武汉大学数学与统计学院 2019-2020 第一学期

《线性代数 B》 (A 卷)

一、(10 分) 计算下列行列式;
$$D_n = \begin{vmatrix} a_1 - x & a_2 & a_3 & L & a_n \\ a_1 & a_2 - x & a_3 & L & a_n \\ a_1 & a_2 & a_3 - x & L & a_n \\ M & M & M & O & M \\ a_1 & a_2 & a_3 & L & a_n - x \end{vmatrix}$$
; ;
$$= \begin{bmatrix} 2x_1 + x_2 + a_{13}x_3 + a_{14}x_4 = b_1 \\ x_1 - 2x_2 + a_{23}x_3 + a_{24}x_4 = b_2 & \overline{A} = 0 \end{bmatrix}$$
 二、(10 分分) 设非齐次线性方程组

 $a_{31}x_1 + a_{32}x_2 + 2x_3 - 3x_4 = b_3$

$$\xi_1 = \begin{pmatrix} 1 & 1 & -2 & 1 \end{pmatrix}^T, \xi_2 = \begin{pmatrix} 2 & -1 & 1 & 1 \end{pmatrix}^T, \xi_3 = \begin{pmatrix} 3 & 2 & 4 & 2 \end{pmatrix}^T$$

求此方程组系数矩阵的秩,并求其通解(其中 a_{ii} , b_{i} ,i=1,2,3;j=1,2,3,4为已知常数)。

三、(10 分) 设m维向量组 $\alpha_1,\alpha_2,$ L $,\alpha_m$ 和向量组 $\beta_1,\beta_2,$ L $,\beta_m$ 有关系

$$\begin{cases} \beta_1 = \alpha_2 + \alpha_3 + L + \alpha_m \\ \beta_2 = \alpha_1 + \alpha_3 + L + \alpha_m \\ L L \\ \beta_m = \alpha_1 + \alpha_2 + L + \alpha_{m-1} \end{cases}$$

问m维向量组 α_1,α_2,L , α_m 和向量组 β_1,β_2,L , β_m 是否同秩?证明你的结论。

四、
$$(10\, eta)$$
 已知矩阵 X 满足 $X+A^{-1}X=A^*+A^{-1}$ 其中 $A=\begin{pmatrix} 0 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix}$,求矩阵 X .
 五、 $(10\, eta)$ 讨论 a,b 取何值时,方程组
$$\begin{cases} ax_1+x_2+x_3=4 \\ x_1+bx_2+x_3=3 \end{cases}$$
 有解。.
$$x_1+2bx_2+x_3=4 \end{cases}$$
 六 $(10\, eta)$ 设 3 阶方阵 $A=\begin{pmatrix} 2 & 0 & 0 \\ 1 & 2 & -1 \\ 1 & 0 & 1 \end{pmatrix}$,试求:

五、(10 分) 讨论
$$a,b$$
 取何值时,方程组
$$\begin{cases} ax_1 + x_2 + x_3 = 4 \\ x_1 + bx_2 + x_3 = 3 \end{cases}$$
 有解。
$$x_1 + 2bx_2 + x_3 = 4$$

六(10 分)设 3 阶方阵
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 2 & -1 \\ 1 & 0 & 1 \end{pmatrix}$$
,试求:

- (1) A 的特征值和特征向量; (2) A^k (k 为正整数)及其特征值和特征向量。 七、(8分) 设A和B为n阶矩阵,且满足 $A^2=A$, $B^2=B$, r(A+B-E)=n,证明: r(A)=r(B). 八、(10 分) 已知 $\alpha_1 = (-1,0,1)^T, \alpha_2 = (2,2,0)^T, \alpha_3 = (0,1,1)^T$
 - (1) 求向量组 $\alpha_1,\alpha_2,\alpha_3$ 的一个极大线性无关组; (2) 求生成的子空间 $L(\alpha_1,\alpha_2,\alpha_3)$ 的一个标准正 交基。
- 九、(12 分) 已知实二次型 $f(x_1, x_2, x_3) = X^T A X$ 经过正交变换 X = P Y 化为 $y_1^2 + 2y_2^2$.
 - (1) 判断二次型 $f(x_1, x_2, x_3) = X^T A X$ 是否正定? (2) 计算行列式 |A| 的值;

十、(10 分)在四维实向量构成的线性空间 R^4 中,已知: $\alpha_1 = (1,0,0,0)^T$, $\alpha_2 = (1,1,0,0)^T$, $\alpha_3 = (1,1,1,0)^T$, $\alpha_4 = (1,1,1,1)^T$; $\beta_1 = (1,-1,a,1)^T$, $\beta_2 = (-1,1,2-a,1)^T$, $\beta_3 = (-1,1,0,0)^T$, $\beta_4 = (1,0,0,0)^T$. (1)求 a 使 β_1 , β_2 , β_3 , β_4 为 R^4 的基;(2)求由基 α_1 , α_2 , α_3 , α_4 到 β_1 , β_2 , β_3 , β_4 的过渡矩阵 P.