EDA OF NOSHOW APPOINTMENTS IN MAY 2016.

INTRODUCTION

This dataset collects information from 100k medical appointments in Brazil and is focused on the question of whether or not patients show up for their appointment.

QUESTIONS

From this data, we seek to answer the following questions:

- 1. Which gender; male or female had a higher number of no shows?
- 2. Were most no shows from patients under scolarship or not?
- 3. Did the no shows receive SMS for their appointments?
- 4. What was the age range of the no- shows?

DATA WRANGLING

```
In [2]:
          import numpy as np
          import pandas as pd
          import matplotlib.pyplot as plt
          import seaborn as sns
          %matplotlib inline
In [5]:
          df = pd.read_csv(r'C:\Users\Sherry\Downloads\noshowappointments-kagglev2-may-2016 (1
          df.head()
Out[5]:
                PatientId AppointmentID Gender ScheduledDay AppointmentDay Age Neighbourhood 5
                                                       2016-04-
                                                                        2016-04-
                                                                                            JARDIM DA
           2.987250e+13
                                 5642903
                                                                                   62
                                                    29T18:38:08Z
                                                                     29T00:00:00Z
                                                                                               PENHA
                                                       2016-04-
                                                                        2016-04-
                                                                                            JARDIM DA
            5.589978e+14
                                 5642503
                                              Μ
                                                                                   56
                                                    29T16:08:27Z
                                                                     29T00:00:00Z
                                                                                               PENHA
                                                       2016-04-
                                                                        2016-04-
            4.262962e+12
                                 5642549
                                                                                        MATA DA PRAIA
                                                                                   62
                                                    29T16:19:04Z
                                                                     29T00:00:00Z
                                                       2016-04-
                                                                        2016-04-
                                                                                            PONTAL DE
            8.679512e+11
                                                                                    8
                                 5642828
                                                    29T17:29:31Z
                                                                     29T00:00:00Z
                                                                                             CAMBURI
                                                       2016-04-
                                                                        2016-04-
                                                                                            JARDIM DA
            8.841186e+12
                                 5642494
                                                                                   56
                                                                     29T00:00:00Z
                                                    29T16:07:23Z
                                                                                               PENHA
In [6]:
          df.shape
         (110527, 14)
Out[6]:
In [7]:
          df.info()
```

<class 'pandas.core.frame.DataFrame'>

```
RangeIndex: 110527 entries, 0 to 110526
         Data columns (total 14 columns):
             Column
                            Non-Null Count
         _ _ _
             -----
                            -----
             PatientId 110527 non-null float64
         0
             AppointmentID 110527 non-null int64
         1
         2
             Gender
                           110527 non-null object
         3
             ScheduledDay 110527 non-null object
             AppointmentDay 110527 non-null object
         4
         5
                           110527 non-null int64
             Neighbourhood 110527 non-null object
         6
         7
             Scholarship
                           110527 non-null int64
         8
             Hipertension 110527 non-null int64
         9
             Diabetes
                           110527 non-null int64
         10 Alcoholism
                           110527 non-null int64
         11 Handcap
                           110527 non-null int64
         12 SMS_received 110527 non-null int64
         13 No-show
                           110527 non-null object
         dtypes: float64(1), int64(8), object(5)
         memory usage: 11.8+ MB
 In [8]:
         # converting date time into correct format
         df.ScheduledDay = pd.to_datetime(df.ScheduledDay)
         df.ScheduledDay.head(5)
        0 2016-04-29 18:38:08+00:00
Out[8]:
            2016-04-29 16:08:27+00:00
            2016-04-29 16:19:04+00:00
         3 2016-04-29 17:29:31+00:00
            2016-04-29 16:07:23+00:00
         Name: ScheduledDay, dtype: datetime64[ns, UTC]
In [9]:
         df.AppointmentDay = pd.to_datetime(df.AppointmentDay)
         df.AppointmentDay.head(5)
            2016-04-29 00:00:00+00:00
Out[9]:
            2016-04-29 00:00:00+00:00
         2 2016-04-29 00:00:00+00:00
         3 2016-04-29 00:00:00+00:00
            2016-04-29 00:00:00+00:00
         Name: AppointmentDay, dtype: datetime64[ns, UTC]
In [10]:
         # creating a new df with only No show Appointments.
         df1 = df.loc[["Yes" in title for title in df["No-show"]], :]
         df1.head()
```

Out[10]:		PatientId	AppointmentID	Gender	ScheduledDay	AppointmentDay	Age	Neighbourhood
_	6	7.336882e+14	5630279	F	2016-04-27 15:05:12+00:00	2016-04-29 00:00:00+00:00	23	GOIABEIRAS
	7	3.449833e+12	5630575	F	2016-04-27 15:39:58+00:00	2016-04-29 00:00:00+00:00	39	GOIABEIRAS
	11	7.542951e+12	5620163	М	2016-04-26 08:44:12+00:00	2016-04-29 00:00:00+00:00	29	NOVA PALESTINA
	17	1.479497e+13	5633460	F	2016-04-28 09:28:57+00:00	2016-04-29 00:00:00+00:00	40	CONQUISTA
	20	6.222575e+14	5626083	F	2016-04-27 07:51:14+00:00	2016-04-29 00:00:00+00:00	30	NOVA PALESTINA

4

EDA

```
In [12]:
          #Which gender had more no shows?
          print(round(df1.Gender.value_counts()/len(df)*100))
          df1.Gender.value_counts().plot(kind="bar")
          plt.title("Gender");
               13.0
         Μ
                7.0
         Name: Gender, dtype: float64
                                     Gender
          14000
          12000
          10000
           8000
           6000
           4000
           2000
             0
                                                    Σ
In [13]:
          # Self sponsored vs scholarship no shows?
          print(round(df1.Scholarship.value_counts()/len(df)*100))
          df1.Scholarship.value_counts().plot(kind="bar")
          plt.title("Scholarship");
               18.0
          0
          1
                2.0
         Name: Scholarship, dtype: float64
                                   Scholarship
          20000
          17500
          15000
          12500
          10000
           7500
           5000
           2500
             0
In [14]:
          # SMS vs NO- SMS?
          print(round(df1.SMS_received.value_counts()/len(df)*100))
          #
```

```
df1.SMS_received.value_counts().plot(kind="bar")
plt.title("SMS_received");
```

0 11.0 1 9.0

Name: SMS_received, dtype: float64


```
In [15]: # Age distribution of No-shows

# variable to examine
var_data = df1['Age']
# Create a Figure
fig = plt.figure(figsize=(10,4))
# Plot a histogram
plt.hist(var_data)
# Add titles and labels
plt.title('Age Distribution')
plt.xlabel('Value')
plt.ylabel('Frequency')
# Show figure
fig.show()
```

C:\Users\Sherry\AppData\Local\Temp/ipykernel_13740/3088698879.py:14: UserWarning: Ma tplotlib is currently using module://matplotlib_inline.backend_inline, which is a no n-GUI backend, so cannot show the figure.

fig.show()

CONCLUSIONS

From the above, we can conclude that:

- 1. More females missed their appointments in comparison to their male counterparts.
- 2. Self sponsored patients missed more appointments compared to those under scholarship.
- 3. Most no shows had received no SMS with their appointment details.
- 4. Most no show appointments were aged 1-10 or 20-30.

LIMITATIONS

The project went smoothly, with the dataset proving easy to work with. Snippets of my code came from different projects on my github repo https://github.com/Shee36

In []:		