

2. Data Structures: Vectors and Data Frames

Data Objects in R

These objects, composed of multiple atomic data elements, are the bread and butter of R:

- Vectors
- Data Frames

Vector Data Object

A vector is a list of elements having the *same type*.

Construct a Vector Data Object

Use the c() function:

- > a <- c(5,6,7,8) # vector with 4 numeric values
- > d <- c("red", "orange", "green") # character vector

Accessing Vector Data

		a
1	5	
2	6	
3	7	
4	8	

Access by index or range:

- > d[1] # retrieves "red"
- > a[3] # retrieves 7
- > d[1:2] # retrieves "red", "orange"

Element numbering starts at 1 in R

Information about a vector


```
> y <- c(3,5,7,9) # vector with 4 numeric values
```

- > length(y) # how many elements?
- > class(y) # class of a vector object is the class
 # of its elements

Information about a vector

> str(y) # structure of the vector: number of # elements, type, and contents

Some operations on vectors

- sum() # Sum of all element values
- length() # Number of elements
- unique() # Generate vector of distinct values
- diff() # Generate vector of first differences
- sort() # Sort elements, omitting NAs
- order() # Sort indices, with NAs last
- rev() # Reverse the element order
- summary() # Information about object contents

Repercussions of NA

Any arithmetic operation on a structure containing an NA generates NA!

```
# NA means "no value known"
```

$$> y = c(1, NA, 3, 2, NA)$$

We must remove NAs to make calculations. How?

Finding NAs in a data structure

$$> y = c(1, NA, 3, 2, NA)$$

> summary(y)

Min.	1st Qu.	Median	Mean 3rd	d Qu.	Max.	NA's
1.0	1.5	2.0	2.0	2.5	3.0	2

Handling Missing Data

Remove NAs prior to calculation:

```
> y = c(1, NA, 3, 2, NA) # [1, ?, 3, 2, ?]
sum(y, na.rm=TRUE) # removes NAs, then sums
[1] 6 # sum of 1 + 3 + 2
```

rm = "remove"

Data Frames

- A data frame is a structure consisting of columns of various modes (numeric, character, etc).
- Its rows and columns can be named.
- Data frames are handy containers for experimental data.

Data Frame Example

Data frames are handy containers for data that describe experimental subjects.

Student population data:

	Height	Weight	Age	Hand
Α	68	120	16	L
В	75	160	17	R
С	60	118	16	R

Constructing a Data Frame

1. Construct the vectors that hold column data:

```
height = c(68, 75, 60) # inches
age = c(16, 17, 16) # years
handed = c("L", "R", "R") # dominant hand: R=right, L=left
```

2. Construct the data frame by associating the columns:

data = data.frame(Height=height,

Data Frame

Organized in rows and columns:

Accessing by Index

	Height	Weight	Age	Hand
Α	68	120	16	L
В	75	160	17	R
С	60	118	16	R

First index is row, second index is column:

> data[1,1] # retrieves subject A's Height

Accessing by Index

	Height	Weight	Age	Hand
A	68	120	16	
В	75	160	17	R
С	60	118	16	R

> data[1,] # retrieves all subject A data
Height Weight Age Hand

A 68 120 16 L

Comma is a placeholder in the [row, column] notation

> data[,1] # retrieves all Height data
[1] 68 75 60

Try it: Accessing by Index

- > source("data-frame-simple-example.R")
- > data[2,3] # retrieves subject B's Age
- > data[2,] # retrieves all subject B data
- > data[,3] # retrieves all Age data

Accessing by Name

	Height	Weight	Age	Hand
Α	68	120	16	L
В	75	160	17	R
С	60	118	16	R

First is row, second is column:

> data["A","Height"] # retrieves subject A's Height
Notice the quotes!

Accessing by Name

	Height	Weight	Age	Hand
A	68	120	16	
В	75	160	17	R
С	60	118	16	R

> data["A",] # retrieves all subject A data.
Notice the comma!

Accessing by Name

	Height	Weight	Age	Hand			
Α	68	120	16	L			
В	75	160	17	R			
С	60	118	16	R			

- # To fetch Height column:
- > data\$Height

Try it: Accessing by Name

- > source("data-frame-simple-example.R")
- > data["B","Age"] # retrieves B's Age
- > data["B",] # retrieves all B data
- > data\$Age # retrieves all Age data

Conditional Access

	Height	Weight	Age	Hand
A	68	120	16	L
В	75	160	17	R
С	60	118	16	R

Subjects who are taller than 65 inches:

> data[data\$Height > 65,] # subset of the data frame # (notice the comma!)

Conditional Access

	Height	Weight	Age	Hand
Α	68	120	16	L
В	75	160	17	R
С	60	118	16	R

Heights over 65 inches:

> data\$Height[data\$Height > 65] # subset of a column
of the data frame

Try it: Conditional Access

- > source("data-frame-simple-example.R")
- # subset of the data frame having age<17 years:
- > data[data\$Age < 17,]

- # subset of a *column* of data frame, age<17 years:
- > data\$Age[data\$Age < 17]

Data Frame Information

```
str(data) # structure
dim(data) # dimensions

View(data) # open View window of data
head(data) # beginning of the data frame
tail(data) # end of the data frame

names(data) # names of the columns
rownames(data) # names of the rows
colnames(data) # names of the columns
```

> class(data)
[1] "data.frame"

Interlude

Complete vector/data frame exercises.

Open in the RStudio source editor:

<workshop>/exercises/exercises-vectors-matrices-dataframes.R