Shashwat Drolia | 18NA3AI37

MLFA: Assignment 1

[Sol #1]

ID	X1	X2	ХЗ	#(Y=1)	#(Y=2)	#(Y=3)
1	1	1	Α	15	0	0
2	1	2	Α	15	0	0
3	2	2	Α	2	9	1
4	2	1	Α	3	5	0
5	1	1	В	0	10	4
6	1	2	В	0	10	1
7	2	2	В	8	2	4
8	2	1	В	7	3	1
9	1	1	С	0	6	0
10	1	2	С	0	9	0
11	2	2	С	1	0	14
12	2	1	С	0	0	20
13	1	1	D	0	2	15
14	1	2	D	1	3	14
15	2	2	D	1	0	9
16	2	1	D	0	0	5

For the given set of features X1, X2, X3 class value Y is not unique and given the training set of 200 examples we have certain probabilities for each of the class values Y=1, 2 or 3.

Now, let us classify the dataset of features to a single Y value based on the max occurrence as follows:

ID	X1	X2	ХЗ	#(Y=1)	#(Y=2)	#(Y=3)	Υ
1	1	1	Α	15	0	0	1
2	1	2	Α	15	0	0	1
3	2	2	Α	2	9	1	2
4	2	1	Α	3	5	0	2
5	1	1	В	0	10	4	2
6	1	2	В	0	10	1	2
7	2	2	В	8	2	4	1
8	2	1	В	7	3	1	1
9	1	1	С	0	6	0	2
10	1	2	С	0	9	0	2
11	2	2	С	1	0	14	3
12	2	1	С	0	0	20	3
13	1	1	D	0	2	15	3
14	1	2	D	1	3	14	3
15	2	2	D	1	0	9	3
16	2	1	D	0	0	5	3

We check for 1st relevant split on X1, X2 and X3 that segregates Y into 2 groups with least entropy

(a) X1

ID	X1	X2	Х3	#(Y=1)	#(Y=2)	#(Y=3)	Υ	Ŷ
1	1	1	Α	15	0	0	1	
2	1	1	В	0	10	4	2	
5	1	1	С	0	6	0	2	
6	1	1	D	0	2	15	3	1 or 2
9	1	2	Α	15	0	0	1	or 3
10	1	2	В	0	10	1	2	
13	1	2	С	0	9	0	2	
14	1	2	D	1	3	14	3	
3	2	1	А	3	5	0	2	
4	2	1	В	7	3	1	1	
7	2	1	С	0	0	20	3	
8	2	1	D	0	0	5	3	1 or 2
11	2	2	Α	2	9	1	2	or 3
12	2	2	В	8	2	4	1	
15	2	2	С	1	0	14	3	
16	2	2	D	1	0	9	3	

(b) X2

ID	X1	X2	Х3	#(Y=1)	#(Y=2)	#(Y=3)	Υ	Ŷ
1	1	1	Α	15	0	0	1	
5	2	1	Α	3	5	0	2	
9	1	1	В	0	10	4	2	
13	2	1	В	7	3	1	1	1 or 2
4	1	1	С	0	6	0	2	or 3
8	2	1	С	0	0	20	3	
12	1	1	D	0	2	15	3	
16	2	1	D	0	0	5	3	
2	1	2	Α	15	0	0	1	
6	2	2	Α	2	9	1	2	
10	1	2	В	0	10	1	2	
14	2	2	В	8	2	4	1	1 or 2
3	1	2	С	0	9	0	2	or 3
7	2	2	С	1	0	14	3	
11	1	2	D	1	3	14	3	
15	2	2	D	1	0	9	3	

ID	X1	X2	Х3	#(Y=1)	#(Y=2)	#(Y=3)	Υ	Ŷ
1	1	1	Α	15	0	0	1	
2	1	2	Α	15	0	0	1	1 or 2
3	2	2	Α	2	9	1	2	1 or 2
4	2	1	Α	3	5	0	2	
5	1	1	В	0	10	4	2	
6	1	2	В	0	10	1	2	1 or 2
7	2	2	В	8	2	4	1	1012
8	2	1	В	7	3	1	1	
9	1	1	С	0	6	0	2	
10	1	2	С	0	9	0	2	2 0 5 2
11	2	2	С	1	0	14	3	2 or 3
12	2	1	С	0	0	20	3	
13	1	1	D	0	2	15	3	
14	1	2	D	1	3	14	3	3
15	2	2	D	1	0	9	3	3
16	2	1	D	0	0	5	3	

So just be observation, 1st split at X3 gives the max information gain due to the least entropy

We check each of the 3 nodes for our 2nd split

ID	X1	X2	Х3	#(Y=1)	#(Y=2)	#(Y=3)	Υ	Ŷ
1	1	1	А	15	0	0	1	1
2	1	2	А	15	0	0	1	1
3	2	2	А	2	9	1	2	2
4	2	1	А	3	5	0	2	2
5	1	1	В	0	10	4	2	2
6	1	2	В	0	10	1	2	2
7	2	2	В	8	2	4	1	1
8	2	1	В	7	3	1	1	1
9	1	1	С	0	6	0	2	2
10	1	2	С	0	9	0	2	2
11	2	2	С	1	0	14	3	3
12	2	1	С	0	0	20	3	
13	1	1	D	0	2	15	3	
14	1	2	D	1	3	14	3	3
15	2	2	D	1	0	9	3	5
16	2	1	D	0	0	5	3	

2nd Split is made w.r.t. X1 as it provides the maximum information gain as compared to split w.r.t X2

Since we had classified dataset IDs to a particular Y based on max occurrence in training example, only those will be correctly classified and all other occurrences will be incorrectly classified.

The #correct classifications include:

ID	X1	X2	Х3	#(Y=1)	#(Y=2)	#(Y=3)	Υ
1	1	1	Α	15	0	0	1
2	1	2	Α	15	0	0	1
3	2	2	Α	2	9	1	2
4	2	1	Α	3	5	0	2
5	1	1	В	0	10	4	2
6	1	2	В	0	10	1	2
7	2	2	В	8	2	4	1
8	2	1	В	7	3	1	1
9	1	1	С	0	6	0	2
10	1	2	С	0	9	0	2
11	2	2	С	1	0	14	3
12	2	1	С	0	0	20	3
13	1	1	D	0	2	15	3
14	1	2	D	1	3	14	3
15	2	2	D	1	0	9	3
16	2	1	D	0	0	5	3

$$\therefore$$
 #correct classifications = 15 + 15 +9 + 5 + 10 + 10 + 8 + 7 + 6 + 9 + 14 + 20 + 15 + 14 + 9 + 5

$$\Rightarrow$$
 Accuracy on training set = $\frac{171}{200}$ = 85.5%

[Sol #2]

ID	X1	X2	ХЗ	#(Y=1)	#(Y=2)	#(Y=3)
1	1	1	Α	15	0	0
2	1	2	Α	15	0	0
3	2	2	Α	2	9	1
4	2	1	Α	X	X	X
5	1	1	В	0	10	4
6	1	2	В	0	10	1
7	2	2	В	8	2	4
8	2	1	В	X	X	X
9	1	1	С	Х	Х	Х
10	1	2	С	0	9	0
11	2	2	С	1	0	14
12	2	1	С	0	0	20
13	1	1	D	0	2	15
14	1	2	D	1	3	14
15	2	2	D	1	0	9
16	2	1	D	Х	Х	X

Posterior distribution =
$$P(Y \mid X) = P(Y = 1 \mid X) + P(Y = 2 \mid X) + P(Y = 3 \mid X)$$

= $P(X \mid Y) \cdot P(Y)$

Where, $P(X|Y) \equiv Classs\ conditional$

 $P(Y) \equiv Prior\ distribution$

ID	X1	X2	Х3	#(Y=1)	#(Y=2)	#(Y=3)	
1	1	1	А	15	0	0	15
2	1	2	Α	15	0	0	15
3	2	2	Α	2	9	1	12
5	1	1	В	0	10	4	14
6	1	2	В	0	10	1	11
7	2	2	В	8	2	4	14
10	1	2	С	0	9	0	9
11	2	2	С	1	0	14	15
12	2	1	С	0	0	20	20
13	1	1	D	0	2	15	17
14	1	2	D	1	3	14	18
15	2	2	D	1	0	9	10
				43	45	82	170

Prior distribution

$$P(Y=1) = \frac{43}{170}$$

$$P(Y=2) = \frac{45}{170}$$
 $P(Y=3) = \frac{82}{170}$

$$P(Y=3) = \frac{82}{170}$$

Class Conditional

(i) $P(X1 \mid Y)$

	X1 = 1	X1 = 2	
Y = 1	$\frac{31}{43}$	$\frac{12}{43}$	1
Y = 2	$\frac{34}{45}$	$\frac{11}{45}$	1
Y = 3	34 82	48 82	1

(ii) $P(X2 \mid Y)$

	X2 = 1	X2 = 2	
Y = 1	15	28	1
	43	43	1
17 2	12	33	1
Y = 2	45	$\frac{33}{45}$	1
Y = 3	39	43	1
	82	$\frac{43}{82}$	1

(iii) $P(X3 \mid Y)$

	X3 = A	X3 = B	X3 = C	X3 = D	
Y = 1	$\frac{32}{43}$	8 43	$\frac{1}{43}$	$\frac{2}{43}$	1
Y = 2	9 45	22 45	9 45	5 45	1
Y = 3	1 82	9 82	34 82	38 82	1

(a)
$$\hat{Y}$$
 for $(X1 = 2, X2 = 1, X3 = A)$

$$P(Y=1 \mid X1=2, X2=1, X3=A) = K \cdot P(X1=2, X2=1, X3=A \mid Y=1) \cdot P(Y=1)$$

By Naives Bayes assumption:

$$P(X1 = 2, X2 = 1, X3 = A \mid Y = 1) = P(X1 = 2 \mid Y = 1) \cdot P(X2 = 1 \mid Y = 1) \cdot P(X3 = A \mid Y = 1)$$

$$\Rightarrow P(Y = 1 \mid X1 = 2, X2 = 1, X3 = A) = K \cdot \frac{12}{43} \cdot \frac{15}{43} \cdot \frac{32}{43} \cdot \frac{43}{170} = \frac{576}{31433} K$$

Similarly,

$$P(Y = 2 \mid X1 = 2, X2 = 1, X3 = A) = K \cdot P(X1 = 2 \mid Y = 2) \cdot P(X2 = 1 \mid Y = 2) \cdot P(X3 = A \mid Y = 2)P(Y = 2)$$

$$\Rightarrow P(Y = 2 \mid X1 = 2, X2 = 1, X3 = A) = K \cdot \frac{11}{45} \cdot \frac{12}{45} \cdot \frac{9}{45} \cdot \frac{45}{170} = \frac{22}{6375}K$$

And,

$$P(Y = 3 \mid X1 = 2, X2 = 1, X3 = A) = K \cdot \frac{48}{82} \cdot \frac{39}{82} \cdot \frac{1}{82} \cdot \frac{82}{170} = \frac{234}{142885} K$$

$$P(Y = 1 \mid X) + P(Y = 2 \mid X) + P(Y = 3 \mid X) = 1$$

$$\Rightarrow \frac{576}{31433}K + \frac{22}{6375}K + \frac{234}{142885}K = 1$$

$$\Rightarrow K = 42.7107$$

: The respective confidence values are as follows:

$$\Rightarrow P(Y = 1 \mid X1 = 2, X2 = 1, X3 = A) = \frac{576}{31433}K = 0.7827 = \frac{78.27\%}{78.27\%}$$

$$\Rightarrow P(Y = 2 \mid X1 = 2, X2 = 1, X3 = A) = \frac{22}{6375}K = 0.1474 = 14.74\%$$

$$\Rightarrow P(Y = 3 \mid X1 = 2, X2 = 1, X3 = A) = \frac{234}{142885}K = 0.0699 = 6.99\%$$

ID	X1	X2	Х3	Ŷ
4	2	1	Α	1

(b)
$$\hat{Y}$$
 for $(X1 = 2, X2 = 1, X3 = B)$

$$P(Y = 1 \mid X1 = 2, X2 = 1, X3 = B) = K \cdot \frac{12}{43} \cdot \frac{15}{43} \cdot \frac{8}{43} \cdot \frac{43}{170} = \frac{144}{31433} K$$

$$P(Y = 2 \mid X1 = 2, X2 = 1, X3 = B) = K \cdot \frac{11}{45} \cdot \frac{12}{45} \cdot \frac{22}{45} \cdot \frac{45}{170} = \frac{484}{57375} K$$

And,

$$P(Y = 3 \mid X1 = 2, X2 = 1, X3 = B) = K \cdot \frac{48}{82} \cdot \frac{39}{82} \cdot \frac{9}{82} \cdot \frac{82}{170} = \frac{2106}{142885} K$$

$$P(Y = 1 \mid X) + P(Y = 2 \mid X) + P(Y = 3 \mid X) = 1$$

$$\Rightarrow \frac{144}{31433}K + \frac{484}{57375}K + \frac{2106}{142885}K = 1$$

$$\Rightarrow K = 36.0282$$

: The respective confidence values are as follows:

$$\Rightarrow P(Y = 1 \mid X1 = 2, X2 = 1, X3 = B) = \frac{144}{31433}K = 0.1651 = 16.51\%$$

$$\Rightarrow P(Y = 2 \mid X1 = 2, X2 = 1, X3 = B) = \frac{484}{57375}K = 0.3039 = 30.39\%$$

$$\Rightarrow P(Y = 3 \mid X1 = 2, X2 = 1, X3 = B) = \frac{2106}{142885}K = 0.5310 = \frac{53.10\%}{142885}$$

$$\Rightarrow P(Y = 2 \mid X1 = 2, X2 = 1, X3 = B) = \frac{484}{57375}K = 0.3039 = 30.39\%$$

$$\Rightarrow P(Y = 3 \mid X1 = 2, X2 = 1, X3 = B) = \frac{2106}{142885}K = 0.5310 = 53.10\%$$

ID	X1	X2	Х3	Ŷ
8	2	1	В	3

(c)
$$\hat{Y}$$
 for $(X1 = 1, X2 = 1, X3 = C)$

$$P(Y = 1 \mid X1 = 1, X2 = 1, X3 = C) = K \cdot \frac{31}{43} \cdot \frac{15}{43} \cdot \frac{1}{43} \cdot \frac{43}{170} = \frac{93}{62866} K$$

$$P(Y = 2 \mid X1 = 1, X2 = 1, X3 = C) = K \cdot \frac{34}{45} \cdot \frac{12}{45} \cdot \frac{9}{45} \cdot \frac{45}{170} = \frac{4}{375}K$$

And,

$$P(Y = 3 \mid X1 = 1, X2 = 1, X3 = C) = K \cdot \frac{34}{82} \cdot \frac{39}{82} \cdot \frac{34}{82} \cdot \frac{82}{170} = \frac{663}{16810} K$$

$$P(Y = 1 \mid X) + P(Y = 2 \mid X) + P(Y = 3 \mid X) = 1$$

$$\Rightarrow \frac{93}{62866}K + \frac{4}{375}K + \frac{663}{16810}K = 1$$

$$\Rightarrow K = 19.3848$$

: The respective confidence values are as follows:

$$\Rightarrow P(Y = 1 \mid X1 = 2, X2 = 1, X3 = B) = \frac{144}{31433}K = 0.0287 = 2.87\%$$

$$\Rightarrow P(Y = 2 \mid X1 = 2, X2 = 1, X3 = B) = \frac{484}{57375}K = 0.2068 = 20.68\%$$

$$\Rightarrow P(Y = 3 \mid X1 = 2, X2 = 1, X3 = B) = \frac{2106}{142885}K = 0.7646 = 76.46\%$$

$$\Rightarrow P(Y = 2 \mid X1 = 2, X2 = 1, X3 = B) = \frac{484}{57375}K = 0.2068 = 20.68\%$$

$$\Rightarrow P(Y = 3 \mid X1 = 2, X2 = 1, X3 = B) = \frac{2106}{142885}K = 0.7646 = 76.46\%$$

ID	X1	X2	Х3	Ŷ
9	1	1	С	3

(d)
$$\hat{Y}$$
 for $(X1 = 2, X2 = 1, X3 = D)$

$$P(Y = 1 \mid X1 = 2, X2 = 1, X3 = D) = K \cdot \frac{12}{43} \cdot \frac{15}{43} \cdot \frac{2}{43} \cdot \frac{43}{170} = \frac{36}{31433} K$$

$$P(Y = 2 \mid X1 = 2, X2 = 1, X3 = D) = K \cdot \frac{11}{45} \cdot \frac{12}{45} \cdot \frac{5}{45} \cdot \frac{45}{170} = \frac{22}{11475} K$$

And,

$$P(Y = 3 \mid X1 = 2, X2 = 1, X3 = D) = K \cdot \frac{48}{82} \cdot \frac{39}{82} \cdot \frac{38}{82} \cdot \frac{82}{170} = \frac{8892}{142885} K$$

$$P(Y = 1 \mid X) + P(Y = 2 \mid X) + P(Y = 3 \mid X) = 1$$
$$\Rightarrow \frac{36}{31433}K + \frac{22}{11475}K + \frac{8892}{142885}K = 1$$

$$\Rightarrow K = 15.3153$$

: The respective confidence values are as follows:

$$\Rightarrow P(Y = 1 \mid X1 = 2, X2 = 1, X3 = B) = \frac{144}{31433}K = 0.0175 = 1.75\%$$

$$\Rightarrow P(Y = 2 \mid X1 = 2, X2 = 1, X3 = B) = \frac{484}{57375}K = 0.0294 = 2.94\%$$

$$\Rightarrow P(Y = 3 \mid X1 = 2, X2 = 1, X3 = B) = \frac{2106}{142885}K = 0.9531 = 95.31\%$$

ID	X1	X2	Х3	Ŷ
16	2	1	D	3

[Sol #3]

Plotting the given points on a 2D plane:

From the 2D plot it is quite evident that we should make the split using the feature X1 and any threshold for $X1 \in [9, 13]$ can possibly give the best decision stump.

So we check for max information gain for each of the 5 cases of X1

Entropy is defined as

$$H = -\sum p_i \log_2 p_i$$

Information gain is defined as

$$IG = H_{final} - H_{initial}$$

$$H_{initial} = -\frac{10}{20} \log_2 \frac{10}{20} - \frac{10}{20} \log_2 \frac{10}{20} = 1$$

For X = 9,

$$H_{(X1 \le 9)} = 0$$

$$H_{(X1 \ge 9)} = -\frac{4}{14} \log_2 \frac{4}{14} - \frac{10}{14} \log_2 \frac{10}{14} = 0.8631$$

$$H_{final} = \frac{6}{20}(0) + \frac{14}{20}(0.8631) = 0.6042$$

	X1<=9	X1>9	
#(Y=1)	6	4	
#(Y=2)	0	10	
#Total	6	14	
Entropy	0	0.8631	
Final entropy	0.6042		
IG	0.3958		

Similarly, we evaluate the information gain (IG) for other cases of split as follows:

	X1<=10	X1>10	
#(Y=1)	7	3	
#(Y=2)	0	10	
#Total	7	13	
Entropy	0 0.7793		
Final entropy	0.5066		
IG	0.4934		

	X1<=11	X1>11	
#(Y=1)	8	2	
#(Y=2)	1	9	
#Total	9	11	
Entropy	0.5033 0.6840		
Final entropy	0.6027		
IG	0.3973		

	X1<=12	X1>12	
#(Y=1)	9	1	
#(Y=2)	2	8	
#Total	11	9	
Entropy	0.6840 0.5033		
Final entropy	0.6027		
IG	0.3973		

	X1<=13	X1>13	
#(Y=1)	10	0	
#(Y=2)	4	6	
#Total	14	6	
Entropy	0.8631 0		
Final entropy	0.6042		
IG	0.3958		

Hence, split across $\emph{X}\emph{1}=\emph{10}$ gives the maximum information gain and thus the best decision stump

[Sol #4]

Posterior distribution =
$$P(Y \mid X) = P(Y = 1 \mid X) + P(Y = 2 \mid X)$$

= $P(X \mid Y) \cdot P(Y)$
Where, $P(X \mid Y) \equiv Classs\ conditional\ \equiv N(\mu, \sigma)$
 $P(Y) \equiv Prior\ distribution$

Prior distribution

$$P(Y = 1) = P(Y = 2) = \frac{10}{20} = 0.5$$

Class Conditional

ID	X1	X2	Υ
1	5	7	1
2	7	12	1
3	12	5	1
4	10	8	1
5	6	11	1
6	13	8	1
7	8	12	1
8	9	11	1
9	11	6	1
10	8	12	1
Average (μ)	8.900	9.200	
$Variance(\sigma)$	6.767	7.289	

ID	X1	X2	Υ
11	13	6	2
12	14	8	2
13	17	15	2
14	15	9	2
15	13	10	2
16	11	5	2
17	16	18	2
18	15	7	2
19	12	12	2
20	18	9	2
Average (μ)	14.400	9.900	
$Variance(\sigma)$	4.933	16.544	

$$P(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

So,

$$P(X1 = 5 \mid Y = 1) = \frac{1}{6.767\sqrt{2\pi}}e^{-\frac{(5-8.9)^2}{2*6.767^2}} = 0.0499$$

$$P(X2 = 7 \mid Y = 1) = \frac{1}{7.289\sqrt{2\pi}}e^{-\frac{(7-9.2)^2}{2*7.289^2}} = 0.0523$$

$$P(X1 = 5 \mid Y = 2) = \frac{1}{4.933\sqrt{2\pi}}e^{-\frac{(5-14.4)^2}{2*4.933^2}} = 0.0132$$

$$P(X2 = 7 \mid Y = 2) = \frac{1}{16.544\sqrt{2\pi}}e^{-\frac{(7-9.9)^2}{2*16.544^2}} = 0.0237$$

Similarly, we calculate the other normal distribution probabilities as follows:

ID	X1	X2	Υ	P(X1 Y=1)	P(X2 Y=1)	P(X1 Y=2)	P(X2 Y=2)
1	5	7	1	0.0499	0.0523	0.0132	0.0237
2	7	12	1	0.0567	0.0508	0.0263	0.0239
3	12	5	1	0.0531	0.0464	0.0718	0.0231
4	10	8	1	0.0582	0.0540	0.0543	0.0240
5	6	11	1	0.0538	0.0531	0.0190	0.0241
6	13	8	1	0.0491	0.0540	0.0777	0.0240
7	8	12	1	0.0584	0.0508	0.0349	0.0239
8	9	11	1	0.0590	0.0531	0.0444	0.0241
9	11	6	1	0.0562	0.0497	0.0638	0.0235
10	8	12	1	0.0584	0.0508	0.0349	0.0239

ID	X1	X2	Υ	P(X1 Y=2)	P(X2 Y=2)	P(X1 Y=1)	P(X2 Y=1)
11	13	6	2	0.0777	0.0235	0.0491	0.0497
12	14	8	2	0.0806	0.0240	0.0444	0.0540
13	17	15	2	0.0704	0.0230	0.0288	0.0399
14	15	9	2	0.0803	0.0241	0.0393	0.0547
15	13	10	2	0.0777	0.0241	0.0491	0.0544
16	11	5	2	0.0638	0.0231	0.0562	0.0464
17	16	18	2	0.0767	0.0214	0.0340	0.0264
18	15	7	2	0.0803	0.0237	0.0393	0.0523
19	12	12	2	0.0718	0.0239	0.0531	0.0508
20	18	9	2	0.0620	0.0241	0.0239	0.0547

Now, posterior distribution is calculated as follows:

$$P(Y \mid X1, X2) = K * P(X1, X2 \mid Y) * P(Y)$$
, where K is the proportionality constant

Using the independence assumption under Naïve Bayes

$$P(Y \mid X) = K * P(X1 \mid Y) * P(X2 \mid Y) * 0.5$$

ID	X1	X2	Υ	P(Y=1 X1, X2)	P(Y=2 X1, X2)
1	5	7	1	0.00131*K1	0.00016*K1
2	7	12	1	0.00144*K2	0.00031*K2
3	12	5	1	0.00123*K3	0.00083*K3
4	10	8	1	0.00157*K4	0.00065*K4
5	6	11	1	0.00143*K5	0.00023*K5
6	13	8	1	0.00132*K6	0.00093*K6
7	8	12	1	0.00149*K7	0.00042*K7
8	9	11	1	0.00156*K8	0.00053*K8
9	11	6	1	0.0014*K9	0.00075*K9
10	8	12	1	0.00149*K10	0.00042*K10

ID	X1	X2	Y	P(Y=2 X1, X2)	P(Y=1 X1, X2)
11	13	6	2	0.00091*K11	0.00122*K11
12	14	8	2	0.00097*K12	0.0012*K12
13	17	15	2	0.00081*K13	0.00057*K13
14	15	9	2	0.00097*K14	0.00107*K14
15	13	10	2	0.00094*K15	0.00133*K15
16	11	5	2	0.00074*K16	0.0013*K16
17	16	18	2	0.00082*K17	0.00045*K17
18	15	7	2	0.00095*K18	0.00103*K18
19	12	12	2	0.00086*K19	0.00135*K19
20	18	9	2	0.00075*K20	0.00065*K20

Now,
$$P(Y = 1 \mid X1 = 5, X2 = 7) + P(Y = 2 \mid X1 = 5, X2 = 7) = 1$$
$$\Rightarrow 0.00131 * K1 + 0.00016 * K1 = 1$$
$$\Rightarrow K1 = 684.0014$$

$$P(Y = 1 \mid X1 = 5, X2 = 7) = 0.00131 * 684.0014 = 0.8931, \text{ and}$$

$$P(Y = 2 \mid X1 = 5, X2 = 7) = 0.00016 * 684.0014 = 0.1069$$

So similarly, we evaluate Ki's for i=1,2,...20 and correspondingly the relative posterior probabilities

ID	X1	X2	Υ	Ki	P(Y=1 X1, X2)	P(Y=2 X1, X2)	Confidence
1	5	7	1	684.0014	0.8931	0.1069	89.31%
2	7	12	1	569.8835	0.8211	0.1789	82.11%
3	12	5	1	485.5546	0.5975	0.4025	59.75%
4	10	8	1	450.134	0.7071	0.2929	70.71%
5	6	11	1	603.8805	0.8621	0.1379	86.21%
6	13	8	1	443.4314	0.5875	0.4125	58.75%
7	8	12	1	525.6524	0.7808	0.2192	78.08%
8	9	11	1	476.3681	0.7454	0.2546	74.54%
9	11	6	1	466.3892	0.6512	0.3488	65.12%
10	8	12	1	525.6524	0.7808	0.2192	78.08%

ID	X1	X2	Υ	Ki	P(Y=2 X1, X2)	P(Y=1 X1, X2)	Confidence
11	13	6	2	469.4094	0.4276	0.5724	57.24%
12	14	8	2	462.2007	0.4462	0.5538	55.38%
13	17	15	2	722.8345	0.5849	0.4151	58.49%
14	15	9	2	490.0369	0.4736	0.5264	52.64%
15	13	10	2	440.2783	0.4123	0.5877	58.77%
16	11	5	2	490.6117	0.3610	0.6390	63.90%
17	16	18	2	787.7283	0.6464	0.3536	64.64%
18	15	7	2	505.0788	0.4814	0.5186	51.86%
19	12	12	2	452.7742	0.3890	0.6110	61.10%
20	18	9	2	714.8463	0.5333	0.4667	53.33%

For the feature values (X1 = 15, X2 = 7) our NBC is the least confident with confidence of 51.86%

[Sol #5]

Part (i)

Given N inputs and outputs of the form:

$$(x_i, y_i, w_i)$$

We define the line of best fit as

$$\hat{y} = a'x + b$$

Now, given the dependency on weights w_i we define our loss function as

$$L = \sum_{i=1}^{N} w_i (y_i - \widehat{y}_i)^2$$

$$\Rightarrow L = \sum_{i=1}^{N} w_i (y_i - a'x_i - b)^2$$

To minimize L first derivative of L w.r.t. a' and b should be equal to 0

$$\Rightarrow \frac{\delta L}{\delta a'} = 0 \ and \ \frac{\delta L}{\delta b} = 0$$

∴ (a)

$$\frac{\delta}{\delta a'} \sum_{i=1}^{N} w_i (y_i - a' x_i - b)^2 = 0$$

$$\Rightarrow \sum_{i=1}^{N} -2x_i w_i (y_i - a'x_i - b) = 0$$

Eq. 1 -

$$\Rightarrow \sum_{i=1}^{N} (w_i y_i x_i - a' w_i x_i^2 - b w_i x_i) = 0$$

(b)

$$\frac{\delta}{\delta b} \sum_{i=1}^{N} w_i (y_i - a' x_i - b)^2 = 0$$

$$\Rightarrow \sum_{i=1}^{N} -2w_i (y_i - a'x_i - b) = 0$$

$$\Rightarrow \sum_{i=1}^{N} w_{i} y_{i} - a' \sum_{i=1}^{N} w_{i} x_{i} - b \sum_{i=1}^{N} w_{i} = 0$$

$$\Rightarrow b = \frac{\sum_{i=1}^{N} w_{i} y_{i} - a' \sum_{i=1}^{N} w_{i} x_{i}}{\sum_{i=1}^{N} w_{i}}$$

We can observe weighted means as

$$\overline{y_{w}} = \frac{\sum_{i=1}^{N} w_{i} y_{i}}{\sum_{i=1}^{N} w_{i}}$$
$$\overline{x_{w}} = \frac{\sum_{i=1}^{N} w_{i} x_{i}}{\sum_{i=1}^{N} w_{i}}$$

:.

Eq. 2 -

$$b = \overline{y} - a'\overline{x}$$

Now putting Eq. 2 in Eq. 1

$$\sum_{i=1}^{N} (w_i y_i x_i - a' w_i x_i^2 - w_i x_i (\overline{y_w} - a' \overline{x_w})) = 0$$

Rearranging the terms,

$$\Rightarrow \sum_{i=1}^{N} (w_i y_i x_i - w_i x_i \overline{y_w}) - a' \sum_{i=1}^{N} w_i (x_i^2 - x_i \overline{x_w}) = 0$$

Eq. 3 -

$$\Rightarrow a' = \frac{\sum_{i=1}^{N} w_i (y_i x_i - x_i \overline{y_w})}{\sum_{i=1}^{N} w_i (x_i^2 - x_i \overline{x_w})}$$

Hence, we have derived our linear regression model

$$\hat{y} = a'x + b$$

$$\Rightarrow \boxed{\hat{y}_i = \bar{y} + \frac{\sum_{i=1}^N w_i (y_i x_i - x_i \overline{y_w})}{\sum_{i=1}^N w_i (x_i^2 - x_i \overline{x_w})} (x_i - \overline{x_w})}$$

Part (ii)

Given N inputs and outputs of the form:

$$(x_i, y_i)$$

We define the line of best fit as

$$\hat{y} = ax + b$$

We need to fit a linear model such that a_i is close to the given vector v in terms of Euclidean distance Euclidean distance D of vector between a and v is the L2 norm:

$$D(a, v) = ||a - v||_2$$

$$D = \sqrt{\sum_{i=1}^{N} (a_i - v_i)^2}$$

For simplicity of calculation we square both sides:

$$D^2 = \sum_{i=1}^{N} (a_i - v_i)^2$$

$$D^2 = \left| |\boldsymbol{a} - \boldsymbol{v}| \right|_2^2$$

The L2-norm of the vector a - v can be represented as

$$\left|\left|a-v\right|\right|_{2}^{2}=(a-v)^{T}(a-v)$$

This seems similar to Ridge regression where instead of limiting the distance from origin we are doing it from a given vector v

Our original loss function is defined as

$$=\sum_{i=1}^{N}(y_i-\widehat{y}_i)^2$$

$$\Rightarrow L = \sum_{i=1}^{N} (y_i - \boldsymbol{a}^T x_i - b)^2$$

The regularization function is defined as

$$f(a) = \frac{1}{2} \left| |\boldsymbol{a} - \boldsymbol{v}| \right|_2^2 = (\boldsymbol{a} - \boldsymbol{v})^T (\boldsymbol{a} - \boldsymbol{v})$$

Our objective function becomes

$$\phi(a,b) = L(a,b) + \lambda f(a)$$

To minimize L first derivative of L w.r.t. α and b should be equal to 0

$$\Rightarrow \frac{\delta \phi}{\delta a} = 0 \text{ and } \frac{\delta \phi}{\delta b} = 0$$

∴ (a)

$$\frac{\delta}{\delta a} \left(\sum_{i=1}^{N} (y_i - \boldsymbol{a}^T x_i - b)^2 + \lambda (\boldsymbol{a} - \boldsymbol{v})^T (\boldsymbol{a} - \boldsymbol{v}) \right) = 0$$

$$\Rightarrow \sum_{i=1}^{N} x_i (y_i - \boldsymbol{a}^T x_i - b) + \lambda (\boldsymbol{a} - \boldsymbol{v}) = 0$$

Eq. 1 -

$$\Rightarrow \sum_{i=1}^{N} x_{i} y_{i} - \mathbf{a}^{T} \sum_{i=1}^{N} x_{i}^{2} - b \sum_{i=1}^{N} x_{i} + \lambda (\mathbf{a} - \mathbf{v}) = 0$$

(b)

$$\frac{\delta}{\delta b} \left(\sum_{i=1}^{N} (y_i - \boldsymbol{a}^T x_i - b)^2 + \lambda (\boldsymbol{a} - \boldsymbol{v})^T (\boldsymbol{a} - \boldsymbol{v}) \right) = 0$$

$$\Rightarrow \sum_{i=1}^{N} (y_i - \boldsymbol{a}^T x_i - b) = 0$$

$$\Rightarrow \sum_{i=1}^{N} y_i - \boldsymbol{a}^T \sum_{i=1}^{N} x_i - \sum_{i=1}^{N} b = 0$$

$$\Rightarrow Nb = \sum_{i=1}^{N} y_i - \boldsymbol{a}^T \sum_{i=1}^{N} x_i$$

$$\Rightarrow b = \frac{\sum_{i=1}^{N} y_i}{N} - \boldsymbol{a}^T \frac{\sum_{i=1}^{N} x_i}{N}$$

Eq. 2 -

$$b = \bar{y} - a^T \bar{x}$$

Putting Eq. 2 in Eq.1

$$\Rightarrow \sum_{i=1}^{N} x_i y_i - \boldsymbol{a}^T \sum_{i=1}^{N} x_i^2 - (\bar{y} - \boldsymbol{a}^T \bar{x}) \sum_{i=1}^{N} x_i + \lambda (\boldsymbol{a} - \boldsymbol{v}) = 0$$

$$\Rightarrow \left(\bar{x} \sum_{i=1}^{N} x_i - \sum_{i=1}^{N} x_i^2 + \lambda \right) \boldsymbol{a} = \bar{y} \sum_{i=1}^{N} x_i - \sum_{i=1}^{N} x_i y_i + \lambda (\boldsymbol{v})$$

$$\Rightarrow \left(\sum_{i=1}^{N} \widetilde{x}_i (\widetilde{x}_i)^T + \lambda \boldsymbol{I} \right) \boldsymbol{a} = \sum_{i=1}^{N} \widetilde{x}_i \widetilde{y}_i + \lambda (\boldsymbol{v})$$

Where, $\widetilde{x}_i = x_i - \bar{x}$

 $\widetilde{\boldsymbol{y}}_{\boldsymbol{i}} = \boldsymbol{y}_i - \bar{\boldsymbol{y}}$

and I is the D * D identity matrix

$$a = \left(\sum_{i=1}^{N} \widetilde{x}_{i} (\widetilde{x}_{i})^{T} + \lambda I\right)^{-1} \left(\sum_{i=1}^{N} \widetilde{x}_{i} \widetilde{y}_{i} + \lambda(v)\right)$$