Universe Across Scales - A3

1) The co-moving coordinates of the galaxy are Cr,0,0). A light ray is emitted from the galaxy at t, and (t, +dt,) and is observed at earth at to and (to + dto) (a) we know that the light rays travel along null geodesic, =) $dt^2 = \pm a(t) dt$ hu above relation we can write: we subtract

Date:
The intervals de and do are small and so the scale parameter semains constant.
Thus integration gives, dt, = dto (4(t,) a(to)
Hence, proved.
(6) From the definition of redshift. $Z = 20 - 21$ [2 -> observed waveler
we know $v_0 = 1$ and $v_0 = 1$
dto dto
Rom part (a) => 00 = a(ti)
1 9(to)
=> 21 = 9(h) 20 9(h)
- 1 ·
2. 2 z do - 1
Z = a(to) -1
a(ti)

printo.in

Date:
@ From (16), we know that Z = a(60) -1
Z+1 = q(to)
a(ti)
Differentiating with to,
$\frac{dz}{dz} = \frac{da(t_0)}{a(t_0)} - \frac{da(t_0)}{a(t_0)}$
dto dto dto
(a(h)) ²
[we get the above using chain sule]
:. dz = da(6) 1 - a(to) da(h)
dto dto a(h) a(h)2 dto
= [1 dalto] albo) - alto)dt 1 dal
allo) dto alti) allo alti) dto
now, the Kubble parameter KCE) is defined
as H(t) = a(t) where a(t) is the derivation
a(t)
of the scale factor alt at time 't'
=) H(to) = a(to) = 1 da(to)
a (to) a (to) dto
Ulta) = a(h) = 1 da(ti)
a(ti) a(ti) d(ti)
$\underline{a(t_0)} = z+1 [from (1b)]$
a(h)

Substituting all of the above we get, $\frac{dz}{dt} = H(to) (1+z) - a(to) dto H(to)$ $\frac{dto}{dto} = \frac{dto}{dto} = \frac$

now from (1a) =) $\frac{dt}{a(t_1)} = \frac{dt}{a(t_0)} = \frac{dt}{a(t_0)} = \frac{a(t_0)}{a(t_0)}$

Hence, proved.

3 The constants to acquire the required plots have been mentioned in the code.

The plot is constant at two entremes, and has a steep increase for some values of temperature (k).

(b) From the plot, the temperature corresponding to X = 0.8 is T = 4000k.