PROGETTO MACCHINE AUTOMATICHE T

Tommaso Cavalli - Richard Foasse - Francesca Mazzolani

Ange Derick Nzangue – Enea Vignoli – Amitpal Rai

Presentazione macchina velocità reale

Presentazione macchina con rallenty

Azionamenti pneumatici utilizzati

Tappatura	Pistone 1 per bloccaggio UP
	Pistone 2 per tappatura UP
Trasporto	Ventose per aggancio UP
	Pistone 4 per sollevamento ventose e UP
	Pistone 3 per rotazione struttura aggancio UP

Diagramma fasi

Temporizzazioni

Dimensionamento fase tappatura

Primo azionamento

Considerando:

$$m_{_UP} = 120 g = 0,120 Kg$$

 $P = 6 bar$
 $\alpha = 45 ^{\circ}$
 $\mu = 0,5$

$$Fr = m_{_UP} * g (\mu \sin \alpha + \cos \alpha)$$

$$Fr \geq 1,25 N$$

Alesaggio del pistone per lo spostamento di 4 UP:

$$d = \sqrt{\frac{4F_r * 4}{\pi * p}} = 1,09 \ cm = 10,9 \ mm$$

Twin cylinders DPZ/DPZJ

Technical data

Function DPZ

Diameter 10 ... 32 mm

- Stroke length 10 ... 100 mm Variants

FESTO

Consultando vari cataloghi abbiamo scelto i TWIN CYLINDERS DPZ Ø16.

Il pistone scelto infatti sviluppa una forza sufficientemente elevata per permettere lo spostamento delle UP.

Twin cylinders DPZ/DPZJ

Technical data

Forces [N] and impact energ	gy [J]					
Piston ∅		10	16	20	25	32
Theoretical force at 6 bar,		94	242	376	590	966
advancing	S2, DPZJ	60	180	282	452	724
Theoretical force at 6 bar,		60	180	282	452	724
retracting	S2, DPZJ	60	180	282	452	724
Max. impact energy at end positions		0.08	0.15	0.2	0.3	0.5

Secondo azionamento

$$d_{UP} = 35 mm = 3,5 cm$$

 $P = 6 bar$
 $\mu = 0,5$
 $S = \pi * r^2$

Si ottiene:

$$F = P * S = 57,7 N$$

$$F_2 \ge \mu * F = 28,8 N$$

 F_2 è stata calcolata per un'unica UP

Alesaggio relativo alla tappatura di 4 UP:

$$d = \sqrt{\frac{4F_2 * 4}{\pi * p}} = 4.8 \ cm = 48 \ mm$$

At a glance

Sensor slots on three sides for flush mounting of proximity sensors

Piston rod with choice of male or female thread

Mounting option:

Female thread and through-hole

Centring hole in the end cap matches centring pins ZBS

Magnet for contactless position sensing

Integrated cushioning for absorbing residual energy

Consultando il catalogo Festo abbiamo optato per il cilindro ADN Ø50.

Forces [N]						30	
Piston Ø	20	25	32	40	50	63	80
Theoretical force at 6 bar, advancing	188	295	483	754	1178	1870	3016
Theoretical force at 6 bar, retracting	141	247	415	633	990	1682	2721
Static holding force	350	350	600	1000	1400	2000	5000

Dimensionamento sistema di trasporto

Terzo azionamento

$$P_r = 70 \ Kpa$$

 $n = 4$
 $F_p = m_{_UP} * g = 1,772 \ N$

Considerando che:

$$F_p = F_z$$

Si può ottenere dalla seguente formula l'area di lavoro minimo per il corretto funzionamento delle ventose:

$$A_l(P_r) \ge nF_z$$

$$A_l \ge 0.672 \ cm^2$$

Da cui si ricava:

$$r_{min} = 4,672 mm$$

	Connection suction cup holder		M4
	Nominal size	[mm]	2
3	Holding force at nominal operating pressure -0.7 bar	[N]	4.7
	Suction cup volume	[cm ³]	0.38
	Min. workpiece radius	[mm]	10
	Height compensator	[mm]	4
	Weight	[g]	1.8

Dalle osservazioni precedentemente fatte è stato possibile scegliere dal catalogo Festo l'unità di aspirazione ESG $\emptyset10~B.$

Quarto azionamento

 $m_{struttura} = 1000g = 1 Kg$ $m_{ventose*UP} = 400 g = 0.4 Kg$ $m_{UPtot} = 8 * 120g = 960g = 0.960 Kg$

$$m_{tot} = 2360g = 2,360 \, Kg$$

$$F_p = F_r$$

Quarto azionamento

Calcoliamo la forza resistente dovuta al peso delle UP, dell'unità di aspirazione e della struttura metallica:

$$F_r = F_p = m_{tot} * g = 23,151 N$$

Utilizziamo un rapporto di carico R = 0.7 per ottenere moto uniforme:

$$R = \frac{F_r}{F_r + F_i}$$

Da cui si ottiene una forza di inerzia del pistone:

$$F_i = 9,922 N$$

Quarto azionamento

Si ottiene quindi:

$$F_R = F_i + F_r = 33,073 N$$

Si è trovata la forza resistente necessaria per calcolare l'alesaggio del pistone:

$$d = \sqrt{\frac{4F_R * 4}{\pi * p}} = 26,5 \, mm$$

Data sheet

Consultando i cataloghi Festo abbiamo optato per il cilindro DSBC Ø32.

Date le dimensioni del cilindro è stato possibile ricavare la massa del pistone 4.

32	40	50
483	754	1178
415	633	990
\$85		983
0.41)	0.7	1.0
0.21)	0.35	0.5
0.1	0.2	0.3
	483 415 0.4 ¹⁾ 0.2 ¹⁾	483 754 415 633 0.4 ¹⁾ 0.7 0.2 ¹⁾ 0.35

Weight [g] Piston diameter	32	40	
DSBC			
Product weight with 0 mm stroke	465	740	
Additional weight per 10 mm stroke	27	37	
Moving mass with 0 mm stroke	110	205	
Moving mass per 10 mm stroke	9	16	
	•		

Quinto azionamento

$$m_{tot} = 2360g$$

$$m_{pistone4} = 500g$$

$$M = m_{tot} + m_{pistone4} = 2,860 \, Kg$$

$$45^{\circ} \leq \alpha \leq 90^{\circ}$$

Quinto azionamento

Si ricava la forza peso dell'intera struttura da sollevare:

$$F_p = M * g = 28,60 N$$

Impostando l'equilibrio ai momenti:

$$|F_{pistone} * l \sin \alpha| + |F_{p} * L \sin \alpha| = 0$$

Da cui si ottiene:

$$F_{pistone} = F_p \frac{L}{l} \frac{\sin \alpha}{\sin \alpha} = 2 * F_p = 51 N$$

Quinto azionamento

Considerando un rapporto di carico R = 0.7 in modo tale da avere una velocità costante si può ricavare la forza di inerzia del pistone:

$$F_i = \frac{F_r}{R} - F_r = 21,86 \, N$$

Da cui segue che la forza resistente sarà:

$$F_R = F_r + F_i = 72,86 N$$

Alesaggio:

$$d = \sqrt{\frac{F_R * 4}{\pi * p}} = 39 \text{ mm}$$

Data sheet

Forces [N] and impact energy [J] Piston diameter	32	40	50
Theoretical force at 6 bar, advancing	483	754	1178
Theoretical force at 6 bar, retracting	415	633	990
Max. impact energy in the end positions	48.	*	8-3
DSBC	0.41)	0.7	1.0
DSBCL/-U/-T1/-T3/-T4	0.21)	0.35	0.5
DSBCL1	0.1	0.2	0.3

eight [g]			1
ton diameter	32	40	
BC			T
oduct weight with 0 mm stroke	465	740	T
ditional weight per 10 mm stroke	27	37	T
oving mass with 0 mm stroke	110	205	T
oving mass per 10 mm stroke	9	16	T
	9		16

Simulazione

Circuito alternativo

