

EXAKATOH BY30B CTPAHЫ

Хакатон вузов страны

- 1. Правила участия.
- 2. Регламент проведения соревнования.
- 3. Описание площадки соревнования.
- 4. Менторы.
- 5. Постановка задачи.
- 6. Формат входных и выходных данных.
- 7. Правила разработки программного кода.
- 8. Экспорт результатов организаторам.
- 9. Оценка результатов.
- 10. Оформление полученного решения.

Правила участия

- Участвовать в Соревновании могут только зарегистрированные участники.
- Команда должна состоять из 1-4 человек.
- Можно использовать любые доступные навыки:
 - аналитические методы анализа временных рядов;
 - методы машинного обучения для анализа временных рядов;
 - и так далее.
- Решение должно быть выполнено на языках C/C#/C++ или Python с использованием только свободно распространяемых библиотек.
- Команды должны выходить на связь с Ментором в заданное время.

С подробными правилами можно ознакомиться в соответствующем документе по ссылке: https://events.rn.digital/hack/it2023vuz/materials

Регламент проведения соревнования

29.09.2023 (пятница)

07:00 – открытие доступа к серверу Discord

08:00 – начало соревнования

10:00 / 15:00 / 19:00 – встреча с Менторами в Discord

30.09.2023 (суббота)

10:00 / 15:00 / 19:00 – встреча с Менторами в Discord

01.10.2023 (воскресенье)

10:00 / 15:00 / 19:00 – встреча с Менторами в Discord

02.10.2023 (понедельник)

07:00 – встреча с Менторами в Discord до **08:00** – окончание приема решений

03.10.2023 (вторник)

до **08:00** – загрузка презентаций **09:00-10:00** – сбор Участников на очных площадках с **10:00** – презентация решений и подведение итогов

Все временные отметки указаны по Московскому времени (GMT+3)

Описание площадки соревнования

- Ссылки на различные материалы по Соревнованию (исходные данные, презентации и др. вспомогательные материалы) будут распространяться в канале **#объявления**
- Все технические и организационные вопросы должны решаться через Менторов в канале #вопросы-менторам
- Для коммуникации с Менторами, Участникам предоставлены командные каналы в Discord #название_команды

Менторы - это ваши помощники

Можно задавать:

- Организационные вопросы.
- Вопросы по условию задачи.
- Вопросы по входным и выходным данным.
- Технические вопросы (работа с площадкой). •
- Вопросы по подготовке презентации.

Нельзя задавать:

- Вопросы по выбору и реализации методов и алгоритмов решения задачи.
- Вопросы по успехам других команд.

Рекомендуется донесение до Менторов ваших идей и особенностей предлагаемого подхода к решению задачи на протяжении всего Соревнования.

Постановка задачи

Основные входные данные	Результат участника	Способ проверки	
Набор точек с априорными исходными данными и наборы карт значений зависимых параметров, заданных в узлах регулярной 2D сетки	Вычислительный модуль кластеризации и прогноза 2D карт значений априорных исходных данных	Сопоставление результата с закрытым (полным) набором данных	

В некоторой области R на плоскости заданы несколько функций $Map_i(x,y)$, i=1,...,5 определяемых своими значениями на регулярной прямоугольной сетке. Известно, что все эти функции контролируются набором неизвестных взаимосвязанных функций $F_j(x,y)$, из которых в нескольких точках (необязательно совпадающих с узлами сетки) заданы значения только одной $F_1(x,y)$. Также известно, что распределения функций $F_j(x,y)$ характеризуются зональностью (зависят от координат (x,y)).

Необходимо найти значения неизвестной функции $F_1(x,y)$ во всех узлах сетки, оценить качество найденной аппроксимации.

Форматы входных данных

Участникам будет предоставлено несколько таблиц входных данных в формате XYZ.

X	Y	Z
43739	29467	0.17968729
43739	29492	0.18133451
43739	29517	0.18162172
72664	26692	0.16218455

Map_1.txt

Наборы карт зависимых параметров со значениями в узлах сетки: Мар_1.txt, Map_2.txt, Map_3.txt, Map_4.txt, Map_5.txt

X	Y	Z
44222.21	35600.9	14.97439625
60003.4	26172.72	14.07886825
44300.61	35291.79	14.26157036
51554.73	46308.47	16.90257265

Point_dataset.txt

Набор точек с априорными исходными данными, которые не обязательно совпадают с узлами сетки: Point_dataset.txt

Форматы выходных данных

Участникам будет предоставлен файл-шаблон выходных данных, который необходимо заполнить при помощи предоставленного Организаторами скрипта.

Файлы результата, заполненные не по шаблону, приниматься не будут.

X	Y	Z		X	Y	Z
43739	29467	NaN		43739	29467	z_1
43739	29492	NaN		43739	29492	Z_2
43739	29517	NaN		43739	29517	z_3
•••				***		•••
72689	26717	NaN		72689	26717	Z_N
Result_schedule.txt			Result.txt			
Файл-шаблон результата работы программы Команды		Файл результата работы программы Команды				

Правила разработки программного кода

- 1. Разрешается использовать только свободно распространяемое программное обеспечение.
- 2. Формат выходных данных определен шаблоном, приложенным к исходным данным.
- 3. Программный модуль должен работать автоматически без дополнительных ручных настроек.
- 4. Дополнительно используемые библиотеки должны прилагаться к архиву с написанным кодом и сопровождаться инструкцией по их установке.
- 5. Реализация программного кода должна быть проведена на языках C/C#/C++ или Python (3.10 и новее).

Экспорт результатов организаторам

libs

Загрузка решения будет осуществляться на ресурс https://cloud.bnipi.ru по ссылке, которая будет распространена в канале **#объявления**

Загрузка файлов в Решения участников **★** Выберите или перетащите файлы

Result.txt является результатом работы программы Команды

Пример instruction.txt:

lib_1.* устанавливается при помощи команды ... lib_2.* необходимо скачать с сайта и установить при помощи ...

Оценка качества решения

Решения участников будут оцениваться по следующей метрике (среднеквадратическое отклонение):

Метрика =
$$\sqrt{\sum_{k=1}^{N} \frac{(Z_k - \bar{Z}_k)^2}{N}},$$

где Z_k – решение Команды, \bar{Z}_k – эталонные (проверочные) данные, N – количество точек.

Оформление полученного решения

Участникам, которые будут приглашены для представления своего результата в финальной части Соревнования, будет выслана ссылка на шаблон презентации.

Данная презентация будет располагаться по ссылке на канале **#объявления**.

Основная задача выступления:

Рассказать о своей команде, описать ход и особенности решения поставленной задачи, а также дать обратную связь по соревнованию.

Удачи и до встречи в Discord!