ASTR 3890 - Selected Topics: Data Science for Large Astronomical Surveys (Spring 2022)

Data Mining & Machine Learning: Intro to Scikit-Learn

Dr. Nina Hernitschek April 4, 2022

Big Data needs different approaches

parallelism & data-side processing

need of ways to formally specify computations

Data Mining
Machine
Learning

cikit-lea

Data Mining Machine Learning huge, uniform, multivariate databases are emerging from large-scale surveys:

- 10⁹-object photometric catalogs from 2MASS, SDSS, VISTA
- 10^9 -object $\times 10^2$ epochs photometric lightcurve catalogs from ZTF, VVV, PS1 3π , LSST...
- 10⁶⁻⁸-galaxy redshift catalogs from SDSS, LAMOST...
- 10^{6-7} -source radio/IR/X-ray catalogs from eROSITA, WISE

Data Mining Machine Learning huge, uniform, multivariate databases are emerging from large-scale surveys:

- 10⁹-object photometric catalogs from 2MASS, SDSS, VISTA
- 10^9 -object $\times 10^2$ epochs photometric lightcurve catalogs from ZTF, VVV, PS1 3π , LSST...
- 10^{6-8} -galaxy redshift catalogs from SDSS, LAMOST...
- 10^{6-7} -source radio/IR/X-ray catalogs from eROSITA, WISE

powerful astrostatistical & machine-learning tools are needed to **derive scientific insights**

shifting use cases:

As data become more plentiful, finding the *right* data has become more important.

Data Mining
Machine
Learning

Data Mining

shifting use cases:

As data become more plentiful, finding the *right* data has become more important.

shifting use cases:

As data become more plentiful, finding the *right* data has become more important.

Data Mining

Data Mining

Individual measurements giving way to statistics, clustering, patterns in the data.

Data processing needs to be **highly automatized**.

Analysis growing more exploratory rather than pre-defined/scripted.

Examples:

Finding and classifying variable stars in PS1 3π required processing of 10^9 sparse light curves \Rightarrow 44,000 RRab stars.

Transient science (gravitational wave follow-up, GRBs, unknowns from LSST) requires rapid access to data sets of what is already known, anywhere on sky.

image credit: LIGO

Data Mining Machine Learning

Big Data: What is hard?

- Scalability can be challenging: Learn techniques from distributed systems, parallel databases - do not reinvent the wheel!
- Leverage new architectures: clouds, GPUs, multiple cores
- Lots of diverse and dirty data: Use and combine different cleaning and integration techniques

Data Mining Machine Learning

(Jupyter/IPython) Notebook-driven science/analysis very flexible tool to create readable analyses: keep code. images, comments, formula and plots together

IP[y]: Notebook spectrogram Last Checkpoint: a few seconds ago (autosayed) IPython (Python 3) • 10 Cell Toolbar: None P + × Ø F ↑ ↓ ▶ ■ C Code Simple spectral analysis An illustration of the Discrete Fourier Transform using windowing, to reveal the frequency content of a sound signal, $X_k = \sum_{n=0}^{N-1} x_n e^{-\frac{2\pi i}{N}kn}$ k = 0, ..., N-1We begin by loading a datafile using SciPv's audio file support: In [1]: from scipy.io import wayfile rate, x = wavfile.read('test mono.wav') And we can easily view its spectral structure using matplotlib's builtin specgram routine: In [2]: %matplotlib inline from matplotlib import pyplot as plt fig. (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 4)) ax1.plot(x): ax1.set title('Raw audio signal') ax2.specgram(x); ax2.set title('Spectrogram'); Raw audio signal Spectrogram 8000 6000 0.8 4000 2000 0.6 -2000 0.4 -4000 -6000

0.2

Data Mining

Data Mining

common technologies, many implementers for data exploration & analysis

8 binder Archive Astropy ipac STScI | SPACE TELESCOPE SCIENCE INSTITUTE SciServer (docker Legacy Survey of Space and Time Opening a Window of Discovery on the Dynamic Universe

7

Data Mining Machine Learning ... is the sub-field of computer science that gives computers the ability to learn without being explicitly programmed (Arthur Samuel, 1959)

Data Minir Machine Learning ... is the sub-field of computer science that gives computers the ability to learn without being explicitly programmed (Arthur Samuel, 1959)

 \Rightarrow allows to uncover hidden correlation patterns through iterative learning by sample data

Data Mining
Machine
Learning
scikit-learn

... is the sub-field of computer science that gives computers the ability to learn without being explicitly programmed (Arthur Samuel, 1959)

 \Rightarrow allows to **uncover hidden correlation patterns** through iterative learning by sample data

Data Mining
Machine
Learning

... is the sub-field of computer science that gives computers the ability to learn without being explicitly programmed (Arthur Samuel, 1959)

 \Rightarrow allows to uncover hidden correlation patterns through iterative learning by sample data

- \Rightarrow allows **to model a survey**:
 - lacktriangle describing data quality o outlier
 - $lue{}$ describing light curve characteristics ightarrow "features"
 - classifying sources → catalogs
 - finding substructure \rightarrow clumps, overdensities, ...

Unsupervised vs. Supervised Learning

unsupervised learning or "learning without labels"

Clustering:

Find subtypes or groups that are not defined a priori based on measurements

⇒ members of the same cluster are "close" in some sense

VS.

Machine

Learning

supervised learning or "learning without labels"

Classification:

Use a priori group labels in analysis to assign new observations to a particular group or class

Regression:

instead of having training data with discrete labels, the "truth" is a continuous property and we are trying to predict the values of that property for the test data

Unsupervised vs. Supervised Learning

supervised learning or "learning without labels"

Classification:

Use a priori group labels in analysis to assign new observations to a particular group or class

Regression:

instead of having training data with discrete labels, the "truth" is a continuous property and we are trying to predict the values of that property for the test data

example:

The task of determining whether an object is a star, a galaxy, or a quasar is a classification problem: the label is from three distinct categories. On the other hand, we might wish to estimate the age of an object based on such observations: this would be a regression problem, because the label (age) is a continuous quantity.

Machine Learning

Clustering Methods

■ Abell clustering richness class (Abell 1958)

Data Mining
Machine
Learning

Clustering Methods

■ Abell clustering richness class (Abell 1958)

icinire rediri

Machine Learning

■ Gamma Ray Bursts: use properties of GRBs (e.g. location on the sky, arrival time, duration) to find classes of events

image credit: (Mukherjee+1998)

Clustering Methods

Machine

Learning

Percolation or 'Friends of Friends (FoF)' algorithm

1. Plot data points in a 2-dimensional diagram (or: calculate distances using a metric).

2. Find the closest pair, and call the merged object a cluster.

3. Repeat step 2 until some chosen threshold is reached. Some objects will lie in rich clusters, others have one companion, and others are isolated.

Classification Methods

Classification

Use a priori group labels in analysis to assign new observations to a particular known group or class.

⇒ supervised learning or "learning with labels".

Data Mining
Machine
Learning

scikit-lear

Concepts of Supervised Classification

Data Mining
Machine
Learning

training set:

- set of sources inside/outside the category we are looking for
- same data quality as found in target set

Concepts of Supervised Classification

Data Mining Machine Learning

training set:

- set of sources inside/outside the category we are looking for
- same data quality as found in target set

What's happening internally?

Concepts of Supervised Classification

The learning process ("training"):

To build a decision tree, the set is divided into smaller and smaller subsets by **splitting** w.r.t. a single **feature** at a time.

Split criteria: select feature and split point to produce the smallest impurity in the two resultant nodes based on the **training set**.

Machine

Learning

Supervised Classification - Ensemble Methods

Random Forest Classifier as ensemble method: many trees are grown from subsets of the training set

Machine Learning

Supervised Classification - Ensemble Methods

Random Forest Classifier as ensemble method: ... and are "voting" for classification

Data Mining
Machine
Learning

Supervised Classification - Ensemble Methods

Data Mini
Machine
Learning

divide-and-conquer approach improves classification performance

- less sensitive to training set variances
- robust to outliers
- training and classification can be parallelized

Supervised Classification - Verification

don't apply a classifier as a "black box"!

several concepts for verification

Machine Learning

Supervised Classification - Verification

don't apply a classifier as a "black box"!

several concepts for verification

make usage of the training set \Rightarrow **10-fold cross-validation** 10 % held out \Rightarrow train on 90%, apply to 10% in turn

Machine Learning scikit-learn

Supervised Classification - Verification

don't apply a classifier as a "black box"!

several concepts for verification

make usage of the training set \Rightarrow **10-fold cross-validation** 10 % held out \Rightarrow train on 90%, apply to 10% in turn

purity-completeness (or precision-recall) curves

Machine Learning

completeness:

- # selected true RR Lyrae / # true RR Lyrae purity:
- # selected true RR Lyrae / # all selected sources

scikit-learn

scikit-learn

scikit-learn is a popular Python package containing a collection of tools for **machine learning**

it includes algorithms used for classification, regression and clustering

it comes with an extensive **online documentation**: http://scikit-learn.org/stable/tutorial/basic/tutorial.html

scikit-learn is built upon Python's NumPy (Numerical Python) and SciPy (Scientific Python) libraries, which enable efficient in-core numerical and scientific computation within Python.

scikit-learn

Data Mining
Machine
Learning
scikit-learn

scikit-learn uses 3 steps for **developing**, **applying and testing** machine learning algorithms:

- Train the model using an existing data set describing the phenomena you need the model to predict.
- Test the model on another existing data set to ensure it performs well.
- Use the model to predict phenomena as needed for your project.

Break & Questions

Data Minin Machine Learning

scikit-learn

afterwards we continue with lecture_10.ipynb from the github repository