Exam
Social Choice Theory
Spring 2017
Solution

Problem 1: Individual Choice Functions

- (a) For α , we only need to check whether an alternative chosen from $\{x, y, z\}$ remains chosen in any binary set where it is still available. For β , we only need to check cases where more than one alternative is chosen from a binary set.
 - C^1 : α is satisfied, because y is chosen whenever available. β is satisfied, because $C^1(S)$ always contains exactly one element.
 - C^2 : α is violated, because $x \in C^2(\{x, y, z\})$ but $x \notin C^2(\{x, z\})$. β is satisfied, because $C^2(S)$ always contains exactly one element.
 - C^3 : α is satisfied, because both x and z are chosen whenever available. β is satisfied, because $C^3(\{x,z\}) = C^3(\{x,y,z\}) = \{x,z\}$.
 - C^4 : α is satisfied, because z is chosen whenever available. β is violated, because $C^4(\{y,z\})=\{y,z\}$ but $C^4(\{x,y,z\})=\{z\}$.
 - C^5 : α is violated, because $x \in C^5(\{x,y,z\})$ but $x \notin C^5(\{x,z\})$. β is violated, because $C^5(\{x,y\}) = \{x,y\}$ but $C^5(\{x,y,z\}) = \{x\}$.
- (b) C^1 : $R_{C^1} = \{(y, x), (z, x), (y, z), (x, x), (y, y), (z, z)\}$
 - C^2 : $R_{C^2} = \{(x, y), (z, x), (y, z), (x, x), (y, y), (z, z)\}$
 - $C^3 \colon \, R_{C^3} = \{(x,y),(x,z),(z,x),(z,y),(x,x),(y,y),(z,z)\}$
 - C^4 : $R_{C^4} = \{(y, x), (z, x), (y, z), (z, y), (x, x), (y, y), (z, z)\}$
 - C^5 : $R_{C^5} = \{(x, y), (y, x), (z, x), (z, y), (x, x), (y, y), (z, z)\}$
- (c) C^1 : R_{C^1} is transitive and rationalizes C^1 , because α and β are satisfied.
 - C^2 : R_{C^2} is not transitive, because $(x,y) \in R_{C^2}$ and $(y,z) \in R_{C^2}$ but $(x,z) \notin R_{C^2}$. It does not rationalize C^2 , because it would predict that $C^2(\{x,y,z\})$ is empty.
 - C^3 : R_{C^3} is transitive and rationalizes C^1 , because α and β are satisfied.
 - C^4 : R_{C^4} is transitive. The only interesting case to verify is that $(y, x) \in R_{C^4}$ because $(y, z) \in R_{C^4}$ and $(z, x) \in R_{C^4}$. R_{C^4} does not rationalize C^4 , because it would predict that $y \in C^4(\{x, y, z\})$.
 - C^5 : R_{C^5} is transitive. The interesting cases to verify are that $(z,y) \in R_{C^5}$ because $(z,x) \in R_{C^5}$ and $(x,y) \in R_{C^5}$, and that $(z,x) \in R_{C^5}$ because $(z,y) \in R_{C^5}$ and $(y,x) \in R_{C^5}$. R_{C^5} does not rationalize C^5 , because it would predict that $z \in C^5(\{x,y,z\})$.

Problem 2: Manipulability

- (a) Arrow's axioms for SCFs:
 - $[\bar{\mathbf{U}}]$ Universality $\mathscr{A} = \mathscr{R}^3$ is satisfied by definition of the rule.
 - $[\bar{\mathrm{M}}]$ Monotonicity is satisfied. In a given table, x maintaining position means moving left and/or up. Across tables, x maintaining position means moving left. The converse holds for y. It is then easy to see that a selected alternative remains selected whenever it maintains its position. Alternatively, monotonicity also follows immediately once we observe that this SCF is just majority voting (with some tie-breaking rule).
 - $[\bar{P}]$ The Weak Pareto Principle is satisfied, because x is selected when all voters have xP_iy , and y is selected when all voters have yP_ix .
 - [D] Non-Dictatorship is satisfied, as the rule does not always select the most preferred alternative of one fixed voter.
- (b) The SCF is surjective because each alternative is selected for some preference profile. We have already verified [Ū] and [D]. Strategy-proofness [S] is also satisfied. This follows from the fact that misrepresenting the own preference cannot impove the outcome for the respective agent with majority voting.
- (c) The impossibility result states that there exists no surjective SCF that satisfies the axioms $[\bar{U}]$, $[\bar{D}]$, and $[\bar{S}]$ when m=2. This is no contradiction because we have m=2 here.

Problem 3: Social Evaluation Functions

(a) The following table computes MAD for each alternative in the example:

	x	y	z
U_1	2	1	9
U_2	3	1	7
U_3	4	1	5
$ar{U}$	3	1	7
MAD	2/3	0	4/3

Hence we obtain $y e_P^{\text{MAD}}(\mathbf{U}) x e_P^{\text{MAD}}(\mathbf{U}) z$.

(b) The SEF is consistent with CM-LC (and hence with RM-LC). Suppose \mathbf{U}' is obtained from \mathbf{U} by a common positive affine transformation $\varphi(u) = \alpha + \beta u$, where $\beta > 0$. Then, for any alternative $x \in X$ we have

$$MAD(x, \mathbf{U}') = \frac{1}{n} \sum_{i=1}^{n} |U'_i(x) - \bar{U}(x, \mathbf{U}')|$$
$$= \frac{1}{n} \sum_{i=1}^{n} |\alpha + \beta U_i(x) - \alpha - \beta \bar{U}(x, \mathbf{U})|$$
$$= \beta MAD(x, \mathbf{U}).$$

Hence the induced social preferences are identical for U and U'.

The SEF is not consistent with any of the remaining information structures. To show this, counterexamples are now provided for OM-LC, CM-UC, and RM-NC.

OM-LC: In the following example, \mathbf{U}' is obtained from \mathbf{U} by the common strictly increasing transformation $\varphi(u) = u^2$. We obtain $e^{\mathrm{MAD}}(\mathbf{U}) \neq e^{\mathrm{MAD}}(\mathbf{U}')$.

\mathbf{U}	x	y	\mathbf{U}'	x	y
$\overline{U_1}$	3	4	$\overline{U_1'}$	9	16
U_2	1	6	U_2'	1	36
MAD	1	1	MAD	4	10

CM-UC: In the following example, \mathbf{U}' is obtained from \mathbf{U} by positive affine transformations $\varphi_i(u) = \alpha_i + \beta u$ for $\beta = 1$, $\alpha_1 = 2$, and $\alpha_2 = 0$. We obtain $e^{\text{MAD}}(\mathbf{U}) \neq e^{\text{MAD}}(\mathbf{U}')$.

\mathbf{U}	\boldsymbol{x}	y	\mathbf{U}'	\boldsymbol{x}	y
$\overline{U_1}$	1	0	U_1'	3	2
U_2	1	2	U_2'	1	2
MAD	0	1	MAD	1	0

RM-NC: In the following example, \mathbf{U}' is obtained from \mathbf{U} by positive linear transformations $\varphi_i(u) = \beta_i u$ for $\beta_1 = 2$ and $\beta_2 = 1$. We obtain $e^{\text{MAD}}(\mathbf{U}) \neq e^{\text{MAD}}(\mathbf{U}')$.

\mathbf{U}	x	y	\mathbf{U}'	x	y
U_1	3	4	$\overline{U_1'}$	6	8
U_2	1	6	U_2'	1	6
MAD	1	1	MAD	5/2	1