

Entropy Coding

Connectivity coding

Digital Geometry Processing - Spring 2008, Technion

- 1

Digital Geometry Processing - Spring 2008, Technion

Entropy coding

- Lossles coder
- Input: a set of symbols
- Output: bitstream
- Idea
 - Assign each symbol a series of bits
 - Use less bits for common symbols

Definitions

- Alphabet
 - Finite set containing at least one element
- Symbol

Element in the alphabet

A string over the alphabet

Coguese of symbols from alphabet

Sequence of symbols from alphabet

Codeword

Bits representing coded symbol or string

- $\underline{\boldsymbol{p}_{i}}$ Occurrence probability of s_{i} in input string
- \underline{L}_i Length of codeword of s_i in bits

- **A** = $\{a, b, c, d, e\}$
- $S_j \in A$
- S = ccdabdcaad
- **110101001101010100**
- $p_i = P(s_i \in S), \quad \sum_{\forall i \in A} p_i = 1$

Digital Geometry Processing - Spring 2008, Technion

Entropy

Entropy of the set $\{e_1,...,e_n\}$ with probabilities $\{p_1,...,p_n\}$

$$H(p_1,\ldots,p_n) \equiv -\sum_{i=1}^n p_i \log_2 p_i$$

- $-\log_2 p_i =$ **uncertainty** in symbol e_i
 - The "surprise" when we see this symbol
 - Entropy average "surprise" on all symbols
- In our context
 - Minimal number of bits on the average, needed to represent a symbol
 - Average on all symbols code lengths
 - Assuming no dependencies between symbols' appearances

Digital Geometry Processing - Spring 2008, Technion

5

Entropy example 1

Entropy calculation for a two symbol alphabet.

Example 1: A
$$p_A$$
=0.5 B p_B =0.5

$$H(A,B) = -p_A \log_2 p_A - p_B \log_2 p_B =$$

= -0.5 \log_2 0.5 - 0.5 \log_2 0.5 = 1

We need 1 bit per symbol on average to represent the data.

Digital Geometry Processing - Spring 2008, Technion

6

Entropy example 2

Entropy calculation for a two symbol alphabet.

Example 1: A
$$p_A$$
=0.8 B p_B =0.2

$$H(A,B) = -p_A \log_2 p_A - p_B \log_2 p_B =$$

= -0.8 \log_2 0.8 - 0.2 \log_2 0.2 \cong 0.7219

We need LESS than 1 bit per symbol on average

4

Entropy examples

• Entropy of $\{e_{1}...e_{n}\}$ is **maximized** when

$$p_1=p_2=...=p_n=1/n \rightarrow H(e_1,...,e_n)=\log_2 n$$

- No symbol is "better" than the other or contains more information
- 2^k symbols must be represented by k bits
- Entropy of $\{e_{1}...e_{n}\}$ is **minimized** when

$$p_1=1, p_2=...=p_n=0 \rightarrow H(e_1,...,e_n)=0$$

Entropy coding

- Entropy
 - Lower bound on average number of bits needed for alphabet
 - Data compression limit
- Coding efficiency = Bits Per Symbol

 $BPS = \frac{\text{length(encoded message)}}{\text{length(original message)}}$

- Entropy coding methods
 - Try to achieve entropy of alphabet: BPS → Entropy
 - If BPS = Entropy, code is optimal

Digital Geometry Processing - Spring 2008, Technion

9

Code types

Fixed-length codes

All codewords have same length (number of bits)

$$A - 000$$
, $B - 001$, $C - 010$, $D - 011$, $E - 100$, $F - 101$

Variable-length codes

Codewords can have different lengths

Digital Geometry Processing - Spring 2008, Technion

10

Code types

Prefix code

No codeword is a prefix of any other codeword

$$A = 0$$
, $B = 10$, $C = 110$, $D = 111$

Uniquely decodable code

- Has only one possible source string producing it
- Unambigously decoded
- Examples:
 - Prefix code end of codeword recognized without ambiguity

$$010011001110 \rightarrow 0 \mid 10 \mid 0 \mid 110 \mid 0 \mid 111 \mid 0$$

Fixed-length code

Huffman code

- A variable-length prefix code
- Codeword chosen by probability of appearance
 - High probability → short codeword
- Integral number of bits per codeword
- Optimal variable-length prefix code for known probablilities
- Encoding/decoding done using Huffman tree

Huffman encoding example

Use previous codewords to encode "BCAE":

String: B C A E Encoded: 10 00 01 111

Number of bits used: 9

The BPS is (9 bits/4 symbols) = 2.25

Entropy: - 0.25log0.25 - 0.25log0.25 - 0.2log0.2 - 0.15log0.15 - 0.15log0.15 = **2.2854**

BPS lower than entropy. WHY?

Digital Geometry Processing - Spring 2008, Technion

14

Huffman tree construction Leaf for each symbol *s* of alphabet A with weight p. 0.55while (tree not connected) do $y, z \leftarrow lowest_root_weights()$ 0.45 $r \leftarrow \text{new_root}$ $r \rightarrow \text{attachSons}(v, z)$ weight(r) = weight(y)+weight(z) 0.3 Probabilities 0.25 0.15 0.2 A401 C00**₽**310 DP110 **E**111 codewords: 15 Digital Geometry Processing - Spring 2008, Technion

Huffman tree construction

- Initialization
 - Leaf for each symbol s of alphabet A with weight p_s
 - Can work instead with integer weights number of occurrences
- while (tree not connected) do
 - Y, Z ← lowest_root_weights_tree()
 - r ← new root
 - r->attachSons(Y, Z)
 - attach one via a 0, the other via a 1, order not significant
 - weight(r) = weight(Y)+weight(Z)

Huffman encoding

- Build a table of per-symbol encodings generated from Huffman tree
 - Globally known to both encoder and decoder
 - Sent by encoder, read by decoder
- Encode one symbol after the other, using encoding table.
- Encode the pseudo-eof symbol.

Digital Geometry Processing - Spring 2008, Technion

17

Huffman decoding

- Construct decoding tree based on encoding table
- Read coded message bit-by-bit
 - Traverse the tree top to bottom accordingly
 - When a leaf is reached, a codeword was found → corresponding symbol is decoded
- Repeat until the pseudo-eof symbol is reached
- No ambiguities prefix code

Digital Geometry Processing - Spring 2008, Technion

18

Symbol probabilities

- How are the probabilities known?
 - Counting symbols in input string
 - Data must be given in advance
 - Requires an extra pass on the input string
 - Data source's distribution is known
 - Data not known in advance, but distribution is known

Example "Global" English frequencies table

Letter	Prob.	Letter	Prob.	
Α	0.0721	N	0.0638	
В	0.0240	0	0.0681	
С	0.0390	Р	0.0290	
D	0.0372	Q	0.0023	
E	0.1224	R	0.0638	
F	0.0272	S	0.0728	
G	0.0178	Т	0.0908	
Н	0.0449	U	0.0235	
I	0.0779	V	0.0094	
J	0.0013	W	0.0130	
K	0.0054	X	0.0077	
L	0.0426	Υ	0.0126	
М	0.0282	Z	0.0026	
Total: 1.0000				

Digital Geometry Processing - Spring 2008, Technion

Huffman entropy analysis

- Best results entropy wise
 - **Only** when occurrence probabilities are negative powers of 2 (i.e. $\frac{1}{2}$, $\frac{1}{4}$, ...). Otherwise, BPS > entropy bound.
- Example

Symbol	Probability	Codeword
Α	0.5	1
В	0.25	01
С	0.125	001
D	0.125	000

- Entropy = 1.75
- An input stream which represens the probabilities
 - AAAABBCD Code: 11110101001000
- BPS = (14 bits/8 symbols) = **1.75**

Digital Geometry Processing - Spring 2008, Technion

21

Huffman tree Construction complexity

- Simple implementation $O(n^2)$.
- Using a Priority Queue O(n·log(n)):
 - Inserting a new node O(log(*n*))
 - n nodes insertions O(n·log(n))
 - Retrieving 2 smallest node weights o(log(n))

Digital Geometry Processing - Spring 2008, Technion

22

Huffman summary

- Achieves entropy when occurrence probabilities are negative powers of 2
- Alphabet and distribution must be known in advance
- Given Huffman tree, very easy (and fast) to encode and decode
- Huffman code not unique (arbitrary decisions in tree construction)

Better than Huffman?

- Huffman optimal, so how can improve?
- Use fractional number of bits per codeword
 - Arithmetic coding
- Learn probabilities from bit stream
 - Lempel-Ziv coding
 - Unknown alphabet
 - Unknown probabilities
 - Handles dependencies between symbols