Leistung im Wechselstromkreis

Wird ein <u>induktiver bzw. kapazitiver</u> Widerstand an eine Wechselspannung angeschlossen, so tritt analog zu den <u>Widerständen</u> neben dem schon vorhandenen Wirkanteil zusätzlich noch ein Blindanteil in Erscheinung. Der Blindanteil kommt durch die Phasenverschiebung zwischen Strom und Spannung der <u>Induktivität</u> bzw. der <u>Kapazität</u> zustande. Bei einem rein <u>ohmschen Widerstand</u> liegen Strom und Spannung in gleicher Phase, daher hat ein rein ohmscher Widerstand keinen Blindanteil.

Der Blindanteil der Leistung wird als **Blindleistung Q** bezeichnet. Seine Einheit ist **var**.

Der Wirkanteil wird als Wirkleistung P bezeichnet. Seine Einheit ist W.

Die Gesamtleistung im Wechselstromkreis ist die Scheinleistung S. Sie hat die Einheit VA.

Die Scheinleistung berechnet sich aus der Wirkleistung P und der Blindleistung Q, gemäß dem Satz des Pythagoras, daraus ergibt sich hier:

 $S = Wurzel(Q^2 + P^2).$

Zur besseren Unterscheidbarkeit der drei Leistungsarten verwendet man die drei unterschiedlichen Einheiten var, W und VA.

Zwischen der Wirkleistung P und der Blindleistung Q gibt es eine Phasenverschiebung von 90°. Das Leistungsdreieck verdeutlicht die Zusammenhänge:

Leistungen im Wechselstromkreis berechnen sich gemäß der folgenden Formeln:

	Formelzeichen	Einheit	Formel	Formel
Scheinleistung	S	VA "Volt-Ampere"	$S = U \cdot I$	$S = \sqrt{Q^2 + P^2}$
Wirkleistung	P	W "Watt"	$P = U \cdot I \cdot cos\phi = S \cdot cos\phi$	$P = \sqrt{S^2 - Q^2}$
Blindleistung	Q	Var "volt-ampere- reactive"	$Q = U \cdot I \cdot \sin \varphi = S \cdot \sin \varphi$	$Q = \sqrt{S^2 - P^2}$

Leistungsfaktor cos φ

 $\cos \phi$ wird als Wirkleistungsfaktor oder kurz als Leistungsfaktor bezeichnet. Er wird häufig auf den Typenschildern von Elektromotoren angegeben.

Der Leistungsfaktor $\cos \phi$ ist das Verhältnis zwischen Wirkleistung P und Scheinleistung S, er berechnet sich gemäß der Formel:

$$\cos \varphi = \frac{P}{S}$$

Der Leistungsfaktor gibt an welcher Teil der Scheinleistung in die gewünschte Wirkleistung umgesetzt wird.

Der **Blindleistungsfaktor sin \phi** gibt das Verhältnis zwischen Blindleistung Q und Scheinleistung S an: $\sin \phi = Q/S$

dynamische Aufgaben zur Leistung im Wechselstromkreis mit Lösungen