High Precision Spectroscopy of ¹⁷⁷HfF⁺ and ¹⁷⁹HfF⁺

William R. Ballard and Richard J. Mawhorter Pomona College, Claremont, CA, USA

Introduction

- Theorists have identified the odd isotopologues of HfF⁺ as optimal testing grounds for parity nonconserving effects [1].
- Eric Cornell's group at JILA in Boulder, CO has selected ¹⁸⁰HfF⁺ as its molecule to search for the electron electric dipole moment (eEDM) [2].
- In support of these efforts, I calculated the $J = 1 \leftarrow 0$ hyperfine transitions in ground vibrational state of ¹⁷⁷HfF⁺ and ¹⁷⁹HfF⁺.
- The aim of the predictions is to facilitate the measurement of these transitions, which would help determine essential quantities (e.g. electric field gradient at the nucleus).

Theory of Quadrupole Splitting

Rotational levels will split due to quadrupole interaction [3].

Computational Method

- used the SPCAT package by Pickett [3] to calculate frequency of desired transitions for each isotopologue.
- For a linear diatomic molecule [4]:

$$\nu = 2B_{\nu}(J+1) - 4D_{\nu}(J+1)^3 + E_O + \cdots$$

- For quadrupole constant eQq, I relied on calculations of this parameter for each isotopologue by Petrov et al. in St. Petersburg, Russia [5].
- To calculate B and D, I performed weighted analyses of measurements of this parameter for ¹⁸⁰HfF+ by JILA in 2012 [6].
- I then translated rotational parameters for ¹⁸⁰HfF+ to ¹⁷⁷HfF⁺ and ¹⁷⁹HfF⁺ using isotopic scaling [7].

$$\frac{B_{177}}{B_{180}} = \left(\frac{\mu_{180}}{\mu_{177}}\right) \qquad \text{and} \qquad \frac{D_{177}}{D_{180}} = \left(\frac{\mu_{180}}{\mu_{177}}\right)^2$$

Calculated Parameters and Transitions:

Parameter	¹⁷⁷ HfF +	¹⁷⁹ HfF +	
B (MHz)	9153.304	9143.372	
D (kHz)	5.288	5.282	

¹⁷⁷ HfF+			¹⁷⁹ HfF +		
Transition	Frequency (MHz)	Relative Intensity	Transition	Frequency (MHz)	Relative Intensity
F = 7/2 ← 7/2	18007.878	32	F = 9/2 ← 9/2	17968.116	33
F = 9/2 ← 7/2	18412.768	42	F = 11/2 ← 9/2	18408.110	40
F = 5/2 ← 7/2	18533.428	26	F = 7/2 ← 9/2	18508.704	27

Uncertainty of Predictions

A. Uncertainty of Isotopic Scaling Method

- HfO is isoelectronic to HfF⁺ and has been studied with high-precision [8].
- To test method, I predicted known hyperfine transitions of ¹⁷⁷HfO & ¹⁷⁹HfO, using ¹⁸⁰HfO as anchor.
- Disagreement with observed frequency was \leq 40 kHz.

B. Uncertainty of eQq Calculation

A ±3% variation in eQq value led to variations in the predictions of \sim 10, 4, & 7 MHz respectively.

- L. V. Skripnikov, A. N. Petrov, A. V. Titov, and V. V. Flambaum, Phys. Rev. A 99, [6] 012517 (2019).
- A. E. Leanhardt, J. L. Bohn, H. Loh, P. Maletinsky, E. R. Meyer, L. C. Sinclair, R. P. Stutz, and E. A. Cornell, J. Mol. Spectrosc. **270**, 1 (2011).
- H. M. Pickett, J. Mol. Spectrosc. 148, 2 (1991).

042502 (2018).

- W. Gordy and R. L. Cook, in: *Microwave Molecular Spectra*, (John Wiley & Sons, [8]
- New York, 1984), pp. 391-449. A. N. Petrov, L. V. Skripnikov, A. V. Titov, and V. V. Flambaum, Phys. Rev. A 98,
- K. C. Cossel, D. N. Gresh, L. C. Sinclair, T. Coffey, L. V. Skripnikov, A. N. Petrov, N. S. Mosyagin, A. V. Titov, R. W. Field, E. R. Meyer, E. A. Cornell, J. Ye, Chem. Phys. Lett. **546**, 1 (2012). B. J. Drouin, C. E. Miller, H. S. P. Müller, E. A. Cohen, J. Mol. Spectrosc. 205, 128
- A. Lesarri, R. D. Suenram, and D. Brugh, J. Chem. Phys. 117, 21 (2002).