

Last Class

Quick Recap

- 1 Trees Terminology
- 2 Types Of Binary Trees
- Tree Traversals
- 4 Formulae of Binary Trees

Topics to be

- 1 Homework Problem Solution COVered
- 2 BST Insertion, Construction
- 3 BST Deletion
- 4 Binary Heap Insertion, Deletion
- 5 Examples

Homework Problem

#Q. Consider the In-order traversal of a binary tree is 12 8 11 15 27 10 18 23 35 30 38 41 46 and Post order traversal is 12 11 27 15 8 23 30 38 46 41 35 18 10. The Pre Order Traversal is

- A Binary Tree, in which

Left subtree < Parent < Right Subtree At Each level, is known as BST

The Resultant BST is ____

Regultant BST

= 47,17,56,9,23,83,5,19,35,61,91

Insextion	into	BST	:
1126001011			

Consider ou BST:

(50)

					Best-case
Insert	ৰ :	Compare	5,10	5<10	1 Comparision Time complexity = O(1)
Insert	এ ছ :	Compare Compare Compare		25710 25720 25<30	Average-case 3 comparisions == leg_n Time complexity => O(logn 2)
Insert	ৰ্বৰ :	Compare	(30,55) (30,55) (40,5)	5) (5	worst-case comparisions.

(60,66))

Deletion of Element from BST

- 1) Delete a Node with Zero children
- => Simply Delete.
 - > Left child : Swap Node with Inorder Predecemor Debt (Maximum of Left subtree),

3) Delete a Node with I child

L> Right child: Swap Node with Inorder Successor Delete (minimum of Right Subtree)

- 3) Delete a Node with a children
 - Lyi) Swap Node with Inorder Successor
 - 2) Repeat until Node be comes leaf Node
 - 3) Deleto it.

- In order Traversal of a BST will always regult Elements in the ascending order.

In order Traversal:

4, 15, 21, 38, 42, 47, 55, 57, 59, 64,67,69, 73,81

- (or) Properties

 A Binary Tree, that Satisfy 2 conditions below is said to be a Binary Heap.
 - 1) Structuring (or) sharpe Property: It must be as complete Binary Tree.
 - 2) Ordering (or) Heap Property:

Each
Parsent Value > All children Values

=> Max-Heap

(OR)

Regultant Max-Heap== 87,67,73,38,53,59,40,35,27,15,
23,18,47

Deletion from Binary Heap:

- Deletion in as Heap by default Performed at 800t Node only, To Progessie CBT Property.

- 1) Swap 800+ Node with last leaf
- 2) Delete Node
- 3) Heapity (compare and Swap).

Ex: Consider as min-heap, with Elements: 5,7,27,17,10,31,42,20. The Regultant min-heavy, after 2 Deletion operations as

The Regultant min-hearp: 10, 17, 27, 42, 20, 31

Home-work

Q. Consider as Max-heap with Elements: 85,72,63, 57,42,60, 38, 43, 19. The Resultant

Max-Heap after following operations, an the same order as

DInsext 80

2) Delete

3) Insert 93

4) Delete

Post Your Homework Answers / Queries / Doubts @

Summary

- Binary Search Tope
 - Construction
 - Insertion
 - Deletion
- -Binary Heap
 - -Insertion
 - Deletion

