Sets and Logic Cheat Sheet

by Sagnik Bhattacharya, Suraj Rampure Last modified: March 21, 2019

This chart summarizes all of the notation we've seen so far regarding sets, functions, and propositional logic.

Symbol	Name	Description	Example
\$\{\}\$	set	used to define a set	\$S = \{ 1, 2, 3, 4, \}\$
\$\in\$	in, element of	used to denote that an element is part of a set	\$1 \in {1, 2, 3}\$
\$\not \in\$	not in, not an element of	used to denote than an element is not part of a set	\$4 \not \in {1, 2, 3}\$
\$\mid S \mid\$	cardinality	used to describe the size of a set (refers to the number of unique elements if the set is finite)	\$S = \{1, 2, 2, 2, 3, 4, 5, 5 \}\$ \$\mid S \mid = 5\$
\$:\$, \$\mid\$	such that	used to denote a condition, usually in set-builder notation or in a mathematical definition	\$\{x^2 : x + 3 \text{ is prime}\}\$

Symbol	Name	Description	Example
\$\subseteq\$	subset	set \$A\$ is a subset of set \$B\$ when each element in \$A\$ is also an element in \$B\$	\$A = \{ 1, 2 \}\$ \$B = \{ 2, 1, 4, 3, 5 \}\$ \$A \subseteq B\$
\$\subset\$	proper subset	set \$A\$ is a proper subset of set \$B\$ when each element in \$A\$ is also an element in \$B\$ and \$A \neq B\$	\$A = \{ 1, 2, 3, 4, 5 \}\$ \$B = \{ 2, 1, 4, 3, 5 \}\$ \$A \subseteq B\$ is true but \$A \subset B\$ is not true
\$\supseteq\$	superset	set \$A\$ is a superset of set \$B\$ when \$B\$ is a subset of \$A\$	\$A = \{ 2, 4, 6, 7, 8 \}\$ \$B = \{ 2, 4, 8 \}\$ \$A \supseteq B\$
\$\cup\$	union	a set with the elements in set \$A\$ or in set \$B\$	\$A = \{1, 2\}\$ \$B = \{2, 3, 5\}\$ \$A \cup B = \{1, 2, 3, 5\}\$
\$\cap\$	intersection	a set with the elements in set \$A\$ and in set \$B\$	$A = \{1, 2\}$ $B = \{2, 3, 5\}$ $A \subset B = \{2\}$
\$\emptyset\$	the empty set	the set with no elements	\$\{1, 2, 3\} \cap \{4, 5, 6\} = \emptyset\$
\$-\$, \$\backslash\$	set difference	elements in set \$A\$ that are not in \$B\$	\$A = \{1, 2, 3, 4\}\$ \$B = \{2, 3, 5, 8\}\$ \$A - B = \{1, 4\}\$ \$B - A = \{5, 8\}\$

Symbol	Name	Description	Example
\$\times\$	Cartesian product	a set containing all possible combinations of one element from \$A\$ and one element from \$B\$	$A = \{1, 2\}$ $B = \{3, 4\}$ $A \in B = \{(1, 3), (2, 3), (1, 4), (2, 4)\}$ $A \in A \in A = \{(3, 1), (3, 2), (4, 1), (4, 2)\}$
\$A^c\$	complement	a set containing the elements of the universe \$U\$ that are not in set \$A\$	\$U = \{1, 2, 3, 4, 5\}, A = \{2, 4\} \implies A^c=\ {1, 3, 5\}\$
\$f : A \rightarrow B\$	function	the function \$f\$ maps elements of the set \$A\$ to elements of the set \$B\$; \$A\$ is the domain and \$B\$ is the codomain	<pre>\$f(x) = x^2+5\$ is an example of a function \$f : \mathbb{R} \rightarrow \mathbb{R}\$</pre>
\$f : x \mapsto x^3\$	mapping/function	the function maps any \$x\$ to \$x^3\$; this notation refers to elements of sets rather than sets themselves	\$f(x) = x^2+5\$ can be written as \$f: x \mapsto x^2+5\$
\$\mathbb{N}\$	the set of natural numbers	the set of naturals numbers starting at \$1\$	\$\mathbb{N} = \{1, 2, 3,\}\$
\$\mathbb{N}_0\$	the set of whole numbers	the set of whole numbers starting at \$0\$	\$\mathbb{N}_0 = \{0, 1, 2, 3,\}\$
\$\mathbb{Z}\$	the set of integers	the union of the whole numbers with their negatives	\$\mathbb{Z} = \{, -3, -2, -1, 0, 1, 2, 3,\}\$

Symbol	Name	Description	Example
\$\mathbb{Q}\$	the set of rational numbers	the set of all possible combinations of one integer divided by another, with the latter integer being non-zero, i.e., \$\mathbb{Q} = \{ \frac{p}{q} : p, q \in \mathbb{Z}, q \neq 0\}\$	\$\{\frac{1}{2}, \frac{5} {14}, \frac{-17}{3}\} \subset \mathbb{Q}\$
\$\wedge\$	conjunction/and	\$P \wedge Q\$ is true if both \$P\$ and \$Q\$ are true	<pre>if \$P = (2 \text{ is prime}), Q = (8 \text{ is a perfect cube})\$ then \$P \wedge Q\$ is true</pre>
\$\vee\$	disjunction/or	\$P \vee Q\$ is true if either \$P\$ or \$Q\$ is true	<pre>if \$P = (2 \text{ is prime}), Q = (4 \text{ is a perfect square})\$ then \$P \vee Q\$ is true</pre>
\$\neg\$	negation	\$\neg P\$ is true if \$P\$ is false and vice versa	<pre>if \$P = (\text{35 is prime})\$ then \$\neg P\$ is true</pre>
\$\implies\$	implication	\$P \implies Q\$ means that \$Q\$ is true whenever \$P\$ is true (but it does not say anything about what happens when \$P\$ is false)	<pre>if \$P = (x \text{ is divisible by 4})\$, \$Q = (x \text{ is even})\$ then \$P \implies Q\$ (but note that \$P \nrightarrow Q\$)</pre>
\$\iff\$	if and only if (iff)	\$P \implies Q\$ and \$Q \implies P\$	<pre>if \$P = (\text{it is new year})\$ and \$Q = (\text{it is January 1})\$ then \$P \iff Q\$</pre>

Symbol	Name	Description	Example
\$\forall\$	for all	refers to all the elements in a set	if \$A = \{2, 4, 10\}\$ then \$x \in \mathbb{N} \forall x \in A\$
\$\exists\$	there exists	refers to the existence of at least one of something	<pre>\$\exists x \in \mathbb{N}_0 : x = -x\$</pre>
\$\oplus\$	XOR	either \$P\$ is true or \$Q\$ is true but not both	<pre>if \$P = (\text{Donald} Trump is a Democrat})\$ and \$Q = (\text{Hillary Clinton is} a Democrat})\$ then \$P \oplus Q\$ is true, but if \$P = (\text{Donald} Trump is a Republican})\$ then \$P \oplus Q\$ is false</pre>