The listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently Amended) A polymer comprising recurring units of a compound of the following general formula (1):

$$\mathcal{A}$$
.

wherein A is a divalent aliphatic or alicyclic hydrocarbon group of 2 to 20 carbon atoms, R¹ is an alkyl group containing at least one fluorine atom, and which may contain optionally contains a hetero atom such as oxygen, nitrogen or sulfur to form an ether, ester, carbonate, alcohol, acetoxy or thioester, "a" is a positive number of 1 to 3, R is a single bond, methylene group, oxygen atom, NH group or sulfur atom, and R² and R³ each are a single bond or methylene group.

- 2. (Original) The polymer of claim 1 further comprising recurring units containing acid labile groups.
- 3. (Previously Amended) A chemically amplified resist composition comprising the polymer of claim 1.
- 4. (Previously Amended) A chemically amplified positive resist composition comprising
 - (A) the polymer of claim 1,
 - (B) an organic solvent, and
 - (C) a photoacid generator.
- 5. (Original) The resist composition of claim 4 further comprising a basic compound.

6. (Original) The resist composition of claim 4 further comprising a dissolution inhibitor.

Rule

(New) A polymer of claim 1, wherein the heteroatom is oxygen, nitrogen or sulfur.

(New) A polymer of claim 7, wherein, due to the presence of the heteroatom, R¹ is in the form of an ether, ester, carbonate, alcohol, acetoxy or thioester group.

(New) A polymer of claim 1, wherein R is a single bond or methylene.

(New) A polymer of claim 1, wherein the recurring units of formula (1) are selected from formulae (2)-1, (2)-2, (2)-3, (2)-4, (2)-5, (2)-6, (2)-7, (2)-8, and (2)-9

R⁴ is a methylene group, oxygen atom, NH group or sulfur atom, "a" is a positive number of 1 to 3, and

R¹ is selected from formulae (3)-1, (3)-2, (3)-3, (3)-4, (3)-5, (3)-6, (3)-7, (3)-8, and (3)-9

wherein

 R^5 is a fluorinated alkyl group which optionally contains an ether or ester bond, R^6 and R^{11} are, each independently, hydrogen or a straight alkyl group of 1 to 10 carbon atoms,

R⁷ is hydrogen, a straight alkyl group of 1 to 10 carbon atoms, or -C=O-R¹²,

R¹² is hydrogen or a straight alkyl group of 1 to 10 carbon atoms, and

R⁸ is an alkylene group of 1 to 10 carbon atoms,

wherein either one or both of R⁹ and R¹⁰ are alkyl groups of 1 to 5 carbon atoms having at

least one fluorine atom substituted thereon.

(New) A polymer of claim 1, wherein the recurring units of formula (1) are selected from formulae (2)-1, (2)-2, (2)-3, (2)-4, (2)-5, (2)-6, (2)-7, (2)-8, and (2)-9

wherein

R⁴ is a methylene group, oxygen atom, NH group or sulfur atom,

"a" is a positive number of 1 to 3, and

R¹ is selected from formulae (3)-1, (3)-2, (3)-3, (3)-4, (3)-5, (3)-6, (3)-7, and (3)-9

wherein

R⁵ is a fluorinated alkyl group which optionally contains an ether or ester bond, R⁶ and R¹¹ are, each independently, hydrogen or a straight alkyl group of 1 to 10 carbon atoms,

 R^7 is hydrogen, a straight alkyl group of 1 to 10 carbon atoms, or -C=O- R^{12} , R^{12} is hydrogen or a straight alkyl group of 1 to 10 carbon atoms, and R^8 is an alkylene group of 1 to 10 carbon atoms.

(New) A polymer according to claim 10, wherein R⁵ is selected from formulae (4)-1, (4)-2, (4)-3, (4)-4, (4)-5, (4)-6, (4)-7, (4)-8, (4)-9, (4)-10 and (4)-11

$$-CF_{3} - CH_{2}CF_{3} - CH_{2}CF_{2}CF_{3} - CF_{2}CF_{2}CF_{3} - CH_{2}CF_{3} - CF_{3} - CF_{2}CF_{2}CF_{2}CF_{2}CF_{2}CF_{3} - CH_{2}CF_{2}CF_{2}CF_{2}CF_{3} - CH_{2}CF_{2}CF_{2}CF_{3} - CH_{2}CF_{2}CF_{3} - CH_{2}CF_{2}CF_{3} - CH_{2}CF_{2}CF_{3} - CH_{2}CF_{2}CF_{3} - CF_{2}CF_{2}CF_{3} - CF_{2}CF_{2}CF_{2}CF_{3} - CF_{2}CF_{2}CF_{2}CF_{3} - CF_{2}CF_{2}CF_{2}CF_{3} - CF_{2}CF_$$

(New) A polymer of claim 1, further comprising recurring units of a (meth)acrylic compound of formula (5)-1 or (5)-2

$$R^{16}$$
 R^{14}
 R^{15}
 R^{15}

wherein

R¹³ is an acid labile group, and

R¹⁴, R¹⁵ and R¹⁶ are, each independently, a hydrogen atom, fluorine atom, or a straight, branched or cyclic alkyl group of 1 to 10 carbon atoms, which are, each independently, optionally substituted with fluorine.

(New) A polymer of claim 1, further comprising recurring units of a styrene compound of formula (6)

$$R^{16}$$
 R^{16}
 R^{15}
 R^{17}
 OH_c
 OH_c
 OH_c

wherein

R¹³ is an acid labile group,

R¹⁴, R¹⁵ and R¹⁶ are, each independently, a hydrogen atom, fluorine atom, or a straight, branched or cyclic alkyl group of 1 to 10 carbon atoms, which are, each independently, optionally substituted with fluorine,

R¹⁷ is a hydrogen atom, fluorine atom, or a straight, branched or cyclic alkyl group of 1 to 10 carbon atoms, which is optionally substituted with fluorine,

b is a positive number of 1 to 5, and

c and d are, each independently, 0 or a positive number of 1 to 4.

(New) A polymer of claim 1, further comprising recurring units of a norbornene compound selected from formulae (7)-1, (7)-2, (7)-3, (7)-4, (7)-5, (7)-6, and (7)-7

$$R^{4}$$
 R^{4}
 R^{4

wherein

 R^4 is a methylene group, oxygen atom, NH group or sulfur atom, and R^{13} is an acid labile group.

(New) A polymer of claim 1, further comprising recurring units of a tricyclodecene compound selected from formulae (8)-1, (8)-2, (8)-3, (8)-4, (8)-5, (8)-6, (8)-7, (8)-8, (8)-9, (8)-10, (8)-11, (8)-12, (8)-13, and (8)-14

wherein

 R^4 is a methylene group, oxygen atom, NH group or sulfur atom, and R^{13} is an acid labile group.

(New) A polymer of claim 1, further comprising recurring units of a tetracyclododecene compound selected from formulae (9)-1, (9)-2, (9)-3, (9)-4, (9)-5, (9)-6, and (9)-7

Protection of the second

wherein

 R^4 is a methylene group, oxygen atom, NH group or sulfur atom, and R^{13} is an acid labile group.

(New) A polymer of claim 1, further comprising recurring units of a maleimide compound of formula (10)-1 or (10)-2

wherein

R¹³ is an acid labile group,

 R^{14} is a single bond or an alkylene group of 1 to 10 carbon atoms, and R^{15} and R^{16} are, each independently, hydrogen, fluorine, methyl or trifluoromethyl.

(New) A polymer of claim 1, further comprising recurring units of a vinyl alcohol compound of formula (11)

$$\begin{array}{c}
R^{16}R^{14} \\
Q \\
R^{13}
\end{array} (11)$$

wherein

R¹³ is an acid labile group, and

R¹⁴, R¹⁵ and R¹⁶ are, each independently, a hydrogen atom, fluorine atom, or a straight, branched or cyclic alkyl group of 1 to 10 carbon atoms, which are, each independently, optionally substituted with fluorine.

(New) A polymer according to claim 1, said polymer having a weight average molecular weight of 1,000 to 1,000,000.

(New) In a process of preparing a polymer, the improvement wherein a monomer of formula (1) of claim 1 is used.

(New) In a process of forming a resist composition or a resist pattern, the improvement wherein a polymer of claim 1 is used.