

Geometria Plana

Lista de Exercícios: P1

- 1 Ponto, reta e plano.
 - 2 Ângulos.
 - 3 Triângulos.

1 Ponto, Reta e Plano

Exercício 1 Faça uma figura para ilustrar as seguintes situações:

- a) Dois planos que não se interceptam.
- b) Uma reta e um plano que se interceptam em exatamente um ponto.
- c) Uma reta e um plano que não se interceptam.
- d) Uma reta contida em um plano.
- e) Dois planos que se interceptam.
- f) Três planos que se interceptam em um ponto.
- g) Três planos que se interceptam em uma reta.
- h) Uma reta que intercepta dois planos em diferentes pontos.
- i) Um sólido que seja limitado por superfícies planas, que não seja convexo.

Exercício 2 Prove que:

- a) Todo plano contém no mínimo três pontos não colineares.
- b) O espaço contém no mínimo quatro pontos não coplanares.
- c) Se três pontos estão alinhados então eles são coplanares.

Exercício 3 Responda:

- a) Quantas retas passam:
 - i) Por um ponto dado?
 - ii) Por dois pontos distintos?
- b) Quantas planos passam:
 - i) Por um ponto dado?
 - ii) Por dois pontos distintos?
 - iii) Por três pontos distintos?

Exercício 4 Classifique como verdadeiro (V) ou falso (F):

- a) Três pontos distintos são colineares.
- b) Três pontos quaisquer são coplanares.
- c) Quatro pontos distintos determinam quatro retas.

d)	Por quatro pontos distintos pode passar uma só reta.							
e)	Três pontos distintos são sempre colineares.							
f)	Se quatro pontos são coplanares, então eles estão alinhados.							
g)	Dois pontos quaisquer são colineares.							
h)	Dois pontos quaisquer são coplanares.							
i)	Dois pontos distintos determinam um plano.							
j)	Dois pontos distintos determinam uma reta.							
k)	Dois pontos distintos determinam um plano.							
1)	Três pontos distintos determinam um plano.							
m)	Por uma reta passam infinitos planos.							
n)	$\acute{\mathrm{E}}$ convexo o conjunto constituído por dois pontos apenas.							
0)	Uma reta possui infinitos pontos.							
p)) No plano, duas retas distintas ou não se interceptam ou se interceptam num só ponto.							
Gabarito								
1.								
2.								
3.	a) i) Infinitas.							
	ii) Apenas uma (postulado 1).							
	b) i) Infinitos.							
	ii) Infinitos.							
	iii) Apenas um (postulado 4) se forem não colineares. Infinitos em caso contrário.							

 $4. \begin{array}{c|cccc} a) & F & i) & F \\ \hline b) & V & j) & V \\ \hline c) & F & k) & F \\ \hline d) & F & l) & F \\ \hline e) & F & m) & V \\ \hline f) & F & n) & F \\ \hline g) & V & o) & V \\ \hline h) & F & p) & V \\ \hline \end{array}$

2 Ângulos

Exercício -	5	Escreva	algei	bricamente	as	seguintes	frases:
-------------	----------	---------	-------	------------	----	-----------	---------

- a) A medida de um ângulo.
- b) O dobro da medida de um ângulo.
- c) A terça parte de um ângulo.
- d) Os três quintos de um ângulo.
- e) O complemento de um ângulo.
- f) A metade do complemento de uma ângulo.
- g) O complemento da metade de um ângulo.
- h) O suplemento de um ângulo.
- i) A terça parte do suplemento de um ângulo.
- j) O suplemento da terça parte de um ângulo.
- k) A soma entre as medidas de dois ângulos.
- l) A metade da soma entre as medidas de dois ângulos.
- m) A quinta parte da soma entre dois ângulos.
- n) O suplemento da soma entre dois ângulos.

Exercício 6 Complete:

- a) Se \hat{A} e \hat{B} são ângulos suplementares, então _____
- b) Se \hat{A} e \hat{B} são suplementos de \hat{C} , então _____
- c) Se \hat{A} e \hat{B} são ângulos complementares, então _____
- d) Se \hat{A} e \hat{B} são complementos de ângulos congruentes, então _____

Exercício 7 A terça parte da soma entre dois ângulos vale 72°. Determiná-los, sabendo-se que um deles é o quíntuplo do outro.

Exercício 8 O complemento de um ângulo x está para seu suplemento, assim como 4 está para 19. Calcular esse ângulo.

Exercício 9 Dois ângulos consecutivos têm um lado em comum e suas medidas somam 134°. Determine o ângulo formado pelas suas bissetrizes.

Exercício 10 Em torno de um ponto, e num mesmo plano, constroem-se quatro ângulos consecutivos. Sabendo-se que cada um deles é igual ao dobro do anterior, achar esses ângulos.

Exercício 11 Prove que a reta perpendicular à bissetriz de um ângulo, traçada pelo vértice do mesmo, forma ângulos congruentes com os lados do ângulo.

Exercício 12 Mostre que as bissetrizes de um ângulo e do seu suplemento são perpendiculares.

Exercício 13 Prove que as bissetrizes de dois ângulos opostos pelo vértice são semirretas opostas.

Exercício 14 Dois ângulos retos, $A\hat{O}B$ e $C\hat{O}D$, têm em comum o ângulo $B\hat{O}C$. Mostre que os ângulos $A\hat{O}C$ e $B\hat{O}D$ são congruentes e que os ângulos $A\hat{O}D$ e $B\hat{O}C$ são suplementares.

Gabarito

4. a) A medida de um ângulo.

 \mathbf{R} : x

b) O dobro da medida de um ângulo.

 \mathbf{R} : 2x.

c) A terça parte de um ângulo.

R: $\frac{x}{3}$.

d) Os três quintos de um ângulo.

R: $\frac{3}{5}x$.

e) O complemento de um ângulo.

R: 90 - x.

f) A metade do complemento de uma ângulo.

R: $\frac{90-x}{2}$.

g) O complemento da metade de um ângulo.

R: $90 - \frac{x}{2}$.

h) O suplemento de um ângulo.

R: 180 - x.

i) A terça parte do suplemento de um ângulo.

R: $\frac{180-x}{3}$.

j) O suplemento da terça parte de um ângulo.

R: $180 - \frac{x}{3}$.

k) A soma entre as medidas de dois ângulos.

 $\mathbf{R}: x + y.$

- l) A metade da soma entre as medidas de dois ângulos. R: $\frac{x+y}{2}$.
- m) A quinta parte da soma entre dois ângulos. \mathbf{R} : $\frac{x+y}{5}$.
- n) O suplemento da soma entre dois ângulos. R: 180 (x + y).
- 6. a) Se \hat{A} e \hat{B} são ângulos suplementares, então $\hat{A} + \hat{B} = 180$.
 - b) Se \hat{A} e \hat{B} são suplementos de \hat{C} , então \hat{A} e \hat{B} são congruentes.
 - c) Se \hat{A} e \hat{B} são ângulos complementares, então $\hat{A} + \hat{B} = 90$.
 - d) Se \hat{A} e \hat{B} são complementos de ângulos congruentes, então \hat{A} e \hat{B} também são congruentes.
- 6. 36° e 180° .
- 7. 66° .
- 8. 67° .
- 9. 24°, 48°, 96° e 192°.

3 Triângulos

Exercício 15 Complete a demonstração do teorema 2, da aula 03.

Exercício 16 Na figura abaixo, $\overline{CD} \perp \overline{D}$, $\overline{CD} \perp \overline{BD}$ e AD = BD.

Demonstre que o $\triangle ABC$ é isósceles.

Exercício 17 No triângulo isósceles ABC abaixo, a bissetriz do ângulo \hat{B} intercepta o lado oposto em D. E é um ponto da base \overline{AB} tal que ED = EA. \overline{DF} bisseca o ângulo $A\hat{D}E$. Demonstre que $E\hat{D}F = C\hat{B}D$.

