Definition 0.1. (Bounds)

Let $X \subseteq \mathbb{R}$. Then...

- 1. $u \in \mathbb{R}$ is called an upper bound of X if $x \le u$, $\forall x \in X$.
- 2. $l \in \mathbb{R}$ is called a lower bound of X if $x \ge l$, $\forall x \in X$.

Definition 0.2. (Extremum)

Let $X \subseteq \mathbb{R}$ be bounded. Then...

- 1. $y = \sup(X)$ (supremum of X) if y is an upper bound and, y' is another upper bound, then $y' \ge y$.
- 2. $z = \inf(X)$ (infinum of X) if z is an lower bound and, z' is another lower bound, then $z' \le z$.

Also if...

- 1. $sup(X) \in X$, then we call it the maximum of X.
- 2. $\inf(X) \in X$, then we call it the minimum of X.

Definition 0.3. (Neighborhood)

Let $x \in \mathbb{R}^n$ and $\epsilon > 0$. Then $B_{\epsilon}(x) = \{y \in \mathbb{R}^n \mid |x - y| < \epsilon\}$. This is called an ϵ -neighborhood of x.

Definition 0.4. (Classification of points)

Let $X \subseteq \mathbb{R}^n$ and $x \in \mathbb{R}^n$. Then x is called

- interior point of X if $\exists \epsilon > 0$ such that $B_{\epsilon}(x) \subseteq X$.
- boundary point of X if $\forall \epsilon > 0$, $B_{\epsilon}(x) \cap X \neq \emptyset$ and $B_{\epsilon}(x) \cap X^{c} \neq \emptyset$
- exterior point of X if it is an interior point of X^c

Notation: X = interior of X = set of all interior point of X. $\delta X = \text{boundary of } X = \text{set of all boundary points of } X$

Definition 0.5. (Closure)

X is called open if it only consists of interior points. (X = X)

X is called closed if its complement is open.

- \Rightarrow X is open if it contains none of its boundary points.
- \Rightarrow X is closed if it contains all of its boundary points

Definition 0.6. (Convergent sequence; limit of sequence)

A sequence $i \mapsto a_i$ if points in \mathbb{R}^n converges to $a \in \mathbb{R}^n$ if

$$\forall \epsilon > 0$$
, $\exists M \text{ s.t. } m > M \Rightarrow |\mathbf{a}_m - \mathbf{a}| < \epsilon$

We then call **a** the *limit* of the sequence.

Definition 0.7. (Limit of a function)

Let X be a subset of \mathbb{R}^n and \mathbf{x}_0 a point in \overline{X} ($\overline{X} = X \cup \delta X$). A function $\mathbf{f} : X \to \mathbb{R}^m$ has the limit \mathbf{a} at \mathbf{x}_0 :

$$\lim_{\mathbf{x}\to\mathbf{x}_0}\mathbf{f}(\mathbf{x})=\mathbf{a}$$

if $\forall \epsilon > 0, \exists \delta > 0$ s.t. $\forall \mathbf{x} \in X$,

$$|\mathbf{x} - \mathbf{x}_0| < \delta \Rightarrow |\mathbf{f}(\mathbf{x}) - \mathbf{a}| < \epsilon$$

Definition 0.8. (Closure)

 $X \subseteq \mathbb{R}^n$, define the closure of X: $\overline{X} = X \cup \delta X$

Definition 0.9. (Continuous function)

Let $X \subset \mathbb{R}^n$. A mapping $f: X \to \mathbb{R}^m$ is continuous at $x_0 \in X$ iff

$$\lim_{x\to x_0}\mathbf{f}(x)=\mathbf{f}(x_0);$$

f is continuous on X if it is continuous at every point of X. Equivalently, $\mathbf{f}: X \to \mathbb{R}^m$ is continuous at $\mathbf{x}_0 \in X$ if and only if for every $\epsilon > 0$, there exists $\delta > 0$ such that when $|\mathbf{x} - \mathbf{x}_0| < \delta$, then $|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}_0)| < \epsilon$.

Definition 0.10. (Bounded set)

A subset $X \in \mathbb{R}^n$ is <u>bounded</u> if it is contained in a ball in \mathbb{R}^n centered at the origin:

$$X \subset B_R(0)$$
 for some $R < \infty$.

Definition 0.11. (Compact set)

A nonempty subset $C \subset \mathbb{R}^n$ is <u>compact</u> if it is closed and bounded.

Definition 0.12. (Directional derivatives)

The <u>directional derivative</u> of f at x in direction \vec{v} gives the rate of change of f as we step into direction \vec{v} . It is defined as

$$\lim_{h\to 0} \frac{f(x+h\vec{v}) - f(x)}{h}$$

We will see shortly that this evaluates to $[Df(x)]\vec{v}$.

Definition 0.13. (C^p function)

A C^p function on $U \subset \mathbb{R}^n$ is a function that is p times continuously differentiable: all of its partial derivatives up to order p exist and are continuous on U.

Definition 0.14. (Newton's method)

Let \vec{f} be a differentiable map from U to \mathbb{R}^n , where U is an open subset of \mathbb{R}^n . Newton's method consists of starting with some guesses \mathbf{a}_0 for a sollution of $\vec{f}(\mathbf{x}) = \vec{0}$. Then linearize the equation at \mathbf{a}_0 : replace the increment to the function, $\vec{f}(\mathbf{x}) - \vec{f}(\mathbf{a}_0)$, by a linear function of the increment, $[\mathbf{D}\vec{f}(\mathbf{a}_0)](\mathbf{x} - \mathbf{a}_0)$. Now solve the corresponding linear equation:

$$\vec{f}(\mathbf{a}_0) + [\mathbf{D}\vec{f}(\mathbf{a}_0)](\mathbf{x} - \mathbf{a}_0) = \vec{0}$$

$$a_0 = \text{initial guess}$$

$$a_{n+1} = a_n - [\mathbf{D}\vec{f}(a_n)]^{-1}f(a_n)$$

$$x_{n+1} = x_n - \frac{f(x)}{f'(x_n)}$$

Definition 0.15. (Smooth manifold in \mathbb{R}^n)

A subset $M \subset \mathbb{R}^n$ is a smooth k-dimensional manifold if locally it is the graph of a C^1 mapping f expressing n-k variables as functions of other k variables.