## ColumbiaX: Machine Learning Lecture 13

Prof. John Paisley

Department of Electrical Engineering & Data Science Institute

Columbia University



#### **BAGGING CLASSIFIERS**

## Algorithm: Bagging binary classifiers

Given 
$$(x_1, y_1), \dots, (x_n, y_n), x \in \mathcal{X}, y \in \{-1, +1\}$$

- ightharpoonup For  $b = 1, \dots, B$ 
  - ▶ Sample a bootstrap dataset  $\mathcal{B}_b$  of size n. For each entry in  $\mathcal{B}_b$ , select  $(x_i, y_i)$  with probability  $\frac{1}{n}$ . Some  $(x_i, y_i)$  will repeat and some won't appear in  $\mathcal{B}_b$ .
  - ▶ Learn a classifier  $f_b$  using data in  $\mathcal{B}_b$ .
- ▶ Define the classification rule to be

$$f_{bag}(x_0) = \operatorname{sign}\left(\sum_{b=1}^{B} f_b(x_0)\right).$$

- ▶ With bagging, we observe that a *committee* of classifiers votes on a label.
- ► Each classifier is learned on a *bootstrap sample* from the data set.
- ▶ Learning a collection of classifiers is referred to as an *ensemble method*.

#### **BOOSTING**

How is it that a committee of blockheads can somehow arrive at highly reasoned decisions, despite the weak judgment of the individual members?

- Schapire & Freund, "Boosting: Foundations and Algorithms"

**Boosting** is another powerful method for ensemble learning. It is similar to bagging in that a set of classifiers are combined to make a better one.

It works for any classifier, but a "weak" one that is easy to learn is usually chosen. (weak = accuracy a little better than random guessing)

#### Short history

1984: Leslie Valiant and Michael Kearns ask if "boosting" is possible.

1989: Robert Schapire creates first boosting algorithm.

1990: Yoav Freund creates an optimal boosting algorithm.

1995: Freund and Schapire create AdaBoost (Adaptive Boosting), the major boosting algorithm.

## BAGGING VS BOOSTING (OVERVIEW)



## THE ADABOOST ALGORITHM (SAMPLING VERSION)



## THE ADABOOST ALGORITHM (SAMPLING VERSION)

## Algorithm: Boosting a binary classifier

Given 
$$(x_1, y_1), \dots, (x_n, y_n), x \in \mathcal{X}, y \in \{-1, +1\}, \text{ set } w_1(i) = \frac{1}{n}$$

- ightharpoonup For  $t = 1, \dots, T$ 
  - 1. Sample a bootstrap dataset  $\mathcal{B}_t$  of size n according to distribution  $w_t$ . Notice we pick  $(x_i, y_i)$  with probability  $w_t(i)$  and not  $\frac{1}{n}$ .
  - 2. Learn a classifier  $f_t$  using data in  $\mathcal{B}_t$ .
  - 3. Set  $\epsilon_t = \sum_{i=1}^n w_t(i) \mathbb{1}\{y_i \neq f_t(x_i)\}$  and  $\alpha_t = \frac{1}{2} \ln \left(\frac{1-\epsilon_t}{\epsilon_t}\right)$ .
  - 4. Scale  $\hat{w}_{t+1}(i) = w_t(i)e^{-\alpha_t y_i f_t(x_i)}$  and set  $w_{t+1}(i) = \frac{\hat{w}_{t+1}(i)}{\sum_j \hat{w}_{t+1}(j)}$ .
- ► Set the classification rule to be

$$f_{boost}(x_0) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t f_t(x_0)\right).$$

**Comment**: Description usually simplified to "learn classifier  $f_t$  using distribution  $w_t$ ."



### Original data

Uniform distribution,  $w_1$ Learn weak classifier

Here: Use a decision stump





#### Round 1 classifier

Weighted error:  $\epsilon_1 = 0.3$ Weight update:  $\alpha_1 = 0.42$ 



Weighted data

After round 1



#### Round 2 classifier

Weighted error:  $\epsilon_2 = 0.21$ Weight update:  $\alpha_2 = 0.65$ 



Weighted data

After round 2



#### Round 2 classifier

Weighted error:  $\epsilon_3 = 0.14$ Weight update:  $\alpha_3 = 0.92$ 





#### Example problem

Random guessing 50% error

**Decision stump** 45.8% error

Full decision tree 24.7% error

**Boosted stump** 5.8% error

### **BOOSTING**



Point = one dataset. Location = error rate w/ and w/o boosting. The boosted version of the same classifier almost always produces better results.

#### **BOOSTING**



(left) Boosting a bad classifier is often better than not boosting a good one. (right) Boosting a good classifier is often better, but can take more time.

#### **BOOSTING AND FEATURE MAPS**

**Q**: What makes boosting work so well?

**A**: This is a well-studied question. We will present one analysis later, but we can also give intuition by tying it in with what we've already learned.

The classification for a new  $x_0$  from boosting is

$$f_{boost}(x_0) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t f_t(x_0)\right).$$

Define  $\phi(x) = [f_1(x), ..., f_T(x)]^{\top}$ , where each  $f_t(x) \in \{-1, +1\}$ .

- We can think of  $\phi(x)$  as a high dimensional feature map of x.
- ▶ The vector  $\boldsymbol{\alpha} = [\alpha_1, \dots, \alpha_T]^{\top}$  corresponds to a hyperplane.
- ▶ So the classifier can be written  $f_{boost}(x_0) = \text{sign}(\phi(x_0)^{\top} \alpha)$ .
- ▶ Boosting learns the feature mapping and hyperplane simultaneously.

## APPLICATION: FACE DETECTION

## FACE DETECTION (VIOLA & JONES, 2001)

**Problem**: Locate the faces in an image or video.

**Processing**: Divide image into patches of different scales, e.g.,  $24 \times 24$ ,  $48 \times 48$ , etc. Extract *features* from each patch.

**Classify** each patch as face or no face using a *boosted decision stump*. This can be done in real-time, for example by your digital camara (at 15 fps).



- ▶ One patch from a larger image. Mask it with many "feature extractors."
- ► Each pattern gives one number, which is the sum of all pixels in black region minus sum of pixels in white region (total of 45,000+ features).

## FACE DETECTION (EXAMPLE RESULTS)











# ANALYSIS OF BOOSTING

#### ANALYSIS OF BOOSTING

## Training error theorem

We can use *analysis* to make a statement about the accuracy of boosting *on the training data*.

**Theorem**: Under the AdaBoost framework, if  $\epsilon_t$  is the weighted error of classifier  $f_t$ , then for the classifier  $f_{boost}(x_0) = \text{sign}(\sum_{t=1}^{T} \alpha_t f_t(x_0))$ ,

training error 
$$=\frac{1}{n}\sum_{i=1}^{n}\mathbb{1}\{y_i\neq f_{boost}(x_i)\} \leq \exp\Big(-2\sum_{t=1}^{T}(\frac{1}{2}-\epsilon_t)^2\Big).$$

Even if each  $\epsilon_t$  is only a little better than random guessing, the sum over T classifiers can lead to a large negative value in the exponent when T is large.

For example, if we set:

$$\epsilon_t = 0.45, \ T = 1000 \ \rightarrow \ \text{training error} \ \leq \ 0.0067.$$

## PROOF OF THEOREM

## Setup

We break the proof into three steps. It is an application of the fact that

$$\text{if} \quad \underbrace{a < b}_{\text{Step 2}} \quad \text{and} \quad \underbrace{b < c}_{\text{Step 3}} \quad \text{then} \quad \underbrace{a < c}_{\text{conclusion}}$$

- ▶ Step 1 calculates the value of *b*.
- ▶ Steps 2 and 3 prove the two inequalities.

Also recall the following step from AdaBoost:

- ▶ Update  $\hat{w}_{t+1}(i) = w_t(i)e^{-\alpha_t y_i f_t(x_i)}$ .
- ► Normalize  $w_{t+1}(i) = \frac{\hat{w}_{t+1}(i)}{\sum_{j} \hat{w}_{t+1}(j)}$   $\longrightarrow$  Define  $Z_t = \sum_{j} \hat{w}_{t+1}(j)$ .

## Proof of Theorem $(a \le \mathbf{b} \le c)$

## Step 1

We first want to expand the equation of the weights to show that

$$w_{T+1}(i) = \frac{1}{n} \frac{e^{-y_i \sum_{t=1}^{T} \alpha_t f_t(x_i)}}{\prod_{t=1}^{T} Z_t} = \frac{1}{n} \frac{e^{-y_i f_{boost}^{(T)}(x_i)}}{\prod_{t=1}^{T} Z_t} \quad (f_{boost}^{(T)} \text{ is up to step } T)$$

#### **Derivation of Step 1**:

Notice the update rule:  $w_{t+1}(i) = \frac{1}{Z_t} w_t(i) e^{-\alpha_t y_i f_t(x_i)}$ 

Do the same expansion for  $w_t(i)$  and continue until reaching  $w_1(i) = \frac{1}{n}$ ,

$$w_{T+1}(i) = w_1(i) \frac{e^{-\alpha_1 y_i f_1(x_i)}}{Z_1} \times \dots \times \frac{e^{-\alpha_T y_i f_T(x_i)}}{Z_T}$$

**The product**  $\prod_{t=1}^{T} Z_t$  is "b" above. We use this form of  $w_{T+1}(i)$  in Step 2.

## Proof of Theorem $(a \le b \le c)$

### Step 2

Next show that the training error of  $f_{boost}^{(T)}$  after T steps is  $\leq \prod_{t=1}^{T} Z_t$ .

From Step 1: 
$$w_{T+1}(i) = \frac{1}{n} \frac{e^{-y_i f_{boost}^{(T)}(x_i)}}{\prod_{t=1}^T Z_t} \implies w_{T+1}(i) \prod_{t=1}^T Z_t = \frac{1}{n} e^{-y_i f_{boost}^{(T)}(x_i)}$$

#### **Derivation of Step 2**:

(Observe that  $0 < e^{z_1}$  and  $1 < e^{z_2}$  for any  $z_1 < 0 < z_2$ .)

$$\frac{1}{n} \sum_{i=1}^{n} \mathbb{1} \{ y_i \neq f_{boost}^{(T)}(x_i) \} \leq \frac{1}{n} \sum_{i=1}^{n} e^{-y_i f_{boost}^{(T)}(x_i)}$$

$$= \sum_{i=1}^{n} w_{T+1}(i) \prod_{t=1}^{T} Z_t$$

$$= \prod_{t=1}^{T} Z_t$$

"a" is the training error - the quantity we care about.

## Proof of Theorem $(a \leq b \leq c)$

#### Step 3

The final step is to calculate an upper bound on  $Z_t$ , and by extension  $\prod_{t=1}^T Z_t$ .

#### **Derivation of Step 3**:

This step is slightly more involved. It also shows why  $\alpha_t := \frac{1}{2} \ln \left( \frac{1 - \epsilon_t}{\epsilon_t} \right)$ .

$$Z_t = \sum_{i=1}^n w_t(i)e^{-\alpha_t y_i f_t(x_i)}$$

$$= \sum_{i: y_i = f_t(x_i)} e^{-\alpha_t} w_t(i) + \sum_{i: y_i \neq f_t(x_i)} e^{\alpha_t} w_t(i)$$

$$= e^{-\alpha_t} (1 - \epsilon_t) + e^{\alpha_t} \epsilon_t$$

Remember we <u>defined</u>  $\epsilon_t = \sum_{i: y_i \neq f_t(x_i)} w_t(i)$ , the probability of error for  $w_t$ .

## Proof of Theorem $(a \le b \le c)$

#### **Derivation of Step 3** (continued):

Remember from Step 2 that

training error 
$$=\frac{1}{n}\sum_{i=1}^{n}\mathbb{1}\{y_i\neq f_{boost}(x_i)\} \leq \prod_{t=1}^{T}Z_t$$
.

and we just showed that  $Z_t = e^{-\alpha_t}(1 - \epsilon_t) + e^{\alpha_t}\epsilon_t$ .

We want the training error to be small, so we pick  $\alpha_t$  to *minimize*  $Z_t$ . Minimizing, we get the value of  $\alpha_t$  used by AdaBoost:

$$\alpha_t = \frac{1}{2} \ln \left( \frac{1 - \epsilon_t}{\epsilon_t} \right).$$

Plugging this value back in gives  $Z_t = 2\sqrt{\epsilon_t(1-\epsilon_t)}$ .

## Proof of Theorem $(a \leq b \leq c)$

#### **Derivation of Step 3** (continued):

Next, re-write  $Z_t$  as

$$Z_t = 2\sqrt{\epsilon_t(1-\epsilon_t)}$$
$$= \sqrt{1-4(\frac{1}{2}-\epsilon_t)^2}$$



Then, use the inequality  $1 - x \le e^{-x}$  to conclude that

$$Z_t = \left(1 - 4(\frac{1}{2} - \epsilon_t)^2\right)^{\frac{1}{2}} \le \left(e^{-4(\frac{1}{2} - \epsilon_t)^2}\right)^{\frac{1}{2}} = e^{-2(\frac{1}{2} - \epsilon_t)^2}.$$

#### PROOF OF THEOREM

## Concluding the right inequality $(a \le b \le c)$

Because both sides of  $Z_t \le e^{-2(\frac{1}{2} - \epsilon_t)^2}$  are positive, we can say that

$$\prod_{t=1}^{T} Z_t \leq \prod_{t=1}^{T} e^{-2(\frac{1}{2} - \epsilon_t)^2} = e^{-2\sum_{t=1}^{T} (\frac{1}{2} - \epsilon_t)^2}.$$

This concludes the " $b \le c$ " portion of the proof.

### Combining everything

training error 
$$=$$
  $\underbrace{\frac{1}{n}\sum_{i=1}^{n}\mathbb{1}\{y_i\neq f_{boost}(x_i)\}}_{c} \leq \underbrace{\prod_{t=1}^{b}Z_t}_{c} \leq \underbrace{e^{-2\sum_{t=1}^{T}(\frac{1}{2}-\epsilon_t)^2}}_{c}.$ 

We set out to prove "a < c" and we did so by using "b" as a stepping-stone.

### TRAINING VS TESTING ERROR

**Q**: Driving the training error to zero leads one to ask, does boosting overfit?

**A**: Sometimes, but very often it doesn't!

