

Background

- Dota 2 is a multiplayer online battle arena (MOBA) video game developed and published by Valve.
- Multiplayer online battle arena (MOBA) is a subgenre of strategy video games in which two teams of players compete against each other on a predefined battlefield.
- Each player controls a single character with a set of distinctive abilities that improve over the course of a game and which contribute to the team's overall strategy.

Technology

- Datasource: 5000 ranked ladder matched from the Dota2 data dump created by Opendota
- Apache Spark is an open-source unified analytics engine for large-scale data processing. Spark provides an interface for programming entire clusters with implicit data parallelism and fault tolerance.
- Play Framework is an open-source web application framework which follows the model view—controller (MVC) architectural pattern. It is written in Scala and usable from other programming languages that are compiled to JVM bytecode

Dataset – Training part

Dataset – Testing part

- match_id: Main key of the data, use to specify each match
- hero_id: The id of the hero, vary from 1 to 113
- player_slot: The id of ten players in one match, 0~4 is in one team. 128~132 is in another

radiant_win: The out come of one match, 0
means radiant win, 1 means dire win

Data pre-process - Cleansing

Data pre-process - Transformation

One-hot encoder: Used to extend feature. Its values are only 0 and 1. Different types are stored in the vector.

$$X_{1+i} = \begin{cases} 1 & \text{if hero } i \text{ is on Radiant side} \\ 0 & \text{otherwise} \end{cases}$$

$$X_{111+i} = \begin{cases} 1 & \text{if hero } i \text{ is on Dire side} \\ 0 & \text{otherwise} \end{cases}$$

Group by match_id: Easy to extract feature

Data pre-process – Feature extraction

Synergy, Countering Matrix(113*113)

Synergy(i)(j) contains the hero_i and hero_j winrate when they are in the same team Countering(i)(j) contains the hero_i and hero_j winrate when they are in the different team

Data pre-process – Feature extraction

Data pre-process – Final result

72 73 151 152 offset	153 154 24 137	4 155 1 108 11	13 221 2	/ 158 15 226	159 160	syn	nergy		co	ounter	ering							77 17	78 179	180 :	181 18	182 18	83 18	34 185	5 186	5 187	188 1	189 19	90 191	1 192	193 1	194 19	5 196		198 19	9 200	201 2	202 203	3 204	205 26	06 207	/ 208 2	209 21	10 211	1 212	213 2:	14 215	5 216	217 21	18 219	220 2	222 223	3 224	225	
++-																																																							+
++																																														+									
-++																																																							
148		1.0	0 0	0	0 0	0	0 0	0	0 0	0	0	1 6	0	0	0 6	0	0	0	0 6	0	0	0	0	0 6)	1	0	0	0	0 0	0	0	0 0	0	0	0 0	8	0	0 0	0	0 0	0	0	0 6	0	0	0	a 0	0	0 6	0	1	0 0	0	0
0 1				0 0	0				JI OI					0 0			1 0	0				0						0 6				a 0			0			0		0 0			0 0								0 0	0			II.
0 0				1 0	0 /			01	0	0 0			0 6														. 0									0 1	. 0		0 0																
1 0				0.0391	.425580	0000005	0.015	75924	4799999	8394																																													
463		1.0				0									0 0							1									1					0 0			0 0					0 6		0		a 1					1 1		0
0 0				0 0					J 0					0 0								0						0 0				0											0 0	1							0 6	0			1
0 0					0 1			0	8 1	0 0			0 0					1								0 0													0 0							1 1							0 0		
1 0					0.387	3974935	-0.12	.18113	1399999	9856																																													
471						0 1														1		1														0 0			0					0 0		0		0					1 0		0
0 0				0 0					1 01					0 0								0) 0				0 0											0 0								0 0	0			4
0 0		0 1			0 1			0		0 0			0 0													0 0													0 0										1				0 0	9 1	
1 0				-0.869	6013339	9999997	0.4	23463	113000	0004																																													
					_																																. 7																		
471		1.0	1 0	0	0 0	0	0 0	. 0	0 0	0	0	0 0] 0	0	0) 0	θ	0	0 [) 1	0	1	0	0 (9 0	9 0	0						0 6	0 0	0	0 0	0	0	0 0	0	0	0 0	0	0	0 0	0	0	0 0	1 01	0	0 0	0	1 0	9 0	0
0 0	0 0	0 0	0	0 0	0	0 0	0	0 0	1 0	0	0 0	0	0	0 0	0	0	0 0) 0	0	0	0 6	3 0	0	0	0	0	0			0			0	0	0 0	0	0	0 0	0	0 6	0	0	0 (0	0	0	0 0	0	0 (9 0	0	0 0	0	0	
0 0	0 0	0 1	0 [0 0	0 [J 0	0 0	0	0	0 0	1 01	0	0 (9 0	0	0 0) 0	0	0	0 0	0	0	0	0	0	0	0 1	. 0	0	0	0 0	0	0	0 0	1	0	0 0	0	0	0 0	0	0 6	0 0	0	0	0 0	0	0	0 1	0	0 0	0 0	0	0 1	-I
1 0	0 0	0 0	0	-0.869	6013339	9999997	0.4	123463	3113000	0004																																													
496			0 0		0 0				0 0			0 0) 0) 0	1				0				9 (0			0 0		0 0						0 0							. 0				0 6		0

229 Dense Vector

113 hero *2 + Synergy + Countering + Offset

Training

VectorAssembler Assemble 229 feature into one Vector

StringIndexer
Transform the label into certain type

StringIndexer
Automatically identify
categorical feature, and
index them

Model selection

Train the data according to different model

Challenges

0.5	0.21875	0.412698	0.416667	0.405797
0.5	0.416	0.452915	0.487179	0.551351
0.5	0.5	0.52	0.529412	0.523404
0.5	0.371134	0.43299	0.557692	0.303371
0.5	0.435789	0.488889	0.506098	0.58705
0.5	0.402985	0.461988	0.411765	0.529412
0.5	0.45625	0.440476	0.6	0.610714
0.5	0.382353	0.375	0.533333	0.480519
0.5	0.333333	0.37931	0.6	0.61194
0.5	0.504798	0.571992	0.572034	0.632495
0.5	0.428571	0.461255	0.538462	0.570025
0.5	0.479542	0.472318	0.590674	0.571721
0.5	0.464072	0.515723	0.576336	0.612698
0.5	0.48917	0.497619	0.570815	0.572727

- Abnormal synergy data caused by insufficient data quantity
- The running time is too long because the query is required every time
- The feature Vector is so large that it's hard to handle
- The Synergy and Countering is hard to calculate due to limitation of dataframe operation

Testing - Performance

-Callback

0.5174

0.4814

0.5347

0.5298

0.5379

Close to Acceptance Criteria 60%

User Interface

Acceptance Criteria

Model	Accuracy
Decision Tree	59.31%
Linear Support Vector Machine	59.33%
Random Forest	58.77%
Multilayer Perceptron	57.04%
Gradient-boosted Tree	59.31%

Time for Training Models: Around 45 minutes

Time for Loading model: Around 3 minute

Time for predicting : Around 0.3 seconds

Test Case

- Raw dataframe should contain all rows and all columns
- Raw dataframe should not contain unsuitable data
- Processed dataframe should satisfy some equations

```
behavior of "raw dataset"
it should "work for row length" in {
  val rowPlayers = players.count()
  val rowMatch = matches.count()
  val synergy_row=synergy_result.count()
  val countering_row=countering_result.count()
  val row_tm=test_labels.count()
  val row_tp=test_player.count()
  rowPlayers shouldBe 50000
  rowMatch shouldBe 50000
  synergy_row shouldBe 113
  countering_row shouldBe 113
  row_tm shouldBe 1000000
  row_tp shouldBe 1000000
}
```

```
val numRW = players.filter(players("radiant_win") === "true").count()
 val numDW = players.filter(players("radiant_win") === "flase").count()
numRW+numDW shouldBe 50000
 val heroName114 = heronames.filter(heronames("hero_id") >= 114).count()
val heroName0 = heronames.filter(heronames("hero_id") < 0).count()</pre>
val heroName24 = heronames.filter(heronames("hero_id") === 24).count()
heroName0 shouldBe 0
val heroName108 = heronames.filter(heronames("hero_id") === 108).count()
val player_slot0 = players.filter(players("player_slot") < 0).count()</pre>
val player_slot4128 = players.filter(players("player_slot") > 4 && players("player_slot") < 128).count()</pre>
player_slot4128 shouldBe 0
player_slot132 shouldBe 0
val player_hero0= players.filter(players("hero_id") < 0 ).count()</pre>
player_hero0 shouldBe 0
val player_hero24= players.filter(players("hero_id") === 24 ).count()
val player_hero113= players.filter(players("hero_id") === 113 ).count()
player_hero113 shouldBe 0
val player_hero108= players.filter(players("hero_id") === 108 ).count()
player_hero108 shouldBe 0
```

Use Cases

- Administrator:
 System will process the data and predict which side will win the game
 User:
- User can select the ten heroes' names from the list in a match
- User can see the Synergy or Countering between heroes in this match

Future Work

Optimize the model' s parameter and extract features to improve the model' s performance

Add more functionalities to current system, such as hero recommendation or predict the result during the game

