MATH 75: Cryptography

Spring 2022

PSET 5 — May 6, 2022

Prof. Asher Auel

Student: Amittai Siavava

Credit Statement

I worked on these problems alone, with reference to class notes and the following books:

- (a) The Code Book by Simon Singh.
- (b) Cryptography by Simon Rubinsen-Salzedo

Problems

1. Let $k \ge 2$ and $A = (\mathbb{Z}/2\mathbb{Z})^k$. Let $\vec{0}, \vec{1} \in A$ be the vectors of all zeros and all ones, respectively. Define the map $g: A \to A$ by

$$g(y) = \begin{cases} \vec{0} & y \neq \vec{0} \\ \vec{1} & y = \vec{0} \end{cases}$$

Then define

$$s,G:A\times A\to A\times A$$

$$s(x,y)=(y,x)$$

$$G(x,y)=(x+g(y),y)$$

(a) Prove that s^2 and G^2 are the identity on $A \times A$. [We actually proved this in lecture, so just make sure you understand it here.]

By definition:

$$s(x,y) = (y,x)$$

 $s^{2}(x,y) = s(s(x,y)) = s(y,x)$
 $= (x,y)$

Likewise:

$$G(x,y) = (x + g(y), y)$$

$$G^{2}(x,y) = G(x + g(y), y) = (x + 2g(y), y)$$

$$\equiv (x + 0, y) \pmod{2}$$

$$\equiv (x, y)$$

(b) Prove that $(sG)^4 = sgsgsgsg$ moves only 3 elements of $A \times A$, i.e.

$$\#\{(x,y) \in A \times A : (sG)^4(x,y) \neq (x,y)\} = 3.$$

(c) Prove that $(sG)^{12}$ is the identity.

We know that:

$$G(x,y) = (x + g(y), y)$$
$$s(x,y) = (y,x)$$
$$\therefore sG(x,y) = (y, x + g(y))$$

Let's define $\hat{x}, \hat{y} \in A \ni \hat{x} \neq \vec{0}$ & $\hat{x} \neq \vec{1}$ & $\hat{y} \neq \vec{0}$ & $\hat{y} \neq \vec{1}$ to represent the general cases where $\vec{x}, \vec{y} \notin \{0, 1\}$.

id	sG	$(sG)^2$	$(sG)^3$	$(sG)^4$	$(sG)^8$	$(sG)^{12}$
(0,0)	(0,1)	(1,0)	(0,0)	(0,1)	(1,0)	(0,0)
$\parallel (0,y)$	(y,0)	$(0,\hat{y})$	$(\hat{y},0)$	(0,y)	(0,y)	(0,y)
$\ (0,1) \ $	(1,0)	(0,0)	(0,1)	(1,0)	(0,0)	(0,1)
$\ $ (x,0)	$(0,\hat{x})$	$(\hat{x},0)$	(0,x)	(x,0)	(x,0)	(x,0)
$\ $ (x,y)	(y,x)	(x,y)	(y,x)	(x,y)	(x,y)	(x,y)
$\ $ (x,1)	(1,x)	(x,1)	(1,x)	(x,1)	(x,1)	(x,1)
$\ (1,0) \ $	(0,0)	(0,1)	(1,0)	(0,0)	(0,1)	(1,0)
$\ $ (1,y)	(y,1)	(1,y)	(y,1)	(1,y)	(1,y)	(1,y)
(1,1)	(1,1)	(1,1)	(1,1)	(1,1)	(1,1)	(1,1)

2. Encrypt the message 001100001010 using two rounds of SDES and (9 bit) key 111000101, as explained in lecture. Show all your steps! [Hint: After one round, the output is 001010010011.]

3. In the Rijndael field $F = \mathbb{F}_2[X]/(X^8 + X^4 + X^3 + X + 1)$, where bytes are associated to polynomials modulo $X^8 + X^4 + X^3 + X + 1$, compute the product $01010010 \cdot 10010010 \in F$.

We can represent polynomials in F as binary numbers, where the state of each bit (whether 0 or 1) represents whether the corresponding power in the polynomial has a factor of 0 or 1. Then:

$$X^8 + X^4 + X^3 + X + 1 = 100011011$$

Then, we can perform the multiplication modulo 2:

$$\begin{array}{c} 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ \times & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & \cdot \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & \cdot & \cdot & \cdot & \cdot \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & \cdot & \cdot & \cdot & \cdot & \cdot \\ \hline 1 & 0 & 1 & 1 & 0 & 2 & 1 & 0 & 2 & 0 & 0 & 1 & 0 & 0 \end{array}$$

Shifting back to base 2, we get: 10110010000100 We then need to find this number mod 100011011

 $\mod 10110010000100, 100011011$ 100011011 10110010000100 100000 100011011.... 111111100... 1000100011011... 111001111... 100011011.. 100110101000. 10 100011011. 101100110 100011011 101111 1111101

Thus, the product in F is 1111101

- 4. Here you will prove something that was claimed in lecture!
 - (a) Find all monic irreducible polynomials of degree ≤ 4 in $\mathbb{F}_2[X]$.

There are 2^5 possible polynomials of degree ≤ 4 in \mathbb{F} .

We can eliminate half of these polynomials without a constant factor, since they will have 0 as a root.

f	f(0)	f(1)
1	1	1
x+1	1	0
$x^2 + 1$	1	0
$x^2 + x + 1$	1	1
$x^{3} + 1$	1	0
$x^3 + x + 1$	1	1
$x^3 + x^2 + 1$	1	0
$x^3 + x^2 + x + 1$	1	0
$x^4 + 1$	1	0
$x^4 + x + 1$	1	1
$x^4 + x^2 + 1$	1	1
$x^4 + x^2 + x + 1$	1	0
$x^4 + x^3 + 1$	1	1
$x^4 + x^3 + x + 1$	1	0
$x^4 + x^3 + x^2 + 1$	1	0
$x^4 + x^3 + x^2 + x + 1$	1	1

We also need to remove sieve out polynomials that have quadratic factors. Since any factor of a polynomial of degree n must have a degree of at most $\frac{n}{2}$, any polynomials with a quadratic factor must have a degree of at least 4.

We also know that both factors must have a degree of 2 The only such irreducible polynomial is $x^2 + x + 1$.

We have only identified 4 such polynomials that don't have factors. Of the four:

$$x^4 + x + 1$$
 – not divisible by $x^2 + x + 1$

$$x^4 + x^2 + 1 - = (x^2 + x + 1)^2 \pmod{2}$$

$$x^4 + x^3 + 1$$
 – not divisible by $x^2 + x + 1$

$$x^4 + x^3 + x^2 + x + 1$$
 – not divisible by $x^2 + x + 1$

Since 1 is the identity, the monic irreducible polynomials are

$$\{x^2 + x + 1, x^3 + x + 1, x^4 + x + 1, x^4 + x^3 + 1, x^4 + x^3 + x^2 + x + 1\}$$

(b) Verify that the Rijndael polynomial

$$f(X) = X^8 + X^4 + X^3 + X + 1$$

is irreducible in $\mathbb{F}_2[X]$. [Hint: Any factor must have degree at most 4.]

Any factor must be a monic polynomial in $\mathbb{F}_2[X]$

Therefore, we can compute the remainders when $f(X) = X^8 + X^4 + X^3 + X + 1$ is divided by the monic polynomials. If any remainder is nonzero, then f(X) is reducible.

	$ y x^4 + x^3 + x^2 + x + 1. $	Division b	oy $x^4 + x + 1$.
111111	100011011	10011	100011011
10000	11111	10000	10011
	11101		10101.
1000	11111	10	10011.
	10001		1101
11000	10001	10010	1101
		'	

Division by $x^2 + x + 1$.		
111	100011011	
1000000	111	
	110	
100000	111	
	111	
1000	111	
1101000	011	

Division by $x^4 + x^3 + 1$.		
11001	100011011	
10000	11001	
	10001	
1000	11001	
	10000	
100	11001	
	10011.	
10	11001.	
	10101	
1	11001	
11111	1100	

$$\begin{array}{c|c|c} \text{Division by} & x^3 + x + 1. \\ \hline 1011 & 100011011 \\ \hline 100000 & 1011..... \\ 1111.... \\ 1000 & 1011.... \\ 1000... \\ 1011... \\ 1111 \\ \hline 1 & 1011 \\ \hline \hline 101101 & 100 \\ \hline \end{array}$$

Since all the remainders are non-zero, none of the irreducible monic polynomials of degree ≤ 4 divide f(X). It therefore must be irreducible in $\mathbb{F}_2[X]$.

- **5.** Put $f(X) = X^8 + X^4 + X^3 + X + 1 \in \mathbb{F}_2[X]$, and let $a = 00001100 = X^3 + X^2 \in F = \mathbb{F}_2[X]/(f).$
 - (a) Compute a^5 .

```
Let's begin by computing a^2:
                                                           And, finally, a^5 = a \cdot a^4
      1 1 0 0
                                                                   \times 1 1 0 0
                                                                                        1 1 0 0
  1\overline{100} \cdot \cdot
                                                              1 \overline{0 0 0 1 0 0 0 0 0 0 0 \cdots}
1\ 1\ 0\ 0\ \cdot\ \cdot\ \cdot
                                                            1\; 0\; 0\; 0\; 1\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; \cdots\; \cdot
\overline{1\ 2\ 1\ 0\ 0\ 0\ 0} \equiv 1010000
                                                            We can then compute a^4 = (a^2)^2:
             1010000
           \times 1 0 1 0 0 0 0
     1\ 0\ 1\ \overline{0\ 0\ 0\ 0\ \cdots}
1\ 0\ 1\ 0\ 0\ 0\ \cdots
```

We then need to find the equivalent of 1100110000000000 in the Rijndael field F by finding its modulus with $X^8 + X^4 + X^3 + X + 1$.

Thus, $a^5 \equiv 1 \in F$.

(b) Find the inverse $b^{-1} \in F$ of $b = X^2 = 00000100$.

For simplicity, I converted the binary-equivalent numbers to base 10 and calculated the inverse using the extended euclidean algorithm.

$$b = X^2 = 00000100 \equiv 4$$

$$f(X) = X^8 + X^4 + X^3 + X + 1 = 100011011 \equiv 283$$

$$283 \equiv 4 \cdot 70 + 3$$

$$70 \equiv 3 \cdot 23 + 1$$

$$1 \equiv 70 - 3 \cdot 23$$

$$1 \equiv 70 - 23(283 - 4 \cdot 70)$$

$$1 \equiv 70 - 283 \cdot 23 + 4 \cdot 23 \cdot 70$$

$$1 \equiv -283 \cdot 23 + (4 \cdot 23 + 1) \cdot 70$$

$$1 \equiv 93 \cdot 70 - 283 \cdot 23$$

$$1 \equiv -213 \cdot 23$$

We know, by definition:

$$b\cdot b^{-1}\equiv 1$$

$$b^{-1} \equiv \frac{1}{4}$$

00000100	00000001
1	100
1	101

(c) Compute the product $b^{-1}a$ and verify that $b^{-1}a = X + 1$ in F.

$$1\; 0\; 0\; 0\; 1\; 1\; 1\\$$

$$1 \overline{0 0 0 1 1 1 1 \cdot \cdot}$$
 $1 0 0 0 1 1 1 \cdot \cdot \cdot$

$$\frac{1000111}{110010100} \equiv 1100100100$$

$$100010010\\100011011$$