化学中的数学

蒋然 王崇斌

2021年2月21日

目录

4 目录

Chapter 1

Hamilton 运动方程

1.1 20200925: 正则方程

经典力学中常用的独立变量为位置 x 和动量 p, 且满足关系

$$\dot{x} = \frac{p}{m}$$

$$\dot{p} = -\frac{\partial V}{\partial x}$$

首先研究 HCl 分子。每个原子的坐标有 3 个自由度,总共是 6 个自由度。而这个分子总体有 3 个平动自由度,2 个转动自由度,还剩余 1 个振动自由度。振动自由度的能量由**势能** 面来描述。势能面是两个原子的距离 r 的函数,且

$$\lim_{r \to \infty} V(r) = 0$$

当 r 减小时,势能逐渐减小,有一个极小值,对应的两原子距离称为平衡位置 r_{eq} , 然后再减小 r 时,势能增大,最后达到

$$\lim_{r \to 0^+} V(r) = +\infty$$

实际上在平衡位置附近,我们把这个振动自由度近似为谐振子模型。通过改变势能零点的定义,我们总可以把势能写为

$$V(r) = \frac{1}{2}k(r - r_{\rm eq})^2$$

根据势能的形式可以写出力的形式

$$F = -\frac{\partial V}{\partial r} = -k(r - r_{\rm eq})$$

做变换 $x = r - r_{eq}$,可以将势能写为

$$V(x) = \frac{1}{2}kx^2$$

也可以将位置和动量对时间导数写为

$$\dot{x} = \frac{p}{m}$$

$$\dot{p} = -kx$$

现在求解这个运动方程:

$$\ddot{x} = \frac{\dot{p}}{m} = -\frac{kx}{m}$$

这是一个二阶常微分方程, 求解得到通解

$$x = A\cos\omega t + B\sin\omega t$$
$$p = -Am\omega\sin\omega t + Bm\omega\cos\omega t$$

其中 $\omega = \sqrt{\frac{k}{m}}$. 如果给定初始条件

$$x(0) = x_0$$
$$p(0) = p_0$$

将这两个方程代入到通解中,得到

$$x = x_0 \cos \omega t + \frac{p_0}{m\omega} \sin \omega t$$
$$p = p_0 \cos \omega t - m\omega x_0 \sin \omega t$$

体系的 Hamilton 函数为

$$H(x, p, t) = \frac{p^2}{2m} + V(x)$$

现在希望验算

$$H(x, p, t) = H(x, p, 0), \quad \forall t$$

3

为了证明这个成立,首先可以推导正则方程:

$$\begin{split} \frac{\partial H}{\partial x} &= \frac{\partial V}{\partial x} = -\dot{p} \\ \frac{\partial H}{\partial p} &= \frac{p}{m} = \dot{x} \end{split}$$

因此

$$\frac{\mathrm{d}H}{\mathrm{d}t} = \frac{\partial H}{\partial x}\dot{x} + \frac{\partial H}{\partial p}\dot{p} + \frac{\partial H}{\partial t} = \frac{\partial H}{\partial t}$$

这个结论对任意正则方程成立的体系都成立。在谐振子模型中,Hamilton 函数不显含时间, 故

$$\frac{\mathrm{d}H}{\mathrm{d}t} = 0$$

这个体系可以在**相空间**中描述,即把它的状态画在一个 (x,p) 的二维空间中,观察它随时间的变化。显然地谐振子体系在相空间中的轨迹应该是一个椭圆。

$$\frac{p^2}{2m} + \frac{1}{2}kx^2 = E_0$$

其周期为

$$T = \frac{2\pi}{\omega}$$

但是,对于任意的满足能量守恒的体系,其在相空间中的轨迹不一定是一条封闭的曲线,在一些情况下有可能充满相空间的某个区域。[?]

作业1 第 1 次作业第 1 题: 一维四次势的周期轨道

现在考虑质量是 x, p 的函数 $m_{\text{eff}}(x, p)$, 在这种情况下 Hamilton 函数为

$$H(x,p) = \frac{p^2}{2m_{\rm eff}(x,p)} + V(x)$$

在这种情况下的运动方程为

$$\begin{split} \dot{x} &= \frac{\partial H}{\partial p} = \frac{p}{2m_{\rm eff}} - \frac{p^2}{2m_{\rm eff^2}} \frac{\partial m_{\rm eff}}{\partial p} \\ \dot{p} &= -\frac{\partial H}{\partial x} = \frac{p^2}{2m_{\rm eff}^2} \frac{\partial m_{\rm eff}}{\partial x} + \frac{\partial V}{\partial x} \end{split}$$

这种情况下能量仍然守恒,因为 Hamilton 函数不显含时间,且正则方程成立。

作业2 第 1 次作业第 2 题: 竖立粉笔的问题

Chapter 2

Liouville 定理

2.1 20200928: 相空间不同时刻体积元的关系

匀变速直线运动,应当有

$$x(t) = x(0) + vt + \frac{1}{2}at^{2}$$
$$= x(0) + \dot{x}t + \frac{1}{2}\ddot{x}t^{2}$$

这相当于位置对时间作了 Taylor 展开,展开到二阶。但是为什么只考虑前两阶,而不考虑后面的项呢?

可以这样考虑:在给定了Hamilton函数的情形下,正则方程最多只涉及到对时间的二阶导数,最终解出位置对时间的函数,以及动量对时间的函数只有两个待定常数,因此只用位置和动量初始的条件。

现在开始研究一个多维体系,它的位置和动量分别不是一个标量,而是一个向量 x, p. 如果系统的在 t 时刻的状态 (x_t, p_t) 对应一个相空间中的体积元: $dx_t dp_t$ 。如果给定初始条件 (x_0, p_0) ,希望在正则方程成立的条件下,能够确定 0 时刻和 t 时刻的相空间体积元的关系。这个问题可以等效地理解为,将初始条件产生一个很小的偏差 (dx_0, dp_0) ,要求在 t 时刻的偏差和初始条件的关系。

这实际上给出了两种研究问题的办法:一种是参考系不动,一种是参考系随着时间跟踪 系统在相空间中的轨线进行运动。

对于任意个不显含时间的函数 $f(x_t, p_t)$, 它和 $f(x_0, p_0)$ 的关系为:

$$\int f(\boldsymbol{x}_t, \boldsymbol{p}_t) \mathrm{d}\boldsymbol{x}_t \mathrm{d}\boldsymbol{p}_t = \int f(\boldsymbol{x}_0, \boldsymbol{p}_0) \left| \frac{\partial(\boldsymbol{x}_t, \boldsymbol{p}_t)}{\partial(\boldsymbol{x}_0, \boldsymbol{p}_0)} \right| \mathrm{d}\boldsymbol{x}_0 \mathrm{d}\boldsymbol{p}_0$$

由此可知,算出 Jacobi 行列式的值是非常重要的。Jacobi 行列式的对应矩阵写为

$$\begin{pmatrix} \frac{\partial x_t}{\partial x_0} & \frac{\partial x_t}{\partial p_0} \\ \frac{\partial p_t}{\partial x_0} & \frac{\partial p_t}{\partial p_0} \end{pmatrix}$$

我们可以把t时刻的状态写成初始条件的函数:

$$egin{aligned} oldsymbol{x}_t &= oldsymbol{x}_t(oldsymbol{x}_0, oldsymbol{p}_0) \ oldsymbol{p}_t &= oldsymbol{p}_t(oldsymbol{x}_0, oldsymbol{p}_0) \end{aligned}$$

如果初始状态偏离 (dx_0, dp_0) , 那么

$$egin{aligned} &oldsymbol{x}_t(oldsymbol{x}_0+\mathrm{d}oldsymbol{x}_0,oldsymbol{p}_0+\mathrm{d}oldsymbol{p}_0)=oldsymbol{x}_t(oldsymbol{x}_0,oldsymbol{p}_0)+rac{\partialoldsymbol{x}_t}{\partialoldsymbol{x}_0}\mathrm{d}x_0+rac{\partialoldsymbol{p}_t}{\partialoldsymbol{p}_0}\mathrm{d}p_0\ &oldsymbol{p}_t(oldsymbol{x}_0+\mathrm{d}oldsymbol{x}_0,oldsymbol{p}_0+\mathrm{d}oldsymbol{p}_0)=oldsymbol{p}_t(oldsymbol{x}_0,oldsymbol{p}_0)+rac{\partialoldsymbol{p}_t}{\partialoldsymbol{x}_0}\mathrm{d}x_0+rac{\partialoldsymbol{p}_t}{\partialoldsymbol{p}_0}\mathrm{d}p_0\ &oldsymbol{p}_t(oldsymbol{x}_0+oldsymbol{q}oldsymbol{p}_0)+rac{\partialoldsymbol{p}_t}{\partialoldsymbol{p}_0}\mathrm{d}x_0+rac{\partialoldsymbol{p}_t}{\partialoldsymbol{p}_0}\mathrm{d}p_0\ &oldsymbol{p}_t(oldsymbol{x}_0+oldsymbol{q}oldsymbol{p}_0)+rac{\partialoldsymbol{p}_t}{\partialoldsymbol{p}_0}\mathrm{d}x_0+rac{\partialoldsymbol{p}_t}{\partialoldsymbol{p}_0}\mathrm{d}p_0\ &oldsymbol{p}_t(oldsymbol{p}_0+oldsymbol{q}_0)+rac{\partialoldsymbol{p}_t}{\partialoldsymbol{p}_0}\mathrm{d}x_0+rac{\partialoldsymbol{p}_t}{\partialoldsymbol{p}_0}\mathrm{d}p_0\ &oldsymbol{p}_t(oldsymbol{p}_0+oldsymbol{p}_0+oldsymbol{p}_0)+rac{\partialoldsymbol{p}_t}{\partialoldsymbol{p}_0}\mathrm{d}x_0+rac{\partialoldsymbol{p}_t}{\partialoldsymbol{p}_0}\mathrm{d}x_0+rac{\partialoldsymbol{p}_t}{\partialoldsymbol{p}_0}\mathrm{d}x_0\ &oldsymbol{p}_t(oldsymbol{p}_0+oldsymbol{p}_$$

此处只考虑 Taylor 展开到一阶的结果。或者写成

$$d\mathbf{x}_{t} = \frac{\partial \mathbf{x}_{t}}{\partial \mathbf{x}_{0}} dx_{0} + \frac{\partial \mathbf{x}_{t}}{\partial \mathbf{p}_{0}} dp_{0}$$
$$d\mathbf{p}_{t} = \frac{\partial \mathbf{p}_{t}}{\partial \mathbf{x}_{0}} dx_{0} + \frac{\partial \mathbf{p}_{t}}{\partial \mathbf{p}_{0}} dp_{0}$$

矩阵没有办法直接求出来, 我们尝试对时间求导。

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial \boldsymbol{x}_{t}}{\partial \boldsymbol{x}_{0}} \right)_{\boldsymbol{p}_{0}} = \left(\frac{\partial}{\partial \boldsymbol{x}_{0}} \frac{\mathrm{d}}{\mathrm{d}t} \boldsymbol{x}_{t} \right)_{\boldsymbol{p}_{0}} = \left(\frac{\partial}{\partial \boldsymbol{x}_{0}} \left(\frac{\partial H}{\partial \boldsymbol{p}_{t}} \right)_{\boldsymbol{x}_{t}} \right)_{\boldsymbol{p}_{0}} = \left(\frac{\partial^{2} H}{\partial \boldsymbol{x}_{t} \partial \boldsymbol{p}_{t}} \right) \left(\frac{\partial \boldsymbol{x}_{t}}{\partial \boldsymbol{x}_{0}} \right)_{\boldsymbol{p}_{0}} + \left(\frac{\partial^{2} H}{\partial \boldsymbol{p}_{t}^{2}} \right)_{\boldsymbol{x}_{t}} \left(\frac{\partial \boldsymbol{p}_{t}}{\partial \boldsymbol{x}_{0}} \right)_{\boldsymbol{p}_{0}} \\
\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial \boldsymbol{x}_{t}}{\partial \boldsymbol{p}_{0}} \right)_{\boldsymbol{x}_{0}} = \left(\frac{\partial}{\partial \boldsymbol{p}_{0}} \frac{\mathrm{d}}{\mathrm{d}t} \boldsymbol{x}_{t} \right)_{\boldsymbol{x}_{0}} = \left(\frac{\partial}{\partial \boldsymbol{p}_{0}} \left(\frac{\partial H}{\partial \boldsymbol{p}_{t}} \right)_{\boldsymbol{x}_{t}} \right)_{\boldsymbol{x}_{0}} = \left(\frac{\partial^{2} H}{\partial \boldsymbol{x}_{t} \partial \boldsymbol{p}_{t}} \right) \left(\frac{\partial \boldsymbol{x}_{t}}{\partial \boldsymbol{p}_{0}} \right)_{\boldsymbol{x}_{0}} + \left(\frac{\partial^{2} H}{\partial \boldsymbol{p}_{t}^{2}} \right)_{\boldsymbol{x}_{t}} \left(\frac{\partial \boldsymbol{p}_{t}}{\partial \boldsymbol{p}_{0}} \right)_{\boldsymbol{x}_{0}} \\
\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial \boldsymbol{p}_{t}}{\partial \boldsymbol{x}_{0}} \right)_{\boldsymbol{p}_{0}} = \left(\frac{\partial}{\partial \boldsymbol{x}_{0}} \frac{\mathrm{d}}{\mathrm{d}t} \boldsymbol{p}_{t} \right)_{\boldsymbol{p}_{0}} = -\left(\frac{\partial}{\partial \boldsymbol{x}_{0}} \left(\frac{\partial H}{\partial \boldsymbol{x}_{t}} \right)_{\boldsymbol{p}_{t}} \right)_{\boldsymbol{p}_{0}} = -\left(\frac{\partial^{2} H}{\partial \boldsymbol{x}_{t}^{2}} \right)_{\boldsymbol{p}_{t}} \left(\frac{\partial \boldsymbol{x}_{t}}{\partial \boldsymbol{x}_{0}} \right)_{\boldsymbol{p}_{0}} - \left(\frac{\partial^{2} H}{\partial \boldsymbol{p}_{t} \partial \boldsymbol{x}_{t}} \right) \left(\frac{\partial \boldsymbol{p}_{t}}{\partial \boldsymbol{x}_{0}} \right)_{\boldsymbol{p}_{0}} \\
\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial \boldsymbol{p}_{t}}{\partial \boldsymbol{p}_{0}} \right)_{\boldsymbol{x}_{0}} = \left(\frac{\partial}{\partial \boldsymbol{p}_{0}} \frac{\mathrm{d}}{\mathrm{d}t} \boldsymbol{p}_{t} \right)_{\boldsymbol{x}_{0}} = -\left(\frac{\partial}{\partial \boldsymbol{p}_{0}} \left(\frac{\partial H}{\partial \boldsymbol{x}_{t}} \right)_{\boldsymbol{p}_{t}} \right)_{\boldsymbol{p}_{0}} = -\left(\frac{\partial^{2} H}{\partial \boldsymbol{x}_{t}^{2}} \right)_{\boldsymbol{p}_{t}} \left(\frac{\partial \boldsymbol{x}_{t}}{\partial \boldsymbol{p}_{0}} \right)_{\boldsymbol{x}_{0}} - \left(\frac{\partial^{2} H}{\partial \boldsymbol{p}_{t} \partial \boldsymbol{x}_{t}} \right) \left(\frac{\partial \boldsymbol{p}_{t}}{\partial \boldsymbol{p}_{0}} \right)_{\boldsymbol{x}_{0}}$$

由此可以得到

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} \frac{\partial x_t}{\partial x_0} & \frac{\partial x_t}{\partial p_0} \\ \frac{\partial p_t}{\partial x_0} & \frac{\partial p_t}{\partial p_0} \end{pmatrix} = \begin{pmatrix} \frac{\partial^2 H}{\partial x_t \partial p_t} & (\frac{\partial^2 H}{\partial p_t^2})_{x_t} \\ -(\frac{\partial^2 H}{\partial x^2})_{p_t} & -\frac{\partial^2 H}{\partial x_t \partial p_t} \end{pmatrix} \begin{pmatrix} \frac{\partial x_t}{\partial x_0} & \frac{\partial x_t}{\partial p_0} \\ \frac{\partial p_t}{\partial x_0} & \frac{\partial p_t}{\partial p_0} \end{pmatrix}$$

将此处的 Jacobi 矩阵称为**稳定性矩阵**,其含义是如果系统初始时刻状态变化很小,那么 t 时刻的变化也很小。

作业3 第 1 次作业第 3 题: Liouville 定理的证明

2.2 20201009: Liouville 定理

设矩阵

$$\mathbf{A} = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}$$

它的行列式为

$$\det \boldsymbol{A} = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \boldsymbol{A}_{ij}^*, \ \forall \ i$$

其中, A_{ij}^* 表示 a_{ij} 的代数余子式。定义 A 的伴随矩阵 \bar{A} 为

$$ar{m{A}}_{ij} = m{A}_{ji}^*$$

矩阵的逆矩阵为

$$\boldsymbol{A}^{-1} = \frac{1}{\det \boldsymbol{A}} \bar{\boldsymbol{A}}$$

对行列式的求导并不是对每个元素求导再求行列式,而是依照下列方法:

$$\frac{\mathrm{d}}{\mathrm{d}t}\det \mathbf{A} = \sum_{i} \det \tilde{\mathbf{A}}_{i}$$

其中, A_i 是只对第i 行的所有元素对时间求导,其他元素不变得到的矩阵。进一步得到

$$\frac{\mathrm{d}}{\mathrm{d}t} \det \mathbf{A} = \sum_{i} \det \tilde{\mathbf{A}}_{i} = \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\mathrm{d}a_{ij}}{\mathrm{d}t} \mathbf{A}_{ij}^{*}$$
$$= \mathrm{Tr} \left(\frac{\mathrm{d}\mathbf{A}}{\mathrm{d}t} \bar{\mathbf{A}} \right) = \mathrm{Tr} \left(\frac{\mathrm{d}\mathbf{A}}{\mathrm{d}t} \mathbf{A}^{-1} \right) \det \mathbf{A}$$

将两边同时除以 A 的行列式,得到

$$rac{\mathrm{d}}{\mathrm{d}t} \ln \det \mathbf{A} = \mathrm{Tr} igg(rac{\mathrm{d} \mathbf{A}}{\mathrm{d}t} \mathbf{A}^{-1} igg)$$

如果

$$\frac{\mathrm{d}}{\mathrm{d}t}A = MA$$

就有

$$\frac{\mathrm{d}}{\mathrm{d}t} \ln \det \mathbf{A} = \operatorname{Tr} \mathbf{M}$$

对于上一节讲的 Jacobi 矩阵,有

$$\boldsymbol{M} = \begin{pmatrix} \frac{\partial^2 H}{\partial \vec{x}_t \partial \vec{p}_t} & (\frac{\partial^2 H}{\partial \vec{p}_t^2})_{\vec{x}_t} \\ -(\frac{\partial^2 H}{\partial \vec{x}_t^2})_{\vec{p}_t} & -\frac{\partial^2 H}{\partial \vec{x}_t \partial \vec{p}_t} \end{pmatrix}$$

显然这个矩阵的迹为0,所以

$$\left| \frac{\mathrm{d}}{\mathrm{d}t} \det \left| \frac{\partial(\boldsymbol{x}_t, \boldsymbol{p}_t)}{\partial(\boldsymbol{x}_0, \boldsymbol{p}_0)} \right| = 0 \right|$$

但初始时刻显然 Jacobi 行列式为 1, 所以 Jacobi 行列式一直为 1, 就有

$$\mathrm{d}\boldsymbol{x}_t\mathrm{d}\boldsymbol{p}_t=\mathrm{d}\boldsymbol{x}_0\mathrm{d}\boldsymbol{p}_0$$

这个结论称为 Liouville 定理。注意到这个结论的推导只用到了正则方程,只要正则方程成立,这个结论就成立。

如果定义一个概率密度 $\rho(x,p)$,它满足归一化条件,且处处不小于 0. 假设初始条件下在 x_0, p_0 位置有个体积元 dx_0dp_0 ,跟踪这个体积元经历的轨线,达到 dx_tdp_t 时,在这个体积元的概率应为不变的。这可以理解为,根据 Liouville 定理,最开始在体积元里面的状态仍然会在初始状态演化后的体积元里。这可以表述为

$$ho(oldsymbol{x}_t, oldsymbol{p}_t) =
ho(oldsymbol{x}_0, oldsymbol{p}_0)$$

它对任意的 t 都成立,则

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} = \frac{\partial\rho}{\partial t} + \frac{\partial\rho}{\partial \boldsymbol{x}_t}\dot{\boldsymbol{x}}_t + \frac{\partial\rho}{\partial\boldsymbol{p}_t}\dot{\boldsymbol{p}}_t = 0$$

再利用正则方程,得到

$$-\frac{\partial \rho}{\partial t} = \left(\frac{\partial \rho}{\partial \boldsymbol{x}_t}\right)^{\mathrm{T}} \frac{\partial H}{\partial \boldsymbol{p}_t} - \left(\frac{\partial \rho}{\partial \boldsymbol{p}_t}\right)^{\mathrm{T}} \frac{\partial H}{\partial \boldsymbol{x}_t}$$

定义 Poisson 括号为

$$\{\rho, H\} = \left(\frac{\partial \rho}{\partial \boldsymbol{x}_t}\right)^{\mathrm{T}} \frac{\partial H}{\partial \boldsymbol{p}_t} - \left(\frac{\partial \rho}{\partial \boldsymbol{p}_t}\right)^{\mathrm{T}} \frac{\partial H}{\partial \boldsymbol{x}_t}$$

则有

$$-\frac{\partial \rho}{\partial t} = \{\rho, H\}$$

这也是 Liouville 定理的一种形式。如果 Hamilton 函数满足形式

$$H(\boldsymbol{x}_t,\boldsymbol{p}_t) = \frac{1}{2}\boldsymbol{p}_t^{\mathrm{T}}\boldsymbol{M}^{-1}\boldsymbol{p}_t + V(\boldsymbol{x}_t)$$

则有

$$-\frac{\partial \rho}{\partial t} = \left(\frac{\partial \rho}{\partial \boldsymbol{x}_t}\right)^{\mathrm{T}} \boldsymbol{M}^{-1} \boldsymbol{p}_t - \left(\frac{\partial \rho}{\partial \boldsymbol{p}_t}\right)^{\mathrm{T}} \frac{\partial V}{\partial \boldsymbol{x}_t}$$

一种常见的分布: Boltzmann 分布:

$$ho(m{x},m{p}) \propto \mathrm{e}^{-eta H(m{x},m{p})}$$

如果一个分布满足

$$\frac{\partial \rho}{\partial t} = 0$$

则称为**稳态分布**。但是即使不是稳态分布,它也会满足对时间的全导数是 0。这也是 Liouville 定理的一个形式。

作业 4 第 2 次作业第 1 题: Boltzmann 分布是否为稳态分布?

研究一个概率密度的时候,有两种方式:一种是研究密度对时间的偏导,看静止空间的概率密度的变化,这称为 Euler 图象。另一种方式是研究密度对时间的劝导,跟踪状态运动的轨线,研究这个密度体积元在不同的时间的位置,这称为 Lagrange 图象。

Chapter 3

Liouville 方程

3.1 20201012: Euler 图象演化概率密度

Liouville 定理有两种表述形式:

$$-\frac{\partial \rho}{\partial t} = \{\rho, H\}$$

以及

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} = 0$$

第一种形式下, $\rho=\rho(x,p,t)$,第二种形式下 $\rho=\rho(x_t,p_t,t)$. 分别表示了 Euler 和 Lagrange 两种图象。

回顾描述 HCl 分子的振动的例子,我们可以用 Morse 势来描述这个振动:

$$V(x) = D_e(1 - e^{-a(r - r_{eq})})^2 = D_e(1 - e^{-ax})^2$$

其中有 a > 0,在平衡位置附近可以使用谐振子近似。写出其 Boltzmann 分布

$$\rho(x, p, 0) = \frac{1}{Z} e^{-\beta(\frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2)}$$

由概率密度的归一化,可以得到配分函数的值,这里涉及到 Gauss 函数的积分

$$I = \int_0^{+\infty} e^{-ax^2} x^n dx$$

$$I = \int_0^{+\infty} e^{-t} \left(\frac{t}{a}\right)^{\frac{n}{2}} \frac{dt}{\sqrt{at}}$$

$$= \frac{1}{2a^{\frac{n+1}{2}}} \int_0^{+\infty} e^{-t} t^{\frac{n-1}{2}} dt$$

$$= \frac{\Gamma(\frac{n+1}{2})}{2a^{\frac{n+1}{2}}}$$

据此算出配分函数

$$Z = \int e^{-\beta(\frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2)} dx dp = \frac{2\pi}{\beta\omega}$$

从量纲上分析,在配分函数中少了 $\mathbf{d}x\mathbf{d}p$ 的量纲。本质上应该除以 $2\pi\hbar$,相当于对相空间做了量子化。于是

$$Z = \frac{1}{\beta \overline{h} \omega}$$

就是无量纲的配分函数。

回到用 Morse 势描述 HCl 的振动的问题,Morse 势的常数 a 可以用谐振子近似的 ω 进行估计。令 $x \to 0$,对 V(x) 在平衡位置附近作 Taylor 展开,展开到二阶。

$$V(x) = D_e a^2 x^2 + o(x^2)$$

它与谐振子近似一致, 因此

$$\frac{1}{2}m\omega^2 x^2 = D_e a^2 x^2$$

于是

$$\omega = \sqrt{\frac{2D_e a^2}{m}}$$

作业 5 第 2 次作业第 2 题:构造H,分子的 Morse 势

作业 6 第 2 次作业第 3 题:以 Boltzmann 分布为初始分布,在 Morse 势,Euler 图象下演化 H_2 的 t 时刻的分布。

事实上,对双原子分子 HCl,它有 6 个自由度,3 个平动,2 个转动,所以我们可以只用振动自由度来描述 HCl 的分子结构。

3.2 20201016: Lagrange 图象演化概率密度

除了用 Euler 图象来演化密度以外,也可以用 Lagrange 图象来演化密度。由

$$\frac{\mathrm{d}}{\mathrm{d}t}\rho(x_t, p_t, t) = 0$$

可以得到 t 时刻的概率密度为

$$\rho(x, p, t) = \int \rho(x_0, p_0, 0) \delta(x - x_t(x_0, p_0)) \delta(p - p_t(x_0, p_0)) dx_0 dp_0$$

这里引入了 δ 函数。 δ 函数满足

$$\delta(x - x_0) = 0, \ \forall \ x \neq x_0$$
$$\int_{-\infty}^{+\infty} \delta(x - x_0) dx = 1$$
$$\int_{-\infty}^{+\infty} f(x) \delta(x - x_0) dx = f(x_0)$$

现在希望给 δ 函数给一个形式,让它和上面满足的性质自治:可以利用 Fourier 变换及其逆变换的定义

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x) e^{ikx} dx = F(k)$$
$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} F(k) e^{-ikx} dk = f(x)$$

于是有

$$f(x_0) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x) e^{ikx} dx e^{-ikx_0} dk$$
$$= \frac{1}{2\pi} \iint f(x) e^{ik(x-x_0)} dx dk$$
$$= \frac{1}{2\pi} \iint f(x) e^{ik(x-x_0)} dk dx$$

于是可以写出 δ 函数为

$$\delta(x - x_0) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{ik(x - x_0)} dk$$

某个物理量的期望定义为

$$\langle B(t) \rangle = \int \rho(x, p, t) B(x, p) dx dp$$

回到用 Morse 势描述 HCl 的振动的问题,在这个问题下,初始时刻为 Boltzmann 分布时,

$$\begin{split} \langle x \rangle &= 0 \\ \langle x^2 \rangle &= \frac{1}{\beta m \omega^2} \\ \Delta x &= \sqrt{\langle x^2 \rangle - \langle x \rangle^2} = \frac{1}{\sqrt{\beta m \omega^2}} \end{split}$$

作业 7 第 3 次作业第 2 题:以 Boltzmann 分布为初始分布,在 Morse 势,Lagrange 图象下演 化 H_2 的 t 时刻的分布。