Homework 5

Madilyn Simons

1. Assume that if f(x), g(x), s(x), d(x), p(x) in S[x] satisfy

$$f(x) + g(x) = s(x)$$

$$f(x) - g(x) = d(x)$$

$$f(x)g(x) = p(x)$$

then, for any α in R,

$$f(\alpha) + g(\alpha) = s(\alpha)$$

$$f(\alpha) - g(\alpha) = d(\alpha)$$

$$f(\alpha)g(\alpha) = p(\alpha)$$

We can prove that ϕ_{α} is closed under addition as such:

$$\phi_{\alpha}(f) + \phi_{\alpha}(g) = f(\alpha) + g(\alpha) = s(\alpha) = \phi_{\alpha}(s)$$

$$\phi_{\alpha}(f) - \phi_{\alpha}(g) = f(\alpha) - g(\alpha) = d(\alpha) = \phi_{\alpha}(d)$$

We can prove that ϕ_{α} is closed under multiplication as such:

$$\phi_{\alpha}(f)\phi_{\alpha}(g) = f(\alpha)g(\alpha) = p(\alpha) = \phi_{\alpha}(p)$$

Thus, ϕ_{α} is a ring homomorphism.

2. Let $f(\alpha)$, $g(\alpha)$ be elements in $S[\alpha]$. This implies that f(x) and g(x) are elements of S[x]. Since S is a ring, its elements are closed under addition, implying that S[x] is closed under addition as well. Let f(x) + g(x) = s(x) and f(x) - g(x) = d(x). Since s(x) and d(x) are in S[x], $s(\alpha) = f(\alpha) + g(\alpha)$ and $d(\alpha) = f(\alpha) - g(\alpha)$ are elements of $S[\alpha]$ and $S[\alpha]$ is closed under addition.

Similarly, since S is closed under multiplication, we can assume p(x) = f(x)g(x) is an element of S[x]. Therefore $p(\alpha) = f(\alpha)g(\alpha)$ is an element of $S[\alpha]$ and S[alpha] is closed under multiplication.

Thus, $S[\alpha]$ is a subring of R.

3. Let $(a_0 + a_1x + ... + a_nx^n)$, $(b_0 + b_1x + ... + b_nx^n)$ be elements of $R_1[x]$.

We can prove G is closed under addition as such:

$$G((a_0 + a_1x + \dots + a_nx^n) + (b_0 + b_1x + \dots + b_nx^n))$$

$$= G(a_0 + a_1x + \dots + a_nx^n + b_0 + b_1x + \dots + b_nx^n)$$

$$= F(a_0) + F(a_1)x + \dots + F(a_n)x^n + F(b_0) + F(b_1)x + \dots + F(b_n)x^n$$

$$= (F(a_0) + F(a_1)x + \dots + F(a_n)x^n) + (F(b_0) + F(b_1)x + \dots + F(b_n)x^n)$$

$$= G(a_0 + a_1x + \dots + a_nx^n) + G(b_0 + b_1x + \dots + b_nx^n)$$

We can prove G is closed under multiplication as such:

$$G((a_0 + a_1x + \dots + a_nx^n)(b_0 + b_1x + \dots + b_nx^n))$$

$$= G(a_0b_0 + \dots + a_nb_mx^{n+m})$$

$$= F(a_0b_0) + \dots + F(a_nb_m)x^{n+m}$$

$$= F(a_0)F(b_0) + \dots + F(a_n)F(b_m)x^{n+m}$$

$$= (F(a_0) + F(a_1)x + \dots + F(a_n)x^n)(F(b_0) + F(b_1)x + \dots + F(b_m)x^m)$$

$$= G(a_0 + a_1x + \dots + a_nx^n)G(b_0 + b_1x + \dots + b_nx^n)$$

Therefore G is also a a ring homomorphism.