CS3102 Theory of Computation

www.cs.virginia.edu/~njb2b/cstheory/s2020

Warm up:

Recall:

• ACCEPTS(w, x) = 1 if w (as a TM description, call it $\mathcal{M}(w)$) accepts x, 0 otherwise

Why would *ACCEPTS* be a useful function to implement?

Last Time

- An uncomputable problem
 - -ACCEPTS(w,x) = 1 if w (as a TM description, call it $\mathcal{M}(w)$) accepts x, 0 otherwise
 - First attempt to solve:
 - Try running $\mathcal{M}(w)$, see what happens
 - Challenge: $\mathcal{M}(w)$ could not accept for two reasons
 - $\mathcal{M}(w)$ halts and returns 0
 - $\mathcal{M}(w)$ runs forever (how long do we wait to see?)

Proving ACCEPTS is uncomputable

- Proof by contradiction:
 - Assume (toward contradiction) that there is an alwayshalting Turing machine to compute ACCEPTS
 - Show that we could use that Turing machine to build an impossible Turing machine
- What's the impossible machine?
 - SelfReject = The set of all Turing machine descriptions that don't accept themselves
 - $-x \in SelfReject$ if and only if $(\mathcal{M}(x))(x) = 0$

Using ACCEPTS to build Self Reject

Assume we have M_{acc} which computes ACCEPTS:

We could then build M_{sr} which computes SelfReject like this:

Can M_{SR} exist?

- Let w_{SR} be the description of M_{SR}
 - $-\mathcal{M}(w_{SR})=M_{SR}$
- What should be $M_{SR}(w_{SR})$?
 - If $M_{SR}(w_{SR}) = 1$:
 - Since M_{SR} computes SelfReject we conclude that w_{SR} is rejected by whatever machine it describes.
 - Since w_{SR} describes M_{SR} , it must have been that $M_{SR}(w_{SR}) = 0$
 - If $M_{SR}(w_{SR}) = 0$:
 - Since M_{SR} computes SelfReject we conclude that w_{SR} is accepted by whatever machine it describes.
 - Since w_{Sr} describes M_{SR} , it must have been that $M_{SR}(w_{SR})=1$
 - There's no answer that makes sense!
- Conclusion: M_{SR} can't be an always-halting Turing machine, so M_{acc} can't exist

How to show things aren't computable

- 1. Ask "can I have an always-halting Turing machine M_p for language/function/problem P?"
- 2. Show that, if M_p exists, it can be used to make an impossible machine M_{imp}

How do we know a machine is impossible?

Option 1: It contradicts itself (e.g. M_{SR})

Option 2: Someone has done this before (e.g. M_{acc})

Proving Other Problems are Uncomputable

- Reduction
 - Convert some problem into a known uncomputable one (using only computable steps)

Proof by Reduction

Shows how two different problems relate to each other

Reduction Proofs

The name "reduces" is confusing: it is in the opposite direction of the making

Proof of Impossibility by Reduction

- 1. X isn't possible (e.g., X = some way to open the door)
- 2. Assume Y is possible(Y = some way to light a fire)

3. Show how to use *Y* to perform *X*.

4. X isn't possible, but Y could be used to perform X conclusion: Y must not be possible either

Proof of Impossibility by Reduction

1. Take X that does not exist.

e.g., X = Some TM that computes ACCEPTS

2. Assume *Y* exists.

Y =Some TM that computes B

3. Show how to use *Y* to perform *X*.

- 4. X doesn't exist, but Y could be used to make X
 - conclusion: Y must not exist either, so B is impossible

MacGyver's Reduction

Problem **know** is impossible

Opening a door

Solution for AKeg cannon battering ram

Problem we **think** is impossible

Solution for **B** Alcohol, wood, matches

手

Converse?

Does this mean B is equally as hard as A? A = B

No!

Solving *Y* is only one way to solve *X* There may be an easier way

Common Reduction Traps

- Be careful: the direction matters a great deal
 - Using a solver for B to solve A shows A is not harder than B

```
\underline{A} Reduces to \underline{B}
```

- The transformation must use only things you can do:
 - Otherwise it may be that B exists, but some other step doesn't!
 - Example:
 - A witch/wizard could open the door by waving a wand and casting a magic spell
 - MacGyver can't do magic, and is in a room that cannot be opened
 - Can we conclude that MacGyver can't wave a wand?

What "Can Do" Means

- Tools used in a reduction are limited by what you are proving
- Undecidability:
 - You are proving something about all TMs:
 - The transformation "can do" things a terminating TM "can do"

Spoiler alert!

- Complexity:
 - You are proving something about time required:
 - The time it takes to do the transformation is limited

Example

•
$$HALT(w, x) = \begin{cases} 1 \text{ if } \mathcal{M}(w)(x) \text{ halts} \\ 0 \text{ if } \mathcal{M}(w)(x) \text{ runs forever} \end{cases}$$

- Does the machine halt on this input?
- To show *HALT* is uncomputable:
 - Show how to use a TM for HALT to solve an uncomputable problem
 - Show $HALT \ge ACCEPTS$
 - Show ACCEPTS reduces to HALT

HALT Reduction

Problem **know** is impossible

ACCEPTS

Does $\mathcal{M}(w)$ accept x?

 M_{acc} computes ACCEPT

Using *HALT* to build *ACCEPTS*

Assume we have M_{HALT} which computes HALT:

We could then build M_{acc} which computes ACCEPTS

HALT Reduction

Problem **know** is impossible

ACCEPTS

Does $\mathcal{M}(w)$ accept x?

 M_{acc} computes ACCEPT

Problem we **think** is impossible

 M_{halt} computes HALT

Conclusion

- ACCEPTS is not computable
- If HALT was computable, an implementation could be used to compute ACCEPTS
- So it must be that HALT is not computable

Example: FINITE

•
$$FINITE(w) = \begin{cases} 1 \text{ if } L(\mathcal{M}(w)) \text{ is finite} \\ 0 \text{ if } L(\mathcal{M}(w)) \text{ is infinite} \end{cases}$$

- To show *FINITE* is uncomputable
 - Show how to use a TM for FINITE to solve HALT
 - $FINITE \ge HALT$
 - HALT reduces to FINITE

FINITE Reduction

Problem **know** is impossible

 \overbrace{A}

HALT

Does $\mathcal{M}(w)$ halt on input x?

 M_{HALT} computes HALT

Using *HALT* to build *ACCEPTS*

Assume we have M_{FINITE} which computes FINITE:

We could then build M_{HALT} which computes HALT like this:

What's the Language of M_{wx} ?

- If $\mathcal{M}(w)(x)$ halts:
 - $-M_{wx}$ always returns 1
 - $-L(M_{wx}) = \Sigma^*$
 - $-L(M_{wx})$ is infinite
- If $\mathcal{M}(w)(x)$ doesn't halt:
 - $-M_{wx}$ gets "stuck" in step 1 and never returns
 - $-L(M_{wx}) = \emptyset$
 - $-|L(M_{wx})|=0$

Build this machine: M_{wx} :

- 1) run $\mathcal{M}(w)(x)$
- 2) return 1

FINITE Reduction

Problem **know** is impossible

 \overbrace{A}

HALT

Does $\mathcal{M}(w)$ halt on input x?

 M_{HALT} computes HALT

