

Progettazione di un Data Warehouse per la visualizzazione degli omicidi e delle esecuzioni negli USA negli anni 2008-2014

Destinatario	Prof. G. Tortora
Presentato da	Giammaria Giordano, Valeria Pontillo

Sommario

Introduzione	1
Analisi e riconciliazione delle fonti	3
Schemi delle sorgenti	3
execution_database.csv	3
Homicide_dataset.csv	3
sigle_stati.csv	4
Strumenti ETL (Extraction, Transformation and Loading)	6
Analisi dei requisiti	9
Progettazione concettuale	10
Modellazione logica	11
Design dello schema di fatto	12
Livello di analisi	14
Numero totale di omicidi e sentenze in tutti gli Stati	14
Omicidi tra il 2008 e il 2014 negli Stati con pena di morte e Stati senza la pena di morte	15
Numero di omicidi e di esecuzioni in Texas tra gli anni 2008-2014	18
Esecuzioni compiute in tutti gli Stati tra il 2008 e il 2014 divise per trimestri	19

Indice delle figure

Figura 1: Architettura a tre livelli	2
Figura 2: Diagramma ER crimini USA	4
Figura 3: Diagramma ER esecuzioni USA	5
Figura 4: Diagramma ER riconciliato	6
Figura 5: Trasformazione dei dati	8
Figura 6: Diagramma ER riconciliato	9
Figura 7: Albero degli attributi	10
Figura 8: Schema DFM	11
Figura 9: Fact Table	11
Figura 10: Trasformazione per la creazione della Fact Table	12
Figura 11: Creazione del cubo	13

Introduzione

Scopo del nostro lavoro progettuale è la costruzione e l'interrogazione di un Data Warehouse contenente informazioni sul numero di omicidi commessi negli Stati Uniti d'America negli anni 2008-2014 e il numero di condanne a morte eseguite negli stessi anni.

Le caratteristiche architetturali di un DW sono:

- **Dati integrati**: requisito fondamentale perché i dati di un DW provengono da più fonti di dati diverse;
- Orientata al soggetto: i dati vengono archiviati in modo da essere facilmente letti e/o elaborati dagli utenti. L'obiettivo quindi dei DW non è più quello di minimizzare la ridondanza (con la normalizzazione), ma è quello di fornire dati organizzati in modo da fornire la produzione di informazioni;
- Variabile nel tempo: i dati archiviati coprono un orizzonte temporale molto più esteso e spesso i dati sono aggiornati solo fino a una certa data, che risulta essere antecedente a quella in cui l'utente interroga il sistema;
- Non volatile: i dati del DW non possono essere modificati ma possono essere solo letti; quindi la progettazione del database risulta essere più semplice in quanto, per esempio, non si devono considerare le possibili anomalie dovute dagli aggiornamenti.

I dati da noi utilizzati sono stati estratti da diverse fonti e in formato csv:

- I dati riguardanti le esecuzioni capitali sono stati estratti da kaggle.com;
- I dati riguardanti gli omicidi effettuati negli USA sono stati estratti da <u>data.world</u>;
- La posizione geografica dei diversi Stati, la presenza o meno della pena di morte e l'eventuale anno di abolizione sono stati ricavati da <u>Wikipedia</u>.

L'approccio usato per lo sviluppo del nostro DW è di tipo top-down, infatti sono stati prima analizzati tutti i dati e successivamente è stata pianificata la costruzione del DW. L'architettura è a tre livelli, dove viene introdotto il livello che si occupa della riconciliazione dei dati.

Figura 1: Architettura a tre livelli

Analisi e riconciliazione delle fonti

Schemi delle sorgenti

execution database.csv

Date ‡	Name	Age 4	Sex	Race	number_Race_Sex_of_Victims	State	Region	Method \$	Juvenile	Federal	Volunteer	ForeignNational	County
08/05/2013	John Ferguson	65	m	Black	6 Black Male(s)1 White Female(s	FL	S	Lethal Injection	No	No	No	No	Miami-Dade
05/29/1985	Marvin Francois	39	m	Black	6 Black Male(s)	FL	S	Electrocution	No	No	No	No	Miami-Dade
08/28/1987	Beauford White	41	m	Black	6 Black Male(s)	FL	S	Electrocution	No	No	No	No	Miami-Dade
05/06/2003	Carl Isaacs	49	m	White	5 White Male(s)1 White Female(s)	GA	S	Lethal Injection	No	No	No	No	Seminole
06/10/1988	Arthur Bishop	37	m	White	5 White Male(s)	UT	W	Lethal Injection	No	No	Yes	No	Salt Lake
12/11/2012	Manuel Pardo	56	m	Latino	5 Latino Male(s)3 Latino Fernale(FL	S	Lethal Injection	No	No	No	No	Miami-Dade
02/23/1996	William Bonin	49	m	White	4 White Male(s)	CA	W	Lethal Injection	No	No	No	No	Los Angeles
04/23/1999	David Lawrie	37	m	White	4 White Male(s)	DE	S	Lethal Injection	No	No	No	No	Kent
06/03/2015	Lester Bower	67	m	White	4 White Male(s)	TX	S	Lethal Injection	No	No	No	No	Grayson
03/18/1993	Syvasky Poyner	36	m	Black	4 White Female(s)1 Black Femal	VA	S	Electrocution	No	No	No	No	York
02/17/2005	Dennis Bagwell	41	m	White	4 White Female(s)	TX	S	Lethal Injection	No	No	No	No	Atascosa
05/13/2005	Michael Ross	45	m	White	4 White Female(s)	CT	N	Lethal Injection	No	No	Yes	No	Ne w London
10/29/2015	Jerry Correll	59	m	White	4 White Female(s)	FL	S	Lethal Injection	No	No	No	No	Orange
09/19/2013	Robert Garza	30	m	Latino	4 Latino Female(s)	TX	S	Lethal Injection	No	No	No	No	Harris
01/21/2000	Larry Robison	42	m	White	3 White Male(s)2 White Female(s)	TX	S	Lethal Injection	No	No	No	No	Tarrant
08/07/2003	Tommy Fortenb	39	m	White	3 White Male(s)1 White Female(s)	AL	S	Lethal Injection	No	No	No	No	Eto wah
12/10/2002	Jerry McCracken	35	m	White	3 White Male(s)1 White Female(s)	OK	S	Lethal Injection	No	No	No	No	Oklahoma
3/18/1998	Douglas Buchan	. 29	m	White	3 White Male(s)1 White Female(s)	VA	S	Lethal Injection	No	No	No	No	Amherst

Homicide_dataset.csv

Victim.Age	‡	Victim.Race \$	Victim.Ethnicity ‡	Perpetrator.Sex \$	PerpetratorAge ‡	Perpetrator.Race \$	Perpetrator.Ethnicity 💠	Relationship \$	Weapon ‡	Victim.Count *	ĺ
	29	White	Unkno wn	Unkno wn	NA	Unkno wn	Unkno wn	Unkno wn	Unkno wn	0	l
	34	Black	Unkno wn	Male	38	Black	Unkno wn	Brother	Handgun	0	
	27	White	Unkno wn	Male	22	White	Unkno wn	Stranger	Handgun	0	
	29	White	Unkno wn	Female	18	White	Unkno wn	Acquaintance	Unkno wn	0	
	22	Native American/Alaska Native	Unkno wn	Male	22	Native American/Alaska Native	Unkno wn	Acquaintance	Blunt Object	0	
	22	Black	Unkno wn	Unkno wn	NA	Unkno wn	Unkno wn	Unkno wn	Handgun	0	
	39	Native American/Alaska Native	Unkno wn	Unkno wn	NA	Unkno wn	Unkno wn	Unkno wn	Blunt Object	0	
	61	White	Unkno wn	Male	42	Native American/Alaska Native	Unkno wn	Unkno wn	Blunt Object	0	
	24	White	Unkno wn	Male	26	Asian/Pacific Islander	Unkno wn	Stranger	Handgun	0	
	40	Black	Unkno wn	Male	28	Black	Unkno wn	Acquaintance	Handgun	0	
	60	Native American/Alaska Native	Unkno wn	Unkno wn	NA	Unkno wn	Unkno wn	Unkno wn	Blunt Object	0	
	35	White	Unkno wn	Male	22	White	Unkno wn	Neighbor	Blunt Object	0	
	62	White	Unkno wn	Male	21	White	Unkno wn	Stranger	Blunt Object	0	
	35	White	Unkno wn	Female	33	White	Unkno wn	Husband	Handgun	0	
	41	White	Unkno wn	Unkno wn	NA	Unkno wn	Unkno wn	Unkno wn	Blunt Object	0	
	40	White	Unkno wn	Male	44	White	Unkno wn	Employee	Shotgun	0	
	37	Native American/Alaska Native	Unkno wn	Male	18	White	Unkno wn	Unkno wn	Knife	0	
	42	White	Unkno wn	Unkno wn	NA	Unkno wn	Unkno wn	Unkno wn	Unkno wn	0	
	43	White	Unkno wn	Male	43	White	Unkno wn	Neighbor	Shotaun	0	

sigle_stati.csv

Sigla ‡	Stato	+	Regione	+	PenaDiMorte	=	AnnoAbolizione ‡
AL	Alabama		SE			1	NA
AK	Alaska		NW			0	1973
AZ	Arizona		sw			1	NA
AR	Arkansas		SE			1	NA
CA	California		sw			1	NA
со	Colorado		С			1	NA
СТ	Connecticut		NE			0	2012
DE	Dela ware		NE			1	NA
FL	Florida		SE			1	NA
GA	Georgia		SE			1	NA
н	Ha waii		S			0	1973
ID	Idaho		NW			1	NA
IL	Illinois		NE			0	2011
IN	Indiana		NE			1	NA

Di seguito sono mostrati i diagrammi ER dei due dataset e poi il diagramma riconciliato.

Figura 2: Diagramma ER crimini USA

Figura 3: Diagramma ER esecuzioni USA

Figura 4: Diagramma ER riconciliato

Strumenti ETL (Extraction, Transformation and Loading)

Scopo degli strumenti ETL è quello di alimentare una sorgente dati che a sua volta dovrà alimentare un DW. Sono tre le operazioni svolte dagli strumenti ETL:

Extraction: l'estrazione di dati rilevanti dalle sorgenti.
 N.B. i dati presi in considerazione sono quelli rappresentati nelle colonne bianche nelle diverse immagini.

Per quanto riguarda il dataset sugli omicidi sono stati estratti come dati rilevanti lo Stato in cui era stato commesso l'omicidio, il mese e l'anno.

Per il dataset sulle esecuzioni effettuate negli Stati Uniti d'America, sono stati prelevati la data dell'esecuzione, lo Stato e il condannato (per tenere traccia del numero di sentenze effettuate).

• Transformation: in questa fase si deve migliorare la qualità dei dati, solitamente scarsa nei csv iniziali. Fortunatamente i dataset scelti non hanno presentato grossi problemi, infatti tutti i valori erano logicamente associati ed erano presenti tutti i dati. Per quanto riguarda il dataset delle esecuzioni, è stato fatto uno split sulla data in modo da eliminare il giorno e lasciare solo il mese e l'anno, successivamente sono state prese in considerazione solo le date comprese tra il 2008 e il 2014 perché erano gli anni in comune con il dataset degli omicidi. Infine, è stato aggiunto un campo in cui riportare il numero delle esecuzioni effettuate nei diversi Stati per ogni mese dell'anno.

Per quanto riguarda il dataset degli omicidi è stato aggiunto un campo in cui riportare il numero degli omicidi effettuati nei diversi Stati per ogni mese dell'anno. Questo dataset è stato unito al dataset creato da noi per poter visualizzare la regione di appartenenza dello stato (nord, sud, ecc.), la presenza della condanna a morte in quello stato e l'eventuale anno

di abrogazione. La trasformazione per poter modificare e creare le nuove tabelle di dati è stata fatta con **Pentaho Kettle**.

Figura 5: Trasformazione dei dati

• Loading: dopo la fase di trasformazione, i dati finali sono stati caricati nel database.

State	Region	Acronym	DeathPenalty	YearAbrogation	Month	Quarter	Year	NumberMurders	NumberSentences	1
Alaska	l NW	l AK	+0	1973	+ I 1	1 1	+ 2008	t	t a	+
Alabama	NW SE	l AL	1 1	l NULL	1 1	1	2008 2008	4 33	[0 [1
Arkansas	I SE	I AR	1	I NULL	1 1	1	2008 2008	•	I 0	!
Arizona			1	•	-	1		12	9	!
	SW	AZ	1	NULL	1	1	2008	39	0	!
California	SW	CA	1	NULL	1	1	2008	173	0	!
Colorado	C	CO	1	NULL	1	1	2008	19	0	!
Connecticut	NE	CT	1	2012	1	1	2008	11	0	!
Delaware	NE	DE	1	NULL	1	1	2008	8	0	!
Florida	SE	FL	1	NULL	1	1	2008	100	Θ	
Georgia	SE	GA	1	NULL	1	1	2008	46	0	ļ.
Hawaii	S	HI	0	1973	1	1	2008] 3	Θ	ļ.
Iowa	C	IA	0	1965	1	1	2008	6	0	
Idaho	NW	ID	1	NULL	1	1	2008	1	0	
Illinois	NE	IL	1	2011	1	1	2008	37	Θ	
Indiana	NE	IN	1	NULL	1	1	2008	24	[Θ	
Kansas	C	KS	1	NULL	1	1	2008	7	0	
Kentucky	SE	KY	1	NULL	1	1	2008	17	Θ	
Louisiana	SE	LA	1	NULL	1	1	2008	32	Θ	
Massachusetts	NE	MA	0	1984	1	1	2008	17	0	
Maryland	NE	MD	1	2013	1	1	2008	32	Θ	
Maine	NE	ME	0	1887	1	1	2008	2	0	Ĺ
Michigan	NE	MI	0	1846	1	1	2008	35	0	Ĺ
Minnesota	N	MN	0	1911	1	1	2008	6	0	Ĺ
Missouri	C	MO	1	NULL	1	1	2008	25	0	Ĺ
Mississippi	SE	MS	1	NULL	1	1	2008	10	0	Ĺ
Montana	NW	MT	j 1	NULL	1	1	2008	2	0	i i
North Carolina	SE	NC	j 1	NULL	1	1	2008	60	0	Ĺ
Nebraska	c	NE	i 1	I NULL	i 1	1	I 2008	I 3	I 0	i i

Infine, il diagramma ER finale riconciliato è il seguente:

Figura 6: Diagramma ER riconciliato

Analisi dei requisiti

Durante la fase di pianificazione del progetto sono stati individuati gli obiettivi che si intendevano raggiungere con lo sviluppo e la costruzione di questo Data Warehouse. Il fatto che si intendeva mostrare è l'omicidio, confrontando il numero totale di omicidi tra Stati con la pena di morte e Stati senza la pena di morte, misurando sia il numero di omicidi che il numero di esecuzioni capitali eseguite tra gli anni 2008-2014.

Fact	Dimensions	Measures	Historicizing
Murders	dim_country	Number of murders	7 years
		Number of convicts	
	dim_year		

Ogni misura verrà calcolata per Stato, regione, anno, trimestre e mese.

Progettazione concettuale

Scopo della progettazione concettuale è la realizzazione di uno schema di fatto (DFM) partendo dalle sorgenti operazionali. Questo livello di progettazione viene attuato seguendo questo schema:

- 1. Definizione dei fatti
- 2. Per ogni fatto individuato:
 - a. Costruzione dell'albero degli attributi
 - b. Potatura e innesto dell'albero degli attributi
 - c. Definizione delle dimensioni
 - d. Definizione delle misure
 - e. Creazione dello schema di fatto

Il fatto individuato dopo aver analizzato l'analisi dei requisiti è l'omicidio, quindi l'attributo omicidio rappresenta la radice dell'albero degli attributi.

Figura 7: Albero degli attributi

Non è stata necessaria nessuna operazione di potatura, in quanto tutti gli attributi presenti nell'albero sono di interesse per la costruzione del DW.

Dall'albero degli attributi sono state ricavate le dimensioni e le misure che vengono mostrate direttamente all'interno del DFM. Entrambe le misure sono delle somme di interi, quindi verranno rappresentati da interi.

Figura 8: Schema DFM

Modellazione logica

Per rappresentare la struttura multidimensionale dei dati si è scelto di utilizzare il modello relazionale da cui si costruiranno i sistemi ROLAP (Relational On-Line Analytical Processing). Si preferisce usare il sistema ROLAP invece del MOLAP perché il modello relazionale rappresenta uno standard per i database ed è conosciuto da tutti i professionisti del settore, inoltre i DBMS sono sul mercato da moltissimi anni e quindi sono strumenti più raffinati ed ottimizzati.

Per la modellazione multidimensionale su sistemi ROLAP si usa lo schema a stella (Figura 9), composto da una Fact Table che rappresenta il nostro fatto ed è collegata alle Dimension Table (dim_year e dim_country).

Figura 9: Fact Table

Una volta definite le diverse dimensioni, è stato usato **Pentaho Kettle** per creare e alimentare i Data Mart. Infatti, dopo aver ripulito le diversi sorgenti si è passati alla creazione degli schemi di fatto che

contengono le informazioni utili all'analisi. In figura dieci sono rappresentati i diversi passi per la creazione delle tabelle delle dimensioni.

Figura 10: Trasformazione per la creazione della Fact Table

Design dello schema di fatto

Per la creazione degli schemi di fatto è stato usato il tool **Pentaho Schema Workbench**, il quale permette la creazione del cubo che dovrà essere usato durante la fase di analisi dei dati finale. I task eseguiti su questo tool sono elencati di seguito, mentre la figura 11 rappresenta la creazione del cubo su Pentaho Schema Workbench:

- Creazione dello schema
- Creazione del cubo
- Scelta della Fact Table
- Aggiunta delle misure
- Scelta delle Dimension Tables e delle gerarchie associate
- Definizione dei livelli di gerarchia
- Pubblicazione dello schema su Pentaho Bi Server

Figura 11: Creazione del cubo

Livello di analisi

Il cubo creato è stato pubblicato su **Pentaho Bi Server**; qui si potranno creare diversi grafici con **JPivot** in modo da poter ottenere informazioni utili e di immediata comprensione. Di seguito sono riportati le diverse tabelle e i grafici ottenuti.

Numero totale di omicidi e sentenze in tutti gli Stati

		Measures
anno	States	· Sum Murders
⊕ 2008	All State.Statess	15,566
2009	All State.Statess	15,828
⊕ 2010	All State.Statess	15,105
2011	All State.Statess	14,745
□ 2012	All State.Statess	14,920
2013	All State.Statess	14,445
□ 2014	All State.Statess	14,223

Omicidi tra il 2008 e il 2014 negli Stati con pena di morte e Stati senza la pena di morte

		Measures
States	anno	· Sum Murders
· c	□ 2008	815
■NE	2008	2,606
■ NW	□ 2008	485
•s	2008	1,577
[®] SE	□ 2008	4,947
sw	2008	2,680

Slicer:

Slicer:

true.C.2008. true.NE.2008. true.NW.2008. true.S.2008. true.SE.2008. true.SW.2008.

		Measures
States	anno	· Sum Murders
· C	□ 2009	832
®NE	2009	2,567
■ NW	□ 2009	695
⊕s	2009	1,715
• SE	□ 2009	4,930
sw	2009	2,500

Slicer:

		Measures
States	anno	· Sum Murders
· C	2009	44
⊕N	2009	98
⊕ NE	□ 2009	2,231
■NW	2009	36
· s	□ 2009	24
®sw	2009	156

Slicer:

false.SW.2009.

		Measures
States	anno	· Sum Murders
· C	[®] 2010	842
●NE	2010	2,491
[⊕] NW	[®] 2010	621
•s	2010	1,572
• SE	· 2010	4,501
sw	2010	2,345

Slicer:

		Measures
States	anno	· Sum Murders
· C	□ 2011	851
■NE	2011	1,939
■ NW	□ 2011	596
•s	2011	1,442

4,474 2,308

true.SW.2010.

Slicer:

® SE © 2011

Slicer

		Measures	
States	anno	· Sum Murders	
· C	· 2011	47	
®N	2011	96	
[®] NE	[®] 2011	2,800	
■NW	2011	36	
· s	· 2011	24	
⊕sw	2011	132	

Slicer:

		Measures
States	anno	· Sum Murders
· c	[®] 2012	825
● NE	2012	1,870
■ NW	[®] 2012	495
•s	2012	1,490
• SE	₾ 2012	4,558
sw	2012	2,403

Slicer:

■ true.C.2012. ● true.NE.2012. ● true.NW.2012. ● true.S.2012. ● true.SE.2012. ■ true.SW.2012.

	Measures	
States	anno	· Sum Murders
· C	□ 2012	50
®N	2012	130
[®] NE	□ 2012	2,924
®NW	2012	40
• s	· 2012	23
⊕ sw	2012	112

Slicer:

| 6 | false C. 2012. | 6 | false N. 2012. | 6 | false NW. 2012. | 6 | false S. 2012. | 6 | false SW. 2012. | 6 | false SW. 2012. | 7 | false SW.

		Measures
States	anno	· Sum Murders
· C	□ 2013	854
■NE	2013	1,417
[®] NW	□ 2013	608
®S	2013	1,488
• SE	· 2013	4,285
sw	2013	2,313

Slicer:

		Measures
States	anno	· Sum Murders
· C	· 2013	42
⊕N	2013	138
[⊕] NE	⊕ 2013	3,116
■NW	2013	41
· s	[®] 2013	24
®sw	2013	119

Slicer:

| false C, 2013. | false N, 2013. | false NE. 2013. | false NW. 2013. | false S, 2013. |
| false SW. 2013. |

		Measures
States	anno	 Sum Murders
· C	□ 2014	854
■NE	2014	1,390
■ NW	□ 2014	645
® S	2014	1,509
· SE	2014	4,387
sw	2014	2,178

Slicer:

true.C.2014. true.NE.2014. true.NW.2014. true.S.2014. true.SE.2014.
true.SW.2014.

Sum Murders.

Numero di omicidi e di esecuzioni in Texas tra gli anni 2008-2014

Esecuzioni compiute in tutti gli Stati tra il 2008 e il 2014 divise per trimestri

		Measures
anno	States	· Sum Sentences
1	■ All State.Statess	0
2	All State.Statess	9
· 3	■ All State.Statess	15
4	All State.Statess	13

Slicer:

Slicer:

		Measures
anno	States	· Sum Sentences
1	■ All State.Statess	20
2	All State.Statess	12
⊕ 3	■ All State.Statess	7
4	All State.Statess	13

Slicer:

2009.1.All State.Statess. 2009.2.All State.Statess. 2009.3.All State.Statess.
 2009.4.All State.Statess.

		Measures
anno	States	· Sum Sentences
±1	■ All State.Statess	12
2	All State.Statess	17
3	■ All State.Statess	11
4	All State.Statess	6

Slicer:

Slicer:

2010.1.All State.Statess.
 2010.2.All State.Statess.
 2010.4.All State.Statess.

		Measures
anno	States	· Sum Sentences
1	■ All State.Statess	11
2	All State.Statess	14
· 3	■ All State.Statess	12
4	All State.Statess	6

Slicer:

Slicer:

2011.1.All State.Statess.
 2011.2.All State.Statess.
 2011.4.All State.Statess.

		Measures
anno	States	· Sum Sentences
1	■ All State.Statess	12
2	All State.Statess	11
3	■ All State.Statess	7
± 4	■ All State.Statess	13

Slicer:

Slicer:

2012.1.All State.Statess.
 2012.2.All State.Statess.
 2012.4.All State.Statess.

		Measures
anno	States	· Sum Sentences
± 1	■ All State.Statess	5
2	All State.Statess	13
± 3	■ All State.Statess	9
4	All State.Statess	12

Slicer:

Slicer:

2013.1.All State.Statess.
 2013.2.All State.Statess.
 2013.4.All State.Statess.

		Measures
anno	States	· Sum Sentences
1	■ All State.Statess	14
2	All State.Statess	9
3	■ All State.Statess	7
± ₄	■ All State.Statess	5

Slicer:

🏮 2014.1.All State.Statess. 🏮 2014.2.All State.Statess. 🏮 2014.3.All State.Statess.

2014.4.All State.Statess.