Tendrils in the Tarantula: Extreme velocity shear features in the ionized gas of 30 Doradus

William J. Henney¹[⋆] and J. García Vázquez²

¹ Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Apartado Postal 3-72, 58090 Morelia, Michaoacán, Mexico ² Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Ciudad de México, México

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT

Using velocity shear maps, we find a spectacular network of curved tendril-like filaments inside a low-density cavity of the Tarantula Nebula (30 Doradus) in the Large Magellanic Cloud.

Key words: Atomic physics – ISM: individual objects (Orion Nebula) – Photodissociation regions – Radiative transfer

Mendes de Oliveira C., Amram P., Quint B. C., Torres-Flores S., Barbá R., Andrade D., 2017, MNRAS, 469, 3424

This paper has been typeset from a TEX/LATEX file prepared by the author.

Figure 1. Velocity shear maps

1 INTRODUCTION

Fabry-Perot observations from Mendes de Oliveira et al. (2017). We use MUSE observations from Castro et al. (2018)

ACKNOWLEDGEMENTS

References

Castro N., Crowther P. A., Evans C. J., Mackey J., Castro-Rodriguez N., Vink J. S., Melnick J., Selman F., 2018, A&A, 614, A147

^{*} w.henney@irya.unam.mx