⑲ 日本 国 特 許 庁(JP)

⑪特許出願公開

② 公開特許公報(A) 平3-7288

Int. Cl. 5

識別記号

庁内整理番号

@公開 平成3年(1991)1月14日

C 07 D 487/22 C 09 B 47/00

8314-4C 7537-4H

審査請求 未請求 請求項の数 1 (全7頁)

50発明の名称

テトラピラジノポルフイラジン誘導体

裕美

②特 願 平1-219865

②出 願 平1(1989)8月25日

優先権主張

劉平1(1989)2月10日國日本(JP)③特顯 平1-32143

⑩平1(1989)3月24日勁日本(JP)⑪特願 平1-73154

⑩発 明 者

崎 文彦

神奈川県小田原市高田字柳町345 日本曹達株式会社小田

原研究所内

@発明者 波多野

神奈川県小田原市高田字柳町345 E

日本曹達株式会社小田

原研究所内

②発 明 者

槒

弘 神奈川県小田原市高田字柳町345

日本曹達株式会社小田

原研究所内

勿出 顋 人

日本曹達株式会社

東京都千代田区大手町2丁目2番1号

個代 理 人 弁理士 横山 吉美

外1名

叨 缸 書

i. 発明の名称

テトラピラジノポルフィラジン誘導体

2. 特許請求の範囲

(i) 一般式(i)

(式中 R 1 ~ R 8 は同一又は相異って、水素、ハロゲン原子、アミノ菇、電換フェニル菇、置換フリル店、置換されていてもよいチェニル基、置換されていて

もよいアルキルオキシ基、置換されていてもよいフェニルチオ基、置換されていてもよいアルキルチオ基、又は R_1 と R_2 、 R_3 と R_4 、 R_5 と R_6 、 R_7 と R_8 がそれぞれ一緒になってもしくは

○ もしくは ○ いずれも置換されていてもよい。)なる基を示す。ただしR₁ ~ R_B がすべて水素ではない。

Mは水素(2 H)、金属、金属酸化物、金属水酸化物、アシル金属、アルコキシ金属、シロキシ金属又は金属ハロゲン化物を示す。)で表わされるテトラピラジノポルフィラジン誘導体。

3. 発明の詳細な説明

(産業上の利用分野)

本発明は新規なテトラピラジノボルフィラジン 誘導体に関する。本発明の誘導体は安定で近赤外線に対して強い吸収を持ち置換益を選ぶことにより一般の有機溶媒に対し、高い溶解性を持たせる 事が出来るため、光学的記録用媒体、電子写真、 レーザーブリンタ用窓光材料、酸化還元触媒成い

特開平3-7288 (2)

は花卉、切花、食品の鮮度維持利等として利用することが出来る。

(従来の技術)

従来近郊外光ないし可視光を吸収する材料であ るシアニン系色素、スクアリリウム系色素、ナフ トキノン系色素、フタロシアニン系色素は光学的 記録媒体、電子写真、レーザープリンター等への 応用が期待されているが、フタロシアニン色素が 耐久性および近赤外線ないし、可視光の吸収性能 において最も優れ、従来より種々検討されている。 特に近年においてはレーザ光に高感度に感応する フタロシアニン色素が光学的記録材料、レーザー プリンター用歴光材料として期待され、種々の新 らしい構造が提案されている。それらの一例を挙 けるとフタロシアニンのベンゼン煙に溶剤溶解性 を向上させ、および/または780~830mmに 強い吸収を持たせるための置換基を導入したもの として例えばJournal of General Chemistry, USSR, 46, 2075 (1976) (アミノ 基導入型); 繊維高 分子材料研究所研究免费会受料 昭和60年16

9 3 、特別的 6 3 - 2 7 5 5 8 4 などのナフタロシアニン類化合物、 Y がフェナントロ基である特別的 6 3 - 8 7 2 8 2 などのテトラフェナントロポルフィラジン類化合物がある。

これらの試みは、実用性のある半導体レーザー 窓応性色素を有機溶剤溶解性および/または78 0~830amに強い吸収を持たせることの2点に 生として登目して行なわれているが、これだけで は未だ実用上十分なものとは目えない。即ち例え は、光学的記録材料においては、上記2点のほか に反射率が高いこと、融点又は分解点があまり高 くないこと、それらのしきい値が高いこと、熱伝 導車が低いこと、光、酸素に対する耐性が高いこ と、10~ 回以上の再生に耐えること等が必要で あり、またレーサープリンターにおいては電荷輸 送材料との組合わせにおいて高い電荷往入効率を 併るための適当なイオン化ポテンシャルを持つこ と、高感度の潜像を得るために暗波嚢が小さいこ と、レーザー光、酸素に対する耐久性が高いこと などの性能が必要である。

7 ページ(オクタアルコキン基本入型);特別昭 6 3 - 1 7 0 4 6 2 (アミノ基本人型);特別昭 6 0 - 2 0 9 5 8 3、特別昭 6 3 - 2 7 0 7 6 5、 (チォエーテル導入型);特公昭 5 9 - 1 3 1 1 (エーテル又はチオエーテル導入型)がある。又 7 8 0 ~ 8 3 0 nmに強い吸収を持たせるためフタ ロシアニンのペンゼン関に更に対番族環を組合し 共役ェ電子の遺移エネルギーを小さくしたものと して例えば、次式(Ⅱ)

において Y がナフタレン 頭である 特別 昭 6 1 - 2 5 8 8 6 、 特別 昭 6 1 - 1 7 7 2 8 8 、 特別 昭 6 1 - 2 6 8 4 8 7 、 特別 昭 6 2 - 5 6 1 9 1 、 特別 昭 6 2 - 1 0 0

(発明が解決しようとする課題)

本発明は前記事情に指みてなされたものである。
その目的は、フタロシ環に置き換えテトラビをラジノポルフィラジンとし、更にそれらに置換基を選り入することにより分子の基本構造に係る前記各種性の改変された新規なテトラビラジノポルフィラジン誘導体を提供することにある。

本発明に係るテトラピラジノボルフィラジン誘導体と類似の構造を有する化合物は次式 [II]

$$\begin{array}{c} R_1 \\ R_2 \\ R_1 \\ \end{array}$$

においてR₁ - R₂ - II (Gal'pern, M.G.:

Luk'yanets, E.A., 2h. Obshch Khin, Vol. 39

Na 11, 2536~41, (1969年))

R₁ - R₂ - C H₃ (特開昭61-291187)

R₁ - R₂ - C₂ H₅ (日本化学会第56年会(1988年) 講演予稿集2XII 835 }

R₁ - R₂ - CONH₁ (SU-1132300(1984年))

R₁ - L-Bu、R₂ - H (Gal'pern, M.G.:

Luk'yanets, E.A., Khin, Geterotsiki, Soedin.,

(6), 858-9, (1972年))

R₁ - R₂ - (1972年)

会(1988年)講演予稿集4D405)
R₁ - R₂ - (周上)

R 1 ~ R 2 --C 5 || 110 - 、 (R 1 と R 2 は末端で互いに結合し環をなしいてる。日本化学会第57秋季年会(1988年)、鎌渡予稿集 40404)

のそれぞれの化合物があるが、これらは有機溶剤 溶解性、半導体レーザー感応性、その他において 未だ十分なものではない。

てもよい。) なる益を示す。ただし $R_1 \sim R_8$ が すべて水素ではない。

酸化物、アシル金属、アルコキシ金属、シロキシ

M は水素 (2 H) 、金属、金属酸化物、金属水

金珥又は金属ハロゲン化物を示す。)で表わされ るテトラピラジノポルフィラジン誘導体である。 一般式(I)のR₁ ~ R₈ の基、すなわちフェ ニル基、フリル猛、チエニル茲、フェノキシ盐、 フェニルチオな、〇〇 k o O なる菇は有機溶剂溶解性を発現させるため、(1) -R。 で表わされるアルキル基、(2) - N R R R 、 - N II Ra で取わされるアミノ茲、(3) - O R。 で 取わされるアルコキシ佐、(4) — S R。 で衷わされ るアルキルチオ恭、(5) - COOR。 で扱わされる エステル基などの置換基を有することが出来る。 ここで R。 ~ R。 は酸紫を中間に含んでいても良 い C ₁ ~ C ₂₀ のアルキル盐、ハロゲン化アルキル 盐、アルケニル益、アラルキル盐、アルカリル盐、 複素環置換アルキル基又はアルキル置換接素環基

を示す。

(課題を解決するための手段) 本発明は、一般式(!)

「式中 R 1 ~ R 8 は同一又は相異って、水宏、ハロゲン原子、アミノ基、置換フェニル基、置換フリル基、置換されていてもよいチェニル基、置換されていてもよいアルキルオーを表、又は R 1 と R 2 、 R 3 と R 4 、 R 5 と R 6 、 R 7 と R 8 がそれぞれ一緒になって しいずれも置換されてい

又式(1)のMは水炭(2 H)、金属、金属酸化物、金属水酸化物、アシル金属、アルコキシ金属、シロキシ金属又は、金属ハロゲン化物であり、例えばMg、AiCi、SiCi。、Si(O

H)₂ 、 S i (C C H₃)₂ 、 S I (O C H₃)₂ 、 S i (O S I (C H₃)₂ 、 S I (O C H₃)₂ 、 S i (O S I (C H₃)₂ 、 C a、 T I O、 V O、 C r、 M n、 F e、 C o、 N i、 C u、 Z n、 C a、 C e、 Z r O、 N b、 M o、 R u、 P d、 I n C I、 I n B r、 S n、 S n C I₂ 、 S n B r₂ 、 S n I₂ 、 T a、 P b、 B i (ランタニド)などを示す。

本発明のテトラピラジノポルフィラジン誘導体は Frank N. Moser, Arthur L. Thomas 著、

「Phthalocyanines 」(1983年 CRC PRESS);
Joarnal of Chemical Society, 911(1937);
Jaurnal of the American Chemical Society, 85,
668(1963); Zhurnal Obshchei Khimii, 39,2536
(1969); Journal of Heferocyclic Chemistry,
1403(1970) に記述さている頃な従来公知の方法に
従がい前記のR₁ ~ R₈ で示される置換基を有し

特開平3-7288 (4)

てもよい2、3-ジシアノピラジン、暖いはその NII、との反応生成物である置換基を有してもよ い1、3-ジィミノー2日-ピロロ(3、4-b)) 微酸中で反応させることにより合成される。 ビラジンと金属、金属酸化物、金属塩、金属ハロ ゲン化物あるいは何も用いず(M:水紫(2!!)) して、要すればキノリン、トリクロルベンゼン、 ジクロルベンゼン、クロルナプタレン等、高沸点 不活性溶媒中で100~250℃に加熱して容易 に製造することが出来る。金属、金属酸化物、金 阪塩、金瓜ハロゲン化物としては例えば M g 、 M g Cl₂ , M g O₁ , A I C I₃ , S i C, I₄ , T i Cla VCl3 Cr (OAc) 2 MnO2 . Mn. FeCl₃ CoCl₂ NiCl₂ N i, CuCl, G+Cl, ZnCl, GaC 12 GeCi4 ZrCi4 Nb-N51F. Mo. RuCla. PdCl2. InCla. I n Br3 , Sn, Sn Cl2 , Sn Br2 , Sn 12、Taーハライド、PbO、ランタニド・ハラ イド、ランタニド・アセテートなどが挙げられる。 本発明の合成原料の1つである置換されていて

ロルー5、6 - ジシアノピラジン (VI)

(Annalen Der Chemie, 600, 106 (1956); US Pat. 3879394 等)を1、2-ジヒドロキシベンゼンあ るいは1、2ーペンゼンジチオール(71)と反応 させる.

本発明化合物の構造はUV-VIS、元素分析に より確認した。

(爽 施 例)

次に実施例を挙げて、本発明を更に説明する。 **更能例**1

2 、 3 、 5 - トリシアノ - 6 - [p - (N - メ チルアンリノ)フェニル」ーピラジン(次式)

もよい 2 、 3 - ジシアノピラジン (V) は D A M Nとジケトン(IV)を水、アルコールあるいは有

ここでRx、Ryは、R₁ とR₂ 、R₃ とR₄ 、 R₅ とR₆、R₇ とR₈ を示し、R₁ ~ R₈ は前 記と同じ意味を示す。ジケトン(N)は、Organic Reactions , 4 , 2 6 9 (1 9 4 9) , Organic Synthesis Coil. Vol.5 111 等に記載された従来 公知の方法で製造される。

又、本発明のもう1つの合成原料である

(ここで X は O 又は S を示し、 R n 、 R m は R_i とR2 、R3 とR4 、R5 とR6 、R7 とR8 を 示し、 R 1 ~ R 8 は前記と同じ意味を示す。) は 次の様に公知の方法で製造される。 2 、 3 ージク

1 g (2.9 7 m m o l) と塩化第一期 0.1 5 g (1.5 lasol)をキノリン10畝に入れ冷却管の付いた フラスコ中、150℃で3時間攪拌した。室温ま で放冷後、箱HCIで弱酸性にし濾過した。歿姿 を酢酸エチルで抽出し飽和NaHCOs水、飽和 NaC1水で洗浄した後硫酸マグネシウムで乾燥 し、酢酸エチルを留去して下記の構造の思色固体 0.9 g を得た。収率22% UV A m a x 5 ns (DMF)、元素分析:

	测定值	計算值
С	67.5	68.18
Ħ	3.7	3.41
N	23.8	23.87
Cu	4.4	4.51

特閒平3-7288(5)

<u>湖定值 計算值</u> 18.5 18.74 14.4 4.26

Ph Ph Ph Ph Ph Ph Ph Ph Ph

爽施例 2

実施例 3

2 n

湘定值 計算值

N 18.4 18.78

実施例 4 、 5

実施例2と同様にして中心金属がCu、Sn Cl。 の色素を合成した。

奥施例 6

羽定值 計算值

N 14.7 14.67

特開平3-7288 (6)

爽施例9

2、3-ジシアノー5、6-ビス(4-メトキシフェニル)ビラジン(m. p. 139-141 C) 0.70gと塩化銀1銅0.06gを用い、実施例2と同様な操作を行ない下配化合物を 0.31g 併た、収率 42%、UV 人max 735 nm (97%破験) 人max 660 nm (CHC13)、元素分析:

测定值 計算值

N 15.3 15.64 V 4.3 4.44

元素分析(%) N 后)段 18.6 Cu:5.4 (CaC1) (18.80) SnC) , 16.7 Sa:9.2 (SnC1) (17.00) (9.01) Cu:4.3 14.7 653 (CuC1) (14.66) (4.16) (CHCl a) VO 14.7 V :3.1 668 (VCls) (14.73) (3.34) (CHC1 ₃)

	天	池	194	2	~	[0]	拝	h.	U	C	7	г	7	-	7	,	1	*10	w	_	1
ā	ジ	ン	绣	斌	体	を	A	膜	L	t	•	実	絁	例	4	`	5	き	弇	め	て
ě	n	Ġ	ė	ŧ	٢	め	τ	猰	-	1	に	示	L	た	•						

実施例7、8、10~26

		,	,	,		
10	CH, 0	(NCI*)	15.2 (15.61)	v :3.6 (3.55)	715	675 (CHC1 ₃)
11	•	(AICI 4)	15.1 (15.66)	A1:1.8 (1.89)		
12	M, (c ID)	Cu (CuCl)	21.1 (21.88)	Cu:4.0 (4.14)	720	
13	•	SnCl ₂ (SnCl ₂)	19.5 (20.22)	Sn:8.5 (7.14)	672	
14	•	(ACI*) AO	21.4 (21.830	V:3.2 (3.31)	702	
15	•	AICI (AICI p)	21.4 (21.90)	A1:1.7 (1.76)	690	
16	CH, 0 CH,	Cu (CuC1)	13.3 (13.40)	Cu:4.0 (3.80)	690	

17	S S N N	Cu (CuC1)	18.0 (18.07)	Cu: 4.8 · (5.12)	740	
18		යින්	15.0 (1 5.47)	Cu:4.2 (4.39)		660 (DMF)
19	•	(#C1*) A0	14.9 (15.44)	V :3.7 (3.51)		672 (CHC1s)
20	1.Br Cs XN	Cu (CuC1)	16.5 (16.48)	Cu:4.4 (4.68)	685	
21	cı XX	Cu (CuC1)	27.5 (26.06)	Cu:7.5 (7.38)	670	
22	•	SnCl a (SnCl a)	22.6 (22.72)	Sn:11.8 (12.04)	640	
23	•	(ACI ²)	24.4 (25.96)	V :6.3 (5.90)	675	

ষ		Zh (ZnC) t,)	21.8	Zn:6.8 (6.48)	8	
83		VO (VCI 3)	23.6	v :5.0 (5.04)	88	
88		(ACL ₂)	14.8 (15.35)	v :3.3 G.49)	88	641 (CHC1 ₃)
]	t-Bu: ターシャリーブチル					

試 験 锐

表 - 2

实施例指导	揮	脞	Ø	¥	m	a	×	(n =)
1 9		•	8	•	,	T	11	F	1	往
		•	•	•		•		·-		1.11

柱 () 内溶媒蒸気処理

(発明の効果)

本発明のテトラピラジノボルフィラジン誘導体は前記の様に簡単な操作で容易に製造することが出来、且つ、溶剤将解性にすぐれ近赤外光ないし、可視光を効果的に吸収するため光学的記録媒体、電子写真、レーザーブリンター用感光材料、酸化温元触媒、或いは花卉、切り花、食品の鮮度維持制等として有効に利用することができる。