Nom i Cognoms:

1. Donades les especificacions d'una família lògica que es mostren en la taula adjunta, indique quina de les següents afirmacions és VERTADERA.

| $V_{IHmin}$        | V <sub>ILmax</sub> | $V_{OHmin}$        | V <sub>OLmax</sub> |
|--------------------|--------------------|--------------------|--------------------|
| 3.15V              | 1.35V              | 3.84V              | 0.33V              |
| I <sub>IHmax</sub> | I <sub>ILmax</sub> | I <sub>OHmax</sub> | I <sub>OLmax</sub> |
| 20μΑ               | -0.36mA            | –500μA             | 4mA                |

- [A] El marge de soroll a nivell alt és de 0.5V.
- [B] El marge de soroll és de 1V.
  - [C] El fan-out a nivell baix és de 11.
  - [D] El fan-out és de 25.

NMH = 3.84-3.15 = 0.69V | 0.69V | fan-auth = 0.5/0.02 = 25 | NML = 1.35-0.33 = 1.02V | 0.69V | fan-auth = 4 = 11.1->11

En el següent registre de desplaçament síncron s'estan utilitzant biestables tipus D amb les següents especificacions:  $t_{su}$  = 6ns,  $t_h$  = 3ns,  $t_{pLH}$  = 10ns,  $t_{pHL}$  = 12ns. Indique quina de les següents afirmacions és VERTADERA.



[A] La frequència màxima del senyal de rellotge és

El període mínim del senyal de rellotge és 18ns. [C] El t<sub>r</sub> (rise time) i el t<sub>f</sub> (fall time) del senyal de rellotge

han de ser com a mínim de 3ns.

[D] Per poder utilitzar un senyal de rellotge de 100MHz haurien d'haver només 2 biestables.

1000 = 55.56 MHZ -> 55 HHZ

Considere el circuit adjunt i els paràmetres característics següents. Si les portes tenen eixides en col.ector obert, indique quin dels valors proposats seria adequat per a la resistència de pull-up.



| $V_{\text{IHmin}}$ | V <sub>ILmax</sub> | $V_{OHmin}$               | $V_{OLmax}$        |
|--------------------|--------------------|---------------------------|--------------------|
| 2.5V               | V8.0               | 3V                        | 0.5V               |
| I <sub>IHmax</sub> | I <sub>ILmax</sub> | I <sub>Ohmax(fugas)</sub> | I <sub>OLmax</sub> |
| 300μΑ              | -0.36mA            | 100μΑ                     | 7mA                |

[A]  $R_{PU} = 0.22k\Omega$ 

- [B]  $R_{PU} = 2.2k\Omega$

[C]  $R_{PU} = 5k\Omega$ [D]  $R_{PU} = 10k\Omega$  6.61 R 4 R 4 3.12 T K

prenem VoHmin -> 0.61K & R & 2.5K R mes restriction, and NH>0

- 4. Indique quina de les següents afirmacions sobre les famílies lògiques és FALSA.
- Els transistors Schottky s'utilitzen en algunes subfamílies TTL per augmentar la velocitat.
- [B] Les portes Trigger Schmitt són més robustes davant del soroll electromagnètic, perquè presenten una corba de transferència amb histèresi.
- La potència estàtica de les portes NMOS és menyspreable, perquè és deguda als corrents de fuita dels transistors.
  - [D] El consum dinàmic es produeix quan commuten les entrades, i és directament proporcional a la freqüència de NMOS logic te' potència estàtica quan l'eixida es '0' commutació de les entrades.

5. Es desitja realitzar la connexió de dos famílies lògiques tal i com es mostra en la figura. A partir de les especificacions de les famílies A i B indicades en les taules adjuntes, indique quina de les següents opcions permetria una connexió **CORRECTA**.

|                    | Família A (TTL)    |                    |                    |  |
|--------------------|--------------------|--------------------|--------------------|--|
| $V_{IHmin}$        | V <sub>ILmax</sub> | V <sub>OHmin</sub> | V <sub>OLmax</sub> |  |
| 2 V                | 0.8 V              | 2.4 V              | 0.4 V              |  |
| I <sub>IHmax</sub> | I <sub>ILmax</sub> | I <sub>OHmax</sub> | I <sub>OLmax</sub> |  |
| 40 μΑ              | -1.6 mA            | -400 μΑ            | 16 mA              |  |

|                    | Família B (CMOS)   |                    |                    |  |  |
|--------------------|--------------------|--------------------|--------------------|--|--|
| $V_{IHmin}$        | V <sub>ILmax</sub> | V <sub>OHmin</sub> | V <sub>OLmax</sub> |  |  |
| 2.1 V              | 0.9 V              | 2.9 V              | 0.1 V              |  |  |
| I <sub>IHmax</sub> | I <sub>ILmax</sub> | I <sub>OHmax</sub> | I <sub>OLmax</sub> |  |  |
| 1 pA               | −20 pA             | -0.5 mA            | 0.5 mA             |  |  |

- [A] Es pot realitzar la connexió directament, ja que existeix compatibilitat a nivell de tensió i corrents.
- [B] La connexió no és possible de cap manera, ja que estan alimentades a diferent tensió.
- [C] Existeix incompatibilitat de tensions. Es pot solucionar intercalant un *buffer* en drenador obert a l'eixida de la porta B i una resistència de *pull-up* entre l'eixida del *buffer* i 5V.
  - Existeix incompatibilitat de corrents. Es pot solucionar intercalant un *buffer* de la família B alimentat a 3V que proporcione suficient corrent a la porta A



VOH > VIH > OK VOL & JIL > OK |JOH| > |JIH| > OK |JOH| > |JIH| > OK |JOL| > |JIL| > (NO) Es necesser poser um Puffer

6. Per al circuit de la figura, s'ha dibuixat el cronograma amb les distintes eixides, sent el senyal A l'entrada al mateix. Es pot afirmar que:

Dades: V<sub>CC</sub> = 5V; I<sub>CCL</sub> = 2 mA i I<sub>CCH</sub> = 6 mA, i el retard de propagació mitjà d'una porta és de 5ns.



- [A] La potència estàtica mitjana consumida per la porta AND és 13.34mW.
- [B] La potència estàtica mitjana consumida per la porta AND és 26.7mW.
- [C] La potència estàtica mitjana consumida pel conjunt del circuit és 40mW.
- [D] Per a realitzar els càlculs de la potència estàtica mitjana consumida, es necessita conèixer la freqüència del senyal d'entrada.

 $Vand \rightarrow 5 \times \frac{1}{2}(2+6) = 20 \text{ mW}$   $And \rightarrow 5 \times (\frac{6}{6} + \frac{5}{6} Z) = 13.34 \text{ mW}$  $Total = 2 \times 20 + 13.4 = 53.4 \text{ mW}$  Nom i Cognoms:

Solvaions

1. Donades les especificacions del chip TTL **74LS125** de la figura, indique quina de les següents afirmacions sobre els buffers triestate del xip és **CORRECTA**.

Paràmetres característics

| V <sub>IHmin</sub> | V <sub>ILmax</sub> | V <sub>OHmin</sub> | V <sub>OLmax</sub> |
|--------------------|--------------------|--------------------|--------------------|
| 2V                 | 0.8V               | 2.4V               | 0.5V               |
| I <sub>IHmax</sub> | I <sub>ILmax</sub> | I <sub>OHmax</sub> | I <sub>OLmax</sub> |
| 20μΑ               | -0.4mA             | -2.6mA             | 24mA               |
| T <sub>PLH</sub>   | T <sub>PHL</sub>   | Icc <sub>max</sub> | Vcc                |
| 15ns               | 18ns               | 20mA               | 5V                 |

74LS125



[A] El marge de soroll és NM = 0.4V.

[B] El fan-out teòric és 60.

La potència estàtica màxima és 100W.

D] El retard de propagació mitjà és 33ns.

NMH = 2.4-2 = 0.4V 6 0.3V NML = 0.8-0.5=0.3V

 $I = 5x 20 = 100 \mu M$ 

fan-out 4 =  $\frac{2.6}{0.02}$  = 130 \ 60 tpd = 16.5 ns fan-out =  $\frac{24}{0.4}$  = 60 \ 60

 Donat el següent circuit sequencial síncron, dissenyat amb portes i un biestable D, assenyale l'afirmació CORRECTA sobre la frequència màxima de funcionament:

Paràmetres temporals: Biestables: (Set up:  $t_{su}$  = 5 ns, Hold:  $t_h$  = 2 ns,  $tp_{HL}$  = 15 ns,  $tp_{LH}$  = 18 ns), Portes: ( $tp_{HL}$  = 7 ns,  $tp_{LH}$  = 8 ns). Considere que les entrades A i B estan estables, sense canvi. Només canvia Q.

[A] 18 Mhz

[B] 55 Mhz

[C] 40 Mhz

[D]) 21 Mhz



Truin = 18 + (3×8) + 5 = 47 us Luna's = 1000 = 21.28 MHz -> 21 MHz

3. Es desitja connectar l'eixida de tres portes NOT CMOS 74HC05 (amb eixida en drenador obert), i el senyal resultant connectar-lo a l'entrada D d'un biestable TTL 74LS74, tal i com es mostra en la figura. A partir de les especificacions dels dos components en las taules adjuntes, indique quina de les següents opcions permetria una connexió **CORRECTA**.



| 74HC05 (V <sub>CC</sub> = 6 V) |                      |                                   |                      |
|--------------------------------|----------------------|-----------------------------------|----------------------|
| V <sub>IH(min)</sub>           | V <sub>IL(max)</sub> | V <sub>OH(min)</sub> <sup>*</sup> | V <sub>OL(max)</sub> |
| 4.2 V                          | 1.8 V                |                                   | 0.33 V               |
| I <sub>IH(max)</sub>           | I <sub>IL(max)</sub> | I <sub>OH(fuites)</sub>           | I <sub>OL(max)</sub> |
| 1 μΑ                           | –1 μΑ                | 5 μΑ                              | 5.2 mA               |

| 74LS74 (V <sub>CC</sub> = 5 V) |                      |                      |                      |
|--------------------------------|----------------------|----------------------|----------------------|
| $V_{\text{IH(min)}}$           | V <sub>IL(max)</sub> | V <sub>OH(min)</sub> | V <sub>OL(max)</sub> |
| 2 V                            | 0.8 V                | 2.7 V                | 0.5 V                |
| I <sub>IH(max)</sub>           | I <sub>IL(max)</sub> | I <sub>OH(max)</sub> | I <sub>OL(max)</sub> |
| 40 μΑ                          | -0.8 mA              | -0.4 mA              | 8 mA                 |

\* l'es eixides en chenactor/col·leiror obert no tenen Volumn, perfue el 1' d'eix: da el pora la Rezterna

[A] La connexió se pot realitzar directament, ja que existeix compatibilitat a nivell de tensió i corrents.

[B] Hi ha que intercalar una resistència de *pull-up* entre les eixides de les portes NOT i 5 V.

C] És necessari intercalar un *buffer* en drenador obert a l'eixida de cada porta NOT i una resistència de *pull-up* entre les eixides dels *buffers* i 5 V.

[D] La connexió no és possible, pot produir-se un conflicte lògic en les eixides.

4. Respecte als paràmetres característics de les famílies lògiques i suposant eixida totem-pole (normal, estándar), marque la resposta FALSA:

[A] Si I<sub>OH</sub> és negatiu el corrent ix per l'eixida a nivell alt.

[B] El marge de soroll a nivell alt es defineix com: NM<sub>H</sub>=V<sub>OHmin</sub>-V<sub>IHmin</sub>.

[C] Si la tensió d'eixida V<sub>OL</sub> està per damunt de V<sub>OLmax</sub>, una entrada connectada a esta eixida no la interpretarà eom '0' lògic en cap cas.

[D] Per a què la connexió entre dos portes lògiques funcione de forma adequada, s'ha de complir, entre altres coses que,  $I_{OLmax} >= |I_{ILmax}|$ .

NML = VILMAI - Volumer, l'évaille pot ser > Volume :

5. El circuit de la figura està compost de portes de la mateixa família TTL. Determine quina de les següents respostes és la CORRECTA:



- [A] El circuit no funciona perquè necessita una resistència de *pull-up* en l'eixida.
- [B] La funció  $F = \overline{A \bullet B \bullet C \bullet D}$
- Si  $SEL_B="0"$ , (amb  $SEL_A=SEL_C=SEL_D="1"$ ), i l'entrada B=4.5V, l'eixida F tindrà un nivell baix.
  - [D] Si  $SEL_B$ ="1", (amb  $SEL_A$ = $SEL_C$ = $SEL_D$ ="0"), i l'entrada B=0.5V, l'eixida F tindrà un nivell alt.

Son partes Friessate, que s'activen amb SEL=0'
No recessiten R de pull-up

6. Indique la resposta FALSA sobre el circuit de la figura:

[A] Es tracta d'un buffer Trigger-Schmitt

[B] La corba de transferencia presenta histèresi per augmentar el marge de soroll

[C] Es un buffer triestat

[D] Es adequat per operar amb entrades que tenen molt de soroll electromagnètic

