INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO

PROF. DANIEL S. FREITAS

UFSC - CTC - INE

ÁREAS DA COMPUTAÇÃO

- 2005: estudo de ACM e IEEE a pedido do governo americano.
- Definiram 5 áreas na Computação:
 - Tecnologia da informática
 - Sistemas de Informação
 - Engenharia de Software
 - Engenharia de Computação
 - Ciência da Computação

CIÊNCIA DA COMPUTAÇÃO "PURA"

- Comentário (Edsger Dijkstra):
 - "Computer science is no more about computers than astronomy is about telescopes."
 - ("CC tem tanto a ver com computadores quanto a astronomia com telescópios.")
- Tirado de uma lista de discussões de CC do MIT:
 - "At MIT one starts out by learning about dealing with complexity and abstraction,
 - and goes on to study computer architecture (how to design computer systems), artificial intelligence, modeling, and theory.
 - There is quite a bit of advanced mathematics.
 - Computer Science studies how to make computers faster, more efficient, and more intelligent.(...)"

MATEMÁTICA & CC

- Matemática ⇒ modelagem matemática.
 - Provê métodos (estruturas) convenientes para resolver problemas.
- Dois "tipos" de Matemática são relevantes para a Ciência da Computação:
 - Matemática Contínua
 - Matemática Discreta

MATEMÁTICA CONTÍNUA & CC

- Matemática Contínua:
 - ligada ao Cálculo Infinitesimal
 - permite modelar ("prever") fenômenos físicos
 - Análise Numérica "traduz" o Cálculo para formato compatível com o computador
- Exemplos de aplicações:
 - na Computação: Análise Numérica, Computação Gráfica
 - na Engenharia: permite projetos detalhados de pontes, aviões, carros, etc,

MATEMÁTICA DISCRETA & CC

- Matemática Discreta:
 - Ligada a processos "discretos" (não contínuos)
 - realizados passo-a-passo
 - interessam apenas os "estados" de um sistema
 - e não os detalhes da "transição" entre eles
 - cf.: nros inteiros X nros reais
 - Inteiros + Combinatória + Relações (funções) + Estruturas. Algébricas
- Aplicações na CC:
 - suporte para algoritmos de grafos e estruturas de dados
 - modelagem de máquinas de estados finitos
 - codificação
 - cubo de Rubik

ESTE CURSO

Elementos da Matemática Discreta relevantes para o estudo da Ciência da Computação.

Veremos:

- Introdução à Lógica
- Fundamentos Gerais (conjuntos, seqüências, inteiros)
- Introdução à Analise Combinatória
- Relações (entre conjuntos) e Funções
- Estruturas algébricas
- Essencialmente: compreensão da importância da teoria e da abstração para o estudo da Ciência da Computação.

NOTA SOBRE A ABSTRAÇÃO

- Abstração: recurso poderoso.
 - Consiste em isolar a essência do problema.
 - Conexão entre problemas aparentemente não relacionados.
 - Problemas complexos = casos particulares de esquema geral.
 - Uma vez identificada a "classe" de um problema, pode-se aproveitar resultados prontos.
- Ponto de vista de modelagem em Ciência da Computação:
 - interessa justamente mais o "esquema geral" do que os detalhes
 - abstração permite focar apenas no que interessa

REGRAS DESTE CURSO

- Essencialmente: aulas + exercícios + provas.
- Material das aulas:
 - pdfs no site (www.inf.ufsc.br/~santana/)
 - plano de ensino
 - conteúdo dos slides + listas de exercícios
 - datas/resultados das avaliações
- Sobre os exercícios:
 - resolução é individual
 - mas: discussão na lista da turma é recomendada
 - não deixar acumular!!
 - professor não resolve exercícios
- Plano de ensino...

ESTE CURSO

- Importante: este curso = "leitura comentada" dos livros:
 - 1. Kolman, B., Busby, R.C., Ross, S.C., Discrete Mathematical Structures, Prentice-Hall International Editions, 5^{th} ed., 2003 (livro-texto).
 - 2. Rosen, K. H., Discrete Mathematics and its Aplications, 5^{th} ed., McGraw-Hill, 2007.