

«Московский государственный технический университет имени Н.Э. Баумана» (национальный исследовательский университет) (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ФУНДАМЕНТАЛЬНЫЕ НАУКИ

КАФЕДРА ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА И МАТЕМАТИЧЕСКАЯ ФИЗИКА (ФН11)

НАПРАВЛЕНИЕ ПОДГОТОВКИ МАТЕМАТИКА И КОМПЬЮТЕРНЫЕ НАУКИ (02.03.01)

Отчет

по лабораторной работе № 3

Название лабораторной работы: Моделирование выборки из абсолютно непрерывного закона распределения методом обратных функций.

Вариант № 9

Дисциплина:

Теория вероятности и математическая статистика

Студент группы ФН11-52Б		<u>Очкин Н.В.</u>
	(Подпись, дата)	(И.О. Фамилия)
Преподаватель		Облакова Т.В.
•	(Подпись, дата)	(И.О. Фамилия)

Содержание

1	Зад	ание			1
2	Исх	одные	данны	е	1
3	Pen	цение			1
	3.1	Часть	1		1
		3.1.1	Функци	я распределения	1
		3.1.2	Обратна	ая функция	3
			3.1.2.1		3
			3.1.2.2		3
		3.1.3	Реализа	ция численного нахождения обратной	
			функци	и	4
			3.1.3.1	Реализация метода центральных разностей	4
			3.1.3.2	Реализация метода Ньютона	4
			3.1.3.3	Реализация нахождения обратной функции	5
		3.1.4	Генерац	ия псевдослучайных чисел	5
			3.1.4.1	Линейный конгруэнтный метод	5
			3.1.4.2		6
			3.1.4.3	Моделирование выборки	6
	3.2	Часть	2		8
		3.2.1	Первона	ачальная обработка полученных статистиче-	
			ских да	нных	8
			3.2.1.1	Крайние члены вариационного ряда и раз-	
				мах выборки	8
			3.2.1.2	Группировка данных	9
1	Сп	ACOK M	спользо	ванных истоиников	11

1 Задание

- 1. Для данного n методом обратных функций смоделируйте выборку из закона распределения с заданной плотностью p(x).
- 2. Для полученной выборки найдите гистограмму относительных частот. Постройте на одном рисунке графики теоретической плотности p(x) и гистограмму относительных частот.
- 3. Вычислите выборочное среднее и выборочную дисперсию и сравните с истинными значениями этих характеристик.
- 4. Используя неравенство Dvoretzky-Kiefer-Wolfowitz, постройте 90% доверительный интервал для функции распределения F(x).

Приведите графическую иллюстрацию

2 Исходные данные

Вариант: 9
$$n:120$$

$$p(x) = \frac{1}{\sqrt{0.4\pi}x} e^{-(\ln x - 2)^2/0.4}, \quad x > 0$$
 (1)

3 Решение

3.1 Часть 1

Для данного n методом обратных функций смоделируйте выборку из закона распределения с заданной плотностью p(x).

3.1.1 Функция распределения

Найдем функцию распределения:

$$F_X(x) = \int_{-\infty}^x f_X(t)dt$$
, где (2)

 $f_X(x)$ - плотность распределения.

Подставим (1) в (2):

$$F_X(x) = \int_0^x \frac{1}{\sqrt{0.4\pi y}} e^{-(\ln y - 2)^2/0.4} dy =$$

$$= \begin{bmatrix} t = \frac{\ln(y) - 2}{\sqrt{0.4}} & dt = \frac{1}{y\sqrt{0.4}} dy \\ \ln(y) - 2 = t\sqrt{0.4} & dy = y\sqrt{0.4} dt \\ \ln(y) = t\sqrt{0.4} + 2 & x : t = \frac{\ln(x) - 2}{\sqrt{0.4}} \\ y = \exp\left[t\sqrt{0.4} + 2\right] & 0 : t = -\infty \end{bmatrix} =$$

$$= \frac{1}{\sqrt{0.4\pi}} \int_{-\infty}^{\frac{\ln(x) - 2}{\sqrt{0.4}}} e^{\left[-t\sqrt{0.4} - 2\right]} \cdot e^{-t^2} \cdot e^{\left[t\sqrt{0.4} + 2\right]} \cdot \sqrt{0.4} dt =$$

$$= \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\frac{\ln(x) - 2}{\sqrt{0.4}}} e^{-t^2} dt = \frac{1}{\sqrt{\pi}} \left(\int_{-\infty}^0 e^{-t^2} dt + \int_0^{\frac{\ln(x) - 2}{\sqrt{0.4}}} e^{-t^2} dt \right) =$$

$$= \frac{1}{\sqrt{\pi}} \left(\frac{\pi}{2} \operatorname{erf}(t) \Big|_{-\infty}^0 + \frac{\sqrt{\pi}}{2} \cdot \operatorname{erf}\left(\frac{\ln(x) - 2}{\sqrt{0.4}}\right) \right) \Leftrightarrow$$

где erf(x) - **функция ошибок** (также называемая функция ошибок Гаусса).

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

Примечание: из графика видно, что $\operatorname{erf}(0)=0,\,\operatorname{erf}(-\infty)=-1$

В конечном итоге, функция распределения имеет вид

$$F_X(x) = \frac{1}{2} + \frac{1}{2} \operatorname{erf}\left(\frac{\ln(x) - 2}{\sqrt{0.4}}\right)$$
 (3)

3.1.2 Обратная функция

Так как для нахождения обратной функции распределения требуется найти обратную функцию ошибок, что аналитически сделать сложно, воспользуемся численными методами.

3.1.2.1 Метод Ньютона

Для нахождения обратной функции воспользуемся методом касательных (Ньютона). Рабочая формула

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Вообще говоря, метод используется для нахождения корня заданной функции. Так что для нахождения обратной функции y = f(x), т.е. $x = f^{-1}(y)$ будем искать решение уравнения: f(x) - y = 0

$$x_{n+1} = x_n - \frac{f(x_n) - y}{(f(x_n) - y)'_x} = x_n - \frac{f(x_n) - y}{f'(x_n)}$$
(4)

Погрешность ε возьмем равной 1e-6.

3.1.2.2 Метод центральных разностей

Производные будем искать методом центральных разностей. Рабочая формула

$$f'(x) \approx \frac{f(x+h) - f(x-h)}{2h} \tag{5}$$

Погрешность определяется как O(h), h примем равной 1e-6.

Подставив (5) в (4), получим:

$$x_{n+1} = x_n - \frac{(f(x_n) - y) \cdot 2h}{f(x_n + h) - f(x_n - h)}$$
(6)

3.1.3 Реализация численного нахождения обратной функции

3.1.3.1 Реализация метода центральных разностей

Реализуем на языке программирования python метод центральных разностей (5):

Листинг 1: Реализация метода центральных разностей

class CDM:

$$\begin{aligned} \textbf{def} & \text{ diff (self , f, x):} \\ & \text{numerator } = f(x + self.h) - f(x - self.h) \\ & \text{denominator } = 2 * self.h \end{aligned}$$

return numerator / denominator

f x = self.f(x) - y

if abs(f prime x) < 1e-10:

3.1.3.2 Реализация метода Ньютона

Теперь реализуем метод Ньютона (4), используя метод центральных разностей (листинг 1):

Листинг 2: Реализация метода Ньютона

class Newton:

f prime x = self.CDM.diff(self.f, x)

```
raise ValueError("Derivative_is_zero,_method_fails.")
x_new = x - f_x / f_prime_x
if abs(x_new - x) < self.tol:
    return x_new
x = x_new
raise ValueError(f"Method_did_not_converge.({x new})")</pre>
```

3.1.3.3 Реализация нахождения обратной функции

В конечном итоге получим:

Листинг 3: Реализация нахождения обратной функции

```
if __name__ == '__main___':

def cdf(x): \# F_X

return float(1/2 + 1/2 * \
    scipy.special.erf((np.log(x) - 2)/(np.sqrt(0.4))))

cdm = CDM(h=1e-6)
    newton = Newton(cdf, cdm, tol=1e-6, max_iter=1000)

def inverse(y, x0): \# x = f^-1(y)
    return newton.solve(y, x0)
```

где

функция cdf - программная запись, найденной ранее функции распределения (3); функция inverse - функция, возвращающее значение обратной функции к (3) в точке.

Примечание: Библиотеки scipy и numpy используются только для доступа к функции ошибок, натуральному логарифму и квадратному корню.

3.1.4 Генерация псевдослучайных чисел

3.1.4.1 Линейный конгруэнтный метод

Для генерации случайных величин воспользуемся одним из методов генерации псевдослучайных чисел - **Линейным конгруэнтным методом**.

Суть метода заключается в вычислении последовательности случайных чисел X_n , полагая

$$X_{n+1} = (aX_n + c) \bmod m, \quad \text{где}$$
 (7)

```
m - модуль (m \ge 2); a - множитель (0 \le a < m); c - приращение (0 \le c < m); X_0 - начальное значение (0 \le X_0 < m).
```

За значениями параметров обратимся к [1].

$$m = 2^{(60)} - 93$$
 $a = 561860773102413563$ $c = 0.$ (8)

В случае когда c=0, метод называют **мультипликативным конгруэнтным методом**.

3.1.4.2 Реализация ЛКМ

Реализуем линейный конгруэнтный метод (7), используя параметры (8):

Листинг 4: Реализация ЛКМ

3.1.4.3 Моделирование выборки

Наконец смоделируем 120 случайных величин в виде вектора линейным конгруэнтным методом:

```
n = 120
lcg = LCG(seed=42)

data = [lcg.next() for _ in range(n)]
print(data)
```

Начальное значение (seed) в ЛКМ выбирается так, чтобы $x_0 \neq 0$. Это необходимо для того, чтобы последовательность была полной длины, т.е. имела максимальную периодичность при генерации чисел. Обычно используют случайное или произвольно выбранное значение из множества $\{1, ..., m-1\}$ [1].

$$Y = [\\ 0.4681345399559361, & 0.28877877653947137, & 0.7967245668609647, & 0.36660207712361836, \\ 0.39916205448514674, & 0.06733862417721515, & 0.4490674222045938, & 0.5437707128785809, \\ 0.44328418118099794, & 0.10138307777823315, & 0.33969527114335946, & 0.05922435108111392, \\ 0.7992621310298111, & 0.4096856372108328, & 0.9369160399669172, & 0.63015184507485, \\ \dots$$

Теперь пересчитаем полученный вектор случайных величин, в соответствии с функцией inverse из листинга 3.

Однако сперва подеберем вектор начальных приближений, так как того требует метод Ньютона.

Из графика видно, что функция (3) приблизительно принимает значения 0 < x < 20 при 0 < y < 1. Исходя из этого подберем вектор начальных приближений: [0, 3, 6, 9, 12, 15, 18, 21].

Итого имеем:

```
guesses = [0, 3, 6, 9, 12, 15, 18, 21]
for ind, el in enumerate(data):
    for attempt, guess in enumerate(guesses):
        try:
        inv_value = inverse(el, guess)
        data[ind] = inv_value
        break
```

```
except:
    pass

if attempt == len(guesses) - 1:
    raise Exception('Solution_was_not_found')
```

$$X = [$$

7.129497868653516,	5.75990939608953,	10.709998315639028,	6.344319895512703,
6.591160899999072,	3.784860187755976,	6.977904630768007,	7.761423453312197,
6.932399313501684,	4.180285314129899,	6.14211341489262,	3.6757503707970156,
10.753239775187453,	6.671716126948868,	14.643019921504544,	8.572755366367943,

...]

3.2 Часть 2

Для полученной выборки найдите гистограмму относительных частот. Постройте на одном рисунке графики теоретической плотности p(x) и гистограмму относительных частот.

3.2.1 Первоначальная обработка полученных статистических данных

3.2.1.1 Крайние члены вариационного ряда и размах выборки

Найдем крайние члены вариационного ряда как минимальное и максимальное значения набора данных, а также размах выборки, как их разницу:

```
mini, maxi = min(data), max(data)
print(mini, maxi)

range_ = maxi - mini
print(range_)
```

Крайние члены: 3.1658, 36.3487

Размах выборки: 33.1829

Примечание: Выводимые данные округлены до 4х знаков для удобства чтения.

3.2.1.2 Группировка данных

Для начала определим количество интервалов, воспользовавшись правилом Стерджеса:

$$k = 1 + \lfloor \log_2 n \rfloor,$$

где n — общее число наблюдений величины, \log_2 — логарифм по основанию 2, |x| — обозначает целую часть числа x.

И определим шаг интервала разделив размах выборки на количество интервалов:

```
 \begin{array}{l} trunc = \textbf{lambda} \ x : \ \textbf{int}(\textbf{str}(x)[:\textbf{str}(x).index('.')]) \\ k = 1 + trunc(np.log2(n)) \\ h = range\_ \ / \ k \end{array}
```

Количество интервалов: 7

Шаг интервала: 4.7404

Теперь сгруппируем данные:

```
grouped_data = []
begin = mini
for i in range(k):
    end = begin + h
    middle = (begin + end) / 2
    freq = sum(begin <= el < end for el in data)
    if i = k - 1:
        freq += 1
    relative freq = freq / n
    grouped_element = {
        'interval_numero': i,
        'interval': f'[{begin},_{end})',
        'middle': middle,
        'frequency': freq,
        'relative_frequency': relative_freq
    }
```

 $grouped_data.append(grouped_element)$ begin = end

Полученную группировку представим в виде таблицы:

номер	интервал	интервал середина частота	частота	относительная
интервала		интервала	1001010	частота
0	[3.1658, 7.9062)	5.5360	69	0.575
1	[7.9062, 12.6466)	10.2764	36	0.3
2	[12.6466, 17.3870)	15.0168	10	0.08333
3	[17.3870, 22.1274]	19.7572	3	0.025
4	[22.1274, 26.8679)	24.4977	1	0.00833
5	[26.8679, 31.6083)	29.2381	0	0.0
6	[31.6083, 36.3487)	33.9785	1	0.00833

Таблица 1: Сгруппированные данные

4 Список использованных источников

1. L'Ecuyer, Pierre (January 1999). "Tables of Linear Congruential Generators of Different Sizes and Good Lattice Structure C. 256