Last name(s)	Na	me	ID	
Midterm EDA exam	Length: 2	.5 hours	07/1	1/2016
 The exam has 4 sheets, 8 sides Write your full name and ID Write your answers to all prof Unless otherwise indicated, all 	on every sheet. blems in the exan	n sheets within		vace.
Problem 1			(2	points)
n this problem you do not need	to justify your	answers.		
Do not fill) with the costs in the indicated algorithms. Ass Quicksort (with Hoare's partiti	sume uniform p		•	_
Mergesort				
Insertion		Do not fill		
b) (0.2 pts.) The solution to the r				
(d) (0.2 pts.) The solution to the r	recurrence $T(n)$	=2T(n/4)+0	$\Theta(n)$ is \bigcup	
(e) (0.3 pts.) What does Karatsul	ba's algorithm o	compute? Wha	at is its cost?	

(it continues on the back)

(f) (0.3 pts.) What does Strassen's algo	nm compute? What is its cost?			
		/		

Last name(s)	Name	ID
Problem 2		(3 points)
Given $n \ge 2$, we say that a sequen $a_{n-1} < a_0$ and there exists an index conditions:		
• $a_0 \leq \ldots \leq a_{t-1} \leq a_t$		
• $a_{t+1} \le a_{t+2} \le \ldots \le a_{n-1}$		
For example, the sequence 12, 12, 15,	20, 1, 3, 3, 5, 9 is bi-inc	creasing (take $t = 3$).
(a) (2 pts.) Implement in C++ a fund	ction	
bool search (const vector < in	$a + b \approx a$, int x);	
that are not part of the $C++$ stand must have cost $\Theta(\log(n))$ in time	, I	nt diem too. The solution

(it continues on the back)

(1 pt) Justif	y that the cost in t	time in the wors	st case of your	function search	ı is
$\Theta(\log(n))$. V	When does this wo	orst case take pla	ace?	Tunction search	i 15

Last name(s)	Name	ID
Problem 3		(2 points)
<pre>Consider the following function: int mystery(int m, int n) { int p = 1; int x = m; int y = n; while (y ≠ 0) { if (y % 2 == 0) { x *= x; y /= 2; } else { y -= 1; p *= x; } } return p; } </pre>	0 what does mustern	υ(m n) compute? You do
not need to justify your answer.		
(b) (1 pt.) Analyse the cost in time in the	he worst case as a fund	ection of <i>n</i> of <i>mystery</i> (<i>m</i> , <i>n</i>).

This side would be intentionally blank if it were not for this note.

Last name(s)	Nan	ne 1	D
roblem 4			(3 points)
he <i>Fibonacci sequence</i> is define	d by the recurrenc	e $F(0) = 0$, $F(1) = 0$	= 1 and
F(n) = F	F(n-1) + F(n-2)) if $n \geq 2$.	
a) (0.5 pts.) Let $\phi = \frac{\sqrt{5}+1}{2}$ be the	he so-called <i>golden</i>	number. Prove th	nat $\phi^{-1}=\phi-1$.
b) (1.5 pts.) Prove that, for any	y n > 0, we have		
-, (l,	$F(n) = \frac{\phi^n - (-\epsilon)}{\sqrt{5}}$	$(p)^{-n}$	

(it continues on the back)

