1. Use Cramer's rule to compute the solutions of the system.

$$3x_1 + 6x_2 = 9$$

$$4x_1 + 7x_2 = 14$$

What is the solution of the system?

$$x_2 = -2$$

2. Use Cramer's rule to compute the solutions of the system.

$$5x_1 + 3x_2 = 1$$

$$2x_1 + 4x_2 = -2$$

What is the solution of the system?

(Type integers or simplified fractions.)

3. Determine the values of the parameter s for which the system has a unique solution, and describe the solution.

$$5sx_1 + 6x_2 = 6$$

$$9x_1 + 4sx_2 = -3$$

Choose the correct answer below.

○ **A.**
$$s \neq \pm 3\sqrt{\frac{3}{10}}$$
; $x_1 = \frac{3(-5s-18)}{2(10s^2-27)}$; $x_2 = \frac{3(4s+3)}{10s^2-27}$

B.
$$s \neq \pm 3\sqrt{\frac{3}{10}}$$
; $x_1 = \frac{3(4s+3)}{10s^2 - 27}$; $x_2 = \frac{3(-5s-18)}{2(10s^2 - 27)}$

c.
$$s \ne 0$$
; $x_1 = \frac{3(4s+3)}{10s^2 - 27}$; $x_2 = \frac{3(-5s-18)}{2(10s^2 - 27)}$

D.
$$s \ne 0$$
; $x_1 = \frac{3(-5s-18)}{2(10s^2-27)}$; $x_2 = \frac{3(4s+3)}{10s^2-27}$

4. Determine the values of the parameter s for which the system has a unique solution, and describe the solution.

$$sx_1 - 4sx_2 = 3$$

$$3x_1 - 12sx_2 = 5$$

Choose the correct answer below.

○ **A.**
$$s \ne -1$$
; $x_1 = \frac{4}{3(s+1)}$ and $x_2 = \frac{9-5s}{12s(s+1)}$

B.
$$s \ne \pm 1$$
; $x_1 = \frac{4}{12(s-1)(s+1)}$ and $x_2 = \frac{9-5s}{12(s-1)(s+1)}$

C.
$$s \ne -1$$
; $x_1 = \frac{14}{3(s+1)}$ and $x_2 = \frac{9+5s}{12s(s+1)}$

S D. s ≠ 0, 1;
$$x_1 = \frac{4}{3(s-1)}$$
 and $x_2 = \frac{9-5s}{12s(s-1)}$

5.	Compute the adjugate of the given matrix, and then use the Inverse Formula to give the inverse of the matrix.
----	---

$$A = \begin{bmatrix} 0 & -4 & -1 \\ 4 & 0 & 0 \\ -2 & 1 & 1 \end{bmatrix}$$

	0	3	0	
The adjugate of the given matrix is adj A =	- 4	-2	-4	_ .
	4	8	16	

The inverse of the given matrix is
$$A^{-1} = \begin{bmatrix} 0 & \frac{1}{4} & 0 \\ -\frac{1}{3} & -\frac{1}{6} & -\frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} & \frac{4}{3} \end{bmatrix}$$

(Simplify your answers.)

6. Compute the adjugate of the given matrix, and then use the Inverse Formula to give the inverse of the matrix.

A =
$$\begin{bmatrix} 2 & 3 & 4 \\ 1 & 0 & 1 \\ 3 & 1 & 1 \end{bmatrix}$$

The adjugate of the given matrix is adj
$$A = \begin{bmatrix} -1 & 1 & 3 \\ 2 & -10 & 2 \\ 1 & 7 & -3 \end{bmatrix}$$

	- 1 8	<u>1</u> 8	<u>3</u> 8
The inverse of the given matrix is $A^{-1} =$	1/4	$-\frac{5}{4}$	<u>1</u> 4
	1 8	7 8	$-\frac{3}{8}$

(Simplify your answers.)

7.	Compute the adjugate of the given matrix, and then use the Inverse Formula to give the inverse of the matrix.							
	$A = \begin{bmatrix} 2 & 0 & 0 \\ -3 & 1 & 1 \\ -1 & 3 & 1 \end{bmatrix}$							
		- 2	0	0				
	The adjugate of the given matrix is adj A =	2	2	-2				
		- 8	- 6	2				
	The inverse of the given matrix is $A^{-1} =$	<u>1</u>	0	0				
		$-\frac{1}{2}$	$-\frac{1}{2}$	1/2				
		2	3 2	$-\frac{1}{2}$				
	(Simplify your answers.)							
8.	Find the area of the parallelogram whose ve							
	(0,0), (4,7), (9,4), (13,11)							
	The area of the parallelogram is 47	square units.						
9.								
	(-2, -3), (0,3), (6, -5), (8,1)							

The area of the parallelogram is

11.

The volume of the parallelepiped is

the image of S under the mapping $\mathbf{x} \mapsto A\mathbf{x}$.

The area of the image of S under the mapping $\mathbf{x} \mapsto A\mathbf{x}$ is

52

2

square units.

10. Find the volume of the parallelepiped with one vertex at the origin and adjacent vertices at (4,0, -2), (1,2,6), and (7,1,0).

. (Type an integer or a decimal.)

. (Type an integer or a decimal.)

Let S be the parallelogram determined by the vectors $\mathbf{b}_1 = \begin{bmatrix} -4 \\ 4 \end{bmatrix}$ and $\mathbf{b}_2 = \begin{bmatrix} -4 \\ 7 \end{bmatrix}$, and let $A = \begin{bmatrix} 3 & -3 \\ -6 & 3 \end{bmatrix}$. Compute the area of

108