Problem Set 2

Exercise 1. Determine if each function below is convex or concave:

1.
$$f(x,y) = 2x - y - x^2 + 2xy - y^2$$

2.
$$f(x,y,z) = x^2 + 2y^2 + 3z^2 + 2xy + 2xz$$

3.
$$f(x,y) = x + y - e^x - e^{x+y}$$

4.
$$f(x,y) = 12x^{1/3}y^{1/2}, x, y \ge 0$$

Exercise 2.

- 1. Let $f(x,y) = x^3 + 2x^2 + 2xy + \frac{1}{2}y^2 8x 2y 8$. Find the range of values (x,y) for which the function is convex
- 2. Let $f(x, y, z) = 2x^2 + 2xz + 2ayz + 2z^2$. Determine the values of a for which the function is concave and for which it is convex.

Exercise 3. Let

$$f(x) = \begin{cases} -x - 1 & \text{if } x < -1\\ x - 1 & \text{if } x > 1\\ 0 & \text{if } -1 \le x \le 1. \end{cases}$$

Check if the point x = 0 is a global maximizer/global minimizer/local maximizer/local minimizer of f?

Exercise 4. Find global maximum and global minimum of the function:

1.
$$f(x,y) = x^2 + y^2 + y - 1$$
 subject to $x^2 + y^2 < 1$

2.
$$f(x,y) = x^2 + 2y^2 - x$$
 subject to $x^2 + y^2 \le 1$

3.
$$f(x,y) = 3 + x^3 - x^2 - y^2$$
 subject to $x^2 + y^2 \le 1$ and $x \ge 0$

4.
$$f(x,y) = xy$$
 subject to $x + y = 6$

5.
$$f(x,y) = xy^2$$
 subject to $2x^2 + y^2 = 3$

6.
$$f(x,y) = x^2 + y^2$$
 subject to $x^2 + xy + y^2 = 3$

7.
$$f(x,y) = (x-1)^2 + y^2$$
 subject to $y^2 - 8x = 0$

8.
$$f(x,y) = (x-4)^2 + (y-4)^2$$
 subject to $x + y \le 4$ and $x + 3y \le 9$

9.
$$f(x,y) = x^2y^2$$
 subject to $2x + y \le 2$ and $x,y \ge 0$

10.
$$f(x,y) = x^2 + y^2 - 4x - 4y$$
 subject to $x^2 \le y$, and $x + y \ge 2$ and $x, y \ge 0$