

RECHERCHE D'INFORMATION ET TRAITEMENT DE DONNÉES MASSIVES Doan, Hudelot, Ouerdane, Tami

MODÈLES DE RECHERCHE : MODÈLE PROBABILISTE

Exercices

Exercice 1

On considère la fonction h qui intervient dans le calcul du score OKAPI BM25 (cf. support de cours 2) :

$$h: \mathbb{R}^+ \to \mathbb{R}$$

$$x \mapsto \ln \frac{\left(\alpha \lambda^x e^{-\lambda} + (1-\alpha) \mu^x e^{-\mu}\right) \left(\beta e^{-\lambda} + (1-\beta) e^{-\mu}\right)}{\left(\beta \lambda^x e^{-\lambda} + (1-\beta) \mu^x e^{-\mu}\right) \left(\alpha e^{-\lambda} + (1-\alpha) e^{-\mu}\right)}$$

où $\alpha \in]0,1[,\beta \in]0,1[$ et $\mu < \lambda.$

- 1. Quelles sont les caractéristiques de la fonction h (description)?
- 2. Quelle est la limite $\lim_{x\to+\infty} \ln h(x)$?

Exercice 2

On considère une collection de documents $\mathcal{C}=\{d_1,\cdots,d_i,\cdots,d_N\}$ et un ensemble de requêtes $\mathcal{Q}=\{q_1,\cdots,q_l,\cdots,q_l\}$ données, où pour chaque couple $(d_i,q_l)\in\mathcal{C}\times\mathcal{Q}$ on dispose d'un jugement de pertinence binaire R. On suppose de plus que chaque document $d_i\in\mathcal{C}$ est représenté par un vecteur binaire de dimension V, $\mathbf{d}_i=(t_{1,i},\cdots,t_{j,i},\cdots t_{V,i})$. Rappelons la probabilité $p_j:=P\left(t_{j,i}=1|R=1,q\right)$ (resp. $s_j:=P\left(t_{j,i}=1|R=0,q\right)$) que le terme d'indice j du vocabulaire apparaisse dans un document pertinent (resp. non pertinent) vis-à-vis de la requête q.

- 1. Pour une requête fixe q, quelles sont les lois de probabilité suivies par le jème terme du vocabulaire, si ce dernier apparaît dans un document d_i pertinent ou non pertinent vis-à-vis de cette requête ? (Nous notons $t_{j,i}$ ce jème terme).
- 2. Soit d_i (resp. $d_{i'}$) un document jugé pertinent (resp. non pertinent) pour une requête de \mathcal{Q} . Montrer que $P(t_{j,i}|R=1,q)=p_j^{t_j}(1-p_j)^{(1-t_j)}, \forall t_{j,i}\in\mathbf{d}_i$ et $\forall t_{j,i'}\in\mathbf{d}_{i'}$ $P\left(t_{j,i'}|R=0,q\right)=s_j^{t_{j,i'}}(1-s_j)^{(1-t_{j,i'})}$.

Nous noterons par la suite $P\left(t_{j,i}|R=1,q\right)=P\left(t_{j,i}|p_{j}\right)$ et $P\left(t_{j,i}|R=0,q\right)=P\left(t_{j,i}|s_{j}\right)$ où p_{j} et s_{j} jouent chacun le rôle de paramètre.

3. On note \mathcal{R} (resp. $\bar{\mathcal{R}}$) le sous-ensemble des documents de \mathcal{C} jugés pertinents au moins une fois (respectivement jamais jugés pertinents), par rapport à une requête de \mathcal{Q} (i.e. $\mathcal{C} = \mathcal{R} \cup \bar{\mathcal{R}}$). On suppose de plus que les termes apparaissant dans n'importe quel document de \mathcal{C} sont indépendants les uns des autres.

Donner l'expression de $P(\mathbf{d}_i|\mathbf{p})$ pour $d_i \in \mathcal{R}$ et $\mathbf{p} = (p_1, \dots, p_j, \dots p_V)$ puis donner l'expression de $P(\mathbf{d}_{i'}|\mathbf{s})$ pour $\mathbf{d}_{i'} \in \bar{\mathcal{R}}$ et $\mathbf{s} = (s_1, \dots, s_j, \dots, s_V)$.

	Documents	Pertinent \mathcal{R}	Non-Pertinent $\bar{\mathcal{R}}$	Total
Terme présent	$\{t_j=1\}$	r	$df_{t_i} - r$	df_{t_i}
Terme absent	$\{t_j=0\}$	$ \mathcal{R} -r$	$N - df_{t_j} - \mathcal{R} + r$	$N - df_{t_j}$
	Total	$ \mathcal{R} $	$N - \mathcal{R} $	N

- 4. Il existe différentes méthodes statistiques pour estimer les paramètres $\mathbf{p}=(p_1,\cdots,p_j,\cdots p_V)$ et $\mathbf{s}=(s_1,\cdots,s_j,\cdots,s_V)$, parmi lesquelles la méthode du maximum de vraisemblance (MV) qui est la plus utilisée dans la littérature. Nous allons estimer les paramètres (vecteurs) \mathbf{p} et \mathbf{s} respectivement sur les sous ensembles \mathcal{R} et $\bar{\mathcal{R}}$. Pour une collection de documents $\mathcal{X}=\left\{d_1,\cdots,d_{|\mathcal{X}|}\right\}$ (\mathcal{X} étant \mathcal{R} ou $\bar{\mathcal{R}}$), la méthode du MV consiste à trouver l'ensemble des paramètres $\boldsymbol{\lambda}^{MV}$ (\mathbf{p}^{MV} ou \mathbf{s}^{MV}) qui maximise la vraisemblance des données $P(\mathcal{X}|\boldsymbol{\lambda})$. Dans le cas où on suppose que les documents sont tous indépendamment distribués, donner l'expression de $P(\mathcal{X}|\boldsymbol{\lambda})$.
- 5. Dire pourquoi l'estimateur du maximum de vraisemblance λ^{MV} peut s'obtenir grâce à l'équation :

$$\lambda^{MV} = argmax_{\lambda} \ln \left(P(\mathcal{X}|\lambda) \right)$$

Soit le tableau de contingence suivant, comptabilisant la présence et l'absence du terme d'indice j du vocabulaire dans les sous-ensembles \mathcal{R} et $\bar{\mathcal{R}}$.

6. Montrer que,
$$\forall j \in \{1,\cdots,V\}, p_j^{MV} = \frac{r}{|\mathcal{R}|}, s_j^{MV} = \frac{df_{t_j} - r}{N - |\mathcal{R}|}$$