

Ultra Low Power Circuits (Circuitos de Ultra-Baixo Consumo)

Jorge Fernandes
Instituto Superior Técnico
Masters in Electrical and Computer Engineering
5th Year, 1st Quarter
2022-2023

General Course Information.

jrf@tecnico.ulisboa.pt | Ultra Low Power Circuits | 1

1

Ultra Low Power Circuits

- 0.1 ULP Course Structure
 - General Information

- 1. ULP Circuits
- 1.1. Minimizing Energy Consumption
 - Motivation and Framework:
 - Computing; IoT; Battery operated; Medical and others.
- 1.2.& 1.3 MOS Transistor Operation
 - Revisions:
 - Working principle
 - Level 1 MOS transistor model
- 1.4 Advanced MOS Transistor Model
 - Weak inversion region
 - EKV Model
- 1.5 Bulk and SOI technologies
 - Planar (Conventional)
 - FinFET
 - GAAFET and MBCFET

TÉCNICO LISBOA jrf@tecnico.ulisboa.pt | Ultra Low Power Circuits | 2

Common Ground Assessment

- Transistors:
 - MOS ?
 - Bipolar?
- Circuits:
 - Analog (basic stages, amplifiers, etc)?
 - Digital (CMOS inverters, ...)?
- Software:
 - Spice or equivalent?
 - Cadence or equivalent?

irf@tecnico.ulisboa.pt | Ultra Low Power Circuits | 3

3

Course Prerequisites

Should have had at IST (or equivalents):

Circuit Analysis; Electronic Circuits; Electronic Systems.

A plus: Microelectronics and Analog and Mixed Integrated Circuits.

Basic understanding of electronics:

- 1) Circuit analysis techniques.
- 2) Active and passive devices; large and small signal models.
- 3) Elementary amplifier stages and electronics building blocks.
- 4) Integrated circuit technology.

irf@tecnico.ulishoa.nt | Ultra Low Power Circuits | 4

Course Objectives

At the end students are expected to be able to:

- Understand the context of ULP circuits operation in battery powered devices, low-power low frequency applications, and low duty-cycle applications
- 2) Be able to design analog and digital circuits operating with extremely low currents and voltages, with transistors operating in sub-threshold region, which involves scaling voltages below the device thresholds.

jrf@tecnico.ulisboa.pt | Ultra Low Power Circuits | 5

5

Course Program

1. ULP Circuits

- 1.1. Minimizing Energy Consumption
- 1.2. Weak inversion region
- 1.3. EKV Model of the MOS transistor
- 1.4 Bulk and SOI technologies

2. ULP Analog Circuit Design

- 2.1. Current mirrors
- 2.2. Amplifiers
- 2.3. Voltage and Current references
- 2.4 Oscillators
- 2.5. Translinear circuits
- 2.6. Energy harvesting

3. ULP Digital Circuit Design

- 3.1. Power gating, isolation and level converters
- 3.2. Clock gating
- 3.3. Asynchronous circuits
- 3.4. Retention memory
- 3.5. Dynamic voltage and frequency scaling

4. ULP System Level Design

- 4.1. Architecture level decisions
- 4.2. Case Studies

jrf@tecnico.ulisboa.pt | Ultra Low Power Circuits | 6

Information

Prof. Jorge Fernandes

Laboratory sessions are at the Microlab

(INESC-ID)

tel.213100327 jrf@tecnico.ulisboa.pt

	Seg 9/26	Ter 9/27	Qua 9/28	Qui 9/29	Sex 9/30
07:00	009 0.20	101 0/21	gua o/Lo	qui oizo	557 575
08:00					
09:00	9:30 - 11:30	08:30 - 10:00 L SCDEEC 2			
	P 4	10:00 - 11:30 L SCDEEC 2	10:0° 11:2° L SCP	10:00 - 11:30 L SCDEEC 2	10 11 L S0
11:00		SODEE 02	11:30 - 13:30	11:30 - 13:00	
12:00			TP E4	L SCDEEC 2	
13:00			·		
14:00					

(ALL STUDENTS SHOULD HAVE THE <u>FENIX AFS</u> SYSTEM ACTIVATED) https://ciist.ist.utl.pt/ciistadmin/user/

jrf@tecnico.ulisboa.pt | Ultra Low Power Circuits | 7

7

Preliminary Schedule

- Course Assessment
 - 5 Weekly projects

Week		Theory	Lab	Milestones		
1	19-Sep	1. ULP Circuits #3	Hands on tutorial: Cadence Design Environment	Common Ground		
2	26-Sep					
3	3-0ct		Circuits	Circuits Report		
4	10-Oct	2. ULP Analog Circuit Design #5 (Project: October 3rd; Holiday: October 5th)	Analog 1	Analog 1 Report		
5	17-0ct		Analog 2	Analog 2 Report		
6	24-0ct	3. ULP Digital Circuit Design #3	Analog/Digital	Analog/Digital Report		
7	31-0ct	4. ULP System Level Design #1	Digital	Digital Report		
8	7-Nov	Project Discussion				
9	14-Nov					

jrf@tecnico.ulisboa.pt | Ultra Low Power Circuits | 8

Bibliography

Principal Bibliography:

Sub-threshold Design for Ultra Low-Power Systems

Wang, Alice, Calhoun, Benton Highsmith, Chandrakasan, Anantha P. Springer, ISBN: 978-0-387-33515-5 2006

Secondary Bibliography:

jrf@tecnico.ulisboa.pt | Ultra Low Power Circuits | 9

9

Ultra Low Power Circuits

- 0.1 ULP Course Structure
 - General Information

- 1. ULP Circuits
- 1.1. Minimizing Energy Consumption
 - Motivation and Framework:
 - Computing; IoT; Battery operated; Medical and others.
- 1.2.& 1.3 MOS Transistor Operation
 - Revisions:
 - Working principle
 - Level 1 MOS transistor model
- 1.4 Advanced MOS Transistor Model
 - Weak inversion region
 - EKV Model
- 1.5 Bulk and SOI technologies
 - Planar (Conventional)
 - FinFE1
 - GAAFET and MBCFET

TÉCNICO LISBOA

jrf@tecnico.ulisboa.pt | Ultra Low Power Circuits | 11

Digital Trend: CMOS Inverter Power Consumption

Static Power $\rightarrow P_D \approx 0$ Dynamic Power $\rightarrow P = f C_I V_{DD}^2$

jrf@tecnico.ulisboa.pt | Ultra Low Power Circuits β

13

Digital Trend: Processors

TÉCNICO LISBOA jrf@tecnico.ulisboa.pt | Ultra Low Power Circuits | 14

15

Application Trends: Data Centers

TÉCNICO LISBOA

jrf@tecnico.ulisboa.pt | Ultra Low Power Circuits | 16

Application Trends: IoT

telecommunications boom (connecting people)

17

Application Trends: IoT

TÉCNICO LISBOA

jrf@tecnico.ulisboa.pt | Ultra Low Power Circuits | 18

Application Trends: Portables

TÉCNICO LISBOA

jrf@tecnico.ulisboa.pt | Ultra Low Power Circuits | 19

19

Application Fields: e.g. Medical

TÉCNICO LISBOA

jrf@tecnico.ulisboa.pt | Ultra Low Power Circuits | 20

Applications

- Source: Ambient Intelligence Technology: An Overview" by F. Snijders
- All efficient applications are power concerned

TÉCNICO LISBOA

jrf@tecnico.ulisboa.pt | Ultra Low Power Circuits | 21

21

Technology Evolution

TÉCNICO LISBOA

jrf@tecnico.ulisboa.pt | Ultra Low Power Circuits | 22 |

Technology Evolution

CMOS

Static Power $\rightarrow P_D \approx 0$

100

200

MOSFET Channel Length (nm)

500

1000

 $i_D = \frac{1}{2} \mu_n \frac{\varepsilon_{ox}}{t_{ox}} \frac{W}{L} (v_{GS} - V_t)^2$

- V_{DD} >>>>
- V_t \sqrt{s}
- tox YYYY

TÉCNICO LISBOA

jrf@tecnico.ulisboa.pt | Ultra Low Power Circuits | 23

23

Ultra Low Power Circuits

- 0.1 ULP Course Structure
 - General Information

- 1. ULP Circuits
- 1.1. Minimizing Energy Consumption
 - Motivation and Framework:
 - Computing; IoT; Battery operated; Medical and others.
- 1.2.& 1.3 MOS Transistor Operation
 - Revisions:
 - Working principle
 - Level 1 MOS transistor model
- 1.4 Advanced MOS Transistor Model
 - Weak inversion region
 - EKV Model
- 1.5 Bulk and SOI technologies
 - Planar (Conventional)
 - FinFET
 - GAAFET and MBCFET

TÉCNICO LISBOA jrf@tecnico.ulisboa.pt | Ultra Low Power Circuits | 24

Terms and conventions

Large Signals: non-linear→distortion

Small Signals: ~linear

$$i_D = I_D + i_d$$

$$v_{GS} = V_{GS} + v_{gS}$$

$$v_{DS} = V_{DS} + v_{dS}$$

Linear System

If
$$x_1(t) \rightarrow y_1(t), x_2(t) \rightarrow y_2(t)$$

then $a x_1(t) + b x_2(t) \rightarrow a y_1(t) + b y_2(t)$

Time Invariant System

If
$$x(t) \rightarrow y(t)$$

then $x(t-t_1) \rightarrow y(t-t_1)$

Memoryless System: if transient response does not depend on past values.

irf@tecnico.ulisboa.pt | Ultra Low Power Circuits | 25

 $i_D = I_D + i_d^{\downarrow}$

DC value

constant

or

AC value

or variable

total or

Instantaneous

25

MOS Transistor

Structure:

D-Drain

G-Gate

S-Source

B-Substrate/Bulk/Body

irf@tecnico.ulisboa.pt | Ultra Low Power Circuits | 26

MOS Transistor DC Operation

Accumulation

Flat Band

TÉCNICO LISBOA

jrf@tecnico.ulisboa.pt | Ultra Low Power Circuits | 27

27

MOS Transistor DC Operation (V_{GS} effect)

Depletion

(Qualitative $V_{GS} \nearrow P$ effect) $V_{GS} \gt V_{FB}$ thin-oxide (SiO₂) $V_{SB} \gt O$ GATE $V_{SB} \gt O$ BULK $V_{SB} \gt O$ BULK $V_{SB} \gt O$ V_{SB

• <u>Inversion</u>

jrf@tecnico.ulisboa.pt | Ultra Low Power Circuits | 28

TÉCNICO LISBOA

MOS Transistor DC Operation

Inversion

(Qualitative $V_{DS} \nearrow \nearrow$ effect)

- Qualitative $V_{DS} \nearrow \nearrow$ effect
 - Flat Band depletion: drain is more depleted
 - Weak Inversion (diffuse from S to D)
 - Moderate Inversion (more charge; diffusion+drift)
 - Strong Inversion (more charge mostly drift; pinch off)
- Qualitative **V**_{SB} **//** effect
 - Depletion region larger
 - Higher V_t

jrf@tecnico.ulisboa.pt | Ultra Low Power Circuit&P

29

(Level 1) MOS Transistor Model: Cut off region

- Enhancement mode NMOS:
- $V_{GS}=0 \Rightarrow I_D=I_S=0$ (two back-to-back pn juntions)
- I_G=0 isolated gate
- I_B=0 BD & BS inverted biased

•
$$V_{GS} \le V_t \Rightarrow I_D = I_S = 0$$

jrf@tecnico.ulisboa.pt | Ultra Low Power Circuits | 30

- Positive Gate voltage: V_G

 [↑] depletion zone; V_G

 [↑] induced channel
- I_G=0 isolated gate
- I_B=0 BD & BS inverted biased
- $I_D = I_S$ (KCL) with $V_{BS} = 0$

$$V_{GS} > V_t \Rightarrow I_D = I_S$$

jrf@tecnico.ulisboa.pt | Ultra Low Power Circuits | 31

31

Source: Infineon

jrf@tecnico.ulisboa.pt | Ultra Low Power Circuits2

- Positive Gate voltage: V_G → depletion zone; V_G → induced channel
- I_G=0 isolated gate
- $I_B = 0$ BD & BS inverted biased
- $I_D = I_S (KCL)$ with $V_{BS}=0$

 $V_{GS} > V_t \Rightarrow I_D = I_S$

irf@tecnico.ulisboa.pt | Ultra Low Power Circuits | 33

33

(Level 1) MOS Transistor Model: Triode and Saturation regions

- Triode region: $0 < v_{DS} < v_{GS} V_t$ $i_D = k[2(v_{GS} V_t)v_{DS} v_{DS}^2]$
- - - $v_{DS} < < v_{GS} V_t \rightarrow \text{almost linear}$
 - $i_{DS} \approx k[2(v_{GS} V_t)v_{DS}]$

$$k = \frac{1}{2}\mu_n C_{ox} \frac{W}{L}$$

$$\rightarrow r_{ds} \approx \frac{1}{\mu_n C_{ox} \frac{W}{L} (v_{GS} - V_t)}$$

$$k = \frac{1}{2}\mu_n C_{ox} \frac{W}{L}$$

 $\mu_n \rightarrow \text{carrier mobility}$

 $C_{ox} = \frac{\varepsilon_{ox}}{t_{ox}} \rightarrow \text{unit area capacitance}$

 $\varepsilon_{ox} = 3.97\varepsilon_0 \rightarrow \text{SiO}_2 \text{ permitivity}$

 $t_{ox} \rightarrow \text{oxide thickness}$

 $\varepsilon_{Si} = 11.7\varepsilon_0 \rightarrow \text{Si permitivity}$ $\varepsilon_0 = 8.854 \times 10^{-14} [\text{F/cm}] \rightarrow \text{free space permitivity}$

 $W \to \text{channel width } L \to \text{channel length } \frac{W}{L} \to \text{aspect ratio}$

irf@tecnico.ulisboa.pt | Ultra Low Power Circuits | 35

tox

35

(Level 1) MOS Transistor Model: Triode and Saturation regions

- Triode region: $0 < v_{DS} < v_{GS} V_t$
- $i_D = k[2(v_{GS} V_t)v_{DS} v_{DS}^2]$
 - Small $v_{DS} \rightarrow$ almost linear
- Saturation region: $0 < v_{GS} V_t < v_{DS}$
- $i_D = k(v_{GS} V_t)^2$
 - Current only depends on v_{GS}

jrf@tecnico.ulisboa.pt | Ultra Low Power Circuits | 36

37

(Level 1) MOS Transistor Model: Body Effect

- V_t increase with V_{SB} (NMOS) \rightarrow degrades circuit performance
 - enlarges Depletion zone \rightarrow smaller channel \rightarrow V_t increase
- If $V_{SB} = 0$ no body effect
- $V_t = V_{t0} + \gamma \left[\sqrt{2\phi_f + v_{SB}} \sqrt{2\phi_f} \right]$

Digital: reduce noise margins Analog: source of distortion

In advanced applications: used as 2nd gate for speed; used as a mixer terminal.

• Typical: $2\phi_f$ = 0.6V, $\gamma = 0.5V^{1/2}$

TÉCNICO LISBOA jrf@tecnico.ulisboa.pt | Ultra Low Power Circuits | 38

(Level 1) MOS Transistor Model NMOS Transistor equations

- Cutoff region: v_{GS}< V_t
- $i_{DS} = 0$

• Triode region: $0 < v_{DS} < v_{GS}$ - V_t

•
$$i_{DS} = k[2(v_{GS} - V_t)v_{DS} - v_{DS}^2]$$

• Saturation region: $0 < v_{GS}$ - $V_t < v_{DS}$

•
$$i_{DS} = k(v_{GS} - V_t)^2 (1 + \lambda v_{DS})$$

$$V_t = V_{t0} + \gamma \left[\sqrt{2\phi_f + v_{SB}} - \sqrt{2\phi_f} \right]$$

TÉCNICO LISBOA

jrf@tecnico.ulisboa.pt | Ultra Low Power Circuits | 39

 $k = \frac{1}{2} \mu_n C_{ox} \frac{W}{L}$

39

PMOS Transistor

Structure:

D-Drain

G-Gate

S-Source

B-Substrate/Bulk/Body

PMOS

TÉCNICO LISBOA irf@tecnico.ulisboa.pt | Ultra Low Power Circuits | 40

PMOS Transistor equations

Cutoff region: v_{SG}< V_t

• $i_D = 0$

• Triode region: $0 < v_{SD} < v_{SG} - V_t$

• $i_D = k[2(v_{SG} - V_t)v_{SD} - v_{SD}^2]$

• Saturation region: $0 < v_{SG} - V_t < v_{SD}$

• $i_D = k(v_{SG} - V_t)^2 (1 + \lambda v_{SD})$

Relative to NMOS: electrons \leftrightarrow holes n-well equivalent to substrate change voltages and currents $V_{DD} \leftrightarrow$ gnd

$$k = \frac{1}{2} \mu_p C_{ox} \frac{W}{L}$$

$$V_t = V_{t0} + \gamma \left[\sqrt{2\phi_f + v_{BS}} - \sqrt{2\phi_f} \right]$$

TÉCNICO LISBOA

jrf@tecnico.ulisboa.pt | Ultra Low Power Circuits | 41

41

CMOS →NMOS+PMOS

TÉCNICO LISBOA jrf@tecnico.ulisboa.pt | Ultra Low Power Circuits | 42

CMOS Inverter

jrf@tecnico.ulisboa.pt | Ultra Low Power Circuits | 43

43

Ultra Low Power Circuits

- 0.1 ULP Course Structure
 - General Information

- 1. ULP Circuits
- 1.1. Minimizing Energy Consumption
 - Motivation and Framework:
 - Computing; IoT; Battery operated; Medical and others.
- 1.2.& 1.3 MOS Transistor Operation
 - Revisions:
 - Working principle
 - Level 1 MOS transistor model
- 1.4 Advanced MOS Transistor Model
 - Weak inversion region
 - EKV Model
- 1.5 Bulk and SOI technologies
 - Planar (Conventional)
 - FinFET
 - GAAFET and MBCFET

TÉCNICO LISBOA

jrf@tecnico.ulisboa.pt | Ultra Low Power Circuits | 44

Advanced Models Single-Transistor MOS Gain

$$A_V = -g_m r_o = -\frac{2V_E L}{V_{GS} - V_t} = -\frac{2V_E L}{V_{OVD}}$$

$$V_E L \approx 10V$$
 $V_{OVD} \approx 200mV$
 $\rightarrow |A_V| \approx 100$

irf@tecnico.ulisboa.pt | Analog Integrated Systems | 45

45

Advanced Models Large Signals: Weak-Strong Inversion

Strong inversion

$$i_D = \frac{\mu_n C_{ox}}{2n} \frac{W}{L} (v_{GS} - V_t)^2 (1 + \lambda V_{DS}); \quad n = \frac{\gamma}{\sqrt{2\varphi_f + V_{BS}}}; \quad \lambda \approx \frac{1}{V_E L}$$

$$g_m = \frac{2I_D}{V_{GS} - V_t}$$

 $V_{GS} - V_t$ Subthreshold or Weak inversion $i_D = I_O \exp\left(\frac{v_{GS} - V_t}{n. V_T}\right); \quad n \approx 1.4 \sim 1.8$ $V_t \rightarrow \text{Threshold Voltage}$ $V_T = \frac{kT}{q} \rightarrow \text{Thermal Voltage}$ $g_m = \frac{I_D}{n. V_T}$

$$i_D = I_O \exp\left(\frac{v_{GS} - V_t}{n. V_T}\right); \quad n \approx 1.4 \sim 1.8$$

$$g_m = \frac{I_D}{n. V_T}$$

Boundary: $g_m = \frac{2I_D}{V_{CS} - V_t} = \frac{I_D}{n_t V_T} \Rightarrow V_{GS} - V_t = 2n. V_T \Leftrightarrow V_{GS} \approx V_t + 70 \text{mV}$

Advanced Models Large Signals: Weak-Strong Inversion

- Boundaries depend on models, technologies and authors:
- "Rules of thumb" for v_{GS} :

 Conventional designs: near weak inversion but not in weak inversion: → V_{OVD} ≈150mV~200mV.

irf@tecnico.ulisboa.pt | Analog Integrated Systems | 47

47

Advanced Models Large Signals: Weak-Moderate-Strong

• I_{D0} : "leakage" (residual drain) current in saturation for $V_G = V_S = 0$; increases exponentially when V_t is reduced.

TÉCNICO LISBOA

jrf@tecnico.ulisboa.pt | Analog Integrated Systems | 48

Advanced Models Large Signals: Weak Inversion

$$V_{GS} < V_{M} \qquad i_{D} = I_{M} e^{\frac{v_{GS} - V_{M}}{n \cdot V_{T}}} \left(1 - e^{\frac{-v_{DS}}{V_{T}}}\right)$$

$$i_{D} = I_{D0} e^{\frac{v_{G}}{n \cdot V_{T}}} \left(e^{\frac{-v_{S}}{V_{T}}} - e^{\frac{-v_{D}}{V_{T}}}\right)$$

$$I_{D0} = \mu C_{OX}(n-1)V_{T}^{2} \frac{w}{L} e^{\frac{v_{L}}{n \cdot V_{T}}}$$

$$g_m = \frac{I_D}{n. V_T}$$

$$\begin{cases} I_{M} = \mu C_{OX}(n-1)V_{T}^{2} \frac{W}{L} \\ V_{M} = V_{t} - CnV_{T} \end{cases}$$

$$\begin{cases} I_{M} = \mu C_{OX}(n-1)V_{T}^{2} \frac{W}{L} \\ V_{M} = V_{t} - CnV_{T} \end{cases}$$

$$\begin{cases} I_{M} = \mu C_{OX}(n-1)V_{T}^{2} \frac{W}{L} \\ V_{M} = V_{t} - CnV_{T} \end{cases}$$

$$\gamma = \frac{\sqrt{2q\varepsilon_{S}N_{B}}}{C_{OX}} \approx \frac{2}{3} \approx 0.66$$

$$C: 1 \rightarrow 3 \quad \Rightarrow V_{M} = V_{t} - 30mV \rightarrow V_{t} - 100mV$$

irf@tecnico.ulisboa.pt | Analog Integrated Systems | 49

49

Advanced Models Large Signals: Strong Inversion

Strong inversion

$$i_{D} = \frac{\mu_{n}C_{ox}}{2n} \frac{W}{L} (v_{GS} - V_{t})^{2} (1 + \lambda V_{DS}); \quad n = \frac{\gamma}{\sqrt{2\varphi_{f} + V_{BS}}}; \quad \lambda \approx \frac{1}{V_{E}L}$$

$$g_{m} = \frac{2I_{D}}{V_{GS} - V_{t}}$$

Subthreshold or Weak inversion

$$i_D = I_{DO} \exp\left(\frac{v_{GS} - V_t}{n. V_T}\right); \quad n \approx 1.4 \sim 1.8$$

$$= \frac{I_D}{n. V_T}$$

Boundary:
$$g_m = \frac{2I_D}{V_{GS} - V_t} = \frac{I_D}{n.V_T} \Rightarrow V_{GS} - V_t = 2n.V_T \Leftrightarrow V_{GS} \approx V_t + 70 \text{mV}$$

irf@tecnico.ulisboa.pt | Analog Integrated Systems | 50

Advanced Models Large Signals: Moderate Inversion

"Rules of thumb" for V_{GS}:

There are unified models.

Cost in complexity which translates in computation time.

 There are non-physical based models, fitting on experimental data as BSIM3

jrf@tecnico.ulisboa.pt | Analog Integrated Systems | 51

51

Advanced Models Large Signals: ...at the higher end

- At high v_{GS} current becomes more linear again;
 - Mainly due to velocity saturation
 - Increase in electric field does not cause electrons to travel through the channel faster due to colisions.

Velocity saturation

$$i_{DS_{VS}} = WC_{ox} \underbrace{V_{SAT}}_{\approx 10^{7} \text{cm/s}} (v_{GS} - V_{t})$$

$$g_{m_SAT} = WC_{ox} \underbrace{V_{SAT}}_{\approx 10^{7} \text{cm/s}} \text{ is absolute max}$$

$$\approx 10^{7} \text{cm/s}$$

does not depend on v_{GS} , is constant; not used for analog

jrf@tecnico.ulisboa.pt | Analog Integrated Systems | 52

Advanced models Small Signals: Transconductance

$$g_m = \frac{\partial i_D}{\partial v_{GS}} \bigg|_{v_{GS} = V_{GS}} \to$$

Strong Inversion: Saturation

$$g_m = \mu C_{OX} \frac{W}{L} \frac{1}{\alpha} (V_{GS} - V_t) = \frac{2I_D}{V_{GS} - V_t} = 2 \sqrt{\frac{1}{2} \mu C_{OX} \frac{W}{L} \frac{1}{\alpha} I_D}$$

Strong Inversion: Triode $g_m = \mu C_{OX} \frac{W}{L} V_{DS}$

Weak Inversion: $g_m = \frac{I_D}{nV_T}$

irf@tecnico.ulisboa.pt | Analog Integrated Systems | 53

53

Advanced models Small Signals: Transconductance

TÉCNICO LISBOA

jrf@tecnico.ulisboa.pt | Analog Integrated Systems | 54

Advanced models Small Signals: Bulk transconductance and D-S conductance

$$g_{mb} = \frac{\partial i_D}{\partial v_{BS}} \Big|_{V_{GS}, V_{DS}, V_{BS}} = \frac{\partial i_D}{\partial V_t} \cdot \frac{\partial V_t}{\partial v_{BS}} = g_m \cdot (n-1)$$

$[g_{mb} = 0.1 \text{ to } 0.3 g_m]$

TÉCNICO LISBOA

jrf@tecnico.ulisboa.pt | Analog Integrated Systems | 55

55

Advanced models Capacitance

TÉCNICO LISBOA

jrf@tecnico.ulisboa.pt | Analog Integrated Systems | 56

Advanced models Capacitance (intrinsic)

Weak Inversion

$$C_{gb_i} = \frac{n-1}{n} \cdot W \cdot L \cdot C_{OX}$$

Strong Inversion

triode (V_{DS} =0):

$$\begin{cases} C_{gs_i} = C_{gd_i} = \frac{1}{2} \cdot W \cdot L \cdot C_{OX} \\ C_{gb_i} \approx 0 \\ C_{bs_i} = C_{bd_i} = \frac{\gamma}{2\sqrt{2\varphi_f - V_{SB}}} \cdot \frac{W \cdot L \cdot C_{OX}}{2} \\ \end{cases} \begin{cases} C_{gs_i} = \frac{2}{3} \cdot W \cdot L \cdot C_{OX} \\ C_{gd_i} = 0 \\ C_{gb_i} = \frac{\gamma}{2\sqrt{2\varphi_f - V_{SB}} - V_{DS}} \cdot \frac{W \cdot L \cdot C_{OX}}{3} \\ C_{bs_i} = \frac{\gamma}{2\sqrt{2\varphi_f - V_{SB}}} \cdot \frac{W \cdot L \cdot C_{OX}}{2} \\ C_{bd_i} = 0 \end{cases}$$

TÉCNICO LISBOA

irf@tecnico.ulisboa.pt | Analog Integrated Systems | 57

57

Advanced models Capacitance (extrinsic)

 Better to design finger transistors instead of a "big" transistor. Reduces the area of drain and source by two.

$$\begin{cases} C_{gs_e} = C_{gd_e} = W \cdot C_W \\ C_{gb_e} = L \cdot C_L \\ C_{bs_e} = C_{bd_e} = \propto A_S + \propto P_S \end{cases}$$

Advanced models Capacitance

jrf@tecnico.ulisboa.pt | Analog Integrated Systems | 59

59

Ultra Low Power Circuits

- 0.1 ULP Course Structure
 - General Information

- 1. ULP Circuits
- 1.1. Minimizing Energy Consumption
 - Motivation and Framework:
 - Computing; IoT; Battery operated; Medical and others.
- 1.2.& 1.3 MOS Transistor Operation
 - Revisions:
 - Working principle
 - Level 1 MOS transistor model
- 1.4 Advanced MOS Transistor Model
 - Weak inversion region
 - EKV Model
- 1.5 Bulk and SOI technologies
 - Planar (Conventional)
 - FinFET
 - GAAFET and MBCFET

TÉCNICO LISBOA

jrf@tecnico.ulisboa.pt | Ultra Low Power Circuits | 60

Moore's Law

- 10 µm 1971
- 6 µm 1974
- 3 µm 1977
- 1.5 µm 1982
- 1 µm 1985
- 800 nm 1989
- 600 nm 1994
- 350 nm 1995
- 250 nm 1997
- 180 nm 1999
- Increase process complexity 130 nm - 2001

Increase leakage

- 90 nm 2004
- 65 nm 2006
- 45 nm 2008
- 32 nm 2010
- 22 nm 2012
- 14 nm 2014
 - 2018: 14nm 10 nm - 2016-2017 i7, 8th generation
- 7 nm 2017-2018
- 5 nm 2020-2021

Others...

high-k/metal gate

SOI; FinFET

irf@tecnico.ulisboa.pt | Ultra Low Power Circuits | 61

61

Moore's Law

1965: Moore's Law [Intel]

TÉCNICO LISBOA

er Circuits | 62

SOI: Silicon-on-Insulator

TÉCNICO LISBOA

63

SOI: Silicon-on-Insulator

TÉCNICO LISBOA

jrf@tecnico.ulisboa.pt | Ultra Low Power Circuits6#

SOI: Silicon-on-Insulator

FD-SOI (Fully Depleted Silicon On Insulator)

- reduced geometries
- faster transistors
- lower power transistors
- maintains transistor geometry
- buried oxide layer
 - · more gate control; better performance
 - · two gate control "extreme" body biasing
 - · no need for dopants: reduced mismatch
 - · no leakage

jrf@tecnico.ulisboa.pt | Ultra Low Power Circuits65

65

SOI: Silicon-on-Insulator

FD-SOI (Fully Depleted Silicon On Insulator)

- simplified fabrication process
- Two gates: two different modes
 - gate V++ and backgate V+ \rightarrow faster
 - gate V+ and backgate V++ \rightarrow less power

ST Microelectronics: An introduction to FD-SOI - YouTube

jrf@tecnico.ulisboa.pt | Ultra Low Power Circuits6β

FinFET

TÉCNICO LISBOA jrf@tecnico.ulisboa.pt | Ultra Low Power Circuits//

67

FinFET

TÉCNICO LISBOA

jrf@tecnico.ulisboa.pt | Ultra Low Power Circuits6β

FinFET

FinFET

- Tri-gate or double gate
- Fixed dimension steps
- One orientation
- 3D- complex parasitic capacitances
- down to 5nm (?)

Next....

Samsung https://youtu.be/3otqUu-7WUQ

jrf@tecnico.ulisboa.pt | Ultra Low Power Circuits/|1