(x_k) by

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)},$$

for all $k \geq 0$, provided that $f'(x_k) \neq 0$. The idea is to define x_{k+1} as the intersection of the x-axis with the tangent line to the graph of the function $x \mapsto f(x)$ at the point $(x_k, f(x_k))$. Indeed, the equation of this tangent line is

$$y - f(x_k) = f'(x_k)(x - x_k),$$

and its intersection with the x-axis is obtained for y = 0, which yields

$$x = x_k - \frac{f(x_k)}{f'(x_k)},$$

as claimed. See Figure 41.1.

Figure 41.1: The construction of two stages in Newton's method.

Example 41.1. If $\alpha > 0$ and $f(x) = x^2 - \alpha$, Newton's method yields the sequence

$$x_{k+1} = \frac{1}{2} \left(x_k + \frac{\alpha}{x_k} \right)$$

to compute the square root $\sqrt{\alpha}$ of α . It can be shown that the method converges to $\sqrt{\alpha}$ for any $x_0 > 0$; see Problem 41.1. Actually, the method also converges when $x_0 < 0$! Find out what is the limit.