Comune di Pogliano Milanese Piazza Volontari Avis Aido 6 20010 - Pogliano Milanese

Anas S.p.A.

Struttura Territoriale Lombardia Area manutenzione programmata

S.S. 33 "DEL SEMPIONE"

Lavori di realizzazione di uno svincolo a rotatoria al km 17+300 in Comune di Pogliano Milanese

Progettista:		

MOBILITER

MOBILITA' INFRASTRUTTURE TERRITORIO

MOBILITER SRL Via Ripamonti 2 - 20136 Milano tel. 02.83471987 - fax 02.39293158 info@mobiliter.it

CODICE COMMESSA

II DEC ing. Angelo Algieri

II RUP ing. Marco Mutti

NUMERO ELABORATO	TITOLO ELABORATO				
08	Relaz	ione calcolo impianto elettric	0		
SCALA	DATA	NOME FILE	REDATTO	VERIFICATO	APPROVATO
-	24/09/2018	Relazione impianto elettrico.doc	Arch. Indelicato	Ing. D'Alessandro	Ing. D'Alessandro
REVISIONE	DATA	DESCRIZIONE REVISIONE	REDATTO	VERIFICATO	APPROVATO
REV 1	15/04/2021	Revisione a seguito della Conferenza dei Servizi	Arch. Indelicato	Ing. D'Alessandro	Ing. D'Alessandro
REV 2	30/09/2022	Revisione a seguito della progettazione esecutiva	Arch. Indelicato	Ing. D'Alessandro	Ing. D'Alessandro

SOMMARIO

1 C	ALCOLO DELLE CORRENTI DI IMPIEGO	2
2 D	IMENSIONAMENTO DEI CAVI	2
2 D		
2.1	INTEGRALE DI JOULE	4
2.2	DIMENSIONAMENTO DEI CONDUTTORI DI NEUTRO	
2.3	DIMENSIONAMENTO DEI CONDUTTORI DI PROTEZIONE	6
3 C	ALCOLO DELLA TEMPERATURA DEI CAVI	6
4 C	ADUTE DI TENSIONE	7
5 F(ORNITURA DELLA RETE	8
5.1	BASSA TENSIONE	8
5.2	FATTORE DI CORREZIONE PER TRASFORMATORI, CEI EN 60909-0 (3.3.3)	9
6 C	ALCOLO DEI GUASTI	10
6.1	CALCOLO DELLE CORRENTI MASSIME DI CORTOCIRCUITO	10
6.2	CALCOLO DELLE CORRENTI MINIME DI CORTOCIRCUITO	12
6.3	CALCOLO GUASTI BIFASE-NEUTRO E BIFASE-TERRA	
7 SC	CELTA DELLE PROTEZIONI	13
7.1	VERIFICA DELLA PROTEZIONE A CORTOCIRCUITO DELLE CONDUTTURE	14
7.2	VERIFICA DI SELETTIVITA'	14
8 R	IFERIMENTI NORMATIVI	15
8.1	NORME DI RIFERIMENTO PER LA BASSA TENSIONE	15
8.2	NORME DI RIFERIMENTO PER LA MEDIA TENSIONE	
ALLE(GATO - SCHEMI ELETTRICI	17

1 CALCOLO DELLE CORRENTI DI IMPIEGO

Il calcolo delle correnti d'impiego viene eseguito in base alla classica espressione:

$$I_b = \frac{P_d}{k_{ca} \cdot V_n \cdot \cos \varphi}$$

nella quale:

- kca = 1 sistema monofase o bifase, due conduttori attivi;
- kca = 1.73 sistema trifase, tre conduttori attivi.

Se la rete è in corrente continua il fattore di potenza \cos^{φ} è pari a 1.

Dal valore massimo (modulo) di *lb* vengono calcolate le correnti di fase in notazione vettoriale (parte reale ed immaginaria) con le formule:

$$\begin{split} \dot{I}_1 &= I_b \cdot e^{-j\varphi} = I_b \cdot \left(\cos\varphi - j\sin\varphi\right) \\ \dot{I}_2 &= I_b \cdot e^{-j(\varphi - 2\pi/3)} = I_b \cdot \left(\cos\left(\varphi - \frac{2\pi}{3}\right) - j\sin\left(\varphi - \frac{2\pi}{3}\right)\right) \\ \dot{I}_3 &= I_b \cdot e^{-j(\varphi - 4\pi/3)} = I_b \cdot \left(\cos\left(\varphi - \frac{4\pi}{3}\right) - j\sin\left(\varphi - \frac{4\pi}{3}\right)\right) \end{split}$$

Il vettore della tensione *Vn* è supposto allineato con l'asse dei numeri reali:

$$\dot{V_n} = V_n + j0$$

La potenza di dimensionamento Pd è data dal prodotto:

$$P_d = P_n \cdot coeff$$

nella quale coeff è pari al fattore di utilizzo per utenze terminali oppure al fattore di contemporaneità per utenze di distribuzione.

Per le utenze terminali la potenza P_n è la potenza nominale del carico, mentre per le utenze di distribuzione P_n rappresenta la somma vettoriale delle P_d delle utenze a valle ($\square P_d$ a valle).

La potenza reattiva delle utenze viene calcolata invece secondo la:

$$Q_n = P_n \cdot \tan \varphi$$

per le utenze terminali, mentre per le utenze di distribuzione viene calcolata come somma vettoriale delle potenze reattive nominali a valle ($\Box Q_d$ a valle).

Il fattore di potenza per le utenze di distribuzione viene valutato, di conseguenza, con la:

$$\cos \varphi = \cos \left(arc \tan \left(\frac{Q_n}{P_n} \right) \right)$$

2 DIMENSIONAMENTO DEI CAVI

Il criterio seguito per il dimensionamento dei cavi è tale da poter garantire la protezione dei conduttori alle correnti di sovraccarico.

In base alla norma CEI 64-8/4 (par. 433.2), infatti, il dispositivo di protezione deve essere coordinato con la conduttura in modo da verificare le condizioni:

$$a) \quad I_b \le I_n \le I_z$$

b)
$$I_f \leq 1.45 \cdot I_z$$

Per la condizione a) è necessario dimensionare il cavo in base alla corrente nominale della protezione a monte.

Dalla corrente *lb*, pertanto, viene determinata la corrente nominale della protezione (seguendo i valori normalizzati) e con questa si procede alla determinazione della sezione.

Il dimensionamento dei cavi rispetta anche i seguenti casi:

- condutture senza protezione derivate da una conduttura principale protetta contro i sovraccarichi con dispositivo idoneo ed in grado di garantire la protezione anche delle condutture derivate;
- conduttura che alimenta diverse derivazioni singolarmente protette contro i sovraccarichi, quando la somma delle correnti nominali dei dispositivi di protezione delle derivazioni non supera la portata Iz della conduttura principale.

L'individuazione della sezione si effettua utilizzando le tabelle di posa assegnate ai cavi. Elenchiamo alcune tabelle, indicate per il mercato italiano:

- IEC 60364-5-52 (PVC/EPR);
- IEC 60364-5-52 (Mineral);
- CEI-UNEL 35024/1;
- CEI-UNEL 35024/2;
- CEI-UNEL 35026;
- CEI 20-91 (HEPR).

Im media tensione, la gestione del calcolo si divide a seconda delle tabelle scelte:

- CEI 11-17;
- CEI UNEL 35027 (1-30kV).
- EC 60502-2 (6-30kV)
- IEC 61892-4 off-shore (fino a 30kV)

Il programma gestisce ulteriori tabelle, specifiche per alcuni paesi. L'elenco completo è disponibile nei Riferimenti normativi.

Esse oltre a riportare la corrente ammissibile *Iz* in funzione del tipo di isolamento del cavo, del tipo di posa e del numero di conduttori attivi, riportano anche la metodologia di valutazione dei coefficienti di declassamento.

La portata minima del cavo viene calcolata come:

$$I_{z\min} = \frac{I_n}{k}$$

dove il coefficiente k ha lo scopo di declassare il cavo e tiene conto dei sequenti fattori:

- tipo di materiale conduttore;
- tipo di isolamento del cavo;

- numero di conduttori in prossimità compresi eventuali paralleli;
- eventuale declassamento deciso dall'utente.

La sezione viene scelta in modo che la sua portata (moltiplicata per il coefficiente k) sia superiore alla $I_{z min.}$ Gli eventuali paralleli vengono calcolati nell'ipotesi che abbiano tutti la stessa sezione, lunghezza e tipo di posa (vedi norma 64.8 par. 433.3), considerando la portata minima come risultante della somma delle singole portate (declassate per il numero di paralleli dal coefficiente di declassamento per prossimità).

La condizione b) non necessita di verifica in quanto gli interruttori che rispondono alla norma CEI 23.3 hanno un rapporto tra corrente convenzionale di funzionamento *If* e corrente nominale In minore di 1.45 ed è costante per tutte le tarature inferiori a 125 A. Per le apparecchiature industriali, invece, le norme CEI 17.5 e IEC 947 stabiliscono che tale rapporto può variare in base alla corrente nominale, ma deve comunque rimanere minore o uguale a 1.45.

Risulta pertanto che, in base a tali normative, la condizione b) sarà sempre verificata.

Le condutture dimensionate con questo criterio sono, pertanto, protette contro le sovracorrenti.

2.1 INTEGRALE DI JOULE

Dalla sezione dei conduttori del cavo deriva il calcolo dell'integrale di Joule, ossia la massima energia specifica ammessa dagli stessi, tramite la:

$$I^2 \cdot t = K^2 \cdot S^2$$

La costante K viene data dalla norma 64-8/4 (par. 434.3), per i conduttori di fase e neutro e, dal paragrafo 64-8/5 (par. 543.1), per i conduttori di protezione in funzione al materiale conduttore e al materiale isolante. Per i cavi ad isolamento minerale le norme attualmente sono allo studio, i paragrafi sopraccitati riportano però nella parte commento dei valori prudenziali.

I valori di K riportati dalla norma sono per i conduttori di fase (par. 434.3):

Cavo in rame e isolato in PVC:	K = 115
Cavo in rame e isolato in gomma G:	K = 135
Cavo in rame e isolato in gomma etilenpropilenica G5-G7:	K = 143
Cavo in rame serie L rivestito in materiale termoplastico:	K = 115
Cavo in rame serie L nudo:	K = 200
Cavo in rame serie H rivestito in materiale termoplastico:	K = 115
Cavo in rame serie H nudo:	K = 200
Cavo in alluminio e isolato in PVC:	K = 74
Cavo in alluminio e isolato in G, G5-G7:	K = 92

I valori di K per i conduttori di protezione unipolari (par. 543.1) tab. 54B:

Cavo in rame e isolato in PVC:	K = 143
Cavo in rame e isolato in gomma G:	K = 166
Cavo in rame e isolato in gomma G5-G7:	K = 176
Cavo in rame serie L rivestito in materiale termoplastico:	K = 143
Cavo in rame serie L nudo:	K = 228
Cavo in rame serie H rivestito in materiale termoplastico:	K = 143
Cavo in rame serie H nudo:	K = 228
Cavo in alluminio e isolato in PVC:	K = 95
Cavo in alluminio e isolato in gomma G:	K = 110
Cavo in alluminio e isolato in gomma G5-G7:	K = 116

I valori di K per i conduttori di protezione in cavi multipolari (par. 543.1) tab. 54C:

Cavo in rame e isolato in PVC:	K = 115
Cavo in rame e isolato in gomma G:	K = 135
Cavo in rame e isolato in gomma G5-G7:	K = 143
Cavo in rame serie L rivestito in materiale termoplastico:	K = 115
Cavo in rame serie L nudo:	K = 228
Cavo in rame serie H rivestito in materiale termoplastico:	K = 115
Cavo in rame serie H nudo:	K = 228
Cavo in alluminio e isolato in PVC:	K = 76
Cavo in alluminio e isolato in gomma G:	K = 89
Cavo in alluminio e isolato in gomma G5-G7:	K = 94

2.2 DIMENSIONAMENTO DEI CONDUTTORI DI NEUTRO

La norma CEI 64-8 par. 524.2 e par. 524.3, prevede che la sezione del conduttore di neutro, nel caso di circuiti polifasi, possa avere una sezione inferiore a quella dei conduttori di fase se sono soddisfatte le seguenti condizioni:

- il conduttore di fase abbia una sezione maggiore di 16 mm²;
- la massima corrente che può percorrere il conduttore di neutro non sia superiore alla portata dello stesso
- la sezione del conduttore di neutro sia almeno uguale a 16 mm2 se il conduttore è in rame e a 25 mm² se il conduttore è in alluminio.

Nel caso in cui si abbiano circuiti monofasi o polifasi e questi ultimi con sezione del conduttore di fase minore di 16 mm² se conduttore in rame e 25 mm² se e conduttore in allumino, il conduttore di neutro deve avere la stessa sezione del conduttore di fase. In base alle esigenze progettuali, sono gestiti fino a tre metodi di dimensionamento del conduttore di neutro, mediante:

- determinazione in relazione alla sezione di fase;
- determinazione tramite rapporto tra le portate dei conduttori;
- determinazione in relazione alla portata del neutro.

Il primo criterio consiste nel determinare la sezione del conduttore in questione secondo i seguenti vincoli dati dalla norma:

$$S_f < 16mm^2$$
: $S_n = S_f$
 $16 \le S_f \le 35mm^2$: $S_n = 16mm^2$
 $S_f > 35mm^2$: $S_n = S_f/2$

Il secondo criterio consiste nell'impostare il rapporto tra le portate del conduttore di fase e il conduttore di neutro, e il programma determinerà la sezione in base alla portata.

Il terzo criterio consiste nel dimensionare il conduttore tenendo conto della corrente di impiego circolante nel neutro come per un conduttore di fase.

Le sezioni dei neutri possono comunque assumere valori differenti rispetto ai metodi appena citati, comunque sempre calcolati a regola d'arte.

2.3 DIMENSIONAMENTO DEI CONDUTTORI DI PROTEZIONE

Le norme CEI 64.8 par. 543.1 prevedono due metodi di dimensionamento dei conduttori di protezione:

- determinazione in relazione alla sezione di fase;
- determinazione mediante calcolo.

Il primo criterio consiste nel determinare la sezione del conduttore di protezione seguendo vincoli analoghi a quelli introdotti per il conduttore di neutro:

$$S_f < 16mm^2$$
: $S_{PE} = S_f$
 $16 \le S_f \le 35mm^2$: $S_{PE} = 16mm^2$
 $S_f > 35mm^2$: $S_{PE} = S_f / 2$

Il secondo criterio determina tale valore con l'integrale di Joule, ovvero la sezione del conduttore di protezione non deve essere inferiore al valore determinato con la seguente formula:

$$S_p = \frac{\sqrt{I^2 \cdot t}}{K}$$

dove:

- Sp è la sezione del conduttore di protezione (mm²);
- I è il valore efficace della corrente di guasto che può percorrere il conduttore di protezione per un guasto di impedenza trascurabile (A);
- t è il tempo di intervento del dispositivo di protezione (s);
- K è un fattore il cui valore dipende dal materiale del conduttore di protezione, dell'isolamento e di altre parti.

Se il risultato della formula non è una sezione unificata, viene presa una unificata immediatamente superiore.

In entrambi i casi si deve tener conto, per quanto riguarda la sezione minima, del paragrafo 543.1.3.

Esso afferma che la sezione di ogni conduttore di protezione che non faccia parte della conduttura di alimentazione non deve essere, in ogni caso, inferiore a:

- 2,5 mm² rame o 16 mm² alluminio se è prevista una protezione meccanica;
- 4 mm² o 16 mm² alluminio se non è prevista una protezione meccanica;

E' possibile, altresì, determinare la sezione mediante il rapporto tra le portate del conduttore di fase e del conduttore di protezione.

Nei sistemi TT, la sezione dei conduttori di protezione può essere limitata a:

- 25 mm², se in rame;
- 35 mm², se in alluminio;

3 CALCOLO DELLA TEMPERATURA DEI CAVI

La valutazione della temperatura dei cavi si esegue in base alla corrente di impiego e alla corrente nominale tramite le seguenti espressioni:

$$T_{cavo}(I_b) = T_{ambiente} + \left(\alpha_{cavo} \cdot \frac{I_b^2}{I_z^2}\right)$$
$$T_{cavo}(I_n) = T_{ambiente} + \left(\alpha_{cavo} \cdot \frac{I_n^2}{I_z^2}\right)$$

espresse in °C.

Esse derivano dalla considerazione che la sovratemperatura del cavo a regime è proporzionale alla potenza in esso dissipata.

Il coefficiente α_{cavo} è vincolato dal tipo di isolamento del cavo e dal tipo di tabella di posa che si sta usando.

4 CADUTE DI TENSIONE

Le cadute di tensione sono calcolate vettorialmente. Per ogni utenza si calcola la caduta di tensione vettoriale lungo ogni fase e lungo il conduttore di neutro (se distribuito). Tra le fasi si considera la caduta di tensione maggiore che viene riportata in percentuale rispetto alla tensione nominale:

$$c.d.t(ib) = \max\left(\left|\sum_{i=1}^{k} \dot{Z}f_{i} \cdot \dot{I}f_{i} - \dot{Z}n_{i} \cdot \dot{I}n_{i}\right|\right)_{f=R,S,T}$$

con *f* che rappresenta le tre fasi R, S, T; con *n* che rappresenta il conduttore di neutro; con *i* che rappresenta le *k* utenze coinvolte nel calcolo;

Il calcolo fornisce, quindi, il valore esatto della formula approssimata:

$$cdt(I_b) = k_{cdt} \cdot I_b \cdot \frac{L_c}{1000} \cdot \left(R_{cavo} \cdot \cos\varphi + X_{cavo} \cdot \sin\varphi\right) \cdot \frac{100}{V_n}$$

con:

- kcdt=2 per sistemi monofase;
- kcdt=1.73 per sistemi trifase.

I parametri *Rcavo* e *Xcavo* sono ricavati dalla tabella UNEL in funzione del tipo di cavo (unipolare/multipolare) ed alla sezione dei conduttori; di tali parametri il primo è riferito a 70° C per i cavi con isolamento PVC, a 90° C per i cavi con isolamento EPR; mentre il secondo è riferito a 50Hz, ferme restando le unità di misura in Ω /km.

Se la frequenza di esercizio è differente dai 50 Hz si imposta

$$X'cavo = \frac{f}{50} \cdot Xcavo$$

La caduta di tensione da monte a valle (totale) di una utenza è determinata come somma delle cadute di tensione vettoriale, riferite ad un solo conduttore, dei rami a monte all'utenza in esame, da cui, viene successivamente determinata la caduta di tensione percentuale riferendola al sistema (trifase o monofase) e alla tensione nominale dell'utenza in esame.

Sono adeguatamente calcolate le cadute di tensione totali nel caso siano presenti trasformatori lungo la linea (per esempio trasformatori MT/BT o BT/BT). In tale circostanza, infatti, il calcolo

della caduta di tensione totale tiene conto sia della caduta interna nei trasformatori, sia della presenza di spine di regolazione del rapporto spire dei trasformatori stessi.

Se al termine del calcolo delle cadute di tensione alcune utenze abbiano valori superiori a quelli definiti, si ricorre ad un procedimento di ottimizzazione per far rientrare la caduta di tensione entro limiti prestabiliti (limiti dati da CEI 64-8 par. 525). Le sezioni dei cavi vengono forzate a valori superiori cercando di seguire una crescita uniforme fino a portare tutte le cadute di tensione sotto i limiti.

5 FORNITURA DELLA RETE

La conoscenza della fornitura della rete è necessaria per l'inizializzazione della stessa al fine di eseguire il calcolo dei guasti.

Le tipologie di fornitura possono essere:

- in bassa tensione
- in media tensione
- in alta tensione
- ad impedenza nota
- in corrente continua

I parametri trovati in questa fase servono per inizializzare il calcolo dei guasti, ossia andranno sommati ai corrispondenti parametri di guasto della utenza a valle. Noti i parametri alle sequenze nel punto di fornitura, è possibile inizializzare la rete e calcolare le correnti di cortocircuito secondo le norme CEI EN 60909-0.

Tali correnti saranno utilizzate in fase di scelta delle protezioni per la verifica dei poteri di interruzione delle apparecchiature.

5.1 BASSA TENSIONE

Questa può essere utilizzata quando il circuito è alimentato dalla rete di distribuzione in bassa tensione, oppure quando il circuito da dimensionare è collegato in sottoquadro ad una rete preesistente di cui si conosca la corrente di cortocircuito sul punto di consegna.

I dati richiesti sono:

- tensione concatenata di alimentazione espressa in V;
- corrente di cortocircuito trifase della rete di fornitura espressa in kA (usualmente 10 kA).
- corrente di cortocircuito monofase della rete di fornitura espressa in kA (usualmente 6 kA).

Dai primi due valori si determina l'impedenza diretta corrispondente alla corrente di cortocircuito I_{cctrif} , in $m\Omega$:

$$Z_{cctrif} = \frac{V_2}{\sqrt{3} \cdot I_{cctrif}}$$

In base alla tabella fornita dalla norma CEI 17-5 che fornisce il cosfi_{cc} di cortocircuito in relazione alla corrente di cortocircuito in kA, si ha:

$$50 < I_{cctrif}$$
 $\cos \phi_{cc} = 0.2$
 $20 < I_{cctrif} \le 50$ $\cos \phi_{cc} = 0.25$
 $10 < I_{cctrif} \le 20$ $\cos \phi_{cc} = 0.3$
 $6 < I_{cctrif} \le 10$ $\cos \phi_{cc} = 0.5$
 $4.5 < I_{cctrif} \le 6$ $\cos \phi_{cc} = 0.7$
 $3 < I_{cctrif} \le 4.5$ $\cos \phi_{cc} = 0.8$
 $1.5 < I_{cctrif} \le 3$ $\cos \phi_{cc} = 0.9$
 $I_{cctrif} \le 1.5$ $\cos \phi_{cc} = 0.95$

da questi dati si ricava la resistenza alla sequenza diretta, in m Ω :

$$R_d = Z_{cctrif} \cdot \cos\phi_{cc}$$

ed infine la relativa reattanza alla seguenza diretta, in mΩ:

$$X_d = \sqrt{Z_{cctrif}^2 - R_d^2}$$

Dalla conoscenza della corrente di guasto monofase Ik1, è possibile ricavare i valori dell'impedenza omopolare.

Invertendo la formula:

$$I_{k1} = \frac{\sqrt{3} \cdot V_2}{\sqrt{(2 \cdot R_d + R_0)^2 + (2 \cdot X_d + X_0)^2}}$$

$$\frac{R_0}{X_0} = \frac{Z_0}{X_0} \cdot \cos \varphi_{co}$$

 $\frac{R_0}{X_0} = \frac{Z_0}{X_0} \cdot \cos \varphi_{cc}$ con le ipotesi , cioè l'angolo delle componenti omopolari uguale a quello delle componenti dirette, si ottiene:

$$R_0 = \frac{\sqrt{3} \cdot V}{I_{k1}} \cdot \cos \varphi_{cc} - 2 \cdot R_d$$
$$X_0 = R_0 \cdot \sqrt{\frac{1}{(\cos \varphi_{cc})^2} - 1}$$

5.2 FATTORE DI CORREZIONE PER TRASFORMATORI, CEI EN 60909-0 (3.3.3)

Per i trasformatori con verso di potenza positiva, a due avvolgimenti con e senza variazione sotto carico, si deve introdurre un fattore di correzione di impedenza KT tale che:

$$Z_{cctK} = K_T \cdot Z_{cct}$$

$$Z_{otK} = K_T \cdot Z_{ot}$$

$$K_T = 0.95 \cdot \frac{c_{\text{max}}}{1 + 0.6 \cdot x_T}$$

dove

$$x_T = \frac{X_{cct}}{V_{02}^2 / P_n}$$

è la reattanza relativa del trasformatore e Cmax è preso dalla tabella 1 ed è relativo alla tensione lato bassa del trasformatore.

Tale fattore deve essere applicato sia alla impedenza diretta che a quelle omopolari.

Non va applicato agli autotrasformatori.

6 CALCOLO DEI GUASTI

Con il calcolo dei guasti vengono determinate le correnti di cortocircuito minime e massime immediatamente a valle della protezione dell'utenza (inizio linea) e a valle dell'utenza (fondo linea).

Le condizioni in cui vengono determinate sono:

- guasto trifase (simmetrico);
- quasto bifase (disimmetrico);
- guasto bifase-neutro (disimmetrico);
- guasto bifase-terra (disimmetrico);
- guasto fase terra (disimmetrico);
- guasto fase neutro (disimmetrico).

I parametri alle sequenze di ogni utenza vengono inizializzati da quelli corrispondenti della utenza a monte che, a loro volta, inizializzano i parametri della linea a valle.

6.1 CALCOLO DELLE CORRENTI MASSIME DI CORTOCIRCUITO

Il calcolo delle correnti di cortocircuito massime viene condotto come descritto nella norma CEI EN 60909-0. Sono previste le seguenti condizioni generali:

- guasti con contributo della fornitura e dei generatori in regime di guasto subtransitorio. Eventuale gestione della attenuazione della corrente per il guasto trifase 'vicino' alla sorgente.
- tensione di alimentazione nominale valutata con fattore di tensione Cmax;
- impedenza di guasto minima della rete, calcolata alla temperatura di 20°C.

La resistenza diretta, del conduttore di fase e di quello di protezione, viene riportata a 20 °C, partendo dalla resistenza data dalle tabelle UNEL 35023-2012 che può essere riferita a 70 o 90 °C a seconda dell'isolante, per cui esprimendola in $m\Omega$ risulta:

$$R_{dcavo} = \frac{R_{cavo}}{1000} \cdot \frac{L_{cavo}}{1000} \cdot \left(\frac{1}{1 + (\Delta T \cdot 0.004)}\right)$$

dove ΔT è 50 o 70 °C.

Nota poi dalle stesse tabelle la reattanza a 50 Hz, se *f* è la frequenza d'esercizio, risulta:

$$X_{dcavo} = \frac{X_{cavo}}{1000} \cdot \frac{L_{cavo}}{1000} \cdot \frac{f}{50}$$

possiamo sommare queste ai parametri diretti della utenza a monte ottenendo così la impedenza di guasto minima a fine utenza.

Per le utenze in condotto in sbarre, le componenti della sequenza diretta sono:

$$R_{dsbarra} = \frac{R_{sbarra}}{1000} \cdot \frac{L_{sbarra}}{1000}$$

La reattanza è invece:

$$X_{dsbarra} = \frac{X_{sbarra}}{1000} \cdot \frac{L_{sbarra}}{1000} \cdot \frac{f}{50}$$

Per le utenze con impedenza nota, le componenti della sequenza diretta sono i valori stessi di resistenza e reattanza dell'impedenza.

Per quanto riguarda i parametri alla sequenza omopolare, occorre distinguere tra conduttore di neutro e conduttore di protezione.

Per il conduttore di neutro si ottengono da quelli diretti tramite le:

$$R_{0cavoNeutro} = R_{dcavo} + 3 \cdot R_{dcavoNeutro}$$

 $X_{0cavoNeutro} = 3 \cdot X_{dcavo}$

Per il conduttore di protezione, invece, si ottiene:

$$R_{0cavoPE} = R_{dcavo} + 3 \cdot R_{dcavoPE}$$
$$X_{0cavoPE} = 3 \cdot X_{dcavo}$$

dove le resistenze $R_{dvavoNeutro}$ e $R_{dcavoPE}$ vengono calcolate come la R_{dcavo} .

Per le utenze in condotto in sbarre, le componenti della sequenza omopolare sono distinte tra conduttore di neutro e conduttore di protezione.

Per il conduttore di neutro si ha:

$$\begin{split} R_{0sbarraNeutro} &= R_{dsbarra} + 3 \cdot R_{dsbarraNeutro} \\ X_{0sbarraNeutro} &= 3 \cdot X_{dsbarra} \end{split}$$

Per il conduttore di protezione viene utilizzato il parametro di reattanza dell'anello di guasto fornito dai costruttori:

$$R_{0sbarraPE} = R_{dsbarra} + 3 \cdot R_{dsbarraPE}$$

$$X_{0sbarraPE} = X_{dsbarra} + 3 \cdot (X_{anello\ guasto} - X_{dsbarra})$$

I parametri di ogni utenza vengono sommati con i parametri, alla stessa sequenza, della utenza a monte, espressi in $m\Omega$:

$$egin{aligned} R_d &= R_{dcavo} + R_{dmonte} \ X_d &= X_{dcavo} + X_{dmonte} \ R_{0Neutro} &= R_{0cavoNeutro} + R_{0monteNeutro} \ X_{0Neutro} &= X_{0cavoNeutro} + X_{0monteNeutro} \ R_{0PE} &= R_{0cavoPE} + R_{0montePE} \ X_{0PE} &= X_{0cavoPE} + X_{0montePE} \end{aligned}$$

Per le utenze in condotto in sbarre basta sostituire sbarra a cavo.

Ai valori totali vengono sommate anche le impedenze della fornitura.

Noti questi parametri vengono calcolate le impedenze (in $m\Omega$) di guasto trifase:

$$Z_{k\min} = \sqrt{R_d^2 + X_d^2}$$

Fase neutro (se il neutro è distribuito):

$$Z_{k1Neutr\, \text{om}\, in} = \frac{1}{3} \cdot \sqrt{\left(2 \cdot R_d + R_{0Neutro}\right)^2 + \left(2 \cdot X_d + X_{0Neutro}\right)^2}$$

Fase terra:

$$Z_{k1PE\, {\rm min}} = \frac{1}{3} \cdot \sqrt{\left(2 \cdot R_d + R_{0PE}\right)^2 + \left(2 \cdot X_d + X_{0PE}\right)^2}$$

Da queste si ricavano le correnti di cortocircuito trifase I_{kmax} , fase neutro $I_{k1Neutromax}$, fase terra $I_{k1PEmax}$ e bifase I_{k2max} espresse in kA:

$$I_{k \max} = \frac{V_n}{\sqrt{3} \cdot Z_{k \min}}$$

$$I_{k1Neutr \text{om} ax} = \frac{V_n}{\sqrt{3} \cdot Z_{k1Neutr \text{om} in}}$$

$$I_{k1PE \max} = \frac{V_n}{\sqrt{3} \cdot Z_{k1PE \min}}$$

$$I_{k2 \max} = \frac{V_n}{2 \cdot Z_{k \min}}$$

Infine dai valori delle correnti massime di guasto si ricavano i valori di cresta delle correnti (CEI EN 60909-0 par. 9.1.1.):

$$\begin{split} \boldsymbol{I}_{p} &= \boldsymbol{\kappa} \cdot \sqrt{2} \cdot \boldsymbol{I}_{k \, \text{max}} \\ \boldsymbol{I}_{p1 Neutro} &= \boldsymbol{\kappa} \cdot \sqrt{2} \cdot \boldsymbol{I}_{k1 Neutr \, \text{omax}} \\ \boldsymbol{I}_{p1 PE} &= \boldsymbol{\kappa} \cdot \sqrt{2} \cdot \boldsymbol{I}_{k1 PE \, \text{max}} \\ \boldsymbol{I}_{p2} &= \boldsymbol{\kappa} \cdot \sqrt{2} \cdot \boldsymbol{I}_{k2 \, \text{max}} \end{split}$$

dove:

$$\kappa \approx 1.02 + 0.98 \cdot e^{-3 \cdot \frac{R_d}{X_d}}$$

Calcolo della corrente di cresta per guasto trifase secondo la norma IEC 61363-1: Electrical installations of ships. Se richiesto, Ip può essere calcolato applicando il metodo semplificato della norma riportato al paragrafo 6.2.5 Neglecting short-circuit current decay. Esso prevede l'utilizzo di un coefficiente k = 1.8 che tiene conto della massima asimmetria della corrente dopo il primo semiperiodo di guasto.

6.2 CALCOLO DELLE CORRENTI MINIME DI CORTOCIRCUITO

Il calcolo delle correnti di cortocircuito minime viene condotto come descritto nella norma CEI EN 60909-0 par 2.5 per quanto riguarda:

- guasti con contributo della fornitura e dei generatori. Il contributo dei generatori è in regime permanente per i guasti trifasi 'vicini', mentre per i guasti 'lontani' o asimmetrici si considera il contributo subtransitorio;
- la tensione nominale viene moltiplicata per il fattore di tensione di 0.95 (tab. 1 della norma CEI EN 60909-0); in media e alta tensione il fattore è pari a 1;

Per la temperatura dei conduttori si può scegliere tra:

- il rapporto Cenelec R064-003, per cui vengono determinate le resistenze alla temperatura limite dell'isolante in servizio ordinario del cavo;
- la norma CEI EN 60909-0, che indica le temperature alla fine del guasto.

Le temperature sono riportate in relazione al tipo di isolamento del cavo, precisamente:

Isolante	Cenelec R064-003 [°C]	CEI EN 60909-0 [°C]
PVC	70	160
G	85	200
G5/G7/G10/EPR	90	250
HEPR	120	250
serie L rivestito	70	160
serie L nudo	105	160
serie H rivestito	70	160
serie H nudo	105	160

Da queste è possibile calcolare le resistenze alla sequenza diretta e omopolare alla temperatura relativa all'isolamento del cavo:

$$\begin{split} R_{d\,\text{max}} &= R_{d} \cdot \left(1 + 0.004 \cdot \left(T_{\text{max}} - 20\right)\right) \\ R_{0\,\text{Neutro}} &= R_{0\,\text{Neutro}} \cdot \left(1 + 0.004 \cdot \left(T_{\text{max}} - 20\right)\right) \\ R_{0\,\text{PE}} &= R_{0\,\text{PE}} \cdot \left(1 + 0.004 \cdot \left(T_{\text{max}} - 20\right)\right) \end{split}$$

Queste, sommate alle resistenze a monte, danno le resistenze minime.

Valutate le impedenze mediante le stesse espressioni delle impedenze di guasto massime, si possono calcolare le correnti di cortocircuito trifase I_{k1min} e fase terra, espresse in kA:

$$\begin{split} I_{k \min} &= \frac{0.95 \cdot V_n}{\sqrt{3} \cdot Z_{k \max}} \\ I_{k1Neutr \, \text{om} in} &= \frac{0.95 \cdot V_n}{\sqrt{3} \cdot Z_{k1Neutr \, \text{om} ax}} \\ I_{k1PE \, \text{min}} &= \frac{0.95 \cdot V_n}{\sqrt{3} \cdot Z_{k1PE \, \text{max}}} \\ I_{k2 \, \text{min}} &= \frac{0.95 \cdot V_n}{2 \cdot Z_{k \, \text{max}}} \end{split}$$

6.3 CALCOLO GUASTI BIFASE-NEUTRO E BIFASE-TERRA

Riportiamo le formule utilizzate per il calcolo dei guasti. Chiamiamo con Zd la impedenza diretta della rete, con Zi l'impedenza inversa, e con Z0 l'impedenza omopolare. Nelle formule riportate in seguito, Z0 corrisponde all'impedenza omopolare fase-neutro o faseterra.

$$I_{k2} = \left| -j \cdot V_n \cdot \frac{\dot{Z}_0 - \alpha \cdot \dot{Z}_i}{\dot{Z}_d \cdot \dot{Z}_i + \dot{Z}_d \cdot \dot{Z}_0 + \dot{Z}_i \cdot \dot{Z}_0} \right|$$

e la corrente di picco:

$$I_{p2} = k \cdot \sqrt{2} \cdot I_{k2 \,\text{max}}$$

7 SCELTA DELLE PROTEZIONI

La scelta delle protezioni viene effettuata verificando le caratteristiche elettriche nominali delle condutture ed i valori di guasto; in particolare le grandezze che vengono verificate sono:

- corrente nominale, secondo cui si è dimensionata la conduttura;
- numero poli;
- tipo di protezione;

- tensione di impiego, pari alla tensione nominale della utenza;
- potere di interruzione, il cui valore dovrà essere superiore alla massima corrente di guasto a monte dell'utenza lkm max;
- taratura della corrente di intervento magnetico, il cui valore massimo per garantire la protezione contro i contatti indiretti (in assenza di differenziale) deve essere minore della minima corrente di guasto alla fine della linea (Imag max).

7.1 VERIFICA DELLA PROTEZIONE A CORTOCIRCUITO DELLE CONDUTTURE

Secondo la norma 64-8 par.434.3 "Caratteristiche dei dispositivi di protezione contro i cortocircuiti.", le caratteristiche delle apparecchiature di protezione contro i cortocircuiti devono soddisfare a due condizioni:

- il potere di interruzione non deve essere inferiore alla corrente di cortocircuito presunta nel punto di installazione (a meno di protezioni adequate a monte):
- la caratteristica di intervento deve essere tale da impedire che la temperatura del cavo non oltrepassi, in condizioni di guasto in un punto gualsiasi, la massima consentita.

La prima condizione viene considerata in fase di scelta delle protezioni. La seconda invece può essere tradotta nella relazione:

$$I^2 \cdot t \le K^2 S^2$$

ossia in caso di guasto l'energia specifica sopportabile dal cavo deve essere maggiore o uquale a quella lasciata passare dalla protezione.

La norma CEI al par. 533.3 "Scelta dei dispositivi di protezioni contro i cortocircuiti" prevede pertanto un confronto tra le correnti di guasto minima (a fondo linea) e massima (inizio linea) con i punti di intersezione tra le curve. Le condizioni sono pertanto:

- Le intersezioni sono due:
 - ▼ Iccmin≥linters min (quest'ultima riportata nella norma come la):
 - ▼ Iccmax≤linters max (quest'ultima riportata nella norma come Ib).
- L'intersezione è unica o la protezione è costituita da un fusibile:
 - ▼ Iccmin≥linters min.
- L'intersezione è unica e la protezione comprende un magnetotermico:
 - ▼ Icc max≤linters max.

Sono pertanto verificate le relazioni in corrispondenza del guasto, calcolato, minimo e massimo. Nel caso in cui le correnti di guasto escano dai limiti di esistenza della curva della protezione il controllo non viene eseguito.

Note:

- La rappresentazione della curva del cavo è una iperbole con asintoti K2S2 e la Iz dello stesso.
- La verifica della protezione a cortocircuito eseguita dal programma consiste in una verifica qualitativa, in quanto le curve vengono inserite riprendendo i dati dai grafici di catalogo e non direttamente da dati di prova; la precisione con cui vengono rappresentate è relativa.

7.2 VERIFICA DI SELETTIVITA'

E' verificata la selettività tra protezioni mediante la sovrapposizione delle curve di intervento. I dati forniti dalla sovrapposizione, oltre al grafico sono:

- Corrente la di intervento in corrispondenza ai massimi tempi di interruzione previsti dalla CEI 64-8: pertanto viene sempre data la corrente ai 5s (valido per le utenze di distribuzione o terminali fisse) e la corrente ad un tempo determinato tramite la tabella 41A della CEI 64.8 par 413.1.3. Fornendo una fascia di intervento delimitata da una caratteristica limite superiore e una caratteristica limite inferiore, il tempo di intervento viene dato in corrispondenza alla caratteristica limite inferiore. Tali dati sono forniti per la protezione a monte e per quella a valle;
- Tempo di intervento in corrispondenza della minima corrente di guasto alla fine dell'utenza a valle:

minimo per la protezione a monte (determinato sulla caratteristica limite inferiore) e massimo per la protezione a valle (determinato sulla caratteristica limite superiore);

- Rapporto tra le correnti di intervento magnetico delle protezioni:
- Corrente al limite di selettività: ossia il valore della corrente in corrispondenza all'intersezione tra la caratteristica limite superiore della protezione a valle e la caratteristica limite inferiore della protezione a monte (CEI 23.3 par 2.5.14).
- Selettività: viene indicato se la caratteristica della protezione a monte si colloca sopra alla caratteristica della protezione a valle (totale) o solo parzialmente (parziale a sovraccarico se l'intersezione tra le curve si ha nel tratto termico).
- Selettività cronometrica: con essa viene indicata la differenza tra i tempi di intervento delle protezioni in corrispondenza delle correnti di cortocircuito in cui è verificata.

Nelle valutazioni si deve tenere conto delle tolleranze sulle caratteristiche date dai costruttori.

Quando possibile, alla selettività grafica viene affiancata la selettività tabellare tramite i valori forniti dalle case costruttrici. I valori forniti corrispondono ai limiti di selettività in A relativi ad una coppia di protezioni poste una a monte dell'altra. La corrente di guasto minima a valle deve risultare inferiore a tale parametro per garantire la selettività.

8 RIFERIMENTI NORMATIVI

8.1 NORME DI RIFERIMENTO PER LA BASSA TENSIONE

- CEI 0-21: Regola tecnica di riferimento per la connessione di Utenti attivi e passivi alle reti BT delle imprese distributrici di energia elettrica.
- CEI 11-20 IVa Ed. 2000-08: Impianti di produzione di energia elettrica e gruppi di continuità collegati a reti I e II categoria.
- CEI EN 60909-0 IIa Ed. (IEC 60909-0:2001-07): Correnti di cortocircuito nei sistemi trifasi in corrente alternata. Parte 0: Calcolo delle correnti.
- IEC 60090-4 First ed. 2000-7: Correnti di cortocircuito nei sistemi trifasi in corrente alternata. Parte 4: Esempi per il calcolo delle correnti di cortocircuito.
- CEI 11-28 1993 la Ed. (IEC 781): Guida d'applicazione per il calcolo delle correnti di cortocircuito nelle reti radiali e bassa tensione.
- CEI EN 60947-2 (CEI 17-5) VIIIa Ed. 2007-07: Apparecchiature a bassa tensione. Parte 2: Interruttori automatici.
- CEI 20-91 2010: Cavi elettrici con isolamento e guaina elastomerici senza alogeni non propaganti la fiamma con tensione nominale non superiore a 1000 V in corrente alternata e 1500 V in corrente continua per applicazioni in impianti fotovoltaici.
- CEI EN 60898-1 (CEI 23-3/1 la Ed.) 2004: Interruttori automatici per la protezione dalle sovracorrenti per impianti domestici e similari.
- CEI EN 60898-2 (CEI 23-3/2) 2007: Interruttori automatici per la protezione dalle sovracorrenti per impianti domestici e similari Parte 2: Interruttori per funzionamento in corrente alternata e in corrente continua.
- CEI 64-8 VIIa Ed. 2012: Impianti elettrici utilizzatori a tensione nominale non superiore a 1000V in corrente alternata e a 1500V in corrente continua.
- IEC 364-5-523: Wiring system. Current-carring capacities.
- IEC 60364-5-52 IIIa Ed. 2009: Electrical Installations of Buildings Part 5-52: Selection and Erection of Electrical Equipment - Wiring Systems.
- CEI UNEL 35016 2016: Classe di Reazione al fuoco dei cavi in relazione al Regolamento EU "Prodotti da Costruzione" (305/2011).
- CEI UNEL 35023 2012: Cavi di energia per tensione nominale U uguale ad 1 kV Cadute di tensione.
- CEI UNEL 35024/1 1997: Cavi elettrici isolati con materiale elastomerico o termoplastico per tensioni nominali non superiori a 1000 V in corrente alternata e a 1500 V in corrente continua. Portate di corrente in regime permanente per posa in aria.
- CEI UNEL 35024/2 1997: Cavi elettrici ad isolamento minerale per tensioni nominali non superiori a 1000 V in corrente alternata e a 1500 V in corrente continua. Portate di corrente in regime permanente per posa in aria.
- CEI UNEL 35026 2000: Cavi elettrici con materiale elastomerico o termoplastico per tensioni

- nominali di 1000 V in corrente alternata e 1500 V in corrente continua. Portate di corrente in regime permanente per posa interrata.
- CEI EN 61439 2012: Apparecchiature assiemate di protezione e di manovra per bassa tensione (quadri BT).
- CEI 17-43 Ila Ed. 2000: Metodo per la determinazione delle sovratemperature, mediante estrapolazione, per apparecchiature assiemate di protezione e di manovra per bassa tensione (quadri BT) non di serie (ANS).
- CEI 23-51 2016: Prescrizioni per la realizzazione, le verifiche e le prove dei quadri di distribuzione per installazioni fisse per uso domestico e similare.
- NF C 15-100 Calcolo di impianti elettrici in bassa tensione e relative tabelle di portata e declassamento dei cavi secondo norme francesi.
- UNE 20460 Calcolo di impianti elettrici in bassa tensione e relative tabelle di portata e declassamento (UNE 20460-5-523) dei cavi secondo regolamento spagnolo.
- British Standard BS 7671:2008: Requirements for Electrical Installations;
- ABNT NBR 5410, Segunda edição 2004: Instalações elétricas de baixa tensão;

8.2 NORME DI RIFERIMENTO PER LA MEDIA TENSIONE

- CEI 0-16: Regola tecnica di riferimento per la connessione di Utenti attivi e passivi alle reti AT ed MT delle imprese distributrici di energia elettrica.
- CEI 99-2 (CEI EN 61936-1) 2011: Impianti con tensione superiore a 1 kV in c.a.
- CEI 11-17 IIIa Ed. 2006: Impianti di produzione, trasmissione e distribuzione di energia elettrica.
 Linee in cavo.
- CEI-UNEL 35027 IIa Ed. 2009: Cavi di energia per tensione nominale U da 1 kV a 30 kV.
- CEI 99-4 2014: Guida per l'esecuzione di cabine elettriche MT/BT del cliente/utente finale.
- CEI 17-1 VIIa Ed. (CEI EN 62271-100) 2013: Apparecchiatura ad alta tensione Parte 100: Interruttori a corrente alternata.
- CEI 17-130 (CEI EN 62271-103) 2012: Apparecchiatura ad alta tensione Parte 103: Interruttori di manovra e interruttori di manovra sezionatori per tensioni nominali superiori a 1 kV fino a 52 kV compreso.
- IEC 60502-2 2014: Power cables with extruded insulation and their accessories for rated voltages from 1 kV up to 30 kV Part 2.
- IEC 61892-4 la Ed. 2007-06: Mobile and fixed offshore units Electrical installations. Part 4: Cables.

ALLEGATO - SCHEMI ELETTRICI

	0		1	2 3		' Į	5 6	7	8
		D:f:-	Cootmetters		C- 1			I	I
	POS.	Riferim.	Costruttore		Codice	Q.ta™			
	1	FSPD		SBI Base portafusibile 2P 22x58 In 125A	MGN15716				
	$\frac{2}{3}$	FTLC IG	SE SE	SBI Base portafusibile 2P 14x51 In 50A Interruttore generale iC60a-C 2x40A 6kA - "C"	MGN15710 A9F64240	_			
A	4	QA	SE	Interruttore generale icooa-c 2x40A 6kA - "C" Interruttore prot. aux iC60a-C 2x10A 6kA - "C"					
	5	IM1-IM2-IM3		Interruttore prot. iC60a-C 2x16A 6kA - "C"	A9F64216	\rightarrow			
			SE	Blocco QuickVigi iC60 2P 25A 300mA Tipo A	A9Q54225				
	6	C1	SE	Contattore 3P 65A AC3 TeSys D - 230Vac	LC1D65AP				
	7	OR	SE	Orologio Astronomico IC Astro 1CO 16A	CCT15225				
	8	S1	SE	Commutatore iSSW 2 Posizioni 1CO 20A	A9E18070				
	9	SCR	SE	Scaricatore di sovratensione iPRD20 1P+N Tipo	2 A9L20500				
						+			
В						+			
						\dashv			
İ									
 						\perp			
						+			
						+			
C						+			
C						\dashv			
						\perp			
_						\perp			
						+			
						+			
				-		+			
D						\dashv			
			1		I				
E									
						I	4		
DEV. V					ADDROVATO TITOLO			COMPERM	Dianava v
REV. N.				DISEGNATO CONTROLLATO			O QUADRO DI PROTEZIONE e	CONFERMA	
REV. N.				DISEGNATO CONTROLLATO	APPROVATO TITOLO SCHEM COMAN		O QUADRO DI PROTEZIONE e	CONFERMA	DISEGNO N. 22-2 PAGINA

