Advanced Transform Methods

Alternate FFT Structures

Andy Watson

FFT Inverses and Variants

- Last lecture: basic decimation-in-time Cooley-Tuckey FFT alg., for DFT sizes that are powers of 2 (radix 2)
- Now: variations and extensions of the FFT algorithm:
 - Alternate forms of the FFT structure
 - Computation of the inverse DFT
 - The decimation-in-frequency FFT algorithm
 - FFT structures for DFT sizes that are not an integer power of 2
- Alternative FFT structures are possible simply by rearranging the branches of the signal flowgraph...

• DIT structure with input bit-reversed, output natural:

Slide no: 07-3

• DIT structure with input natural, output bit-reversed:

Slide no: 07-4

• DIT structure with both input and output natural:

• DIT structure with same structure for each stage:

Comments on alternate FFT structures

- A method to avoid bit-reversal in filtering operations is:
 - Compute forward transform using natural input, bitreversed output
 - Multiply DFT coefficients of input and filter response (both in bit-reversed order)
 - Compute inverse transform of product using bitreversed input and natural output
- Latter two topologies are now rarely used (previous two slides)

Using FFTs for inverse DFTs

 We've always been talking about forward DFTs in our discussion about FFTs what about the inverse FFT?

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] W_N^{-kn}; \ X[k] = \sum_{n=0}^{N-1} x[n] W_N^{kn}$$

- One way to modify FFT algorithm for the inverse DFT computation is:
 - Replace W_N^k by W_N^{-k} wherever it appears
 - Multiply final output by 1/N
- This method has the disadvantage that it requires modifying the internal code in the FFT subroutine

A better way to modify FFT code for inverse DFTs

 Taking the complex conjugate of both sides of the IDFT equation and multiplying by N:

$$Nx*[n] = \sum_{k=0}^{N-1} X*[k]W_N^{kn}; \text{ or } x[n] = \frac{1}{N} \left[\sum_{k=0}^{N-1} X*[k]W_N^{kn} \right]^*$$

- This suggests that we can modify the FFT algorithm for the inverse DFT computation by the following:
 - Complex conjugate the input DFT coefficients
 - Compute the forward FFT
 - Complex conjugate the output of the FFT and multiply by 1/N
- This method has the advantage that the internal FFT code is undisturbed; it is widely used.

The decimation-in-frequency (DIF) FFT algorithm

- Introduction: Decimation in frequency is an alternate way of developing the FFT algorithm
- It is different from decimation in time in its development, although it leads to a very similar structure

The decimation in frequency FFT (cont)

Consider the original DFT equation

$$X[k] = \sum_{n=0}^{N-1} x[n]W_N^{nk}$$

Separate the first half and the second half of time

samples:
$$(N/2)-1$$
 $x[n]W_N^{nk} + \sum_{n=0}^{N-1} x[n]W_N^{nk}$ $x[n]W_N^{nk} + \sum_{n=0}^{N-1} x[n]W_N^{nk} + \sum_{n=0}^{(N/2)-1} x[n]W_N^{nk} + W_N^{(N/2)k} \sum_{n=0}^{(N/2)-1} x[n+(N/2)]W_N^{nk}$ $x[n+(N/2)]W_N^{nk}$ $x[n+(N/2)]W_N^{nk}$

Note that these are not N/2-point DFTs

Decimation in frequency (cont)

$$X[k] = \sum_{n=0}^{(N/2)-1} \left[x[n] + (-1)^k x[n + (N/2)] \right] W_N^{nk}$$

• For k even, let k = 2r

$$X[k] = \sum_{n=0}^{(N/2)-1} \left[x[n] + (-1)^{2r} x[n + (N/2)] \right] W_N^{n2r} = \sum_{n=0}^{(N/2)-1} \left[x[n] + x[n + (N/2)] \right] W_{N/2}^{nr}$$

• For
$$k$$
 odd, let $k = 2r + 1$

$$X[k] = \sum_{n=0}^{(N/2)-1} \left[x[n] + (-1)^{2r}(-1)x[n + (N/2)]\right] W_N^{n(2r+1)}$$

$$= \sum_{n=0}^{(N/2)-1} \left[x[n] - x[n + (N/2)]\right] W_N^n W_{N/2}^{nr}$$

These expressions are the N/2-point DFTs of

$$x[n] + x[n + (N/2)]$$
 and $[x[n] - x[n + (N/2)]]W_N^n$

These equations describe the following structure:

Continuing by decomposing the odd and even *output* points we obtain ...

... and replacing the *N/4*-point DFTs by butterflys we obtain

The DIF FFT is the *transpose* of the DIT FFT

- To obtain flowgraph transposes:
 - Reverse direction of flowgraph arrows
 - Interchange input(s) and output(s)
- DIT butterfly:

x[0] $W_{N}^{0} = 1$ $W_{N}^{0} = 1$

DIF butterfly:

DIF FFT is *transpose* of the DIT FFT

Comparing DIT and DIF structures:

DIT FFT structure:

$x[0] \circ W_N^0$ $x[4] \circ W_N^0$ $x[2] \circ W_N^0$ $x[6] \circ W_N^0$ $x[6] \circ W_N^0$ $x[7] \circ W_N^0$ $x[8] \circ W_N^0$

DIF FFT structure:

Alternate forms for DIF FFTs are similar to DIT FFTs

 $\delta X[7]$

Alternate DIF FFT structures

• DIF structure with input natural, output bit-reversed:

• DIF structure with input bit-reversed, output natural:

DIF structure with both input and output natural:

• DIF structure with same structure for each stage:

FFT structures for other DFT sizes

- Can we do anything when the DFT size N is not an integer power of 2 (the non-radix 2 case)?
- Yes! Consider a value of *N* that is not a power of 2, but that still is highly factorable ...

Let
$$N = p_1 p_2 p_3 p_4 ... p_v$$
; $q_1 = N / p_1, q_2 = N / p_1 p_2$, etc.

Then let

$$\begin{split} X[k] &= \sum_{n=0}^{N-1} x[n] W_N^{nk} \\ &= \sum_{r=0}^{q_1-1} x[p_1 r] W_N^{p_1 r k} + \sum_{r=0}^{q_1-1} x[p_1 r+1] W_N^{(p_1 r+1) k} + \sum_{r=0}^{q_1-1} x[p_1 r+2] W_N^{(p_1 r+2) k} + \dots \end{split}$$

Non-radix 2 FFTs (continued)

An arbitrary term of the sum on the previous panel is

$$\sum_{r=0}^{q_1-1} x[p_1r+l]W_N^{(p_1r+l)k}$$

$$= \sum_{r=0}^{q_1-1} x[p_1r+l]W_N^{p_1rk}W_N^{lk} = W_N^{lk} \sum_{r=0}^{q_1-1} x[p_1r+l]W_{q_1}^{rk}$$

• This is a DFT of size q_1 of points spaced by p_1

Non-radix 2 FFTs (continued)

In general, for the first decomposition we use

$$X[k] = \sum_{l=0}^{p_1-1} W_N^{lk} \sum_{r=0}^{q_1-1} x[p_1r+l]W_{q_1}^{rk}$$

- Comments:
 - This procedure can be repeated for subsequent factors of N
 - The amount of computational savings depends on the extent to which N is "composite", able to be factored into small integers
 - Generally the smallest factors possible used, with the exception of some use of radix-4 and radix-8 FFTs

An example The 6-point DIT FFT

•
$$P_1 = 2$$
; $P_2 = 3$; $X[k] = \sum_{l=0}^{1} W_6^{lk} \sum_{r=0}^{2} x[2r+l]W_3^{rk}$

Twiddle factors for 3-point butterflys, top to bottom
$$x[0]$$

$$x[2]$$

$$\{W_3^0, W_3^0, W_3^0, W_3^0\}$$

$$x[3]$$

$$\{W_3^0, W_3^0, W_3^0, W_3^0\}$$

$$x[4]$$

$$\{W_3^0, W_3^0, W_3^0, W_3^0\}$$

$$x[5]$$

$$\{W_3^0, W_3^1, W_3^2\}$$

$$x[6]$$

$$\{W_3^0, W_3^0, W_3^0\}$$

$$\{W_3^0, W_3^0, W_3^0$$