

planetmath.org

Math for the people, by the people.

a property of truth-value semantics for intuitionistic propositional logic

 ${\bf Canonical\ name} \quad {\bf APropertyOfTruthvalueSemanticsForIntuitionisticPropositionalLogic}$

Date of creation 2013-03-22 19:34:14 Last modified on 2013-03-22 19:34:14

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 16

Author CWoo (3771)

Entry type Result Classification msc 03B20

Defines Glivenko's theorem

In this entry, we show the following: if $\neg A$ is a tautology of V_n , then $\neg A$ is a theorem. First, we need the following lemma, which is the intuitionistic version of one for classical propositional logic, found http://planetmath.org/CompletenessTheorem! Given an interpretation v, define

$$v[A]$$
 is $\begin{cases} \neg A & \text{if } v(A) = 0, \\ \neg \neg A & \text{otherwise.} \end{cases}$

It is easy to see that for any A, v(v[A]) = n for any v, so that v[A] is always true. In addition, we have the following table:

v(A)	v[A]	v(B)	v[B]	$v(A \wedge B)$	$v[A \wedge B]$	$v(A \vee B)$	$v[A \vee B]$	$v(A \to B)$	v[A -
0	$\neg A$	0	$\neg B$	0	$\neg(A \land B)$	0	$\neg(A \lor B)$	0	$\neg\neg(A$
0	$\neg A$	$\neq 0$	$\neg \neg B$	0	$\neg(A \land B)$	$\neq 0$	$\neg\neg(A \lor B)$	n	$\neg\neg(A$
$\neq 0$	$\neg \neg A$	0	$\neg B$	0	$\neg(A \land B)$	$\neq 0$	$\neg\neg(A \lor B)$	0	$\neg(A)$
$\neq 0$	$\neg \neg A$	$\neq 0$	$\neg \neg B$	$\neq 0$	$\neg\neg(A \land B)$	$\neq 0$	$\neg\neg(A \lor B)$	$\neq 0$	$\neg\neg(A$

The proofs of the following lemmas use instances of the theorem schemas below (proofs http://planetmath.org/SomeTheoremSchemasOfIntuitionisticPropositionalLog

1	2	3
	$\neg\neg\neg C \to \neg C$	$C \rightarrow \neg \neg C$

Lemma 1. $v[A], v[B] \vdash v[A \land B]$.

Proof. Since $\vdash A \land B \to A$ and $\vdash A \land B \to B$, by modus ponens and instances of the theorem schema 1 above, we have $\vdash \neg A \to \neg (A \land B)$ and $\vdash \neg B \to \neg (A \land B)$. This proves the first three cases.

For the last case, we start with the axiom $A \to (B \to A \land B)$, or $A \vdash B \to A \land B$ by the deduction theorem. Apply modus ponens twice to instances of schema 1, we get $A \vdash \neg \neg B \to \neg \neg (A \land B)$, or $\neg \neg B \vdash A \to \neg \neg (A \land B)$ by the deduction theorem twice. Again, applying modus ponens twice to instances of 1, we have $\neg \neg B \vdash \neg \neg A \to \neg \neg \neg \neg (A \land B)$, or $\neg \neg B, \neg \neg A \vdash \neg \neg \neg \neg (A \land B)$ by the deduction theorem. One application of modus ponens to an instance of schema 2, we have $\neg \neg B, \neg \neg A \vdash \neg \neg (A \land B)$, as desired.

Lemma 2. $v[A], v[B] \vdash v[A \lor B].$

Proof. Since $\vdash A \to A \lor B$ and $\vdash B \to A \lor B$, by modus ponens twice to instances of the schema 1, we have $\vdash \neg \neg A \to \neg \neg (A \lor B)$ and $\vdash \neg \neg B \to \neg \neg (A \lor B)$. This settles the last three cases.

For the first case, we use the axiom $(A \to \bot) \to ((B \to \bot) \to ((A \lor B) \to \bot))$, which is just $\neg A \to (\neg B \to \neg (A \lor B))$, or $\neg A, \neg B \vdash \neg (A \lor B)$ by the deduction theorem twice.

Lemma 3. $v[A], v[B] \vdash v[A \rightarrow B].$

Proof. For the first two, all we need is $\neg A \vdash \neg \neg (A \rightarrow B)$. To see this, we have deduction

$$A \to \perp, A, \perp, \perp \to B, B,$$

so $\neg A, A \vdash B$, or $\neg A \vdash A \to B$ by the deduction theorem. Since $(A \to B) \to \neg \neg (A \to B)$ is an instance of schema 3, by modus ponens, $\neg A \vdash \neg \neg (A \to B)$ as desired.

For the third, by the deduction theorem, it is enough to show $\neg \neg A, \neg B, A \rightarrow B \vdash \bot$. Now,

$$\neg A \rightarrow \perp, \neg B, A \rightarrow B, (A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A), \neg B \rightarrow \neg A, \neg A, \perp$$

is a deduction of \bot from $\neg \neg A, \neg B$, and $A \to B$, where $(A \to B) \to (\neg B \to \neg A)$ is a theorem.

For the last, all we need to show is $\neg \neg B \vdash \neg \neg (A \to B)$. We start with $B \to (A \to B)$, which is an axiom. Applying modus ponens twice to instances of 1, we have $\vdash \neg \neg B \to \neg \neg (A \to B)$, or $\neg \neg B \vdash \neg \neg (A \to B)$.

Lemma 4. Suppose p_1, \ldots, p_n are all the propositional variables in a wff A. Then

$$v[p_1], \ldots, v[p_m] \vdash v[A].$$

Proof. We use induction on the number n of primitive logical connectives $(\land, \lor, \text{ and } \rightarrow)$ in A. If n=0, then A is either \bot or a propositional variable p. If A is \bot , then $\bot \vdash \bot$, or $\vdash \neg \bot$, or $\vdash v[\bot]$. If A is p, then clearly $v[p] \vdash v[p]$. Now, if A has n+1 connectives, and is either $B \land C$, $B \lor C$, or $B \to C$, then B and C has no more than p connectives. By induction,

$$v[p_{i(1)}], \dots, v[p_{i(s)}] \vdash v[B]$$
 and $v[p_{j(1)}], \dots, v[p_{j(t)}] \vdash v[C]$

or

$$v[p_1], \ldots, v[p_m] \vdash v[B]$$
 and $v[p_1], \ldots, v[p_m] \vdash v[C]$

By the first three lemmas above, $v[B], v[C] \vdash v[A]$, so by modus ponens twice,

$$v[p_1], \ldots, v[p_m] \vdash v[A].$$

We are now ready for the main result:

Theorem 1. If A is a tautology of V_n , then $\vdash \neg \neg A$.

Proof. Let v be any interpretation, then $v[p_1], \ldots, v[p_m] \vdash v[A]$ by the last lemma, where p_1, \ldots, p_m are all the propositional variables in A. Since A is a tautology,

$$v[p_1], \ldots, v[p_m] \vdash \neg \neg A.$$

If m=0, then we are done. Otherwise, let v_1 and v_2 be two interpretations such that $v_1[p_i] = v_2[p_i]$ for $i=1,\ldots,m-1$, and $v_1[p_m] = \neg p_m$ and $v_2[p_m] = \neg p_m$, so that

$$v[p_1], \dots, v[p_{m-1}], \neg p_m \vdash \neg \neg A$$
 and $v[p_1], \dots, v[p_{m-1}], \neg \neg p_m \vdash \neg \neg A$.

By applying the deduction theorem twice to each of the above deductive relations, we get

$$v[p_1], \ldots, v[p_{m-1}], \neg A \vdash \neg \neg p_m$$
 and $v[p_1], \ldots, v[p_{m-1}], \neg A \vdash \neg \neg \neg p_m$.

Apply schema 2 to the second deductive relation above, we get

$$v[p_1], \ldots, v[p_{m-1}], \neg A \vdash \neg p_m.$$

By the deduction theorem once more, we have

$$v[p_1], \dots, v[p_{m-1}] \vdash \neg A \rightarrow \neg \neg p_m$$
 and $v[p_1], \dots, v[p_{m-1}] \vdash \neg A \rightarrow \neg p_m$.

With the axiom instance $(\neg A \rightarrow \neg p_m) \rightarrow ((\neg A \rightarrow \neg \neg p_m) \rightarrow \neg \neg A)$, apply modus ponens to each of the last two deductive relations, we get

$$v[p_1], \ldots, v[p_{m-1}] \vdash \neg \neg A,$$

so that $v[p_m]$ is removed from the original deductive relation. Continue this process until all of the $v[p_i]$ are removed on the left, and we get

$$\vdash \neg \neg A$$
.

We record to immediate corollaries:

Corollary 1. If $\neg A$ is a tautology of V_n , then $\vdash \neg A$.

Proof. By the theorem, $\vdash \neg \neg \neg A$. But $\vdash \neg \neg \neg A \rightarrow \neg A$, $\vdash \neg A$ by modus ponens.

In the next corollary, we use $\vdash_c A$ and \vdash_i to distinguish that A is a theorem of classical and intuitionistic propositional logic respectively.

Corollary 2. (Glivenko's Theorem) $\vdash_c A \text{ iff } \vdash_i \neg \neg A$.

Proof. If $\vdash_c A$, then by the soundness theorem of classical propositional logic, A is a tautology of truth-value semantics, which is just V_2 , and therefore by the theorem above, $\vdash_i \neg \neg A$.

Conversely, if $\vdash_i \neg \neg A$, then certainly $\vdash_c \neg \neg A$, as http://planetmath.org/IntuitionisticProis a subsystem of PL_c . Since $\neg \neg A \to A$ is a theorem of PL_c , we get $\vdash_c A$ by modus ponens.

In particular, $\vdash_c \bot$ iff $\vdash_i \bot$, since $\vdash_i \neg \neg \bot \leftrightarrow \bot$. In other words, PL_c is consistent iff PL_i is.