Politechnika Świętokrzyska w Kielcach Wydział Elektrotechniki, Automatyki i Informatyki Laboratorium Internet of Things		
Numer laboratorium: 4	Data wykonania : 29.11.18	

1.Wstęp

Na tych zajęciach po raz pierwszy mieliśmy styczność z mikrokontrolerem Arduino Uno. Jako że mieliśmy ograniczony czas dostaliśmy do zbudowania i zaprogramowania prosty układ z diodą/diodami elektroluminescencyjną (LED) . Z możliwością o rozszerzenie je do kolejne dwie diody w połączeniu szeregowym oraz równoległym.

2.Przebieg ćwiczenia

Najpierw zapoznaliśmy się z obsługą i bezpieczeństwem w czasie pracy z mikrokontrolerami Został poruszony aspekt kolejności podłączania Arduino do komputera lecz także wyładowaniach statycznych mogących uszkodzić delikatne układy kontrolera.

Wzór na wyliczenie natężenia z układu mając za dane Napięcie oraz Opór I=U/R ,gdzie I-natężenie, U-Napięcie, R-Impedancja(Opór) I=5V/220 Ω

I=22mA taki prąd płynie przez układ w którym zastosowano opornik 220Ω

Typów diod LED jest wiele i choć różnią się właśnie budową mechaniczną to sercem każdej z nich jest zawsze chip półprzewodnikowy. To on przetwarza prąd elektryczny na światło. Taki chip półprzewodnikowy w diodzie to specjalny materiał przewodzący prąd tylko w jedną stronę. Zbudowany jest najczęściej z kryształów opartych o krzem z różnymi dodatkami. W diodzie LED ten kryształ składa się z dwóch warstw, z których jedna nazywa się "p" a druga "n". Warstwa "n" ma w sobie bardzo dużo elektronów a warstwa "p" ma mnóstwo tak zwanych dziur. Jeśli do takiego kryształu podłączy się prąd to elektrony z warstwy "n" zaczynają przeskakiwać do dziur z warstwy "p" i podczas tego prze-

skoku zostaje im spory nadmiar energii, którą "wyrzucają" na zewnątrz w postaci światła.

Najpierw budujemy układ w której dioda jest połączona szeregowo (stosowaliśmy opornik 220Ω)

Dioda koloru zielonego

Następie podłączyliśmy dwie LED w szeregu
(opornik 220 Ω) ,spadek napięcia był

Następnie podłączyliśmy 3 LED w szeregu (opornik 220Ω) spadek napięcia był zauważalny

Jak widać spadek napięcia był na tyle duży że ledwie widać świecenie diody

WNIOSKI

Laboratorium pozwoliło na naukę programowania kontrolera Arduino oraz budowaniu układów. Pozwoliło na przypomnienie różnic przy łączeniu szeregowym i równoległym .

Laboratorium przebiegło pomyślnie.