Cut communication system cost-use this universal Westinghouse IC amplifier in many stages

The Westinghouse WM1146Q wide-band integrated amplifier is a true "linear building block." You can design many communications and radar systems so that most amplifier functions are well served by this one wide-band unit. You'll eliminate many special-purpose amplifiers...simplify ordering and inventory...save by buying in larger quantities. The WM1146Q costs no more than special-purpose limited-frequency devices.

The WM1146 is: 1) a wide-band RF amplifier which may be cascaded for very high gains; 2) an oscillator-mixer when used with external crystal; 3) a 0.455, 10.7, 30, or 60 mc IF amplifier with AGC capabilities when used with frequency selective elements; 4) a detector and output stage.

Features of the WM1146Q include: usable range DC to 100 mc • gain 16 db @ 60 mc • 6 VDC to 12 VDC operation • low power dissipation (9 ma with 6 V power supply) • only one power supply needed • every unit subjected to +150°C storage bake, three cycles of thermal shock, 30,000 G centrifuge, gross and helium hermeticity tests.

Get technical data now, and cut your system costs. Write Westinghouse Electric Corporation, Molecular Electronics Division, Box 7377, Elkridge, Maryland 21227.

You can be <u>sure</u> if it's Westinghouse

This advertisement appears in:

Electronic Design-November 22; EEE-Circuit Design Engineering-November and December Rescaled for: Electronic News-October 11, 1965
PO 5-6890 Ad J-09124

technical data 91-202

Equivalent circuit

Description

The WM 1146 is a direct-coupled two-stage negative feedback amplifier using shunt peaking. The negative feedback provides very stable operation over a wide temperature range. The shunt peaking circuit provides increased bandwidth. The output may be taken from either pin 5 (collector) or pin 6 (emitter), depending on the specific application. Pin 7 is available for the purpose of applying AGC or external tuning networks.

Package

O style FLAT-PAK · 0.25 grams

Design features

- Usable range DC to 100 MC
- Gain 16 db @ 60 MC
- 6 VDC to 12 VDC operation
- Low power dissipation
- Only one power supply required

Pin connections

- 1 ground
- 2 input
- 3 no connection
- 4 supply voltage
- 5 output collector
- 6 output emitter
- 7 AGC
- 8 feedback network

Reliability assurance

EVERY unit receives

- High temperature storage bake at +150°C
- 3 cycles of thermal shock −55°C to +150°C
- 20,000 G centrifuge
- Gross and helium hermeticity tests

Absolute maximum ratings¹

40

4

1.1

4.0

4.0

7.0

mc

db

V p-p

V p-p

ma

Parameter	Symbol	Value	Units
power supply	Vec	+16	VDC
storage temp.	T_{stg}	-65 to 175	°C
operating temp.	Topg	-55 to 125	°C

Parameter	Symbol	Min.	Typical	Max.	Units		
Static electrical characteristics for $Vcc = +12$ volts and at 25° C							
insertion power gain@	Pg	20	23		db		
admittance parameters (in terms of R and C)							
Pin 2	R ₁₁		82		Ω		
(Pin 5)	R ₂₂		624		Ω		
Pin 2	C ₁₁		14.8		pf		
(Pin 5)	C ₂₂		13.2		pf		
impedance parameters	R ₁₁		83		Ω		
	R ₂₂		1900		Ω		
	C ₁₁		22		pf		
	C ₂₂		15		pf		

35

① Limiting values beyond which the serviceability of the unit may be impaired.

 $f_{\rm h}$

N.F.

② Measured in the test circuit shown below with $R_{\rm L}=330~\Omega.$

upper frequency rolloff (-3db)@

noise figure 3

output swing, pin 5

output swing, pin 6

power supply current

technical data 91-181

GAIN VS. FREQUENCY

GAIN VS. TEMPERATURE

OUTPUT CAPACITANCE VS. FREQUENCY

GAIN AND BLOCK CURRENT VS. BLOCK VOLTAGE

INPUT RESISTANCE VS. FREQUENCY

OUTPUT RESISTANCE VS. FREQUENCY

Here's a universal integrated RF amplifier with 30 db gain DC to 10 mhz and usable gain to beyond Use it for military, industrial, or commercial applications. For more information call your distributor or sales office as shown In integrated circuits, on reverse side. the winning chips come from Westinghouse

#8-1265

Westinghouse Sales Offices

8	
Alabama, Huntsville	(205) 881-2591
Arizona, Phoenix	(602) 254-5231
California, Compton	(213) 638-7781
California, Los Angeles	(213) 482-9660
California, Sunnyvale	(408) 735-2191
Colorado, Denver	(303) 534-8121
Connecticut, Hartford	(203) 246-5441
D.C., Washington	(202) 628-8843
Florida, Orlando	(305) 425-4511
Georgia, Atlanta	(404) 874-1641
Illinois, Chicago	(312) 527-3860
Indiana, Indianapolis	(317) 632-3301
Maryland, Baltimore	(301) 828-5400
Massachusetts, Boston	(617) 542-0600
Michigan, Detroit	(313) 872-7010
Michigan, Grand Rapids	(313) 538-5130
Minnesota, Minneapolis	(612) 927-6551
Missouri, St. Louis	(314) 421-6911
New Jersey, Newark	(201) 621-9000
New Jersey, Red Bank	(201) 747-5800
New York, Long Island	(516) 248-9800
New York, Johnson City	(607) 729-2258
New York, Rochester	(716) 232-4380
Ohio, Cleveland	(216) 241-7600
Ohio, Dayton	(513) 461-3720
Pennsylvania, Philadelphia	(215) 382-1200
Pennsylvania, Pittsburgh	(412) 391-2800
Texas, Dallas	(214) 631-2811
Texas, Houston	(713) 224-7791
Washington, Seattle	(206) 622-0808
Wisconsin, Milwaukee	(414) 276-1800

Westinghouse Distributors

Alabama, Birmingham (205) 322-0588

ACK Semiconductors, Inc.	(200) 022 0000
ACK Semiconductors, inc.	(010) 070 7171
Calif., Los Angeles	(213) 0/0-/1/1
Hamilton Electro Sales	(010) 005 7010
Calif., Los Angeles	(213) 685-/313
K-Tronics	
Calif., Mountain View	(415) 961-7000
Hamilton Electro Sales — North	
Calif., Mountain View	(415) 961-3611
Elmar Electronics	
Calif., Oakland	(415) 834-3311
Elmar Electronics	(120) 001 0022
Calif., San Francisco	(415) 826-8811
Fortune Electronics	(413) 020-0011
Court Handan	(202) 200 7771
Conn., Hamden	(203) 288-7771
Cramer Electronics, Inc.	(000) 004 0000
D.C., Washington	(202) 864-6330
Milgray Electronics, Inc.	
Florida, Melbourne	(305) 723-1441
Electronic Wholesalers, Inc.	
Florida, Orlando	(305) 855-4020
Hall-Mark Electronics Corp.	
Illinois, Chicago	(312) 829-9100
Allied Electronics	
Illinois, Chicago	(312) 622-8860
Semiconductor Specialists, Inc.	(,
Maryland, Baltimore	(301) 889-4242
Kann-Ellert Electronics, Inc.	(001) 000 4242
New Jersey, Camden	(600) 064 9560
Constal Radio Supply Co. Inc.	(003) 304-0300
General Radio Supply Co., Inc.	(007) 700 0000
New York, Binghamton	(607) 723-0320
Stack Industrial Electronics	(010) 000 1000
New York, New York	(212) 989-1600
Milgray Electronics, Inc.	
New York, Westbury	(516) 334-7474
Schweber Electronics	
Pa., Philadelphia	(215) 923-2210
Milgray Electronics, Inc.	
Texas, Dallas	/214) 276-8531
Hall-Mark Electronics Corp.	
Texas, Houston	(713) 781-0011
Hall-Mark Electronics Corp.	(/20//020022
Washington, Seattle	(206) 723-7310
Almac/Stroum Electronics	(200) /25-/310
	(910) 200 ONE1
Canada, Montreal	(013) 303-0031
Prelco Electronics, Ltd.	