Homework 2

In problems 3. - 5., references such as III.2.7 refer to Problem 7 in Section 2 of Chapter III in Conway's book.

If you use results from books including Conway's, please be explicit about what results you are using.

Homework 2 is due on ICON by Midnight, February 11.

1. Problem IV.1.5

Sol. By Proposition 1.3,

$$\begin{split} V(\gamma) &= \int_0^1 |\gamma'(t)| dt = \int_0^1 |\frac{1-i}{t^2} e^{\frac{-1+i}{t}}| dt = \int_0^1 |\frac{1-i}{t^2} e^{-\frac{1}{t}} (\cos\frac{1}{t} + i\sin\frac{1}{t})| dt \\ &= \int_0^1 \frac{e^{-\frac{1}{t}}}{t^2} \sqrt{(\cos\frac{1}{t} + \sin\frac{1}{t})^2 + (\sin\frac{1}{t} - \cos\frac{1}{t})^2} dt = \int_0^1 \sqrt{2} \frac{e^{-\frac{1}{t}}}{t^2} dt \\ &= \sqrt{2} e^{-\frac{1}{t}} \Big|_0^1 = \sqrt{2} e^{-1}. \end{split}$$

Hence γ is rectifiable. The trace looks like the graph below:

2. Problem IV.1.9

Sol.

$$\int_{\gamma} \frac{1}{z} dz = \int_{0}^{2\pi} e^{-int} ine^{int} dt = 2\pi in.$$

3. Problem IV.1.12

Sol.

$$I(r) = \int_{\gamma} \frac{e^{iz}}{z} dz = \int_{0}^{2\pi} \frac{e^{ire^{it}}}{re^{it}} ire^{it} dt = \int_{0}^{2\pi} ie^{ire^{it}} dt = \int_{0}^{2\pi} ie^{-r\sin t} (\cos(r\cos t) + i\sin(r\cos t)) dt.$$

Then

$$|I(r)| \le \int_0^{2\pi} |ie^{-r\sin t}(\cos(r\cos t) + i\sin(r\cos t))|dt = \int_0^{2\pi} e^{-r\sin t}dt = \int_0^{\pi} + \int_{\pi}^{2\pi} e^{-r\sin t}dt.$$

Pick an arbitrary $\epsilon > 0$, the first term

$$\int_0^\pi e^{-r\sin t}dt = \int_0^\epsilon + \int_\epsilon^{\pi-\epsilon} + \int_{\pi-\epsilon}^\pi e^{-r\sin t}dt \le 2\epsilon + (\pi-2\epsilon)e^{-r\sin\epsilon}.$$

Then when $r \to \infty$,

$$\int_0^{\pi} e^{-r\sin t} dt \le 2\epsilon.$$

By the arbitrariness of ϵ , $\int_0^{\pi} e^{-r \sin t} dt \to 0$ when $r \to \infty$. It is the same for the second term $\int_{\pi}^{2\pi}$. Hence $\lim_{r \to \infty} I(r) = 0$.

4. Problem IV.1.13

Sol (a).

$$\int_{\gamma} z^{-\frac{1}{2}} dz = \int_{0}^{\pi} e^{-\frac{1}{2}it} i e^{it} dt = 2e^{\frac{1}{2}it} \Big|_{0}^{\pi} = 2i - 2.$$

(b).

$$\int_{\gamma} z^{-\frac{1}{2}} dz = \int_{2\pi}^{\pi} e^{-\frac{1}{2}it} i e^{it} dt = 2e^{\frac{1}{2}it} \Big|_{2\pi}^{\pi} = 2i + 2.$$

5. Problem IV.1.14

Proof. First, assume φ is one-one. Then if φ is not strictly increasing, suppose there exists $x < y \in [a,b]$, s.t. $\varphi(x) \ge \varphi(y)$. If $\varphi(x) = \varphi(y)$, it contradicts with that φ is one-one. So $\varphi(x) > \varphi(y)$. Since $\varphi(x) > c$ (otherwise $\varphi(y) < c$ contradicts with $\varphi([a,b]) \ge c$), by continuity of φ , $\exists z \in [a,x]$, s.t. $\varphi(z) = \varphi(y)$, which makes a contradiction. Thus φ is strictly increasing.

Now assume φ is strictly increasing, then φ is an injection. Besides, for each $y \in [c, d]$, by continuity of φ , there is a $x \in [a, b]$, s.t. $\varphi(x) = y$. Hence φ is a bijection.

6. Problem IV.1.20

Sol.

$$\int_{\gamma} \frac{1}{z^2 - 1} dz = \int_{0}^{2\pi} \frac{1}{(e^{it} + 1)^2 - 1} i e^{it} dt = \int_{0}^{2\pi} \frac{i}{2 + e^{it}} dt = \frac{1}{2} i (t + i \ln(2 + e^{it})) \Big|_{0}^{2\pi} = \pi i \int_{0}^{2\pi} \frac{1}{(e^{it} + 1)^2 - 1} i e^{it} dt = \int_{0}^{2\pi} \frac{i}{2 + e^{it}} dt = \frac{1}{2} i (t + i \ln(2 + e^{it})) \Big|_{0}^{2\pi} = \pi i \int_{0}^{2\pi} \frac{1}{(e^{it} + 1)^2 - 1} i e^{it} dt = \int_{0}^{2\pi} \frac{i}{2 + e^{it}} dt = \frac{1}{2} i (t + i \ln(2 + e^{it})) \Big|_{0}^{2\pi} = \pi i \int_{0}^{2\pi} \frac{1}{(e^{it} + 1)^2 - 1} i e^{it} dt = \int_{0}^{2\pi} \frac{i}{2 + e^{it}} dt = \frac{1}{2} i (t + i \ln(2 + e^{it})) \Big|_{0}^{2\pi} = \pi i \int_{0}^{2\pi} \frac{1}{(e^{it} + 1)^2 - 1} i e^{it} dt = \int_{0}^{2\pi} \frac{i}{2 + e^{it}} dt = \frac{1}{2} i (t + i \ln(2 + e^{it})) \Big|_{0}^{2\pi} = \pi i \int_{0}^{2\pi} \frac{1}{(e^{it} + 1)^2 - 1} i e^{it} dt = \int_{0}^{2\pi} \frac{i}{2 + e^{it}} dt = \frac{1}{2} i (t + i \ln(2 + e^{it})) \Big|_{0}^{2\pi} = \pi i \int_{0}^{2\pi} \frac{i}{2 + e^{it}} dt = \frac{1}{2} i (t + i \ln(2 + e^{it})) \Big|_{0}^{2\pi} = \pi i \int_{0}^{2\pi} \frac{i}{2 + e^{it}} dt = \frac{1}{2} i (t + i \ln(2 + e^{it})) \Big|_{0}^{2\pi} = \pi i \int_{0}^{2\pi} \frac{i}{2 + e^{it}} dt = \frac{1}{2} i (t + i \ln(2 + e^{it})) \Big|_{0}^{2\pi} = \pi i \int_{0}^{2\pi} \frac{i}{2 + e^{it}} dt = \frac{1}{2} i (t + i \ln(2 + e^{it})) \Big|_{0}^{2\pi} = \pi i \int_{0}^{2\pi} \frac{i}{2 + e^{it}} dt = \frac{1}{2} i (t + i \ln(2 + e^{it})) \Big|_{0}^{2\pi} = \pi i \int_{0}^{2\pi} \frac{i}{2 + e^{it}} dt = \frac{1}{2} i (t + i \ln(2 + e^{it})) \Big|_{0}^{2\pi} = \pi i \int_{0}^{2\pi} \frac{i}{2 + e^{it}} dt = \frac{1}{2} i (t + i \ln(2 + e^{it})) \Big|_{0}^{2\pi} = \pi i \int_{0}^{2\pi} \frac{i}{2 + e^{it}} dt = \frac{1}{2} i (t + i \ln(2 + e^{it})) \Big|_{0}^{2\pi} = \pi i \int_{0}^{2\pi} \frac{i}{2 + e^{it}} dt = \frac{1}{2} i (t + i \ln(2 + e^{it})) \Big|_{0}^{2\pi} = \pi i \int_{0}^{2\pi} \frac{i}{2 + e^{it}} dt = \frac{1}{2} i (t + i \ln(2 + e^{it})) \Big|_{0}^{2\pi} = \pi i \int_{0}^{2\pi} \frac{i}{2 + e^{it}} dt = \frac{1}{2} i (t + i \ln(2 + e^{it})) \Big|_{0}^{2\pi} = \pi i \int_{0}^{2\pi} \frac{i}{2 + e^{it}} dt = \frac{1}{2} i (t + i \ln(2 + e^{it})) \Big|_{0}^{2\pi} = \pi i \int_{0}^{2\pi} \frac{i}{2 + e^{it}} dt = \frac{1}{2} i (t + i \ln(2 + e^{it})) \Big|_{0}^{2\pi} = \pi i \int_{0}^{2\pi} \frac{i}{2 + e^{it}} dt = \frac{1}{2} i (t + i \ln(2 + e^{it})) \Big|_{0}^{2\pi} = \frac{1}{2} i (t + i \ln(2 + e^{it})$$

7. Problem IV.2.1

Proof. We need to show that g is continuous at each $t_0 \in [c, d]$. In fact, $\forall \epsilon > 0$, since φ is continuous, $\exists \delta > 0$, when $|t_1 - t_0| < \delta$, we have $|\varphi(s, t_1) - \varphi(s, t_0)| < \frac{\epsilon}{b-a}$. Thus when $|t_1 - t_0| < \delta$,

$$|g(t_1) - g(t_0)| \le \int_a^b |\varphi(s, t_1) - \varphi(s, t_2)| ds < \int_a^b \frac{\epsilon}{b - a} ds = \epsilon.$$

Hence g is continuous at t_0 .

8. Problem IV.2.2 (Please note. This problem will be used a number of places in the theory we will develop.)

Proof.

9. Problem IV.2.3