PRÁTICA 7 TRANSISTOR BIPOLAR DE JUNÇÃO Polarização Simples

Revisão

SEL0610 - LABORATÓRIO DE CIRCUITOS ELETRÔNICOS

Engenharia de Computação – 6° Período Letivo

Conteúdo

- Estrutura do TBJ
- Operação do TBJ
- Análise de Circuito
- Folha de Dados
- Teste de TBJ
- Empacotamento

Estrutura do TBJ

Estrutura básica de um Transistor Bipolar de Junção

(a) Basic epitaxial planar structure

Simbologia

(a) npn

(b) pnp

(a) npn

(b) pnp

Modelo DC Ideal

Ganho de corrente DC

$$\beta_{\rm DC} = \frac{I_{\rm C}}{I_{\rm B}}$$

$$h_{\rm FE} = \beta_{\rm DC}$$

$$\alpha_{\rm DC} = \frac{I_{\rm C}}{I_{\rm E}}$$

$$I_{\rm E} = I_{\rm C} + I_{\rm B}$$

- Região de Corte
 - Junção <u>Base-Emissor</u> polarizada <u>reversamente</u>
 - Junção Base-Coletor polarizada reversamente
- Região de Saturação
 - Junção Base-Emissor polarizada diretamente
 - Junção <u>Base-Coletor</u> polarizada <u>diretamente</u>
- Região Ativa
 - Junção Base-Emissor polarizada diretamente
 - Junção <u>Base-Coletor</u> polarizada <u>reversamente</u>

Curvas características (configuração Emissor-Comum)

Ganho de Corrente DC em função de corrente de coletor e temperatura

Limites de Operação

$$I_{\rm C} = \frac{P_{\rm D(max)}}{V_{\rm CE}}$$

$$V_{\rm CE} = \frac{P_{\rm D(max)}}{I_{\rm C}}$$

$P_{\mathrm{D(max)}}$	$V_{\rm CE}$	$I_{\rm C}$
500 mW	5 V	100 mA
500 mW	10 V	50 mA
500 mW	15 V	33 mA
500 mW	20 V	25 mA

Análise de Circuito

Polarização Simples

$$I_{B} = \frac{V_{BB} - V_{BE}}{R_{B}}$$

$$V_{CE} = V_{CC} - I_{C}R_{C}$$

$$V_{CB} = V_{CE} - V_{BE}$$

Em função do ponto de operação desejado (V_{CEQ} e I_{CQ}) os valores de R_C e R_B podem ser calculados para se obter a polarização necessária.

Folha de Dados

BC237/238/239

Switching and Amplifier Applications

· Low Noise: BC239

1. Collector 2. Base 3. Emitter

NPN Epitaxial Silicon Transistor

Absolute Maximum Ratings T_a=25°C unless otherwise noted

Symbol	Parameter		Value	Units	
V _{CES}	Collector-Emitter Voltage	: BC237 : BC238/239	50 30	V	
V _{CEO}	Collector-Emitter Voltage	: BC237 : BC238/239	45 25	V V	
V _{EBO}	Emitter-Base Voltage	: BC237 : BC238/239	6 5	V V	
I _C	Collector Current (DC)		100	mA	
P _C	Collector Dissipation		500	mW	
T _J	Junction Temperature		150	°C	
T _{STG}	Storage Temperature		-55 ~ 150	°C	

Folha de Dados

Electrical Characteristics T_a=25°C unless otherwise noted

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
BV _{CEO}	Collector-Emitter Breakdown Voltage	I _C =2mA, I _B =0				
	: BC237		45			V
	: BC238/239		25			V
BV _{EBO}	Emitter Base Breakdown Voltage	I _E =1μA, I _C =0				
	: BC237		6			V
	: BC238/239		5			V
I _{CES}	Collector Cut-off Current					
020	: BC237	V _{CF} =50V, V _{BF} =0		0.2	15	nA
	: BC238/239	V _{CE} =30V, V _{BE} =0		0.2	15	nA
h _{FE}	DC Current Gain	V _{CE} =5V, I _C =2mA	120		800	
V _{CE} (sat)	Collector-Emitter Saturation Voltage	I _C =10mA, I _B =0.5mA		0.07	0.2	V
OL V		I _C =100mA, I _B =5mA		0.2	0.6	V
V _{BE} (sat)	Collector-Base Saturation Voltage	I _C =10mA, I _B =0.5mA		0.73	0.83	V
22 1		I _C =100mA, I _B =5mA		0.87	1.05	V
V _{BE} (on)	Base-Emitter On Voltage	V _{CE} =5V, I _C =2mA	0.55	0.62	0.7	V
f _T	Current Gain Bandwidth Product	V _{CF} =3V, I _C =0.5mA, f=100MHz		85		MHz
		V _{CE} =5V, I _C =10mA, f=100MHz	150	250		MHz
C _{ob}	Output Capacitance	V _{CB} =10V, I _E =0, f=1MHz		3.5	6	pF
C _{ib}	Input Base Capacitance	V _{EB} =0.5V, I _C =0, f=1MHz		8		pF
NF	Noise Figure	V _{CE} =5V, I _C =0.2mA,				
	: BC237/238	f=1KHz R _G =2KΩ		2	10	dB
	: BC239	V_{CE} =5V, I_{C} =0.2mA			4	dB
	: BC239	$R_G=2K\Omega$, $f=30\sim15KHz$			4	dB

Teste de TBJ

(a) Both junctions should typically read 0.7 V when forward-biased.

(b) Both junctions should ideally read OPEN when reverse-biased. Medida de Resistência entre Base e Coletor deve ser elevada em qualquer direção, caso contrário, o transistor apresenta falha.

EXEMPLO PARA UM TBJ NPN

(a) Forward-bias test of the BE junction

(b) Reverse-bias test of the BE junction

(c) Forward-bias test of the BC junction

(d) Reverse-bias test of the BC junction

Teste de TBJ

TRANSISTOR COM FALHA

(a) Forward-bias test and reversebias test give the same reading (OL is typical) for an open BC junction.

(b) Forward- and reverse-bias tests for a shorted junction give the same 0 V reading.

Empacotamento

Transistores de uso geral

3 Collector
Base
1 Emitter

(b) SOT-23

(c) TO-18. Emitter is closest to tab.

14 13 12 11 10 9 8 1 2 3 4 5 6 7

(a) Dual metal can. Emitters are closest to tab.

(b) Quad dual in-line (DIP) and quad flat-pack. Dot indicates pin 1.

(c) Quad small outline (SO) package for surface-mount technology

Empacotamento

Transistores de potência

Referência

Boylestad, R. L., Nashelsky, L. Dispositivos Eletrônicos e teoria de circuitos, 8^a. Edição, Pearson.

Fairchild Semiconductors, BD237/238/239, *Data Sheet*, Rev. B, Jan. 2001.