WP Datenbankdesign

Kapitel 7: Geo-Datenbanksysteme

- Geo-Informationssysteme
- Der Datentyp SDO-Geometry
- Räumliche SQL-Abfragen
- Architektur

Geo-Informationssysteme

Informationssystem mit Verarbeitung und Darstellung

räumlicher Daten.

Anwendungen

- 1. Facility Management
- 2. Vermessungswesen, ...
- 3. Umweltschutz
- 4. Telekommunikation
- 5. Verkehr
- 6. Marketing
- 7. Logistik
- 8. Versicherungswirtschaft

Beispiel: Geo-Marketing

Beschreibungen eines geographischen Marktgebiets anhand detaillierter Consumer- und/oder Business-Daten. Räumliche Analysen verknüpfen unternehmenseigene Daten mit Geodaten und

Marktinformationen.

Zum Beispiel:

- Umsatz
- Einwohnerzahl
- Einwohner nach Altersklassen
- Kaufkraft
- Dominierendes
 Milieu
- Zahlungsmoral

Was wissen wir über dieses Viertel?

Die GfK kennt Einkommen und Kaufkraft für jeden Straßenabschnitt in

Deutschland. Hier einige Zahlen: Einwohner: 571 Haushalte: 313

Haushaltstypen:

Haushalte mit Kindern: 29 % (Bundesdurchschnitt 33 %)

Single-Haushalte: 40 % (37 %)

Mehrpersonen-Haushalte ohne Kinder: **30** % (30 %)

Monatliches Nettoeinkommen der Haushalte:

bis 1.100 €	16 % (23 %)	
1.100 € bis unter 1.500 €	12 % (18 %)	
1.500 € bis unter 2.000 €	13 % (17 %)	
2.000 € bis unter 2.500 €	19 % (16 %)	Quelle:
2.500 € bis unter 4.000 €	24 % (17 %)	ZeitWissen,
4.000 € und mehr	16 % (9 %)	4/2006

Ges. Kaufkraft je Einwohner und Jahr: 16.686 € (17.087 €)

Wo kommen die Daten her?

Gesellschaft für Konsumforschung (Bsp. www.martviewer.com)
 regelmäßige Umfragen bei repräsentativen Haushalten
 Straßenbegehungen

Schober Konzern pro Jahr 600.000 Lifestyle Fragebögen mit 120 Fragen

(infas, www.infas-geodaten.de)

Otto-Versand

- Creditreform
- Kraftfahrt-Bundesamt
- Landesvermessungsämter
- Deutsche Post

Jedes Gebiet wird einem von 10 definierten sozialen Milieus zugeordnet.

Anforderungen an ein Geo-Datenbanksystem

- Geometrische Datentypen (objektrelationale DBMS)
- Methoden zum Aufruf geometrischer Funktionen
- Gleichartiger, gemeinsamer Zugriff auf strukturierte relationale und geometrische Daten (Attribute)
- Verwendung von Standards aus dem Bereich GIS

Der Oracle Datentyp SDO-Geometry

Tabelle Gemeinde

ID	NAME	Lokation
NUMBER	VARCHAR2	SDO_GEOMETRY

SDO_GTYPENUMBERSDO_SRIDNUMBERSDO_POINTSDO_POINT_TYPESDO_ELEM_INFOSDO_ELEM_INFO_ARRAYSDO_ORDINATESSDO_ORDINATE_ARRAY

Bedeutung der Attribute

GType Geographic type D00T

Dimension $D \in \{2, 3, 4\}$ Form/Typ $T \in$

{1=Punkt, 2=Linienzug, 3=Polygon, ...}

SRID Spatial Reference System

z.B. 8307 für geodätisches Koordinatensystem

It. WGS 84

Point Punkt (X, Y, Z) z. B. X=Längen-, Y=Breitengrad

Elem_Info Element-Info-Array

Offset, Elementtyp (vgl. T), Interpretation

z. B. (1, 2, 2)

verbunden mit Kreisbögen

Ordinates VArray mit Koordinatenwerten

Geodätische Koordinatensysteme

180 .. - 180 ° östliche/westliche Länge

90 .. - 90 ° nördliche/südliche Breite

Oracle Spatial und Oracle MAPS

Hands-On Workshops

Bernhard Fischer-Wasels (bernhard.fischer-wasels@oracle.com)

Haitham Zyadeh (haitham.zyadeh@oracle.com)

Rainer Meisriemler (rainer.meisriemler)

Carsten Czarski (carsten.czarski@oracle.com)

ORACLE Deutschland GmbH

Quelle der folgenden Folien

Oracle Spatial: OGC Simple Features

Geometrische Elemente

Geodaten-Tabelle erstellen

1. Tabelle anlegen

- SDO_GEOMETRY wie jeden anderen Datentyp verwenden
- Empfehlung: Nur eine SDO_GEOMETRY-Spalte

```
CREATE TABLE GEO_KONTINENTE(
    "AREA_ID" NUMBER,
    "AREA_NAME" VARCHAR2(20 BYTE),
    "FEATURE_TYPE" CHAR(9 BYTE),
    "GEOMETRY" SDO_GEOMETRY
)
```

- Geodaten können sofort gespeichert werden
- Indexerstellung allerdings noch nicht möglich: Schritt 2

Geodaten-Tabelle erstellen - 2

2. Spatial-Metadaten eintragen

(Deklaration, welche Geodaten gespeichert werden)

- Koordinatensystem
- Mögliche räumliche Ausdehnung

```
insert into user sdo geom metadata values (
  'GEO KONTINENTE',
  'GEOMETRY',
 sdo dim array(
                                      Name der Tahelle
    sdo_dim_element('X',-180
                             Informationen zu den
    sdo_dim_element('Y',-90,
                             m Längengrade:
  ),
                               Breitengrade:
 8307
                               -90
                                      = Südpol
                               Koordinatensystem:
                               8307 = WGS 84
```

Geodaten-Tabelle erstellen - 3

3. Index erstellen

- CREATE INDEX-Kommando
- Spalte vom Typ SDO_GEOMETRY angeben
- Indextype MDSYS.SPATIAL_INDEX angeben

```
CREATE INDEX IDX_GEODATEN
ON GEO_KONTINENTE(GEOMETRY)
INDEXTYPE IS MDSYS.SPATIAL_INDEX
```

– fertig!

Spatial Index

Aufbau des R-Tree-Index

Wie groß ist Deutschland?

```
SQL> select sdo_geom.sdo_area(
2    geometry, 1, 'unit=sq_km'
3    ) "Fläche km²"
4    from geo_staaten e
5    where feature_name='GERMANY';

Fläche km²

------
356644,105

1 Zeile wurde ausgewählt.
```


Wie lang ist die deutsche Grenze?

```
SQL> select sdo geom.sdo length(
       geometry, 1, 'unit=km'
                                          Einheit (km)
  3 ) "Länge km"
  4 from geo_staaten e
  5 where feature name='GERMANY';
Länge km
                                                  3 5 mm
5845,59665
                                   Länge des Polygonzugs,
                                   der Deutschland
1 Zeile wurde ausgewählt.
                                   repräsentiert; nicht
                                   gleich der "offiziellen"
                                   Länge der Grenze
```


Welche Bundesländer grenzen an die Niederlande?

```
SQL> select bl.feature_name

2  from geo_staaten st, geo_laender bl what is the status of the status
```

Hmmm ... das stimmt aber nicht so ganz ...

Die Grenze im Detail ... und vergrößert ... Das ist die Praxis: Die Daten (hier: Demodaten) sind nicht immer so genau ...

Welche Bundesländer grenzen an die Niederlande?

```
SQL> select bl.feature_name

2 from geo_staaten st, geo_laender bl where

3 st.feature_name='NETHERLANDS' and

4 sdo_relate(

5 bl.geometry, st.geometry, 'mask=anyinteract'

6 )= 'TRUE'

Welche Bundesländer
hängen irgendwie
("anyinteract") mit den
Niedersachsen
Nordrhein-Westfalen

Niederlanden zusammen?
```

Kombinierte Abfragen

Welche Kunden mit Umsatz sind in Brandenburg?

```
SQL> select name, umsatz
  2 from customers c, geo laender gl
  3 where sdo relate(
  4 c.geometry, gl.geometry, 'mask=anyinteract'
  5 ) = 'TRUE'
  6 and gl.feature name='Brandenburg'
  7 and umsatz is not null and umsatz > 0
NAME
                                   UMSATZ
Freie Tanke
                                     4876
Marhoul
                                     4798
Tankstelle Schönefeld
                                     4598
Tankstelle Dreieck Havelland
                                     7896
```

Kombinierte Abfragen - 2

 Welche Kunden wohnen im 50 km-Umkreis um Berlin?

Räumliche Abfragen

Wie lauten die Koordinaten von Deutschland?

Geocoding mit Oracle Spatial

Umwandlung von Adressen in Koordinaten ...
 ... und rückwärts (REVERSE GEOCODING)

PL/SQL Paket sdo_gcdr

 ID	STRASSE	PLZ	ORT
	Riesstr. 25 Marienplatz Notkestr.	80992 20000	München München Hamburg

Geocoding mit Oracle Spatial

- Umwandlung von Adressen in Koordinaten ...
 - ... und rückwärts (REVERSE GEOCODING)
- PL/SQL Paket sDo_gcdr

Geodaten: Visualisierung ...?

.ongitu	ide / Latitude (DHDN)		
ID	Name	Länge	Breite
116	Fritz Muster	6°50'58"	49°32'20'
604	Mike Müller	6"38'42"	50°03'21'
2623	Eifel Power II	6°46'46"	50°03'34'
2637	Carsten Czarski	6°50'40"	49°59'39'
2216	Wowereit	13°17'05"	52°25'31'
4158	Klaus Weber	7°13'31"	49°59'10'
4009	Karl Hunsrück	6°57'18"	49°51'35'
5503	Gerolsteiner Sprudel GmbH	6°34'05"	50°11'26'
4990	Der Säubrenner	6°51'07"	49°58'16'
7512	Georg Meistermann	6°44'45"	49°38'37'
6552	Christian Ude	11"34'48"	48°08'56'
7760	Alfons Schommer	6°48'34"	49°30'17'
7761	Heinz Becker	7°01'44"	49°14'55'
7532	Jürgen V.	6°27'51"	49°51'08'
9252	Karlo Umsatz	7°59'53"	52°16'32'

Visualisierung der Geodaten Oracle MapViewer

- Karten-Rendering für ...
 Vektordaten, Rasterdaten, Netzwerke, Topologien
- mehrere Layer: Base map, features of interest (FOI)
- Architektur: J2EE
 - Lizenz: Oracle Application Server: Java Edition

Map Viewer: Einbindung in APEX

http://blog.whitehorses.nl/2009/10/04/integrating-google-maps-in-oracle-apex/http://www.oracle.com/webfolder/technetwork/de/community/apex/tipps/geo-1/index.html

Beispiel

Grundstücksflächen

create TABLE grundstücke

(id number (5) primary key, Bezeichnung varchar(29), Fläche sdo_Geometry);

insert into MDSYS.user_sdo_geom_metadata values('GRUNDSTÜCKE', 'FLÄCHE', mdsys.sdo_dim_array

(mdsys.sdo_dim_element('x', 0,120,1), mdsys.sdo_dim_element('y', 0, 120,1)), null);

SQL-Befehle

create index g_spatial_idx on grundstücke(Fläche) indextype is mdsys.spatial_index;

INSERT INTO Grundstücke

VALUES (1, 'meins', MDSYS.SDO_GEOMETRY (2003, NULL, NULL, NULL, NULL, NULL, NULL)

MDSYS.SDO_ELEM_INFO_ARRAY(1, 1003, 1),

MDSYS.SDO_ORDINATE_ARRAY(20,90,65,90,65,120,20,120,20,90)));

INSERT INTO Grundstücke

VALUES (2, 'Konstantin', MDSYS.SDO_GEOMETRY (2003, NULL, NULL,

MDSYS.SDO_ELEM_INFO_ARRAY(1, 1003, 1),

MDSYS.SDO_ORDINATE_ARRAY(65,90,80,90,100,100,90,120,65,120,65,90)));

INSERT INTO Grundstücke

VALUES (3, 'Katharina', MDSYS.SDO_GEOMETRY (2003, NULL, NULL,

MDSYS.SDO_ELEM_INFO_ARRAY(1, 1003, 1),

MDSYS.SDO_ORDINATE_ARRAY(20,90,5,50,25,40,45,50,75,70,80,90,20,90,20,90)));

SQL-Queries

select * from grundstücke g;

∯ ID		FLÄCHE
1	1 meins	[MDSYS.SDO_GEOMETRY]
2	2 Konstantin	[MDSYS.SDO_GEOMETRY]
3	3 Katharina	[MDSYS.SDO_GEOMETRY]

select g.bezeichnung from grundstücke m, grundstücke g where m.bezeichnung='meins' and sdo_relate(g.fläche,m.fläche, 'mask=touch')= 'TRUE';

	♦ BEZEICHNUNG
1	Konstantin
2	2 Katharina