Project Development Phase Model Performance Test

Date	17 November 2022	
Team ID	PNT2022TMID23585	
Project Name	Project – Car Resale Value Prediction	
Maximum Marks	10 Marks	

Model Performance Testing:

Project team shall fill the following information in model performance testing template.

S.No.	Parameter	Values	Screenshot
1.	Metrics	Regression Model: MAE -1625.969 , MSE — 10786201.379, RMSE -3284.235 , R2 score — 0.8446 Classification Model: Confusion Matrix - , Accuray Score- & Classification Report -	In Description
2.	Tune the Model	Hyperparameter Tuning - Validation Method -	In [33]: from ablance per an an analysis of the control of the con

Screenshots:

print('Accuracy Score : ' + str(accuracy_score(y_test,y_pred_acc)))
print('Precision Score : ' + str(precision_score(y_test,y_pred_acc)))
print('Recall Score : ' + str(recall_score(y_test,y_pred_acc)))
print('F1 Score : ' + str(f1_score(y_test,y_pred_acc)))

Accuracy Score : 0.9185888738127544 Precision Score : 0.9130787977254264 Recall Score : 0.9390142021720969 F1 Score : 0.9258649093904447

```
In [26]: from sklearn.metrics import confusion_matrix
        print('Confusion Matrix : \n' + str(confusion_matrix(y_test,y_pred2)))
        import seaborn
        seaborn.heatmap(confusion_matrix(y_test,y_pred2))
          Confusion Matrix :
          [[ 962 52]
[ 33 1164]]
  Out[26]: <AxesSubplot:>
                                                1000
           0
                                               -800
                                               - 600
                                                400
                                                200
In [25]: print('Accuracy Score : ' + str(accuracy_score(y_test,y_pred2)))
           from sklearn.metrics import confusion_matrix
           print('Confusion Matrix : \n' + str(confusion_matrix(y_test,y_pred2)))
              Accuracy Score : 0.9624604251469923
              Confusion Matrix :
```

[[960

54] [29 1168]]