Package 'ActuDistns'

February 19, 2015

Type Package

Title Functions for actuarial scientists

Version 3.0
Date 2012-09-13
Author Saralees Nadarajah
Maintainer Saralees Nadarajah <saralees.nadarajah@manchester.ac.uk></saralees.nadarajah@manchester.ac.uk>
Depends R (>= 2.15.0), reliaR, actuar, hypergeo
Description Computes the probability density function, hazard rate function, integrated hazard rate function and the quantile function for 44 commonly used survival models
License GPL (>= 2)
Repository CRAN
Date/Publication 2012-09-14 00:39:59
NeedsCompilation no
R topics documented:
ActuDistns-package
daddweibull
dbeard
dburrx
dchen
dee
del
dew
dexpext

 $dfw \quad \dots \quad \dots \quad \dots \quad 14$

dgumbeld																•				•
dhjorth																•	 •	•		•
dige															•	•	 •	•		٠
dinvgauss															•	•	 •	•		•
djshape			•	 ٠		 •	 	•	•	•	 •	 •		•	•	•	 •	•		•
dkum	 		•	 •			 			•		 •		•		•		•		•
dlai	 		•				 					 •		•		•				
dle	 						 													
dlgammad	 						 													
dlinear	 						 													
dlld	 						 													
dloglogistic .	 						 													
dlr																				
dmakeham																				
dmakehambea																				
dmakehamperl																		•	• •	•
dmoe																•	 •	•		•
			•										• •	•	•	•	 •	•		•
dmow	 	٠.	•											•	•	•	 •	•		•
dpareto														•	•	•	 •	•		٠
dperks			•											•	٠	•	 ٠	•		•
dschabe			•	 •		 •	 •			•	 •	 •		•		•	 ٠	•		•
dxie	 		•	 •		 •	 			•		 •		•						•
haddweibull .	 						 													
hbeard	 						 													
hbeta	 						 													
hburrx	 						 													
hchen	 						 													
hee	 						 													
hel	 						 													
hew																				·
hexpext	 													•	•					•
hexponential .		•													•	•	 •	•	• •	•
hfrechet		• •													•	•	 •	•		•
hfw	 	٠.													•	•	 •	•		•
	 													•	•	•	 •	•		•
hgamma													• •	•	•	•	 •	•		•
hgenF			•	 ٠	•	 •	 •	•	•	•	 ٠	 ٠		•	•	•	 •	•		•
hgengamma .			•								٠						 ٠	•		•
hgompertz	 		•	 •		 •	 •			•	 •	 •		•		•	 ٠	•		•
hgpw																				
hgumbel	 						 													
hhjorth	 						 													
hige	 						 													
hinvgauss	 						 													
hjshape	 						 													
J 1																				
hlai																				
																		- '	•	•
hle											 •	 •		•	•					•

hlinear	
hll	
hlogistic	
hloglogistic	
hlognormal	
hlr	
hmakeham	. 73
hmakehambeard	. 74
hmakehamperks	. 75
hmoe	
hmow	. 77
hnormal	. 78
hpareto	. 79
hperks	. 80
hschabe	. 81
huniform	. 82
hweibull	. 83
iaddweibull	
ibeard	
ibeta	
iburrx	
ichen	
iee	
iel	. 91
iew	. 92
iexpext	. 93
iexponential	. 94
ifrechet	. 95
ifw	. 96
igamma	. 97
igenF	
igengamma	
igompertz	
igpw	
igumbel	
ihjorth	
· ·	
iige	
iinvgauss	
ijshape	
ikum	
ilai	
ile	. 109
ilgamma	. 110
ilinear	. 111
ill	. 112
ilogistic	. 113
iloglogistic	114

ilognormal	115
ilr	
imakeham	117
imakehambeard	
imakehamperks	
imoe	
imow	
inormal	
ipareto	
iperks	
ischabe	
iuniform	
iweibull	
ixie	
qaddweibull	
*	
qbeard	
qbetad	
qburrx	
qchen	
qee	
qel	
qew	
qexpext	
qexponential	
qfrechet	
qfw	140
qgammad	
qgenF	142
qgengammad	143
qgompertz	
ggpw	145
ggumbeld	146
qhjorth	147
qige	148
qinversegaussian	149
qjshape	150
gkum	
qlai	
gle	
qlgammad	
glinear	
qll	
qlogistic	
qloglogis	
qlognormal	
•	
qmoe	
amow	162

daddweibull 5

Actul	Distns-pa	ck	ag	e		C	on	ıp	ut	es	fi	ını	cti	or	ıs j	foi	r a	ıct	ис	ıri	al	us	se											
Index																																		17 0
	qxie	•			•	•				•		•	•	•	•				•		•	•	•	 •	•	•	•	•	•				•	169
	qweibull																																	
	quniform																																	
	qschabe																																	
	qperks .																																	
	qpareto																																	
	qnormal																																	163

Description

Computes the probability density function, hazard rate function, integrated hazard rate function and the quantile function for 44 commonly used survival models

Details

Package: ActuDistns Type: Package Version: 3.0

Date: 2012-09-13

License: What license is it under?

probability density functions, hazard rate functions, integrated hazard rate functions and quantile functions

Author(s)

Saralees Nadarajah

Maintainer: Saralees Nadarajah < Saralees. Nadarajah @ manchester.ac.uk >

References

S. Nadarajah, S. A. A. Bakar, A new R package for actuarial survival models, Computational Statistics

daddweibull Additive Weibull pdf

Description

Computes the pdf of the additive Weibull distribution

6 dbeard

Usage

```
daddweibull(x, a = 1, b = 1, c = 1, d = 1)
```

Arguments

Χ	scale or vector of positive values at which the pdf needs to be computed
а	the value of a parameter (the first scale parameter), must be positive
b	the value of b parameter (the first shape parameter), must be positive
С	the value of c parameter (the second scale parameter), must be positive
d	the value of d parameter (the second shape parameter), must be positive

Value

An object of the same length as x, giving the pdf values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

Examples

```
x=runif(10,min=0,max=1)
y=daddweibull(x)
```

dbeard

Beard pdf

Description

Computes the pdf of the Beard distribution

Usage

```
dbeard(x, alpha = 1, beta = 1, rho = 1)
```

dburrx 7

Arguments

X	scale or vector of positive values at which the pdf needs to be computed
alpha	the value of alpha parameter, must be positive
beta	the value of beta parameter, must be positive
rho	the value of rho parameter, must be positive

Value

An object of the same length as x, giving the pdf values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

Examples

```
x=runif(10,min=0,max=1)
y=dbeard(x)
```

dburrx

BurrX pdf

Description

Computes the pdf of the BurrX distribution

Usage

```
dburrx(x, alpha = 1, lambda = 1)
```

Arguments

x scale or vector of positive values at which the pdf needs to be computed

alpha the value of alpha parameter, must be positive lambda the value of lambda parameter, must be positive

Value

An object of the same length as x, giving the pdf values computed at x

8 dchen

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output. This function uses the R contributed package reliaR.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

Examples

```
x=runif(10,min=0,max=1)
y=dburrx(x)
```

dchen

Chen pdf

Description

Computes the pdf of the Chen distribution

Usage

```
dchen(x, beta = 1, lambda = 1)
```

Arguments

x scale or vector of positive values at which the pdf needs to be computed

the value of beta parameter, must be positive

the value of lambda parameter, must be positive

Value

An object of the same length as x, giving the pdf values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

dee 9

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

Examples

```
x=runif(10,min=0,max=1)
y=dchen(x)
```

dee

Exponentiated exponential pdf

Description

Computes the pdf of the exponentiated exponential distribution

Usage

```
dee(x, alpha = 1, lambda = 1)
```

Arguments

x scale or vector of positive values at which the pdf needs to be computed

alpha the value of alpha parameter, must be positive lambda the value of lambda parameter, must be positive

Value

An object of the same length as x, giving the pdf values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output. This function uses the R contributed package reliaR.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=dee(x)
```

10 del

del

Exponentiated logistic pdf

Description

Computes the pdf of the exponentiated logistic distribution

Usage

```
del(x, alpha = 1, beta = 1)
```

Arguments

x scale or vector of positive values at which the pdf needs to be computed

alpha the value of alpha parameter, must be positive beta the value of beta parameter, must be positive

Value

An object of the same length as x, giving the pdf values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output. This function uses the R contributed package reliaR.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=del(x)
```

dew 11

α	ΔM

Exponentiated Weibull pdf

Description

Computes the pdf of the exponentiated Weibull distribution

Usage

```
dew(x, alpha = 1, c = 1, lambda = 1)
```

Arguments

Х	scale or vector of positive values at which the pdf needs to be computed
alpha	the value of alpha parameter, must be positive
С	the value of c parameter, must be positive
lambda	the value of lambda parameter, must be positive

Value

An object of the same length as x, giving the pdf values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output. This function uses the R contributed package reliaR.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=dew(x)
```

12 dexpext

dexpext

Exponential extension pdf

Description

Computes the pdf of the exponential extension distribution

Usage

```
dexpext(x, alpha = 1, lambda = 1)
```

Arguments

x scale or vector of positive values at which the pdf needs to be computed

alpha the value of alpha parameter, must be positive lambda the value of lambda parameter, must be positive

Value

An object of the same length as x, giving the pdf values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=dexpext(x)
```

dfrechet 13

dfrechet

Gumbel II pdf

Description

Computes the pdf of the Gumbel II distribution

Usage

```
dfrechet(x, a = 1, b = 1)
```

Arguments

- x scale or vector of positive values at which the pdf needs to be computed
- a the value of a parameter, must be positive
- b the value of b parameter, must be positive

Value

An object of the same length as x, giving the pdf values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=dfrechet(x)
```

14 dfw

dfw

Flexible Weibull pdf

Description

Computes the pdf of the flexible Weibull distribution

Usage

```
dfw(x, alpha = 1, beta = 1)
```

Arguments

x scale or vector of positive values at which the pdf needs to be computed

alpha the value of alpha parameter, must be positive beta the value of beta parameter, must be positive

Value

An object of the same length as x, giving the pdf values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=dfw(x)
```

dgenF 15

Description

Computes the pdf of the generalized F distribution

Usage

```
dgenF(x, beta = 0, sigma = 1, m1 = 1, m2 = 1)
```

Arguments

X	scale or vector of positive values at which the pdf needs to be computed
beta	the value of beta parameter, can be any real
sigma	the value of sigma parameter, must be positive
m1	the value of m1 parameter, must be positive
m2	the value of m2 parameter, must be positive

Value

An object of the same length as x, giving the pdf values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output. This function uses the R contributed package flexsurv.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=dgenF(x)
```

16 dgengammad

daanaammad	
dgengammad	

Generalized gamma pdf

Description

Computes the pdf of the generalized gamma distribution

Usage

```
dgengammad(x, b = 1, d = 1, k = 1)
```

Arguments

X	scale or vector of positive values at which the pdf needs to be computed
b	the value of b parameter, must be positive
d	the value of d parameter, must be positive
k	the value of k parameter, must be positive

Value

An object of the same length as x, giving the pdf values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output. This function uses the R contributed package VGAM.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=dgengammad(x)
```

dgompertz 17

dgompertz Gompertz pdf

Description

Computes the pdf of the Gompertz distribution

Usage

```
dgompertz(x, alpha = 1, beta = 1)
```

Arguments

alpha the positive value of alpha parameter

beta the value of beta parameter, must be positive

Value

An object of the same length as x, giving the pdf values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=dgompertz(x)
```

18 dgpw

М	α	n	١.
u	2	IJ	w

Generalized power Weibull pdf

Description

Computes the pdf of the generalized power Weibull distribution

Usage

```
dgpw(x, alpha = 1, theta = 1)
```

Arguments

X	scale or vector of	positive values at which the	pdf needs to be computed

alpha the value of alpha parameter, must be positive theta the value of theta parameter, must be positive

Value

An object of the same length as x, giving the pdf values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=dgpw(x)
```

dgumbeld 19

dgumbeld	Gumbel pdf	
----------	------------	--

Description

Computes the pdf of the Gumbel distribution

Usage

```
dgumbeld(x, mu = 1, sigma = 1)
```

Arguments

X	scale or vector of any real values at which the pdf needs to be computed
mu	the value of mu parameter, can be any real
sigma	the value of sigma parameter, must be positive

Value

An object of the same length as x, giving the pdf values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output. This function uses the R contributed package reliaR.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=dgumbeld(x)
```

20 dhjorth

dhjorth	Hjorth pdf

Description

Computes the pdf of the Hjorth distribution

Usage

```
dhjorth(x, delta = 1, theta = 1, beta = 1)
```

Arguments

x	scale or vector of positive values at which the pdf needs to be computed
delta	the value of delta parameter, must be positive
theta	the value of theta parameter, must be positive
beta	the value of beta parameter, must be positive

Value

An object of the same length as x, giving the pdf values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=dhjorth(x)
```

dige 21

dige

Inverse exponentiated exponential pdf

Description

Computes the pdf of the inverse exponentiated exponential distribution

Usage

```
dige(x, alpha = 1, lambda = 1)
```

Arguments

x scale or vector of positive values at which the pdf needs to be computed

alpha the value of alpha parameter, must be positive lambda the value of lambda parameter, must be positive

Value

An object of the same length as x, giving the pdf values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output. This function uses the R contributed package reliaR.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=dige(x)
```

22 dinvgauss

ďп	nvgauss

Inverse Gaussian pdf

Description

Computes the pdf of the inverse Gaussian distribution

Usage

```
dinvgauss(x, alpha = 1, sigma = 1)
```

Arguments

Х	scale or vector of positive values at which the pdf needs to be computed
alpha	the value of alpha parameter, must be positive
sigma	the value of sigma parameter, must be positive

Value

An object of the same length as x, giving the pdf values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output. This function uses the R contributed package SuppDists.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=dinvgauss(x)
```

djshape 23

djshape	J-shaped pdf
ajonape	o straped pag

Description

Computes the pdf of the J-shaped distribution

Usage

```
djshape(x, b = 1, nu = 1)
```

Arguments

X	scale or vector of values at which the pdf needs to be computed, values are positive and bounded below by b
b	the value of b parameter, must be positive
nu	the value of nu parameter, must be positive

Value

An object of the same length as x, giving the pdf values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=djshape(x)
```

24 dkum

dkum

Kumaraswamy pdf

Description

Computes the pdf of the Kumarawamay distribution

Usage

```
dkum(x, a = 1, b = 1)
```

Arguments

- x scale or vector of positive values at which the pdf needs to be computed
- a the value of a parameter, must be positive
- b the value of b parameter, must be positive

Value

An object of the same length as x, giving the pdf values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=1,max=2)
y=dkum(x)
```

dlai 25

Lai pdf

Description

Computes the pdf of the Lai distribution

Usage

```
dlai(x, lambda = 1, beta = 1, nu = 1)
```

Arguments

X	scale or vector of positive values at which the pdf needs to be computed
lambda	the value of lambda parameter, must be positive
beta	the value of beta parameter, must be non-negative but both beta and nu cannot be zero
nu	the value of nu parameter, must be non-negative but both beta and nu cannot be

zero

Value

An object of the same length as x, giving the pdf values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=dlai(x)
```

26 dle

dle

Logistic exponential pdf

Description

Computes the pdf of the logistic exponential distribution

Usage

```
dle(x, alpha = 1, lambda = 1)
```

Arguments

x scale or vector of positive values at which the pdf needs to be computed

alpha the value of alpha parameter, must be positive lambda the value of lambda parameter, must be positive

Value

An object of the same length as x, giving the pdf values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output. This function uses the R contributed package reliaR.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=dle(x)
```

dlgammad 27

dlgammad	Log gamma pdf	
----------	---------------	--

Description

Computes the pdf of the log gamma distribution

Usage

```
dlgammad(x, alpha = 1, lambda = 1)
```

Arguments

x scale or vector of values greater than one at which the pdf needs to be computed

alpha the value of alpha parameter, must be positive lambda the value of lambda parameter, must be positive

Value

An object of the same length as x, giving the pdf values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output. This function uses the R contributed package actuar.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=2,max=3)
y=dlgammad(x)
```

28 dlinear

dlinear

Linear failure rate pdf

Description

Computes the pdf of the linear failure rate distribution

Usage

```
dlinear(x, a = 1, b = 1)
```

Arguments

- x scale or vector of positive values at which the pdf needs to be computed
- a the value of a parameter, must be non-negative but both a and b cannot be zero
- b the value of b parameter, must be non-negative but both a and b cannot be zero

Value

An object of the same length as x, giving the pdf values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=dlinear(x)
```

dlld 29

dlld

Loglog pdf

Description

Computes the pdf of the loglog distribution

Usage

```
dlld(x, alpha = 1, lambda = 1)
```

Arguments

x scale or vector of positive values at which the pdf needs to be computed

alpha the value of alpha parameter, must be positive lambda the value of lambda parameter, must be positive

Value

An object of the same length as x, giving the pdf values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=dlld(x)
```

30 dloglogistic

dloglogistic

Log-logistic pdf

Description

Computes the pdf of the Log-logistic distribution

Usage

```
dloglogistic(x, alpha = 1, sigma = 1)
```

Arguments

X	scale or vector	of positive	values at whi	ich the pdf needs	to be computed

alpha the value of alpha parameter, must be positive sigma the value of sigma parameter, must be positive

Value

An object of the same length as x, giving the pdf values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=dloglogistic(x)
```

dlr 31

dlr

Logistic Rayleigh pdf

Description

Computes the pdf of the logistic Rayleigh distribution

Usage

```
dlr(x, alpha = 1, lambda = 1)
```

Arguments

x scale or vector of positive values at which the pdf needs to be computed

alpha the value of alpha parameter, must be positive lambda the value of lambda parameter, must be positive

Value

An object of the same length as x, giving the pdf values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output. This function uses the R contributed package reliaR.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=dlr(x)
```

32 dmakeham

	Makeham pdf	dmakeham
--	-------------	----------

Description

Computes the pdf of the Makeham distribution

Usage

```
dmakeham(x, alpha = 1, beta = 1, epsilon = 1)
```

Arguments

x	scale or vector of positive values at which the pdf needs to be computed
alpha	the value of alpha parameter, must be positive
beta	the value of beta parameter, must be positive
epsilon	the value of epsilon parameter, must be positive

Value

An object of the same length as x, giving the pdf values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=dmakeham(x)
```

dmakehambeard 33

dmakehambeard	Makeham-Beard pdf

Description

Computes the pdf of the Makeham-Beard distribution

Usage

```
dmakehambeard(x, alpha = 1, beta = 1, rho = 1, epsilon = 1)
```

Arguments

X	scale or vector of positive values at which the pdf needs to be computed
alpha	the value of alpha parameter, must be positive
beta	the value of beta parameter, must be positive
rho	the value of rho parameter, must be positive
epsilon	the value of epsilon parameter, must be positive

Value

An object of the same length as x, giving the pdf values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=dmakehambeard(x)
```

34 dmakehamperks

dmakehamperks Makeham-Perks pdf	
---------------------------------	--

Description

Computes the pdf of the Makeham-Perks distribution

Usage

```
dmakehamperks(x, alpha = 1, beta = 1, epsilon = 1)
```

Arguments

X	scale or vector of positive values at which the pdf needs to be computed
alpha	the value of alpha parameter, must be positive
beta	the value of beta parameter, must be positive
epsilon	the value of epsilon parameter, must be positive

Value

An object of the same length as x, giving the pdf values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=dmakehamperks(x)
```

dmoe 35

dmoe

Marshall-Olkin exponential pdf

Description

Computes the pdf of the Marshall-Olkin exponential distribution

Usage

```
dmoe(x, alpha = 1, lambda = 1)
```

Arguments

x scale or vector of positive values at which the pdf needs to be computed

alpha the value of alpha parameter, must be positive lambda the value of lambda parameter, must be positive

Value

An object of the same length as x, giving the pdf values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=dmoe(x)
```

36 dmow

- 1			
М	m	1	

Marshall-Olkin Weibull pdf

Description

Computes the pdf of the Marshall-Olkin Weibull distribution

Usage

```
dmow(x, alpha = 1, beta = 1, lambda = 1)
```

Arguments

x scale or vector of positive values at which the pdf needs to be computed	ed
--	----

alpha the value of alpha parameter, must be positive
beta the value of beta parameter, must be positive
lambda the value of lambda parameter, must be positive

Value

An object of the same length as x, giving the pdf values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=dmow(x)
```

dpareto 37

dpareto	Pareto pdf
---------	------------

Description

Computes the pdf of the Pareto distribution

Usage

```
dpareto(x, alpha = 1, m = 1)
```

Arguments

X	scale or vector of values at which the pdf needs to be computed, values must be greater than m
alpha	the value of alpha parameter, must be positive
m	the value of m parameter, must be positive

Value

An object of the same length as x, giving the pdf values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=2,max=3)
y=dpareto(x)
```

38 dperks

dperks Perks pdf

Description

Computes the pdf of the Perks distribution

Usage

```
dperks(x, alpha = 1, beta = 1)
```

Arguments

x scale or vector of positive values at which the pdf needs to be computed

alpha the value of alpha parameter, must be positive beta the value of beta parameter, must be positive

Value

An object of the same length as x, giving the pdf values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=dperks(x)
```

dschabe 39

Description

Computes the pdf of the Schabe distribution

Usage

```
dschabe(x, theta = 1, gamma = 0.5)
```

Arguments

X	scale or vector of values at which the pdf needs to be computed, must be positive and less than theta
theta	the value of theta parameter, must be positive
gamma	the value of gamma parameter, must be between zero and one

Value

An object of the same length as x, giving the pdf values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=dschabe(x)
```

40 dxie

|--|--|

Description

Computes the pdf of the Xie distribution

Usage

```
dxie(x, lambda = 1, alpha = 1, beta = 1)
```

Arguments

x	scale or vector of positive values at which the pdf needs to be computed
lambda	the value of lambda parameter, must be positive
alpha	the value of alpha parameter, must be positive
beta	the value of beta parameter, must be positive

Value

An object of the same length as x, giving the pdf values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=dxie(x)
```

haddweibull 41

|--|

Description

Computes the hazard rate function of the additive Weibull distribution

Usage

```
haddweibull(x, a = 1, b = 1, c = 1, d = 1)
```

Arguments

X	scale or vector of positive values at which the hazard rate function needs to be computed
а	the value of a parameter (the first scale parameter), must be positive
b	the value of b parameter (the first shape parameter), must be positive
С	the value of c parameter (the second scale parameter), must be positive
d	the value of d parameter (the second shape parameter), must be positive

Value

An object of the same length as x, giving the hazard rate function values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=haddweibull(x)
```

42 hbeard

hbeard	Beard hazard rate function	
	,	

Description

Computes the hazard rate function of the Beard distribution

Usage

```
hbeard(x, alpha = 1, beta = 1, rho = 1)
```

Arguments

X	scale or vector of positive values at which the hazard rate function needs to be computed
alpha	the value of alpha parameter, must be positive
beta	the value of beta parameter, must be positive
rho	the value of rho parameter, must be positive

Value

An object of the same length as x, giving the hazard rate function values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=hbeard(x)
```

hbeta 43

hbeta

Beta hazard rate function

Description

Computes the hazard rate function of the beta distribution

Usage

```
hbeta(x, a = 1, b = 1)
```

Arguments

X	scale or vector of values at which the hazard rate function needs to be computed, values must be in the unit interval
а	the value of a parameter, must be positive
b	the value of b parameter, must be positive

Value

An object of the same length as x, giving the hazard rate function values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=hbeta(x)
```

44 hburrx

Description

Computes the hazard rate function of the BurrX distribution

Usage

```
hburrx(x, alpha = 1, lambda = 1)
```

Arguments

x scale or vector of positive values at which the hazard rate function needs to be
--

computed

alpha the value of alpha parameter, must be positive lambda the value of lambda parameter, must be positive

Value

An object of the same length as x, giving the hazard rate function values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output. This function uses the R contributed package reliaR.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=hburrx(x)
```

hchen 45

hchen	Chen hazard rate function
-------	---------------------------

Description

Computes the hazard rate function of the Chen distribution

Usage

```
hchen(x, beta = 1, lambda = 1)
```

Arguments

x scale or vector of positive values at which the hazard rate function needs to be
--

computed

the value of beta parameter, must be positive
the value of lambda parameter, must be positive

Value

An object of the same length as x, giving the hazard rate function values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=hchen(x)
```

46 hee

hee

Exponentiated exponential hazard rate function

Description

Computes the hazard rate function of the exponentiated exponential distribution

Usage

```
hee(x, alpha = 1, lambda = 1)
```

Arguments

x scale or vector of positive values at which the hazard rate function needs to be

computed

alpha the value of alpha parameter, must be positive lambda the value of lambda parameter, must be positive

Value

An object of the same length as x, giving the hazard rate function values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output. This function uses the R contributed package reliaR.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=hee(x)
```

hel 47

hel

Exponentiated logistic hazard rate function

Description

Computes the hazard rate function of the exponentiated logistic distribution

Usage

```
hel(x, alpha = 1, beta = 1)
```

Arguments

X	scale or vector of positive values at which the hazard rate function needs to be

computed

alpha the value of alpha parameter, must be positive beta the value of beta parameter, must be positive

Value

An object of the same length as x, giving the hazard rate function values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output. This function uses the R contributed package reliaR.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=hel(x)
```

48 hew

h		14
	┖	v

Exponentiated Weibull hazard rate function

Description

Computes the hazard rate function of the exponentiated Weibull distribution

Usage

```
hew(x, alpha = 1, c = 1, lambda = 1)
```

Arguments

X	scale or vector of positive values at which the hazard rate function needs to be computed
alpha	the value of alpha parameter, must be positive
С	the value of c parameter, must be positive
lambda	the value of lambda parameter, must be positive

Value

An object of the same length as x, giving the hazard rate function values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output. This function uses the R contributed package reliaR.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=hew(x)
```

hexpext 49

hexpext	Exponential extension hazard rate function

Description

Computes the hazard rate function of the exponential extension distribution

Usage

```
hexpext(x, alpha = 1, lambda = 1)
```

Arguments

X	scale or vector of positive values at which the hazard rate function needs to be
	computed

alpha the value of alpha parameter, must be positive

lambda the value of lambda parameter, must be positive

Value

An object of the same length as x, giving the hazard rate function values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=hexpext(x)
```

50 hexponential

					-
hex	nor	ıen	t.	1	аI

Exponential hazard rate function

Description

Computes the hazard rate function of the exponential distribution

Usage

```
hexponential(x, alpha = 1)
```

Arguments

x scale or vector of positive values at which the hazard rate function needs to be

computed

alpha the value of alpha parameter, must be positive

Value

An object of the same length as x, giving the hazard rate function values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=hexponential(x)
```

hfrechet 51

	_					
h	t	re	c	h	മ	r

Gumbel II hazard rate function

Description

Computes the hazard rate function of the Gumbel II distribution

Usage

```
hfrechet(x, a = 1, b = 1)
```

Arguments

Х	scale or vector of positive values at which the hazard rate function needs to be computed
а	the value of a parameter, must be positive
b	the value of b parameter, must be positive

Value

An object of the same length as x, giving the hazard rate function values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=hfrechet(x)
```

52 hfw

hfw

Flexible Weibull hazard rate function

Description

Computes the hazard rate function of the flexible Weibull distribution

Usage

```
hfw(x, alpha = 1, beta = 1)
```

Arguments

Х	scale or vector of positive values at which the hazard rate function needs to be computed
alpha	the value of alpha parameter, must be positive
beta	the value of beta parameter, must be positive

Value

An object of the same length as x, giving the hazard rate function values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=hfw(x)
```

hgamma 53

hgamma	Gamma hazard rate function

Description

Computes the hazard rate function of the gamma distribution

Usage

```
hgamma(x, alpha = 1, lambda = 1)
```

Arguments

X	scale or vector of positive values at which the hazard rate function needs to be computed
alpha	the value of alpha parameter, must be positive
lambda	the value of lambda parameter, must be positive

Value

An object of the same length as x, giving the hazard rate function values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=hgamma(x)
```

54 hgenF

hgenF	Generalized F hazard rate function	
-------	------------------------------------	--

Description

Computes the hazard rate function of the generalized F distribution

Usage

```
hgenF(x, beta = 0, sigma = 1, m1 = 1, m2 = 1)
```

Arguments

X	scale or vector of positive values at which the hazard rate function needs to be computed
beta	the value of beta parameter, can be any real
sigma	the value of sigma parameter, must be positive
m1	the value of m1 parameter, must be positive
m2	the value of m2 parameter, must be positive

Value

An object of the same length as x, giving the hazard rate function values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output. This function uses the R contributed package flexsurv.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=hgenF(x)
```

hgengamma 55

hg	en	ga	mma

Generalized gamma hazard rate function

Description

Computes the hazard rate function of the generalized gamma distribution

Usage

```
hgengamma(x, b = 1, d = 1, k = 1)
```

Arguments

X	scale or vector of positive values at which the hazard rate function needs to be computed
b	the value of b parameter, must be positive
d	the value of d parameter, must be positive
k	the value of k parameter, must be positive

Value

An object of the same length as x, giving the hazard rate function values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output. This function uses the R contributed package VGAM.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=hgengamma(x)
```

56 hgompertz

Description

Computes the hazard rate function of the Gompertz distribution

Usage

```
hgompertz(x, alpha = 1, beta = 1)
```

Arguments

X	scale or vector of positive values at which the hazard rate function needs to be
	computed

alpha the value of alpha parameter, must be positive beta the value of beta parameter, must be positive

Value

An object of the same length as x, giving the hazard rate function values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=hgompertz(x)
```

hgpw 57

Generalized power Weibull hazard rate function

Description

Computes the hazard rate function of the generalized power Weibull distribution

Usage

```
hgpw(x, alpha = 1, theta = 1)
```

Arguments

X	scale or vector of positive values at which the hazard rate function needs to be computed
alpha	the value of alpha parameter, must be positive
theta	the value of theta parameter, must be positive

Value

An object of the same length as x, giving the hazard rate function values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=hgpw(x)
```

58 hgumbel

			-
h ~	um	h ~	

Gumbel hazard rate function

Description

Computes the hazard rate function of the Gumbel distribution

Usage

```
hgumbel(x, mu = 1, sigma = 1)
```

Arguments

X	scale o	r vector	of any re	eal values at	which the	hazard rate	function needs	s to be

computed

mu the value of mu parameter, can be any real

sigma the value of sigma parameter, must be positive

Value

An object of the same length as x, giving the hazard rate function values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output. This function uses the R contributed package reliaR.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=hgumbel(x)
```

hhjorth 59

hhjorth	Hjorth hazard rate function	

Description

Computes the hazard rate function of the Hjorth distribution

Usage

```
hhjorth(x, delta = 1, theta = 1, beta = 1)
```

Arguments

Х	scale or vector of positive values at which the hazard rate function needs to be computed
delta	the value of delta parameter, must be positive
theta	the value of theta parameter, must be positive
beta	the value of beta parameter, must be positive

Value

An object of the same length as x, giving the hazard rate function values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=hhjorth(x)
```

60 hige

hige	Inverse exponentiated exponential hazard rate function	

Description

Computes the hazard rate function of the inverse exponentiated exponential distribution

Usage

```
hige(x, alpha = 1, lambda = 1)
```

Arguments

Х	scale or vector of positive values at which the hazard rate function needs to be computed
alpha	the value of alpha parameter, must be positive

lambda the value of lambda parameter, must be positive

Value

An object of the same length as x, giving the hazard rate function values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output. This function uses the R contributed package reliaR.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=hige(x)
```

hinvgauss 61

hinvgauss	Inverse Gaussian hazard rate function	

Description

Computes the hazard rate function of the inverse Gaussian distribution

Usage

```
hinvgauss(x, alpha = 1, sigma = 1)
```

Arguments

X	scale or vector of positive values at which the hazard rate function needs to be computed
alpha	the value of alpha parameter, must be positive
sigma	the value of sigma parameter, must be positive

Value

An object of the same length as x, giving the hazard rate function values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output. This function uses the R contributed package SuppDists.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=hinvgauss(x)
```

hjshape

h٦	ısl	ha	ne

J-shaped hazard rate function

Description

Computes the hazard rate function of the J-shaped distribution

Usage

```
hjshape(x, b = 1, nu = 1)
```

Arguments

X	scale or vector of values at which the hazard rate function needs to be computed, values are positive and bounded below by b
b	the value of b parameter, must be positive
nu	the value of nu parameter, must be positive

Value

An object of the same length as x, giving the hazard rate function values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=hjshape(x)
```

hkum 63

hkum

Kumaraswamy hazard rate function

Description

Computes the hazard rate function of the Kumarawamay distribution

Usage

```
hkum(x, a = 1, b = 1)
```

Arguments

x scale or vector of positive values at which the hazard rate function needs to be computed
 a the value of a parameter, must be positive
 b the value of b parameter, must be positive

Value

An object of the same length as x, giving the hazard rate function values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=1,max=2)
y=hkum(x)
```

64 hlai

hlai	Lai hazard rate function

Description

Computes the hazard rate function of the Lai distribution

Usage

```
hlai(x, lambda = 1, beta = 1, nu = 1)
```

zero

Arguments

х	scale or vector of positive values at which the hazard rate function needs to be computed
lambda	the value of lambda parameter, must be positive
beta	the value of beta parameter, must be non-negative but both beta and nu cannot be zero
nu	the value of nu parameter, must be non-negative but both beta and nu cannot be

Value

An object of the same length as x, giving the hazard rate function values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=hlai(x)
```

hle 65

hle

Logistic exponential hazard rate function

Description

Computes the hazard rate function of the logistic exponential distribution

Usage

```
hle(x, alpha = 1, lambda = 1)
```

Arguments

Χ	scale or vector of positive values at which the hazard rate function needs to be
	computed

alpha the value of alpha parameter, must be positive lambda the value of lambda parameter, must be positive

Value

An object of the same length as x, giving the hazard rate function values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output. This function uses the R contributed package reliaR.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=hle(x)
```

hlgamma

hlgamma	Log gamma hazard rate function	

Description

Computes the hazard rate function of the log gamma distribution

Usage

```
hlgamma(x, alpha = 1, lambda = 1)
```

Arguments

x scale or vector of values greater than one at which the hazard rate function needs

to be computed

alpha the value of alpha parameter, must be positive lambda the value of lambda parameter, must be positive

Value

An object of the same length as x, giving the hazard rate function values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output. This function uses the R contributed package actuar.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=2,max=3)
y=hlgamma(x)
```

hlinear 67

hlinear

Linear failure rate hazard rate function

Description

Computes the hazard rate function of the linear failure rate distribution

Usage

```
hlinear(x, a = 1, b = 1)
```

Arguments

X	scale or vector of positive values at which the hazard rate function needs to be computed
a	the value of a parameter, must be non-negative but both a and b cannot be zero
b	the value of b parameter, must be non-negative but both a and b cannot be zero

Value

An object of the same length as x, giving the hazard rate function values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=hlinear(x)
```

68 hll

	-	-
h	- 1	- 1
- 11	- 1	- 1

Loglog hazard rate function

Description

Computes the hazard rate function of the loglog distribution

Usage

```
hll(x, alpha = 1, lambda = 1)
```

Arguments

Х	scale or vector of positive values at which the hazard rate function needs to be computed
alpha	the value of alpha parameter, must be positive
lambda	the value of lambda parameter, must be positive

Value

An object of the same length as x, giving the hazard rate function values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=hll(x)
```

hlogistic 69

hlogistic	Logistic hazard rate function	
-----------	-------------------------------	--

Description

Computes the hazard rate function of the Logistic distribution

Usage

```
hlogistic(x, alpha = 1, sigma = 1)
```

Arguments

X	scale or vector of any real values at which the hazard rate function needs to be computed
alpha	the value of alpha parameter, can be any real
sigma	the value of sigma parameter, must be positive

Value

An object of the same length as x, giving the hazard rate function values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=hlogistic(x)
```

70 hloglogistic

|--|

Description

Computes the hazard rate function of the Log-logistic distribution

Usage

```
hloglogistic(x, alpha = 1, sigma = 1)
```

Arguments

X	scale or vector of positive values at which the hazard rate function needs to be computed
alpha	the value of alpha parameter, must be positive
sigma	the value of sigma parameter, must be positive

Value

An object of the same length as x, giving the hazard rate function values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=hloglogistic(x)
```

hlognormal 71

hlognormal	Lognormal hazard rate function	
------------	--------------------------------	--

Description

Computes the hazard rate function of the lognormal distribution

Usage

```
hlognormal(x, alpha = 1, sigma = 1)
```

Arguments

X	scale or vector of positive values at which the hazard rate function needs to be computed
alpha	the value of alpha parameter, can be any real
sigma	the value of sigma parameter, must be positive

Value

An object of the same length as x, giving the hazard rate function values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=hlognormal(x)
```

72 hlr

hlr

Logistic Rayleigh hazard rate function

Description

Computes the hazard rate function of the logistic Rayleigh distribution

Usage

```
hlr(x, alpha = 1, lambda = 1)
```

Arguments

x scale or vector of positive values at which the hazard rate function needs to be
--

computed

alpha the value of alpha parameter, must be positive lambda the value of lambda parameter, must be positive

Value

An object of the same length as x, giving the hazard rate function values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output. This function uses the R contributed package reliaR.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=hlr(x)
```

hmakeham 73

hmake	eham	Makeham hazard rate function	

Description

Computes the hazard rate function of the Makeham distribution

Usage

```
hmakeham(x, alpha = 1, beta = 1, epsilon = 1)
```

Arguments

X	scale or vector of positive values at which the hazard rate function needs to be computed
alpha	the value of alpha parameter, must be positive
beta	the value of beta parameter, must be positive
epsilon	the value of epsilon parameter, must be positive

Value

An object of the same length as x, giving the hazard rate function values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=hmakeham(x)
```

74 hmakehambeard

kehambeard Makeham-Beard hazard rate function

Description

Computes the hazard rate function of the Makeham-Beard distribution

Usage

```
hmakehambeard(x, alpha = 1, beta = 1, rho = 1, epsilon = 1)
```

Arguments

X	scale or vector of positive values at which the hazard rate function needs to be computed
alpha	the value of alpha parameter, must be positive
beta	the value of beta parameter, must be positive
rho	the value of rho parameter, must be positive
epsilon	the value of epsilon parameter, must be positive

Value

An object of the same length as x, giving the hazard rate function values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=hmakehambeard(x)
```

hmakehamperks 75

Description

Computes the hazard rate function of the Makeham-Perks distribution

Usage

```
hmakehamperks(x, alpha = 1, beta = 1, epsilon = 1)
```

Arguments

х	scale or vector of positive values at which the hazard rate function needs to be computed
alpha	the value of alpha parameter, must be positive
beta	the value of beta parameter, must be positive
epsilon	the value of epsilon parameter, must be positive

Value

An object of the same length as x, giving the hazard rate function values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=hmakehamperks(x)
```

76 hmoe

hmoe

Marshall-Olkin exponential hazard rate function

Description

Computes the hazard rate function of the Marshall-Olkin exponential distribution

Usage

```
hmoe(x, alpha = 1, lambda = 1)
```

Arguments

X	scale or vector of positive values at which the hazard rate function needs to be
	computed

alpha the value of alpha parameter, must be positive lambda the value of lambda parameter, must be positive

Value

An object of the same length as x, giving the hazard rate function values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=hmoe(x)
```

hmow 77

h	m	_	w
н	ш	U	w

Marshall-Olkin Weibull hazard rate function

Description

Computes the hazard rate function of the Marshall-Olkin Weibull distribution

Usage

```
hmow(x, alpha = 1, beta = 1, lambda = 1)
```

Arguments

X	scale or vector of positive values at which the hazard rate function needs to be computed
alpha	the value of alpha parameter, must be positive
beta	the value of beta parameter, must be positive
lambda	the value of lambda parameter, must be positive

Value

An object of the same length as x, giving the hazard rate function values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=hmow(x)
```

78 hnormal

						_
h	n	0	~	m	1	
- 1 1	11	()		ш	a	

Normal hazard rate function

Description

Computes the hazard rate function of the normal distribution

Usage

```
hnormal(x, alpha = 1, sigma = 1)
```

Arguments

X	scale or vector of any real values at which the hazard rate function needs to be computed
alpha	the value of alpha parameter, can be any real
sigma	the value of sigma parameter, must be positive

Value

An object of the same length as x, giving the hazard rate function values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=hnormal(x)
```

hpareto 79

hpareto	
---------	--

Pareto hazard rate function

Description

Computes the hazard rate function of the Pareto distribution

Usage

```
hpareto(x, alpha = 1, m = 1)
```

Arguments

X	scale or vector of values at which the hazard rate function needs to be computed,
	values must be greater than m

alpha the value of alpha parameter, must be positive

m the value of m parameter, must be positive

Value

An object of the same length as x, giving the hazard rate function values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=2,max=3)
y=hpareto(x)
```

hperks

Perks hazard rate function

Description

Computes the hazard rate function of the Perks distribution

Usage

```
hperks(x, alpha = 1, beta = 1)
```

Arguments

X	scale or vector of positive values at which the hazard rate function needs to be computed
alpha	the value of alpha parameter, must be positive
beta	the value of beta parameter, must be positive

Value

An object of the same length as x, giving the hazard rate function values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=hperks(x)
```

hschabe 81

hschabe	Schabe hazard rate function	

Description

Computes the hazard rate function of the Schabe distribution

Usage

```
hschabe(x, theta = 1, gamma = 0.5)
```

Arguments

X	scale or vector of values at which the hazard rate function needs to be computed,
	must be positive and less than theta

theta the value of theta parameter, must be positive

gamma the value of gamma parameter, must be between zero and one

Value

An object of the same length as x, giving the hazard rate function values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=hschabe(x)
```

82 huniform

huniform

Uniform hazard rate function

Description

Computes the hazard rate function of the uniform distribution

Usage

```
huniform(x, a = 1, b = 2)
```

Arguments

X	scale or vector of values at which the hazard rate function needs to be computed, values must be between a and b
а	the value of a parameter, must be positive
b	the value of b parameter, must be greater than a

Value

An object of the same length as x, giving the hazard rate function values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=1,max=2)
y=huniform(x)
```

hweibull 83

hweibull	Weibull hazard rate function	

Description

Computes the hazard rate function of the Weibull distribution

Usage

```
hweibull(x, alpha = 1, sigma = 1)
```

Arguments

X	scale or vector of positive values at which the hazard rate function needs to be computed
alpha	the value of alpha parameter, must be positive
sigma	the value of sigma parameter, must be positive

Value

An object of the same length as x, giving the hazard rate function values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=hweibull(x)
```

84 hxie

hxie	Xie hazard rate function

Description

Computes the hazard rate function of the Xie distribution

Usage

```
hxie(x, lambda = 1, alpha = 1, beta = 1)
```

Arguments

х	scale or vector of positive values at which the hazard rate function needs to be computed
lambda	the value of lambda parameter, must be positive
alpha	the value of alpha parameter, must be positive
beta	the value of beta parameter, must be positive

Value

An object of the same length as x, giving the hazard rate function values computed at x

Note

If incorrect values are input for x or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=hxie(x)
```

iaddweibull 85

iaddweibull	Additive Weibull integrated hazard rate function	

Description

Computes the integrated hazard rate function of the additive Weibull distribution

Usage

```
iaddweibull(x, t = 1, a = 1, b = 1, c = 1, d = 1)
```

Arguments

Х	scale or vector of positive values at which the integrated hazard rate function needs to be computed
t	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as x
а	the value of a parameter, must be positive
b	the value of b parameter, must be positive
С	the value of c parameter, must be positive
d	the value of d parameter, must be positive

Value

An object of the same length as x, giving the hazard rate function values computed at x and t

Note

If incorrect values or inconsistent lengths are input for x, t or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=iaddweibull(x)
```

86 ibeard

ibeard	Beard integrated hazard rate function
--------	---------------------------------------

Description

Computes the integrated hazard rate function of the Beard distribution

Usage

```
ibeard(x, t = 1, alpha = 1, beta = 1, rho = 1)
```

Arguments

Х	scale or vector of positive values at which the integrated hazard rate function needs to be computed
t	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as \boldsymbol{x}
alpha	the value of alpha parameter, must be positive
beta	the value of beta parameter, must be positive
rho	the value of rho parameter, must be positive

Value

An object of the same length as x, giving the hazard rate function values computed at x and t

Note

If incorrect values or inconsistent lengths are input for x, t or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=ibeard(x)
```

ibeta 87

ibeta

Beta integrated hazard rate function

Description

Computes the integrated hazard rate function of the beta distribution

Usage

```
ibeta(x, t = 1, a = 1, b = 1)
```

Arguments

Х	scale or vector of values at which the integrated hazard rate function needs to be computed, values must be in the unit interval
t	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as \boldsymbol{x}
a	the value of b parameter, must be positive
b	the value of nu parameter, must be positive

Value

An object of the same length as x, giving the hazard rate function values computed at x and t

Note

If incorrect values or inconsistent lengths are input for x, t or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=ibeta(x)
```

88 iburrx

•	h		~	r	
	b	u	•	•	л

BurrX integrated hazard rate function

Description

Computes the integrated hazard rate function of the BurrX distribution

Usage

```
iburrx(x, t = 1, alpha = 1, lambda = 1)
```

Arguments

Х	scale or vector of positive values at which the integrated hazard rate function needs to be computed
t	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as \boldsymbol{x}
alpha	the value of alpha parameter, must be positive
lambda	the value of lambda parameter, must be positive

Value

An object of the same length as x, giving the hazard rate function values computed at x and t

Note

If incorrect values or inconsistent lengths are input for x, t or the model parameters then NaNs will be returned as the output. This function uses the R contributed package reliaR.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=iburrx(x)
```

ichen 89

ichen	Chen integrated hazard rate function
-------	--------------------------------------

Description

Computes the integrated hazard rate function of the Chen distribution

Usage

```
ichen(x, t = 1, beta = 1, lambda = 1)
```

Arguments

Х	scale or vector of positive values at which the integrated hazard rate function needs to be computed
t	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as \boldsymbol{x}
beta	the value of beta parameter, must be positive
lambda	the value of lambda parameter, must be positive

Value

An object of the same length as x, giving the hazard rate function values computed at x and t

Note

If incorrect values or inconsistent lengths are input for x, t or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=ichen(x)
```

90 iee

iee

Exponentiated exponential integrated hazard rate function

Description

Computes the integrated hazard rate function of the exponentiated exponential distribution

Usage

```
iee(x, t = 1, alpha = 1, lambda = 1)
```

Arguments

Х	scale or vector of positive values at which the integrated hazard rate function needs to be computed
t	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as \boldsymbol{x}
alpha	the value of alpha parameter, must be positive
lambda	the value of lambda parameter, must be positive

Value

An object of the same length as x, giving the hazard rate function values computed at x and t

Note

If incorrect values or inconsistent lengths are input for x, t or the model parameters then NaNs will be returned as the output. This function uses the R contributed package reliaR.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=iee(x)
```

iel 91

iel

Exponentiated logistic integrated hazard rate function

Description

Computes the integrated hazard rate function of the exponentiated logistic distribution

Usage

```
iel(x, t = 1, alpha = 1, beta = 1)
```

Arguments

X	scale or vector of positive values at which the integrated hazard rate function needs to be computed
t	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as \boldsymbol{x}
alpha	the value of alpha parameter, must be positive
beta	the value of beta parameter, must be positive

Value

An object of the same length as x, giving the hazard rate function values computed at x and t

Note

If incorrect values or inconsistent lengths are input for x, t or the model parameters then NaNs will be returned as the output. This function uses the R contributed package reliaR.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=iel(x)
```

92 iew

iew

Exponentiated Weibull integrated hazard rate function

Description

Computes the integrated hazard rate function of the exponentiated Weibull distribution

Usage

```
iew(x, t = 1, alpha = 1, c = 1, lambda = 1)
```

Arguments

Х	scale or vector of positive values at which the integrated hazard rate function needs to be computed
t	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as \boldsymbol{x}
alpha	the value of alpha parameter, must be positive
lambda	the value of lambda parameter, must be positive
С	the value of c parameter, must be positive

Value

An object of the same length as x, giving the hazard rate function values computed at x and t

Note

If incorrect values or inconsistent lengths are input for x, t or the model parameters then NaNs will be returned as the output. This function uses the R contributed package reliaR.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=iew(x)
```

iexpext 93

iexpext	Exponential extension integrated hazard rate function

Description

Computes the integrated hazard rate function of the exponential extension distribution

Usage

```
iexpext(x, t = 1, alpha = 1, lambda = 1)
```

Arguments

X	scale or vector of positive values at which the integrated hazard rate function needs to be computed
t	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as \boldsymbol{x}
alpha	the value of alpha parameter, must be positive
lambda	the value of lambda parameter, must be positive

Value

An object of the same length as x, giving the hazard rate function values computed at x and t

Note

If incorrect values or inconsistent lengths are input for x, t or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=iexpext(x)
```

94 iexponential

					٠	
٦.	ex	na	nρ	nt	7	aІ
	-	ρo		ıιι	_	a_{\perp}

Exponential integrated hazard rate function

Description

Computes the integrated hazard rate function of the exponential distribution

Usage

```
iexponential(x, t = 1, alpha = 1)
```

Arguments

X	scale or vector of positive values at which the integrated hazard rate function needs to be computed
t	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as x
alpha	the value of alpha parameter, must be positive

Value

An object of the same length as x, giving the hazard rate function values computed at x and t

Note

If incorrect values or inconsistent lengths are input for x, t or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=iexponential(x)
```

ifrechet 95

	_						
-	₽.	-	e	\sim	h	\sim	+
- 1		1	H	(:	п	ч	ι.

Gumbel II integrated hazard rate function

Description

Computes the integrated hazard rate function of the Gumbel II distribution

Usage

```
ifrechet(x, t = 1, a = 1, b = 1)
```

Arguments

X	scale or vector of positive values at which the integrated hazard rate function needs to be computed
t	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as \boldsymbol{x}
a	the value of a parameter, must be positive
b	the value of b parameter, must be positive

Value

An object of the same length as x, giving the hazard rate function values computed at x and t

Note

If incorrect values or inconsistent lengths are input for x, t or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=ifrechet(x)
```

96 ifw

ifw

Flexible Weibull integrated hazard rate function

Description

Computes the integrated hazard rate function of the flexible Weibull distribution

Usage

```
ifw(x, t = 1, alpha = 1, beta = 1)
```

Arguments

Х	scale or vector of positive values at which the integrated hazard rate function needs to be computed
t	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as \boldsymbol{x}
alpha	the value of alpha parameter, must be positive
beta	the value of beta parameter, must be positive

Value

An object of the same length as x, giving the hazard rate function values computed at x and t

Note

If incorrect values or inconsistent lengths are input for x, t or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=ifw(x)
```

igamma 97

- 1	gamma
	gaiiiiia

Gamma integrated hazard rate function

Description

Computes the integrated hazard rate function of the gamma distribution

Usage

```
igamma(x, t = 1, alpha = 1, lambda = 1)
```

Arguments

X	scale or vector of positive values at which the integrated hazard rate function needs to be computed
t	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as \boldsymbol{x}
alpha	the value of alpha parameter, must be positive
lambda	the value of lambda parameter, must be positive

Value

An object of the same length as x, giving the hazard rate function values computed at x and t

Note

If incorrect values or inconsistent lengths are input for x, t or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=2,max=3)
y=igamma(x)
```

98 igenF

		_
i	MAR	١E
- 1	201	

Generalized F integrated hazard rate function

Description

Computes the integrated hazard rate function of the generalized F distribution

Usage

```
igenF(x, t = 1, beta = 0, sigma = 1, m1 = 1, m2 = 1)
```

Arguments

X	scale or vector of positive values at which the integrated hazard rate function needs to be computed
t	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as x
beta	the value of beta parameter, must be positive
sigma	the value of sigma parameter, must be positive
m1	the value of m1 parameter, must be positive
m2	the value of m2 parameter, must be positive

Value

An object of the same length as x, giving the hazard rate function values computed at x and t

Note

If incorrect values or inconsistent lengths are input for x, t or the model parameters then NaNs will be returned as the output. This function uses the R contributed package flexsurv.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=igenF(x)
```

igengamma 99

7	gei	າຕວ	mn	າລ
_	501	IEC	411111	ıa

Generalized gamma integrated hazard rate function

Description

Computes the integrated hazard rate function of the generalized gamma distribution

Usage

```
igengamma(x, t = 1, b = 1, d = 1, k = 1)
```

Arguments

X	scale or vector of positive values at which the integrated hazard rate function needs to be computed
t	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as \boldsymbol{x}
b	the value of b parameter, must be positive
d	the value of d parameter, must be positive
k	the value of k parameter, must be positive

Value

An object of the same length as x, giving the hazard rate function values computed at x and t

Note

If incorrect values or inconsistent lengths are input for x, t or the model parameters then NaNs will be returned as the output.

Author(s)

Saralees Nadarajah

References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=2,max=3)
y=igengamma(x)
```

100 igompertz

	~~~~~+-	
- 1	gompertz	

Gompertz integrated hazard rate function

# Description

Computes the integrated hazard rate function of the Gompertz distribution

# Usage

```
igompertz(x, t = 1, alpha = 1, beta = 1)
```

## **Arguments**

X	scale or vector of positive values at which the integrated hazard rate function needs to be computed
t	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as x
alpha	the value of alpha parameter, must be positive
beta	the value of beta parameter, must be positive

# Value

An object of the same length as x, giving the hazard rate function values computed at x and t

### Note

If incorrect values or inconsistent lengths are input for x, t or the model parameters then NaNs will be returned as the output.

## Author(s)

Saralees Nadarajah

### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=igompertz(x)
```

igpw 101

7	$\alpha$	n	۱۸
	×	v	V١

Generalized power Weibull integrated hazard rate function

## Description

Computes the integrated hazard rate function of the generalized power Weibull distribution

# Usage

```
igpw(x, t = 1, alpha = 1, theta = 1)
```

## **Arguments**

Х	scale or vector of positive values at which the integrated hazard rate function needs to be computed
t	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
alpha	the value of alpha parameter, must be positive
theta	the value of theta parameter, must be positive

# Value

An object of the same length as x, giving the hazard rate function values computed at x and t

### Note

If incorrect values or inconsistent lengths are input for x, t or the model parameters then NaNs will be returned as the output.

## Author(s)

Saralees Nadarajah

### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=igpw(x)
```

102 igumbel

•			he	٦
- 1	$\sigma$	ım	ne	

Gumbel integrated hazard rate function

# Description

Computes the integrated hazard rate function of the Gumbel distribution

# Usage

```
igumbel(x, t = 1, mu = 1, sigma = 1)
```

## **Arguments**

X	scale or vector of positive values at which the integrated hazard rate function needs to be computed
t	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
mu	the value of mu parameter, can be any real
sigma	the value of sigma parameter, must be positive

## Value

An object of the same length as x, giving the hazard rate function values computed at x and t

### Note

If incorrect values or inconsistent lengths are input for x, t or the model parameters then NaNs will be returned as the output. This function uses the R contributed package reliaR.

## Author(s)

Saralees Nadarajah

# References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=igumbel(x)
```

ihjorth 103

ihjorth	Hjorth integrated hazard rate function	

# Description

Computes the integrated hazard rate function of the Hjorth distribution

## Usage

```
ihjorth(x, t = 1, delta = 1, theta = 1, beta = 1)
```

## **Arguments**

Х	scale or vector of positive values at which the integrated hazard rate function needs to be computed
t	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
delta	the value of delta parameter, must be positive
theta	the value of theta parameter, must be positive
beta	the value of beta parameter, must be positive

## Value

An object of the same length as x, giving the hazard rate function values computed at x and t

## Note

If incorrect values or inconsistent lengths are input for x, t or the model parameters then NaNs will be returned as the output.

## Author(s)

Saralees Nadarajah

### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=ihjorth(x)
```

iige

iige

Inverse exponentiated exponential integrated hazard rate function

# Description

Computes the integrated hazard rate function of the inverse exponentiated exponential distribution

# Usage

```
iige(x, t = 1, alpha = 1, lambda = 1)
```

## **Arguments**

X	scale or vector of positive values at which the integrated hazard rate function needs to be computed
t	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
alpha	the value of alpha parameter, must be positive
lambda	the value of lambda parameter, must be positive

## Value

An object of the same length as x, giving the hazard rate function values computed at x and t

### Note

If incorrect values or inconsistent lengths are input for x, t or the model parameters then NaNs will be returned as the output. This function uses the R contributed package reliaR.

### Author(s)

Saralees Nadarajah

# References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=iige(x)
```

iinvgauss 105

iinvgauss	Inverse Gaussian integrated hazard rate function

# Description

Computes the integrated hazard rate function of the inverse Gaussian distribution

# Usage

```
iinvgauss(x, t = 1, alpha = 1, sigma = 1)
```

## **Arguments**

Х	scale or vector of positive values at which the integrated hazard rate function needs to be computed
t	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
alpha	the value of alpha parameter, must be positive
sigma	the value of sigma parameter, must be positive

# Value

An object of the same length as x, giving the hazard rate function values computed at x and t

### Note

If incorrect values or inconsistent lengths are input for x, t or the model parameters then NaNs will be returned as the output. This function uses the R contributed package SuppDists.

### Author(s)

Saralees Nadarajah

### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=2,max=3)
y=iinvgauss(x)
```

106 ijshape

i	٦	C	h	2	n	_

J-shaped integrated hazard rate function

# Description

Computes the integrated hazard rate function of the J-shaped distribution

# Usage

```
ijshape(x, t = 1, b = 1, nu = 1)
```

## **Arguments**

Х	scale or vector of values at which the integrated hazard rate function needs to be computed, values are positive and bounded below by b
t	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
b	the value of b parameter, must be positive
nu	the value of nu parameter, must be positive

# Value

An object of the same length as x, giving the hazard rate function values computed at x and t

## Note

If incorrect values or inconsistent lengths are input for x, t or the model parameters then NaNs will be returned as the output.

## Author(s)

Saralees Nadarajah

### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=ijshape(x)
```

ikum 107

ikum

Kumaraswamy integrated hazard rate function

# Description

Computes the integrated hazard rate function of the Kumaraswamy distribution

# Usage

```
ikum(x, t = 1, a = 0, b = 1)
```

## **Arguments**

X	scale or vector of values at which the integrated hazard rate function needs to be computed, values must be between zero and one
t	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
a	the value of a parameter, must be positive
b	the value of b parameter, must be positive

## Value

An object of the same length as x, giving the hazard rate function values computed at x and t

## Note

If incorrect values or inconsistent lengths are input for x, t or the model parameters then NaNs will be returned as the output.

## Author(s)

Saralees Nadarajah

### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=ikum(x)
```

108 ilai

Lai integrated hazard rate function

## **Description**

Computes the integrated hazard rate function of the Lai distribution

## Usage

```
ilai(x, t = 1, lambda = 1, beta = 1, nu = 1)
```

## **Arguments**

X	scale or vector of positive values at which the integrated hazard rate function needs to be computed
t	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
lambda	the value of lambda parameter, must be positive
beta	the value of beta parameter, must be non-negative but both beta and nu cannot be zero
nu	the value of nu parameter, must be non-negative but both beta and nu cannot be zero

# Value

An object of the same length as x, giving the hazard rate function values computed at x and t

## Note

If incorrect values or inconsistent lengths are input for x, t or the model parameters then NaNs will be returned as the output. This function uses the R contributed package hypergeo.

## Author(s)

Saralees Nadarajah

### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=ilai(x)
```

ile 109

ile

Logistic exponential integrated hazard rate function

### Description

Computes the integrated hazard rate function of the logistic exponential distribution

### Usage

```
ile(x, t = 1, alpha = 1, lambda = 1)
```

### **Arguments**

Х	scale or vector of positive values at which the integrated hazard rate function needs to be computed
t	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
alpha	the value of alpha parameter, must be positive
lambda	the value of lambda parameter, must be positive

## Value

An object of the same length as x, giving the hazard rate function values computed at x and t

#### Note

If incorrect values or inconsistent lengths are input for x, t or the model parameters then NaNs will be returned as the output. This function uses the R contributed package reliaR.

### Author(s)

Saralees Nadarajah

#### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=ile(x)
```

ilgamma ilgamma

## Description

Computes the integrated hazard rate function of the log gamma distribution

# Usage

```
ilgamma(x, t = 1, alpha = 1, lambda = 1)
```

### **Arguments**

х	scale or vector of positive values at which the integrated hazard rate function needs to be computed
t	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
alpha	the value of alpha parameter, must be positive
lambda	the value of lambda parameter, must be positive

### Value

An object of the same length as x, giving the hazard rate function values computed at x and t

#### Note

If incorrect values or inconsistent lengths are input for x, t or the model parameters then NaNs will be returned as the output. This function uses the R contributed package actuar.

### Author(s)

Saralees Nadarajah

#### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=ilgamma(x)
```

ilinear 111

	_		
i	П	i	near
_	_	_	

Linear failure rate integrated hazard rate function

### Description

Computes the integrated hazard rate function of the linear failure rate distribution

# Usage

```
ilinear(x, t = 1, a = 1, b = 1)
```

### **Arguments**

2	x	scale or vector of positive values at which the integrated hazard rate function needs to be computed
	t	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
i	а	the value of a parameter, must be non-negative but both a and b cannot be zero
ı	o	the value of b parameter, must be non-negative but both a and b cannot be zero

## Value

An object of the same length as x, giving the hazard rate function values computed at x and t

### Note

If incorrect values or inconsistent lengths are input for x, t or the model parameters then NaNs will be returned as the output.

### Author(s)

Saralees Nadarajah

#### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=2,max=3)
y=ilinear(x)
```

112

Loglog integrated hazard rate function

# ill

### Description

Computes the integrated hazard rate function of the loglog distribution

# Usage

```
ill(x, t = 1, alpha = 1, lambda = 1)
```

### **Arguments**

Х	scale or vector of positive values at which the integrated hazard rate function needs to be computed
t	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
alpha	the value of alpha parameter, must be positive
lambda	the value of lambda parameter, must be positive

## Value

An object of the same length as x, giving the hazard rate function values computed at x and t

### Note

If incorrect values or inconsistent lengths are input for x, t or the model parameters then NaNs will be returned as the output.

### Author(s)

Saralees Nadarajah

### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=ill(x)
```

ilogistic 113

ilogistic	Logistic integrated hazard rate function	
110613110	Logistic integrated nazara rate function	

## Description

Computes the integrated hazard rate function of the logistic distribution

# Usage

```
ilogistic(x, t = 1, alpha = 1, sigma = 1)
```

### Arguments

Х	scale or vector of any real values at which the integrated hazard rate function needs to be computed
t	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
alpha	the value of alpha parameter, can be any real
sigma	the value of sigma parameter, must be positive

## Value

An object of the same length as x, giving the hazard rate function values computed at x and t

### Note

If incorrect values or inconsistent lengths are input for x, t or the model parameters then NaNs will be returned as the output.

### Author(s)

Saralees Nadarajah

#### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=2,max=3)
y=ilogistic(x)
```

114 iloglogistic

iloglogistic	Log-logistic integrated hazard rate function	

## Description

Computes the integrated hazard rate function of the log-logistic distribution

# Usage

```
iloglogistic(x, t = 1, alpha = 1, sigma = 1)
```

### Arguments

Х	scale or vector of positive values at which the integrated hazard rate function needs to be computed
t	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
alpha	the value of alpha parameter, must be positive
sigma	the value of sigma parameter, must be positive

## Value

An object of the same length as x, giving the hazard rate function values computed at x and t

### Note

If incorrect values or inconsistent lengths are input for x, t or the model parameters then NaNs will be returned as the output.

### Author(s)

Saralees Nadarajah

#### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=2,max=3)
y=iloglogistic(x)
```

ilognormal 115

ilognormal Lognormal integrated hazard rate function	ilognormal	Lognormal integrated hazard rate function
------------------------------------------------------	------------	-------------------------------------------

### Description

Computes the integrated hazard rate function of the lognormal distribution

# Usage

```
ilognormal(x, t = 1, alpha = 1, sigma = 1)
```

### **Arguments**

Х	scale or vector of positive values at which the integrated hazard rate function needs to be computed
t	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
alpha	the value of alpha parameter, can be any real
sigma	the value of sigma parameter, must be positive

## Value

An object of the same length as x, giving the hazard rate function values computed at x and t

### Note

If incorrect values or inconsistent lengths are input for x, t or the model parameters then NaNs will be returned as the output.

### Author(s)

Saralees Nadarajah

#### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=2,max=3)
y=ilognormal(x)
```

116 ilr

ilr

Logistic Rayleigh integrated hazard rate function

## Description

Computes the integrated hazard rate function of the logistic Rayleigh distribution

### Usage

```
ilr(x, t = 1, alpha = 1, lambda = 1)
```

### **Arguments**

Х	scale or vector of positive values at which the integrated hazard rate function needs to be computed
t	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
alpha	the value of alpha parameter, must be positive
lambda	the value of lambda parameter, must be positive

### Value

An object of the same length as x, giving the hazard rate function values computed at x and t

#### Note

If incorrect values or inconsistent lengths are input for x, t or the model parameters then NaNs will be returned as the output. This function uses the R contributed package reliaR.

### Author(s)

Saralees Nadarajah

### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=ilr(x)
```

imakeham 117

imakeham	Makeham integrated hazard rate function
	· · · · · · · · · · · · · · · · · · ·

### Description

Computes the integrated hazard rate function of the Makeham distribution

# Usage

```
imakeham(x, t = 1, alpha = 1, beta = 1, epsilon = 1)
```

### **Arguments**

Х	scale or vector of positive values at which the integrated hazard rate function needs to be computed
t	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
alpha	the value of alpha parameter, must be positive
epsilon	the value of epsilon parameter, must be positive
beta	the value of beta parameter, must be positive

### Value

An object of the same length as x, giving the hazard rate function values computed at x and t

### Note

If incorrect values or inconsistent lengths are input for x, t or the model parameters then NaNs will be returned as the output.

### Author(s)

Saralees Nadarajah

#### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=imakeham(x)
```

118 imakehambeard

imakehambeard	Makeham-Beard integrated hazard rate function	

### Description

Computes the integrated hazard rate function of the Makeham-Beard distribution

### Usage

```
imakehambeard(x, t = 1, alpha = 1, beta = 1, rho = 1, epsilon = 1)
```

### **Arguments**

х	scale or vector of positive values at which the integrated hazard rate function needs to be computed
t	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as x
alpha	the value of alpha parameter, must be positive
epsilon	the value of epsilon parameter, must be positive
beta	the value of beta parameter, must be positive
rho	the value of rho parameter, must be positive

#### Value

An object of the same length as x, giving the hazard rate function values computed at x and t

### Note

If incorrect values or inconsistent lengths are input for x, t or the model parameters then NaNs will be returned as the output.

### Author(s)

Saralees Nadarajah

### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=imakehambeard(x)
```

imakehamperks 119

imakehamperks	Makeham-Perks integrated hazard rate function	
---------------	-----------------------------------------------	--

### Description

Computes the integrated hazard rate function of the Makeham-Perks distribution

# Usage

```
imakehamperks(x, t = 1, alpha = 1, beta = 1, epsilon = 1)
```

### Arguments

Х	scale or vector of positive values at which the integrated hazard rate function needs to be computed
t	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
alpha	the value of alpha parameter, must be positive
epsilon	the value of epsilon parameter, must be positive
beta	the value of beta parameter, must be positive

### Value

An object of the same length as x, giving the hazard rate function values computed at x and t

### Note

If incorrect values or inconsistent lengths are input for x, t or the model parameters then NaNs will be returned as the output.

### Author(s)

Saralees Nadarajah

#### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=imakehamperks(x)
```

120 imoe

7	m	1	-
1	ш	w	c

Marshall-Olkin exponential integrated hazard rate function

### Description

Computes the integrated hazard rate function of the Marshall-Olkin exponential distribution

# Usage

```
imoe(x, t = 1, alpha = 1, lambda = 1)
```

### **Arguments**

Х	scale or vector of positive values at which the integrated hazard rate function needs to be computed
t	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
alpha	the value of alpha parameter, must be positive
lambda	the value of lambda parameter, must be positive

## Value

An object of the same length as x, giving the hazard rate function values computed at x and t

#### Note

If incorrect values or inconsistent lengths are input for x, t or the model parameters then NaNs will be returned as the output.

### Author(s)

Saralees Nadarajah

#### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=imoe(x)
```

imow 121

٠	
7	mow.
_	IIIOW

Marshall-Olkin Weibull integrated hazard rate function

### Description

Computes the integrated hazard rate function of the Marshall-Olkin Weibull distribution

# Usage

```
imow(x, t = 1, alpha = 1, beta = 1, lambda = 1)
```

### **Arguments**

Х	scale or vector of positive values at which the integrated hazard rate function needs to be computed
t	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
alpha	the value of alpha parameter, must be positive
beta	the value of beta parameter, must be positive
lambda	the value of lambda parameter, must be positive

#### Value

An object of the same length as x, giving the hazard rate function values computed at x and t

### Note

If incorrect values or inconsistent lengths are input for x, t or the model parameters then NaNs will be returned as the output.

### Author(s)

Saralees Nadarajah

#### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=imow(x)
```

122 inormal

			-
٦.	nn	rm	าวไ
	HU	'I II	ıaı

Normal integrated hazard rate function

# Description

Computes the integrated hazard rate function of the normal distribution

# Usage

```
inormal(x, t = 1, alpha = 1, sigma = 1)
```

### **Arguments**

Х	scale or vector of any real values at which the integrated hazard rate function needs to be computed
t	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
alpha	the value of alpha parameter, can be any real
sigma	the value of sigma parameter, must be positive

## Value

An object of the same length as x, giving the hazard rate function values computed at x and t

### Note

If incorrect values or inconsistent lengths are input for x, t or the model parameters then NaNs will be returned as the output.

### Author(s)

Saralees Nadarajah

#### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=2,max=3)
y=inormal(x)
```

ipareto 123

1	pa	re	to

Pareto integrated hazard rate function

### Description

Computes the integrated hazard rate function of the Pareto distribution

# Usage

```
ipareto(x, t = 1, alpha = 1, m = 1)
```

### **Arguments**

Х	scale or vector of values at which the integrated hazard rate function needs to be computed, values must be greater than m
t	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
alpha	the value of alpha parameter, must be positive
m	the value of m parameter, must be positive

## Value

An object of the same length as x, giving the hazard rate function values computed at x and t

### Note

If incorrect values or inconsistent lengths are input for x, t or the model parameters then NaNs will be returned as the output.

### Author(s)

Saralees Nadarajah

### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=2,max=3)
y=ipareto(x)
```

124 iperks

iperks Perks integrated hazard rate function	
----------------------------------------------	--

# Description

Computes the integrated hazard rate function of the Perks distribution

# Usage

```
iperks(x, t = 1, alpha = 1, beta = 1)
```

### **Arguments**

Х	scale or vector of positive values at which the integrated hazard rate function needs to be computed
t	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
alpha	the value of alpha parameter, must be positive
beta	the value of beta parameter, must be positive

## Value

An object of the same length as x, giving the hazard rate function values computed at x and t

### Note

If incorrect values or inconsistent lengths are input for x, t or the model parameters then NaNs will be returned as the output.

### Author(s)

Saralees Nadarajah

### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=iperks(x)
```

ischabe 125

ischabe Schabe integrated hazard rate function	ischabe	Schabe integrated hazard rate function	
------------------------------------------------	---------	----------------------------------------	--

# Description

Computes the integrated hazard rate function of the Schabe distribution

# Usage

```
ischabe(x, t = 1, theta = 1, gamma = 0.5)
```

### Arguments

Х	scale or vector of values at which the integrated hazard rate function needs to be computed, must be positive and less than theta
t	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
theta	the value of theta parameter, must be positive
gamma	the value of gamma parameter, must be between zero and one

## Value

An object of the same length as x, giving the hazard rate function values computed at x and t

### Note

If incorrect values or inconsistent lengths are input for x, t or the model parameters then NaNs will be returned as the output.

### Author(s)

Saralees Nadarajah

#### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=ischabe(x)
```

126 iuniform

				_		
7	u	n	٦.	٠,	1	m

Uniform integrated hazard rate function

## Description

Computes the integrated hazard rate function of the uniform distribution

# Usage

```
iuniform(x, t = 1, a = 0, b = 1)
```

### **Arguments**

Х	scale or vector of values at which the integrated hazard rate function needs to be computed, values must be between a and b
t	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
a	the value of a parameter, must be positive
b	the value of b parameter, must be greater than a

## Value

An object of the same length as x, giving the hazard rate function values computed at x and t

#### Note

If incorrect values or inconsistent lengths are input for x, t or the model parameters then NaNs will be returned as the output.

### Author(s)

Saralees Nadarajah

#### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=iuniform(x)
```

iweibull 127

iweibull Weibull integrated hazard rate function	iweibull Weibull integrated haz
--------------------------------------------------	---------------------------------

## Description

Computes the integrated hazard rate function of the Weibull distribution

# Usage

```
iweibull(x, t = 1, alpha = 1, sigma = 1)
```

### Arguments

Х	scale or vector of positive values at which the integrated hazard rate function needs to be computed
t	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
alpha	the value of alpha parameter, must be positive
sigma	the value of sigma parameter, must be positive

## Value

An object of the same length as x, giving the hazard rate function values computed at x and t

### Note

If incorrect values or inconsistent lengths are input for x, t or the model parameters then NaNs will be returned as the output.

### Author(s)

Saralees Nadarajah

#### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=2,max=3)
y=iweibull(x)
```

128 ixie

٦.	v	٦.	-
	л	1	C

Xie integrated hazard rate function

### Description

Computes the integrated hazard rate function of the Xie distribution

# Usage

```
ixie(x, t = 1, lambda = 1, alpha = 1, beta = 1)
```

### **Arguments**

Х	scale or vector of positive values at which the integrated hazard rate function needs to be computed
t	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
alpha	the value of alpha parameter, must be positive
beta	the value of beta parameter, must be positive
lambda	the value of lambda parameter, must be positive

#### Value

An object of the same length as x, giving the hazard rate function values computed at x and t

### Note

If incorrect values or inconsistent lengths are input for x, t or the model parameters then NaNs will be returned as the output.

### Author(s)

Saralees Nadarajah

#### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=ixie(x)
```

qaddweibull 129

qaddweibull Additive Weibull integrated hazard rate function	qaddweibull	Additive Weibull integrated hazard rate function	
--------------------------------------------------------------	-------------	--------------------------------------------------	--

### Description

Computes the integrated hazard rate function of the additive Weibull distribution

### Usage

```
qaddweibull(x, u = 0.5, a = 1, b = 1, c = 1, d = 1)
```

### **Arguments**

х	scale or vector of positive values at which the integrated hazard rate function needs to be computed
u	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as x
а	the value of a parameter, must be positive
b	the value of b parameter, must be positive
С	the value of c parameter, must be positive
d	the value of d parameter, must be positive

#### Value

An object of the same length as x, giving the hazard rate function values computed at x and u

### Note

If incorrect values or inconsistent lengths are input for x, u or the model parameters then NaNs will be returned as the output.

### Author(s)

Saralees Nadarajah

### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=qaddweibull(x)
```

130 qbeard

qbeard	Beard quantile function	

### Description

Computes the quantile function of the Beard distribution

### Usage

```
qbeard(x, u = 0.5, alpha = 1, beta = 1, rho = 1)
```

### Arguments

Х	scale or vector of positive values at which the integrated hazard rate function needs to be computed
u	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
alpha	the value of alpha parameter, must be positive
beta	the value of beta parameter, must be positive
rho	the value of rho parameter, must be positive

### Value

An object of the same length as x, giving the hazard rate function values computed at x and u

### Note

If incorrect values or inconsistent lengths are input for x, u or the model parameters then NaNs will be returned as the output.

### Author(s)

Saralees Nadarajah

#### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=qbeard(x)
```

qbetad 131

nction
nction

# Description

Computes the quantile function of the beta distribution

# Usage

```
qbetad(x, u = 0.5, a = 1, b = 1)
```

### Arguments

Х	scale or vector of values at which the integrated hazard rate function needs to be computed, values must be in the unit interval
u	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
a	the value of b parameter, must be positive
b	the value of nu parameter, must be positive

## Value

An object of the same length as x, giving the hazard rate function values computed at x and u

### Note

If incorrect values or inconsistent lengths are input for x, u or the model parameters then NaNs will be returned as the output.

### Author(s)

Saralees Nadarajah

### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=qbetad(x)
```

132 qburrx

qburrx BurrX quantile function	
--------------------------------	--

### Description

Computes the quantile function of the BurrX distribution

# Usage

```
qburrx(x, u = 0.5, alpha = 1, lambda = 1)
```

### **Arguments**

X	scale or vector of positive values at which the integrated hazard rate function needs to be computed
u	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
alpha	the value of alpha parameter, must be positive
lambda	the value of lambda parameter, must be positive

## Value

An object of the same length as x, giving the hazard rate function values computed at x and u

#### Note

If incorrect values or inconsistent lengths are input for x, u or the model parameters then NaNs will be returned as the output. This function uses the R contributed package reliaR.

### Author(s)

Saralees Nadarajah

#### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=qburrx(x)
```

qchen 133

qchen Chen quantile function	
------------------------------	--

# Description

Computes the quantile function of the Chen distribution

# Usage

```
qchen(x, u = 0.5, beta = 1, lambda = 1)
```

### **Arguments**

Х	scale or vector of positive values at which the integrated hazard rate function needs to be computed
u	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
beta	the value of beta parameter, must be positive
lambda	the value of lambda parameter, must be positive

## Value

An object of the same length as x, giving the hazard rate function values computed at x and u

### Note

If incorrect values or inconsistent lengths are input for x, u or the model parameters then NaNs will be returned as the output.

### Author(s)

Saralees Nadarajah

#### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=qchen(x)
```

134 qee

qee
-----

Exponentiated exponential quantile function

### Description

Computes the quantile function of the exponentiated exponential distribution

### Usage

```
qee(x, u = 0.5, alpha = 1, lambda = 1)
```

### **Arguments**

X	scale or vector of positive values at which the integrated hazard rate function needs to be computed
u	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
alpha	the value of alpha parameter, must be positive
lambda	the value of lambda parameter, must be positive

## Value

An object of the same length as x, giving the hazard rate function values computed at x and u

#### Note

If incorrect values or inconsistent lengths are input for x, u or the model parameters then NaNs will be returned as the output. This function uses the R contributed package reliaR.

### Author(s)

Saralees Nadarajah

#### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=qee(x)
```

gel 135

qel

Exponentiated logistic quantile function

### Description

Computes the quantile function of the exponentiated logistic distribution

### Usage

```
qel(x, u = 0.5, alpha = 1, beta = 1)
```

### **Arguments**

X	scale or vector of positive values at which the integrated hazard rate function needs to be computed
u	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
alpha	the value of alpha parameter, must be positive
beta	the value of beta parameter, must be positive

## Value

An object of the same length as x, giving the hazard rate function values computed at x and u

#### Note

If incorrect values or inconsistent lengths are input for x, u or the model parameters then NaNs will be returned as the output. This function uses the R contributed package reliaR.

### Author(s)

Saralees Nadarajah

#### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=qel(x)
```

136 gew

Exponentiated Weibull quantile function

### Description

Computes the quantile function of the exponentiated Weibull distribution

# Usage

```
qew(x, u = 0.5, alpha = 1, c = 1, lambda = 1)
```

### **Arguments**

X	scale or vector of positive values at which the integrated hazard rate function needs to be computed
u	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as x
alpha	the value of alpha parameter, must be positive
lambda	the value of lambda parameter, must be positive
С	the value of c parameter, must be positive

### Value

An object of the same length as x, giving the hazard rate function values computed at x and u

### Note

If incorrect values or inconsistent lengths are input for x, u or the model parameters then NaNs will be returned as the output. This function uses the R contributed package reliaR.

### Author(s)

Saralees Nadarajah

#### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=qew(x)
```

qexpext 137

qexpext	Exponential extension quantile function	

# Description

Computes the quantile function of the exponential extension distribution

# Usage

```
qexpext(x, u = 0.5, alpha = 1, lambda = 1)
```

### **Arguments**

X	scale or vector of positive values at which the integrated hazard rate function needs to be computed
u	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
alpha	the value of alpha parameter, must be positive
lambda	the value of lambda parameter, must be positive

## Value

An object of the same length as x, giving the hazard rate function values computed at x and u

### Note

If incorrect values or inconsistent lengths are input for x, u or the model parameters then NaNs will be returned as the output.

### Author(s)

Saralees Nadarajah

#### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=qexpext(x)
```

138 qexponential

qexponential Exponential quantile function
--------------------------------------------

# Description

Computes the quantile function of the exponential distribution

### Usage

```
qexponential(x, u = 0.5, alpha = 1)
```

### **Arguments**

Х	scale or vector of positive values at which the integrated hazard rate function needs to be computed
u	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
alpha	the value of alpha parameter, must be positive

#### Value

An object of the same length as x, giving the hazard rate function values computed at x and u

### Note

If incorrect values or inconsistent lengths are input for x, u or the model parameters then NaNs will be returned as the output.

#### Author(s)

Saralees Nadarajah

### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=qexponential(x)
```

qfrechet 139

	_					
$\alpha$	fı	^മ	$\sim$	h	Δ	+
ч		C	<b>C</b>		C	L

Gumbel II quantile function

## Description

Computes the quantile function of the Gumbel II distribution

# Usage

```
qfrechet(x, u = 0.5, a = 1, b = 1)
```

### **Arguments**

Х	scale or vector of positive values at which the integrated hazard rate function needs to be computed
u	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
a	the value of a parameter, must be positive
b	the value of b parameter, must be positive

## Value

An object of the same length as x, giving the hazard rate function values computed at x and u

### Note

If incorrect values or inconsistent lengths are input for x, u or the model parameters then NaNs will be returned as the output.

### Author(s)

Saralees Nadarajah

#### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=qfrechet(x)
```

qfw

qfw
-----

Flexible Weibull quantile function

### Description

Computes the quantile function of the flexible Weibull distribution

# Usage

```
qfw(x, u = 0.5, alpha = 1, beta = 1)
```

### **Arguments**

Х	scale or vector of positive values at which the integrated hazard rate function needs to be computed
u	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
alpha	the value of alpha parameter, must be positive
beta	the value of beta parameter, must be positive

## Value

An object of the same length as x, giving the hazard rate function values computed at x and u

### Note

If incorrect values or inconsistent lengths are input for x, u or the model parameters then NaNs will be returned as the output.

### Author(s)

Saralees Nadarajah

#### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=qfw(x)
```

qgammad 141

qgammad	Gamma quantile function	

### Description

Computes the quantile function of the gamma distribution

# Usage

```
qgammad(x, u = 0.5, alpha = 1, lambda = 1)
```

### Arguments

Х	scale or vector of positive values at which the integrated hazard rate function needs to be computed
u	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
alpha	the value of alpha parameter, must be positive
lambda	the value of lambda parameter, must be positive

## Value

An object of the same length as x, giving the hazard rate function values computed at x and u

### Note

If incorrect values or inconsistent lengths are input for x, u or the model parameters then NaNs will be returned as the output.

### Author(s)

Saralees Nadarajah

### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=2,max=3)
y=qgammad(x)
```

142 qgenF

qgenF	Generalized F quantile function	

### Description

Computes the quantile function of the generalized F distribution

### Usage

```
qgenF(x, u = 0.5, beta = 0, sigma = 1, m1 = 1, m2 = 1)
```

### **Arguments**

X	scale or vector of positive values at which the integrated hazard rate function needs to be computed
u	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
beta	the value of beta parameter, must be positive
sigma	the value of sigma parameter, must be positive
m1	the value of m1 parameter, must be positive
m2	the value of m2 parameter, must be positive

#### Value

An object of the same length as x, giving the hazard rate function values computed at x and u

#### Note

If incorrect values or inconsistent lengths are input for x, u or the model parameters then NaNs will be returned as the output. This function uses the R contributed package flexsurv.

### Author(s)

Saralees Nadarajah

### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=qgenF(x)
```

qgengammad 143

qgengammad	Generalized gamma quantile function	
------------	-------------------------------------	--

## Description

Computes the quantile function of the generalized gamma distribution

### Usage

```
qgengammad(x, u = 0.5, b = 1, d = 1, k = 1)
```

# Arguments

Х	scale or vector of positive values at which the integrated hazard rate function needs to be computed
u	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
b	the value of b parameter, must be positive
d	the value of d parameter, must be positive
k	the value of k parameter, must be positive

#### Value

An object of the same length as x, giving the hazard rate function values computed at x and u

### Note

If incorrect values or inconsistent lengths are input for x, u or the model parameters then NaNs will be returned as the output.

### Author(s)

Saralees Nadarajah

#### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=2,max=3)
y=qgengammad(x)
```

144 ggompertz

qgompertz	Gompertz quantile function	
-----------	----------------------------	--

## Description

Computes the quantile function of the Gompertz distribution

# Usage

```
qgompertz(x, u = 0.5, alpha = 1, beta = 1)
```

### **Arguments**

Х	scale or vector of positive values at which the integrated hazard rate function needs to be computed
u	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
alpha	the value of alpha parameter, must be positive
beta	the value of beta parameter, must be positive

## Value

An object of the same length as x, giving the hazard rate function values computed at x and u

### Note

If incorrect values or inconsistent lengths are input for x, u or the model parameters then NaNs will be returned as the output.

### Author(s)

Saralees Nadarajah

#### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=qgompertz(x)
```

*qgpw* 145

a	Ø	n	W

Generalized power Weibull quantile function

# Description

Computes the quantile function of the generalized power Weibull distribution

# Usage

```
qgpw(x, u = 0.5, alpha = 1, theta = 1)
```

#### **Arguments**

Х	scale or vector of positive values at which the integrated hazard rate function needs to be computed
u	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
alpha	the value of alpha parameter, must be positive
theta	the value of theta parameter, must be positive

# Value

An object of the same length as x, giving the hazard rate function values computed at x and u

#### Note

If incorrect values or inconsistent lengths are input for x, u or the model parameters then NaNs will be returned as the output.

#### Author(s)

Saralees Nadarajah

#### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=qgpw(x)
```

146 qgumbeld

qgumbeld	Gumbel quantile function	

# Description

Computes the quantile function of the Gumbel distribution

# Usage

```
qgumbeld(x, u = 0.5, mu = 1, sigma = 1)
```

## **Arguments**

Х	scale or vector of positive values at which the integrated hazard rate function needs to be computed
u	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
mu	the value of mu parameter, can be any real
sigma	the value of sigma parameter, must be positive

# Value

An object of the same length as x, giving the hazard rate function values computed at x and u

#### Note

If incorrect values or inconsistent lengths are input for x, u or the model parameters then NaNs will be returned as the output. This function uses the R contributed package reliaR.

#### Author(s)

Saralees Nadarajah

#### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=qgumbeld(x)
```

qhjorth 147

qhjorth	Hjorth quantile function	

# Description

Computes the quantile function of the Hjorth distribution

#### Usage

```
qhjorth(x, u = 0.5, delta = 1, theta = 1, beta = 1)
```

# Arguments

X	scale or vector of positive values at which the integrated hazard rate function needs to be computed
u	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
delta	the value of delta parameter, must be positive
theta	the value of theta parameter, must be positive
beta	the value of beta parameter, must be positive

#### Value

An object of the same length as x, giving the hazard rate function values computed at x and u

#### Note

If incorrect values or inconsistent lengths are input for x, u or the model parameters then NaNs will be returned as the output.

#### Author(s)

Saralees Nadarajah

#### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=qhjorth(x)
```

148 qige

qige	Inverse exponentiated exponential quantile function

# Description

Computes the quantile function of the inverse exponentiated exponential distribution

# Usage

```
qige(x, u = 0.5, alpha = 1, lambda = 1)
```

## **Arguments**

X	scale or vector of positive values at which the integrated hazard rate function needs to be computed
u	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as x
alpha	the value of alpha parameter, must be positive
lambda	the value of lambda parameter, must be positive

# Value

An object of the same length as x, giving the hazard rate function values computed at x and u

#### Note

If incorrect values or inconsistent lengths are input for x, u or the model parameters then NaNs will be returned as the output. This function uses the R contributed package reliaR.

#### Author(s)

Saralees Nadarajah

#### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=qige(x)
```

qinversegaussian 149

# Description

Computes the quantile function of the inverse Gaussian distribution

# Usage

```
qinversegaussian(x, u = 0.5, alpha = 1, sigma = 1)
```

## **Arguments**

X	scale or vector of positive values at which the integrated hazard rate function needs to be computed
u	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
alpha	the value of alpha parameter, must be positive
sigma	the value of sigma parameter, must be positive

# Value

An object of the same length as x, giving the hazard rate function values computed at x and u

#### Note

If incorrect values or inconsistent lengths are input for x, u or the model parameters then NaNs will be returned as the output. This function uses the R contributed package SuppDists.

#### Author(s)

Saralees Nadarajah

#### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=2,max=3)
y=qinversegaussian(x)
```

150 qjshape

α	iς	h:	pe
		1110	

J-shaped quantile function

# Description

Computes the quantile function of the J-shaped distribution

# Usage

```
qjshape(x, u = 0.5, b = 1, nu = 1)
```

## **Arguments**

Х	scale or vector of values at which the integrated hazard rate function needs to be computed, values are positive and bounded below by b
u	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
b	the value of b parameter, must be positive
nu	the value of nu parameter, must be positive

# Value

An object of the same length as x, giving the hazard rate function values computed at x and u

#### Note

If incorrect values or inconsistent lengths are input for x, u or the model parameters then NaNs will be returned as the output.

#### Author(s)

Saralees Nadarajah

#### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=qjshape(x)
```

qkum 151

qkum
------

Kumaraswamy quantile function

# Description

Computes the quantile function of the Kumaraswamy distribution

# Usage

```
qkum(x, u = 0.5, a = 1, b = 1)
```

## **Arguments**

Х	scale or vector of values at which the integrated hazard rate function needs to be computed, values must be between zero and one
u	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
a	the value of a parameter, must be positive
b	the value of b parameter, must be positive

# Value

An object of the same length as x, giving the hazard rate function values computed at x and u

#### Note

If incorrect values or inconsistent lengths are input for x, u or the model parameters then NaNs will be returned as the output.

#### Author(s)

Saralees Nadarajah

#### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=qkum(x)
```

152 qlai

qlai	Lai quantile function	
------	-----------------------	--

# Description

Computes the quantile function of the Lai distribution

# Usage

```
qlai(x, u = 0.5, lambda = 1, beta = 1, nu = 1)
```

#### **Arguments**

x	scale or vector of positive values at which the integrated hazard rate function needs to be computed
u	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as x
lambda	the value of lambda parameter, must be positive
beta	the value of beta parameter, must be non-negative but both beta and nu cannot be zero
nu	the value of nu parameter, must be non-negative but both beta and nu cannot be zero

# Value

An object of the same length as x, giving the hazard rate function values computed at x and u

## Note

If incorrect values or inconsistent lengths are input for x, u or the model parameters then NaNs will be returned as the output. This function uses the R contributed package hypergeo.

#### Author(s)

Saralees Nadarajah

#### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=qlai(x)
```

qle 153

qle

Logistic exponential quantile function

# Description

Computes the quantile function of the logistic exponential distribution

# Usage

```
qle(x, u = 0.5, alpha = 1, lambda = 1)
```

## **Arguments**

х	scale or vector of positive values at which the integrated hazard rate function needs to be computed
u	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
alpha	the value of alpha parameter, must be positive
lambda	the value of lambda parameter, must be positive

# Value

An object of the same length as x, giving the hazard rate function values computed at x and u

#### Note

If incorrect values or inconsistent lengths are input for x, u or the model parameters then NaNs will be returned as the output. This function uses the R contributed package reliaR.

#### Author(s)

Saralees Nadarajah

## References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=qle(x)
```

154 qlgammad

qlgammad	Log gamma quantile function	
----------	-----------------------------	--

# Description

Computes the quantile function of the log gamma distribution

# Usage

```
qlgammad(x, u = 0.5, alpha = 1, lambda = 1)
```

## **Arguments**

Х	scale or vector of positive values at which the integrated hazard rate function needs to be computed
u	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
alpha	the value of alpha parameter, must be positive
lambda	the value of lambda parameter, must be positive

# Value

An object of the same length as x, giving the hazard rate function values computed at x and u

#### Note

If incorrect values or inconsistent lengths are input for x, u or the model parameters then NaNs will be returned as the output. This function uses the R contributed package actuar.

#### Author(s)

Saralees Nadarajah

#### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=qlgammad(x)
```

qlinear 155

a	1	i	near
м	_	_	ncai

Linear failure rate quantile function

# Description

Computes the quantile function of the linear failure rate distribution

# Usage

```
qlinear(x, u = 0.5, a = 1, b = 1)
```

#### **Arguments**

X	scale or vector of positive values at which the integrated hazard rate function needs to be computed
u	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as x
а	the value of a parameter, must be non-negative but both a and b cannot be zero
b	the value of b parameter, must be non-negative but both a and b cannot be zero

# Value

An object of the same length as x, giving the hazard rate function values computed at x and u

#### Note

If incorrect values or inconsistent lengths are input for x, u or the model parameters then NaNs will be returned as the output.

#### Author(s)

Saralees Nadarajah

#### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=2,max=3)
y=qlinear(x)
```

156 qll

	_	_
$\alpha$		- 1
u	1	ı

Loglog quantile function

# Description

Computes the quantile function of the loglog distribution

# Usage

```
qll(x, u = 0.5, alpha = 1, lambda = 1)
```

## **Arguments**

X	scale or vector of positive values at which the integrated hazard rate function needs to be computed
u	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
alpha	the value of alpha parameter, must be positive
lambda	the value of lambda parameter, must be positive

# Value

An object of the same length as x, giving the hazard rate function values computed at x and u

#### Note

If incorrect values or inconsistent lengths are input for x, u or the model parameters then NaNs will be returned as the output.

#### Author(s)

Saralees Nadarajah

#### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=qll(x)
```

qlogistic 157

# Description

Computes the quantile function of the logistic distribution

# Usage

```
qlogistic(x, u = 0.5, alpha = 1, sigma = 1)
```

# Arguments

Х	scale or vector of any real values at which the integrated hazard rate function needs to be computed
u	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
alpha	the value of alpha parameter, can be any real
sigma	the value of sigma parameter, must be positive

# Value

An object of the same length as x, giving the hazard rate function values computed at x and u

#### Note

If incorrect values or inconsistent lengths are input for x, u or the model parameters then NaNs will be returned as the output.

#### Author(s)

Saralees Nadarajah

#### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=2,max=3)
y=qlogis(x)
```

158 qloglogis

qloglogis	Log-logistic quantile function	

# Description

Computes the quantile function of the log-logistic distribution

# Usage

```
qloglogis(x, u = 0.5, alpha = 1, sigma = 1)
```

# Arguments

Х	scale or vector of positive values at which the integrated hazard rate function needs to be computed
u	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
alpha	the value of alpha parameter, must be positive
sigma	the value of sigma parameter, must be positive

# Value

An object of the same length as x, giving the hazard rate function values computed at x and u

#### Note

If incorrect values or inconsistent lengths are input for x, u or the model parameters then NaNs will be returned as the output.

#### Author(s)

Saralees Nadarajah

#### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=2,max=3)
y=qloglogis(x)
```

qlognormal 159

|--|

# Description

Computes the quantile function of the lognormal distribution

# Usage

```
qlognormal(x, u = 0.5, alpha = 1, sigma = 1)
```

## **Arguments**

Х	scale or vector of positive values at which the integrated hazard rate function needs to be computed
u	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
alpha	the value of alpha parameter, can be any real
sigma	the value of sigma parameter, must be positive

# Value

An object of the same length as x, giving the hazard rate function values computed at x and u

#### Note

If incorrect values or inconsistent lengths are input for x, u or the model parameters then NaNs will be returned as the output.

#### Author(s)

Saralees Nadarajah

#### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=2,max=3)
y=qlognormal(x)
```

160 qlr

qlr

Logistic Rayleigh quantile function

# Description

Computes the quantile function of the logistic Rayleigh distribution

# Usage

```
qlr(x, u = 0.5, alpha = 1, lambda = 1)
```

## **Arguments**

X	scale or vector of positive values at which the integrated hazard rate function needs to be computed
u	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as x
alpha	the value of alpha parameter, must be positive
lambda	the value of lambda parameter, must be positive

# Value

An object of the same length as x, giving the hazard rate function values computed at x and u

#### Note

If incorrect values or inconsistent lengths are input for x, u or the model parameters then NaNs will be returned as the output. This function uses the R contributed package reliaR.

#### Author(s)

Saralees Nadarajah

#### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=qlr(x)
```

qmoe 161

$\alpha$	m	1	

Marshall-Olkin exponential quantile function

# Description

Computes the quantile function of the Marshall-Olkin exponential distribution

# Usage

```
qmoe(x, u = 0.5, alpha = 1, lambda = 1)
```

## **Arguments**

X	scale or vector of positive values at which the integrated hazard rate function needs to be computed
u	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as x
alpha	the value of alpha parameter, must be positive
lambda	the value of lambda parameter, must be positive

# Value

An object of the same length as x, giving the hazard rate function values computed at x and u

#### Note

If incorrect values or inconsistent lengths are input for x, u or the model parameters then NaNs will be returned as the output.

#### Author(s)

Saralees Nadarajah

#### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=qmoe(x)
```

162 qmow

$\alpha$	IMOW.
u	

Marshall-Olkin Weibull quantile function

# Description

Computes the quantile function of the Marshall-Olkin Weibull distribution

# Usage

```
qmow(x, u = 0.5, alpha = 1, beta = 1, lambda = 1)
```

# Arguments

X	scale or vector of positive values at which the integrated hazard rate function needs to be computed
u	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
alpha	the value of alpha parameter, must be positive
beta	the value of beta parameter, must be positive
lambda	the value of lambda parameter, must be positive

#### Value

An object of the same length as x, giving the hazard rate function values computed at x and u

#### Note

If incorrect values or inconsistent lengths are input for x, u or the model parameters then NaNs will be returned as the output.

#### Author(s)

Saralees Nadarajah

#### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=qmow(x)
```

qnormal 163

qnormal	Normal quantile function	

# Description

Computes the quantile function of the normal distribution

# Usage

```
qnormal(x, u = 0.5, alpha = 1, sigma = 1)
```

# Arguments

Х	scale or vector of any real values at which the integrated hazard rate function needs to be computed
u	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
alpha	the value of alpha parameter, can be any real
sigma	the value of sigma parameter, must be positive

# Value

An object of the same length as x, giving the hazard rate function values computed at x and u

#### Note

If incorrect values or inconsistent lengths are input for x, u or the model parameters then NaNs will be returned as the output.

#### Author(s)

Saralees Nadarajah

## References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=2,max=3)
y=qnormal(x)
```

164 qpareto

qpareto	Pareto quantile function	

# Description

Computes the quantile function of the Pareto distribution

# Usage

```
qpareto(x, u = 0.5, alpha = 1, m = 1)
```

## **Arguments**

Х	scale or vector of values at which the integrated hazard rate function needs to be computed, values must be greater than m
u	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
alpha	the value of alpha parameter, must be positive
m	the value of m parameter, must be positive

# Value

An object of the same length as x, giving the hazard rate function values computed at x and u

#### Note

If incorrect values or inconsistent lengths are input for x, u or the model parameters then NaNs will be returned as the output.

#### Author(s)

Saralees Nadarajah

#### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=2,max=3)
y=qpareto(x)
```

qperks 165

qperks	Perks quantile function

# Description

Computes the quantile function of the Perks distribution

# Usage

```
qperks(x, u = 0.5, alpha = 1, beta = 1)
```

## **Arguments**

Х	scale or vector of positive values at which the integrated hazard rate function needs to be computed
u	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
alpha	the value of alpha parameter, must be positive
beta	the value of beta parameter, must be positive

# Value

An object of the same length as x, giving the hazard rate function values computed at x and u

#### Note

If incorrect values or inconsistent lengths are input for x, u or the model parameters then NaNs will be returned as the output.

#### Author(s)

Saralees Nadarajah

## References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=qperks(x)
```

166 gschabe

# Description

Computes the quantile function of the Schabe distribution

# Usage

```
qschabe(x, u = 0.5, theta = 1, gamma = 0.5)
```

# Arguments

Х	scale or vector of values at which the integrated hazard rate function needs to be computed, must be positive and less than theta
u	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
theta	the value of theta parameter, must be positive
gamma	the value of gamma parameter, must be between zero and one

# Value

An object of the same length as x, giving the hazard rate function values computed at x and u

#### Note

If incorrect values or inconsistent lengths are input for x, u or the model parameters then NaNs will be returned as the output.

#### Author(s)

Saralees Nadarajah

#### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=qschabe(x)
```

quniform 167

quniform Uniform quantile function	iform	Uniform quantile function	
------------------------------------	-------	---------------------------	--

# Description

Computes the quantile function of the uniform distribution

# Usage

```
quniform(x, u = 0.5, a = 1, b = 2)
```

## **Arguments**

X	scale or vector of values at which the integrated hazard rate function needs to be computed, values must be between a and b
u	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as x
a	the value of a parameter, must be positive
b	the value of b parameter, must be greater than a

# Value

An object of the same length as x, giving the hazard rate function values computed at x and u

#### Note

If incorrect values or inconsistent lengths are input for x, u or the model parameters then NaNs will be returned as the output.

#### Author(s)

Saralees Nadarajah

#### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=quniform(x)
```

168 qweibull

qweibull	Weibull quantile function	

# Description

Computes the quantile function of the Weibull distribution

# Usage

```
qweibull(x, u = 0.5, alpha = 1, sigma = 1)
```

## **Arguments**

Х	scale or vector of positive values at which the integrated hazard rate function needs to be computed
u	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
alpha	the value of alpha parameter, must be positive
sigma	the value of sigma parameter, must be positive

# Value

An object of the same length as x, giving the hazard rate function values computed at x and u

#### Note

If incorrect values or inconsistent lengths are input for x, u or the model parameters then NaNs will be returned as the output.

#### Author(s)

Saralees Nadarajah

#### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=2,max=3)
y=qweibull(x)
```

qxie 169

qxie	Xie quantile function	

# Description

Computes the quantile function of the Xie distribution

#### Usage

```
qxie(x, u = 0.5, lambda = 1, alpha = 1, beta = 1)
```

# Arguments

Х	scale or vector of positive values at which the integrated hazard rate function needs to be computed
u	scale or vector of positive values at which the integrated hazard rate function needs to be computed, must be of the same length as $\boldsymbol{x}$
alpha	the value of alpha parameter, must be positive
beta	the value of beta parameter, must be positive
lambda	the value of lambda parameter, must be positive

#### Value

An object of the same length as x, giving the hazard rate function values computed at x and u

#### Note

If incorrect values or inconsistent lengths are input for x, u or the model parameters then NaNs will be returned as the output.

#### Author(s)

Saralees Nadarajah

#### References

S. Nadarajah, S. A. A. Bakar, Tabulations of survival models for actuarial use, submitted

```
x=runif(10,min=0,max=1)
y=qxie(x)
```

# **Index**

iew, 92
gew, 136
*Topic Exponentiated exponential
distribution
dee, 9
hee, 46
iee, 90
qee, 134
*Topic Exponentiated logistic
distribution
del, 10
hel, 47
iel, 91
qel, 135
*Topic Flexible Weibull distribution
dfw, 14
hfw, 52
ifw,96
qfw, 140
*Topic Gamma distribution
hgamma, 53
igamma, 97
qgammad, 141
*Topic Generalized F distribution
dgenF, 15
hgenF, 54
ggenF, 142
*Topic Generalized gamma
distribution
dgengammad, 16
hgengamma, 55
igengamma, 99
qgengammad, 143
*Topic Generalized power Weibull
distribution
dgpw, 18
hgpw, 57
igpw, 101
qgpw, 145

*Topic Gompertz distribution	hlinear,67
dgompertz, 17	ilinear, 111
hgompertz, 56	qlinear, 155
igompertz, 100	*Topic Log gamma distribution
qgompertz, 144	dlgammad, 27
*Topic Gumbel II distribution	hlgamma, 66
dfrechet, 13	ilgamma, 110
hfrechet, 51	qlgammad, 154
ifrechet, 95	*Topic Log-logistic distribution
qfrechet, 139	dloglogistic, 30
*Topic Gumbel distribution	hloglogistic, 70
dgumbeld, 19	iloglogistic, 114
hgumbel, 58	qloglogis, 158
igumbel, 102	*Topic Logistic Rayleigh distribution
qgumbeld, 146	dlr, 31
*Topic <b>Hjorth distribution</b>	hlr, 72
dhjorth, 20	ilr, 116
hhjorth, 59	qlr, 160
ihjorth, 103	*Topic Logistic distribution
qhjorth, 147	hlogistic, 69
*Topic Inverse Gaussian distribution	ilogistic, 113
dinvgauss, 22	qlogistic, 157
hinvgauss, 61	*Topic Logistic exponential
iinvgauss, 105	distribution
qinversegaussian, 149	dle, 26
*Topic Inverse exponentiated	hle, 65
exponential distribution	ile, 109
dige, 21	qle, 153
hige, 60	*Topic Loglog distribution
iige, 104	dlld, 29
qige, 148	hll, 68
*Topic <b>J-shaped distribution</b>	ill, 112
djshape, 23	q11, 156
hjshape, 62	*Topic Lognormal distribution
ijshape, 106	hlognormal, 71
qjshape, 150	ilognormal, 115
*Topic Kumaraswamy distribution	qlognormal, 159
dkum, 24	*Topic Makeham distribution
hkum, 63	dmakeham, 32
ikum, 107	hmakeham, 73
qkum, 151	imakeham, 117
*Topic Lai distribution	*Topic Makeham-Beard distribution
dlai, 25	dmakehambeard, 33
hlai,64	hmakehambeard, 74
ilai, 108	imakehambeard, 118
qlai, 152	*Topic Makeham-Perks distribution
*Topic Linear failure rate distribution	dmakehamperks, 34
dlinear, 28	hmakehamperks, 75

imakehamperks, 119	ActuDistns-package, 5
*Topic Marshall-Olkin Weibull	
distribution	ActuDistns (ActuDistns-package), 5
dmow, 36	ActuDistns-package, 5
hmow, 77	
imow, 121	daddweibull, 5
qmow, 162	dbeard, 6
*Topic Marshall-Olkin exponential	dburrx, 7
distribution	dchen, 8
dmoe, 35	dee, 9
hmoe, 76	del, 10
imoe, 120	dew, 11
qmoe, 161	dexpext, 12
*Topic Normal distribution	dfrechet, 13
hnormal, 78	dfw, 14
inormal, 122	dgenF, 15
qnormal, 163	dgengammad, 16
*Topic Pareto distribution	dgompertz, 17
dpareto, 37	dgpw, 18
hpareto, 79	dgumbeld, 19
ipareto, 123	dhjorth, 20
qpareto, 164	dige, 21
*Topic Perks distribution	dinvgauss, 22
dperks, 38	djshape, 23
hperks, 80	dkum, 24
iperks, 124	dlai, 25
qperks, 165	dle, 26
*Topic Schabe distribution	dlgammad, 27
dschabe, 39	dlinear, 28
hschabe, 81	dlld, 29
ischabe, 125	dloglogistic, 30
qschabe, 166	dlr, 31
*Topic Uniform distribution	dmakeham, 32
huniform, 82	dmakehambeard, 33
iuniform, 126	dmakehamperks, 34
quniform, 167	dmoe, 35 dmow, 36
*Topic Weibull distribution	
hweibull, 83	dpareto, 37 dperks, 38
iweibull, 127	dschabe, 39
qweibull, 168	dxie, 40
*Topic Xie distribution	uxie, 40
dxie, 40	haddweibull, 41
hxie, 84	hbeard, 42
ixie, 128	hbeta, 43
gxie, 169	hburrx, 44
*Topic generalized F distribution	hchen, 45
igenF, 98	hee, 46
*Topic package	hel, 47

hew, 48	ifw, 96
hexpext, 49	igamma, 97
hexponential, 50	igenF, 98
hfrechet, 51	igengamma, 99
hfw, 52	igompertz, 100
hgamma, 53	igpw, 101
hgenF, 54	igumbel, 102
hgengamma, 55	ihjorth, 103
hgompertz, 56	iige, 104
hgpw, 57	iinvgauss, 105
hgumbel, 58	ijshape, 106
hhjorth, 59	ikum, 107
hige, 60	ilai, 108
hinvgauss, 61	ile, 109
hjshape, 62	ilgamma, 110
hkum, 63	ilinear, 111
hlai, 64	ill, 112
hle, 65	ilogistic, 113
hlgamma, 66	iloglogistic, 114
hlinear, 67	ilognormal, 115
h11, 68	ilr, 116
hlogistic, 69	imakeham, 117
hloglogistic, 70	imakehambeard, 118
hlognormal, 71	imakehamperks, 119
hlr, 72	imoe, 120
hmakeham, 73	imow, 121
hmakehambeard, 74	inormal, 122
hmakehamperks, 75	ipareto, 123
hmoe, 76	iperks, 124
hmow, 77	ischabe, 125
hnormal, 78	iuniform, 126
hpareto, 79	iweibull, 127
hperks, 80	ixie, 128
hschabe, 81	-, -
huniform, 82	qaddweibull, 129
hweibull, 83	qbeard, 130
hxie, 84	qbetad, 131
	qburrx, 132
iaddweibull, 85	qchen, 133
ibeard, 86	qee, 134
ibeta, 87	qel, 135
iburrx, 88	qew, 136
ichen, 89	qexpext, 137
iee, 90	qexponential, 138
iel,91	qfrechet, 139
iew, 92	qfw, 140
iexpext, 93	qgammad, 141
iexponential, 94	qgenF, 142
ifrechet, 95	qgengammad, 143

```
qgompertz, 144
qgpw, 145
{\tt qgumbeld}, \, {\color{red}146}
qhjorth, 147
{\tt qige, 148}
qinversegaussian, 149
qjshape, 150
qkum, 151
\mathsf{qlai},\, 152
qle, 153
{\tt qlgammad}, 154
qlinear, 155
q11, 156
qlogistic, 157
qloglogis, 158
{\tt qlognormal},\, {\tt 159}
qlr, 160
qmoe, 161
qmow, 162
qnormal, 163
qpareto, 164
qperks, 165
qschabe, 166
quniform, 167
qweibull, 168
qxie, 169
```