Entregar as soluções dos exercícios 💯 para o email walner+comb@mat.ufc.br.

- Exercício 1. Mostre que qualquer subconjunto $A \subset [2n]$ de tamanho n+1 contém dois números coprimos.
- **Exercício 2.** Seja \mathcal{A} uma família de subconjuntos de [n] tal que $A \cap B \neq \emptyset$ para todo $A, B \in \mathcal{A}$. Conclua que $|\mathcal{A}| \leq 2^{n-1}$.
- Exercício 3. Mostre que em qualquer coloração das arestas de K_7 usando apenas duas cores (vermelho e azul), existe um triângulo vermelho ou um C_4 azul. Mostre que o mesmo não ocorre em K_6 .
- Exercício 4. Seja G um grafo simples. Mostre que existem dois vértices $u, v \in V(G)$ com $d_G(u) = d_G(v)$.
- **Exercício 5.** Mostre que um grafo e seu complemento não podem ser ambos desconexos.
- \P Exercício 6. Mostre que $e(G) \ge {\chi(G) \choose 2}$.
- Exercício 7. Mostre que se G é um grafo com pelo menos v(G) arestas, então G possui um ciclo.
- **Exercício 8.** Prove que uma árvore T tem ao menos $\Delta(T)$ folhas.
- $\mathbf{\xi}$ Exercício 9. Mostre que todo grafo com n vértices e pelo menos $\binom{n-1}{2}+1$ arestas é conexo.
- **Exercício 10.** Mostre que toda floresta com exatamente k árvores tem n-k arestas.
- **Exercício 11.** Seja $k \in \mathbb{N}$ e seja T uma árvore com k+1 vértices. Prove que se G é um grafo com $\delta(G) \geq k$, então $T \subset G$.
- \square Exercício 12. Prove que se G é um grafo conexo, então G possui um caminho de comprimento

$$k = \min \{2\delta(G), n - 1\}.$$

- Exercício 13. Prove que se G é um grafo com $\alpha(G) = k$, então existem k caminhos em G que são disjuntos em vértices e que cobrem todos os vértices de G.
- Exercício 14. Dados $1 \le k \le n$ inteiros positivos, considere o grafo $G_{n,k}$ obtido a partir de K_n removendo todas as arestas dentro de um conjunto de vértices qualquer de tamnho k. Determine $\chi(G_{n,k})$.
- **Exercício 15.** Mostre que em qualquer coloração das arestas de K_n com duas cores, existem dois caminhos monocromáticos P e Q que são disjuntos em vértices e que $V(K_n) = V(P) \cup V(Q)$.
- Exercício 16. Mostre que o grafo de Petersen não é hamiltoniano.
- Exercício 17. Mostre que para todo $k \in \mathbb{N}$, existe um grafo G que não contém triângulos e tal que $\chi(G) = k$.
- Exercício 18. Um torneio é qualquer grafo direcionado que pode ser obtido orientando as arestas de um grafo completo. Mostre que em todo torneio, existe um caminho hamiltoniano orientado.