DIMENSIONAMENTO DE MOTOR DE INDUÇÃO TRIFÁSICO

Através da curva da bomba AFP 101 (anexo 1), determinar a altura volumétrica e a potência do motor da bomba para melhor desempenho.

No gráfico rendimento, a curva de melhor desempenho pertence a frequência de 60 Hz, pois essa é a frequência nominal do nosso sistema trifásico e, também dos motores trifásicos encontrados em grande escala no mercado.

Vamos considerar, que nossa bomba retira água de um poço com uma vazão de 43 l/s. Através dessa informação, com a utilização da curva de performance da bomba, podemos determinar a altura volumétrica na qual a água poderá ser lançada e a potência mecânica do conjunto (bomba e motor trifásico).

Para iniciarmos nosso estudo, devemos localizar no eixo X, da curva de performance da bomba, a indicação de 43 l/s e, traçar uma linha perpendicular ao eixo X, até que essa reta ultrapasse a última curva do gráfico, conforme a figura abaixo:

Fig. 1 - Curva de performance bomba AFP 101 – Vazão da bomba [l/s]

Seguindo a linha traçada, podemos determinar a altura máxima da coluna volumétrica e a potência do conjunto, isso, sempre tomando como referência a frequência de 60 Hz. Se observarmos o eixo Y, podemos observar que esse nos fornece as seguintes informações, a potência, "P2 (HP)" e a altura, "H(m)". Dessa maneira se projetarmos no eixo Y, o ponto de encontro entre a linha traçada, correspondente a vazão da bomba e a curva disponíveis no gráfico, podemos obter as seguintes informações:

Fig. 2 - Curva de performance bomba AFP 101 - Altura "H[m]"

Podemos observar no gráfico que a altura volumétrica será de 15 m, para uma frequência de 60 Hz e 1755 RPM.

Fig. 3 - Curva de performance bomba AFP 101 – Potência "P2[HP]"

Podemos observar no gráfico, que para a frequência de 60 Hz, a potência mecânica do conjunto equivale a 11 HP.

De posse deste dado, podemos calcular:

- Pela potência mecânica temos a potência em watts:

1 HP = 746 W, logo:

 $P(w) = 11 \times 746 = 8206 W$

- Cálculo do torque pela potência:

 $P(KW) = \frac{C(Kgfm) \times n (RPM)}{974}$

$$C(Kgfm) = 8,21 (KW) \times 974 = 4,6 (Kgfm)$$

1755 (RPM)

Através do conjugado mecânico, podemos encontrar o conjugado do motor. Observe que o conjugado do motor, deverá ser maior que o conjugado mecânico.

- Pela rotação do motor, podemos determinar o número de polos, no nosso caso:

Nº polos =
$$\underline{120 \times f (Hz)} = \underline{120 \times 60} = 4,1 = 4 \text{ polos}$$

N (RPM) 1755

Utilizando o catálogo de motores trifásico da WEG (anexo 2) teremos:

Na tabela, o torque do motor de 10 CV equivale a 4,07 Kgfm, logo ele não atende.

- Para o motor de 12,5 CV, temos um conjugado de 5,09 Kgfm. Para saber se esse motor atende nossa necessidade, devemos multiplicar esse valor pelo seu rendimento (η) em 100%, deste modo teremos:

C (Kgfm) =
$$5.09$$
 (Kgfm) x 91 = 4.63 (Kgfm) \longrightarrow Esse motor estaria trabalhando em seu limite, portando, não atende.

- Para o motor de 15 CV, temos um conjugado de 6,12 Kgfm, multiplicando este valor pelo seu rendimento (η) em 100%, teremos:

C (Kgfm) =
$$\frac{6,12 \text{ (Kgfm)} \times 91,7}{100}$$
 = 5,61 (Kgfm) Esse motor atende nossa necessidade.

Logo, o nosso motor será:

Potência: 15 CV Rotação: 1755 RPM Corrente: 37 5 A / 21

Corrente: 37,5 A / 21,7 A Tensão: 220 V / 380 V

IP/In = 8,8 F.S = 1,15

Fator de potência: 0,84

Anexo 2

W21 Alto Rendimento Plus

Petència				Corrente	Corrente	Conjugado nominal	Conjugado	Conjugado	Rendimento v) %			Fator de petência Cos o			Fator de	Menunto	Tempa máx,	Nivet médio	Peso
CV	ЭŧW	Carcoga	RPM	em 220V (A)	com rotor bloqueado	C (Ngfm)	com reter bloqueado C _p / C _c	miximo C _{mi} /C _i				nois nominal			serviço F S	de inércia	trioquendo	de pressão	aprex,
									50	75	100	50	75	100		(kgm)	(ii) a quante	dB (A)	1/02
ė Pólo	s - 60 H	iz.							-		_	-	-					00	_
0.16	0.12	63	1720	0.86	4.5	0,07	3.2	3.4	T 50	57	81	0.41	0.51	0.6	1.15	0.00045	31	48	1 77
0.25	0.18	63	1710	1.13	4.5	0.1	2.8	3	56	64	66.5	0.47	0.57	0.83	1,15	0.00056	18	48	7.5
0.33	0.25	63	1710	1,47	5.2	0.14	3	2.9	60	67	68.5	0.45	0.55	0.65	1,15	0.00067	17	48	8
0.5	0.37	71	1720	2.07	. 5	0.21	2.7	3	64	70	72	0.44	0.57	0.65	1.15	0.00079	10	47	10
0.75	0.55	71	1680	2.83	5.5	0.32	3	3	70	74	75	0.45	0.58	0.68	1.15	0.00096	10	47	11.5
1	0.75	90	1730	2.98	8	0,41	3.4	- 3	77.5	81	82.6	0.6	0.72	0.8	1,15	0.00328	9	48	18
1.5	1.1	80	1715	4.42	7	0,63	2.9	2.8	80	81.1	81.6	0.50	0.71	0.8	1.15	0.00328	7	48	16
2	1.5	908	1755	6.15	7.8	8,82	2,8	3	81.5	83.5	84,2	0.55	0,67	0.76	1.15	0.00532	8	51	20
3	2.2	200	1735	8.27	7	1,24	2.0	2.7	184	85,1	85,1	0.62	0.75	0.82	1,15	0.00672	- 7	51	25
4	3	1001	1720	11,1	7.5	1,67	2.9	3.1	85.1	86.5	86.5	0:63	0.75	0.82	1,15	0.00918	8	54	30
-5	3.7	100L	1720	13.8	8	2.08	- 3	3	86.5	88	88	0.63	0.75	0.8	1.35	0.01072	8	54	32
- 6	4.5	112M	1735	16.4	6.8	2,48	2.1	2.5	88	89	89	0.63	0.74	0.81	1.15	0.01875	13	56	45
7.5	5.5	112M	1740	20	8	3.09	2.4	2.8	88.7	90	90	0.61	0.73	0.6	1.15	0.01875	12	56	46
10	7.5	132S	1760	26.4	7.8	4,07	2.6	3.1	90	91	91	0.61	0.74	0.82	1.15	0.05427	12	58	65
10	7.5	132M	1760	26.4	7.8	4,07	2,6	3.1	90	91	91	0,61	0.74	0.82	1.15	0.06427	12	58	65
12.5	9.2	132M	1760	32	8.5	5.09	2.5	3	90.4	91	91	0.65	0.77	0.83	1.15	0.06202	8	58	75
15	11	132M/L	1785	37.5	8.8	6.12	2.6	3.4	90.5	91.5	91.7	0.67	0.78	0.84	1,15	0.06978	8	58	78
15	11	160L	1760	38.6	- 6	6.1	2.4	2.5	89	90.5	91.1	0.69	0.78	0.82	1.15	0.08029	16	69	103
20	15	160M	1785	53.3	6.7	B.11	2.3	2,4	90.7	92.2	92.4	0.65	0.76	0.8	1,15	0.10538	- 20	69	120
25	18.5	1601	1760	64.7	6.5	10,17	2.7	2.6	92	92.6	92.6	0.65	0.75	0.81	1.15	0.13848	18	69	135
30	22	180M	1760	73.9	7	12.2	2.5	2.6	92.7	93	93	0.71	0.8	0.84	1.15	0.19733	12	68	185
40	30	200M	1778	99.6	6.4	16.18	2.1	2.2	92.7	93.1	93.1	0.74	0.82	0.85	1.15	0.27579	20	71	218
50	37	2001	1770	123	6	20.23	2.2	2.2	93	93.2	93.2	0.75	0.87	0.85	1,15	0.35853	19	71	274
60	45	225S/M	1780	146	7.8	24,13	2.8	3.3	93.5	93.7	93.9	0.72	0.82	0.86	1.15	0.69987	21	75	410
75	55	2255/M	1775	174	7.3	30.25	2.6	3.1	93.9	94.3	94.2	0.76	0.85	88.0	1,15	0.83984	13	75	810
100	75	258S/M	1785	245	8	48,11	3	3.3	94	94.5	94.6	0.69	0.8	0.85	1,15	1,18478	-10	75	510
125	90	280S/M	1785	292	6.7	50,14	2,3	2.9	94.5	95	95	0.72	8.81	0.85	1.15	1.9271	26	76	700
150	110	289S/M	1785	353	7	60,17	2.5	2.5	94.5	94.8	95.2	0.75	0.83	0.86	1.15	2.40888	24	76	740
175	132	3155/M	1785	418	7.6	70,2	2.6	3	94.8	95.1	95.3	0.75	0.84	0.87	1,15	2.56847	22	77	841
200	150	280S/M	1785	474	75	80,22	2.8	1	96.2	95.5	95.5	0.76	0.84	0.87	1.15	2.81036	22	76	868
200	150	3155/M	1785	474	7.5	80.22	2.8	3	95.2	95.5	95.5	0.76	0.84	0.87	1.15	2,81036	22	77	868
250	185	3155/M	1785	591	8	100,28	3	2.8	95.2	95.5	95.5	0.73	0.87	0.86	1.15	3,77391	19	80	1005
300	220	355M/L	1790	691	7	120	2,2	2.3	95,2	95,8	96	0.79	0.85	0.87	1,15	6.31568	48	83	1349
350	260	355MVL	1790	817	7.3	140	2.2	2.4	96.4	96	96	0.76	0.84	0.87	1.15	6.85703	30	83	1488
400	300	355M/L	5790	930	6.6	160	2.1	2.1	95,8	96.2	96.2	0.81	0.86	0.88	1,15	8.12816	42.	83	1590
450	330	255WL	1790	1820	7	180	2.1	2.1	95.8	96.1	96.1	0.77	0.85	0.88	1.15	9.0224	46	83	1702
500	370	355M/L*	1790	1140	6.6	200	2.1	2.2	96	96.4	96.4	0.78	0.85	0.88	1.15	10.73873	36	83	1795