20. Le rayon du cercle d'équation polaire $\rho^2 - 4\rho \cos \omega + 4\rho \sin \omega + 5 = 0$ vaut:

1.
$$2\sqrt{2}$$
 2. $\sqrt{5}$ 3. $\sqrt{3}$ 4. 3 5. 5 (B.-82)

21.On donne les cercles C de centre O(0, 0) et de rayon 8 et C' de centre

R est: 1.
$$2\sqrt{15}$$
 2. 10 3. 2 $\sqrt{17}$ 4. 6 5. 68 (M. -83)

22. L'equation du cercle de centre
$$(-1, -1)$$
 et tangent à la droite d'équation $x + y = 0$ est :
1. $x^2 + y^2 - 2x - 2y - 2 = 0$ 3. $x^2 + y^2 + 2x + 2y + 2 = 0$ 5. $x^2 + y^2 + 2x + 2y + 1 = 0$
2. $x^2 + y^2 + 2x + 2y = 0$ 4. $x^2 + y^2 - 2x + 2y = 0$ (B.-84)

23. Les équations des tangentes issues de l'origine au cercle d'équation
$$x^2 + y^2 + 2x - 6y + 8 = 0$$
 sont :
1. $y - 2x = 0 \Leftrightarrow y + 14x = 0$ 4. $y - x = 0 \Leftrightarrow y + 7x = 0$

centre (18,
$$\pi$$
) et de rayon 17. Déterminer les abscisses de leurs points d'intersection.
1. -6, -24 2. -10, -26 3.-10, -34 4.6, -34 5.6, -26 (M-84)

25. L'équation
$$x^2 + 2xy + y^2 - 36 = 0$$
 représente un cercle si l'angle θ $(0 < \theta < \pi)$ des axes coordonnées vaut :

1.
$$\frac{\pi}{6}$$
 2. $\frac{\pi}{4}$ 3. $\frac{3\pi}{4}$ 4. $\frac{2\pi}{3}$ 5. $\frac{\pi}{3}$ (M-84)

On donne le cercle
$$3x^2 + 3y^2 - 4x + 5y + 2 = 0$$
. Les questions 26 et 27 se rapportent à ce cercle.

26. Le rayon de ce cercle vaut :
1.
$$\frac{\sqrt{15}}{6}$$
 2. $\frac{\sqrt{17}}{6}$ 3. $\frac{\sqrt{65}}{6}$ 4. $\frac{\sqrt{6}}{6}$ 5. $\frac{\sqrt{30}}{6}$ (M.-84)