

Regresní analýza II

4. seminář k předmětu Statistické metody v analýze dat 19.10.2022

Martina Šimková simkova.martinka @gmail.com

Shrnutí – možnosti detekce vlivných pozorování

- Grafická analýza XY bodový graf
- Lineární kombinace jednotlivých proměnných
 - Centrování, normování proměnných apod.
 - Normované proměnné: hodnota cca vyšší než -2 / 2
- Vzdálenosti objektů
 - Euklidovská, Normovaná, Mahalanobisova vzdálenost
 - Mahalanobisova vzdálenost: lze vypočítat přesné testové kritérium, přibližně jde o hodnotu vyšší než 12
- Analýza reziduí
 - Jacknife rezidua: hodnota cca nižší než -3 a vyšší než 3
- Matice H a její diagonální prvky = leverages: $h_{ii} > \frac{2p}{n}$
- Další koeficienty např. Cookovo D, DFBETA, DFFIT, ...

Nesplněné předpoklady KLRM

- Předpoklady KLRM:
 - Rezidua mají normální rozdělení
 - Nulová střední hodnota reziduí
 - Rezidua jsou nekorelovaná
 - Konstantní rozptyl reziduí

- Normalita
- Multikolinearita
- Heteroskedasticita
- Autokorelace

Normalita náhodné složky

indikuje nevhodný regresní model

H₀: normalita náhodné složky

H₁: nenormalita

- Identifikace a testy normality:
 - např. Shapiro-Wilkův test
- Příčiny nevhodného modelu:
 - přítomnost vlivných pozorování, zvolená špatná regresní funkce, multikolinearita, heteroskedasticita
 - rešení → odstranění odlehlých pozorování, jiná regresní funkce, výběr jiných proměnných
 - je možná také transformace proměnných (např. logaritmizace, transformace Boxe a Coxe atd.)

Multikolinearita

- = závislost v matici X (vysvětlujících proměnných X mezi sebou)
- zvyšuje rozptyly odhadů (výsledky t-testů mohou mylně ukazovat na nevýznamnost proměnných – včetně absolutního členu)
- věcná interpretace regresních parametrů nemusí dávat smysl
- velká citlivost na změny odhadů při malé změně dat (nerobustnost)
- nadhodnocení regresního součtu čtverců (některé proměnné zdají důležitější než opravdu jsou)
- Multikolinearitu musíme vždy řešit. Pokud bychom ji neřešili, nesprávně sestavíme model.
- Správnou identifikaci mohou zkomplikovat vlivná pozorování.

Detekce multikolinearity

Postupy:

- prozkoumat párové korelace mezi proměnnými X
- vypočítat determinant korelační matrice R(X) → nízké hodnoty ukazují na velmi silnou závislost
- prozkoumat vlastní čísla matice R(X) → malé hodnoty alespoň jednoho vlastního čísla (nenulové číslo až na 3. desetinném místě) identifikují silnou závislost
- vysoké hodnoty VIF (variance inflation factor) = diagonální prvky matice D = R(X)⁻¹
 → cca VIF > 5 je indikována multikolinearita
- index podmíněnosti matice R(X) odmocnina z podílu max a min vlastního čísla > 30 indikuje multikolinearitu
- vícenásobné korelační koeficienty mezi proměnnými v matici X
- Farrar-Glauber test, založený na statistice X²

Data:

usacities.csv

Zadání: V datovém souboru jsou některé zajímavé ukazatele za několik amerických měst. Modelujte standardním způsobem závislost úmrtnosti na všech ostatních šesti ukazatelích.

Ověřte pomocí několika kritérií, zda se v modelu vyskytuje multikolinearita vysvětlujících proměnných.

Možnosti odstranění multikolinearity

- 1. Jiný typ odhadu modelu, např. HŘEBENOVÁ REGRESE
 - neposkytuje nezkreslené odhady parametrů beta, avšak pomáhá překonat problém multikolinearity pomocí libovolné konstanty k:

$$\mathbf{b} = (\mathbf{X}^T \mathbf{X} + \mathbf{k} \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}$$

kde

....k je kladná konstanta (menší než 1, obvykle se udává menší než 0,3)

.... I je jednotková matice

- Kritika na volbu k subjektivní nebo pomocí nějakého kritéria → zkreslení
- 2. Vypuštění zbytečných vysvětlujících proměnných z regresního modelu

Data:

Cars.csv

Zadání: Minule jsme si ukázali vícenásobný regresní model pro závislost ceny auta (*Cena_prodej*) na proměnných: objem motoru (*Motor*), počet válců (*Valce*), výkon (*Horsepower*), spotřeba ve městě a na dálnici (*Mesto_MPG*, *Dalnice_MPG*), váha (*Vaha*) a délka (*Delka*). Nyní pomocí známých kritérií ověřte, zda se v tomto modelu vyskytuje multikolinearita vysvětlujících proměnných.

V případě výskytu použijte na tento model jako řešení multikolinearity hřebenovou regresi.

Ověřte kvalitu této regrese rozdělením dat na testovací (400 pozorování) a predikční množinu (zbytek).

Pokud nebude hřebenová regrese efektivní, zamyslete se nad vyloučením některých vysvětlujících proměnných z modelu.

Heteroskedasticita

- = porušení předpokladu o konstantním rozptylu náhodné složky (homoskedasticita)
- nepříznivě ovlivňuje zejména odhady směrodatných chyb a vypovídají schopnost diagnostických testů
- Testy pro identifikaci:
 - Bartlettův test
 - Levenův test
 - Breusch-Paganův test
 - Score Test
 - F Test

H₀: Homoskedasticita (rozptyl je konstantní)

H₁: Heteroskedasticita (rozptyl není konstantní)

Heteroskedasticita

Non-constant variance

Řešení heteroskedasticity

- VÁŽENÁ METODA NEJMENŠÍCH ČTVERCŮ
 - podmnožina Zobecněné MNČ
 - řešíme diagonální prvky → stanovíme váhy pro odhad parametrů b

$$\mathbf{b} = (\mathbf{X}^T \widehat{\mathbf{\Omega}}^{-1} \mathbf{X})^{-1} \mathbf{X}^T \widehat{\mathbf{\Omega}}^{-1} \mathbf{y}$$

- kde $\widehat{\Omega}$ je odhad matice rozptylů
- metod, jak stanovit váhy je několik, např. lze vytvořit regresní model závislosti absolutní hodnoty reziduí na vyrovnaných hodnotách – vahou pak bude převrácená hodnota kvadrátu vyrovnaných hodnot tohoto vytvořeného váhového modelu
 - vahovy.model <- Im(abs(regresni.model\$residuals) ~ regresni.model\$fitted.values)
 - vaha <- 1/(vahovy.model\$fitted.values^2)</p>

Data:

usacities.csv

Zadání: Otestujte pomocí známých testů, zda model z Příkladu 1 je homoskedastický.

V případě že není, použijte váženou metodu nejmenších čtverců k odhadu parametrů modelu.

Data:

Cars.csv

Zadání: Otestujte pomocí známých testů, zda model z předchozího Příkladu 3 (po vyloučení všech korelovaných proměnných) je homoskedastický.

V případě že není, použijte váženou metodu nejmenších čtverců k odhadu parametrů modelu.

Autokorelace

- = korelace náhodné složky v čase (pouze u časových dat)
- způsobuje:
 - ztrátu vydatnosti odhadu i asymptotickou vydatnost odhadu regresních parametrů → odhady směrodatných chyb jsou vychýlené
 - Index determinace je nadhodnocený
 - t-testy jsou slabé
 - rezidua jsou podhodnocená
- Autokorelace prvního řádu:
 - i-tá hodnota náhodné složky závisí na předchozích hodnotách této složky a na jiné chybě (tzv. bílém šumu)

Testy pro identifikaci autokorelace prvního řádu

- Autokorelační funkce reziduí
- Breusch-Godfreyův test
- Durbin-Watsonův test

H₀: nulová hodnota koeficientu autokorelace = autokorelace není

H₁: autokorelace je

- Testové kritérium **DW**, která nabývá hodnot 0 až 4, symetrické kolem 2
 - DW = 2 → koeficient autoregrese = 0, jinak je třeba porovnat DW se spočtenou dolní a horní mezí, kdy lze vyloučit či přijmou hypotézu o nekorelovanosti.
 - DW < 2, tak lze čekat kladný koeficient autoregrese
 - DW > 2, koeficient autoregrese bude záporný
- Řešení: vážená metoda nejmenších čtverců

$$\mathbf{b} = (\mathbf{X}^T \widehat{\mathbf{\Omega}}^{-1} \mathbf{X})^{-1} \mathbf{X}^T \widehat{\mathbf{\Omega}}^{-1} \mathbf{y}$$

PŘÍKLAD 5 - AKTIVITA

Data:

USArrests.csv → balíček integrovaný v Rku → data("USArrests")

- Zadání: Datový soubor obsahuje statistiky kriminality v USA. Obsahuje čtyři proměnné:
 - Murder: Počet zatčení za vraždu (na 100 000 obyvatel)
 - Assault: Počet zatčení za násilná přepadení (na 100 000 obyvatel)
 - UrbanPop: Procento městské populace
 - Rape: Počet zatčení za znásilnění (na 100 000 obyvatel)

Odhadněte, zda velikost populace ve městech lze vysvětlit pomocí ukazatelů kriminality. Postup jako vždy: sestavení regresního modelu, exploratorní analýza dat, testy normality náhodné složky, multikolinearity vysvětlujících proměnných, heteroskedasticity náhodné složky. Okomentujte postupy, závěry a zapište výsledný model regresní rovnicí.

Shrnutí – základní problémy regresního modelu

- Nevýznamný F-test
 - Řešení → zvolit jiný model
- Nevýznamné t-testy
 - Řešení → zvolit jiný model či zkusit stávající bez nevýznamných proměnných, odstranění odlehlých pozorování
- Nevýznamná konstanta b₀ → hlubší problém, nejspíše multikolinearita
 - Řešení → odstranit některé proměnné, které jsou lineárně závislé na jiných vysvětlujících proměnných či sloučit proměnné (metody shlukové či faktorové analýzy)
- Nenormalita náhodné složky → špatný model (neodstraněn trend), přítomnost odlehlých pozorování
 - Řešení → transformace proměnných (např. logaritmizace, Box a Cox atd.), odstranění odlehlých pozorování, zvolit jiný model

26.10.2022 – Průběžný test 1 – 15 bodů

- Druhá polovina semináře: cca 18:30 20:00
- Zadán datový soubor, odpovědi na papír
- Co umět?
 - Deskriptivní statistika
 - Standardizace proměnných
 - Lineární transformace proměnných
 - Vzdálenosti objektů
 - Detekce a vyloučení vlivných pozorování
 - Testy normality
 - Tvorba základních regresních modelů
 - Analýza reziduí
 - Ověření předpokladů KLRM
 - Řešení multikolinearity
 - Řešení heteroskedasticity

Dotazy?

UNICORN UNIVERSITY