

STOR 320 Introduction to Data Science

Lecture 1 Yao Li

Department of Statistics and Operations Research UNC Chapel Hill

Instructor

Name: Yao Li

• Email: <u>yaoli@email.unc.edu</u>

Office: Hanes 334

Office hours: Wednesday 9:00AM to 11:00AM

Personal website: https://liyao880.github.io/yaoli/

Course website: https://liyao880.github.io/stor320/

 Research interest: adversarial deep learning, backdoor learning, large language models, computational pathology

Survey Results

In what lab section are you registered?
45 responses

Actual Distribution

Lab session	Number of Students		
320.404	30		
320.405	29		
320.406	28		
320.407	19		

Survey Results

What is your experience with R?

45 responses

Survey Results

What do you plan to pursue after graduation? 45 responses

- Job Not in Field Related to Data Science
- Job in Field Related to Data Science
- Master's Degree
- Doctoral Degree
- Medical, Pharmaceutical, Dental,
 Nursing, or Veterinary Degree

Instructional Assistant

- Jack McPherson (404, 405, 406, 407)
 - Email: jackrymc@unc.edu

Office: Hanes B30

Office Hours: TTH 11:00 AM- 12:00 PM

Lectures and Labs

• Lectures MWF 1:25 PM - 2:15 PM

Labs

• 404: T 12:30PM – 1:20PM, HN107

• 405: TH 12:30PM – 1:20PM, HN107

• 406: T 2:00PM – 2:50PM, HN107

• 407: TH 2:00PM – 2:50PM, HN107

Email Christine (<u>crikeat@email.unc.edu</u>)

Outline

Administrative details

What's the course about?

• Introduction to R

Instruction

- This will be an in-person course:
 - a) No chat in class;
 - b) lectures and labs will be held on campus;
 - a) Office hours will be in-person;
 - b) laptop is required.

Questions and Class Participation

- Three ways to ask questions:
 - ➤ ask questions in class;
 - >come to office hours;
 - right send an email to the instructor or the IA.
- Class participation:
 - answer questions to get class participation grades;
 - \geq 2.5 points each time.

Grading

Class Participation	5%
Labs	20%
Homework	45%
Final Project	30%

A	94 to 100	В	83 to 86.99	С	73 to 76.99	D	60 to 66.99
A-	90 to 93.99	B-	80 to 82.99	C-	70 to 72.99	F	0 to 59.99
B+	87 to 89.99	C+	77 to 79.99	D+	67 to 69.99		

Homework and Labs

Around 7 homework assignments and 4 data analysis assignments.
 They will be posted on Canvas and there will be about one week to complete the homework and about two weeks to complete data analysis assignments.

- Lab assignment:
 - Due 30 minutes after the lab ends.
 - No late submission will be accepted.
 - will be based on the topics discussed in lecture or related to your final project.

Project

• For the final project, each section of STOR 320 will be divided into research groups of size 4 or 5. To ensure fairness, students will be assigned randomly based on lab session.

• The groups will be assigned by August 29, 2025 (Friday) and you can find your group on the course website.

Project

Project proposal	10%
Exploratory data analysis	20%
Final report	40%
Final presentation	30%

Important dates

Project proposal	September 21
Exploratory data analysis	Oct 26
Final report	Dec 5
Final Presentation	Nov 21, Nov 24, Dec 1, Dec 3

What is data science?

Wickham and Grolemund (2017)

The model of data science

- First we must *import* our data.
- Tidy data → consistent structure
- Transformation:
 - narrowing in on observations of interest
 - creating new variables
 - calculating a set of summary statistics

The model of data science

- Visualization: show you things that you did not expect or raise new questions about the data.
- Use a model to answer your questions
- Communication: an absolutely critical part of any data analysis project.
- Surrounding all these tools is programming.

R and RStudio

Why R?

- Easy to learn and easy to use.
- Very popular and one of the standard languages for statistics, data science, computational biology, finance, industry, etc.
- Free and open-source.
- A lot of high-quality packages.
- New technology and ideas often appear first in R.
- Supported by a vast community that maintains and updates R.
- Runs on basically any platform.

Learning Programming

Transfer the concepts to other languages

 How you approach a computational task and reason about the computations is similar

Learning another programming language will be much easier in the future

Statistical Learning

- Linear regression.
- Classification (logistic regression, LDA, K-nearest neighbors).
- Cross-validation and bootstrap.
- Principal component analysis.
- Clustering methods (K-means clustering and hierarchical clustering).
- Recommender systems.
- Neural networks.

Textbooks

• *R for Data Science*. Hadley Wickham. Legally free online, but can be purchased for less than \$40 on Amazon. Additional suggested texts are provided on the website. All texts used in this course are free and downloadable from course website.

• The elements of statistical learning: data mining, inference, and prediction. Hastie, Trevor, Robert Tibshirani, and Jerome Friedman.