

SSID: MSFTGUEST

code: msevent597rq

https://github.com/guigirard/labDatabricksAzure

Vos animateurs aujourd'hui

Guillaume Girard Conseiller Big Data Expertise Spark, Hadoop, SQL, Microsoft BI

Christophe Botek Conseiller Big Data Expertise Scala, Spark, Databricks, SQL

70

Passionnés de données

144

Clients satisfaits

641

Projets livrés

482k

Heures sur les données

Mission: En tant que centre d'excellence en Business et Data Intelligence, agileDSS aide les entreprises à devenir « data-driven »

Introduction à Spark

- + Hadoop : petit rappel
- + Qu'est-ce que Spark?
- + Écosystème Spark
- + Les APIs
- + Le RDD
- + Le Dataframe
- + Le Dataset
- + Les Commandes
- + Le DAG
- + Spark SQL
- + Comment Spark s'exécute?
- + Spark & Azure

On a dit Spark?

Calcul parallèle en mémoire sous stéroïdes

- + Remplacement de MapReduce
- + Remplacement de Hive
- + Forte intégration dans l'écosystème Hadoop
- + APIs haut niveau inspirées de la programmation fonctionnelle

Développement

- + Création en 2009
- + V1.0 en 2014

HADOOP MAPREDUCE VS SPARK

Écosystème

Langages de programmation

- + La librairie core est écrit en Scala
- + APIs disponible pour Scala, Python, Java, R, .Net

Différences

- + Scala et Java offre les meilleurs performances
- + Python offre la meilleur intégration avec les outils de data science
- + R et .Net sont moins populaires

Écosystème

- + Spark Core
- + Spark SQL
- + Spark Streaming
- + Spark ML
- + GraphX

Notebooks

- + Spark Shell
- + Apache Zeppelin
- + Jupyter
- + Databricks

Spark : les Structures de données

Trois niveaux

- + RDD : données non structurées
 - Structure historique
- + DataFrame : données structurées, sans types
 - Proche d'une table SQL
- + DataSet : données structurées, avec types
 - Permet de typer la structure de données

Spark: le RDD

RDD: Resilient Distributed Dataset

- + Abstraction d'une collection distribuée et résiliente
- + Ne contient pas de données!
- + On peut appliquer des transformations sur cette structure
- + Structure de donnée immuable

Dataframe

Dataframe:

- + Jeu de données organisées en colonnes nommées
- + Se rapproche le plus d'une table relationnelle traditionnelle
- + Très similaire au dataset, mais sans typage de données

Dataset

Dataset:

- + Jeu de données organisées en collection d'objets typés
- + Permet toujours l'utilisation de fonction SQL
- + Permet à certaine erreurs de remonter de l'exécution à la compilation

Spark SQL

- + Pour les données structurées
- + Inférence du schéma
- + Moteur d'optimisation Catalyst
- + API Spark ou HiveQL

Spark: les commandes

Transformations

- + map() filter() groupByKey() join()...
- + Ne font rien!

Actions

- + count() save() collect() foreach()
- + Déclenche les transformations

Spark: le DAG (Directed Acyclic Graph)

Comment Spark s'exécute?

- + Un driver : le chef d'orchestre
- + Plusieurs exécuteurs : ceux qui travaillent
- + Un gestionnaire de ressources

Azure Databricks Spark

Principaux avantages de Spark dans Azure

- + Facilité de déploiement
- + Élasticité
- + Intégration des notebooks

Présentation du sujet d'étude

Présentation du Lab

- + Création du workspace Databricks dans Azure
- + Création du cluster Spark dans Databricks

Visite guidée de Spark sur Databricks

- + Importation du lab dans l'environnement
- + Hello, world!

Analyse de données - Malware dataset

- + Analyse de jeux de données
- + Projection en SQL et Python

Visualisation

- Intégration de Spark avec Power BI
- Réalisation d'un rapport interactif

Télécharger le document suivant:

+ LabAgiledss-SparkDatabricks.dbc

Présent sur GitHub:

+ https://github.com/guigirard/labDatabricksAzure

Si vous avez une souscription active dans Azure

+ veuillez vous connecter à celle-ci et attendre

Si vous n'avez pas de souscription dans Azure

- + Créer une nouvelle adresse email sur https://outlook.live.com/owa/
- + Aller sur https://signup.azure.com/ puis suivre les instruction
- + Azure vous demanderas une carte de crédit mais vous ne serez pas chargé

Une fois connecté au portal azure

- + Entrer "Databricks" dans la barre de recherche
- + Puis cliquer sur "Azure Databricks"

vérifier que la souscription est activé

Cliquer sur "Add"

Remplir les champs avec vos informations
Puis valider en cliquant sur "Create"
Attendre quelques minutes

Cliquer sur votre workspace Puis sur "Launch Workspace"

Pour importer le lab

- + Cliquer sur "Workspace"
- + Puis Clique droit en dessous de "Users"
- + Puis "Import"

Pour créer un cluster Spark

- + Cliquer sur "Clusters"
- + Puis sur "Create Cluster"
- + Entrer le nom du cluster
- + Sélectionner Runtime 6.2
- + Désectionner "Enable autoscaling"
- + Réduire le nombre de "Workers" à 1

Zoiner Tejada

Mastering Azure Analytics: Architecting in the Cloud with Azure Data Lake, HDInsight, and Spark (ISBN: 9781491956656)

Bill Chambers, Matei Zaharia

Spark: The Definitive Guide (ISBN: 9781491912218)

Denny Lee, Tomasz Drabas

Learning PySpark (ISBN: 9781786463708)

Ritchie King, Nate Silver

https://projects.fivethirtyeight.com/flights/

Nos offres Big Data

Formation écosystème Big Data & Azure

Définition de use case & preuve de concept

Architecture Big
Data dans le
cloud / on prem

Développement& mise en placeenvironnement« Al ready »

Visualisation & Data Science sur des systèmes Big Data

Merci

