ABSTRACT OF THE DISCLOSURE

A liquid crystal display device incorporates two phase difference plates stacked together and disposed between a liquid crystal display element and a pair of polarizers, the liquid crystal display element being formed by sandwiching a liquid crystal layer between a pair of electrode substrates, and the polarizers being disposed on one side of the liquid crystal display element. Since the principal refractive indices na, nb, and no of the phase difference plates are such that na < nb < nc, the phase difference plates exhibit positive refractive index anisotropies. The principal refractive index nb inclines to the normal to the surfaces of the phase difference plates about one of the principal refractive indices na or nc that is parallel to the surfaces. In addition, the refractive index anisotropy Δn of the liquid crystal material constituting the liquid crystal layer is specified to vary with wavelengths of rays of light within a range that allows no viewing-angle dependent coloration to occur on a liquid crystal screen. This eliminates viewing-angle dependent phase differences that, otherwise, would occur to the liquid crystal display element, and especially prevents the coloring phenomenon efficiently on the liquid crystal screen that, otherwise, would, occur with larger viewing angles.