Domanda A

Si consideri la rete sequenziale del circuito seguente.

Essa riceve un segnale di ingresso \mathbf{x} di un bit ad ogni ciclo di clock e calcola il valore della funzione \mathbf{F} . Come si nota \mathbf{F} dipende dal valore di \mathbf{x} al tempo presente (\mathbf{t}) e in alcuni istanti di tempo nel passato ($\mathbf{t-1}$, $\mathbf{t-2}$, ...). Esplicitare l'espressione di \mathbf{F} come funzione degli ingressi \mathbf{x} nei diversi istanti di tempo e progettare la rete combinatoria \mathbf{RC} in modo che il circuito qui di seguito realizzi la stessa funzione \mathbf{F} .

Domanda B

Un sistema riceve in ingresso tre parole di 8 bit A[7:0], B[7:0], e C[7:0], che rappresentano valori interi in complemento a due. Utilizzando componenti a media scala d'integrazione, si realizzi un circuito che implementa in modo ottimizzato la funzione descritta dallo pseudocodice riportato a fianco. Si ricavi infine l'espressione analitica del bit meno significativo Z[0] del risultato Z[10:0], nel caso specifico in cui A=-B.

Domanda C

Si minimizzi la macchina non completamente specificata descritta dalla tabella degli stati riportata a lato tenendo presente che A è lo stato di reset. Utilizzando flip-flop di tipo, T si sintetizzi la macchina minima ottenuta e si disegni il circuito così ottenuto.

	0	1
A	B/0	B/1
В	E/-	-/-
С	F/1	F/0
D	A/-	-/0
E	-/0	D/-
F	C/0	A/1
G	D/0	A / 1

Domanda D

Si progetti una macchina a stati dotata di un ingresso dati \mathbf{x} , un ingresso di controllo \mathbf{c} , un'uscita dati \mathbf{y} e un'uscita di controllo \mathbf{v} . Mentre $\mathbf{c}=\mathbf{0}$, $\mathbf{v}=\mathbf{0}$ ed \mathbf{y} è ininfluente. Quando invece \mathbf{c} vale $\mathbf{1}$ su \mathbf{x} si ricevono i bit di una parola binaria a partire dal meno significativo. In questo caso l'uscita di controllo \mathbf{v} vale $\mathbf{1}$ e l'uscita dati \mathbf{y} deve essere tale da formare una sequenza di uscita che rappresenta il complemento a due della sequenza d'ingresso. Il seguente diagramma rappresenta un esempio del comportamento atteso della macchina, in cui le due sequenze evidenziate, lette da sinistra verso destra, sono l'una il complemento a due dell'altra. Si sintetizzi la macchina con flip-flop D.

```
c ... 0 0 0 1 1 1 1 1 1 0 0 0 ...

x ... 1 1 0 1 0 1 1 0 0 1 0 1 ...

v ... 0 0 0 1 1 1 1 1 1 0 0 0 ...

y ... - - - 0 1 0 1 0 0 - - - ...
```