

Modelos de Processo de Software

- Desenvolver software é geralmente uma tarefa complexa e sujeita a erros
- Sucesso ou fracasso dependem de inúmeros fatores que ocorrem durante todo o processo
- Necessidade de estabelecer processos sistemáticos para desenvolvimento → Modelos de processo de Software

Exemplos de Modelos de Processo de Software

- Modelo em Cascata
- Modelo de Prototipagem
- Modelo Evolucionário
- Desenvolvimento Baseado em Componentes
- Modelo de Métodos formais
- Extremme Programming
- Processo Unificado

Modelo em Cascata

Problemas com o Modelo Cascata

- Projetos reais raramente seguem o fluxo seqüencial que o modelo propõe
- Logo no início é difícil estabelecer explicitamente todos os requisitos. No começo dos projetos sempre existe uma incerteza natural
- O cliente deve ter paciência. Uma versão executável do software só fica disponível numa etapa avançada do desenvolvimento

O Paradigma de Prototipação para obtenção dos requisitos

Problemas com a Prototipação

- cliente não sabe que o software que ele vê não considerou, durante o desenvolvimento, a qualidade global e a manutenibilidade a longo prazo
- desenvolvedor freqüentemente faz uma implementação comprometida (utilizando o que está disponível) com o objetivo de produzir rapidamente um protótipo

Comentários sobre o Paradigma de Prototipação

- ainda que possam ocorrer problemas, a prototipação é um ciclo de vida eficiente.
- a chave é definir as regras do jogo logo no começo.
- o cliente e o desenvolvedor devem ambos concordar que o protótipo será construído para servir como um mecanismo a fim de definir os requisitos

- o modelo incremental combina elementos do modelo cascata (aplicado repetidamente) com a filosofia iterativa da prototipação
- o objetivo é trabalhar junto com o usuário para descobrir seus requisitos, de maneira incremental, até que o produto final seja obtido.

- a versão inicial é frequentemente o núcleo do produto (a parte mais importante)
 - a evolução acontece quando novas características são adicionadas à medida que são sugeridas pelo usuário
- Este modelo é importante quando é difícil estabelecer a priori uma especificação detalhada dos requisitos

- o modelo incremental é mais apropriado para sistemas pequenos
- As novas versões podem ser planejadas de modo que os riscos técnicos possam ser administrados (Ex. disponibilidade de determinado hardware)

O que é o Processo Unificado (PU)?

- É um modelo de processo de software baseado no modelo incremental, visando a construção de software orientado a objetos
- Usa como notação de apoio a UML (Unified Modeling Language)

PU

História:

- Raízes no trabalho de Jacobson na Ericsson no final da década de 1960.
- 1987 Jacobson iniciou uma companhia chamada de Objectory AB – desenvolvimento de um processo chamado Objectory
- 1995 a Rational comprou a Objectory AB, aperfeiçoou o Objectory e foi criado o Processo Objectory da Rational (ROP) (Jacobson, Rumbaugh e Booch)
- Paralelamente, desenvolviam a UML

PU

- História (cont..):
 - Progresso do ROP e a aquisição e desenvolvimento de ferramentas de desenvolvimento agregaram valor ao ROP
 - 1998 Rational mudou o nome do ROP para Processo Unificado da Rational (RUP- Rational Unified Process)
 - O RUP é uma especialização, com refinamento detalhado, do PU

O que é o PU?

- é um processo de Software: conjunto de atividades executadas para transformar um conjunto de requisitos do cliente em um sistema de software.
- é um framework que pode ser personalizado de acordo com as necessidades específicas e recursos disponíveis para cada projeto.

Elementos do PU

- Um processo descreve
 - quem (papel) está fazendo
 - o quê (artefato),
 - como (atividade) e
 - quando (disciplina).

Papel

Um trabalhador é alguém que desempenha um papel e é responsável pela realização de atividades para produzir ou modificar um artefato.

Artefato

- Porção significativa de informação interna ou a ser fornecida a interessados externos que desempenhe um papel no desenvolvimento do sistema.
- Um artefato é algum documento, relatório, modelo ou código que é produzido, manipulado ou consumido.
 - Exemplos: modelo de caso de uso, modelo do projeto, um caso de uso, um subsistema, um caso de negócio, um documento de arquitetura de software, código fonte, executáveis, etc.

Atividade

 É uma tarefa que um trabalhador executa a fim de produzir ou modificar um artefato.

Disciplina

- Descreve as sequências das atividades que produzem algum resultado significativo e mostra as interações entre os participantes
- São realizadas a qualquer momento durante o ciclo de desenvolvimento (Fases do PU)
- Requisitos, Análise, Projeto, Implementação e Teste

Princípios básicos do PU

- Desenvolvimento iterativo
- Baseado em casos de uso
- Centrado na arquitetura

- O desenvolvimento de um software é dividido em vários ciclos de iteração, cada qual produzindo um sistema testado, integrado e executável.
- Em <u>cada ciclo</u> ocorrem as atividades de análise de requisitos, projeto, implementação e teste, bem como a integração dos artefatos produzidos com os artefatos já existentes.

- planejar quantos ciclos de desenvolvimento serão necessários para alcançar os objetivos do sistema
- as partes mais importantes devem ser priorizadas e alocadas nos primeiros ciclos
 - a primeira iteração estabeleça os principais riscos e o escopo inicial do projeto, de acordo com a funcionalidade principal do sistema.
 - partes mais complexas do sistema devem ser atacadas já no primeiro ciclo, pois são elas que apresentam maior risco de inviabilizar o projeto.

- O tamanho de cada ciclo pode variar de uma empresa para outra e conforme o tamanho do sistema.
 - Por exemplo, uma empresa pode desejar ciclos de 4 semanas, outra pode preferir 3 meses
- Produtos entregues em um ciclo podem ser colocados imediatamente em operação, mas podem vir a ser substituídos por outros produtos mais completos em ciclos posteriores.

Baseado em Casos de Uso

- Um caso de uso é uma seqüência de ações, executadas por um ou mais atores e pelo próprio sistema, que produz um ou mais resultados de valor para um ou mais atores.
- O PU é dirigido por casos de uso, pois os utiliza para dirigir todo o trabalho de desenvolvimento, desde a captação inicial e negociação dos requisitos até a aceitação do código (testes).

Baseado em Casos de Uso

- Os casos de uso são centrais ao PU e outros métodos iterativos, pois:
 - Os requisitos funcionais são registrados preferencialmente por meio deles
 - Eles ajudam a planejar as iterações
 - Eles podem conduzir o projeto
 - O teste é baseado neles

Centrado na Arquitetura

- Arquitetura é a organização fundamental do sistema como um todo. Inclui elementos estáticos, dinâmicos, o modo como trabalham juntos e o estilo arquitetônico total que guia a organização do sistema.
- A arquitetura também se refere a questões como desempenho, escalabilidade, reúso e restrições econômicas e tecnológicas.

Centrado na Arquitetura

- No PU, a arquitetura do sistema em construção é o alicerce fundamental sobre o qual ele se erguerá
- Deve ser uma das preocupações da equipe de projeto
- A arquitetura, juntamente com os casos de uso, deve orientar a exploração de todos os aspectos do sistema

Centrado na Arquitetura

- A arquitetura é importante porque:
 - Ajuda a entender a visão global
 - Ajuda a organizar o esforço de desenvolvimento
 - Facilita as possibilidades de reúso
 - Facilita a evolução do sistema
 - Guia a seleção e exploração dos casos de uso

As Fases do PU

- O PU é dividida em quatro fases:
 - Concepção
 - Elaboração
 - Construção
 - Transição

As Fases do PU

Figura extraída de Larman, 2004

Fases do PU: Concepção

- Estabelece-se a viabilidade de implantação do sistema.
- Definição do escopo do sistema
- Estimativas de custos e cronograma
- Identificação dos potenciais riscos que devem ser gerenciados ao longo do projeto
- Esboço da arquitetura do sistema, que servirá como alicerce para a sua construção.

Fases do PU: Elaboração

- Visão refinada do sistema, com a definição dos requisitos funcionais, detalhamento da arquitetura criada na fase anterior e gerenciamento contínuo dos riscos envolvidos.
- Estimativas realistas feitas nesta fase permitem preparar um plano para orientar a construção do sistema.

Fases do PU: Construção

O sistema é efetivamente desenvolvido e, em geral, tem condições de ser operado, mesmo que em ambiente de teste, pelos clientes.

Fases do PU: Transição

- O sistema é entregue ao cliente para uso em produção.
- Testes são realizados e um ou mais incrementos do sistema são implantados.
- Defeitos são corrigidos, se necessário.

As Disciplinas do PU

- Se analisarmos as fases do PU, podemos ter a impressão de que cada ciclo de iteração comporta-se como o modelo em Cascata.
- Mas isso não é verdade: paralelamente às fases do PU, atividades de trabalho, denominadas disciplinas do PU, são realizadas a qualquer momento durante o ciclo de desenvolvimento
- As disciplinas entrecortam todas as fases do PU, podendo ter maior ênfase durante certas fases e menor ênfase em outras, mas podendo ocorrer em qualquer uma delas

39

As Disciplinas do PU

Note que, embora uma iteração inclua trabalho na maior parte das disciplinas, o esforço relativo e a ênfase mudam ao longo do tempo.

Este exemplo é sugestivo, não literal.

As Disciplinas do PU

O esforço relativo nas disciplinas muda ao longo das fases. Este exemplo é uma sugestão e não deve

Este exemplo é uma sugestão e não deve ser tomado "ao pé da letra".

Os Artefatos do PU

- Cada uma das disciplinas do PU pode gerar um ou mais artefatos, que devem ser controlados e administrados corretamente durante o desenvolvimento do sistema
- Artefatos são quaisquer dos documentos produzidos durante o desenvolvimento, tais como modelos, diagramas, documento de especificação de requisitos, código fonte ou executável, planos de teste, etc.
- Muitos dos artefatos são opcionais, produzidos de acordo com as necessidades específicas de cada projeto

42

Os Artefatos do PU

Disciplina	Artefato	Concepção	Elaboração	Construção	Transição
	Iteração →	C_1	E_1E_n	C_1C_n	T_1T_n
Modelagem de Negócio	Modelo Conceitual		р		
Requisitos	Diagrama de Casos de Uso	p	r		
	Casos de Uso Textuais	p	r		
	Diagrama de Seqüência do Sistema	р	r		
	Contratos para operações	p	r		
	Glossário	p	r		
Projeto	Diagrama de Classes		р	r	
	Diagrama de Colaboração		р	r	
	Diagrama de Pacotes		р	r	
	Documento de Arquitetura do		р		
	Software				
Implementação	Código fonte			р	r

Referências

- LARMAN, CRAIG <u>Utilizando UML e</u> <u>Padrões</u>, 2a edição, Bookman, 2004.
- WASLAWICK, RAUL <u>Análise e Projeto de sistemas de Informação Orientados a Objetos</u>, Campus, 2004.
- Kendall Scott O Processo Unificado Explicado, Bookman, 2003.
- Ernani Medeiros <u>Desenvolvendo Software</u> com UML 2, Makron Books, 2004.