

IEL – protokol k projektu

Jméno, příjmení login

4. října 2023

Obsah

1	Příklad 1	2
2	Příklad 2	3
3	Příklad 3	4
4	Příklad 4	5
5	Příklad 5	6
6	Shrnutí výsledků	7

Stanovte napětí U_{R2} a proud I_{R2} . Použijte metodu postupného zjednodušování obvodu.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$	$R_7 [\Omega]$	$R_8 [\Omega]$
A	80	120	350	650	410	130	360	750	310	190

Stanovte napětí U_{R6} a proud $I_{R6}.$ Použijte metodu Théveninovy věty.

sk.	U[V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$
\mathbf{E}	250	150	335	625	245	600	300

Stanovte napětí U_{R4} a proud I_{R4} . Použijte metodu uzlových napětí $(U_A,\,U_B,\,U_C)$.

sk.	U[V]	I_1 [A]	I_2 [A]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$
${ m E}$	135	0.55	0.65	52	42	52	42	21

Pro napájecí napětí platí: $u_1 = U_1 \cdot \sin(2\pi f t)$, $u_2 = U_2 \cdot \sin(2\pi f t)$. Ve vztahu pro napětí $u_{L_2} = U_{L_2} \cdot \sin(2\pi f t + \varphi_{L_2})$ určete $|U_{L_2}|$ a φ_{L_2} . Použijte metodu smyčkových

proudů.

Pozn: Pomocné směry šipek napájecích zdrojů platí pro speciální časový okamžik $(t=\frac{\pi}{2\omega}).$

									200
sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	L_1 [mH]	$L_2 [\mathrm{mH}]$	C_1 [μ F]	C_2 [μ F]	f [Hz]
В	2	4	11	15	100	85	220	95	80

V obvodu na obrázku níže v čase t=0 [s] sepne spínač S. Sestavte diferenciální rovnici popisující chování obvodu na obrázku, dále ji upravte dosazením hodnot parametrů. Vypočítejte analytické řešení $u_C=f(t)$. Proveďte kontrolu výpočtu dosazením do sestavené diferenciální rovnice.

	sk.	U[V]	C[F]	$R\left[\Omega\right]$	$u_C(0)$ [V]
	F	22	10	5	8
	F	}			
t = 0 s					
s	-34		С.		
	P	=	<u> </u>		
			\		
υ	\triangle				
1 -	$\overline{}$				

Shrnutí výsledků

Příklad	Skupina	Výsledky
1	A	$U_{R2} = I_{R2} =$
2	E	$U_{R6} = I_{R6} =$
3	E	$U_{R4} = I_{R4} =$
4	В	$ U_{L_2} = \varphi_{L_2} =$
5	F	$u_C =$