Introduction to 인공 신경망

인공신경망기초 $_{\perp}$ 퍼셉트론 $_{\perp}$

안녕하세요 신박AI에 신길호입니다

이 영상에서는 인공신경망이란 무엇인가와

인공신경망의 작동원리에 관하여 배워보도록 하겠습니다

인간처럼 생각하고 인간과 소통할 수 있는

기계를 만드는 것은 인류의 오랜 꿈이었습니다.

Al, Artificial Intelligence 인공지능

오늘날 인공지능은 머신러닝, 특히 딥러닝 기술을 기반으로 하고 있습니다

Al, Artificial Intelligence 인공지능

Deep Learning 딥러닝

그래서 딥러닝을 논하지 않고서는 인공지능을 말할 수 없을 정도로

Al, Artificial Intelligence 인공지능

Deep Learning 딥러닝

딥러닝은 오늘날 인공지능 기술에서 중요한 위치를 차지하고 있습니다

Al, Artificial Intelligence 인공지능

Deep Learning 딥러닝

그런데 딥러닝 기술의 기초가 되는 것이 바로 인공신경망입니다

Al, Artificial Intelligence 인공지능

그래서 인공신경망은 딥러닝을 이해하고

Al, Artificial Intelligence 인공지능

Artificial Neural Network 인공신경망

인공지능을 구현하는데 필요한 첫 출발점이라 할 수 있습니다

Al, Artificial Intelligence 인공지능

Artificial Neural Network 인공신경망

인공신경망은 사람의 뇌를 모방하여

인공신경망은 사람의 뇌를 모방하여 인공지능을 구현하려는 컴퓨터 프로 그램입니다

그러므로 인공신경망을 아는 첫 단계는 사람의 뇌를 아는 것입니다

Chapter 1 신경세포와 인공신경세포

사람의 뇌는 천억개나 되는 뉴런으로 이루어져 있습니다

사람의 뇌는 구조와 기능이 아주 복잡하지만..

뇌를 구성하는 기본단위는 비교적 간단합니다

뇌를 구성하는 기본 단위를 Neuron (신경세포)라고 합니다

Soma (세포체, 계산)

이렇게 neuron은 입력, 계산, 출력 기능을 가진 정보처리기관으로 볼 수 있습니다

그리고 neuron은 시냅스 (synapse, 연접)를 통해 정보를 전달합니다

인접한 다른 neuron의 axon과 연결하여..

이전 neuron의 axon과 현 neuron의 dendrite부분이 만나는 곳에 지극히 작은 간극, 시냅스가 존재합니다

그렇게 하여 입력부분인 dendrite에서 여러 neuron 들의 정보를 받아 들입니다

세포체 soma에서는 들어온 정보가 역치 이상이면 발화 firing합니다

발화한 뉴런은 Axon을 통해 다음 뉴런에게 정보를 전달합니다

인공신경세포 (artificial neuron)는 신경세포의 정보처리 방식을 모방 하여 구현합니다

인공신경세포들이 모여서 인공신경망을 구성합니다

그러므로 인공신경세포의 작동원리를 아는 것이

그러므로 인공신경세포의 작동원리를 아는 것이 인공신경망을 이해하는 첫걸음이 되겠습니다

Chapter 2 인공신경세포의 작동 원리

인공신경세포의 작동은 아주 간단합니다

인공신경세포의 작동은 아주 간단합니다

이 세포는 세 개의 뉴런으로부터 입력을 받아 역치를 계산하여 출력하는 인공신경세포입니다

각각의 뉴런들로부터 오는 정보를 x1, x2, x3라고 하고,

시냅스 역할을 하는 것이 연결강도 w1, w2, w3입니다

그리고 동그랗게 생긴 것을 노드라고 부르는데 이 노드에서 3개의 뉴런의 입력을 받아 합하여 노드값을 계산합니다.

그리고 노드에서 계산한 값을 다음 뉴런에게 넘겨주게 됩니다.

 $0.5 \times 0.3 = 0.15$ $0.7 \times 0.6 = 0.42$ $0.3 \times 0.4 = 0.12$

출력값 y는 0.69가 되었습니다

$$0.5 \times 0.3 = 0.15$$

 $0.7 \times 0.6 = 0.42$
 $0.3 \times 0.4 = 0.12$ +
 0.69

실제 신경세포에서도 역치 이상의 값이 올때 발화하듯이..

인공신경세포에도 역치를 설정해서

$$0.5 \times 0.3 = 0.15$$

 $0.7 \times 0.6 = 0.42$
 $0.3 \times 0.4 = 0.12$ +
 0.69

발화 하느냐 마느냐를 결정할 수 있습니다

그래서 활성화함수를 덧붙여서 출력값을 계산합니다

활성화 함수는 여러가지가 있지만..

여기서는 계단함수 (Step function)를 사용하겠습니다

계단함수는 들어오는 x값이 역치 이상이면

계단함수는 들어오는 x값이 역치 이상이면 1을 출력하고

계단함수는 들어오는 x값이 역치 이하면

계단함수는 들어오는 x값이 역치 이하면 0을 출력하는

좋은 활성화함수 입니다!

이렇게 활성화함수를 거쳐 출력값은

이렇게 활성화함수를 거쳐 출력값은 1이 됩니다

이런 과정을 수식으로 표현하자면..

$$y_k = \varphi \left(\sum_{j=0}^m w_{kj} x_j \right)$$

이 부분이 각 입력값과 연결강도의 곱을 뜻하며

이 부분은 입력값과 연결강도를 곱한 값들의 합을 말하며..

이 부분은 입력값과 연결강도를 곱한 값들의 합을 말하며..

이 부분은 바로 활성화 함수 부분을 뜻합니다

$$y_{k} = \varphi \left(\sum_{j=0}^{m} w_{kj} x_{j}\right)^{0.5 \times 0.3} = 0.15 \\ 0.7 \times 0.6 = 0.42 \\ 0.3 \times 0.4 = 0.12 + \\ f(0.69)$$

$$f(0.69)$$

$$f(x) = \begin{cases} 0 & \text{for } x < 0.5 \\ 1 & \text{for } x \ge 0.5 \end{cases}$$

자 여기까지가 인공신경세포의 구조 및 작동방식입니다

그리고 여러분은 지금 최초의 인공신경망이자

모든 딥러닝의 시작이라 할 수 있는

퍼셉트론의 구조와 작동방식에 대해 이해하셨습니다

퍼셉트론 (Perceptron) 이란?

퍼셉트론 (Perceptron)이란? :1943년 신경생리학자인 McCulloch 와 계산신경과학자인 Pitts가 제안한 McCulloch-Pitts Neuron을 바탕으로 미국의 심리학자인 Rosenblatt이 1958년에 구현해낸 인공신경망

McCulloch (right) and Pitts (left) https://www.historyofinformation.com/detail.php?entryid=782

Frank Rosenblatt
https://news.cornell.edu/stories/2019/09/profess
ors-perceptron-paved-way-ai-60-years-too-

물론 퍼셉트론의 학습 방법에 대한 부분이 남아있지만..

여기까지가 인공신경세포에 대한 간략한 소개입니다

다음 시간부터는 퍼셉트론의 학습방법을 포함하여..

본격적으로 인공신경망에 대해서 배워보겠습니다

감사합니다!

Copyright © 2024 by 신박AI

All rights reserved

본 문서(PDF)에 포함된 모든 내용과 자료는 저작권법에 의해 보호받고 있으며, 신박AI에 의해 제작되었습니다.

본 자료는 오직 개인적 학습 목적과 교육 기관 내에서의 교육용으로만 무료로 제공됩니다.

이를 위해, 사용자는 자료 내용의 출처를 명확히 밝히고,

원본 내용을 변경하지 않는 조건 하에 본 자료를 사용할 수 있습니다.

상업적 사용, 수정, 재배포, 또는 이 자료를 기반으로 한 2차적 저작물 생성은 엄격히 금지됩니다.

또한, 본 자료를 다른 유튜브 채널이나 어떠한 온라인 플랫폼에서도 무단으로 사용하는 것은 허용되지 않습니다.

본 자료의 어떠한 부분도 상업적 목적으로 사용하거나 다른 매체에 재배포하기 위해서는 신박AI의 명시적인 서면 동의가 필요합니다. 위의 조건들을 위반할 경우, 저작권법에 따른 법적 조치가 취해질 수 있음을 알려드립니다.

본 고지 사항에 동의하지 않는 경우, 본 문서의 사용을 즉시 중단해 주시기 바랍니다.

