

 STUDENT ID NO										

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 2, 2017/18

ENT3036 – SEMICONDUCTOR DEVICES (NE)

17 MAR 2018 2.30 pm – 4.30 pm (2 Hours)

INSTRUCTION TO STUDENTS

- 1. This Question paper consists of 6 pages with 4 Questions only.
- 2. Answer all the questions and all the questions carry equal marks of 25. The distribution of the marks for each question is given.
- 3. Please print all your answers in the Answer Booklet provided.

- (a) A silicon pn junction at zero bias has dopant concentrations of $N_a = 10^{17}$ cm⁻³ and $N_d = 5 \times 10^{15}$ cm⁻³. Temperature T = 300 K.
 - (i) If the Fermi levels in n-side and p-side are given by

$$E_F - E_{Fi} = kT \ln \left(\frac{N_d}{n_i}\right)$$
 and $E_{Fi} - E_F = kT \ln \left(\frac{N_d}{n_i}\right)$

where $n_i = 1.5 \times 10^{15}$ cm⁻³ and $k = 8.62 \times 10^{-5}$ eV/K, calculate Fermi levels on pside and n-side, and obtain the built-in potential. [2+2+1 marks]

(ii) Calculate the space charge widths in n- and p-sides, respectively:

$$x_n = \left[\frac{2\varepsilon_s (V_{bi} + V_R)}{e} \left(\frac{N_a}{N_d}\right) \left(\frac{1}{N_a + N_d}\right)\right]^{\frac{1}{2}} \text{ and } x_p = \left[\frac{2\varepsilon_s (V_{bi} + V_R)}{e} \left(\frac{N_d}{N_a}\right) \left(\frac{1}{N_a + N_d}\right)\right]^{\frac{1}{2}}$$
[2+2 marks]

- (iii) Based on information obtained from above calculations, sketch and name the type of pn junction. [2+2 marks]
- (b) With aid of diagrams, briefly explain minority carrier distributions for a npn operating in the:
 - (i) cutoff mode, and

[3 marks]

(ii) inverse-active mode.

[3 marks]

(c) The emitter current (I_E) for an npn bipolar junction transistor (BJT) is measured and is found to be 1.2 mA, the collector is given by

$$I_C = \frac{eD_n A_{BE}}{x_B} \times n_{B0} \exp\left(\frac{V_{BE}}{V_t}\right)$$
 and $I_S = \frac{eD_n A_{BE}}{x_B} \times n_{B0}$

Calculate the base-emitter voltage, $V_{BE} = V_t \ln \left(\frac{I_C}{I_S} \right)$ with the following parameters.

Common-emitter current gain, β	150
Cross-sectional area of the base emitter junction, A_{BE}	$1.4 \times 10^{-3} \text{cm}^2$
Neutral base width, x_B	0.70 μm
Thermal-equilibrium electron concentration in the base, n_{B0}	$2.3 \times 10^3 \text{cm}^{-3}$
Minority carrier electron diffusion coefficients in base, D_n	$19 \text{ cm}^2 \text{s}^{-1}$

[6 marks]

Continued ...

(a) (i) By means of a simple diagram describe the basic operation of a n-channel pn junction JFET. Briefly explain the pinchoff effect on the I-V characteristic.

[3+2 marks]

(ii) Consider an n-channel single-gate silicon JFET at T = 300 K with impurity doping concentrations of $N_D=4\times10^{16}\,cm^{-3}$ and $N_A=5\times10^{18}\,cm^{-3}$. The channel thickness is 0.35 μ m and the internal pinchoff voltage (V_{po}) is given by

$$V_{po} = \frac{ea^2N_d}{2\epsilon_s}$$

where a is the channel thickness, e (1.6×10⁻¹⁹C) is the electronic charge and ϵ_s (11.7×8.85×10⁻¹⁴ F/cm) is the permittivity of the semiconductor. Calculate the internal pinchoff voltage and the pinchoff voltage. [3+3 marks]

(b) (i) Consider a uniformly doped n-channel silicon JFET with the following parameters: $N_A = 10^{19} \, cm^{-3}$, $N_D = 3 \times 10^{16} \, cm^{-3}$, $a = 0.40 \, \mu m$ and $\mu_n = 1000 \, cm^2/V$ -sec. The maximum drain to source voltage is to be 5V. When $V_{GS} = 0$, the effective channel length L', is to be 90 percent of the original channel length. Determine L.

[10 marks]

(ii) Name and briefly explain TWO (2) nonideal effects that could occur in JFET. [2+2 marks]

Continued...

- (a) Draw the energy-band diagrams of metal oxide semiconductor (MOS) capacitors with *p*-type substrate to explain the accumulation, depletion and inversion in the structure for:
 - (i) a positive gate bias,
 - (ii) a moderate negative gate bias and
 - (iii) a large negative gate bias

 $[3 \times 2 \text{ marks}]$

- (b) State the definition of the followings for a MOS capacitor:
 - (i) Flat band voltage (V_{FB})
 - (ii) Threshold voltage (V_{TN})

[2 ×1marks]

(c) Consider a MOS capacitor with p-type silicon substrate doped at $N_a = 10^{15}$ cm⁻³, a silicon dioxide insulator with a thickness of $t_{ox} = 12$ nm and an aluminum gate. The flat band voltage is given by

$$V_{FB} = \phi_{ms} - \frac{Q_{ss}'}{C_{ox}}$$

where the C_{ox} is the oxide capacitance, Q_{ss}' is the oxide trapped charges, and ϕ_{ms} is the work function between the metal and silicon. $Q_{ss}' = 10^{10}$ e-charges/cm⁻³ and work function $\phi_{ms} = -0.88$ V.

- (i) Calculate C_{ox} , Q'_{ss} and obtain V_{FB} .
- (ii) Given $x_{\rm dT}$ (the maximum space charge width) is 8.63 ×10⁻⁵ cm, calculate $\phi_{\rm fp}$ (the potential between $E_{\rm Fi}$ and $E_{\rm Fp}$), Q'_{SD} (max) (the maximum space charge in the depletion region) and obtain the threshold voltage V_{TN} .

[3 + 5 marks]

- (d) (i) With a proper diagram, explain how the MOS with p-type substrate is used in a Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET). [5 marks]
 - (ii) An ideal n-channel MOSFET is operated with the following parameters: channel length $L = 1.5 \mu m$, electron mobility $\mu_n = 650 \text{ cm}^2/\text{V-s}$, and oxide thickness $C_{\text{ox}} = 7 \times 10^{-8} \text{ F/cm}^2$, and threshold voltage $V_T = 0.65 \text{ V}$. What should be the channel width such that I_D (sat) = 5 mA for $V_{GS} = 5 \text{ V}$? [4 marks]

Continued ...

- (a) (i) With aid of band diagram, explain how the negative differential resistance occurs in Gunn diode. [2 marks]
 - (ii) What is the difference between Zener tunnel diode and Gunn diode in term of electron transport phenomenon? [3 marks]
 - (iii) What are the advantages and disadvantages of Gunn Diode? [4 marks]
- (b) (i) With the aid of a diagram, design mm-wave co-axial cavity Gunn oscillator. Show that the oscillator frequency is given by

$$f_n = \frac{cn}{2l}$$

where l is the cavity length, c the speed of light and n is the number of half of the cavity. [8 marks]

- (c) (i) Sketch the structure of an Ionization Avalanche Transit-Time (IMPATT) diode and oscillator circuit required for its operation. [4 marks]
 - (ii) An IMPATT diode has intrinsic region length at 3.0 μm with holes drift velocity of 9.1 $\times 10^8$ cms⁻¹; calculate the optimum operating frequency for the diode. [4 marks]

Continued...

PHYSICAL CONSTANTS:

Thermal voltage: $V_t = 0.0259 \text{ V}$ Intrinsic concentration of Silicon at 300K: $n_i = 1.5 \times 10^{10} \text{ cm}^{-3}$ Intrinsic concentration of Silicon at 373K: $n_i = 2.5 \times 10^{12} \text{ cm}^{-3}$ Intrinsic concentration of Gallium Arsenide at 300K: $n_i = 1.8 \times 10^6 \text{ cm}^{-3}$ Boltzmann's constant: $k = 1.3806 \times 10^{-23} \text{ J/K}$ Electronic charge: $e = 1.6 \times 10^{-19} \text{ C}$ Permittivity of free space: $\epsilon_0 = 8.85 \times 10^{-14} \text{ F/cm}$

Dielectric constant of Silicon at 300K: $\varepsilon_r = 11.7$ Dielectric constant of Silicon oxide at 300K: $\varepsilon_i = 3.9$ Dielectric constant of Gallium Arsenide at 300K: $\varepsilon_{GaAs} = 13.1$

End of paper.