Lecture notes - Introduction to Reinforcement learning with David Silver

Lecture 10

By - Amal Sunny

Classical Games

Motivation for Classical Games

- Simple rules, deep concepts
- Studied and played for hundred/thousands of years
- · Good IQ test for AI
- Chess was the most basic case study for RL/AI
- And... well games are fun 😃

State of the Art: Al in games

Program	Level of Play	Program to Achieve Level		
Checkers	Perfect	Chinook		
Chess	Superhuman	Deep Blue		
Othello	Superhuman	Logistello		
Backgammon	Superhuman	TD-Gammon		
Scrabble	Superhuman	Maven		
Go	Grandmaster	MoGo ¹ , Crazy Stone ² , Zen ³		
Poker ⁴	Superhuman	Polaris		

 $^{^{1}9 \}times 9$

- Superhuman beat the best human player
- Perfect Solved the game
- Grandmaster/Master/International Master levels of
- This is for all Al methods, next we showcase how far RL has gone for those games.

State of the Art: RL in games

 $^{^29 \}times 9$ and 19×19

 $^{^{3}19 \}times 19$

⁴Heads-up Limit Texas Hold'em

Program	Level of Play	RL Program to Achieve Level		
Checkers	Perfect	Chinook		
Chess	International Master	KnightCap / Meep		
Othello	Superhuman	Logistello		
Backgammon	Superhuman	TD-Gammon		
Scrabble	Superhuman	Maven		
Go	Grandmaster	MoGo ¹ , Crazy Stone ² , Zen ³		
Poker ⁴	Superhuman	SmooCT		

^{19 × 9}

Game Theory - Optimality in Games

- In a multiplayer game, we can't just have a simple fixed policy as each player's action depends very much on what the other player does.
- ullet Our question is to find the optimal policy π^i for the i th player
- So to make this an RL problem, we fix the policy of all other players as π^{-i} and consider it part of the environment for the i th player.
- But we still need to find the best way to play the game regardless of whatever opponent we have, i.e. generally best policy.
- For that we first define Best response $\pi^i_*(\pi^{-i})$ which is the optiaml policy against those strategies π^{-i}
- And then we use Nash equilibrium as the joint policy for all players.
 - Nash's equilibrium states that every player playing this game would pick the most optimal one bearing in mind other player's strategies
 - o i.e. every player's policy is the best response
 - o no one would deviate from it

$$\pi^i=\pi^i_*(\pi^{-i})$$

• This might not be the most optimal for *all* opponents, but it acts as the best one against any general opponent.

Single-Agent and Self-play RL

- Best response is solution to single-agent RL problem
 - where we include other players as part of the environment, factoring in their policies into our

 $^{^{2}9 \}times 9$ and 19×19

 $^{^{3}19 \}times 19$

⁴Heads-up Limit Texas Hold'em

MDP

- Game is reduced to an MDP
- Solve for the MDP to get optimal response
- Nash equilibrium is fixed-point of self-play RL
 - We generate experience by playing games between 2 agents we made following the same policy
 - Each agent learns the best response to other player, based on the experience tuples generated.
 - And each agent's environment changes based on each player's policy improving
 - o i.e. both players are adapting to each other
 - And we do this iterative process until we reach a point, where no further improvments are being made - the Nash equilibrium (if it exists for the problem)

Two-player Zero-Sum Games

- We focus on a special class of games:
 - Two player games have two (alternating players)
 - P1 is taken as white and P2 as black
 - o Zero sum game Has equal and opposite rewards for Black and White

$$R^1+R^2=0$$

- We will consider the following methods to find Nash equilibria in these games
 - Game tree search(i.e. planning)
 - Self-play RL
- We further divide the games into 2 classifications Perfect, Imperfect information games
 - Perfect information (or Markov) games are fully observed
 - Chess
 - Checkers
 - Othello
 - Backgammon is stochastic, but all states are observed and known
 - Go
 - Imperfect information ones are partially observed
 - Scrabble dont know opponents hand
 - Poker same as above
- We focus on perfect information ones first

Minimax

• A value function defines the expected total reward given joint policies $\pi = \langle \pi^1, \pi^2 \rangle$

$$v_{\pi}(s) = E_{\pi}[G_t|S_t = s]$$

- A minimax value function maximizes white's expected return while minimizing black's expected return
 - i.e. it assumes each player plays alternatively to estimate value function at every point assuming players played ideally ahead

$$v_*(s) = max_{\pi^1}min_{\pi^2}v_{\pi}(s)$$

- A minimax policy is a joint policy $\pi=\langle\pi^1,\pi^2\rangle$ that achieves the minimax values. We use a tree like search to evaluate that
 - For larger trees, alpha-beta search is used which cuts away parts of the tree that are not of interest.
- There is a unique minimax value function
- A minimax policy is a Nash equilibrium

Minimax Search

Minimax values are evaluated by depth-firrst game tree search

Example

- Initially we're given value functions of the bottom most nodes.
- We must find minimax policy with this

- However this tree would grow exponentially for actual games
- ullet Impractical to search till the end thus we use value function approximator $v(s,w)pprox v_*(s)$
 - o also called evaluation function, heuristic function
- Value function is used to estimate minimax value at leaf nodes
- And search is ran to fixed depth w.r.t to leaf values.
- We'll consider an example of this Deep Blue

Deep Blue

- First actual chess program to beat a top level human player
- Knowledge
 - 8000 handcrafted chess features
 - Binary-linear value function
 - Weights were largely tuned by human experts
- Search
 - High performance parallel alpha-beta search
 - 480 special-purpose VLSI chess processors
 - Searched 200 million positions/second
 - Looked ahead 16-40 ply
- Results
 - Defeated human champion Garry Kasparov 4-2 (1997)
 - Most watched event in internet history
- But this was not RL, this was completely handcrafted features combined with minimax searching.

Chinook

- Is a Checkers program.
- Knowledge
 - o Binary-linear value function
 - 21 knowledge-based features (position, mobility, ...)
 - x4 phases of the game
- Search
 - High performance alpha-beta search
 - Retrograde analysis
 - Search backward from won positions
 - Store all winning positions in lookup tables
 - Plays perfectly from last n checkers
- Results

- o Defeated Marion Tinsley in world championship 1994
 - won 2 games but Tinsley withdrew for health reasons
- Chinook solved Checkers in 2007
 - perfect play against God

Self-Play TD Learning

- We apply previously learnt RL methods to RL algorithms involving games with self-play
- MC: update value function towards the return G
- ullet TD(0): update value function towards successor value $v(S_{t+1})$
- TD(λ): update value function towards the λ -return G_t^λ

Policy Improvement with Afterstates

- ullet For deterministic games, we need only to estimate $v_*(s)$ for policy selection.
- This is because we can efficiently evaluate the afterstate

$$q_*(s, a) = v_*(succ(s, a))$$

- Rules of the game would deterministically give us the sucessor state succ(s,a).
- Actions are then selected min/max-ing depending on black or white's turn.
- This improves joint policy for both.

Self-Play TD in Othello: Logistello

- Created its own features
 - Started with raw input features eg: black stone at c1
 - Constructed new features by conjuction/disjunction
 - Created 1.5m features in diff configs
 - Binary-linear value function using these features
- Logistello used generalized policy iteration
 - Generate batch of self-play games from current policy
 - Evaluate policies using Monte-Carlo (regress to outcomes)
 - Greedy policy improvement to generate new players
- Results
 - Defeated World Champion Takeshi Murukami 6-0

Self-Play TD in Backgammon: TD-Gammon

- The board is flattened into a row of stripes, and features are extracted out of the position of beads on those rows - using a neural network.
- · Initialized with random weights
- · Trained by games of self-play
- Using non-linear TD learning

- Greedy policy improvement (no exploration)
 - Exploration not required due to the stochastic nature of the game (die roll)
- · Algorithm always converged in practice
- · Not true for other games
 - o That is due to the dice roll again the randomness smooths out the value function.
- Results
 - o Zero expert knowledge strong intermediate play
 - Hand-crafted features =⇒ advanced level of play (1991)
 - 2-ply search =⇒ strong master play (1993)
 - 3-ply search =⇒ superhuman play (1998)
 - Defeated world champion Luigi Villa 7-1 (1992)

Combining RL and Minimax Search

Simple TD

• TD: updates value towards successor value

- Value function approximator v(s,w) with parameter w
- Value function gets backed up from raw value at next state

$$v(S_t, w) \leftarrow v(S_{t+1}, w)$$

- · First learn the entire value function by TD learning
- Then use value function in minimax search(no learning)

$$v_+(S_t,w) = minimax_{s \epsilon leaves(S_t)} v(s,w)$$

Results:

- Othello: superhuman performance in Logistello
- Backgammon: superhuman performance in TD-Gammon
- Chess: poor performance
- Checkers: poor performance
- In chess tactics seem necessary to find signal in position
 - o i.e. we need to use search

TD root

• TD root: update value towards successor search value

ullet Search value is computed at root positio S_t

$$v_+(S_t,w) = minimax_{s \in leaves(S_t)} v(s,w)$$

Value function based up from search value at next state

$$v(S_t, w) \leftarrow v_+(S_{t+1}, w) = v(l_+(S_{t+1}), w)$$

 \circ where $l_+(s)$ is the leaf node achieving minimax value from s

TD Leaf

• TD leaf: update search value towards successor search value

Search value computed at current and next step

$$v_+(S_t,w) = minimax_{seleaves(S_t)}v(s,w), \qquad v_+(S_{t+1},w) = minimax_{seleaves(S_{t+1})}v(s,w)$$

• Search value at step t backed up from search value at t+1.

$$egin{aligned} v_+(S_t,w) &\leftarrow v_+(S_{t+1},w) \ \Longrightarrow v(l_+(S_t),w) &\leftarrow v(l_+(S_{t+1}),w) \end{aligned}$$

TD leaf in Chess: Knightcap

- Learning
 - Knightcap trained against expert opponent
 - Starting from standard piece values only
 - Learnt weights using TD leaf

- Search
 - o Alpha-beta search with standard enhancements
- Results
 - Achieved master level play after a small number of games
 - Was not effective in self-play
 - Was not effective without starting from good weights

TD leaf in Checkers: Chinook

- · Original Chinook used hand-tuned weights
- Later version was trained by self-play
- · Using TD leaf to adjust weights
 - o Except material weights which were kept fixed
- Self-play weights performed ≥ hand-tuned weights
- i.e. learning to play at superhuman level

TreeStrap

TreeStrap: Updates search value towards deeper search values

- Minimax search value computed at all nodes s ϵ nodes (S_t)
- Value backed up from search value, at same step, for all nodes

$$egin{aligned} v(s,w) \leftarrow v_+(s,w) \ =& \Rightarrow v(s,w) \leftarrow v(l_+(s),w) \end{aligned}$$

 TreeStrap uses all the info from our search tree instead of just taking one - doesn't waste the information gained in the search, uses it all.

TreeStrap in Chess: Meep

- Binary linear value function with 2000 features
- Starting from random initial weights (no prior knowledge)
- Weights adjusted by TreeStrap
- Won 13/15 vs. international masters
- Effective in self-play
- Effective from random initial weights

Simulation-Based Search

- Self-play RL can replace search
- ullet Instead of searching, we just simulate how a game would have gone with whatever policies we've formulated used for both players from current root state S_t
- Apply RL to simulated experience
 - MC control => MC tree search
 - Most effective varient is UCT algorithm
 - Balances exploration/exploitation in each node using UCB
 - Self-play UCT converges on minimax values

Performance of MCTS (MC Tree Search) in Games

- MCTS is best performing method in many challenging games
 - o Go
 - Hex
 - Lines of Action
 - Amazons
- In many games simple Monte-Carlo search is enough
 - Scrabble
 - Backgammon

Simple MC search in Maven

- Maven is a program built to play Scrabble
 - while normally we assume a computer would be better, due to having the entire dictionary in data - human players end up memorizing that + strategizing better
- Learning
 - Maven evaluates moves by score + v (rack)
 - Binary-linear value function of rack
 - Using one, two and three letter features
 - Q??????, QU?????, III????
 - Learnt by Monte-Carlo policy iteration (cf. Logistello)
- Search
 - Roll-out moves by imagining n steps of self-play
 - Evaluate resulting position by score + v (rack)
 - Score move by average evaluation in rollouts
 - Select and play highest scoring move
 - Specialised endgame search using B*
- Results
 - Maven beat world champion Adam Logan 9-5
 - Analysis showed Maven had error rate of 3 points per game

Smooth UCT search

- Apply MCTS to information-state game tree
- · Variant of UCT, inspired by game-theoretic Fictious Play
 - Agents learn against and respond to opponents average behaviour
- Extract average strategy from nodes action counts,

$$\sigma_{avg}(a|s) = rac{N(s,a)}{N(s)}$$

· At each node, pick actions according to

$$A \sim egin{cases} UCT(S), & ext{with probability } \mu \ \pi_{avg}(.|S), & ext{with probability } 1-\mu \end{cases}$$

- Empirically, in varients of Poker:
 - Naive MCTS diverged
 - Smooth UCT converged to Nash equilibrium

RL in games: Successful Recipe

Program	Input features	Value Fn	RL	Training	Search
Chess Meep	Binary Pieces, pawns,	Linear	TreeStrap	Self-Play / Expert	αβ
Checkers Chinook	Binary Pieces,	Linear	TD leaf	Self-Play	αβ
Othello Logistello	Binary Disc configs	Linear	MC	Self-Play	$\alpha\beta$
Backgammon TD Gammon	Binary Num checkers	Neural network	$TD(\lambda)$	Self-Play	αβ / MC
Go MoGo	Binary Stone patterns	Linear	TD	Self-Play	MCTS
Scrabble Maven	Binary Letters on rack	Linear	MC	Self-Play	MC search
Limit Hold'em SmooCT	Binary Card abstraction	Linear	MCTS	Self-Play	-