

Universidad San Ignacio de Loyola

Introducción a las Ciencias de la Computación

PROYECTO FINAL

Número de grupo: 10

Apellidos y nombres de los alumnos:

AVENDAÑO HUAMAN ESTEBAN JOEL

CAHUANA ESTRADA PIERO DIEGO

CHUQUIMANGO OTAZU CRISTIAN ANDRE

PAZ BRUFFAU FABRICIO JESUS

RIOS VITO DANIELA PAOLA

VILLAR GONIA FABIANA JAZMIN

Lima –Perú

2022

OBJETIVOS GENERALES:

Nos dispusimos a poner en práctica el uso de estructuras repetitivas, así como funciones para ejecutar acciones y retornar valores con o sin parámetros.

OBJETIVOS ESPECÍFICOS:

Para el caso 1 del proyecto, elaboramos un juego de azar con las indicaciones que nos fueron provistas. Para el caso 2 del proyecto, desarrollamos una calculadora científica que proporciona distintas operaciones al usuario. Para el caso 3 del proyecto, determinamos un producto de matrices cuadradas (nxn).

CASO 1: Juego de adivinanzas

Para esta práctica de laboratorio, necesitará usar bucles do-while y declaraciones if para construir un juego de adivinanzas. La computadora elegirá un número aleatorio entre 1 y 100 y el usuario deberá adivinar cuál es el número. Si el usuario adivina incorrectamente, la computadora indicará si la suposición del usuario fue demasiado alta o demasiado baja. Si el usuario adivina correctamente, la computadora informa cuántos intentos se necesitaron para obtener la respuesta correcta y luego pregunta al usuario si desea volver a jugar. Este programa requerirá cuatro bucles do-while:

El ciclo do-while principal (el más externo) contendrá casi todo el código del programa y seguirá ejecutándose una y otra vez hasta que el usuario indique que ya no desea jugar.

El bucle do-while del juego está anidado dentro del bucle do-while principal y seguirá ejecutándose una y otra vez hasta que el usuario adivine la respuesta correcta y gane el juego. Tan pronto como el usuario gane un juego, el programa saldrá de este bucle do-while.

El ciclo do-while de validación de entrada numérica está anidado dentro del ciclo do-while del juego y garantizará que el usuario ingrese un número entero válido para cada suposición.

El bucle do-while de validación de entrada no numérica se encuentra DESPUÉS y FUERA del bucle do-while del juego. Solo se ejecuta después de que se completa un juego y le pregunta al usuario si desea volver a jugar. Está anidado dentro del ciclo do-while primario y garantizará que el usuario ingrese un 'Y' / 'y' / 'N' / 'n' válido en respuesta a la pregunta "¿Le gustaría volver a jugar (Y/N)?" pregunta.

```
#include <iostream>
using namespace std;
int main()
{
  float i = 0, x = 0; // i = maquina, x = usuario
  int intentos = 0;
  string flag;
  bool valido;
  srand(time(NULL));
  do
  {
    //REINICIANDO...
    intentos = 0;
    valido = false;
    //GENERANDO EL NÚMERO ALEATORIO...
    i = 1 + rand() \% (99);
    cout << "Hemos generado un numero..." << endl;
```

```
//PIDIENDO AL USUARIO QUE ADIVINE...
do
  cout << "Adivine el numero del 1 al 100" << endl;
  do
     cin >> x;
     if (x > 100 || x < 1)
       valido = false;
       cout << "Numero invalido, ingrese un numero del 1 al 100: " << endl;
     }
     else
     {
       valido = true;
     }
  } while (valido == false);
  intentos++; //Cuenta cada intento
  if (x > i) //Si el usuario fue mayor
```

```
cout << "Su suposicion fue muy alta" << endl;</pre>
  else if (x < i) // Si el usuario fue menor
     cout << "Su suposicion fue muy baja" << endl;
  }
\} while (x != i);
//GANASTE...
cout << "*********** << endl;
cout << "Felicidades, acerto la adivinanza!" << endl;</pre>
cout << "Numero de intentos: " << intentos << endl;</pre>
valido = false;
do
{
  cout << "Le gustaria volver a jugar? (Y/N): ";
  cin >> flag;
  if \, (flag == "y" \parallel flag == "Y" \parallel flag == "n" \parallel flag == "N")
     valido = true;
  else
```

CASO 2: CALCULADORA CIENTÍFICA

- · Acceso rápido a los números pi y e.
- · Funciones de trigonometría.
- Funciones logarítmicas en base e y en base 10.
- · Funciones exponenciales.
- · Raíces cuadradas y superiores.
- · Notaciones científicas.
- · Aritmética de punto flotante.
- · Cálculo binario, hexadecimal y octal.

```
// Librerias
#include <iomanip>
#include <iostream>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string>
using namespace std;
// Variables Globales
int getSeleccion();
void showOpciones();
void getOperacion();
float getValor(string texto);
// Prototipos de funcion
float SumayResta();
float Multiplicacion();
```

```
float Division();
float Potencia();
float Logaritmo();
void NotacionCientifica();
void AritmeticaPuntoFlotante();
float SistemaNumerico();
float valorAbsoluto();
float RaizCuadrada();
void showOptsTri();
float FuncionesTri();
int opcionTri();
float resultadoTri(float num);
// CONVERSIONES
float Dec_Binario(int num) {
  int dividendo = 0, cociente = 0;
  float residuo = 0, k = 1, octal = 0;
  cociente = num;
  while (cociente \geq = 2) {
     dividendo = cociente;
     cociente = dividendo / 2;
     residuo = (float)(dividendo % 2);
     octal += residuo * k;
     k = k * 10;
  }
  octal += cociente * k;
```

```
return octal;
}
float Dec_Octal(int num) {
  int dividendo = 0, cociente = 0;
  float residuo = 0, k = 1, octal = 0;
  cociente = num;
  while (cociente \geq = 8) {
     dividendo = cociente;
     cociente = dividendo / 8;
     residuo = (float)(dividendo % 8);
     octal += residuo * k;
     k = k * 10;
  }
  octal += cociente * k;
  return octal;
float Dec Hexa(int num) {
  int dividendo = 0, cociente = 0;
  float residuo = 0, k = 1, octal = 0;
  cociente = num;
  while (cociente >= 16) {
     dividendo = cociente;
     cociente = dividendo / 16;
```

```
residuo = (float)(dividendo % 16);
     octal += residuo * k;
     k = k * 10;
  octal += cociente * k;
  return octal;
}
// Variables
int slt; // Seleccion del usuario
float resultado;
// Funcion principal
int main() { getOperacion(); }
// Validar que el usuario ingrese valores entre 1 y 13
int getSeleccion() {
  int valor = 0;
  bool valido = false;
  while (valido == false) {
     showOpciones();
     cin >> valor;
     if (valor > 13 || valor < 1 || typeid(valor) == typeid(string)) {
       valido = false;
       system("cls");
       cout << "VALOR INVALIDO (elija las opciones disponibles [1-13])" << endl;
```

```
}
   else {
    valido = true;
 }
 return valor;
}
// Mostrar menu de opciones
void showOpciones() {
 cout << "Seleccione la operacion que desee realizar: " << endl << endl;
 cout << "Suma y Resta.....[1]" << endl;
 cout << "Division......[3]" << endl;
 cout << "Raices cuadradas y superiores......[5]" << endl;
 cout << "Logaritmo......[6]" << endl;
 cout << "Notacion Cientifica......[7]" << endl;
 cout << "Sistemas de numeracion......[9]" << endl;
 cout << "Funciones de trigonometria.....[10]" << endl;
 cout << "Valor absoluto......[11]" << endl;
 }
// Casos
void getOperacion() {
 switch (getSeleccion()) {
```

```
case 1:
  resultado = SumayResta();
  cout << "El resultado es: " << resultado << endl;</pre>
  break;
case 2:
  resultado = Multiplicacion();
  cout << "El resultado es: " << resultado << endl;</pre>
  break;
case 3:
  resultado = Division();
  cout << "El resultado es: " << resultado << endl;
  break;
case 4:
  resultado = Potencia();
  cout << "El resultado es: " << resultado << endl;</pre>
  break;
case 5:
  resultado = RaizCuadrada();
  cout << "El resultado es: " << resultado << endl;</pre>
  break;
case 6:
  resultado = Logaritmo();
  cout << "El \ resultado \ es: " << resultado << endl;
  break;
```

```
case 7:
  NotacionCientifica();
  break;
case 8:
  AritmeticaPuntoFlotante();
  cout << "El resultado es: " << resultado << endl;</pre>
  break;
case 9:
  resultado = SistemaNumerico();
  cout << "El resultado es: " << resultado << endl;
  break;
case 10:
  resultado = FuncionesTri();
  cout << "El resultado es: " << resultado << endl;
  break;
case 11:
  resultado = valorAbsoluto();
  cout << "El resultado es: " << resultado << endl;</pre>
  break;
case 12:
  cout << "INDICACIONES IMPORTANTES" << endl;</pre>
  cout << "- escriba "
     "pi"
```

```
" o "
       "e"
       " para usar el numero pi y el numero neperiano respectivamente"
       << endl;
     cout << "- las funciones trigonometricas se calculan en radianes" << endl;
     break;
  }
  bool valido = false;
  string flag;
  do {
     cout << "Desea volver a hacer una operacion (S/N)?" << endl;
     cin >> flag;
     if (flag == "s" || flag == "S") {
       valido = true;
       getOperacion();
     else if (flag == "n" || flag == "N") {
       valido = false;
       cout << "*********************************
     }
  } while (valido);
// Valores pi y e
float getValor(string texto) {
```

}

```
float valor = 0;
  if (texto == "pi") {
     valor = 3.1416f;
  else if (\text{texto} == \text{"e"}) {
     valor = 2.718f;
  }
  else {
     valor = stof(texto);
  }
  return valor;
}
float SumayResta() {
  int cantidad = 0;
  float suma = 0;
  string sumando = "0", signo = "+";
  bool valido = false;
  cout << "Ingrese cantidad de numeros a operar: ";</pre>
  do {
     cin >> cantidad;
     if (cantidad > 1) {
        valido = true;
     }
     else {
        valido = false;
       cout << "Porfavor ingrese una cantidad mayor a 1:" << endl;
     }
```

```
} while (!valido);
valido = false; // resetando...
for (int i = 0; i < cantidad; i++) {
  valido = false; // reseteando el valor...
  while (valido == false) {
     cout <<"Ingrese \ el \ numero " << i+1 << " : ";
     cin >> sumando;
     if (getValor(sumando) \ge 0 \parallel getValor(sumando) \le 0) {
        valido = true;
     }
     else {
       valido = false;
       cout << "Dato invalido, ingrese un numero" << endl;</pre>
  }
  if (signo == "+" || i == 0) {
     suma += getValor(sumando);
  }
  else if (signo == "-") {
     suma -= getValor(sumando);
  }
  if (i = cantidad - 1)
     valido = false; // reseteamos este valor para la siguiente validación...
```

```
while (valido == false) {
       cout << "Desea sumar o restar?, escriba (+/-): ";</pre>
       cin >> signo;
       if (signo == "+" \parallel signo == "-") {
          valido = true;
       }
       else {
          valido = false;
          cout << "Dato invalido, ingrese signos (+/-)" << endl;
       }
  }
  return suma;
}
float Multiplicacion() {
  int cantidad = 0;
  float producto = 1;
  string multiplo = "0";
  bool valido = false;
  cout << "Ingrese cantidad de numeros a multiplicar: ";</pre>
  do {
     cin >> cantidad;
     if (cantidad > 1) {
       valido = true;
```

```
}
     else {
       valido = false;
       cout << "Porfavor ingrese una cantidad mayor a 1:" << endl;
     }
  } while (!valido);
  for (int i = 0; i < cantidad; i++) {
     cout << "Ingrese multiplo " << i + 1 << " : ";
     cin >> multiplo;
     producto = producto * getValor(multiplo);
  }
  return producto;
}
float Division() {
  int cantidad = 0;
  float division = 1;
  string divisor = "0";
  bool valido = false;
  cout << "Ingrese cantidad de numeros a dividir: ";
  do {
     cin >> cantidad;
     if (cantidad > 1) {
       valido = true;
     }
```

```
else {
       valido = false;
       cout << "Porfavor ingrese una cantidad mayor a 1:" << endl;
  } while (!valido);
  for (int i = 0; i < cantidad; i++) {
     cout << "Ingrese divisor " << i + 1 << " : ";
     cin >> divisor;
     if (i == 0)
       division = getValor(divisor);
     else
       division = division / getValor(divisor);
  }
  return division;
float Potencia() {
  float base, exponente, potencia = 1;
  cout << "Ingrese el numero base: ";</pre>
  cin >> base;
  cout << "Ingrese el numero exponente: ";</pre>
  cin >> exponente;
  potencia = pow(base, exponente);
  return potencia;
```

}

```
}
float RaizCuadrada() {
  float n = 0, m = 0, raiz = 0;
  cout << "Ingresar radicando:";</pre>
  cin >> n;
  cout << "Ingresar el numero indice: ";</pre>
  cin >> m;
  raiz = pow(n, (1 / m));
  return raiz;
}
float Logaritmo() {
  float base = 0, argumento = 0;
  float logaritmo = 0;
  bool valido = false;
  do {
     cout << "Ingresar la base de logaritmo diferente a 0:";
     cin >> base;
     if (base == 0)
       valido = false;
     else
       valido = true;
  } while (!valido);
  cout << "Ingresar argumento:";</pre>
  cin >> argumento;
```

```
logaritmo = (log(argumento) / log(base));
  cout << "log" << base << "(" << argumento << ")"
     << "=" << logaritmo << endl;
  return logaritmo;
}
void NotacionCientifica() {
  float numero;
  cout << "Ingrese un numero grande para calcular su notacion cientifica: ";
  cin >> numero;
  cout << "Su notacion cientifica es: ";</pre>
  cout << numero;</pre>
}
void AritmeticaPuntoFlotante() {
  double x;
  cout << "Ingresar numero:" << endl;</pre>
  cin >> x;
  cout << setprecision(4);</pre>
  cout << "float:";</pre>
  cout \ll x \ll endl;
  cout << setprecision(8);</pre>
  cout << "double:";</pre>
  cout \ll x \ll endl;
```

```
cout << setprecision(16);</pre>
  cout << "long double:";</pre>
  cout \ll x \ll endl;
}
float SistemaNumerico() {
  int opcion1 = 1;
  float old num = 0,
     new num = 0; // old es el ingresado y new es la transformación
  bool valido = false;
  // CUAL ES ESE NUMERO...?
  cout << "Que numero desea transformar?: ";</pre>
  cin >> old num;
  cout << "Binario.....[1] " << endl;
  cout << "Octal......[2] " << endl;
  cout << "Hexadecimal..[3]" << endl;</pre>
  do {
     cout << "A que sistema numerico lo quiere pasar?: " << endl;
     cin >> opcion1;
     if (opcion 1 > 3 \parallel opcion 1 < 1) {
       valido = false;
       cout << "Dato nvalido, por favor seleccion una de las opciones "
          "disponibles";
     }
     else
```

```
valido = true;
  } while (!valido);
  switch (opcion1) {
  case 1: // A binario...
    new_num = Dec_Binario(old_num);
    break;
  case 2: // A octal...
    new_num = Dec_Octal(old_num);
    break;
  case 3: // A hexadecimal...
    new_num = Dec_Hexa(old_num);
    break;
  }
  return new_num;
float FuncionesTri() {
  float num, result;
  cout << "Ingresar el numero:";</pre>
  cin >> num;
  cout << endl;
  result = resultadoTri(num);
  return result;
int opcionTri() {
```

}

}

```
int valor = 0;
  bool valido = false;
  while (valido == false) {
     showOptsTri();
     cin >> valor;
     if (valor > 3 || valor < 1 || typeid(valor) == typeid(string)) {
       valido = false;
       system("cls");
       cout << "VALOR INVALIDO (elija las opciones disponibles)" << endl;
     }
     else {
       valido = true;
     }
  return valor;
void showOptsTri() {
  cout << "MENU DE OPCIONES:" << endl;</pre>
  cout << "Convertir a seno:[1]" << endl;</pre>
  cout << "Convertir a coseno:[2]" << endl;</pre>
  cout << "Convertir a tangente:[3]" << endl;</pre>
  cout << "Elige una opcion:" << endl;</pre>
}
float resultadoTri(float num) {
  float result{};
  switch (opcionTri()) {
  case 1:
```

```
result = \sin(\text{num} * 3.14159 / 180);
     break;
  case 2:
     result = \cos(\text{num} * 3.14159 / 180);
     break;
  case 3:
     result = tan(num * 3.14159 / 180);
     break;
  }
  return result;
float valorAbsoluto() {
  float n, m;
  cout << "Ingrese el numero a hallar su V.A: ";
  cin >> n;
  if (n < 0) {
     m = n * -1;
  else if (n > 0) {
     m = n * 1;
  return m;
}
```

```
CASO 03: Construya la multiplicación de matrices para el caso n x n
#include<iostream>
using namespace std;
const int FIL=100; //Establecer un límite en las filas
const int COL=100; //Establecer un límite en las columnas
//Prototipos
void entradaDatos(float MATRIZ[FIL][COL],int fil,int col);
void multiplicacionMatrices(float A[FIL][COL],int FILa,int COLa,float B[FIL][COL],int
FILb,int COLb,float P[FIL][COL] );
void imprimirMatriz(float MATRIZ[FIL][COL],int fil,int col);
int main ()
{
  float A[FIL][COL];
  float B[FIL][COL];
  float P[FIL][COL];
  int n,filA,colA,filB,colB;
  cout << "Ingresar el orden de la matriz:";
  cin>>n;
  cout << "\n";
  cout<<"MATRIZ MULTIPLICANDO:"<<"\n";</pre>
  cout<<"Como la matriz es cuadrada, su orden es "<<n<<" x "<<n<<"\n";
  filA=n;
       colA=n;
  entradaDatos(A,filA,colA);
  cout << "\n";
  cout<<"MATRIZ MULTIPLICADOR:"<<"\n";</pre>
    cout<<"Para que se puedan multiplicar, la segunda matriz debe tener el mismo orden:
```

"<<n<<" x "<<n<<"\n":

```
filB=n;
  colB=n;
  entradaDatos(B,filB,colB);
  multiplicacionMatrices(A,filA,colA,B,filB,colB,P);
  cout << "\n";
  cout<<"MATRIZ MULTIPLICANDO:"<<"\n";</pre>
  imprimirMatriz(A,filA,colA);
  cout << "\n";
  cout<<"MATRIZ MULTIPLICADOR:"<<"\n";
  imprimirMatriz(B,filB,colB);
  cout << "\n";
  cout << "PRODUCTO DE MATRICES:" << "\n";
  imprimirMatriz(P,filA,colB);
}
void entradaDatos(float MATRIZ[FIL][COL],int fil,int col)
{
       for(int i=0;i<fil;i++)
              for(int j=0;j<col;j++)
               {
                      cout << "Ingresar \ el \ dato(" << i << ") (" << j << "):";
                      cin>>MATRIZ[i][j];
              }
       }
}
```

```
void multiplicacionMatrices(float A[FIL][COL],int FILa,int COLa,float B[FIL][COL],int
FILb,int COLb,float P[FIL][COL] )
{
  for(int i=0;i<FILa;i++)
        {
     for(int j=0; j<COLb; j++)
        P[i][j]=0;
        for(int k=0;k<COLa;k++)</pre>
          P[i][j] += A[i][k] * B[k][j]; //P[i][j] = P[i][j] + A[i][k] * B[k][j]
void imprimirMatriz(float MATRIZ[FIL][COL],int fil,int col)
{
        for(int i=0;i<fil;i++)
                for(int j=0;j<col;j++)
                        cout \!\!<\!\! MATRIZ[i][j] \!\!<\!\! "\backslash t|";
                cout << "\n";
        }
}
```

CONCLUSIONES: En conclusión, por medio de estructuras condicionales, repetitivas y funciones en conjunto con distintos tipos y usos de variables, somos capaces de determinar un algoritmo de comportamiento complejo. Este trabajo en concreto, es de mucha ayuda pues nos permite reforzar y aplicar nuestros conocimientos en C++ para la solución de estos casos.

GLOSARIO DE TÉRMINOS:

#include<stdlib.h>

Archivo de cabecera estándar que tiene las funciones útiles para hacer búsqueda y ordenamiento de datos de cualquier tipo.

#include<time.h>

Formatea y manipula la hora y fecha del sistema.

#include <iomanip>

Por medio de la función setprecision() podemos establecer la precisión de puntos flotantes.

#include <iostream>

Sirve para poder tener acceso a los dispositivos estándar de entrada y/o salida.

#include <math.h>

Está diseñado para realizar operaciones matemáticas básicas. Nos permite utilizar funciones de potenciación (pow()) y funciones trigonométricas (sen(), cos(), tan()).

#include <stdio.h>

Se utiliza para definir y modificar ficheros.

#include <string>

Nos permite utilizar las variables de tipo "string" y todas sus cualidades.

Parámetros

Son valores que solicita una función cada vez que es invocada, por lo siempre habremos de transmitir valores.

Variable global

Se define fuera de cualquier función, normalmente al principio del programa y cualquier función puede acceder a dichas variables para poder leer y escribir en ellas.

Variable local

Su ámbito se restringe a la función que la ha declarado y solo se podrá manipular en dicha sección.

Bibliotecas de c++

Colección de clases y funciones escritas en el núcleo del lenguaje.

Función

Bloque de código encargado de realizar una determinada operación. Puede definir parámetros de entrada opcionalmente que permiten a los llamadores pasar argumentos por la función, asimismo también puede devolver un valor como salida

Prototipos de función

Permiten declarar una función al inicio del programa (valor a retornar, nombre de la función y lista de argumentos) seguida de punto y coma.

• Entrada de datos

Recoge datos externos para incorporarlos en el programa.

Proceso

Es la parte del algoritmo en la que se llevan a cabo las acciones del mismo. Ya sean cálculos, invocación de funciones, cambios de valores, comportamiento a partir de estructuras condicionales, etc.

Salida de datos

Es la parte del algoritmo en la cual se imprimen (muestran) los datos determinados previamente.

LINK DEL VIDEO:

https://youtu.be/6bozmz1o61Y