Math Formulas for Machine Learning: All taken from Introduction to Artificial Neural Networks with Applications in Python by Dr Sebastian Raschka

All taken from Introduction to Artificial Neural Networks with Applications in Python Sebastian Raschka

APPENDIX A. MATHEMATICAL NOTATION REFERENCE

5

APPENDIX A. MATHEMATICAL NOTATION REFERENCE

6

A.1 Sets and Intervals

- $\mathbb{Z} \qquad \text{ set of integers, } \{\ldots, -2, -1, 0, 1, 2, \ldots\}$
- \mathbb{N} set of natural numbers, $\{0, 1, 2, 3, ...\}$
- \mathbb{N}^+ set of natural numbers excluding zero, $\{1, 2, 3, ...\}$
- R set of real numbers
- ∈ element of symbol; for example, x ∈ A translates to "x is an element of set A"
- ∉ not an element of symbol
- Ø null set, empty set
- $A \cup B$ union of two sets, A and B
- $A \cap B$ intersection of two sets, A and B
- $A \subseteq B$ A is a subset of B or included in B
- $A\Delta B$ symmetric difference between two sets A and B
- |A| cardinality of a set A (number of elements in a set A)
- (a,b) open interval from a to b, excluding a and b
- [a, b] closed interval from a to b, including a and b
- [a,b) half-open interval from a to b, including a but not b
- (a, b] half-open interval from a to b, including b but not a

A.2 Sequences

$$\sum\limits_{i=1}^n x_i$$
 summation of an indexed variable x_i , defined as $\sum\limits_{i=1}^n x_i = x_1 + x_2 + \cdots + x_n$

$$\prod_{i=1}^{n} x_i$$
 product over an indexed variable x_i , defined as
$$\prod_{i=1}^{n} x_i = x_1 \cdot x_2 \cdot \ldots \cdot x_n$$

A.3 Functions

 $f: A \rightarrow B$ function f with domain A and codomain B

 $(g \circ f)(x)$ composition of two functions g and f alternative form: g[f(x)]

 $f^{-1}(x)$ inverse of a function f, such that f(y) = x if f^{-1} stands for y

|x| absolute value of x; for example, |-2|=2

 \log_b base-b logarithm

log natural logarithm (base-e logarithm)

n! n-factorial, where 0! = 1 and $n! = n(n-1)(n-2)\cdots 2\cdot 1$ for n > 0

 $\binom{n}{k}$ binomial coefficient ("n choose k"); $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ for $0 \le k \le n$

 $\arg \max f(x)$ the x value that makes f(x) as large as possible

 $\arg \min f(x)$ the x value that makes f(x) as small as possible

A.4 Linear Algebra

scalar (lower-case italics notation)

x column vector (lower-case bold notation) or $n \times 1$ -matrix

 $\mathbf{a} \cdot \mathbf{b}$ dot product of two vectors, \mathbf{a} and \mathbf{b} ; if \mathbf{a} and \mathbf{b} are $n \times 1$ -matrices, also written as $\mathbf{a}^T \mathbf{b}$; $\mathbf{a} \cdot \mathbf{b} = \mathbf{a}^T \mathbf{b} = \sum_i a_i b_i = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n$

 \mathbf{X} $m \times n$ -matrix (upper-case bold notation)

X 3D-tensor (upper-case italics notation)

 \mathbb{R}^n real coordinate space, written as a column vector with length n

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

 \mathbf{x}^T transpose of a $n \times 1$ -matrix

$$\mathbf{x}^T = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}^T$$

 $\|\mathbf{x}\|_p$ L^p norm, vector p-norm, $\|\mathbf{x}\|_p = \left(|x_1^p| + |x_2^p| + \dots + |x_n^p|\right)^{1/p}$

 $\|\mathbf{x}\|_{\infty}$ L^{∞} norm, max norm; largest absolute value of a vector $\|\mathbf{x}\|_{\infty} = \max_i |x_i|$

 $\|\mathbf{x}\|$ vector norm, L^2 -norm, $\|\mathbf{x}\| = \|\mathbf{x}\|_2$ $\|\mathbf{x}\| = \sqrt{x_1^2 + x_2^2 + \cdots + x_n^2}$

 $A_{i,:}$ ith row of matrix A

 $A_{:,j}$ jth column of matrix A

 \mathbf{A}^{T} transpose of a matrix, matrix element $\mathbf{A}_{i,j}$ becomes $\mathbf{A}_{i,i}^{T}$

for example, $\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}^T = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$

 I_n $n \times n$ identity matrix

$$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

 A^{-1} inverse of a matrix A, such that $AA^{-1} = A^{-1}A = I$

tr A trace of a matrix A (sum of the diagonal elements)

 $\operatorname{tr} \mathbf{A} = \sum_{i=1}^{n} \mathbf{A}_{i,i}$

det A determinant of a matrix A

 $diag(a_1, a_2, ..., a_n)$ diagonal matrix, matrix whose

diagonal have the values $a_1, a_2, ..., a_n$ and all other elements are zero

A ⊙ B Hadamard product, element-wise matrix multiplication

9 APPENDIX A. MATHEMATICAL NOTATION REFERENCE

A.5 Calculus

 $\lim_{x \to a} f(x)$ limit of f(x) as x approaches a

 $\lim_{x\to a-} f(x)$ limit of f(x) as x approaches a from the left

 $\lim_{x\to a^{\perp}} f(x)$ limit of f(x) as x approaches a from the right

 $\frac{df}{dr}$ derivative of f

 $\frac{d^n f}{dx^n}$ n-th derivative of f

 $\frac{\partial f}{\partial x}$ partial derivative of f(x, y, ...) with respect to variable x, where x is a scalar

 ∇f gradient of a function $f: \mathbb{R}^n \to \mathbb{R}$

$$\nabla f(x_1, x_2, ..., x_n) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix}$$

 Δf Laplacian of a function $f: \mathbb{R}^n \to \mathbb{R}$ $\Delta f = \sum_{i=1}^n \frac{\partial^2 f}{\partial x_i^2}$

Hf Hessian of a function $f: \mathbb{R}^n \to \mathbb{R}$

$$Hf = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1 \partial x_1} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_n} \end{bmatrix}$$

 $\frac{\partial f_j}{\partial x_i}$ partial derivative of component function f_j and the variable x_j , where $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$, such that

$$\mathbf{f}(\mathbf{x}) = \begin{bmatrix} f_1(\mathbf{x}) \\ f_2(\mathbf{x}) \\ \vdots \\ f_m(\mathbf{x}) \end{bmatrix} \frac{\partial \mathbf{f}}{\partial x_i} = \begin{bmatrix} \frac{\partial f_1}{\partial x_i} \\ \frac{\partial f_2}{\partial x_i} \\ \vdots \\ \frac{\partial f_m}{\partial x_i} \end{bmatrix}$$

Df Jacobian matrix of f.

$$D\mathbf{f} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \dots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \dots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \dots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

 $\int f(x)dx$ indefinite integral of f (derivative of F) with $f: \mathbb{R} \to \mathbb{R}$

 $\int\limits_a^b f(x)dx \quad \text{definite integral of } f \text{ (derivative of } F) \text{ with } f: \mathbb{R} \to \mathbb{R}$

A.6 Probability and Statistics

- $P(A \cap B)$ probability that event A and B occur
- $P(A \cup B)$ probability that event A or B occurs
- $P(A \mid B)$ conditional probability of A given B
- E(X), μ_X expected value (mean) of a random variable X $E(X) = \sum_{i=1}^{\infty} p_i x_i \text{ for a discrete random variable } X$ with values x_1, x_2, \ldots and probabilities p_1, p_2, \ldots $E(X) = \int\limits_{-\infty}^{\infty} x f(x) dx \text{ for a continuos random variable and probability density function } f(x).$
- $ar{X}$ sample average of numerical data $X_1,...,X_n$ $ar{X} = frac{1}{n} \sum_{i=1}^n X_i$
- $\begin{array}{ll} \operatorname{var}(X), \sigma_x^2 & \operatorname{variance \ of \ a \ random \ variable \ } X \\ \operatorname{var}(X) = E\big[(X \mu_X)^2\big] = E(X^2) E(X)^2 \end{array}$
- s_X^2 sample variance of numerical data $X_1,...,X_n$ $s_X^2 = \frac{1}{n}\sum_{i=1}^n (X_i \bar{X})^2$

- std(X), σ_x standard deviation of a random variable, square root of the variance
- s_X sample standard deviation, the square root of the sample variance s_X^2
- cov(X,Y) covariance of two random variables X and Y cov(XY) = E[(X E(X))(Y E(Y))] = E(XY) E(X)E(Y)
- $s_{XY} \qquad \text{sample covariance of numerical data } X_1,...,X_n \text{, and } Y_1,...,Y_n \\ s_{XY} = \frac{1}{n}\sum_{i=1}^n (X_i-\bar{X})(Y_i-\bar{Y})$
- $\operatorname{corr}(X,Y)$ correlation coefficient of two random variables X and Y, $\operatorname{corr}(X,Y) = \frac{\operatorname{cov}(X,Y)}{\sigma_X\sigma_Y}$
- $\begin{array}{ll} H(X) & \text{entropy of a random variable } X \\ \text{discrete: } H(X) = -\sum\limits_{x} P(X=x) \log_b P(X=x) \\ \text{continuous: } H(X) = -\int\limits_{-\infty}^{\infty} f(x) \log_b f(x) dx \end{array}$
- PMF probability mass function of a discrete random variable, f(x) = P(X = x)
- CDF cumulative distribution function of a continuous random variable, $F(x) = P(X \le x)$
- PDF probability density function of a continuous random variable, $P(X \in [a,b]) = \int\limits_a^b f(x) dx$
- $X \sim D$ random variable X has a distribution D
- $\hat{\theta}$ estimator of a parameter θ
- $N(x,\mu,\sigma^2)$ normal (Gaussian) distribution over x with mean μ and variance σ^2

11

A.7 Numbers

- e Euler's number, mathematical constant approximated by 2.71828
- π "pi", mathematical constant approximated by 3.14159
- 1.234×10^5 scientific notation for 123, 400

or 1.234E05

- < less than sign, for example, x < 10 means that x is smaller than 10
- much less than sign
- > greater than sign, for example, x > 10 means that x is larger than 10
- ≫ much greater than sign
- ≪ much less than sign

A.8 Approximation

- \approx approximate equality, for instance, $e\approx 2.71828$ is the approximation of Euler's number
- $f(x)\sim g(x)$ symbol to assert that the ratio of two functions approaches $1\lim_{x\to 0}rac{f(x)}{g(x)}=1$, if x is small

 $\lim_{x \to \infty} \frac{f(x)}{g(x)} = 1, \text{ if } x \text{ is large}$

- $f(x) \propto g(x)$ the two functions f(x) and g(x) are proportional to each other
- $T(n) \in O(n^2)$ big-O notation, an algorithm is asymptotically bounded by n^2 ; an algorithm has an order of n^2 time complexity

A.9 Logic

- \Rightarrow implication operator for example, $A \Rightarrow B$ translates to "if A implies B" or "if A then B" (or "B only if A")
- \Leftrightarrow equality operator (if and only if (iff)) for example, $A \Leftrightarrow B$ translates to "A if and only if B" or "if A then B and if B then A"
- \land logical conjunction, and for example, $A \land B$ means "A and B"
- ∨ logical (inclusive) disjunction, or for example, A ∨ B means "A or B"
- \neg negation, not for example, $\neg A$ means "not A" or "if A is true then $\neg A$ is false" and vice versa
- \forall universal quantifier, means for all for example, " $\forall x \in \mathbb{R}, x > 1$ " translates to "for all real numbers x, x is greater than one"
- existential quantifier, means there exists for example, " $\exists x \in A, f(x)$ " translates to "there is an element in set A for which the predicate f(x) holds true"

Source: https://sebastianraschka.com/resources/math-for-ml.htmlhttps://sebastianraschka.com/resources/math-for-ml.html