[4]

Q.5 Attempt any two:

- Define the following with example: 5
 - (a) Planar graph (b) Orthogonal space (c) Circuit subspace
- Draw the geometric dual of following planar graph and write 5 observations we get from planar graph and its dual.

Prove that- The ring sum of two circuits in a graph is either a circuit or 5 an edge disjoint union of circuits.

Q.6 Attempt any two:

Let a and b be two nonadjacent vertices in a graph G. Let G' be a graph Gobtained by adding an edge between a and b. Let G'' be a simple graph obtained from G by fusing the vertices a and b together and replacing sets of parallel edges with single edges. Then prove that-

$$P_n(\lambda)$$
 of $G = P_n(\lambda)$ of $G' + P_{n-1}(\lambda)$ of G'' .

5

5

- Define the following with example:
 - (a) Complete bipartite graph.
 - (b) Covering of a graph with two observations.
- iii. Prove that every tree with two or more vertices is 2-chromatic.

Total No. of Questions: 6

Total No. of Printed Pages:4

Enrollment No.....

DI-C	A
2	S
UNIVERS	

Faculty of Science

End Sem (Odd) Examination Dec-2022 BC3EM01 Graph Theory

Programme: B.Sc. (CS) Branch/Specialisation: Computer

Science

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1

Q.1 (N	MCQs) should be written in full inste	ead of only a, b, c or d.		
Q.1	i.	If some closed walk in a gr	raph contains all the edges of the graph,]	
		then the graph is called-			
		(a) Euler graph	(b) Regular graph		
		(c) Simple graph	(d) None of these		
	ii.	ld degree in any graph is-	1		
		(a) May be even may be odd	(b) Always even		
		(c) Always odd	(d) None of these		
	iii. What is the dimensions of circuit matrix?				
		(a) Number of edges \times number of edges			
		(b) Number of edges × number of vertices			
	(c) Number of vertices × number of vertices(d) None of these				
			(a) n (b) $n-1$	(c) n^2 (d) None of these	
	v.	. A graph with n vertices and has $n-1$ edges is called-			
		(a) Complete graph	(b) Tree		
		(c) Bipartite graph	(d) None of these		
	vi.	To apply Prim's algorithm, the given graph must be-			
		(a) Weighted	(b) Disconnected		
		(c) Directed	(d) None of these		
	vii. Every cut set in a non-separable graph with more than to				
	contains				
		(a) At least two edges	(b) At most two edges		
		(c) Exactly two edges	(d) None of these		

P.T.O.

- viii. There will be total _____ sub graph of G which can be represented 1 by unique linear combination of five basis vector.
 - (a) 25
- (b) 16
- (c) 32
- (d) None of these
- ix. If G is a null graph, then chromatic number of G i.e. $\chi(G) =$ ______. 1
 - (a) 2
- (b) 1
- (c) 3
- (d) None of these

1

5

5

5

- x. What is the number of perfect matching in a complete graph K_6 ?
 - (a) 15
- (b) 12
- (c) 10
- (d) None of these

- Q.2 Attempt any two:
 - i. Define the following with example:
 - (a) Path

- (b) Regular graph
- (c) Hamiltonian graph
- (c) Isomorphic graph
- (e) Spanning sub graph
- ii. Prove that the sum of the degree of all vertices in a graph is twice the 5 number of edges.
- iii. Prove that the maximum number of edges in a simple connected graph $\frac{5}{2}$ with n vertices is $\frac{n(n-1)}{2}$.
- Q.3 Attempt any two:
 - i. Write the adjacency matrix of the following graph. Also write any 5 three observations you get from adjacency matrix representation of graph.

- ii. Define the following with example:
 - (a) Cut set matrix
- (c) Path matrix
- iii. (a) Define fundamental circuit matrix with example.
 - (b) Draw a graph for the following incidence matrix:

- $\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{bmatrix}$
- Q.4 Attempt any two:
 - i. Using Dijkstra's algorithm, find the shortest path from a to z of the 5 following weighted graph

ii. Traverse the graph using Breadth First search algorithm starting from 5 vertex A

iii. Find minimal spanning tree of the following graph using Kruskal's 5 algorithm

viii.	There will be total	sub	graph of G which can be represented	1
	by unique linear combination	on of	five basis vector.	

(a) 25

(b) 16

(c) 32

(d) None of these

ix. If G is a null graph, then chromatic number of G i.e. $\chi(G) =$ _____.

(a) 2 (b) 1 (c) 3 (d) None of these

x. What is the number of perfect matching in a complete graph K_6 ?

(a) 15

(b) 12

(c) 10

(d) None of these

 $(21)^331$

5

5

Q.2 Attempt any two:

- i. Define the following with example:
 - (a) Path

- (b) Regular graph
- (c) Hamiltonian graph
- (c) Isomorphic graph
- (e) Spanning sub graph
- ii. Prove that the sum of the degree of all vertices in a graph is twice the number of edges.
- iii. Prove that the maximum number of edges in a simple connected graph 5 with n vertices is $\frac{n(n-1)}{2}$.

Q.3 Attempt any two:

 Write the adjacency matrix of the following graph. Also write any three observations you get from adjacency matrix representation of graph.

ii. Define the following with example:

- (a) Cut set matrix
- (c) Path matrix
- iii. (a) Define fundamental circuit matrix with example.
 - (b) Draw a graph for the following incidence matrix:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$

Q.4 Attempt any two:

i. Using Dijkstra's algorithm, find the shortest path from a to z of the following weighted graph

ii. Traverse the graph using Breadth First search algorithm starting from 5 vertex A

iii. Find minimal spanning tree of the following graph using Kruskal's 5 algorithm

P.T.O.

Define the following with example:

(a) Planar graph

Q.5

Q.6

(b) Orthogonal space (c) Circuit subspace

Draw the geometric dual of following planar graph and write 5 observations we get from planar graph and its dual.

iii. Prove that- The ring sum of two circuits in a graph is either a circuit or 5 an edge disjoint union of circuits.

In a grouph & the setgot edges is said Attempt any two: to cover & G

Let a and b be two nonadjacent vertices in a graph G. Let G' be a graph obtained by adding an edge between a and b. Let G'' be a simple graph aobtained from G by fusing the vertices a and b together and replacing \bigcirc sets of parallel edges with single edges. Then prove that-

$$P_n(\lambda)$$
 of $G = P_n(\lambda)$ of $G' + P_{n-1}(\lambda)$ of G'' .

Define the following with example:

(a) Complete bipartite graph.

(b) Covering of a graph with two observations.

Prove that every tree with two or more vertices is 2-chromatic.

Total No. of Questions: 6

Total No. of Printed Pages:4

Enrollment No.....

Faculty of Science

End Sem (Odd) Examination Dec-2022 BC3EM01 Graph Theory

Programme: B.Sc. (CS)

Branch/Specialisation: Computer

Science

Duration: 3 Hrs.

Q.1

Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

i. If some c	losed walk in a g	graph contains	all the edges of the graph,			
then the g	raph is called-					
(a) Euler g	graph	(b) Regular g	graph			
(c) Simple	e graph	(d) None of t	hese			
ii. The numb	er of vertices of o	dd degree in an	y graph is-			
(a) May be even may be odd (b) Always even						
(c) Alway	s odd	(d) None of t	hese			
iii. What is th	e dimensions of c	ircuit matrix?		-		
(a) Number of edges × number of edges						
(b) Number	(b) Number of edges × number of vertices					
(c) Number of vertices × number of vertices						
(d) None	of these					
iv. The rank of	of incidence matri	x of a connecte	d graph with <i>n</i> -vertices is-	1		
(a) n	(b) $n - 1$	(c) n^2	(d) None of these			
v. A graph w	with <i>n</i> vertices and	d has n-1 edges	is called-	1		
(a) Compl	ete graph	(b) Tree				
(c) Biparti	ite graph	(d) None of t	hese			
vi. To apply l	Prim's algorithm,	the given graph	n must be-			
(a) Weigh	ted	(b) Disconne	cted			
(c) Directe	ed	(d) None of t	hese			

(a) At least two edges (b) At most two edges

vii. Every cut set in a non-separable graph with more than two vertices 1

(c) Exactly two edges (d) None of these

contains

P.T.O.