Lecture 8: Multiple Regression

C91AR: Advanced Statistics using R

Dr Peter E McKenna

2025-03-11

Contents

1	Setup code	2
2	Content for today	3
3	Getting started with Multiple regression	3
4	Coefficients	3
5	What is the purpose of multiple regression?	4
6	A worked example using the grades.csv dataset	4
	6.1 Metadata	4
	6.2 Examine pairwise correlations	5
7	Estimation and interpretation	6
8	Writing out the formula in R	6
9	Predicting grade based on lecture and nclicks	6
10	Model results	7
11	Plugging the estimates back into the formula	7
12	Predicting from new data	7

1 SETUP CODE

13	Visualising Partial effects	8
	Visualising the partial effect of lecture on grade holding nclicks constant	9
	14.1 R code for partial effects	9 10
	15.1 A word on partial effects plots	10
	Standardising Coefficients	11
	16.1 Z-scores	11
17	Rescaling predictors	11
18	Interpretation	13
19	Model Comparison	13
20	Reconceptualising the question	13
21	Running model comparisons	13
22	R Code for model comparisons	14
23	Interpretation of model comparisons	14
24	What did we cover today	14
25	Tutorial exercise for this week	15
26	Reading	15

1 Setup code

```
# change output format
options(scipen = 999)

# set the seed
set.seed(453)
```

4 COEFFICIENTS 3

2 Content for today

- Multiple regression formula
- Worked example using the "grades.csv" dataset from PsyTeachR
- The predict function
- Partial effects
- Standardising coefficients
- Model comparison

3 Getting started with Multiple regression

The general model for single-level data with m predictors is:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_m X_{mi} + e_i$$

- Key assumption is that the model residuals are normally distributed.
- Predictor variables X can be either categorical or continuous, as well as interactions between predictors.
- e_i = difference between the predicted and the observed value of Y for the ith participant.
- The relationship is planar, i.e., can be described by a flat surface.
- Error variable is independent of the predictor values.

4 Coefficients

- In multiple regression you will have m+1 regression coefficients; one for the intercept (β_0) , and one for each predictor (X_m) .
- Each β_h value (coefficient associated with the h^{th} independent variable) is understood as the partial effect of β_h holding constant all other predictors.

- In other words, a partial effect of a coefficient in multiple regression refers to the effect of a particular IV on the DV, whilst holding all other IVs constant.
- Response variable (Y) is predicted from a combination of all of the variables multiplied by their respective coefficients, plus a residual term.

5 What is the purpose of multiple regression?

• To identify a linear combination of predictors that exhibits the highest correlation with the response variable.

6 A worked example using the grades.csv dataset

• How do you get a good grade in statistics?

```
## # A tibble: 100 x 4
##
              GPA lecture nclicks
      grade
##
      <dbl> <dbl>
                    <int>
                             <int>
   1 2.40 1.13
##
                         6
                                88
      3.67 0.971
                         6
                                96
      2.85 3.34
                        6
                               123
##
   4 1.36 2.76
                        9
                                99
##
      2.31 1.02
                         4
                                66
      2.58 0.841
##
                        8
                                99
   7
      2.69 4
                        5
                                86
      3.05 2.29
                               118
      3.21 3.39
                        9
                                98
## 10 2.24 3.27
                       10
                               115
## # i 90 more rows
```

6.1 Metadata

• N=100 statistics students

- grade = final course grade
- lecture = number of lectures attended; an integer from 0:10
- nclicks = number of times the students clicked to download online materials
- GPA = grade point average prior to taking the course; ranging from 0 (fail) to 4 (best possible grade)

6.2 Examine pairwise correlations

```
# Examine pairwise correlations
grades |>
  correlate() |>
  shave() |>
  fashion() # shave & fashion tidy up the output
```

```
## term grade GPA lecture nclicks

## 1 grade

## 2 GPA .25

## 3 lecture .24 .44

## 4 nclicks .16 .30 .36
```

pairs(grades)

What can you infer from the correlation matrix?

7 Estimation and interpretation

• For a Generalised Linear Model (GLM) with m predictors:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_m X_{mi} + e_i$$

- Where...
 - $-Y_i$ = the response variable (or, the outcome to be predicted)
 - $-\beta_0$ = the intercept term
 - $\beta_1 X_{1i}$ = the regression coefficient for predictor variable X_1
 - $\beta_2 X_{2i} =$ the regression coefficient for predictor variable X_2
 - $-e_i = model residuals$
 - $-\hat{hat}$ = presence of a hat denotes and sample estimate, not the actual sample statistic

8 Writing out the formula in R

• Writing out a multiple regression model in R is much like what we did for simple regression, except you need to add a term for each predictor variable (X):

```
lm(Y \sim X1 + X2 + ... + Xm, data)
```

• Note: You do not need to specify the intercept or the residuals, as these are included by default.

9 Predicting grade based on lecture and nclicks

```
my_model <-
   lm(grade ~ lecture + nclicks, grades)

# Summarise the model
summary(my_model)

##
## Call:</pre>
```

```
## Call:
## lm(formula = grade ~ lecture + nclicks, data = grades)
##
## Residuals:
## Min 1Q Median 3Q Max
```

```
## -2.21653 -0.40603 0.02267 0.60720
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
  (Intercept) 1.462037
                          0.571124
                                     2.560
                                             0.0120 *
## lecture
               0.091501
                          0.045766
                                     1.999
                                             0.0484 *
## nclicks
               0.005052
                          0.006051
                                     0.835
                                             0.4058
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
## Residual standard error: 0.8692 on 97 degrees of freedom
## Multiple R-squared: 0.06543,
                                    Adjusted R-squared:
## F-statistic: 3.395 on 2 and 97 DF, p-value: 0.03756
```

10 Model results

• From the output, we can see that

```
\begin{split} &-\hat{\beta_0} = 1.46 \text{ (intercept)} \\ &-\hat{\beta_1} = 0.09 \text{ (lecture coefficient)} \\ &-\hat{\beta_2} = 0.01 \text{ (nclicks coefficient)} \end{split}
```

11 Plugging the estimates back into the formula

• The result indicates that the following formula can be used to describe how a persons grade is predicted by their lecture attendance and course material download behaviour:

```
\mathtt{grade} = 1.46 + 0.09 \times \mathtt{lecture} + 0.01 \times \mathtt{nclicks}
```

- And, because the regression coefficients of $\hat{\beta}_1$ (lecture) and $\hat{\beta}_2$ (nclicks) are both positive we can surmise that these predictors have a positive impact on grade.
- If you had data on students nclicks and lecture attendance, you could use this to estimate their grade, based on the multiple regression model.

12 Predicting from new data

• Warning: If you want to pass new data to your multiple regression model the variable names have to match exactly. R is unforgiving when it comes to labels, so match sure both the name and text case is the same in your data and the model.

- Now that we've created our table new_data, we can pass it to mutate and predict() to add a vector
 with the predictions for Y (grade).
- Remember we have already created a model called my_model based on the composition:

```
lm(grade ~ lecture + nclicks, data = grades)
```

```
# Add predicted grade vector using `predict` function
new_data |>
mutate(predicted_grade = predict(my_model, new_data))
```

```
## # A tibble: 4 x 3
##
     lecture nclicks predicted_grade
##
       <dbl>
                <dbl>
                                  <dbl>
## 1
            3
                    70
                                   2.09
## 2
           10
                   130
                                   3.03
## 3
            0
                    20
                                   1.56
                                   2.42
## 4
            5
                   100
```

13 Visualising Partial effects

- Each regression coefficient parameter estimate indicates the *partial effect* of that variable; i.e., that variable's effect holding all other variables constant.
- You can visualise partial effects using predict by
 - making a table with varying values of the focal predictor and filling all other predictors with their mean values (i.e., keep them constant)

14 Visualising the partial effect of lecture on grade holding nclicks constant

- Remember, lecture is an integer from 0:10, so we want to create a vector that includes each of these levels.
- To keep nclicks constant, let's create a vector that only contains the mean value for nclicks.

14.1 R code for partial effects

```
# Create vector containing nclicks mean
nclicks_mean <-
                    # take the grades dataset
  grades |>
  pull(nclicks) |> # extract single column from df as a vector
  mean()
# Create new data for prediction
new_lecture <-</pre>
  tibble(lecture = 0:10,
                                  # create vector containing each level of lecture
         nclicks = nclicks_mean) # add vector of nclicks mean
# Add predicted grades vector controlling for effects of nclicks
new_lecture2 <-</pre>
  new_lecture |>
  mutate(grade = predict(my_model, new_lecture))
# Present data
new_lecture2
```

```
## # A tibble: 11 x 3
##
     lecture nclicks grade
##
       <int>
              <dbl> <dbl>
           0
                98.3 1.96
##
   1
  2
                98.3 2.05
##
           1
           2
##
  3
                98.3 2.14
           3
                98.3 2.23
## 4
           4
                98.3 2.32
## 5
           5
                98.3 2.42
  6
           6
                98.3 2.51
##
  7
```

```
## 8 7 98.3 2.60
## 9 8 98.3 2.69
## 10 9 98.3 2.78
## 11 10 98.3 2.87
```

15 Plot Partial effets

Partial effect of lecture on grade.

15.1 A word on partial effects plots

• Partial effects plots are meaningful when there are no interactions in the model between the focal predictor and any other predictors.

• This is because, when there are interactions, the partial effect of a focal predictor X_i will differ across the values of other predictors it interacts with.

16 Standardising Coefficients

- Part of multiple regression modelling is determining which of the predictors in your model matter the most when predicting Y.
- In the analysis above, all of the $\hat{\beta}$ (coefficient estimates) come from different scales, so comparing their values is meaningless.
- One way you can convert these scales into something comparable is to convert them into **z-scores**.

$$z = \frac{X - \mu_x}{\sigma_x}$$

16.1 Z-scores

- z-scores represent how far a value of X is from the sample mean (μ_x) in standard deviations (σ_x) .
- When you re-scale using z-scores the mean of the scale is set to 0.
- So, a z-score of 1 (z = 1) means that that particular score for X is one standard deviation higher than the mean, and -1 would indicate a score 1 standard deviation below the mean.
- Z-scores offer a means to compare data that come from different populations by converting the values to a standard normal distribution (a distribution with a mean of 0 and SD = 1).

17 Rescaling predictors

```
## # A tibble: 6 x 6
## grade GPA lecture nclicks lecture_c nclicks_c
```

```
##
    <dbl> <dbl>
                  <int>
                          <int>
                                   <dbl>
                                             <dbl>
## 1 2.40 1.13
                      6
                             88
                                  -0.484
                                           -0.666
## 2 3.67 0.971
                             96
                                  -0.484
                                           -0.150
                      6
## 3 2.85 3.34
                      6
                            123
                                  -0.484
                                          1.59
## 4 1.36 2.76
                      9
                             99
                                  0.982
                                            0.0439
## 5 2.31 1.02
                      4
                             66
                                  -1.46
                                           -2.09
## 6 2.58 0.841
                    8
                             99
                                    0.493
                                            0.0439
```

• Now let's fit a model using our z-scores for equal comparison

```
my_model_scaled <-
  lm(grade ~ lecture_c + nclicks_c,
     grades2)
# Summarise the model
summary(my_model_scaled)
##
## Call:
## lm(formula = grade ~ lecture_c + nclicks_c, data = grades2)
##
## Residuals:
##
       Min
                 1Q
                      Median
                                   3Q
                                          Max
## -2.21653 -0.40603 0.02267 0.60720 1.38558
##
## Coefficients:
##
              Estimate Std. Error t value
                                                    Pr(>|t|)
## (Intercept) 2.59839 0.08692 29.895 <0.0000000000000000 ***
## lecture_c 0.18734 0.09370
                                  1.999
                                                      0.0484 *
## nclicks_c
               0.07823
                          0.09370
                                  0.835
                                                      0.4058
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8692 on 97 degrees of freedom
## Multiple R-squared: 0.06543, Adjusted R-squared: 0.04616
## F-statistic: 3.395 on 2 and 97 DF, p-value: 0.03756
```

18 Interpretation

- Now that we have scaled the data we can compare the coefficient estimates
- The model output indicates that lecture_c actually had more of an impact on grade, with each SD increase in lecture_c grade increased by 0.19 (i.e., $\hat{\beta}_1 = 0.19$).
- This is compared to our un-scaled model where the estimate was 0.091 (i.e., $\hat{\beta}_1 = 0.09$)

19 Model Comparison

- You may also want to check whether a predictor variable significantly affects the dependent (or response) variable, over and above the effect of one of your control variables.
- We saw above that the model including lecture and nclicks was significant, F(2, 97) = 3.395, p = 0.038.
- The null hypothesis for a multiple regression model represents a model where all of the coefficients (other than the intercept) are zero: $H_0: \beta_1 \beta_2 = ... = \beta_m = 0$ OR $Y_i = \beta_0$
- Put differently, your best prediction of Y is simply its mean (μ_y) , and the X predictor variables have no effect on Y.
- The regression model above rejects H₀, indicating that lecture and nclicks can be used to predict grade.

20 Reconceptualising the question

- It is possible that better students (who are more likely to attend lectures and download online course content) are simply more likely to get better grades.
- If this is true, than the relationship between lecture, nclicks, and grade would be mediated by student quality.
- So, the question becomes; are lecture and nclicks associated with better grades above and beyond student ability, indicated by GPA.

21 Running model comparisons

- 1. Estimate a model containing any control predictors, excluding the focal predictors.
- 2. Estimate a model containing the control predictors, including the focal predictors.
- 3. Compare the two models using anova

22 R Code for model comparisons

```
# Control model
m1 <-
  lm(grade ~ GPA, grades)
# Focal predictor model
m2 <-
  lm(grade ~ GPA + lecture + nclicks, grades)
# Run the model comparison
anova(m1, m2)
## Analysis of Variance Table
##
## Model 1: grade ~ GPA
## Model 2: grade ~ GPA + lecture + nclicks
               RSS Df Sum of Sq
##
     Res.Df
                                      F Pr(>F)
         98 73.528
## 1
         96 71.578 2
                         1.9499 1.3076 0.2752
```

23 Interpretation of model comparisons

- H_0 states that we can predict grade from GPA, just as well as we can from GPA, lecture, and nclicks.
- H₀ will be rejected if the inclusion of lecture and nclicks (i.e., in the focal predictor model) leads
 to a substantial reduction in the residual sum of squares.
- This would indicate that their inclusion helps to significantly reduce the amount of unexplained variance in the model.
- The result F(2,96) = 1.308, p = 0.275 shows that our control variable model is as good at explaining the results as our focal predictor model.
- So, lecture and nclicks do not predict better grades more so than GPA alone.

24 What did we cover today

- Equations/formula for multiple regression
- Worked example using the "grades.csv" dataset from PsyTeachR
- The predict function

26 READING 15

- Calculating and visualising partial effects
- Comparing standard models and non-standardised models

25 Tutorial exercise for this week

• Visualize the partial effect of nclicks on grade.

26 Reading

Learning Statistical Models Through Simulation in R: Chapter 4 Multiple Regression