Coalescent and multispecies coalescent

Ziheng Yang

Department of Genetics, Evolution, and Environment University College London

Outline

- Pedigree, genealogy and coalescent
- Multispecies coalescent (MSC)
- Inference under a fixed model

Bruce Rannala's pedigree

Charles Robert Darwin is Bruce Howard Rannala's 12th cousin 6 times removed!

Kinship coefficient of Bruce Rannala and Barack Obama:

$$(1/2)^34 = 5.8 \times 10^{-11}$$

Samuel Bunch (1726-1782) [Virginia]

Charles Bunch (1765-1792) [Virginia]

Pedigree

Gene tree within pedigree

Fisher-Wright model & coalescent

(a) Fisher-Wright model (Constant population size, nonoverlapping generations, random mating)

Time

(b) Coalescent process.
The process of lineage joining when one traces the genealogical history of the sample backwards in time.

$$T_j \sim \exp\left(\frac{1}{2N} \times \frac{j(j-1)}{2}\right)$$

Classic population genetics studies the changes of allele frequencies in a population with time running forward (e.g., *diffusion approximation*)

Ronald A. Fisher (1890-1962) Galton Professor, UCL (1933-1943)

JBS Haldane (1892-1964) Weldon Professor, UCL (1933-1956)

Sewall Wright (1889-1988)

"Three giants in population genetics, two in UCL"

Coalescent runs the time machine backwards

John Kingman (1939-)

The coalescent: 2 genes

The probability that two genes share a common ancestor (parent) in the previous generation is 1/(2N). The probability that two genes share a common ancestor j generations back is

$$\Pr\{T_2 = j\} = \left(1 - \frac{1}{2N}\right)^{j-1} \times \frac{1}{2N}$$

This is known as a geometric distribution and has mean 2N. It takes on average 2N generations for two genes to coalesce.

Let $t_2 = T_2/(2N)$ so that one time unit is 2N generations. Then t_2 is exponential with mean 1:

$$f(t_2) = \mathrm{e}^{-t_2}$$

N: population size of a diploid species 2*N*: number of sequences at any locus in the population

 $t_2 = T_2/(2N)$

Genetic diversity in a population is measured by $\theta = 4N\mu$, where μ is the mutation rate, which is the average difference per site between two sequences.

For the human, $\theta_{\rm H}$ = 0.0006: two sequences taken at random from the human population are different at 0.06% of sites. This means $N \sim 10,000$ (using g = 15y, $\mu = 10^{-9}$ /site/year).

Coalescent time scale, Poisson & exponential

If an event occurs as a *Poisson process* at the rate λ , the waiting time has an *exponential distribution* with probability density function

$$f(t) = \lambda e^{-\lambda t}$$

and mean $1/\lambda$. The probability for no event before time *t* is

$$\Pr(X > t) = e^{-\lambda t}$$
.

Any 2 sequences coalesce like a Poisson process with rate λ .

Time unit	Rate (λ)	Mean waiting time
(i) Generation	1/(2 <i>N</i>)	2N
(ii) $2N$ generations	1	1
(iii) 1 mutation per site	$2/\theta$	$\theta/2$

The coalescent: n=3 sequences

- There are 3 possible gene trees for a sample of 3 sequences, each with probability $\frac{1}{3}$.
- The first waiting time has mean $\frac{1}{3}$ while the second has mean 1 (One time unit is 2N generations).

The coalescent: n=4 sequences

- There are 18 possible **labelled histories** (ranked gene trees) for n = 4, each with probability $\frac{1}{18}$.
- There are 15 gene trees, with probability ¹/₁₈ for each unbalanced tree or ²/₁₈ for each balanced tree.
 Each balanced tree is compatible with two labelled histories while each unbalanced tree is compatible with one.
- Coalescent waiting times are independent exponential variables

$$\binom{4}{2}\binom{3}{2}\binom{2}{2}=18$$

A **labelled history** (or **ranked gene tree**) is a (rooted) gene tree with interior nodes ranked by age

In left tree: $t_{ab} < t_{cd}$. Sequences a & b coalesce first. In right tree: $t_{cd} < t_{ab}$. Sequences c & d coalesce first.

The balanced gene tree ((a, b), (c, d)) is compatible with two labelled histories and so has probability $\frac{2}{18}$.

The coalescent: *n* sequences

- (i) Each of the $H_n = \binom{n}{2} \binom{n-1}{2} \dots \binom{2}{2}$ labelled histories (G_i) has equal probability, $P(G_i) = \frac{1}{H_n}$.
- (ii) Coalescent rate is $\frac{1}{2N}$ for each pair of sequences.

$$f(G_i, t_n, \dots, t_2) = \left[\frac{1}{2N} \dots \frac{1}{2N}\right] \times \exp\left\{-\binom{n}{2} \frac{1}{2N} t_n - \binom{n-1}{2} \frac{1}{2N} t_{n-1} - \dots - \frac{1}{2N} t_2\right\}$$

It takes on average $\sim 2 \times 2N$ ($\pm 2.15N$) generations for the whole sample to coalesce, and 2N generations for the last two lineages to coalesce.

The coalescent (n = 20)

Coalescent time fluctuates across the genome according to an exponential distribution, with mean 2N (generations).

Multispecies coalescent (MSC)

Multispecies coalescent (MSC, Liu *et al.* 2009) or censored coalescent (Rannala and Yang 2003) or inter-specific coalescent (Takahata 1989)

- Parameters: divergence times (τ) and population sizes (θ) .
- Lineages join independently in different populations.
- Coalescent rate is reset when lineages enter a new species.
- Genes split before species (gene trees fit inside species tree).

Rannala & Yang (2003 Genetics 164:1645-1656)

MSC provides a framework for analyzing genomic data from different species

(c) Multi-locus sequence data

Multispecies coalescent

Two species

- · Gillespie, J. H., and C. H. Langley (1979. *J. Mol. Evol.* 13:27-34) The number of substitutions [between 2 species] is the sum of a Poisson and a geometric random variable.
- Takahata, N. (1986. *Genet. Res.* 48:187-190)

 The variance in H-C sequence divergence among loci was used to estimate the ancestral population size $\theta_{\rm HC}$

Three species

- Hudson R.R. (1983 *Evolution* 37:203-217) derived the gene tree-species tree mismatch probability for 3 species.
- · Chen & Li (2001 *AJHG* 68:444-456) used it to estimate θ_{HC} .
- · Takahata, N., et al. (1995 TPB 48:198-221): ML for 3 species

Structured coalescent

- · Li, W.-H. 1976. TPB 10, 303-308.
- · Griffiths, R. C. 1981. *J. Math. Biol.* 12:251-261.
- · Slatkin, M. 1987. *TPB* 32:42-49.
- · Notohara, M. 1990. *J. Math. Biol.* 29:59-75.

Multispecies coalescent, incomplete lineage sorting, gene tree-species discordance

FIGURE 1.—Model of a population tree and a gene tree generated on a computer. X, Y and Z represent three different populations which diverged t_1 and $t_1 + t_2$ generations ago. Five genes were sampled from each population and $t_1 = t_2 = 2N$ were assumed. Dots and lines represent genes and ancestral lineages. Each node corresponds to a coalescence of genes. A, B and C stand for interspecific coalescences and all other nodes for intraspecific coalescences. In this simulation, there remained four ancestral genes from X and Y at t_1 . Note that the probabilities that the first and the first two coalescences are intraspecific are 1/3 and 1/9, respectively.

FIGURE 1. A gene tree contained within a species tree leading to three extant species: A, B, and C. Bold branches of gene tree show relationships among the sampled copies of the gene (). Sampled copies from sister species B and C are sister copies.

Maddison, W.P. 1997. Syst. Biol. 46:523-536

MSC has many applications & extensions

- Inference of species divergences and population sizes
- Estimation of migration patterns and rates (IMa, etc.)
- Introgression & hybridization
- · Species tree estimation (STEM, BEST, *BEAST, BPP etc.)
- Species delimitation (BPP)

• ...

MSC or coalescent is the biological process of reproduction viewed backwards in time

```
H_0: MSC (null model)
```

 H_1 :MSC + population structure

 H_2 :MSC + hybridization

 H_3 :MSC + recombination

Dy GC.

(Degnan JH. 2018. Syst. Biol. 67:786-799)

 H_4 :MSC + population structure + hybridization

etc.

Some terminologies are confusing:

"to distinguish hybridization from lineage sorting"

[&]quot;investigate whether the conditions of applicability of coalescence-based methods are met ..."

Multispecies coalescent (MSC)

(i) f(G)

Degnan, J. H., and L. A. Salter. 2005. Gene tree distributions under the coalescent process. Evolution 59:24-37.

Degnan, J. H., and N. A. Rosenberg. 2006. Discordance of species trees with their most likely gene trees. PLoS Genet. 2:e68.

Degnan, J. H., and N. A. Rosenberg. 2009. Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends Ecol. Evol. 24:332-340.

Rosenberg, N. A., and M. Nordborg. 2002. Genealogical trees, coalescent theory and the analysis of genetic polymorphisms. Nat. Rev. Genet. 3:380-390.

Rosenberg, N. A., and R. Tao. 2008. Discordance of species trees with their most likely gene trees: the case of five taxa. Systematic Biology 57:131-140.

(ii) f(G, t)

Rannala, B., and Z. Yang. 2003. Genetics 164:1645-1656.

. . .

f(G) is useful for two-step summary methods. f(G, t) is useful for full-likelihood methods (ML & Bayesian).

Multispecies coalescent (MSC) density

 τ_{ABC}

 τ_{AB}

 t_1

 $b_1 b_2$

 $a_1 a_2$

Full likelihood methods of species tree estimation integrate over the unknown gene trees

Maximum likelihood is feasible for 3 species (3 sequences) (3S)

$$L(S,\Theta) = \prod_{i} f(X_{i} | S,\Theta) = \prod_{i} \left[\sum_{G_{i}} \int f(G_{i}, t_{i} | S,\Theta) f(X_{i} | G_{i}, t_{i}) dt_{i} \right]$$

Bayesian method averages over the gene trees through MCMC marginalisation (*BEAST, BP&P, ...)

$$f(S,\Theta,\{G_i,t_i\}|X) \propto f(S)f(\Theta|S)\prod_i f(G_i,t_i|S,\Theta)f(X_i|G_i,t_i)$$

S: species tree.

 Θ : θ and τ parameters on the species tree.

 $G_i \& t_i$: gene tree topology and branch lengths at locus *i*.

Model & data

- The MSC gives the distribution of the gene tree and branch lengths (Rannala & Yang 2003 *Genetics* 164:1645-1656).
- The phylogenetic likelihood is the probability of the sequence data at each locus (Felsenstein 1981 *J. Mol. Evol.* 17:368-376).

```
A1 TCCATTCAAG AGTCTATTAT CAGTTAATTC ...

A2 TCCATTCAAG AGTCTATTAT CAGTTAGTTC ...

B1 TCCATTCAAG AGTTTATTAT CAGTTAATTC ...

B2 TCCATTCAAG AGTTTATTAT CAGTTAATTC ...

C1 TCCATTCAAG GGTCTATTAT CAGTTAATTC ...
```


JC69 model

MCMC samples from the posterior: $f(S, \{\tau s, \theta s\}, \{G_i, t_i\} \mid Data)$

- 1. Initialize S, $\{\theta s, \tau s\}$, $\{G_i, t_i\}$.
- 2. Iterate
 - · Change parameters (θ s, τ s in the model).
 - Change gene trees $\{G_i, t_i\}$.
 - · Change species tree *S* (by NNI, SPR, NodeSlider).
 - Save on the disk every k iterations.

S: species tree $\{\theta_s, \tau_s\}$: parameters in the MSC $\{G_i, t_i\}$: gene trees and ages

The MCMC algorithm visits the species trees according to their posterior probabilities.

People who did the work

Tomas Flouri

Xiyun Jiao

Yuttapong Thawornwattana

Paschalia Kapli

Jun Huang

Bruce Rannala (@BruceRannala) | T... twitter.com