A Book of Abstract Algebra (2nd Edition)

Chapter 32, Problem 4EA

Bookmark

Show all steps: (

ON

Problem

Write the inclusion diagram for the subgroups of $Gal(\mathbb{Q}(i, \sqrt{2}) : \mathbb{Q})$, and the inclusion diagram for the fields intermediate between \mathbb{Q} and $\mathbb{Q}(i, \sqrt{2})$. Indicate the Galois correspondence.

Step-by-step solution

Step 1 of 4

The objective is to write the inclusion diagram for the subgroups of $Gal\left(\mathbb{Q}\left(i,\sqrt{2}\right);\mathbb{Q}\right)$, the inclusion diagram for the fields intermediate between \mathbb{Q} and $\mathbb{Q}\left(i,\sqrt{2}\right)$ and to indicate the Galois correspondence.

Comment

Step 2 of 4

The root field $\mathbb{Q}(i,\sqrt{2})$ is of degree 4 over \mathbb{Q} .

Therefore \circ there are four automorphism of $\mathbb{Q}\left(i,\sqrt{2}\right)$ which fix \mathbb{Q} \circ since the number of automorphism is equal to the degree of $\mathbb{Q}\left(i,\sqrt{2}\right)$ over \mathbb{Q} .

Since an automorphism is determined by its effect on $\sqrt{2}$ and i, there are four possibilities, namely,

$$\varepsilon : \begin{cases} \sqrt{2} \mapsto \sqrt{2} \\ i \mapsto i \end{cases} \quad \alpha : \begin{cases} \sqrt{2} \mapsto -\sqrt{2} \\ i \mapsto i \end{cases} \quad \beta : \begin{cases} \sqrt{2} \mapsto \sqrt{2} \\ i \mapsto -i \end{cases} \quad \gamma : \begin{cases} \sqrt{2} \mapsto -\sqrt{2} \\ i \mapsto -i \end{cases}$$

Thus the Galois group of $\mathbb{Q}(i,\sqrt{2})$ over \mathbb{Q} is $Gal(\mathbb{Q}(i,\sqrt{2}):\mathbb{Q}) = \{\varepsilon,\alpha,\beta,\gamma\}$.

This group has exactly five subgroup-namely $\{\varepsilon\}$, $\{\varepsilon,\alpha\}$, $\{\varepsilon,\beta\}$, $\{\varepsilon,\gamma\}$, and the whole group G.

Comment	
	Step 3 of 4
Inclusion Diagram for the Intermediate fields:	
On the other han	d , there are exactly five fields intermediate between $\mathbb Q$ and $\mathbb Qig(i,\sqrt2ig)$, whic

Step 4 of 4

The subgroup of G have the following fix fields:

$$\begin{split} \left\{\varepsilon\right\}^o &= \mathbb{Q}\left(i,\sqrt{2}\right) \ \left\{\varepsilon,\alpha\right\}^o = \mathbb{Q}\left(i\right) \ \left\{\varepsilon,\beta\right\}^o = \mathbb{Q}\left(\sqrt{2}\right) \\ \left\{\varepsilon,\gamma\right\}^o &= \mathbb{Q}\left(\sqrt{2}i\right) \ G^o = \mathbb{Q} \end{split}$$

The Galois correspondence may be represented as follows:

Comment

Comment