Лекция 8

Основные критерии проверки статистических гипотез

Артемов А. В. мФТиАД ФКН ВШЭ

5 апреля 2018

1 Ключевые статистики и тесты в теории принятия решений. Дискретное время. Критерий Неймана-Пирсона

Наша ближайшая цель состоит в том, чтобы естественным образом подойти к описанию тех «достаточных» статистик от наблюдаемых данных, на основании которых принимаются «оптимальные» решения.

Начнём с задачи различения двух гипотез. Пусть $(\xi_1, \xi_2 \dots, \xi_n, \dots)$ — независимые и одинаково распределённые случайные величины. Над ними было проведено наблюдение и в результате получилась реализация $(x_1, x_2, \dots, x_n, \dots)$. Но нужно уточнить, что понимать в данном случае под «независимостью и одинаковой распределённостью».

Пусть (Ω, \mathcal{F}) — измеримое пространство (пространство элементарных исходов и сигмаалгебра событий). На нём вводится две вероятностные меры P_0 и P_∞ . Предположение независимости случайных величин $(\xi_1, \xi_2 \dots, \xi_n, \dots)$ означает независимость относительно обеих мер, то есть для любого $n \in \mathbb{N}$ и любых $A_1, \dots, A_n \in \mathcal{B}(\mathbb{R})$ (будем считать, что мы смотрим на одномерные случайные величины)

$$\mathsf{P}_{\theta}(\xi_1 \in A_1, \dots, \xi_n \in A_n) = \mathsf{P}_{\theta}(\xi_1 \in A_1) \cdot \dots \cdot \mathsf{P}_{\theta}(\xi_n \in A_n),$$
где $\theta = 0$ или ∞ .

Далее мы будем считать, что случайные величины ξ_k имеют функции распределения $F = F_{\theta}(x) (= \mathsf{P}_{\theta}(\xi_k \leqslant x)),$ у которых есть плотность $f = f_{\theta}(x)$:

$$dF_{\theta}(x) = f_{\theta}(x)\mu(dx),$$

где μ — некоторая (σ -конечная) мера. В качестве такой меры всегда можно взять $\mu(dx) = (\mathsf{P}_0(dx) + \mathsf{P}_\infty(dx))/2$. Впрочем, часто будем полагать, что $\mu(dx) = dx$, то есть μ — это мера Лебега (в этом случае говорят, что функция распределения абсолютно непрерывна).

Из независимости и одинаковой распределённости следует, что плотность $p_{\theta}(x_1, \ldots, x_n)$ совместного распределения $F_{\theta}(x_1, \ldots, x_n) = \mathsf{P}_{\theta}(\xi_1 \leqslant x_1, \ldots, \xi_n \leqslant x_n)$ равна¹

$$p_{\theta}(x_1, \dots, x_n) = f_{\theta}(x_1) \dots f_{\theta}(x_n)$$
(1.1)

Одну из главных ролей будет играть *отношение правдоподобия*, которое вводилось в курсе математической статистики:

$$L_n = \frac{f_0(x_1)f_0(x_2)\dots f_0(x_n)}{f_{\infty}(x_1)f_{\infty}(x_2)\dots f_{\infty}(x_n)}.$$
(1.2)

¹В дискретном случае полагайте, что $f_{\theta}(x) = \mathsf{P}_{\theta}(\xi_1 = x)$.

Как вам известно, оно проявляется в задаче различения двух простых гипотез H_0 и H_∞ о том, какую плотность, f_0 или же f_∞ , имеют наблюдаемые случайные величины ξ_1, \ldots, ξ_N . Решение этой задачи даёт *лемма Неймана-Пирсона*, один из вариантов которой состоит в следующем.

Пусть есть N наблюдений x_1, \ldots, x_N над случайными величинами ξ_1, \ldots, ξ_N . По этим наблюдениям нужно сделать вывод, какая из гипотез — H_0 ($\theta = 0$) или же H_{∞} ($\theta = \infty$) — имеет место. Будем предполагать, что соответствующими плотностями функций распределения $F_{\theta}(x_1, \ldots, x_N)$ являются $p_{\theta}(x_1, \ldots, x_N)$:

$$F_{\theta}(x_1,\ldots,x_N) = \int_{-\infty}^{x_1} \cdots \int_{-\infty}^{x_N} p_{\theta}(y_1,\ldots,y_N) \mu(dy_1,\ldots,dy_N),$$

где μ — некоторая σ -конечная мера на $\mathcal{B}(\mathbb{R})$. В случае, когда ξ_k независимы и одинаково распределены плотности p_{θ} (по мере $\mu(dy_1, \ldots, dy_N) = \mu(dy_1) \ldots \mu(dy_N)$) задаются формулой (1.1).

С задачей различения двух гипотез связано одно определение:

Определение 1. Всякую (измеримую) функцию $d(x_1, ..., x_N)$, принимающую два значения: \mathbb{H}_0 (верна гипотеза H_0) и \mathbb{H}_∞ (верна гипотеза H_∞), будем называть решающей функцией.

Наряду с решающей функцией в статистике вводятся понятия ошибок первого и второго рода.

Определение 2. Пусть $d(x_1, ..., x_N)$ — решающая функция. Вероятностью *ошибки первого рода* $\alpha(d)$ будем называть $\alpha(d) = \mathsf{P}($ приняли $H_0 \mid$ верна $H_\infty)$. Аналогично, вероятность *ошибки второго рода* $\beta(d)$ равна $\beta(d) = \mathsf{P}($ приняли $H_\infty \mid$ верна $H_0)$.

Как же выбрать «оптимальное» решающее правило d? В данном случае не понятно, что вкладывается в слово «оптимальное» — больно много трактовок. Будем считать, что в нашем случае «оптимальность» означает следующее: решающее правило d* считается оптимальным, если сумма вероятностей ошибок первого и второго рода минимальна:

$$\alpha(d^*) + \beta(d^*) = \inf_{d} [\alpha(d) + \beta(d)] \stackrel{\triangle}{=} \operatorname{Er}(N; H_0, H_\infty). \tag{1.3}$$

Стоит заметить, что ${\rm Er}(N; H_0, H_\infty)$ можно посчитать по следующей формуле:

$$\operatorname{Er}(N; H_0, H_\infty) = 1 - \frac{1}{2} \| \mathsf{P}_0^{(N)} - \mathsf{P}_\infty^{(N)} \|,$$

где $\mathsf{P}_{\theta}^{(N)}(dx_1,\ldots,dx_N) = f_{\theta}(x_1)\ldots f_{\theta}(x_N)\,dx_1\ldots dx_N,$ а $\|\cdot\|$ есть вариация меры (со знаком):

$$||Q|| \stackrel{\triangle}{=} 2 \sup_{A} |Q(A)|.$$

Из этого можно сделать следующий неформальный вывод: если меры $\mathsf{P}_0^{(N)}$ и $\mathsf{P}_\infty^{(N)}$ «сидят» на разных множествах, то $\|\mathsf{P}_0^{(N)} - \mathsf{P}_\infty^{(N)}\| = 2$ и $\mathrm{Er}(N; H_0, H_\infty) = 0$. Это означает, что возможно безошибочное разделение гипотез. Если же меры близки, то то $\|\mathsf{P}_0^{(N)} - \mathsf{P}_\infty^{(N)}\| \sim 0$ и $\mathrm{Er}(N; H_0, H_\infty) \sim 1$.

Есть ещё одна формулировка, которую обычно называют условной. Пусть $D_a = \{d : \alpha(d) \leq a\}$ — множество решающих правил с вероятностью ошибки первого рода не больше

a. Требуется найти d_a^* из D_a (если такое существует), что оно минимизирует вероятность ошибки второго рода:

$$\beta(d_a^*) = \inf_{d \in D_a} \beta(d). \tag{1.4}$$

Теперь уместно рассказать о рандомизированных решающих правилах. Пусть $\varphi = \varphi(x_1, \ldots, x_N)$ принимает значения в [0, 1]. Будем интерпретировать $\varphi(x_1, \ldots, x_N)$, как вероятность принять гипотезу H_0 , если были получены наблюдения x_1, \ldots, x_N над случайными величинами ξ_1, \ldots, ξ_N . Теперь введём два обозначения, считая, что E_θ есть матожидание, взятое по вероятностной мере P_θ ,

$$\alpha(\varphi) = \mathsf{E}_{\infty}[\varphi(\xi_1, \dots, \xi_N)], \quad \beta(\varphi) = \mathsf{E}_0[1 - \varphi(\xi_1, \dots, \xi_N)].$$

Несложно понять, что это есть ни что иное, как вероятности ошибок первого и второго рода соответственно.

Оптимальность в данном случае вводится почти так же, как в условной формулировке. Пусть $\Phi_a = \{\varphi : \alpha(\varphi) \leq a\}$ — множество рандомизированных критериев с вероятностью ошибки первого рода не больше a. Тогда решающая функция φ_a^* будет называться оптимальным (рандомизированным) тестом, если

$$\beta(\varphi_a^*) = \inf_{\varphi \in \Phi_a} \beta(\varphi). \tag{1.5}$$

А теперь можно дать лемму Неймана-Пирсона:

Лемма (Нейман, Пирсон). Для любого $a \in [0,1]$ найдутся такие константы λ_a^* и h_a^* , что рандомизированный критерий

$$\varphi^*(x_1, \dots, x_N) = \begin{cases} 1, & p_0(x_1, \dots, x_N) > h_a^* p_\infty(x_1, \dots, x_N), \\ \lambda_a^*, & p_0(x_1, \dots, x_N) = h_a^* p_\infty(x_1, \dots, x_N), \\ 0, & p_0(x_1, \dots, x_N) < h_a^* p_\infty(x_1, \dots, x_N) \end{cases}$$
(1.6)

является оптимальным в классе Φ_a .

Из (1.6) понятно, что ключевая статистика в лемме Неймана-Пирсона — это отношение правдоподобия (если знаменатель не обращается в ноль, конечно):

$$L_N = \frac{p_0(x_1, \dots, x_N)}{p_{\infty}(x_1, \dots, x_N)}.$$
(1.7)

Казалось бы, зачем вводятся рандомизированные тесты? Оказывается, что инфинум в (1.5) достигается на тесте, для которого вероятность ошибки первого рода в точности равна a. Этого, в общем случае, нельзя достичь без рандомизированных критериев, что будет явно использоваться при доказательстве леммы.

Доказательство. Для начала предположим, что мы нашли λ_a^* и h_a^* для критерия (1.6) такие, что $\mathsf{E}_\infty[\varphi^*(\xi_1,\ldots,\xi_N)]=a$. Докажем, что для любого другого критерия φ из класса Φ_a вероятность ошибки второго рода не меньше:

$$\beta(\varphi^*) = \mathsf{E}_0[1 - \varphi^*(\xi_1, \dots, \xi_N)] \leqslant \mathsf{E}_0[1 - \varphi(\xi_1, \dots, \xi_N)] = \beta(\varphi). \tag{1.8}$$

Это, в свою очередь, равносильно тому, что

$$\mathsf{E}_0[\varphi^*(\xi_1,\ldots,\xi_N)] \geqslant \mathsf{E}_0[\varphi(\xi_1,\ldots,\xi_N)].$$

Распишем разность матожиданий:

$$\mathsf{E}_0[\varphi^*(\xi_1,\ldots,\xi_N)-\varphi(\xi_1,\ldots,\xi_N)]=\int_{\mathbb{R}^N}(\varphi^*(\mathbf{x})-\varphi(\mathbf{x}))p_0(\mathbf{x})\mu(d\mathbf{x}),$$

где $\mu(d\mathbf{x}) = \mu(dx_1, \dots, dx_N).$

Теперь сделаем детур и докажем, что

$$\int_{\mathbb{R}^N} (\varphi^*(\mathbf{x}) - \varphi(\mathbf{x}))(p_0(\mathbf{x}) - h_a^* p_\infty(\mathbf{x}))\mu(d\mathbf{x}) \geqslant 0.$$
 (1.9)

Действительно, разобъём его на два (для компактности опустим аргументы функций):

$$\int_{\mathbb{R}^{N}} (\varphi^{*} - \varphi)(p_{0} - h_{a}^{*}p_{\infty})\mu(d\mathbf{x}) = \int_{\{\mathbf{x} \in \mathbb{R}^{N} : \varphi^{*} > \varphi\}} (\varphi^{*} - \varphi)(p_{0} - h_{a}^{*}p_{\infty})\mu(d\mathbf{x}) + \int_{\{\mathbf{x} \in \mathbb{R}^{N} : \varphi^{*} < \varphi\}} (\varphi^{*} - \varphi)(p_{0} - h_{a}^{*}p_{\infty})\mu(d\mathbf{x}).$$

Мы можем сказать, что на множестве $\{\mathbf{x} \in \mathbb{R}^N : \varphi^* > \varphi\}$ критерий не обращается в ноль: $\varphi^* > 0$ (так как φ принимает значения в [0,1]). Если $\varphi^* > 0$, то из определения критерия получаем, что $p_0 \geqslant h_a^* p_\infty$. Отсюда получаем, что первый интеграл неотрицателен.

Аналогично, мы можем сказать, что на множестве $\{\mathbf{x} \in \mathbb{R}^N : \varphi^* < \varphi\}$ критерий не обращается в единицу: $\varphi^* < 1$. Следовательно, $p_0 \leqslant h_a^* p_\infty$ и второй интеграл тоже неотрицателен. Комбинируя эти результаты, получаем утверждение (1.9). Из него сразу же получается (1.8):

$$\int_{\mathbb{R}^N} (\varphi^* - \varphi) p_0 \mu(d\mathbf{x}) \geqslant h_a^* \int_{\mathbb{R}^N} (\varphi^* - \varphi) p_\infty \mu(d\mathbf{x}) = h_a^* (\mathsf{E}_\infty[\varphi^*] - \mathsf{E}_\infty[\varphi]) \geqslant 0. \tag{1.10}$$

Рассуждение выше опиралось на то, что существуют такие λ_a^* и h_a^* , что вероятность ошибки первого рода равна a: $\mathsf{E}_\infty[\varphi^*(\xi_1,\ldots,\xi_N)]=a$. Теперь докажем, что они действительно существуют.

Введём функцию $g(h) = \mathsf{P}_{\infty}(p_0(\boldsymbol{\xi}) > hp_{\infty}(\boldsymbol{\xi}))$, где $\boldsymbol{\xi} = (\xi_1, \dots, \xi_N)$. Что мы можем сказать про эту функцию? На самом деле много: она не возрастает, она непрерывна справа, g(h) = 1 при h < 0 и $g(h) \to 0$ при $h \to \infty$. Далее, заметим, что

$$g(h) = \int_{\left\{\mathbf{x} \in \mathbb{R}^N : \frac{p_0(\mathbf{x})}{p_\infty(\mathbf{x})} > h\right\}} p_\infty(\mathbf{x}) \mu(d\mathbf{x}).$$
(1.11)

Для $a\in(0,1)$ положим h_a^* , равным минимальному h, для которого выполнено $g(h)\leqslant a\leqslant g(h-0)$. Далее, положим

$$\lambda_a^* = \frac{a - g(h_a^*)}{g(h_a^* - 0) - g(h_a^*)}. (1.12)$$

Теперь покажем, что с такими значениями $\mathsf{E}_{\infty}[\varphi^*] = a$. Действительно,

$$\begin{split} \mathsf{E}_{\infty}[\varphi^*] &= \int\limits_{\mathbb{R}^N} \varphi^*(\mathbf{x}) p_{\infty}(\mathbf{x}) \mu(d\mathbf{x}) = \int\limits_{\left\{\mathbf{x} \in \mathbb{R}^N : \frac{p_0(\mathbf{x})}{p_{\infty}(\mathbf{x})} \geqslant h_a^*\right\}} \varphi^*(\mathbf{x}) p_{\infty}(\mathbf{x}) \mu(d\mathbf{x}) = \\ &= \int\limits_{\left\{\mathbf{x} \in \mathbb{R}^N : \frac{p_0(\mathbf{x})}{p_{\infty}(\mathbf{x})} > h_a^*\right\}} p_{\infty}(\mathbf{x}) \mu(d\mathbf{x}) + \lambda_a^* \int\limits_{\left\{\mathbf{x} \in \mathbb{R}^N : \frac{p_0(\mathbf{x})}{p_{\infty}(\mathbf{x})} = h_a^*\right\}} p_{\infty}(\mathbf{x}) \mu(d\mathbf{x}) = \\ &= g(h_a^*) + \frac{a - g(h_a^*)}{g(h_a^* - 0) - g(h_a^*)} [g(h_a^* - 0) - g(h_a^*)] = a. \end{split}$$

Теперь нужно описать граничные случаи. Если a=0, то ошибок первого рода быть не должно. Как этого достичь? Всегда принимать H_{∞} . Другими словами, полагаем, что $\varphi^*(\mathbf{x})=0$ и $h_a^*=\infty$. Аналогично, для a=1 мы должны всегда принимать H_0 . Следовательно, нужно положить $h_a^*=0$ и $\lambda_a^*=1$.

Тем самым был получен тест φ^* , для которого $\mathsf{E}_\infty[\varphi^*] = a$ и он является оптимальным в классе Φ_a .

Примечание. В случае, когда случайные величины ξ_1, \dots, ξ_N независимы и одинаково распределены, для совместной плотности верна формула (1.1). В этом случае удобно ввести следующие обозначения:

$$\zeta_k = \log \frac{f_0(x_k)}{f_\infty(x_k)} \text{ if } Z_k = \log L_n = \sum_{k=1}^n \zeta_k.$$

Теперь рассмотрим пару примеров применения леммы Неймана-Пирсона.

Пример 1 (Бернуллиевские случайные величины). Пусть гипотезы H_0 и H_∞ утверждают, что ξ_1, \ldots, ξ_N — выборка из распределения Бернулли $\mathrm{Bern}(p_0)$ или $\mathrm{Bern}(p_\infty)$ соответственно, то есть для любого $1 \leqslant k \leqslant N$

$$\mathsf{P}_{\theta}(\xi_k=1)=p_{\theta},\quad \mathsf{P}_{\theta}(\xi_k=0)=1-p_{\theta}\equiv q_{\theta},\quad \theta=0$$
 или $\infty.$

В таком случае отношение правдоподобия, согласно формуле (1.7), равно

$$L_n = \prod_{k=1}^{N} \left(\frac{p_0}{p_{\infty}}\right)^{x_k} \left(\frac{q_0}{q_{\infty}}\right)^{1-x_k}.$$

Возьмём от этого логарифм:

$$Z_n = (x_1 + \dots + x_N) \log \frac{p_0}{p_\infty} + (N - x_1 + \dots + x_N) \log \frac{q_0}{q_\infty} =$$

$$= (x_1 + \dots + x_N) \log \frac{p_0 q_\infty}{p_\infty q_0} + N \log \frac{q_0}{q_\infty}.$$

Если ввести обозначение $X_N = x_1 + \ldots + x_N$, то оптимальный критерий (1.6) будет выглядеть так:

$$\varphi^*(x_1, \dots, x_N) = \begin{cases} 1, & X_N > h_a^*, \\ \lambda_a^*, & X_N = h_a^*, \\ 0, & X_N < h_a^*, \end{cases}$$
 (1.13)

где константы λ_a^* и h_a^* находятся из предположения о том, что вероятность ошибки первого рода для этого критерия равна a: $\mathsf{E}_\infty[\varphi^*] = a$.

Вообще говоря, необходимость обращаться к рандомизированным тестам обычно связана с дискретностью распределения. В случае, когда распределения имеют плотности $f_{\theta}(x)$, можно строить и детерменированный тест (так как вероятность равенства нулевая). Рассмотрим это на следующем примере.

Пример 2 (Нормальные случайные величины). Пусть гипотезы H_0 и H_∞ утверждают, что ξ_1, \ldots, ξ_n — выборка из нормального распределения с параметрами (μ_0, σ^2) и (μ_∞, σ^2) соответственно. Как известно, плотность нормального распределения $\mathcal{N}(\mu_\theta, \sigma^2)$ равна

$$f_{\theta}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu_{\theta})^2}{2\sigma^2}\right\}.$$

Посчитаем логарифм отношения правдоподобия:

$$Z_n = \sum_{k=1}^n \left[\frac{(x_k - \mu_\infty)^2}{2\sigma^2} - \frac{(x_k - \mu_0)^2}{2\sigma^2} \right] = \sum_{k=1}^n \frac{(\mu_0 - \mu_\infty)(2x_k - \mu_0 - \mu_\infty)}{2\sigma^2} = \frac{\mu_0 - \mu_\infty}{\sigma^2} \left(X_N - \frac{\mu_0 - \mu_\infty}{2} n \right).$$

Для простоты описания скажем, что $\mu_0 = \mu, \, \mu_\infty = 0$. Тогда

$$Z_n = \frac{\mu}{\sigma^2} \left(X_n - \frac{\mu}{2} n \right).$$

Следовательно, оптимальный критерий (1.6) выглядит так:

$$\varphi^*(x_1, \dots, x_n) = \begin{cases} 1, & Z_n \geqslant h, \\ 0, & Z_n < h. \end{cases}$$

Немного преобразуем условие, введя обозначение $H = \sigma^2 h/\mu$:

$$\varphi^*(x_1, \dots, x_n) = \begin{cases} 1, & X_n - \mu n/2 \geqslant H, \\ 0, & X_n - \mu n/2 < H. \end{cases}$$
 (1.14)

Чему равны ошибки первого и второго рода для этого критерия? Для их подсчёта вспомним, что ξ_1, \ldots, ξ_n — независимые и одинаково распределённые случайные величины. Если верна гипотеза H_{∞} , то $\mathsf{E}_{\infty}[\xi_1+\ldots+\xi_n]=0$ и $\mathsf{D}_{\infty}[\xi_1+\ldots+\xi_n]=\sigma^2 n$. Следовательно,

$$\alpha = \mathsf{E}_{\infty}[\varphi^*(\boldsymbol{\xi})] = \mathsf{P}_{\infty}\left(\sum_{k=1}^n \xi_k - \frac{\mu n}{2} \geqslant H\right) = \mathsf{P}_{\infty}\left(\frac{\xi_1 + \ldots + \xi_n}{\sigma\sqrt{n}} \geqslant \frac{H + \mu n/2}{\sigma\sqrt{n}}\right) = 1 - \Phi\left(\frac{H + \mu n/2}{\sigma\sqrt{n}}\right),$$

где Φ — функция распределения стандартной нормальной случайной величины. Аналогично считается и β , только в данном случае $\mathsf{E}_0[\xi_1+\ldots+\xi_n]=\mu n$ и $\mathsf{D}_0[\xi_1+\ldots+\xi_n]=\sigma^2 n$:

$$\beta = \mathsf{E}_0[1 - \varphi^*(\boldsymbol{\xi})] = \mathsf{P}_0\left(\sum_{k=1}^n \xi_k - \frac{\mu n}{2} < H\right) =$$

$$= \mathsf{P}_0\left(\frac{\xi_1 + \ldots + \xi_n - \mu n}{\sigma\sqrt{n}} < \frac{H - \mu n/2}{\sigma\sqrt{n}}\right) = \Phi\left(\frac{H - \mu n/2}{\sigma\sqrt{n}}\right).$$

В итоге мы получаем, что

$$\alpha = 1 - \Phi\left(\frac{H + \mu n/2}{\sigma\sqrt{n}}\right), \quad \beta = \Phi\left(\frac{H - \mu n/2}{\sigma\sqrt{n}}\right).$$
 (1.15)

Далее, пусть C_{γ} — это квантиль порядка γ для стандартного нормального распределения, то есть корень уравнения $\Phi(C_{\gamma})=\gamma$. Тогда, комбинируя это с (1.15), получаем, что

$$\frac{H + \mu n/2}{\sigma \sqrt{n}} = C_{1-\alpha}, \quad \frac{H - \mu n/2}{\sigma \sqrt{n}} = C_{\beta}. \tag{1.16}$$

Теперь несложно получить связь между (α, β) и (n, h):

$$(C_{1-\alpha} - C_{\beta})^2 = \left(\frac{\mu}{\sigma}\right)^2 n \implies n = \frac{(C_{1-\alpha} - C_{\beta})^2}{(\mu/\sigma)^2}.$$
 (1.17)

$$\frac{2H}{\sigma} = \sqrt{n}(C_{1-\alpha} + C_{\beta}) \implies H = \frac{C_{1-\alpha}^2 - C_{\beta}^2}{2\mu/\sigma^2} \implies h = \frac{C_{1-\alpha}^2 - C_{\beta}^2}{2}.$$
 (1.18)

Следовательно, если мы хотим, чтобы у теста φ^* были вероятности ошибок первого и второго рода, равные α и β соответственно, то число наблюдений n и порог h будут задаваться формулами (1.17) и (1.18) соответственно.

2 Последовательные тесты

Постановка рассмотренной выше задачи различения двух статистических гипотез (H_0 и H_∞) предполагала, что решение принимается по заданному числу наблюдений N. При этом в классе $\Phi_a = \{\varphi \colon \mathsf{E}_\infty[\varphi] \leqslant a\}$ оптимальный тест φ^* определялся формулой (1.6).

Давайте немного изменим постановку задачи. Пусть

$$\Phi_{\alpha,\beta} = \{ \varphi \colon \mathsf{E}_{\infty}[\varphi] \leqslant \alpha, \, \mathsf{E}_{0}[1 - \varphi] \leqslant \beta \}. \tag{2.1}$$

То есть $\Phi_{\alpha,\beta}$ — это класс тех тестов φ , для которых вероятности ошибок первого и второго рода не превосходят α и β соответственно. Ранее мы показали, что для гипотез относительно среднего значения в наблюдениях, подчиняющихся гауссовскому распределению, число N необходимых наблюдений и соответствующий порог h задавались формулами (1.17) и (1.18) соответственно. Стоит заметить, что в данном случае число наблюдений является неслучайной величиной.

Рассмотрим теперь еще одну, новую, постановку задачи, принадлежащую А. Вальду, а именно задачу *последовательного* различения гипотез. В сущности, именно эта задача дала импульс развитию теории последовательного анализа и теории оптимальных правил остановки.

Но начнём с определений.

Определение 3. Пусть $x \in \mathbb{R}^{\infty}$, то есть $x = (x_1, ..., x_n, ...)$ — числовая последовательность с $x_i \in \mathbb{R}$. *Борелевской \sigma-алгеброй в* \mathbb{R}^{∞} будем называть минимальную σ -алгебру $\mathcal{B}(\mathbb{R}^{\infty})$, порождённую множествами вида

$${x: x_1 \in I_1, \dots, x_n \in I_n}, \quad n \geqslant 1,$$
 (2.2)

где I_1, \ldots, I_n — это (борелевские) множества из $\mathcal{B}(\mathbb{R})$.

Будем считать, что на $(\mathbb{R}^{\infty}, \mathcal{B}(\mathbb{R}^{\infty}))$ заданы две вероятностные меры P_0 и P_{∞} . Пусть координатно заданные случайные величины $\xi_k = \xi_k(x)$, где $\xi_k(x) = x_k$, являются независимыми и одинаково распределенными по каждой из мер P_0 и P_{∞} . Дополнительно скажем, что у них есть плотность $f_{\theta}(x)$.

Предположим, что шаг за шагом мы получаем данные $x_1, x_2, \ldots, x_n, \ldots$, являющиеся наблюдениями над случайными величинами $\xi_1, \xi_2, \ldots, \xi_n, \ldots$ Мы хотим различить две гипотезы H_0 и H_∞ о том, какое «действует» распределение, P_0 или P_∞ , используя последовательные тесты, определение которого мы сейчас дадим. Но для него нужно знать, что такое марковский момент.

Определение 4. Пусть $(\Omega, \mathcal{F}, \mathsf{P})$ — вероятностное пространство с заданной на ней фильтрацией $\mathbb{F} = (\mathcal{F}_t)_{t \in T}$, где $T \subseteq [0, +\infty)$. Случайную величину τ , принимающую значения в $T \cup \{+\infty\}$, будем называть *марковским моментом* относительно фильтрации \mathbb{F} , если для любого $t \in T$ событие $\{\tau \leq t\}$ содержится в \mathcal{F}_t .

Определение 5. Последовательным тестом δ будем называть пару (τ, φ) , где

- $\tau = \tau(x)$ марковский момент (или момент остановки) относительно потока $\{\mathcal{F}_n, n \geqslant 1\}$, где $\mathcal{F}_n = \sigma(\xi_1, \dots, \xi_n), \ \mathcal{F}_0 = \{\varnothing, \Omega\}$.
- $\varphi = \varphi(x) \mathcal{F}_{\tau}$ -измеримая функция со значениями в [0,1], где $\mathcal{F}_{\tau} = \sigma(\xi_1,\dots,\xi_{\tau})$.

Момент τ интерпретируется как момент прекращения наблюдений с последующим принятием решения $\varphi = \varphi(x)$, интерпретируемого как вероятность принятия гипотезы H_0 , когда наблюдениями являются x_1, \ldots, x_{τ} .

Наиболее важными характеристиками тестов $\delta = (\tau, \varphi)$ являются средние длительности наблюдений $\mathsf{E}_0[\tau]$ и $\mathsf{E}_\infty[\tau]$ и вероятности ошибок первого и второго рода $\alpha(\varphi) = \mathsf{E}_\infty[\varphi]$ и $\beta(\varphi) = \mathsf{E}_0[1-\varphi]$.

Пусть α и β — это какие-то два числа из [0,1]. Пусть

$$\Delta(\alpha,\beta) = \{ \delta = (\tau,\varphi) \mid \mathsf{E}_{\infty}[\tau] < \infty, \mathsf{E}_{0}[\tau] < \infty, \alpha(\varphi) \leqslant \alpha, \beta(\varphi) \leqslant \beta \}.$$

Другими словами, $\Delta(\alpha,\beta)$ — это класс последовательных тестов, для которых матожидание момента остановки конечно, а вероятности ошибок первого и второго рода ограничены сверху α и β соответственно.

Определение 6. Будем говорить, что тест $\delta^* = (\tau^*, \varphi^*)$ оптимален в классе $\Delta(\alpha, \beta)$, если для любого другого теста $\delta \in \Delta(\alpha, \beta)$

$$\mathsf{E}_\infty[au^*] \leqslant \mathsf{E}_\infty[au]$$
 и $\mathsf{E}_0[au^*] \leqslant \mathsf{E}_0[au].$

А. Вальд установил, что при определённых условиях такой оптимальный тест $\delta^* = (\tau^*, \varphi^*)$ действительно существует. Этот результат совершенно неочевиден, так как тест δ^* минимизирует два математических ожидания одновременно.

Доказательство этого факта весьма трудоёмко, так что ограничимся доказательством того, что существует *почти оптимальный* тест (смысл этого выражения будет объяснён позднее). Более того, мы упростим задачу, ограничившись только детерминированными решающими функциями $\varphi(x) = d(x)$, которые принимают только значения 0 и 1. Дальнейший анализ покажет, что такое ограничение легально.

Следующая лемма важна для доказательства почти оптимальности вальдовского теста — она дает оценку снизу для $\mathsf{E}_\infty[\tau]$ и $\mathsf{E}_0[\tau]$.

Лемма. Пусть $\delta = (\tau, \varphi)$ — последовательный тест с вероятностями ошибок первого и второго рода, равными α и β соответственно, причём $0 < \alpha + \beta < 1$. Тогда

$$\mathsf{E}_{\infty}[\tau] \geqslant \frac{\omega(\alpha,\beta)}{\rho_{\infty}} \ u \ \mathsf{E}_{0}[\tau] \geqslant \frac{\omega(\beta,\alpha)}{\rho_{0}},$$

где

$$\omega(x,y) = x \log \frac{x}{1-y} + (1-x) \log \frac{1-x}{y}$$

$$\rho_{\infty} = \mathsf{E}_{\infty} \left[\log \frac{f_{\infty}(\xi_1)}{f_0(\xi_1)} \right], \quad \rho_0 = \mathsf{E}_0 \left[\log \frac{f_0(\xi_1)}{f_{\infty}(\xi_1)} \right].$$

Предполагается, что ρ_0 и ρ_∞ конечны.

Но для начала докажем одно простое утверждение.

Теорема 1 (Тождество Вальда). Пусть $\xi_1, \ldots, \xi_n, \ldots$ — последовательность независимых и одинаково распределённых величин, а τ — это случайная величина, не зависящая от ξ_k и принимающая натуральные значения, причём у всех случайных величин конечное матожидание. Тогда

$$\mathsf{E}\Big[\sum_{k=1}^{\tau} \xi_k\Big] = \mathsf{E}[\tau]\,\mathsf{E}[\xi_1].$$

Доказательство. Воспользуемся тем, что τ принимает значения в $\mathbb N$ и тем, что она не зависит от ξ_k :

$$\begin{split} \mathsf{E} \Big[\sum_{k=1}^{\tau} \xi_k \Big] &= \sum_{n=1}^{\infty} \mathsf{E} \Big[\mathsf{I}_{\tau=n} \sum_{k=1}^{\tau} \xi_k \Big] = \sum_{n=1}^{\infty} \mathsf{E} \Big[\mathsf{I}_{\tau=n} \sum_{k=1}^{n} \xi_k \Big] = \\ &= \sum_{n=1}^{\infty} \mathsf{P}(\tau=n) \, \mathsf{E} \Big[\sum_{k=1}^{\tau} \xi_k \Big] = \mathsf{E}[\xi_1] \sum_{n=1}^{\infty} n \, \mathsf{P}(\tau=n) = \mathsf{E}[\xi_1] \, \mathsf{E}[\tau]. \end{split}$$

Тем самым мы получили желаемое.

Теперь приступим к доказательству самой леммы.²

Доказательство. Пусть L_n — это отношение правдоподобия для выборки размера n: $L_0=1$ и

$$L_n = \frac{f_0(x_1)f_0(x_2)\dots f_0(x_n)}{f_{\infty}(x_1)f_{\infty}(x_2)\dots f_{\infty}(x_n)}, \quad n \geqslant 1.$$

Далее, введём следующие обозначения:

$$\zeta_k = \log \frac{f_0(x_k)}{f_\infty(x_k)}, \quad Z_n = \log L_n = \sum_{k=1}^n \zeta_k.$$

Доказывать будем только неравенство для $\mathsf{E}_0[au]$ — неравенство для $\mathsf{E}_\infty[au]$ доказывается аналогично.

Рассмотрим $\mathsf{E}_0[Z_{\tau}]$. По тождеству Вальда

$$\mathsf{E}_0[Z_\tau] = \mathsf{E}_0\Big[\sum_{k=1}^\tau \zeta_k\Big] = \mathsf{E}_0[\zeta_1]\,\mathsf{E}_0[\tau] = \rho_0\,\mathsf{E}_0[\tau] \implies \mathsf{E}_0[\tau] = \frac{\mathsf{E}_0[Z_\tau]}{\rho_0}. \tag{2.3}$$

 $^{^2}$ Доказательство во всю использует интегралы по бесконечномерным пространствам. В формальности лезть не будем — это достаточно жёсткая математика — и скажем, что это рассуждение корректно и такие интегралы можно рассматривать.

Мы хотим доказать, что

$$\mathsf{E}_0[Z_\tau] \geqslant \omega(\beta, \alpha), \ \text{где } \omega(x, y) = x \log \frac{x}{1 - y} + (1 - x) \log \frac{1 - x}{y}.$$
 (2.4)

Представим $\mathsf{E}_0[Z_ au]$ в следующем виде:

$$\mathsf{E}_0[Z_\tau] = \int_{\{x: \ d(x)=0\}} Z_\tau \, d\, \mathsf{P}_0 + \int_{\{x: \ d(x)=1\}} Z_\tau \, d\, \mathsf{P}_0 \, .$$

Далее, вспомним неравенство Йенсена: если $\varphi(\cdot)$ — выпуклая (вниз) борелевская функция, то

$$\varphi(\mathsf{E}[\xi]) \leqslant \mathsf{E}[\varphi(\xi)]. \tag{2.5}$$

Пользуясь им и тем, что $\beta = \mathsf{P}_0(d(x) = 0)$, получаем, что

$$\int_{\mathbb{R}^{\infty}} Z_{\tau} d \, \mathsf{P}_{0} = \mathsf{P}_{0}(d(x) = 0) \int_{\mathbb{R}^{\infty}} Z_{\tau} \, \mathsf{P}_{0}(dx \, | \, d(x) = 0) =$$

$$= \beta \int_{\mathbb{R}^{\infty}} \log L_{\tau} \, \mathsf{P}_{0}(dx \, | \, d(x) = 0) =$$

$$= -\beta \int_{\mathbb{R}^{\infty}} \log \frac{1}{L_{\tau}} \, \mathsf{P}_{0}(dx \, | \, d(x) = 0) =$$

$$\geqslant -\beta \log \int_{\mathbb{R}^{\infty}} \frac{1}{L_{\tau}} \, \mathsf{P}_{0}(dx \, | \, d(x) = 0)$$

$$= -\beta \log \left[\frac{1}{\mathsf{P}_{0}(d(x) = 0)} \int_{\{x: d(x) = 0\}} \frac{1}{L_{\tau}} \, \mathsf{P}_{0}(dx) \right]. \tag{2.6}$$

Теперь докажем, что

$$\int_{\{x: d(x)=0\}} \frac{1}{L_{\tau}} \mathsf{P}_0(dx) = \mathsf{P}_{\infty}(d(x)=0) = 1 - \alpha.$$

Имеем

$$\int_{\{x: d(x)=0\}} \frac{1}{L_{\tau}} \mathsf{P}_0(dx) = \sum_{n=1}^{\infty} \int_{A_n} \frac{1}{L_{\tau}} \mathsf{P}_0(dx),$$

где $A_n = \{x \colon d(x) = 0, \tau(x) = n\}$. Теперь рассмотрим член суммы:

$$\int_{A_n} \frac{1}{L_{\tau}} \mathsf{P}_0(dx) = \int_{A_n} \frac{1}{L_n} \mathsf{P}_0(dx) = \int_{A_n} \frac{f_{\infty}(x_1) f_{\infty}(x_2) \dots f_{\infty}(x_n)}{f_0(x_1) f_0(x_2) \dots f_0(x_n)} \mathsf{P}_0(dx) = \int_{A_n} \mathsf{P}_{\infty}(dx) = \mathsf{P}_{\infty}(A_n) = \mathsf{P}_{\infty}(\{d = 0\} \cap \{\tau = n\}).$$

Следовательно,

$$\int\limits_{\{x:\ d(x)=0\}} \frac{1}{L_{\tau}} \, \mathsf{P}_0(dx) = \mathsf{P}_{\infty}(d=0) = \mathsf{E}_{\infty}(1-\alpha) = 1-\alpha.$$

Отсюда следует, что

$$\int_{\{x: d(x)=0\}} Z_{\tau} d \mathsf{P}_0 \geqslant -\beta \log \frac{1-\alpha}{\beta} = \beta \log \frac{\beta}{1-\alpha}.$$

Аналогично показывается, что

$$\int_{\{x: d(x)=1\}} Z_{\tau} d \mathsf{P}_0 \geqslant (1-\beta) \log \frac{1-\beta}{\alpha}.$$

Комбинируя всё вышесказанное, получаем желаемое.

Эти неравенства полезны тем, что если мы сможем (для заданных α и β) построить тест $\delta^* = (\tau^*, d^*)$, для которого $\mathsf{E}_\infty[\tau^*]$ и $\mathsf{E}_0[\tau^*]$ равны $\omega(\alpha, \beta)/\rho_\infty$ и $\omega(\beta, \alpha)/\rho_0$, то этот тест будет оптимальным. Мы увидим далее, что в случае непрерывного времени (в задаче различения гипотез относительно среднего значения броуновского движения) такой тест действительно можно построить. Но ясно также, что если суметь построить тест $\tilde{\delta} = (\tilde{\tau}, \tilde{d})$, у которого значения $\mathsf{E}_\infty[\tilde{\tau}]$ и $\mathsf{E}_0[\tilde{\tau}]$ близки к предельным значениям, то это будет говорить о том, что такой тест "почти оптимален". Займемся конструкцией таких тестов.

Пусть A<0 и B>0— это какие-то константы. Положим

$$\tau_{AB} = \inf\{n \in \mathbb{N} \colon Z_n \geqslant B \text{ или } Z_n \leqslant A\}.$$

Далее, введём следующее решающее правило:

$$d_{AB} = \begin{cases} 1, & \text{если } Z_{\tau_{AB}} \geqslant B \\ 0, & \text{если } Z_{\tau_{AB}} \leqslant A \end{cases}$$

Тест $\delta_{AB} = (\tau_{AB}, d_{AB})$ был предложен А. Вальдом и называется последовательным критерием отношений вероятностей.

Теперь нужно понять, чему равны основные характеристики такого последовательного теста: вероятности ошибок первого и второго рода и матожидания момента остановки. Начнём с матожидания. Опять же, воспользуемся тождеством Вальда и пренебрежём перескоком за границы, то есть будем считать, что если $d_{AB}=1(0)$, то $Z_{\tau_{AB}}=B(A)$:

$$\mathsf{E}_{0}[\tau_{AB}] = \frac{\mathsf{E}_{0}[Z_{\tau_{AB}}]}{\mathsf{E}_{0}[\zeta_{1}]} \approx \frac{B\,\mathsf{P}_{0}(d_{AB}=1) + A\,\mathsf{P}_{0}(d_{AB}=0)}{\rho_{0}} = \frac{B\,\mathsf{E}_{0}[d_{AB}] + A\,\mathsf{E}_{0}[1 - d_{AB}]}{\rho_{0}} = \frac{B(1 - \beta) + A\beta}{\rho_{0}}.$$

Аналолично считается $\mathsf{E}_\infty[au_{AB}]$:

$$\begin{split} \mathsf{E}_{\infty}[\tau_{AB}] &= \frac{\mathsf{E}_{\infty}[Z_{\tau_{AB}}]}{\mathsf{E}_{\infty}[\zeta_1]} \approx -\frac{B\,\mathsf{P}_{\infty}(d_{AB}=1) + A\,\mathsf{P}_{\infty}(d_{AB}=0)}{\rho_{\infty}} = \\ &= -\frac{B\,\mathsf{E}_{\infty}[d_{AB}] + A\,\mathsf{E}_{\infty}[1-d_{AB}]}{\rho_{\infty}} = -\frac{B\alpha + A(1-\alpha)}{\rho_{\infty}}. \end{split}$$

Займемся отысканием формул связи ошибок (α, β) с порогами (A, B). С этой целью обратимся к так называемому фундаментальному тождеству Вальда. Пусть

$$g_{\theta}(\lambda) = \mathsf{E}_{\theta}[e^{\lambda\zeta_1}] = \mathsf{E}_{\theta}\left[\left(\frac{f_0(\xi_1)}{f_{\infty}(\xi_1)}\right)^{\lambda}\right], \qquad \lambda \in \mathbb{R}.$$

Понятно, что для независимых и одинаково распределенных величин $\zeta_1, \zeta_2, \dots, \zeta_n$ выполнено равенство

$$\mathsf{E}_{\theta}[e^{\lambda(\zeta_1+\ldots+\zeta_n)}] = [g_{\theta}(\lambda)]^n$$
, или же $\mathsf{E}_{\theta}\left[\frac{e^{\lambda Z_n}}{(g_{\theta}(\lambda))^n}\right] = \mathsf{E}_{\theta}\left[\exp\{\lambda Z_n - n\log g_{\theta}(\lambda)\}\right] = 1.$

Будем предполагать, что все выражения, приведенные здесь и ниже, определены и конечны по крайней мере для "нужных" нам в дальнейшем значений λ .

Теорема 2 (Фундаментальное тождество Вальда). Для марковского момента τ и $\lambda \in \mathbb{R}$

$$\mathsf{E}_{\theta} \left[\frac{e^{\lambda Z_{\tau}}}{(g_{\theta}(\lambda))^{\tau}} \right] = \mathsf{E}_{\theta} \left[\exp\{\lambda Z_{\tau} - \tau \log g_{\theta}(\lambda)\} \right] = 1.$$

Доказательство этой теоремы требует знания теории мартингалов, поэтому оставим её без доказательства.

Пока что предположим, что мы нашли $\lambda = \lambda_0$ такое, что $g_{\theta}(\lambda_{\theta}) = 1$. Очевидным образом это выполняется при $\lambda_{\theta} = 0$, но есть и нетривиальные λ_{θ} . Действительно, распишем функцию по определению

$$g_{\theta}(\lambda) = \mathsf{E}_{\theta} \left[\left(\frac{f_0(\xi_1)}{f_{\infty}(\xi_1)} \right)^{\lambda} \right] = \int_{-\infty}^{+\infty} \left(\frac{f_0(x)}{f_{\infty}(x)} \right)^{\lambda} f_{\theta}(x) dx.$$

Отсюда понятно, что $g_0(-1)=\mathsf{E}_\infty[1]=1.$ Аналогично, $g_\infty(1)=\mathsf{E}_0[1]=1.$ Из этого следует, что

$$\mathsf{E}_0\big[\exp\{-Z_{\tau_{AB}}\}\big] = \mathsf{E}_\infty\big[\exp\{Z_{\tau_{AB}}\}\big] = 1.$$

Распишем матожидания, снова пренебрегая перескоком:

$$e^{-B} \mathsf{P}_0(d_{AB} = 1) + e^{-A} \mathsf{P}_0(d_{AB} = 0) \approx 1,$$

 $e^{B} \mathsf{P}_\infty(d_{AB} = 1) + e^{A} \mathsf{P}_\infty(d_{AB} = 0) \approx 1.$

Заменим вероятности на вероятности ошибок первого и второго рода:

$$e^{-B}(1-\beta) + e^{-A}\beta \approx 1,$$

 $e^{B}\alpha + e^{A}(1-\alpha) \approx 1.$

Отсюда получаем, что

$$\alpha \approx \frac{1 - e^A}{e^B - e^A} = \frac{e^{-A} - 1}{e^{B-A} - 1}, \quad \beta \approx \frac{1 - e^{-B}}{e^{-A} - e^{-B}} = \frac{e^B - 1}{e^{B-A} - 1}.$$

Теперь выразим A и B через α и β :

$$\frac{\beta}{1-\alpha} \approx \frac{e^B - 1}{e^{-A} - e^{B-A}} = e^A \implies A \approx \ln \frac{\beta}{1-\alpha},$$

$$\frac{1-\beta}{\alpha} \approx \frac{e^{B-A} - e^B}{e^{-A} - 1} = e^B \implies B \approx \ln \frac{1-\beta}{\alpha}.$$

Теперь подставим полученные значения для A и B в формулы для $\mathsf{E}_{\theta}[\tau_{AB}]$:

$$\begin{split} \mathsf{E}_{0}[\tau_{AB}] &\approx \frac{B(1-\beta) + A\beta}{\rho_{0}} \approx \frac{(1-\beta)\log\frac{1-\beta}{\alpha} + \beta\log\frac{\beta}{1-\alpha}}{\rho_{0}} = \frac{\omega(\beta,\alpha)}{\rho_{0}}.\\ \mathsf{E}_{\infty}[\tau_{AB}] &\approx -\frac{B\alpha + A(1-\alpha)}{\rho_{\infty}} \approx -\frac{\alpha\log\frac{1-\beta}{\alpha} + (1-\alpha)\log\frac{\beta}{1-\alpha}}{\rho_{\infty}} = \\ &= \frac{\alpha\log\frac{\alpha}{1-\beta} + (1-\alpha)\log\frac{1-\alpha}{\beta}}{\rho_{\infty}} = \frac{\omega(\alpha,\beta)}{\rho_{\infty}}. \end{split}$$

Итак, в предположении пренебрежения эффектом перескока через границу

$$\mathsf{E}_0[au_{AB}] pprox rac{\omega(eta, lpha)}{
ho_0}, \quad \mathsf{E}_\infty[au_{AB}] pprox rac{\omega(lpha, eta)}{
ho_\infty}.$$

Теперь вспомним об ограничении снизу. Ясно, что в классе тестов (τ,d) таких, что $\mathsf{E}_0[\tau] < \infty$, $\mathsf{E}_\infty[\tau] < \infty$ и $\mathsf{P}_0(d=0) \leqslant \alpha$, $\mathsf{P}_\infty(d=1) \leqslant \beta$, тест (τ_{AB},d_{AB}) является "почти оптимальным" (с точностью до пренебрежения эффектом перескока процессом $(Z_n)_{n\geqslant 1}$ порогов A и B).