405  | 1.0450 |
| 7   | 173                                 | 187        | 353        | .7314  | .8533  | .9752  | 1.0971 | 1.2190 |
| 8   | 172                                 | 188        | 352        | .8352  | .9744  | 1.1136 | 1.2528 | 1.3920 |
| 9   | 171                                 | 189        | 351        | .9384  | 1.0948 | 1.2512 | 1.4076 | 1.5640 |
| 10  | 170                                 | 190        | 350        | 1.0416 | 1.2152 | 1.3888 | 1.5624 | 1.7360 |
| 11  | 169                                 | 191        | 349        | 1.4448 | 1.3356 | 1.5264 | 1.7172 | 1.9080 |
| 12  | 168                                 | 192        | 348        | 1.2474 | 1.4553 | 1.6632 | 1.8711 | 2.0790 |
| 13  | 167                                 | 193        | 347        | 1.3500 | 1.5750 | 1.8000 | 2.0250 | 2.2500 |
| 14  | 166                                 | 194        | 346        | 1.4514 | 1.6933 | 1.9352 | 2.1771 | 2.4190 |
| 15  | 165                                 | 195        | 345        | 1.5528 | 1.8116 | 2.0704 | 2.3292 | 2.5880 |
| 16  | 164                                 | 196        | 244        |        |        |        |        |        |
| 17  | 163                                 | 197        | 344        | 1.6536 | 1.9292 | 2.2048 | 2.4804 | 2.7560 |
| 18  | 162                                 |            | 343<br>342 | 1.7544 | 2.0468 | 2.3392 | 2.6316 | 2.9240 |
| 19  | 161                                 | 198<br>199 |            | 1.8540 | 2.1630 | 2.4720 | 2.7810 | 3.0900 |
| 20  | 160                                 | 200        | 341        | 1.9536 | 2.2792 | 2.6048 | 2.9304 | 3.2560 |
| 20  |                                     | 200        | 340        | 2.0520 | 2.3940 | 2.7360 | 3.0780 | 3.4200 |
| 21  | 159                                 | 201        | 339        | 2.1504 | 2.5088 | 2.8672 | 3.2256 | 3.5840 |
| 22  | 158                                 | 202        | 338        | 2.2476 | 2.6222 | 2.9968 | 3.3714 | 3.7460 |
| 23  | 157                                 | 203        | 337        | 2.3442 | 2.7349 | 3.1256 | 3.5163 | 3,9070 |
| 24  | 156                                 | 204        | 336        | 2.4402 | 2.8469 | 3.2536 | 3.6603 | 4.0670 |
| 25  | 155                                 | 205        | 335        | 2.5356 | 2.9582 | 3.3808 | 3.8034 | 4.2260 |
| 26  | 154                                 | 206        | 334        | 2.6304 | 3.0688 | 3.5072 | 3.9456 | 4.3840 |
| 27  | 153                                 | 207        | 333        | 2.7240 | 3.1780 | 3.6320 | 4.0860 | 4.5400 |
| 28  | 152                                 | 208        | 332        | 2.8170 | 3.2865 | 3.7560 | 4.2255 | 4.6950 |
| 29  | 151                                 | 209        | 331        | 2.9088 | 3.3936 | 3.8784 | 4.3632 | 4.8480 |
| 30  | 150                                 | 210        | 330        | 3.0000 | 3.5000 | 4.0000 | 4.5000 | 5.0000 |
| 31  | 149                                 | 211        | 329        | 2 0000 | 2 4050 | 4 1000 |        |        |
| 32  | 148                                 | 211        | 329        | 3.0900 | 3.6050 | 4.1200 | 4.6350 | 5.1500 |
| 33  | 147                                 | 213        | 327        | 3.1794 | 3.7093 | 4.2392 | 4.7691 | 5.2990 |
| 34  | 146                                 | 214        | 326        | 3.26/6 |        | 4.3568 | 4.9014 | 5.4460 |
| 35  | 145                                 | 215        | 325        | 3.3552 | 3.9144 | 4.4736 | 5.0328 | 5.5920 |
| 55  | 143                                 | 413        | 323        | 3.4416 | 4.0152 | 4.5888 | 5.1634 | 5.7360 |

Table 2-3. Instantaneous Values of Voltages or Current of Sine Waves (cont'd)

| Pho |        |     |     |        |        |           |        |        |
|-----|--------|-----|-----|--------|--------|-----------|--------|--------|
|     |        |     |     |        |        | Voltage o |        |        |
| (de | grees) |     |     | 6      | 7      | 8         | 9      | 10     |
| 36  | 144    | 216 | 324 | 3.5268 | 4.1146 | 4.7004    | 5.2902 | 5.8780 |
| 37  | 143    | 217 | 323 | 3.6108 | 4.2126 | 4.8144    | 5.4162 | 6.0180 |
| 38  | 142    | 218 | 322 | 3.6942 | 4.3099 | 4.9256    | 5.5413 | 6.1570 |
| 39  | 141    | 219 | 321 | 3.7758 | 4.4051 | 5.0344    | 5.6637 | 6.2930 |
| 40  | 140    | 220 | 320 | 3.8568 | 4.4996 | 5.1424    | 5.7852 | 6.4280 |
| 41  | 139    | 221 | 319 | 3.9366 | 4.5927 | 5.2488    | 5.9049 | 6.5610 |
| 42  | 138    | 222 | 318 | 4.0146 | 4.6837 | 5.3528    | 6.0219 | 6.6910 |
| 43  | 137    | 223 | 317 | 4.0920 | 4.7740 | 5.4560    | 6.1380 | 6.8200 |
| 44  | 136    | 224 | 316 | 4.1682 | 4.8629 | 5.5576    | 6.2523 | 6.9470 |
| 45  | 135    | 225 | 315 | 4.2426 | 4.9497 | 5.6568    | 6.3639 | 7.0710 |
| 46  | 134    | 226 | 314 | 4.3158 | 5.0351 | 5.7544    | 6.4737 | 7.1930 |
| 47  | 133    | 227 | 313 | 4.3884 | 5.1198 | 5.8512    | 6.5826 | 7.3140 |
| 48  | 132    | 228 | 312 | 4.4586 | 5.2017 | 5.9448    | 6.6879 | 7.4310 |
| 49  | 131    | 229 | 311 | 4.5282 | 5.2829 | 6.0376    | 6.7923 | 7.5470 |
| 50  | 130    | 230 | 310 | 4.5960 | 5.3620 | 6.1280    | 6.8940 | 7.6600 |
| 51  | 129    | 231 | 309 |        |        |           |        |        |
| 52  | 128    | 231 | 309 | 4.6626 | 5.4397 | 6.2168    | 6.9939 | 7.7710 |
| 53  | 128    | 232 | 308 | 4.7280 | 5.5160 | 6.3040    | 7.0920 | 7.8800 |
| 54  | 126    | 233 | 307 | 4.7916 | 5.5902 | 6.3888    | 7.1874 | 7.9860 |
| 55  | 125    |     |     | 4.8540 | 5.6630 | 6.4720    | 7.2810 | 8.0900 |
| 33  | 123    | 235 | 305 | 4.9152 | 5.7344 | 6.5536    | 7.3728 | 8.1920 |
| 56  | 124    | 236 | 304 | 4.9740 | 5.8030 | 6.6320    | 7.4610 | 8.2900 |
| 57  | 123    | 237 | 303 | 5.0322 | 5.8709 | 6.7096    | 7.5083 | 8.3870 |
| 58  | 122    | 238 | 302 | 5.0880 | 5.9360 | 6.7840    | 7.6320 | 8.4800 |
| 59  | 121    | 239 | 301 | 5.1432 | 6.0004 | 6.8576    | 7.7148 | 8.5720 |
| 60  | 120    | 240 | 300 | 5.1960 | 6.0620 | 6.9280    | 7.7940 | 8.6600 |
| 61  | 119    | 241 | 299 | 5.2476 | 6.1222 | 6.9968    | 7.8714 | 8.7460 |
| 62  | 118    | 242 | 298 | 5.2974 | 6.1803 | 7.0632    | 7.9461 | 8.829G |
| 63  | 117    | 243 | 297 | 5.3460 | 6.2370 | 7.1280    | 8.0190 | 8.9100 |
| 64  | 116    | 244 | 296 | 5.3928 | 6.2916 | 7,1904    | 8.0892 | 8.9880 |
| 65  | 115    | 245 | 295 | 5.4378 | 6.3441 | 7.2504    | 8.1567 | 9.0630 |
| 66  | 114    | 246 | 294 | 5.4810 | 6.3945 | 7.3080    | 8.2215 | 9.1350 |
| 67  | 113    | 247 | 293 | 5.5230 | 6.4435 | 7.3640    | 8.2845 | 9.2050 |
| 68  | 112    | 248 | 292 | 5.5632 | 6.4904 | 7,4176    | 8.3448 | 9.2720 |
| 69  | 111    | 249 | 291 | 5.6016 | 6.5352 | 7.4688    | 8.4024 | 9.3360 |
| 70  | 110    | 250 | 290 | 5.6382 | 6.5779 | 7.5176    | 8.4573 | 9.3970 |
|     |        |     |     |        |        | 170       | 0.43/3 | 7.0770 |

Table 2-3. Instantaneous Values of Voltages or Current of Sine Waves (cont'd)

| Pha  |        |     |     |        |        |            |         |         |
|------|--------|-----|-----|--------|--------|------------|---------|---------|
| Ang  |        |     |     |        | Peak   | Valtage or | Current |         |
| (deg | grees) |     |     | 6      | 7      | 8          | 9       | 10      |
| 71   | 109    | 251 | 289 | 5.6730 | 6.6185 | 7.5640     | 8.5095  | 9.4550  |
| 72   | 108    | 252 | 288 | 5.7066 | 6.6577 | 7.6088     | 8.5599  | 9.5110  |
| 73   | 107    | 253 | 287 | 5.7378 | 6.6941 | 7.6504     | 8.6067  | 9.5630  |
| 74   | 106    | 254 | 286 | 5.7678 | 6.7291 | 7.6904     | 8.6517  | 9.6120  |
| 75   | 105    | 255 | 285 | 5.7954 | 6.7613 | 7.7272     | 8.6931  | 9.6590  |
| 76   | 104    | 256 | 284 | 5.8218 | 6.7921 | 7.7624     | 8.7327  | 9.7030  |
| 77   | 103    | 257 | 283 | 5.8464 | 6.8208 | 7.7952     | 8.7696  | 9.7440  |
| 78   | 102    | 258 | 282 | 5.8686 | 6.8467 | 7.8248     | 8.8029  | 9.7810  |
| 79   | 101    | 259 | 281 | 5.8896 | 6.8712 | 7.8528     | 8.8344  | 9.8160  |
| 80   | 100    | 260 | 280 | 5.9088 | 6.8936 | 7.8784     | 8.8632  | 9.8480  |
| 81   | 99     | 261 | 279 | 5.9262 | 6.9139 | 7.9016     | 8.8893  | 9.8770  |
| 82   | 98     | 262 | 278 | 5.9418 | 6.9321 | 7.9224     | 8.9127  | 9.9030  |
| 83   | 97     | 263 | 277 | 5.9550 | 6.9475 | 7.9400     | 8.9325  | 9.9250  |
| 84   | 96     | 264 | 276 | 5.9670 | 6.9615 | 7.9560     | 8.9505  | 9.9450  |
| 85   | 95     | 265 | 275 | 5.9772 | 6.9734 | 7.9696     | 8.9658  | 9.9620  |
| 86   | 94     | 266 | 274 | 5.9856 | 6.9832 | 7.9808     | 8.9784  | 9.9760  |
| 87   | 93     | 267 | 273 | 5.9916 | 6.9902 | 7.9888     | 8.9874  | 9.9860  |
| 88   | 92     | 268 | 272 | 5.9964 | 6.9958 | 7.9952     | 8.9946  | 9.9940  |
| 89   | 91     | 269 | 271 | 5.9988 | 6.9986 | 7.9984     | 8.9982  | 9.9980  |
| 90   | 90     | 270 | 270 | 6.0000 | 7.0000 | 8.0000     | 9.0000  | 10.0000 |
|      |        |     |     |        |        |            |         |         |

#### PERIOD AND FREQUENCY

The time required for the completion of one complete cycle by a periodic function, such as a sine wave, is known as its period. The relationship between the period and the frequency of a wave is a reciprocal one and is shown in the formula T equals 1/f. In this formula, T, the period of the wave, is the time required for the completion of one full cycle; f is the frequency in hertz (cycles per second).

Table 2-4 permits the rapid conversion between the period of a wave and its frequency. Values not given in the table can be obtained by moving the decimal point. However, since the relationship is an inverse one, the decimal point for frequency and for time will move in opposite directions. Thus, for a frequency of 10 hertz, the time is 0.1 second. For a frequency of 100 hertz, move the decimal point one place to the right, changing 10 to 100. For the corresponding value of time, however, move the decimal point one place to the left. This would change 0.1 second to 0.01 second.

Table 2-4. Period vs Frequency

| Frequency | Time   | Frequency | Time  | Frequency | Time  |
|-----------|--------|-----------|-------|-----------|-------|
| (Hz)      | (sec)  | (Hz)      | (sec) | (Hz)      | (sec) |
| 1         | 1.0000 | 34        | .0294 | 67        | .0149 |
| 2         | .5000  | 35        | .0286 | 68        | .0147 |
| 3         | .3333  | 36        | .0278 | 69        | .0145 |
| 4         | .2500  | 37        | .0270 | 70        | .0143 |
| 5         | .2000  | 38        | .0263 | 71        | .0141 |
| 6         | .1667  | 39        | .0256 | 72        | .0139 |
| 7         | .1429  | 40        | .0250 | 73        | .0137 |
| 8         | .1250  | 41        | .0244 | 74        | .0135 |
| 9         | .1111  | 42        | .0238 | 75        | .0133 |
| 10        | .1000  | 43        | .0233 | 76        | .0132 |
| 11        | .0909  | 44        | .0227 | 77        | .0130 |
| 12        | .0833  | 45        | .0222 | 78        | .0128 |
| 13        | .0769  | 46        | .0217 | 79        | .0127 |
| 14        | .0714  | 47        | .0213 | 80        | .0125 |
| 15        | .0667  | 48        | .0208 | 81        | .0123 |
| 16        | .0625  | 49        | .0204 | 82        | .0122 |
| 17        | .0588  | 50        | .0200 | 83        | .0120 |
| 18        | .0556  | 51        | .0196 | 84        | .0119 |
| 19        | .0526  | 52        | .0192 | 8.5       | .0118 |
| 20        | .0500  | 53        | .0189 | 86        | .0116 |
| 21        | .0476  | 54        | .0185 | 87        | .0115 |
| 22        | .0455  | 55        | .0182 | 88        | .0114 |
| 23        | .0435  | 56        | .0179 | 89        | .0112 |
| 24        | .0417  | 57        | .0175 | 90        | .0111 |
| 25        | .0400  | 58        | .0172 | 91        | .0110 |
| 26        | .0385  | 59        | .0169 | 92        | .0109 |
| 27        | .0370  | 60        | .0167 | 93        | .0108 |
| 28        | .0357  | 61        | .0164 | 94        | .0106 |
| 29        | .0345  | 62        | .0161 | 95        | .0105 |
| 30        | .0333  | 63        | .0159 | 96        | .0104 |
| 31        | .0323  | 64        | .0156 | 97        | .0103 |
| 32        | .0312  | 65        | .0154 | 98        | .0102 |
| 33        | .0303  | 66        | .0152 | 99        | .0101 |
|           |        |           |       | 100       | .0100 |

### □Example:

The sine wave input to a power supply is 60 Hz. What is the period of this wave?

Locate 60 in the frequency column. Immediately adjacent you will see it requires 0.0167 second to complete one single cycle of this waveform.

#### □Example:

What is the period of a sine waveform having a frequency of 550 kilohertz?

In Table 2-4 the frequency is given in hertz. In that table 55 can be made to represent 550 kHz by multiplying it by 10,0000 or by moving its decimal point four places to the right (550,000). However, as shown in the formula given above, T and f are inverse. Thus, if we move the decimal point to the right for the frequency column, we must move it to the left an equal number of places for the time column. For 55 hertz, the time is 0.0182 second. For 550,000 hertz, the time is 0.00000182 second or 1.82 µsec.

# □Example:

The time of a half wave is 61 microseconds. What is its frequency?

Assuming the problem involves a sine wave, first multiply 61 by 2 to get the time of a full wave.  $2 \times 61$  equals 122. 122 microseconds corresponds to 0.000122 second. The nearest value shown in the table is 0.0122 second, and the frequency for this time value is 82 Hz. We can get 0.00122 by moving the decimal point of 0.0122 two places to the left. The decimal point for the frequency, then, should be moved an equivalent number of places to the right. This would give an answer of 8200 Hz.



# Chapter 3 Capacitance

#### CAPACITIVE REACTANCE

The reactance of a capacitor, or its opposition to the flow of an alternating current, varies inversely with frequency and with capacitance. Capacitive reactance, expressed in ohms, is based on the ability of a capacitor to store a charge or counter-electromotive force. This emf, acting in opposition to the applied voltage, reduces the amount of current flowing in a circuit, hence produces an effect analogous to that of a resistor. With a resistor, though, the current through it and the voltage across it are in phase. However, the counter end of a capacitor, causes the voltage to lag behind the current. Ideally, the phase angle is 90 degrees, but in practice the phase angle is less than this.

Table 3-1 gives the reactance of capacitors ranging from 0.0001  $\mu F$  to 0.0005  $\mu F$  for frequencies ranging from 10 to 5.000 kHz. Table 3-1 is also for capacitors having values from 0.25 to 3  $\mu F$  and for frequencies from 25 to 20,000 hertz. Both tables can be extended since doubling the frequency will have the reactance. The same effect can be obtained by doubling the capacitance. Similarly, halving the frequency or capacitance will double the reactance. Naturally, other multiplication or division factors can be used. See also Table 3-2.

#### □Example:

What is the reactance of a .01- $\mu$ F capacitor at a frequency of 1000 Hz? What will happen to this reactance if the frequency is increased to 10,000 Hz?

Table 3-1. Capacitive Reactance (Ohms).

| Frequency |        | Co     | pacitance ( | ιF)   |       |
|-----------|--------|--------|-------------|-------|-------|
| (Hz)      | 0.25   | 0.5    | 1.0         | 2.0   | 3.0   |
| 25        | 25,478 | 12,739 | 6,369       | 3,185 | 2,123 |
| 30        | 21,231 | 10,616 | 5,308       | 2,654 | 1,769 |
| 50        | 12,739 | 6,369  | 3,185       | 1,593 | 1,062 |
| 60        | 10,616 | 5,308  | 2,654       | 1,327 | 885   |
| 75        | 8,492  | 4,246  | 2,123       | 1,062 | 708   |
| 100       | 6,369  | 3,185  | 1,592       | 796   | 531   |
| 120       | 5,308  | 2,654  | 1,327       | 664   | 442   |
| 150       | 4,246  | 2,123  | 1,062       | 531   | 354   |
| 180       | 3,538  | 1,769  | 885         | 443   | 295   |
| 200       | 3,185  | 1,592  | 796         | 398   | 265   |
| 250       | 2,548  | 1,274  | 637         | 319   | 212   |
| 300       | 2,123  | 1,062  | 531         | 265   | 177   |
| 350       | 1,820  | 910    | 455         | 228   | 152   |
| 400       | 1,592  | 796    | 398         | 199   | 133   |
| 450       | 1,415  | 708    | 354         | 177   | 118   |
| 500       | 1,274  | 637    | 319         | 159   | 106   |
| 600       | 1,107  | 531    | 265         | 133   | 88    |
| 700       | 948    | 455    | 228         | 114   | 76    |
| 800       | 796    | 398    | 199         | 99    | 66    |
| 900       | 708    | 354    | 177         | 89    | 59    |
| 1,000     | 637    | 318    | 159         | 79    | 53    |
| 2,000     | 319    | 159    | 79          | 39    | 27    |
| 3,000     | 213    | 107    | 53          | 27    | 18    |
| 4,000     | 159    | 79     | 39          | 20    | 14    |
| 5,000     | 127    | 64     | 32          | 16    | 11    |
| 6,000     | 106    | 53     | 27          | 14    | 9     |
| 7,000     | 91     | 46     | 23          | 12    | 8     |
| 8,000     | 80     | 40     | 20          | 10    | 7     |
| 9,000     | 71     | 36     | 18          | 9     | 6     |
| 10,000    | 64     | 32     | 16          | 8     | 5     |
| 12,000    | 53     | 27     | 14          | 7     | 4.6   |
| 14,000    | 46     | 23     | 12          | 6     | 4     |
| 16,000    | 40     | 20     | 10          | 5     | 3.3   |
| 18,000    | 36     | 18     | 9           | 4.5   | 3     |
| 20,000    | 32     | 16     | 8           | 4     | 2.6   |

Table 3-1. Capacitive Reactance (Ohms) (cont'd)

| Frequenc | u       |         | Capacitar |         |        |        |
|----------|---------|---------|-----------|---------|--------|--------|
| (kHz)    | 0.0001  | 0.00015 | 0.0002    | 0.00025 | 0.0003 | 0.0005 |
| 10       |         |         |           |         |        |        |
| 10       | 159,236 | 106,157 | 79,618    | 63,694  | 53,078 | 31,847 |
| 20       | 79,618  | 53,079  | 39,809    | 31,848  | 26,539 | 15,924 |
| 30       | 53,079  | 35,836  | 26,539    | 21,232  | 17,693 | 10,616 |
| 40       | 39,809  | 26,540  | 19,905    | 15,924  | 13,270 | 7,962  |
| 50       | 31,847  | 21,230  | 15,924    | 12,740  | 10,616 | 6,370  |
| 60       | 26,539  | 17,693  | 13,270    | 10,616  | 8,847  | 5,308  |
| 70       | 22,748  | 15,165  | 11,374    | 9,098   | 7,852  | 4,549  |
| 80       | 19,905  | 13,270  | 9,953     | 7,962   | 6,635  | 3,981  |
| 90       | 17,693  | 11,795  | 8,847     | 7,078   | 5,897  | 3,539  |
| 100      | 15,924  | 10,615  | 7,962     | 6,370   | 5,308  | 3,185  |
| 150      | 10,616  | 7,077   | 5,308     | 4,246   | 3,539  | 2,123  |
| 200      | 7,962   | 5,308   | 3,981     | 3,186   | 2,654  | 1,593  |
| 250      | 6,369   | 4,246   | 3,185     | 2,548   | 2,123  | 1,274  |
| 300      | 5,308   | 3,538   | 2,654     | 2,124   | 1,770  | 1,062  |
| 350      | 4,550   | 3,033   | 2,275     | 1,820   | 1,516  | 910    |
| 400      | 3,981   | 2,654   | 1,991     | 1,594   | 1,326  | 797    |
| 450      | 3,539   | 2,539   | 1,769     | 1,414   | 1,179  | 707    |
| 500      | 3,185   | 2,123   | 1,592     | 1,274   | 1,062  | 637    |
| 550      | 2,895   | 1,930   | 1,448     | 1,158   | 965    | 579    |
| 600      | 2,654   | 1,769   | 1,327     | 1,062   | 885    | 531    |
| 650      | 2,450   | 1,633   | 1,225     | 980     | 816    | 490    |
| 700      | 2,275   | 1,516   | 1,138     | 910     | 758    | 455    |
| 750      | 2,123   | 1,416   | 1,062     | 850     | 708    | 425    |
| 800      | 1,991   | 1,327   | 896       | 798     | 663    | 399    |
| 850      | 1,873   | 1,249   | 937       | 750     | 624    | 375    |
| 900      | 1,769   | 1,179   | 885       | 708     | 589    | 354    |
| 950      | 1,676   | 1,117   | 938       | 670     | 559    | 335    |
| 1,000    | 1,592   | 1,062   | 796       | 637     | 530    | 319    |
| 2,000    | 796     | 531     | 398       | 319     | 265    | 159    |
| 2,500    | 637     | 425     | 319       | 255     | 212    | 127    |
| 3,000    | 531     | 354     | 266       | 212     | 177    | 106    |
| 3,500    | 455     | 303     | 228       | 182     | 152    | 91     |
| 4,000    | 398     | 265     | 199       | 159     | 133    | 80     |
| 4,500    | 354     | 254     | 177       | 141     | 118    | 71     |
| 5,000    | 319     | 212     | 159       | 127     | 106    | 64     |

Table 3-1 shows a frequency of 1000 Hz, but does not have a capacitance value marked 0.01. Locate 1000 in the left-hand column and move horizontally to the right until you reach the number 159 under the heading of  $1.0\,\mu\text{F}$ . Change  $1.0\,\mu\text{F}$  to 0.01 by dividing it by 100. When we do this, we must multiply 159 by 100. The answer then 15,900 ohms. If we increase the frequency to 10,000 Hz we will be multiplying the original frequency by a factor of 10. This means the reactance should be divided by a similar factor. The answer will be 15900 divided by 10 or 1590 ohms.

#### □Example:

What is the reactance of a 0.00015  $\mu F$  capacitor at a frequency of 3,000 kHz?

The Table shows that at this frequency the reactance is  $354\,\mathrm{ohms}.$ 

Table 3-2. Capacitive Reactance At Spot Frequencies

Value above 10 M $\Omega$  and below 0.1 $\Omega$  not shown. Values in ohms.

#### CAPACITORS IN SERIES

The total capacitance of series capacitors is always less than that of the smallest capacitor in the series network. As a general rule of thumb, if two capacitors are in series, and one has ten or more times the value of the other, the resultant total capacitance can be considered as slightly less than or equal to the value of the smaller capacitor.

Where two series capacitors have equal values, the resultant capacitance is one-half that of either unit. When three capacitors in

Table 3-3. Capacitors in Series

|     |       |       | C1    |       |      |
|-----|-------|-------|-------|-------|------|
| C2  | 1     | 1.5   | 2     | 2.2   | 3    |
| 1   | 0.50  | 0.60  | 0.666 | 0.69  | 0.75 |
| 1.5 | 0.60  | 0.75  | 0.857 | 0.89  | 1.00 |
| 2   | 0.666 | 0.888 | 1.00  | 1.05  | 1.20 |
| 2.2 | 0.69  | 0.89  | 1.05  | 1.10  | 1.27 |
| 3   | 0.75  | 1.00  | 1.20  | 1.27  | 1.50 |
| 3.3 | 0.77  | 1.03  | 1.24  | 1.31  | 1.57 |
| 4   | 0.80  | 1.09  | 1.33  | 1.42  | 1.71 |
| 4.7 | 0.82  | 1.13  | 1.40  | 1.49  | 1.83 |
| 5   | 0.833 | 1.15  | 1.43  | 1.53  | 1.87 |
| 5.6 | 0.848 | 1.18  | 1.47  | 1.58  | 1.95 |
| 6.8 | 0.87  | 1.22  | 1.54  | 1.66  | 2.08 |
| 7.5 | 0.88  | 1.25  | 1.58  | 1.69  | 2.14 |
| 8.2 | 0.89  | 1.26  | 1.60  | 1.73  | 2.19 |
| 10  | 0.91  | 1.30  | 1.66  | 1.80  | 2.31 |
| 12  | 0.923 | 1.33  | 1.71  | 1.85  | 2.40 |
| 15  | 0.937 | 1.36  | 1.76  | 1.92  | 2.50 |
| 18  | 0.947 | 1.38  | 1.80  | 1.96  | 2.57 |
| 20  | 0.952 | 1.40  | 1.82  | 1.98  | 2.61 |
| 22  | 0.956 | 1.40  | 1.83  | 2.00  | 2.64 |
| 24  | 0.96  | 1.41  | 1.84  | 2.01  | 2.66 |
| 27  | 0.964 | 1.42  | 1.86  | 2.03  | 2.70 |
| 30  | 0.968 | 1.428 | 1.87  | 2.05  | 2.73 |
| 33  | 0.970 | 1.43  | 1.88  | 2.06  | 2.75 |
| 36  | 0.973 | 1.44  | 1.89  | 2.07  | 2.77 |
| 39  | 0.975 | 1.444 | 1.90  | 2.08  | 2.79 |
| 43  | 0.977 | 1.449 | 1.91  | 2.09  | 2.80 |
| 47  | 0.979 | 1.45  | 1.92  | 2.10  | 2.82 |
| 51  | 0.98  | 1.457 | 1.924 | 2.11  | 2.83 |
| 56  | 0.982 | 1.461 | 1.93  | 2.12  | 2.84 |
| 62  | 0.984 | 1.464 | 1.937 | 2.124 | 2.86 |
| 68  | 0.985 | 1.467 | 1.94  | 2.13  | 2.87 |
| 75  | 0.987 | 1.47  | 1.95  | 2.14  | 2.88 |
| 82  | 0.988 | 1.473 | 1.952 | 2.142 | 2 89 |
| 91  | 0.989 | 1.475 | 1.957 | 2.148 | 2.90 |
| 100 | 0.991 | 1.478 | 1.96  | 2.153 | 2.91 |

Table 3-3. Capacitors in Series (cont'd)

|     |       |      | C1   |      |      |
|-----|-------|------|------|------|------|
| C2  | 3.3   | 4    | 4.7  | 5    | 5.6  |
| 1   | 0.77  | 0.80 | 0.82 | 0.83 | 0.84 |
| 1.5 | 1.03  | 1.09 | 1.13 | 1.15 | 1.18 |
| 2   | 1.24  | 1.33 | 1.40 | 1.43 | 1.47 |
| 2.2 | 1.31  | 1.42 | 1.49 | 1.53 | 1.58 |
| 3   | 1.57  | 1.71 | 1.83 | 1.87 | 1.95 |
| 3.3 | 1.65  | 1.81 | 1.94 | 1.98 | 2.07 |
| 4   | 1.81  | 2.00 | 2.16 | 2.22 | 2.33 |
| 4.7 | 1.94  | 2.16 | 2.35 | 2.42 | 2.55 |
| 5   | 1.99  | 2.22 | 2.42 | 2.50 | 2.64 |
| 5.6 | 2.07  | 2.33 | 2.55 | 2.64 | 2.80 |
| 6.8 | 2.22  | 2.52 | 2.78 | 2.88 | 3.07 |
| 7.5 | 2.29  | 2.66 | 2.88 | 3.00 | 3.21 |
| 8.2 | 2.35  | 2.69 | 2.99 | 3.10 | 3.32 |
| 10  | 2.48  | 2.85 | 3.19 | 3.33 | 3.59 |
| 12  | 2.59  | 3.00 | 3.37 | 3.53 | 3.82 |
| 15  | 2.72  | 3.15 | 3.57 | 3.75 | 4.08 |
| 18  | 2.79  | 3.27 | 3.72 | 3.91 | 4.27 |
| 20  | 2.83  | 3.33 | 3.80 | 4.00 | 4.37 |
| 22  | 2.87  | 3.38 | 3.87 | 4.07 | 4.46 |
| 24  | 2.90  | 3.42 | 3.92 | 4.14 | 4.54 |
| 27  | 2.94  | 3.48 | 4.00 | 4.22 | 4.63 |
| 30  | 2.97  | 3.53 | 4.06 | 4.28 | 4.72 |
| 33  | 3.00  | 3.56 | 4.11 | 4.34 | 4.78 |
| 36  | 3.02  | 3.60 | 4.15 | 4.39 | 4.84 |
| 39  | 3.04  | 3.63 | 4.19 | 4.43 | 4.89 |
| 43  | 3.06  | 3.66 | 4.23 | 4.48 | 4.95 |
| 47  | 3.08  | 3.68 | 4.27 | 4.52 | 5.00 |
| 51  | 3.09  | 3.71 | 4.30 | 4.55 | 5.04 |
| 56  | 3.12  | 3.73 | 4.33 | 4.59 | 5.09 |
| 62  | 3.13  | 3.75 | 4.36 | 4.62 | 5.13 |
| 68  | 3.14  | 3.77 | 4.39 | 4.65 | 5.17 |
| 75  | 3.16  | 3.79 | 4.42 | 4.69 | 5.21 |
| 82  | 3.17  | 3.81 | 4.45 | 4.71 | 5.24 |
| 91  | 3.18  | 3.83 | 4.47 | 4.74 | 5.27 |
| 100 | 3.195 | 3.84 | 4.49 | 4.76 | 5.30 |

Table 3-3. Capacitors in Series (cont'd)

|     |      |      | C1   |      |        |
|-----|------|------|------|------|--------|
| C2  | 6.8  | 7.5  | 8.2  | 10   | 12     |
| 1   | 0.87 | 0.88 | 0.89 | 0.91 | 0.92   |
| 1.5 | 1.22 | 1.25 | 1.26 | 1.30 | 1.33   |
| 2   | 1.54 | 1.58 | 1.60 | 1.66 | 1.71   |
| 2.2 | 1.66 | 1.69 | 1.73 | 1.80 | 1.86   |
| 3   | 2.08 | 2.14 | 2.19 | 2.31 | 2.40   |
| 3.3 | 2.22 | 2.29 | 2.35 | 2.48 | 2.59   |
| 4   | 2.52 | 2.66 | 2.69 | 2.85 | 3.00   |
| 4.7 | 2.78 | 2.88 | 2.99 | 3.19 | 3.37   |
| 5   | 2.88 | 3.00 | 3.10 | 3.33 | 3.53   |
| 5.6 | 3.07 | 3.21 | 3.32 | 3.59 | 3.82   |
| 6.8 | 3.40 | 3.56 | 3.66 | 4.05 | 4.34   |
| 7.5 | 3.56 | 3.75 | 3.92 | 4.29 | 4.61   |
| 8.2 | 3.66 | 3.92 | 4.10 | 4.51 | 4.87   |
| 10  | 4.05 | 4.29 | 4.51 | 5.00 | 5.45   |
| 12  | 4.34 | 4.61 | 4.87 | 5.45 | 6.00   |
| 15  | 4.68 | 5.00 | 5.30 | 6.00 | 6.66   |
| 18  | 4.93 | 5.29 | 5.63 | 6.43 | 7.20   |
| 20  | 5.07 | 5.45 | 5.81 | 6.66 | 7.50   |
| 22  | 5.19 | 5.59 | 5.97 | 6.87 | 7.77   |
| 24  | 5.29 | 5.71 | 6.11 | 7.06 | 8.00   |
| 27  | 5.43 | 5.87 | 6.29 | 7.29 | 8.31   |
| 30  | 5.54 | 6.00 | 6.44 | 7.50 | 8.57   |
| 33  | 5.64 | 6.11 | 6.57 | 7.67 | 8.80   |
| 36  | 5.72 | 6.20 | 6.67 | 7.82 | 9.00   |
| 39  | 5.79 | 6.29 | 6.77 | 7.95 | 9.18   |
| 43  | 5.87 | 6.38 | 6.88 | 8.11 | 9.40   |
| 47  | 5.94 | 6.47 | 6.98 | 8.24 | 9.56   |
| 51  | 6.00 | 6.53 | 7.06 | 8.36 | 9.71   |
| 56  | 6.06 | 6.61 | 7.15 | 8.48 | 9.88   |
| 62  | 6.14 | 6.69 | 7.24 | 8.61 | 10.05  |
| 68  | 6.18 | 6.75 | 7.32 | 8.72 | 10.20  |
| 75  | 6.23 | 6.82 | 7.39 | 8.82 | 10.34  |
| 82  | 6.28 | 6.87 | 7.45 | 8.91 | 10.46  |
| 91  | 6.32 | 6.93 | 7.52 | 9.01 | i 0.60 |
| 100 | 6.37 | 6.96 | 7.58 | 9.09 | 10.71  |

Table 3-3. Capacitors in Series (cont'd)

|          |       |                | C1             |                |                |
|----------|-------|----------------|----------------|----------------|----------------|
| C2       | 15    | 18             | 20             | 22             | 24             |
| 1        | 0.937 | 0.947          | 0.952          | 0.956          | 0.96           |
| 1.5      | 1.36  | 1.38           | 1.395          | 1.40           | 1.41           |
| 2        | 1.76  | 1.80           | 1.82           | 1.83           | 1.84           |
| 2.2      | 1.92  | 1.96           | 1.98           | 2.00           | 2.01           |
| 3        | 2.50  | 2.57           | 2.61           | 2.64           | 2.66           |
| 3.3      | 2.72  | 2.79           | 2.83           | 2.87           | 2.90           |
| 4        | 3.15  | 3.27           | 3.33           | 3.38           | 3.42           |
| 4.7      | 3.57  | 3.72           | 3.80           | 3.87           | 3.92           |
| 5        | 3.75  | 3.91           | 4.00           | 4.07           | 4.14           |
| 5.6      | 4.08  | 4.27           | 4.37           | 4.46           | 4.54           |
| 6.8      | 4.68  | 4.93           | 5.07           | 5.19           | 5.29           |
| 7.5      | 5.00  | 5.29           | 5.45           | 5.59           | 5.71           |
| 8.2      | 5.30  | 5.63           | 5.81           | 5.97           | 6.11           |
| 10       | 6.00  | 6.43           | 6.66           | 6.87           | 7.06           |
| 12       | 6.66  | 7.20           | 7.50           | 7.77           | 8.00           |
| 15       | 7.50  | 8.18           | 8.57           | 8.92           | 9.23           |
| 18       | 8.18  | 9.00           | 9.47           | 9.90           | 10.29          |
| 20       | 8.57  | 9.47           | 10.00          | 10.43          | 10.91          |
| 22       | 8.92  | 9.90           | 10.48          | 11.00          | 11.48          |
| 24       | 9.23  | 10.29          | 10.91          | 11.48          | 12.00          |
| 27       | 9.64  | 10.80          | 11.49          | 12.12          | 12.71          |
| 30       | 10.00 | 11.25          | 12.00          | 12.69          | 13.33          |
| 33       | 10.31 | 11.65          | 12.45          | 13.20          | 13.89          |
| 36       | 10.59 | 12.00          | 12.86          | 13.66          | 14.40          |
| 39       | 10.83 | 12.32          | 13.22          | 14.07          | 14.86          |
| 43       | 11.21 | 12.69          | 13.65          | 14.55          | 15.40          |
| 47       | 11.37 | 13.02          | 14.03          | 14.93          | 15.89          |
| 51<br>56 | 11.59 | 13.30<br>13.62 | 14.37          | 15.37          | 16.32          |
| 62       | 12.08 | 13.62          | 14.74          | 15.79          | 16.80          |
| 68       | 12.08 | 14.23          | 15.12<br>15.45 | 16.24          | 17.30          |
| 75       | 12.50 | 14.23          | 15.79          | 16.62<br>17.01 | 17.74<br>18.18 |
| 82       | 12.68 | 14.76          | 16.08          | 17.01          | 18.57          |
| 91       | 12.88 | 15.03          | 16.40          | 17.33          | 18.99          |
| 71       | 12.00 | 13.03          | 10.40          | 17.71          | 18.77          |
| 100      | 13.04 | 15.25          | 16.67          | 18.03          | 19.35          |
| 150      | 13.64 | 16.07          | 17.65          | 19.19          | 20.69          |
| 180      | 13.85 | 16.36          | 18.00          | 19.60          | 21.18          |
| 200      | 13.95 | 16.51          | 18.18          | 19.82          | 21.43          |
| 220      | 14.04 | 16.63          | 18.33          | 20.00          | 21.64          |
| 250      | 14.15 | 16.79          | 18.52          | 20.22          | 21.90          |
|          |       |                |                |                |                |

Table 3-3. Capacitors in Series (cont'd)

| C2  | 1     | 1.5   | 2     | 2.2   | 3    |
|-----|-------|-------|-------|-------|------|
| 1   | 0.50  | 0.60  | 0.666 | 0.69  | 0.75 |
| 1.5 | 0.60  | 0.75  | 0.857 | 0.89  | 1.00 |
| 2   | 0.666 | 0.888 | 1.00  | 1.05  | 1.20 |
| 2.2 | 0.69  | 0.89  | 1.05  | 1.10  | 1.27 |
| 3   | 0.75  | 1.00  | 1.20  | 1.27  | 1.50 |
| 3.3 | 0.77  | 1.03  | 1.24  | 1.31  | 1.57 |
| 4   | 0.80  | 1.09  | 1.33  | 1.42  | 1.71 |
| 4.7 | 0.82  | 1.13  | 1.40  | 1.49  | 1.83 |
| 5   | 0.833 | 1.15  | 1.43  | 1.53  | 1.87 |
| 5.6 | 0.848 | 1.18  | 1.47  | 1.58  | 1.95 |
| 6.8 | 0.87  | 1.22  | 1.54  | 1.66  | 2.08 |
| 7.5 | 0.88  | 1.25  | 1.58  | 1.69  | 2.14 |
| 8.2 | 0.89  | 1.26  | 1.60  | 1.73  | 2.19 |
| 10  | 0.91  | 1.30  | 1.66  | 1.80  | 2.31 |
| 12  | 0.923 | 1.33  | 1.71  | 1.85  | 2.40 |
| 15  | 0.937 | 1.36  | 1.76  | 1.92  | 2.50 |
| 18  | 0.947 | 1.38  | 1.80  | 1.96  | 2.57 |
| 20  | 0.952 | 1.40  | 1.82  | 1.98  | 2.61 |
| 22  | 0.956 | 1.40  | 1.83  | 2.00  | 2.64 |
| 24  | 0.96  | 1.41  | 1.84  | 2.01  | 2.66 |
| 27  | 0.964 | 1.42  | 1.86  | 2.03  | 2.70 |
| 30  | 0.968 | 1.428 | 1.87  | 2.05  | 2.73 |
| 33  | 0.970 | 1.43  | 1.88  | 2.06  | 2.75 |
| 36  | 0.973 | 1.44  | 1.89  | 2.07  | 2.77 |
| 39  | 0.975 | 1.444 | 1.90  | 2.08  | 2.79 |
| 43  | 0.977 | 1.449 | 1.91  | 2.09  | 2.80 |
| 47  | 0.979 | 1.45  | 1.92  | 2.10  | 2.82 |
| 51  | 0.98  | 1.457 | 1.924 | 2.11  | 2.83 |
| 56  | 0.982 | 1.461 | 1.93  | 2.12  | 2.84 |
| 62  | 0.984 | 1.464 | 1.937 | 2.124 | 2.86 |
| 68  | 0.985 | 1.467 | 1.94  | 2.13  | 2.87 |
| 75  | 0.987 | 1.47  | 1.95  | 2.14  | 2.88 |
| 82  | 0.988 | 1.473 | 1.952 | 2.142 | 2.89 |
| 91  | 0.989 | 1.475 | 1.957 | 2.148 | 2.90 |
| 100 | 0.991 | 1.478 | 1.96  | 2.153 | 2.91 |

Table 3-3. Capacitors in Series (cont'd)

| C2  | 47    | 51    | 56    | 62    | 68    | 75    |
|-----|-------|-------|-------|-------|-------|-------|
| 1   | 0.979 | 0.981 | 0.982 | 0.984 | 0.986 | 0.987 |
| 1.5 | 1.454 | 1.457 | 1.461 | 1.465 | 1.468 | 1.471 |
| 2   | 1.918 | 1.925 | 1.931 | 1.938 | 1.943 | 1.948 |
| 2.2 | 2.100 | 2.11  | 2.12  | 2.124 | 2.13  | 2.142 |
| 3   | 2.82  | 2.83  | 2.85  | 2.86  | 2.87  | 2.88  |
|     |       |       |       |       |       |       |
| 3.3 | 3.08  | 3.10  | 3.12  | 3.13  | 3.15  | 3.16  |
| 4   | 3.68  | 3.71  | 3.73  | 3.75  | 3.77  | 3.79  |
| 4.7 | 4.27  | 4.30  | 4.34  | 4.37  | 4.40  | 4.42  |
| 5   | 4.52  | 4.55  | 4.59  | 4.62  | 4.65  | 4.69  |
| 5.6 | 5.00  | 5.05  | 5.09  | 5.14  | 5.17  | 5.21  |
| 6.8 | 5.94  | 6.00  | 6.06  | 6.14  | 6.18  | 6.23  |
| 7.5 | 6.47  | 6.53  | 6.61  | 6.69  | 6.75  | 6.82  |
| 8.2 | 6.98  | 7.06  | 7.15  | 7.24  | 7.32  | 7.39  |
| 10  | 8.24  | 8.36  | 8.48  | 8.61  | 8.72  | 8.82  |
| 12  | 9.56  | 9.71  | 9.88  | 10.05 | 10.20 | 10.34 |
|     |       |       |       |       |       |       |
| 15  | 11.37 | 11.59 | 11.83 | 12.08 | 12.29 | 12.50 |
| 18  | 13.02 | 13.30 | 13.62 | 13.95 | 14.23 | 14.52 |
| 20  | 14.03 | 14.37 | 14.74 | 15.12 | 15.45 | 15.79 |
| 22  | 14.93 | 15.37 | 15.79 | 16.24 | 16.62 | 17.01 |
| 24  | 15.89 | 16.32 | 16.80 | 17.30 | 17.74 | 18.18 |
|     |       |       |       |       |       |       |
| 27  | 17.15 | 17.65 | 18.22 | 18.81 | 19.33 | 19.85 |
| 30  | 18.31 | 18.89 | 19.54 | 20.22 | 20.82 | 21.42 |
| 33  | 19.39 | 20.04 | 20.76 | 21.54 | 22.22 | 22.92 |
| 36  | 20.39 | 21.10 | 21.91 | 22.78 | 23.54 | 24.32 |
| 39  | 21.31 | 22.10 | 22.99 | 23.94 | 24.79 | 25.66 |
| 43  | 22.46 | 23.33 | 24.32 | 25.39 | 26.34 | 27.33 |
| 47  | 23.50 | 24.46 | 25.55 | 26.73 | 27.79 | 28.89 |
| 51  | 24.46 | 25.50 | 26.69 | 27.98 | 29.14 | 30.36 |
| 56  | 25.55 | 26.69 | 28.00 | 29.42 | 30.71 | 32.06 |
| 62  | 26.73 | 27.98 | 29.42 | 31.00 | 32.43 | 33.94 |
| 68  | 27.79 | 29.14 | 30.71 | 32.43 | 34.00 | 35.66 |
| 75  | 28.89 | 30.36 | 32.06 | 33.94 | 35.66 | 37.50 |
| 82  | 29.88 | 31.44 | 33.28 | 35.31 | 37.17 | 39.17 |
| 91  | 30.99 | 32.68 | 34.67 | 36.88 | 38.92 | 41.11 |
| 100 | 31.97 | 33.78 | 35.90 | 38.27 | 40.48 | 42.86 |
|     |       |       |       |       |       |       |

Table 3-3. Capacitors in Series (cont'd)

| C2  | 82    | 91    | 100   |
|-----|-------|-------|-------|
| 1   | 0.988 | 0.989 | 0.990 |
| 1.5 | 1.473 | 1.476 | 1,478 |
| 2   | 1.952 | 1.957 | 1.961 |
| 2.2 | 2.142 | 2.148 | 2.153 |
| 3   | 2.89  | 2.90  | 2.91  |
| 3.3 | 3.17  | 3.19  | 3.20  |
| 4   | 3.81  | 3.83  | 3.84  |
| 4.7 | 4.45  | 4.47  | 4.49  |
| 5   | 4.71  | 4.74  | 4.76  |
| 5.6 | 5.24  | 5.28  | 5.30  |
| 6.8 | 6.28  | 6.32  | 6.37  |
| 7.5 | 6.87  |       |       |
| 8.2 | 7.45  | 7.52  | 7.58  |
| 10  | 8.91  | 9.01  | 9.09  |
| 12  | 10.46 | 10.60 | 10.71 |
| 15  | 12.68 | 12.88 | 13.04 |
| 18  | 14.76 | 15.03 | 15.25 |
| 20  | 16.08 | 16.40 | 16.67 |
| 22  | 17.35 | 17.71 | 18.03 |
| 24  | 18.57 | 18.99 | 19.35 |
| 27  | 20.31 | 20.82 | 21.26 |
| 30  | 21.96 | 22.56 | 23.08 |
| 33  | 23.53 | 24.22 | 24.81 |
| 36  | 25.02 | 25.80 | 26.47 |
| 39  | 26.43 | 27.30 | 28.06 |
| 43  | 28.21 | 29.20 | 30.07 |
| 47  | 29.88 | 30.99 | 31.97 |
| 51  | 31.44 | 32.68 | 33.78 |
| 56  | 33.28 | 34.67 | 35.90 |
| 62  | 35.31 | 36.88 | 38.27 |
| 68  | 37.17 | 38.92 | 40.48 |
| 75  | 39.17 | 41.11 | 42.86 |
| 82  | 41.00 | 43.13 | 45.06 |
| 91  | 43.13 | 45.50 | 47.64 |
| 00  | 45.06 | 47.64 | 50.00 |

series have equal values, the resultant capacitance is one-third that of any of the units.

Table 3-3 gives the resultant capacitance of two capacitors in series. The table can be extended by moving the decimal point in the C1 and C2 columns an equal number of places to the right. The table can also be used for finding the total capacitance of three series capacitors by doing a two-step operation, i.e. determining the value of two capacitors and then combaining the result with the remaining capacitor. C1 and C2 must be in similar units of  $\mu$ F or pF. The answers will then be in  $\mu$ F or pf.

#### □Example:

What is the capacitance of two series capacitors, having values of 47~pF and 15~pF?

Locate 47 in the C2 column and move horizontally until you reach 11.37 in the C1 column headed by the number 15. The answer is 11.37 pF. You could also have solved this problem by locating 1.5 in the C2 column, and then moving across to reach 4.7 (column C1). The answer would, of course, be 1.13 pF. Moving the decimal point one place to the right supplies an answer of 11.3.

#### □Example:

You have a number of capacitors available, but you do not have one with a capacitance of 6 pF—the value you require. What capacitor combination can you use in series to give you 6 pF?

A value of exactly 6 pF is shown in the table. It can be made by connecting a 10 pf and a 15 pF in series. Another combination which would result in a capacitance fairly close to 6 pF would be 33 pF and 7.5 pF, giving a total capacitance of 6.11 pF. Or you could use a pair of capacitors each having a value of 12 oF.

# Chapter 4 Inductance

#### UNITS OF INDUCTANCE

The basic unit of inductance is the henry. Submultiples are the millihenry and the microhenry. Use Table 4-1 to convert from one unit to another.

#### VALUES OF INDUCTANCE CONVERSIONS

When working with formulas involving inductance, it is sometimes necessary to move from the basic unit of inductance to submultiples. Table 4-1 supplies the multiplication factors for making these conversions.

Table 4-1. Inductance Conversions



#### INDUCTIVE REACTANCE

The reactance of a coil (inductor) varies directly with frequency and with inductance. Like capacitive reactance, coil reac-

tance or inductive reactance is measured in ohms. Inductive reactance is an effect produced by the counter-electromotive force induced across the coil. This voltage, acting in opposition to the applied voltage, reduces the amount of circuit current.

As in the case of capacitors, the coil produces a phase shift. The current lags the voltage and in a hypothetical coil (one containing no resistance) the phase angle would be 90 degrees. In practice,

the phase angle is less than 90 degrees.

Table 4-2 supplies the inductive reactance of coils ranging from 10 to 100 millihenrys at frequencies ranging from 1 to 1000 kHz. The table also supplies the reactance of coils from 0,001 henry to 10. henrys from frequencies of 25 Hz to 1000 kHz.

The behavior of an inductor is opposite that of a capacitor.

Increasing the frequency or the inductance increases the reactance proportionately, and vice versa. Thus, doubling either the frequency or the inductance will double the reactance. See also Table 4-3.

#### □Example:

What is the reactance of a coil having an inductance of 0.005 henry at a frequency of 1 kHz?

Locate 1000 hertz in the frequency column. Move to the right to the column headed by 0.005. The inductive reactance is 31.40 ohms.

#### □Example:

What is the reactance of a 5-henry choke coil at a frequency of 60 Hz.

Locate 60 Hz in the frequency column and move to the right. finding an inductive reactance of 1884 ohms in the column headed by the number 5. Note that the reactance of this coil at twice the frequency (120 Hz) is 3768 ohms, double its original value.

#### □Example:

What is the reactance of a 1-henry coil at a frequency of 150 Hz?

A frequency of 150 Hz is not listed in the table. Locate 50 Hz. find the corresponding reactance of 314 ohms and multiply this value by 3 to get your answer. You could also get the same result by locating 75 Hz in the Table, finding the reactance of 471 ohms and multiplying this result by 2. In either case the answer is 942 ohms.

Table 4-2. Inductive Reactance (ohms)

| Frequen | rv            | Industance     | (millihenrys) | ,      |        |
|---------|---------------|----------------|---------------|--------|--------|
| (kHz)   | 10            | 20             | 30            | 40     | 50     |
| 101127  | ,,            | 20             | 30            | 40     | 30     |
| 1       | 62.8          | 125.6          | 188.4         | 251.2  | 314    |
| 2       | 125.6         | 251.2          | 376.8         | 502.4  | 628    |
| 3       | 188.4         | 376.8          | 565.2         | 753.6  | 942    |
| 4       | 251.2         | 502.4          | 753.6         | 1004.8 | 1256   |
| 5       | 314           | 628            | 942           | 1256   | 1570   |
|         |               |                |               |        |        |
| 6       | 376.8         | 753.6          | 1130.4        | 1507.2 | 1884   |
| 7       | 439.6         | 879.2          | 1318.8        | 1758.4 | 2198   |
| 8       | 502.4         | 1004.8         | 1507.2        | 2009.6 | 2512   |
| 9       | 565.2         | 1130.4         | 1695.6        | 2260.8 | 2826   |
| 10      | 628           | 1256           | 1884          | 2512   | 3140   |
|         |               |                |               |        |        |
| 20      | 1256          | 2512           | 3768          | 5024   | 6280   |
| 25      | 1570          | 3140           | 4710          | 6280   | 7850   |
| 30      | 1884          | 3768           | 5652          | 7536   | 9420   |
| 40      | 2512          | 5024           | 7536          | 10048  | 12560  |
| 50      | 3140          | 6280           | 9420          | 12560  | 15700  |
|         |               |                |               |        |        |
| 60      | 3768          | 7536           | 11304         | 15072  | 18840  |
| 70      | 4396          | 8792           | 13188         | 17584  | 21980  |
| 80      | 5024          | 10048          | 15072         | 20096  | 25120  |
| 90      | 5652          | 11304          | 16956         | 22608  | 28260  |
| 100     | 6280          | 12560          | 18840         | 25120  | 31400  |
| 150     | 0.400         | 100.40         |               |        |        |
| 200     | 9420<br>12560 | 18840<br>25120 | 28260         | 37680  | 47100  |
| 250     | 15700         | 31400          | 37680         | 50240  | 62800  |
| 300     | 18840         |                | 47100         | 62800  | 78500  |
| 350     | 21980         | 37680<br>43960 | 56520         | 75360  | 94200  |
| 330     | 21700         | 43900          | 65940         | 87920  | 109900 |
| 400     | 25120         | 50240          | 75360         | 100480 | 125600 |
| 450     | 28260         | 56520          | 84780         | 113040 | 141300 |
| 500     | 31400         | 62800          | 94200         | 125600 | 157000 |
| 550     | 34540         | 69080          | 103620        | 138160 | 172700 |
| 600     | 37680         | 75360          | 113040        | 150720 | 188400 |
| 230     | 5, 550        | , 5550         | 113040        | 130720 | 100400 |
| 650     | 40820         | 81640          | 122460        | 163280 | 204100 |
| 700     | 43960         | 87920          | 131880        | 175840 | 219800 |
| 800     | 50240         | 100480         | 150720        | 200960 | 251200 |
| 900     | 56520         | 113040         | 168560        | 226080 | 282600 |
| 1000    | 62800         | 125600         | 188400        | 251200 | 314000 |
| 50      |               | . 20000        | .00400        | 20,200 | 31-000 |

| Table 4-2. | Inductive | Reactance | (ohms) | (cont'd) |
|------------|-----------|-----------|--------|----------|
|            |           |           |        |          |

| Frequ | ency   | Inductance | (millihenrys) |        |        |
|-------|--------|------------|---------------|--------|--------|
| (ki   | Hz) 60 | 70         | 80            | 90     | 100    |
|       |        |            |               |        |        |
| 1     | 376.8  | 439.6      | 502.4         | 565.2  | 628    |
| 2     | 753.6  | 879.2      | 1004.8        | 1130.4 | 1256   |
| 3     | 1130.4 | 1318.8     | 1507.2        | 1695.6 | 1884   |
| 4     |        | 1758.4     | 2009.6        | 2260.8 | 2512   |
| 5     | 1884   | 2198       | 2512          | 2826   | 3140   |
|       |        |            |               |        | 0.40   |
| 6     | 2260.8 | 2637.6     | 3014.4        | 3391.2 | 3768   |
| 7     |        | 3077.2     | 3516.8        | 3956.4 | 4396   |
| 8     |        | 3516.8     | 4019.2        | 4521.6 | 5024   |
| 9     |        | 3856.4     | 4521.6        | 5086.8 | 5652   |
| 10    |        | 4396       | 5024          | 5652   | 6280   |
|       | 0.00   | 4070       | 5024          | 3031   | 0200   |
| 20    | 7536   | 8792       | 10048         | 11304  | 12560  |
| 25    |        | 10990      | 12560         | 14130  | 15700  |
| 30    |        | 13188      | 15072         | 16956  | 18840  |
| 40    |        | 17584      | 20096         | 22608  | 25120  |
| 50    |        | 21980      | 25120         | 28260  |        |
| 30    | 10040  | 21700      | 23120         | 20200  | 31400  |
|       |        |            |               |        |        |
| 60    |        | 26376      | 30144         | 33912  | 37680  |
| 70    |        | 30772      | 35168         | 39564  | 43960  |
| 80    |        | 35168      | 40192         | 45216  | 50240  |
| 90    |        | 38564      | 45216         | 50868  | 56520  |
| 100   | 37680  | 43960      | 50240         | 56520  | 62800  |
|       |        |            |               |        |        |
| 150   |        | 65940      | 75360         | 84780  | 94200  |
| 200   |        | 87920      | 100480        | 113040 | 125600 |
| 250   |        | 109900     | 125600        | 141300 | 157000 |
| 300   |        | 131880     | 150720        | 169560 | 188400 |
| 350   | 131880 | 153860     | 175840        | 197820 | 219800 |
|       |        |            |               |        |        |
| 400   |        | 175840     | 200960        | 226080 | 251200 |
| 450   | 169560 | 192820     | 226080        | 254340 | 282600 |
| 500   | 188400 | 219800     | 251200        | 282600 | 314000 |
| 550   | 207240 | 241780     | 276320        | 310860 | 345400 |
| 600   | 226080 | 263760     | 301440        | 339120 | 376800 |
|       |        |            |               |        |        |
| 650   | 244920 | 285740     | 326560        | 367380 | 408200 |
| 700   | 263760 | 307720     | 351680        | 395640 | 439600 |
| 800   |        | 351680     | 401920        | 452160 | 502400 |
| 900   |        | 385640     | 452160        | 508680 | 565200 |
| 1000  |        | 439600     | 502400        | 565200 | 628000 |
|       |        |            |               |        |        |

Table 4-2. Inductive Reactance (ohms) (cont'd)

| Frequenc |        |        | ductance (her    |        |              |
|----------|--------|--------|------------------|--------|--------------|
| (Hz)     | ,      | 2 "    | auctarice (nei   |        | _            |
| *****    | •      | 4      | 3                | 4      | 5            |
| 25       | 157.0  | 314.0  | 471.0            | 628.0  | 785          |
| 30       | 188.4  | 376.8  | 565.2            | 753.6  | 942          |
| 35       | 219.8  | 439.6  | 659.4            | 879.2  | 1099         |
| 40       | 251.2  | 502.4  | 753.6            | 1004.8 | 1256         |
| 45       | 282.6  | 565.2  | 847.8            | 1130.4 | 1413         |
| 50       | 314.0  | 628.0  | 0.40.0           |        |              |
| 55       | 345.4  | 690.8  | 942.0            | 1256.0 | 1570         |
| 60       | 376.8  | 753.6  | 1036.2<br>1130.4 | 1318.6 | 1727         |
| 65       | 408.2  | 816.4  |                  | 1507.2 | 1884         |
| 70       | 439.6  | 879.2  | 1224.6           | 1632.8 | 2041         |
| 70       | 437.0  | 8/9.2  | 1318.8           | 1758.4 | 2198         |
| 75       | 471.0  | 942.0  | 1413.0           | 1884.0 | 2355         |
| 80       | 502.4  | 1004.8 | 1507.2           | 2009.6 | 2512         |
| 85       | 533.8  | 1067.6 | 1601.4           | 2135.2 | 2669         |
| 90       | 565.2  | 1130.4 | 1695.6           | 2260.8 | 2826         |
| 95       | 596.6  | 1193.2 | 1789.8           | 2386.4 | 2983         |
| 100      | 628.0  | 1256.0 | 1884.0           | 2512.0 | 21.40        |
| 120      | 753.6  | 1507.2 | 2260.8           | 3014.4 | 3140<br>3768 |
| 200      | 1256.0 | 2512.0 | 3768.0           | 5024.0 |              |
| 240      | 1507.2 | 3014.4 | 4521.6           | 6028.8 | 6280         |
| 250      | 1570.0 | 3140.0 | 4710.0           | 6280.0 | 7536         |
| 230      | 13/0.0 | 3140.0 | 4710.0           | 0280.0 | 7850         |
| 300      | 1884   | 3768   | 5652             | 7536   | 9420         |
| 350      | 2198   | 4396   | 6594             | 8792   | 10990        |
| 360      | 2260   | 4522   | 6783             | 9044   | 11305        |
| 400      | 2512   | 5024   | 7536             | 10048  | 12560        |
| 450      | 2826   | 5652   | 8478             | 11304  | 14130        |
| 500      | 3140   | 6280   | 0.00             | 10510  |              |
| 550      | 3454   | 6908   | 9420<br>10362    | 12560  | 15700        |
| 600      | 3768   | 7536   |                  | 13816  | 17270        |
| 650      | 4082   | 8164   | 11304            | 15072  | 18840        |
| 700      | 4396   |        | 12246            | 16328  | 20410        |
| 700      | 4370   | 8792   | 13188            | 17584  | 21980        |
| 750      | 4710   | 9420   | 14130            | 18840  | 23550        |
| 800      | 5024   | 10048  | 15072            | 20096  | 25120        |
| 850      | 5338   | 10676  | 16014            | 21352  | 26690        |
| 900      | 5652   | 11304  | 16956            | 22608  | 28260        |
| 1000     | 6280   | 12560  | 18840            | 25120  | 31400        |

| Table 4-2. | . Inductive | Reactance | (ohms) | (cont'd |  |
|------------|-------------|-----------|--------|---------|--|
|------------|-------------|-----------|--------|---------|--|

| Frequency | · abio | Inductance | (henrys) | , (00 0) |        |
|-----------|--------|------------|----------|----------|--------|
| (Hz)      | .001   | .002       | .003     | .005     | .01    |
| (112)     | .007   | .002       | .000     | .000     |        |
| 25        | .1570  | .3140      | .4710    | .785     | 1.570  |
| 30        | .1884  | .3768      | .5652    | .942     | 1.884  |
| 40        | .2512  | .5024      | .7536    | 1.256    | 2.512  |
| 45        | .2826  | .5652      | .8478    | 1.413    | 2.826  |
| 50        | .3140  | .6280      | .9420    | 1.570    | 3.140  |
|           |        |            |          |          |        |
| 55        | .3454  | .6908      | 1.0362   | 1.727    | 3.454  |
| 60        | .3768  | .7536      | 1.1304   | 1.884    | 3.768  |
| 65        | .4082  | .8164      | 1.2246   | 2.041    | 4.082  |
| 70        | .4396  | .8792      | 1.3188   | 2.198    | 4.396  |
| 75        | .4710  | .9420      | 1.4130   | 2.355    | 4.710  |
|           |        |            |          |          |        |
| 80        | .5024  | 1.0048     | 1.5072   | 2.512    | 5.024  |
| 8.5       | .5338  | 1.0676     | 1.6014   | 2.669    | 5.338  |
| 90        | .5652  | 1.1304     | 1.6956   | 2.826    | 5.652  |
| 95        | .5966  | 1.1932     | 1.7898   | 2.983    | 5.966  |
| 100       | .6280  | 1.2560     | 1.8840   | 3.140    | 6.280  |
|           |        |            |          |          |        |
| 110       | .6908  | 1.3816     | 2.0724   | 3.454    | 6.908  |
| 120       | ,7536  | 1.5072     | 2.2608   | 3.768    | 7.536  |
| 150       | .942   | 1.8840     | 2.826    | 4.710    | 9.420  |
| 175       | 1.099  | 2.1980     | 3.297    | 5.495    | 10.990 |
| 200       | 1.256  | 2.5120     | 3.768    | 6.280    | 12.560 |
|           |        |            |          | 7.05     | 15.70  |
| 250       | 1.570  | 3.140      | 4.710    | 7.85     |        |
| 300       | 1.884  | 3.768      | 5.652    | 9.42     | 18.84  |
| 350       | 2.198  | 4.396      | 6.594    | 10.99    |        |
| 400       | 2.512  | 5.024      | 7.536    | 12.56    | 25.12  |
| 500       | 3.140  | 6.280      | 9.420    | 15.70    | 31.40  |
| 550       | 3.454  | 6.908      | 10.362   | 17.27    | 34.54  |
| 600       | 3.768  | 7.536      | 11.304   | 18.84    | 37.68  |
| 650       | 4.082  | 8.164      | 12.246   | 20.41    | 40.82  |
| 700       | 4.396  | 8.792      | 13.188   | 21.98    | 43.96  |
| 750       | 4.710  | 9.420      | 14.130   | 23.55    | 47.10  |
|           |        |            |          |          |        |
| 800       | 5.024  | 10.048     | 15.072   | 25.12    | 50.24  |
| 850       | 5.338  | 10.676     | 16.014   | 26.69    | 53.38  |
| 900       | 5.652  | 11.304     | 16.956   | 28.26    | 56.52  |
| 950       | 5.966  | 11.932     | 17.898   | 29.83    | 59.66  |
| 1000      | 6.280  | 12.560     | 18.840   | 31.40    | 62.80  |
|           |        |            |          |          |        |

|         | Table 4- | 2. Inductive Rea | actance (ohms) | (cont'd) |       |
|---------|----------|------------------|----------------|----------|-------|
| Frequen |          |                  | uctance (henr  |          |       |
| (Hz)    | 6        | 7                | 8              | 9        | 10    |
| 25      | 942.0    | 1099.0           | 1256.0         | 1413.0   | 1570  |
| 30      | 1130.4   | 1318.8           | 1507.2         | 1695.6   | 1884  |
| 35      | 1318.8   | 1538.6           | 1758.4         | 1978.2   | 2198  |
| 40      | 1507.2   | 1758.4           | 2009.6         | 2260.8   | 2512  |
| 45      | 1695.6   | 1978.2           | 2260.8         | 2543.4   | 2826  |
| 50      | 1884.0   | 2198.0           | 2512.0         | 2826.0   | 3140  |
| 55      | 2072.4   | 2417.8           | 2763.2         | 3108.6   | 3454  |
| 60      | 2260.8   | 2637.6           | 3014.4         | 3391.2   | 3768  |
| 65      | 2449.2   | 2857.4           | 3265.6         | 3673.8   | 4082  |
| 70      | 2637.6   | 3077.2           | 3516.8         | 3956.4   | 4396  |
| 75      | 2826.0   | 3297.0           | 3768.0         | 4239.0   | 4710  |
| 80      | 3014.4   | 3516.8           | 4019.2         | 4521.6   | 5024  |
| 85      | 3202.8   | 3736.6           | 4270.4         | 4804.2   | 5338  |
| 90      | 3391.2   | 3956.4           | 4521.6         | 5086.8   | 5652  |
| 95      | 3579.6   | 4176.2           | 4772.8         | 5396.4   | 5966  |
| 100     | 3768.0   | 4396.0           | 5024.0         | 5652.0   | 6280  |
| 120     | 4521.6   | 5275.2           | 6028.8         | 6782.4   | 7536  |
| 200     | 7536.0   | 8792.0           | 10048.0        | 11304    | 12560 |
| 240     | 9043.2   | 10550.4          | 12057.6        | 13565    | 15072 |
| 250     | 9420.0   | 10990.0          | 12460.0        | 14130    | 15700 |
| 300     | 11304    | 13188            | 15072          | 16956    | 18840 |
| 350     | 13188    | 15386            | 17584          | 19782    | 21980 |
| 360     | 13414    | 15826            | 18086          | 20347    | 22608 |
| 400     | 15072    | 17584            | 20096          | 22608    | 25120 |
| 450     | 16758    | 19/82            | 22508          | 25434    | 28250 |
| 500     | 18840    | 21980            | 25120          | 28260    | 31400 |
| 550     | 20724    | 24178            | 27632          | 31086    | 34540 |
| 600     | 22608    | 26376            | 30124          | 33912    | 37680 |
| 650     | 24492    | 28574            | 32656          | 36738    | 40820 |
| 700     | 26376    | 30772            | 35168          | 39564    | 43960 |
| 750     | 28260    | 32970            | 37680          | 42390    | 47100 |
| 800     | 30144    | 35168            | 40192          | 45216    | 50240 |
| 850     | 32028    | 37366            | 42704          | 48042    | 53380 |
| 900     | 33912    | 39564            | 45216          | 50868    | 56520 |
| 1000    | 37680    | 43960            | 50240          | 56520    | 62800 |

Table 4-3. Capacitive Reactance At Spot Frequencies

|                                                                                                 | 50 Hz                               | 100 Hz  | 1 KHz                                                    | 10 KHz                                                     | 100 KHz                                                                         | 1 MHz                                                                             | 10 MHz                                                                | 100 MHz                                                                   |
|-------------------------------------------------------------------------------------------------|-------------------------------------|---------|----------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------|
| 1 μH<br>5 μH<br>10 μH<br>50 μH<br>100 μH<br>250 μH<br>1 mH<br>2.5 mH<br>25 mH<br>25 mH<br>10 mH | <br><br><br>0.31<br>0.8<br>3.1<br>8 | 100 Hz  | <br>0.31<br>0.63<br>1.6<br>6.3<br>16<br>63<br>160<br>630 | 0.31<br>0.63<br>3.1<br>6.3<br>160<br>630<br>1.6 K<br>6.3 K | 0.63<br>3.1<br>6.3<br>31<br>63<br>160<br>630<br>1.6 K<br>6.3 K<br>63 K<br>630 K | 6.3<br>31<br>63<br>310<br>630<br>1.6 K<br>6.3 K<br>16 K<br>63 K<br>160 K<br>630 K | 63<br>310<br>630<br>3.1 K<br>6.3 K<br>16 K<br>630 K<br>1.6 M<br>6.3 M | 630<br>3.1 K<br>6.3 K<br>31 K<br>63 K<br>160 K<br>630 K<br>1.6 M<br>6.3 M |
| 5 H<br>10 H                                                                                     | 1.5 K<br>3.1 K                      | 3.1 K   | 6.3 K<br>31 K<br>63 K                                    | 310 K<br>630 K                                             | 3.1 M<br>6.3 M                                                                  | - 0.3 M                                                                           | =                                                                     | =                                                                         |
| 100H                                                                                            | 31 K                                | 63 K    | 630 K                                                    | 6.3 M                                                      | -                                                                               | -                                                                                 | -                                                                     | -                                                                         |
| Values                                                                                          | in ohm                              | s.<br>I |                                                          |                                                            |                                                                                 |                                                                                   |                                                                       |                                                                           |

#### LC PRODUCT FOR RESONANCE

Table 4-4 shows the relationship between the wavelength in meters, the frequency in kilohertz and the inductance-capacitance product  $(L \times C)$  required to produce resonance. The inductance is in microherrys and the capacitance is in microfarads.

In an LC circuit a condition of resonance is reached when the reactive elements are equal—that is, when the inductive and capacitive reactances are identical. When the inductance and the capacitance are both in microunits (microhenrys and microfarads), the resonant frequency will be in kilohertz.

To find the resonant frequency without resorting to formulas, multiply the values of Land C, first converting these to microhenrys and microfarads. Knowing the LC product, find the resonant frequency by using Table 4-4. At the same time the table also supplies the wavelendth in meters.

#### □Example:

What is the wavelength in meters of a circuit when the inductance is 221 uh and the capacitance is 100 pf?

The table requires that the capacitance be in microfarads. 100  $\mu$ F is equivalent to  $0.001\mu$ F. Multiply 221 by .0001. The answer will be 0.0221. Locate this value in the Lx C column in the table. You will find that the frequency in kilohertz is 1071 and the corresponding wavelength is 280 meters.

Table 4-4. LC Product for Resonance

| Wave-<br>length<br>(meters) | Frequency<br>(kHz) | l × C     | Wave-<br>length<br>(meters | Frequency<br>(kHz) | L×C    |
|-----------------------------|--------------------|-----------|----------------------------|--------------------|--------|
| 1                           | 300,000            | 0.0000003 | 270                        | 1,111              | 0.0205 |
| 2                           | 150,000            | 0.0000111 | 280                        | 1,071              | 0.0221 |
| 3                           | 100,000            | 0.0000018 | 290                        | 1,034              | 0.0237 |
| 5                           | 75,000             | 0.0000045 | 300                        | 1,000              | 0.0253 |
|                             | 60,000             | 0.0000057 | 310                        | 968                | 0.0270 |
| 6                           | 50,000             | 0.0000101 | 320                        | 938                | 0.0288 |
| 7                           | 42,900             | 0.0000138 | 330                        | 909                | 0.0306 |
| 8                           | 37,500             | 0.0000180 | 340                        | 883                | 0.0325 |
| 10                          | 33,333<br>30.000   | 0.0000228 | 350                        | 857                | 0.0345 |
|                             |                    | 0.0000282 | 360                        | 834                | 0.0365 |
| 20                          | 15,000             | 0.0001129 | 370                        | 811                | 0.0385 |
| 30                          | 10,000             | 0.0002530 | 380                        | 790                | 0.0406 |
| 40<br>50                    | 7,500              | 0.0004500 | 390                        | 769                | 0.0428 |
| 60                          | 6,000              | 0.0007040 | 400                        | 750                | 0.0450 |
|                             | 5,000              | 0.0010140 | 410                        | 732                | 0.0473 |
| 70                          | 4,290              | 0.0013780 | 420                        | 715                | 0.0496 |
| 80                          | 3.750              | 0.0018010 | 430                        | 698                | 0.0520 |
| 90                          | 3,333              | 0.0022800 | 440                        | 682                | 0.0545 |
| 100                         | 3,000              | 0.00282   | 450                        | 667                | 0.0570 |
|                             | 2,727              | 0.00341   | 460                        | 652                | 0.0596 |
| 120                         | 2,500              | 0.00405   | 470                        | 639                | 0.0622 |
| 130                         | 2,308              | 0.00476   | 480                        | 625                | 0.0649 |
| 140                         | 2,143              | 0.00552   | 490                        | 612                | 0.0676 |
| 150<br>160                  | 2,000              | 0.00633   | 500                        | 600                | 0.0704 |
|                             | 1,875              | 0.00721   | 505                        | 594                | 0.0718 |
| 170                         | 1,764              | 0.00813   | 510                        | 588                | 0.0732 |
| 180                         | 1,667              | 0.00912   | 515                        | 583                | 0.0747 |
| 190                         | 1,579              | 0.01015   | 520                        | 577                | 0.0761 |
| 200                         | 1,500              | 0.01126   | 525                        | 572                | 0.0776 |
| 210                         | 1,429              | 0.01241   | 530                        | 566                | 0.0791 |
| 220                         | 1,364              | 0.01362   | 535                        | 561                | 0.0806 |
| 230                         | 1,304              | 0.01489   | 540                        | 556                | 0.0821 |
| 240                         | 1,250              | 0.01621   | 545                        | 551                | 0.0836 |
| 250                         | 1,200              | 0.01759   | 550                        | 546                | 0.0852 |
| 260                         | 1,154              | 0.01903   | 555                        | 541                | 0.0867 |
|                             |                    |           |                            |                    |        |

Table 4-4. LC Product for Resonance (cont'd)

| Wave-      |           |        | Wave-   | cont u)   |        |
|------------|-----------|--------|---------|-----------|--------|
| length     | Frequency |        | length  | Frequency |        |
| (meters)   | (kHz)     | L×C    | (meters | (kHz)     | LxC    |
|            |           |        |         |           |        |
| 560        | 536       | 0.0883 | 735     | 408       | 0.1521 |
| 565        | 531       | 0.0899 | 740     | 405       | 0.1541 |
| 570        | 527       | 0.0915 | 745     | 403       | 0.1562 |
| 575        | 522       | 0.0931 | 750     | 400       | 0.1583 |
| 580        | 517       | 0.0947 | 755     | 397       | 0.1604 |
|            |           |        |         |           |        |
| 585        | 513       | 0.0963 | 760     | 395       | 0.1626 |
| 590        | 509       | 0.0980 | 765     | 392       | 0.1647 |
| 595        | 504       | 0.0996 | 770     | 390       | 0.1669 |
| 600        | 500       | 0.1013 | 775     | 387       | 0.1690 |
| 605        | 496       | 0.1030 | 780     | 385       | 0.1712 |
| 610        | 492       |        |         |           |        |
|            |           | 0.1047 | 785     | 382       | 0.1734 |
| 615        | 488       | 0.1065 | 790     | 380       | 0.1756 |
| 620        | 484       | 0.1082 | 795     | 377       | 0.1779 |
| 625        | 480       | 0.1100 | 800     | 375       | 0.1801 |
| 630        | 476       | 0.1117 | 805     | 373       | 0.1824 |
| 635        | 472       | 0.1105 | 810     |           |        |
| 640        | 4/2       | 0.1135 | 815     | 370       | 0.1847 |
| 645        |           | 0.1153 |         | 368       | 0.1870 |
|            | 465       | 0.1171 | 820     | 366       | 0.1893 |
| 650<br>655 | 462       | 0.1189 | 825     | 364       | 0.1916 |
| 000        | 458       | 0.1208 | 830     | 361       | 0.1939 |
| 660        | 455       | 0.1226 | 835     | 359       | 0.1962 |
| 665        | 451       | 0.1245 | 840     | 3.57      | 0.1986 |
| 670        | 448       | 0.1264 | 845     | 355       | 0.201  |
| 675        | 444       | 0.1283 | 850     | 3.53      | 0.203  |
| 680        | 441       | 0.1302 | 855     | 351       | 0.203  |
|            |           |        |         |           |        |
| 685        | 438       | 0.1321 | 860     | 349       | 0.208  |
| 690        | 435       | 0.1340 | 865     | 347       | 0.211  |
| 695        | 432       | 0.1360 | 870     | 345       | 0.213  |
| 700        | 429       | 0.1379 | 875     | 343       | 0.216  |
| 705        | 426       | 0.1399 | 880     | 341       | 0.218  |
| 710        | 422       | 0.1410 | 005     | 000       |        |
| 715        | 423       | 0.1419 | 885     | 339       | 0.220  |
|            | 420       | 0.1439 | 890     | 337       | 0.223  |
| 720        | 417       | 0.1459 | 895     | 335       | 0.225  |
| 725<br>730 | 414       | 0.1479 | 900     | 333       | 0.228  |
| /30        | 411       | 0.1500 | 905     | 331       | 0.231  |

Table 4-4 IC Product for Resonance (cont'd)

| Wave-    |           |       | Wave-    |           |       |
|----------|-----------|-------|----------|-----------|-------|
| length   | Frequency |       | length   | Frequency |       |
| (meters) | (kHz)     | LxC   | (meters) | (kHz)     | LxC   |
| 910      | 330       | 0.233 | 955      | 314       | 0.257 |
| 915      | 328       | 0.236 | 960      | 313       | 0.260 |
| 920      | 326       | 0.238 | 965      | 311       | 0.262 |
| 925      | 324       | 0.241 | 970      | 309       | 0.265 |
| 930      | 323       | 0.243 | 975      | 308       | 0.268 |
| 935      | 321       | 0.246 | 980      | 306       | 0.270 |
| 940      | 319       | 0.249 | 985      | 305       | 0.273 |
| 945      | 317       | 0.251 | 990      | 303       | 0.276 |
| 950      | 316       | 0.254 | 995      | 302       | 0.279 |
|          |           |       | 1000     | 300       | 0.282 |

#### □Example:

What is the resonant frequency of a circuit whose capacitance has a value of 250 pF and an inductance of 136  $\mu$ H?

The inductance value can be used as it is, but the capacitance must be changed to microfarads. 250 pF is equivalent to 0.00025  $\mu F$ . The product of 0.00025 and 136 is 0.0340. The table does not list such a value, but it does have a value that is close. The L  $\times$  C column shows this to be 0.0345 with a corresponding frequency in kilohertz of 857. The wavelength is 350 meters.

#### □Example:

You want a circuit that will be resonant at 5 megaHertz. What must be the value of the LC product?

5 megahertz is equal to 5000 kilohertz. The table shows that the LC product is 0.0010140. Any combination of inductance and capacitance producing this product will be resonant at 5 MHz.



## Chapter 5 Impedance

The impedance of a series RC, RL, or RLC circuit is the vector sum of the individual reactances and resistance. Table 5-1 supplies the impedance in ohms, when the values of R and X are known. X can represent either inductive or capacitive reactance, or X may be the vector sum of these reactive components when both are present in the circuit.

If you have both types of reactance, subtract one from the other to get the value of X. It makes no difference which reactive component (inductance or capacitance) has the larger reactance. Subtract the value of the smaller reactance from that of the larger to obtain the value of X.

Table 5-1 covers a range of X and of R from 1 ohm to 35 ohms. The table can be extended by moving the decimal point an equal number of places for R, X, and the answer. Thus, if you had a resistor with a value of 30 ohms and a reactance with a value of 90 ohms, you could consider 3 in the R column as 30, and 9 in the X column as 30. The value of impedance would be shown in the table as 9.49 ohms, but moving the decimal point one place to the right gives an impedance of 94.9 ohms. Table 5-2 includes common impedance formulas.

#### □Example:

A circuit consists of a 5-ohm resistor, a coil having an inductive reactance of 35 ohms and a capacitor having a capacitive reactance of 21 ohms. What is the impedance of this circuit?

Table 5-1. Impedance (ohms) for Series R and X

|    |       |       | R     |       |       |       |
|----|-------|-------|-------|-------|-------|-------|
| X  | 1     | 2     | 3 ^   | 4     | 5     | 6     |
| 1  | 1.41  | 2.24  | 3.16  | 4.12  | 5.10  | 6.08  |
| 2  | 2.24  | 2.83  | 3.61  | 4.47  | 5.39  | 6.32  |
| 3  | 3.16  | 3.61  | 4.24  | 5.00  | 5.83  | 6.71  |
| 4  | 4.12  | 4.47  | 5.00  | 5.57  | 6.40  | 7.21  |
| 5  | 5.10  | 5.39  | 5.83  | 6.40  | 7.07  | 7.81  |
| 6  | 6.08  | 6.32  | 6.71  | 7.21  | 7.81  | 8.48  |
| 7  | 7.07  | 7.28  | 7.62  | 8.06  | 8.60  | 9.22  |
| 8  | 8.06  | 8.25  | 8.54  | 8.94  | 9.43  | 10.00 |
| 9  | 9.06  | 9.22  | 9.49  | 9.85  | 10.29 | 10.81 |
| 10 | 10.05 | 10.19 | 10.44 | 10.77 | 11.18 | 11.66 |
| 11 | 11.04 | 11.18 | 11.40 | 11.70 | 12.08 | 12.52 |
| 12 | 12.04 | 12.16 | 12.36 | 12.64 | 13.00 | 13.41 |
| 13 | 13.03 | 13.15 | 13.34 | 13.60 | 13.92 | 14.31 |
| 14 | 14.03 | 14.14 | 14.31 | 14.56 | 14.86 | 15.23 |
| 15 | 15.03 | 15.13 | 15.29 | 15.52 | 15.81 | 16.15 |
| 16 | 16.03 | 16.12 | 16.28 | 16.49 | 16.76 | 17.09 |
| 17 | 17.03 | 17.12 | 17.26 | 17.46 | 17.72 | 18.03 |
| 18 | 18.03 | 18.11 | 18.25 | 18.44 | 18.68 | 18.97 |
| 19 | 19.03 | 19.10 | 19.24 | 19.42 | 19.65 | 19.92 |
| 20 | 20.02 | 20.05 | 20.22 | 20.40 | 20.62 | 20.88 |
| 21 | 21.02 | 21.10 | 21.21 | 21.38 | 21.59 | 21.84 |
| 22 | 22.02 | 22.09 | 22.20 | 22.36 | 22.56 | 22.80 |
| 23 | 23.02 | 23.09 | 23.19 | 23.35 | 23.54 | 23.75 |
| 24 | 24.02 | 24.08 | 24.19 | 24.33 | 24.52 | 24.74 |
| 25 | 25.02 | 25.08 | 25.18 | 25.32 | 25.50 | 25.71 |
| 26 | 26.02 | 26.08 | 26.17 | 26.31 | 26.48 | 26.68 |
| 27 | 27.02 | 27.07 | 27.16 | 27.29 | 27.46 | 27.66 |
| 28 | 28.02 | 28.07 | 28.16 | 23.28 | 28.44 | 28.64 |
| 29 | 29.02 | 29.07 | 29.15 | 29.27 | 29.43 | 29.61 |
| 30 | 30.02 | 30.07 | 30.15 | 30.27 | 30.41 | 30.59 |
| 31 | 31.02 | 31.06 | 31.14 | 31.26 | 31.40 | 31.58 |
| 32 | 32.01 | 32.06 | 32.14 | 32.24 | 32.39 | 32.55 |
| 33 | 33.01 | 33.06 | 33.14 | 33.24 | 33.38 | 33.54 |
| 34 | 34.01 | 34.06 | 34.14 | 34.24 | 34.37 | 34.53 |
| 35 | 35.01 | 35.06 | 35.13 | 35.23 | 35.36 | 35.51 |

Table 5-1. Impedance (ohms) for Series R and X (cont'd)

|    |       |       | R              |                |                |       |
|----|-------|-------|----------------|----------------|----------------|-------|
| Х  | 7     | 8     | 9              | 10             | 11             | 12    |
| 1  | 7.07  | 8.06  | 9.06           | 10.05          | 11.04          | 12.04 |
| 2  | 7.28  | 8.25  | 9.22           | 10.19          | 11.18          | 12.16 |
| 3  | 7.62  | 8.54  | 9.49           | 10.44          | 11.40          | 12.36 |
| 4  | 8.06  | 8.94  | 9.85           | 10.77          | 11.70          | 12.64 |
| 5  | 8.60  | 9.43  | 10.29          | 11.18          | 12.08          | 13.00 |
| 6  | 9.22  | 10.00 | 10.81          | 11.66          | 12.52          | 13.41 |
| 7  | 9.89  | 10.63 | 11.40          | 12.20          | 13.03          | 13.41 |
| 8  | 10.63 | 11.31 | 12.04          | 12.20          | 13.60          | 14.42 |
| 9  | 11.40 | 12.04 | 12.72          | 13.45          | 14.21          | 15.00 |
| 10 | 12.20 | 12.80 | 13.45          | 14.14          | 14.86          | 15.62 |
| 11 | 13.03 | 13.60 | 14.01          |                |                |       |
| 12 | 13.89 | 14.42 | 14.21          | 14.86          | 15.55          | 16.27 |
| 13 | 14.76 | 15.26 | 15.81          | 15.62<br>16.40 | 16.27<br>17.02 | 16.97 |
| 14 | 15.65 | 16.12 | 16.64          | 17.20          | 17.02          | 17.69 |
| 15 | 16.55 | 17.00 | 17.49          | 18.02          | 18.60          | 18.43 |
| 13 | 10.55 | 17.00 | 17.49          | 18.02          | 18.00          | 19.20 |
| 16 | 17.46 | 17.89 | 18.36          | 18.87          | 19.42          | 20.00 |
| 17 | 18.38 | 18.79 | 19.24          | 19.72          | 20.25          | 20.81 |
| 18 | 19.31 | 19.70 | 20.12          | 20.59          | 21.10          | 21.63 |
| 19 | 20.25 | 20.62 | 21.02          | 21.47          | 21.95          | 22.47 |
| 20 | 21.19 | 21.54 | 21.93          | 22.36          | 22.83          | 23.32 |
| 21 | 22.14 | 22.47 |                |                |                |       |
| 22 | 23.09 | 23.41 | 22.85<br>23.77 | 23.26          | 23.71          | 24.19 |
| 23 | 24.04 | 24.35 | 24.70          | 24.17          | 24.60          | 25.06 |
| 24 | 25.00 | 25.30 | 25.63          | 25.08          | 25.50          | 25.94 |
| 25 | 25.95 | 25.25 | 26.57          | 26.00<br>26.93 | 26.40<br>27.31 | 26.83 |
|    | 15.75 | 23.23 | 20.37          | 25.93          | 27.31          | 27.73 |
| 26 | 26.93 | 27.20 | 27.51          | 27.86          | 28.23          | 28.64 |
| 27 | 27.89 | 28.16 | 28.46          | 28.79          | 29.15          | 29.55 |
| 28 | 28.86 | 29.12 | 29.41          | 29.73          | 30.08          | 30.46 |
| 29 | 29.83 | 30.08 | 30.36          | 30.68          | 31.02          | 31.38 |
| 30 | 30.81 | 31.05 | 31.32          | 31.62          | 31.96          | 32.31 |
| 31 | 31.78 | 31.93 | 32.25          | 32.56          | 32.90          | 33.24 |
| 32 | 32.75 | 32.98 | 33.24          | 33.52          | 33.85          | 34.18 |
| 33 | 33.74 | 33.96 | 34.21          | 34.49          | 34.79          | 35.12 |
| 34 | 34.72 | 34.93 | 35.17          | 35.44          | 35.74          | 36.06 |
| 35 | 35.70 | 35.90 | 36.14          | 36.40          | 36.69          | 37.00 |
|    |       |       |                |                |                |       |

Table 5-1. Impedance (ohms) for Series R and X (cont'd)

|    |       |       | R     |       |       |       |
|----|-------|-------|-------|-------|-------|-------|
| X  | 13    | 14    | 15    | 16    | 17    | 18    |
| 1  | 13.03 | 14.03 | 15.03 | 16.03 | 17.03 | 18.03 |
| 2  | 13.15 | 14.14 | 15.13 | 16.12 | 17.12 | 18.11 |
| 3  | 13.34 | 14.31 | 15.29 | 16.28 | 17.26 | 18.25 |
| 4  | 13.60 | 14.56 | 15.52 | 16.49 | 17.46 | 18.44 |
| 5  | 13.92 | 14.86 | 15.81 | 16.76 | 17.72 | 18.68 |
| 6  | 14.31 | 15.23 | 16.15 | 17.09 | 18.03 | 18.97 |
| 7  | 14.76 | 15.65 | 16.55 | 17.47 | 18.38 | 19.31 |
| 8  | 15.26 | 16.12 | 17.00 | 17.89 | 18.79 | 19.70 |
| 9  | 15.81 | 16.64 | 17.49 | 18.36 | 19.24 | 20.12 |
| 10 | 16.40 | 17.20 | 18.02 | 18.87 | 19.72 | 20.59 |
| 11 | 17.02 | 17.80 | 18.60 | 19.42 | 20.25 | 21.10 |
| 12 | 17.69 | 18.43 | 19.20 | 20.00 | 20.81 | 21.63 |
| 13 | 18.38 | 19.10 | 19.84 | 20.62 | 21.40 | 22.20 |
| 14 | 19.10 | 19.79 | 20.51 | 21.26 | 22.02 | 22.80 |
| 15 | 19.84 | 20.51 | 21.21 | 21.93 | 22.67 | 23.43 |
| 16 | 20.62 | 21.26 | 21.93 | 22.63 | 23.35 | 24.08 |
| 17 | 21.40 | 22.02 | 22.67 | 23.35 | 24.04 | 24.76 |
| 18 | 22.20 | 22.80 | 23.43 | 24.08 | 24.76 | 25.46 |
| 19 | 23.02 | 23.60 | 24.20 | 24.84 | 25.50 | 26.17 |
| 20 | 23.85 | 24.41 | 25.00 | 25.61 | 26.25 | 26.91 |
| 21 | 24.70 | 25.24 | 25.81 | 26.40 | 27.02 | 27.66 |
| 22 | 25.55 | 26.08 | 26.63 | 27.20 | 27.80 | 28.43 |
| 23 | 26.42 | 26.93 | 27.46 | 28.02 | 28.60 | 29.21 |
| 24 | 27.29 | 27.78 | 28.30 | 28.84 | 29.41 | 30.00 |
| 25 | 28.18 | 28.65 | 29.15 | 29.68 | 30.23 | 30.81 |
| 26 | 29.07 | 29.53 | 30.02 | 30.53 | 31.06 | 31.62 |
| 27 | 29.97 | 30.41 | 30.89 | 31.38 | 31.91 | 32.45 |
| 28 | 30.87 | 31.30 | 31.77 | 32.35 | 32.76 | 33.29 |
| 29 | 31.78 | 32.21 | 32.65 | 33.12 | 33.62 | 34.14 |
| 30 | 32.70 | 33.11 | 33.54 | 34.00 | 34.48 | 34.99 |
| 31 | 33.62 | 34.01 | 34.44 | 34.89 | 35.36 | 35.85 |
| 32 | 34.54 | 35.50 | 35.90 | 36.33 | 36.78 | 37.26 |
| 33 | 35.47 | 35.85 | 36.25 | 36.67 | 37.12 | 37.59 |
| 34 | 36.40 | 36.77 | 37.16 | 37.58 | 38.01 | 38.47 |
| 35 | 37.34 | 37.60 | 38.08 | 38.48 | 38.91 | 39.36 |

Table 5-1. Impedance (ohms) for Series R and X (cont'd)

|    |       |       | R     |       |       |       |
|----|-------|-------|-------|-------|-------|-------|
| X  | 19    | 20    | 21    | 22    | 23    | 24    |
| 1  | 19.03 | 20.02 | 21.02 | 22.02 | 23.02 | 24.02 |
| 2  | 19.10 | 20.10 | 21.10 | 22.09 | 23.09 | 24.08 |
| 3  | 19.24 | 20.22 | 21.21 | 22.20 | 23.19 | 24.19 |
| 4  | 19.42 | 20.40 | 21.38 | 22.36 | 23.35 | 24.33 |
| 5  | 19.65 | 20.62 | 21.59 | 22.56 | 23.54 | 24.52 |
| 6  | 19.92 | 20.88 | 21.84 | 22.80 | 23.77 | 24.74 |
| 7  | 20.25 | 21.18 | 22.14 | 23.09 | 24.04 | 25.00 |
| 8  | 20.62 | 21.54 | 22.47 | 23.41 | 24.35 | 25.30 |
| 9  | 21.02 | 21.93 | 22.85 | 23.77 | 24.70 | 25.63 |
| 10 | 21.47 | 22.36 | 23.26 | 24.17 | 25.08 | 26.00 |
| 11 | 21.95 | 22.82 | 23.71 | 24.60 | 25.50 | 26.40 |
| 12 | 22.47 | 23.32 | 24.19 | 25.06 | 25.94 | 26.83 |
| 13 | 23.02 | 23.85 | 24.70 | 25.55 | 26.42 | 27.29 |
| 14 | 23.60 | 24.41 | 25.24 | 26.08 | 26.93 | 27.78 |
| 15 | 24.20 | 25.00 | 25.81 | 26.63 | 27.46 | 28.30 |
| 16 | 24.84 | 25.61 | 26.40 | 27.20 | 28.02 | 28.84 |
| 17 | 25.50 | 26.25 | 27.02 | 27.80 | 28.60 | 29.41 |
| 18 | 26.17 | 26.91 | 27.66 | 28.43 | 29.21 | 30.00 |
| 19 | 26.86 | 27.59 | 28.32 | 29.07 | 29.83 | 30.61 |
| 20 | 27.59 | 28.28 | 29.00 | 29.73 | 30.48 | 31.24 |
| 21 | 28.32 | 29.00 | 29.70 | 30.41 | 31.14 | 31.89 |
| 22 | 29.07 | 29.73 | 30.41 | 31.11 | 31.83 | 32.56 |
| 23 | 29.83 | 30.48 | 31.14 | 31.83 | 32.52 | 33.24 |
| 24 | 30.61 | 31.24 | 31.89 | 32.56 | 33.24 | 33.94 |
| 25 | 31.40 | 3∠.02 | 32.55 | 33.30 | 33.≠7 | 34.14 |
| 26 | 32.20 | 32.80 | 33.42 | 34.06 | 34.71 | 35.38 |
| 27 | 33.02 | 33.60 | 34.21 | 34.83 | 35.47 | 36.13 |
| 28 | 33.85 | 34.41 | 35.01 | 35.61 | 36.24 | 36.88 |
| 29 | 34.67 | 35.23 | 35.81 | 36.40 | 37.01 | 37.64 |
| 30 | 35.51 | 36.06 | 36.62 | 37.20 | 37.80 | 38.42 |
| 31 | 36.36 | 36.89 | 37.44 | 38.01 | 38.60 | 39.21 |
| 32 | 37.22 | 37.73 | 38.28 | 38.83 | 39.41 | 40.00 |
| 33 | 38.08 | 38.59 | 39.12 | 39.66 | 40.22 | 40.81 |
| 34 | 38.95 | 39.45 | 39.96 | 40.40 | 41.05 | 41.62 |
| 35 | 39.82 | 40.31 | 40.82 | 41.34 | 41.88 | 42.44 |

Table 5-1. Impedance (ohms) for Series R and X (cont'd)

|    |       |       | R     |       |       |       |
|----|-------|-------|-------|-------|-------|-------|
| X  | 25    | 26    | 27    | 28    | 29    | 30    |
| 1  | 25.02 | 26.02 | 27.02 | 28.02 | 29.02 | 30.02 |
| 2  | 25.08 | 26.08 | 27.07 | 28.07 | 29.07 | 30.07 |
| 3  | 25.18 | 26.17 | 27.17 | 28.16 | 29.15 | 30.15 |
| 4  | 25.32 | 26.31 | 27.29 | 28.28 | 29.27 | 30.27 |
| 5  | 25.50 | 26.46 | 27.46 | 28.44 | 29.43 | 30.41 |
| 6  | 25.71 | 26.68 | 27.66 | 28.64 | 29.61 | 30.59 |
| 7  | 25.98 | 26.93 | 27.89 | 28.86 | 29.83 | 30.81 |
| 8  | 26.25 | 27.20 | 28.16 | 29.12 | 30.08 | 31.05 |
| 9  | 26.57 | 27.51 | 28.46 | 29.41 | 30.36 | 31.32 |
| 10 | 26.93 | 27.86 | 28.79 | 29.73 | 30.68 | 31.62 |
| 11 | 27.31 | 28.23 | 29.15 | 30.08 | 31.02 | 31.95 |
| 12 | 27.73 | 28.64 | 29.55 | 30.46 | 31.38 | 32.31 |
| 13 | 28.18 | 29.07 | 29.97 | 30.87 | 31.78 | 32.60 |
| 14 | 28.65 | 29.53 | 30.41 | 31.30 | 32.20 | 33.11 |
| 15 | 29.15 | 30.02 | 30.89 | 31.77 | 32.64 | 33.54 |
| 16 | 29.68 | 30.53 | 31.38 | 32.25 | 33.12 | 33.80 |
| 17 | 30.23 | 31.06 | 31.91 | 32.76 | 33.62 | 34.48 |
| 18 | 30.81 | 31.62 | 32.45 | 33.29 | 34.13 | 34.99 |
| 19 | 31.40 | 32.20 | 33.02 | 33.85 | 34.67 | 35.51 |
| 20 | 32.02 | 32.80 | 33.60 | 34.41 | 35.23 | 36.06 |
| 21 | 32.65 | 33.42 | 34.21 | 35.01 | 35.81 | 36.62 |
| 22 | 33.30 | 34.06 | 34.83 | 35.61 | 36.40 | 37.20 |
| 23 | 33.97 | 34.71 | 35.47 | 36.24 | 37.01 | 37.80 |
| 24 | 34.66 | 35.38 | 36.13 | 36.88 | 37.64 | 38.42 |
| 25 | 35.36 | 36.07 | 36.70 | 37.54 | 38.29 | 39.05 |
| 26 | 36.07 | 36.77 | 37.48 | 38.21 | 38.95 | 39.60 |
| 27 | 36.70 | 37.48 | 38.18 | 38.80 | 39.62 | 40.36 |
| 28 | 37.54 | 38.21 | 38.71 | 39.50 | 40.31 | 41.04 |
| 29 | 38.29 | 38.95 | 39.62 | 40.31 | 41.01 | 41.73 |
| 30 | 39.05 | 39.60 | 40.36 | 41.04 | 41.73 | 42.43 |
| 31 | 39.81 | 40.46 | 41.11 | 41.77 | 42.44 | 43.14 |
| 32 | 40.61 | 41.23 | 41.87 | 42.52 | 43.19 | 43.86 |
| 33 | 41.40 | 42.01 | 42.64 | 43.28 | 43.93 | 44.50 |
| 34 | 42.20 | 42.80 | 43.42 | 44.05 | 44.69 | 45.34 |
| 35 | 43.01 | 43.60 | 44.20 | 44.82 | 45.45 | 46.00 |

Table 5-1. Impedance (ohms) for Series R and X (cont'd)

|    |       |       | R     |       |       |
|----|-------|-------|-------|-------|-------|
| X  | 31    | 32    | 33    | 34    | 35    |
| 1  | 31.01 | 32.02 | 33.02 | 34.02 | 35.01 |
| 2  | 31.06 | 32.06 | 33.06 | 34.06 | 35.06 |
| 3  | 31.14 | 32.14 | 33.14 | 34.13 | 35.13 |
| 4  | 31.26 | 32.25 | 33.24 | 34.23 | 35.23 |
| 5  | 31.40 | 32.39 | 33.38 | 34.37 | 35.36 |
| 6  | 31.57 | 32.56 | 33.54 | 34.53 | 35.51 |
| 7  | 31.78 | 32.76 | 33.74 | 34.71 | 35.69 |
| 8  | 32.02 | 32.99 | 33.96 | 34.93 | 35.90 |
| 9  | 32.28 | 33.24 | 34.21 | 35.17 | 36.14 |
| 10 | 32.57 | 33.53 | 34.48 | 35.36 | 36.40 |
| 11 | 32.89 | 33.85 | 34.79 | 35.74 | 36.69 |
| 12 | 33.24 | 34.18 | 35.11 | 36.06 | 36.80 |
| 13 | 33.62 | 34.53 | 35.48 | 36.40 | 37.34 |
| 14 | 34.02 | 34.93 | 35.85 | 36.77 | 37.60 |
| 15 | 34.44 | 35.34 | 36.25 | 37.16 | 38.08 |
| 16 | 34.89 | 35.78 | 36.67 | 37.58 | 38.48 |
| 17 | 35.37 | 36.24 | 37.12 | 38.01 | 38.90 |
| 18 | 35.85 | 36.72 | 37.59 | 38.47 | 39.36 |
| 19 | 36.36 | 37.22 | 38.08 | 38.95 | 39.82 |
| 20 | 36.89 | 37.74 | 38.59 | 39.46 | 40.31 |
| 21 | 37.44 | 38.28 | 39.12 | 39.96 | 40.82 |
| 22 | 38.01 | 38.83 | 39.66 | 40.40 | 41.34 |
| 23 | 38.60 | 39.41 | 40.22 | 41.05 | 41.88 |
| 24 | 39.21 | 40.00 | 40.80 | 41.63 | 42.44 |
| 25 | 39.81 | 40.61 | 41.40 | 42.20 | 43.01 |
| 26 | 40.46 | 41.23 | 42.01 | 42.80 | 43.60 |
| 27 | 41.11 | 41.87 | 42.64 | 43.42 | 44.20 |
| 28 | 41.77 | 42.52 | 43.28 | 44.05 | 44.82 |
| 29 | 42.44 | 43.19 | 43.93 | 44.69 | 45.45 |
| 30 | 43.14 | 43.86 | 44.50 | 45.34 | 46.00 |
| 31 | 43.84 | 44.55 | 45.28 | 46.01 | 46.76 |
| 32 | 44.55 | 45.26 | 45.97 | 46.69 | 47.42 |
| 33 | 45.28 | 45.98 | 46.68 | 47.38 | 48.10 |
| 34 | 46.01 | 46.69 | 47.38 | 48.08 | 48.70 |
| 35 | 46.75 | 47.42 | 48.10 | 48.70 | 49.40 |

Table 5-2. Impedance Formulas

PHASE ANGLE & = tan-1 X

PHASE ANGLE of the Admittance

| s ten x                                   | Admittance  | -lα   | - 1-    | D <sup>rg</sup> | 1 0 (L1 + L2 ± 2M) | 20 - C0<br>30 + 20                                   | R - pol.<br>R <sup>2</sup> + w <sup>2</sup> L <sup>2</sup> | ## ##<br>          | 2 m 1                                             |
|-------------------------------------------|-------------|-------|---------|-----------------|--------------------|------------------------------------------------------|------------------------------------------------------------|--------------------|---------------------------------------------------|
| 81. 81                                    | Phase Angle | 0     | +       | ake 1           | * c<br>+           | 1 5 ju                                               | - 184<br>- 184                                             | —tsn: 1 1 4 WGR    | **                                                |
| ADMITTANCE Y = $\frac{1}{2}$ mhos         | Magnitude   | α     | Jes     | 1 Qn            | (WZ ∓ ₹7 + 17)∞    | 1 (2   C   C   7   7   7                             | \ [R <sup>2</sup> + ω <sup>2</sup> L <sup>2</sup> ]        | ارتهائ ا 1 + سات ا | $\left(\frac{a_0l - \frac{1}{a_0C}}{a_0C}\right)$ |
| + X <sup>2</sup> ] ohma                   | Inpedance   | α     | lod.    |                 | ν (L1 + L2 ± 2M)   | $-j\frac{1}{\omega}(\frac{1+1}{C_1}\frac{1+1}{G_2})$ | R + pal.                                                   | - 1-<br>- 1-       | (2011-11-)1                                       |
| MAGNITUDE $Z_1 = \sqrt{[R^2 + X^2]}$ ohns | Dagram      | ~~~~~ | 0_0000_ |                 |                    | <u>∞</u> )                                           | 9. <b>11.</b>                                              | 1                  | مبرس (                                            |

IMPEDANCE 2 = R + JX ohms

Table 5-2. Impedance Formulas (cont'o

|            | Table 5-2. Imp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Table 5-2. Impedance Formulas (confd)                              | tq)                        |                                                          |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------|----------------------------------------------------------|
| Diagram    | aouspadiaj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Magnitude                                                          | Phase Angle                | Admittance                                               |
| مياليها (٥ | $\left(\frac{1}{2^{n}} - \frac{1}{n^{n}}\right) + 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\left[ R + \frac{1}{4\pi} - \frac{1}{6\sqrt{C}} \right]_{\gamma}$ | tan 1 (set - 1 C)          | $R \to \left(\frac{a_1 - \frac{1}{a_2}}{a_1}\right)^2$   |
|            | R: R:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                            | 0                          | (計・計)                                                    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1<br>w(C1 + C2)                                                    | n je                       | (5) + O) a                                               |
|            | [ 20 - 40 to 1   3 do 1   3 d | [ <u>₩±Ω+Ω</u>  <br>₩-ΘΩ                                           | #60                        |                                                          |
|            | MP ( H + 1P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4]2],"+ 2 <u>H</u>                                                 | R 1 mass                   | -14<br>T<br>-4x                                          |
|            | R(1 - p.CR)<br>1 + 2.7 C? R?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (1 + <sup>2</sup> C/R <sup>2</sup> ) <sup>2</sup>                  | -tan ' «CR                 | - tr                                                     |
|            | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2141-1                                                             | irijou<br>+i               | 1 (nC - 1/4)                                             |
|            | $\frac{1}{ R } \rightarrow \begin{pmatrix} \omega C - \frac{1}{aL} \\ \frac{1}{R} \end{pmatrix}^2 + \begin{pmatrix} \omega C - \frac{1}{aL} \\ \omega C - \frac{1}{aL} \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\left[\frac{1}{R}^2 + \left( \frac{C-1}{nL} \right)^2 \right]$    | 190 ' P (1/2) -v.C)        | $\frac{1}{R} + i \left( {}^{td}C - \frac{1}{nL} \right)$ |
|            | R2 (R1 + R2) + +2,12 + +2,12 + +2,12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ra R+2+212 ''                                                      | 180 1 R1 (R1 + R2) + 4.2.2 | Riffi + Rij + 12/2 - pal Ri<br>Ri fir² + 13/3            |

Table 5

| (conf'd)                | <u>.</u>            | x                |
|-------------------------|---------------------|------------------|
| 5-2. Impedance Formulas | PHASE ANGLE 4 = tan | ADMITTANCE Y = 1 |

|           | PHASE ANGLE of the Admittance | is -tan - 1 X |
|-----------|-------------------------------|---------------|
| , , , , , | , N                           | r             |

| MAGNITUDE $Z = [R^2 + x^2]^3$ ohms | ADMIT       | ADMITTANCE $Y = \frac{1}{Z} \frac{R}{mhos}$ is -tan -1 $\frac{X}{R}$                                             |  |
|------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------|--|
|                                    | Impedance   | R + In [L(1-w.3LC2)—CR <sup>2</sup> ]<br>(1-w.3LC) <sup>2</sup> + w. <sup>2</sup> C <sup>2</sup> R <sup>2</sup>  |  |
|                                    | Magnitude   | $\Big[\frac{R^2 + \omega^2 L^2}{(1-\omega^2 L C)^2} + \omega^2 C^2 R^2}\Big]^{\gamma}$                           |  |
|                                    | Phase Angle | ω [L(1-ω <sup>2</sup> LC)—CR <sup>2</sup> ]<br>tan <sup>-1</sup> R                                               |  |
|                                    | Admittance  | $R \to_{p_0} [L(1-\omega^3 L_0) - CR^2]$<br>$R^2 + \omega^2 L^2$                                                 |  |
| ×                                  | Impedance   | $X_1 \frac{X_1 R_2 + j \left[ R_2^2 + X_2 \left( X_1 + X_2 \right) \right]}{R_2^2 + \left( X_1 + X_2 \right)^2}$ |  |
|                                    | Magnitude   | $X_1 = \frac{\{ X_1^2 R_2^2 + [R_2^2 + X_2 (X_1 + X_2)]^2 \}^{1q}}{R_2^2 + (X_1 + X_2)^2}$                       |  |
| إنهارهم                            | Phase Angle | $\frac{Rz^2 + Xz(X_1 + X_2)}{X_1 Rz}$                                                                            |  |
| R<br>R                             | Admittance  | $R_2 x_1 - y[R_2^2 + X_2^2 + x_1 X_2]$<br>$x(R_2^2 + x_2^2)$                                                     |  |

IMPEDANCE Z= R + JX ohms

# Table 5-2. Impedance Formulas (cont'd)

|     | R1 .                                   | Impedance   | $\begin{array}{c} \text{R-IPP}(\text{R+ R-P}) + \omega^2 \ell^2 \text{Re} + \frac{\omega \ell}{\omega^2 \ell} + \frac{\omega_1 P_0^2 - H^{4^-}}{\omega_0 \ell} \underbrace{\left[ \omega_1 - \omega_2 - \frac{1}{\omega_0 \ell} \right]}_{0,0} \\ \text{(R+ R-P)}^2 + \left[ \frac{\omega_1 - 1}{\omega_0 \ell} \right]^2 \end{array}$ |
|-----|----------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                        | Magnitude   | $\left\{ \begin{bmatrix} R_1 R_2 \left( R_1 + R_2 \right) + \omega^2 L^2 R_2 + \frac{R_2}{3} \right]^2 \\ \left( R_1 + R_2 \right)^2 + \left( \omega \omega_{\omega_{\omega_{\omega_{\omega_{\omega_{\omega_{\omega_{\omega_{\omega_{\omega_{\omega_{\omega_{\omega$                                                                   |
|     |                                        | Phase Angle | $\tan^{-1} \left[ \begin{array}{cc} \omega_{1} R^{2} - \frac{R_{1}^{2}}{\omega_{1} C} - \frac{1}{\omega_{1}^{2}} \left[ \omega_{1} - \frac{1}{\omega_{1}^{2}} \right] \\ RiPe \left( R_{1} + R_{2} \right) + \omega^{2} L^{2} R_{2} + \frac{1}{\omega^{2} C} R_{2} \right] \end{array}$                                                |
|     | H2 - 1/1 C                             | Admittance  | $\frac{R_{1}+\omega^{2}CR_{1}R^{2}(R_{1}+R_{2})+\omega^{4}L^{2}G^{2}R_{2}}{(R_{1}+\omega^{2}L^{2}+(1+\omega^{2}CR_{2}^{2})^{2})}+\int_{1}^{1}\omega\left[\frac{CR_{1}^{2}-L_{1}+\omega^{2}L^{2}(L_{1}L-CR_{2}^{2})}{(R_{1}+\omega^{2}L^{2})(1+\omega^{2}CR_{2}^{2})}\right]$                                                           |
|     | ×{{                                    | Impedance   | $\begin{array}{c} \text{RiPs} \; (R_1 + R_2) + R_1 \chi S^2 + R_2 \chi \chi^2 \\ (R_1 + R_2)F + (\chi_1 + \chi_2)g \end{array} + \int \begin{array}{c} R_1^2 \chi_2 + R_2^2 \chi_1 + \chi_1 \chi_2(\chi_1 + \chi_2) \\ (R_1 + R_2)F + (\chi_1 + \chi_2)g \end{array}$                                                                  |
|     |                                        | Magnitude   | $ \left\{ \left[ R_1 R_2 \left( R_1 + R_2 \right) + R_1  X_c^2 + R_2  X_i^2 \right] + R_1^2  X_c + R_2  X_1 + X_1  X_2 \left( X_1 + X_2 \right) \right]^2 \right\}^{\frac{1}{2}} \\ \left( \left[ R_1 + R_2 \right]^2 + \left( X_1 + X_2 \right)^2 \right]^{\frac{1}{2}} \right\}^{\frac{1}{2}} $                                      |
|     | الممارية                               | Phase Angle | lan- ¹ R- <sup>2</sup> X <sub>2</sub> + P± <sup>2</sup> X1 + XM2 (X1 + X2)<br>H-Fb2(R1 + Fb2 + R1 XZ' + Fb2 XX²                                                                                                                                                                                                                        |
| 0.5 | \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ | Admittance  | $\frac{\text{Ri}(\text{Rz}^2 + \text{Xz}^2) + \text{RajRi}^2 + \text{Xz}^2)}{(\text{Ri}^2 + \text{Xz}^2) + (\text{Ri}^2 + \text{Xz}^2)} \xrightarrow{\text{(Ri}^2 + \text{Xz}^2)} \frac{\text{Xi}(\text{Rz}^2 + \text{Xz}^2) + \text{Xi}^2)}{(\text{Ri}^2 + \text{Xi}^2)}$                                                             |

Subtract the value of the smaller reactance from that of the larger. 35 – 21 equals 14 ohms. This is the net reactance and constitutes the value of X. Using this value, locate 14 in the X column. Move horizontally to reach the 5 column (R). The impedance is shown as 14.86 ohms.

#### □Example:

You require an impedance of 30 ohms for an RLC circuit. What values of R and X can you use to obtain this impedance?

The table shows you can get this impedance by using an 18-ohm resistor and a reactance having a value of 24 ohms. The reactance may be a coil having an inductive reactance of this value, or a capacitor, or both components whose net reactance is 24 ohms. Of course you could also use a 24-ohm resistor and a reactance of 18 ohms. There are many other combinations in the table that are very close to this desired 30-ohm impedance.

#### IMPEDANCE AND TURNS RATIO

Transformers are conveniently used as impedance transformer of devices. The impedance of a transformer varies as the square of the turns ratio. These ratios, in steps of 1 to 100, are given in Table 5-3.

#### □Example:

A step-down transformer has a turns ratio of 37 to 1. What is the impedance ratio?

Locate the turns ratio, 37:1. Immediately alongside is the impedance ratio of 1369:1.

#### □Example:

What is the impedance transformation of a step-up-transformer having a turns ration of 1:53?

Table 5-3 shows that the impedance transformation for this turns ratio is 1:2809.

The turns ratio of a transformer is specifically that—a ratio and gives no indication of the actual number of turns used by the transformer. A transformer having 50 primary turns and 50 secondary turns has a 1:1 ratio. So does a transformer having 5000 primary and 5,000 secondary turns.

To get the ratio, divide the larger number of turns by the smaller. Table 5-3 will then supply the impedance ratio.

Table 5-3. Impedance Ratio and Turns Ratio of a Transformer

| Turns Ratio | Impedance Ratio | Turns Ratio | Impedance Ratio |
|-------------|-----------------|-------------|-----------------|
| 100:1       | 10,000:1        | 65:1        | 4,225:1         |
| 99:1        | 9,801:1         | 64:1        | 4,096:1         |
| 98:1        | 9,604:1         | 63:1        | 3,969:1         |
| 97:1        | 9,409:1         | 62:1        | 3,844:1         |
| 96:1        | 9,216:1         | 61:1        | 3,721:1         |
| 95:1        | 9,025:1         | 60:1        | 3,600:1         |
| 94:1        | 8,836:1         | 59:1        | 3,481:1         |
| 93:1        | 8,649:1         | 58:1        | 3,364:1         |
| 92:1        | 8,464:1         | 57:1        | 3,249:1         |
| 91:1        | 8,281:1         | 56:1        | 3,136:1         |
| 90:1        | 8,100:1         | 55:1        | 3,025:1         |
| 89:1        | 7,921:1         | 54:1        | 2,916:1         |
| 88:1        | 7,744:1         | 53:1        | 2,809:1         |
| 87:1        | 7,569:1         | 52:1        | 2,704:1         |
| 86:1        | 7,396:1         | 51:1        | 2,601:1         |
| 85:1        | 7,225:1         | 50:1        | 2,500:1         |
| 84:1        | 7,056:1         | 49:1        | 2,401:1         |
| 83:1        | 6,889:1         | 48:1        | 2,304:1         |
| 82:1        | 6,724:1         | 47:1        | 2,209:1         |
| 81:1        | 6,571:1         | 46:1        | 2,116:1         |
| 80:1        | 6,400:1         | 45:1        | 2,025:1         |
| 79:1        | 6,241:1         | 44:1        | 1,936:1         |
| 78:1        | 6,084:1         | 43:1        | 1,849:1         |
| 77:1        | 5,929:1         | 42:1        | 1,764:1         |
| 76:1        | 5,776:1         | 41:1        | 1,681:1         |
| 75:1        | 5,625:1         | 40:1        | 1,600:1         |
| 74:1        | 5,476:1         | 39:1        | 1,521:1         |
| 73:1        | - 5,329:1       | 38:1        | 1,444:1         |
| 72:1        | 5,184:1         | 37:1        | 1,369:1         |
| 71:1        | 5,041:1         | 36:1        | 1,296:1         |
| 70:1        | 4,900:1         | 35:1        | 1,225:1         |
| 69:1        | 4,761:1         | 34:1        | 1,156:1         |
| 68:1        | 4,624:1         | 33:1        | 1,089:1         |
| 67:1        | 4,489:1         | 32:1        | 1,024:1         |
| 66:1        | 4,356:1         | 31:1        | 961:1           |

Table 5-3. Impedance Ratio and Turns Ratio of a Transformer (cont'd)

| Turns Ratio | Impedance Ratio | Turns Ratio Impedance Ratio  | 0 |
|-------------|-----------------|------------------------------|---|
| 30:1        | 900:1           | 1:100 1:10,000               | 0 |
| 29:1        | 841:1           | 1:99 1:9,801                 |   |
| 28:1        | 784:1           | 1:98 1:9,604                 |   |
| 27:1        | 729:1           | 1:97 1:9,409                 |   |
| 26:1        | 676:1           | 1:96 1:9,216                 |   |
| 25:1        | 625:1           | 1:95 1:9,025                 |   |
| 24:1        | 576:1           | 1:94 1:8,836                 |   |
| 23:1        | 529:1           | 1:93 1:8,649                 |   |
| 22:1        | 484:1           | 1:92 1:8,464                 |   |
| 21:1        | 441:1           | 1:91 1:8,281                 |   |
| 20:1        | 400:1           | 1:90 1:8,100                 |   |
| 19:1        | 361:1           | 1:89 1:7,921                 |   |
| 18:1        | 324:1           | 1:88 1:7,744                 |   |
| 17:1        | 289:1           | 1:87 1:7.569                 |   |
| 16:1        | 256:1           | 1:86 1:7,396                 |   |
|             |                 |                              |   |
| 15:1        | 225:1           | 1:85 1:7,225<br>1:84 1:7,056 |   |
| 14:1        | 196:1           | 1:83 1:6,889                 |   |
| 13:1        | 169:1           | 1:82 1:6,724                 |   |
| 12:7        | 144:1           | 1:82 1:0,724                 |   |
| 11:1        | 121:1           | 1:01 1:0,3/1                 |   |
| 10:1        | 100:1           | 1:80 1:6,400                 |   |
| 9:1         | 81:1            | 1:79 1:6,241                 |   |
| 8:1         | 64:1            | 1:78 1:6,084                 |   |
| 7:1         | 49:1            | 1:77 1:5,929                 |   |
| 6:1         | 36:1            | 1:76 1:5,776                 |   |
| 5:1         | 25:1            | 1:75 1:5,625                 |   |
| 4.1         | 16:1            | 1:74 1:5,476                 |   |
| 3:1         | 9:1             | 1:73 1:5,329                 |   |
| 2:1         | 4:1             | 1:72 1:5,184                 |   |
| 1:1         | 1:1             | 1:71 1:5,041                 |   |
|             |                 | 1:70 1:4,900                 |   |

Table 5-3. Impedance Ratio and Turns Ratio of a Transformer (cont'd)

| Turns Ratio | Impedance Ratio | Turns Ratio | Impedance Ratio |
|-------------|-----------------|-------------|-----------------|
| 1:69        | 1:4,761         | 1:33        | 1:1,089         |
| 1:68        | 1:4,624         | 1:32        | 1:1,024         |
| 1:67        | 1:4,489         | 1:31        | 1:961           |
| 1:66        | 1:4,356         | 1:30        | 1:900           |
| 1:65        | 1:4,225         | 1:29        | 1:841           |
| 1:64        | 1:4,096         | 1:28        | 1:784           |
| 1:63        | 1:3,969         | 1:27        | 1:729           |
| 1:62        | 1:3,844         | 1:26        | 1:676           |
| 1:61        | 1:3,721         | 1:25        | 1:625           |
| 1:60        | 1:3,600         | 1:24        | 1:576           |
| 1:59        | 1:3,481         |             |                 |
| 1:58        | 1:3,364         | 1:23        | 1:529           |
| 1:57        | 1:3,249         | 1:22        | 1:484           |
| 1:56        | 1:3,136         | 1:21        | 1:441           |
| 1:55        | 1:3,025         | 1:20        | 1:400           |
| 1:54        | 1:2,916         | 1:19        | 1:361           |
| 1:53        | 1:2,809         | 1:18        | 1:324           |
| 1:52        | 1:2,704         | 1:17        | 1:289           |
| 1:51        | 1:2,601         | 1:16        | 1:256           |
| 1:50        | 1:2,500         | 1:15        | 1:225           |
| 1:49        | 1:2,401         | 1:14        | 1:196           |
| 1:48        | 1:2,304         | 1:13        | 1:169           |
| 1:47        | 1:2,209         | 1:12        | 1:144           |
| 1:46        | 1:2,116         | 1:11        | 1:121           |
| 1:45        | 1:2,025         | 1:10        | 1:100           |
| 1:44        | 1:1,936         |             |                 |
| 1:43        | 1:1,849         | 1:9         | 1: 81           |
| 1:42        | 1:1,764         | 1:8         | 1: 64           |
| 1:41        | 1:1,681         | 1:7         | 1: 49           |
| 1:40        | 1:1,600         | 1:6         | 1: 36           |
| 1:39        | 1:1,521         | 1:5         | 1: 25           |
| 1:38        | 1:1,444         | 1:4         | 1: 16           |
| 1:37        | 1:1,369         | 1:3         | 1: 9            |
| 1:36        | 1:1,296         | 1:2         | 1: 4            |
| 1:35        | 1:1,225         | 1.1         | 1: 1            |
| 1:34        | 1:1,156         |             |                 |

□Example:

A step-down transformer has 2465 primary turns and 85 secondary turns. What is the impedance ratio?

Divide 2465 by 85. This supplies a ratio of 29:1. Table 5-3 shows the impedance ratio is 841:1. If the transformer had 85 primary turns and 2465 secondary turns, the impedance ratio would be 1:841.

# Chapter 6 Permeability

#### PERMEABILITY

Permeability can be considered the ability of a substance to conduct magnetic lines of force. More technically, permeability is the ratio of flux density in gausses (B) to a magnetizing force, H, in oersteds. The permeability of a vacuum, or air, is considered as unity. See Table 6-1.

#### Table 6-1. Permeabilities of Magnetic Materials.

Cobalt Iron-cobalt alloy (Co 34%) Iron, commercial annealed Nickel Permalloy (Ni 78.5%, Fe 21.5%) Perminvar (Ni 45%, Fe 30%, Co 25%) Sendust Silicon steel (Si 4%) Steel, cast Steel, open hearth

170 13,000 6000 to 8000 400 to 1000 over 80,000 2000 30,000 to 120,000 5000 to 10,000 1500 3000 to 7000



### Chapter 7 Power

#### WATTS AND HORSEPOWER

Motors are generally rated in terms of horsepower. But since a motor is an electromechanical device, it also has a rating in watts. The relationship between horsepower (hp) and power in watts is: 1 hp equals 745.7 watts.

Table 7-1 gives the conversion between these two quantities. The table can be extended by moving the decimal point in the same direction, for the same number of places, in both columns. For conversion, see Tables 7-2 and 7-3.

#### □Example:

A small motor is rated at one-tenth horsepower. What is its rating in watts.

The closest value to one-tenth horsepower in the table is 0.100575 shown in the right-hand column under the heading hp. The power corresponding to this value is 75 watts.

□Example:

A motor-generator is rated at one-half kilowatt. What is its equivalent horsepower rating?

One-half kilowatt is 500 watts. Table 7-1 does not list such a value but we can use the number 50 in place of 500. Locate the number 50 in the column headed by watts. Move the decimal point one place to the right and 50 becomes 500. The corresponding value of horsepower is 0.067050 hp. Moving the decimal point of this

|       |         | Table 7-1. Watts | vs Horsepower |       |         |
|-------|---------|------------------|---------------|-------|---------|
| Watts | HP      | Watts            | HP            | Watts | HP      |
| 1     | .001341 | 34               | .045594       | 67    | .089847 |
| 2     | .001341 | 35               | .045394       | 68    | .091188 |
| 3     | .004023 | 36               | .048278       | 69    | .092529 |
| 4     | .005364 | 37               | .049617       | 70    | .093870 |
| 5     | .003304 | 38               | .050958       | 71    | .095211 |
| ,     | .000703 | 30               | .030736       | / '   | .073211 |
| 6     | .008046 | 39               | .052299       | 72    | .096552 |
| 7     | .009387 | 40               | .053640       | 73    | .097893 |
| 8     | .010728 | 41               | .054981       | 74    | .099234 |
| 9     | .012069 | 42               | .056322       | 75    | .100575 |
| 10    | .013410 | 43               | .057663       | 76    | .101916 |
|       |         |                  |               |       |         |
| 11    | .014751 | 44               | .059004       | 77    | .103257 |
| 12    | .016092 | 45               | .060345       | 78    | .104598 |
| 13    | .017433 | 46               | .061686       | 79    | .105939 |
| 14    | .018774 | 47               | .063027       | 80    | .107280 |
| 15    | .020115 | 48               | .064368       | 81    | .108261 |
| 16    | .021456 | 49               | .065709       | 82    | .109962 |
| 17    | .021430 | 50               | .067050       | 83    | .111303 |
| 18    | .022/9/ | 51               | .068391       | 84    | .112644 |
| 19    | .025479 | 52               | .069732       | 85    | .113985 |
| 20    | .025479 | 53               | .071073       | 86    | .115326 |
| 20    | .020020 | 33               | .071073       | 80    | .113320 |
| 21    | .028161 | 54               | .072414       | 87    | .116667 |
| 22    | .029502 | 55               | .073755       | 88    | .118008 |
| 23    | .030843 | 56               | .075096       | 89    | .119349 |
| 24    | .032184 | 57               | .076437       | 90    | .120690 |
| 25    | .033525 | 58               | .077778       | 91    | .122031 |
|       |         |                  |               |       |         |
| 26    | .034866 | 59               | .079119       | 92    | .123372 |
| 27    | .036207 | 60               | .080460       | 93    | .124713 |
| 28    | .037548 | 61               | .081801       | 94    | .126054 |
| 29    | .038889 | 62               | .083142       | 95    | .127395 |
| 30    | .040230 | 63               | .084483       | 96    | .128736 |
| 31    | .041571 | 64               | .085824       | 97    | .130077 |
| 32    | .042912 | 65               | .087165       | 98    | .131418 |
| 33    | .044253 | 66               | .088506       | 99    | .132759 |
| -0    |         | •                | .000000       | 100   | .134100 |
|       |         |                  |               |       |         |

Table 7-2. Horsepower vs Watts

| HP  | Watts            | HP         | Watts              |
|-----|------------------|------------|--------------------|
| .01 | 7.457            | .26        | 193.882            |
| .02 | 14.914           | .27        | 201.339            |
| .03 | 22.371           | .28        | 208.796            |
| .04 | 29.828           | .29        | 216.253            |
| .05 | 37.285           | .30        | 223.710            |
| .06 | 44.742           | .31        | 231.167            |
| .07 | 52.199           | .32        | 238.624            |
| .08 | 59.656           | .33        | 246.081            |
| .09 | 67.113<br>74.570 | .34        | 253.538            |
| .11 | 82.027           | .35        | 260.995            |
| .12 | 89.484           | .36        | 268.452            |
| .12 | 89.484<br>96.941 | .37        | 275.909            |
| .14 | 104.398          | .38        | 283.366            |
| .15 | 104.398          | .39        | 290.823            |
| .18 | 119.312          | .40<br>.41 | 298.280            |
| .17 | 126.769          | .42        | 305.737            |
| .18 | 134.228          | .42        | 313.194<br>320.651 |
| .19 | 141.683          | .43        | 328,108            |
| .20 | 149.140          | .45        | 328.108            |
| .21 | 156.597          | .46        | 343.022            |
| .22 | 164.054          | .47        | 350.479            |
| .23 | 171.511          | .48        | 357.936            |
| .24 | 178.968          | .49        | 365.393            |
| .25 | 186.425          | .50        | 372.850            |
| .51 | 380.307          | .76        | 556.732            |
| .52 | 387.764          | .77        | 574.189            |
| .53 | 395.221          | .78        | 581.646            |
| .54 | 402.678          | .79        | 589.103            |
| .55 | 410.135          | .80        | 596.560            |
| .56 | 417.592          | .81        | 604.017            |
| .57 | 425.049          | .82        | 611.474            |
| .58 | 432.506          | .83        | 618.931            |
| .59 | 439.963          | .84        | 626.388            |
| .60 | 447.420          | .85        | 633.845            |
| .61 | 454.877          | .86        | 641.302            |
| .62 | 462.334          | .87        | 648.759            |
| .63 | 469.791          | .88        | 656.216            |
| .64 | 477.248          | .89        | 663,673            |
| .65 | 484.705          | .90        | 671.130            |
| .66 | 492.162          | .91        | 678.587            |
| .67 | 499.619          | .92        | 686.044            |
| .68 | 507.076          | .93        | 693.501            |
| .69 | 514.533          | .94        | 700.958            |
| .70 | 521.990          | .95        | 708.415            |
| .71 | 529.447          | .96        | 715.872            |
| .72 | 536.904          | .97        | 723.329            |
| .73 | 544.361          | .98        | 730.786            |
| .74 | 551.818          | .99        | 738.243            |
| .75 | 559.275          | 1.00       | 745.700            |

Table 7-3. Horsepower and Electrical Power Equivalents

| Unit   | Equivalents                                           |
|--------|-------------------------------------------------------|
| 1 H.P  |                                                       |
| 1 H.P  | 0.746 Kw.                                             |
| 1 H.P  |                                                       |
| 1 H.P  |                                                       |
| 1 H.P  | 2,545 B.T.U per Hr.                                   |
| 1 H.P. | 0.175 Lbs. Carbon oxidized per Hr.                    |
| 1 H.P. |                                                       |
| 1 H.P  | 2.64 Lbs. Water per Hr. evaporated from and at 212°F. |
| 1 Kw   |                                                       |
| 1 KW   |                                                       |
| 1 Kw   |                                                       |
| 1 Kw   | 737.3 FtLbs. per Sec.                                 |
| 1 Kw   | 3.412 B.T.U. per Hr.                                  |
| 1 Kw   |                                                       |
| 1 Kw   | 22.75 Lbs. Water per Hr. heated from 62-212°F.        |
| 1 Kw   | 3.53 Lbs. Water per Hr. evaporated from and at 212°F. |

number by one decimal place (to the right) supplies 0.6705 hp. In practice this could be rounded off to 0.7 hp.

#### □Example:

What is the horsepower rating of a 1-kilowatt generator?

1 kilowatt is equal to 1,000 watts. Use Table 7-1 by selecting the number 100 and moving its decimal point one place to the right, thus changing 100 to 1,000. The corresponding value of horsepower is 0.134100, but remember to move the decimal point here as well. The answer is 1.341 hp.

#### □Example:

A fractional hp motor is rated at 0.07 hp. What is its power rating in watts?

There is no value in Table 7-1 that corresponds exactly to 0.07.

There are two values, though, which are very close. One of these is 0.069732 and the other 0.071073. Thus, this motor has a rating between 52 and 53 watts. However, if you want a more precise value than this, consult Table 7-2. There, you will see that .07 hp corresponds to 52.199 W.

## Chapter 8 Decibels

#### **VOLTAGE AND CURRENT RATIOS VS POWER RATIOS AND DECIBELS**

Table 8-1 supplies voltage or current ratios vs power (watts) ratios for decibels (dB) ranging from 0.1 to 50. A decibel (one-tend of a bel) is a ratio, a means of comparing the relative strengths of a pair of currents, voltages, or powers. In itself, a decibel is not indicative of any particular amount of power, voltage, or current.

Since the decibel is a comparison unit, and not an absolute value, some reference level must be indicated. A common reference, also called zero level, is 1 milliwatt. Other reference levels can be used, but in any event, the reference should be specified. If 1 milliwatt is the reference, the letter mis added to db, the unit being called the dBm (m for milliwatt). Thus, if an amplifier (assuming equal input and output resistances) has an output of 1 watt, the relationship of the power output to the power input is:

 $dB = 10 \log P2/P1$ 

or

 $\mathrm{dB} = 10 \; \mathrm{log} \; 1/.001 = 10 \; \mathrm{log} \; 1000 = 30 \; \mathrm{db}$ 

Instead of using the formula, we could have obtained our answer by consulting Table 8-1. The power ratio is 1000—that is, an output of 1 watt is 1000 times greater than the reference level of 1 milliwatt. Locate 1000 under the heading of power ratio in the table. Move to the left and note a gain of 30 dB.

#### □Example:

The input voltage to an amplifier is 1 volt, and the output is 20 volts. What is the voltage gain of the amplifier in dB?

The ratio of the two voltages is 20. The nearest comparable value in the Table is 19.95. The gain is 26 dB.

#### □Example:

An amplifier is said to have a gain of 20 dB. What is its output in watts?

Locate the number 20 in the dB column in Table 8-1. Move to the right to see that this represents a power ratio of 100. If no power input is given and a reference level of 1 milliwatt is indicated, then the output is 100 milliwatts. If an input power is specified, multiply the input power by 100 to get the value of output power.

Note that the first two columns in Table 8-1 are the reciprocals of the last two columns. It makes no difference whether you divide the output power of an amplifier by the input or vice versa. If you put the larger number in the numerator of the dB power formula the answer will be a whole number and you will work with the two columns at the right in Table 8-1. If you use the smaller power value in the numerator, the answer will be a decimal, as indicated in the first two columns in the Table. In either case, the answer in decibels will be the same. If you have an electronic device with a power ratio of 1 to 1000 or, conversely, 1000 to 1, the gain or loss in dB will be 30 in either case. Some technicians and engineers prefer working with whole numbers and put a minus sign in front of their answer to indicate a loss.

#### **DECIBELS-NEPERS CONVERSIONS**

The neper, like the decibel, is a dimensionless unit. While the decibel is derived from common logarithms (logarithms to the base 10), the neper is used to express the ratio of two power levels using the natural system of logarithms—logarithms to the base e (e equals 2.71828). The formula for finding the number of nepers is

nepers = ½loge P2/P1

The relationships between decibels and nepers are as follows:

1 decibel = 0.1 bel 1 bel = 10 decibels 1 decibel = 0.1151 neper 1 neper = 0.8686 bel 1 neper = 8.686 decibels

As in the case of decibels, nepers must be used with some reference level if just one value of power, either input or output, is specified.

Table 8-1. Voltage or Current Ratios vs Power Ratios and Decibels

| 14210                       | tolange of t   | unioni nauos va | Toner nauco and p           | politicia        |
|-----------------------------|----------------|-----------------|-----------------------------|------------------|
| Voltage or<br>Current Ratio | Power<br>Ratio | - dB +          | Voltage or<br>Current Ratio | Power<br>Ratio   |
| 1.000                       | 1.000          | 0               | 1.0000                      | 1.0000           |
| 0.989<br>0.977              | 0.977<br>0.955 | 0.1<br>0.2      | 1.0116<br>1.0233            | 1.0233           |
| 0.966                       | 0.933          | 0.2             | 1.0233                      | 1.04/1           |
| 0.955                       | 0.912          | 0.4             | 1.0471                      | 1.0965           |
| 0.944                       | 0.891          | 0.5             | 1.0593                      | 1.1220           |
| 0.933<br>0.923              | 0.871<br>0.851 | 0.6             | 1.0715                      | 1.1482           |
| 0.923                       | 0.832          | 0.7<br>0.8      | 1.0839<br>1.0965            | 1.1749<br>1.2023 |
| 0.902                       | 0.813          | 0.9             | 1.1092                      | 1.2303           |
| 0.891                       | 0.794          | 1.0             | 1.1220                      | 1.2589           |
| 0.881<br>0.871              | 0.776<br>0.759 | 1.1<br>1.2      | 1.135<br>1.1482             | 1.288            |
| 0.861                       | 0.759          | 1.3             | 1.1482                      | 1.3183           |
| 0.851                       | 0.724          | 1.4             | 1.175                       | 1.380            |
| 0.841                       | 0.708          | 1.5             | 1.189                       | 1.413            |
| 0.832<br>0.822              | 0.692<br>0.676 | 1.6             | 1.202                       | 1.445            |
| 0.813                       | 0.661          | 1.7<br>1.8      | 1.216<br>1.230              | 1.479<br>1.514   |
| 0.803                       | 0.646          | 1.9             | 1.245                       | 1.549            |
| 0.749                       | 0.631          | 2.0             | 1.2589                      | 1.5849           |
| 0.776<br>0.759              | 0.603<br>0.575 | 2.2             | 1.288<br>1.318              | 1.660<br>1.738   |
| 0.750                       | 0.562          | 2.5             | 1.334                       | 1.778            |
| 0.724                       | 0.525          | 2.8             | 1.380                       | 1.905            |
| 0.708                       | 0.501          | 3.0             | 1.4125                      | 1.9953           |
| 0.692<br>0.676              | 0.479<br>0.457 | 3.2<br>3.4      | 1.445<br>1.479              | 2.089<br>2.188   |
| 0.668                       | 0.447          | 3.5             | 1.4962                      | 2.2387           |
| 0.661                       | 0.436          | 3.6             | 1.514                       | 2.291            |
| 0.646                       | 0.417          | 3.8             | 1.549                       | 2.399            |
| 0.631<br>0.596              | 0.398<br>0.355 | 4.0<br>4.5      | 1.5849<br>1.6788            | 2.5119<br>2.8184 |
| 0.562                       | 0.316          | 5.0             | 1.7783                      | 3.1623           |
| 0.531                       | 0.282          | 5.5             | 1.8836                      | 3.5481           |
| 0.501<br>0.473              | 0.251          | 6.0             | 1.9953                      | 3.9811           |
| 0.447                       | 0.224          | 6.5<br>7.0      | 2.113<br>2.239              | 4.467<br>5.012   |
| 0.422                       | 0.178          | 7.5             | 2.371                       | 5.623            |
| 0.398                       | 0.159          | 8.0             | 2.512                       | 6.310            |
| 0.376<br>0.355              | 0.141<br>0.126 | 8.5<br>9.0      | 2.661<br>2.818              | 7.079<br>7.943   |
| 0.335                       | 0.112          | 9.5             | 2.985                       | 8.913            |
| 0.316                       | 0.100          | 10              | 3.162                       | 10.00            |
| 0.282                       | 0.0794         | 11              | 3.55                        | 12.6             |
| 0.251<br>0.224              | 0.0631         | 12<br>13        | 3.98<br>4.47                | 15.9<br>20.0     |
| 0.200                       | 0.0398         | 14              | 5.01                        | 25.1             |
| 0.178                       | 0.0316         | 15              | 5.62                        | 31.6             |
| 0.159                       | 0.0251         | 16              | 6.31                        | 39.8             |

Table 8-1. Voltage or Current Ratios vs Power Ratios and Decibels (cont'd)

| Voltage or    | Power    |        | Voltage or    | Power  |
|---------------|----------|--------|---------------|--------|
| Current Ratio | Ratio    | - dB + | Current Ratio | Ratio  |
| 0.141         | 0.0200   | 17     | 7.08          | 50.1   |
| 0.126         | 0.0159   | 18     | 7.94          | 63.1   |
| 0.112         | 0.0126   | 19     | 8.91          | 79.4   |
| 0.10000       | 0.0100   | 20     | 10.00         | 100.0  |
| 0.08913       | 0.0079   | 21     | 11.22         | 125.9  |
| 0.07943       | 0.0063   | 22     | 12.59         | 158.5  |
| 0.07079       | 0.0050   | 23     | 14.13         | 199.5  |
| 0.06310       | 0.00398  | 24     | 15.85         | 251.2  |
| 0.05623       | 0.03162  | 25     | 17.78         | 316.2  |
| 0.05012       | 0.002512 | 26     | 19.95         | 398.1  |
| 0.04467       | 0.001995 | 27     | 22.39         | 501.2  |
| 0.03981       | 0.001585 | 28     | 25.12         | 631.0  |
| 0.03548       | 0.001259 | 29     | 28.18         | 794.3  |
| 0.03162       | 0.001000 | 30     | 31.62         | 1000   |
| 0.02818       | 0.000794 | 31     | 35.48         | 1259   |
| 0.02512       | 0.000631 | 32     | 39.81         | 1585   |
| 0.02239       | 0.000501 | 33     | 44.67         | 1995   |
| 0.01995       | 0.000398 | 34     | 50.12         | 2512   |
| 0.01778       | 0.000316 | 35     | 56.23         | 3162   |
| 0.01585       | 0.000251 | 36     | 63.10         | 3981   |
| 0.01413       | 0.000199 | 37     | 70.79         | 5012   |
| 0.01259       | 0.000158 | 38     | 79.43         | 6310   |
| 0.01122       | 0.000126 | 39     | 89.13         | 7943   |
| 0.01000       | 0.000100 | 40     | 100.00        | 10000  |
| 0.00891       | 0.000079 | 41     | 112.2         | 12590  |
| 0.00794       | 0.000063 | 42     | 125.9         | 15850  |
| 0.00708       | 0.000050 | 43     | 141.3         | 19950  |
| 0.00631       | 0.000040 | 44     | 158.5         | 25120  |
| 0.00562       | 0.000032 | 45     | 177.8         | 31620  |
| 0.00501       | 0.000025 | 46     | 199.5         | 39810  |
| 0.00447       | 0.000020 | 47     | 223.9         | 50120  |
| 0.00398       | 0.000016 | 48     | 251.2         | 63100  |
| 0.00355       | 0.000013 | 49     | 281.8         | 79430  |
| 0.00316       | 0.000010 | 50     | 316.2         | 100000 |

| Table | 8-2. | Deci   | bels  | ٧s  | Nepe |
|-------|------|--------|-------|-----|------|
| (n.   | nene | rs: di | 3. de | cih | els) |

| (n, nepers; dB, decibets) |        |    |        |     |         |  |
|---------------------------|--------|----|--------|-----|---------|--|
| dB                        | n      | dB | n      | dB  | n       |  |
| 1                         | 0.1151 | 34 | 3.9134 | 67  | 7.7117  |  |
| 2                         | 0.2302 | 35 | 4.0285 | 68  | 7.8268  |  |
| 3                         | 0.3453 | 36 | 4.1436 | 69  | 7.9419  |  |
| 4                         | 0.4604 | 37 | 4.2587 | 70  | 8.0570  |  |
| 5                         | 0.5755 | 38 | 4.3738 | 71  | 8.1721  |  |
| 6                         | 0.6906 | 39 | 4.4889 | 72  | 8.2872  |  |
| 7                         | 0.8057 | 40 | 4.6040 | 73  | 8.4023  |  |
| 8                         | 0.9208 | 41 | 4.7191 | 74  | 8.5174  |  |
| 9                         | 1.0359 | 42 | 4.8342 | 75  | 8.6325  |  |
| 10                        | 1.1510 | 43 | 4.9493 | 76  | 8.7476  |  |
| 11                        | 1.2661 | 44 | 5.0644 | 77  | 8.8627  |  |
| 12                        | 1.3812 | 45 | 5.1795 | 78  | 8.9778  |  |
| 13                        | 1.4963 | 46 | 5.2946 | 79  | 9.0929  |  |
| 14                        | 1.6114 | 47 | 5.4097 | 80  | 9.2080  |  |
| 15                        | 1.7265 | 48 | 5.5248 | 81  | 9.3231  |  |
| 16                        | 1.8416 | 49 | 5.6399 | 82  | 9.4382  |  |
| 17                        | 1.9567 | 50 | 5.7550 | 83  | 9.5533  |  |
| 18                        | 2.0718 | 51 | 5.8701 | 84  | 9.6684  |  |
| 19                        | 2.1869 | 52 | 5.9852 | 8.5 | 9.7835  |  |
| 20                        | 2.3020 | 53 | 6.1003 | 86  | 9.8986  |  |
| 21                        | 2.4171 | 54 | 6.2154 | 87  | 10.0137 |  |
| 22                        | 2.5322 | 55 | 6.3305 | 88  | 10.1288 |  |
| 23                        | 2.6473 | 56 | 6.4456 | 89  | 10.2439 |  |
| 24                        | 2.7624 | 57 | 6.5607 | 90  | 10.3590 |  |
| 25                        | 2.8775 | 58 | 6.6758 | 91  | 10.4741 |  |
| 26                        | 2.9926 | 59 | 6.7909 | 92  | 10.5892 |  |
| 27                        | 3.1077 | 60 | 6.9060 | 93  | 10.7043 |  |
| 28                        | 3.2228 | 61 | 7.0211 | 94  | 10.8194 |  |
| 29                        | 3.3379 | 62 | 7.1362 | 95  | 10.9345 |  |
| 30                        | 3.4530 | 63 | 7.2513 | 96  | 11.0496 |  |
| 31                        | 3.5681 | 64 | 7.3664 | 97  | 11.1647 |  |
| 32                        | 3.6832 | 65 | 7.4815 | 98  | 11.2798 |  |
| 33                        | 3.7983 | 66 | 7.5966 | 99  | 11.3949 |  |
|                           |        |    |        | 100 | 11.5100 |  |

Table 8-3. Neper vs Decibel Conversion

|    |         |    |         | -101011 |         |
|----|---------|----|---------|---------|---------|
| n  | dB      | n  | dB      | n       | dB      |
| 1  | 8.686   | 34 | 295.324 | 67      | 581.962 |
| 2  | 17.372  | 35 | 304.010 | 68      | 590.648 |
| 3  | 26.058  | 36 | 312.696 | 69      | 599.334 |
| 4  | 34.744  | 37 | 321.382 | 70      | 608.020 |
| 5  | 43.430  | 38 | 330.068 | 71      | 616.706 |
| 6  | 52.116  | 39 | 338.754 | 72      | 625.392 |
| 7  | 60.802  | 40 | 347.440 | 73      | 634.078 |
| 8  | 69.488  | 41 | 356.126 | 74      | 642.764 |
| 9  | 78.174  | 42 | 364.812 | 75      | 651.450 |
| 10 | 86.860  | 43 | 373.498 | 76      | 660.136 |
| 11 | 95.546  | 44 | 382.184 | 77      | 668.822 |
| 12 | 104.232 | 45 | 390.870 | 78      | 677.508 |
| 13 | 112.918 | 46 | 399.556 | 79      | 686.194 |
| 14 | 121.604 | 47 | 408.242 | 80      | 694.880 |
| 15 | 130.290 | 48 | 416.928 | 81      | 703.556 |
| 16 | 138.976 | 49 | 425.614 | 82      | 712.252 |
| 17 | 147.662 | 50 | 434.300 | 83      | 720.938 |
| 18 | 156.348 | 51 | 442.986 | 84      | 729.624 |
| 19 | 165.034 | 52 | 451.672 | 8.5     | 738.310 |
| 20 | 173.720 | 53 | 460.358 | 86      | 746.996 |
| 21 | 182.406 | 54 | 469.044 | 87      | 755.682 |
| 22 | 191.092 | 55 | 477.730 | 88      | 764.368 |
| 23 | 199.778 | 56 | 486.416 | 89      | 773.054 |
| 24 | 208.464 | 57 | 495.102 | 90      | 781.740 |
| 25 | 217.150 | 58 | 503.788 | 91      | 790.426 |
| 26 | 225.836 | 59 | 512.474 | 92      | 799.112 |
| 27 | 234.522 | 60 | 521.160 | 93      | 807.798 |
| 28 | 243.208 | 61 | 529.846 | 94      | 816.484 |
| 29 | 251.894 | 62 | 538.532 | 95      | 825,170 |
| 30 | 260.580 | 63 | 547.218 | 96      | 833.856 |
| 31 | 269.266 | 64 | 555.904 | 97      | 842.542 |
| 32 | 277.952 | 65 | 564.590 | 98      | 851.228 |
| 33 | 286.638 | 66 | 573.276 | 99      | 859.914 |
|    |         |    |         | 100     | 868.600 |

Table 8-2 supplies the conversion between decibels and nepers. Table 8-3 gives nepers to decibels.

## □Example:

An amplifier has a gain of 10 dB. What is its gain in nepers?

Locate the number 10 in the dB column in Table 8-2. To the right of this number you will find 1.1510 nepers.

## □Example:

Assuming a zero reference level of 1 milliwatt, what is the gain in nepers of an amplifier whose output is 50 milliwatts?

The power ratio in the problem is 50 to 1. Locate the nearest number to this in Table 8-1. This is shown as 50.1. The gain in dB is 17. Now consult Table 8-2. Locate 17 dB in the left-hand column. The number of nepers corresponding to 17 dB is 1.9567.



## Chapter 9 Sensitivity

## RECEIVER OR TUNER SENSITIVITY

Sensitivity is the ability of a receiver or tuner to respond to signals, previously specified in microvolts ( $\mu V$ ). These specs have been changed from voltage to power ratings. Sensitivity in microvolts can be converted to dBf by:

 $dBf = 20 \log (\mu V/0.55)$ 

Where log is log to the base 10 and  $\mu V$  is microvolts based on a 300-ohm antenna input. Sensitivity is not the same for monaural and stereo so tuners and receivers should include separate dBf figures for each.

## □Example:

A tuner has an input sensitivity of  $2\mu V$  when set in the stereo mode. What is its sensitivity in dBf?

 $dBf = 20 \log (\mu V/0.55)$ = 20 log 2/0.55

 $= 20 \log 3.636363$  $\log 3.636363 = 0.5599$ 

dBf = (20) (0.5599) = 11.198 dBf

Instead of doing this work, consult Table 9-1. Locate  $2\mu V$  in the left column. Move directly across to the answer, 11.198 dBf.  $\Box$ Example:

A tuner has an input sensitivity of 40 µV when set for monaural reception. What is its sensitivity in dBf?

 $dBf = 20 \log (\mu V/0.55)$ = 20 log 40/0.55
= 20 log 72.7272
log 72.7272 = 1.8615

dBf = (20) (1.8615) = 37.23 dBf

Using Table 9-1 , locate 40  $\mu V$  in the left column. Move across to the right for an answer of 37.23 dBf.

Table 9-1. Microvolts (µV) vs. dBf.

| μ <b>V</b> | dBf    | μV     | dBf    |
|------------|--------|--------|--------|
| 1.5        | 8.71   | 3.5    | 16.07  |
| 1.6        | 9.28   | 3.6    | 16.3   |
| 1.7        | 9.8    | 3.7    | 16.548 |
| 1.8        | 10.3   | 3.8    | 16.776 |
| 1.9        | 10.77  | 3.9    | 17.012 |
| 2.0        | 11.198 | 4.0    | 17.2   |
| 2.1        | 11.6   | 4.5    | 18.256 |
| 2.2        | 12.04  | 5.0    | 19.17  |
| 2.3        | 12.424 | 6.0    | 20.748 |
| 2.4        | 12.8   | 7.0    | 22.075 |
| 2.5        | 13.15  | 8.0    | 22.984 |
| 2.6        | 13.478 | 9.0    | 24.296 |
| 2.7        | 13.804 | 10.0   | 25.19  |
| 2.8        | 14.134 | 30.0   | 34.74  |
| 2.9        | 14.436 | 32.0   | 35.3   |
| 3.0        | 14.74  | 40.0   | 37.23  |
| 3.1        | 15.01  | 50.0   | 39.17  |
| 3.2        | 15.3   | 55.0   | 40.0   |
| 3.3        | 15.7   | 100.0  | 45.19  |
| 3.4        | 15.8   | 1000.0 | 65.154 |

# Chapter 10 Sound And Acoustics

## WAVELENGTHS OF SOUND

The distance between two successive positive peaks, two successive negative peaks, or between any two corresponding points of a sine wave is known as its wavelength. As mentioned earlier, this is often represented by the letter \(\lambda\). This description is not only applicable to radio-frequency waves, but also to sound waves. The reference here is not to a complex sound waveform, but to a pure sine wave only.

A sound wave of constant velocity (represented by the letter  $\mu$ ) will travel a distance of one wavelength in a one period interval. This is more concisely stated in the formula  $\mu$  equals  $\Lambda T$ . But the period of a wave has an inverse relationship to the frequency. Thus, T equals 1/f. By substituting in the formula  $\mu$  equals  $\Lambda T$ , we get  $\mu$  equals f  $\Lambda$ . We can rearrange this formula to read  $\Lambda$  equals  $\mu T$ .

The velocity of sound in air at a temperature of 20 degrees C (68 degrees F) is 1130 feet per second. Using this information, we can conveniently set up Table 10-1 which gives the relationship between the frequency of sound in air in hertz and the wavelengths of sound in feet and in inches

Conversion from feet to meters can be made by using Table 28-4. Conversion from inches to millimeters can be made by using Table 28-6.

## □Example:

What is the wavelength, in feet, of a 60-hertz sine wave?

Locate the number 60 in the left-hand column of Table 10-1.
The corresponding value is shown as 18.83 feet.

Table 10-1. Sound Wavelengths.

(1130 ft/sec, in air, at 20 degrees C; 32 degrees F)

Frequency Wavelength Frequency Wavelength Frequency Wavelength

| rrequency | wavelength | rrequency | wavelength | rrequency | wavelength |
|-----------|------------|-----------|------------|-----------|------------|
| (Hz)      | (feet)     | (Hz)      | (feet)     | (Hz)      | (feet)     |
| 20        | 56.50      | 140       | 8.07       | 380       | 2.97       |
| 25        | 45.20      | 150       | 7.53       | 400       | 2.83       |
| 30        | 37.67      | 160       | 7.06       | 420       | 2.69       |
| 35        | 32.29      | 170       | 6.65       | 440       | 2.57       |
| 40        | 28.25      | 180       | 6.28       | 460       | 2.46       |
| 45        | 25.11      | 190       | 5.95       | 480       | 2.35       |
| 50        | 22.60      | 200       | 5.65       | 500       | 2.26       |
| 55        | 20.55      | 210       | 5.38       | 525       | 2.15       |
| 60        | 18.83      | 220       | 5.14       | 550       | 2.05       |
| 65        | 17.38      | 230       | 4.91       | 575       | 1.97       |
| 70        | 16.14      | 240       | 4.71       | 600       | 1.88       |
| 75        | 15.07      | 250       | 4.52       | 650       | 1.74       |
| 80        | 14.13      | 260       | 4.35       | 700       | 1.61       |
| 8.5       | 13.29      | 270       | 4.19       | 750       | 1.51       |
| 90        | 12.56      | 280       | 4.04       | 800       | 1.41       |
| 95        | 11.89      | 290       | 3.90       | 850       | 1.33       |
| 100       | 11.30      | 300       | 3.77       | 900       | 1.26       |
| 110       | 10.27      | 320       | 3.53       | 950       | 1.19       |
| 120       | 9.42       | 340       | 3.32       | 975       | 1.16       |
| 130       | 8.69       | 360       | 3.14       | 990       | 1.14       |
| Frequency | Wavelength | Frequency | Wavelength | Frequency | Wavelength |
| (Hz)      | (inches)   | (Hz)      | (inches)   | (Hz)      | (inches)   |
| 1000      | 13.56      | 9000      | 1.51       | 16000     | 0.85       |
| 2000      | 6.78       | 10000     | 1.36       | 17000     | 0.80       |
| 3000      | 4.52       | 11000     | 1.23       | 18000     | 0.75       |
| 4000      | 3.39       | 12000     | 1.13       | 19000     | 0.71       |
| 5000      | 2.71       | 13000     | 1.04       | 20000     | 0.68       |
|           |            |           |            | 20000     | 0.00       |
| 6000      | 2.26       | 14000     | 0.97       |           |            |
| 7000      | 1.94       | 15000     | 0.90       |           |            |
| 8000      | 1.70       |           |            |           |            |

□Example:

A sound wave has a length of 7 feet. What is its frequency in hertz?

The closest value given in Table 10-1 is 7.06 feet. The frequency of this sound wave, then, is approximately 160 Hz.

## □Example:

What is the wavelength, in meters, of a wave whose frequency is 75 Hz?

First, locate the wavelength in feet corresponding to a frequency of 75 Hz. Table 10-1 shows that this is 15.07 feet. Consult Table 28-6. The closest value to 15.07 is 15 feet. Move one column and the answer is 4.5720 meters.

## RANGE OF MUSICAL INSTRUMENTS

The fundamental range of musical instruments is limited. At the own-frequency end, few musical instruments can produce tones below 50 Hz. The human voice doesn't go much lower than 70 Hz. At the high-frequency end, all musical instruments and voices are under 5 kHz in fundamental frequency. It is the fundamental frequency duency that determines the pitch of a tone. See Fig. 10-12.

What you can hear depends on your age, sex, the physical condition of your ears and brain, and prior musical training. While the audio spectrum is assumed to have a range of 20 Hz to 20 kHz, few of us have a hearing capability that goes down to 20 Hz and equally few can hear as high as 20 kHz. The pipe organ, contrabassoon and the harp can reach below 40 Hz. Natural sounds include hardly any low frequencies, and what you may find at such frequencies is noise.

## THE OCTAVE

An octave is a doubling of frequency. From 30 Hz to 60 Hz could be called an octave. We could regard 60 Hz to 120 Hz as another octave. We do not start with 0 Hz for this is actually D.C. 32 Hz is often selected as a practical beginning but we can start with 16 Hz as a bottom limit. If we select 16 Hz as our starting point, we can have 10 octaves up to approximately 16 kHz.

The ten octaves in Table 10-2 are of particular interest because they roughly represent the range of human hearing capability. Sounds below 16 Hz and above 16 kHz cannot be heard by most. Consider 16 Hz and 16 kHz as the outermost hearing limits.



Fig. 10-1. The fundamental range of musical instruments is quite limited. Shown here are the ranges of fundamental components of tones for the principal musical instruments and voices (courtesy of Ziff-Davis Publishing Company, from the January, 1976 issue of Stereo Review).

#### Table 10.2 Francency Panes in Octaves

| Table 10-2. Flequency name if | I OCIAVOS |
|-------------------------------|-----------|
| Frequency Range, Hz           | Octave    |
| 16 to 32                      | first     |
| 32 to 64                      | second    |
| 64 to 128                     | third     |
| 128 to 256                    | fourth    |
| 256 to 512                    | fifth     |
| 512 to 1024                   | sixth     |
| 1024 to 2048                  | seventh   |
| 2048 to 4096                  | eighth    |
| 4096 to 8192                  | ninth     |
| 8192 to 16,384                | tenth     |

## FREQUENCY RANGE OF THE PIANO

Letters with a subscript indicate tones below middle C; those with a superscript are tones above middle C. From Key A to Asis an octave; from As to As is an octave. Straing with Key Cs there are seven octaves to key C¹. Other frequency ranges are shown in Table 10.4 and 10.5.

Table 10-3. Frequency Range of the Piano

| Key            | Frequency (Hz) | Key            | Frequency (Hz) | Key            | Frequency (Hz) |
|----------------|----------------|----------------|----------------|----------------|----------------|
| A4             | 27.50          | B <sub>1</sub> | 246.94         | C <sub>3</sub> |                |
| B4             | 30.87          | С              | 261.63         |                | 2023.00        |
| C <sub>3</sub> | 32.70          | D              | 293.66         | Dз             | 2349.30        |
| D <sub>3</sub> | 36.71          | Ĕ              | 329.63         | E3             | 2637.00        |
| E <sub>3</sub> | 41.20          | F              | 349.23         | F3             | 2793.80        |
| F3             | 43.65          | Ġ              |                | G3             | 3136.00        |
| G <sub>3</sub> | 49.00          |                | 392.00         | Аз             | 3520.00        |
| A3             |                | A              | 440.00         | B <sub>3</sub> | 3951.10        |
| F3             | 55.00          | В              | 493.88         | C4             |                |
|                | 61.74          | C1             | 523.25         | •              | 4186.00        |
| C2             | 65.41          | D1             | 587.33         |                |                |
| D <sub>2</sub> | 73.42          | E1             | 659.26         |                |                |
| E2             | 82.41          | F1             | 698.46         |                |                |
| F2             | 87.31          | G1             | 783.99         |                |                |
| G2             | 98.00          | A1             |                |                |                |
| A2             | 110.00         |                | 880.00         |                |                |
| B2             | 123.47         | B1<br>C2       | 987.77         |                |                |
| C <sub>1</sub> |                |                | 1046.50        |                |                |
|                | 130.81         | D2             | 1174.70        |                |                |
| D1             | 146.83         | E2             | 1318.50        |                |                |
| Εı             | 164.81         | F2             | 1396.90        |                |                |
| F1             | 174.61         | G2             | 1568.00        |                |                |
| G <sub>1</sub> | 196.00         | A <sup>2</sup> | 1760.00        |                |                |
| A1             | 220.00         | B <sup>2</sup> | 1975.50        |                |                |
|                | _20.00         | _              | 10/0.00        |                |                |

Table 10-4. Frequency Range Of Musical Instruments

| Instrument    | Low Hz | High Hz |
|---------------|--------|---------|
| Bass clarinet | 82.41  | 493.88  |
| Bass tube     | 43.65  | 349.23  |
| Bass viol     | 41.20  | 246.94  |
| Bassoon       | 61.74  | 493.88  |
| Cello         | 130.81 | 698.46  |
| Clarinet      | 164.81 | 1567.00 |
| Flute         | 261.63 | 3349.30 |
| French horn   | 110.00 | 880.00  |
| Trombone      | 82.41  | 493.88  |
| Trumpet       | 164.81 | 987.77  |
| Oboe          | 261.63 | 1568.00 |
| Violin        | 130.81 | 1174.70 |
| Violin        | 196.00 | 3136.00 |
|               |        |         |

Table 10-5. Frequency Range of Musical Voices

|          | Low Hz | High Hz |
|----------|--------|---------|
| Alto     | 130.81 | 698.46  |
| Baritone | 98.00  | 392.00  |
| Bass     | 87.31  | 349.23  |
| Soprano  | 246.94 | 1174,70 |
| Tenor    | 130.81 | 493.88  |

### VELOCITY OF SOUND IN AIR

Sound velocity can be calculated from:

$$V = 49\sqrt{459.4} + F^{\circ}$$
 feet/second

or

$$V = 20.06 \sqrt{273} + C^{\circ}$$
 meters/second

Where V is the velocity in feet/second or meters/second, F° is the temperature in degrees Fahrenheit, C the temperature in degrees Celsius.

The velocity of sound isn't affected by frequency, somewhat slightly by humidity, much more so by temperature, and varies considerably depending on the material (medium) through which it moves. In solid substances, such as brick or steel, the velocity of sound is far greater than in air. In air, the velocity of sound increases by about two feet per second for each increase of one degree Celsius. Refer to Tables 10-66 and 10-7.

Table 10-8. Velocity of Sound in Air at Various Temperatures

| Deg. F | Speed (ft/second)     |
|--------|-----------------------|
| 32     | 1087                  |
| 50     | 1107                  |
| 59     | 1117                  |
| 68     | 1127                  |
| 86     | 1147                  |
| Deg. C | Speed (meters/second) |
| ŏ      | 331.32                |
| 10     | 337.42                |
| 15     | 340.47                |
| 20     | 343.51                |
| 20     | 240.61                |

Table 10-7. Velocity of Sound in Liquids and Solids

|             | Sound Velocity |               |  |  |
|-------------|----------------|---------------|--|--|
| Material    | Feet/second    | Meters/second |  |  |
| Alcohol     | 4724           | 1440          |  |  |
| Aluminum    | 20,407         | 6220          |  |  |
| Brass       | 14,530         | 4430          |  |  |
| Copper      | 15,157         | 4620          |  |  |
| Glass       | 17,716         | 5400          |  |  |
| Lead        | 7,972          | 2430          |  |  |
| Magnesium   | 17,487         | 5330          |  |  |
| Mercury     | 4,790          | 1460          |  |  |
| Nickel      | 18,372         | 5600          |  |  |
| Polystyrene | 8,760          | 2670          |  |  |
| Quartz      | 18,865         | 5750          |  |  |
| Steel       | 20,046         | 6110          |  |  |
| Water       | 4.757          | 1450          |  |  |

#### RELATIVE VOLUME LEVELS OF ORDINARY SOUNDS.

The threshold of hearing is zero dB and the threshold of hearing pain is 130 dB. See Fig. 10-2.

## SOUND ABSORPTION

The sound absorption coefficient of materials varies with frequency. Table 10-8 indicates that plywood, a common building material, has a greater sound absorption coefficient at frequencies below 500 Hz, but tends to level off in the region above 2 kHz.

Table 10-8. Sound Absorption Coefficients For 3/16" Plywood

| Frequency (Hz) | Sound Absorption Coefficien |
|----------------|-----------------------------|
| 125            | 0.35                        |
| 250            | 0.25                        |
| 500            | 0.20                        |
| 1,000          | 0.15                        |
| 2,000          | 0.05                        |
| 4,000          | 0.05                        |

The limits of sound absorption coefficients are 0 and 1. 1, or 100 percent, would indicate a substance that absorbed sound completely, and is the goal of construction materials used in anechoic chambers. Our 0 percent indicates that the material does not absorb sound at all. This does not necessarily mean total reflectivity. An open window or rather that portion of it that constitutes open space can be regarded as having no reflectivity. In an echo chamber, the

| SOUND PRESSURE<br>(dyne cm²)                        | Đ     | ECIBELS | PC    | OWER AT EAR (watt cm 3)                                          |
|-----------------------------------------------------|-------|---------|-------|------------------------------------------------------------------|
| 50-hp siren (100 )                                  |       | 140     | T     |                                                                  |
| Threshold of pain——<br>Pneumatic chipper (5) ——     | H     | 130     | 10-3  | -                                                                |
| Hammering on steel plate (2)                        | 200   | 120     | 10-4  | Loud music (rock)                                                |
| Boiler factory                                      |       | 110     | 10-5  | Thunder                                                          |
| Can-manufacturing plant Heavy truck (90)            | 20    | 100     | 10-6  | Subway passing Riveting machine (35) Very loud music (classical) |
| Heavy Street traffic (5)                            | Ħ     | 90      | 10-7  | 10-hp outboard motor<br>(50)                                     |
| Stenographic room<br>Average factory                | 2     | 80      | 10-8  | Loud music (classical)<br>                                       |
| Average automobile — Conversation (3)               |       | 70      | 10-9  | Department store Noisy office                                    |
| Average office ———————————————————————————————————— | 0.2   | 60      | 10-10 | Background music                                                 |
| Average residence —                                 |       | 50      | 10-11 |                                                                  |
| -                                                   | 0.02  | 40      | 10-12 | Very quiet radio<br>at home                                      |
| Very soft music                                     | +     | 30      | 10-13 | Country house Quiet auditorium                                   |
| Quiet whisper (5)                                   | 0 002 | 20      | 10-14 | Quiet sound studio                                               |
| Anechoic room —                                     | +     | 10      | 10-15 | Leaves rustling                                                  |
| C-                                                  | 0.000 | 02 0    | 10-16 | Threshold of hearing                                             |

Fig. 10-2. Relative loudness levels of common sounds (courtesy of Ziff-Davis Publishing Company), from the January, 1976 issue of Stereo Review.

surfaces may have extremely high values of reflectivity. How effective a material is for the absorption of sound is indicated by its sound absorption coefficent. A cement floor has an absorption coefficent of 0.015 or 1.5%. This means that sound striking such a floor will dissipate 1.5% of the sound as heat, or slightly less, depending on how much of the sound will pass through the material. 98.5 percent of the sound will be reflected.

Table 10-9 indicates the effect of frequency on the sound absorption coefficients of various materials. For some materials, the absorption coefficient increases with frequency; with others it decreases; and for some it remains relatively fixed.

Table 10-9. Frequency vs Sound Absorption

| Material                                                                                    |                          |                                 | Freque                          | ncy (Hz)                         |                                  |                          |
|---------------------------------------------------------------------------------------------|--------------------------|---------------------------------|---------------------------------|----------------------------------|----------------------------------|--------------------------|
| Glass window<br>Lightweight drapes<br>Heavy drapes<br>Wood floor<br>Carpet<br>(on concrete) | .35<br>.03<br>.14<br>.15 | 250<br>.25<br>.04<br>.35<br>.11 | 500<br>.18<br>.11<br>.55<br>.10 | 1000<br>.12<br>.17<br>.72<br>.07 | 2000<br>.07<br>.24<br>.70<br>.06 | .04<br>.35<br>.65<br>.07 |

Absorption coefficients of building materials are often supplied as an overall range without indicating the effect of frequency, as indicated in Table 10-10.

Table 10-10. Sound Absorption Coefficients of Various Materials.

| Material                   | Coefficient Absorption Range |
|----------------------------|------------------------------|
| Linoleum on concrete floor | 0.03 to 0.08                 |
| Uphoistered seats          | 0.05                         |
| Ventilating grilles        | 0.15 to 0.50                 |
| Painted brick              | 0.02 to 0.04                 |
| Plaster on brick           | 0.02 to 0.04                 |
| Plaster on lath            | 0.3 to 0.04                  |
| Door                       | 0.3 to 0.05                  |
| Window glass               | 0.3 to 0.05                  |
| Thick carpeting            | 0.15 to 0.5                  |
| Heavy curtains             | 0.2 to 0.8                   |

Reverberation time is a function of room volume and sound absorption. It is directly proportional to the volume of an enclosed space, such as a recording studio or an in-home listening room and inversely proportional to the total amount of sound absorption in that enclosure.

Reverberation time is not the same for all frequencies. The formula for calculating reverberation time, developed by Professor

Wallace C. Sabine in 1895, indicates average reverberation time and does not take frequency into consideration.

$$T_{60} = \frac{0.05v}{S_a}$$

Where Twis the reverberation time in seconds, V is the volume of the room in cubic feet and S<sub>i</sub> is the total equivalent sound absorption in sabins per square foot of surface material. Reverberation time is how long it takes for reverberant sound to decrease by 60 dB, one millionth of the original sound source intensity.

Table 10-11 shows the sound absorption of seats and an audience at 512 Hz. The absorption is indicated in sabins. Table 10-12 indicates the effect of an audience on reverberation time.

Table 10-11. Sound Absorption of Seats and Audience at 512 Hertz.

|                                        | Equivalent<br>Absorption<br>(in sabins) |
|----------------------------------------|-----------------------------------------|
| audience, seated, units per person,    |                                         |
| depending on character of seats, etc.  | 3.0-4.3                                 |
| hairs, metal or wood                   | 0.17                                    |
| ew cushions                            | 1,45-1,90                               |
| heater and auditorium chairs           |                                         |
| Wood veneer seat and back              | 0.25                                    |
| Upholstered in leatherette             | 1.6                                     |
| Heavily uphoistered in plush or mohair | 2.6-3.0                                 |
| Vood pews                              | 0.4                                     |

Table 10-12. Effect of an Audience on Reverberation Time

| Audience<br>(number present) | Absorption<br>(sabins) | Reverberation Time<br>(seconds) |
|------------------------------|------------------------|---------------------------------|
| 0                            | 1.201                  | 7.3                             |
| 200                          | 2,011                  | 4.3                             |
| 400                          | 2,821                  | 3.1                             |
| 600                          | 3,631                  | 2.4                             |
| 800                          | 4,441                  | 2.0                             |

It takes time for sounds to reach a reflecting surface and then the ears of listeners. Table 10-13 shows the approximate time in seconds for reverberant sound to be heard.

Table 10-13. Reverberation Time

| Total Distance | Distance from Ear | Approximate Time |
|----------------|-------------------|------------------|
| Traveled       | to Barrier        | Required         |
| (feet)         | (feet)            | (seconds)        |
| 11.2           | 5.6               | 0.01             |
| 22.4           | 11.2              | 0.02             |
| 33.6           | 16.8              | 0.03             |
| 44.8           | 22.4              | 0.04             |
| 56.0           | 28.0              | 0.05             |
| 63.2           | 31.6              | 0.06             |
| 78.4           | 39.2              | 0.07             |
| 89.6           | 44.8              | 0.08             |
| 100.8          | 50.4              | 0.09             |
| 112.0          | 56.0              | 0.09             |
| 224.0          | 112.0             | 0.2              |
| 336.0          | 168.0             | 0.2              |
| 448.0          | 224.0             | 0.4              |
| 560.0          | 280.0             | 0.5              |
| 632.0          | 316.0             | 0.5              |
| 784.0          | 392.0             | 0.6              |
| 896.0          | 448.0             |                  |
| 1008.0         | 504.0             | 0.8              |
| 1120.0         |                   | 0.9              |
| 1120.0         | 560.0             | 1.0              |



## Chapter 11 Recording

## PLAYBACK EQUALIZATION FOR RECORDING TAPES

The point at which treble boost begins is referred to as a time constant. Cr02 and cobalt-treated ferric tapes have a time constant of 70 microseconds. Ferric oxide tapes have a 120-microsecond time constant. See Table 11-1.

## Table 11-1. Time Constants of Magnetic Tapes and Their Equalization

#### (Time Constants) in Microseconds

| Formulation                          | Bias   | Equalization |
|--------------------------------------|--------|--------------|
| Ferric Oxide (FeO <sub>2</sub> )     | normal | 120          |
| Chromium Dioxide (CrO <sub>2</sub> ) | high   | 70           |
| Beridox (Fuji)                       | high   | 70           |
| Ferric Oxide/Cobalt                  | high   | 70           |
| Ferrichrome (FeCr)                   | normal | 70           |
| Pure Metal                           | híah   | 70           |

## TREBLE BOOST

159,154.9431 divided by the time constant in microseconds supplies the treble boost frequency. See Table 11-2.

## Table 11-2. Time Constants of Magnetic Tape vs Starting Point of Treble Boost

| Time Constant | Treble Boost Frequency (Hz |
|---------------|----------------------------|
| 10            | 15.915.4943                |
| 15            | 10,610,3295                |
| 20            | 7.957.7471                 |

| Time Constant | Treble Boost Frequency (Hz) |
|---------------|-----------------------------|
| 25            | 8,366.1977                  |
| 30            | 5,305.1467                  |
| 35            | 4,547.284                   |
| 40            | 3,978.8735                  |
| 45            | 3,536.7765                  |
| 50            | 3,183.0988                  |
| 55            | 2,893.7262                  |
| 60            | 2,652.5823                  |
| 65            | 2,448.5375                  |
| 70            | 2,273.462                   |
| 75            | 2,122.0659                  |
| 80            | 1,989.4367                  |
| 85            | 1,872.411                   |
| 90            | 1,768.3882                  |
| 95            | 1,675.3151                  |
| 100           | 1,591.5494                  |

## OPERATING TIME OF MAGNETIC TAPE

The amount of time required by a tape for recording or playback can be calculated by:

$$T ext{ (seconds)} = \frac{\text{tape length (inches)}}{\text{operating speed (inches per second)}}$$

## □Example:

What is the operating time of a single track tape that is 150 feet long, running at 15 ips (inches per second)

Convert 150 feet to inches by multiplying by 12, so  $150 \times 12 = 1800$  inches.

$$T = \frac{1800}{15} = 120 \text{ seconds} = 2 \text{ minutes}$$

For two tracks, forward and reverse, operating time would be doubled or 4 minutes. See Table 11-3.

Table 11-3. Tape—Recording or Playback Time.

| NO. OF<br>FEET | NO. OF<br>TRACKS | 15 (IPS)<br>(38 cm/sec.)v | 7½ (IPS)<br>(19 cm/sec.) | SPEED<br>3% (IPS)<br>(9.5 cm/sec) | 1% (IPS)<br>(4.75 cm/sec.)                           | 15/16 (IPS)<br>(2.375 cm/sec.) |
|----------------|------------------|---------------------------|--------------------------|-----------------------------------|------------------------------------------------------|--------------------------------|
| 4800           |                  |                           | 4 hrs. 16 min.           | 8 hrs. 32 min.                    | 8 hrs. 32 mm.<br>17 hrs. 4 min.<br>34 hrs. 8 min.    | 34 hrs. 8 min.                 |
| 3600           |                  | 1 hr. 36 min.             |                          | 6 hrs. 24 min.                    | 6 hrs. 24 min.<br>12 hrs. 48 min.<br>25 hrs. 36 min. | 25 hrs, 36 min.                |

| NO. OF | NO. OF<br>TRACKS |                           |                          | SPEED                    |                            |                            |
|--------|------------------|---------------------------|--------------------------|--------------------------|----------------------------|----------------------------|
| PEET   |                  | 15 (IPS)<br>(38 cm/sec.)y | 7½ (IPS)<br>(19 cm/sec.) | 3% (IPS)<br>(9.5 cm/sec) | 1% (IPS)<br>(4.75 cm/sec.) | 15/16 (IPS<br>(2.375 cm/se |
| 2500   | 1 Track          | 33 min.                   | 1 hr. 6 min.             | 2 hrs. 13 min.           | 4 hrs. 26 min.             | 8 hrs. 52 mir              |
|        | 2 Tracks         | 1 hr. 6 min.              | 2 hrs. 12 min.           | 4 hrs. 26 min.           | 8 hrs. 52 min.             | 17 hrs. 44 mir             |
|        | 4 Tracks         | 2 hrs. 12 min.            | 4 hrs. 24 min.           | 8 hrs. 52 min.           | 17 hrs. 44 min.            | 35 hrs. 28 mir             |
| 2400   | 1 Track          | 32 min,                   | 1 hr. 4 min.             | 2 hrs. 8 min.            | 4 hrs. 16 min.             | 8 hrs. 32 mir              |
|        | 2 Tracks         | 1 hr. 4 min.              | 2 hrs. 8 min.            | 4 hrs. 16 min.           | 8 hrs. 32 min.             | 17 hrs. 4 mir              |
|        | 4 Tracks         | 2 hrs. 8 min.             | 4 hrs. 16 min.           | 8 hrs. 32 min.           | 17 hrs. 4 min.             | 34 hrs. 8 mir              |
| 1800   | 1 Track          | 24 min.                   | 48 min.                  | 1 hr. 36 min.            | 3 hrs. 12 min.             | 6 hrs. 24 mir              |
|        | 2 Tracks         | 48 min.                   | 1 hr. 36 min.            | 3 hrs. 12 min.           | 6 hrs. 24 min.             | 12 hrs. 48 mir             |
|        | 4 Tracks         | 1 hr. 36 min.             | 3 hrs. 12 min.           | 6 hrs. 24 min.           | 12 hrs. 48 min.            | 25 hrs. 36 mir             |
| 1200   | 1 Track          | 16 min.                   | 32 min.                  | 1 hr. 4 min.             | 2 hrs. 8 min.              | 4 hrs. 16 mir              |
|        | 2 Tracks         | 32 min.                   | 1 hr. 4 min.             | 2 hrs. 8 min.            | 4 hrs. 16 min.             | 8 hrs. 32 mir              |
|        | 4 Tracks         | 1 hr. 4 min.              | 2 hrs. 8 min.            | 4 hrs. 16 min.           | 8 hrs. 32 min.             | 17 hrs. 4 mir              |
| 900    | 1 Track          | 12 min.                   | 24 min.                  | 48 min.                  | 1 hr. 36 min.              | 3 hrs. 12 mir              |
|        | 2 Tracks         | 24 min.                   | 48 min.                  | 1 hr. 36 min.            | 3 hrs. 12 min.             | 6 hrs. 24 mir              |
|        | 4 Tracks         | 48 min.                   | 1 hr. 36 min.            | 3 hrs. 12 min.           | 6 hrs. 24 min.             | 12 hrs. 48 mir             |
| 600    | 1 Track          | 8 min.                    | 16 min.                  | 32 min.                  | 1 hr. 4 min.               | 2 hrs. 8 mir               |
|        | 2 Tracks         | 16 min.                   | 32 min.                  | 1 hr. 4 min.             | 2 hrs. 8 min.              | 4 hrs. 16 mir              |
|        | 4 Tracks         | 32 min.                   | 1 hr. 4 min.             | 2 hrs. 8 min.            | 4 hrs. 16 min.             | 8 hrs. 32 mir              |
| 300    | 1 Track          | 4 min.                    | 8 min.                   | 16 min.                  | 32 min.                    | 1 hr. 4 min                |
|        | 2 Tracks         | 8 min.                    | 16 min.                  | 32 min.                  | 1 hr. 4 min.               | 2 hrs. 48 min              |
|        | 4 Tracks         | 16 min.                   | 32 min.                  | 1 hr. 4 min.             | 2 hrs. 8 min.              | 4 hrs. 16 min              |
| 225    | 1 Track          | 3 min.                    | 6 min.                   | 12 min.                  | 24 min.                    | 48 min.                    |
|        | 2 Tracks         | 6 min.                    | 12 min.                  | 24 min.                  | 48 min.                    | 1 hr. 36 min               |
|        | 4 Tracks         | 12 min.                   | 24 min.                  | 48 min.                  | 1 hr. 36 min.              | 3 hrs. 12 min              |
| 150    | 1 Track          | 2 min.                    | 4 min.                   | 8 min.                   | 16 min.                    | 32 min.                    |
|        | 2 Tracks         | 4 min.                    | 8 min.                   | 16 min.                  | 32 min.                    | 1 hr. 4 min                |
|        | 4 Tracks         | 8 min.                    | 16 min.                  | 32 min.                  | 1 hr. 4 min.               | 2 hrs. 8 min               |

## RECORDING AND PLAYBACK SPEEDS

While recording and playback speeds are commonly given in ips (inches per second), these are sometimes supplied in cm/sec (centimeters per second). Table 11-4 shows the relationship between ips and cm/sec.

## Table 11-4. Tape Speeds in ips and cm/sec

| cm/sec | 30   | 15   | 7-½   | 3-¾   | 1-%    | 15/16   |
|--------|------|------|-------|-------|--------|---------|
|        | 76.2 | 38.1 | 19.05 | 9.525 | 4.7625 | 2.38125 |
|        |      |      |       |       |        |         |

## TAPE LENGTHS IN FEET AND METERS

Tape lengths are now being supplied in feet and meters. Table 11-5 supplies data on various lengths of tape in the English and metric systems.

Table 11-5. Tape lengths in Feet and Meters

| Tape Length,<br>Feet | Tape Length,<br>Meters |
|----------------------|------------------------|
| 100                  | 30.48                  |
| 150                  | 45.72                  |
| 200                  | 60.96                  |
| 210                  | 64.008                 |
| 300                  | 91.44                  |
| 400                  | 121.92                 |
| 420                  | 128,016                |
| 450                  | 137.16                 |
| 500                  | 152.40                 |
| 600                  | 182.88                 |
| 700                  | 213.36                 |
| 800                  | 243.84                 |
| 900                  | 274.32                 |
| 1000                 | 304.8                  |
| 1200                 | 365.76                 |
| 1500                 |                        |
|                      | 457.20                 |
| 1800                 | 548.64                 |
| 2000                 | 609.60                 |
| 2400                 | 731.52                 |
| 3000                 | 914,40                 |
| 3600                 | 1097.28                |

## **OPEN REEL SIZES**

The diameters for the reels used in open reel decks are now measured in inches and centimeters. Table 11-6 supplies diameters of the most commonly used reels in both types of measurements.

Table 11-6. Open Reel Diameters in Inches and Centimeters.

| Inches | Centimeters | Actual Diameter (cm) |
|--------|-------------|----------------------|
| 3      | 8           | 7.62                 |
| 4      | 10          | 10.16                |
| 5      | 13          | 12.70                |
| 5-34   | 15          | 14.605               |
| 7      | 18          | 17.78                |
| 10-1/2 | 26          | 26.67                |

The center column shows the diameters as specified. The column at the right shows the actual diameters.

## Chapter 12 Television

## TV CHANNELS AND FREQUENCIES

Table 12-1 supplies the channel width, and the frequencies in megahertz (MHz) of the picture and sound carriers of TV channels. The table cover VHF channels 2 to 13 (channel 1 has not been assigned) and UHF channels 14 to 83.

The bandwidth of each channel is 6 megahertz regardless of frequency. In each instance, the video carrier is 1.25 megahertz above the lower edge of the band while the sound carrier is 0.25 megahertz lower than the high-frequency end of the channel. The separation between carriers, video and sound, is 4.5 megahertz. Worldwide standards are shown in Fig. 12-2.

Picture carrier = sound carrier -4.5 MHz Picture carrier = low end of TV channel + 1.25 MHz Lower video sideband = 0.75 MHz Sound carrier = upper end of TV channel-0.25 MHz Sound carrier -picture carrier = 4.5 MHz

## □Example:

What is the sound carrier frequency of channel 16?

Locate channel 16 in the left-hand column. Move to the right and under the heading of sound carrier find 487.75 MHz.

Table 12-1. TV Channels and Frequencies

(Channel width is 6 MHz; video carrier is 4.5 MHz below sound carrier.)

| Channel         | Frequency  | Video         | Sound         |
|-----------------|------------|---------------|---------------|
| No.             | Band (MHz) | Carrier (MHz) | Carrier (MHz) |
| (1 not assigned | )          |               |               |
| 2               | 54-60      | 55.25         | 59.75         |
| 3               | 60-66      | 61.25         | 65.75         |
| 4               | 66-72      | 67.25         | 71.75         |
| 5               | 76-82      | 77.25         | 81.75         |
| 6               | 82-88      | 83.25         | 87.75         |
| 7               | 174-180    | 175.25        | 179.75        |
| 8               | 180-186    | 181.25        | 185.75        |
| 9               | 186-192    | 187.25        | 191.75        |
| 10              | 192-198    | 193.25        | 197.75        |
| 11              | 198-204    | 199.25        | 203.75        |
| 12              | 204-210    | 205.25        | 209.75        |
| 13              | 210-216    | 211.25        | 215.75        |
| 14              | 470-476    | 471.25        | 475.75        |
| 15              | 476-482    | 477.25        | 481.75        |
| 16              | 482-488    | 483.25        | 487.75        |
| 17              | 488-494    | 489.25        | 493.75        |
| 18              | 494:500    | 495.25        | 499.75        |
| 19              | 500-506    | 501.25        | 505.75        |
| 20              | 506-512    | 507.25        | 511.75        |
| 21              | 512-518    | 513.25        | 517.75        |
| 22              | 518-524    | 519.25        | 523.75        |
| 23              | 524-530    | 525.25        | 529.75        |
| 24              | 530-536    | 531.25        | 535.75        |
| 25              | 536-542    | 537.25        | 541.75        |
| 26              | 542-548    | 543.25        | 547.75        |
| 27              | 548-554    | 549.25        | 553.75        |
| 28              | 554-560    | 555.25        | 559.75        |
| 29              | 560-566    | 561.25        | 565.75        |
| 30              | 566-572    | 567.25        | 571.75        |
| 31              | 572-578    | 573.25        | 577.75        |
| 32              | 578-584    | 579.25        | 583.75        |
| 33              | 584-590    | 585.25        | 589.75        |
| 34              | 590-596    | 591.25        | 595.75        |
| 35              | 596-602    | 597.25        | 601.75        |

Table 12-1. TV Channels and Frequencies (cont'd)

| Channel | E                       | nois and Frequencies (CO |               |
|---------|-------------------------|--------------------------|---------------|
| No.     | Frequency<br>Band (MHz) | Video                    | Sound         |
| 740.    | bana (MHZ)              | Carrier (MHz)            | Carrier (MHz) |
| 36      | 602-608                 | 603.25                   | 607.75        |
| 37      | 608-614                 | 609.25                   | 613.75        |
| 38      | 614-620                 | 615.25                   | 619.75        |
| 39      | 620-626                 | 621.25                   | 625.75        |
| 40      | 626-632                 | 627.25                   | 631.75        |
| 41      | 632-638                 | 633.25                   | 637.75        |
| 42      | 638-644                 | 639.25                   | 643.75        |
| 43      | 644-650                 | 645.25                   | 649.75        |
| 44      | 650-656                 | 651.25                   | 655.75        |
| 45      | 656-662                 | 657.25                   | 661.75        |
| 46      | 662-668                 | 663.25                   | 667.75        |
| 47      | 668-674                 | 669.25                   | 673.75        |
| 48      | 674-680                 | 675.25                   | 679.75        |
| 49      | 680-686                 | 681.25                   | 685.75        |
| 50      | 686-692                 | 687.25                   | 691.75        |
| 51      | 692-698                 | 693.25                   | 697.75        |
| 52      | 698-704                 | 699.25                   | 703.75        |
| 53      | 704-710                 | 705.25                   | 709.75        |
| 54      | 710-716                 | 711.25                   | 715.75        |
| 55      | 716-722                 | 717.25                   | 721.75        |
| 56      | 722-728                 | 723.25                   | 727.75        |
| 57      | 728-734                 | 729.25                   | 733.75        |
| 58      | 734-740                 | 735.25                   | 739.75        |
| 59      | 740-746                 | 741.25                   | 745.75        |
| 60      | 746-752                 | 747.25                   | 751.75        |
| 61      | 752-758                 | 753.25                   | 757.75        |
| 62      | 758-764                 | 759.25                   | 763.75        |
| 63      | 764-770                 | 765.25                   | 769.75        |
| 64      | 770-776                 | 771.25                   | 775.75        |
| 65      | 776-782                 | 777.25                   | 781.75        |
| 66      | 782-788                 | 783.25                   | 787.75        |
| 67      | 788-794                 | 789.25                   | 793.75        |
| 68      | 794-800                 | 795.25                   | 799.75        |
| 69      | 800-806                 | 801.25                   | 805.75        |
| 70      | 806-812                 | 807.25                   | 811.75        |

Table 12-1. TV Channels and Frequencies (cont'd)

| Channel | Frequency  | Video         | Sound         |
|---------|------------|---------------|---------------|
| Na.     | Band (MHz) | Carrier (MHz) | Carrier (MHz) |
| 71      | 812-818    | 813.25        | 817.75        |
| 72      | 818-824    | 819.25        | 823.75        |
| 73      | 824-830    | 825.25        | 829.75        |
| 74      | 830-836    | 831.25        | 835.75        |
| 75      | 836-842    | 837.25        | 841.75        |
| 76      | 842-848    | 843.25        | 847.75        |
| 77      | 848-854    | 849.25        | 853.75        |
| 78      | 854-860    | 855.25        | 859.75        |
| 79      | 860-866    | 861.25        | 865.75        |
| 80      | 866-872    | 867.25        | 871.75        |
| 81      | 872-878    | 873.25        | 877.75        |
| 82      | 878-884    | 879.25        | 883.75        |
| 83      | 884-890    | 885.25        | 889.75        |
|         |            |               |               |

| Toble 12.2                                                                                      | Worldwide Tel    | aulalan Ptanda. |                |          |  |
|-------------------------------------------------------------------------------------------------|------------------|-----------------|----------------|----------|--|
| Table 12-2. Worldwide Television Standards  COUNTRY  AECHANISTAN  COUNTRY  AECHANISTAN  COUNTRY |                  |                 |                |          |  |
| COUNTRY                                                                                         | WES MELDS        | COLOR           | TAGE A         | ELE      |  |
|                                                                                                 | 1 500            | 1 %             | 1 3            | ۲ ۲      |  |
| AFGHANISTAN<br>ALBANIA                                                                          | 625/50<br>625/50 | PAL<br>SECAM    | 220            | 50<br>50 |  |
| ALGERIA                                                                                         | 625/50           | PAL             | 220<br>127-220 | 50       |  |
| ANDORRA                                                                                         | 625/50           | 1 . ~ _         | 220            | 50       |  |
| ANGOLA                                                                                          | 625/50           | 1               | 220            | 50       |  |
| ARGENTINA                                                                                       | 625/50           | PAL             | 220            | 50       |  |
| AUSTRALIA<br>AUSTRIA                                                                            | 625/50           | PAL             | 240            | 50       |  |
| AZORES                                                                                          | 625/50<br>525/60 | PAL<br>PAL      | 220            | 50<br>50 |  |
| BAHAMAS                                                                                         | 525/60           | NTSC            | 220<br>120     | 60       |  |
| BAHRAIN                                                                                         | 625/50           | PAL             | 220            | 50       |  |
| BANGLADESH                                                                                      | 625/50           | PAL             | ==0            | 1        |  |
| BARBADOS                                                                                        | 625/50           | NTSC            | 120            | 50       |  |
| BELGIUM<br>BERMUDA                                                                              | 625/50           | PAL             | 127-220        | 50       |  |
| BOLIVIA                                                                                         | 525/60<br>625/50 | NTSC<br>PAL     | 120<br>115-230 | 60<br>50 |  |
| BRAZIL                                                                                          | 525/60           | PALM            | 220            | 60       |  |
| BULGARIA                                                                                        | 625/50           | SECAM           | 220            | 50       |  |
| BURUNDI                                                                                         | 625/50           |                 | 220            | 50       |  |
| CAMEROON<br>CANADA                                                                              | 625/50           |                 | 127-220        | 50       |  |
| CANADA<br>CANARY IS.                                                                            | 525/60<br>625/50 | NTSC            | 110-240        | 60<br>50 |  |
| CENTRAL AFRICAN REP.                                                                            | 625/50           | PAL             | 127<br>220     | 50       |  |
| CEYLON                                                                                          | 625/50           |                 | 230            | 50       |  |
| CHAD                                                                                            | 625/50           |                 | 220            | 50       |  |
| CHILE                                                                                           | 525/60           | NTSC            | 220            | 50       |  |
| CHINA (PEOPLES REP.)<br>COLOMBIA                                                                | 625/50           | PAL             | 220            | 50       |  |
| CONGO (PEOPLES REP.)                                                                            | 525/60<br>625/50 | NTSC<br>SECAM   | 150-240        | 60<br>50 |  |
| COSTA RICA                                                                                      | 525/60           | NTSC            | 220<br>110     | 60       |  |
| CUBA                                                                                            | 525/60           | NTSC            | 120            | 60       |  |
| CURACAO                                                                                         | 525/60           | NTSC            | 120            | 60       |  |
| CYPRUS<br>CZECHOSLOVAKIA                                                                        | 625/50           | PAL             | 220            | 50       |  |
| DAHOMEY                                                                                         | 625/50<br>625/50 | SECAM           | 220            | 50<br>50 |  |
| DENMARK                                                                                         | 625/50           | PAL             | 220<br>220     | 50       |  |
| DOMINICAN REP.                                                                                  | 525/60           | NTSC            | 110            | 60       |  |
| ECUADOR                                                                                         | 525/60           | NTSC            | 120            | 60       |  |
| EGYPT<br>EL SALVADOR                                                                            | 625/50           | SECAM           | 220            | 50       |  |
| ETHIOPIA                                                                                        | 525/60<br>625/50 | NTSC            | 110            | 60       |  |
| FIJI                                                                                            | 625/50           | - 1             | 127            | 50<br>50 |  |
| FINLAND                                                                                         | 625/50           | PAL             | 240<br>220     | 50       |  |
| FRANCE                                                                                          | 625/50           | SECAM           | 115-230        | 50       |  |
| GABON<br>GAMBIA                                                                                 | 625/50           | SECAM           | 127-220        | 50       |  |
| GERMANY (DEM. REP.)                                                                             | 625/50           | 050111          |                |          |  |
| GERMANY (FED. REP.)                                                                             | 625/50<br>625/50 | SECAM<br>PAL    | 220            | 50<br>50 |  |
| GHANA                                                                                           | 625/50           | FAL             | 230            | 50       |  |
| GIBRALTAR                                                                                       | 625/50           |                 | 230            | 50       |  |
| GREAT BRITAIN                                                                                   | 625/50           | PAL             | 127-220        | 50       |  |
|                                                                                                 |                  |                 |                |          |  |

| \                                  | Wes Pills                  | 1 4               | THEIR THEIR           |                   |
|------------------------------------|----------------------------|-------------------|-----------------------|-------------------|
| COUNTRY                            | SARIES                     | CHOS              | TEFE "                | CY (At)           |
| GREENLAND                          | 525/60                     |                   | 220                   | 50                |
| GUAM                               | 525/60                     | NTSC              | 110                   | 60                |
| GUATEMALA                          | 525/60                     |                   | 110-220               | 60                |
| GUINEA                             | 625/50                     | SECAM             | 127-220               | 50                |
| GUYANA                             | 625/50                     |                   | 127                   | 50                |
| HAITI                              | 625/50                     | SECAM             | 115-220               | 50                |
| HAWAII                             | 525/60                     | NTSC              | 117                   | 60                |
| HONDURAS                           | 525/60                     | NTSC              | 110-220               | 60                |
| HONG KONG                          | 625/50                     | PAL               | 220                   | 50                |
| HUNGARY                            | 625/50                     | SECAM             | 220                   | 50                |
| ICELAND                            | 625/50                     | PAL               | 220                   | 50                |
| INDIA                              | 625/50                     | PAL               | 230                   | 50                |
| INDONESIA                          | 625/50                     |                   | 110                   | 50                |
| IRAN                               | 625/50                     | SECAM             | 220                   | 50                |
| IRAQ                               | 625/50                     | SECAM             | 220                   | 50                |
| IRELAND<br>ISRAEL<br>ITALY         | 625/50<br>625/50           | PAL<br>PAL<br>PAL | 220<br>230<br>127-220 | 50<br>50<br>50    |
| IVORY COAST<br>JAMAICA             | 625/50<br>625/50<br>625/50 | SECAM<br>PAL      | 220<br>110            | 50<br>50.60       |
| JAPAN<br>JORDAN                    | 525/60<br>625/50           | NTSC<br>PAL       | 100-200               | 50,60             |
| KENYA<br>KOREA (NORTH)             | 625/50<br>625/50<br>625/50 | PAL               | 240                   | 50                |
| KOREA (SOUTH)                      | 525/60                     | NTSC              | 100                   | 60                |
|                                    | 625/50                     | PAL               | 240                   | 50                |
| LEBANON                            | 625/50                     | SECAM             | 110-190               | 50                |
| LIBERIA                            | 625/50                     | PAL               | 120                   | 60                |
| LIBYA                              | 625/50                     | SECAM             | 120                   | 50                |
| LUXEMBOURG                         | 625/50                     | SECAM             | 120-208               | 50                |
| MALAGASY REP.                      | 625/50                     |                   | 127-220               | 50                |
| MALAWI                             | 625/50                     |                   | 220                   | 50                |
| MALAYSI                            | 625/50                     | PA                | 240                   | 50                |
| MALI                               | 625/50                     |                   | 125                   | 50                |
| MALTA                              | 625/50                     | SECAM             | 240                   | 50                |
| MARTINIQUE                         | 625/50                     |                   | 125                   | 50                |
| MAURENTANIA<br>MAURITIUS<br>MEXICO | 625/50<br>625/50<br>525/60 | SECAM<br>NTSC     | 220<br>220<br>127-220 | 50<br>50<br>50.60 |
| MONACO<br>MONGOLIA                 | 625/50<br>625/50           | SECAM             | 125                   | 50,00             |
| MOROCCO<br>MOZAMBIQUE              | 625/50<br>625/50<br>625/50 | SECAM<br>PAL      | 115<br>220            | 50<br>50          |
| NETHERLANDS<br>NETHERLANDS         | 625/50                     | PAL               | 220                   | 50                |
| ANTILLES                           | 525/60                     | NTSC              | 120-220               | 50,60             |
| NEW CALEDONIA                      | 625/50                     | SECAM             | 220                   | 50                |
| NEW ZEALAND                        | 625/50                     | PAL               | 230                   | 50                |
| NICARAGUA                          | 525/60                     | NTSC              | 117                   | 60                |

| Table 12-2 (cont'd).  **Registration**  COUNTRY  **Registration**  COUNTRY  **Registration**  COUNTRY  **Registration**  COUNTRY  **Registration**  **Registration**  COUNTRY  **Registration**  **Registration**  COUNTRY  **Registration**  **Registration**  **Registration**  COUNTRY  **Registration**  |                  |                |            |          |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------|------------|----------|--|
| COUNTRY CIGORO TO THE PROPERTY OF THE PROPERTY |                  |                |            |          |  |
| COUNTRY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S. I             | COLOR          | 'Aca       | WCL.     |  |
| COUNTRY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (W) \            | 7              | "m         | B.       |  |
| NIGER (REP.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 625/50           | 1              | 220        | 50       |  |
| NIGERI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 625/50           | PAL            | 220        | 50       |  |
| NORWAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 625/50           | PAL            | 230        | 50       |  |
| OMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 625/50           | PAL            | 220        | 50       |  |
| PAKISTAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 625/50           | PAL            | 220        | 50       |  |
| PANAMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 525/60           | NTSC           | 110        | 60       |  |
| PARAGUAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 625/50           | PAL            | 220        | 50       |  |
| PERU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 525/60           | NTSC           | 220        | 60       |  |
| PHILIPPINES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 525/60           | NTSC           | 115        | 60       |  |
| POLAND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 625/50           | SECAM          | 220        | 50       |  |
| PORTUGAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 625/50           | 1              | 110-220    | 50       |  |
| PUERTO RICO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 525/60           | NTSC           | 120        | 60       |  |
| RHODESIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 625/50           | PAL            | 220        | 50       |  |
| RUMANIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 625/50           | 1              | 220        | 50       |  |
| RWANDA<br>SAMOA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 625/50           |                | 220        | 50       |  |
| SAUDI ARABIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 525/60           | NTSC           | 120        | 60       |  |
| SENEGAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 625/50<br>625/50 | SECAM<br>SECAM | 120-230    | 50,60    |  |
| SIERRA LEONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 625/50           | PAL            | 125<br>230 | 50<br>50 |  |
| SINGAPORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 625/50           | PAL            | 220        | 50       |  |
| SOMALIA (REP.OF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 625/50           | 174            | 220        | 50       |  |
| SOUTH AFRICA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 625/50           | PAL            | 220        | 50       |  |
| SPAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 625/50           | PAL            | 127-220    | 50       |  |
| SPANISH SAHARA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 625/50           |                |            |          |  |
| ST. KITTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 525/60           | NTSC           | 220        | 60       |  |
| SUDAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 625/50           | PAL            | 220        | 50       |  |
| SURINAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 525/60           | NTSC           | 115-127    | 50,60    |  |
| SWAZILAND<br>SWEDEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 625/50<br>625/50 | PAL            |            |          |  |
| SWITZERLAND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 625/50           | PAL<br>PAL     | 220<br>220 | 50       |  |
| SYRIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 625/50           | SECAM          | 115-220    | 50<br>50 |  |
| TAHITI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 625/50           | SECAM          | 115-220    | 50       |  |
| TAIWAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 525/60           | NTSC           | 100        | 60       |  |
| TANZANIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 625/50           | PAL            | 230        | 50       |  |
| THAILAND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 625/50           | PAL            | 220        | 50       |  |
| TOGOLESE REP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 625/50           |                | 127-220    | 50       |  |
| TRINIDAD & TOBAGO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 525/60           | NTSC           | 117        | 60       |  |
| TUNSIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 625/50           | SECAM          | 117-220    | 50       |  |
| TURKEY<br>UGANDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 625/50           | PAL            | 110-220    | 50       |  |
| UPPER VOLTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 625/50           | PAL            | 220        | 50       |  |
| URUGUAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 625/50<br>625/50 | PAL            | 220<br>220 | 50       |  |
| U.S.A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 525/60           | NTSC           | 110        | 50<br>60 |  |
| U.S.S.R.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 625/50           | SECAM          | 220        | 50       |  |
| VENEZUELA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 525/60           | NTSC           | 110-220    | 60       |  |
| VIETNAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 525/60           | 50             | 120        | 50       |  |
| VIRGIN IS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 525/60           | NTSC           | 115        | 60       |  |
| YEMEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 625/50           |                | 220        | 50       |  |
| YUGOSLAVIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 625/50           | PAL            | 220        | 50       |  |
| ZAIRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 625/50           | SECAM          |            |          |  |
| ZAMBIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 625/50           | - 1            | 230        | 50       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                |            |          |  |



# Chapter 13 Antennas

## **VELOCITY FACTOR**

The velocity of a wave along a conductor, such as a transmission line, is not the same as the velocity of that wave in free space. The ratio of the two (actual velocity vs velocity in space) is known as the velocity factor. Obviously, velocity factor must always be lead to that 1, and, in typical lines varies from 0.6 to 0.97. See Table 13-1.

Table 13-1. Velocity Factors of Transmission Lines

| Type of Line                                                                                                                                                                                                                            | Velocity factor (V)                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| Two-wire open line (wire with air dielectric) Parallel tubing (air dielectric) Coaxial line (air dielectric) Coaxial line (solid plastic dielectric) Two-wire line (wire with plastic dielectric) Twisted-pari line (rubber dielectric) | 0.975<br>0.95<br>0.85<br>0.66<br>0.68-0.82<br>0.56-0.65 |

Table 13-2. Antenna Types

| Type of Antenna                    | Description                                                                                                                                                                         | Application                                                                                                                                                                     |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PARABOLIC<br>REFLECTOR<br>ANTENNAS | A radiator placed at the tocus of a parabola which torms a reflecting surface. Variations in the shape of the parabola provide changes in the shape of the beam produced.           | Radar.                                                                                                                                                                          |
| COSECANT-<br>SQUARED<br>REFLECTOR  | A reflector shaped to produce a beam pattern in which signal strength is proportional to the square of the cosecant of the angle between the horizontal and the line to the target. | Surface search by<br>airborne rader sets                                                                                                                                        |
| HORN<br>ANTENNAS                   | Consists of a waveguide with<br>its mouth thared into a horn<br>or funnel-like shape. The<br>horn usually radiates into a<br>retlector to provide the<br>required beam shape.       | Rader Applications.                                                                                                                                                             |
| END-FED<br>HERTZ<br>(Zepp)         | Half wavelength voltage-ted<br>radiator ted at one end with<br>tuned, open-wire teeders.<br>See Fig. 13-1.                                                                          | For receiving and trans<br>mitting in the 1.6- to 30-MHz<br>range. Most useful for multi-<br>Land operation where space<br>is limited. Use for tixed-<br>station installations. |



Fig. 13-1. Methods of feeding an end-fed half-wave Hertz antenna.

Table 13-2. Antenna Types—(cont'd)

| Type of Antenna                                                     | Description                                                                                                                                                                                                                                                                                                                                                                                                       | Application                                                                                                                                       |
|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| CENTER-<br>FED<br>HERTZ<br>(tuned doublet<br>or center-fed<br>Zepp) | A center-ted, half-wave<br>doublet usually employing<br>spaced teeders. Current ted<br>on fundamental and voltage<br>ted on all even harmonics.<br>See Fig. 13-2.                                                                                                                                                                                                                                                 | For receiving and transmitting in the 1.6- to 30-MHz range. Can be used on any trequency it the system as a whole can be tuned to that trequency. |
| FUCHS<br>ANTENNA                                                    | Long-wire, voltage-ted radiator an even number of quarter waves long. One end of radiator brought directly to the transmitter or tuning unit without using a transmission line.                                                                                                                                                                                                                                   | For transmitting and receiving on any trequency where simplicity and convenience are desired.                                                     |
| CORNER<br>REFLECTOR                                                 | A helf-wave radiator with<br>two large metal sheets or<br>screws arranged so their<br>surfaces meet at an angle<br>whose apex iles behind the<br>radiator.                                                                                                                                                                                                                                                        | Used in the VHF and UHF ranges to provide directivity in the plane which bisects the angle formed by the retlector.                               |
| MARCONI                                                             | A vertical radiator approximately one-quarter wavelength long of porating frequency. One end is grounded or worked against ground. May be ted at or mear base with low-impedance line. Electrical length may be increased by using loading coil in series with base or near center of radiator or by using loading coil in series appointly leading at the loo. The length. L. in text can be computed by £. 4.24 | Widely used for medium- and low-frequency receiving and low-frequency receiving and ramamiliting where vertical polarization is desirable.        |

Table 13-2. Antenna Types—(cont'd)

| Type of Antenna    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Application                                                                                                                                                                                                                                   |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | If is in megathert. L is the overall length. In feet, from the top of the antenna to the top of the antenna to the top of the antenna to the point where it connects to ground or counterpoise. The total power dissipated in and radiated from a Marconi antenna can be calculated by: $P_{i+1} \in (R_i + R_i)$ I is the antenna current measured at the antenna can base. $R_i$ is the radiation resistance and $R_i$ is the national orientation of the control of the calculated power for the calculation of the calcu |                                                                                                                                                                                                                                               |
| PARASITIC<br>ARRAY | Consists of a radiator with a reflector behind and/or one or more directors in front. Produces a unidirectional radiation pattern. May be either vertically or horizontally polarized.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Used to develop high gain in<br>one direction with little or no<br>radiation or pickup in other<br>directions. Used on all<br>frequencies where these<br>characteristics are desired<br>and space is available.                               |
| RHOMBIC<br>ANTENNA | A system consisting of four long-wire radiators arranged in the form of a diamond and fed at one end. If the corner opposite the feed point is open, response is bidirectional in a line running through fhese two corners. If the open end is terminated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Widely used where high gain and directivity is required Can be used over a wide range of frequencies and is particularly useful when each leg is two or more wavelengths long on lowest frequency. Angle of radiation is lowered and vertical |

Table 13-2. Antenna Types—(cont'd)

| Type of Antenna                           | Description                                                                                                                                                                                                                   | Application                                                                                                                                                                                                                 |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                           | with the proper resistance, response is unidirectional in the direction of the terminated end. Gain may vary from 20 to 40 times that of a dipole, depending on the number of wavelengths in each leg.                        | directivity narrowed by<br>Increasing length of legs and/<br>or increasing operating<br>frequency                                                                                                                           |
| VERTICAL J                                | A one-half wavelength vertical radiator fed at the bottom through a quarter-wave matching stub. It is omnidirectional, produces vertical polarization, and can be fed conveniently from a wide range of feed-line impedances. | Practical for use at frequencies above about 7 MHz. Normally used for fixed frequency applications because of its extreme sensitivity to frequency changes Efficiency falls off as frequency is raised                      |
| COAXIAL<br>ANTENNA<br>(sleeve<br>antenna) | Vertical radiator one-halt wavelength long. Upper half consists of a relatively thin radiator and the bottom half a large diameter cylinder. Fed at the center from coaxial cable of 70 to 120 ohms.                          | Practical for frequencies above about 7 MHz. Normally used for fixed frequency applications. Changes in frequency require that the antenna burefunded by varying length of the two halves of the radiator. Practical for po |
| GROUND-<br>PLANE<br>ANTENNA               | Omnidirectional quarter-<br>wave vertical radiator<br>mounted above a horizontal<br>reflecting surface. Its Im-<br>pedance is approximately 36<br>ohms or less.                                                               | Practical for producing vertically polarized waves at frequencies above about 7 MHz and frequently used at frequencies as high as 300 MHz.                                                                                  |



Fig. 13-2. Methods of feeding a center-fed half-wave Hertz antenna.

Table 13-2. Antenna Types—(cont'd)

| Type of Antenna          | Description                                                                                                                                                                                                                                                                                                      | Application                                                                                                                                                              |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CROW-<br>FOOT<br>ANTENNA | A low-frequency antenna consisting of comparatively short vertical radiator with a 3-wire V-shaped tlat top and a counterpoise having the same shape and size as the flet top. See Fig. 13-4.                                                                                                                    | Normally used where it is impractical to erect a quarter-wave vertical radiator. Used most frequently for reception and transmission in the 200 to 500 kHz range.        |
| TURNSTILE<br>ANTENNA     | An omnidirectional, horizontally polarized antenna consisting of two half-wave radiators mounted at right angles to each other in the same horizontal plane. They are ted with equal corrents 90 degrees out of phase. Gain is increased by stacking. Dipoles may be simple, folded, or special broadband types. | Normally used for trans<br>mission and reception of FM<br>and felevision broadcast<br>signals.                                                                           |
| SKIN<br>ANTENNAS         | Usually consist of an in-<br>sulated section of the skin of<br>an aircraft. Its radiation<br>pattern varies with<br>frequency, size of the<br>radiating section, and<br>position of the radiator on the<br>aircraft.                                                                                             | Used for VHF and UHF reception and transmission in high-speed aircraft. Often used to replace fixed wire antennas used in the 2 to 2.5 MHz range.                        |
| ILAS<br>ANTENNAS         | Localizer antennas are of several different types. One type consists of two or more square loops. Glide path is usually produced by two stacked antennas. The lower antenna is usually a horizontal loop bisected by a metal screen and supported about 6 feet off the ground.                                   | Used to enable pilots to locate the airport and to land the plane on the desired runway when wealther conditions would prohibit a landing under visual tlight reference. |

Table 13-2. Antenna types—(cont'd)

| Type of Antenna         | Description                                                                                                                                                                              | Application                                                                                                          |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
|                         | The upper antenna is a V-<br>shaped dipole radiator with a<br>parasitic element. Marker<br>beacon antennas may consist<br>of colinear dipoles or arrays.                                 |                                                                                                                      |
| OMNI-<br>RANGE<br>(VOR) | Consists of two pairs of square-loop radiators surrounding a single square-loop radiator.                                                                                                | Use to provide navigation<br>signals for aircraft in all<br>directions from the range<br>station.                    |
| ADCOCK<br>ANTENNA       | Consists of vertical radiators which produce bidirectional vertically polarized radiation.                                                                                               | Used in low-frequency radio ranges and for direction finding.                                                        |
| LOOP<br>ANTENNAS        | A loop of wire consisting of one or more turns arranged in the shape of a square, circle, or other convenient form. It produces a bidirectional pattern along the plane of the loop.     | Normally used for direction-<br>finding applications, par-<br>licularly in ships and air-<br>craft.                  |
| STUB<br>MAST            | A quarter-wave vertical radiator consisting of a metal sheath over a hard-wood supporting mast. Fed with 50 ohm line with the outer conductor connected to a large metal ground surface. | Used for wide band reception and transmission of frequencies above 100 MHz. Normally used in aircraft installations. |



Fig. 13-3. Current and voltage distribution of a Marconi antenna.



Fig. 13-4. Arrangement of crow-foot antenna.

Table 13-2. Antenna Types—(cont'd)

| Type of Antenna                                      | Description                                                                                                                                                                                                                                                                                                                                                                                                            | Application                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HALF<br>RHOMBIC<br>(inverted V<br>or tilted<br>wire) | A two-wire antenna with the legs in a vertical plane and in the shape of an inverted V. Directivity is in the plane of the legs. Feeding one end and leaving the other open results in bidirectivity. Terminating the tree end with a suitable resistor produces unidirection of the termination. Gain and the termination. Gain and angle between legs depend on trequency and the number of wavelengths in each leg. | Used to provide high gain. Used where low angle of radiation is destrable. Usable over a wid frequency range. Bandwidth sis greatest for terminater type. Angle of radiation is lowered as lag length and/or operating frequency is increased.                                                                                                                                  |
| BEVERAGE<br>ANTENNA                                  | A directional long-wire horizontal antenna, two or more wavelengths iong. The end nearest the distant receiving station is terminated with a 500-bm resistor connected to a good counterpoles. The antenna, generally suspended 10 to 20 feet above ground, is non-resonant.                                                                                                                                           | Used for transmitting and receiving vertically polarized waves. Often used for long-wave transcessing broadcasts. Its input impedance is latify constant so if can be used over a wide frequency range. Useful for frequencies between 300 kt.l. and 3 MHz. Highly suitable for use over dry. rocky soil. Never use over dry. rocky soil. Never use over sail marabes or water. |
| FOLDED<br>DIPOLE                                     | A simple center-fied dipole with a second half-wave conductor connected across its ends. Spacing between the conductors is a very small fraction of a wavelength.                                                                                                                                                                                                                                                      | Its Impedance is higher than that of a simple dipole. Applications same as simple dipole. Other used in parasitic arrays to raise the teedpoint impedance to a value which can be conveniently matched to transmission line.                                                                                                                                                    |

Table 13-2. Antenna Types—(cont'd)

| Type of Antenna | Description                                                                                                                                                                                                                                                                                                                                                                               | Application                           |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| V ANTENNA       | Bidirectional antenna made of two long-wire antennas in the form of a V and field 180 as a V antennas is a combination of two long-wire antennas. As the length is increased, more power is norceased, more power is the wire. The length of each leg of a V antenna can be found by:  492 (N — 0.05) | Military and commercial applications. |
|                 | N is the number of half wavelengths in each leg, and f is the frequency in megahlert.  More gain can be obtained by stacking a second V, one-half wavelength above the first. See Fig. 13-5.                                                                                                                                                                                              |                                       |



Fig. 13-5. Lobes of a V antenna.

### **COAXIAL CABLES**

Coaxial cable is a type of transmission line used to connect the CB transceiver to its antenna. The inner conductor of the cables listed in Table 13-3 is copper and so is the outside shield braid. The characteristic impedance is 50 ohms. The cables in this table use a polythelene dielectric.

Table 13-3. Coaxial Cables for CB

| MOMINAL | ATTEMULATION | 40 | , | 100 | - | ٠ |
|---------|--------------|----|---|-----|---|---|

| RG/U CABLE TYPE | 100 | 1000 | 5000 | 10.000 |
|-----------------|-----|------|------|--------|
| 8/U             | 1.9 | 8.0  | 27.0 | 100.0  |
| 8A/U            | 1.9 | 8.0  | 27.0 | 100.0  |
| 58/U            | 4.6 | 17.5 | 60.0 | 100.0  |
| 58A/U           | 4.9 | 24.0 | 83.0 | 100.0  |
| 59/U            | 3.4 | 12.0 | 42.0 | 100.0  |
| 59A/U           | 3.4 | 12.0 | 42.0 | 100.0  |

# **CB BASE STATION ANTENNAS**

Table 13-4 lists the gain, VSWR, length and typical weight of base station antennas.

Table 13-4. Base Station Antennas for CB

| Туре                   | Gain<br>(dB)         | VSWR  | Length       | Average<br>Wgt.<br>(lbs.) |
|------------------------|----------------------|-------|--------------|---------------------------|
| hor/vert<br>3-element  | hor: 8<br>vert: 9.75 | 1.5:1 | 108"<br>boom | 26                        |
| half-wave<br>shunt-fed | 3.75                 | 1.5:1 | 216"         | 10                        |
| sector<br>phased beam  | 7.75                 | 1.5:1 | 17.5′        | 17                        |
| vert/hor<br>5-element  | hor:11<br>vert: 12.5 | 1.5;1 | 22'<br>boom  | 19                        |
| vertical               | -                    | -     | 234"         | 9                         |
| vertical               | 4 .                  | 1.4:1 | 12'          | 3.5                       |
| vertical               | 11                   | 1.2:1 | 11.9'        | 13.5                      |
| vertical               | 3.75                 | 1:1   | 214"         | 5                         |
| 3-element beam         | 7.5                  | 1:1   | 120"         | 15                        |
| 4-element beam         | 9                    | 1:1   | 192"         | 20                        |
| 5-element beam         | 10                   | 1:1   | 288"         | 25                        |
| 6-element dual bea     |                      | 1.2:1 | 216"         | 30                        |
| 8-element dual bea     |                      | 1.2:1 | 216"         | 45                        |
| Universal              | 0                    | 1.5:1 | 216"         | 2                         |
| Ground plane           | 0                    | 1.2:1 | 216"         | 5                         |

Table 13-4. Base Station Antennas for CB (cont'd).

| Туре                     | Gain<br>(dB) | VSWR   | Length                          | Average<br>Wgt.<br>(lbs.) |
|--------------------------|--------------|--------|---------------------------------|---------------------------|
| vertical                 |              |        | 17'3"                           |                           |
| vertical                 | 1.5          | 1.5:1  | 18'                             |                           |
| vertical                 | 9.2          | 1.1:1  | 9' cross<br>boom<br>3'1" beam b | 16                        |
| vertical                 | 12.7         | 1.1:1  | 14' cross<br>boom<br>12'2" beam | 30                        |
| vertical                 | 13.9         | 1.1:1  | cross<br>boom<br>20' beam bo    | 55                        |
| vertical                 | 8            | 1.4:1  | 12' boom                        | 7                         |
| vertical                 | 9.5          | 1.1:1  | 18' boom                        | 18                        |
| vertical                 | unity        | 1.1.1  | 9' ht                           | 3                         |
| vertical                 | 3            | 1.1:1  | 17'ht                           | 6                         |
| vertical                 | 3.4          | 133    | 19' 10" ht                      | 8                         |
| vertical                 | 3.4          | 1.1:1  | 19'10" ht                       | 14                        |
| attic                    | 3.4          | 2.1.0  | 18"                             | 3                         |
| dipole                   | -            | 2.1.0  | 36"                             | 6                         |
| vertical                 | -            | 2.1.0  | 18"                             | 3                         |
| ground plane             |              | 2.1.0  | 18"                             | 3                         |
| vertical                 | -            | 2.1.0  | 16"                             | 10                        |
| beam                     | 12.3         |        |                                 |                           |
| beam                     | 12.3         | 1.5:1  | 18'8-<br>3'4" each<br>element   | 15                        |
| vertical                 | unity        | 1.5:1  | 9'                              | 4                         |
| vertical                 | 5            | 1.5:1  | 9'                              | 4                         |
| vertical                 | 6            | 1.2:1  | 198"                            | 7                         |
| vertical                 | 3.75         |        |                                 |                           |
| vertical                 | 3.75         | 1.17:1 | 210"                            | 10                        |
| vertical                 | 10           | 1.5 1  | 204"                            | 15                        |
| vertical                 | 8            | 1.6:1  | boom<br>198"                    | 44                        |
|                          | 0            |        | elements                        | 11                        |
| vertical                 | •            | 1.8:1  | 108"<br>element                 | 4                         |
|                          |              |        | 108" radials                    |                           |
| vertical                 |              |        | 19'                             | 12                        |
| vertical                 |              |        | 19'                             | 11                        |
| beam                     |              | -      | 19'                             | 23                        |
| vertical                 |              |        | 17'                             | 8                         |
| vertical                 |              |        | 20'                             | 23                        |
| vertical                 | 3.7          | 1.5:1  | 17'3"                           | 20                        |
| beam                     | 8            | 1.5:1  | 224-¾"                          | 12.5                      |
| beam                     | 8.7          | 1.5:1  | 224-34"                         | 15.5                      |
| beam                     | 9.5          | 1.5:1  | 224-34                          | 16.5                      |
| beam                     | 8            | 1.5:1  | 216-1/2"                        | 14                        |
| beam                     | 9.5          | 1.5:1  | 224-34"                         | 20.5                      |
| beam and stacking<br>kit | 11           | 1.5:1  | 224-¾"                          | 29                        |

Table 13-4. Base Station Antennas for CB (cont'd).

| Туре              | Gain<br>(dB) | VSWR  | Length                | Average<br>Wgt.<br>(bs.) |
|-------------------|--------------|-------|-----------------------|--------------------------|
| beam and stacking | 12           | 1.5:1 | 224-34"               | 38                       |
| stacking kit      | 13           | 1.5:1 | 224-¾"                | 47                       |
| conversion kit    |              |       |                       | 10                       |
| stacking kit      |              |       |                       | 18                       |
| stacking kit      |              |       |                       | 8                        |
| vertical          |              | 1.5:1 | 235.5"                | 7.5                      |
| vertical          |              | 1.5:1 | 245"                  | 7.6                      |
| vertical          |              |       | 19'8"                 | 16                       |
| vertical          |              |       | 19'8"                 | 15                       |
| vertical          |              |       | 19'10-34"             | 8.75                     |
| beam              |              |       | 18'10"                | 8.5                      |
|                   |              |       | boom                  | 0.0                      |
| beam              |              |       | 14'1"                 | 10.75                    |
|                   |              |       | boom                  |                          |
| gutter lamp       |              |       | 25"                   |                          |
| vertical          | 7.5          | 1.1:1 |                       | 11                       |
| vertical          | 9            | 1.1:1 |                       | 16                       |
| vertical          | 10.4         | 1.1.1 |                       | 22                       |
| vertical          | -            | 1.5:1 | 18'6"                 | 7.5                      |
| vertical          | 3.4          | 1.1.1 |                       |                          |
| vertical          | unity        | 1.4:1 |                       | 7                        |
|                   |              | 1.1.1 | 18'6"<br>234"<br>216" | 7.5<br>9<br>7            |

### **CB MOBILE ANTENNAS**

Antennas for mobile CB transceivers can be trunk mounted, bumper mounted, put on a fender, on the car or truck roof. Table 13-5 supplies comparative data on a number of antennas.

Table 13-5. CB Mobile Antennas

| Туре              | Gain<br>(dB) | VSWR  | Length | Average<br>Wgt.<br>(lbs.) |
|-------------------|--------------|-------|--------|---------------------------|
| whip, base spring |              | 1.5:1 | 108"   | 6                         |
| trunk mount       | -            | 1.5:1 | 48"    | 1.5                       |
| roof mount        |              | 1.5:1 | 44"    | 1.5                       |
| trunk mount       |              | 1.5:1 | 48"    | 2                         |
| fender mount      |              | 1.5:1 | 44"    | 1.5                       |
| combination CB/AM | _            | 1.5:1 | 46"    | 1.5                       |
| roof mount        | _            | 1.5:1 | 44"    | 1.5                       |
| roof mount        | -            | 1.5:1 | 46"    | 1.5                       |
| roof mount        | -            | 1.5:1 | 18"    | 1.25                      |
| gutter mount      |              | 1.5:1 | 18"    | 1.25                      |
| magnetic mount    | -            | 1.5:1 | -      | 1.25                      |
| trunk mount       | -            | 1.5:1 | 46"    | 1.5                       |
| gutter mount      | _            | 1.5:1 | 48"    | 1.5                       |
| vertical          |              | -     | 96'    | 1.5                       |
| vertical          |              | -     | 49"    | 1.5                       |
| vertical          |              | -     | 103"   | 1.5                       |
| CB/AM             |              | -     | 48"    | 2                         |

Table 13-5. CB Mobile Antennas (cont'd).

| Туре     | Gain  | VSWR  | Length     | Average<br>Wgt. |
|----------|-------|-------|------------|-----------------|
| vertical | (dB)  |       | 96"        | (lbs.)          |
| vertical | -     | •     | 30"        | -               |
| vertical | •     | •     |            | -               |
| vertical | 1.5   | 1.5:1 | 48"<br>86" | •               |
| vertical | 1.5   | 1.5:1 | 86         | •               |
| vertical |       | 1.2:1 | -          |                 |
| vertical | -     | 1.1:1 | 26"        | 1               |
| vertical | unity | 1.1:1 | 46"        | 2               |
| vertical | unity | 1.1:1 | 50'        | 2               |
| vertical | unity | 1.1:1 | 46"        | 2<br>2<br>1     |
| vertical | unity | 1.1:1 | 32"        | 1               |
| vertical | unity | 1.1:1 | 59'        | 3 2 2           |
| vertical | unity | 1.1:1 | 50"        | 2               |
| vertical | unity | 1.1:1 | 28"        | 2               |
| vertical | unity | 1.1:1 | 46"        | 1               |
| vertical | unity | 1.1:1 | 19"        | 2               |
| vertical | unity | 1.1:1 | 46"        | 3               |
| vertical | unity | 1.1:1 | 102"       | 3               |
| vertical | unity | 1.1:1 | 47"        | 3               |
| vertical | unity | 1.1:1 | 23 %"      | 1.7             |
| vertical | unity | 1.1:1 | 34 %"      | 3.2             |
| vertical | unity | 1.1:1 | 47"        | 3.1             |
| vertical | - '   | 1.1;1 | 47"        | 3.1             |
| vertical |       | 2.1:0 | 18"        | 3               |
| vertical |       | 2.1:0 | 30"        | 3               |
| vertical |       | -     | 30"        | 1               |
| AM-FM/CB |       |       | 50"        | 1               |
| vertical |       | -     | 102"       | 7               |
| vertical |       | 1.7:1 | 39"        | 2               |
| vertical | -     | 1.7:1 | 39"        | 5               |
| vertical |       | 1.8:1 | 46"        | 4               |
| vertical |       | 1.6:1 | 102"       | 3               |
| vertical |       | 1:1   | 20"        | 3               |
| Gutter   |       |       |            | _               |
| vertical | -     | -     | 6'         | 1.5             |
| vertical |       |       | 4'         | .5              |
| vertical |       | -     | 5'         | 1               |
| vertical |       | -     | 4'         | i               |
| vertical | -     | -     | 6'         | 1.25            |
| vertical | unity | 1.5:1 | 63"        | -               |
| vertical | unity | 1.5:1 | 42"        |                 |
| vertical | unity | 1.5:1 | 45%"       |                 |
| vertical | unity | 1.5:1 | 45"        | -               |
| vertical | -     | 1.5:1 | 87"        | 1.75            |
| vertical | :     | 1.5:1 | 45"        |                 |
| vertical | - :   | 1.5:1 | 43 34"     | 2               |
| vertical |       | 1.5:1 | 17"        | i               |
| vertical |       | 1.5:1 | 36"        | i               |
| vertical |       | 1.5:1 | 100"       | 3               |
| vertical |       | 1.0.1 | 83'        | 2.75            |
| Torucal  | -     | -     | 00         | 2.75            |

|                | Table 1: | r'd)<br>Average Wg |         |          |
|----------------|----------|--------------------|---------|----------|
| Type           | (dB)     | VSWR               | Length  | (lbs.)   |
| mobile res.    | (/       |                    | 29"     | .5       |
| mast           |          |                    | 54"     | 2.25     |
| mast           |          |                    | 54"     | 2.25     |
| vertical       |          |                    |         | 2.5      |
| vertical       |          |                    | :       | .33      |
| vertical       | - :      |                    | 26 1/2" | 1.5      |
|                |          |                    | 60 1/2" | 1.5      |
| vertical       | -        | -                  | 26 1/2" | .75      |
| vertical       |          |                    | 60 1/2" | .75      |
| vertica        | -        | •                  |         | .75      |
| vertical       |          |                    |         | .75      |
| vertical       |          | •                  | -       | .75      |
| AM/FM/CB       |          | •                  | -       | 1.5      |
| vertical       |          |                    |         | 1.5      |
| roof mount     | -        | •                  | 30"     | .5       |
| gutter clamp   |          |                    | 25"     | .5       |
| trunk groove   |          | - :                | 20      | 1.25     |
| base loaded    |          |                    | 45 ¾"   | 3        |
| trans, ant.    |          | _                  | 70 74   |          |
| vertical       |          |                    | 108"    | 4.5      |
| bumper mount   | - 1      |                    | 108"    | 4.5<br>5 |
| vertical       |          | -                  | 102"    | 1.5      |
| vertical       |          |                    | 108"    | 1.5      |
| vertical       |          | 1.5:1              | 8'      | 1.5      |
| vertical       | -        | 1.5:1              | 4'      | .5       |
| vertical       |          | 1.5;1              | 9'      | 1        |
| vertical       |          | 1.5:1              | 36"     | 1        |
| magnetic mount | 4.1      | 1.1:25             | 32"     |          |
| vertical       | 5.2      | 1.1.25             | 32"     |          |
| mtch. network  |          | -                  |         |          |
| •              | 6.4      | 1.1:0              | 10"     |          |
| vertical       | -        | 1.1:1              | 35"     | .75      |
| vertical       | -        | 1.1:1              | 36"     | 1        |
| vertical       |          |                    |         | •        |
| vertical       | •        | -                  | 48"     | -        |
| vertical       |          | •                  | 96"     |          |
|                | -        | •                  | -       | -        |
| vertical       | -        |                    | 38"     |          |
| vertical       | -        | -                  | 20"     |          |
| vertical       | -        |                    | 37"     |          |
| vertical       | -        | -                  | 19"     | -        |
| vertical       |          |                    | 38"     |          |
| vertical       | :        | •                  | 20"     |          |
| vertical       | •        | •                  |         |          |
|                | -        | -                  | 3"      | 4 oz.    |
| vertical       | •        | -                  | 18"     | 6 oz.    |
| vertical       | 4        | 1.1:1              | 108"    | 5        |
| vertical       | unity    | 1.1:1              | 46"     | 1.5      |
| vertical       | unity    | 1.1:1              | 45"     | 1.75     |
| vertical       | unity    | 1.1:1              | 18'     | 1.5      |
| vertical       | unity    | 1.1:1              | 45"     | 1.5      |
|                |          |                    |         |          |

Tab e 13-5. CB Mobile Antennas (cont'd)

| Туре     | Gain<br>(dB) | VSWR  | Length | Average<br>Wgt.<br>(lbs.) |
|----------|--------------|-------|--------|---------------------------|
| vertical | unity        | 1.1:1 | 46"    | 1.5                       |
| vertical | unity        | 1.1:1 | 48"    | 2                         |
| vertical | unity        | 1.1:1 | 50"    | 2                         |
| vertical | unity        | 1.2:1 | 93"    | 4                         |
| vertical | unity        | 1.2:1 | 77"    | 4                         |

### **MARINE ANTENNAS**

Marine antennas are described in Table 13-6.

Table 13.6 Marine Antennas

| Gain<br>(dB) | VSWR                          | Length                                                                                                              | Average<br>Wgt.<br>(lbs.) |  |
|--------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------|--|
|              | 1.5:1                         | 97"                                                                                                                 | 3                         |  |
| -            |                               | 54"                                                                                                                 | 2                         |  |
| 1.5          | 1.1:1                         | 19'11"                                                                                                              |                           |  |
| -            | -                             | 6'                                                                                                                  | 4                         |  |
| 1.5          | 1.5:1                         | 79"                                                                                                                 | -                         |  |
| -            | 1.5:1                         | 96 %"                                                                                                               | 2                         |  |
| -            | 1.5:1                         | 12'                                                                                                                 | 7.5                       |  |
| -            | 1.5:1                         | 18'6"                                                                                                               | 9                         |  |
|              | 1.1:25                        | 30"                                                                                                                 | -                         |  |
| 1.4          | 1.51                          | 60"                                                                                                                 | 2                         |  |
|              | Gain<br>(dB)<br>-<br>-<br>1.5 | Gain VSWR (dB) - 1.5:1 - 1.5 1.1:1 - 1.5:1 - 1.5:1 - 1.5:1 - 1.5:1 - 1.5:1 - 1.5:1 - 1.5:1 - 1.5:1 - 1.5:2 6 1.1:25 | Gain VSWR Langth (dB)     |  |

# Chapter 14 Electronics

# Table 14-1. Electronic Units, Abbreviations and Symbols

Capacitance Symbol C F= farad μF = microfarad pF = picofarad Frequency Symbol f Hz = cycles per second kHz = kiloHertz MHz = megaHertz Inductance Symbol L h = henrymh = millihenry  $\mu h = microhenry$ Resistance Symbol R  $\Omega$  or  $\omega = ohm$  $K_{\omega} = kilohms$  $M\omega = megohms$ Time Symbol t sec = second msec = millisecond  $\mu$ sec = microsecond nsec = nanosecond Current Symbol I or i a = ampere ma = milliampere  $\mu$  a = microampere Voltage Symbol E or v v = = voltmv = millivolt  $\mu v = microvolt$ kv = kilovolt Power Symbol W W = wattmW = milliwatt  $\mu w = microwatt$ kW = kilowatt

MW = megawatt

Technical abbreviations appear in electronics text material, in circuit diagrams, in reports and in magazine articles. There is no industry-wide style standard. The best that can be hoped for is that a selected style will be consistent throughout a book, report or article. Abbreviations may be in lower-case, capital letters or some combination of both. Abbreviations may or may not have points (periods). Points are desirable where the abbreviation may be mistaken for a word.

Table 14-2. Table Electronic Abbreviations

| bbreviation | Term                               |
|-------------|------------------------------------|
| A           | ataba anno da anno a               |
| a<br>A      | alpha, ammeter, ampere, area       |
| 0           | ammeter, ampere (s)                |
| A           | Angstrom unit                      |
| abc         | automatic base compensation        |
| AC          | alternating current or voltage     |
| acc         | automatic chroma control           |
| adf         | automatic direction finder         |
| adj         | adjacent; adjustment               |
| af          | audio frequency                    |
| afc         | automatic frequency control        |
| aft         | audio-frequency transformer;       |
|             | automatic fine tuning              |
| agc         | automatic gain control             |
| Ah          | ampere-hour                        |
| alc         | automatic level control            |
| AM          | amplitide modulation               |
| amp         | ampere (s); amplifier              |
| amp-hr      | ampere hour                        |
| AND         | gate                               |
| ani         | automatic noise limiter            |
| anr         | automatic noise reduction          |
| ant         | antenna                            |
| antilog     | antilogarithm                      |
| apc         | automatic phase control            |
| apld        | Automatic program locating device  |
| arm         | armature                           |
| ASA         | American Standards Association     |
| att         | attenuator; attenuation            |
| atto        | 10 <sup>-18</sup>                  |
| autotrans   | autotransformer                    |
| aux         | auxiliary                          |
| av          | average                            |
| avc         | automatic volume control           |
| ave         | automatic volume expansion         |
| AWG         | American wire gauge                |
| В           |                                    |
| b           | bel; beta, magnetic flux density   |
| b or base   | base (transistor)                  |
| В           | magnetic flux density; susceptance |
| bal         | balance                            |

| Table 14-2. Electronic Abbreviations (cont'd)                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Abbreviation                                                                              | Term                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| bal mod balun batt bod bol bol bil bil bil bil bil bo | belanced modulator balanced transformer balanced-to-unbalanced transformer balance balanced transformer balanced transformer balanced transformer balanced transformer beauti-requency oscillator balanced transformer bala |  |
| C                                                                                         | centi—(one-hundredth; 10-2); collector (transistor); Celsius (degrees)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| c, cap<br>C                                                                               | capacitor (or capacitance)<br>Celsius                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| calib                                                                                     | calibrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| cath (K on diagram)<br>cath foll                                                          | cathode cathode follower                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| CB                                                                                        | citizens' band                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| CC                                                                                        | cotton covered (wire)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| cctv                                                                                      | closed circuit television                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| CCW                                                                                       | counterclockwise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| cemf                                                                                      | counter electromotive force                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| cent                                                                                      | centering<br>10 <sup>-2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| centi (or c)                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Cgk                                                                                       | grid-cathode capacitance (tube)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Cgp<br>CQS                                                                                | grid-plate capacitance (tube)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| ch                                                                                        | centimeter-gram-second<br>choke                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| chan                                                                                      | channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| chg                                                                                       | charge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| chrome                                                                                    | chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| cir mil (s)                                                                               | circular mil(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| ckt brkr                                                                                  | circuit breaker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| cm                                                                                        | centimeters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| colog                                                                                     | coaxial cable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| com                                                                                       | cologarithm<br>common                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| cond                                                                                      | conductor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| conn                                                                                      | connection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| cont                                                                                      | control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| CONV                                                                                      | convergence; converter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| COS                                                                                       | cosine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| cosh                                                                                      | hyperbolic cosine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| counter emf; cemf                                                                         | cotangent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| CDS                                                                                       | counter electromotive force<br>cycles per second (Hertz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 0-r                                                                                       | cathode-ray                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| cro                                                                                       | cathode-ray oscilloscope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |

| Abbandation  | Term                                                |
|--------------|-----------------------------------------------------|
| Abbreviation |                                                     |
| Cr02         | chronium dioxide                                    |
| crt          | cathode-ray tube                                    |
| csc; cosc    | cosecant                                            |
| ct           | center tap                                          |
| CW           | clockwise; continuous wave                          |
| D            |                                                     |
| d            | diode; deci-(one-tenth; 10-1);<br>diameter          |
| dB           | decibel                                             |
| dBf          | signal reference to power                           |
| dblr         | doubler                                             |
| dbm          | decibels referred to 1 milliwatt<br>across 600 ohms |
| dc           | direct current or voltage                           |
| dc rest      | dc restorer                                         |
| dcc          | double cotton covered (wire)                        |
| deci         | 10 <sup>-1</sup>                                    |
| defl         | deflection                                          |
| deg          | degrees (angle); degrees (temp.)                    |
| deka         | 10-1                                                |
| demod        | demodulator                                         |
| det          | detector                                            |
| dielec       | dielectric                                          |
| diff         | differentiator                                      |
| DIN          | Deutsche Industrie Normen                           |
|              | (German Industrial Standards)                       |
| disch        | discharge                                           |
| discrim      | discriminator                                       |
| dk           | deka(ten; 10 <sup>-1</sup> )                        |
| dkm          | decameters                                          |
| dm           | decimeters                                          |
| dpdt         | double-pole, double-throw (switch)                  |
| dpst         | double-pole, single-throw (switch)                  |
| dsc          | double silk covered (wire)                          |
| dx           | distance                                            |
| dyn          | dynamic                                             |
| E            |                                                     |
| е            | emitter (transistor); voltage;                      |
|              | electronic charge                                   |
| ec           | enamel covered                                      |
| eco          | electron-coupled oscillator                         |
| eff          | effective (rms)                                     |
| ehf          | extremely high frequencies                          |
|              | (30 gHz to 300 gHz)                                 |
| EDP          | Electronic Data Processing                          |
| EIA          | Electronic Industries Association                   |
| EIAJ         | Electronic Industries Association<br>of Japan       |
| elec         | electric; electrolytic                              |
| elect        | electrode                                           |
| emf          | electromotive force (voltage)                       |
| J            | olocioniono foto (voltage)                          |

| Abbreviation        | Term                                 |
|---------------------|--------------------------------------|
| emu                 | electromagnetic unit (s)             |
| enam                | enameled (wire)                      |
| encl                | enclosure                            |
| ep                  | extended play                        |
| eq                  | equalization                         |
| equiv               | equivalent                           |
| erase hd            | erase head                           |
| erf                 | error function                       |
| erp                 | effective radiated power             |
| esu                 | electrostatic unit (s)               |
| ev (or eV)          | electron volt(s)                     |
| ext                 | external or extension                |
| F                   |                                      |
| f                   | femto (10 <sup>-15</sup> )           |
| f or freq           | frequency                            |
| F                   | Fahrenheit (degrees)                 |
| F                   | farad(s)                             |
| fax                 | facsimile                            |
| fa                  | femtoampere 10 <sup>-15</sup> ampere |
| FCC                 | Federal Communications Commission    |
| FeCr                | ferrichrome                          |
| femto               | ferrichrome<br>10 <sup>-15</sup>     |
| FET                 | field effect transistor              |
| ff                  | fast forward                         |
| FHR                 | Fixed Head Recorder                  |
| fil (f in diagrams) | filament                             |
| fm                  | frequency modulation                 |
| foli                | follower (-ing)                      |
| fone                | headphones; earphones (see           |
|                     | also phone)                          |
| freq                | frequency                            |
| FS                  | Fourier series                       |
| 6                   |                                      |
| G                   | conductance                          |
| g                   | gram; grid (in diagrams);            |
| -                   | conductance                          |
| gb                  | gilberts                             |
| gca                 | ground-controlled approach           |
| gdo                 | grid-dip oscillator                  |
| gen                 | generator                            |
| gHz                 | gigahertz                            |
| giga                | (kijomegahertz)                      |
| Gm                  |                                      |
| gnd                 | Mutual Conductance<br>ground         |
| н                   | •                                    |
| Ä                   | magnetic intensity                   |
| h                   | henry (s); hecto or hekto (one       |
|                     | hundred; 10 <sup>2</sup> )           |
| ham                 | radio amateur operator               |

| Abbreviation      | Term                                                         |
|-------------------|--------------------------------------------------------------|
| hd                | head                                                         |
| hecto             | 10 <sup>2</sup>                                              |
| hex               | hexadecimal                                                  |
| hf                | high frequency (3,000 to 30,000                              |
| LI E              | kHz); high filter<br>High fidelity                           |
| hi fi             | high potential                                               |
| hi pot<br>hm      | hectometers                                                  |
| hor or horiz      | horizontal                                                   |
| hp                | horsepower                                                   |
| hr                | hour                                                         |
| htr (in diagrams) | heater                                                       |
| hv                | high voltage                                                 |
| hvr               | home video recorder                                          |
| hy                | henry                                                        |
| Hz                | Hertz (cycles per second)                                    |
| 1                 |                                                              |
| Į.                | current (instantaneous value)                                |
| ic                | internal connection (in tubes);                              |
| Leave .           | Integrated circuit                                           |
| icw               | Interrupted continuous waves                                 |
| i-f or i.f.       | intermediate frequency<br>intermediate-frequency transformed |
| iHF               | Institute of High Fidelity                                   |
| ils               | Instrument landing system                                    |
| im                | Intermodulation; intermodulation                             |
|                   | distortion                                                   |
| in                | inch; Input                                                  |
| int               | integrator                                                   |
| lp.               | plate current                                                |
| ips               | inches per second                                            |
| J                 |                                                              |
| j;J               | joule; imaginary number                                      |
| ib                | junction box                                                 |
| jct               | junction                                                     |
| K                 |                                                              |
| K                 | numerical constant; dielectric                               |
|                   | constant; coupling coefficient                               |
| k                 | kilo; thousand; 103                                          |
|                   | cathode (tube)                                               |
| kg                | kilogram                                                     |
| kHz               | kilohertz                                                    |
| kilo              | 103                                                          |
| km                | kilometers                                                   |
| kv<br>kva         | kilovolt (s)<br>kilovolt-ampere                              |
| kvar              | reactive kilovolt amperes                                    |
| kw                | kilowatt                                                     |
| kwhr              | kilowatt-hour                                                |
|                   |                                                              |

| Abbreviation  | Term                                                     |
|---------------|----------------------------------------------------------|
| L             |                                                          |
| Ĺ             | coil; Inductor; Inductance; load                         |
| LC            | Inductance-capacitance                                   |
| lcd           | liquid crystal diode                                     |
| led           | light emitting diode                                     |
| If            | low frequency (30 to 300 kHz)                            |
| lin           | linearity; linear                                        |
| lm            | limiter                                                  |
| In;loge       | Napierian logarithm                                      |
| log; log10    | common logarithm                                         |
| iog           | antilogarithm                                            |
| lp            | long playing                                             |
| Is            | limit switch                                             |
| isi           | large scale Integration                                  |
| LVR           | Longitudinal Video Recording                             |
| M             |                                                          |
| m             | milli (10 <sup>-3</sup> ); meter; mutual inductance      |
| μ             | micro (10 <sup>-6</sup> )                                |
|               | amplication factor; permeability                         |
| μα            | microampere                                              |
| ma            | milliampere                                              |
| mag<br>max    | magnetic                                                 |
| md            | moving coil                                              |
| meg           | mean deviation<br>megohm                                 |
| mega          | million; (10 <sup>6</sup> )                              |
| mem           | memory                                                   |
| mev           | million electron volts                                   |
| μf            | microfarad                                               |
| mf            | medium frequencies (300kHz                               |
|               | to 3,000 kHz)                                            |
| mfb           | motional feedback                                        |
| mh            | millihenry (s)                                           |
| MHz           | megahertz                                                |
| μh            | microhenry (s)                                           |
| micro         | one-millionth; (10 <sup>-6</sup> )                       |
| micromicro    | one-millionth of a millionth; (10 <sup>-12</sup> )       |
| mike (or mic) | (see also pico)                                          |
| milli         | microphone                                               |
| min           | minimum                                                  |
| mks           | meter-kilogram accord                                    |
| μμ            | meter-kilogram-second<br>micromicro (10 <sup>-12</sup> ) |
|               | (same as pico)                                           |
| μμί           | micromicrofarad (same as picofarad)                      |
| mm            | millimeters; moving magnet                               |
| mmf           | magnetomotive force                                      |
| mod<br>modem  | modulation; modulator; modulus                           |
| modern        | modulator-demodulator                                    |
| mon           | maximum output level<br>monitor                          |
| mono          | monophonic; monochrome; monaural                         |
|               | monopriorio, monochrome; monaurai                        |

| Abbreviation | Term                                     |
|--------------|------------------------------------------|
| mos          | metal oxide semiconductor                |
| mosfet       | metal oxide semiconductor field          |
|              | effect transistor                        |
| most         | metal oxide semiconductor                |
|              | transistor                               |
| mpx          | multiplex                                |
| μsec         | microsecond                              |
| msec         | millisecond                              |
| mpx          | multiplex<br>multiplier                  |
| mult         | microvolt                                |
| μν           | multivibrator; millivolt                 |
| mv<br>mva    | megavolt-ampere                          |
| mvb          | multivibrator                            |
| mvc          | manual volume control                    |
| μν/m         | microvolts per meter                     |
| μW           | microwatt                                |
| Mw           | megawatt                                 |
| mw           | milliwatt                                |
| Mwh          | megawatt-hour                            |
| my           | myria; (ten thousand; 104)               |
| mym          | myriameters                              |
| y            | mynamotors                               |
| N            | 0.                                       |
| n            | nano; (10 <sup>-9</sup> ) number of tums |
| NAB          | National Assoc. of Broadcasters          |
| NAND         | gate                                     |
| nano(n)      | 10.9                                     |
| nbfm         | narrow-band fm                           |
| nc           | normally-closed (switch or relay);       |
|              | neutralizing capacitor; no connection    |
| ne           | neon                                     |
| neg          | negative; minus                          |
| net<br>nf    | network<br>negative feedback             |
| NI           | ampere turns                             |
| no           | normally open (switch or relay)          |
| non          | negative-positive-negative (transistor)  |
| n-type       | semiconductor with excess                |
| пчуро        | of negative carriers                     |
| nvr          | no voltage release                       |
|              |                                          |
| 0            | - 4-14 - #                               |
| OD           | outside diameter                         |
| omni         | omnidirectional                          |
| αlv          | or gate                                  |
| O/V<br>OSC   | ohms per volt<br>oscillator              |
| osc          |                                          |
| Out          | output                                   |
| P            |                                          |
| p            | power; pole; plate(on diagrams);         |
|              | pico (10 <sup>-12</sup> )                |

Table 14-2. Electronic Abbreviations (cont'd)

| Table 14-2. Electionic Appreviations (Cont a) |                                                        |  |
|-----------------------------------------------|--------------------------------------------------------|--|
| Abbreviation                                  | Term                                                   |  |
| pa                                            | public address; power amplifier                        |  |
| pb                                            | playback                                               |  |
| pc                                            | photocell                                              |  |
| pcm                                           | pulse code modulation                                  |  |
| pd                                            | potential difference                                   |  |
| pent                                          | pentode                                                |  |
| perm<br>of                                    | permanent                                              |  |
| phone (s) (or fone)                           | power factor; picofarad (mlcromicrofarad)              |  |
| photo mult                                    | headphones; earphones<br>photomultiplier               |  |
| pico                                          | formerly designated as micromicro (10 <sup>-12</sup> ) |  |
| pix                                           | picture                                                |  |
| pl                                            | pilot lamp                                             |  |
| pli                                           | phase locked loop                                      |  |
| pm                                            | permanent magnet (speaker);                            |  |
| •                                             | phase modulation:                                      |  |
|                                               | pulse modulation                                       |  |
| pn                                            | diode or transistor junction                           |  |
| pnp                                           | positive-negative-positive (transistor)                |  |
| pos                                           | positive; plus                                         |  |
| pot                                           | potentiometer;potential                                |  |
| PP.                                           | peak-to-peak, pushpull                                 |  |
| ppl                                           | plan-position Indicator (radar)                        |  |
| ppm                                           | parts per million                                      |  |
| pps                                           | pulses per second                                      |  |
| preamp<br>prf                                 | preamplifier                                           |  |
| pri                                           | pulse repetition frequency<br>primary                  |  |
| pt                                            | phototube                                              |  |
| p-type                                        | semiconductor with excess                              |  |
| F 7F-                                         | of positive carriers                                   |  |
| pwr                                           | power                                                  |  |
|                                               |                                                        |  |
| Q                                             |                                                        |  |
| Q                                             | reactance-resistance ratio;                            |  |
|                                               | transistor; coulomb;                                   |  |
|                                               | Q factor; Q signal                                     |  |
| quad                                          | quadrature, quadraphonic                               |  |
|                                               | (quadriphonic)                                         |  |
| R                                             |                                                        |  |
| r r                                           | resistance; resistor; radius                           |  |
| rc                                            | resistance-capacitance                                 |  |
| r-c                                           | radio control                                          |  |
| rodg                                          | recording                                              |  |
| rodr                                          | recorder                                               |  |
| rcvr                                          | receiver                                               |  |
| rec                                           | record                                                 |  |
| rect                                          | rectifier                                              |  |
| reg                                           | regulator                                              |  |
| regen                                         | regeneration                                           |  |
| rev                                           | reverse                                                |  |
| reverb                                        | reverberation                                          |  |

| Abbreviation | Term                                           |
|--------------|------------------------------------------------|
| rf           | radio frequency                                |
| rfc          | radio-frequency choke                          |
| rft          | radio-frequency transformer                    |
| rheo         | rheostat                                       |
| r-i          | resistance-Inductance                          |
| r-I-c        | resistance-Inductance-capacitance              |
| RIAA         | Record Industry Association of America         |
| rms          | root-mean-square; effective                    |
| rpm          | revolutions per minute                         |
| ry           | relav                                          |
| ry, nc       | relay, normally closed                         |
| ry, no       | relay, normally open                           |
| s            |                                                |
| s or sw      | switch                                         |
| SCC          | single-cotton covered (wire)                   |
| sce          | single cotton enameled (wire)                  |
| scope        | oscilloscope                                   |
| scr          | silicon-controlled rectifier                   |
| Sec          | second; secondary; secant                      |
| sech         | hyperbolic secant                              |
| sels         | selsyn                                         |
| sep          | separator                                      |
| sg           | screen grid                                    |
| shf          | super-high frequency (3,000 to 300,000 MHz)    |
| sig          | signal                                         |
| sin          | sine                                           |
| sinh         | hyperbolic sine                                |
| sld          | solenoid                                       |
| s/n          | signal-to-noise ratio                          |
| sp           | single-pole                                    |
| spdt         | single-pole, double-throw                      |
| spdtdb       | single-pole, double-throw, double-break        |
| spdtncdb     | single-pole, double-throw,                     |
|              | normally-closed,                               |
| and the co   | double break                                   |
| spdtno       | single-pole, double-throw,                     |
| spdtnodb     | normally-open                                  |
| apuliloub    | single-pole, double-throw,                     |
|              | normally-open,<br>double-break                 |
| spec(s)      |                                                |
| spkr         | specifications                                 |
| spl          | loudspeaker<br>sound pressure level            |
| spstnc       | single-pole, single-throw,                     |
| oponio       | normally-closed                                |
| spstno       | single-pole, single-throw,                     |
| oponio       | normally-open                                  |
| sq           | square                                         |
| ssb          | single sideband                                |
| SSC          | single sideballo<br>single silk covered (wire) |
| stereo       | stereophonic                                   |
|              |                                                |

| Abbreviation | Term                                           |
|--------------|------------------------------------------------|
| strobe       | stroboscope                                    |
| sup          | suppressor                                     |
| superhet     | superheterodyne                                |
| sw           | switch: short wave                             |
| swl          | short-wave listener                            |
| swr          | standing-wave ratio                            |
| sync         | synchronization; synchronous                   |
| T            |                                                |
| t            | transformer; trimmer capacitor;                |
|              | tera: (10 <sup>12</sup> )                      |
| tacho        | tachometer                                     |
| tan          | tangent                                        |
| tanh         | hyperbolic tangent                             |
| teleg        | telegraph: telegram                            |
| tera         | 10 <sup>12</sup>                               |
| term         | terminal                                       |
| thd          | total harmonic distortion                      |
| TI           | ampere turns                                   |
| TIM          | Transient Intermodulation Distortion           |
| tota         | tuned-plate: tuned-grid                        |
| tr           | transmit-receive; turns ratio;                 |
| -            | transient response                             |
| trans        | transformer                                    |
| trf          | tuned-radio frequency                          |
| trig         | trigger                                        |
| tsf          | telegraphie sans fil (wireless telegraphy)     |
| tv           | television                                     |
| tvi          | television interference                        |
| U            |                                                |
| uhf          | ultra-high frequencies (300 to 3,000 MHz)      |
| UL           | Underwriters' Laboratories, Inc.               |
| ٧            |                                                |
| v            | volt(s); transistor; voltmeter                 |
| va           | voltamperes (apparent power) voltage amplifier |
| vac;vdc      | volts ac, dc                                   |
| var          | variable; reactive volt-amperes; varistor      |
| VC           | voice coil                                     |
| vcr          | video cassette recorder                        |
| 11-00        |                                                |

versed sine vert vertical vto variable frequency oscillator vhf very high frequencies (30 to 300 MHz) vld video vIf very low frequencies (below 30 kHz) v/m volts per meter voi volume

vom volt-ohm-milliammeter; volt-ohmmeter voltage regulator (tube) vr

vers

| Abbreviations                                             | Term                                                                                                              |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| vt or v<br>vtf<br>vtvm                                    | tube<br>vertical tracking force<br>vacuum-tube voltmeter<br>volume unit                                           |
| w                                                         | Volume unit                                                                                                       |
| w<br>whr<br>wrms<br>WVDC                                  | watt (s)<br>watt-hour<br>weighted rms<br>working volts, DC                                                        |
| X<br>X<br>Xc<br>XL<br>xformer<br>xmit<br>xmission<br>xtal | reactance<br>capacitive reactance<br>inductive reactance<br>transformer<br>transmitter<br>transmission<br>crystal |
| Y                                                         | admittance                                                                                                        |
| Z                                                         |                                                                                                                   |

Table 14-3. Ejectronic Formulas

impedance; characteristic impedance

| DC CIRCUITS                  |  |
|------------------------------|--|
|                              |  |
| $I = E/R = P/E = \sqrt{P/R}$ |  |
| 22                           |  |
| $R = E/I = P/I^2 = E^2/P$    |  |
|                              |  |
| $E = IR = P/I = \sqrt{PR}$   |  |
| $P = FI = F^2/R = I^2R$      |  |
|                              |  |

DESCRIPTION
Ohm's law
R is in ohms; I in
amperes; E in volts and
P in watts



Resistors in Series

Resistance, R, is in ohms, or identical multiples

Rt = R1 + R2 + R3..



Two Resistors in Parallel

$$Rt = \frac{R_1 \times R_2}{R_1 + R_2}$$

$$\frac{1}{Rt} = \frac{1}{R1} + \frac{1}{R2}$$

$$Rt = \frac{Rt}{2} \text{ or } \frac{R_2}{2}$$

(when both resistors are identical)
Three or more Resistors in Parallel

$$\frac{1}{R_1} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \cdots$$

$$Rt = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_2}}$$

$$Rt = \frac{R1}{1 + R1/R2 + R1/R3 + R1/R4}$$





Conductances in Parallel

G in mhos Ohm's law for conductance E is in volts, I in amperes conductance, G, in mhos

Two Conductances in Parallel

$$IR1 = \frac{It \times G1}{G2 + G2}$$

$$IR2 = \frac{It \times G2}{G2 + G2}$$

$$G = \frac{1}{R}$$

G in mhos R in ohms

Resistance of a Conductor

$$R = K \frac{L}{D_2}$$

R is ohms; K is resistance of a mil-foot (specific resistance); L is length in feet and D is diameter in mils



H is heat in calories/sec: Heating Effect of a Current R is resistance in ohms

H = 0.057168 × R

 $F = (C \times 9/5) + 32$  $C = (F - 32) \times 59$  F is temperature in degrees

Fahrenheit C is temperature in degrees Celsius (formerly Centigrade)

 $n = p_0/P_1$ 

n is efficiency Po is output power Pr is input power multiply answer by 100 to obtain efficiency in terms of percentage rather than a decimal

Voltage Drop  $e = E \times \frac{R1}{R1 + R2}$  E is the DC source voltage R1 and R2 are series resistors e is voltage across R1



### Horsepower

1 HP = 746 watts = 550 ft lbs/sec 1 watt = 1/746 HP = 0.00134 HP

HP is horsepower

$$kW = \frac{HP \times 746}{10^3}$$

### Shunt Law

I1 × R1 = I2 × R2

In and Iz are currents in amperes

I1 = I2 × R2

R1and R2 are resistance in ohms.

 $I_2 = \frac{I_1 \times R_1}{R_2}$ 

12 = R2

 $R_1 = \frac{I_2 \times R_2}{I_1}$   $R_2 = \frac{I_1 \times R_1}{I_2}$ 

The sum of the currents flowing toward a junction is zero.

Kirchhoff's Law for Current  $l_1 + l_2 + l_3 = 0$ 

Kirchhoff's Voltage Law E1 + E2 + E3 = 0 The sum of the voltage drops in a closed loop is equal to zero.

Time Constant for Series RL

t = L/R



t is the time (in seconds) for current to reach 63.2% of peak; L is in henrys and R is in ohms.

Time Constant for Series RC

t = R × C



t is the time (in seconds) for the voltage across the capacitor to reach 63.2% of peak; R is in ohms and C is in farads



### Meters (Measuring Instruments)

Is Is shunt current: Im is meter current: both must be In same current units. Rs is meter resistance both must be in same resistance units

### Meter Multiplier Resistance

R is value of multiplier resistance: Rm is meter resistance and n is the multiplication factor

### Meter Sensivitity

$$M_s = \frac{Rm + R_1}{C}$$

Ms is meter sensitivity in ohms per volt: Rm is meter resistance and R₁ is multiplier resistance. E is full scale reading in volts.

### Wheatstone Bridge

$$R_r = \frac{R_3 \times R_2}{R_1}$$

Rr is unknown resistance value: R1 , R2 and R3 are bridge resistance elements



### Slide-Wire Bridge





# Voltages In Series-Aiding



# Voltages In Series-Opposing



# Line and Branch Currents



### AC CIRCUITS

# Capacitors in Series

$$C_1 = \frac{C_1 \times C_2}{C_1 + C_2}$$

All capacitance units must be in farads or in identical submultiples

$$\frac{1}{C_1} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} \dots$$



### Capacitors in Parallel

$$C_1 = C_1 + C_2 + C_3 \dots$$



# Inductors in Series (no coupling)

All inductance units must be in henrys or identical submultiples



### Inductors in Series-Aiding

$$L_1 = L_1 + L_2 + 2M$$

### Inductors in Series-Opposing

# Inductors in Parallel (no coupling)

# Frequency-Wavelength of Sine Wavel

$$\lambda = 3 \times 1)^5 / f$$

λ is wavelength in meters f is frequency in kHz

# Period of a Sine Wave

$$t = 1/f$$

t is time in seconds: f is frequency in Hz

# Sine Wave Voltages or Currents

$$\mathsf{Eeff} = \frac{\mathsf{Epeak}}{\sqrt{2}} = \frac{\mathsf{Epeak}}{1.414} = 0.707 \mathsf{Epeak}$$

### Susceptance

$$B = \frac{X}{R^2 + X^2}$$

B is susceptance in mhos R = resistive ohms X = reactive ohms

B = susceptance in mhos X = reactive ohms

# Power In AC Circuit

$$P = E \times 1$$

P is apparent power in watts: E is voltage in volts and I is current in amperes

True Power: P = EI 
$$\cos \phi$$
 = EI  $\times$  pf pf = P/EI =  $\cos \phi$   $\cos \phi$  = true power/apparent power

### Transformers

 $\frac{E_p}{F_a} = \frac{N_p}{N_a}$ 

Es is voltage across primary winding Es is voltage across secondary

N<sub>p</sub> = number of primary turns
N<sub>e</sub> = number of secondary turns





$$\frac{I_p}{I_0} = \frac{N_0}{N_0}$$

Ip = primary current
 Is = secondary current
 voltages and currents must be in basic units or similar multiples

$$T_r = \sqrt{Z_s / Z_p} = \frac{N_s}{N_p}$$

 $\begin{array}{l} T_r = turns \ ratio: Z_s \ and \ Z_pare \\ secondary \ and \ primary impedances \\ in ohms: N_p = primary turns: \\ N_s = secondary turns \end{array}$ 

# Capacitive Reactance

$$X_c = \frac{1}{2\pi fC}$$

π = 3.14159 approximately f is frequency in Hz; C is capacitance in farads L is inductance in henrys

### Inductance Reactance

 $XL = 2\pi fL$ 

# Ohm's Law for AC

 $E_C = I \times X_C$  $E_L = I \times X_L$ 

ER = I × R



Table 14-3. Electronic Formulas (cont'd)



Impedance of R Circuit

$$Z = R$$

Impedance of Series RC Circuit

$$Z = \sqrt{R^2 + Xc^2}$$



Impedance of Series RL Circuit

$$Z = \sqrt{R^2 + XL^2}$$



Impedance of Series RLC Circuit

$$Z = \sqrt{R^2 + (XL - Xc)^2}$$



Impedance of Parallel RL Circuit

$$Z = \frac{RX_L}{\sqrt{R^2 + X_L^2}}$$



### Impedance of Parallel RC Circuit

$$Z = \frac{RX_c}{\sqrt{R^2 + X_c^2}}$$



# impedance of Parallel RLC Circuit

$$Z = \frac{RX_L X_c}{\sqrt{X_L^2 X_c^2 + R^2 (X_L - X_c)^2}}$$



### Impedance

At resonance: XL = Xc

# Resonant Frequency

$$f_0 = \frac{1}{2\pi\sqrt{100}}$$

fo is the frequency in hertz. L is in henrys; C in farads

### Series Resonance

Z (at any frequency) = 
$$R + j(X_L - X_c)$$
  
Z(at resonance) =  $R$ 

### Parallel Resonance

$$Z_{max} \text{ (at resonance)} = \frac{XL \ Xc}{R} = \frac{XL^2}{R}$$
 
$$(XL = Xc) = QXL = \frac{L}{RC}$$

# Impedance and Phase Angle of Series RL Shunted by C

$$Z = X_{c} \sqrt{\frac{R^{2} X_{L}^{2}}{R^{2} + (X_{L} - X_{c})^{2}}}$$

$$\phi = \arctan \frac{X_{L} (X_{c} - X_{L}) - R^{2}}{RX_{c}}$$



### Bandwidth

$$\Delta = \frac{f_0}{Q} = \frac{R}{2\pi L}$$

### Tube Characteristics

$$\mu = \frac{\Delta e_p}{\Delta e_\mu}$$
 (ip constant)

 $\mu$  is amplification factor

gm is grid-plate transconductance rp is AC plate resistance

$$r_{p} = \frac{\Delta e_{p}}{\Delta i_{p}} \text{ (eg constant)}$$

$$g_m = \frac{\Delta i_p}{\Delta e_0}$$
 (ep constant)

### Transistor Characteristics

$$\alpha = \frac{\Delta ic}{\Delta ic}$$

α is current gain: lc is collector current: ie is emitter current

### Resistance Gain

rg is resistance gain: ro is output resistance: r1 is input resistance

### Voltage Gain

$$v_g = \frac{\theta_0}{\theta} = \frac{ic \ ro}{ie \ r_1} = \alpha \frac{ro}{r_1}$$

eo is output voltage e1 is input voltage

### Power Gain

$$P_g = \alpha 2 \frac{r_0}{r_1}$$

### Base Current Amplification Facto

$$\beta = \frac{\Delta ic}{\Delta ic}$$

ic is collector current β is base current amplification factor

Decibels (power ration)

Decibels (current and voltage ratio)

$$dB = 20 \log \frac{l_2 \sqrt{R_2}}{l_1 \sqrt{R_1}} \qquad \log to base 10$$

$$dB = 20 log \frac{E_2 \sqrt{R_1}}{E_1 \sqrt{R_2}}$$

When Reference Level is 1 milliwatt

$$dBf = 20 \log (\mu V/0.55)$$



## Chapter 15 Transistors

#### TRANSISTOR ALPHA AND BETA

The current amplification factor of a transistor can be expressed in terms of either alpha (a) or beta (B). The ratio between a change in collector current for a change in emitter current is called alpha, and since alpha is less than unity, you will find it given as a decimal.

decimai.

When we change emitter current we not only change collector current but base current as well. The ratio of a change in collector current to a change in base current is also used as a measure of the amplification of a transistor and is represented by beta.

The relationship between alpha and beta is shown in these formulas:

or 
$$\beta = \alpha/1 - \alpha$$
 
$$\alpha = 1 - 1/[\beta + 1]$$

Because alpha is a decimal it sometimes makes a problem awkward to handle. For this reason it is sometimes more convenient to give current amplification as beta. Since beta is always in whole numbers it becomes convenient when comparing the current gains of different transistors.

Table 15-1 supplies common values of alpha and corresponding values for beta. The range of alpha is from 0.5 to 0.9964; that of beta is from 1 to 270.

### □Example:

The current gain (alpha) of a transistor is 0.9730. What is its current gain in terms of beta?

## Table 15-1. Alpha vs Beta.

| β        | α                | β        | α                | β          | α      |
|----------|------------------|----------|------------------|------------|--------|
| 1        | 0.5000           | 40       | 0.9756           | 79         | 0.9875 |
| 2        | 0.6666           | 41       | 0.9762           | 80         | 0.9877 |
| 3        | 0.7500           | 42       | 0.9767           | 81         | 0.9878 |
| 4        | 0.8000           | 43       | 0.9773           | 82         | 0.9880 |
| 5        | 0.8333           | 44       | 0.9778           | 83         | 0.9881 |
| 6        | 0.8571           | 45       | 0.9782           | 84         | 0.9882 |
| 7        | 0.8750           | 46       | 0.9786           | 8.5        | 0.9884 |
| 8        | 0.8889           | 47       | 0.9792           | 86         | 0.9885 |
| 9        | 0.9000           | 48       | 0.9796           | 87         | 0.9886 |
| 10       | 0.9091           | 49       | 0.9800           | 88         | 0.9888 |
| 11       | 0.9167           | 50       | 0.9804           | 89         | 0.9889 |
| 12       | 0.9231           | 51       | 0.9808           | 90         | 0.9890 |
| 13       | 0.9286           | 52       | 0.9811           | 91         | 0.9891 |
| 14       | 0.9333           | 53       | 0.9815           | 92         | 0.9892 |
| 15       | 0.9375           | 54       | 0.9818           | 93         | 0.9894 |
| 16       | 0.9412           | 55       | 0.9821           | 94         | 0.9895 |
| 17       | 0.9444           | 56       | 0.9825           | 95         | 0.9896 |
| 18       | 0.9474           | 57       | 0.9828           | 96         | 0.9897 |
| 19       | 0.9500           | 58       | 0.9831           | 97         | 0.9898 |
| 20<br>21 | 0.9524<br>0.9545 | 59       | 0.9833           | 98         | 0.9899 |
| 22       | 0.9545           | 60       | 0.9836           | 99         | 0.9900 |
| 22       |                  | 61       | 0.9839           | 100        | 0.9901 |
|          | 0.9583           | 62       | 0.9841           | 110        | 0.9909 |
| 24       | 0.9600           | 63       | 0.9844           | 120        | 0.9917 |
| 25<br>26 | 0.9615           | 64<br>65 | 0.9846<br>0.9848 | 125<br>130 | 0.9921 |
| 27       | 0.9643           | 66       | 0.9848           | 140        | 0.9931 |
| 28       | 0.9643           | 67       | 0.9853           | 150        | 0.9932 |
| 28       | 0.9657           | 68       | 0.9855           | 160        | 0.9933 |
| 30       | 0.9667           | 68       |                  |            |        |
| 31       | 0.9688           | 70       | 0.9857<br>0.9859 | 170<br>180 | 0.9942 |
| 32       | 0.9697           | 71       | 0.9861           | 190        | 0.9948 |
| 33       | 0.9706           | 72       | 0.9863           | 200        | 0.9948 |
| 34       | 0.9714           | 73       | 0.9865           | 210        | 0.9954 |
| 35       | 0.9722           | 74       | 0.9867           | 220        | 0.9956 |
| 36       | 0.9730           | 75       | 0.9868           | 230        | 0.9958 |
| 37       | 0.9737           | 76       | 0.9870           | 240        | 0.9960 |
| 38       | 0.9744           | 77       | 0.9872           | 250        | 0.9962 |
| 39       | 0.9750           | 78       | 0.9873           | 260        | 0.9963 |
|          | 2.7700           | . •      | 5.7075           | 270        | 0.9964 |
|          |                  |          |                  | 2/0        | 0.7704 |

Table 15-1 shows that an alpha of 0.9730 corresponds to a beta of 36.

### □Example:

What is the alpha of a transistor if its beta value is 76? Locate 76 in the column marked beta. To the right find the value of beta in terms of alpha, 0.9870.

#### TRANSISTOR TESTING

Transistors can be checked with ohmmeters that have low voltage and low current. Some meters use voltages of 10 volts or more on the high resistance scales and have no current limiting resistor on the low scale, hence such instruments can damage transistors. The method used in Table 15-2 does not indicate the quality of the transistor, simply whether it is good or bad. If the transistor is connected into the circuit, at least two of its three leads must be disconnected. The base is shorted to either of the other elements for the last four tests.

Table 15-2. Method for Testing Transistors

| Meter    | (F))         |           | Resistance (×100 so |          |  |
|----------|--------------|-----------|---------------------|----------|--|
| Emitter  | Base         | Collector | PNP type            | NPN type |  |
| positive | negative     | (none)    | low                 | high     |  |
| negative | positive     | (none)    | high                | Iow      |  |
| (none)   | positive     | negative  | high                | low      |  |
| (none)   | negative     | positive  | low                 | high     |  |
| negative | (none)       | positive  | high                | mid      |  |
| positive | (none)       | negative  | mid                 | high     |  |
| positive | to emitter   | negative  | high                |          |  |
| positive | to collector | negative  | Iow                 |          |  |
| negative | to emitter   | positive  |                     | high     |  |
| negative | to collector | positive  |                     | Iow      |  |

#### INTERNAL INPUT AND OUTPUT RESISTANCES OF A TRANSISTOR

There is no isolation between the input and output circuits of a transistor. These are related through their respective resistances, as indicated in Table 15-3.

| EMITTER | ° re | r <sub>c</sub> | COLLECTOR |
|---------|------|----------------|-----------|
|         |      | BASE           |           |

Fig. 15-1. Transistor resistance diagram.

| T;               | able 15-3. Transistor Resistar | nces              |
|------------------|--------------------------------|-------------------|
| Circuit          | Input resistance               | Output resistance |
| Common base      | re + rb                        | re + ro           |
| Common emitter   | tp + te                        | Fc + Fe           |
| Common collector | rb + rc                        | re + rc           |

# Chapter 16 Digital Logic

#### LOGIC GATES

Gates are used in a wide variety of electronic equipment. In logic circuits, 1 can represent a closed circuit condition; 0 an open circuit. A closed circuit, or 1, is sometimes called a *true* condition; an open circuit is called false. Figures 16-1 through 16-6 shows basic diagrams, logic symbols and truth tables. Truth tables indicate operating conditions.



Fig. 16-1. AND gate and its truth table. SW1 and SW2 must be closed for the light bulb to be on.



Fig. 16-2. OR gate and its truth table. Either SW1 or SW2 must be closed for the light bulb to be on.



Fig. 16-3. Inverter circuit is often used with gates. This circuit changes output from plus to minus, or from minus to plus. The small circle indicates the inversion function. Without it the diagram is that of an ordinary non-inverting amplifier.



Fig. 16-4. NAND gate and its truth table. Same as AND gate but note small circle to indicate inversion of signal.



Fig. 16-5. NOR gate and its truth table. This is a negative OR gate



Fig. 16-6.
Exclusive OR gate. This circuit produces output when inputs are not identical.

#### LOGIC DIAGRAMS

The chart in Table 16-1 shows some possible arrangements of ADD and OR gates. The small circle attached to the symbol indicates signal inversion. Inversion can be arranged for one input, both inputs, or for the output.

Table 16-1. Logic Diagrams

| GA                 | TES                                   | TRUTH TABLES                     |
|--------------------|---------------------------------------|----------------------------------|
| AND                | OR                                    | ABC                              |
| å                  | ^—D~- c                               | 0 0 0<br>0 1 0<br>1 0 0<br>1 1 1 |
| å <u> </u>         | ^—;D—c                                | 0 0 1<br>0 1 1<br>1 0 1<br>1 1 0 |
| A<br>B             | A                                     | 0 0 0<br>0 1 1<br>1 0 1<br>1 1 1 |
| A—□<br>B—□ □ □ □ □ | A———————————————————————————————————— | 0 0 1<br>0 1 0<br>1 0 0<br>1 1 0 |
| A                  | A                                     | 0 0 0<br>0 1 1<br>1 0 0<br>1 1 0 |
| å—, D— °           | A                                     | 0 0 0<br>0 1 0<br>1 0 1<br>1 1 0 |
| <b>^</b> —□□~∘     | A                                     | 0 0 1<br>0 1 0<br>1 0 1<br>1 1 1 |
| A————— □ □ □ □     | A                                     | 0 0 1<br>0 1 1<br>1 0 0<br>1 1 1 |

#### **BOOLEAN ALGEBRA**

In Boolean algebra, letters are used to represent switches. Boolean algebra is used for the design of switching circuits or logic gates. A plus symbol is used in place of the work OR. The AND symbol is a dot placed between two letters (A • B). Note the dot is moved up a bit so as not to confuse it with a decimal point. The dot symbol for AND is sometimes omitted and the two letters are written immediately adjacent to each other (A • B is the same as AB). The NOT function is shown by a line above a letter or by a prime mark as in Āo Ar S. See Tables 16-2 and 16-3.

Table 16-2. Boolean Algebra Definitions.

| Definitions  |                                |
|--------------|--------------------------------|
| a, b, c, etc | Symbols used in symbolic logic |
| a • b or ab  | Bead as: a or b                |
|              | Read as: not a                 |
|              | Read as: not a                 |
|              | "True" or "on"                 |
|              | "False" or "Off"               |
|              | Read as "not not" A            |
|              | Read as "not A AND not B"      |
| A + B        | Read as "not A OR not B"       |

Table 16-3. Theorems in Boolean Algebra.

| A+A=A                   | A + AB = A                                                   |
|-------------------------|--------------------------------------------------------------|
| A • A = A               | A(A+B) = A                                                   |
| A+1=1                   | $\overline{A+B} = \overline{AB}$                             |
| A • 1 = A               | $\overline{AB} = \overline{A} + \overline{B}$                |
| A+0=A                   | A(Ā+B) = AB                                                  |
| A • O = O               | A+ĀB=A+B                                                     |
| $A + \widetilde{A} = 1$ | Ā+AB=Ā+B                                                     |
| A • Ā = 0               | $\overline{A} + A\overline{B} = \overline{A} + \overline{B}$ |
| Ā≠A                     |                                                              |
|                         | · ·                                                          |

#### **BOOLEAN EXPRESSIONS FOR GATING CIRCUITS**

Logic circuits can be described in Boolean functions. Figure 16-7 shows various gates and their equivalent Boolean expressions and truth tables.



Fig. 16-7. Boolean Logic.



## Chapter 17 Wire

#### GAUGE

The cross sectional area of wire approximately doubles for every three gauge numbers. At the same time the current carrying capacity is doubled. Every wire size becomes 12.3 percent greater in diameter as the wire gauge number is decreased by one. Wire gauges are based on this computation:

Wire gauge diameter (mils) x 1.123 = diameter of next larger size.  $\Box$ Example:

Gauge 22 wire has a diameter of 25.347 mils

25.347 x 1.123 = 28.464681 mils = diameter of No. 21 wire

Table 17-1. Diameter in mils and area in circular mils of bare copper wire. AWG (American Wire Gauge) or B & S (Browne and Sharpe) Measured at 20 degrees C.

| AWG  | Diameter,<br>mils, d | Area, circular<br>mils, d <sup>2</sup> | Ohms per 1000 ft.<br>at 20°C., or 68°F. | 1000 ft. |
|------|----------------------|----------------------------------------|-----------------------------------------|----------|
| 0000 | 460.00               | 211,600                                | 0.04901                                 | 640.5    |
| 000  | 409.64               | 167.805                                | 0.06180                                 | 508.0    |
| 00   | 364.80               | 133,079                                | 0.07793                                 | 402.8    |
| 0    | 324.86               | 105.534                                | 0.09827                                 | 319.5    |
| 1    | 289.30               | 83.694                                 | 0.1239                                  | 253.3    |
| 2    | 257.63               | 66,373                                 | 0.1563                                  | 200.9    |
| 3    | 229.42               | 52,634                                 |                                         |          |
| 4    | 204.31               | 41,743                                 | 0.1970                                  | 159.3    |
| 5    |                      |                                        | 0.2485                                  | 126.4    |
|      | 181.94               | 33,102                                 | 0.3133                                  | 100.2    |
| 6    | 162.02               | 26,250                                 | 0.3951                                  | 79.46    |
| 7    | 144.28               | 20,817                                 | 0.4982                                  | 63.02    |

Table 17-1. Diameter in Mils and Area in Circular Mils of Bare Copper Wire. AWG (American Wire Gauge) or B&S (Browne and Sharpe). Measured at 20 degrees C (cont'd)

|     |                      | (                                      | •                                       |          |
|-----|----------------------|----------------------------------------|-----------------------------------------|----------|
| AWG | Diameter,<br>mils, d | Area, circular<br>mils, d <sup>2</sup> | Ohms per 1000 ft.<br>at 20°C., or 68°F. | 1000 ft. |
| 8   | 129.49               | 16,768                                 | 0.6282                                  | 49.98    |
| ě   | 114.43               | 13,094                                 | 0.7921                                  | 39.63    |
| 10  | 101.89               | 10.382                                 | 0.9989                                  | 31.43    |
| 11  | 90.742               | 8.234.1                                | 1.260                                   | 24.93    |
| 12  | 80.808               | 6.529.9                                | 1.588                                   | 19.77    |
| 13  | 71.961               | 5,178.4                                | 2.003                                   | 15.68    |
| 14  | 64.084               | 4,106.8                                | 2.525                                   | 12.43    |
| 15  | 57.068               | 3,256.8                                | 3.184                                   | 9.858    |
| 16  | 50.820               | 2.582.7                                | 4.016                                   | 7.818    |
| 17  | 45.257               | 2,048.2                                | 5.064                                   | 6.200    |
| 18  | 40.303               | 1,624.3                                | 6.385                                   | 4.917    |
| 19  | 35.890               | 1,288.1                                | 8.051                                   | 3.899    |
| 20  | 31.961               | 1,021.5                                | 10.15                                   | 3.092    |
| 21  | 28.465               | 810.10                                 | 12.80                                   | 2.452    |
| 22  | 25.347               | 642.47                                 | 16.14                                   | 1,945    |
| 23  | 22.571               | 509.45                                 | 20.36                                   | 1.542    |
| 24  | 20.100               | 404.01                                 | 25.67                                   | 1.223    |
| 25  | 17.900               | 320.41                                 | 32.37                                   | 0.9699   |
| 26  | 15.940               | 254.08                                 | 40.81                                   | 0.7692   |
| 27  | 14.195               | 201.50                                 | 51.47                                   | 0.6100   |
| 28  | 12.641               | 159.79                                 | 64.90                                   | 0.4837   |
| 29  | 11.257               | 126.72                                 | 81.83                                   | 0.3836   |
| 30  | 10.025               | 100.50                                 | 103.2                                   | 0.3042   |
| 31  | 8.928                | 79.71                                  | 130.1                                   | 0.2413   |
| 32  | 7.950                | 63.20                                  | 164.1                                   | 0.1913   |
| 33  | 7.080                | 50.13                                  | 206.9                                   | 0.1517   |
| 34  | 6.305                | 39.75                                  | 260.9                                   | 0.1203   |
| 35  | 5.615                | 31.53                                  | 329.0                                   | 0.0954   |
| 36  | 5.000                | 25.00                                  | 414.8                                   | 0.0757   |
| 37  | 4.453                | 19.83                                  | 523.1                                   | 0.0600   |
| 38  | 3.965                | 15.72                                  | 059.6                                   | 0.0476   |
| 39  | 3.531                | 12.47                                  | 831.8                                   | 0.0377   |
| 40  | 3.145                | 9.89                                   | 1049                                    | 0.0299   |
|     |                      |                                        |                                         |          |

#### **FUSING CURRENTS**

Table 17-2 gives the fusing currents in amperes for five commonly used types of wires. The current I in amperes at which a wire will melt can be calculated from  $I = Kd^{32}$  where dis the wire diameter in inches and K is a constant that depends on the metal concerned. A wide variety of factors influence the rate of heat loss and these figures must be considered as approximations.

#### CIRCULAR MIL AREA AND SQUARE MIL AREA

The cross-sectional area of a wire can be stated in square mils or circular mils. The cross-sectional area of a square wire given in square mils is equal to the square of any side, while the cross-

Table 17-2. Fusing Currents of Wires

| AWG<br>B&S<br>gauge | d in inches | copper<br>K =<br>10,244 | alum-<br>inum<br><i>K</i> ~<br>7585 | german<br>silver<br>K =<br>5230 | iron<br>K =<br>3148 | tin<br>K =<br>1642 |
|---------------------|-------------|-------------------------|-------------------------------------|---------------------------------|---------------------|--------------------|
| 40                  | 0.0031      | 1.77                    | 1.31                                | 0.90                            | 0.54                | 0.28               |
| 38                  | 0.0039      | 2.50                    | 1.85                                | 1.27                            | 0.77                | 0.40               |
| 36                  | 0.0050      | 3.62                    | 2.68                                | 1.85                            | 1.11                | 0.58               |
| 34                  | 0.0063      | 5.12                    | 3.79                                | 2.61                            | 1.57                | 0.82               |
| 32                  | 0.0079      | 7.19                    | 5.32                                | 3.67                            | 2.21                | 1.15               |
| 30                  | 0.0100      | 10.2                    | 7.58                                | 5.23                            | 3.15                | 1.64               |
| 28                  | 0.0126      | 14.4                    | 10.7                                | 7.39                            | 4.45                | 2.32               |
| 26                  | 0.0159      | 20.5                    | 15.2                                | 10.5                            | 6.31                | 3.29               |
| 24                  | 0.0201      | 29.2                    | 21.6                                | 14.9                            | 8.97                | 4.68               |
| 22                  | 0.0253      | 41.2                    | 30.5                                | 21.0                            | 12.7                | 6.61               |
| 20                  | 0.0319      | 58.4                    | 43.2                                | 29.8                            | 17.9                | 9.36               |
| 19                  | 0.0359      | 69.7                    | 51.6                                | 35.5                            | 21.4                | 11.2               |
| 18                  | 0.0403      | 82.9                    | 61.4                                | 42.3                            | 25.5                | 13.3               |
| 17                  | 0.0452      | 98.4                    | 72.9                                | 50.2                            | 30.2                | 15.8               |
| 16                  | 0.0508      | 117                     | 86.8                                | 59.9                            | 36.0                | 18.8               |
| 15                  | 0.0571      | 140                     | 103                                 | 71.4                            | 43.0                | 22.4               |
| 14                  | 0.0641      | 166                     | 123                                 | 84.9                            | 51.1                | 26.6               |
| 13                  | 0.0719      | 197                     | 146                                 | 101                             | 60.7                | 31.7               |
| 12                  | 0.0808      | 235                     | 174                                 | 120                             | 72.3                | 37.7               |
| 11                  | 0.0907      | 280                     | 207                                 | 143                             | 86.0                | 44.9               |
| 10                  | 0.1019      | 333                     | 247                                 | 170                             | 102                 | 53.4               |
| 9                   | 0.1144      | 396                     | 293                                 | 202                             | 122                 | 63.5               |
| 8 7                 | 0.1285      | 472                     | 349                                 | 241                             | 145                 | 75.6               |
| 6                   | 0.1443      | 561                     | 416                                 | 287                             | 173                 | 90.0               |
| 6                   | 0.1620      | 668                     | 495                                 | 341                             | 205                 | 107                |

sectional area of a circular wire given in circular mils is equal to the square of the diameter.

A circular wire having a diameter of 1 mil will have an area of 1 circular mil. A square wire having a side of 1 mil will have an area of 1 square mil. However, an area of 1 circular mil is somewhat smaller than an area of 1 square mil, as indicated in Fig. 17-1.



Fig. 17-1. Relationship of circular and square mil area. The shaded area in the lower drawing indicates the large cross-sectional area of the square wire.

#### Square mils = circular mils x 0.7854 Circular mils = square mils/0.7854

Tables 17-3 and 17-4 supply conversion data for circular and square wires.

Table 17-3 Circular Mil Area vs. Square Mil Area.

| Table 17-3. Circular mil Area Vs. Square mil Area. |         |      |         |      |         |  |
|----------------------------------------------------|---------|------|---------|------|---------|--|
| Circular                                           |         | Cir. | Sq.     | Cir. | Sq.     |  |
| Mils                                               | Mils    | Mils | Mils    | Mils | Mils    |  |
| 1                                                  | 0.7854  | I 11 | 8.6394  | l 21 | 16.4934 |  |
| 2                                                  |         |      | 9.4248  | 22   | 17,2788 |  |
|                                                    | 1.5708  | 12   |         |      |         |  |
| 3                                                  | 2.3562  | 13   | 10.2102 | 23   | 18.0642 |  |
| 4                                                  | 3.1416  | 14   | 10.9956 | 24   | 18.8496 |  |
| 5                                                  | 3.9270  | 15   | 11.7810 | 25   | 19.6350 |  |
|                                                    | 4.710.4 | ١,,  | 30.5444 | 26   | 20.4204 |  |
| 6<br>7                                             | 4.7124  | 16   | 12.5664 |      |         |  |
|                                                    | 5.4978  | 17   | 13.3518 | 27   | 21.2058 |  |
| 8                                                  | 6.2832  | 18   | 14.1372 | 28   | 21.9912 |  |
| 9                                                  | 7.0686  | 19   | 14.9226 | 29   | 22.7766 |  |
| 10                                                 | 7.8540  | 20   | 15.7080 | 30   | 23.5620 |  |
|                                                    |         |      |         |      |         |  |
| 31                                                 | 24.3474 | 56   | 43.9824 | 76   | 59.6904 |  |
| 32                                                 | 25.1328 | 57   | 44.7678 | 77   | 60.4758 |  |
| 33                                                 | 25.9182 | 58   | 45.5532 | 78   | 61.2612 |  |
| 34                                                 | 26.7036 | 59   | 46.3386 | 79   | 62.0466 |  |
| 35                                                 | 27.4890 | 60   | 47.1240 | 80   | 62.8320 |  |
|                                                    |         |      |         |      |         |  |
| 36                                                 | 28.2744 | 61   | 47.9094 | 81   | 63.6174 |  |
| 37                                                 | 29.0598 | 62   | 48.6948 | 82   | 64.4028 |  |
| 38                                                 | 29.8452 | 63   | 49.4802 | 83   | 65.1882 |  |
| 39                                                 | 30.6306 | 64   | 50.2656 | 84   | 65.9736 |  |
| 40                                                 | 31.4160 | 65   | 51.0510 | 85   | 66.7590 |  |
|                                                    |         |      |         | 1    | 55.7576 |  |

Table 17-3. Circular Mil Area vs Square Mil Area (cont'd)

| Cir.<br>Mils | Sq.<br>Mils | Cir. | Sq.     | Cir. | Sq.     |
|--------------|-------------|------|---------|------|---------|
| 111115       | MIIS        | Mils | Mils    | Mils | Mils    |
| 41           | 32.2014     | 66   | 51.8364 | 86   | 67.5444 |
| 42           | 32.9868     | 67   | 52.6218 | 87   | 68.3298 |
| 43           | 33.7722     | 68   | 53.4072 | 88   | 69.1152 |
| 44           | 34.5576     | 69   | 54.1926 | 89   | 69.9006 |
| 45           | 35.3430     | 70   | 54.9780 | 90   | 70.6860 |
| 46           | 36.1284     | 71   | 55.7634 | 91   | 71.4714 |
| 47           | 36.9138     | 72   | 56.5488 | 92   | 72.2568 |
| 48           | 37.6992     | 73   | 57.3342 | 93   | 73.0422 |
| 49           | 38.4846     | 74   | 58.1196 | 94   | 73.8276 |
| 50           | 39.2700     | 75   | 58.9050 | 95   | 74.6130 |
| 51           | 40.0554     |      |         | 96   | 75.3984 |
| 52           | 40.8408     |      |         | 97   | 76.1838 |
| 53           | 41.6262     |      |         | 98   | 76.9692 |
| 54           | 42.4116     |      |         | 99   | 77.7546 |
| 55           | 43.1970     |      |         | 100  | 78.5400 |

Table 17-4. Square Mil Area vs. Circular Mil Area.

| Squa | re Circular | Sq.  | Cir.   | I Sq. | Cir.    |
|------|-------------|------|--------|-------|---------|
| Mils | s Mils      | Mils | Mils   | Mils  | Mils    |
| 1    | 1.273       | 6    | 7.638  | 11    | 14.003  |
| 2    | 2.546       | 7    | 8.911  | 12    | 15.276  |
| 3    | 3.819       | 8    | 10.184 | 13    | 16,549  |
| 4    | 5.092       | 9    | 11.457 | 14    | 17.822  |
| 5    | 6.366       | 10   | 12.730 | 15    | 19.095  |
| 16   | 20.368      | 46   | 50.550 |       |         |
| 17   | 21.641      | 40   | 58.558 | 76    | 96.748  |
| 18   | 22.914      |      | 59.831 | 77    | 98.021  |
|      |             | 48   | 61.104 | 78    | 99.294  |
| 19   | 24.187      | 49   | 62.377 | 79    | 100.567 |
| 20   | 25.460      | 50   | 63.650 | 80    | 101.840 |
| 21   | 26.733      | 51   | 64.923 | 81    | 103.113 |
| 22   | 28.006      | 52   | 66.196 | 82    | 104,386 |
| 23   | 29.279      | 53   | 67.469 | 83    | 105.659 |
| 24   | 30.552      | 54   | 68.472 | 84    | 106.932 |
| 25   | 31.825      | 55   | 70.015 | 85    | 108.205 |
|      |             |      |        |       |         |

Table 17-4. Square Mil Area vs Circular Mil Area (cont'd)

| Sq.<br>Mils | Cir.<br>Mils | Sq.<br>Mils | Cir.<br>Mils | Sq.<br>Mils | Cir.<br>Mils |
|-------------|--------------|-------------|--------------|-------------|--------------|
| 26          | 33.098       | 56          | 71.288       | 86          | 109.478      |
| 27          | 34.371       | 57          | 72.561       | 87          | 110.751      |
| 28          | 35.644       | 58          | 73.834       | 88          | 112.024      |
| 29          | 36.917       | 59          | 75.107       | 89          | 113.297      |
| 30          | 38.190       | 60          | 76.380       | 90          | 114.570      |
|             |              | 1           |              | 1           |              |
| 31          | 39.463       | 61          | 77.653       | 91          | 115.843      |
| 32          | 40.736       | 62          | 78.926       | 92          | 117.116      |
| 33          | 42.009       | 63          | 80.199       | 93          | 118.389      |
| 34          | 43.282       | 64          | 81.472       | 94          | 119.662      |
| 35          | 44.555       | 65          | 82.745       | 95          | 120.935      |
| 21          | 45.828       | 66          | 84.018       | 96          | 122.208      |
| 36          | 45.828       | 67          | 85.291       | 97          | 123.481      |
| 37          |              | 68          | 86.564       | 98          | 124.754      |
| 38          | 48.374       |             |              |             |              |
| 39          | 49.647       | 69          | 87.837       | 99          | 126.027      |
| 40          | 50.920       | 70          | 89.110       | 100         | 127.300      |
| 41          | 52.193       | 71          | 90.383       |             |              |
| 42          | 53.466       | 72          | 91.656       | 1           |              |
| 43          | 54.739       | 73          | 92.929       | 1           |              |
| 44          | 56.012       | 74          | 94.202       |             |              |
| 45          | 57.285       | 75          | 95.475       | 1           |              |

## Chapter 18 Color Codes

Resistors may be identified by using the color code recommended by the Electronics Industries Association (EIA). Each color indicates a number. See Table 18-1.

Table 18-1. The Basic Color Code

| Black  | 0 | Green  | 5 |
|--------|---|--------|---|
| Brown  | 1 | Blue   | 6 |
| Red    | 2 | Violet | 7 |
| Orange | 3 | Gray   | 8 |
| Yellow | 4 | White  | 9 |

These colors are used to indicate the values of resistors and they are also used to represent tolerance. Thus, brown is a tolerance of plus or minus 1 percent, red is plus or minus 2 percent, orange is plus or minus 3 percent and yellow is plus or minus 4 percent. However, gold is used for plus or minus 5 percent and silver for plus or minus 10 percent and silver for plus or minus 10 percent. Absence of color means plus or minus 20 percent.

#### RESISTORS

The value of a resistor in ohms is coded by rings of color placed at one end. The first color is the first significant figure or digit of the resistance value. The second color is the second significant figure or digit of the resistance value. The third color, known as the decimal multiplier, represents the number of zeros which follow the first wo digits. Resistors having a tolerance of plus or minus 20 percent have only three bands of color. A fourth color, if used, is the tolerance. This fourth color is either silver or gold. Table 18-2 lists the resistor color code.

#### □Example:

What is the value of a resistor that is color coded yellow, violet and orange?

The first color, yellow, is 4. The second color, violet, is 7. The final color, orange, is 3 and represents three zeros. The resistance is 47,000 ohms.

| is 47,000 ol          | nms.                    |        |                                     |               |
|-----------------------|-------------------------|--------|-------------------------------------|---------------|
|                       |                         |        | Code for Resistors                  |               |
|                       | First S                 | econd  |                                     |               |
| Color                 | Digit                   | Digit  | Multiplier                          | Tolerance (±) |
| Black                 | -                       | 0      | 1                                   | -             |
| Brown                 | 1                       | 1      | 10                                  | 1 %           |
| Red                   | 2                       | 2      | 100                                 | 2 %           |
| Orange                | 3                       | 3      | 1,000                               | 3%            |
| Yellow                | 4                       | 4      | 10,000                              | 4%            |
| Green                 | 5                       | 5      | 100,000                             |               |
| Blue                  | 6                       | 6      | 1,000,000                           |               |
| Violet                | 7                       | 7      | 10,000,000                          |               |
| Gray                  | 8                       | 8      | 100,000,000                         |               |
| White                 | 9                       | 9      | 1,000,000,000                       |               |
| Silver                |                         |        |                                     | 10%           |
| Gold                  |                         |        |                                     | 5%            |
| No color              |                         | BLACK  | -                                   | 20%           |
| BLACK - 0             | BLACK - 0               | BROWN  | - 0<br>- 00                         | TOLERANCE     |
| BROWN - 1<br>RED - 2  | BROWN - 1<br>RED - 2    | ORANGI |                                     | GOLD ±5%      |
| ORANGE - 3            | ORANGE - 3              | YELLOW | v - 0000                            | SILVER ±10%   |
| YELLOW - 4            | YELLOW - 4<br>GREEN - 5 | GREEN  | - 00000<br>- 000000                 | NO BAND ±20%  |
| BLUE - 6              | BLUE - 6                | VIOLET | - 0000000                           | NO BAND -20%  |
| VIOLET - 7            | VIOLET + 7              | GRAY   | - 00000000<br>- 000000000           | 1             |
| GRAY - 8<br>WHITE - 9 | GRAY - 8<br>WHITE - 9   | GOLD   | <ul> <li>Multiply by 0.1</li> </ul> | 1             |
| (HIII 2)              | THE STATE OF            | SILVER | - Multiply by 0.0                   | INSULATED     |
| İ                     |                         |        |                                     | BODY (TAN)    |
| L                     | $\neg \sqcap \sqcap$    |        |                                     |               |
|                       | Paragraph.              |        |                                     |               |
|                       |                         |        | =                                   | $\rightarrow$ |
|                       | MEMB                    |        |                                     |               |

Fig. 18-1. Resistor markings.

### DIODES

Crystal diodes might be marked according to the EIA color code given in Table 18-1. The color bands start from the cathode



Fig. 18-2. Crystal diodes are marked according to the same basic color code used for resistors.

Table 18-3. Color Code for Power Transformers

|                   | Sec                    |                              |                       |  |
|-------------------|------------------------|------------------------------|-----------------------|--|
| Primary           | Rectifier              | Filament<br>Windings         | Calar                 |  |
| Primary (na taps) | _                      | _                            | Black                 |  |
| Primary (tapped); |                        |                              | 0.00                  |  |
| Camman            | _                      | _                            | Black                 |  |
| Tap No. 1         | _                      | _                            | Black-yellaw          |  |
| Tap Na. 2         | -                      | _                            | Black-arange          |  |
| Finish            | -                      | -                            | Black-red             |  |
| -                 | Plate<br>center tap    | -                            | Red<br>Red-yellow     |  |
| -                 | Filament<br>center tap | -                            | Yellaw<br>Yellaw-blue |  |
| -                 | -                      | Filament Na. 1<br>Center tap | Green<br>Green-yellow |  |
| _                 | _                      | Filament No. 2<br>Center tap | Brawn<br>Brawn-yellow |  |
|                   |                        | Filament Na. 3<br>Center tap | Slate<br>Slate-yellaw |  |

end and represent the digits following the 1N prefix. For example, the diode in the drawing is a 1N627. (Other manufacturers use other number and letter combinations in place of 1N.)

#### ELECTROLYTIC CAPACITORS

Electrolytic capacitors are marked showing the rated capacitance in microfarads, the rated DC working voltage, and terminal identification. The data are generally printed or stamped directly on the case of the capacitor.

#### POWER TRANSFORMERS

Table 18-3 supplies the color code for power transformers. A bare wire (if used) represents the connection to the Faraday shield (electrostatic screen) between the primary and secondary windings. This wire should be grounded.

## Chapter 19 Heat and Energy

Table 19-1 shows the relationship between heat and its equivalent in work or energy.

Table 19-1. Heat vs Energy

Amount of heat

Equivalent amount of work or energy

1 calorie 1 B.t.u. 0.239 calorie 4.186 joules 778 foot-pounds 1 joule



# Chapter 20 Thermocouples

#### THERMOCOUPLES

A thermocouple consists of two dissimilar metals with one at a higher temperature than the other. A voltage is produced under these circumstances, with the amount of current generated proportional to the temperature difference. Table 20-1 shows voltages produced by thermocouple materials with the cold junction kept at 0°C. In Table 20-1 the column at the extreme left shows one element of the thermocouple; the other element is either platinum-rhodium or copper-constantan.

Table 20-1. Potentials of Thermocouples

|                  |         |                    |                       | EMF in millivolts              |                                 |  |
|------------------|---------|--------------------|-----------------------|--------------------------------|---------------------------------|--|
| Substance<br>Tin | Point   | Degrees<br>Celsius | Degrees<br>Fahrenheit | Platinum-<br>rhodium<br>couple | Copper-<br>constantan<br>couple |  |
|                  | melting | 231.9              | 449.0                 | 1.706                          | 11.009                          |  |
| Cadmium          | melting | 320.9              | 609.6                 | 2.503                          | 16.083                          |  |
| Zinc             | melting | 419.4              | 786.9                 | 3,430                          |                                 |  |
| Sulphur          | boiling | 444.5              | 920.1                 | 3.672                          |                                 |  |
| Aluminum         | melting | 658.7              | 1217.6                | 5.827                          |                                 |  |
| Silver           | melting | 960.2              | 1760.3                | 9.111                          |                                 |  |
| Copper           | melting | 1082.8             | 1981.0                | 10.534                         |                                 |  |
| Nickel           | melting | 1452.6             | 2646.6                | 14.973                         |                                 |  |
| Platinum         | melting | 1755               | 3101                  | 19 600                         |                                 |  |



# Chapter 21 Chemical Properties

Table 21-1. Metallic Elements.

| Number of Symbol             | Color         | Atomic<br>Weight |              | Specific<br>Heat | Melting-<br>point<br>(°Celsius) | Coefficient<br>of Linear<br>Expansion |
|------------------------------|---------------|------------------|--------------|------------------|---------------------------------|---------------------------------------|
| AluminumAl                   | Tin-white     | 27.1             | 2 67         | 0 2140           | 657                             | 0.0000231                             |
| AntimonySb                   | Bluish-white  | 120.2            | 6.71-6 86    | 0.0508           | 630                             | 0.0000105                             |
| ArsenicAs                    | Steel-grey    | 75.0             | 5.72         | 0.081            | 450                             | 0.0000055                             |
| BanumBa                      | Pinkish-grey  | 137.4            | 3.8          | 0.068            | 850                             |                                       |
| BerylliumGI                  | Silver-white  | 9.1              | 1.9          | 0.5820           | -                               | _                                     |
| BismuthBi                    | Pinkish-white | 208.0            | 9.823        | 0.0305           | 268                             | 0.000014                              |
| Bromine Br                   | _             | 79.6             | -            | _                |                                 | 0.000014                              |
| CadmiumCd                    | Tin-white     | 112.4            | 8.546-8.667  | 0.0548           | 322                             | 0.000027                              |
| CaesiumCs                    | Silver-white  | 1328             | 1.9          | 0.048            | 27                              | 0.000027                              |
| CalciumCa                    | Yellow        | 40.1             | 1.578        | 0.1700           | 800                             | 0.0000269                             |
| CeriumCe                     | Grey          | 140.2            | 7.64         | 0.0448           | 623                             | 0.0000203                             |
| ChromiumCr                   | Grev          | 52.0             | 6.81-7.3     | 0.1200           | 1.700                           | _                                     |
| CobaltCo                     | Grevish-white | 59.0             | 8.5-8.7      | 0.1070           | 1,490                           | 0.0000123                             |
| ColumbiumCb<br>(see Niobium) |               |                  |              |                  | 1,100                           | 0.0000123                             |
| CopperCu                     | Red           | 63.6             | 8.92-8.95    | 0.0952           | 1.100                           | 0.0000167                             |
| ErbiumE                      |               | 166.0            | 0.02-0.00    | 0.0832           | 1.100                           | 0.0000167                             |
| GadoliniumGd                 |               | 156.0            | _            | -                |                                 | _                                     |
| GalliumGa                    | Bluish-white  | 69.9             | 5.9          | 0.079            | 30                              | _                                     |
| GermaniumGe                  | Bluish-white  | 72.5             | 5.5          | 0.074            | 900                             | 0.0000187                             |
| GoldAu                       | Yellow        | 197.2            | 19.265       | 0.0324           | 1,065                           | 0.0000187                             |
| IndiumIn                     | White         | 114.8            | 7.42         | 0.0524           | 176                             | 0.0000136                             |
| IndiumIr                     | Steel-white   | 193.1            | 22.38        | 0.0326           | 2,250                           | 0.00000417                            |
| IronFe                       | Silver-white  | 55.9             | 7.84         | 0.0320           | 1,550                           | 0.0000065                             |
| LanthanumLa                  | Grey          | 139.0            | 6.163        | 0.0449           | 826                             | 0.0000116                             |
| LeadPb                       | Bluish-white  |                  | 11.254-11.38 |                  | 328                             | 0.000027                              |
| LithiumLi                    | Silver-white  | 7.02             | 0.589-0.598  |                  | 180                             | 0.000027                              |
| MagnesiumMg                  | silver-white  | 24.3             | 1.75         | 0.2500           | 632                             | 0.0000269                             |
| ManganeseMn                  | Reddish-grey  | 55.0             |              | 0.1220           | 1.245                           |                                       |
| MercuryHg                    | Bluish-white  | 200.0            |              | 0.0319           | -40                             | 0.0000610                             |
| MolybdenumMo                 | Silver-white  | 96.0             |              | 0.0319           | 2.450                           | 0.0000010                             |
| NeodymiumNd                  | -             | 143.6            | 7.0          | 0.0722           | 840                             | _                                     |
| NickelNi                     | _             | 58.7             |              | 0.1080           | 1,450                           | 0.0000127                             |

Table 21-1. Metallic Elements.

| Number of Symbol | Color         | Atomic<br>Weight | Specific<br>Gravity<br>or<br>Density | Specific<br>Heat | Melting-<br>point<br>(°Celsius) | Confficient<br>of Linear<br>Expansion |  |
|------------------|---------------|------------------|--------------------------------------|------------------|---------------------------------|---------------------------------------|--|
| NiobiumNb        | Steel-grey    | 93.5             | 12.1                                 | 0.071            | 1,950                           | _                                     |  |
| OsmiumOs         | Bluish-white  | 190.9            | 22.5                                 | 0.0311           | 2,500                           | 0.0000065                             |  |
| PalladiumPd      | Tip-white     | 106.7            | 11.4                                 | 0.0593           | 1,549                           | 0.0000117                             |  |
| PlatinumPt       | -             | 195.2            | 21.5                                 | 0.0324           | 1,780                           | 0.0000089                             |  |
| PotassiumK       | Silver-white  | 39.10            | 0.875                                | 0.1660           | 60                              | 0.0000841                             |  |
| PraseodymiumPr   | _             | 140.5            | 8.5                                  | _                | 940                             |                                       |  |
| RadiumRa         | _             | 225.0            |                                      |                  | _                               | _                                     |  |
| RhodiumRh        | Tin-white     | 102.9            | 12.1                                 | 0.0580           | 2,000                           | 0.0000085                             |  |
| RubidiumRb       | Silver-white  | 85.5             | 1.52                                 | 0.077            | 38.5                            | _                                     |  |
| RutheniumRu      | _             | 101.7            | 12.261                               | 0.0611           | 2,400                           | 0.0000098                             |  |
| SamariumSm       | -             | 150.3            | 7.7                                  | _                | 1,350                           | _                                     |  |
| ScandiumSc       | _             | 44.1             | _                                    | _                | _                               | _                                     |  |
| SilverAq         | White         | 107.9            | 10.4-10.57                           | 0.0560           | 962                             | 0.0000192                             |  |
| SodiumNa         | Silver-white  | 23.0             | 0.98                                 | 0.293            | 96                              | 0.000071                              |  |
| StrontiumSr      | Yellow        | 87.8             | 2.5                                  | _                | 800                             | _                                     |  |
| TantalumTa       | Black         | 181.6            | 16.8                                 | 0.0385           | 2,910                           | 0.0000079                             |  |
| TelluriumTe      | _             | 127.5            | 8.25                                 | 0.049            | 452                             | 0.0000167                             |  |
| TerbiumTb        | _             | 160              | _                                    | _                | _                               | -                                     |  |
| ThalliumTl       | Bluish-white  | 204.0            | 11.8                                 | 0.0335           | 303                             | 0.0000302                             |  |
| ThoriumTh        | Grey          | 232.4            | 11.2                                 | 0.0278           | 1,690                           | _                                     |  |
| ThulliumTm       | _             | 171              | _                                    | _                |                                 | -                                     |  |
| TinSn            | White         | 119.0            | 7.293                                | 0.0559           | 232                             | 0.0000203                             |  |
| TitaniumTi       | Dark grey     | 48.1             | 3.8                                  | 0.13             | 1,800                           | -                                     |  |
| TungstenW        | Light grey    | 184.0            | 19.129                               | 0.0334           | 3,000                           | _                                     |  |
| UraniumU         | Greyish-white | 238.5            | 18.33                                | 0.0277           | 1,500                           | _                                     |  |
| VanadiumV        | Whitish-grey  | 51.1             | 5.9                                  | 0.125            | 1,680                           | _                                     |  |
| YtterbiumYb      |               | 173.0            | _                                    | _                | -                               | _                                     |  |
| YttriumYt        | Grey          | 89.0             | 3.80                                 |                  |                                 |                                       |  |
| ZincZn           | Bluish-white  | 65.4             | 7.1                                  | 0.0935           | 419                             | 0.0000274                             |  |
| ZirconiumZr      | Grey          | 8.08             | 4.15                                 | 0.0662           | 1,300                           | _                                     |  |

Table 21-2. Densities of solids and liquids in cubic centimeters and cubic feet.

| Aluminum | 2.58 g. per cub. cm.   | 1.61.1 lb. per cub. ft.  |
|----------|------------------------|--------------------------|
| Copper   | 8.9 g. per cub. cm.    | 555.4 lb. per cub. ft.   |
| Gold     | 19.3 g. per cub. cm.   | 1,205.0 lb. per cub. ft. |
| Ice      | 0.9167 g. per cub. cm. | 57.2 lb. per cub. ft.    |
| Iron     | 7.87 g. per cub. cm.   | 491.3 lb. per cub. ft.   |
| Lead     | 11.0 g. per cub. cm.   | 686.7 lb. per cub. ft.   |
|          | 13.596 g. per cub. cm. | 848.7 lb. per cub. ft.   |
| Nickel   | 8.80 g. per cub. cm.   | 549.4 lb. per cub. ft.   |
| Platinum | 21.50 g. per cub. cm.  | 1,342.2 lb. per cub. ft. |
|          | 1.025 g. per cub. cm.  | 64.0 lb. per cub. ft.    |
|          | 10.5 g. per cub. cm.   | 655.5 lb. per cub. ft.   |
|          | 7.18 g. per cub. cm.   | 448. lb. per cub. ft.    |
| Tungsten | 18.6 g. per cub. cm.   | 1,161.2 lb. per cub. ft. |
|          | 18.7 g. per cub. cm.   | 1,167.4 lb. per cub. ft. |
|          | 1.000 g. per cub. cm.  | 62.4 lb. per cub. ft.    |
|          | 7.19 g. per cub. cm.   | 448.6 lb. per cub. ft.   |
|          |                        |                          |

#### Table 21-3.

#### CRYSTAL DATA

### Crystals and their Symbols

Bornite 3Cu<sub>2</sub>S<sub>3</sub>Fe<sub>2</sub>S<sub>3</sub> Carbonindum SiC Cassiterite (tinstone) SnO2 Copper pyrites Cu<sub>2</sub>S<sub>2</sub>FeS<sub>2</sub> Galena PbS Graphite С Hertzite PbS Iron Pyrites FeS<sub>2</sub> Malachite CuCo2CuH2O Molybdenite MoS<sub>2</sub> Silicon Si Tellurium Te Zincite ZnO

#### **Crystal Combinations**

Carborundum with Steel Iron Pyrites with Silicon Galena with Tellurium

Tellurium with Zincite Carborundum with Silicon Copper Pyrites with Tellurium



# Chapter 22 Atmospheric Layers





# Chapter 23 Lissajous Patterns

#### LISSAJOUS PATTERNS

An oscilloscope can provide Lissajous figures for calibrating an unknown against a known frequency. Figure 23-1 shows patterns indicating the frequency ratio of horizontal to vertical input sine waves. Count the number of loops across the top and down the side.



Fig. 23-1. Lissajous figures



# Chapter 24 Citizens Band and Amateur Radio

## Table 24-1. TV Channels and Amateur and Citizens Band Harmonics

|         |                | Picture          |                    |                  | Hermonics        |                   |                  |
|---------|----------------|------------------|--------------------|------------------|------------------|-------------------|------------------|
| Chennel | Freq.<br>Range | Cerrier<br>Freq. | CB                 | 40 meters        | 20 meters        | 15 meters         | 10 meters        |
| TV I-F  | 41-47          | 42               | _                  | _                | 42-43            | 42-43             | -                |
| 2       | 54-60          | 65.26            | 63.9-54.6<br>(2nd) | 66-58.4<br>(8th) | 56-57.3<br>(4th) | -                 | 56-59.4<br>(2nd) |
| 3       | 80-68          | 61.25            | -                  | 63-65.7<br>(9th) | -                | 63-84.35<br>(3rd) | -                |
| 4       | 66-72          | 67.26            | -                  | 70-73<br>(10th)  | 70-72<br>(5th)   | -                 | -                |
| 6       | 76-82          | 77.26            | 60.9-82.2<br>(3rd) | -                | -                | -                 | -                |
| 6       | 62-86          | 63.26            | 62-82.2<br>(3rd)   | -                | 84-88.4<br>(6th) | 84-85.8<br>(4th)  | 84-89.1<br>(3rd) |



Fig. 24-1. The relationship of amateur-band harmonics to the vhf TV channels. (courtesy of American Radio Relay League Inc.).

Table 24-2. Harmonic Relationship—Amateur VHF Bands and UHF TV Channels

| Amateur<br>Band |     | Fundamental<br>Freq. Range |      |         |       | Fundamental<br>c Freq. Range |    |
|-----------------|-----|----------------------------|------|---------|-------|------------------------------|----|
| 144 MHz         | 4th | 144.0-144.5                | 31   | 220 MHz | 3rd   | 220.00-220.67                | 45 |
|                 |     | 144.5-146.0                | 32   |         |       | 220.67-222.87                | 46 |
|                 |     | 146.0-147.5                | 33   |         |       | 222.67-224.67                | 47 |
|                 |     | 147.5-148.0                | 34   |         |       | 224.67-225.00                | 48 |
|                 | 5th | 144.0-144.4                | 55   |         | 4th   | 220-221                      | 82 |
|                 | •   | 144.4-145.6                | 56   |         |       | 221.0-222.5                  | 83 |
|                 |     | 145.6-146.6                | 57   |         |       |                              |    |
|                 |     | 146.6-146.0                | 58   | 420 MHz | z 2nd | 420-421                      | 75 |
|                 | 6th | 144.00-144.3               |      |         |       | 421-424                      | 78 |
|                 |     | 144.33-145.3               |      |         |       | 424-427                      | 77 |
|                 |     |                            |      |         |       | 427-430                      | 78 |
|                 |     | 145.33-147.3               |      |         |       | 430-433                      | 79 |
|                 |     | 147.33-148.0               | 0 82 |         |       | 433-436                      | 80 |

## Chapter 25 Vectors

#### VECTOR CONVERSION

Table 25-1 can be used to change the form of vector quantities from j-notation to polar notation, or from polar to j-notation. The first column is the ratio of reactance, X, to reactance, R. The second column is the phase angle of the polar vector and is the angle whose tangent is X/R. The third column, Z, is the absolute magnitude of the vector in terms of X.

#### □Example:

The impedance of a circuit, expressed in polar form, is Z equals 3000—j4000. What is the absolute magnitude of the impedance and

the phase angle?

3000 represents the resistance R; 4000 is the reactance X. The ratio X/R is 4000/3000 equals 1.3333. The closest value of X/R in Table 25-1 is 1.3319. Immediately to the right is the phase angle of 53.1 degrees. However, because the reactance is negative and is given as ~j4000, the phase angle is also negative and is ~53.1 degrees. The value for Z in the column directly to the right of the phase angle is 1.2505X. Since X is 4000, Z equals 1.2505X, 5002 ohms. The answer, then, is that Z is 5002 ohms and the phase angle is —53.1 degrees.

IEXample:

Take the example just given and work it backward. Suppose we are told that the circuit impedance is 5000 ohms (5002 rounded

Table 25-1. Vector Conversion

| ~       | θ       |          | Y       | θ       |          |
|---------|---------|----------|---------|---------|----------|
| XR      | degrees | z        | XR      | degrees | z        |
| ^       | degrees | -        |         | 208.000 |          |
| 0.00000 | 0.0     | Z == R   | 0.06116 | 3.5     | 16.380 X |
| .00175  | .1      | 572.96 X | .06291  | 3.6     | 15.926 X |
| .00349  | .2      | 286.48 X | .06467  | 3.7     | 15.496 X |
| .00524  | .3      | 190.98 X | .06642  | 3.8     | 15.089 X |
| .00698  | .4      | 143.24 X | .06817  | 3.9     | 14.702 X |
| 0.00873 | 0.5     | 114.59 X | 0.06993 | 4.0     | 14.335 X |
| -       |         |          |         |         |          |
| 0.01047 | 0.6     | 95.495 X | 0.07168 | 4.1     | 13.986 X |
| .01222  | 0.7     | 81.853 X | .07344  | 4.2     | 13.654 X |
| .01396  | 0.8     | 71.622 X | .07519  | 4.3     | 13.337 X |
| .01571  | 0.9     | 63.664 X | .07694  | 4.4     | 13.034 X |
| .01746  | 1.0     | 57.299 X | 0.07870 | 4.5     | 12.745 X |
| 0.01920 | 1.1     | 52.090 X |         |         |          |
|         |         |          |         |         |          |
| 0.02095 | 1.2     | 47.750 X | 0.08046 | 4.6     | 12.469 X |
| .02269  | 1.3     | 44.077 X | .08221  | 4.7     | 12.204 X |
| .02444  | 1.4     | 40.930 X | .08397  | 4.8     | 11.950 X |
| .02618  | 1.5     | 38.201 X | .08573  | 4.9     | 11.707 X |
| .02793  | 1.6     | 35.814 X | .08749  | 5.0     | 11,474 X |
| 0.02968 | 1.7     | 33.708 X | 0.08925 | 5.1     | 11.249 X |
| 0.02700 |         |          |         |         |          |
| 0.03143 | 1.8     | 31.836 X | 0.09101 | 5.2     | 11.033 X |
| .03317  | 1.9     | 30.161 X | .09277  | 5.3     | 10.826 X |
| .03492  | 2.0     | 28.654 X | .09453  | 5.4     | 10.626 X |
| .03472  | 2.1     | 27.290 X | .09629  | 5.5     | 10.433 X |
| 0.03842 | 2.2     | 26.050 X | .09805  | 5.6     | 10.248 X |
| 0.03042 | 4.4     | 10.000 A | .07000  | 0.0     |          |
| 0.04016 | 2.3     | 24.918 X | 0.09981 | 5.7     | 10.068 X |
| .04191  | 2.4     | 23.880 X | 0.10158 | 5.8     | 9.8955 X |
| .04366  | 2.5     | 22.925 X | .10344  | 5.9     | 9.7283 X |
| .04541  | 2.6     | 22.044 X | .10510  | 6.0     | 9.5668 X |
| .04716  | 2.7     | 21.228 X | .10687  | 6.1     | 9.4105 X |
| 0.04891 | 2.8     | 20.471 X | 0.10863 | 6.2     | 9.2593 X |
|         |         |          |         |         |          |
| 0.05066 | 2.9     | 19.766 X | 0.11040 | 6.3     | 9.1129 X |
| .05241  | 3.0     | 19.107 X | .11217  | 6.4     | 8.9711 X |
| .05416  | 3.1     | 18.491 X | .11394  | 6.5     | 8.8337 X |
| .05591  | 3.2     | 17.914 X | .11570  | 6.6     | 8.7004 X |
| .05766  | 3.3     | 17.372 X | .11747  | 6.7     | 8.5711 X |
| 0.05941 | 3.4     | 16.861 X | 0.11924 | 6.8     | 8.4457 X |
|         |         |          |         |         |          |

Table 25-1. Vector Conversion (cont'd)

|         | 14      | ible 25-1. Vecti | or conversion (c | ont a)  |          |
|---------|---------|------------------|------------------|---------|----------|
| XR      | θ       |                  | X                | θ       |          |
| R       | degrees | Z                | $\frac{X}{R}$    | degrees | z        |
| 0.12107 | 6.9     | 8.3238 X         | 0.18173          | 10.3    | 5.5928 X |
| .12278  | 7.0     | 8.2055 X         | .18353           | 10.4    | 5.5396 X |
| .12456  | 7.1     | 8.0905 X         | .18534           | 10.5    | 5.4874 X |
| .12663  | 7.2     | 7.9787 X         | .18714           | 10.6    | 5.4362 X |
| .12810  | 7.3     | 7.8700 X         | 0.18895          | 10.7    | 5.3860 X |
| 0.12988 | 7.4     | 7.7642 X         | 0.19076          | 10.8    | 5.3367 X |
| 0.13165 | 7.5     | 7.6613 X         | .19257           | 10.9    | 5.2883 X |
| .13343  | 7.6     | 7.5611 X         | .19438           | 11.0    | 5.2408 X |
| .13521  | 7.7     | 7.4634 X         | .19619           | 11.1    | 5.1942 X |
| .13698  | 7.8     | 7.3683 X         | .19800           | 11.2    | 5.1484 X |
| 0.13876 | 7.9     | 7.2756 X         | 0.19982          | 11.3    | 5.1034 X |
| 0.14054 | 8.0     | 7.1853 X         | 0.20163          | 11.4    | 5.0593 X |
| .14232  | 8.1     | 7.0972 X         | .20345           | 11.5    | 5.0158 X |
| .14410  | 8.2     | 7.0112 X         | .20527           | 11.6    | 5.9732 X |
| .14588  | 8.3     | 6.9273 X         | .20709           | 11.7    | 5.9313 X |
| .14767  | 8.4     | 6.8454 X         | 0.20891          | 11.8    | 5.8901 X |
| 0.14945 | 8.5     | 6.7755 X         | 0.20071          |         | 3.0701 X |
| 0.15124 | 8.6     | 6.6874 X         | 0.21073          | 11.9    | 5.8496 X |
| .15302  | 8.7     | 6.6111 X         | .21256           | 12.0    | 4.8097 X |
| .15481  | 8.8     | 6.5365 X         | .21438           | 12.1    | 4.7706 X |
| .15660  | 8.9     | 6.4637 X         | .21621           | 12.2    | 4.7320 X |
| 0.15838 | 9.0     | 6.3924 X         | .21803           | 12.3    | 4.6942 X |
| 0.16017 | 9.1     | 6.3228 X         | 0.21986          | 12.4    | 4.6569 X |
| .16196  | 9.2     | 6.2546 X         | 0.22169          | 12.5    | 4.6201 X |
| .16376  | 9.3     | 6.1880 X         | .22353           | 12.6    | 4.5841 X |
| .16555  | 9.4     | 6.1227 X         | .22536           | 12.7    | 4.5486 X |
| .16734  | 9.5     | 6.0588 X         | .22719           | 12.8    | 4.5137 X |
| 0.16914 | 9.6     | 5.9963 X         | 0.22903          | 12.9    | 4.4793 X |
| 0.17093 | 9.7     | 5.9351 X         | 0.23087          | 13.0    | 4.4454 X |
| .17273  | 9.8     | 5.8751 X         | .23270           | 13.1    | 4.4121 X |
| .17453  | 9.9     | 5.8163 X         | .23455           | 13.2    | 4.3792 X |
| .17633  | 10.0    | 5.7588 X         | .23693           | 13.3    | 4.3469 X |
| .17813  | 10.1    | 5.7023 X         | 0.23823          | 13.4    | 4.3150 X |
| 0.17993 | 10.2    | 5.6470 X         |                  |         |          |

Table 25-1. Vector Conversion (cont'd)

|         | θ       |          |          | · · · · · · · · · · · · · · · · · · · |          |
|---------|---------|----------|----------|---------------------------------------|----------|
| XR      |         | -        | <u>X</u> | , θ                                   | _        |
| K       | degrees | Z        | R        | degrees                               | Z        |
|         |         |          |          |                                       |          |
| 0.24008 | 13.5    | 4.2836 X | 0.30001  | 16.7                                  | 3.4799 X |
| .24192  | 13.6    | 4.2527 X | .30192   | 16.8                                  | 3.4598 X |
| .24377  | 13.7    | 4.2223 X | .30382   | 16.9                                  | 3.4399 X |
| .24562  | 13.8    | 4.1923 X | .30573   | 17.0                                  | 3.4203 X |
| .24747  | 13.9    | 4.1627 X | .30764   | 17.1                                  | 3.4009 X |
| 0.24933 | 14.0    | 4.1336 X | 0.30995  | 17.2                                  | 3.3817 X |
|         |         |          |          |                                       |          |
| 0.25118 | 14.1    | 4.1048 X | 0.31146  | 17.3                                  | 3.3627 X |
| .25304  | 14.2    | 4.0765 X | .31338   | 17.4                                  | 3.3440 X |
| .25490  | 14.3    | 4.0486 X | .31530   | 17.5                                  | 3.3255 X |
| .25676  | 14.4    | 4.0211 X | .31722   | 17.6                                  | 3.3072 X |
| 0.25862 | 14.5    | 3.9939 X | 0.31914  | 17.7                                  | 3.2891 X |
|         |         |          |          |                                       |          |
| 0.26048 | 14.6    | 3.9672 X | 0.32106  | 17.8                                  | 3.2712 X |
| .26234  | 14.7    | 3.9408 X | .32299   | 17.9                                  | 3.2535 X |
| .26421  | 14.8    | 3.9147 X | .32492   | 18.0                                  | 3.2361 X |
| .26608  | 14.9    | 3.8890 X | .32685   | 18.1                                  | 3.2188 X |
| .26795  | 15.0    | 3.8637 X | 0.32878  | 18.2                                  | 3.2017 X |
| 0.26982 | 15.1    | 3.8387 X |          |                                       |          |
|         |         |          |          |                                       |          |
| 0.27169 | 15.2    | 3.8140 X | 0.33072  | 18.3                                  | 3.1848 X |
| .27357  | 15.3    | 3.7897 X | .33265   | 18.4                                  | 3.1681 X |
| .27554  | 15.4    | 3.7657 X | .33459   | 18.5                                  | 3.1515 X |
| .27732  | 15.5    | 3.7420 X | .33654   | 18.6                                  | 3.1352 X |
| 0.27920 | 15.6    | 3.7186 X | 0.33848  | 18.7                                  | 3.1190 X |
|         |         |          |          |                                       |          |
| 0.28109 | 15.7    | 3.6955 X | 0.34043  | 18.8                                  | 3.1030 X |
| .28297  | 15.8    | 3.6727 X | .34238   | 18.9                                  | 3.0872 X |
| .28486  | 15.9    | 3.6502 X | .34433   | 19.0                                  | 3.0715 X |
| .28674  | 16.0    | 3.6279 X | .34628   | 19.1                                  | 3.0561 X |
| 0.28863 | 16.1    | 3.6060 X | 0.34824  | 19.2                                  | 3.0407 X |
|         |         |          |          |                                       |          |
| 0.29053 | 16.2    | 3.5843 X | 0.35019  | 19.3                                  | 3.0256 X |
| .29242  | 16.3    | 3.5629 X | .35215   | 19.4                                  | 3.0106 X |
| .29432  | 16.4    | 3.5418 X | .35412   | 19.5                                  | 2.9957 X |
| .29621  | 16.5    | 3.5209 X | .35608   | 19.6                                  | 2.9810 X |
| 0.29811 | 16.6    | 3.5003 X | 0.35805  | 19.7                                  | 2.9665 X |

Table 25-1, Vector Conversion (cont'd)

|               | Table 25-1. Vector Conversion (cont'd) |          |               |         |          |  |  |
|---------------|----------------------------------------|----------|---------------|---------|----------|--|--|
| <u>x</u><br>R | θ                                      |          | х             | θ       |          |  |  |
| R             | degrees                                | Z        | $\frac{X}{R}$ | degrees | Z        |  |  |
|               |                                        |          |               |         |          |  |  |
| 0.36002       | 19.8                                   | 2.9521 X | 0.42036       | 22.8    | 2.5805 X |  |  |
| .36199        | 19.9                                   | 2.9379 X | .42242        | 22.9    | 2.5699 X |  |  |
| .36397        | 20.0                                   | 2.9238 X | .42447        | 23.0    | 2.5593 X |  |  |
| .36595        | 20.1                                   | 2.9098 X | .42654        | 23.1    | 2.5488 X |  |  |
| .36793        | 20.2                                   | 2.8960 X | 0.42860       | 23.2    | 2.5384 X |  |  |
| 0.36991       | 20.3                                   | 2.8824 X |               |         | #10004 X |  |  |
|               |                                        |          |               |         |          |  |  |
| 0.37190       | 20.4                                   | 2.8688 X | 0.43067       | 23.3    | 2.5281 X |  |  |
| .37388        | 20.5                                   | 2.8554 X | .43274        | 23.4    | 2.5179 X |  |  |
| .37587        | 20.6                                   | 2.8422 X | .43481        | 23.5    | 2.5078 X |  |  |
| .37787        | 20.7                                   | 2.8290 X | .43689        | 23.6    | 2.4978 X |  |  |
| 0.37986       | 20.8                                   | 2.8160 X | 0.43897       | 23.7    | 2.4879 X |  |  |
|               |                                        |          |               |         |          |  |  |
| 0.38186       | 20.9                                   | 2.8032 X | 0.44105       | 23.8    | 2.4780 X |  |  |
| .38386        | 21.0                                   | 2.7904 X | .44314        | 23.9    | 2.4683 X |  |  |
| .38587        | 21.1                                   | 2.7778 X | .44523        | 24.0    | 2.4586 X |  |  |
| .38787        | 21.2                                   | 2.7653 X | .44732        | 24.1    | 2.4490 X |  |  |
| 0.38988       | 21.3                                   | 2.7529 X | 0.44942       | 24.2    | 2.4395 X |  |  |
|               |                                        |          |               |         |          |  |  |
| 0.39189       | 21.4                                   | 2.7406 X | 0.45152       | 24.3    | 2.4300 X |  |  |
| .39391        | 21.5                                   | 2.7285 X | .45362        | 24.4    | 2.4207 X |  |  |
| .39593        | 21.6                                   | 2.7165 X | .45573        | 24.5    | 2.4114 X |  |  |
| .39795        | 21.7                                   | 2.7045 X | .45783        | 24.6    | 2.4022 X |  |  |
| 0.39997       | 21.8                                   | 2.6927 X | 0.45995       | 24.7    | 2.3931 X |  |  |
|               |                                        |          |               |         |          |  |  |
| 0.40200       | 21.9                                   | 2.6810 X | 0.46206       | 24.8    | 2.3841 X |  |  |
| .40403        | 22.0                                   | 2.6695 X | .46418        | 24.9    | 2.3751 X |  |  |
| .40606        | 22.1                                   | 2.6580 X | .46631        | 25.0    | 2.3662 X |  |  |
| 0.40809       | 22.2                                   | 2.6466 X | 0.46843       | 25.1    | 2.3574 X |  |  |
|               |                                        |          |               |         |          |  |  |
| 0.41013       | 22.3                                   | 2.6353 X | 0.47056       | 25.2    | 2.3486 X |  |  |
| .41217        | 22.4                                   | 2.6242 X | .47270        | 25.3    | 2.3399 X |  |  |
| .41421        | 22.5                                   | 2.6131 X | .47483        | 25.4    | 2.3313 X |  |  |
| .41626        | 22.6                                   | 2.6022 X | .47697        | 25.5    | 2.3228 X |  |  |
| 0.41831       | 22.7                                   | 2.5913 X | 0.47912       | 25.6    | 2.3143 X |  |  |
|               |                                        |          |               |         |          |  |  |

Table 25-1. Vector Conversion (cont'd)

| XR      | θ       |          | XR      | θ       |          |
|---------|---------|----------|---------|---------|----------|
| R       | degrees | Z        | R       | degrees | Z        |
| 0.48127 | 25.7    | 2.3059 X | 0.55203 | 28.9    | 2.0692 X |
| .48342  | 25.8    | 2.2976 X | .55431  | 29.0    | 2.0627 X |
| .48557  | 25.9    | 2.2894 X | .55659  | 29.1    | 2.0562 X |
| .48773  | 26.0    | 2.2812 X | 0.55888 | 29.2    | 2.0498 X |
| 0.48989 | 26.1    | 2.2730 X | 0.55000 | 27.2    | 2.0470 X |
| 0.48989 | 20.1    | 2.2/30 A |         |         |          |
| 0.49206 | 26.2    | 2.2650 X | 0.56117 | 29.3    | 2.0434 X |
| .49423  | 26.3    | 2.2570 X | .56347  | 29.4    | 2.0370 X |
| .49640  | 26.4    | 2.2490 X | .56577  | 29.5    | 2.0308 X |
| 0.49858 | 26.5    | 2.2411 X | 0.56808 | 29.6    | 2.0245 X |
|         |         |          |         |         |          |
| 0.50076 | 26.6    | 2.2333 X | 0.57039 | 29.7    | 2.0183 X |
| .50295  | 26.7    | 2.2256 X | .57270  | 29.8    | 2.0122 X |
| .50514  | 26.8    | 2.2179 X | .57502  | 29.9    | 2.0061 X |
| .50733  | 26.9    | 2.2103 X | .57735  | 30.0    | 2.0000 X |
| 0.50952 | 27.0    | 2.2027 X | 0.57968 | 30.1    | 1.9940 X |
|         |         |          |         |         |          |
| 0.51172 | 27.1    | 2.1952 X | 0.58201 | 30.2    | 1.9880 X |
| .51393  | 27.2    | 2.1877 X | .58435  | 30.3    | 1.9820 X |
| .51614  | 27.3    | 2.1803 X | .58670  | 30.4    | 1.9761 X |
| 0.51835 | 27.4    | 2.1730 X | 0.58904 | 30.5    | 1.9703 X |
|         |         |          |         |         |          |
| 0.52057 | 27.5    | 2.1657 X | 0.59140 | 30.6    | 1.9645 X |
| .52279  | 27.6    | 2.1584 X | .59376  | 30.7    | 1.9587 X |
| .52501  | 27.7    | 2.1513 X | .59612  | 30.8    | 1.9530 X |
| .52724  | 27.8    | 2.1441 X | 0.59849 | 30.9    | 1.9473 X |
| 0.52947 | 27.9    | 2.1371 X |         |         |          |
|         |         |          |         |         |          |
| 0.53171 | 28.0    | 2.1300 X | 0.60086 | 31.0    | 1.9416 X |
| .53395  | 28.1    | 2.1231 X | .60324  | 31.1    | 1.9360 X |
| .53619  | 28.2    | 2.1162 X | .60562  | 31.2    | 1.9304 X |
| 0.53844 | 28.3    | 2.1093 X | 0.60801 | 31.3    | 1.9248 X |
|         |         |          |         |         |          |
| 0.54070 | 28.4    | 2.1025 X | 0.61040 | 31.4    | 1.9193 X |
| .54295  | 28.5    | 2.0957 X | .61280  | 31.5    | 1.9139 X |
| .54522  | 28.6    | 2.0890 X | .61520  | 31.6    | 1.9084 X |
| .54748  | 28.7    | 2.0824 X | 0.61761 | 31.7    | 1.9030 X |
| 0.54975 | 28.8    | 2.0757 X |         |         |          |
|         |         |          |         |         |          |

|   | Table | 25-1. | Bector | Conversion | (cont'd) |   |
|---|-------|-------|--------|------------|----------|---|
| θ |       |       |        | X          |          | 6 |
|   |       | 7     |        | =          |          |   |

|               | θ y Δ   |          |         |         |          |  |  |
|---------------|---------|----------|---------|---------|----------|--|--|
| $\frac{X}{R}$ |         | -        | XR      | θ       |          |  |  |
| K             | degrees | Z        | R       | degrees | Z        |  |  |
| 0.62003       | 31.8    | 1.8977 X | 0.69243 | 34.7    | 1.7566 X |  |  |
| .62244        | 31.9    | 1.8924 X | .69502  | 34.8    | 1.7522 X |  |  |
| .62487        | 32.0    | 1.8871 X | 0.69761 | 34.9    | 1.7478 X |  |  |
| .62730        | 32.1    | 1.8818 X |         |         |          |  |  |
| 0.62973       | 32.2    | 1.8766 X |         |         |          |  |  |
| 0.63217       | 32.3    | 1.8714 X | 0.70021 | 35.0    | 1.7434 X |  |  |
| .63462        | 32.4    | 1.8663 X | .70281  | 35.1    | 1.7391 X |  |  |
| .63707        | 32.5    | 1.8611 X | .70542  | 35.2    | 1.7348 X |  |  |
| 0.63953       | 32.6    | 1.8561 X | 0.70804 | 35.3    | 1.7305 X |  |  |
| 0.64199       | 32.7    | 1.8510 X | 0.71066 | 35.4    | 1.7263 X |  |  |
| .64466        | 32.8    | 1.8460 X | .71329  | 35.5    | 1.7220 X |  |  |
| .64693        | 32.9    | 1.8410 X | .71593  | 35.6    | 1.7178 X |  |  |
| 0.64941       | 33.0    | 1.8361 X | 0.71857 | 35.7    | 1.7137 X |  |  |
| 0.65189       | 33.1    | 1.8311 X | 0.72122 | 35.8    | 1.7095 X |  |  |
| .65438        | 33.2    | 1.8263 X | .72388  | 35.9    | 1.7054 X |  |  |
| .65688        | 33.3    | 1.8214 X | .72654  | 36.0    | 1.7013 X |  |  |
| 0.65938       | 33.4    | 1.8166 X | 0.72921 | 36.1    | 1.6972 X |  |  |
| 0.66188       | 33.5    | 1.8118 X | 0.73189 | 36.2    | 1.6932 X |  |  |
| .66440        | 33.6    | 1.8070 X | .73457  | 36.3    | 1.6891 X |  |  |
| .66692        | 33.7    | 1.8023 X | .73726  | 36.4    | 1.6851 X |  |  |
| 0.66944       | 33.8    | 1.7976 X | 0.73996 | 36.5    | 1.6812 X |  |  |
| 0.67197       | 33.9    | 1.7929 X | 0.74266 | 36.6    | 1.6772 X |  |  |
| .67451        | 34.0    | 1.7883 X | .74538  | 36.7    | 1.6733 X |  |  |
| .67705        | 34.1    | 1.7837 X | 0.74809 | 36.8    | 1.6694 X |  |  |
| 0.67160       | 34.2    | 1.7791 X |         |         |          |  |  |
| 0.68215       | 34.3    | 1.7745 X | 0.75082 | 36.9    | 1.6655 X |  |  |
| .68471        | 34.4    | 1.7700 X | .75355  | 37.0    | 1.6616 X |  |  |
| .68728        | 34.5    | 1.7655 X | .75629  | 37.1    | 1.6578 X |  |  |
| 0.68985       | 34.6    | 1.7610 X | 0.75904 | 37.2    | 1.6540 X |  |  |

| Table 25-1. Vector Conversion (cont'd | 7 | lable | 25-1. | Vector ( | Convers | ion ( | (cont'd) |  |
|---------------------------------------|---|-------|-------|----------|---------|-------|----------|--|
|---------------------------------------|---|-------|-------|----------|---------|-------|----------|--|

|         | ian     | le 25-1. Vector      | conversion (co | nta)    |          |
|---------|---------|----------------------|----------------|---------|----------|
| XR      | θ       |                      | Х              | θ       |          |
| R       | degrees | Z                    | XR             | degrees | Z        |
|         |         |                      |                |         |          |
| 0.76179 | 37.3    | 1.6502 X             | 0.85107        | 40.4    | 1.5429 X |
| .76546  | 37.4    | 1.6464 X             | .85408         | 40.5    | 1.5398 X |
| 0.76733 | 37.5    | 1.6427 X             | 0.85710        | 40.6    | 1.5366 X |
| 0.77010 | 37.6    | 1.6389 X             | 0.86013        | 40.7    | 1.5335 X |
| .77289  | 37.7    | 1.6352 X             | .86318         | 40.8    | 1.5304 X |
| .77568  | 37.8    | 1.6316 X             | .86623         | 40.9    | 1.5273 X |
| 0.77848 | 37.9    | 1.6279 X             | 0.86929        | 41.0    | 1.5242 X |
| 0177040 | 0,,,    | 1.02// /             | 0.00727        | 4110    | 1.5242 X |
| 0.78128 | 38.0    | 1.6243 X             | 0.87235        | 41.1    | 1.5212 X |
| .78410  | 38.1    | 1.6206 X             | .87543         | 41.2    | 1.5182 X |
| .78692  | 38.2    | 1.6170 X             | 0.87852        | 41.3    | 1.5151 X |
| 0.78975 | 38.3    | 1.6135 X             |                |         |          |
|         |         |                      |                |         |          |
| 0.79259 | 38.4    | 1.6099 X             | 0.88162        | 41.4    | 1.5121 X |
| .79543  | 38.5    | 1.6064 X             | .88472         | 41.5    | 1.5092 X |
| 0.79829 | 38.6    | 1.6029 X             | 0.88784        | 41.6    | 1.5062 X |
|         |         |                      |                |         |          |
| 0.80115 | 38.7    | 1.5994 X             | 0.89097        | 41.7    | 1.5032 X |
| .80402  | 38.8    | 1.5959 X             | .89410         | 41.8    | 1.5003 X |
| .80690  | 38.9    | 1.5924 X             | 0.89725        | 41.9    | 1.4974 X |
| 0.80978 | 39.0    | 1.5890 X             |                |         |          |
|         |         |                      |                |         |          |
| 0.81268 | 39.1    | 1.5856 X             | 0.90040        | 42.0    | 1.4945 X |
| .81558  | 39.2    | 1.5822 X             | .90357         | 42.1    | 1.4916 X |
| 0.81849 | 39.3    | 1.5788 X             | .90674         | 42.2    | 1.4887 X |
|         |         |                      | 0.90993        | 42.3    | 1.4858 X |
| 0.82141 | 39.4    | 1.5755 X             | 0.01010        |         | 1 (000 W |
|         |         |                      | 0.91312        | 42.4    | 1.4830 X |
| .82434  | 39.5    | 1.5721 X             | .91633         | 42.5    | 1.4802 X |
| 0.82727 | 39.6    | 1.5688 X             | 0.91955        | 42.6    | 1.4774 X |
| 0.83022 | 39.7    | 1.5655 X             | 0.92277        | 42.7    | 1.4746 X |
| .83317  | 39.8    | 1.5622 X             | .92601         | 42.8    | 1.4746 X |
| .83613  |         | 1.5622 X<br>1.5590 X |                |         |          |
|         | 39.9    |                      | 0.92926        | 42.9    | 1.4690 X |
| 0.83910 | 40.0    | 1.5557 X             |                |         |          |
| 0.84208 | 40.1    | 1.5525 X             | 0.93251        | 43.0    | 1.4663 X |
| .84506  | 40.2    | 1.5323 X             | .93578         | 43.1    | 1.4635 X |
| 0.84806 | 40.3    | 1.5461 X             | 0.93906        | 43.2    | 1.4608 X |
| 0.0-000 | -0.0    | X                    | 0.,0,00        |         | JUU A    |

Table 25-1, Vector Conversion (cont'd)

|               | 1       | able 25-1. Vec       | tor Conversion | (cont'd) |          |
|---------------|---------|----------------------|----------------|----------|----------|
| $\frac{X}{R}$ | θ       |                      | x              | θ        |          |
| R             | degrees | Z                    | XR             | degrees  | z        |
|               |         |                      |                |          |          |
| 0.94235       | 43.3    | 1.4581 X             | 1.0538         | 46.5     | 1.3786 X |
| .94565        | 43.4    | 1.4554 X             | 1.0575         | 46.6     | 1.3763 X |
| 0.94896       | 43.5    | 1.4527 X             | 1.0612         | 46.7     | 1.3740 X |
| 0.95229       | 43.6    | 1.4501 X             | 1.0649         | 46.8     | 1.3718 X |
| .95562        | 43.7    | 1.4474 X             | 1.0686         | 46.9     | 1.3695 X |
| 0.95896       | 43.8    | 1.4448 X             | 1.0724         | 47.0     | 1.3673 X |
| 0.96232       | 43.9    | 1.4422 X             | 1.0761         | 47.1     | 1.3651 X |
| .96569        | 44.0    | 1.4395 X             | 1.0799         | 47.1     | 1.3629 X |
| 0.96907       | 44.1    | 1.4370 X             | 1.0837         | 47.2     |          |
|               | 44.1    | 1.43/0 X             | 1.003/         | 47.3     | 1.3607 X |
| 0.97246       | 44.2    | 1.4344 X             | 1.0875         | 47.4     | 1.3585 X |
| .97586        | 44.3    | 1.4318 X             | 1.0913         | 47.5     | 1.3563 X |
| 0.97927       | 44.4    | 1.4292 X             | 1.0951         | 47.6     | 1.3542 X |
|               |         |                      |                |          |          |
| 0.98270       | 44.5    | 1.4267 X             | 1.0990         | 47.7     | 1.3520 X |
| .98613        | 44.6    | 1.4242 X             | 1.1028         | 47.8     | 1.3499 X |
| 0.98958       | 44.7    | 1.4217 X             | 1.1067         | 47.9     | 1.3477 X |
| 0.99304       | 44.8    | 1.4192 X             | 1.1106         | 48.0     | 1.3456 X |
| 0.99651       | 44.9    | 1.4167 X             | 1.1145         | 48.1     | 1.3435 X |
|               |         |                      |                |          |          |
| 1.0000        | 45.0    | 1.4142 X             | 1.1184         | 48.2     | 1.3414 X |
| 1.0035        | 45.1    | 1.4117 X             | 1.1224         | 48.3     | 1.3393 X |
| 1.0070        | 45.2    | 1.4093 X             | 1.1263         | 48.4     | 1.3372 X |
| 1.0105        | 45.3    | 1.4069 X             | 1.1303         | 48.5     | 1.3352 X |
| 1.0141        | 45.4    | 1.4040 X             | 1.1343         | 48.6     | 1.3331 X |
| 1.0176        | 45.5    | 1.4020 X             |                |          |          |
| 1.0212        | 45.6    |                      | 1.1383         | 48.7     | 1.3311 X |
| 1.0247        | 45.7    | 1.3996 X<br>1.3972 X | 1.1423         | 48.8     | 1.3290 X |
| 1.0283        | 45.8    |                      | 1.1463         | 48.9     | 1.3270 X |
| 1.0213        | 45.9    | 1.3949 X             | 1.1504         | 49.0     | 1.3250 X |
| 1.0317        | 43.9    | 1.3925 X             | 1.1544         | 49.1     | 1.3230 X |
| 1.0355        | 46.0    | 1.3902 X             | 1.1585         | 49.2     | 1.3210 X |
| 1.0391        | 46.1    | 1.3878 X             | 1.1626         | 49.3     | 1.3210 X |
| 1.0428        | 46.2    | 1.3855 X             | 1.1667         | 49.4     | 1.3170 X |
| 1.0464        | 46.3    | 1.3832 X             | 1.1708         | 49.5     | 1.3170 X |
| 1.0501        | 46.4    | 1.3809 X             | 1.1750         | 49.6     | 1.3131 X |
|               |         |                      | 50             | 47.0     | 1.3131 A |

Table 25-1. Vector Conversion (cont'd)

| x             | θ       |                      | X             | θ            |                      |
|---------------|---------|----------------------|---------------|--------------|----------------------|
| $\frac{x}{R}$ | degrees | z                    | $\frac{x}{R}$ | degrees      | Z                    |
|               | 49.7    | 1.3112 X             | 1.3367        | 53.2         | 1.2488 X             |
| 1.1791        | 49.7    | 1.3112 X<br>1.3092 X | 1.3307        | 53.2         | 1.2470 X             |
|               |         | 1.3072 X             | 1.3416        | 53.4         | 1.2472 X             |
| 1.1875        | 49.9    |                      |               |              |                      |
| 1.1917        | 50.0    | 1.3054 X             | 1.3514        | 53.5<br>53.6 | 1.2440 X<br>1.2424 X |
| 1.1960        | 50.1    | 1.3035 X             | 1.3564        | 53.6         | 1.2424 X             |
| 1.2002        | 50.2    | 1.3016 X             | 1.3613        | 53.7         | 1.2408 X             |
| 1.2045        | 50.3    | 1.2997 X             | 1.3663        | 53.8         | 1.2392 X             |
| 1.2088        | 50.4    | 1.2978 X             | 1.3713        | 53.9         | 1.2376 X             |
| 1.2131        | 50.5    | 1.2960 X             | 1.3764        | 54.0         | 1.2361 X             |
| 1.2174        | 50.6    | 1.2941 X             | 1.3814        | 54.1         | 1.2345 X             |
| 1,2218        | 50.7    | 1.2922 X             | 1.3865        | 54.2         | 1.2329 X             |
| 1.2261        | 50.8    | 1.2904 X             | 1.3916        | 54.3         | 1.2314 X             |
| 1.2305        | 50.9    | 1.2886 X             | 1.3968        | 54.4         | 1.2298 X             |
| 1.2349        | 51.0    | 1.2867 X             | 1.4019        | 54.5         | 1.2283 X             |
|               | 51.1    | 1.2849 X             | 1.4071        | 54.6         | 1.2268 X             |
| 1.2393        | 31.1    | 1.2849 A             | 1.4071        | 34.0         | 1.2200 A             |
| 1.2437        | 51.2    | 1.2831 X             | 1.4123        | 54.7         | 1.2253 X             |
| 1.2482        | 51.3    | 1.2813 X             | 1.4176        | 54.8         | 1.2238 X             |
| 1.2527        | 51.4    | 1.2795 X             | 1.4228        | 54.9         | 1.2223 X             |
| 1.2572        | 51.5    | 1.2778 X             | 1.4281        | 55.0         | 1.2208 X             |
| 1.2617        | 51.6    | 1.2760 X             | 1.4335        | 55.1         | 1.2193 X             |
|               |         |                      |               |              |                      |
| 1.2662        | 51.7    | 1.2742 X             | 1.4388        | 55.2         | 1.2178 X             |
| 1.2708        | 51.8    | 1.2725 X             | 1.4442        | 55.3         | 1.2163 X             |
| 1.2753        | 51.9    | 1.2707 X             | 1.4496        | 55.4         | 1.2149 X             |
| 1.2799        | 52.0    | 1.2690 X             | 1.4550        | 55.5         | 1.2134 X             |
| 1.2845        | 52.1    | 1.2673 X             | 1.4605        | 55.6         | 1.2119 X             |
|               |         |                      |               |              |                      |
| 1.2892        | 52.2    | 1.2656 X             | 1.4659        | 55.7         | 1.2105 X             |
| 1.2938        | 52.3    | 1.2639 X             | 1.4714        | 55.8         | 1.2091 X             |
| 1.2985        | 52.4    | 1.2622 X             | 1.4770        | 55.9         | 1.2076 X             |
| 1.3032        | 52.5    | 1.2605 X             | 1.4826        | 56.0         | 1.2062 X             |
| 1.3079        | 52.6    | 1.2588 X             | 1.4881        | 56.1         | 1.2048 X             |
|               |         |                      |               |              |                      |
| 1.3127        | 52.7    | 1.2571 X             | 1.4938        | 56.2         | 1.2034 X             |
| 1.3174        | 52.8    | 1.2554 X             | 1.4994        | 56.3         | 1.2020 X             |
| 1.3222        | 52.9    | 1.2538 X             | 1.5051        | 56.4         | 1.2006 X             |
| 1.3270        | 53.0    | 1.2521 X             | 1.5108        | 56.5         | 1.1992 X             |
| 1.3319        | 53.1    | 1.2505 X             | 1.5166        | 56.6         | 1.1978 X             |

Table 25-1, Vector Conversion (cont'd)

|        | Ta      | ble 25-1. Vecto | r Conversion (d | cont'd) |          |
|--------|---------|-----------------|-----------------|---------|----------|
| X<br>R | θ       |                 | x               | θ       |          |
| R      | degrees | Z               | R               | degrees | Z        |
| 1.5223 | 56.7    | 1.1964 X        | 1.7461          | 60.2    | 1.1524 X |
| 1.5282 | 56.8    | 1.1951 X        | 1.7532          | 60.3    | 1.1512 X |
| 1.5340 | 56.9    | 1.1937 X        | 1.7603          | 60.4    | 1.1501 X |
| 1.5399 | 57.0    | 1.1924 X        | 1.7675          | 60.5    | 1.1489 X |
| 1.5458 | 57.1    | 1.1910 X        | 1.7747          | 60.6    | 1.1478 X |
| 1.5517 | 57.2    | 1.1897 X        | 1.7820          | 60.7    | 1.1467 X |
| 1.5577 | 57.3    | 1.1883 X        | 1.7893          | 60.8    | 1.1456 X |
| 1.5636 | 57.4    | 1.1870 X        | 1.7966          | 60.9    | 1.1445 X |
| 1.5697 | 57.5    | 1.1857 X        | 1.8040          | 61.0    | 1.1433 X |
| 1.5757 | 57.6    | 1.1844 X        | 1.8115          | 61.1    | 1.1422 X |
| 1.5818 | 57.7    | 1.1831 X        | 1.8190          | 61.2    | 1.1411 X |
| 1.5880 | 57.8    | 1.1818 X        | 1.8265          | 61.3    | 1.1401 X |
| 1.5941 | 57.9    | 1.1805 X        | 1.8341          | 61.4    | 1.1390 X |
| 1.6003 | 58.0    | 1.1792 X        | 1.8418          | 61.5    | 1.1379 X |
| 1.6006 | 58.1    | 1.1779 X        | 1.8495          | 61.6    | 1.1368 X |
| 1.6128 | 58.2    | 1.1766 X        | 1.8572          | 61.7    | 1.1357 X |
| 1.6191 | 58.3    | 1.1753 X        | 1.8650          | 61.8    | 1.1347 X |
| 1.6255 | 58.4    | 1.1741 X        | 1.8728          | 61.9    | 1.1336 X |
| 1.6318 | 58.5    | 1.1728 X        | 1.8807          | 62.0    | 1.1326 X |
| 1.6383 | 58.6    | 1.1716 X        | 1.8887          | 62.1    | 1.1315 X |
| 1.6447 | 58.7    | 1.1703 X        | 1.8967          | 62.2    | 1.1305 X |
| 1.6512 | 58.8    | 1.1691 X        | 1.9047          | 62.3    | 1.1294 X |
| 1.6577 | 58.9    | 1.1678 X        | 1.9128          | 62.4    | 1.1284 X |
| 1.6643 | 59.0    | 1.1666 X        | 1.9210          | 62.5    | 1.1274 X |
| 1.6709 | 59.1    | 1.1654 X        | 1.9292          | 62.6    | 1.1264 X |
| 1.6775 | 59.2    | 1.1642 X        | 1.9375          | 62.7    | 1.1253 X |
| 1.6842 | 59.3    | 1.1630 X        | 1.9458          | 62.8    | 1.1243 X |
| 1.6909 | 59.4    | 1.1618 X        | 1.9542          | 62.9    | 1.1233 X |
| 1.6977 | 59.5    | 1.1606 X        | 1.9626          | 63.0    | 1.1223 X |
| 1.7044 | 59.6    | 1.1594 X        | 1.9711          | 63.1    | 1.1213 X |
| 1.7113 | 59.7    | 1.1582 X        | 1.9797          | 63.2    | 1.1203 X |
| 1.7182 | 59.8    | 1.1570 X        | 1.9883          | 63.3    | 1.1193 X |
| 1.7251 | 59.9    | 1.1559 X        | 1.9969          | 63.4    | 1.1184 X |
| 1.7320 | 60.0    | 1.1547 X        | 2.0057          | 63.5    | 1.1174 X |
| 1.7390 | 60.1    | 1.1535 X        | 2.0145          | 63.6    | 1.1164 X |

| T     | able | 25-1. | Vector | Conversion | (cont'd) |
|-------|------|-------|--------|------------|----------|
| θ     |      |       |        | X          |          |
| grees |      | Z     |        | Ŕ          | deg      |

| Y      | θ       |          | Y             | θ       |          |
|--------|---------|----------|---------------|---------|----------|
| XR     | degrees | z        | $\frac{x}{R}$ | degrees | z        |
| K      | deflies | •        | Α.            | Gegrees | -        |
| 2.0233 | 63.7    | 1.1155 X | 2.3789        | 67.2    | 1.0847 X |
| 2.0323 | 63.8    | 1.1145 X | 2.3906        | 67.3    | 1.0840 X |
| 2.0412 | 63.9    | 1.1135 X | 2.4023        | 67.4    | 1.0832 X |
| 2.0503 | 64.0    | 1.1126 X | 2.4142        | 67.5    | 1.0824 X |
| 2.0594 | 64.1    | 1.1116 X | 2.4262        | 67.6    | 1.0816 X |
| 2.0374 | 04.1    | 1.1110 X | 1.4101        | 07.10   | 1100107  |
| 2.0686 | 64.2    | 1.1107 X | 2.4382        | 67.7    | 1.0808 X |
| 2.0778 | 64.3    | 1.1098 X | 2.4504        | 67.8    | 1.0801 X |
| 2.0872 | 64.4    | 1.1088 X | 2.4627        | 67.9    | 1.0793 X |
| 2.0965 | 64.5    | 1.1079 X | 2.4751        | 68.0    | 1.0785 X |
| 2.1060 | 64.6    | 1.1070 X | 2.4876        | 68.1    | 1.0778 X |
|        |         |          |               |         |          |
| 2.1115 | 64.7    | 1.1061 X | 2.5002        | 68.2    | 1.0770 X |
| 2.1251 | 64.8    | 1.1052 X | 2.5129        | 68.3    | 1.0763 X |
| 2.1348 | 64.9    | 1.1043 X | 2.5257        | 68.4    | 1.0755 X |
| 2.1445 | 65.0    | 1.1034 X | 2.5386        | 68.5    | 1.0748 X |
| 2.1543 | 65.1    | 1.1025 X | 2.5517        | 68.6    | 1.0740 X |
|        |         |          |               |         |          |
| 2.1642 | 65.2    | 1.1016 X | 2.5649        | 68.7    | 1.0733 X |
| 2.1741 | 65.3    | 1.1007 X | 2.5781        | 68.8    | 1.0726 X |
| 2.1842 | 65.4    | 1.0998 X | 2.5916        | 68.9    | 1.0719 X |
| 2.1943 | 65.5    | 1.0989 X | 2.6051        | 69.0    | 1.0711 X |
| 2.2045 | 65.6    | 1.0981 X | 2.6187        | 69.1    | 1.0704 X |
|        |         |          |               |         |          |
| 2.2147 | 65.7    | 1.0972 X | 2.6325        | 69.2    | 1.0697 X |
| 2.2251 | 65.8    | 1.0963 X | 2.6464        | 69.3    | 1.0690 X |
| 2.2355 | 65.9    | 1.0955 X | 2.6604        | 69.4    | 1.0683 X |
| 2.2460 | 66.0    | 1.0946 X | 2.6746        | 69.5    | 1.0676 X |
| 2.2566 | 66.1    | 1.0938 X | 2.6889        | 69.6    | 1.0669 X |
|        |         |          |               |         |          |
| 2.2673 | 66.2    | 1.0929 X | 2.7033        | 69.7    | 1.0662 X |
| 2.2781 | 66.3    | 1.0921 X | 2.7179        | 69.8    | 1.0655 X |
| 2.2889 | 66.4    | 1.0913 X | 2.7326        | 69.9    | 1.0648 X |
| 2.2998 | 66.5    | 1.0904 X | 2.7475        | 70.0    | 1.0642 X |
| 2.3109 | 66.6    | 1.0896 X | 2.7625        | 70.1    | 1.0635 X |
|        |         |          |               |         |          |
| 2.3220 | 66.7    | 1.0888 X | 2.7776        | 70.2    | 1.0628 X |
| 2.3332 | 66.8    | 1.0880 X | 2.7929        | 70.3    | 1.0622 X |
| 2.3445 | 66.9    | 1.0872 X | 2.8083        | 70.4    | 1.0615 X |
| 2.3558 | 67.0    | 1.0864 X | 2.8239        | 70.5    | 1.0608 X |
| 2.3673 | 67.1    | 1.0855 X | 2.8396        | 70.6    | 1.0602 X |
| 200    |         |          |               |         |          |

| Table 25-1. Vector Conve | ersion (cont'd) |
|--------------------------|-----------------|
|--------------------------|-----------------|

|        | Table 25-1. Vector Conversion (cont'd) |                      |        |         |          |  |  |
|--------|----------------------------------------|----------------------|--------|---------|----------|--|--|
| X      | θ                                      | Z                    | XR     | θ       |          |  |  |
| R      | degrees                                |                      | R      | degrees | Z        |  |  |
|        |                                        |                      |        |         |          |  |  |
| 2.8555 | 70.7                                   | 1.0595 X             | 3.5339 | 74.2    | 1.0393 X |  |  |
| 2.8716 | 70.8                                   | 1.0589 X             | 3.5576 | 74.3    | 1.0387 X |  |  |
| 2.8878 | 70.9                                   | 1.0582 X             | 3.5816 | 74.4    | 1.0382 X |  |  |
| 2.9042 | 71.0                                   | 1.0576 X             | 3.6059 | 74.5    | 1.0377 X |  |  |
| 2.9208 | 71.1                                   | 1.0570 X             | 3.6305 | 74.6    | 1.0372 X |  |  |
| 2.9375 | 71.2                                   | 1.0563 X             |        |         |          |  |  |
| 2.9544 | 71.2                                   | 1.0563 X<br>1.0557 X | 3.6554 | 74.7    | 1.0367 X |  |  |
| 2.9344 | 71.4                                   |                      | 3.6806 | 74.8    | 1.0362 X |  |  |
| 2.9887 | 71.5                                   | 1.0551 X             | 3.7062 | 74.9    | 1.0358 X |  |  |
| 3.0061 |                                        | 1.0545 X             | 3.7320 | 75.0    | 1.0353 X |  |  |
| 3.0001 | 71.6                                   | 1.0539 X             | 3.7583 | 75.1    | 1.0348 X |  |  |
| 3.0237 | 71.7                                   | 1.0533 X             | 3.7848 | 75.2    | 1.0343 X |  |  |
| 3.0415 | 71.8                                   | 1.0527 X             | 3.8118 | 75.3    | 1.0338 X |  |  |
| 3.0595 | 71.9                                   | 1.0521 X             | 3.8390 | 75.4    | 1.0334 X |  |  |
| 3.0777 | 72.0                                   | 1.0515 X             | 3.8667 | 75.5    | 1.0329 X |  |  |
| 3.0960 | 72.1                                   | 1.0509 X             | 3.8947 | 75.6    | 1.0324 X |  |  |
|        |                                        | 11000771             | 0.0747 | 75.0    | 1.0324 X |  |  |
| 3.1146 | 72.2                                   | 1.0503 X             | 3.9231 | 75.7    | 1.0320 X |  |  |
| 3.1334 | 72.3                                   | 1.0497 X             | 3.9520 | 75.8    | 1.0315 X |  |  |
| 3.1524 | 72.4                                   | 1.0491 X             | 3.9812 | 75.9    | 1.0311 X |  |  |
| 3.1716 | 72.5                                   | 1.0485 X             | 4.0108 | 76.0    | 1.0306 X |  |  |
| 3.1910 | 72.6                                   | 1.0479 X             | 4.0408 | 76.1    | 1.0302 X |  |  |
|        |                                        |                      |        |         |          |  |  |
| 3.2106 | 72.7                                   | 1.0474 X             | 4.0713 | 76.2    | 1.0297 X |  |  |
| 3.2305 | 72.8                                   | 1.0468 X             | 4.1022 | 76.3    | 1.0293 X |  |  |
| 3.2505 | 72.9                                   | 1.0462 X             | 4.1335 | 76.4    | 1.0288 X |  |  |
| 3.2708 | 73.0                                   | 1.0457 X             | 4.1653 | 76.5    | 1.0284 X |  |  |
| 3.2914 | 73.1                                   | 1.0451 X             | 4.1976 | 76.6    | 1.0280 X |  |  |
|        |                                        |                      |        | , 6.6   | 1.0200 X |  |  |
| 3.3121 | 73.2                                   | 1.0466 X             | 4.2303 | 76.7    | 1.0276 X |  |  |
| 3.3332 | 73.3                                   | 1.0440 X             | 4.2635 | 76.8    | 1.0271 X |  |  |
| 3.3544 | 73.4                                   | 1.0435 X             | 4.2972 | 76.9    | 1.0267 X |  |  |
| 3.3759 | 73.5                                   | 1.0429 X             | 4.3315 | 77.0    | 1.0263 X |  |  |
| 3.3977 | 73.6                                   | 1.0424 X             | 4.3662 | 77.1    | 1.0259 X |  |  |
|        |                                        |                      |        |         |          |  |  |
| 3.4197 | 73.7                                   | 1.0419 X             | 4.4015 | 77.2    | 1.0225 X |  |  |
| 3.4420 | 73.8                                   | 1.0413 X             | 4.4373 | 77.3    | 1.0251 X |  |  |
| 3.4646 | 73.9                                   | 1.0408 X             | 4.4737 | 77.4    | 1.0247 X |  |  |
| 3.4874 | 74.0                                   | 1.0403 X             | 4.5107 | 77.5    | 1.0243 X |  |  |
| 3.5105 | 74.1                                   | 1.0398 X             | 4.5483 | 77.6    | 1.0239 X |  |  |

|        |         | le 25-1. Vecto | r Conversion (d | ont'd)  |          |
|--------|---------|----------------|-----------------|---------|----------|
| XR     | θ       |                | XR              | θ       |          |
| R      | degrees | Z              | R               | degrees | Z        |
| 4.5864 | 77.7    | 1.0235 X       | 6.4596          | 81.2    | 1.0119 X |
| 4.6252 | 77.8    | 1.0231 X       | 6.5350          | 81.3    | 1.0116 X |
| 4.6646 | 77.9    | 1.0227 X       | 6.6122          | 81.4    | 1.0114 X |
| 4.7046 | 78.0    | 1.0223 X       | 6.6911          | 81.5    | 1.0111 X |
| 4.7453 | 78.1    | 1.0220 X       | 6.7720          | 81.6    | 1.0108 X |
| 4.7867 | 78.2    | 1.0216 X       | 6.8547          | 81.7    | 1.0106 X |
| 4.8288 | 78.3    | 1.0212 X       | 6.9395          | 81.8    | 1.0103 X |
| 4.8716 | 78.4    | 1.0208 X       | 7.0264          | 81.9    | 1.0101 X |
| 4.9151 | 78.5    | 1.0205 X       | 7.1154          | 82.0    | 1.0098 X |
| 4.9594 | 78.6    | 1.0201 X       | 7.2066          | 82.1    | 1.0096 X |
| 5.0045 | 78.7    | 1.0198 X       | 7.3002          | 82.2    | 1.0093 X |
| 5.0504 | 78.8    | 1.0194 X       | 7.3961          | 82.3    | 1.0091 X |
| 5.0970 | 78.9    | 1.0191 X       | 7.4946          | 82.4    | 1.0089 X |
| 5.1445 | 79.0    | 1.0187 X       | 7.5957          | 82.5    | 1.0086 X |
| 5.1929 | 79.1    | 1.0184 X       | 7.6996          | 82.6    | 1.0084 X |
| 5.2422 | 79.2    | 1.0180 X       | 7.8062          | 82.7    | 1.0082 X |
| 5.2923 | 79.3    | 1.0177 X       | 7.9158          | 82.8    | 1.0079 X |
| 5.3434 | 79.4    | 1.0174 X       | 8.0285          | 82.9    | 1.0077 X |
| 5.3955 | 79.5    | 1.0170 X       | 8.1443          | 83.0    | 1.0075 X |
| 5.4486 | 79.6    | 1.0167 X       | 8.2635          | 83.1    | 1.0073 X |
| 5.5026 | 79.7    | 1.0164 X       | 8.3862          | 83.2    | 1.0071 X |
| 5.5578 | 79.8    | 1.0160 X       | 8.5126          | 83.3    | 1.0069 X |
| 5.6140 | 79.9    | 1.0157 X       | 8.6427          | 83.4    | 1.0067 X |
| 5.6713 | 80.0    | 1.0154 X       | 8.7769          | 83.5    | 1.0065 X |
| 5.7297 | 80.1    | 1.0151 X       | 8.9152          | 83.6    | 1.0063 X |
| 5.7894 | 80.2    | 1.0148 X       | 9.0579          | 83.7    | 1.0061 X |
| 5.8502 | 80.3    | 1.0145 X       | 9.2051          | 83.8    | 1.0051 X |
| 5.9123 | 80.4    | 1.0143 X       | 9.3572          | 83.8    | 1.0059 X |
| 5.9758 | 80.5    | 1.0139 X       | 9.5144          | 84.0    | 1.0057 X |
| 6.0405 | 80.6    | 1.0136 X       | 9.6768          | 84.1    | 1.0053 X |
| 6.1066 | 80.7    | 1.0133 X       | 9.8448          | 84.2    | 1.0051 X |
| 6.1742 | 80.8    | 1.0130 X       | 10.019          | 84.3    | 1.0050 X |
| 6.2432 | 80.9    | 1.0127 X       | 10.119          | 84.4    | 1.0030 X |
| 6.3137 | 81.0    | 1.0127 X       | 10.177          | 84.5    | 1.0046 X |
| 4.2050 | 01.0    | 1.0123 X       | 10.565          | 04.5    | 1.0040 X |

81.1

1.0122 X

10.579

84.6

1.0044 X

Table 25-1. Vector Conversion (cont'd)

| XR     | θ            |                      | <u>X</u> | θ            |                      |
|--------|--------------|----------------------|----------|--------------|----------------------|
| R      | degrees      | z                    | R        | degrees      | Z                    |
| 10.780 | 84.7         | 1.0043 X             | 22.022   | 87.4         | 1.0010 X             |
| 10.988 | 84.8         | 1.0041 X             | 23.904   | 87.5         | 1.0000 X             |
| 11.205 | 84.9         | 1.0040 X             | 23.859   | 87.6         | 1.0009 X             |
| 11.430 | 85.0         | 1.0038 X             | 24.898   | 87.7         | 1.0009 X             |
| 11.664 | 85.1         | 1.0037 X             | 26.031   | 87.8         | 1.0007 X             |
|        |              |                      |          |              |                      |
| 11.909 | 85.2         | 1.0035 X             | 27.271   | 87.9         | 1.0007 X             |
| 12.163 | 85.3         | 1.0034 X             | 28.636   | 88.0         | 1.0006 X             |
| 12.429 | 85.4         | 1.0032 X             | 30.145   | 88.1         | 1.0005 X             |
| 12.706 | 85.5         | 1.0031 X             | 31.820   | 88.2         | 1.0005 X             |
| 12.996 | 85.6         | 1.0029 X             | 33.693   | 88.3         | 1.0004 X             |
| 13.229 | 85.7         | 1.0028 X             | 35.800   |              |                      |
| 13.617 | 85.8         | 1.0027 X             | 38.188   | 88.4<br>88.5 | 1.0004 X             |
| 13.951 | 85.9         | 1.0026 X             | 40.917   | 88.6         | 1.0003 X<br>1.0003 X |
| 14.301 | 86.0         | 1.0024 X             | 44.066   | 88.7         | 1.0003 X             |
| 14.668 | 86.1         | 1.0023 X             | 47.739   | 88.8         | 1.0002 X             |
|        |              |                      |          |              |                      |
| 15.056 | 86.2         | 1.0022 X             | 52.081   | 88.9         | 1.0002 X             |
| 15.464 | 86.3         | 1.0021 X             | 57.290   | 89.0         | 1.0001 X             |
| 15.894 | 86.4         | 1.0020 X             | 63.657   | 89.1         | 1.0001 X             |
| 16.832 | 86.5         | 1.0019 X             | 71.615   | 89.2         | 1.0001 X             |
| 10.032 | 86.6         | 1.0018 X             | 81.847   | 89.3         | 1.0001 X             |
| 17.343 | 86.7         | 1.0017 X             | 95.489   | 89.4         | 1.0000 X             |
| 17.886 | 86.8         | 1.0016 X             | 114.59   | 89.5         | 1.0000 X             |
| 18.464 | 86.9         | 1.0015 X             | 143.24   | 89.6         | 1.0000 X             |
| 19.081 | 87.0         | 1.0014 X             | 190.98   | 89.7         | 1.0000 X             |
| 19.740 | 87.1         | 1.0013 X             | 286.48   | 89.8         | 1.0000 X             |
| 20.446 | 87.2         | 1.0010.4             |          |              |                      |
| 21.205 | 87.2<br>87.3 | 1.0012 X<br>1.0011 X | 572.96   | 89.9         | 1.0000 X             |
| 21.203 | 07.3         | 1.0011 X             | R = 0    | 90.0         | 1.0000 X             |
|        |              |                      |          |              |                      |

off to 5000) and the phase angle is -53.1 degrees. How could we express this in i-notation?

Start with the phase angle. In the third column 1.25X equals Z. But Z equals 5000 ohms, Since 1.25X equals 5000, then X equals 5000/1.25, or 4,000 ohms. Now move back to the first column. Here X/R equals 1.3319. Thus, 4000/R equals 1.3319. Solving for R we get R equals 3000 ohms. And, since we know that the phase angle is negative, we also know that our i term will also be negative. Our answer, then, is 3000-i4000. □Example:

What is the impedance of a circuit whose resistance, R, is 1000 ohms and whose reactance, X, is 775 ohms?

The ratio, X/R is 775/1000 or 0.775. Locating the nearest equivalent number in the first column of Table 25-1 gives 0.77568. To the right of this number, the phase angle is 37.8 degrees and, continuing to the right, Z equals 1.6316X. Thus, the impedance, Z eguals 1.6316 x 775, or 1264.49 ohms.

## Chapter 26 Time Constants

#### RC TIME CONSTANTS

RC networks are used in a variety of applications, including differentiating and integrating networks; emphasis and de-emphasis circuits; time delay elements in radio control receivers; oscillators; electronic switches and light flashers.

The time required to charge or discharge a capacitor depends on the amount of capacitance and the value of the associated resistor. The formula for the charge or discharge of a capacitor through a resistor is T equals R x C in which the resistance is in ohms and the capacitance is in farads. The time, T, is the time in seconds for the capacitor to charge to 63 percent of its maximum, or for the charge on the capacitor to the capacitor of the capacitor to show in Table 26-1.

Table 26-2 supplies the time constants for a capacitance range of 0.1 to 1 uf and from 0.1 to 10 seconds. Note that increasing the value of R or C will increase the time constant proportionately.

Although the formula for RC time constants requires basic units, multiples can be used if conversions are made in accordance with Table 26-1.

## □Example:

How long will it take to charge a capacitor having a value of 0.2  $\mu F$  through a 500K resistor?

Locate 0.2 in the capacitance column in Table 26-2. Immediately beneath this value locate 500K. Move to the left and you will see that it will take 0.1 second.

Table 26-1. Multiples of Units for Time Constants

| Where<br>R is in | C is in | L is in | T is in |
|------------------|---------|---------|---------|
| ohms             | farads  | henrys  | seconds |
| ohms             | μf      | μh      | μsec    |
| kilohms          | μf      | henrys  | msec    |
| kilohms          | _       | mh      | μsec    |
| megohms          | μf      | _       | seconds |
| menohms          | nf      | henrys  | "505    |

(μ sec = microseconds; m sec = milliseconds; μF = microfarads; pF = picofarads; μH = micro henrys; mH = millihenrys)

## □Example:

What combination of resistance and capacitance can be used to obtain a one-second time constant?

Locate one second in the *time in seconds* column. If you will now move to the right you will see that a number of possible combinations are available—10 megohms and  $0.1 \mu F$ ; 5 megohms and  $0.2 \mu F$ ; 3.3 megohms and  $0.3 \mu F$ , etc.

Time constants can be had for values other than those shown in the left-hand column of Table 26-2. Thus if the value of capacitance is reduced by half or if the value of resistance is similarly reduced (but not both at the same time) the value of the time constant is also lowered by half.

### □Example:

What is the time constant for a value of capacitance of .05  $\mu F$  and a resistance of 1 megohm?

There is no column headed by  $.05~\mu F$  but there is a column marked 0.1. Divide this by 2 and you will have  $.05~\mu F$ . Move down from 0.1 (now considered as .05) until you regal 1.0 megohm, the given value of resistance. Move directly to the left and you will see a time constant of 0.1 second. Divide this by 2 and the time constant for the values of R and C that were given will be .05 second. To get a time constant of .05 second either reduce the resistance .10 megohm to 500K ohms or the capacitance to .05 microfrards. If we reduce both R and C by 50 percent, the value of the time constant becomes one-fourth of the value given in Table 26-2. Thus, for a value of 500K ohms and a capacitance of  $.05~\mu F$  the time constant is .025 second.

Table 26-2. RC Time Constants

|             |                 | I HIDIO ZO-2 | NO TIME COMS  | ants       |       |
|-------------|-----------------|--------------|---------------|------------|-------|
| Time        |                 |              | ance (microfo | rads)      |       |
| (sec)       | 0.1             | 0.2          | 0.3           | 0.4        | 0.5   |
| 0.1         | 1.0M            | 500K         | 333K          | 250K       | 200K  |
| 0.15        | 1.5M            | 750K         | 500K          | 375K       | 300K  |
| 0.2         | 2.0M            | 1.00M        | 666K          | 500K       | 400K  |
| 0.25        | 2.5M            | 1.25M        | 833K          | 625K       | 500K  |
| 0.3         | 3.0M            | 1.50M        | 1.00M         | 750K       | 600K  |
| 0.35        | 3.5M            | 1.75M        | 1.17M         | 875K       | 700K  |
| 0.4         | 4.0M            | 2.00M        | 1.33M         | 1.00M      | 800K  |
| 0.45        | 4.5M            | 2.25M        | 1.50M         | 1.13M      | 900K  |
| 0.5         | 5.0M            | 2.50M        | 1.67M         | 1.25M      | 1.0M  |
| 0.55        | 5.5M            | 2.75M        | 1.83M         | 1.38M      | 1.1M  |
| 0.6         | 6.0M            | 3.00M        | 2.00M         | 1.50M      | 1.2M  |
| 0.65        | 6.5M            | 3.25M        | 2.17M         | 1.63M      | 1.3M  |
| 0.7<br>0.75 | 7.0M            | 3.50M        | 2.33M         | 1.75M      | 1.4M  |
| 0.75        | 7.5M<br>8.0M    | 3.75M        | 2.50M         | 1.88M      | 1.5M  |
|             |                 | 4.00M        | 2.67M         | 2.00M      | 1.6M  |
| 0.85        | 8.5M            | 4.25M        | 2.83M         | 2.13M      | 1.7M  |
| 0.9         | 9.0M            | 4.50M        | 3.00M         | 2.25M      | 1.8M  |
| 1.0         | 9.5M            | 4.75M        | 3.17M         | 2.38M      | 1.9M  |
| 1.5         | 10.0M<br>15.0M  | 5.00M        | 3.33M         | 2.50M      | 2.0M  |
|             |                 | 7.50M        | 5.00M         | 3.75M      | 3.0M  |
| 2.0         | 20.0M           | 10.00M       | 6.66M         | 5.00M      | 4.0M  |
| 2.5         | 25.0M           | 12.50M       | 8.33M         | 6.25M      | 5.0M  |
| 3.0<br>3.5  | 30.0M           | 15.00M       | 10.00M        | 7.50M      | 6.0M  |
| 4.0         | 35.0M<br>40.0M  | 17.50M       | 11.66M        | 8.75M      | 7.0M  |
|             |                 | 20.00M       | 13.33M        | 10.00M     | 8.0M  |
| 4.5         | 45.0M           | 22.50M       | 15.00M        | 11.25M     | 9.0M  |
| 5.0         | 50.0M           | 25.00M       | 16.67M        | 12.50M     | 10.0M |
| 5.5<br>6.0  | 55.0M           | 27.50M       | 18.33M        | 13.75M     | 11.0M |
| 6.5         | 60.0M<br>65.0M  | 30.00M       | 20.00M        | 15.00M     | 12.0M |
|             |                 | 32.50M       | 21.67M        | 16.25M     | 13.0M |
| 7.0         | 70.0M           | 35.00M       | 23.33M        | 17.50M     | 14.0M |
| 7.5<br>8.0  | 75.0M           | 37.50M       | 25.00M        | 18.75M     | 15.0M |
| 9.0         | M0.08           | 40.00M       | 26.67M        | 20.00M     | 16.0M |
| 10.0        | 90.0M<br>100.0M | 45.00M       | 30.00M        | 22.50M     | 18.0M |
| 10.0        |                 | 50.00M       | 33.33M        | 25.00M     | 20.0M |
|             | K == kiloh      | ms           |               | M == megol | nms   |
|             |                 |              |               |            |       |

Table 26-2. RC Time Constants (cont'd)

| Time  | Capacitance (microfarads) |        |        |        |       |
|-------|---------------------------|--------|--------|--------|-------|
| (sec) | 0.6                       | 0.7    | 8.0    | 0.9    | 1.0   |
| 0.1   | 166K                      | 143K   | 125K   | 111K   | 100K  |
| 0.15  | 250K                      | 214K   | 188K   | 167K   | 150K  |
| 0.2   | 333K                      | 286K   | 250K   | 222K   | 200K  |
| 0.25  | 417K                      | 357K   | 313K   | 278K   | 250K  |
| 0.3   | 500K                      | 429K   | 375K   | 333K   | 300K  |
| 0.35  | 583K                      | 500K   | 438K   | 389K   | 350K  |
| 0.4   | 666K                      | 571K   | 500K   | 444K   | 400K  |
| 0.45  | 750K                      | 643K   | 563K   | 500K   | 450K  |
| 0.5   | 833K                      | 714K   | 625K   | 555K   | 500K  |
| 0.55  | 917K                      | 786K   | 688K   | 611K   | 550K  |
| 0.6   | 1.00M                     | 857K   | 750K   | 666K   | 600K  |
| 0.65  | 1.08M                     | 929K   | 813K   | 722K   | 650K  |
| 0.7   | 1.17M                     | 1.00M  | 875K   | 778K   | 700K  |
| 0.75  | 1.25M                     | 1.07M  | 938K   | 833K   | 750K  |
| 0.8   | 1.33M                     | 1.14M  | 1.00M  | 889K   | 800K  |
| 0.85  | 1.42M                     | 1.21M  | 1.06M  | 944K   | 850K  |
| 0.9   | 1.50M                     | 1.29M  | 1.13M  | 1.00M  | 900K  |
| 0.95  | 1.58M                     | 1.36M  | 1.19M  | 1.06M  | 950K  |
| 1.0   | 1.67M                     | 1.43M  | 1.25M  | 1.11M  | 1.0M  |
| 1.5   | 2.50M                     | 2.14M  | 1.88M  | 1.67M  | 1.5M  |
| 2.0   | 3.33M                     | 2.86M  | 2.50M  | 2.22M  | 2.0M  |
| 2.5   | 4.17M                     | 3.57M  | 3.13M  | 2.78M  | 2.5M  |
| 3.0   | 5.00M                     | 4.29M  | 3.75M  | 3.33M  | 3.0M  |
| 3.5   | 5.83M                     | 5.00M  | 4.38M  | 3.89M  | 3.5M  |
| 4.0   | 6.66M                     | 5.71M  | 5.00M  | 4.44M  | 4.0M  |
| 4.5   | 7.50M                     | 6.43M  | 5.63M  | 5.00M  | 4.5M  |
| 5.0   | 8.33M                     | 7.14M  | 6.25M  | 5.55M  | 5.0M  |
| 5.5   | 9.17M                     | 7.86M  | 6.88M  | 6.11M  | 5.5M  |
| 6.0   | 10.00M                    | 8.57M  | 7.50M  | 6.66M  | 6.0M  |
| 6.5   | 10.83M                    | 9.29M  | 8.13M  | 7.22M  | 6.5M  |
| 7.0   | 11.67M                    | 10.00M | 8.75M  | 7.78M  | 7.0M  |
| 7.5   | 12.50M                    | 10.71M | 9.38M  | 8.33M  | 7.5M  |
| 8.0   | 13.33M                    | 11.43M | 10.00M | 8.89M  | 8.0M  |
| 9.0   | 15.00M                    | 12.86M | 11.25M | 10.00M | 9.0M  |
| 10.0  | 16.66M                    | 14.28M | 12.50M | 11.11M | 10.0M |

K = kilohms

M = megohms

#### RL TIME CONSTANTS

RL circuits—circuits consisting of a resistor in series with an inductor—are used in timing circuits or in relays where the relay must make or break at predetermined times. The time constant of an RL circuit is based on the formula T equals L/R, where T is the time in seconds, L is the inductance in henrys, and R is the resistance in ohms. The time in seconds is that required for the current to reach 63 percent of its maximum value, or to fall to 37 percent of its maximum. Time constants of RL circuits are in Table 26-3.

The resistance of the coil wire wound must be considered when calculating the time constant. This resistance is regarded as acting in series with the coil. Thus, if the resistance of a coil is 10 ohms and a 100-ohm series resistor is required for an RL circuit, a value close to 90 ohms should be used. As a rule of thumb, if the resistance of the coil is 10 percent or more of the required resistance, it should be taken into consideration. In the case just menioned, subtracting the 10 ohms of the coil from 100 ohms shows that a 90-ohm resistor would be required. If the value of the external resistor is in the order of kilohms, a coil whose resistance is just a few ohms would not seriously affect the time constant.

## □Example:

A relay coil whose internal resistance is negligible, and whose inductance is 0.05 henry, will make (contacts will close) when the current through the coil reaches 63 percent of its peak. What value of series resistor is needed to have the relay close 0.008 second after the circuit is on?

Note that Table 26-3 does not include a time of 0.008 second not an inductance of 0.05 henry. However, it is easy to extend the table by moving the decimal point. Change 0.008 to 8 by moving its decimal point three places to the right. The inductance, 0.05 henry, will then become 50. Locate the number 8 in the time column. Move across to the right to reach the 50 column. The answer is 6.3 ohms. The decimal point does not need to be moved in the answer. The reason for this is based on the time-constant formula, T = L/R. Equal increases or decreases in L and R will have no effect on the time constant.

## □Example:

An RL circuit has an inductance of 30 henrys and a resistance of 42.9 ohms. What is its time constant?

Locate the column marked with the number 30 at the top. Move down in this column until you reach the number 42.9. Then

Table 26-3. RL Time Constants

| Time  |       | Inductance | (henrys) |       |       |
|-------|-------|------------|----------|-------|-------|
| (sec) | 10    | 20         | 30       | 40    | 50    |
|       |       |            |          |       |       |
| 0.1   | 100.0 | 200.0      | 300.0    | 400.0 | 500.0 |
| 0.15  | 66.7  | 133.3      | 200.0    | 266.7 | 333.3 |
| 0.2   | 50.0  | 100.0      | 150.0    | 200.0 | 250.0 |
| 0.25  | 40.0  | 80.0       | 120.0    | 160.0 | 200.0 |
| 0.3   | 33.3  | 66.7       | 100.0    | 133.3 | 166.7 |
| 0.35  | 28.6  | 57.1       | 86.6     | 114.3 | 142.9 |
| 0.4   | 25.0  | 50.0       | 75.0     | 100.0 | 125.0 |
| 0.45  | 22.2  | 44.4       | 66.7     | 88.9  | 111.1 |
| 0.5   | 20.0  | 40.0       | 60.0     | 80.0  | 100.0 |
| 0.55  | 18.2  | 36.4       | 54.5     | 72.7  | 90.9  |
| 0.6   | 16.7  | 33.3       | 50.0     | 66.7  | 83.3  |
| 0.65  | 15.4  | 30.8       | 46.2     | 61.5  | 76.9  |
| 0.7   | 14.3  | 28.6       | 42.9     | 57.1  | 71.4  |
| 0.75  | 13.3  | 26.7       | 40.0     | 53.3  | 66.7  |
| 0.8   | 12.5  | 25.0       | 37.5     | 50.0  | 62.5  |
| 0.85  | 11.8  | 23.5       | 35.3     | 47.1  | 58.8  |
| 0.9   | 11.1  | 22.2       | 33.3     | 44.4  | 55.5  |
| 0.95  | 10.5  | 21.1       | 31.6     | 42.1  | 52.6  |
| 1.0   | 10.0  | 20.0       | 30.0     | 40.0  | 50.0  |
| 1.5   | 6.7   | 13.3       | 20.0     | 26.7  | 33.3  |
| 2.0   | 5.0   | 10.0       | 15.0     | 20.0  | 25.0  |
| 2.5   | 4.0   | 8.0        | 12.0     | 16.0  | 20.0  |
| 3.0   | 3.3   | 6.7        | 10.0     | 13.3  | 16.7  |
| 3.5   | 2.9   | 5.7        | 8.7      | 11.4  | 14.3  |
| 4.0   | 2.5   | 5.0        | 7.5      | 10.0  | 12.5  |
| 4.5   | 2.2   | 4.4        | 6.7      | 8.9   | 11.1  |
| 5.0   | 2.0   | 4.0        | 6.0      | 8.0   | 10.0  |
| 5.5   | 1.8   | 3.6        | 5.5      | 7.3   | 9.1   |
| 6.0   | 1.7   | 3.3        | 5.0      | 6.7   | 8.3   |
| 6.5   | 1.5   | 3.1        | 4.6      | 6.2   | 7.7   |
| 7.0   | 1.4   | 2.9        | 4.3      | 5.7   | 7.1   |
| 7.5   | 1.3   | 2.7        | 4.0      | 5.3   | 6.7   |
| 8.0   | 1.2   | 2.5        | 3.8      | 5.0   | 6.3   |
| 9.0   | 1.1   | 2.2        | 3.3      | 4.4   | 5.5   |
| 10.0  | 1.0   | 2.0        | 3.0      | 4.0   | 5.0   |

All resistance values in ohms

Table 26-3. RL Time Constants (cont'd)

| Time  |       | Inductore     | e (henrys)   | (cont a) |        |
|-------|-------|---------------|--------------|----------|--------|
| (sec) | 60    | 70            | 80           | 90       | 100    |
|       |       |               | 00           | 70       | 700    |
| 0.1   | 600.0 | 700.0         | 800.0        | 900.0    | 1000.0 |
| 0.15  | 400.0 | 466.7         | 533.3        | 600.0    | 666.7  |
| 0.2   | 300.0 | 350.0         | 400.0        | 450.0    | 500.0  |
| 0.25  | 240.0 | 280.0         | 320.0        | 360.0    | 400.0  |
| 0.3   | 200.0 | 233.3         | 266.6        | 300.0    | 333.3  |
| 0.35  | 171.4 | 200.0         | 228.6        | 257.1    | 285.7  |
| 0.4   | 150.0 | 175.0         | 200.0        | 225.0    | 250.0  |
| 0.45  | 133.3 | 155.6         | 177.8        | 200.0    | 222.2  |
| 0.5   | 120.0 | 140.0         | 160.0        | 180.0    | 200.0  |
| 0.55  | 109.1 | 127.3         | 145.5        | 163.6    | 181.8  |
| 0.6   | 100.0 | 116.7         | 133.3        | 150.0    | 166.7  |
| 0.65  | 92.3  | 107.7         | 123.1        | 138.5    | 153.8  |
| 0.7   | 85.7  | 100.0         | 114.3        | 128.7    | 142.9  |
| 0.75  | 80.0  | 93.3          | 106.7        | 120.0    | 133.3  |
| 8.0   | 75.0  | 87.5          | 100.0        | 112.5    | 125.0  |
| 0.85  | 70.6  | 82.3          | 94.1         | 105.9    | 117.6  |
| 0.9   | 66.6  | 77.8          | 88.9         | 100.0    | 111.1  |
| 0.95  | 63.2  | 73.7          | 84.2         | 94.7     | 105.3  |
| 1.0   | 60.0  | 70.0          | 80.0         | 90.0     | 100.0  |
| 1.5   | 40.0  | 46.7          | 53.3         | 60.0     | 66.7   |
| 2.0   | 30.0  | 35.0          | 40.0         | 45.0     | 50.0   |
| 2.5   | 24.0  | 28.0          | 32.0         | 36.0     | 40.0   |
| 3.0   | 20.0  | 23.3          | 26.7         | 30.0     | 33.3   |
| 3.5   | 17.1  | 20.0          | 22.9         | 25.7     | 28.6   |
| 4.0   | 15.0  | 17.5          | 20.0         | 22.5     | 25.0   |
| 4.5   | 13.3  | 15.6          | 17.8         | 20.0     | 22.2   |
| 5.0   | 12.0  | 14.0          | 16.0         | 18.0     | 20.0   |
| 5.5   | 10.9  | 12.7          | 14.6         | 16.4     | 18.2   |
| 6.0   | 10.0  | 11.7          | 13.3         | 15.0     | 16.7   |
| 6.5   | 9.2   | 10.8          | 12.3         | 13.9     | 15.4   |
| 7.0   | 8.6   | 10.0          | 11.4         | 12.9     | 14.3   |
| 7.5   | 8.0   | 9.3           | 10.7         | 12.0     | 13.3   |
| 8.0   | 7.5   | 8.8           | 10.0         | 11.3     | 12.5   |
| 9.0   | 6.7   | 7.8           | 8.9          | 10.0     | 11.1   |
| 10.0  | 6.0   | 7.0           | 8.0          | 9.0      | 10.0   |
|       | All   | resistance vo | lues in ohms |          |        |

move to the left to the time (sec) column and you will find the time constant of this circuit is 0.7 second.

If you were to do this problem by using the formula, T=L/R, you would have T=30/42.9=0.6993 second. The difference between the two answers is 0.7-0.6993=0.0007 second, an extremely small percentage of error.

# Chapter 27 Angular Velocity

In an AC generator, the rotating armature produces a voltage sine wave. We can represent the armature by a rotating vector r. The angle through which this vector sweeps is usually indicated by the Greek letter O. The instantaneous values of the voltage produced are maximum when the phase angle, O, is 90 degrees or 270° and zero when that phase angle is 0 degrees or 180 degrees.

The radius vector r rotates about the origin, 0, and is taken to rotate in a counterclockwise direction. The angular velocity in radians per second of this rotating vector is the rate at which the angle,  $\theta$ , is produced by its rotation. Angular velocity is conveniently represented by  $\omega$  or  $2\pi f$  (radians per second) in which  $2\pi$  is a constant and is equal to 6.28. The frequency f is in Hertz.

Angular velocity appears in formulas involving instantaneous values of sine waves of voltage or current (e equals  $2\pi$  ft.) and capacitive reactance (XL equals  $2\pi$  ft.) and capacitive reactance (XL equals  $2\pi$  ft.)

The solution of problems involving angular velocity is simplified by Table 27-1. Here we have angular velocity corresponding to particular values of frequency.

Table 27-1 can be used for values of frequency other than those indicated by moving the decimal point. To find  $\omega$  at a frequency of 4 kHz, find 40 in the f column. To change 40 Hz to 4 kHz milhiply 40 by 100. This means we must also multiply the value of 251.20 (which is the value of  $\omega$  for 40) by 100. The answer is 25,120. To get megahertz values, multiply both f and  $\omega$  by 1,000,000.

## ☐ Example:

What is the angular velocity of a generator, whose armature rotates at 1800 revolutions per minute?

Divide 1800 revolutions by 60 (60 seconds equals 1 minute) to obtain the number of revolutions per second. 1800/60 equals 30 revolutions per second. So or revolutions the armature generates 30 complete sinewave cycles. The frequency, then, is 30. Locate 30 in the frequency (f) column of Table 27-1. The corresponding angular velocity is found to the right in the  $\omega$  column. The answer is 188.4 radians per second.

Table 27-1. Angular Velocity (Radians per Second)

| f    |        | .1.  |        |      |        |
|------|--------|------|--------|------|--------|
| (Hz) | ω      | (Hz) | ω      | (Hz) | ω      |
| 10   | 62.8   | 40   | 251.20 | 70   | 439.60 |
| 11   | 69.08  | 41   | 257.48 | 71   | 445.88 |
| 12   | 75.36  | 42   | 263.76 | 72   | 452.16 |
| 13   | 81.64  | 43   | 270.04 | 73   | 458.44 |
| 14   | 87.92  | 44   | 276.32 | 74   | 464.72 |
| 15   | 94.20  | 45   | 282.60 | 75   | 471.00 |
| 16   | 100.48 | 46   | 288.88 | 76   | 477.28 |
| 17   | 106.76 | 47   | 295.16 | 77   | 483.56 |
| 18   | 113.04 | 48   | 301.44 | 78   | 489.84 |
| 19   | 119.32 | 49   | 307.72 | 79   | 496.12 |
| 20   | 125.60 | 50   | 314.00 | 80   | 502.40 |
| 21   | 131.88 | 51   | 320.28 | 81   | 508.68 |
| 22   | 138.16 | 52   | 326.56 | 82   | 514.96 |
| 23   | 144.44 | 53   | 332.84 | 83   | 521.24 |
| 24   | 150.72 | 54   | 339.12 | 84   | 527.52 |
| 25   | 157.00 | 55   | 345.40 | 8.5  | 533.80 |
| 26   | 163.28 | 56   | 351.68 | 86   | 540.08 |
| 27   | 169.56 | 57   | 357.96 | 87   | 546.36 |
| 28   | 175.84 | 58   | 364.24 | 88   | 552.64 |
| 29   | 182.12 | 59   | 370.52 | 89   | 558.92 |
| 30   | 188.40 | 60   | 376.80 | 90   | 565.20 |
| 31   | 194.68 | 61   | 383.08 | 91   | 571.48 |
| 32   | 200.96 | 62   | 389.36 | 92   | 577.76 |
| 33   | 207.24 | 63   | 395.64 | 93   | 584.04 |
| 34   | 213.52 | 64   | 401.92 | 94   | 590.32 |
| 35   | 219.80 | 65   | 408.20 | 95   | 596.60 |
| 36   | 226.08 | 66   | 414.48 | 96   | 602.88 |
| 37   | 232.36 | 67   | 420.76 | 97   | 609.16 |
| 38   | 238.64 | 68   | 427.04 | 98   | 615.44 |
| 39   | 244.92 | 69   | 433.32 | 99   | 621.72 |
|      |        |      |        | 100  | 628.00 |

## Chapter 28 Conversions

## FREQUENCY-WAVELENGTH CONVERSION (KHZ TO METERS)

The relationship between the frequency of a wave (f) in hertz or cycles per second and its wavelength, in meters, is supplied by the formula \( \) equals 300,000,000/f. The number 300,000,000 in the numerator of the formula is the velocity of light (and of radio waves) in space, and is a constant. \( \) is the wavelength in meters.

The velocity of light is in meters per second. Although it is frequently rounded off to 300,000,000, its more probable value is 299,820,000 meters per second, the value used in Table 28-1. When the frequency is in hertz, wavelength in meters equals 299,820,000/f. When the frequency is in kilohertz, wavelength in meters equals 299,820/f. When the frequency is in megahertz, wavelength in meters equals 299,820/f.

Wavelength and frequency have an inverse relationship. As frequency increases, wavelength decreases. Conversely, a decrease in frequency means an increase in wavelength. In terms of formulas:  $\lambda$  equals 299,820,000 divided by f, or f equals 299,820,000 divided by  $\lambda$ . Consequently, the columns indicated in Table 28-2 are interchangeable. Thus, the first line in the first column indicates that a wavelength of 10 meters is equivalent to a frequency of 29,982 kilohertz, or 10 kilohertz corresponds to a wavelength of 29,982 meters.

Table 28-1 supplies the abbreviations and descriptions of waves whose frequency extends from 30 kilohertz to 300,000 MHz.

Table 28-2 gives conversion data between frequency in kilohertz and wavelength in meters. The columns shown in Table 28-2 are interchangeable and cover the range from 1 kilohertz or meters to 10.000 kilohertz or meters.

#### Table 28-1, Frequency Bands

| Frequency             | Description Abb          | reviation |
|-----------------------|--------------------------|-----------|
| Below 30 kHz          | very-low frequency       | VLF       |
| 30 to 300 kHz         | low frequency            | LF        |
| 300 to 3,000 kHz      | medium frequency         | MF        |
| 3,000 to 30,000 kHz   | high frequency           | HF        |
| 30 to 300 MHz         | very-high frequency      | VHF       |
| 300 to 3,000 MHz      | ultra-high frequency     | UHF       |
| 3,000 to 30,000 MHz   | super-high frequency     | SHF       |
| 30,000 to 300,000 MHz | extremely-high frequence | y EHF     |
| (30 gHz to 300 gHz)   | , , ,                    | ,         |
|                       |                          |           |

### □Example:

A radio wave has a frequency of 500 kiloHertz. What is its wavelength in meters?

Find the number 500 in Table 28-2. Move horizontally and you will see the corresponding wavelength of 599.6 meters.

Table 28-2. Kilohertz (kHz) to Meters (m) or Meters to Kilohertz

|     | 19016 59-7 | z. Kilonerc | (KHZ) to | Meters (m) o | r meters t | o Kilonentz |       |
|-----|------------|-------------|----------|--------------|------------|-------------|-------|
| kHz | m          | kHz         | m        | kHz          | m          | kHz         | m     |
| 1   | 299,820    | 80          | 3,748    | 240          | 1,249      | 400         | 749.6 |
| 2   | 149,910    | 90          | 3,331    | 250          | 1,199      | 410         | 731.7 |
| 3   | 99,940     | 100         | 2,998    | 260          | 1,153      | 420         | 714.3 |
| 4   | 74,955     | 110         | 2,726    | 270          | 1,110      | 430         | 697.7 |
|     |            |             |          |              |            |             |       |
| 5   | 59,964     | 120         | 2,499    | 280          | 1,071      | 440         | 681.4 |
| 6   | 49,970     | 130         | 2,306    | 290          | 1,034      | 450         | 666.7 |
| 7   | 42,831     | 140         | 2,142    | 300          | 999.4      | 460         | 652.2 |
| 8   | 37,478     | 150         | 1,999    | 310          | 967.7      | 470         | 638.3 |
|     |            |             |          |              |            |             |       |
| 9   | 33,313     | 160         | 1,874    | 320          | 937.5      | 480         | 624.6 |
| 10  | 29,982     | 170         | 1,764    | 330          | 908.1      | 490         | 612.2 |
| 20  | 14,991     | 180         | 1,666    | 340          | 882.4      | 500         | 599.6 |
| 30  | 9,994      | 190         | 1,578    | 350          | 859.1      | 510         | 588.2 |
| 40  | 7,495      | 200         | 1,499    | 360          | 833.3      | 520         | 576.9 |
| 50  | 5,996      | 210         | 1,428    | 370          | 810.8      | 530         | 565.7 |
| 60  | 4,997      | 220         | 1,363    | 380          | 789.5      | 540         | 555.6 |
| 70  | 4,283      | 230         | 1,304    | 390          | 769.2      | 550         | 545.4 |

| Ta  | ble 28-2. Kiloher | tz (kHz) to M | eters (m), or Mi | eters to Kilohert | (cont'd) |
|-----|-------------------|---------------|------------------|-------------------|----------|
| kHz | m                 | kHz           | m                | kHz               | m        |
| 560 | 535.7             | 910           | 329.5            | 1,260             | 238.0    |
| 570 | 526.3             | 920           | 325.9            | 1,270             | 236.1    |
| 580 | 517.2             | 930           | 322.4            | 1,280             | 234.2    |
| 590 | 508.5             | 940           | 319.0            | 1,290             | 234.2    |
| 600 | 499.7             | 950           | 315.6            | 1,300             | 230.6    |
| 610 | 491.8             | 960           | 312.3            | 1,310             | 228.9    |
| 620 | 483.7             | 970           | 309.1            | 1,320             | 227.1    |
| 630 | 476.2             | 980           | 305.9            | 1,330             | 225.4    |
| 640 | 468.7             | 990           | 302.8            | 1,340             | 223.7    |
| 650 | 461.5             | 1,000         | 299.8            | 1,350             | 222.1    |
| 660 | 454.5             | 1,010         | 296.9            | 1,360             | 220.5    |
| 670 | 447.8             | 1,020         | 293.9            | 1,370             | 218.8    |
| 680 | 441.2             | 1,030         | 291.1            | 1,380             | 217.3    |
| 690 | 434.8             | 1,040         | 288.3            | 1,390             | 215.7    |
| 700 | 428.6             | 1,050         | 285.5            | 1,400             | 214.2    |
| 710 | 422.5             | 1,060         | 282.8            | 1,410             | 212.6    |
| 720 | 416.7             | 1,070         | 280.2            | 1,420             | 211.1    |
| 730 | 410.7             | 1,080         | 277.6            | 1,430             | 209.7    |
| 740 | 405.4             | 1,090         | 275.1            | 1,440             | 208.2    |
| 750 | 399.8             | 1,100         | 272.6            | 1,450             | 206.8    |
| 760 | 394.7             | 1,110         | 270.1            | 1,460             | 205.4    |
| 770 | 389.6             | 1,120         | 267.7            | 1,470             | 204.0    |
| 780 | 384.6             | 1,130         | 265.3            | 1,480             | 202.6    |
| 790 | 379.8             | 1,140         | 263.0            | 1,490             | 201.2    |
| 800 | 374.8             | 1,150         | 260.7            | 1,500             | 199.9    |
| 810 | 370.4             | 1,160         | 258.5            | 1,510             | 198.6    |
| 820 | 365.9             | 1,170         | 256.3            | 1,520             | 197.2    |
| 830 | 361.4             | 1,180         | 254.1            | 1,530             | 196.0    |
| 840 | 357.1             | 1,190         | 251.9            | 1,540             | 194.7    |
| 850 | 352.9             | 1,200         | 249.9            | 1,550             | 193.4    |
| 860 | 348.8             | 1,210         | 247.8            | 1,560             | 192.2    |
| 870 | 344.8             | 1,220         | 245.8            | 1,570             | 191.0    |
| 880 | 340.9             | 1,230         | 243.8            | 1,580             | 189.8    |
| 890 | 337.1             | 1,240         | 241.8            | 1,590             | 188.6    |
| 900 | 333.3             | 1,250         | 239.9            | 1,600             | 187.4    |
|     |                   |               |                  |                   |          |

Table 28-2. Kilohertz (kHz) to Meters (m), or Meters to Kilohertz (cont'd)

| kHz   | m     | kHz   | m     | kHz   | m     |
|-------|-------|-------|-------|-------|-------|
|       |       |       |       |       |       |
| 1,610 | 186.2 | 1,910 | 157.0 | 2,210 | 135.7 |
| 1,620 | 185.1 | 1,920 | 156.2 | 2,220 | 135.1 |
| 1,630 | 183.9 | 1,930 | 155.3 | 2,230 | 134.4 |
| 1,640 | 182.8 | 1,940 | 154.5 | 2,240 | 133.8 |
| 1,650 | 181.7 | 1,950 | 153.8 | 2,250 | 133.3 |
|       |       |       |       |       |       |
| 1,660 | 180.6 | 1,960 | 153.0 | 2,260 | 132.7 |
| 1,670 | 179.5 | 1,970 | 152.2 | 2,270 | 132.1 |
| 1,680 | 178.5 | 1,980 | 151.4 | 2,280 | 131.5 |
| 1,690 | 177.4 | 1,990 | 150.7 | 2,290 | 130.9 |
| 1,700 | 176.4 | 2,000 | 149.9 | 2,300 | 130.4 |
|       |       |       |       |       |       |
| 1,710 | 175.3 | 2,010 | 149.2 | 2,310 | 129.8 |
| 1,720 | 174.3 | 2,020 | 148.4 | 2,320 | 129.2 |
| 1,730 | 173.3 | 2,030 | 147.7 | 2,330 | 128.7 |
| 1,740 | 172.3 | 2,040 | 147.0 | 2,340 | 128.1 |
| 1,750 | 171.3 | 2,050 | 146.3 | 2,350 | 127.6 |
|       |       |       |       |       |       |
| 1,760 | 170.4 | 2,060 | 145.5 | 2,360 | 127.0 |
| 1,770 | 169.4 | 2,070 | 144.8 | 2,370 | 126.5 |
| 1,780 | 168.4 | 2,080 | 144.1 | 2,380 | 126.0 |
| 1,790 | 167.5 | 2,090 | 143.5 | 2,390 | 125.4 |
| 1,800 | 166.6 | 2,100 | 142.8 | 2,400 | 124.9 |
|       |       |       |       |       |       |
| 1,810 | 165.6 | 2,110 | 142.1 | 2,410 | 124.4 |
| 1,820 | 164.7 | 2,120 | 141.4 | 2,420 | 123.9 |
| 1,830 | 163.8 | 2,130 | 140.8 | 2,430 | 123.4 |
| 1,840 | 162.9 | 2,140 | 140.1 | 2,440 | 122.9 |
| 1,850 | 162.1 | 2,150 | 139.5 | 2,450 | 122.4 |
|       |       |       |       |       |       |
| 1,860 | 161.2 | 2,160 | 138.8 | 2,460 | 121.9 |
| 1,870 | 160.3 | 2,170 | 138.2 | 2,470 | 121.4 |
| 1,880 | 159.5 | 2,180 | 137.5 | 2,480 | 120.9 |
| 1,890 | 158.6 | 2,190 | 136.9 | 2,490 | 120.4 |
| 1,900 | 157.8 | 2,200 | 136.3 | 2,500 | 119.9 |
|       |       |       |       |       |       |

Table 28-2. Kilohertz (kHz) to Meters (m) or Meters to Kilohertz (cont'd)

| kHz    | m              | kHz   | m              | kHz            | m     |
|--------|----------------|-------|----------------|----------------|-------|
|        |                |       |                |                |       |
| 2,510  | 119.5          | 2,810 | 106.7          | 3,110          | 96.41 |
| 2,520  | 119.0          | 2,820 | 106.3          | 3,120          | 96.10 |
| 2,530  | 118.5          | 2,830 | 105.9          | 3,130          | 95.79 |
| 2,540  | 118.0          | 2,840 | 105.6          | 3,140          | 95.48 |
| 2,550  | 117.6          | 2,850 | 105.2          | 3,150          | 95.18 |
|        |                |       |                |                |       |
| 2,560  | 117.1          | 2,860 | 104.8          | 3,160          | 94.88 |
| 2,570  | 116.7          | 2,870 | 104.5          | 3,170          | 94.58 |
| 2,580  | 116.2          | 2,880 | 104.1          | 3,180          | 94.28 |
| 2,590  | 115.8          | 2,890 | 103.7          | 3,190          | 93.99 |
| 2,600  | 115.3          | 2,900 | 103.4          | 3,200          | 93.69 |
|        |                |       |                | -,             | ,0.0, |
| 2,610  | 114.9          | 2,910 | 103.0          | 2 210          | 00.40 |
| 2,620  | 114.4          | 2,920 | 103.0          | 3,210          | 93.40 |
| 2,630  | 114.0          | 2,930 | 102.7          | 3,220<br>3,230 | 93.11 |
| 2,640  | 113.6          | 2,940 | 102.0          |                | 92.82 |
| 2,650  | 113.1          | 2,950 | 101.6          | 3,240<br>3,250 | 92.54 |
| _,===  |                | 2,750 | 101.6          | 3,230          | 92.25 |
| 2,660  | 1107           | 0.040 |                |                |       |
| 2,670  | 112.7<br>112.3 | 2,960 | 101.3          | 3,260          | 91.97 |
| 2,680  | 111.9          | 2,970 | 100.9          | 3,270          | 91.69 |
| 2,690  | 111.5          | 2,980 | 100.6          | 3,280          | 91.41 |
| 2,700  | 111.0          | 2,990 | 100.3          | 3,290          | 91.13 |
| 2,700  | 111.0          | 3,000 | 99.94          | 3,300          | 90.86 |
| 2,710  | 110.6          | 3,010 | 99.61          | 2 210          | 00.50 |
| 2,720  | 110.2          | 3,020 |                | 3,310          | 90.58 |
| 2,730  | 109.8          | 3,030 | 99.28          | 3,320          | 90.31 |
| 2,740  | 109.4          | 3,040 | 98.95          | 3,330<br>3,340 | 90.04 |
| 2,750  | 109.0          | 3,050 | 98.63<br>98.30 |                | 89.77 |
| _,. 20 |                | 0,000 | 70.30          | 3,350          | 89.50 |
| 2,760  | 108.6          | 3,060 | 97.98          | 3,360          | 00.22 |
| 2,770  | 108.2          | 3,000 | 97.98          |                | 89.23 |
| 2,780  | 107.8          | 3,080 | 97.34          | 3,370<br>3,380 | 88.97 |
| 2,790  | 107.5          | 3,090 | 97.34          |                | 88.70 |
| 2,800  | 107.1          | 3,100 | 96.72          | 3,390          | 88.44 |
| _,_,   |                | 5,100 | 70./2          | 3,400          | 88.18 |

Table 28-2. Kilohertz (kHz) to Meters (m) or Meters to Kilohertz (cont'd)

| kHz   | m     | kHz   | m     | kHz   | m      |
|-------|-------|-------|-------|-------|--------|
| 3,410 | 87.92 | 3,710 | 80.81 | 4,010 | 74.77  |
| 3,420 | 87.67 | 3,710 | 80.60 | 4,020 | 74.58  |
| 3,430 | 87.41 | 3,730 | 80.38 | 4,030 | 74.40  |
| 3,440 | 87.16 | 3,740 | 80.17 | 4,040 | 74.21  |
| 3,450 | 86.90 | 3,750 | 79.95 | 4,050 | 74.03  |
|       |       |       |       |       |        |
| 3,460 | 86.65 | 3,760 | 79.74 | 4,060 | 73.85  |
| 3,470 | 86.40 | 3,770 | 79.53 | 4,070 | 73.67  |
| 3,480 | 86.16 | 3,780 | 79.32 | 4,080 | 73.49  |
| 3,490 | 85.91 | 3,790 | 79.11 | 4,090 | 73.31  |
| 3,500 | 85.66 | 3,800 | 78.90 | 4,100 | 73.13  |
| 3,510 | 85.42 | 3.810 | 78.69 | 4,110 | 72.95  |
| 3,520 | 85.18 | 3,820 | 78.49 | 4,120 | 72.77  |
| 3,530 | 84.93 | 3,830 | 78.28 | 4,130 | 72.60  |
| 3,540 | 84.69 | 3,840 | 78.08 | 4,140 | 72.42  |
| 3,550 | 84.46 | 3,850 | 77.88 | 4,150 | 72.25  |
| 0,550 | 04.40 | 0,000 | 77.00 | .,    | , 2.20 |
| 3,560 | 84.22 | 3,860 | 77.67 | 4,160 | 72.07  |
| 3,570 | 83.98 | 3,870 | 77.47 | 4,170 | 71.90  |
| 3,580 | 83.75 | 3,880 | 77.27 | 4,180 | 71.73  |
| 3,590 | 83.52 | 3,890 | 77.07 | 4,190 | 71.56  |
| 3,600 | 83.28 | 3,900 | 76.88 | 4,200 | 71.39  |
| 3,610 | 83.05 | 3,910 | 76.68 | 4,210 | 71.22  |
| 3,620 | 82.82 | 3,920 | 76.48 | 4,220 | 71.05  |
| 3,630 | 82.60 | 3,930 | 76.29 | 4,230 | 70.88  |
| 3,640 | 82.37 | 3,940 | 76.10 | 4,240 | 70.71  |
| 3,650 | 82.14 | 3,950 | 75.90 | 4,250 | 70.55  |
|       |       |       |       |       |        |
| 3,660 | 81.92 | 3,960 | 75.51 | 4,260 | 70.38  |
| 3,670 | 81.69 | 3,970 | 75.52 | 4,270 | 70.22  |
| 3,680 | 81.47 | 3,980 | 75.33 | 4,280 | 70.05  |
| 3,690 | 81.25 | 3,990 | 75.14 | 4,290 | 69.89  |
| 3,700 | 81.03 | 4,000 | 74.96 | 4,300 | 69.73  |

Table 28-2. Kilohertz (kHz) to Meters (m) or Meters to Kilohertz (cont'd)

| kHz   | m     | kHz   | m     | kHz   | m     |
|-------|-------|-------|-------|-------|-------|
| 4,310 | 69.56 | 4.410 |       |       |       |
| 4,320 | 69.40 | 4,610 | 65.04 | 4,910 | 61.06 |
| 4,330 | 69.24 | 4,620 | 64.90 | 4,920 | 60.94 |
| 4,340 | 69.08 | 4,630 | 64.76 | 4,930 | 60.82 |
| 4,350 | 68.92 | 4,640 | 64.62 | 4,940 | 60.69 |
| 4,000 | 00.72 | 4,650 | 64.48 | 4,950 | 60.57 |
| 4,360 | 68.77 | 4,660 | 64.34 | 4,960 | 60.45 |
| 4,370 | 68.61 | 4,670 | 64.20 | 4,970 | 60.33 |
| 4,380 | 68.45 | 4,680 | 64.06 | 4,980 | 60.20 |
| 4,390 | 68.30 | 4,690 | 63.93 | 4,990 | 60.08 |
| 4,400 | 68.14 | 4,700 | 63.79 | 5,000 | 59.96 |
| 4,410 | 67.99 | 4.710 |       |       |       |
| 4,420 | 67.83 | 4,710 | 63.66 | 5,010 | 59.84 |
| 4,430 | 67.68 | 4,720 | 63.52 | 5,020 | 59.73 |
| 4,440 | 67.53 | 4,730 | 63.39 | 5,030 | 59.61 |
| 4,450 | 67.38 | 4,740 | 63.25 | 5,040 | 59.49 |
| -,-50 | 07.36 | 4,750 | 63.12 | 5,050 | 59.37 |
| 4,460 | 67.22 | 4,760 | 62.99 | 5,060 | 59.25 |
| 4,470 | 67.07 | 4,770 | 62.86 | 5,070 | 59.14 |
| 4,480 | 66.92 | 4,780 | 62.72 | 5.080 | 59.02 |
| 4,490 | 66.78 | 4,790 | 62.59 | 5,090 | 58.90 |
| 4,500 | 66.63 | 4,800 | 62.46 | 5,100 | 58.79 |
|       |       |       |       |       |       |
| 4,510 | 66.48 | 4,810 | 62.33 | 5,110 | 58.67 |
| 4,520 | 66.33 | 4,820 | 62.20 | 5,120 | 58.56 |
| 4,530 | 66.19 | 4,830 | 62.07 | 5,130 | 58.44 |
| 4,540 | 66.04 | 4,840 | 61.95 | 5,140 | 58.33 |
| 4,550 | 65.89 | 4,850 | 61.82 | 5,150 | 58.22 |
| 4,560 | 65.75 | 4,860 | 61.69 | 5 140 | 50.10 |
| 4,570 | 65.61 | 4,870 | 61.56 | 5,160 | 58.10 |
| 4,580 | 65.46 | 4,880 | 61.44 | 5,170 | 57.99 |
| 4,590 | 65.32 | 4,890 | 61.31 | 5,180 | 57.88 |
| 4,600 | 65.18 | 4,900 | 61.19 | 5,190 | 57.77 |
| ,     | 55.10 | 4,700 | 01.19 | 5,200 | 57.66 |

Table 28-2. Kilohertz (kHz) to Meters (m) or Meters to Kilohertz (cont'd)

| kHz   | m     | kHz   | m     | kHz   | m     |
|-------|-------|-------|-------|-------|-------|
| 5,210 | 57.55 | 5,510 | 54.41 | 5,810 | 51.60 |
| 5,220 | 57.44 | 5,520 | 54.32 | 5,820 | 52.52 |
| 5,230 | 57.33 | 5,530 | 54.22 | 5,830 | 51.43 |
| 5,240 | 57.22 | 5,540 | 54.12 | 5,840 | 51.34 |
| 5,250 | 57.11 | 5,550 | 54.02 | 5,850 | 51.25 |
|       |       |       |       | ·     |       |
| 5,260 | 57.00 | 5,560 | 53.92 | 5,860 | 51.16 |
| 5,270 | 56.89 | 5,570 | 53.83 | 5,870 | 51.08 |
| 5,280 | 56.78 | 5,580 | 53.73 | 5,880 | 50.99 |
| 5,290 | 56.68 | 5,590 | 53.64 | 5,890 | 50.90 |
| 5,300 | 56.57 | 5,600 | 53.54 | 5,900 | 50.82 |
|       |       |       |       |       |       |
| 5,310 | 56.46 | 5,610 | 53.44 | 5,910 | 50.73 |
| 5,320 | 56.36 | 5,620 | 53.35 | 5,920 | 50.65 |
| 5,330 | 56.25 | 5,630 | 53.25 | 5,930 | 50.56 |
| 5,340 | 56.15 | 5,640 | 53.16 | 5,940 | 50.47 |
| 5,350 | 56.04 | 5,650 | 53.07 | 5,950 | 50.39 |
|       |       |       |       |       |       |
| 5,360 | 55.94 | 5,660 | 52.97 | 5,960 | 50.31 |
| 5,370 | 55.83 | 5,670 | 52.88 | 5,970 | 50.22 |
| 5,380 | 55.73 | 5,680 | 52.79 | 5,980 | 50.14 |
| 5,390 | 55.63 | 5,690 | 52.69 | 5,990 | 50.05 |
| 5,400 | 55.52 | 5,700 | 52.60 | 6,000 | 49.97 |
|       |       |       |       | -     |       |
| 5,410 | 55.42 | 5,710 | 52.51 | 6,010 | 49.89 |
| 5,420 | 55.32 | 5,720 | 52.42 | 6,020 | 49.80 |
| 5,430 | 55.22 | 5,730 | 52.32 | 6,030 | 49.72 |
| 5,440 | 55.11 | 5,740 | 52.23 | 6,040 | 49.64 |
| 5,450 | 55.01 | 5,750 | 52.14 | 6,050 | 49.56 |
|       |       |       |       |       |       |
| 5,460 | 54.91 | 5,760 | 52.05 | 6,060 | 49.48 |
| 5,470 | 54.81 | 5,770 | 51.96 | 6,070 | 49.39 |
| 5,480 | 54.71 | 5,780 | 51.87 | 6,080 | 49.31 |
| 5,490 | 54.61 | 5,790 | 51.78 | 6,090 | 49.23 |
| 5,500 | 54.51 | 5,800 | 51.69 | 6,100 | 49.15 |
|       |       |       |       |       |       |

Table 28-2. Kilohertz (kHz) to Meters (m) or Meters to Kilohertz (cont'd)

| kHz   | m     | kHz   | m     | kHz   | m     |
|-------|-------|-------|-------|-------|-------|
| 6,110 | 49.07 | 6,410 | 46.77 | 6,710 | 44.68 |
| 6,120 | 48.99 | 6,420 | 46.70 | 6,720 | 44.62 |
| 6,130 | 48.91 | 6,430 | 46.63 | 6,730 | 44.55 |
| 6,140 | 48.83 | 6,440 | 46.56 | 6,740 | 44.48 |
| 6,150 | 48.75 | 6,450 | 46.48 | 6,750 | 44.42 |
| 6,160 | 48.67 | 6,460 | 46.41 | 6,760 | 44.35 |
| 6,170 | 48.59 | 6,470 | 46.34 | 6,770 | 44.29 |
| 6,180 | 48.51 | 6,480 | 46.27 | 6,780 | 44.22 |
| 6,190 | 48.44 | 6,490 | 46.20 | 6,790 | 44.16 |
| 6,200 | 48.36 | 6,500 | 46.13 | 6,800 | 44.09 |
| 4.010 | 40.00 |       |       |       |       |
| 6,210 | 48.28 | 6,510 | 46.06 | 6,810 | 44.03 |
| 6,220 | 48.20 | 6,520 | 45.98 | 6,820 | 43.96 |
| 6,230 | 48.13 | 6,530 | 45.91 | 6,830 | 43.90 |
| 6,240 | 48.05 | 6,540 | 45.84 | 6,840 | 43.83 |
| 6,250 | 47.97 | 6,550 | 45.77 | 6,850 | 43.77 |
| 6,260 | 47.89 | 6,560 | 45.70 | 6,860 | 43.71 |
| 6,270 | 47.82 | 6,570 | 45.63 | 6,870 | 43.64 |
| 6,280 | 47.74 | 6,580 | 45.57 | 6,880 | 43.58 |
| 6,290 | 47.67 | 6,590 | 45.50 | 6,890 | 43.52 |
| 6,300 | 47.59 | 6,600 | 45.43 | 6,900 | 43.45 |
| . 210 |       |       |       |       |       |
| 6,310 | 47.52 | 6,610 | 45.36 | 6,910 | 43.39 |
| 6,320 | 47.44 | 6,620 | 45.29 | 6,920 | 43.33 |
| 6,330 | 47.36 | 6,630 | 45.22 | 6,930 | 43.26 |
| 6,340 | 47.29 | 6,640 | 45.15 | 6,940 | 43.20 |
| 6,350 | 47.22 | 6,650 | 45.09 | 6,950 | 43.14 |
| 6,360 | 47.14 | 6,660 | 45.02 | 6,960 | 43.08 |
| 6,370 | 47.07 | 6,670 | 44.95 | 6,970 | 43.02 |
| 6,380 | 46.99 | 6,680 | 44.88 | 6,980 | 42.95 |
| 6,390 | 46.92 | 6,690 | 44.82 | 6,990 | 42.89 |
| 6,400 | 46.85 | 6,700 | 44.75 | 7,000 | 42.83 |

Table 28-2. Kilohertz (kHz) to Meters (m) or Meters to Kilohertz (cont'd)

| kHz            | m     | kHz    | m     | kHz    | m     |
|----------------|-------|--------|-------|--------|-------|
| 7,010          | 42.77 | 7,310  | 41.02 | 7,610  | 39.40 |
| 7,020          | 42.71 | 7,320  | 40.96 | 7,620  | 39.35 |
| 7,030          | 42.65 | 7,330  | 40.90 | 7,630  | 39.29 |
| 7,040          | 42.59 | 7,340  | 40.85 | 7,640  | 39.24 |
| 7,050          | 42.53 | 7,350  | 40.79 | 7,650  | 39.19 |
|                |       |        |       |        |       |
| 7,060          | 42.47 | 7,360  | 40.74 | 7,660  | 39.14 |
| 7,070          | 42.41 | 7,370  | 40.68 | 7,670  | 39.09 |
| 7,080          | 42.35 | 7,380  | 40.63 | 7,680  | 39.04 |
| 7,090          | 42.29 | 7,390  | 40.57 | 7,690  | 38.99 |
| 7,100          | 42.23 | 7,400  | 40.52 | 7,700  | 38.94 |
| ,,             |       | ,,,,,, | 40.51 | ,,, 00 | 00.74 |
| 7,110          | 40.17 | 7 410  |       |        |       |
|                | 42.17 | 7,410  | 40.46 | 7,710  | 38.89 |
| 7,120          | 42.11 | 7,420  | 40.41 | 7,720  | 38.84 |
| 7,130          | 42.05 | 7,430  | 40.35 | 7,730  | 38.79 |
| 7,140<br>7,150 | 41.99 | 7,440  | 40.30 | 7,740  | 38.74 |
| 7,130          | 41.93 | 7,450  | 40.24 | 7,750  | 38.69 |
|                |       |        |       |        |       |
| 7,160          | 41.87 | 7,460  | 40.10 | 7,760  | 38.64 |
| 7,170          | 41.82 | 7,470  | 40.14 | 7,770  | 38.59 |
| 7,180          | 41.76 | 7,480  | 40.08 | 7,780  | 38.54 |
| 7,190          | 41.70 | 7,490  | 40.03 | 7,790  | 38.49 |
| 7,200          | 41.64 | 7,500  | 39.98 | 7,800  | 38.44 |
|                |       |        |       |        |       |
| 7,210          | 41.58 | 7,510  | 39.92 | 7,810  | 38.39 |
| 7,220          | 41.53 | 7,520  | 39.87 | 7,820  | 38.34 |
| 7,230          | 41.47 | 7,530  | 39.82 | 7,830  | 38.29 |
| 7,240          | 41.41 | 7,540  | 39.76 | 7,840  | 38.24 |
| 7,250          | 41.35 | 7,550  | 39.71 | 7,850  | 38.19 |
|                |       |        |       |        |       |
| 7,260          | 41.30 | 7,560  | 39.66 | 7.860  | 38.15 |
| 7,270          | 41.24 | 7,570  | 39.61 | 7,870  | 38.10 |
| 7,280          | 41.18 | 7,580  | 39.55 | 7,880  | 38.05 |
| 7,290          | 41.13 | 7,590  | 39.50 | 7,890  | 38.00 |
| 7,300          | 41.07 | 7,600  | 39.45 | 7,900  | 37.95 |
|                |       |        |       |        | -7170 |

Table 28-2. Kilohertz (kHz) to Meters (m) or Meters to Kilohertz (cont'd)

| kHz   | m     | kHz   | m     | kHz   | m     |
|-------|-------|-------|-------|-------|-------|
|       |       |       |       |       |       |
| 7,910 | 37.90 | 8,210 | 36.52 | 8,510 | 35.23 |
| 7,920 | 37.86 | 8,220 | 36.47 | 8,520 | 35.19 |
| 7,930 | 37.81 | 8,230 | 36.43 | 8,530 | 35.15 |
| 7,940 | 37.76 | 8,240 | 36.39 | 8,540 | 35.11 |
| 7,950 | 37.71 | 8,250 | 36.34 | 8,550 | 35.07 |
|       |       |       |       |       |       |
| 7,960 | 37.67 | 8,260 | 36.30 | 8,560 | 35.03 |
| 7,970 | 37.62 | 8,270 | 36.25 | 8,570 | 34.98 |
| 7,980 | 37.57 | 8,280 | 36.21 | 8,580 | 34.94 |
| 7,990 | 37.52 | 8,290 | 36.17 | 8,590 | 34.90 |
| 8,000 | 37.48 | 8,300 | 36.12 | 8,600 | 34.86 |
|       |       |       |       |       |       |
| 8,010 | 37.43 | 8,310 | 36.08 | 8,610 | 34.82 |
| 8,020 | 37.38 | 8,320 | 36.04 | 8,620 | 34.78 |
| 8,030 | 37.34 | 8,330 | 35.99 | 8,630 | 34.74 |
| 8,040 | 37.29 | 8,340 | 35.95 | 8,640 | 34.70 |
| 8,050 | 37.24 | 8,350 | 35.91 | 8,650 | 34.66 |
|       |       |       |       |       |       |
| 8,060 | 37.20 | 8,360 | 35.86 | 8,660 | 34.62 |
| 8,070 | 37.15 | 8,370 | 35.82 | 8,670 | 34.58 |
| 8,080 | 37.11 | 8,380 | 35.78 | 8,680 | 34.54 |
| 8,090 | 37.06 | 8,390 | 35.74 | 8,690 | 34.50 |
| 8,100 | 37.01 | 8,400 | 35.69 | 8,700 | 34.46 |
|       |       |       |       |       |       |
| 8,110 | 36.97 | 8,410 | 35.65 | 8,710 | 34.42 |
| 8,120 | 36.92 | 8,420 | 35.61 | 8,720 | 34.38 |
| 8,130 | 36.88 | 8,430 | 35.57 | 8,730 | 34.34 |
| 8,140 | 36.83 | 8,440 | 35.52 | 8,740 | 34.30 |
| 8,150 | 36.79 | 8,450 | 35.48 | 8,750 | 34.27 |
|       |       |       |       |       |       |
| 8,160 | 36.74 | 8,460 | 35.44 | 8,760 | 34.23 |
| 8,170 | 36.70 | 8,470 | 35.40 | 8,770 | 34.19 |
| 8,180 | 36.65 | 8,480 | 35.36 | 8,780 | 34.15 |
| 8,190 | 36.61 | 8,490 | 35.31 | 8,790 | 34.11 |
| 8,200 | 36.56 | 8,500 | 35.27 | 8.800 | 34.07 |

Table 28-2. Kilohertz (kHz) to Meters (m) or Meters to Kilohertz (cont'd)

| kHz   | m     | kHz   | m     | kHz   | m     |
|-------|-------|-------|-------|-------|-------|
|       |       |       |       | 0.410 |       |
| 8,810 | 34.03 | 9,110 | 32.91 | 9,410 | 31.86 |
| 8,820 | 33.99 | 9,120 | 32.88 | 9,420 | 31.83 |
| 8,830 | 33.95 | 9,130 | 32.84 | 9,430 | 31.79 |
| 8,840 | 33.92 | 9,140 | 32.80 | 9,440 | 31.76 |
| 8,850 | 33.88 | 9,150 | 32.77 | 9,450 | 31.73 |
|       |       |       |       |       |       |
| 8,860 | 33.84 | 9,160 | 32.73 | 9,460 | 31.69 |
| 8,870 | 33.80 | 9,170 | 32.70 | 9,470 | 31.66 |
| 8,880 | 33.76 | 9,180 | 32.66 | 9,480 | 31.63 |
| 8,890 | 33.73 | 9,190 | 32.62 | 9,490 | 31.59 |
| 8,900 | 33.69 | 9,200 | 32.59 | 9,500 | 31.56 |
|       |       |       |       |       |       |
| 8.910 | 33.65 | 9,210 | 32.55 | 9,510 | 31.53 |
| 8,920 | 33.61 | 9,220 | 32.52 | 9,520 | 31.49 |
| 8,930 | 33.57 | 9,230 | 32.48 | 9,530 | 31.46 |
| 8,940 | 33.54 | 9,240 | 32.45 | 9,540 | 31.43 |
| 8,950 | 33.50 | 9,250 | 32.41 | 9,550 | 31.39 |
| 0,730 | 33.30 | 7,230 | 02.41 | 7,550 | 31.37 |
|       |       |       |       |       |       |
| 8,960 | 33.46 | 9,260 | 32.38 | 9,560 | 31.36 |
| 8,970 | 33.42 | 9,270 | 32.34 | 9,570 | 31.33 |
| 8,980 | 33.39 | 9,280 | 32.31 | 9,580 | 31.30 |
| 8,990 | 33.35 | 9,290 | 32.27 | 9,590 | 31.26 |
| 9,000 | 33.31 | 9,300 | 32.24 | 9,600 | 31.23 |
|       |       |       |       |       |       |
|       |       |       |       |       |       |
| 9,010 | 33.28 | 9,310 | 32.20 | 9,610 | 31.20 |
| 9,020 | 33.24 | 9,320 | 32.17 | 9,620 | 31.17 |
| 9,030 | 33.20 | 9,330 | 32.14 | 9,630 | 31.13 |
| 9,040 | 33.17 | 9,340 | 32.10 | 9,640 | 31.10 |
| 9,050 | 33.13 | 9,350 | 32.07 | 9,650 | 31.07 |
|       |       |       |       |       |       |
| 9,060 | 33.09 | 9,360 | 32.03 | 9,660 | 31.04 |
| 9,070 | 33.06 | 9,370 | 32.00 | 9,670 | 31.01 |
| 9,080 | 33.02 | 9,380 | 31.96 | 9,680 | 30.97 |
| 9,090 | 32.98 | 9,390 | 31.93 | 9,690 | 30.94 |
| 9,100 | 32.95 | 9,400 | 31.90 | 9,700 | 30.91 |

Table 28-2, Kilohertz (kHz) to Meters (m) or Meters to Kilohertz (cont'd)

| m     | kHz                                                                           | m                                                                                                                                   | kHz                                                                                                                                                                                       | m                                                                                                                                                                                                                                               |
|-------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 30.88 | 9,810                                                                         | 30.56                                                                                                                               | 9,910                                                                                                                                                                                     | 30.25                                                                                                                                                                                                                                           |
| 30.85 | 9,820                                                                         | 30.53                                                                                                                               | 9,920                                                                                                                                                                                     | 30.22                                                                                                                                                                                                                                           |
| 30.81 | 9,830                                                                         | 30.50                                                                                                                               | 9,930                                                                                                                                                                                     | 30.19                                                                                                                                                                                                                                           |
|       | 9,840                                                                         | 30.47                                                                                                                               | 9,940                                                                                                                                                                                     | 30.16                                                                                                                                                                                                                                           |
| 30.75 | 9,850                                                                         | 30.44                                                                                                                               | 9,950                                                                                                                                                                                     | 30.13                                                                                                                                                                                                                                           |
| 30.72 | 9,860                                                                         | 30.41                                                                                                                               | 9.960                                                                                                                                                                                     | 30.10                                                                                                                                                                                                                                           |
| 30.69 | 9,870                                                                         | 30.38                                                                                                                               |                                                                                                                                                                                           | 30.07                                                                                                                                                                                                                                           |
| 30.66 | 9,880                                                                         | 30.35                                                                                                                               |                                                                                                                                                                                           | 30.04                                                                                                                                                                                                                                           |
| 30.63 | 9,890                                                                         | 30.32                                                                                                                               |                                                                                                                                                                                           | 30.01                                                                                                                                                                                                                                           |
| 30.59 | 9,900                                                                         | 30.28                                                                                                                               | 10,000                                                                                                                                                                                    | 29.98                                                                                                                                                                                                                                           |
|       | 30.88<br>30.85<br>30.81<br>30.78<br>30.75<br>30.72<br>30.69<br>30.66<br>30.63 | 30.88 9,810<br>30.85 9,820<br>30.81 9,830<br>30.78 9,840<br>30.75 9,850<br>30.72 9,860<br>30.69 9,870<br>30.69 9,880<br>30.63 9,890 | 30.88 9,810 30.56<br>30.85 9,820 30.53<br>30.81 9,830 30.53<br>30.78 9,840 30.47<br>30.75 9,850 30.44<br>30.72 9,860 30.41<br>30.49 9,870 30.38<br>30.46 9,880 30.35<br>30.63 9,890 30.32 | 30.88 9,810 30.56 9,910<br>30.85 9,820 30.53 9,920<br>30.81 9,830 30.50 9,930<br>30.78 9,840 30.47 9,940<br>30.75 9,850 30.44 9,950<br>30.72 9,860 30.41 9,960<br>30.69 9,870 30.38 9,970<br>30.63 9,880 30.35 9,980<br>30.63 9,890 30.35 9,990 |

# □Example:

One of the bands of a short-wave receiver covers the range from 3000 kHz to 5000 kHz. What wavelength range does this include?

Table 28-2 shows that 3000 kHz corresponds to 99.94 meters and that 5000 kHz corresponds to 59.96 meters. Thus, this particular band is from approximately 60 to 100 meters. □Example:

What is the length, in feet, of a wave having a frequency of 4280 kilohertz?

Locate this frequency (4280 kHz) in the kHz column. You will note it corresponds to a wavelength of 70.05 meters. However, the problem calls for the answer in feet. Consult Table 28-3 and you will see that 70 meters is 229.66 feet.

# CONVERSION-METERS TO FEETS

The distance from the start to the finish of a single cycle of a wave, called the wavelength, is usually specified in meters. Table 28-3 supplies data on the conversion of meters to feet. The Table can easily be extended by moving the decimal point. Move the decimal point an equal number of places in the same direction in both columns. Thus, a wavelength of 18 meters corresponds to 59.055 feet. And 180 meters corresponds to 590.4 feet. etc. Use Table 28-4 for converting feet to meters.

#### □Example:

What is the length, in feet, of a wave that is 36 meters long? Table 28-3 shows that 36m equals 118.08 ft. (36 x 3.28.)

□Example:

What is the frequency of a wave whose wavelength is 20 feet?
Table 28-3 shows 19.68 feet equals 6 meters. For greater accuracy, using Table 28-4 (1 foot equals 0.3048006 meter), 20 ft. x 0.3048 equals 6.096 meters. Table 28-2 shows 6 meters equals 49.970 kHz. For greater accuracy. use the formula

$$f = 299,820,000/\lambda$$

$$= \frac{299,820,000}{6.09}$$

$$= 49,231,527 \text{ Hz}$$

= 49,231 kHz

The conversion factor in Table 28-3 is based on 1 meter = 3.2808 feet.

Table 28-3. Meters to Feet

| Meters | Feet   | Meters | Feet   | Meters | Feet   | Meters |        |
|--------|--------|--------|--------|--------|--------|--------|--------|
| 1      | 3.2808 | 26     | 85.302 | 51     | 167.32 | 76     | 249.34 |
| 2      | 6.5617 | 27     | 88.583 | 52     | 170.60 | 75     | 256.62 |
| 3      | 9.8425 | 28     | 91.863 | 53     | 173.88 | 78     | 255.90 |
| 4      | 13.123 | 29     | 95.144 | 54     | 177.16 | 79     | 259.19 |
| 5      | 16.404 | 30     | 98.425 | 55     | 180.45 | 80     | 262.47 |
| 6      | 19.685 | 31     | 101.71 | 56     | 183.73 | 81     | 265.75 |
| 7      | 22.966 | 32     | 104.99 | 57     | 187.01 | 82     | 269.03 |
| 8      | 26.247 | 33     | 108.27 | 58     | 190.29 | 83     | 272.31 |
| 9      | 29.527 | 34     | 111.55 | 59     | 193.57 | 84     | 275.59 |
| 10     | 32.808 | 35     | 114.83 | 60     | 196.85 | 85     | 278.87 |
| 11     | 36.089 | 36     | 118.11 | 61     | 200.13 | 66     | 282.15 |
| 12     | 39.370 | 37     | 121.39 | 62     | 203.41 | 87     | 285.43 |
| 13     | 42.651 | 38     | 124.67 | 63     | 206.69 | 88     | 288.71 |
| 14     | 45.932 | 39     | 127.95 | 64     | 209.97 | 89     | 291.99 |
| 15     | 49.212 | 40     | 131.23 | 65     | 213.25 | 90     | 295.27 |
| 16     | 52.493 | 41     | 134.51 | 66     | 216.53 | 91     | 298.58 |
| 17     | 55,774 | 42     | 137.80 | 67     | 219.82 | 92     | 301.84 |
| 18     | 59.055 | 43     | 141.08 | 68     | 223.10 | 93     | 305.12 |
| 19     | 62.336 | 44     | 144.36 | 69     | 226.38 | 94     | 308.40 |
| 20     | 65.617 | 45     | 147.64 | 70     | 229.66 | 95     | 311.68 |
| 21     | 68.897 | 46     | 150.92 | 71     | 232.94 | 96     | 314.98 |
| 22     | 72.178 | 47     | 154.20 | 72     | 236.22 | 97     | 318.23 |
| 23     | 75.459 | 48     | 157.48 | 73     | 239.50 | 98     | 321.52 |
| 24     | 78.740 | 49     | 160.76 | 74     | 242.78 | 99     | 324.80 |
| 25     | 82.021 | 50     | 164.04 | 75     | 246.06 | 100    | 328.08 |

The conversion factor in Table 28-4 is based on 1 foot = 0.3048 meter.

#### Table 28-4. Feet to Meters

| Feet | Meters  | Feet | Meters | Feet | Meter  | Feet | Meters |
|------|---------|------|--------|------|--------|------|--------|
| 1    | 0.3048  | 26   | 7.9248 | 51   | 15.545 | 76   | 23.165 |
| 2    | 0.6096  | 27   | 8.2296 | 52   | 15.850 | 77   | 23,470 |
| 3    | 0.91440 | 28   | 8.5344 | 53   | 16.154 | 78   | 23.774 |
| 4    | 1.2192  | 29   | 8.8392 | 54   | 16.459 | 79   | 24.079 |
| 5    | 1.5240  | 30   | 9.1440 | 55   | 16.764 | 80   | 24.384 |
| 6    | 1.8288  | 31   | 9,4488 | 56   | 17.069 | 81   | 24.689 |
| 7    | 2.1336  | 32   | 9.7536 | 57   | 17.374 | 82   | 24.994 |
| 8    | 2.4384  | 33   | 10.058 | 58   | 17.678 | 83   | 25.298 |
| 9    | 2.7432  | 34   | 10.363 | 59   | 17.983 | 84   | 25.603 |
| 10   | 3.0480  | 35   | 10.668 | 60   | 18.288 | 85   | 25.908 |
| 11   | 3.3528  | 36   | 10.973 | 61   | 18.593 | 86   | 26.213 |
| 12   | 3.6576  | 37   | 11.278 | 62   | 18.898 | 87   | 26.518 |
| 13   | 3.9624  | 38   | 11.582 | 63   | 19.202 | 88   | 26.822 |
| 14   | 4.2672  | 39   | 11.887 | 64   | 19.507 | 89   | 27.127 |
| 15   | 4.5720  | 40   | 12.192 | 65   | 19.812 | 90   | 27.432 |
| 16   | 4.8768  | 41   | 12.497 | 66   | 20.117 | 91   | 27.737 |
| 17   | 5.1816  | 42   | 12.802 | 67   | 20.422 | 92   | 28.042 |
| 18   | 5.4864  | 43   | 13.106 | 68   | 20.726 | 93   | 28.346 |
| 19   | 5.7912  | 44   | 13.411 | 69   | 21.031 | 94   | 28.651 |
| 20   | 6.0960  | 45   | 13.716 | 70   | 21.336 | 95   | 28.956 |
| 21   | 6.4008  | 46   | 14.021 | 71   | 21.641 | 96   | 29.261 |
| 22   | 6.7056  | 47   | 14.326 | 72   | 21.946 | 97   | 29.566 |
| 23   | 7.0104  | 48   | 14.630 | 73   | 22.250 | 98   | 29.870 |
| 24   | 7.3152  | 49   | 14.935 | 74   | 22.555 | 99   | 30.175 |
| 25   | 7.6200  | 50   | 15.240 | 75   | 22.860 | 100  | 30.480 |
|      |         |      |        |      |        | 100  | 00.400 |

# FREQUENCY TO WAVELENGTH CONVERSION FOR VERY HIGH FREQUENCIES

At very high frequencies certain components, such as the elements of receiving or transmitting antennas, become small enough to be measured easily. Knowing the frequency at which such elements work and using data such as that contained in Table 28-5 makes it easy to convert frequency into lengths in meters or centimeters.

In Table 28-5,  $\lambda$  represents the wavelength in centimeters or meters; MHz is the frequency in megahertz.

### □Example:

What is the frequency of a wave whose length is 10 cm? Using Table 28-5 find the number 10 under the heading of cm. As you move to the right you will note this is also listed as 0.1 meter or one-tenth of a meter. Continue moving to the right and locate the answer in the MHz column—3000 MHz.

# □Example:

What is the wavelength of a wave whose frequency is 25 MHz? In the MHz column you will see 25.0. Move to the left and you will see that the corresponding wavelength is 12 meters.

Table 28-5. Wavelength to Frequency (VHF and UHF)

|                     |                      |       | - 1      |                     |                      |     | 1                 |                      |
|---------------------|----------------------|-------|----------|---------------------|----------------------|-----|-------------------|----------------------|
| cm                  | $\frac{\lambda}{m}$  | MHz   |          | $\frac{\lambda}{m}$ |                      | MHz | À                 | MHz                  |
| 10                  | 0.1                  | 3,000 |          | 1.1                 |                      | 273 | 2.1               | 143                  |
| 20                  | 0.2                  | 1,500 |          | 1.2                 |                      | 250 | 2.2               | 136                  |
| 30                  | 0.3                  | 1,000 |          | 1.3                 |                      | 231 | 2.3               | 130                  |
| 40                  | 0.4                  | 750   |          | 1.4                 |                      | 214 | 2.4               | 125                  |
| 50                  | 0.5                  | 600   |          | 1.5                 |                      | 200 | 2.5               | 120                  |
|                     |                      |       | - 1      | 1.5                 |                      | 200 | 2.3               | 120                  |
| 60                  | 0.6                  | 500   |          | 1.6                 |                      | 188 | 2.6               | 115                  |
| 70                  | 0.7                  | 429   |          | 1.7                 |                      | 176 | 2.7               | 111                  |
| 80                  | 8.0                  | 375   |          | 1.8                 |                      | 167 | 2.8               | 107                  |
| 90                  | 0.9                  | 333   | ļ        | 1.9                 |                      | 158 | 2.9               | 103                  |
|                     | 1.0                  | 300   | 1        | 2.0                 |                      | 150 | 3.0               | 100                  |
| $\frac{\lambda}{m}$ |                      |       | ,        |                     |                      |     | λ                 |                      |
| m                   | MH                   | :     | n        | ī                   | MHz                  |     | m                 | MHz                  |
| 3.1<br>3.2<br>3.3   | 96.8<br>93.8<br>90.9 |       | 6.<br>6. | 2                   | 49.2<br>48.4<br>47.6 |     | 9.1<br>9.2<br>9.3 | 33.0<br>32.6<br>32.3 |
| 3.4                 | 88.2                 |       | 6.       |                     | 46.9                 | - 1 | 9.4               | 31.9                 |
| 3.5                 | 85.7                 |       | 6.       |                     | 46.2                 |     | 9.5               | 31.6                 |
| 3.6                 | 83.3                 |       | 6.       |                     | 45.5                 |     | 9.6               | 31.3                 |
| 3.7                 | 81.1                 |       | 6.       |                     | 44.8                 |     | 9.7               | 30.9                 |
| 3.8                 | 78.9                 |       | 6.       | 8                   | 44.1                 |     | 9.8               | 30.6                 |
| 3.9                 | 76.9                 |       | 6.       | 9                   | 43.5                 |     | 9.9               | 30.3                 |
| 4.0                 | 75.0                 |       | 7.       | 0                   | 42.9                 | 1/4 | 10.0              | 30.0                 |
| 4.1                 | 73.2                 |       | 7.       | 1                   | 42.3                 |     | 10.1              | 29.7                 |
| 4.2                 | 71.4                 |       | 7.       |                     | 41.7                 |     | 10.2              | 29.4                 |
| 4.3                 | 69.8                 |       | 7.       | 3                   | 41.1                 |     | 10.3              | 29.1                 |
| 4.4                 | 68.2                 |       | 7.       | 4                   | 40.5                 |     | 10.4              | 28.8                 |
| 4.5                 | 66.7                 |       | 7.       | 5                   | 40.0                 |     | 10.5              | 28.6                 |
|                     |                      | - 1   |          |                     |                      |     |                   |                      |

Table 28-5. Wavelength to Frequency (VHF and UHF) (cont'd)

| $\frac{\lambda}{m}$ | **** | λ   |      | λ    |      |
|---------------------|------|-----|------|------|------|
|                     | MHz  | . m | MHz  | m    | MHz  |
| 4.6                 | 65.2 | 7.6 | 39.5 | 10.6 | 28.3 |
| 4.7                 | 63.8 | 7.7 | 39.0 | 10.7 | 28.0 |
| 4.8                 | 62.5 | 7.8 | 38.5 | 10.8 | 27.8 |
| 4.9                 | 61.2 | 7.9 | 38.0 | 10.9 | 27.5 |
| 5.0                 | 60.0 | 8.0 | 37.5 | 11.0 | 27.3 |
| 5.1                 | 58.8 | 8.1 | 37.0 | 11.1 | 27.0 |
| 5.2                 | 57.7 | 8.2 | 36.6 | 11.2 | 26.8 |
| 5.3                 | 56.6 | 8.3 | 36.1 | 11.3 | 26.5 |
| 5.4                 | 55.6 | 8.4 | 35.7 | 11.4 | 26.3 |
| 5.5                 | 54.5 | 8.5 | 35.3 | 11.5 | 26.1 |
| 5.6                 | 53.6 | 8.6 | 34.9 | 11.6 | 25.9 |
| 5.7                 | 52.6 | 8.7 | 34.5 | 11.7 | 25.6 |
| 5.8                 | 51.7 | 8.8 | 34.1 | 11.8 | 25.4 |
| 5.9                 | 50.8 | 8.9 | 33.7 | 11.9 | 25.2 |
| 6.0                 | 50.0 | 9.0 | 33.3 | 12.0 | 25.0 |

# CONVERSION-INCHES TO

# MILLIMETERS AND MILLIMETERS TO INCHES

Table 28-6 supplies a convenient way of converting decimal inches to millimeters. Use Table 28-7 for converting millimeters to decimal inches. The range of both tables can easily be extended by moving the decimal point an equal number of places in the same direction, for both columns.

#### □Example:

What is the length in millimeters of a wave whose length is 0.280 inch?

Locate 0.280 in the inches column in Table 28-6. The answer, 7.112 millimeters, is shown in the column immediately to the right. □Example:

A wave is approximately 33 millimeters long. What is its length in inches?

Locate 3.302 in the millimeters column in Table 3-6. By moving the decimal point one place to the right, you will have 33.02 millimeters. The corresponding distance in inches is 0.130, but we must move the decimal point one place to the right. The answer is 1.30 inches.

Table 28-6. Decimal Inches to Millimeters

|        | Ailli- | nch = 25.4 | 0 millimet | ers    | Milli- |
|--------|--------|------------|------------|--------|--------|
| Inches | meters | Inches     | meters     | Inches | meters |
| 0.001  | 0.0254 | 0.290      | 7.37       | 0.660  | 16.76  |
| 0.002  | 0.0508 | 0.300      | 7.62       | 0.670  | 17.02  |
| 0.003  | 0.0762 | 0.310      | 7.87       | 0.680  | 17.27  |
| 0.004  | 0.1016 | 0.320      | 8.13       | 0.690  | 17.53  |
| 0.005  | 0.1270 | 0.330      | 8.38       | 0.700  | 17.78  |
| 0.006  | 0.1524 | 0.340      | 8.64       | 0.710  | 18.03  |
| 0.007  | 0.1778 | 0.350      | 8.89       | 0.720  | 18.29  |
| 0.008  | 0.2032 | 0.360      | 9.14       | 0.730  | 18.54  |
| 0.009  | 0.2286 | 0.370      | 9.40       | 0.740  | 18.80  |
| 0.010  | 0.2540 | 0.380      | 9.65       | 0.750  | 19.05  |
| 0.020  | 0.5080 | 0.390      | 9.91       | 0.760  | 19.30  |
| 0.030  | 0.7620 | 0.400      | 10.16      | 0.770  | 19.56  |
| 0.040  | 1.016  | 0.410      | 10.41      | 0.780  | 19.81  |
| 0.050  | 1.270  | 0.420      | 10.67      | 0.790  | 20.07  |
| 0.060  | 1.524  | 0.430      | 10.92      | 0.800  | 20.32  |
| 0.070  | 1.778  | 0.440      | 11.18      | 0.810  | 20.57  |
| 0.080  | 2.032  | 0.450      | 11.43      | 0.820  | 20.83  |
| 0.090  | 2.286  | 0.460      | 11.68      | 0.830  | 21.08  |
| 0.100  | 2.540  | 0.470      | 11.94      | 0.840  | 21.34  |
| 0.110  | 2.794  | 0.480      | 12.19      | 0.850  | 21.59  |
| 0.120  | 3.048  | 0.490      | 12.45      | 0.860  | 21.84  |
| 0.130  | 3.302  | 0.500      | 12.70      | 0.870  | 22.10  |
| 0.140  | 3.556  | 0.510      | 12.95      | 0.880  | 22.35  |
| 0.150  | 3.810  | 0.520      | 13.21      | 0.890  | 22.61  |
| 0.160  | 4.064  | 0.530      | 13.46      | 0.900  | 22.86  |
| 0.170  | 4.318  | 0.540      | 13.72      | 0.910  | 23.11  |
| 0.180  | 4.572  | 0.550      | 13.97      | 0.920  | 23.37  |
| 0.190  | 4.826  | 0.560      | 14.22      | 0.930  | 23.62  |
| 0.200  | 5.080  | 0.570      | 14.48      | 0.940  | 23.88  |
| 0.210  | 5.334  | 0.580      | 14.73      | 0.950  | 24.13  |
| 0.220  | 5.588  | 0.590      | 14.99      | 0.960  | 24.38  |
| 0.230  | 5.842  | 0.600      | 15.24      | 0.970  | 24.64  |
| 0.240  | 6.096  | 0.610      | 15.49      | 0.980  | 24.89  |
| 0.250  | 6.350  | 0.620      | 15.75      | 0.990  | 25.15  |
| 0.260  | 6.604  | 0.630      | 16.00      | 1.000  | 25.40  |
| 0.270  | 6.858  | 0.640      | 16.26      |        |        |
| 0.280  | 7.112  | 0.650      | 16.51      |        |        |

Table 28-7. Millimeters to Decimal Inches

|             |           | = 0.0393700 inch |          |
|-------------|-----------|------------------|----------|
| millimeters | inches    | millimeters      | inches   |
| 0.01        | 0.0003937 | 0.36             | 0.014148 |
| 0.02        | 0.000786  | 0.37             | 0.014541 |
| 0.03        | 0.001179  | 0.38             | 0.014934 |
| 0.04        | 0.001572  | 0.39             | 0.015327 |
| 0.05        | 0.001965  | 0.40             | 0.015720 |
| 0.06        | 0.002358  | 0.41             | 0.016113 |
| 0.07        | 0.002751  | 0.42             | 0.016506 |
| 0.18        | 0.003144  | 0.43             | 0.016899 |
| 0.09        | 0.003537  | 0.44             | 0.017292 |
| 0.10        | 0.003937  | 0.45             | 0.017685 |
| 0.11        | 0.004323  | 0.46             | 0.018078 |
| 0.12        | 0.004716  | 0.47             | 0.018471 |
| 0.13        | 0.005109  | 0.48             | 0.018864 |
| 0.14        | 0.005502  | 0.49             | 0.019257 |
| 0.15        | 0.005895  | 0.50             | 0.019650 |
| 0.16        | 0.006288  | 0.51             | 0.020043 |
| 0.17        | 0.006681  | 0.52             | 0.020436 |
| 0.18        | 0.007074  | 0.53             | 0.020829 |
| 0.19        | 0.007467  | 0.54             | 0.021222 |
| 0.20        | 0.007860  | 0.55             | 0.021615 |
| 0.21        | 0.008253  | 0.56             | 0.022008 |
| 0.22        | 0.008646  | 0.57             | 0.022401 |
| 0.23        | 0.009039  | 0.58             | 0.022794 |
| 0.24        | 0.009432  | 0.59             | 0.023187 |
| 0.25        | 0.009825  | 0.60             | 0.023580 |
| 0.26        | 0.010218  | 0.61             | 0.023973 |
| 0.27        | 0.010611  | 0.62             | 0.024366 |
| 0.28        | 0.011004  | 0.63             | 0.024759 |
| 0.29        | 0.011397  | 0.64             | 0.025152 |
| 0.30        | 0.011790  | 0.65             | 0.055450 |
| 0.31        | 0.012183  | 0.66             | 0.025938 |
| 0.32        | 0.012576  | 0.67             | 0.026331 |
| 0.33        | 0.012969  | 0.68             | 0.026724 |
| 0.34        | 0.013362  | 0.69             | 0.027117 |
| 0.35        | 0.013755  | 0.70             | 0.027510 |
|             |           |                  |          |

Table 28-7. Millimeters to Decimal Inches (cont'd)

| millimeters | inches   | millimeters | inches   |
|-------------|----------|-------------|----------|
| 0.71        | 0.027903 | 0.86        | 0.033798 |
| 0.72        | 0.028296 | 0.87        | 0.034191 |
| 0.73        | 0.028689 | 0.88        | 0.034584 |
| 0.74        | 0.029082 | 0.89        | 0.034977 |
| 0.75        | 0.029475 | 0.90        | 0.035370 |
|             |          |             | 0.0057/0 |
| 0.76        | 0.029868 | 0.91        | 0.035763 |
| 0.77        | 0.030261 | 0.92        | 0.036156 |
| 0.78        | 0.030654 | 0.93        | 0.036549 |
| 0.79        | 0.031047 | 0.94        | 0.036942 |
| 0.80        | 0.031440 | 0.95        | 0.037335 |
| 0.81        | 0.001000 | 2.24        | 0.000070 |
|             | 0.031833 | 0.96        | 0.039370 |
| 0.82        | 0.032226 | 0.97        | 0.037728 |
| 0.83        | 0.032619 | 0.98        | 0.038121 |
| 0.84        | 0.033012 | 0.99        | 0.038514 |
| 0.85        | 0.033405 | 1.00        | 0.038907 |
|             |          |             |          |

# □Example:

A wave has a length of 0.92 millimeter. What is the corresponding length in inches?

Using Table 28-7 locate 0.92 in the millimeters column. The length in inches is 0.036156. (See also Table 3-12).

#### FREQUENCY CONVERSIONS

Three common measures of frequency are used in electronics. To convert from one to the other, see Table 28-8.

Table 28-8. Frequency Conversion

| Given         | Multiply by this value to get |                  |                  |  |
|---------------|-------------------------------|------------------|------------------|--|
| This<br>Value | hertz                         | kilohertz        | megahertz        |  |
| hertz         | -                             | 10 <sup>-3</sup> | 10 <sup>-6</sup> |  |
| kilohertz     | 10 <sup>3</sup>               | -                | 10 <sup>-3</sup> |  |
| megahertz     | 10 <sup>6</sup>               | 10 <sup>3</sup>  | -                |  |

#### DIELECTRIC CONSTANTS

The material placed between the plates of a capacitor is its dielectric. All dielectrics are compared to a reference, air, which has a dielectric constant (k) of 1. The capacitane of a capacitor is directly proportional to the dielectric constant. Values of these constants are only approximate since there can be considerable variations in the qualities of the materials used as dielectrics. See Table 28-9.

Table 28-9. Dielectric Constants (k)

| Dielectric Material | k           |
|---------------------|-------------|
| Air, dry            | 1.0         |
| Cellulose acetate   | 6.0         |
| Formica             | 4.6         |
| Glass, window       | 4.2 to 8.0  |
| Hard rubber         | 2.0         |
| Lucite              | 2.5         |
| Mica                | 2.5 to 6.0  |
| Nylon               | 3.4 to 22.4 |
| Paper               | 2.0         |
| Polystyrene         | 2.5         |
| Porcelain           | 5.5 to 6.0  |
| Pure water          | 81.0        |
| Pyrex               | 4.5         |
| Quartz              | 5.0         |
| Rubber              | 2.0 to 3.0  |
| Teflon              | 2.1         |
| Varnished cambric   | 4.0         |

#### **CAPACITANCE CONVERSIONS**

Electronic formulas involving capacitance sometimes require changing capacitance units to some multiple or submultiple. Table 28-10 supplies the multiplication factors for making these conversions.

Table 28-10. Capacitance Conversions



#### MEASURING SYSTEMS

Two measuring systems are in common use-the English and the metric. The advantage of the metric system is that it is decimal, and so it is easy to move from basic metric units to multiples or submultiples. The meter and the gram are bases for the metric system. Commonly used abbreviations are m for meters, mm for millimeters, cm for centimeters, dm for decimeters, dkm for decameters, hm for hectometers, km for kilometers, and mvm for myriameters. The micron is represented by  $\mu$  (Greek letter mu). Table 28-11 shows the relationships between English measure and metric equivalents.

| Table 28-11. English Units to Metric Units |   |                      |  |  |  |  |
|--------------------------------------------|---|----------------------|--|--|--|--|
| 1 micron                                   | = | 0.001 millimeter     |  |  |  |  |
| 1 micron                                   | = | 0.000001 meter       |  |  |  |  |
| 1 millimeter                               | = | 0.0393700 inch       |  |  |  |  |
| 1 millimeter                               | = | 0.00328 foot         |  |  |  |  |
| 1 centimeter                               | = | 10 millimeters       |  |  |  |  |
| 1 centimeter                               | = | 0.393700 inch        |  |  |  |  |
| 1 centimeter                               | = | 0.032808 foot        |  |  |  |  |
| 1 centimeter                               | = | 0.01093611 yard      |  |  |  |  |
| 1 meter                                    | = | 39.3700 inches       |  |  |  |  |
| 1 meter                                    | = | 3.280833333 feet     |  |  |  |  |
| 1 meter                                    | = | 1.09361 yards        |  |  |  |  |
| 1 decimeter                                | = | 10 centimeters       |  |  |  |  |
| 1 decimeter                                | = | 3.937 inches         |  |  |  |  |
| 1 meter                                    | = | 10 decimeters        |  |  |  |  |
| 1 meter                                    | = | 100 centimeters      |  |  |  |  |
| 1 meter                                    | = | 1,000 millimeters    |  |  |  |  |
| 1 decameter                                | = | 10 meters            |  |  |  |  |
| 1 decameter                                | = | 393.7 inches         |  |  |  |  |
| 1 hectometer                               | = | 10 decameters        |  |  |  |  |
| 1 hectometer                               | = | 328 feet, 1 inch     |  |  |  |  |
| 1 kilometer                                | = | 10 hectometers       |  |  |  |  |
| 1 kilometer                                | = | 0.62137 mile         |  |  |  |  |
| 1 myriameter                               | = | 10 kilometers        |  |  |  |  |
| 1 myriameter                               | = | 6.2137 miles         |  |  |  |  |
| 1 inch                                     | = | 25.40005 millimeters |  |  |  |  |
| 1 inch                                     | = | 2.540005 centimeters |  |  |  |  |
| 1 inch                                     | = | 0.02540005 meter     |  |  |  |  |
| 1 foot                                     | = | 304.8006 millimeters |  |  |  |  |
| 1 foot                                     | = | 30.48006 centimeters |  |  |  |  |

# Table 28-11. English Units of Measure and Metric Equivalents (cont'd)

1 foot = 0.3048006 meter 1 yard = 0.9144 meter 1 mile = 1.609 kilometers

#### AREA

1 sq. inch = 6.452 sq. cm. 1 sq. foot = 0.0929 sq. meter 1 sq. yard = 0.84 sq. meter 1 sq. mile = 2.589 sq. kilometers 1 sq. millimeter = 0.00155 sq. in. 1 sq. centimeter = 0.1550 sq. in. = 1.196 sq. yd. 1 sq. meter 1 sa. kilometer = 0.3861 sq. mi.

#### VOLUME

1 cu. in. = 16.3872 cu, centimeters 1 cu. ft. = 0.02832 cu. meter 1 cu. yd. = 0.7646 cu. meter 1 liquid at. = 0.9464 liter 1 liquid gal. = 3.785 liters 1 dry at. = 1.101 liters i cu. centimeter = 0.06102 cu. in. 1 cubic meter = 1.308 cu. yds. 1 milliliter = 0.03381 liq. oz. 1 liter = 1.057 lig. qts. 1 liter = 0.9081 dry at. WEIGHT 1 grain  $= 0.0648 \, gram$ 1 oz. (avoir.) = 28.35 grams 1 oz. (trov) = 31.10 grains 1 lb. (avoir.) = 0.4536 kilogram 1 lb. (troy) = 0.3732 kilogram 1 ton (short) = 0.9072 metric ton 1 gram = 15.43 grains (trov) 1 gram = 0.03215 oz. (troy)1 gram = 0.03527 oz. (avoir.)

= 2.205 lbs. (avoir.)

= 2.679 lbs. (troy) 1 metric ton = 1.102 tons (short)

1 kilog.

1 kilog.

#### PROPER (COMMON) FRACTIONS AND MILLIMETRIC EQUIVALENTS

Fractions are the usual form when measurements are made with a foot rule or yardstick. Table 28-12 shows the metric equivalents in millimeters and also decimal equivalents for fractions of an inch, from 1/64 inch to 1 inch, in 1/64-inch steps.

When the conversion involves a whole number plus a fraction, use a factor of 25.40005 millimeters for each inch. Based on Table 28-11. See also Table 28-6.

#### □Example:

Convert 2-17/64 inches to millimeters.

Two inches equals  $2 \times 25.40005$  millimeters, or 50.8001 millimeters. Table 28-12 shows that 17/64 inch equals 6.746875 millimeters. 50.8001 millimeters + 6.746875 millimeters equals 57.546975 mm.

Table 28-12. Fractional and Decimal Inches and Millimeter Equivalents
(1 inch = 25.40005 millimeters)

|          | INCHES   | MILLIMETERS |
|----------|----------|-------------|
| FRACTION | DECIMAL  |             |
| 1/64     | 0.015625 | 0.396875    |
| 1/32     | 0.031250 | 0.793750    |
| 3/64     | 0.046875 | 1.190625    |
| 1/16     | 0.062500 | 1.587500    |
| 5/64     | 0.078125 | 1.984375    |
| 3/32     | 0.093750 | 2.381250    |
| 7/64     | 0.109375 | 2.778125    |
| 1/8      | 0.125000 | 3.175000    |
| 9/64     | 0.140625 | 3.571875    |
| 5/32     | 0.156250 | 3.968750    |
| 11/64    | 0.171875 | 4.365625    |
| 3/16     | 0.187500 | 4.762500    |
| 13/64    | 0.203125 | 5.159375    |
| 7/32     | 0.218750 | 5.556250    |
| 15/64    | 0.234375 | 5.953125    |
| 1/4      | 0.250000 | 6.350000    |
| 17/64    | 0.265625 | 6.746875    |
| 9/32     | 0.281250 | 7.143750    |
| 19/64    | 0.296875 | 7.540625    |
| 5/16     | 0.312500 | 7.937500    |
| 21/64    | 0.328125 | 8.334375    |
| 11/32    | 0.343750 | 8.731250    |

Table 28-12. Fractional and Decimal Inches and Millimeter Equivalents (cont'd)

(1 inch = 25.40005 millimeter

|          | (1 inch = 25.40005 millim | neters)      |
|----------|---------------------------|--------------|
|          | INCHES                    | MILLIMETERS  |
| FRACTION | DECIMAL                   | MILLIMILILIO |
| 23/64    | 0.359375                  | 9.128125     |
| 3/8      | 0.375000                  | 9.525000     |
| 25/64    | 0.390625                  | 9.525000     |
| 13/32    | 0.406250                  | 10.318750    |
| 27/64    | 0.421875                  | 10.715625    |
| 7/16     | 0.437500                  | 11.112500    |
| 29/64    | 0.453125                  | 11.509375    |
| 15/32    | 0.468750                  | 11.906250    |
| 31/64    | 0.484375                  | 12.303125    |
| 1/2      | 0.500000                  | 12.700000    |
| 33/64    | 0.515625                  | 13.096875    |
| 17/32    | 0.531250                  | 13.493750    |
| 35/64    | 0.546875                  | 13.890625    |
| 9/16     | 0.562500                  | 14.287500    |
| 37/64    | 0.578125                  | 14.28/300    |
| 19/32    | 0.593750                  | 15.081250    |
| 39/64    | 0.609375                  | 15.478125    |
| 5/8      | 0.625000                  | 15.875000    |
| 41/64    | 0.640625                  | 16.271875    |
| 21/32    | 0.656250                  | 16.668750    |
| 43/64    | 0.671875                  | 17.065625    |
| 11/16    | 0.687500                  | 17.462500    |
| 45/64    | 0.703125                  | 17.859375    |
| 23/32    | 0.718750                  | 18.256250    |
| 47/64    | 0.734375                  | 18.653125    |
| 3/4      | 0.750000                  | 19.050000    |
| 49/64    | 0.765625                  | 19.446875    |
| 25/32    | 0.781250                  | 19.843750    |
| 51/64    | 0.796875                  | 20.240625    |
| 13/16    | 0.812500                  | 20.637500    |
| 53/64    | 0.828125                  | 21.034375    |
| 27/32    | 0.843750                  | 21.431250    |
| 55/64    | 0.859375                  | 21.828125    |
| 7/8      | 0.875000                  | 22.225000    |
| 57/64    | 0.890625                  | 22.621875    |
| 29/32    | 0.906250                  | 23.018750    |
| 59/64    | 0.921875                  | 23.415625    |
| 15/16    | 0.937500                  | 23.812500    |
| 61/64    | 0.953125                  | 24.209375    |
| 31/32    | 0.968750                  | 24.606250    |
| 63/64    | 0.984375                  | 25.003125    |
| 1        | 1.000000                  | 25.400050    |
|          |                           |              |

#### TEMPERATURE CONVERSIONS

Components used in electronics, including wire, can have a positive temperature coefficient, with resistance increasing as temperature rises, or a negative temperature coefficient, with resistance varying inversely with temperature. Some components are specifically designed to have a zero temperature coefficient, with resistance not affected by temperature changes.

While resistance is often specified in degrees Fahrenheit, the use of the Celsius temperature scale (formerly known as Centigrade) is becoming more acceptable in electrical and electronic applications. The following tables aren't complete for all possible values of F degrees and C degrees but are intended for the more common values encountered in electrical and electronic applications.

Tables 28-13 and 28-14 are based on the formulas:  $C = (F - 32) \times 5/9$  and  $F = (C \times 9/5) + 32$ .

All Celsius and Fahrenheit temperatures in Table 28-13 and Table 28-14 are plus unless otherwise indicated.

Table 28-13. Degrees Celsius to Degrees Fahrenheit

|         | 18510 20 101 | 508.000 00.00 |         | antomore   |         |
|---------|--------------|---------------|---------|------------|---------|
| С       | F            | С             | F       | С          | F       |
| degrees | degrees      | degrees       | degrees | degrees    | degrees |
| -100    | -148         | 5             | 41      | 105        | 221     |
| -95     | -139         | 10            | 50      | 110        | 230     |
| -90     | -130         | 15            | 59      | 115        | 239     |
| -85     | -121         | 20            | 68      | 120        | 248     |
| -80     | -112         | 25            | 77      | 125        | 257     |
| -75     | -103         | 30            | 86      | 100        | 266     |
| -70     | -94          | 35            | 93      | 130<br>135 | 275     |
| -65     | -85          |               | 104     | 140        | 284     |
| -60     | -76          | 40            | 113     |            |         |
| -55     | -67          | 45            |         | 145        | 293     |
| -50     | -58          | 50            | 122     | 150        | 302     |
| -45     | -49          | 55            | 131     | 155        | 311     |
| -40     | -40          | 60            | 140     | 160        | 320     |
| -35     | -31          | 65            | 149     | 165        | 329     |
| -30     | -22          | 70            | 158     | 170        | 338     |
| -25     | -13          | 75            | 167     | 175        | 347     |
| -20     | -4           | 80            | 176     | 180        | 356     |
| -15     | 5            | 85            | 185     | 185        | 365     |
| -10     | 14           | 90            | 194     | 190        | 374     |
| -5      | 23           | 95            | 203     | 195        | 383     |
| 0       | 32           | 100           | 212     | 200        | 392     |
| J       | 32           | 100           | 212     | 200        | 372     |

Table 28-14. Degrees Fahrenheit to Degrees Celsius

|          |           | _         |           |
|----------|-----------|-----------|-----------|
| Fdegrees | C degrees | F degrees | C degrees |
| -100     | -73       | 90        | 32        |
| -90      | -68       | 95        | 35        |
| -80      | -62       | 100       | 38        |
| -70      | -57       | 105       | 41        |
| -60      | -51       | 110       | 43        |
| -50      | -46       | 115       | 46        |
| -40      | -40       | 120       | 49        |
| -30      | -34       | 125       | 52        |
| -20      | -29       | 130       | 54        |
| -10      | -23       | 135       | 57        |
| -5       | -21       | 140       | 60        |
| 0        | -18       | 145       | 63        |
| 5        | -15       | 150       | 66        |
| 10       | -12       | 155       | 68        |
|          |           | 160       | 71        |
| 15       | -9        | 165       | 74        |
| 20       | -7        | 170       | 77        |
| 25       | -4        | 175       | 79        |
| 30       | -1        | 180       | 82        |
| 35       | 1.7       | 185       | 85        |
| 40       | 4         | 190       | 88        |
| 45       | 7         | 195       | 91        |
| 50       | 10        | 200       | 93        |
| 55       | 13        |           |           |
| 60       | 16        |           |           |
| 65       | 18        |           |           |
| 70       | 21        |           |           |
| 75       | 24        |           |           |
| 80       | 27        |           |           |
| 85       | 29        |           |           |

### **ELECTRONIC UNITS**

Formulas in electronics use basic units—units such as the volt, ohm, ampere, farad, and henry. However, problems invariably supply information in terms of multiples or submultiples of these units. Thus, before any solution can be attemped, it is often necessary to convert multiples or submultiples to basic units.

Quite frequently the numbers used in formulas will be very large whole numbers or large decimals. In either case, it is highly advantageous to be able to use powers of ten and to be familiar with the rules for dividing and multiplying numbers using exponents. Table 28-15 shows the method of expressing small and large numbers using powers of ten.

Table 28-15, Powers of 10

|      |    |                   | 0.0 0 | • |               |
|------|----|-------------------|-------|---|---------------|
| 100  | =  | 1                 | 100   | = | 1             |
| 101  | =  | 10                | 10-1  | = | .1            |
| 10²  | =  | 100               | 10-2  | = | .01           |
| 103  | == | 1,000             | 10-3  | = | .001          |
| 104  | =  | 10,000            | 10-4  | = | .0001         |
| 105  | =  | 100,000           | 10-5  | = | .00001        |
| 106  | =  | 1,000,000         | 10⊸   | = | .000001       |
| 107  | =  | 10,000,000        | 10-7  | = | .0000001      |
| 108  | =  | 100,000,000       | 10-8  | = | .00000001     |
| 109  | =  | 1,000,000,000     | 10-9  | = | .000000001    |
| 1010 | =  | 10,000,000,000    | 10-10 | = | .000000001    |
|      |    | 100,000,000,000   | 10-11 | = | .0000000001   |
| 1012 | =  | 1.000.000.000.000 | 10-12 | = | .000000000001 |

#### SYMBOLS AND PREFIXES FOR POWERS OF 10

Numbers have names. The prefixes given in Table 28-16 are helpful in identifying particular values of powers of 10. Thus, a gigahertz (prefix giga) corresponds to 109.

Table 28-16. Powers of 10, Symbols, and Prefixes

| Power of ten    | Prefix            | Symbol |
|-----------------|-------------------|--------|
| 10-12           | tera              | τ      |
| 10-9            | giga              | G      |
| 10 <sup>6</sup> | mega              | M      |
| 103             | kito              | k      |
| 10 <sup>2</sup> | hecto or hekto    | h      |
| 10              | deka              | dk     |
| 10-1            | deci              | d      |
| 10-2            | centi             | c      |
| 10-3            | milli             | m      |
| 10-6            | micro             | μ      |
| 10~9            | nano              | n      |
| 10-12           | pico (micromicro) | р      |
| 10-15           | femto             | f      |
| 10-18           | atto              | а      |

Table 28-17 supplies data on the conversion of electronic units from one form to another. Most of the conversion factors are supplied as powers of 10.

|                  | Table 28-17. El | ectronic Units                         |
|------------------|-----------------|----------------------------------------|
| Multiply         | Ву              | To Convert To                          |
| ampere turns     | 1.257           | gilberts                               |
| amperes          | 1012            | micromicroamperes                      |
| amperes          | 106             | microamperes                           |
| amperes          | 103             | milliamperes                           |
| centimeters      | 10              | millimeters                            |
| degrees          | 60              | minutes                                |
| farads           | 1012            | picofarads                             |
| forads           | 106             | (micromicrofarads)                     |
| farads           | 103             | microfarads                            |
| gauss            | 10-             | millifarads                            |
| Qauss            | 6.452           | lines per square centimeter            |
| henrys           | 106             | lines per square inch                  |
| henrys           | 103             | microhenrys                            |
| Hertz            | 10-6            | millihenrys                            |
| Hertz            | 10-3            | megahertz                              |
| Hertz            | 109             | kilohertz                              |
| horsepower       | .7457           | gigahertz (kilomegahertz)<br>kilowatts |
| horsepower       | 745.7           | Kilowatts<br>Watts                     |
| ioules           | 1               |                                        |
| ioules           | 10              | watt-seconds                           |
| kilohertz        | 103             | hertz                                  |
| kllohertz        | 10-3            | megahertz                              |
| kilohertz        | 106             | Qiqahertz                              |
| kilovolt-amperes | 103             | volt-amperes                           |
| kilovolts        | 103             | volts                                  |
| kilowatt-hours   | 3.6 x 106       | ioules                                 |
| kilowatts        | 103             | watts                                  |
| kilowatts        | 1.341           | horsepower                             |
| lines per square | 1.041           | norsepower                             |
| centimeter       | 1               | Qqusses                                |
| lines per square | •               | Annases                                |
| centimeter       | 6.452           | lines per severe to t                  |
| megahertz        | 106             | lines per square inch                  |
| megahertz        | 103             | kilohertz                              |
|                  |                 | KIIOHEFTZ                              |

Table 28-17. Electronic Units (cont'd)

| Table 2           | b-17. Electronic Onits (C | , ont u j         |
|-------------------|---------------------------|-------------------|
| Multiply          | Ву                        | Ta Canvert To     |
| megawatts         | 10-6                      | watts             |
| megahms           | 106                       | ahms              |
| meters            | 10 <sup>2</sup>           | centimeters       |
| meters            | 3.281                     | feet              |
| meters            | 39.37                     | inches            |
| meters            | 103                       | millimeters       |
| mhos              | 106                       | micramhas         |
| mhos              | 103                       | millimhas         |
| micraamperes      | 10-6                      | amperes           |
| micraamperes      | 10-3                      | milliamperes      |
| microfarads       | 10-6                      | farads            |
| microfarads       | 106                       | picafarads        |
|                   |                           | (micramicrofarads |
| micrahenrys       | 10-6                      | henrys            |
| micrahenrys       | 10-3                      | millihenrys       |
| micromhos         | 10-6                      | mhas              |
| micramicraamperes | 106                       | micraamperes      |
| micromicrofarads  | 10-12                     | farads            |
| (picofarads)      |                           |                   |
| micramicra-ahms   | 10-12                     | ahms              |
| micravalts        | 10-3                      | millivolts        |
| micravalts        | 10-6                      | valts             |
| micrawatts        | 10-6                      | watts             |
| micrawatts        | 10-3                      | milliwatts        |
| milliamperes      | 10-3                      | amperes           |
| milliamperes      | 103                       | micraamperes      |
| millihenrys       | 10-3                      | henrys            |
| millimeters       | 10-3                      | meters            |
| millimeters       | 10-1                      | centimeters       |
| millimhas         | 10-3                      | mhas              |
| millivalts        | 10-3                      | valts             |
| millivalts        | 103                       | microvalts        |
| millivalts        | 10-6                      | kilavalts         |
| milliwatts        | 10-3                      | watts             |
| milliwatts        | 103                       | micrawatts        |
| milliwatts        | 10-9                      | megawatts         |
| mils              | 10-3                      | inches            |
| minutes           | 60                        | secands           |
| minutes           | 1/60                      | degrees           |
|                   |                           |                   |

#### Table 28-17. Electronic Units (cont'd)

| Multiply           | Ву                      | To Convert To    |
|--------------------|-------------------------|------------------|
| ohms               | 10-3                    | kilohms          |
| ohms               | 10-6                    | megohms          |
| picofarads         |                         | cgos             |
| radians            | 57.3                    | degrees          |
| seconds            | 1/3600                  | degrees          |
| seconds            | 103                     | milliseconds     |
| seconds            | 106                     | microseconds     |
| seconds            | 1/60                    | minutes          |
| square centimeters | 1,973 x 10 <sup>2</sup> | circular mils    |
| square inches      | 1,273 x 103             | circular mils    |
| square mils        | 1.273                   | circular mils    |
| volt-amperes       | 1/1,000                 | kilovolt-amperes |
| volts              | 106                     | microvolts       |
| volts              | 103                     | millivolts       |
| volts              | 10-3                    | kilovolts        |
| watt-hours         | 36 x 10 <sup>2</sup>    | joules           |
| watt-seconds       | 1                       | joules           |
| watts              | 106                     | microwatts       |
| watts              | 103                     | milliwatts       |
| watts              | 10-3                    | kilowatts        |
| watts              | 10-6                    | megawatts        |

While it is more convenient to handle electronic conversions using powers of 10, such conversions can also be made using whole numbers. Table 28-18 shows the conversion relationships for current, resistance, voltage, power, capacitance inductance, and frequency.

# Table 28-18. Electronic Unit Multiples and Submultiples

| Microamperes | milliamperes x 1,000 |
|--------------|----------------------|
| Microamperes | amperes x 1,000,000  |
| Milliamperes | amperes x 1,000      |
| Milliamperes | microamperes/1,000   |
| Amperes mi   | croamperes/1,000,000 |
| Amperes      | milliamperes/1,000   |
| RESISTANCE   |                      |
| Ohms kilohm  | s x 1,000            |
|              |                      |

Ohms megohms x 1,000,000
Kilohms ohms / 1,000
Megohms ohms / 1,000
Megohms ohms / 1,000,000
Megohms ohms / 1,000,000
Megohms ohms / 1,000

#### Table 28-18. Electronic Unit Multiples and Submultiples (cont'd)

VOLTAGE

Volts kilovolts x 1,000 Volts megavolts x 1,000,000

Kilovolts volts/1,000

Kilovolts megavolts x 1,000
Megavolts volts/1,000,000
Megavolts kilovolts/1,000

Millivolts volts x 1,000
Millivolts microvolts/1,000
Microvolts volts x 1,000,000

Microvolts millivolts x 1,000 POWER

Watts = millwatts/1,000 Watts = microwatts/1,000,000

Watts = kilowatts x 1,000

Watts = megawatts x 1,000,000 Kilowatts = watts/1,000

Kilowatts = megawatts x 1,000 Megawatts = kilowatts/1,000

Megawatts = kilowatts/1,000,000

Milliwatts = watts x 1,000
Milliwatts = mlcrowatts/1,000

Microwatts = milliwatts x 1,000 Microwatts = watts x 1,000,000

CAPACITANCE

Microfarads = farads x 1,000,000
Picofarads = farads x 1,000,000,000,000
Microfarads = picofarads/1,000,000
Picofarads = microfarads x 1,000,000
Farads = microfarads/1,000,000

Farads = picofarads/1,000,000,000,000 INDUCTANCE

Microhenrys = henrys x 1,000,000
Microhenrys = millihenrys x 1,000
Millihenrys = henrys x 1,000
Millihenrys = microhenrys/1,000
Henrys = millihenrys/1,000,000
Henrys = microhenrys/1,000,000

FREQUENCY

Hertz (Hz) = cycles per second (cps) Hertz = millihertz x 1,000 Hertz = megahertz x 1,000,000 Millihertz = hertz/1,000 Millihertz = megahertz x 1,000 Megahertz = hertz/1,000,000 Megahertz = millihertz/1,000

Table 28-19. Conversion factors for electronic multiples and submultiples.

THESE TO

| 1      | T a   | Ī.    | 12     | 12     | 1.     | -      | ~      | I-     |        |        | _      | Т-     | Ι÷             | _        |
|--------|-------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----------------|----------|
| 直      | 2     | 10-21 | 후      | 를      | 101    | 声      | ۽َ     | 盲      | 盲      | 声      | ᆯ      | 声      | 9.0            |          |
| GFF    | 10-21 | 10±   | 10-13  | 2-G    | 10-11  | 10-10  | 5      | 10-    | 10-,   | į      | 20     | 0.001  |                | 900      |
| —€ĴaW  | 10-1  | 10-12 | 10-12  | 10-1   | ₽      | 10,    | Ē      | 5      | 0.0001 | 1000   | 10.0   | Г      | 1000           | ě        |
| Myria  | 10-16 | 10-13 | 10-10  | 10.    | ₽      | 2      | 0.0001 | 0.001  | 10.0   | 0.1    |        | 100    | 10,            | ē        |
| N N    | 10-15 | 10-13 | 10.    | ₽      | 10.    | 0.0001 | 0.001  | 10.0   | 0.1    |        | 2      | 1000   | 10,            | ē        |
| Hekto- | 10-14 | 10-11 | 声      | 10-5   | 0.0001 | 0.001  | 10.0   | 2      |        | 10     | 100    | 10,000 | 10,            | 10,0     |
| Deka-  | 10-11 | 10-10 | 10-7   | 0.0001 | 0.001  | 0.01   | 0.1    |        | 10     | 100    | 1000   | 10°    | 10.            | 101      |
| Units  | 10-12 | 10-3  | 声      | 0.001  | 0.01   | 0.1    |        | 10     | 100    | 1000   | 10,000 | 10*    | 100            | 1012     |
| Dec -  | -01   | -6    | 10-3   | 0.01   | 0.1    |        | 10     | 100    | 1000   | 10,000 | 10     | 10,    | 1010           | 1013     |
| Centi  | 10-13 | 10-7  | 0.0001 | 0.1    |        | 10     | 100    | 1000   | 10,000 | 100    | 104    | 10*    | 10.1           | 10;4     |
| Mills— | 10-9  | ₽     | 0.001  |        | 9      | 100    | 1000   | 10,000 | 10°    | Đ.     | 10,    | 100    | 10,2           | 1015     |
| MICTO- | 101   | 0.001 |        | 1000   | 10,000 | 10     | 10     | 10,    | 10°    | ē      | 1010   | 1012   | 10.5           | 10.      |
| Nano   | 0.001 |       | 1000   | 10,    | 10,    | 10     | 109    | 101    | 101    | 2,01   | 101    | 101    | 10.            | 10,1     |
| Pig-   |       | 1000  | 10,    | 100    | 1010   | 101    | 10,5   | 10:3   | 10.4   | 10,2   | 10'8   | 10.    | . <sub>0</sub> | <u>~</u> |
| Ţ      | Pito- | Nano- | Micro- | Milli  | Centi  | Decil  | Units  | Deka-  | Hekto- | Kile   | Myria  | Mega-  | Giga           | Terp     |

Table 28-20. Physical Conversion Factors.

|                                                                                          | To Change                                                     |                                                                           | To Change Back                                                                    |                                                                              |                                                    |  |  |
|------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------|--|--|
| Units                                                                                    | Multiplied by                                                 | Yields                                                                    |                                                                                   | Multiplied by                                                                |                                                    |  |  |
| LENGTH                                                                                   |                                                               |                                                                           | LENGTH                                                                            |                                                                              |                                                    |  |  |
| Mils                                                                                     | .0254                                                         | Mm.                                                                       | Mm.                                                                               | 39.37                                                                        | Mils                                               |  |  |
| Mils                                                                                     | .001                                                          | In.                                                                       | In.                                                                               | 1,000.                                                                       | Mils                                               |  |  |
| Mm.                                                                                      | .03937                                                        | In.                                                                       | In.                                                                               | 25.4                                                                         | Mm.                                                |  |  |
| Cm.                                                                                      | .3937                                                         | In.                                                                       | In.                                                                               | 2.54                                                                         | Cm.                                                |  |  |
| Cm.                                                                                      | .03281                                                        | Ft.                                                                       | Ft.                                                                               | 30.48                                                                        | Cm.                                                |  |  |
| In.                                                                                      | .0254                                                         | М.                                                                        | M.                                                                                | 39.37                                                                        | In.                                                |  |  |
| Ft.                                                                                      | .3048                                                         | M.                                                                        | M.                                                                                | 3.2808                                                                       | Ft.                                                |  |  |
| Yds.                                                                                     | .9144                                                         | M.                                                                        | M.                                                                                | 1.0936                                                                       | Yds.                                               |  |  |
| Kilometer                                                                                | .6214                                                         | Miles                                                                     | Miles                                                                             | 1.6093                                                                       | Kilometer                                          |  |  |
| AREA<br>Cir. Mils<br>Cir. Mils<br>Cir. Mils<br>Sq. Mm.<br>Sq. Mils<br>Sq. Cm.<br>Sq. Ft. | .0000007854<br>.7854<br>.0005068<br>.00155<br>.000001<br>.155 | Sq. In.<br>Sq. Mils<br>Sq. Mm.<br>Sq. In.<br>Sq. In.<br>Sq. In.<br>Sq. M. | AREA<br>Sq. In.<br>Sq. Mils<br>Sq. Mm.<br>Sq. In.<br>Sq. In.<br>Sq. In.<br>Sq. M. | 1,273,240,<br>1.2732<br>1,973.51<br>645.16<br>1,000,000,<br>6.4516<br>10.764 | Cir. Mils<br>Cir. Mils<br>Sq. Mm.                  |  |  |
| VOLUME<br>Cu. In.<br>Cu. In.<br>Liters<br>Cu. Cm.<br>Cu. Cm.                             | .01639<br>.004329<br>.26417<br>.06102<br>.000264              | Liters<br>Gals.<br>Gals.<br>Cu. In.<br>Gal.                               | VOLUME<br>Liters<br>Gals.<br>Gals.<br>Cu. In.<br>Gal.                             | 61.023<br>231.<br>3.7854<br>16.387<br>3,785.4                                | Cu. In.<br>Cu. In.<br>Liters<br>Cu. Cm.<br>Cu. Cm. |  |  |
| POWER<br>FtLbs.                                                                          |                                                               |                                                                           | POWER<br>H.P.                                                                     |                                                                              | FtLbs.                                             |  |  |
| per Min.                                                                                 | .0000303                                                      | H.P.                                                                      |                                                                                   | 33,000.                                                                      | per Min.                                           |  |  |
| FtLbs.                                                                                   |                                                               |                                                                           | H.P.                                                                              |                                                                              | Ft. Lbs.                                           |  |  |
| per Sec.                                                                                 | .001818                                                       | H.P.                                                                      |                                                                                   | 550.                                                                         | per Min.                                           |  |  |
| FtLbs.                                                                                   |                                                               |                                                                           | Watts                                                                             |                                                                              | Ft. Lbs.                                           |  |  |
| per Min.                                                                                 | .0226                                                         | Watts                                                                     |                                                                                   | 44.25                                                                        | per Min.                                           |  |  |
| FtLbs.                                                                                   |                                                               |                                                                           | Watts                                                                             |                                                                              | FtLbs.                                             |  |  |
| per Sec.                                                                                 | 1.356                                                         | Watts                                                                     |                                                                                   | .7373                                                                        | per Sec.                                           |  |  |
| Watts                                                                                    | .001341                                                       | H.P.                                                                      | H.P.                                                                              | 746.                                                                         | Watts                                              |  |  |
| B.T.U. per Hr                                                                            | 000393                                                        | H.P.                                                                      | H.P.                                                                              | 2,545.                                                                       | B.T.U. perH                                        |  |  |

Table 28-20. Physical Conversion Factors (cont'd).

|                                                                                                                                                                  | Table                                                                                        | 28-20. Physica                                                                                                           | I Conversion Fac                                                                                                                            | tors (cont'd).                                                                            |                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| ENERGY                                                                                                                                                           | To Chang                                                                                     |                                                                                                                          | NERGY                                                                                                                                       | Change Back                                                                               |                                                                                                               |
| Multiply Ergs Joules Joules Joules Joules FtLbs. Gram-Calories Joules FtLbs. B.T.U.                                                                              | by<br>.0000001<br>.2388<br>.10198<br>.7375<br>.1383<br>.003968<br>.000947<br>.001285<br>.293 |                                                                                                                          | Multiply Joules ss Gram-Calorie KgM. FtLb. KgM. B.T.U. B.T.U. B.T.U. Watt-Hrs.                                                              | by<br>10,000,000<br>s 4.186<br>9.8117<br>1.356<br>7.233<br>252<br>1,055,<br>778.<br>3.416 | To Get Ergs Joules Joules Joules FtLbs. Gram-Calories Joules Ft-Lbs. B.T.U.                                   |
| WEIGHTS<br>Lbs. (Avdp.)<br>Oz. (Avdp.)<br>Oz. (Troy)<br>Oz. (Avdp.)<br>Lbs. (Troy)<br>Oz. (Avdp.)<br>Oz. (Avdp.)<br>Oz. (Troy)<br>Grains<br>Grains<br>Milligrams | .4536<br>.0625<br>.0833<br>.9115<br>.82286<br>.0759<br>.0686<br>.00209<br>.002285            | Kgs. Lbs. (Avdp.) Lbs. (Troy) Cz. (Troy) Lbs. (Avdp.) Lbs. (Avdp.) Lbs. (Avdp.) Cz. (Troy) Cz. (Troy) Cz. (Avdp.) Carats | WEIGHTS Kgs. Lbs. (Avdp.) Lbs. (Troy) Cz. (Troy) Lbs. (Avdp.) Lbs. (Avdp.) Cjs. (Troy) Cz. (Troy) Cz. (Troy) Cz. (Avdp.) Cz. (Avdp.) Carats | 2.2046<br>16.<br>12.<br>1.097<br>1.2153<br>13.166<br>14.58<br>480.<br>437.5<br>200.       | Lbs. (Avdp.) Oz. (Avdp.) Oz. (Troy) Oz. (Avdp.) Lbs. (Troy) Oz. (Avdp.) Coz. (Troy) Grains Grains Milligram.3 |
| MISCELLANEO Ohms per Ft. Ohms per Kilometer Ohms per Kilometer Kg. per Kilometer Lbs. per 1000 Yds.                                                              | .3048<br>.3048<br>.3048<br>.9144<br>.6719                                                    | Ohms per<br>Meter<br>Ohms per<br>1000 Ft.<br>Ohms per<br>1000 Yds.<br>Lbs. per<br>1000 Ft.<br>Kg. per<br>Kilometer       | MISCELLANE:<br>Ohms per<br>Meter<br>Ohms per<br>1000 Ft.<br>Ohms per<br>1000 Vds.<br>Lbs. per<br>1000 Ft.<br>Kg. per<br>Kilometer           | 3.2808<br>3.2808<br>1.0936<br>1.488<br>2.016                                              | Ohms per<br>Ft. Ohms per<br>Kilometer Ohms per<br>Kilometer<br>Kg. per<br>Kilometer<br>Lbs. per               |



# Chapter 29 Numbers

### BINARY NUMBER SYSTEM

The decimal system using digits ranging from 0 through 9 for all number applications is just one of a large array of number systems. Other number systems (including the decimal) such as the binary and hexadecimal, find applications in computer technology.

The binary system uses two digits: 0 and 1. As in the case of the decimal system, the value of the number depends on its horizontal position. Thus, in a decimal number such as 875, the digit 8 has a true value of 800, 7 has a value of 70 and 5 has a value of 5, 800 + 70 + 5 equals 875. The binary system is based on powers of two (Table 29-3) similar to powers of 1.

Table 29-3 supplies powers of two up to  $2^{90}$  and  $2^{-90}$ . To find the value of  $2^{18}$ , as an example, move down the center column headed by the lettern, stopping at the number 15. Move to the left and the value of  $2^{18}$  is given as 32,768. To find the value of  $2^{-8}$ , move down the center or n column and stop at the number 6. Look to the right and the value of  $2^{-8}$  is supplied as 0.015625.

Binary numbers, as in the case of decimal numbers, are generally arranged horizontally. The first binary number at the right has a value of 2°, the adjacent binary a value of 2°, etc. Thus, a number such as binary 1011 would have an equivalent decimal value of

# Table 29-1. Numerical Prefixes

| Number | Greek prefix                  | Latin prefix        |
|--------|-------------------------------|---------------------|
| 1/2    | hemi-                         | semi-               |
| 1      | mono- or mon-                 | uni-                |
| 11/2   |                               | sesqui-             |
| 2      | di-                           | bi-; duo-           |
| 3      | tri-                          | tri- or ter-        |
| 4      | tetro- or tetr-               | quadri- or quadr-   |
| 5      | penta- or pent-               | quinque- or quinqu- |
| 6      | hexa- or hex-                 | sexi- or sex-       |
| 7      | hepto- or hept-               | septi- or sept-     |
| 8      | octo- or oct- or octo-        | octo-               |
| 9      | enneo- or enne-               | nona-; novem-       |
| 10     | deco- or dec-                 | decem-              |
| 11     | hendeco- or hendec-           | undeca- or undec-   |
| 12     | dodeca- or dodec-             | duodec-             |
| 13     | trideco- or tridec-           | tredec-             |
| 14     | tetradeco- or tetradec-       | quatuordec-         |
| 15     | pentodeca- or pentadec-       | quindec-            |
| 16     | hexadeco- or hexadec-         | sextodec-           |
| 17     | heptodeca- or heptadec-       | septendec-          |
| 18     | octodeca- or octadec-         | octodec-            |
| 19     | nonodeco- or nonadec-         | novemdec-           |
| 20     | eicoso- or eicos-             | viginti-            |
| 21     | heneicoso- or heneicos-       |                     |
| 22     | docoso- or docos-             |                     |
| 23     | tricosa- or tricos-           |                     |
| 24     | tetracoso- or tetracos-       |                     |
| 25     | pentocoso- or pentocos-       |                     |
| 26     | hexacosa- or hexacos-         |                     |
| 27     | heptocosa- or heptocos-       |                     |
| 28     | octocoso- or octacos-         |                     |
| 29     | nonocoso- or nonocos-         |                     |
| 30     | trioconto- or triocont-       | triginti-           |
| 31     | hentrioconta- or hentriacont- |                     |
| 32     | dotrioconta- or dotriocont-   |                     |
| 40     | tetraconto- or tetrocont-     | quadrogin-          |
| 50     | pentoconto- or pentacont-     | quinquagin-         |
| 60     | hexaconta- or hexocont-       | sexagin-            |

Hence, binary 1011 is equivalent to decimal 11. To emphasize the number system, the subscript 2 is sometimes used to identify binary numbers while 10 is used as a subscript for decimal numbers. In the example given: 1011z equals 11o.

Table 29-4 lists the binary equivalents of decimal numbers

ranging from 0 to 100.

### □Example:

What is the binary equivalent of 27?

In Table 29-4, locate 27 in the left-hand column. Move directly across to the right and the binary equivalent is 00011011. The three zeros at the left of the binary can be omitted since they add nothing to the value of the number. Accordingly, decimal 27 equals binary 11011. Binary 11011 can be set up as:

 $11011_2$  equals  $27_{10}$ . The subscripts 2 and 10 have no effect on the values of the numbers and are just used for identification.

#### Table 29-2. NUMERICAL DATA

| 1 cubic foot of water at 4° C (weight)62.43 lb                       |
|----------------------------------------------------------------------|
| 1 foot of water at 4° C (pressure)0.4335 lb/in <sup>2</sup>          |
|                                                                      |
| Velocity of light in                                                 |
| vacuum, c186,280 mi/sec = 2.998 × 1010 cm/sec                        |
| Velocity of sound in dry air at 20° C, 76 cm Hg1127 ft/sec           |
| tolocity of sound in dry air at 20° C, /6 cm Hg1127 ft/sec           |
| Degree of longitude at equator69.173 miles                           |
| Acceleration due to gravity at sea-level,                            |
| 40 Latitude, g32.1578 ft/sec <sup>2</sup>                            |
| /- 32.15/8 ft/sec²                                                   |
| \^2g8.020                                                            |
| 1 inch of mercury at 4 · C1.132 ft water = 0.4908 lb/in <sup>2</sup> |
| D 1 water = 0.4908 lb/in2                                            |
| Base of natural logs c2.718                                          |
| 1 radian                                                             |
| 360 dee                                                              |
| 360 degrees 2 * radians                                              |
| #                                                                    |
| Sino 1'                                                              |
| Sine 1'                                                              |
| Arc 1º0.01745 radian                                                 |
| Side of square0.707 × (diagonal of square)                           |
| orac or oquare                                                       |

```
2<sup>-n</sup>
                              n
                              ٥
                                  1.0
                         2
                                  0.5
                         4
                                  0.25
                         8
                                  0.125
                        16
                                  0.062 5
                        32
                                  0.031 25
                        64
                                  0 015 625
                       128
                                  0.007 812 5
                       256
                                  0.003 906 25
                       512
                                  0.001 953 125
                     1 024
                                  0.000 976 562 5
                     2 048
                                  0 000 488 281 25
                             11
                     4 096
                             12
                                  0 000 244 140 625
                     8 192
                             13
                                  0.000 122 070 312 5
                    16 384
                             14
                                 0.000 061 035 156 25
                    32 768
                             15
                                  0.000 030 517 578 125
                    65 536
                             16
                                  0.000 015 258 789 062 5
                   131 072
                             17
                                  0.000 007 629 394 531 25
                   262 144
                             18
                                  0.000 003 814 697 265 625
                  524 288
                             19
                                 0.000 001 907 348 632 812 5
                 1 048 576
                                 0.000 000 953 674 316 406 25
                             20
                                 0.000 000 476 837 158 203 125
                 2 097 152
                             21
                  194 304
                             22
                                 0.000 000 238 418 579 101 562 5
                  388 608
                             23
                                 0.000 000 119 209 289 550 781 25
                16 777 216
                             24
                                 0.000 000 059 604 644 775 390 625
               33 554 432
                             25
                                  0.000 000 029 802 322 387 695 312 5
               67 108 864
                             26
                                  0.000 000 014 901 161 193 847 656 25
               134 217 728
                             27
                                 0.000 000 007 450 580 596 923 828 125
0.000 000 003 725 290 298 461 914 062 5
                            28
               268 435 456
               536 870 912
                            29
                                 0.000 000 001 862 645 149 230 957 031 25
            1 073 741 824
                            30
                                 0.000 000 000 931 322 574 615 478 515 625
            2 147 483 648
                                 0.000 000 000 465 661 287 307 739 257 812 5
                           31
               294 967 296
                            32
                                 0.000 000 000 232 830 643 653 869 628 906 25
              589 934 592
                             33
                                 0.000 000 000 116 415 321 826 934 814 453 125
           17
              179 869 184
                             34
                                 0 000 000 000 058 207 660 913 467 407 226 562 5
           34 359 738 368
                                 0 000 000 000 029 103 830 456 733 703 613 281 25
                             35
           68 719 476 736
                                 0 000 000 000 014 551 915 228 366 851 806 640 625
                             36
          137 438 953 472
                            37
                                 0.000 000 000 007 275 957 614 183 425 903 320 312 5
          274 877 906 944
                                 0.000 000 000 003 637 978 807 091 712 951 660 156 25
                            38
                                 0.000 000 000 001 818 989 403 545 856 475 830 078 125
          549 755 813 888
                            39
        1 099 511 627 776
                                 0 000 000 000 000 909 494 701 772 928 237 915 039 062 5
                            40
        2 199 023 255 552
                                 0 000 000 000 000 454 747 350 886 464 118 957 519 531 25
                            41
        4 398 046 511 104
                            42
                                 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625
        8 796 093 022 208
                            43
                                 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812
       17 592 186 044 416
                                 0 000 000 000 000 056 843 418 860 808 014 869 689 941 406
                             44
       35 184 372 088 832
                            45
                                 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703
       70 368 744 177 664
                            46
                                 0 000 000 000 000 014 210 854 715 202 003 717 422 485 351
      140 737 488 355 328
                            47
                                 0 000 000 000 000 007 105 427 357 601 001 858 711 242 675
      281 474 976 710 656
                            48
                                 0 000 000 000 000 003 552 713 678 800 500 929 355 621 337
      562 949 953 421 312
                                 0 000 000 000 000 001 776 356 839 400 250 464 677 810 668
                            49
    1 125 899 906 842 624
                            50
                                 0 000 000 000 000 000 888 178 419 700 125 232 338 905 334
    2 251 799 813 685 248
                            51
                                 0 000 000 000 000 000 444 089 209 850 062 616 169 452 667
      503 599 627 370 496
                            52
                                 0 000 000 000 000 000 222 044 604 925 031 308 084 726 333
   9 007 199 254 740 992
                            53
                                 0.000 000 000 000 000 111 022 302 462 515 654 042 363 166
   18 014 398 509 481 984
                            54
                                 0 000 000 000 000 000 055 511 151 231 257 827 021 181 583
   36 028 797 018 963 968
                            55
                                 0 000 000 000 000 000 027 755 575 615 628 913 510 590 791
                                 0 000 000 000 000 000 013 877 787 807 814 456 755 295 395
   72 057 594 037 927 936
                            56
  144 115 188 075 855 872
                           57
                                 0.000 000 000 000 000 006 938 893 903 907 228 377 647 697
  288 230 376 151 711 744
                           58
                                0.000 000 000 000 000 003 469 446 951 953 614 188 823 848
576 460 752 303 423 488 59 0 000 000 000 000 001 734 723 475 976 807 094 411 924 1 152 921 504 606 846 976 60 0.000 000 000 000 000 867 361 737 988 403 547 205 962
```

# Table 29-4. Decimal Integers to Pure Binaries

| DEC.   | BINARY    | DEC. | BINARY    | DEC.   | BINARY               |
|--------|-----------|------|-----------|--------|----------------------|
| INTEGE |           | NTEG |           | INTEGE |                      |
| 00     | 00000000  | 33   | 00100001  | 67     |                      |
| 01     | 00000001  | 34   | 001000010 | 68     | 01000011             |
| 02     | 00000010  | 35   | 00100011  | 69     | 01000100             |
| 03     | 00000011  | 36   | 00100011  | 70     | 01000101             |
| 04     | 00000100  | 37   | 00100100  | 70     | 01000110             |
| 05     | 00000101  | 38   | 00100101  | 71     | 01000111             |
| 06     | 00000110  | 39   | 00100111  | 72     | 01001000<br>01001001 |
| 07     | 00000111  | 40   | 00101000  | 74     |                      |
| 08     | 00001000  | 41   | 00101000  | 75     | 01001010<br>01001011 |
| 09     | 00001001  | 42   | 00101010  | 76     | 01001011             |
| 10     | 00001010  | 43   | 00101011  | 77     | 01001100             |
| 11     | 00001011  | 44   | 00101100  | 78     | 01001101             |
| 12     | 000011100 | 45   | 00101101  | 79     | 01001110             |
| 13     | 00001101  | 46   | 00101110  | 80     | 01001111             |
| 14     | 00001101  | 47   | 00100111  | 81     | 01010000             |
| 15     | 00001111  | 48   | 00110000  | 82     | 01010010             |
| 16     | 00011111  | 49   | 00110001  | 83     | 01010010             |
| 17     | 00010001  | 50   | 00110010  | 84     | 01010100             |
| 18     | 00010010  | 51   | 00110011  | 85     | 01010101             |
| 19     | 00010011  | 52   | 00110100  | 86     | 01010110             |
| 20     | 00010100  | 53   | 00110101  | 87     | 01010111             |
| 21     | 00010101  | 54   | 00110110  | 88     | 01011000             |
| 22     | 00010101  | 55   | 00110111  | 89     | 01011001             |
| 23     | 00010111  | 56   | 00111000  | 90     | 01011010             |
| 24     | 00010111  | 57   | 00111001  | 91     | 01011011             |
| 25     | 00011000  | 58   | 00111010  | 92     | 01011100             |
| 26     | 00011001  | 59   | 00111011  | 93     | 01011101             |
| 27     | 00011010  | 60   | 00111100  | 94     | 01011110             |
| 28     | 00011011  | 61   | 00111101  | 95     | 01011111             |
| 29     | 00011101  | 62   | 00111110  | 96     | 01100000             |
| 30     | 00011101  | 63   | 00111111  | 97     | 01100001             |
|        |           | 64   | 01000000  | 98     | 01100010             |
| 31     | 00011111  | 65   | 01000001  | 99     | 01100011             |
| 32     | 00100000  | 66   | 01000010  | 100    | 01100100             |

#### BINARY-CODED DECIMALS

Binary numbers can be arranged in groups of four to correspond to decimal digits. A decimal number such as 5, for example, can be represented by binary 0101. Decimal 55 would then be 0101 0101. A setup of this kind is known as a binary-coded decimal, abbreviated as BCD. Note the difference between binary-coded decimals and pure binary numbers shown earlier in Table 29-4. A decimal number such as 82 in pure binary form would be 1010010, while decimal 82 in BCD notation would be 1000 0010.

Table 29-5 lists BCD equivalents of decimal numbers ranging from 0 to 100.

Table 29-5. Decimal to Binary-Coded Decimal (BCD) Notation

| DECIMAL | BCD  |      | DECIMA | DECIMAL |      |  |  |
|---------|------|------|--------|---------|------|--|--|
| 00 1    | 0000 | 0000 | 27     | 0010    | 0111 |  |  |
| 01      | 0000 | 0001 | 28     | 0010    | 1000 |  |  |
| 02      | 0000 | 0010 | 29     | 0010    | 1000 |  |  |
| 03      | 0000 | 0011 | 30     | 0010    | 0000 |  |  |
| 04      | 0000 | 0100 | 31     | 0011    | 0000 |  |  |
| 05      | 0000 | 0101 | 32     | 0011    |      |  |  |
| 06      | 0000 | 0110 | 33     | 0011    | 0010 |  |  |
| 07      | 0000 | 0111 |        |         | 0011 |  |  |
| 08      | 0000 | 1000 | 34     | 0011    | 0100 |  |  |
| 09      | 0000 | 1001 | 35     | 0011    | 0101 |  |  |
| 10      | 0001 | 0000 | 36     | 0011    | 0110 |  |  |
| 11      | 0001 | 0001 | 37     | 0011    | 0111 |  |  |
| 12      | 0001 | 0010 | 38     | 0011    | 1000 |  |  |
| 13      | 0001 | 0011 | 39     | 0011    | 1001 |  |  |
| 14      | 0001 | 0100 | 40     | 0100    | 0000 |  |  |
| 15      | 0001 | 0101 | 41     | 0100    | 0001 |  |  |
| 16      | 0001 | 0110 | 42     | 0100    | 0010 |  |  |
| 17      | 0001 | 0111 | 43     | 0100    | 0011 |  |  |
| 18      | 0001 | 1000 | 44     | 0100    | 0100 |  |  |
| 19      | 0001 | 1001 | 45     | 0100    | 0101 |  |  |
| 20      | 0010 | 0000 | 46     | 0100    | 0110 |  |  |
| 21      | 0010 | 0001 | 47     | 0100    | 0111 |  |  |
| 22      | 0010 | 0010 | 48     | 0100    | 1000 |  |  |
| 23      | 0010 | 0011 | 49     | 0100    | 1001 |  |  |
| 24      | 0010 | 0100 | 50     | 0101    | 0000 |  |  |
| 25      | 0010 | 0101 | 51     | 0101    | 0001 |  |  |
| 26      | 0010 | 0110 | 52     | 0101    | 0010 |  |  |

Table 29-5. Decimal to Binary-Coded Decimal (BCD) Notation (cont'd)

| DECIMAL |      | BCD  | DECIMA   | L I      | BCD     |
|---------|------|------|----------|----------|---------|
| 53      | 0101 | 0011 | 77       | 01       | 11 0111 |
| 54      | 0101 | 0100 | 78       | 01       | 11 1000 |
| 55      | 0101 | 0101 | 79       | 01       | 11 1001 |
| 56      | 0101 | 0110 | 80       | 10       | 00 0000 |
| 57      | 0101 | 0111 | 81       | 10       |         |
| 58      | 0101 | 1000 | 82       | 10       |         |
| 59      | 0101 | 1001 | 83       | 10       |         |
| 60      | 0110 | 0000 | 84       | 10       |         |
| 61      | 0110 | 0001 | 85       | 10       |         |
| 62      | 0110 | 0010 | 86       | 10       |         |
| 63      | 0110 | 0011 | 87       | 10       |         |
| 64      | 0110 | 0100 | 88       | 10       |         |
| 65      | 0110 | 0101 | 89       | 10       |         |
| 66      | 0110 | 0110 | 90       | 10       |         |
| 67      | 0110 | 0111 | 91       |          |         |
| 68      | 0110 | 1000 |          | 100      |         |
| 69      | 0110 | 1001 | 92<br>93 | 100      |         |
| 70      | 0111 | 0000 | 94       | 100      |         |
| 71      | 0111 | 0001 | 95       | 100      |         |
| 72      | 0111 | 0010 | 96       | 100      |         |
| 73      | 0111 | 0011 | 97       | 100      |         |
| 74      | 0111 | 0100 | 98       |          |         |
| 75      | 0111 | 0101 | 99       | 100      |         |
| 76      | 0111 | 0110 |          | 0001 000 |         |

#### THE HEXADECIMAL SYSTEM

This number system uses digits 0 through 9 and letters A to F for its number applications. As in the case of the binary and decimal systems, the value of a hexadecimal number depends on its horizontal position. Hexadecimal numbers are based on powers of 16, as shown in Table 29-6.

Hexadecimal numbers, as in the case of binary and decimal numbers, are usually arranged horizontally. The first hexadecimal number at the right has a value of  $16^{\circ}$ , the adjacent hexadecimal number a value of  $16^{\circ}$ , etc.

In the hexadecimal system, the letter A corresponds to decimal 10, B to decimal 11, C to 12, D to 13, E to 14, and F to 15.

#### Table 29-6. Powers of 16

Hexadecimal 4F3 equals decimal 1267.

Table 29-7 lists hexadecimal equivalents for decimal numbers from 0 to 100.

1,267

Table 29-7. Decimal to Hexadecimal Conversions

| DECIMAL | HEXADECIMAL | DECIMAL | HEXADECIMAL |
|---------|-------------|---------|-------------|
|         |             |         | HEXABECIMAL |
| 0       | 0           | 16      | 10          |
| 1       | 1           | 17      | 11          |
| 2       | 2           | 18      | 12          |
| 3       | 3           | 19      | 13          |
| 4       | 4           | 20      | 14          |
| 5       | 5           | 21      | 15          |
| 6       | 6           | 22      | 16          |
| 7       | 7           | 23      | 17          |
| 8       | 8           | 24      | 18          |
| 9       | 9           | 25      |             |
| 10      | Á           |         | 19          |
|         |             | 26      | 1A          |
| 11      | В           | 27      | 1B          |
| 12      | С           | 28      | 1C          |
| 13      | D           | 29      | 1D          |
| 14      | E           | 30      | 1E          |
| 15      | F           | 31      | 15          |

Table 29-7. Decimal to Hexadecimal Conversions (cont'd)

# DECIMAL HEXADECIMAL DECIMAL HEXADECIMAL

| 32 | 20 | 69  | 45 |
|----|----|-----|----|
| 33 | 21 | 70  | 46 |
| 34 | 22 | 71  | 47 |
| 35 | 23 | 72  | 48 |
| 36 | 24 | 73  | 49 |
| 37 | 25 | 74  | 4A |
| 38 | 26 | 75  | 4B |
| 39 | 27 | 76  | 4C |
| 40 | 28 | 77  | 4D |
| 41 | 29 | 78  | 4E |
| 42 | 2A | 79  | 4F |
| 43 | 2B | 80  | 50 |
| 44 | 2C | 81  | 51 |
| 45 | 2D |     |    |
| 46 | 2E | 82  | 52 |
| 47 | 2F | 83  | 53 |
| 48 | 30 | 84  | 54 |
| 49 | 31 | 85  | 55 |
| 50 | 32 |     |    |
| 51 | 33 | 86  | 56 |
| 52 | 34 | 87  | 57 |
| 53 | 35 | 88  | 58 |
| 54 | 46 | 89  | 59 |
| 55 | 37 | 90  | 5A |
| 56 | 38 | 91  | 5B |
| 57 | 39 | 92  | 5C |
| 58 | 3A | 93  | 5D |
| 59 | 3B | 94  | 5E |
| 60 | 3C | 95  | 5F |
| 61 | 3D |     | 60 |
| 62 | 3E | 96  |    |
| 63 | 3F | 97  | 61 |
| 64 | 40 | 98  | 62 |
| 65 | 41 | 99  | 63 |
| 66 | 42 | 100 | 64 |
| 67 | 43 |     |    |
| 68 | 44 |     |    |

# HEXADECIMAL TO DECIMAL CONVERSIONS

Every hexadecimal number consists of two parts: a coefficient or multiplier and some value of 16 raised to a power. Thus, hexademial 5A is the same as  $(5\times16^{\circ})+(10\times16^{\circ})$ . In this hexadecimal number 5 is a coefficient, and so is A. (A equals decimal 10.) In a

hexadecimal number such as 234, these digits have a decimal value of  $(2\times16^\circ)+(3\times16^\circ)+(4\times16^\circ)$ . Each of the numbers, 2, 3, and 4, are coefficients which are used to multiply various powers of 16. Since 234 looks like a decimal number, it can be identified as a hexadecimal number by using the subscript 16. Hence, 234 is more correctly written as 234s.

Table 29-8 is a convenient way of obtaining decimal equivalents of hexadecimal numbers, but some addition is involved.

#### □Example:

What is the decimal equivalent of 5FA4?

In Table 29-8, the first column at the left represents all possible coefficients or multipliers.

In converting 5FA4 to a decimal number, work with each part of this hexadecimal a digit at a time, starting at the right-hand side. The first right-hand digit of 5FA4 is 4. In Table 29-8, locate the number 4 in the left-hand column. Move completely across to 16° and the value of 4 is indicated as 4.

The next number of 5FA4 to consider is A. Find A in the left-hand column of Table 29-8. Move horizontally, but stop at the second or 16' column for you are now working with the second digit of the hex number. The value of A is 160.

The third digit of 5FA4 is F in the left-hand column of Table 29-8 and move to the third column, or the 16' column. The decimal 29-8 and is 3840. Finally, find the decimal equivalent of the fourth digit in 5FA4. This is the number 5. Locate 5 in the left-hand column. Move across to the right and stop in the fourth column—the 16' column. The decimal equivalent here is 20,480.

160 3,840 20,480 24,484

Hexadecimal 5FA4 equals decimal 24484. This can also be written as  $5FA4_{16}$  equals  $24,484_{10}$ .

Table 29-10 lists powers of numbers from 1 to 100, and from the third power to the eighth power, inclusive.

Table 29-8. Hexadecimal to Decimal Integer Conversions

| 1,40 | 2 >      | < -         | - 0         | 7 (         | n =           | 4 u           | ۰ ۲           | 7 6           | - α           | 0             | , ,           | 2 5           | = 5           | 7 !           | 2             | 14            |               | 0    |
|------|----------|-------------|-------------|-------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|------|
| 161  | 2 5      | ? ?         | 2 5         | 7 0         | 0 4           | 5 &           | 3 3           | 5             | 128           | 744           | 1 2           | 27.           | 2 6           | 7.7           | 208           | 224           | 0.40          | 740  |
| 162  | X        | 256         | 007         | 210         | 1034          | 1280          | 1536          | 1702          | 2048          | 2304          | 25.60         | 2007          | 2070          | 7 /00         | 3328          | 3584          | 20.40         | 2040 |
| 163  | X        | 4 006       | 8 100       | 12 288      | 16.384        | 20,480        | 24,576        | 28.672        | 32,768        | 36.864        | 40.960        | 45.056        | 40 152        | 20 0 40       | 23,248        | 57,344        | 67.440        | 110  |
| 164  | X0000    | 65.536      | 131.072     | 196.608     | 262.144       | 327,680       | 393,216       | 458.752       | 524,288       | 589.824       | 655.360       | 720.896       | 786 432       | 020 030       | 894,109       | 917,504       | 983.040       |      |
| 165  | X00000   | 1,048.576   | 2,097,152   | 3,145,728   | 4,194,304     | 5,242,880     | 6,291,456     | 7,340,032     | 8,388,608     | 9,437.184     | 10,485,760    | 11,534,336    | 12,582,912    | 12 421 488    | 004/100/01    | 14,680,064    | 15,728,640    |      |
| 166  | X00000   | 16,777,216  | 33,554,432  | 50,331,648  | 67,108,864    | 83,886,080    | 100,663,296   | 117,440,512   | 134,217,728   | 150,994,944   | 167,772,160   | 184,549,376   | 201,326,592   | 218,103,808   | 200,000       | 234,881,024   | 251,658,240   |      |
| 167  | X0000000 | 268,435,456 | 536,870,912 | 805,306,368 | 1,073,741,824 | 1,342,177,280 | 1,610,612,736 | 1,879,048,192 | 2,147,483,648 | 2,415,919,104 | 2,684,354,560 | 2,952,790,016 | 3,221,225,472 | 3,489,660,928 | 2 700 000 000 | 3,738,096,384 | 4,026,531,840 |      |
|      |          | _           | 2           | က           | 4             | 2             | 9             | 7             | 80            | 0             | ∢             | മ             | U             | Δ             | u             | ш             | ш             |      |

Table 29-9. Counting in Different Number Systems

| DECIMAL                                                                                                                                                                                                                  | DUODECIMAL                                                                                                                                                                                      | OCTAL                                                                          | 5                                       | В                                                                                 | INA                                                                                                                       | RY                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| t o<br>e n<br>n e<br>s s                                                                                                                                                                                                 | t<br>w<br>e<br>l o<br>v n<br>e e<br>s s                                                                                                                                                         | e<br>g o<br>h n<br>t e<br>s s                                                  | t e e n s                               | e i g<br>h<br>t s                                                                 | f<br>o<br>u<br>r<br>s                                                                                                     | t<br>w<br>o<br>s                                                                                                                                                                                                                                                                                              | 0<br>n<br>e<br>s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>9<br>1<br>1<br>1<br>1<br>1<br>2<br>1<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>1<br>1<br>1<br>1<br>1<br>2<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 0<br>1<br>2<br>3<br>4<br>5<br>5<br>7<br>8<br>8<br>9<br>A<br>8<br>1<br>1<br>1<br>1<br>2<br>3<br>1<br>4<br>5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 0 1 2 3 4 4 5 5 6 7 7 1 1 2 3 11 1 4 5 1 1 6 7 2 2 0 1 2 2 2 3 2 2 5 6 2 3 7 0 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 1<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>0<br>0 | 1<br>1<br>0<br>0<br>1<br>1<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>1<br>0<br>0<br>0<br>1<br>0<br>0<br>0<br>1<br>0<br>0<br>0<br>1<br>0<br>0<br>0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 |

# □Example:

What is the value of 96?

Locate 9 in the left-hand column. Move to the right to the column headed by  $n^6$ . The value of  $9^6$  is given as 531,441.

# □Example:

What is the value of 237?

Locate 23 in the left-hand column. Move to the right to the column headed by  $n^2$ . The number shown here is 3.404825. However, this number must be multiplied by  $10^9$  as indicated in the column heading. Hence,  $23^9$  equals  $3.404825 \times 10^9$ . To get the final answer, move the decimal point 9 places to the right.  $3.404825 \times 10^9$  equals 3.404.825,000.

## SQUARE ROOTS OF NUMBERS

Table 29-11 lists the square roots of numbers from 1 to 100.  $\square \textbf{Example:}$ 

What is the square root of 19?

# Table 29-10. Powers of Numbers

| n        | n       | 3 n <sup>4</sup> | n <sup>5</sup>     | n <sup>6</sup> | n <sup>7</sup>      | n <sup>E</sup>      |
|----------|---------|------------------|--------------------|----------------|---------------------|---------------------|
| 1        | 1       | 1                | 1                  | 1              | 1                   | 1                   |
| 2        | 8       | 16               | 32                 | 64             | 128                 |                     |
| 3        |         | 81               | 243                | 729            | 2187                |                     |
| 4        | 64      | 256              | 1024               | 4096           | 16384               | 65536               |
| 5        | 125     | 625              | 3125               | 15625          | 78125               | 390625              |
| 6        | 216     | 1296             | 7776               | 46656          | 279936              | 1679616             |
| 7        | 343     | 2401             | 16807              | 117649         | 823543              | 5764801             |
| 8        | 512     | 4096             | 32768              | 262144         | 2097152             | 16777216            |
| 9        | 729     | 6561             | 59049              | 531441         | 4782969             | 43046721            |
|          |         |                  |                    |                | 4,02,07             | 40040/21            |
| 10       | 1000    | 10000            | 100000             |                |                     | $\times$ 108        |
| 11       | 1331    |                  | 161051             | 1000000        | 10000000            |                     |
| 12       | 1728    |                  |                    | 1771561        | 19487171            | 2.143589            |
| 13       | 2197    |                  | 371293             | 2985984        | 35831808            | 4.299817            |
| 14       | 2794    |                  |                    | 4826809        | 62748517            | 8.157307            |
| 15       | 3375    |                  | 759375             | 7529536        | 105413504           | 14.757891           |
| 16       | 4096    |                  |                    | 11390625       | 170859375           | 25.628906           |
| 17       | 4913    |                  | 1048576<br>1419857 | 16777216       | 268435456           | 42.949673           |
| 18       | 5832    | 104976           | 1889568            | 24137569       | 410338673           | 69.757574           |
| 19       | 6859    |                  |                    | 34012224       |                     | 110.199606          |
|          | 9007    | 130321           | 2476099            | 47045881       | 893871739           | 169.835630          |
|          |         |                  |                    |                | × 10°               | × 10 <sup>10</sup>  |
| 20       | 8000    | 160000           | 3200000            | 64000000       | 1.280000            | 2.560000            |
| 21       | 9261    | 194481           | 4084101            | 85766121       | 1.801089            | 3.782286            |
| 22       | 10648   | 234256           | 5153632            | 113379904      | 2.494358            | 5.487587            |
| 23       | 12167   | 279841           | 6436343            | 148035889      | 3.404825            | 7.831099            |
| 24       | 13824   | 331776           | 7962624            | 191102976      | 4.586471            | 11.007531           |
| 25       | 15625   | 390625           | 9765625            | 244140625      | 6.103516            | 15.258789           |
| 26       | 17576   | 456976           | 11881376           | 308915776      | 8.031810            | 20.882706           |
| 27       | 19683   | 531441           | 14348907           | 387420489      | 10.460353           | 28.242954           |
| 28       | 21952   | 614656           | 17210368           | 481890304      | 13.492929           | 37.780200           |
| 29       | 24389   | 707281           | 20511149           | 594823321      | 17.249876           | 50.024641           |
|          |         |                  | 20011147           | 374023321      | 17.2498/0           | 30.024641           |
| 30       | 27000   | 010000           |                    | × 108          | $\times$ 10 $^{10}$ | $\times$ 10 $^{11}$ |
| 31       | 27000   | 810000           | 24300000           | 7.290000       | 2.187000            | 6.561000            |
| 32       | 29791   | 923521           | 28629151           | 8.875037       | 2.751261            | 8.528910            |
| 33       |         | 048576           | 33554432           | 10.737418      | 3.435974            | 10.995116           |
| 33<br>34 |         | 185921           | 39135393           | 12.914680      | 4.261844            | 14.064086           |
| 34       | 39304 1 | 336336           | 45435424           | 15.448044      | 5.252335            | 17.857939           |

Table 29-10. Powers of Numbers (cont'd)

| n    | n³       | n <sup>4</sup> | n <sup>5</sup> | n <sup>6</sup> | n <sup>7</sup>     | u <sub>8</sub> |
|------|----------|----------------|----------------|----------------|--------------------|----------------|
| 35   | 42875    | 1500625        | 52521875       | 18.382656      | 6.433930           | 22.518754      |
| 36   | 46656    | 1679616        | 60466176       | 21.767823      | 7.836416           | 28.211099      |
| 37   | 50653    | 1874161        | 69343957       | 25.657264      |                    | 35,124795      |
| 38   | 54872    | 2085136        | 79235168       | 30.109364      | 11,441558          | 43,477921      |
| 39   | 59319    | 2313441        | 90224199       | 35.187438      | 13.723101          | 53.520093      |
|      |          |                |                |                |                    |                |
|      |          |                |                |                |                    |                |
|      |          |                |                | × 109          | × 1010             | × 1012         |
| 40   |          | 2560000        | 102400000      | 4.096000       | 16.384000          |                |
| 41   | 68921    | 2825761        | 115856201      | 4.750104       | 19,475427          |                |
| 42   | 74088    | 3111696        | 130691232      | 5.489032       | 23.053933          | 9.682652       |
| 43   | 79507    | 3418801        | 147008443      | 6.321363       | 27,181861          | 11.688200      |
| 44   | 85184    | 3748096        | 164916224      | 7.256314       | 31.927781          | 14.048224      |
| 45   | 91125    | 4100625        | 184528125      | 8.303766       | 37.366945          | 16.815125      |
| 46   | 97336    | 4477456        | 205962976      | 9.474297       | 43.581766          | 20.047612      |
| 47   | 103823   | 4879681        | 229345007      | 10.779215      | 50.662312          | 23.811287      |
| 48   | 110592   | 5308416        | 254803968      | 12.230590      | 58.706834          | 28.179280      |
| 49   | 117649   | 5764801        | 282475249      | 13.841287      | 67.822307          | 33.232931      |
|      |          |                |                |                |                    |                |
|      |          |                |                |                |                    |                |
|      |          |                |                | × 109          | $\times 10^{11}$   | × 1013         |
| 50   | 125000   | 6250000        | 312500000      | 15.625000      | 7.812500           | 3.906250       |
| 51   | 132651   | 6765201        | 345025251      | 17.596288      | 8.974107           | 4.576794       |
| 52   | 140608   | 7311616        | 380204032      | 19.770610      | 10.280717          | 5.345973       |
| 53   | 148877   | 7890481        | 418195493      | 22.164361      | 11.747111          | 6.225969       |
| 54   | 157464   | 8503056        | 459165024      | 24.794911      | 13.389252          | 7.230196       |
| 55   | 166375   | 9150625        | 503284375      | 27.680641      | 15.224352          | 8.373394       |
| 56   | 175616   | 9834496        | 550731776      | 30.840979      | 17.270948          | 9.671731       |
| 57   |          | 10556001       | 601692057      | 34.296447      | 19.548975          | 11.142916      |
| 58   |          | 11316496       | 656356768      | 38.068693      | 22.079842          | 12.806308      |
| 59   | 205379   | 12117361       | 714924299      | 42.180534      | 24.886515          | 14.683044      |
|      |          |                |                |                |                    |                |
|      |          |                |                |                |                    |                |
|      |          |                | $\times$ 108   | X 1010         | × 10 <sup>11</sup> | × 1013         |
| 60   | 216000 1 | 2960000        | 7.776000       | 4.665600       | 27,993600          | 16.796160      |
|      |          | 3845841        | 8.445963       | 5.152037       | 31,427428          | 19.170731      |
|      |          | 4776336        | 9.161328       | 5.680024       | 35.216146          | 21.834011      |
|      |          | 5752961        | 9.924365       | 6.252350       | 39.389806          | 24.815578      |
|      |          | 6777216        | 10.737418      | 6.871948       | 43.980465          | 28.147498      |
| 65 2 | 274625 1 | 7850625        | 11.602906      | 7.541889       | 49.022279          | 31.864481      |
|      |          | 8974736        | 12.523326      | 8.265395       | 54.551607          | 36.004061      |
| 67 3 | 300763 2 | 0151121        | 13.501251      | 9.045838       | 60.607116          | 40.606768      |
|      |          |                |                |                |                    |                |

Table 29-10. Powers of Numbers (cont'd)

| n   | n f     | n <sup>4</sup>       | n <sup>5</sup>       | n <sup>6</sup>                 | n <sup>7</sup>                 | n <sup>8</sup>       |
|-----|---------|----------------------|----------------------|--------------------------------|--------------------------------|----------------------|
| 68  | 314432  | 21381376             | 14.539336            | 9.886748                       | 67.229888                      | 45.716324            |
| 69  | 328509  | 22667121             | 15.640313            | 10.791816                      | 74.463533                      | 51.379837            |
|     |         |                      |                      |                                |                                |                      |
|     |         |                      | $\times$ 10 $^{8}$   | ×1010                          | $\times$ 1012                  | × 1014               |
| 70  | 343000  | 24010000             | 16.807000            | 11.764900                      | 8.235430                       | 5.764801             |
| 71  | 357911  | 25411681             | 18.042294            | 12.810028                      | 9.095120                       | 6.457535             |
|     |         | 26873856             | 19.349176            | 13.931407                      | 10.030613                      | 7.222041             |
| 73  | 389017  | 28398241             | 20.730716            | 15.133423                      | 11.047399                      | 8.064601             |
| 74  | 405224  | 29986576             | 22.190066            | 16.420649                      | 12.151280                      | 8.991947             |
| 75  | 421875  | 31640625             | 23.730469            | 17.797852                      | 13.348389                      | 10.011292            |
| 76  | 438976  | 33362176             | 25.355254            | 19.269993                      | 14.645195                      | 11.130348            |
| 77  | 456533  | 35153041             | 27.067842            | 20.842238                      | 16.048523                      | 12.357363            |
| 78  | 474552  | 37015056             | 28.871744            | 22.519960                      | 17.565569                      | 13.701144            |
| 79  | 493039  | 38950081             | 30.770564            | 24.308746                      | 19.203909                      | 15.171088            |
|     |         |                      | × 10 <sup>8</sup>    | × 1010                         | × 1012                         | × 10 <sup>14</sup>   |
| 80  | 512000  | 40960000             | 32,768000            | 26.214400                      | 20.971520                      | 16.777216            |
| 81  |         | 43046721             | 34.867844            | 28.242954                      | 22.876792                      | 18.530202            |
| 82  |         | 45212176             | 37.073984            | 30.400667                      | 24.928547                      | 20.441409            |
|     |         | 47458321             | 39,390406            | 32.694037                      | 27.136051                      | 22.522922            |
|     |         | 49787136             | 41.821194            | 35.129803                      | 29.509035                      | 24.787589            |
| 85  | 614125  | 52200625             | 44.370531            | 37.714952                      | 32.057709                      | 27.249053            |
| 86  | 636056  | 54700816             | 47.042702            | 40.456724                      | 34.792782                      | 29.921793            |
| 87  | 658503  | 57289761             | 49.842092            | 43,362620                      | 37.725479                      | 32.821167            |
| 88  | 681472  | 59969536             | 52,773192            | 46,440409                      | 40.867560                      | 35.963452            |
| 89  | 704969  | 62742241             | 55.840594            | 49.698129                      | 44,231335                      | 39.365888            |
|     |         |                      |                      |                                |                                |                      |
| 90  | 700000  | 65610000             | × 10°<br>5.904900    | × 10 <sup>11</sup><br>5.314410 | × 10 <sup>13</sup><br>4.782969 | X 1015               |
| 91  | 127000  |                      | 6.240321             | 5.678693                       |                                | 4.304672             |
| 92  |         | 68574961<br>71639296 | 6.590815             | 6.063550                       | 5.167610<br>5.578466           | 4.702525<br>5.132189 |
| 93  |         |                      | 6.956884             | 6.469902                       |                                |                      |
| 94  |         | 74805201             |                      |                                | 6.017009                       | 5.595818             |
| 95  |         | 78074896<br>81450625 | 7.339040<br>7.737809 | 6.898698<br>7.350919           | 6.484776                       | 6.095689             |
|     |         |                      |                      |                                | 6.983373                       | 6.634204             |
| 07  | 084/36  | 84934656<br>88529281 | 8.153727             | 7.827578                       | 7.514475                       | 7.213896             |
| 9/  | 9120/3  | 92236816             | 8.587340             | 8.329720                       | 8.079828                       | 7.837434             |
| 78  | 070000  | 96059601             | 9.039208             | 8.858424                       | 8.681255                       | 8.507630             |
|     |         | 100000000            | 9.509900             | 9.414801                       | 9.320653                       | 9.227447             |
| .00 | 1000000 | 100000000            | 10.000000            | 10.000000                      | 10.000000                      | 10.000000            |

Find 19 in the column headed by the letter n (abbreviation for number). The square root of 19 appears immediately to the right in the column identified by  $\sqrt{n}$ . The square root of 19 is 4.3589.

Table 29-11. Square Roots Of Numbers

| n  | \ n    | n  | $\sqrt{n}$       | n  | $\sqrt{n}$ | n   | $\sqrt{n}$ |
|----|--------|----|------------------|----|------------|-----|------------|
| 1  | 1.0000 | 26 | 5.0990           | 51 | 7.1414     | 76  | 8.7178     |
| 2  | 1.4142 | 27 | 5.1962           | 52 | 7.2111     | 77  | 8.7750     |
| 3  | 1.7321 | 28 | 5.2915           | 53 | 7.2801     | 78  | 8.8318     |
| 4  | 2.0000 | 29 | 5.3852           | 54 | 7.3485     | 79  | 8.8882     |
| 5  | 2.2361 | 30 | 5.4772           | 55 | 7.4162     | 80  | 8.9443     |
|    |        |    |                  |    |            | l   |            |
| 6  | 2.4495 | 31 | 5.5678           | 56 | 7.4833     | 81  | 9.0000     |
| 7  | 2.6458 | 32 | 5.6569           | 57 | 7.5498     | 82  | 9.0554     |
| 8  | 2.8284 | 33 | 5.7446           | 58 | 7.6158     | 83  | 9.1104     |
| 9  | 3.0000 | 34 | 5.8310           | 59 | 7.6811     | 84  | 9.1652     |
| 10 | 3.1623 | 35 | 5.9161           | 60 | 7.7460     | 85  | 9.2195     |
|    |        |    |                  | 1  |            | 1   |            |
| 11 | 3.3166 | 36 | 6.0000           | 61 | 7.8102     | 86  | 9.2736     |
| 12 | 3.4641 | 37 | 6.0828           | 62 | 7.8740     | 87  | 9.3274     |
| 13 | 3.6056 | 38 | 6.1644           | 63 | 7.9373     | 88  | 9.3808     |
| 14 | 3.7417 | 39 | 6.2450           | 64 | 8.0000     | 89  | 9.4340     |
| 15 | 3.8730 | 40 | 6.3246           | 65 | 8.0623     | 90  | 9.4868     |
|    |        |    |                  |    |            |     |            |
| 16 | 4.0000 | 41 | 6.4031           | 66 | 8.1240     | 91  | 9.5394     |
| 17 | 4.1231 | 42 | 6.4807           | 67 | 8.1854     | 92  | 9.5917     |
| 18 | 4.2426 | 43 | 6.5574           | 68 | 8.2462     | 93  | 9.6437     |
| 19 | 4.3589 | 44 | 6.6332           | 69 | 8.3066     | 94  | 9.6954     |
| 20 | 4.4721 | 45 | 6.7082           | 70 | 8.3666     | 95  | 9.7468     |
|    |        |    | / 7000           |    |            |     |            |
| 21 | 4.5826 | 46 | 6.7823           | 71 | 8.4261     | 96  | 9.7980     |
| 22 | 4.6904 | 47 | 6.8557           | 72 | 8.4853     | 97  | 9.8490     |
| 23 | 4.7958 | 48 | 6.9282           | 73 | 8.5440     | 98  | 9.8995     |
| 24 | 4.8990 | 49 | 7.0000<br>7.0711 | 74 | 8.6023     | 99  | 9.9499     |
| 25 | 5.0000 | 50 | 7.0711           | 75 | 8.6603     | 100 | 10.0000    |

# **CUBE ROOTS OF NUMBERS**

Table 29-12 can be used to find the cube roots of numbers ranging from 1 to 10,000.

#### □Example:

What is the cube root of 16?

Locate 16 in the column headed by the letter n. Move to the right to the column identified by  $^3\sqrt{n}$ . The cube root of 16 is 2.519842.

Two additional columns are marked  $\sqrt[3]{10n}$  and  $\sqrt[3]{100n}$ . These are used for extending the values in the n column. Thus, if n is 18, then 10n is  $10 \times 18$  equals 180, and 10n is  $100 \times 18$  equals 1800. Consequently, 18 in the n column can represent 18, 180 or 18000.

# □Example:

What is the cube root of 3100?

Locate 31 in the n column. 3100, however, is 31  $\times$  100, and so the answer will be found in the  $^3\sqrt{100n}$  column. Move horizontally to this column and the answer is given as 14.58100. The last two zeros of this number do not contribute to its value and so can be omitted.  $^9\sqrt{3100}$  equals 14.581.

Table 29-12. Cube Roots of Numbers

| n  | √n       | $\sqrt[3]{10n}$ | √√100n               |
|----|----------|-----------------|----------------------|
| 1  | 1.000000 | 2.154435        | 4.641589             |
| 2  | 1.259921 | 2.714418        | 5.848035             |
| 3  | 1.442250 | 3.107233        | 6.694330             |
| 4  | 1.587401 | 3.419952        | 7.368063             |
| 5  | 1.709976 | 3.684031        | 7.937005             |
| 6  | 1.817121 | 3.914868        | 8.434327             |
| 7  | 1.912931 | 4.121285        | 8.879040             |
| 8  | 2.000000 | 4.308869        | 9.283178             |
| 9  | 2.080084 | 4.481405        | 9.654894             |
| 10 | 2.154435 | 4.641589        | 10.00000             |
| 11 | 2.223980 | 4.791420        | 10.32280             |
| 12 | 2.289428 | 4.932424        | 10.62659             |
| 13 | 2.351335 | 5.065797        | 10.91393             |
| 14 | 2.410142 | 5.192494        | 11.18689             |
| 15 | 2.466212 | 5.313293        | 11.44714             |
| 16 | 2.519842 | 5.428835        | 11 (0.0=             |
| 17 | 2.571282 | 5.539658        | 11.69607             |
| 18 | 2.620741 | 5.646216        | 11.93483             |
| 19 | 2.668402 | 5.748897        | 12.16440             |
| 20 | 2.714418 | 5.848035        | 12.38562<br>12.59921 |
|    |          |                 |                      |

Table 29-12. Cube Roots of Numbers (cont'd)

| n  | <sup>3</sup> √n | $\sqrt[3]{10n}$ | $\sqrt[3]{100n}$ |
|----|-----------------|-----------------|------------------|
| 21 | 2.758924        | 5.943922        | 12.80579         |
| 22 | 2.802039        | 6.036811        | 13.00591         |
| 23 | 2.843867        | 6.126926        | 13.20006         |
| 24 | 2.884499        | 6.214465        | 13.38866         |
| 25 | 2.924018        | 6.299605        | 13.57209         |
| 26 | 2.962496        | 6.382504        | 13.75069         |
| 27 | 3.000000        | 6.463304        | 13.92477         |
| 28 | 3.036589        | 6.542133        | 14.09460         |
| 29 | 3.072317        | 6.619106        | 14.26043         |
| 30 | 3.107233        | 6.694330        | 14.42250         |
| 31 | 3.141381        | 6.767899        | 14.58100         |
| 32 | 3.174802        | 6.839904        | 14.73613         |
| 33 | 3.207534        | 6.910423        | 14.88806         |
| 34 | 3.239612        | 6.979532        | 15.03695         |
| 35 | 3.271066        | 7.047299        | 15.18294         |
| 36 | 3.301927        | 7.113787        | 15.32619         |
| 37 | 3.332222        | 7.179054        | 15.46680         |
| 38 | 3.361975        | 7.243156        | 15.60491         |
| 39 | 3.391211        | 7.306144        | 15.74061         |
| 40 | 3.419952        | 7.368063        | 15.87401         |
| 41 | 3.448217        | 7.428959        | 16.00521         |
| 42 | 3.476027        | 7.488872        | 16.13429         |
| 43 | 3.503398        | 7.547842        | 16.26133         |
| 44 | 3.530348        | 7.605905        | 16.38643         |
| 45 | 3.556893        | 7.663094        | 16.50964         |
| 46 | 3.583048        | 7.719443        | 16.63103         |
| 47 | 3.608826        | 7.774980        | 16.75069         |
| 48 | 3.634241        | 7.829735        | 16.86865         |
| 49 | 3.659306        | 7.883735        | 16.98499         |
| 50 | 3.684031        | 7.937005        | 17.09976         |
| 51 | 3.708430        | 7.989570        | 17.21301         |
| 52 | 3.732511        | 8.041452        | 17.32478         |
| 53 | 3.756286        | 8.092672        | 17.43513         |
| 54 | 3.779763        | 8.143253        | 17.54411         |
| 55 | 3.802952        | 8.193213        | 17.65174         |
|    |                 |                 |                  |

Table 29-12. Cube Roots of Numbers (cont'd)

| п        | $\sqrt[3]{n}$        | √10 <i>n</i> | √100n            |
|----------|----------------------|--------------|------------------|
| 56       | 3.825862             | 8.242571     | 17.75808         |
| 57       | 3.848501             | 8.291344     | 17.86316         |
| 58       | 3.870877             | 8.339551     | 17.96702         |
| 59       | 3.892996             | 8.387207     | 18.06969         |
| 60       | 3.914868             | 8.434327     | 18.17121         |
| 61       | 3.936497             | 8.480926     | 18.27160         |
| 62       | 3.957892             | 8.527019     | 18,37091         |
| 63       | 3.979057             | 8.572619     | 18.46915         |
| 64       | 4.000000             | 8.617739     | 18.56636         |
| 65       | 4.020726             | 8.662391     | 18.66256         |
| 66<br>67 | 4.041240             | 8.706588     | 18.7577 <b>7</b> |
| 68       | 4.061548             | 8.750340     | 18.85204         |
| 69       | 4.081655             | 8.793659     | 18.94536         |
| 70       | 4.101566             | 8.836556     | 19.03778         |
|          | 4.121285             | 8.879040     | 19.12931         |
| 71       | 4.140818             | 8.921121     | 19.21997         |
| 72<br>73 | 4.160168             | 8.962809     | 19.30979         |
| 74       | 4.179339             | 9.004113     | 19.39877         |
| 75       | 4.198336             | 9.045042     | 19.48695         |
|          | 4.217163             | 9.085603     | 19.57434         |
| 76       | 4.235824             | 9.125805     | 19.66095         |
| 77<br>78 | 4.254321             | 9.165656     | 19.74681         |
| 78<br>79 | 4.272659             | 9.205164     | 19.83192         |
| 80       | 4.290840             | 9.244335     | 19.91632         |
|          | 4.308869             | 9.283178     | 20.00000         |
| 81<br>82 | 4.326749             | 9.321698     | 20.08299         |
| 83       | 4.344481             | 9.359902     | 20.16530         |
| 84       | 4.362071             | 9.397796     | 20.24694         |
| 85       | 4.379519             | 9.435388     | 20.32793         |
| 86       | 4.396830             | 9.472682     | 20.40828         |
| 87       | 4.414005             | 9.509685     | 20.48800         |
| 88       | 4.431048             | 9.546403     | 20.56710         |
| 89       | 4.447960<br>4.464745 | 9.582840     | 20.64560         |
| 90       | 4.464/45             | 9.619002     | 20.72351         |
| 91       | 4.481405             | 9.654894     | 20.80084         |
| 92       | 4.514357             | 9.690521     | 20.87759         |
| -        | 4.31433/             | 9.725888     | 20.95379         |

Table 29-12, Cube Roots of Numbers (cont'd)

| n        | <sup>3</sup> √n      | √10n                 | √100n                |
|----------|----------------------|----------------------|----------------------|
| 93       | 4.530655             | 9.761000             | 21.02944             |
| 94       | 4.546836             | 9.795861             | 21.10454             |
| 95<br>96 | 4.562903<br>4.578857 | 9.830476<br>9.864848 | 21.17912<br>21.25317 |
| 97       | 4.594701             | 9.898983             | 21.32671             |
| 98       | 4.610436             | 9.932884             | 21.39975             |
| 99       | 4.626065             | 9.966555             | 21.47229             |
| 100      | 4.641589             | 10.00000             | 21.54435             |

#### NUMBERS AND RECIPROCALS

The reciprocal of a number is the inverse of that number, or the number divided into 1. The reciprocal of 5 is 1/5; the reciprocal of 87 is 1/87. Table 29-13 supplies reciprocals of numbers ranging from 0.1 to 100.

#### □Example:

What is the reciprocal of 27?

Locate 27 in the n column. Move to the right and in the column headed by 1/n the answer is given as 0.0370.

Table 29-13 can be extended by moving the decimal point as required.

#### □Example:

What is the reciprocal of 160?

160 does not appear directly in the table. Instead, locate 16 in the n column and change it to 160. In the 1/n column, the corresponding reciprocal value for 16 is 0.0625. Add another zero directly after the decimal point (equivalent to dividing the reciprocal by 10) and the answer becomes 0.00625.

To find the reciprocal of 1600, divide the answer in the 1/n column (corresponding to 16) by 100, or insert two zeros after the decimal point. Hence the reciprocal of 1600 is 0.000625.

Table 29-13. Numbers and Reciprocals

|     | 12      | DIE 28-13. NI | impers and Reci | procals |       |
|-----|---------|---------------|-----------------|---------|-------|
| n   | 1/n     | n             | 1/n             | n       | 1/n   |
| 0.1 | 10.0000 | 28            | .0357           | 65      | .0154 |
| 0.2 | 5.0000  | 29            | .0345           | 66      | .0152 |
| 0.3 | 3.3333  | 30            | .0333           | 67      | .0149 |
| 0.4 | 2.5000  | 31            | .0323           | 68      | .0147 |
| 0.5 | 2.0000  | 32            | .0313           | 69      | .0145 |
| 0.6 | 1.6666  | 33            | .0303           | 70      | .0143 |
| 0.7 | 1.4286  | 34            | .0294           | 71      | .0141 |
| 0.8 | 1.2500  | 35            | .0286           | 72      | .0139 |
| 0.9 | 1.1111  | 36            | .0278           | 73      | .0137 |
|     |         | 37            | .0270           | 74      | .0135 |
| 1   | 1.0000  | 38            | .0263           | 75      | .0133 |
| 2   | .5000   | 39            | .0256           | 76      | .0132 |
| 3   | .3333   | 40            | .0250           | 77      | .0130 |
| 4   | .2500   | 41            | .0244           | 78      | .0128 |
| 5   | .2000   | 42            | .0238           | 79      | .0127 |
| 6   | .1667   | 43            | .0233           | 80      | .0125 |
| 7   | .1429   | 44            | .0227           | 81      | .0123 |
| 8   | .1250   | 45            | .0222           | 82      | .0122 |
| 9   | .1111   | 46            | .0217           | 83      | .0120 |
| 10  | .1000   | 47            | .0213           | 84      | .0119 |
| 11  | .0909   | 48            | .0208           | 8.5     | .0118 |
| 12  | .0833   | 49            | .0204           | 86      | .0116 |
| 13  | .0769   | 50            | .0200           | 87      | .0115 |
| 14  | .0714   | 51            | .0196           | 88      | .0114 |
| 15  | .0667   | 52            | .0192           | 89      | .0112 |
| 16  | .0625   | 53            | .0189           | 90      | .0111 |
| 17  | .0588   | 54            | .0185           | 91      | .0110 |
| 18  | .0555   | 55            | .0182           | 92      | .0109 |
| 19  | .0526   | 56            | .0179           | 93      | .0108 |
| 20  | .0500   | 57            | .0175           | 94      | .0106 |
| 21  | .0476   | 58            | .0172           | 95      | .0105 |
| 22  | .0455   | 59            | .0169           | 96      | .0104 |
| 23  | .0435   | 60            | .0167           | 97      | .0103 |
| 24  | .0417   | 61            | .0164           | 98      | .0102 |
| 25  | .0400   | 62            | .0161           | 99      | .0101 |
| 26  | .0385   | 63            | .0159           | 100     | .0100 |
| 27  | .0370   | 64            | .0156           |         |       |



# Chapter 30 Mathematics

# SQUARE VS CIRCULAR AREA

It is sometimes necessary to convert from square to circular area, or from circular to square area. Square area is equal to circular area when the side of the square is equal to 0.88623 multiplied by the diameter of the circle. Conversely, the areas are equal when the diameter of the circle equals 1.12838 multiplied by the side of the square.

#### □Example:

A circle has a diameter of 2 inches. What is the length of any side of a square so that the area of the square is the same as the area of the circle?

The length of any side of the square is equal to the diameter of the circle multiplied by 0.88623. Therefore, 2  $\times$  0.88623 equals 1.77246 inches. The area of the square is 1.77246 s. 1.77246, or 3.1416 square inches. The area of the circle is  $\pi$  r². The radius equals one-half the diameter  $l\times$  2, or 1. The area of the circle is equal to  $\pi$  r² equals  $3.1416\times 1^2$  equals 3.1416. Thus, a circle with a diameter of 2 inches has the same area as a square, each of whose sides has alength of 1.77246 inches.

Table 30-1 supplies the circumference and area of circles having diameters ranging from 1/32 inch to 100 inches.

Table 30-1. Circumference and Area of Circles

| Diameter | Circumference | Area    |
|----------|---------------|---------|
| 1/32     | 0.09817       | 0.0007  |
| 1/16     | 0.19635       | 0.0030  |
| 3/32     | 0.29452       | 0.0069  |
| 3/16     | 0.58904       | 0.0276  |
| 7/32     | 0.68722       | 0.0375  |
| 9/32     | 0.88357       | 0.0621  |
| 11/32    | 1.07992       | 0.0928  |
| 13/32    | 1.27627       | 0.1296  |
| 9/16     | 1.76715       | 0.2485  |
| 19/32    | 1.86532       | 0.2768  |
| 21/32    | 2.06167       | 0.3382  |
| 11/16    | 2.15984       | 0.3712  |
| 23/32    | 2.25802       | 0.4057  |
| 25/32    | 2.45437       | 0.4793  |
| 27/32    | 2.65072       | 0.5591  |
| 29/32    | 2.84707       | 0.6450  |
| 1        | 3.142         | 0.7854  |
| 2        | 6.283         | 3.1416  |
| 3        | 9.425         | 7.0686  |
| 4        | 12.566        | 12.5664 |
| 5        | 15.708        | 19.6350 |
| 6        | 18.850        | 28.2743 |
| 7        | 21.991        | 38.4845 |
| 8        | 25.133        | 50.2655 |
| 9        | 28.274        | 63.6173 |
| 10       | 31.416        | 78.5398 |
| 11       | 34.558        | 95.0332 |
| 12       | 37.699        | 113.097 |
| 13       | 40.841        | 132.732 |
| 14       | 43.982        | 153.938 |
| 15       | 47.124        | 176.715 |
| 16       | 50.265        | 201.062 |
| 17       | 53.407        | 226.980 |
| 18       | 56.549        | 254.469 |
| 19       | 59.690        | 283.529 |
| 20       | 62.832        | 314.159 |
|          |               | 5141137 |

Table 30-1. Circumference and Area of Circles (cont'd)

| Diameter | Circumference | Area     |
|----------|---------------|----------|
| 21       | 65.973        | 346.361  |
| 22       | 69.115        | 380.133  |
| 23       | 72.257        | 415,476  |
| 24       | 75.398        | 452.389  |
| 25       | 78.540        | 490.874  |
| 26       | 81.681        | 530.929  |
| 27       | 84.823        | 572.555  |
| 28       | 87.965        | 615.752  |
| 29       | 91.106        | 660.520  |
| 30       | 94.248        | 706.858  |
| 31       | 97.389        | 754.768  |
| 32       | 100.531       | 804.248  |
| 33       | 103.673       | 855.299  |
| 34       | 106.814       | 907.920  |
| 35       | 109.956       | 962.113  |
| 36       | 113.097       | 1,017.88 |
| 37       | 116.239       | 1,075.21 |
| 38       | 119.381       | 1,134.11 |
| 38       | 122.522       | 1,194.59 |
| 40       | 125.66        | 1,256.64 |
| 41       | 128.81        | 1,320.25 |
| 42       | 131.95        | 1,385.44 |
| 43       | 135.09        | 1,452.20 |
| 44       | 138.23        | 1,520.53 |
| 45       | 141.37        | 1,590.43 |
| 46       | 144.51        | 1,661.90 |
| 47       | 147.65        | 1,734.94 |
| 48       | 150.80        | 1,809.56 |
| 49       | 153.94        | 1,885.74 |
| 50       | 157.08        | 1,963.50 |
| 51       | 160.22        | 2,042.82 |
| 52       | 163.36        | 2,123.72 |
| 53       | 166.50        | 2,206.18 |
| 54       | 169.65        | 2,290.22 |
| 55       | 172.79        | 2,375.83 |

Table 30-1. Circumference and Area of Circles (cont'd)

| Diameter | Circumference | Area     |
|----------|---------------|----------|
| 56       | 175.93        | 2,463.01 |
| 57       | 179.07        | 2,551.76 |
| 58       | 182.21        | 2,642.08 |
| 59       | 185.35        | 2,733.97 |
| 60       | 188.50        | 2,827.43 |
| 61       | 191.64        | 2,922.47 |
| 62       | 194.78        | 3,019.07 |
| 63       | 197.92        | 3,117.25 |
| 64       | 201.06        | 3,216.99 |
| 65       | 204.20        | 3,318.31 |
| 66       | 207.35        | 3,421.19 |
| 67       | 210.49        | 3,525.65 |
| 68       | 213.63        | 3,631.68 |
| 69       | 216.77        | 3,739.28 |
| 70       | 219.91        | 3,848.45 |
| 71       | 223.05        | 3,959.19 |
| 72       | 226.19        | 4,071.50 |
| 73       | 229.34        | 4,185.39 |
| 74       | 232.48        | 4,300.84 |
| 75       | 235.62        | 4,417.86 |
| 76       | 238.76        | 4,536.46 |
| 77       | 241.90        | 4,656.63 |
| 78       | 245.04        | 4,778.36 |
| 79       | 248.19        | 4,901.67 |
| 80       | 251.33        | 5,026.55 |
| 81       | 254.47        | 5,153.00 |
| 82       | 257.61        | 5,281.02 |
| 83       | 260.75        | 5,410.61 |
| 84       | 263.89        | 5,541.77 |
| 85       | 267.04        | 5,674.50 |
| 86       | 270.18        | 5,808.80 |
| 87       | 273.32        | 5,944.68 |
| 88       | 276.46        | 6,082.12 |
| 89       | 279.60        | 6,221.14 |
| 90       | 282.74        | 6,361.73 |

Table 30-1. Circumference and Area of Circles (cont'd)

| Diameter | Circumference | Area     |
|----------|---------------|----------|
| 91       | 285.88        | 6,503.88 |
| 92       | 289.03        | 6,647.61 |
| 93       | 292.17        | 6,792.91 |
| 94       | 295.31        | 6,939.78 |
| 95       | 298.45        | 7,088.22 |
| 96       | 301.59        | 7,238.23 |
| 97       | 304.73        | 7,389.81 |
| 98       | 307.88        | 7,542.96 |
| 99       | 311.02        | 7,697.69 |
| 100      | 314.16        | 7,853.98 |
|          |               |          |

# **FUNCTIONS OF ANGLES**

Table 30-2 supplies the trigonometric functions of the angle included between the base and the hypotenuse of a right-angle triangle, designated as angle An in te Fig. 30-1. The sinc (sin) of the angle is the ratio of the altitude to the hypotenuse; that is, the altitude divided by the length of the hypotenuse. The cosine (cos) is the base divided by the hypotenuse. The tangent (tan) is the altitude divided by the base while the cotangent (cot) is the base divided by the altitude. The sec (secant) is the ratio of the hypotenuse to the base while the csc (cosecant) is the ratio of the hypotenuse to the altitude.



Table 30-2. Angles and Their Functions

| Angle A | sin A                             | cos A                                                                                                                                                                  | tan A                                                                                                                                                    | cot A                                                | sec A                                                | csc A                                                |
|---------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| 00      | 0                                 | 1                                                                                                                                                                      | 0                                                                                                                                                        | 00                                                   | 1                                                    | 00                                                   |
| 300     | 1/2                               | $\sqrt{3}/2$                                                                                                                                                           | $\sqrt{3}/3$                                                                                                                                             | $\sqrt{3}$                                           | 2 V3/3                                               | 2                                                    |
| 450     | $\sqrt{7}$ 2                      | $\sqrt{2}/2$                                                                                                                                                           | 1                                                                                                                                                        | 1                                                    | $\sqrt{2}$                                           | $\sqrt{2}$                                           |
| 60°     | $\sqrt{3}/2$                      | 1/2                                                                                                                                                                    | $\sqrt{3}$                                                                                                                                               | $\sqrt{3}/3$                                         | 2                                                    | 2√3/3                                                |
| 900     | 1                                 | 0                                                                                                                                                                      | 00                                                                                                                                                       | 0                                                    | 00                                                   | 1                                                    |
| 1200    | $\sqrt{3}/2$                      | - 1/2                                                                                                                                                                  | $\sqrt{3}$                                                                                                                                               | - √3/3                                               | -2                                                   | 2√3/3                                                |
| 1800    | 0                                 | -1                                                                                                                                                                     | 0                                                                                                                                                        | 00                                                   | -1                                                   | œ                                                    |
| 2700    | -1                                | 0                                                                                                                                                                      | 80                                                                                                                                                       | 0                                                    | 00                                                   | -1                                                   |
| 3600    | 0                                 | 1                                                                                                                                                                      | 0                                                                                                                                                        | 00                                                   | 1                                                    | 90                                                   |
|         | 0° 30° 45° 60° 90° 120° 180° 270° | $0^{\circ}$ $0$ $30^{\circ}$ $1/2$ $45^{\circ}$ $\sqrt{/2}$ $60^{\circ}$ $\sqrt{3}/2$ $90^{\circ}$ $1$ $120^{\circ}$ $\sqrt{3}/2$ $180^{\circ}$ $0$ $270^{\circ}$ $-1$ | 0° 0 1 30° $1/2$ $\sqrt{3}/2$ 45° $\sqrt{7}2$ $\sqrt{2}/2$ 60° $\sqrt{3}\cdot2$ $1/2$ 90° 1 0 $120^{\circ}$ $\sqrt{3}/2$ $\cdot 1/2$ 180° 0 -1 270° -1 0 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

Table 30-3. The Ratio Tan X/R and Corresponding Values of Phase Angle,  $\boldsymbol{\Theta}.$ 

| Phase Angle<br>(in degrees) | Ratio  | Phase Angle<br>(in degrees) | Ratio  | Phase Angle<br>(in degrees) | Ratio  |
|-----------------------------|--------|-----------------------------|--------|-----------------------------|--------|
| 0                           | 0.0000 | 30                          | 0.5774 | 60                          | 1.7321 |
| 1                           | 0.0175 | 31                          | 0.6009 | 61                          | 1.8040 |
| 2<br>3<br>4<br>5<br>6<br>7  | 0.0349 | 32                          | 0.6249 | 62                          | 1.8807 |
| 3                           | 0.0524 | 33                          | 0.6494 | 63                          | 1.9626 |
| 4                           | 0.0699 | 34                          | 0.6745 | 64                          | 2.0503 |
| 5                           | 0.0875 | 35                          | 0.7002 | 65                          | 2.1445 |
| 6                           | 0.1051 | 36                          | 0.7265 | 66                          | 2.2460 |
| 7                           | 0.1228 | 37                          | 0.7536 | 67                          | 2.3559 |
| 8                           | 0.1405 | 38                          | 0.7813 | 68                          | 2.4751 |
| 9                           | 0.1584 | 39                          | 0.8098 | 69                          | 2,6051 |
| 10                          | 0.1763 | 40                          | 0.8391 | 70                          | 2.7475 |
| 11                          | 0.1944 | 41                          | 0.8693 | 71                          | 2.9042 |
| 12                          | 0.2126 | 42                          | 0.9004 | 72                          | 3.0777 |
| 13                          | 0.2309 | 43                          | 0.9325 | 73                          | 3.2709 |
| 14                          | 0.2493 | 44                          | 0.9657 | 74                          | 3.4874 |
| 15                          | 0.2679 | 45                          | 1.0000 | 75                          | 3.7321 |
| 16                          | 0.2867 | 46                          | 1.0355 | 76                          | 4.0108 |
| 17                          | 0.3057 | 47                          | 1.0724 | 77                          | 4.3315 |
| 18                          | 0.3249 | 48                          | 1.1106 | 78                          | 4.7046 |
| 19                          | 0.3443 | 49                          | 1.1504 | 79                          | 5.1446 |
| 20                          | 0.3640 | 50                          | 1.1918 | 80                          | 5.6713 |
| 21                          | 0.3839 | 51                          | 1.2349 | 81                          | 6.3138 |
| 22                          | 0.4040 | 52                          | 1.2799 | 82                          | 7.1154 |
| 23                          | 0.4245 | 53                          | 1.3270 | 83                          | 8.1443 |
| 24                          | 0.4452 | 54                          | 1.3764 | 84                          | 9.5144 |
| 25                          | 0.4663 | 55                          | 1.4281 | 85                          | 11.43  |
| 26                          | 0.4877 | 56                          | 1.4826 | 86                          | 14.30  |
| 27                          | 0.5095 | 57                          | 1.5399 | 87                          | 19.08  |
| 28                          | 0.5317 | 58                          | 1.6003 | 88                          | 28.64  |
| 29                          | 0.5543 | 59                          | 1.6643 | 89                          | 57.29  |

Table 30-4. Trigonometric Functions

| Degrees | Sine   | Tangent   | Cotangent | Cosine | T       |
|---------|--------|-----------|-----------|--------|---------|
| 0       | .0000  | .0000     |           | 1.0000 | 90      |
| 1       | .0175  | .0175     | 57.29     | .9998  | 89      |
| 2       | .0349  | .0349     | 28.636    | .9994  | 88      |
| 3       | .0523  | .0524     | 19.081    | .9936  | 87      |
| 4       | .0698  | .0699     | 14.301    | .9976  | 86      |
| 5       | .0872  | .0875     | 11.430    | .9962  | 85      |
| 6       | .1045  | .1051     | 9.5144    | .9945  | 84      |
| 7       | .1219  | .1228     | 8.1443    | .9925  | 83      |
| 8       | .1392  | .1405     | 7.1154    | .9903  | 82      |
| 9       | .1564  | .1584     | 6.3138    | .9877  | 81      |
| 10      | .1736  | .1763     | 5.6713    | .9848  | 80      |
| 11      | .1908  | .1944     | 5,1446    | .9816  | 79      |
| 12      | .2079  | .2126     | 4.7046    | .9781  | 78      |
| 13      | .2250  | .2309     | 4.3315    | .9744  | 77      |
| 14      | .2419  | .2493     | 4.0108    | .9703  | 76      |
| 15      | .2588  | .2679     | 3.7321    | .9659  | 75      |
| 16      | .2756  | .2867     | 3.4874    | .9613  | 74      |
| 17      | .2924  | .3057     | 3.2709    | .9563  | 73      |
| 18      | .3090  | .3249     | 3.0777    | .9511  | 72      |
| 19      | .3256  | .3443     | 2.9042    | .9455  | 71      |
| 20      | .3420  | .3640     | 2.7475    | .9397  | 70      |
| 21      | .3584  | .3839     | 2.6051    | .9336  | 69      |
| 22      | .3746  | .4040     | 2.4751    | .9272  | 68      |
| 23      | .3907  | .4245     | 2,3559    | .9205  | 67      |
| 24      | .4067  | .4452     | 2.2460    | .9135  | 66      |
| 25      | .4226  | .4663     | 2.1445    | .9063  | 65      |
| 26      | .4384  | .4877     | 2.0503    | .8988  | 64      |
| 27      | .4540  | .5095     | 1.9626    | .8910  | 63      |
| 28      | .4695  | .5317     | 1.8807    | .8829  | 62      |
| 29      | .4848  | .5543     | 1,8040    | .8746  | 61      |
| 30      | .5000  | .5774     | 1.7321    | .8660  | 60      |
| 31      | .5150  | .6009     | 1,6643    | .8572  | 59      |
| 32      | .5299  | .6249     | 1.6003    | .8480  | 58      |
| 33      | .5446  | .6494     | 1.5399    | .8387  | 57      |
| 34      | .5592  | .6745     | 1.4826    | .8290  | 56      |
| 35      | .5736  | .7002     | 1.4281    | .8192  | 55      |
| 36      | .5878  | .7265     | 1.3764    | .8090  | 54      |
| 37      | .6018  | .7536     | 1.3270    | .7986  | 53      |
| 38      | .6157  | .7813     | 1.2799    | .7880  | 52      |
| 39      | .6293  | .8098     | 1,2349    | ,7771  | 51      |
| 40      | .6428  | .8391     | 1,1918    | .7660  | 50      |
| 41      | .6561  | .8693     | 1.1504    | .7547  | 49      |
| 42      | .6691  | .9004     | 1.1106    | .7431  | 48      |
| 43      | .6820  | .9325     | 1.0724    | .7314  | 47      |
| 44      | .6947  | .9657     | 1.0355    | .7193  | 46      |
| 45      | .7071  | 1.0000    | 1.0000    | .7071  | 45      |
|         | Cosine | Cotangent | Tangent   | Sine   | Degrees |

#### VALUES OF T

Various values of  $\pi$  appear regularly in calculations involving electronic problems. This constant is used for finding values of inductive reactance, capacitive reactance, frequency, and in problems involving resonance. Table 30-5 supplies coefficients, powers, roots, and logs of  $\pi$ .

Table 30-5. Coefficients, Powers, Roots, and Logs of  $\pi$ 

| $1 \pi = 3.14159265$   | $6\pi = 18.84955592$        |
|------------------------|-----------------------------|
| $2 \pi = 6.28318531$   | $7 \pi = 21.99114857$       |
| $3 \pi = 9.42477796$   | $8 \pi = 25.13274122$       |
| $4 \pi = 12.56637061$  | 9 m =28.27433387            |
| $5 \pi = 15.70796327$  | 10 $\pi = 31.41592652$      |
| $V_{\pi} = 0.31830989$ | $4/_{\pi}$ = 1.27323954     |
| $1/2\pi = 0.15915494$  | $\pi^2 = 9.86960440$        |
| $1/3\pi = 0.106103$    | $\sqrt{\pi}$ = 1.77245385   |
| $\pi/2 = 1.57079633$   |                             |
| $\pi/3 = 1.04719755$   | .,                          |
| $\pi/4 = 0.78539816$   | $1/\sqrt{\pi} = 0.56418958$ |
| $\pi/5 = 0.62831853$   | $\sqrt{3/\pi} = 0.97720502$ |
| $\pi/6 = 0.52359878$   | $\sqrt{4/\pi} = 1.12837917$ |
| $\pi/7 = 0.44879895$   | $3/\pi = 1.46459189$        |
| $\pi/8 = 0.39269908$   | $\log \pi = 0.4971499$      |
| $\pi/9 = 0.34906585$   | $\log 2\pi = 0.7981799$     |
| $\pi/10 = 0.314159265$ | $log 4\pi = 1.0992099$      |
| $4\pi/3 = 4.18879020$  | $\log \pi^2 = 0.9942997$    |
| $3/\pi = 0.954929666$  | $\log/\pi = 0.248$          |

#### MATHEMATICAL SYMBOLS

Electronics is a science which relies on mathematics for the solution of problems. Consequently, the symbols used in mathematics have become an integral part of textbooks having electronics as their subject matter. Table 30-6 lists those mathematical symbols most often found associated with electronics.

Table 30-6. Mathematical Symbols

| Symbol                 | Name or Meaning | Description                                                        |
|------------------------|-----------------|--------------------------------------------------------------------|
| 0, 1, 2, 3,<br>4, etc. | Whole numbers   | Cardinal (Arabic) numbers used in mathematics. Arithmetic numbers. |
| No.; no.; #            | Abbreviation    | Symbol that may precede a number.                                  |

Table 30-6. Mathematical Symbols (cont'd)

| Symbol                                 | Name or Meaning       | Description                                                                                                                                                                                          |
|----------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| i; ii; iii; iv; v<br>i; ii; iii; iV; V | Roman<br>numerals     | Have limited use—introductory pages of books; watches; building cornerstones, etc.                                                                                                                   |
| 2-1/2; 3-1/8;<br>4-1/9                 | Mixed<br>Numbers      | Consist of a whole number and a proper fraction.                                                                                                                                                     |
| 1/2; 3/4; 4/7                          | Proper<br>fractions   | Numerator is always smaller in value than the denominator.                                                                                                                                           |
| 5/2; 4/3; 9/5                          | Improper<br>fractions | Numerator is always larger in value than the denominator.                                                                                                                                            |
| +                                      | Plus sign             | Positive; plus; addition. May be used to indicate direction.                                                                                                                                         |
| -                                      | Minus sign            | Negative; minus; subtraction.<br>May be used to indicate direction.                                                                                                                                  |
| ±                                      | Plus-minus            | Positive or negative; plus or minus; addition or subtraction.                                                                                                                                        |
| Ŧ                                      | Minus-plus            | Negative or positive; minus or plus; subtraction or addition.                                                                                                                                        |
| a; x; y; z; etc.                       | Literal numbers       | Letters used as a symbol for a number.                                                                                                                                                               |
| 25/100; 4/10;<br>6589/1000             | Decimal<br>fractions  | Fractions having 10, 100, 1000, etc. in the denominator.                                                                                                                                             |
| 1.657; 0.354<br>0.25                   |                       | Point used in decimal fractions when denominator is omitted. Also known as the radix point. The number to the right of the decimal point is the decimal raction. In                                  |
|                                        |                       | some countries a comma is used in place of the decimal point. In the U.S. the decimal point is put at the bottom; in England at the center or higher. In other number                                |
|                                        |                       | systems, such as the binary, it is known as the binary point. In the hexadecimal system it is called the hexadecimal point. The term determal point refers only to the use of the radix point in the |
|                                        |                       | decimal system.                                                                                                                                                                                      |

Table 30-6. Mathematical Symbols (cont'd)

Name or Meaning Description

Symbol

| œ             | Infinity                                                    | An Indifinitely great number or amount.                                     |  |  |
|---------------|-------------------------------------------------------------|-----------------------------------------------------------------------------|--|--|
| ×             | Multiply by                                                 | Multiplication. A form of re-<br>peated addition.                           |  |  |
| x • y         | Dot between letters<br>means multiplication                 | x is multiplied by y.                                                       |  |  |
| (x) (y)       | Adjacent parentheses<br>means multiplication                | x is multiplied by y.                                                       |  |  |
| x + y         | Straight line with dot<br>above and below<br>menas division | x is divided by y.                                                          |  |  |
| x/y           | Slant line Indicates<br>division                            | x is divided by $y$ . Also, ratio of $x$ to $y$ .                           |  |  |
| $\frac{x}{y}$ | Horizontal line means division                              | x Is divided by y. Also, ratio of x to y.                                   |  |  |
| x:y           | Dots Indicate division<br>or ratio                          | x is divided by $y$ ; the ratio of $s$ to $y$ .                             |  |  |
| = or : :      | Equals signs                                                | Signs representing equalitybe-<br>tween two quantities; is equal<br>to.     |  |  |
| -             | Identity sign                                               | Sign representing Identity be-<br>tween quantities.                         |  |  |
| ≅             | Approximation sign                                          | Quantities separated by this<br>sign are approximately equal.<br>Congruent. |  |  |
| <b>≠</b>      | Inequality sign                                             | Quantities separated by this sign are not equal.                            |  |  |
| <             | Inequality                                                  | Is less than.                                                               |  |  |
| <<            | Inequality                                                  | Is much less than.                                                          |  |  |
| >             | Inequality                                                  | Is greater than.                                                            |  |  |
| >>            | Inequality                                                  | Is much greater than.                                                       |  |  |
| =             | Inequality or equality                                      | Is equal to or is greater than.                                             |  |  |
| >             | Inequality or equality                                      | is equal to or is less than.                                                |  |  |
| =             |                                                             |                                                                             |  |  |

Table 30-6. Mathematical Symbols (cont'd)

| Symbol           | Name or Meaning                         | Description                                                                                  |
|------------------|-----------------------------------------|----------------------------------------------------------------------------------------------|
| .*               | Therefore                               | Symbol used in geometry and logic.                                                           |
| = or →<br>or lim | Approaches as a lim                     | it Variable approaches a con-<br>stant, but never reaches it.                                |
| 工                | Perpendicular. Normal                   | Lines which forv right angles.                                                               |
| 11               | Parallel                                | Lines which are parallel to each other.                                                      |
| *                | Angle. Also positive<br>angle           | The angle formed by two lines.                                                               |
| ₹s               | Angles                                  | Two or more angles.                                                                          |
|                  | Negative angle                          | An angle whose sine, tangent,<br>cosecant and contangent are<br>negative.                    |
| Δ                | Change. Increase or decrease. Increment | Capital Greek letter delta. A similar symbol is used to represent triangles in trigonometry. |
| <b>V</b>         | Square root                             | Quantity raised to the one-half power.                                                       |
| n√               | nth root                                | Quantity raised to the nth power.                                                            |
| sin              | Sine of included<br>base angle          | Ratio of altitude to hypotenuse in a right-angle triangle                                    |
| cos              | Cosine of included<br>base angle        | Ratio of base to altitude in a right-angle triangle.                                         |
| tan              | Tangent of included<br>base angle       | Ratio of altitude to the base in a right-angle triangle.                                     |
| cot              | Cotangent of included<br>base angle     | Ratio of base to altitude in a right-<br>angle triangle.                                     |
| sec              | Secant of included<br>base angle        | Ratio of hypotenuse ot base in a right-angle triangle.                                       |
| CSC              | Cosecant of included<br>base angle      | Ratio of hypotenuse to altitude in a right-angle triangle.                                   |

Table 30-7. Common Logarithms

| N  | 0    | 1    | 2    | 8    | 4    | 5    | 6    | 7    | 8    | 9    |
|----|------|------|------|------|------|------|------|------|------|------|
| 10 | 0000 | 0043 | 0086 | 0128 | 0170 | 0212 | 0253 | 0294 | 0334 | 0374 |
| 11 | 0414 | 0453 | 0492 | 0531 | 0569 | 0607 | 0645 | 0682 | 0719 | 0755 |
| 12 | 0792 | 0828 | 0864 | 0899 | 0934 | 0969 | 1004 | 1038 | 1072 | 1106 |
| 13 | 1139 | 1173 | 1206 | 1239 | 1271 | 1303 | 1335 | 1367 | 1399 | 1430 |
| 14 | 1461 | 1492 | 1523 | 1553 | 1584 | 1614 | 1644 | 1673 | 1703 | 1732 |
| 15 | 1761 | 1790 | 1818 | 1847 | 1875 | 1903 | 1931 | 1959 | 1987 | 2014 |
| 16 | 2041 | 2068 | 2095 | 2122 | 2148 | 2175 | 2201 | 2227 | 2253 | 2279 |
| 17 | 2304 | 2330 | 2355 | 2380 | 2405 | 2430 | 2455 | 2480 | 2504 | 2529 |
| 18 | 2553 | 2577 | 2601 | 2625 | 2648 | 2672 | 2695 | 2718 | 2742 | 2765 |
| 19 | 2788 | 2810 | 2833 | 2856 | 2878 | 2900 | 2923 | 2945 | 2967 | 2989 |
| 20 | 3010 | 3032 | 3054 | 3075 | 3096 | 3118 | 3139 | 3160 | 3181 | 3201 |
| 21 | 3222 | 3243 | 3263 | 3284 | 3304 | 3324 | 3345 | 3365 | 3385 | 3404 |
| 22 | 3424 | 3444 | 3464 | 3483 | 3502 | 3522 | 3541 | 3560 | 3579 | 3598 |
| 23 | 3617 | 3636 | 3655 | 3674 | 3692 | 3711 | 3729 | 3747 | 3766 | 3784 |
| 24 | 3802 | 3820 | 3838 | 3856 | 3874 | 3892 | 3909 | 3927 | 3945 | 3962 |
| 25 | 3979 | 3997 | 4014 | 4031 | 4048 | 4065 | 4082 | 4099 | 4116 | 4133 |
| 26 | 4150 | 4166 | 4183 | 4200 | 4216 | 4232 | 4249 | 4265 | 4281 | 4298 |
| 27 | 4314 | 4330 | 4346 | 4362 | 4378 | 4393 | 4409 | 4425 | 4440 | 4456 |
| 28 | 4472 | 4487 | 4502 | 4518 | 4533 | 4548 | 4564 | 4579 | 4594 | 4609 |
| 29 | 4624 | 4639 | 4654 | 4669 | 4683 | 4698 | 4713 | 4728 | 4742 | 4757 |
| 30 | 4771 | 4786 | 4800 | 4814 | 4829 | 4843 | 4857 | 4871 | 4886 | 4900 |
| 31 | 4914 | 4928 | 4942 | 4955 | 4969 | 4983 | 4997 | 5011 | 5024 | 5038 |
| 32 | 5051 | 5065 | 5079 | 5092 | 5105 | 5119 | 5132 | 5145 | 5159 | 5172 |
| 33 | 5185 | 5198 | 5211 | 5224 | 5237 | 5250 | 5263 | 5276 | 5289 | 5302 |
| 34 | 5315 | 5328 | 5340 | 5353 | 5366 | 5378 | 5391 | 5403 | 5416 | 5428 |
| 35 | 5441 | 5453 | 5465 | 5478 | 5490 | 5502 | 5514 | 5527 | 5539 | 5551 |
| 36 | 5563 | 5575 | 5587 | 5599 | 5611 | 5623 | 5635 | 5647 | 5658 | 5670 |
| 37 | 5682 | 5694 | 5705 | 5717 | 5729 | 5740 | 5752 | 5763 | 5775 | 5786 |
| 38 | 5798 | 5809 | 5821 | 5832 | 5843 | 5855 | 5866 | 5877 | 5888 | 5899 |
| 39 | 5911 | 5922 | 5933 | 5944 | 5955 | 5966 | 5977 | 5988 | 5999 | 6010 |
| 40 | 6021 | 6031 | 6042 | 6053 | 6064 | 6075 | 6085 | 6096 | 6107 | 6117 |
| 41 | 6128 | 6138 | 6149 | 6160 | 6170 | 6180 | 6191 | 6201 | 6212 | 6222 |
| 42 | 6232 | 6243 | 6253 | 6263 | 6274 | 6284 | 6294 | 6304 | 6314 | 6325 |
| 43 | 6335 | 6345 | 6355 | 6365 | 6375 | 6385 | 6395 | 6405 | 6415 | 6425 |
| 44 | 6435 | 6444 | 6454 | 6464 | 6474 | 6484 | 6493 | 6503 | 6513 | 6522 |
| 45 | 6532 | 6542 | 6551 | 6561 | 6571 | 6580 | 6590 | 6599 | 6609 | 6618 |
| 46 | 6628 | 6637 | 6646 | 6656 | 6665 | 6675 | 6684 | 6693 | 6702 | 6712 |
| 47 | 6721 | 6730 | 6739 | 6749 | 6758 | 6767 | 6776 | 6785 | 6794 | 6803 |
| 48 | 6812 | 6821 | 6830 | 6839 | 6848 | 6857 | 6866 | 6875 | 6884 | 6893 |
| 49 | 6902 | 6911 | 6920 | 6928 | 6937 | 6946 | 6955 | 6964 | 6972 | 6981 |
| 50 | 6990 | 6998 | 7007 | 7016 | 7024 | 7033 | 7042 | 7050 | 7059 | 7067 |
| 51 | 7076 | 7084 | 7093 | 7101 | 7110 | 7118 | 7126 | 7135 | 7143 | 7155 |
| 52 | 7160 | 7168 | 7177 | 7185 | 7193 | 7202 | 7210 | 7218 | 7226 | 7238 |
| 53 | 7243 | 7251 | 7259 | 7267 | 7275 | 7284 | 7292 | 7300 | 7308 | 7316 |
| 54 | 7324 | 7332 | 7340 | 7348 | 7356 | 7364 | 7372 | 7380 | 7388 | 7396 |

Table 30-7. Common Logarithms

|          |              | 1            |              | _            | _            | _            |              | _            |              |              |
|----------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| N        | 0            | 1            | 2            | 3            | 4            | 5            | 6            | 7            | 8            | 9            |
| 55       | 7404         | 7412         | 7419         | 7427         | 7435         | 7443         | 7451         | 7459         | 7466         | 7474         |
| 56<br>57 | 7482<br>7559 | 7490         | 7497         | 7505         | 7513         | 7520         | 7528         | 7536         | 7543         | 7551         |
| 58       | 7634         | 7566         | 7574<br>7649 | 7582<br>7657 | 7589         | 7597         | 7604         | 7612         | 7619         | 7627         |
| 59       | 7709         | 7716         | 7723         | 7731         | 7664<br>7738 | 7672<br>7745 | 7679<br>7752 | 7686         | 7694<br>7767 | 7701         |
| 60       | 7782         | 7789         | 7796         | 7803         | 7810         | 7818         | 7825         | 7832         | 7839         | 7846         |
| 61       | 7853<br>7924 | 7860         | 7868         | 7875         | 7882         | 7889         | 7896         | 7903         | 7910         | 7917         |
| 63       | 7993         | 7931<br>8000 | 7938         | 7945<br>8014 | 7952         | 7959         | 7966         | 7973         | 7980         | 7987         |
| 64       | 8062         | 8069         | 8075         | 8082         | 8021<br>8089 | 8028<br>8096 | 8035<br>8102 | 8041<br>8109 | 8048         | 8055<br>8122 |
| 65       | 8129         | 8136         | 8142         | 8149         | 8156         | 8162         | 8169         | 8176         | 1            |              |
| 66       | 8195         | 8202         | 8209         | 8215         | 8222         | 8228         | 8235         | 8241         | 8182<br>8248 | 8189<br>8254 |
| 67<br>68 | 8261         | 8267         | 8274         | 8280         | 8287         | 8293         | 8299         | 8306         | 8312         | 8319         |
| 69       | 8325         | 8331<br>8395 | 8338         | 8344         | 8351         | 8357         | 8363         | 8370         | 8376         | 8382         |
|          | 1            |              | 8401         | 8407         | 8414         | 8420         | 8426         | 8432         | 8439         | 8445         |
| 70<br>71 | 8451<br>8513 | 8457         | 8463         | 8470         | 8476         | 8482         | 8488         | 8494         | 8500         | 8506         |
| 72       | 8573         | 8519<br>8579 | 8525<br>8585 | 8531         | 8537         | 8543         | 8549         | 8555         | 8561         | 8567         |
| 73       | 8633         | 8639         | 8645         | 8591<br>8651 | 8597<br>8657 | 8603         | 8609         | 8615         | 8621         | 8627         |
| 74       | 8692         | 8698         | 8704         | 8710         | 8716         | 8663<br>8722 | 8669<br>8727 | 8675<br>8733 | 8681<br>8739 | 8686<br>8745 |
| 75       | 8751         | 8456         | 8762         | 8768         | 8774         | 8779         | 8785         | 8791         | 8797         | 8802         |
| 76<br>77 | 8808         | 8814         | 8820         | 8825         | 8831         | 8837         | 8842         | 8848         | 8854         | 8859         |
| 78       | 8865<br>8921 | 8871<br>8927 | 8876         | 8882         | 8887         | 8893         | 8899         | 8904         | 8910         | 8915         |
| 79       | 8976         | 8982         | 8932<br>8987 | 8938<br>8993 | 8943<br>8998 | 8949         | 8954         | 8960         | 8965         | 8971         |
| 80       |              |              |              |              |              | 9004         | 9009         | 9015         | 9020         | 9025         |
| 81       | 9031<br>9085 | 9036         | 9042<br>9096 | 9047         | 9053         | 9058         | 9063         | 9069         | 9074         | 9079         |
| 82       | 9138         | 9143         | 9149         | 9101<br>9154 | 9106<br>9159 | 9112<br>9165 | 9117         | 9122         | 9128         | 9133         |
| 83       | 9191         | 9196         | 9201         | 9206         | 9212         | 9165         | 9170<br>9222 | 9175<br>9227 | 9180         | 9186         |
| 84       | 9243         | 9248         | 9253         | 9258         | 9263         | 9269         | 9274         | 9279         | 9232<br>9284 | 9238<br>9289 |
| 85       | 9294         | 9299         | 9304         | 9309         | 9315         | 9320         |              |              |              |              |
| 86       | 9345         | 9350         | 9355         | 9360         | 9365         | 9370         | 9325<br>9375 | 9330<br>9380 | 9335<br>9385 | 9340         |
| 87<br>88 | 9395         | 9400         | 9405         | 9410         | 9415         | 9420         | 9425         | 9380         | 9385         | 9390<br>9440 |
| 88<br>89 | 9445         | 9450         | 9455         | 9460         | 9465         | 9469         | 9474         | 9479         | 9484         | 9489         |
|          | 1            | 9499         | 9504         | 9509         | 9513         | 9518         | 9523         | 9528         | 9533         | 9538         |
| 90<br>91 | 9542<br>9590 | 9547<br>9595 | 9552<br>9600 | 9557<br>9605 | 9562         | 9566         | 9571         | 9576         | 9581         | 9586         |
| 92       | 9638         | 9643         | 9647         | 9605         | 9609<br>9657 | 9614         | 9619         | 9624         | 9628         | 9633         |
| 93       | 9685         | 9689         | 9694         | 9699         | 9703         | 9708         | 9666<br>9713 | 9671<br>9717 | 9675         | 9680         |
| 94       | 9731         | 9736         | 9741         | 9745         | 9750         | 9754         | 9759         | 9763         | 9722<br>9768 | 9727<br>9773 |
| 95<br>96 | 9777         | 9782         | 9786         | 9791         | 9795         | 9800         | 9805         | 9809         | 9814         | 9818         |
| 96       | 9823<br>9868 | 9827<br>9872 | 9832         | 9836         | 9841         | 9845         | 9850         | 9854         | 9859         | 9863         |
| 98       | 9912         | 9917         | 9877<br>9921 | 9881         | 9886         | 9890         | 9894         | 9899         | 9903         | 9908         |
| 99       | 9956         | 9961         | 9965         | 9969         | 9930<br>9974 | 9934         | 9939<br>9983 | 9943         | 9948         | 9952         |
|          |              |              |              | -500         | 0019         | 9910         | 9953         | 9987         | 9991         | 9996         |



# Chapter 31 Symbols, Codes and Alphabets

Table 31-1. US American Standard Code for Information Interchange (courtesy of American Radio Relay League Inc.).

The U.S. American Standard Code for Information Interchange (USACII or ASCII) is an 8-unit code as shown here, used largely with computers.

NUL Null, or all zeros DC1 Device control 1 SOH Start of heading DC2 Device control 2 STX Start of test DC3 Device Control 3 ETX End of text DC4 Device Control 4 EOT End of transmission NAK Negative acknowledge **ENQ Enquiry** SYN Sychronous idle ACK Acknowledge ETB End of transmission block BEL Bell, or alarm CAN Cancel BS Backspace EM End of medium HT Honzontal tabulation SUB Substitute LF Line feed VT Vertical tabulation ESC Escape FS File separator FF Form feed GS Group separator

RS

US

SP Space

CR Carriage return

DLE Data link escape

SO Shift out

SI Shift in

DEL Delete

Record separator

Unit separator

| CRYSTAL CRANSTAL CLANSTAL CLAN | CANE CANE CANE CANE CANE CANE CANE CANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | OTH(R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HEADSET SPEAKER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - Color Losic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | COTHER CHAPTER AND CHAPTER AND CHAPTER INTEGRATED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ANTENNA  ANTENNA  MICROPHONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ENCLOSUME COANTAL COAN | and a state of the |
| ASSEMBLY OR MODULE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DANCI  | N-Crassett.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CMASSES CANTON GROUNDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P-CAUMELL  P-CAUMELL  AUMCTION FET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| *************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NAMECT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9 7 9 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Po s a por a go por a | MALTPLE, MICKON MICKET  | Tamento - Community                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| INTE DESIGNATIONS A-AMMETER V-VOLTNETER AA-MANMETER AA-MANMETER ERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Countries Countr | II - CHAMMELL  P-CHAMMELL  SC CAMMELL  SC  |
| B HISERY APPROPRINT CETERATIONS  A AMBRITER  FOR THE TENER  METERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CONTROL CONTRO | MEON (ACT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |



Fig. 31-1. Commonly used electronic schematic diagrams (courtesy of American Radio Fielay League Inc.).



Fig. 31-2. American Standard Code for Information Interchange (ASCII) chart (courtesy of American Radio Relay League Inc.).



Fig. 31-3. System Flowchart Symbols

Table 31-2. International Morse Code

| A                       | Period                                  |
|-------------------------|-----------------------------------------|
| В                       |                                         |
| c                       | Comma.                                  |
| D                       | •                                       |
| E -                     | Colon :                                 |
| F                       |                                         |
| G — —-                  | Question mark, or request for           |
| H                       | repetiton of a transmission             |
| J                       | not understood                          |
| к ——                    | not andersood                           |
| L                       | Apostrophe                              |
| M                       |                                         |
| N                       | Dash or hyphen                          |
| 0                       |                                         |
| P                       | Fraction bar                            |
| Q                       |                                         |
| R                       | Parenthesis (before and after words) () |
| T —                     |                                         |
| u                       | Underscore (before and after            |
| v                       | words or part of sentence)              |
| w                       |                                         |
| x                       | Equal sign                              |
| Y                       |                                         |
| z                       | Understood                              |
|                         | Error                                   |
| Ä (German)              | EUR.                                    |
| A or A (Spanish-Scandi- | Cross or end-of-telgram or end-         |
| navian                  |                                         |
| CH German-Spanish       | of-transmission signal                  |
|                         | Invitation to transmit                  |
| É (French)              | I any nation to transmit                |
| Ñ (Spanish) ————        | Wait                                    |
| Ö (German) ———•         |                                         |
| Ü (German)              | End of work                             |
|                         |                                         |
| 1                       | Starting signal (beginning              |
| 1"                      | every transmission)                     |
| 2                       |                                         |
| 3                       | Separation signal for transmission      |
| 4                       | of fractional numbers (between          |
| 5                       | the ordinary fraction and the           |
| 6                       | whole number to be trans-               |
| 7                       |                                         |
| 8                       | mitted) and for groups con-             |
|                         | sisting of figures and letters          |
| 9                       | (between the figure-groups              |
| 0                       | and the letter-groups)                  |
|                         |                                         |

## PHONETIC ALPHABET

To avoid a misunderstanding when words must be spelled or when call letters must be clearly identified, words are used in place of each of the letters. Syllables in italics are emphasized. See Table 31-3.

## □Example:

W2CDV would be spoken as W2 Charlie Delta Victor.
Table 31-3. Phonetic Alphabet.

| Letter & BCD WFGH - JKLMNOP GROFUVXXYV | Code Word Affa Bravo Charife Dotta Echo Goft Hotel India Juliett Kilo Lima Movember Oscar Papa Quebec Romeo Sierra Limg Unform Victor Whiskey X-ray Yankee Zulu | Pronunciation AL FAH BRAH VOH CHAR LEE DELL TAH ECK OH FOKS GROT GOS THE HON TELL HO |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Notes |
|-------|
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |

| Notes |
|-------|
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |

| Notes |
|-------|
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |

| Notes |
|-------|
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |

| Notes |
|-------|
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |











