

Justin Moore Salish Kootenai College

Overview

- Raspberry Pi Cluster Build
- Performance
- Performance Benchmark Tools
- Tuning
- Analysis
- Conclusion

Raspberry Pi Cluster – Model B

- CPU Broadcom ARM11 76JZF-S 700MHz
 - Can overclock to 1000MHz
- RAM 512MB
 - 448MB/64MB CPU/GPU

- Linux OS
- 10/100 BaseT Ethernet port
- Size of a credit card
- Price \$35

Image: http://commons.wikimedia.org/wiki/File:RaspberryPi.jpg#mediaviewer/File:RaspberryPi.jpg

Raspberry Pi Cluster - Setup

- 4 Pi cluster
- USB hub Manhattan 7 port USB 2.0
- SD card Kodak 8GB

- Router Western Digital N750
- NFS mounted external hard drive 500GB Buffalo Inc.

Performance – Floating Point Operations

- How we measure performance
 - Busy CPU? Speed?
- What is a floating point operation (FLOP)?
 - Arithmetic operation
 - Formats
 - Single
 - Double

- How do we measure FLOPS?
 - General Matrix Multiplication (GEMM)
 - High computational intensity with an increase in matrix size

Performance Benchmarking

- Single Raspberry Pi
 - BLAS Basic Linear Algebra Subprograms
 - ATLAS Automatically Tuned Linear Algebra Software
 - Auto tunes BLAS for any system
- Raspberry Pi Cluster
 - MPI Message Passing Interface
 - Standard API for inter-process communication
 - Facilitates parallel programming
 - MPICH 2-1.4.1p1
 - HPL High Performance LINPACK
 - Tuned MPI
 - Combined with ATLAS
- Wrote Custom code
 - ATLAS
 - Added parallel capability
 - Compared with HPL

MyGEMM – Naïve Implementation

Where N = Matrix Size

For i = 1 to N

For j = 1 to N

For k = 1 to N

C(i,j)=C(i,j)+A(i,k)*B(k,j)

MyGEMM – Naïve Pitfalls

- GEMM Naïve method inefficient
 - Two whole matrices are loaded in to memory
 - Cache is not used efficiently
 - Strides through the matrix

• If not Naïve, then what?

MyGEMM – Software Tuning

- What is block matrix multiplication
 - Matrix is split into smaller matrices/blocks
 - Shrinks matrix size to allow both A & B into fast memory

MyGEMM – Cluster Software Tuning

- How do we distribute the matrix multiplication?
 - MPI used to distribute blocks to nodes

 MyGEMM allows for experimentation on block size

Hardware Tuning

- Raspberry Pi allows CPU overclocking and memory sharing between CPU and GPU
- Memory
 - Memory is shared between CPU and GPU
 - 512MB total onboard memory
 - Up to 496MB can be used for CPU
 - More memory = larger matrices
- CPU Clock
 - Up to 1000 MHz from 700MHz

Computational Intensity

Single Precision, Single Node MyGemm w/ ATLAS

Blocking Efficiency

Single Precision, Single Node W/MyGemm

Clock Speed (MHz)

Single Precision, Single Node W/MyGemm & MPI

Performance Comparison

Single Node, W/ATLAS & MyGemm

Performance Comparison

Raspberry Pi Cluster, Double Precision, HPL W/ ATLAS & BLAS

Conclusion

- Performance is dependent on key factors
 - Matrix Size
 - Block Size
 - RAM size
 - CPU speed
- Top 500 1993
 - T#292
 - Tied with General Motors

Conclusion – Pi Cluster vs. Yellowstone

	Pi Cluster ARM11, 32 bit, Double Precision	Yellowstone Sandy Bridge Xeon, 64 bit, Double Precision
Power	15.6 Watts	1.4 MWatts
Performance	8 ₃ 6 MFLOPS	1.2 PFLOPS
Price	\$250.00	\$22,500,000.00
MFLOPS/W	54.8	875.3
MFLOPS/\$	3.4	57.2

Thank You

- Dr. Richard Loft
- Raghu Raj Prasanna Kumar
- Amogh Simha
- Stephanie Barr

Questions?