Name:	

MASTERY QUIZ DAY 19

Math 237 – Linear Algebra Fall 2017

Version 5

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

S2. Determine if the set $\{x^2+x-1, 3x^2-x+1, 2x-2\}$ is a basis of \mathcal{P}_2

Solution:

RREF
$$\left(\begin{bmatrix} 1 & 3 & 2 \\ 1 & -1 & 0 \\ -1 & 1 & -2 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Since the resulting matrix is the identity matrix, it is a basis.

A3. Determine if each of the following linear transformations is injective (one-to-one) and/or surjective (onto).

- (a) $S: \mathbb{R}^2 \to \mathbb{R}^4$ given by the matrix $\begin{bmatrix} 2 & 1 \\ 1 & 2 \\ 0 & 1 \\ 3 & -3 \end{bmatrix}$.
- (b) $T: \mathbb{R}^4 \to \mathbb{R}^3$ given by the matrix $\begin{bmatrix} 2 & 3 & -1 & 1 \\ -1 & 1 & 1 & 1 \\ 4 & 7 & -1 & 5 \end{bmatrix}$

Solution:

- (a) $\begin{bmatrix} 2 & 1 \\ 1 & 2 \\ 0 & 1 \\ 3 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$. Since each column is a pivot column, S is injective. Since there a no zero row, S is not surjective.
- (b) Since $\dim \mathbb{R}^4 > \dim \mathbb{R}^3$, T is not injective.

RREF
$$\left(\begin{bmatrix} 2 & 3 & -1 & 1 \\ -1 & 1 & 1 & 1 \\ 4 & 7 & -1 & 5 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

Since there is not a zero row, T is surjective.

A4. Let $T: \mathbb{R}^4 \to \mathbb{R}^3$ be the linear map given by $T \begin{pmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 8x - 3y - z + 4w \\ y + 3z - 4w \\ -7x + 3y + 2z - 5w \end{bmatrix}$. Compute the

kernel and image of T.

Solution:

RREF
$$\left(\begin{bmatrix} 8 & -3 & -1 & 4 \\ 0 & 1 & 3 & -4 \\ -7 & 3 & 2 & -5 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & 3 & -4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\operatorname{Im}(T) = \operatorname{span}\left(\left\{ \begin{bmatrix} 8\\0\\-7 \end{bmatrix}, \begin{bmatrix} -3\\1\\3 \end{bmatrix} \right\} \right)$$
$$\ker(T) = \operatorname{span}\left(\left\{ \begin{bmatrix} 1\\3\\-1\\0 \end{bmatrix}, \begin{bmatrix} 1\\4\\0\\1 \end{bmatrix} \right\} \right)$$