On my honor, I have not given, nor received, nor witnessed any unauthorized assistance on this work.

Print name and sign: ___

Question:	1	2	3	4	Total
Points:	7	7	6	10	30
Score:					

1. (7 points) Dr. Summet has been asked to give an expert mini-lecture on base and bounds addressing. Here's what she says:

"Base/bounds-based virtual memory is really easy. Imagine you have a base register and a bounds register in each CPU. The base points to the physical memory location where an address space is relocated; the bounds tells us how big such an address space can be. Let's do an example to understand this better.

Assume we have the following base/bounds pair:

Base : 0x1000Bounds : 0x10

Now assume we have the following virtual memory references by a process (in this order):

0x0, 0x4, 0x8, 0xc

The corresponding physical addresses that will be referenced are (in this order):

0x1000, 0x1004, 0x1008, FAULT (because this one is out of bounds)

Make sense?"

Not to put too fine a point on it, but Prof. Summet isn't correct and has several errors in her explanation. Point out her errors and correct them.

	one gail spring 2 cms see	_
2.	Assume a system is using base and bounds with the following system characteristics:	
	 a 1KB (1024 bytes) virtual address space a base register set to 10000 a bounds register set to 100 	
	For each of the following <i>physical memory</i> locations, give the corresponding virtual address translation or state that the physical memory location could not be legally accessed by the running program. (a) (1 point) 0	n
	(b) (1 point) 1000	
	(c) (1 point) 10000	
	(d) (2 points) 10050	
	(e) (2 points) 10100	
3.	(6 points) Segmentation is a generalization of base-and-bounds. Give one advantage of segmentation over base and bounds. Then give one disadvantage.	n
		i

- 4. (10 points) Assume the following in a simple segmentation system that supports two segments: one (positive growing) for code and a heap (Segment 0), and one (negative growing) for a stack (Segment 1):
 - Virtual address space size 128 bytes
 - Physical memory size 512

Segment register information:

- Segment 0 base (grows positive): 0
- Segment 0 limit : 20 (decimal)
- Segment 1 base (grows negative) : 0x200 (decimal 512)
- Segment 1 limit : 20 (decimal)

Circle all of the following which are valid virtual memory accesses

- A. 0x1d (decimal: 29)
- B. 0x7b (decimal: 123)
- C. 0x10 (decimal: 16)
- D. 0x5a (decimal: 90)
- E. 0x0a (decimal: 10)