实验报告: 阻尼振动和受迫振动

谢泽钰 1

1. 实验小结

1.1. 数据记录.

表 1. 定性观察弦的振动, 研究 f 和 N 关系

N	f
1	33.34 Hz
2	$66.76~\mathrm{Hz}$
3	$100.08~\mathrm{Hz}$
4	133.42 Hz

1.1.1. 定性观察弦的振动,研究f和N关系.

表 2. 定性观察弦的振动, 研究 f 和 L 关系

L	f
30cm	$112.27~\mathrm{Hz}$
$35\mathrm{cm}$	$98.34~\mathrm{Hz}$
$40\mathrm{cm}$	$86.40~\mathrm{Hz}$
$45\mathrm{cm}$	$78.56~\mathrm{Hz}$
$50\mathrm{cm}$	$69.87~\mathrm{Hz}$
$55 \mathrm{cm}$	$64.01~\mathrm{Hz}$

1.1.2. 定性观察弦的振动,研究f和L关系.

 $E ext{-}mail\ address: xie-zy20@mails.tsinghua.edu.cn.}$

Date: 2024 年 5 月 6 日.

¹ 致理书院, 致理-数 02, 学号 2020012544

表 3. 测量 f 和 T 关系

Τ	f	
1.96 N	44.72 Hz	
3.92 N	$63.30~\mathrm{Hz}$	
5.88 N	$77.60~\mathrm{Hz}$	
7.84 N	$89.36~\mathrm{Hz}$	
9.80 N	$100.01~\mathrm{Hz}$	
11.76 N	$109.92~\mathrm{Hz}$	

1.1.3. 测量 f 和 T 关系.

表 4. 测量 f 和 ρ 关系

ρ	f
ρ_1	133.60 Hz
ρ_2	$100.01~\mathrm{Hz}$
ρ_3	$71.78~\mathrm{Hz}$
ρ_4	$53.12~\mathrm{Hz}$
$ ho_5$	$41.20~\mathrm{Hz}$
$ ho_6$	32.67 Hz

1.1.4. 测量 f 和 ρ 关系.

表 5. 研究弦线的线密度、弦长、张力、基频与波速的关系

N	理论	实际
1	133.48 Hz	133.60 Hz
2	$100.00~\mathrm{Hz}$	$100.01~\mathrm{Hz}$
3	$71.63~\mathrm{Hz}$	$71.78~\mathrm{Hz}$
4	$52.92~\mathrm{Hz}$	$53.12~\mathrm{Hz}$
5	$41.18~\mathrm{Hz}$	$41.20~\mathrm{Hz}$
6	$32.35~\mathrm{Hz}$	$32.67~\mathrm{Hz}$

1.1.5. 研究弦线的线密度、弦长、张力、基频与波速的关系.

1.2. 实验结论. 通过实验, 我们验证了以下弦振动公式

$$f = \frac{1}{2L} \sqrt{\frac{T}{\rho}}$$

2. 原始数据

2024 春物理实验 A (1) 课程资料

从公式 $f=\frac{N}{2L}\sqrt{\frac{T}{\rho}}$ 可知,弦振动頻率与 N、L、T、 ρ 诸多因素有关,可以简单采取单变量变化的形式来分别研究。

1. 定性观察弦的振动,研究 f~N 关系 33.34, 66.76, 100.08, 133.42 (30cm, 112.27Hz) (35cm, 98.34Hz) 选用租弦,在弦长 L=50.0cm、张力 T=9.80N 条件下,用信号发生器和电磁起振器对弦**进行**(療动86**7的**Hz)

2. 定性观察弦的振动,研究 f~L 关系

(50cm, 69.87Hz) (55cm, 64.01Hz)

选用中租弦,在张力 T=9.80N 条件下,用信号发生器和电磁起振器对弦进行策动,观察形成 N=1 驻波的情况,在 30.0cm 到 55.0cm 范围内间隔 5.0cm 改变弦长测量相应的基频频率 f,用最小二乘法拟合 f-1/L 直线关系,并与理论公式比较给出结论。

3. 測量 f~T 关系

44.72, 63.30, 77.60, 89.36, 100.01, 109.92

选用细弦,保持L不变,在1.96N到11.76N之间改变弦上所加张力,测量相对应的基频频率f。

N、L、 ρ 一定的情况下,设f与 T 之间的函数关系是 $_f = kT^p$,k,p 为未知常数,请根据实验数据用最小二乘法拟合求常数 k、p。比较 p 与理论值 0.5 之间的相对偏差,同时由 k 反推求弦线密度的大小,并与给定的参考值做比较。

4. 測量 $f\sim\rho$ 关系 N = 1, L = 50cm, T = 9.8N, f_list = [133.60, 100.01, 71.78, 53.12, 41.20, 32.67] 保持 N、L、T不变,分别测量 1#—6#弦的基频振动频率 f。

N、L、T一定的情况下,设f与 ρ 之间的函数关系是f= $m\rho^n$,m、n 为未知常数,根据实验数据用最小二乘法拟合求常数m、n,比较n与理论值-0.5之间的相对偏差。

*5. 研究弦线的线密度、弦长、张力、基频与波速的关系

Actual: 133.60, 100.01, 71.78, 53.12, 41.20, 32.67

图 1. 原始数据记录页