

21

111,3

22

79,8

## UNIVERSIDADE FEDERAL DE LAVRAS PRÓ-REITORIA DE PÓS-GRADUAÇÃO

#### PRO-REITORIA DE POS-GRADUAÇAO INSTITUTO DE CIÊNCIAS NATURAIS DEPARTAMENTO DE BIOLOGIA

PROGRAMA DE PÓS-GRADUAÇÃO EM GENÉTICA E MELHORAMENTO DE PLANTAS

# PGM522 – ANÁLISE DE EXPERIMENTOS EM GENÉTICA E MELHORAMENTO DE PLANTAS

## Ricardo Antonio Ruiz Cardozo

# 6ª LISTA DE EXERCÍCIOS

## Delineamentos em Blocos Incompletos (DBI) e Grupo de Experimentos

1) A seguir estão dispostos os dados de volume (dm³) de um teste de 25 progênies de meios-irmãos de *Eucaliptus grandis*, conduzido no delineamento em blocos incompletos (DBI).

| Rep I |       |      |       |      |        |      |        |      |       |
|-------|-------|------|-------|------|--------|------|--------|------|-------|
| Blo   | осо 1 | Ble  | oco2  | Bl   | осо3   | Bl   | oco4   | Blo  | осо5  |
| Trat  | Vol   | Trat | Vol   | Trat | Vol    | Trat | Vol    | Trat | Vol   |
| 1     | 83,1  | 6    | 92,55 | 11   | 120,15 | 16   | 51     | 21   | 117   |
| 2     | 67,2  | 7    | 88,2  | 12   | 98,25  | 17   | 103,35 | 22   | 115,5 |
| 3     | 107,1 | 8    | 98,25 | 13   | 81,3   | 18   | 104,55 | 23   | 70,5  |
| 4     | 99,6  | 9    | 102,9 | 14   | 108,6  | 19   | 81,15  | 24   | 105   |
| 5     | 105   | 10   | 88,5  | 15   | 142,5  | 20   | 100,5  | 25   | 102,9 |
|       |       |      |       | Re   | ep II  |      |        |      |       |

| 110p 11 |        |      |        |      |        |      |       |      |        |  |
|---------|--------|------|--------|------|--------|------|-------|------|--------|--|
| Blo     | oco 1  | Bl   | oco2   | Bl   | осо3   | Ble  | oco4  | Bl   | oco5   |  |
| Trat    | Vol    | Trat | Vol    | Trat | Vol    | Trat | Vol   | Trat | Vol    |  |
| 1       | 137,25 | 2    | 170,4  | 3    | 152,55 | 4    | 116,1 | 5    | 127,4  |  |
| 6       | 127,35 | 7    | 151,8  | 8    | 161,4  | 9    | 145,8 | 10   | 129,85 |  |
| 11      | 139,2  | 12   | 163,65 | 13   | 122,85 | 14   | 160,5 | 15   | 100,8  |  |
| 16      | 153,3  | 17   | 163,35 | 18   | 156,9  | 19   | 140,7 | 20   | 126    |  |

126

24

106,05

25

106,75

23

|      |        |      |        | Re   | p III  |      |        |      |       |
|------|--------|------|--------|------|--------|------|--------|------|-------|
| Ble  | oco 1  | Bl   | oco2   | Bl   | осо3   | Bl   | oco4   | Ble  | осо5  |
| Trat | Vol    | Trat | Vol    | Trat | Vol    | Trat | Vol    | Trat | Vol   |
| 1    | 154,8  | 2    | 137,7  | 3    | 152,7  | 4    | 166,2  | 5    | 79,8  |
| 7    | 142,2  | 8    | 128,4  | 9    | 160,65 | 10   | 141,15 | 6    | 86,45 |
| 13   | 118,65 | 14   | 148,65 | 15   | 171,45 | 11   | 163,35 | 12   | 98    |
| 19   | 158,55 | 20   | 139,65 | 16   | 195,3  | 17   | 166,95 | 18   | 98,35 |
| 25   | 86,8   | 21   | 91,35  | 22   | 100,1  | 23   | 119,35 | 24   | 137,2 |

| <b>T</b> |       |
|----------|-------|
| שבעם     | e-se: |
| 1 50     | C->C  |

| Cuc-i | 5C.                                                                                                                                                           |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a)    | Qual é o tipo de DBI empregado e quais suas principais características?                                                                                       |
|       |                                                                                                                                                               |
|       |                                                                                                                                                               |
|       |                                                                                                                                                               |
|       |                                                                                                                                                               |
|       |                                                                                                                                                               |
|       |                                                                                                                                                               |
|       |                                                                                                                                                               |
|       |                                                                                                                                                               |
|       |                                                                                                                                                               |
|       |                                                                                                                                                               |
| b)    | O delineamento emprego é tipo <i>resolvable</i> ? Justifique.                                                                                                 |
|       |                                                                                                                                                               |
|       |                                                                                                                                                               |
|       |                                                                                                                                                               |
|       |                                                                                                                                                               |
| ,     | D                                                                                                                                                             |
|       | De acordo com o artigo YATES (1940) <b>The recovery</b> of <b>inter-block</b> formation in balanced incomplete block designs, quais as razões para que os DBI |
|       | tipo resolvable sejam mais vantajosos em relação aos DBI do tipo non-resolvable?                                                                              |
|       |                                                                                                                                                               |
|       |                                                                                                                                                               |
|       |                                                                                                                                                               |
|       |                                                                                                                                                               |
|       |                                                                                                                                                               |
|       |                                                                                                                                                               |
|       |                                                                                                                                                               |
| 1\    |                                                                                                                                                               |
| d)    | Estabeleça o modelo estatístico e especifique os termos do modelo.                                                                                            |
|       |                                                                                                                                                               |

e) Proceda a análise de variância intrablocos. Discuta o resultado.

**Tabela 1**. Análise de variância (ANOVA) intrablocos do volume (dm³) de um teste de 25 progênies de meios-irmãos de *Eucaliptus grandis*, conduzido no delineamento em blocos incompletos (DBI).

| FV                 | GL | SQ       | QM         | F value | p-value(>F) |
|--------------------|----|----------|------------|---------|-------------|
| Repeticão          | 2  | 22875,86 | 11437,9297 | 29,1241 | <0,001**    |
| Progênie           | 24 | 17597,59 | 733,2330   | 1,867   | 0,0438*     |
| (Blocos/repetição) | 12 | 17216,46 | 1434,7049  | 3,6531  | 0,0013**    |
| Resíduo            | 36 | 14138,33 | 392,7313   |         |             |
| Total              | 74 | 71828.24 |            |         |             |

Signif. codes: 0 '\*\*\* 0.001 '\*\* 0.01 '\* 0.05 '.' 0.1 ' 1

f) Proceda a análise de variância interblocos. Discuta o resultado.

**Tabela 2**. Análise de variância parcial (ANOVA) interblocos do volume (dm³) de um teste de 25 progênies de meios-irmãos de *Eucaliptus grandis*, conduzido no delineamento em blocos incompletos (DBI).

| FV        | GL | SQ     | QM      | F value | p-value(>F) |
|-----------|----|--------|---------|---------|-------------|
| Repeticão | 2  | 4593,8 | 2296,90 | 5,8485  | 0,0169*     |
| Progênie  | 24 | 15661  | 652,54  | 1,6615  | 0,0820.     |
| Resíduo   | 36 | 14138  | 392,73  |         |             |

Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1

g) Estime as médias ajustadas das progênies de meios-irmãos nos itens (e) e (f) e observe se ocorre mudança no ranqueamento por meio de um gráfico. Estime o coeficiente de correlação de Spearman entre as médias. Discuta o resultado.

**Tabela 3.** Médias ajustadas da análise intrablocos e interblocos do volume (dm³) de um teste de 25 progênies de meios-irmãos de *Eucaliptus grandis*, conduzido no delineamento em blocos incompletos (DBI).

|           | Média intrabloc |             | Média interblocos |                |             |  |  |
|-----------|-----------------|-------------|-------------------|----------------|-------------|--|--|
| Progênies | Média Ajustada  | Erro Padrão | Progênies         | Média Ajustada | Erro Padrão |  |  |
| 1         | 127.2           | 12.7        | 1                 | 126.6          | 13.4        |  |  |
| 2         | 127.1           | 12.7        | 2                 | 126.6          | 13.4        |  |  |
| 3         | 127.5           | 12.7        | 3                 | 130.2          | 13.4        |  |  |
| 4         | 128.8           | 12.7        | 4                 | 128.4          | 13.4        |  |  |
| 5         | 125.2           | 12.7        | 5                 | 119.4          | 13.4        |  |  |
| 6         | 116.8           | 12.7        | 6                 | 112.8          | 13.4        |  |  |
| 7         | 123.0           | 12.7        | 7                 | 124.2          | 13.4        |  |  |
| 8         | 129.5           | 12.7        | 8                 | 129.4          | 13.4        |  |  |
| 9         | 135.0           | 12.7        | 9                 | 135.4          | 13.4        |  |  |
| 10        | 121.6           | 12.7        | 10                | 121.1          | 13.4        |  |  |
| 11        | 132.4           | 12.7        | 11                | 134.8          | 13.4        |  |  |
| 12        | 124.4           | 12.7        | 12                | 123.2          | 13.4        |  |  |
| 13        | 97.6            | 12.7        | 13                | 100.3          | 13.4        |  |  |
| 14        | 144.1           | 12.7        | 14                | 142.8          | 13.4        |  |  |
| 15        | 133.3           | 12.7        | 15                | 134.7          | 13.4        |  |  |
| 16        | 134.1           | 12.7        | 16                | 133.9          | 13.4        |  |  |
| 17        | 141.9           | 12.7        | 17                | 142.6          | 13.4        |  |  |
| 18        | 134.8           | 12.7        | 18                | 130.7          | 13.4        |  |  |
| 19        | 137.5           | 12.7        | 19                | 134.6          | 13.4        |  |  |
| 20        | 139.5           | 12.7        | 20                | 134.7          | 13.4        |  |  |
| 21        | 99.6            | 12.7        | 21                | 101.5          | 13.4        |  |  |
| 22        | 74.9            | 12.7        | 22                | 81.4           | 13.4        |  |  |
| 23        | 82.8            | 12.7        | 23                | 88.9           | 13.4        |  |  |
| 24        | 121.4           | 12.7        | 24                | 120.0          | 13.4        |  |  |
| 25        | 91.9            | 12.7        | 25                | 93.8           | 13.4        |  |  |

Correlação Spearman = 0.9677



**Figura 1.** Comparativo das médias ajustadas da análise intrablocos e interblocos do volume (dm³) de um teste de 25 progênies de meios-irmãos de *Eucaliptus grandis*, conduzido no delineamento em blocos incompletos (DBI).

h) Determine a eficiência relativa da análise intrablocos. Discuta o resultado.

i) Determine a eficiência relativa da análise interblocos. Discuta o resultado.

j) De acordo com o artigo MOHRING et al. (2015) **Inter-block information: to recover or not to recover it?**, em que situação a análise com recuperação da informação interblocos será mais vantajosa que a análise intrablocos?

2) A seguir estão os dados de produção, em Kg/parcela, de progênies de feijoeiro avaliadas em um experimento no delineamento alfa-látice triplo 5 x 7.

|      |      |      |       |      |         | Re   | p I   |      |      |      |      |      |       |
|------|------|------|-------|------|---------|------|-------|------|------|------|------|------|-------|
| Blo  | co I | Blo  | co II | Bloc | o III o | Bloc | eo IV | Bloc | co V | Bloc | o VI | Bloc | o VII |
| Trat | Prod | Trat | Prod  | Trat | Prod    | Trat | Prod  | Trat | Prod | Trat | Prod | Trat | Prod  |
| 1    | 1,68 | 2    | 1,24  | 3    | 0,91    | 4    | 0,76  | 5    | 0,81 | 6    | 0,60 | 7    | 0,82  |
| 8    | 1,53 | 9    | 0,88  | 10   | 0,61    | 11   | 0,75  | 12   | 1,87 | 13   | 0,70 | 14   | 1,08  |
| 15   | 1,74 | 16   | 0,74  | 17   | 0,63    | 18   | 1,91  | 19   | 0,79 | 20   | 0,74 | 21   | 0,60  |
| 22   | 1,04 | 23   | 1,35  | 24   | 0,40    | 25   | 0,72  | 26   | 0,68 | 27   | 0,87 | 28   | 0,89  |
| 29   | 1,74 | 30   | 1,37  | 31   | 0,77    | 32   | 0,45  | 33   | 0,85 | 34   | 0,88 | 35   | 0,73  |
|      |      |      |       |      |         | Re   | p II  |      |      |      |      |      |       |
| Blo  | co I | Blo  | co II | Bloc | o III o | Bloc | o IV  | Bloc | co V | Bloc | o VI | Bloc | o VII |
| Trat | Prod | Trat | Prod  | Trat | Prod    | Trat | Prod  | Trat | Prod | Trat | Prod | Trat | Prod  |
| 1    | 1,86 | 2    | 1,20  | 3    | 0,89    | 4    | 0,85  | 5    | 1,09 | 6    | 1,28 | 7    | 1,16  |
| 9    | 1,10 | 10   | 0,81  | 11   | 0,87    | 12   | 1,83  | 13   | 1,12 | 14   | 0,94 | 8    | 1,00  |
| 17   | 1,93 | 18   | 0,91  | 19   | 0,94    | 20   | 0,94  | 21   | 1,09 | 15   | 1,74 | 16   | 1,16  |
| 25   | 0,92 | 26   | 1,01  | 27   | 0,78    | 28   | 1,58  | 22   | 1,09 | 23   | 1,44 | 24   | 1,00  |
| 33   | 0,73 | 34   | 1,04  | 35   | 0,74    | 29   | 0,79  | 30   | 1,08 | 31   | 1,11 | 32   | 1,18  |
|      |      |      |       |      |         | Rep  | III   |      |      |      |      |      |       |
| Blo  | co I | Blo  | co II | Bloc | o III   | Bloc | o IV  | Blo  | co V | Bloc | o VI | Bloc | o VII |
| Trat | Prod | Trat | Prod  | Trat | Prod    | Trat | Prod  | Trat | Prod | Trat | Prod | Trat | Prod  |
| 1    | 1,68 | 2    | 1,84  | 3    | 0,96    | 4    | 0,70  | 5    | 0,80 | 6    | 0,64 | 7    | 0,84  |
| 10   | 0,61 | 11   | 1,35  | 12   | 1,87    | 13   | 0,68  | 14   | 1,10 | 8    | 1,10 | 9    | 0,76  |
| 21   | 0,58 | 15   | 1,84  | 16   | 0,74    | 17   | 0,80  | 18   | 0,52 | 19   | 0,80 | 20   | 0,74  |
| 27   | 0,49 | 28   | 1,59  | 22   | 1,00    | 23   | 1,20  | 24   | 0,48 | 25   | 0,80 | 26   | 0,68  |
| 32   | 0,45 | 33   | 1,45  | 34   | 0,80    | 35   | 0,70  | 29   | 0,70 | 30   | 0,94 | 31   | 1,40  |

## Pede-se:

a) O que significa alfa-látice triplo 5 x 7?

b) Proceda a análise de variância interblocos. Determine a eficiência relativa do látice ao DBCC. Discuta o resultado.

**Tabela 4.** Anova da produção, em Kg/parcela, de progênies de feijoeiro avaliadas em um experimento no delineamento alfa-látice triplo 5 x 7.

| FV        | GL | F value | p-value(>F) |
|-----------|----|---------|-------------|
| Repeticão | 2  | 1,4197  | 0,2676      |
| Progênie  | 34 | 3,4728  | 0,001**     |

Signif. codes: 0 '\*\*\* 0.001 '\*\* 0.01 '\* 0.05 '.' 0.1 ' '1

c) Em caso de significância para o teste F associado às cultivares, proceda ao teste de Scott-Knott a 5% de probabilidade. Discuta o resultado.

**Tabela 5.** Teste de Scott-knott para as médias ajustadas de progênies de feijão.

| Progênies | Médias | Scott-Knott |
|-----------|--------|-------------|
| 12        | 1,8825 | a           |
| 1         | 1,6646 | a           |
| 15        | 1,5952 | a           |
| 23        | 1,3476 | b           |
| 2         | 1,3289 | b           |
| 28        | 1,2896 | b           |
| 17        | 1,1770 | c           |
| 18        | 1,1685 | c           |
| 31        | 1,1519 | c           |
| 14        | 1,1248 | c           |
| 8         | 1,1113 | c           |
| 30        | 1,1099 | c           |
| 29        | 1,0756 | c           |
| 3         | 1,0095 | c           |
| 22        | 0,9569 | c           |
| 5         | 0.9487 | c           |
| 34        | 0,9456 | c           |
| 7         | 0,9281 | c           |
| 19        | 0,8920 | c           |
| 11        | 0,8860 | c           |
| 33        | 0,8772 | c           |
| 6         | 0,8649 | c           |
| 13        | 0,8620 | c           |
| 9         | 0,8613 | c           |
| 20        | 0,8325 | c           |

| 16 0,8282 c   26 0,8217 c   35 0,8118 c   21 0,8000 c   10 0,7923 c |    |        |   |
|---------------------------------------------------------------------|----|--------|---|
| 35 0,8118 c<br>21 0,8000 c                                          | 16 | 0,8282 | c |
| 21 0,8000 c                                                         | 26 | 0,8217 | c |
|                                                                     | 35 | 0,8118 | c |
| 10 0,7923 c                                                         | 21 | 0,8000 | c |
|                                                                     | 10 | 0,7923 | c |
| 4 0,7920 c                                                          | 4  | 0,7920 | c |
| 27 0,7856 c                                                         | 27 | 0,7856 | c |
| 25 0,7647 c                                                         | 25 | 0,7647 | c |
| 24 0,7040 c                                                         | 24 | 0,7040 | c |
| 32 0,6613 c                                                         | 32 | 0,6613 | c |

d) Em um delineamento alfa-látice, seria melhor fazer uso de sete blocos de tamanho cinco, assim como foi apresentado no exercício, ou seria melhor dispor as progênies em cinco blocos de tamanho sete?

3) Seguem os dados de produção de 18 cultivares de soja (gramas/parcela) em três experimentos.

| Local 1    |          |            |          |            |           |  |
|------------|----------|------------|----------|------------|-----------|--|
| Bloco I    |          | Bloco      | Bloco II |            | Bloco III |  |
| Tratamento | Produção | Tratamento | Produção | Tratamento | Produção  |  |
| Tracy      | 1307     | Tracy      | 1365     | Tracy      | 1542      |  |
| Centennial | 1425     | Centennial | 1475     | Centennial | 1276      |  |
| Bragg      | 1289     | Bragg      | 1671     | Bragg      | 1420      |  |
| N72-3058   | 1250     | N72-3058   | 1202     | N72-3058   | 1407      |  |
| N72-3148   | 1546     | N72-3148   | 1489     | N72-3148   | 1724      |  |
| N73-877    | 1344     | N73-877    | 1197     | N73-877    | 1319      |  |
| N73-882    | 1280     | N73-882    | 1260     | N73-882    | 1605      |  |
| N75-12     | 911      | N75-12     | 1202     | N75-12     | 1012      |  |
|            |          | Loca       | 12       |            |           |  |

| Bloco I    |          | Bloco II   |          | Bloco III  |          |
|------------|----------|------------|----------|------------|----------|
| Tratamento | Produção | Tratamento | Produção | Tratamento | Produção |
| Tracy      | 1178     | Tracy      | 1089     | Tracy      | 960      |
| Centennial | 1187     | Centennial | 1180     | Centennial | 1235     |

| Bragg    | 1451 | Bragg    | 1177 | Bragg    | 1723 |
|----------|------|----------|------|----------|------|
| D72-137  | 1388 | D72-137  | 1214 | D72-137  | 1222 |
| D73-81   | 1254 | D73-81   | 1249 | D73-81   | 1135 |
| D74-7741 | 1179 | D74-7741 | 1247 | D74-7741 | 1096 |
| D73-693  | 1345 | D73-693  | 1265 | D73-693  | 1178 |
| D73-1102 | 1136 | D73-1102 | 1161 | D73-1102 | 1004 |

| Local 3    |          |            |          |            |          |  |
|------------|----------|------------|----------|------------|----------|--|
| Bloco I    |          | Bloco II   |          | Bloco III  |          |  |
| Tratamento | Produção | Tratamento | Produção | Tratamento | Produção |  |
| Tracy      | 1583     | Tracy      | 1841     | Tracy      | 1464     |  |
| Centennial | 1713     | Centennial | 1684     | Centennial | 1378     |  |
| Bragg      | 1396     | Bragg      | 1608     | Bragg      | 1647     |  |
| R56-79     | 1547     | R56-79     | 1647     | R56-79     | 1603     |  |
| R56-19     | 1422     | R56-19     | 1393     | R56-19     | 1342     |  |
| R44-101    | 1800     | R44-101    | 1787     | R44-101    | 1520     |  |
| R56-35     | 1673     | R56-35     | 1507     | R56-35     | 1390     |  |
| R56-68     | 1464     | R56-68     | 1607     | R56-68     | 1642     |  |

#### Pede-se:

a) Apresente o modelo estatístico e proceda a análise de variância para cada local.

## Modelo estatístico para cada local ou experimento

Tabela 6. Anova produção de 18 cultivares de soja (gramas/parcela) para o local 1.

| FV       | $\mathbf{GL}$ | SQ     | $\mathbf{Q}\mathbf{M}$ | F value | p-value(>F) |
|----------|---------------|--------|------------------------|---------|-------------|
| Bloco    | 2             | 56851  | 28426                  | 1.5667  | 0.24322     |
| Cultivar | 7             | 529948 | 75707                  | 4.1726  | 0.01107*    |
| Residuo  | 14            | 254013 | 18144                  |         |             |
| Total    | 23            | 840818 |                        |         |             |

Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1

**Tabela 7.** Anova produção de 18 cultivares de soja (gramas/parcela) para o local 2.

| FV       | GL | SQ     | QM    | F value | p-value(>F) |
|----------|----|--------|-------|---------|-------------|
| Bloco    | 2  | 25307  | 12653 | 0.8143  | 0,46288     |
| Cultivar | 7  | 286644 | 40949 | 2.6351  | 0.05823.    |
| Residuo  | 14 | 217556 | 15540 |         | _           |
| Total    | 23 | 529507 |       |         |             |

Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1

Tabela 8. Anova produção de 18 cultivares de soja (gramas/parcela) para o local 3.

| FV       | GL | SQ     | QM    | F value | p-value(>F) |
|----------|----|--------|-------|---------|-------------|
| Bloco    | 2  | 74369  | 37185 | 2.3472  | 0.1321      |
| Cultivar | 7  | 176642 | 25235 | 1.5929  | 0.2170      |
| Residuo  | 14 | 221793 | 15842 |         |             |
| Total    | 23 | 472804 |       |         |             |

Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' '1

b) Apresente o modelo estatístico e proceda a análise detalhada do grupo de experimentos. Interprete os resultados.

**Tabela 9.** Análise de variância conjunta para a produtividade de cultivares de soja (g/parcela) para os experimentos realizados nos três locais.

| FV                 | GL | (  | SQ      | QM     | F     | p-value(>F)                |
|--------------------|----|----|---------|--------|-------|----------------------------|
| Repeticão          |    | 2  | 1496165 | 748082 | 399,8 | 9 8,64E- <sup>08</sup> *** |
| Progênie           |    | 17 | 826064  | 48592  | 25,97 | 5 0,005233**               |
| (Blocos/repetição) |    | 6  | 156527  | 26088  | 13,94 | 5 0,237192                 |
| Resíduo            |    | 46 | 860531  | 18707  |       |                            |

Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1

c) Apresente as médias não-ajustadas e ajustadas das cultivares e seus respectivos erros-padrões. Plote os valores em um gráfico. Discuta.

**Tabela 10.** Médias não ajustadas e ajustadas das análises de grupos de experimentos da produção de grãos de cultivares de soja avaliados em três experimentos (locais).

| Cultivares | Médias Não Ajustadas | Médias Ajustadas | Erro Padrão |
|------------|----------------------|------------------|-------------|
| Bragg      | 1487                 | 1487             | 45,6        |
| Centennial | 1395                 | 1395             | 45,6        |
| D1102      | 1100                 | 1275             | 87,3        |
| D137       | 1275                 | 1450             | 87,3        |
| D693       | 1263                 | 1438             | 87,3        |
| D7741      | 1174                 | 1349             | 87,3        |
| D81        | 1213                 | 1388             | 87,3        |
| N12        | 1042                 | 1040             | 87,3        |
| N3058      | 1286                 | 1285             | 87,3        |
| N3148      | 1586                 | 1585             | 87,3        |
| N877       | 1287                 | 1285             | 87,3        |
| N882       | 1382                 | 1380             | 87,3        |
| R101       | 1702                 | 1529             | 87,3        |
| R19        | 1386                 | 1212             | 87,3        |
| R35        | 1523                 | 1350             | 87,3        |
| R68        | 1571                 | 1398             | 87,3        |
| R79        | 1599                 | 1426             | 87,3        |
| Tracy      | 1370                 | 1370             | 45,6        |



**Figura 2.** Comparativo das médias ajustadas e não ajustadas da produção (gr/parcela) de cultivares de soja obtidas em três experimentos diferentes.