Amendments to the Claims

1. (currently amended) A compound of formula I

$$(R^{5})_{q}$$
 A
 B
 $(CH_{2})_{p}$
 $(CHR^{6})_{n}$
 R^{1}

wherein

n is 0, 1, 2, or 3;

m is 0, 1, 2, or 3;

p is 1 or 2;

q is 0, 1, 2, or 3;

Y is a bond, C=O, or S(O); wherein t is 0, 1, or 2;

R¹ is selected from a group consisting of hydroxy, C₁-C₆ alkyl, aryl, C₂-C₆ alkenyl, C₁-C₆ haloalkyl, C₁-C₆ alkylheterocyclic, C₃-C₈ cycloalkyl, C₁-C₆ alkylcycloalkyl; C₁-C₆ alkylaryl, heterocyclyl, C₂-C₆ alkylacohol, C₁-C₆ alkoxy, aryloxy, -OC₂-C₆ alkenyl, -OC₁-C₆ haloalkyl, -OC₁-C₆ alkylheterocyclic, -OC₃-C₈ cycloalkyl, -OC₁-C₆ alkylcycloalkyl, -NR⁷R⁸ and -OC₁-C₆ alkylaryl, -O-heterocyclic, and -OC₁-C₆ alkylheterocyclic; provided that R¹ is not hydroxy when Y is S(O)₆, CO or when n and y are both zero; and wherein each of cycloalkyl, aryl and heterocyclic group is optionally substituted with 1 to 3- groups independently selected from oxo, hydroxy, halo, C₁-C₆ alkyl, C₂-C₆ alkene, C₂-C₆ alkynyl, C₁-C₆ alkoxy, C₁-C₆ haloalkyl, C₁-C₆ alkylacohol, CONR¹¹R¹², NR¹¹SO₃R¹², NR¹¹COR¹², C₀-C₃ alkylNR¹¹R¹², C₁-C₃ alkylCOR¹¹, C₉-C₆ alkylcOOR¹¹, cyano, C₁-C₆ alkylcylcolkyl, phenyl, -OC₁-C₆ alkylcycloalkyl, -OC₁-C₆ alkylcylcylcolkyl, -OC₁-C₆ alkylaryl;

 R^2 is bound only to carbon atoms and is a group independently selected from hydrogen, hydroxy, halo, C_1 - C_6 alkyl, C_2 - C_6 alkene, C_2 - C_6 alkynyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkyl, $CONR^{11}R^{12}$, $NR^{11}SO_2R^{12}$, $NR^{11}COR^{12}$, C_0 - C_6 alkylNR^{11}R^{12}, C_0 - C_6 alkylCOR^{11}, C_0 - C_6 alkylCOR^{11}, cyano, nitro, C_0 - C_6 alkylcycloalkyl, phenyl, and C_0 - C_6 alkylaryl heterocyclyl, C_3 - C_6 cycloalkyl, and C_1 - C_6 haloalkyl;

R3 is hydrogen;

R4 is a group represented by the formula -NR9R10;

each R^{S} is selected from a group consisting of hydrogen, hydroxy, halogen, C_1 - C_6 haloalkyl, C_3 - C_8 cycloalkyl, C_1 - C_6 alkylaryl, C_1 - C_6 alkylheterocyclic, aryl, heterocyclic, cyano, nitro, C_1 - C_6 alkyl, C_2 - C_6 alkynory, $-OC_2$ - C_6 alkyl, $-OC_1$ - C_6 haloalkyl, $-C_0$ - C_6 alkyl NR^7R^8 , C_0 - C_6 alkyl NR^7R^8 , C_0 - C_6 alkyl NR^7R^8 , $NR^7SO_2R^8$, $NR^7SO_$

R⁶ is independently selected from a group consisting of hydrogen, C₁-C₆ alkyl, C₂-C₆ alkenyl, hydroxy, COR⁷, C₁-C₆ alkoxy, aryloxy, -OC₂-C₆ alkenyl, -OC₁-C₆ haloalkyl, C₁-C₆ alkylNR¹¹R¹², C₃-C₈ cycloalkyl, heterocyclic, aryl, and C₁-C₆ alkylcycloalkyl;

each R^7 is independently selected from a group consisting of hydrogen, $C_1\text{-}C_6$ alkyl, $C_2\text{-}C_6$ alkenyl, $C_2\text{-}C_6$ alkynyl, -O $C_1\text{-}C_6$ alkyl, $C_1\text{-}C_6$ haloalkyl, -O-aryl, -OC $_3\text{-}C_8$ cycloalkyl, -O-heterocyclic, -NR¹¹R¹², -C₁-C₆ alkylcycloalkyl, -OC $_1\text{-}C_6$ alkylcycloalkyl, -OC $_1\text{-}C_6$ alkylheterocyclic, -OC $_3\text{-}C_6$ alkylheterocyclic, -OC $_3\text{-}C_6$ alkylaryl, C $_3\text{-}C_8$ cycloalkyl, heterocyclic, aryl, and $C_1\text{-}C_6$ alkylaryl, wherein each alkyl, cycloalkyl, heterocyclic or aryl group is optionally substituted with 1-3 groups independently selected from hydroxy, halogen, oxo, $C_1\text{-}C_6$ alkyl, $C_1\text{-}C_6$ alkoxy, SO_2R^{11} , $SO_2NR^{11}R^{12}$, $C_1\text{-}C_6$ alkyl $SO_2NR^{11}R^{12}$, COR^{11} , $C_1\text{-}C_6$ haloalkyl, and $NR^{11}R^{12}$, or R^{11} and R^{12} combine to form a nitrogen containing heterocyclic ring having 0, 1, or 2 additional heteroatoms selected from oxygen, nitrogen and sulfur and wherein the nitrogen-containing heterocycle is optionally substituted with oxo, or $C_1\text{-}C_6$ alkyl;

each R^8 is independently selected from a group consisting of hydrogen, $C_1\text{-}C_6$ alkyl, $C_2\text{-}C_6$ alkenyl, $C_2\text{-}C_6$ alkynyl, -O $C_1\text{-}C_6$ alkyl, $C_1\text{-}C_6$ haloalkyl, -O-aryl, $-OC_3\text{-}C_8$ cycloalkyl, -O-heterocyclic, $-NR^{11}R^{12}$, $-C_1\text{-}C_6$ alkylcycloalkyl, $-OC_1\text{-}C_6$ alkylcycloalkyl, $-OC_1\text{-}C_6$ alkylcycloalkyl, $-OC_1\text{-}C_6$ alkylheterocyclic, -O chromatically $-C_1\text{-}C_6$ alkylaryl, $-C_1\text{-}C_6$ alkylaryl, $-C_1\text{-}C_6$ alkylaryl, heterocyclic, aryl, and $-C_1\text{-}C_6$ alkylaryl, wherein each alkyl, cycloalkyl, heterocyclic or aryl group is optionally substituted with 1-3 groups independently selected from hydroxy, halogen, $-C_1\text{-}C_6$ alkyl, $-C_1\text{-}C_6$ alkoyl, $-C_1\text{-}C_6$ haloalkyl, and $-C_1\text{-}C_6$ alkoyl, $-C_1\text{-}C_6$ haloalkyl, and $-C_1\text{-}C_6$ alkyl, $-C_1\text{-}C_6$ haloalkyl, and $-C_1\text{-}C_6$ alkyl, $-C_1\text{-}C_6$ haloalkyl, and heterocyclic ring having 0, 1, or 2 additional heteroatoms selected from oxygen, nitrogen and sulfur and wherein the nitrogen-containing heterocycle is optionally substituted with oxo, or $-C_1\text{-}C_6$ alkyl.

R9 is COR7 or S(O)_tR7 wherein R7 is as defined above;

 R^{10} is selected from the group consisting of aryl, C_1 – C_6 alkylaryl, C_2 – C_6 alkeynylaryl, C_2 – C_6 alkylheterocyclic, C_2 – C_6 alkeynylaryl, C_1 – C_6 alkylheterocyclic, C_1 – C_6 alkylheterocyclic, C_1 – C_6 alkylaryl, and wherein each cycloalkyl, aryl, or heterocyclic group is optionally substituted with 1-3 groups independently selected from the group consisting of hydroxy, oxo, - SC_1 – C_6 alkyl, C_1 – C_6 alkyl, C_1 – C_6 alkyl, C_1 – C_6 alkyl, C_1 – C_6 alkoyl, C_1 – C_6 alkyl, C_1 – C_6 alkyl, C_1 – C_6 alkyl, C_1 – C_6 alkylaryl, nitro, cyano, C_1 – C_6 alkoylalcohol, and C_1 – C_6 alkylalcohol;

R¹¹ and R¹² are independently selected from a group consisting of hydrogen, C₁-C₆ alkyl, C₁-C₆ alkenyl, C₃-C₈ cycloalkyl, heterocyclic, aryl, C₁-C₆ alkylaryl, wherein each aryl cycloalkyl and heterocyclic group is optionally substituted with 1-3 groups independently selected from halogen, C₁-C₆ alkylheterocyclic, and C₁-C₆ haloalkyl, or R¹¹ and R¹² combine to form a nitrogen containing heterocyclic ring which may have 0, 1, or 2 additional heteroatoms selected from oxygen, nitrogen or sulfur and is optionally substituted with oxo, C₁-C₆ alkyl, COR⁷, and SO₂R⁷;

or a pharmaceutically acceptable salt, solvate, enantiomer, racemate, diastereomer or mixture of diastereomers thereof.

- 2. (previously presented) The compound according to Claim 1 wherein R^1 is selected from a group consisting of C_1 - C_6 alkoxy, C_1 - C_6 alkylcycloalkyl, C_3 - C_8 cycloalkyl, C_1 - C_6 alkylheterocyclic, aryloxy, $-OC_2$ - C_6 alkenyl, $-OC_1$ - C_6 haloalkyl, $-OC_3$ - C_8 cycloalkyl, $-OC_1$ - C_6 alkylaryl, $-OC_3$ - $-C_8$ heterocyclic, and $-OC_1$ - $-C_6$ alkylheterocyclic.
- 3. (original) A compound according to Claim 1 wherein R¹ is selected from a group consisting of C₁-C₆ alkoxy, C₁-C₆ alkylcycloalkyl, C₃-C₆ cycloalkyl, C₁-C₆ alkylheterocyclic, aryloxy, -OC₂-C₆ alkenyl, -OC₁-C₆ haloalkyl, -OC₃-C₆ cycloalkyl, -OC₁-C₆ alkylaryl, OC₃-C₆ heterocyclic, and -OC₁-C₆ alkylheterocyclic; R⁴ is the group NR⁰R¹⁰ and R⁰ is selected from an optionally substituted heterocyclic, or alkylheterocyclic.
- 4. (previously presented) The compound according to Claim 1 wherein R¹ is selected from a group consisting of C₁-C₆ alkoxy, C₁-C₆ alkylcycloalkyl, C₁-C₆ alkylheterocyclic, C₃-C₈ cycloalkyl, C₁-C₆ alkylaryl, aryloxy, -OC₂-C₆ alkenyl, -OC₁-C₆ haloalkyl, -OC₃-C₈ cycloalkyl, OC₁-C₆ heterocyclic, -OC₁-C₆ alkylaryl, and -OC₁-C₆ alkylheterocyclic; R⁴ is the group NR⁹R¹⁰ and wherein R³ is COR².

5. (previously presented) The compound according to Claim 1 wherein n is zero; y is a bond; and R¹ is alkylaryl, alkylheterocyclic, alkycycloalkyl wherein the alkyl, aryl, cycloalkyl and heterocyclic groups are each optionally substituted with 1, 2 or 3 groups independently selected from hydroxy, oxo, -COOH, C₁-C₆ alkyl, C₁-C₆ alkoxy, C₁-C₆ alkylcycloalkyl, C₃-C₈ cycloalkyl, C₁-C₆ alkylaryl, aryloxy, -OC₂-C₆ alkenyl, -OC₁-C₆ haloalkyl, -OC₃-C₈ cycloalkyl, and -OC₁-C₆ alkylaryl.

- 6. (previously presented) The compound according to Claim 1 wherein p is 1.
- (previously presented) The compound according to claim 1 wherein p is 2.
- 8. (previously presented) The compound of claim 1, wherein p is 1 or 2; n is 0 or 1; m is 0, and a is 1-3.
- (previously presented) The compound according to Claim 1 wherein n and m are independently 0 or 1; and q is 2 or 3.
- 10. (previously presented) The compound according to Claim I wherein q is 2 and the R⁵ groups combine to form a five or six member optionally substituted fused ring with the A-ring wherein said fused ring may have 1, 2, or 3 heteroatom linkers independently selected from oxygen, or N or NH.
- 11. (original) The compound according to Claim 1 wherein R⁴ is selected from the group consisting of:

- 12. (currently amended) A compound <u>according to claim 1</u> selected from the group consisting of:
- 5-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-7-trifluoromethyl-2,3,4,5-tetrahydrobenzo[b]azepine-1-carboxylic acid isopropyl ester,
- 5-[(3,5-Bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-7-trifluoromethyl-2,3,4,5-tetrahydro-benzo[b]azepine-1-carboxylic acid isopropyl ester,
- 5-[(3,5-Bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-7-trifluoromethyl-2,3,4,5-tetrahydro-benzo[b]azepine-1-carboxylic acid ethyl ester,
- 5-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-7-trifluoromethyl-2,3,4,5-tetrahydrobenzo[b]azepine-1-carboxylic acid ethyl ester,
- 5-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-2,3,4,5-tetrahydro-benzo[b]azepine-1-carboxylic acid isopropyl ester,
- 5-[(3,5-Bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2,3,4,5-tetrahydrobenzo[b]azepine-1-carboxylic acid isopropyl ester,
- 5-[(3,5-Bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-7-bromo-2,3,4,5-tetrahydrobenzo[b]azepine-1-carboxylic acid isopropyl ester,

5-[(3,5-Bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-7-bromo-2,3,4,5-tetrahydro-benzo[b]azepine-1-carboxylic acid ethyl ester,

- 5-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-7-bromo-2,3,4,5-tetrahydro-benzo[b]azepine-1-carboxvlic acid ethyl ester.
- 5-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-7-methoxy-2,3,4,5-tetrahydrobenzo[blazenine-1-carboxylic acid ethyl ester.
- 5-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-8-trifluoromethyl-2,3,4,5-tetrahydrobenzo[b]azepine-1-carboxylic acid isopropyl ester,
- 5-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-8-fluoro-7-trifluoromethyl-2,3,4,5-tetrahydro-benzo[b]azepine-1-carboxylic acid isopropyl ester,
- 5-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-2-methyl-7-trifluoromethyl-2,3,4,5-tetrahydrobenzo[b]azepine-1-carboxylic acid isopropyl ester,
- 5-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-4,4-dimethyl-7-trifluoromethyl-2,3,4,5-tetrahydro-benzo[b]azepine-1-carboxylic acid isopropyl ester,
- $\label{lem:condition} 6-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-8-trifluoromethyl-3,4,5,6-tetrahydro-2H-benzo[b]azocine-1-carboxylic acid isopropyl ester,$
- 6-[Acctyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-9-trifluoromethyl-3,4,5,6-tetrahydro-2H-benzo[b]azocine-1-carboxylic acid isopropyl ester,
- $\label{lem:control} 5-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-9-trifluoromethyl-3,4,5,6-tetrahydro-2H-benzo[b] azocine-1-carboxylic acid isopropyl ester,$
- $\label{lem:control} $$4-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-7-trifluoromethyl-2,3,4,5-tetrahydrobenzo[b] azepine-1-carboxylic acid isopropyl ester,$
- 5-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-8-chloro-2,3,4,5-tetrahydro-benzo[b]azepine1-carboxylic acid isopropyl ester, and
- 5-[(3,5-Bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-8-chloro-2,3,4,5-tetrahydrobenzo[b]azepine-1-carboxylic acid isopropyl ester,
- or a pharmaceutically acceptable salt, solvate, enantiomer, diastereomer or mixture thereof.

(cancelled)

 (currently amended) A method of treating or preventing dyslipidemia comprising administering a compound of formula I or a pharmaceutically acceptable salt, solvate, enantiomer, racemate, diastercomer, or mixture of diastercomers thereof, to a patient in need thereof.

15. (currently amended) A method of treating Cardiovascular Diseases comprising administering to a patient in need thereof a pharmaceutically effective amount of a compound of formula I or a pharmaceutically acceptable salt, solvate, cannitiomer, racemate, diastereomer, or mixture of diastereomers thereof, to a patient in need thereof.

- 16. (currently amended) A method <u>according to claim 15</u> of treating or preventing artherosclerosis comprising administering a compound of formula I, a pharmaceutically acceptable salt, solvate, enantiomer, racemate, diastercomer, or mixture of diastercomers thereof to a patient.
 - (Canceled)
- 18. (currently amended) A method of according to claim 14 comprising lowering plasma LDL-cholesterol in a mammal-comprising administering a therapeutically effective dose of a compound of formula I, a pharmaceutically acceptable salt, solvate, enantiomer, racemate, diastercomer, or mixture of diastercomers thereof to a patient in need thereof.
 - 19. (canceled)
- 20. (currently amended) A method of treating and/or preventing o-pathological sequelae due to low levels of plasma HDL-cholesterol in a mammal comprising administering a pharmaceutically effective amount of a compound of formula I or a pharmaceutically acceptable salt, solvate, enantiomer, racemate, diastercomer, or mixture of diastercomers thereof, to a patient in need thereof.
 - 21. (canceled)
- (currently amended) A pharmaceutical formulation comprising a compound according to Claim 1 and at least one of: a carrier, a diluent and a-an excipient.
 - 23-25 (Canceled)
- (new) A method according to claim 14 comprising raising plasma HDLcholesterol in a mammal.