Project 1

Anna Stray Rongve Amund Midtgard Raniseth Knut Magnus Aasrud

Mandag 9 September 2019

Abstract

Introduction

Theory and technicalites

Conclusion and perspectives

Project 1 a)

We have the discretized version of u, v, with the boundary conditions $v_0 = v_n = 0$:

For i=1

$$-\frac{v_2 + v_0 - 2v_1}{h^2} = f_1$$

For i=2

$$-\frac{v_3 + v_1 - 2v_2}{h^2} = f_2$$

For i = n - 1

$$-\frac{v_n + v_{n-2} - 2v_{n-1}}{h^2} = f_{n-1}$$

If you multiply both sides by h^2

$$-v_2 + 2v_1 - v_0 = h^2 \cdot f_1$$
$$-v_3 + 2v_2 - v_1 = h^2 \cdot f_2$$
$$-v_n + 2v_{n-1} - v_{n-2} = h^2 \cdot f_{n-1}$$

Which you can rewrite as a linear set of equations $\mathbf{A}\mathbf{v} = \mathbf{d}$ where

$$\mathbf{A} = \begin{bmatrix} 2 & -1 & 0 & \dots & \dots & 0 \\ -1 & 2 & -1 & 0 & \ddots & \vdots \\ 0 & -1 & 2 & -1 & 0 & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & \dots & -1 & 2 & -1 \\ 0 & \dots & \dots & 0 & -1 & 2 \end{bmatrix}$$

$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ \vdots \\ v_{n-1} \end{bmatrix}$$

and

$$\mathbf{d} = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \\ \vdots \\ d_{n-1} \end{bmatrix}$$

with $d_i = h^2 \cdot f_i$

Project 1 b)

We have a linear set of equations $\mathbf{A}\mathbf{v} = \mathbf{d}$ we want to solve, where \mathbf{A} is tridiagonal. In the general case, we can express any tridiagonal matrix

$$\mathbf{A} = \begin{bmatrix} b_1 & c_1 & 0 & \cdots & \cdots & 0 \\ a_1 & b_2 & c_2 & \ddots & \ddots & \vdots \\ 0 & a_2 & b_3 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & c_{n-2} & 0 \\ 0 & \dots & 0 & a_{n-2} & b_{n-1} & c_{n-1} \\ 0 & \dots & \dots & 0 & a_{n-1} & b_n \end{bmatrix}$$

just by the three vectors a, b and c, where b has length n, and a and c have length n-1.

Forward substitution

Firstly, we want to eliminate the a_i 's.

 $\mathbf{A}\mathbf{v} = \mathbf{d}$ gives us these equations for the case of i = 1 and i = n

$$b_1v_1 + c_1v_2 = d_1, \quad i = 1$$

$$a_{n-1}v_{n-1} + b_nv_n = d_n, \quad i = n.$$
(2)

For the rest, we get

$$a_1v_1 + b_2v_2 + c_2v_3 = d_2, \quad i = 2.$$
 (3)
 $a_{i-1}v_{i-1} + b_iv_i + c_iv_{i+1} = d_i, \quad i = 2, ..., n-1.$

We can then modify (3) by subtracting (1), like this

$$b_1\cdot(3)-a_1\cdot(1)$$

Which gives

$$(a_1v_1 + b_2v_2 + c_2v_3)b_1 - (b_1v_1 + c_1v_2)a_1 = d_2b_1 - d_1a_1$$
$$(b_2b_1 - c_1a_1)v_2 + c_2b_1v_3 = d_2b_1 - d_1a_1.$$

Notice that v_1 has been eliminated (the first lower diagonal element has been eliminated).

This can be continued further - to eliminate all the a_i 's - and is what we call forward substitution.

Its apparent that the vector elements get more and more complicated. To solve this, we make modified vectors and find their elements recursively. Furthermore, we ensure that the \tilde{b}_i 's are 1 by normalizing with the modified diagonal elements.

$$\tilde{b}_{i} = 1$$

$$\tilde{c}_{1} = \frac{c_{1}}{b_{1}}$$

$$\tilde{c}_{i} = \frac{c_{i}}{b_{i} - \tilde{c}_{i-1}a_{i-1}}$$

$$\tilde{d}_{1} = \frac{d_{1}}{b_{1}}$$

$$\tilde{d}_{i} = \frac{d_{i} - \tilde{d}_{i-1}a_{i-1}}{b_{i} - \tilde{c}_{i-1}a_{i-1}}$$

Backward substitution

If we look at the coefficients defined above, we see that they give these equations for every i:

$$v_n = \tilde{d}_n$$
$$v_i = \tilde{d}_i - \tilde{c}_i v_{i+1}$$

This backwards substitution gives us the solution ${\bf v}.$

Appendix

Bibliography