

GCE

Edexcel GCE

Mathematics

Mechanics 2 M2 (6678)

June 2008

advancing learning, changing lives

Final Mark Scheme

Mathematics

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

June 2008 6678 Mechanics M2 Mark Scheme

Question Number	Scheme	Marks
1.	Resolve $7: T_r + 2000g \times \sin \alpha = 1600$ $(T_r = 816)$ $P = 816 \times 14 \text{ (W)} \qquad \text{ft their } T_r$ $\approx 11 \text{ (kW)} \qquad \text{accept } 11.4$	M1 <u>A1</u> A1 M1 A1ft A1 cso (6) [6]
2.	(a) $3u \qquad 2u \qquad 3m \qquad 2u$ $LM \qquad 12mu + 6mu = 4mx + 12meu \qquad 4eu - x = eu$ Eliminating x to obtain equation in e $Leading to \qquad e = \frac{3}{4} \qquad cso$ (b) $x = 3eu \text{ or } \frac{9}{4}u \text{ or } 4.5u - 3eu \qquad seen \text{ or implied in (b)}$ $Loss in KE = \frac{1}{2}4m(3u)^2 + \frac{1}{2}3m(2u)^2 - \frac{1}{2}4m(\frac{9}{4}u)^2 - \frac{1}{2}3m(3u)^2$ $= 24mu^2 - 23\frac{5}{8}mu^2 = \frac{3}{8}mu^2 = 0.375mu^2$	B1 M1 A1 DM1 A1 (5) B1 M1 A1ft A1 (4) [9]

Question Number	Scheme	Marks
3.		
	(a $\triangle KE = \frac{1}{2} \times 3.5 (12^2 - 8^2)$ (= 140) or KE at A, B correct separately	B1
	$\Delta PE = 3.5 \times 9.8 \times 14 \sin 20^{\circ} \ (\approx 164.238)$ or PE at A, B correct separately $\Delta E = \Delta KE + \Delta PE \approx 304$, 300	M1 A1 DM1 A1 (5)
	(b) Using Work-Energy $F_r = \mu \times 3.5 g \cos 20^{\circ}$ $304.238 = F_r \times 14$ ft their (a), F_r $304.238 = \mu 3.5 g \cos 20^{\circ} \times 14$ $\mu \approx 0.674 , 0.67$	M1 A1 M1 A1 ft A1 (5) [10]
	Alternative using N2L	
	$\mu R \qquad F_r = \mu \times 3.5 g \cos 20^\circ$ $v^2 = u^2 + 2as \Rightarrow 8^2 = 12^2 - 2a \times 14$	M1 A1
	$\left(a = \frac{20}{7}\right)(2.857 \dots)$ $\text{N2L R } \overline{\triangleright} : \{\text{their } F_r\} - mg \sin 20^\circ = ma$ $\text{ft their } F_r.$ $\text{Leading to } \mu \approx 0.674 \text{ or } 0.67$	M1 A1ft A1 (5)
4.	(a) N2L $(6t-5)\mathbf{i} + (t^2-2t)\mathbf{j} = 0.5\mathbf{a}$	M1
	$\mathbf{a} = (12t - 10)\mathbf{i} + (2t^2 - 4t)\mathbf{j}$	A1
	$\mathbf{v} = \left(6t^2 - 10t\right)\mathbf{i} + \left(\frac{2}{3}t^3 - 2t^2\right)\mathbf{j} (+\mathbf{C}) \qquad \text{ft their } \mathbf{a}$	M1 A1ft+A1ft
	$\mathbf{v} = (6t^2 - 10t + 1)\mathbf{i} + (\frac{2}{3}t^3 - 2t^2 - 4)\mathbf{j}$	A1 (6)
	(b) When $t = 3$, $\mathbf{v}_3 = 25\mathbf{i} - 4\mathbf{j}$	M1
	$-5\mathbf{i} + 12\mathbf{j} = 0.5(\mathbf{v} - (25\mathbf{i} - 4\mathbf{j}))$ ft their \mathbf{v}_3	M1 A1ft
	$\mathbf{v} = 15\mathbf{i} + 20\mathbf{j}$ $ \mathbf{v} = \sqrt{(15^2 + 20^2)} = 25 \text{ (ms}^{-1})$ cso	A1 M1 A1 (6)
	$ \mathbf{v} = \sqrt{(15^2 + 20^2)} = 25 \text{ (ms}^{-1})$	M1 A1 (6) [12]

Question Number	Scheme	Marks
5.	(a) P $0.5a$ W μR	
	$R(\uparrow) R + P\cos\alpha = W$	M1 A1
	$M(A) P \times 2a = W \times 1.5a \cos \alpha$ $\left(P = \frac{3}{4}W \cos \alpha\right)$	M1 A1
	$R = W - P\cos\alpha = W - \frac{3}{4}W\cos^2\alpha$	DM1
	$=\frac{1}{4}\left(4-3\cos^2\alpha\right)W \bigstar $ cso	A1 (6)
	(b) Using $\cos \alpha = \frac{2}{3}$, $R = \frac{2}{3}W$	B1
	$R(\rightarrow) \qquad \mu R = P \sin \alpha$ Leading to $\mu = \frac{3}{4} \sin \alpha$	M1 A1
	$\left(\sin\alpha = \sqrt{\left(1 - \frac{4}{9}\right)} = \frac{\sqrt{5}}{3}\right)$	
	$\mu = \frac{\sqrt{5}}{4}$ awrt 0.56	DM1 A1 (5) [11]

Scheme			Marks	
(a)	M(Oy)	$(8+k)m\times6.4 = 5m\times8 + km\times8$ $1.6k = 11.2 \implies k = 7 *$	cso	M1 A1 DM1 A1 (4)
(b)	M(Oy)			M1 A1
		$\overline{x} = \frac{16}{3}$	5.3 or better	A1
	M(Ox)	$27m\overline{y} = 12m \times 2.5 + 8m \times 5$		M1 A1
		$\overline{y} = \frac{70}{27}$	2.6 or better	A1 (6)
(c)		$\tan \theta = \frac{\overline{y}}{\overline{x}} = \frac{35}{72}$ $\theta \approx 26^{\circ}$	awrt 25.9°	M1 A1ft A1 (3) [13]
	(b)	(b) $M(Oy)$ $M(Ox)$	(a) $M(Oy)$ $(8+k)m\times6.4 = 5m\times8 + km\times8$ $1.6k = 11.2 \implies k = 7 \implies$ (b) $M(Oy)$ $27m\overline{x} = 12m\times4 + 5m\times8 + 7m\times8$ $\overline{x} = \frac{16}{3}$ $M(Ox)$ $27m\overline{y} = 12m\times2.5 + 8m\times5$ $\overline{y} = \frac{70}{27}$ (c) $\tan\theta = \frac{\overline{y}}{\overline{x}} = \frac{35}{72}$	(a) $M(Oy)$ $(8+k)m \times 6.4 = 5m \times 8 + km \times 8$ $1.6k = 11.2 \implies k = 7 *$ cso (b) $M(Oy)$ $27m\overline{x} = 12m \times 4 + 5m \times 8 + 7m \times 8$ $\overline{x} = \frac{16}{3}$ 5.3 or better $M(Ox)$ $27m\overline{y} = 12m \times 2.5 + 8m \times 5$ $\overline{y} = \frac{70}{27}$ 2.6 or better (c) $\tan \theta = \frac{\overline{y}}{\overline{x}} = \frac{35}{72}$

Question Number	Scheme			Marks	
7.	(a)	(\downarrow)	$u_y = 25 \sin 30^\circ \ (= 12.5)$ $12 = 12.5t + 4.9t^2$ Leading to $t = 0.743$, 0.74	-1 each error	B1 M1 A2 (1, 0) A1 (5)
	(b)	(\rightarrow)	$u_x = 25\cos 30^{\circ} \left(= \frac{25\sqrt{3}}{2} \approx 21.65 \right)$		B1
			$OB = 25\cos 30^{\circ} \times t \ (\approx 16.09458)$	ft their (a)	M1 A1ft
			$TB \approx 1.1 \text{ (m)}$	awrt 1.09	A1 (4)
	(c)	(\rightarrow)	$15 = u_x \times t \Rightarrow t = \frac{15}{u_x} (= \frac{2\sqrt{3}}{5} \approx 0.693 \text{ or } 0.$	69)	M1 A1
	either		(\downarrow) $v_y = 12.5 + 9.8t \ (\approx 19.2896)$		M1
			$V^2 = u_x^2 + v_y^2 \ (\approx 840.840)$		
			$V \approx 29 \left(\text{ms}^{-1} \right) , 29.0$		M1 A1 (5) [14]
	or		(\downarrow) $s_y = 12.5t + 4.9t^2 \ (\approx 11.0)$		M1
			$(\downarrow) s_y = 12.5t + 4.9t^2 \ (\approx 11.0)$ $\frac{1}{2}m \times 25^2 + mg \times s_y = \frac{1}{2}mv^2$		
			$V \approx 29 \text{ (ms}^{-1}) , 29.0$		M1A1