International Rectifier

IRF530N

HEXFET® Power MOSFET

- Advanced Process Technology
- Ultra Low On-Resistance
- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- Fully Avalanche Rated

Description

Advanced HEXFET® Power MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry.

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	17	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	12	A
I _{DM}	Pulsed Drain Current ①	60	
P _D @T _C = 25°C	Power Dissipation	70	W
	Linear Derating Factor	0.47	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
I _{AR}	Avalanche Current①	9.0	A
E _{AR}	Repetitive Avalanche Energy①	7.0	mJ
dv/dt	Peak Diode Recovery dv/dt 3	7.4	V/ns
T _J	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting torque, 6-32 or M3 srew	10 lbf•in (1.1N•m)	

Thermal Resistance

	Parameter	Тур.	Max.	Units		
R _{θJC}	Junction-to-Case		2.15			
R _{θCS}	Case-to-Sink, Flat, Greased Surface	0.50		°C/W		
R _{e,IA}	Junction-to-Ambient		62			

IRF530N

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Typ.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	100			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.11		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			90	mΩ	V _{GS} = 10V, I _D = 9.0A ④
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
g _{fs}	Forward Transconductance	12			S	V _{DS} = 50V, I _D = 9.0A④
lana	Drain-to-Source Leakage Current			25	μA	V _{DS} = 100V, V _{GS} = 0V
I _{DSS}	Brain to Godree Leakage Guiterit			250	μΑ	$V_{DS} = 80V, V_{GS} = 0V, T_{J} = 150$ °C
1	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
I _{GSS}	Gate-to-Source Reverse Leakage			-100	IIA	V _{GS} = -20V
Qg	Total Gate Charge			37		$I_D = 9.0A$
Q _{gs}	Gate-to-Source Charge			7.2	nC	$V_{DS} = 80V$
Q_{gd}	Gate-to-Drain ("Miller") Charge			11		V_{GS} = 10V, See Fig. 6 and 13
t _{d(on)}	Turn-On Delay Time		9.2			$V_{DD} = 50V$
t _r	Rise Time		22		ns	$I_{D} = 9.0A$
t _{d(off)}	Turn-Off Delay Time		35		115	$R_G = 12\Omega$
t _f	Fall Time		25			V_{GS} = 10V, See Fig. 10 \oplus
1	Internal Drain Inductance		4.5			Between lead,
L _D	Internal Dialit Inductance		4.5		nH	6mm (0.25in.)
	Internal Source Inductance		7.5		100	from package
L _S						and center of die contact
C _{iss}	Input Capacitance		920			$V_{GS} = 0V$
Coss	Output Capacitance		130			$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		19		pF	f = 1.0MHz, See Fig. 5
E _{AS}	Single Pulse Avalanche Energy ^②		340⑤	936	mJ	I _{AS} = 9.0A, L = 2.3mH

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current		17	17		MOSFET symbol
	(Body Diode)		17	A	showing the	
I _{SM}	Pulsed Source Current			60	, ,	integral reverse
	(Body Diode)①					p-n junction diode.
V _{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C$, $I_S = 9.0A$, $V_{GS} = 0V$ ④
t _{rr}	Reverse Recovery Time		93	140	ns	$T_J = 25$ °C, $I_F = 9.0$ A
Q _{rr}	Reverse Recovery Charge		320	480	nC	di/dt = 100A/µs ④
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)				

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- $\begin{tabular}{ll} \hline @ Starting $T_J = 25^\circ$C, $L = 2.3mH$\\ $R_G = 25\Omega, I_{AS} = 9.0A, V_{GS} = 10V$ (See Figure 12) \\ \hline \end{tabular}$
- $\label{eq:loss} \begin{array}{l} \text{ } 3 \text{ } I_{SD} \leq 9.0A, \ di/dt \leq 410A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \\ T_{J} \leq 175^{\circ}C \end{array}$
- 4 Pulse width \leq 400 μ s; duty cycle \leq 2%.
- ⑤ This is a typical value at device destruction and represents operation outside rated limits.
- $\mbox{\ensuremath{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath}\ensuremat$

IRF530N

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

International

TOR Rectifier

IRF530N

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

IRF530N International IOR Rectifier

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 13b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit

* Reverse Polarity of D.U.T for P-Channel

*** $V_{GS} = 5.0V$ for Logic Level and 3V Drive Devices

Fig 14. For N-channel HEXFET® power MOSFETs

IRF530N

International

TOR Rectifier

Package Outline TO-220AB

Dimensions are shown in millimeters (inches)

Part Marking Information TO-220AB

8

EXAMPLE: THIS IS AN IRF1010

WITH ASSEMBLY LOT CODE 9B1M

Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.3/01