Intermolecular Forces

Molecular Solids

Molecules held by intermolecular forces

Non-Polar

Atoms/ molecules held by weak dispersion forces/ London forces (Ar, He)

Polar

Molecules held by dipole-dipole interaction → (HCl, SO2)

Hydrogen Bonded

Molecules held by hydrogen bonding → (H2O(ice))

Ionic Solids

Ions held by strong coulombic forces -> (NaCl, Mg)

Covalent Solids

Non-metals held by covalent bond -> (SiC, C)

Metalllic Solids

Metal atoms held by metallic bond → (Fe, C)

Electric Properties

Conductors

(Cu, Al) → Overlapping/ very small gap between conduction and valence band

Insulators

(Polyethylene, day) → Small energy gap between conduction and valence band

Semi-Conductors

(Si, Ge) → Very large gap between conduction and valence band

p-type (positive charge)

n-type (negative charge)

Magentic Properties

Paramagnetic: Weakly attrated—Unpaired electrons— (O_2, Cu^{2*}) Diamagentic: Weakly repelled — Paired electrons — $(H_2O, NaCl)$ Feromagnetic: Strongly attracted — domains in same direction — (fe, Co)

Antiferromagnetic: Domain opposite and equal \rightarrow (MnO) Ferromagnetic: Domains unequal \rightarrow (Fe₃O₄, MgFe₂O₄

Crystalline Lattice

Primitive: Particles only on the Corner Position

Cubic: (NaCl, Cu) a=b=c; primitive, bc, fc; $\alpha=\beta=\gamma=90^{\circ}$ Tetragonal: (SnO_2, TiO_2) a=b \neq c; $\alpha=\beta=\gamma=90^{\circ}$; primitive, bc Orthorhombic: $(KNO_3, BaSO_4)$ a \neq b \neq c; $\alpha=\beta=\gamma=90^{\circ}$;

primitive, bc, fc,

Hexagonal: (ZnO, CdS) $a=b \neq c$; $a=\beta=90^{\circ}$ y =120°; primitive Rhombohedral or Trigonal: (CaCO₃, HgS) a=b=c; $a=\beta=\gamma\neq90^{\circ}$;

primitive

Monoclinic : (Monoclinic sulphur, Na_2SO_4 :10 H_2O) α = γ = 90° β

≠90°;primitive, etc

Triclinic : (K2Cr2O7, H3BO3) $a \neq b \neq c$; $\alpha \neq \beta \neq \gamma$; primitive

Centered

Body centred: One particle at its body centre and at its corner.

Face centred: One particle at centre of each face and at its

corner.

End centred: One particle at centre of any two opposite faces and at its corner.

Voids

Empty space between the Spheres

Trigonal

Three spheres in contact 0.155 - 0.225

Tetrahedral

Four spheres at vertices of tetrahedron 0.225 - 0.414

Octahedral

Six spheres at vertices of octahedron 0.414 - 0.732

Imperfections

Point Defects

Stoichiometric: Do not disturb Stoichiometry

Vacancy: lattice sited vacant Interstitial: Particles occupy (non-ionic solids) interstitial site (non-ionic solids)

Line Defects

Non-Stoichiometric: Disturb Stoichiometry

Metal Excess: Due to anionic Metal Dificiency: Metals shows vacancies (LiCl) and presence of variable vacancy (Fe2+, Fe3+) extra cations (ZnO)

Impurity: Foreign elements are present

Frenkel: Smaller ion dislocated to interstitial site (ZnS, AgCl)
Schuttky: Equal number of Ions missing (NaCl. KCl)

