NEA-DEA-Äquivalenzklassen

Gegeben ist der deterministische endliche Automat $A = (\{A, B, C, D, E\}, \{0, 1\}, \delta, \{E\}, A)$.

δ	0	1
A	В	С
В	Е	С
С	D	С
D	Е	A
Е	Е	Е

(a) Minimieren Sie den Automaten mit dem bekannten Minimierungsalgorithmus. Dokumentieren Sie die Schritte geeignet.

- x_1 Paar aus End-/ Nicht-Endzustand kann nicht äquivalent sein.
- x_2 Test, ob man mit der Eingabe zu einem bereits markiertem Paar kommt.
- x_3 In weiteren Iterationen markierte Zustände.

Übergangstabelle

Zustandspaar	0	1
(A, B)	(B, E) x_2	(C, C)
(A, C)	(B, D)	(C, C)
(A, D)	(B, E) x_2	(C, A)
(B, C)	(E, D) x_2	(C, C)
(B, D)	(E, E)	(C, A)
(C, D)	$(D, E) x_2$	(C, A)

Minimiert

flaci.com/Ara57j4oa

(b) Geben Sie einen regulären Ausdruck für die erkannte Sprache an.

$$r = (0|1)*00(0|1)*$$

(c) Geben Sie die Äquivalenzklassen der Myhill-Nerode-Äquivalenz der Sprache durch reguläre Ausdrücke an.

Die Äquivalenzklassen lauten: [A, C], [B, D], [E]

$$r_A = (1^*(01)^*)^*$$

 $r_B = (1^*(01)^*)^*0$

$$r_C = r$$