Graph Connectivity in MapReduce... ...How Hard Could it Be?

Sergei Vassilvitskii

+Karloff, Kumar, Lattanzi, Moseley, Roughgarden, Suri, Vattani, Wang

August 28, 2015

Google NYC

Maybe Easy...Maybe Hard...

Outline:

- Modeling:
 - MapReduce at its core
 - Comparison to PRAMs, BSP, Big Data, Local, Congest, ...
- Connectivity: Pretty Easy:
 - (1) PRAM Simulations & Algorithms
 - (2) Connectivity Coresets
 - (3) Unbounded width algorithms
- Connectivity: Pretty Hard:
 - (1) Merging paths
 - (2) s-Shuffles
 - (3) Circuit complexity implications
- State of the world

How did we get here?

*All dates approximate

Understanding where we are

^{*} Plus Streaming, External Memory, and others

Bird's Eye View

- 0. Input is partitioned across many machines

Bird's Eye View

- 0. Input is partitioned across many machines

Computation proceeds in synchronous rounds. In every round, every machine:

- 1. Receives data
- 2. Does local computation on the data it has (no memory across rounds)
- 3. Sends data out to others

Bird's Eye View

- 0. Input is partitioned across many machines

Computation proceeds in synchronous rounds. In every round, every machine:

- 1. Receives data
- 2. Does local computation on the data it has (no memory across rounds)
- 3. Sends data out to others

Success Measures:

- Number of Rounds
- Total work, speedup
- Communication

- 0. Data partitioned across machines
 - Either randomly or arbitrarily
 - How many machines?
 - How much slack in the system?

- 0. Data partitioned across machines
- 1. Receive Data
- How much data can be received?
- Bounds on data received per link (from each machine) or in total.
- Often called 'memory,' or 'space.'
- Denoted by $M, m, \mu, s, n/p^{1-\epsilon}$

- 0. Data partitioned across machines
- 1. Receive Data
- 2. Do local processing
 - Decide whether local processing is 'free' or not
 - Limitations on kinds of processing?

- 0. Data partitioned across machines
- 1. Receive Data
- 2. Do local processing
- 3. Send data to others
 - How much data to send? Limitations per link? per machine? For the whole system?
 - Which machines to send it to? Any? Limited topology?

- 0. Data partitioned across machines
- 1. Receive Data
- 2. Do local processing
- 3. Send data to others

Different parameter settings lead to different models

- Receive $\tilde{O}(1)$, poly machines, all connected: PRAM
- Receive, send unbounded, local computation costly, all connected: BSP
- Receive, send unbounded, specific network topology: LOCAL
- Receive $\tilde{O}(1)$, send $\tilde{O}(1)$, n machines, specific topology: CONGEST
- Receive $s = n/p^{1-\epsilon}$ p machines, all connected: MPC(1)
- Receive $s=n^{1-\epsilon},\ n^{1-\epsilon}$ machines, all connected: MRC
- Receive s, unbounded machines, all connected: s-SHUFFLE

The Art of Modeling

Today: Three Models

Classical:

- PRAM. Polynomial M processors, receive constant s per round.

Today: Three Models

Classical:

- PRAM. Polynomial M processors, receive constant s per round.

Modern:

- MRC: Sublinear M processors, receive sublinear s per round
- Can simulate PRAMs with O(1) rounds for round when $M_{PRAM} < s \cdot M_{MRC}$

Today: Three Models

Classical:

- PRAM. Polynomial M processors, receive constant s per round.

Modern:

- MRC: Sublinear M processors, receive sublinear s per round
- Can simulate PRAMs with O(1) rounds for round when $M_{PRAM} < s \cdot M_{MRC}$

Abstract

- s-SHUFFLE: Unlimited M processors, receive sublinear s per round
- Can simulate both PRAMs and MRC with O(1) rounds for round

Connectivity is Easy

Many approaches:

- PRAM Algorithms
- PRAM Simulations & MR Friendly approaches
- Coresets
- Unbounded Width Algorithms

PRAM Algorithms (sample)

Model	Rounds	Processors	Reference
CRCW Deterministic	log n	m + n	Shiloach & Vishkin 82
CRCW Deterministic	log n	(m + n) $lpha$ (n) / log n	Cole & Vishkin '91
CRCW Randomized	log n	(m+n) / log n	Gazit '91
EREW Deterministic	log ^{1.5} n	m + n	Johnson & Metaxas '92
EREW Randomized	log n	m + n¹+€	Karger, Nisan Parnas' 92
EREW Randomized	log n log log n	(m + n) / log n	Karger, Nisan Parnas' 92
EREW Deterministic	log n log log n	m + n	Chong & Lam '95
EREW Randomized	log n	m + n	Radzik '94
EREW Randomized	log n	(m + n) / log n	Halperin & Zwick '96
EREW Deterministic	log n	m + n	Chong, Ham, Lam '01
EREW Deterministic	log n		Reingold '04

MRC

Theorem: Every EREW Algorithm using M processors can be simulated in MRC using $M/n^{1-\epsilon}$ machines.

Corollary: Can compute connectivity in $O(\log n)$ rounds.

Proof Idea:

 Divide the shared memory of the PRAM among the machines. Perform computation in one round, update memory in next.

Proof Idea:

- Have "memory" machines and "compute machines."
- Memory machines simulate PRAM's shared memory
- Compute machines update the state

Proof Idea:

- Have "memory" machines and "compute machines."
- Memory machines simulate PRAM's shared memory
- Compute machines update the state

Proof Idea:

- Have "memory" machines and "compute machines."
- Memory machines simulate PRAM's shared memory
- Compute machines update the state

Proof Idea:

- Have "memory" machines and "compute machines."
- Memory machines simulate PRAM's shared memory
- Compute machines update the state

So PRAMs?

So is MapReduce just a practical PRAM, or can it do more?

Biggest Difference:

- Input of size s
- Arbitrary computation at each node

Building Short Summaries

Main idea:

- Summarize parts of input while preserving the answer

Examples:

- Clustering: transform to a weighted instance
- Set cover: look for sets that cover many elements

Formally:

 Find the coreset: a smaller version of the problem so that the optimal solution is unchanged.

Coresets for Connectivity

Coreset:

- A spanning tree preserves all of the connectivity structure
- Spanning tree has at most n << m edges.

Goal

- Make the graph as tree like as possible in parallel
- Load the tree onto a single machine
- Compute number of components

Making the graph tree-like

What makes the edge redundant

- If we already know the end points are connected

Given a graph:

MR Graph Algorithmics 23 Sergei Vassilvitskii

Given a graph:

1. Partition edges (randomly)

Machine 1

Machine 2

MR Graph Algorithmics 24 Sergei Vassilvitskii

Given a graph:

- 1. Partition edges (randomly)
- 2. Summarize (keep $\leq n-1$ edges per partition)

MR Graph Algorithmics 25 Sergei Vassilvitskii

Given a graph:

- 1. Partition edges (randomly)
- 2. Summarize (keep $\leq n-1$ edges per partition)
- 3. Recombine

26 Sergei Vassilvitskii

Given a graph:

- 1. Partition edges (randomly)
- 2. Summarize (keep $\leq n-1$ edges per partition)
- 3. Recombine
- 4. Compute CC's

27 Sergei Vassilvitskii

Analysis

Number of rounds:

- Suppose have n^{1+c} memory per node (c > 0)
- After one round keep: m/(n^{1+c}) trees each of size n 1
- Therefore, total output: m/n^c
- After 1/c rounds, input size is less than n^{1+c}, can load the data on a single machine.

Analysis

Number of rounds:

- Suppose have n^{1+c} memory per node (c > 0)
- After one round keep: m/(n^{1+c}) trees each of size n 1
- Therefore, total output: m/n^c
- After 1/c rounds, input size is less than n^{1+c}, can load the data on a single machine.

Gives smooth trade off on rounds vs. memory:

- Small c leads to more rounds, but less memory per node
- Large c leads to fewer rounds, but more memory per node
- Still need more than n memory per node (semistreaming regime)

Generalizing the idea

Coresets are a very useful MR primitive

- Graph properties:
 - Matchings
 - MSTs
- Submodular optimization
 - Set covers
 - Matroid, p-system constraints
- Clustering
 - k-center, k-means, ..

Connectivity Recap

Very small space:

- PRAM simulations require s = O(1)

Very large space:

- Coresets requires $s = n^{1+c}$

Connectivity Recap

Very small space:

- PRAM simulations require s = O(1)

Very large space:

- Coresets requires $s = n^{1+c}$

Medium space?

$$-s = o(n) = \omega(1)$$

Connectivity Recap

Very small space:

- PRAM simulations require s = O(1)

Very large space:

- Coresets requires $s = n^{1+c}$

Medium space?

$$-s = o(n) = \omega(1)$$

- start with many machines

Many many many machines

Easier problem:

- Given n, guess the input graph, check if the input is correct. Output #CCs
 - Partition the check across all of the machines. Each machine checks $\binom{n}{2}/s$ edges.

Easier problem:

- Given n, guess the input graph, check if the input is correct. Output #CCs
 - Partition the check across all of the machines. Each machine checks $\binom{n}{2}/s$ edges.

Example:

- n = 6, s = 3
- Guess graph:

Each machine gets three potential edges to check

Easier problem:

- Given n, guess the input graph, check if the input is correct. Output #CCs
 - Partition the check across all of the machines. Each machine checks $\binom{n}{2}/s$ edges.

Example:

$$- n = 6, s = 3$$

- Guess graph:

- Each machine gets three potential edges to check

Easier problem:

- Given n, guess the input graph, check if the input is correct. Output #CCs
 - Partition the check across all of the machines. Each machine checks $\binom{n}{2}$

Example:

- n = 6, s = 3
- Guess graph:

- Each machine gets three potential edges to check
- Outputs 1 if there's a match, stays silent otherwise

Easier problem:

- Given n, guess the input graph, check if the input is correct. Output #CCs
 - ullet Partition the check across all of the machines. Each machine checks $\binom{n}{2}/s$ edges.

Example:

- n = 6, s = 3
- Guess graph:

- Each machine gets three potential edges to check
- Outputs 1 if there's a match, stays silent otherwise

Easier problem:

- Given n, guess the input graph, check if the input is correct. Output #CCs
 - ullet Partition the check across all of the machines. Each machine checks $\binom{n}{2}/s$ edges.

Example:

- n = 6, s = 3
- Guess graph:

- Each machine gets three potential edges to check
- Outputs 1 if there's a match, stays silent otherwise

Example (Guessed Correctly)

- n = 6, s = 3, m at most 15 (simple graphs)
- First layer: each machine checks existence of the potential edges assigned to it

Example (Guessed Correctly)

- n = 6, s = 3, m at most 15 (simple graphs)
- First layer: each machine checks existence of the potential edges assigned to it
- Later layers: aggregate the checks, only continue if input is consistent

Example (Guessed Correctly)

- n = 6, s = 3, m at most 15 (simple graphs)
- First layer: each machine checks existence of the potential edges assigned to it
- Later layers: aggregate the checks, only continue if input is consistent
- Last layer: output # of CCs if consistent, silent otherwise

Example (Guessed Incorrectly)

- n = 6, s = 3, m at most 15 (simple graphs)
- First layer: each machine checks existence of the potential edges assigned to it

Example (Guessed Incorrectly)

- n = 6, s = 3, m at most 15 (simple graphs)
- First layer: each machine checks existence of the potential edges assigned to it
- Later layers: aggregate the checks, only continue if input is consistent

Example (Guessed Incorrectly)

- n = 6, s = 3, m at most 15 (simple graphs)
- First layer: each machine checks existence of the potential edges assigned to it
- Later layers: aggregate the checks, only continue if input is consistent
- Last layer: output # of CCs if consistent, silent otherwise

Analysis

Rounds:

- One round to check
- log s m rounds to aggregate

Analysis

Use the 'many many' machines to parallelize the guessing

- Only one guess is correct, so only a single machine talks in the last round

- Total number of machines: exponential (compare to all graphs on n nodes)

Solving Connectivity

What do we know?

	Rounds	Space	Machines
PRAM	O(log n)	s = O(1)	n + m
PRAM Sim	O(log n)	$s = n^{\epsilon}$	(n+m)/s
Coreset	O(log _{s/n} n)	s = n ^{1+c}	m/s
Brute Force	O(log s n)	S	many (exponential)

Solving Connectivity

What do we know?

	Rounds	Space	Machines
PRAM	O(log n)	s = O(1)	n + m
PRAM Sim	O(log n)	$s = n^{\epsilon}$	(n+m)/s
Coreset	O(log s/n n)	s = n ^{1+c}	m/s
Brute Force	O(log s n)	S	many (exponential)
??	O(log s n)	S	o(m+n)

The puzzle (circa 2010)

Given:

- 2 regular graph, n nodes, n edges
- -o(n) machines each with s = o(n) memory

Decide:

- Is this one cycle or two cycles?

Best known:

PRAM simulation, O(log n) rounds

Connectivity is hard!

Maybe it's impossible?

- Try Restricted Classes of Algorithms
- Find lower bounds in the abstract s-Shuffle setting
- Connections to circuit complexity

Restrictions

Idea 1. Make problem slightly harder

- If required to output the path, st-Connectivity requires $\Omega(\log n)$ rounds. [BKS13].
- Input revealed as part of a game, not all at once: then st-Connectivity requires $\Omega(\log n)$ rounds [JLS14].

Restrictions

Idea 1. Make problem slightly harder

- If required to output the path, st-Connectivity requires $\Omega(\log n)$ rounds. [BKS13].
- Input revealed as part of a game, not all at once: then st-Connectivity requires $\Omega(\log n)$ rounds [JLS14].

Idea 2. Limit the algorithm's power

- "Atomic" algorithms.
- Grow edges into paths, all decisions made as function of the path. Non intersecting paths don't leak information.
- Any MRC algorithm (total memory $o(n^2)$) needs $\Omega(\log n)$ rounds [IM].

No Restrictions

Memory s, Machines: unbounded

- Earlier saw an algorithm using $O(\log_s n)$ rounds
- Is that the best possible?

Isn't it obvious?

- The output depends on all n edges!

Obvious bounds

Simple function E on 3 bits [N91]:

- Return 1 if exactly one or two bits are set to 1.
- E(000) = 0, E(001) = 1, E(010) = 1, ..., E(110) = 1, E(111) = 0.

Square of the function on 9 bits:

- Apply E(.) on bits 1-3, 4-6, 7-9. Apply E(.) on the results
- $E^{2}(110010111) = E(E(110), E(010), E(111)) = E(110) = 1.$

Obvious bounds

Simple function E on 3 bits [N91]:

- Return 1 if exactly one or two bits are set to 1.
- E(000) = 0, E(001) = 1, E(010) = 1, ..., E(110) = 1, E(111) = 0.

Square of the function on 9 bits:

- Apply E(.) on bits 1-3, 4-6, 7-9. Apply E(.) on the results
- $E^{2}(110010111) = E(E(110), E(010), E(111)) = E(110) = 1.$

Obvious circuit bounds:

- Suppose s = 2
- Function depends on 9 bits
- Therefore requires circuit of depth $\lceil \log_2 9 \rceil = 4$.

Obvious? MR Bounds

Claim: E^2 can be implemented in 3 MR rounds with s = 2.

Obvious? MR Bounds

Claim: E^2 can be implemented in 3 MR rounds with s = 2.

Proof:

- Main idea: communication topology depends on the input.

Details:

Machine receives an ordered pair of inputs

- Output 1 if the first input is 1, the second is 0.

Otherwise output nothing.

Obvious? MR Bounds

- Implementing E2: Just layer these gadgets, only aggregate in last step.

Silence is golden

Simple function E on 3 bits [N91]:

- Return 1 if exactly one or two bits are set to 1

Square of the function on 9 bits:

- Apply E(.) on bits 1-3, 4-6, 7-9. Apply E(.) on the results

Obvious circuit bounds:

- Suppose s = 2
- Function depends on 9 bits
- Therefore requires circuit depth of 4 rounds

Non-obvious MR bounds:

- Can be implemented in 3 < log₂ 9 rounds!
- Staying silent says something

What's really going on?

What is special about E²? What about AND or OR?

What's really going on?

What is special about E²? What about AND or OR?

Theorem[RVW]: Let $x_i \in \{0, 1\}$ be the i-th bit of the input. Then the output of any r-round s-shuffle computation can be expressed as a polynomial of degree s_i^r .

 Can generalize beyond decision problems. Every bit of output can be represented by a polynomial of this degree.

The degree of E is 2, even though it's on three inputs:

$$E(x_1, x_2, x_3) = x_1(1 - x_2) + x_2(1 - x_3) + x_3(1 - x_1)$$

So what?

Corollary: Any function of degree d requires $\lceil \log_s d \rceil$ rounds to compute using deterministic s-Shuffles (and therefore MR).

So what?

Corollary: Any function of degree d requires $\lceil \log_s d \rceil$ rounds to compute using deterministic s-Shuffles (and therefore MR).

Theorem(randomization): Any function of approximate degree d requires at least $\lceil \log_s \tilde{d} \rceil$ rounds to compute using randomized s-Shuffles (and therefore MR).

Approximate Degree:

- For Boolean functions: $d \leq 216 \cdot \tilde{d}^6$
- Therefore, randomization does not help (much).

Back to connectivity

What is the degree of connectivity?

- undirected connectivity: $\binom{n}{2}$
- undirected st-connectivity: $\binom{n}{2}$

Therefore:

- Any s-Shuffle algorithm must take $\log_s \binom{n}{2} = \Omega(\log_s n)$ rounds.
- Any MapReduce algorithm must take $\Omega(\log_s n)$ rounds.
- Need $\Omega(1/\epsilon)$ rounds when $s=n^\epsilon$

Where are we now?

	Rounds	Space	Machines
PRAM	O(log n)	s = O(1)	n + m
PRAM Sim	O(log n)	$s = n^{\epsilon}$	(n+m)/s
Coreset	O(log _{s/n} n)	s = n ^{1+c}	m/s
Brute Force	O(log s n)	S	many (exponential)

- PRAM Simulations are rounds-optimal with a few restrictions.
- Brute Force is Rounds/Space optimal. Can we improve the machines bound?

Further lower bounds are hard

Theorem: Suppose some problem in \mathcal{P} requires $\Omega(\log_s n)$ rounds using an s-shuffle with polynomial number of machines.

Then: $\mathcal{NC}^1 \subsetneq \mathcal{P}$.

Further lower bounds are hard

Theorem: Suppose some problem in \mathcal{P} requires $\Omega(\log_s n)$ rounds using an s-shuffle with polynomial number of machines.

Then: $\mathcal{NC}^1 \subseteq \mathcal{P}$.

Proof[sketch]:

- Any circuit of depth $O(\log n)$ can be simulated using an s-shuffle in $O(\log_s n)$ rounds.
- Each round corresponds to $\log s$ layers of the circuit.
- Since the circuit has fan-in 2, the total input need to simulate each round is at most s.

Further lower bounds are hard

Theorem: Suppose some problem in \mathcal{P} requires $\Omega(\log_s n)$ rounds using an s-shuffle with polynomial number of machines.

Then: $\mathcal{NC}^1 \subsetneq \mathcal{P}$.

Barebone requirements of an s-Shuffle:

- Number of machines is polynomial
- Computation is synchronous
- Each machine reads s bits from input or previous rounds of computation
- Each machine needs to compute Boolean functions of its inputs

How hard is connected components?

Ideal:

- -o(m) machines each with s = o(m) memory
- Runs in constant rounds

How hard is connected components?

Ideal:

- -o(m) machines each with s = o(m) memory
- Runs in constant rounds

Status:

- PRAM Algorithms: run in log m rounds
- Dense graphs: use coresets

Further improvement:

- 'Path stitching' algorithms won't work
- 'Small space' algorithms won't work
- Puzzle still unresolved.

Thank You