```
In [16]: # import required libraries
import pandas as pd
import numpy as np
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
```

In [25]: dataset

\sim		「つにて	١.
U	uι	IZЭI	

_		class	alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	total_phenols	flavanoids	n
	0	1	14.23	1.71	2.43	15.6	127	2.80	3.06	
	1	1	13.20	1.78	2.14	11.2	100	2.65	2.76	
	2	1	13.16	2.36	2.67	18.6	101	2.80	3.24	
	3	1	14.37	1.95	2.50	16.8	113	3.85	3.49	
	4	1	13.24	2.59	2.87	21.0	118	2.80	2.69	
	173	3	13.71	5.65	2.45	20.5	95	1.68	0.61	
	174	3	13.40	3.91	2.48	23.0	102	1.80	0.75	
	175	3	13.27	4.28	2.26	20.0	120	1.59	0.69	
	176	3	13.17	2.59	2.37	20.0	120	1.65	0.68	
	177	3	14.13	4.10	2.74	24.5	96	2.05	0.76	

178 rows × 14 columns

In [26]: eigenvalues = pca.explained_variance_
print("Eigenvalues of the retained principal components:\n", eigenvalues)

Eigenvalues of the retained principal components: [4.73243698 2.51108093 1.45424187 0.92416587 0.85804868 0.64528221 0.55414147 0.35046627]

In [27]: sum(eigenvalues)

Out[27]: 12.029864272097052

```
(eigenvalues[0]+eigenvalues[1]+eigenvalues[2]+eigenvalues[3]+eigenvalues[4])/s
In [28]:
Out[28]: 0.8711631387849638
In [29]:
         # apply PCA
         pca = PCA(n_components=4)
         principalComponents = pca.fit_transform(x)
         principalDf = pd.DataFrame(data = principalComponents, columns = ['PC1', 'PC2'
         # combine the transformed data with class labels
         finalDf = pd.concat([principalDf, dataset[['class']]], axis=1)
         # print the transformed dataset
         print("Transformed dataset with 4 principal components:\n", finalDf.head())
         Transformed dataset with 4 principal components:
                            PC2
                                      PC3
                                                PC4 class
                  PC1
            3.316751 -1.443463 -0.165739 -0.215631
           2.209465 0.333393 -2.026457 -0.291358
         2 2.516740 -1.031151 0.982819 0.724902
                                                        1
         3 3.757066 -2.756372 -0.176192 0.567983
                                                        1
           1.008908 -0.869831 2.026688 -0.409766
                                                        1
```

In [30]:

```
# plot the principal components
plt.figure(figsize=(8,6))
plt.scatter(principalDf['PC1'], principalDf['PC2'], c=dataset['class'], cmap='
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.title('Wine Dataset - Principal Component Analysis')
plt.show()
```


In []: