В этом ноутбуке пробуется модель на основе LSTM (так как у нас тут что-то похожее на временные ряды, то есть гипотеза, что LSTM хорошо здесь зайдет), обученная на предсказаниях леса. Ноутбук вдохновлен вот этим https://www.kaggle.com/khalildmk/simple-two-layer-bidirectional-lstm-with-pytorch) - оттуда взято большинство кода, но была переделана работа с данными и размерности в самой модели.

```
In [0]:
            import numpy as np
          2 import pandas as pd
          3 import os
          4 import torch
          5 import torch.nn as nn
          6 import time
          7
            import copy
          8 | from torch.utils.data import Dataset, DataLoader
          9 import torch.nn.functional as F
         10 from sklearn.metrics import f1 score
         11 from sklearn.model_selection import KFold
         12 device = torch.device("cuda:0") if torch.cuda.is available() else torch.devi
         13 | from torch.optim.lr_scheduler import ReduceLROnPlateau
         14 import gc
```

1. Параметры и модель

```
In [0]:
          1
             class Bi RNN(nn.Module):
          2
          3
                 def __init__(self, input_dim, hidden_dim, batch_size, output_dim=11, num
                     super(Bi RNN, self). init ()
          4
          5
                     self.input_dim = input_dim
          6
                     self.hidden_dim = hidden_dim
          7
                     self.batch size = batch size
          8
                     self.num_layers = num_layers
          9
                     #Define the initial linear hidden layer
         10
                     self.init linear = nn.Linear(self.input dim, self.input dim)
         11
         12
         13
                     # Define the LSTM layer
                     self.lstm = eval('nn.' + rnn_type)(self.input_dim, self.hidden_dim,
         14
         15
         16
                     # Define the output layer
         17
                     self.linear = nn.Linear(self.hidden dim * 2, output dim)
         18
         19
                 def init_hidden(self):
                     # This is what we'll initialise our hidden state as
         20
                     return (torch.zeros(self.num layers, self.batch size, self.hidden di
         21
         22
                             torch.zeros(self.num_layers, self.batch_size, self.hidden_di
         23
         24
                 def forward(self, input):
                     #Forward pass through initial hidden layer
         25
                     linear input = self.init linear(input)
         26
         27
         28
                     # Forward pass through LSTM layer
                     # shape of Lstm out: [batch size, input size ,hidden dim]
         29
                     # shape of self.hidden: (a, b), where a and b both
         30
         31
                     # have shape (batch_size, num_layers, hidden_dim).
         32
                     lstm out, self.hidden = self.lstm(linear input)
         33
         34
                     # Can pass on the entirety of lstm_out to the next layer if it is a
                     y_pred = self.linear(lstm_out)
         35
         36
                     return y_pred
```

2. Даталоадеры

```
In [0]:
          1
             class ION Dataset Sequential(Dataset):
                 def __init__(self, input, output):
          2
          3
                     self.input = input
          4
                     self.output = output
          5
          6
                 def __len__(self):
          7
                     return len(self.input)
          8
                 def __getitem__(self, idx):
          9
                     x = self.input[idx]
         10
                     y = self.output[idx]
         11
                     x = torch.tensor(x, dtype=torch.float)
         12
         13
                     y = torch.tensor(y, dtype=torch.float)
         14
                     return x, y
         15
             class ION_Dataset_Sequential_test(Dataset):
         16
                 def __init__(self, input):
         17
                     self.input = input
         18
         19
                 def len (self):
         20
         21
                     return len(self.input)
         22
                 def __getitem__(self, idx):
         23
         24
                     x = self.input[idx]
         25
                     x = torch.tensor(x, dtype=torch.float)
         26
                     return x
```

3. Данные

```
In [5]: 1 from google.colab import drive
    drive.mount('/content/gdrive')
```

Drive already mounted at /content/gdrive; to attempt to forcibly remount, call drive.mount("/content/gdrive", force_remount=True).

```
In [0]: 1 train_df = pd.read_csv('/content/gdrive/My Drive/data/train_clean.csv')
2 test_df = pd.read_csv('/content/gdrive/My Drive/data/test_clean.csv')
```

```
In [0]: 1 train_probs = np.load('/content/gdrive/My Drive/data/Y_train_proba.npy')
2 test_probs = np.load('/content/gdrive/My Drive/data/Y_test_proba.npy')
```

```
In [0]: 1 train_df = pd.concat([train_df, pd.DataFrame(train_probs)], axis=1)
2 test_df = pd.concat([test_df, pd.DataFrame(test_probs)], axis=1)
```

```
In [0]: 1 train_df.columns = train_df.columns.astype(str)
2 test_df.columns = test_df.columns.astype(str)
```

4. Обучение с разбиением на фолды

```
In [11]:
              kfold = KFold(n splits=n folds, shuffle=True, random state=42)
              local val score = 0
           3
              models = {}
           4
           5
              k=0 #initialize fold number
           6
              for tr_idx, val_idx in kfold.split(X, y):
           7
                  test_p = np.zeros((int(test_input.shape[0] * test_input.shape[1])))
           8
           9
                  print('starting fold', k)
                  k += 1
          10
          11
          12
                  print(6*'#', 'splitting and reshaping the data')
          13
                  train_input = X[tr_idx]
                  print(train input.shape)
          14
          15
                  train target = y[tr idx]
          16
                  val_input = X[val_idx]
          17
                  val_target = y[val_idx]
          18
                  train_input_mean = train_input.mean()
          19
                  train_input_sigma = train_input.std()
          20
                  val input = (val input-train input mean)/train input sigma
          21
                  train_input = (train_input-train_input_mean)/train_input_sigma
          22
                  print(6*'#', 'Loading')
          23
          24
                  train = ION_Dataset_Sequential(train_input, train_target)
          25
                  valid = ION_Dataset_Sequential(val_input, val_target)
          26
                  train_loader = torch.utils.data.DataLoader(train, batch_size=batch_size)
          27
                  valid loader = torch.utils.data.DataLoader(valid, batch size=batch size)
          28
          29
                  #Build tensor data for torch
          30
                  train_preds = np.zeros((int(train_input.shape[0] * train_input.shape[1])
          31
                  val_preds = np.zeros((int(val_input.shape[0] * val_input.shape[1])))
          32
                  best_val_preds = np.zeros((int(val_input.shape[0] * val_input.shape[1]))
                  train_targets = np.zeros((int(train_input.shape[0] * train_input.shape[1
          33
          34
                  avg_losses_f = []
          35
                  avg_val_losses_f = []
          36
          37
                  #Define loss function
          38
                  loss_fn = torch.nn.BCEWithLogitsLoss()
          39
          40
                  #Build model, initialize weights and define optimizer
          41
                  model = Bi_RNN(lstm_input_size, hidden_state_size, batch_size=batch_size
          42
                  model = model.to(device)
          43
                  optimizer = torch.optim.Adam(model.parameters(), lr=lr, weight decay=1e-
          44
                  scheduler = ReduceLROnPlateau(optimizer, 'min', patience=150, factor=0.1
          45
                  46
                  reached_val_score = 0
          47
          48
                  #Iterate through epochs
          49
                  for epoch in range(n epochs):
          50
                      start_time = time.time()
          51
          52
                      #Train
          53
                      model.train()
          54
                      avg loss = 0.
          55
                      for i, (x_batch, y_batch) in enumerate(train_loader):
          56
                          x_batch = x_batch.view(-1, num_time_steps, lstm_input_size)
```

```
57
                                  y_batch = y_batch.view(-1, num_time_steps, output_dim)
  58
                                  optimizer.zero_grad()
  59
                                  y_pred = model(x_batch.cuda())
  60
                                  loss = loss_fn(y_pred.cpu(), y_batch)
  61
                                  loss.backward()
  62
                                  optimizer.step()
  63
                                  avg_loss += loss.item() / len(train_loader)
  64
                                  pred = F.softmax(y_pred, 2).detach().cpu().numpy().argmax(axis=
                                  train_preds[i * batch_size * train_input.shape[1]:(i + 1) * batch_size
  65
  66
                                  train targets[i * batch size * train input.shape[1]:(i + 1) * batc
  67
                                  del y_pred, loss, x_batch, y_batch, pred
  68
  69
                          #Evaluate
  70
                          model.eval()
  71
                          avg_val_loss = 0.
  72
                          for i, (x batch, y batch) in enumerate(valid loader):
  73
                                  x_batch = x_batch.view(-1, num_time_steps, lstm_input_size)
  74
                                  y_batch = y_batch.view(-1, num_time_steps, output_dim)
  75
                                  y_pred = model(x_batch.cuda()).detach()
  76
                                  avg_val_loss += loss_fn(y_pred.cpu(), y_batch).item() / len(vali
  77
                                  pred = F.softmax(y_pred, 2).detach().cpu().numpy().argmax(axis=-
  78
                                  val preds[i * batch size * val input.shape[1]:(i + 1) * batch si
  79
                                  del y_pred, x_batch, y_batch, pred
  80
                          if avg_val_loss < temp_val_loss:</pre>
  81
                                  temp_val_loss = avg_val_loss
  82
  83
                          #Calculate F1-score
                          train_score = f1_score(train_targets, train_preds, average='macro')
  84
  85
                          val score = f1 score(val target.argmax(axis=2).reshape((-1)), val pr
  86
  87
                          #Print output of epoch
  88
                          elapsed_time = time.time() - start_time
  89
                          scheduler.step(avg_val_loss)
  90
                          if epoch%10 == 0:
  91
                                  print('Epoch {}/{} \t loss={:.4f} \t train f1={:.4f} \t val loss
  92
  93
                          if val_score > reached_val_score:
  94
                                  reached_val_score = val_score
  95
                                  best_model = copy.deepcopy(model.state_dict())
  96
                                  best_val_preds = copy.deepcopy(val_preds)
  97
  98
                  #Calculate F1-score of the fold
  99
                  val_score_fold = f1_score(val_target.argmax(axis=2).reshape((-1)), best
100
101
                  #Save the fold's model in a dictionary
102
                  models[k] = best_model
103
                  #Print F1-score of the fold
104
                  print("BEST VALIDATION SCORE (F1): ", val_score_fold)
105
106
                  local_val_score += (1/n_folds) * val_score_fold
107
108
          #Print final average k-fold CV F1-score
          print("Final Score ", local_val_score)
109
```

(1000, 4000, 12)				
###### Loading				
Epoch 1/100	loss=0.2928	train_f1=0.1054	val_loss=0.2055	
val_f1=0.2158	time=41.63s			
_ Epoch 11/100	loss=0.0204	train_f1=0.8489	val_loss=0.0238	
val f1=0.8492	time=42.01s	_	_	
Epoch 21/100	loss=0.0165	train_f1=0.9382	val_loss=0.0193	
val f1=0.9373	time=41.90s			
Epoch 31/100	loss=0.0164	train_f1=0.9377	val_loss=0.0188	
val f1=0.9372	time=41.97s			
_ Epoch 41/100	loss=0.0156	train f1=0.9384	val loss=0.0185	
val f1=0.9372	time=42.19s			
_ Epoch 51/100	loss=0.0157	train_f1=0.9382	val_loss=0.0185	
val f1=0.9374	time=41.84s	_	_	
_ Epoch 61/100	loss=0.0162	train_f1=0.9379	val_loss=0.0190	
val f1=0.9371	time=42.07s	_	_	
_ Epoch 71/100	loss=0.0157	train_f1=0.9383	val loss=0.0186	
val f1=0.9375	time=41.90s	_	_	
_ Epoch 81/100	loss=0.0156	train_f1=0.9383	val_loss=0.0184	
val f1=0.9376	time=42.10s	_	_	
_ Epoch 91/100	loss=0.0152	train_f1=0.9383	val_loss=0.0184	
val f1=0.9375	time=41.94s	_	_	
BEST VALIDATION	SCORE (F1): 0.9	9377366523157712		
starting fold 1	` ,			
_	g and reshaping t	the data		
(1000, 4000, 12)				
##### Loading				
Epoch 1/100	loss=0.2628	train_f1=0.1831	val_loss=0.1796	
val_f1=0.2677	time=41.80s	_	_	
_ Epoch 11/100	loss=0.0209	train_f1=0.8492	val_loss=0.0259	
val_f1=0.8491	time=41.80s	_	_	
Epoch 21/100	loss=0.0168	train_f1=0.9378	val_loss=0.0208	
val_f1=0.9368	time=41.91s	_	_	
Epoch 31/100	loss=0.0156	train_f1=0.9381	val_loss=0.0198	
val_f1=0.9371	time=41.90s	_	_	
Epoch 41/100	loss=0.0159	train_f1=0.9379	val_loss=0.0197	
val_f1=0.9371	time=41.70s	_	_	
Epoch 51/100	loss=0.0154	train_f1=0.9382	val_loss=0.0199	
val_f1=0.9359	time=41.60s	_	_	
Epoch 61/100	loss=0.0151	train_f1=0.9383	val_loss=0.0196	
val_f1=0.9368	time=41.82s			
Epoch 71/100	loss=0.0165	train_f1=0.9370	val_loss=0.0200	
val_f1=0.9369	time=41.43s			
Epoch 81/100	loss=0.0152	train_f1=0.9381	val_loss=0.0193	
val_f1=0.9372	time=41.68s			
Epoch 91/100	loss=0.0153	train_f1=0.9382	val_loss=0.0194	
val_f1=0.9371	time=41.30s			
BEST VALIDATION SCORE (F1): 0.9376231785584731				
starting fold 2				
###### splitting and reshaping the data				
(1000, 4000, 12)				
###### Loading				
Epoch 1/100	loss=0.2652	train_f1=0.1949	val_loss=0.1760	
val_f1=0.2983	time=41.88s			
Epoch 11/100	loss=0.0225	train_f1=0.8494	val_loss=0.0252	
val_f1=0.8475	time=41.57s			
Epoch 21/100	loss=0.0170	train_f1=0.9378	val_loss=0.0192	

7 64 0 00-0					
val_f1=0.9370	time=40.97s	turin f1 0 0267	wal loss 0 0102		
Epoch 31/100 val_f1=0.9366	loss=0.0167	train_f1=0.9367	val_loss=0.0193		
Epoch 41/100	time=40.41s loss=0.0162	train f1=0.9379	val loss=0.0182		
val f1=0.9375	time=40.79s	(rain_i1=0.93/9	Va1_1022=0.0102		
Epoch 51/100	loss=0.0156	train_f1=0.9381	val_loss=0.0181		
val f1=0.9375	time=40.29s	(Lail-11=0.9301	A91_1022=0.0101		
Epoch 61/100	loss=0.0157	train f1=0.9381	val_loss=0.0179		
val_f1=0.9377	time=40.46s	Clain_11=0.5581	Va1_1033-0.0175		
Epoch 71/100	loss=0.0156	train_f1=0.9379	val_loss=0.0178		
val_f1=0.9377	time=40.37s	C. u.i	141_1033 0.0170		
Epoch 81/100	loss=0.0158	train_f1=0.9374	val_loss=0.0182		
val_f1=0.9369	time=40.44s	G. G			
Epoch 91/100	loss=0.0158	train_f1=0.9380	val_loss=0.0185		
val f1=0.9368	time=40.86s				
BEST VALIDATION		380991640612855			
starting fold 3	()				
##### splitting	and reshaping t	he data			
(1000, 4000, 12)	, 3				
##### Loading					
Epoch 1/100	loss=0.2821	train_f1=0.1583	val_loss=0.1878		
val_f1=0.2488	time=40.29s				
Epoch 11/100	loss=0.0225	train_f1=0.8489	val_loss=0.0228		
val_f1=0.8505	time=40.34s				
Epoch 21/100	loss=0.0174	train_f1=0.9378	val_loss=0.0177		
val_f1=0.9395	time=40.54s				
Epoch 31/100	loss=0.0162	train_f1=0.9375	val_loss=0.0172		
val_f1=0.9388	time=40.92s				
Epoch 41/100	loss=0.0161	train_f1=0.9375	val_loss=0.0175		
val_f1=0.9390	time=40.51s				
Epoch 51/100	loss=0.0159	train_f1=0.9378	val_loss=0.0166		
val_f1=0.9396	time=40.60s				
Epoch 61/100	loss=0.0160	train_f1=0.9378	val_loss=0.0165		
val_f1=0.9396	time=40.51s		1 1 0 0464		
Epoch 71/100	loss=0.0160	train_f1=0.9375	val_loss=0.0164		
val_f1=0.9394	time=40.49s		1 1 0 0465		
Epoch 81/100	loss=0.0157	train_f1=0.9378	val_loss=0.0165		
val_f1=0.9396	time=40.96s	tmain f1 0 0270	vol loss 0 0165		
Epoch 91/100 val f1=0.9398	loss=0.0159 time=40.47s	train_f1=0.9379	val_loss=0.0165		
_		2000716240622			
BEST VALIDATION SCORE (F1): 0.93980716248632					
starting fold 4 ###### splitting and reshaping the data					
(1000, 4000, 12)	and resnaping t	ne data			
###### Loading					
Epoch 1/100	loss=0.2710	train_f1=0.1693	val_loss=0.1904		
val f1=0.2708	time=40.36s	Crain_ri=0:1033	Va1_1033-0:170+		
Epoch 11/100	loss=0.0208	train_f1=0.8489	val_loss=0.0254		
val f1=0.8496	time=40.46s	Cruin_ri=0.0403	Va1_1033-0:025+		
Epoch 21/100	loss=0.0159	train_f1=0.9380	val_loss=0.0203		
val f1=0.9375	time=41.19s	o. u o			
Epoch 31/100	loss=0.0155	train_f1=0.9381	val_loss=0.0199		
val_f1=0.9379	time=40.58s		_		
Epoch 41/100	loss=0.0153	train_f1=0.9383	val_loss=0.0196		
val_f1=0.9378	time=40.38s		_		
Epoch 51/100	loss=0.0154	train_f1=0.9379	val_loss=0.0194		
val_f1=0.9380	time=40.27s	_	_		

```
Epoch 61/100
                loss=0.0152
                                train_f1=0.9383
                                                        val loss=0.0195
val_f1=0.9382
                time=40.18s
                                train_f1=0.9379
Epoch 71/100
                loss=0.0151
                                                        val_loss=0.0199
val f1=0.9377
                time=40.22s
                                train_f1=0.9379
Epoch 81/100
                loss=0.0153
                                                        val loss=0.0194
val_f1=0.9382
                time=40.19s
Epoch 91/100
                loss=0.0151
                                train f1=0.9378
                                                        val loss=0.0196
val_f1=0.9375
                time=40.18s
BEST VALIDATION SCORE (F1): 0.9384948498276348
Final Score 0.938352201449897
```

5. Предсказание - усреднение предсказаний моделей, обученных на разных фолдах

```
In [0]:
             for k in range(n_folds):
          1
          2
                 test_p = np.zeros((int(test_input.shape[0] * test_input.shape[1])))
          3
                 k += 1
          4
          5
                 #Import model of fold k
          6
                 model = Bi_RNN(lstm_input_size, hidden_state_size, batch_size=batch_size
                 model = model.to(device)
          7
          8
                 model.load_state_dict(models[k])
          9
         10
                 #Make predictions on test data
         11
                 model.eval()
         12
                 for i, x batch in enumerate(test loader):
         13
                     x_batch = x_batch.view(-1, num_time_steps, lstm_input_size)
         14
                     y_pred = model(x_batch.cuda()).detach()
                     pred = F.softmax(y_pred, 2).detach().cpu().numpy().argmax(axis=-1)
         15
                     test_p[i * batch_size * test_input.shape[1]:(i + 1) * batch_size * t
         16
         17
                     del y_pred, x_batch, pred
         18
                 test_preds += (1/n_folds) * test_p
```

6. Сохраняем ответы в файл

Результат: 0.939 на public lb