Course Progression

Flight Planning
Weight and Balance
Pre-Flight
Take-Off Roll

Ground Effect Landing Roll

FIGURE 4-8.—Pressure altitude and density altitude chart.

See pages 359 – 361 Equations 6.85, 6.86 and 6.90 Total takeoff distance

Figure 6.12 Illustration of ground roll s_g , airborne distance s_a , and total takeoff distance.

EXAMPLE: 40-knot wind at 30° angle

- 1) 30° angle between wind and runway
- (2) 40 knots total wind velocity
- (3) 20 knot crosswind component
- (4) 35 knot headwind component

Fig. 8-34. Wind Component Chart

Key Weight Components in an Airplane

<u>Empty weight (Wempty)</u>. The basic empty weight of the airplane which includes the structure, gear, communication equipment and all basic fluid except useable fuel.

Fuel weight (W_{fuel}). The weight of the fuel in the fuel tanks

<u>Crew weight (Word)</u>. The crew comprises the people necessary to operate the airplane in flight.

<u>Payload weight (W_{payload})</u>. The payload is what the airplane is intended to transport i.e. passengers, baggage, freight, etc. If the airplane is intended for military combat use the payload includes bombs, rockets flares, bullets and other disposable ordnance.

Airplanes that are overloaded will have REDUCED performance

- •Higher stall **speed**
- •Higher takeoff **speed** and longer takeoff run
- •Poor climb performance, angle and rate
- •Lower cruising altitude
- •Less maneuverability
- •Higher fuel consumption, less range and endurance
- •Reduce cruise **speed** for a given power setting
- •Higher landing **speeds** and longer landing distances
- •Greater braking requirements when stopping

FIGURE 3-4.—Airspeed indicator.

Center of Gravity

Reference Datum Locations

The MEAN AERODYNAMIC CHORD (MAC) is the average distance from the leading edge to the trailing edge of the wing. The MAC is specified for an aircraft by determining the average chord of an imaginary wing which has the same aerodynamic characteristics as the actual wing.

NOTE:

 For compartment loadings which result in only partial utilization of total compartment volume, load items must be distributed or secured in a manner to preclude:

BASIC EMPTY WEIGHT 9,226 LB BASIC MOMENT/100 25,823

Note Fuel Density is 6.8lb/gal What type of fuel is used?

OPERATING CONDITIONS	BE-11	BE-12	BE-13	BE-14	BE-15
BASIC EMPTY WT WEIGHT MOM/100	9,225 25,820	9,100 24,990	9,000 24,710	8,910 24,570	9,150 25,240
CREW WEIGHT	340	380	360	400	370
PASS AND BAG WEIGHT MOM/100	4,200 15,025	4,530 16,480	4,630 16,743	4,690 13,724	4,500 13,561
FUEL (6.8 LB/GAL) RAMP LOAD-GAL USED START AND TAXI REMAIN AT LDG	360 20 100	320 20 160	340 10 140	310 20 100	410 30 120

FIGURE 5.—Beech 1900 - Loading Limitations

Item	Weight	Arm	Moment
Empty Weight			
Pilot and Front Passenger			
I not and I font I assenger			
Rear Passengers			
Baggage			
Fuel			
ruei			
Oil (8 qts@ 7.5lb/gal)			
Totals			

MOMENT/1000 (POUNDS - INCHES)

Homework Problem

Using the data given during class determine the Basic Empty Weight and the Basic Moment Arm in inches for the PA-28-181.

Hint: use an Excel Spreadsheet to solve this problem.

Homework Problem

An aircraft was loaded with the load distribution given in Table 2, copy and complete the table. Find the centre of gravity at takeoff and plot it in the safety envelope provided. Comment whether the aircraft is safe to fly.

Table 2: Load Distribution in an Aircraft

Item	Weight (lb)	Arm (in)	Moment (lb-in)
Basic Empty Weight	1200	40	
Pilot and Front Passenger	420	36	
Passenger Rear seat	350	72	
Baggage	50	100	
Fuel	180	50	
Oil	10	-10	
Total			

Hint: use an Excel Spreadsheet to solve this problem.