Axiomatic Atrribution for Deep Networks

Motivation

Definition 1. 假设神经网络可以有一个函数表达: $F: \mathbb{R}^n \to [0,1]$ (class score)

输入: $x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$; 在参考值 x' 的基础上, 某个输入x 的特定预测值的

attribution map: $A_F(x,x') = (a_1,...,a_n) \in \mathbb{R}^n$, 其中 a_i 代表 x_i 对F(x)的贡献量

value

Two Fundamental Axioms

Sensitivity(a):

当改变某个特征的输入值或参考值时,NN产生了不同的预测结果,那么应该给予这个特征非0的attribution saturation

Implementation Invariance :

若两个神经网络输入输出完全相等,则称这两个神经网络功能性等同(functional equivalent),即使网络中的运算不同;两个功能性等同的网络attribution也应相同 chain rule

Integrated Gradients

Deep Network $F: \mathbb{R}^n \to [0,1]$

Input
$$x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$$

Baseline Input $x' \in \mathbb{R}^n$ (img : black img ; text : zero embedding vector)

Conditions: x'与x在一条直线上(R^n)

计算这条直线上某个特征维度的所有点的梯度,再积分

$$IntegratedGrads_{i}(x) ::= (x_{i} - x_{i}') \times \int_{\alpha=0}^{1} \frac{\partial F(x' + \alpha \times (x - x'))}{\partial (x_{i}' + \alpha \times (x_{i} - x_{i}'))} d\alpha \qquad \alpha \in [0,1]$$

Integrated Gradients

计算的是 x' 到 x 路径上的平均梯度

Integrated Gradients

Computing integrated gradients. 积分近似

Integrated Grads_i^{approx}
$$(x) = (x_i - x_i') \times \sum_{k=1}^{m} \frac{\partial F(x' + \frac{k}{m}(x - x'))}{\partial (x_i' + \frac{k}{m}(x_i - x_i'))} \times \frac{1}{m}$$

Original image Top label and score Integrated gradients Gradients at image Top label: reflex camera Score: 0.993755 Top label: viaduct Score: 0.999994 Top label: cabbage butterfly Score: 0.996838

谢谢