

Leverage score sampling

► Setting

The goal of this project is to explore the leverage score sampling for low-rank approximation. Let $A \in \mathbb{R}^{m \times n}$ and denote by a_1, \ldots, a_n its columns. The *leverage* scores are defined as

$$\ell_i(A) := a_i^T (AA^T)^{\dagger} a_i, \tag{1}$$

where \dagger denotes the Moore-Penrose inverse of a matrix. The ridge leverage scores are defined as

$$\ell_{i,\lambda}(A) := a_i^T (AA^T + \lambda^2 I)^{-1} a_i \tag{2}$$

for a suitable regularization parameter $\lambda > 0$.

Sampling columns of A proportionally to the ridge leverage scores gives good approximation results in theory and in practice; however, computing them is expensive, so algorithms to approximate them have been developed, see e.g. [1].

► Tasks

- 1. Prove the following properties of the leverage scores (1):
 - **a.** $\ell_i(A) \leq 1;$
 - **b.** $\sum_{i=1}^{n} \ell_i(A) = \operatorname{rank}(A);$
 - **c.** If a column a_i is orthogonal to all other columns then $\ell_i(A) = 1$;
 - **d.** If A has rank k then considering a thin SVD of $A = U_k \Sigma_k V_k^T$, the leverage scores are the squared norms of the rows of V_k (recall that sampling with respect to squared norms of the rows of V_k was analyzed in Lecture 7).
- 2. From what you proved in point 1, it follows that if A has full column rank then all the leverage scores are equal, which corresponds to uniform column sampling; however, in many situations this is not a good idea, so in practice it is useful to consider the ridge leverage scores (2). Work out an expression of $\ell_{i,\lambda}(A)$ in function of the singular values of A and the matrix V of the right singular vectors of A.

To get an intuition of why ridge leverage scores make sense, consider the following situation. An $m \times n$ matrix A (with $m \geq n$) has a large gap between the kth and (k+1)th singular values, and we choose λ such that

$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_k \gg \lambda \gg \sigma_{k+1} \geq \cdots \geq \sigma_n > 0.$$

Argue that the leverage scores are all ones, but the ridge leverage scores are close to the squared norms of the rows of the matrix V_k from the truncated SVD of A.

- 3. Implement the following sampling strategies:
 - **a.** Ridge leverage score sampling with $\lambda = 10^{-4}$;
 - **b.** Uniform sampling;
 - **c.** Sampling proportionally to the squares of the norms of columns of A.

Consider the 100×100 Hilbert matrix A. For ranks $k=1,\ldots,50$, for each of the strategies above, sample k columns C (independently, with replacement) and plot the errors $\|A-CC^{\dagger}A\|$. Compare these errors with the (k+1)th singular value of A. As these strategies are randomized, plot the average error that you obtain running each sampling strategy for 20 times.

► References

[1] Cohen, M. B., Musco, C., and Musco, C. Input sparsity time low-rank approximation via ridge leverage score sampling. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1758–1777 (2017)

Prof. Dr. D. Kressner D. Persson