2. Maximum Likelihood Estimation

2.1 Maximum Likelihood Estimation

A known signal (respectively a signal sequence) s is sent over two transmission lines with constant channel gains h_1 and h_2 . The transmission gains h_1 and h_2 shall be estimated from the observed

receive signals x_1 and x_2 . The observation of the *i*-th transmission line is disturbed by additive Gaussian noise n_i , i.e.,

$$\mathbf{n} = \begin{bmatrix} n_1 \\ n_2 \end{bmatrix} \sim \mathcal{N}(\mathbf{0}, \mathbf{C}) \quad \text{with} \quad \mathbf{C} = \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix}$$

and $c_{i,j} = \text{Cov} [n_i, n_j].$

a) What is the underlying statistical model? State the likelihood function and determine the ML estimator \hat{h}_{ML} for $h = [h_1, h_2]^{\text{T}}$ if only one observation is available.

In the following N observations are available. The *i*-th signal s of the known sequence is denoted by $s^{(i)}$ and we assume $n^{(1)}, \ldots, n^{(N)}$ to be jointly Gaussian.

- b) If the random variables $n^{(1)}, \ldots, n^{(N)}$ are uncorrelated, what is the ML estimator \hat{h}_{ML} for h?
- c) Although *N* observations are available, only the first observation is used to design an estimator $\hat{h} = x^{(1)}/s^{(1)}$. Is the estimator unbiased? Is it consistent?
- d) If the random variables $\mathbf{n}^{(1)}, \ldots, \mathbf{n}^{(N)}$ are correlated, what is the ML estimator $\hat{\mathbf{h}}_{ML}$ for \mathbf{h} ?

In the following, the channel gains h_1 and h_2 are known and the random variables $\mathbf{n}^{(1)}, \ldots, \mathbf{n}^{(N)}$ are uncorrelated. The unknown covariance matrix \mathbf{C} shall be estimated.

e) What is the ML estimator \hat{C}_{ML} for the noise covariance matrix C?

Hint:

$$\frac{\partial \det(A)}{\partial A} = \det(A) (A^{-1})^{\mathrm{T}}$$
$$\frac{\partial \operatorname{tr} \left\{ A X^{-1} B \right\}}{\partial X} = -(X^{-1} B A X^{-1})^{\mathrm{T}}$$
$$\frac{\partial \operatorname{tr} \left\{ X B \right\}}{\partial X} = B^{\mathrm{T}}$$

f) The ML estimator $\hat{\pmb{C}}_{\text{ML}}$ is consistent, but is it unbiased as well?