Q.P. Code: 34123

First Semester BCA Degree Examinations May / June 2022 (2021-22 CBCS NEP Scheme)

Paper: NBA 0230: MATHEMATICAL FOUNDATION (NEP)

Time	Time: 2 Hrs.									lax. Marks: 60	
Note	e: Stu	udent-can us	e-calc	ulator							
1.	Sele	ect the most	appro	priate	answer 1	rom	the option	ns prov	/ided	: (10x1=10)	
i.	Whi	ch of the follo	wina i	s not d	ne of the	five	main logic	conne	ctives	S.	
	(a)	negation	3		(b)	cond	ditional				
	(c)	conjunction			(d)	Prod	duction				
ii.	The disjunction of two statements p and q is denoted by										
	a)	p<->q			b)	p>					
	c)	p<-q			d)	•	•				
iii.	A and B are said to be sets					if no elements is common in them					
	a)				b)	disjoint					
	c)	equivalent			d)	ove	rlapping				
iv.	The set (A \(\Omega\) (B U_C)) is equal to (b) (A \(\Omega\) B U (A U C)										
	(a)	AUBUC									
	` '										
V.	A matrix whose each element is zero is called matrix.										
	a)	scalar			b)						
	C)	•				•					
vi.	If IAI ≠ 0 then the matrix is known as matrix.										
	a)	a) Singular			b)	,					
	c) non-singular d) none										
vii.	Which is the characteristic equation of matrix A =										
	a) $ A - \lambda I = 0$ b) $ A = 0$ c) $ \lambda - A = 0$ d)									$ A - \lambda = 0$	
viii.	If [$\begin{bmatrix} x+3 & -1 \\ 4 & 5 \end{bmatrix}$	= [z	6	y 5], th∈	en x	=	_			
	a)	7	b)	-1		c)	6		d)	3	
ix.	lim	$\frac{x^2-9}{x-3}$									
			h۱	0		c)	3		d)	0	
	a)	6	b)	3		~ <i>,</i>	•		٠,	•	

The order of differential equation $3x^2 \frac{d^2y}{dx^2} - 2 \frac{dy}{dx} + y = 0$ X.

- 2 a)
- c) 3

Write a short notes on any FIVE of the following:

(5x3=15)

2. Find the truth table of

i.
$$[(p->q) \land (q -> r)] -> (p -> r)$$
 ii. $p->(u p v q)$

3. Explain conjunction, disjunction and Biconditional.

4. Let $A = \{a, b, d, e\}, B = \{b, c, e, f\} \text{ and } C = \{d, e, f, g\}$

i) Verify $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Verify $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ ii)

5. If f and g are two real valued functions defined as f(x) = 2x + 1, $g(x) = x^2 + 1$ then find f + g, $f \circ g$, $g \circ f$.

If $A = \begin{bmatrix} 1 & 5 & -1 \\ -1 & 2 & 2 \\ 0 & -3 & 3 \end{bmatrix}$ $B = \begin{bmatrix} -1 & -4 & 3 \\ 1 & -2 & -2 \\ 3 & 3 & 5 \end{bmatrix}$ find A + 3B

Find the eigenvalues of $A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$ 7.

8. Find the derivative of the function.

 $f(x) = 2x^2 + 3x - 5$ at x = -1. Also show that f'(0) + 3f'(-1) = 0

If $y = (x^2 - 5)(x^3 - 2x + 3)$, find $\frac{dy}{dx}$ 9.

Answer any THREE questions from the following:

(3x5=15)

Find whether the following compound statements are tautology or contradiction. 10.

(a)
$$(p \rightarrow q) < (q \rightarrow p)$$

(b)
$$(p \rightarrow q) (q \rightarrow r)$$

Let A = $\{0, 1, 2, 3\}$ and a relation R on A be given by R = $\{(0, 0), (0, 1), (0, 3), (0, 1), (0, 3), (0, 1)$ (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)}. Is R is equavalence relation?

Define matrix. Explain any 8 types of matrices with example.

13. Find the adjoint of matrix A =
$$\begin{pmatrix} 5 & 2 & 0 \\ 2 & 5 & 0 \\ -3 & 4 & 6 \end{pmatrix}$$

14. Find all the maxima and minima of f(x)

$$f(x) = \frac{3}{4}x^4 + 8x^3 + \frac{45}{2}x^2 + 250$$

Answer the following:

(2x10=20)

a) Using truth table prove the following are logical equivalence.

i.
$$p \iff q \equiv (p \land q) \lor (\sim p \land \sim q)$$

ii. (pAq)
$$\rightarrow$$
 r \equiv P \rightarrow (q \rightarrow r)

b) Explain Reflexive, Symmetric and transitive relation with example. (5+5)

OR

- a) Define set. Explain any 4 operations on set using venn diagram.
- b) Show that the function f(x) = 5x + 2 is bijective function from R to R. (5+5)
- 16. a) Verify the Cayley Hamilton theorem

$$A = \begin{bmatrix} 1 & 3 \\ 4 & 7 \end{bmatrix}$$

b) Solve by using Cramer's rule.

$$x + y + z = 6$$

 $2x + 3y - z = 5$
 $6x - 2y - 3z = -7$ (5+5)

OR

- a) Find the maxima and minima value of the function $4x^3 18x^2 + 24x 7$.
- b) Prove that $\frac{d(x^n)}{dx} = n x^{n-1}$, where n is rational number.
- c) Find second order derivatives of $Y = 3x^4 2x^3 + 4x^2 5x + 1$ (4+4+2)

_ _ _