

Lecture 7-1: Ensemble Learning Overview

Pilsung Kang
School of Industrial Management Engineering
Korea University

Seni and Elder (2010)

Backgrounds

- Can we have a superior algorithm for all datasets?
 - ✓ Every algorithm scored best or next-to-best on at least two of the six data sets.

Backgrounds

- No Free Lunch Theorem
 - ✓ Can we expect any classification method to be superior or inferior overall?
 - ✓ No Free Lunch Theorem: No
 - ✓ If the goal is to obtain good generalization performance, there is no contextindependent or usage-independent reasons to favor one algorithm over others
 - ✓ If one algorithm seems to outperform another in a particular situation, it is a consequence of its fit to a particular pattern recognition problem
 - ✓ In practice, experience with a broad range of techniques is the best insurance for solving arbitrary new classification problems

Motivation

- However, if they are properly combined...
 - ✓ Every ensemble method competes well against the best of the individual algorithms

Opitz and Maclin (1999)

• Empirical study I: Single vs. Ensemble algorithms for 23 datasets

			Feat	ures		Neural	Network	
Data Set	Cases	Class	Cont	Disc	Inputs	Outputs	$\operatorname{Hiddens}$	Epochs
breast-cancer-w	699	2	9	-	9	1	5	20
credit-a	690	2	6	9	47	1	10	35
credit-g	1000	2	7	13	63	1	10	30
diabetes	768	2	9	-	8	1	5	30
glass	214	6	9	-	9	6	10	80
heart-cleveland	303	2	8	5	13	1	5	40
hepatitis	155	2	6	13	32	1	10	60
house-votes-84	435	2	-	16	16	1	5	40
hypo	3772	5	7	22	55	5	15	40
ionosphere	351	2	34	-	34	1	10	40
iris	159	3	4	-	4	3	5	80
kr-vs-kp	3196	2	-	36	74	1	15	20
labor	57	2	8	8	29	1	10	80
letter	20000	26	16	-	16	26	40	30
promoters-936	936	2	-	57	228	1	20	30
ribosome-bind	1877	2	-	49	196	1	20	35
satellite	6435	6	36	-	36	6	15	30
segmentation	2310	7	19	-	19	7	15	20
sick	3772	2	7	22	55	1	10	40
sonar	208	2	60	-	60	1	10	60
soybean	683	19	-	35	134	19	25	40
splice	3190	3	-	60	240	2	25	30
vehicle	846	4	18	-	18	4	10	40

- Empirical study 1: Single vs. Ensemble algorithms for 23 datasets
 - ✓ Error rate: the lower, the better

		Neur	al Netw	ork			C4	1.5	
				Boos	sting			Boos	sting
Data Set	Stan	Simp	Bag	Arc	Ada	Stan	Bag	Arc	Ada
breast-cancer-w	3.4	3.5	3.4	3.8	4.0	5.0	3.7	3.5	3.5
credit-a	14.8	13.7	13.8	15.8	15.7	14.9	13.4	14.0	13.7
credit-g	27.9	24.7	24.2	25.2	25.3	29.6	25.2	25.9	26.7
diabetes	23.9	23.0	22.8	24.4	23.3	27.8	24.4	26.0	25.7
glass	38.6	35.2	33.1	32.0	31.1	31.3	25.8	25.5	23.3
heart-cleveland	18.6	17.4	17.0	20.7	21.1	24.3	19.5	21.5	20.8
hepatitis	20.1	19.5	17.8	19.0	19.7	21.2	17.3	16.9	17.2
house-votes-84	4.9	4.8	4.1	5.1	5.3	3.6	3.6	5.0	4.8
hypo	6.4	6.2	6.2	6.2	6.2	0.5	0.4	0.4	0.4
ionosphere	9.7	7.5	9.2	7.6	8.3	8.1	6.4	6.0	6.1
iris	4.3	3.9	4.0	3.7	3.9	5.2	4.9	5.1	5.6
kr-vs-kp	2.3	0.8	0.8	0.4	0.3	0.6	0.6	0.3	0.4
labor	6.1	3.2	4.2	3.2	3.2	16.5	13.7	13.0	11.6
letter	18.0	12.8	10.5	5.7	4.6	14.0	7.0	4.1	3.9
promoters-936	5.3	4.8	4.0	4.5	4.6	12.8	10.6	6.8	6.4
ribosome-bind	9.3	8.5	8.4	8.1	8.2	11.2	10.2	9.3	9.6
satellite	13.0	10.9	10.6	9.9	10.0	13.8	9.9	8.6	8.4
segmentation	6.6	5.3	5.4	3.5	3.3	3.7	3.0	1.7	1.5
sick	5.9	5.7	5.7	4.7	4.5	1.3	1.2	1.1	1.0
sonar	16.6	15.9	16.8	12.9	13.0	29.7	25.3	21.5	21.7
soybean	9.2	6.7	6.9	6.7	6.3	8.0	7.9	7.2	6.7
splice	4.7	4.0	3.9	4.0	4.2	5.9	5.4	5.1	5.3
vehicle	24.9	21.2	20.7	19.1	19.7	29.4	27.1	22.5	22.9

Caruana and Niculescu-Mizil (2006)

- Empirical study 2: 8 algorithms on 11 datasets
 - ✓ Algorithms
 - SVM, ANN, Logistic regression (LOGREG), Naïve Bayes (NB), KNN, Random Forests (RF),
 Decision Trees (DT), Bagged trees (BAG-DT), Boosted trees (BST-DT), Boosted stumps (BST-STMP)

✓ Data sets

PROBLEM	#ATTR	TRAIN SIZE	TEST SIZE	%Poz
ADULT BACT COD CALHOUS COV_TYPE HS LETTER.P1 LETTER.P2 MEDIS	14/104 $11/170$ $15/60$ 9 54 200 16 16 63	5000 5000 5000 5000 5000 5000 5000 500	35222 34262 14000 14640 25000 4366 14000 14000 8199	25% 69% 50% 52% 36% 24% 3% 53% 11%
MG SLAC	124 59	5000 5000	$12807 \\ 25000$	$\frac{17\%}{50\%}$

- Empirical study 2: 8 algorithms on 11 datasets
 - √ Normalized score by datasets

MODEL	CAL	COVT	ADULT	LTR.P1	LTR.P2	MEDIS	SLAC	HS	$_{ m MG}$	CALHOUS	COD	BACT	MEAN
BST-DT	PLT	.938	.857	.959	.976	.700	.869	.933	.855	.974	.915	.878*	.896*
RF	PLT	.876	.930	.897	.941	.810	.907*	.884	.883	.937	.903*	.847	.892
BAG-DT	_	.878	.944*	.883	.911	.762	.898*	.856	.898	.948	.856	.926	.887*
BST-DT	ISO	.922*	.865	.901*	.969	.692 *	.878	.927	.845	.965	.912*	.861	.885*
RF	_	.876	.946 *	.883	.922	.785	.912*	.871	.891*	.941	.874	.824	.884
BAG-DT	PLT	.873	.931	.877	.920	.752	.885	.863	.884	.944	.865	.912*	.882
RF	ISO	.865	.934	.851	.935	.767*	.920	.877	.876	.933	.897*	.821	.880
BAG-DT	ISO	.867	.933	.840	.915	.749	.897	.856	.884	.940	.859	.907*	.877
SVM	PLT	.765	.886	.936	.962	.733	.866	.913*	.816	.897	.900 *	.807	.862
ANN	_	.764	.884	.913	.901	.791 *	.881	.932*	.859	.923	.667	.882	.854
SVM	ISO	.758	.882	.899	.954	.693 *	.878	.907	.827	.897	.900 *	.778	.852
ANN	PLT	.766	.872	.898	.894	.775	.871	.929*	.846	.919	.665	.871	.846
ANN	ISO	.767	.882	.821	.891	.785*	.895	.926 *	.841	.915	.672	.862	.842
BST-DT	_	.874	.842	.875	.913	.523	.807	.860	.785	.933	.835	.858	.828
KNN	PLT	.819	.785	.920	.937	.626	.777	.803	.844	.827	.774	.855	.815
KNN	_	.807	.780	.912	.936	.598	.800	.801	.853	.827	.748	.852	.810
KNN	ISO	.814	.784	.879	.935	.633	.791	.794	.832	.824	.777	.833	.809
BST-STMP	PLT	.644	.949	.767	.688	.723	.806	.800	.862	.923	.622	.915*	.791
SVM	_	.696	.819	.731	.860	.600	.859	.788	.776	.833	.864	.763	.781
BST-STMP	ISO	.639	.941	.700	.681	.711	.807	.793	.862	.912	.632	.902*	.780
BST-STMP	_	.605	.865	.540	.615	.624	.779	.683	.799	.817	.581	.906*	.710
DT	ISO	.671	.869	.729	.760	.424	.777	.622	.815	.832	.415	.884	.709
DT	_	.652	.872	.723	.763	.449	.769	.609	.829	.831	.389	.899*	.708
DT	PLT	.661	.863	.734	.756	.416	.779	.607	.822	.826	.407	.890*	.706
LR	_	.625	.886	.195	.448	.777*	.852	.675	.849	.838	.647	.905*	.700
LR	ISO	.616	.881	.229	.440	.763*	.834	.659	.827	.833	.636	.889*	.692
LR	PLT	.610	.870	.185	.446	.738	.835	.667	.823	.832	.633	.895	.685
NB	ISO	.574	.904	.674	.557	.709	.724	.205	.687	.758	.633	.770	.654
NB	PLT	.572	.892	.648	.561	.694	.732	.213	.690	.755	.632	.756	.650
NB	_	.552	.843	.534	.556	.011	.714	654	.655	.759	.636	.688	.481

- Empirical study 2: 8 algorithms on 11 datasets
 - √ Normalized score by various metrics

MODEL	CAL	ACC	FSC	LFT	ROC	APR	BEP	RMS	MXE	MEAN	OPT-SEL
BST-DT	PLT	.843*	.779	.939	.963	.938	.929*	.880	.896	.896	.917
RF	PLT	.872*	.805	.934*	.957	.931	.930	.851	.858	.892	.898
BAG-DT	_	.846	.781	.938*	.962*	.937*	.918	.845	.872	.887*	.899
BST-DT	ISO	.826*	.860*	.929*	.952	.921	.925*	.854	.815	.885	.917*
RF	_	.872	.790	.934*	.957	.931	.930	.829	.830	.884	.890
BAG-DT	PLT	.841	.774	.938*	.962*	.937*	.918	.836	.852	.882	.895
RF	ISO	.861*	.861	.923	.946	.910	.925	.836	.776	.880	.895
BAG-DT	ISO	.826	.843 *	.933*	.954	.921	.915	.832	.791	.877	.894
SVM	PLT	.824	.760	.895	.938	.898	.913	.831	.836	.862	.880
ANN	_	.803	.762	.910	.936	.892	.899	.811	.821	.854	.885
SVM	ISO	.813	.836 *	.892	.925	.882	.911	.814	.744	.852	.882
ANN	PLT	.815	.748	.910	.936	.892	.899	.783	.785	.846	.875
ANN	ISO	.803	.836	.908	.924	.876	.891	.777	.718	.842	.884
BST-DT	_	.834*	.816	.939	.963	.938	.929*	.598	.605	.828	.851
KNN	PLT	.757	.707	.889	.918	.872	.872	.742	.764	.815	.837
KNN	_	.756	.728	.889	.918	.872	.872	.729	.718	.810	.830
KNN	ISO	.755	.758	.882	.907	.854	.869	.738	.706	.809	.844
BST-STMP	PLT	.724	.651	.876	.908	.853	.845	.716	.754	.791	.808
SVM	_	.817	.804	.895	.938	.899	.913	.514	.467	.781	.810
BST-STMP	ISO	.709	.744	.873	.899	.835	.840	.695	.646	.780	.810
BST-STMP	_	.741	.684	.876	.908	.853	.845	.394	.382	.710	.726
DT	ISO	.648	.654	.818	.838	.756	.778	.590	.589	.709	.774
DT	_	.647	.639	.824	.843	.762	.777	.562	.607	.708	.763
DT	PLT	.651	.618	.824	.843	.762	.777	.575	.594	.706	.761
LR	_	.636	.545	.823	.852	.743	.734	.620	.645	.700	.710
LR	ISO	.627	.567	.818	.847	.735	.742	.608	.589	.692	.703
LR	PLT	.630	.500	.823	.852	.743	.734	.593	.604	.685	.695
NB	ISO	.579	.468	.779	.820	.727	.733	.572	.555	.654	.661
NB	PLT	.576	.448	.780	.824	.738	.735	.537	.559	.650	.654
NB	_	.496	.562	.781	.825	.738	.735	.347	633	.481	.489

Fernández-Delgado et al. (2014)

Empirical study 3: 179 algorithms on 121 datasets

Data set	#pat.	#inp.	#cl.	%Maj.	Data set	#pat.	#inp.	#cl.	%Maj.
abalone	4177	8	3	34.6	energy-y1	768	8	3	46.9
ac-inflam	120	6	2	50.8	energy-y2	768	8	3	49.9
acute-nephritis	120	6	2	58.3	fertility	100	9	2	88.0
adult	48842	14	2	75.9	flags	194	28	8	30.9
annealing	798	38	6	76.2	glass	214	9	6	35.5
arrhythmia	452	262	13	54.2	haberman-survival	306	3	2	73.5
audiology-std	226	59	18	26.3	hayes-roth	132	3	3	38.6
balance-scale	625	4	3	46.1	heart-cleveland	303	13	5	54.1
balloons	16	4	2	56.2	heart-hungarian	294	12	2	63.9
bank	45211	17	2	88.5	heart-switzerland	123	12	2	39.0
blood	748	4	2	76.2	heart-va	200	12	5	28.0
breast-cancer	286	9	2	70.3	hepatitis	155	19	2	79.3
bc-wisc	699	9	2	65.5	hill-valley	606	100	2	50.7
bc-wise-diag	569	30	2	62.7	horse-colic	300	25	2	63.7
bc-wisc-prog	198	33	2	76.3	ilpd-indian-liver	583	9	2	71.4
breast-tissue	106	9	6	20.7	image-segmentation	210	19	7	14.3
car	1728	6	4	70.0	ionosphere	351	33	2	64.1
ctg-10classes	2126	21	10	27.2	iris	150	4	3	33.3
ctg-3classes	2126	21	3	77.8	led-display	1000	7	10	11.1
chess-krvk	28056	6	18	16.2	lenses	24	4	3	62.5
chess-krvkp	3196	36	2	52.2	letter	20000	16	26	4.1
congress-voting	435	16	2	61.4	libras	360	90	15	6.7
conn-bench-sonar	208	60	2	53.4	low-res-spect	531	100	9	51.9
conn-bench-vowel	528	11	11	9.1	lung-cancer	32	56	3	40.6
connect-4	67557	42	2	75.4	lymphography	148	18	4	54.7
contrac	1473	9	3	42.7	magic	19020	10	2	64.8
credit-approval	690	15	2	55.5	mammographic	961	5	2	53.7
cylinder-bands	512	35	2	60.9	miniboone	130064	50	2	71.9
dermatology	366	34	6	30.6	molec-biol-promoter	106	57	2	50.0
echocardiogram	131	10	2	67.2	molec-biol-splice	3190	60	3	51.9
ecoli	336	7	8	42.6	monks-1	124	6	2	50.0

Data set	#pat.	#inp.	#cl.	%Maj.	Data set	#pat.	#inp.	#cl.	%Maj.
monks-2	169	6	2	62.1	soybean	307	35	18	13.0
monks-3	3190	6	2	50.8	spambase	4601	57	2	60.6
mushroom	8124	21	2	51.8	spect	80	22	2	67.1
${ m musk-1}$	476	166	2	56.5	spectf	80	44	2	50.0
musk-2	6598	166	2	84.6	st-australian-credit	690	14	2	67.8
nursery	12960	8	5	33.3	st-german-credit	1000	24	2	70.0
oocMerl2F	1022	25	3	67.0	st-heart	270	13	2	55.6
oocMerl4D	1022	41	2	68.7	st-image	2310	18	7	14.3
oocTris2F	912	25	2	57.8	st-landsat	4435	36	6	24.2
oocTris5B	912	32	3	57.6	st-shuttle	43500	9	7	78.4
optical	3823	62	10	10.2	st-vehicle	846	18	4	25.8
ozone	2536	72	2	97.1	steel-plates	1941	27	7	34.7
page-blocks	5473	10	5	89.8	synthetic-control	600	60	6	16.7
parkinsons	195	22	2	75.4	teaching	151	5	3	34.4
pendigits	7494	16	10	10.4	thyroid	3772	21	3	92.5
$_{ m pima}$	768	8	2	65.1	tic-tac-toe	958	9	2	65.3
${ m pb} ext{-}{ m MATERIAL}$	106	4	3	74.5	titanic	2201	3	2	67.7
$_{ m pb-REL-L}$	103	4	3	51.5	trains	10	28	2	50.0
$_{ m pb ext{-}SPAN}$	92	4	3	52.2	twonorm	7400	20	2	50.0
pb-T-OR-D	102	4	2	86.3	vc-2classes	310	6	2	67.7
$_{ m pb-TYPE}$	105	4	6	41.9	vc-3classes	310	6	3	48.4
planning	182	12	2	71.4	wall-following	5456	24	4	40.4
plant-margin	1600	64	100	1.0	waveform	5000	21	3	33.9
plant-shape	1600	64	100	1.0	waveform-noise	5000	40	3	33.8
plant-texture	1600	64	100	1.0	wine	179	13	3	39.9
post-operative	90	8	3	71.1	wine-quality-red	1599	11	6	42.6
primary-tumor	330	17	15	25.4	wine-quality-white	4898	11	7	44.9
$_{ m ringnorm}$	7400	20	2	50.5	yeast	1484	8	10	31.2
seeds	210	7	3	33.3	zoo	101	16	7	40.6
semeion	1593	256	10	10.2					

• Empirical study 3: 179 algorithms on 121 datasets

Rank	Acc.	κ	Classifier	Rank	Acc.	κ	Classifier
32.9	82.0	63.5	parRF_t (RF)	67.3	77.7	55.6	pda_t (DA)
33.1	82.3	63.6	rf_t (RF)	67.6	78.7	55.2	$elm_m (NNET)$
36.8	81.8	62.2	svm_C (SVM)	67.6	77.8	54.2	SimpleLogistic_w (LMR)
38.0	81.2	60.1	svmPoly_t (SVM)	69.2	78.3	57.4	MAB_J48_w (BST)
39.4	81.9	62.5	rforest_R (RF)	69.8	78.8	56.7	$BG_REPTree_w (BAG)$
39.6	82.0	62.0	elm_kernel_m (NNET)	69.8	78.1	55.4	SMO _{-w} (SVM)
40.3	81.4	61.1	svmRadialCost_t (SVM)	70.6	78.3	58.0	MLP_{-w} (NNET)
42.5	81.0	60.0	$svmRadial_t (SVM)$	71.0	78.8	58.23	$BG_RandomTree_w (BAG)$
42.9	80.6	61.0	C5.0-t (BST)	71.0	77.1	55.1	$mlm_R (GLM)$
44.1	79.4	60.5	$avNNet_t$ (NNET)	71.0	77.8	56.2	BG_J48_w (BAG)
45.5	79.5	61.0	$nnet_t (NNET)$	72.0	75.7	52.6	rbf_t (NNET)
47.0	78.7	59.4	$pcaNNet_t (NNET)$	72.1	77.1	54.8	fda_R (DA)
47.1	80.8	53.0	BG-LibSVM-w (BAG)	72.4	77.0	54.7	lda_R (DA)
47.3	80.3	62.0	$mlp_t (NNET)$	72.4	79.1	55.6	$svmlight_C (NNET)$
47.6	80.6	60.0	$RotationForest_w$ (RF)	72.6	78.4	57.9	AdaBoostM1_J48_w (BST)
50.1	80.9	61.6	RRF_t (RF)	72.7	78.4	56.2	BG_IBk_w (BAG)
51.6	80.7	61.4	RRFglobal_t (RF)	72.9	77.1	54.6	ldaBag_R (BAG)
52.5	80.6	58.0	MAB_LibSVM_w (BST)	73.2	78.3	56.2	BG_LWL_w (BAG)
52.6	79.9	56.9	$LibSVM_w$ (SVM)	73.7	77.9	56.0	$MAB_REPTree_w (BST)$
57.6	79.1	59.3	$adaboost_R (BST)$	74.0	77.4	52.6	RandomSubSpace_w (DT)
58.5	79.7	57.2	pnn_m (NNET)	74.4	76.9	54.2	$lda2_t (DA)$
58.9	78.5	54.7	$cforest_t (RF)$	74.6	74.1	51.8	$svmBag_R (BAG)$
59.9	79.7	42.6	$dkp_{-}C$ (NNET)	74.6	77.5	55.2	LibLINEAR _{-w} (SVM)
60.4	80.1	55.8	gaussprRadial_R (OM)	75.9	77.2	55.6	$rbfDDA_t (NNET)$
60.5	80.0	57.4	$RandomForest_w (RF)$	76.5	76.9	53.8	sda_t (DA)
62.1	78.7	56.0	$svmLinear_{-t}$ (SVM)	76.6	78.1	56.5	END _{-w} (OEN)
62.5	78.4	57.5	$fda_t (DA)$	76.6	77.3	54.8	$LogitBoost_w (BST)$
62.6	78.6	56.0	knn_t (NN)	76.6	78.2	57.3	$MAB_RandomTree_w (BST)$
62.8	78.5	58.1	$mlp_C (NNET)$	77.1	78.4	54.0	$BG_RandomForest_w$ (BAG)
63.0	79.9	59.4	RandomCommittee_w (OEN)	78.5	76.5	53.7	Logistic-w (LMR)
63.4	78.7	58.4	$Decorate_w (OEN)$	78.7	76.6	50.5	$ctreeBag_R (BAG)$
63.6	76.9	56.0	$mlpWeightDecay_t (NNET)$	79.0	76.8	53.5	$BG_Logistic_w$ (BAG)
63.8	78.7	56.7	rda_R (DA)	79.1	77.4	53.0	lvq_{-t} (NNET)
64.0	79.0	58.6	MAB_MLP_w (BST)	79.1	74.4	50.7	$pls_t (PLSR)$
64.1	79.9	56.9	$MAB_RandomForest_w$ (BST)	79.8	76.9	54.7	hdda_R (DA)
65.0	79.0	56.8	knn_R (NN)	80.6	75.9	53.3	MCC-w (OEN)
65.2	77.9	56.2	$multinom_t (LMR)$	80.9	76.9	54.5	mda_R (DA)
65.5	77.4	56.6	$gcvEarth_t (MARS)$	81.4	76.7	55.2	$C5.0Rules_t (RL)$
65.5	77.8	55.7	$glmnet_R (GLM)$	81.6	78.3	55.8	$lssvmRadial_t (SVM)$
65.6	78.6	58.4	MAB_PART_w (BST)	81.7	75.6	50.9	JRip-t (RL)
66.0	78.5	56.5	CVR_w (OM)	82.0	76.1	53.3	MAB_Logistic_w (BST)
66.4	79.2	58.9	$treebag_t (BAG)$	84.2	75.8	53.9	$C5.0$ Tree_t (DT)
66.6	78.2	56.8	BG-PART-w (BAG)	84.6	75.7	50.8	BG_DecisionTable_w (BAG)
66.7	75.5	55.2	mda_t (DA)	84.9	76.5	53.4	NBTree_w (DT)

Credit card scoring

✓ Mean error reduces with increasing degree of combination

• Netflix competition

✓ The final edge was obtained by weighting contributions from the models of up to 30 competitors

- The 10 main takeaways from MLConf SF (2016)
 - ✓ It's (still) not all about Deep Learning
 - ✓ Choose the right problem to solve, with the right metric
 - √ Fine tuning your models is 5% of a project.

- ✓ The trend towards personalization
- ✓ Manual curation of content is still used in practice
- ✓ Avoid the curse of complexity
- ✓ Learn the best practices from established players
- ✓ Everybody is using open source
- ✓ Make sure you have support from the executives

- Large Scale Visual Recognition Challenge
 - ✓ With given these images...

Russakovsky et al. (2015)

Large Scale Visual Recognition Challenge

✓ Tasks

Large Scale Visual Recognition Challenge (~ ILSVRC2015)

ImageNet Classification top-5 error (%)

Large Scale Visual Recognition Challenge (~ ILSVRC2015)

Conv (op#0)

Relu (op#1)

MaxPool (op#2)

LRN (op#3)

Conv (op#4)

Relu (op#5)

Conv (op#6)

Large Scale Visual Recognition Challenge (ILSVRC2016 ~)

√ 2016

Object detection (DET)[top]

Task 1a: Object detection with provided training data

Ordered by number of categories won

Team name		Number of object categories won	mean AP
CUlmage	Ensemble of 6 models using provided data	109	0.662751
Hikvision	Ensemble A of 3 RPN and 6 FRCN models, mAP is 67 on val2	30	0.652704
	Ensemble B of 3 RPN and 5 FRCN models, mean AP is 66.9, median AP is 69.3 on val2	18	0.652003

Object localization (LOC)[top]

Task 2a: Classification+localization with provided training data

Ordered by localization error

Team name	Entry description		Classification error
Trimps-Soushen	Ensemble 3	0.077087	0.02991
Trimps-Soushen	Ensemble 4	0.077429	0.02991
Trimps-Soushen	Ensemble 2	0.077668	0.02991
Trimps-Soushen	Ensemble 1	0.079068	0.03144

√ 2017

Object detection (DET)[top]

Task 1a: Object detection with provided training data

Ordered by number of categories won

Entry description		mean AP
submission4	85	0.731392
submission3	65	0.732227
submission2	30	0.723712
Ensemble_A	10	0.593084
Ensemble of DPN models	9	0.656932
Ensemble Model5	1	0.61022
Ensemble Model4	0	0.609402
Ensemble Model2	0	0.608299
Ensemble Model1	0	0.608278
Ensemble Model3	0	0.60631
	Entry description submission4 submission3 submission2 Ensemble_A Ensemble of DPN models Ensemble Model5 Ensemble Model4 Ensemble Model2 Ensemble Model1	categories won submission4 85 submission3 65 submission2 30 Ensemble_A 10 Ensemble of DPN models 9 Ensemble Model5 1 Ensemble Model4 0 Ensemble Model2 0 Ensemble Model1 0

Object localization (LOC)[top]

Task 2a: Classification+localization with provided training data

Ordered by localization error

Team name	Entry description	Localization error	Classification error
NUS- Qihoo_DPNs (CLS-LOC)	[E3] LOC:: Dual Path Networks + Basic Ensemble	0.062263	0.03413
Trimps-Soushen	Result-3	0.064991	0.02481
Trimps-Soushen	Result-2	0.06525	0.02481
Trimps-Soushen	Result-4	0.065261	0.02481
Trimps-Soushen	Result-5	0.065302	0.02481
Trimps-Soushen	Result-1	0.067698	0.02481

Theoretical Backgrounds: Model Space

Different model produce different class boundaries or fitted functions

• Suppose the data comes from the "additive error" model

$$y = F^*(\mathbf{x}) + \epsilon, \quad \epsilon \sim N(0, \sigma^2)$$

- $\checkmark F^*(\mathbf{x})$ is the target function that we are trying to learn, but do not really know
- √ The errors are independent and identically distributed
- Consider the estimation process

✓ The average fit over all possible datasets:

$$\bar{F}(\mathbf{x}) = E[\hat{F}_D(\mathbf{x})]$$

• The MSE for a particular data point

$$Err(\mathbf{x}_0) = E \left[y - \hat{F}(\mathbf{x}) | \mathbf{x} = \mathbf{x}_0 \right]^2$$

$$= E \left[\hat{F}^*(\mathbf{x}_0) + \epsilon - \hat{F}(\mathbf{x}_0) \right]^2$$

$$= E \left[\hat{F}^*(\mathbf{x}_0) - \hat{F}(\mathbf{x}_0) \right]^2 + \sigma^2$$

$$= E \left[\hat{F}^*(\mathbf{x}_0) - \bar{F}(\mathbf{x}_0) + \bar{F}(\mathbf{x}_0) - \hat{F}(\mathbf{x}_0) \right]^2 + \sigma^2$$

• The MSE for a particular data point

$$= E\left[\hat{F}^*(\mathbf{x}_0) - \bar{F}(\mathbf{x}_0) + \bar{F}(\mathbf{x}_0) - \hat{F}(\mathbf{x}_0)\right]^2 + \sigma^2$$

✓ By the properties of the expectation operator

$$= E\left[\hat{F}^*(\mathbf{x}_0) - \bar{F}(\mathbf{x}_0)\right]^2 + E\left[\bar{F}(\mathbf{x}_0) - \hat{F}(\mathbf{x}_0)\right]^2 + \sigma^2$$

$$= \left[\hat{F}^*(\mathbf{x}_0) - \bar{F}(\mathbf{x}_0)\right]^2 + E\left[\bar{F}(\mathbf{x}_0) - \hat{F}(\mathbf{x}_0)\right]^2 + \sigma^2$$

$$= Bias^{2}(\hat{F}(\mathbf{x}_{0})) + Var(\hat{F}(\mathbf{x}_{0})) + \sigma^{2}$$

- Properties of Bias and Variance
 - ✓ Bias²: the amount by which the average estimator differs from the truth
 - Low bias: on average, we will accurately estimate the function from the dataset
 - High bias implies a poor match
 - √ Variance: spread of the individual estimations around their mean
 - Low variance: estimated function does not change much with different datasets
 - High variance implies a **weak** match
 - ✓ Irreducible error: the error that was present in the original data
 - ✓ Bias and variance are not independent of each other

• Graphical representation of Bias-Variance decomposition

• Graphical representation of Bias-Variance decomposition

- ✓ Lower model complexity: high bias & low variance
 - Logistic regression, LDA, k-NN with large k, etc.
- ✓ Higher model complexity: low bias & high variance
 - DT, ANN, SVM, k-NN with small k, etc.

Bias-Variance Dilemma

The more complex (flexible) we make the model, the lower the bias but the higher the variance it is subjected to.

Bias-Variance example

Each column is a different model.

Each row is a different dataset of 6 points.

Histograms of mean-squared error of the fit.

Col 1:

Poor fixed linear model; High bias, zero variance

Col 2:

Slightly better fixed linear model; Lower (but high) bias, zero variance.

Col 3:

Learned cubic model; Low bias, moderate variance.

Col 4:

Learned linear model; Intermediate bias and variance.

• Bias-Variance example

Purpose of Ensemble

- Goal: Reduce the error through constructing multiple learners to
 - √ Reduce the variance: Bagging, Random Forests
 - ✓ Reduce the bias: AdaBoost
 - ✓ Both: Mixture of experts

- Two key questions on the ensemble construction
 - ✓QI: How to generate individual components of the ensemble systems (base classifiers) to achieve sufficient degree of diversity?
 - ✓ Q2: How to combine the outputs of individual classifiers?

Ensemble Diversity

- Ensemble will have no gain from combining a set of identical models
 - ✓ Need base learners whose fitted functions are adequately different from those of others
 - ✓ Wish models to exhibit a certain element of diversity in their group behavior, though still retaining good performance individually.

Diversity	Implicit	Explicit
Description	Provide different random subset of the training data to each learner	Use some measurement ensuring it is substantially different from the other members
Ensemble Algorithms	Instance: Bagging Variables: Random Subspaces, Rotation Forests Both: Random Forests	Boosting, Negative Correlation Learning

Ensemble Diversity

• Independent (implicit) vs. Model guided (explicit) instance selection

Independent instance selection

Unlabeled Predicted Classifiers Composer Labels **Tuples** Classifier T Classifier 1 Classifier 2 Inducer T Inducer 1 Inducer 2 Dataset 1 Dataset 2 Dataset T Dataset Dataset Dataset Manipulator Manipulator Manipulator **Training Set**

Model guided instance selection

Why Ensemble?

Why Ensemble works?

√ True functions, estimations, and the expected error

$$y_m(\mathbf{x}) = f(\mathbf{x}) + \epsilon_m(\mathbf{x}). \quad \mathbb{E}_{\mathbf{x}}[\{y_m(\mathbf{x}) - f(\mathbf{x})\}^2] = \mathbb{E}_{\mathbf{x}}[\epsilon_m(\mathbf{x})^2]$$

✓ The average error made by M individual models vs. Expected error of the ensemble

$$E_{Avg} = \frac{1}{M} \sum_{m=1}^{M} \mathbb{E}_{\mathbf{x}} \left[\epsilon_m(\mathbf{x})^2 \right]$$

$$E_{Ensemble} = \mathbb{E}_{\mathbf{x}} \left[\left\{ \frac{1}{M} \sum_{m=1}^{M} y_m(\mathbf{x}) - f(\mathbf{x}) \right\}^2 \right]$$

$$= \mathbb{E}_{\mathbf{x}} \left[\left\{ \frac{1}{M} \sum_{m=1}^{M} \epsilon_m(\mathbf{x}) \right\}^2 \right]$$

Why Ensemble?

- Why Ensemble works?
 - ✓ Assume that the errors have zero mean and are uncorrelated,

$$\mathbb{E}_{\mathbf{x}}[\epsilon_m(\mathbf{x})] = 0, \quad \mathbb{E}_{\mathbf{x}}[\epsilon_m(\mathbf{x})\epsilon_l(\mathbf{x})] = 0 \ (m \neq l)$$

✓ The average error made by M individual models vs. Expected error of the ensemble

$$E_{Ensemble} = \frac{1}{M} E_{Avg}$$

√ In reality (errors are correlated), by the Cauchy's inequality

$$\left[\sum_{m=1}^{M} \epsilon_m(\mathbf{x})\right]^2 \le M \sum_{m=1}^{M} \epsilon_m(\mathbf{x})^2 \Rightarrow \left[\frac{1}{M} \sum_{m=1}^{M} \epsilon_m(\mathbf{x})\right]^2 \le \frac{1}{M} \sum_{m=1}^{M} \epsilon_m(\mathbf{x})^2$$

$$E_{Ensemble} \le E_{Avg}$$

