Importing the library

```
In [1]:
```

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')
```

Importing the dataset

```
In [2]:
```

```
df=pd.read_csv(r"C:\Users\91956\Desktop\tested.csv")
df
```

Out[2]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	892	0	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN	Q
1	893	1	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN	s
2	894	0	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN	Q
3	895	0	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN	s
4	896	1	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	NaN	s
413	1305	0	3	Spector, Mr. Woolf	male	NaN	0	0	A.5. 3236	8.0500	NaN	s
414	1306	1	1	Oliva y Ocana, Dona. Fermina	female	39.0	0	0	PC 17758	108.9000	C105	С
415	1307	0	3	Saether, Mr. Simon Sivertsen	male	38.5	0	0	SOTON/O.Q. 3101262	7.2500	NaN	s
416	1308	0	3	Ware, Mr. Frederick	male	NaN	0	0	359309	8.0500	NaN	s
417	1309	0	3	Peter, Master. Michael J	male	NaN	1	1	2668	22.3583	NaN	С

418 rows × 12 columns

EDA

Shape

```
In [3]:

df.shape

Out[3]:
(418, 12)

Columns and their types

In [4]:

df.columns
```

Out[5]: PassengerId int64 Survived int64 Pclass int64 object Name object Sex Age float64 SibSp int64 int64 Parch object Ticket float64 Fare Cabin object Embarked object dtype: object

In [6]:

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 418 entries, 0 to 417
Data columns (total 12 columns):
                  Non-Null Count Dtype
     Column
     PassengerId 418 non-null
                                   int64
                  418 non-null
     Survived
                                   int64
     Pclass
                  418 non-null
                                   int64
 3
     Name
                  418 non-null
                                   object
 4
     Sex
                  418 non-null
                                   object
 5
                  332 non-null
                                   float64
    Age
 6
                  418 non-null
                                  int64
     SibSp
     Parch
                  418 non-null
                                  int64
     Ticket
                  418 non-null
                                   object
 9
     Fare
                  417 non-null
                                   float64
10
    Cabin
                  91 non-null
                                   object
    Embarked
                  418 non-null
                                   object
dtypes: float64(2), int64(5), object(5)
memory usage: 39.3+ KB
```

Dropping the non-required columns

```
df.drop(["PassengerId", "Name", "Ticket", "Cabin"], axis=1, inplace=True)
In [8]:
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 418 entries, 0 to 417
Data columns (total 8 columns):
               Non-Null Count Dtype
     Column
     Survived 418 non-null
                               int64
               418 non-null
 1
     Pclass
                             int64
               418 non-null
     Sex
                               object
 3
     Age
               332 non-null
                              float64
     SibSp
               418 non-null
                               int64
 5
     Parch
               418 non-null
                               int64
 6
     Fare
               417 non-null
                               float64
     Embarked 418 non-null
                               object
dtypes: float64(2), int64(4), object(2)
memory usage: 26.2+ KB
```

In [7]:

Null value analysis

df.duplicated().sum()

Out[13]:

```
In [9]:
df.isnull().sum()/len(df)
Out[9]:
Survived
            0.000000
Pclass
            0.000000
Sex
            0.000000
Age
            0.205742
SibSp
            0.000000
            0.000000
Parch
            0.002392
Fare
            0.000000
Embarked
dtype: float64
In [10]:
df.Age.fillna(df.Age.mean(),inplace=True)
In [11]:
df.Fare.fillna(df.Fare.mean(),inplace=True)
In [12]:
df.isnull().sum()/len(df)
Out[12]:
            0.0
Survived
            0.0
Pclass
Sex
            0.0
Age
            0.0
SibSp
            0.0
            0.0
Parch
            0.0
Fare
Embarked
dtype: float64
Duplicate values
In [13]:
```

In [14]:

df[df.duplicated()]

Out[14]:

	Survived	Delace	Sex	Age	SibSp	Parch	Fare	Embarked
70								
79	1	3	female	24.00000	0	0	7.7500	Q
83	0	3	male	30.27259	0	0	7.8958	S
93	0	3	male	30.27259	0	0	8.0500	S
102	0	3	male	30.27259	0	0	7.7500	Q
107	0	3	male	30.27259	0	0	7.7500	Q
124	0	3	male	30.27259	0	0	7.7500	Q
148	0	1	male	30.27259	0	0	26.5500	s
158	0	1	male	42.00000	0	0	26.5500	s
180	0	2	male	30.00000	0	0	13.0000	s
183	0	3	male	30.27259	0	0	7.7500	Q
219	0	3	male	30.27259	0	0	8.0500	s
227	1	3	female	30.27259	0	0	7.7500	Q
248	1	2	female	29.00000	1	0	26.0000	s
255	0	3	male	30.27259	0	0	7.5500	s
256	0	3	male	30.27259	0	0	7.7500	Q
265	0	3	male	30.27259	0	0	7.8958	s
267	0	3	male	30.27259	0	0	7.5500	s
268	1	3	female	30.27259	0	0	8.0500	s
271	0	3	male	30.27259	0	0	7.7500	Q
282	1	3	female	30.27259	0	0	7.7500	Q
288	0	3	male	30.27259	0	0	7.2292	С
289	0	3	male	30.27259	0	0	8.0500	s
292	0	3	male	30.27259	0	0	7.2292	С
297	0	3	male	30.27259	2	0	21.6792	С
304	1	3	female	30.27259	0	0	7.7500	Q

320	Survived	Pclass3	ngele X	26.00000	SibSp	Parcfi	7.7750	Embarkeð
322	0	2	male	26.00000	0	0	13.0000	S
332	0	3	male	30.27259	0	0	7.2250	С
339	0	3	male	30.27259	0	0	7.2292	С
346	0	2	male	26.00000	0	0	13.0000	s
351	0	2	male	25.00000	0	0	10.5000	s
358	0	3	male	30.27259	0	0	7.7500	Q
362	1	2	female	31.00000	0	0	21.0000	s
363	0	3	male	27.00000	0	0	8.6625	s
380	0	3	male	30.27259	0	0	7.7500	Q
410	1	3	female	30.27259	0	0	7.7500	Q
413	0	3	male	30.27259	0	0	8.0500	s
416	0	3	male	30.27259	0	0	8.0500	s

In [15]:

```
df.drop_duplicates(inplace=True)
```

Outlier's detection

In [16]:

```
sns.boxplot(y='Age',data=df)
plt.show()
```



```
10 - 0 -
```

```
In [17]:
```

```
Q1 = df['Age'].quantile(0.25)

Q3 = df['Age'].quantile(0.75)

IQR = Q3 - Q1

LL = Q1 - 1.5 * IQR

UL = Q3 + 1.5 * IQR

print("Q1: {} | Q3: {} | IQR: {} | LL: {} | UL: {}".format(Q1,Q3,IQR,LL,UL))

Q1: 22.0 | Q3: 36.125 | IQR: 14.125 | LL: 0.8125 | UL: 57.3125
```

In [18]:

```
ul_outlier_count = df[df['Age'] > UL].shape[0]
ll_outlier_count = df[df['Age'] < LL].shape[0]

total_outlier_count = ll_outlier_count + ul_outlier_count

total_outlier_perc = total_outlier_count * 100 / df.shape[0]

print("UL_OC: {} | LL_OC: {} | T_OP: {}".format(ul_outlier_count, total_outlier_count, total_outlier_perc))</pre>
```

UL OC: 16 | LL OC: 3 | T OC: 19 | T OP: 5.0

In [19]:

```
sns.boxplot(y='Fare', data=df)
plt.show()
```



```
In [20]:
```

```
Q1 = df['Fare'].quantile(0.25)

Q3 = df['Fare'].quantile(0.75)

IQR = Q3 - Q1

LL = Q1 - 1.5 * IQR

UL = Q3 + 1.5 * IQR

Print("Q1: {} | Q3: {} | IQR: {} | LL: {} | UL: {}".format(Q1,Q3,IQR,LL,UL))

Q1: 7.925 | Q3: 36.81355 | IQR: 28.88855 | LL: -35.407825 | UL: 80.146375
```

In [21]:

```
ul_outlier_count = df[df['Fare'] > UL].shape[0]
ll_outlier_count = df[df['Fare'] < LL].shape[0]

total_outlier_count = ll_outlier_count + ul_outlier_count

total_outlier_perc = total_outlier_count * 100 / df.shape[0]

print("UL_OC: {} | LL_OC: {} | T_OC: {} | T_OP: {}".format(ul_outlier_count, total_outlier_count, total_outlier_perc))</pre>
```

UL_OC: 41 | LL_OC: 0 | T_OC: 41 | T_OP: 10.789473684210526

INTERPRETATION

```
In [22]:
```

df

Out[22]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	0	3	male	34.50000	0	0	7.8292	Q
1	1	3	female	47.00000	1	0	7.0000	s
2	0	2	male	62.00000	0	0	9.6875	Q
3	0	3	male	27.00000	0	0	8.6625	s
4	1	3	female	22.00000	1	1	12.2875	s
•••								
411	1	1	female	37.00000	1	0	90.0000	Q
412	1	3	female	28.00000	0	0	7.7750	s
414	1	1	female	39.00000	0	0	108.9000	С
415	0	3	male	38.50000	0	0	7.2500	s
417	0	3	male	30.27259	1	1	22.3583	С

380 rows × 8 columns

In [23]:

```
#Number of Males and Females survived
sns.barplot(x=df['Sex'], y=df['Survived'])
plt.xticks(rotation=90)
plt.show()
```


Converting the values of object column into numerical for machine learning purpose

```
In [24]:

from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()

In [25]:

for col in ['Sex', 'Embarked']:
    le = LabelEncoder()
    df[col] = le.fit_transform(df[col])
df.head(10)
```

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	0	3	1	34.5	0	0	7.8292	1
1	1	3	0	47.0	1	0	7.0000	2
2	0	2	1	62.0	0	0	9.6875	1
3	0	3	1	27.0	0	0	8.6625	2
4	1	3	0	22.0	1	1	12.2875	2
5	0	3	1	14.0	0	0	9.2250	2
6	1	3	0	30.0	0	0	7.6292	1
7	0	2	1	26.0	1	1	29.0000	2
8	1	3	0	18.0	0	0	7.2292	0
9	0	3	1	21.0	2	0	24.1500	2

Correlation

Out[25]:

In [26]: sns.heatmap(df.corr(),annot=True) plt.show() Survived - 1 -0.099 -1 0.00019 0.09 0.15 0.19 -0.081 - 1.00

Machine learning

```
In [34]:
```

```
x=df.drop('Survived',axis=1)
y=df['Survived']
```

Splitting the dataset into training and testing

```
In [43]:
```

```
{\tt from \ sklearn.model\_selection \ import \ train\_test\_split}
```

```
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=7)
```

Importing the algorithm and the performance measure¶

```
In [45]:
from sklearn.metrics import classification report, accuracy score, confusion matrix
In [60]:
from sklearn.tree import DecisionTreeClassifier
classifier2=DecisionTreeClassifier(random state=7, max depth=5,
                                    criterion='gini', max leaf nodes=7)
dt=classifier2.fit(x train, y train)
y pred=classifier2.predict(x test)
print(classification report(y test, y pred))
              precision
                           recall f1-score
                                               support
           0
                   1.00
                             1.00
                                        1.00
                                                    46
           1
                   1.00
                             1.00
                                       1.00
                                                    30
                                                    76
                                       1.00
    accuracy
   macro avg
                   1.00
                             1.00
                                       1.00
                                                    76
weighted avg
                   1.00
                             1.00
                                       1.00
                                                    76
In [59]:
from sklearn.model selection import GridSearchCV
param grid={'max depth':[2,5,7,10,13,15,17,20],'criterion':['gini','entropy'],
           'max leaf nodes':[5,10,15,20,25,30], 'min samples split':[10,20,30,40,50]}
dt1=DecisionTreeClassifier(random state=7)
grid=GridSearchCV(dt1,param grid,cv=10)
grid.fit(x train, y train)
grid.best params
Out[59]:
{'criterion': 'gini',
 'max depth': 2,
 'max leaf nodes': 5,
 'min samples split': 10}
In [58]:
```

```
from sklearn.tree import DecisionTreeClassifier
classifier2=DecisionTreeClassifier(random state=7, max depth=2,
                                    criterion='gini', max leaf nodes=5,
                                  min samples split=10)
dt=classifier2.fit(x train,y train)
y pred=classifier2.predict(x test)
print(classification report(y test, y pred))
              precision
                           recall f1-score
                                               support
           0
                   1.00
                             1.00
                                       1.00
                                                    46
           1
                   1.00
                             1.00
                                        1.00
                                                    30
                                       1.00
                                                    76
    accuracy
   macro avq
                   1.00
                             1.00
                                       1.00
                                                    76
weighted avg
                   1.00
                             1.00
                                       1.00
                                                    76
```

In [57]:

```
from sklearn.svm import SVC
svc=SVC(random_state=7)
svm=svc.fit(x_train,y_train)
y_pred=svc.predict(x_test)

print(classification_report(y_test,y_pred))
```

	precision	recall	f1-score	support
0 1	1.00 0.97	0.98 1.00	0.99	46 30
accuracy macro avg weighted avg	0.98 0.99	0.99	0.99 0.99 0.99	76 76 76

In [56]:

```
from sklearn.ensemble import AdaBoostClassifier
adbc=AdaBoostClassifier(random_state=7)
adbcl=adbc.fit(x_train,y_train)
y_pred=adbc.predict(x_test)
print(classification_report(y_test,y_pred))
```

precision recall f1-score support

0 1	1.00	1.00	1.00	46 30
accuracy macro avg weighted avg	1.00	1.00	1.00 1.00 1.00	76 76 76

In [48]:

	precision	recall	f1-score	support
0 1	1.00	1.00	1.00	46 30
accuracy macro avg weighted avg	1.00	1.00	1.00 1.00 1.00	76 76 76
	precision	recall	f1-score	support
0	1.00	1.00	1.00	190 114
accuracy				304

In []: