23

RESULT LIST

1 result found in the Worldwide database for: SU1004278 as the publication, application, priority or NPL reference number (Results are sorted by date of upload in database)

1 METHOD FOR PRODUCING MINERAL WOOL

Inventor: ENNO IGOR K; GILOD VLADIMIR YA; (+6)

Applicant: VNI PI TEPLOPROEKT (SU)

EC:

Publication info: SU1004278 - 1983-03-15

IPC: CO3B37/00; CO3B1/00; CO3B37/00 (+3)

Data supplied from the esp@cenet database - Worldwide

Союз Советских Социалистических Республик

Государственный комитет CCCP по делам изобретений и открытий

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(61) Дополнительное к авт. свид-ву-

(22) Заявлено 28,05,81 (21) 3293911/29-33

с присоединением заявки №

(23) Приоритет -

Опубликовано 150383.Бюллетень № 10

Дата опубликования описания 15.0383

(in)1004278

[51] M. Kn.3 C 03 B 37/00 C 03 B 1/00

[53] УДК 666.198 (088.8)

(72) Авторы изобретения и.к. Энно, в.я. Гилод, А.Т. Шумилин, в.в. жуликов, и В.М. Смирнов

(71) Заявитель

Всесоюзный научно-исследовательский и проектный институт "Теплопроект"

阿斯斯斯斯

(54) СПОСОБ ПОЛУЧЕНИЯ МИНЕРАЛЬНОЙ ВАТЫ

Изобретение относится к производству минеральной ваты и может найти применение в промышленности строительных материалов.

В настоящее время минеральную вату изготовляют путем переработки силикатных расплавов, полученных плавлением исходного сырья в коксовых вагранках и безкоксовых технологических агрегатах - печах с погруженным факелом, ванных и циклонных печах. При этом в качестве сырья для получения ваты используют отходы различных производств (в первую очередь доменные шлаки) или природные минеральные материалы (известняк, гранитный щебень, габбродиабаз, базальт и др.), в качестве топлива - кокс, газ или мазут.

Основными недостатками наиболее распространенного ваграночного процесса получения силикатных расплавов являются необходимость применения дорогого и дефицитного топлива кокса, довольно жесткие требования к гранулометрическому составу шихты, что исключает возможность использования пылевидных отходов минераловатного и других производств без их предварительной подготовки, на2

пример, брикетирования, большие потери тепла с химическим недожогом, вызываемые восстановлением СО2 до со в верхних горизонтах шахты вагранки, отсутствие условий для гомогенизации расплава и трудности управления процессом плавления сырья.

Безкоксовые технологические агрегаты - печи с погруженным факелом, ванные и циклонные печи позволяют полностью исключить использование дефицитного кокса и ликвидировать, хотя бы частично, другие принципиальные недостатки ваграночного процесса получения силикатных распла-

Известен способ получения минеральной ваты путем переработки силикатного расплава, полученного плав-лением исходного сырья в вихревом закрученном факеле продуктов сжигания газообразного или жидкого топлив в циклонных агрегатах. Применение циклонного процесса позволяет по сравнению с известными в настояшее время способами получения минеральной ваты, организовать высокоинтенсивное плавление материалов 30 в ограниченном объеме [1].

Однако использование известного способа получения силикатных расплавов в циклонных печах требует применения для его реализации газообразного или жидкого топлива, стоимость и дефицитность которых в последнее время также неуклонно возрастают

Наиболее близким к изобретению по технической сущности и достигае-мому результату является способ полу- 10 чения минеральной ваты путем переработки огненно-жидких шлаков, образующихся при сжигании тонкоизмельченных твердых топлив в топках и циклонных предтопках котельных агрегатов[2].

Однако несмотря на то, что себестоимость минеральной ваты, полученной путем переработки огненно-жидких шлаков, образующихся при сжигании твердых топлив, особенно при сжи-20 гании высокозольных дешевых топлив в вихревом турбулентном потоке в циклонных камерах котельных агрегатов будет в 2-2,5 раза ниже, чем при изготовлении ее ваграночным способом, такая технология не нашла пока промышленного применения. Это объясняется тем, что производство минеральной ваты является побочным, инородным процессом для котельной и не облегчает решения вопроса удаления шлаков из нее, а, наоборот, усложняет его. Выделяющееся в процессе сжигания пылевидного твердого топлива в вихревом турбулентном потоке тепло предназначено здесь в первую очередь для выработки пара, а не для получения силикатного расплава, в связи с чем качество, вырабатываемой в соответствии с известным способом, минеральной ваты является очень низким.

Целью изобретения является повышение качества минеральной ваты.

Поставленная цель достигается тем, что согласно способу получения минеральной ваты, включающему сжигание пылевидных твердых топлив в вихревом турбулентном потоке с образованием силикатного расплава, переработку его и получение минеральной ваты, при сжигании пылевидных твердых топлив в зону максимальных температур вихревого потока вводят 50-300% от сухой массы топлива пылевидных минеральных добавок и 3-9% от суммарного содержания минеральной части топлива тонкомолотых подкисляющих добавок.

При этом в качестве минеральных добавок могут быть использованы как пылевидные отходы различных произ- 60 водств, в первую очередь, зола уноса сухого отбора теплоэлектростанций, распадающиеся доменные шлаки, отходы собственно минераловатного производства, так и различного вида тон- 65

коизмельченное минеральное сырье - известняк, доломит, гранитный щебень, габбро, габбродиабаз, базальт и т д. В качестве подкисляющих добавок вно-дят песок, известковую муку, перлит и т.д.

Способ осуществляется следующим образом.

Пример 1. Для получения 1 т силикатного расплава сжигают 0,675 г тонкоизмельченного угля Ирша-Бородинского месторождения с низшей теплотой сгорания $Q_H^P = 3740$ ккал/кг и $A^2 = 9$ %.

В зону максимальных температур вихревого турбулентного потока продуктов сгорания вводят 0,940 т золы уноса сухого отбора этого же угля, что составляет 209% от сухой массы угля и 0,029 т подкисляющей добавки кварцевого песка, что соответствует 3% суммарного содержания минеральной части шихты (зола угля и зола уноса). При этом получают расплав с модулем кислотности 1,60 и температурой выработки 1250-1310°С. Удельный съем расплава 1 м² рабочей площади составляет 2400 кг/м². После переработки расплава получают вату, химический состав которой приведен в табл. 1, а свойства - в табл. 2

30 Пример 2. Для получения 1 т расплава сжигают 0,675 т угля Ирша-Бородинского месторождения. В зону максимальных температур продуктов сжигания вводят 0,610 т золы уноса этого угля, что составляет 135% от сухой массы топлива и 0,380т тонкоизмельченной подкисляющей добавки - перлита, что составляет 50% суммарного содержания минеральной 40 части в золе угля и золе уноса. При этом получают силикатный расплав с модулем кислотности 2,36 и температурой выработки 1380-1445°C. Уделаный съем расплава с 1 м² рабочей площади составляет 2300 кг/м 2. Химический состав минеральной ваты приведен в табл. 1, а ее свойства - в табл. 2.

Пример 3. Для получения
1 трасплава в вихревом турбулентном потоке сжигают 0,395 г Донецкого газового угля с низшей теплотой спорания QH = 6400 ккал/кг и зольностью AC = 18% на сухую массу. В зону максимальных температур вводят 0,900 т золы уноса сухого отбора этого угля, что составляет 240% от сухой массы топлива и 0,113 т известковой муки, что составляет 11,6% от суммарного содержания минеральной (зольной) части сжигаемой шихты. При этом получают расплав с модулем кислотности 7,03 и температурой выработки 1450-1520°C. Удельный слем расплава с 1 м² рабочей площади составляет 2150 кг/м². Химический сост

тав полученной минеральной ваты приведен в табл. 1, а свойства - в табл. 2.

Пример 4. Для получения 1 т расплава сжигают 0,095 т угля Экибастузского месторождения с низшей теплотой сгорания QH = 4000 ккал/кг и зольностью на сухую массу $A^{c} = 40%$. В зону максимальных температур потока продуктов сжигания вводят 0,460 т золы уноса этого же угля, что составляет 50% от сухой массы угля и 0,740 т доломитной муки, что составляет 90% от суммарного содержания минеральной части. При этом получают расплав с модулем кислотности 1,95 и температурой выработки 1340-1415° С. Удельный съем расплава с 1 м^2 рабочей площади составляет 2410 кг/м². Химический состав полученной минеральной ваты приведен в табл. 1, а свойства - в табл. 2.

пример 5. Для получения 1 т расплава сжигают 0,325 т Донецкого угля марки Г. В зону максимальных вводят 0,900 т основного распадающегося доменного шлака, что составляет 300% от сухой массы угля и 0,100 т подкисляющей добавки - ба-

зальта Берестовецкого месторождения, что составляет 10,5% суммы зольной и основной массы. При этом получают расплав с модулем кислотности 1,37 и температурой выработки 1260-1315°C. Удельный съем расплава с 1 м² рабочей площаци составляет 2650 кг/м2. 'После переработки расплава получают минеральную вату, химический состав которой приведен в табл. 1, а свойства - в табл. 2.

Пример 6. Для получения 1 т расплава сжигают 0,400 т Донецкого угля марки Г. В зону максимальных температур вводят 0,9 т отходов минераловатного производства (корольки, обрезки волокна и т.д.) что составляет 265% от сухой массы угля и 0,040 т подкисляющей добавки - кварцевого песка, что составляет 4,0% от суммарного содержания минеральной части топлива и отходов. Получают при этом расплав с модулем кислотности 1,35 и температурой вы-работки 1270-1325°С. Удельный съем температур потока продуктов сжигания 25 расплава с 1 м² рабочей площади составляет 2500 кг/м². Химический состав волокна, полученного после переработки, приведен в табл. 1, а его свойства - в табл. 2.

Таблица 1

Пример,	Химический состав, вес.%											
	Si 0 ₂	Al ₂ 0 ₃	Fe ₂ 03	CaO	MgO	R ₂ 0	S0 ₃		Водо- стой- кость (рН)			
1	50,3	5,7	6,5	29,2	5,8	1,0	1,5	1,60	2,5			
2	53,2	10,1	7,3	22,5	4,3	1,6	1,0	2,36	2,6			
3	49,0	19,2	14,7	8,5	1,2	5,5	1,9	7,03	2,2			
4	43,5	16,6	7,4	18,3	12,5	0,6	1,1	1,95	3,1			
5	43,7	11,4	3,4	37,1	3,0	1,0	0,4	1,37	3,6			
6	40,5	12,8	4,6	25,2	14,2	2,3	0,4	1,35	3,5			

Таблица Пример Показатели 1 2 3 Известный Коэффициент теплопроводности, $BT/M^{O}K$ 0,041 0.039 0,040 0,045 при 295±5°К 0,041 0,043 0,040 0,048 0,060 0,056 0,053 0,048 при 398±5°К 0,052 0,054 0,102 0.088 0,095 0,096 0,098 0,081 0,096 при 573±5°К

# = 4 = 4 = 4 = 4					npo;	цолжени	е табл. 2			
Показатели	Пример									
	1	_2	,3	,4	5	· 6	Известный			
Влажность, %	0,50	0,42	0,38	0,40	0,45	0,39	0,6			
Объемная масса, кг/м ³	94	92	94	93	90	93	94			
Средний диаметр волокна, мкм	5,8	6,3	7,6	6,8	5,4	5,7	8,0			

Изобретение позволяет организовать высокопроизводительный процесс высококачественной минеральной ваты на базе дешевых твердых топлив, в частности высокозольных углей, и отходов различных производств - золы уноса тепловых электростанций, распадающихся доменных шлаков, отходов собственно минераловатного производства. Удельная производительность процесса плавления на единицу объема рабочей камеры при использовании предлагаемого способа может в 3-5 раза превышать этот показатель при плавлении шихты в вагранках и ванных печах. Благоприятные температурные и гидродинамические показате- 30 ли обеспечивают получение высокой степени гомогенизации расплава и достижение необходимого его перегрева (до $1450-1500^{\circ}$ C).

7

Формула изобретения

Способ получения минеральной ваты, включающий сжигание пылевидных

Заказ 1778/25

15 твердых топлив в вихревом турбулен::ном потоке с образованием силикатного расплава, переработку его и получение минеральной ваты, о т л ичающийся тем, что, с целью повышения качества минеральной ваты, при сжигании пылевидных твердых топлив в зону максимальных темпера. тур вихревого потока вводят 50-300% от сухой массы топлива пылевидных минеральных добавок и 3-90% от суммарного содержания минеральной части топлива тонкомолотых подкисляющих добавок.

Источники информации, принятые во внимание при экспертизе 1. Шевелев В.Н. Опытно-промышленный плавильный циклон Котовского завода минераловатных изделий. Сб. "Пути совершенствования плавильных агрегатов в производстве минеральной и стеклянной ваты". Материалы совещания, ВНИИТеплоизоляция, Вильнюс, 1971, с. 123-133.

2. Вельсовский В.Н. и др. Минераловатные утеплители. М., Стройиздаг, 1963, c. 44-45.

Составитель Н. Багатурьянц Корректор В. Бутяга Техред М. Тепер Тираж 484 Подписное

Редактор А. Химчук ВНИИПИ Государственного комитета СССР по делам изобретений и открытий 113035, Москва, Ж-35, Раушская наб. д. 4/5

Филиал ППП "Патент", г. Ужгород, ул. Проектная, 4