	History		
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh, M. S. Basunia, Murray Martin et al.,	NDS 160, 405 (2019)	30-Oct-2019

 $Q(\beta^-)=-4190\ 50$; $S(n)=7310\ 13$; $S(p)=4952\ 13$; $Q(\alpha)=8546\ 6$ 2017Wa10 $S(2n)=12783\ 14$, $S(2p)=8180\ 13$ (2017Wa10).

Additional information 1.

Theory references: consult NSR database (www.nndc.bnl.gov/nsr/) for 62 primary references for nuclear structure, and 42 for calculations of half-lives of radioactive decays.

From lifetime measurements, 1988Ga33 conclude that higher spin states exhibit enhanced B(E1) rates of about 0.006 which may be a result of collective dipole deexcitations from a reflection- asymmetric intrinsic state.

218 Ra Levels

Cross Reference (XREF) Flags

- A $\frac{222}{\text{Th}} \alpha \text{ decay (1.964 ms)}$
- B $^{208}\text{Pb}(^{13}\text{C},3n\gamma),(^{14}\text{C},4n\gamma),$

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF	Comments
0.0&	0+	25.91 μs <i>14</i>	AB	$%\alpha$ =100 Additional information 2. T _{1/2} : weighted average of 25.99 μs 10 (E. Parr et al., Phys Rev. C 100, 044323 (2019)), 25.2 μs 3 (2001Ku07), 26 μs 2 (1992Wi14) and 25.6 μs 11 (1986To02). Others: 15.6 μs 10 (1991AnZZ), 14 μs 2 (1970Va13).
388.90 <mark>&</mark> <i>10</i>	2+	29.8 ps 28	AB	J^{π} : E2 γ to 0^+ .
741.10 & <i>14</i>	4+	19.4 ps 35	В	J^{π} : $\Delta J=2$, E2 γ to 2^{+} .
793.21 ^a 18	(3^{-})	1	AB	J^{π} : $\Delta J=1$, D γ to 2^{+} .
853 ^a 6	(1-)		A	E(level): from E α and Q(α) values. J ^{π} : on the basis of the similarity in the hindrance factor for the 853 level with that of the 793 level, and the γ to 0 ⁺ , 2016Pa28 propose that the 853 level is the bandhead of the octupole band.
1038.32 ^a 18	5-		В	J^{π} : $\Delta J=1$, E1 γ to 4 ⁺ .
1122.04 <mark>&</mark> 20	6+	13.2 ps 28	В	J^{π} : $\Delta J=2$, E2 γ to 4 ⁺ ; E1 γ to 5 ⁻ .
1340.85 ^a 21	7-	@	В	J^{π} : $\Delta J=1$, E1 γ to 6^+ ; $\Delta J=2$, E2 γ to 5^- .
1546.70 ^{&} 23	8+	@	В	J^{π} : $\Delta J=1$, E1 γ to 7 ⁻ ; $\Delta J=2$, E2 γ to 6 ⁺ .
1573.01 19	$(3^-,4,5^-)$		В	J^{π} : γ rays to (3^{-}) and 5^{-} .
1694.35 ^a 25	9-	@	В	J^{π} : γ to 8^+ ; $\Delta J=2$, E2 γ to 7^- .
1714.60 25			В	J^{π} : γ to 4^{+} .
1725.8 <i>3</i>			В	J^{π} : γ to 5^{-} .
1803.60 24			В	J^{π} : γ rays to 6^+ and 7^- .
1855.9 <i>3</i>			В	J^{π} : γ to 6^+ .
1896.8 <i>3</i>			В	J^{π} : γ to 8^+ .
1961.7 & <i>3</i>	10 ⁺	@	В	J^{π} : $\Delta J=1$, E1 γ to 9 ⁻ ; $\Delta J=2$, E2 γ to 8 ⁺ .
2031.8 <i>3</i>			В	J^{π} : γ to 9^{-} .
2109.3 ^a 3	11-	@	В	J^{π} : $\Delta J=2$, E2 γ to 9^{-} ; $\Delta J=1$, D γ to 10^{+} .
2328.3 4			В	
2390.8 ^{&} <i>3</i>	12+	<1.4 ps	В	J^{π} : $\Delta J=1$, E1 γ to 11 ⁻ ; $\Delta J=2$, E2 γ to 10 ⁺ .
2420.0 ^b 3	(12^{-})		В	J^{π} : $\Delta J=1$, (M1+E2) γ to 11 ⁻ .
2442.4 <i>4</i>			В	·
2465.6 <i>3</i>			В	J^{π} : γ to 10^+ .
2526.3 ^a 3	13-	<4.9 ps	В	J^{π} : $\Delta J=1$, E1 γ to 12 ⁺ ; $\Delta J=2$, E2 γ to 11 ⁻ .

²¹⁸Ra Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments
2825.5 ^{&} 3	14+	<1.4 ps	В	J^{π} : $\Delta J=1$, E1 γ to 13 ⁻ ; $\Delta J=2$, E2 γ to 12 ⁺ .
2966.4 ^a 4	15-	<1.4 ps	В	J^{π} : $\Delta J=1$, E1 γ to 14 ⁺ ; $\Delta J=2$, E2 γ to 13 ⁻ .
				$T_{1/2}$: This $T_{1/2}$ leads to B(E2)(W.u)>218, a factor of about 3 larger than any of the other E2 or E1 reduced transition probabilities. The $T_{1/2}$ limit may be a typo.
2967.2 ^b 4	(14^{-})		В	J^{π} : $\Delta J=2$, E2 γ to (12 ⁻); γ to 13 ⁻ .
3285.1 ^{&} 4	16 ⁺		В	J^{π} : γ rays to 14^+ and 15^- .
3387.7 ^b 7	(16^{-})		В	J^{π} : γ to (14^{-}) .
3388.8 ^a 4	17-	<13 ps	В	J^{π} : $\Delta J = 2$, E2 γ to 15 ⁻ ; γ to 16 ⁺ .
3719.8 <mark>b</mark> 7	(18^{-})		В	J^{π} : γ rays to (16 ⁻) and 17 ⁻ .
3756.0 <mark>&</mark> 7	18 ⁺		В	J^{π} : γ to 17 ⁻ , and member of g.s. band.
3805.9 ^a 8	19-		В	J^{π} : γ rays to 17 ⁻ , (18 ⁻) and 18 ⁺ .
4117.7 <mark>b</mark> 9	(20^{-})		В	J^{π} : γ rays to (18 ⁻) and 19 ⁻ .
4191.1? <mark>&</mark> <i>11</i>	(20^+)		В	J^{π} : γ rays to 18^+ and 19^- .
4212.6 ^a 10	(21^{-})		В	J^{π} : γ to 19^{-} .
4391.6 ^c 11	(21^+)		В	J^{π} : γ to (20 ⁻).
4588.3 <mark>&</mark> 11	(22^{+})		В	J^{π} : γ to (21 ⁻).
4675.3 ^a 10	(23^{-})		В	J^{π} : γ rays to (21 ⁻) and (22 ⁺).
4682.6 ^b 10	(22^{-})		В	J^{π} : γ rays to (20 ⁻) and (21 ⁻).
4835.5 ^c 11	(23^{+})		В	J^{π} : γ rays to (21 ⁺), (22 ⁺) and (22 ⁻).
5020.3 ^{&} 12	(24^{+})		В	J^{π} : γ rays to (22^+) and (23^-) .
5125.4 ^a 13	(25^{-})		В	J^{π} : γ rays to (23 ⁻) and (24 ⁺).
5139.4 ^b 11	(24^{-})		В	J^{π} : γ rays to (22 ⁻) and (23 ⁺).
5363.5 ^c 13	(25^{+})		В	J^{π} : γ rays to (23 ⁺) and (24 ⁻).
5470.1 & <i>13</i>	(26^{+})		В	J^{π} : γ rays to (24^{+}) and (25^{-}) .
5588.1 ^a 13	(27^{-})		В	J^{π} : γ rays to (25 ⁻) and (26 ⁺).
5901.7 ^{&} 14	(28^{+})		В	J^{π} : γ rays to (26 ⁺) and (27 ⁻).
6134.9 ^a 15	(29^{-})		В	J^{π} : γ rays to (27 ⁻) and (28 ⁺).
6343.8 ^{&} 15	(30^+)		В	J^{π} : γ rays to (28 ⁺) and (29 ⁻).
6678.8 ^a 16	(31^{-})		В	J^{π} : γ rays to (29^{-}) and (30^{+}) .

[†] From a least-squares fit to the adopted Ey data except for the 853 level which comes from the $E(\alpha)$ branch to that level.

[‡] From $\gamma(\theta)$ and $\gamma(\text{lin pol})$ data in $^{208}\text{Pb}(^{13}\text{C},3n\gamma)$, and association of levels in bands or sequences. Additional γ mult arguments are given explicitly.

[#] From recoil-distance Doppler-shift method in inverse kinematic reaction: $^{13}C(^{208}Pb,3n\gamma)(1988Ga33)$. No delayed component with a half-life longer than 5 ns was observed for any of the transitions (1986Go21).

[@] 1988Ga33 deduced $T_{1/2}$ =3.1 ps 4 for 1341, 7⁻; 2.3 ps 3 for 1547, 8⁺; 5.9 ps 6 for 1694, 9⁻; 2.6 ps 4 for 1962, 10⁺; and 4.2 ps 5 for 2109, 11⁻ levels using average B(E2) for transitions from some of the above levels.

[&]amp; Band(A): $K^{\pi}=0^{+}$ g.s. band.

^a Band(B): Octupole band.

^b Seq.(C): γ sequence based on 12⁻.

^c Seq.(D): γ sequence based on (21⁺).

γ (²¹⁸Ra)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.‡	α#	Comments
388.90	2+	388.9 1	100	0.0	0+	E2	0.0727	B(E2)(W.u.)=25.5 24
741.10	4+	352.2 1	100	388.90		E2	0.0954	B(E2)(W.u.)=63 12
793.21	(3^{-})	404.3 2	100	388.90		D		
853	(1-)	853		0.0	0+			
1038.32	5-	245.1 2 297.3 2		793.21 741.10		E1	0.0359	
1122.04	6+	83.7 2	35 7	1038.32		(E1)	0.0339	B(E1)(W.u.)=0.0057 17
1122.04	O	380.9 2	100 6	741.10		E2	0.1773	B(E2)(W.u.)=46 11
1340.85	7-	218.8 <i>I</i>	100 5	1122.04		E1	0.0729	B(E2)(W.d.)= 10 11
		302.6 2	8.7 22	1038.32		E2	0.1482	
1546.70	8+	205.8 2	100 7	1340.85	7-	E1	0.0843	
		424.6 2	71 20	1122.04	6+	E2	0.0578	
1573.01	$(3^-,4,5^-)$	534.7 2		1038.32				
		779.8 2		793.21				
		831.9 2	0	741.10				
1694.35	9-	147.5 <mark>&</mark> 2	100 & 45	1546.70			0.190	
		353.6 2	58 20	1340.85		E2	0.0943	
1714.60		973.5 2	100	741.10				
1725.8		687.5 2	100	1038.32				
1803.60		462.7 2 681.6 2		1340.85 1122.04				
1855.9		733.9 2	100	1122.04				
1896.8		350.1 2	100	1546.70				
1961.7	10 ⁺	267.3 1	100 5	1694.35		E1	0.0457	
1,011,	10	415.0 2	36 <mark>&</mark> 9	1546.70		E2	0.0613	
2031.8		337.5 2	100	1694.35		LZ	0.0013	
2109.3	11-	77.5 2	100	2031.8				
		147.5 <mark>&</mark> 2	42 <mark>&</mark> 42	1961.7	10 ⁺		0.190	
		415.0 & 2	100 & 25	1694.35		E2	0.0613	
2328.3		472.4 2	100 23	1855.9	9	EZ	0.0013	
2390.8	12 ⁺	281.4 2	100 7	2109.3	11-	E1	0.0407	B(E1)(W.u.)>0.004
2370.0	12	429.3 2	33 7	1961.7	10 ⁺	E2	0.0562	B(E2)(W.u.)>84
2420.0	(12^{-})	310.6 2	100	2109.3	11-	(M1+E2)	0.4 3	
2442.4		410.6 2	100	2031.8				
2465.6		503.9 2		1961.7	10 ⁺			
		568.8 2		1896.8				
2526.3	13-	106.1 2		2420.0	(12^{-})			D (T1) (T1)
		135.6 2	33 3	2390.8	12+	E1	0.230	B(E1)(W.u.)>0.0034
2025 5	14 ⁺	416.9 2 299.3 2	100 27	2109.3	11-	E2	0.0606	B(E2)(W.u.)>80 B(E1)(W.u.)>0.0035
2825.5	14	434.8 [@] 2	100 28	2526.3	13-	E1	0.0354	B(E1)(W.u.)>0.0035
		434.8 2	<45	2390.8	12 ⁺	E2	0.0544	E_{γ} : double placement, with intensity not
2966.4	15-	140.9 2	32 5	2825.5	14 ⁺	E1	0.210	divided.
2900.4	13	440.0 2	100 5	2526.3	13-	E2	0.210	B(E1)(W.u.)>0.011 B(E2)(W.u.)>218
2967.2	(14^{-})	142	100 5	2825.5	14 ⁺	LZ	0.0320	D(L2)(W.u.)>210
2707.2	(11)	440.8 2		2526.3	13-			
		547.3 2		2420.0	(12^{-})	E2	0.0313	
3285.1	16 ⁺	318.7	100 20	2966.4	15-			
		459.7	60 20	2825.5	14+			
3387.7	(16 ⁻)	420.5	100	2967.2	(14^{-})			
3388.8	17-	104		3285.1	16 ⁺	Ea	0.0507	
2710.0	(10=)	422.4 2		2966.4	15-	E2	0.0586	
3719.8	(18^{-})	331		3388.8	17-			
		332.1 <i>3</i>		3387.7	(16^{-})			

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_f	$\mathbf{J}_f^{\boldsymbol{\pi}}$	Comments
3756.0	18+	367		3388.8	17-	
****	4.0	471 ^a		3285.1	16+	
3805.9	19-	50 86		3756.0 3719.8	18 ⁺ (18 ⁻)	
		417		3388.8	17-	
4117.7	(20^{-})	312		3805.9	19-	
		398		3719.8	(18^{-})	
4191.1?	(20^+)	385		3805.9	19-	
4212.6	(21=)	434.8 [@] 2	100	3756.0	18 ⁺	E_{γ} : double placement, with intensity not divided.
4212.6 4391.6	(21^{-}) (21^{+})	406.6 274	100 100	3805.9 4117.7	19 ⁻ (20 ⁻)	
4588.3	(21) (22^{+})	376	100	4212.6	(20°) (21^{-})	
4300.3	(22)	397 <mark>a</mark>		4191.1?		
4675.3	(23^{-})	87		4588.3	(22^{+})	
	(-)	462.7 [@]		4212.6	(21^{-})	
4682.6	(22^{-})	291 ^a		4391.6	(21^{+})	
	, ,	470		4212.6	(21^{-})	
		565		4117.7	(20^{-})	
4835.5	(23^{+})	153		4682.6	(22^{-})	
		247		4588.3	(22^{+})	
		444		4391.6	(21^{+})	
5020.3	(24^{+})	345 [@]		4675.3	(23^{-})	
		432 [@]		4588.3	(22^{+})	
5125.4	(25^{-})	105		5020.3	(24^{+})	
		450 [@]		4675.3	(23^{-})	
5139.4	(24^{-})	304		4835.5	(23^{+})	
		457		4682.6	(22^{-})	
5262.5	(25+)	464 ^a		4675.3	(23^{-})	
5363.5	(25^+)	224 528		5139.4 4835.5	(24^{-}) (23^{+})	
5470.1	(26^+)	345 [@]		5125.4	(25^{-})	
J470.1	(20)	450 [@]		5020.3	(24^{+})	
5588.1	(27^{-})	118		5470.1	(24^{+}) (26^{+})	
2200.1	(27)	463 [@]		5125.4	(25^{-})	
5901.7	(28^{+})	313		5588.1	(27^{-})	
	(-)	432 [@]		5470.1	(26^{+})	
6134.9	(29^{-})	233		5901.7	(28^+)	
	` /	547		5588.1	(27^{-})	
6343.8	(30^+)	209		6134.9	(29^{-})	
		442		5901.7	(28^{+})	
6678.8	(31^{-})	335		6343.8	(30^+)	
		544		6134.9	(29^{-})	

[†] From 208 Pb(13 C,3n γ),(14 C,4n γ) dataset. [‡] From $\gamma(\theta)$ and γ (lin pol) data in 208 Pb(13 C,3n γ).

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[@] Multiply placed.

[&]amp; Multiply placed with intensity suitably divided.

^a Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{218}_{\ \, 88}{\rm Ra}_{130}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

 $^{218}_{88} \mathrm{Ra}_{130}$

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

$$^{218}_{88}$$
Ra $_{130}$

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	E. Browne, J. K. Tuli	NDS 112,1115 (2011)	31-Oct-2010

 $Q(\beta^{-})=-3474 \ 11$; $S(n)=7195 \ 12$; $S(p)=5637 \ 11$; $Q(\alpha)=7592 \ 6$ 2012Wa38

Note: Current evaluation has used the following Q record -3471 11 7193 12 5635 12 7592 6 2009AuZZ,2003Au03.

Additional information 1.

Calculations, compilations, systematics:

¹⁴C decay rate: 1986De32.

Spontaneous emission of heavy ions: 1986Po06.

α decay Γ: 1995De59, 1992De44.

Binding energy, deformation role: 1986Ch23.

Cluster model for α decay, Geiger-Nuttall plot: 1991Bu05, 1986Ir01.

Equilibrium deformation: 1995Ru10, 1994Cw01, 1991Sk01, 1989Eg02, 1988So08, 1984Na22.

 $K^{\pi}=0^{+}$ and $K^{\pi}=0^{-}$ bands: 1980Sh07.

Levels, $\beta(\lambda)$ ratios: 1995De13, 1995Mi22, 1993Am07, 1993Dz01, 1991Eg01, 1987En05, 1986Da03, 1986Le05.

Octupole shapes and shape changes: 1987Na10.

p-n interaction energy: 1990Mo11.

Super- and hyperdeformed configurations: 1995We02.

Quasi-bands in even-even nuclei: 1984Sa37. Yrast band parity splitting: 1995Jo11, 1993Sc11.

Fission: 1999Po19, 1997An08.

²²⁰Ra Levels

Cross Reference (XREF) Flags

- 220 Fr β^- decay
- $^{224}{
 m Th}~\alpha~{
 m decay}$
- ²⁰⁸Pb(¹⁴C,2nγ) ²⁰⁸Pb(¹⁸O,α2nγ)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}$	XREF	Comments
0#	0^{+}	18 ms 2	ABCD	%α=100
				$T_{1/2}$: weighted average of 17 ms 2 (1990An19) and 23 ms 5 (1961Ru06); other: 31 ms 8 (1978IbZZ).
				Isotope shift: $\Delta < r^2 > = +0.68 \ 7$ relative to 214 Ra (1988Ah02).
178.47 [#] <i>12</i>	2+		ABCD	J^{π} : E2 γ ray to 0^+ .
				$T_{1/2}$: from 2Z-N=44 systematics 1992Ro02 predict $T_{1/2}$ =670 ps.
410.07 [#] 23	4+		CD	J^{π} : stretched E2 γ ray to 2 ⁺ .
412.98 [@] 10	(1^{-})		ABC	J^{π} : γ rays to 0^+ , 2^+ . Probable bandhead of $K^{\pi}=0^-$ band.
474.17 [@] 23	(3^{-})		BC	J^{π} : γ ray to 2^{+} . Probable member of $K^{\pi}=0^{-}$ band.
634.8 [@] 4	$(5)^{-}$		CD	J^{π} : E1 γ ray to 4 ⁺ .
688.1 [#] 3	6+		CD	J^{π} : E2 γ ray to 4 ⁺ .
873.0 [@] 4	$(7)^{-}$		CD	J^{π} : E1 γ ray to 6^{+} .
1001.2 [#] 4	8+		CD	J^{π} : E1 γ ray to 7^{-} ; E2 γ ray to 6^{+} .
1163.8 [@] 4	$(9)^{-}$		CD	J^{π} : E1 γ ray to 8^+ .
1342.7 [#] 5	10 ⁺		CD	
1496.1 [@] 5	$(11)^{-}$		CD	J^{π} : E1 γ ray to 10^+ .

²²⁰Ra Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
1711.2 [#] 5	12 ⁺	CD	J^{π} : E1 γ ray to (11) ⁻ .
1863.7 [@] 5	$(13)^{-}$	CD	J^{π} : El γ ray to 12^+ .
2105.7 [#] 5	14+	CD	
2262.5 [@] 5	$(15)^{-}$	CD	J^{π} : E1 γ ray to 14 ⁺ .
2523.5 [#] 6	16 ⁺	CD	
2690.1 [@] 6	$(17)^{-}$	CD	J^{π} : E1 γ ray to 16 ⁺ .
2961.9 [#] 6	18+	CD	
3144.5 [@] 6	(19^{-})	CD	
3417.6 [#] 6	(20^{+})	D	
3624.0 [@] 6	(21^{-})	CD	
3888.6 [#] 7	(22^{+})	D	
4122.7 [@] 7	(23^{-})	D	
4374.7 [#] 7	(24^{+})	D	
4636.3 [@] 7	(25^{-})	D	
4873.6 [#] 7	(26^{+})	D	
5164.1 [@] 8	(27^{-})	D	
5384.5 [#] 8	(28^{+})	D	
5703.0 [@] 9	(29^{-})	D	
5912.0? [#] 9	(30^+)	D	
6255.5? 10	(31^{-})	D	

						<u>γ</u>	$r(^{220}Ra)$	
$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	α^{\dagger}	Comments
178.47	2+	178.4 [@] 2		0	0+	E2	0.892	$\alpha(K)$ =0.200 3; $\alpha(L)$ =0.509 8; $\alpha(M)$ =0.1379 21; $\alpha(N+)$ =0.0454 7 $\alpha(N)$ =0.0364 6; $\alpha(O)$ =0.00779 12; $\alpha(P)$ =0.001149
410.07	4+	231.6 2		178.47	2+	E2	0.350	17; $\alpha(Q)=9.99\times10^{-6}$ 15 $\alpha(K)=0.1209$ 17; $\alpha(L)=0.1684$ 25; $\alpha(M)=0.0452$ 7; $\alpha(N+)=0.01491$ 22 $\alpha(N)=0.01195$ 18; $\alpha(O)=0.00257$ 4; $\alpha(P)=0.000384$ 6; $\alpha(Q)=5.19\times10^{-6}$ 8
412.98	(1-)	234.5 [@] 1 413.0 [@] 1	72 [@] 20 100 [@] 13	178.47 0	2 ⁺ 0 ⁺			
474.17	(3^{-})	295.7 <mark>&</mark> 2		178.47	2+			
634.8	(5)	224.6 3		410.07		E1	0.0685	$\begin{array}{l} \alpha(\mathrm{K}) \! = \! 0.0548 \; 8; \; \alpha(\mathrm{L}) \! = \! 0.01042 \; 15; \; \alpha(\mathrm{M}) \! = \! 0.00249 \; 4; \\ \alpha(\mathrm{N}+) \! = \! 0.000821 \; 12 \\ \alpha(\mathrm{N}) \! = \! 0.000651 \; 10; \; \alpha(\mathrm{O}) \! = \! 0.0001447 \; 21; \\ \alpha(\mathrm{P}) \! = \! 2.38 \! \times \! 10^{-5} \; 4; \; \alpha(\mathrm{Q}) \! = \! 1.456 \! \times \! 10^{-6} \; 21 \end{array}$

[†] Deduced by evaluators from a least-squares fit to γ -ray energies. [‡] From bands structure in (14 C,2n γ) and (18 O, α 2n γ). The assignments up to J^{π} =24⁺ have been confirmed by stretched Q and stretched D γ -ray transitions from $\gamma(\theta)$ experiments in (18 O, α 2n γ). In addition, arguments based on γ -ray multipolarities are

[#] Band(A): $K^{\pi}=0^+$ g.s. rotational band. @ Band(B): $K^{\pi}=0^-$ band.

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^π	Mult.#	α^{\dagger}	Comments
688.1	6+	278.1 2		410.07	4+	E2	0.192	$\alpha(K)$ =0.0830 12; $\alpha(L)$ =0.0806 12; $\alpha(M)$ =0.0215 3; $\alpha(N+)$ =0.00709 11 $\alpha(N)$ =0.00568 9; $\alpha(Q)$ =0.001224 18; $\alpha(P)$ =0.000185
873.0	(7)-	184.9 2	100 10	688.1	6+	E1	0.1088	3; $\alpha(Q)=3.36\times10^{-6}$ 5 $\alpha(K)=0.0865$ 13; $\alpha(L)=0.01695$ 25; $\alpha(M)=0.00406$ 6; $\alpha(N+)=0.001335$ 19 $\alpha(N)=0.001059$ 16; $\alpha(O)=0.000235$ 4;
		237.9 4	8 2	634.8	(5)-	(E2) ^a	0.319	$\alpha(P)=3.83\times10^{-5}$ 6; $\alpha(Q)=2.24\times10^{-6}$ 4 $\alpha(K)=0.1145$ 17; $\alpha(L)=0.1508$ 24; $\alpha(M)=0.0405$ 7; $\alpha(N+)=0.01334$ 21 $\alpha(N)=0.01069$ 17; $\alpha(O)=0.00230$ 4; $\alpha(P)=0.000344$
1001.2	8+	128.1 <i>3</i>	100 10	873.0	(7)-	E1	0.264	6; α (Q)=4.86×10 ⁻⁶ 7 α (K)=0.206 4; α (L)=0.0436 7; α (M)=0.01049 16; α (N+)=0.00343 6
		313.3 <i>3</i>	57 11	688.1	6+	E2	0.1336	$\alpha(N)$ =0.00273 5; $\alpha(O)$ =0.000599 10; $\alpha(P)$ =9.55×10 ⁻⁵ 15; $\alpha(Q)$ =5.10×10 ⁻⁶ 8 $\alpha(K)$ =0.0648 10; $\alpha(L)$ =0.0509 8; $\alpha(M)$ =0.01348 20; $\alpha(N+)$ =0.00445 7
1163.8	(9)-	162.5 2	100 10	1001.2	8+	E1	0.1485	$\alpha(N)$ =0.00356 6; $\alpha(O)$ =0.000770 12; $\alpha(P)$ =0.0001177 17; $\alpha(Q)$ =2.55×10 ⁻⁶ 4 $\alpha(K)$ =0.1174 17; $\alpha(L)$ =0.0236 4; $\alpha(M)$ =0.00565 9; $\alpha(N+)$ =0.00185 3
		290.8 4	13 4	873.0	(7)-	(E2) ^a	0.1673	$\alpha(N)=0.001473\ 22;\ \alpha(O)=0.000325\ 5;$ $\alpha(P)=5.27\times10^{-5}\ 8;\ \alpha(Q)=2.99\times10^{-6}\ 5$ $\alpha(K)=0.0756\ 11;\ \alpha(L)=0.0677\ 11;\ \alpha(M)=0.0180\ 3;$ $\alpha(N+)=0.00594\ 9$
1342.7	10 ⁺	178.6 <i>3</i>	100 20	1163.8	(9)-	(E1) ^a	0.1183	$\alpha(N)$ =0.00476 8; $\alpha(O)$ =0.001027 16; $\alpha(P)$ =0.0001560 24; $\alpha(Q)$ =3.03×10 ⁻⁶ 5 $\alpha(K)$ =0.0939 14; $\alpha(L)$ =0.0185 3; $\alpha(M)$ =0.00443 7; $\alpha(N+)$ =0.001457 22
		341.5 <i>3</i>	33 7	1001.2	8+	(E2) ^a	0.1040	$\alpha(N)$ =0.001157 17; $\alpha(O)$ =0.000256 4; $\alpha(P)$ =4.17×10 ⁻⁵ 6; $\alpha(Q)$ =2.42×10 ⁻⁶ 4 $\alpha(K)$ =0.0542 8; $\alpha(L)$ =0.0369 6; $\alpha(M)$ =0.00972 14;
1496.1	(11)-	153.6 <i>3</i>	100 20	1342.7	10 ⁺	E1	0.170	$\alpha(N+)=0.00321 5$ $\alpha(N)=0.00257 4$; $\alpha(O)=0.000557 8$; $\alpha(P)=8.57\times10^{-5}$ 13 ; $\alpha(Q)=2.10\times10^{-6} 3$ $\alpha(K)=0.1342 20$; $\alpha(L)=0.0272 4$; $\alpha(M)=0.00653 10$;
		332.7 <i>3</i>	40 8	1163.8	(9)-	(E2) ^a	0.1121	$\alpha(N+)=0.00214 \ 4$ $\alpha(N)=0.00170 \ 3; \ \alpha(O)=0.000376 \ 6; \ \alpha(P)=6.06\times10^{-5}$ $9; \ \alpha(Q)=3.39\times10^{-6} \ 5$ $\alpha(K)=0.0572 \ 8; \ \alpha(L)=0.0406 \ 6; \ \alpha(M)=0.01072 \ 16;$
		332.7 3	40 8	1105.8	(9)	(E2)**	0.1121	α (N+)=0.00354 6 α (N)=0.00283 4; α (O)=0.000614 9; α (P)=9.42×10 ⁻⁵ 14; α (Q)=2.23×10 ⁻⁶ 4
1711.2	12+	215.1 3	100 20	1496.1	(11)	E1	0.0759	$\alpha(K)$ =0.0606 9; $\alpha(L)$ =0.01160 17; $\alpha(M)$ =0.00277 4; $\alpha(N+)$ =0.000913 14 $\alpha(N)$ =0.000724 11; $\alpha(O)$ =0.0001610 24; $\alpha(P)$ =2.65×10 ⁻⁵ 4; $\alpha(Q)$ =1.601×10 ⁻⁶ 23
		368.2 <i>3</i>	44 9	1342.7	10+	(E2) ^a	0.0843	$\alpha(K)$ =0.0465 7; $\alpha(L)$ =0.0281 4; $\alpha(M)$ =0.00737 11; $\alpha(N+)$ =0.00244 4 $\alpha(N)$ =0.00195 3; $\alpha(O)$ =0.000423 6; $\alpha(P)$ =6.55×10 ⁻⁵
1863.7	(13)-	152.4 3	100 20	1711.2	12+	E1	0.173	10; $\alpha(Q)=1.78\times10^{-6}$ 3 $\alpha(K)=0.1368$ 21; $\alpha(L)=0.0278$ 5; $\alpha(M)=0.00667$ 10; $\alpha(N+)=0.00219$ 4

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	${\rm I}_{\gamma}^{ \ddagger}$	E_f	\mathbf{J}_f^{π}	Mult.#	α^{\dagger}	Comments
1863.7	(13)	367.6 3	78 16	1496.1 (11)-	(E2) ^a	0.0847	$\alpha(N)$ =0.00174 3; $\alpha(O)$ =0.000383 6; $\alpha(P)$ =6.18×10 ⁻⁵ 10; $\alpha(Q)$ =3.45×10 ⁻⁶ 5 $\alpha(K)$ =0.0466 7; $\alpha(L)$ =0.0282 4; $\alpha(M)$ =0.00741 11; $\alpha(N+)$ =0.00245 4 $\alpha(N)$ =0.00196 3; $\alpha(O)$ =0.000425 6; $\alpha(P)$ =6.58×10 ⁻⁵
2105.7	14+	241.9 3	100 20	1863.7 (13)-	(E1) ^a	0.0576	10; $\alpha(Q)=1.79\times10^{-6}$ 3 $\alpha(K)=0.0462$ 7; $\alpha(L)=0.00868$ 13; $\alpha(M)=0.00207$ 3; $\alpha(N+)=0.000684$ 10 $\alpha(N)=0.000542$ 8; $\alpha(O)=0.0001207$ 18;
		394.4 <i>3</i>	40 8	1711.2 1	2+	(E2) ^a	0.0701	$\alpha(P)=2.00\times10^{-5} \ 3; \ \alpha(Q)=1.238\times10^{-6} \ 18$ $\alpha(K)=0.0404 \ 6; \ \alpha(L)=0.0220 \ 4; \ \alpha(M)=0.00575 \ 9;$ $\alpha(N+)=0.00190 \ 3$ $\alpha(N)=0.001519 \ 22; \ \alpha(O)=0.000331 \ 5;$
2262.5	(15)	156.7 3	72 14	2105.7 1	4+	E1	0.1621	$\alpha(P)=5.15\times10^{-5} 8$; $\alpha(Q)=1.530\times10^{-6} 22$ $\alpha(K)=0.1280 19$; $\alpha(L)=0.0259 4$; $\alpha(M)=0.00620 10$; $\alpha(N+)=0.00204 3$ $\alpha(N)=0.001618 24$; $\alpha(O)=0.000357 6$;
		399.1 <i>3</i>	100 20	1863.7 (13)-	(E2) ^a	0.0679	$\alpha(P)=5.76\times10^{-5} 9$; $\alpha(Q)=3.24\times10^{-6} 5$ $\alpha(K)=0.0394 6$; $\alpha(L)=0.0211 3$; $\alpha(M)=0.00552 8$; $\alpha(N+)=0.00183 3$ $\alpha(N)=0.001457 21$; $\alpha(O)=0.000317 5$;
2523.5	16 ⁺	261.1 3	100 20	2262.5 (15)-	(E1) ^a	0.0483	$\alpha(P)=4.95\times10^{-5}$ 7; $\alpha(Q)=1.492\times10^{-6}$ 21 $\alpha(K)=0.0388$ 6; $\alpha(L)=0.00721$ 11; $\alpha(M)=0.001721$ 25; $\alpha(N+)=0.000568$ 9 $\alpha(N)=0.000450$ 7; $\alpha(O)=0.0001004$ 15;
		417.6 3	37 7	2105.7 1	4+	(E2) ^a	0.0604	$\alpha(P)=1.665\times 10^{-5} \ 24; \ \alpha(Q)=1.049\times 10^{-6} \ 15$ $\alpha(K)=0.0360 \ 5; \ \alpha(L)=0.0181 \ 3; \ \alpha(M)=0.00471 \ 7;$ $\alpha(N+)=0.001558 \ 23$ $\alpha(N)=0.001243 \ 18; \ \alpha(O)=0.000271 \ 4;$
2690.1	(17)-	166.6 3	78 <i>16</i>	2523.5 1	6+	E1	0.1398	$\alpha(P)=4.25\times10^{-5} 6$; $\alpha(Q)=1.352\times10^{-6} 19$ $\alpha(K)=0.1107 17$; $\alpha(L)=0.0221 4$; $\alpha(M)=0.00530 8$; $\alpha(N+)=0.00174 3$ $\alpha(N)=0.001382 21$; $\alpha(O)=0.000305 5$;
		427.6 3	100 20	2262.5 (15)-	(E2) ^a	0.0568	$\alpha(P)=4.95\times10^{-5} 8$; $\alpha(Q)=2.83\times10^{-6} 5$ $\alpha(K)=0.0343 5$; $\alpha(L)=0.01669 24$; $\alpha(M)=0.00434 7$; $\alpha(N+)=0.001436 21$ $\alpha(N)=0.001145 17$; $\alpha(O)=0.000250 4$;
2961.9	18+	271.6 <i>3</i>	100 20	2690.1 (17)-	(E1) ^a	0.0441	$\alpha(P)=3.92\times10^{-5} 6$; $\alpha(Q)=1.286\times10^{-6} 19$ $\alpha(K)=0.0354 5$; $\alpha(L)=0.00656 10$; $\alpha(M)=0.001564$ 23 ; $\alpha(N+)=0.000517 8$
		438.4 3	92 18	2523.5 1	6+	(E2) ^a	0.0533	$\alpha(N)=0.000409 \ 6; \ \alpha(O)=9.13\times10^{-5} \ 13;$ $\alpha(P)=1.517\times10^{-5} \ 22; \ \alpha(Q)=9.64\times10^{-7} \ 14$ $\alpha(K)=0.0327 \ 5; \ \alpha(L)=0.01535 \ 22; \ \alpha(M)=0.00398 \ 6;$ $\alpha(N+)=0.00151 \ 15 \ (O)=0.00220 \ 4$
3144.5	(19 ⁻)	182.4 <i>3</i>	88 18	2961.9 1	.8 ⁺	(E1) ^a	0.1124	$\alpha(N)$ =0.001051 15; $\alpha(O)$ =0.000230 4; $\alpha(P)$ =3.61×10 ⁻⁵ 6; $\alpha(Q)$ =1.219×10 ⁻⁶ 18 $\alpha(K)$ =0.0893 13; $\alpha(L)$ =0.0175 3; $\alpha(M)$ =0.00420 7; $\alpha(N+)$ =0.001381 21
		454.6 3	100 20	2690.1 (17)-	(E2) ^a	0.0487	$\alpha(N)=0.001097 \ 16; \ \alpha(O)=0.000243 \ 4; \\ \alpha(P)=3.96\times10^{-5} \ 6; \ \alpha(Q)=2.31\times10^{-6} \ 4 \\ \alpha(K)=0.0304 \ 5; \ \alpha(L)=0.01362 \ 20; \ \alpha(M)=0.00352 \ 5; \\ \alpha(N+)=0.001167 \ 17 \\ \alpha(N)=0.000930 \ 14; \ \alpha(O)=0.000204 \ 3; \\ \alpha(P)=3.21\times10^{-5} \ 5; \ \alpha(Q)=1.128\times10^{-6} \ 16$

E_i (level)	J_i^π	$\mathrm{E}_{\gamma}^{\ddagger}$	I_{γ}^{\ddagger}	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.#	$lpha^\dagger$	Comments
3417.6	(20 ⁺)	273.2 3	100 20	3144.5 (19 ⁻)	(E1) ^a	0.0435	$\alpha(K)=0.0350 \ 5; \ \alpha(L)=0.00647 \ 10; \ \alpha(M)=0.001542$ 22; $\alpha(N+)=0.000509 \ 8$
		455.8 <i>3</i>	46 9	2961.9 18+	(E2) ^a	0.0484	$\alpha(N)=0.000403 \ 6; \ \alpha(O)=9.01\times10^{-5} \ 13;$ $\alpha(P)=1.497\times10^{-5} \ 22; \ \alpha(Q)=9.52\times10^{-7} \ 14$ $\alpha(K)=0.0302 \ 5; \ \alpha(L)=0.01350 \ 20; \ \alpha(M)=0.00349$ $5; \ \alpha(N+)=0.001156 \ 17$ $\alpha(N)=0.000922 \ 13; \ \alpha(O)=0.000202 \ 3;$
3624.0	(21 ⁻)	206.4 3	100 20	3417.6 (20 ⁺)	(E1) ^a	0.0837	$\alpha(P)=3.18\times10^{-5} 5$; $\alpha(Q)=1.122\times10^{-6} 16$ $\alpha(K)=0.0668 10$; $\alpha(L)=0.01285 19$; $\alpha(M)=0.00307$ $\beta(M)=0.000803 12$; $\alpha(O)=0.000178 3$;
		479.4 3	90 18	3144.5 (19 ⁻)	(E2) ^a	0.0428	$\alpha(P)=2.92\times10^{-5} 5$; $\alpha(Q)=1.75\times10^{-6} 3$ $\alpha(K)=0.0274 4$; $\alpha(L)=0.01146 17$; $\alpha(M)=0.00295$ $\beta(M)=0.000779 11$; $\alpha(M)=0.0001709 25$;
3888.6	(22+)	264.4 3	100 20	3624.0 (21 ⁻)	(E1) ^a	0.0469	$\alpha(P)=2.71\times10^{-5} 4$; $\alpha(Q)=1.009\times10^{-6} 15$ $\alpha(K)=0.0377 6$; $\alpha(L)=0.00700 10$; $\alpha(M)=0.001669$ 24 ; $\alpha(N+)=0.000551 8 \alpha(N)=0.000436 7; \alpha(O)=9.74\times10^{-5} 14;$
		471.0 <i>3</i>	67 13	3417.6 (20 ⁺)	(E2) ^a	0.0446	$\alpha(P)=1.616\times10^{-5}\ 23;\ \alpha(Q)=1.021\times10^{-6}\ 15$ $\alpha(K)=0.0284\ 4;\ \alpha(L)=0.01213\ 18;\ \alpha(M)=0.00313$ $5;\ \alpha(N+)=0.001037\ 15$ $\alpha(N)=0.000826\ 12;\ \alpha(O)=0.000181\ 3;$
4122.7	(23 ⁻)	233.8 3	100 20	3888.6 (22+)	(E1) ^a	0.0624	$\alpha(P)=2.87\times10^{-5} 4$; $\alpha(Q)=1.047\times10^{-6} 15$ $\alpha(K)=0.0500 8$; $\alpha(L)=0.00944 14$; $\alpha(M)=0.00225$ 4 ; $\alpha(N+)=0.000743 11 \alpha(N)=0.000589 9; \alpha(O)=0.0001312 19;$
		498.9 <i>4</i>	63 19	3624.0 (21 ⁻)	(E2) ^a	0.0389	$\alpha(P)=2.16\times10^{-5} 4$; $\alpha(Q)=1.334\times10^{-6} 19$ $\alpha(K)=0.0253 4$; $\alpha(L)=0.01010 15$; $\alpha(M)=0.00259$ 4 ; $\alpha(N+)=0.000860 13$ $\alpha(N)=0.000684 10$; $\alpha(O)=0.0001503 22$;
4374.7	(24+)	252.0 3	100 20	4122.7 (23 ⁻)	(E1) ^a	0.0524	$\alpha(P)=2.39\times10^{-5} 4$; $\alpha(Q)=9.28\times10^{-7} 13$ $\alpha(K)=0.0420 6$; $\alpha(L)=0.00786 12$; $\alpha(M)=0.00188$ β ; $\alpha(N+)=0.000619 9$ $\alpha(N)=0.000490 7$; $\alpha(O)=0.0001093 16$;
		486.3 3	57 11	3888.6 (22+)	(E2) ^a	0.0413	$\alpha(P)=1.81\times10^{-5} 3; \ \alpha(Q)=1.133\times10^{-6} 17$ $\alpha(K)=0.0266 4; \ \alpha(L)=0.01095 16; \ \alpha(M)=0.00282$ $4; \ \alpha(N+)=0.000934 14$ $\alpha(N)=0.000744 11; \ \alpha(O)=0.0001632 23;$
4636.3	(25-)	261.9 <i>4</i>	57 17	4374.7 (24 ⁺)			$\alpha(P)=2.59\times10^{-5} 4$; $\alpha(Q)=9.79\times10^{-7} 14$
4873.6	(26^+)	513.6 <i>4</i> 237.6 <i>4</i> 498.7 <i>4</i>	100 <i>30</i> 100 <i>30</i> 67 <i>20</i>	4122.7 (23 ⁻) 4636.3 (25 ⁻) 4374.7 (24 ⁺)			
5164.1	(27-)	290.7 4	07 20	4873.6 (26 ⁺)			
5384.5	(28+)	527.7 <i>4</i> 220.5 <i>4</i> 510.8 <i>4</i>	71 28 100 <i>30</i>	4636.3 (25 ⁻) 5164.1 (27 ⁻) 4873.6 (26 ⁺)			
5703.0	(29-)	318.2 ^b 4 538.9 4	25 100 <i>30</i>	5384.5 (28 ⁺) 5164.1 (27 ⁻)			
5912.0?	(30^+)	209.7 ^b 4 527.0 ^b 4	100 30	5703.0 (29-)			
6255.5?	(31-)	552.5 ^b 4		5384.5 (28 ⁺) 5703.0 (29 ⁻)			

- [†] Additional information 2. [‡] From (18 O, α 2n γ), unless otherwise noted. [#] From (14 C,2n γ) and (18 O, α 2n γ). [@] From 220 Fr β ⁻ decay. [&] From (14 C,2n γ). ^a From $\gamma(\theta)$ (18 O, α 2n γ), assuming stretched Q are E2 and stretched D are E1. ^b Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

 $^{220}_{88}{
m Ra}_{132}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

Band(A): $K^{\pi}=0^{+}$ g.s. rotational band

 $^{220}_{\,88}{\rm Ra}_{132}$

History

Type Author Citation Literature Cutoff Date
Full Evaluation Balraj Singh, M. S. Basunia, Jun Chen et al. , NDS 192,315 (2023)
25-Sep-2023

 $Q(\beta^{-})=-2302 \ 6$; $S(n)=6715 \ 6$; $S(p)=6246 \ 6$; $Q(\alpha)=6678 \ 4$ 2021Wa16

S(2n)=12095 9, S(2p)=10870 5 (2021Wa16).

Dataset by Balraj Singh, Jun Chen, and IAEA-ICTP-workshop participants: Diwanshu, S. Leblond, A. Rathi, P.S. Rawat, B. Rohila, and V. Vallet.

1948St42: ²²²Rn identified in ²³⁰U → ²²⁶Th → ²²²Rn α-decay chain; ²³⁰U produced in the bombardment of Th with 19-MeV deuterons and 38-MeV He ions at the Berkeley cyclotron facility. Measured half-life of the decay of ²²²Rn from α decay. Later works on the study of ²²²Rn decay: 1956As38 (also at Berkeley) and 1958To25 (at Gustaf Werner cyclotron facility in Uppsala). Theoretical structure calculations:

2023Zh13: calculated $T_{1/2}$ and branching ratios for α , 2α , and 14 C cluster decays, quadrupole, octupole and hexadecupole deformation-energy surfaces using relativistic Hartree-Bogoliubov model with the DD-PC1 functional and a separable pairing force.

2022Ta16: calculated neutron and proton energy gaps, quadrupole and octupole deformation parameters using Hartree-Fock-Bogolyubov approximation with Skyrme forces.

2022Uz01: calculated quadrupole and octupole deformation parameters, rms proton matter radii, the total energy, and ¹⁴C cluster decay rate using Skyrme Hartree–Fock+BCS theory with SLy4 and SkM* interactions.

2021Ku31: calculated energy differences, neutron and proton energy gaps, deformation parameters using Hartree-Fock-Bogoliubov theory with an effective Skyrme interaction.

2020No13: calculated potential energy surfaces in (β_2,β_3) plane using self-consistent mean-field (SCMF), and interacting boson model (IBM), energies of yrast positive-parity and negative-parity states, and relative energy splitting between positive- and negative-parity yrast bands, B(E1), B(E2), B(E3), transition quadrupole and octupole moments using Hartree-Fock-Bogoliubov approximation, based on Gogny-D1M energy density functional, and *sdf* interacting boson model (IBM) Hamiltonian for quadrupole-octupole coupling and collective excitations.

2019Zh50: calculated empirical proton-neutron interaction, B(E2), B(E3), binding energy, contour plot of total energy in (β_2,β_3) plane, neutron and proton single-particle levels by using the covariant density functional theory and the quadrupole-octupole collective Hamiltonian approach.

2015Bo05: calculated levels, J^{π} , B(E1), BE(2), B(E3) using analytic quadrupole octupole axially (AQOA) symmetric model using Davidson potential. Bohr collective Hamiltonian, and quadrupole plus octupole deformation.

2013De12: calculated β_2 and deformation parameter, CSM parameter, α -core QQ coupling parameter, I α to 2^+ , 4^+ and 6^+ states from 222 Ra decay in daughter nuclei, B(E2), rigidity parameter, E(4⁺)/E(2⁺) and E(6⁺)/E(4⁺) ratios, effective charge, hindrance factors using coherent state model.

2001Ch02: calculated rotational bands energy vs spin using reflection-asymmetric shell model for octupole-deformed nuclei.

1998Ra05: calculated high-spin levels, J^{π} , ground state and $K^{\pi}=0^{-}$ bands using phenomenological model.

1997Bu07, 1997Bu28: calculated levels, J^{π} , B(λ), deformation parameters, using mixed Saxon-Woods plus cubed Saxon-Woods cluster-core interaction.

1993Yo02, 1986Le05: calculations of B(E1)/B(E2) transition probabilities from the $K^{\pi}=0^{-}$ band.

1989Eg02: calculated octupole barrier energies, pairing energy, deformation parameters β_2 , β_4 and β_6 , dipole moment vs constrained quadrupole moment using microscopic model.

1988Ro02, 1987Ro08: calculated E1, E3 transition probabilities and the 0⁺, 1⁻ energy splitting, barrier heights, single particle and pairing energies vs octupole deformation, dipole vs octupole moments, B(E1)/B(E2) using constrained HF plus BCS method.

1988Ba48: calculated rotational band wave functions, quadrupole, and octupole deformations, energy splitting between the even- and odd-parity rotational bands using a collective Hamiltonian.

1987Na10: calculated levels, J^{π} , routhians, rotational bands, B(E1)/B(E2) ratios, shape dependence using cranking model.

1986Bo19: calculated quadrupole-octupole deformation energy surface, nonzero octupole moment using self-consistent Hartree-Fock plus BCS calculations.

Theoretical calculations for decay characteristics:

2023Zh13: calculated $T_{1/2}$ and branching ratios for α , 2α and ^{14}C cluster decays using relativistic Hartree-Bogoliubov model with the DD-PC1 functional and a separable pairing force, and proximity potential model for deformed nuclei.

2022Ka09: calculated T_{1/2} for bare nuclei and He-like ions using adiabatic approach.

2020Ni01: calculated α -branching ratio to vibrational states, and α -decay half-life using multichannel cluster model.

2010Ro08: calculated HFB mean-field energies and octupole collective inertial parameters as function of octupole moment, particle-particle correlation energies, B(E1) and B(E3) probabilities, and dipole moments using Hartree-Fock-Bogoliubov

approximation, and Barcelona-Catania-Paris energy density functionals.

Additional information 1.

Consult the NSR database for about 120 references for theoretical structure calculations, and about 230 theory references for α , 2α and ^{14}C decays, and other cluster decay characteristics of ^{222}Ra .

²²²Ra Levels

B(E1)(W.u.) and B(E2)(W.u.) deduced by evaluators from measured matrix elements in Coulomb excitation, except as noted. The $K^{\pi}=0^{+}$ g.s. band and the $K^{\pi}=0^{-}$ band at 242.11 keV have been interpreted as octupole parity-doublet bands.

Cross Reference (XREF) Flags

				A 222 Fr β^- decay (14.2 min) B 226 Th α decay (30.72 min) C 232 Th(136 Xe,X γ) D Coulomb excitation
E(level) [†]	J^{π}	T _{1/2} ‡	XREF	Comments
0.0#	0+	33.6 s 4	ABCD	$%\alpha$ =100; $%^{14}$ C=3.0×10 ⁻⁸ 10 Evaluated rms charge radius $< r^2 > ^{1/2} = 5.687$ fm 24 (2013An02). Evaluated $δ < r^2 > (^{222}$ Ra $^{-214}$ Ra $) = +0.8950$ fm 2 2 (2013An02). $T_{1/2}$: from 2012Po13, from analysis of 42 $α$ -decay curves, and with detailed discussion of uncertainties. Others: 36.17 s 10 (1995Ko54); 43 s 4 (1982Bo04); 39 s 4 (1958To25); 37.5 s 5 (1956As38); 38.0 s (1948St42). 14 C branching from measured values of $I(^{14}$ C)/ $I(α)$ = 3.7×10 $^{-10}$ 6 (1985Pr01), 3.1×10 $^{-10}$ 10(1985Ho21), and 2.3×10 $^{-10}$ 3 (1991Hu02). 1991Hu02 searched also for any 14 C branching to the 3 $^-$ state in 208 Pb at 2614 keV and deduced an upper limit of 2×10 $^{-10}$ % for its branch. Measured change in rms radius: $δ < r^2 > (^{214}$ Ra, 222 Ra)=+1.0449 fm 2 2(stat) 524 (syst) (2018Ly01). Measured isotope shifts: $δν(^{214}$ Ra, 222 Ra)= -29260 MHz 4; $δν(^{226}$ Ra, 222 Ra)=+12483 MHz 3 (2018Ly01). Isotope shifts and change in rms charge radius deduced from the measurement of hyperfine-structure spectra of the 7s 2 1S 0 →7s7p 3 P ₁ atomic transition using Collinear Resonance Ionization Spectroscopy at ISOLDE-CERN (2018Ly01). The isotope shift relative to 214 Ra was measured by 1988Ah02; the change in the nuclear mean square charge radius and the change in the quadrupole deformation parameter were deduced as $Δ < r^2 > = -0.198$, and $Δ < β^2 > ^{1/2} = 0.191$. See also 1987We03, 1985Ne09.
111.137# 20	2+	0.52 ns 4	ABCD	Q=-0.75 29 J^{π} : E2 γ to 0 ⁺ . $T_{1/2}$: from (α)(ce 111 γ)(t) in ²²⁶ Th α decay. Q: from diagonal E2 matrix element (111,2 ⁺ \rightarrow 111,2 ⁺)=-1.3 5 (2020Bu01) in Coulomb excitation.
242.157 [@] 17	1-	9.5 ps +21–16	AB D	J^{π} : E1 γ to 0^+ . $T_{1/2}$: other: <1.2 ns from $(\alpha)(242\gamma)(t)$ in 226 Th α decay.
301.495 [#] <i>34</i>	4+	135 ps +17-14	ABCD	Q=-1.59 29 J^{π} : E2 γ to 2+; band member. $T_{1/2}$: other: <1.4 ns from $(\alpha)(190\gamma)(t)$ in 226 Th α decay. Q: from diagonal E2 matrix element $(301,4^+ \rightarrow 301,4^+)$ =-1.3 5 (2020Bu01) in Coulomb excitation.

²²²Ra Levels (continued)

E(level) [†]	J^{π}	$T_{1/2}^{\ddagger}$	XREF	Comments
317.330 [@] 22	(3)-	4.7 ps +26–14	AB D	J^{π} : E1 206 γ to 2 ⁺ ; 75 γ to 1 ⁻ ; band member. The nuclear electric dipole moment was deduced by 1992Ru01 as 0.036 6 fm from the branching ratio for E1, E2 transitions deexciting the level. The electric quadrupole moment of 6.74 b 28 for both the g.s. and the K^{π} =0 ⁻ band was assumed.
473.87 [@] 4	(5^{-})	24 ps +5-9	ABCD	J^{π} : γ to 4^+ ; no β feeding from 2^- parent; band member.
549.97 [#] 19	(6^+)	34 ps +6-5	CD	J^{π} : gammas to 4^{+} and (5^{-}) ; band member.
702.92 [@] 27	(7^{-})	15 ps 5	CD	J^{π} : gammas to (6^+) and (5^-) ; band member.
842.93 [#] 25	(8+)	11.1 ps +31-24	CD	J^{π} : gammas to (6 ⁺) and (7 ⁻); band member.
914.174 <mark>&</mark> 26	(0^+)		В	J^{π} : gammas to 2^{+} and 1^{-} ; analogy to the 916, 0^{+} level in 224 Ra.
992.12 [@] <i>33</i>	(9-)	5.1 ps +17-13	CD	J^{π} : gammas to (8 ⁺) and (7 ⁻); band member.
1024.920 <mark>&</mark> 23	(2^{+})		AB	J^{π} : gammas to 0^+ and 4^+ .
1170.99 <i>4</i> 1171.55 <i>4</i>	$(3^-,4^+)$ $(1,2^+)$		A A	J^{π} : gammas to (3) ⁻ , 4 ⁺ and (5 ⁻); log ft =8.25 +39–22 from 2 ⁻ parent. J^{π} : γ to 0 ⁺ .
1173.02 [#] <i>30</i>	(10^+)	5.0 ps +24-17	CD	J^{π} : gammas to (8^+) and (9^-) ; band member.
1225.23 5	$(1,2^+)$		A	J^{π} : γ to 0^{+} .
1265.05 <i>4</i> 1310.24 8	$(2^+,3)$ $(0^+,1,2,3^-)$		A A	J^{π} : gammas to 2 ⁺ and 4 ⁺ ; log ft =7.40 9 from 2 ⁻ parent. J^{π} : gamma to 1 ⁻ ; log ft =8.52 $I3$ from 2 ⁻ parent.
1330.5 [@] 4	$(0^{-},1,2,3^{-})$ (11^{-})	3.6 ps +18-12	CD	J^{π} : gammas to (10 ⁺) and (9 ⁻); band member.
1360.88 9	$(1^{-},2,3)$	3.0 ps 110 12	A	J^{π} : gammas to (10°) and $(3)^{-}$; log $ft=8.03\ 10^{\circ}$ from 2^{-} parent.
1375.77 8	$(1,2,3^{-})$		A	J^{π} : gamma to 1 ⁻ ; log ft =8.15 II from 2 ⁻ parent.
1402.596 <i>31</i>	$(2^+,3^-)$		A	J^{π} : gammas to 1^{-} and 4^{+} .
1432.73 6	$(1,2,3^{-})$		A	J^{π} : gammas to 2 ⁺ and 1 ⁻ ; log ft =7.42 9 from 2 ⁻ parent.
1439.994 <i>34</i> 1499.49 <i>5</i>	(3^{-}) $(1^{-},2,3^{-})$		A A	J^{π} : gammas to 1 ⁻ and (5 ⁻); log ft =7.05 $I0$ from 2 ⁻ parent. J^{π} : gammas to 1 ⁻ and (3) ⁻ ; log ft =7.34 9 from 2 ⁻ parent.
1536.8# 5	(12^{+})	4.6 ps +26-16	CD	J^{π} : gammas to (10^+) and (11^-) ; band member.
1556.04 7	(2^{+})	4.0 ps 120 10	A	J^{π} : gammas to 0^+ and 4^+ .
1619.62 9	$(1,2,3^{-})$		Α	J^{π} : gammas to 2 ⁺ and 1 ⁻ ; log ft =7.38 12 from 2 ⁻ parent.
1644.88 <i>4</i>	$(2^+,3^-)$		A	J^{π} : gammas to 1 ⁻ and 4 ⁺ ; log ft =6.91 +34-22 from 2 ⁻ parent.
1710.0 [@] 5	(13-)		C	J^{π} : gammas to (12^+) and (11^-) ; band member.
1754.36 5	(3^{-})		A	J^{π} : gammas to 2 ⁺ , 4 ⁺ , and (5 ⁻); log ft =6.55 12 from 2 ⁻ parent.
1821.56 <i>20</i> 1841.20 <i>6</i>	$(1,2,3^-)$ $(1,2,3^-)$		A A	J^{π} : γ to 1 ⁻ ; log $ft=7.0 + 19 - 16$ from 2 ⁻ parent. J^{π} : γ to 1 ⁻ ; log $ft=6.09 + 37 - 25$ from 2 ⁻ parent. If $J^{\pi}(1645 \text{ level})=3^-$,
			A	then $J^{\pi}(1841) \neq 1^+$.
1932.9 [#] 6	(14^{+})		C	J^{π} : gamma to (12 ⁺); band member.
2125.0 [@] 6	(15^{-})		C	J^{π} : gammas to (14 ⁺) and (13 ⁻); band member.
2358.4 [#] 7	(16^+)		C	J^{π} : gamma to (14 ⁺); band member.
2569.8 [@] 7	(17^{-})		C	J^{π} : gammas to (16 ⁺) and (15 ⁻); band member.
2810.7 [#] 9	(18^{+})		С	J^{π} : gamma to (16 ⁺); band member.
3040.6 [@] 9	(19 ⁻)		C	J^{π} : gamma to (17 ⁻); band member.
3287.4 [#] 10	(20^{+})		С	J^{π} : gamma to (18 ⁺); band member.

[†] From a least-squares fit to E γ values. Uncertainties of some E γ values have been increased (as specified under comment at each γ) in the fitting due to poor fit and the resulting reduced χ^2 =2.2, compared to 4.9 without those Δ E γ adjustments.

[‡] For levels above 111.1, half-lives have been deduced by evaluators from measured matrix elements in Coulomb excitation, and adopted γ -ray branching ratios.

[#] Band(A): $K^{\pi} = 0^{+}$ g.s. band.

[@] Band(B): K^{π} =0⁻ octupole vibrational band. Weighted averaged of D₀/Q₀=0.00402 b^{1/2} 11 (1999Co02). Average electric dipole moment D₀=0.027 eb^{1/2} 4 from J=7-15 (1999Co02).

[&]amp; Band(C): $K^{\pi} = (0^+)$ band.

γ (222Ra)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	α &	Comments
111.137	2+	111.15 3	100	0.0	0+	E2	6.12 9	B(E2)(W.u.)=112.8 +96-82 E _γ : unweighted average of 111.11 <i>I</i> from 222 Fr β^- decay, 111.15 <i>I</i> from 226 Th α
242.157	1-	131.01 3	31.2 15	111.137	2+	(E1)	0.2500 35	decay, and 111.2 2 from (136 Xe,X γ). B(E1)(W.u.)=0.00186 +40-34 E $_{\gamma}$: unweighted average of 130.98 <i>I</i> from 222 Fr β^- decay and 131.04 <i>I</i> from 226 Th α decay.
								I _y : from $^{\overline{226}}$ Th α decay. Other: 31.8 31 from 222 Fr β^- decay. Mult.: from intensity balance in 226 Th α decay.
		242.13 2	100.0 30	0.0	0+	E1	0.0575 8	B(E1)(W.u.)=0.00095 +19-17 E _{γ} : unweighted average of 242.11 <i>1</i> from 222 Fr β^- decay and 242.14 <i>1</i> from 226 Th α decay.
301.495	4+	190.42 <i>14</i>	100	111.137	2+	E2	0.700 10	I _y : from ²²⁶ Th α decay. Other: 100 10 from ²²² Fr β ⁻ decay. B(E2)(W.u.)=123 14 E _y : unweighted average of 190.24 2 from ²²² Fr β ⁻ decay, 190.31 1 from ²²⁶ Th α
317.330	(3)-	75.13 2 206.22 <i>4</i>	0.017 <i>4</i> 100.0 <i>32</i>	242.157 111.137		[E2] E1	36.8 <i>5</i> 0.0839 <i>12</i>	decay, and 190.7 2 from (136 Xe,X γ). B(E2)(W.u.)=98 +49-40 B(E1)(W.u.)=0.0041 +17-14 E $_{\gamma}$: unweighted average of 206.18 2 from 222 Fr β^- decay and 206.25 I from 226 Th
473.87	(5 ⁻)	(156.5 1)	4.3 23	317.330	(3)-	[E2]	1.480 21	α decay. I_{γ} : from 226 Th α decay. Other: 100 10 from 222 Fr β^- decay. B(E2)(W.u.)=109 + 30-26 E_{γ} : from level-energy difference. I_{γ} : from $B(E2,157\gamma)/B(E1,172\gamma)$ ratio in Coulomb excitation; this γ has not been
		172.37 2	100	301.495	4+	[E1]	0.1288 18	observed. B(E1)(W.u.)=0.00123 +60-24 E _{γ} : others: 172.3 2 from ²²⁶ Th α decay
549.97	(6+)	77	29 4	473.87	(5-)	[E1]	0.2211 <i>31</i>	and 172.2 5 from (136 Xe,X γ). B(E1)(W.u.)=0.00211 +44-40 E $_{\gamma}$,I $_{\gamma}$: from Coulomb excitation.
		248.4 [@] 2	100	301.495	4+	[E2]	0.276 4	B(E2)(W.u.)= $135 + 24 - 21$ I _v : from Coulomb excitation.
702.92	(7-)	153.1 6 5	100 [@] 32	549.97	(6 ⁺)	[E1]	0.1715 28	B(E1)(W.u.)=0.0024 +12-7
942.02	(o+)	229.3 [@] 5 140.1 [@] 2	18 [@] 6 100 [@] 18	473.87	(5^{-})	[E2]	0.362 6	B(E2)(W.u.)=95 +74-38 B(E1)(W.u.)=0.00265 +75, 66
842.93	(8 ⁺)	140.1° 2 292.9 [@] 2	92 [@] 8	702.92 549.97	(7^{-}) (6^{+})	[E1] [E2]	0.2126 <i>31</i> 0.1636 <i>23</i>	B(E1)(W.u.)=0.00265 +75-66 B(E2)(W.u.)=119 +36-28
914.174	(0^+)	672.02 2	100 7	242.157		[22]	0.1030 23	B(L2)(W.u.)=117 130 20
		802.7 [†] 1	13 8	111.137	2+			E_{γ} : uncertainty multiplied by a factor of 2 in the fitting; level-energy difference=803.036.
992.12	(9-)	149.3 [@] 5	100 [@] 16	842.93	(8 ⁺)	[E1]	0.1822 30	B(E1)(W.u.)=0.0049 +18-14
		289.0 [@] 5	88 [@] 10	702.92	(7-)	[E2]	0.1705 26	B(E2)(W.u.)= $2.7 \times 10^2 + 10 - 7$

γ ⁽²²²Ra) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\sharp}$	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	α &	Comments
1024.920	(2+)	707.54 3	100 5	317.330	(3)-			E _{γ} : other: 707.52 9 from ²²⁶ Th α decay. I _{γ} : other: 100 9 from ²²⁶ Th α
		723.45 6	3.4 5	301.495	4+			decay. E_{γ} : weighted average of 723.45 4 from 222 Fr β^- decay and 722.9 4 from 226 Th α decay. I_{γ} : other: 15 6 from 226 Th α
		782.77 3	98 9	242.157	1-			decay is discrepant. E_{γ} : other: 783.0 5 from 226 Th α decay. I_{γ} : other: 112 25 from 226 Th α decay.
		913.69 5	16.9 23	111.137	2+			E _{γ} : other: 913.9 4 from ²²⁶ Th α decay. I _{γ} : other: 66 33 from ²²⁶ Th α decay is discrepant.
		1025.02 8	6.7 11	0.0	0^{+}			decay is discrepant.
1170.99	(3 ⁻ ,4 ⁺)	696.88 [†] 5	29 5	473.87	(5 ⁻)			E_{γ} : uncertainty multiplied by a factor of 2 in the fitting; level-energy difference=697.13.
		853.78 8	100 6	317.330	$(3)^{-}$			
	(4 a 4)	869.6 2	81 25	301.495				
1171.55	$(1,2^+)$	929.47 8 1060.33 <i>5</i>	15 2 100 8	242.157 111.137				
		1171.69 8	53 6	0.0	0+			
1173.02	(10^+)	180.9 [@] 2	100 [@] 23	992.12	(9 ⁻)	[E1]	0.1147 16	B(E1)(W.u.)=0.0032 +16-11
1173.02	(10)	330.1 @ 2	75 [@] 7	842.93	(8 ⁺)	[E1]	0.1147 16	B(E2)(W.u.)=139 +76-48
1225.23	$(1,2^+)$	982.90 8	97 19	242.157	. ,	[12]	0.1147 10	B(E2)(W.u.)=139 +70-40
	(-,-)	1114.26 8	100 19	111.137				
		1225.24 8	38 7	0.0	0^{+}			
1265.05	$(2^+,3)$	963.61 6	26 4	301.495				
1310.24	$(0^+,1,2,3^-)$	1153.87 <i>5</i> 1068.08 <i>8</i>	100 10	111.137 242.157				
1310.24	$(0^{-},1,2,3^{-})$ (11^{-})	157.4 [@] 5	64 [@] 10	1173.02	(10^+)	[E1]	0.1604 26	B(E1)(W.u.)=0.0046 +24-16
1550.5	(11)	338.3 [@] 5	100 [@] 10	992.12	(9^{-})	[E1]	0.1004 20	B(E1)(W.u.)=0.0040 +24=10 $B(E2)(W.u.)=2.4\times10^2 +13=8$
1360.88	$(1^-,2,3)$	1043.60 9	100 10	317.330		[E2]	0.1009 10	B(E2)(W.u.)=2.4×10 +13=0
		1249.1 [†] <i>I</i>	60 11	111.137	2+			E_{γ} : uncertainty multiplied by a factor of 3 in the fitting; level-energy difference=1249.74.
1375.77 1402.596	(1,2,3 ⁻) (2 ⁺ ,3 ⁻)	1133.61 8 231.7 2 377.64 4 1085.20 5 1101.09 5 1160.52 8 1291.61 8	15.2 <i>16</i> 24 2 92 <i>12</i> 100 <i>10</i> 14.4 <i>14</i> 9.6 <i>16</i>	242.157 1170.99 1024.920 317.330 301.495 242.157 111.137	(3 ⁻ ,4 ⁺) (2 ⁺) (3) ⁻ 4 ⁺ 1 ⁻			
1432.73	$(1,2,3^{-})$	1190.4 <i>1</i>	8.5 15	242.157				
		1321.65 <i>6</i>	100 8	111.137	2+			
1439.994	(3-)	268.99 <i>4</i>	13 3	1170.99	$(3^-,4^+)$			
		415.05 <i>4</i>	11 2 23 5	1024.920				
		966.24 <i>9</i> 1122.41 [†] <i>9</i>	40 <i>7</i>	473.87	(5 ⁻)			E - uncontainty multiplied by a
		1122.41 9	40 /	317.330	(3)			E_{γ} : uncertainty multiplied by a

γ ⁽²²²Ra) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	α&	Comments
								factor of 2 in the fitting;
1439.994	(3-)	1138.47 5	100 10	301.495				level-energy difference=1122.661.
1499.49	$(1^-,2,3^-)$	1197.99 8 474.45 9	30 <i>5</i> 100 <i>10</i>	242.157 1024.920				
	())-)	1182.05 8	87 10	317.330	$(3)^{-}$			
		1257.5 <i>I</i> 1388.5 <i>I</i>	33 <i>6</i> 76 <i>10</i>	242.157 111.137				
1536.8	(12^{+})	206.2 [@] 5	64 [@] 12	1330.5	(11-)	[E1]	0.0839 13	B(E1)(W.u.)=0.00164 +93-62
1556.04	(2+)	363.9 [@] 5 1238.60 8	100 [@] 10 100 13	1173.02 317.330	(10^+) $(3)^-$	[E2]	0.0871 <i>13</i>	B(E2)(W.u.)=136 +78-48
1000.01	(2)	1254.4 2	26 3	301.495	4+			
		1445.2 2 1556.5 2	69 <i>11</i> 59 <i>11</i>	111.137 0.0	2 ⁺ 0 ⁺			
1619.62	$(1,2,3^{-})$	1377.4 <i>1</i>	100 15	242.157	1-			
1644.88	$(2^+,3^-)$	1508.7 <i>2</i> 619.95 <i>4</i>	24 <i>7</i> 31 <i>4</i>	111.137 1024.920				
		1327.58 <i>6</i>	100 9	317.330	$(3)^{-}$			
		1343.3 <i>1</i> 1402.5 2	10.4 <i>17</i> 27 <i>3</i>	301.495 242.157				
17100	(12=)	1534.1 2 173.1 [@] 5	17 <i>3</i> 82 ^{@} <i>12</i>	111.137		FD41	0.1255.20	
1710.0	(13 ⁻)	173.1° 5 379.6° 5	82 [©] 12 100 [@] 9	1536.8 1330.5	(12^+) (11^-)	[E1] [E2]	0.1275 <i>20</i> 0.0776 <i>11</i>	
1754.36	(3-)	351.75 <i>4</i>	52 11	1402.596		[12]	0.0770 11	
		1280.99 [†] 9	34 7	473.87	(5 ⁻)			E_{γ} : uncertainty multiplied by a factor of 3 in the fitting; level-energy difference=1280.49.
		1436.4 [†] <i>I</i>	100 10	317.330	(3)-			E_{γ} : uncertainty multiplied by a factor of 3 in the fitting; level-energy difference=1437.03.
		1453.4 [†] <i>I</i>	45 9	301.495	4+			E _γ : uncertainty multiplied by a factor of 3 in the fitting; level-energy difference=1452.86.
		1643.9 [†] 2	44 11	111.137	2+			E_{γ} : uncertainty multiplied by a factor of 2 in the fitting;
1821.56	$(1,2,3^{-})$	1579.4 2	100	242.157				level-energy difference=1643.22.
1841.20	$(1,2,3^{-})$	196.31 <i>4</i> 1599.6 [†] 2	100 13	1644.88	$(2^+,3^-)$			B
			16 5	242.157	1			E_{γ} : uncertainty multiplied by a factor of 2 in the fitting; level-energy difference=1599.04.
1932.9	(14^{+})	396.0 [@] 5	100	1536.8	(12^{+})	[E2]	0.0693 10	
2125.0	(15^{-})	192.1 [@] 5 415.0 [@] 5	68 [@] 30 100 [@] 12	1932.9 1710.0	(14^+) (13^-)	[E1] [E2]	0.0993 <i>15</i> 0.0613 <i>9</i>	
2358.4	(16^+)	425.5 [@] 5	100 12	1932.9	(13^{+})	[E2]	0.0013 9	
2569.8	(17-)	211.4 [@] 5		2358.4	(16^{+})			
2016 =	(104)	444.8 [@] 5	100 [@]	2125.0	(15^{-})	[E2]	0.0514 7	
2810.7 3040.6	(18^+) (19^-)	452.3 [@] 5 470.8 [@] 5	100 100	2358.4 2569.8	(16^+) (17^-)	[E2] [E2]	0.0493 <i>7</i> 0.0447 <i>6</i>	
3287.4	(20^{+})	476.7 [@] 5	100	2810.7	(17) (18^+)	[E2]	0.0434 6	

- † Poor fit; uncertainty multiplied by a factor in the fitting. ‡ From 222 Fr β^- decay, unless otherwise noted. # From ce data in 226 Th α decay, unless otherwise noted. @ From 232 Th(136 Xe,X γ).

[&]amp; Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

Level Scheme

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{222}_{88} Ra_{134}$

	History		
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh, Sukhjeet Singh	ENSDF	08-Mar-2022

 $Q(\beta^-)=-1408 \ 4$; $S(n)=6478.7 \ 23$; $S(p)=6845.5 \ 21$; $Q(\alpha)=5788.92 \ 15$ 2021Wa16 $S(2n)=11637 \ 5$, $S(2p)=12124.1 \ 19$ (2021Wa16).

In the past, ²²⁴Ra was called ThX, and was first identified by Rutherford and Soddy, Phil. Mag. 4, 370 (1902), extracted from thorium with an estimated half-life of ≈4 d. Later studies of decay of ²²⁴Ra: 1938Le07, 1962Ll02, 1962Wa28, 1971Jo14, 1977Ku15, 2004Sc04.

2014Bo26: mass determination with Penning-trap mass spectrometer ISOLTRAP facility at ISOLDE, CERN. Measured mass excess=18826 28.

Theoretical calculations: 132 references extracted from the NSR database are listed in document records. Additional information 1.

²²⁴Ra Levels

Cross Reference (XREF) Flags

			B 224 C 228	Fr β^- decay (3.33 min) E 226 Ra(p,t) Ac ε decay (2.78 h) F 226 Ra($\alpha,\alpha'2n\gamma$) Th α decay (1.9125 y) G 226 Ra(58 Ni, 60 Ni γ) ulomb excitation H 232 Th(136 Xe,X γ)
E(level) [†]	J^π	$T_{1/2}$	XREF	Comments
0#	0+	3.6316 d 23	ABCDEFGH	 %α=100; %¹⁴C=4.0×10⁻⁹ 10 (1992Ar02) %¹⁴C=4.0×10⁻⁹ 10 (1992Ar02), 6.5×10⁻⁹ 10 (1991Ho15,1991Ho24), 4.3×10⁻⁹ 12 (1985Pr01); fine structure looked for, but not observed (1991Ho15). Evaluated rms charge radius=5.705 fm 26 (2013An02). Measured change in rms radius: δ<r²>(2¹⁴Ra,²²⁴Ra)=+1.2680 fm² 2 (stat) 636 (syst) (2018Ly01, hyperfine structure by collinear laser resonance ionization spectroscopy at ISOLDE-CERN).</r²> Measured isotope shifts: δν(²¹⁴Ra,²²⁴Ra)=-35652 MHz 4; δν(²²⁶Ra,²²⁴Ra)=+6092 MHz 3 (2018Ly01, hyperfine structure by collinear laser resonance ionization spectroscopy at ISOLDE-CERN). δ<r²>=+1.09 11, relative to ²¹⁴Ra (1988Ah02); other: 1989Ne03.</r²> T_{1/2}: weighted average of 3.6262 d 48 (2021Be13, National Physical Laboratory, U.K., from 238.6γ, 241.0γ and 583.2γ decay curves using HPGe detector); 3.6323 d 27 (2021Be13, NIST, from 238.6γ, 241.0γ and 583.2γ decay curves using HPGe detector); 3.6321 d 28 (2021Be13, NIST using an ionization chamber); and 3.6319 d 23 (2004Sc04, 4π ionization chamber at the Physikalisch-Technische Bundesanstalt-PTB). Other measurements: 3.66 d 4 (1971Jo14), 3.62 d I (1962Ll02), 3.64 d (1938Le07) are in agreement with the recommended value but much less precise.
84.372 [#] 3	2+	0.748 ns <i>19</i>	ABCDEFGH	$ μ$ =+0.92 22 (1973He13,2020StZV) $ J^π$: E2 $γ$ to 0 ⁺ . $ μ$: from IPAC in ²²⁸ Th $α$ decay (1973He13). $ B(E2)$ =3.96 12 from Coul. ex. (2013Ga23,2012GaZV). $ Q_2$ =6.32 10, $β_2$ =0.154 (2012GaZV,2013Ga23). $ T_{1/2}$: from $αγ(t)$ in ²²⁸ Th $α$ decay.
215.985 [@] 4	1-		ABCDE GH	J^{π} : E1 γ to 0^+ .
250.782 [#] 5	4+	0.181 ns 9	ABCD FGH	J^{π} : $\alpha \gamma(\theta)$ from 0^+ parent (228Th α decay, 1989Po19). $T_{1/2}$: from $\alpha \gamma(t)$ in 228Th α decay.
290.352 [@] 21	3-		ABCD FGH	J^{π} : E1 γ to 2^+ ; no γ to 0^+ ; HF=47 for α branch from 0^+ ; no β^- decay from 1^-

224Ra Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
				224 Fr; member of $K^{\pi}=0^{-}$ octupole band.
433.02 [@] 7	(5)-		A CD FGH	J^{π} : E1 γ to 4 ⁺ ; no γ to levels with J<3; member of $K^{\pi}=0^-$ octupole
				band.
ш.				γ -ray branching ratio is in disagreement in various experiments.
479.12 [#] <i>10</i>	6+	52.7 ps 42	CDEFGH	J^{π} : γ to 4 ⁺ ; member of g.s. band.
540.50 @ 30	·=->			$T_{1/2}$: from 2012GaZV.
640.69 [@] 18	(7-)		D FGH	J^{π} : (E2) γ to (5) ⁻ ; member of K^{π} =0 ⁻ octupole band.
754.88 [#] 20	8+	20.8 ps +49–55	D FGH	J^{π} : γ to (6 ⁺); member of g.s. band. $T_{1/2}$: from 2012GaZV.
906.17 [@] 25	(9^{-})		D FGH	J^{π} : γ to (7 ⁻); member of $K^{\pi}=0^{-}$ octupole band.
916.38 <i>6</i>	0^{+}		ACE	J^{π} : $L(p,t)=0$.
965.65 6	2+		A D	J^{π} : γ rays to 0^+ and 2^+ ; populated in Coulomb excitation. Possible bandhead of $K^{\pi}=2^+$ γ -vibrational band.
992.70 6	(2+)		A C	J^{π} : γ rays to 2 ⁺ and 4 ⁺ ; possible γ to 0 ⁺ ; HF≈6.8 for α branch from 0 ⁺ .
1053.041 23	1-		A	J^{π} : 1+E2 γ to 1 ⁻ ; γ to 0 ⁺ .
1068.5 [#] 3	10 ⁺		D FGH	J^{π} : γ to (8^+) ; member of g.s. band.
1090.087 24	$(2,3)^{-}$		A	J^{π} : M1(+E2) γ to (3) ⁻ ; γ rays to 1 ⁻ and 2 ⁺ .
1187.1 <i>4</i>	$0^+,1,2$		A	J^{π} : γ rays to 1 ⁻ and 2 ⁺ ; $\log ft = 8.2$ from 1 ⁽⁻⁾ .
1216.89 <i>19</i>	$(1^-,2)$		A	J^{π} : γ rays to 1 ⁻ and (3) ⁻ ; log ft =8.1 from 1 ⁽⁻⁾ .
1220.7 [@] 4	(11-)		FGH	J^{π} : γ to (9 ⁻); member of $K^{\pi}=0^-$ octupole band.
1223 4	0 ⁺		E	J^{π} : L(p,t)=0. J^{π} : γ rays to 2 ⁺ and 4 ⁺ ; log f t=7.76 11, log f ^{1u} t=8.5 from 1 ⁽⁻⁾ .
1348.22 <i>9</i> 1378.41 <i>3</i>	2 ⁺ ,3 ⁺ 1 ⁻		A A	J^{π} : M1 γ to 1 ⁻ ; γ rays to 0 ⁺ and 2 ⁺ .
1379.04 6	$(1^+,2^+)$		A	J^{π} : M1 γ to (2 ⁺); γ to 1 ⁻ ; log ft =6.87 from 1 ⁽⁻⁾ .
1389.93 15	$(0^+,1,2)$		A	J^{π} : γ rays to 1 ⁻ and 2 ⁺ ; $\log ft = 7.59$ from 1 ⁽⁻⁾ .
1413.7 [#] 4	(12^+)		FGH	J^{π} : possible member of g.s. band.
1425.152 20	$(0,1,2)^{-}$		A	J^{π} : M1 γ rays to 1 ⁻ and (2,3) ⁻ .
1435.54 <i>3</i>	1-		A	J^{π} : M1 γ to 1 ⁻ ; γ to 0 ⁺ .
1437.11 6	2+		A	J^{π} : γ rays to 0^+ and 4^+ .
1553.67 14	1,2+		A	J^{π} : γ to 0^+ g.s.
1573.6 [@] 6	(13 ⁻)		GH	J^{π} : possible member of $K^{\pi}=0^-$ octupole band.
1614.42 <i>17</i> 1627 <i>3</i>	$(1^-,2)$		A	J^{π} : γ rays to (3) ⁻ and 1 ⁻ ; log ft =7.80 from 1 ⁽⁻⁾ .
1627 3 1652.49 <i>4</i>	2+		E A	J^{π} : γ rays to 0^+ and 4^+ .
1658.49 9	$1^{(-)},2^{+}$		A	J^{π} : γ rays to 0^+ and $(3)^-$.
1736.44 16	1,2+		A	J^{π} : γ to 0^+ g.s.
1754.84 9	$0^+, 1, 2^{\ddagger}$		A	J^{π} : γ rays to 1^- and 2^+ .
1761 <i>4</i>	, ,		E	E(level): possibly the same as the 1755 level.
1787.5 [#] 6	(14^{+})		Н	
1789.61 <i>6</i>	1,2+		A	J^{π} : γ rays to 0^+ and 2^+ .
1796.71 9	$(1^-,2)^{\ddagger}$		A	J^{π} : γ rays to 1 ⁻ and (3) ⁻ .
1818.06 <i>19</i>	$(1^-,2)^{\ddagger}$		A	J^{π} : γ rays to 1 ⁻ and (3) ⁻ .
1838.53 <i>10</i>	$0,1,2^{\ddagger}$		A	J^{π} : γ to 1 ⁻ level.
1896.3 <i>3</i> 1949 <i>4</i>	$(1^-,2)^{\ddagger}$		A E	J^{π} : γ rays to 1 ⁻ and (3) ⁻ .
1964.7 [@] 8	(15^{-})		Н	
1969.92 10	$(0,1,2)^{\ddagger}$		A	J^{π} : γ to 1 ⁻ .
2000.26 17	$(0,1,2)^{\ddagger}$ $(1^{-},2)^{\ddagger}$			J^{π} : γ to 1 - and (3)
	$0,1,2^{\ddagger}$		A	
2043.0 3	0,1,2* 2+#		A	J^{π} : γ to 1 ⁻ .
2052.3 4	Z · 🕶		A	J^{π} : γ rays to 4^+ and 1^- .

²²⁴Ra Levels (continued)

E(level) [†]	\mathbf{J}^{π}	XREF	Comments
2077.3 4	$0^+,1,2^{\ddagger}$	A	J^{π} : γ rays to 1^{-} and 2^{+} .
2117.4 <i>4</i>	1,2+	A	J^{π} : γ to 0^+ g.s.
2135.3 5	$0,1,2^{\ddagger}$	A	J^{π} : γ to 1 ⁻ .
2187.7 [#] 8	(16^+)	1	H
2229.4 <i>4</i>	$(1^-,2)^{\ddagger}$	A	J^{π} : γ rays to 1 ⁻ and (3) ⁻ .
2246.5 <i>3</i>	$1,2^{+}$	A	J^{π} : γ to 0^+ g.s.
2368.7 4	$1,2^{+}$	A	J^{π} : γ to 0^+ g.s.
2384.1 [@] 9	(17^{-})	1	H
2612.1 [#] <i>10</i>	(18^{+})]	I .
2827.0 [@] 11	(19^{-})	1	H
3059.2 [#] 11	(20^+)	1	H
3289.8 [@] 12	(21^{-})	1	H
3526.3 [#] 12	(22^{+})	1	H
3769.6 [@] 13	(23^{-})	1	H
4011.4 [#] <i>13</i>	(24^{+})	1	H
4266.4 [@] 14	(25^{-})	1	H
4512.2 [#] <i>14</i>	(26^+)	1	H
4778.0? [@] <i>15</i>	(27^{-})	1	H
5030.4? [#] <i>15</i>	(28^{+})	1	I

 $^{^{\}dagger}$ From least-squares fit to E γ data for levels deduced from γ -ray data. ‡ log ft < 7.8, log $f^{1u}t < 7.8$ from 1 $^{-}$ 224 Fr rules out J=3. $^{\#}$ Band(A): $K^{\pi} = 0^{+}$ g.s. band. $^{@}$ Band(B): $K^{\pi} = 0^{-}$ band.

γ (²²⁴Ra)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	α@	Comments
84.372	2+	84.373 3	100	0	0+	E2 [‡]	21.2	$\alpha(L)$ =15.57 22; $\alpha(M)$ =4.24 6 $\alpha(N)$ =1.119 16; $\alpha(O)$ =0.238 4; $\alpha(P)$ =0.0343 5; $\alpha(Q)$ =0.0001015 15 B(E2)(W.u.)=99 3
215.985	1-	131.613 4	51.4 6	84.372	2+	E1 [‡]	0.247	$\alpha(K)=0.194 \ 3; \ \alpha(L)=0.0406 \ 6; \ \alpha(M)=0.00977 \ 14$ $\alpha(N)=0.00254 \ 4; \ \alpha(O)=0.000559 \ 8; \ \alpha(P)=8.92\times10^{-5} \ 13; \ \alpha(Q)=4.80\times10^{-6} \ 7$
		215.983 5	100.0 4	0	0+	E1 [‡]	0.0752	$\alpha(K)$ =0.0600 9; $\alpha(L)$ =0.01148 16; $\alpha(M)$ =0.00274 4 $\alpha(N)$ =0.000717 10; $\alpha(O)$ =0.0001593 23; $\alpha(P)$ =2.62×10 ⁻⁵ 4; $\alpha(Q)$ =1.587×10 ⁻⁶ 23
250.782	4+	166.410 <i>4</i>	100	84.372	2+	E2 [‡]	1.164	B(E2)(W.u.)=140 7 α (K)=0.225 4; α (L)=0.691 10; α (M)=0.187 3
290.352	3-	74.4 <i>I</i>	1.4 4	215.985	1-	[E2]	38.5	$\alpha(N)$ =0.0495 7; $\alpha(O)$ =0.01056 15; $\alpha(P)$ =0.001553 22; $\alpha(Q)$ =1.200×10 ⁻⁵ 17 $\alpha(L)$ =28.3 5; $\alpha(M)$ =7.70 12 $\alpha(N)$ =2.03 4; $\alpha(O)$ =0.431 7; $\alpha(P)$ =0.0621 10; $\alpha(Q)$ =0.0001645 25
		205.936 27	100.0 10	84.372	2+	E1	0.0841	I _γ : averaging by LWM. α (K)=0.0671 <i>10</i> ; α (L)=0.01293 <i>19</i> ; α (M)=0.00309 <i>5</i> α (N)=0.000807 <i>12</i> ; α (O)=0.000179 <i>3</i> ; α (P)=2.94×10 ⁻⁵ <i>5</i> ; α (Q)=1.763×10 ⁻⁶ <i>25</i>
		290.5		0	0+	[E3]	1.084	$\alpha(K)$ =0.196 3; $\alpha(L)$ =0.647 9; $\alpha(M)$ =0.180 3 $\alpha(N)$ =0.0481 7; $\alpha(O)$ =0.01035 15; $\alpha(P)$ =0.001552 22; $\alpha(Q)$ =1.88×10 ⁻⁵ 3
433.02	(5)-	142.66 10	56 13	290.352	3-	[E2]	2.14	E _γ : from Coulomb excitation. $\alpha(K)$ =0.279 4; $\alpha(L)$ =1.370 20; $\alpha(M)$ =0.372 6 $\alpha(N)$ =0.0984 15; $\alpha(O)$ =0.0210 3; $\alpha(P)$ =0.00307 5; $\alpha(Q)$ =1.83×10 ⁻⁵ 3 I _γ : from Coulomb excitation based on extensive data for yield measurements. This value agrees with 54 19 from ($^{58}Ni,^{60}Ni\gamma$), but not with 26 10 from α decay and 139 39 from ($^{136}Xe,X\gamma$). Weighted average of all four measurements is 43 13 with reduced χ^2 =3.4 as compared to critical χ^2 =2.6.
		182.29 10	100 12	250.782	4+	[E1]	0.1126	$\alpha(K)$ =0.0894 13; $\alpha(L)$ =0.01757 25; $\alpha(M)$ =0.00421 6 $\alpha(N)$ =0.001098 16; $\alpha(O)$ =0.000243 4; $\alpha(P)$ =3.96×10 ⁻⁵ 6; $\alpha(Q)$ =2.31×10 ⁻⁶ 4
		348.5		84.372	2+	[E3]	0.508	$\alpha(K)$ =0.1352 19; $\alpha(L)$ =0.273 4; $\alpha(M)$ =0.0753 11 $\alpha(N)$ =0.0200 3; $\alpha(O)$ =0.00433 6; $\alpha(P)$ =0.000656 10; $\alpha(Q)$ =1.039×10 ⁻⁵ 15
479.12	6+	228.3 1	100	250.782	4+	[E2]	0.367	E _γ : from Coulomb excitation. $\alpha(K)$ =0.1245 18; $\alpha(L)$ =0.179 3; $\alpha(M)$ =0.0480 7 $\alpha(N)$ =0.01269 18; $\alpha(O)$ =0.00273 4; $\alpha(P)$ =0.000407 6; $\alpha(Q)$ =5.37×10 ⁻⁶ 8
640.69	(7-)	160.5 5	13 4	479.12	6+	[E1]	0.1530 25	B(E2)(W.u.)=157 13 α (K)=0.1209 20; α (L)=0.0243 4; α (M)=0.00583 10 α (N)=0.001521 25; α (O)=0.000336 6; α (P)=5.43×10 ⁻⁵ 9; α (Q)=3.07×10 ⁻⁶ 5
		207.8 2	100 19	433.02	(5)-	[E2]	0.510	$E_{\gamma}I_{\gamma}$: from (136 Xe, X γ). $\alpha(K)$ =0.1502 22; $\alpha(L)$ =0.265 4; $\alpha(M)$ =0.0714 11
754.88	8+	113.9 5	<11	640.69	(7-)	[E1]	0.350 7	$\alpha(N)=0.0189\ 3;\ \alpha(O)=0.00404\ 6;\ \alpha(P)=0.000601\ 9;\ \alpha(Q)=6.77\times10^{-6}\ 10$ $\alpha(K)=0.272\ 5;\ \alpha(L)=0.0594\ 11;\ \alpha(M)=0.0143\ 3$ $\alpha(N)=0.00372\ 7;\ \alpha(O)=0.000813\ 15;\ \alpha(P)=0.0001285\ 23;\ \alpha(Q)=6.64\times10^{-6}\ 12$

$\gamma(\frac{224}{Ra})$ (continued)

						<u>-</u>			
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult.#	$\delta^{\#}$	$\alpha^{@}$	Comments
754.88	8+	275.8 2	100 5	479.12	6+	[E2]		0.197	B(E1)(W.u.)=0.0003 3 E _{\gamma} : uncertainty assigned by evaluators. $\alpha(K)$ =0.0844 12; $\alpha(L)$ =0.0833 12; $\alpha(M)$ =0.0222 4 $\alpha(N)$ =0.00587 9; $\alpha(O)$ =0.001265 18; $\alpha(P)$ =0.000191 3; $\alpha(Q)$ =3.42×10 ⁻⁶ 5
906.17	(9-)	151.2 5	<15	754.88	8+	[E1]		0.177 3	B(E2)(W.u.)=1.7×10 ² 5 α (K)=0.1394 23; α (L)=0.0284 5; α (M)=0.00681 12 α (N)=0.00177 3; α (O)=0.000391 7; α (P)=6.30×10 ⁻⁵ 11; α (Q)=3.51×10 ⁻⁶ 6
		265.5 2	100 8	640.69	(7-)	[E2]		0.223	$\alpha(K)$ =0.0914 13; $\alpha(L)$ =0.0968 14; $\alpha(M)$ =0.0259 4 $\alpha(N)$ =0.00683 10; $\alpha(O)$ =0.001472 21; $\alpha(P)$ =0.000222 4; $\alpha(Q)$ =3.74×10 ⁻⁶ 6
916.38	0+	700.5 [‡] 5 832.01 8	≈21 [‡] 100 [‡] 17	215.985 84.372					
965.65	2+	832.01 8 881.32 <i>7</i> 965.56 <i>10</i>	100 ° 17 100 6 63 7	84.372 84.372					
992.70	(2+)	741.9 <i>2</i> 908.10 <i>10</i>	88 <i>19</i> 100 <i>8</i>	250.782 84.372	4 ⁺ 2 ⁺				
1053.041	1-	992.9 ^{&} 10 762.63 4	≈88 23.4 <i>12</i>	0 290.352	0 ⁺ 3 ⁻	(E2)		0.01536	$\alpha(K)$ =0.01137 16; $\alpha(L)$ =0.00300 5; $\alpha(M)$ =0.000745 11 $\alpha(N)$ =0.000197 3; $\alpha(O)$ =4.38×10 ⁻⁵ 7; $\alpha(P)$ =7.23×10 ⁻⁶ 11; $\alpha(Q)$ =3.96×10 ⁻⁷ 6
		837.03 7	100 5	215.985	1-	M1+E2	1.6 +18-4	0.0219 66	$\alpha(K)=0.0172 \ 55; \ \alpha(L)=0.0035 \ 9; \ \alpha(M)=0.00086 \ 20$ $\alpha(N)=0.00023 \ 6; \ \alpha(O)=5.1\times10^{-5} \ 12; \ \alpha(P)=8.7\times10^{-6} \ 22;$ $\alpha(Q)=6.0\times10^{-7} \ 20$
		968.62 <i>13</i> 1053.01 8	3.4 <i>4</i> 2.2 <i>3</i>	84.372 0	2 ⁺ 0 ⁺				a(Q) 010/120 _20
1068.5	10+	313.6 2	100	754.88		[E2]		0.1332	$\alpha(K)$ =0.0646 9; $\alpha(L)$ =0.0507 8; $\alpha(M)$ =0.01343 19 $\alpha(N)$ =0.00355 5; $\alpha(O)$ =0.000768 11; $\alpha(P)$ =0.0001172 17; $\alpha(Q)$ =2.55×10 ⁻⁶ 4 E _y : NRM average of three values. Weighted average gives
1090.087	(2,3)	799.705 37	100 6	290.352	3-	M1(+E2)		0.033 19	313.3 4 with reduced χ^2 =9.2. $\alpha(K)$ =0.026 16; $\alpha(L)$ =0.0050 24; $\alpha(M)$ =0.00121 56 $\alpha(N)$ =3.2×10 ⁻⁴ 15; $\alpha(O)$ =7.2×10 ⁻⁵ 34; $\alpha(P)$ =1.25×10 ⁻⁵ 61; $\alpha(Q)$ =9.1×10 ⁻⁷ 55 α : for $\delta(E2/M1)$ =1. α : overlaps M1 and E2.
1187.1	0+,1,2	874.10 <i>7</i> 1005.5 <i>5</i> 970.9 <i>5</i>	39 <i>3</i> 5.5 <i>7</i> 86 <i>9</i>	215.985 84.372 215.985	2+				2. 2.2.apo 2.2. and 22.
1216.89	$(1^{-},2)$	1103.0 <i>5</i> 926.5 2	100 27 100 24	84.372 290.352	2+				

S

$\gamma(\frac{224}{Ra})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}{}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.#	$\delta^{\#}$	$\alpha^{\textcircled{@}}$	Comments
1216.89	$(1^-,2)$	1001.1 5	71 9	215.985 1-				
1220.7	(11^{-})	314.5 2	100	906.17 (9 ⁻)				
1348.22	2+,3+	1097.6 2	100 27	250.782 4+				
13 10.22	2 ,5	1263.80 10	81 11	84.372 2+				
1378.41	1-	325.348 19	34.9 17	1053.041 1	M1(+E2)	<0.3	0.549 20	$\alpha(K)$ =0.441 18; $\alpha(L)$ =0.0821 20; $\alpha(M)$ =0.0196 5 $\alpha(N)$ =0.00518 12; $\alpha(O)$ =0.00118 3; $\alpha(P)$ =0.000205 6; $\alpha(O)$ =1.58×10 ⁻⁵ 7
		461.98 8	11.2 6	916.38 0 ⁺				
		1294.21 6	28.2 31	84.372 2+				
		1378.45 10	100 6	0 0+				
1379.04	$(1^+, 2^+)$	386.4 10	27.9 23	992.70 (2 ⁺)				
1075101	(1 ,2)	413.40 5	94 6	965.65 2+	M1(+E2)	<0.5	0.272 24	$\alpha(K)$ =0.218 21; $\alpha(L)$ =0.041 3; $\alpha(M)$ =0.0098 6 $\alpha(N)$ =0.00259 15; $\alpha(O)$ =0.00059 4; $\alpha(P)$ =0.000102 7; $\alpha(Q)$ =7.8×10 ⁻⁶ 8
		1163.04 <i>10</i>	100 7	215.985 1				
1389.93	$(0^+,1,2)$	1173.89 <i>23</i>	100 <i>15</i>	215.985 1				
		1305.6 2	48 7	84.372 2+				
1413.7	(12^{+})	345.2 2	100	$1068.5 10^{+}$				
1425.152	(0,1,2)	335.056 19	22.9 9	1090.087 (2,3)	M1(+E2)	< 0.5	0.48 5	$\alpha(K)$ =0.39 4; $\alpha(L)$ =0.073 4; $\alpha(M)$ =0.0176 9 $\alpha(N)$ =0.00465 22; $\alpha(O)$ =0.00106 6; $\alpha(P)$ =0.000183 11; $\alpha(Q)$ =1.39×10 ⁻⁵ 14
		372.08 4	14.4 7	1053.041 1	M1(+E2)	<1.1	0.308 86	$\alpha(K)$ =0.243 75; $\alpha(L)$ =0.049 9; $\alpha(M)$ =0.0120 19 $\alpha(N)$ =0.0032 5; $\alpha(O)$ =0.00072 12; $\alpha(P)$ =0.000123 23; $\alpha(Q)$ =8.7×10 ⁻⁶ 27
		1209.2 2	1.50 15	215.985 1-				
		1340.800 25	100 7	84.372 2+				
1435.54	1-	382.511 25	45.9 22	1053.041 1	M1(+E2)	<0.7	0.32 5	$\alpha(K)$ =0.25 5; $\alpha(L)$ =0.049 5; $\alpha(M)$ =0.0118 11 $\alpha(N)$ =0.0031 3; $\alpha(O)$ =0.00070 7; $\alpha(P)$ =0.000122 13; $\alpha(Q)$ =9.1×10 ⁻⁶ 15
		442.78 8	24 3	$992.70 (2^+)$				
		519.5 2	7.9 6	916.38 0+				
		1219.42 <i>10</i>	20.8 24	215.985 1				
		1350.9 2	38 11	84.372 2+				
		1435.60 10	100 10	$0 0^{+}$				
1437.11	2+	1186.35 <i>10</i>	34 <i>4</i>	250.782 4 ⁺				
		1352.60 10	86 12	84.372 2+				
		1437.20 10	100 10	$0 0^{+}$				
1553.67	1,2+	1338.0 5	≈100	215.985 1-				
	,	1469.4 2	100 12	84.372 2+				
		1553.5 2	48 6	0 0+				
1573.6	(13 ⁻)	356.7 5	100	1220.7 (11 ⁻)	[E2]		0.0920	$\alpha(K)$ =0.0496 7; $\alpha(L)$ =0.0315 5; $\alpha(M)$ =0.00827 13 $\alpha(N)$ =0.00218 4; $\alpha(O)$ =0.000475 7; $\alpha(P)$ =7.33×10 ⁻⁵ 11;

6

							/(144)	(continued)
$E_i(level)$	\mathtt{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult.#	α@	Comments
								$\alpha(Q)=1.91\times10^{-6} \ 3$
								E_{γ} : 348.5 2 in (⁵⁸ Ni, ⁶⁰ Ni γ) is discrepant.
1614.42	$(1^{-},2)$	1323.9 <i>3</i>	42 7	290.352				
		1398.5 2	100 <i>13</i>	215.985				
1652.49	2+	659.64 10	11.5 <i>21</i>	992.70				
		1401.6 2	7.0 10	250.782				
		1568.18 <i>6</i>	55 7	84.372				
		1652.47 <i>5</i>	100 12	0	0_{+}			
1658.49	$1^{(-)},2^+$	1368.1 2	68 <i>16</i>	290.352				
		1442.3 2	40 5	215.985				
		1658.54 <i>10</i>	100 20	0	0_{+}			
1736.44	$1,2^{+}$	1520.6 2	22 <i>3</i>	215.985				
		1736.19 25	100 17	0	0_{+}			
1754.84	$0^+,1,2$	702.0 2	51 <i>16</i>	1053.041				
		1538.4 2	22 3	215.985				
		1670.53 <i>10</i>	100 16	84.372				
1787.5	(14^{+})	373.8 5	100	1413.7	(12^{+})	[E2]	0.0809	$\alpha(K)=0.0450$ 7; $\alpha(L)=0.0266$ 4; $\alpha(M)=0.00697$ 11 $\alpha(N)=0.00184$ 3; $\alpha(O)=0.000401$ 6; $\alpha(P)=6.21\times10^{-5}$ 10; $\alpha(Q)=1.721\times10^{-6}$ 25
1789.61	$1,2^{+}$	1573.73 8	100 12	215.985	1-			
		1705.12 <i>10</i>	49 8	84.372				
		1789.4 2	76 12	0	0_{+}			
1796.71	$(1^{-},2)$	1506.4 2	43 6	290.352	3-			
		1580.8 2	39 6	215.985				
		1712.30 <i>10</i>	100 <i>17</i>	84.372				
1818.06	$(1^{-},2)$	1527.7 2	89 <i>17</i>	290.352				
		1602.1 5	100 <i>17</i>	215.985				
1838.53	0,1,2	1622.54 <i>10</i>	100	215.985				
1896.3	$(1^-,2)$	1607.1 <i>5</i>	100 <i>17</i>	290.352				
		1679.5 <i>5</i>	61 <i>17</i>	215.985				
		1811.6 <i>5</i>	72 <i>17</i>	84.372				
1964.7	(15 ⁻)	391.1 5	100	1573.6	(13 ⁻)	[E2]	0.0717	$\alpha(K)=0.0411 \ 6$; $\alpha(L)=0.0227 \ 4$; $\alpha(M)=0.00593 \ 9$ $\alpha(N)=0.001565 \ 23$; $\alpha(O)=0.000341 \ 5$; $\alpha(P)=5.30\times10^{-5} \ 8$; $\alpha(Q)=1.559\times10^{-6} \ 23$
1969.92	(0,1,2)	1753.93 <i>10</i>	100	215.985				
2000.26	$(1^{-},2)$	947.2 2	100 12	1053.041				
		1784.3 <i>3</i>	70 12	215.985				
2043.0	0,1,2	1827.05 27	100	215.985				
2052.3	2+	1801.3 5	100 <i>19</i>	250.782				
		1836.5 <i>5</i>	63 19	215.985				
2077.3	$0^+,1,2$	1862.0 <i>5</i>	47 9	215.985				
		1992.4 <i>4</i>	100 17	84.372				
2117.4	$1,2^{+}$	2033.2 5	65 12	84.372				
		2117.3 5	100 <i>14</i>	0	0_{+}			
2135.3	0,1,2	1919.3 5	100	215.985	1-			

E_i	(level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	$\alpha^{\textcircled{@}}$	Comments
21	87.7	(16^+)	400.2 5	100	1787.5	(14^{+})	[E2]	0.0674	$\alpha(K)=0.0392 \ 6; \ \alpha(L)=0.0209 \ 3; \ \alpha(M)=0.00546 \ 8$
									$\alpha(N)=0.001442\ 22;\ \alpha(O)=0.000314\ 5;\ \alpha(P)=4.90\times10^{-5}\ 8;\ \alpha(Q)=1.483\times10^{-6}\ 22$
22	229.4	$(1^-,2)$	1938.3 <i>10</i>	73 18	290.352	3-			
			2013.4 5	91 <i>18</i>	215.985				
			2145.2 5	100 18	84.372				
22	246.5	$1,2^{+}$	2030.5 5	100 16	215.985				
			2162.0 5	93 15	84.372				
			2246.6 5	14 3	0	0_{+}			
23	368.7	1,2+	2152.5 5	100 16	215.985				
l			2368.8 5	53 11	0	0+			
23	884.1	(17^{-})	419.4 5	100	1964.7	(15^{-})	[E2]	0.0597	$\alpha(K)=0.0357\ 5;\ \alpha(L)=0.0178\ 3;\ \alpha(M)=0.00464\ 7$
									$\alpha(N)=0.001224\ 18;\ \alpha(O)=0.000267\ 4;\ \alpha(P)=4.19\times10^{-5}\ 6;\ \alpha(Q)=1.340\times10^{-6}\ 19$
26	512.1	(18^{+})	424.4 5	100	2187.7	(16^{+})	[E2]	0.0579	$\alpha(K)=0.0349\ 5;\ \alpha(L)=0.01712\ 25;\ \alpha(M)=0.00445\ 7$
									α (N)=0.001175 18; α (O)=0.000257 4; α (P)=4.02×10 ⁻⁵ 6; α (Q)=1.306×10 ⁻⁶ 19
28	327.0	(19^{-})	442.9 5	100	2384.1	(17^{-})	[E2]	0.0520	$\alpha(K)=0.0320\ 5;\ \alpha(L)=0.01484\ 22;\ \alpha(M)=0.00385\ 6$
									α (N)=0.001015 15; α (O)=0.000222 4; α (P)=3.50×10 ⁻⁵ 5; α (Q)=1.193×10 ⁻⁶ 17
30)59.2	(20^+)	447.1 5	100	2612.1	(18^{+})	[E2]	0.0508	$\alpha(K)=0.0314\ 5;\ \alpha(L)=0.01438\ 2I;\ \alpha(M)=0.00372\ 6$
									$\alpha(N)=0.000983\ 15;\ \alpha(O)=0.000215\ 4;\ \alpha(P)=3.39\times10^{-5}\ 5;\ \alpha(Q)=1.169\times10^{-6}\ 17$
32	289.8	(21^{-})	462.8 <i>5</i>	100	2827.0	(19^{-})	[E2]	0.0466	$\alpha(K)=0.0293\ 5;\ \alpha(L)=0.01284\ 19;\ \alpha(M)=0.00332\ 5$
									$\alpha(N)=0.000876\ 13;\ \alpha(O)=0.000192\ 3;\ \alpha(P)=3.03\times10^{-5}\ 5;\ \alpha(Q)=1.087\times10^{-6}\ 16$
35	526.3	(22^{+})	467.1 <i>5</i>	100	3059.2	(20^+)	[E2]	0.0456	$\alpha(K)=0.0288 \ 4; \ \alpha(L)=0.01246 \ 18; \ \alpha(M)=0.00322 \ 5$
									α (N)=0.000849 13; α (O)=0.000186 3; α (P)=2.94×10 ⁻⁵ 5; α (Q)=1.066×10 ⁻⁶ 16
37	69.6	(23^{-})	479.8 <i>5</i>	100	3289.8	(21^{-})	[E2]	0.0427	$\alpha(K)=0.0273 \ 4; \ \alpha(L)=0.01143 \ 17; \ \alpha(M)=0.00294 \ 5$
									$\alpha(N)=0.000777\ 12;\ \alpha(O)=0.0001705\ 25;\ \alpha(P)=2.70\times10^{-5}\ 4;\ \alpha(Q)=1.007\times10^{-6}\ 15$
40	11.4	(24^{+})	485.1 5	100	3526.3	(22^{+})	[E2]	0.0416	$\alpha(K)=0.0268 \ 4; \ \alpha(L)=0.01104 \ 16; \ \alpha(M)=0.00284 \ 4$
									α (N)=0.000750 11; α (O)=0.0001645 24; α (P)=2.61×10 ⁻⁵ 4; α (Q)=9.84×10 ⁻⁷ 14
42	266.4	(25^{-})	496.8 5	100	3769.6	(23^{-})	[E2]	0.0393	$\alpha(K)=0.0255 \ 4; \ \alpha(L)=0.01023 \ 15; \ \alpha(M)=0.00263 \ 4$
									$\alpha(N)=0.000694 \ 10; \ \alpha(O)=0.0001524 \ 22; \ \alpha(P)=2.42\times10^{-5} \ 4; \ \alpha(Q)=9.37\times10^{-7} \ 14$
45	512.2	(26^{+})	500.8 <i>5</i>	100	4011.4	(24^{+})	[E2]	0.0385	$\alpha(K)=0.0251$ 4; $\alpha(L)=0.00998$ 15; $\alpha(M)=0.00256$ 4
									$\alpha(N)=0.000676\ 10;\ \alpha(O)=0.0001485\ 22;\ \alpha(P)=2.36\times10^{-5}\ 4;\ \alpha(Q)=9.21\times10^{-7}\ 13$
47	78.0?	(27^{-})	511.6 <mark>&</mark> 5		4266.4	(25^{-})			
	30.4?	(28^{+})	518.2 ^{&} 5		4512.2	(26^+)			
30	JJU.+:	(20)	J10.2 J		7512.2	(20)			

 [†] From weighted averages of available data.
 [‡] From ²²⁸Th α decay.
 [#] From ce data in ²²⁴Fr β⁻ decay, unless otherwise noted.
 [@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
 [&] Plant to fine visit in the label of the visit of the visit of the label of the visit of the label of the visit of

[&]amp; Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Level Scheme (continued)

Level Scheme (continued)

Legend

Level Scheme (continued)

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Y. A. Akovali	NDS 77,433 (1996)	1-Feb-1996

 $Q(\beta^{-})=-641 \text{ 4}; S(n)=6396 \text{ 3}; S(p)=7440 \text{ 13}; Q(\alpha)=4870.62 \text{ 25}$ 2012Wa38

Note: Current evaluation has used the following Q record -640 3 6396 3 7479 104870.63 25 1995Au04.

Energies and wave functions of $K^{\pi}=0^-$, 2^+ , 2^- , 3^- and second 0^- octupole-vibrational states were calculated by 1975Iv03. See 1983Pi04 for calculations of $K^{\pi}=0^-$, 0^+ octupole-vibrational state energies; see 1970Ne08 for calculated energies of $K^{\pi}=0^-$, 1^- , 2^- and 3^- bands; and 1982Zi02 for calculated energies of $K^{\pi}=0^-$ band. The energies of the rotational states of the 0^+ and 0^- bands were calculated by 1995Al06, 1995De13 and 1995Jo11 and compared with the experimental level energies.

For calculations of equilibrium deformation parameters see, for example, 1975Iv03, 1982Du16, 1982Le19, 1983Ro14 and 1984Na22. For calculations of electric quadrupole and hexadecapole moments see, for example, 1975Iv03 and 1983Ro14.

Effects of the Coriolis and centrifugal forces for nuclei with stable octupole deformation were examined; B(E3; 0^+ to 3^- ,K=0) value and effective moments of inertia for g.s. and K^{π} =0⁻ bands were calculated as a function of octupole deformation by 1983Ro15. See also 1970Ne08 for calculated B(E3; 0^+ to 3^-) and 1977Ba45 for calculated B(E3; 0^+ to 3^-), B(E1; 0^+ to 1^-) values for K^{π} =0⁻ band

See 1995De13 for calculated branching ratios for E1, E2, E3 transitions and comparisons with the experimental values. Partial T_{1/2} for heavy ion emission were calculated by 1984Po08, 1985Po11 and 1995Si05. See 1995Na13 for discussions on multiclustering.

²²⁶Ra Levels

Cross Reference (XREF) Flags

Α	226 Fr β^- decay	E	²²⁶ Ra(d,d')
В	226 Ac ε decay	F	²³⁰ Th(d, ⁶ Li)
C	230 Th α decay	G	$(HI,xn\gamma)$
D	Coulomb excitation		

E(level)	J^{π}	T _{1/2}	XREF	Comments
0.0 [†]	0+	1600 y 7	ABCDEFG	$%\alpha$ =100; $%^{14}$ C=3.2×10 ⁻⁹ 16 $%^{14}$ C/ $%\alpha$ =3.2×10 ⁻¹¹ 16 (1985Ho21). Other measurement: $%^{14}$ C/ $%\alpha$ ≤1×10 ⁻¹⁰ (1985Al28). T _{1/2} : weighted average of 1622 y 13 (1949Ko01), 1617 y 12 (1956Se10), 1577 y 9 (1959Go80), 1602 y 8 (1959Mal2), 1599 y 7 (1966Ral3). Earlier measurement: 1590 y (1931Cu01).
67.67 [†] 1	2+	0.63 ns 2	ABCDEFG	J^{π} : 67.67 γ to 0^+ is E2. $T_{1/2}$: by $(\alpha)(ce 68\gamma)(t)$ in 230 Th α decay.
211.54 [†] 2	4+	≈0.17 ns	A CDEFG	J^{π} : 143.87 γ to 2 ⁺ is E2; level is Coulomb excited. $T_{1/2}$: by $(\alpha)(143\gamma)(t)$ in 230 Th α decay.
253.73 [‡] 1	1-		ABCDEFG	J^{π} : the 253.73 γ to 0 ⁺ is E1.
321.54 [‡] 6	3-		A CDEFG	B(E3)↑=1.10 11
416.5 [†] 3	6+		CDEFG	
446.3‡ 2	5-		A CDEFG	
626.7 [‡] 2	7-		D G	
650	(0 ⁺)		D F	J ^π : 1984Va13 report that a 0 ⁺ state at 650 keV was identified by R. Zimmerman on the basis of a multiple-Coulomb excitation study. The level was weakly populated, if at all, in (d, ⁶ Li).
669.4 [†] 3	8+		D G	
824.6 [#] 1	0+		A C F	J^{π} : L=0 in (d, 6 Li); the α -hindrance factor in 230 Th α decay; γ transition to 1 state and the nonobservation of any γ to 3 state of K=0 band are consistent with the assignment.

Continued on next page (footnotes at end of table)

²²⁶Ra Levels (continued)

E(level)	J^{π}	XREF	Comments					
857.6 [‡] 3	9-	D						
873.7 [#] 1	2+	A C F						
959.9 [†] <i>3</i>	10 ⁺	D	${f G}$					
1048.8 [@] 1	1-	A F	J^{π} : the γ transitions to the 0 ⁺ , 2 ⁺ states of g.s. band suggest 1 or 2 ⁺ . L=1 in ²³⁰ Th(d, ⁶ Li) determines π =					
1070.5 [@] 2	(2-)	A	J^{π} : gammas to 2 ⁺ and 1 ⁻ levels and log ft =7.2 for the β branch from 1 ⁻ ²²⁶ Fr suggest J^{π} =0 ⁺ ,1,2. The J^{π} =2 ⁻ of K=1 band assignment was proposed by 1981Ku02 from spacing relative to the 1 ⁻ state at 1048.8 keV.					
1077.2 2 1107 <i>3</i>	1 ⁻ ,2 2 ⁺ ,3 ⁻	A E	J ^π : gammas to 2 ⁺ , 1 ⁻ , 3 ⁻ states and log ft =7.1 for the $β$ decay from 1 ⁻ ²²⁶ Fr suggest J ^π =2,1 ⁻ . J ^π : assigned by 1990Th02 from (d,d') data, based on their observed deuteron-angular distributions, and on cross sections.					
1122.4 3	(2+)	A E	J^{π} : γ to 4 ⁺ and log ft =8.6 for the β^- feeding from 1 ⁻ ²²⁶ Fr suggest J^{π} =2 ⁺ or 3 ⁺ . From the (d,d') data, 1990Th02 assigned 2 ⁺ ,3 ⁻ . By assuming that the levels populated in the β^- decay and in the (d,d') reaction are the same, J^{π} =(2 ⁺) is adopted.					
1133.1 [‡] <i>3</i> 1140	11 ⁻	D F						
1156.2 <i>I</i> 1220	2+	A E F	J^{π} : gammas to 0^+ and 4^+ .					
1238.9 5	(2)	A	Gammas to 2^+ , 3^- states and β^- decay from 1^{-226} Fr are consistent with $J^{\pi}=1^-$,2. The Alaga rule and absence of a γ to the g.s. imply J=2.					
1280.5 [†] 4 1330	12+	D F						
1390.0 <i>I</i>	2+	A E	J^{π} : gammas to 0^+ , 2^+ states suggest $J^{\pi}=1$, 2^+ ; the authors of 1990Th02 assign 2^+ from their (d,d') data.					
1420	a	F	This level might be the same level observed in 226 Fr β^- decay at 1422.5.					
1422.5 10	0,1,2	A	J^{π} : γ to 1 ⁻ and the log ft of 8.0 for the β ⁻ decay from the 1 ⁻ , 226 Fr suggest J^{π} =0, 1 or 2.					
1437.8 7	$1^{-},2$	A	Gammas to 1 ⁻ , 3 ⁻ states and the log ft of 8.2 from 1 ⁻ 226 Fr suggest $J^{\pi}=1^{-}$ or 2.					
1446 [‡]	13-	D						
1540	a	F	and the second s					
1587.3 5	1,2+	A	J^{π} : gammas to 0^+ , 1^- levels.					
1621.3 <i>5</i> 1625 [†]	1-,2+	A	J^{π} : gammas to 0^+ , 3^- states.					
1723.4 3	14 ⁺ 2 ⁺	A E	J^{π} : from the gammas to 0^+ and 1^- levels, J^{π} is 1 or 2^+ ; the authors of 1990Th02 assign $J^{\pi}=2^+$ from their (d,d') data.					
1738.5 10	1,2+	A	J^{π} : gammas to 0^+ and 1^- levels.					
1756.2 <i>10</i>	$1,2^{+}$	A	J^{π} : gammas to 0^+ , 1^- levels.					
1767.1 <i>10</i>	0,1,2	A	J^{π} : log $ft=7.2$ for the β^- decay from the 1 ⁻²²⁶ Fr parent.					
1778.4 10	0,1,2	A	J^{π} : log $ft=7.2$ for the β^- decay from the 1 ⁻ parent.					
1786.1 <i>10</i>	$1^{-},2^{+}$	A	J^{π} : gammas to 0^+ , 3^- levels.					
1793‡	15-	D	Tπ					
1865.0 <i>10</i>	1,2+	A	J^{π} : gammas to 0^+ , 2^+ levels.					
1882.3 7	0,1,2	A	J^{π} : log $ft=7.6$ for the β branch from 226 Fr, 1^{-} parent; J^{π} : log $ft=7.8$ for the β^{-} decay from the 1^{-} parent.					
1888.4 <i>15</i> 1897.4 <i>10</i>	$0,1,2$ $1^-,2^+$	A A	J^{π} : log $J^{\pi}=7.8$ for the β^{π} decay from the 1 parent. J^{π} : gammas to 0^+ , 3^- levels.					
1907.8 10	1,2+	A A	J^{π} : γ to 0^{+} g.s.					
1945.6 10	1,2+	A	J^{π} : γ to 0^+ g.s.					
1951.0 <i>10</i>	$1^{-},2^{+}$	A	J^{π} : gammas to 0^+ , 3^- levels.					
1970.8 5	1-,2+	A	J^{π} : gammas to 0^+ , 3^- levels.					
1982.7 10	0+,1	A	J^{π} : from log $ft=7.3$ for β^- decay from 1^{-226} Fr, $J \le 2$; from γ to 2^+ state J^{π} Ne 0^- ; γ to 1^- of octupole-vibrational band but not to the 3^- member of this band suggests J Ne 2.					

²²⁶Ra Levels (continued)

E(level)	J^{π}	XREF	Comments
1993 [†]	16 ⁺	D	
2006.7 15	0,1,2	Α	$\log ft$ =7.3 for the β^- decay from 1 ⁻²²⁶ Fr parent.
2015.2 15	0,1,2	Α	$\log ft = 7.5$ for the β branch from 1 ⁻²²⁶ Fr parent.
2056.8 5	$1,2^{+}$	Α	J^{π} : γ to 0^+ g.s.
2086.1 <i>10</i>	$1,2^{+}$	Α	J^{π} : γ to 0^+ g.s.
2170 [‡]	17^{-}	D	
2182.3 <i>15</i>	0,1,2	A	$\log ft$ =7.5 for the β branch from 1 ⁻²²⁶ Fr parent.
2189.4 <i>10</i>	2+	A E	J^{π} : (d,d') data and γ to 0^+ g.s
2269.7 10	$1,2^{+}$	A	J^{π} : γ to 0^+ g.s.
2382 [†]	18 ⁺	D	

[†] Band(A): K=0 g.s. band.

γ (²²⁶Ra)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}^{ \ddagger}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	$\alpha^{@}$	Comments
67.67	2+	67.67 1	100	0.0	0+	E2	61.9	B(E2)(W.u.)=123 5
211.54	4 ⁺	143.87 <i>I</i>	100	67.67		E2	2.11	B(E2)(W.u.)≈212
253.73	1-	186.05 <i>1</i>	73 <i>4</i>	67.67		E1	0.108	
		253.73 1	100 7	0.0	0^{+}	E1	0.0520	
321.54	3-	67.81 20		253.73	1-			
		110.00 5	10 <i>3</i>	211.54	4+			
		253.9 <i>1</i>	100 11	67.67	2+			
416.5	6+	204.9 <i>3</i>	100	211.54	4+			
446.3	5-	124.8 2	3.3 11	321.54				
		234.8 2	100	211.54	4+			
626.7	7-	180.4 2	8.5 10	446.3	5-			
		210.3 2	100	416.5	6+			
650	(0^{+})	396		253.73	1-			E_{γ} : from Coulomb excitation.
669.4	8+	252.8 2	100	416.5	6+			
824.6	0_{+}	570.9 <i>1</i>	100					
857.6	9-	188.2 2	100	669.4	8+			
		231.0 2	54 <i>5</i>	626.7	7-			
873.7	2+	552.2 <i>1</i>	91 <i>7</i>	321.54				
		620.0 <i>1</i>	100 <i>10</i>	253.73				
959.9	10 ⁺	290.6 2	100	669.4	8+			
1048.8	1-	795.1 <i>1</i>	32 <i>3</i>		1-			
		980.6 <i>5</i>	100 10	67.67				
		1048.1 5	79 9	0.0	0_{+}			
1070.5	(2^{-})	816.9 2	14.7 <i>14</i>	253.73				
		1002.2 5	100 10	67.67				
1077.2	$1^{-},2$	755.8 2	9.5 10	321.54				
		823.5 <i>3</i>	7.8 8	253.73				
		1009.0 5	100 10	67.67	2+			

[‡] Band(B): K=0 octupole vibrational band.

[#] Band(C): K=0 band.

[@] Band(D): K=1 band.

[&]amp; The J^{π} assignments for all levels of the g.s. band and the K=0 octupole-vibrational band are from the Coulomb excitation, γ -decay pattern, and the (HI,xn γ) data. The arguments for the 2⁺ and the 1⁻ states of these two bands are given explicitly. Assignments made from (d,d') data are based on deuteron angular distributions and on measured cross sections.

^a From $J^{\pi}=L^{-1}$, deduced in (d, ⁶Li).

γ (226Ra) (continued)

$E_i(level)$	J_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	$E_i(level)$	J_i^π	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}^{\ \sharp}$	\mathbf{E}_f	\mathbf{J}_f^{π}
1122.4	(2 ⁺)	910.9 2	100	211.54	1 ⁺	1865.0	1,2+	1610.7 10	100 11	253.73	1-
1133.1	11-	173.2 2	70 <i>7</i>		10 ⁺		-,-	1797.2 <i>15</i>	26 4	67.67	
		275.5 2	100		9-			1865.5 <i>10</i>	58 <i>6</i>	0.0	0^{+}
1156.2	2+	834.7 <i>1</i>	56 <i>4</i>	321.54 3	3-	1882.3	0,1,2	444.50 5		1437.8	$1^{-},2$
		902.6 <i>3</i>	16.0 <i>12</i>	253.73 1	1-	1888.4	0,1,2	1634.7 <i>15</i>		253.73	1-
		944.6 <i>3</i>	100 10	211.54 4	4 ⁺	1897.4	$1^{-},2^{+}$	1576.0 <i>10</i>	100 29	321.54	3-
		1087.9 5	42 <i>4</i>		2+			1685.2 <i>15</i>	57 12	211.54	4+
		1155.8 <i>5</i>	60 <i>6</i>	0.0	0+			1897.8 <i>15</i>	72 15	0.0	0_{+}
1238.9	(2)	917.3 5	50 10	321.54 3	3-	1907.8	$1,2^{+}$	1083.6 8	63 12	824.6	0_{+}
		1171.7 <i>10</i>	100 <i>15</i>	67.67 2	2+			1839.6 <i>10</i>	100 <i>10</i>	67.67	2+
1280.5	12+	320.6 2		959.9 1	10^{+}			1907.4 <i>15</i>	44 9	0.0	0_{+}
1390.0	2+	516.30 <i>5</i>	10.4 8	873.7 2	2+	1945.6	$1,2^{+}$	1692.6 <i>10</i>	100 12	253.73	1-
		565.4 <i>1</i>	8.2 8	824.6	0+			1944.0 <i>15</i>	14 <i>4</i>	0.0	0_{+}
		1322.5 5	100 9		2+	1951.0	$1^{-},2^{+}$	1628.2 <i>15</i>	24 <i>4</i>	321.54	
		1390.7 <i>10</i>	57 6)+			1697.3 <i>10</i>	82 12	253.73	
1422.5	0,1,2	1168.8 <i>10</i>	100	253.73 1				1883.9 <i>10</i>	100 12	67.67	
1437.8	$1^{-},2$	1117.0 <i>10</i>	100 25	321.54 3				1951.1 <i>15</i>	31 <i>I</i>	0.0	0+
		1183.5 8	86 9	253.73 1		1970.8	$1^-,2^+$	848.3 5	13.4 20	1122.4	(2^{+})
1446	13-	166			12+			1648.9 <i>15</i>	16.1 22	321.54	
		313			11-			1716.8 <i>10</i>	78 8		1-
1587.3	$1,2^{+}$	1333.6 5	100 19	253.73 1				1903.4 10	100 10	67.67	
		1587.0 <i>15</i>	15 4) +			1971.1 <i>10</i>	32 5	0.0	0+
1621.3	$1^{-},2^{+}$	1299.6 5	100 14	321.54 3		1982.7	$0^{+},1$	1109.7 10	36 8	873.7	2+
		1368.3 <i>10</i>	53 14	253.73 1				1728.4 10	100 10	253.73	
		1554.4 <i>15</i>	25 6		2+			1914.8 15	38 6	67.67	
		1620.9 <i>15</i>	29 4) +	1993	16 ⁺	200 <mark>&</mark>		1793	15
1625	14 ⁺	179			13-			368		1625	14 ⁺
		345			12 ⁺	2006.7	0,1,2	1753.0 <i>15</i>		253.73	
1723.4	2+	646.2 <i>3</i>	13 3		$1^{-},2$	2015.2	0,1,2	1761.5 <i>15</i>			1-
		1471.1 10	100 16	253.73 1		2056.8	1,2+	1231.9 5	100 10	824.6	0+
		1655.0 <i>10</i>	53 7	67.67 2				1990.3 <i>10</i>	96 10	67.67	2+
.====	4.04	1722.1 <i>15</i>	26 4		0+	•004		2056.9 15	43 7	0.0	0+
1738.5	$1,2^{+}$	1486.2 15	18 <i>3</i>	253.73 1		2086.1	1,2+	2017.6 10	100 17	67.67	
		1670.4 <i>10</i>	52 7		2+	2170	1.77-	2087.8 15	18 5	0.0	0+
17760	1.0+	1738.3 10	100 10		0+	2170	17-	177		1993	16 ⁺
1756.2	$1,2^{+}$	1503.2 10	29 4	253.73 1		2102.2	0.1.2	377		1793	15-
1767.1	0.1.0	1755.4 10	100 15		0+	2182.3	0,1,2	1928.6 15	75.20	253.73	
1767.1	0,1,2	1513.4 10		253.73 1		2189.4	2+	1365.0 10	75 30	824.6	0+
1778.4	0,1,2	1524.7 10	61 11	253.73 1				2120.9 10	100 14	67.67	
1786.1	$1^{-},2^{+}$	1465.2 15	64 14	321.54 3		2260.7	1.0+	2190.9 15	31 5	0.0	0+
		1532.4 10	100 19	253.73 1		2269.7	1,2+	2014.4 15	60 12		1-
1702	15-	1785.2 15	17 <i>4</i>)+ 1.4+			2202.2 10	100 11	67.67	2 ⁺ 0 ⁺
1793	15-	168			14 ⁺	2382	18 ⁺	2272.0 <i>20</i> 389	27 9	0.0 1993	0' 16 ⁺
1065 0	1,2+	347	22.4		13 ⁻ 2 ⁺	2382	19.	389		1993	10.
1865.0	1,2	991.4 8	23 4	873.7	۷.						

[†] From 226 Fr β^- decay, 230 Th α decay and (HI,xn γ), except where noted. [‡] Relative photon intensity deexciting each level, adopted from 226 Fr β^- decay, 230 Th α decay and (HI,xn γ) data. [#] From ce work in 230 Th α decay and 226 Ac ε decay.

[®] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[&]amp; Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{226}_{\ \, 88}{\rm Ra}_{138}$

Level Scheme (continued)

Level Scheme (continued)

Band(A): K=0 g.s. band

 $^{226}_{88}{\rm Ra}_{138}$

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Khalifeh Abusaleem	NDS 116, 163 (2014)	31-Dec-2012

 $Q(\beta^{-})=45.8 \ 7$; $S(n)=6308.6 \ 23$; $S(p)=8033 \ 13$; $Q(\alpha)=4072 \ 10$ 2012Wa38

Calculations, compilations, systematics:

 α -decay, Geiger-Nuttall plot: 1991Bu05, 2009De32, 2010Wa31. Bound state β^- decay of highly ionized atoms: 1987Ta16. Binding energies, deformation role: 1986Ch23, 2010Ro08.

Clustering in nuclei: 1986Da03, 2000Bu02.

E1 transition, octupole deformation: 1989De11, 2008Bi03, 2001Ch02, 2000Ku42. Equilibrium deformation energy, shapes: 1995Ru10, 1988So08, 1984Na22. Ground state rotational band, excited bands: 2001Sa54, 1993Am07, 1988Ab07.

Selection rule, β^- decay: 1992So06.

Intrinsic structures and associated rotational bands: 1992So10. Levels, $B(\lambda)$: 1995De13, 1988Ri07, 1986Go07, 2007Bo46.

Levels, octupole deformed nuclei: 1991Eg01, 2008Ro11, 2006Le09, 2001Za09, 2001Za04, 2010Bo12.

Octupole deformation, octupole vibration: 2005Bo18.

Fission barrier: 2004Mo06.

Quadruple, octupole moment: 2002Ts01. Quasi-bands in even-even nuclei: 1984Sa37.

Super- and hyper-deformed configurations: 1995We02.

Alpha-decay half life: 2005Sh42, 2006Me15. Relativistic mean field interaction: 2005La04.

T_{1/2}: 2010Sa09.

²²⁸Ra Levels

Cross Reference (XREF) Flags

- A 228 Fr β^- decay
 B 232 Th α decay
- C 232Th(d, ⁶Li)
- D 232 Th(136 Xe,X γ)

E(level) [†]	$J^{\pi \#}$	T _{1/2} ‡	XREF	Comments
0 <mark>&</mark>	0+ @	5.75 y <i>3</i>	ABCD	$\%\beta^{-}=100$
				$T_{1/2}$: from 1962Ma58. Others: 6.7 y (1931Cu01), 5.7 y 2 (1960Du11). Isotope shift: $\Delta < r^2 > = +1.46$ 15 relative to ²¹⁴ Ra (1988Ah02). Calculated $T_{1/2}(^{12}C \text{ emission}) = 4.4 \times 10^{19}$ y (1986De32).
63.823 ^{&} 20	2 ⁺ @	550 ps 20	ABCD	J^{π} : E2 γ to 0^{+} ; member of g.s. band.
				$T_{1/2}$: From ²²⁸ Fr β^- decay using $\beta\gamma\gamma$ (t) method. Others: 550 ps 20 (shape de-convolusion in ²²⁸ Fr β^- decay); 0.55 ns 4 (²³² Th α -decay).
204.702 ^{&} 22	4 ⁺ @	181 ps 3	ABCD	J^{π} : E2 γ to 2^{+} ; no γ to 0^{+} ; member of g.s. band.
				$T_{1/2}$: From ²²⁸ Fr β^- decay using $\beta\gamma\gamma(t)$ method.
411.69 <mark>&</mark> 5	(6^{+})		A CD	J^{π} : γ only to 4^{+} , probable member of g.s. band.
474.18 ^a 4	1-@	≤7 ps	A CD	J^{π} : E1 γ to 2^{+} ; γ to 0^{+} . Probable head of $K^{\pi}=0^{-}$ octupole vibrational band from systematics.
				$T_{1/2}$: Represents average of four independent measurements in 228 Fr β^- decay. 2σ limit.

²²⁸Ra Levels (continued)

E(level) [†]	J ^{π#}	$T_{1/2}^{\ddagger}$	XREF	Comments
537.50 ^a 4	3-	≤6 ps	A CD	J^{π} : E1 γ to 4^+ ; γ to 2^+ ; probable member of K=0 octupole band.
				$T_{1/2}$: Represents average of ten time-delayed measurements in 228 Fr β^- decay. 2 σ limit.
655.98 ^a 5	$(5^{-})^{\textcircled{0}}$		A CD	J^{π} : γ' s to 4 ⁺ and (6 ⁺). Probable member of K=0 octupole band.
674.29 <mark>&</mark> 11	(8 ⁺) [@]		D	J^{π} : (E2) γ to 6^+ ; member of g.s. band.
721.19 ^b 8	0+		A C	J^{π} : L(d, 6 Li)=0 for even-even nucleus. Bandhead of second K^{π} =0 ⁺ band; E0 γ -ray to 0 ⁺ .
770.71 ^b 4	2+		A C	J^{π} : Strong E0 component of E0+M1+E2 γ -ray to 2 ⁺ state of the g.s. band.
830.1 ^a 5	$(7^{-})^{\textcircled{0}}$		D	J^{π} : (E1) γ to (6 ⁺).
846.15 ^c 9	2+		A C	J^{π} : E0 γ-ray from 2 ⁺ ; possible head of $K^{\pi}=2^+$ band.
880.31 ^b 6	4+		A C	J^{π} : Strong E0 component of E0+M1+E2 γ -ray to 4 ⁺ level of the g.s. band.
898.86 ^c 8	(3 ⁺)		Α	J^{π} : γ' s to 2^+ and 4^+ . Probable member of $K^{\pi}=2^+$ band.
967.11 20	$(2^+,4^+)$		A C	J^{π} : L=(2,4) in (d, ⁶ Li); γ to 4 ⁺ ; γ 's from 2 ⁺ .
983.29 ^{&} 15	$(10^+)^{@}$		D	J^{π} : (E2) γ to (8 ⁺).
1013.24 ^d 14	2+		A C	J^{π} : E0 γ -ray to 2 ⁺ . Possible head of second $K^{\pi}=2^+$ band.
1042.01 <i>11</i>	$(0^+,1,2,3^-)$		A	J^{π} : γ to 1 ⁻ . log $ft=8.4$ (log $f^{1u}t=9.8$) from 2 ⁻ ²²⁸ Fr. Suggested as head of third $K^{\pi}=0^+$ band (1982Ru04), in which case the 1050 (d, ⁶ Li) peak, which is not consistent with L=0, must correspond to the 1052.78 level.
1052.79 <i>13</i>	$(2^+,3,4^+)$		A C	XREF: C(1050).
				J^{π} : γ' s to 2 ⁺ and (4 ⁺); $L(d, {}^{6}Li) = (2, 4)$ for E=1050.
1055.0 ^a 5	(9 ⁻) [@]		D	J^{π} : γ' s to 8 ⁺ and 7 ⁻ ; member of a rotational band.
1070.24 ^d 7	(3 ⁺)		A C	J^{π} : probable E0 component in γ to (3 ⁺). γ' s to 2 ⁺ and 4 ⁺ . Possible member of second $K^{\pi}=2^+$ band.
1087.29 7	(1-,2,3-)		A	J^{π} : γ' s to (1 ⁻) and (3 ⁻). Suggested by 1982Ru04 as a member of the third $K^{\pi}=0^+$ band.
1109.12 19	$(2^+,3)$		Α	J^{π} : γ to 4 ⁺ . log ft =7.91 (log $f^{1u}t$ =9.35) from 2 ⁻ .
1140	(4^+)		C	J^{π} : L(d, ⁶ Li)=(4). Possibly same level as 1157.
1157.61 <i>21</i> 1182.28 <i>8</i>	$(2^+,3,4^+)$ (3^-)		A A	J^{π} : γ' s to 2 ⁺ and 4 ⁺ . J^{π} : γ' s to (3 ⁻) and (5 ⁻). log $ft=7.89$ (log $f^{1u}t=9.3$) from 2 ⁻²²⁸ Fr.
1200	(2^+)		С	J^{π} : L(d, 6 Li)=(2). Possibly same level as 1220.
1219.98 <i>13</i>	(2^{+})		Α	J^{π} : γ' s to 0 ⁺ and 4 ⁺ .
1238.5 <i>3</i>	$(1,2,3^{-})$		A	J^{π} : γ' s to (1 ⁻) and 2 ⁺ . log $ft=7.44$ (log $f^{1u}t=8.8$) from 2 ⁻²²⁸ Fr.
1327.0 ^a 4	$(11^{-})^{\textcircled{@}}$		D	J^{π} : (E2) γ to (9 ⁻).
1331.1 <mark>&</mark> 4	(12 ⁺) [@]		D	J^{π} : (E2) γ to (10 ⁺).
1349.5 <i>4</i>	(4+)		A	J^{π} : γ' s to 4^{+} and (6^{+}) . log $f_{t}=7.9$ (log $f_{t}^{1}u_{t}=9.3$) from 2^{-228} Fr.
1420			C	J^{π} : $L(d, {}^{6}Li) = (2, 4)$.
1471.75 <i>12</i>	$(1^-,2,3,4^+)$		A	J^{π} : γ' s to 2^{+} and (3^{-}) . log $ft=7.7$ (log $f^{1u}t=9.0$) from 2^{-228} Fr.
1495.35 <i>13</i>	$(1^+,2,3,4^+)$		A	J^{π} : γ' s to (3^+) and 2^+ .
1507.14 17	$(2^+,3^-)$		A	J^{π} : γ' s to (1^-) and 4^+ . J^{π} : γ' s to 2^+ and (1^-) .
1518.88? <i>21</i> 1579.8 <i>3</i>	$(0^+,1,2,3^-)$ $(1^-,2,3^-)$		A A	J^{π} : γ 's to 2^{π} and (1^{π}) . J^{π} : γ 's to (1^{-}) and (3^{-}) .
1639.3 ^a 5	$(13^{-})^{@}$		D D	J^{π} : (E2) γ to (11 ⁻).
1710.0 ^{&} 5	$(14^+)^{\textcircled{0}}$		D	J^{π} : (E2) γ to (11°).
1911.82 <i>16</i>	1 ⁺ ,2 ⁺		A A	J^{π} : γ to 721 0 ⁺ level.
1974.62 <i>24</i>	1,2+		A	J^{π} : γ to 0^+ g.s.
1987.7 ^a 6	$(15^{-})^{@}$		D	J^{π} : (E2) γ to (13 ⁻).
2041.1 3	(2+)		A	J^{π} : γ' s to 721-keV 0 ⁺ and (4 ⁺).
2107.93 19	$(2^+,3)$		A	J^{π} : γ' s to 2 ⁺ , 4 ⁺ . (log $f^{1u}t=8.2$ from 2 ⁻²²⁸ Fr).
2110.8 4	$(2,3^{-})$		A	γ' s to (1 ⁻), (3 ⁺), (3 ⁻); log ft =6.36 from 2 ⁻²²⁸ Fr.
2113.6 % 7	$(16^+)^{@}$		D	J^{π} : (E2) γ to (16 ⁺).
2138.3 6	(2+)		A	J^{π} : γ' s to 0^+ and 4^+ .

²²⁸Ra Levels (continued)

E(level) [†]	Jπ#	XREF	Comments
2161.3 5	(2+)	A	J^{π} : γ' s to 0^+ and 4^+ .
2168.2 7	$(2^+,3)$	A	J^{π} : γ' s to 2 ⁺ and 4 ⁺ . log f_t =7.10 (log f^{1} u $_t$ =8.2 2) from 2 ⁻²²⁸ Fr.
2368.0 ^a 7	$(17^{-})^{@}$	D	J^{π} : γ to (15 ⁻).
2536.0 <mark>&</mark> 8	$(18^+)^{@}$	D	J^{π} : γ to (16 ⁺).
2776.6 <mark>a</mark> 9	$(19^{-})^{@}$	D	J^{π} : γ to (17 ⁻).
2972.1 <mark>&</mark> <i>10</i>	$(20^+)^{@}$	D	J^{π} : γ to (18 ⁺).
3418.9 <mark>&</mark> <i>11</i>	$(22^{+})^{@}$	D	J^{π} : γ to (20^{+}) .

[†] From a least-squares fit to Eγ.

[‡] From 1998Gu09 using $\beta\gamma\gamma$ (t) method, except otherwise noted.

[#] Based on multipolarity extracted in $β^-$ decay from conversion electron intensities and fast timing data (1998Gu09). The agreement between the theoretical predictions and the measured CC confirm the previously tentatively assigned spins in 1982Ru04. 1982Ru04: show a comparison of experimental branching ratios with those expected from the Alaga rule as modified to account for Coriolis interaction between the K^π =0⁻ and the (unobserved) K^π =1⁻ bands. These calculated branching ratios for the E1 transitions between the K^π =0⁻ and K^π =0⁺, K^π =2⁺ bands are in good agreement with experiment.

[@] Band structure and band parameters; member of a rotational band in particle transfer reaction.

[&]amp; Band(A): $K^{\pi}=0^{+}$ g.s. band. $\alpha=6.80$ keV 23.

^a Band(B): $K^{\pi}=0^{-}$ octupole-vibrational band. $\alpha=6.15$ keV 7.

^b Band(C): second $K^{\pi}=0^{+}$ band.

^c Band(D): $K^{\pi}=2^{+}$ band, γ -vibrational.

^d Band(E): K^{π} =second 2⁺ band.

γ (228Ra)

	$E_i(level)$	J_i^π	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.@	α^{\dagger}	Comments
	63.823	2+	63.83 2	100	0	0+	E2	80.3 12	B(E2)(W.u.)=142 6 α (L)=59.0 9; α (M)=16.03 23; α (N+)=5.25 8 α (N)=4.23 6; α (O)=0.897 13; α (P)=0.1289 19; α (Q)=0.000306 5
	204.702	4+	140.88 <i>I</i>	100	63.823	2+	E2	2.26 4	Mult.: from (L1+L2)/L3/M/(N+)=100/83.5/60/18.7 in agreement with theoretical prediction (100/82.5/50/15.6) for E2 γ -ray (1998Gu09). B(E2)(W.u.)=207 4 α (K)=0.283 4; α (L)=1.450 21; α (M)=0.394 6; α (N+)=0.1295 19
	444.50	(c.t.)		100	201 702			0.747	$\alpha(N)$ =0.1041 15; $\alpha(O)$ =0.0222 4; $\alpha(P)$ =0.00324 5; $\alpha(Q)$ =1.90×10 ⁻⁵ 3 Mult.: (L1+L2)/L3/M/(N+)=100/57.4/39.6/13.6; theory:(100/56.9/37.7/15.1), $\alpha(K)$ exp=0.27 5; $\alpha(K)$ theory=0.29 for E2 (1998Gu09).
	411.69	(6 ⁺)	206.97 4	100	204.702		[E2]	0.517	$\alpha(K)=0.154; \ \alpha(L)=0.274; \ \alpha(M)=0.0737; \ \alpha(N+)=0.0264$
	474.18	1-	410.40 6	82 4	63.823	2+	E1	0.0177	$B(E1)(W.u.) \ge 1.5 \times 10^{-4}$
									$\alpha(K)$ =0.0145; $\alpha(L)$ =0.00255; $\alpha(M)$ =0.00060; $\alpha(N+)$ =0.00021 Mult.: $\alpha(K)$ exp=0.017 3 ; $\alpha(K)$ theory=0.015 for E1 (1998Gu09).
			474.0 <i>1</i>	100 <i>19</i>	0	0_{+}	[E1]	0.0133	$B(E1)(W.u.) \ge 1.2 \times 10^{-4}$
.									$\alpha(K)=0.0108; \ \alpha(L)=0.00187; \ \alpha(M)=0.00044; \ \alpha(N+)=0.00015$
۱	537.50	3-	332.91 5	25.1 <i>16</i>	204.702	4+	E1	0.0279	$B(E1)(W.u.) \ge 1.5 \times 10^{-4}$
۱									$\alpha(K)=0.0226; \ \alpha(L)=0.00409; \ \alpha(M)=0.00097; \ \alpha(N+)=0.00034$
۱									Mult.: $\alpha(K)\exp=0.032\ 7$; $\alpha(K)$ theory=0.023 for E1 (1998Gu09).
			473.7 <i>1</i>	100 11	63.823	2+	[E1]	0.0133	$B(E1)(W.u.) \ge 2.2 \times 10^{-4}$
									$\alpha(K)=0.0108$; $\alpha(L)=0.00187$; $\alpha(M)=0.00044$; $\alpha(N+)=0.00015$
	655.98	(5^{-})	244.4 <i>1</i>	4.8 11	411.69	(6^{+})	[E1]	0.0567	$\alpha(K)=0.0454$; $\alpha(L)=0.00853$; $\alpha(M)=0.00203$; $\alpha(N+)=0.00071$
			451.20 <i>6</i>	100 5	204.702		[E1]	0.0147	$\alpha(K)=0.0119; \ \alpha(L)=0.00207; \ \alpha(M)=0.00049; \ \alpha(N+)=0.00017$
	674.29	(8^{+})	262.6 <i>1</i>	100 <i>13</i>	411.69	(6^{+})	(E2)	0.231	$\alpha(K)$ =0.0935 14; $\alpha(L)$ =0.1011 15; $\alpha(M)$ =0.0270 4; $\alpha(N+)$ =0.00892 13
۱									$\alpha(N)=0.00714\ 10;\ \alpha(O)=0.001538\ 22;\ \alpha(P)=0.000232\ 4;\ \alpha(Q)=3.84\times10^{-6}\ 6$
	721.19	0_{+}	247.01 8	44 5	474.18	1-	[E1]	0.0549	$\alpha(K)$ =0.0440 7; $\alpha(L)$ =0.00825 12; $\alpha(M)$ =0.00197 3; $\alpha(N+)$ =0.000650 10
۱									$\alpha(N)=0.000515 \ 8; \ \alpha(O)=0.0001147 \ 16; \ \alpha(P)=1.90\times10^{-5} \ 3; \ \alpha(Q)=1.183\times10^{-6} \ 17$
۱			657.4 2	100 6	63.823	2+	[E2]	0.0209	$\alpha(K)=0.01497\ 21;\ \alpha(L)=0.00446\ 7;\ \alpha(M)=0.001122\ 16;\ \alpha(N+)=0.000373\ 6$
۱									$\alpha(N)=0.000296\ 5;\ \alpha(O)=6.56\times10^{-5}\ 10;\ \alpha(P)=1.071\times10^{-5}\ 15;\ \alpha(Q)=5.30\times10^{-7}\ 8$
			$(721.2\ 5)$		0	0_{+}	E0		E_{γ} : proposed by 1998Gu09 based on conversion electron spectrum.
									Mult.: $\alpha(K)\exp>1.4$ (1998Gu09); $\alpha(K)$ theory=0.0.0048 for E1, 0.057 for M1, and 0.013 for E2 (1998Gu09).
	770.71	2+	233.25 4	58 <i>6</i>	537.50	3-	[E1]	0.0627	$\alpha(K)=0.0502$ 7; $\alpha(L)=0.00949$ 14; $\alpha(M)=0.00227$ 4; $\alpha(N+)=0.000748$ 11
1	,,,,,,	_	233.23 7	20 0	557.50	5	[21]	0.0027	$\alpha(N) = 0.000593 \ 9; \ \alpha(O) = 0.0001319 \ 19; \ \alpha(P) = 2.18 \times 10^{-5} \ 3; \ \alpha(Q) = 1.341 \times 10^{-6} \ 19$
۱			296.53 5	63 7	474.18	1-	[E1]	0.0363	$\alpha(K)=0.0293; \ \alpha(L)=0.00536; \ \alpha(M)=0.00128; \ \alpha(N+)=0.00044$
1			565.8 1	53 8	204.702		[E2]	0.0303	$\alpha(K)=0.0295$, $\alpha(L)=0.00595$, $\alpha(M)=0.00128$, $\alpha(V+)=0.00044$
۱			706.9 1	76 <i>5</i>	63.823		E0+M1+E2	0.55 8	$\alpha(K)=0.037 \ 24; \ \alpha(L)=0.0074$
			,00.71	70.5	03.023	-	LOTHIT LL	0.55 0	Mult.: $\alpha(K)\exp=0.55 \ 8$; $\alpha(K)$ theory=0.0049 for E1, 0.061 for M1, and 0.013 for
1			770.7 <i>1</i>	100 5	0	0+	[E2]	0.0152	E2 (1998Gu09). $\alpha(K)=0.0113$; $\alpha(L)=0.00296$
- [//0./ 1	100 3	U	U	[كك]	0.0132	$u(\mathbf{X}) - 0.0113, u(\mathbf{L}) - 0.00290$

$\gamma(^{228}$ Ra) (continued)

$E_i(level)$	J_i^π	$\mathrm{E}_{\gamma}^{\ddagger}$	$I_{\gamma}^{\#}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	$lpha^\dagger$	$I_{(\gamma+ce)}$	Comments
830.1 846.15	(7 ⁻) 2 ⁺	418.4 <i>5</i> 782.3 <i>I</i>	100 25 100 5	411.69 63.823	(6 ⁺) 2 ⁺	(E1) M1+E2	0.0170 0.036 22		$\alpha(K)$ =0.029 18; $\alpha(L)$ =0.006 3 Mult.: $\alpha(K)$ exp=0.012 5; $\alpha(K)$ theory=0.0041 for E1, 0.046
880.31	4+	846.2 2 224.35 8	72 <i>5</i> 48 <i>6</i>	0 655.98	0 ⁺ (5 ⁻)	[E2] [E1]	0.0126 0.0693		for M1, and 0.010 for E2 (1998Gu09). $\alpha(K)=0.0095$; $\alpha(L)=0.00234$ $\alpha(K)=0.0550$ 8; $\alpha(L)=0.01045$ 15; $\alpha(M)=0.00250$ 4; $\alpha(N+)=0.000823$ 12
		342.88 6	100 8	537.50	3-	[E1]	0.0263		$\alpha(N)=0.000652 \ 10; \ \alpha(O)=0.0001451 \ 21; \ \alpha(P)=2.39\times 10^{-5}$ 4; $\alpha(Q)=1.460\times 10^{-6} \ 21$ $\alpha(K)=0.0211 \ 3; \ \alpha(L)=0.00380 \ 6; \ \alpha(M)=0.000903 \ 13;$ $\alpha(N+)=0.000299 \ 5$ $\alpha(N)=0.000236 \ 4; \ \alpha(O)=5.30\times 10^{-5} \ 8; \ \alpha(P)=8.88\times 10^{-6} \ 13;$
		468.4 <i>1</i>	1.0 3	411.69	(6 ⁺)	[E2]	0.0459		$\alpha(Q)=5.89\times10^{-7} 9$ $\alpha(K)=0.01097 \ 16; \ \alpha(L)=0.00190 \ 3; \ \alpha(M)=0.000450 \ 7;$ $\alpha(N+)=0.0001493 \ 21$ $\alpha(N)=0.0001179 \ 17; \ \alpha(O)=2.65\times10^{-5} \ 4; \ \alpha(P)=4.50\times10^{-6}$
		675.6 5	44 7	204.702	4+	E0+M1+E2	1.3	3	7; $\alpha(Q)=3.14\times10^{-7}$ 5 $\alpha(K)=0.04$ 3; $\alpha(L)=0.008$ 4 Mult.: $\alpha(K)\exp=1.3$ 3; $\alpha(K)$ theory=0.0054 for E1, 0.068 for
898.86 967.11	(3^+) $(2^+,4^+)$	694.2 <i>I</i> 835.0 2 762.4 2	21.1 <i>11</i> 100 <i>6</i> 100	204.702 63.823 204.702	2+	[M1,E2] [M1,E2]	0.05 <i>3</i> 0.029 <i>17</i>		M1, and 0.014 for E2 (1998Gu09). $\alpha(K)$ =0.039 25; $\alpha(L)$ =0.008 4 $\alpha(K)$ =0.024 15; $\alpha(L)$ =0.0047 24
983.29	(10^+)	309.0 <i>I</i>	100		(8 ⁺)	(E2)	0.1392		$\alpha(K)$ =0.0667 10; $\alpha(L)$ =0.0536 8; $\alpha(M)$ =0.01422 20; $\alpha(N+)$ =0.00469 7 $\alpha(N)$ =0.00376 6; $\alpha(O)$ =0.000812 12; $\alpha(P)$ =0.0001239 18;
1013.24	2+	167.1 <i>3</i> 949.4 2	100 5	63.823		E0 [M1,E2]	0.021 13	≈7.4	$\alpha(Q)=2.63\times10^{-6}$ 4 $I_{(\gamma+ce)}$: $I(\gamma+ce)/I\gamma(949)\approx0.095$ from $I(K x ray)$ in $\gamma\gamma$. $\alpha(K)=0.018$ 10; $\alpha(L)=0.0034$ 16
1042.01 1052.79	$(0^+,1,2,3^-)$ $(2^+,3,4^+)$	1013.7 ^{&} 10 567.8 1 172.4 2 515.2 2 989.8 3	2.6 ^{&} 7 100 5 1.9 3 10 3 100 5	880.31	0 ⁺ 1 ⁻ 4 ⁺ 3 ⁻ 2 ⁺				
1055.0	(9-)	225.0 ^a 5 380.8 5		830.1 674.29	(7^{-}) (8^{+})				
1070.24	(3+)	171.4 <i>I</i>	10.0 12	898.86	(3+)	E0+M1+E2	16 7		Mult.: From $\alpha(\text{L1+L2})(\exp)=1.0 \ 3$; theory: 0.017 for E1, 0.41 for E2, and 0.53 for M1. These values reveal strong component of E0 (1998Gu09). α : from $\alpha(\text{K})\exp$ (value not given) from I(K x ray) in $\gamma\gamma$
		532.68 8	11.1 12	537.50	3-	[E1]	0.0105		and $\alpha/\alpha(K)$ (theory, value not given). $\alpha(K)=0.0085$; $\alpha(L)=0.00146$

S

γ (228Ra) (continued)

	E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	${\rm I}_{\gamma}^{\#}$	E_f	\mathbf{J}_f^{π}	Mult.	$lpha^\dagger$	Comments
۱	1070.24	(3+)	865.8 2	100 5	204.702	4+	[M1,E2]	0.028 16	$\alpha(K)=0.022 \ 14; \ \alpha(L)=0.0043 \ 21$
			1006.5 5	95 <i>15</i>	63.823	2+			
	1087.29	$(1^-,2,3^-)$	549.83 7	94 8	537.50				
			613.06 8	100 5	474.18				
	1109.12	$(2^+,3)$	904.4 2	100 5	204.702				
	1157.61	$(2^+,3,4^+)$	952.9 3	38 3	204.702				
	1102.20	(2-)	1092.8 5	100 5	63.823				
۱	1182.28	(3-)	526.22 <i>8</i> 644.9 <i>1</i>	30 <i>3</i> 100 <i>6</i>	655.98 537.50	(5 ⁻) 3 ⁻			
۱	1219.98	(2^{+})	498.8 <i>1</i>	36 4	721.19				
ı	1219.96	(2)	1015.7 8	100 22	204.702				
ı	1238.5	$(1,2,3^{-})$	764.5 3	27.4 17	474.18				
ı	1230.3	(1,2,3)	1174.2 5	100 5	63.823				
ı	1327.0	(11^{-})	272.0 5	100 38	1055.0	(9-)	(E2)	0.206 4	$\alpha(K)=0.0869 \ 13; \ \alpha(L)=0.0880 \ 14; \ \alpha(M)=0.0235 \ 4;$
۱		,				,	, ,		$\alpha(N+)=0.00774 13$
۱									α (N)=0.00620 10; α (O)=0.001337 22; α (P)=0.000202 4;
ı									$\alpha(Q) = 3.54 \times 10^{-6} 6$
ı			343.6 5	100 46	983.29	(10^{+})	(E1)	0.0260	$\alpha(K)=0.0210 \ 3; \ \alpha(L)=0.00378 \ 6; \ \alpha(M)=0.000898 \ 13;$
ı									α (N+)=0.000297 5
ı									$\alpha(N)=0.000235 \ 4; \ \alpha(O)=5.27\times10^{-5} \ 8; \ \alpha(P)=8.84\times10^{-6} \ 13;$
۱									$\alpha(Q)=5.87\times10^{-7} 9$
	1331.1	(12^{+})	347.8 <i>3</i>	100 47	983.29	(10^{+})	(E2)	0.0988	$\alpha(K)$ =0.0522 8; $\alpha(L)$ =0.0345 5; $\alpha(M)$ =0.00908 13;
									$\alpha(N+)=0.00300 5$
									$\alpha(N)=0.00240 \ 4; \ \alpha(O)=0.000521 \ 8; \ \alpha(P)=8.02\times10^{-5} \ 12;$
									$\alpha(Q) = 2.02 \times 10^{-6} \ \beta$
ı	1349.5	(4^{+})	937.6 5	42 6		(6 ⁺)			
ı	1.471.75	(1-004)	1145.0 5	100 9	204.702				
ı	1471.75	$(1^-,2,3,4^+)$	625.6 1	52 5	846.15				
ı			934.3 2	100 <i>6</i> 48 <i>10</i>	537.50 63.823	3 2+			
	1495.35	$(1^+,2,3,4^+)$	1406.4 <i>15</i> 425.1 <i>1</i>	48 10 23 5	1070.24				
	1773.33	(1 ,2,3,4)	1432.9 <i>15</i>	100 17	63.823				
ı	1507.14	$(2^+,3^-)$	493.9 <i>I</i>	30 3	1013.24				
ı	1507.11	(2 ,5)	1033.0 10	100 19	474.18				
۱			1303.1 10	47 5	204.702				
۱	1518.88?	$(0^+,1,2,3^-)$	551.9 <mark>a</mark> 1	9.0 15		$(2^+,4^+)$			
			1043.2 ^a 8	100 20		1-			
I			1454.7 <mark>a</mark> 10	20 2	63.823				
1	1579.8	$(1^-,2,3^-)$	422.3 2	12.9 <i>19</i>		$(2^+,3,4^+)$			
I			1041.6 8	86 18		3-			
			1105.6 8	100 6		1-			
	4 600 -	(12-)	1514.9 <i>15</i>	23 3	63.823				
J	1639.3	(13^{-})	308.3 5	45 35	1331.1	(12^{+})			

6

γ (228Ra) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathbb{E}_{\gamma}^{\ddagger}$	$I_{\gamma}^{\#}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	α^{\dagger}	Comments
1639.3 1710.0	(13 ⁻) (14 ⁺)	312.3 <i>5</i> 378.9 <i>5</i>	100 <i>40</i> 100	1327.0 1331.1	(11 ⁻) (12 ⁺)	(E2)	0.0780	$\alpha(K)$ =0.0438 7; $\alpha(L)$ =0.0253 4; $\alpha(M)$ =0.00664 10; $\alpha(N+)$ =0.00220 4 $\alpha(N)$ =0.00175 3; $\alpha(O)$ =0.000382 6; $\alpha(P)$ =5.92×10 ⁻⁵ 9; $\alpha(Q)$ =1.670×10 ⁻⁶ 24
1911.82	1+,2+	824.4 5 869.7 2 898.7 2 1013.7 10 1190.8 15 1847.5 10 1911.5 10	29.1 24 40 3 100 5 13& 3 27 5 46 7 ≤34&	1087.29 1042.01 1013.24 898.86 721.19 63.823	$(1^-,2,3^-)$ $(0^+,1,2,3^-)$ 2^+ (3^+) 0^+ 2^+ 0^+			27
1974.62	1,2+	816.5 <i>3</i> 922.3 <i>3</i> 1501.6 <i>15</i> 1911.5& <i>10</i> 1973.8 <i>10</i>	83 7 100 6 36 4 ≤50& 50 5	1157.61 1052.79 474.18 63.823	$(2^+,3,4^+)$ $(2^+,3,4^+)$ 1^-			
1987.7	(15 ⁻)	277.5 <i>5</i>	28 18	1710.0	(14 ⁺)	(E1)	0.0420	$\alpha(K)$ =0.0338 5; $\alpha(L)$ =0.00623 10; $\alpha(M)$ =0.001486 22; $\alpha(N+)$ =0.000491 8 $\alpha(N)$ =0.000389 6; $\alpha(O)$ =8.68×10 ⁻⁵ 13; $\alpha(P)$ =1.443×10 ⁻⁵ 21; $\alpha(Q)$ =9.21×10 ⁻⁷ 14
		348.3 5	100 42	1639.3	(13 ⁻)	(E2)	0.0984	$\alpha(K)$ =0.0521 8; $\alpha(L)$ =0.0343 6; $\alpha(M)$ =0.00903 14; $\alpha(N+)$ =0.00299 5 $\alpha(N)$ =0.00239 4; $\alpha(O)$ =0.000518 8; $\alpha(P)$ =7.98×10 ⁻⁵ 12; $\alpha(Q)$ =2.01×10 ⁻⁶ 3
2041.1	(2+)	821.7 5 1027.2 5 1162.0 10 1194.2 ^{&} 15 1318.8 10 1566.9 10	29.2 23 38 8 50 6 25 ^{&} 5 29 6 100 6	1219.98 1013.24 880.31 846.15 721.19 474.18	(2 ⁺) 2 ⁺ 4 ⁺ 2 ⁺ 0 ⁺ 1 ⁻			
2107.93	(2+,3)	600.8 <i>I</i> 1902.8 <i>I0</i> 2043.5 <i>I0</i>	29 2 22.3 24 100 10	1507.14 204.702 63.823	$(2^+,3^-)$ 4^+			
2110.8	(2,3 ⁻)	1001.6 5 1024.4 10 1096.9 8 1211.5 15 1340.2 10 1572.4 10 1637.7 10 2047.8 10	8.0 15 11.7 27 36.1 20 6.1 14 12.2 27 62 7 10.7 15 100 10	1109.12 1087.29 1013.24 898.86 770.71 537.50 474.18 63.823	(2 ⁺ ,3) (1 ⁻ ,2,3 ⁻) 2 ⁺ (3 ⁺) 2 ⁺ 3 ⁻ 1 ⁻			
2113.6	(16 ⁺)	403.8 5	100 23	1710.0	(14 ⁺)	(E2)	0.0659	$\alpha(K) = 0.0385 \ 6; \ \alpha(L) = 0.0203 \ 3; \ \alpha(M) = 0.00529 \ 8; \ \alpha(N+) = 0.00175 \ 3$ $\alpha(N) = 0.001398 \ 2I; \ \alpha(O) = 0.000305 \ 5; \ \alpha(P) = 4.76 \times 10^{-5} \ 7;$ $\alpha(Q) = 1.454 \times 10^{-6} \ 2I$

$\gamma(^{228}\text{Ra})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}{}^{\ddagger}$	$I_{\gamma}^{\#}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	α^{\dagger}	Comments
2138.3	(2 ⁺)	1171.0 10	100 8	967.11	$(2^+,4^+)$			
	, ,	1601.1 <i>15</i>	58 12	537.50	3-			
		1663.7 <i>15</i>	53 8	474.18	1-			
		1934.8 <i>15</i>	51 6	204.702	4+			
		2137.8 <i>15</i>	46 <i>7</i>	0	0^{+}			
2161.3	(2^{+})	1052.4 10	16.0 22	1109.12	$(2^+,3)$			
		1194.2 ^{&} <i>15</i>	14 <mark>&</mark> 3	967.11	$(2^+,4^+)$			
		1390.8 10	17.3 17	770.71	2+			
		1955.9 <i>10</i>	22.5 17	204.702	4+			
		2097.4 10	100 10	63.823				
		2162.4 <i>15</i>	15.2 22	0	0^{+}			
2168.2	$(2^+,3)$	1631.0 <i>15</i>	28 5	537.50	3-			
		1963.0 <i>10</i>	50 7	204.702	4+			
		2104.7 10	100 10	63.823	2+			
2368.0	(17^{-})	254.6 5	30 23	2113.6	(16^{+})	(E1)	0.0512	$\alpha(K)$ =0.0411 6; $\alpha(L)$ =0.00767 12; $\alpha(M)$ =0.00183 3; $\alpha(N+)$ =0.000604 9
								$\alpha(N)=0.000478\ 7;\ \alpha(O)=0.0001067\ 16;\ \alpha(P)=1.77\times10^{-5}\ 3;\ \alpha(Q)=1.108\times10^{-6}$ 17
		380.1 5	100 40	1987.7	(15^{-})	(E2)	0.0773	$\alpha(K)=0.0435$ 7; $\alpha(L)=0.0251$ 4; $\alpha(M)=0.00656$ 10; $\alpha(N+)=0.00217$ 4
								$\alpha(N)=0.00173\ 3;\ \alpha(O)=0.000377\ 6;\ \alpha(P)=5.86\times10^{-5}\ 9;\ \alpha(Q)=1.659\times10^{-6}\ 24$
2536.0	(18^{+})	422.4 5	100	2113.6	(16^{+})	(E2)	0.0586	$\alpha(K)=0.0352\ 5;\ \alpha(L)=0.0174\ 3;\ \alpha(M)=0.00452\ 7;\ \alpha(N+)=0.001497\ 22$
								$\alpha(N)=0.001194\ 18;\ \alpha(O)=0.000261\ 4;\ \alpha(P)=4.09\times10^{-5}\ 6;\ \alpha(Q)=1.320\times10^{-6}$
								19
2776.6	(19^{-})	408.6 5	100	2368.0	(17^{-})	(E2)	0.0639	$\alpha(K)=0.0376$ 6; $\alpha(L)=0.0195$ 3; $\alpha(M)=0.00508$ 8; $\alpha(N+)=0.001680$ 25
								$\alpha(N)=0.001341\ 20;\ \alpha(O)=0.000292\ 5;\ \alpha(P)=4.57\times10^{-5}\ 7;\ \alpha(Q)=1.417\times10^{-6}$
								21
2972.1	(20^{+})	436.1 5	100	2536.0	(18^{+})	(E2)	0.0540	$\alpha(K)=0.0330\ 5;\ \alpha(L)=0.01563\ 23;\ \alpha(M)=0.00405\ 6;\ \alpha(N+)=0.001342\ 20$
								$\alpha(N)=0.001070 \ 16; \ \alpha(Q)=0.000234 \ 4; \ \alpha(P)=3.68\times10^{-5} \ 6; \ \alpha(Q)=1.233\times10^{-6}$
								18
3418.9	(22^{+})	446.8 5	100	2972.1	(20^{+})	(E2)		

 ∞

[†] Additional information 1. [‡] Weighted average of available data, unless noted otherwise. [#] Relative photon branching from each level in 228 Fr β^- decay. [@] Extracted from the measured conversion electron intensity in 228 Fr β^- decay. These are in good agreement with the theoretical predictions (1998Gu09). Also 232 Th(136 Xe,Xγ) reaction assumes that γ -rays connecting thE in-band states of the g.s. and K^π=0⁻ octupole-vibrational bands are E2; and the intraband γ' s are

[&]amp; Multiply placed with undivided intensity.

^a Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

---- → γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

---- γ Decay (Uncertain)

Coincidence

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

γ Decay (Uncertain)

Coincidence

History									
Type	Author	Citation	Literature Cutoff Date						
Full Evaluation	E. Browne, J. K. Tuli	NDS 113,2113 (2012)	1-May-2012						

 $Q(\beta^{-})=678 \ 19$; $S(n)=6104 \ 18$; $S(p)=8447 \ 18$; $Q(\alpha)=3344 \ 15$ 2012Wa38

Note: Current evaluation has used the following Q record 7.1E+2 30 6110 188589 403352 19 2011AuZZ.

Additional information 1. Isotope shift (relative to ²¹⁴Ra)=-53634 *15* MHz (1988Ah02). The change in the nuclear mean square charge radius=1.67 *17*, was calculated in 1988Ah02 from the experimental value of the isotopic shift.

See 1988Ah02 for deformation parameter deduced from the measured isotope shift. See 1975Iv03, 1982Du16, 1982Le19, 1983Ro14, 1984Na22, for theoretical calculations of equilibrium deformations.

See 1975Iv03 and 1983Ro14 for theoretical quadrupole and hexadecapole moments.

See 1991Eg01 for calculation of $K=0^-$ octupole-vibrational level energy, and for B(E1) and B(E3) values. See 1988Ri07 for calculated values of B(E2; 2^+ to 0^+).

See 2010Ro08 and 2005Bo18 for calculation of octupole states and transition strengths.

Measured mass excess (Δm=34518 keV 12) using a Penning trap mass spectrometer (2008We02).

Calculated excitation energy of first $J^{\pi}=2^{+}$ state (2008Bi03).

```
Assignment: thorium(180-MeV d) chem (1952Je06); thorium(20-160 MeV n) chem (1978Gi07); parent of ^{230}Ac (1978Gi07).
```

²³⁰Ra Levels

Cross Reference (XREF) Flags

- A 230 Fr β^- decay
- **B** 232 Th(56 Fe,X γ) E=362 MeV
- C 232 Th(136 Xe,X γ)

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
0.0#	0+	93 min 2	ABC	$%\beta^-$ =100 No β fission (<3×10 ⁻⁴ %) (1990Me13,1993MeZW). T _{1/2} : from 1978Gi07. Other measured values: 60 min (1952Je06), 45.5 min 15 (tentative assignment to ²³⁰ Ra, 1975Ra03).
57.4 [#] 1	2+		ABC	J^{π} : γ ray to the 0^+ g.s.; systematics of 2^+ states in even-even nuclei in the region.
186.64 [#] 9	(4^{+})		ABC	J^{π} : γ ray to the 2^+ state; energy fit to the g.s. rotational band.
379.15 [#] <i>13</i>	(6+)		ABC	J^{π} : γ ray to the (4^+) state; no γ ray to lower-spin levels; energy fit to the g.s. rotational band.
626.4 ^{‡#}	(8^{+})		ABC	
710.93 [@] 8	(1^{-})		A C	J^{π} : γ rays to 0^+ and 2^+ states; systematics of 1^- octupole-vibrational states.
734.87 & 8	(2^{+})		Α	J^{π} : γ rays to 0^+ and (4^+) levels.
768.54 [@] 10	(3 ⁻)		A	J^{π} : γ rays to the 2^+ and (4^+) states; level's energy spacing from the 1^- octupole-vibrational state.
785.9 <mark>&</mark> 1	(3^{+})		A C	J^{π} : γ rays to 2^+ and (4^+) states; energy difference from the 2^+ γ -vibrational state.
849.88 & <i>12</i>	(4^{+})		Α	J^{π} : γ rays to the (2^+) and (4^+) states; energy fit to the band.
879.97 [@] <i>13</i>	(5^{-})		A C	J^{π} : γ ray to the (4^+) state; no γ ray to 2^+ , 0^+ ; energy fit to the band.
893.12 <i>13</i>			Α	
920.0‡#	(10^{+})		BC	
932.26 20	(5^+)		A	J^{π} : γ rays to the (4^+) and (6^+) levels; energy fit to the γ -vibrational band.
1033.94 <i>13</i>	(2^{+})		A	J^{π} : γ rays to the 0^+ and (4^+) states.

²³⁰Ra Levels (continued)

E(level) [†]	J^{π}	XREF	Comments
1144.57 13	$\overline{(4^+)}$	A	J^{π} : γ rays to the 2^+ and (6^+) states.
1158.57 <i>16</i>		Α	
1189.07 <i>19</i>		Α	
1211.89 <i>19</i>		Α	
1252.2 ^{‡#}	(12^+)	BC	
1281.17 <i>23</i>		Α	
1341.25 22		A	
1466.97 <i>24</i>		Α	
1522.40 20		Α	
1616.3 ^{‡#}	(14^{+})	BC	
1897.30 <i>12</i>		Α	
2005.05 13		A	
2006.3‡#	(16^+)	BC	
2043.52 18		A	
2418.3? ^{‡#}	(18^{+})	ВС	

[†] Excited state energies are from 230 Fr $β^-$ decay, unless otherwise specified. [‡] From 232 Th(56 Fe,X), E=362 MeV. [#] Band(A): K=0⁺ g.s. rotational band.

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}
57.4	2+	57.4 1	100	0.0	0+
186.64	(4^{+})	129.1 <i>I</i>	100	57.4	2+
379.15	(6^{+})	192.5 <i>1</i>	100	186.64	(4^{+})
626.4	(8^{+})	247.3 [#]	100	379.15	(6^+)
710.93	(1^{-})	653.4 <i>1</i>	96 7	57.4	2+
		711.0 [@] 1	100 [@] 25	0.0	0_{+}
734.87	(2^{+})	548.0 <i>3</i>	4.9 5	186.64	(4^{+})
		677.4 <i>1</i>	100 7	57.4	2+
		734.9 <i>1</i>	89 7	0.0	0_{+}
768.54	(3^{-})	57.1 [@] 1	0.15 [@] 5	710.93	(1^{-})
		581.9 <i>1</i>	13.4 10	186.64	(4^{+})
		711.0 [@] 1	100 [@] 10	57.4	2+
785.9	(3^{+})	599.3 <i>1</i>	26.2 19	186.64	(4^{+})
		728.4 <i>1</i>	100 6	57.4	2+
849.88	(4^{+})	663.2 <i>1</i>	100 7	186.64	(4^{+})
		792.4 2	62 5	57.4	2+
879.97	(5^{-})	693.3	100	186.64	(4^{+})
893.12		706.5 <i>1</i>	100 7	186.64	(4^{+})
		835.5 <i>3</i>	72 8	57.4	2+
920.0	(10^+)	293.6 [#]	100	626.4	(8^{+})
932.26	$(5^{+})^{-}$	553.2 2	30 <i>3</i>	379.15	(6^{+})
		745.4 <i>3</i>	100 <i>15</i>	186.64	(4^{+})
1033.94	(2^{+})	266.5 2	28 4	768.54	(3^{-})
		323.1 2	43 4	710.93	(1^{-})
		847.2 3	72 9	186.64	(4^{+})

 $^{^{\}tiny{(0)}}$ Band(B): K=0 $^{-}$ octupole-vibrational band.

[&]amp; Band(C): $K=2^+$ γ -vibrational band.

$\gamma(^{230}\text{Ra})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}
1033.94	(2 ⁺)	976.3 <i>3</i>	100 10	57.4	2+	1522.40		811.9 <i>3</i>	100 10	710.93	(1-)
		1033.8 5	37 6	0.0	0_{+}			1465.0 5	18 5	57.4	2+
1144.57	(4^{+})	264.5 2	55 6	879.97	(5^{-})	1616.3	(14^{+})	364.1 [#]	100	1252.2	(12^+)
		375.8 2	89 9	768.54	(3^{-})	1897.30		863.5 <i>3</i>	11.0 12	1033.94	(2^{+})
		765.5 <i>3</i>	63 8	379.15	(6^{+})			1004.3 <i>3</i>	46 5	893.12	
		958.0 2	100 11	186.64	(4^{+})			1111.8 <i>3</i>	27 3	785.9	(3^{+})
		1086.9 5	46 8	57.4	2+			1128.8 2	87 <i>6</i>	768.54	(3^{-})
1158.57		971.8 2	100 10	186.64	(4^{+})			1162.6 2	100 7	734.87	(2^{+})
		1101.2 2	93 8	57.4	2+			1710.2 2	63 7	186.64	(4^{+})
1189.07		338.9 <i>3</i>	7.4 15	849.88	(4^{+})			1839.3 5	13.0 20	57.4	2+
		1002.2 <i>3</i>	100 10	186.64	(4^{+})	2005.05		1219.0 5	32 4	785.9	(3^{+})
1211.89		832.4 <i>3</i>	51 5	379.15	(6^{+})			1236.6 <i>3</i>	74 <i>7</i>	768.54	(3^{-})
		1025.4 2	100 10	186.64	(4^{+})			1270.2 2	74 <i>7</i>	734.87	(2^{+})
1252.2	(12^{+})	332.2 [#]	100	920.0	(10^{+})			1294.0 2	86 9	710.93	(1^{-})
1281.17		1094.8 <i>3</i>	100 10	186.64	(4^{+})			1947.7 <i>3</i>	100 10	57.4	2+
		1223.4 <i>3</i>	78 8	57.4	2+	2006.3	(16^{+})	390 [#]	100	1616.3	(14^{+})
1341.25		1154.6 2	100	186.64	(4^{+})	2043.52		898.7 2	100 <i>10</i>	1144.57	(4^{+})
1466.97		587.0 2	100	879.97	(5^{-})			1274.6 <i>3</i>	59 9	768.54	(3^{-})
1522.40		333.1 2	40 4	1189.07				1857.8 <i>3</i>	100 <i>10</i>	186.64	(4^{+})
		754.0 <i>3</i>	65 16	768.54	(3-)	2418.3?	(18^{+})	412 ^{#&}	100	2006.3	(16^{+})

[†] From ²³⁰Fr β⁻ decay (1987Ku04), unless otherwise specified. [‡] Relative photon intensities deexciting each level, normalized to 100 for the strongest γ ray. [#] From ²³²Th(⁵⁶Fe,X), E=362 MeV. [@] Multiply placed with intensity suitably divided. [&] Placement of transition in the level scheme is uncertain.

 $\begin{aligned} \textbf{Band(A): K=0}^+ & \textbf{ g.s.} \\ \textbf{rotational band} \end{aligned}$

 $^{230}_{\ \, 88}{\rm Ra}_{142}$

0.0