# 1. Gaussian Process for Regression

(1) (2) Plot the prediction result





0.2

0.0

0.4

(3) Show the corresponding root-mean-square errors

0.6

0.8

1.0

[0, 0, 0, 1]
Training RMSE = 3.1292014298222437
Testing RMSE = 3.3443986601861146

[1, 16, 0, 0] Training RMSE = 2.4239279278312194 Testing RMSE = 2.668051750252446

[1, 16, 0, 4] Training RMSE = 2.4105764871252053 Testing RMSE = 2.656998000166914 [1, 64, 32, 0]
Training RMSE = 1.0428861621832162
Testing RMSE = 1.1627590936118706

(4)

我使用的是 trial and error 來調整看看超參數。我先把全部的參數都調成 64 嘗試看看,結果如下。



[64, 64, 64, 64] Training RMSE = 0.6989589734393324 Testing RMSE = 1.0781207291422465

可以發現結果表現並不差。而從上題可以發現,助教給的第四個參數通常都很小,因此我懷疑它不是個重要的參數,調成 0 來嘗試看看,結果如下。



[64, 64, 64, 0] Training RMSE = 0.6990244741065749 Testing RMSE = 1.0767940009808907

發現結果是差不多的,但根據之前所學,他很有可能是 regularization項,因此我決定把它都設為 1。同樣的,第一個參數似乎也都不大,我嘗試看看把它設成 1,結果如下。



[1, 64, 64, 1] Training RMSE = 1.041891402963529 Testing RMSE = 1.1618014328537425

結果表現變得比較差,所以我決定還是將前三個參數一起調整。而現在 嘗試看看調成更大的數 128,結果如下。



[128, 128, 128, 1] Training RMSE = 0.6739860328758832 Testing RMSE = 1.076624364195028

結果似乎又更好了一點,若是再調大數字,或許結果會更好,我再將數字調成 256,結果如下。



[256, 256, 256, 1] Training RMSE = 0.6134016439363199 Testing RMSE = 1.189664930176389

可發現產生了 over-fitting 的現象,代表參數也不能設太大。於是我選用[128,128,128,0]作為模型較好的超參數。

(5) Explain your findings and make some discussion. 藉由實際調整參數可發現其對模型影響的重要程度,若參數太小很難去 fit training data,而太大又會造成 over-fitting 的結果,引此求得最佳 超參數十分重要。第四個超參數看起來雖然不重要,但根據之前所學,或許它具有 regularization 的功能,避免模型過度擬合。

## Support Vector Machine

(1)

one-versus-the-rest:

訓練時將某個類別的樣本歸為一類,其餘樣本歸為另一類。因此有 K 個類別就建構出 K 個 SVM 模型。分類時再計算樣本與每類的相關值,最大即為該類。此種方法可能存在 Bias。

one-versus-one:

訓練時在任一兩類樣本之間設計 SVM,因此當有 K 個類別樣本時就需

要(K-1)K/2 個 SVM 模型。分類時在各模型間計算獲得最多分數的即為該類。在類別較多時模型數跟計算量可能會較大。

在此題只有 3 類且資料量不算太大的情況下兩種方法表現是差不多的, 我自己選用 ovo 來完成此題。

#### (2) Linear kernel



(3) Polynomial kernel (degree = 2)



(4)

比較兩結果可發現使用 polynomial kernel 在分類上有更精細的分法,而 linear 則較為單一。根據之前學到的,可能是 polynomial kernel 裡的非線性運算能讓資料在分類上,有著更好的表現。

## 3. Gaussian Mixture Model

K = 3:

| K- | K-means K=3 |     |     | GMM K=3 |     |     |     |  |
|----|-------------|-----|-----|---------|-----|-----|-----|--|
|    | R           | G   | В   |         | R   | G   | В   |  |
| 0  | 73          | 66  | 52  | 0       | 80  | 67  | 58  |  |
| 1  | 194         | 195 | 182 | 1       | 128 | 131 | 124 |  |
| 2  | 133         | 126 | 104 | 2       | 137 | 125 | 87  |  |
|    |             |     |     |         |     |     |     |  |







K = 5:

| K- | means | K=5 | GMM K=5 |               |  |  |  |  |
|----|-------|-----|---------|---------------|--|--|--|--|
|    | R     | G   | В       | R G B         |  |  |  |  |
| 0  | 213   | 217 | 210     | 0 160 165 165 |  |  |  |  |
| 1  | 169   | 167 | 147     | 1 141 151 112 |  |  |  |  |
| 2  | 59    | 52  | 39      | 2 79 65 58    |  |  |  |  |
| 3  | 93    | 86  | 69      | 3 74 71 60    |  |  |  |  |
| 4  | 133   | 125 | 103     | 4 126 111 85  |  |  |  |  |

image GMM K = 5





K = 7:

| Κ- | means | K=7 | GMM K=7 |   |     |     |     |  |
|----|-------|-----|---------|---|-----|-----|-----|--|
|    | R     | G   | В       |   | R   | G   | В   |  |
| 0  | 49    | 42  | 30      | 0 | 70  | 62  | 38  |  |
| 1  | 186   | 189 | 175     | 1 | 153 | 165 | 164 |  |
| 2  | 76    | 68  | 56      | 2 | 76  | 63  | 56  |  |
| 3  | 103   | 96  | 77      | 3 | 106 | 96  | 81  |  |
| 4  | 160   | 156 | 132     | 4 | 126 | 130 | 73  |  |
| 5  | 133   | 125 | 103     | 5 | 155 | 141 | 114 |  |
| 6  | 225   | 229 | 225     | 6 | 161 | 166 | 168 |  |





K = 10:

| K-means |   | means | K=10 | 9 ( |  |   | GMM K=10 |     |     |  |
|---------|---|-------|------|-----|--|---|----------|-----|-----|--|
|         |   | R     | G    | В   |  |   | R        | G   | В   |  |
|         | 0 | 90    | 84   | 69  |  | 0 | 87       | 84  | 72  |  |
|         | 1 | 231   | 233  | 229 |  | 1 | 227      | 228 | 228 |  |
|         | 2 | 44    | 38   | 25  |  | 2 | 62       | 55  | 35  |  |
|         | 3 | 199   | 184  | 130 |  | 3 | 126      | 130 | 71  |  |
|         | 4 | 188   | 195  | 192 |  | 4 | 173      | 179 | 170 |  |
|         | 5 | 155   | 139  | 103 |  | 5 | 161      | 147 | 116 |  |
|         | 6 | 151   | 159  | 157 |  | 6 | 149      | 153 | 151 |  |
|         | 7 | 118   | 124  | 122 |  | 7 | 115      | 121 | 124 |  |
|         | 8 | 70    | 62   | 49  |  | 8 | 78       | 65  | 58  |  |
|         | 9 | 119   | 108  | 82  |  | 9 | 126      | 107 | 83  |  |
|         |   |       |      |     |  |   |          |     |     |  |

image GMM K = 10





### 再補上 K-means 的圖:

image K-means K = 3



image K-means K = 5



image K-means K = 7



image K-means K = 10



(5)

由觀察可發現,K值是影響輸出圖像非常關鍵的因素。當 K值越來越大時,成像越清晰,Log likelihood 也較大。