Le problème de l'appartenance

- On va s'intéresser à un problème de décision de théorie des langages utile en compilation
- Le problème de l'appartenance :
 - Données:
 - G=(N,T,S,R) une grammaire algébrique
 - m∈T* un mot
 - Question :
 - Est-ce que m∈L(G)?

Résolution

Plusieurs manières pour résoudre le problème:

au moyen des formes normales

■ A l'aide de la transformation grammaire vers AP.

Avec les grammaires

- On met G sous FNG
- Toutes les règles sont de la forme $X \rightarrow a\gamma$ pour $\gamma \in (N \cup T)^*$
- Complexité de l'algorithme de décision:
 - Soit k le nombre maximal de règles associées aux variables
 - Chaque règle permet d'ajouter un terminal
 - Le mot est de longueur | m
 - La complexité temporelle de cet algorithme est donc au plus k^{|m|}

- m=aabbaab ∈ L(G) pour G sous FNG de règles
 - $S \rightarrow aS|bS|bX$; $X \rightarrow aX|aY|a$; $Y \rightarrow a|b|aY|bY$
- On cherche les dérivations gauches qui permettent d'engendrer m.

$$S \rightarrow aS|bS|bX;$$

 $X \rightarrow aX|aY|a;$
 $Y \rightarrow a|b|aY|bY$

$$S \rightarrow aS|bS|bX;$$

 $X \rightarrow aX|aY|a;$
 $Y \rightarrow a|b|aY|bY$

$$S \rightarrow aS|bS|bX;$$

 $X \rightarrow aX|aY|a;$
 $Y \rightarrow a|b|aY|bY$

$$S \rightarrow aS|bS|bX;$$

 $X \rightarrow aX|aY|a;$
 $Y \rightarrow a|b|aY|bY$

$$S \rightarrow aS|bS|bX;$$

 $X \rightarrow aX|aY|a;$
 $Y \rightarrow a|b|aY|bY$

Conclusion

Il vaut mieux chercher un autre algorithme

Celui-ci est beaucoup trop lent!!!!

Avec les grammaires

- On met G sous FNC
- Toutes les règles sont de la forme $X \rightarrow AB$ ou $X \rightarrow a$ pour $X,A,B \in N$ et $a \in T$
- Complexité de l'algorithme de décision?
 - Soit k le nombre maximal de règles associées aux variables; Le mot est de longueur m
 - Dans le pire des cas, on a un arbre binaire à $\left| m \right|$ feuilles et $\left| m \right|$ -1 nœuds internes et k choix possibles par nœud
 - Le temps de cet algorithme est donc au plus k^{|m|}
- analogue au cas précédent; envisager une autre solution

Dernière tentative : automates à pile

On part de la grammaire G

- On construit l'AP correspondant
- On donne en entrée à l'AP le mot m
 - Si AP accepte $m, m \in L(G)$
 - Sinon, $m \notin L(G)$
- Complexité:
 - Comme on ne sait pas déterminiser les AP, la simulation déterministe d'un AP ND est a priori exponentielle.
 - Il faut envisager tous les arbres de calcul et en trouver un pour lequel la lecture a réussi.
- Il faut donc une autre méthode

Méthode Cocke Younger et Kasami (1965)

- Utilise:
 - Une grammaire G sous FNC
 - La programmation dynamique
- Combine les avantages des
 - Algorithmes gloutons qui effectuent le meilleur choix localement
 - Algorithmes de recherche exhaustive qui essayent toutes les possibilités et choisissent la meilleure
- Clairement, les solutions précédentes sont des algorithmes de recherche exhaustifs

Algorithme CYK

- Notation: x_{i,j} facteur de x contenant les lettres x(i)x(i+1)...x(i+j-1) i.e. le facteur de longueur j qui commence en position i
- Exemple: Pour x=abracadabra, on a x_{3,3}=abracadabra=rac
- Principe: On calcule l'ensemble des variables $V_{i,j}$ $V_{i,j} = \{A: A \in \mathbb{N}: A \rightarrow^* x_{i,j}\}$
- et ceci pour tout i et pour tout j
- Le problème de l'appartenance se formule :

$$x \in L(G) \Leftrightarrow S \in V_{1,|x|}$$

Algorithme CYK

```
Pour i:=1 à n faire
    V_{i,1}:=\{A\mid A\in\mathbb{N},\ A\to x(i)\in\mathbb{R}\}
Pour j:=2 à n faire
   Pour i:=1 à n-j+1 faire
        V_{i} := \emptyset
       Pour k:=1 à j-1 faire
           V_{i,j} := V_{i,j} \cup \{A \mid A \rightarrow BC \in R, B \in V_{i,k}, C \in V_{i+k,i-k}\}
```


Complexité

$$n+\sum_{j=2}^n\left(\sum_{i=1}^{n-j+1}\left(\sum_{k=1}^{j-1}c\right)\right)$$

Complexité

$$n + \sum_{j=2}^{n} \left(\sum_{i=1}^{n-j+1} \left(\sum_{k=1}^{j-1} c \right) \right) = n + c \sum_{j=2}^{n} \left(\sum_{i=1}^{n-j+1} (j-1) \right) = n + c \sum_{j=2}^{n} \left((n-j+1)(j-1) \right) = n + c \sum_{j=2}^{n} \left(-j^2 + j(n+2) - (n+1) \right) = n + c \left(\frac{n(n+1)(2n+1)}{6} - 1 \right) + c(n+2) \left(\frac{n(n+1)}{2} - 1 \right) - c(n+1)(n-1) = O(n^3)$$

Explication

- Si on a la règle
 - $A \rightarrow BC$ avec
 - $B \in V_{i,k}$
 - $C \in V_{i+k,j-k}$
 - $B \rightarrow x_{i,k}$ et $C \rightarrow x_{i+k,j-k}$
 - Donc, $A \rightarrow^* x_{i,j}$ et $A \in V_{i,j}$
- Et vice-versa

La programmation dynamique

- L'apport de la programmation dynamique est dans la construction de la « piramide »
- Celle-ci aurait tout aussi bien pu être remplacée par des appels récursifs
- Dans ce cas, on retombe sur les idées du début, car cela revient de faire un grand nombre de fois le même appel.
- Par contre, une implémentation avec les appels récursifs qu'on fait uniquement une fois, en gardant le résultat est équivalent à CYK.

Compilateur

source → Compilateur Frontal → Représentation intermédiaire

Compilateur

Plus concrètement

- Un compilateur n'utilise pas CYK
- Il préfère utiliser un AP
- Problème du non-déterminisme
- Celui-ci est résolu en ne s'intéressant dans la mesure du possible qu'à des classes de grammaires déterministes

Limites des langages algébriques

Tout est algébrique?

- On connaît bien les langages algébriques
 - Plusieurs façons de les caractériser
 - Les opérations qui préservent l'algébricité
 - Union, concaténation et étoile
- Tout langage est-il algébrique?
 - Comme pour les rationnels, il existe des langages non algébriques.
 - Pour le prouver, on utilise un argument de diagonalisation.

Hypothèse: tout est algébrique

- algébriques = reconnaissables; en bijection avec AP et N.
- On énumère les AP sur un alphabet à une lettre et on les ordonne dans une liste; L₀ est reconnu par le 1^{er} AP de la liste, L₁ par 2^e...
- Si M était dans T, il existerait un indice j tel que M=L_j. Puisque M=L_j, si
 - j∈L_i alors, par définition de M, j∉M
 - $j \notin L_j$ alors, par définition de M, $j \in M$
- Une contradiction dans les deux cas

L'ensemble des algébriques est infini mais dénombrable

	Lo	L ₁	L ₂	L ₃
moto	O	N	Ν	0
mot ₁	N	N	Q	N
mot ₂	0	N	0	0

T[i,j]=Oui si i∈L_j Non sinon

i∈M⇔i∉L_i M n'est pas dans T

Question

- Comment montrer qu'un langage L donné n'est pas algébrique.
- Problème

Donnée: L un langage

Question: L'est-il non algébrique?

 Pour les rationnels, on a utilisé le principe des tiroirs sur les états parcourus pour montrer qu'on passe plusieurs fois par le même état

Question

Pour les algébriques, on utilise le principe des tiroirs sur l'arbre syntaxique qui doit contenir plusieurs fois le même sous-arbre car les variables sont en nombre fini.

Lemme de la pompe

- Lemme: Soit L un langage algébrique. Il existe une constante n (qui ne dépend que de L) telle que si z∈L, |z|≥n, z se factorise en z=uvwxy tel que
- i. |vx|>0 et
- ii. |vwx|≤net
- iii. ∀i≥0, uviwxiy ∈ L

Utilisation du Lemme de la pompe

- Comme pour les rationnels, ce lemme ne sert qu'à montrer la non algébricité d'un langage.
- On utilise la contraposée, en supposant L algébrique et on cherche une contradiction
- Si, pour un z∈L quelconque de longueur suffisante ∀ décomposition z=uvwxy vérifiant
 - 1) |vx|>0 et
 - 2) |vwx|≤ n alors
 - 3) ∃i≥0, uviwxiy ∉ L

On conclut que L n'est pas algébrique

Exemple L={aibici:i>0}

- On suppose L algébrique et on fixe n.
- Soit z=aⁿbⁿcⁿ=uvwxy
- | vwx|≤n⇒vx ne peut avoir à la fois des a et c
 - v et x ne contiennent que des a \Rightarrow uwy manque de a
 - v et x ne contiennent que des $b \Rightarrow$ uwy manque de b
 - v et x ne contiennent que des $c \Rightarrow$ uwy manque de c
 - vx contient des a et b \Rightarrow uwy manque de a et de b
 - vx contient des b et $c \Rightarrow$ uwy manque de b et de c
- Pour chaque factorisation, on aboutit à une contradiction (le mot uwy n'est pas dans le langage). On en déduit donc que L n'est pas algébrique.

Autre exemple : L={aibicidi:i,j≥1}

- On suppose L algébrique; soit n la constante du lemme
- On choisit z=aⁿbⁿcⁿdⁿ
 - 1) |vx|>0 et
 - 2) |vwx|≤n et
 - 3) ∃i≥0, uviwxiy∉L
- Par la condition 2, vx contient soit
 - Qu'une seule lettre a ou b ou c ou d uwy n'est pas dans le langage, car cette lettre manque
 - Que des a et des b
 - Que des b et des c
 - · Que des c et des d

uwy n'est pas dans le langage, car deux lettres manquent

cas analogues

Propriétés de clôture

Propriété

Les langages algébriques sont clos

- Pour l'union
- Pour la concaténation
- Pour l'étoile de Kleene
- Cela nous donne une manière de construire une grammaire algébrique en « découpant » astucieusement le langage à engendrer

Clôture par intersection

- Si L et M sont deux langages algébriques, alors on ne peut en déduire que L∩M est algébrique L={aibici:i>0} n'est pas algébrique
 - L₁={aⁱbⁱc^j:i>0, j>0} est algébrique
 - Concaténation de L={aibi:i>0} et M={cj: j>0}
 - L₂={aⁱb^jc^j:i>0, j>0} est algébrique
 - Concaténation de N={ai:i>0} et P={bjcj: j>0}
 - L₁ ∩ L₂=L n 'est pas algébrique
- Remarque : On ne peut pas dire que l'intersection de deux langages algébriques n'est jamais algébrique
- Il suffit de prendre L=M avec L et M algébriques pour que L∩M=L soit algébrique

Corollaire

- On en déduit que les langages algébriques ne sont pas clos par complémentation
- Sinon, par les lois de Morgan, on aurait

$$L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$$

et les algébriques seraient clos par intersection

Intersection avec rationnels

Théorème: Si L est algébrique et M rationnel, alors L∩M est algébrique

 L'idée est de faire fonctionner en parallèle un AP pour L et un AF pour M

Intersection avec rationnels

Construction:

- On a $A = (Q_1, \Sigma, \Gamma, \delta_1, q_1, Z, F_1)$ un AP qui accepte L par EF
- Et B = $(Q_2, \Sigma, \delta_2, q_2, F_2)$ un AF qui accepte M
- · On construit un automate à pile produit

$$(Q_1 \times Q_2, \Sigma, \Gamma, \delta, (q_1, q_2), Z, F_1 \times F_2)$$

- Transition normale: Si $\delta_1(q,a,X)=(q',\gamma)$ et $\delta_2(p,a)=p',$ alors
 - $\delta((q,p),\alpha,X)=((q',p'),\gamma)$
- ϵ -transition : Si $\delta_1(q, \epsilon, X) = (q', \gamma)$, on ne s'intéresse pas à M:

•
$$\delta((q,p),\varepsilon,X)=((q',p),\gamma)$$

Utilité de ces propriétés

- Comme pour les langages rationnels, les propriétés de clôture sont utiles
 - Pour construire des langages algébriques
 - Pour montrer qu'un langage donné n'est pas algébrique

Moralité

- permet de simplifier les preuves de nonalgébricité de certains langages
- Par exemple pour un langage qui conduit à une « explosion » de cas à considérer :

$$D=\{ww:w\in\{a,b\}^*\}$$

- On suppose D algébrique
- Soit L=a+b+a+b+ (un langage rationnel)
- Alors, D∩L est algébrique
- Mais D∩L ={aibjaibj:i,j>0} réputé non algébrique (analogue à {aibjcidj:i,j>0})
- · Donc D n'est pas algébrique