PROVISIONAL MARK SCHEME

Question Number	Scheme		Marks
1.	Frequency densities: 3.0, 20.0, 9.0, 22.0, 3.0, 3.25	Can be implied from graph	M1 A1
	Graph (see page 2)	Scales and labels	B1
		Bases	B1
		Heights	B1
			(5 marks)

1

PROVISIONAL MARK SCHEME

1.

PROVISIONAL MARK SCHEME

Question	Scheme	Marks	
Number			
2.	$\begin{array}{c} 0.2 \\ 12 \\ t \end{array}$		
	Let L represent lifetimes $\therefore L \sim N(12, 3^2)$	M1	
	P(L > t) = 0.2	1VI I	
	$\frac{t-12}{3}=0.8416$	M1 B1 A1	
	$\therefore t = 14.5248$	M1 A1 (6) (6 marks)	
Alt	P(L > t) = 0.2	M1	
	$\therefore P(L \le t) = 0.8$	M1	
	$\therefore \frac{t-12}{3} = 0.84(16)$	B1 A1	
	$\therefore t = 14.52(54)$	M1 A1 (6)	
3. (a)	$S_{xy} = 204.95 - \frac{48.1 \times 52.8}{7} = -157.86142$ (awrt -157.9)	M1 A1	
	$S_{xx} = 155.92428$ (awrt 155.9)	A1	
	$S_{yy} = 214.95714$ (awrt 215.0)	A1 (4)	
(<i>b</i>)	$r = \frac{-157.86142}{\sqrt{155.92428\times 214.95714}}$	M1 A1ft	
	= -0.862269 (awrt -0.862)	A1 (3)	
(c)(i)	-0.862	B1	
(ii)	As sales at on petrol station increases, the other decreases; limited pool of customers; close one garage	B1 (2)	
	through mark; awrt = anything which rounds to)	(9 marks)	

PROVISIONAL MARK SCHEME

_	estion mber	Scheme	Mark	KS .
4.			M1 A1	
		$\therefore 7k + 16k + 27k = 1 \Rightarrow k = \frac{1}{50}$	A1 (3)	
	(b)	$\begin{array}{c ccccc} x & 4 & 5 & 6 \\ \hline P(X=x) & \frac{7}{50} & \frac{16}{50} & \frac{27}{50} \end{array}$		
		$E(X) = (4 \times \frac{7}{50}) + (5 \times \frac{16}{50}) + (6 \times \frac{27}{50}) = \frac{270}{50} = 5.4$	M1 A1	
		$E(X^2) = (4^2 \times \frac{7}{50}) + (5^2 \times \frac{16}{50}) + (6^2 \times \frac{27}{50}) = \frac{1484}{50} = 29.68$	M1 A1	
		$\therefore \text{ Var } (X) = 29.68 - 5.4^2$	M1 A1	(6)
	(c)	$Var(2X - 3) = 2^2 Var(X)$	M1	
		$= 4 \times 0.52 = 2.08$	A1	(2)
			(11 m	arks)
5.	(a)	Discrete uniform	B1	(1)
	(<i>b</i>)	$P(X=x) = \frac{1}{6}, x = 1, 2,, 6$		
		$\therefore E(X) = \sum x P(X = x) = \frac{1}{6} + \frac{2}{6} + \dots + \frac{6}{6} = \frac{21}{6} = 3.5$	B1	
		$Var(X) = \sum x^2 P(X = x) - \{E(X)\}^2$	M1	
		$= \frac{1}{6} + \frac{4}{6} + \ldots + \frac{36}{6} - (\frac{21}{6})^2 = 2.91666\ldots$	A1	(3)
	(c)	P(three 6s) = $(\frac{1}{6})^3 = \frac{1}{216}$	M1 A1	(2)
	(<i>d</i>)	$16 \Rightarrow (6, 5, 5); (5, 6, 5); (5, 5, 6)$	B1 B1	
		(6, 6, 4); (6, 4, 6); (4, 6, 6)	B1 B1	(4)
	(e)	$P(16) = \frac{6}{216} = \frac{1}{36}$	M1 A1	(2)
				arks)

PROVISIONAL MARK SCHEME

Question Number		Sche	me		Marks	S
6.	(a)	$\bar{x} = \frac{20 + 15 + \dots + 17}{14} = \frac{312}{14} = 22.2857$		(awrt 22.3)	M1 A1	(2)
	(b)	Bags of crisps 1 0 means 10 0 5 1 0 1 3 5 7 2 0 0 5 3 0 1 3 4 0 2	Totals (1) (5) (3) (3) (2)	Label and key 2 corrrect rows All correct	B1 B1 B1	(3)
	` ′	$Q_2 = 20$; $Q_1 = 13$; $Q_3 = 31$ $1.5 \times IQR = 1.5 \times (31 - 13) = 27$ 31 + 27 = 58; $13 - 27 = -14No outliersscale and labelQ_1 = 13, Q_2 = 20, Q_3 = 31Whiskers 5, 42;$		both	B1; B1; B1 B1 M1 A1 B1 B1 ft B1	(3)
	(f)	$Q_2 - Q_1 = 7$; $Q_3 - Q_2 = 11$; $Q_3 - Q_2 > Q$ Postive skew	$Q_2 - Q_1$		M1 A1 (13 ma	(2) arks)

PROVISIONAL MARK SCHEME

Question Number	Scheme		Marks	
7. (a)	<i>m</i> is explanatory variable	B1	(1)	
(b)	scales and labels	B1		
	points (7, 19), (8, 10), (9, 11), (10, 15), (13, 21), (14, 23), (17, 26), (20, 31)	B2	(3)	
(c)	$\Sigma m = 98; \ \Sigma p = 156; \ \Sigma m^2 = 1348; \ \Sigma mp = 2119$			
	$S_{mp} = 2119 - \frac{98 \times 156}{8} = 208$	M1 A1		
	$S_{mm} = 1348 - \frac{98^2}{8} = 147.5$	A1		
	$\therefore b = \frac{S_{mp}}{S_{mm}} = \frac{208}{147.5} = 1.410169 $ (awrt 1.41)	M1 A1		
	$a = \frac{156}{8} - (1.410169) \times \frac{98}{8} = 2.225429$ (awrt 2.23)	M1 A1		
	p = 2.23 + 1.41m	A1 ft	(8)	
(<i>d</i>)	Line on graph	M1 A1	(2)	
(e)	$p = 2.23 + 1.41 \times 15 = 23.38$	M1 A1	(2)	
		(14 m	arks)	

(ft = follow through mark; -1 eeoo = minus one mark for each error or omission)