305343 - คอมพิวเตอร์และการสื่อสารข้อมูล

อ.สุชัยศรี ใลออน ภาคต้น ปีการศึกษา 2554 สัปคาห์ที่ 12

วัตถุประสงค์

- เข้าใจฟังก์ชันชั้นกายภาพ
- รู้จักนิยามเกี่ยวกับสัญญาณที่ใช้ในการสื่อสาร
- สามารถคำนวณหาแบนด์วิดท์สำหรับส่งผ่านข้อมูลดิจิทัล
 ผ่านช่องสัญญาณแอนะล็อกได้

305343 – 1/2554

Outline

- Physical Layer Function
- Data and Signals
 - How a data can be transmitted
 - Analog and Digital Data
 - Analog and Digital Signals
- Digital vs. Analog

Physical Layer Functions

7.Application

6. Presentation

5. Session

4. Transport

3. Network

2. Data Link

• การรับส่งข้อมูลระดับกายภาพ

1. Physical

305343 - 1/2554

• การเชื่อมต่อของชั้นกายภาพ

305343 – 1/2554

Position of the Physical Layer

5 305343 - 1/2554

How a data can be transmitted

- แปลงให้อยู่ในรูปของกระแสไฟฟ้า
 - ผ่านสื่อที่เป็นสายทองแดงหรือเหล็ก
- คลื่นแสง
 - ผ่านสื่อที่เป็นแก้วหรือพลาสติก
- คลื่นแม่เหล็กไฟฟ้า
 - ผ่านสื่อที่เป็นอากาศ

Duties of Physical Layer

- Bit-Signal Transformation
 - การแปลงบิตข้อมูล→ สัญญาณสื่อสารต่างๆ
- Bit Synchronization
 - การประสานเวลาบิตโดยกำหนดสัญญาณนาฬิการะหว่างผู้ส่งและผู้รับ
- Circuit Switching
 - การสลับสายวงจรเพื่อการสื่อสารระหว่างสองสถานีที่เชื่อมโยงกันโดยตรง
- Bit-Rate Control
 - กำหนดอัตราข้อมูลในการรับส่งข้อมูล
- Multiplexing
 - จัดแบ่งช่องทางการการสื่อสารเชิงตรรกะ เพื่อเพิ่มประสิทธิภาพสื่อ

6 305343 - 1/2554

Analog and Digital

7

Analog and Digital

- ข้อมูลที่ใช้ในการสื่อสาร
 - Analog ค่าของข้อมูลเป็นค่าแบบต่อเนื่อง เช่น เสียงของคน
 - Digital ค่าของข้อมูลเป็นค่าแบบไม่ต่อเนื่อง เช่น ข้อมูลจาก คอมพิวเตอร์
- สัญญาณที่ใช้ในการสื่อสาร
 - Analog เป็นสัญญาณแบบต่อเนื่อง เช่น ระบบโทรสัพท์แบบคั้งเดิม
 - Digital เช่น คอมพิวเตอร์, ระบบโทรศัพท์คิจิทัล

305343 - 1/2554

9

Analog Signal

• เป็นสัญญาณต่อเนื่อง ที่มีรูปแบบเป็นคลื่นใชน์ (Sine Wave)

$$s(t) = A \sin(2\pi f t + \phi)$$

โคยที่

s(t) = ขนาดของคลื่น ณ เวลา <math>t ใดๆ

arA=ขนาคหรือแอมพลิจูคสูงสุคของคลื่น

ø= เฟสของคลื่น

• การส่งข้อมูลสามารถทำได้โดยอาศัยการเปลี่ยนแปลงค่าของ A,f และ $oldsymbol{\phi}$

305343 – 1/2554

Period and Frequency

• คาบ (Period: T) = เวลาที่กลื่นเคลื่อนที่ครบหนึ่งรอบ =

• ความถี่ (Frequency: ƒ) = จำนวนคาบในหนึ่งวินาที =

Period and Frequency

คาบ และ ความถื่ เป็นค่าผกผันซึ่งกันและกัน

T = 1/f use f = 1/T

Frequency

- ณ ที่เวลาเท่ากัน
 - ถ้าอัตราการเปลี่ยนแปลงของสัญญาณบ่อยครั้ง
 → ความถี่สูง

- ถ้าอัตราการเปลี่ยนแปลงของแต่ละสัญญาณใช้เวลานาน
 → ความถี่ต่ำ
- ถ้าสัญญาณไม่มีการเปลี่ยนแปลงเลย ightarrow ความถี่มีค่าเป็น 0
- ถ้าสัญญาณมีการเปลี่ยนแปลงขณะใดขณะหนึ่ง → ความถิ่มีค่า เป็นอนันต์

305343 - 1/2554

อ้างอิง: รูปภาพจากหนังสือ Data Communications and Networking ของ Forouzn B.

13

Measurement Units

คาบ (Period)		ความถี่ (Frequency)	
หน่วย	แทนด้วย	หน่วย	แทนด้วย
วินาที (s)	1 s	เฮิรตซ์ (Hz)	1 Hz
มิลลิวินาที (ms)	10 ⁻³ s	กิโลเฮิรตซ์ (KHz)	$10^3 \mathrm{Hz}$
ใมโครวินาที (us)	10 ⁻⁶ s	เมกะเฮิรตซ์ (MHz)	$10^6\mathrm{Hz}$
นาโนวินาที (ns)	10 ⁻⁹ s	จิกะเฮิรตซ์ (GHz)	10 ⁹ Hz
พิโควินาที (ps)	10 ⁻¹² s	เทระเฮิรตซ์ (THz)	$10^{12}\mathrm{Hz}$

305343 – 1/2554

Phase

- เฟส
 - เป็นการอธิบายถึงตำแหน่งของรูปคลื่นเทียบกับเวลาเริ่มต้น (ศูนย์)
 - หรือตำแหน่งเชิงมุม ณ เวลาอ้างอิงของสัญญาณ (t=0)
- มีหน่วยเป็นองศา หรือเรเดียน
- 1 รอบ (Cycle) = 360° = 2π เรเดียน
- การปรับเฟส (Phase Shift)
 - จำนวนของการปรับค่าตำแหน่งในการเปลี่ยนแปลงของคลื่น

Phase Shift

ค. 180°

Phase Shift Example

• ณ ที่เวลา t = 0 คลื่นใชน์มีการเลื่อนไปสามในสิ่ของรอบ ให้หาค่าเฟสในหน่วยองศาและเรเดียน

305343 – 1/2554

Time and Frequency Domain

• ของสัญญาณที่คาบเวลาไม่คงที่

Time and Frequency Domain

Bandwidth

- ช่วงความถี่ที่สื่อสามารถนำพาสัญญาณ หรือความกว้าง ของสเปกตรัม
- ค่าความถี่สูงสุด ค่าความถี่ต่ำสุด
- Bandwidth =

19

305343 - 1/2554

A single-frequency sine wave

ถ้าเราใช้**คลื่นใชน์ที่มีความถี่เดียว** ในการสนทนาผ่านทางโทรศัพท์ จะมีการสื่อสารข้อมูลเกิดขึ้นหรือไม่ ? เพราะเหตุใด ?

305343 – 1/2554 21

Composite Signal Example

Composite Signals

- สัญญาณประกอบ
- เกิดจากคลื่นใชน์จำนวนมากๆ ที่มีความถี่ เฟส และขนาด ของคลื่นต่างกัน มาประกอบกันสร้างสัญญาณใหม่
- จะได้สัญญาณที่เป็นเซตของความถี่ต่างๆ
- สมการ

$$s(t) = A_1 \sin(2\pi f_1 t + \phi_1) + A_2 \sin(2\pi f_2 t + \phi_2) + \dots$$

305343 – 1/2554 22

Digital Signal

• การแทนบิตข้อมูลด้วยค่าแอมพลิจูคสองระดับ: ระดับสูง = 1, ระดับต่ำ = 0

- Bit interval = เวลาที่ใช้ต่อหนึ่งบิต =
- Bit rate = จำนวนบิตในหนึ่งวินาที =

305343 – 1/2554

Digital Signal

ถ้าเราต้องการส่งข้อมูลด้วยอัตราบิต *n* (bps) ผ่านช่องสัญญาณแอนะล็อก เช่นสายโทรศัพท์ จำเป็นต้องใช้แบนด์วิดท์อย่างน้อยเท่าไร ?

305343 – 1/2554 25

The number of Bit Rate & The required Bandwidth

• กรณีที่แย่ที่สุด (101010 หรือ 010101)

Analog

27

Bit rate = Frequency =

The number of Bit Rate & The required Bandwidth

- สมมติต้องการส่งข้อมูลด้วยอัตราบิต 6 bps โดยใช้ 1 ฮาร์มอนิก
- กรณีที่ดีที่สุด (111111 หรือ 000000)

Bandwidth requirement & the # of Harmonics

- ถ้าใช้1 ฮาร์มอนิก
 - จะได้แบนด์วิดท์ (B) ที่ต้องการอย่างน้อย

• ถ้าเพิ่มฮาร์มอนิกคี่ที่เป็นทวีคูณความถี่จำนวนมากขึ้น

จะได้สัญญาณในรูปแบบที่ต้องการมากขึ้น

305343 - 1/2554

อ้างอิง: รูปภาพจากหนังสือ Data Communications and Networking ของ Forouzn B.

Bandwidth Requirement Example

• สมมติต้องการส่งข้อมูลคั่วยอัตราบิต(n) 1, 10 และ 100 kbps

Bit Rate	Harmonic 1	Harmonics 1, 3	Harmonics 1, 3, 5
n = 1 kbps	$B = 500 \; \text{Hz}$	B = 1.5 kHz	B = 2.5 kHz
n = 10 kbps	B = 5 kHz	B = 15 kHz	B = 25 kHz
n = 100 kbps	B = 50 kHz	B = 150 kHz	B = 250 kHz

Digital vs. Analog

- การสื่อสัญญาณคิจิทัล
 - แบนค์วิดท์ที่ต้องการ $[0,\infty]$
 - Low-pass channel

- การสื่อสัญญาณแอนะล็อก
 - แบนด์วิดท์ที่ต้องการ $[f_1,f_2]$
 - Band-pass channel

305343 - 1/2554

อ้างอิง: ตารางจากหนังสือ Data Communications and Networking ของ Forouzn B.

305343 - 1/2554

29