Stat 215A - Week 9a

Zoe Vernon 10/16/2018

Lab 3 Introduction

Lab 3 (extension of lab 2)

In this lab you will use the binary encoded data from lab 2.

You are asked to study the stability of k-means by randoming subsampling the data numerous times.

In this lab you will use parallelization and source C++ code to speed up the computations.

I use this stuff in my own research!

Our solution

Count number of decreasing subsequences of length k in windows of length l (each window computes in $O(k \ l \log(l))$ time)

gene	rank in drug signature	rank in disease signature	
555	1	1000	
2	2	850	
300	3	989	
:	:	:	
•	•	•	
690	998	100	
690	999	10	
700	1000	2	•

Counting number of decreasing subsequences

Consider: **51432**

- ☐ There are 3 decreasing subsequences of length 3
 - **543**, 542, 432

Algorithm: let dp[i, m] be the number of decreasing subsequences of length m ending at i. Then update the matrix as follows

```
Initialize dp[i, m] = 0; dp[i, 1] = 1
for i = 2 to n
  for j = 1 to i - 1
    if z[i] > z[j]
    for m = 2 to k
        dp[i, m] += dp[j, m - 1]
```

Running simulations

When I ran our method on to count these decreasing subsequences on a real dataset of 66,000 compounds it took ~22 days (with parallelization)

Running it on the same data but using Rcpp means it now only takes ~48 minutes