Здравствуйте!

Лекция №3

Предел последовательности

ОПРЕДЕЛЕНИЕ. Число $a \in \mathbb{R}$ называется пределом последовательности $\{x_n\}$ если $\forall \varepsilon > 0 \ \exists N \in \mathbb{N}$ такое что, $\forall n > N \mid x_n - a \mid < \varepsilon$

Записывают: $\lim_{n \to \infty} x_n = a, \quad x_n \to a$

Говорят: последовательность $\{x_n\}$ сходится (стремиться) к a.

Последовательность, имеющую предел, называют *сходящейся* (*сходящейся* к *a*)

Последовательность, не имеющую предела, называют *расходящейся*.

ГЕОМЕТРИЧЕСКАЯ ИНТЕРПРЕТАЦИЯ предела последовательности

Пусть $r \in \mathbb{R}$, $M(r) \in Ox$

$$O M \longrightarrow X$$

M(r) – геометрическая интерпретация числа $r \in \mathbb{R}$.

Пусть
$$x_0 \in \mathbb{R}$$
, $\varepsilon > 0$. $x_0 - \varepsilon$

$$x_0 - \varepsilon$$
 $x_0 + \varepsilon$

Интервал $(x_0 - \varepsilon; x_0 + \varepsilon)$ называют ε -окрестностью точки x_0 . (геометрическое определение ε -окрестности точки)

Будем обозначать: $U(x_0, \epsilon)$

Имеем:
$$U(x_0, \varepsilon) = \{x \in \mathbb{R} \mid |x - x_0| < \varepsilon\}$$

(алгебраическое определение є-окрестности точки)

Из определения предела последовательности получаем: если $\{x_n\} \rightarrow a$, то с геометрической точки зрения это означает, что в любой ε -окрестности точки a находятся все члены последовательности $\{x_n\}$, за исключением может быть конечного их числа. (Геометрическая интерпретация предела последовательности).

 $\Rightarrow a$ — **точка «сгущения»** последовательности $\{x_n\}$.

Определение. Говорят, что при $n \to \infty$ последовательность $\{x_n\}$ сходится к пределу, равному $+\infty$ (запись: $\lim_{n \to \infty} x_n = +\infty$ или $x_n \xrightarrow[n \to \infty]{} +\infty$) если $\forall \ A > 0 \ \exists \ N \ \forall \ n > N \ x_n > A$.

Определение. Говорят, что при $n \to \infty$ последовательность $\{x_n\}$ сходится к пределу, равному $-\infty$ (запись: $\lim_{n \to \infty} x_n = -\infty$ или $x_n \xrightarrow[n \to \infty]{} -\infty$) если $\forall \ A < 0 \ \exists \ N \ \forall \ n > N \ x_n < A$

ОПРЕДЕЛЕНИЕ. Последовательность, сходящуюся к нулю, называют **бесконечно малой**.

ОПРЕДЕЛЕНИЕ. Числовая последовательность $\{x_n\}$ называется **бесконечно большой**, если $\forall M \!\!>\!\! 0 \; \exists N \! \in \mathbb{N} \; m$ акое, что $|x_n| \!\!>\!\! M \;, \; \forall n \!\!>\!\! N$.

ГЕОМЕТРИЧЕСКАЯ ИНТЕРПРЕТАЦИЯ БЕСКОНЕЧНО БОЛЬШОЙ ПОСЛЕДОВАТЕЛЬНОСТИ Расширим множество $\mathbb R$.

<u>I способ</u>. Дополним множество \mathbb{R} элементами, обозначаемыми +∞ и −∞ (называют: «плюс бесконечность» и «минус бесконечность»)

При этом справедливо: $-\infty < r < +\infty$, $\forall r \in \mathbb{R}$.

<u>И</u> способ. Дополним множество \mathbb{R} элементом, обозначаемыми ∞ (называют: «бесконечность»)

При этом ∞ не связана с действительными числами отношением порядка.

Множество $\mathbb{R} \cup \{-\infty, +\infty\}$ и $\mathbb{R} \cup \{\infty\}$ называют *расширенным множеством действительных чисел* (способ расширения всегда понятен из контекста).

Обозначают: \mathbb{R} .

Элементы $-\infty$, $+\infty$, ∞ называют бесконечно удаленными точками числовой прямой.

 ϵ -окрестностью точек $-\infty$, $+\infty$, ∞ считают следующие множества:

$$\mathrm{U}(+\infty\;,\,\epsilon)=\{\;x\!\in\!\mathbb{R}\;|\;x>1/\epsilon\}$$

$$0$$
 $\frac{1}{\varepsilon}$ χ

$$U(-\infty, \varepsilon) = \{ x \in \mathbb{R} \mid x < -1/\varepsilon \}$$

$$U(\infty, \varepsilon) = \{ x \in \mathbb{R} \mid |x/ > 1/\varepsilon \}$$

$$-\frac{1}{\varepsilon} \qquad 0 \qquad \frac{1}{\varepsilon}$$

Если $\{x_n\}$ — бесконечно большая, то с геометрической точки зрения это означает, что в любой ε -окрестности точки ∞ находятся все члены последовательности, за исключением может быть конечного их числа.

(Геометрическая интерпретация бесконечно большой последовательности).

Записывают:
$$\lim_{n\to\infty} x_n = \infty$$
, $x_n \to \infty$

Говорят: «последовательность { x_n } стремиться к ∞ ».

Частные случаи бесконечно больших последовательностей:

1) $\{x_n\}$ – бесконечно большая и $x_n \ge 0$, $\forall n$.

Тогда
$$|x_n| = x_n > M$$
, $\forall n > N$

 \Rightarrow все члены последовательности, за исключением может быть конечного их числа, находятся в любой ε -окрестности точки $+\infty$.

Записывают:
$$\lim_{n \to \infty} x_n = +\infty$$
, $x_n \to +\infty$

Говорят: «последовательность { x_n } стремиться $\kappa + \infty$ ».

2) { x_n } – бесконечно большая и $x_n \le 0$, $\forall n$.

Записывают: $\lim x_n = -\infty, x_n \to -\infty$

Говорят: «последовательность { x_n } стремиться $\kappa - \infty$ ».

СВОЙСТВА БЕСКОНЕЧНО МАЛЫХ И БЕСКОНЕЧНО БОЛЬШИХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ

ОПРЕДЕЛЕНИЕ. Суммой, разностью, произведением, частным двух последовательностей $\{x_n\}$ и $\{y_n\}$ называются соответственно последовательности

$$\{x_n + y_n\}, \{x_n - y_n\}, \{x_n \cdot y_n\}, \left\{\frac{x_n}{y_n}\right\} \quad (y_n \neq 0)$$

Последовательность $\{cx_n\}$ называется *произведением* $\{x_n\}$ на *число* c (произведение последовательностей $\{x_n\}$ и $\{c\}$)

Бесконечно малые последовательности

Определение 1. Последовательность $\{x_n\}$ называется бесконечно-малой последовательностью (б.м.п.), если $\lim_{n\to\infty} x_n = 0$, то есть, если

$$\forall \varepsilon > 0 \exists N \forall n > N |x_n| < \varepsilon$$
.

Определение 2. Последовательность $\{x_n\}$ называется бесконечно-большой последовательностью (б.б.п.), если $\lim_{n\to\infty} |x_n| = +\infty$ (это записывается еще и так: $\lim_{n\to\infty} x_n = \infty$, не

выписывая знака перед ∞), то есть если

$$\forall A > 0 \exists N \forall n > N |x_n| > A.$$

Свойства бесконечно малых последовательностей

1. Сумма и разность бесконечно-малых последовательностей есть также бесконечно-малая последовательность.

Доказательство.

$$\left\{ x_n \right\} - \text{б.м.п.} \Rightarrow \forall \ \varepsilon > 0 \ \exists \ N_1 \ \forall \ n > N_1 \ \left| x_n \right| < \frac{\varepsilon}{2} \, .$$

$$\left\{ y_n \right\} - \text{б.м.п.} \Rightarrow \forall \ \varepsilon > 0 \ \exists \ N_2 \ \forall \ n > N_2 \ \left| y_n \right| < \frac{\varepsilon}{2} \, .$$

Возьмем $N = \max(N_1, N_2)$. Тогда

$$\forall n > N |x_n \pm y_n| \le |x_n| + |y_n| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

откуда следует, что $\{x_n \pm y_n\}$ есть б.м.п.

Следствие. Сумма любого конечного числа б.м.п. есть также б.м.п

2. Произведение б.м.п на ограниченную последовательность есть б.м.п.

Доказательство

$$\{y_n\}$$
 ограничена $\Rightarrow \exists A > 0 \forall n |y_n| \le A$

$$\{x_n\}$$
 6.M.II. $\Rightarrow \forall \varepsilon > 0 \exists N \forall n > N |x_n| < \frac{\varepsilon}{A}$

Но тогда
$$\forall n > N \ |x_n \cdot y_n| = |x_n| \cdot |y_n| < \frac{\mathcal{E}}{A} \cdot A = \mathcal{E}$$
, отсюда и следует, что $\{x_n \cdot y_n\}$ есть б.м.п.

3. Б.м.п. ограничена

Доказательство

Пусть
$$\{x_n\}$$
 – б.м.п. Тогда $\forall \varepsilon > 0 \exists N \forall n > N |x_n| < \varepsilon$.

Возьмем
$$A=\max\left(\left|x_1\right|,\left|x_2\right|,\ldots\left|x_N\right|,\varepsilon\right)$$
. Тогда $\forall n \left|x_n\right| \leq A$ то есть $\left\{x_n\right\}$ ограничена

Следствие. Произведение б.м.п. есть также б.м.п.

4. Пусть $\{x_n\}$ б.м.п. и $\forall n \ x_n \neq 0$. Тогда $\left\{\frac{1}{x_n}\right\}$ есть

б.б.п.

Доказательство

$$\{x_n\}$$
 б.м. $\Pi \Rightarrow \forall \varepsilon > 0 \exists N \forall n > N |x_n| < \varepsilon$.

Возьмем любое A > 0 и положим $\varepsilon = \frac{1}{A}$.

Тогда $\exists N \ \, \forall n > N \ \, \big| x_n \big| < \frac{1}{A} \Longrightarrow \left| \frac{1}{x_n} \right| > A$, отсюда следует, что $\left\{ \frac{1}{x_n} \right\}$ есть б.б.п.

5. Пусть $\{x_n\}$ — б.б.п., тогда $\left\{\frac{1}{x_n}\right\}$ есть б.м.п.

$$\{x_n\} - 6.6.\Pi. \Rightarrow \forall A > 0 \exists N \forall n > N |x_n| > A.$$

Возьмем любое $\varepsilon > 0$ и положим $A = \frac{1}{\varepsilon}$

Тогда $\exists \ N \ \forall \ n > N \ \left|x_n\right| > \frac{1}{\varepsilon} \Longrightarrow \left|\frac{1}{x_n}\right| < \varepsilon$, отсюда следует, что $\left\{\frac{1}{x_n}\right\}$ есть б.м.п.

Сходящиеся последовательности

Определение. Последовательность $\{x_n\}$ называется сходящейся, если у нее существует конечный предел (то есть существует $\lim_{n\to\infty} x_n = a$ и $a \neq \pm \infty$).

1. Для того, чтобы последовательность $\{x_n\}$ была сходящейся, необходимо и достаточно, чтобы ее можно было представить в виде $x_n = a + \alpha_n$, где $\alpha \neq \pm \infty$, а $\{\alpha_n\}$ – б.м.п.

Доказательство.

Heoбxoдимость. Пусть $\lim_{n\to\infty}x_n=a$. Это значит, что

$$\forall \ \varepsilon > 0 \ \exists \ N \ \forall \ n > N \ |x_n - a| < \varepsilon \cdot$$

Обозначим $x_n-a=\alpha_n$. Тогда $x_n=a+\alpha_n$ и $\forall \ \varepsilon>0 \ \exists \ N \ \ \forall \ n>N \ \ \left|\alpha_n\right|<\varepsilon$. то есть α_n- б.м.п.

Достаточность. Пусть $x_n = a + \alpha_n$, где а $\{\alpha_n\}$ – б.м.п., то есть $\forall \ \varepsilon > 0 \ \exists \ N \ \forall \ n > N \ |\alpha_n| < \varepsilon$. Но так как $\alpha_n = x_n - a$, то $\forall \ \varepsilon > 0 \ \exists \ N \ \forall \ n > N \ |x_n - a| < \varepsilon$, то есть $\exists \lim_{n \to \infty} x_n = a$

2. Сходящаяся последовательность ограничена.

Доказательство.

Пусть $x_n = a + \alpha_n$, где α_n – б.м.п. В силу этого $\{\alpha_n\}$ ограничена, то есть $\exists \ A \ \forall \ n \ |\alpha_n| < A$. Но тогда $\forall \ n \ |x_n| = |a + \alpha_n| \le |a| + A$, то есть $\{x_n\}$ ограничена.

3. Если $\{x_n\}$ и $\{y_n\}$ сходящиеся последовательности, то $\{x_n \pm y_n\}$ тоже сходящаяся последовательность И $\lim_{n\to\infty} (x_n \pm y_n) = \lim_{n\to\infty} x_n \pm \lim_{n\to\infty} y_n$ Доказательство. $\{x_n\}$ сходящаяся $\Rightarrow x_n = a + \alpha_n$, где $\{\alpha_n\}$ б.м.п. $\{y_n\}$ сходящаяся $\Rightarrow y_n = b + \beta_n$, где $\{\beta_n\}$ б.м.п. Ho тогда $x_n \pm y_n = (a \pm b) + (\alpha_n \pm \beta_n)$. По свойствам б.м.п., $\{\alpha_n \pm \beta_n\}$ есть б.м.п. и поэтому $\{x_n \pm y_n\}$ последовательность есть сходящаяся И $\lim_{n\to\infty} (x_n \pm y_n) = a \pm b = \lim_{n\to\infty} x_n \pm \lim_{n\to\infty} y_n$

4. Если $\{x_n\}$ сходящаяся последовательность, то $\{c\cdot x_n\}$ тоже сходится и

$$\lim_{n\to\infty} (c \cdot x_n) = c \cdot \lim_{n\to\infty} x_n.$$

Доказательство

$$\{x_n\}$$
 сходится $\Rightarrow x_n = a + \alpha_n$, где $\{\alpha_n\} - 6$.м.п.

Но тогда $c \cdot x_n = c \cdot a + c \cdot \alpha_n$ и, по свойства б.м.п., $\{c \cdot \alpha_n\}$ есть

тоже б.м.п. Поэтому
$$\{c \cdot x_n\}$$
 сходится

$$\lim_{n\to\infty} (c \cdot x_n) = c \cdot a = c \cdot \lim_{n\to\infty} x_n$$

5. Если $\{x_n\}$ и $\{y_n\}$ сходящиеся последовательности, то $\{x_n \cdot y_n\}$ **тоже** сходящаяся последовательность И $\lim_{n \to \infty} (x_n \cdot y_n) = \lim_{n \to \infty} x_n \cdot \lim_{n \to \infty} y_n$ Доказательство $\{x_n\}$ сходится $\Rightarrow x_n = a + \alpha_n$, где $\{\alpha_n\} - 6$.м.п. $\{y_n\}$ сходится $\Rightarrow y_n = b + \beta_n$, где $\{\beta_n\} - 6$.м.п. Ho тогда $x_n \cdot y_n = (a + \alpha_n)(b + \beta_n) = ab + (b \cdot \alpha_n + a \cdot \beta_n + \alpha_n \cdot \beta_n)$. По свойствам б.м.п., $\{b\alpha_n\}$, $\{a\beta_n\}$, $\{\alpha_n\beta_n\}$ есть б.м.п. Их сумма есть также б.м.п. Поэтому, $\{x_n \cdot y_n\}$ есть сходящаяся последовательность и $\lim_{n \to \infty} (x_n \cdot y_n) = a \cdot b = \lim_{n \to \infty} x_n \cdot \lim_{n \to \infty} y_n$

6. Если $\exists \lim_{n \to \infty} y_n = b \neq 0$, то, начиная с некоторого n = N,

последовательность $\left\{\frac{1}{y_n}\right\}$ ограничена.

Доказательство

 $\{y_n\}$ сходится $\Rightarrow \forall \varepsilon > 0 \exists N \forall n > N |y_n - b| < \varepsilon$.

Так как $b \neq 0$ то возьмем $\varepsilon = \frac{|b|}{2}$. Тогда $\exists \ N \ \forall \ n > N \ \left| y_n - b \right| < \frac{|b|}{2}$.

Но тогда \forall *n* > *N* мы имеем

$$|b| = |(b - y_n) + y_n| \le |b - y_n| + |y_n| < \frac{|b|}{2} + |y_n|.$$

Сравнивая начало и конец, получим, что

$$\forall n > N \mid y_n \mid > \mid b \mid -\frac{\mid b \mid}{2} = \frac{\mid b \mid}{2} \text{ } \text{ } \text{ } \text{ } \frac{1}{\mid y_n \mid} < \frac{2}{\mid b \mid},$$

то есть. при n>N последовательность $\left\{\frac{1}{y_n}\right\}$ ограничена

7. Пусть $\{x_n\}$ и $\{y_n\}$ сходящиеся последовательности, причем $\lim_{n\to\infty}y_n\neq 0$. Тогда $\left\{\frac{x_n}{y_n}\right\}$ есть также сходящаяся

последовательность и
$$\lim_{n\to\infty} \left(\frac{x_n}{y_n}\right) = \frac{\lim_{n\to\infty} x_n}{\lim_{n\to\infty} y_n}$$
.

Доказательство

$$\{x_n\}$$
 сходится $\Rightarrow x_n = a + \alpha_n$, где $\{\alpha_n\} -$ б.м.п.

$$\{y_n\}$$
 сходится $\Rightarrow y_n = b + \beta_n$, где $\{\beta_n\} -$ б.м.п.

Тогда

$$\frac{x_n}{y_n} - \frac{a}{b} = \frac{a + \alpha_n}{b + \beta_n} - \frac{a}{b} = \frac{b\alpha_n - a\beta_n}{(b + \beta_n)b} = \frac{1}{y_n} \left(\alpha_n - \frac{a}{b}\beta_n\right)$$

Вспомним, что
$$b = \lim_{n \to \infty} y_n \neq 0$$
 . Тогда $\left\{ \frac{a}{b} \beta_n \right\}$ есть б.м.п.,

$$\left\{\alpha_n - \frac{a}{b}\beta_n\right\}$$
 есть б.м.п., и т.к. $\left\{\frac{1}{y_n}\right\}$ ограниченна, то

$$\left\{\frac{1}{y_n}\left(\alpha_n - \frac{a}{b}\beta_n\right)\right\}$$
 есть тоже б.м.п.

Итак,
$$\frac{x_n}{y_n} = \frac{a}{b} +$$
 б.м.п. и поэтому

$$\lim_{n \to \infty} \left(\frac{x_n}{y_n} \right) = \frac{a}{b} = \frac{\lim_{n \to \infty} x_n}{\lim_{n \to \infty} y_n}$$