Pengantar IF2091 Struktur Diskrit

Apa?

Mengapa?

Untuk apa?

Rasa ingin tahu adalah ibu dari semua ilmu pengetahuan

Tak kenal maka tak sayang, tak sayang maka tak cinta

Perjalanan satu mil dimulai dari satu langkah

Dahulu namanya.....

Matematika Diskrit

Sekarang (Kur. 2008 – 2013)...

Struktur Diskrit

Apakah Struktur Diskrit itu?

- Struktur diskrit: cabang matematika yang mengkaji objek-objek diskrit.
- Apa yang dimaksud dengan kata diskrit (discrete)? Benda disebut diskrit jika:
- terdiri dari sejumlah berhingga elemen yang
- berbeda, atau
- elemen-elemennya tidak bersambungan (unconnected).
- Contoh: himpunan bilangan bulat (integer)

- Lawan kata diskrit: kontinyu atau menerus (continuous).
 - Contoh: himpunan bilangan riil (real)
- Komputer digital bekerja secara diskrit. Informasi yang disimpan dan dimanipulasi oleh komputer adalah dalam bentuk diskrit.
- Matematika diskrit merupakan ilmu dasar dalam pendidikan informatika atau ilmu komputer.

- Struktur diskrit memberikan landasan matematis untuk kuliah-kuliah lain di informatika.
 - → algoritma, struktur data, basis data, otomata dan teori bahasa formal, jaringan komputer, keamanan komputer, sistem operasi, teknik kompilasi, dsb.

- Struktur diskrit adalah matematika yang khas informatika
 - → Matematika-nya orang Informatika.

Materi-materi dalam Struktur Diskrit:

- ✓ Logika (*logic*)
- Teori Himpunan (set)
- ✓ Matriks (*matrice*)
- Relasi dan Fungsi (*relation and function*) $\sqrt{}$
- Induksi Matematik (*mathematical induction*) $\sqrt{}$
- Algoritma (algorithms)
- Teori Bilangan Bulat (integers)
- Barisan dan Deret (sequences and series)
- Teori Grup dan Ring (group and ring)
- Aljabar Boolean (Boolean algebra)
- Kombinatorial (combinatorics)
- Teori Peluang Diskrit (discrete probability)
- Fungsi Pembangkit dan Analisis Rekurens
- Teori Graf (graph − included tree)
- Kompleksitas Algoritma (algorithm complexity)
 √
- Otomata & Teori Bahasa Formal (automata and formal language theory)

Contoh-contoh persoalan di dalam Struktur Diskrit:

- Berapa banyak kemungkinan jumlah password yang dapat dibuat dari 8 karakter?
- Bagaimana nomor ISBN sebuah buku divalidasi?
- Berapa banyak string biner yang panjangnya 8 bit yang mempunyai bit 1 sejumlah ganjil?
- Bagaimana menentukan lintasan terpendek dari satu kota a ke kota b?
- Buktikan bahwa perangko senilai n ($n \ge 8$) rupiah dapat menggunakan hanya perangko 3 rupiah dan 5 rupiah saja
- Diberikan dua buah algoritma untuk menyelesaian sebuah persoalan, algoritma mana yang terbaik?

- Bagaimana rangkaian logika untuk membuat peraga digital yang disusun oleh 7 buah batang (bar)?
- Dapatkah kita melalui semua jalan di sebuah kompleks perubahan tepat hanya sekali dan kembali lagi ke tempat semula?
- "Makanan murah tidak enak", "makanan enak tidak murah". Apakah kedua pernyataan tersebut menyatakan hal yang sama?

Moral of this story...

Mahasiswa informatika harus memiliki pemahaman yang kuat dalam Struktur Diskrit, agar tidak mendapat kesulitan dalam memahami kuliah-kuliah lainnya di informatika.

Buku Pegangan

- 1. Kenneth H. Rosen, *Discrete Mathematics and Application to Computer Science 5th Edition*, McGraw-Hill, 2003.
- 2. Rinaldi Munir, *Diktat kuliah IF2153 Matematika Diskrit (Edisi Keempat*), Teknik Informatika ITB, 2003. (juga diterbitkan dalam bentuk buku oleh Penerbit Informatika.
- 3. Richard Johsonbaugh, Discrete Mathematics, Prentice-Hall, 1997.

URL

Informasi perkuliahan (bahan kuliah, bahan ujian, soal kuis tahun2 sebelumnya, pengumuman, dll), bisa diakses di:

http://www.informatika.org/~rinaldi/Matdis/matdis.htm

atau masuk dari:

http://www.informatika.org/~rinaldi