Farkas Lemma

Coman Florin-Alexandru

April 3, 2015

Table of contents

- Farkas Lemma
 - Farkas Lemma, Version I
 - Farkas Lemma, Version II
 - Farkas Lemma, Version III
- 2 Bibliography

Farkas Lemma, Version I

Lemma 1.1. (Farkas Lemma, Version I)

Given any $d \times n$ real matrix, A, and any vector, $z \in \mathbb{R}^d$, exactly one of the following alternatives occurs:

- (a) The linear system, Ax = z, has a solution, $x = (x_1, ..., x_n)$ such that $x \ge 0$ and $x_1 + ... + x_n = 1$, or
- (b) There is some $c \in \mathbb{R}^d$ and some $\alpha \in]mathbb{R}$ such that $c^T z < \alpha$ and $c^T A \ge \alpha$.

Farkas Lemma, Version I

Remark

If we relax the requirements on solution of Ax = z and only require $x \ge 0$ $(x_1 + ... + x_n = 1$ is no longer required) then, in condition (b), we can take $\alpha = 0$. This is another verion of Farkas Lemma.

In this case, instead of considering the convex hull of $\{A_1,...A_n\}$ we are considering the convex cone,

 $cone(A_1,...,A_n)=\{\lambda A_1+...+\lambda_n A_n|\lambda_i\geq 0, 1\leq i\leq n\},$ that is, we are dropping the condition $\lambda_1+...+\lambda_n=1.$

Farkas Lemma, Version I

For this version of Farkas Lemma we need the following separation lemma:

Proposition 1.1.

Let $C \subseteq \mathbb{E}^d$ be any closed convex cone with vertex O. Then, for every point, a, not in C, there is a hyperplane, H, passing through O separating a and C with $a \notin H$.

Farkas Lemma, Version II

Lemma 1.2. (Farkas Lemma, Version II)

Given any $d \times n$ real matrix, A, and any vector, $z \in \mathbb{R}^d$, exactly one of the following alternatives occurs:

- (a) The linear system, Ax = z, has a solution, x, such that $x \ge 0$, or
- (b) There is some $c \in \mathbb{R}^d$ such that $c^T z < 0$ and $c^T A \ge 0$.

Farkas Lemma, Version III

Lemma 1.3. (Farkas Lemma, Version III)

Given any $d \times n$ real matrix, A, and any vector, $z \in \mathbb{R}^d$, exactly one of the following alternatives occurs:

- (a) The system of inequalities, $Ax \le z$, has a solution, x, or
- (b) There is some $c \in \mathbb{R}^d$ such that $c \ge 0$, $c^T z < 0$ and $c^T A = 0$.

Farkas Lemma, Version III

Proof I

The proof uses two tricks from linear programming:

1. We convert the system of inequalities, $Ax \le z$, into a system of equations by introducing a vector of **slack variables**, = (1, ..., d), where the system of equations is

$$(A,I)\begin{pmatrix} x\\ \gamma \end{pmatrix}=z,$$

with $\gamma \geq 0$.

2. We replace each "uncontrained variable", x_i , by $x_i = X_i - Y_i$, with $X_i, Y_i \ge 0$.

Farkas Lemma, Version III

Proof II

Then, the original system $Ax \le z$ has a solution, x (unconstrained), iff the system of equations

$$(A, -A, I) \begin{pmatrix} X \\ Y \\ \gamma \end{pmatrix} = z$$

has a solution with $X, Y, \gamma \geq 0$.

By Farkas II, this system has no solution iff there exists some $c \in \mathbb{R}^d$ with $c^T z < 0$ and

$$c^T(A, -A, I) \geq 0$$

that is, $c^T A \ge 0$. $-c^T A \ge 0$, and $c \ge 0$.

However, these four conditions reduce to $c^Tz < 0$, $c^TA = 0$ and $c \ge 0$.

Bibliography I

- [1] Rudi Pendavingh, Optimization in \mathbb{R}^n , lecture 2, Eindhoven Technical University
- [2] University of Pennsylvania, School of Engineering and Applied Science, Basic Properties of Convex Sets, Advanced Geometric Methods in Computer Science Course, 2014-2015
- [3] L. Vandenberghe, Alternatives Lecture, Linear Programming Course, University of California, Los Angeles