循环群与生成组

定义 1 (循环群). 由一个元素 a 反复运算得到的群称为**循环群**,记作 $\langle a \rangle$. 这个元素称为群的**生成元**.

定理 1. 循环群都是交换群.

证明. 对任意
$$a^m, a^n \in \langle a \rangle$$
, $a^m a^n = a^{m+n} = a^n a^m$.

定理 2. 循环群的子群仍是循环群.

证明. 设 $G_1 < \langle a \rangle$, 设 $k = \min \{ m \in \mathbb{N}^+ \mid a^m \in G_1 \}$, 则 $\langle a^k \rangle \subset G_1$.

对任意 $a^n \in G_1$,设 n = qk + r,则 $a^n = a^{qk}a^r \in G_1$,于是 $a^r \in G_1$, $0 \leqslant r < k$,则 r = 0. 于是 $a_n \in \langle a^k \rangle$,则 $G_1 \subset \langle a^k \rangle$.

定理 3. 设循环群 $G = \langle a \rangle$. 若 |G| = m,则 $G \cong (\mathbb{Z}_m, +)$; 若 $|G| = \infty$,则 $G \cong (\mathbb{Z}_m, +)$.

证明. 设 $f: \mathbb{Z} \to G$, $n \to a^n$. 显然 f 是映射. 任意 a^n 都有 n 对应, 故 f 是满射. 对任意 $m, n \in \mathbb{Z}$,

$$f(m+n) = a^{m+n} = a^m a^n = f(m)f(n),$$

故 f 是满同态. 由群同态基本定理,

$$\mathbb{Z}/\ker f \cong G$$
.

而 $\ker f \triangleleft \mathbb{Z} = m\mathbb{Z}$,这里存在 $m \in \mathbb{N}$. 当 m = 0 时, $\ker f = \{0\}$,则 $\mathbb{Z} \cong G$. 当 m > 0 时, $\mathbb{Z}/\ker f = \mathbb{Z}/m\mathbb{Z} = \mathbb{Z}_m \cong G$.

定理 4. 设 |G| = m,则 G 是循环群的充要条件是对每一个正整数因子 $m_1|m$,都存在唯一的 m_1 阶子群.

命题 1. 有限群 G 中元素的阶是 |G| 的因子.

证明. 显然有限群中元素的阶有限,设 $a \in G$, |a| = d,则

$$\langle a \rangle = \left\{ e, a, a^2, \cdots, a^{d-1} \right\},\,$$

而 $\langle a \rangle < G, |\langle a \rangle| = d$,由 Lagrange 定理得证.

命题 2. 素数阶群必为循环群.

证明. 设有限群 |G| = p, p 是素数,则由命题1,对任意 $g \in G$, |g| = 1 或 p. 当 |g| = 1 时,g = e. 当 |g| = p 时, $|\langle g \rangle| = p = |G|$,而 $\langle g \rangle < G$,于是 $\langle g \rangle = G$,即 G 是由 g 生成的循环群.

定义 2 (生成的子群). 设 S 是群 G 的非空子集,包含 S 的最小子群称为 S **生成的子群**,记作 $\langle S \rangle$. 等价定义为包含 S 的所有子群的交.

定理 5. 设 S 是群 G 的非空子集, $S^{-1} = \{a^{-1} \mid a \in S\}$,则

$$\langle S \rangle = \left\{ x_1 x_2 \cdots x_m \mid x_i \in S \cup S^{-1} \right\}$$

证明. 设 $T = \{x_1 x_2 \cdots x_m \mid x_i \in S \cup S^{-1}\}$. 由于 $S \subset \langle S \rangle$, $S^{-1} \subset \langle S \rangle$, 于是 $S \cup S^{-1} \subset \langle S \rangle$, 则 $T \subset \langle S \rangle$. 下面证明 T 是子群.

设 $x_1x_2\cdots x_n, y_1y_2\cdots y_m\in T$,则 $y_i^{-1}\in S\cup S^{-1}$,于是

$$x_1x_2\cdots x_n(y_1y_2\cdots y_m)^{-1}=x_1x_2\cdots x_ny_m^{-1}y_{m-1}^{-1}\cdots y_1^{-1}\in T.$$

故 $T < \langle S \rangle$, 而 $\langle S \rangle$ 是包含 S 的最小子群, 故 T = S.

定义 3 (生成组). 若 $G = \langle S \rangle$, 则称 S 为 G 的生成组.

定义 4 (有限生成群). 若存在群 G 的有限个元素的生成组,则称 G 是**有限生成群**. 若 G 还是交换群,则称为**有限生成的交换群**,简称**有限交换群**.

注意到有限群是有限生成群,但有限生成群不一定是有限群,例如 $(\mathbb{Z},+)=\langle 1\rangle$.