

Intelligent Robotics

Modelbased Reinforcement Learning

Philipp Ennen, M.Sc.

Introduction

How do I (the robot) go there?

Motion Planning with iLQR

Requires Goalstate:

- i.e. hand-engineered
- i.e. via a cost function

Introduction

How do I (the robot) go there?

$$\begin{bmatrix} \dot{x} \\ \ddot{x} \\ \dot{\phi} \\ \dot{\phi} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{-(I+ml^2)b}{I(M+m)+Mml^2} & \frac{m^2gl^2}{I(M+m)+Mml^2} & 0 \\ 0 & 0 & 0 & 1 \\ 0 & \frac{-mlb}{I(M+m)+Mml^2} & \frac{mgl(M+m)}{I(M+m)+Mml^2} & 0 \end{bmatrix} \begin{bmatrix} x \\ \dot{x} \\ \phi \\ \dot{\phi} \end{bmatrix} + \begin{bmatrix} 0 \\ I+ml^2 \\ I(M+m)+Mml^2 \\ 0 \\ 0 \\ \frac{ml}{I(M+m)+Mml^2} \end{bmatrix} t_{1}$$

Sensing

What if the model of the robot and environment is hard to describe (or unknown)?

Think about flexible objects!

Requires Goalstate:

- i.e. hand-engineered
- i.e. via a cost function

Motion Control and Execution

Think about contact-situations!

Real-World Dynamics are Complex!

Often dynamic models exist

Dynamic models usually do not exist

Dynamics of contacts

Dynamics of flexible objects

Dynamics of unstructured environments

Introduction

Trajectory Optimization

• Trajectory Optimization: Calculates optimal sequence of actions using cost-function and dynamics

$$\min_{\mathbf{u}_1,\dots,\mathbf{u}_T} \sum_{t=1}^T c(\mathbf{x}_t,\mathbf{u}_t) \qquad \text{s.t. } \mathbf{x}_t = f(\mathbf{x}_{t-1},\mathbf{u}_{t-1})$$

- Today: How can optimal action sequences be calculated if a dynamic model does not exist?
- Today we learn an algorithm based on
 - Learning a global dynamic model ("model-based reinforcement learning")
 - Learning a local dynamic model

Robots as an Example for Intelligent Machines

What if the model of the robot and environment is hard to describe (or unknown)?

This weeks topic!

Model-based RL:

- Learn to predict next
 state (using a dynamic model): P(s'|s, a)
- Learn to predict immediate reward $P(r^{*}|s,a)$ (we assume to have this information)

$\begin{array}{c|c} \textbf{data} \\ \{(s,a,r,s')\} \\ \hline \textbf{model} \\ P(s'\mid a,s) \\ R(s,a) \\ \hline \textbf{policy} \\ \pi(a\mid s) \\ \hline \end{array}$

Model-free RL:

Learn to predict value:
 V(s) or Q(s, a)

s: state

a: action

r: reward

Content

- Modelbased Reinforcement Learning
 - I. Learning of dynamic models
 - II. Learning of dynamic models and policies
- II. Representing a dynamic model
- III. Global and local dynamic model
- IV. Learning with local dynamic models with "Trust Regions"

Why do we want to learn the dynamics?

$$\min_{\mathbf{u}_1,\dots,\mathbf{u}_T} \sum_{t=1}^T c(\mathbf{x}_t,\mathbf{u}_t) \qquad \text{s.t.} \quad \mathbf{x}_t = f(\mathbf{x}_{t-1},\mathbf{u}_{t-1})$$

$$\lim_{\mathbf{u}_1,\dots,\mathbf{u}_T} c(\mathbf{x}_1,\mathbf{u}_1) + c(f(\mathbf{x}_1,\mathbf{u}_1),\mathbf{u}_2) + \dots + c(f(f(\dots)\dots),\mathbf{u}_T)$$

Usual procedure: Differentiate via Backpropagation and optimize (i.e. iLQR)

Requires:
$$(\frac{\partial f}{\partial \mathbf{x}_t}, \frac{\partial f}{\partial \mathbf{u}_t}) \frac{\partial c}{\partial \mathbf{x}_t}, \frac{\partial c}{\partial \mathbf{u}_t}$$

Why do we want to learn the dynamics?

- If $\mathbf{x}_{t+1} = f(\mathbf{x}_t, \mathbf{u}_t)$ is known, we can do trajectory optimization
 - In the stochastic case $p(\mathbf{x}_{t+1}|\mathbf{x}_{t},\mathbf{u}_{t})$

Learn $f(\mathbf{x}_{t,}\mathbf{u}_t)$ with subsequent backpropagation (i.e. iLQR)

Modelbased Reinforcement Learning Version 0.5

- 1. Execute initial policy $\pi_0(\mathbf{u}_t|\mathbf{x}_t)$ (i.e. a random policy) and collect data $\mathcal{D} = \{(\mathbf{x}, \mathbf{u}, \mathbf{x}')_i\}$
- 2. Learn dynamics $f(\mathbf{x}_i \mathbf{u})$ that minimizes $\sum_i \|f(\mathbf{x}_i, \mathbf{u}_i) \mathbf{x}_i'\|^2$
- 3. Backpropagate $f(\mathbf{x}, \mathbf{u})$ and calculate sequence of actions (i.e. iLQR)

Does Version 0.5 work?

- Traditional system identification uses this method (control theory)
- Initial policy must be chosen with caution
- Version 0.5 is very effective
 - If a representation of the dynamics based on physical laws exists
 - If only a few parameters must be learned

Does Version 0.5 work?

(in general) NO!

- 1. Execute initial policy $\pi_0(\mathbf{u}_t|\mathbf{x}_t)$ (i.e. a random policy) and collect data $\mathcal{D} = \{(\mathbf{x}, \mathbf{u}, \mathbf{x}')_i\}$
- 2. Learn dynamics $f(\mathbf{x}_i \mathbf{u})$ that minimizes $\sum_i \|f(\mathbf{x}_i \mathbf{u}_i) \mathbf{x}_i'\|^2$
- 3. Backpropagate $f(\mathbf{x}, \mathbf{u})$ and calculate sequence of actions (i.e. iLQR) $\rightarrow \pi_f(\mathbf{u}_t | \mathbf{x}_t)$

$$p_{\pi_0}(\mathbf{x}_t) \neq p_{\pi_f}(\mathbf{x}_t)$$

(Distribution Mismatch Problem)

Distribution Mistmatch Problem increases if expressive classes of models are used (i.e. neural networks)

Can we do better?

Can we make $p_{\pi_0}(\mathbf{x}_t) = p_{\pi_f}(\mathbf{x}_t)$?

Need to collect data from $p_{\pi_f}(\mathbf{x}_t)!$

Modellbasiertes Reinforcement Learning Version 1.0

- 1. Execute initial policy $\pi_0(\mathbf{u}_t|\mathbf{x}_t)$ (i.e. a random policy) and collect data $\mathcal{D} = \{(\mathbf{x}, \mathbf{u}, \mathbf{x}')_i\}$
- 2. Learn dynamics $f(\mathbf{x}_{,}\mathbf{u})$ that minimizesLearn dynamics $f(\mathbf{x}_{,}\mathbf{u})$ that minimizes $\sum_{i} \|f(\mathbf{x}_{i,}\mathbf{u}_{i}) \mathbf{x}_{i}'\|^{2}$
- 3. Backpropagate $f(\mathbf{x}, \mathbf{u})$ and calculate sequence of actions (i.e. iLQR)
- 4. Execute those actions and add the resulting data $\{(\mathbf{x}, \mathbf{u}, \mathbf{x}')_i\}$ to \mathcal{D}

What happens if the dynamic models contains little error?

Can we do better?

Modellbasiertes Reinforcement Learning Version 1.5

- 1. Execute initial policy $\pi_0(\mathbf{u}_t|\mathbf{x}_t)$ (i.e. a random policy) and collect data $\mathcal{D}=\{(\mathbf{x},\mathbf{u},\mathbf{x}')_i\}$
- 2. Learn dynamics $f(\mathbf{x}_i\mathbf{u})$ that minimizesLearn dynamics $f(\mathbf{x}_i\mathbf{u})$ that minimizes $\sum_i ig\|f(\mathbf{x}_i\mathbf{u}_i) \mathbf{x}_i'ig\|^2$
- 3. Backpropagate $f(\mathbf{x}_{,}\mathbf{u})$ and calculate sequence of actions (i.e. iLQR)
- 4. Execute the first planned action, observe resulting state $\mathbf{x}'(\mathsf{MPC})$
- 5. Append (x, u, x') to dataset \mathcal{D}

Summary

- Version 0.5: collect random samples, train dynamics, plan
 - Pro: simple, no iterative procedure
 - Con: distribution mismatch problem
- Version 1.0: iteratively collect data, replan, collect data
 - Pro: simple, solves distribution mismatch
 - Con: open loop plan might perform poorly, exp. in stochastic domains
- Version 1.5: iteratively collect data using MPC (replan in each step)
 - Pro: robust to small model errors
 - Con: comoputationally expensive, but have planning algorithm available

Content

- Modelbased Reinforcement Learning
 - I. Learning of dynamic models
 - II. Learning of dynamic models and policies
- II. Representing a dynamic model
- III. Global and local dynamic model
- IV. Learning with local dynamic models with "Trust Regions"

What kind of models can we use?

Gaussian process

GP with input (x, \mathbf{u}) and output x'

Pro: very data-efficient

Con: not great with non-smooth dynamics

Con: very slow when dataset is big

Neural Network

image: Punjani & Abbeel '14

Input is (x, u), output ist x'

Pro: very expressive, can use lots of data

Con: not so great I low data regimes

Gaussian Mixture Model

GMM over (x, u, x') tuples

Train on $(\mathbf{x}, \mathbf{u}, \mathbf{x}')$, condition to get $p(\mathbf{x}'|\mathbf{x}, \mathbf{u})$

For i'th mixture element, $p_i(\mathbf{x}, \mathbf{u})$ gives region where the mode $p_i(\mathbf{x}'|\mathbf{x}, \mathbf{u})$ holds

Pro: very expressive, if the dynamics can be assumed as piecewise linear

Representation of Dynamic Models

Content

- Modelbased Reinforcement Learning
 - I. Learning of dynamic models
 - II. Learning of dynamic models and policies
- II. Representing a dynamic model
- III. Global and local dynamic model
- IV. Learning with local dynamic models with "Trust Regions"

Global Dynamic Models

Challenges

Example: Global dynamic model $f(\mathbf{x}_t, \mathbf{u}_t)$ is represented by a neural network

Modellbasiertes Reinforcement Learning Version 1.0

1. Execute initial policy π_0 ($\mathbf{u}_t \mid \mathbf{x}_t$) (i.e. a random policy) and collect data \mathcal{D} ={(\mathbf{x} , \mathbf{u} , \mathbf{x} , ')_i}

- 2. Lean dynamics $f(\mathbf{x}_i \mathbf{u})$ that minimizes $\sum_i \left\| f(\mathbf{x}_i \mathbf{u}_i) \mathbf{x}_i' \right\|^2$
- 3. Backpropagate $f(\mathbf{x}, \mathbf{u})$ and calculate sequence of actions (i.e. iLQR)
- 4. Execute those actions and add the resulting data $\{(\mathbf{x}, \mathbf{u}, \mathbf{x}')_i\}$ to \mathcal{D}
- Planner will seek out regions where the model is erroneously optimistic
- Need to find a very good model in most of the state space to converge on a good solution

Global Dynamic Models

The trouble with global models

- Planner will seek out regions where the model is erroneously optimistic
- Need to find a very good model in most of the state space to converge on a good solution
- In some tasks, the model is much more complex than the policy

Motivation

$$\min_{\mathbf{u}_1,\dots,\mathbf{u}_T} \sum_{t=1}^T c(\mathbf{x}_t,\mathbf{u}_t) \qquad \text{s.t.} \quad \mathbf{x}_t = f(\mathbf{x}_{t-1},\mathbf{u}_{t-1})$$

$$\min_{\mathbf{u}_1,\dots,\mathbf{u}_T} c(\mathbf{x}_1,\mathbf{u}_1) + c(f(\mathbf{x}_1,\mathbf{u}_1),\mathbf{u}_2) + \dots + c(f(f(\dots)\dots),\mathbf{u}_T)$$

Usual story: differentiate via backpropagation and optimize (i.e. iLQR)

need:
$$(\frac{\partial f}{\partial \mathbf{x}_t}, \frac{\partial f}{\partial \mathbf{u}_t}) \frac{\partial c}{\partial \mathbf{x}_t}, \frac{\partial c}{\partial \mathbf{u}_t}$$

Approach

need:

$$\frac{\partial f}{\partial \mathbf{x}_t}, \frac{\partial f}{\partial \mathbf{u}_t}, \frac{\partial c}{\partial \mathbf{x}_t}, \frac{\partial c}{\partial \mathbf{u}_t}$$

idea: just fit $\frac{\partial f}{\partial \mathbf{x}_t}$, $\frac{\partial f}{\partial \mathbf{u}_t}$ around current trajectory or policy

 $p(\mathbf{u}_t|\mathbf{x}_t)$ – time-varying linear-Gaussian controller – can **execute** on the robot and produces trajectory distribution

Learning a policy

Timedependent Linear Gaussian Controller

iLQR produces: $\hat{\mathbf{x}}_t$, $\hat{\mathbf{u}}_t$, \mathbf{K}_t , \mathbf{k}_t

$$p(\mathbf{u}_t|\mathbf{x}_t) = \mathcal{N}(\mathbf{K}_t(\mathbf{x}_t - \hat{\mathbf{x}}_t) + \mathbf{k}_t + \hat{\mathbf{u}}_t, \mathbf{\Sigma}_t)$$

Set
$$\Sigma_t = \mathbf{Q}_{\mathbf{u}_t,\mathbf{u}_t}^{-1}$$

 $Q(\mathbf{x}_t, \mathbf{u}_t)$ is the cost to go: total cost we get after taking an action \mathbf{u}_t

$$Q(\mathbf{x}_t, \mathbf{u}_t) = \text{const} + \frac{1}{2} \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix}^T \mathbf{Q}_t \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix} + \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix}^T \mathbf{q}_t$$

 $\mathbf{Q}_{\mathbf{u}_t,\mathbf{u}_t}$ is big, if changing \mathbf{u}_t changes the Q-value a lot!

If \mathbf{u}_t changes Q-value a lot, don't vary \mathbf{u}_t so much. Exploration noise $\mathbf{\Sigma}_t$ must be low

Timedependent Linear Gaussian Controller

iLQR produces: $\hat{\mathbf{x}}_t$, $\hat{\mathbf{u}}_t$, \mathbf{K}_t , \mathbf{k}_t

$$p(\mathbf{u}_t|\mathbf{x}_t) = \mathcal{N}(\mathbf{K}_t(\mathbf{x}_t - \hat{\mathbf{x}}_t) + \mathbf{k}_t + \hat{\mathbf{u}}_t, \mathbf{\Sigma}_t)$$

Set
$$\mathbf{\Sigma}_t = \mathbf{Q}_{\mathbf{u}_t,\mathbf{u}_t}^{-1}$$

Standard LQR solves
$$\min_{\mathbf{u}_1, \dots, \mathbf{u}_T} \sum_{t=1}^T c(\mathbf{x}_t, \mathbf{u}_t)$$

Linear-Gaussian solution solves
$$\min_{\mathbf{u}_1, \dots, \mathbf{u}_T} \sum_{t=1}^T E[c(\mathbf{x}_t, \mathbf{u}_t) - \mathcal{H}(p(\mathbf{u}_t | \mathbf{x}_t))]$$

Maximum Entropy: act as randomly as possible while minimizing cost

Entropy: A measure for the average information content

Linearize local dynamics

$$\{(\mathbf{x}_t, \mathbf{u}_t, \mathbf{x}_{t+1})_i\}$$

Version 1.0: Linearize $p(\mathbf{x}_{t+1}|\mathbf{x}_t,\mathbf{u}_t)$ at each time step using linear regression

$$p(\mathbf{x}_{t+1}|\mathbf{x}_t,\mathbf{u}_t) = \mathcal{N}(\mathbf{A}_t\mathbf{x}_t + \mathbf{B}_t\mathbf{u}_t + \mathbf{c}_t,\mathbf{N}_t) \qquad \qquad \mathbf{A}_t \approx \frac{\partial f}{\partial \mathbf{x}_t} \qquad \mathbf{B}_t \approx \frac{\partial f}{\partial \mathbf{u}_t}$$

Can we do better?

Version 2.0: Linearize $p(\mathbf{x}_{t+1}|\mathbf{x}_t,\mathbf{u}_t)$ using *Bayesian* linear regression

- Bayesian linear regression uses prior: $p(\mathbf{x}_t, \mathbf{u}_t) p(\mathbf{x}_{t+1} | \mathbf{x}_t, \mathbf{u}_t) = p(\mathbf{x}_t, \mathbf{u}_t, \mathbf{x}_{t+1})$
- Use your favourite global model as a prior (GP, deep net, GMM)

How to stay close to old controller?

How to stay close to old controller?

$$p(\mathbf{u}_t|\mathbf{x}_t) = \mathcal{N}(\mathbf{K}_t(\mathbf{x}_t - \hat{\mathbf{x}}_t) + \mathbf{k}_t + \hat{\mathbf{u}}_t, \mathbf{\Sigma}_t)$$

$$p(\mathbf{u}_t|\mathbf{x}_t) = N(\mathbf{R}_t(\mathbf{x}_t - \mathbf{x}_t) + \mathbf{R}_t + \mathbf{u}_t, \mathbf{Z}_t)$$
$$p(\tau) = p(\mathbf{x}_1) \prod_{t=1}^{T} p(\mathbf{u}_t|\mathbf{x}_t) p(\mathbf{x}_{t+1}|\mathbf{x}_t, \mathbf{u}_t)$$

New trajectory distribution $p(\tau)$ must be similar to the old one $\bar{p}(\tau)$

If trajectory distribution is close, the dynamics will be close too!

What does "close" mean?

Kullback-Leibler divergence: $D_{KL}(p(\tau)||\bar{p}(\tau)) < \varepsilon$ From here a lot of mathematics would follow!

Its your turn!

Visit the website and implement it!

Introduction to the tasks

Tasks for today and tomorrow

- Task 1:
 - Implement an LQR Backward and Forward pass
 - Try to understand it!
 - Test it with our test method
- Task 2:
 - Implement linearization of the dynamic model
 - Try to understand it!
 - Test it with our test-method
 - Test it on the Box2D Scenario
- Task 3:
 - Test it with Kinova Jaco 2 in simulation
 - Adjust cost function

Task 1 – Installation procedure

Download source code (do it in your home directory: cd ~):

git clone https://github.com/philippente/task1 lqr.git

Edit .bashrc to set environment variables:

gedit ~/.bashrc

At the end of file, the lines should look like this:

```
source /opt/ros/indigo/setup.bash
source /home/<USERNAME>/catkin_ws/devel/setup.bash
export
ROS_PACKAGE_PATH=$ROS_PACKAGE_PATH:/opt/ros/indigo/share:/opt/ros/indigo/stacks:/home//<USERNAME>/task1_lqr:/home/<USERNAME>
/task1_lqr/src/gps_agent_pkg
```

Check if the blue part of the source folder and ROS_PACKAGE_PATH is correct!

Then save it and close it. Source the .bashrc (load the environment variables):

source ~/.bashrc

Now, compile some stuff:

cd task1_lqr
sh compile_proto.sh
catkin make

Task 1 – Installation procedure

- Open PyCharm
- Import the folder task1_lqr as a new project
- Open within PyCharm: python/gps/algorithm/algorithm_traj_opt.py
- Task: Implement the forward and backward pass of an LQR! Look at the website for advices: https://philippente.github.io/irobotics.html
- You can test your implementation with a little test program
 - using a terminal, open the directory task1_lqr
 - Start the program with: python python/gps/lqr test.py
 - Was it successful?

Thanks for your attention!

Gaussians

- Univariate Gaussian
- Multivariate Gaussian
- Law of Total Probability
- Conditioning (Bayes' rule)
- Disclaimer: lots of lienar algebra in next few lectures. In fact, pretty much all computations with Gaussians will be reduced to linear algebra!