Data Encodings - Herong's Tutorial Examples - Version 5.10, by Dr. Herong Yang

| Home | News | Search | Comments | Help | PDF | RSS | Index |

Data Encodings - Herong's Tutorial Examples

□ Base64 Encoding

■ Base64 Encoding Algorithm

This section describes the Base64 encoding algorithm with some simple encoding examples.

Base64 algorithm is designed to encode any binary data, an stream of bytes, into a stream of 64-printable characters.

Base64 encoding algorithm was first presented in "RFC 1421 - Privacy Enhancement for Internet Electronic Mail: Part I: Message Encryption and Authentication Procedures" in 1993 by John Linn. It was later modified slightly in "RFC 1521 - MIME (Multipurpose Internet Mail Extensions) Part One: Mechanisms for Specifying and Describing the Format of Internet Message Bodies" in September 1993 by N. Borenstein, et al..

The character set map by Base64 encoding:

Value	Encoding	Value	Encoding	Value	Encoding	Value	Encoding
0	A	17	R	34	i	51	Z
1	В	18	S	35	j	52	0
2	C	19	Т	36	k	53	1
3	D	20	U	37	1	54	2
4	E	21	V	38	m	55	3
5	F	22	W	39	n	56	4
6	G	23	X	40	0	57	5
7	H	24	Y	41	p	58	6
8	I	25	\mathbf{Z}	42	q	59	7
9	J	26	a	43	r	60	8
10	K	27	b	44	s	61	9
11	L	28	С	45	t	62	+
12	M	29	d	46	u	63	/
13	N	30	е	47	v		
14	0	31	f	48	W		
15	P	32	g	49	x		
16	Q	33	h	50	У		

The Base64 encoding process is to:

- Divid the input bytes stream into blocks of 3 bytes.
- Divid 24 bits of each 3-byte block into 4 groups of 6 bits.
- Map each group of 6 bits to 1 printable character, based on the 6-bit value using the Base64 character set map.
- If the last 3-byte block has only 1 byte of input data, pad 2 bytes of zero (\x0000).
 After encoding it as a normal block, override the last 2 characters with 2 equal signs (==), so the decoding process knows 2 bytes of zero were padded.
- If the last 3-byte block has only 2 bytes of input data, pad 1 byte of zero (\x00). After

- encoding it as a normal block, override the last 1 character with 1 equal signs (=), so the decoding process knows 1 byte of zero was padded.
- Carriage return (\r) and new line (\n) are inserted into the output character stream. They will be ignored by the decoding process.

Example 1: Input data, 1 byte, "A". Encoded output, 4 characters, "QQ=="

Input Data	A			
Input Bits	01000001			
Padding	01000001	00000000	000	00000
	\	\	\	
Bit Groups	010000 0	10000 000	000	000000
Mapping	Q	Q	Α	A
Overriding	0	0	=	=

Example 2: Input data, 2 bytes, "AB". Encoded output, 4 characters, "QUI="

Input Data	А	В		
Input Bits	01000001	01000010		
Padding	01000001	01000010	000000	00
	\	\	\	
Bit Groups	010000 0	10100 001	000 000	000
Mapping	Q	U	I	Α
Overriding	Q	U	I	=

Example 3: Input data, 3 bytes, "ABC". Encoded output, 4 characters, "QUJD"

Input Data		A	В	С
Input Bits	0100000	01000	0010 010	000011
	\	`	`	\
Bit Groups	010000	010100	001001	000011
Mapping	Q	U	J	D

Submit Your Comment:

		1
Your Name:		

Let (a,b)=(9,2), what is a-b?

(All fields are required.) Submit

Table of Contents

About This Book

UUEncode Encoding

- ► Base64 Encoding
 - ► Base64 Encoding Algorithm

W3C Implementation of Base64 in Java

Sun Implementation of Base64 in Java

Sun Implementation of Base64 in Java - Test

Goetz' Implementation of Base64 in JavaScript

Goetz' Implementation of Base64 in JavaScript - Test

Implementation of Base64 in PHP - Test

Base32 Encoding

URL Encoding, URI Encoding, or Percent Encoding

References

PDF Printing Version

Search Coogle™ Custom Search

Copyright © 2015 by Dr. Herong Yang. All rights reserved.

[Home | News | Search | Comments | Help] [PDF | RSS | Index]

Base64 Encoding Algorithm - Updated in 2010, by Dr. Herong Yang

WebCounter: 2 1 6 5 3 7 3 7