构建训练 batch

model.batch_input(model.train_dataset)

dataset.get_batch_op 传入 300 个 filename 的 list 构建一个 queue

reader.read(filename_queue) 返回结果用 NyuDataset 类的 parse_example 函数解析即可

唯一的处理就是对图片进行 crop dataset.preprocess_op(self._input_width, self._input_height)

JointDetectionModel

dms, poses = data.preprocess.data_aug(dms, poses, cfgs, coms)
数据增强

end_points = self.inference(normed_dms, cfgs, coms, reuse_variables=None, is_training=True)

这里实现了论文中的网络结构

cfgs 并没有用到,这是用在将分割后的图像转换成原始坐标,使之能与原始数据比较。接下来会用到

est_normed_poses = self._xyz_estimation(est_hms,
est_oms, est_hm3s, tiny_normed_dms, cfgs, coms)

从 3d 热图和单位偏移向量恢复偏移图

_xyz_estimation use meanshift to get the final estimation

深度圖中的每個點的坐標 +om xyzs = xyzs + oms

2D3D 合在一起得到一个精细化的 hm 再把深度图中比较远的点去掉 refined_hms = tf.multiply(hms+1.0, hm3s) refined_hms = tf.multiply(refined_hms, dms_mask)

对于每个关节点用 refined_hms 选择 5 个 xyzs 中的初始点 self._generate_candidates

权重测量 xyz_pts 如何适合 2d hms 估计和 dms 观测就是这个候选的点在 2D 上的得分 self._get_candidate_weights

最终的 meanshift 就只看这 5 个点而已。