Name:

Abstract Algebra (Math 3063) Midterm Exam II - Take Home

PROFESSOR PAUL BAILEY FRIDAY, APRIL 3, 2009

Due Friday, April 10, 2009.

Please write neatly, in complete sentences. Attach this sheet to your solutions.

Problem 1. Let p be a positive odd integer.

- (a) How many p-cycles are in A_p ?
- (b) How many distinct cyclic subgroups of order p are in A_p ?

Problem 2. Let p be a positive prime integer and define

$$\phi: \mathbb{Z}_p \to \mathbb{Z}_p$$
 by $\phi(a) = a^p$.

- (a) Show that ϕ is bijective.
- **(b)** Show that $\phi(ab) = \phi(a)\phi(b)$.
- (c) Show that $\phi(a+b) = \phi(a) + \phi(b)$ (hint: use the binomial theorem).

Problem 3. Let G be a group and let $H = \{h \in G \mid h = g^2 \text{ for some } g \in G\}$. Suppose that $H \leq G$.

- (a) Show that $H \triangleleft G$.
- (b) Show that G/H is abelian.

Problem 4. Consider the groups \mathbb{R} under addition and $GL_2(\mathbb{R})$ under matrix multiplication. Let

$$M = \left\{ A \in \mathbf{SL}_2(\mathbb{R}) \mid A = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \right\}.$$

- (a) Show that $\phi : \mathbb{R} \to \mathbf{GL}_2(\mathbb{R})$ given by $\phi(x) = \begin{bmatrix} \cos x & -\sin x \\ \sin x & \cos x \end{bmatrix}$ is a group homomorphism.
- **(b)** Show that $\phi(\mathbb{R}) = M$.
- (c) Conclude that $M \leq \mathbf{SL}_2(\mathbb{R})$ and that $M \cong \mathbb{R}/2\pi\mathbb{Z}$.

Problem 5. Let $X \subset \mathbb{R}^2$ be a subset of the cartesian plane. If $\vec{v}, \vec{w} \in X$, the distance between \vec{v} and \vec{w} is denoted $d(\vec{v}, \vec{w})$. An isometry of X is a function $f: X \to X$ which preserves the distance between any to points, so that

$$d(\vec{v}, \vec{w}) = d(f(\vec{v}), f(\vec{w})).$$

Let

$$Iso(X) = \{ f : X \to X \mid f \text{ is an isometry} \}.$$

This is a group under composition.

For example, if X is a square, the isometries of X are rotations and reflections, and Iso(X) \cong D₄; that is, the group of isometries of X is isomorphic to the dihedral group on 4 points.

Describe Iso(X) (number of elements, elements and their orders, how elements interact, interesting subgroups, etc.) in each of these cases

(a)
$$X = \{(x, y) \in \mathbb{R}^2 \mid y = x^2\}$$
 (a parabola)

(b)
$$X = \{(x, y) \in \mathbb{R}^2 \mid \frac{x^2}{9} + \frac{y^2}{4} = 1\}$$
 (an ellipse)

(c)
$$X = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$$
 (a circle)

(d)
$$X = \{(x, y) \in \mathbb{R}^2 \mid y = \tan(x)\}$$