Calabi-Yau theorem

darknmt

June 8, 2017

Contents

1	Calabi conjecture	1
2	Reduction to local charts, Yau theorem	2
3	A sketch of proof	3

1 Calabi conjecture

We start with the following fact (which is an exercise in Daniel Huybrechts, Complex geometry - an introduction)

Proposition 0.1 (Ricci and first Chern class). Let (X,g) be a compact Kahler manifold, then iRic(X,g) is the curvature of the Chern connection on the canonical bundle K_X . In other words, Ric(X,g) is in $Ric(X,g) \in -2\pi c_1(K_X)$ where $c_1(K_X)$ is the first Chern class of K_X .

The Calabi conjecture asked whether there exists for each form $R \in c_1(K_X)$ a metric g' with Ric(X, g') = R. We prefer to work with the fundamental form instead of the metric g as the former is antisymmetric.

Definition 1. The quadruple (h, g, ω, J) is said to be <u>compatible</u> if $g \circ J = g$ and $\omega(a, b) = g(Ja, b)$ and $h = g - i\omega$.

- **Remark 1.** 1. When J is fixed, one of h, g, ω that is invariant by J determines the two others.
 - 2. For a compatible quadruple, the condition $\nabla J = 0$ is equivalent to $d\omega = 0$. The fundamental form ω that satisfies $d\omega = 0$ is called a Kahler form.

2 Reduction to local charts, Yau theorem

 h, g, ω in local coordinates. We note by $h_{i\bar{j}} = h(\partial_{x_i}, \partial_{x_j}) = 2g_{\mathbb{C}}(\partial_{z_i}, \partial_{z_j})$. By straightforward calculation one has

$$\omega = -\frac{1}{2} Im h_{i\bar{j}} (dx^i \wedge dx^j + dy^i \wedge dy^j) + Re h_{i\bar{j}} dx^i \wedge dy^j$$
$$= \frac{i}{2} h_{i\bar{j}} dz^i \wedge dz^{\bar{j}}$$

and the condition $d\omega = 0$ is equivalent to

$$\frac{\partial h_{i\bar{j}}}{\partial z_k} = \frac{\partial h_{k\bar{j}}}{\partial z_i}$$

We also note by $h^{i\bar{j}}$ the inverse transposed of $h_{i\bar{j}}$, i.e. $h^{i\bar{j}}h_{k\bar{j}}=\delta_j^k$

Definition 2. Let X be an almost complex manifold (manifold with an almost complex structure). Then $d: \wedge^n T^*X \longrightarrow \wedge^{n+1} T^*X$ sends $\wedge^{p,q} T^*M$ to $\wedge^{p+1,q} T^*M \oplus \wedge^{p,q+1} T^*M$. We denote by ∂ and $\bar{\partial}$ the component of d in $\wedge^{p+1,q} T^*M$ and $\wedge^{p,q+1} T^*M$ respectively.

It would be convenient to define $d^c = i(\bar{\partial} - \partial)$ then obviously $dd^c = 2i\partial\bar{\partial}$.

The Ricci curvature. The Ricci curvature is given by

$$Ric_{\omega} = -\frac{1}{2}dd^c \log \det(h_{i\bar{j}})$$

 dd^c lemma. We then can state the dd^c lemma

Lemma 1. Let α be a real, (1,1)-form on a compact Kahler manifold M. Then α is d-exact if and only if there exists $\eta \in C^{\infty}(M)$ globally defined such that $\alpha = dd^c \eta$.

Yau theorem. The dd^c lemma tells us every form $R \in c_1(K_X)$ is of form $Ric_{\omega} + dd^c\eta$. If one varies the Hermitian product $h_{i\bar{j}}$ to $h_{i\bar{j}} + \phi_{i\bar{j}}$ then the new Ricci curvature is $dd^c \log \det(h_{i\bar{j}} + \phi_{i\bar{j}})$. The Calabi conjecture can be restated as the existence of ϕ such that $h_{i\bar{j}} + \phi_{i\bar{j}}$ is definite positive and

$$dd^{c} \left(\log \det(h_{i\bar{j}} + \phi_{i\bar{j}}) - \log \det(h_{i\bar{j}}) - eta \right) = 0$$
 (1)

The functions f that satisfies $dd^c f = 0$ are called *pluriharmonic*. They also satisfy the maximum principle. By compactness of X, these functions on X are exactly constant functions. Therefore 1 is equivalent to

$$\det(h_{i\bar{j}} + \phi_{i\bar{j}}) = e^{c+\eta} \det(h_{i\bar{j}})$$

or

$$(\omega + dd^c \phi)^n = e^{c+\eta} \omega^n$$

where ω^n denotes the repeated wedge product. Note that $(\omega + dd^c\phi)^n - \omega^n = 0$, one has $\int_M (\omega + dd^c\phi)^n = V$, the conjecture of Calabi is therefore a consequence of the following theorem.

Theorem 2 (Yau). Given a function $f \in C^{\infty}(M)$, f > 0 such that $\int_{M} f\omega^{n} = V$. There exists, and unique up to constant, $\phi \in C^{\infty}(M)$ such that $\omega + dd^{c}\phi > 0$ and

$$(\omega + dd^c \phi)^n = f\omega^n$$

3 A sketch of proof

The uniqueness is straightforward. We will prove the existence of ϕ under the constraint $\int_M \phi \omega^n = 0$ (which will be useful to prove that (N) is locally diffeomorphism later). We will prove that the set S of $t \in [0,1]$ such that there exists $\phi_t \in C^{k+2,\alpha}(M)$ with $\int_M \phi_t \omega^n = 0$ that satisfies

$$(\omega + dd^c \phi_t)^n = (tf + 1 - t)\omega^n \tag{2}$$

is both open and close in [0,1], therefore is the entire interval as $0 \in S$ is non empty.

To see that S is open, one only has to prove that the function $\mathcal N$ defined by

$$\phi \mapsto \mathcal{N}(\phi) = \frac{\det(h_{i\bar{j}} + \phi_{i\bar{j}})}{\det(h_{i\bar{j}})}$$

or in other words $(\omega + dd^c\phi)^n = \mathcal{N}(\phi)\omega^n$, is a local diffeomorphism. The differential of \mathcal{N} is given by

$$D\mathcal{N}(\phi).\eta = \mathcal{N}\tilde{\Delta}\eta$$

with η varies in $\{\eta \in C^{k,\alpha}(M) : \int_M \eta \omega^n = 0\}$. But it is known that Δ is bijective between

$$\left\{\eta\in C^{k+2,\alpha}(M):\ \int_M\eta=0\right\}\longrightarrow\left\{f\in C^{k,\alpha}(M):\ \int_Mf=0\right\}$$

Therefore \mathcal{N} is a local diffeomorphism and S is open.

The proof that S is closed is more technical. The idea in general is to do 3 things:

- 1. Using Arzela-Ascoli, it suffices to show that $\{\phi_t: t \in S\}$ is bounded in $C^{k+2,\alpha}$. Therefore up to a subsequence, one has the uniform convergence of ϕ_{t_n} to all partial derivatives of order $\leq k+1$. The k+2-th order follows from (2).
- 2. Using Schauder theory, prove that the above bound follows from a priori estimate: There exists $\alpha \in (0,1)$ and $C(X, ||f||_{1,1}, 1/\inf_M f) > 0$ such that every $\phi \in C^4(X)$ satisfying $(\omega + dd^c \phi)^n = f\omega^n$ and $\int_M \phi \omega^n = 0$ has

$$\|\phi\|_{2,\alpha} \leq C$$

.

3. Establish the priori estimate.