Wersja:

Numer indeksu:	
00000	00

Grupa ⁺ :		
8–10 s.104	8 - 10 s. 105	8–10 s.139
8–10 s.140		
10-12 s.104	10-12 s.139	10-12 s.140

Logika dla informatyków

Sprawdzian nr 1, 20 listopada 2015 czas pisania: 30+60 minut

Zadanie 1 (2 punkty). Jeśli dla dowolnych formuł φ i ψ logiki pierwszego rzędu formuła $(\exists x \ \varphi) \Rightarrow (\exists x \ \psi) \Rightarrow \forall x \ (\varphi \Rightarrow \psi)$ jest tautologią to w prostokąt poniżej wpisz dowód tej tautologii w systemie naturalnej dedukcji. W przeciwnym przypadku wpisz odpowiedni kontrprzykład.

Uniwersum: \mathbb{N} , $\varphi: x = 5$, $\psi: x = 7$

Zadanie 2 (2 punkty). W prostokąt poniżej wpisz dwie formuły, odpowiednio w dysjunkcyjnej i koniunkcyjnej postaci normalnej, mające następującą tabelkię zero-jedynkową.

p	q	r	φ
Т	Т	Т	Т
Т	Т	F	T
Т	F	T	T
Т	F	F	T
F	Т	Т	Т
F	Т	F	F
F	F	Т	F
F	F	F	F

CNF: $(p \lor q) \land (p \lor r)$ DNF: $p \lor (q \land r)$

¹Proszę zakreślić właściwą grupę ćwiczeniową.

Wersja:	\mathbf{A}

Numer i	ndeksu:	
	000000	

Grupa ¹ :		
8–10 s.104	8-10 s. 105	8–10 s.139
8–10 s.140		
10–12 s.104	10–12 s.139	10–12 s.140

Zadanie 6 (5 punktów). Które z poniższych zdań są prawdziwe dla wszystkich formuł φ i ψ rachunku zdań?

- 1. Jeśli $\varphi \Rightarrow \psi$ jest spełnialna oraz $\neg \psi$ jest tautologia, to $\neg \varphi$ jest spełnialna.
- 2. Jeśli $\varphi \Rightarrow \psi$ jest spełnialna oraz $\neg \psi$ jest tautologia, to φ jest spełnialna.

Podaj dowody ich prawdziwości. W pozostałych przypadkach wskaż kontrprzykłady.

Zadanie 7 (5 punktów). Udowodnij, że jeżeli dla pewnych zbiorów A i B zachodzi $A \setminus B = B \setminus A$, to A = B.

Zadanie 8 (5 punktów). Rozważmy odwzorowanie \mathcal{T} przyporządkowujące formułom zbudowanym ze zmiennych zdaniowych oraz spójnikow \vee, \wedge, \neg (i nawiasów) formuły zbudowane ze zmiennych, spójników \Rightarrow, \bot (i nawiasów) w następujący sposób.

$$\mathcal{T}(p) = p, \quad \text{dla wszystkich zmiennych } p$$

$$\mathcal{T}(\varphi_1 \vee \varphi_2) = (\mathcal{T}(\varphi_1) \Rightarrow \bot) \Rightarrow \mathcal{T}(\varphi_2)$$

$$\mathcal{T}(\varphi_1 \wedge \varphi_2) = (\mathcal{T}(\varphi_1) \Rightarrow (\mathcal{T}(\varphi_2) \Rightarrow \bot)) \Rightarrow \bot$$

$$\mathcal{T}(\neg \varphi) = \mathcal{T}(\varphi) \Rightarrow \bot$$

Udowodnij, że dla wszystkich formuł φ zbudowanych ze zmiennych zdaniowych oraz spójnikow \vee, \wedge, \neg (i nawiasów) formuły φ i $\mathcal{T}(\varphi)$ są równoważne.

Rozwiązanie. Przeprowadzimy dowód indukcyjny względem struktury formuły φ . Niech \mathcal{F} oznacza zbiór wszystkich formuł zbudowanych ze zmiennych zdaniowych oraz spójnikow \vee, \wedge, \neg (i nawiasów) i niech

$$X = \{ \varphi \in \mathcal{F} \mid \varphi \equiv \mathcal{T}(\varphi) \}.$$

Musimy pokazać, że X zawiera zmienne zdaniowe (to jest podstawa indukcji) oraz że jest zamknięty na spójniki \vee, \wedge, \neg (krok indukcyjny).

Podstawa indukcji: Weźmy dowolną zmienną zdaniową p. Ponieważ $\mathcal{T}(p) = p$, formuły $\mathcal{T}(p)$ oraz p są równoważne, a stąd $p \in X$.

Krok indukcyjny: Weźmy dowolne formuły φ_1 i φ_2 i załóżmy, że $\varphi_1, \varphi_2 \in X$ (to jest założenie indukcyjne). Pokażemy, że także $\varphi_1 \vee \varphi_2$, $\varphi_1 \wedge \varphi_2$ oraz $\neg \varphi_1$ należą do zbioru X. Z założenia indukcyjnego wiemy, że $\varphi_1 \equiv \mathcal{T}(\varphi_1)$ oraz $\varphi_2 \equiv \mathcal{T}(\varphi_2)$.

- $\mathcal{T}(\varphi_1 \vee \varphi_2) = (\mathcal{T}(\varphi_1) \Rightarrow \bot) \Rightarrow \mathcal{T}(\varphi_2)$, a zatem z założenia indukcyjnego jest to formuła równoważna $(\varphi_1 \Rightarrow \bot) \Rightarrow \varphi_2$). Korzystając z rownoważności $p \Rightarrow q \equiv \neg p \vee q$ otrzymujemy równoważną formułę $\neg(\neg \varphi_1 \vee \bot) \vee \varphi_2$, która uprasza się do $\varphi_1 \vee \varphi_2$. Zatem $\mathcal{T}(\varphi_1 \vee \varphi_2) \equiv \varphi_1 \vee \varphi_2$, co pokazuje że $\varphi_1 \vee \varphi_2 \in X$.
- Przypadek $\varphi_1 \wedge \varphi_2$ jest podobny:

$$\mathcal{T}(\varphi_1 \wedge \varphi_2) = (\mathcal{T}(\varphi_1) \Rightarrow (\mathcal{T}(\varphi_2) \Rightarrow \bot)) \Rightarrow \bot \equiv (\varphi_1 \Rightarrow (\varphi_2 \Rightarrow \bot)) \Rightarrow \bot$$
$$\equiv \neg(\varphi_1 \Rightarrow (\varphi_2 \Rightarrow \bot)) \lor \bot \equiv \varphi_1 \land \neg(\varphi_2 \Rightarrow \bot) \equiv \varphi_1 \land (\varphi_2 \land \neg\bot) \equiv \varphi_1 \land \varphi_2.$$

Zatem $\mathcal{T}(\varphi_1 \wedge \varphi_2) \equiv \varphi_1 \wedge \varphi_2$, co pokazuje, że $\varphi_1 \wedge \varphi_2 \in X$.

•
$$\mathcal{T}(\neg \varphi_1) = \mathcal{T}(\varphi_1) \Rightarrow \bot \equiv \varphi_1 \Rightarrow \bot \equiv \neg \varphi_1 \lor \bot \equiv \neg \varphi_1$$
. Zatem $\neg \varphi_1 \in X$.

Na mocy zasady indukcji zbiór X zawiera wszystkie formuły z \mathcal{F} , a to oznacza, że dla wszystkich formuł φ zbudowanych ze zmiennych zdaniowych oraz spójnikow \vee , \wedge , \neg (i nawiasów) formuły φ i $\mathcal{T}(\varphi)$ są równoważne.

¹Proszę zakreślić właściwą grupę ćwiczeniową.

Waraia	Numer indeksu:	Grupa ¹ : 8-10 s.104 8-10 s.140	8–10 s.105	8–10 s.139
Wersja:	000000	10–12 s.104	10–12 s.139	10–12 s.140
	Logika dla inform	atyków		
Sprawdzian nr 1, 20 listopada 2015 czas pisania: 30+60 minut				
Zadanie 1 (2 punkty). Jeśli dla dowolnych formuł φ i ψ logiki pierwszego rzędu formuła $(\exists x \ \varphi \Rightarrow \psi) \Rightarrow (\exists x \ \varphi) \Rightarrow \exists x \ \psi$ jest tautologią to w prostokąt poniżej wpisz dowód tej tautologii w systemie naturalnej dedukcji. W przeciwnym przypadku wpisz odpowiedni kontrprzykład.				

Zadanie 2 (2 punkty). Mówimy, że w algebrze zbiorów wyrażenie W jest uproszczeniem wyrażenia W' jeśli oba wyrażenia oznaczają ten sam zbiór, oba zawierają tylko zmienne, binarne symbole \cup, \cap, \setminus i nawiasy, oraz W zawiera mniej symboli niż W'. Np. $A \setminus B$ jest uproszczeniem $(A \cup B) \setminus B$. Jeśli istnieje uproszczenie wyrażenia $(A \cap (C \setminus B)) \cup B$ to w prostokąt poniżej wpisz dowolne takie uproszczenie. W przeciwnym przypadku wpisz słowo "NIE".

 $\varphi: x = 5, \quad \psi: \bot$

Universum: \mathbb{N} ,

 $(A \cap C) \cup B$

¹Proszę zakreślić właściwą grupę ćwiczeniową.

Zadanie 3 (2 punkty). W prostokąt poniżej wpisz dwie formuły, odpowiednio w dysjunkcyjnej i koniunkcyjnej postaci normalnej, mające następującą tabelkię zero-jedynkową.

p	q	r	φ
Т	Т	Т	Т
Т	Т	F	T
Т	F	Т	T
Т	F	F	F
F	Т	T	T
F	Т	F	T
F	F	T	F
F	F	F	F

	CNF: $(p \lor q) \land (q \lor r)$	$\text{DNF: } q \lor (p \land r)$	
to w prostokąt poniżej		$\{q, \neg r \lor s, \neg q \lor \neg s, \neg p \lor r\}$ jest rzeczności tego zbioru. W przeciw	
Zadanie 5 (2 punkt w prostokąt poniżej w wiedni kontrprzykład.	cy). Jeśli formuły $(p \Leftrightarrow q) \lor$ rpisz słowo "RÓWNOWAŻN"	r oraz $(p \lor q) \Leftrightarrow (p \lor r)$ są równ E". W przeciwnym przypadku w	noważne to pisz odpo-

Wersja:	\mathbf{D}

Numer	indeksu:	
	000000	

Grupa ¹ :		
8–10 s.104	8-10 s. 105	8–10 s.139
8–10 s.140		
10–12 s.104	10–12 s.139	10–12 s.140

Zadanie 6 (5 punktów). Rozważmy odwzorowanie \mathcal{T} przyporządkowujące formułom zbudowanym ze zmiennych zdaniowych oraz spójnikow \vee, \wedge, \neg (i nawiasów) formuły zbudowane ze zmiennych, spójników \Rightarrow, \neg (i nawiasów) w następujący sposób.

$$\mathcal{T}(p) = p$$
, dla wszystkich zmiennych p
 $\mathcal{T}(\varphi_1 \vee \varphi_2) = \neg(\mathcal{T}(\varphi_1)) \Rightarrow \mathcal{T}(\varphi_2)$
 $\mathcal{T}(\varphi_1 \wedge \varphi_2) = \neg(\mathcal{T}(\varphi_1)) \Rightarrow \neg(\mathcal{T}(\varphi_2)))$
 $\mathcal{T}(\neg \varphi) = \neg(\mathcal{T}(\varphi))$

Udowodnij, że dla wszystkich formuł φ zbudowanych ze zmiennych zdaniowych oraz spójnikow \vee, \wedge, \neg (i nawiasów) formuły φ i $\mathcal{T}(\varphi)$ są równoważne.

Rozwiązanie. Przeprowadzimy dowód indukcyjny względem głębokości formuły φ . Indukcja względem struktury φ byłaby bardziej naturalna, ale chcemy pokazać, że można to zrobić inaczej niż w wersji A.

Niech $\mathcal F$ oznacza zbiór wszystkich formuł zbudowanych ze zmiennych zdaniowych oraz spójnikow \vee, \wedge, \neg (i nawiasów) i niech

$$X = \{ n \in \mathbb{N} \mid \text{dla każdej formuly } \varphi \in \mathcal{F} \text{ o głębokości } n, \varphi \equiv \mathcal{T}(\varphi) \}.$$

Podstawa indukcji: Weźmy dowolną formułę o głębokości 1. Jest to pewna zmienna zdaniowa p. Ponieważ $\mathcal{T}(p) = p$, formuły $\mathcal{T}(p)$ oraz p są równoważne, a stąd $1 \in X$.

Krok indukcyjny: Weźmy dowolne $n \geq 1$ i załóżmy, że wszystkie liczby nie większe niż n należą do X, czyli że dla wszystkich formuł φ o głębokości $\leq n$ formuły φ oraz $\mathcal{T}(\varphi)$ są rownoważne (to jest założenie indukcyjne). Pokażemy, że także $n+1 \in X$, czyli że dla wszystkich formuł φ o głębokości n+1 formuły φ oraz $\mathcal{T}(\varphi)$ są rownoważne. Weźmy zatem dowolną formułę $\varphi \in \mathcal{F}$ o głębokości n+1 i rozważmy następujące trzy przypadki.

```
\varphi = \varphi_1 \vee \varphi_2: Formuły \varphi_1 oraz \varphi_2 mają głębokość nie większą niż n, więc z założenia indukcyjnego \varphi_1 \equiv \mathcal{T}(\varphi_1) oraz \varphi_2 \equiv \mathcal{T}(\varphi_2). Wtedy \mathcal{T}(\varphi_1 \vee \varphi_2) = \neg(\mathcal{T}(\varphi_1)) \Rightarrow \mathcal{T}(\varphi_2) \equiv \neg \varphi_1 \Rightarrow \varphi_2 \equiv \varphi_1 \vee \varphi_2, a stąd \varphi \equiv \mathcal{T}(\varphi).
```

```
\varphi = \varphi_1 \wedge \varphi_2: Formuly \varphi_1 oraz \varphi_2 mają głębokość nie większą niż n, więc z założenia indukcyjnego \varphi_1 \equiv \mathcal{T}(\varphi_1) oraz \varphi_2 \equiv \mathcal{T}(\varphi_2). Wtedy \mathcal{T}(\varphi_1 \wedge \varphi_2) = \neg(\mathcal{T}(\varphi_1) \Rightarrow \neg(\mathcal{T}(\varphi_2))) \equiv \neg(\varphi_1 \Rightarrow \neg\varphi_2) \equiv \varphi_1 \wedge \varphi_2, a stąd \varphi \equiv \mathcal{T}(\varphi).
```

 $\varphi = \neg \varphi_1$: Formula φ_1 ma glębokość nie większą niż n, więc z założenia indukcyjnego $\varphi_1 \equiv \mathcal{T}(\varphi_1)$. Wtedy $\mathcal{T}(\neg \varphi_1) = \neg(\mathcal{T}(\varphi_1)) \equiv \neg \varphi_1$, a stąd $\varphi \equiv \mathcal{T}(\varphi)$.

We wszystkich możliwych przypadkach pokazaliśmy, że $\varphi \equiv \mathcal{T}(\varphi)$, a z tego wynika że dla wszystkich formuł φ o głębokości n+1 formuły φ oraz $\mathcal{T}(\varphi)$ są rownoważne, czyli $n+1 \in X$.

Na mocy zasady indukcji zbiór X zawiera wszystkie liczby naturalne ≥ 1 , a to oznacza, że dla wszystkich formuł φ (o dowolnej głębokości) zbudowanych ze zmiennych zdaniowych oraz spójnikow \vee, \wedge, \neg (i nawiasów) formuły φ i $\mathcal{T}(\varphi)$ są równoważne.

Zadanie 7 (5 punktów). Które z poniższych zdań są prawdziwe dla wszystkich formuł φ i ψ rachunku zdań?

1. Jeśli $\varphi \Rightarrow \psi$ jest tautologią oraz $\neg \psi$ jest spełnialna, to $\neg \varphi$ jest spełnialna.

 $^{^{1}\}mathrm{Prosz}$ ę zakreślić właściwą grupę ćwiczeniową.

2. Jeśli $\varphi \Rightarrow \psi$ jest tautologią oraz $\neg \psi$ jest spełnialna, to φ jest spełnialna.

Podaj dowody ich prawdziwości. W pozostałych przypadkach wskaż kontrprzykłady.

Zadanie 8 (5 punktów). Udowodnij, że jeżeli dla pewnych zbiorów A, B i C zachodzi $A \cap B = A \cap C$ oraz $A \cup B = A \cup C$, to B = C.