Univerzitet u Beogradu Elektrotehnički fakultet

Upravljanje brzinom motora jednosmerne struje primenom analogne negativne povratne sprege Diplomski rad

Mentor: Dr Radivoje Đurić, vanredni profesor

Kandidat: David Milovanović, 2016/0274

Sadržaj

1	Teorij	ski uvod						
	1.1	Analogni sistemi automatskog upravljanja						
	1.2		Motor stalne struje					
		1.2.1	Princip funkcionisanja					
		1.2.2	Odskočni odziv					
	1.3	Rotacio	oni enkoder					
		1.3.1	Princip funkcionisanja					
		1.3.2	Pretvarač učestanosti u napon					
		1.3.3	Pretvarač učestanosti u napon sa NF filtrom 5					
	1.4	Princip	negativne povratne sprege					
	1.5	$\Pi = \infty$	regulator					
	1.6	Pojačav	<i>v</i> ač snage					
		1.6.1	Pojačavač snage u klasi B					
		1.6.2	Pojačavač snage u klasi B sa negativnom povratnom spre-					
			gom					
		1.6.3	Pojačavač snage u klasi AB sa negativnom povratnom					
			spregom					
2	Karak	kteristike	korišćenih komponenti sistema					
	2.1	Identifikacija modela motora						
	2.2	.2 Merenje karakteristika pretvarača učestanosti						
		2.2.1	Karakteristika pretvarača bez filtra					
		2.2.2	Karakteristika pretvarača sa filtrom					
	2.3	Merenje karakteristika pojačavača snage						
		2.3.1	Statička prenosna karakteristika					
		2.3.2	Dinamička prenosna karakteristika sa i bez dioda 17					
3	Rezul	tati i disk	kusija 19					
3	3.1	Osnovni sistem						
	3.2	Sistem sa poboljšanjima pojačavača snage						
	3.3	Sistem sa poboljšanjima senzora						
	3.4	Nelinearna ograničenja sistema						
	3.5	Diskusi	usija rezultata					
		3.5.1	Obrada rezultata merenja					
4	Zakljı	ıčak						
	4.1	Merenja	a					
	4.2	Merenje karakteristika pretvarača učestanosti						
5	DC S	C Sweep celog sistema						
	5.1		eep bez NF filtra					

5.2	DC	Sweep	sa	NF	filtrom

Spisak slika

1	Principska šema jednosmernog motora
2	Modelovana karakteristika jednosmernog motora
3	Enkoder
4	Pretvarač frekvencije u napon
5	Šema NF filra
6	Prenosna karakteristika NF filtra
7	Opšta struktura sistema sa negativnom povratnom spregom
8	Blok šema Π regulatora
9	Pojačavač snage u klasi B
10	Prenosna karakteristika pojačavača u klasi B, za napon $ V_{\rm BE} =0.7{ m V.}$
11	Vremenski dijagram ulaznog i izlaznog signala
12	Pojačavač snage u klasi B sa negativnom povratnom spregom
13	Pojačavač snage u klasi AB
14	Prenosna karakteristika pojačavača u klasi AB.
15	Pojačavač snage u klasi AB sa negativnom povratnom spregom
16	Eksperimentalna postavka za merenje odziva jednosmernog motora
17	Određivanje optimalnog modela motora na osnovu merenog odskočnog
	odziva
18	Vremenski oblik signala na izlazu enkodera.
19	Izmerena vremenska zavisnost frekvencije signala na izlazu enkodera i mo-
	del sa parametrima: $K_{\rm m}=679.088{\rm Hz}$ i $T_{\rm m}=81{\rm ms.}$
20	Odziv konvertora na pobudu konstante frekvencije.
21	Odziv konvertora na pobudu sa promenljivom frekvencijom
22	Odziv konvertora sa filtrom na pobudu konstante frekvencije.
23	Odziv konvertora sa filtrom na pobudu sa promenljivom frekvencijom
24	Prenosna karakteristika pretvarača učestanosti
25	Izmerena statička karakteristika pojačavača u klasi B
26	Izmerena statička karakteristika pojačavača u klasi AB
27	Odskočni odziv pojačavača snage
28	Odziv pojačavača na signal rampe učestanosti $f=100[\mathrm{kHz}].$
29	Odnos normalizovane relativne greške u odnosu na normalizovanu frekven-
	ciju
30	Prenosna karakteristika konvertora frekvencije u napon.
31	Vremenski dijagram signala na izlazu konvertora frekvencije u napon bez
	i sa filtrom na izlazu
32	Modifikovana šema upravljanja jednosmernog motora uz pomoć povratne
	sprege
33	DC sweep celog sistema
34	DC sweep celog sistema sa NF filtrom.

Sažetak

Analizator mreža je jedan od osnovnih mernih instrumenata za rad u mikrotalasnom području učestanosti. U ovom radu su uvedeni i objašnjeni osnovni principi funkcije tog instrumenta. Realizovana su dva instrumenta radi ilustracije određenih teorijskih rezultata.

Rad je organizovan u pet odeljaka. U uvodu su uvedeni opšti pojmovi koji se odnose na Mikrotalasnu tehniku i merenja. U odeljku "Karakterizacija mreža na mikrotalasnim učestanostima" uveden je i definisan pojam parametara rasejanja, kao i principi merenja. U odeljku "Analizator mreža" je definisana osnovna struktura instrumenta i njegove komponente, kao i parametri koji ih definišu. U istom poglavlju su navedeni dobijeni rezultati za kalibraciju senzora nivoa snage koji se koriste u ovom radu i opisana je arhitektura mernog sistema sa strane upravljanja. U odeljku "Rezultati i diskusija" su navedeni rezultati četiri ogleda koji imaju za cilj demonstraciju rada projektovanog sistema kao i ilustraciju ranije izvedenih teorijskih relacija.

Premisa rada je da je moguće, imajući precizan referentni instrument, odgovarajućim postupkom kalibracije replicirati njegove ključne performanse na značajno pristupačnijem hardveru. U radu je opisana metodologija odabira komponenti koja se može proširiti i na drugačije radne zahteve. Implementirana je i biblioteka u programskom jeziku Python koja komunicira sa uređajima u postavci, čime je korisniku ponuđen jednostavan programski interfejs.

This work is licensed under a Creative Commons "Attribution-ShareAlike 4.0 International" license.

Za slaganje najvećeg broja slika u ovom radu korišćena je Xcircuit biblioteka dostupna na http://tnt.etf.rs/~dgrujic/xcircuit/, izmenjena i proširena za potrebe rada.

Online repozitorijum sa izvornim kodom dosupan je na https://github.com/djokicd/ArduinoSNA.

1 Teorijski uvod

1.1 Analogni sistemi automatskog upravljanja

Sistem automatskog upravljanja predstavlja sklop električnih i mehaničkih elemenata na taj način da vrše funkcije koje su im zadate kontrolnim signalima, na kontrolisan način uz obezbeđivanje povratne informacije o stanjima delova sistema od interesa. Primer nekih od funkcija koje se mogu vršiti su kontrola izlaznog napona, održavanje stalne brzine okretanja turbine, podešavanje temperature itd. Postoje dve veće grupe sistema automatskog upravljanja, analogni i digitalni. Digitalni sistemi automatskog upravljanja koriste digitalne računare u ulozi kompenzatora i regulatora. Digitalni sistemi koriste digitalne odnosno numeričke podatke tako što se analogna merena veličina uz pomoć AD konvertora prebaci u digitalni domen, zatim digitalni računar obradi podatke i da na svom izlazu takođe digitalni podatak koji se dalje vodi na DA konvertor kako bi se signal vratio u analogni domen, i onda se dalje prosleđuje elementu kojim se upravlja. S druge strane, analogni sistemi upravljanja rade sa kontinualnim signalima, i nemaju problema gubitka informacija usled konačne preciznosti AD i DA konvertora. Takođe, podaci se ne obrađuju na svaku periodu takta nego kontinualno i izlaz sistema za kontrolu je takođe analogni signal. Još jedna prednost analognih sistema je njihova robusnost, naime, ako dodje do male promene napona usled neke greške, to neće mnogo uticati na konačni rezultat, dok kod digitalnih sistema to može dovesti do prebacivanja napona iznad ili ispod nekog od praga odlučivanja i pri daljoj obradi se može desiti da se napravi veća greška. Konkretan cilj ovog rada jeste projektovanje analognog sistema automatskog upravljanja uz pomoć kojeg bi se kontrolisao motor jednosmerne struje. Dodatno, uz pomoć povratne sprege bi se održavala zadata brzina motora bez obzira na to na koliki otpor nailazi osovina motora.

1.2 Motor stalne struje

1.2.1 Princip funkcionisanja

Jednosmerni motor je električna mašina koja pretvara električnu energiju u mehaničku, uz korišćenje jednosmerne struje, na osnovu čega se svrstava u pretvarače elektromehaničke energije. Konstrukcijski deo jednosmernog motora se sastoji iz dva dela, statora i rotora. Stator obezbeđuje konstantno magnetsko polje, dok kroz rotor protiče jednosmerna struja koja indukuje elektromagnetsko polje, i pri proticanju struje kroz namotaje rotora koji se nalaze u konstantnom polju, javlja se pokretački moment koji okreće rotor. Svi relevantni efekti za projektovanje i analizu sistema upravljanja motora stalne struje se mogu dobiti iz pojednostavljenog modela sistema koji je prikazan na slici 1.

Od interesa je veza između ugaone brzine motora $\omega_{\rm m}(t)$ i napona na rotoru $v_{\rm r}(t)$, odnosno prenosna funkcija G(s) koja se može aproksimirati sistemom prvog reda kao:

$$G(s) = \frac{K_{\rm m}}{T_{\rm m}s + 1} \,. \tag{1}$$

Konstanta $K_{\rm m}$ predstavlja statičko pojačanje, dok konstanta $T_{\rm m}$ predstavlja vremensku konstantu jednosmernog motora upravljanog strujom u rotoru.

Slika 1: Principska šema jednosmernog motora.

1.2.2 Odskočni odziv

Poznavanje odziva sistema na odskočnu pobudu je značajno za predikciju ponašanja sistema na različite pobude, jer se na osnovu toga može predvideti ponašanje odziva sistema za proizvoljnu pobudu. Ako je poznat odskočni odziv sistema, tada uz pomoć njega možemo da odredimo neke od parametra posmatranog sistema i njegove osobine. Što znači, ako ulazni signal predstavlja odskočnu pobudu: $v_{\rm U}(t)=V_0u(t)$, primenom Laplasove transformacije signal se prebacuje u kompleksni domen kao: $V_{\rm U}(s)=\mathcal{L}\{v_{\rm U}(t)\}=\frac{V_0}{s}$. Ako se za model sistema koristi uprošćeni model dat u izrazu (1), odziv na odskočnu pobudu, u kompleksnom domenu se dobija kao: $V_{\rm I}(s)=G(s)V_{\rm U}(s)$, što je u vremenskom domenu dato izrazom: $v_{\rm I}(t)=V_0K_{\rm m}\left(1-\exp\left(-\frac{t}{T_{\rm m}}\right)\right)$. Na slici 2 su prikazani grafici sa različitim vrednostima parametra radi prikazivanja ponašanja modela motora.

Slika 2: Modelovana karakteristika jednosmernog motora.

1.3 Rotacioni enkoder

1.3.1 Princip funkcionisanja

Uloga enkodera je da obezbeđuje informaciju o trenutnom položaju, odnosno smeru kretanja osovine. Enkoder je sačinjen iz diska priključenog za osovinu rotora, i na sebi ima proreze kroz koje može da prodje svetlost. S jedne strane je optički uređaj koji emituje

svetlosne zrake dok je s druge strane optički uređaj koji ih prima. Ako se taj svetlosni signal prevede u električni, imaće oblik povorke pravougaonih impulsa. Dodatno, ako enkoder ima opciju da daje informaciju o smeru, jedna od implementacija je da se ispod postojećih proreza nalazi još jedan set proreza koji je celokupno pomeren u jednu stranu u odnosu na proreze iznad. Na taj način se dobijaju dva signala, signal "u fazi" i signal "u kvadraturi", od kojih je jedan fazno pomeren u vremenu. U odnosu na to koji od signala prednjači, može se jednoznačno imati informacija o smeru kretanja. Na slici 3 je islustrativn pokazan princip rada enkodera.

Slika 3: Enkoder.

Konačno, ako se zna broj proreza na enkoderu može se odrediti i ugaona brzina motora $\omega_{\rm m}$ relativno precizno. U ovom radu je korišćen motor stalne struje sa ugrađenim enkoderom koji radi na ovom principu. Radi jednostavnosti, u ovom radu razmatra se upravljanje brzine motora bez promene smera okretanja, na osnovu čega se koristi samo jedan signal.

1.3.2 Pretvarač učestanosti u napon

Kao što je već pomenuto u delu 1.3.1, izlazni signal enkodera je oblika povorke pravougaonih impulsa čija je frekvencija srazmerna brzini okretanja osovine. Pošto u analognom sistemu automatskog upravljanja signal treba da bude srazmeran merenoj veličini, potrebno je isprojektovati konvertor koji će od signala koji se dobija sa enkodera, koji predstavlja signal sa promenljjivom učestanošću, dati signal koji predstavlja signal sa promenljivim nivoom. Šema konvertora je data na slici 4.

Slika 4: Pretvarač frekvencije u napon.

Dodatno, u signalu na izlazu konvertora se javlja veliki šum zbog vremenske RC konstante koja je potrebno da bude mala kako bi kolo ispratilo dinamuku signala ali zbog toga se pojačava šum u zonama konstantnog signala.

1.3.3 Pretvarač učestanosti u napon sa NF filtrom

Da bi se problem uveden u prethodnoj tački rešio, signal se može propustiti kroz filtar propusnik niskih učestanosti. Potrebno je izabrati takvu graničnu učestanost filtra kako bi se filtrirao šum malih signala, a dinamika velikih signala ostala relativno nepromenjena. Konvertor iz tačke 1.3.2 će dati relativno konstantan napon za konstantne brzine motora ali usled velike učestanosti signala na izlazu enkodera će se javiti šum. Radi smanjenja snage šuma, signal će se propustiti kroz filtar propusnik niskih učestanosti. Filtar koji se može iskoristiti je jednostavan RC filtar čija je šema prikazana na slici 5 a prenosna karakteristika na slici 6. Granična učestanost predstavlja učestanost na koju fazna karakteristika filtra opadne za 45 deg, i ona se računa kao: $f_{\rm gr} = \frac{1}{2\pi RC}$. Podešavanjem vrednosti za R i C može se podešavati granična učestanost. Za konvertor će se u nastavku podrazumevati konvertor sa NF filtrom. Ovaj konvertor se u sistemu koji opisujemo predstavlja kao blok prenosne funkcije F(s) u principskoj jednačini (2).

Slika 5: Šema NF filra

Slika 6: Prenosna karakteristika NF fil-

1.4 Princip negativne povratne sprege

Negativna povratna sprega se javlja kada se neka funkcija izlaza sistema, procesa ili mehanizma dovede nazad na ulaz na taj način da smanjuje fluktuacije izlaza, koje su posledice promene ulaznog signala ili nekih smetnji. Opšta blok šema sistema sa negativnom povratnom spregom je data na slici 7.

Slika 7: Opšta struktura sistema sa negativnom povratnom spregom.

Signal E(s) predstavlja signal greške za koji je u idealnom slučaju trebao da bude nula u svakom trenutku, ali pri promeni ulaznog napona usled realne dinamike sistema se javlja signal greške i on služi da olakša upravljanje sistema i da pomogne da se sistem dovede u željeno stanje tako što se oduzme od referentnog signala. Dobijeni signal greške nam govori koliko je odstupanje i kako dalje treba da se upravlja sistem da bi se dobio željeni rezultat. Signal greške E(s) = X(s) - F(s)Y(s) nakon prolaska kroz kontroler daje signal U(s) koji predstavlja upravljački signal koji se generiše u odnosu na signal greške E(s) i prenosne funkcije upravljačkog bloka C(s), kao U(s) = E(s)C(s). On se dalje dovodi na ulaz pogonskog bloka predstavljenog prenosnom funkcijom G(s). Prenosna funkcija celokupnog sistema od ulaznog signala, do izlaza je W(s) i određena je izrazom:

$$W(s) = \frac{C(s)G(s)}{1 + F(s)C(s)G(s)}. (2)$$

1.5 $\Pi = \infty$ regulator

Uloga regulatora u sistemu jeste da kontroliše, odnosno reguliše sistem tako da se ostvari željeno ponašanje. Konkretno, Π kontroler ili proporcionalni kontroler radi po principu množenja konstantom. Naime, signal greške se množi konstantom kako bi se prividno greška povećala što dalje dovodi do burnije reakcije sistema na ispravljanje te greške. Problem koji može da se javi prilikom korišćenja ovog kontrolera jesu preskoci u izlaznom signalu koji vremenom prelaze u oscilacije i na kraj ulaze u stacionarno stanje. Konstanta kojom se množi signal greške se drugačije zove pojačanje i njegovim menjanjem može da se menja i način odziva sistema. U ovom radu je korišćen Π regulator sa pojačanjem koje teži beskonačnosti, realizovano idealnim operacionim pojačavačem. Opšta blok šema sa Π regulatorom je prikazana na slici 8.

Slika 8: Blok šema Π regulatora.

Dodatno, ovaj element spada u grupu kontrolera i on se u sistemu koji opisujemo predstavlja kao blok prenosne funkcije C(s) u principskoj jednačini (2). Performanse Π regulatora zavise od njegovog pojačanja. U konkretnom slučaju pojačanje teži beskonačnosti, i ako se to uvrsti u jednačinu (2), znajući da je $C(s) = \frac{K_p}{s}$, čak i neznajući ostale funkcije, dobija se: $W(s) = \lim_{C(s) \to \infty} \frac{C(s)G(s)}{1 + F(s)C(s)G(s)} = \frac{\infty}{1 + \infty} = 1$.

1.6 Pojačavač snage

1.6.1 Pojačavač snage u klasi B

Pojačavač snage u klasi B je pojačavač koji ima pojačanje 1 i crossover izobličenja, električna šema je prikazana na slici 9. Izobličenja se mogu bolje videti na prenosnoj karakteristici na slici 10 gde je prikazan izlazni napon $u_i(t)$ u funkciji ulaznog napona $u_{\rm u}(t)$.

Slika 10: Prenosna karakteristika pojačavača u klasi B, za napon $|V_{\rm BE}|=0.7{\rm V}.$

Slika 9: Pojačavač snage u klasi B.

Za pozitivne vrednosti ulaznog napona veće od napona $|V_{\rm BE}|$, pnp tranzistor je zakočen, dok npn tranzistor radi u direktnom aktivnom režimu. Dok za negativne vrednosti ulaznog napona važi dualno, kada je ulazni napon manji od $-|V_{\rm BE}|$, npn tranzistor je zakočen, dok pnp tranzistor radi u direktnom aktivnom režimu. Dok je u oblasti ulaznog napona između $-|V_{\rm BE}|$ i $|V_{\rm BE}|$ izlaz jednak nuli, u slučaju napajanja sa pozitivnim i negativnim naponom. Vremenski dijagram jedne periode ulaznog i izlaznog signala na pjačavaču je prikazan na slici 11

Slika 11: Vremenski dijagram ulaznog i izlaznog signala.

1.6.2 Pojačavač snage u klasi B sa negativnom povratnom spregom

Pošto je za pokretanje motora potrebna velika snaga, samo povezivanje kontrolnog napona sa generatora signala na motor ne bi bila dovoljna jer bi motor povukao dosta struje, i zbog toga se ubacuje pojačavač snage, ali i povratna sprega kako bi postojala informacija uz pomoć koje je moguće kontrolisati motor.

Slika 12: Pojačavač snage u klasi B sa negativnom povratnom spregom.

1.6.3 Pojačavač snage u klasi AB sa negativnom povratnom spregom

Problem koji se ovde javlja kod pojačavača u klasi B je crossover izobličenje zbog kojeg se ne može imati napon na izlazu veći od $V_{cc} - |V_{\rm BE}|$, odnosno manji od $V_{ee} + |V_{\rm BE}|$. Rešenje tog problema je modifikacija pojačavača dodavanjem dve diode sa naponom praga $V_{\rm T} = |V_{\rm BE}|$ za polarisanje tranzistora. Time se dobija pojačavač u klasi AB čija je šema prikazana na slici 13. Teorijski, naponi praga dioda i tranzistora su jednaki, i prenosna funkcija u tom slučaju linearna i može se videti na slici 14.

Slika 13: Pojačavač snage u klasi AB.

Slika 14: Prenosna karakteristika pojačavača u klasi AB.

Slika 15: Pojačavač snage u klasi AB sa negativnom povratnom spregom.

2 Karakteristike korišćenih komponenti sistema

U ovom segmentu, akcenat će biti na opisivanje komponenti sistema korišćenih za dobijena merenja.

2.1 Identifikacija modela motora

Šema koja je korišćena za merenje odziva jednosmernog motora je data na slici 16.

Slika 16: Eksperimentalna postavka za merenje odziva jednosmernog motora.

Uz pomoć osciloskopa i računara povezanog sa osciloskopom je izmerena karakteristika jednosmernog motora na odskočnu pobudu.

Na slici 17 je uz pomoć metode najmanjih kvadrata odrađeno modelovanje krive funkcijom oblika $f(t) = V_0 K_{\rm m} \left(1 - exp\left(-\frac{t}{T_{\rm m}}\right)\right)$ Određivanje optimalne krive obavljeno je pomoću funkcije scipy.optimize.curve_fit u programskom jeziku Python. Funkcija curve_fit radi po principu najmanjih kvadrata, odnosno, pravi model funkcije koja će imati najmanju kvadratnu grešku u odnosu na podatke koji su joj prosleđeni. Ako su poznati izmereni odbirci odskočnog odziva sistema, tada je poznata i povezanost vrednost trenutnog odbirka izlaza sa svim prethodnim odbircima izlaza, odnosno: $v_{\rm I}[n-n_0] = f(v_{\rm I}[n-n_j])$, $\forall n_j: \{n-n_j < n-n_0\}$. Naravno, mora postojati inicijalna pretpostavka oblika funkcije kako bi se model estimirao na najbolji mogući način, kolokvijalno, potrebno je imati neku informaciju o prirodi podataka koji se prosleđuju funkciji kao što su početni uslovi i parametri koji utiču na sam oblik funkcije. Podaci koji su prosleđeni funkciji za estimaciju najboljeg modela su dobijeni preko osciloskopa i arduina. Osciloskop daje dobru rezoluciju signala na manjim učestanostima, dok na većim učestanostima arduino bolje prikuplja podatke. Ograničenje osciloskopa potiče od konačnog broja tačaka na ekranu osciloskopa, dok kod arduina to ne predstavlja problem.

Dodatno, parametri signala sa grafika sa slike 17 prikazani u tabeli 2.1, u sortirani u rastućem poredku granične frekvencije.

Br.	$K_{ m m}[{ m Hz}]$	$T_{\rm m}[{ m s}]$
1	143.450	1.972
2	468.033	0.569
3	892.078	0.345

Slika 17: Određivanje optimalnog modela motora na osnovu merenog odskočnog odziva.

Signal koji se posmatrao na prethodnim graficima je izlazni signal enkodera motora koji je oblika povorke pravougaonih impulsa sa promenljivom frekvencijom koja je srazmerna brzini okretanja osovine jednosmernog motora.

Slika 18: Vremenski oblik signala na izlazu enkodera.

Slika 19: Izmerena vremenska zavisnost frekvencije signala na izlazu enkodera i model sa parametrima: $K_{\rm m}=679.088\,{\rm Hz}$ i $T_{\rm m}=81\,{\rm ms}.$

2.2 Merenje karakteristika pretvarača učestanosti

2.2.1 Karakteristika pretvarača bez filtra

Kao što je opisano u delu 1.3.2, pretvarač bi u idealnom slučaju, za napon konstante frekvencije na ulazu, davao napon konstantnog nivoa na izlazu. U praktičnoj primeni se javljaju dosta parazita koji promene teorijski očekivan napon, i dobijamo pored očekivanog napona, i neke artefakte. Primer merenja izlaza pretvarača kada je na ulazu signal konstante učestanosti je dat na slici 20.

Slika 20: Odziv konvertora na pobudu konstante frekvencije.

Pošsto su male oscilacije, a učestanost je 1 kHz, dobijeni signal je upotrebljiv.

Što se tiče dinamičke karakteristike pretvarača, može se primetiti da se neželjene oscilacije koje se javljaju u nekakvoj zavisnosti od frekvencije ulaznog signala, mada, pošto nam je kod dinamičke karakteristike bitna šira slika, odnosno, nivoi signala na različitim učestanostima, male oscilacije ne predstavljaju veliki problem. Na slici 21 je prikazano merenje dinamičke karakteristike pretvarača za signal koji se menja sa 750 Hz na 1.25 kHz.

Slika 21: Odziv konvertora na pobudu sa promenljivom frekvencijom.

2.2.2 Karakteristika pretvarača sa filtrom

U prethodnoj tački se video problem sa oscilovanjem signala, odnosno naizmenične komponente malog signala koja potiče od parazita. Kada bi se pretvarač koristio sam po sebi to i ne bi predstavljalo veoma veliki problem, ali, pošto se signal sa pretvarača vodi dalje u kolu u kom postoje pojačavači, oni će pojačati taj mali signal i onda će prestavljati problem. Rešenje tog problema je filtriranje signala sa izlaza pretvarača filtrom propusnikom niskih učestanosti. Nakon filtriranja, dobiće se konstantan signal. Grafik odziva pretvarača sa filtrom propusnikom niskih učestanosti na izlazu na pobudu sa konstantnom frekvencijom je dat na slici 22.

Slika 22: Odziv konvertora sa filtrom na pobudu konstante frekvencije.

Dodavanjem filtra propusnika niskih učestanosti se skoro u potpunosti odstranila naizmenična komponenta malog signala, ali se i dinamika pretvarača malo usporila. Naime, filtar koji ne propušta velike promene signala je uklonio naizmeničnu komponentu koja je bila posledica parazita, ali je i usporio promenu velikog signala, odnosno smanjio dinamiku. Dinamička karakteristika modifikovanog pretvarača je prikazana na slici 23.

Slika 23: Odziv konvertora sa filtrom na pobudu sa promenljivom frekvencijom.

Karakteristika pretvarača sa i bez filtra je više manje ista zato što filtar ne menja funkciju pretvarača nego samo filtrira komponente na većim učestanostima, dok pretvarač sam po sebi ima veliko slabljenje na većim učestanostima, tako da dodavanje filtra ne predstavlja problem. Karakteristika pretvarača je data na slici 24.

Slika 24: Prenosna karakteristika pretvarača učestanosti.

2.3 Merenje karakteristika pojačavača snage

2.3.1 Statička prenosna karakteristika

Kao što je već pomenuto u delu 1.6.1 i 1.6.3, kod pojačavača u klasi B se javlja crossover izobličenje, i ono je izmereno i prikazano na slici 25. Uz modifikaciju pojačavača u klasi B, odnosno dodavanjem dioda, dobija se pojačavač u klasi AB koji nema izobličenja i ima linearnu prenosnu karakteristiku. Izmerena karakteristika pjačavača u klasi AB je data na slici 26.

Slika 25: Izmerena statička karakteristika pojačavača u klasi B.

Slika 26: Izmerena statička karakteristika pojačavača u klasi AB.

2.3.2 Dinamička prenosna karakteristika sa i bez dioda

Odskočni odziv pojačavača u klasi B je prikazan na slici 27.

Slika 27: Odskočni odziv pojačavača snage.

Izmerena dinamička karakteristika pojačavača u klasi B je prikazana na slici 28. Dinamika pojačavača se može još bolje videti kada se na ulazu dovede signal rampe, slika 28.

Slika 28: Odziv pojačavača na signal rampe učestanosti f = 100[kHz].

Merenja pokazuju da je dinamika pojačavača u kalsi B barem 10 puta veća od dinamike signala koji se koriste u kolu, i da zadovoljava praktične zahteve za ispravan rad sistema. Pomenuto *crossover* izobljičenje ne predstavlja problem u konkretnoj praktičnoj primeni zbog prirode signala koji dolazi na ulaz pojačavača. Naime, signal na ulazu pojačavača je učestanosti reda nekoliko kHz i rasprostranjen je po celom opsegu nivoa signala što znaci da je veoma mali interval vremena u zoni gde se javlja *crossover* izobličenje, tako da praktično, ne predstavlja ozbiljan problem, i sistem može da funkcioniše ispravno. Zbog toga, je u sistemu nije neophodno da postoji pojačavač u klasi AB, a dodatno se i štedi na broju komponenti potrebnih za ispravan rad sistema.

3 Rezultati i diskusija

3.1 Osnovni sistem

Ovde sema sistema

3.2 Sistem sa poboljšanjima pojačavača snage

Diode?

3.3 Sistem sa poboljšanjima senzora

NF?

3.4 Nelinearna ograničenja sistema

merenje, sum etc..

3.5 Diskusija rezultata

3.5.1 Obrada rezultata merenja

Od signala sa slike 19 su dobijeni ostali već pomenuti signali pomoću Python skripte koja radi na sledeći način. Pošto su podaci koji stižu binarni, ili 5 V ili 0 V obrada signala je podrazumevala brojanje perioda koje je bilo realizovano tako što su se brojali podaci koji su 5 V počevši od prvog, zatim svi naredni podaci koji su nule sve do prvog sledećeg koji je opet 5 V. Na taj način imamo broj odbiraka signala u jednoj periodi, postupak se ponavlja za svaku narednu periodu. Učestanost jedne periode se računa kao $f_{\rm periode} = \frac{1}{(n-1)T_{\rm s}}$. Dobijeni broj predstavlja učestanost obrađenje periode i predstavlja jednu tačku na grafiku zavisnosti periode od vremena. Postupak se ponavlja za sve periode u prikupljenim podacima. Mana ovakvog pristupa je povećanje greške merenja sa povećanjem učestanosti signala. Dakle, ako imamo da je $f_0 = \frac{1}{T}$, najveća greška pri očitavanju učestanosti je jedan period odabiranja ΔT što dalje dovodi do toga da je najveća greška učestanosti $\Delta f = f \frac{f\Delta T}{1-(f\Delta T)^2}$. Procentualna greška u odnosu na frekvenciju signala se može dobiti kao: $\frac{\Delta f}{f} = \frac{f\Delta T}{1-(f\Delta T)^2}$. Sada je već jasno da se sa povećanjem učestanosti povećava i greška pri pogrešnom računanju frekvencije, što je i prikazano na slici 29.

4 Zaključak

4.1 Merenja

4.2 Merenje karakteristika pretvarača učestanosti

Prenosna karakteristika konvertora se može videti na slici 30.

Slika 29: Odnos normalizovane relativne greške u odnosu na normalizovanu frekvenciju.

Slika 30: Prenosna karakteristika konvertora frekvencije u napon.

Konvertor je sam po sebi veoma brz u poređenju sa odzivom motora i može se smatrati da je njegov prelazni režim zanemarujući u odnosu na dinamiku jednosmernog motora. Testiranje konvertora se može odraditi kao periodična promena kontrolnog signala i posmatranje izlaza konvertora. Prenosna karakteristika takvog sistema je prikazana na slici 30 označena plavom bojom. Može se videti da ima dosta šuma koji se uz pomoć filtra propusnika niskih učestanosti može donekle isfiltrirati uz održanje brzine ivica koje su posledice velikog signala. Napon na izlazu dodatog filtra se takođe može videti na slici 31, i on je označen crvenom bojom.

Pošto se za kontrolni signal dovodi izlaz generatora signala koji predstavlja pozitivnu unipolarnu povorku pravougaonih impulsa, radi lakšeg urpavljanja je optimalnije dovesti signal čiji je nivo srazmeran brzini motora. Rešenje tog problema je povratna sprega i mala modifikacija kola koja se može videti na slici 32.

Slika 31: Vremenski dijagram signala na izlazu konvertora frekvencije u napon bez i sa filtrom na izlazu.

Slika 32: Modifikovana šema upravljanja jednosmernog motora uz pomoć povratne sprege.

5 DC Sweep celog sistema

5.1 DC Sweep bez NF filtra

Merenja su pokazala da postoji ubrzanje motora pri povećanju ulaznog napona do nekih 3.5 V, a nakon toga je ubrzanje motora s promenom nivoa ulaznog napona značajnija. Posledica malog ubrzanja u prvom delu su paraziti u kolu i šum. Grafik zavisnosti nivoa izlaznog napona od nivoa ulaznog napona je prikazan na slici 33.

5.2 DC Sweep sa NF filtrom

Pošto šum predstavlja problem, dodavanjem NF filtra se taj problem može rešiti i dobija se smisleniji rezultat, odnosno da do nekih 3.1 V ulaznog napona, motor ima konstantu brzinu, a onda se brzina povećava s porastom ulaznog napona. Grafik zavisnosti nivoa izlaznog napona od nivoa ulaznog napona je prikazan na slici 34.

Slika 33: DC sweep celog sistema.

Slika 34: DC sweep celog sistema sa NF filtrom.