REGRESSION TREES

Predictive Analytics

- Classification
- > Regression
- Clustering

CART models

- Classification Trees
- Regression Trees

Salary	Hits	HmRun	Runs	RBI	Walks	Years	CAtBat	CHits	CHmRun	CRuns
475	81	7	24	38	39	14	3449	835	69	321
480	130	18	66	72	76	3	1624	457	63	224
500	141	20	65	78	37	11	5628	1575	225	828
91.5	87	10	39	42	30	2	396	101	12	48
750	169	4	74	51	35	11	4408	1133	19	501
70	37	1	23	8	21	2	214	42	1	30
100	73	0	24	24	7	3	509	108	0	41
75	81	6	26	32	8	2	341	86	6	32
1100	92	17	49	66	65	13	5206	1332	253	784
517.143	159	21	107	75	59	10	4631	1300	90	702
512.5	53	4	31	26	27	9	1876	467	15	192
550	113	13	48	61	47	4	1512	392	41	205
700	60	0	30	11	22	6	1941	510	4	309
240	43	7	29	27	30	13	3231	825	36	376
775	158	20	89	75	73	15	8068	2273	177	1045
175	46	2	24	8	15	5	479	102	5	65
135	32	8	16	22	14	8	727	180	24	67
100	92	16	72	48	65	1	413	92	16	72

Salary	Hits	HmRun	Runs	RBI	Walks	Years	CAtBat	CHits	CHmRun	CRuns
475	81	7	24	38	39	14	3449	835	69	321
480	130	18	66	72	76	3	1624	457	63	224
500	141	20	65	78	37	11	5628	1575	225	828
91.5	87	10	39	42	30	2	396	101	12	48
750	169	4	74	51	35	11	4408	1133	19	501
70	37	1	23	8	21	2	214	42	1	30
100	73	0	24	24	7	3	509	108	0	41
75	81	6	26	32	8	2	341	86	6	32
1100	92	17	49	66	65	13	5206	1332	253	784
517.143	159	21	107	75	59	10	4631	1300	90	702
512.5	53	4	31	26	27	9	1876	467	15	192
550	113	13	48	61	47	4	1512	392	41	205
700	60	0	30	11	22	6	1941	510	4	309
240	43	7	29	27	30	13	3231	825	36	376
775	158	20	89	75	73	15	8068	2273	177	1045
175	46	2	24	8	15	5	479	102	5	65
135	32	8	16	22	14	8	727	180	24	67
100	92	16	72	48	65	1	413	92	16	72

```
AtBat
     Number of times at bat in 1986
Hits
     Number of hits in 1986
HmRun
     Number of home runs in 1986
Runs
     Number of runs in 1986
RBI
     Number of runs batted in in 1986
Walks
     Number of walks in 1986
Years
     Number of years in the major leagues
CAtBat
     Number of times at bat during his career
CHits
     Number of hits during his career
CHmRun
     Number of home runs during his career
```

Salary	Hits	HmRun	Runs	RBI	Walks	Years	CAtBat	CHits	CHmRun	CRuns
475	81	7	24	38	39	14	3449	835	69	321
480	130	18	66	72	76	3	1624	457	63	224
500	141	20	65	78	37	11	5628	1575	225	828
91.5	87	10	39	42	30	2	396	101	12	48
750	169	4	74	51	35	11	4408	1133	19	501
70	37	1	23	8	21	2	214	42	1	30
100	73	0	24	24	7	3	509	108	0	41
75	81	6	26	32	8	2	341	86	6	32
1100	92	17	49	66	65	13	5206	1332	253	784
517.143	159	21	107	75	59	10	4631	1300	90	702
512.5	53	4	31	26	27	9	1876	467	15	192
550	113	13	48	61	47	4	1512	392	41	205
700	60	0	30	11	22	6	1941	510	4	309
240	43	7	29	27	30	13	3231	825	36	376
775	158	20	89	75	73	15	8068	2273	177	1045
175	46	2	24	8	15	5	479	102	5	65
135	32	8	16	22	14	8	727	180	24	67
100	92	16	72	48	65	1	413	92	16	72

y x1 x2

Salary	Hits	HmRun	Runs	RBI	Walks	Years	CAtBat	CHits	CHmRun	CRuns
475	81	7	24	38	39	14	3449	835	69	321
480	130	18	66	72	76	3	1624	457	63	224
500	141	20	65	78	37	11	5628	1575	225	828
91.5	87	10	39	42	30	2	396	101	12	48
750	169	4	74	51	35	11	4408	1133	19	501
70	37	1	23	8	21	2	214	42	1	30
100	73	0	24	24	7	3	509	108	0	41
75	81	6	26	32	8	2	341	86	6	32
1100	92	17	49	66	65	13	5206	1332	253	784
517.143	159	21	107	75	59	10	4631	1300	90	702
512.5	53	4	31	26	27	9	1876	467	15	192
550	113	13	48	61	47	4	1512	392	41	205
700	60	0	30	11	22	6	1941	510	4	309
240	43	7	29	27	30	13	3231	825	36	376
775	158	20	89	75	73	15	8068	2273	177	1045
175	46	2	24	8	15	5	479	102	5	65
135	32	8	16	22	14	8	727	180	24	67
100	92	16	72	48	65	1	413	92	16	72

Partitioning Up the Predictor Space

 Split the predictors space into non-overlapping regions R₁, R₂,..., R_k

Partitioning Up the Predictor Space

 Split the predictors space into non-overlapping regions R₁, R₂,..., R_k

 For each region, the prediction is the mean response of all observations in that region

Regression Trees

If the observations in Region R₁
have mean response 100,
we would predict 100,
for any new observation in R₁

Regression Trees

By splitting the predictors region we obtain a Decision Tree

Salary	Hits	HmRun	Runs	RBI	Walks	Years	CAtBat	CHits	CHmRun	CRuns
475	81	7	24	38	39	14	3449	835	69	321
480	130	18	66	72	76	3	1624	457	63	224
500	141	20	65	78	37	11	5628	1575	225	828
91.5	87	10	39	42	30	2	396	101	12	48
750	169	4	74	51	35	11	4408	1133	19	501
70	37	1	23	8	21	2	214	42	1	30
100	73	0	24	24	7	3	509	108	0	41
75	81	6	26	32	8	2	341	86	6	32
1100	92	17	49	66	65	13	5206	1332	253	784
517.143	159	21	107	75	59	10	4631	1300	90	702
512.5	53	4	31	26	27	9	1876	467	15	192
550	113	13	48	61	47	4	1512	392	41	205
700	60	0	30	11	22	6	1941	510	4	309
240	43	7	29	27	30	13	3231	825	36	376
775	158	20	89	75	73	15	8068	2273	177	1045
175	46	2	24	8	15	5	479	102	5	65
135	32	8	16	22	14	8	727	180	24	67
100	92	16	72	48	65	1	413	92	16	72

Partitioning Up the Predictor Space

 Regions are created by iteratively splitting one of the X-variable axes into two segments

Partitioning Up the Predictor Space

 For each variable select the boundary that results in the largest MSE reduction

Partitioning Up the Predictor Space

 For each variable select the boundary that results in the largest MSE reduction

 For each variable select the boundary that results in the largest MSE reduction

 For each variable select the boundary that results in the largest MSE reduction

 Choose that variable with the largest reduction

1. First split on $X_1=t_1$

- First split on $X_1=t_1$
- If $X_1 < t_1$, split on $X_2 = t_2$

 X_1

- First split on $X_1=t_1$
- If $X_1 < t_1$, split on $X_2 = t_2$
- If $X_1 > t_1$, split on $X_1 = t_3$

- First split on $X_1=t_1$
- If $X_1 < t_1$, split on $X_2 = t_2$
- If $X_1 > t_1$, split on $X_1 = t_3$
- If $X_1>t_3$, split on $X_2=t_4$

- First split on $X_1=t_1$
- If $X_1 < t_1$, split on $X_2 = t_2$
- If $X_1 > t_1$, split on $X_1 = t_3$
- 4. If $X_1>t_3$, split on $X_2=t_4$
- 5. stop

Stopping criteria

As the number of splits increase,
 the number of observations in the split regions decrease

- Criteria 1: Stop when the max number of observations falls below threshold
- Criteria 2: Stop when the resulting MSE decrease is small enough
- Criteria 3: Fix the number of splits

graphical representation of the splits

n. regions

n. terminal nodes

Pruned Tree

n. of terminal regions = n. of predicted values

Decision Tree accuracy

n. of terminal regions = n. of predicted values

Rectangular regions

 CART models partition the predictor space into regions with special shape

Rectangular regions

- CART models partition the predictor space into regions with special shape
- Regions are always rectangular and disjoint

Not possible

 This partitioning cannot result from a regression tree

Not possible

 This partitioning cannot result from a regression tree

 X_2

Region 9 is not rectangular

