Examiner's use only

Team Leader's use only

| Centre<br>No.    |  |  |   | Paper Reference |   |   | Surname | Initial(s) |   |           |  |
|------------------|--|--|---|-----------------|---|---|---------|------------|---|-----------|--|
| Candidate<br>No. |  |  | 6 | 6               | 8 | 4 | /       | 0          | 1 | Signature |  |

Paper Reference(s)

### 6684/01

# **Edexcel GCE**

### **Statistics S2**

# Advanced/Advanced Subsidiary

Friday 14 January 2011 – Afternoon

Time: 1 hour 30 minutes

| Materials required for examination | Items included with question paper |  |  |
|------------------------------------|------------------------------------|--|--|
| Mathematical Formulae (Pink)       | Nil                                |  |  |

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

#### **Instructions to Candidates**

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper.

Answer ALL the questions.

You must write your answer to each question in the space following the question.

Values from the statistical tables should be quoted in full. When a calculator is used, the answer should be given to an appropriate degree of accuracy.

#### **Information for Candidates**

A booklet 'Mathematical Formulae and Statistical Tables' is provided.

Full marks may be obtained for answers to ALL questions.

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2).

There are 7 questions in this question paper. The total mark for this paper is 75.

There are 24 pages in this question paper. Any blank pages are indicated.

### **Advice to Candidates**

You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit.

This publication may be reproduced only in accordance wit Edexcel Limited copyright policy.

©2011 Edexcel Limited.

Printer's Log. No. H35411A W850/R6684/57570 5/3/2/



Total

Turn over



| Leave |  |
|-------|--|
| blank |  |

| A disease occurs in 3% of a population.                                                                                                           |                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| (a) State any assumptions that are required to model the number disease in a random sample of size <i>n</i> as a binomial distribution            | n.                      |
|                                                                                                                                                   | (2)                     |
| (b) Using this model, find the probability of exactly 2 people h random sample of 10 people.                                                      | naving the disease in a |
|                                                                                                                                                   | (3)                     |
| (c) Find the mean and variance of the number of people with the sample of 100 people.                                                             | ne disease in a random  |
|                                                                                                                                                   | (2)                     |
| A doctor tests a random sample of 100 patients for the disease. patients a vaccination to protect them from the disease if more that the disease. |                         |
| (d) Using a suitable approximation, find the probability that th patients a vaccination.                                                          |                         |
|                                                                                                                                                   | (3)                     |
|                                                                                                                                                   |                         |
|                                                                                                                                                   |                         |
|                                                                                                                                                   |                         |
|                                                                                                                                                   |                         |
|                                                                                                                                                   |                         |
|                                                                                                                                                   |                         |
|                                                                                                                                                   |                         |
|                                                                                                                                                   |                         |
|                                                                                                                                                   |                         |
|                                                                                                                                                   |                         |
|                                                                                                                                                   |                         |
|                                                                                                                                                   |                         |
|                                                                                                                                                   |                         |
|                                                                                                                                                   |                         |
|                                                                                                                                                   |                         |
|                                                                                                                                                   |                         |
|                                                                                                                                                   |                         |
|                                                                                                                                                   |                         |
|                                                                                                                                                   |                         |
|                                                                                                                                                   |                         |
|                                                                                                                                                   |                         |



| 2. A student takes a multiple choice test. The test is made up of 10 questions each with 5 possible answers. The student gets 4 questions correct. Her teacher claims she was guessing the answers. Using a one talled test at the 5% level of significance, test whether or not there is evidence to reject the teacher's claim.  State your hypotheses clearly.  (6) |                                                                                                                                                                                                                                           | Leave<br>blank |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|                                                                                                                                                                                                                                                                                                                                                                        | 5 possible answers. The student gets 4 questions correct. Her teacher claims she was guessing the answers. Using a one tailed test, at the 5% level of significance, test whether or not there is evidence to reject the teacher's claim. | n<br>S         |
|                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                           | )              |
|                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                           |                |
|                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                           |                |
|                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                           |                |
|                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                           |                |
|                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                           |                |
|                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                           |                |
|                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                           |                |
|                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                           |                |
|                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                           |                |
|                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                           |                |
|                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                           |                |
|                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                           |                |
|                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                           |                |
|                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                           |                |
|                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                           |                |
|                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                           |                |
|                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                           |                |
|                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                           |                |
|                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                           |                |
|                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                           |                |
|                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                           |                |
|                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                           |                |
|                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                           |                |
|                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                           |                |
|                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                           |                |
|                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                           |                |
|                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                           |                |
|                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                           |                |
|                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                           |                |
|                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                           |                |
|                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                           |                |
|                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                           |                |
|                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                           |                |
|                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                           |                |
|                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                           |                |



| 3. | The continuous random variable $X$ is uniformly distributed over the interval $[-1,3]$ . Find |     | blank |
|----|-----------------------------------------------------------------------------------------------|-----|-------|
|    | (a) $E(X)$                                                                                    | (1) |       |
|    | (b) $Var(X)$                                                                                  | (2) |       |
|    | (c) $E(X^2)$                                                                                  | (2) |       |
|    | (d) $P(X < 1.4)$                                                                              | (1) |       |
|    | A total of 40 observations of <i>X</i> are made.                                              |     |       |
|    | (e) Find the probability that at least 10 of these observations are negative.                 | (5) |       |
|    |                                                                                               |     |       |
|    |                                                                                               |     |       |
|    |                                                                                               |     |       |
|    |                                                                                               |     |       |
|    |                                                                                               |     |       |
|    |                                                                                               |     |       |
|    |                                                                                               |     |       |
|    |                                                                                               |     |       |
|    |                                                                                               |     |       |
|    |                                                                                               |     |       |



| Question 3 continued | bla |
|----------------------|-----|
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |



|    |                                                                                                | Leave |
|----|------------------------------------------------------------------------------------------------|-------|
|    |                                                                                                | blank |
| 4. | Richard regularly travels to work on a ferry. Over a long period of time, Richard has found    |       |
|    | that the ferry is late on average 2 times every week. The company buys a new ferry to          |       |
|    | improve the service. In the 4-week period after the new ferry is launched, Richard finds       |       |
|    | the ferry is late 3 times and claims the service has improved. Assuming that the number        |       |
|    | of times the ferry is late has a Poisson distribution, test Richard's claim at the 5% level of |       |
|    | significance. State your hypotheses clearly.                                                   |       |
|    | (6)                                                                                            |       |
|    | (0)                                                                                            |       |
|    |                                                                                                |       |
|    |                                                                                                |       |
|    |                                                                                                |       |
|    |                                                                                                |       |
|    |                                                                                                |       |
|    |                                                                                                |       |
|    |                                                                                                |       |
|    |                                                                                                |       |
|    |                                                                                                |       |
|    |                                                                                                |       |
|    |                                                                                                |       |
|    |                                                                                                |       |
|    |                                                                                                |       |
|    |                                                                                                |       |
|    |                                                                                                |       |
|    |                                                                                                |       |
|    |                                                                                                |       |
|    |                                                                                                |       |
|    |                                                                                                |       |
|    |                                                                                                |       |
|    |                                                                                                |       |
|    |                                                                                                |       |
|    |                                                                                                |       |
|    |                                                                                                |       |
|    |                                                                                                |       |
|    |                                                                                                |       |
|    |                                                                                                |       |
|    |                                                                                                |       |
|    |                                                                                                |       |
|    |                                                                                                |       |
|    |                                                                                                |       |
|    |                                                                                                |       |
|    |                                                                                                |       |
|    |                                                                                                |       |
|    |                                                                                                |       |
|    |                                                                                                |       |
| _  |                                                                                                |       |
|    |                                                                                                |       |
|    |                                                                                                |       |
|    |                                                                                                |       |
|    |                                                                                                |       |
|    |                                                                                                |       |
|    |                                                                                                |       |
|    |                                                                                                |       |
| _  |                                                                                                |       |
|    |                                                                                                |       |
|    |                                                                                                |       |
|    |                                                                                                |       |
|    |                                                                                                |       |



Leave blank

**5.** A continuous random variable X has the probability density function f(x) shown in Figure 1.



Figure 1

(a) Show that f(x) = 4 - 8x for  $0 \le x \le 0.5$  and specify f(x) for all real values of x.

**(4)** 

(b) Find the cumulative distribution function F(x).

**(4)** 

(c) Find the median of X.

**(3)** 

(d) Write down the mode of X.

**(1)** 

(e) State, with a reason, the skewness of X.

**(1)** 





| estion 5 continued |  |
|--------------------|--|
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |



| . Ca | ars arrive at a motorway toll booth at an average rate of 150 per hour.                                       |       |
|------|---------------------------------------------------------------------------------------------------------------|-------|
| (a   | Suggest a suitable distribution to model the number of cars arriving at the toll back, per minute.            | ooth, |
|      |                                                                                                               | (2)   |
| (b   | State clearly any assumptions you have made by suggesting this model.                                         | (2)   |
| U    | sing your model,                                                                                              |       |
| (c   | e) find the probability that in any given minute                                                              |       |
|      | (i) no cars arrive,                                                                                           |       |
|      | (ii) more than 3 cars arrive.                                                                                 | (3)   |
| (d   | I) In any given 4 minute period, find $m$ such that $P(X > m) = 0.0487$                                       | (3)   |
| (e   | e) Using a suitable approximation find the probability that fewer than 15 cars arrany given 10 minute period. |       |
|      |                                                                                                               | (6)   |
|      |                                                                                                               |       |
|      |                                                                                                               |       |
|      |                                                                                                               |       |
|      |                                                                                                               |       |
|      |                                                                                                               |       |
|      |                                                                                                               |       |
|      |                                                                                                               |       |
|      |                                                                                                               |       |



| Question 6 continued | bla |
|----------------------|-----|
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |



Leave blank

7. The queuing time in minutes, X, of a customer at a post office is modelled by the probability density function

$$f(x) = \begin{cases} kx(81 - x^2) & 0 \le x \le 9 \\ 0 & \text{otherwise} \end{cases}$$

(a) Show that  $k = \frac{4}{6561}$ .

(3)

Using integration, find

(b) the mean queuing time of a customer,

**(4)** 

(c) the probability that a customer will queue for more than 5 minutes.

**(3)** 

Three independent customers shop at the post office.

(d) Find the probability that at least 2 of the customers queue for more than 5 minutes.

(3)



| estion 7 continued |  |
|--------------------|--|
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |
|                    |  |

