1. Consider an 11th -order analog Butterworth lowpass filter () with 3 dB cutoff frequency of 15 Hz.

```
n = 11;
fc = 15;
fs = 1000;
```

a. Determine and graph the pole locations of ().

```
[z,p,k] = butter(n,fc/(fs/2));
figure(1);
zplane(z,p)
grid
title('11th-Order Butterworth Lowpass Filter')
```


b. Plot the magnitude and log-magnitude responses over [0, 150] Hz range.

```
[b,a] = butter(n,fc/(fs/2));
[h,w] = freqz(b,a,[0:1:150],fs);
figure(2);
plot(w,20*log10(abs(h)))
title("Log Magnitude")
ylabel('Magnitude (dB)')
xlabel('Frequency')
grid on;
```



```
figure(3);
plot(w,abs(h));
ylabel('Magnitude')
xlabel('Frequency')
title('Magnitude Plot')
```


c. Determine frequencies at which the attenuation is 20 dB and 50 dB.

load("q8_1_c.mat")
cursor_info1

cursor_info1 = 1×4 struct

Fields	Target	Position	DataIndex
1	1×1 Line	[25,-48	26
2	1×1 Line	[26,-52	27
3	1×1 Line	[18,-17	19
4	1×1 Line	[19,-22	20

From Graph we can see at frequencies are 18Hz and 25Hz respectively