```
import pandas as pd
     from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import LabelEncoder, StandardScaler
     from sklearn.svm import SVC
      from sklearn.metrics import accuracy_score, classification_report
      df = pd.read_csv('/content/manufacturing_6G_dataset.csv')
     df.head()
₹
        Operation_Mode Temperature_C Vibration_Hz Power_Consumption_kW Network_Latency_ms Packet_Loss_6
     0
                   Idle
                             74.137590
                                            3.500595
                                                                   8.612162
                                                                                      10.650542
                                                                                                       0.20776
                             84.264558
                                                                   2.268559
                                                                                                       2.228464
     2
                 Active
                             44.280102
                                            2.079766
                                                                   6.144105
                                                                                      18.357292
                                                                                                       1.63941
     4
                   Idle
                             75.063817
                                            0.345810
                                                                   6.225737
                                                                                      34.029191
                                                                                                       4.79652

    View recommended plots

Next steps: (
             Generate code with df
                                                                 New interactive sheet
     # Separate features (X) and target (y)
     X = df.drop('Efficiency_Status', axis=1)
     y = df['Efficiency_Status']
 1 # Encode the 'Operation_Mode' column
 2 le = LabelEncoder()
 3 X['Operation_Mode'] = le.fit_transform(X['Operation_Mode'])
 1 # Split data into training and testing sets
 2 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
 1 # Scale numerical features
 2 scaler = StandardScaler()
 3 X_train = scaler.fit_transform(X_train)
 4 X_test = scaler.transform(X_test)
 1 # Train an SVM classifier
 2 svm_classifier = SVC(kernel='linear') # You can experiment with different kernels
 3 svm_classifier.fit(X_train, y_train)
₹
                    (i) (?
           SVC
     SVC(kernel='linear')
 1 # Make predictions
 2 y_pred = svm_classifier.predict(X_test)
     # Evaluate the model
     accuracy = accuracy_score(y_test, y_pred)
     print(f"Accuracy: {accuracy}")
     print(classification_report(y_test, y_pred))
```

3/4/25, 10:	46 PM			Intelle	uring_Khirod.ipynb - Colab	
→	Accuracy: 0.9	91685 precision	recall	f1-score	support	
	High Low Medium	0.90 0.94 0.81	0.84 0.96 0.75	0.87 0.95 0.78	625 15464 3911	
	accuracy macro avg weighted avg	0.88 0.91	0.85 0.92	0.92 0.87 0.92	20000 20000 20000	