EXAM 2 Mon. Nov. 16, 2020

This is a closed book exam; you may not consult any references or notes. Upload your completed exam to gradescope immediately after completing the exam.

Question 1. Let μ and ν be finite measures on a measurable space (X, \mathcal{M}) with $\nu \ll \mu$. Denote by f the Radon-Nikodym derivative $\frac{d\nu}{d(\nu+\mu)}$ and denote by g the Radon-Nikodym derivative $\frac{d\nu}{d\mu}$. Show that for any set $E \in \mathcal{M}$,

$$\int_{E} g \ d\mu = \int_{E} (f + fg) \ d\mu.$$

Question 2. Let μ be counting measure on \mathbb{N} .

- 1. Prove that the space (of real-valued functions) $\ell^1 := L^1(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$ is a Banach space.
- 2. What link does the Radon-Nikodym theorem yield between ℓ^1 and the set of all finite signed measures $\lambda \ll \mu$ on \mathbb{N} ?

Question 3. Prove that if \mathcal{X} and \mathcal{Y} are normed linear spaces and $T: \mathcal{X} \to \mathcal{Y}$ is a linear map, then T is continuous if and only if T is bounded.

Question 4. Let (X, \mathcal{M}, μ) be the real interval [0, 1] with Lebesgue measure. Prove that for any continuous function $g: X \to \mathbb{R}$, the map $\Phi_g: L^1(\mu) \to \mathbb{R}$ defined by

$$\Phi_g(f) = \int fg \ d\mu$$

is an element of the dual space $L^1(\mu)^*$ and satisfies $||\Phi_g||_{op} = ||g||_{sup}$.