1 Disclaimer

Disse noter blev udarbejdet i forbindelse med jeg underviste i kurset **Sandsynlighedsteori og statistik** udbudt af Økonomisk Institut, Københavns Universitet.

Dette er ikke blevet gennemlæst, rettet eller på anden måde redigeret af en tredje person, som ville kunne fange evt. fejl og mangler. Derfor **forvent** at der er fejl i dette dokument. Forhold dig kritisk til resultaterne, og hvis du er sikker på der er en fejl, så tag udgangspunkt i det.

Dokumentet indeholder rettevejledninger til øvelsesseddlerne forbundet med faget. Der er et tilhørende github-repository:

https://github.com/JakartaLaw/statistik2018.

Lecture Notes

Jeppe Johansen

October 29, 2018

- 2 Topics
- 3 Lectures

3.1 Øvelse 1

10/09/2018, opgaver: 1.1, 1.4, 1.17, 1.24 (og 1.13 hvis der er tid)

3.1.1 Opgave 1.1

- en fair mønt
- \bullet 3 kast

Udfaldsrummet E har 2^3 udfald:

$$E = \{(0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), ((1,1,0), (1,1,1)\}$$

SSH for 1 mønt=krone:

$$p((1,1,1)) = \frac{\text{Gunstige udfald}}{\text{mulige udfald}} = \frac{1}{8}$$
 (1)

SSH for mindst 1 mønt=krone.

brug den komplementere sandsynlighed: $p((0,0,0)) = \frac{1}{8}$. Kald denne hændelse B.

$$P(E \setminus B) = 1 - \frac{1}{8} = \frac{7}{8} \tag{2}$$

SSH for præcis et kast viser mønt=krone

Vi definere 3 hændelser

- $A = \{ \text{Det første kast bliver krone} \},$
- $B = \{ \text{Det andet kast bliver krone} \},$
- $C = \{ \text{Det tredje kast blive krone} \}$

Undersøg om dette er korrekt:

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) = 3 \times \frac{1}{8} = \frac{3}{8}$$
 (3)

spørgsmål: hvorfor kan vi ignorere fællesmængden: denoted $A \cup B \cup C$? =¿ Den er disjunkt. Kig i opgave 1.13 for at se hvordan man skulle have inkluderet fællesmængderne

3.2 Opgave 1.4

- $3 \text{ slag med terninger } \{1, 2, 3, 4, 5, 6\}$
- Ssh summen er 10
- 1) Vi ser at summen kan antage alle hele tal mellem 3 og 18.
- 2) Vi kan se det ikke er en ligefordeling af summer: dvs. summen 3 er ikke så hyppig som summen 10.
- 3) Det samlede antal udfald er 6³
- 4) Via computer fandt jeg det gunstige antal udfald:

$$\frac{\text{antal gunstige udfald}}{\text{antal mulige udfald}} = \frac{27}{6^3} = \frac{27}{216}$$
 (4)

3.3 Opgave 1.17

- 1 sort terning
- 1 hvid terning

del 1) Hvad er den betingede ssh. for at summen er 12 givet summen er mindst 11

Brug reglen for betingede sandsynligheder

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} \tag{5}$$

Lad A være sandsynligheden for summen er 12.

Lad B være sandsynligheden for summen er mindst 11.

$$P(A) = p((6,6)) = \frac{1}{36} \tag{6}$$

$$P(B) = P(\{(6,6), (5,6), (6,5)\}) = \frac{3}{36}$$
 (7)

vi ser at $A \subset B \Rightarrow P(A \cap B) = P(A)$

$$P(A \mid B) = \frac{P(A)}{P(B)} = \frac{\frac{1}{36}}{\frac{3}{36}} = \frac{1}{3}$$
 (8)

Del 2) Hvad er den betingede SSH for at de to terninger viser det samme, givet summen er 7:

A er hændelsen for begge er terninger viser det samme.

B er hændelsen summer af terningerne er 7.

$$A = \{(1,1), (2,2), (3,3), (4,4), (5,5), (6,6)\}$$

$$B = \{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}$$

Vi ser at $P(A \cap B) = \emptyset$

Man husker $P(\emptyset) = 0$ Givet fra definitioner af sandsynlighedsmål.

$$P(A \mid B) = 0 \tag{9}$$

Del 3) Ssh for den hvide terning viser 3, givet den sorte viser 5

A: er hændelsen at den hvide terning er 3.

B: er hændelsen den sorte terning er 5.

Hændelserne er uafhængige!

$$A = \{(3,1), (3,2), (3,3), (3,4), (3,5), (3,6)\}$$
(10)

$$B = \{(1,5), (2,5), \cdots, (6,5)\}$$
(11)

Vi ser: $P(A \cup B) = P\{(3,5)\} = \frac{1}{6^2}$.

Vi ser: $P(B) = \frac{1}{6}$

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{1}{36}}{\frac{1}{6}} = \frac{1}{6}$$
 (12)

Del 4) Ssh. for den mindste terning viser 2, givet den terning med det højeste andel højest viser 5

A: hændelsen at den mindste terning viser 2.

B: hændelsen at den terning med det højeste antal øjne viser 5.

$$A = \{(2,2), (2,3), \cdots, (2,6), (3,2), (4,2), \cdots, (6,2)\}$$

$$B = \bigcup_{i,j \in \{1,2,3,4,5\}} (i,j) = E \setminus \{(1,6), (2,6), \cdots, (5,6), (1,6), (2,6), \cdots, (5,6), (6,6)\}$$

Vi kan finde $A \cap B$:

$$A \cap B = (2,2), (2,3), (2,4), (2,5), (3,2), (4,2), (5,2)$$
 (13)

$$P(A \cap B) = \frac{7}{6^2} = \frac{7}{36} \tag{14}$$

$$P(B) = P(E) - P(\{(1,6), (2,6), \cdots, (5,6), (1,6), (2,6), \cdots, (5,6), (6,6)\})$$
(15)

$$=1-\frac{11}{36}=\frac{25}{36}\tag{16}$$

$$P(A \mid B) = \frac{\frac{7}{36}}{\frac{25}{36}} = \frac{7}{25} \tag{17}$$

3.4 Opgave 1.24

- 1 hvid terning
- 1 sort terning
 - $-A = \{ den hvide terning viser 4 \}$
 - $B = {den sorte terning viser 1}$
 - C = {terningen med det højeste antal øjne viser 4 }
 - D = {summen af øjene er 5 }
 - $F = \{summen af øjnene er 7 \}$

hvilke par er indbyrdes uafhængige:

Husk uafhængighed er: $P(A \cap B) = P(A)P(B)$

$$P(A) = \frac{1}{6} = \frac{6}{36} \tag{18}$$

$$P(B) = \frac{1}{6} = \frac{6}{36} \tag{19}$$

$$P(C) = P(\{(1,4), (2,4), (3,4), (4,4), (4,1), (4,2), (4,3)\}) = \frac{7}{36}$$
 (20)

$$P(D) = P(\{(1,4), (2,3), (3,2), (4,1) = \frac{4}{36}$$
(21)

$$P(F) = \{(1,6), (6,1)\} = \frac{1}{12} = \frac{3}{36}$$
 (22)

Elementer i hver fællesmængde:

A	В	С	D	F	set
6	1	4	1	1	Α
1	6	1	1	1	В
4	1	7	2	2	\mathbf{C}
1	1	2	4	0	D
1	1	2	0	6	F

Figure 1: opg. 1.24 - elementer i hver fællesmængde

A	В	С	D	F	set
0.167	0.028	0.111	0.028	0.028	A
0.028	0.167	0.028	0.028	0.028	В
0.111	0.028	0.194	0.056	0.056	\mathbf{C}
0.028	0.028	0.056	0.111	0.000	D
0.028	0.028	0.056	0.000	0.167	F

Figure 2: opg 1.24 - Sandsynlighed for fællesmængde

A	В	С	D	F	set
0.028	0.028	0.032	0.019	0.028	A
0.028	0.028	0.032	0.019	0.028	В
0.032	0.032	0.038	0.022	0.032	\mathbf{C}
0.019	0.019	0.022	0.012	0.019	D
0.028	0.028	0.032	0.019	0.028	F

Figure 3: opg. 1.24 - Sandsynligheden for $P(A) \cdot P(B)$

De uafhængige par er: (A, B), (A, F), (B, F)

3.5 Opgave 1.13

$$P(A \cup B \cup C) = P(A) + P(B \cup C) - P(A \cap (B \cup C))$$

$$= P(A) + P(B) + P(C) - P(B \cup C) - P(A \cap (B \cup C))$$
(23)

Hvis vi ser nærmere på den sidste del Lav tegning af mængder! A, B, C har en intersektion.

$$P(A \cap (B \cup C) = P(A \cup B) + P(A \cup C) - P(A \cup B \cup C)$$
 (25)

Man husker at der er minus foran denne mængde, sådan at:

$$P(A \cup B \cup C) = \tag{26}$$

$$P(A) + P(B) + P(C) - P(B \cup C)$$
 (27)

$$-\left(P(A \cup B) + P(A \cup C) - P(A \cup B \cup C)\right) \tag{28}$$

3.6 Øvelse 2

15/09/2018, opgaver: 1.6, 1.7, 1.9, 1.15, 1.18, 1.28 og 1.30 (og 1.12 hvis der er tid)

3.6.1 1.6

- 1 ternning
- 2 slag

Ssh for mindst 1 sekser

$$P(\{\text{mindst en sekser}\}) = \tag{29}$$

$$P(\{(1,6),(2,6),\cdots,(6,6),(6,1),\cdots,(6,5) = (30)\}$$

$$\frac{5+6}{36} = \frac{11}{36} \tag{31}$$

Ssh. for mindst 1 sekser eller mindst 1 toer

$$P(\{\text{mindst en sekser}\}) = \tag{32}$$

$$P(\{(1,6),(2,6),\cdots,(6,6),(6,1),\cdots,(5,6),$$
 (33)

$$(1,2), \cdots (5,2), (2,1)\cdots (2,5)\}) =$$
 (34)

$$\frac{6+5+5+4}{36} = \frac{20}{36} \tag{35}$$

3.6.2 Opgave 1.7

- 1 mønt
- 10 kast

Hvad er ssh. for mindst 2 plat

Find sandsynligheden for komplimenter hændelsen:

A: Er hændelsen for at få mindst 2 plat.

 ${\cal A}^C$: Er Komplementær hændelsen - altså maks 1 plat:

$$A^C = \{ \text{slå 0 plat} \} \cup \{ \text{slå 1 plat} \}$$

$$\tag{36}$$

$$P(\{\text{slå 0 plat}\}) = \frac{1}{2^{10}}$$
 (37)

$$P(\{\text{slå 1 plat}\}) = \frac{10}{2^{10}} \tag{38}$$

Noter at $\{\text{slå 0 plat}\} \cap \{\text{slå 1 plat}\} = \emptyset$

$$P(A^C) = \frac{1}{2^{10}} + \frac{10}{2^{10}} = \frac{11}{2^{10}}$$
(39)

$$P(A) = 1 - P(A^{C}) = 1 - \frac{11}{2^{10}} = \frac{1013}{2^{10}}$$
(40)

3.6.3 Opgave 1.9

- 1 spil kort (52 kort)
- 13 kort trækkes

Hvad er Ssh. for 0 billedkort eller esser

Antal billedkort og esser (kaldet billedkort fra nu): 4*4=16Kig på komplementær hændelsen:

$$P(\{\text{kort 1 ikke billedkort}\}) = \frac{52 - 16}{52} \tag{41}$$

Vi har trukket 1 kort nu \implies 51 kort tilbage, men stadig 12 billedkort

$$P(\{\text{kort 2 er billedkort}\}) = \frac{51 - 16}{51} \tag{42}$$

$$P(\{\text{man trækker 0 billedkort}\}) = \prod_{i=0}^{12} \frac{52 - i - 16}{52 - i} = 0.0036$$
 (43)

Alternativt

$$#E = 52 \cdot 51 \cdots 40 = \frac{52!}{39!} \tag{44}$$

$$#A = 36 \cdot 35 \cdots 24 = \frac{36!}{23!} \tag{45}$$

$$P(\{\text{man trækker 0 billedkort}\}) = \frac{\#A}{\#E} = 0.0036$$
 (46)

3.6.4 Opgave 1.15

- 4 slag med terning
- mindst 1 sekser
- demere mente $4 \times \frac{1}{6}$

Hvorfor tog han fejl?

Klasse diskussion:

Kig på komplementærhændelsen: Ingen seksere

$$P(\{\text{Ingen seksere}\}) = (\frac{5}{6})^4 = \frac{5^4}{6^4} = 0.49$$
 (47)

Da dette er komplementær hændelsen kan vi i stedet sige:

$$P(\{\text{mindst 1 sekser}\} = 1 - 0.49 = 0.51$$
 (48)

Ssh for en dobbelt sekser i 24 kast

- 24 kast
- mindst 1 dobbelt sekser

Sandsynligheden for 1 dobbelt sekser i et slag.

$$P(\{\mathbf{En\ dobbelt\ sekser}\}) = \frac{1}{6}\frac{1}{6} = \frac{1}{36} \tag{49}$$

Brug komplementær hændelsen: Dvs. ssh for ikke at få en dobbelt sekser i 24 slag:

$$P(\{\text{Ingen dobbelt sekser i 24 slag}\}) = (\frac{35}{36})^{24} = 0.509$$
 (50)

$$P(\{\text{mindst en dobbelt sekser i 24 slag}\}) = 1 - 0.509 = 0.491$$
 (51)

Så ikke langt fra!

3.6.5 Opgave 1.18

- 1 mønt
- 10 kast

Hvad er ssh. for at få krone den 10'ende gang givet 9 plat

Lad os definerer hændelserne:

A: Man har fået 9 plat på de første 9 slag af de 10 slag

B: Man får krone på det sidste slag ud af de 10 slag

Brug definition for betingede ssh(1.4.1):

$$P(A \mid B) = \frac{P(A \cap B)}{P(A)} \tag{52}$$

$$P(A \cap B) = (\frac{1}{2})^{10} = \frac{1}{2^{10}} \tag{53}$$

$$P(A) = (\frac{1}{2})^9 = \frac{1}{2^9} \tag{54}$$

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)} = \frac{\frac{1}{2^{10}}}{\frac{1}{2^9}} = \frac{1}{2}$$
 (55)

SSh for den 10 bliver krone, givet 9 af de 10 kast blive plat

Lad os definerer hændelserne:

A: Man har fået 9 plat ud af de 10 slag

B: Man får krone på det sidste slag ud af de 10 slag

$$P(A \cap B) = (\frac{1}{2})^{10} = \frac{1}{2^{10}} \tag{56}$$

$$P(A) = 10 \times (\frac{1}{2})^{10} = \frac{10}{2^{10}}$$
 (57)

$$P(B \mid A) = \frac{1}{10} \tag{58}$$

3.6.6 Opgave 1.28

- 1 terning
- 1 kast
- Hændelse A: kast er 1,2,3
- $\bullet\,$ Hændelse B: kast er 1 eller 4

Vis at A og B er uafhængige

Brug Definition 1.5.1:

$$P(A \cap B) = P(A)\dot{P}(B) \tag{59}$$

$$P(A) = \frac{1}{2} \tag{60}$$

$$P(B) = \frac{1}{3} \tag{61}$$

Hvad er fælles mængden af de to hændelser: at terningen bliver 1

$$P(A \cap B) = P(\{\text{Terningen bliver 1}\}) = \frac{1}{6} = P(A)\dot{P}(B)$$
 (62)

Og vi har herved vist, at hændelserne er uafhængige!

3.6.7 Opgave 1.30

Lad eleverne prøve!

- 3 hændelser: A, B, C
- \bullet $A \perp \!\!\! \perp B$
- \bullet $A \perp \!\!\! \perp C$

Kan man fra ovenstående slutte at: $A \perp \!\!\! \perp B \cup C$

$$A \perp \!\!\!\perp B \implies P(A) \cdot P(B) = P(A \cap B) \tag{63}$$

$$A \perp \!\!\! \perp C \implies P(A) \cdot P(C) = P(A \cap C) \tag{64}$$

Bevis via. modeksempel

 $A = \{ Spar eller hjerter \}$

 $B = \{ \mathbf{Spar} \ \mathbf{eller} \ \mathbf{ruder} \}$

 $C = \{ \text{hjerter eller ruder} \}$

$$P(A \cap B) = \frac{1}{4} = P(A)P(B)$$

$$P(A \cap C) = \frac{1}{4} = P(A)P(C)$$

$$P(A\cap(B\cup C))=\tfrac{1}{2}\neq P(A)P(B\cup C)=\tfrac{1}{2}\tfrac{3}{4}$$

3.6.8 Opgave 1.12

- 1 slag
- 5 terninger

Sandsynligheden for at få mindst 1 sekser

Udregn ssh for komplementærhændelsen at få 0 seksere!

Definér hændelsen A: At få mindst 1 sekser

$$P(A^C) = P(\{\mathbf{0} \text{ seksere}\} = \left(\frac{5}{6}\right)^5 = 0.402$$
 (65)

$$1 - A^C = 0.598 (66)$$

Øvelse 3

17/9/2017, Opgaver: 2.1 og 2.3 fra Sørensen (2015) samt opgaverne B.1, B.2 og B.3

3.6.9 Opgave 2.1

- 1 rød terning
- 1 sort terning
- $Y := \min(r, s)$
- $Z := \max(r, s)$

Fordelingen for Y

TEGN TERNINGEMATRICEN

$$P(Y=1) = P(\{(1,1), (1,2), \cdots, (1,6), (2,1), \cdots, (6,1)\}) = \frac{11}{36}$$
 (67)

$$P(Y=2) = P(\{(2,2), (2,3), \dots (2,6), (3,2), \dots (6,2)\}) = \frac{9}{36}$$
 (68)

$$P(Y=3) = \dots = \frac{7}{36} \tag{69}$$

Den resterende fordeling for Y er: $P(Y=4)=\frac{5}{36}, P(Y=5)=\frac{3}{36}, P(Y=6)=\frac{1}{36}$.

Fordelingen for Z

TEGN TERNINGEMATRICEN

$$P(Z=1) = P(\{(1,1)\}) = \frac{1}{36}$$
(70)

$$P(Z=2) = P(\{(2,1), (2,2), (2,1) = \frac{3}{36}$$
(71)

$$P(Z=3) = \dots = \frac{5}{36} \tag{72}$$

Den resterende fordeling for Z er $P(Z=4)=\frac{7}{36}, P(Z=5)=\frac{9}{36}, P(Z=6)=\frac{11}{36}$.

Den simultane fordeling er 3.6.9:

Y er vandret, Z lodret: Vi ved at det må være en øvre trekantsmatrice.

Til diagonalen: Vi ved at der er kun måde at min og maks kan være ens $min(T_1, T_2) = max(T_1, T_2) \implies T_1 = T_2$.

Til den øvre trekant: $Y = 1, Z_2 \implies T_1 = 1, T_2 = 2 \lor T_1 = 2, T_2 = 1$. Dette kan gøres for alle elementer af den øvre trekant

Table 1: Simultan fordeling

10010 11 011111111111110							
	Y = 1	Y=2	Y = 3	Y=4	Y = 5	Y = 6	
Z=1	1/36	2/36	2/36	2/36	2/36	2/36	
Z=2	0	1/36	2/36	2/36	2/36	2/36	
Z=3	0	0	1/36	2/36	2/36	2/36	
Z=4	0	0	0	1/36	2/36	2/36	
Z=5	0	0	0	0	1/36	2/36	
Z=6	0	0	0	0	0	1/36	

3.7 Spørgsmål 2.3

• Stokastisk variabel er beskrevet i bogen

$$Y = t(X)$$

$$P(Y=1) = P(X \in \{1, 2, 3\}) = 0.12 + 0.8 + 0.20 = 0.4 \tag{73}$$

$$P(Y=2) = P(X \in \{4,5\}) = 0.11 + 0.19 = 0.30 \tag{74}$$

$$P(Y=3) = P(X \in \{6,7\}) = 0.14 + 0.06 = 0.20 \tag{75}$$

$$P(Y=4) = P(X \in \{8\}) = 0.10 \tag{76}$$

Fordelingsfunktion (CDF):

$$P(Y \le 0) = 0 \tag{77}$$

$$P(Y \le 1) = 0.4 \tag{78}$$

$$P(Y \le 2) = 0.7 \tag{79}$$

$$P(Y \le 3) = 0.9 \tag{80}$$

$$P(Y \le 4) = 1.0 \tag{81}$$

3.8 Opgave B.1

- stokastiske variable X_1, X_2
- $X_1 = 1$ hvis der var en stor nyhed (ellers 0)
- $X_2 = 1$ hvis aktiemarkedet steg/faldt (0 hvis ikke)
- $P(X_1=1)=\frac{6}{10}$
- $P(X_2 = 1) = \frac{3}{10}$

Simultane fordeling under antagelse af uafhængighed!

Brug definition 2.4.1 (sørensen)

$$P(X_1 = 0, X_2 = 0) = P(X_1 = 0)P(X_2 = 0) = \frac{4}{10} \frac{7}{10} = \frac{28}{100}$$
 (82)

$$P(X_1 = 0, X_2 = 1) = P(X_1 = 0)P(X_2 = 1) = \frac{4}{10} \frac{3}{10} = \frac{12}{100}$$
 (83)

$$P(X_1 = 1, X_2 = 0) = P(X_1 = 1)P(X_2 = 0) = \frac{6}{10} \frac{7}{10} = \frac{42}{10}$$
 (84)

$$P(X_1 = 1, X_2 = 1) = P(X_1 = 1)P(X_2 = 1) = \frac{6}{10} \frac{3}{10} = \frac{18}{10}$$
 (85)

TEGN BI-MATRICE

DEL 2: Antag IKKE uafhængighed - Hvad er den simultane fordeling (X_1, X_2)

tegn bimatrice og fyld værdier i løbende!

$$P(X_2 = 1 \mid X_1 = 1) = \frac{4}{10} \tag{86}$$

Udvid **Definition 1.4.3**

$$P(B) = \sum_{j=1}^{n} P(B \mid A_j) P(A_j) = \sum_{j=1}^{n} P(B, A_j)$$
 (87)

$$P(X_2 = 1) = P(X_2 = 1 \mid X_1 = 0)P(X_1 = 0) + P(X_2 = 1 \mid X_1 = 1)P(X_1 = 1)$$
(88)

$$P(X_2 = 1) = P(X_2 = 1, X_1 = 0) + P(X_2 = 1, X_1 = 0)$$
(89)

Vi husker at $P(X_2) = \frac{3}{10}$

$$\frac{3}{10} = \underbrace{\frac{4}{10} \frac{6}{10}}_{P(X_1 = 1, X_2 = 1)} + P(X_2 = 1 \mid X_1 = 0)P(X_1 = 0) \tag{90}$$

$$\implies P(X_1 = 0, X_2 = 1) = \frac{6}{100} \tag{91}$$

Vi har allerede set at:

$$P(X_1 = 1, X_2 = 1) = \frac{24}{100} \tag{92}$$

Vi går videre:

$$P(X_1 = 1) = P(X_1 = 1, X_2 = 0) + P(X_1 = 1, X_2 = 1)$$
(93)

Vi indsætter de værdier vi kender:

$$\frac{6}{10} = P(X_1 = 1, X_2 = 0) + \frac{24}{100} \implies P(X_1 = 1, X_2 = 0) = \frac{36}{100}$$
 (94)

Vi mangler kun sidste værdi nu:

$$P(X_2 = 0) = P(X_2 = 0, X_1 = 0) + P(X_2 = 0, X_1 = 1)$$
(95)

Husker værdier: $P(X_2 = 0) = \frac{7}{10}$ og $P(X_1 = 1, X_2 = 0) = \frac{36}{100}$

$$\frac{7}{10} = \frac{36}{100} + P(X_1 = 0, X_2 = 0) \implies P(X_1 = 0, X_2 = 0) = \frac{34}{100}$$
 (96)

Ændrer fordelingen sig for X_1, X_2, X

Spørg klassen

De marginale distributioner er ens, De betingede og den simultane er forskellig

3.8.1 Opgave B.2

- Test for cancer
- Den gætter rigtig med 95 % ssh.
- 1 ud af 100.000 mennesker har denne kræft form

Lad X for cancer testen X=1 implicerer positiv test . Lad Y være en stokastisk variabel som angiver om man har kræft Y=1 betyder man har kræft.

Vi kan skitserer nogle sandsynligheder:

$$P(X = 1 \mid Y = 1) = 0.95, \quad P(X = 0 \mid Y = 1) = 0.05$$
 (97)

$$P(X = 0 \mid Y = 0) = 0.95, \quad P(X = 1 \mid Y = 0) = 0.05$$
 (98)

$$P(Y=1) = \frac{1}{100000} = 0.00001 \tag{99}$$

Brug bayes formel (sætning 1.4.7):

$$P(A_k \mid B) = \frac{P(B \mid A_k)P(A_k)}{\sum_{j=1}^{n} P(B \mid A_j)P(A_j)}$$
(100)

$$P(Y = 1 \mid X = 1) \tag{101}$$

$$= \frac{P(X=1 \mid Y=1)P(Y=1)}{P(X=1 \mid Y=1)P(Y=1) + P(X=1 \mid Y=0)P(Y=0)}$$
(102)

$$P(Y = 1 \mid X = 1) = \frac{0.95 \cdot 0.00001}{0.95 \cdot 0.00001 + 0.05 \cdot 0.99999} = 0.0001899$$
 (103)

3.8.2 Opgave B.3

Kig github!

3.9 Øvelse 4

21/9/2018, Øvelser: B.4 og 2.4, 2.5, og 2.9 fra Sørensen (2015)

3.9.1 Opgave B.4

Lav i klassen

- 1 mønt
- 1 terning
- X er stokastisk variabel med summen af antal øjne på terning + (0/1) (1 hvis krone).

$$T := \text{Ternings } \emptyset \text{ jne}, \qquad M := \text{M} \emptyset \text{nt}$$
 (104)

$$X := T + M \tag{105}$$

Del 4 - Find P(X > 3)

Definer hændelser:

$$A = \{X > 3\}$$

$$A^C = \{X \le 3\}$$

udfaldsrummet for den simultane fordeling af T of M $\{0,1\} \times \{1,2,3,4,5,6\}$

$$P(A^C) = \tag{106}$$

$$P(\{(M=0, T=1), (M=0, T=2), (M=0, T=3),$$
 (107)

$$(M = 1, T = 1), (M = 1, T = 2))$$
 (108)

Dette var kun komplementær hændelsen

$$P(A^C) = \frac{5}{12} \tag{109}$$

$$P(A) = \frac{7}{12} \tag{110}$$

Del 5 - SSh for ulige nummer

Definér hændelsen.

 $A = \{X \in \mathbf{Ulige\ numre}\}$

Disse er alle indbyrdes disjunkte hændelser $A = \{X = 1\} \cup \{X = 3\} \cup \{X = 5\} \cup \{X = 7\}$

$$P(A) = P({X = 1}) + P({X = 3}) + P({X = 5}) + P({X = 7})$$
 (111)

$$P(A) = \frac{1}{12} + \frac{2}{12} + \frac{2}{12} + \frac{1}{12} = \frac{1}{2}$$
 (112)

3.9.2 Opgave 2.4

L

- X er en stokastisk variabel som kan antage værdierne $\{1, 2, 3\}$
- $P(X = 1) = P(X = 2) = P(X = 3) = \frac{1}{3}$
- En stokastisk variabel Y = 1/X

Tegn fordelingsfunktionen for X og Y

Kig Github!

3.9.3 Opgave 2.5

Lav første del i klassen

- X_1, X_2 er stokastiske variable.
- begge har udfaldsrummet $\{0,1\}$
- X_1 marginale fordeling:

$$-P(X_1=0)=0.4$$

$$-P(X_1=1)=0.6$$

• X_2 marginale fordeling

$$-P(X_2=0)=0.3$$

$$-P(X_2=1)=0.7$$

• Vi har en stokastisk vektor $X = (X_1, X_2)$

Del 1) Undersøg uafhængighed når den simultane fordeling af X er:

Table 2: Simultan fordeling af X

	$X_1 = 0$	$X_1 = 1$
$X_2 = 0$	0.12	0.18
$X_2 = 1$	0.28	0.42

Se definition 2.4.1: Skriv den op på tavlen!

Vi tester for uafhængighed:

$$P(X_1 = 0)P(X_2 = 0) = 0.4 \cdot 0.3 = 0.12 \tag{113}$$

$$P(X_1 = 0)P(X_2 = 1) = 0.4 \cdot 0.7 = 0.28 \tag{114}$$

$$P(X_1 = 1)P(X_2 = 0) = 0.6 \cdot 0.3 = 0.18 \tag{115}$$

$$P(X_1 = 1)P(X_2 = 1) = 0.6 \cdot 0.7 = 0.42 \tag{116}$$

Vi ser at X_1 er uafhængig af X_2 .

Del 2) Undersøg uafhængighed når den simultane fordeling af X er:

Til klassen: Er dette overhovedet muligt - givet ovenstående resultat?

Table 3: Simultan fordeling af X

	$X_1 = 0$	$X_1 = 1$
$X_2 = 0$	0.15	0.15
$X_2 = 1$	0.25	0.45

Del 3) gør rede for at begge simulatane fordelinger er i overensstemmelse med de angivne marginale fordelinger

$$P(X_1 = 0) = P((0,0)) + P((0,1)) = 0.4$$
(117)

$$P(X_1 = 1) = P((1,0)) + P((1,1)) = 0.6$$
(118)

$$P(X_2 = 0) = P((0,0)) + P((1,0)) = 0.3$$
(119)

$$P(X_2 = 1) = P((0,1)) + P((1,1)) = 0.7$$
(120)

3.9.4 Opgave 2.9

Note brug min() og maks() som funktioner istedet for bogens notation.

- 2 terninger, T_1, T_2
- T_1, T_2 er ligefordelt på $\{1, 2, 3, 4, 5, 6\}$
- $Y = min(T_1, T_2)$
- $Z = max(T_1, T_2)$

Hvad er den simultane fordeling?

Y er vandret, Z lodret: Vi ved at det må være en øvre trekantsmatrice.

Til diagonalen: Vi ved at der er kun måde at min og maks kan være ens $min(T_1, T_2) = max(T_1, T_2) \implies T_1 = T_2$.

Til den øvre trekant: $Y = 1, Z_2 \implies T_1 = 1, T_2 = 2 \lor T_1 = 2, T_2 = 1$. Dette kan gøres for alle elementer af den øvre trekant

Er Y, Z uafhængige

Husk:

$$P(Y = A, Z = B) = P(Y = A)P(Z = B) \quad \forall A, B \in \{1, 2, 3, 4, 5, 6\} \quad (121)$$

Table 4: Simultan fordeling

	Y = 1	Y=2	Y=3	Y=4	Y = 5	Y = 6
Z=1	1/36	2/36	2/36	2/36	2/36	2/36
Z=2	0	1/36	2/36	2/36	2/36	2/36
Z=3	0	0	1/36	2/36	2/36	2/36
Z=4	0	0	0	1/36	2/36	2/36
Z=5	0	0	0	0	1/36	2/36
Z=6	0	0	0	0	0	1/36

Vi skal bare have et modeksempel. Eftersom: P(Y=1,Z=2)=0 kan vi konkluderer ikke uafhægighed. Overvej dette!

4 Øvelse 5

24/09/2018 - C.1, C.2, C.3 & 3.20, 3.24, 3.27 (optional 3.2) sørensen

4.0.1 Opgave C.1

- Basketball player
- 10 skud
- ssh for at ramme 0.5

Binomial fordeling

Hvad er SSh for at ramme 8 skud med ssh 0.5

$$p(x) = {10 \choose 8} 0.5^8 (1 - 0.5)^{10-8} = 0.04394$$
 (122)

Hvad er SSh for at ramme med ssh 0.6

$$p(x) = {10 \choose 8} 0.6^8 (1 - 0.6)^{10-8} = 0.1209$$
 (123)

Ssh på 0.5 - hvad er varians of middelværdi

$$E(X) = n \cdot p = 0.5 \cdot 10 = 5 \tag{124}$$

fra wikipedia

$$Var(X) = n \cdot p \cdot (1 - p) = 2.5$$
 (125)

4.0.2 Opgave C.2

- ullet X er stokastisk variabel
- diskret pdf $f(x) = \frac{x}{8}$
- $x \in \{1, 2, 5\}$

Hvad er E(X)

$$E(X) = \sum_{i=1}^{n} p_i \cdot x_i = 1 \cdot \frac{1}{8} + 2 \cdot \frac{2}{8} + 5 \cdot \frac{5}{8} = \frac{1+4+25}{8} = 3.75$$
 (126)

Hvad er Var(X)

$$Var(X) = E(X^2) - (E(X))^2$$
(127)

$$E(X^2) = 1^2 \cdot \frac{1}{8} + 2^2 \cdot \frac{2}{8} + 5^2 \cdot \frac{5}{8} = \frac{1+8+125}{8} = 16.75$$
 (128)

$$Var(X) = 16.75 - 3.75^2 = 16.75 - 14.0625 = 2.6875$$
 (129)

Hvad er E(2X+3)

Vi bruger:

$$E(a+bX) = a + bE(X) \tag{130}$$

Husk E(X) = 3.75

$$2 \cdot 3.75 + 3 = 7.5 + 3 = 10.5 \tag{131}$$

4.0.3 Opgave C.3

- \bullet Efterspørgsel for software er X
- købspris 10
- salgspris 35
- Ved årets ende er softwaren intet værd
- køber 4 kopier af software

Find $\mathbf{E}(X)$

$$E(X) = 0.1 \cdot 0 + 0.3 \cdot 1 + 0.3 \cdot 2 + 0.2 \cdot 3 + 0.1 \cdot 4 = 0.3 + 0.6 + 0.6 + 0.4 = 1.9$$
(132)

Find Var(X)

$$Var(X) = E(X^2) - (E(X))^2$$
(133)

$$E(X^2) = 0.1 \cdot 0 + 0.3 \cdot 1 + 0.3 \cdot 4 + 0.2 \cdot 9 + 0.1 \cdot 16 = 0.3 + 1.2 + 1.8 + 1.6 = 4.9$$
 (134)

$$Var(X) = 4.9 - 1.9^2 = 4.9 - 3.61 = 1.29$$
(135)

Efterspørgselsfunktion Y, samt $\mathbf{E}(Y)$ og $\mathbf{Var}(Y)$

man køber 4 stykker software 4×10 . og sælger x af dem som er en realisation af X.

$$Y := 35X - 40 \tag{136}$$

husk

$$E(a+bX) = a + bE(X) \tag{137}$$

$$E(Y) = E(35X - 40) = 35 \cdot E(X) - 40 = 3.5 \cdot 1.9 - 40 = 26.5$$
 (138)

Normalt ville vi sige:

$$Var(X) = E(X^2) - (E(X))^2$$
(139)

Vi gør noget smartere her (kig bog s. 93):

$$Var(aX + b) = b^{2}Var(X)$$
(140)

$$Var(Y) = Var(35X - 40) = 35^2 \cdot Var(X) = 35^2 \cdot 1.29 = 1580.25$$
 (141)

4.0.4 Opgave 3.20

- \bullet en stokastisk variabel Xer ligefordelt på $\{1,2,3,4,5,6\}$ (en terning)
- $\bullet\,$ stokastisk variabel Y:=R+H,hvor er og R,Her terninger
- Z er stokastisk variabel som er for uniform på $\{1,2,3\cdots,n.$

Find middelværdi og varians for X

Man siger at $X := unif\{a, b\} = unif\{1, 6\}$

Middelværdi

$$E(X) = \sum_{i=1}^{6} \frac{1}{6}i = 3.5$$
 (142)

Fra wikipedia om diskrete uniform fordeling

 $\verb|https://en.wikipedia.org/wiki/Discrete_uniform_distribution| Varians|$

Generelt er der gode informationer om distributioner på wiki!

$$Var(X) = \frac{(b-a+1)^2 - 1}{12}$$
 (143)

$$Var(X) = \frac{(6-1+1)^2 - 1}{12} = \frac{35}{12} = 2.92$$
 (144)

For Y

$$R, H := unif\{1, 6\}. Y = R + H$$

Vi ved at $R \perp \!\!\! \perp H$

brug Sætning 3.7.7 (s. 91) - (uafhængighed er ikke nødvendig)

$$E(Y) = E(R+H) = E(R) + E(H) = 3.5 + 3.5 = 7$$
 (145)

Grundet uafhængighed kan vi nu bruge sætning 3.8.8 (s. 101)

$$Var(X_1 + X_2 + \dots + X_n) = Var(X_1) + Var(X_2) \cdot \dots \cdot Var(X_n)$$
(146)

$$Var(Y) = Var(R) + Var(H) = 2.92 + 2.92 = 5.84$$
 (147)

Middelværdi og varians for Z

Vi kan definere den stokastiske variabel Z := unif(1, n)

$$E(Z) = \sum_{i=1}^{n} \frac{1}{n} i = \frac{1}{n} \sum_{i=1}^{n} i$$
 (148)

summen er $\frac{n(n+1)}{2}$. Vis gaus beviset: vi har n/2 gange (1+n). 1+50=51, 2+49=51 osv det kan vi gøre 25 gange.

$$E(Z) = \frac{1}{n} \frac{n(n+1)}{2} = \frac{n+1}{2}$$
 (149)

Nu skal variansen udregnes!

$$Var(Z) = E(Z^2) - (E(Z))^2$$
(150)

I bogen har vi opgivet at:

$$\sum_{i=1}^{n} i^2 = \frac{1}{6}n(2n+1)(n+1) \tag{151}$$

Vi ved derfor at:

$$E(Z^2) = \sum_{i=1}^{n} \frac{1}{n} i^2 = \frac{1}{n} \sum_{i=1}^{n} i^2 = \frac{1}{n} \frac{1}{6} n(2n+1)(n+1) = \frac{1}{6} (2n+1)(n+1)$$
 (152)

(Andel af udtrykket er $E(Z)^2$)

$$Var(Z) = \frac{1}{6}(2n+1)(n+1) - \frac{n+1}{2}\frac{n+1}{2}$$
(153)

Vi ser udtrykket kan forkortes:

$$Var(Z) = \left(\frac{1}{6}(2n+1) - \frac{n+1}{2^2}\right)(n+1)$$
 (154)

4.0.5 Opgave 3.24

- $\bullet\,$ en stokastisk variabel X
- E(X) = 5
- Var(X) = 2

Find E $(7 + 8X + X^2)$

$$E(7 + 8X + X^{2}) = E(7) + E(8X) + E(X^{2})$$
(155)

Først ved vi at E(7) = 7.

Dernæst

$$E(8X) = 8 \cdot E(X) = 8 \cdot 5 = 40$$
 (156)

Til sidst

$$Var(X) = E(X^2) - E(X)^2$$
 (157)

Vi kender variansen og E(X):

$$2 = E(X^2) - 5^2 \implies E(X^2) = 2 + 5^2 = 27$$
 (158)

$$E(7 + 8X + X^2) = 7 + 40 + 27 = 74$$
(159)

4.0.6 Opgave 3.27

- 3 stokastiske variable
- \bullet X_1, X_2, X_3
- identiske og uafhængige

Vis at

$$Corr(X_1 + X_2, X_2 + X_3) = \frac{1}{2}$$
 (160)

$$Corr(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}}$$
(161)

$$Cov(X,Y) = (X - E(X))(Y - E(Y))$$
(162)

Indsæt vores stokastiske variable $X_1 + X_2$ og $X_2 + X_3$.

$$Cov(X_1 + X_2, X_2 + X_3) = (163)$$

$$(X_1 + X_2 - E(X_1) + E(X_2))(X_2 + X_3 - E(X_2) + E(X_3)) =$$
(164)

$$([X_1 - E(X_1)] + [X_2 - E(X_2)])([X_2 - E(X_2)] + [X_3 - E(X_3)]) = (165)$$

$$Cov(X_1, X_2) + Cov(X_1, X_3) + Cov(X_2, X_3) + Var(X_2)$$
 (166)

Vi ved at uafhængighed implicerer ar covariancen er lig 0. Det betyder:

$$Cov(X_1 + X_2, X_2 + X_3) = Var(X_2) = \sigma^2$$
 (167)

Brug sætning 3.8.8 (s. 101). Man kan splitte variansen op af ukorrelerede stokastiske variabler til en sum

$$Var(X_1 + X_2)Var(X_2 + X_3) =$$
(168)

$$(Var(X_1) + Var(X_2))(Var(X_2) + Var(X_3)) =$$
 (169)

(170)

Vi ved variansen er ens for alle stokastiske variable sådan at: $Var(X_1) = Var(X_2) = Var(X_3) = \sigma^2$

$$2\sigma^2 \cdot 2\sigma^2 \tag{171}$$

$$\sqrt{2\sigma^2 \cdot 2\sigma^2} = 2\sigma^2 \tag{172}$$

Vi har herved fundet det ønskede resultat!

$$Corr(X_1 + X_2, X_2 + X_3) = \frac{\sigma^2}{2\sigma^2} = \frac{1}{2}$$
 (173)

4.0.7 Opgave 3.2

- 5 Cola-smagere
- 2 Cola-mærker $\{C, P\}$
- \bullet med sandsynlighed p gætter de rigtigt
- ullet 4 ud af 5 gætte på cola P. 1 gættede C

Hvad er den betingede ssh for at det var cola C der blev serveret

Definér to stokastiske variable:

 $S := \{ \text{Hvilke cola der blev serveret} \}$

 $C := \{ \text{hvilken cola der blev serveret} \}$

$$P(D) = \frac{1}{2}$$

$$P(S \mid D) \sim Bin(5, p)$$

$$P(S = 4 \mid D = C) {5 \choose 4} p(1-p)^4$$
 (174)

4.1 Øvelse 5

28/09/2018 - C.4 & Opgave 1

4.1.1 C.4

- Poisson distribution
- Antal opkald kan modelleres med en stokastisk variabel kaldet $X := Poisson(\lambda)$.

Om Poisson fordelingen: En ventetidsfordeling! Citat wikipedia:

"[Poisson fordelingen] is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time or space if these events occur with a known constant rate and independently of the time since the last event." - Wikipedia

Den har den egenskab at: $E(X) = Var(X) = \lambda$

Om denne fordeling kan vi sige at sandsynligheden for et givent udfald er (pdf):

$$p(x) = \frac{\lambda^x}{x!} e^{-\lambda} \tag{175}$$

Lad dem regne selv

Ssh for præcis 7

$$p(7) = \frac{7^{10}}{7!}e^{-10} = 0.090079 \tag{176}$$

Ssh for max 7 opkald

$$P(X \le 7) = \sum_{i=0}^{7} \frac{i^{10}}{i!} e^{-10} = 0.22022$$
 (177)

$$P(3 \le X \le 7) = \sum_{i=3}^{7} \frac{i^{10}}{i!} e^{-10} = \sum_{i=0}^{7} \frac{i^{10}}{i!} e^{-10} - \sum_{i=0}^{2} \frac{i^{10}}{i!} e^{-10}$$
 (178)

Indsæt værdier udregnet i python

$$0.22022 - 0.002769 = 0.217451 \tag{179}$$

4.1.2 Opgave 1

- Værdi af cykel 4000 kr
- \bullet ssh for den bliver stjålet 5 %
- man kan tegne en cykel så den bliver erstattet for hele dens værdi

Del 1) Hvor meget er man villig til at betale for en sådan forsikring?

Spørg klassen - Intet rigtigt svar?

del 2) Udregn værdi af cykel (på et år)

Vi definerer X stokastiske variable:

 $X := \mathbf{Cykel} \ \mathbf{værdi}$

$$P(X = 0) = 0.05 \text{ og } P(X = 4000) = 0.95$$

Så ganger vi værdien på X bagefter.

$$E(X) = 0.95 \cdot 4000 = 3800 \tag{180}$$

del 3) Cykel forsikring!

$$Y :=$$
Værdi af cykel minus forsikring 1 (181)

$$(Y \mid X = 0) = 0 - 400 + 4000 = 3600 \tag{182}$$

$$(Y \mid X = 4000) = 4000 - 400 = 3600 \tag{183}$$

$$E(Y) = 0.95 \cdot 3600 + 0.05 \cdot 3600 = 3600 \tag{184}$$

Del 4) Forsikring med selvrisiko på 1000 kr!

 $pris = 150 \text{ årligt}, selvrisiko} = 1000.$

Z := Værdi af cykel minus forsikring 2

$$(Z \mid X = 0) = 0 - 150 - 1000 + 4000 = 2850$$
 (185)

$$(Z \mid X = 4000) = 4000 - 150 = 3850 \tag{186}$$

$$E(Z) = 0.05 \cdot 2850 + 0.95 \cdot 3850 = 3800 \tag{187}$$

Del 5) Sammenlign middel værdier

Klassediskussion

Del 6) Nytte af af X, Y, Z

nyttefunktion:

$$u(v) = 10v - 0.001v^2, v \in \{0, 1, \dots 4000\}$$
 (188)

Transformér de enkelte stokastiske variable først! X:

$$u(X \mid X = 0) = 0 (189)$$

$$u(X \mid X = 1) = 10 \cdot 4000 - 0.001 \cdot 4000^{2} = 24000 \tag{190}$$

transformation af Y:

$$u(Y \mid Y = 3600) = 10 \cdot 3600 - 0.001 \cdot 3600^2 = 23040$$
 (191)

(192)

Transformation af Z:

$$u(Z \mid Z = 3850) = 10 \cdot 3850 - 0.001 \cdot 3850^2 = 23677.5 \tag{193}$$

$$u(Z \mid Z = 2850) = 10 \cdot 2850 - 0.001 \cdot 2850^2 = 20377.5$$
 (194)

$$E(u(X)) = 0.95 \cdot 24000 + 0.05 \cdot 0 = 22800 \tag{195}$$

$$E(u(Y)) = 0.95 \cdot 23040 + 0.05 \cdot 23040 = 23040 \tag{196}$$

$$E(u(Z)) = 0.95 \cdot 23677.5 + 0.05 \cdot 20377.5 = 23512.5 \tag{197}$$

Del 7) Vis generelt udtryk for den forventede værdi af u(W)

$$u(v) = 10v - 0.001v^2, v \in \{0, 1, \dots 4000\}$$
 (198)

lad W være koncentreret på mængden T:

$$E(u(W)) = \sum_{w \in T} (10 \cdot w - 0.001w^2) p(w)$$
(199)

$$E(u(W)) = \sum_{w \in T} (10 \cdot w) p(w) - \sum_{w \in T} (0.001w^2) p(w)$$
 (200)

$$E(u(W)) = 10 \cdot \sum_{w \in T} (w)p(w) - 0.001 \cdot \sum_{w \in T} (w^2)p(w)$$
 (201)

$$E(u(W)) = 10E(W) - 0.001 \cdot E(W^2)$$
(202)

Vi ved at:

$$Var(X) = E(X^2) - (E(X))^2 \implies Var(X) + (E(X))^2 = E(X^2)$$
 (203)

Vi bruger dette:

$$E(u(W)) = 10 \cdot E(W) - 0.001 \cdot (E(W))^2 + Var(W)$$
 (204)

Som var det ønskede udtryk

Del 8) Udregn variansen af X, Y, Z

Vi bruger formlen for den varians:

$$\sum_{x \in T} (x - E(X))^2 p(x)$$
 (205)

Varians af X

$$0.95 \cdot (3800 - 4000)^2 + 0.05 \cdot (0 - 4000)^2 = 760000 \tag{206}$$

Varians af Y: Den er Var(Y) = 0. Vi får altid udbetalt det samme! **Definition 3.7.13**

Varians af Z

$$0.95 \cdot (3850 - 3800)^2 + 0.05 \cdot (2850 - 3800)^2 = 47500 \tag{207}$$

4.2 Øvelse 7

Opgaver: 3.4, 3.13, 3.14, 4.5, 4.6, (4.14)

4.2.1 Opgave 3.4

• 5 terninger kastes

SSH for 3 seksere

Man kan bruge både binomial fordelingen og Polynomialfordelingen.

Vi bruger binomialfordelingen X := Binom(n = 5, p = 1/6)

$$p = \frac{1}{6} \tag{208}$$

VI har antalsparameter n = 5, og antal succeser x = 3

$$P(X=3) = {5 \choose 3} \left(\frac{1}{6}\right)^3 \left(1 - \frac{1}{6}\right)^{5-3} = 0.0321$$
 (209)

SSH for mindst 3 seksere

$$P(X \ge 3) = \sum_{i=3}^{n} {5 \choose i} \left(\frac{1}{6}\right)^{i} \left(1 - \frac{1}{6}\right)^{5-i} = 0.03549$$
 (210)

SSh for præcis 3 ens

Brug hvad vi har udregnet tidligere. SSH for præcis 3 seksere, kan vi gange med 6 for at finde det for alle!

$$P(Z=3) = 6 \cdot 0.0321 = 0.1929 \tag{211}$$

SSH for mindst 3 ens

Brug hvad vi regnede ud tidligere for mindst 3 seksere

$$P(Z=3) = 6 \cdot 0.03549 = 0.2129 \tag{212}$$

4.2.2 Opgave 3.13

- $X, Y \sim Uni(0, N)$
- $\bullet \ X \perp \!\!\! \perp Y$

Find P(X > Y)

Find middelværdien for X, Y.

Vi ser: $P(X > Y \mid Y = 0) = P(X > 0)$, $P(X > Y \mid Y = 1) = P(X > 1)$. Vi ved at Y, X er ligefordelt sådan at alle ting er lige sandsynlige. Dette implicerer $P(Y = y) = \frac{1}{N+1}, \forall y \in Y$.

Vi kender CDF af den diskrete uniforme fordeling:

$$P(Y \ge k) = \frac{k - a + 1}{n} \tag{213}$$

Sæt det hele sammen:

$$P(X \ge Y) = \frac{1}{N+1} \sum_{i=0}^{N} \frac{i-0+1}{N+1} = \frac{1}{N+1} \frac{1}{N+1} \sum_{i=0}^{N} i + 1$$
 (214)

Husk at summen fra 1 til N kan skrives som = (n+1)n/2. I vores tilfælde (n+1+1)(n+1)/2, grundet vi har i+1 i vores sum.

$$P(X \ge Y) = \frac{1}{(N+1)^2} \frac{(N+1)(N+1+1)}{2} = \frac{(N+2)}{2(N+1)}$$
 (215)

Find P(X = Y)

Der er N+1 udfald.

$$P(X = Y, Y = y) = \frac{1}{(1+N)^2}$$
 (216)

Dette er klart tænk på terninger ssh for 1 dobbelt sekser $1/6^2$.

Vi har 1 + N måder at dette kan ske på:

$$P(X=Y)(N+1)\frac{1}{(N+1)^2} = \frac{1}{N+1}$$
 (217)

Find P(Z) hvor $Z \sim max(X, Y)$

Vi ser at:
$$P(Z = 0) = P(X = 0, Y = 0)$$

Og at:
$$P(Z = 1) = P(X = 1, Y = 1) + P(Y = 1, X = 0) + P(X = 0, Y = 1)$$
.

Vi prøver at generaliserer observationen:

Find P(V) hvor $V \sim min(X, Y)$

DROP AT LAVE

Find P(W) hvor $W \sim |X - Y|$

DROP AT LAVE

4.2.3 Opgave 3.14

LAV I KLASSEN

- (X_1, X_2) er en stokastisk vektor
- SE OPLÆG for den simultane fordeling

SSH X_1 er et lige tal

Vi husker relationen mellem marginale, betingede og simultane fordelinger!

$$P(X_1 = k) = \sum_{i=1}^{n} P(X_1 = k, X_2 = x_i)$$
(218)

Vi ser at X_1 skal være et lige tal:

$$P(X_1 \in \mathbf{Lige\ tal}) = P(X_1 = 0) + P(X_1 = 2) + P(X_1 = 6) = 1 - P(X_1 = -1)$$
(219)

$$P(X_1 = -1) = P(X_1 = -1, X_2 = 3)$$
(220)

$$+P(X_1 = -1, X_2 = 1) (221)$$

$$+P(X_1 = -1, X_2 = -2) (222)$$

$$P(X_1 = -1) = 0 + \frac{2}{9} + \frac{1}{9} = \frac{3}{9}$$
 (223)

Vi finder den sandsynlighed vi ønskede fra start:

$$P(X_1 \in \mathbf{Lige\ tal}) = 1 - P(X_1 = -1) = 1 - \frac{3}{9} = \frac{6}{9}$$
 (224)

SSH, X_1X_2 er et ulige tal

Kravet er at produktet af de to stokastiske variable skal være et ulige tal. Dette vil implicere at $X_1 \in \{\mathbf{ulige\ tal}\}, X_2 \in \{\mathbf{ulige\ tal}\}.$

$$P(X_1 X_2 \in \{\text{Ulige tal}\}) = P(X_1 = -1, X_2 = 3)$$
 (225)

$$+P(X_1 = -1, X_2 = 1) (226)$$

$$=\frac{2}{9}\tag{227}$$

SSH for $X_2 > 0$ og $X_1 \ge 0$

$$P(X_2 > 0, X_1 > 0) = P(X_2 = 3, X_1 = 2)$$
 (228)

$$+P(X_2=3,X_1=6) (229)$$

$$+P(X_2=1,X_1=2) (230)$$

$$+P(X_2=1,X_1=6) (231)$$

$$= \frac{1}{9} + \frac{1}{9} + \frac{1}{9} + \frac{4}{27} = \frac{13}{27}$$
 (232)

4.2.4 Opgave 4.5

Lav i klassen

- shh for sikring defekt 0.03
- køber pakke med 100 sikringer

SSH for at i en pakke med 100 sikringer maks 2 er er defekte

Brug sætning 4.1.2

VI lader altså vores antal parameter gå mod uendelig. Vi bruger nu en poisson fordeling!

Vi ser at $n \cdot p = \lambda = 100 \cdot 0.03 = 3$

Vi definerer vores stokastiske variabel $X \sim Poisson(\lambda = 3)$

$$P(X \le 2) = \sum_{i=0}^{2} \frac{\lambda^{i}}{i!} e^{-\lambda} = \sum_{i=0}^{2} \frac{3^{i}}{i!} e^{-3} \approx 0.42$$
 (233)

4.2.5 Opgave 4.6

• En terning kastes indtil den første sekser opnås

Hvad er ssh for at en sekser opnås inden 6 kast.

$$P(X < 6) = 1 - P(X \ge 5) = 1 - (1 - 1/6)^{5+1} = 0.665$$
 (234)

5+1 fordi 0 skal tælles med

Hvad er den største værdi af $i \in \mathbb{N}$ hvor $P(X > i) \ge \frac{1}{2}$

$$P(X > 0) = (1 - 1/6)^{1} = 0.8333$$
 (235)

$$P(X > 1) = (1 - 1/6)^2 = 0.6944 (236)$$

$$P(X > 2) = (1 - 1/6)^3 = 0.5787 (237)$$

$$P(X > 3) = (1 - 1/6)^3 = 0.4822 (238)$$

VI ser at i = 2 er det største!!

4.2.6 Optional (4.14)

- \bullet En stokastisk variabel X
- $X \sim Poisson(\lambda)$

Hvad er $E(2^X)$

 $Z=2^X$. VI har så at

$$p(z) = \frac{\lambda^{2^x}}{2^x!} e^{-\lambda} \tag{239}$$

$$E(Z) = \sum_{i=0}^{\infty} 2^{i} \frac{\lambda^{2^{i}}}{2^{i}!} e^{-\lambda}$$
 (240)

Vi kan trække en fra i nævneren da den bliver ganget på!

$$= \sum_{i=0}^{\infty} \frac{\lambda^{2^{i}}}{(2^{i}-1)!} e^{-\lambda}$$
 (241)

Man trækker et lambda fra tælleren ud foran sumtegnet!

$$= \lambda \sum_{i=0}^{\infty} \frac{\lambda^{2^{i-1}}}{(2^{i}-1)!} e^{-\lambda}$$
 (242)

Hvad er $E((1+X)^{-1})$

4.3 Øvelse 8

Opgaver: 4.4, opgave A, (Opgave H)

4.3.1 Opgave 4.4

- A står ved en lidet trafikkeret vej
- Antal taxaer pr. minut, er poisson fordelt med $\lambda = \frac{1}{30}$

Del 1) Hvad er ssh for A må vente mere end en halv time

Altså poisson fordelingen måler "antal observationer" som vores x. og vores λ som vores parameter. Vi bliver nødt til at gange lambda (det er på minut basis, og vi skal have det på halv time basis) t.

$$Y \sim Poisson(\lambda = 1/30t)$$

$$\lambda = 1/3 * 30$$

$$P(Y=0) = \frac{\lambda^x}{x!}e^{-1} = \frac{1^0}{0!}e^{-1} = 0.36787$$
 (243)

Del 2) Hvad er ssh for at vente 1 1/2 time.

 $\lambda = 1/30 * 90 = 3$

$$P(Y=0) = \frac{3^x}{x!}e^{-3} = \frac{3^0}{0!}e^{-3} = 0.04978$$
 (244)

Del 3) SSh for Y > 0 Taxa er der før 10 minutter

$$\lambda = 1/30 * 10 = 1/3$$

$$P(Y > 0) = 1 - P(Y = 0) = 1 - \frac{(1/3)^0}{0!}e^{-(1/3)} = 0.28346$$
 (245)

Del 4) Vis at ventetiden, afrundet nedad til helt minuttal, er geometrisk fordelt med $p = 1 - e^{1/30}$

Den geometriske fordeling:

Antal forsøg inden succes

$$pdf = (1-p)^k p (246)$$

Først ser vi at:

$$P(Y = y) = P(X_y > 0, X_{y-1} = 0)$$
(247)

Altså ventetiden må være sådan at man ikke har fået taxa i sidste minut, men har i dette minut.

Brug nu at en simultan fordeling kan skrives som en betinget fordeling

$$P(X_u > 0, X_{u-1} = 0) (248)$$

$$=P(X_{\nu}>0\mid X_{\nu-1}=0)P(X_{\nu-1}=0)$$
(249)

$$\stackrel{(*)}{=} (1 - P(X_{y=1} = 0))P(X_{y-1} = 0)$$
(250)

Vi har i (*) brugt at $P(X_y > 0 \mid X_{y-1} = 0)$ Svarer til $P(X_1 > 0)$ som svarer til $1 - P(X_1 = 0)$

Indsæt nødvendige tal:

$$\left(1 - \frac{(1/30)^0}{0!}e^{-1/30}\right) \left(\frac{((t-1)/30)^0}{0!}e^{-(t-1)/30}\right)$$
(251)

Vi ser at: $\frac{(t-1/30)^0}{0!} = \frac{1}{1} = 1$

Hvilket betyder:

$$\left(1 - \frac{(1/30)^0}{0!}e^{-1/30}\right) \left(\frac{((t-1)/30)^0}{0!}e^{-(t-1)/30}\right)$$
(252)

$$= (1 - e^{-1/30}) \left(e^{-(t-1)/30}\right) \tag{253}$$

$$\approx (1 - e^{-1/30}) \left(e^{-1/30 \cdot t} \right) \tag{254}$$

Vi skulle have i den geometriske fordeling: $p=1-e^{-1/30}$

$$(1-p)^k p = (1 - (1 - e^{-1/30}))^t (1 - e^{-1/30})$$
(255)

Vi forkorter

$$(1-p)^k p = e^{-1/30 \cdot t} (1 - e^{-1/30})$$
(256)

Vi har vist udtrykket!

4.3.2 Opgave A

Lav i klassen!!!

Cykelforsikring fortsat!

- udbetaling ved mistet cykel 4000
- ssh for cykel stjålet pr. år: 5%
- Maks en cykel stjålet om året
- forsikring pris 400

Del 1)

10 cyklister tegner forsikring:

$$Y \sim Binomial(n = 10, p = 0.05) \tag{257}$$

Del 2) Udregn Forventet antal stjålne cykler, samt forventet udgift

$$E(Y) = n \cdot p = 10 \cdot 0.05 = 0.5 \tag{258}$$

Forventet udgift:

$$E(Y) \cdot 4000 = 2000 \tag{259}$$

Del 3) SSh for mere end en cykel bliver stjålet

Få folk til at opskrive binomial koefficienter osv.

$$P(Y > 1) = 1 - P(Y = 1) - P(Y = 0) = 0.08613$$
 (260)

Del 4) Antag nu 100 cyklister

$$Z \sim Binomial(n = 100, p = 0.05)$$
 (261)

$$E(Z) = 100 \cdot 0.05 = 5 \tag{262}$$

Forventede indtægter:

$$400 \cdot 100 = 40000 \tag{263}$$

Forventede udgifter:

$$4000 \cdot E(Z) = 4000 \cdot 5 = 20000 \tag{264}$$

Del 5)Ssh for man udgifter overstiger indtægter

Udgifer overstiger indtægter når der er 11, som får stjålet sin cykel:

Med binomial (udregnet på com):

$$P(Z > 10) = 1 - \sum_{i=0}^{10} P(Z = i) = 0.01147$$
 (265)

Med poisson:

 $lambda = 100 \cdot 0.05 = 5$

$$P(Z > 10) = 1 - P(Z \le 10) = 0.013695 \tag{266}$$

Del 6) Antag nu nu n=200, Ssh udgifter over indtægter

Dette sker når der er 21 som får stjålet cyklen

 $lambda = 200 \cdot 0.05 = 10$

 $W \sim Poisson(10)$

$$P(W > 20) = 0.0015882 \tag{267}$$

Del 7)

Klasse diskussion!!!

4.3.3 (Optional) Opgave H

4.4 Øvelse 9

Opgaver: 5.2, 5.3, 5.7, U41.1, U41.2

4.4.1 Opgave 5.2

- X er en kontinuær stok var
- $p(x) = \alpha x^{-(\alpha+1)}$ for $x > 1, \alpha > 0$

Find fordelingsfunktionen for X

Vi ved at p(x) = F'(x) Hvis vi skulle finde sandsynligheden for et udfald ville vi bruge tætheden p(x) lad os sige vi ville finde ssh for at X er i intevallet a til b: da

$$\int_{a}^{b} p(x)dx \tag{268}$$

Fordelingsfunktionen er kendetegnen ved for intervallet $(-\infty, \infty)$:

$$\int_{-\infty}^{x} p(x)dx \tag{269}$$

Vi har dog intervallet $(1, \infty)$

Vi opskriver integralet:

$$\int_{1}^{x} \alpha x^{-(\alpha+1)} \tag{270}$$

$$\left[\frac{\alpha}{-\alpha+1-1}x^{-\alpha+1-1}\right]_{1}^{x} = [-x^{-\alpha}]_{1}^{x} = -x^{-\alpha}+1$$
 (271)

4.4.2 Opgave 5.3

LAV I KLASSEN

fordelingsfunktionen fotr X er givet ved:

$$F(x) = \begin{cases} 0 & \text{for } x \le 0 \\ x/3 & \text{for } 0 < x \le 1 \\ (2x-1)/3 & \text{for } 1 < x \le 2 \\ 1 & \text{for } x > 2 \end{cases}$$

Find de følgende sandsynligheder

$$P(0.5 < X < 1) = F(1) - F(0.5) = \frac{1 - 0.5}{3} = \frac{1}{6}$$
 (272)

Vi kan ignorere punktsandsynligheden da denne er 0 (i forhold til \leq udtryk i oplæg).

$$P(1 \le X < 1.5) = F(1.5) - F(1) = \frac{3-1}{3} - \frac{1}{3} = \frac{1}{3}$$
 (273)

$$P(2/3 < X < 4/3) = F(4/3) - F(2/3) = \frac{2(4/3) - 1}{3} - \frac{2/3}{3}$$
 (274)

$$=\frac{8/3 - \frac{3}{3} - 2/3}{3} = \frac{3/3}{3} = \frac{1}{3} \tag{275}$$

Redegør for kontinuitet

Vi viser kontinuæritet via et lille $\delta > 0$

Først se om: $F(0 + \delta) \to 0$ og $F(0 - \delta) \to 0$ for $\delta \to 0$. Man ser at for x/3 går mod 0, hvis x er tæt på 0. (Trivielt at se 0 går mod 0 for lille x).

Undersøg i en omegn af punktet x=1: $F(x\pm\delta)\to \frac{1}{3}$ for $\delta\to 0$. Det er klart da: $x/3\to \frac{1}{3}$, for $x=1-\delta$ og $(2x-1)/3\to \frac{1}{3}$, for $x=1+\delta$

Undersøg i en omegn af punktet x=2: $F(x\pm\delta)\to 1$ for $\delta\to 0$. man ser at $(2(2-\delta)-3)/3\to 1$ for $\delta\to 0$. (trivilt at 1 går mod 1)

Kontinuitet er vist. Vi noterer at fordelingsfunktionen overholder at $F : \mathbb{R} \mapsto [0,1]$ og at $F(x) \leq F(x+h)$, h > 0. Altså den er defineret på hele den reelle akse, samt at den er monotont voksende!

Find tæthedsfunktionen for X

Vi differentiere de enkelte udtryk og får:

$$p(x) = \begin{cases} 0 & x \le 0\\ \frac{1}{3} & 0 < x \le 1\\ \frac{2}{3} & 1 < x \le 2\\ 0 & x > 2 \end{cases}$$
 (276)

4.4.3 Opgave 5.7

LAV I KLASSEN!

$$p(x) = \beta x^{\beta - 1} \tag{277}$$

• $x \in [0, 1]$

Vis at 5.1.5 (i bogen) har middelværdi $\beta/(\beta+1)$

Vi behøver ikke at teste om middelværdien eksisterer!

Definition på middelværdi!

$$E(X) = \int_{-\infty}^{\infty} x p(x) dx < \infty \tag{278}$$

$$E(X) = \int_{-\infty}^{\infty} x \beta x^{\beta - 1} = \int_{-\infty}^{\infty} \beta x^{\beta}$$
 (279)

Vi ved at x er koncentrerer på intervallet 0 til 1: $x \in (0,1)$

$$E(X) = \int_{-\infty}^{\infty} x \beta x^{\beta - 1} = \int_{-\infty}^{\infty} \beta x^{\beta}$$
 (280)

Vi har her et uendeligt integrale, men x er koncentreret på en mindre mængde. Vi bruger at $P(\emptyset) = 0$ og at vi må splitte integralerne op (indskudssætningen):

$$\int_{a}^{c} f(x)dx = \int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx, \qquad \text{(Indskudssætningen)} \qquad (281)$$

Vi ser at integralerne i intervallet $(-\infty, 0]$ og $]1, \infty)$ er lig 0.

$$E(X)\int_0^1 \beta x^{\beta} = \left[\frac{\beta}{\beta+1} x^{\beta+1}\right]_0^1 = \frac{\beta}{\beta+1}$$
 (282)

Vi finder variansen

$$Var(X) = E(X^2) - E(X)^2$$
 (283)

$$E(X^{2}) = \int_{-\infty}^{\infty} x^{2} \beta x^{\beta - 1} = \int_{-\infty}^{\infty} \beta x^{\beta + 1}$$
 (284)

Analogt med før

$$E(X^2) = \left[\frac{\beta}{\beta + 2}x^{\beta + 2}\right]_0^1 = \frac{\beta}{\beta + 2}$$
(285)

Variansen findex:

$$Var(X) = \frac{\beta}{\beta + 2} - \left(\frac{\beta}{\beta + 1}\right)^2 \tag{286}$$

kan evt. forkortes

4.4.4 Opgave U41.1

- $X, Y \sim Uni(0, 1)$
- den uniforme fordeling er kontinuær

$$E(X) = E(Y) = \frac{1}{2}(a+b) = \frac{1}{2}(1+0) = \frac{1}{2}$$
 (287)

Brug sætning 6.4.2 - man kan splitte forventinger op.

find E(6X + 32Y)

$$E(6X + 32Y) = \frac{6+32}{2} = 19 \tag{288}$$

Find $\mathbf{E}(X^3)$ og $\mathbf{E}(X^3 + Y^3)$

$$E(X^3) = \int_0^1 x^3 p(x) = \left[\frac{1}{4}x^4\right]_0^1 = \frac{1}{4}$$
 (289)

Vi har derfor selvfølgelig $\mathrm{E}(X^3+Y^3)=2\cdot \frac{1}{4}=\frac{1}{2}$

Find
$$Var(X) = E(X^2) - [E(X)]^2$$

Vi ved at
$$E(X)^2 = (\frac{1}{2})^2 = \frac{1}{4}$$

$$E(X^{2}) = \int_{0}^{1} x^{2} p(X) = \left[\frac{1}{3}x^{3}\right]_{0}^{1} = \frac{1}{3}$$
 (290)

Varians:

$$Var(X) = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}$$
 (291)

Find tæthed for $Z = X - \frac{1}{2}$

$$p(z) = 1, \quad z \in [-0.5, 0.5]$$
 (292)

Find E(Z)

Brug sætning 5.2.5. lineær transformation.

$$E(Z) = E\left(X - \frac{1}{2}\right) = E(X) - \frac{1}{2} = 0$$
 (293)

Find F(Z)

$$F(Z) = z - \frac{1}{2}, \qquad z \in [-0.5, 0.5]$$
 (294)

4.4.5 Opgave U41.2

- \bullet stokastisk variabel X
- $p(x) = \lambda \exp(-\lambda x)$

Del 1 - A) Opskriv fordelingsfunktionen for X og vis at Y = F(X) er ligefordelt på [0,1]

$$F(x) = 1 - \exp(-\lambda x) \tag{295}$$

Vis at Y = F(X) er ligefordelt på [0, 1]

$$P(Y \le y) = P(F(X) \le y) = P(X \le F^{-1}(y)) = P(X \le x) = F(X) = y$$
(296)

$$x = F^{-1}(y) = \ln\left(\frac{1}{1-\lambda}\right)/\lambda \tag{297}$$

t(X) = F(X) = y bruges i sidste led af ligningen!

Vi ser at $P(Y \leq y) = y$ Hvor vi ved at y er fordelingsfunktionen for en uniform fordeling!

Del 2)

4.5 Øvelse 10

12/10/2018, Opgaver: 5.1, 5.5, 5.13, 5.15, U41.3 og U41.4

4.5.1 Opgave 5.1

- $X \sim exponential(\lambda)$
- pdf: $\lambda e^{-\lambda x}$

Find P(X > x), for alle x > 0

Vi ved at fordelingsfunktion F(x) svarer til P(X < x) hvilket betyder at P(X > x) = 1 - F(x).

Kommentar: vi bruger lille x i fordelingsfunktionen. hvorfor? fordi det er en funktion der tager et tal (en realisation) af X

Vi kan se på wikipedia at exponential fordelingens fordelingsfunktionen CDF er:

$$F(x) = 1 - e^{\lambda x} \tag{298}$$

Så vi har at:

$$P(X > x) = 1 - (1 - e^{\lambda x}) = e^{\lambda x}$$
 (299)

SSH P(1 < X < 2), hvor $\lambda = 1$

brug (hvor lambda er 1):

$$F(x) = 1 - e^{1x} (300)$$

$$P(1 < X < 2) = F(2) - F(1) = (1 - e^{2}) - (1 - e^{1}) = 0.2325$$
 (301)

4.5.2 Opgave 5.5

Lav i klassen!

- Laplace-fordelingen
- ullet defineret på hele $\mathbb R$
- funktionsforskrift:

$$f(x) = \frac{1}{2}e^{-|x|}, \qquad x \in \mathbb{R}$$
(302)

Find fordelingsfunktionen F

Fordelingsfunktionen er: $F(k) = \int_{-\infty}^{k} f(x)dx$

Vi ser, vi må skære integralet op i to dele på grund af normerings operatoren på x.

Først x < 0

$$F(a) = \int_{-\infty}^{a} \frac{1}{2}e^{x} = \left[\frac{1}{2}e^{x} + k\right]_{-\infty}^{a} = \left(\frac{1}{2}e^{a} + k\right) - \left(\frac{1}{2}e^{-\infty} + k\right) = \frac{1}{2}e^{a}$$
(303)

Nu $x \ge 0$

$$F(a) = \int_{-\infty}^{0} \frac{1}{2}e^{x} + \int_{0}^{a} \frac{1}{2}e^{-x} = \frac{1}{2} + \left[\frac{1}{-1}\frac{1}{2}e^{-x}\right]_{0}^{a} = \frac{1}{2} + \left[-\frac{1}{2}e^{-x}\right]_{0}^{a}$$
(304)

$$F(a) = \frac{1}{2} + \left(-\frac{1}{2}e^{-a}\right) - \left(-\frac{1}{2}e^{0}\right) = \frac{1}{2} + \frac{1}{2} - \frac{1}{2}e^{-a} = 1 - \frac{1}{2}e^{-a}$$
 (305)

Vi kan opskrive fordelingsfunktionen!

$$F(x) = \begin{cases} \frac{1}{2}e^x, & x < 0\\ 1 - \frac{1}{2}e^{-x}, & x \ge 0 \end{cases}$$
 (306)

Del 2) Find middelværdi

Vi behøver ikke at vise middelværdi og varians eksisterer!

$$E(X) = \int_{-\infty}^{\infty} x p(x) dx$$
 (307)

Vi splitter intergralet op i intervallerne $(-\infty, 0)$ og $[0, \infty)$:

(man har her brugt reglen for partiel integration - kig Thomas note/formelsamling) f(x) = exp(x), g(x) = x:

for integralet i intervallet $(-\infty, 0)$:

$$\int \frac{1}{2}xe^x dx = \frac{1}{2}(x-1)e^x \tag{308}$$

for integralet i intervallet $[0, \infty)$

$$\int \frac{1}{2}xe^{-x}dx = -\frac{1}{2}(x+1)e^{-x} \tag{309}$$

vi ved at:

$$\int_{-\infty}^{\infty} x \frac{1}{2} e^{-|x|} dx = \int_{-\infty}^{0} \frac{1}{2} x e^{x} dx + \int_{0}^{\infty} \frac{1}{2} x e^{-x} dx$$
 (310)

Vi sætter integralernes grænser ind i stamfunktioner udledt ovenfor:

$$\int_{-\infty}^{0} \frac{1}{2} x e^{x} dx = \left(\frac{1}{2} (0 - 1) e^{0}\right) - \left(\frac{1}{2} (-\infty - 1) e^{-\infty}\right) = -\frac{1}{2} - 0 = -\frac{1}{2}$$
 (311)

$$\int_0^\infty \frac{1}{2} x e^{-x} dx = \left(-\frac{1}{2} (\infty + 1) e^{-\infty} \right) - \left(-\frac{1}{2} (0+1) e^0 \right) = 0 + \frac{1}{2} = \frac{1}{2} \quad (312)$$

Så vi har at:

$$E(X) = -\frac{1}{2} + \frac{1}{2} = 0 \tag{313}$$

Find variansen Var(X)

VI ved at E(X) = 0 det betyder at $Var(X) = E(X^2)$. Husk på formlen for varians.

$$Var(X) = E(X^2) - E(X)^2 = E(X^2) = \int_{-\infty}^{\infty} x^2 p(x) dx$$
 (314)

vi deler igen integralet op. og bruger reglerne for partiel integration. Vi ender med at få integralet fra før som et del element.

I intervallet $(-\infty, 0)$:

$$\frac{1}{2} \int_{-\infty}^{0} x^2 e^x dx = \left[\left(\frac{1}{2} x^2 - x + 1 \right) e^x \right]_{-\infty}^{0} = 1 - 0 = 1$$
 (315)

I intervallet $[0, \infty)$:

$$\frac{1}{2} \int_0^\infty x^2 e^{-x} dx = \left[-\left(\frac{1}{2}x^2 + x + 1\right) e^{-x} \right]_0^\infty = 0 - (-1) = 1$$
 (316)

Vi har at:

$$Var(X) = \frac{1}{2} \int_{-\infty}^{0} x^{2} e^{x} dx + \frac{1}{2} \int_{0}^{\infty} x^{2} e^{-x} dx = 1 + 1 = 2$$
 (317)

4.5.3 Opgave 5.13

LAV I KLASSEN

- X er en kontinuær stokastisk variabel i intervallet (a,b)
- X har en kontinuer sandsynlighedstæthed p på (a, b)

Vi bruger sætning 5.4.1

$$q(y) = \begin{cases} p(t^{-1}(y)) |\frac{d}{dy} t^{-1}(y)|, & y \in (v, h) \\ 0, & y \notin (v, h) \end{cases}$$
(318)

hvor $v = \inf t(I), h = \sup t(I)$ og I er intervallet (a, b)

Til de kommende opgaver kan der siges generalt at: $x=t^{-1}(y)$

Og der skippes ofte (y) fra notation, således at: $\frac{d}{dy}t^{-1}(y)$ bliver til $\frac{d}{dy}t^{-1}$

Del 1) Find tætheden for exp(X)

vi har vores transformation givet som $t = exp(\cdot)$ som implicerer at $t^{-1} = ln(\cdot)$.

Vi finder den afledte af vores inverse transformation

$$\frac{d}{dy}t^{-1}(y) = \frac{d}{dy}ln(y) = \frac{1}{y}$$
(319)

Vi opskriver:

$$q(y) = \begin{cases} p(\ln(y)) \cdot \left| \frac{1}{y} \right|, & y \in (e^a, e^b) \\ 0, & \text{ellers} \end{cases}$$
 (320)

Man ser at faktisk $y \in \mathbb{R}_+ \forall y \in Y$, hvilket betyder, man ikke ville behøve at lave normeringstegnet

Antag resten af opgaven at a > 0

Del 2) Find tætheden for \sqrt{X}

Vi finder transformationens inverse $t^{-1} = y^2$. og herfra den afledte: $\frac{d}{dy}t^{-1} = 2y$.

$$q(y) = \begin{cases} p(y^2) \cdot 2y, & y \in (\sqrt{a}, \sqrt{b}) \\ 0, & \text{ellers} \end{cases}$$
 (321)

Vi bemærker at y ikke kan antage værdier under 0, grundet a > 0.

Del 3) Find tætheden for $\frac{1}{X}$

Vi finder transformationens inverse $t^{-1} = \frac{1}{u}$

den inverse transformations afledte: $\frac{d}{dy}t^{-1} = -\frac{1}{y^2}$. Det huskes at man tager den absolutte værdi \implies man fjerner minuset

$$q(y) = \begin{cases} p\left(\frac{1}{y}\right) \frac{1}{y^2} & y \in \left(\frac{1}{a}, \frac{1}{b}\right) \\ 0, & \text{ellers} \end{cases}$$
 (322)

Del 4) Find tætheden for X^2

Vi finder den inverse transformation: $t^{-1} = \sqrt{y}$

Den afledte af den inverse transformation: $\frac{d}{dy}t^{-1}=\frac{1}{2}y^{-1/2}$

$$q(y) = \begin{cases} p(\sqrt{y})\frac{1}{2}y^{-1/2}, & (a^2, b^2) \\ 0, & \text{ellers} \end{cases}$$
 (323)

4.5.4 Opgave 5.15

- $X \sim N(\mu, \sigma^2)$
- $Y = \exp(X)$

Del 1) Find sandsynlighedstætheden for Y

tæthedsfunktionen for normal fordlingen:

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$
 (324)

Vi finder den inverse transformation: $x = t^{-1}(y) = ln(y)$

Den inverse transformations afled te mht y: $\frac{d}{dy}t^{-1}(y) = \frac{1}{y}$

læg mærke til ln(y) ind i udtrykket

$$q(y) = \begin{cases} \frac{1}{\sqrt{2\pi\sigma^2}} exp\left(-\frac{(\ln(y)-\mu)^2}{2\sigma^2}\right) \cdot \frac{1}{y}, & y \in (0,\infty) \\ 0, & \text{ellers} \end{cases}$$
(325)

Del 2) Vis at $Y = \beta X$ er scala invariant

Vi finder den inverse transformation $x = t^{-1}(\beta y) = \ln(\beta y)$. Vi husker at: $\ln(\beta y) = \ln(\beta) + \ln(y)$

Den inverse transformations afledte mht y:

$$\frac{d}{dy}t^{-1}(\beta y) = \frac{d}{dy}ln(y) + ln(\beta) = \frac{1}{y}$$
(326)

Vi indsætter de fundne værdier

$$q(y) = \begin{cases} \frac{1}{\sqrt{2\pi\sigma^2}} exp\left(-\frac{(\ln(\beta) + \ln(y) - \mu)^2}{2\sigma^2}\right) \cdot \frac{1}{y}, & y \in (0, \infty) \\ 0, & \text{ellers} \end{cases}$$
(327)

Vi ser den transformerede fordeling stadig er logaritmisk normalfordelt!

Del 3

Vi husker en detalje: $\int_{-\infty}^{\infty} p(x)dx = 1$. Dette betyder, at hvis vi kan skabe det ovenstående integrale, og få det resterende ud foran integralet, så har vi fundet resultatet!

Husk q(y) er 0 når ikke $y \in (0, \infty)$

$$\int_{-\infty}^{\infty} q(y)dy = \int_{0}^{\infty} q(y)dy \tag{328}$$

$$E(Y) = \int_0^\infty yq(y)dy \tag{329}$$

$$E(Y) = \int_0^\infty y \frac{1}{\sqrt{2\pi\sigma^2}} exp\left(-\frac{(\ln(y) - \mu)^2}{2\sigma^2}\right) \cdot \frac{1}{y}$$
 (330)

Vi ser at ygår ud med $\frac{1}{y}$ Vi indsætter $\mu=0, \sigma=1$ som angivet i opgaveteksten.

$$E(Y) = \int_0^\infty \frac{1}{\sqrt{2\pi}} exp\left(-\frac{(\ln(y))^2}{2}\right)$$
 (331)

Det bagerste udtryk manipuleres:

$$exp\left(-\frac{\ln(y)^2}{2}\right) = exp\left(-\frac{\ln(y)\ln(y)}{2}\right) = exp\left(-\frac{1}{2}\right)exp\left(\ln(y)\ln(y)\right)$$
(332)

Går i stå her!

4.5.5 Opgave U41.3

• X er ligefordelt på (0,1).

Del 1) $S = \mathbb{1}_{(0,0.25)}$ **Find** P(S = 1)

$$P(X \in (0, 0.25)) = F(0.25) = \frac{1}{4}$$
(333)

Del 2) $S = \mathbb{1}_{(0,p)}$. Find P(S = 1)

$$P(X \in (0, p)) = F(p) = p \tag{334}$$

Del 3) Beskriv hvordan du kan simulere en trækning fra en stokastisk variabel Y

$$P(Y=1) = \frac{1}{9} \text{ og } P(Y=2) = \frac{8}{9}$$

Vi ved at fordelingsfunktionen $F: \mathbb{R} \mapsto [0,1]$. Det betyder at den inverse $F^{-1}: [0,1] \mapsto \mathbb{R}$. Overvej dette.

Vi kan altså sample fra intervallet [0, 1] og mappe det til en real værdi gennem den inverse fordelingsfunktion:

Vi har implicit givet fordelingsfunktionen ovenfor:

$$F(y) = \begin{cases} 0, & y < 1\\ \frac{1}{9}, & 1 \le y < 2\\ 1, & 2 \le y \end{cases}$$
 (335)

Tegn fordelingsfunktionen og den inverse fordelingsfunktion

Det betyder at vi kunne sample således:

$$Y = 1 \text{ når } x \in \left(0, \frac{1}{9}\right).$$

$$Y = 2 \text{ når } x \in \left(\frac{1}{9}, 1\right)$$

4.5.6 Opgave U41.4

•
$$X \sim N(\mu, \sigma^2)$$

Del 1) Hvad er fordelingen af $Y = (X - \mu)/\sigma$

Denne er let, da dette bare er en tilbage skalering af normalfordelingen! Dvs. en standard normalfordeling:

$$Y \sim N(0,1) \tag{336}$$

Del 2) Hvad er fordelingen af $Z = (X - \mu)^2/\sigma^2$

Vi ser dette er:

$$Z = \frac{(X - \mu)^2}{\sigma^2} = \left(\frac{X - \mu}{\sigma}\right)^2 \tag{337}$$

Dette svarer altså til den kvadrerede standard normalfordeling: χ^2 -fordelingen.

4.6 Øvelse 11

22/10/2018, opgaver: U43.1.1, U43.1.2, U43.1.3 U43.1.4

4.6.1 U43.1.1

- \bullet X, Y er ligefordelt på A
- $A = [0,1] \times [0,1]$
- $p(x,y) = 1_A(x,y)$

Tegn 2-D sketch af definitionsmængden

Del 1) Udregn P(X < 0.1, Y < 0.6)

$$P(X < 0.1, Y < 0.6) = \int_0^{0.6} \int_0^{0.1} \mathbb{1}_A(x, y) dx dy$$
 (338)

$$= \int_0^{0.6} [x]_0^{0.1} \mathbb{1}_A(y) dy \tag{339}$$

$$= [x]_0^{0.1} [y]_0^{0.6} (340)$$

$$= (0.1 - 0) \cdot (0.6 - 0) \tag{341}$$

$$= 0.1 \cdot 0.6 = 0.06 \tag{342}$$

Del 2) Udregn P(0.25 < X < 0.75, 0.4 < Y < 0.6)

Analogt med før - opskrivningen er ikke nødvendig:

$$P(0.25 < X < 0.75, 0.4 < Y < 0.6) = 0.5 \cdot 0.2 = 0.1$$
 (343)

Del 3) Udregn P(X < 0.1)

Her bruges at man kan integrere irrelevante variable ud: sætning 6.1.3

$$q(x) = \int_{\mathbb{R}} p(x, y) dy \tag{344}$$

dvs:

$$q(x) = \mathbb{1}_{[1,0]}(x) \tag{345}$$

Vi finder nu det ønskede udtryk

$$P(X < 0.1) = \int_0^{0.1} \mathbb{1}_{[0,1]}(x) = [x]_0^{0.1} = 0.1$$
 (346)

Del 4) Find den marginale fordeling for X

Igen bruges sætning 6.1.3

$$q(x) = \int_{\mathbb{R}} p(x, y) dy \tag{347}$$

dvs:

$$q(x) = \mathbb{1}_{[0,1]}(x) \tag{348}$$

Altså vi svarede indirekte på det problem før!

 $p_x(x)=\mathbbm{1}_{[0,1]}(x)$ og lige så $p_y(y)=\mathbbm{1}_{[0,1]}(y)$ Vi ser altså nu at $p(x,y)=p_x(x)\cdot p_y(y)$

U43.1.2

- \bullet X, Y er uafhængige
- $\bullet~X,Y$ er ligfordelte på intervallet [0,1]

•
$$Y* = 2Y$$

Find E(Y*), V(Y*)

Brug sætning **6.3.2** som viser at hvis $X \perp\!\!\!\perp Y \implies X \perp\!\!\!\perp \phi(Y)$

Vi har uafhængighed hvilket implicerer:

$$p(x, y*) = p(x)p(y*)$$
 (349)

Nu integreres X ud:

$$p(y*) = p(y*) \int_{\mathbb{R}} p(x)dx = p(y*)$$
 (350)

Vi finder den forventede værdi:

2 er den øvre grænse, 0 er den nedre grænse for Y.

$$E(Y*) = 2 \cdot E(Y) = 2 \cdot 0.5 = 1$$
 (351)

Variansen findes ved: $Var(aX) = a^2Var(X)$.

$$Var(Y) = \frac{1}{12}(0-1)^2 = \frac{1}{12}$$
 (352)

$$Var(Y^*) = 2^2 Var(Y) = 4 \cdot \frac{1}{12} = \frac{1}{3}$$
 (353)

Del 2) Tætheden for Y*

Tætheden er:

tætheden for en uniform (kontinuær) distribution er: $p(x) = \frac{1}{b-a} \mathbb{1}_{x \in [a,b]}(x)$

Vi bruger dette:

$$p(y*) = \frac{1}{2-0} \mathbb{1}_{x \in [0,2]}(y*)$$
(354)

Del 3) Z = X + Y* Find tætheden for Z, q(z)

Vi bruger korollar 6.3.2 (få en studerende til at læse op).

$$q(z) = \int_{-\infty}^{\infty} p_1(x)p_2(z-x)dx \tag{355}$$

$$p_x(x)p_{y*}(z-x) = \mathbb{1}_{[0,1]\times[0,2]}\frac{1}{2}(x)(z-x) = \frac{1}{2}(xz-x^2)$$
 (356)

Nu integreres denne:

$$q(z) = \int_{\mathbb{R}} \frac{1}{2} (xz - x^2) dx$$
 (357)

$$=\frac{1}{2}\int_{\mathbb{R}}(xz-x^2)dx\tag{358}$$

$$= \left[\frac{1}{2}\frac{1}{2}x^2z - \frac{1}{2}\frac{1}{3}x^3\right]_0^1 = \frac{1}{4}z - \frac{1}{6}$$
 (359)

NOGET ER GALT

4.6.2 U43.1.3

- $X, Y \in [5, 10] \times [3, 7]$
- $p(x,y) = \frac{1}{20} \mathbb{1}_{[5,10] \times [3,7]}(x,y)$

Skitser definition mængden.

Del 1) Forklar hvorfor p(x,y) er en tæthedsfunktion

notér at $(10-5) \times (7-3) = 20$, således at den samlede areal under kurven er 1.

Find $P(6 \le X \le 10, 4 \le Y \le 6)$

$$P(6 \le X \le 10, 4 \le Y \le 6) = \int_{6}^{10} \int_{4}^{6} \frac{1}{20} \mathbb{1}_{[5,10] \times [3,7]}(x,y) dy dx$$
 (360)

$$= \frac{1}{20} \int_{6}^{10} \int_{4}^{6} \mathbb{1}_{[5,10] \times [3,7]}(x,y) dy dx \qquad (361)$$

$$= \frac{1}{20} \int_{6}^{10} \mathbb{1}_{[5,10]}(x) [y]_{4}^{6} dx \tag{362}$$

$$= \frac{1}{20} \int_{6}^{10} \mathbb{1}_{[5,10]}(x)(6-4)dx \tag{363}$$

$$= \frac{2}{20} \int_{6}^{10} \mathbb{1}_{[5,10]}(x) dx \tag{364}$$

$$=\frac{2}{20}\left[x\right]_{6}^{10}\tag{365}$$

$$=\frac{2}{20}(10-6)=\frac{8}{20}\tag{366}$$

Del 3) Find de marginale fordelinger

$$p(x) = \frac{1}{20} \int_{3}^{7} \mathbb{1}_{[5,10] \times [3,7]}(x,y) dy = \frac{4}{20} \mathbb{1}_{[5,10]}(x,y)$$
 (367)

Omvendt for Y:

$$p(y) = \frac{5}{20} \mathbb{1}_{[3,7]}(x,y) \tag{368}$$

Del 4) Find E(X)

For en ligefordeling har man middelværdi ved (a og b er enderne):

$$E(X) = \frac{a+b}{2} \tag{369}$$

Vi bruger dette

$$E(X) = \frac{5+10}{2} = 7.5 \tag{370}$$

4.6.3 Opgave U43.1.4

- $X, Y \in [0, \infty)$
- $p(x,y) = 6 \exp(-2x 3y)$

Praktisk at vide:

$$\int \exp(-bx)dx = -\frac{\exp(-bx)}{b} \tag{371}$$

 $\mathbf{Del}\ \mathbf{1-a)}\ \mathbf{find}\ P(X\leq 2,Y\leq 4)$

$$P(X \le 2, Y \le 4) = \int_0^2 \int_0^4 6 \exp(-2x - 3y) dy dx \tag{372}$$

$$= \int_0^2 \int_0^4 6 \exp(-2x) \exp(-3y) dy dx \tag{373}$$

$$= 6 \int_0^2 \exp(-2x) \left(\int_0^4 \exp(-3y) dy \right) dx$$
 (374)

$$= 6 \int_0^2 \exp(-2x) \left(\left[-\frac{\exp(-3y)}{3} \right]_0^4 \right) dx \tag{375}$$

Vi løser det indre problem:

$$\left[-\frac{\exp(-3y)}{3} \right]_0^4 = \left(-\frac{\exp(-12)}{3} \right) - \left(-\frac{1}{3} \right) \tag{376}$$

$$=\frac{1}{3} + \frac{\exp(-12)}{3} \tag{377}$$

$$=\frac{1-\exp(-12)}{3}\tag{378}$$

Vi indsætter dette!

$$6\int_0^2 \exp(-2x) \left(\frac{1 - \exp(-12)}{3}\right) dx = 6\left(\frac{1 - \exp(-12)}{3}\right) \int_0^2 \exp(-2x) dx$$

$$(379)$$

$$= 6\left(\frac{1 - \exp(-12)}{3}\right) \left[-\frac{\exp(-2x)}{2}\right]_0^2$$

$$(380)$$

Vi udregner det inderste:

$$\left[-\frac{\exp(-2x)}{2} \right]_0^2 = \left(-\frac{\exp(-2\cdot 2)}{2} \right) - \left(-\frac{1}{2} \right) \tag{381}$$

$$=\frac{1}{2} - \frac{\exp(-4)}{2} \tag{382}$$

$$=\frac{1-\exp(-4)}{2}$$
 (383)

Dette indsættes:

$$6\left(\frac{1-\exp(-12)}{3}\right)\left(\frac{1-\exp(-4)}{2}\right) = (1-\exp(-12))(1-\exp(-4))$$
(384)

Del 1 - b) find $P(X > 1, Y \le 3)$

Lav i klassen! Efter samme opskrift som ovenfor:

Resultat:

$$P(X > 1, Y \le 3) = \exp(-2)(1 - \exp(9)) \tag{385}$$

Find de marginale fordelinger $p_y(y), p_x(x)$

Man integrere den ene variabel ud: dvs, integrer y ud, hvis man ønsker at finde $p_x(x)$, og vice versa.

$$p_y(y) = \int_{\mathbb{R}} p(x, y) dx = \int_{\mathbb{R}} 6 \exp(-2x - 3y) dx$$
 (386)

$$=6\exp(-3y)\int_{\mathbb{R}}\exp(-2x)dx\tag{387}$$

$$=6\exp(-3y)\cdot\frac{1}{2}\tag{388}$$

$$=3\exp(-3y)\tag{389}$$

Hvor man har udnyttet at $\int_{\mathbb{R}} \exp(-2x) dx = \frac{1}{2}$

Lad klassen lave anden halvdel!

Resultatet er analogt for Y, bare hvor

$$p_x(x) = \int_{\mathbb{R}} p(x, y) dy = \frac{1}{3} \cdot 6 \exp(-2x) = 2 \exp(-2x)$$
 (390)

Del 3) Find fordelingsfunktionen for X

Jeg udskifter $x \mod a$ for ikke at gøre notationen forvirrende!

$$F(a) \int_0^a p(x)dx = \int_0^a 2\exp(-2x)dx$$
 (391)

$$=2\left[-\frac{-\exp(-2x)}{2}\right]_0^a\tag{392}$$

$$= 2(1) - 2\left(-\frac{\exp(-2a)}{2}\right) \tag{393}$$

$$=1-\exp(-2a)\tag{394}$$

Dette indsættes:

$$F(x) = 1 - \exp(-2x) \tag{395}$$

Medianen findes

$$0.5 = 1 - \exp(-2x) \Leftrightarrow 0.5 = \exp(-2x)$$
 (396)

$$\Leftrightarrow ln(0.5) = -2x \tag{397}$$

$$\Leftrightarrow -\frac{\ln(0.5)}{2} = x \tag{398}$$

Del 4) Vis uafhængighed

Vi ser at p(x)p(y) = p(x,y) - Dette er sætning **6.2.1**

$$(2\exp(-2x))(3\exp(-3y)) = 6\exp(-2x - 3y) \tag{399}$$

4.7 Øvelse 12

26/10/2018, opgaver: U43.2.1, U43.2.2, U43.2.3, U43.2.4, U43.2.5 fra bogen: 6.4, 6.21

4.7.1 U43.2.1

- $A = \{x, y \mid x^2 + y^2 < 1\}$
- $p(x,y) = \frac{1}{\pi} \mathbb{1}_A(x,y)$

Del 1) Tegn p(x,y)

- Tegn på tavlen en tredimensionel enhedscirkel. Højden: $\frac{1}{\pi}\approx\frac{1}{3}$

Del 2) Find den marginale tæthed for X

For at finde den marginale tæthed skal man integrere Y ud af udtrykket p(x,y)

Først noteres at:

$$X^2 + y^2 \le 1 \Leftrightarrow y \le \sqrt{1 - x^2} \tag{400}$$

$$p_X(x) = \int_{\mathbb{R}} \frac{1}{\pi} \mathbb{1}_A(x, y) dy \tag{401}$$

$$=2\frac{1}{\pi} \int_{0}^{\sqrt{1-x^2}} \mathbb{1}_A(x,y) dy \tag{402}$$

$$=2\frac{1}{\pi}\left(\left(\sqrt{1-x^2}\right) - (0)\right) \tag{403}$$

$$=\frac{2\sqrt{1-x^2}}{\pi}\tag{404}$$

2-tallet kommer fra at y både kunne have været positivt og negativt!!!

Del 2) Find den marginale tæthed

Kig på github!

4.7.2 U43.2.2

- $A = \{x, y \mid x \in [1, 2], y \in [1, 2]\}$
- $p(x,y) = \mathbb{1}_A p(x,y)$

Del 1) Tegn p(x,y)

Gør på tavlen. 3-dimensionel tegning.

Del 2) Find de marginale tætheder p_Y, p_X

$$p_X(x) = \int_{\mathbb{R}} \mathbb{1}_A(x, y) dy = \int_1^2 \mathbb{1}_A(x, y) dy = \mathbb{1}_{[1, 2]}(x) \int_1^2 \mathbb{1}_A(y) dy = \mathbb{1}_{[1, 2]}(x)$$
(405)

Analogt for $p_Y(y) =$

$$p_Y(y) = \mathbb{1}_{[1,2]}(y) \tag{406}$$

Del 3) Definér Z = X + Y. Find $\mathbf{E}(Z), \mathbf{Var}(Z)$

Vi ser at $X \perp \!\!\! \perp Y$

Det implicerer at:

$$E(Z) = E(X) + E(Y) = \frac{3}{2} + \frac{3}{2} = 3$$
 (407)

Hvor man har udnyttet at $E(X) = E(Y) = \frac{a+b}{2} = \frac{1+2}{2} = \frac{3}{2}$. Man husker at $\frac{a+b}{2}$ er middelværdien for den uniforme fordeling!

Variansen findes:

VI husker de er uafhængige hvilket gør vi kan sige - Fundet på wikipedia - generelt er wikipedia bedre til egenskaber end bogen - bogen er meget rodet opbygget:

$$Var(Z) = Var(X) + Var(Y) = \frac{1}{12} + \frac{1}{12} = \frac{1}{6}$$
 (408)

Vi finder variansen af X:

$$Var(X) = \frac{1}{12}(a-b)^2 = \frac{1}{12}$$
(409)

Find tætheden q(z) for Z

Vi bruger Korollar 6.3.2

$$p(x, x - z) = 1(1 \le x \le 2)1(1 \le z - x \le 2) \tag{410}$$

$$= 1(2 \le z \le 3)1(1 \le x \le z - 1) \tag{411}$$

$$+1(3 \le z \le 4)1(z - 2 \le x \le 2) \tag{412}$$

Kig github for illustration!

Vi bruger dette:

$$q(z) = \int_{\mathbb{R}} \mathbb{1}(2 \le z \le 3) \mathbb{1}(1 \le x \le z - 1) + \mathbb{1}(3 \le z \le 4) \mathbb{1}(z - 2 \le x \le 2) dx$$

$$= \int_{\mathbb{R}} \mathbb{1}(2 \le z \le 3) \mathbb{1}(1 \le x \le z - 1) dx + \int_{\mathbb{R}} \mathbb{1}(3 \le z \le 4) \mathbb{1}(z - 2 \le x \le 2) dx$$

$$= \mathbb{1}(2 \le z \le 3) \int_{1}^{z-1} \mathbb{1} dx + \mathbb{1}(3 \le z \le 4) \int_{z-2}^{2} \mathbb{1} dx$$

$$(413)$$

$$= \mathbb{1}(2 \le z \le 3) \int_{1}^{z-1} \mathbb{1} dx + \mathbb{1}(3 \le z \le 4) \int_{z-2}^{2} \mathbb{1} dx$$

$$(415)$$

Indsætter i stamfunktionen giver:

$$q(z) = \mathbb{1}(2 \le z \le 3)(z - 2) + \mathbb{1}(3 \le z \le 4)(4 - z) \tag{416}$$

del 4) Benyt q(z) til at udregne E(z)

$$\int_{\mathbb{R}} zq(z)dz = \int_{\mathbb{R}} \mathbb{1}(2 \le z \le 3)(z^2 - 2z) + \mathbb{1}(3 \le z \le 4)(4z - z^2)dz \quad (417)$$

$$= \int_{2}^{3} (z^{2} - 2z)dz + \int_{3}^{4} (4z - z^{2})dz$$
 (418)

$$= \left[\frac{1}{3}z^3 - z^2\right]_2^3 + \left[\frac{1}{2}z^2 - \frac{1}{3}z^3\right]_3^4 \tag{419}$$

$$=3 \tag{420}$$

Del 5) Udregn Cov(X, Z)

$$Cov(X, Z) = Cov(X, X + Y)$$
(421)

$$= \operatorname{Cov}(X, X) + \operatorname{Cov}(X, Y) \tag{422}$$

$$=\operatorname{Var}(X) = \frac{1}{12} \tag{423}$$

Vi husker at X, Y er uafhængige

Vi husker at variansen af X er fundet tidligere

4.7.3 U43.2.3

- $p_X(x) = \exp(-x)$
- $p_Y(y) = \exp(-y)$
- \bullet $X \perp \!\!\! \perp Y$
- X, Y er defineret på \mathbb{R}_+

Del 1) Find tætheden p(x,y)

Grundet uafhængighed mellem X, Y ved vi at: $p(x, y) = p_X(x)p_Y(y)$

Vi bruger dette:

$$p(x,y) = \exp(-x)\exp(-y) \tag{424}$$

Del 2) find tætheden for Z = X + Y

Vi gør som tidligere:

$$p(x, z - x) = 1(0 < x < z - x) \exp(-x) \exp(-(z - x))$$
(425)

$$= 1(0 < x < z - x) \exp(-x) \exp(x) \exp(-z)$$
 (426)

$$= 1(0 < x < z - x) \exp(-z) \tag{427}$$

udtrykket ·1 er kun for at understrege der altid står 1.

$$q(z) = \int_0^z \exp(-z) dx = \exp(-z) \int_0^z \mathbb{1} dx = z \exp(-z)$$
 (428)

Del 3) Find tætheden for Z = X - Y

Vi bruger korollar 6.3.2 og indser at: $Z = X - Y \implies Y = X - Z$

$$p(x, x - z) = \mathbb{1}(0 < z < x) \exp(-x) \exp(-(x - z))$$

$$= \mathbb{1}(0 < z < x) \exp(-2x) \exp(-z)$$

$$(429)$$

$$(430)$$

Vi finder tætheden q(z)

$$q(z) = \int_{\mathbb{R}} \mathbb{1}(0 < z < x) \exp(-2x) \exp(-z) dx$$
 (431)

$$= \exp(-z) \int_0^\infty \exp(-2x) dx \tag{432}$$

$$= \exp(-z) \left[-\frac{\exp(-2x)}{2} \right]_0^{\infty} \tag{433}$$

$$=\frac{1}{2}\exp(-z)\tag{434}$$

VI husker at i anden nederste ligning skal kun x indsættes i square brackets.

4.7.4 U43.2.4

- $\bullet~X_1,X_2,X_3,X_4$ er identiske og uafhængige
- $E(X_i) = 5, Var(X_i) = 9$
- $Y = X_1 + 2X_2 X_4$

$$E(Y) = 5 + 2 \cdot 5 - 5 = 10 \tag{435}$$

Man husker de stokastiske variable er uafhængige

$$Var(Y) = Var(X_1 + 2X_2 - X_4) = Var(X_1) + 2^2 Var(X_2) + Var(X_4) = 6 \cdot 9 = 54$$
(436)

4.7.5 U43.2.5

Drop denne opgave! Tidspres gør det umuligt at nå!

4.7.6 Opgave 6.4

• Man har p(x, y) givet ved:

$$p(x,y) = \begin{cases} 3xy^{-2}, & x \in (0,1), y \in (1,3) \\ 0 & \text{ellers} \end{cases}$$
 (437)

Find de marginale fordelinger for X, Y og vis uafhængighed!

Lad
$$A = \{x, y \mid x \in (0, 1), y \in (1, 3)\}$$

$$p_X(x) = \int_{\mathbb{R}} \mathbb{1}_A(x, y) 3xy^{-2} dy$$
 (438)

$$= \mathbb{1}_{[0,1]}(x)x \int_{1}^{3} 3y^{-2} dy \tag{439}$$

$$= \mathbb{1}_{[0,1]}(x)x \left[3 \cdot \frac{1}{-1}y^{-1} \right]_{1}^{3} \tag{440}$$

$$= \mathbb{1}_{[0,1]}(x)x \left[\frac{-3}{y} \right]_{1}^{3} \tag{441}$$

$$= \mathbb{1}_{[0,1]}(x)x(-1+3) \tag{442}$$

$$= \mathbb{1}_{[0,1]}(x)x \cdot 2 \tag{443}$$

$$=2x, \quad x \in (0,1)$$
 (444)

Det samme gøres for y

$$p_Y(y) = \int_{\mathbb{R}} \mathbb{1}_A(x, y) 3xy^{-2} dy$$
 (445)

$$= \mathbb{1}_{[1,3]}(y)y^{-2} \cdot 3 \int_0^1 x dx \tag{446}$$

$$= \mathbb{1}_{[1,3]}(y)y^{-2} \cdot 3\left(\frac{1}{2}\right) \tag{447}$$

$$=\frac{3}{2}y^{-2}, \qquad y \in (1,3) \tag{448}$$

Vi tester for uafhængighed:

$$p_X(x) \cdot p_Y(y) = \frac{3}{2}y^{-2}2x \tag{449}$$

$$=3y^{-2}x\tag{450}$$

$$= p(x, y) \tag{451}$$

Hvilket viser uafhængighed.

4.7.7 - 6.21

• $X \sim Uni(-1,1)$

•
$$Y = X^2$$

Vis at Corr(X, Y) = 0

$$Corr = \frac{Cov(X, Y)}{\sqrt{Var(X)Var(Y)}}$$
(452)

Vi finder Covariansen:

$$Cov(X, Y) = E(X - E(X))E(Y - E(Y)) = E(XY) - E(X)E(Y)$$
 (453)

Vi ser hurtigt at E(X) = E(Y) = 0. (evt - tegn for at overbevise klasse).

$$E(X \cdot Y) = \int_{-1}^{-1} x \cdot x^2 dx = \left(\frac{1}{4}\right) - \left(\frac{1}{4}\right) = 0 \tag{454}$$

Herfra ser vi let at:

$$Cov(X, Y) = E(XY) - E(X)E(Y) = 0 - 0 = 0$$
 (455)

De er ikke uafhængige! Kan vises formelt, men bedre med intuition ved at tegne!

Vis github!

4.8 Øvelse 13

28/10/2018, opgaver: 44.1.1, 44.1.2, 44.1.3 44.1.4

4.8.1 Opgave 44.1.1

- to terninger (stokastiske variable) X_1, X_2
- $(X_1, X_2) \in \{1, 2, 3, 4, 5, 6\}^2 = \{x_{1,i}\} \times \{x_{2,j}\}, \quad i, j \in \{1, 2, 3, 4, 5, 6\}$
- $Z = X_1 + X_2$

Den vigtige regel:

$$p_x(x) = \int_y p_{x,y}(x,y) dy = \int_y p_{x|y}(x \mid y) p_y(y) dy$$
 (456)

Find $P(X_1 = i \mid Z \ge 4)$

Vi noterer først vi ikke har kontinuerte stokastiske variable!

Man får en god idé

$$P(X_1 = i \mid Z \ge 4) = \frac{P(X_1 = i, Z \ge 4)}{P(Z \ge 4)}$$
(457)

(skits summen af to terninger på tavlen)

Vi indser hurtigt at $P(Z \ge 4) = \frac{33}{36}$

Vi indser også at:

$$P(X_1 = i \mid Z \ge 4) = \frac{P(X_1 = i, X_1 + X_2 \ge 4)}{33/36} = \frac{P(X_1 = i, X_2 \ge 4 - i)}{33/36}$$
(458)

Vi indser at i er en konstant og vi nu har uafhængighed i den simultane sandsynlighed således at:

$$P(X_1 = i)P(X_2 \ge 4 - i) \tag{459}$$

Husk at $P(X_1 = i) = \frac{1}{6}$

Vi kan opskrive det hele i et samlet udtryk:

$$P(X_1 = i)P(X_2 \ge 4 - i) = \frac{1}{6}P(X_2 \ge 4 - i)$$
(460)

$$P(X_1 = i)P(X_2 \ge 4 - i) = \frac{1}{6} \cdot \frac{4 - 1 + i}{6} \quad i < 4$$
 (461)

over i siger man bare $1/6 \times 1/6$

$$P(X_1 = i)P(X_2 \ge 4 - i) = \frac{3+i}{36} \quad i < 4$$
 (462)

Vi husker at dele med 33/36

$$P(X_1 = i \mid Z \ge 4) = \begin{cases} 4/33 & i = 1\\ 5/33 & i = 2\\ 6/33 & i \ge 3 \end{cases}$$
 (463)

Find $E(X_1 = i | Z \ge 4)$

vi ved at $P(X_1 = i) = \frac{1}{36}$. VI kan derfor sige:

$$\sum_{i=1}^{6} i \cdot \min\left(\frac{3+i}{33}, \frac{6}{33}\right) = \frac{1}{33} \frac{4 \cdot 1 + 5 \cdot 2 + (3+4+5+6) \cdot 6}{33}$$
 (464)

4.8.2 Opgave 44.1.2

- $Z \in \{1, 2\}$ angiver kommune
- $V \in \{0,1\}$ angiver om man er velhavende
- $P(V = 1 \mid Z = 1) = 0.8 = 1 P(V = 0 \mid Z = 0)$
- $P(V = 1 \mid Z = 2) = 0.1$

Udregn
$$\mathbf{E}(V \mid Z=1)$$
 og $\mathbf{E}(V \mid Z=2)$

Udtrykkene er udtryk for sandsynligheden for at være velhavende betinget på hvilken kommune man kommer fra.

$$E(V \mid Z = 1) = 0 \cdot P(V = 0 \mid Z = 0) + 1 \cdot (V = 1 \mid Z = 1) = 0.2 \cdot 0 + 0.8 \cdot 1 = 0.8$$
(465)

For kommune 2:

$$E(V \mid Z = 2) = 1 \cdot P(V = 1 \mid Z = 2) + 0 \cdot P(V = 0 \mid Z = 2) = 0.1$$
 (466)

Vis udtrykket:

$$E(V \mid Z = z) = f(z) = 0.8 \cdot 1(z = 1) + 0.2 \cdot 1(Z = 2)$$
(467)

Man ser at hvis $z = 1 \implies E(V \mid Z = 1) = 0.8$

og omvendt: $z = 2 \implies E(V \mid Z = 2) = 0.1$

Hvad udtrykker $E(V \mid Z = z)$

Det betyder at vores forventning er afhængig af realization af z.

Del 4)

Man definerer nu den stokastiske variabel Den betingede middelværdi af V givet Z.

$$E(V \mid Z) = f(z) \tag{468}$$

Vis at:

$$E(f(z)) = E(E(V \mid Z)) = 0.8P(Z = 1) + 0.1P(Z = 2)$$
(469)

Det følger næsten naturligt:

$$E(f(z)) = E(0.8 \cdot 1(z = 1) + 0.1 \cdot 1(z = 2))$$
(470)

Herfra følger det da $V \in \{0, 1\}$

$$E(f(z)) = 0.8 \cdot P(Z=1) + 0.1 \cdot P(Z=2)$$
(471)

4.8.3 Opgave 44.1.3

• X er ligefordelt på A = [0, 10]

Del 1) Opskriv tætheden p(x) for X og vis $P(X) > 5 = \frac{1}{2}$

Tegn tæthedsfunktionen.

Man ved at $F(x) \to 1$ for $x \to \infty$. nærmere bestemt ved man at F(10) = 1. Man ved at $\int \mathbbm{1}_A(x)$ vil være x, så man skal gange en konstant på for at få F(10) = 1. Hel konkret $10 \cdot c = 1 \implies c = 1/10$

$$p(x) = \frac{1}{10} \mathbb{1}_A(x) \tag{472}$$

$$P(X > 5) = \int_0^5 \frac{1}{10} \mathbb{1}_A(x) = \frac{1}{10} \int \mathbb{1}_A(x) = \frac{1}{10} [x]_0^5 = \frac{1}{10} (5 - 0) = 0.5 \quad (473)$$

Del 2) Find E(X)

$$E(x) = \int_{-\infty}^{\infty} p(x)x \tag{474}$$

Vi ved at indikator funktionen kun er defineret i intervallet [0, 10]. så vi kan skrive:

$$E(X) = \int_0^{10} \frac{1}{10} x \cdot \mathbb{1}_A(x)$$
 (475)

$$=\frac{1}{0}\int_{0}^{10}x\tag{476}$$

$$=\frac{1}{10} \left[\frac{1}{2} x^2 \right]_0^{10} \tag{477}$$

$$= \frac{1}{10} \cdot \frac{1}{2} \cdot 10^2 = 5 \tag{478}$$

Vis at tætheden for $X \mid X > 5$ kan skrive som:

Skitser det givne på en tegning!

$$q(x) = \frac{2}{10} \mathbb{1}(5 < x < 10) \tag{479}$$

Man indser hurtigt at: $X \in [0,5] \cap X \in (5,10] = \emptyset$. Vi kan altså herfra konkludere at $X \mid X > 5$ kun er defineret på intervallet (5,10].

 $X \mid X > 5$ er stadig uniformt fordelt, og vi kan derfor sige at: $q(x) = c \cdot \mathbb{1}(5 < x \le 10)$. Igen ved vi også at Q(10) = 1. Vi kan hurtige udlede at $c = \frac{1}{5}$. hvormed det ønskede resultat er vist.

Del 4) Er
$$E(X \mid X > 5) = 7.5$$
?

Først se på tegningen. Herfra burde det fremgår tydeligt. Mere formelt:

$$E(X \mid X > 5) = \int_{-\infty}^{\infty} x \cdot \frac{1}{5} \mathbb{1}(5 < x < 10)$$
 (480)

$$= \frac{1}{5} \int_{5}^{10} x \cdot \mathbb{1}(5 < x < 10) \tag{481}$$

$$=\frac{1}{5} \left[\frac{1}{2} x^2 \right]_5^{10} \tag{482}$$

$$=\frac{1}{5}\frac{1}{2}(10^2-5^2)\tag{483}$$

$$= \frac{1}{5} \frac{1}{2} \cdot 75 \tag{484}$$

$$=7.5\tag{485}$$

4.8.4 Opgave 44.1.4

- X angiver ratingen fra 0 til 1
- Y angiver værdipapirets værdi i 1000 \$
- \bullet X, Y er ligefordelt på mængden B
- $B = \{(x, y) \in \mathbb{R}^2 \mid 0 < x < 1, 0.5 + 2x \le y \le 2.5 + 2x\}$

Lad os starte med at tegne B. Kig github!

Find tæthedsfunktionen $f_{X,Y}(x,y)$ for den simultane fordeling for (X,Y)

Vi hurtigt indser at de marginale fordelinge må blive 1. Den hurtigste måde at konstanten c på (tænk simultan fordeling $f(x, y) = c \mathbb{1}_B(x, y)$). er at finde arealet af B.

$$\frac{1}{c} = h \cdot l = 1 \cdot 2 = 2 \implies c = \frac{1}{2} \tag{486}$$

tæthedsfunktionen er:

$$f_{x,y}(x,y) = \frac{1}{2} \mathbb{1}_B(x,y) \tag{487}$$

Del 2) Find P(Y > 2)

Tegn på tegningen hvad det egentlig medfører. Altså på mængden B.

Først og fremmest ved vi at vi må integrere X ud af tætheden.

$$p_y(y) = \int_{\mathbb{R}} \frac{1}{2} \mathbb{1}_B(x, y) dx \tag{488}$$

Vi lavet et trick og skærer mængden B ud i to mængder M_1 , M_2 .

$$M_1 = \{x, y \mid 0 < x < 1, 0.5 + 2x < y < 2.5\}$$

$$(489)$$

$$M_2 = \{x, y \mid 0 < x < 1, 2.5 < y < 2.5 + 2x\} \tag{490}$$

$$p_Y(y) = \frac{1}{2} \int_{\mathbb{R}} \mathbb{1}_{M_1}(x, y) dx + \frac{1}{2} \int_{\mathbb{R}} \mathbb{1}_{M_2}(x, y) dx$$
 (491)

Vi håndterer først M_1 :

Vi ser at vi skal differentiere x ud. Mængden er er altså defineret i y-intervallet [0.5, 2.5]. Vi isolerer x som en funktion af y:

NOTE: Tegn diagrammet på tavlen og forklar intuitionen!

$$y = 0.5 + 2x \implies \frac{1}{2}(y - 0.5) = x$$
 (492)

Hvor vi husker at: $y \in [0.5, 2.5]$

Vi kan nu finde at arealet for M_1 :

$$\int_{0}^{\frac{1}{2}(y-0.5)} 1dx = \left[x\right]_{0}^{\frac{1}{2}(y-0.5)} = \frac{1}{2}y - 0.25 \tag{493}$$

Analogt for M_2 :

(KIG PÅ TAVLESKITSE)

$$y = 2.5 + 2x \implies \frac{1}{2}(y - 2.5)$$
 (494)

$$\int_{\frac{1}{2}(y-2.5)}^{1} 1 dx = [x]_{\frac{1}{2}(y-2.5)}^{1} = 1 - \left(\frac{1}{2}y - 1.25\right) = 2.25 - \frac{1}{2}y$$
 (495)

hvor vi husker at $y \in (2.5, 4.5]$

Vi opskriver $p_Y(y)$. Man husker at gange konstanten $\frac{1}{2}$ på.

$$p_Y(y) = \begin{cases} \frac{1}{2} \left(2.25 - \frac{1}{2}y \right) & , y \in (2.5, 4.5] \\ \frac{1}{2} \left(\frac{1}{2}y - 0.25 \right) & , y \in [0.5, 2.5] \end{cases}$$
(496)

Vi kan opskrive $P(Y > 2) = 1 - P(Y \le 2) = 1 - \int_{0.5}^{2} \frac{1}{2} \left(\frac{1}{2}y - 0.25\right) dy$

$$1 - \int_{0.5}^{2} \frac{1}{2} \left(\frac{1}{2} y - 0.25 \right) dy = 1 - \frac{1}{4} \int_{0.5}^{2} y - 0.5 dy$$
 (497)

$$=1 - \frac{1}{4} \left[\frac{1}{2} y^2 - 0.5y \right] \tag{498}$$

$$=1-\frac{1}{4}\left(\left(\frac{1}{2}2^2-\frac{1}{2}\cdot 2\right)-\left(\frac{1}{2}0.5^2-0.5\cdot 0.5\right)\right)$$
(499)

$$=1-\frac{1}{4}(2-1)+\frac{1}{4}\left(\frac{1}{8}-\frac{1}{4}\right) \tag{500}$$

$$=1-\frac{1}{4}-\frac{1}{4}\frac{1}{8}\tag{501}$$

$$= 0.71875 (502)$$

Del 4) Angiv den betingede fordeling af X givet Y = 1

Vi skal finde $p_{X|Y=1}(x)$

Vi kan altså bruge vores regel:

$$p_{X|Y}(x)p_Y(y) = p(x,y) \implies p_{X|Y} = \frac{p(x,y)}{p_Y(y)}$$
 (503)

Vi ved at Y = 1. Vi bruger dette:

$$p_Y(1) = \frac{1}{2} \left(\frac{1}{2} (1) - 0.25 \right) = \frac{1}{4} - \frac{1}{8} = \frac{1}{8}$$
 (504)

Vi indsætter Y = 1 i den øverste del af brøken. Vi ved vi er i den nederste mængde M_1 . Dette implicerer:

$$0.5 + 2x < y \land y = 1 \implies 0.5 + 2x < 1 \implies x < \frac{1}{4}$$
 (505)

Vi kan herfra konkludere at:

$$p_{X|Y=1}(x) = \frac{1}{2} \frac{\mathbb{1}_{[0,0.25]}(x)}{1/8} = 4 \cdot \mathbb{1}_{[0,0.25]}(x)$$
 (506)

Del 5) udregn forventede rating når Y = 1 og når Y = 2

Vi kender formlen for forventningen af en ligefordeling: $E(x) = \frac{a+b}{2}$

Vi har svaret for $E(X \mid Y = 1) = \frac{0 + 0.25}{2} = \frac{1}{8}$

Vi skal nu analogt finde den betingede tæthed når Y=2

$$p_Y(2) = \frac{1}{2} \left(\frac{1}{2} (2) - 0.25 \right) = \frac{1}{2} - \frac{1}{8} = \frac{3}{8}$$
 (507)

Vi ser igen på mængden M_2 :

$$0.5 + 2x < y \land y = 2 \implies 0.5 + 2x < 2 \implies x < \frac{3}{4}$$
 (508)

Vi kan herfor konkluderer at den betingede fordeling for $X \mid Y = 2$ må være:

$$p_{X|Y=2}(x) = \frac{1}{2} \frac{\mathbb{1}_{\left[0,\frac{3}{4}\right]}(x)}{\frac{3}{8}} = \frac{4}{3} \cdot \mathbb{1}_{\left[0,\frac{3}{4}\right]}$$
 (509)

Vi finder forventningen som må være:

$$E(X \mid Y = 2) = \frac{1}{2} \frac{3}{4} = \frac{3}{8}$$
 (510)

Del 6) Find variansen $Var(X \mid Y = 1 \text{ og } Var(X \mid Y = 2)$

I stedet for at bruge hintet kigger vi på distributionen og bruger regnereglen for ligefordelinger:

$$Var(X) = \frac{1}{12}(a-b)^2 \tag{511}$$

$$Var(X \mid Y = 1) = \frac{1}{12} \left(0 - \frac{1}{4} \right)^2 = \frac{1}{16} \frac{1}{12} = \frac{1}{192}$$
 (512)

$$Var(X \mid Y = 2) = \frac{1}{12} \left(0 - \frac{3}{4} \right)^2 = \frac{1}{12} \frac{9}{16} = \frac{9}{192}$$
 (513)

Hvornår er den betingede varians størst - dvs. variansen af ratingen betinget på prisen

Kig på tegningen: Det rigtige svar må være Y = 2500.

Man overvejer følgende:

$$Var(X) = \frac{1}{12}(a-b)^2$$
 (514)

I intervallet $y \in [0.5, 2.5]$ ved vi at:

$$Var(X \mid Y = y) = \frac{1}{12}(0 - a)^{2}$$
(515)

Hvor at er øvre grænse:

$$0.5 + 2x < y \implies x = \frac{1}{2}(y - 0.5) \tag{516}$$

er monotont stigende med højere i y i intervallet [0.5, 2.5).

Vi kan derfor sige at:

I intervallet [0.5, 2.5) finder vi den højeste varians ved Y = 2.5.

Analogt kan man den højeste varians i i intervallet [2.5, 4.5] til at være Y = 2.5

Illustrer på tavle!