

Lecture 10 early memory development

reading

- Schacter et al. (2011): core text: Chapter 5; pp. **197-198**; Chapter 11; pp. **435-437**;
- Goswami, U. (2008). Cognitive Development: The Learning Brain. Psychology Press. Chapter 8. The development of memory.

plus pdf article on blackboard if you are interested:

Gathercole, S.E. (1998). The development of memory. *J. Child. Psychology & Psychiatry, 39*, 3-27.

memory

the ability to store, retain, recall information about experienced events

key questions

- how do we measure children's memory?
- how do children construct reliable memories of events recognition; identify the presence of 'x' from an event yes /no response – guessing?

recall; describe or retrieve from experience of event

declarative (autobiographical) & working memory

mobile task (2-7mths)

conjugate reinforcement

e.g. Rovee-Collier et al. 1980, also 1997 conditioned response = kick learning = contingency between big/fast kick → dingly-dangly mobile retention depends on training

Learning from 2mths; 6mths learn faster; more durable Specificity to event (after 24h delay), as per Tulving (1983) By 9 mths; able to respond **flexibly** to test on different trains (Hartshorn & Rovee-Collier, 1997)

do toddlers 'remember'?

14/16 mths shown demonstrated act = lean forwards and touch forehead on panel → activate light (orange) panel

Memory for actions, but older toddlers benefit more from retrieval opportunity

memory for actions? Or just objects

e.g. 18-24 mths: Herbert & Hayne, 2000

Stimulus set	Step 1	Step 2	Step 3
Green rattle	Push ball through diaphragm into	Put stick on jar, attaching with	Shake stick to make noise
	CUD	Velero	

enduring and flexible memories

data from Herbert & Hayne, 2000 (1A & 2)

Why? Older children better exploit retrieval cues; verbal coding utilised to facilitate encoding too

recall sequences, not single actions

declarative memory test; analagous to verbal recall?

- predicts later memory (Bauer et al. 2006)
- verbally accessible (Bauer et al. 2002)
- amnesics fail (McDonough et al. 1995)

elicited imitation; key transitions

stability of recall improves with age

- at 6mo; 25% recall action pairs (24hr delay)
- at 11mo; 50% recall action pairs (1mth delay)
- at 24mo; 100% recall action pairs (1mth delay)

persistence too

- at 6mo; 24hr delay
- at 9mo; 1mo (not 3)
- at 20mo; >12 months

From pre-verbal to verbal memory

- access verbal encoding of memory
- organise knowledge (scripts, Nelson '88)
- strategic encoding: if objects in semantic sets (e.g., fruit, animals), younger children less likely to arrange the pictures if allowed (*Bjorklund & Douglas, 1997*)
- utilise predictable script knowledge for: encoding – what to expect storage – sub-events may be chunked retrieval – the script provides a prompt

verbal events (preschool)

Older children (3y6mo - 4yrs)
later recalled <u>same amount</u>
with age, more spontaneous
with age, more detailed
recall enhanced if discussed

From Hamond & Fivush '91

verbal events over time

Salient events from preschoolers **7 years later** – older children

recalled with **novel information**

	Number of propositions recalled			
Events originally recalled at:	At the original interview	At 8-year interview: total	At 8-year interview: before cue	Proportion new information
40 months of age 46 months of age 58 months of age 70 months of age	10.61 (8.39) 11.08 (4.91) 9.67 (5.04) 18.52 (16.02)	9.57 (4.22) 11.78 (6.14) 9.40 (4.78) 16.80 (11.85)	7.93 (3.63) 8.00 (5.07) 7.40 (5.91) 13.85 (12.50)	0.87 (0.18) 0.83 (0.14) 0.79 (0.24) 0.70 (0.20)

[&]quot;... they poured some water on Wilson" @58mths

[&]quot;... water was gettin' gettin' poured on Wilson's head" @ 8yrs

From Fivush & Schwarzmuller '98

constructing 'autobiography'

From Reece, Haden, Fivush, 1993

talking long-lasting memories

If you want your child to remember it well – talk about it?

- Constructing child-centred narrative generates a more autonomous sense of self (Wang, 2007)
- But, memory not simply due to opportunity to refresh linguistic skill @ encoding predicts later elicited imitation (Bauer & Wewerka, 1997)
- Preschoolers recall of a salient event, much better if verbally reported at the time (Pillemer et al. 1994)

But how much do young children recall in short-term?

→ Working memory (Gathercole, Cowan, Jarrold)

working memory

'mental workspace'
(Baddeley & Hitch, '74)
time-limited decay
memory span - how much?

As children remember more (larger memory span) – linear relation to 'how long' a limited capacity

not just memory for 'words'

Isaacs & Vargha-Khadem (1989) more abstract tasks – less 'linguistic' load

phonological coding

Baddeley & Hitch → phonological loop

- recode information to phonological code
- storage in memory + covert rehearsal

@3-5 yrs show phonological similarity effect(duck, luck, muck) so store phonological codes& word length effect (butterfly, tadpole) so rehearse

But not for pictures, unless child is ~ 7yrs or older (Hitch et al., 1989)

The MOUTH-ABET

pre-rehearsal?

- "lip movements" benefit recall (Flavell, Beach, Chinsky '66)
- correlation between speech rate and span?
 (constant on spoken tasks 4-10; Hulme et al., '84)
 (only 10yr+ on picture tasks; Hitch)

a key transition in the **phonological loop**?

No – young children discover 'naming' (Henry, 1991) and struggle with overt speech output With age, opt for rehearsal as a **strategy**

memory capacity?

9s, 11s, & adults recalling digit lists in two conditions: standard digit span – allows strategy use (rehearsal) running memory span – don't know when list will end,

rehearsal helps, but age differs in both measures

conclusions

Declarative memory develops early and relies on organising principles:

- temporal and causal structure
- language aptitude & elaboration

Working memory development reflects a mix of basic (bottom-up) and high level (top-down) factors

Conscious
control
Performance
Basic
parameters

Summary

- From early infancy, memory seen in familiar /recognition tasks; largely 'implicit, automatic, non-conscious'
- •End of first year, deferred and elicited imitations of actions and sequences; 'explicit, controlled, declarative' memories
- •End of second year, transitions in flexibility and duration of nonverbal memories (and onset of verbal coding)
- •Verbal memories benefit from organisation and elaboration parenting style can facilitate a sense of autobiography & self
- Immediate memory is time-limited, span increases with age; changes in strategies used (like rehearsal) and maybe storage/ efficiency of memory (hard to separate which?)