Preliminary comments

Some themes appeared frequently throughout the individual reports. Based on the what many people mentioned, here is some advice:

- communicate
- overcommunicate
- make and maintain a task list in shared place (such as a Google doc)
- do not do other people's work: trust your teammates to do the work they have signed up for
- get a sense of other team members' workloads outside of CS 3050
- get a sense of other team members' procrastination style
- know that for a team project, more structure/organization is almost always better that less structure/organization

Project choices

Your team will choose one of these projects:

- (1) an interactive game
- (2) a client/server system with a GUI on the front end and a database or datastore on the back end

If your team has an idea for a different kind of project, discuss your idea with me.

General comments:

- I expect each team to pick a project that will challenge them. I will take "degree of difficulty" into consideration during project evaluation.
- The final project has tight schedules. Do not procrastinate.
- Set reasonable expectations—do not be overly ambitious.

Project Choice #1: Interactive GUI

The interactive game will be a software implementation of a game that already exists in non-computer form. In the past, Software Engineering students have implemented Sorry!, Blokus, Othello, chess, and others. If you pick a different game, I must first approve your choice. An arcade-style game (Pacman, Wii Tanks) is also fine. Settlers of Catan is also possible, but it will be challenging.

Requirements:

 the implementation must enable at least one human player to play against at least one Al

- the game should be relatively sophisticated from the standpoint of the interactions required from a user
- the implementation should be GUI-intensive

Observations:

- the specifications will be very clear: implement the game you choose, according to the accepted rules of the game (or with modifications of the rules that you discuss with me)
- the design itself is up to you, but the interactions should be intuitive (i.e., the GUI and the play itself should be intuitive)
- the GUI will be relatively complex; if you don't have very much experience doing GUI development, there can be a steep learning curve
- the Al player doesn't have to be smart per se, but an Al player must understand the rules of the game

You can use your choice of language, although in the past, students who choose C++ have found GLUT to be difficult to work with in a project of this scope. Student teams usually choose Python Arcade (or, less commonly, PyGame or TkInter), and Python. Python Arcade is a newish, sophisticated framework for building games.

Project Choice #2: Client/Server System

For the client/server system, you can choose the database or datastore and also the language and frameworks for the front end and the back end. You must host your back end on a remote server (not as localhost). You can use UVM's silk server or a third-party cloud environment (e.g., AWS, Google Firebase, FlylO, Heroku). FastAPI, a Python-based web framework, is a package that some student teams have used in the past, on a service such as Heroko. You'll have to pay (a little) for AWS or for Heroku.

Possible projects might be: a recipe system, an online reservation system for a restaurant, a web-ordering system, or something else your team proposes.

Observations:

- the specifications are wide open here--your team will have to develop them, in part through discussions with me
- front-end/back-end web-development frameworks might be new to some or all of your team members

Version control

Teams are required to use github. In the past, I have sometimes used the record of a student's commits to help me evaluate that student's work.

Use branches—do not push to main. Make a plan for how your team will use branches. Feature branches are generally better than a "one-branch-per-person" approach.

Deliverables

Deliverable 0: Project Proposal

This describes the project your team will create and says what language(s) and framework(s) you will use.

* Due Wednesday, Oct. 2nd, 11:59 pm

Deliverable 1A: Sprint One Goals

This document will have a set of tasks for Sprint One of your project. Describe each task as easy/medium/hard and nice-to-have/important/essential.

* Due Monday, Oct. 7th, 11:59 pm

Deliverable 1B (Team): Sprint One Results

You should have implemented the Sprint One tasks. The result of Sprint One should be a working (albeit preliminary) version of your product: we should be able to clone your repo and run your code to see the results of Sprint One. Include also a short document describing (briefly) for each task from your list of sprint tasks either that you implemented the task, and how we can see the results; or that you did not implement the task, and describe why you did not do so

* Due Saturday, Oct. 19th, 11:59 pm

Deliverable 1B (Individual): Reflection

Each person: submit a short document describing two things that are going well so far and two areas that need improvement.

* Due Saturday, Oct. 19th, 11:59 pm

Deliverable 2A: Sprint Two Goals

This document will have a set of tasks for Sprint Two of your project. Describe each task as easy/medium/hard and nice-to-have/important/essential.

* Due Wednesday, Oct. 23rd, 11:59 pm

Deliverable 2B: Sprint Two Results

You should have implemented the Sprint Two tasks. We should be able to clone your repo and run your code to see the results of Sprint Two (and Sprint One). Include also a short document describing (briefly) for each task from your list of sprint tasks either that you implemented the task, and how we can see the results; or that you didn't implement the task, and describe why not.

* Due Sunday, Nov. 3rd, 11:59 pm

Deliverable 3A: Sprint Three Goals

This document will have a set of tasks for Sprint Three of your project. Describe each task as easy/medium/hard and nice-to-have/important/essential.

* Due Wednesday, Nov. 6th, 11:59 pm

Deliverable 3B Sprint Three Results

Submit your code and any additional resources needed to run your program. Include a link to your repo and an endpoint if appropriate. We should be able to clone your repo and run your code to see the results of Sprint Three (and the two prior sprints). Include also a short document describing (briefly) for each task from your list of sprint tasks either that you implemented the task, and how we can see the results; or that you didn't implement the task, and describe why not.

* Due Sunday, Nov. 24th, 11:59 pm

note: Thanksgiving Break is 11/25 to 11/29

If all member of a team agree that the team would like a few additional days to work on the project (i.e., during Thanksgiving Break), then ask me, and we can discuss (but don't wait until the last minute to ask me this).

Evaluation

Deliverable 1A and 1B: 20% * quality of the source code

- * quality and robustness of the program
- * correctness of the program: have the sprint goals been met?

Deliverable 2A and 2B: 20%

- * quality of the source code
- * quality and robustness of the program
- * correctness of the program: have the sprint goals been met?

Deliverable 3A and 3B: 20%

- * quality of the source code
- * quality and robustness of the program
- * correctness of the program: have the sprint goals been met?

Above-and-beyond factor: 10%

* I will work with the TAs to decide on this additional 10% for the project. If your team does a so-so implementation of an easy project, then you'll get fewer points here. If you tackle a tricky project and do a good job, you get more points. If you produce an excellent implementation of a straightforward project, you'll get more points.

Individual contribution/participation: 10%

* based on my understanding of each person's contribution/participation and on team member's evaluations

Individual Report

Answer these questions:

- 1. Identify two areas of improvement in your development process (not in your code)—things that did not work well—and for each, describe what specific actions a team you are on could do next time to make these improvements.
- 2. Identify two areas in your development process that <u>did</u> work well, and say what your team did to make these aspects of your development work well.
- 3. Describe two things that you and your team did differently during the final project based on your experience during the warm-up project.
- 4. For the two things you listed on your warmup individual report ("list two things that you personally should do differently on the next project"), describe how you did them during the work of the final project; or why you didn't do them during the final project.

Elaborate in your replies to these questions—don't provide just a single-sentence answer to each question.

Also, provide an assessment in the form of a 5-4-3-2-1 rating of the effectiveness and contributions of yourself and of your team members. 5 is the best; 1 is the weakest. These are ratings—not rankings—and they will be kept confidential (I'm the only one who will see them).

15% of project grade

Due Sunday, Nov. 24th, 11:59 pm

Group Presentation

Each team will give a presentation to the class that describes their product and their development process. This will be similar to the presentation for the warm-up project. I'll provide more detail as we get closer to the end of the semester.

Final-project presentations: Thursday, Dec. 12th, 1:30 - 4:15 pm, Lafayette L302

5% of project grade