פרויקט - מתמטיקה בדידה - שחר פרץ - שיעורי בית 7, תרגיל 7.ב

מידע כללי

תאריך הגשה: 20.1.2024

ת.ז.: 334558962

השאלה

תהי פונקציה $A \to B$, ויהי $A \subseteq A$, נגדיר את הצמצום של $A \in X$ בתור פונקציה $f: A \to B$, ויהי $A \subseteq X$, נגדיר את הצמצום של $A \subseteq X$. כחלק מתרגיל בית 6, גם ניתנו ההגדרות השקולות הבאות:

$$f|_X := f \cap (X \times B) = \{ \langle a, b \rangle \in f \mid a \in X \}$$

יהיו $A,B,C
eq \emptyset$ יהיו

$$H: ((B \cup C) \to A) \to ((B \to A) \times (C \to A)) \tag{1}$$

$$H = \lambda h \in (B \cup C) \to A.\langle h|_B, h|_C \rangle \tag{2}$$

(B o A) imes (C o A) על על איל ש־A, B, C צ.ל. תנאי הכרחי ומספיק על

מה לא נכון בהוכחה שנתתי בשיעורי הבית

על. $B \cap C = \emptyset$ ניסיתי להוכיח ש

במהלך הגרירה השנייה, הייתי צריך להוכיח ש־H על גורר $\emptyset = C = \emptyset$ (שבדיעבד אינו נכון). שיטת ה"הוכחה" שנקטתי בה הייתה הנחה בשלילה; הנחתי בשלילה ש־H על, ו"הוכחתי" שנגרר $\emptyset = C = \emptyset$, אך זו אינה אפילו שיטה להוכחת גרירה – סה"כ כל *מה שהוכחתי באמת הוא ש־H לא על*. גישה נכונה, הייתה, לדוגמה, להניח שH על ולהוכיח את אשר נדרש ממני, ואז, דוגמה, להניח בשלילה ש־H (ולא ההפך) ולהראות שתחת ההנחה, זאת מוביל לסתירה (אבל כמובן שזה אינו אפשרי).

הוכחה מתוקנת

. נוכיח שתי גרירות שקול לכך ש־H על. נוכיח שתי גרירות ($B\cap C=\emptyset \lor |A|=1)$

- נניח $(f_1,f_2)\in (B o A)\times (C o A)$ נוכיח על, כלומר, יהי $(B\cap C=\emptyset\vee |A|=1$ נוכיח קיום . $B\cap C=\emptyset\vee |A|=1$ נפלג למקרים. $(B\cup C)\to A$
 - $:H(h)=\langle f_1,f_2
 angle$ נניח ש־h פונ', המקיימת $B\cap C=\emptyset$: נבחר $B\cap C=\emptyset$ נניח ש
 - פונ': נוכיח מליאות וחד ערכיות: h
- $x\in B$ מליאות ב־ $B\cup C$ יהי $B\cup C$ יהי $x\in B\cup C$ נוכיח קיום $x\in B\cup C$ מליאות ב־ $x\in B\cup C$ יהי יהי $y=f_2(x)$ נוכיח $y=f_2(x)$ אם $x\in C$ באופן דומה נבחר $y=f_2(x)$ אם $y=f_1(x)\in B$ נבחר $y=f_2(x)$ שולי ק $y=f_1(x)\in B$ מרונים אם $y=f_2(x)$ שולי ק $y=f_1(x)\in B$ שולי ק $y=f_2(x)$ שולי ק $y=f_1(x)\in B$ שולי ק $y=f_2(x)$ שולי ק $y=f_2(x)$

- עניח $y_1=y_2$ וויהי y_1,y_2 וויהי y_1,y_2 כך ש־ y_1,y_2 כך ש־ y_1,y_2 נוכיח $x\in B\cup C$ וויהי $x\in B\cup C$ בשלילה שלא כן. נפצל למקרים:
 - $y_1=y_2$ אם f_1 אם g_1 אז g_1 אז g_2 אז g_2 או לכן הם ב־ g_1 , ולכן הם ב־ g_1 , ומשום ש־ g_1 אז g_1
 - $y_1=y_2$ אם $B\setminus f_1$ אם $A\subseteq G\setminus G$ אז $A\subseteq G\setminus G$ אולכן $A\subseteq G\setminus G$ ולכן הם ב־ $A\subseteq G$, ומשום ש $A\subseteq G\setminus G$
 - אס או $x \in \emptyset$ אז $x \in C \cap B$ אם $x \in \emptyset$ אם אם אם

י בין אם יונן אב

וווכיח ול=בן או

ישלפן פאופן

בשת א.נקבל שצ.ל.: נשתמש בכלל eta וכלל lpha של תחשיב למדא, נקבל שצ.ל.: $H(h) = \langle f_1, f_2 \rangle$

$$\langle (f_1 \cup f_2)|_B, (f_1 \cup f_2)|_C \rangle = \langle f_1, f_2 \rangle$$

ובהתאם להגדרה בזה שהתחומים של f_1 ו־ f_2 הם f_2 הם להגדרה בזה שהתחומים של ובהתאם להגדרה השקולה של הצמצום המופיע לעיל, זהו פסוק אמת.

 $A = \lambda x \in B \cup C.a$ נבחר $A = \{a\}$, נכחר $A = \{a\}$, נכחר $A = \{a\}$, נכחר $A = \{a\}$, נכחר גור וודע C אל אוB או שום הגבלה על h או $B=f_1\wedge h|_C=f_2$ משום שאין שום הגבלה על $h:(B\cup C) o A$, משום שאין שום הגבלה על $h:(B\cup C) o A$ aנוכיח בה"כ $a = f_1$ משום ש־A = I, אזי a הפונקציה הקבוצה ב־a (נניח בשלילה שלא כן, לפיכך קיים aולכן $b\in\{a\}\land b\neq a$ ולכן $A=\{a\}$ אך ובאופן שקול $f_1(x)=b$ בעבורו ישנו $b\in A\land b\neq a$ מעתה $h|_B=\lambda x\in B.a$ וזו סתירה), ולפי הגדרת הפונקציה הקבועה שניתנה בשיעור $b=a\wedge b\neq a$ ואילך, נוכיח $h|_B=f_1$ באמצעות הכלה דו כיוונית.

- יהי $f_1\subseteq h$, ולפי כלל g=a אf, ולפי כלל x,y, ולפי כלל x,y, ולפי כלל x,yההפרדה, צ.ל. $(x,y) \in h \land x \in B$ הטענה $(x,y) \in h \land x \in B$ נכונה כי גל. ההפרדה, א.ל. $(A,y)\in h^-$ א לפי כלל , $x\in B\cup C \land y=a$
- יהי Bי, ולפי, $(x,y) \in h \land x \in B$, נוכיח $(x,y) \in h$. לפי עקרון ההפרדה, ידוע ולפי, גוכיח ולפיח : $h|_B \subseteq f_1$ כלל $B \land y = a$ שלפי כלל $A \in B \land y = a$ ובאופן שקול $A \in B \cup C \land y = a \land x \in B$ כלל . גורר $\langle x,y\rangle \in f_1$ כדרוש

 $\mathscr{Q}\mathscr{E}\mathscr{F}$. טה"כ A = 0 על; $B \cap C = \emptyset \lor A$ על;

נניח H על, נוכיח $A = 0 \setminus A \cap C = \emptyset$ נניח בשלילה את הטענה ההפוכה; ש $B \cap C = \emptyset \lor A$ וגם $A \cap C = \emptyset$ (לפי חוקי דה־מורגן על לוגיקה). ידוע \emptyset A,B,C
eq A, ולכן A,B,C
eq A ווהי שנו לפחות איבר $(a_1,a_2 \in A,a_1
eq a_2
eq A$ על, על היות H על היות בנתון על היות $B \cap C$ יחיד ב־ $B \cap C$ ויהי בלולה, כדי להראות דוגמה נגדית להנחת השלילה, נתבונן בנתון על היות $A(A) = \langle f_1, f_2 \rangle$ עוברו $A(C) \to A$ ונסיק שלכל $A(C) \to A$ עוברו $A(C) \to A$ מתקיים קיום $A(C) \to A$ $\{c \in \mathcal{S}_{0} : x \in \mathcal{S}_{0} : x \in \mathcal{S}_{0} : x \in \mathcal{S}_{0}\}$ ובפרט עבור $\{x,a_{1}\}, f_{2} = \{x,a_{2}\}, f_{3} \in \mathcal{S}_{0} : x \in \mathcal{S}_{0} : x$ ב־A, תנאי שנעדר מההוכחה הקודמת]. מתוך כלל eta על הטענה $H(h)=\langle f_1,f_2
angle$, נסיק קAים ב־ η מן הנתון $f_1=\langle x,a_1 \rangle$ מן הנתון $f_2=\langle x,a_2 \rangle$ מן הנתון $f_1=\langle x,a_1 \rangle$ מן הנתון $f_2=\langle x,a_2 \rangle$ מו (10 9 O) ולפי הגדרת $h|_X$ ולפי ה $\langle x,a_1
angle \in h|_B \wedge \langle x,a_2
angle \in h|_C$ לפי עקרון ההפרדה $\langle x, a_1 \rangle \in n \mid B \wedge \langle x, a_2 \rangle \in h \mid C$ אינה פונקציה, שהינה $\langle x, a_1 \rangle \in h \wedge \langle x, a_2 \rangle \in h \wedge a_1 \neq a_2$ אינה פונקציה, שהינה $\langle x, a_1 \rangle \in h \wedge \langle x, a_2 \rangle \in h \wedge a_1 \neq a_2$ אינה פונקציה, שהינה $\langle x, a_1 \rangle \in h \wedge \langle x, a_2 \rangle \in h \wedge a_1 \neq a_2$ والموالموا $\mathscr{Q}.\mathscr{E}.\mathscr{F}.$ להנחה h פונקציה. סה"כ 1=0 |A|=0 על; $B\cap C=\emptyset$

2.€.D. ■