

CCNA Day 45

Network Address Translation (Part 2)

More about static NAT

· Dynamic NAT

· Dynamic PAT

Static NAT

- Static NAT involves statically configuring one-to-one mappings of private IP addresses to public IP addresses.
- When traffic from the internal host is sent to the outside network, the router will translate the source address.

Static NAT

- Static NAT involves statically configuring one-to-one mappings of private IP addresses to public IP addresses.
- When traffic from the internal host is sent to the outside network, the router will translate the source address.
- However, this one-to-one mapping also allows external hosts to access the internal host via the inside global address.

Dynamic NAT

- In dynamic NAT, the router dynamically maps inside local addresses to inside global addresses as needed.
- An ACL is used to identify which traffic should be translated.

On R1:

→ If the source IP is **permitted** by the ACL, the source IP will be translated.

ACL 1: permit 192.168.0.0/24

- → If the source IP is **denied** by the ACL, the source IP will NOT be translated. *the traffic will NOT be dropped!
- A NAT pool is used to define the available inside global addresses.

Dynamic NAT

- In dynamic NAT, the router dynamically maps inside local addresses to inside global addresses as needed.
- An ACL is used to identify which traffic should be translated.
 - → If the source IP is **permitted** by the ACL, the source IP will be translated.
 - → If the source IP is **denied** by the ACL, the source IP will NOT be translated. *the traffic will NOT be dropped!
- A NAT pool is used to define the available *inside global* addresses that can be used.
- Although they are dynamically assigned, the mappings are still one-to-one (one *inside local* IP address per *inside global* IP address).
- If there aren't enough inside global IP addresses available (=all are currently being used), it is called 'NAT pool exhaustion'.
 - \rightarrow If a packet from another inside host arrives and needs NAT but there are no available addresses, the router will drop the packet.
 - → The host will be unable to access outside networks until one of the *inside global* IP addresses becomes available.
 - → Dynamic NAT entries will time out automatically if not used, or you can clear them manually.

NAT Pool Exhaustion

Source IP	Translated Source IP
192.168.0.167	→ 100.0.0.1
192.168.0.168	→ 100.0.0.2 →
192.168.0.100	→ 100.0.0.3
192.168.0.12	→ 100.0.0.4
192.168.0.28	→ 100.0.0.5 →
192.168.0.56	→ 100.0.0.6 →
192.168.0.202	→ 100.0.0.7
192.168.0.221	→ 100.0.0.8
192.168.0.116	→ 100.0.0.9 →
192.168.0.188	→ 100.0.0.10 →
192.168.0.98	► Moaddress available! ► Router will drop the packet

Dynamic NAT Configuration

Dynamic NAT Configuration

Dynamic NAT Configuration

```
R1#show in nat statistics
Total active translations: 6 (0 static, 6 dynamic; 4 extended)
Peak translations: 6, occurred 00:00:30 ago
Outside interfaces:
  GigabitEthernet0/0
Inside interfaces:
  GigabitEthernet0/1
Hits: 32 Misses: 0
CEF Translated packets: 20, CEF Punted packets: 12
Expired translations: 0
Dynamic mappings:
-- Inside Source
 Id: 1] access-list 1 pool POOL1 refcount 6
 pool POOL1: netmask 255.255.255.0
        start 100.0.0.0 end 100.0.0.255
        type generic, total addresses 256, allocated 2 (0%), misses 0
 output omitted
```


PAT (NAT Overload)

- PAT (aka NAT overload) translates both the IP address and the port number (if necessary).
- By using a unique port number for each communication flow, a single public IP address can be used by many different internal hosts. (port number are 16 bits = over 65,000 available port numbers).
- The router will keep track of which *inside local* address is using which *inside global* address and port.
- Because many inside hosts can share a single public IP, PAT is very useful for preserving public IP addresses, and it is used in networks all over the world.

PAT Configuration (pool)

PAT Configuration (pool)

PAT Configuration (interface)

PAT Configuration (interface)

PAT Configuration (interface)

```
R1#show ip nat translations
Pro Inside global
                      Inside local
                                          Outside local
                                                             Outside global
udp 203.0.113.1:65205
                      192.168.0.167:65205 8.8.8.8:53
                                                             8.8.8.8:53
udp 203.0.113.1:59641
                      192.168.0.168:59641 8.8.8.8:53
                                                             8.8.8.8:53
```


Command Review

```
R1(config)# ip nat pool pool-name start-ip end-ip prefix-length prefix-length
R1(config)# ip nat pool pool-name start-ip end-ip netmask subnet-mask
R1(config)# ip nat inside source list access-list pool pool-name
R1(config)# ip nat inside source list access-list pool pool-name overload
R1(config)# ip nat inside source list access-list interface interface overload
```


More about static NAT

· Dynamic NAT

· Dynamic PAT

Which of the following NAT types best fulfills the goal of preserving public IPv4 addresses?

- a) Static NAT
- b) Source NAT
- c) Dynamic NAT
- d) NAT Overload

Which of the following dynamic NAT configurations will translate inside local addresses from 172.16.1.0/24 to addresses from the subnet 203.0.113.0/25?

```
access-list 1 deny 172.16.1.0 0.0.0.255
       ip nat pool POOL1 203.0.113.0 203.0.113.255 netmask 255.255.255.128
       ip nat inside source list 1 pool POOL1
a)
       interface g0/0
       ip nat inside
       interface g0/1
       ip nat outside
       access-list 1 permit 172.16.1.0 0.0.0.255
       ip nat pool POOL1 203.0.113.0 203.0.113.127 netmask 255.255.255.128
       ip nat inside source list 1 pool POOL1
b)
       interface g0/0
       ip nat inside
       interface g0/1
       ip nat outside
       access-list 1 permit 172.16.1.0 255.255.255.0
       ip nat pool POOL1 203.0.113.0 203.0.113.127 prefix-length 25
        ip nat inside source list 1 pool POOL1
C)
       interface g0/0
        ip nat inside
       interface g0/1
        ip nat outside
```


Dynamic NAT is configured on R1 and a pool of 10 inside global addresses is specified. Currently, all 10 addresses are being used by inside hosts, but another inside host attempts to send a packet over the Internet. What does R1 do with this packet?

- a) It uses PAT to translate the source IP address of the packet.
- b) It discards the packet.
- c) It holds the packet until an inside global address becomes available.
- d) It translates the source IP to the statically mapped inside global address.

Which of the following dynamic NAT configurations will translate inside local addresses from 10.0.1.0/27 to use the IP address of the router's G0/1 interface?

```
access-list 1 permit 10.0.1.0 0.0.0.31
        ip nat inside source list 1 interface gigabitethernet0/1 overload
        interface g0/0
a)
       ip nat inside
       interface g0/1
        ip nat outside
        access-list 1 permit 172.16.1.0 0.0.0.31
        ip nat inside source list 1 pool gigabitethernet0/1 overload
        interface g0/0
b)
        ip nat inside
        interface g0/1
        ip nat outside
        access-list 1 permit 172.16.1.0 0.0.0.31
        ip nat inside source list 1 interface gigabitethernet0/1 overload
        interface g0/0
C)
        ip nat inside
        interface g0/1
        ip nat inside
        access-list 1 permit 172.16.1.0 0.0.0.224
        ip nat inside source list 1 interface gigabitethernet0/1 overload
d)
        interface g0/0
        ip nat inside
        interface g0/1
        ip nat outside
```


After specifying the inside and outside NAT interfaces, you issue the following commands on R1. What will happen to hosts from the 192.168.1.0/24 subnet?

```
access-list 1 permit 10.0.1.0 0.0.0.255
access-list 1 deny 192.168.1.0 0.0.0.255
ip nat pool POOL1 203.0.113.0 203.0.113.255 prefix-length 24
ip nat inside source list 1 pool POOL1
```

- a) The source IP of their packets will be translated to an address from 203.0.113.0/24.
- b) The packets they send will be discarded by R1.
- c) The packets they send will not be translated by R1.
- d) The packets they send will be discarded until an inside global address is available.

Supplementary Materials

Review flash cards
 (link in the description)

Packet Tracer lab

JCNP-Level Channel Members

*as of March 24th, 2021

