#### **CH2** Digital Image Fundamentals

1. Nearest Neighbor Interpolation:

新點的值由最近的舊點決定

2. Bilinear Interpolation



#### 3. Bicubic Interpolation



(c) Apply 到每個紅點後·會得到一組 16 個數字的 x 軸距離·與一組 16 個數字的 y 軸距離·分別把這兩組數據帶入 function W·並各自存成一個 array weight\_x和weight\_y。

$$W(x) = \begin{cases} (a+2)|x|^3 - (a+3)|x|^2 + 1 & for |x| \le 1 \\ a|x|^3 - 5a|x|^2 + 8a|x| - 4a & for 1 \le |x| \le 2 \\ 0 & others \end{cases}$$
 x: 上一步算的距離

(d) 得到兩個權重矩陣後·做 Hadamard product: 紅點值 \* weight\_x \* weight\_y · 最後把乘完後的矩陣每個值加起來·就會得 到黃點應該填入的值。

$$p(x,y) = \sum_{i=0}^{3} \sum_{j=0}^{3} a_{ij} x^{i} y^{j}.$$

4. Neighborhood  $N_4(p), N_D(p), N_8(p)$ 



- Adjacency
- (1) 4-adjacency: Two pixels p q with values from V are 4-adjacent if q is in the set  $N_4(p)$
- (2) m(mixed)-adjacency:  $({\bf q} \text{ is in the set } N_4(p)) \ {\bf OR}$   $({\bf q} \text{ is in the set } N_D(p) \ {\bf AND} \ N_4(p) \cap N_4(q)$ 沒有 V 裡的值)
- 6. Connectivity
- (1) Connected set: 有 path 可以從 p 到 q  $\forall p, q \in S$
- (2) R 如果是 connected set,那它就是 a region of a image
- (3) Adjacent:  $R_i \cup R_i$ 是一個 connected set,否則稱為 disjoint
- 7. Boundary: R 裡的 pixel 有至少一個 background neighbor
- 8. Distance
- (1) Euclidean:  $D_e(p,q) = [(x-s)^2 + (y-t)^2]^{1/2}$
- (2) City Block:  $D_e(p,q) = |x s| + |y t|$

- (3) Chess Board:  $D_8(p,q) = \max(|x-s|, |y-t|)$
- (4) m-adjacency path: 畫 m-ad 然後算要走幾步
- 9. 加減乘除運算的效果
- (1) 相加 reduce noise (e.g. 10 張 noisy img 相加再除 10)
- (2) 相减突出 details (e.g. 注射顯影劑後減掉未注射的)
- (3) 相除後相消的感覺
- (4) 相乘可以做 mask

### **CH3 Spatial Domain Filtering**

- 1. Log transformation:  $s = clog(1+r), r \ge 0$
- 2. Power-Law (Gamma) trans:  $s=cr^{\gamma}$ ,  $\gamma < 1$ 會提亮, 太亮/暗 + washed-out
- Contrast Stretching:



 低對比: bar chart 窄、集中在中間,代表黯淡 高對比: intensity 跨度大、分布均匀,突出的 bar 很少,代表呈現的細節多

5. Continuous Histogram Equalization 證明 範例:

$$p_r(r) = \begin{cases} \frac{2r}{(L-1)^2}, & \text{for } 0 \le r \le L-1 \\ 0, & \text{otherwise} \end{cases}$$

Sol: 
$$s = T(r) = (L - 1) \int_0^r p_r(w) dw = \frac{2}{L - 1} \int_0^r w dw = \frac{r^2}{L - 1}$$

$$p_s(s) = p_r(r) \left| \frac{dr}{ds} \right| = \frac{2r}{(L-1)^2} \left| \left[ \frac{ds}{dr} \right]^{-1} \right|$$

$$= \frac{2r}{(L-1)^2} \left| \left[ \frac{d}{dr} \frac{r^2}{L-1} \right]^{-1} \right| = \frac{2r}{(L-1)^2} \left| \frac{(L-1)}{2r} \right| = \frac{1}{L-1}$$

- ightarrow  $p_s(s)$  will always be uniform 且 independent 於  $p_r(r)$
- 6. 但在 Discrete HE 就不是 uniform & independent 了

$$s_k = T(r_k) = (L-1) \sum_{i=0}^k p_r(r_i), k = 0, 1 \dots, L-1$$

給各 intensity 的 pixel 數 $n_k \to \hat{p}_r(r_k) = n_k/MN \to \hat{p}$ 累加的 CDF  $\to$   $round((L-1)CDF) \to 列新的$  intensity 的 pixel 數 $n_s \cdot p_s(r_s)$ 

7. Histogram Matching (Specification)

$$s = (L-1) \int_0^r p_r(w) dw$$
  $G(z) = (L-1) \int_0^z p_z(t) dt = s$   $z = G^{-1}(s)$ 



8. Histogram Statistics for image enhancement

求 Local avg(代表明暗程度) & local variance(告訴 detail)

$$m = \sum_{i=0}^{L-1} r_i p(r_i) = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) \quad \sigma^2 = u_2(r) = \sum_{i=0}^{L-1} (r_i - m)^2 p(r_i) = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} [f(x,y) - m]^2 p(r_i) = \frac{1}{MN} \sum_{x=0}^{M-1} [f(x,y) - m]^2 p(r_i) = \frac{1}{$$



| 7   | 0   | 0 |     |
|-----|-----|---|-----|
| 4   | 0   | 0 |     |
| 1   | 0   | 0 | 8   |
| ()  | ()  | 0 | 3   |
| 0   | 0   | 0 |     |
|     |     |   |     |
|     |     |   |     |
|     |     | - |     |
| 2/  | 579 |   |     |
| .30 | 5/9 |   |     |
| -   | _   | + | LP  |
| н   | )65 |   | LP  |
|     |     |   |     |
|     |     | 1 |     |
| 24  | 70  |   | Box |



0.3679 0.6065 0 1 1 1  $\frac{1}{4.8976} \times$ 0.6065 1.0000 0

spatial filter 們:

Box 的 edge 在 ramp 頂端的部分有

hard transition

- Gaussian:  $G(s,t)=Ke^{\frac{-(s^2+t^2)}{2\sigma^2}}$  (size>[ $6\sigma$ ]就看不出差異了)
- First order derivative:

1

1

$$\frac{\partial f}{\partial x} = f(x+1) - f(x)$$
  $\frac{\partial^2 f}{\partial x^2} = f(x+1) + f(x-1) - 2f(x)$ 

11. Laplacian for sharpening:

$$g(x,y) = f(x,y) + c[\nabla^2 f(x,y)], \qquad \nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

12. Edge enhancement

|    | -1 | 0  | 0  | -1 |   |
|----|----|----|----|----|---|
|    | 0  | 1  | 1  | 0  |   |
| -1 | -2 | -1 | -1 | 0  | 1 |
| 0  | 0  | 0  | -2 | 0  | 2 |
| 1  | 2  | 1  | -1 | 0  | 1 |

13.

Roberts cross-gradient

最後取

Gradient Image=

$$M(x,y) = [g_x^2 + g_y^2]^{1/2}$$

Sobel operators



## **CH4 Frequency Domain Filtering**

2D Continuous:

FT: 
$$F(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(t,z) e^{-j2\pi(ut+vz)} dt dz$$

IFT: 
$$f(t,z) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u,v)e^{2j\pi(ut+vz)}du\,dv$$

2D Discrete:

FT: 
$$F(u,v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi(ux/M + vy/N)}$$

IFT: 
$$f(x,y) = \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v) e^{j2\pi(ux/M + vy/N)}$$

- 取的 sample rate 需要  $\frac{1}{\Lambda T} > 2\mu_{max}$  (兩倍最高 freq),否則會有 Aliasing
- Symmetry properties (兩奇兩偶相乘=偶,一奇一偶相乘=奇)

$$w_e(x,y) = \frac{w(x,y) + w(-x,-y)}{2}, \qquad w_o(x,y) = \frac{w(x,y) - w(-x,-y)}{2}$$

對稱中心:  $w_e(x,y) = w_e(M-x,N-y)$ ,  $w_o(x,y) = -w_o(M-x,N-y)$ 

(2)  $w_o(0,0) = 0$ 



| Transform | Ing       | out Signal   | Output Spectrum |                 |  |
|-----------|-----------|--------------|-----------------|-----------------|--|
| Transform | Periodicy | Image domain | Periodicy       | Spectral domain |  |
| CT FS     | periodic  | continuous   | aperiodic       | discrete        |  |
| DT FS     | periodic  | discrete     | periodic        | discrete        |  |
| CT FT     | aperiodic | continuous   | aperiodic       | continuous      |  |
| DT FT     | aperiodic | discrete     | periodic        | continuous      |  |
| DFT       | aperiodic | discrete     | periodic        | discrete        |  |

- Circular convolution 沒 pad 的話會有 wrap around error
- LPF: (Gaussian 的是 less smoothing, but no ringing)

| Idea                                                                  | ıl                                  | Gaussian                        | Butterworth                                |
|-----------------------------------------------------------------------|-------------------------------------|---------------------------------|--------------------------------------------|
| $H(u,v) = \begin{cases} 1 & \text{if } \\ 0 & \text{if } \end{cases}$ | $f D(u,v) \le D_0$ $f D(u,v) > D_0$ | $H(u,v) = e^{-D^2(u,v)/2D_0^2}$ | $H(u,v) = \frac{1}{1 + [D(u,v)/D_0]^{2n}}$ |

Freq 的 Laplacian  $H(u, v) = -4\pi^2 D^2(u, v)$ 

$$g(x,y) = IDFT\{F - HF\} = IDFT\{[1 - H]F\}$$
, 結果會比 spatial 好

Freq 的 unsharp masking (k>1: highboost filtering)

$$g(x,y) = f(x,y) + kg_{mask}(x,y) = IDFT\{(1 + k[1 - H_{LP}(u,v)])F(u,v)\}$$

Homomorphic filtering ( $\gamma_H \geq 1$ 放大高頻,  $\gamma_L < 1$ 衰減低頻)

 $H(u,v) = (\gamma_H - \gamma_L) \left[ 1 - e^{-c \left[ D^2(u,v)/D_0^2 \right]} \right] + \gamma_L$ Illumination has slow spatial variation  $\Rightarrow$  low frequency components Reflectance tends to vary abruptly  $\Rightarrow$  high frequency components

**CH5** Image Reconstruction g(x,y) = f(x,y) + n(x,y)





- Mean filter:
- Geometric: 比 arithmetic 更能保留細節,都適合處理 random noise
- Harmonic: salt noise 有用, pepper 沒用, gaussian 有用
- Contraharmonic: Q>0 時處理 pepper, Q<0 時處理 salt

$$f(x,y) = \sum_{\substack{(r,c) \in \mathbb{S}_q \\ (c,c) \in \mathbb{S}_q}} g(r,c)^{Q_1}$$
 Q=0 變 mean,Q=-1 變 harmonic 適合處理 impulse noise

- Order statistics filter
- Max: 處理 pepper, Min: 處理 salt (各自會侵蝕黑和白)
- Midpoint: work best for Gaussian, uniform 等 random noise (2)
- Alpha-Trimmed Mean Filter: 去頭尾各 d/2 val,對剩下的做處理 (3)
- Adaptive local noise reduction filter: 前提  $\sigma_{\eta}^{\ 2} \leq \sigma_{S_{xy}}^{\ 2}$ , 處理 random 噪音  $ilde{z}\sigma_{\eta}{}^2=0$ ,代表 zero noise。若  $\sigma_{S_{xy}}{}^2$  較高,代表有想要保留的 edge。  $\sigma_{\eta}{}^2\approx$

$$\sigma_{S_{xy}}^2$$
,代表是 noise。 $\hat{f}(x,y)=g(x,y)-rac{\sigma_\eta^2}{\sigma_{S_{xy}}^2}[g(x,y)-ar{z}_{Sxy}]$ , z 是區域平均

Adaptive median filter: 處理 impulse 噪音,也不會改變物體的 boundary

Level A: If  $z_{\min} < z_{\text{med}} < z_{\text{max}}$ , go to Level B甚至可以 smooth 一些不是 Else, increase the size of  $S_{xy}$ If  $S_{xy} \leq S_{max}$ , repeat level A impulse 的噪音

Else, output  $z_{\rm med}$ . 比一般 median filter 效果更好 Level B: If  $z_{\min} < z_{xy} < z_{\max}$ , output  $z_{xy}$ Else output  $z_{\rm med}$ .

- Periodic noise 要用 freq domain 的去噪: notch filter
  - Inverse filter: (H: degradation function)  $H(u,v) = \int_0^T e^{-j2\pi[ux_0(t)+vy_0(t)]} dt$

$$\widehat{F}(u,v)$$
復原圖 =  $\frac{G(u,v) + \overline{k} \underline{w} \underline{u}}{H(u,v)}$  =  $F(u,v) + \frac{N(u,v)}{H(u,v)}$ 

N 未知,且當 H 很小時,會 dominate F → zero problem

7. Min mean square error (wiener) filter: 處理 motion blur

沒有 zero prob. 
$$\hat{F}(u,v) = \left[\frac{1}{H(u,v)} \frac{|H(u,v)|^2}{|H(u,v)|^2 + K}\right] G(u,v)$$

8. Constrained least square filter: 只需要 mean & variance

$$\hat{F}(u,v) = \begin{bmatrix} \frac{H^*(u,v)}{|H(u,v)|^2 + \gamma |P(u,v)|^2} \end{bmatrix} G(u,v) \qquad p(x,y) = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

9. Randon transform:

公式:  $g(\rho, \theta) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \delta(x \cos \theta + y \sin \theta - \rho) dx dy$ 

給一圓物體求投影 
$$f(x,y) = \begin{cases} A, & x^2 + y^2 \le r^2 \\ 0, & otherwise \end{cases}$$

Sol: 
$$g(\rho, \theta) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \delta(x - \rho) dx dy = \int_{-\infty}^{\infty} f(\rho, y) dy$$

$$= \int_{-\sqrt{r^2-\rho^2}}^{\sqrt{r^2-\rho^2}} \!\! f(\rho,y) dy = \int_{-\sqrt{r^2-\rho^2}}^{\sqrt{r^2-\rho^2}} \!\! A dy = g(\rho) = \begin{cases} 2A\sqrt{r^2-\rho^2}, \ |\rho| \leq r \\ 0, \ otherwise \end{cases}$$

- 10. Backprojection (laminogram)
- (1) Fourier slice theorem:  $G(\omega, \theta) = F(\omega \cos \theta, \omega \sin \theta)$



現實中只能取 discrete 個數的 lines,加上取出來的 DFT 值 lies in circle (常見的 IDFT 方法如 IFFT 都是 based in square),硬轉成方形會使結果模糊

(2) Parallel-beam filtered:  $u = \omega \cos \theta$ ,  $v = \omega \sin \theta$ ,  $dudv = \omega d\omega d\theta$  代入連續 FT

$$\begin{split} &f(x,y) = \int_0^{2\pi} \int_0^{\infty} F(\omega \cos \theta \,, \omega \sin \theta) \, e^{j2\pi \omega (x \cos \theta + y \sin \theta)} \omega d\omega d\theta = \cdots G(\omega, \theta) \dots \exists G(\omega, \theta + 180^\circ) = G(-\omega, \theta) \\ &= \int_0^{\pi} \int_{-\infty}^{\infty} |\omega| G(\omega, \theta) \, e^{j2\pi \omega (x \cos \theta + y \sin \theta)} \omega d\omega d\theta = \int_0^{\pi} \left[ \int_{-\infty}^{\infty} |\omega| \, G(\omega, \theta) \, e^{j2\pi \omega \rho} \, d\omega \right]_{\rho = x \cos \theta + y \sin \theta} d\theta \\ &= \int_0^{\pi} \left[ s(\rho) * g(\rho, \theta) \right]_{\rho = x \cos \theta + y \sin \theta} d\theta = \int_0^{\pi} \left[ \int_{-\infty}^{\infty} g(\rho, \theta) s(x \cos \theta + y \sin \theta - \rho) d\rho \right] d\theta \end{split}$$

(3) Fan-beam filtered: ∵fourier slice 是設計給 parallel beam ∴要找出轉換



Let  $p(\alpha, \beta)$  denote a fan-beam projection. Becasue a raysum is the sum of all values along a line, it follows that regardless of the coordinate system in which it is expressed,  $p(\alpha, \beta) = g(\rho, \theta)$ . Thus



Prove  $s(R \sin \alpha) = \left[\frac{\alpha}{R \sin \alpha}\right]^2 s(\alpha)$ , where  $s(\rho)$  is the inverse FT of  $|\omega|$ .

 $s(\rho) = \int_{-\infty}^{\infty} |\omega| e^{j2\pi\alpha\rho\rho} d\omega. \text{ Let } \rho = R \sin \alpha. \text{ Note that } \frac{\alpha}{R \sin \alpha} \text{ is always positive. We have}$ 



 $\Rightarrow s(R\sin\alpha) = \left[\frac{\alpha}{R\sin\alpha}\right]^2 \int_{-\infty}^{\infty} |\omega'| e^{j2\pi\omega'\alpha} d\omega' = \left[\frac{\alpha}{R\sin\alpha}\right]^2 s(\alpha).$ 

#### CH6 Color Models

- .. CMY (CMYK, K for black) 需 normalize RGB [0,1]
- $\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$

2. HSI



Conversion from CMY to CMY!  $K = \min(C, M, Y)$ If  $K = 1 \implies C = M = Y = 0$ Otherwise,  $\begin{bmatrix} C \end{bmatrix} , \begin{bmatrix} C - K \end{bmatrix}$ 

- $\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = \frac{1}{1 K} \begin{bmatrix} C K \\ M K \\ Y K \end{bmatrix}$
- 3. 用 RGB channel 各自做 histogram equalization 會導致 erroneous color,所 以要用 HIS 的 I 去 spread the intensities uniformly,保持 hue 不變
- 4. 在 color edge detection 不能用 CH3 的 gradient 做,要用 Di Zenzo (重新定義一個 vector 可用的 gradient),但其實直接用 sobel 在 RGB 做,也不會

# 太差(but fast),需取捨結果與計算量

**CH8-1 Lossless Compression** 

需要幾個 bit 去 encode 符號

- 1. Compression ration= 壓縮前/壓縮後的 bit 數
- 2. Entropy:  $\eta = \sum_{i=1}^{n} p_i \log_2 \frac{1}{p_i} = -\sum_{i=1}^{n} p_i \log_2 p_i$
- 3. Sannon-Fano Algo (top-down):機率由小排到大,每輪都分成機率最接近的兩堆
- 4. Huffman coding (bottom-up): 每輪都找機率最小的兩個合併

它是 unique prefix & optimal in integer length &  $\eta \leq \bar{l} \leq \eta + 1$ 

5. Arithmetic coding: 整段 msg 視為一個 unit,使 symbol 的 bit 數可為小數解碼時: 下一個 value=(目前 value-low)/range

## CH8-2 JPEG

- 1. 動機:
- (1) Spatial redundancy(單一圖片間有相似性可省略), frame 之間是 temporal
- (2) High spatial freq.的部分可略

- Cb Cb Cr
- (3) 人眼對色彩敏銳度(acuity)低 → Chroma sub-sampling
- 2. DCT (切成 8\*8 的 block)



DCT-Based Encoder



- DC ACs

- 3. Encode
- (1) 切成 8\*8 的 block → 全部減 128 (把原點設 0)
- (2) 算 DCT 得F(u,v)
- (3)  $round(F(u,v) \div Luminance\ table) = \hat{F}(u,v)$ , chrominance 同理
- (4) Encode DC (*size*, *amplitude*)=(110, 00101)

Diff= 50(現) - 30(前)= -26 = 100101,則 amplitude= 00101

Size= amplitude 的長度= 5,查表 category(size) 5 的 codeword 是 110

(5) Encode AC *(run length, size, amplitude)*,使用 bit 數(4,4,1~10) 取出那 63 個 AC 係數



- 加上 Size= amplitude 的長度 (b)
- (run len, size)查表 (c)

ex. 57, 45, 0, 0, 0, 0, 23, 0, -30, -16, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, ..., 0 7 (0,51), (0,45), (4,23), (1,-30), (0,-16), (2,1), (0,0) > (0, 6, 111001), (0,6, 101101) (4,5,10111) (1,5,00001), (0,5,01111) (2,1,1) (0,0)





- Decoder
- 查表反推回 quantization 後的值 $\hat{F}(u,v)$ (1)
- $\hat{F}(u,v) imes Luminance\ table = \tilde{F}(u,v)$ , chrominance 同理
- $IDCT(\tilde{F}(u,v)) = \tilde{f}(i,j) \rightarrow \text{decode}$  後的最終結果

CH8-3 Video Compression

H.261 I-frame coding



H.261 P-frame coding

MVD= MV 前 - MV 現









# **CH9 Morphology**

Reflect:  $\hat{B} = \{w | w = -b, \text{ for } b \in B\}$ Translation:  $(B)_z = \{c | c = b + z, \text{ for } b \in B\}$ 

Erosion:  $A \ominus B = \{z | (B)_z \subseteq A\}$ Dilation:  $A \oplus B = \{z | (\hat{B})_z \cap A \neq \emptyset\} = \{z | [(\hat{B})_z \cap A] \subseteq A\}$ 

Duality:

$$(\boldsymbol{A} \ominus \boldsymbol{B})^c = \{z | (\boldsymbol{B})_z \subseteq \boldsymbol{A}\}^c = \{z | ((\boldsymbol{B})_z \cap \boldsymbol{A}^c) = \emptyset\}^c = \{z | ((\boldsymbol{B})_z \cap \boldsymbol{A}^c) \neq \emptyset\} = \boldsymbol{A}^c \oplus \boldsymbol{\hat{B}}$$
 
$$(\boldsymbol{A} \oplus \boldsymbol{B})^c = \{z | ((\boldsymbol{\hat{B}})_z \cap \boldsymbol{A}) \neq \emptyset\}^c = \{z | ((\boldsymbol{\hat{B}})_z \cap \boldsymbol{A}) = \emptyset\} = \boldsymbol{A}^c \ominus \boldsymbol{\hat{B}}$$

3. Opening: 
$$A \circ B = (A \ominus B) \oplus B = \bigcup \{(B)_z | (B)_z \subseteq A\}$$
Closing:  $A \bullet B = (A \oplus B) \ominus B = \bigcup \{(B)_z | ((B)_z \cap A) = \emptyset\}]^c$ 

Duality:

$$(\mathbf{A} \circ \mathbf{B})^c = [(A \ominus B) \oplus B]^c = (A \ominus B)^c \ominus \hat{B} = (A^c \oplus \hat{B}) \ominus \hat{B} = \mathbf{A}^c \bullet \hat{\mathbf{B}}$$
$$(\mathbf{A} \bullet \mathbf{B})^c = [(A \oplus B) \ominus B]^c = (A \oplus B)^c \oplus \hat{B}] = (A^c \ominus \hat{B}) \oplus \hat{B} = \mathbf{A}^c \circ \hat{\mathbf{B}}$$

Hit-or-Miss transform (HMT)

$$A \circledast B = (A \ominus B_1) \cap (A^c \ominus B_2) = \{z | (B)_z \subseteq I\}, B_2$$
 foreground

Boundary extraction:  $\beta(A) = A - (A \ominus B)$ 



Thinning

Thinning Thickening 
$$A \otimes B = A - (A \otimes B) \qquad A \odot B = A \cup (A \otimes B)$$
$$= A \cap (A \otimes B)^{c} \qquad A \odot \{B\} = \left( (...((A \odot B^{1}) \odot B^{2})...) \odot B^{n} \right)$$
$$\{B\} = \{B^{1}, B^{2}, ..., B^{n}\}$$
$$A \otimes \{B\} = \left( (...((A \otimes B^{1}) \otimes B^{2})...) \otimes B^{n} \right)$$

Gray-scale morphology





