Задача о погоне - вариант 57

Гудиева Мадина Куйраевна, НПИбд-01-19¹ 20 мая, 2022, Москва, Россия

¹Российский Университет Дружбы Народов

Цель работы

Цель лабораторной работы

Дана задача: На море в тумане катер береговой охраны преследует лодку браконьеров. Через определенный промежуток времени туман рассеивается, и лодка обнаруживается на расстоянии к км от катера. Затем лодка снова скрывается в тумане и уходит прямолинейно в неизвестном направлении. Известно, что скорость катера в п раза больше скорости браконьерской лодки. Необходимо определить по какой траектории необходимо двигаться катеру, чтоб нагнать лодку. Нам необходимо разобраться в том, как решить эту задачу, написать код для решения диф.уравнений, которые лягут в основу решения, после чего необходимо будет смоделировать математическую модель, с помощью который можно будет наглядно определить оптимальный путь береговой охраны.

2/12

Задание к лабораторной работе

- 1. Теоретически выделить необходимые сведения из задачи и сопутствующих источников.
- 2. Вывести диф.уравнения для двух случаев (когда сторость катера больше скорости лодки в n раз и наоборот).
- 3. Написать код программы.
- 4. Построить траетории двидения.
- 5. Определить по графикам наиболее выгодный путь.

лабораторной работы

Процесс выполнения

Теоретический материал:

- Для того, чтобы начать составлять уравнение необходимо определить важные параметры, а именно: место нахождения лодки браконьеров в момент обнаружения будет приниматься за $t_0=0, X_0=0$ место нахождения катера береговой охраны относительно лодки браконьеров в момент обнаружения лодки будет приниматься за $X_0=k$.
- 3. Чтобы найти расстояние после которого катер начнет двигаться вокруг полюса (x), необходимо составить простое уравнение: пусть через время t катер и лодка окажутся на одном расстоянии x от полюса. За это время лодка пройдет x, а катер x-k (или x+k, в зависимости от начального положения катера относительно полюса).Время, за которое они пройдут это расстояние, вычисляется как $\frac{x}{v}$ или $\frac{x+k}{v}$ (для второго $\frac{4}{12}$

Теоретический материал:

Отсюда мы найдем два значения x_1 и x_2 , задачу будем решать для двух случаев:

1.
$$x_1 = \frac{k}{n+1}$$
 ,при $\theta = 0$

2.
$$x_2 = \frac{k}{n-1}$$
 ,при $\theta = -\pi$

Теоретический материал

Найдем тангенциальную скорость для нашей задачи $v_t=r\frac{d\theta}{dt}$. Вектора образуют прямоугольный треугольник, откуда по теореме Пифагора можно найти тангенциальную скорость $v_t=\sqrt{n^2v_r^2-v^2}$. Поскольку, радиальная скорость равна v, то тангенциальную скорость находим из уравнения $v_t=\sqrt{n^2v^2-v^2}$. Следовательно, $v_{\tau}=v\sqrt{n^2-1}$. Тогда получаем $r\frac{d\theta}{dt}=v\sqrt{n^2-1}$

Теоретический материал

Решение исходной задачи сводится к решению системы из двух дифференциальных уравнений

$$\begin{cases} \frac{dr}{dt} = \upsilon \\ r\frac{d\theta}{dt} = \upsilon\sqrt{n^2 - 1} \end{cases}$$

с начальными условиями

$$\begin{cases} \theta_0 = 0 \\ r_0 = \frac{k}{n+1} \end{cases}$$

$$\begin{cases} \theta_0 = -\pi \\ r_0 = \frac{k}{n-1} \end{cases}$$

Теоретический материал

Исключая из полученной системы производную по t, можно перейти к следующему уравнению: $\frac{dr}{d\theta} = \frac{r}{\sqrt{n^2-1}}$

Начальные условия остаются прежними. Решив это уравнение, мы получим траекторию движения катера в полярных координатах.

Условие задачи

Уточним условия задачи: На море в тумане катер береговой охраны преследует лодку браконьеров. Через определенный промежуток времени туман рассеивается, и лодка обнаруживается на расстоянии 20.1 км от катера. Затем лодка снова скрывается в тумане и уходит прямолинейно в неизвестном направлении. Известно, что скорость катера в 5 раза больше скорости браконьерской лодки

Результаты

Figure 1: траектории для случая 1

точка пересечения катера и лодки

$$\begin{cases} \theta = 315 \\ r = 6.43 \end{cases}$$

Результаты

Figure 2: траектории для случая 2

точка пересечения катера и лодки

$$\begin{cases} \theta = 315 \\ r = 8.11 \end{cases}$$

Выводы по проделанной работе

Выводы

Мы рассмотрели задачу о погоне катера за лодкой, научились применять ранее изученные дисциплины, написали код программы, который позволяет проанализировать смоделированные ситуации. Сделали вывод с помощью моделей.