DEFINITIONS A power series about x = 0 is a series of the form

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n + \dots$$
 (1)

A power series about x = a is a series of the form

$$\sum_{n=0}^{\infty} c_n (x-a)^n = c_0 + c_1 (x-a) + c_2 (x-a)^2 + \dots + c_n (x-a)^n + \dots$$
 (2)

in which the **center** a and the **coefficients** $c_0, c_1, c_2, \ldots, c_n, \ldots$ are constants.

The Radius of Convergence of a Power Series

- **Theorem** For a given power series $\sum_{n=0}^{\infty} c_n(x-a)^n$ there are only three possibilities:
 - (i) The series converges only when x = a. $\Longrightarrow R = 0$
- (ii) The series converges for all x. $\Longrightarrow R = \infty$
- (iii) There is a positive number R such that the series converges if |x a| < R and diverges if |x a| > R.

endpoints. Thus in case (iii) there are four possibilities for the interval of convergence:

$$(a - R, a + R)$$
 $(a - R, a + R)$ $[a - R, a + R)$ $[a - R, a + R]$

How to Test a Power Series for Convergence

1. Use the Ratio Test (or Root Test) to find the interval where the series converges absolutely. Ordinarily, this is an open interval

$$|x-a| < R$$
 or $a-R < x < a+R$.

- **2.** If the interval of absolute convergence is finite, test for convergence or divergence at each endpoint, as in Examples 3a and b. Use a Comparison Test, the Integral Test, or the Alternating Series Test.
- **3.** If the interval of absolute convergence is a R < x < a + R, the series diverges for |x a| > R (it does not even converge conditionally) because the *n*th term does not approach zero for those values of x.

Operations on Power Series

THEOREM 19—The Series Multiplication Theorem for Power Series If

 $A(x) = \sum_{n=0}^{\infty} a_n x^n$ and $B(x) = \sum_{n=0}^{\infty} b_n x^n$ converge absolutely for |x| < R, and

$$c_n = a_0b_n + a_1b_{n-1} + a_2b_{n-2} + \cdots + a_{n-1}b_1 + a_nb_0 = \sum_{k=0}^n a_kb_{n-k},$$

then $\sum_{n=0}^{\infty} c_n x^n$ converges absolutely to A(x)B(x) for |x| < R:

$$\left(\sum_{n=0}^{\infty} a_n x^n\right) \cdot \left(\sum_{n=0}^{\infty} b_n x^n\right) = \sum_{n=0}^{\infty} c_n x^n.$$

THEOREM 20 If $\sum_{n=0}^{\infty} a_n x^n$ converges absolutely for |x| < R, then $\sum_{n=0}^{\infty} a_n (f(x))^n$ converges absolutely for any continuous function f on |f(x)| < R.

Differentiation and Integration of Power Series

Theorem If the power series $\sum c_n(x-a)^n$ has radius of convergence R>0, then the function f defined by

$$f(x) = c_0 + c_1(x - a) + c_2(x - a)^2 + \cdots = \sum_{n=0}^{\infty} c_n(x - a)^n$$

is differentiable (and therefore continuous) on the interval (a - R, a + R) and

(i)
$$f'(x) = c_1 + 2c_2(x-a) + 3c_3(x-a)^2 + \cdots = \sum_{n=1}^{\infty} nc_n(x-a)^{n-1}$$

(ii)
$$\int f(x) dx = C + c_0(x - a) + c_1 \frac{(x - a)^2}{2} + c_2 \frac{(x - a)^3}{3} + \cdots$$
$$= C + \sum_{n=0}^{\infty} c_n \frac{(x - a)^{n+1}}{n+1}$$

The radii of convergence of the power series in Equations (i) and (ii) are both R.

This is called term-by-term differentiation and integration.