

A Pseudo-Value Approach to Causal Deep Learning of Semi-Competing Risks

Stephen Salerno
Public Health Science, Biostatistics
Fred Hutchinson Cancer Center
December 16, 2024

Clinical Motivation

- Lung cancer has a 5-year survival rate of **20%** [3]
- Patients can experience recurrence, remission, metastasis prior to death [8]
- Cancer recurrence is an important endpoint in patients who have undergone curative treatment
- Further understanding **patient-specific** treatment efficacy is crucial for **individualized** care [5, 2, 7]

Approximately 1 in 5 cancer deaths are attributed to lung cancer.

Source: WHO International Agency for Research on Cancer

Statistical Motivation

- While non-fatal health events impact treatment decisions and disease management:
 - Overall survival is often studied without considering competing events
 - Composite endpoints such as recurrence-free survival are used [9]
 - The effects of treatments or risk factors may differ across disease states [1, 6]
- Data from the **Boston Lung Cancer Study**, a large cancer epidemiology cohort:
 - Observational studies provide a wealth of information on individualized risk factors
 - However, observational data suffer from confounding and covariate imbalance

Our Proposal

We propose a **deep learning** approach for estimating the **causal effect** of treatment on **disease recurrence** in the presence of **complex covariate relationships**

Semi-Competing Risks

Outcome Notation

Event Times:

- *T_{i1}*: Time to Recurrence
- T_{i2} : Time to Death
- *C_i*: Censoring Time

Observable Outcomes:

- $Y_{i1} = \min(T_{i1}, T_{i2}, C_i)$
- $\bullet \ Y_{i2} = \min(T_{i2}, C_i)$
- $\bullet \ \delta_{i1} = I[T_{i1} \leq \min(T_{i2}, C_i)]$
- $\delta_{i2} = I(T_{i2} \leq C_i)$

Outcomes observable only on upper wedge:

Potential Outcomes Framework

- Z_i = Causal variable of interest (Z_i = 1 for surgical resection and Z_i = 0 for other first-line treatment options)
- $X_i = p$ -vector of additional confounding variables
- T_{i1}^z : Potential time to recurrence had *i*th patient received treatment $z \in \{0, 1\}$
- Seek to estimate an average treatment effect (ATE; i.e., expected difference in potential outcomes)
- For time-to-recurrence, consider the average causal **risk difference** at time *t*:

$$ATE = \mathbb{E}\left[I\left(T_{i1}^{1} > t\right) - I\left(T_{i1}^{0} > t\right)\right]$$
(1)

7

Proposed Three-Stage Approach

- **Step 1.** Estimate **survival function** for time-to-recurrence
- Step 2. Calculate pseudo-survival probabilities at fixed times
- **Step 3.** Train **deep neural network** to estimate **causal target** (ATE)

Step 1: Estimate the Recurrence Survival Function

• Use a Clayton copula to jointly model the survival times for disease recurrence and death:

$$S(t_1, t_2) = [S_1(t_1)^{-\theta} + S_2(t_2)^{-\theta} - 1]^{-1/\theta},$$
(2)

• Yields an expression for the recurrence survival function that is always estimable:

$$S_1(t) = [S_*(t)^{-\theta} - S_2(t)^{-\theta} + 1]^{-\frac{1}{\theta}}$$
(3)

9

Step 2: Calculate Pseudo-Survival Probabilities

• Use the estimated $S_1(t)$ to jackknife **probability of no recurrence** at fixed time points (e.g., 1, 5 years):

$$\hat{S}_{i1}(t_j) = n \times \hat{S}_1(t_j) - (n-1) \times \hat{S}_1^{-i}(t_j)$$
 for times t_j ; $j = 1, ..., J$

- Represents **contribution** of *i*th individual in estimating $\mathbb{E}[S_1(t_i)]$ in the sample of *n* subjects
- $S_{i1}(t_j)$ is approximately independent of $S_{i'1}(t_j)$ for $i \neq i'$ as $n \to \infty$
- $\lim_{n\to\infty} E[S_{i1}(t_j) \mid Z_i, X_i] = S_1(t_j \mid Z, X)$ (important for this method)

10

Step 3: Train Causal S-Learner

- 3a. Fit model for $S_{i1}(t \mid X_i, Z_i)$ non-parametrically with a feed-forward, fully-connected S-Learner
- 3b. Predict potential outcomes $\hat{S}_{i1}(t \mid X_i, Z_i = z); z \in \{0, 1\}$
- 3c. Calculate $\hat{ATE} = n^{-1} \sum_{i=1}^{n} \{\hat{S}_{i1}(t \mid X_i, 1) \hat{S}_{i1}(t \mid X_i, 0)\}$

Encodes features into **lower representative space**, Ψ , w/ covariates **decorrelated** from treatment

Rationale for DNN in Causal Estimation

- Use the pseudo-survival probabilities as **targets** in a deep learning model
 - Similar to logistic model fit to $I(T_{i1} > t_i)$ if the data were **fully observed**
 - More natural to interpret than hazards ratios
 - No proportional hazards assumption
- Binary cross-entropy loss function, optimizing predictions for survival probabilities
- Faster convergence than MSE due to steeper gradient when prediction is far from truth

Simulation Settings

Setting 1: Similar Performance Expected

 T_{i1} , T_{i2} follow PH models with linear risks, independent covariates, and correlated errors

Risk function of 3 covariates, $Z_i \sim Bern(0.5)$, X_{i1} , $X_{i12} \sim TN(1, 0.5, 0, 2)$

Setting 2: Proposed Method Expected to Perform Better

 T_{i1} , T_{i2} follow PH models with non-linear risks, correlated covariates, and correlated errors

Risk function of 3 covariates, $X \sim TN_3(\mathbf{0}, \Sigma, -\mathbf{1}, \mathbf{1})$ where Σ is AR(1) and $Z = I(X_1 \ge 0)$, X_2 and X_3 squared

Compared bias and MSE in estimating ATE to parametric GEE with complementary log-log link across 50 independent datasets, also varying n (500 and 1,000), θ (0.5 and 2.0), and censoring rates (0% and 50%)

Simulation Setting 1

Methods Perform Similarly as Parametric Model is Correctly Specified

Average bias and MSE for estimated vs. true ATE (Setting 1)

Simulation Settings		Bia	as	MSE		
n	θ	Censoring	Parametric	Proposed	Parametric	Proposed
500	0.5	50%	0.0025	0.0060	0.0020	0.0063
500	0.5	0%	0.0025	0.0045	0.0022	0.0042
500	2.0	50%	0.0025	0.0057	0.0022	0.0053
500	2.0	0%	0.0018	0.0069	0.0019	0.0011
1000	0.5	50%	0.0018	0.0025	0.0013	0.0028
1000	0.5	0%	0.0023	0.0035	0.0014	0.0028
1000	2.0	50%	0.0019	0.0048	0.0014	0.0037
1000	2.0	0%	0.0018	0.0030	0.0012	0.0021

Simulation Setting 2

Proposed Outperforms Current Approach as Risk Function is Complex

Average bias and MSE for estimated vs. true ATE (Setting 2)

Simulation Settings		Bia	as	MSE		
n	θ	Censoring	Parametric	Proposed	Parametric	Proposed
500	0.5	50%	0.0483	0.0043	0.0076	0.0032
500	0.5	0%	0.0520	0.0030	0.0078	0.0031
500	2.0	50%	0.0444	-0.0083	0.0081	0.0045
500	2.0	0%	0.0476	-0.0030	0.0079	0.0046
1000	0.5	50%	0.0485	-0.0043	0.0036	0.0028
1000	0.5	0%	0.0518	-0.0034	0.0038	0.0024
1000	2.0	50%	0.0444	-0.0040	0.0046	0.0032
1000	2.0	0%	0.0475	-0.0035	0.0042	0.0033

BLCS Study Cohort

Dist. of Confounders Differs Across First-Line Trt. Groups

Characteristic*	Overall, N = 4,700 ¹	Other, N = 706 ¹	Surgery, N = 3,994 ¹	p-value ²
Stage at Diagnosis				< 0.001
Stage 1	3,007 (64%)	223 (32%)	2,784 (70%)	
Stage 2	753 (16%)	100 (14%)	653 (16%)	
Stage 3a	940 (20%)	383 (54%)	557 (14%)	
Age at Diagnosis (yrs.)	68 (61, 74)	69 (62, 77)	67 (61, 74)	< 0.001
Female	2,603 (55%)	367 (52%)	2,236 (56%)	0.077
Body Mass Index	26.6 (23.3, 31.1)	26.1 (22.8, 30.8)	26.7 (23.4, 31.1)	0.013
Smoking Status				0.003
Never Smoker	592 (13%)	65 (9%)	527 (13%)	
Former Smoker	2,821 (60%)	422 (60%)	2,399 (60%)	
Current Smoker	1,171 (25%)	205 (29%)	966 (24%)	
Smoker, Status Unknown	116 (2%)	14 (2%)	102 (3%)	
Pack-Years of Smoking	40 (19, 53)	40 (24, 61)	40 (18, 51)	< 0.001
EGFR Mutation	158 (3%)	22 (3%)	136 (3%)	< 0.001
Not Tested	3,805 (81%)	610 (86%)	3,195 (80%)	
KRAS Mutation	265 (6%)	17 (3%)	248 (6%)	< 0.001
Not Tested	3,805 (81%)	610 (86%)	3,195 (80%)	

¹ n (%); Median (IQR); ² Pearson's Chi-squared test; Wilcoxon rank sum test; Fisher's exact test * Subsequent models further adjusted for race, ethnicity, and education level

Distribution of BLCS Pseudo-Values

Distribution of pseudo-recurrence probabilities shifts from one to zero over time, moreso for other first-line treatments

Estimated Pseudo-Values

First-Line Treatment: Other Surgery

Fred Hutch Cancer Center

Risk Difference Attenuates over Time

Differently by Patient Subgroups

BLCS Results

- Overall difference in risk of recurrence between first-line therapies attenuates over time: 5.7% at 1 year vs. 1.9% at 5 years
- Stratified by sex risk difference is slightly higher among male patients, attenuates similarly
- Larger differences were observed when stratifying by smoking status
 - Treatment differences slightly higher among current smokers (5.9% at 1-year vs. 2.5% at 5-years)
 - Greater attenuation among former (range: 5.6% to 1.2%) and never smokers (range: 5.6% to 0.1%)

20

Conclusions

- Method to estimate the causal effect of treatment on NSCLC recurrence, respecting semi-competing risks
- Demonstrated the **performance** of this approach on simulated and real-world data
- Emphasized the importance of accounting for dependent censoring
- **Observed** differences in the efficacy of surgical resection compared to other first-line therapies, which attenuated over time in BLCS

Planned Future Work

- Develop an approach for quantifying uncertainty in our estimated ATE and drawing inference
- Extend this method to account for other sources of confounding such as immortal time bias
- Improve the **computational efficiency** and usability of software before making it **available** via an R package
- Consider additional target values such as restricted mean survival times

Questions?

Thank you to my collaborators:

- My advisor: Prof. Yi Li
- My BLCS Collaborators: Dr. David Christiani,
 Dr. Xinan Wang, Ms. Jui Kothari

Preprint:

Slides & Code:

References I

E. Amir, B. Seruga, R. Kwong, I. F. Tannock, and A. Ocaña.

Poor correlation between progression-free and overall survival in modern clinical trials: are composite endpoints the answer? *European Journal of Cancer*, 48(3):385–388, 2012.

- A. B. Ashworth, S. Senan, D. A. Palma, M. Riquet, Y. C. Ahn, U. Ricardi, M. T. Congedo, D. R. Gomez, G. M. Wright, G. Melloni, et al. An individual patient data metaanalysis of outcomes and prognostic factors after treatment of oligometastatic non–small-cell lung cancer. *Clinical lung cancer*, 15(5):346–355, 2014.
- B. C. Bade and C. S. D. Cruz. Lung cancer 2020: epidemiology, etiology, and prevention. Clinics in chest medicine, 41(1):1–24, 2020.
- B. Bauer and M. Kohler.

On deep learning as a remedy for the curse of dimensionality in nonparametric regression. *The Annals of Statistics*, 47(4):2261–2285, 2019.

M. D. Brundage, D. Davies, and W. J. Mackillop.

Prognostic factors in non-small cell lung cancer: a decade of progress.

Chest, 122(3):1037–1057, 2002.

- A. Chakravarty and R. Sridhara.

 Use of progression-free survival as a surrogate marker in oncology trials: some regulatory issues.

 Statistical Methods in Medical Research, 17(5):515–518, 2008.
- L. E. Gaspar, E. J. McNamara, E. G. Gay, J. B. Putnam, J. Crawford, R. S. Herbst, and J. A. Bonner. Small-cell lung cancer: prognostic factors and changing treatment over 15 years. *Clinical lung cancer*, 13(2):115–122, 2012.
- K. Inamura and Y. Ishikawa.

 Lung cancer progression and metastasis from the prognostic point of view.

 Clinical & experimental metastasis, 27(6):389–397, 2010.
- I. Jazić, D. Schrag, D. J. Sargent, and S. Haneuse.

 Freschuts & Ganton Ganton Freschuts & Ganton Ga

References II

T. Poggio, H. Mhaskar, L. Rosasco, B. Miranda, and Q. Liao.
Why and when can deep-but not shallow-networks avoid the curse of dimensionality: a review.

International Journal of Automation and Computing, 14(5):503–519, 2017.

Challenges We Address

- 1. Semi-competing risks introduce dependent censoring, where death precludes disease recurrence
- 2. Current approaches necessitate **complicated** loss functions or **strong assumptions** (e.g., PH)
- 3. Parametric or semi-parametric methods are limited in their ability to model **complex** risk functions
- 4. Little work integrating causal inference and machine learning in settings of dependent censoring

Key Assumptions

1. Consistency: $T_{i1} = T_{i1}^{Z_i}$ almost surely

An individual's potential outcome under their assigned treatment group is the outcome that will be observed

2. Positivity: $Z_i \in \{0, 1\} \ \forall X_i$

Every individual has a non-zero probability of being assigned to either treatment group

3. No Interference: T_{i1}^z is unaffected by the value of z for another subject, j

The potential outcomes of one individual are not affected by the treatment assignment of other individuals

4. Exchangeability: T_{i1}^1 , $T_{i1}^0 \perp Z_i \mid X_i$

There is no unmeasured confounding

5. Non-Informative Censoring: $T_{i1} \perp C_i \mid Z_i, X_i$

Subject's censoring time is independent of their failure time given their covariates

Proposed Three-Stage Approach

Step 1. Estimate survival function for time-to-recurrence

Step 2. Calculate pseudo-survival probabilities at fixed times

- Consistent for survival probability
- Circumvents need for complex loss function
- Does not require assumptions like proportional hazards

Step 3. Train deep neural network to estimate causal target (ATE)

1. Survival Function for Time-to-Recurrence

• Assume time-to-recurrence (T_1) and death (T_2) are cont. non-negative r.v.'s with **survival functions**:

$$S_1(t_1) = \Pr(T_1 > t_1); \quad t_1 \ge 0$$

 $S_2(t_2) = \Pr(T_2 > t_2); \quad t_2 \ge 0.$

- Distribution of T_1 is **non-parametrically identifiable** ONLY when recurrence ALWAYS precedes death
- The **joint survival function** of the event times is:

$$S(t_1, t_2) = Pr(T_1 > t_1, T_2 > t_2)$$

1 $S_1(t_1)$ θ 2 Jackknife 3 DNN ATE

Estimating $S_1(t_1)$ and θ

• Consider a Clayton copula model for T_1 , T_2 with dependence parameter $\theta \ge 0$:

$$S(t_1, t_2) = [S_1(t_1)^{-\theta} + S_2(t_2)^{-\theta} - 1]^{-1/\theta},$$
(4)

• Given (4) and $S_2(t_2)$, $S_1(t_1)$ is **monotonic** and **estimable**:

$$S_1(t) = [S_*(t)^{-\theta} - S_2(t)^{-\theta} + 1]^{-\frac{1}{\theta}},$$
 (5)

where $S_*(t)$ is the recurrence-free survival function

- $S_*(t)$ and $S_2(t)$ are estimable via KM, since both are always observable
- θ estimated via extension to concordance-based estimator of Fine et al. (2001)

1 \rightarrow $S_1(t_1)$ \rightarrow θ 2 Jackknife 3 DNN ATE

Estimating θ w/o Covariates

Fine et al. (2001) proposed a **concordance**-based estimator:

$$\hat{\theta} = \frac{\sum_{i < j} W(Y_{ij1}, Y_{ij2}) D_{ij} \Delta_{ij}}{\sum_{i < j} W(Y_{ij1}, Y_{ij2}) D_{ij} (1 - \Delta_{ij})} - 1$$

where (i, j) are independent observation pairs, and:

- $T_{ij1} = \min(T_{i1}, T_{j1}); T_{ij2} = \min(T_{i2}, T_{j2}); C_{ij} = \min(C_i, C_j)$
- $Y_{ij1} = \min(T_{ij1}, T_{ij2}, C_{ij}); Y_{ij2} = \min(T_{ij2}, C_{ij})$
- $D_{ij} = I(T_{ij1} < T_{ij2} < C_{ij}); \Delta_{ij} = I[(T_{i1} T_{j1})(T_{i2} T_{j2}) > 0]$
- $W_{a,b}^{-1}(x,y) = \frac{1}{n} \sum_{i} \{ I(Y_{i1} \ge \min(a,x), Y_{i2} \ge \min(b,y) \}$

Note: Δ_{ij} is estimable only when $D_{ij} = 1$ and a, b may be selected to dampen W for large x, y

Estimating θ w/ Covariates

With covariates Z, X, the copula model (4) is extended to

$$S(t_1, t_2 \mid Z, X) = [S_1(t_1 \mid Z, X)^{-\theta} + S_2(t_2 \mid Z, X)^{-\theta} - 1]^{-1/\theta}$$
(6)

- θ quantifies correlation of T_1 and T_2 conditional on Z, X
- Conditioning on Z, X, model (6) implies

$$S_1(t \mid Z, X) = [S_*(t \mid Z, X)^{-\theta} - S_2(t \mid Z, X)^{-\theta} + 1]^{-\frac{1}{\theta}},$$

 $1 \longrightarrow S_1(t_1) \longrightarrow \theta$ 2 Jackknife 3 DNN ATE

Estimating θ – 'Leave-One-In'

Propose a **conditional** $\hat{\theta}$ using nearest k neighbors to subject i:

- 1. Let $\tilde{X}_i = \{Z_i, X_i\}$ denote the (p+1)-vector of covariates for the *i*th patient
- **2.** Calculate distance between \tilde{X}_i and $\tilde{X}_{i'}$ for $1 \le i \ne i' \le n$: $||\tilde{X}_i \tilde{X}_{i'}||_2 = \{\sum_{j=1}^{p+1} (\tilde{x}_{ij} \tilde{x}_{i'j})^2\}^{1/2}$
- 3. For each i, identify k nearest neighbors, $\mathcal{N}(i, k)$
- 4. Estimate $\hat{\theta}^{(i)}$ based on subjects from $\mathcal{N}(i,k)$ via $\hat{\theta}^{(i)} = \frac{\sum_{j,l \in \mathcal{N}(i,k);j < l} W\left(Y_{jl1},Y_{jl2}\right)D_{jl}\Delta_{jl}}{\sum_{j,l \in \mathcal{N}(i,k);j < l} W\left(Y_{jl1},Y_{jl2}\right)D_{jl}\left(1-\Delta_{jl}\right)} 1$
- **5.** Estimate $\hat{\theta}$ via $\hat{\theta} = n^{-1} \sum_{i=1}^{n} \hat{\theta}^{(i)}$

Fred Hutch Cancer Center

Example $\hat{\theta}$ Calculation

2. Pseudo-Survival Probabilities

Interested in the risk difference at a given time point, want a model that reflects this:

- Common approaches (e.g., Cox model) impose structure across all time points (e.g., proportional hazards)
- However, treatment efficacy of a may change over time
- Pseudo-values are an intuitive alternative

Jackknife Pseudo-Values

- Probability of **no recurrence** by time t_j , j = 1, ..., J, is $S_1(t_j) = \Pr(T_1 > t_j)$
- Pseudo-survival probability for ith individual at time t_i :

$$\hat{S}_{i1}(t_j) = n \times \hat{S}_1(t_j) - (n-1) \times \hat{S}_1^{-i}(t_j)$$

where $\hat{S}_1(t_i)$ and $\hat{S}_1^{-i}(t_i)$ are estimates of $S_1(t_i)$ using all n subjects and excluding the ith subject

- Represents contribution of *i*th individual in estimating $\mathbb{E}[S_1(t_i)]$ in the sample of *n* subjects
- $\hat{S}_i(t)$ then used as **response**, similar to logistic model fit to $I(T_{i1} > t_j)$ if the data were **fully observed**

Example Calculation

Example pseudo-values for two individuals.

Observation		Simulated Outcomes				Treatment	Estimated
ID	t	<i>Y_{i1}</i>	D _{i1}	Y _{i2}	D _{i2}	Z_i	Pseudo-Values
1	0.2	0.3991	1	0.4054	1	0	1.0302
1	0.4	0.3991	1	0.4054	1	0	-0.3260
1	0.6	0.3991	1	0.4054	1	0	0.1765
1	8.0	0.3991	1	0.4054	1	0	0.0968
1	1.0	0.3991	1	0.4054	1	0	0.0496
2	0.2	1.0401	0	1.0401	0	1	1.0302
2	0.4	1.0401	0	1.0401	0	1	1.1761
2	0.6	1.0401	0	1.0401	0	1	1.3082
2	8.0	1.0401	0	1.0401	0	1	1.4430
2	1.0	1.0401	0	1.0401	0	1	1.5688

Fred Hutch Cancer Center

Some Useful Properties

- 1. Survival probabilities are more natural to interpret than hazards ratios
- **2.** $S_{i1}(t_i)$ is approximately independent of $S_{i'1}(t_i)$ for $i \neq i'$ as $n \to \infty$
- 3. $\lim_{n\to\infty} E[S_{i1}(t_j) \mid Z_i, X_i] = S_1(t_j \mid Z, X)$ (important for this method)
- With (2) and (3), these pseudo-values can be used as a response variables in a deep learning framework
- Imputed outcome is more efficient for deep learning

3. Deep Learning

Deep learning mirrors how the brain functions:

- Neurons connected in a network of L layers,
 with k_l neurons in the lth layer
- Predictions based on *L*-fold **composite**:

$$F_L(\cdot) = f_L \circ f_{L-1} \circ \cdots \circ f_1(\cdot)$$
 where $(g \circ f)(\cdot) = g(f(\cdot))$

$$f_l(x) = \sigma_l(\mathbf{W}_l x + \mathbf{b}_l) \in \mathbb{R}^{k_{l+1}}$$

where σ_l is an activation function, \mathbf{W}_l are weights, and \mathbf{b}_L are biases

- > Allows for *non-parametric* estimation of risk functions
- > Circumvents the *curse of dimensionality* [4, 10]

Causal S-Learner

- 1. Fit model for $S_{i1}(t \mid X_i, Z_i)$ non-parametrically with a feed-forward, fully-connected S-Learner
- **2. Predict** potential outcomes $\hat{S}_{i1}(t \mid X_i, Z_i = z); z \in \{0, 1\}$
- 3. Calculate $\hat{ATE} = n^{-1} \sum_{i=1}^{n} \{ \hat{S}_{i1}(t \mid X_i, 1) \hat{S}_{i1}(t \mid X_i, 0) \}$

Fred Hutch Cancer Center

Advantages of Causal S-Learner

- DNNs encode informative features into lower representative spaces
- These **embeddings** make downstream supervised learning tasks easier
- S-Learning for causal estimation outputs Ψ , which produces a **representation** of the covariates **decorrelated** from the treatment
- For our **pseudo-value** approach, network output optimized under the **binary cross-entropy loss** function
 - Faster learning rate/convergence than MSE due to steeper gradient when prediction is far from truth
 - More natural interpretation than common loss functions in survival analysis

41

BLCS KM-Estimated Recurrence-Free Survival

BLCS Estimated θ

- Estimated θ using 'leave-one-in' extension to the concordance-based estimator
- Among all patients, estimated $\hat{\theta} = 5.60$, corresponding to a Kendall's τ value of 0.737
 - This suggests a high degree of correlation between recurrence and death
- Stratified estimates of θ differed across subgroups
 - E.g., by sex, estimated θ higher among females (5.93; $\tau = 0.748$) than males (4.85; $\tau = 0.708$)

43