# AAO Final Project

Jui-Kuan Chan

December 21, 2023

#### Abstract

My term project is to plot the HR diagram of M6 open cluster. To achieve the goal, I do image reduction, stacking, flux measurement, standard star calibration, and error estimation. The whole code is available on the following website: https://github.com/zrk-dreamer/Advanced-Astronomical-Observation-/blob/main/AAO\_project.ipynb

### 1 Procedure

In this section, I will show the details of the procedures.

### 1.1 Image Reduction

I performed image reduction using the calibration frames shot under -15°C and the dark frames with the same exposure time to the light frames. (B: 4sec, 40sec, and 8min; V: 3sec, 30sec, 5min) After the reduction, I got six sets of reduced images with different bands and different exposure time.

## 1.2 Stacking

Before registration, to deal with artifacts (hot pixels or dead pixels) and to avoid their effect on the transformation, I first used Python package called ccdproc to clean the images (ccdproc.cosmicray\_lacosmic). Then I use another package called astroalign to perform registration and transformation. After, stacking, I use mean method to stack the images. Finally, I got six



stacked images with different bands and different exposure time.

#### 1.3 Flux Measurement

To remove background and perform aperture photometry, I used a package called SEP(Source Extraction and Photometry). First, I use sep.Background to get global backgrounds, and then I subtract backgrounds from the stacked images. Next I use sep.extract to find positions, semi-major axes, semi-minor axes, and theta (orientation) of potential object with  $7\sigma$  for V band and  $6\sigma$  for B band. Before the formal measurement of flux, I impose maximum limits on the peak values in the area of detected objects to prevent the saturation. With the information about the objects, I use sep.sum\_ellipse to calculate the total flux and the associated error. Here, the radius of the aperture (ellipse) is Kron Radius.

#### 1.4 WCS and Cross Match

Before going on, I first uploaded the six stacked image to Astrometry.net to do plate solving and to get new header that could be accepted by astropy.wcs.WCS. After getting WCS, I could map the position on the images to its corresponding equatorial system coordinate, which allowed me to match the objects detected in V band and in B band. In this case, the threshold is two arcsecond; that's to say, the object with only B band photometry or V band photometry would be discarded. After the cross match, there were

3303 remain objects.

#### 1.5 Standard Star Calibration

I first generated a .txt file containing the position (RA, Dec) of those 3303 objects and upload to VizieR to get nearby standard stars (2 arcsecond), including the V mag, the B mag, and the associated error. Then, I perform matching between the standard star catalog and the objects I found; the threshold is one arcsecond. After matching, there were 437 remain objects (The other objects were not discarded in this case). With those remain objects, I use kmpfit from a package called Kapteyn to do fitting and try to figure out the extinction coefficient K, the zero point  $\gamma$ , and the color term  $\beta$ . However, during fitting, K and  $\gamma$  tend to show degeneracy  $(-KX + \gamma = const.)$ , but the values of reduced  $\chi^2$  is insensitive to K and  $\gamma$ ); hence I let  $A = -KX + \gamma$ , which becomes a new parameter in my fitting.

#### 1.6 Error Estimation

After obtaining the calibration formula, I could do the error propagation. The sources of error are A and  $\beta$  in the formula (includes the error from standard star) and flux measurement using SEP. As mentioned, the formula I used to do standard star is:

$$m_{\lambda_{std}} = m_{\lambda_{inst}} + A + \beta (m_{\lambda_{inst}} - m_{\lambda_{2,inst}})$$
 (1)

Then the associated error can be calculated via following formula:

$$\sigma_{\lambda_{std}}^2 = \sigma_{\lambda_{inst}}^2 + \sigma_A^2 + \beta^2 (\sigma_{\lambda_{std}}^2 + \sigma_{\lambda_{2,inst}}^2) + ((m_{\lambda_{inst}} - m_{\lambda_{2,inst}})\sigma_\beta)^2$$
 (2)

The result of error estimation will be show in the next section, along with the diagrams.

| Case               | A                      | β                     |
|--------------------|------------------------|-----------------------|
| To calculate V mag | $21.69237 \pm 0.00970$ | $0.04299 \pm 0.03199$ |
| To calculate B mag | $21.66878 \pm 0.00740$ | $0.49828 \pm 0.02793$ |

### 2 Results



