Алгоритмы и структуры данных-2 SET 6. Задача A1.

Весна 2024. Клычков М. Д.

```
отсортировать ребра грава G
 в порядке невозрастания весов;
  foreach (e ∈ E в порядке невозрастания весов)
   if (ребра T - {e} образуют связный граф)
ALG_2(G):
 T = \emptyset;
 foreach (e \in E, выбранное случайным образом)
   if (ребра T U {e} образуют граф без циклов)
 return T;
ALG_3(G):
 T = \emptyset;
  foreach (e \in E, выбранное случайным образом)
    T = T \cup \{e\};
    if (в T имеется цикл из ребер с \subseteq T)
      е_max = ребро с максимальным весом
               в цикле с;
     T = T - {e_max};
```

Рис. 1: Код из условия

Пункт 1. Сделаем некоторые предварительные шаги — интерфейс, которым будем пользоваться в некоторых реализациях:

```
struct Edge {
      int u;
2
      int v;
3
      int weight;
    };
5
6
    class DSU {
     public:
      explicit DSU(int n);
9
      int Union(int x, int y);
10
11
      int Find(int x);
    };
12
13
    using Edges = std::vector<Edge>;
    using AdjListItem = std::pair<int, int>; // pair (to, weight)
15
    using AdjLists = std::vector<std::list<AdjListItem>>;
16
17
    Edges edges; // массив ребер
18
    AdjLists adj; // списки смежности
19
20
    void Dfs(int u, const AdjLists& adj, std::vector<bool>& visited) {
^{21}
      visited[u] = true;
22
23
      for (auto [v, weight] : adj[u]) {
```

```
if (!visited[v]) {
24
25
           Dfs(v, adj, visited);
         }
26
      }
27
    }
28
29
    bool IsConnected(const AdjLists& adj_matrix) {
30
       std::vector<bool> visited(adj_matrix.size());
31
32
      Dfs(0, adj_matrix, visited);
33
34
      for (bool v : visited) {
35
         if (!v) {
36
           return false;
37
         }
38
      }
39
40
      return true;
41
    }
```

Последовательно рассмотрим каждую из предложенных функций:

• ALG_1: для реализации этого алгоритма представим граф в виде списка смежности и массива ребер. Проверять граф на связность будем, используя обход в глубину.

```
std::pair<AdjLists, int> ALG_1(Edges& edges, AdjLists adj) {
      AdjLists mst = std::move(adj); // adj copied in function call
      std::sort(edges.begin(), edges.end(), [](auto e1, auto e2) { return e1.weight > e2.weight; });
      int cost = 0;
      for (auto [u, v, weight] : edges) {
6
        // remove edge uv from mst
        mst[u].remove({v, weight});
        mst[v].remove({u, weight});
        if (!IsConnected(mst)) {
11
          // add edge uv back to mst
12
13
          mst[u].emplace_back(v, weight);
          mst[v].emplace_back(u, weight);
14
          cost += weight;
15
        }
16
      }
17
18
19
      return {mst, cost};
20
    }
```

Временная сложность такого алгоритма будет $O(E \log E + (E \cdot (V + E)))$. Действительно, оптимальная сортировка занимает $O(E \log E)$, а сам алгоритм перебирает все ребра и на каждом шаге проверяет связность графа с помощью обхода в глубину, который занимает O(V + E). Можно еще упомянуть тот факт, что удаление из листа занимает линейное относительно количества вершин время, однако это уже учтено в объявленной временной сложности (просто выражается в константе).

Достаточно очевидно, что такой главная проблема такого подхода — проверка на связность. Можно найти подтверждение того, что проверка связности при последовательном удалении ребер решается задачей **Fully-dynamic graph problem**, решение которой позволяет быстро проверять граф на связность при вставках и удалениях ребер (как раз то, что нам

nyжсно!). Мною было найдено решение этой задачи за $O(\log V(\log \log V)^3)$. Тогда общая сложность будет $O(E \log E + (\log V(\log \log V)^3))$.

• ALG_2: для реализации этого алгоритма представим граф массива ребер. Для проверки графа на ацикличность будем использовать структуру Система непересекающихся множеств.

```
std::pair<Edges, int> ALG_2(Edges& edges, int n) {
      std::shuffle(edges.begin(), edges.end(), std::default_random_engine{});
      Edges mst{};
      DSU dsu{n};
      int cost = 0;
      for (auto e : edges) {
        if (dsu.Find(e.u) != dsu.Find(e.v)) {
          mst.push_back(e);
          dsu.Union(e.u, e.v);
10
          cost += e.weight;
11
        }
12
      }
13
14
      return {mst, cost};
15
    }
16
```

Предварительно совершается шаффл массива ребер — не будем учитывать его при анализе общей сложности, но уточним, что такая операция занимает O(n) свапов в массиве.

Сам алгоритм представляет из себя перебор всех ребер в графе, где на каждом шаге выполняется одна-две операции на структуре Система непересекающихся множеств. Известно, что оптимальная реализация такой структуры позволяет совершать операции UNION и FIND за $O(\alpha(V))$, где $\alpha(n)$ — обратная функция Аккермана. Тогда итоговая временная сложность алгоритма $O(E \cdot \alpha(V))$

• ALG_3: В реализации этого алгоритма — придумать, как реализовать поиск самого тяжелого ребра в образовавшемся цикле. Имеющихся знаний хватает только на идею прохода по всему циклу с помощью обхода в глубину. Циклы все также с использованием DSU. Для хранения графа будем использовать список смежности и массив ребер.

Реализация поиска цикла в графе может быть следующей:

```
std::vector<int> FindCycle(int from) {
      std::vector<int> cycle;
2
      std::vector<bool> visited(adj.size());
3
      std::vector<int> parent(adj.size(), -1);
5
      std::function<bool(int)> dfs = [&](int u) {
6
        visited[u] = true;
        for (auto [v, weight] : adj[u]) {
          if (!visited[v]) {
9
            parent[v] = u;
10
            if (dfs(v)) {
11
              return true;
12
            }
13
          } else if (v != parent[u]) {
14
            cycle.push_back(u);
15
            for (int i = u; i != v; i = parent[i]) {
16
```

```
cycle.push_back(i);
17
              }
18
              cycle.push_back(v);
19
              return true;
20
21
         }
22
         return false;
23
24
25
       dfs(from);
26
       return cycle;
27
28
    }
```

Тогда сам алгоритм будет выглядеть следующим образом:

```
std::pair<AdjLists, int> ALG_3(Edges& edges, int n) {
1
      AdjLists mst(n);
      std::shuffle(edges.begin(), edges.end(), std::default_random_engine{});
      DSU dsu{n}:
      int cost = 0;
      for (auto e : edges) {
        if (dsu.Find(e.u) != dsu.Find(e.v)) {
          mst[e.u].emplace_back(e.v, e.weight);
          mst[e.v].emplace_back(e.u, e.weight);
10
        } else {
11
          auto cycle = FindCycle(e.u);
          int max_weight = 0;
13
          int to_remove_start = -1, to_remove_end = -1;
14
          for (int i = 0; i < cycle.size() - 1; ++i) {</pre>
            int u = cycle[i];
16
            int v = cycle[i + 1];
17
            int new_weight = std::find_if(edges.begin(), edges.end(), [&](auto e) {
18
                                return (e.u == u && e.v == v) || (e.u == v && e.v == u);
19
                              })->weight;
20
            if (new_weight > max_weight) {
              max_weight = new_weight;
22
              to_remove_start = u;
23
              to_remove_end = v;
25
            }
          }
26
27
          if (max_weight > e.weight) {
            mst[to_remove_start].remove({to_remove_end, max_weight});
29
            mst[to_remove_end].remove({to_remove_start, max_weight});
30
            mst[e.u].emplace_back(e.v, e.weight);
31
            mst[e.v].emplace_back(e.u, e.weight);
32
            cost += e.weight - max_weight;
33
          }
34
        }
35
36
37
      return {mst, cost};
38
    }
39
```

Получается, что мы идем по всем ребрам O(E) и на каждой итерации либо добавляем ребро в дерево, либо ищем цикл и удаляем самое тяжелое ребро в нем. Поиск цикла занимает O(V+E), а поиск самого тяжелого ребра в цикле — O(E). Также на каждой итерации пользуемся «оптимальным» DSU за обратную функцию Аккермана. Тогда итоговая временная сложность алгоритма $O(E \cdot (\alpha(V) + V + E))$. Заметим, что вполне можно было бы обойтись без структуры DSU (даже асимптотика была бы лучше!), однако ее использование позволяет не запускать медленный DFS для поиска цикла на каждом шаге.

Пункт 2. Теперь проверим корректность каждого из алгоритмов.

- ALG_1: Легко показать, что полученный с помощью удалений подграф T является деревом. Действительно, если на каком-то шаге алгоритма есть цикл, то на одном из последующих шагов мы найдем самое тяжелое ребро в этом цикле и удалим его, так как это не нарушит связности. Формально минимальность можно доказать по индукции, однако, по-мнению автора, достаточно и интуиции. Уже доказано (точнее является следствием), что все оставшиеся ребра являются light-ребрами. Пусть есть какое-то более дешевое light-ребро e, не входящее в T, но так как исходно ребра были отсортированы по убыванию, все тяжелые ребра были удалены, получается, что $e \in T$.
- ALG_2: Этот алгоритм в точности повторяет алгоритм Краскала, за исключением упорядоченности массива, что и является ключевой идеей в построении Минимального остовного дерева. В качестве контрпримера достаточно взять простой цикл на трех вершинах (треугольник) с различными взвешенными ребрами. Очевидно, что ответ ALG_2 не всегда будет корректным.
- ALG_3: Очевидно, что полученный в алгоритме граф является деревом (связным графом без циклов), так как все циклы в нем мы разрушили удалением ребер при обнаружении (одно ребро может образовать лишь один цикл). Далее минимальность алгоритм работает по принципу жадного выбора: на каждом шаге он делает локально оптимальное решение (удаляет максимальное ребро в цикле), что в итоге приводит к глобально оптимальному решению (минимальному остовному дереву). Если бы существовало другое остовное дерево с меньшим весом, это означало бы, что на каком-то шаге алгоритм оставил ребро с большим весом, чем необходимо. Однако это невозможно, так как алгоритм всегда удаляет максимальное ребро в цикле.