## **Candidature proposal**

Miguel Romero

July 6, 2020

P5 - ÓMICAS

Doctorado en Ingeniería

Pontificia Universidad Javeriana de Cali

#### Table of contents

1. Previous work:

Node label and link prediction

2. Proposal

Previous work:

Node label and link prediction

#### Node label prediction

#### **Objective**

Prediction of gene functions based on biological data.

#### How?

- gene co-expression network
- existing knowledge body of gene functions of a given genome
- supervised machine learning and probabilistic model

#### Node label prediction

#### **Approaches**

- 1. Machine learning + structural properties of gene co-expression + function prediction (independently) [2],
- 2. HBN probabilistic model + gene co-expression network + function hierarchical structure + function ancestral relation,
- Machine learning + gene co-expression network + function hierarchical structure + function ancestral relation + structural properties of gene co-expression + representations of nodes (node2vec).

#### Link prediction

#### **Objective**

Prediction of links in dynamic networks.

#### How?

- spectral analysis (eigen decomposition)
- networks grow over time
- formation of new edges can be expressed as transformations of the spectrum (eigenvalues)

#### Link prediction

#### **Approaches**

- 1. Spectral analysis + multi-graphs (Twitter networks) [3],
- 2. Spectral analysis + simple graphs (Twitter networks) + Rayleigh quotient + learning models (spectrum),

## **Proposal**

#### **Problem**

- Identifying functions of genes as an important step to analyze and understand how the genome of an specific organism works.
- Large amount of genes and gene products with no known functional relation identified, specially for some organism.

#### **Problem**

#### **Issues**

- Lack of biological data for some organism,
- Unstructured data,
- New data comes from biological experiments.

- Some organism (model organisms, e.g., arabidopsis) have been widely studied (in vivo and in silico), and there is a comprehensive knowledge body of gene functions for them.
- It is possible to map genes from different organism using orthology (e.g., Cenicaña presentation).

### Ideas: Orthology







## **Co-expression Network** (simple, undirected, unweighted)







- Propose a hypergraph node label predictive model (probabilistic or machine learning) that uses information from related networks,
- Use spectral analysis, e.g., through Spectral Network Embedding [4],
- Use GO hierarchical structure (true-path rule consistency),
- Use network structural properties.

# Questions?

#### Bibliography i

X. Jiang, N. Nariai, M. Steffen, S. Kasif, and E. D. Kolaczyk. Integration of relational and hierarchical network information for protein function prediction.

BMC Bioinformatics, 9(1):350, 2008.

M. Romero, J. Finke, M. Quimbaya, and C. Rocha. In-silico Gene Annotation Prediction Using the Co-expression Network Structure.

In H. Cherifi, S. Gaito, J. F. Mendes, E. Moro, and L. M. Rocha, editors, *Complex Networks and Their Applications VIII*, volume 882, pages 802–812. Springer International Publishing, Cham, 2020.

### Bibliography ii



M. Romero, C. Rocha, and J. Finke.

Spectral Evolution of Twitter Mention Networks.

In H. Cherifi, S. Gaito, J. F. Mendes, E. Moro, and L. M. Rocha, editors, *Complex Networks and Their Applications VIII*, volume 881, pages 532–542. Springer International Publishing, Cham, 2020.



J. Zhang, Y. Wang, J. Tang, and M. Ding.

Spectral Network Embedding: A Fast and Scalable Method via Sparsity.

arXiv:1806.02623 [cs], June 2018.

Thanks!