ME 352-A

Lab 5: Static and Dynamic Balancing of Rotor

Part A: Static Balancing

Concept: When rotor is statically balanced, then the center of mass lies on the axis of rotation

<u>A Crosscheck</u>: Rotate the shaft to any angular position and leave it. If it is statically balanced then the shaft will retain its position.

Procedure:

- You are provided with 4 different masses(in from of bars) and thus "the shaft + 4 masses" constitutes your system
- b) As of now you assume that the center of mass of the bars is at equidistant from the axis of rotation.

- d) Orient the masses on the shaft in such a way that:
 - a. center of mass = $\sum m_i r_i = 0$
- e) For that randomly orient masses m_1 and m_2 (at θ_1 and θ_2) and then analytically solve for getting orientation of m_3 and m_4 (i.e. θ_3 and θ_4)
- f) Manually orient m3 and m4 at calculated angles θ_3 and θ_4 and then see if there is unbalance (there will be most probably).
- g) You then need to finely adjust the orientations of any two masses to make the system statically stable.

Report:

- Calculations (get signed by TA in lab)
- Report the analytical(calculated) and final(actual) orientations (get signed by TA in lab)
- Report the reason for doing these "fine adjustments" after coming up with analytical values
- Report the sources of error

<u>Caution:</u> Remove the belt from the pulley attached to the shaft; ensure smoothness in rotating the shaft Note: Bring geometric set and calculator in lab

("Part B" on next page)

Part B: Dynamic Balancing:

Concept: The rotor is dynamically balanced if net moment produced is zero

<u>A crosscheck:</u> When the rotor is dynamically balanced, the system will *not* undergo vibration when the rotor is rotated.

Procedure:

- a) Mount the belt on the pulley of the shaft
- b) Current state is that your system is "statically balanced" (from previous part)
- c) Considering the bearing near the belt as your origin, you need to come up with the axial position of masses on the shaft " a_i " such that:
 - a. Net Moment = $\sum a_i \times m_i r_i = 0$
- d) The procedure from this step onwards is *analogous* to that of Part A from steps "e" to "g" where the lengths of side of polygon is " $a_i m_i r_i$ " instead of " $m_i r_i$ ". To check the unbalance, rotate the rotor at various "rpms".

Report:

- Calculations (get signed by TA in lab)
- Report the theoretical(calculated) and final(actual) axial position " a_i " (get signed by TA in lab)
- Report the reason for doing these "fine adjustments" after coming up with analytical values
- Report the sources of error

<u>Caution:</u> Increase the rpm of motor gradually from zero
ENJOY THE LAB