Introduction to Differential Calculus

Exercise 16A2 (pg. 419) - #3

3 For each function, find the average rate of change in f(x) from A to B:

y = f(x)

Exercise 16B (pg. 422) - #2

2

The graph of $f(x) = \frac{x^3 + 1}{3}$ is shown alongside.

Use the tangents drawn to find the instantaneous rate of change in f(x) at:

$$x = -1$$

Exercise 16D (pg. 425) - #3,4

- For the graph of y = f(x) alongside, decide whether the following are positive or negative:
 - a f(3)

b f'(1)

c f(−4)

d f'(-2)

For the graph of y = f(x) alongside, the derivative function is f'(x) = 2x + 1.

- a Find and interpret: i f'(-2)
- b Copy the graph, and include the information in a.

Exercise 16E (pg. 428, 429) - #2, 5, 10

- Find f'(x) from first principles, given that f(x) is:

- **a** 2x+5 **b** x^2-3x **c** $-x^2+5x-3$

- **5** a Find f'(x) given $f(x) = \frac{1}{x}$. b Find f'(-1) and f'(3), and interpret your answers.

10 Given $y = \sqrt{x}$, find $\frac{dy}{dx}$ from first principles. Comment on the differentiability of $y = \sqrt{x}$.

Exercise 16F (pg. 431) - #6

 $\text{ Let } f(x) = \left\{ \begin{matrix} ax^2, & x \geqslant 2 \\ x+b, & x < 2 \end{matrix} \right. \ \, \text{Find a and b such that $f(x)$ is differentiable at $x=2$. }$

Exercise R16A (pg. 433) - #4,5,8

- **5** a Given $y = 2x^2 1$, find $\frac{dy}{dx}$ from first principles.
 - **b** Hence state the gradient of the tangent to $y = 2x^2 1$ at the point where x = 4.
 - For what value of x is the gradient of the tangent to $y = 2x^2 1$ equal to -12?

8 Explain why $f(x) = \frac{2}{x^2 - 2x}$ is not differentiable at x = 2.

4 Find, from first principles, the derivative of:

a
$$f(x) = x^2 + 2x$$

b
$$y = 4 - 3x^2$$

1 Find f'(x) given that f(x) is:

m $2x^2 + x - 1$ **n** $3x^2 - 7x + 8$ **o** $4 - 2x^2$ **p** $\frac{1}{2}x^4 - 6x^2$

2 Differentiate with respect to x:

a $\frac{1}{x^2}$ b $\frac{1}{x^5}$ c $\frac{3}{x}$ d $\frac{4}{x^3}$

e $-\frac{7}{x^4}$ f $2x + \frac{3}{x^2}$ g $x^2 - \frac{6}{x}$ h $9 - \frac{2}{x^3}$

i $\frac{2}{x^2} + \frac{9}{x^4}$ j $3x - \frac{1}{x} + \frac{2}{x^2}$ k $5 - \frac{8}{x^2} + \frac{4}{x^3}$ l $\frac{1}{5x^2}$

m $4x - \frac{1}{4x}$ n $\frac{x^2 - 3}{x}$ o $\frac{x^3 + 4}{x}$ p $\frac{2x - 5}{x^2}$

3 Find the gradient function for f(x) where f(x) is:

a
$$\sqrt{x}$$
 b $\sqrt[3]{x}$ c $\frac{1}{\sqrt{x}}$

d
$$x^3 - \frac{1}{2}\sqrt{x}$$

e
$$\frac{1}{x^2} + 6\sqrt{x}$$
 f $2x - \sqrt{x}$ g $x\sqrt{x}$ h $\frac{1}{x\sqrt{x}}$

$$1 2x - \sqrt{3}$$

g
$$x\sqrt{x}$$

h
$$\frac{1}{x\sqrt{x}}$$

i
$$2x^2-\frac{3}{\sqrt{x}}$$
 j $\frac{\sqrt{x}-4}{x}$ k $\frac{x+5}{\sqrt{x}}$ l $\frac{7-x^2}{\sqrt{x}}$

$$\int \frac{\sqrt{x}-4}{x}$$

$$k = \frac{x+5}{\sqrt{x}}$$

$$\frac{7-x^2}{\sqrt{x}}$$

$$3x^2 - x\sqrt{x}$$

$$\frac{4}{x^2\sqrt{x}}$$

o
$$2x - \frac{3}{x\sqrt{x}}$$

m
$$3x^2 - x\sqrt{x}$$
 n $\frac{4}{x^2\sqrt{x}}$ o $2x - \frac{3}{x\sqrt{x}}$ p $\frac{x^2 - x + 2}{\sqrt[3]{x}}$

4 Find $\frac{dy}{dx}$ for:

$$y = \pi x^2$$

b
$$y = 3x^2 - \frac{8}{x^2}$$
 c $y = 6\sqrt{x} + \frac{5}{x}$

$$y = 6\sqrt{x} + \frac{5}{x}$$

d
$$y = 4\pi x^3$$

$$y = 2.5x^3 - 1.4x^2 - 1.3$$
 f $y = 10(x+1)$

$$y = (x+1)(x-2)$$

g
$$y = (x+1)(x-2)$$
 h $y = (2x+1)(3x-2)$ i $y = (5-x)^2$

$$y = (5 - x)^2$$

$$y = (2x - 1)^2$$

j
$$y = (2x-1)^2$$
 k $y = x(x+1)(2x-5)$ j $y = \frac{(x-3)^2}{\sqrt{x}}$

$$y = \frac{(x-3)^2}{\sqrt{x}}$$

5 Use a binomial expansion to find the derivative of:

$$f(x) = (1-x)^3$$

$$f(x) = \left(3x - \frac{1}{\sqrt{x}}\right)^3$$

7 Find the gradient of the tangent to:

a
$$y = x^2$$
 at $x = 2$

$$y = \frac{8}{x^2}$$
 at the point $(9, \frac{8}{81})$

•
$$y = 3\sqrt{x}$$
 at the point $(1, 3)$

g
$$y = \frac{x^2-4}{x^2}$$
 at the point $\left(4, \frac{3}{4}\right)$

b
$$y = x^3 - 5x + 2$$
 at the point (3, 14)

d
$$y = 2x^2 - 3x + 7$$
 at $x = -1$

$$f \quad y = 2x - \frac{5}{x} \quad \text{at the point} \quad \left(2, \, \tfrac{3}{2}\right)$$

h
$$y = \frac{x^3 - 4x - 8}{x^2}$$
 at $x = -1$

9 Determine whether
$$f(x) = \begin{cases} 4x^2 - 3, & x \geqslant 2 \\ x^3 + 2x + 1, & x < 2 \end{cases}$$
 is differentiable at $x = 2$.

13 The cost of producing x toasters each week is given by C = 1785 + 3x + 0.002x² pounds. Find the value of dC/dx when x = 1000, and interpret its meaning.

Exercise 17B2 (pg. 443, 444) - #2, 3acg, 4cf

2 Differentiate $y = (2x + 3)^2$ by:

- a using the chain rule with u = 2x + 3
- expanding y = (2x + 3)² then differentiating term-by-term.

3 Find the derivative function $\frac{dy}{dx}$ for: a $y=(4x-5)^2$ b $y=\frac{1}{5-2x}$ d $y=(1-3x)^4$ e $y=6(5-x)^3$

$$y = (4x - 5)^2$$

b
$$y = \frac{1}{5 - 2x}$$

$$y = \sqrt{3x - x^2}$$

$$y = (1 - 3x)^4$$

$$y = 6(5-x)^3$$

$$y = \sqrt[3]{2x^3 - x^2}$$

$$y = \frac{6}{(5x-4)^2}$$

h
$$y = (x^2 - 5x + 8)^5$$

h
$$y = (x^2 - 5x + 8)^5$$
 i $y = 2(x^2 - \frac{2}{x})^3$

4 Find the gradient of the tangent to:

a
$$y = \sqrt{1 - x^2}$$
 at $x = \frac{1}{2}$

b
$$y = (3x+2)^6$$
 at $x = -1$

$$y = \frac{1}{(2x-1)^4}$$
 at $x = 1$

d
$$y = 6 \times \sqrt[3]{1 - 2x}$$
 at $x = 0$

e
$$y = \frac{4}{x + 2\sqrt{x}}$$
 at $x = 4$

$$y = (x + \frac{1}{x})^3$$
 at $x = 1$.

Check your answers using technology.

Exercise 17C (pg. 445, 446) - #1bef, 2e, 3d, 5

1 Use the product rule to differentiate:

a
$$f(x) = x(x-1)$$

b
$$f(x) = 2x(x+1)$$

a
$$f(x) = x(x-1)$$
 b $f(x) = 2x(x+1)$ c $f(x) = x^2\sqrt{x+1}$

d
$$f(x) = (x+3)(x-1)$$
 e $f(x) = x\sqrt{x^2-1}$ f $f(x) = x(x+1)^2$

$$f(x) = x\sqrt{x^2 - 1}$$

$$f(x) = x(x+1)^2$$

2 Find $\frac{dy}{dx}$ using the product rule:

$$y = x^2(2x - 1)$$

b
$$y = 4x(2x+1)^3$$
 c $y = x^2\sqrt{3-x}$

$$y = x^2 \sqrt{3 - x}$$

d
$$y = \sqrt{x(x-3)^2}$$

$$y = 5x^2(3x^2 - 1)^2$$

d
$$y = \sqrt{x(x-3)^2}$$
 e $y = 5x^2(3x^2-1)^2$ **f** $y = \sqrt{x(x-x^2)^3}$

3 Find the gradient of the tangent to:

$$y = x^4(1-2x)^2$$
 at $x = -1$

b
$$y = \sqrt{x(x^2 - x + 1)^2}$$
 at $x = 4$

$$y = x\sqrt{1-2x}$$
 at $x = -4$

d
$$y = x^3 \sqrt{5 - x^2}$$
 at $x = 1$.

Suppose y = -2x²(x+4). For what values of x does dy/dx = 10?

Exercise 17D (pg. 448) - #1bef, 2f, 3d, 6, 8

1 Use the quotient rule to find
$$\frac{dy}{dx}$$
 if:

$$y = \frac{1+3x}{2-x}$$

$$y = \frac{x^2}{2x+1}$$

$$y = \frac{x}{x^2 - 3}$$

d
$$y = \frac{\sqrt{x}}{1-2x}$$

$$y = \frac{x^2 - 3}{3x - x^2}$$

$$y = \frac{x}{\sqrt{1-3x}}$$

a
$$\frac{d}{dx}\left(\frac{x+1}{3-x}\right)$$

a
$$\frac{d}{dx}\left(\frac{x+1}{3-x}\right)$$
 b $\frac{d}{dx}\left(\frac{3x}{x^2-1}\right)$

$$\frac{d}{dx}\left(\frac{x^3}{2x-1}\right)$$
 $\frac{d}{dx}\left(\frac{4x}{\sqrt{x-5}}\right)$

d
$$\frac{d}{dx}\left(\frac{4x}{\sqrt{x-5}}\right)$$

$$\frac{d}{dx}\left(\frac{\sqrt{x}}{3-x^2}\right)$$

e
$$\frac{d}{dx}\left(\frac{\sqrt{x}}{3-x^2}\right)$$
 f $\frac{d}{dx}\left(-\frac{x^2}{\sqrt{x^2+3}}\right)$

3 Find the gradient of the tangent to:

$$y = \frac{x}{1 - 2x} \text{ at } x = 1$$

b
$$y = \frac{x^3}{x^2 + 1}$$
 at $x = -1$

$$y = \frac{\sqrt{x}}{2x+1}$$
 at $x = 4$

d
$$y = \frac{x^2}{\sqrt{x^2 + 5}}$$
 at $x = -2$.

6 a If
$$y = \frac{2\sqrt{x}}{1-x}$$
, show that $\frac{dy}{dx} = \frac{x+1}{\sqrt{x}(1-x)^2}$.

b For what values of
$$x$$
 is $\frac{dy}{dx}$: i zero ii undefined?

8 a If
$$y = \frac{x^2 - 3x + 1}{x + 2}$$
, show that $\frac{dy}{dx} = \frac{x^2 + 4x - 7}{(x + 2)^2}$.

b For what values of
$$x$$
 is $\frac{dy}{dx}$: i zero ii undefined?