

ETC3550/ETC5550 Applied forecasting

Ch5. The forecasters' toolbox OTexts.org/fpp3/

Outline

- 1 A tidy forecasting workflow
- 2 Some simple forecasting methods
- 3 Residual diagnostics
- 4 Distributional forecasts and prediction intervals
- 5 Forecasting with transformations
- 6 Forecasting and decomposition
- 7 Evaluating forecast accuracy
- 8 Time series cross-validation

Outline

- 1 A tidy forecasting workflow
- 2 Some simple forecasting methods
- 3 Residual diagnostics
- 4 Distributional forecasts and prediction intervals
- 5 Forecasting with transformations
- 6 Forecasting and decomposition
- 7 Evaluating forecast accuracy
- 8 Time series cross-validation

A tidy forecasting workflow

The process of producing forecasts can be split up into a few fundamental steps.

- Preparing data
- Data visualisation
- Specifying a model
- Model estimation
- Accuracy & performance evaluation
- Producing forecasts

A tidy forecasting workflow

Data preparation and visualisation

```
global_economy %>%
filter(Country=="Sweden") %>%
autoplot(GDP) +
    ggtitle("GDP for Sweden") + ylab("$US billions")
```


Model estimation

The model() function trains models to data.

```
fit <- global economy %>%
 model(trend model = TSLM(GDP ~ trend()))
fit
## # A mable: 263 x 2
## # Key: Country [263]
##
     Country
                          trend_model
   <fct>
                          <model>
##
   1 Afghanistan
##
                          <TSLM>
   2 Albania
##
                          <TSLM>
   3 Algeria
##
                          <TSLM>
##
   4 American Samoa
                          <TSLM>
##
   5 Andorra
                          <TSLM>
```

Producing forecasts

```
fit %>% forecast(h = "3 years")
```

```
## # A fable: 789 x 5 [1Y]
              Country, .model
##
   # Key:
                    .model
                                             GDP .distribution
##
      Country
                                Year
      <fct>
                               <fdb>
                                           <dbl> <dist>
##
                    <chr>
                    trend_mod~
##
    1 Afghanistan
                                2018
                                         1.62e10 N(1.6e+10, 1.3e~
                    trend_mod~
##
    2 Afghanistan
                                2019
                                         1.65e10 N(1.7e+10, 1.3e~
    3 Afghanistan
                    trend mod~
                                2020
                                         1.68e10 N(1.7e+10, 1.3e~
##
##
    4 Albania
                    trend mod~
                                2018
                                         1.37e10 N(1.4e+10, 3.9e~
##
    5 Albania
                    trend mod~
                                2019
                                         1.42e10 N(1.4e+10, 3.9e~
##
    6 Albania
                    trend mod~
                                2020
                                         1.46e10 N(1.5e+10, 3.9e~
    7 Algeria
                    trend_mod~
##
                                2018
                                         1.58e11 N(1.6e+11, 9.4e~
                                         1.61e11 N(1.6e+11, 9.4e~
    8 Algeria
                    trend_mod~
##
                                2019
    9 Algeria
                                         1.64e11 N(1.6e+11, 9.4e~
##
                    trend mod~
                                2020
```

Visualising forecasts

```
fit %>% forecast(h = "3 years") %>%
  filter(Country=="Sweden") %>%
  autoplot(global_economy) +
    ggtitle("GDP for Sweden") + ylab("$US billions")
```


Outline

- 1 A tidy forecasting workflow
- 2 Some simple forecasting methods
- 3 Residual diagnostics
- 4 Distributional forecasts and prediction intervals
- 5 Forecasting with transformations
- 6 Forecasting and decomposition
- 7 Evaluating forecast accuracy
- 8 Time series cross-validation

MEAN(y): Average method

- Forecast of all future values is equal to mean of historical data $\{y_1, \dots, y_T\}$.
- Forecasts: $\hat{y}_{T+h|T} = \bar{y} = (y_1 + \cdots + y_T)/T$

NAIVE(y): Naïve method

- Forecasts equal to last observed value.
- Forecasts: $\hat{y}_{T+h|T} = y_T$.
- Consequence of efficient market hypothesis.

SNAIVE(y ~ lag(m)): Seasonal na<u>ïve method</u>

- Forecasts equal to last value from same season.
- Forecasts: $\hat{y}_{T+h|T} = y_{T+h-m(k+1)}$, where m = seasonal period and k is the integer part of (h-1)/m.

RW(y ~ drift()): Drift method

- Forecasts equal to last value plus average change.
- **■** Forecasts:

$$\hat{y}_{T+h|T} = y_T + \frac{h}{T-1} \sum_{t=2}^{T} (y_t - y_{t-1})$$
$$= y_T + \frac{h}{T-1} (y_T - y_1).$$

 Equivalent to extrapolating a line drawn between first and last observations.

Model fitting

The model() function trains models to data.

```
brick_fit <- aus_production %>%
filter(!is.na(Bricks)) %>%
model(
   Seasonal_naive = SNAIVE(Bricks),
   Naive = NAIVE(Bricks),
   Drift = RW(Bricks ~ drift()),
   Mean = MEAN(Bricks)
)
```

```
## # A mable: 1 x 4
## Seasonal_naive Naive Drift Mean
## <model> <model> <model> <model>
## 1 <SNAIVE> <NAIVE> <RW w/ drift> <MEAN>
```

A mable is a model table, each cell corresponds to a fitted model.

Producing forecasts

```
brick_fc <- brick_fit %>%
 forecast(h = "5 years")
## # A fable: 80 x 4 [10]
## # Key: .model [4]
    .model Quarter Bricks .distribution
##
## <chr>
                  <qtr> <dbl> <dist>
## 1 Seasonal_naive 2005 Q3 428 N(428, 2336)
## 2 Seasonal naive 2005 Q4
                             397 N(397, 2336)
## 3 Seasonal naive 2006 Q1
                            355 N(355, 2336)
## 4 Seasonal naive 2006 02 435 N(435, 2336)
## # ... with 76 more rows
```

A fable is a forecast table with point forecasts and distributions.

Visualising forecasts

```
brick_fc %>%
  autoplot(aus_production, level = NULL) +
  ggtitle("Forecasts for quarterly clay brick production") +
  xlab("Year") + ylab("Millions of bricks") +
  guides(colour = guide_legend(title = "Forecast"))
```



```
# Extract training data
fb_stock <- gafa_stock %>%
 group_by(Symbol) %>%
  mutate(trading_day = row_number()) %>%
  update_tsibble(index=trading_day, regular=TRUE) %>%
 ungroup() %>%
 filter(Symbol == "FB")
# Specify, estimate and forecast
fb_stock %>%
  model(
    Mean = MEAN(Close),
    Naive = NAIVE(Close),
    Drift = RW(Close ~ drift())
  ) %>%
  forecast(h=42) %>%
  autoplot(fb_stock, level = NULL) +
  ggtitle("Facebook closing stock price") +
  xlab("Day") + ylab("") +
  guides(colour=guide_legend(title="Forecast"))
```


Your turn

- Produce forecasts using an appropriate benchmark method for household wealth (hh_budget). Plot the results using autoplot().
- Produce forecasts using an appropriate benchmark method for Australian takeaway food turnover (aus_retail). Plot the results using autoplot().

Outline

- 1 A tidy forecasting workflow
- 2 Some simple forecasting methods
 - 3 Residual diagnostics
- 4 Distributional forecasts and prediction intervals
- 5 Forecasting with transformations
- 6 Forecasting and decomposition
- 7 Evaluating forecast accuracy
- 8 Time series cross-validation

Fitted values

- $\hat{y}_{t|t-1}$ is the forecast of y_t based on observations y_1, \dots, y_{t-1} .
- We call these "fitted values".
- Sometimes drop the subscript: $\hat{y}_t \equiv \hat{y}_{t|t-1}$.
- Often not true forecasts since parameters are estimated on all data.

For example:

- $\hat{y}_t = \bar{y}$ for average method.
- $\hat{y}_t = y_{t-1} + (y_T y_1)/(T 1)$ for drift method.

Forecasting residuals

Residuals in forecasting: difference between observed value and its fitted value: $e_t = y_t - \hat{y}_{t|t-1}$.

Forecasting residuals

Residuals in forecasting: difference between observed value and its fitted value: $e_t = y_t - \hat{y}_{t|t-1}$.

Assumptions

- $\{e_t\}$ uncorrelated. If they aren't, then information left in residuals that should be used in computing forecasts.
- $\{e_t\}$ have mean zero. If they don't, then forecasts are biased.

Forecasting residuals

Residuals in forecasting: difference between observed value and its fitted value: $e_t = y_t - \hat{y}_{t|t-1}$.

Assumptions

- $\{e_t\}$ uncorrelated. If they aren't, then information left in residuals that should be used in computing forecasts.
- $\{e_t\}$ have mean zero. If they don't, then forecasts are biased.

Useful properties (for distributions & prediction intervals)

- $\{e_t\}$ have constant variance.
 - $\{e_t\}$ are normally distributed.

```
fb_stock <- gafa_stock %>%
  filter(Symbol == "FB") %>%
  mutate(trading_day = row_number()) %>%
  update_tsibble(index = trading_day, regular = TRUE)
fb_stock %>% autoplot(Close)
```



```
fit <- fb_stock %>% model(NAIVE(Close))
augment(fit)
```

```
## # A tsibble: 1,258 x 6 [1]
##
  # Key: Symbol, .model [1]
##
     Symbol .model trading_day Close .fitted .resid
##
     <chr>
           <chr>
                             <int> <dbl>
                                         <dbl> <dbl>
##
   1 FB
           NAIVE(Close)
                                1 54.7
                                          NA
                                               NA
           NAIVE(Close)
                                2 54.6
##
   2 FB
                                          54.7 - 0.150
##
   3 FB
           NAIVE(Close)
                                3 57.2
                                          54.6 2.64
##
   4 FB
           NAIVE(Close)
                                4 57.9
                                          57.2 0.720
   5 FB
           NAIVE(Close)
                                5
                                  58.2
##
                                          57.9 0.310
   6 FB
           NAIVE(Close)
                                6 57.2
##
                                          58.2 -1.01
##
   7 FB
           NAIVE(Close)
                                7 57.9
                                          57.2 0.720
   8 FB
           NAIVE(Close)
                                8 55.9
##
                                          57.9 - 2.03
           NAIVE(Close)
                                9 57.7
##
   9 FB
                                          55.9 1.83
##
  10 FB
           NAIVE(Close)
                               10 57.6
                                          57.7 -0.140
  # ... with 1,248 more rows
```

```
fit <- fb stock %>% model(NAIVE(Close))
augment(fit)
```

```
\hat{y}_{t|t-1}
  ## # A tsibble: 1,258 x 6 [1]
  ##
    # Key: Symbol, .model [1]
  ##
       Symbol .model trading_day Close .fitted .resid
  ##
     <chr> <chr>
                             <int> <dbl> <dbl> <dbl>
  ## 1 FB NAIVE(Close)
                                 1 54.7 NA NA
  ## 2 FB
             NAIVE(Close)
                                 2 54.6 54.7 -0.150
  ## 3 FB
             NAIVE(Close)
                                 3 57.2 54.6 2.64
  ##
     4 FB
             NAIVE(Close)
                                 4 57.9 57.2 0.720
             NAIVE(Close)
                                 5
                                   58.2
  ##
     5 FB
                                          57.9 0.310
             NAIVE(Close)
                                 6 57.2
  ##
     6 FB
                                           58.2 -1.01
                                   57.9
                                           57.2 0.720
Naïve forecasts:
                                   55.9
                                           57.9 -2.03
```

57.7

10 57.6 57.7 -0.140

55.9 1.83

9

$$\hat{y}_{t|t-1} = y_{t-1}$$
 $e_t = y_t - \hat{y}_{t|t-1} = y_t - y_{t-1}$

```
augment(fit) %>%
  ggplot(aes(x = trading_day)) +
  geom_line(aes(y = Close, colour = "Data")) +
  geom_line(aes(y = .fitted, colour = "Fitted"))
```



```
augment(fit) %>%
  filter(trading_day > 1100) %>%
  ggplot(aes(x = trading_day)) +
  geom_line(aes(y = Close, colour = "Data")) +
  geom_line(aes(y = .fitted, colour = "Fitted"))
```



```
augment(fit) %>%
autoplot(.resid) + xlab("Day") + ylab("") +
ggtitle("Residuals from naïve method")
```



```
augment(fit) %>%
  ggplot(aes(x = .resid)) +
  geom_histogram(bins = 150) +
  ggtitle("Histogram of residuals")
```


Facebook closing stock price

```
augment(fit) %>%
  ACF(.resid) %>%
  autoplot() + ggtitle("ACF of residuals")
```


ACF of residuals

- We assume that the residuals are white noise (uncorrelated, mean zero, constant variance). If they aren't, then there is information left in the residuals that should be used in computing forecasts.
- So a standard residual diagnostic is to check the ACF of the residuals of a forecasting method.
- We *expect* these to look like white noise.

Consider a whole set of r_k values, and develop a test to see whether the set is significantly different from a zero set.

Consider a whole set of r_k values, and develop a test to see whether the set is significantly different from a zero set.

Box-Pierce test

$$Q = T \sum_{k=1}^{h} r_k^2$$

where *h* is max lag being considered and *T* is number of observations.

- If each r_k close to zero, Q will be **small**.
- If some r_k values large (positive or negative), Q will be large.

Consider a whole set of r_k values, and develop a test to see whether the set is significantly different from a zero set.

Ljung-Box test

$$Q^* = T(T+2) \sum_{k=1}^{h} (T-k)^{-1} r_k^2$$

where h is max lag being considered and T is number of observations.

- My preferences: h = 10 for non-seasonal data, h = 2m for seasonal data.
- Better performance, especially in small samples.

- If data are WN, Q^* has χ^2 distribution with (h K) degrees of freedom where K = no. parameters in model.
- When applied to raw data, set K = 0.

```
augment(fit) %>%
features(.resid, ljung_box, lag=10, dof=0)
```

gg_tsresiduals function

Your turn

Compute seasonal naïve forecasts for quarterly Australian beer production from 1992.

```
recent <- aus_production %>% filter(year(Quarter) >= 1992)
fit <- recent %>% model(SNAIVE(Beer))
fit %>% forecast() %>% autoplot(recent)
```

Test if the residuals are white noise.

```
augment(fit) %>% features(.resid, ljung_box, lag=10, dof=0)
gg_tsresiduals(fit)
```

What do you conclude?

Outline

- 1 A tidy forecasting workflow
- 2 Some simple forecasting methods
- 3 Residual diagnostics
- 4 Distributional forecasts and prediction intervals
- 5 Forecasting with transformations
- 6 Forecasting and decomposition
- 7 Evaluating forecast accuracy
- 8 Time series cross-validation

Forecast distributions

- A forecast $\hat{y}_{T+h|T}$ is (usually) the mean of the conditional distribution $y_{T+h} \mid y_1, \dots, y_T$.
- Most time series models produce normally distributed forecasts.
- The forecast distribution describes the probability of observing any future value.

Forecast distributions

Assuming residuals are normal, uncorrelated, sd = $\hat{\sigma}$:

Mean:
$$\hat{y}_{T+h|T} \sim N(\bar{y}, (1+1/T)\hat{\sigma}^2)$$

Naïve:
$$\hat{y}_{T+h|T} \sim N(y_T, h\hat{\sigma}^2)$$

Seasonal naïve:
$$\hat{y}_{T+h|T} \sim N(y_{T+h-m(k+1)}, (k+1)\hat{\sigma}^2)$$

Drift:
$$\hat{y}_{T+h|T} \sim N(y_T + \frac{h}{T-1}(y_T - y_1), h^{\frac{T+h}{T}}\hat{\sigma}^2)$$

where k is the integer part of (h-1)/m.

Note that when h = 1 and T is large, these all give the same approximate forecast variance: $\hat{\sigma}^2$.

- A prediction interval gives a region within which we expect y_{T+h} to lie with a specified probability.
- Assuming forecast errors are normally distributed, then a 95% PI is

$$\hat{\mathbf{y}}_{\mathsf{T+h}|\mathsf{T}} \pm 1.96 \hat{\sigma}_{\mathsf{h}}$$

where $\hat{\sigma}_h$ is the st dev of the *h*-step distribution.

■ When h = 1, $\hat{\sigma}_h$ can be estimated from the residuals.

```
brick_fc %>% hilo(level = 95)
```

```
## # A tsibble: 80 x 4 [10]
  # Key:
               .model [4]
##
##
      .model
                    Ouarter Bricks
                                                     95%
##
      <chr>
                       <qtr>
                              <dbl>
                                                    <hilo>
   1 Seasonal naive 2005 Q3
                               428 [333.2737, 522.7263]95
##
##
   2 Seasonal_naive 2005 Q4
                               397 [302.2737, 491.7263]95
##
   3 Seasonal naive 2006 01
                               355 [260.2737, 449.7263]95
   4 Seasonal naive 2006 02
                               435 [340.2737, 529.7263]95
##
                               428 [294.0368, 561.9632]95
##
   5 Seasonal_naive 2006 Q3
##
   6 Seasonal naive 2006 04
                               397 [263.0368, 530.9632]95
   7 Seasonal naive 2007 Q1
                               355 [221.0368, 488.9632]95
##
##
   8 Seasonal_naive 2007 Q2
                               435 [301.0368, 568.9632]95
   9 Seasonal naive 2007 03
                                428 [263.9292, 592.0708]95
##
  10 Seasonal naive 2007 04
                                397 [232.9292, 561.0708]95
```

- Point forecasts are often useless without a measure of uncertainty (such as prediction intervals).
- Prediction intervals require a stochastic model (with random errors, etc).
- Multi-step forecasts for time series require a more sophisticated approach (with PI getting wider as the forecast horizon increases).

- Computed automatically from the forecast distribution.
- Use level argument to control coverage.
- Check residual assumptions before believing them (we will see this next class).
- Usually too narrow due to unaccounted uncertainty.

Outline

- 1 A tidy forecasting workflow
- 2 Some simple forecasting methods
- 3 Residual diagnostics
- 4 Distributional forecasts and prediction intervals
- 5 Forecasting with transformations
- 6 Forecasting and decomposition
- 7 Evaluating forecast accuracy
- 8 Time series cross-validation

Modelling with transformations

Transformations used in the left of the formula will be automatically back-transformed. To model log-transformed food retailing turnover, you could use:

```
food <- aus_retail %>%
  filter(Industry == "Food retailing") %>%
  summarise(Turnover = sum(Turnover))
```

```
fit <- food %>%
  model(SNAIVE(log(Turnover)))
```

Forecasting with transformations

```
fc <- fit %>%
 forecast(h = "3 years")
```

```
## # A fable: 36 x 4 [1M]
## # Key: .model [1]
##
     .model
                              Month Turnover .distribution
##
    <chr>
                              <mth>
                                       <dbl> <dist>
## 1 SNAIVE(log(Turnover)) 2019 Jan
                                      10738. t(N(9.3, 0.0047))
## 2 SNAIVE(log(Turnover)) 2019 Feb
                                       9856. t(N(9.2, 0.0047))
## 3 SNAIVE(log(Turnover)) 2019 Mar
                                      11214. t(N(9.3, 0.0047))
## 4 SNAIVE(log(Turnover)) 2019 Apr
                                      10378. t(N(9.2, 0.0047))
## 5 SNAIVE(log(Turnover)) 2019 May
                                      10670. t(N(9.3, 0.0047))
## 6 SNAIVE(log(Turnover)) 2019 Jun
                                      10292. t(N(9.2, 0.0047))
## # ... with 30 more rows
```

Forecasting with transformations

- Back-transformed point forecasts are medians.
- Back-transformed PI have the correct coverage.

- Back-transformed point forecasts are medians.
- Back-transformed PI have the correct coverage.

Back-transformed means

Let X be have mean μ and variance σ^2 .

Let f(x) be back-transformation function, and Y = f(X).

Taylor series expansion about μ :

$$f(X) = f(\mu) + (X - \mu)f'(\mu) + \frac{1}{2}(X - \mu)^2 f''(\mu).$$

- Back-transformed point forecasts are medians.
- Back-transformed PI have the correct coverage.

Back-transformed means

Let X be have mean μ and variance σ^2 .

Let f(x) be back-transformation function, and Y = f(X).

Taylor series expansion about μ :

$$f(X) = f(\mu) + (X - \mu)f'(\mu) + \frac{1}{2}(X - \mu)^2 f''(\mu).$$

$$E[Y] = E[f(X)] = f(\mu) + \frac{1}{2}\sigma^2 f''(\mu)$$

Box-Cox back-transformation:

$$y_t = \begin{cases} \exp(w_t) & \lambda = 0; \\ (\lambda W_t + 1)^{1/\lambda} & \lambda \neq 0. \end{cases}$$

$$f(x) = \begin{cases} e^x & \lambda = 0; \\ (\lambda x + 1)^{1/\lambda} & \lambda \neq 0. \end{cases}$$

$$f''(x) = \begin{cases} e^x & \lambda = 0; \\ (1 - \lambda)(\lambda x + 1)^{1/\lambda - 2} & \lambda \neq 0. \end{cases}$$

Box-Cox back-transformation:

$$y_t = \begin{cases} \exp(w_t) & \lambda = 0; \\ (\lambda W_t + 1)^{1/\lambda} & \lambda \neq 0. \end{cases}$$

$$f(x) = \begin{cases} e^x & \lambda = 0; \\ (\lambda x + 1)^{1/\lambda} & \lambda \neq 0. \end{cases}$$

$$f''(x) = \begin{cases} e^x & \lambda = 0; \\ (1 - \lambda)(\lambda x + 1)^{1/\lambda - 2} & \lambda \neq 0. \end{cases}$$

$$\mathsf{E}[\mathsf{Y}] = \begin{cases} e^{\mu} \left[1 + \frac{\sigma^2}{2} \right] & \lambda = 0; \\ (\lambda \mu + 1)^{1/\lambda} \left[1 + \frac{\sigma^2 (1 - \lambda)}{2(\lambda \mu + 1)^2} \right] & \lambda \neq 0. \end{cases}$$

```
eggs <- as_tsibble(fma::eggs)
fit <- eggs %>% model(RW(log(value) ~ drift()))
fc <- fit %>% forecast(h=50)
fc_biased <- fit %>% forecast(h=50, bias_adjust = FALSE)
eggs %>% autoplot(value) + xlab("Year") +
  autolayer(fc_biased, level = 80) +
  autolayer(fc, colour = "red", level = NULL)
```


Outline

- 1 A tidy forecasting workflow
- 2 Some simple forecasting methods
- 3 Residual diagnostics
- 4 Distributional forecasts and prediction intervals
- 5 Forecasting with transformations
- 6 Forecasting and decomposition
- 7 Evaluating forecast accuracy
- 8 Time series cross-validation

Forecasting and decomposition

- Forecast seasonal component by repeating the last year
- Forecast seasonally adjusted data using non-seasonal time series method.
- Combine forecasts of seasonal component with forecasts of seasonally adjusted data to get forecasts of original data.
- Sometimes a decomposition is useful just for understanding the data before building a separate forecasting model.

```
us_retail_employment <- us_employment %>%
  filter(year(Month) >= 1990, Title == "Retail Trade") %>%
  select(-Series_ID)
us_retail_employment
```

```
## # A tsibble: 357 x 3 [1M]
        Month Title Employed
##
##
        <mth> <chr>
                            <dbl>
   1 1990 Jan Retail Trade 13256.
##
##
   2 1990 Feb Retail Trade 12966.
   3 1990 Mar Retail Trade 12938.
##
   4 1990 Apr Retail Trade 13012.
##
##
   5 1990 May Retail Trade
                           13108.
   6 1990 Jun Retail Trade
##
                            13183.
   7 1990 Jul Retail Trade
##
                             13170.
   8 1990 Aug Retail Trade 13160.
##
   9 1990 Sep Retail Trade
                            13113.
##
## 10 1000 Oct Doto: ] Twodo
```

57

```
dcmp <- us_retail_employment %>%
  model(STL(Employed)) %>%
  components() %>% select(-.model)
dcmp
```

```
## # A tsibble: 357 x 6 [1M]
##
        Month Employed trend season_year remainder
        <mth> <dbl> <dbl> <dbl>
                                       <dbl>
##
      1990 Jan 13256. 13291. -38.1 3.08
##
   1
##
   2
      1990 Feb 12966, 13272, -261, -44.2
      1990 Mar 12938. 13252. -291. -23.0
##
   3
      1990 Apr 13012. 13233. -221. 0.0892
##
   4
##
   5
      1990 May 13108. 13213.
                              -115. 9.98
##
   6
      1990 Jun 13183. 13193. -25.6 15.7
      1990 Jul 13170. 13173. -24.4 22.0
##
   7
      1990 Aug 13160. 13152. -11.8 19.5
##
   8
##
   9
      1990 Sep 13113. 13131. -43.4 25.7
44 10
      1000 00+
               12105 12110
                             C2 E 12 2
```

58

```
dcmp %>%
  model(NAIVE(season_adjust)) %>%
  forecast() %>%
  autoplot(dcmp) +
  ggtitle("Naive forecasts of seasonally adjusted data")
```



```
us_retail_employment %>%
model(stlf = decomposition_model(
    STL(Employed ~ trend(window = 7), robust = TRUE),
    NAIVE(season_adjust)
)) %>%
forecast() %>%
autoplot(us_retail_employment)
```


Decomposition models

decomposition_model() creates a decomposition
model

- You must provide a method for forecasting the season_adjust series.
- A seasonal naive method is used by default for the seasonal components.
- The variances from both the seasonally adjusted and seasonal forecasts are combined.

Outline

- 1 A tidy forecasting workflow
- 2 Some simple forecasting methods
- 3 Residual diagnostics
- 4 Distributional forecasts and prediction intervals
- 5 Forecasting with transformations
- 6 Forecasting and decomposition
- 7 Evaluating forecast accuracy
- 8 Time series cross-validation

Training and test sets

- A model which fits the training data well will not necessarily forecast well.
- A perfect fit can always be obtained by using a model with enough parameters.
- Over-fitting a model to data is just as bad as failing to identify a systematic pattern in the data.
- The test set must not be used for *any* aspect of model development or calculation of forecasts.
- Forecast accuracy is based only on the test set.

Forecast errors

Forecast "error": the difference between an observed value and its forecast.

$$e_{T+h} = y_{T+h} - \hat{y}_{T+h|T},$$

where the training data is given by $\{y_1, \ldots, y_T\}$

- Unlike residuals, forecast errors on the test set involve multi-step forecasts.
- These are *true* forecast errors as the test data is not used in computing $\hat{y}_{T+h|T}$.

Measures of forecast accuracy


```
y_{T+h} = (T+h)th observation, h = 1, ..., H
\hat{y}_{T+h|T} = \text{its forecast based on data up to time } T.
e_{T+h} = y_{T+h} - \hat{y}_{T+h|T}

MAE = mean(|e_{T+h}|)

MSE = mean(e_{T+h}^2)

RMSE = \sqrt{\text{mean}(e_{T+h}^2)}

MAPE = 100mean(|e_{T+h}|/|y_{T+h}|)
```

$$y_{T+h} = (T+h)$$
th observation, $h = 1, ..., H$
 $\hat{y}_{T+h|T} = \text{its forecast based on data up to time } T.$
 $e_{T+h} = y_{T+h} - \hat{y}_{T+h|T}$

MAE = mean($|e_{T+h}|$)

MSE = mean(e_{T+h}^2)

RMSE = $\sqrt{\text{mean}(e_{T+h}^2)}$

MAPE = 100mean($|e_{T+h}|/|y_{T+h}|$)

- MAE, MSE, RMSE are all scale dependent.
- MAPE is scale independent but is only sensible if $y_t \gg 0$ for all t, and y has a natural zero.

Mean Absolute Scaled Error

MASE = mean(
$$|e_{T+h}|/Q$$
)

where Q is a stable measure of the scale of the time series $\{y_t\}$.

Proposed by Hyndman and Koehler (IJF, 2006).

For non-seasonal time series,

$$Q = (T-1)^{-1} \sum_{t=2}^{T} |y_t - y_{t-1}|$$

works well. Then MASE is equivalent to MAE relative to a naïve method.

Mean Absolute Scaled Error

MASE = mean(
$$|e_{T+h}|/Q$$
)

where Q is a stable measure of the scale of the time series $\{y_t\}$.

Proposed by Hyndman and Koehler (IJF, 2006).

For seasonal time series,

$$Q = (T - m)^{-1} \sum_{t=m+1}^{T} |y_t - y_{t-m}|$$

works well. Then MASE is equivalent to MAE relative to a seasonal naïve method.


```
recent_production <- aus_production %>%
  filter(year(Quarter) >= 1992)
train <- recent_production %>%
  filter(year(Quarter) <= 2007)</pre>
beer fit <- train %>%
  model(
    Mean = MEAN(Beer),
    Naive = NAIVE(Beer),
    Seasonal_naive = SNAIVE(Beer),
    Drift = RW(Beer ~ drift())
beer_fc <- beer_fit %>%
  forecast(h = 10)
```

accuracy(beer_fit)

```
## # A tibble: 4 x 6
## .model
                  .type RMSE
                                MAF MAPF
                                           MASE
                 <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <
##
  <chr>
## 1 Drift
                 Training 65.3 54.8 12.2 3.83
                 Training 43.6 35.2 7.89 2.46
## 2 Mean
## 3 Naive
                 Training
                           65.3 54.7 12.2 3.83
## 4 Seasonal naive Training 16.8 14.3 3.31 1
```

accuracy(beer_fc, recent_production)

```
## # A tibble: 4 x 6
  .model
                        RMSE
                               MAF
                                  MAPF
##
                .tvpe
                                        MASE
##
    <chr>
               <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Drift
                 Test 64.9 58.9 14.6 4.12
                 Test 38.4 34.8 8.28 2.44
## 2 Mean
## 3 Naive
                 Test 62.7 57.4 14.2 4.01
## 4 Seasonal_naive Test 14.3 13.4 3.17 0.937
```

Poll: true or false?

- Good forecast methods should have normally distributed residuals.
- A model with small residuals will give good forecasts.
- The best measure of forecast accuracy is MAPE.
- If your model doesn't forecast well, you should make it more complicated.
- Always choose the model with the best forecast accuracy as measured on the test set.

Outline

- 1 A tidy forecasting workflow
- 2 Some simple forecasting methods
- 3 Residual diagnostics
- 4 Distributional forecasts and prediction intervals
- 5 Forecasting with transformations
- 6 Forecasting and decomposition
- 7 Evaluating forecast accuracy
- 8 Time series cross-validation

Traditional evaluation

Traditional evaluation Training data Test data Time series cross-validation time

- Forecast accuracy averaged over test sets.
- Also known as "evaluation on a rolling forecasting origin"

Creating the rolling training sets

There are three main rolling types which can be used.

- Stretch: extends a growing length window with new data.
- Slide: shifts a fixed length window through the data.
- Tile: moves a fixed length window without overlap.

Three functions to roll a tsibble: stretch_tsibble(), slide_tsibble(), and tile_tsibble().

For time series cross-validation, stretching windows are most commonly used.

Creating the rolling training sets

Stretch with a minimum length of 3, growing by 1 each step.

```
fb_stretch <- fb_stock %>%
  stretch_tsibble(.init = 3, .step = 1) %>%
  filter(.id != max(.id))
```

```
## # A tsibble: 790,650 x 4 [1]
## # Key: .id [1,255]
## Date Close trading_day .id
## <date> <dbl> <int> <int>
## 1 2014-01-02 54.7
## 2 2014-01-03 54.6
## 3 2014-01-06 57.2
                                1
## 4 2014-01-02 54.7
                                2
## 5 2014-01-03 54.6
                                2
## 6 2014-01-06 57.2
                           3
                                2
## 7 2014-01-07 57.9
                                2
```

Estimate RW w/ drift models for each window.

```
fit_cv <- fb_stretch %>%
  model(RW(Close ~ drift()))
## # A mable: 1,255 x 3
## # Key: .id, Symbol [1,255]
## .id Symbol `RW(Close ~ drift())`
## <int> <chr> <model>
## 1 1 FB <RW w/ drift>
## 2 2 FB <RW w/ drift>
## 3 3 FB <RW w/ drift>
## 4 4 FB <RW w/ drift>
## # ... with 1,251 more rows
```

... with 1,251 more rows

Produce one step ahead forecasts from all models.

```
fc_cv <- fit_cv %>%
  forecast(h=1)
## # A fable: 1,255 x 5 [1]
## # Key: .id, Symbol [1,255]
## .id Symbol trading_day Close .distribution
## <int> <chr> <dbl> <dbl> <dbl> <dist>
## 1 1 FB
                        4 58.4 N(58, 3.9)
## 2 2 FB
                        5 59.0 N(59, 2)
## 3 3 FB
                        6 59.1 N(59, 1.5)
## 4 4 FB
                  7 57.7 N(58, 1.8)
```

```
# Cross-validated
fc_cv %>% accuracy(fb_stock)
# Training set
fb_stock %>% model(RW(Close ~ drift())) %>% accuracy()
```

	RMSE	MAE	MAPE
Cross-validation	2.418	1.469	1.266
Training	2.414	1.465	1.261

A good way to choose the best forecasting model is to find the model with the smallest RMSE computed using time series cross-validation.