5600 Fee V

Appendix D

NEP MISSION SENSITIVITIES

JIM GILLAND SVERDRUP TECHNOLOGY, INC. MAY 16, 1991

NASA =

LEWIS RESEARCH CENTER

NEP MISSION REQUIREMENTS

- Parameters of Interest
 - α Specific Mass (kg/kWe) Determines Trip Time Limits
 - Isp Specific Impulse (seconds) Determines Propellant Mass
 - n Efficiency Affects Trip Time and Propellant Requirements
- Presentation Approach
 - Illustrate the effects of above parameters when considered independently

ADVANCED CEASE ARCHEO CERTE

NASA

LEWIS RESEARCH CENTER

NEP Mission Evolution

Interplanetary Probe

- Near term application w/ SP-100, ion engines
- Outer Planets Neptune, Pluto, Jupiter

- Long lifetime missions

- Most demanding in terms of energy requirements

· Orbital Transfer*

- Low to Moderate Power (.1 - 1 MWe), α (10 - 50 kg/kWe) requirements

- Includes LEO-GEO, Lunar

- Planetary gravity well limits EP to cargo trip times
- Approximate trajectory by ΔV 's of 6 8 km/s

Planetary Cargo*

- Moderate Power (1 5 MWe), α (10 20 kg/kWe) requirements
- Larger Payloads (100 200 MT) Drive Power Level
- Includes planetary spirals and heliocentric transfer
- Reduced importance of trip time eases technology requirements

Piloted Interplanetary*

- High Power (10 50 MWe), Low α (<10 kg/kWe) requirements
- Trip time drives α , Power requirements
 - Mars Trip Times of 1 1.5 years are desirable

advanced space analysis office

Cases Considered

Orbital Transfer

- Lunar Cargo $\Delta V = 8 \text{ km/s}$
- LEO = 500 km, Lunar Orbit = 100 km
- 10,20 kg/kWe
- 58 MT payload outbound, return empty
- Power, Isp optimized for maximum payload fraction

Planetary Cargo

- Mars Cargo 800 day one-way, including spirals
- 10 kg/kWe
- Payloads ~ 100 200 MT
- Power Optimized for fixed Efficiency, Isp

Piloted Planetary

- Piloted Mars Mission
- Opposition Class 30 day stay time 500 day trip time
- No crew on board during spiral escape, capture at Earth
 Crew trip time = heliocentric time + stay time
- 124 MT outbound, 40.3 MT inbound payload
- 5 kg/kWe
- Power Optimized for fixed Efficiency, Isp
- Fixed Power (10 MWe) also examined

ARVANCER SPACE ARRAYUS CETTOR

NASA

LEWIS RESEARCH CENTER

Lunar Cargo

ADVANCED COACH ARCANDO CARO

SUMMARY

- · Parameters considered:
 - Specific Mass
 - Efficiency
 - Isp
 - Power
- Specific Mass (α)
 - For reduced trip time Missions, α is key driver
 - $\bullet \alpha$ primarily dependent on power system
- Efficiency
 - Interplanetary
 - Near term needs, high performance requirements lead to use of ion engine
 - Lunar Cargo
 - \bullet For 10 kg/kWe, η as low as 0.25 may be competitive with Chem/Aerobrake
 - \bullet For 20 kg/kWe, η must be 0.4 or greater
 - Mars Cargo
 - Extended trip time (800 d) reduces impact of efficiency, isp variations; η > 0.25 may be useful
 - Piloted Mars
 - Short trip times drive η to values > 0.6
 - Sensitivity to n will be greater for higher values of specific mass

ADVANCED SPACE AMAILYSIS OFFICE

NASA

LEWIS RESEARCH CENTER

SUMMARY (cont.)

- Specific Impulse
 - For the same efficiency, Isp shows a secondary impact on mission performance
 - Cargo
 - 2000 5000 s isp suitable for low ∆V Earth-orbital missions
 - 4000 s suitable for Mars Cargo
 - Piloted
 - Isp >= 4000 s satisfactory
 - Dependence of n upon Isp will affect choice of Isp

APPENDIX

ADVANCED SPACE AMALYSIS OFFICE

