ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC)

Department of Computer Science and Engineering (CSE)

MID SEMESTER EXAMINATION

WINTER SEMESTER, 2018-2019

DURATION: 1 Hour 30 Minutes

FULL MARKS: 75

9

Math 4341: Linear Algebra

Programmable calculators are not allowed. Do not write anything on the question paper.

There are 4 (four) questions. Question no.4 is Mandatory to answer.

Answer any 2 (two) from the remaining. Figures in the right margin indicate marks.

1. a) The matrices shown below represent a system of linear equations Ax=b:

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 4 & 6 & 1 \\ -2 & 2 & 0 \end{bmatrix} x = \begin{bmatrix} x \\ y \\ z \end{bmatrix} b = \begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix}$$

- i. Write the equations representing the system and draw Column Picture for the 3 equations. ii. Solve this system of linear equation using Gaussian Elimination. 6 Perform 'EA=U' and 'A=LU' factorization on A. iii. 5 Compare the two factorizations mentioned above and determine which one gives better iv. 2 insight about the elimination process. Finally show the factorizations 'PA=LU' and 'PA=LDU' for matrix A. 4 b) Prove that, Inverse of A^T can be found by taking the Transpose of A⁻¹. 5 a) Invert these matrices A by the Gauss-Jordan method starting with [A I]: 10 $A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$ and $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{bmatrix}$
- b) Consider the matrices E and F.

 $E = \begin{bmatrix} 1 & 0 & -2 \\ 2 & -1 & 5 \\ 4 & 1 & 0 \end{bmatrix} \qquad F = \begin{bmatrix} 4 & 3 & 0 \\ 1 & 2 & 7 \\ 0 & 0 & 7 \end{bmatrix}$

Multiply the matrices in the following ways to determine EF

- Linear combination of the Columns
- Linear combination of the Rows ii.
- Columns of E times Rows of F.
- c) Do the vectors lying on the line 2x+y=7 form a subspace? Justify your answer.
- 3 d) $S = \{x, y \in \mathbb{R}: x>0, y>0 \text{ or } x<0, y<0\}$ Does this set of vectors form a valid subspace? Justify 3 your answer.

If A is any 5 by 5 invertible matrix, then its column space is __. why?

3. a) Define 'Column Space' of a matrix. What is the significance this space?

What is the shape of N(A) and C(A)?

What will be the dimension of each vectors in N(A) and C(A)?

vi.

vii.

D)	ii. If the 9 by 12 system $Ax = b$ is solvable for every b, then $C(A) = $ Why?	-4-
	ii. If the 9 by 12 system $Ax = b$ is solvable for every b, then $C(A) = $ Why?	
	iii. The column space of 2A equals the column space of A. (True or False? Why?)	
	iv. A square matrix will always have free variables. (True or False? Why?)	4×3
c)	Suppose four matrices A,B, C and D are defined as $[\overrightarrow{V_1}]$, $[\overrightarrow{V_3} \overrightarrow{V_1}]$, $[\overrightarrow{V_1} \overrightarrow{V_2} \overrightarrow{V_3}]$, $[\overrightarrow{V_1} \overrightarrow{V_2} \overrightarrow{V_3} \overrightarrow{V_4}]$,	4^3
	where,	
	$\overrightarrow{V_1} = \begin{bmatrix} -1 \\ 3 \\ 2 \end{bmatrix}, \ \overrightarrow{V_2} = \begin{bmatrix} 4 \\ 3 \\ 7 \end{bmatrix}, \overrightarrow{V_3} = \begin{bmatrix} 2 \\ 9 \\ 0 \end{bmatrix}, \overrightarrow{V_4} = 2\overrightarrow{V_1}$	
	Answer the followings:	
	i. What is the column space of each matrices?	
	ii. What is the column space of each matrices? ii. Modify the matrix D so that B & D have the same column space.	
	iii. How many vectors will be in the Null Space of A, B, C and D?	
[Mand	atory]	
4. a)	Consider the matrices below:	2
	$A = \begin{bmatrix} 1 & 0 & 2 & 3 \\ 1 & 3 & 2 & 0 \\ -1 & 3 & -2 & -6 \end{bmatrix} x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$	
	Answer the followings:	8
	i. Find out the Null Space of A.	3
	ii. What is the rank of the matrix? What are the pivot variables and free variables? What	3
	is the largest possible rank of a matrix with same dimension as A?	4
	iii. What is the condition on 'b' for Ax=b to have solution?	7
	iv. What will be the solution of the system $Ax = \begin{bmatrix} 1 \\ 2 \\ 7 \end{bmatrix}$.	3
	v. Find out the complete solution of $Ax = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$	4

5

1.5

1.5