

Towards Error Mitigation Applications for Oxford Nanopore Technologies

Advisors: Zhiyi Sun
Laurence Ettwiller

Genome Biology Division August 4, 2015

3GS Tech Overview

Platform	PacBio RS	ONT MinION
Cost (\$ K)	695	MAP (1 + .270/run)
Size (in ³ / lbs)	176,000 / 1,895	12 / <2
Throughput (Gb)	0.5	0.05
Run time (hrs)	3-4	48-72
Read length (bp)	10K	8K
Observed error	~11% (single-pass)	>20%
Quality score	Q40	<q10< td=""></q10<>

ONT Min ONT-specific Applications		
(++) portability	- Clinical microbiology	
(+) cost	- Precision medicine	
(+) direct interrogation	- In field <i>de novo</i> assembly	
() high error rates/	- Epigenomics	
PacBi - Structural variation analysis		
() size		

ONT Sequencing Mechanism

Project Concept

Primary:

Use ONT to analyze modified DNA to determine feasibility of pre-sequencing modification of substrates for 'error mitigation'.

- (1) Do base modifications affect ONT read distributions?
- (2) Can modifications produce more easily distinguishable signal patterns?

Secondary:

- Assess computational tools available for ONT data
- Build pipeline for future ONT data processing/ analysis

M and U give different distributions

M positively correlated with error

More Recent Developments

Simpson JT, Workman RE, Zuzarte PC, David M, Dursi LJ, Timp W. 2017. **Detecting DNA cytosine methylation using nanopore sequencing.** *Nat Methods*, 14: 407–410. doi:10.1038/nmeth.4184.

More Recent Developments

Rand AC, Jain M, Eizenga JM,
Musselman-Brown A, Olsen HE,
Akeson M, Paten B. 2017.

Mapping DNA methylation with
high-throughput nanopore
sequencing. Nat Methods, 14:
407–410.
doi:10.1038/nmeth.4189.

