

Решение задачи кредитного риск-менеджмента при помощи ML

Чернышев Николай

Цель работы:

Создать модель машинного обучения, предсказывающую дефолт заемщика.

Задачи:

- 1. Чтение и обработка данных
- 2. Отбор признаков
- 3. Построение модели

Требования к производительности:

Производительность модели должна составить не менее 0,75 по метрике ROC AUC!

 $odds(D+|T+)=LR \times odds(D+)$ $TPR = \frac{TP}{TP+FN}$ $AUC = \int TPR \, d(FPR)$ $g(z) = \frac{1}{1+e^{-z}}$ $g(z) = \frac{1}{1+e^{-z}}$

Инструменты:

- 1. Ноутбук с 16 гб ОЗУ
- 2. Сервис Google Collab (free)
- 3. Библиотеки Sklearn, Matplotlib, Seaborn и др.
- 4. Фреймворк Optuna

Чтение данных.

Размер датасета не позволяет одномоментно прочитать и сохранить все данные в один датафрейм с использованием имеющихся инструментов.

Чтение данных. Решение.

Проблема решена последовательным чтением файлов датасета с отбором и сжатием признаков до формата int8


```
def read parquet dataset from local(path to dataset: str, start from: int = 0,
                                     num parts to read: int = 2, columns=None, verbose=True) -> pd.DataFrame:
   df1 = pd.DataFrame()
   dataset paths = sorted([os.path.join(path to dataset, filename) for filename in os.listdir(path to dataset)
                              if filename.startswith('train')], key=len)
   start from = max(0, start from)
   chunks = dataset paths[start from: start from + num parts to read]
   if verbose:
       names = [chunk.split('_')[-1].split('.')[0] for chunk in chunks]
       print(f'Reading chunks No:{names}')
   for chunk path in tqdm(chunks, desc="Progress"):
        chunk = pd.read parquet(chunk path,columns=columns)
       chunk['rn'] = 1
       #this one is for memory saving
       chunk[chunk.drop('id', axis=1).columns] = chunk[chunk.drop('id', axis=1).columns].astype('Int8')
       chunk['id'] = chunk['id'].astype('Int32')
       df1 = pd.concat([df1, chunk]).reset_index(drop=True)
       print(f'chunk {chunk path.split(' ')[-1].split('.')[0]} appended')
   return df1
```

Анализ и отбор признаков.

Признаки в датасете оказались заранее бинаризованы и кодированы, что затруднило экспертную оценку их значимости.

ВОЗМОЖНОЕ РЕШЕНИЕ: Предварительно не кодировать данные, конфиденциальность обеспечивать NDA с ML инженером.

Отбор признаков. Решения.

- 1. Избавиться от всех признаков вида 'flag...', поскольку они дублируют информацию других признаков.
- 2. Привести все значения признака 'rn' к 1.
 - > создать счетчик займов по каждому клиенту.
- 3. Анализировать значимость признаков при дельнейшем моделировании.

Эксперимент по отбору признаков.

Последовательное удаление признаков не помогло в отборе признаков.

Положительного изменения метрик на модели с базовыми параметрами достичь не удалось.

```
length = len(cols)
for i in tqdm(cols, desc="Progress"):
    Xtrain1 = Xtrain.copy()
    Xtest1 = Xtest.copy()
   drops = [j for j in df if j.startswith(i)]
   Xtrain1.drop(drops, axis=1, inplace=True)
   Xtest1.drop(drops, axis=1, inplace=True)
    mod xgb = XGBClassifier(random state = 42)
    mod xgb.fit(Xtrain1, ytrain)
   predtrain = mod xgb.predict proba(Xtrain1)
   predtest = mod_xgb.predict_proba(Xtest1)
    score_train = roc_auc_score(ytrain, predtrain[:,1])
    score test = roc_auc_score(ytest, predtest[:,1])
    if score_test > stat['test'].tolist()[-1]:
        res = pd.DataFrame({
        'feature dropped': [i],
        'train': [score train],
        'test': [score test]})
        stat = pd.concat([stat, res]).reset index(drop=True)
        Xtrain, Xtest = Xtrain1, Xtest1
```

Кодирование признаков.

Аналогично последовательному чтению файлов кодирование ОНЕ выполнено по колонке за раз.

Кодирование признаков.

Аналогично последовательному чтению файлов кодирование ОНЕ выполнено по колонке за раз.

Кодирование признаков.

Аналогично последовательному чтению файлов кодирование ОНЕ выполнено по колонке за раз.

Моделирование.

В качестве наиболее перспективных моделей выбраны 3 популярных* бустера:

Моделирование. Настройка.

Для подбора гиперпараметров моделей применен фреймворк Optuna.

Классический **GridSearchCV** работает недостаточно быстро на больших массивах!

Моделирование. Производительность.

Моделирование. Скорость обучения.

Моделирование. Выводы.

XGBC и LGBM показали наилучшую производительность после тюнинга параметров.

	model	params	learning_time	train_auc_score	test_auc_score	val_auc_score	cv_mean_score	cv_std
0	LGBMClassifier	optuned	0:02:10.785736	0.772767	0.758499	0.757047	0.757573	0.00215
1	XGBClassifier	optuned	0:04:15.088610	0.805520	0.758275	0.757756	0.758157	0.002002
2	CatBoostClassifier	optuned	0:33:51.306004	0.777942	0.756921	0.756264	0.755699	0.002276
3	CatBoostClassifier	basic	0:17:28.451842	0.792411	0.755332	0.754277	-	-
4	LGBMClassifier	basic	0:00:51.981009	0.768016	0.753927	0.752722	-	-
5	XGBClassifier	basic	0:01:36.324102	0.795520	0.753115	0.750227	-	-

Моделирование. Оптимизация.

Эффективным способом повышения производительности является объединение моделей в ансамбль.

Моделирование. Ансамбль.

Объединение наиболее производителных моделей позволило дополнительно повысить производительность модели.

Ансамбль. 2 техники – 1 результат.

Объединение двух моделей с простым перебором весов и через StackingClassifier дали одинаково высокий результат:

```
auc top n = -1
   alpha n = -1
   for a in np.arange(0.01,1,0.01):
       ensemble predict = a*LGBMC_val_predict[:,1] + (1-a)*XGBC_val_predict[:,1]
       auc = roc_auc_score(yval, ensemble predict)
       if auc > auc top n:
           auc top n = auc
           alpha n = a
   print(f'Best ROC AUC score on val sample = {auc top n} при альфа = {alpha n}')
Best ROC AUC score on val sample = 0.7600147867597477 при альфа = 0.48000000000000000
   a = 0.48
   ensemble predict = a*LGBMC test predict[:,1] + (1-a)*XGBC test predict[:,1]
   auc = roc auc score(ytest, ensemble predict)
   print(f'Best ROC AUC score on test sample = {auc} при альфа = {0.48}')
Best ROC AUC score on test sample = 0.760914639546205 при альфа = 0.48
```

<u>0.76001 / 0.76092</u>

Результаты.

- ✓ Применение ансамбля моделей позволило получить модель требуемой производительности.
- ✓ Клиент получил продукт, соответствующий потребности ранее обозначенного ТЗ срока.

Выводы.

- ✓ При работе с реальными данными необходим баланс между условиями работы ML инженера и Информационной безопасностью
- ✓ Понимание и подготовка данных фундамент успешного моделирования.
- ✓ Дефицит числительных ресурсов требует существенной предобработки данных.
- ✓ Применение ансамблевых моделей является наиболее производительным, но дорогим (по объему вычислений) решением.

СПАСИБО ЗА ВНИМАНИЕ!