BITS F464 - ML Assignment -3

Neural Networks to classify Dog and Cat images

Group Members:

1	N Vishnuteja Reddy	2016A7PS0086H
2	Sanjay D	2016A7PS0033H
3	Athilesh Arputham	2016A7PS0139H

Confusion Matrix

Predicted	Dog	Cat	Total
Actual			
Dog	11788	00712	12500
Cat	11462	01038	12500
Total	23250	01750	25000

Assuming Dog =Positive Class and Cat=Negative Class

TN = 01038 FP = 11462 FN = 00712 TP = 11788

Accuracy = (TP+TN)/(TP+FP+FN+TN) = 0.51304

Precision = TP/TP+FP = 0.50701

Recall = TP/TP+FN = 0.94304

F1-Score = 2*(Recall * Precision) / (Recall + Precision) = 0.65947

Remarks:-

Since images are a complex dataset, Logistic Regression (equivalent to one hidden node one hidden layer neural network) is not expected to perform as good as our one hidden layered five hidden node neural network. On the other hand, a multi-hidden-layered neural network is expected to improve the model's accuracy on the dataset. Performance parameters also improve if we increase the number of hidden neurons as well as switch to more advanced activation functions.

Comparison with different configuration of Neural Nets

Configuration	Precision	Recall	F-Score	Accuracy
Logistic				
1-Layer				
2-Layer				
3-Layer				

Remarks:-