P-120-2012

설계 및 재설계 과정에서의 재해예방 기술지침

2012. 11.

한국산업안전보건공단

안전보건기술지침의 개요

- O 작성자: 한국안전전문기관협의회 김 기 영
- O 제 · 개정 경과
 - 2012년 10월 화학안전분야 제정위원회 심의(제정)
- O 관련 규격 및 자료
 - ANSI/ASSE Z590.3, "Prevention through Design-Guidelines for Addressing Occupational Hazards and Risk in Design and Redesign Precesses", 2011
 - 기타 관련 KOSHA Guide : [부록 1] 참조
- O 기술지침의 적용 및 문의

이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈페이지 안전보건기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.

공표일자: 2012년 11월 29일

제 정 자: 한국산업안전보건공단 이사장

P-120-2012

설계 및 재설계 과정에서의 재해예방 기술지침

1. 목적

이 지침은 프로젝트 초기인 설계 및 재설계 시에 안전보건에 필요한 사항을 미리 반영하여 설비의 부적절한 제작이나 설치로 인한 사고와 위험물질의 누출원인을 사전에 제거하여 직업병 등에 의한 근로자 손상 및 재산상의 피해를 최소화하는데 필요한 사항을 제공하는데 그 목적이 있다.

2. 적용범위

이 지침은 프로젝트 초기인 설계 및 재설계 시에 적용한다.

3. 정의

- (1) 이 지침에서 사용되는 용어의 정의는 다음과 같다
 - (가) "보편타당한 낮은 기준 (As low as reasonably practicable; ALARP)"이라 함은 위험을 감소시키는데 필요한 비용이 그 위험을 감소시켜 얻을 수 있는 이익보다 낮아서 그 사회에서 위험을 감소시키는데 필요한 비용을 충분히 감수할수 있는 낮은 기준을 말한다.
 - (나) "허용 가능한 위험 (Acceptable risk)"이라 함은 사고 또는 노출이 발생할 가능성과 그 결과로 발생되는 손상 또는 손실의 크기로 나타나는 위험이 사회규범에서 정한 보편타당한 낮은 기준보다 낮아서 받아들일 수 있는 것을 말한다.
- (2) 기타 이 지침에서 사용하는 용어의 정의는 특별한 규정이 있는 경우를 제외하고는 「산업안전보건법」, 같은 법 시행령, 같은 법 시행규칙 및 「산업안전보건기준에 관한 규칙」에서 정하는 바에 의한다.

4. 설계 및 재설계 시에 안전보건의 검토 필요성

설계 및 재설계 시에 안전보건을 미리 검토하면 다음과 같은 장점이 있다.

P-120-2012

- (1) 근로자 손실 및 직업병 감소
- (2) 재산 손실 및 환경에 의한 피해 감소
- (3) 생산성 향상
- (4) 운전비용 절약
- (5) 설치 후에 안전보건을 확보하기 위한 변경으로 인한 비용 절약

5. 경영층의 역할 및 책임

- (1) 경영층은 설계 및 재설계 시에 안전보건을 확보하기 위하여 필요한 다음 사항을 안전보건정책에 포함시켜 관리 및 유지되도록 조치를 하여야 한다.
 - (가) 위험을 회피하거나, 제거하고 또한 대체할 수 있도록 위험의 예측, 확인 및 평가에 관한 사항
 - (나) 확인된 위험으로부터 파생된 리스크를 9항 "위험 분석 및 위험성 평가기법"에 열거된 위험성 평가기법을 활용하여 평가하여 우선순위를 결정하는 방법([부록 1] 위험성 평가 관련 KOSHA Giude 목록 참조)
 - (다) 10항에 언급된 통제의 단계를 적용하여 수용 가능한 위험수준 이하로 리스크를 줄일 수 있는 방법
 - (라) 위험성 평가단계에서 위험 및 리스크에 접하고 있는 근로자가 자신의 지식, 기술, 경험, 통찰력 및 창의성을 활용할 수 있도록 지원
 - (마) 지속적인 개선을 위하여 근로자와 경영층 간의 피드백을 통한 설계 및 재설계 의 효과 모니터링에 관한 사항
 - (바) 설비의 운전 수명기간(Life cycle)이 지날 때 까지 설계검토 자료를 문서화하고, 피드백 자료와 안전보건 관련 보고서를 추적·관리하여 보완하고, 이용할 수 있는 적절한 기록관리 시스템의 개발 및 유지에 관한 사항
- (2) 경영층은 다음과 같은 경우에 각 호에 관련된 업무를 관리·감독할 책임이 있다.
 - (가) 새로운 설비, 장치, 기술, 재료 및 공정을 계획, 설계, 구매 및 설치하고자 할 때
 - (나) 기존의 설비, 장치, 기술, 재료 및 공정을 변경하고자 할 때

P-120-2012

- (다) 사고조사를 실시하고, 그에 상응한 조치를 하고자 할 때
- (라) 설치를 철거·해체하거나 개축하여 재사용하고자 할 때
- (3) 경영층은 리스크를 수용 가능한 위험수준 이하로 유지하기 위하여 8항 "위험분석 및 위험성 평가절차"에서 정하는 사항을 적절히 활용하여야 한다.
 - (가) 경영층은 위험성 평가의 목적이 수용 가능한 위험수준 이하로 유지하는 것이라는 것을 협력업체를 포한한 모든 근로자에게 분명하게 인식시켜야 한다.
 - (나) 개념설계 시부터 작업안전보건의 목표를 설정하여 수용 가능한 위험수준을 설 정하여야 한다.
 - (다) 예비설계를 수행하는 동안 제거할 수 없는 위험에 대하여 리스크 제어수단의 설계·확인에 도움을 주는 수용 가능한 위험 목표를 확실히 정하여야 한다.
- (4) 경영층은 설계 책임자가 입력한 자료와 영향을 받는 안전보건 전문가, 유지보수 작업 관련자, 관리감독자 및 운전자가 포함된 설계 공정을 확보하기 위한 정책과 절차를 수립하여야 한다.
- (5) 경영층은 다음의 방법을 활용하여 앞에서 언급한 (1)항 내지 (3)항의 책임을 완수하여야 한다.
 - (가) 위험의 예측·확인·분석, 위험으로부터 파생되는 리스크의 평가 및 필요한 기술과 지식을 얻기 위한 교육에 필요한 지식과 기술을 가진 이력을 조직 내에 확보
 - (나) 기존 또는 신규의 설비, 장치, 기술, 재료 및 공정을 구매하거나 재설계할 때 도 와줄 위험의 확인·분석 리스크 평가할 수 있는 외부 전문가의 고용
 - (다) 전적인 책임을 같고, 신규의 설비, 장치, 기술, 재료 및 공정을 제공해줄 업체 또는 사람과 문서화된 계약 체결

6. 공급자와의 관계

엔지니어링 회사 또는 공급자 등으로부터 공급을 받아서 신규의 설비, 장치, 기술, 재료 및 공정을 계획하거나 기본의 설비 등을 변경하고자 할 때에는 경영자는 다음과 같은 작업안전 및 리스크 관련 설계명세 및 요구서를 문서로 작성하여야 한

P-120-2012

다.

- (1) 설비, 장치, 기술, 재료 및 공정에 대한 건설·사용·서비스 등에 관련된 요구를 설계회사·공급자 등과 동의하고. 합의한 상세 문서의 작성
- (2) 구매 문서, 구매 주문서 등에 안전보건 성과명세를 포함
- (3) 설비 등의 공급자에게 구매자가 명시한 위험성 평가 수행 및 수용 가능한 위험수 준에 관련된 문서제공 의무 부여
- (4) 안전보건 위험을 가지고 있는 모든 설비 등에 대하여 제작 및 설치 현장에서 시험·검사 및 시운전 단계에서 필요한 업무 수행
- (5) 모든 설비 등에 대하여 안전보건 관련 요구사항이 만족되어 출고되기 전에 구매자 의 책임자가 공급자의 제작 현장을 방문하여 확인
- (6) 공급자의 제작 현장에서 해당설비 등의 관련 코드 등에 따른 시험 및 시험 결과의 승인
- (7) 구매자의 현장에서 설비 등을 설치한 후 관련 코드 등에 따른 시운전에 필요한 제반 업무의 명시 및 실시
- (8) 설비 등의 운전 및 유지보수 등에 필요한 절차서 제공 등

7. 설계단계에서 안전 검토

- (1) 설계단계에서 안전보건에 관련된 완벽성을 확보하기 위하여 설계단계에서 안전 검토는 매우 중요한 업무이다.
- (2) 설계 시의 안전 검토는 빠르면 빠를수록 좋다.
- (3) 경영층은 설계단계에서 필요한 안전보건 관련 기준 및 코드를 정하여야 한다.
- (4) 경영층은 설계단계에서 위험성 평가를 실시하고, 그 결과를 반영할 책임자를 선정하여야 하며, 지명된 책임자는 설계 검토 일정을 작성하고, 그 일정에 따라 설계 검토를 활성화 할 책임이 있으며, 경영층에 설계 검토결과를 서면으로 보고하여야한다.
- (5) 안전보건 기준 및 코드와 불일치되는 내용이 구매자의 책임자가 서면으로 승인하

P-120-2012

- 기 전에는 설계전문가는 불일치 사항을 인정하여서는 안 된다.
- (6) 경영층은 안전보건 설계 검토에 관련된 모든 관련자에게 분야별로 의무, 책임, 권한 등을 정확히 할당하여야 한다.
- (7) 설계 검토의 수준, 빈도, 방법 등은 정하여 문서화하여야 한다.
- (8) 설계단계에서 적어도 한번 이상은 전문가가 참여하여 안전보건 검토를 실시하여 야 한다. 이때, 다음 사항을 검토하여야 한다.
 - (가) 위험에 대한 확인 및 평가를 실시하고, 그에 따른 수용 가능한 위험수준 이하로 유지하기 위한 개선권고사항 수립 검토
 - (나) 설계 명세서 및 이루어야 할 목표 확정 및 검토
 - (다) 운전 중에 발생할 수 있는 교체 또는 보수 비용 발생 여부
 - (라) 관련 법령, 규정, 코드 및 기준에 부합 여부 등
- (9) 설계 검토 시에는 설계에 대한 안전 검토가 설계 책임자가 정해진 문서에 서명하여야 완료됨을 절차서에 명시하여야 한다.

8. 위험 분석 및 위험성 평가절차

8.1 관리 방향

경영층은 다음과 같은 위험 분석 및 위험성 평가요소를 설정하여 적용하여야 한다.

- (가) 리스크 매트릭스(Risk matrix)의 선정
- (나) 평가변수의 설정
- (다) 위험 확인
- (라) 고장모드
- (마) 피해강도 결정
- (바) 발생빈도 결정

P-120-2012

- (사) 초기 리스크 정의
- (아) 위험의 회피, 제거, 감소 및 통제 방법의 선정 및 실행
- (자) 잔여 리스크 평가
- (차) 리스크 수용 결정
- (카) 결과의 정리 및 문서화
- (타) 이행상태 추적 관리

8.2 위험성 평가절차

위험성 평가 흐름도는 <별지 그림 1>과 같으며, 특히 작업건강과 관련한 위험성 평가 흐름도는 <별지 그림 2>와 같다.

8.3 리스크 선정

- (1) 사업장에서는 리스크 매트릭스를 준비하여 광범위하게 의견을 수렴하여야 한다.
- (2) 리스크 매트릭스는 <붙임 2>을 참조하여 사업장 실정에 적합하도록 작성한다.
- (3) 선정된 리스크 매트릭스를 적극적으로 활용하여야 한다.
- (4) 위험성 평가에 참여하는 모든 사람은 사고의 발생빈도와 피해강도에 사용되는 용어를 완벽하게 이해하여야 한다.

8.4 평가변수 설정

- (1) 평가변수 설정은 평가할 업무, 재료, 시스템, 공정 및 장치 등을 고려하여야 한다.
- (2) 라이프 사이클 내에서 범위, 운전상태 및 시간을 설정하여야 한다.
- (3) 분석할 업무, 재료, 시스템, 공정 및 장치 등이 그 내부 또는 다른 업무 및 시스템 사이에서 일어날 수 있는 상호 관련성(Interfaces)을 확실히 정의하여야 한다.

P-120-2012

8.5 위험 확인

- (1) 경영층은 위험 분석 및 평가에 참여할 인력에게 위험을 확인하고, 그 위험을 어떻게 완화시킬 수 있는 지를 교육하여야 한다.
- (2) 경영층은 위험을 일으키는 기술적인 관점과 행동을 결정하여야 하며, 평가할 시스템이 가지고 있는 비정상 공정, 높거나 낮은 압력·온도 등과 같은 위험을 내재하고 있는 상황을 믿을 수 있는 이유를 확실히 하여야 한다.
- (3) 경영층은 위험을 내포하고 있는 장치, 기술, 공정, 분진, 물질 및 화학물질 등의 특성과 원하지 않는 에너지 또는 위해물질을 누출시킬 수 있는 근로자의 행동 및 비행위를 확인하여야 한다.
- (4) 위험 상황에 따라 다르지만, 다음과 같은 방법을 활용하여 위험을 확인한다.
 - (가) 각 시스템이 가지고 있는 위험 및 다른 시스템과 연결되어 복합적으로 가지고 있는 리스크를 고려한 시스템적인 접근
 - (나) 적용할 수 있는 엔지니어링 실례의 활용
 - (다) 시스템에 필요한 명세 및 기대치, 운전 및 유지보수 절차의 조사 활용
 - (라) 적용 가능한 코드, 규칙 및 국제적인 표준을 확인 검토
 - (마) 비슷한 시스템의 사용자 또는 운전자와의 면담
 - (바) 체크리스트 입수 활용
 - (사) 비슷한 시스템의 위험 분석 및 위험성 평가 보고서 입수·분석
 - (아) 원하지 않는 에너지의 누출 가능성 검토
 - (자) 유해한 환경에 노출될 가능성 검토
 - (차) 산업현장 경험 및 사고조사 보고서 등의 검토
 - (카) 공정 및 위험의 복잡도에 따른 정성적 또는 정량적 평가의 필요성 검토
- (5) 가지고 있는 위험이 서로 간에 상승 작용하여 위험 수준이 높아질 수 있는 경우에는 서로의 상승효과를 검토하여야 한다.
- (6) 엔지니어링 계획, 표준, 일반적인 관행 및 체크리스트의 검토 시에 분명하지 않았

P-120-2012

던 숨겨진 위험에 대하여 특별히 주의하여야 한다.

8.6 고장모드 고려

- (1) 설비, 재료 및 장치의 사용 또는 잘못 사용을 포함한 위험한 상황을 일으킬 수 있는 가능한 고장모드를 고려하여야 한다.
- (2) 믿을 만한 상황도 원하지 않는 사고 및 노출을 야기할 수 있는 경우는 없는 지를 확인하여야 하고, 또한 어떻게 어떤 상황 하에서 이러한 상황이 유해한지 결정하여야 한다.

8.7 피해강도 결정

피해강도를 결정할 때에는 다음 사항을 고려하여야 한다.

- (1) 부상자 또는 질병자의 수 및 상해정도
- (2) 파손된 재산 및 설비의 가치
- (3) 운휴기간 및 생산 손실
- (4) 환경에 끼친 영향
- (5) 운전정지에 따른 시장의 점유율 하락

8.8 발생빈도 결정

- (1) 발생빈도를 결정할 때에는 다음 사항을 고려하여야 한다.
 - (가) 얼마나 자주 업무 또는 공정이 수행되는 가?
 - (나) 연속 또는 간헐적인 노출 여부 및 노출기간
 - (다) 노출된 사람의 수
 - (라) 작업 건강노출 또는 환경 노출 여부
 - (마) 예상되는 생산 손실
- (2) 발생빈도는 설비, 장치, 재료, 공정 또는 제품의 라이프 사이클과 관련이 있다.

P-120-2012

8.9 초기 리스크 결정

- (1) 리스크 매트릭스는 리스크 수준을 결정하는데 사용된다.
- (2) 리스크는 피해강도와 발생빈도의 곱으로 결정한다.
- (3) 리스크의 등급은 높음, 심각함, 중간, 낮음 등과 같이 표시한다.

8.10 위험의 회피, 제거, 감소 및 통제 방법의 선정 및 실행

- (1) 위험성 평가를 실시하여 초기 리스크가 결정되면 각 위험 별로 그 리스크를 회피, 제거, 감소 또는 제어하는 방법을 선정하여 수용 가능한 위험수준 이하로 내리는 조치를 실행하여야 한다.
- (2) 각 위험 별로 수용 가능한 위험수준 이하로 내리기 위한 우선순위를 결정하여야 한다.
- (3) 각 위험 별로 수용 가능한 위험수준 이하로 내리기 위하여 설계 또는 운전 변경 등의 적절한 방법으로 시행하여야 한다.
- (4) 이러한 방법의 선정하여 시행하는 것을 추적·관리하여야 한다.

8.11 잔여 리스크 평가

- (1) 리스크를 감소시키는 방법을 선정한 후에는 그 방법을 시행한 후의 잔여 리스크를 평가하여 수용 가능한 위험수준 이하로 감소되었는지 확인하여야 한다.
- (2) 재평가한 리스크가 수용 가능한 위험수준에 들지 못하는 경우에는 감소 대책을 다시 검토하여야 하며, 이러한 검토는 리스크가 수용 가능한 위험수준 이하로 떨어질 때까지 반복하여야 한다.

8.12 리스크 수용 결경

- (1) 리스크의 수용 여부의 결정은 적절한 위험관리 수준에서 결정하여야 한다.
- (2) 리스크가 높은 것을 임시로 수용할지 여부는 최고 경영층에서 결정하여야 한다.

P-120-2012

(3) 중간 및 낮은 리스크를 수용할지 여부는 중간 경영층에서 결정할 수 있도록 위임하는 것이 좋다.

8.13 결과의 정리 및 문서화

평가 보고서에는 다음 내용이 포함되어야 한다.

- (1) 평가에 참석한 사람의 이름, 직위, 자격 등
- (2) 사용한 위험성 평가기법
- (3) 확인된 위험
- (4) 확인된 위험에 대한 리스크
- (5) 수용 가능한 위험수준 이하로 유지하기 위한 회피, 제거, 감소 및 제어 방법 등
- (6) 사용, 설계의 효율성, 시운전 및 운전 기간 중에 발생한 문제점, 설비 수명기간 중에 설계변경 등에 관련한 추가적인 정보 등

8.14 이행상태 추적 관리

- (1) 리스크를 회피, 제거, 감소 및 제어하기 위하여 채택된 방법에 대한 효율성을 검증하여야 한다.
- (2) 효율성 검증에는 다음 사항이 포함되어야 한다.
 - (가) 해결된 위험 및 리스크의 문제점, 부분적으로 해결된 위험 및 리스크의 문제점 및 미해결된 위험 및 리스크의 문제점
 - (나) 채택된 조치가 새로운 위험을 일으켰는지 여부
 - (다) 최종으로 달성한 위험 수준
- (3) 수용 가능한 위험수준에 도달하지 못하였거나 새로운 위험이 발견된 경우에는 위험성 평가를 다시 실시하고, 그에 따른 새로운 대책을 제시하고 이를 실시하여야한다.

KOSHA GUIDE P-120-2012

9. 위험 분석 및 위험성 평가기법

- (1) 경영층은 사업장내에서 사용할 수 있는 위험 분석 및 평가 기법을 정하여야 한다.
- (2) 경영층은 근로자에게 위험 분석 및 평가 기법을 교육시켜야 한다.
- (3) 위험 분석 및 평가 기법에 관한 사향은 [부록 1] 위험성 평가 관련 KOSHA Guide 목록를 참조한다.

10. 통제단계(Hierarchy of controls)

- (1) 사업주는 평가결과 나타난 위험 및 리스크를 회피, 제거, 감소 및 통제 방법을 채택하여 실시하고, 이를 유지하여 수용 가능한 위험수준 이하로 유지할 수 있도록 조치하여야 한다.
- (2) <표 1>에서 기술한 통제단계를 활용하여 적절한 방법을 선정한다.

<표 6> 통제단계

효 과	방 법
	위험의 회피 : 설계 시에 적합한 기술 및 작업방법을 선정하여 작업현장에 위험이 존재하지 않도록 조치
높음	제거 : 작업 현장 및 작업 방법에서 발견된 위험을 사전에 제거
	대체 : 덜 위험한 방법 또는 재료로 바꾸어 위험을 감소시킴
	엔지니어링 조정 : 기술적인 엔지니어링 조정 및 안전장치 설치
	경고 : 경고 시스템 설치
	관리상의 통제 : 조직적인 작업, 교육, 감독 등 관리적인 방법으로 통제
	개인 보호구 지급 및 사용 : 개인 보호구를 활용한 노출 방지

- (3) 의사결정자는 다음과 같은 이유 때문에 <표 1>의 7 가지 방법 중 하위 4 가지 방법을 통하여 개선하는 것이 보다 효과적이다.
 - (가) 설계, 배제, 대체, 엔지니어링 수단을 통하여 제거 또는 감소시키는 것이 예방활 동의 중요한 사항

P-120-2012

- (나) 근로자의 행동 특성 즉 각 근로자에 따른 실적 또는 성과에 최소한으로 의존
- (다) 중간 관리자 또는 작업자의 이해가 덜 필요
- (4) 위의 3 가지 방법이 좋은 방법이나, 그 효과는 개인의 실적 또는 성과에 따라 다르며, 이러한 방법은 원칙적으로 적용하기가 쉽지 않다.
- (5) 실용적인 방법으로 설계 시에 다음 사항을 반영함으로써 목표에 도달할 수 있다.
 - (가) 설계가 부적합하여 사람이 휴먼에러를 일으킬 수 있는 확률을 최소화
 - (나) 규정된 작업 시스템 및 작업 방법이 사람의 능력과 어울리지 않는 상황을 최소 화
 - (다) 규정된 작업과정에 휴먼에러 즉, 작업자의 능력과 제한을 고려
 - (라) 접근 가능한 위험과 리스크를 최소화
 - (마) 근로자에게 필요한 개인 보호구의 필요성을 최소화하고, 필요한 경우 보호구를 사용할 수 있도록 조치
 - (바) 법, 코드, 규정 및 표준의 준수
 - (사) 내 · 외적인 인지할 수 있는 작업 규약의 반영
- (6) 다음 사항을 고려하면 이러한 통제단계를 쉽게 적용할 수 있다.
 - (가) 달성할 리스크의 감소량과 관련하여 채택된 리스크 감소 방법의 실용성, 효과 성 및 비용
 - (나) 사고 똔 노출이 일어날 가능성의 회피, 제거 또는 감소시키는 방법
 - (다) 사고 또는 노출된 경우에 사상 또는 손상의 크기의 줄이는 방법
 - (라) 통제가 필요한 리스크의 특성 및 필요한 리스크 감소 정도
 - (마) 사용 가능한 코드·표준·규정, 인지하고 있는 가장 좋은 실례, 이용 가능한 기술 등

<별지 그림 1> 위험성 평가 흐름도

<별지 그림 2> 작업 건강 위험성 평가 흐름도

KOSHA GUIDE P-120-2012

[부록 1] 위험성 평과 관련 KOSHA Guide 목록

KOSHA Guide P-81-2012 "위험성평가에서의 체크리스트(Check list) 기법에 관한 기술지침"

KOSHA Guide P-82-2012 "연속공정의 위험과 운전분석 (HAZOP)기법에 관한 "기술지침

KOSHA Guide P-83-2012 "사고예상질문분석(WHAT-IF)기법에 관한 기술지침"

KOSHA Guide P-84-2012 "결함수 분석 기법"

KOSHA Guide P-85-2012 "이상위험도 분석기법 기술지침"

KOSHA Guide P-86-2012 "회분식 공정에 대한 위험과 운전분석기법에 관한 기술지침"

KOSHA Guide P-87-2012 "사건수 분석기법에 관한 기술지침"

KOSHA Guide P-90-2012 "작업자 실수분석 기법에 관한 기술지침"

KOSHA Guide P-103-2012 "위험도 계산카드 사용기법에 관한 기술지침"

KOSHA Guide P-111-2012 "공정안전성 분석(K-PSR)기법에 관한 기술지침"

KOSHA Guide P-113-2012 "방호계층분석(LOPA)기법에 관한 기술지침"

KOSHA Guide X-6-2012 "고장형태와 영향분석(FMEA)기법에 관한 지침"

KOSHA Guide X-14-2012 "4M 리스크 평가 기법에 관한 기술지침"

KOSHA Guide X-37-2012 "리스크 관리 체계 구축 시 고려 사항에 관한 지침"

KOSHA Guide X-38-2011 "체크리스트를 이용한 사업장의 리스크 평가 기술지침"

KOSHA Guide X-43-2011 "원인결과분석(CCA)기법에 관한 기술지침"

KOSHA Guide X-47-2011 "사고예상질문/체크리스트분석 결합기법에 관한 기술지침"

KOSHA Guide X-50-2011 "사업장에서 리스크 평가 권고사항의 우선순위에 관한 지침"

[부록 2]

리스크 매트릭스 작성 방법 예시

1. 리스크 매트릭스

(1) 리스크 매트릭스는 <부록 표 1>의 리스크 매트릭스 예시와 같이 사고의 발생빈도 와 강도를 조합하여 1에서 5까지 구분할 수 있으며, 리스크 기준은 <부록 표 2>를 참조하여 회사의 실정에 맞도록 규정한다.

<부록 표 1> 리스크 매트릭스 예시

리스크 매트릭스					
발생빈도 강도	3(상)	2(중)	1(하)		
4(치명적)	5	5	3		
3(중대함)	4	4	2		
2(보 통)	3	2	1		
1(경 미)	2	1	1		

<부록 표 2> 리스크 기준 예시

리스크 기준				
5	허용불가 위험			
4	중대한 위험			
3	상당한 위험			
2	경미한 위험			
1	무시할 수 있는 위험			

2. 발생빈도 및 강도

- (1) 발생빈도 및 강도의 구분은 <부록 표 3> 및 <부록 표 4>를 참조하여 회사의 실정에 맞도록 규정한다.
- (2) 위험도를 결정하는 경우 발생빈도는 현재 안전조치를 고려하여 결정하나, 강도

KOSHA GUIDE P-120-2012

는 현재 안전조치를 고려하지 않는다.

<부록 표 3> 발생빈도의 구분 예시

발생빈도	내 용
3(상)	설비 수명기간에 공정사고가 1회 이상 발생
2(중)	설비 수명기간에 공정사고가 발생할 가능성이 있음
1(하)	설비 수명기간에 공정사고가 발생할 가능성이 희박함

<부록 표 4> 강도의 구분 예시

강 도	내 용
4(치명적)	사망, 부상 2명 이상, 재산손실 10억원 이상, 설비 운전정지 기간 10일 이상
3(중대함)	부상 1명, 재산손실 1억원 이상 10억원 미만, 설비 운전정지 기간 1일 이상 10일 미만
2(보 통)	부상자 없음, 재산손실 1억원 미만, 설비 운전정지 기간 1일 미만
1(경 미)	안전설계, 운전성 향상을 위한 개선 필요, 손실일수 없음