MATH2022 Assignment 1

SID:530157791

April 1, 2024

1 Q1

In group G, for each element $\alpha \neq e$, there is a unique inverse α^{-1} such that $\alpha\alpha^{-1} = e(Inverse\ Element)$. Since G has an even number of elements, the total number of non-identity elements is odd. Which means that if we try to partition them into paris like (α, α^{-1}) , there must be at least 1 element can not be paired with a distinct element. The unpaired element must therefore be its own inverse, implying $\alpha = \alpha^{-1}$. For this α , it follows that $\alpha^2 = \alpha\alpha = e$

2 Q2

(a)

$$det(A) = -2 \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} + 4 \begin{vmatrix} 1 & 3 \\ 1 & 1 \end{vmatrix}$$
$$= -2 + 4 \cdot (-2)$$
$$= -10$$
$$= 0$$

Therefore, Matrix A is not invertible over \mathbb{Z}_5

(b)

$$\begin{bmatrix} 1 & 3 & 1 & 2 \\ 1 & 1 & 2 & 3 \\ 0 & 2 & 4 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 3 & 1 & 2 \\ 0 & 2 & 4 & 4 \\ 0 & 2 & 4 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 3 & 1 & 2 \\ 0 & 2 & 4 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since z can take any value in $Z_5 = 0, 1, 2, 3, 4$, and for each z, there is exactly 1 solution for x and y. Thus, there are 5 solutions for this system.

3 Q3

(a)

True. To do the conjugation $\beta^{-1}\alpha\beta$, we just simply replace every α_i in each cycle with $\alpha_i\beta$, it doesn't change the number of elements in a permutation.

(b)

False. If $C = \mathbf{0}$, the statement "If AC = BC, then A = B" still holds true when $A \neq B$.

(c)

True. We have $\det(A) = \det(A^T)$. If $A^T = -A$, then $\det(A) = \det(-A)$, and since $\det(-A) = (-1)^n \det(A)$ for an $n \times n$ matrix, where n = 3 in this case, it follows that $\det(A) = -\det(A)$ which indicates that $\det(A) = 0$.

4 Q4

Assume that the eigenvalue of eigenvector \mathbf{v} is λ , so that by the description above, we have:

$$A\mathbf{v} = \lambda \mathbf{v}$$

To prove that $B\mathbf{v}$ is also an eigenvector of A with the same eigenvalue λ as \mathbf{v} , we need to show that $A(B\mathbf{v}) = \lambda(B\mathbf{v})$.

Proof

$$A(B\mathbf{v})$$

$$= (AB)\mathbf{v}$$

$$= B(A\mathbf{v})$$

$$= B\lambda\mathbf{v}$$

$$= \lambda(B\mathbf{v})$$