Wtorki 16:50 Grupa I3 Kierunek Informatyka Wydział Informatyki Politechnika Poznańska

Algorytmy i struktury danych Sprawozdanie z zadania w zespołach nr. 4 prowadząca: dr hab. inż. Małgorzata Sterna, prof PP

Programowanie dynamiczne

autorzy:

Piotr Więtczak nr indeksu 132339 Tomasz Chudziak nr indeksu 136691

4 czerwca 2018

1 Heurystyki

Algorytm heurystyczny jest to schemat postępowania, który nie gwarantuje odnalezienia najlepszego rozwiązania, lecz dopuszczalnie dobrego. Oznacza to, że krótszy czas poświęcony na uzyskanie go, pozwala zrekompensować korzyści płynące z najlepszego. Algorytm zachłanny charakteryzuje się tym, że w każdym kroku decyzje podejmuje zachłannie. Innymi słowy, stara się on podjąć jak najlepszą decyzję na daną chwilę, nie dokonując oceny czy będzie to korzystne w kolejnych krokach. Algorytmy listowe wpierw porządkują dane wg jakiegoś kryterium (priorytet, wartość). Później rozpatruje je wg ustalonej kolejności.

W naszym badaniu testowaliśmy cztery heurytyki różniące się regułami wyboru paczek: losową (GH_1) , min $\{s(a_i)\}$ (GH_2) , max $\{w(a_i)\}$ (GH_3) i max $\{w(a_i)/s(a_i)\}$ (GH_4) . Sprawdzaliśmy błąd popełniany przez poszczególne heurystyki dla różnych ładowności pojazdu.

1.1 Błąd popełniany przez poszczególne heurystyki dla różnych wartości n gdy $b=25\%\sum s(a_i)$:

Liczbapaczek	GH_1	GH_2	GH ₃	GH ₄
10	29.5175	17.2924	10.7574	17.7376
12	55.0858	14.7939	23.6520	5.2983
14	33.7494	22.4527	30.5146	0.6605
16	65.0744	19.3239	10.2672	0.5685
18	56.9515	23.3476	30.5126	0
20	56.4759	15.8717	33.0602	3.6663
22	30.2727	20.9886	18.1095	4.8062
24	46.826	20.2912	20.2350	0
26	52.6595	19.7696	18.3623	1.4509
28	54.9991	22.3583	23.7379	0
30	40.4368	22.8105	17.9674	1.2004
rednia	52.2048	21.93	23.7176	3.5389

1.2 Błąd popełniany przez poszczególne heurystyki dla różnych wartości n
 gdy $b=50\%\sum s(a_i)$:

Liczbapaczek	GH_1	GH_2	GH ₃	GH ₄
10	67.7162	16.4797	17.9785	0
12	42.9433	24.6597	16.2328	0.9283
14	18.2295	18.1809	12.7344	0.2793
16	53.4545	20.2261	10.3773	9.0687
18	51.3527	13.2657	5.2776	4.2163
20	41.0811	13.3351	5.3131	0.8656
22	36.206	14.8905	3.9989	3.6787
24	29.008	15.5245	6.0858	5.8083
26	49.571	12.3309	7.9051	1.4672
28	24.4841	13.1157	2.2750	0
30	41.7705	17.1165	11.7752	2.8098
rednia	45.5817	17.9125	9.99541	2.91228

1.3 Błąd popełniany przez poszczególne heurystyki dla różnych wartości n
 gdy $b=75\%\sum s(a_i)$:

Liczba _p aczek	GH_1	GH_2	GH ₃	GH_4
10	47.2733	0.8288	1.4072	2.2360
12	55.0922	0.6372	1.0819	1.7192
14	16.0029	0.5830	2.4653	3.0484
16	22.0284	10.4946	0	0
18	9.7660	6.3365	1.8275	2.2598
20	16.0535	7.6278	0.9253	1.2910
22	28.2559	6.4437	0.5193	0.5631
24	12.068	8.4404	2.4033	3.0518
26	17.4	18.1838	7.9579	0.4409
28	16.7216	5.5104	0.1375	0.9379
30	26.3282	10.1727	1.1162	0.4336
rednia	26.699	7.5259	1.9841	1.5982

1.4 Podsumowanie

r.błd	GH_1	GH_2	GH_3	GH_4
b=25%	52.2048	21.93	23.7176	3.5389
b=50%	45.5817	17.9125	9.9951	2.9122
b=75%	26.699	7.5259	1.9841	1.5982
rednia	46.8020	15.7895	11.8990	2.7031

Wraz ze wzrostem ładowności pojazdu algorytmy radzą sobie coraz lepiej. Jest to spowodowane tym, że mniejsza ilość paczek nie zostanie użyta. Dla heurystyk ich wydajność niewydane się być skorelowana z ilością paczek, z którą ma do czynienia.

Jak widać w tabeli powyżej, jakość rozwiązanie zależy od użytej metody. Spośród badanych metod najmniej efektywna okazała się GH_1 , następnie GH_2 . Najlepiej wypadła GH_4 a po niej GH_3 . Wydajność GH_1 zależy tylko i wyłącznie od przypadku. Skuteczność GH_2 i GH_3 jest zbliżona, pierwsza sortuje wg rozmiaru rosnąco, natomiast drugi wg rozmiaru malejąco. GH_2 będzie radził sobie gorzej dla dużej ilości małych paczek o niskiej wartości, a GH_3 dla stosunkowo dużej ilości dużych paczek o wysokiej wartości. GH_4 bierze pod uwagę stosunek wartości do rozmiaru paczki, co w konsekwencji daje wynik najbardziej zbliżony do optymalnego.

2 Zależność czasu obliczeń t od liczby paczek n dla PD, BF_1 , BF_2 , GH_4 dla $b = 25\% \sum s(a_i)$.

Liczba paczek	Metody			
paczek	PD	BF_1	BF_2	GH
10	2.02074	0.814474	1.23603	0.349975
12	1.39877	0.921087	1.4534	0.42984
14	1.57056	1.38031	1.51066	0.433231
16	1.777	2.7998	1.81769	0.485972
18	2.19479	9.5891	2.3952	0.55642
20	2.29349	35.3227	4.15186	0.528542
22	2.44305	118.491	6.80211	0.489739
24	2.25205	540.134	20.7631	0.497274
26	3.04505	2175.09	71.9876	0.507069
28	3.45681	7193.46	114.97	0.435491
30	3.61663	27904.3	318.769	0.411758

Czasy znajdowania najlepszego ułożenia w zależności od ilości paczek.

Zależność czasu obliczeń t od liczby paczek n dla PD, BF_1 , BF_2 , GH_4 dla $b = 50\% \sum s(a_i)$.

Liczba paczek	Metody			
paczek	PD	BF_1	BF_2	GH
10	1.56491	0.903381	1.70618	0.450937
12	1.7269	0.899991	1.33586	0.380867
14	1.80375	1.14335	3.41386	0.675087
16	2.21588	2.43325	2.816	0.404977
18	3.15129	8.73093	5.96503	0.388401
20	2.72559	28.9478	20.1306	0.391415
22	3.1317	110.618	66.8581	0.423813
24	3.7224	441.764	285.001	0.39895
26	3.90034	1757.5	1081.15	0.427204
28	4.62126	6933.11	4051.2	0.400457
30	5.54084	27831.4	16303.1	0.526658

Czasy znajdowania najlepszego ułożenia w zależności od ilości paczek.

4 Zależność czasu obliczeń t od liczby paczek n dla metody PD, BF_1 , BF_2 , GH_4 dla $b=25\%\sum s(a_i)$ i $b=75\%\sum s(a_i)$.

Liczba paczek	Metody			
paczek	PD	BF_1	BF_2	GH
10	2.0181	0.714266	1.85724	0.430594
12	2.42572	0.832934	1.60484	0.407237
14	2.5474	1.1539	2.2528	0.478061
16	3.14187	2.40048	3.32157	0.434738
18	7.15246	8.19259	9.35064	0.480321
20	4.34399	29.3411	30.5944	0.460355
22	4.94298	113.809	120.64	0.481075
24	5.71451	434.529	468.442	0.467889
26	8.79798	1905.24	1905.06	0.417785
28	5.9379	7045.24	7187.44	0.479568
30	6.1014	27492.2	28313.4	0.404224

5 Obliczanie średniego błędu popełnionego przez h

Spis treści

1	Heur	ystyki	1		
	1.1	Błąd popełniany przez poszczególne heurystyki dla różnych wartości n gdy $b=25\%\sum s(a_i)$:	1		
	1.2	Błąd popełniany przez poszczególne heurystyki dla różnych wartości n gdy $b = 50\% \sum s(a_i)$:	2		
	1.3	Błąd popełniany przez poszczególne heurystyki dla różnych wartości n gdy $b = 75\% \sum s(a_i)$:	2		
	1.4	Podsumowanie	3		
2	Zależ	zność czasu obliczeń t od liczby paczek n dla PD , BF_1 , BF_2 , GH_4 dla $b=25\%\sum s(a_i)$.	3		
3	Zależność czasu obliczeń t od liczby paczek n dla PD , BF_1 , BF_2 , GH_4 dla $b = 50\% \sum s(a_i)$.				
4	Zależność czasu obliczeń t od liczby paczek n dla metody PD , BF_1 , BF_2 , GH_4 dla $b=25\%\sum s(a_i)$ i $b=75\%\sum s(a_i)$.				
5	Oblic	zanie średniego błędu popełnionego przez h	6		