

FACULTAD DE INGENIERÍA

MARZO 2024-AGOSTO 2024

NOMBRE DE LA ASIGNATURA CÓDIGO: 1933				
SISTEMAS Y PROCESOS ESTOCÁSTICOS - GRUPO: 1				
CARRERA	TELECOMUNICACIONES			
CICLO O SEMESTRE	SEXTO NIVEL	EJE DE FORMACIÓN	PROFESIONALES, FUND	AMENTOS
CRÉDITOS DE LA ASIGNATURA	2	MODALIDAD:	PRESENCIAL	

CARGA HORARIA

COMPONENTES DEL APRENDIZAJE	Horas / Semana	Horas / Periodo Académico
APRENDIZAJE EN CONTACTO CON EL DOCENTE (ACD)	2.0	32.0
APRENDIZAJE PRÁCTICO EXPERIMENTAL - ASIGNATURA (APE/A)	2.0	32.0
APRENDIZAJE AUTÓNOMO (AA)	2.0	32.0
Total Horas:	6.0	96.0

PROFESOR(ES) RESPONSABLE(S):

SOLANO QUINDE LIZANDRO DAMIAN - (L.S.)	(lizandro.solano@ucuenca.edu.ec)	PRINCIPAL
--	------------------------------------	-----------

DESCRIPCIÓN DE LA ASIGNATURA:

Resumen descriptivo en torno al propósito, la estrategia metodológica y el contenido fundamental de la asignatura.

Muchos de los sistemas que se presentan en la Ingenieria evolucionan o varian en el tiempo, (o en funcion de otra variable), siendo necesario su caracterizacion, analisis y modelacion. Para un tiempo fijo t, un sistema o proceso es un fenomeno aleatorio que puede ser modelado mediante variables aleatorias, de tal forma que el proceso puede entenderse como una sucesion de variables aleatorias, cuya evolucion temporal tambien puede o no ser aleatoria. Desde el punto de vista de modelacion, un proceso estocastico se caracteriza por su funcion de densidad conjunta, de la cual se puede deducir tanto el comportamiento de las variables aleatorias para tiempos especificos como la correlacion entre las mismas (autocorrelacion). Esta asignatura esta orientada a identificar y caracterizar procesos estocasticos, con especial atencion a los procesos estacionarios. Ademas se estudia la respuesta de un sistema lineal a una entrada estocastica. Entre los procesos estocasticos comunes se estudiaran los procesos Gaussianos y su aplicación s diferentes problemas, particularmente los relacionados a los sistemas de comunicaciones. Como parte del analisis y caracterizacion de los procesos se estudiara su representacion espectral. Asímismo, se procedera a dar una introduccion a los Procesos de Poisson y las Cadenas de Markov en tiempo discreto.

REQUISITOS DE LA ASIGNATURA

Esta asignatura no tiene co-requisitos

PRE-REQUISITOS				
Asignatura	Código			
SISTEMAS LINEALES Y SEÑALES	19324			
PROBABILIDAD Y ESTADÍSTICA_IT	19305			

OBJETIVO(S) DE LA ASIGNATURA:

Objetivos general y específicos de la asignatura en relación al Perfil de salida de la carrera.

Objetivo general: Lograr un adecuado entendimiento de lo que son los procesos estocasticos, sus propiedades y los distintos planteamientos matematicos que permitan su aplicacion para modelacion y cadacterización de dichos procesos.

Objetivos específicos:

- 1. Caracterizar procesos estocasticos en tiempo discreto y contínuo.
- 2. Analizar procesos estocasticos en el dominio de la frecuencia.
- 3. Analizar la salida de Sistemas Lineales e Invariantes en el Tiempo (LTI) cuando se aplican entradas estocasticas.
- 4. Aplicar los conocimientos teoricos a varios tipos de procesos estocasticos.

LOGRO DE LOS RESULTADOS DE APRENDIZAJE, INDICADOR(ES) Y ESTRATEGIA(S) DE EVALUACIÓN

Resultados o Logros de Aprendizaje (RdA's) de la Unidad de Organización Curricular (UOC) correspondiente, Indicadores y Estrategias de Evaluación de la Asignatura, tomando como referencia el Perfil de salida (PdS) y la Organización Curricular (OC) del Proyecto de Carrera (PdC).

RESULTADOS O LOGROS DE APRENDIZAJE	INDICADORES	ESTRATEGIAS DE EVALUACIÓN
RdA1. Identificar y caracterizar procesos estocasticos y procesos estocasticos estacionarios	Identifica procesos estocasticos y los caracteriza mediante su esperanza matematica, varianza y funcion de autocorrelacion. Sobre esta base diferencia entre lo que son procesos estocasticos estacionarios en sentido estricto de procesos estocasticos estocasticos estocasticos en sentido amplio.	 Evaluacion a traves de resolucion de ejercicios y problemas de aplicación Generación de variables aleatorias y procesos estocásticos a través de simulaciones
RdA2. Caracterizar la salida de un Sistema Lineal e Invariante en el Tiempo (LTI) en funcion del proceso estacástico de entrada	Diferencia los sistemas invariantes en el tiempo de sistemas lineales y su combinacion sistemas lineales e invariantes en el tiempo (LTI) Caracteriza y determina la salida de Sistemas LTI en funcion del proceso estocastico en la entrada	 Evaluacion a traves de resolucion de ejercicios y problemas de aplicación Resolucion de Ejercicios en Casa
RdA3. Llevar al dominio espectral o de frecuencias un proceso estocastico para su analisis	Determina la Densidad Espectral de Potencia (PSD) de un proceso estocastico, como la Transformada de Fourier de su Funcion de Autocorrelacion Aplica los conceptos de Funcion de Autocorrelacion y su par Fourier, la Densidad Espectral de Potencia, a los sistemas lineales e invariantes en el tiempo.	 Evaluacion a traves de resolucion de ejercicios y problemas de aplicación Determinación del PSD de procesos estocásticos a través de simulaciones
RdA4. Identificar procesos Poisson y sus diferentes aplicaciones	Caracteriza un proceso Poisson simple, la suma de procesos Poisson, la seleccion aleatoria de puntos de un proceso Poisson, la seleccion sistematica de puntos y los procesos Poisson compuestos Asocia la distribucion del tiempo entre llegadas o salidas de un proceso Poisson con una variable exponencial	 Evaluación de conceptos fundamentales a través de ejercicios de aplicación Aplicación de conceptos en un problema de Ingeniería
RdA5. Conocer las cadenas de Markov en tiempo discreto y sus aplicaciones	Identifica las propiedades de una cadena de Markov, caracterizandola por su matriz de transicion de estados y su diagrama de transicion de estados Identifica procesos que pueden ser modelados como una cadena de Markov	 Evaluación de conceptos fundamentales a través de ejercicios de aplicación Aplicación de conceptos en un problema de Ingeniería

CONTENIDOS, SESIONES Y ACTIVIDADES DE APRENDIZAJE

Título de la Unidad, sub -unidades, nro. de sesión y actividades para los componentes de aprendizaje.

SUB-UNIDADES	Nro. SESIÓN	COMPONENTE DE APRENDIZAJE	ACTIVIDADES DE APRENDIZAJE	
1. PROBABILIDAD Y VARIABLES ALEATORIAS				

SUB-UNIDADES	Nro. SESIÓN	COMPONENTE DE APRENDIZAJE	ACTIVIDADES DE APRENI	DIZAJE
Espacio de probabilidades Probabilidad Condicional	1	APRENDIZAJE EN CONTACTO CON EL DOCENTE (ACD)	Revision de Teoria relacionada con Probabilidad y Variables Aleatorias	4 horas
3. Variables Aleatorias		APRENDIZAJE PRÁCTICO	Resolucion de Ejercicios de Aplicacion	4 horas
4. Promedios Estadisticos		EXPERIMENTAL - ASIGNATURA		
Multiples Variables Aleatorias		(APE/A)		
6. Multiples Funciones de Multiples Variables Aleatorias		APRENDIZAJE AUTÓNOMO (AA)	Revisión de Conceptos Fundamentales y Resolucion de Ejercicios de Aplicacion	4 horas
7. Momentos Conjuntos				
2. TEORE	MAS EN EL I	LÍMITE Y SUMAS ALE	ATORIAS	
1. Variables Aleatorias Independientes e Identicamente Distribuidas	2	APRENDIZAJE EN CONTACTO CON EL DOCENTE (ACD)	Revision de teoria relacionada - Capitulo 7 del texto de Miller	4 horas
2. Modos de Convergencia de Secuencias Aleatorias		APRENDIZAJE	Resolucion de Ejercicios de Aplicacion	4 horas
3. La ley de los grandes numeros		PRÁCTICO EXPERIMENTAL - ASIGNATURA (APE/A)		
4. El teorema del limite central		APRENDIZAJE	Revisión de Conceptos Fundamentales	4 horas
5. Suma de variables aleatorias		AUTÓNOMO (AA)	y Resolucion de Ejercicios de Aplicacion	
	3. SECUEN	ICIAS ALEATORIAS	procesos estocaisticos	discret
Conceptos Basicos Secuencias aleatorias estacionarias	3	APRENDIZAJE EN CONTACTO CON EL DOCENTE (ACD)	Revision de Teoria Relacionada - Capitulo 6 del Texto de Stark	4 horas
Ejemplos de Secuencias Aleatorias		APRENDIZAJE	Resolucion de Ejercicios de Aplicacion	4 horas
Aplicaciones		PRÁCTICO EXPERIMENTAL - ASIGNATURA (APE/A)		
		APRENDIZAJE AUTÓNOMO (AA)	Revisión de Conceptos Fundamentales y Resolucion de Ejercicios de Aplicacion	4 horas
4. PRO	CESOS ALEA	ATORIOS [ESTOCÁS	TICOS] I II CON	rnuo.
1. Definiciones Basicas	4	APRENDIZAJE EN CONTACTO CON EL	Revision de Teoria Relacionada - Capitulo 7 del Texto de Stark	4 horas
2. Algunos Procesos Aleatorios Importantes		DOCENTE (ACD)	Capitulo / del Texto de Stark	
3. Procesos Estocasticos Estacionarios		APRENDIZAJE PRÁCTICO	Resolucion de Ejercicios de Aplicacion	4 horas
4. Procesos Estocasticos Periodicos y Cicloestacionarios		EXPERIMENTAL - ASIGNATURA (APE/A)		
5. Emgo dicidad.		APRENDIZAJE AUTÓNOMO (AA)	Revisión de Conceptos Fundamentales y Resolucion de Ejercicios de Aplicacion	4 horas
	5. POWER S	SPECTRAL DENSITY	sirve pura reconocer las frecvencias de u	ng sevial
Introduccion El Teorema de Wiener-Khinchin-Einstein	5	APRENDIZAJE EN CONTACTO CON EL DOCENTE (ACD)	Revision de Teoria Relacionada - Capitulo 10 del Texto de Miller	4 horas
Ancho de banda de un proceso estocastico		APRENDIZAJE	Resolucion de Ejercicios de Aplicacion	4 horas
Ancho de banda de un proceso estocastico Estimacion Espectral		PRÁCTICO EXPERIMENTAL - ASIGNATURA (APE/A)		
		APRENDIZAJE AUTÓNOMO (AA)	Revisión de Conceptos Fundamentales y Resolucion de Ejercicios de Aplicacion	4 horas

SUB-UNIDADES	Nro. SESIÓN	COMPONENTE DE APRENDIZAJE	ACTIVIDADES DE APRENDIZAJE		
6. RESPUESTA DE SISTEMAS LINEALES A ENTRADAS ESTOCÁSTICAS					
Procesos estocasticos y sistemas lineales	6	APRENDIZAJE EN CONTACTO CON EL	Revision de Teoria Relacionada - Capitulo 11 del Texto de Miller	4 horas	
Secuencias estocasticas y sistemas lineales		DOCENTE (ACD) APRENDIZAJE	Resolucion de Ejercicios de Aplicacion	4.1	
3. Ancho de banda del ruido		PRÁCTICO EXPERIMENTAL -	Resolucion de Ejercicios de Aplicación	4 horas	
4. Relacion Ancho de Banda - Ruido (SNR - Signal To Noise Ratio)		ASIGNATURA (APE/A)			
5. Matched Filter		APŖENDIZAJE	Revisión de Conceptos Fundamentales y Resolucion de Ejercicios de	4 horas	
6. Whitening Filter		AUTÓNOMO (AA)	Aplicacion		
7. Wiener Filter					
	7. CADEI	NAS DE MARKOV			
Definicion y ejemplos de Markov	7	APRENDIZAJE EN CONTACTO CON EL	Revision de Teoria relacionada - Capitulo 9 del Texto de Miller	4 horas	
Determinacion de probabilidades de transicion y estado de cadenas de Markov		DOCENTE (ACD)			
3. Caracterizacion de Cadenas de Markov		APRENDIZAJE PRÁCTICO EXPERIMENTAL -	Resolucion de Ejercicios en Clase	4 horas	
4. Procesos de Markov en tiempo continuo		ASIGNATURA (APE/A)			
		APRENDIZAJE AUTÓNOMO (AA)	Revisión de Conceptos Fundamentales y Resolucion de Ejercicios de Aplicacion	4 horas	
	8. PROC	CESOS POISSON			
1. Definicion	8	APRENDIZAJE EN CONTACTO CON EL	Revision de Teoría relacionada con Procesos Poisson	4 horas	
Número de arribos en un intervalo		DOCENTE (ACD) APRENDIZAJE	Decelusion de Financiales en Olean	4 5	
3. Propiedades de los Procesos Poisson		PRÁCTICO EXPERIMENTAL - ASIGNATURA (APE/A)	Resolucion de Ejercicios en Clase	4 horas	
4. Tiempos de llegada de un proceso Poisson					
5. Distribucion de tiempo entre llegadas de un proceso Poisson		APRENDIZAJE AUTÓNOMO (AA)	Revisión de Conceptos Fundamentales y Resolucion de Ejercicios de Aplicacion	4 horas	
6. División y unión de procesos Poisson					
7. Aplicaciones de procesos Poisson					
		APRENDIZAJE EN CONTACTO CON EL DOCENTE (ACD)	32 horas		
		APRENDIZAJE PRÁCTICO EXPERIMENTAL - ASIGNATURA (APE/A)	32 horas		
		APRENDIZAJE AUTÓNOMO (AA)	32 horas		
		Total Planificación:	96 horas		

RECURSOS O MEDIOS PARA EL APRENDIZAJE

Equipos, materiales, instrumentos tecnológicos, reactivos, entre otros, que serán utilizados durante el desarrollo de la asignatura.

- Libros de texto, programas computacionales: Matlab, Excel
- Herramientas de soporte para dictar clases
- Plataforma virtual para manejo de contenidos: eVirtual, google drive

CRITERIOS PARA LA ACREDITACIÓN DE LA ASIGNATURA

Parámetros de acreditación, tomando como referencia los Resultados de Aprendizaje (RdA's), indicadores y criterios de evaluación planteados y en base a la normativa de evaluación y calificaciones vigente en la Universidad de Cuenca y Consejo de Educación Superior (CES).

CRITERIO GENERAL DE ACREDITACIÓN	PUNTAJE
PRUEBAS	25
TRABAJOS	25
EXAMENES	50
TOTAL:	100

	DETALLE DE CRITERIOS DE ACREDITACIÓN	PUNTAJE / CRITERIO GENERAL				
	APROVECHAMIENTO I					
	Evaluacion del Capitulo 1	10	PRUEBAS			
	Evaluacion del Capitulo 2	5	PRUEBAS			
C94	Problema de aplicación con Secuencias Aletorias / Procesos Estocásticos	5	TRABAJOS			
	Verificacion de Teoremas de Convergencia en el Limite a través de simulaciones	5	TRABAJOS			
		INTERCICLO				
	Evaluacion del Capitulo 2	2	EXAMENES			
C95	Evaluacion del Capitulo 4	6	EXAMENES			
	Evaluacion del Capitulo 3	12	EXAMENES			
	APROVECHAMIENTO II					
	Evaluacion del Capitulo 5	5	PRUEBAS			
C96	Evaluacion del Capitulo 4	5	PRUEBAS			
	Aplicación de Procesos Estocásticos y PSD	5	TRABAJOS			
	Implementación de un aplicación que integre los conceptos de procesos estocásticos y filtros estudiados	10	TRABAJOS			
	Evaluacion del Capitulo 5	5	EXAMENES			
C97	Evaluacion de los Capitulos 7 y 8	10	EXAMENES			
	Evaluacion del Capitulo 6	15	EXAMENES			
C98	SUSPENSIÓN					
<u> </u>						
	Total:	100				

TEXTOS U OTRAS REFERENCIAS REQUERIDAS PARA EL APRENDIZAJE DE LA ASIGNATURA

Libros, revistas, bases digitales, periódicos, direcciones de Internet y demás fuentes de información, pertinentes y actuales.

BÁSICA

1. Bertsekas, D., Tsitsiklis, J., Introduction to Probability, Athena Scientific, 2008.

2. Stark, H., Woods, J. W., Probability and Random Processes with applications to Signal Processing, Prentice Hall, 3er. Edition, 2002.

3. Miller, S., Childers, D., Probability and Random Processes with Applications to Signal Processing and Communications, Academic Press, 2nd. Edition, 2007 Libro base

COMPLEMENTARIA

- 1. Casella, G., Berger, R., Statistical Inference, Pacific Grove, CA, USA: 2002
- 2. Papoulis, A., and Pillai, S. U., Probability, Random Variables and Stochastic Processes. McGraw-Hill, 2002
- 3. Brown, R. G., Hwang, P., Introduction to Random Signals and Applied Kalman Filtering, Wiley, 1997.

Docente: SOLANO QUINDE LIZANDRO DAMIAN Director: ARAUJO PACHECO ALCIDES FABIAN

Finalizado: 14/3/2024 Publicado: 17/3/2024