Étude de la série
$$\sum_{n\geqslant 1} rac{n}{e^{nx}-1}$$

Pour tout
$$x \in \mathbb{R}_+^*$$
 et $n \in \mathbb{N}^*$, on pose $f_n(x) = \frac{n}{e^{nx} - 1}$

Partie I: Étude de convergence

- 1. Montrer que la suite $(f_n)_{n\in\mathbb{N}^*}$ converge simplement sur \mathbb{R}_+^* et préciser sa limite simple
- 2. La convergence de la suite $(f_n)_{n\in\mathbb{N}^*}$ est-elle uniforme sur \mathbb{R}_+^*
- 3. Montrer que la série de fonctions $\sum_{n\geqslant 1} f_n$ converge simplement sur \mathbb{R}_+^*
- 4. (a) Montrer que la série de fonctions $\sum_{n\geqslant 1} f_n$ converge uniformément sur $[a,+\infty[$, avec a>0
 - (b) La convergence de $\sum_{n\geqslant 1} f_n$ est-elle uniforme sur \mathbb{R}_+^*

Partie II: Étude de la somme f

On pose
$$f = \sum_{n=1}^{+\infty} f_n$$

- 5. Montrer que f est continue sur \mathbb{R}_+^*
- 6. Déterminer la limite de f en $+\infty$
- 7. (a) Déterminer la monotonie de f_n sur \mathbb{R}_+^* puis déduire celle de f
 - (b) Démontrer que $f(x) \xrightarrow[x \to 0^+]{} +\infty$
- 8. Soit $x \in \mathbb{R}_+^*$. On considère la suite double $(u_{n,m})_{(n,m)\in\mathbb{N}^{*2}}$ où $u_{n,m}=ne^{-nmx}$
 - (a) Montrer que la suite $(u_{n,m})_{(n,m)\in\mathbb{N}^{*2}}$ est sommable
 - (b) Montrer que $f(x) = \sum_{n=1}^{+\infty} \frac{e^{nx}}{(e^{nx} 1)^2}$

Indication: Utiliser l'égalité:
$$\forall x \in]-1,1[, \frac{x}{(1-x)^2} = \sum_{n=1}^{+\infty} nx^n$$

- 9. Pour $n \in \mathbb{N}^*$, on pose $I_n = \{(p,q) \in \mathbb{N}^{*2} \mid pq = n\}$.
 - (a) Montrer que $(I_n)_{n\in\mathbb{N}^*}$ est une partition de \mathbb{N}^{*2}
 - (b) En déduire que pour tout $x \in \mathbb{R}_+^*$: $f(x) = \sum_{n=1}^{+\infty} \omega_n e^{-nx}$ où $\omega_n = \sum_{p|n} p$ somme des diviseurs de n
- 10. Pour $n \ge 1$, on définit l'application g_n sur \mathbb{R}_+^* par $g_n(x) = \omega_n e^{-nx}$
 - (a) Soit $p \in \mathbb{N}$. Montrer que $\sum_{n\geqslant 1} g_n^{(p)}$ converge uniformément sur $[a,+\infty[$ pour tout a>0.
 - (b) Montrer que f est de classe \mathcal{C}^{∞} sur \mathbb{R}_{+}^{*}

Problème de soutien Correction

Étude de la série
$$\sum_{n \geqslant 1} \frac{n}{e^{nx} - 1}$$

Partie I: Étude de convergence

- 1. Soit $x \in \mathbb{R}_+^*$, on a $f_n(x) = \frac{n}{e^{nx} 1} \xrightarrow[n \to +\infty]{} 0$, donc la suite $(f_n)_{n \in \mathbb{N}^*}$ converge simplement sur \mathbb{R}_+^* vers l'application nulle
- 2. Pour tout $n \in \mathbb{N}^*$, on a $f_n(x) = \frac{n}{e^{nx} 1} \xrightarrow[n \to 0^+]{} +\infty$, donc la suite $(f_n)_{n \in \mathbb{N}^*}$ n'est pas bornée et par suite sa convergence n'est pas uniforme sur \mathbb{R}_+^*
- 3. Soit $x \in \mathbb{R}_+^*$, on a $f_n(x) = \frac{n}{e^{nx} 1} \sim ne^{-nx}$. La série $\sum_{n \geqslant 1} ne^{-nx}$ à termes positifs est convergente d'après le critère de D'Alembert, donc par le critère de comparaison des séries à termes positifs la série $\sum_{n \geqslant 1} f_n(x)$ converge et par suite la série de fonctions $\sum_{n \geqslant 1} f_n$ converge simplement sur \mathbb{R}_+^*
- 4. (a) Soit $a \in]0, +\infty[$. La fonction f_n est décroissante sur \mathbb{R}_+^* , donc pour tout $x \in [a, +\infty[$, on a $|f_n(x)| = f_n(x) \le f_n(a)$ et la série à termes positifs $\sum_{n\geqslant 1} f_n(a)$ converge. La série $\sum_{n\geqslant 1} f_n$ est donc normalement convergente sur $[a, +\infty[$ et, par suite, la convergence est uniforme sur $[a, +\infty[$
 - (b) La suite de fonctions $(f_n)_{n\geqslant 1}$ n'est pas bornée sur \mathbb{R}_+^* , donc la convergence de $\sum_{n\geqslant 1} f_n$ n'est pas uniforme sur \mathbb{R}_+^*

Partie II: Étude de la somme f

- 5. Pour tout $n \in \mathbb{N}^*$, l'application f_n est continue sur \mathbb{R}_+^* ;
 - Soit $[a,b] \subset \mathbb{R}_+^*$, la série de fonctions $\sum_{n\geqslant 1} f_n$ converge uniformément sur $[a,+\infty[$, donc elle l'est sur [a,b]

Donc f est continue sur \mathbb{R}_{+}^{*}

- 6. La série $\sum_{n\geqslant 1} f_n$ converge uniformément sur $[a,+\infty[$ avec a>0
 - Pour tout $n \in \mathbb{N}^*$, on a $f_n(x) = \frac{n}{e^{nx} 1} \xrightarrow[x \to +\infty]{} 0$

Donc, d'après le théorème d'interversion limite et somme, $f(x) \xrightarrow[x \to +\infty]{} \sum_{n=1}^{+\infty} 0 = 0$

- 7. (a) Soit $x, y \in]0, +\infty[$ tels que x < y, alors pour tout $n \in \mathbb{N}^*$, on a $f_n(y) < f_n(x)$. Les deux séries $\sum_{n \ge 1} f_n(x)$
 - et $\sum_{n\geqslant 1} f_n(y)$ sont convergentes, alors $\sum_{n=1}^{+\infty} f_n(y) < \sum_{n=1}^{+\infty} f_n(x)$, soit f(y) < f(x). Donc f est strictement décroissante sur \mathbb{R}_+^*
 - (b) Pour tout réel x > 0, on a $f_1(x) \leq f(x)$, on fait tendre x vers 0^+ ce qui nous fournit, par le théorème de minoration, que $\ell = +\infty$
- 8. (a) Il s'agit d'une suite double à termes positifs
 - Soit $n \ge 1$, la série $\sum_{m \ge 1} ne^{-nmx}$ est convergente de somme $S_n = \frac{ne^{-nx}}{1 e^{-nx}}$
 - $S_n \sim ne^{-nx}$. D'après le critère de D'Alembert la série $\sum_{n\geqslant 1} ne^{-nx}$ est convergente et par le critère de comparaison des séries à termes positifs, la série $\sum_{n\geqslant 1} S_n$ converge.

Étude de la série
$$\sum_{n\geqslant 1} rac{n}{e^{nx}-1}$$

D'où $(u_{n,m})_{(n,m)\in\mathbb{N}^{*2}}$ est sommable

(b) D'après le théorème de Fubini, on a : $\sum_{n=1}^{+\infty}\sum_{m=1}^{+\infty}ne^{-nmx} = \sum_{m=1}^{+\infty}\sum_{n=1}^{+\infty}ne^{-nmx}.$ D'une part $\sum_{n=1}^{+\infty}\sum_{m=1}^{+\infty}ne^{-nmx} = \sum_{n=1}^{+\infty}n\sum_{m=1}^{+\infty}\left(e^{-nx}\right)^m = \sum_{n=1}^{+\infty}\frac{ne^{-nx}}{1-e^{-nx}} = \sum_{n=1}^{+\infty}\frac{n}{e^{nx}-1} = f(x).$ D'autre part, on a $\forall m \in \mathbb{N}^*$: $e^{-mx} \in]0,1[$, donc, d'après la formule donnée

$$\sum_{m=1}^{+\infty} \sum_{n=1}^{+\infty} n e^{-nmx} = \sum_{m=1}^{+\infty} \sum_{n=1}^{+\infty} n \left(e^{-mx} \right)^n = \sum_{m=1}^{+\infty} \frac{e^{-mx}}{\left(1 - e^{-mx} \right)^2} = \sum_{m=1}^{+\infty} \frac{e^{mx}}{\left(e^{mx} - 1 \right)^2}$$

Ce qui fournit l'égalité $f(x) = \sum_{n=1}^{+\infty} \frac{e^{nx}}{(e^{nx}-1)^2}$

- 9. Pour $n \in \mathbb{N}^*$, on pose $I_n = \{(p,q) \in \mathbb{N}^{*2} \mid pq = n\}$.
 - (a) Soit $n \in \mathbb{N}^*$ l'élément $(1, n) \in I_n$, donc $I_n \neq \emptyset$
 - Soit $m, n \in \mathbb{N}^*$ tels que $m \neq n$. Si $(p,q) \in I_n \cap I_m$, alors pq = m = n, donc m = n. Absurde
 - Pour tout $n \in \mathbb{N}^*$, on a $I_n \subset \mathbb{N}^{*2}$, donc $\bigcup_{n \in \mathbb{N}^*} I_n \subset \mathbb{N}^{*2}$. Inversement si $(p,q) \in \mathbb{N}^{*2}$, on pose n = pqq, donc $(p,q) \in I_n$, ainsi $\mathbb{N}^{*2} \subset \bigcup_{n \in \mathbb{N}^*} I_n$. D'où $\bigcup_{n \in \mathbb{N}^*} I_n = \mathbb{N}^{*2}$

On conclut que $(I_n)_{n\in\mathbb{N}^*}$ est une partition de \mathbb{N}^{*2} ;

(b) Par le théorème de la sommation par paquets on a :

$$f(x) = \sum_{(p,q)\in\mathbb{N}^{*2}} pe^{-pqx}$$

$$= \sum_{n=1}^{+\infty} \sum_{(p,q)\in I_n} pe^{-pqx}$$

$$= \sum_{n=1}^{+\infty} \sum_{(p,q)\in I_n} pe^{-nx}$$

$$= \sum_{n=1}^{+\infty} \sum_{p|n} pe^{-nx}$$

Donc pour tout $x \in \mathbb{R}_+^*$: $f(x) = \sum_{n=1}^{+\infty} \omega_n e^{-nx}$ où $\omega_n = \sum_{p|n} p$

10. Pour $n \ge 1$, on définit l'application g_n sur \mathbb{R}_+^* par $g_n(x) = \omega_n e^{-nx}$

(a) Remarquons d'abord que g_n est de classe C^{∞} sur \mathbb{R}_+^* et que $\forall x \in \mathbb{R}_+^* : g_n^{(p)}(x) = (-n)^p \omega_n e^{-nx}$. Soit $a \in \mathbb{R}_+^*$, alors pour tout $x \in [a, +\infty[$, on a

$$\left| g_n^{(p)}(x) \right| = n^p \omega_n e^{-nx} \le n^{p+1} (n+1) e^{-na}$$

Par le critère de D'Alembert la série $\sum_{n\geqslant 1} n^{p+1}(n+1)e^{-na}$ converge, donc $\sum_{n\geqslant 1} g_n^{(p)}$ converge normalement sur $[a,+\infty[$, et, par suite, elle converge uniformément sur $[a,+\infty[$

- (b) On a
 - $\forall n \in \mathbb{N}^*, g_n \in C^{\infty}(\mathbb{R}_+^*, \mathbb{R});$
 - La série $\sum_{n\geqslant 1} g_n$ converge simplement sur \mathbb{R}_+^* ;

Problème de soutien Correction

ÉTUDE DE LA SÉRIE
$$\sum_{n\geqslant 1} rac{n}{e^{nx}-1}$$

—
$$\forall p \geqslant 1, \sum_{n\geqslant 1} g_n^{(p)}$$
 converge uniformément sur tout $[a,b]\subset \mathbb{R}_+^*.$

D'après le théorème de dérivation terme à terme l'application f est de classe \mathcal{C}^{∞} sur \mathbb{R}_+^*