

SEQUENCE LISTING

```
<110> Skeiky, Yasir
      Reed, Steven
      Alderson, Mark
      Corixa Corporation
<120> Fusion Proteins of Mycobacterium Tuberculosis
<130> 014058-009050US
<140> US 09/597,796
<141> 2000-06-20
<150> US 09/056,556
<151> 1998-04-07
<150> US 09/223,040
<151> 1998-12-30
<150> WO PCT/US99/07717
<151> 1999-04-07
<150> US 09/287,849
<151> 1999-04-07
<150> US 60/158,338
<151> 1999-10-07
<150> US 60/158,425
<151> 1999-10-07
<160> 30
<170> PatentIn Ver. 2.1
<210> 1
<211> 588
<212> DNA
<213> Mycobacterium tuberculosis
<220>
<223> Ra35, N-terminus of MTB32A (TbRa35FL)
<220>
<221> CDS
<222> (1) .. (588)
<223> Ra35
<400> 1
geoegeegg cettgtegea ggaceggtte geegaettee eegegetgee eetegaeeeg 60
teegegatgg tegeceaagt ggggeeacag gtggteaaca teaadaceaa actgggetae 120
aacaacgccg tgggcgccgg gaccggcatc gtcatcgatc ccaacggtgt cgtgctgacc 180
aacaaccacg tgatcgcggg cgccaccgac atcaatgcgt tcagcdtcgg ctccggccaa 240
acctacggcg tcgatgtggt cgggtatgac cgcacccagg atgtcgtggt gctgcagctg 300 cgcggtgccg gtggcctacc atcggcggcg atcggtggcg gcgtcgdggt tggtgagccc 360
gtcgtcgcga tgggcaacag cggtgggcag ggcggaacgc cccgtgcggt gcctggcagg 420
gtggtcgcgc tcggccaaac cgtgcaggcg tcggattcgc tgaccggtgc cgaagagaca 480
ttgaacgggt tgatccagtt cgatgccgcg atccagcccg gtgattcggg cgggcccgtc 540
gtcaacggcc taggacaggt ggtcggtatg aacacggccg cgtcctag
```

```
<210> 2
<211> 195
<212> PRT
<213> Mycobacterium tuberculosis
<223> Ra35, N-terminus of MTB32A (TbRa35FL)
<400> 2
Ala Pro Pro Ala Leu Ser Gln Asp Arg Phe Ala Asp Phe Pro Ala Leu
                                     10
Pro Leu Asp Pro Ser Ala Met Val Ala Gln Val Gly Pro Gln Val Val
             20
                                 25
Asn Ile Asn Thr Lys Leu Gly Tyr Asn Asn Ala Val Gly Ala Gly Thr
                             40
Gly Ile Val Ile Asp Pro Asn Gly Val Val Leu Thr Asn Asn His Val
                                              60
                         55
Ile Ala Gly Ala Thr Asp Ile Asn Ala Phe Ser Val Gly Ser Gly Gln
                     70
                                          75
Thr Tyr Gly Val Asp Val Val Gly Tyr Asp Arg Thr Gln Asp Val Ala
                                      90
Val Leu Gln Leu Arg Gly Ala Gly Gly Leu Pro Ser Ala Ala Ile Gly
                                 105
Gly Gly Val Ala Val Gly Glu Pro Val Val Ala Met Gly Asn Ser Gly
                            120
Gly Gln Gly Gly Thr Pro Arg Ala Val Pro Gly Arg Val Val Ala Leu
                        135
Gly Gln Thr Val Gln Ala Ser Asp Ser Leu Thr Gly Ala Glu Glu Thr
                                         155
                    150
Leu Asn Gly Leu Ile Gln Phe Asp Ala Ala Ile Gln Pro Gly Asp Ser
                                     170
                165
Gly Gly Pro Val Val Asn Gly Leu Gly Gln Val Val Gly Met Asn Thr
                                 185
Ala Ala Ser
        195
<210> 3
<211> 1872
<212> DNA
<213> Mycobacterium tuberculosis
<223> MTB32A (TbRa35FL) cDNA
<220>
<221> modified base
<222> (1460)
<223> n = g, a, c or t
<220>
<221> modified base
<222> (1854)
<223> n = g, a, c or t
<400> 3
gactacgttg gtgtagaaaa atcctgccgc ccggaccctt aaggctggga caatttctga 60
tagctacccc gacacaggag gttacgggat gagcaattcg cgccgccgct cactcaggtg 120
gtcatggttg ctgagcgtgc tggctgccgt cgggctgggc ctggccacgg cgccggccca 180
ggcggccccg ccggccttgt cgcaggaccg gttcgccgac ttccccgcgc tgcccctcga 240
cccgtccgcg atggtcgccc aagtggcgcc acaggtggtc aacatcaaca ccaaactggg 300
```

ctacaacaac gccgtgggcg ccgggaccgg catcgtcatc gatcccaacg gtgtcgtgct 360 gaccaacaac cacgtgatcg cgggcgccac cgacatcaat gcgttcagcg tcggctccgg 420 ccaaacctac ggcgtcgatg tggtcgggta tgaccgcacc caggatgtcg cggtgctgca 480 gctgcgcggt gccggtggcc tgccgtcggc ggcgatcggt ggcggcgtcg cggttggtga 540 gcccgtcgtc gcgatgggca acagcggtgg gcagggcgga acgccccgtg cggtgcctgg 600 cagggtggtc gcgctcggcc aaaccgtgca ggcgtcggat tcgctgaccg gtgccgaaga 660 gacattgaac gggttgatcc agttcgatgc cgcaatccag cccggtgatt cgggcgggcc 720 cgtcgtcaac ggcctaggac aggtggtcgg tatgaacacg gccgcgtccg ataacttcca 780 gctgtcccag ggtgggcagg gattcgccat tccgatcggg caggcgatgg cgatcgcggg 840 ccaaatccga tcgggtgggg ggtcacccac cgttcatatc gggcctaccg ccttcctcgg 900 cttgggtgtt gtcgacaaca acggcaacgg cgcacgagtc caacgcgtgg tcggaagcgc 960 tccggcggca agtctcggca tctccaccgg cgacgtgatc accgcggtcg acggcgctcc 1020 gatcaactcg gccaccgcga tggcggacgc gcttaacggg catcatcccg gtgacgtcat 1080 ctcggtgaac tggcaaacca agtcgggcgg cacgcgtaca gggaacgtga cattggccga 1140 gggacccccg gcctgatttg tcgcggatac cacccgccgg ccggccaatt ggattggcgc 1200 cagccgtgat tgccgcgtga gcccccgagt tccgtctccc gtgcgcgtgg cattgtggaa 1260 gcaatgaacg aggcagaaca cagcgttgag caccctcccg tgcagggcag ttacgtcgaa 1320 ggcggtgtgg tcgagcatcc ggatgccaag gacttcggca gcgccgccgc cctgcccgcc 1380 gatccgacct ggtttaagca cgccgtcttc tacgaggtgc tggtccgggc gttcttcgac 1440 gccagcgcgg acggttccgn cgatctgcgt ggactcatcg atcgcctcga ctacctgcag 1500 tggcttggca tcgactgcat ctgttgccgc cgttcctacg actcaccgct gcgcgacggc 1560 ggttacgaca ttcgcgactt ctacaaggtg ctgcccgaat tcggcaccgt cgacgatttc 1620 gtcgccctgg tcgacaccgc tcaccggcga ggtatccgca tcatcaccga cctggtgatg 1680 aatcacacct cggagtcgca cccctggttt caggagtccc gccgcgaccc agacggaccg 1740 tacggtgact attacgtgtg gagcgacacc agcgagcgct acaccgacgc ccggatcatc 1800 ttcgtcgaca ccgaagagtc gaactggtca ttcgatcctg tccgccgaca gttnctactg 1860 gcaccgattc tt

```
<210> 4
<211> 355
<212> PRT
<213> Mycobacterium tuberculosis
<220>
<223> MTB32A (TbRa35FL) protein
<400> 4
Met Ser Asn Ser Arg Arg Ser Leu Arg Trp Ser Trp Leu Leu Ser
                                      10
Val Leu Ala Ala Val Gly Leu Gly Leu Ala Thr Ala Pro Ala Gln Ala
Ala Pro Pro Ala Leu Ser Gln Asp Arg Phe Ala Asp Phe Pro Ala Leu
                             40
Pro Leu Asp Pro Ser Ala Met Val Ala Gln Val Ala Pro Gln Val Val
                         55
Asn Ile Asn Thr Lys Leu Gly Tyr Asn Asn Ala Val Gly Ala Gly Thr
                                          75
                     70
Gly Ile Val Ile Asp Pro Asn Gly Val Val Leu Thr Asn Asn His Val
                                      90
                 85
Ile Ala Gly Ala Thr Asp Ile Asn Ala Phe Ser Val Gly Ser Gly Gln
                                 105
Thr Tyr Gly Val Asp Val Val Gly Tyr Asp Arg Thr Gln Asp Val Ala
                             120
Val Leu Gln Leu Arg Gly Ala Gly Gly Leu Pro Ser Ala Ala Ile Gly
                                             140
                        135
Gly Gly Val Ala Val Gly Glu Pro Val Val Ala Met Gly Asn Ser Gly
                                         155
                    150
```

Gly Gln Gly Gly Thr Pro Arg Ala Val Pro Gly Arg Val Val Ala Leu

```
Gly Gln Thr Val Gln Ala Ser Asp Ser Leu Thr Gly Ala Glu Glu Thr
                                185
Leu Asn Gly Leu Ile Gln Phe Asp Ala Ala Ile Gln Pro Gly Asp Ser
                            200
Gly Gly Pro Val Val Asn Gly Leu Gly Gln Val Val Gly Met Asn Thr
                        215
                                            220
Ala Ala Ser Asp Asn Phe Gln Leu Ser Gln Gly Gln Gly Phe Ala
                                        235
                    230
Ile Pro Ile Gly Gln Ala Met Ala Ile Ala Gly Gln Ile Arg Ser Gly
                                    250
                245
Gly Gly Ser Pro Thr Val His Ile Gly Pro Thr Ala Phe Leu Gly Leu
                                265
            260
Gly Val Val Asp Asn Asn Gly Asn Gly Ala Arg Val Gln Arg Val Val
                            280
Gly Ser Ala Pro Ala Ala Ser Leu Gly Ile Ser Thr Gly Asp Val Ile
                        295
                                            300
Thr Ala Val Asp Gly Ala Pro Ile Asn Ser Ala Thr Ala Met Ala Asp
                                        315
                    310
Ala Leu Asn Gly His His Pro Gly Asp Val Ile Ser Val Asn Trp Gln
                                    330
                325
Thr Lys Ser Gly Gly Thr Arg Thr Gly Asn Val Thr Leu Ala Glu Gly
                                345
Pro Pro Ala
        355
<210> 5
<211> 447
<212> DNA
<213> Mycobacterium tuberculosis
<223> MTBRa12 C-terminus of MTB32A (Ra35FL)
<400> 5
cggtatgaac acggccgcgt ccgataactt ccagctgtcc cagggtgggc agggattcgc 60
cattccgatc gggcaggcga tggcgatcgc gggccagatc cgatcgggtg gggggtcacc 120
caccgttcat atcgggccta ccgccttcct cggcttgggt gttgtcgaca acaacggcaa 180
cggcgcacga gtccaacgcg tggtcgggag cgctccggcg gcaagtctcg gcatctccac 240
cggcgacgtg atcaccgcgg tcgacggcgc tccgatcaac tcggccaccg cgatggcgga 300
cgcgcttaac gggcatcatc ccggtgacgt catctcggtg aactggcaaa ccaagtcggg 360
cggcacgcgt acagggaacg tgacattggc cgagggaccc ccggcctgat ttcgtcgygg 420
ataccacccg ccggccggcc aattgga
<210> 6
<211> 132
<212> PRT
<213> Mycobacterium tuberculosis
<223> MTBRa12 C-terminus of MTB32A (Ra35FL)
<400> 6
Thr Ala Ala Ser Asp Asn Phe Gln Leu Ser Gln Gly Gln Gly Phe
                                      10
Ala Ile Pro Ile Gly Gln Ala Met Ala Ile Ala Gly Gln Ile Arg Ser
                                  25
Gly Gly Gly Ser Pro Thr Val His Ile Gly Pro Thr Ala Phe Leu Gly
```

Leu Gly Val Val Asp Asn Asn Gly Asn Gly Ala Arg Val Gln Arg Val Val Gly Ser Ala Pro Ala Ala Ser Leu Gly Ile Ser Thr Gly Asp Val Ile Thr Ala Val Asp Gly Ala Pro Ile Asn Ser Ala Thr Ala Met Ala 85 Asp Ala Leu Asn Gly His His Pro Gly Asp Val Ile Ser Val Asn Trp 105 110 Gln Thr Lys Ser Gly Gly Thr Arg Thr Gly Asn Val Thr Leu Ala Glu 125 120 115 Gly Pro Pro Ala 130 <210> 7 <211> 3058 <212> DNA <213> Mycobacterium tuberculosis <220> <223> MTB39 (TbH9) cDNA full-length <400> 7 gatcgtaccc gtgcgagtgc tcgggccgtt tgaggatgga gtgcacgtgt ctttcgtgat 60 ggcataccca gagatgttgg cggcggcggc tgacaccctg cagagcatcg gtgctaccac 120 tgtggctagc aatgccgctg cggcggcccc gacgactggg gtggtgcccc ccgctgccga 180 tgaggtgtcg gcgctgactg cggcgcactt cgccgcacat gcggcgatgt atcagtccgt 240 gagcgctcgg gctgctgcga ttcatgacca gttcgtggcc accettgcca gcagcgccag 300 ctcgtatgcg gccactgaag tcgccaatgc ggcggcggcc agctaagcca ggaacagtcg 360 gcacgagaaa ccacgagaaa tagggacacg taatggtgga tttcggggcg ttaccaccgg 420 agatcaactc cgcgaggatg tacgccggcc cgggttcggc ctcgctggtg gccgcggctc 480 agatgtggga cagcgtggcg agtgacctgt tttcggccgc gtcggcgttt cagtcggtgg 540 tctggggtct gacggtgggg tcgtggatag gttcgtcggc gggtctgatg gtggcggcgg 600 cctcqccqta tqtqqcqtqg atgagcqtca ccgcggggca ggccgagctg accgccgccc 660 aggtccgggt tgctgcggcg gcctacgaga cggcgtatgg gctgacggtg cccccgccgg 720 tgatcgccga gaaccgtgct gaactgatga ttctgatagc gaccaacctc ttggggcaaa 780 acaccccggc gatcgcggtc aacgaggccg aatacggcga gatgtgggcc caagacgccg 840 ccgcgatgtt tggctacgcc gcggcgacgg cgacggcgac ggcgacgttg ctgccgttcg 900 aggaggcgcc ggagatgacc agcgcgggtg ggctcctcga gcaggccgcc gcggtcgagg 960 aggectecga cacegeegeg gegaaceagt tgatgaacaa tgtgeeceag gegetgeaac 1020 agctggccca gcccacgcag ggcaccacgc cttcttccaa gctgggtggc ctgtggaaga 1080 cggtctcgcc gcatcggtcg ccgatcagca acatggtgtc gatggccaac aaccacatgt 1140 cgatgaccaa ctcgggtgtg tcgatgacca acaccttgag ctcgatgttg aagggctttg 1200 ctccggcggc ggccgcccag gccgtgcaaa ccgcggcgca aaacggggtc cgggcgatga 1260 gctcgctggg cagctcgctg ggttcttcgg gtctgggcgg tggggtggcc gccaacttgg 1320 gtcgggcggc ctcggtcggt tcgttgtcgg tgccgcaggc ctgggccgcg gccaaccagg 1380 cagtcacccc ggcggcgcgg gcgctgccgc tgaccagcct gaccagcgcc gcggaaagag 1440 ggcccgggca gatgctgggc gggctgccgg tggggcagat gggcgccagg gccggtggtg 1500 ggctcagtgg tgtgctgcgt gttccgccgc gaccctatgt gatgccgcat tctccggcgg 1560 ccggctagga gagggggcgc agactgtcgt tatttgacca gtgatcggcg gtctcggtgt 1620 ttccgcggcc ggctatgaca acagtcaatg tgcatgacaa gttacaggta ttaggtccag 1680 gttcaacaag gagacaggca acatggcctc acgttttatg acggatccgc acgcgatgcg 1740 ggacatggcg ggccgttttg aggtgcacgc ccagacggtg gaggacgagg ctcgccggat 1800 gtgggcgtcc gcgcaaaaca tttccggtgc gggctggagt ggcatggccg aggcgacctc 1860 gctagacacc atggcccaga tgaatcaggc gtttcgcaac atcgtgaaca tgctgcacgg 1920 ggtgcgtgac gggctggttc gcgacgccaa caactacgag cagcaagagc aggcctccca 1980 gcagatcctc agcagctaac gtcagccgct gcagcacaat acttttacaa gcgaaggaga 2040 acaggttcga tgaccatcaa ctatcaattc ggggatgtcg acgctcacgg cgccatgatc 2100 cgcgctcagg ccgggttgct ggaggccgag catcaggcca tcattcgtga tgtgttgacc 2160 gcgagtgact tttggggcgg cgccggttcg gcggcctgcc aggggttcat tacccagttg 2220 ggccgtaact tccaggtgat ctacgagcag gccaacgccc acgggcagaa ggtgcaggct 2280

```
gccggcaaca acatggcgca aaccgacagc gccgtcggct ccagctgggc ctgacaccag 2340
gccaaggcca gggacgtggt gtacgagtga agttcctcgc gtgatccttc gggtggcagt 2400
ctaagtggtc agtgctgggg tgttggtggt ttgctgcttg gcgggttctt cggtgctggt 2460
cagtgctgct cgggctcggg tgaggacctc gaggcccagg tagcgccgtc cttcgatcca 2520
ttcgtcgtgt tgttcggcga ggacggctcc gacgaggcgg atgatcgagg cgcggtcggg 2580
gaagatgccc acgacgtcgg ttcggcgtcg tacctctcgg ttgaggcgtt cctgggggtt 2640
gttggaccag atttggcgcc agatctgctt ggggaaggcg gtgaacgcca gcaggtcggt 2700
gegggeggtg tegaggtget eggeeacege ggggagtttg teggteagag egtegagtae 2760
ccgatcatat tgggcaacaa ctgattcggc gtcgggctgg tcgtagatgg agtgcagcag 2820
ggtgcgcacc cacggccagg agggcttcgg ggtggctgcc atcagattgg ctgcgtagtg 2880
ggttctgcag cgctgccagg ccgctgcggg cagggtggcg ccgatcgcgg ccaccaggcc 2940
ggcgtgggcg tcgctggtga ccagcgcgac cccggacagg ccgcgggcga ccaggtcgcg 3000
gaagaacgcc agccagccgg ccccgtcctc ggcggaggtg acctggatgc ccaggatc
<210>8
<211> 391
<212> PRT
<213> Mycobacterium tuberculosis
<223> MTB39 (TbH9) protein full-length
<400> 8
Met Val Asp Phe Gly Ala Leu Pro Pro Glu Ile Asn Ser Ala Arg Met
                                     10
Tyr Ala Gly Pro Gly Ser Ala Ser Leu Val Ala Ala Ala Gln Met Trp
                                 25
Asp Ser Val Ala Ser Asp Leu Phe Ser Ala Ala Ser Ala Phe Gln Ser
                             40
Val Val Trp Gly Leu Thr Val Gly Ser Trp Ile Gly Ser Ser Ala Gly
                         55
Leu Met Val Ala Ala Ala Ser Pro Tyr Val Ala Trp Met Ser Val Thr
                                          75
Ala Gly Gln Ala Glu Leu Thr Ala Ala Gln Val Arg Val Ala Ala Ala
                                      90
Ala Tyr Glu Thr Ala Tyr Gly Leu Thr Val Pro Pro Pro Val Ile Ala
Glu Asn Arg Ala Glu Leu Met Ile Leu Ile Ala Thr Asn Leu Leu Gly
        115
Gln Asn Thr Pro Ala Ile Ala Val Asn Glu Ala Glu Tyr Gly Glu Met
Trp Ala Gln Asp Ala Ala Ala Met Phe Gly Tyr Ala Ala Ala Thr Ala
                                         155
145
                    150
Thr Ala Thr Ala Thr Leu Leu Pro Phe Glu Glu Ala Pro Glu Met Thr
                                     170
                165
Ser Ala Gly Gly Leu Leu Glu Gln Ala Ala Val Glu Glu Ala Ser
            180
                                 185
Asp Thr Ala Ala Asn Gln Leu Met Asn Asn Val Pro Gln Ala Leu
                             200
        195
Gln Gln Leu Ala Gln Pro Thr Gln Gly Thr Thr Pro Ser Ser Lys Leu
                         215
Gly Gly Leu Trp Lys Thr Val Ser Pro His Arg Ser Pro Ile Ser Asn
                                                             240
225
                     230
                                         235
Met Val Ser Met Ala Asn Asn His Met Ser Met Thr Asn Ser Gly Val
                                     250
                 245
Ser Met Thr Asn Thr Leu Ser Ser Met Leu Lys Gly Phe Ala Pro Ala
                                 265
Ala Ala Gln Ala Val Gln Thr Ala Ala Gln Asn Gly Val Arg Ala
```

280

```
Met Ser Ser Leu Gly Ser Ser Leu Gly Ser Ser Gly Leu Gly Gly Gly
                       295
                                           300
Val Ala Ala Asn Leu Gly Arg Ala Ala Ser Val Gly Ser Leu Ser Val
                   310
                                       315
Pro Gln Ala Trp Ala Ala Ala Asn Gln Ala Val Thr Pro Ala Ala Arg
               325
                                   330
Ala Leu Pro Leu Thr Ser Leu Thr Ser Ala Ala Glu Arg Gly Pro Gly
                               345
Gln Met Leu Gly Gly Leu Pro Val Gly Gln Met Gly Ala Arg Ala Gly
                           360
                                               365
Gly Gly Leu Ser Gly Val Leu Arg Val Pro Pro Arg Pro Tyr Val Met
                                           380
                       375
Pro His Ser Pro Ala Ala Gly
385
                    390
<210> 9
<211> 1797
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: fusion
      protein TbH9-Ra35 (MTB59F)
<220>
<221> CDS
<222> (1)..(1791)
<223> MTB59F
<400> 9
catatgcatc accatcacca tcacatggtg gatttcgggg cgttaccacc ggagatcaac 60
tccgcgagga tgtacgccgg cccgggttcg gcctcgctgg tggccgcggc tcagatgtgg 120
gacagcgtgg cgagtgacct gttttcggcc gcgtcggcgt ttcagtcggt ggtctggggt 180
ctgacggtgg ggtcgtggat aggttcgtcg gcgggtctga tggtggcggc ggcctcgccg 240
tatgtggcgt ggatgagcgt caccgcgggg caggccgagc tgaccgccgc ccaggtccgg 300
gttgctgcgg cggcctacga gacggcgtat gggctgacgg tgcccccgcc ggtgatcgcc 360
gagaaccgtg ctgaactgat gattctgata gcgaccaacc tcttggggca aaacaccccg 420
gcgatcgcgg tcaacgaggc cgaatacggc gagatgtggg cccaagacgc cgccgcgatg 480
tttggctacg ccgcggcgac ggcgacggcg acggcgacgt tgctgccgtt cgaggaggcg 540
ccggagatga ccagcgcggg tgggctcctc gagcaggccg ccgcggtcga ggaggcctcc 600
gacaccgccg cggcgaacca gttgatgaac aatgtgcccc aggcgctgca acagctggcc 660
cagcccacgc agggcaccac gccttcttcc aagctgggtg gcctgtggaa gacggtctcg 720
ccgcatcggt cgccgatcag caacatggtg tcgatggcca acaaccacat gtcgatgacc 780
aactcgggtg tgtcgatgac caacaccttg agctcgatgt tgaagggctt tgctccggcg 840
gcggccgccc aggccgtgca aaccgcggcg caaaacgggg tccgggcgat gagctcgctg 900
gcctcggtcg gttcgttgtc ggtgccgcag gcctgggccg cggccaacca ggcagtcacc 1020
ccggcggcgc gggcgctgcc gctgaccagc ctgaccagcg ccgcggaaag agggcccggg 1080
cagatgctgg gcgggctgcc ggtggggcag atgggcgcca gggccggtgg tgggctcagt 1140
ggtgtgctgc gtgttccgcc gcgaccctat gtgatgccgc attctccggc agccggcgat 1200
ategeceege eggeettgte geaggacegg ttegeegaet teecegeget geecetegae 1260
ccgtccgcga tggtcgccca agtggggcca caggtggtca acatcaacac caaactgggc 1320
tacaacaacg ccgtgggcgc cgggaccggc atcgtcatcg atcccaacgg tgtcgtgctg 1380
accaacaacc acgtgatcgc gggcgccacc gacatcaatg cgttcagcgt cggctccggc 1440
caaacctacg gcgtcgatgt ggtcgggtat gaccgcaccc aggatgtcgc ggtgctgcag 1500
ctgcgcggtg ccggtggcct gccgtcggcg gcgatcggtg gcggcgtcgc ggttggtgag 1560
cccgtcgtcg cgatgggcaa cagcggtggg cagggcggaa cgccccgtgc ggtgcctggc 1620
agggtggtcg cgctcggcca aaccgtgcag gcgtcggatt cgctgaccgg tgccgaagag 1680
acattgaacg ggttgateca gttcgatgcc gcgatccagc ccggtgattc gggcgggccc 1740
gtcgtcaacg gcctaggaca ggtggtcggt atgaacacgg ccgcgtccta ggatatc
```

<210> 10 <211> 596 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:fusion protein TbH9-Ra35 (MTB59F) <400> 10 His Met His His His His His Met Val Asp Phe Gly Ala Leu Pro Pro Glu Ile Asn Ser Ala Arg Met Tyr Ala Gly Pro Gly Ser Ala Ser 25 20 Leu Val Ala Ala Ala Gln Met Trp Asp Ser Val Ala Ser Asp Leu Phe 40 35 Ser Ala Ala Ser Ala Phe Gln Ser Val Val Trp Gly Leu Thr Val Gly 55 Ser Trp Ile Gly Ser Ser Ala Gly Leu Met Val Ala Ala Ala Ser Pro 75 70 Tyr Val Ala Trp Met Ser Val Thr Ala Gly Gln Ala Glu Leu Thr Ala 90 85 Ala Gln Val Arg Val Ala Ala Ala Ala Tyr Glu Thr Ala Tyr Gly Leu 105 100 Thr Val Pro Pro Pro Val Ile Ala Glu Asn Arg Ala Glu Leu Met Ile 125 120 115 Leu Ile Ala Thr Asn Leu Leu Gly Gln Asn Thr Pro Ala Ile Ala Val 140 Asn Glu Ala Glu Tyr Gly Glu Met Trp Ala Gln Asp Ala Ala Met 150 155 Phe Gly Tyr Ala Ala Ala Thr Ala Thr Ala Thr Ala Thr Leu Leu Pro 170 165 Phe Glu Glu Ala Pro Glu Met Thr Ser Ala Gly Gly Leu Leu Glu Gln 185 180 Ala Ala Ala Val Glu Glu Ala Ser Asp Thr Ala Ala Ala Asn Gln Leu 200 Met Asn Asn Val Pro Gln Ala Leu Gln Gln Leu Ala Gln Pro Thr Gln 215 Gly Thr Thr Pro Ser Ser Lys Leu Gly Gly Leu Trp Lys Thr Val Ser 235 230 Pro His Arg Ser Pro Ile Ser Asn Met Val Ser Met Ala Asn Asn His 250 245 Met Ser Met Thr Asn Ser Gly Val Ser Met Thr Asn Thr Leu Ser Ser 270 265 Met Leu Lys Gly Phe Ala Pro Ala Ala Ala Gln Ala Val Gln Thr 280 Ala Ala Gln Asn Gly Val Arg Ala Met Ser Ser Leu Gly Ser Ser Leu 300 295 Gly Ser Ser Gly Leu Gly Gly Gly Val Ala Ala Asn Leu Gly Arg Ala 310 315 Ala Ser Val Gly Ser Leu Ser Val Pro Gln Ala Trp Ala Ala Ala Asn 330 Gln Ala Val Thr Pro Ala Ala Arg Ala Leu Pro Leu Thr Ser Leu Thr 345 Ser Ala Ala Glu Arg Gly Pro Gly Gln Met Leu Gly Gly Leu Pro Val 365 360 Gly Gln Met Gly Ala Arg Ala Gly Gly Gly Leu Ser Gly Val Leu Arg 375 380

395

Val Pro Pro Arg Pro Tyr Val Met Pro His Ser Pro Ala Ala Gly Asp

```
Ile Ala Pro Pro Ala Leu Ser Gln Asp Arg Phe Ala Asp Phe Pro Ala
                405
                                     410
Leu Pro Leu Asp Pro Ser Ala Met Val Ala Gln Val Gly Pro Gln Val
                                425
                                                     430
Val Asn Ile Asn Thr Lys Leu Gly Tyr Asn Asn Ala Val Gly Ala Gly
                            440
                                                 445
Thr Gly Ile Val Ile Asp Pro Asn Gly Val Val Leu Thr Asn Asn His
                                           · 460
Val Ile Ala Gly Ala Thr Asp Ile Asn Ala Phe Ser Val Gly Ser Gly
                    470
                                         475
Gln Thr Tyr Gly Val Asp Val Val Gly Tyr Asp Arg Thr Gln Asp Val
                485
                                     490
Ala Val Leu Gln Leu Arg Gly Ala Gly Gly Leu Pro Ser Ala Ala Ile
                                 505
Gly Gly Val Ala Val Gly Glu Pro Val Val Ala Met Gly Asn Ser
                             520
Gly Gly Gln Gly Gly Thr Pro Arg Ala Val Pro Gly Arg Val Val Ala
                                             540
                         535
Leu Gly Gln Thr Val Gln Ala Ser Asp Ser Leu Thr Gly Ala Glu Glu
                                         555
                    550
Thr Leu Asn Gly Leu Ile Gln Phe Asp Ala Ala Ile Gln Pro Gly Asp
                                     570
                565
Ser Gly Gly Pro Val Val Asn Gly Leu Gly Gln Val Val Gly Met Asn
            580
                                 585
Thr Ala Ala Ser
        595
<210> 11
<211> 2287
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: fusion
      protein Ra12-TbH9-Ra35 (MTB72F)
<220>
<221> modified_base
<222> (30)
<223> n = g, a, c or t
<220>
<221> modified base
<222> (33)
<223> n = g, a, c or t
<220>
<221> CDS
<222> (42)..(2231)
<223> MTB72F
<220>
```

<223> n = g, a, c or t

<222> (2270)

<221> modified_base

<400> 11 tctagaaata attttgttta ctttaagaan ganatataca tatgcatcac catcaccatc 60 acacggccgc gtccgataac ttccagctgt cccagggtgg gcagggattc gccattccga 120 tcgggcaggc gatggcgatc gcgggccaga tccgatcggg tggggggtca cccaccgttc 180 atategggee tacegeette eteggettgg gtgttgtega caacaaegge aaeggegeae 240 gagtccaacg cgtggtcggg agcgctccgg cggcaagtct cggcatctcc accggcgacg 300 tgatcaccgc ggtcgacggc gctccgatca actcggccac cgcgatggcg gacgcgctta 360 acgggcatca teceggtgae gteatetegg tgaeetggea aaccaagteg ggeggeaege 420 gtacagggaa cgtgacattg gccgagggac ccccggccga attcatggtg gatttcgggg 480 cqttaccacc ggagatcaac tccgcgagga tgtacgccgg cccgggttcg gcctcgctgg 540 tggccgcggc tcagatgtgg gacagcgtgg cgagtgacct gttttcggcc gcgtcggcgt 600 ttcagtcggt ggtctggggt ctgacggtgg ggtcgtggat aggttcgtcg gcgggtctga 660 tggtggcggc ggcctcgccg/tatgtggcgt ggatgagcgt caccgcgggg caggccgagc 720 tgaccgccgc ccaggtccgg gttgctgcgg cggcctacga gacggcgtat gggctgacgg 780 tgccccgcc ggtgatcgcc gagaaccgtg ctgaactgat gattctgata gcgaccaacc 840 tcttggggca aaacaccccg gcgatcgcgg tcaacgaggc cgaatacggc gagatgtggg 900 cccaagacgc cgccgcgatg tttggctacg ccgcggcgac ggcgacggcg acggcgacgt 960 tgctgccgtt cgaggaggcg ccggagatga ccagcgcggg tgggctcctc gagcaggccg 1020 ccgcggtcga ggaggcctcc gacaccgccg cggcgaacca gttgatgaac aatgtgcccc 1080 aggegetgea acagetggee cageecaege agggeaceae geettettee aagetgggtg 1140 gcctgtggaa gacggtctcg ccgcatcggt cgccgatcag caacatggtg tcgatggcca 1200 acaaccacat gtcgatgacc aactcgggtg tgtcgatgac caacaccttg agctcgatgt 1260 tgaagggett tgeteeggeg geggeeegee aggeegtgea aaccgeggeg caaaacgggg 1320 ccgccaactt gggtcgggcg gcctcggtcg gttcgttgtc ggtgccgcag gcctgggccg 1440 cggccaacca ggcagtcacc ccggcggcgc gggcgctgcc gctgaccagc ctgaccagcg 1500 ccgcggaaag agggcccggg cagatgctgg gcgggctgcc ggtggggcag atgggcgcca 1560 gggccggtgg tgggctcagt ggtgtgctgc gtgttccgcc gcgaccctat gtgatgccgc 1620 attctccggc agccggcgat atcgccccgc cggccttgtc gcaggaccgg ttcgccgact 1680 teccegeget geceetegae eegteegega tggtegeeca agtggggeea eaggtggtea 1740 acatcaacac caaactgggc tacaacaacg ccgtgggcgc cgggaccggc atcgtcatcg 1800 atcccaacgg tgtcgtgctg accaacaacc acgtgatcgc gggcgccacc gacatcaatg 1860 cgttcagcgt cggctccggc caaacctacg gcgtcgatgt ggtcgggtat gaccgcaccc 1920 aggatgtcgc ggtgctgcag ctgcgcggtg ccggtggcct gccgtcggcg gcgatcggtg 1980 geggegtege ggttggtgag eeegtegteg egatgggeaa cageggtggg cagggeggaa 2040 cgccccgtgc ggtgcctggc agggtggtcg cgctcggcca aaccgtgcag gcgtcggatt 2100 cgctgaccgg tgccgaagag acattgaacg ggttgatcca gttcgatgcc gcgatccagc 2160 ccggtgattc gggcgggccc gtcgtcaacg gcctaggaca ggtggtcggt atgaacacgg 2220 ccgcgtccta ggatatccat cacactggcg gccgctcgag cagatccggn tgtaacaaag 2280 2287 cccgaaa

```
<210> 12
<211> 729
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:fusion protein Ra12-TbH9-Ra35 (MTB72F)
```


Ala Glu Leu Met Ile Leu Ile Ala Thr Asn Leu Leu Gly Gln Asn Thr Pro Ala Ile Ala Val Asn Glu Ala Glu Tyr Gly Glu Met Trp Ala Gln Asp Ala Ala Ala Met Phe Gly Tyr Ala Ala Ala Thr Ala Thr Ala Thr Ala Thr Leu Leu Pro Phe Glu Glu Ala Pro Glu Met Thr Ser Ala Gly Gly Leu Leu Glu Gln Ala Ala Ala Val Glu Glu Ala Ser Asp Thr Ala Ala Ala Asn Gln Leu Met Asn Asn Val Pro Gln Ala Leu Gln Gln Leu Ala Gln Pro Thr Gln Gly Thr Thr Pro Ser Ser Lys Leu Gly Gly Leu Trp Lys Thr Val Ser Pro His Arg Ser Pro Ile Ser Asn Met Val Ser Met Ala Asn Asn His Met Ser Met Thr Asn Ser Gly Val Ser Met Thr Asn Thr Leu Ser Ser Met Leu Lys Gly Phe Ala Pro Ala Ala Ala Arg Gln Ala Val Gln Thr Ala Ala Gln Asn Gly Val Arg Ala Met Ser Ser Leu Gly Ser Ser Leu Gly Ser Ser Gly Leu Gly Gly Val Ala Ala Asn Leu Gly Arg Ala Ala Ser Val Gly Ser Leu Ser Val Pro Gln Ala Trp Ala Ala Ala Asn Gln Ala Val Thr Pro Ala Ala Arg Ala Leu Pro Leu Thr Ser Leu Thr Ser Ala Ala Glu Arg Gly Pro Gly Gln Met Leu Gly Gly Leu Pro Val Gly Gln Met Gly Ala Arg Ala Gly Gly Leu Ser Gly Val Leu Arg Val Pro Pro Arg Pro Tyr Val Met Pro His Ser Pro Ala Ala Gly Asp Ile Ala Pro Pro Ala Leu Ser Gln Asp Arg Phe Ala Asp Phe Pro Ala Leu Pro Leu Asp Pro Ser Ala Met Val Ala Gln Val Gly Pro Gln Val Val Asn Ile Asn Thr Lys Leu Gly Tyr Asn Asn

Ala Val Gly Ala Gly Thr Gly Ile Val Ile Asp Pro Asn Gly Val Val 580 585 Leu Thr Asn Asn His Val Ile Ala Gly Ala Thr Asp Ile Asn Ala Phe 605 600 595 Ser Val Gly Ser Gly Gln Thr Tyr Gly Val Asp Val Val Gly Tyr Asp 620 615 Arg Thr Gln Asp Val Ala Val Leu Gln Leu Arg Gly Ala Gly Gly Leu 635 630 Pro Ser Ala Ala Ile Gly Gly Gly Val Ala Val Gly Glu Pro Val Val 650 645 Ala Met Gly Asn Ser Gly Gly Gln Gly Gly Thr Pro Arg Ala Val Pro 670 665 Gly Arg Val Val Ala Leu Gly Gln Thr Val Gln Ala Ser Asp Ser Leu 680 685 Thr Gly Ala Glu Glu Thr Leu Asn Gly Leu Ile Gln Phe Asp Ala Ala 700 695 Ile Gln Pro Gly Asp Ser Gly Gly Pro Val Val Asn Gly Leu Gly Gln 715 710 Val Val Gly Met Asn Thr Ala Ala Ser 725 <210> 13 <211> 500 <212> DNA <213> Mycobacterium tuberculosis <220> < <223> Mtb8.4 (DPV) <400> 13

<400> 13
cgtggcaatg tcgttgaccg tcggggccgg ggtcgcctcc gcagatcccg tggacgcggt 60
cattaacacc acctgcaatt acgggcaggt agtagctgcg ctcaacgcga cggatccggg 120
ggctgccgca cagttcaacg cctcaccggt ggcgcagtcc tatttgcgca atttcctcgc 180
cgcaccgcca cctcagcgcg ctgccatggc cgcaattg caagctgtgc cgggggcggc 240
acagtacatc ggccttgtcg agtcggtcg cggctcctgc aacaactatt aagcccatgc 300
gggccccatc ccgcgacccg gcatcgtcg cggggctagg ccagattgc ccgctcctca 360
acgggccgca tcccgcgacc cggcatcgtc ggcgggcta ggccagattg ccccgctcct 420
caacgggccg catctcgtgc cgaattcctg cagcccgggg gatccactag tcctagagcg 480
gccgccaccg cggtggagct

Gln Arg Ala Ala Met Ala Ala Gln Leu Gln Ala Val Pro Gly Ala Ala

70

```
Gln Tyr Ile Gly Leu Val Glu Ser Val Ala Gly Ser Cys Asn Asn Tyr
                                     90
<210> 15
<211> 585
<212> DNA
<213> Mycobacterium tuberculosis
<220>
<223> Mtb9.8 (MSL)
<400> 15
tggattccga tagcggtttc ggcccctcga cgggcgacca cggcgcgcag gcctccgaac 60
ggggggccgg gacgctggga ttcgccggga ccgcaaccaa agaacgccgg gtccgggcgg 120
tegggetgae egeactggee ggtgatgagt teggeaacgg ecceeggatg eegatggtge 180
cggggacctg ggagcagggc agcaacgagc ccgaggcgcc cgacggatcg gggagagggg 240
gaggcgacgg cttaccgcac gacagcaagt aaccgaattc cgaatcacgt ggacccgtac 300
gggtcgaaag gagagatgtt atgagccttt tggatgctca tatcccacag ttggtggcct 360
cccagtcggc gtttgccgcc aaggcggggc tgatgcggca cacgatcggt caggccgagc 420
aggcggcgat gtcggctcag gcgtttcacc agggggagtc gtcggcggcg tttcaggccg 480
cccatgcccg gtttgtggcg gcggccgcca aagtcaacac cttgttggat gtcgcgcagg 540
cgaatctggg tgaggccgcc ggtacctatg tggccgccga tgctg
<210> 16
<211> 97
<212> PRT
<213> Mycobacterium tuberculosis
<22.0>
<223> Mtb9.8 (MSL)
<400> 16
Met Ser Leu Leu Asp Ala His Ile Pro Gln Leu Val Ala Ser Gln Ser
                                      10
Ala Phe Ala Ala Lys Ala Gly Leu Met Arg His Thr Ile Gly Gln Ala
                                  25
Glu Gln Ala Ala Met Ser Ala Gln Ala Phe His Gln Gly Glu Ser Ser
                              40
                                                  45
Ala Ala Phe Gln Ala Ala His Ala Arg Phe Val Ala Ala Ala Lys
                                              60
                          55
Val Asn Thr Leu Leu Asp Val Ala Gln Ala Asn Leu Gly Glu Ala Ala
                     70
                                          75
Gly Thr Tyr Val Ala Ala Asp Ala Ala Ala Ser Thr Tyr Thr Gly
Phe
<210> 17
<211> 1742
 <212> DNA
 <213> Mycobacterium tuberculosis
 <223> Mtb9.9A (MTI, MTI-A)
 <220>
 <221> modified base
 <222> (1)..(1742)
```

<223> n = g, a, c or t

```
<400> 17
ccgctctctt tcaacgtcat aagttcggtg ggccagtcgg ccgcgcgtgc atatggcacc 60
aataacgcgt gtcccatgga tacccggacc gcacgacggt agagcggatc agcgcagccg 120
gtgccgaaca ctaccgcgtc cacgctcagc cctgccgcgt tgcggaagat cgagcccagg 180
ttctcatggt cgttaacgcc ttccaacact gcgacggtgc gcgccccggc gaccacctga 240
gcaacgctcg gctccggcac ccggcgcgcg gctgccaaca ccccacgatt gagatggaag 300
ccgatcaccc gtgccatgac atcagccgac gctcgatagt acggcgcgcc gacaccggcc 360
agatcatect tgagetegge cageeggegg teggtgeega acagegeeag eggegtgaae 420
cgtgaggcca gcatgcgctg caccaccagc acaccctcgg cgatcaccaa cgccttgccg 480
gtcggcagat cgggacnacn gtcgatgctg ttcaggtcac ggaaatcgtc gagccgtggg 540
tcgtcgggat cgcagacgtc ctgaacatcg aggccgtcgg ggtgctgggc acaacggcct 600
tcggtcacgg gctttcgtcg accagagcca gcatcagatc ggcggcgctg cgcaggatgt 660
cacgctcgct gcggttcagc gtcgcgagcc gctcagccag ccactcttgc agagagccgt 720
tgctgggatt aattgggaga ggaagacagc atgtcgttcg tgaccacaca gccggaagcc 780
ctggcagetg eggeggegaa ectacagggt attggcaega caatgaaege ecagaaegeg 840
gccgcggctg ctccaaccac cggagtagtg cccgcagccg ccgatgaagt atcagcgctg 900
accqcqqctc agtttgctgc gcacqcqcag atgtaccaaa cggtcagcgc ccaggccgcg 960
gccattcacg aaatgttcgt gaacacgctg gtggccagtt ctggctcata cgcggccacc 1020
gaggeggeea acgeageege tgeeggetga acgggetege acgaacetge tgaaggagag 1080
ggggaacatc cggagttctc gggtcagggg ttgcgccagc gcccagccga ttcagntatc 1140
ggcgtccata acagcagacg atctaggcat tcagtactaa ggagacaggc aacatggcct 1200
cacgttttat gacggatccg catgcgatgc gggacatggc gggccgtttt gaggtgcacg 1260
cccagacggt ggaggacgag gctcgccgga tgtgggcgtc cgcgcaaaac atttccggtg 1320
cgggctggag tggcatggcc gaggcgacct cgctagacac catgacctag atgaatcagg 1380
cgtttcgcaa catcgtgaac atgctgcacg gggtgcgtga cgggctggtt cgcgacgcca 1440
acaantacga acagcaagag caggcctccc agcagatcct gagcagntag cgccgaaagc 1500
cacagotgng tacgntttct cacattagga gaacaccaat atgacgatta attaccagtt 1560
cggggacgtc gacgctcatg gcgccatgat ccgcgctcag gcggcgtcgc ttgaggcgga 1620
gcatcaggcc atcgttcgtg atgtgttggc cgcgggtgac ttttggggcg gcgccggttc 1680
ggtggcttgc caggagttca ttacccagtt gggccgtaac ttccaggtga tctacgagca 1740
gg
<210> 18
<211> 94
<212> PRT
<213> Mycobacterium tuberculosis
<220>
<223> Mtb9.9A (MTI, MTI-A)
<400> 18
Met Thr Ile Asn Tyr Gln Phe Gly Asp Val Asp Ala His Gly Ala Met
                                                          15
                                      10
Ile Arg Ala Leu Ala Gly Leu Leu Glu Ala Glu His Gln Ala Ile Ile
                                  25
             20
Ser Asp Val Leu Thr Ala Ser Asp Phe Trp Gly Gly Ala Gly Ser Ala
                              40
Ala Cys Gln Gly Phe Ile Thr Gln Leu Gly Arg Asn Phe Gln Val Ile
                          55
                                              60
     50
Tyr Glu Gln Ala Asn Ala His Gly Gln Lys Val Gln Ala Ala Gly Asn
                                          75
                     70
Asn Met Ala Gln Thr Asp Ser Ala Val Gly Ser Ser Trp Ala
                 85
<210> 19
<211> 1200
<212> DNA
<213> Mycobacterium tuberculosis
```

200

```
Glu Leu Trp Asp Lys Leu Thr Gly Trp Val Thr Gly Leu Phe Ser Arg
                        215
                                            220
    210
Gly Trp Ser Asn Leu Glu Ser Phe Phe Ala Gly Val Pro Gly Leu Thr
                    230
                                        235
Gly Ala Thr Ser Gly Leu Ser Gln Val Thr Gly Leu Phe Gly Ala Ala
                                    250
Gly Leu Ser Ala Ser Ser Gly Leu Ala His Ala Asp Ser Leu Ala Ser
Ser Ala Ser Leu Pro Ala Leu Ala Gly Ile Gly Gly Ser Gly Phe
                            280
                                                285
Gly Gly Leu Pro Ser Leu Ala Gln Val His Ala Ala Ser Thr Arg Gln
                                            300
                        295
Ala Leu Arg Pro Arg Ala Asp Gly Pro Val Gly Ala Ala Ala Glu Gln
                    310
                                        315
Val Gly Gln Ser Gln Leu Val Ser Ala Gln Gly Ser Gln Gly Met
                                    330
Gly Gly Pro Val Gly Met Gly Gly Met His Pro Ser Ser Gly Ala Ser
                                345
Lys Gly Thr Thr Lys Lys Tyr Ser Glu Gly Ala Ala Ala Gly Thr
                            360
Glu Asp Ala Glu Arg Ala Pro Val Glu Ala Asp Ala Gly Gly Gln
                        375
Lys Val Leu Val Arg Asn Val Val
385
                    390
<210> 21
<211> 1441
<212> DNA
<213> Mycobacterium tuberculosis
<220>
<223> MTB41 (MTCC#2)
<400> 21
gaggttgctg gcaatggatt tcgggctttt acctccggaa gtgaattcaa gccgaatgta 60
ttccggtccg gggccggagt cgatgctagc cgccgcggcc gcctgggacg gtgtggccgc 120
ggagttgact tccgccgcgg tctcgtatgg atcggtggtg tcgacgctga tcgttgagcc 180
gtggatgggg ccgcggggg ccgcgatggc ggccgcggca acgccgtatg tggggtggct 240
ggccgccacg gcggcgctgg cgaaggagac ggccacacag gcgagggcag cggcggaagc 300
gtttgggacg gcgttcgcga tgacggtgcc accatccctc gtcgcggcca accgcagccg 360
gttgatgtcg ctggtcgcgg cgaacattct ggggcaaaac agtgcggcga tcgcggctac 420
ccaggccgag tatgccgaaa tgtgggccca agacgctgcc gtgatgtaca gctatgaggg 480
ggcatctgcg gccgcgtcgg cgttgccgcc gttcactcca cccgtgcaag gcaccggccc 540
ggccgggccc gcggccgcag ccgcggcgac ccaagccgcc ggtgcgggcg ccgttgcgga 600
tgcacaggcg acactggccc agctgccccc ggggatcctg agcgacattc tgtccgcatt 660
ggccgccaac gctgatccgc tgacatcggg actgttgggg atcgcgtcga ccctcaaccc 720
gcaagtcgga tccgctcagc cgatagtgat ccccaccccg ataggggaat tggacgtgat 780
cgcgctctac attgcatcca tcgcgaccgg cagcattgcg ctcgcgatca cgaacacggc 840
cagaccetgg cacateggee tataegggaa egeeggeggg etgggaeega egeagggeea 900
tccactgagt tcggcgaccg acgagccgga gccgcactgg ggccccttcg ggggcgcggc 960
gccggtgtcc gcgggcgtcg gccacgcagc attagtcgga gcgttgtcgg tgccgcacag 1020
ctggaccacg gccgcccgg agatccagct cgccgttcag gcaacaccca ccttcagctc 1080
cagegeegge geegaceega eggeeetaaa egggatgeeg geaggeetge teagegggat 1140
ggctttggcg agcctggccg cacgcggcac gacgggcggt ggcggcaccc gtagcggcac 1200
cagcactgac ggccaagagg acggccgcaa acccccggta gttgtgatta gagagcagcc 1260
gccgcccgga aaccccccgc ggtaaaagtc cggcaaccgt tcgtcgccgc gcggaaaatg 1320
cctggtgagc gtggctatcc gacgggccgt tcacaccgct tgtagtagcg tacggctatg 1380
gacgacggtg tetggattet eggeggetat eagagegatt ttgetegeaa eeteageaaa 1440
```

```
<211> 423
<212> PRT
<213> Mycobacterium tuberculosis
<223> MTB41 (MTCC#2)
<400> 22
Met Asp Phe Gly Leu Pro Pro Glu Val Asn Ser Ser Arg Met Tyr
                                     10
Ser Gly Pro Gly Pro Glu Ser Met Leu Ala Ala Ala Ala Trp Asp
                                 25
             20
Gly Val Ala Ala Glu Leu Thr Ser Ala Ala Val Ser Tyr Gly Ser Val
                             40
Val Ser Thr Leu Ile Val Glu Pro Trp Met Gly Pro Ala Ala Ala Ala
                         55
Met Ala Ala Ala Thr Pro Tyr Val Gly Trp Leu Ala Ala Thr Ala
                     70
Ala Leu Ala Lys Glu Thr Ala Thr Gln Ala Arg Ala Ala Ala Glu Ala
                                     90
                 85
Phe Gly Thr Ala Phe Ala Met Thr Val Pro Pro Ser Leu Val Ala Ala
                                105
            100
Asn Arg Ser Arg Leu Met Ser Leu Val Ala Ala Asn Ile Leu Gly Gln
                                                125
                            120
Asn Ser Ala Ala Ile Ala Ala Thr Gln Ala Glu Tyr Ala Glu Met Trp
                                            140
                        135
Ala Gln Asp Ala Ala Val Met Tyr Ser Tyr Glu Gly Ala Ser Ala Ala
                    150
                                        155
Ala Ser Ala Leu Pro Pro Phe Thr Pro Pro Val Gln Gly Thr Gly Pro
                                    170
Ala Gly Pro Ala Ala Ala Ala Ala Thr Gln Ala Ala Gly Ala Gly
                                185
Ala Val Ala Asp Ala Gln Ala Thr Leu Ala Gln Leu Pro Pro Gly Ile
                            200
        195
Leu Ser Asp Ile Leu Ser Ala Leu Ala Ala Asn Ala Asp Pro Leu Thr
                                            220
                        215
Ser Gly Leu Leu Gly Ile Ala Ser Thr Leu Asn Pro Gln Val Gly Ser
                                         235
                    230
Ala Gln Pro Ile Val Ile Pro Thr Pro Ile Gly Glu Leu Asp Val Ile
                                     250
                245
Ala Leu Tyr Ile Ala Ser Ile Ala Thr Gly Ser Ile Ala Leu Ala Ile
                                 265
            260
Thr Asn Thr Ala Arg Pro Trp His Ile Gly Leu Tyr Gly Asn Ala Gly
                                                 285
                            280
Gly Leu Gly Pro Thr Gln Gly His Pro Leu Ser Ser Ala Thr Asp Glu
                        295
Pro Glu Pro His Trp Gly Pro Phe Gly Gly Ala Ala Pro Val Ser Ala
                                         315
                    310
Gly Val Gly His Ala Ala Leu Val Gly Ala Leu Ser Val Pro His Ser
                325
                                     330
Trp Thr Thr Ala Ala Pro Glu Ile Gln Leu Ala Val Gln Ala Thr Pro
                                 345
            340
Thr Phe Ser Ser Ser Ala Gly Ala Asp Pro Thr Ala Leu Asn Gly Met
                             360
Pro Ala Gly Leu Leu Ser Gly Met Ala Leu Ala Ser Leu Ala Ala Arg
                                             380
                         375
Gly Thr Thr Gly Gly Gly Thr Arg Ser Gly Thr Ser Thr Asp Gly
                    390
                                         395
Gln Glu Asp Gly Arg Lys Pro Pro Val Val Val Ile Arg Glu Gln Pro
                 405
                                     410
```

<210> 22

```
<210> 23
<211> 154
<212> DNA
<213> Mycobacterium tuberculosis
<220>
<223> ESAT-6
<400> 23
atgacagagc agcagtggaa tttcgcgggt atcgaggccg cggcaagcgc aatccaggga 60
aatgtcacgt ccattcattc cctccttgac gaggggaagc agtccctgac caagctcgca 120
gcggcctggg gcggtagcgg ttcggaagcg tacc
<210> 24
<211> 51
<212> PRT
<213> Mycobacterium tuberculosis
<220>
<223> ESAT-6
<400> 24
Met Thr Glu Gln Gln Trp Asn Phe Ala Gly Ile Glu Ala Ala Ala Ser
                                     10
Ala Ile Gln Gly Asn Val Thr Ser Ile His Ser Leu Leu Asp Glu Gly
                                 25
                                                      30
             20
Lys Gln Ser Leu Thr Lys Leu Ala Ala Trp Gly Gly Ser Gly Ser
                             40
         35
Glu Ala Tyr
     50
<210> 25
<211> 851
<212> DNA
<213> Mycobacterium tuberculosis
<220>
<223> MTB39 (TbH9) cDNA
<400> 25
ctgcagggtg gcgtggatga gcgtcaccgc ggggcaggcc gagctgaccg ccgcccaggt 60
ccgggttgct gcggcggcct acgagacggc gtatgggctg acggtgcccc cgccggtgat 120
cgccgagaac cgtgctgaac tgatgattct gatagcgacc aacctcttgg ggcaaaacac 180
cccggcgatc gcggtcaacg aggccgaata cggcgagatg tgggcccaag acgccgccgc 240
gatgtttggc tacgccgcgg cgacggcgac ggcgacggcg acgttgctgc cgttcgagga 300
ggcgccggag atgaccagcg cgggtgggct cctcgagcag gccgccgcgg tcgaggaggc 360
ctccgacacc gccgcggcga accagttgat gaacaatgtg ccccaggcgc tgaaacagtt 420
ggcccagccc acgcagggca ccacgccttc ttccaagctg ggtggcctgt ggaagacggt 480
ctcgccgcat cggtcgccga tcagcaacat ggtgtcgatg gccaacaacc acatgtcgat 540
gaccaacteg ggtgtgtega tgaccaacac ettgageteg atgttgaagg getttgetee 600
ggcggcggcc gcccaggccg tgcaaaccgc ggcgcaaaac ggggtccggg cgatgagctc 660
gctgggcagc tcgctgggtt cttcgggtct gggcggtggg gtggccgcca acttgggtcg 720
ggcggcctcg gtacggtatg gtcaccggga tggcggaaaa tatgcanagt ctggtcggcg 780
gaacggtggt ccggcgtaag gtttaccccc gttttctgga tgcggtgaac ttcgtcaacg 840
                                                                   851
gaaacagtta c
```

Pro Pro Gly Asn Pro Pro Arg

```
<210> 26
<211> 263
<212> PRT
<213> Mycobacterium tuberculosis
<223> MTB39 (TbH9)
<400> 26
Val Ala Trp Met Ser Val Thr Ala Gly Gln Ala Glu Leu Thr Ala Ala
Gln Val Arg Val Ala Ala Ala Ala Tyr Glu Thr Ala Tyr Gly Leu Thr
             20
                                 25
Val Pro Pro Pro Val Ile Ala Glu Asn Arg Ala Glu Leu Met Ile Leu
                             40
Ile Ala Thr Asn Leu Leu Gly Gln Asn Thr Pro Ala Ile Ala Val Asn
                         55
Glu Ala Glu Tyr Gly Glu Met Trp Ala Gln Asp Ala Ala Ala Met Phe
                                         75
                     70
Gly Tyr Ala Ala Ala Thr Ala Thr Ala Thr Ala Thr Leu Leu Pro Phe
                 85
                                     90
Glu Glu Ala Pro Glu Met Thr Ser Ala Gly Gly Leu Leu Glu Gln Ala
                                 105
            100
Ala Ala Val Glu Glu Ala Ser Asp Thr Ala Ala Ala Asn Gln Leu Met
                             120
Asn Asn Val Pro Gln Ala Leu Lys Gln Leu Ala Gln Pro Thr Gln Gly
                        135
                                             140
Thr Thr Pro Ser Ser Lys Leu Gly Gly Leu Trp Lys Thr Val Ser Pro
                                         155
                    150
His Arg Ser Pro Ile Ser Asn Met Val Ser Met Ala Asn Asn His Met
                                     170
                165
Ser Met Thr Asn Ser Gly Val Ser Met Thr Asn Thr Leu Ser Ser Met
                                 185
            180
Leu Lys Gly Phe Ala Pro Ala Ala Ala Ala Gln Ala Val Gln Thr Ala
        195
                             200
                                                 205
Ala Gln Asn Gly Val Arg Ala Met Ser Ser Leu Gly Ser Ser Leu Gly
                                             220
                        215
Ser Ser Gly Leu Gly Gly Gly Val Ala Ala Asn Leu Gly Arg Ala Ala
                    230
Ser Val Arg Tyr Gly His Arg Asp Gly Gly Lys Tyr Ala Xaa Ser Gly
                                     250
                245
Arg Arg Asn Gly Gly Pro Ala
            260
<210> 27
<211> 474
<212> DNA
<213> Mycobacterium tuberculosis
<220>
<221> CDS
<222> (16)..(450)
<223> alpha-crystalline antigen
<400> 27
attaggagge atcaa atg gee acc acc ett eee gtt eag ege eac eeg egg 51
                 Met Ala Thr Thr Leu Pro Val Gln Arg His Pro Arg
                                    5
```

	tcc Ser	ctc Leu	ttc Phe 15	ccc Pro	gag Glu	ttt Phe	tct Ser	gag Glu 20	ctg Leu	ttc Phe	gcg Ala	gcc Ala	ttc Phe 25	ccg Pro	tca Ser	ttc Phe	99
	gcc Ala	gga Gly 30	ctc Leu	cgg Arg	ccc Pro	acc Thr	ttc Phe 35	gac Asp	acc Thr	cgg Arg	ttg Leu	atg Met 40	cgg Arg	ctg Leu	gaa Glu	gac Asp	147
	gag Glu 45	atg Met	aaa Lys	gag Glu	gly ggg	cgc Arg 50	tac Tyr	gag Glu	gta Val	cgc Arg	gcg Ala 55	gag Glu	ctt Leu	ccc Pro	gjà aaa	gtc Val 60	195
	gac Asp	ccc Pro	gac Asp	aag Lys	gac Asp 65	gtc Val	gac Asp	att Ile	atg Met	gtc Val 70	cgc Arg	gat Asp	ggt Gly	cag Gln	ctg Leu 75	acc Thr	243
	atc Ile	aag Lys	gcc Ala	gag Glu 80	cgc Arg	acc Thr	gag Glu	cag Gln	aag Lys 85	gac Asp	ttc Phe	gac Asp	ggt Gly	cgc Arg 90	tcg Ser	gaa Glu	291
	ttc Phe	gcg Ala	tac Tyr 95	ggt Gly	tcc Ser	ttc Phe	gtt Val	cgc Arg 100	acg Thr	gtg Val	tcg Ser	ctg Leu	ccg Pro 105	gta Val	ggt Gly	gct Ala	339
	gac Asp	gag Glu 110	gac Asp	gac Asp	att Ile	aag Lys	gcc Ala 115	acc Thr	tac Tyr	gac Asp	aag Lys	ggc Gly 120	att Ile	ctt Leu	act Thr	gtg Val	387
	tcg Ser 125	gtg Val	gcg Ala	gtt Val	tcg Ser	gaa Glu 130	Gly 999	aag Lys	cca Pro	acc Thr	gaa Glu 135	aag Lys	cac His	att Ile	cag Gln	atc Ile 140	435
		tcc Ser			tga 145	cca	ctgg	gtc (cgtg	ctga	tg a	ccg					474
<210> 28 <211> 144 <212> PRT <213> Mycobacterium tuberculosis																	
<220> <223> alpha-crystalline antigen																	
	Met			Thr	Leu	Pro	Val	Gln	Arg	His 10	Pro	Arg	Ser	Leu	Phe 15		
	1 Glu		Ser	Glu 20	Leu	Phe	Ala	Ala	Phe 25	Pro	Ser	Phe	Ala	Gly 30	Leu		
			35					40					45			Glu	
	_	50	_		Val		55					60					
	65		_			70					75					Glu 80	
	Arg	Thr	Glu	Gln	Lys 85		Phe	Asp	GIY	Arg		Glu	Phe	Ala	Tyr 95	Gly	

Ser Phe Val Arg Thr Val Ser Leu Pro Val Gly Ala Asp Glu Asp Asp

135 130 <210> 29 <211> 1211 <212> DNA <213> Mycobacterium tuberculosis <220> <221> CDS <222> (150)..(1172) <223> 85 complex antigen (MTB85 complex antigen) <400> 29 aggtgtccgg gccgacgctg aatcgttagc caaccgcgat ctcgcgctgc ggccacgaca 60 ttcqaactqa qcqtcctcgg tgtgtttcac tcgcccagaa cagattcgac cgcgtcgtgc 120 gcagatgaga gttgggattg gtagtagct atg acg ttc ttc gaa cag gtg cga Met Thr Phe Phe Glu Gln Val Arg agg ttg cgg agc gca gcg aca acc ctg ccg cgc cgc gtg gct atc gcg Arg Leu Arg Ser Ala Ala Thr Thr Leu Pro Arg Arg Val Ala Ile Ala 10 get atg ggg get gte etg gtt tae ggt etg gte ggt ace tte gge ggg Ala Met Gly Ala Val Leu Val Tyr Gly Leu Val Gly Thr Phe Gly Gly 25 30 ccg gcc acc gcg ggc gca ttc tct agg ccc ggt ctt cca gtg gaa tat Pro Ala Thr Ala Gly Ala Phe Ser Arg Pro Gly Leu Pro Val Glu Tyr 45 ctg cag gtg cca tcc gcg tcg atg ggc cgc gac atc aag gtc cag ttc 365 Leu Gln Val Pro Ser Ala Ser Met Gly Arg Asp Ile Lys Val Gln Phe 60 cag ggc gga ccg cac gcg gtc tac ctg ctc gac ggt ctg cgg gcc 413 Gln Gly Gly Gly Pro His Ala Val Tyr Leu Leu Asp Gly Leu Arg Ala 75 cag gat gac tac aac ggc tgg gac atc aac acc ccg gcc ttc gag gag 461 Gln Asp Asp Tyr Asn Gly Trp Asp Ile Asn Thr Pro Ala Phe Glu Glu 90 tac tac cag tca ggg ttg tcg gtg atc atg ccc gtg ggc ggc caa tcc 509 Tyr Tyr Gln Ser Gly Leu Ser Val Ile Met Pro Val Gly Gly Gln Ser 105 110 agt ttc tac acc gac tgg tat cag ccc tcg cag agc aac ggc cag aac 557 Ser Phe Tyr Thr Asp Trp Tyr Gln Pro Ser Gln Ser Asn Gly Gln Asn 135 125 tac acc tac aag tgg gag acc ttc ctt acc aga gag atg ccc gcc tgg 605 Tyr Thr Tyr Lys Trp Glu Thr Phe Leu Thr Arg Glu Met Pro Ala Trp 140

Ile Lys Ala Thr Tyr Asp Lys Gly Ile Leu Thr Val Ser Val Ala Val
115
120
125
Ser Glu Gly Lys Pro Thr Glu Lys His Ile Gln Ile Arg Ser Thr Asn

	cta Leu	cag Gln	gcc Ala 155	aac Asn	aag Lys	ggc Gly	gtg Val	tcc Ser 160	ccg Pro	acā Thr	ggc Gly	aac Asn	gcg Ala 165	gcg Ala	gtg Val	ggt Gly	653
	ctt Leu	tcg Ser 170	atg Met	tcg Ser	ggc Gly	ggt Gly	tcc Ser 175	gcg Ala	ctg Leu	atc Ile	ctg Leu	gcc Ala 180	gcg Ala	tac Tyr	tac Tyr	ccg Pro	701
	cag Gln 185	cag Gln	ttc Phe	ccg Pro	tac Tyr	gcc Ala 190	gcg Ala	tcg Ser	ttg Leu	tcg Ser	ggc Gly 195	ttc Phe	ctc Leu	aac Asn	ccg Pro	tcc Ser 200	749
	gag Glu	ggc Gly	tgg Trp	tgg Trp	ccg Pro 205	acg Thr	ctg Leu	atc Ile	ggc Gly	ctg Leu 210	gcg Ala	atg Met	aac Asn	gac Asp	tcg Ser 215	ggc Gly	797
	ggt Gly	tac Tyr	aac Asn	gcc Ala 220	aac Asn	agc Ser	atg Met	tgg Trp	ggt Gly 225	ccg Pro	tcc Ser	agc Ser	gac Asp	ccg Pro 230	gcc Ala	tgg Trp	845
	aag Lys	cgc Arg	aac Asn 235	gac Asp	cca Pro	atg Met	gtt Val	cag Gln 240	att Ile	ccc Pro	cgc Arg	ctg Leu	gtc Val 245	gcc Ala	aac Asn	aac Asn	893
	acc Thr	cgg Arg 250	atc Ile	tgg Trp	gtg Val	tac Tyr	tgc Cys 255	ggt Gly	aac Asn	ggc Gly	aca Thr	ccc Pro 260	agc Ser	gac Asp	ctc Leu	ggc Gly	941
•	ggc Gly 265	gac Asp	aac Asn	ata Ile	ccg Pro	gcg Ala 270	aag Lys	ttc Phe	ctg Leu	gaa Glu	ggc Gly 275	ctc Leu	acc Thr	ctg Leu	cgc Arg	acc Thr 280	989
	aac Asn	cag Gln	acc Thr	ttc Phe	cgg Arg 285	gac Asp	acc Thr	tac Tyr	gcg Ala	gcc Ala 290	gac Asp	ggt Gly	gga Gly	cgc Arg	aac Asn 295	gly ggg	1037
	gtg Val	ttt Phe	aac Asn	ttc Phe 300	ccg Pro	ccc Pro	aac Asn	gga Gly	aca Thr 305	cac His	tcg Ser	tgg Trp	ccc Pro	tac Tyr 310	tgg Trp	aac Asn	1085
	gag Glu	cag Gln	ctg Leu 315	gtc Val	gcc Ala	atg Met	aag Lys	gcc Ala 320	Asp	atc Ile	cag Gln	cat His	gtg Val 325	Leu	aac Asn	ggc Gly	1133
	gcg Ala	aca Thr 330	ccc Pro	ccg Pro	gcc Ala	gcc Ala	cct Pro 335	Ala	gcg Ala	ccg Pro	gcc Ala	gcc Ala 340		gcc	agca	agc	1182
	cagcategge ageagegeaa eggeeageg													1211			

<210> 30

<211> 340

<212> PRT

<213> Mycobacterium tuberculosis

<220>

<223> 85 complex antigen (MTB85 complex antigen)

<400> 30 Met Thr Phe Phe Glu Gln Val Arg Arg Leu Arg Ser Ala Ala Thr Thr Leu Pro Arg Arg Val Ala Ile Ala Ala Met Gly Ala Val Leu Val Tyr 20 Gly Leu Val Gly Thr Phe Gly Gly Pro Ala Thr Ala Gly Ala Phe Ser 40 Arg Pro Gly Leu Pro Val Glu Tyr Leu Gln Val Pro Ser Ala Ser Met 55 Gly Arg Asp Ile Lys Val Gln Phe Gln Gly Gly Pro His Ala Val 70 Tyr Leu Leu Asp Gly Leu Arg Ala Gln Asp Asp Tyr Asn Gly Trp Asp 85 90 Ile Asn Thr Pro Ala Phe Glu Glu Tyr Tyr Gln Ser Gly Leu Ser Val 105 Ile Met Pro Val Gly Gly Gln Ser Ser Phe Tyr Thr Asp Trp Tyr Gln 120 Pro Ser Gln Ser Asn Gly Gln Asn Tyr Thr Tyr Lys Trp Glu Thr Phe 135 140 Leu Thr Arg Glu Met Pro Ala Trp Leu Gln Ala Asn Lys Gly Val Ser 150 155 Pro Thr Gly Asn Ala Ala Val Gly Leu Ser Met Ser Gly Gly Ser Ala 170 165 Leu Ile Leu Ala Ala Tyr Tyr Pro Gln Gln Phe Pro Tyr Ala Ala Ser 185 Leu Ser Gly Phe Leu Asn Pro Ser Glu Gly Trp Trp Pro Thr Leu Ile 200 Gly Leu Ala Met Asn Asp Ser Gly Gly Tyr Asn Ala Asn Ser Met Trp 215 220 Gly Pro Ser Ser Asp Pro Ala Trp Lys Arg Asn Asp Pro Met Val Gln 235 230 Ile Pro Arg Leu Val Ala Asn Asn Thr Arg Ile Trp Val Tyr Cys Gly 250 245 Asn Gly Thr Pro Ser Asp Leu Gly Gly Asp Asn Ile Pro Ala Lys Phe 265 Leu Glu Gly Leu Thr Leu Arg Thr Asn Gln Thr Phe Arg Asp Thr Tyr 285 280 Ala Ala Asp Gly Gly Arg Asn Gly Val Phe Asn Phe Pro Pro Asn Gly 300 295 Thr His Ser Trp Pro Tyr Trp Asn Glu Gln Leu Val Ala Met Lys Ala 315 310 Asp Ile Gln His Val Leu Asn Gly Ala Thr Pro Pro Ala Ala Pro Ala 330 Ala Pro Ala Ala 340