Adaptive State Estimation

Robert Stengel
Optimal Control and Estimation MAE 546
Princeton University, 2015

- Nonlinearity of adaptation
- Parameter-adaptive filtering
- Test for whiteness of the residual
- Bias estimation and noiseadaptive filtering
- Multiple model estimation

Copyright 2015 by Robert Stengel. All rights reserved. For educational use only.

http://www.princeton.edu/~stengel/MAE546.html
http://www.princeton.edu/~stengel/OptConEst.html

1

Nonlinearity of Adaptation

- · Adaptation required if
 - System <u>parameters</u> are unknown
 - System structure is unknown
 - Disturbance/measurement statistics are uncertain
- Adaptive estimators are fundamentally nonlinear, even if the system is linear
 - Parameters to be estimated multiply the state
 - Statistics are derived from measurement residuals
 - Estimator gain depends on parameter estimates

"Process Noise"

White noise disturbance input ("process noise") is similar to random parameter variation

$$\dot{\mathbf{x}}(t) = \mathbf{F}(\mathbf{p})\mathbf{x}(t) + \mathbf{G}\mathbf{u}(t) + \mathbf{L}\mathbf{w}(t)$$

$$\simeq \mathbf{F}(\mathbf{p}_{o})\mathbf{x}(t) + \left\{\frac{\partial \mathbf{F}(\mathbf{p}_{o})}{\partial \mathbf{p}}\Delta\mathbf{p}(t)\right\}\mathbf{x}(t) + \mathbf{G}\mathbf{u}(t) + \mathbf{L}\mathbf{w}(t)$$

$$\triangleq \mathbf{F}(\mathbf{p}_{o})\mathbf{x}(t) + \mathbf{G}\mathbf{u}(t) + \left[\mathbf{L}_{\mathbf{w}} \quad \mathbf{L}_{\Delta\mathbf{p}}[\mathbf{x}(t)]\right] \begin{bmatrix} \mathbf{w}(t) \\ \Delta\mathbf{p}(t) \end{bmatrix}$$

$$\left\{ \frac{\partial \mathbf{F}(\mathbf{p}_o)}{\partial \mathbf{p}} \Delta \mathbf{p}(t) \right\} \text{ is an } (n \times n) \text{ matrix} \qquad \mathbf{L}_{\Delta \mathbf{p}} [\mathbf{x}(t)] \text{ is } (n \times s) \text{ matrix}$$

$$\mathbf{w}'(t) \triangleq \begin{bmatrix} \mathbf{w}(t) \\ \Delta \mathbf{p}(t) \end{bmatrix}; \quad E[\mathbf{w}'(t)] = \mathbf{0}; \quad E\{\mathbf{w}'(t)\mathbf{w}'^{T}(\tau)\} = \mathbf{Q}'\delta(t-\tau)$$

... however, model is approximate and nonlinear

Parameter-Adaptive Estimation (Parameter Identification via Extended Kalman Filter)

Parameter-Dependent Linear System

Linear system with parameterdependent sensitivity matrices

$$\dot{\mathbf{x}}(t) = \mathbf{F}(\mathbf{p})\mathbf{x}(t) + \mathbf{G}(\mathbf{p})\mathbf{u}(t) + \mathbf{L}(\mathbf{p})\mathbf{w}(t)$$

$$\mathbf{z}(t) = \mathbf{H}\mathbf{x}(t) + \mathbf{n}(t)$$

$$E\begin{bmatrix} \mathbf{w}(t) \\ \mathbf{n}(t) \end{bmatrix} = \mathbf{0}; \quad E\begin{bmatrix} \mathbf{w}(t) \\ \mathbf{n}(t) \end{bmatrix} \begin{bmatrix} \mathbf{w}^{T}(\tau) & \mathbf{n}^{T}(\tau) \end{bmatrix} = \begin{bmatrix} \mathbf{Q} & \mathbf{0} \\ \mathbf{0} & \mathbf{R} \end{bmatrix} \delta(t - \tau)$$

Parameter vector, $\mathbf{p}(t)$, could be

Known: a prescribed function of time
Unknown: the output of a random dynamic
process

5

Dynamic Model for Parameter Estimation

· Augment vector to include original state and parameter vector

$$\mathbf{x}_{A}(t) \triangleq \left[\begin{array}{c} \mathbf{x}(t) \\ \mathbf{p}(t) \end{array} \right]$$

- Augment system model for parameter identification
- System is nonlinear because parameter is contained in the augmented state

$$\dot{\mathbf{x}}_{A}(t) = \left\{ \begin{bmatrix} \mathbf{F} [\mathbf{p}(t)] \mathbf{x}(t) + \mathbf{G} [\mathbf{p}(t)] \mathbf{u}(t) + \mathbf{L} [\mathbf{p}(t)] \mathbf{w}_{\mathbf{x}}(t) \end{bmatrix} \right\} \triangleq \mathbf{f}_{A} [\mathbf{x}(t), \mathbf{p}(t), \mathbf{u}(t), \mathbf{w}(t)]$$

$$\mathbf{z}(t) = \mathbf{H}_{A} [\mathbf{p}(t)] \begin{bmatrix} \mathbf{x}(t) \\ \mathbf{p}(t) \end{bmatrix} + \mathbf{n}(t) = \left\{ \begin{array}{c} \mathbf{H} [\mathbf{p}(t)] & \mathbf{0} \\ \mathbf{p}(t) \end{array} \right\} \begin{bmatrix} \mathbf{x}(t) \\ \mathbf{p}(t) \end{bmatrix} + \mathbf{n}(t) + \mathbf{b} [\mathbf{p}(t)]$$

 $\mathbf{H}[\mathbf{p}(t)]$: Unknown scale factors and coupling terms (TBD) $\mathbf{b}[\mathbf{p}(t)]$: Unknown bias error (TBD)

Parameter Vector Must Have a Dynamic Model

Unknown constant: p(t) = constant

$$\dot{\mathbf{p}}(t) = \mathbf{0}; \quad \mathbf{p}(0) = \mathbf{p}_o; \quad \mathbf{P}_{\mathbf{p}}(0) = \mathbf{P}_{\mathbf{p}_o}$$

Random p(t) (integrated white noise)

$$\dot{\mathbf{p}}(t) = \mathbf{w}_{\mathbf{p}}(t); \quad \mathbf{p}(0) = \mathbf{0}; \quad \mathbf{P}_{\mathbf{p}}(0) = \mathbf{P}_{\mathbf{p}_{o}}$$

$$E[\mathbf{w}_{\mathbf{p}}(t)] = \mathbf{0}; \quad E[\mathbf{w}_{\mathbf{p}}(t)\mathbf{w}_{\mathbf{p}}^{T}(\tau)] = \mathbf{Q}_{\mathbf{p}}\delta(t - \tau)$$

Linear dynamic system (Markov process)

$$\dot{\mathbf{p}}(t) = \mathbf{A}\mathbf{p}(t) + \mathbf{B}\mathbf{w}_{\mathbf{p}}(t) \triangleq \mathbf{f}_{\mathbf{p}}[\mathbf{p}(t), \mathbf{w}_{\mathbf{p}}(t)]; \quad \mathbf{w}_{\mathbf{p}}(t) \sim N(\mathbf{0}, \mathbf{Q}_{\mathbf{p}})$$

7

Dynamic Models for the Parameter Vector

Doubly integrated white noise

$$\dot{\mathbf{p}}_{M}(t) = \begin{bmatrix} \dot{\mathbf{p}}(t) \\ \dot{\mathbf{p}}_{D}(t) \end{bmatrix} = \begin{bmatrix} \mathbf{0} & \mathbf{I} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{p}(t) \\ \mathbf{p}_{D}(t) \end{bmatrix} + \begin{bmatrix} \mathbf{0} \\ \mathbf{w}_{\mathbf{p}}(t) \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{p}(t) \\ \mathbf{p}_{D}(t) \end{bmatrix} = \begin{bmatrix} \mathbf{Parameter vector} \\ \mathbf{Parameter rate of change} \end{bmatrix}$$

Triply integrated white noise

$$\dot{\mathbf{p}}_{M}(t) = \begin{bmatrix} \dot{\mathbf{p}}(t) \\ \dot{\mathbf{p}}_{D}(t) \\ \dot{\mathbf{p}}_{A}(t) \end{bmatrix} = \begin{bmatrix} \mathbf{0} & \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{I} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{p}(t) \\ \mathbf{p}_{D}(t) \\ \mathbf{p}_{A}(t) \end{bmatrix} + \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{w}_{p}(t) \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{p}(t) \\ \mathbf{p}_{D}(t) \\ \mathbf{p}_{D}(t) \\ \mathbf{p}_{A}(t) \end{bmatrix} = \begin{bmatrix} \mathbf{Parameter vector} \\ \mathbf{Parameter rate of change} \\ \mathbf{Parameter acceleration} \end{bmatrix}$$

Weathervane Example (4.7-1)

 2^{nd} - order system

Constant parameter, $\omega_n^2 = a \equiv 4$,

Assumed to be 4.4 b = 0.4 (known)

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{a} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ a & b & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ a \end{bmatrix} + \begin{bmatrix} 0 \\ -a \\ 0 \end{bmatrix} w$$

$$Q = 1000; \quad \mathbf{R} = \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix}; \quad \mathbf{P}_p(0) = 20$$

Additional details in text

c

Integrated White Noise Models of a Parameter

- Third integral models slowly varying, smooth parameter
- Second integral is smoother but still has fast changes
- First integral of white noise has abrupt jumps, valleys, and peaks

Hybrid Filter for Parameter Estimation

Extrapolation of Augmented State

$$\hat{\mathbf{x}}_{A}[t_{k}(-)] = \mathbf{x}_{A}[t_{k-1}(+)] + \int_{t_{k-1}}^{t_{k}} \mathbf{f}_{A}[\hat{\mathbf{x}}_{A}(\tau), \mathbf{u}(\tau)] d\tau$$

Covariance Extrapolation

$$\mathbf{P}_{A}[t_{k}(-)] = \mathbf{P}_{A}[t_{k-1}(+)] + \int_{t_{k-1}}^{t_{k}} [\mathbf{F}_{A}(\tau)\mathbf{P}_{A}(\tau) + \mathbf{P}_{A}(\tau)\mathbf{F}_{A}^{T}(\tau) + \mathbf{L}_{A}(\tau)\mathbf{Q'}_{C}(\tau)\mathbf{L}_{A}^{T}(\tau)]d\tau$$

Filter Gain Calculation

$$\mathbf{K}(t_k) = \mathbf{P}_A \left[t_k(-) \right] \mathbf{H}_A^T(t_k) \left[\mathbf{H}_A(t_k) \mathbf{P}_A \left[t_k(-) \right] \mathbf{H}_A^T(t_k) + \mathbf{R}(t_k) \right]^{-1}$$

 $(\mathbf{F}_A, \mathbf{H}_A)$ must be locally observable except at isolated points

11

Hybrid Filter for Parameter Estimation

State Update

$$\hat{\mathbf{x}}_{A}[t_{k}(+)] = \hat{\mathbf{x}}_{A}[t_{k}(-)] + \mathbf{K}(t_{k})\langle \mathbf{z}(t_{k}) - \mathbf{h}\{\hat{\mathbf{x}}[t_{k}(-)]\}\rangle$$

Covariance Update

$$\mathbf{P}_{A}[t_{k}(+)] = [\mathbf{I}_{n} - \mathbf{K}(t_{k})\mathbf{H}_{A}(t_{k})]\mathbf{P}_{A}[t_{k}(-)]$$

 $(\mathbf{F}_A, \mathbf{H}_A)$ must be locally observable except at isolated points

Example: Estimation of Variable Rotary Load for a Robot Arm Elbow

Closed-loop dynamic equation

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -c_1/J(t) & -c_2/J(t) \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ c_1/J(t) \end{bmatrix} y_c$$
Parameter, $p(t) \triangleq \text{Rotary load inertia}, J(t); c_1, c_2 : \text{Control gains (given)}$

13

Augmented State and Measurement for Unknown Inertia Modeled as Doubly Integrated Parameter

$$\mathbf{x}_{A}(t) = \begin{bmatrix} x_{1}(t) \\ x_{2}(t) \\ J(t) \\ \dot{J}(t) \end{bmatrix} \triangleq \begin{bmatrix} x_{1}(t) \\ x_{2}(t) \\ p(t) \\ p_{D}(t) \end{bmatrix}$$
Angle
Angular Rate
Rotary Load Inertia
Inertia Rate
$$\mathbf{z}(t) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_{1}(t) \\ x_{2}(t) \\ p(t) \\ p(t) \end{bmatrix} + \begin{bmatrix} n_{1}(t) \\ n_{2}(t) \end{bmatrix}$$

Nonlinear Dynamic Equation with Unknown Inertia Modeled as Doubly Integrated White Noise

$$\dot{\mathbf{x}}_{A}(t) = \begin{bmatrix} \dot{x}_{1}(t) \\ \dot{x}_{2}(t) \\ \dot{p}(t) \\ \dot{p}_{D}(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ -c_{1}/p(t) & -c_{2}/p(t) & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_{1}(t) \\ x_{2}(t) \\ p(t) \\ p_{D}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ c_{1}/p(t) \\ 0 \\ 0 \end{bmatrix} y_{c} + \begin{bmatrix} 0 \\ w_{2}(t) \\ 0 \\ w_{p_{D}}(t) \end{bmatrix} \triangleq \mathbf{f}_{A}[\bullet]$$

Stability and Measurement Matrices

$$\mathbf{F}_{A} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ -c_{1}/\hat{p}(t) & -c_{2}/\hat{p}(t) & \left[\frac{c_{1}}{2\hat{p}^{2}(t)} \hat{x}_{1}(t) + \frac{c_{2}}{2\hat{p}^{2}(t)} \hat{x}_{2}(t) \right] & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{H}_{A} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

15

Means and Covariances

$$\hat{\mathbf{x}}_{A}(0) = E \begin{bmatrix} x_{1}(0) \\ 0 \\ p(0) \\ 0 \end{bmatrix} \triangleq \begin{bmatrix} \hat{x}_{1}(0) \\ 0 \\ \hat{p}(0) \\ 0 \end{bmatrix}$$
$$\mathbf{P}_{A}(0) = E \{ [\mathbf{x}_{A}(0) - \hat{\mathbf{x}}_{A}(0)] [\mathbf{x}_{A}(0) - \hat{\mathbf{x}}_{A}(0)]^{T} \}$$

$$\hat{\mathbf{w}}(t) = \mathbf{0}; \quad \mathbf{Q}(t) = E[\mathbf{w}(t)\mathbf{w}^{T}(\tau)]$$

 $\hat{\mathbf{n}}(t) = \mathbf{0}; \quad \mathbf{R}(t) = E[\mathbf{n}(t)\mathbf{n}^{T}(\tau)]$

17

Hybrid Filter for Robot Elbow State and Load Estimation

Convergence is problem-dependent
Qualitative observability of parameter
Actual and assumed uncertainty covariances
Accuracy of dynamic model

Extrapolation of Augmented State
$$\hat{\mathbf{x}}_{A}\Big[t_{k}(-)\Big] = \mathbf{x}_{A}\Big[t_{k-1}(+)\Big] + \int_{t_{k-1}}^{t_{k}} \mathbf{f}_{A}\Big[\hat{\mathbf{x}}_{A}(\tau), \mathbf{u}(\tau)\Big] d\tau$$
Covariance Extrapolation
$$\mathbf{P}_{A}[t_{k}(-)] = \mathbf{P}_{A}[t_{k-1}(+)] + \int_{t_{k-1}}^{t_{k}} \left[\mathbf{F}_{A}(\tau)\mathbf{P}_{A}(\tau) + \mathbf{P}_{A}(\tau)\mathbf{F}_{A}^{T}(\tau) + \mathbf{L}_{A}(\tau)\mathbf{Q}_{C}^{T}(\tau)\mathbf{L}_{A}^{T}(\tau)\Big] d\tau$$
Filter Gain Calculation
$$\mathbf{K}(t_{k}) = \mathbf{P}_{A}\Big[t_{k}(-)\Big]\mathbf{H}_{A}^{T}(t_{k})\Big[\mathbf{H}_{A}(t_{k})\mathbf{P}_{A}\Big[t_{k}(-)\Big]\mathbf{H}_{A}^{T}(t_{k}) + \mathbf{R}(t_{k})\Big]^{-1}$$
State Update
$$\hat{\mathbf{x}}_{A}\Big[t_{k}(+)\Big] = \hat{\mathbf{x}}_{A}\Big[t_{k}(-)\Big] + \mathbf{K}(t_{k})\Big\langle\mathbf{z}(t_{k}) - \mathbf{h}\Big\{\hat{\mathbf{x}}\Big[t_{k}(-)\Big]\Big\}\Big\rangle$$
Covariance Update

Bias Estimation and Noise-Adaptive Filtering

19

Residuals and Optimal Filtering

Linear-optimal filtering has the <u>innovations property</u>
Optimal estimation extracts all the available information
from the measurements

Measurement <u>residual</u> should be zero-mean white noise State estimate should be orthogonal to the error

Residual and its statistics

$$\mathbf{r}_{k}(-) = \mathbf{z}_{k} - \mathbf{H}\hat{\mathbf{x}}_{k}(-) = \mathbf{H}\left[\mathbf{x}_{k}(-) - \hat{\mathbf{x}}_{k}(-)\right] + \mathbf{n}_{k}$$

$$E[\mathbf{r}_{k}(-)] = \hat{\mathbf{r}}_{k}(-) = \mathbf{0}$$

$$E[\mathbf{r}_{k}(-)\mathbf{r}_{k}^{T}(-)] \triangleq \mathbf{S}_{k}(-) = \mathbf{H}\mathbf{P}_{k}(-)\mathbf{H}^{T} + \mathbf{R}_{k}$$

$$E(\hat{\mathbf{x}}_{k}\mathbf{n}_{k}^{T}) = \mathbf{0}$$

Residual Should Be White Noise if State Estimate is Optimal

Test for whiteness using <u>normalized</u> autocovariance function

Sampled (batch process) estimate of the autocovariance function matrix, C(k)

$$\mathbf{C}(k) = \left(\frac{1}{N}\right) \sum_{n=k}^{N} \mathbf{r}_{n} \mathbf{r}_{n+k}^{T}, \quad k << N$$
$$\dim \left[\mathbf{C}(k)\right] = r \times r$$

Normalize diagonal elements of C(k) by their zero-lag (k = 0) values

$$\rho_{ij}(k) = \frac{c_{ij}(k)}{c_{ii}(0)}$$

21

Test for Residual Whiteness

If r_k is white

$$\rho_{ij}(k) = \begin{cases} 1, & i = j \text{ and } k = 0 \\ 0, & i \neq j \text{ or } k \neq 0 \end{cases}, \quad N \to \infty$$

Off-diagonal terms should be negligible
For finite sample, 95% confidence limit based on diagonal elements

$$\left|\rho_{ii}(k)\right| \le \frac{1.96}{\sqrt{N}}, \quad k \ne 0$$

Test is passed if 19 out of 20 non-zerolag samples are within the limit

Bias Example: Advanced Dependent Surveillance (ADS-B) System for Air Traffic Control

- Surveillance and tracking radars on ground
- GPS/Inertial/Air data measurements in aircraft
- Satellite/Line-of-sight communications links
- Air traffic control centers (ATCC)
 - Prevent collisions
 - Maintain efficient flow of air traffic

23

Dynamics of Individual Aircraft

Surveillance equations of motion Neglect fast dynamics of aircraft

24

ATCC Measurements and Communicated Locations of Individual Aircraft

Bias is a quasi-constant error that is not related to random noise Least-squares estimator does not reduce bias error

25

Measurement Bias and Covariance Estimation

Batch processing estimates

$$\overline{\mathbf{r}}(-) \triangleq \hat{\mathbf{b}}(-) = \frac{1}{N} \sum_{i=1}^{N} \mathbf{r}_{i}(-) = \frac{1}{N} \sum_{i=1}^{N} \left[\mathbf{z}_{i} - \mathbf{H} \hat{\mathbf{x}}_{i}(-) \right]$$
 Bias Estimate

$$\hat{\mathbf{S}} = \frac{1}{N-1} \sum_{i=1}^{N} (\mathbf{r}_i - \overline{\mathbf{r}}_i) (\mathbf{r}_i - \overline{\mathbf{r}}_i)^T$$
 Sample Covariance Matrix

$$\hat{\mathbf{R}} = \hat{\mathbf{S}} - \frac{N-1}{N} \mathbf{H} \mathbf{P}_k(-) \mathbf{H}^T$$
 Measurement Noise Estimate

Running Estimate of Measurement Bias and Error Covariance

$$\begin{aligned} \hat{\mathbf{b}}_{k} &= \hat{\mathbf{b}}_{k-1} + k_{bias} \left\{ \left[\mathbf{z}_{k} - \mathbf{H} \hat{\mathbf{x}}_{k} \left(- \right) \right] - \hat{\mathbf{b}}_{k-1} \right\} \\ &= \hat{\mathbf{b}}_{k-1} + k_{bias} \left[\mathbf{r}_{k} - \hat{\mathbf{b}}_{k-1} \right] \\ &= \left[1 - k_{bias} \right] \hat{\mathbf{b}}_{k-1} + k_{bias} \mathbf{r}_{k} \end{aligned}$$

$$k_{bias}, k_{noise} < 1$$

$$\left| \hat{\mathbf{R}}_{k} = \hat{\mathbf{R}}_{k-1} + k_{noise} \left\{ \left[\left(\mathbf{r}_{k} - \hat{\mathbf{b}}_{k} \right) \left(\mathbf{r}_{k} - \hat{\mathbf{b}}_{k} \right)^{T} - \mathbf{H} \mathbf{P}_{k} \left(- \right) \mathbf{H}^{T} \right] - \hat{\mathbf{R}}_{k-1} \right\}$$

Options

- Choose add hoc recursive gain
- Use weighted least-squares estimator
- Incorporate in an integrated parameter-adaptive filter

27

Disturbance Bias Estimation

System equation

$$\mathbf{x}_{k+1} = \mathbf{\Phi} \mathbf{x}_k + \mathbf{w}_k$$

Disturbance residual

$$\mathbf{w}_{k} = \mathbf{\Phi}\mathbf{x}_{k} - \mathbf{x}_{k+1} \approx \mathbf{\Phi}\hat{\mathbf{x}}_{k}(+) - \hat{\mathbf{x}}_{k+1}(+)$$

Sample mean

$$|\bar{\mathbf{w}} \triangleq \hat{\mathbf{w}}(+) = \frac{1}{N} \sum_{i=1}^{N} \left[\mathbf{\Phi} \hat{\mathbf{x}}_{i}(+) - \hat{\mathbf{x}}_{i+1}(+) \right] = \frac{1}{N} \sum_{i=1}^{N} \mathbf{w}_{i}$$

Disturbance Covariance Estimation

Sample covariance

$$\hat{\mathbf{W}} = \frac{1}{N-1} \sum_{i=1}^{N} (\mathbf{w}_i - \overline{\mathbf{w}}) (\mathbf{w}_i - \overline{\mathbf{w}})^T$$

Disturbance covariance estimate

$$\hat{\mathbf{Q}} = \hat{\mathbf{W}} - \frac{N-1}{N} \mathbf{\Phi} \mathbf{P}_k (+) \mathbf{\Phi}^T$$

29

Running Estimate of Disturbance Bias and Covariance

$$\hat{\mathbf{w}}_{k}(+) = \hat{\mathbf{w}}_{k-1}(+) + k_{bias} \{\mathbf{w}_{k}(+) - \hat{\mathbf{w}}_{k-1}(+)\}$$

$$\left| \hat{\mathbf{Q}}_{k} = \hat{\mathbf{Q}}_{k-1} + k_{noise} \left\{ \left[\left(\mathbf{w}_{k} - \hat{\mathbf{w}}_{k} \right) \left(\mathbf{w}_{k} - \hat{\mathbf{w}}_{k} \right)^{T} - \frac{N-1}{N} \mathbf{\Phi} \mathbf{P}_{k} (+) \mathbf{\Phi}^{T} \right] - \hat{\mathbf{Q}}_{k-1} \right\} \right|$$

$$k_{bias}$$
, $k_{noise} < 1$

- Options as before
 - Choose add hoc recursive gain
 - Use weighted least-squares estimator
 - Incorporate in an integrated parameter-adaptive filter

Noise-and-Bias Adaptive Filter

Use separately estimated means and covariances in Kalman filter

$$|\hat{\mathbf{x}}_{k}(-)| = \mathbf{\Phi}_{k-1} \hat{\mathbf{x}}_{k-1}(+) + \mathbf{\Gamma}_{k-1}\mathbf{u}_{k-1} + \hat{\mathbf{w}}_{k-1}(+)$$

$$\mathbf{P}_{k}\left(-\right) = \mathbf{\Phi}_{k-1} \; \mathbf{P}_{k-1}\left(+\right) \mathbf{\Phi}_{k-1}^{T} + \hat{\mathbf{Q}}_{k-1}$$

$$\mathbf{K}_{k} = \mathbf{P}_{k} \left(-\right) \mathbf{H}_{k}^{T} \left[\mathbf{H}_{k} \mathbf{P}_{k} \left(-\right) \mathbf{H}_{k}^{T} + \hat{\mathbf{R}}_{k} \right]^{-1}$$

$$\hat{\mathbf{x}}_{k}(+) = \hat{\mathbf{x}}_{k}(-) + \mathbf{K}_{k}\left[\mathbf{z}_{k} - \mathbf{H}_{k}\hat{\mathbf{x}}_{k}(-) + \hat{\mathbf{b}}_{k}\right]$$

$$\mathbf{P}_{k}(+) = \left[\mathbf{P}_{k}^{-1}(-) + \mathbf{H}_{k}^{T} \hat{\mathbf{R}}_{k}^{-1} \mathbf{H}_{k}\right]^{-1}$$

31

Multiple Model Estimation

Multiple Model Estimation

- Bank of Kalman filters, each "tuned" to a different hypothesis
 - Different model parameters or structures
 - Different uncertainty models
 - Different initial conditions
- Best performance determined by a hypothesis test, e.g., Maximum Likelihood
- State estimate chosen accordingly

33

Hypothesis Testing

Multiple Model Estimation

35

Multiple Model Estimation

- Consider J systems distinguished by J parameter vectors
- Conditional probability mass function for the jth parameter set

$$\Pr\left(\mathbf{p}_{j} \mid \mathbf{z}_{k}\right) = \frac{\operatorname{pr}\left(\mathbf{z}_{k} \mid \mathbf{p}_{j}\right) \operatorname{Pr}\left(\mathbf{p}_{j}\right)_{k-1}}{\sum_{i=1}^{I} \left[\operatorname{pr}\left(\mathbf{z}_{k} \mid \mathbf{p}_{i}\right) \operatorname{Pr}\left(\mathbf{p}_{i}\right)_{k-1}\right]}$$

Probability that the measurement at k - 1 was obtained is one;
 therefore,

$$\Pr(\mathbf{p}_j)_{k-1} = \Pr(\mathbf{p}_j \mid \mathbf{z}_{k-1})$$

... and the equation forms the basis for a recursion

$$\Pr\left(\mathbf{p}_{j} \mid \mathbf{z}_{k}\right) = \frac{\Pr\left(\mathbf{z}_{k} \mid \mathbf{p}_{j}\right)}{\sum_{i=1}^{J} \left[\Pr\left(\mathbf{z}_{k} \mid \mathbf{p}_{i}\right) \Pr\left(\mathbf{p}_{i}\right)_{k-1}\right]} \Pr\left(\mathbf{p}_{j} \mid \mathbf{z}_{k-1}\right)$$

Multiple Model Estimation

Conditional probability density function \mathbf{z}_k must be found With the true parameter set

$$\mathbf{z}_{k} = \mathbf{H}\mathbf{x}_{k} + \mathbf{n}_{k}$$
$$\mathbf{x}_{k} = \mathbf{\Phi}\mathbf{x}_{k-1} + \mathbf{\Gamma}\mathbf{u}_{k-1} + \mathbf{w}_{k-1}, \quad \mathbf{x}_{o} = \mathbf{x}(0)$$

If the true state were known

$$\operatorname{pr}(\mathbf{z}_{k} | \mathbf{p}) = \operatorname{pr}[\mathbf{z}_{k} | \mathbf{x}_{k}(\mathbf{p})]$$

$$= \frac{1}{(2\pi)^{n/2} |\mathbf{R}_{k}|^{1/2}} e^{-\frac{1}{2}(\mathbf{z}_{k} - \mathbf{H}\mathbf{x}_{k})^{T} \mathbf{R}_{k}^{-1}(\mathbf{z}_{k} - \mathbf{H}\mathbf{x}_{k})}$$

$$= \frac{1}{(2\pi)^{n/2} |\mathbf{R}_{k}|^{1/2}} e^{-\frac{1}{2}\mathbf{n}_{k}^{T} \mathbf{R}_{k}^{-1} \mathbf{n}_{k}}$$

However, only an estimate of \mathbf{x}_k is available

37

Multiple Model Estimation

The state is estimated by a Kalman filter for the "true" parameter

$$\operatorname{pr}\left[\mathbf{z}_{k} \mid \hat{\mathbf{x}}_{k}\left(\mathbf{p}\right)\right] = \frac{1}{\left(2\pi\right)^{n/2} \left|\mathbf{S}_{k}\right|^{1/2}} e^{-\frac{1}{2}\mathbf{r}_{k}^{T}\mathbf{S}_{k}^{-1}\mathbf{r}_{k}}$$

with
$$\mathbf{r}_{k}(-) = \mathbf{z}_{k} - \mathbf{H}\hat{\mathbf{x}}_{k}(-)$$

$$\mathbf{S}_{k} = \mathbf{H}\mathbf{P}_{k}(-)\mathbf{H}^{T} + \mathbf{R}_{k}$$

 The bank of J Kalman filters is formed with each filter assuming that different parameters are the true parameter

Conditional Probabilities and the Adaptive State Estimate

Conditional probabilities for each hypothesis

$$\Pr\left(\mathbf{p}_{j} \mid \mathbf{z}_{k}\right) = \frac{\Pr\left[\mathbf{z}_{k} \mid \hat{\mathbf{x}}_{k}\left(\mathbf{p}_{j}\right)\right] \Pr\left(\mathbf{p}_{j} \mid \mathbf{z}_{k-1}\right)}{\sum_{i=1}^{J} \left\{\Pr\left[\mathbf{z}_{k} \mid \hat{\mathbf{x}}_{k}\left(\mathbf{p}_{i}\right)\right] \Pr\left(\mathbf{p}_{i} \mid \mathbf{z}_{k-1}\right)\right\}}, \quad j = 1, J$$

State estimate is chosen to be

the one for which the conditional probability is highest, or a weighted sum of the state estimates

$$\hat{\mathbf{x}}_{k}(+) = \sum_{i=1}^{J} \left\{ \Pr(\mathbf{p}_{i} \mid \mathbf{z}_{k}) \hat{\mathbf{x}}_{k} \left[\mathbf{p}_{i}, (+) \right] \right\}$$

Parameter vector is chosen accordingly

39

Weathervane Example (4.7-2)

2nd-order system with three hypothesized natural frequencies

$$\omega_n^2 = \begin{cases} 4 & [Correct] \\ 4.4 & [Expected] \\ 4.8 \end{cases}$$
$$\zeta = 0.1$$

Algorithm searches, then homes in on correct solution

Next Time: Stochastic Optimal Control

41

Supplemental Material

Estimating Parameters of Nonlinear Systems

43

Aerodynamic Coefficients of a Sailplane from Flight Data*

 Princeton University Flight Research Laboratory * Sri-Jayantha and Stengel, 1988

Dynamic Equations of the Sailplane

Body-axis velocity and angular rate equations using quaternions

$$\begin{bmatrix} \dot{x_1} \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} \dot{u} \\ v \\ w \\ p \\ q \\ r \end{bmatrix} = \begin{bmatrix} rv - qw + 2g(e_2e_4 - e_1e_3) + X \\ pw - ru + 2g(e_2e_3 + e_1e_4) + Y \\ qu - pv + g(e_1^2 + e_2^2 - e_3^2 - e_4^2) + Z \\ pqC_1 + qrC_2 + qC_3 + L + NC_4 \\ prC_5 + (r^2 - p^2)C_6 - rC_7 + M \\ pqC_8 + qrC_9 + qC_{10} + LC_{11} + N \end{bmatrix}$$

Propagation of quaternions from angular rates

$$\begin{pmatrix} \dot{x_7} \\ x_8 \\ x_9 \\ x_{10} \end{pmatrix} = \begin{pmatrix} \dot{e_1} \\ e_2 \\ e_3 \\ e_4 \end{pmatrix} = (1/2) \begin{pmatrix} 0 & -r & -q & -p \\ r & 0 & -p & q \\ q & p & 0 & -r \\ p & -q & r & 0 \end{pmatrix} \begin{pmatrix} e_1 \\ e_2 \\ e_3 \\ e_4 \end{pmatrix}$$

45

Definitions of Terms

Definitions of terms in dynamic equations

$$X = gSC_X/m, Y = gSC_1/m, Z = gSC_2/m$$

$$L = gSb\{C_2/I_{XX}\}\{I_{XX}I_{ZZ}/(I_{XX}I_{ZZ} - I_{XZ}^2)\}$$

$$M = gSc\{C_{X}/I_{YY}\} + \{(XmI_2 - ZmI_1)/I_{YY}\}$$

$$N = gSb\{C_{X}/I_{YY}\} + \{(XmI_2 - ZmI_1)/I_{YY}\}$$

$$C_1 = \{I_{XZ}(I_{ZZ} + I_{XX} - I_{YY})\}/I^2$$

$$C_2 = \{I_{ZZ}(I_{YY} - I_{ZZ}) - I_{XZ}^2\}/I^2$$

$$C_3 = 0 \text{ (case with no rotating engine components)}$$

$$C_4 = \{I_{XZ}/I_{XX}\}$$

$$C_5 = \{I_{XZ}/I_{XY}\}/I_{YY}$$

$$C_6 = \{I_{XZ}/I_{YY}\}/I_{YY}$$

$$C_7 = 0$$

$$C_8 = \{I_{XX}(I_{XX} - I_{YY}) + I_{XZ}^2\}/I^2$$

$$C_9 = \{I_{XX}(I_{YX} - I_{YY}) + I_{XZ}^2\}/I^2$$

$$C_{11} = 0$$

$$C_{11} = I_{XZ}/I_{ZZ}$$

 $q = (1/2) \rho V^2, P = (I_{AX}I_{ZZ} - I_{XZ}^2)$

Specific force and moment definitions for parameter identification

$$x_{12} = b_{10} = X = \text{Axial specific force, ft/s}^2$$

 $x_{15} = b_{20} = Y = \text{Side specific force, ft/s}^2$
 $x_{18} = b_{30} = Z = \text{Normal specific force, ft/s}^2$
 $x_{21} = b_{40} = L = \text{Roll specific moment, rad/s}^2$
 $x_{24} = b_{50} = M = \text{Pitch specific moment, rad/s}^2$
 $x_{27} = b_{60} = N = \text{Yaw specific moment, rad/s}^2$

Aerodynamic Coefficients of a Sailplane from Flight Data

- Estimation-before-modeling technique
 - Estimate the state
 - Extended Kalman Filter (forward pass)
 - Modified Bryson-Frazier Smoother (backward pass)
 - Use multivariate regression to model aerodynamic coefficients

47

Aerodynamic Coefficients of a Sailplane from Flight Data

Smoothed Estimate of Normal-Force

48