50001 - Algorithm Analysis and Design - Lecture $12\,$

Oliver Killane

18/11/21

Lecture Recording

Lecture recording is available here

Red-Black Trees

AVL trees worked by storing an extra integer (height) to use in rebalancing, **red-black trees** use an extra bit to determine if a node is red or black.

In practice they are less balanced than **AVL trees** however the insertion is faster and the data structure is a little bit smaller.

```
data Colour = Red | Black
data RBTree a = Empty | Node Colour (RBTree a) a (RBTree a)
```

The structure relies on two invariances:

- 1. Every Red node must have a Black parent node.
- 2. Every path from the root to leaf must have the same number of black nodes.

Valid Red Black Trees

Invalid Red Black Trees

We have an insert function that needs to rebalance the tree:

```
blacken :: Ord a \Rightarrow RBTree a \rightarrow RBTree a
     blacken (Node Red l x r) = Node Black l x r
     blacken t
     balance :: Ord a \Rightarrow Colour \rightarrow RBTree a \rightarrow a \rightarrow RBTree a balance c l v r = case Node c l v r of
 5
 6
        Node Black (Node Red (Node Red a x b) y c) z d \rightarrow bal x y z a b c d
        Node Black (Node Red a x (Node Red b y c)) z d -> bal x y z a b c d
Node Black a x (Node Red b y c) z d) -> bal x y z a b c d
Node Black a x (Node Red b y c) z d) -> bal x y z a b c d
Node Black a x (Node Red b y (Node Red c z d)) -> bal x y z a b c d
 8
9
10
11
12
        where
13
           bal\ x\ y\ z\ a\ b\ c\ d\ =\ Node\ Red\ (Node\ Black\ a\ x\ b)\ y\ (Node\ Black\ c\ z\ d)
14
15
      insert :: Ord a \Rightarrow a -> RBTree a -> RBTree a
     insert = (blacken .) . ins
16
        where
17
18
           ins :: Ord a \Rightarrow a \Rightarrow RBTree a \Rightarrow RBTree a
           ins x Empty = Node Red Empty x Empty
19
20
           ins x t@(Node c l y r)
              | x < y = balance c (ins x l) y r
21
                 х == у
22
                               = t
23
               | otherwise = balance c l y (ins x r)
```


Counting

We can exploit the analogy we used with counting and trees for **RALists** here, with a difference.

Imagine a counting system that lacks zeros. We can count to 10 as:

Normal:	1	2	 9	10	 11	12	 19	20	 101	102	 110	111
Special:	1	2	 9	X	 11	12	 19	1X	 X1	X2	 XX	111

In this was we can count with binary:

UNFINISHED!!!