União e Interseção de Conjuntos - Parte 2

José Antônio O. Freitas

MAT-UnB

22 de julho de 2020

Sejam A, B e C três conjuntos, então:

Sejam A, B e C três conjuntos, então:

$$i) \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Sejam A, B e C três conjuntos, então:

$$i) \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$ii) \ A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Sejam A, B e C três conjuntos, então:

$$i) \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$ii) \ A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Prova:

Sejam A, B e C três conjuntos, então:

$$i) \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$ii) \ A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Prova: Para mostrar a primeira igualdade precisamos mostrar que

Sejam A, B e C três conjuntos, então:

- $i) \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- $ii) \ A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Prova: Para mostrar a primeira igualdade precisamos mostrar que

$$(1) \ A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C);$$

Sejam A, B e C três conjuntos, então:

- $i) \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- $ii) \ A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Prova: Para mostrar a primeira igualdade precisamos mostrar que

- (1) $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$;
- $(2) (A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C).$

Sejam A, B e C três conjuntos, então:

- $i) \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- $ii) \ A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Prova: Para mostrar a primeira igualdade precisamos mostrar que

- $(1) \ A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C);$
- (2) $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$.

Para provar (1) seja $x \in A \cap (B \cup C)$.

Sejam A, B e C três conjuntos, então:

- $i) \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- $ii) \ A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Prova: Para mostrar a primeira igualdade precisamos mostrar que

- $(1) A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C);$
- (2) $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$.

Para provar (1) seja $x \in A \cap (B \cup C)$. Logo $x \in A$

Sejam A, B e C três conjuntos, então:

- $i) \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- $ii) \ A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Prova: Para mostrar a primeira igualdade precisamos mostrar que

- $(1) A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C);$
- (2) $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$.

Para provar (1) seja $x \in A \cap (B \cup C)$. Logo $x \in A$ e $x \in B \cup C$.

Sejam A, B e C três conjuntos, então:

- $i) \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- $ii) \ A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Prova: Para mostrar a primeira igualdade precisamos mostrar que

- $(1) A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C);$
- (2) $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$.

Para provar (1) seja $x \in A \cap (B \cup C)$. Logo $x \in A$ e $x \in B \cup C$. Agora, de $x \in B \cup C$,

Sejam A, B e C três conjuntos, então:

- $i) \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- $ii) \ A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Prova: Para mostrar a primeira igualdade precisamos mostrar que

- $(1) A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C);$
- $(2) (A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C).$

Para provar (1) seja $x \in A \cap (B \cup C)$. Logo $x \in A$ e $x \in B \cup C$. Agora, de $x \in B \cup C$, segue que $x \in B$

Sejam A, B e C três conjuntos, então:

- $i) \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- $ii) \ A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Prova: Para mostrar a primeira igualdade precisamos mostrar que

- $(1) A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C);$
- $(2) (A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C).$

Para provar (1) seja $x \in A \cap (B \cup C)$. Logo $x \in A$ e $x \in B \cup C$. Agora, de $x \in B \cup C$, segue que $x \in B$ ou $x \in C$.

Sejam A, B e C três conjuntos, então:

- $i) \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- $ii) \ A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Prova: Para mostrar a primeira igualdade precisamos mostrar que

- $(1) A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C);$
- $(2) (A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C).$

Para provar (1) seja $x \in A \cap (B \cup C)$. Logo $x \in A$ e $x \in B \cup C$. Agora, de $x \in B \cup C$, segue que $x \in B$ ou $x \in C$. Suponha que $x \in B$.

Sejam A, B e C três conjuntos, então:

- $i) \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- $ii) \ A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Prova: Para mostrar a primeira igualdade precisamos mostrar que

- $(1) A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C);$
- (2) $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$.

Para provar (1) seja $x \in A \cap (B \cup C)$. Logo $x \in A$ e $x \in B \cup C$. Agora, de $x \in B \cup C$, segue que $x \in B$ ou $x \in C$. Suponha que $x \in B$. Como $x \in A$ e $x \in B$,

Sejam A, B e C três conjuntos, então:

- $i) \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- $ii) \ A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Prova: Para mostrar a primeira igualdade precisamos mostrar que

- $(1) A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C);$
- $(2) (A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C).$

Para provar (1) seja $x \in A \cap (B \cup C)$. Logo $x \in A$ e $x \in B \cup C$. Agora, de $x \in B \cup C$, segue que $x \in B$ ou $x \in C$. Suponha que $x \in B$. Como $x \in A$ e $x \in B$, então $x \in A \cap B$.

Sejam A, B e C três conjuntos, então:

- $i) \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- $ii) \ A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Prova: Para mostrar a primeira igualdade precisamos mostrar que

- $(1) A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C);$
- $(2) (A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C).$

Para provar (1) seja $x \in A \cap (B \cup C)$. Logo $x \in A$ e $x \in B \cup C$. Agora, de $x \in B \cup C$, segue que $x \in B$ ou $x \in C$. Suponha que $x \in B$. Como $x \in A$ e $x \in B$, então $x \in A \cap B$. Assim, $x \in (A \cap B) \cup (A \cap C)$,

Sejam A, B e C três conjuntos, então:

- $i) \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- $ii) \ A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Prova: Para mostrar a primeira igualdade precisamos mostrar que

- $(1) A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C);$
- $(2) (A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C).$

Para provar (1) seja $x \in A \cap (B \cup C)$. Logo $x \in A$ e $x \in B \cup C$. Agora, de $x \in B \cup C$, segue que $x \in B$ ou $x \in C$. Suponha que $x \in B$. Como $x \in A$ e $x \in B$, então $x \in A \cap B$. Assim, $x \in (A \cap B) \cup (A \cap C)$, ou seja, $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.

Sejam A, B e C três conjuntos, então:

- $i) \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- $ii) \ A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Prova: Para mostrar a primeira igualdade precisamos mostrar que

- $(1) A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C);$
- (2) $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$.

Para provar (1) seja $x \in A \cap (B \cup C)$. Logo $x \in A$ e $x \in B \cup C$. Agora, de $x \in B \cup C$, segue que $x \in B$ ou $x \in C$. Suponha que $x \in B$. Como $x \in A$ e $x \in B$, então $x \in A \cap B$. Assim, $x \in (A \cap B) \cup (A \cap C)$, ou seja, $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$. Por outro lado, se $x \in C$,

Sejam A, B e C três conjuntos, então:

- $i) \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- $ii) \ A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Prova: Para mostrar a primeira igualdade precisamos mostrar que

- $(1) A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C);$
- $(2) (A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C).$

Para provar (1) seja $x \in A \cap (B \cup C)$. Logo $x \in A$ e $x \in B \cup C$. Agora, de $x \in B \cup C$, segue que $x \in B$ ou $x \in C$. Suponha que $x \in B$. Como $x \in A$ e $x \in B$, então $x \in A \cap B$. Assim, $x \in (A \cap B) \cup (A \cap C)$, ou seja, $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$. Por outro lado, se $x \in C$, como $x \in A$,

então $x \in A \cap C$

Sejam A, B e C três conjuntos, então:

- $i) \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- $ii) \ A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Prova: Para mostrar a primeira igualdade precisamos mostrar que

- $(1) A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C);$
- $(2) (A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C).$

Para provar (1) seja $x \in A \cap (B \cup C)$. Logo $x \in A$ e $x \in B \cup C$. Agora, de $x \in B \cup C$, segue que $x \in B$ ou $x \in C$. Suponha que $x \in B$. Como $x \in A$ e $x \in B$, então $x \in A \cap B$. Assim, $x \in (A \cap B) \cup (A \cap C)$, ou seja, $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$. Por outro lado, se $x \in C$, como $x \in A$, então $x \in A \cap C$ e daí $x \in (A \cap B) \cup (A \cap C)$,

Sejam A, B e C três conjuntos, então:

- $i) \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- $ii) \ A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Prova: Para mostrar a primeira igualdade precisamos mostrar que

- $(1) A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C);$
- $(2) (A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C).$

Para provar (1) seja $x \in A \cap (B \cup C)$. Logo $x \in A$ e $x \in B \cup C$. Agora, de $x \in B \cup C$, segue que $x \in B$ ou $x \in C$. Suponha que $x \in B$. Como $x \in A$ e $x \in B$, então $x \in A \cap B$. Assim, $x \in (A \cap B) \cup (A \cap C)$, ou seja, $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$. Por outro lado, se $x \in C$, como $x \in A$, então $x \in A \cap C$ e daí $x \in (A \cap B) \cup (A \cap C)$, logo $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.

Sejam A, B e C três conjuntos, então:

- i) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- ii) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Prova: Para mostrar a primeira igualdade precisamos mostrar que

- (1) $A \cap (B \cup C) \subset (A \cap B) \cup (A \cap C)$;
- (2) $(A \cap B) \cup (A \cap C) \subset A \cap (B \cup C)$.

Para provar (1) seja $x \in A \cap (B \cup C)$. Logo $x \in A$ e $x \in B \cup C$. Agora, de $x \in B \cup C$, segue que $x \in B$ ou $x \in C$. Suponha que $x \in B$. Como $x \in A$ e $x \in B$, então $x \in A \cap B$. Assim, $x \in (A \cap B) \cup (A \cap C)$, ou seja, $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$. Por outro lado, se $x \in C$, como $x \in A$,

então $x \in A \cap C$ e daí $x \in (A \cap B) \cup (A \cap C)$, logo

 $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.

Portanto.

$$A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$$
.

Sejam A, B e C três conjuntos, então:

- $i) \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- $ii) \ A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Prova: Para mostrar a primeira igualdade precisamos mostrar que

- $(1) \ A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C);$
- $(2) (A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C).$

Para provar (1) seja $x \in A \cap (B \cup C)$. Logo $x \in A$ e $x \in B \cup C$. Agora, de $x \in B \cup C$, segue que $x \in B$ ou $x \in C$. Suponha que $x \in B$. Como $x \in A$ e $x \in B$, então $x \in A \cap B$. Assim, $x \in (A \cap B) \cup (A \cap C)$, ou seja, $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$. Por outro lado, se $x \in C$, como $x \in A$, então $x \in A \cap C$ e daí $x \in (A \cap B) \cup (A \cap C)$, logo $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.

$$A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$$
.

Portanto.

Agora para provar (2),

Agora para provar (2), seja $y \in (A \cap B) \cup (A \cap C)$.

Agora para provar (2), seja $y \in (A \cap B) \cup (A \cap C)$. Daí, $y \in A \cap B$

Agora para provar (2), seja $y \in (A \cap B) \cup (A \cap C)$. Daí, $y \in A \cap B$ ou $y \in A \cap C$.

Agora para provar (2), seja $y \in (A \cap B) \cup (A \cap C)$. Daí, $y \in A \cap B$ ou $y \in A \cap C$. Suponha que $y \in A \cap B$.

Agora para provar (2), seja $y \in (A \cap B) \cup (A \cap C)$. Daí, $y \in A \cap B$ ou $y \in A \cap C$. Suponha que $y \in A \cap B$. Assim, $y \in A$

Agora para provar (2), seja $y \in (A \cap B) \cup (A \cap C)$. Daí, $y \in A \cap B$ ou $y \in A \cap C$. Suponha que $y \in A \cap B$. Assim, $y \in A$ e $y \in B$.

Agora para provar (2), seja $y \in (A \cap B) \cup (A \cap C)$. Daí, $y \in A \cap B$ ou $y \in A \cap C$. Suponha que $y \in A \cap B$. Assim, $y \in A$ e $y \in B$. Como $y \in B$,

Agora para provar (2), seja $y \in (A \cap B) \cup (A \cap C)$. Daí, $y \in A \cap B$ ou $y \in A \cap C$. Suponha que $y \in A \cap B$. Assim, $y \in A$ e $y \in B$. Como $y \in B$, segue que $y \in B \cup C$

Agora para provar (2), seja $y \in (A \cap B) \cup (A \cap C)$. Daí, $y \in A \cap B$ ou $y \in A \cap C$. Suponha que $y \in A \cap B$. Assim, $y \in A$ e $y \in B$. Como $y \in B$, segue que $y \in B \cup C$ e então $y \in A \cap (B \cup C)$,

Agora para provar (2), seja $y \in (A \cap B) \cup (A \cap C)$. Daí, $y \in A \cap B$ ou $y \in A \cap C$. Suponha que $y \in A \cap B$. Assim, $y \in A$ e $y \in B$. Como $y \in B$, segue que $y \in B \cup C$ e então $y \in A \cap (B \cup C)$, ou seja, $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$.

Agora para provar (2), seja $y \in (A \cap B) \cup (A \cap C)$. Daí, $y \in A \cap B$ ou $y \in A \cap C$. Suponha que $y \in A \cap B$. Assim, $y \in A$ e $y \in B$. Como $y \in B$, segue que $y \in B \cup C$ e então $y \in A \cap (B \cup C)$, ou seja, $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$. Agora, suponha que $y \in A \cap C$.

$$(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C).$$

$$(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C).$$

Portanto

$$A\cap (B\cup C)=(A\cap B)\cup (A\cap C),$$

$$(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C).$$

Portanto

$$A\cap (B\cup C)=(A\cap B)\cup (A\cap C),$$

como queríamos.

Para mostrar a segunda igualdade de conjuntos, precisamos mostrar que (1) $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$;

- $(1) \ A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C);$
- $(2) (A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C).$

- $(1) \ A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C);$
- $(2) (A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C).$

Para mostrar (1) seja $x \in A \cup (B \cap C)$.

- $(1) \ A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C);$
- $(2) (A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C).$

Para mostrar (1) seja $x \in A \cup (B \cap C)$. Daí $x \in A$

- $(1) \ A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C);$
- (2) $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$.

Para mostrar (1) seja $x \in A \cup (B \cap C)$. Daí $x \in A$ ou $x \in B \cap C$.

- $(1) \ A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C);$
- (2) $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$.

Para mostrar (1) seja $x \in A \cup (B \cap C)$. Daí $x \in A$ ou $x \in B \cap C$. Suponha que $x \in A$,

- $(1) \ A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C);$
- $(2) (A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C).$

Para mostrar (1) seja $x \in A \cup (B \cap C)$. Daí $x \in A$ ou $x \in B \cap C$. Suponha que $x \in A$, assim $x \in A \cup B$

- $(1) \ A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C);$
- $(2) (A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C).$

Para mostrar (1) seja $x \in A \cup (B \cap C)$. Daí $x \in A$ ou $x \in B \cap C$. Suponha que $x \in A$, assim $x \in A \cup B$ e também $x \in A \cup C$. Logo $x \in (A \cup B) \cap (A \cup C)$

- $(1) \ A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C);$
- $(2) (A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C).$

Para mostrar (1) seja $x \in A \cup (B \cap C)$. Daí $x \in A$ ou $x \in B \cap C$. Suponha que $x \in A$, assim $x \in A \cup B$ e também $x \in A \cup C$. Logo $x \in (A \cup B) \cap (A \cup C)$ e com isso $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$.

- $(1) \ A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C);$
- $(2) (A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C).$

Para mostrar (1) seja $x \in A \cup (B \cap C)$. Daí $x \in A$ ou $x \in B \cap C$. Suponha que $x \in A$, assim $x \in A \cup B$ e também $x \in A \cup C$. Logo $x \in (A \cup B) \cap (A \cup C)$ e com isso $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$. Agora para mostrar (2) seja $y \in (A \cup B) \cap (A \cup C)$.

- (1) $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$;
- $(2) (A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C).$

Para mostrar (1) seja $x \in A \cup (B \cap C)$. Daí $x \in A$ ou $x \in B \cap C$. Suponha que $x \in A$, assim $x \in A \cup B$ e também $x \in A \cup C$. Logo $x \in (A \cup B) \cap (A \cup C)$ e com isso $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$. Agora para mostrar (2) seja $y \in (A \cup B) \cap (A \cup C)$. Assim $y \in A \cup B$

- (1) $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$;
- $(2) (A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C).$

Para mostrar (1) seja $x \in A \cup (B \cap C)$. Daí $x \in A$ ou $x \in B \cap C$. Suponha que $x \in A$, assim $x \in A \cup B$ e também $x \in A \cup C$. Logo $x \in (A \cup B) \cap (A \cup C)$ e com isso $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$. Agora para mostrar (2) seja $y \in (A \cup B) \cap (A \cup C)$. Assim $y \in A \cup B$ e $y \in A \cup C$.

- $(1) \ A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C);$
- $(2) (A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C).$

Para mostrar (1) seja $x \in A \cup (B \cap C)$. Daí $x \in A$ ou $x \in B \cap C$. Suponha que $x \in A$, assim $x \in A \cup B$ e também $x \in A \cup C$. Logo $x \in (A \cup B) \cap (A \cup C)$ e com isso $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$. Agora para mostrar (2) seja $y \in (A \cup B) \cap (A \cup C)$. Assim $y \in A \cup B$ e $y \in A \cup C$. Assim $y \in A$

- (1) $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$;
- $(2) (A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C).$

Para mostrar (1) seja $x \in A \cup (B \cap C)$. Daí $x \in A$ ou $x \in B \cap C$. Suponha que $x \in A$, assim $x \in A \cup B$ e também $x \in A \cup C$. Logo $x \in (A \cup B) \cap (A \cup C)$ e com isso $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$. Agora para mostrar (2) seja $y \in (A \cup B) \cap (A \cup C)$. Assim $y \in A \cup B$ e $y \in A \cup C$. Assim $y \in A$ ou $y \in B$

- (1) $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$;
- $(2) (A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C).$

Para mostrar (1) seja $x \in A \cup (B \cap C)$. Daí $x \in A$ ou $x \in B \cap C$. Suponha que $x \in A$, assim $x \in A \cup B$ e também $x \in A \cup C$. Logo $x \in (A \cup B) \cap (A \cup C)$ e com isso $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$. Agora para mostrar (2) seja $y \in (A \cup B) \cap (A \cup C)$. Assim $y \in A \cup B$ e $y \in A \cup C$. Assim $y \in A$ ou $y \in B$ e também $y \in A$

- (1) $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$;
- $(2) (A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C).$

Para mostrar (1) seja $x \in A \cup (B \cap C)$. Daí $x \in A$ ou $x \in B \cap C$. Suponha que $x \in A$, assim $x \in A \cup B$ e também $x \in A \cup C$. Logo $x \in (A \cup B) \cap (A \cup C)$ e com isso $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$. Agora para mostrar (2) seja $y \in (A \cup B) \cap (A \cup C)$. Assim $y \in A \cup B$ e $y \in A \cup C$. Assim $y \in A$ ou $y \in B$ e também $y \in A$ ou $y \in C$.

- $(1) \ A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C);$
- $(2) (A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C).$

Para mostrar (1) seja $x \in A \cup (B \cap C)$. Daí $x \in A$ ou $x \in B \cap C$. Suponha que $x \in A$, assim $x \in A \cup B$ e também $x \in A \cup C$. Logo $x \in (A \cup B) \cap (A \cup C)$ e com isso $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$. Agora para mostrar (2) seja $y \in (A \cup B) \cap (A \cup C)$. Assim $y \in A \cup B$ e $y \in A \cup C$. Assim $y \in A$ ou $y \in B$ e também $y \in A$ ou $y \in C$. Se $y \in A$,

- $(1) \ A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C);$
- $(2) (A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C).$

Para mostrar (1) seja $x \in A \cup (B \cap C)$. Daí $x \in A$ ou $x \in B \cap C$. Suponha que $x \in A$, assim $x \in A \cup B$ e também $x \in A \cup C$. Logo $x \in (A \cup B) \cap (A \cup C)$ e com isso $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$. Agora para mostrar (2) seja $y \in (A \cup B) \cap (A \cup C)$. Assim $y \in A \cup B$ e $y \in A \cup C$. Assim $y \in A$ ou $y \in B$ e também $y \in A$ ou $y \in C$. Se $y \in A$, então $y \in A \cup (B \cap C)$. Agora, suponha que $y \notin A$,

- $(1) \ A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C);$
- $(2) (A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C).$

Para mostrar (1) seja $x \in A \cup (B \cap C)$. Daí $x \in A$ ou $x \in B \cap C$. Suponha que $x \in A$, assim $x \in A \cup B$ e também $x \in A \cup C$. Logo $x \in (A \cup B) \cap (A \cup C)$ e com isso $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$. Agora para mostrar (2) seja $y \in (A \cup B) \cap (A \cup C)$. Assim $y \in A \cup B$ e $y \in A \cup C$. Assim $y \in A$ ou $y \in B$ e também $y \in A$ ou $y \in C$. Se $y \in A$, então $y \in A \cup (B \cap C)$. Agora, suponha que $y \notin A$, logo $y \in B$ e $y \in C$,

- $(1) \ A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C);$
- $(2) (A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C).$

Para mostrar (1) seja $x \in A \cup (B \cap C)$. Daí $x \in A$ ou $x \in B \cap C$. Suponha que $x \in A$, assim $x \in A \cup B$ e também $x \in A \cup C$. Logo $x \in (A \cup B) \cap (A \cup C)$ e com isso $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$. Agora para mostrar (2) seja $y \in (A \cup B) \cap (A \cup C)$. Assim $y \in A \cup B$ e $y \in A \cup C$. Assim $y \in A$ ou $y \in B$ e também $y \in A$ ou $y \in C$. Se $y \in A$, então $y \in A \cup (B \cap C)$. Agora, suponha que $y \notin A$, logo $y \in B$ e $y \in C$, isto é, $y \in B \cap C$ e com isso $y \in A \cup (B \cap C)$. Assim,

- $(1) \ A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C);$
- $(2) (A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C).$

Para mostrar (1) seja $x \in A \cup (B \cap C)$. Daí $x \in A$ ou $x \in B \cap C$. Suponha que $x \in A$, assim $x \in A \cup B$ e também $x \in A \cup C$. Logo $x \in (A \cup B) \cap (A \cup C)$ e com isso $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$. Agora para mostrar (2) seja $y \in (A \cup B) \cap (A \cup C)$. Assim $y \in A \cup B$ e $y \in A \cup C$. Assim $y \in A$ ou $y \in B$ e também $y \in A$ ou $y \in C$. Se $y \in A$, então $y \in A \cup (B \cap C)$. Agora, suponha que $y \notin A$, logo $y \in B$ e $y \in C$, isto é, $y \in B \cap C$ e com isso $y \in A \cup (B \cap C)$. Assim, independente do caso sempre temos $y \in A \cup (B \cap C)$.

- $(1) \ A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C);$
- $(2) (A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C).$

Para mostrar (1) seja $x \in A \cup (B \cap C)$. Daí $x \in A$ ou $x \in B \cap C$. Suponha que $x \in A$, assim $x \in A \cup B$ e também $x \in A \cup C$. Logo $x \in (A \cup B) \cap (A \cup C)$ e com isso $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$. Agora para mostrar (2) seja $y \in (A \cup B) \cap (A \cup C)$. Assim $y \in A \cup B$ e $y \in A \cup C$. Assim $y \in A$ ou $y \in B$ e também $y \in A$ ou $y \in C$. Se $y \in A$, então $y \in A \cup (B \cap C)$. Agora, suponha que $y \notin A$, logo $y \in B$ e $y \in C$, isto é, $y \in B \cap C$ e com isso $y \in A \cup (B \cap C)$. Assim, independente do caso sempre temos $y \in A \cup (B \cap C)$. Logo, $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$.

- (1) $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$;
- $(2) (A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C).$

Para mostrar (1) seja $x \in A \cup (B \cap C)$. Daí $x \in A$ ou $x \in B \cap C$. Suponha que $x \in A$, assim $x \in A \cup B$ e também $x \in A \cup C$. Logo $x \in (A \cup B) \cap (A \cup C)$ e com isso $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$. Agora para mostrar (2) seja $y \in (A \cup B) \cap (A \cup C)$. Assim $y \in A \cup B$ e $y \in A \cup C$. Assim $y \in A$ ou $y \in B$ e também $y \in A$ ou $y \in C$. Se $y \in A$, então $y \in A \cup (B \cap C)$. Agora, suponha que $y \notin A$, logo $y \in B$ e $y \in C$, isto é, $y \in B \cap C$ e com isso $y \in A \cup (B \cap C)$. Assim, independente do caso sempre temos $y \in A \cup (B \cap C)$. Logo, $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$. Portanto.

- $(1) \ A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C);$
- $(2) (A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C).$

Para mostrar (1) seja $x \in A \cup (B \cap C)$. Daí $x \in A$ ou $x \in B \cap C$. Suponha que $x \in A$, assim $x \in A \cup B$ e também $x \in A \cup C$. Logo $x \in (A \cup B) \cap (A \cup C)$ e com isso $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$. Agora para mostrar (2) seja $y \in (A \cup B) \cap (A \cup C)$. Assim $y \in A \cup B$ e $y \in A \cup C$. Assim $y \in A$ ou $y \in B$ e também $y \in A$ ou $y \in C$. Se $y \in A$, então $y \in A \cup (B \cap C)$. Agora, suponha que $y \notin A$, logo $y \in B$ e $y \in C$, isto é, $y \in B \cap C$ e com isso $y \in A \cup (B \cap C)$. Assim, independente do caso sempre temos $y \in A \cup (B \cap C)$. Logo, $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$. Portanto,

$$(A \cap B) \cup (A \cap C) = A \cap (B \cup C),$$

- $(1) \ A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C);$
- $(2) (A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C).$

Para mostrar (1) seja $x \in A \cup (B \cap C)$. Daí $x \in A$ ou $x \in B \cap C$. Suponha que $x \in A$, assim $x \in A \cup B$ e também $x \in A \cup C$. Logo $x \in (A \cup B) \cap (A \cup C)$ e com isso $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$. Agora para mostrar (2) seja $y \in (A \cup B) \cap (A \cup C)$. Assim $y \in A \cup B$ e $y \in A \cup C$. Assim $y \in A$ ou $y \in B$ e também $y \in A$ ou $y \in C$. Se $y \in A$, então $y \in A \cup (B \cap C)$. Agora, suponha que $y \notin A$, logo $y \in B$ e $y \in C$, isto é, $y \in B \cap C$ e com isso $y \in A \cup (B \cap C)$. Assim, independente do caso sempre temos $y \in A \cup (B \cap C)$. Logo, $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$. Portanto,

$$(A \cap B) \cup (A \cap C) = A \cap (B \cup C),$$

como queríamos.

- $(1) \ A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C);$
- $(2) (A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C).$

Para mostrar (1) seja $x \in A \cup (B \cap C)$. Daí $x \in A$ ou $x \in B \cap C$. Suponha que $x \in A$, assim $x \in A \cup B$ e também $x \in A \cup C$. Logo $x \in (A \cup B) \cap (A \cup C)$ e com isso $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$. Agora para mostrar (2) seja $y \in (A \cup B) \cap (A \cup C)$. Assim $y \in A \cup B$ e $y \in A \cup C$. Assim $y \in A$ ou $y \in B$ e também $y \in A$ ou $y \in C$. Se $y \in A$, então $y \in A \cup (B \cap C)$. Agora, suponha que $y \notin A$, logo $y \in B$ e $y \in C$, isto é, $y \in B \cap C$ e com isso $y \in A \cup (B \cap C)$. Assim, independente do caso sempre temos $y \in A \cup (B \cap C)$. Logo, $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$. Portanto,

$$(A \cap B) \cup (A \cap C) = A \cap (B \cup C),$$

como queríamos.