IPv4 Overview

- Early protocol suite
- Universal

TCP/IP Protocol Stack

Internet Layer

Network Layer Overview

- Workhorse of TCP/IP protocol suite
- RFC 791
 - Can be downloaded from www.ietf.org
- Proposed in 1981
- Designed with inter-networking in mind

Unreliable

- No guarantee of packet delivery
- Best effort service
- Sends an ICMP message in case of certain errors, before dropping packets
- Reliability to be provided by higher layers

Connectionless

- Does not maintain state information of datagrams
- Each datagram is independent and can take different routes
- Datagrams can be delivered out of order

- Maximum datagram size = 64Kbytes
- Practical size (default size) = 1500 bytes
- Datagram may be fragmented as it passes through different network segments
 - Depends on DLL's max frame length

IPv4 Datagram Format

# Bits	4	4	8		16		16		3	13		8
	VERS	VERS HLEN Type of Service			Total Length		Identi- fication		ags	Frag Offset		TTL
# Bits	8		16		32	32			320			
	Protocol	rotocol He			Source IP Address		ination IP Idress		IP Options		D	ata

- Version field
 - 4 bits
 - Indicates the version of protocol
 - Currently version 4 is in use
 - Version 5 was an experimental real time stream protocol, not in use
 - Version 6 is being implemented now

- IHL
 - 4 bits
 - Indicates length of the header
 - Multiples of 32 bit words
 - Minimum value = 5 when no options present
 - Maximum header length = 60 bytes
 - ❖Why not 64 bytes?

- TOS: 8 bits
 - 3-bit precedence field (priority 0 to 7)
 - 4 TOS bits (only one bit can be set)
 - Minimize delay
 - Maximize throughput
 - Maximize reliability
 - Minimize monetary cost
 - Unused last bit (always = 0)
 - Most of routers ignore TOS

- Total length
 - 16 bits field
 - Total length of the IP packet in bytes, including header length
 - Limits the size of IP packet (MTU) to 64Kbytes
 - This field changes when packet is fragmented

- Identification
 - 16 bits
 - Uniquely identifies each packet
 - Helps in fragmentation and reassembly of the packets
 - All the fragments of a packet contain same Identification value

- Flags
 - 3 bits
 - Unused bit
 - ❖DF don't fragment
 - ❖MF more fragments
 - All the segments except the last fragment will have this bit enabled

- Fragment Offset
 - 13 bits
 - Indicates the position of fragment in the datagram
 - Maximum of 8K (8192) fragments per IP datagram

- TTL: 8 bits
 - Time-to-live
 - Limits the lifetime of the datagram in the network
 - Used to eliminate routing loops
 - Value set by the sender (normally 32 or 64)
 - Decremented by each en-route router
 - ICMP message sent to sender when value = 0

Protocol Field

- 8 bits
- Determines destination upper-layer protocol

- Header Checksum: 16 bits
 - Calculated for header only, does not cover data
 - ICMP, IGMP, UDP, TCP checksum covers data and header in their respective headers
 - 16 bit 1's complement sum after setting checksum field to 0
 - Re-calculated at each router
 - Datagram discarded if checksum is incorrect, no error message generated

- Source address: 32 bits
- Destination address: 32 bits
- Options
 - Security and handling restrictions
 - Record route, record timestamp
 - Loose source routing
 - Strict source routing

Internet Addresses

- Every node in the Internet should have a unique address
- 32 bit address in dotted decimal notation
 - W.X.Y.Z
 - Each decimal number = 8 bits
- Total of 2³² addresses

IP Address

- Address divided in two components
 - Network address
 - Host address
- Routing is done using network address
- Network-Host address boundary is determined by subnet mask

Types of IP Addresses

- Unicast address
- Multicast address
- Broadcast address
- Private address/Local address
- Public address/Global address

IP Address Classes

- Addresses are divided into various classes
 - Class A
 - Class B
 - Class C
 - Class D
 - Class E
 - CIDR (Classless InterDomain Routing)

Class A IP address

- First bit = 0
- Next 7 (8–1)bits for network address
- Last 24 bits for host address
- Address range
 - 0.0.0.0 to 127.255.255.255

Class B IP address

- First two bits = 10
- Next 14 (16-2) bits as network address
- Last 16 bits for host address
- Address range
 - 128.0.0.0 to 191.255.255.255

Class C IP address

- First three bits = 110
- Next 21 (24-3) bits as network address
- Last 8 bits for host address
- Address range
 - 192.0.0.0 to 223.255.255.255

Class D IP address

- First four bits = 1110
- Next 28 (32-4) bits as group address
- No network and host address
- Used as multicast address
- Common IP address for the group and not bound to an individual
- Address range
 - 224.0.0.0 to 239.255.255.255

Class E IP address

- First five bits = 11110
- Next 27 (32-5) bits reserved for future use
- Address range
 - 240.0.0.0 to 247.255.255.255

Special IP Address

- All 0's
 - 0.0.0.0
 - Used during initial booting by BOOTP, DHCP
- All 1's
 - 255.255.255.255
 - Indicates local broadcast

Special IP Address

- Netid.all 1's
 - Broadcast to a specific network
- 127.anything
 - Loopback
 - Does not go to the network

IP Address Allocation

- Address allocation is done by InterNIC/ICANN
 - Internet Network Information Centre
 - Internet Corporation for Assigned Names and Numbers
- Network address allocated by InterNIC
- Host address allocated by local network administrator

Subnets

- Host address can be further divided into subnet address and host address with the help of subnet mask
- Why?
 - When number of hosts are less
 - To structure the network
 - To reduce routing
 - To reduce/restrict broadcasts

Subnet Mask

- 32 Bit value
- Contains 'one' bits for network ID and subnet
 ID
- Contains 'zero' bits for host ID
- May not be contiguous 1s

Key Concepts

- Fragmentation
- Subnet Mask
- Classful and Classless IP addressing

Reading Assignment

- Download and read RFC 791
- Find out how does traceroute work?
- Find out type of address used in IIIT-H
- How does an IP address get allocated to a Network? Find out the process.
- Deadline before next class