MATH 2023 – Multivariable Calculus

Lecture #22 Worksheet \star May 7, 2019

Problem 1. Let

$$\mathbf{F}(x, y, z) = \langle xy, y^2 + e^{xz^2}, \sin(xy) \rangle$$

and S be the surface bounded by

$$y = 0,$$
 $z = 0,$ $z = 1 - x^2,$ $y + z = 2$

Find
$$\iint_S \mathbf{F} \cdot d\mathbf{S}$$
.

Problem 2. Let

$$\mathbf{F}(x, y, z) = \langle z \tan^{-1}(y^{2023}), z^3 \ln(x^2 + y^{777}), z \rangle$$

Find the flux of **F** across the part of the paraboloid $z^2+y^2+z=2$ that lies above the plane z=1 and oriented upward.

Problem 3. Find $\iint_S (2x+2y+z^2)dS$ where S is the unit sphere $x^2+y^2+z^2=1$.