

Embedded systems with drones – Hands-on lecture LAB2

Project-based Learning Center | ETH Zurich
Tommaso Polonelli tommaso.polonelli@pbl.ee.ethz.ch
Michele Magno michele.magno@pbl.ee.ethz.ch
Vlad Niculescu vladn@iis.ee.ethz.ch

Evaluation board – Motor connection

Motor supply connections on FCU board

- Place the four motors in the correct configuration with respect to the facing direction of the board:
 - The clockwise motors (M1 and M3) have the red (+) and blue (-) cables
 - The counterclockwise motors (M2 and M4) have white (+) and black (-) cables.

Motor housing

How to build your own minidrone:

Document dm00563953.pdf on Polybox

Evaluation board – Battery connection

Motor supply connections on FCU board

- CN1 recharge the battery
- BT1 battery connector

BE AWARE If you invert the battery polarity:

THERE IS NOT INVERSION OR OVERCURRENT PROTECTION

How to build your own minidrone:

Document dm00563953.pdf on Polybox

Evaluation board – STEVAL-FCU001V1

Evaluation board – STEVAL-FCU001V1

Evaluation board – STEVAL-FCU001V1

TIMERS

TIM4 block diagram

Why Timer 4?

- Reference Manual (pag. 316)
 - 39 General-purpose timers (TIM15/TIM16/TIM17)

39.1 TIM15/TIM16/TIM17 introduction

The TIM15/TIM16/TIM17 timers consist of a 16-bit auto-reload counter driven by a programmable prescaler.

They may be used for a variety of purposes, including measuring the pulse lengths of input signals (input capture) or generating output waveforms (output compare, PWM, complementary PWM with dead-time insertion).

Pulse lengths and waveform periods can be modulated from a few microseconds to several milliseconds using the timer prescaler and the RCC clock controller prescalers.

The TIM15/TIM16/TIM17 timers are completely independent, and do not share any resources. TIM15 can be synchronized as described in Section 39.4.22: Timer synchronization (TIM15).

- 16-bit TIMER
- UP Counter
- 16-bit Prescaler
- PWM support

Datasheet (pag. 42)

43	D4	59	93	B4	PB7	I/O	FT	-	I2C1_SDA, USART1_RX, TIM4_CH2, EVENTOUT	-
44	A5	60	94	A4	воот0	-1	В	-	-	V _{PP}
45	B5	61	95	А3	PB8	I/O	FT	-	I2C1_SCL, TIM4_CH3, TIM10_CH1, SDIO_D4, EVENTOUT	-
46	C5	62	96	вз	PB9	I/O	FT	-	SPI2_NSS/I2S2_WS, I2C1_SDA, TIM4_CH4, TIM11_CH1, SDIO_D5, EVENTOUT	-
			97	C3	PE0	I/O	FT	-	TIM4_ETR, EVENTOUT	-
-	-	-	01		. 20					

PWM Mode

Multi-Channel Outputs

Output compare

Output Compare Mode (OCM)	Timer Output (OCREF)
000	Frozen
001	High if CNT == CCR
010	Low if CNT == CCR
011	Toggle if CNT == CCR
100	Forced low (always low)
101	Forced high (always high)

PWM Mode

Mode	Counter < Reference	Counter ≥ Reference
PWM mode 1 (Low True)	Active	Inactive
PWM mode 2 (High True)	Inactive	Active

PWM Mode 1 (Low-True)

Mode 1
Timer Output =

High if counter < CCR

Low if counter ≥ CCR

Duty Cycle =
$$\frac{CCR}{ARR + 1}$$
$$= \frac{3}{7}$$

PWM Mode 2 (High-True)

Mode 2
Timer Output =

{
 Low if counter < CCR |
 High if counter ≥ CCR |
}

Duty Cycle = 1 -
$$\frac{CCR}{ARR + 1}$$

$$= \frac{4}{7}$$

Counting up, down, center

116

GPIO

GPIO: Intuition

Take a bit from the physical world and put it in software (or vice versa).

Input

Michele Magno

Embedded systems with drones

GPIO: operating modes

- Input mode
 - Floating
 - Input wit pull-up/dowr
 - Analog input mode
- Output mode
 - Push-pull, open drain
- Configurable output up to 80 MHz

General Purpose Input/Output (GPIO)

GPIO Output: Push-Pull

GPIO Output = 1 Source current to external circuit

GPIO Output = 0 Drain current from external circuit

GPIO Output Speed

- Output Speed:
 - Speed of rising and falling
 - Four speeds: Low, Medium, Fast, High
- Tradeoff
 - Higher GPIO speed increases EMI noise and power consumption
 - Configure based on peripheral speed
 - Low speed for toggling LEDs
 - High speed for SPI

Preparation for LAB3

- Import in CubeIDE LAB2
- Open STM32CubeMX and open LAB2 config. file

Embedded systems with drones

PWM Motor Control on our STM32F401

Tommaso Polonelli

Clock Tree

Clock tree (Reference Manual pag. 94)

Frequency and Times

Example, a 16 bit Timer

$$f_{SystemClock} = f_{timer} = 84MHz$$

we have a tick in every,

$$T_{timer}=1/f_{PCLK2}=1/f_{timer}=1/84MHz=12 ns$$

With a **16 bit Timer** it means, $ticks_{max}=(2^{16}-1)=65535ticks$

So the timer will overflow every, $t_{overflow} = ticks_{max} \times T_{timer} = 65535 \times 12 \text{ ns} = 780 \mu s$

Timer Prescaler

We want to count a clock of 10KHz (0.1 ms tick), how we set the timer clock and prescaler?

CK_CNT = the clock being counted; we want it to 10KHz (this is your choice)

TIM_CK = input clock for TIMx

PrescalerValue = divider of the PCLK clock, we have to set it to obtain the desired CK_CNT:

PrescalerValue = ((PCLKx) / CK_CNT) - 1 PrescalerValue = ((84 MHz) / 10KHz) - 1 = 8400

Timer Period

Programming the **prescaler** we set a precise clock frequency, now we need to define the Timer Period value, which is calculated from the period **T** that we need:

Timer Pulse (in PWM 1)

Programming the **Pulse** register define the PWM duty cycle (DC), exactly what we need to control our motor:

Pulse = TIM_Period * DC

TIM4 – Cube MX

TIM4 – Settings for our DRONE-KIT

TIM4, a 16 bit Timer

 $f_{\text{SystemClock}} = f_{\text{timer}} = 84 \text{MHz}$ $tick \ in \ every,$ $T_{\text{timer}} = 1/f_{\text{PCLK2}} = 1/f_{\text{timer}} = 1/84 \text{MHz} = 12 \ ns$ $CK_CNT = TIM_CK \ / \ PrescalerValue = 1 \ MHz$ $T = \left(TIM_Period + 1\right) \ / \ CK_CNT = 2 \ ms \ (500 \ Hz)$

TIM4 - Cube IDE

```
/**
                                                                     421 void MX_TIM4_Init(void)
   * @brief Starts the PWM signal generation.
                                                                     422 {
   * @param htim: pointer to a TIM HandleTypeDef
                                                                     423
 structure that contains
                                                                     424
                                                                             TIM ClockConfigTypeDef sClockSourceConfig;
                                                                     425
                                                                             TIM MasterConfigTypeDef sMasterConfig;
                      the configuration information for TIM
                                                                     426
                                                                             TIM OC InitTypeDef sConfigOC;
 module.
                                                                     427
   * @param
              Channel: TIM Channels to be enabled.
                                                                     428
429
                                                                            htim4.Instance = TIM4;
               This parameter can be one of the following
                                                                            htim4.Init.Prescaler = 84;
 values:
                                                                             htim4.Init.CounterMode = TIM COUNTERMODE_UP;
                                                                     430
   *
                  @arg TIM CHANNEL 1: TIM Channel 1 selected
                                                                     431
                                                                            htim4.Init.Period = 1999;
                                                                     432
                  @arg TIM CHANNEL 2: TIM Channel 2 selected
                                                                             htin 1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
                                                                     433
                  @arg TIM CHANNEL 3: TIM Channel 3 selected
                                                                     434
                                                                             HAL_TIM_Base_Init(&htim4);
                  @arg TIM CHANNEL 4: TIM Channel 4 selected
                                                                     435
     @retval HAL status
                                                                             sClockSourceConfig.ClockSource = TIM CLOCKSOURCE INTERNAL;
                                                                     436
   */
                                                                     437
                                                                             HAL_TIM_ConfigClockSource(&htim4, &sClockSourceConfig);
                                                                     438
 HAL TIM PWM Start(&htim4, TIM CHANNEL 1);
                                                                     439
                                                                             HAL_TIM_PWM_Init(&htim4);
                                                                     440
                                                                     441
                                                                             sMasterConfig.MasterOutputTrigger = TIM TRGO RESET;
                                                                     442
                                                                             sMasterConfig.MasterSlaveMode = TIM MASTERSLAVEMODE DISABLE;
                                                                             HAL_TIMEx_MasterConfigSynchronization(&htim4, &sMasterConfig);
                                                                     443
                                                                     444
                                                                             sConfigOC.OCMode = TIM OCMODE PWM1:
                                                                     445
                                                                     446
                                                                             sConfigOC.Pulse = 0;
                                                                             sConfigOC.OCPolarity = TIM OCPOLARITY HIGH;
                                                                     447
                                                                             sConfigOC.OCFastMode = TIM OCFAST DISABLE;
                                                                     448
Embedded systems with drones
                                                                             HAL_TIM_PWM_ConfigChannel(&htim4, &sConfigOC, TIM_CHANNEL_1);
                                                                     449
```

Code Template (Polybox – LAB2 – main.c)

```
/* Initialize TIM4 for Motors PWM Output*/
                                                                       Start TIM4 and
HAL_TIM_PWM_Start(&htim4,TIM_CHANNEL_1); —
                                                                        enable CH 1
 /* insert here motor control for M2, M3 and M4*/
                                                                                                     Set all the CHANNEL Pulse to 0
/* set motor PWM to 0 DC */
                                                                                                              motors off
set motor pwm zero(&motor pwm);
while (1)
    /* function to set the PWM */
                                                                                            MOTOR 1 Pulse value
    /* Note
                                                                                     NOTE: this is the Pulse value not the DC
     * The PWM is handled by TIM4.
     * In case of DC motor configuration:
     * - the master clock for TIM4 is 1MHz
     * - the counter counts up to 2000, result in 2ms of PWM period (500Hz)
     * - the PWM pulse width data can to 0~1999, coresponding to 0~100% duty cycle
    motor pwm.motor1 pwm = 99;
    set motor pwm(&motor pwm);
                                                                                  Set the PWM for all motors
```

STM32CubelDe: Tips

Open Declaration automatic function finder in project files

LAB2: Exercise overview

Exercise	Assignment	Concept
Exercise 1	- Run the LAB2 template, Motor 1 should spin slowly	Start program, Debug
Exercise 2	- Enable all the motors ad the same speed, and at different fixed speed (random choiche)	PWM, TIM
Exercise 3	- Sweep the DC between 0 to 100% in loop with 1 sec period and a step of 10% (10 steps in total)	PWM, TIM, C programming
Questions:	 To generate 1 Hz square wave with a duty cycle of 50%, how should we set up the timer? What is the smallest PWM frequency that can be generated? What is the shortest ON pulse that can be generated? 	Programming and debugging

LAB2: PRO - Exercises

Exercise	Assignment	Concept
Exercise 1	 Receive commands from the terminal Letters: S: enable the motors O: disable the motors P: increase the rpm by 10% M: decrease the rpm by 10% 	PWM, TIM
Exercise 2	At start-up: generate a welcome theme song using the motors	PWM, TIM

Embedded systems with drones