

This Page Is Inserted by IFW Operations  
and is not a part of the Official Record

## **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

**IMAGES ARE BEST AVAILABLE COPY.**

**As rescanning documents *will not* correct images,  
please do not report the images to the  
Image Problem Mailbox.**



RESEARCH

INTEGRATED IAM

SERVICES

INSIDE DELPHION

Search | Help | Log In | Sign Up

My Account | Products | Tools | Events

Search | QuickSearch | Boolean | Advanced

Go

## The Delphion Integrated View

Buy Now: [PDF](#) | More choices...Tools: Add to Work File: [Create new Work File](#)  [Go](#)View: [INPADOC](#) | Jump to: [Top](#) [Email this to a friend](#)

**>Title:** JP2000228193A2: CARBONACEOUS NEGATIVE ELECTRODE ACTIVE MATERIAL FOR NONAQUEOUS SECONDARY BATTERY AND NONAQUEOUS SECONDARY BATTERY

**Country:** JP Japan

**Kind:** A2 Document Laid open to Public inspection

**Inventor:** KINOSHITA SHINICHI;  
OKAHARA KENJI;  
KATO AKIO;  
YAMAGUCHI SHOJI;

[View Image](#)

1 page

**Assignee:** MITSUBISHI CHEMICALS CORP  
[News, Profiles, Stocks and More about this company](#)

**Published / Filed:** Aug. 15, 2000 / Feb. 4, 1999

**Application Number:** JP1999000026819

**IPC Code:** H01M 4/58; H01M 4/02; H01M 10/40; C01B 31/02;

**Priority Number:** Feb. 4, 1999 JP1999000026819

**Abstract:** **Problem to be solved:** To provide a negative electrode active material having a high capacity and excellent efficiency, and a nonaqueous secondary battery using it.

**Solution:** This carbonaceous negative electrode active material is composed of a mixture of at least graphite and fired carbon. The fired carbon has such a pore distribution by a BET adsorption method of gaseous nitrogen that pores having diameters below 8 &angst; exist as many as  $2 \times 10^{-4}$  CC/g or more, and that pores having diameters in the range of 8-18 &angst; exist as many as  $15 \times 10^{-4}$  CC/g or less, and the fired carbon is obtained, for example, by executing a first heat treatment at 250-650°C under an inert gas atmosphere and second heating treatment at 700-1,500°C under an inert gas atmosphere of fine powdery carbonaceous material. This nonaqueous secondary battery has a negative electrode in which this carbonaceous negative electrode active material is used.

COPYRIGHT: (C)2000,JPO

**Family:** [Show 2 known family members](#)

**Other Abstract Info:** CHEMABS 133(12)166262B CHEMABS 133(12)166262B DERABS C2000-596944 DERABS C2000-596944

Inquire  
Regarding  
Licensing



[this for the Gallery...](#)

[Nominate](#)



(19)

(11) Publication number: 2000228193 A

Generated Document.

**PATENT ABSTRACTS OF JAPAN**

(21) Application number: 11026819

(51) Int'l. Cl.: H01M 4/58 H01M 4/02 H01M 10/40

(22) Application date: 04.02.99

(30) Priority:

(43) Date of application  
publication: 15.08.00(84) Designated contracting  
states:

(71) Applicant: MITSUBISHI CHEMICALS CORP

(72) Inventor: KINOSHITA SHINICHI  
OKAHARA KENJI  
KATO AKIO  
YAMAGUCHI SHOJI

(74) Representative:

**(54) CARBONACEOUS  
NEGATIVE ELECTRODE  
ACTIVE MATERIAL FOR  
NONAQUEOUS SECONDARY  
BATTERY AND  
NONAQUEOUS SECONDARY  
BATTERY**

(57) Abstract:

**PROBLEM TO BE SOLVED:** To provide a negative electrode active material having a high capacity and excellent efficiency, and a nonaqueous secondary battery using it.

**SOLUTION:** This carbonaceous negative electrode active material is composed of a mixture of at least graphite and fired carbon. The fired carbon has such a pore distribution by a BET adsorption method of gaseous nitrogen that pores having diameters below 8 &angst; exist as many as  $2 \times 10^{-4}$  CC/g or more, and that pores having diameters in the range of 8-18 &angst; exist as many as  $15 \times 10^{-4}$  CC/g or less, and the fired carbon is obtained, for example, by executing a first heat treatment at 250-650°C under an inert gas atmosphere and second

heating treatment at 700-1,500°C under an inert gas atmosphere of fine powdery carbonaceous material. This nonaqueous secondary battery has a negative electrode in which this carbonaceous negative electrode active material is used.

COPYRIGHT: (C)2000,JPO