Einführung in die Ökologie SS 2008

Marco Tschapka
Experimentelle Ökologie / Bio III
Universität Ulm

Verhalten von Prädatoren

- Prädation: Die Konsumption eines
 Organismus (Beute) durch einen anderen
 Organismus (Räuber = Prädator), wobei
 die Beute beim ersten Kontakt noch lebt.
- Schließt "echte" Räuber, Weidegänger, Parasiten und Parasitoide ein.
- Heute: <u>Nahrungswahlverhalten</u>

Verhalten von Prädatoren

- Breite und Zusammensetzung des Nahrungsspektrums:
 - monophag (ein Beutetyp)
 - oligophag (wenige Beutetypen)
 - polyphag (viele Beutetypen)
 - Spezialisten (Monophage, z. B. Parasitoide) & Generalisten (Oligo- und Polyphage; z. B. die meisten "echten" Räuber; Herbivore decken beide Kategorien gleichmäßig ab)

Biologische Kontrolle mittels Herbivorie: Bsp. Opuntien in Australien

Vor Aussetzen der Kaktusmotte Cactoblastis

Biologische Kontrolle

Nach Aussetzen der Kaktusmotte

Verhalten von Prädatoren

- Nahrungspräferenzen:
 - Nahrungszusammensetzung und Verfügbarkeit muß untersucht werden, um Präferenzen (Selektivität) feststellen zu können
 - Ausgleichspräferenz (balanced preference): Mischkost wird bevorzugt
 - Rangpräferenz (ranked preference): hochwertigste Nahrung wird bevorzugt

Verhalten von Prädatoren: Nahrungswahl: Rangpräferenz

- Profitabelste d. h. energiereichste Beute wird gewählt, wenn Angebot es zuläßt.
- Bei Carnivoren oft relativer Energiegehalt der verschiedenen Beuteorganismen ähnlich, daher meist Größenabhängigkeit der Wahl.
- Handling: Handhabung der Beute ist wichtiger Parameter, da dieser den Energiegewinn eines Organismus maßgeblich mitbestimmt. Aufwand, um an Energie zu gelangen!

Taschenkrebs und Miesmuscheln

Bachstelze und Fliegengrösse

Präferenzen

 Wann lohnt es sich welche Beute bzw.
 Strategie zu nutzen, um den Energiegewinn zu maximieren?

Fixierte Präferenz

Angebot: zwei Miesmuscheln, *Mytilus edulis & M. cali*fornicus in verschiedenen Mengenverhältnissen Aber: Bevorzugung dünnschaliger *Mytilus edulis*

Guppies: dichteabhängiger Präferenzwechsel

(Tubifex & Taufliegen)

überproportionale Präferenz der häufigeren Beute bei anteilsmässig gleichem Beuteangebot individuelle Präferenzen der Fische

Verhalten von Prädatoren

- Nahrungswahl
- Individuelle Erfahrung prägt Nahrungswahl!

Nahrungswahl bei Libellenlarven

Angebot im Experiment immer gleich: Angebot 50% Tubifex (T) zu 50% Eintagsfliegenlarven (E). Jedoch unterschiedliche Aufzuchtbedingungen

Optimal foraging: optimaler Nahrungserwerb

- Nahrungswahlstrategien sind effizienzbasiert!
- → Vorhersage, welche Strategie des Nahrungserwerbs unter bestimmten Bedingungen die effizienteste ist und daher angenommen werden sollte.

- Annahmen für erfolgreiche Vorhersagen:
 - Nahrungserwerb durch natürliche Selektion auf (maximale) Steigerung der Fitneß "optimiert"
 - hohe Fitneßwerte = hoheNettoenergieaufnahme(=Bruttoenergieaufnahme energetische Kosten)
 - Überprüfung im experimentellen Ansatz in naturähnlicher Situation

Einflußgrößen

- Energieaufnahme beeinflusst von:
 - Suchzeit (search time)
 - Handhabungszeit (handling time)
 - Ergiebigkeit (Qualität, Abundanz) der Nahrung

Optimal Foraging

- Reihe von Modellen, die Aussagen zu Entscheidungen bei der Nahrungssuche machen.
- Beispiel: Vorhersagen zum Nahrungsspektrum
 - Bei niedriger Beutedichte → lange
 Suchzeit → Suchdauer bis zum Finden
 von optimalen Nahrungsquellen zu lange
 - → Präferenz für energiereiche Nahrung sollte weniger stark ausgeprägt sein!

Nahrungserwerbstrategien

- Maximierung der Nahrungsaufnahmeeffizienz (Nettoenergiegewinn) ist essentiell
- Aber: auch gegenläufige Bedürfnisse wie Feindvermeidung beeinflussen Strategie
- Endergebnis: Maximierung der generellen Fitneß muß im Vordergrund stehen!

Nahrungssuche bei Sonnenbarschen

Konsumptionsrate und Nahrungsdichte

- Funktionelle Reaktion: Abhängigkeit der Konsumptionsrate (Beute pro Zeit) von Nahrungsdichte
- Einteilung in drei Klassen: Typ 1, 2 & 3

Filtrierende Daphnien

- Steigung: Sucheffizienz oder Angriffsrate
- Konsumptionsrate steigt mit Beutedichte linear an bis Maximum erreicht ist
- Maximale Nahrungsaufnahmerate ("Schluckvermögen") bestimmt Plateauwert

Komplexere Nahrung → Handling!

- Häufigster Typ
- langsamer Anstieg der Konsumptionsrate mit Beutedichte, dann Erreichen von Plateau
- Suchzeit wird mit zunehmender Dichte geringer; Handling Zeit bleibt jedoch gleich → Steigung nimmt langsam ab (nichtlineare Beziehung)
- Bei sehr hoher Beutedichte wird Aufnahmerate ausschließlich durch die Handling Zeit bestimmt

Gedankenexperiment Funktionelle Reaktion Typ 1 vs Typ 2

Zunehmende Dichte

Sigmoide Reaktion Typ 3

Aufnahme von Zucker-Tröpfchen durch Fleischfliege (Calliphora)

Anzahl gefressener Tröpfchen

Suchintensität steigt mit Beutedichte!

Suchzeit auf Arenaboden

Sigmoide Reaktion Typ 3

Schlupfwespe beim Attackieren von Läusen

Anteil attackierter Zierläuse

Handhabungszeit sinkt mit steigender Lausdichte!

Handhabungszeit

Sigmoide Reaktion Typ 3

- Typ 3 ähnelt bei hohen Dichten Typ 2. Bei niedrigen Dichten jedoch Beschleunigungsphase
- Mögliche Ursachen: Präferenzwechsel, Änderung in der Sucheffizienz und/oder der Handling Zeit

Mögliche Konsequenzen

- Die Art der funktionellen Reaktionen wirken sich auf die Dynamik der beteiligten Populationen aus
- Bei Typ 3 im Bereich der Beschleunigungsphase hat Räuber (durch Intensivierung der Prädation) mit steigender Dichte anfangs zunehmenden Einfluss auf Beutepopulation

Mögliche Konsequenzen

 Im Plateaubereich von Typ 1 & Typ 2 und bei hohen Beutedichten auch bei Typ 3 haben Räuber mit steigender Dichte immer geringeren Einfluss auf die Populationsdynamik der Beute (Sättigungseffekt....)

Sättigungseffekt der Räuber durch Massenemergenz am Beispiel von Zikaden

- Magicicada spp.: Emergenz alle 13 oder 17 Jahre
- Biomasse bis zu 4 x 10⁶ Individuen pro Hektar = 1,900 - 3,700 kg pro Hektar!
- Hauptprädatoren: Vögel

Cicada population density and their percent mortality due to predation.

Konsumenten und Nahrungspatches

- Nahrung ist meist heterogen auf sogenannte "patches" verteilt zwischen denen vom Konsumenten gewählt werden kann
- Reaktionen von Räubern auf Beutedichte in "patches"?

Beziehung Parasitierungsrate durch Parasitoide und Wirtsdichte

Direkte Dichteabhängigkeit

Inverse Dichte- Dichte-

100

Wirtsdichte pro Patch

abhängigkeit unabhängigkeit

30

Konsumenten und Nahrungspatches

- Nahrung ist meist heterogen auf sogenannte "patches" verteilt
- Reaktionen von Räubern auf Beutedichte?
 - direkt
 - invers dichteabhängig
 - dichteunabhängig
 - konvex (kuppelförmig)

Rolle von Habitatheterogenität in der Räuber-Beute Beziehung von herbivoren Spinn- und carnivoren Raubmilben

Populationsfluktuationen

Experimenteller Ansatz: Habitatheterogenität, Verstecken spielen!

→ Unterschiedliche Ausbreitungsmöglichkeiten f. Beute und Räuber!

Populationsfluktuationen mit Habitatheterogenität

Populationsfluktuationen ohne Aussterben von Räuber/Beute!

Populationsschwankungen der Dörrobstmotte (*Plodia interpunctella*) mit/ohne Parasitoid (*Venturia canescens*) in tiefen/flachen Medien

Populationsschwankungen der Dörrobstmotte (*Plodia* interpunctella) mit/ohne Parasitoid (*Venturia canescens*) in tiefen/flachen Medien

→ für Interpretation solcher Zyklen stets Kontrolle notwendig!

Nutzung von Patches: Grenzertragstheorem

- Länge der Aufenthaltsdauer eines Organismus in einem Nahrungsgebiet (patch) wird durch Energieaufnahmerate bestimmt, die beim Verlassen des Patches möglich ist (Grenzertrag)
- Entscheidungen zur Patchnutzung hängen ab von:
 - Profitabilität eines Patches
 - Ergiebigkeit des gesamten Habitats

Nutzung von Patches: Grenzertragstheorem

- Länge der Aufenthaltsdauer eines Organismus in einem Nahrungsgebiet (patch) wird durch Energieaufnahmerate bestimmt, die beim Verlassen des Patches möglich ist (Grenzertrag)
- Entscheidungen zur Patchnutzung hängen ab von:
 - Profitabilität eines Patches
 - Ergiebigkeit des gesamten Habitats
 - Entfernung zwischen Patches

Abhängigkeit von Netzbau und/oder Migration bei Köcherfliegenlarve von Nahrungsangebot

- Wann wird in welche Aktivität investiert?
- Versuch: Köcherfliegenlarven mit und ohne Fütterung

Köcherfliegen (Trichoptera)

Adulttier

Köcherfliegenlarve

Direkt dichteabhängige Aggregation von Köcherfliegen in Flusslauf

Je mehr Beute vorhanden ist, desto mehr Beutegreifer finden sich ein!