

Art of Problem Solving

2007 Iran Team Selection Test

Iran Team Selection Test 2007

Day	1

In triangle ABC, M is midpoint of AC, and D is a point on BC such that DB = DM. We know that $2BC^2 - AC^2 = AB.AC$. Prove that

$$BD.DC = \frac{AC^2.AB}{2(AB + AC)}$$

Let A be the largest subset of $\{1, \ldots, n\}$ such that for each $x \in A$, x divides at most one other element in A. Prove that

$$\frac{2n}{3} \le |A| \le \left\lceil \frac{3n}{4} \right\rceil.$$

3 Find all solutions of the following functional equation:

$$f(x^2 + y + f(y)) = 2y + f(x)^2.$$

Day 2	
1	In an isosceles right-angled triangle shaped billiards table, a ball starts moving from one of the vertices adjacent to hypotenuse. When it reaches to one side then it will reflect its path. Prove that if we reach to a vertex then it is not the vertex at initial position By Sam Nariman
2	Find all monic polynomials $f(x)$ in $\mathbb{Z}[x]$ such that $f(\mathbb{Z})$ is closed under multiplication. By Mohsen Jamali
3	Let ω be incircle of ABC . P and Q are on AB and AC , such that PQ is parallel to BC and is tangent to ω . AB, AC touch ω at F, E . Prove that if M is midpoint of PQ , and T is intersection point of EF and BC , then TM is tangent to ω . $By \ Ali \ Khezeli$

Art of Problem Solving 2007 Iran Team Selection Test

Day 3	
1	Does there exist a a sequence a_0, a_1, a_2, \ldots in \mathbb{N} , such that for each $i \neq j, (a_i, a_j) = 1$, and for each n , the polynomial $\sum_{i=0}^n a_i x^i$ is irreducible in $\mathbb{Z}[x]$? By Omid Hatami
2	Suppose n lines in plane are such that no two are parallel and no three are concurrent. For each two lines their angle is a real number in $[0, \frac{\pi}{2}]$. Find the largest value of the sum of the $\binom{n}{2}$ angles between line. By Aliakbar Daemi
3	O is a point inside triangle ABC such that $OA = OB + OC$. Suppose B', C' be midpoints of arcs AOC and AOB . Prove that circumcircles COC' and BOB' are tangent to each other.
Day 4	
1	Find all polynomials of degree 3, such that for each $x, y \ge 0$:
	$p(x+y) \ge p(x) + p(y)$
2	Triangle ABC is isosceles $(AB = AC)$. From A , we draw a line ℓ parallel to BC . P,Q are on perpendicular bisectors of AB,AC such that $PQ \perp BC$. M,N are points on ℓ such that angles $\angle APM$ and $\angle AQN$ are $\frac{\pi}{2}$. Prove that
	$\frac{1}{AM} + \frac{1}{AN} \le \frac{2}{AB}$
3	Let P be a point in a square whose side are mirror. A ray of light comes from P and with slope α . We know that this ray of light never arrives to a vertex. We make an infinite sequence of $0,1$. After each contact of light ray with a horizontal side, we put 0 , and after each contact with a vertical side, we put 1 . For each $n \geq 1$, let B_n be set of all blocks of length n , in this sequence. a) Prove that B_n does not depend on location of P . b) Prove that if $\frac{\alpha}{\pi}$ is irrational, then $ B_n = n + 1$.

Contributors: Omid Hatami, pohoatza