

Esempio
dire se la matrice A= 2 -1 1 e' definita pos; viva
101
Solveione
A e' hermilians (reale simmelics). Quindi per il teo. A e def pos (=> del (A) >0 VIC:1,2,3
$det(A_1)=1$, $det(A_2)=3$, $det(A_3)=1$ => A e' ded. pos.
Csempio Sempio
Dire se A et des. pos.
1) 1re se 1 ee 668, 1205.
1 2 0 27
$A = \begin{bmatrix} 2 & 0 & 2 \\ -2 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
Soluzione
La matrice A non e' hermitiana (non e reale simmetrica), dun que non possiamo applicare
direCOsmenGe il Geo ad A per suabilire se A e def. pos.
lu Glovis sappiamo che le cu det posibiva => la sua parte reale e' ded posibiva
$O(1) = 1 \cdot 1$
$Re(A) = \frac{A + A^{\dagger}}{2} = \frac{A + A}{2} = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix}$
Si come Re(A) et hermibiana, per stabilire se Re(A) et definita possiamo applicare il beorema
In bose 21 cololi gio sobbi
dec(A) = 2, dec(A)=3, dec(A)=1
=> Re(A) e' ded. pos => A e' ded pos.

