НИУ ВШЭ НН. Факультет ИМиКН. Методы анализа данных. Charge de cours: В. А. Калягин

Экзамен. Практика.

Вариант 19. Выполнил: Игорь Рухович

Будут использованы: PCA, K-means, Spectral clustering

Импортируем необходимые библиотеки

```
In []: import numpy as np
    import pandas as pd
    from matplotlib import pyplot as plt
    import seaborn as sns
    from mst_clustering import MSTClustering
    import networkx as nx
    from networkx.algorithms.community import modularity
    from scipy.spatial import distance_matrix
    from sklearn.cluster import DBSCAN, KMeans, SpectralClustering
    from sklearn.metrics import davies_bouldin_score
    from sklearn.mixture import GaussianMixture
```

Код для чтения данных + общие переменные

```
In [ ]: data_path = "../data/"
        filename = lambda number: f"22_MAG_Exam_Practice_{number}.xls"
        variants = range(1, 22)
        my_variant = 19
         random state = 123
        columns = [

"Age (years)",
            "Family size"
            "Monthly income (RUB)",
            "Residence in the region (years)",
            "Car valuation (USD)"
            "Loan amount (x1000 RUB)",
        dtypes = [
            int,
             int,
             float,
             float,
             float,
             int,
         types_dict = {elem[0]: elem[1] for elem in zip(columns, dtypes)}
        def read_specific_variant(number: int) -> pd.DataFrame:
             return pd.read_excel(data_path + filename(number), header=None, names=columns)
```

Первичный анализ

Рассмотрим данные:

Набор очень похож на набор из ДЗ1. Возьмём названия колонок оттуда для удобства.

```
In []: df = read_specific_variant(my_variant)
    df.head()
```

Out[]:		Age (years)	Family size	Monthly income (RUB)	Residence in the region (years)	Car valuation (USD)	Loan amount (x1000 RUB)
	0	51	3	18600	17	21000	200000
	1	44	2	11300	13	12000	117000
	2	28	0	8500	3	6000	67000
	3	41	2	15800	11	16000	159000
	4	42	2	8300	12	9000	84000

Соберём некоторые статистики: среднее, стандартное отклонение и каждый 25-й процентиль:

```
In []: df.describe()
```

Out[]

]:		Age (years)	Family size	Monthly income (RUB)	Residence in the region (years)	Car valuation (USD)	Loan amount (x1000 RUB)
	count	70.000000	70.000000	70.000000	70.000000	70.000000	70.000000
	mean	39.985714	2.071429	20000.000000	9.957143	20014.285714	200014.285714
	std	8.074818	1.026058	9999.391286	5.017175	9927.991255	100000.361283
	min	20.000000	-1.000000	2600.000000	-2.000000	2000.000000	19000.000000
	25%	34.250000	1.250000	11325.000000	6.250000	12000.000000	119750.000000
	50%	39.000000	2.000000	20250.000000	9.000000	20000.000000	199500.000000
	75%	46.500000	3.000000	26875.000000	14.000000	26750.000000	265750.000000
	max	60.000000	5.000000	40300.000000	22.000000	43000.000000	422000.000000

Дополнительно построим гистограммы распределения и диаграммы размаха для каждого признака, чтобы лучше понять их структуру и распределение:

Визуально гистограммы распределения напоминаю нормальные или смесь нормальных, возможно, с некоторым шумом (в силу

Диаграммы размаха говорят о том, что бОльшая часть данных по всем признакам сосредоточена вокруг медианы - свойственно нормальному распределению.

Отдельно заметим, что все данные лежат на расстоянии ≤ 1.5 ширины "ящика" (whis=1.5), поскольку ни один из графиков не содержит "точек" за "усами"

Проверим наличие пропусков. Выведем процент пропусков по каждой колонке:

Пропусков в данных нет.

Исходя из отсутствия "точек" за "усами" на диаграммах размаха (сказано выше), а также из приличного вида гистограмм распределения (нет пустых колонок по бокам), предположим, что выбросов нет и не будем их искать. Тем более, имея всего 70 объектов.

А вот что необходимо сделать - так это стандартизацию данных (избавляемся от среднего и приводим стандартное отклонение к 1). Видим, что колонки содержат совершенно разные порядки величин. Это может помешать некоторым алгоритмам в дальнейшем.

```
In []: from sklearn.preprocessing import StandardScaler

z = StandardScaler().fit_transform(df)
print(f"Проверка центрирования (must be equal to 0):\n{z.mean(axis=0)}")
print(f"\nПроверка нормализации (must be equal to 1):\n{z.std(axis=0)}")

Проверка центрирования (must be equal to 0):
[-2.12528408e-16 -1.53052174e-16 3.17206578e-18 -1.58603289e-17
5.39251183e-17 2.53765263e-17]

Проверка нормализации (must be equal to 1):
[1. 1. 1. 1. 1. 1.]
```

Снижение размерности

Чтобы оценить возможность снижения размерности и погрешность такого подхода, применим спектральное разложение (SVD) из реализации numpy:

```
In []: u, s, vt = np.linalg.svd(z, full_matrices=False)
print(f"Сингулярные числа исходной матрицы:\n{s}")

Сингулярные числа исходной матрицы:
[14.87867643 13.95265009 1.93464481 0.41758925 0.17452334 0.02921686]
```

Проверка, что мы не ошиблись (разложение матрицы в произведении даёт исходную):

```
In [ ]: z_new = u @ np.diag(s) @ vt
np.allclose(z, z_new, atol=1e-8)
```

Out[]: True

Всё верно

Рассчитаем погрешности аппроксимации разным количеством признаков:

```
In []: tmp_s = np.append(s, 0)
    tmp_s_sq = tmp_s**2
    print(f"Сингулярные числа исходной матрицы:\n{tmp_s[:-1].round(2)}")
    print(f"Абсолютная погрешность аппроксимации в спектральной матричной норме:\n{tmp_s[1:].round(2)}")
    abs_errors_f = tmp_s_sq[::-1].cumsum()[::-1][1:]
    print(f"Абсолютная погрешность аппроксимации в норме Фробениуса:\n{abs_errors_f.round(2)}")
    print(f"Относительная погрешность аппроксимации в норме Фробениуса, %:\n{(abs_errors_f/tmp_s_sq.sum()*100).round(2)}")

Сингулярные числа исходной матрицы:
    [14.88 13.95 1.93 0.42 0.17 0.03]
    Абсолютная погрешность аппроксимации в спектральной матричной норме:
    [13.95 1.93 0.42 0.17 0.03 0. ]
    Абсолютная погрешность аппроксимации в норме Фробениуса:
    [1.9862e+02 3.9500e+00 2.1000e-01 3.0000e-02 0.0000e+00 0.0000e+00]
    Относительная погрешность аппроксимации в норме Фробениуса, %:
    [4.729e+01 9.400e-01 5.000e-02 1.000e-02 0.0000e+00 0.000e+00]
```

Заметим, что погрешность аппроксимации в норме Фробениуса одним признаком составляет примерно 47%, а вот двумя - всего 1%. При этом без потерь вложить данные в пространство меньшей размерности нельзя.

Возьмём 2 наиболее важных скрытых признака из SVD (метод PCA), рассмотрим карту объектов:

```
In []: n_new_features = 2
clients_approx = u[:,:n_new_features]
```

```
print(clients_approx.shape)
         clients_approx.round(2)
Out[]: array([[-0.06, 0.14],
                 [-0.11, -0.],
                 [-0.07, -0.25],
                 [-0.05, -0.01],
                 [-0.13, -0.03],
                 [ 0.03, -0.14],
                 [ 0.11,
                          0.05],
                 [0.,
                          0.08],
                 [-0.11, 0.1],
                 [0.07, -0.15],
                 [-0.12, -0.12],
                 [ 0.14, 0.03],
                 [ 0.1 , -0.13],
                 [-0.03, 0.22],
                 [ 0.16, -0.02],
                 [ 0.05, -0.02],
                 [-0.17,
                          0.06],
                 [ 0.05,
                          0.1 1.
                 [-0.09,
                          0.19],
                 [-0.08, 0.13],
                 [-0.17, -0.15],
                 [ 0.11, 0.01],
                 [-0.06, 0.12],
                 [-0.16, -0.16],
                 [ 0.11, -0. ],
                 [-0.03, -0.12],
                 [-0.04, 0.08],
                  0.06,
                          0.01],
                 [ 0.15,
                 [-0.11, 0.08],
                 [ 0.07, -0.02],
                 [-0. , -0. ],
[-0.22, -0.01],
                 [ 0.14, -0.03],
                 [-0.04, 0.33],
[-0.09, -0.05],
                 [-0.02, -0.36],
                 [ 0.05, -0.15],
                 [ 0.05, 0. ],
                 [-0.1 , 0.14],
[ 0.04, -0.02],
                 [-0.12, 0.02],
                 [ 0.03, -0. ],
[-0.09, 0.13],
[-0.16, -0.06],
                 [ 0.18, 0.13],
                 [ 0.14, -0.07],
                 [-0.09, 0.2],
                  0.11, -0.13],
                 [ 0.09, -0.02],
                 [-0.01, -0.16],
                 [ 0. , -0.24],
[ 0.23, 0.01],
                 [-0.14, -0.01],
                 [ 0.05, -0.01],
                 [ 0.18, 0.11],
                 [-0.15, 0.07],
                 [0.19, -0.08],
                 [-0.19, -0.02],
                 [-0.19, -0.04],
                 [ 0.13, 0. ],
                 [ 0.08, -0.01],
                 [-0.15, 0.08],
                 [ 0.17,
                          0.28],
                 [-0.13, 0.07],
                 [-0.16, -0.11],
                 [ 0.21, 0.05],
                 [0.04, -0.1],
                 [ 0.11, -0.07],
                 [ 0.2 , 0.02]])
         Графически представим данные:
In [ ]: plt.scatter(x=clients_approx[:,0], y=clients_approx[:,1])
```

Out[]: <matplotlib.collections.PathCollection at 0x7fa2717ce4c0>

В целом, можем заметить 2 кластера, слева и справа

Кластеризация

Далее будем работать с исходным набором данных (размерности 6). Возьмём данные после стандартизации, для меньшего числа ошибок

70 rows \times 6 columns

Чтобы лучше понять устройство данных, построим гистограммы распределения всех прихнаков, а так же их попарные распределения:

In []: sns.pairplot(df, corner=True)

Out[]: <seaborn.axisgrid.PairGrid at 0x7fa26e26ea60>

Во многих попарных распределениях видим кластерную структуру из 2 кластеров с шумом.

В качестве дистанции выберем Евклидово расстояние между точками, поскольку на обеих картинках выше мы используем Евклидову метрику и уже видим хорошую кластерную структуру. Нет смысла усложнять этот шаг. Матрицу близости (adjacency matrix) возьмём как матрицу расстояний, вычтенную из её наибольшего значения.

```
Out[]: array([[0. , 2.10810836, 5.47247157, ..., 3.64515142, 3.82935677, 4.30123556], [2.10810836, 0. , 3.54563545, ..., 2.60472264, 3.36137989, 4.67898792], [5.47247157, 3.54563545, 0. , ..., 2.69452101, 3.67814035, 5.54116702], ..., [3.64515142, 2.60472264, 2.69452101, ..., 0. , 1.09620006, 2.94349773], [3.82935677, 3.36137989, 3.67814035, ..., 1.09620006, 0. , 1.94576354], [4.30123556, 4.67898792, 5.54116702, ..., 2.94349773, 1.94576354, 0. ]])
```

В таком виде матрицу расстояний можно также назвать матрицей смежности для полного графа, вершинами которого являются точки из набора данных, а расстояние между точками определяет вес ребра. Поскольку все точки имеют конечные координаты, существует ребро между любой парой точек, а значит граф полный. В координатах i,i находятся нули - граф не содержит петель. Евклидово расстояние коммутативно - граф неориентированный:

Создадим графовые структуры с помощью модуля networkx:

```
In []: def create_graph(distances):
    G = nx.Graph()
    for i in range(distances.shape[0]):
        for j in range(distances.shape[1]):
            G.add_edge(i, j, weight=distances[i, j])
    return G
G_x = create_graph(adj_x)
```

Кластеризация на 2 кластера. Метод K-means

Out[]: <seaborn.axisgrid.PairGrid at 0x7fa26e26ed60>

Кластеризация на 2 кластера. Метод спектральной кластеризации:

```
In []: spectral = SpectralClustering(n_clusters=2, affinity="nearest_neighbors", random_state=random_state).fit(df)
labels["spectral"] = spectral.labels_

plotting_df = df.copy()
plotting_df["label"] = labels["spectral"]
sns.pairplot(plotting_df, corner=True, hue="label")
```

Out[]: <seaborn.axisgrid.PairGrid at 0x7fa254f2e370>

Оба метода разделили набор на 2 кластера. Внешне разделения кажутся аналогичными. Проверим это предположение с помощью RAND-index:

RAND index для K-means и Spectral: 0.971

Действительно, разбиения получились очень похожими. RAND index (или accuracy в контексте кластеризации) практически равен единице.

Попытаемся оценить качество кластеризации с помощью индекса Дэвиса-Болдуина (Davies-Bouldin score). Данная метрика является очень популярной при оценке кластеризации. Меньшее значение означает лучшее разбиение.

```
In []: print("Подсчет Davies-Bouldin score для разбиения на 2 кластера:")
    print(f'K-means: \
    {davies_bouldin_score(df, labels["kmeans"]):.3f}')
```

```
print(f'Spectral: \
{davies_bouldin_score(df, labels["spectral"]):.3f}')
```

Подсчет Davies-Bouldin score для разбиения на 2 кластера:

K-means: 0.961 Spectral: 0.959

Оба разбиения оказались достаточно неплохими с точки зрения метрики Davies-Bouldin score. Значение не превысило 1. Для обоих методов очень близкое, но всё-таки спектральный метод был оценён немного выше.

Итог

- В данных размерности 6 было найдено скрытых 2 признака, с помощью которых с минимальными потерями был возможен переход в размерность 2.
- Оба использованных метода кластеризации справились с задачей и нашли кластерную структуру в данных
- Использованная метрика показала, что разбиение на кластеры достаточно неплохое и мало отличается между алгоритмами