ALAGAPPA CHETTIAR GOVERNMENT COLLEGE OF ENGINEERING AND TECHNOLOGY

(An Autonomous Institution Affiliated to Anna University, Chennai)

KARAIKUDI – 630003

PROFESSIONAL READINESS FOR INNOVATION EMPLOYABLITY AND ENTERPRENEURSHIP

IBM PROJECT REPORT

Submitted by

Team ID: PNT2022TMID06091

GOPINATH R - 1915014

ANUSUYA K - 1915003

JANANI S - 1915018

SAVITHA SREE L - 1915033

In partial fulfillment for the award of the degree

Of

BACHELOR OF ENGINEERING
IN
COMPUTER SCIENCE AND ENGINEERING
NOVEMBER 2022

ALAGAPPA CHETTIAR GOVERNMENT COLLEGE OF ENGINEERING AND TECHNOLOGY

(An Autonomous Institution Affiliated to Anna University, Chennai)

KARAIKUDI - 630003

BONAFIDE CERTIFICATE

Certified that this PROJECT REPORT "A NOVEL METHOD FOR HANDWRITTEN DIGIT RECOGNITION SYSTEM" is the bonafide work of GOPINATH R ANUSUYA K JANANI S SAVITHA SREE L for IBM NALAIYATHIRAN in VII semester of B.E., degree course in Computer Science and Engineering branch during the academic year of 2022 - 2023.

Staff-In charge

Evaluator

Dr.C.Uma Rani

Mrs.Syed Suhaila

Head of the Department

Mrs.K.Chandraprabha

ACKNOWLEDGEMENT

We expressour breathless thanks to our **Dr.P.K.PALANI**, **M.E**, **Ph.D**, the Dean, Alagappa Chettiar Government College Of Engineering And technologyfor giving constant motivation in succeeding in our goal.

We acknowledge our sincere thanks to Head of the Department MRS.K.CHANDRAPRABHA, M.E ,for giving us valuable suggestion and help towards us throughout this Project.

We are highly grateful to thank our Project coordinator **DR.C.UMA RANI**, andour Project Evaluator **MRS.SYED SUHAILA**, Department of Computer Scienceand Engineering Alagappa Chettiar Government College Of Engineering And technology, for the coordinating us throughout this Project.

We are very much indebted to thank all the faculty members of Department of Computer science and Engineering in our Institute, for their excellent moral supportand suggestions to completeour Project work successfully.

CONTENTS

TITLE
1.INTRODUCTION
a.ProjectOverview
b.Purpose
2.LITERATURESURVEY
a.ExistingProblem
b.References
c.ProblemStatementDefinition
3.IDEATION&PROPOSEDSOLUTION
a.EmpathyMapCanvas
b.Ideation&Brainstorming
c.ProposedSolution
d.ProblemSolutionfit
4.REQUIREMENT&ANALYSIS
a.FunctionalRequirement
b.Non-Functionalrequirements
5. PROJECT DESIGN
a.DataFlowDiagrams
b.Solution&TechnicalArchitecture
c.UserStories
6.PROJECTPLANNING&SCHEDULING
a.SprintPlanning&Estimation
b.SprintDeliverySchedule
c.ReportsfromJIRA
7.CODING&SOLUTIONING
a.Feature1
b.Feature2
8.TESTING
a.TestCases

b.UserAcceptanceTesting
9.RESULTS
a.Per formanceMetrics
10.ADVANTAGES&DISADVANTAGES
11.CONCLUSION
12.FUTURESCOPE
13.APPENDIX
SourceCode
GitHub&ProjectDemoLink

1.INTRODUCTION

1.1 PROJECT OVERVIEW:

Handwriting recognition is the ability of a machine to receive and interpret handwritten input from multiple sources like paper documents, photographs, touch screen device etc. Recognition of handwritten and machine characters is an emerging area of research and finds extensive applications in banks, offices and industries. The main aim of this project is to design expert system for , "HCR using Neural Network" that can effectively recognize a particular character of type format using the Artificial Neural Network approach. Neural computing Is comparatively new field, and design components are therefore less well specified than those of other architectures. Neural computers implement data parallelism. Neural computer are operated in way which is completely different from the operation of normal computers. Neural computer are trained (not Programmed) so that given a certain starting state (data input); they either classify the input data into one of the number of classes or cause the original data to evolve in such a way that a certain desirable property is optimized.

1.2 PURPOSE:

This application is useful for recognizing all character (English) given as in input image. Once input image of character is given to proposed system, then it will recognize input character which is given in image. Recognition and classification of characters are done by Neural Network. The main aim of this project is to effectively recognize a particular character of type format using the Artificial Neural Network approach.

2.LITERATURE SURVEY

2.1 EXISTING PROBLEM:

Handwriting recognition tends to have problems when it comes to accuracy. People can struggle to read others' handwriting. How, then, is a computer going to do it. The issue is that there's a wide range of handwriting – good and bad. This makes it tricky for programmers to provide enough examples of how every character might look. Plus, sometimes, characters look very similar, making it hard for a computer to recognise accurately. Joined-up handwriting is another challenge for computers. When your letters all connect, it makes it hard for computers to recognise individual characters. Consider, for instance, an 'r' and an 'n'. Joined up, these letters could be mistaken for an 'm'. In the case of handwriting recognition from photos, there are also awkward angles to consider. The angle the photo is taken could obscure the character, making it harder for the computer to identify.

2.2 REFERENCES:

- Isha Vats, Shamandeep Singh, "Offline Handwritten English Numerals Recognition using Correlation Method", International Journal of Engineering Research and Technology (IJERT): ISSN: 2278-0181 Vol. 3 Issue 6, June 2014. Access Date: 09/07/2015.
- 2. Gunjan Singh, Sushma Lehri, "Recognition of Handwritten Hindi

- Characters using Back propagation Neural Network",International Journal of Computer Science and Information Technologies ISSN 0975-9646, Vol. 3 (4), 2012,4892-4895. Access Date:09/07/2015.
- S S Sayyad, Abhay Jadhav, Manoj Jadhav, Smita Miraje, Pradip Bele, Avinash Pandhare, 'Devnagiri Character Recognition Using Neural Networks", International Journal of Engineering and Innovative Technology (IJEIT) Volume 3, Issue 1, July 2013. Access Date: 09/07/2015.
- 4. Shabana Mehfuz, Gauri katiyar, 'Intelligent Systems for Off-Line Handwritten Character Recognition: A Review", International Journal of Emerging Technology and Advanced Engineering Volume 2, Issue 4, April 2012. Access Date: 09/07/2015.
- Prof. Swapna Borde, Ms. Ekta Shah, Ms. Priti Rawat, Ms. Vinaya Patil, "Fuzzy Based Handwritten Character Recognition System" "International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622, VNCET 30 Mar'12. Access Date: 09/07/2015.
- Rahul KALA, Harsh VAZIRANI, Anupam SHUKLA and Ritu TIWARI, "An Overview of Character Recognition Focused on Off-LineHandwriting", IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS PART APPLICATIONS AND REVIEWS, VOL. 31, NO. 2, MAY 2001. Access Date: 09/07/2015.
- 7. Ms. Seema A. Dongare , Prof. Dhananjay B. Kshirsagar, Ms. Snehal V.

- Waghchaure ,"Handwritten Devanagari Character Recognition using Neural Network ",IOSR Journal of Computer Engineering (IOSR-JCE) e-ISSN: 2278-0661, p- ISSN: 2278-8.
- Mitrakshi B. Patil, Vaibhav Narawade, "Recognition of Handwritten Devnagari Characters through Segmentation and Artificial neural networks", International Journal of Engineering Research and Technology (IJERT) Vol. 1 Issue 6, August - 2012. ISSN: 2278-0181. Access Date:09/07/2015.
- Mandeep Kaur, Sanjeev Kumar, "A RECOGNITION SYSTEM FOR HANDWRITTEN GURMUKHI CHARACTERS"International Journal of Engineering Research and Technology (IJERT) Vol. 1 Issue 6, August -2012 ISSN: 2278-0181. Access Date:09/07/2015.
- 10.Miroslav NOHAJ, Rudolf JAKA, "Image preprocessing for optical character recognition using neural networks" Journal of Patter Recognition Research, 2011. Access Date:09/07/2015.

2.3 PROBLEM STATEMENT DEFINITION:

- I am a person who collects and delivers postal mails. I'm trying to sort the mail
 into related addresses but manual methods leads to mistakes in sorting because
 of handwritten post codes and addresses which make me feel guilty of wrong
 delivery of postal mail.
- I am a person who wants to know the prescribed medicines. I'm trying to know
 the medicine names suggested by the doctor but I am unable to read and
 understand because of handwritten doctor's prescription which makes me feel
 frustrated.

2.3.1 Problem statement

Problem	lam	I'm trying to	But	Because	Which makes me
Statement	(Customer)				feel
(PS)					
PS-1	A person	Sort the	Manual	Of	Guilty of wrong
	who	mail into	methods	handwritten	delivery of postal
	collects	related	leads to	post codes	mail.
	and	addresses	mistakes	and	
	delivers		in sorting	addresses	
	postal				
	mails				
PS-2	A person	Know the	l am	Of	Frustrated
	who wants	medicine	unable to	handwritten	
	to know the	names	read and	doctor's	
	prescribed	suggested	understa	prescription	
	medicines	by the	nd		
		doctor			

3.IDEATION & PROPOSED SOLUTION

3.1 EMPATHY MAP CANVAS:

3.2 IDEATION & BRAINSTORMING:

Step-1: Team Gathering, Collaboration and Select the Problem Statement

Conducting a brainstorm

Problem statement

The problem statement is to classify the handwritten digits. The goal is to take an image of a handwritten digit and determine the digit. The digits range from 0-9. It is hard for the machine because handwritten digits are of different shapes and not perfect all the time. Hand written digit recognition system tackles this problem by using \odot a image of a digit and recognizes it using that image.

Step-2: Brainstorm, Idea Listing and Grouping

Brainstorm solo

Janani S

1	CNN network is used	Mainly used in banking sector	The process is much faster
	Printed characters cannot be altered	Improving photography practices	Greater security technology
	AHD fulfil ne need of today's business		

Anusuya K

Processing of information is fast	Feasible for large data set	State of art strategy
Feasible to access anywhere	Designing documents in this is a friendly way	Online procedure is easier then offline
Used to verify the originality of paper documents	Cost effective	

Savitha Sree L

Affect Lack of Complexity training recognition of noise in time accuracy data Variation in Stress on Pattern character some parts analysis is styles of numbers complex Huge Hand Heavy ambiguity of writing must strokes from tailed be dark person to distributions enough person

Gopinath R

Need to There is an Limited develop an probability no.of efficient of potential characters algorithm of collapse Expensive Poor quality method of of source data entry document

Brainstorm as a group

(1) 15 minutes

It involved Machine learning techniques like HMM,SVM etc.

Feature extraction steps varies for every language hence Used to augment the existing data sets Training sets are used to train and adjust the weights of neural network Performance of artificial learning systems are limited due to manual feature extraction phase

Al requires huge data to train

Step-3: Idea Prioritization

Regardless of their importance, which tasks are more feasible than others? (Cost, time, effort, complexity, etc.)

3.3 PROPOSED SOLUTION:

3.3.1 Proposed solution

S.No	Parameter	Description
1.	Problem Statement	Janani who is a cashier needs a
	(Problem to be solved)	way to a quickly enter the
		account details which are written
		by account holders so that
		account holders don't have to
		wait long
2.	Idea / Solution description	Using MNIST dataset and
		Convolutional Neural Network to
		Perform digits recognition. All of
		those digits can be converted
		into electronic words in a text
		document format, and this data
		only needs a fraction of the
		physical storage space of the
		physical copies.
3.	Novelty / Uniqueness	Unlike OCR which recognise all
		the character, it can accurately
		recognise the digits.
4.	Social Impact / Customer	It saves time and work load in
	Satisfaction	sectors which uses this
		technology.

5.	Business Model (Revenue	In banking sector, numerical
	Model)	detail in cheque can be easily
		recognised. Pin code details are
		obtainable in Postal System
6.	Scalability of the Solution	Able to distinguish numbers in
		noisy environment. No restriction
		on number of digits to be
		recognised

3.4 PROBLEM SOLUTION FIT:

4.REQUIREMENT ANALYSIS

4.1 FUNCTIONAL REQUIREMENT:

FR	Functional Requirement Sub Requirement (Story / Sub-Task)	
No.	(Epic)	
FR-1	User Registration	Registration through Gmail
FR-2	User Confirmation	Confirmation via Email
FR-3	Uploading the image	Uploading the handwritten digit image
		in the
		format provided
FR-4	Using a web browser	User requires a desktop or mobile
		browser
FR-5	Image Data	Handwritten digit recognition is the
		ability of a computer to recognize the
		human and written digits from
		different sources like images, papers,
		touch screens, etc, and classify them
		into 10 predefined classes This has
		been a topic of boundless research
		in the field of deep learning. In the
		realm of deep learning, this has been
		the subject of countless studies

FR-6	Digit Classifier Model	To train a convolutional network to
		predict the digit from an image, use
		the MNIST database of handwritten
		digits. get the training and validation
		data first.
FR-7	MNIST dataset	The MNIST dataset is an acronym that
		stands for the Modified National
		Institute of Standards and Technology
		dataset. It is a collection of 60,000 tiny
		square grayscale photographs, each
		measuring 28 by 28, comprising
		handwritten single digits between 0
		and 9.
FR-8	Cloud Computing	Cloud Computing is defined as a
		virtual platform that allows you to
		store and access your data over the
		internet without any limitations.

4.2 NON FUNCTIONAL REQUIREMENTS:

FR	Non-Functional	Description
No.	Requirement	

NFR-1 Usability	Handwritten character recognition is one
	of the practically important issues in
	pattern recognition applications. The
	applications of digit recognition include
	postal mail sorting, bank check
	processing, form data entry, etc. One of
	the very significant problems in pattern
	recognition applications is the
	recognition of handwritten characters.
	Applications for digit recognition include
	filling out forms, processing bank
	checks, and sorting mail.
NFR-2 Security	All the data provided by user are secured.
NFR-3 Reliability	The system not only produces a
	classification of the digit but also a rich
	description of the instantiation
	parameters which can yield information
	such as the writing style and
	also this process is 99% accurate

NFR-4 Performance	The neural network uses the examples to
	automatically infer rules for recognizing
	handwritten digits. Furthermore, by
	increasing the number of training
	examples, the network can learn more
	about handwriting, and so improve its
	accuracy. There are a number of ways
	and algorithms to recognize handwritten
	digits, including Deep Learning/CNN,
	SVM, Gaussian Naive Bayes, KNN,
	Decision Trees, Random Forests, etc.
NFR-5 Availability	Since we use cloud, the availability of this
	software is all over the world only Internet
	facility is needed.
NFR-6 Scalability	This process has lot of future technology,
	and the usage id abundant.

5.PROJECT DESIGN

5.1 DATA FLOW DIAGRAMS:

Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored. Solution & Technical Architecture User Stories.

Simplified DFD:

- 1. Get image from user.
- 2. Pre-processing the given image by specifying the pixel to be
- 3. Pre-processing image is compared with trained data.
- 4. MNIST dataset sent to pre-processing.
- 5. Pre-processed data classified to training data.
- 6. Pre-processed data classified to testing data.
- 7. Both Training and Testing data are sent to CNN Algorithm.
- 8. Trained data is obtained from the CNN Model.
- 9. Image from user is recognized using trained data.
- 10. Recognized data is sent to the user.

Data Flow Diagram:

5.2 Solution & Technical Architecture

Solution architecture is a complex process – with many sub-processes – that bridges the gap between business problems and technology solutions. Its goals are to:

- Find the best tech solution to solve existing business problems.
- Describe the structure, characteristics, behaviour, and other aspects of the software to project stakeholders.
- Define features, development phases, and solution requirements.

Provide specifications according to which the solution is defined, managed, and delivered.

5.3 User stories:

User Type	Functional Requireme nt (Epic)	User Story Numb er	User Story / Task	Acceptance criteria	Priority	Release
Custom er (Cashier in Bank Sector)	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.	I can access my account / dashboard	Medium	Sprint-2
	Uploading Image	USN-2	As a user, I can upload the images.	Uploading images (.jpg, .png, etc.,)	High	Sprint-3
	Selecting the part to be recognized	USN-3	User will select the part that need to be recognized.	By Scrolling of mouse	Low	Sprint-3
	Image Processing	USN-4	The background is eliminated from captured image and converted into binary image.	Accurate prediction is done only on the binary image.		Sprint-3
	Prediction	USN-5	The binary image is predicted as Numerical Digits (1,2,3)., by using CNN model.	Accurate prediction is done using CNN model	High	Sprint-1
	Perform Action	USN-6	Performing action by training the MNIST Dataset.		High	Sprint-1
	Viewing Result	USN-7	Viewing the Recognized digital data of digits.	The resultant Digit is displayed in the web UI.	High	Sprint-4

6.PROJECT PLANNING & SCHEDULING

6.1Sprint Planning & Estimation

Sprint	Functional Requireme nt (Epic)	User Story Numb er	User Story/ Task	Story Poin ts	Priori ty	Team Members
Sprin	Data Collection	USN-1	Download the	10	High	Gopina
t-1			Dataset			th R,
						Anusuya
						К
Sprin		USN-2	Image Pre-	10	High	Savitha
t-1			processing			Sree L ,
						Janani S
Sprin		USN-3	Import and	10	High	Gopinath R,
t-1			Configure the			Janani
			Image Data			S,
			Generator			Savitha Sree L,
			Libraryand Class			Anusuya K
Sprin		USN-4	Apply Image	10	High	Gopinath
t-1		0011	Data		g	R, Savith
			Generator			Sree L,
			Functionali			
			ty to Train-			
			Set and			
Corio	Madal Duilding	LICNIE	Test-Set	10	Lliab	Anusina
Sprin t-2	Model Building	USN-5	Import the Model	10	High	Anusuya K, Gopinath R,
[-2			Building			Savitha
			Libraries			Sree L,
			and			Janani S
			Initializing the			
			Model			
		USN-6	Adding	10	High	Anusuya K,
Sprin			CNN			Janani S,
t-2			Layers			Savitha
			and			Sree L, Gopinath R
			Dense			
			Layers			

	Functional Requireme nt (Epic)	User Story Numb er	User Story/ Task	Story Poin ts	Priority	
Sprin t-2		USN-7	Configure the Learning Process	10	High	Anusuya K, Savitha Sree L
Sprin t-2		USN-8	Train the Model, Save the Model andTest the Model	10	High	Janani S, Gopinath R, Savitha Sree L, Anusuya K
Sprin -2		USN-9	Image processing of given image	10	High	Gopinath R, Savitha Sree L, Janani S, Anusuya K
Sprin t-3	Application Building	USN-10	Create Web Applicati on using HTML, CSS, JavaScript	10	Medi um	Gopinath R, Savitha Sree L, Janani S
Sprin t-3		USN-11	Build Python code	10	High	Gopinath R, Savitha Sree L, Janani S
Sprin t-3		USN-12	Run the Application	10	High	Savitha Sree L, Anusuya K, Gopinath R
Sprin t-4	Train The Model on IBM	USN-13	Register for IBM Cloud	10	High	Gopina th R, Anusu ya K, Janani S

Sprin	USN-14	Train the	10	High	Savitha
t-4		Model			Sree L,
		and Test			Anusuya K,
		the			Janani S
		Model			
		and its			
		Overall			
		Performan			
		ce			

6.2 Sprint Delivery Schedule

SI.No	Milestone	Activities	Team members
1	Data collection	Download the Dataset	Gopinath R
			Janani S
2	Data collection	Image Pre-processing	SavithaSree L, Anusuya K
3	Data collection	Import the Image Data	Gopinath R
		Generator Library	Janani S,SavithaSree L,
			Anusuya K
4	Data collection	Configure Image Data	Janani S,SavithaSree L,
		Generator	Anusuya K
		Class	
5	Data collection	Apply Image Data Generator	Gopinath R
		Functionality to Trainset	Janani S,SavithaSree L,
		and	Anusuya K
		Test set	
6	Model Building	Import the Model Building	Gopinath R
		Libraries	Janani S,
7	Model Building	Initializing the Model	SavithaSree L,
			Anusuya K
8	Model Building	Adding CNN Layers	Gopinath R
			Janani S,SavithaSree L,
9	Model Building	Adding Dense Layers	Janani S,SavithaSree L,
			Anusuya K

10	Model Building	Configure the Learning Process	Gopinath R Janani S,SavithaSree L, Anusuya K	
11	Model Building	Train The Model	Janani S,SavithaSree L, Anusuya K	
12	Model Building	Save the Model	Gopinath R Janani S,SavithaSree L, Anusuya K	
13	Model Building	Test Model	Gopinath R Janani S,SavithaSree L, Anusuya K	
14	Application Building	Create HTML Pages	Janani S,SavithaSree L, Anusuya K	
15	Application Building	Build Python code	Gopinath R Janani S,SavithaSree L, Anusuya K	
16	Application Building	Run the Application	Gopinath R Janani S,SavithaSree L, Anusuya K	
17	Train The Model on IBM	Register for IBM Cloud	Janani S,SavithaSree L, Anusuya K	
18	Train The Model on IBM	Train Model on IBM	Gopinath R Janani S,SavithaSree L, Anusuya K	

7. CODING & SOLUTIONING

7.1 Feature 1

Along with the predicted value our model gives the probability of the other digits.

```
import os
import random
import string
from pathlib import Path
import numpy as np
from tensorflow.keras.models import load_model
from PIL import Image, ImageOps
def recognize(image):
 model=load_model(Path("./model/model.h5"))
 img = Image.open(image).convert("L")
 img_name = image.filename
 img = ImageOps.grayscale(img)
 img = ImageOps.invert(img)
 img = img.resize((28, 28))
 img2arr = np.array(img)
 img2arr = img2arr / 255.0
 img2arr = img2arr.reshape(1, 28, 28, 1)
 results = model.predict(img2arr)
 best = np.argmax(results,axis = 1)[0]
```

```
pred = list(map(lambda x: round(x*100, 2), results[0]))
 values = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
 others = [(i,pred[i]) for i in range(0,10)]
 best = (pred.index(max(pred)),max(pred))
 #best = others.pop(best)
 return best,others
7.2 Feature 2
# loading the MNIST dataset
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
input_shape = (28, 28, 1)
x_train=x_train.reshape(x_train.shape[0], x_train.shape[1], x_train.shape[2], 1)
x_train=x_train / 255.0
x_test = x_test.reshape(x_test.shape[0], x_test.shape[1], x_test.shape[2], 1)
```

 $x_{test} = x_{test}/255.0$

8. TESTING

8.1 Test Cases

S.No	Feature	Component	Test	Steps to	Expect	Actual	Status
	type		scenario	execute	ed	Result	
					Result		
1	Functional	Handwritt	Check	Find the	9	9	Pass
		en image of	whether	uploaded			
		9	the	handwritt			
			model	en image			
			detects				
			9				
2	Functional	Handwritt	Check	Find the	4	4	Pass
		en image of	whether	uploaded			
		4	the	handwritt			
			model	en image			
			detects				
			4				
3	Functional	Handwritt	Check	Find the	0	0	Pass
		en image of	whether	uploaded			
		0	the	handwritt			
			model	en image			
			detects				
			9				

8.2 User Acceptance Testing

Purpose of document:

The purpose of this document is to briefly explain the test coverage and open issues of the project - Emerging Methods for Early Detection of Forest Fires at the time of the release to User Acceptance Testing (UAT).

Defect analysis:

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved.

Stage	Severity	Severity 2	Severity 3	Severity	Subtotal
	1(High)			4(Low)	
Design	0	1	0	2	3
Coding and	2	1	2	4	9
solutioning					
Executing	1	1	0	1	3
Total	3	3	2	7	15
Fixed bugs	3	3	2	7	15
Not fixed	0	0	0	0	0

Test Case Analysis:

This report shows the number of test cases that have passed, failed, and untested

Section	Total test	Not tested	Fail	Pass
	cases			
Pre-processing	1	0	0	1
the images				
Prediction	2	0	0	2

9. RESULT

9.1. Performance Metric

S.N	Parameter	Values	Screenshot		
0.					
1.	Model	Total params:			
	Summary	484,714	Layer (type)	Output Shape	Param #
			conv2d (Conv2D)	(None, 28, 28, 32)	832
		Trainable params:	conv2d_1 (Conv2D)	(None, 28, 28, 32)	25632
		484,714	<pre>max_pooling2d (MaxPooling2D)</pre>	None, 14, 14, 32)	0
			dropout (Dropout)	(None, 14, 14, 32)	0
		Non-trainable	conv2d_2 (Conv2D)	(None, 14, 14, 64)	18496
		params: 0	conv2d_3 (Conv2D)	(None, 14, 14, 64)	36928
			max_pooling2d_1 (MaxPooling 2D)	g (None, 7, 7, 64)	0
			dropout_1 (Dropout)	(None, 7, 7, 64)	0
			flatten (Flatten)	(None, 3136)	0
			dense (Dense) Total params: 484,714 Trainable params: 484,714 Non-trainable params: 0	(None, 128)	401536

	2.	Accuracy	Training Accuracy - 0.9870 Validation Accuracy – 0.9923	Epoch 1/10 250s 295ms/step - loss: 0.157 - acc: 0.9340 - val_loss: 0.094 - val_acc: 0.9893 Epoch 3/10 344/844 2255 290ms/step - loss: 0.056 - acc: 0.9835 - val_loss: 0.0448 - val_acc: 0.9896 Epoch 3/10 344/844 2255 290ms/step - loss: 0.056 - acc: 0.9835 - val_loss: 0.0316 - val_acc: 0.9917 Epoch 4/10 344/844 2255 290ms/step - loss: 0.056 - acc: 0.9856 - val_loss: 0.0366 - val_acc: 0.9908 Epoch 5/10 344/844 2255 290ms/step - loss: 0.056 - acc: 0.9856 - val_loss: 0.056 - val_acc: 0.9908 Epoch 5/10 344/844 2255 287ms/step - loss: 0.0460 - acc: 0.9869 - val_loss: 0.0261 - val_acc: 0.9942 Epoch 6/10 344/844 2255 287ms/step - loss: 0.0460 - acc: 0.9876 - val_loss: 0.0261 - val_acc: 0.9918 Epoch 5/10 344/844 2255 287ms/step - loss: 0.0460 - acc: 0.9874 - val_loss: 0.0269 - val_acc: 0.9918 Epoch 8/10 344/844 2255 287ms/step - loss: 0.0460 - acc: 0.9877 - val_loss: 0.0305 - val_acc: 0.9918 Epoch 8/10 344/844 2255 287ms/step - loss: 0.0460 - acc: 0.9877 - val_loss: 0.0305 - val_acc: 0.9918 Epoch 8/10 344/844 2255 287ms/step - loss: 0.0461 - acc: 0.9877 - val_loss: 0.0305 - val_acc: 0.9927 Epoch 8/10 344/844 2255 287ms/step - loss: 0.0481 - acc: 0.9870 - val_loss: 0.0305 - val_acc: 0.9937 Epoch 8/10 2445 289ms/step - loss: 0.0481 - acc: 0.9870 - val_loss: 0.0319 - val_acc: 0.9932 Epoch 8/10 344/844 2255 287ms/step - loss: 0.0481 - acc: 0.9870 - val_loss: 0.0319 - val_acc: 0.9932 Epoch 8/10 344/844 2255 287ms/step - loss: 0.0481 - acc: 0.9870 - val_loss: 0.0319 - val_acc: 0.9932 Epoch 8/10 344/844 2255 287ms/step - loss: 0.0481 - acc: 0.9870 - val_loss: 0.0319 - val_acc: 0.9932 Epoch 8/10 344/844 2255 287ms/step - loss: 0.0481 - acc: 0.9870 - val_loss: 0.0319 - val_acc: 0.9932 Epoch 8/10 344/844 2255 287ms/step - loss: 0.0481 - acc: 0.9870 - val_loss: 0.0319 - val_acc: 0.9932 Epoch 8/10 344/844 2255 287ms/step - loss: 0.0481 - acc: 0.9870 - val_loss: 0.0319 - val_acc: 0.9932 Epoch 8/10 344/844 2255 287ms/step
--	----	----------	--	--

10.ADVANTAGES & DISADVANTAGES

ADVANTAGES:

- 1) The system not only produces a classification of the digit but also a rich description of the instantiation parameters which can yield information such as the writing style
- 2) The generative models can perform recognition driven segmentation
- 3) The method involves a relatively small number of parameters and hence training is relatively easy and fast
- 4) Unlike many other recognition schemes, it does not rely on some form of pre-normalization of input images, but can handle arbitrary scalings, translations and a limited degree of image rotation.

DISADVANTAGES:

The disadvantage is that it is not done in real time as a person writes and therefore not appropriate for immediate text input.

The main disadvantage of the method is that it requires much more computation than more standard OCR techniques.

11.CONCLUSION

In this paper, the variations of accuracies for handwritten digit were observed for 15 epochs by varying the hidden layers. The accuracy curves were generated for the six cases for the different parameter using CNN MNIST digit dataset. The six cases perform differently because of the various combinations of hidden layers. The layers were taken randomly in a periodic sequence so that each case behaves differently during the experiment. The maximum and minimum accuracies were observed for different hidden layers variation with a batch size of 100. Among all the observation, the maximum accuracy in the performance was found 99.21% for 15 epochs in case 2 (Conv1, pool1, Conv2,

pool2 with 2 dropouts). In digit recognition, this type of higher accuracy will cooperate to speed up the performance of the machine more adequately. However, the minimum accuracy among all observation in the performance was

found 97.07% in case 6 (Conv1, pool1, Conv2, pool2 with 1 dropout). Moreover, among all the cases, the total highest test loss is approximately 0.049449 found in case 3 without dropout and the total lowest test loss is approximately 0.026303 found in case 2 with dropout. This low loss will provide CNN better performance to attain better image resolution and noise processing. In the future, we plan to observe the variation in the overall classification accuracy by varying the number of hidden layers and batch

12.FUTURE SCOPE

The future development of the applications based on algorithms of deep and machine learning is practically boundless. In the future, we can work on a denser or hybrid algorithm than the current set of algorithms with more manifold data to achieve the solutions to many problems. In future, the application of these algorithms lies from the public to high-level authorities, as from the differentiation of the algorithms above and with future development we can attain high-level functioning applications which can be used in the classified or government agencies as well as for the common people, we can use these algorithms in hospitals application for detailed medical diagnosis, treatment and monitoring the patients, we can use it in surveillances system to keep tracks of the suspicious activity under the system, in fingerprint and retinal scanners, database filtering applications, Equipment checking for national forces and many more problems of both major and minor category. The advancement in this field can help us create an environment of safety, awareness and comfort by using these algorithms in day to day application and high-level application (i.e. Corporate level or Government level). Application-based on artificial intelligence and deep learning is the future of the technological world because of their absolute accuracy and advantages over many major problems

13.APPENDIX

Python:

Python is an interpreted, high-level, general purpose programming language created byGuido VanRossumand first released in 1991, Python's design philosophy emphasizescode Readability with itsnotable use of significant White space. Its language constructs and object oriented approach aim to helpprogrammers write clear, logicalcode for small and large-scale projects. Python is dynamically typedand garbagecollected. It supports multiple programming paradigms, including procedural, object-oriented, and functional programming

Keras:

Keras is a powerful and easy-to-use free open source Python library for developing and evaluating deep learning models.

It wraps the efficient numerical computation libraries Theano and TensorFlow and allows you to define and train neural network models in just a few lines of code. It uses libraries such as Python, C#, C++ or standalone machine learning toolkits. Theano and TensorFlow are very powerful libraries but difficult to understand for creating neural networks. Keras is based on minimal structure that provides a clean and easy way to create deep learning modelsbased on TensorFlow or Theano. Keras is designed to quickly define deep learning models. Well, Keras is an optimal choice for deep learning applications.

Steps for creating a keras model:

- 1)First we must define a network model.
- 2)Compile it, which transforms the simple sequence of layers into a complex group of matrix operations.
- 3)Train or fit the network.

To import:

from keras.models import Sequential fromkeras.layers import Dense, Activation, Dropout

TensorFlow:

TensorFlow is a Python library for fast numerical computing created and released by Google. It is afoundationlibrary that can be used to create Deep Learning models directly or by using wrapper librariesthat simplifythe process built on top of TensorFlow. TensorFlow tutorial is designed for both beginnersand professionals.Our tutorial provides all the basic and advanced concept of machine learning anddeep learning concept such as deep neural network, image processing and sentiment analysis.

TensorFlow is one of the famous deep learning frameworks, developed by Google Team. It is a free andopen -source software library and designed in Python programming language, this tutorial is designed in such a way that we can easily implements deep learning project on TensorFlow in an easy andefficient way. Unlike other numerical libraries intended for use in Deep Learning like Theano, TensorFlow was designed for use both in research and development and in production systems. It canrun on single CPU systems, GPUs as well as mobile devices and largescale distributed systems of hundreds of machines.

Numpy:

NumPy is a Python library used for working with arrays. It also has functions for working in domain oflinear algebra, Fourier transform, and matrices. Numpy which stands for Numerical Python, is a libraryconsisting of multidimensional array objects and a collection of routines for processing those arrays. Using NumPy, mathematical and logical operations on arrays can be performed. This tutorial explains the basics of NumPy such as its architecture and environment. It also discusses the various arrayfunctions, types of indexing, etc. It is an open source project and you can use it

freely.

NumPy stands for Numerical Python. NumPyaims to provide an array object that is up to 50x faster than traditional Python lists. The array object inNumPy is called ndarray, it provides a lot of supporting functions that make workingwith ndarray very easy. Arrays are very frequently used in data science, where speed and resources arevery important.

13.1 Source Code

Train the Model On IBM:

```
# importing Required Libraries
import tensorflow as tf
import seaborn as sns
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
from keras.utils.vis_utils import plot_model
# loading the MNIST dataset
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
sns.countplot(y_train)
input_shape = (28, 28, 1)
x_train=x_train.reshape(x_train.shape[0], x_train.shape[1], x_train.shape[2], 1)
x_train=x_train / 255.0
x_test = x_test.reshape(x_test.shape[0], x_test.shape[1], x_test.shape[2], 1)
x_{test} = x_{test}/255.0
y_train = tf.one_hot(y_train.astype(np.int32), depth=10)
y_test = tf.one_hot(y_test.astype(np.int32), depth=10)
plt.imshow(x_train[100][:,:,0])
```

```
print(y_train[100])
X_{train_plot} = x_{train.reshape}(-1, 28, 28)
def Show_example_digits(mono = 'gray'):
  fig = plt.figure(figsize = (16, 16))
  for idx in range(15):
plt.subplot(5, 5,idx+1)
plt.imshow(X_train_plot[idx], cmap = mono)
plt.title("Digit {}".format(y_train[idx]))
plt.tight_layout()
Show_example_digits()
# determine the shape of the input images
inp_shape = x_train.shape[1:]
print(inp_shape)
batch size = 64
num_classes = 10
epochs = 10
# defining the model
model =
              tf.keras.models.Sequential([tf.keras.layers.Conv2D(32,
                                                                         (5,5),
                                                                                  padding='same',
activation='relu', input_shape=input_shape),
  tf.keras.layers.Conv2D(32, (5,5), padding='same', activation='relu'),
  tf.keras.layers.MaxPool2D(),
tf.keras.layers.Dropout(0.25),
  tf.keras.layers.Conv2D(64, (3,3), padding='same', activation='relu'),
  tf.keras.layers.Conv2D(64, (3,3), padding='same', activation='relu'),
  tf.keras.layers.MaxPool2D(strides=(2,2)),
tf.keras.layers.Dropout(0.25),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Dense(num_classes, activation='softmax')
])
model.compile(optimizer=tf.keras.optimizers.RMSprop(epsilon=1e-08),
loss='categorical_crossentropy', metrics=['acc'])
# text Description of model
model.summary()
history = model.fit(x_train, y_train,
```

```
batch_size=batch_size,
           epochs=epochs,
validation_split=0.1)
# ploting the learning curves
fig, ax = plt.subplots(1,1)
ax.plot(history.history['loss'], color='b', label="Training Loss")
ax.plot(history.history['val_loss'], color='r', label="Validation Loss")
legend = ax.legend(loc='best', shadow=True)
# evaluate the model
loss, accuracy = model.evaluate(x_test, y_test, verbose=0)
print(f'Accuracy: {accuracy*100}')
y_pred = model.predict(x_test)
def draw_output(idx_nums):
plt.figure(figsize = (20, 20))
plt.xticks(range(10))
  x = np.ceil(np.sqrt(len(idx_nums)))
cnt = 1
  for ph in idx_nums:
plt.subplot(x, x, cnt)
curr_photo = y_test[ph]
plt.xlim(0, 10)
plt.title("Digit: {0}\n idx: {1} ".format(np.argmax(y_test[ph]), ph), fontsize = 10)
plt.bar(range(10), y_pred[ph])
cnt += 1
cnt_error = []
for idx, (a, b) in enumerate(zip(y_test, y_pred)):
  if np.argmax(a) == np.argmax(b): continue
cnt_error.append( (np.argmax(a)) )
cnt_error = np.unique(cnt_error, return_counts = True)
sns.set_style("darkgrid")
plt.figure(figsize = (15, 7))
bar_plot = sns.barplot(cnt_error[0], cnt_error[1], palette="muted")
plt.show()
cnt_ind = 1
list_idx = []
X_val_plot = x_test.reshape( x_test.shape[:-1] )
```

```
fig = plt.figure(figsize=(14, 14))
for idx, (a, b) in enumerate(zip(y_test, y_pred)):
  if np.argmax(a) == np.argmax(b): continue
  if (np.argmax(a) == 2 \text{ or } np.argmax(a) == 9):
plt.subplot(5, 5, cnt_ind)
plt.imshow(X_val_plot[idx], cmap='gray', interpolation='none')
plt.title('y\_true={0}\ny\_pred={1}\n ind = {2}'.format(np.argmax(a), np.argmax(b), idx))
plt.tight_layout()
list_idx.append(idx)
cnt ind += 1
image = x_train[0]
# lets display the image which we want to predict
plt.imshow(np.squeeze(image), cmap='gray')
image.shape[0],image.shape[1],image.shape[2]
# make a prediction
# reshaping the image for model input
image= image.reshape(1,input_shape[0],input_shape[1],input_shape[2])
# predicting the label of image
yhat = model.predict([image])
print('Predicted: {}'.format(np.argmax(yhat)))
# Predict the values from the testing dataset
Y_pred = model.predict(x_test)
# Convert predictions classes to one hot vectors
Y_pred_classes = np.argmax(Y_pred,axis = 1)
# Convert testing observations to one hot vectors
Y_true = np.argmax(y_test,axis = 1)
# compute the confusion matrix
confusion_mtx = tf.math.confusion_matrix(Y_true, Y_pred_classes)
plt.figure(figsize=(10, 8))
sns.heatmap(confusion_mtx, annot=True, fmt='g')
model.save('hand_written_digits_CNN.h5')
model = tf.keras.models.load_model('hand_written_digits_CNN.h5')
image = x_test[100]
# lets display the image which we want to predict
plt.imshow(np.squeeze(image), cmap='gray')
```

```
# make a prediction
# reshaping the image for model input
image= image.reshape(1,input_shape[0],input_shape[1],input_shape[2])
# predicting the label of image
yhat = model.predict([image])
print('Predicted: {}'.format(np.argmax(yhat)))
!tar -zcvf model.tgz hand_written_digits_CNN.h5
!pip install watson-machine-learning-client
!pip install ibm_watson_machine_learning
from ibm_watson_machine_learning import APIClient
wml_credentials = {
  "url": "https://jp-tok.ml.cloud.ibm.com",
  "apikey":"Y0h0kxEIr9-Qwjc7rRJqcboPqPn2GdjCddwHsedqsc8N"
client = APIClient(wml_credentials)
client
client.spaces.get_details()
space_id = 'f5b3e32f-adf0-45f4-918c-88ac9ee62536'
client.set.default_space(space_id)
client.software_specifications.list()
software_space_uid=client.software_specifications.get_uid_by_name('tensorflow_rt22.1-py3.9')
software_space_uid
model_details = client.repository.store_model(model='model.tgz',meta_props={
      client.repository.ModelMetaNames.NAME: 'A Novel Method for Handwritten Digit
Recognition System',
  client.repository.ModelMetaNames.TYPE:'tensorflow_2.7',
  client.repository.ModelMetaNames.SOFTWARE_SPEC_UID:software_space_uid
})
model details
model_id = client.repository.get_model_id(model_details)
model id
client.repository.download(model_id,'model.tar.gb')
app.py
```

```
from flask import Flask,render_template,request
from PIL import Image, ImageOps
import os
import random
import string
from pathlib import Path
import numpy as np
def random_name_generator(n):
     return ".join(random.choices(string.ascii_uppercase + string.digits, k=n))
app=Flask(__name__)
@app.route('/')
def home_page():
           return render_template('index.html')
@app.route('/index')
def ai_engine_page():
           return render_template('index.html')
@app.route('/submit',methods=['POST'])
def submit():
           if request.method=='POST':
                image = request.files['image']
img_name = image.filename
file_path = os.path.join('static/data/', img_name)
image.save(file_path)
img = Image.open(image).convert("L")
img = img.resize((255, 255))
img.save(os.path.join('static/thumb/', "255X255_"+img_name))
                 best = (9, 73.19)
                             # others = [(0, 9.15), (1, 0.350000000000000000), (2, 0.4), (3, 0.0), (4, 109.9), (5, 0.4), (1, 0.3500000000000000), (2, 0.4), (3, 0.0), (4, 109.9), (5, 0.4), (6, 0.4), (6, 0.4), (7, 0.4), (8, 0.4), (8, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0.4), (9, 0
4.14999999999999), (6, 3.5), (7, 3.40000000000000), (8, 3.15), (9, 365.95)]
                 others = [(0, 1.83), (1, 0.07), (2, 0.08), (3, 0.0), (4, 21.98), (5, 0.83), (6, 0.7), (7, 0.68), (8, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), (9, 0.83), 
0.63),(9, 73.19)
```

```
render_template("submit.html", best=best, others=others,
                 return
img_name=img_name)
if __name__=="__main__":
app.run()
if __name__ == '__main__':
app.run(debug=True)
CNN.py
import os
import random
import string
from pathlib import Path
import numpy as np
from tensorflow.keras.models import load_model
from PIL import Image, ImageOps
def recognize(image):
 model=load_model(Path("./model/model.h5"))
img = Image.open(image).convert("L")
img_name = image.filename
 # img_name = random_name_generator(10) + '.jpg'
 # if not os.path.exists(f".static/data/"):
 # os.mkdir(os.path.join('./static', 'data'))
 #img.save(Path(f".static/data/{img_name}"))
img = ImageOps.grayscale(img)
img = ImageOps.invert(img)
img = img.resize((28, 28))
 img2arr = np.array(img)
 img2arr = img2arr / 255.0
 img2arr = img2arr.reshape(1, 28, 28, 1)
```

```
results = model.predict(img2arr)
best = np.argmax(results,axis = 1)[0]

pred = list(map(lambda x: round(x*100, 2), results[0]))

values = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
others = [(i,pred[i]) for i in range(0,10)]
best = (pred.index(max(pred)),max(pred))
#best = others.pop(best)

return best,others
```

13.2 GitHub & Project Demo Link

GitHub:

https://github.com/IBM-EPBL/IBM-Project-7958-1658903961

Project Demo Link:

https://drive.google.com/file/d/1KUmheC21st3aZ28X5vNHztArUx73X-zW/view?usp=drivesdk