PCT

THE ERITION LIDRARY SCILL EREFERENCE AND BUT ORMATION SERVICE WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:		(11) International Publication Number: WO 95/32927
C03C 13/00	A1	(43) International Publication Date: 7 December 1995 (07.12.95)
(21) International Application Number: PCT/EP (22) International Filing Date: 24 May 1995 (2)		MX, NO, NZ, PL, SI, SK, US, European patent (AT, EE.
(30) Priority Data: P. 44 18 726.2 28 May 1994 (28.05.94)	ם	Published With international search report.
(71) Applicant (for all designated States except US): SAINT-GOBAIN [FR/FR]; Les Miroirs, 18, d'Alsace, F-92400 Courbevoie (FR).		
(72) Inventors; and (75) Inventors/Applicants (for US only): DE MERINGO, Alain [FR/FR]; 294, rue Saint-Jacques, F-75005 Paris (FR). BATTIGELLI, Jean [FR/FR]; 17, rue EVaillant, F-60290 Rantigny (FR). FURTAK, Hans [DE/DE]; Im Oberkämmerer 35, D-67346 Speyer am Rhein (DE).		(). F
(74) Agent: KADOR & PARTNER; Corneliusstrasse 15, Munich (DE).	D-8046	59
·		
(54) Title: GLASS-FIBER COMPOSITIONS		

(57) Abstract

A biologically degradable glass-fiber composition characterized by the following constituents in percent by weight: SiO_2 45 to 60, Al_2O_3 less than 2, CaO + MgO 10 to 16, Na_2O + K_2O 15 to 23, B_2O_3 10 to 18, P_2O_5 0 to 4, BaO 0 to 1, diverse 0 to 2.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
ΑU	Au stralia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	Sī	Slovenia
CI	Côte d'Ivoire	KZ.	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovaicia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Larvia	TJ	Tajikistan
DE	Germany	мс	Monaco	77	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG		- US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
GA	Gabon				

WO 95/32927 PCT/EP95/01993

Glass-fiber compositions

The present invention relates to a glass-fiber composition that is biologically degradable.

The prior art describes some glass-fiber compositions which are said to be biologically degradable.

The biological degradability of glass-fiber compositions is of great importance because various studies point out that some glass fibers with very small diameters in the range of less than 3 microns may be carcinogenic, while biologically degradable glass fibers of such dimensions show no carcinogenicity.

However not only the biological degradability is of crucial importance but also the mechanical and thermal properties of the glass fibers, or the products produced therefrom, the resistance of the glass fibers and the processibility of the glass-fiber composition. For example glass fibers are used to a great extent for insulation purposes. For these applications sufficient moisture-resistance is necessary.

Also, the glass-fiber composition must permit processibility by known methods for producing glass fibers with a small diameter, for example the centrifugal technique, in particular the inner centrifugal technique (this technique is described for example in US-PS 4 203 745).

The invention is based on the problem of providing a novel glass-fiber composition that is characterized by biological degradability, has good stability or resistance to moisture and is easy to process.

The invention is based on the finding that this problem can be solved by a glass-fiber composition that contains considerable amounts of alkali oxides and boron oxide, as well as optionally aluminum oxide.

It has turned out that such a glass-fiber composition fulfills the combination of the necessary properties, namely

- 2 -

biological degradability, resistance to moisture and good processibility.

The object of the invention is a glass-fiber composition that is biologically degradable, characterized by the following constituents in percent by weight:

Sio	\	45	to	60
Al_O_		less	than	2
CaO + MgO		10	to :	16
Na 0 + K 0		15	to :	23
Во		10	to :	18
Po		0	to	4
BaO		0	to	1
Diverse		· O	to	2.

The inventive glass-fiber compositions are processible by the centrifugal technique. The obtained fibers have good resistance to moisture. Surprisingly enough, the glass-fiber compositions show biological degradability. The mean fiber diameter is preferably less than 10 microns and is in particular between 2.5 and 5 microns.

The inventive glass-fiber compositions preferably have the following constituents in percent by weight:

sio	45	to	60
Al ₂ O ₃	less	s than	n 2
CaO + MgO	10	to	16
Nago + Kgo	more	than	18
BO	less	than	12
PO	0	to	4
BaO	0	to	1
Diverse	0	to	2.

According to a further preferred embodiment the inventive glass-fiber compositions have the following constituents in percent by weight:

SiO	4.5	to	60
Al ₂ O ₃	less	s than	n 2
CaO + MgO	10	to	16
Nago + Kgo	less	than	18
B 0	more	than	12
PO	0	to	4
BaO	0	to	1
Diverse	0	to	2.

The inventive glass-fiber compositions preferably have less than 57 percent by weight silicon dioxide, in particular less than 56.5 percent by weight.

By adding aluminum oxide one can obtain an improvement in moisture-resistance. The inventive compositions are therefore preferably given at least 0.1 percent by weight, in particular at least 0.5 percent by weight, and usually less than 1.5 percent by weight aluminum oxide.

Biological degradability can be increased by the addition of phosphorus pentoxide. The inventive compositions therefore preferably contain at least 0.1 percent by weight P_0 .

According to a further preferred embodiment the composition contains less than 2 percent by weight magnesium oxide.

The moisture-resistance of the inventive glass-fiber compositions was determined by a standard method known as the DGG method. In the DGG method 10 g finely ground glass with a grain size between about 360 and 400 microns is held at the boiling point for five hours in 100 ml water. After quick cooling of the material the solution is filtered and a certain volume of the filtrate evaporated to dryness. The weight of the thus obtained dry material permits the amount of glass dissolved in the water to be calculated. The amount is stated in milligrams per gram of tested glass.

The biological degradability of the inventive glass compositions was tested by introducing 1 g of the glass

powder, as described for the DGG method, into a physiological solution with the composition stated below and a pH value of 7.4:

NaCl	6.78
NH Cl	0.535
NaHCO	2.268
NaH_PO_H_O	0.166
(Na citrate) 2H O	0.059
Glycine	0.450
.H SO	0.049
CaCl	0.022
2	

Dynamic test conditions were selected as are described in Scholze and Conradt. The flow rate was 300 ml/day. The duration of the test was 14 days. The results are stated as percent of Sio_2 in the solution x 100 after 14 days.

The invention shall be described in more detail in the following with reference to examples.

Example 1

A glass of the following composition in percent by weight was melted:

sio	56.0
2	
Algo	1.0
CaO	9.0
МдО	4.0
Na_O	18.0
Kgo	1.0
ВО	10.5
2 3 Diverse	0.5.

These glass compositions could be processed by the centrifugal technique.

Using the above-described DGG method a value of 40 mg/g was determined.

The above-described test for biological degradability yielded a value of 550.

Example 2

A glass with the following composition in percent by weight was melted:

SiO	55.0
Alo	1.0
CaO	9.0
MgO	4.0
Nago	18.0
K O	1.0
BO	10.5
Po	1.0
Diverse	0.5.

These glass compositions could be processed by the centrifugal technique.

Using the above-described DGG method a value of 40 mg/g was determined.

The above-described test for biological degradability yielded a value of 600.

Example 3

A glass with the following composition in percent by weight was melted:

sio	57.5
Alo	0.5
CaO	8.0
MgO .	3.5
Na_O	17.8
K ₂ O	0.2
ВО	12.0
z 3 Diverse	0.5.

These glass compositions could be processed by the centrifugal technique.

Using the above-described DGG method a value of 50 mg/g was determined.

The above-described test for biological degradability yielded a value of 550.

Example 4

A glass with the following composition in percent by weight was melted:

SiO	56.5
Alo	0.5
CaO	8.0
MgO	3.5
NagO	17.8
Kao	0.2
BO	12.0
Po	1.0
Diverse	0.5.

These glass compositions could be processed by the centrifugal technique.

Using the above-described DGG method a value of 50 mg/g was determined.

The above-described test for biological degradability yielded a value of 600.

Example 5

A glass with the following composition in percent by weight was melted:

SiO	57.5
Alo	0.5
CaO	8.1
MgO	3.6
NagO	17.25
K_O	0.35
BO	12.4
Diverse	0.3.

These glass compositions could be processed by the centrifugal technique.

Using the above-described DGG method a value of 30 mg/g was determined.

The above-described test for biological degradability yielded a value of 600.

Example 6

A glass with the following composition in percent by weight was melted:

SiO	57.5
Alo	0.5
CaO	8.3
MgO	1.8
Nago	18.6
ĸō	0.4

B O.	11.5
BaO	1.0
Diverse	0.4.

These glass compositions could be processed by the centrifugal technique.

Using the above-described DGG method a value of 30 mg/g was determined.

The above-described test for biological degradability yielded a value of 600.

Example 7

A glass with the following composition in percent by weight was melted:

Sio	57.5
Alo	0.5
CaO .	8.3
MgO	1.8
NagO	17.1
K ₂ O	0.4
BO	13.0
BaO	1.0
Diverse	0.4.

These glass compositions could be processed by the centrifugal technique.

Using the above-described DGG method a value of 30 mg/g was determined.

The above-described test for biological degradability yielded a value of 600.

Example 8

A glass with the following composition in percent by weight was melted:

SiO	57.5
Al_O	0.5
CaO	8.4
MgO	1.7
Na ₂ O	17.0
KO	0.5
BO	14.0
Diverse	0.4.

These glass compositions could be processed by the centrifugal technique.

Using the above-described DGG method a value of 30 mg/g was determined.

The above-described test for biological degradability yielded a value of 600.

Claims

1. A glass-fiber composition that is biologically degradable, characterized by the following constituents in percent by weight:

Sio	45	to	60
Al ₂ O ₃	less	than	2
CaO + MgO	10	to	16
Nago + Kgo	15	to	23
BO	10	to	18
PO	0	to	4
BaO	0	to	1
Diverse	. 0	to	2.

2. The glass-fiber composition of claim 1, characterized by the following constituents in percent by weight:

sio	45 to 60
Alo	less than 2
CaO + MgO	10 to 16
Nago + Kgo	more than 18
BO	less than 12
PO	0 to 4
BaO	0 to 1
Diverse	0. to 2.

3. The glass-fiber composition of claim 1, characterized by the following constituents in percent by weight:

SiO	45	to	60
Alao	less	s than	n 2
CaO + MgO	10	to	16
Nago + Kgo	less	than	18
BO	more	than	12
PO	0	to	4

BaO 0 to 1
Diverse 0 to 2.

4. The glass-fiber composition of claim 1, characterized by the following constituents in percent by weight:

Sio	47	to 57
Al ₂ O ₃	less	than 2
CaO + MgO	12	to 15
NagO + KgO	16	to 20
BO	10	to 16
PO	0	to 2
BaO	0	to 1
Diverse	0	to 2.

5. The glass-fiber composition of claim 1, characterized by the following constituents in percent by weight:

Sio	52	to	60
Algog	0	to	1.5
CaO + MgO	11	to	12.5
Nago + Kgo	16	to	18.5
BO	10	to	14
PO	0	to	1
BaO	0	to	1
Diverse	0	to	2.

- 6. The glass-fiber composition of any of claims 1 to 5, characterized in that the content of silicon dioxide is less than 57 percent by weight.
- 7. The glass-fiber composition of any of claims 1 to 6, characterized in that the content of silicon dioxide is less than 56.5 percent by weight.
- 8. The glass-fiber composition of any of claims 1 to 7, characterized in that the content of aluminum oxide is at least 0.1 percent by weight.

- 9. The glass-fiber composition of any of claims 1 to 8, characterized in that the content of aluminum oxide is at least 0.5 percent by weight.
- 10. The glass-fiber composition of any of claims 1 to 9, characterized in that the content of phosphorus oxide is at least 0.1 percent by weight.
- 11. The glass-fiber composition of any of claims 1 to 10, characterized in that the content of boron oxide is more than 12 percent by weight.
- 12. The glass-fiber composition of any of claims 1 to 11, characterized in that the content of magnesium oxide is less than 2 percent by weight.

INTERNA JNAL SEARCH REPORT

nauonal Application No PCT/EP 95/01993

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C03C13/00 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 6 C03C Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X EP,A,O 412 878 (ISOVER SAINT-GOBAIN) 13 1,5, February 1991 8-10,12 see claims; example 11 US,A,5 055 428 (PORTER) 8 October 1991 1-12 see the whole document GB, A, 1 096 465 (UNITED STATES GYPSUM 1-12 COMPANY) 29 December 1967 see claims; examples EP, A, 0 588 251 (SCHULLER INTERNATIONAL, 1-12 INC.) 23 March 1994 see claims 1-3; tables 1,2 -/--X Further documents are listed in the continuation of box C. X Patent family members are listed in annex. Special categories of cited documents: "I" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the document defining the general state of the art which is not considered to be of particular relevance carrier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu-ments, such combination being obvious to a person skilled in the art. document published prior to the international filing date but later than the priority date claimed '&' document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 3 1. 08. 95 10 August 1995 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Ripswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+ 31-70) 340-3016 Van Bommel, L

INTERNATIONAL SEARCH REPORT

PCT/EP 95/01993

	uon) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	GLASTECHNISCHE BERICHTE, vol. 64, no. 1, January 1991 FRANKFURT DE, pages 16-28, XP 000178832 R. M. POTTER ET AL. 'Glass Fiber dissolution in a Physiological Saline Solution' see page 26 - page 27; table 2	1
		·

INTERNATIONAL SEARCH REPORT

PCT/EP 95/01993

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP-A-412878	13-02-91	FR-A- 2650821	15-02-91
		FR-A- 2658182	16-08-91
		AU-B- 630484	29-10-92
		AU-A- 5002590	14-02-91
·		CA-A- 2022446	12-02-91
		CN-A,B 1049834	13-03-91
	-	CN-A- 1093066	05-10-94
		DE-D- 69007369	21-04-94
		DE-T- 69007369	13-10-94
		ES-T- 2053139	16-07-94
		HU-B- 210633	28-06-95
		JP-A- 3093650	18-04-91
		PL-B- 165859	28-02-95
	•	SI-A- 9011548	31-12-94
		US-A- 5108957	28-04-92
		US-A- 5250488	05-10-93
US-A-5055428	08-10-91	AU-A- 8625091	15-04-92
03 / 3033 FEG	00 10 11	DE-D- 69109083	24-05-95
		EP-A- 0502159	09-09-92
		ES-T- 2072016	01-07-95
		JP-T- 5502432	28-04-93
	• •	WO-A- 9205121	02-04-92
GB-A-1096465		BE-A- 657609	16-04-65
GB A 1030403		CH-A- 499466	30-11-70
		DE-A- 1496679	29-05-69
		FR-A- 1421742	09-03-66
		LU-A- 47644	23-02-65
	•	NL-A- 6415101	28-06-65
		US-A- 3294505	27-12-66
		US-A- 5401693	28-03-95
FD-4-588251	7 4-114-44		
EP-A-588251	23-03-94	CA-A- 2106412	19-03-94