Optimizing Nested Virtualization Performance Using Direct Virtual Hardware

SOSP'20

Jin Tack Lim & Jason Nieh

Nested Virtualization

- A technique to run a virtual machine (VM) inside a VM
- A key technology for cloud computing
 - Migrate workloads already having VMs to the cloud
 - Run OSes already leveraging virtualization in the cloud

Nested Virtualization Performance

- Many times slower compared to native execution
- Single-level virtualization performs close to native execution

Nested Virtualization Performance

- Many times slower compared to native execution
- Single-level virtualization performs close to native execution

Exit Multiplication

 A single exit from a nested VM results in multiple exits to the host hypervisor

Virtual I/O Device for Nested Virtualization

Sending data over network is expensive

Direct Virtual Hardware

- The host hypervisor directly provides virtual hardware to a nested VM
 - Only a single exit required
- The guest hypervisor configures the additional virtual hardware
- Transparent to a nested VM

Direct Virtual Hardware Benefits

- Performance improvement with no exit multiplication
- Interposition in the host hypervisor
- Software-only easy to deploy and scale

Direct Virtual Hardware Mechanisms on Intel x86

- Virtual-passthrough
- Virtual timer
- Virtual inter-processor interrupts (IPIs)
- Virtual idle

Virtual Passthrough

- Allow a nested VM to interact with the virtual I/O device provided by the host hypervisor
- Similar to passthrough, but with virtual I/O device instead of physical one

Virtual Timers

- Trapping instruction: programming timer (LAPIC timer)
- DVH solution: the host hypervisor provides Virtual LAPIC timer

Application Benchmarks

Application	Description
Netperf TCP_RR	Network latency
Netperf TCP STREAM	Network bandwidth
Netperf TCP MAERTS	Network bandwidth
Apache	Web server
Memcached	Key-Value store
MySQL	Database management
Hackbench	Scheduler stress

Experimental Setup

- Hardware
 - Intel Xeon Silver 4114, having VMCS shadowing
 - Intel X520-DA2 10Gb NIC
- Experiment configurations
 - 4-way SMP
 - KVM/QEMU, Linux
 - Virtio for virtual I/O devices

Application Performance

Application Performance

Application Performance

