Санкт-Петербургский политехнический университет имени Петра Великого

Институт прикладной математики и механики Кафедра прикладной математики

Интервальный анализ Отчёт по лабораторной работе №3

Выполнил:

Студент: Дамаскинский Константин

Группа: 3630102/70201

Принял:

к. ф.-м. н., доцент

Баженов Александр Николаевич

Содержание

1.	Постановка задачи	
	1.1. Конкретизация задачи	2
2.	Теория	2
	2.1. Объединённое множество решений	2
	2.2. Допусковое множество решений	•
	2.2.1. Распознающий функционал	
	2.3. Оценка вариабельности решения ИСЛАУ	
3.	Реализация	1
4.	Результаты	٥
	4.1. Задача 3×2	١
	4.2. Задача 2×3	
5.	Обсуждение	8
Лν	итература	(
6.	Приложения	Ć
\mathbf{C}	писок иллюстраций	
	Задача 3×2 . Ξ_{tol}	
2.	Задача 2×3 . Ξ_{tol}	7
3.	Задача 2×3 . Проекция Ξ_{tol} на Ox_1x_2	8

Список таблиц

2 ТЕОРИЯ

1. Постановка задачи

Требуется решить недоопределённую интервальную систему линейных алгебраических уравнений (ИСЛАУ) с матрицей 2×3 и переопределённую ИС-ЛАУ с матрицей 3×2 . Используемые матрицы должны совпадать с точностью до транспонирования. Необходимо найти допусковое множество решений, оценку вариабельности решения.

Для случая 3×2 требуется построить график распознающего функционала. Построить трёхмерный образ допускового множества.

1.1. Конкретизация задачи

Была рассмотрена матрица:

$$\mathbf{A} = \begin{pmatrix} [4,6] & [5,7] \\ [2,4] & [1,3] \\ [6,8] & [3,5] \end{pmatrix}$$
 (1.1.1)

Для задачи 3×2 правый столбец:

$$\mathbf{b} = \begin{pmatrix} [2, 4.4] \\ [1, 2.7] \\ [3.4, 5.6] \end{pmatrix} \tag{1.1.2}$$

Для задачи 2 × 3 правый столбец:

$$\mathbf{b} = \begin{pmatrix} [4,7] \\ [3.3,5.7] \end{pmatrix} \tag{1.1.3}$$

2. Теория

2.1. Объединённое множество решений

Определение 1 ИСЛАУ. ИСЛАУ называется уравнение вида:

$$\mathbf{A}x = \mathbf{b},\tag{2.1.1}$$

где $\mathbf{A} \in \mathbb{IR}^{m \times n}, \mathbf{b} \in \mathbb{IR}^m, \ x \in \mathbb{R}^n$ – неизвестное.

Определение 2 Объединённое множество решений. Объединённым множеством решений называется множество $\Xi_{uni}(\mathbf{A}, \mathbf{b})$, такое что существуют такие $A \in \mathbf{A}$ и $b \in \mathbf{b}$, для которых выполнено Ax = b:

$$\Xi_{uni}(\mathbf{A}, \mathbf{b}) = \{ x \in \mathbb{R}^n \mid \exists A \in \mathbf{A}, \ b \in \mathbf{b} : Ax = b \}$$
 (2.1.2)

ТЕОРИЯ 3

Для нахождения объединённого множества решений в случае, когда одна размерность матрицы системы составляет 2 или 3, используется в сущности геометрический подход: для каждое уравнение системы задаёт линейно ограниченное множество. Пересечение этих множеств и задаёт объединённое множество решений. Пример можно найти в [1, стр. 39, рис. 15].

Программной реализацией являются функции Eqn Weak R2, Eqn Weak R3 пакетов IntLinIncR2, IntLinIncR3 (см. приложения).

Кроме того, для ИСЛАУ с квадратной матрицей существуют интервальные аналоги классических численных методов решения СЛАУ, которые позволяют оценить объединённое множество решений ИСЛАУ, опираясь на начальную оценку.

Интервальный метод Гаусса-Зейделя в точности повторяет классический метод Зейделя, сходится при любом начальном приближении, если $\|-(L+$

$$|D)^{-1}U\| < 1, \text{ где } L = \begin{pmatrix} 0 & 0 & \dots & \dots & 0 \\ a_{21} & 0 & \dots & \dots & 0 \\ a_{31} & a_{32} & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \dots & 0 \end{pmatrix}, D = \begin{pmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{pmatrix}, R = \begin{pmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{pmatrix}$$

$$\begin{pmatrix} 0 & a_{12} & \dots & \dots & a_{1n} \\ 0 & 0 & a_{23} & \dots & a_{2n} \\ 0 & 0 & 0 & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & \dots & \dots & 0 \end{pmatrix}$$

Метод Кравчика является разновидностью метода простых итераций:

$$\mathbf{x}^{(k+1)} = C\mathbf{x}^{(k)} + \mathbf{d} \tag{2.1.3}$$

Согласно теореме Банаха о неподвижной точке такой процесс сходится, если $\|C\| < 1$. Поскольку выполнено: $\max_{Cv = \lambda_C v} |\lambda_C| \leq \|C\|$, для удобства оценки сходимости можно использовать более сильное требование: $\rho(C) < 1$.

В методе Кравчика полагается:

$$C = (I - \Lambda \mathbf{A}), \ \Lambda = (\text{mid}\mathbf{A})^{-1}$$
 (2.1.4)
$$d = \Lambda \mathbf{b}$$
 (2.1.5)

$$d = \Lambda \mathbf{b} \tag{2.1.5}$$

2.2. Допусковое множество решений

Определение 3 Допусковое множество решений. Допусковым множеством решений называется множество $\Xi_{tol}(\mathbf{A}, \mathbf{b})$, такое что для любой $A \in \mathbf{A}$ выполнено $Ax \in \mathbf{b}$:

$$\Xi_{tol}(\mathbf{A}, \mathbf{b}) = \{ x \in \mathbb{R}^n \mid \forall A \in \mathbf{A} : Ax \in \mathbf{b} \}$$
 (2.2.1)

4 2 TЕОРИЯ

Из-за того, что решение должно существовать для любой точечной матрицы ИСЛАУ, зачастую допусковое множество оказывается пустым там, где это совсем неочевидно на первый взгляд. Кроме того, в задачах, где простые эвристические решения, например, "средней" или "крайней" точечной СЛАУ не существуют, допусковое множество оказывается непустым. Эти примеры также можно найти в [1].

Программной реализацией вычисления допускового множества являются функция [V, P1, P2, P3, P4] = Eqn Tol 2D(infA, supA, infb, supb) для двумерной системы и Eqn Tol 3D с аналогичными аргументами и списком возвращаемых значений для трёхмерной.

2.2.1. Распознающий функционал

Для полного исследования разрешимости задачи о допусковом множестве ИСЛАУ используется понятие распознающего функционала:

$$\operatorname{Tol}(x, \mathbf{A}, \mathbf{b}) = \min_{1 \le i \le m} \left\{ \operatorname{rad} \mathbf{b}_i - \left| \operatorname{mid} \mathbf{b}_i - \sum_{j=1}^n \mathbf{a}_{ij} x_j \right| \right\}$$
 (2.2.2)

Теорема 1. Пусть $x \in \mathbb{R}^n$. Тогда x принадлежит допусковому множество тогда и только тогда, когда $Tol(x, \mathbf{A}, \mathbf{b}) \geq 0$.

Данная теорема сильно напоминает теоремы, позволяющие доказать оптимальность найденного решения задачи линейного программирования. Это неудивительно: задача о поиске допускового множества (линейная задача о долусках) представляет собой задачу о решении системы линейных неравенств.

Программной реализацией вычисления распознающего функционала и аргумента, в котором достигается его неотрицательное значение, является функция |tolmax, argmax| = tolsolvty(supA, infA, supb, infb).

2.3. Оценка вариабельности решения ИСЛАУ

Вариабельность решения СЛАУ – это свойство системы, демонстрирующее насколько относительная погрешность в свободном столбце СЛАУ влияет на относительную погрешность решения. Известно, что вариабельность решения зависит от числа обусловленности матрицы:

$$\frac{\|\delta x\|}{\|x\|} \le \operatorname{cond}(A) \frac{\|\delta b\|}{\|b\|}, \text{ где}$$
 (2.3.1)

$$\operatorname{cond}(A) = ||A|| \cdot ||A^{-1}|| \tag{2.3.2}$$

Аналогами для ИСЛАУ являются показатели абсолютной вариабельности ive (interval variability of the estimate) и относительной rve (relative variability of the estimate):

$$ive(\mathbf{A}, \mathbf{b}) = \sqrt{n} \cdot \left(\min_{A \in \mathbf{A}} \operatorname{cond} A \right) \cdot \|\operatorname{arg\ max\ Tol}\| \cdot \frac{\max \operatorname{Tol}}{\|\mathbf{b}\|}$$
 (2.3.3)

$$rve(\mathbf{A}, \mathbf{b}) = \left(\min_{A \in \mathbf{A}} \operatorname{cond} A\right) \cdot \max \operatorname{Tol}$$
 (2.3.4)

3. Реализация

Лабораторная работа выполнена с помощью математического пакета Octave и пакетов программ И. Шарой IntLinIncR2, IntLinIncR3 (см. раздел "Приложения"). Операционная система Ubuntu 20.04.

Ссылка на исходный код лабораторной работы и отчёта находится в разделе "Приложения".

4. Результаты

4.1. Задача 3×2

На следующем рисунке показано допусковое множество решений для задачи 3×2 :

6 4 *РЕЗУЛЬТАТЫ*

Рис. 1. Задача 3×2 . Ξ_{tol}

Оценка вариабельности решения: ive ≈ 0.30 .

4.2. Задача 2×3

На следующих рисунках показаны трёхмерный образ и его проекция в плоскости Ox_1x_2 допускового множества решения для задачи 2×3 :

4 РЕЗУЛЬТАТЫ

Рис. 2. Задача 2×3 . Ξ_{tol}

Рис. 3. Задача 2×3 . Проекция Ξ_{tol} на Ox_1x_2

Оценка вариабельности решения: ive = 0.49.

5. Обсуждение

В результате проделанной работы были найдены допусковые множества решений для обеих задач и оценки вариабельности. Из полученных результатов видно, что ive позволяет произвести качественную оценку линейного размера допускового множества решений: грубая оценка длины отрезка, соединяющего наиболее отдалённые точки в допусковом множестве первой задачи — 0.40. Тот же параметр для второй задачи — 0.80. Параметр ive, во-первых, имеет тот же порядок величины, а во-вторых, наблюдается, что при меньшем размахе допус-

кового множества ive меньше, а значит, оценка вариабельности действительно позволяет качественно оценивать размер допускового множества решений.

Список литературы

[1] А. Н. Баженов. Интервальный анализ. Основы теории и учебные примеры. URL: https://elib.spbstu.ru/dl/2/s20-76.pdf/info.

6. Приложения

- 1. Репозиторий с кодом программы и кодом отчёта:
 - https://github.com/kystyn/interval
- 2. Пакет IntLinInc2D
- 3. Пакет IntLinInc3D