# Project Performance

Alison Jing Huang 4/21/2018

#### Load the data

```
X Y month day FFMC DMC
                               DC ISI temp RH wind rain area
## 1 7 5
                1 86.2 26.2 94.3
                                  5.1 8.2 51
                                               6.7
## 2 7 4
                6 90.6 35.4 669.1
                                  6.7 18.0 33
                                                    0.0
                                                           0
                                               0.9
## 3 7 4
           11
                3 90.6 43.7 686.9 6.7 14.6 33
                                               1.3
                                                    0.0
                                                           0
## 4 8 6
            8 1 91.7 33.3 77.5 9.0 8.3 97
## 5 8 6
            8
                4 89.3 51.3 102.2 9.6 11.4 99
                                               1.8
                                                    0.0
                                                           0
## 6 8 6
                4 92.3 85.3 488.0 14.7 22.2 29
                                                           0
```

### check the likelihood of Fire Observations

```
## ## FALSE TRUE ## 0.52 0.48
```

The result shows that there is 48% percent of the time there is no observation of a forest fire.

## Linear Regression Models

Boxplot of forest fire area for different X's

## **Forest Fire Area for Different X's**



Boxplot of forest fire area for different Y's

## **Forest Fire Area for Different Y's**



Boxplot of forest fire area for different Months

# **Forest Fire Area for Different Months**



Here based on a total of 517 fire observations and distributions across different months, we can deduce that there are more fire observations in August and September.

#### Boxplot of forest fire area for different days

```
boxplot(log(area)~day, data=df1, xlab="day", ylab="fire area", main="Forest Fire Area for Different Day
```

## **Forest Fire Area for Different Days**



```
reg_day <-lm(log(area)~ day, data= df1)
summary(reg_day)</pre>
```

```
##
## Call:
## lm(formula = log(area) ~ day, data = df1)
##
## Residuals:
##
      Min
                1Q Median
                                3Q
                                       Max
   -4.2495 -1.1092 0.0004
##
                           0.8867
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.91216
                           0.20352
                                     9.395
                                             <2e-16 ***
## day
               -0.01765
                           0.04745 -0.372
                                               0.71
## Signif. codes:
                  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.529 on 268 degrees of freedom
## Multiple R-squared: 0.0005161, Adjusted R-squared:
## F-statistic: 0.1384 on 1 and 268 DF, p-value: 0.7102
```

## Scatterplots of all different predictor variables.

