Multivariable Control

Quadruple Tank

MATLAB & SIMULINK

Quadruple Tank problem

Quadruple Tank problem

$$\begin{split} \frac{dh_1}{dt} &= -\frac{a_1}{A_1} \sqrt{2gh_1} + \frac{a_3}{A_1} \sqrt{2gh_3} + \frac{\gamma_1 k_1}{A_1} v_1 \\ \frac{dh_2}{dt} &= -\frac{a_2}{A_2} \sqrt{2gh_2} + \frac{a_4}{A_2} \sqrt{2gh_4} + \frac{\gamma_2 k_2}{A_2} v_2 \\ \frac{dh_3}{dt} &= -\frac{a_3}{A_3} \sqrt{2gh_3} + \frac{(1 - \gamma_2)k_2}{A_3} v_2 \\ \frac{dh_2}{dt} &= -\frac{a_4}{A_4} \sqrt{2gh_4} + \frac{(1 - \gamma_1)k_1}{A_4} v_1 \end{split}$$

Control Objective

Both the levels of tank1 and tank2 should be controlled by manipulating voltages to the pumps.

Data for simulation:

$$A_1$$
, $A_3 = 28 \text{ cm}^2$

$$A_2$$
, $A_4 = 32 \text{ cm}^2$

$$a_1$$
, $a_3 = 0.071$ cm²

$$a_2$$
, a_4 = 0.057 cm²

Case	k1	k2	v1	v2	γ_1	γ_2
1	3.33	3.35	3.0	3.0	0.7	0.6
2	3.14	3.29	3.15	3.15	0.43	0.34
3	3.2	3.32	3.1	3.1	0.5	0.5

Simulink Model of Quad Tank

Let simulate the Model in Simulink

Linearized Equations for Quad Tank

• Introducing the deviation variables $x_i=h_i-h_{is}$ (i=1..4) and $u_j=v_j-v_{js}$ (j=1..2) the linearized equations are

$$\bullet \frac{dx_4}{dt} = -\frac{1}{T_4}x_4 + \frac{(1-\gamma_1)k_1}{A4}u_1$$

$$\bullet \ y_1 = k_m x_1 \qquad y_2 = k_m x_2$$

•
$$T_i = \frac{A_i}{a_i} \sqrt{\frac{2h_{is}}{g}}$$
 $i = 1, \dots, 4$

Transfer function matrix of Quad Tank

The corresponding transfer function matrix is

$$\begin{bmatrix} y_1(s) \\ y_2(s) \end{bmatrix} = \begin{bmatrix} \frac{\gamma_1 C_1}{T_1 s + 1} & \frac{(1 - \gamma_2) C_1}{(T_1 s + 1)(T_3 s + 1)} \\ \frac{(1 - \gamma_1) C_2}{(T_2 s + 1)(T_4 s + 1)} & \frac{\gamma_2 C_2}{T_2 s + 1} \end{bmatrix} \begin{bmatrix} u_1(s) \\ u_2(s) \end{bmatrix}$$

Where,
$$C_1 = \frac{T_1 k_1 k_m}{A_1}$$
 and $C_2 = \frac{T_2 k_2 k_m}{A_2}$

Poles and Zeros of Quad Tank

Case 1

$$G(s) = \begin{bmatrix} \frac{4.153}{62.36s+1} & \frac{3.036}{(62.36s+1)(22.76s+1)} \\ \frac{1.78}{(90.63s+1)(30.09s+1)} & \frac{4.554}{90.63s+1} \end{bmatrix}$$

$$= \frac{\begin{bmatrix} 4.153(90.63s+1)(30.09s+1)(22.76s+1) & 3.036(90.63s+1)(30.09s+1) \\ 1.78(62.36s+1)(22.76s+1) & 4.554(30.09s+1)(62.36s+1)(22.76s+1) \end{bmatrix}}{(90.63s+1)(30.09s+1)(62.36s+1)(22.76s+1)}$$

So, poles are
$$p_1=-\frac{1}{90.63};\; p_2=-\frac{1}{30.09};\;\; p_3=-\frac{1}{62.36};\;\; p_4=-\frac{1}{22.76}$$

Zeros of the system

- Since poles of $G^{-1}(s)$ is zeros of G(s),
- $G^{-1}(s) = \frac{Adj(G(s))}{Det(G(s))}$
- So, Det|G(s)| = 0 will give poles of $G^{-1}(s)$ and Zeros of G(s).
- For Case 1:
- Zeros are at $z_1 = -\frac{1}{16.751}$; and $z_2 = -\frac{1}{57.24}$

Poles and Zeros of Quad Tank

	Case 1	Case 2	Case 3
p1	$-\frac{1}{90.63}$	$-\frac{1}{59.82}$	$-\frac{1}{55.37}$
p2	$-\frac{1}{30.09}$	$-\frac{1}{87.6}$	$-\frac{1}{98.19}$
p3	$-\frac{1}{62.36}$	$-\frac{1}{36.88}$	$-\frac{1}{28.2}$
p4	$-\frac{1}{22.76}$	$-\frac{1}{53.91}$	$-\frac{1}{48.19}$
z1	$-\frac{1}{16.751}$	$-\frac{1}{16.93}$	0
z2	$-\frac{1}{57.24}$	$\frac{1}{74.64}$	$-\frac{1}{17.79}$

Multi-Loop vs Multivariable Control

Multi-loop - use of several single-loop controllers (e.g., PID) on pairs of manipulated/controlled variables

Multivariable - make control adjustments decisions jointly considering all outputs simultaneously

Multi-loop control configurations are typically used as a base control configuration and reside in the Distributed Control System (DCS).

» e.g., flow control, temperature control, pressure control

Multivariable control configurations typically require additional computational capability, and sit over a base multi-loop control configuration, sending setpoints to the multi-loop controllers.

Multi-Loop vs Multivariable Control

Under the multi-loop control strategy, each controller g_{ci} operates according to:

$$u_i = g_{ci}(y_{di} - y_i) = g_{ci}\varepsilon_i$$

Multivariable controller must decide on u_i , not using only ε_i , but using the entire set, ε_1 , ε_2 , ..., ε_n ;. Thus, the controller actions are obtained from

