Reinforcement Learning China Summer School

习题课4 多智能体合作

林舒 中国科学院自动化研究所 2021年8月19日

- *课程内容参考汪军教授《Multi-agent AI》(公众号回复MAAI)
- * 习题课代码仓库 <u>https://gitee.com/jidiai/summercourse2021</u>

回顾: 马尔可夫决策过程

- $MDP = \langle S, A, p, r, \gamma \rangle$
 - 状态集 $S = \{s_1, s_2, ..., s_n\}$
 - 动作集 $A = \{a_1, a_2, ..., a_m\}$
 - 状态转移函数 $p(s'|s,a) = \Pr(S_{t+1} = s'|S_t = s, A_t = a)$
 - 奖励函数 *r*(*s*, *a*)
 - 折扣因子 γ ∈ [0,1)

多智能体随机博弈

- $SG = \langle n, S, A, p, r, \gamma \rangle$
 - 智能体数量 n
 - 状态集 $S = \{s_1, s_2, ..., s_m\}$
 - 动作集 $\mathbf{A} = A_1 \times A_2 \times \cdots \times A_n$
 - 状态转移函数 $p(s'|s, \mathbf{a}) = \Pr(S_{t+1} = s'|S_t = s, A_t = \mathbf{a})$ 其中联合动作 $\mathbf{a} = [a_1, a_2, \cdots, a_n] \in \mathbf{A}$
 - 奖励函数 $r(s, a) = [r_1(s, a), r_2(s, a), \dots, r_n(s, a)]$
 - 折扣因子 γ ∈ [0,1)

随机博弈分类

• 根据 $r(s, a) = [r_1(s, a), r_2(s, a), \cdots, r_n(s, a)]$ 的特点分类:

- 1. 纯合作
 - 每个状态和联合动作对(s,a)下,各智能体获得的奖励相同
 - $r_1(s, a) = r_2(s, a) = \cdots = r_n(s, a)$
- 2. 纯竞争
 - 每个状态和联合动作对(s, a)下,各智能体获得的奖励和为0
 - $r_1(s, \mathbf{a}) + r_2(s, \mathbf{a}) + \dots + r_n(s, \mathbf{a}) = 0$
- 3. 混合(其他情况)

IQL——Independent Q-Learning

- 及第秘籍http://www.jidiai.cn/iql
- 核心思想:
 - 每个智能体独立使用DQN训练
 - 训练智能体i时,将其他智能体直接看作环境的一部分
- 优点:
 - 直接沿用单智能体算法和训练框架
- 缺点:
 - 智能体间缺乏合作和沟通
 - 环境不稳定,收敛比较慢
- 在工程实践上,具有不错的效果

多智能体合作环境下的价值网络共享

- 同构多智能体
 - 各智能体有完全相同的能力(观测能力、行动能力)
 - 各智能体可相互替换
 - 各智能体可以采用完全相同的策略π
- 共享价值网络
 - 在IQL算法中,不同智能体共享价值网络(Q_{θ} , $Q_{\theta'}$)
 - 优点:
 - 减少训练参数
 - 缺点:
 - 可能陷入局部最优,或者出现内部竞争

贪吃蛇2P——同构多智能体纯合作环境

• 及第科目<u>http://www.jidiai.cn/snakes2p</u>

- 控制两条蛇,在规定步数(30)内通过吃豆子增加长度
- 若一条蛇头撞上自己或另一条蛇的蛇身会死亡,并随机以长度3重生
- 最终在第30步时,积分=(蛇A长度-3)+(蛇B长度-3)

第四次作业: 贪吃蛇(2P)游戏

- 及第科目→单方多智能体
 - http://www.jidiai.cn/snakes2p
- 作业本地训练环境、算法代码、训练说明等
 - https://gitee.com/jidiai/summercourse2021/tree/main/course4
 - https://github.com/jidiai/SummerCourse2021/tree/main/course4
- 作业要求
 - 训练贪吃蛇(2P)游戏的多智体合作算法
 - 将homework里的submission.py填写完整
 - 将submission.py, critic.py, critic_*.pth提交到及第平台

如何判断是否成功完成作业?

积分>=3

即成功完成第四次作业

更多多智能体算法

MADDPG

- http://www.jidiai.cn/maddpg
- 集中式训练,分布式执行
- 既能用于合作环境,也能用于竞争环境
- Bidirectionally-Coordinated Network (BiCNet)
 - http://www.jidiai.cn/bicnet
 - 建立智能体间沟通协调机制
 - 主要用于同构或异构智能体间合作