Civil Design Considerations for ITS Implementations

FEBRUARY 22, 2017

Case Study Format and Purpose

- Case Study Purpose
 - Provide overview of civil design considerations related to Intelligent Transportation Systems (ITS)
 - Explore approaches to integrating ITS components into field settings
- Components
 - 1: Presentation
 - 2: Take Home Exercise
 - 3: Debrief

Exercise Preview

- Topic
 - Develop Camera Location Design for Case Study
- Scenario
 - University Football Stadium traffic congestion
 - Planned events
 - Growing attendance/traffic
 - Stadium expansion
 - City transportation system cannot accommodate demand
 - Functional ITS Architecture previously developed
- Student Role
 - ITS Design Engineer
- Resources
 - Sample plan sheets

Exercise Activities

- Task 1: Siting
 - Identify locations where camera can fulfill functions
 - Consider relative merits of locations
- Task 2: Power
 - Utility coordination
 - Tie to infrastructure or not
- Task 3: Communication
 - Own versus lease
 - Utility coordination
- Task 4: Structures
 - Jurisdictional standards on structures
 - Use of existing structures
- Task 5: Integration and Testing
 - Determine how project completion will be determined

Intelligent Transportation Systems (ITS)

 Use of information and communications technologies to meet transportation needs

ITS Addresses Transportation Needs

- Delivers transportation services that address local needs
- Defines transportation systems and functions needed to deliver services
- ITS does not solve entire transportation problem
 - ITS provides tools to better manage existing transportation conditions and maximize the capacity and capabilities of current facilities
 - ITS enables travelers to be better informed, make safer and smarter use of transportation systems

Intelligent Transportation Systems (ITS) Example

- Traffic Management Center
 - Interacts with devices
 - Dynamic Message Signs (DMSs)
 - Traffic cameras
 - Highway Advisory Radios (HARs)
- Traffic detection
- Traffic signals
- Personal Devices

Local ITS Example Instructor to modify

- Local Example
 - Visible to students
 - Current developments
 - Recent publicity
 - Innovative technology

Graphics add interest

Embedding a video enlivens the lecture

Areas of R & D

- Connected Vehicles (CV)
 - DSRC wireless
 - Vehicle-to-vehicle (V2V) in NHTSA rulemaking process
 - Vehicle-to-infrastructure uses roadside devices to reach TMCs and service providers
 - Vehicle-to-everything (V2X) offers communication path to pedestrians, cyclists, others
 - Focused on safety and mobility
 - Cell phone wireless
 - Used existing cellular infrastructure to reach service providers
 - Focused on consumer-driven services
 - "Infotainment"
 - Emergency alerts

Areas of R & D

- Automated Vehicles
 - Removes human driver from control of vehicle
 - Partial automation currently available
 - Automated control with human backup in trials on public roadways
 - Fully autonomous with no manual controls (no brakes or steering wheel) in development
 - Significant safety benefit is possible
 - Based on in-vehicle sensors, actuators, and control logic
 - May be Connected Vehicles also
 - Communication introduces security issues

Putting ITS Together

- ITS has many systems, interactions, and institutions
 - How does it all fit together?
 - How do the various components interact?
 - What can be used to coordinate deployment?
- USDOT defined the National ITS Architecture Guide for ITS deployment planning
- Connected Vehicle Reference Implementation Arhcitecture (CVRIA) incorporates CV concepts

Using Standards

- Standards are published documents that establish specifications to improve reliability and interoperability
- For ITS, standards:
 - Define an architecture of interrelated systems that work together to deliver transportation services
 - Are developed in conjunction with Standards Development Organizations (SDOs)
 - Cover a wide array of topics
- Interaction among ITS components are aided through standards

Systems Engineering (SE)

- Systems Engineering (SE) focuses on the "system" as a whole emphasizing its total operation
 - Views the "system" from the outside as well as the inside
 - Concerned about interactions of the "system" with other systems and the environment
 - Foundation of SE is reflecting the user needs from "system" conception through operations and retirement
 - Needs and requirements are traceable through implementation, testing, and evaluation
 - SE involves and manages multiple disciplines work together
 - SE is an inherent part of project management since it defines a process useful for controlling system cost and schedule
 - SE is all about balancing competing needs/constraints

Civil Design in the SE "V"

Civil Design for ITS Deployments

• ITS deployments utilize multiple Civil Engineering specialties

Transportation Engineering

Roadway design

Signage

- Traffic control devices
- ITS
- Structures
- Power
- Communications
 - ITS Messaging Standards
 - Utility
- Hydrology

Typical Preconditions for ITS Projects

- Existing roadway
 - Electronic plan sets frequently available
 - Some scanned plans with field markup, a.k.a. redlines
- Existing signs
- Existing traffic control devices
- Existing cabinets
- Existing conduit plant
- Willingness to reuse existing infrastructure is project dependent
- Nearby power and communications
 - Use of wireless or solar make reliable alternative

Representative Case Study

Stadium Campus Town Center

Major Arterial

Freeway Interchange

Primary Congestion

Secondary Congestion

Camera Capabilities

- Purpose
 - Collect traffic condition information
- What characteristics are required to perform surveillance function?
 - Line of sight
 - Light sensitivity
 - Coverage (Resolution and Pan, Tilt & Zoom (PTZ))
 - Environmental resistance
 - Reliability
 - Power consumption
 - Maintenance access
 - Organizational standards
 - Legacy systems
- Determined prior to civil design

Camera Siting

- Coverage of roadways of interest
 - Line of sight to Interstate
 - Northbound lanes South of Interchange is primary concern
 - Line of sight to arterial
 - At Interchange and East of interchange are primary concerns

- Ability to leverage existing assets
 - Power
 - Communication
 - Structures

Plan Sheet Sample – Plan and Profile

Plan

- Existing plans
 - General Information
 - Initial site line assessment

Profile

Plan Sheet Sample – Cross Section

Runoff and Slope restoration

Structure height

Standing water

- Existing plans
 - Siting
 - Environmental

Plan Sheet Sample - Intersection

Cabinet Location

Conduit Plant and Usage

Roadway Dimensions Potential Mounting Structures

Plan Sheet Sample - Interchange

Cabinet
Location
(if present)

Roadway Dimensions

Traffic Estimates

Potential Mounting
Structures
(if present)

Conduit Plant and Usage (if present)

Power

- Required to operate electronic devices and communication equipment
 - Need stable, clean power supply
- Plans require coordination with Electrical Engineer
- Most commonly gained from regional power company
 - Distance from existing infrastructure drives costs
 - Possible to use existing power drop from existing cabinet
- Microgrid alternative in some cases
 - Low power application (e.g. unheated camera)
 - Location remote from power infrastructure
 - Adequate insolation or reliable wind
- Some applications require backup power

Communication

 Specific plans required to access all locations with communication need

All choices must support user needs and requirements

- Bandwidth
- Reliability
- Security
- Extensive range of options available
- Distance from existing infrastructure drives costs for wireline
 - "Last mile" may be different than trunk
- Reuse of existing infrastructure most cost effective

Mounting Structures

- Existing structure
 - Major advantage is cost
- New structure
 - Location
 - Soil condition
 - Protection from traffic
 - Height
 - Strength
 - Load of device
 - Load of cabinet
 - Cabinet mounting

ITS Device Integration and Testing

- Devices must operate to meet requirements
- Testing needs to show device characteristics to integrate with system
 - System compatibility
 - Standards
- Test plans need to be linked back to requirements
 - Testing should be incremental and progressive
 - Frequently test plans for each device and an integrated system test plan need to be developed to test all requirements

Other Issues

- Each agency will have a set of topics that must be addressed
 - Departmental checklists provide most topics
- Representative issues considered include
 - Infrastructure protection
 - External regulations
 - Coordination with other contractors

Infrastructure Protection

- Surge suppression and grounding
 - ITS infrastructure is frequently the tallest object in an area
 - Lightning suppression frequently required
 - Surge suppression is required for all copper leads exiting a cabinet
- Protection from weather
 - Heat
 - Cold
 - Moisture/sunlight
- Infestation
- Physical security
- Electronic security

External Regulations

Camera

- Aircraft protection
- Environmental Impact
 - Waterways
 - Endangered species

- Jurisdictional requirements
 - Aesthetics
 - Departmental infrastructure ownership

Architectural Pole

FAA Notification Results

Further FAA coordination is required

Coordination with Other Contractors

- DOTs frequently have several concurrent projects impacting a single section of roadway
 - Typical in location with a short construction season
 - Scheduled projects can be included in plans and budgets
 - Emergency work can result in contract changes for impacted projects
- Coordination of access for field work is the most common impact
 - Coordination can be achieved with regular meetings or teleconferences
 - In high-traffic areas, coordination of lane and shoulder closures is required
- Occasionally, projects directly conflict with each other

Local ITS Example Instructor to modify

- Regional issues
 - Weather
 - Snow
 - Heat/Cold
 - Fog
 - Flooding
 - Business
 - Ports/Commercial vehicle
 - Agriculture
 - Tourism
 - Culture
 - Festivals
 - Religious observance

Graphics add interest

Embedding a video enlivens the lecture

Review and Approval

- Internal review in line with Quality Assurance
- Sign and seal by qualified PE(s)
- Submittal to agency for acceptance
 - Review comment disposition
- Use of a checklist is beneficial

Design Revisions

- Most projects are implemented differently than designed
- Typical revisions during civil construction
 - Existing plan sheets obsolete/inaccurate
 - Unexpected field conditions encountered
 - Design not constructable
 - Design inconsistent with policy
- Impacts range from minor notes to project cancellation

Integration and Testing

- Civil work takes place at bottom of SE "V"
- Test plans and procedures are developed during the design phases
- Testing takes place against project requirements
 - Compliance with each requirement must be demonstrated to complete a project
 - Infrastructure supports functional requirements
 - Infrastructure must meet some maintenance and reliability requirements
- Operation of an unaccepted system is a common, risky practice

Evaluation

- "Reasoned consideration of how well project goals and objectives are being achieved"
- Evaluation initiated early in ITS program
 - Currently written based on SAFETEA-LU in 2005
 - Updated frequently
 - USDOT Evaluation Guidelines online at <u>http://www.its.dot.gov/evaluation/eguide_resource.htm</u>
- Best performed by independent analysts
 - Self-evaluations acceptable in some cases
- Evaluation planning occurs during project planning

ITS Performance Measures for Evaluation

- Identified based upon goals and objectives
- Can be qualitative or quantitative
- Should be easily obtained
 - If MOE not available, less direct surrogates can be collected
- A single project can address multiple goals
 - MOEs should be selected to assess each goal

Moving Forward with ITS

- ITS is a tool for the transportation professional to address transportation problems without physical capacity expansion
- Challenges
 - Institutional diversity and varied needs
 - Technological complexity integrating differing systems and employing advanced capabilities in legacy systems
- Need a common language and tools to advance ITS planning and institutional buy-in

Representative Case Study

Stadium Campus Town Center

Major Arterial

Freeway Interchange

Primary Congestion

Secondary Congestion

Case Study Purpose

- Examine civil design processes related to ITS
- Explore approaches to integrating ITS components into field settings

Take Home Exercise

 Using the information presented in this session and knowledge of structures, design a camera pole for installation near the Interstate interchange with 12th Street North.

