L. Vandenberghe EE133A (Spring 2017)

14. Nonlinear equations

- Newton method for nonlinear equations
- damped Newton method for unconstrained minimization
- Newton method for nonlinear least squares

Set of nonlinear equations

n nonlinear equations in n variables x_1, x_2, \ldots, x_n :

$$f_1(x_1, \dots, x_n) = 0$$

$$f_2(x_1, \dots, x_n) = 0$$

$$\vdots$$

$$f_n(x_1, \dots, x_n) = 0$$

in vector notation: f(x) = 0 with

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \qquad f(x) = \begin{bmatrix} f_1(x_1, \dots, x_n) \\ f_2(x_1, \dots, x_n) \\ \vdots \\ f_n(x_1, \dots, x_n) \end{bmatrix}$$

Example: nonlinear resistive circuit

$$g(x) - \frac{E - x}{R} = 0$$

a nonlinear equation in the variable x, with three solutions

Newton method

suppose $f: \mathbf{R}^n \to \mathbf{R}^n$ is differentiable

Algorithm: choose $x^{(1)}$ and repeat for $k=1,2,\ldots$

$$x^{(k+1)} = x^{(k)} - Df(x^{(k)})^{-1}f(x^{(k)})$$

- ullet each iteration requires one evaluation of f(x) and Df(x)
- ullet each iteration requires factorization of $n \times n$ matrix Df(x)
- ullet we assume Df(x) is nonsingular

Interpretation

$$x^{(k+1)} = x^{(k)} - Df(x^{(k)})^{-1}f(x^{(k)})$$

• linearize f (i.e., make affine approximation) around current iterate $x^{(k)}$

$$\hat{f}(x; x^{(k)}) = f(x^{(k)}) + Df(x^{(k)})(x - x^{(k)})$$

• solve linearized equation $\hat{f}(x; x^{(k)}) = 0$; the solution is

$$x = x^{(k)} - Df(x^{(k)})^{-1}f(x^{(k)})$$

• take solution x as new iterate $x^{(k+1)}$

One variable

ullet affine approximation of f around $x^{(k)}$ is

$$\hat{f}(x; x^{(k)}) = f(x^{(k)}) + f'(x^{(k)})(x - x^{(k)})$$

ullet solve the linearized equation $\hat{f}(x;x^{(k)})=0$ and take the solution as $x^{(k+1)}$:

$$x^{(k+1)} = x^{(k)} - \frac{f(x^{(k)})}{f'(x^{(k)})}$$

Example: nonlinear resistive circuit

- nonlinear resistors with i-v characteristics $i_1 = g_1(v_1)$, $i_2 = g_2(v_2)$
- two nonlinear equations in two variables v_1 , v_2

$$f_1(v_1, v_2) = g_1(v_1) + \frac{v_1 - E}{R} + \frac{v_1 - v_2}{R} = 0$$
$$f_2(v_1, v_2) = g_2(v_2) + \frac{v_2 - v_1}{R} = 0$$

derivative matrix

$$Df(v) = \begin{bmatrix} g_1'(v_1) + 2/R & -1/R \\ -1/R & g_2'(v_2) + 1/R \end{bmatrix}$$

Linearized equations

• linearized equations around \hat{v}_1 , \hat{v}_2 :

$$g_1(\hat{v}_1) - g_1'(\hat{v}_1)\hat{v}_1 + g_1'(\hat{v}_1)v_1 + \frac{v_1 - E}{R} + \frac{v_1 - v_2}{R} = 0$$

$$g_2(\hat{v}_2) - g_2'(\hat{v}_2)\hat{v}_2 + g_2'(\hat{v}_2)v_2 + \frac{v_2 - v_1}{R} = 0$$

describes a linear resistive circuit

$$\hat{I}_1 = g_1(\hat{v}_1) - g'_1(\hat{v}_1)\hat{v}_1, \qquad \hat{R}_1 = 1/g'_1(\hat{v}_1)$$

$$\hat{I}_2 = g_2(\hat{v}_2) - g_2'(\hat{v}_2)\hat{v}_2, \qquad \hat{R}_2 = 1/g_2'(\hat{v}_2)$$

Relation to Gauss-Newton method

recall Gauss-Newton method for nonlinear least squares problem

minimize
$$||f(x)||^2$$

where f is a differentiable function from ${f R}^n$ to ${f R}^m$

Gauss-Newton update

$$x^{(k+1)} = x^{(k)} - \left(Df(x^{(k)})^T Df(x^{(k)})\right)^{-1} Df(x^{(k)})^T f(x^{(k)})$$

ullet if m=n, then Df(x) is square and this is the Newton update

$$x^{(k+1)} = x^{(k)} - Df(x^{(k)})^{-1}f(x^{(k)})$$

Newton method applied to

$$f(x) = e^x - e^{-x}, \qquad x^{(1)} = 10$$

$$f(x) = e^x - e^{-x} - 3x$$

- starting point $x^{(1)} = -1$: converges to $x^* = -1.62$
- starting point $x^{(1)} = -0.8$: converges to $x^* = 1.62$
- starting point $x^{(1)} = -0.7$: converges to $x^* = 0$

converges to a different solution depending on the starting point

$$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

- starting point $x^{(1)} = 0.9$: converges very rapidly to $x^* = 0$
- starting point $x^{(1)} = 1.1$: does not converge

$$f_1(x_1, x_2) = \log(x_1^2 + 2x_2^2 + 1) - 0.5 = 0$$

 $f_2(x_1, x_2) = x_2 - x_1^2 + 0.2 = 0$

two equations in two variables; two solutions (0.70, 0.29), (-0.70, 0.29)

Newton iteration

• evaluate g = f(x) and

$$H = Df(x) = \begin{bmatrix} 2x_1/(x_1^2 + 2x_2^2 + 1) & 4x_2/(x_1^2 + 2x_2^2 + 1) \\ -2x_1 & 1 \end{bmatrix}$$

- solve Hv = -g (two linear equations in two variables)
- update x := x + v

Results

- $x^{(1)} = (1,1)$: converges to $x^* = (0.70, 0.29)$ in about 4 iterations
- $x^{(1)}=(-1,1)$: converges to $x^\star=(-0.70,0.29)$ in about 4 iterations
- $x^{(1)} = (1, -1)$ or $x^{(0)} = (-1, -1)$: does not converge

Observations

- Newton's method works very well if started near a solution
- may not work at all otherwise
- can converge to different solutions depending on the starting point
- does not necessarily find the solution closest to the starting point

Convergence of Newton's method

if $f(x^\star)=0$ and $Df(x^\star)$ is nonsingular, and $x^{(1)}$ is sufficiently close to x^\star , then

$$x^{(k)} \to x^*, \qquad \|x^{(k+1)} - x^*\| \le c \|x^{(k)} - x^*\|^2$$

for some c > 0

- this is called quadratic convergence
- explains fast convergence when started near solution
- ullet in practice, we don't know what c is, or how close $x^{(1)}$ has to be

Outline

- Newton's method for sets of nonlinear equations
- damped Newton for unconstrained minimization
- Newton method for nonlinear least squares

Unconstrained minimization problem

minimize
$$g(x_1, x_2, \dots, x_n)$$

g is a function from \mathbf{R}^n to \mathbf{R}

- $x = (x_1, x_2, \dots, x_n)$ is n-vector of optimization *variables*
- g(x) is the cost function or objective function
- ullet to solve a maximization problem (*i.e.*, maximize g(x)), minimize -g(x)
- we will assume that g is twice differentiable

Local and global optimum

• x^* is an *optimal point* (or a *minimum*) if

$$g(x^{\star}) \leq g(x)$$
 for all x

also called *globally* optimal

• x^* is a locally optimal point (local minimum) if for some R>0

$$g(x^\star) \leq g(x) \quad \text{ for all } x \text{ with } \|x - x^\star\| \leq R$$

Example

y is locally optimal

z is (globally) optimal

Gradient and Hessian

Gradient of $g: \mathbf{R}^n \to \mathbf{R}$ at $z \in \mathbf{R}^n$ is the n-vector

$$\nabla g(z) = \left(\frac{\partial g}{\partial x_1}(z), \frac{\partial g}{\partial x_2}(z), \dots, \frac{\partial g}{\partial x_n}(z)\right)$$

Hessian of g at z: a symmetric $n \times n$ matrix $\nabla^2 g(z)$ with elements

$$\nabla^2 g(z)_{ij} = \frac{\partial^2 g}{\partial x_i \partial x_j}(z)$$

this is also the derivative matrix Df(z) of $f(x) = \nabla g(x)$ at z

Quadratic (second order) approximation of g around z:

$$g_{\mathbf{q}}(x) = g(z) + \nabla g(z)^{T}(x-z) + \frac{1}{2}(x-z)^{T}\nabla^{2}g(z)(x-z)$$

Affine function: $g(x) = a^T x + b$

$$\nabla g(x) = a, \qquad \nabla^2 g(x) = 0$$

Quadratic function: $g(x) = x^T P x + q^T x + r$ with P symmetric

$$\nabla g(x) = 2Px + q, \qquad \nabla^2 g(x) = 2P$$

Least squares cost: $g(x) = ||Ax - b||^2 = x^T A^T A x - 2b^T A x + b^T b$

$$\nabla g(x) = 2A^T A x - 2A^T b, \qquad \nabla^2 g(x) = 2A^T A$$

Properties

Linear combination: if $g(x) = \alpha_1 g_1(x) + \alpha_2 g_2(x)$, then

$$\nabla g(x) = \alpha_1 \nabla g_1(x) + \alpha_2 \nabla g_2(x)$$

$$\nabla^2 g(x) = \alpha_1 \nabla^2 g_1(x) + \alpha_2 \nabla^2 g_2(x)$$

Composition with affine mapping: if g(x) = h(Cx + d), then

$$\nabla g(x) = C^T \nabla h(Cx + d)$$

$$\nabla^2 g(x) = C^T \nabla^2 h(Cx + d)C$$

$$g(x_1, x_2) = e^{x_1 + x_2 - 1} + e^{x_1 - x_2 - 1} + e^{-x_1 - 1}$$

Gradient

$$\nabla g(x) = \begin{bmatrix} e^{x_1 + x_2 - 1} + e^{x_1 - x_2 - 1} - e^{-x_1 - 1} \\ e^{x_1 + x_2 - 1} - e^{x_1 - x_2 - 1} \end{bmatrix}$$

Hessian

$$\nabla^2 g(x) = \begin{bmatrix} e^{x_1 + x_2 - 1} + e^{x_1 - x_2 - 1} + e^{-x_1 - 1} & e^{x_1 + x_2 - 1} - e^{x_1 - x_2 - 1} \\ e^{x_1 + x_2 - 1} - e^{x_1 - x_2 - 1} & e^{x_1 + x_2 - 1} + e^{x_1 - x_2 - 1} \end{bmatrix}$$

Gradient and Hessian via composition property

express g as g(x) = h(Cx + d) with $h(y_1, y_2, y_3) = e^{y_1} + e^{y_2} + e^{y_3}$ and

$$C = \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ -1 & 0 \end{bmatrix}, \qquad d = \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix}$$

Gradient: $\nabla g(x) = C^T \nabla h(Cx + d)$

$$\nabla g(x) = \begin{bmatrix} 1 & 1 & -1 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} e^{x_1 + x_2 - 1} \\ e^{x_1 - x_2 - 1} \\ e^{-x_1 - 1} \end{bmatrix}$$

Hessian: $\nabla^2 g(x) = C^T \nabla h^2 (Cx + d) C$

$$\nabla^2 g(x) = \begin{bmatrix} 1 & 1 & -1 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} e^{x_1 + x_2 - 1} & 0 & 0 \\ 0 & e^{x_1 - x_2 - 1} & 0 \\ 0 & 0 & e^{-x_1 - 1} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ -1 & 0 \end{bmatrix}$$

Optimality conditions for twice differentiable g

Necessary condition: if x^* is locally optimal, then

$$\nabla g(x^\star) = 0$$
 and $\nabla^2 g(x^\star)$ is positive semidefinite

Sufficient condition: if x^* satisfies

$$\nabla g(x^\star) = 0$$
 and $\nabla^2 g(x^\star)$ is positive definite

then x^{\star} is locally optimal

Necessary and sufficient condition for convex functions

- $\bullet \ g$ is called $\mbox{\it convex}$ if $\nabla^2 g(x)$ is positive semidefinite everywhere
- if g is convex then x^\star is optimal if and only if $\nabla g(x^\star) = 0$

Examples (n=1)

 $\bullet \ g(x) = \log(e^x + e^{-x})$

$$g'(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}, \qquad g''(x) = \frac{4}{(e^x + e^{-x})^2}$$

 $g''(x) \ge 0$ everywhere; $x^* = 0$ is the unique optimal point

•
$$g(x) = x^4$$

 $g'(x) = 4x^3, g''(x) = 12x^2$

 $g''(x) \ge 0$ everywhere; $x^* = 0$ is the unique optimal point

•
$$g(x) = x^3$$
 $g'(x) = 3x^2$, $g''(x) = 6x$

g'(0) = 0, g''(0) = 0 but x = 0 is not locally optimal

• $g(x) = x^T P x + q^T x + r$ (P is symmetric positive definite)

$$\nabla g(x) = 2Px + q, \qquad \nabla^2 g(x) = 2P$$

 $abla^2 g(x)$ is positive definite everywhere, hence the unique optimal point is

$$x^* = -(1/2)P^{-1}q$$

• $g(x) = ||Ax - b||^2$ (A is a matrix with linearly independent columns)

$$\nabla g(x) = 2A^T A x - 2A^T b, \qquad \nabla^2 g(x) = 2A^T A$$

 $abla^2 g(x)$ is positive definite everywhere, hence the unique optimal point is

$$x^* = (A^T A)^{-1} A^T b$$

example of page 14-22: we can express $\nabla^2 g(x)$ as

$$\nabla^2 g(x) = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} e^{x_1 + x_2 - 1} & 0 & 0 \\ 0 & e^{x_1 - x_2 - 1} & 0 \\ 0 & 0 & e^{-x_1 - 1} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 0 \end{bmatrix}$$

this shows that $\nabla^2 g(x)$ is positive definite for all x

therefore x^{\star} is optimal if and only if

$$\nabla g(x^*) = \begin{bmatrix} e^{x_1^* + x_2^* - 1} + e^{x_1^* - x_2^* - 1} - e^{-x_1^* - 1} \\ e^{x_1^* + x_2^* - 1} - e^{x_1^* - x_2^* - 1} \end{bmatrix} = 0$$

two nonlinear equations in two variables

Newton's method for minimizing a convex function

if $abla^2 g(x)$ is positive definite everywhere, we can minimize g(x) by solving

$$\nabla g(x) = 0$$

Algorithm: choose $x^{(1)}$ and repeat for $k=1,2,\ldots$

$$x^{(k+1)} = x^{(k)} - \nabla^2 g(x^{(k)})^{-1} \nabla g(x^{(k)})$$

- $v = -\nabla^2 g(x)^{-1} \nabla g(x)$ is called the *Newton step* at x
- converges if started sufficiently close to the solution
- Newton step computed by a Cholesky factorization of the Hessian

Interpretations of Newton step

Affine approximation of gradient

• affine approximation of $f(x) = \nabla g(x)$ around $x^{(k)}$ is

$$\hat{f}(x; x^{(k)}) = \nabla g(x^{(k)}) + \nabla^2 g(x^{(k)})(x - x^{(k)})$$

• Newton update $x^{(k+1)}$ is solution of linear equation $\hat{f}(x;x^{(k)})=0$

Quadratic approximation of function

ullet quadratic approximation of g(x) around $x^{(k)}$ is

$$g_{\mathbf{q}}(x; x^{(k)}) = g(x^{(k)}) + \nabla g(x^{(k)})^{T} (x - x^{(k)}) + \frac{1}{2} (x - x^{(k)})^{T} \nabla^{2} g(x^{(k)}) (x - x^{(k)})$$

• Newton update $x^{(k+1)}$ minimizes $g_{\mathbf{q}}(x;x^{(k)})$ (satisfies $\nabla g_{\mathbf{q}}(x;x^{(k)})=0$)

Example (n=1)

$$g_{\mathbf{q}}'(x;x^{(k)}) = \hat{f}(x;x^{(k)})$$

$$g_{\mathbf{q}}(x; x^{(k)}) = g(x^{(k)}) + g'(x^{(k)})(x - x^{(k)}) + \frac{g''(x^{(k)})}{2}(x - x^{(k)})^2$$

$$g(x) = \log(e^x + e^{-x}), \qquad g'(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}, \qquad g''(x) = \frac{4}{(e^x + e^{-x})^2}$$

does not converge when started at $x^{\left(1\right)}=1.15$

Damped Newton method

- use damped update $x^{(k+1)} = x^{(k)} t \nabla^2 g(x^{(k)})^{-1} \nabla g(x^{(k)})$
- $\bullet \ \ \text{choose} \ t \ \text{so that} \ g(x^{(k+1)}) < g(x^{(k)})$

Algorithm: choose $x^{(1)}$ and repeat for k = 1, 2, ...

- 1. compute Newton step $v = -\nabla^2 g(x^{(k)})^{-1} \nabla g(x^{(k)})$
- 2. find largest t in $\{1, 0.5, 0.5^2, 0.5^3, \ldots\}$ that satisfies

$$g(x^{(k)} + tv) \le g(x^{(k)}) + \alpha t \nabla g(x^{(k)})^T v$$

and take $x^{(k+1)} = x^{(k)} + tv$

- α is an algorithm parameter (small and positive, *e.g.*, $\alpha = 0.01$)
- t is called the step size; step 2 in algorithm is called line search

Interpretation of line search

to determine a suitable step size, consider the function $h: \mathbf{R} \to \mathbf{R}$

$$h(t) = g(x^{(k)} + tv)$$

 $x^{(k)}$ is the current iterate; v is the Newton step at $x^{(k)}$

- $h'(0) = \nabla g(x^{(k)})^T v$ is the *directional derivative* of g at $x^{(k)}$ in direction v
- affine approximation of h at t=0 is

$$\hat{h}(t) = h(0) + h'(0)t = g(x^{(k)}) + t\nabla g(x^{(k)})^T v$$

• condition $g(x^{(k)}+tv) \leq g(x^{(k)}) + \alpha t \nabla g(x^{(k)})^T v$ means that t is accepted if

$$h(t) - h(0) \le \alpha(\hat{h}(t) - h(0))$$

actual decrease h(t)-h(0) is at least α times what is expected based on \hat{h}

Interpretation of line search

start with t=1; divide t by two until $h(t) \leq h(0) + \alpha h'(0) t$

- works if $h'(0) = \nabla g(x)^T v < 0$ (v is a descent direction)
- ullet if $abla^2 g(x^{(k)})$ is positive definite, the Newton step is a descent direction

$$h'(0) = \nabla g(x^{(k)})^T v = v^T \nabla^2 g(x^{(k)}) v < 0$$

$$g(x) = \log(e^x + e^{-x}), \qquad x^{(0)} = 4$$

close to the solution: very fast convergence, no backtracking steps

example of page 14-22

$$g(x_1, x_2) = e^{x_1 + x_2 - 1} + e^{x_1 - x_2 - 1} + e^{-x_1 - 1}$$

damped Newton method started at $x=\left(-2,2\right)$

Newton method for nonconvex functions

if $\nabla^2 g(x^{(k)})$ is not positive definite, it is possible that Newton step v satisfies

$$\nabla g(x^{(k)})^T v = -\nabla g(x^{(k)})^T \nabla^2 g(x^{(k)})^{-1} \nabla g(x^{(k)}) > 0$$

- if Newton step is not descent direction, replace it with descent direction
- simplest choice is $v = -\nabla g(x^{(k)})$; practical methods make other choices

Outline

- Newton's method for sets of nonlinear equations
- damped Newton for unconstrained minimization
- Newton method for nonlinear least squares

Hessian of nonlinear least squares cost

$$g(x) = ||f(x)||^2 = \sum_{i=1}^{m} f_i(x)^2$$

• gradient (from page 13-14):

$$\nabla g(x) = 2\sum_{i=1}^{m} f_i(x)\nabla f_i(x) = 2Df(x)^T f(x)$$

second derivatives:

$$\frac{\partial^2 g}{\partial x_j \partial x_k}(x) = 2 \sum_{i=1}^m \left(\frac{\partial f_i}{\partial x_j}(x) \frac{\partial f_i}{\partial x_k}(x) + f_i(x) \frac{\partial^2 f_i}{\partial x_j \partial x_k}(x) \right)$$

Hessian

$$\nabla^{2} g(x) = 2D f(x)^{T} D f(x) + 2 \sum_{i=1}^{m} f_{i}(x) \nabla^{2} f_{i}(x)$$

Newton and Gauss-Newton steps

(Undamped) Newton step at $x = x^{(k)}$:

$$v_{\text{nt}} = -\nabla^{2} g(x)^{-1} \nabla g(x)$$

$$= -\left(Df(x)^{T} Df(x) + \sum_{i=1}^{m} f_{i}(x) \nabla^{2} f_{i}(x)\right)^{-1} Df(x)^{T} f(x)$$

Gauss-Newton step at $x = x^{(k)}$ (from pages 13-17):

$$v_{\rm gn} = -\left(Df(x)^T Df(x)\right)^{-1} Df(x)^T f(x)$$

- \bullet can be written as $v_{\rm gn}=-H_{\rm gn}^{-1}\nabla g(x)$ where $H_{\rm gn}=2Df(x)^TDf(x)$
- $H_{\rm gn}$ is the Hessian without the term $\sum_i f_i(x) \nabla^2 f_i(x)$

Comparison

Newton step

- requires second derivatives of f
- ullet not always a descent direction ($abla^2 g(x)$ not necessarily positive definite)
- fast convergence near local minimum

Gauss-Newton step

- does not require second derivatives
- ullet a descent direction (if columns of Df(x) are linearly independent):

$$\nabla g(x)^T v_{\rm gn} = -2v_{\rm gn}^T Df(x)^T Df(x) v_{\rm gn} < 0 \quad \text{if } v_{\rm gn} \neq 0$$

• local convergence to x^* is similar to Newton method if

$$\sum_{i=1}^{m} f_i(x^*) \nabla^2 f_i(x^*)$$

is small (e.g., $f(x^*)$ is small, or f is nearly affine around x^*)