Make Better Wine

•••

With Machine Learning

My Project

Question:

Can I predict what the wine quality rating will be at the review phase?

The Data:

A data set of red and white wines with various chemical features and a quality label is considered.

fixed acidity, volatile acidity, citric acid, residual sugar, chloride, free sulfur dioxide, total sulfur dioxide, density, pH, sulphates, alcohol, quality

What is Machine Learning?

The ability for a computer to learn without being explicitly programmed via large datasets and fancy math.

- Al produces behaviors.
- ML produces predictions.
- DS produces insights.

What is Supervised Learning?

Supervised Learning Workflow

Correlations and Data Visualization

Quality VS:

alcohol 0.448437 citric acid 0.084433 pH 0.020651 density -0.301925

^{*} correlation implies (not causation)

Correlations and Data Visualization

Alcohol VS:

pH 0.115036

density -0.683560

residual sugar -0.365590

Sulfur dioxide -0.273108

^{*} correlation implies (not causation)

Correlations and Data Visualization

Alcohol VS:

pH 0.115036

density -0.683560

residual sugar -0.365590

Sulfur dioxide -0.273108

Supervised Learning Workflow

Training vs Test (Validation) Data

Sampling and Bias

Good Representation

Bad Representation

Supervised Learning Workflow

Linear Regression

If the goal is prediction, or forecasting, or error reduction, linear regression can be used to fit a predictive model to an observed data set of y and X values. After developing such a model, if an additional value of X is then given without its accompanying value of y, the fitted model can be used to make a prediction of the value of y.

When a value is being predicted, supervised learning is called regression.

Regression Error (RSME):

Train the Model

What do these errors mean?

```
In [13]: from sklearn.linear model import LinearRegression
         from sklearn.metrics import mean squared error
         import numpy as np
         lin reg = LinearRegression()
         lin reg.fit(wine data, wine data labels)
         wine predictions = lin reg.predict(wine data)
         lin mse = mean squared error(wine data labels, wine predictions)
         lin rmse = np.sqrt(lin mse)
         lin rmse
         0.7318414929843039
In [14]: # this seems promising but did it overfit?
         from sklearn.tree import DecisionTreeRegressor
         tree_reg = DecisionTreeRegressor()
         tree reg.fit(wine data, wine data labels)
         wine tree predictions = tree reg.predict(wine data)
         tree mse = mean squared error(wine data labels, wine tree predictions)
         tree rsme = np.sqrt(tree mse)
         tree rsme
Out[14]: 0.0
In [15]: # looks like the decision tree did better but this one has a small error
         from sklearn.ensemble import RandomForestRegressor
         forest reg = RandomForestRegressor()
         forest reg.fit(wine data, wine data labels)
         wine random predictions = forest reg.predict(wine data)
         forest mse = mean squared error(wine data labels, wine random predictions)
         forest rsme = np.sqrt(forest mse)
          forest rsme
Out[15]: 0.27432987254150021
```



```
In [13]: from sklearn.linear_model import LinearRegression
         from sklearn.metrics import mean squared error
         import numpy as np
         lin reg = LinearRegression()
         lin reg.fit(wine data, wine data labels)
         wine predictions = lin reg.predict(wine data)
         lin_mse = mean_squared_error(wine_data_labels, wine_predictions)
         lin rmse = np.sqrt(lin mse)
         lin rmse
         0.7318414929843039
In [14]: # this seems promising but did it overfit?
         from sklearn.tree import DecisionTreeRegressor
         tree reg = DecisionTreeRegressor()
         tree reg.fit(wine data, wine data labels)
         wine tree predictions = tree reg.predict(wine data)
         tree_mse = mean_squared_error(wine_data_labels, wine_tree_predictions)
         tree rsme = np.sqrt(tree mse)
         tree rsme
Out[14].
In [15]: # looks like the decision tree did better but this one has a small error
         from sklearn.ensemble import RandomForestRegressor
         forest reg = RandomForestRegressor()
         forest reg.fit(wine data, wine data labels)
         wine random predictions = forest reg.predict(wine data)
         forest mse = mean squared error(wine data labels, wine random predictions)
         forest rsme = np.sqrt(forest mse)
         forest rsme
Out[15]: 0.27432987254150021
```


Final error: .302

<pre>data["Human"].mean()</pre>		
5.833846153846154		
data["Machine"].mean()		
5.845230769230775		

	Human	Machine
0	8.0	7.3
1	5.0	5.0
2	7.0	6.9
3	6.0	5.7
4	6.0	5.7
5	6.0	6.4
6	5.0	5.2
7	6.0	6.0
8	5.0	5.1
9	7.0	6.8
10	5.0	5.2
11	5.0	5.2
12	7.0	7.0
13	5.0	5.3
14	7.0	6.8
15	6.0	5.5
16	5.0	5.0
17	6.0	5.8
18	7.0	6.9
19	6.0	5.7
20	5.0	5.1
21	6.0	6.2

What did I learn from this project?

- The Machine Learning (Supervised Learning) process.
- Basic data visualization to understand the dataset.
- Linear Regression and Regression Error.
- How to present a difficult topic :)