Communication Networks I

TECHNISCHE UNIVERSITÄT DARMSTADT

Mobile Routing

Prof. Dr.-Ing. **Ralf Steinmetz**KOM - Multimedia Communications Lab

Overview

- 1 Basic Challenges in Mobile Networking
- 2 Challenges in Mobile Communications
 - 2.1 Hidden Terminals
 - 2.2 Exposed Terminals
 - 2.3 Near and Far Terminals
- 3 Mobile Routing
 - 3.1 Overview on Ad Hoc Routing Protocols
 - 3.2 Topology-based: Dynamic Source Routing (DSR)
 - 3.3 Destination-based: Ad hoc On-demand Distance Vector Protocol
 - 3.4 Geographical: Location-Aided Routing (LAR)
- **4 Routing with Mobility**
- 5 Further Issues in Mobile Networking

1 Basic Challenges in Mobile Networking

Interesting problems spanning multiple layers

Security, QoS, Scalability, Heterogeneity, Adaptation, Dependability

Application Layer

Discovery of Services, where to place services, service awareness

Transport Layer

■ Esp. TCP-performance

Network Layer

Adaptation of routing protocols, multicast routing

Link Layer

Medium Access Control / Scheduling

Physical Layer

 Power Control (to maximize power-usage / to minimize interference)

Types of Mobile Networks

Cellular networks

Based on work with KN 3 – Mobile Networks (M. Hollick)

Fits well with lectures on mobile communications

Example: Car-to-car communication

Source: extremetech.com

Source: robohaat.com

Mobile Communications

Two aspects of mobility

- User mobility:
 - users communicate (wireless) "anytime, anywhere, with anyone"
- Device portability:
 - devices can be connected anytime, anywhere to the network

Wireless vs. mobile		Examples
×	×	stationary computer
*	\checkmark	notebook in hotel
\checkmark	×	wireless LANs in historic buildings
\checkmark	\checkmark	Personal Digital Assistant

Nomadic vs. mobile computing

Integration of wireless networks with fixed networks

Terminology

"Ad hoc"

- Often improvised or impromptu; "an ad hoc committee meeting" Wordnet
- Formed or used for specific or immediate problems or needs; "ad hoc solutions"
- Fashioned from whatever is immediately available: improvised; "large ad hoc parades and demonstrations" Encyclopædia Britannica

"Spontaneous"

- Arising from a momentary impulse
- Controlled and directed internally; "self-acting"
- Produced without being planted or without human labor; "indigenous"
- Developing without apparent external influence, force, cause, or treatment

Encyclopædia Britannica

Basics

(Mobile) Ad Hoc Communication Networks - MANET

- Historical successor of packet radio networks
- Self-organizing, mobile and wireless nodes
- Absence of infrastructure, multi-hop routing necessary
- Systems are both, terminals (end-systems) and routers (nodes)
- Constraints (dynamics, energy, bandwidth, link asymmetry)

What is different? Characteristics of Ad Hoc Communications

Variability

- Mobility characteristics
 - speed, predictability, uniformity, synthetic vs. empirical models , ...
- Wireless characteristics
 - broadcast nature of the network, packet losses due to transmission errors, limited range, hidden and exposed terminals, partitioning
- Application / traffic characteristics and patterns
 - P2P, real time, unicast, multicast, geocast, CBR, VBR, self-similar, ...
- System characteristics
 - distribution, absence of infrastructure, (unpredictable) high dynamics, (a)symmetry ...

Inherent heterogeneity

- Do nodes have identical capabilities, responsibilities, and constraints?
 - Transmission ranges and radios may differ, battery life may differ, processing capacity may differ,
 - asymmetric capabilities
 - Only some nodes may route packets, some nodes may act as leaders of nearby nodes, e.g. cluster head
 - asymmetric responsibilities

→ Adaptation is crucial

2 Challenges in Mobile Communications

Application
Transport
Network
Link
Physical

2.1 Hidden Terminals

Hidden terminals [Tobagi75]

- Nodes A and C cannot hear each other
- Transmissions by nodes A and C can collide at node B
- Nodes A and C are hidden from each other

E.g.

- A sends to B, C cannot receive A
- C senses a "free" medium (carrier sense fails), C sends to B
- Collision at B, A cannot detect the collision (collision detection fails)
- A is "hidden" for C and vice versa

Problems

- More collisions, unreliability as a result
- Waste of resources
- CSMA/CD does not fit ...

CSMA CD in Troubles with Hidden Terminal Problem

Carrier Sense Multiple Access with Collision Detection

CSMA 1-persistent with CD

Principle

- Sending station interrupts transmission as soon as it detects a collision
 - saves time and bandwidth
 - frequently used (802.3, Ethernet)
 - Algorithm: station has to realize DURING the sending of a frame if a collision occurred

Extreme case

Short frame, maximum distance to station

Solution for Hidden Terminals Problem

Busy Tone [Tobagi75, Haas98]

- A receiver transmits busy tone when receiving data
- All nodes hearing busy tone keep silent
- Avoids interference from hidden terminals
- Requires a separate channel for busy tone

And: Reliability achieved by Acknowledgements (ACK)

Solution for Hidden Terminals Problem CSMA/CA

Solution for Hidden Terminals Problem CSMA/CA

Carrier Sense Multiple Access/Collision Avoidance CSMA/CA i.e. MACA

Solution for Hidden Terminal Problem [Karn90]

- A first sends a Request-to-Send (RTS) to B
- On receiving RTS, B responds Clear-to-Send (CTS)
- Hidden node C overhears CTS and keeps quiet
 - Transfer duration is included in both RTS and CTS
- Exposed node overhears a RTS but not the CTS
 - C's transmission cannot interfere at B

2.2 Exposed Terminals

Exposed terminals

- B sends to A, C wants to send to another terminal (not A or B)
- C has to wait, signals a medium in use
- But A is outside the radio range of C, therefore waiting is not necessary
- C is "exposed" to B

Problems

- Underutilization of channel
- Lower effective throughput
- CSMA/CD does not fit

2.3 Near and Far Terminals

Terminals A and B send, C receives

- Signal strength decreases proportionally to square of distance
- Signal of B therefore drowns out A's signal
- C cannot receive A

If e.g. C is arbiter for sending rights

■ B would drown out terminal A already on the physical layer

Also severe problem for CDMA-networks –

→ precise power control needed

3 Mobile Routing

Why specialized Ad Hoc Routing?

- Some nodes may be out of range of others
- Must use other peer nodes as routers to forward packets
- Need to find new routes as nodes move or conditions change
 - (highly dynamic and unpredictable)
- Routing protocol captures and distributes state of network
- Routing strategy (algorithm) computes shortest paths

Application

Transport

Network

Link

Physical

Requirements for Ad Hoc Routing

The routing protocol needs to

- Converge fast
- Minimize signaling overhead

The routing strategy (algorithm) may include

- Shortest distance
- Minimum delay
- Minimum loss
- Minimum congestion (load-balancing)
- Minimal interference
- Maximum stability of routes or maximal signal strength
- Minimum energy (power aware routing)

Standard Internet routing cannot fulfill these requirements

 Assumes infrastructure, assumes symmetrical conditions, assumes plenty of resources, to slow, misses metrics, ...

3.1 Overview on Ad Hoc Routing Protocols

Proactive protocols

- Routing information is computed and updated independent of whether there is any traffic between the nodes or not
- Traditional routing protocols are proactive
 - Link-state and
 - Distance-vector

Reactive protocols

- Routes calculated / maintained when there is traffic and no route is known
- Routes are calculated only when needed, i.e.,
 - A does not compute route to B until A wants to send something to B
- When do we calculate the route?
 - For connection-oriented:
 - At connection setup
 - For connectionless:
 - On first packet

Hybrid protocols

Ad Hoc Routing Paradigms

Flooding of Data Packets Non-Uniform Protocols Uniform Protocols

- Simple approach, extremely high overhead
- Many protocols perform (limited) flooding of control packets
 - To discover routes
 - Overhead of control packet flooding is amortized over data packets transmitted between consecutive control packet floods

- Hierarchical protocols, Cluster-based, flat protocols
- Geographical protocols
- Hybrid protocols (e.g. combination of proactive and reactive)

→ There is no "BEST" ad hoc routing

- Topology-based (e.g. source routing)
- Destination-based (usually distance vector paradigm)

- Proactive
 - (table-driven) vs.
- Reactive
 - (on-demand) paradigms

Taxonomy of Routing Protocols

above mentioned protocols are only a selection – the ones which will move forward to Experimental RFC (within IETF) will be highlighted

Some Routing Protocols / Frameworks

AODV – Ad Hoc On Demand Distance Vector

Perkins, NOKIA; Belding-Royer, UCSB; Das, UC

CEDAR – Core-Extraction Distributed Ad Hoc Routing

DREAM – Distance Routing Effect Algorithm for Mobility

DSDV – Destination-Sequenced Distance Vector

DSR - Dynamic Source Routing

Johnson, CMU

FSR – Fisheye State Routing

LANMAR – Landmark Ad Hoc Routing

LAR – Location Aided Routing

OLSR – Optimized Link State Routing

Clausen, Jacquet, INRIA

TBRPF – Topology Broadcast based on Reverse-Path Forwarding

Ogier, Templin, SRI

Tora / IMEP – Temporally-Ordered Routing Algorithm / Internet Manet Encapsulation Protocol

ZRP – Zone Routing Protocol

■ Haas, Cornell

. . .

3.2 Topology-based: Dynamic Source Routing (DSR)

Shares some principles with AODV

- Reactive routing protocol
- When node S wants to send a packet to node D, but does not know a route to D, node S initiates a route discovery
- Source node S floods Route Request (RREQ)
- Each node appends own identifier when forwarding RREQ
- Following an example for a route discovery from source S to destination D

Represents transmission of RREQ
[X,Y] Represents list of identifiers appended to RREQ

Node H receives packet RREQ from two neighbors: potential for collision

Node C receives RREQ from G and H, but does not forward it again, because node C has already forwarded RREQ once

Nodes J and K both broadcast RREQ to node D Since nodes J and K are hidden from each other, their transmissions may collide

Node D does not forward RREQ, because node D is the intended target of the route discovery

Route Reply (RREP)

- Destination D on receiving the first RREQ, sends a (RREP)
- RREP is sent on a route obtained by reversing the route appended to received RREQ
- RREP includes
 - the route from S to D
 - on which RREQ was received by node D
- Route Reply can be sent by reversing the route in Route Request (RREQ) only if links are guaranteed to be bi-directional
- If unidirectional (asymmetric) links are allowed, then RREP may need a route discovery for S from node D
 - Unless node D already knows a route to node S

Route Reply in DSR

← Represents RREP control message

Data Delivery in DSR

When node S sends a data packet to D,
the entire route is included in the packet header
(hence the name source routing) Intermediate nodes
forward according this route

DATA [S,E,F,J,D]

Z

B

C

G

DATA [S,E,F,J,D]

Packet header size grows with route length

Н

Ν

Taxonomy of Routing Protocols

above mentioned protocols are only a selection – the ones which will move forward to Experimental RFC (within IETF) will be highlighted

3.3 Destination-based: Ad hoc On-demand Distance Vector Protocol

Routing: basic principles

- Reactive routing protocol
- All nodes are treated equal
- Based on distance vector principle

Routing: some Details

- Route discovery cycle for route finding
 - Flooded / Broadcast Route Request (RREQ)
 - Unicast Route Reply (RREP) along reverse path of RREQ
 - Unicast Route Error (RERR)

Some characteristics

- No overhead on data packets
- Loop freedom is achieved through sequence numbers
 - also solves "count to infinity" problem

AODV – Route Discovery – Route Request

Route discovery

- Broadcast flood acquisition using Route Request (RREQ)
- A RREQ must never be broadcast more than once by any node
- Nodes sets up a reverse path pointing towards the source
- Route Reply (RREP) propagation

Route Requests in AODV

Represents a node that has received RREQ for D from S

Content of slides provided from Nitin H. Vaidya University of Illinois at Urbana-Champaign

Route Requests in AODV

Represents transmission of RREQ

Route Requests in AODV

Represents links on Reverse Path

Reverse Path Setup in AODV

 Node C receives RREQ from G and H, but does not forward it again, because node C has already forwarded RREQ once

Reverse Path Setup in AODV

Reverse Path Setup in AODV

 Node D does not forward RREQ, because node D is the intended target of the RREQ

Route Reply in AODV

Represents links on path taken by RREP

Route Reply in AODV

An intermediate node (not the destination) may also send

A Route Reply (RREP)
 provided that it knows a more recent
 path than the one previously known
 to sender S

To determine whether the path known to an intermediate node is more recent,

Destination sequence numbers are used

The likelihood that an intermediate node will send a Route Reply when using AODV not as high as DSR

- A new Route Request by node S for a destination is assigned a higher destination sequence number.
- An intermediate node which knows a route, but with a smaller sequence number, cannot send Route Reply

Forward Path Setup in AODV

Forward links are setup when RREP travels along the reverse path

Represents a link on the forward path

46

Data Delivery in AODV

Routing table entries used to forward data packet.

Route is *not* included in packet header.

47

AODV – Route Maintenance & Link Errors

Timers to keep route alive

Destination Sequence numbers to determine fresh routes

Link failure reporting / repairing routes

Taxonomy of Routing Protocols

above mentioned protocols are only a selection – the ones which will move forward to Experimental RFC (within IETF) will be highlighted

3.4 Geographical: Location-Aided Routing (LAR)

Based on flooding

Exploits location information to limit scope of flooding for route request

Location information may be obtained using GPS

EXPECTED ZONE

is determined as a region that is expected to hold the current location of the destination node (D)

 Expected region determined based on potentially old location information, and knowledge of the destination's speed

Route requests limited to a REQUESTED ZONE that contains

- the Expected Zone and
- location of the sender node (S)

Expected Zone in LAR

S = Source node, **D** = Destination node

X = last known location of node D, at time t0

Y = location of node D at current time t1, unknown to sender S

r = (t1 - t0) * estimate of D's speed

Expected Zone

Request Zone in LAR

Operation of LAR (1)

Only nodes within the request zone forward route requests

- Node A does not forward RREQ, but node B does
- Request zone explicitly specified in the route request
- Each node must know its physical location to determine whether it is within the request zone

Operation of LAR (1)

Only nodes within the request zone forward route requests

If route discovery using the smaller request zone fails to find a route, the sender initiates another route discovery (after a timeout) using a larger request zone

• the larger request zone may be the entire network

Rest of route discovery protocol similar to DSR

4 Routing with Mobility

Recall: Two aspects of mobility

- User mobility:
 - users communicate (wireless) "anytime, anywhere, with anyone"
- Device portability:
 - devices can be connected anytime, anywhere to the network

Wireless vs. mobile		Examples
×	×	stationary computer
x	\checkmark	notebook in hotel
\checkmark	×	wireless LANs in historic buildings
\checkmark	\checkmark	Personal Digital Assistant

Routing with Mobility

Principle

- End system identified by its local home address
- No modifications in existing IS
- I.e.,
 - Home-Agent: stationary address
 - Foreign Agent: knows mobile end system

Routing with Mobility

Tunneling and Rerouting Procedures

5 Further Issues in Mobile Networking

Interesting problems spanning multiple layers

Security, QoS, Scalability, Heterogeneity, Adaptation, Dependability

Application Layer

- Feasibility of Client-Server paradigm (DNS, Certificate Authorities)
- Discovery of Services, where to place services, service awareness

Transport Layer

■ Esp. TCP-performance

Network Layer

- Adaptation of routing protocols, multicast routing
- Autoconfiguration of IP-Addresses
- Deal with routing misbehavior

Link Layer

- Medium Access Control / Scheduling
- Multiple Channels

Physical Layer

- Adaptive Modulation, Smart Antennas
- Power Control (to maximize power-usage / to minimize interference)

Clustering of Mobile Networks

Hierarchical routing applies also to mobile networks

Divide nodes into clusters based on distance

Nearby nodes for a cluster

Basic idea:

- Use proactive routing within ("intra"-)cluster
- Use reactive routing "inter"-cluster

Small cluster:

- Possible to know all nodes
- Proactive routing works

Many clusters:

- Mostly no communication
- Better to use reactive routing

