

DMA: Relations

Jurij Volčič Institut for Matematiske Fag

Plan for today

- Sets and their productsSubsets and the power set
- Relations
 Domain and range
- Matrix represent a relation?
 Matrix representation
 Digraph representation
- A R-relative sets

Reading for today: KBR 4.1-4.2

Sets vs tuples

Recall: A set is a well-defined collection of elements.

Examples:

$$\{\alpha,b,c\},\,\mathbb{Z}^+,\,\boldsymbol{M}_n(\mathbb{R}),\,\{\text{all students currently in Aud 1}\}$$

Def. An n-tuple is an ordered collection of $\mathfrak n$ elements. We refer to 2-tuples as ordered pairs.

Examples:

$$(a, b, c), (1, 1, 2, 3, 5, 8, 13), (Mette, Jonas, 5, a)$$

Warning: Order matters for tuples: $(a,b,c) \neq (b,c,a)$. Also, $\{a,b,c\} \neq (a,b,c)$ (types don't match)

Product sets

Def. The (Cartesian) product of sets A and B consists of ordered pairs of elements from A and B:

$$A \times B = \{(a, b) \mid a \in A \text{ and } b \in B\}$$

Example

For $A=\{a,b,c\}$ and $B=\{\text{1,2}\}$ we get

$$A \times B = \{(a,1), (a,2), (b,1), (b,2), (c,1), (c,2)\}$$

Note: Order matters, so

- $(1, \alpha) \notin A \times B$
- $A \times B \neq B \times A$

Products of many sets

Def. The (Cartesian) product of sets A_1, \ldots, A_n is

$$A_1 \times A_2 \times \cdots \times A_n = \{ \left(\alpha_1, \ldots, \alpha_n \right) \mid \alpha_i \in A_i \}$$

Thm. Given n finite sets $A_1, ..., A_n$, we have

$$|A_1 \times A_2 \times \cdots \times A_n| = |A_1| |A_2| \cdots |A_n|$$

Example: Vectors

- $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R} = \{(x,y) \mid x,y \in \mathbb{R}\}$ vectors in a plane (2 dimensions)
- $\mathbb{R}^3 = \mathbb{R} \times \mathbb{R} \times \mathbb{R} = \{(x,y,z) \mid x,y,z \in \mathbb{R}\}$ vectors in 3 dimensions.

Subsets and the power set

Recall: A set B' is a subset of B, denoted as $B' \subseteq B$, if all the elements of B' are contained in B.

Examples:

$$\{1,2,3\}\subseteq\{1,2,3,4\},\ \mathbb{Z}\subseteq\mathbb{R},\ \{\pi,3\} \not\subseteq \mathbb{Q}$$

Def. Let B be a set. The power set of B, denoted as P(B) or 2^{B} , is the set of all subsets of B.

Example. The power set of
$$B = \{1,2,3\}$$
 is $\Big\{\{\},\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\Big\}$

Q:
$$|P(A)| = ?$$

Outline

- Sets and their products
 Subsets and the power set
- Relations
 Domain and range
- Matrix represent a relation?
 Matrix representation
 Digraph representation
- R-relative sets

Examples of relations

Goal: Provide a rigorous way to describe relations between elements of a set *A* and a set *B*.

Examples

- A = {all women}, B = {all people}
 Relation: a is b's mother.
- $A = B = \mathbb{Z}^+$ Relation: $a \le b$.

Relations: definition

Def. Let A and B be sets. A relation R from A to B is a subset of $A \times B$ (i.e. $R \subseteq A \times B$).

Notes

- R consists of (some) pairs (a, b), where $a \in A, b \in B$.
- If $(a,b) \in R$, we say that a is related to b by R and write

- If $(a, b) \notin R$, we write $a \not R b$.
- If $R \subseteq A \times A$, we say that R is a relation on A.

Examples

- $A = \{\text{all women}\}, B = \{\text{all people}\}\$ Relation: $\alpha R_1 b \Leftrightarrow \alpha \text{ is b's mother.}$ $R_1 = \{\dots, (\text{Mette}, \text{Frederik}), \dots\}$
- $\begin{array}{l} \bullet \quad A=B=\mathbb{Z}^+\\ \text{Relation: } \alpha R_2 b \Leftrightarrow \alpha \leqslant b.\\ R_2=\left\{(1,1),(1,2),(2,2),(1,3),(2,3),\ldots\right\} \end{array}$
- $A = \{2,3\}, B = \{1,2,3,4,5,6\}$ Relation: $aR_3b \Leftrightarrow a$ divides b**Exercise:** $R_3 = ?$

Databases as relations n-ary relations

Table: Customers

CustomerID	ContactName	City	Country
1	Maria Anders	Berlin	Germany
2	Ana Trujillo	México D.F.	Mexico
3	Antonio Moreno	México D.F.	Mexico
4	Thomas Hardy	London	UK
5	Christina Berglund	Luleå	Sweden
6	Hanna Moos	Mannheim	Germany
7	Frédérique Citeaux	Strasbourg	France
8	Martín Sommer	Madrid	Spain
9	Laurence Lebihans	Marseille	France
10	Elizabeth Lincoln	Tsawassen	Canada

SQL query:

SELECT ContactName, City FROM Customers WHERE Country="France";

Domain and range

Def. Let R be a relation from A to B, i.e., $R \subseteq A \times B$. The domain of R is $Dom(R) = \{a \in A \mid \exists b \in B : aRb\}$ The range of R is $Ran(R) = \{b \in B \mid \exists a \in A : aRb\}$

Example. Recall $A = \{2,3\}$, $B = \{1,2,3,4,5,6\}$, and

$$R_3 = \big\{(2,2), (2,4), (2,6), (3,3), (3,6)\big\}.$$

Exercise: Find $Dom(R_3)$ and $Ran(R_3)$.

Outline

- Sets and their products
 Subsets and the power set
- Relations
 Domain and range
- Matrix represent a relation?
 Matrix representation
 Digraph representation
- R-relative sets

Matrix of a relation

Def. Let $A=\{\alpha_1,\ldots,\alpha_m\}$, $B=\{b_1,\ldots,b_n\}$, and let R be a relation from A to B. The matrix of R is an $m\times n$ Boolean matrix $\mathbf{M}_R=\left[m_{ij}\right]$ where

$$m_{ij} = \begin{cases} 1 & \text{if } (a_i, b_j) \in R \\ 0 & \text{if } (a_i, b_j) \notin R \end{cases}$$

Example

Let
$$A = \{1,2,3\}$$
, $B = \{r,s\}$ and $R = \{(1,r),(2,s),(3,r)\}$.

Then M_R is a 3 × 2 matrix:

$$\begin{array}{c|cccc} & r & s \\ 1 & ?1 & ?0 \\ 2 & ?0 & ?1 \\ 3 & ?1 & ?0 \\ \end{array}$$

Directed graphs: visualizing relations

Let $R \subseteq A \times A$ be a relation on a finite set A.

Def. The digraph of R consists of

- vertices, each representing a unique element of A
- directed edges, each representing a unique element of R.

Example. Consider $A = \{a, b\}$ and $R = \{(a, a), (a, b), (b, a)\}$. The digraph of R:

Note: Digraph of R contains all the information about R.

The digraph and matrix of R

Example

Let $A = \{a, b\}$ and $R = \{(a, a), (a, b), (b, a)\}.$

The matrix of R:

$$\mathbf{M}_{R} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$

The digraph of R:

Outline

- Sets and their products
 Subsets and the power set
- 2 Relations
 Domain and range
- Matrix represent a relation?
 Matrix representation
 Digraph representation
- A R-relative sets

R-relative sets

Def. Let R be a relation from A to B. Also, let $a \in A$ and $A_1 \subseteq A$.

- The R-relative set of a is $R(a) = \{b \in B \mid aRb\}$.
- The R-relative set of A₁ is

$$R(A_1) = \{b \in B \mid \exists a \in A_1 : aRb\} = \bigcup_{\alpha \in A_1} R(\alpha)$$

Examples. Let $A = \{1,2,3\}, B = \{1,2,3,4,5,6\}$ and consider $R \subseteq A \times B$ given by $\alpha Rb \Leftrightarrow "\alpha$ divides b".

$$R(2) = \{2,4,6\}$$

$$R(3) = ?$$

$$R(\{2,3\}) = ?$$

Properties of R-relative sets

Thm. Let R be a relation from A to B and $A_1, A_2 \subseteq A$.

- If $A_1 \subseteq A_2$, then $R(A_1) \subseteq R(A_2)$
- $R(A_1 \cup A_2) = R(A_1) \cup R(A_2)$
- $R(A_1 \cap A_2) \subseteq R(A_1) \cap R(A_2)$

Exercise: Find an example of sets A, A_1, A_2, B , and relation R where

$$R(A_1 \cap A_2) \neq R(A_1) \cap R(A_2)$$

What we've seen today

- Sets and their productsSubsets and the power set
- Relations
 Domain and range
- Matrix represent a relation?
 Matrix representation
 Digraph representation
- R-relative sets

