ARENA: Enhancing Abstract Refinement for Neural Network Verification @SPLASH SRC 2022

Yuyi Zhong, Quang-Trung Ta and Siau-Cheng Khoo

Introduction

Robustness verification of neural network requires a balance between precision and efficiency.

We enhance the existing effectiveness of DeepSRGR [1] and propose an **abstract refinement** process that:

- Encode the network **more precisely** for precision improvement
- Eliminate multiple adversarial labels simultaneously for efficiency improvement

{yuyizhong, taqt, khoosc}@comp.nus.edu.sg

Contributions

To our best knowledge, our system outperforms existing approximated approaches running on CPU.

- It adapts double description method [2] to solve disjuncts of constraints in LP encoding, for system speed-up.
- It leverages more precise ReLU encoding in PRIMA [3] to increase precision
- It utilizes the solutions returned by the LP solver to detect adversarial examples

Illustrative Example

 $\psi_5 = 1.2^*$

 $\max(0,x_5)$

 $u_8 = 1.2^{\dagger}$

Experiments

(d) The convex hull of (b) \vee (c)

(c) The $(y_1 - y_3 \le 0)$ polytope

 Our prototypical verifier ARENA is available online at https://github.com/arena-verifier/ARENA

 $\max(0, x_5)$

 $l_8 = 0$

 $u_8 = 2$

- The report is online at https://jacksonzyy.github.io/ homepage/files/VMCAI_tech_report.pdf
- We compare ARENA with state-of-the-art verifiers including DeepSRGR [1], PRIMA [3], and DeepPoly [4]
- Robustness: all images perturbed within ϵ will be classified the same as the original images

Methods

	Neural Net	ϵ	ARENA			$oxed{ {f DeepSRGR} }$		PRIMA		DeepPoly	
			Verify	Falsify	Time	Verify	Time	Verify	Time	Verify	Time
	MNIST_3_100	0.028	63	5	88.6	54	87.2	66	99.8	24	0.1
	MNIST_5_100	0.08	76	7	227.7	67	203.2	53	13.0	25	0.9
	MNIST_6_100	0.025	45	6	814.0	38	454.5	37	172.1	23	0.2
	MNIST_9_100	0.023	46	10	2725.6	34	1248.7	34	158.1	30	0.8
	MNIST_6_200	0.016	51	3	2430.0	35	1685.6	34	238.5	25	0.9
	MNIST_9_200	0.015	43	6	6284.5	36	4383.8	29	271.6	29	2.1
	CIFAR10_9_200	0.0011	9	4	6893.9	8	8192.6	7	478.9	6	10.6
	CIFAR10_6_500	0.0032	33	10	4190.7	27	6531.3	20	410.2	16	26.5

- We eliminate 4 labels (batch size δ) at the same time
- On average, ARENA returns 18.7% more conclusive images than DeepSRGR; 22.1% more than PRIMA

Future Work

- Accelerate by handling output constraints by GPU, instead of costly LP solver
- Explore dynamic assignment of batch size δ

References

- [1] Pengfei et al. "Improving Neural Network Verification through Spurious Region Guided Refinement." *TACAS* 2021.
- [2] Komei et al. "Double Description Method Revisited." Combinatorics and Computer Science 1995
- [3] Mark et al. "PRIMA: general and precise neural network certification via scalable convex hull approximations." *POPL* 2022 [4] Gagandeep et al. "An abstract domain for certifying neural networks." *POPL* 2019.