离散数学-作业1 命题逻辑

Problem 1

构造复合命题 $(p \to q) \land (\neg p \to r)$ 的真值表。

答案: 真值表需要 $2^3 = 8$ 行。如下:

p	q	r	$\neg p$	$p \rightarrow q$	$\neg p \to r$	$(p \to q) \land (\neg p \to r)$
Т	Т	Τ	$\overline{\mathbf{F}}$	Т	T	T
Τ	${\bf T}$	F	\mathbf{F}	${ m T}$	${ m T}$	${ m T}$
Τ	F	\mathbf{T}	\mathbf{F}	\mathbf{F}	${ m T}$	\mathbf{F}
Τ	F	\mathbf{F}	\mathbf{F}	\mathbf{F}	${ m T}$	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{T}	${f T}$	${ m T}$	${ m T}$	T
\mathbf{F}	\mathbf{T}	\mathbf{F}	${f T}$	${ m T}$	F	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{T}	${f T}$	${ m T}$	${ m T}$	T
F	\mathbf{F}	F	${ m T}$	${ m T}$	F	F

来源: P.15 problem 37

Problem 2

令p、q、r为如下命题:

- · p: 在这个地区发现过灰熊。
- · q: 在乡间小路上徒步旅行是安全的。
- · r: 乡间小路两旁的草莓成熟了。

试用p、q、r和逻辑连接词(包括否定)写出以下命题:

- 1. 乡间小路两旁的草莓成熟了, 但在这个地区没有发现过灰熊。
- 2. 在这个地区没有发现过灰熊,且在乡间小路上徒步旅行是安全的,但乡间小路两旁的草莓成熟了。
- 3. 如果乡间小路两旁的草莓成熟了, 徒步旅行是安全的当且仅当在这个地区没有发现过灰熊。
- 4. 在乡间小路上徒步旅行是不安全的, 但在这个地区没有发现过灰熊且小路两旁的草莓成熟了。
- 5. 为了使在乡间小路上旅行很安全, 其必要但非充分条件是乡间小路两旁的草莓没有成熟且在这个地区没

有发现过灰熊。

6. 无论何时在这个地区发现过灰熊且乡间小路两旁的草莓成熟了, 在乡间小路上徒步旅行就不安全。

答案:

- 1.r∧¬p
- $2.(\neg p \land q) \land r$
- $3.r \rightarrow (q \leftrightarrow \neg p)$
- $4.\neg q \land (\neg p \land r)$
- $5.q \rightarrow (\neg r \land \neg p)$
- $6.(p \land r) \rightarrow \neg q$

Problem 3

下列各命题的否定是什么?

- 1. Jennifer 和 Teja 是朋友。
- 2. 面包师说的"一打"有13个。
- 3. Abby 每天发送 100 多条短信。
- 4.121 是一个完全平方数。

答案:

- 1 Jennifer 和 Teja 不是朋友
- 2 面包师说的"一打"没有 13 个
- 3 Abby 至少有一天没发送 100 多条短信
- 4 121 不是一个完全平方数

Problem 4

判断下列这些条件语句是真是假:

- a) 2+2=5 当且仅当1+1=3。
- c) $\mu = 1 + 1 = 3$, $\mu = 1 + 2 = 5$.

- b) m + 1 = 2, m + 2 = 5.
- d) 如果0 > 1,则2 > 1。

答案:

- a) 假↔假=真
- c) 假→假=真

- b) 真→假=假
- d) 假→真=真

Problem 5

试用真值表验证德·摩根第二定律 $\neg(p \lor q) \equiv \neg p \land \neg q$ 。

答案: 真值表如下,可见第四列和第七列是一样的。

p	q	$p\vee q$	$\neg(p\vee q)$	$\neg p$	$\neg q$	$\neg p \wedge \neg q$
\mathbf{T}	Τ	${ m T}$	F	F	F	F
${\bf T}$	F	${ m T}$	F	F	${ m T}$	F
F	\mathbf{T}	${ m T}$	F	${ m T}$	F	F
\mathbf{F}	\mathbf{F}	\mathbf{F}	${ m T}$	${ m T}$	${ m T}$	${ m T}$

Problem 6

将下列命题符号化,判断其是否正确,并证明你的结论:如果 TA 是理科学生,TA 必学好数学。如果 TA 不是文科学生,TA 必是理科学生。TA 没学好数学。所以 TA 是文科学生。

答案:

解: 假设 TA 是理科学生为 p, TA 是文科学生为 q, TA 学好数学为 r

则第一个命题为 p→r, 第二个为 ¬q→p, 第三个命题为 ¬r 求证: q

正确, 证明见下

1.p→r 前提

2.¬r 前提

3.¬p 1,2 取拒式

4.¬q→p 前提

5.¬¬q 3, 4 取拒式

6.q 5 双重否定律

Problem 7

解: 设这是铁为 p, 这是铜为 q, 这是锡为 r

则甲: ¬p∧¬q

Z: ¬p∧r

丙: ¬r∧p

显然 $(\neg r \land q) \land (\neg q \land r) \equiv T$

故乙与丙必然一人全对一人全错,则甲此时说对一半说错一半。

假设 ¬p = T, 则 q = T, 与乙与丙必然一人全对一人全错矛盾

假设 $\neg q = T$,则 p = T,此时丙全对乙全错符合题意。

综上, 甲说对一半说错一半, 乙全错, 丙全对, 这是铁。

Problem 8

α	$\alpha \beta \gamma \alpha \wedge (\beta \wedge \gamma)$		$\neg \beta \land \neg \gamma \neg \alpha \land (\neg \beta \land \neg \gamma)$		$(\alpha \wedge (\beta \wedge \gamma)) \vee (\neg \alpha \wedge (\neg \beta \wedge \neg \gamma))$	$\beta \leftrightarrow \gamma$	$\alpha \leftrightarrow (\beta \leftrightarrow \gamma)$	
1	0	0	0	1	0	0	1	1
0	1	0	0	0	0	0	0	1
1	1	0	0	0	0	0	0	0
0	0	0	0	1	1	1	1	0
1	0	1	0	0	0	0	0	0
0	1	1	0	0	0	0	1	0
1	1	1	1	0	0	1	1	1
0	0	1	0	0	0	0	0	1

记 $\alpha \leftrightarrow (\beta \leftrightarrow \gamma)$ 和 $(\alpha \land (\beta \land \gamma)) \lor (\neg \alpha \land (\neg \beta \land \neg \gamma))$ 分别为 p、q。由真值表可知, $p \to q$ 和 $q \to p$ 并不恒为 T,所以两个公式互不重言蕴含。

Problem 9

1. $\alpha \models \beta \Leftrightarrow \alpha \to \beta$ 为永真式,即 $\models \alpha \to \beta$ 所以 1、2 等价

$$2. \models \alpha \to \beta \equiv \models \neg \alpha \lor \beta$$

3.

$$\alpha \to (\alpha \land \beta) \equiv \neg \alpha \lor (\alpha \land \beta)$$

$$\equiv (\neg \alpha \vee \alpha) \wedge (\neg \alpha \vee \beta)$$

 $\equiv \neg \alpha \lor \beta$

 $\equiv \alpha \rightarrow \beta$ 所以, 即 3 与 2 等价

 $4. \models (\alpha \lor \beta) \to \beta \equiv \neg(\alpha \lor \beta) \lor \beta \equiv (\neg\alpha \land \neg\beta) \lor \beta \equiv (\neg\alpha \lor \beta) \land (\neg\beta \lor \beta) \equiv \neg\alpha \lor \beta \equiv \alpha \to \beta \quad \text{所以 4}$ 和 3 等价

即 1、2、3、4 四个命题等价

Problem 10

 $1.\alpha$ assumption

 $2.\beta$ assumption

 $3.\beta \rightarrow \alpha \rightarrow i \ 2.1$

 $4.\alpha \rightarrow (\beta \rightarrow \alpha) \rightarrow i 1.3$

_.

 $1.\alpha \to (\beta \to \gamma)$ assumption

 $2.\alpha \qquad {\rm assumption}$

 $3.\beta \rightarrow \gamma$ 假言推理 1,2

 $4.\beta$ assumption

5.γ 假言推理 3,4

 $6.\alpha \rightarrow \beta \rightarrow i \ 2.4$

 $7.\alpha \rightarrow \gamma$ 假言三段论 3.6

 $8.(\alpha \to \beta) \to (\alpha \to \gamma) \to i 6.7$

 $9.(\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma)) \qquad \to i \ 1.8$

Ξ.

 $1.\neg \beta \rightarrow \neg \alpha$ assumption

 $2.\neg\beta$ assumption

3.¬α 假言推理 1,2

 $4.\neg(\neg\beta \to \alpha)$ 用 2,3

 $5.(\neg \beta \to \alpha) \to \beta$ \mathbb{H} 4

 $6.(\neg \beta \to \neg \alpha) \to ((\neg \beta \to \alpha) \to \beta)$ $\to i 1,5$