2019 MMI Lab. DIP 세미나

Image Affine Transform, Color Transform – RGB to HIS, and Spatial Domain Filtering

1. 발표 내용 - 교재(Rafael C. Gonzalez, Richard E. Woods, "Digital Image Processing", 4th global edition)의 Ch.3참고

각 구현 내용을 함수나 class 별로 나눠서 함수의 재사용이 가능하도록 구현합니다. 이번 주차의 구현 내용은 다음과 같습니다.

1. Image I/O – 이 내용은 발표에 포함하지 않습니다.

영상처리를 위해 원하는 OS 환경(Windows, Mac, Linux, ...)에서 OpenCV를 build합니다. 각 OS와 IDE 마다 build하는 방법이 조금씩 다르니 직접 검색하는 것을 추천합니다. OpenCV를 build했다면 cv::imread 함수를 이용하여 특정 디렉토리에 있는 이미지를 읽고 출력하여 동작을 확인합니다. OpenCV에 다양한 함수가 존재하지만 이 세미나에서는 함수 구현을 직접 하는 것이 목적이기 때문에 imread와 imwrite와 같은 입출력 함수 외에는 사용하는 것을 제한 합니다. 제공되는 이미지 외의 교재에서 사용한 이미지는 www.imageporcessingplace.com에서 얻을 수 있습니다. (교재에 있는 시리얼 번호를 입력해야 접근 가능)

2. Intensity Transform

Histogram equalization을 제외한 모든 intensity transform(negative와 gamma, power 등)을 구현합니다.

3. Affine Transformation

Image zooming과 shrinking, rotation 등 다양한 affine transform을 직접 코드로 구현합니다. 읽어온 image가 discrete signal인 점을 고려하여 어떤 방식으로 구현하는 것이 정확할 지 스스로 생각하는 것이 중요합니다. 예를 들어 scaling할 때 생기는 빈 공간을 어떤 interpolation으로 채우는 지에 따라 결과가 달라집니다.

4. Color Transform

기본적으로 RGB to HIS transform과 HIS to RGB transform을 구현합니다. 여유가 된다면 다른 color transform을 찾고 구현해봅니다.

2. 발표 자료

_ 1. 발표 시간

발표 시간은 총 30분으로 내용 발표 20분과 질의응답 10분으로 구성됩니다. 발표하는 연습을 하는 시간이라고 생각하고 최대한 20분 안에 설명이 가능하도록 구성합니다. 발표자는 5명 중 임의로 3명을 선택해 발표 당일에 알려드릴 예정이니 모든 구성원들은 발표자료를 만들도록 합니다.

2. 발표 구성

발표 자료의 구성은 형식에 자유로우나 이론과 실험결과는 반드시 포함하시길 바랍니다. 구현할 내용이 많기 때문에 먼저 이론을 전부 설명하지 않고 각 목차에 대해서 이론 설명과 실험결과를 반복해서 구성해도 괜찮습니다.