Applications and Intuition

Consider the example, where x_1 and x_2 are binary (0 or 1). We'll try to come up with a neural network that can fit this set. Let's consider a one unit neural network as follows:

$$x_1, x_2 \in \{0, 1\}$$

$$y = x_1 \text{ AND } x_2$$

Intuition 1

Selected Parameters are:

$$heta_{10}^{(1)} = -30 \quad heta_{11}^{(1)} = 20 \quad heta_{12}^{(1)} = 20$$

Therefore,
$$h_{\theta}(x) = g(-30 + 20x_1 + 20x_2)$$

Our sigmoid function will be:

x_1	x_2	$h_{ heta}(x)$ [Logical AND]
0	0	g(-30)pprox 0
0	1	g(-10) pprox 0
1	0	g(-10)pprox 0
1	1	g(10)pprox 1

Our $h_{\theta}(x)$ above is computing logical AND function.

Let's create another single unit neural network for computing the OR function. We'll assign the parameters as:

$$heta_{10}^{(1)}=-10 \quad heta_{11}^{(1)}=20 \quad heta_{12}^{(1)}=20$$
 Therefore, $h_{ heta}(x)=g(-10+20x_1+20x_2)$

x_1	x_2	$h_{ heta}(x)$ [Logical OR]
0	0	g(-10)pprox 0
0	1	g(10) pprox 1
1	0	g(10) pprox 1
1	1	g(30) pprox 1

Intuition 2

We can come up with a small network for performing negation. We'll assign the parameters:

$$heta_{10}^{(1)} = 10 \quad heta_{11}^{(1)} = -20$$

Therefore, $h_{\theta}(x) = g(10 - 20x_1)$

x_1	$h_{ heta}(x)$
0	g(10)pprox 1
1	g(-10)pprox 0

Merging the Neural Networks

Putting the above three together to compute x_1 XNOR x_2 ,

x_1	x_2	$a_1^{(2)}$	$a_2^{(2)}$	$h_{ heta}(x)$
0	0	0	1	1
0	1	0	0	0
1	0	0	0	0
0	1	1	0	1

Multiclass Classification

