Prueba Tema 2. Topología I Doble grado en ingeniería informática y matemáticas

5 de diciembre de 2019

1.- Sean $X \subset \mathbb{R}^2$ el conjunto:

$$X = \{(x, y) \in \mathbb{R}^2 : y = 0\} \cup \{(x, y) \in \mathbb{R}^2 : y = 1\},\$$

y T la topología en X inducida por la topología usual de \mathbb{R}^2 . Definimos una relación de equivalencia R en X de modo que las clases de equivalencia son:

$$[(x,y)] = \begin{cases} \{(x,0),(x,1)\}, & x \in (-\infty,-1) \cup [1,+\infty), \\ \{(x,y)\}, & x \in [-1,1). \end{cases}$$

- 1. ¿Es (X/R, T/R) un espacio Hausdorff?
- 2. ¿Es la proyección $p:(X,T)\to (X/R,T/R)$ una aplicación abierta?
- 3. ¿Es la proyección $p:(X,T)\to (X/R,T/R)$ una aplicación cerrada?
- 1. El espacio X/R no es Hausdorff. Sea $\pi: X \to X/R$ la proyección. Los puntos $\pi((-1,0)), \ \pi((-1,1))$ son distintos puesto que no están relacionados. Sean $U,V \in T/R$ tales que $\pi((-1,0)) \in U, \ \pi((-1,1)) \in V$. Entonces $\pi^{-1}(U), \pi^{-1}(V) \in T, \ y(-1,0) \in \pi^{-1}(U), (-1,1) \in \pi^{-1}(V)$.

Para $0<\varepsilon<1$, las bolas abiertas en X con la distancia inducida de radio ε centradas en un punto dado son base de entornos del punto. Pero

$$B((x,y),\varepsilon) \cap X = (x-\varepsilon,x+\varepsilon) \times \{y\}.$$

Existe entonces $0 < \delta < 1$ tal que:

$$(-1 - \delta, -1 + \delta) \times \{0\} \subset \pi^{-1}(U), \quad (-1 - \delta, -1 + \delta) \times \{1\} \subset \pi^{-1}(V).$$

Si $x \in (-1 - \delta, -1)$, entonces $\pi((x, 0)) = \pi((x, 1))$. Pero

$$\pi((x,0)) \in \pi(\pi^{-1}(U)) = U, \quad \pi((x,1)) \in \pi(\pi^{-1}(V)) = V,$$

lo que demuestra que $U \cap V \neq \emptyset$. Por tanto, no podemos encontrar dos entornos disjuntos de $\pi((-1,0))$ y $\pi((-1,1))$.

Una segunda forma de probar que el espacio X/R no es Hausdorff es la siguiente: si lo fuera, el conjunto

$$A = \{((x, y), (x', y')) \in X \times X : (x, y)R(x', y')\}$$

sería cerrado en $X \times X$. Pero la sucesión

$$\left\{ ((-1 - \frac{1}{n}, 0), (-1 - \frac{1}{n}, 1)) \right\}_{n \in \mathbb{N}}$$

está contenida en A y su límite es ((-1,0),(-1,1)), que no pertenece a A.

2. Veamos que π no es abierta. Recordemos que $A \in T/R$ si y solo si $\pi^{-1}(A) \in T$. Buscamos entonces un conjunto $U \in T$ tal que $\pi^{-1}(\pi(U)) \notin T$. Tenemos que:

$$x \in \pi^{-1}(\pi(U)) \Leftrightarrow \pi(x) \in \pi(U) \Leftrightarrow \exists u \in U : xRu \ (\pi(x) = \pi(u)).$$

Utilizando esta fórmula se comprueba enseguida que, si $U = (0,2) \times \{0\}$,

$$\pi^{-1}(\pi(U)) = ((0,2) \times \{0\}) \cup ([1,2) \times \{1\}),$$

que no es abierto porque (1,1) no es punto interior.

3. Veamos que π no es cerrada. Recordemos que $B \in C_{T/R}$ si y solo si $\pi^{-1}(B) \in C_T$. Buscamos entonces un conjunto $F \in C_T$ tal que $\pi^{-1}(\pi(F)) \notin C_T$.

Tomando $F = [-2, 0] \times \{0\}$, tenemos que

$$\pi^{-1}(\pi(F)) = ([-2,0] \times \{0\}) \cup ([-2,-1) \times \{1\}),$$

que no es abierto porque (-1,1) pertenece a su clausura, pero no está en el conjunto.