Riassunto Basi di Dati - 9 crediti

Schiabel Alberto

21 novembre 2017

Indice

T	Def	INIZIONI
	1.1	Modello Relazionale
		1.1.1 Definizione chiave e superchiave
	1.2	Algebra e Calcolo Relazionale
		1.2.1 Definizione di Join
		1.2.2 Definizione di Natural Join
		1.2.3 Definizone di Theta Join
		1.2.4 Definizione di Equi Join
	1.3	Progettazione Concettuale
		1.3.1 Definizione strategia di progetto top-down
		1.3.2 Definizione strategia di progetto bottom-up
2	Alg	ebra Relazionale
	2.1	Venditori, Prodotto, Listino
		2.1.1 Quesito
		2.1.2 Soluzioni

1 Definizioni

1.1 Modello Relazionale

1.1.1 Definizione chiave e superchiave

Un sottoinsieme K di attributi è superchiave per uno schema di relazione r se, per ogni coppia di tuple distinte, i valori assunti dalle tuple in corrispondenza non sono tutti uguali.

Una chiave è una superchiave minimale, ovvero una superchiave alla quale, tolto un qualunque attributo, non è più superchiave. In altre parole, non esiste un'altra superchiave K^1 di r che sia contenuta in k come sottoinsieme proprio.

Ogni chiave è superchiave, ma in generale non vale il viceversa.

1.2 Algebra e Calcolo Relazionale

1.2.1 Definizione di Join

Operatore che permette di correlare dati contenuti in relazioni diverse, confrontando i valori contenuti in esse. Esiste in più varianti.

1.2.2 Definizione di Natural Join

Operatore binario che correla dati in relazioni diverse, sulla base di valori uguali, in attibuti con lo stesso nome.

Simbolo: ⋈ Proprietà:

- 1. Commutatività: $r1 \bowtie r2 = r2 \bowtie r1$
- 2. Associatività $r1 \bowtie (r2 \bowtie r3) = (r1 \bowtie r2) \bowtie r3$
- 3. Se gli insiemi X_1 e X_2 di attributi di due tuple sono uguali, allora i Natural Join coincide con un'intersezione.
- 4. Se gli insiemi X_1 e X_2 di attributi di due tuple sono disgiunti, allora i Natural Join coincide con il prodotto cartesiano.

1.2.3 Definizone di Theta Join

Operatore definito come il prodotto cartesiano seguito da una selezione, nel modo seguente (dove F è una formula proposizionale utilizzabile in una selezione, e dove le relazioni r_1 e r_2 non hanno attributi in comune):

$$r_1 \bowtie_F r_2 = \sigma_F(r_1 \bowtie r_2)$$

1.2.4 Definizione di Equi Join

L'Equi Join non è altro che un Theta Join in cui la condizione di selezione F sia una congiunzione di uguaglianza, con un attributo della prima relazione r1 e uno della seconda r2.

1.3 Progettazione Concettuale

1.3.1 Definizione strategia di progetto top-down

Nella strategia top-down, lo schema concettuale viene prodotto mediante raffinamenti successivi a partire da uno schema iniziale che, pur descrivendo tutte le specifiche, resta astratto. Tale schema viene a via a via raffinato aumentando il livello di dettagli, ma mantiene le medesime informazioni. Tutti gli aspetti presenti nello schema finale sono presenti a ogni livello di raffinamento.

PRO: il progettista può inizialmente descrivere tutte le specifiche dei dati trascurandone i dettagli CONTRO: è necessario possedere sin dall'inizio una visione globale di tutte le componenti del sistema

1.3.2 Definizione strategia di progetto bottom-up

Nella strategia bottom-up si suddividono le specifiche in modo da sviluppare diversi schemi elementari ma dettagliati, che successivamente vengono integrati tra di loro. Tale strategia favorisce lo sviluppo in team.

2 Algebra Relazionale

2.1 Venditori, Prodotto, Listino

2.1.1 Quesito

È dato uno schema di basi di dati costituito dalle relazioni:

```
VENDITORE(<u>vid</u>, vnome, indirizzo)
PRODOTTO(<u>pid</u>, pnome, colore, peso)
LISTINO(vid, <u>pid</u>, prezzo)
```

Esistono dei vincoli di integrità referenziale tra vid di VENDITORE e vid di LISTINO, e tra pid di PRODOTTO e pid di LISTINO.

Formulare in algebra relazionale le seguenti interrogazioni:

- 1. Trovare i nomi dei venditori che forniscono prodotti rossi o prodotti verdi
- 2. Trovare i nomi dei venditori che hanno a listino almeno due prodotti rossi
- 3. Trovare l'id dei venditori che hanno a listino solo prodotti verdi
- 4. Trovare l'id dei prodotti a listino più pesanti

2.1.2 Soluzioni

```
1. \Pi_{vnome}(VENDITORE \bowtie LISTINO \bowtie \sigma_{colore="rosso" \lor color="verde"}(PRODOTTO))
```

```
2. S1 := \sigma_{color="rosso"}(PRODOTTO)

S2 := \Pi_{pid,vid}(LISTINO \bowtie S1)

S3 := \rho_{pid1,vid1 \leftarrow pid,vid}(S2)

\Pi_{vnome}(\sigma_{pid \neq pid1 \land vid = vid1}(S2 \bowtie S3) \bowtie PRODOTTO
```

```
3. S1 := LISTINO \bowtie \sigma_{colore \neq "verde"}(PRODOTTO))

\Pi_{pid}(LISTINO - S1)
```

```
4. S1 := \rho_{pid1,pnome1,colore1,peso1 \leftarrow pid,nome,colore,peso}(PRODOTTO)
S2 := \sigma_{peso>peso1}(PRODOTTO \bowtie S1) \Pi_{pid}(S2)
```