SISTEMAS DE ECUACIONES LINEALES

MÉTODOS DE RESOLUCIÓN

GRADO 10

CONTENIDOS

- 1 Sección 1: introducción
- 2 Sección 2: esquema de la solución
- 3 Sección 3: sistema de ecuaciones
- 4 Sección 4: actividades
 - Actividad 7

SECCIÓN 1: INTRODUCCIÓN

INICIO

¿Que hay en común en una granja con aves y bestias, un posible riesgo de colisión de tráfico aéreo y la producción industrial de amoníaco?

A continuación, descripción de cada situación.

UN PROBLEMA DE PATAS Y CABEZAS

Una granja tiene aves (bípedos) y bestias (cuadrúpedos). Si la granja tiene 60 cabezas y 200 patas ¿cuántas aves y bestias viven allí?

¿cómo se abordaría el problema?

CONTROL DE TRÁFICO AÉREO

Un vuelo comercial Bucaramanga-Medellín inicia su recorrido a las 9 am, en un avión A320 con velocidad media de 284 km/h. 24 minutos antes. despega desde Cartagena un vuelo hacia Bogotá en un avión similar con velocidad media 461 km/h. Puesto que gran parte del tráfico es supervisado desde Bogotá,

¿existirá riesgo de colisión con la información suministrada?

ESTEQUIOMETRÍA COMO HERRAMIENTA DE CONTROL EN PROCESOS INDUSTRIALES QUÍMICOS

La estequiometría es el estudio cuantitativo de reactivos y productos en una reacción química. En la producción industrial del amóniaco es importante conocer con rigor las cantidaes usadas y producidas para diseñar el *modelo de negocio* que gira en torno a esta sustancia, la cual es usada principalmente para fabricar abonos y algunos productos de limpieza.

Por tanto, en tal estudio es necesario conocer las cantidaes x, y, z que intervienen en la reacción,

$$xN_2 + yH_2 \rightarrow zNH_3$$

SECCIÓN 2: ESQUEMA DE LA SOLUCIÓN

Introducción a los métodos de solución

■ En el enigmático problema de la granja,

$$\begin{cases} A + B = 60 \\ 2A + 4B = 200 \end{cases}$$

La técnica conocida como **Igualación**, consiste en igualar las ecuaciones respecto a una incógnita para luego despejar la otra incógnita.

Requiere un buen dominio del manejo de la resolución de la ecuación de grado 1.

INTRODUCCIÓN A LOS MÉTODOS DE SOLUCIÓN

■ En el desarrollo de actividades de control aéreo, desde la cinemática (Física) se usa la fórmula $\vec{r} = \vec{v}t + \vec{r_0}$, la cual muestra la información elemental del movimiento para cada aeronave; con ella se deduce en tiempo real la posición de la aeronave. Para las dos rutas, con datos geográficos y la velocidad se plantea,

$$\begin{cases}
-262.2 + 118.237t_x + 259.291t_y = 0 \\
364.6 - 445.518t_x + 116.378t_y = 0
\end{cases}$$

 $t_{\rm x}$ es el tiempo usado para el avión con ruta BOG-CTG, y $t_{\rm y}$ para ruta BGA-MDE.

Introducción a los métodos de solución

■ La técnica del **método gráfico** consiste en representar en el plano cartesiano cada ecuación y en hallar el punto de corte de la líneas rectas. La solución muestra un alto riesgo de colisión de los aviones, el cual debe ser atendido por el control aéreo.

Introducción a los métodos de solución

■ Entre las más eficientes y ampliamente usadas en informática está el **método de matrices**. En ella nuevos objetos algebraicos conocidos como arreglos o matrices y un conjunto de algoritmos que usan simples multiplicaciones, permiten deducir la solución a problemas con ecuaciones lineales. En la reacción química para el amoníaco se plantea un arreglo para las sustancias en cuestión (H y N),

$$\begin{pmatrix} 2 & 0 & -1 \\ 0 & 2 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0$$

La solución deja x = 1, y = 3, z = 2; es decir,

$$N_2 + 3H_2 \rightarrow 2NH_3$$

SECCIÓN 3: SISTEMA DE ECUACIONES

DEFINICIÓN: QUÉ ES UN SISTEMA DE ECUACIONES?

Es la reunión de dos o más ecuaciones con dos más incógnitas y cuya finalidad es encontrar un conjunto de soluciones. Según las soluciones, los sistemas pueden ser:

■ <u>Simultáneos</u>, cuando sólo hay un conjunto de soluciones. Ejemplo: sistema 2×2

$$A + B = 60,$$

 $2A + 4B = 200$

■ <u>Indeterminados</u>, cuando hay muchos (infinitos!) conjuntos de soluciones. Ejemplo: sistema 1×3

$$x + y + z = 3$$

SECCIÓN 4: ACTIVIDADES

ACTIVIDAD 7

- Realizar un mapa mental sobre los Usos de los Sistemas de Ecuaciones en situaciones reales, que muestre los conceptos clave para la comprensión como son las incógnitas, objetivo y planteamiento algebraico. A partir de ellos extienda las ramas del mapa con otras temáticas mencionados.
- Describa los tres problemas mencionados (recurriendo a palabras clave, detalles, hechos, cantidades) donde se usan los Sistemas de Ecuaciones.
- 3. Describa brevemente las tres técnicas mencionadas en la exposición para la **Solución de Sistemas de Ecuaciones**.

REFERENCIAS

I. A. BALDOR.

ALGEBRA.

Grupo Editorial Patria, 1983.

J. M. GUTIÉRREZ.

SUPERMAT 9.

Editorial Voluntad, 2000.

WIKIPEDIA.

REGLA DE CRAMER.

https://es.wikipedia.org/wiki/Regla de Cramer, 2021. Consultado 7 ago 2021.

BACKUP FRAME

This is a backup frame, useful to include additional material for questions from the audience.