講義担当 菊池

グループ番号:

学籍番	号 8223036	氏名	栗山淳
グループメンバー学籍番	号	氏名	

1. 共重合とはどのような重合か簡潔に説明しなさい。

共重合とは2種類以上の単量体を混ぜ合わせて行う付加重合のことである。

2. 共重合を行うことで理解できることは何か答えなさい。また、実際的方法として共重合は重要と考えられるが、それはなぜか、わかることを答えなさい。

共重合を行うことでモノマー間の反応性の違いと、それがポリマー特性に与える影響やモ ノマー組成比と生成物の組成比の関係を理解することができる。

共重合は強度や柔軟性、耐熱性などのポリマーの特性を調整可能であったり、新規材料の開発っや特定用途向けポリマーの設計に不可欠であるため、実際的方法として重要であると考えられる。

3. 共重合におけるモノマー $1(M_1)$ の消費速度を表す式を示しなさい。

モノマ-1の消費速度式

$$-\frac{d[M_1]}{dt} = k_{11}[M_1][M_1^{\bullet}] + k_{21}[M_1][M_2^{\bullet}]$$

4. 共重合におけるモノマー2(M₂)の消費速度を表す式を示しなさい。

$$-\frac{d[M_2]}{dt} = k_{12}[M_2][M_1^{\bullet}] + k_{22}[M_2][M_2^{\bullet}]$$

5. 共重合におけるモノマー1、モノマー2の消費速度の比を表す式を示しなさい。

$$\frac{d[M_1]}{d[M_2]} = \frac{k_{11}[M_1][M_1^\bullet] + k_{21}[M_1][M_2^\bullet]}{k_{12}[M_2][M_1^\bullet] + k_{22}[M_2][M_2^\bullet]}$$

6. 問題 5 においてラジカル濃度は実測できないため定常状態を考える。定常状態において何と何が等しいと考えるのか、その式を示して答えなさい。

定常状態では、生成ラジカルと消費ラジカルの速度が等しいと考える

$$k_{21}[M_1][M_2^{\bullet}] = k_{12}[M_2][M_1^{\bullet}]$$

7. 問題 5、6 からラジカル濃度に依存しないモノマー 1、モノマー 2 の消費速度の比を表す式を示しなさい。

$$\frac{d[M_1]}{d[M_2]} = \frac{[M_1]}{[M_2]} \left(\frac{r_1[M_1] + [M_2]}{[M_1] + r_2[M_2]} \right)$$

ここで

$$r_1 = \frac{k_{11}}{k_{12}}, r_2 = \frac{k_{22}}{k_{21}}$$

8. 共重合におけるモノマー反応性比 r₁、r₂はそれぞれ何を表すのか答えなさい。

 r_1 は M_1^{\bullet} に対する M_1 と M_2 の相対反応性を表している r_2 は M_2^{\bullet} に対する M_2 と M_1 の相対反応性を表している

- 9. 次の場合の共重合曲線をそれぞれ示しなさい。
- (1) r₁=1.9、r₂=0 の場合

(2) r₁=0.01、r₂=12.0 の場合

(3) r₁=0.75、r₂=0.18 の場合

10. 第 10 回講義に関し、質問、疑問、コメントがあればフォーラムに記入し、相互に議論しましょう。