Проект по МИИАД

Классификация музыкальных произведений по жанрам

Дживеликян Е.А. Латышев А.К. Сизов В.С.

Национальный исследовательский университет "Московский физико-технический институт"

4 ноября 2020 г.

Датасет

- 8000 треков по 30 секунд каждый, в формате .mp3
- 8 жанров, 1000 треков для кадого жанра

International Rock Folk Electronic **Instrumental** Experimental Pop Hip-Hop

Инструменты

Библиотека инструментов для обработки звука

Признаки

В данной работе были использованы признаки:

- MFCC(Мел-частотные кепстральные коэффициенты)
- Tonnetz
- Средний темп произведения
- Мощность гармонической и перкуссионной компоненты

MFCC

Спектр спектра, но по мел-шкале.

Мел-шкала

Пример MFC

В датасете посчитаны 20 коэффициентов по бинам, на которые разбита песня.

И для каждой псоледовательности коэффициента расчитаны статистики: mean, standard deviation, skew, kurtosis, median, minimum and maximum

Tonnetz

Данный признак позволяет оценить наличие гармонии в сигнале, выделить характерные интервалы путём преобразования пространства классов высоты звука.

Пространство интервалов

В данной работе используются различные статистики, вычисленные для этого признака по всем фреймам трека.

Темп

Темпоральный спектр произведения

ГП разделение

Вычислены мощности гармонической и перкуссионной составляющих треков.

Результаты. Часть 1

Модель	F1	Параметры	Время обучения	ЭВМ
SVC	59.92	kernel='rbf' C=3	20.2 секунды	Intel(R) Xeon(R) CPU @ 2.30GHz Google Colaboratory
Random Forest Classifier	56.23	n_estimators=500 class_weight='balanced'	28 секунд	Intel Core i9 2400 GHz
Gradient Boosting Classifier	57.13	learning_rate=0.05 max_depth=5 n_estimators=200 subsample=0.5	3 минуты 32 секунды	AMD Razen 5 3500U 2100 MHz
Logistic Regression	53.22	solver='liblinear' class_weight='balanced' multi_class='ovr'	46 секунд	Intel Core i9 2400 GHz

VGG эмбеддинги

Для выделения признаков высокого уровня использовалась предобученная на Audioset VGG net.

VGG обучалась определять множество разных меток на односекундных отрывках на датасете Audioset, полученном из роликов youtube.

Результаты. Часть 2. RNN

Результаты. Часть 2. FCNN

Результаты. Часть 2. CNN

Построенная архитектура состоит из двух сверхточных слоёв и одного линейного преобразования

Количество батчей: 25 Результат на трейне:

Loss: 1.2092

Accuracy: 59.3333 Результат на тесте:

loss: 1.299 accuracy: 0.55

Основные слайды

- 1 Датасет и инструменты
- 2 Признаки
- З Результаты. Часть 1
- Ф Результаты. Часть 2 RNN FCNN CNN