Assignment 8 Solution

Theory Questions with Answers:

1. Differentiate between:

a. Selection Sort Vs Bubble Sort-

Ans:

Selection Sort	Bubble Sort
 In selection sort, the minimum element is selected from the array and swap with an element which is at the beginning of the unsorted sub array. 	 In bubble sort, two adjacent elements are compared. If the adjacent elements are not at the correct position, swapping would be performed.
It is faster than the bubble sort as a lesser number of comparisons is required.	 It is slower than the selection sort as a greater number of comparisons is required.

b. Linear Search Vs Binary Search-

Ans:

Linear Search	Binary Search
 The linear search starts searching from the first element and compares each element with a searched element till the element is not found. 	It finds the position of the searched element by finding the middle element of the array.
• In a linear search, the elements don't need to be arranged in sorted order.	 The pre-condition for the binary search is that the elements must be arranged in a sorted order.
• It is preferrable for the small-sized data sets.	It is preferrable for the large-size data sets.

c. Searching Vs Sorting

Ans:

Searching	Sorting
 Searching an array means to find a particular element in the array. The search operation is used to return the position of the element or check if it exists in the array. 	 The sorting is a way to arrange elements of a list or array in a certain order. The order may be in ascending or descending order.
There are two types of searching: Linear Search Binary Search	Types of Sorting: Selection Sort Bubble Sort

2. WAP to create function boolean isNumberFound(int n, int[] arr) & check whether an element is present in an array. Read the input from the user and call the function.

```
import java.util.*;
class Search {
  public static boolean isNumberFound(int n, int[ ] arr) {
     int flag=0;
     int l = arr.length;
     for ( int i=0; i<1; i++) {
      if ( n==arr[i]) {
       flag = 1;
       break;
   }
   if (flag==1){
     return true;
   else{
     return false;
  }
}
 public static void main(String[] args){
    Scanner sc = new Scanner(System.in);
    int n= sc.nextInt();
    int[] A= new int[n];
    for(int i=0;i<n;i++)
      A[i] = sc.nextInt();
    System.out.println("Enter the element to be found");
    int x= sc.nextInt();
    boolean ans = isNumberFound(x,A);
    System.out.println(ans);
}
```

3. WAP to call these functions from the main() function:

- int product(int[] arr)- to return the product of the array elements
- void sortArray(int[] arr)- to sort the passed array in the ascending using selection sort.

Ans:

```
import java.util.*;
class Sort {
  public static int product(int[] arr) {
    int p=1;
    int I = arr.length;
    for (int i=0; i<1; i++) {
      p=p*arr[i];
  }
   return p;
  private static void sortArray(int[] A ){
    int L = A.length;
    for (int i=0; i<L-1; i++) {
        int min = i;
      for (int j=i+1; j<L; j++) {
          if (A[j] < A[min])
            min = j;
       }
      int temp = A[i];
      A[i] = A[min];
      A[min] = temp;
  }
  }
  public static void main(String[] args){
    Scanner sc = new Scanner(System.in);
    int n= sc.nextInt();
    int[] A= new int[n];
    for(int i=0;i<n;i++)</pre>
      A[i]= sc.nextInt();
    int product = product(A);
    System.out.println(product);
    sortArray(A);
    for(int i=0;i<n;i++)
      System.out.println(A[i]);
 }
}
```

4. Write a program to input an integer array sorted in increasing order, and create a function which returns the array of the squares of each number sorted in increasing order.

Input: nums = [-4,-1,0,3,10]
br>

Output: [0,1,9,16,100]

Explanation: After squaring, the array becomes [16,1,0,9,100].

After sorting, it becomes [0,1,9,16,100].

Ans:

```
import java.util.*;
class SquaresSort {
  public static int[] squareSort(int[] arr) {
     int l = arr.length;
     for (int i=0; i<1; i++) {
      arr[i]= arr[i]*arr[i];
   Arrays.sort(arr);
   return arr;
  }
  public static void main(String[] args){
    Scanner sc = new Scanner(System.in);
    int n= sc.nextInt();
    int[] A= new int[n];
    for(int i=0;i<n;i++)
      A[i]= sc.nextInt();
    int[]B = squareSort(A);
    for(int i=0;i<n;i++)
      System.out.print(B[i]+" ");
  }
}
```

5. Predict the output:

```
int [ ] numbers = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
for (int j = 0; j < numbers.length; <math>j++)
System.out.print(numbers[ j ] + " ");
```

Ans: 1 2 3 4 5 6 7 8 9 10