CHAPITRE 3:

Les relations binaires et les applications

Cours

Les relations binaires

1. Définitions :

Soient E et F deux ensembles.

Une relation binaire \Re de E vers F est un triplet (E, F, Γ) où $\Gamma \subseteq E \times F$.

E est appelé l'ensemble de départ de \Re .

F est appelé l'ensemble d'arrivée de \Re .

Si $(x, y) \in \Gamma$: on dit que x est en relation avec y par de \Re et on écrit $x\Re y$.

Exemples:

- **a.** Soient $E = \{1,2,3\}$, $F = \{a,b,c,d\}$ et $\Gamma = \{(1,a),(1,c),(2,b),(2,d),(3,c)\}$. (E,F,Γ) est une relation de E vers F. En effet : $1\Re a$, $1\Re c$, $2\Re b$, $3\Re c$
- **b.** \Re est une relation définie de \mathbb{R} dans R_+ par : $\forall x, y \in \mathbb{R}$: $x\Re y \Leftrightarrow y = |x|$ Exemples : $0\Re 0$, $1\Re 1$, $-1\Re 1$, $4\Re 4$.

2. Représentations graphiques d'une relation :

Digramme sagital

Remarque:

Si E = F on dit que \Re est une *relation binaire*.

Exemples:

- **1.** Soit E l'ensemble des étudiants de ST et \Re est la relation " avoir même âge "
- **2.** Sur \mathbb{R} , on définit la relation d'égalité "=" par : $\forall x, y \in \mathbb{R}$: $x\Re y \Leftrightarrow x = y$
- **3.** Sur \mathbb{R} , on définit la relation d'inégalité " \le " par : $\forall x, y \in \mathbb{R}$: $x\Re y \Leftrightarrow x \leq y$
- **4.** Sur P(E) (E est un ensemble), on définit la relation d'inclusion par :

$$\forall A, B \in P(E): A\Re B \Leftrightarrow A \subseteq B$$

3. Propriétés d'une relation binaire :

Soit \Re une relation binaire définie sur un ensemble E.

3.1. La réflexivité :

 \Re est dite réflexive si seulement si tout élément de E est en relation avec lui-même. \Re est réflexive $\Leftrightarrow \forall x \in E : x\Re x$.

Exemples:

- 1. "=", " \leq " et " \subseteq " sont réflexives.
- 2. Montrer que les relations suivantes sont réflexives :

a.
$$\forall x, y \in \mathbb{R} : x\Re y \Leftrightarrow x^2 - y^2 = x - y$$

$$\forall x \in \mathbb{R}$$
, on a $x^2 - x^2 = 0$ et $x - x = 0$

Donc
$$x^2 - x^2 = x - x$$
 (car "=" est réflexive)

Alors $x\Re x$.

D'où R est réflexive.

b.
$$\forall x, y \in \mathbb{Z} : x \Re y \Leftrightarrow \exists k \in \mathbb{Z} : x - y = 3k$$

$$\forall x \in \mathbb{Z}$$
, on a $x - x = 0 = 3.0$

Donc
$$\exists k = 0 \in \mathbb{Z} : x - x = 3k$$

Alors $x\Re x$.

D'où R est réflexive

$$\mathbf{c} \cdot \forall a, b \in \mathbf{N}^* : a \Re b \Leftrightarrow \exists q \in \mathbf{N}^* : b = a.q$$

$$\forall a \in \mathbb{N}^*$$
, on a $a = a = a.1$

Donc
$$\exists q = 1 \in \mathbb{N}^* : a = a.q$$

Alors $a\Re a$.

D'où R est réflexive

d.
$$\forall (a,b),(c,d) \in \mathbb{R}^2 : (a,b)\Re(c,d) \Leftrightarrow a+d=b+c$$

$$\forall (a,b) \in \mathbb{R}^2$$
, on a $a+b=b+a$ (car "+" est commutative sur \mathbb{R}).

Donc $(a,b)\Re(a,b)$

D'où R est réflexive

e.
$$\forall (a,b), (a',b') \in \mathbb{N}^2$$
: $(a,b)\Re(a',b') \Leftrightarrow (a < a')$ ou $(a = a' et b \le b')$

$$\forall (a,b) \in \mathbb{N}^2$$
: on a $(a = a \text{ et } b \leq b)$ est vraie

Donc
$$(a < a)$$
 ou $(a = a et b \le b)$ est vraie

Alors
$$(a,b)\Re(a,b)$$

D'où R est réflexive

f.
$$\forall x, y \in \mathbb{R}^* : x\Re y \Leftrightarrow x^2 - \frac{1}{x^2} = y^2 - \frac{1}{y^2}$$

 $\forall x \in \mathbb{R}^* : \text{ on a } x^2 - \frac{1}{x^2} = x^2 - \frac{1}{x^2} \text{ (car "=" est réflexive)}$
Donc $x\Re x$

D'où R est réflexive

Remarque:

Pour montrer que Rn'est pas réflexive il suffit de donner un contre exemple.

 $\exists x_0 \in E : x_0 \Re x_0$ est fausse

Exemple: "<" n'est pas réflexive car $1 \not< 1$.

3.2. La symétrie :

 \Re est dite symétrique si seulement si pour tout x et y de E: si x est en relation avec y alors y est en relation avec x.

 \Re est symétrique $\Leftrightarrow \forall x, y \in E : x\Re y \Rightarrow y\Re x$

Exemples:

- 1. "=" est réflexive.
- 2. Montrer que les relations suivantes sont symétriques :

a.
$$\forall x, y \in \mathbb{R} : x\Re y \Leftrightarrow x^2 - y^2 = x - y$$

Soient $x, y \in \mathbb{R}$ tel que $x\Re y$

$$x\Re y \Leftrightarrow x^2 - y^2 = x - y$$

$$\Rightarrow -(x^2 - y^2) = -(x - y)$$

$$\Rightarrow -x^2 + y^2 = -x + y$$

$$\Rightarrow y^2 - x^2 = y - x$$

$$\Rightarrow y\Re x$$

D'où R est symétrique

b.
$$\forall x, y \in \mathbb{Z} : x\Re y \Leftrightarrow \exists k \in \mathbb{Z} : x - y = 3k$$

Soient $x, y \in Z$ tel que $x\Re y$

$$x\Re y \Leftrightarrow \exists k \in \mathbb{Z} : x - y = 3k$$

$$\Rightarrow \exists k \in \mathbb{Z} : -(x - y) = -(3k)$$

$$\Rightarrow \exists k \in \mathbb{Z} : -x + y = 3(-k)$$

$$\Rightarrow \exists k' = -k \in \mathbb{Z} : y - x = 3k'$$

$$\Rightarrow y\Re x$$

D'où R est symétrique

c.
$$\forall (a,b), (c,d) \in \mathbb{R}^2 : (a,b)\Re(c,d) \Leftrightarrow a+d=b+c$$

Soient $(a,b), (c,d) \in \mathbb{R}^2$ tel que $(a,b)\Re(c,d)$
 $(a,b)\Re(c,d) \Leftrightarrow a+d=b+c$
 $\Rightarrow d+a=c+b$ (car "+" est commutative sur \mathbb{R}).
 $\Rightarrow c+b=d+a$ (car "=" est réflexive)
 $\Rightarrow (c,d)\Re(a,b)$

D'où R est symétrique

d.
$$\forall x, y \in \mathbb{R}^* : x\Re y \Leftrightarrow x^2 - \frac{1}{x^2} = y^2 - \frac{1}{y^2}$$

Soient $x, y \in \mathbb{R}^*$ tel que $x\Re y$

$$x\Re y \Leftrightarrow x^2 - \frac{1}{x^2} = y^2 - \frac{1}{y^2}$$

$$\Rightarrow y^2 - \frac{1}{y^2} = x^2 - \frac{1}{x^2} \text{ (car "=" est réflexive)}$$

$$\Rightarrow y\Re x$$

D'où R est symétrique

Remarque:

Pour montrer que Rn'est pas symétrique il suffit de donner un contre exemple.

$$\exists x_0, y_0 \in E : x_0 \Re y_0$$
 vraie mais $y_0 \Re x_0$ est fausse

Exemples:

- 1. " \leq " n'est pas symétrique car $1 \leq 2$ mais $2 \nleq 1$
- 2. Montrer que les relations suivantes ne sont pas symétriques.

a.
$$\forall a, b \in \mathbb{N}^* : a\Re b \Leftrightarrow \exists q \in \mathbb{N}^* : b = a.q$$

Contre-exemple:
$$a_0 = 3$$
 et $b_0 = 6$ on a 3936 vraie ($\exists q = 2 \in \mathbb{N}^* : 6 = 3.2$)

mais 693 fausse (
$$\exists q \in \mathbb{N}^* : 3 = 6.q$$
)

D'où R n'est pas symétrique

b.
$$\forall (a,b), (a',b') \in \mathbb{N}^2 : (a,b)\Re(a',b') \Leftrightarrow (a < a') \text{ ou } (a = a' \text{ et } b \le b')$$

Contre-exemple : $(a_0, b_0) = (3,4)$ et $(a'_0, b'_0) = (6,2)$

On a $(3,4)\Re(6,2)$ vraie car 3 < 6 mais $(6,2)\Re(3,4)$ fausse car $6 \not< 3$ et $6 \ne 3$ D'où \Re n'est pas symétrique

3.3. La transitivité:

 \Re est dite transitive si seulement si pour tout x, y et z de E: si x est en relation avec y et y est en relation avec z alors x est en relation avec z.

$$\Re$$
 est transitive $\Leftrightarrow \forall x, y, z \in E : x\Re y \land y\Re z \Rightarrow x\Re z$

Exemples:

1."=", "
$$\leq$$
" et " \subseteq " sont transitives.

2. Montrer que les relations suivantes sont transitives :

a.
$$\forall x, y \in \mathbb{R} : x\Re y \Leftrightarrow x^2 - y^2 = x - y$$

Soient $x, y, z \in E$ tels que $x\Re y \wedge y\Re z$

$$x\Re y \Leftrightarrow x^2 - y^2 = x - y \dots (1)$$

$$y\Re z \Leftrightarrow y^2 - z^2 = y - z \dots (2)$$

$$(1)+(2) \Rightarrow x^2 - y^2 + y^2 - z^2 = x - y + y - z$$

$$\Rightarrow x^2 - z^2 = x - z$$
$$\Rightarrow x\Re z$$

D'où Rest transitive.

b.
$$\forall x, y \in \mathbb{Z} : x\Re y \Leftrightarrow \exists k \in \mathbb{Z} : x - y = 3k$$

Soient $x, y, z \in E$ tels que $x\Re y \wedge y\Re z$
 $x\Re y \Leftrightarrow \exists k_1 \in \mathbb{Z} : x - y = 3k_1...(1)$
 \wedge
 $y\Re z \Leftrightarrow \exists k_2 \in \mathbb{Z} : y - z = 3k_1...(2)$
 $(1)+(2) \Rightarrow \exists k_1, k_2 \in \mathbb{Z} : x - y + y - z = 3k_1 + 3k_2$
 $\Rightarrow \exists k_1, k_2 \in \mathbb{Z} : x - z = 3(k_1 + k_2)$
 $\Rightarrow \exists k = k_1 + k_2 \in \mathbb{Z} : x - y + y - z = 3k$
 $\Rightarrow x\Re z$

D'où Rest transitive.

- c. $\forall a,b \in \mathbb{N}^*: a\Re b \Leftrightarrow \exists q \in \mathbb{N}^*: b = a.q$ Soient $a,b,c \in \mathbb{N}^*$ tels que $a\Re b \wedge b\Re c$ $a\Re b \Leftrightarrow \exists q_1 \in \mathbb{N}^*: b = a.q_1...(1)$ \wedge $b\Re c \Leftrightarrow \exists q_2 \in \mathbb{N}^*: c = b.q_2...(2)$ Remplaçons (1) dans (2): $\exists q_1,q_2 \in \mathbb{N}^*: c = (a.q_1)q_2$ Donc $\exists q_1,q_2 \in \mathbb{N}^*: c = a.(q_1.q_2)$ Alors $\exists q = q_1.q_2 \in \mathbb{N}^*: c = a.q$ D'où $a\Re c$ Et donc \Re est transitive.
- **d.** $\forall (a,b), (c,d) \in \mathbb{R}^2 : (a,b)\mathfrak{R}(c,d) \Leftrightarrow a+d=b+c$ Soient $(a,b), (c,d), (e,f) \in \mathbb{R}^2$ tels que $(a,b)\mathfrak{R}(c,d) \land (c,d)\mathfrak{R}(e,f)$ $(a,b)\mathfrak{R}(c,d) \Leftrightarrow a+d=b+c...(1)$ $(c,d)\mathfrak{R}(e,f) \Leftrightarrow c+f=d+e...(2)$ $(1)+(2)\Rightarrow a+d+c+f=b+c+d+e$ $\Rightarrow a+f=b+e$ $\Rightarrow (a,b)\mathfrak{R}(e,f)$ D'où \mathfrak{R} est transitive.
- e. $\forall (a,b), (a',b') \in \mathbb{Z} \times \mathbb{N}^* : (a,b)\Re(a',b') \Leftrightarrow ab' = a'b$ Soient $(a,b), (a',b'), (a'',b'') \in \mathbb{Z} \times \mathbb{N}^*$ tels que $(a,b)\Re(a',b') \wedge (a',b')\Re(a'',b'')$ $(a,b)\Re(a',b') \Leftrightarrow ab' = a'b \dots (1)$ $(a',b')\Re(a'',b'') \Leftrightarrow a'b'' = a''b' \dots (2)$ De (1) on a $a' = \frac{ab'}{b}$ car $b \neq 0$ $(b \in \mathbb{N}^*)$ Remplaçons dans (2):

$$\frac{ab'}{b}.b'' = a''.b'$$
Donc $\frac{a}{b}.b'' = a''$ car $b' \neq 0$ $(b' \in N^*)$
Alors $ab'' = a''b$
D'où $(a,b)\Re(a'',b'')$
Et donc \Re est transitive.

Remarque:

Pour montrer que \(\mathbb{R} \) n'est pas transitive il suffit de donner un contre exemple.

$$\exists x_0, y_0, z_0 \in E$$
: $(x_0 \Re y_0 \land y_0 \Re z_0)$ vraie mais $x_0 \Re z_0$ est fausse

Exemple:

Montrer que les relations ne sont pas transitives :

1.
$$\forall (a,b), (a',b') \in Z \times \mathbb{N} : (a,b) \Re(a',b') \Leftrightarrow a.b' = a'.b$$

Contre-exemple : $(a,b) = (1,0), (a',b') = (0,0)$ et $(a'',b'') = (-2,4)$
On a $(1,0)\Re(0,0)$ vraie car $1.0 = 0.0$
Et $(0,0)\Re(-2,4)$ vraie car $0.4 = (-2).0$
Mais $(1,0)\Re(-2,4)$ fausse car $1.4 \neq (-2).0$
D'où \Re n'est pas transitive.

2. Soit E: ensemble de nombres premiers >2.

$$\forall a, b \in E : a\Re b \Leftrightarrow \frac{a+b}{2} \in E$$

Contre-exemple:

$$a = 7$$
, $b = 3$ et $c = 11$

On a
$$a\Re b$$
 vraie car $\frac{a+b}{2} \in E$, en effet $\frac{7+3}{2} = 5 \in E$

Et
$$b\Re c$$
 vraie car $\frac{b+c}{2} \in E$ en effet $\frac{3+11}{2} = 7 \in E$

Mais
$$a\Re c$$
 fausse car $\frac{a+c}{2} \notin E$ en effet $\frac{7+11}{2} = 9 \notin E$

D'où Rn'est pas transitive.

3.4. L'antisymétrie:

 \Re est dite antisymétrique si seulement si pour tout x et y de E: si x est en relation avec y et y est en relation avec x alors x est égal à y.

$$\Re$$
 est antisymétrique $\Leftrightarrow \forall x, y \in E : x\Re y \land y\Re x \Rightarrow x = y$

Exemples:

- 1. "≤" et "⊆" sont antisymétriques.
- 2. Montrer que les relations suivantes sont antisymétriques :

a.
$$\forall a, b \in \mathbb{N}^* : a\Re b \Leftrightarrow \exists q \in \mathbb{N}^* : b = a.q$$

Soient $a, b \in \mathbb{N}^*$ tels que $a\Re b \wedge b\Re a$
 $a\Re b \Leftrightarrow \exists q_1 \in \mathbb{N}^* : b = a.q_1...(1)$

$$b\Re a \Leftrightarrow \exists q_2 \in \mathbf{N}^* : a = b.q_2...(2)$$
 Remplaçons (1) dans (2) :
$$\exists q_1, q_2 \in \mathbf{N}^* : a = (a.q_1)q_2$$
 Donc
$$\exists q_1, q_2 \in \mathbf{N}^* : a = a.(q_1.q_2)$$
 Alors
$$q_1.q_2 = 1$$
 D'où
$$q_1 = q_2 = 1 \text{car } q_1, q_2 \in \mathbf{N}^*$$
 Remplaçons dans (1) on aura :
$$a = b$$
. D'où
$$\Re \text{ est antisymétrique}.$$

b.
$$\forall (a,b), (c,d) \in \mathbb{R}^2 : (a,b)\Re(c,d) \Leftrightarrow a \leq c \land b \leq d$$

Soient $(a,b), (c,d) \in \mathbb{R}^2$ tel que $(a,b)\Re(c,d) \land (c,d)\Re(a,b)$
 $(a,b)\Re(c,d) \Leftrightarrow a \leq c \land b \leq d \dots (1)$
 $(c,d)\Re(a,b) \Leftrightarrow c \leq a \land d \leq b \dots (2)$
 $(1) \land (2) \Rightarrow (a \leq c \land c \leq a) \land (b \leq d \land d \leq b)$
 $\Rightarrow a = c \land b = d$
 $\Rightarrow (a,b) = (c,d)$

Remarque:

Pour montrer que Rn'est pas antisymétrique il suffit de donner un contre exemple.

$$\exists x_0, y_0 \in E: x_0 \Re y_0 \land y_0 \Re x_0 \text{ mais } x_0 \neq y_0$$

Exemple:

Montrer que les relations suivantes ne sont antisymétriques :

- 1. $\forall (a,b), (c,d) \in \mathbb{R}^* \times \mathbb{R} : (a,b)\Re(c,d) \Leftrightarrow ac > 0 \land b = d$ Contre-exemple: (a,b) = (1,2) et (c,d) = (3,2)On a $(1,2)\Re(3,2) \text{ car } 1.3 > 0 \land 2 = 2$ Et $(3,2)\Re(1,2) \text{ car } 3.1 > 0 \land 2 = 2$ Mais $(1,2) \neq (3,2)$
 - D'où Rn'est pas antisymétrique

2.
$$\forall (a,b), (c,d) \in \mathbb{R}^2 : (a,b)\Re(c,d) \Leftrightarrow a \leq c \lor b \leq d$$

Contre-exemple: $(a,b)=(1,2)$ et $(c,d)=(3,0)$
On a $(1,2)\Re(3,0)$ car $a=1 \leq c=3$
Et $(3,0)\Re(1,2)$ car $b=0 \leq d=2$
Mais $(1,2) \neq (3,0)$
D'où \Re n'est pas antisymétrique.

3.5. La relation d'équivalence :

Soit E un ensemble muni d'une relation binaire \Re .

On dit que \Re est une relation d'équivalence si et seulement si elle est réflexive, symétrique et transitive.

Exemples:

Les relations suivantes sont d'équivalence :

- a. "=".
- **b.** $\forall x, y \in \mathbb{R} : x\Re y \Leftrightarrow x^2 y^2 = x y$.
- **c.** $\forall x, y \in \mathbb{Z} : x\Re y \Leftrightarrow \exists k \in \mathbb{Z} : x y = 3k$
- **d.** $\forall (a,b), (c,d) \in \mathbb{R}^2 : (a,b)\Re(c,d) \iff a+d=b+c$
- e. $\forall (a,b), (a',b') \in \mathbb{Z} \times \mathbb{N}^* : (a,b)\Re(a',b') \Leftrightarrow ab' = a'b$

3.5.1. La classe d'équivalence :

Soit \Re une relation d'équivalence définie sur un ensemble E et $a \in E$.

La classe d'équivalence de a, notée cl(a) ou encore a, est l'ensemble des éléments $x \in E$ qui sont en relation avec a.

$$cl(a) = \{x \in E/x\Re a\}$$

Exemple:

1. $\forall x, y \in \mathbb{R} : x\Re y \Leftrightarrow x^2 - y^2 = x - y$ est relation d'équivalence.

Déterminer cl(0)

$$cl(0) = \{x \in \mathbb{R}/x\Re 0\}$$

$$x\Re 0 \Leftrightarrow x^2 - 0^2 = x - 0$$

$$\Rightarrow x^2 = x$$

$$\Rightarrow x^2 - x = 0$$

$$\Rightarrow x(x - 1) = 0$$

$$\Rightarrow x = 0 \lor x - 1 = 0$$

$$\Rightarrow x = 0 \lor x = 1$$

Donc $cl(0) = \{0,1\}$

2. $\forall x, y \in \mathbb{Z} : x\Re y \Leftrightarrow \exists k \in \mathbb{Z} : x - y = 3k$, est une relation d'équivalence.

Déterminer cl(1)

$$cl(1) = \{x \in \mathbb{R}/x\Re 1\}$$

$$x\Re 1 \Leftrightarrow \exists k \in \mathbb{Z} : x - 1 = 3k$$

$$\Rightarrow \exists k \in \mathbb{Z} : x = 3k + 1$$
Donc $cl(1) = \{3k + 1/k \in \mathbb{Z}\}$

Propriétés de la classe d'équivalence :

Soit \Re une relation d'équivalence définie sur un ensemble E.

- **1.** $\forall a \in E, \ a \in cl(a) \Rightarrow cl(a) \neq \phi$
- **2.** $\forall a, b \in E$, $cl(a) \neq cl(b) \Rightarrow cl(a) \cap cl(b) = \phi$
- 3. $\forall a, b \in E$, $a\Re b \Rightarrow cl(a) = cl(b)$

4.
$$\bigcup_{a \in E} cl(a) = E$$

Donc Les classes d'équivalence de \Re forment une partition de E.

L'ensemble quotient :

Soit \Re une relation d'équivalence définie sur un ensemble E.

L'ensemble quotient noté E/\Re est l'ensemble de toutes les classes d'équivalence des éléments de E .

Exemple:

1. $\forall x, y \in \mathbb{R} : x\Re y \Leftrightarrow x^2 - y^2 = x - y$ est relation d'équivalence.

Soit
$$a \in \mathbb{R}$$

$$cl(a) = \left\{ x \in \mathbb{R}/x \Re a \right\}$$

$$x\Re 0 \Leftrightarrow x^2 - a^2 = x - a$$

$$\Rightarrow x^2 - a^2 - x + a = 0$$

$$\Rightarrow (x - a)(x + a - 1) = 0$$

$$\Rightarrow x - a = 0 \lor x + a - 1 = 0$$

$$\Rightarrow x = a \lor x = 1 - a$$

$$a = 1 - a \Rightarrow a = \frac{1}{2}$$

$$\mathbb{R}/\Re = \left\{ \left\{ \frac{1}{2} \right\}, \left\{ a, 1 - a/a \neq \frac{1}{2} \right\} \right\}.$$

2. $\forall x, y \in \mathbb{Z} : x\Re y \Leftrightarrow \exists k \in \mathbb{Z} : x - y = 3k$, est une relation d'équivalence.

$$Z/\Re = \left\{ \begin{matrix} \bullet & \bullet & \bullet \\ 0, 1, 2 \end{matrix} \right\}.$$

3.5.2. La relation d'ordre :

Soit E un ensemble muni d'une relation binaire \Re .

On dit que \Re est une relation d'équivalence si et seulement si elle est réflexive, antisymétrique et transitive.

On dit aussi que E est ordonné par \Re .

Exemples:

Les relations suivantes sont d'ordre :

- **1.** "≤" et "⊆".
- **2.** $\forall a, b \in \mathbb{N}^* : a\Re b \Leftrightarrow \exists q \in \mathbb{N}^* : b = a.q$
- 3. $\forall (a,b),(c,d) \in \mathbb{R}^2 : (a,b)\Re(c,d) \Leftrightarrow a \leq c \land b \leq d$

Définition:

une relation d'ordre \Re sur un ensemble E est dite d'ordre **total** si

$$\forall x, y \in E : x\Re y$$
 ou bien $y\Re x$

Si l'ordre n'est pas total on dit qu'il est **partiel** i.e $\exists x_0, y_0 \in E : x_0 \Re y_0$ fausse et $y_0 \Re x_0$ fausse

Exemples:

1. "≤" est une relation d'ordre total

2. $\forall x, y \in \mathbb{R}_+ : x\Re y \Leftrightarrow \sqrt{1+x^2} \leq \sqrt{1+y^2}$ est une relation d'ordre total \Re est une relation d'ordre (à prouver)

Montrons que l'ordre est total :

Soient $x, y \in \mathbb{R}_+$, on a $x \le y$ ou bien $y \le x$

Si
$$x \le y$$

$$x \le y \Rightarrow x^2 \le y^2$$
 car $f(x) = x^2$ est croissante sur R_+
 $\Rightarrow x^2 + 1 \le y^2 + 1$
 $\Rightarrow \sqrt{1 + x^2} \le \sqrt{1 + y^2}$
 $\Rightarrow x\Re y$

Si
$$y \le x$$

$$x \le y \Rightarrow y^2 \le x^2 \text{ car } f(x) = x^2 \text{ est croissante sur } R_+$$

$$\Rightarrow y^2 + 1 \le x^2 + 1$$

$$\Rightarrow \sqrt{1 + x^2} \le \sqrt{1 + y^2}$$

$$\Rightarrow y\Re x$$

Donc $\forall x, y \in \mathbb{R}_{+} : x \Re y$ ou bien $y \Re x$

D'où R est une relation d'ordre total

3. $\forall a, b \in \mathbb{N}^* : a\Re b \Leftrightarrow \exists q \in \mathbb{N}^* : b = a.q$ est une relation d'ordre partiel \Re est une relation d'ordre (déjà vue)

Montrons que l'ordre est partiel :

Pour
$$x_0 = 2$$
 et $y_0 = 3$

On a 2 $\Re 3$ fausse car $\exists q \in \mathbb{N}^* : 3 = 2.q$

Et $3\Re 2$ fausse car $\exists q \in \mathbb{N}^* : 2 = 3.q$

Donc $\exists x_0, y_0 \in E : x_0 \Re y_0$ fausse et $y_0 \Re x_0$ fausse

D'où R est une relation d'ordre partiel.