

BOAZ 분석

목차

- 1. 퍼셉트론
- 2. 신경망
- 3. 신경망 학습
- 4. 오차역전파법
- 5. 학습 관련 기술들

1. 퍼셉트론 - 퍼셉트론이란?

신호의 합이 임계치보다 클 때만 출력

1. 퍼셉트론 - 단순한 논리회로

AND

x_1	x_2	у
0	0	0
1	0	0
0	1	0
1	1	1

NAND

x 1	X 2	у
0	0	1
1	0	1
0	1	1
1	1	0

OR

x_1	X 2	у
0	0	0
1	0	1
0	1	1
1	1	1

1. 퍼셉트론 - 단순한 논리회로

XOR 게이트

직선 하나로 나눈 영역(=선형 영역)만 표현할 수 있다는 한계

'층을 쌓아' 다층 퍼셉트론을 만든다.

x_1	x_2	S ₁	S_2	у
0	0	1	0	0
1	0	1	1	1
0	1	1	1	1
1	1	0	1	0

→ 선형성 극복

2. 신경망 - 신경망이란?

활성화 함수 h(x): 신호의 총합을 출력 신호로 변환하는 함수

데이터를 <mark>비선형</mark>으로 바꿔주기 위해 사용!

활성화 함수 h(x): 신호의 총합을 출력 신호로 변환하는 함수

1. 계단 함수

2. 시그모이드 함수

$$sigmoid(x) = \frac{1}{1 + e^{-x}}$$

3. ReLU 함수

$$h(x) = \begin{cases} x & (x > 0) \\ 0 & (x \le 0) \end{cases}$$

활성화 함수 h(x): 신호의 총합을 출력 신호로 변환하는 함수

출력층의 활성화 함수는 풀고자 하는 문제의 성질에 맞게 정의

4. 항등 함수
: 출력 범위에 제한이 없고 연속적이기 때문에, 연속적인 수치를 예측하는 회귀 문제를 다룰 때 적합

5. Softmax 함수

 : 출력값을 양수로 바꾸고

 모든 출력값들의 합이 10

 되도록 nomalize

: 확률로 해석 가능

: 분류 문제를 다룰 때 적합

2. 신경망 - 3층 신경망 구현하기

2. 신경망 - 3층 신경망 구현하기

2. 신경망 - 3층 신경망 구현하기

순전파(Forward propagation)

손실 함수(Loss function): 신경망이 학습할 수 있도록 해주는 지표

손실 함수의 결과값을 가장 적게 만드는 가중치 매개 변수를 찾는 것이 학습의 목표

1. 평균 제곱 오차 (MSE, mean squared error)

$$E = \frac{1}{2} \sum_{k} \left(y_k - t_k \right)^2$$

2. 교차 엔트로피 오차 (CEE, cross entropy error)

$$E = -\sum_k t_k log y_k$$

3. 신경망 학습 - 손실 함수

손실 함수(Loss function): 신경망이 학습할 수 있도록 해주는 지표

Q. 왜 '정확도' 대신 '손실 함수'를 신경망 학습 기준 지표로 사용할까?

A. 정확도는 불연속적인 수치 & 미소한 변화에는 반응 X -> 정확도를 지표로 하면 매개변수의 미분이 대부분의 장소에서 0이 되기 때문!

이는 신경망에서 대부분의 장소에서 미분값이 0이 되는 계단 함수를 활성화 함수로 사용하지 않고, 매끄러운 함수를 사용하는 것과 같은 이유

3. 신경망 학습 - 기울기를 이용한 신경망 학습 (경사법)

신경망의 손실함수를 작게 만드는 기법으로 함수의 기울기를 활용

경사법: 현 위치에서 기울어진 방향으로 일정 거리만큼이동하여 함수의 값(=손실 함수 값)을 점차 줄이는 방법

경사 하강법(gradient descent method): 최소값 찾기

경사 상승법(gradient ascent method): 최대값 찾기

$$egin{aligned} x_0 &= x_0 - \eta rac{\partial f}{\partial x_0} \ x_1 &= x_1 - \eta rac{\partial f}{\partial x_1} \end{aligned}$$

* 에타(ŋ) = 학습률(learning rate): 한번에 얼마나 학습해야 할지. 매개변수 값을 얼마나 갱신해야 할지를 나타냄

계산 그래프: 계산 과정을 그래프(노드, 엣지)로 표현한 것

사용하는 이유?

- 1. 복잡한 문제를 자신과 관계된 정보만으로 결과를 출력 가능
- 2. 중간 계산 결과를 모두 보관할 수 있음
- 3. 역전파를 통해 미분을 효율적으로 계산

4. 오차역전파법 - 계산 그래프의 역전파

계산 그래프: 계산 과정을 그래프(노드, 엣지)로 표현한 것

1. 덧셈 노드의 역전파

: 입력 값을 그대로 다음 노드로 흘려 보냄

2. 곱셈 노드의 역전파

: 상류의 값에 순전파 때의 입력 신호들을

서로 바꾼 값을 곱해 하류로 보냄

4. 오차역전파범 - 계산 그래프의 역전파

그림 5-14 사과 쇼핑의 역전파 예 100 200 220 × × 2.2 1.1 사과의 개수 110 1.1 소비세 200

5. 학습 관련 기술들 - 매개변수 갱신

① 확률적 경사 하강법 (SGD)

3 AdaGrad

4 Adam

$$\mathbf{W} \leftarrow \mathbf{W} - \eta \frac{\partial L}{\partial \mathbf{W}}$$

- 데이터를 무작위로 선정하여 경사 하강법을 적용하는 매개변수 갱신 방법 - 추출된 데이터 한 개에 대해서 그라디언트를 계산 - 단점 : 비등방성 함수에서 탐색 경로가 비효율적

$$\mathbf{v} \leftarrow \alpha \mathbf{v} - \eta \, \frac{\partial L}{\partial \mathbf{W}}$$
$$\mathbf{W} \leftarrow \mathbf{W} + \mathbf{v}$$

- 확률적 경사 하강법에 속도의 개념의 더함 - SGD 단점 개선

$$\mathbf{h} \leftarrow \mathbf{h} + \frac{\partial L}{\partial \mathbf{W}} \odot \frac{\partial L}{\partial \mathbf{W}}$$
$$\mathbf{W} \leftarrow \mathbf{W} - \eta \frac{1}{\sqrt{\mathbf{h}}} \frac{\partial L}{\partial \mathbf{W}}$$

- 학습을 진행하면서 학습률을 점차 줄이는 '학습률 감소 기법'을 적용
- 개별 매개변수에 적응적으로 학습률을 조정하면서 학습 진행

- momentum + AdaGad

5. 학습 관련 기술들 - 매개변수 갱신

5. 학습 관련 기술들 - 가중치의 초깃값

- 가중치의 초기값은 무작위로!

그림 6-10 가중치를 표준편차가 1인 정규분포로 초기화할 때의 각 층의 활성화값 분포

그림 6-11 가중치를 표준편차가 0.01인 정규분포로 초기화할 때의 각 총의 활성화값 분포

- Xavier 초깃값

그림 6-13 가중치의 초깃값으로 'Xavier 초깃값'을 이용할 때의 각 층의 활성화값 분포

- He 초깃값

5. 학습 관련 기술들 - 배치 정규화

Batch Normalization

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β

Output: $\{y_i = BN_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$$
 // mini-batch mean

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$$
 // mini-batch variance

$$\hat{x}_i \leftarrow \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}$$
 // normalize

$$y_i \leftarrow \gamma \hat{x}_i + \beta \equiv \text{BN}_{\gamma,\beta}(x_i)$$
 // scale and shift

- 학습하는 과정을 전체적으로 안정화 시키는 방법
- 높은 학습률, 빠른 속도
- 초기값 영향 감소
- 규제의 효과 -> 오버피팅 억제
- 감마(scale)와 베타(shift) 조정이 가능

: 비선형성 유지, saturation 현상 조절

5. 학습 관련 기술들 - 바른 학습을 위해

- 오버피팅

: 매개변수가 많고 표현력이 높을 때, 훈련 데이터가 적을 때 발생

: 해결 방법) ① **가중치 감소**

: 큰 가중치에 대해 큰 패널티 부과

② 드롭 아웃

: 뉴런을 임의로 삭제하며 학습

5. 학습 관련 기술들 - 적절한 하이퍼파라미터 값 찾기

- 훈련 데이터 : 매개변수 학습 /

검증 데이터 : 하이퍼파라미터 성능 평가 /

시험 데이터 : 신경망의 범용 성능 평가

- 하이퍼파라미터의 최적값이 존재하는 범위를 조금씩 줄여나감

감사합니다