UFR de Mathématiques Algèbre et analyse élémentaires III MI3

Algèbre linéaire.

Espaces vectoriels. Feuille n°2.

1. Bases et dimension.

Exercice 1:

Dans \mathbb{R}^3 , on considère le sous-ensemble

$$P = \{ (x, y, z) \in \mathbb{R}^3 : x - 2y + 3z = 0 \}.$$

Mettre en évidence deux vecteurs v, w, non mutuellement proportionnels, appartenant à P et montrer que tout élément de P est une combinaison linéaire de v et w.

Exercice 2:

On considère l'espace vectoriel réel \mathbb{R}^3 . Déterminer la dimension de la partie F formée des vecteurs (x,y,z) qui vérifient l'identité 2x-y-2z=0. En trouver une base.

Exercice 3:

Dans l'espace vectoriel \mathbb{R}^4 , trouver une base du sous-espace vectoriel formé des (x,y,z,t) qui vérifient x-y=0 et z-t=0.

Exercice 4:

On considère l'espace vectoriel réel \mathbb{R}^4 . Déterminer la dimension de la partie F suivante :

$$F = \left\{ (x, y, z, t) \in \mathbb{R}^4 : \left(\begin{cases} 2x + y + 2z + 3t = 0 \\ x + y + 3z = 0 \end{cases} \right) \right\}.$$

En trouver une base.

Exercice 5:

- a) On considère le sous-espace F de \mathbb{R}^4 engendré par les vecteurs (1,-1,1,0), (1,1,0,1) et (2,0,1,1). Trouver un système d'équations définissant ce sous-espace dans \mathbb{R}^4 .
- **b**) Même question pour le sous-espace G de \mathbb{R}^4 engendré par les vecteurs (1,-1,1,0), (1,1,0,1) et (2,0,1,0).

Exercice 6:

Dans l'espace vectoriel $\mathbb{R}_3[X]$ des fonctions polynomiales en x de degré au plus 3, on considère la suite (p_1, p_2, p_3, p_4) , où

$$p_1(x) = (1-x)^3$$
, $p_2(x) = x(1-x)^2$, $p_3(x) = x^2(1-x)$, $p_4(x) = x^3$.

Calculer les coordonnées de p_j dans la base canonique de $\mathbb{R}_3[X]$; en déduire que la suite (p_1, p_2, p_3, p_4) est une base de $\mathbb{R}_3[X]$.

Exercice 7:

Montrer que l'ensemble des applications de]-1,1[dans ${\bf R}$ définies par :

$$f(x) = a\sqrt{\frac{1-x}{1+x}} + b\sqrt{\frac{1+x}{1-x}} + c\frac{1}{\sqrt{1-x^2}} + d\frac{x}{\sqrt{1-x^2}}$$

où $a,b,c,d\in\mathbf{R},$ est un **R**-espace vectoriel. En déterminer la dimension et en donner une base.

Exercice 8:

On considère l'ensemble des suites numériques réelles qui vérifient

$$\forall n \ge 0 \ u_{n+2} = u_{n+1} + u_n \ .$$

- a) Chercher toutes les suites géométriques $u_n = q^n$ appartenant à ce sous-espace et mettre ainsi en évidence une base de ce sous-espace.
- **b**) Donner une expression explicite de la suite de Fibonacci (suite qui vérifie $w_{n+2} = w_{n+1} + w_n$ et $w_0 = 1 = w_1$).

Exercice 9:

Soit E un espace vectoriel réel. Soient F_1 et F_2 deux sous-espaces vectoriels de E . Monter que l'on a

$$Dim(F_1 + F_2) + Dim(F_1 \cap F_2) = Dim(F_1) + Dim(F_2)$$
.

Exercice 10:

Soit $E = \{a + b(1 + \sqrt{2})^2 + c(1 - \sqrt{2})^2 : a, b, c \in \mathbf{Q}\}$. Montrer que E un \mathbf{Q} -espace vectoriel, en donner une base et en déterminer la dimension.

Exercice 11:

Montrer que dans le **Q**-espace vectoriel **R**, la famille $(1, \sqrt{2})$ est libre, puis que la famille $(1, \sqrt{2}, \sqrt{6})$ est libre. Quelle est la dimension du sous-**Q**-espace vectoriel engendré par cette dernière?

Exercice 12:

Trouver des bases des espaces vectoriels des solutions des systèmes d'équations linéaires (ce qui revient à décrire l'ensemble des solutions : pourquoi?)

$$\begin{cases} 5x_1 + 3x_2 + 5x_3 + 12x_4 &= 0 \\ 2x_1 + 2x_2 + 3x_3 + 5x_4 &= 0 \\ x_1 + 7x_2 + 9x_3 + 4x_4 &= 0 \end{cases} \text{ et } \begin{cases} -9x_1 + 6x_2 + 7x_3 + 10x_4 &= 0 \\ -6x_1 + 4x_2 + 2x_3 + 3x_4 &= 0 \end{cases}$$

Exercice 13:

Pour chacun des sev suivants, donner une base parmi la famille génératrice donnée, la dimension et un système d'équations minimal. Compléter la base de chaque sev, s'il y a lieu, en une base de \mathbb{R}^n (n=3 pour les questions 1, 2, 3, n=4 pour les questions 5, 6).

- (1) E = Vect((-1, 1, 1), (-1, 1, 2)).
- (2) F = Vect((2, -3, 1), (1, 2, -3), (3, -1, -2)).
- (3) G = Vect((1, 1, -2)).
- (4) H = Vect((2, -1, 2, 1), (-1, 3, 0, 1), (1, 2, 2, 2)).
- (5) K = Vect((-3, 1, 2, -1), (-3, 1, 2, 0)).

Exercice 14:

Pour chacun des sev suivants de \mathbb{R}^3 , donner une base, la dimension et un système d'équations minimal.

- (1) $E = \{(2x y, x + y, -x + y), x, y \in \mathbb{R}\}.$
- (2) $F = \{(x+2y, y-2x, y-x), x, y \in \mathbb{R}\}.$

Exercice 15:

Dans \mathbb{R}^4 on considère $a_1 = (2, -2, 3, 1)$ et $a_2 = (-1, 4, -6, -2)$.

- (1) Trouver des vecteurs a_3 et a_4 tels que $\{a_1, a_2, a_3, a_4\}$ est une base de \mathbb{R}^4 .
- (2) Déterminer un système d'équations minimal pour le sev de \mathbb{R}^4 engendré par a_1 et a_2 .

Exercice 16:

On considère les deux familles de vecteurs dans \mathbb{R}^4 :

$$\mathcal{S}_1 = \left\{ (1, -4, -2, 2), (-4, -2, 5, 4), (6, -6, -9, 0) \right\}$$

 et

$$S_2 = \{(-1, -2, 1, 2), (2, 1, -3, 1), (-1, 1, 1, 3)\}$$

Soient E_1 et E_2 les sev de \mathbb{R}^4 engendrés par \mathcal{S}_1 et \mathcal{S}_2 .

- (1) Montrer que $E_1 \subset E_2$.
- (2) Est-ce que $E_1=E_2$? Si non, donner un vecteur de E_2 qui n'est pas dans E_1 .

2. Espaces supplémentaires.

Exercice 1:

Soit E_1 le sous-espace de \mathbb{R}^4 engendré par $\{(1,3,0,4),(2,0,1,2)\}$ et E_2 le sous-espace engendré par $\{(1,1,2,3),(4,-1,0,2)\}$. E_1 et E_2 sont-ils supplémentaires dans \mathbb{R}^4 ?

Exercice 2:

Soit E_1 et E_2 les sous-espaces vectoriels de \mathbb{R}^4 engendrés respectivement par les vecteurs $\{(1, -1, 0, 1), (0, 2, 1, 0)\}$ et les vecteurs $\{(0, 6, -1, 4), (3, 3, 1, 5)\}$.

- a) Caractériser $E_1 \cap E_2$.
- **b**) Donner une base de $E_1 + E_2$.
- c) Déterminer un supplémentaire de $E_1 + E_2$ dans \mathbb{R}^4 .

Exercice 3:

Dans l'espace vectoriel \mathbb{R}^4 on considère l'ensemble E des (x,y,z,t) tels que x+y+z+t=0 et l'ensemble F des (x,y,z,t) tels que x=y=z=t.

- a) Montrer que E et F sont des sous-espaces supplémentaires dans \mathbb{R}^4 .
- b) Déterminer des bases de E et de F .

Exercice 4:

Soit E le sous-espace vectoriel de \mathbb{R}^4 engendré par les vecteurs (1, -1, 2, 3), (1, 1, 2, 0) et (3, -1, 6, -6), et F le sous-espace engendré par (0, -2, 0, -3), (1, 0, 1, 0).

- a) Trouver des bases de $E, F, E \cap F, E + F$.
- b) E et F sont-ils des sous-espaces supplémentaires dans \mathbb{R}^4 ?

Exercice 5:

Soit F le sous-espace vectoriel de \mathbb{R}^4 engendré par les vecteurs (1,1,1,1), (1,-1,1,-1) et (1,3,1,3) et G le sous-espace vectoriel de \mathbb{R}^4 engendré par les vecteurs (1,2,0,2), (1,2,1,2) et (3,1,3,1).

- a) Trouver la dimension de F et G. En donner des bases.
- b) Trouver la dimension des sous-espaces $F \cap G$ et F + G. En donner des bases.
- c) E et F sont-ils des sous-espaces supplémentaires dans \mathbb{R}^4 ?

Exercice 6:

- a) Montrer que les vecteurs $u_1 = (1, 2, 0)$, $u_2 = (2, 1, 2)$ et $u_3 = (3, 1, 1)$ forment une base \mathcal{B} de \mathbb{R}^3 .
 - b) Trouver les coordonnées du vecteur w = (1, 2, 3) dans cette base.
- c) Montrer que les vecteurs $v_1 = (0, 1, 0)$, $v_2 = (1, 0, 1)$ et $v_3 = (2, 1, 0)$ forment une autre base \mathcal{B}' de \mathbb{R}^3 .
- d) Trouver les coordonnées des vecteurs u_i (i=1,2,3) dans la base \mathcal{B}' . En déduire les coordonnées de w dans la base \mathcal{B}' .

Exercice 7:

Soit m un paramètre réel. Dans l'espace vectoriel \mathbb{R}^2 , on considère les vecteurs v=(1,2) et w=(-2,m). On note F_m l'espace vectoriel engendré par les deux vecteurs.

- a) Quelle peut être la dimension d'un sous-espace vectoriel supplémentaire de F_m (on discutera suivant la valeur de m)?
 - b) Trouver un tel sous-espace supplémentaire dans tous les cas.

Exercice 8:

Trouver la dimension, des bases et des équations pour les espaces vectoriels $E \cap F$ et E + F.

- (1) Dans \mathbb{R}^3 , avec E = Vect((1,2,1),(1,1,-1),(1,3,3)) et F = Vect((1,2,2),(2,3,-1),(1,3,-3)).
- (2) Dans \mathbb{R}^5 , avec E = Vect((-1, 6, 4, 7, -2), (2, 3, 0, 5, -2), (-3, 6, 5, 6, -5)) et F = Vect((1, 1, 2, 1, -1), (0, -2, 0, -1, -5), (2, 0, 2, 1, -3)).

Exercice 9:

Soit m un paramètre réel. Dans l'espace vectoriel \mathbb{R}^3 , on considère les vecteurs v=(1,-2,-5) et w=(-2,4,m). On note F_m l'espace vectoriel engendré par les deux vecteurs.

- a) Quelle peut être la dimension d'un sous-espace vectoriel supplémentaire de F_m (on discutera suivant la valeur de m)?
 - b) Trouver un tel sous-espace supplémentaire dans tous les cas.

Exercice 10:

Dans l'espace vectoriel \mathbb{R}^4 on considère deux sous-espaces vectoriels.

- a) Soit F le sous-espace vectoriel engendré par les trois vecteurs $u_1 = (1, 1, 2, 3)$, $u_2 = (-1, 1, 2, -2)$ et $u_3 = (-2, -1, 1, 2)$. A quelle(s) condition(s) doit satisfaire le vecteur (x, y, z, t) pour appartenir à F?
- b) Soit G le sous-espace vectoriel engendré par les vecteurs $v_1=(1,2,3,0)$, $v_2=(-1,1,2,-2)$ et $v_3=(3,0,-1,4)$. A quelle(s) condition(s) doit satisfaire le vecteur (x,y,z,t) pour appartenir à G?
- c) Donner une base du sous-espace vectoriel $F \cap G$. Ces deux sous-espaces vectoriels sont-ils supplémentaires ?
- d) Déterminer le sous-espace vectoriel F + G (on en donnera une base et un système d'équation(s) le définissant).
 - e) Trouver un supplémentaire de F (respectivement G) dans \mathbb{R}^4 .

Exercice 11:

On considère l'espace vectoriel réel $E = \mathbb{R}_n[X]$ des polynômes de degré au plus n (où $n \geq 2$). Soient x_1 et x_2 deux réels distincts.

- a) Montrer que l'ensemble F_1 (resp. F_2) des éléments de E formé des polynômes s'annulant en x_1 (resp. x_2) est un sous-espace vectoriel de E. Trouver sa dimension.
- **b**) Montrer de même que l'ensemble F des éléments de E formé des polynômes s'annulant en x_1 et en x_2 est un sous-espace vectoriel de E. Trouver sa dimension.
 - c) Montrer que $F = F_1 + F_2$. Sont-ils supplémentaires?

Exercice 12:

Soit E un espace vectoriel réel de dimension n ($n \geq 1$). Soit H un sous-espace vectoriel de E de dimension n-1 (on parle d'hyperplan de E). Soit D une droite vectorielle de E (sous-espace vectoriel de dimension 1 de E). Montrer que soit D est contenue dans H soit $D \oplus H = E$.

Exercice 13:

Soit $E=\mathcal{C}(\mathbb{R};\mathbb{R})$ l'espace vectoriel des fonctions continues sur \mathbb{R} . On note F le sous-espace vectoriel des fonctions (continues sur \mathbb{R}) qui valent 0 en 0. Montrer que la droite vectorielle (de E) engendrée par la fonctions $x\mapsto \exp(x)$ est un supplémentaire dans E de F.

Exercice 14:

Soient U, V, W des sous-espaces vectoriels d'un espace vectoriel E.

- (1) Montrer que $\dim(U+V) = \dim(U) + \dim(V) \dim(U \cup V)$.
- (2) Montrer que si $\dim(U) + \dim(V) > \dim(E)$ alors $U \cap V \neq \{0\}$.
- (3) A-t-on toujours $U \cap (V + W) = U \cap V + U \cap W$?
- (4) Montrer que $(U+W) \cap (V+W) \cap (V+U) = (W+V) \cap U + (V+U) \cap W$.

Exercice 15:

On considère dans \mathbb{R}^4 les vecteurs lignes $e_1 = (1,0,1,0)$, $e_2 = (-1,1,1,1)$, $e_3 = (2,3,4,0)$ ainsi que $f_1 = (-1,2,-3,1)$, $f_2 = (-1,2,1,3)$, $f_3 = (-1,2,5,-1)$. On pose $E = \text{Vect}(e_1,e_2,e_3)$ et $F = \text{Vect}(f_1,f_2,f_3)$.

- (1) Calculer $\dim(E)$ et $\dim(F)$.
- (2) Trouver des équations et une base de $E \cap F$.
- (3) Extraire de $\{e_1, e_2, e_3, f_1, f_2, f_3\}$ une base de \mathbb{R}^4 .