Robust lane lines detection and quantitative assessment

A. López, J. Serrat, C. Cañero, F.Lumbreras

Computer Vision Center and Computer Science Dept.
Universitat Autònoma de Barcelona

IbPRIA'07, Girona

Outline

- 1. Context: ADAS and lane markings
- 2. Goals
- 3. Method: what's new
- 4. Results
- 5. Conclusions

What's ADAS

ADAS="Advanced driver assistance systems".

Onboard systems which combine sensors and algorithms to *understand the vehicle environment* so that the driver can receive assistance or be warned of potential hazards.

Vision is the most important sense employed for driving \rightarrow computer vision is a natural (but not unique) choice.

What's ADAS

Lane Departure Warning
Automatic Cruise Control
Stop & Go
Platooning
Collision avoidance

Pedestrian Protection

Intelligent frontlights

Intelligent airbags ...

Detection of lane markings
Vehicle recognition & tracking
Pedestrian detection
Road segmentation
Driver, occupants monitoring

in highly varying conditions (lighting, road, traffic...)

Lane markings

may seem easy...

Lane markings

but occlusions, shadows, low contrast ... make it difficult

Goals

- Extraction lane lines on video sequences
- Real time (>25 fps or <40 ms/frame)
- Robustness: deal with lighting changes, occlusions, etc.
- Computation of meaningful geometric parameters: road curvature, lane width, vehicle lateral offset and heading orientation w.r.t lane axis
- Validation: what ground truth?

Ridges

Two paralel hyperbola + RANSAC robust fitting

- No tracking: frame by frame processing
- Kalman filter

(1) Features: ridges instead of edges

$$L_{\sigma_{\mathbf{d}}}(\mathbf{x}) = G_{\sigma_{\mathbf{d}}}(\mathbf{x}) * L(\mathbf{x})$$

$$\mathbf{w}_{\sigma_{\mathbf{d}}}(\mathbf{x}) = (\partial_{u} L_{\sigma_{\mathbf{d}}}(\mathbf{x}), \partial_{v} L_{\sigma_{\mathbf{d}}}(\mathbf{x}))^{\top}$$

$$\tilde{\kappa}_{\sigma_{\mathbf{d}}, \sigma_{\mathbf{i}}}(\mathbf{x}) = -\operatorname{div}(\tilde{\mathbf{w}}_{\sigma_{\mathbf{d}}, \sigma_{\mathbf{i}}}(\mathbf{x}))$$

(1) Features : ridges instead of edges

(2) Model selection involving 4 road and vehicle geometric *meaningful* parameters.

Under the assumptions of

- planar road
- piecewise constant curvature,

lane lines are imaged as two hyperbolae with a common horizontal asymptote.

$$v = v_0$$

$$u - u_0 = a(v - v_0) + \frac{b}{(v - v_0)}$$

(2) Model selection involving 4 road and vehicle geometric *meaningful* parameters

$$\begin{bmatrix} 1 & 0 & v_l' & 1/v_l' \\ 1 & -v_r' & v_r' & 1/v_r' \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{bmatrix} = \begin{bmatrix} u_l \\ u_r \end{bmatrix}$$

$$v'_r = v_r/E_v + \tan \varphi$$
$$v'_l = v_l/E_v + \tan \varphi$$

$$\theta = \frac{\cos \varphi}{E_u} a_1, \quad L = \frac{H}{E_u \cos \varphi} a_2, \quad x_c = \frac{H}{E_u \cos \varphi} a_3, \quad C_0 = \frac{4 \cos^3 \varphi}{E_u H} a_4$$

(2) Model selection involving road and vehicle geometric *meaningful* parameters

(3) Robust fitting with RANSAC

There is no ground truth available for quantitative assessment: exact (*cm*) vehicle trajectory and road curvature.

Synthetic sequences : ground truth available for the 4 estimated parameters \rightarrow *quantitative assessment* is possible.

Geometrically realistic:

- smoothly varying curvature
- slope changes
- varying pitch angle (horizon line)


```
Testing 7 psi value(s) in range [0.60, 2.60]
DETECTOR: ~xc= 1.8 ~C0= 0.001 ~theta= 0.00 ~L=3.6 ~psi= 1.60
```


A negative slope change shrinks the road region, causing large errors

Curved lane lines: 40 ms/frame, 2Ghz Pentium IV

More results at www.cvc.uab.es/adas/projects/lanemarkings/lbPRIA07.html

Conclusions

Contribution:

- robust lane lines extraction
- estimation of 4 useful parameters for ADAS applications
- real time
- frame by frame processing
- quantitative evaluation on synthetic sequences

But there is still room for improvement:

- estimation of pitch angle φ
- enforce temporal continuity (e.g. Kalman filtering)
- relax assumptions of flat road and constant piecewise curvature

Straight lane lines: 15 ms/frame

