Graph Streaming and Sketching

Lecture 19 April 2, 2019

Part I

Matchings

Matchings

Definition

A matching $M \subseteq E$ in a graph G = (V, E) is a set of edges that do not intersect (share vertices).

Definition

A matching $M \subseteq E$ in a graph G = (V, E) is a perfect matching if all vertices are matched.

Matchings

Definition

A matching $M \subseteq E$ in a graph G = (V, E) is a set of edges that do not intersect (share vertices).

Definition

A matching $M \subseteq E$ in a graph G = (V, E) is a perfect matching if all vertices are matched.

- Given a graph G does it have a perfect matching?
- Find a maximum cardinality matching.
- Find a maximum weight matching.
- Find a minimum cost perfect matching.
- Count number of (perfect) matchings.

Matching theory: extensive, fundamental in theory and practice, beautiful. . . .

Algorithms

- Given a graph G does it have a perfect matching?
- Find a maximum cardinality matching.
- Find a maximum weight matching.
- Find a minimum cost perfect matching.
- Count number of (perfect) matchings.

All of the above solvable in polynomial time.

- Bipartite graphs: via flow techniques
- Non-bipartite/general graphs: more advanced techniques
- Classical topics in combinatorial optimization

Semi-streaming setting

Edges e_1, e_2, \ldots, e_m come in some (adversarial) order

Questions:

- ullet With $ilde{O}(n)$ memory approximate maximum cardinality matching
- ullet With $ilde{O}(n)$ memory approximate maximum weight matching
- Multiple passes
- Estimate size of maximum cardinality matching
- • •

Substantial literature on upper and lower bounds

Maximum cardinality

Definition

A matching M is maximal if for all $e \in E \setminus M$, M + e is not a matching.

Lemma

If M is maximal then $|M| \ge |M^*|/2$ for any matching M^* . Hence, a maximal matching is a 1/2-approximation.

Maximal matching in streams

```
M = \emptyset
While (stream is not empty) do
e is next edge in stream
If (M + e) is a matching
M \leftarrow M + e
EndWhile
Output M
```

Offline algorithm: greedy after sorting.

```
Sort edges such that w(e_1) \geq w(e_2) \geq \ldots \geq w(e_m) M = \emptyset

For (i = 1 \text{ to } m) do

If (M + e_i) is a matching
M \leftarrow M + e_i
EndWhile
Output M
```

Offline algorithm: greedy after sorting.

```
Sort edges such that w(e_1) \geq w(e_2) \geq \ldots \geq w(e_m) M = \emptyset

For (i = 1 \text{ to } m) do If (M + e_i) is a matching M \leftarrow M + e_i

EndWhile Output M
```

Claim: $w(M) \geq w(M^*)/2$.

Offline algorithm: greedy after sorting.

```
Sort edges such that w(e_1) \geq w(e_2) \geq \ldots \geq w(e_m) M = \emptyset

For (i = 1 \text{ to } m) do If (M + e_i) is a matching M \leftarrow M + e_i

EndWhile Output M
```

Claim: $w(M) \geq w(M^*)/2$.

Streaming setting? Cannot sort!

```
M = \emptyset
For (i = 1 \text{ to } m) \text{ do}
C = \{e' \in M \mid e' \cap e_i \neq \emptyset\}
If (w(e_i) > w(C)) then
M \leftarrow M - C + e_i
EndWhile
Output M
```

```
M = \emptyset
For (i = 1 \text{ to } m) \text{ do}
C = \{e' \in M \mid e' \cap e_i \neq \emptyset\}
If (w(e_i) > w(C)) then
M \leftarrow M - C + e_i
EndWhile
Output M
```

Can be arbitrarily bad compared to optimum weight.

```
egin{aligned} M &= \emptyset \ &	ext{For } (\emph{\emph{i}} = 1 	ext{ to } \emph{\emph{m}}) 	ext{ do } \ &	ext{$C = \{e' \in M \mid e' \cap e_i \neq \emptyset\}$} \ &	ext{If } (\emph{\emph{w}}(\emph{\emph{e}}_i) > (1 + \gamma)\emph{\emph{w}}(\emph{\emph{C}})) 	ext{ then } \ &	ext{$M \leftarrow M - C + e_i$} \ &	ext{EndWhile} \ &	ext{Output } \emph{\emph{\emph{M}}} \end{aligned}
```

```
egin{aligned} M &= \emptyset \ &	ext{For } (\emph{\emph{i}} = 1 \text{ to } \emph{\emph{m}}) \text{ do} \ &	ext{$C = \{e' \in M \mid e' \cap e_i \neq \emptyset\}$} \ &	ext{If } (\emph{\emph{w}}(\emph{\emph{e}}_i) > (1 + \gamma) \emph{\emph{w}}(\emph{\emph{C}})) \text{ then} \ &	ext{$M \leftarrow M - C + e_i$} \end{aligned} EndWhile Output M
```

Theorem

 $w(M) \geq f(\gamma)w(M^*).$

Consider edge $e \in M$ at end of algorithm. Let T_e set of edges in G that were "killed" by e.

Chandra (UIUC) CS498ABD 11 Spring 2019 11 / 23

Consider edge $e \in M$ at end of algorithm. Let T_e set of edges in G that were "killed" by e.

Claim: $w(T_e) \leq w(e)/\gamma$.

Consider edge $e \in M$ at end of algorithm. Let T_e set of edges in G that were "killed" by e.

Claim:
$$w(T_e) \leq w(e)/\gamma$$
.

$$e = C_0$$
 killed C_1 which killed C_2 ... killed C_h

$$w(C_i) \geq (1+\gamma)w(C_{i+1})$$
 for $i \geq 0$ and adding up

$$w(e) + w(T_e) \ge (1 + \gamma)w(T_e)$$

Claim: $w(M^*) \leq (1+\gamma) \sum_{e \in M} (w(T_e) + 2w(e))$.

Chandra (UIUC) CS498ABD 12 Spring 2019 12 / 23

Claim:
$$w(M^*) \le (1 + \gamma) \sum_{e \in M} (w(T_e) + 2w(e))$$
.

Fix any $f \in M^*$.

- If $f \in M$ at some point then $f \in T_e$ for some $e \in M$. or $f \in M$. Charge f to itself.
- When f considered it was not added to M. Let C_f conflicting edges at that time. $w(f) \leq (1 + \gamma)w(C_f)$.
 - If $|C_f| = 1$ charge f to single edge $e \in C_f$.
 - If $|C_f| = 2$ charge f in proportion to weights of edges in C_f .
 - If f charges e' and e' gets killed by e", transfer charge of f from e' to e".

Claim:
$$w(M^*) \le (1 + \gamma) \sum_{e \in M} (w(T_e) + 2w(e))$$
.

Fix any $f \in M^*$.

- If $f \in M$ at some point then $f \in T_e$ for some $e \in M$. or $f \in M$. Charge f to itself.
- When f considered it was not added to M. Let C_f conflicting edges at that time. $w(f) \leq (1 + \gamma)w(C_f)$.
 - If $|C_f| = 1$ charge f to single edge $e \in C_f$.
 - If $|C_f|=2$ charge f in proportion to weights of edges in C_f .
 - If f charges e' and e' gets killed by e", transfer charge of f from e' to e".
- If $e \in M$ can be charged twice hence total is $2(1 + \gamma)w(e)$

Claim:
$$w(M^*) \le (1 + \gamma) \sum_{e \in M} (w(T_e) + 2w(e))$$
.

Fix any $f \in M^*$.

- If $f \in M$ at some point then $f \in T_e$ for some $e \in M$. or $f \in M$. Charge f to itself.
- When f considered it was not added to M. Let C_f conflicting edges at that time. $w(f) \leq (1 + \gamma)w(C_f)$.
 - If $|C_f| = 1$ charge f to single edge $e \in C_f$.
 - If $|C_f|=2$ charge f in proportion to weights of edges in C_f .
 - If f charges e' and e' gets killed by e", transfer charge of f from e' to e".
- If $e \in M$ can be charged twice hence total is $2(1 + \gamma)w(e)$
- If $e' \in T_e$ then only one edge of M^* leaves charge on e'. Why?

Claim: $w(T_e) \leq w(e)/\gamma$.

Claim: $w(M^*) \le (1 + \gamma) \sum_{e \in M} (w(T_e) + 2w(e))$.

Setting $\gamma = 1$ we obtain $w(M^*) \leq 6w(M)$.

Claim: $w(T_e) \leq w(e)/\gamma$.

Claim: $w(M^*) \le (1 + \gamma) \sum_{e \in M} (w(T_e) + 2w(e))$.

Setting $\gamma = 1$ we obtain $w(M^*) \leq 6w(M)$.

A clever and simple $(\frac{1}{2} - \epsilon)$ -approximation [Paz-Schwartzman'17] Stores more than a matching and then postprocesses.

Many other results on matchings in streaming: multipass, random arrival order, lower bounds, ...

Part II

Cut Sparsifiers

Graph Sparsification

G = (V, E) input graph and could be dense

- n is reasonable to store
- n² may be unreasonable to store
- edges are some times implicit and may be generated on the fly

Sparsification: Given G = (V, E) create a *sparse* graph H = (V, F) such that H mimics G for some property of interest

Graph Sparsification

G = (V, E) input graph and could be dense

- n is reasonable to store
- n² may be unreasonable to store
- edges are some times implicit and may be generated on the fly

Sparsification: Given G = (V, E) create a *sparse* graph H = (V, F) such that H mimics G for some property of interest

- Connectivity
- Distances (spanners and variants)
- Cuts (cut sparsifiers)
- ...

Cut Sparsifier

Definition

Given an edge weighted graph G = (V, E) with $w : E \to \mathbb{R}_+$ an edge weighted graph H = (V, F) with $w' : F \to \mathbb{R}_+$ is an ϵ -approximate cut sparsifier if for all $S \subset V$, $(1 - \epsilon)w(\delta_G(S)) < w'(\delta_H(S)) < (1 + \epsilon)w(\delta_G(S))$.

Cut Sparsifier

Definition

Given an edge weighted graph G = (V, E) with $w : E \to \mathbb{R}_+$ an edge weighted graph H = (V, F) with $w' : F \to \mathbb{R}_+$ is an ϵ -approximate cut sparsifier if for all $S \subset V$, $(1 - \epsilon)w(\delta_G(S)) \le w'(\delta_H(S)) \le (1 + \epsilon)w(\delta_G(S))$.

Very important concept and many powerful applications in graph algorithms and beyond

Cut Sparsifier

Definition

Given an edge weighted graph G=(V,E) with $w:E\to\mathbb{R}_+$ an edge weighted graph H=(V,F) with $w':F\to\mathbb{R}_+$ is an ϵ -approximate cut sparsifier if for all $S\subset V$, $(1-\epsilon)w(\delta_G(S))\leq w'(\delta_H(S))\leq (1+\epsilon)w(\delta_G(S))$.

Fundamental results

Theorem (Benczur-Karger'00)

Given a graph G = (V, E) on m edges and n nodes and any $\epsilon > 0$, one can construct in randomized $O(m \log^3 n)$ time a cut-sparsifier with $O(\frac{1}{\epsilon^2} n \log n)$ edges.

Theorem (Batson-Spielman-Srivastava'08)

Given a graph G = (V, E) on m edges and n nodes and any $\epsilon > 0$, one can construct in deterministic polynomial time a cut-sparsifier with $O(\frac{1}{\epsilon^2}n)$ edges.

Fundamental results

Theorem (Benczur-Karger'00)

Given a graph G = (V, E) on m edges and n nodes and any $\epsilon > 0$, one can construct in randomized $O(m \log^3 n)$ time a cut-sparsifier with $O(\frac{1}{\epsilon^2} n \log n)$ edges.

Theorem (Batson-Spielman-Srivastava'08)

Given a graph G = (V, E) on m edges and n nodes and any $\epsilon > 0$, one can construct in deterministic polynomial time a cut-sparsifier with $O(\frac{1}{\epsilon^2}n)$ edges.

What is a cut-sparsifier of a complete graph K_n ?

Fundamental results

Theorem (Benczur-Karger'00)

Given a graph G = (V, E) on m edges and n nodes and any $\epsilon > 0$, one can construct in randomized $O(m \log^3 n)$ time a cut-sparsifier with $O(\frac{1}{\epsilon^2} n \log n)$ edges.

Theorem (Batson-Spielman-Srivastava'08)

Given a graph G = (V, E) on m edges and n nodes and any $\epsilon > 0$, one can construct in deterministic polynomial time a cut-sparsifier with $O(\frac{1}{\epsilon^2}n)$ edges.

What is a cut-sparsifier of a complete graph K_n ? An expander graph!

Question: Can we create a cut-sparsifier on the fly in roughly O(npolylog(n)) space as edges come by?

Can use cut-sparsifier algorithms as a black box.

Merge and Reduce

Observation (Merge): If $H_1 = (V, F_1)$ is a α -approximate sparsifier for $G_1 = (V, E_1)$ and $H_2 = (V, F_2)$ is a α -approximate cut-sparsifier for $G_2 = (V, E_2)$ then $H_1 \cup H_2 = (V, F_1 \cup F_2)$ is a α -approximate cut-sparsifier for $G_1 \cup G_2 = (V, E_1 \cup E_2)$.

Merge and Reduce

Observation (Merge): If $H_1 = (V, F_1)$ is a α -approximate sparsifier for $G_1 = (V, E_1)$ and $H_2 = (V, F_2)$ is a α -approximate cut-sparsifier for $G_2 = (V, E_2)$ then $H_1 \cup H_2 = (V, F_1 \cup F_2)$ is a α -approximate cut-sparsifier for $G_1 \cup G_2 = (V, E_1 \cup E_2)$.

Observation (Reduce): If H = (V, F) is a α -approximate sparsifier for $G = (V, E_1)$ and H' = (V, F') is a β -approximate cut-sparsifier for H then H' is a $(\alpha\beta)$ -approximate cut-sparsifier for G.

Question: Can we create a cut-sparsifier on the fly in roughly O(npolylog(n)) space as edges come by?

Can use cut-sparsifier algorithms as a black box.

Merge and Reduce via a binary tree approach over the m edges in the stream. Seen this approach twice already: range queries in CountMin sketch and quantile summaries.

- Split stream of m edges into k graphs of m/k edges each. Let G_1, G_2, \ldots, G_k be the k graphs. Assume for simplicity that k is a power of 2.
- Imagine a binary tree with G_1, \ldots, G_k as leaves
- ullet Build a sparsifier bottom up. At each internal node merge the sparisfiers and reduce with approximation lpha

- Split stream of m edges into k graphs of m/k edges each. Let G_1, G_2, \ldots, G_k be the k graphs. Assume for simplicity that k is a power of 2.
- Imagine a binary tree with G_1, \ldots, G_k as leaves
- ullet Build a sparsifier bottom up. At each internal node merge the sparisfiers and reduce with approximation lpha

Questions:

- What is α to ensure that final sparsifier is ϵ -approximate?
- How much space needed in streaming setting?

- What is α to ensure that final sparsifier is ϵ -approximate?
- How much space needed in streaming setting?

Depth of tree is $\leq \log(m/n) \leq \log n$. Due to reduce operations final approximation is $(1+\alpha)^d$. Hence $(1+\alpha)^d \leq (1+\epsilon)$ implies $\alpha \simeq \epsilon/(ed) \simeq \epsilon/(e\log n)$

- What is α to ensure that final sparsifier is ϵ -approximate?
- How much space needed in streaming setting?

Depth of tree is $\leq \log(m/n) \leq \log n$. Due to reduce operations final approximation is $(1 + \alpha)^d$. Hence $(1 + \alpha)^d \leq (1 + \epsilon)$ implies $\alpha \simeq \epsilon/(ed) \simeq \epsilon/(e\log n)$

Memory analysis: Sparsifier size with $\alpha = \epsilon/\log n$ is $O(n\log^2 n/\epsilon^2)$ (if one uses BSS sparsifier, otherwise another log factor for Benczur-Karger sparsifier).

Need another $\log n$ factor to store sparsfiers at $\log n$ levels for streaming.