





# **Table of Content What will We Learn Today?**

- 1. What is Data Preprocessing
- 2. Data cleaning (imputation)
- 3. Data transformation (one-hot, label encoding)
- 4. Normalization, standardization







## **Data Preprocessing**







#### Apa itu features/ variables

- Fitur adalah properti terukur dari objek yang kita coba analisis.
- Dalam kumpulan data, fitur muncul sebagai kolom:

| Sex    | Age | BMI | DM type       | DM duration | FBS | Sys BP      | Dias BP | Retinopathy |
|--------|-----|-----|---------------|-------------|-----|-------------|---------|-------------|
| Male   | 65  | 25  | <del>II</del> | 20          | 129 | 130         | 80      | Yes         |
| Male   | 42  | 27  | II            | 300         | 210 | 140         | 90      | No          |
| Female | 31  | 21  | J             | 11          | 164 | 145         | 80      | Yes         |
| Male   | 70  | 32  | 11            | 29          | 208 | 160         | 100     | Yes         |
| Female | 54  | 34  | II            | 6           | 183 | 155         | 95      | No          |
|        | 46  | 29  | П             | 7           | 198 | 160         | 100     | No          |
| Female | 16  | 24  | 1             | -1          | 250 | 135         | 80      | No          |
| Male   | 67  | 30  | II            | 12          | 243 | <b>1</b> 65 | 90      | Yes         |
| Female | 51  | 28  | II            | 7           | 163 | 130         | 85      | No          |
| Girl   | 70  | 36  | 11            | 20          | 250 | 150         | 90      | Yes         |
| Female | 63  | 35  | Ш             | 14          | 203 | 160         | 110     | No          |
| Male   | 44  | 39  | II            | 3           | 149 | 140         | 90      | No          |
| Boy    | 51  | 24  | 11            | 9           | 160 | 155         | 80      | No          |
| Male   | 27  | 19  | ì             | 5           | 170 | 140         | 90      | No          |



 Kualitas fitur dalam kumpulan data memiliki dampak besar pada kualitas wawasan yang akan diperoleh saat pemodelan machine learning.





#### Jenis-jenis Fitur

- Jenis Fitur Kategoris
  - Fitur Nominal
    - Fitur nominal yang sering juga disebut skala kualitatif adalah skala data yang berfungsi hanya untuk membedakan dan tidak ada tingkatan diantaranya.
    - Contoh: Gender, Warna Rambut, Warna Mata
  - Fitur Ordinal
    - Fitur Ordinal atau skala kualitatif di mana data dikelompokkan menjadi orde atau tingkatan tingkatan.
    - Contoh : Jenjang Pendidikan, Kepuasan Pelanggan
- Jenis Fitur Numerik
  - Fitur Discrete
    - Data diskrit mewakili item yang dapat dihitung.
    - Contoh : Jumlah Siswa, Jumlah Kendaraan, dll
  - Fitur Continuous
    - Data kontinu mewakili item yang dapat diukur.
    - Contoh: Tinggi, Suhu, Kecepatan, dll







#### What is Data preprocessing



Data



Machine Learning
Model

- Data cleaning
- Data integration
- Data reduction
- Data transformation







#### **Data preprocessing**

- Data preprocessing merupakan sekumpulan teknik yang diterapkan pada dataset untuk menghapus noise, meng-handle missing value, dan data yang tidak konsisten.
- Feature engineering adalah proses mengubah data mentah menjadi fitur yang siap dipakai oleh model ML.
- Feature engineering terdiri dari pembuatan fitur, sedangkan data preprocessing melibatkan pembersihan data.







#### **Tugas Utama dalam Data Preprocessing**

- Data cleaning
  - Fill in missing values,
  - Smooth noisy data,
  - Identify or remove outliers, and
  - Resolve inconsistencies
- Data integration
  - Integration of multiple databases, or files
- Data reduction
  - Dimensionality reduction
- Data transformation
  - Normalization
  - Standardization
  - Encoding







#### **Data Cleaning**

- Data di dunia nyata itu 'kotor'.
  - Kosong atau tidak lengkap
    - pekerjaan=" "
  - Noisy: nilai yg salah atau outliers
    - gaji="-10"
  - Nilai tidak konsisten
    - jenis kelamin="perempuan"
    - vs. jenis kelamin="wanita"
  - Data yang sama/ duplicate
- No quality data, no quality mining results!

| Sex    | Age | вмі | DM type | DM duration | FBS | Sys BP      | Dias BP | Retinopathy |
|--------|-----|-----|---------|-------------|-----|-------------|---------|-------------|
| Male   | 65  | 25  | П       | 20          | 129 | 130         | 80      | Yes         |
| Male   | 42  | 27  | II      | 300         | 210 | 140         | 90      | No          |
| Female | 31  | 21  | I       | 11          | 164 | 145         | 80      | Yes         |
| Male   | 70  | 32  | 11      | 29          | 208 | 160         | 100     | Yes         |
| Female | 54  | 34  | II      | 6           | 183 | 155         | 95      | No          |
|        | 46  | 29  | Ш       | 7           | 198 | 160         | 100     | No          |
| Female | 16  | 24  | 1       | -1          | 250 | 135         | 80      | No          |
| Male   | 67  | 30  | II      | 12          | 243 | <b>1</b> 65 | 90      | Yes         |
| Female | 51  | 28  | II      | 7           | 163 | 130         | 85      | No          |
| Girl   | 70  | 36  | II      | 20          | 250 | 150         | 90      | Yes         |
| Female | 63  | 35  | Ш       | 14          | 203 | 160         | 110     | No          |
| Male   | 44  | 39  | II      | 3           | 149 | 140         | 90      | No          |
| Boy    | 51  | 24  | II      | 9           | 160 | 155         | 80      | No          |
| Male   | 27  | 19  | Ì       | 5           | 170 | 140         | 90      | No          |







#### Incomplete (Missing) Data

- Data tidak selalu tersedia
  - Misalnya, banyak baris tidak memiliki nilai untuk beberapa atribut, seperti pendapatan pelanggan dalam data penjualan
- Data yang hilang mungkin karena
  - kerusakan peralatan
  - data tidak masuk karena ada kesalah pahaman
  - data tertentu mungkin tidak dianggap penting pada waktu proses entri







#### **How to Handle Missing Data?**

- Abaikan baris:
- Isi nilai yang hilang secara manual: butuh waktu lama?
- Isi secara otomatis dengan
  - konstanta global: misalnya, "unknown",
  - atribut mean, median (untuk numerik)
  - rata-rata atribut untuk semua sampel yang termasuk dalam kelas yang sama
  - nilai yang paling sering muncul (untuk kategoris)







## **Noisy Data**

- Noise adalah data yang berisi nilai-nilai yang salah atau anomali, yang biasanya disebut juga outlier.
- Nilai atribut yang salah mungkin karena
  - instrumen pengumpulan data yang salah
  - terjadi masalah pada saat entri data
  - terjadi masalah pada transmisi data







#### **How to Handle Noisy Data?**

- Binning
  - urutkan data dan partisi terlebih dahulu ke dalam bin (frekuensi yang sama)
  - kemudian dapat mengganti nilai outlier dengan nilai rata rata atau median dalam bin tersebut.
- Regression
  - smooth training data dengan fungsi regresi / mengganti outlier berdasarkan fungsi regresi
- Clustering
  - mendeteksi dan menghapus outlier
- Combined computer and human inspection
  - mendeteksi nilai yang mencurigakan dan diperiksa oleh manusia (misalnya, menangani kemungkinan outlier)







# Challenges

| location          | date_of_sale | property_size_sq_m | number of bedrooms | price  | type                   |
|-------------------|--------------|--------------------|--------------------|--------|------------------------|
| Clapham           | 12/4/1999    | 58                 | 1                  | 729000 | apartment,1930s        |
| Ashford           | 5/8/2017     | 119                |                    | 699000 | semi-detached,1970s    |
| Stratford-on-Avon | 29/3/2012    | 212                | 3                  | 540000 | detached,17th century  |
| Canterbury        | 1/7/2009     | 95                 | 2                  | 529000 | teraced,1960s          |
| Camden            | 16/12/2001   | 54                 | 1                  | 616000 | apartment,2000s        |
| Rugby             | 1/3/2003     | 413                | 7                  | 247000 | detached, 19th century |
| Hampstead         | 5/3/2016     | 67                 | 2                  | 890000 | terraced, 19th century |

- 1. Numeric vs category
- 2. Measurement scale







#### **Apa itu Feature Encoding?**

- One-Hot Encoding
  - Mengubah setiap kategori sehingga memiliki nilai angka 1 atau angka 0

| id | color |                  | id | color_red | color_blue | color_gree |
|----|-------|------------------|----|-----------|------------|------------|
| 1  | red   |                  | 1  | 1         | Θ          | Θ          |
| 2  | blue  | One Hot Encoding | 2  | 0         | 1          | Θ          |
| 3  | green |                  | 3  | 0         | 9          | 1          |
| 4  | blue  |                  | 4  | 0         | 1          | Θ          |

- Label Encoding
  - Mengubah setiap kategori menjadi angka 1,2,3, ... dst

| petallength | petalwidth | iris_class      |
|-------------|------------|-----------------|
| 1.4         | 0.2        | Iris-setosa     |
| 1.4         | 0.2        | Iris-versicolor |
| 1.3         | 0.2        | Iris-virginica  |



|   | petallength | petalwidth | iris_class |
|---|-------------|------------|------------|
| \ | 1.4         | 0.2        | 1          |
| / | 1.4         | 0.2        | 2          |
|   | 1.3         | 0.2        | 3          |







#### Normalization dan Standardization

- Normalization adalah proses mengubah nilai-nilai suatu feature menjadi skala tertentu [0,1].
- Standardization adalah proses mengubah nilai-nilai feature sehingga mean = 0 dan standard deviation = 1

#### Min-Max Scaling

Uses MinMaxScaler

Transform to defined range

#### Standardization

Uses StandardScaler

Transform to mean=0, sd=0

$$y = \frac{x - \min x_i}{\max x_i - \min x_i}$$

$$y = \frac{x - \bar{x}}{s}$$

Where

 $\bar{x}$  = mean

S = Standard deviation







#### Normalization dan Standardization

#### Tujuan

- Data dengan skala yang sama akan menjamin algoritma pembelajaran memperlakukan semua feature dengan adil
- Data dengan skala yang sama dan centered akan mempercepat algoritma pembelajaran
- Data dengan skala yang sama akan mempermudah interpretasi beberapa model ML

#### Kapan penggunaan:

 Gunakan standardization bila kita tahu data punya sebaran normal/gaussian







#### Train test split

- Training adalah proses ketika model mempelajari data
- Hasil dari training disebut model machine learning (trained model)
- Untuk membuktikan keakuratan model, diperlukan data uji (test data)
- Training set : subset untuk melatih model.
- Test set : subset untuk menguji model yang dilatih.
- Karena kurangnya data, kita bisa memisahkan dataset menjadi dua bagian yaitu training dan testing





Training



Testing / Proving





#### **Imbalanced dataset**

- Imbalanced data mengacu pada masalah klasifikasi di mana jumlah pengamatan per kelas tidak merata.
- https://www.kaggle.com/fedesoriano/stroke-prediction-dataset?select=healthcare-dataset-strokedata.csv











#### How to handle imbalanced dataset

- Under sampling = Menyeimbangkan distribusi kelas dengan menghilangkan contoh kelas mayoritas secara acak.
- Oversampling = Meningkatkan jumlah instance di kelas minoritas dengan mereplikasinya secara acak









# Let's practice





# Thank YOU

