

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
14. März 2002 (14.03.2002)

PCT

(10) Internationale Veröffentlichungsnummer
WO 02/21010 A2

(51) Internationale Patentklassifikation⁷: **F16D 65/21** 101 28 251.6 11. Juni 2001 (11.06.2001) DE

(21) Internationales Aktenzeichen: PCT/EP01/10084 (71) Anmelder (*für alle Bestimmungsstaaten mit Ausnahme von US*): CONTINENTAL TEVES AG & CO. OHG [DE/DE]; Guerickestrasse 7, D-60488 Frankfurt am Main (DE).

(22) Internationales Anmeldedatum:
31. August 2001 (31.08.2001)

(25) Einreichungssprache: Deutsch (72) Erfinder; und
(75) Erfinder/Anmelder (*nur für US*): VÖLKEL, Jürgen [DE/DE]; Grosse Seestrasse 46, D-60486 Frankfurt am Main (DE). HALASY-WIMMER, Georg [DE/DE]; Rieslingweg 3, D-71706 Markgröningen (DE).

(30) Angaben zur Priorität:
100 43 387.1 4. September 2000 (04.09.2000) DE (81) Bestimmungsstaaten (*national*): JP, US.

[Fortsetzung auf der nächsten Seite]

(54) Title: OPERATING DEVICE FOR AN ELECTROMECHANICALLY ACTUATED DISK BRAKE

(54) Bezeichnung: BETÄTIGUNGSEINHEIT FÜR EINE ELEKTROMECHANISCH BETÄTIGBARE SCHEIBENBREMSE

WO 02/21010 A2

(57) Abstract: The invention relates to an operating device for a electromechanically actuated disk brake for vehicles, essentially comprising a driving device (1) or an electric motor (11), a rotationally secured actuating device (7), in addition to a reducing gear (2) arranged between the electric motor (11) and the actuating device (7). Said actuating device (7) allows one (4) of two friction linings (4, 5) which are displacably arranged in a caliper (6) to be brought into contact with a disk brake (6). In order to guarantee the testability of the reducing gear, the means (27) for rotationally securing the actuating device (7 or 16) are arranged in the gearbox housing containing said reducing gear (2).

(57) Zusammenfassung: Es wird eine Betätigungeinheit für eine elektromechanisch betätigebare Scheibenbremse für Kraftfahrzeuge vorgeschlagen, die im wesentlichen aus einer Antriebeinheit (1) bzw. einem Elektromotor (11), einem verdrehgesicherten Betätigungelement (7), mittels dessen einer (4) von zwei in einem Bremssattel verschiebbar angeordneten Reibbelägen

[Fortsetzung auf der nächsten Seite]

(84) **Bestimmungsstaaten (regional):** europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Veröffentlicht:

- *ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts*

(4,5) mit einer Bremsscheibe (6) in Eingriff gebracht wird, sowie einem zwischen Elektromotor (11) und Betätigungsselement (7) geschalteten Unterstellungsgetriebe (2) besteht. Um die Prüfbarkeit des Unterstellungsgetriebes zu gewährleisten, wird erfundungsgemäß vorgeschlagen, daß die Mittel (27) zur Verdreh sicherung des Betätigungs elements (7 bzw. 16) in einem das Unterstellungsgetriebe (2) aufnehmenden Getriebegehäuse (24) angeordnet sind.

**Betätigseinheit für eine elektromechanisch
betätigbare Scheibenbremse**

Die Erfindung betrifft eine Betätigseinheit für eine elektromechanisch betätigbare Scheibenbremse für Kraftfahrzeuge, die an einem Bremssattel angeordnet ist, in dem zwei mit je einer Seitenfläche einer Bremsscheibe zusammenwirkende Reibbeläge begrenzt verschiebbar angeordnet sind, wobei einer der Reibbeläge mittels eines verdrehgesicherten Betätigungslementes durch die Betätigseinheit direkt und der andere Reibbelag durch die Wirkung einer vom Bremssattel aufgebrachten Reaktionskraft mit der Bremsscheibe in Eingriff bringbar ist, wobei die Betätigseinheit mindestens aus einem Elektromotor sowie einem wirkungsmäßig zwischen dem Elektromotor und dem Betätigungslement angeordneten Untersetzungsgetriebe besteht.

Eine derartige elektromechanische Betätigseinheit ist aus der internationalen Patentanmeldung WO 99/42739 bekannt. Bei der vorbekannten Betätigseinheit ist das Betätigungslement durch die Gewindemutter eines Rollengewindetriebs gebildet, der als Untersetzungsgetriebe verwendet wird und dessen Gewindespindel vom Elektromotor angetrieben wird. Die Verdrehsicherung der Gewindemutter erfolgt mittels axialer Fortsätze, die in halbkreisförmige Öffnungen eines Lagerschildes eingeführt sind. Das Lagerschild bildet eine Lagerstelle sowohl für die Gewindemutter als auch für die Gewindespindel.

- 2 -

Als nachteilig wird bei der vorbekannten Betätigungseinheit angesehen, daß die erwähnte Verdreh sicherung des Betätigungs elementes für einen modularen Aufbau der Betätigungs einheit ungeeignet ist bzw. daß die verwendete Unter setzungsgtriebe nicht prüfbar ist. Als weniger vorteilhaft ist auch der verhältnismäßig hohe Aufwand anzusehen, der insbesondere auf die kostenintensive Herstellung des Lagerschildes sowie der Gewindemutter zurückzuführen ist. Als ein weiterer Nachteil kann schließlich die Gefahr einer Verklemmung der axialen Fortsätze im Lagerschild, insbesondere in der Anfangsphase des Spannkraftaufbaus, genannt werden, die eine Verschlechterung des Wirkungsgrades zur Folge hat.

Es ist daher Aufgabe der vorliegenden Erfindung, eine elektromechanische Betätigungseinheit der eingangs genann ten Gattung vorzuschlagen, deren Unter setzungsgtriebe selbstständig prüfbar ist. Außerdem soll die vorhin erwähnte Verklemmungsgefahr weitgehendst eliminiert und die axiale Baulänge der gesamten Betätigungseinheit minimiert werden.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß die Mittel zur Verdreh sicherung des Betätigungs elementes in einem das Unter setzungsgtriebe aufnehmenden Gehäuse angeord net sind.

Bei einer vorteilhaften Weiterbildung des Erfindungsgegen standes sind die Mittel durch Zylinderrollen sowie im Ge häuse bzw. im Betätigungs element ausgebildete Nuten gebil det.

- 3 -

Dabei ist es besonders vorteilhaft, wenn die Zylinderrollen in einem das Betätigungs element radial umgreifenden Gleit lager gehalten werden.

Bei einer anderen vorteilhaften Weiterbildung des Erfindungsgegenstandes ist vorgesehen, daß die Mittel durch eine Profilierung der äußeren Fläche des Betätigungs elements sowie eine entsprechende innere Profilierung eines im Gehäuse verdrehsicher angeordneten, das Betätigungs element aufnehmenden Gleitlagers gebildet sind.

Dabei ist das Gleitlager vorzugsweise mit radialen Vorsprün gen versehen, die von im Gehäuse ausgebildeten Ausnehmungen bzw. Nuten aufgenommen werden.

Bei einer weiteren Ausgestaltung des Erfindungsgegenstandes ist vorgesehen, daß die Profilierung der äußeren Fläche des Betätigungs elements sowie die innere Profilierung des Gleitalgers als ein Polygonprofil ausgebildet sind.

Außerdem ist es besonders vorteilhaft, wenn das Untersetzungsgetriebe als ein Kugelgewindetrieb ausgebildet ist und daß das Betätigungs element durch die Gewindemutter des Kugelgewindetriebs gebildet ist.

Die Erfindung wird in der nachfolgenden Beschreibung von zwei Ausführungsbeispielen unter Bezugnahme auf die beiliegende Zeichnung näher erläutert. In der Zeichnung zeigt:

Fig. 1 [] eine Ausführung der erfindungsgemäßen elektromechanischen Betätigseinheit im Axialschnitt,

- 4 -

Fig. 2 eine vereinfachte Darstellung einer bei der erfindungsgemäßen Betätigungsseinheit nach Fig. 1 verwendeten Ausführung des Untersetzungsgetriebes, und

Fig. 3 eine vereinfachte Darstellung einer anderen Ausführung des Untersetzungsgetriebes.

Die in der Zeichnung dargestellte, elektromechanische Betätigungsseinheit nach der Erfindung dient der Betätigung einer Schwimmsattel-Scheibenbremse, deren lediglich schematisch angedeuteter Bremssattel in einem feststehenden Halter 29 verschiebbar gelagert ist. Ein Paar von Reibbelägen 4 und 5 ist im Bremssattel derart angeordnet, daß sie der linken und der rechten Seitenfläche einer Bremsscheibe 6 zugewandt sind.

Nachstehend wird der in der Zeichnung rechts gezeigte Reibbelag 4 als erster Reibbelag und der andere, mit 5 bezeichnete Reibbelag als zweiter Reibbelag bezeichnet. Während der erste Reibbelag 4 mittels eines Betätigungselements 7 durch die Betätigungsseinheit direkt mit der Bremsscheibe 6 in Eingriff bringbar ist, wird der zweite Reibbelag 5 durch die Wirkung einer bei der Betätigung der Anordnung vom Bremssattel aufgebrachten Reaktionskraft gegen die gegenüberliegende Seitenfläche der Bremsscheibe 6 gedrückt.

Die erfindungsgemäße Betätigungsseinheit, die mittels nicht gezeigter Befestigungsmittel am Bremssattel angebracht ist, weist einen modularen Aufbau auf und besteht im wesentlichen aus drei selbständigen Baugruppen bzw. Modulen, und

- 5 -

zwar aus einer Antriebseinheit 1, einem den ersten Reibbelag 4 betätigenden ersten Untersetzungsgetriebe 2 und einem zwischen der Antriebseinheit 1 und dem ersten Untersetzungsgetriebe 2 wirkungsmäßig geschalteten zweiten Untersetzungsgetriebe 3.

Die vorhin erwähnte Antriebseinheit 1 besteht aus einem Elektromotor 11, der im dargestellten Beispiel als ein permanentmagneterregter, elektronisch kommutierter Motor ausgebildet ist, dessen Stator 9 unbeweglich in einem Motorgehäuse 12 angeordnet ist und dessen Rotor 10 durch einen ringförmigen Träger 13 gebildet ist, der mehrere Permanentmagnetsegmente 14 trägt. Zwischen dem Elektromotor 11 und dem vorhin erwähnten Betätigungsselement 7 ist wirkungsmäßig das erste Untersetzungsgetriebe 2 angeordnet, das im gezeigten Beispiel als ein Kugelgewindetrieb 16 bis 18 ausgebildet ist, das in einem Teil 19 gelagert ist, das auch einteilig mit dem vorhin erwähnten Bremssattel ausgeführt sein kann. Der Kugelgewindetrieb besteht dabei aus einer Gewindemutter 16 sowie einer Gewindespindel 17, wobei zwischen der Gewindemutter 16 und der Gewindespindel 17 mehrere Kugeln 18 angeordnet sind, die bei einer Rotationsbewegung der Gewindespindel 17 umlaufen und die Gewindemutter 16 in eine axiale bzw. translatorische Bewegung versetzen. Die Gewindemutter 16 bildet dabei vorzugsweise das vorhin erwähnte Betätigungsselement 7. Außerdem ist der Zeichnung zu entnehmen, daß die vom Elektromotor 11 über das zweite Untersetzungsgetriebe 3 angetriebene Gewindespindel 17 dreiteilig ausgebildet ist und aus einem mit der Gewindemutter 16 zusammenwirkenden rohrförmigen ersten Spindelteil 20, einem ringförmigen zweiten Spindelteil 21, sowie einem mit dem zweiten Untersetzungsgetriebe 3 zusammenwirkenden

- 6 -

dritten Spindelteil 22 besteht. Das erste Spindelteil 20 begrenzt mit der Gewindemutter 16 wendelförmige Gewinderillen 23, in denen die Kugeln 18 umlaufen.

Die Anordnung ist dabei vorzugsweise derart getroffen, daß der Rotor 10 des Elektromotors 11 unter Zwischenschaltung des zweiten Untersetzungsgetriebes 3 die Gewindespindel 17 antreibt, während die Gewindemutter 16 sich am ersten Reibbelag 4 abstützt. Der Lagerung des Rotors 10 dienen zwei Radiallager 8, 15, die im Motorgehäuse 12 bzw. in einem Lagerschild 25 angeordnet sind, das sich am Motorgehäuse 12 axial abstützt.

Eine Reduzierung des erforderlichen Motormoments wird bei der in der Zeichnung dargestellten Ausführung der Erfindung durch zweckmäßige Integration eines Planetengetriebes 30 – 34 erreicht, das das vorhin erwähnte zweite Untersetzungsgetriebe 3 bildet. Das Planetengetriebe, das wirkungsmäßig zwischen dem Rotor 10 und der Gewindespindel 17 angeordnet ist, besteht aus einem Sonnenrad 30, das vorzugsweise durch einen am Rotor 10 ausgebildeten, außen verzahnten Bereich gebildet ist, mehreren gestuften Planetenrädern, von denen zwei dargestellt und mit den Bezugszeichen 31 und 32 versehen sind, sowie einem Hohlrad 33. Das Hohlrad 33 wird durch einen innenverzahnten Bereich eines das Gehäuse des Planetengetriebes bildenden Deckels 26 gebildet.

Das dritte Spindelteil 22 ist vorzugsweise mittels einer Kupplungswelle 40 mit einem Planetenkäfig 36 des zweiten Untersetzungsgetriebes 3 verbunden. Dabei ist es besonders vorteilhaft, wenn beide Enden der Kupplungswelle 40 sowie die diese Enden aufnehmenden Bereiche des dritten Spindel-

teiles 22 und des Planetenkäfigs 36 derart ausgebildet sind, daß zwei Kardangelenke 41, 42 gebildet werden.

Wie weiterhin der Fig. 1 zu entnehmen ist, ist der Rotor 10 mit einem radialen Kragen 34 versehen, der Komponenten eines nicht näher dargestellten Lageerkennungssystems 35 trägt, mit dessen Hilfe die aktuelle Position des Rotors 10 ermittelt wird. Die Lageinformation wird dann mittels eines Hallsensors oder eines magnetoresistiven Elements ermittelt.

Der vorhin erwähnte Kugelgewindetrieb ist dabei vorzugsweise in einem topfförmigen Getriebegehäuse 24 derart untergebracht, daß seine Gewindemutter 16 durch geeignete Mittel gegen Verdrehen gesichert ist. Die Verdrehsicherungsmittel, die mit dem Bezugszeichen 27 versehen sind, befinden sich in dem dem ersten Reibbelag 4 zugewandten Bereich des Getriebegehäuses 24. Eine zwischen der Gewindemutter 16 und dem Getriebegehäuse 24 eingespannte elastische Dichtung bzw. Dichtmanschette 28 verhindert ein Eindringen von Verunreinigungen ins Innere des Kugelgewindetriebs.

Die konstruktive Ausbildung der Verdrehsicherungsmittel 27 erhellt insbesondere aus Fig. 2. Der Explosionsdarstellung ist zu entnehmen, daß die Gewindemutter 16 auf ihrer zylindrischen Oberfläche mehrere Axialnuten 43 aufweist, während in der Innenwandung des Getriebegehäuses 24 entsprechend geformte Nuten 44 ausgebildet sind. Die Nuten 43, 44 nehmen in zusammengebautem Zustand des Kugelgewindetriebs 16 - 18 Zylinderrollen 45 auf, die die gewünschte Wirkung gewährleisten und die in einem ringförmigen Gleitlager 37 gehalten werden.

- 8 -

Bei der in Fig. 3 dargestellten zweiten Ausführung des Untersetzungsgetriebes werden die vorhin erwähnten Verdreh sicherungsmittel durch geeignete Gestaltung der betreffenden Komponenten gebildet. Zu diesem Zweck ist die Oberfläche des Betätigungs elements 7 bzw. der Gewindemutter 160 mit einer Profilierung 38 versehen, die im Querschnitt eine Polygonform aufweist. Ein mit radialen Vorsprüngen 46 versehenes, ringförmiges Gleitlager 39, das in zusammengebautem Zustand unverdrehbar im Getriebegehäuse 240 gehalten wird, weist eine der Profilierung 38 entsprechende Innenprofilierung 47 auf. Die Wirkung einer derartigen Verdreh sicherung ist ohne weiteres erkennbar, so daß sich eine Erläuterung erübriggt.

Bezugszeichenliste

- 1 Antriebseinheit
- 2 Untersetzungsgetriebe
- 3 Untersetzungsgetriebe
- 4 Reibbelag
- 5 Reibbelag
- 6 Bremsscheibe
- 7 Betätigungsselement
- 8 Radiallager
- 9 Stator
- 10 Rotor
- 11 Elektromotor
- 12 Motorgehäuse
- 13 Träger
- 14 Permanentmagnetsegment
- 15 Radiallager
- 16 Gewindemutter
- 17 Gewindespindel
- 18 Kugel
- 19 Teil
- 20 Spindelteil
- 21 Spindelteil
- 22 Spindelteil
- 23 Gewinderille
- 24 Getriebegehäuse
- 25 Lagerschild
- 26 Deckel
- 27 Verdreh sicherungsmittel
- 28 Dichtung

- 10 -

- 29
- 30 Sonnenrad
- 31 Planetenrad
- 32 Planetenrad
- 33 Hohlrad
- 34 Kragen
- 35 Lageerkennungssystem
- 36 Planetenkäfig
- 37 Gleitlager
- 38 Profilierung
- 39 Gleitlager
- 40 Kupplungswelle
- 41 Kardangelenk
- 42 Kardangelenk
- 43 Axialnut
- 44 Nut
- 45 Zylinderrolle
- 46 Vorsprung
- 47 Innenprofilierung
- 160 Gewindemutter
- 170 Gewindespindel
- 240 Getriebegehäuse

Patentansprüche

1. Betätigungsseinheit für eine elektromechanisch betätigbare Scheibenbremse für Kraftfahrzeuge, die an einem Bremssattel angeordnet ist, in dem zwei mit je einer Seitenfläche einer Bremsscheibe (6) zusammenwirkende Reibbeläge (4,5) begrenzt verschiebbar angeordnet sind, wobei einer (4) der Reibbeläge (4,5) mittels eines verdrehgesicherten Betätigungslementes (7) durch die Betätigungsseinheit direkt und der andere Reibbelag (5) durch die Wirkung einer vom Bremssattel aufgebrachten Reaktionskraft mit der Bremsscheibe (6) in Eingriff bringbar ist, wobei die Betätigungsseinheit mindestens aus einem Elektromotor (11), sowie einem wirkungsmäßig zwischen dem Elektromotor (11) und dem Betätigungslement (7) angeordneten Untersetzungsgetriebe (2) besteht, dadurch gekennzeichnet, daß die Mittel (27) zur Verdrehsicherung des Betätigungslementes (7 bzw. 16) in einem das Untersetzungsgetriebe (2) aufnehmenden Getriebegehäuse (24) angeordnet sind.
2. Betätigungsseinheit nach Anspruch 1 dadurch gekennzeichnet, daß die Mittel durch Zylinderrollen (45) sowie im Getriebegehäuse (24) bzw. im Betätigungslement (2 bzw. 16) ausgebildete Nuten (44 bzw. 43) gebildet sind.
3. Betätigungsseinheit nach Anspruch 2 dadurch gekennzeichnet, daß die Zylinderrollen (45) in einem das Betätigungslement (7 bzw. 16) radial umgreifenden Gleitlager (37) gehalten werden.

- 12 -

4. Betätigungsseinheit nach Anspruch 1 dadurch **gekennzeichnet**, daß die Mittel durch eine Profilierung (38) der äußeren Fläche des BetätigungsElements (7 bzw. 160) sowie eine entsprechende innere Profilierung (47) eines im Getriebegehäuse (240) verdrehsicher angeordneten, das BetätigungsElement (7 bzw. 160) aufnehmenden Gleitlagers (39) gebildet sind.
5. Betätigungsseinheit nach Anspruch 4 dadurch **gekennzeichnet**, daß das Gleitlager (39) mit radialen Vorsprüngen (46) versehen ist, die von im Getriebegehäuse (240) ausgebildeten Ausnehmungen bzw. Nuten aufgenommen werden.
6. Betätigungsseinheit nach Anspruch 4 oder 5 dadurch **gekennzeichnet**, daß die Profilierung (38) der äußeren Fläche des BetätigungsElements (7 bzw. 160) sowie die innere Profilierung (47) des Gleitlagers (39) als ein Polygonprofil ausgebildet sind.
7. Betätigungsseinheit nach einem der Ansprüche 1 bis 6, dadurch **gekennzeichnet**, daß das Untersetzungsgetriebe als ein Kugelgewindetrieb (16-18) ausgebildet ist und daß das BetätigungsElement (7) durch die Gewindemutter (16) des Kugelgewindetriebs (16-18) gebildet ist.

1 / 3

Fig. 1

2 / 3

Fig. 2

3 / 3

Fig. 3