Generating Function

Generating punction is a method to solve the recurrence relations.

Let us consider, the sequence $a_0, a_1, a_2, \dots a_r$ of real numbers containing reso values at t is given, the function $G_1(t)$ is defined by

 $G_1(t) = a_0 + a_1t + a_2t^2 + a_3t^3 + ... + a_kt^2 - 0$ This function $G_1(t)$ is called generating function of Sequence a_k .

Now, for constant sequence 1,1,1,1,... then generating function is $G_1(t) = \frac{1}{(1-t)}$

It can be expressed as

G(t) = (1-t) = 1+t+t2+t3+ ----[By Binomial Expansion]

For constant sequence 1,2,3,4,5,... the generating function is

 $G_1(t) = \frac{1}{(1-t)^2} = (1-t)^{-2} = 1+2t+3t^2+4t^2+...+(\lambda+1)t^{\lambda}$

The generating function of Z2 (Z +0 & Zis a constant)

is given by -Glt)=1+Zt+Z²t²+Z³t²+---+Z²t²

Also, if a"h has the generating function (4,(+) and a"h has
the generating function Go(+) than $\lambda_1 a''_1 + \lambda_2 a''_2$ has
the generating function $\lambda_1 G_1(+) + \lambda_2 G_2(+)$. Here $\lambda_1 2 \lambda_2$ are constants.

Application Areas

Generating functions can be used for the following

- · For solving recurrence relations
 - · For proving some of combinatorial identifies.
 - · For finding asymptotic formulae for terms of sequences.
- Solve recurrence relation by generating function $\alpha_{\lambda} 2\alpha_{\lambda-1} 3\alpha_{\lambda-2} = 0$ for x > 2, $\alpha_0 = 2$
- SAT (i) Multiply both $\frac{1}{2}$ side by z^{2} $= a_{\lambda}z^{2} 2a_{\lambda+}z^{2} 3a_{\lambda-2}z^{2} = 0$
 - (ii) Since $\lambda > 2$ by summing for all λ we get $\sum_{k=2}^{\infty} a_k z^k 2 \sum_{k=2}^{\infty} a_{k-1} z^k 3 \sum_{k=2}^{\infty} a_{k-2} z^k = 0 \quad ()$ $\sum_{k=2}^{\infty} a_k z^k 2 \sum_{k=2}^{\infty} a_{k-1} z^k 3 \sum_{k=2}^{\infty} a_{k-2} z^k = 0 \quad ()$ $\sum_{k=2}^{\infty} a_k z^k 2 \sum_{k=2}^{\infty} a_{k-1} z^k 3 \sum_{k=2}^{\infty} a_{k-2} z^k = 0 \quad ()$ $\sum_{k=2}^{\infty} a_k z^k 2 \sum_{k=2}^{\infty} a_{k-2} z^k 3 \sum_{k=2}^{\infty} a_{k-2} z^k + 3 \sum_{k=2}^{\infty} a_{k-2} z^k$

$$\frac{\sum_{A=2}^{\infty} a_{A-1} z^{A} = a_{1} z^{2} + a_{2} z^{3} + a_{3} z^{4}}{= (a_{1} z^{2} + a_{2} z^{2} + a_{3} z^{4}) z} = (A(z) - a_{0}) z$$

$$= (A(z) - a_{0}) z$$

$$= (A(z) - a_{0}) z$$

$$= (a_{0} + a_{1} z + a_{2} a_{2} z^{2} + a_{3} z^{3} + a_{2} z^{4} + a_{3} z^{5} + \cdots) z^{2}$$

$$= (a_{0} + a_{1} z + a_{2} a_{2} z^{2} + a_{3} z^{3} + \cdots) z^{2}$$

$$= A(z) z^$$

Compare it ep My 26

$$+B = 3$$
 — $+2B = +5$ — $+2$
 $+B = 8$
 $+B = 2$ in ep $+2$
Put $+B = 2$ in ep $+2$
 $+A = 1$
Put the value of $+A = 1$ in eq $+1$
 $+A = 1$
 $+A = 1$