第5回 分子結晶

5.1 グラファイトの構造と性質

5.2 ファンデルワールスカ

- 5.3 分子結晶
- 5.4 分子の極性
- 5.5 水素結合

- 5.1 グラファイトの構造と性質
- ●C(炭素)の結合様式と構造

●グラファイト(黒鉛)

<結合・構造>

- すべての共有結合が *sp*² 混成軌道
 - → 平面正三角形となって結合→6角形
- 6角形の層状構造 \rightarrow 垂直方向にp 軌道の重なり \rightarrow π 結合
- 層間はファンデルワールスカによって結合
 - → 層内の共有結合 > 層間の結合

●結合様式

- 結合:2つの核を結ぶ直線に対して円筒状の対称性をもつ
- 結合:2つの核を結ぶ直線に対して円筒状の対称性をもたない

く性質>

- · 昇華(3367°C) ← 共有結合
- 電気伝導性大 ← π電子の移動(電子の非局在化)
- ・硬度小(モース硬度1~2)・劈開性 ← ファンデルワールス結合

5.2 ファン・デル・ワールスカ (van der Waals' force)

●分子間力(広義)

• 双極子一双極子相互作用 (極性分子間 数十 kJ/mol)

相互作用(極性分子一無極性分子間)

· 相互作用 (無極性分子間 数 kJ/mol)

●水素結合

F, N, Oなどの電気陰性度の大きな元素を含む水素化合物間

●ファン・デル・ワールス力(狭義) =分散力 (dispersion force)

- の相互作用

 $(He, CH_4, CO_2, I_2, ナフタリンなどの分子間に働く極めて弱い相互作用)$

5.3 分子(性)結晶 (molecular crystal)

・ファン・デル・ワールス力などの分子間力 (intermolecular force) によって分子が弱く結合してできた結晶

• 均一結合性

希ガス結晶は立方最密充填構造

• 不均一結合性

分子間

ファン・デル・ ワールス結合 分子内 共有結合 共有結合 9.79 ナフタレン ヨウ素 ファン・デル・ ワールス結合

●分子結晶の性質

- (1) 融点・沸点が低い
- (2) 蒸気圧が高く、昇華するものが多い昇華熱(kJ/mol) He(0.050), Ar(7.74)C(716.3), Si(368.4)
- (3) 電気伝導性・熱伝導性はいずれも低い
- (4) 硬度が小さい(柔らかい)
- (5) 溶解性

非極性分子は非極性溶媒 $(CCl_4,CS_2$ など)に溶解極性分子は極性溶媒 $(H_2O,NH_3,CH_3OH$ など)に溶解

•分子性物質の沸点

ほぼ同一の分子量を有する 分子性物質の沸点

5.4 分子の極性

●分子の双極子モーメント

•永久双極子モーメント

 $\mu_{\text{permanent}} = r$

電荷が距離 r で対立

デバイ単位

 $1 D = 3.336 \times 10^{-30} C \cdot m$

r H^+ F^-

電子の電荷量e = 1.602 x 10⁻¹⁹ C

外部電場がないと熱運動で無秩序方向 外部電場があると配向

•2原子分子

分子	$\mu_{ m obs}$	$\mu_{ m ion}$	$\mu_{\rm obs}/\mu_{\rm ion}$ 結合距離 (pm)
HF	1.94	4.40	92
HC1	1.03	6.12	127
HBr	0.78	6.79	141
HI	0.38	7.70	161

ポーリングによるイオン性の指標

 $(イオン性) = 1 - \exp \{-0.25 (\chi_A - \chi_B)^2\}$

$\Delta \chi_{\text{A-B}}$

イオン性

HF

HC1

HBr

HI

•3原子以上の分子

要素結合モーメントのベクトル和

→ 分子立体構造を反映

CO₂, CH₄, CCl₄ などの対称分子では

要素結合モーメントが打ち消し合い

$$\mu_{\text{permanent}} = 0$$

水分子

	$\Delta\chi_{ ext{A-B}}$	$\mu_{\rm obs}$ (D)		μ (D)
Н-О	1.24	1.53	H_2O	1.85
H-N	0.84	1.31	NH_3	1.47
N-F	0.94	0.17	NF_3	0.23
C-O	0.89	0.74	C	
С-Н	0.35	~ 0.4		

5.5 水素結合 (hydrogen bond)

H原子より電気的に陰性な原子が (O, N, P, S, ハロゲンなど) H原子を介して弱く結びつく結合

●永久双極子同士の相互作用

(H₂O,NH₃,アルデヒド,アルコールなど)

水素結合では、水素は電気陰性度の大きい原子AおよびBに 共有され正の電荷をおびている(プロトン性)

●イオンー双極子相互作用

$$U(r) \cong \frac{-A}{r^6} \quad (40 \sim 100 \, kJ/mol)$$

分子またはイオン間にはたらく相互作用の力の比較

$$U(r) \cong \frac{-A}{r^6}$$

U(r)

ファン・デル・ワールスカ 数 kJ/mol

水素結合

数十 kJ/mol

イオンー双極子

40~100 kJ/mol