TELE303 Mobile Systems Lecture 1 — Introduction

Jeremiah Deng TELE Programme / Information Science University of Otago, 2016

Course Information

Outline

- Course outline
- Historical context
- Basic concepts related to transmission
 - o Data
 - o Signal
 - o Bandwidth and data rate
 - o Sampling
 - o Shannon capacity theorem

2

Teaching Team

- Coordinator: A/Prof. Jeremiah Deng
 - o jeremiah.deng@otago.ac.nz
 - o Office: CO10.13, Ext. 8090
- Dr. Tobias Langlotz (CO9.13, Ext. 8096)
- Guest lecturers (t.b.a.)
- Tutor
 - Wk-5, 12: Sepideh Zareei (Office: CO9.08, email: <u>sepideh.zareei@postgrad.otago.ac.nz</u>)
 - Wk 6-11: Matthew Cook (email: cooma376@student.otago.ac.nz)

What's in TELE303

- Wireless fundamentals, e.g.:
 - o Signaling
 - o Coding
 - Spread spectrum
- Routing and TCP performance
- Mobile application development
- Principles of modern technologies: Wi-Fi, GSM, WiMax, 3G/4G...
- · Mobile ad hoc networking
- Security and management

1		\
-	5	1
	J	1

Resources

- Textbooks
- Course website: <u>www.telecom.otago.ac.nz/tele303/</u>
- Piazza site sign up now:
 - o piazza.com/otago.ac.nz/semester12016/tele303
 - o **Q&A**, notes and resources ...
 - Announcements

	Lecture #	Date	Topic	Tutorial / Laboratory	
	1	29/2	Mobile computing: overview		
	2	1/3	Transmission		
	3	7/3	Propagation	Tutorial 1 Lab 1	
	4	8/3	Encoding		
	5	14/3	Spread spectrum	Tutorial 2 Lab 2	
	6	15/3	Medium access control		
	7	21/3	MANETs & Routing	Tutorial 3 Lab 3	
	8	22/3	TCP performance		
	Mid-semester Break				
	9	4/4	Mobile Systems overview 1 (History)	Catala and lak	
	10	5/4	Mobile Systems overview 2 (Hardware)	Catch-up lab	
	11	11/4	Prototyping mobile apps	Desirat stants	
	12	12/4	Android Programming Basics 1 (Introduction)	Project starts	
	13	18/4	Android Programming Basics 2 (Activities)	Tab 4 (1st Milestone)	
1	14	19/4	Android Programming Basics 3 (Events, Intents)	Lab 4 (1st Milestone)	
	15	26/4	Android Programming Basics 4 (Data handling)	Lab 5	
>) 16	27/4	Android Programming Basics 5 (Threads, NDK)	- Lao a	
	17	2/5	Sensors 1	Tab 6 (2nd Milestone)	
	18	3/5	Sensors 2	Lab 6 (2nd Milestone)	
	19	9/5	App Distribution / Future of mobile computing	Lab 7	
	20	10/5	Android Review	Lab	
	21	16/5	Cellular Wireless Networks	Lab & (Final Milostone)	
	22	17/5	Wireless LANs and PANs	Lab 8 (Final Milestone)	
	23	23/5	Satellite Communications	Tutorial 4	
	24	24/5	Wireless Security		
	25	30/5	Wireless Sensor Networks		
	26	31/5	Review		

Concepts and Terminology

000

Wireless Comes of Age

- The earliest form of telecommunications is wireless.
- Guglielmo Marconi invented wireless telegraph in 1896.
- Shortwave radio started around 1930s.
- Communications satellites first launched in 1960s. (Sputnik 1957)
- Internet project began in 1960s.
- The newest wavefronts: Cellular, Wi-Fi, bluetooth, NFC ...

9

Ok, shall we start ... but where?

Source: Wikipedia

Data Communication Terms

- Data entities that convey meaning, or information
- Signals electric or electromagnetic representations of data
- Transmission communication of data by the propagation and processing of signals

Electromagnetic Signal

- Function of time
- Can also be expressed as a function of frequency
 - Signal consists of components of different frequencies
- Analog signal signal intensity varies in a smooth fashion over time
 - o No breaks or discontinuities in the signal
- Digital signal signal intensity varies only on constant levels over time

Time-Domain Concepts

• General sine wave

$$\circ s(t) = A \sin(2\pi f t + \phi)$$

- Peak amplitude (A)
- Frequency (f)
- Period (T = 1/f)
- Phase (ϕ)
- Wavelength ($\lambda = cT$)
- ➤ see Fig.2.3

Frequency-Domain Concepts

- When all frequency components of a signal are integer multiples of one frequency, it's referred to as the fundamental frequency.
- Spectrum range of frequencies that a signal contains
- **Bandwidth** the band of frequencies that most of the signal's energy is contained in.

Analog Signals

- A continuously varying electromagnetic wave that may be propagated over a variety of media, depending on frequency
 - o E.g. video & audio signals
- Examples of media:
 - Copper wire media (twisted pair and coaxial cable)
 - o Fiber optic cable
 - > Atmosphere or space propagation
- Analog signals can propagate analog and digital data

Digital Signals

- A sequence of voltage pulses that may be transmitted over a copper wire medium
- Generally cheaper than analog signaling
- Less susceptible to noise interference
- Any digital waveform will have infinite bandwidth.
- Suffer more from attenuation
- Digital signals can propagate analog and digital data

The Square Wave

(18)

Analog Transmission

- Transmit analog signals without regard to content
- Attenuation limits length of transmission link
- Cascaded amplifiers boost signal's energy for longer distances but cause distortion
 - o Analog data can tolerate distortion
 - o Introduces errors in digital data

Transmission Basics

000

Digital Transmission

- Concerned with the content of the signal
- Attenuation endangers integrity of data
- Digital Signal
 - o Repeaters achieve greater distance
 - o Repeaters recover the signal and retransmit
- Analog signal carrying digital data
 - Retransmission device recovers the digital data from analog signal
 - o Generates new, clean analog signal

Channel Capacity

- Impairments, such as noise, limit data rate that can be achieved
- Channel Capacity the maximum rate at which data can be transmitted over a given communication path, or channel, under given conditions

(21)

22

Some Related Concepts

- Data rate rate at which data can be communicated (bps)
- Bandwidth the bandwidth of the transmitted signal as constrained by the transmitter and the nature of the transmission medium (Hz)
- Noise average level of noise over the communications path
- Error rate rate at which errors occur
 - Error = transmit 1 and receive 0; transmit 0 and receive 1

Nyquist Sampling: $f_s = 2f_{max}$

- Analog → Digital conversion requires sampling.
- A signal sampled twice per cycle has enough information to be reconstructed.
 - Q: CD samples at 44,100
 Hz, reproducing audio quality up to Hz.
- Lower sampling frequencies cause aliasing.

Nyquist Bandwidth

- Given a channel bandwidth of B Hz, the highest signal rate that can be carried is 2B Hz.
- For binary signals (two voltage levels), data rate is
 - \circ C = 2B bps
- With multilevel signaling, data rate is
 - \circ C = 2B log₂ M bps
 - M = number of discrete signal or voltage levels

(25)

Signal-to-Noise Ratio

- Ratio of the power in a signal to the power contained in the noise that's present at a particular point in the transmission
- Signal-to-noise ratio (SNR, or S/N) usually expressed in decibels:

$$(SNR)_{dB} = 10 \log_{10} \frac{P_s}{P_n}$$

- A high SNR means a high-quality signal, low number of required intermediate repeaters
- SNR sets upper bound on achievable data rate

Shannon Capacity

- $C = B \log_2 (1 + SNR)$
 - o C: capacity, B: bandwidth
- Represents theoretical maximum that can be achieved under given B and SNR
- In practice, only much lower rates achieved
 - o Formula assumes white noise (thermal noise)
 - o Impulse noise is not accounted for
 - o Attenuation distortion or delay distortion not accounted for

Recap

- This lecture: terms and concepts
 - o Data & signals
 - o Digital vs analog
 - o Samplina
 - Shannon capacity
- Next lecture: "Transmission"
- Spectrum
 - o Fourier transform
 - How to 'spread' spectrum
- Transmission media
- Multiplexing and duplexing