Homology Inference

김지수 (Jisu KIM)

통계이론세미나 - 위상구조의 통계적 추정, 2023 가을학기

Homology is a classical concept in algebraic topology, providing a powerful tool to formalize and handle the notion of the topological features of a topological space or of a simplicial complex in an algebraic way. For any dimension k, the k-dimensional "holes" are represented by a vector space (or more generally R-module) H_k , whose dimension is intuitively the number of such independent features. For example, the zero-dimensional homology group H_0 represents the connected components of the complex, the one-dimensional homology group H_1 represents the one-dimensional loops, the two-dimensional homology group H_2 represents the two-dimensional cavities, and so on.

We first start with the definition of group, subgroup, and quotient group:

Definition. An abelian group (G, +) is a set G and a binary operation $+: G \times G \to G$ satisfying

- (a) for all $a, b, c \in G$, (a + b) + c = a + (b + c)
- (b) there exists $0 \in G$ such that a + 0 = 0 + a = a for all $a \in G$
- (c) for all $a \in G$, there exists $-a \in G$ such that a + (-a) = -a + a = 0.
- (d) for all $a, b \in G$, a + b = b + a.

Definition. For an abelian group (G, +) and $H \subset G$, H is a subgroup of G if (H, +) is itself a group, and denote as $H \leq G$.

Definition. Let (G, +) be an abelian group and $H \leq G$. For each $a \in G$, we define its coset as $a + H := \{a + h : h \in H\} \subset G$. Then the quotient group is a set defined as

$$G/H := \{a + H : a \in G\}$$
.

Write [a] = a + H for convenience. We define the group structure on G/H as [a] + [b] := [a + b].

Note that $[a] = [b] \in G/H$ if and only if $a - b \in H$. So G/H is defined as like "all the members in H are announced as zero".

Example. $\mathbb{Z} = \{..., -1, 0, 1, ...\}$ be a group of integer with binary operator +, and $2\mathbb{Z} = \{..., -2, 0, 2, ...\}$ be a set of even integers. Then $2\mathbb{Z}$ is a subgroup of \mathbb{Z} . The quotient group $\mathbb{Z}_2 := \mathbb{Z}/2\mathbb{Z}$ can be characterized as

$$\mathbb{Z}_2 = \{[0], [1]\},\$$

where
$$[0] + [0] = [1] + [1] = [0]$$
 and $[0] + [1] = [1] + [0] = [1]$.

Then recall the simplicial complex:

Given a set V, an (abstract) simplicial complex is a set K of subsets of V such that $\alpha \in K$ implies $\operatorname{card} \alpha < \infty$, and $\alpha \in K$ and $\beta \subset \alpha$ implies $\beta \in K$. Each set $\alpha \in K$ is called its simplex. The dimension of a simplex α is $\dim \alpha = \operatorname{card} \alpha - 1$, and the dimension of the simplicial complex is the maximum dimension of any of its simplices. Note that a simplicial complex of dimension 1 is a graph. See Figure .

Definition. Let K be a simplicial complex, $k \ge 0$ be a nonnegative integer, and G be an abelian group. The space of k-chains on K, $C_k(K;G)$, is the set whose elements are a finite formal sum of k-simplices of K with coefficients from G, i.e.,

$$C_k(K;G) = \left\{ \sum_i n_i \sigma_i : n_i \in G, \sigma_i \in K_k \right\},\,$$

where $K_k \subset K$ is the set of k-simplices of K. We write $C_k(K)$ if the coefficient group G is understood from the context.

Figure 1: Graph (left) and simplicial complex (right).

For an integer $k \leq -1$, we define $C_k(K) = 0$ for convenience.

Remark. Typical examples of G are $G = \mathbb{Z}$ and $G = \mathbb{Z}_2 = \mathbb{Z}/2\mathbb{Z}$. For $G = \mathbb{Z}_2$, $C_k(K; \mathbb{Z}_2)$ becomes a vector space. Remark. $C_k(K; G)$ has an abelian group structure as for $\sum_i n_i \sigma_i$, $\sum_i n_i' \sigma_i \in C_k(K; G)$,

$$\left(\sum_{i} n_{i} \sigma_{i}\right) + \left(\sum_{i} n'_{i} \sigma_{i}\right) := \sum_{i} (n_{i} + n'_{i}) \sigma_{i}.$$

When G is a field, $C_k(K;G)$ has a natural vector space structure as for $\sum_i n_i \sigma_i \in C_k(K;G)$ and $\lambda \in G$,

$$\lambda \cdot \left(\sum_{i} n_{i} \sigma_{i}\right) = \sum_{i} (\lambda \cdot n_{i}) \sigma_{i}.$$

To relate chain groups of different dimensions, we define the boundary map as sending each -simplex to the sum of its (k-1)-dimensional faces. We write $\sigma = [v_0, \ldots, v_k]$ for an ordered simplex, i.e., $[v_0, v_1] = -[v_1, v_0]$.

Definition. A boundary map $\partial_k : C_k(K) \to C_{k-1}(K)$ is defined for each simplex as (see Figure)

$$\partial_k[v_0, \dots, v_k] = \sum_{j=0}^k (-1)^j [v_0, \dots, \hat{v}_j, \dots, v_k],$$

where $[v_0, \ldots, \hat{v}_j, \ldots, v_k] = [v_0, \ldots, v_{j-1}, v_{j+1}, \ldots, v_k] \in K_{k-1}$, i.e., \hat{v}_j means that v_j is omitted. The definition is extended to entire k-chain as

$$\partial_k \left(\sum_i n_i \sigma_i \right) = \sum_i n_i \partial_k \sigma_i.$$

Remark. ∂_k satisfies that for $c, c' \in C_k(K)$, $\partial_k(c+c') = \partial_k c + \partial_k c'$, so $\partial_k : C_k(K) \to C_{k-1}(K)$ is a homomorphism.

Lemma ([2, Lemma 2.1]). $\partial_{k-1} \circ \partial_k = 0$.

Definition. Cycles and boundaries

(a) A k-cycle group $Z_k = Z_k(K)$ is the k-cycle whose boundary is 0, i.e.,

$$Z_k(K) = \ker \partial_k = \{c \in C_k(K) : \partial_k c = 0\}.$$

(b) A k-boundary group $B_k = B_k(K)$ is the k-cycle that is a boundary of (k+1)-chain,

$$B_k(K) = \operatorname{im} \partial_{k+1} = \{ \partial_{k+1} d \in C_k(K) : d \in C_{k+1}(K) \}.$$

Then the above Lemma implies that $B_k(K)$, $Z_k(K)$, $C_k(K)$ are interleaved as subgroups (see Figure):

$$B_k(K) \subset Z_k(K) \subset C_k(K)$$
.

Definition. The k-th homology group is the k-th cycle group modulo the k-th boundary group,

$$H_k = H_k(K) := Z_k(K)/B_k(K).$$

The k-th Betti number is the rank of this group, $\beta_k = \text{rank}H_k$.

Example. Suppose K is given as the right of Figure , and use $G = \mathbb{Z}$. Then for k = 1, its cycle group, boundary group, homology group, and betti number is computed as in Figure .

Figure 2: Boundary map.

Figure 3: [1, Figure IV.1] Interleaving relations between cycle groups and boundary groups via boundary map.

•
$$Z_1(K) = \ker \partial_1 = \mathbb{Z}^2 = \langle \cdot \cdot \rangle$$

•
$$B_1(K) = \operatorname{im} \partial_2 = \mathbb{Z} = \langle \cdot \rangle$$

•
$$H_1(K) = Z_1(K)/B_1(K) = \mathbb{Z} = <$$
 $>, \beta_1(K) = 1$

Figure 4: Homology example for Figure .

References

- [1] Herbert Edelsbrunner and John L. Harer. *Computational topology*. American Mathematical Society, Providence, RI, 2010. An introduction.
- [2] Allen Hatcher. Algebraic topology. Cambridge University Press, Cambridge, 2002.