Automated Vehicle Damage Analysis and Reporting System

An End-to-End Al Pipeline for Automotive Inspections

Gabriel Fernandes Carvalho Fev/2025 Universidade de Brasília

Project Overview

Objective:

- Develop a fully automated system for analyzing vehicle images and generating detailed, humanized reports.
- Applications include towing inspections, claims documentation, and general automotive evaluations.

Key Components:

- Image description
- Visual localization of damages
- License plate extraction and vehicle data retrieval
- Natural language report generation

System Architecture & Pipeline

Input: Vehicle image

Processing Steps:

- **BLIP:** Generates detailed textual descriptions of the image
- YOLO11: Detects and localizes damage regions
- OCR (PaddleOCR): Extracts the vehicle license plate
- External API: Retrieves official vehicle details (model, year) using the plate
- **LLaMA 3:** Consolidates all data into a final, humanized report

Output: Annotated image with a comprehensive report

<u>Dataset</u> <u>CarDD: A New Dataset for Vision-based Car Damage Detection</u>

CarDD Dataset:

- Specialized dataset focused on vehicle damage detection.
- Contains 4000 annotated images highlighting various damages (dent, scratch, crack, glass shatter, tire flat, and lamp broken).
- COCO annotation.
- Split: Training set (2816 images, 70.4%), Validation set (810 images, 20.25%), and Test set (374 images, 9.35%)

Purpose in the Project:

Serves as the training data for fine-tuning the BLIP and YOLO model.

CarDD

BLIP – Description Model

Overview:

Fine-tuned on the CarDD dataset for detailed description.

Why Not CLIP?

- CLIP Limitations:
 - General-purpose image—text matching, not optimized for fine-grained description.
 - Less effective in highlighting specific vehicle problems.

BLIP Advantages:

- Transformer-based architecture designed for generating descriptive captions.
- Better suited for detailed and nuanced descriptions.

Image-Text Retrieval: "The man in blue shirt is wearing glasses."

YOLO11 – Damage Localization

Purpose:

Detects and localizes damages on the vehicle image.

Key Points:

- Uses the YOLO format for annotations.
- Trained to pinpoint the exact location of damages (scratches, dents, etc.).

https://docs.ultralytics.com/pt/models/yolo11/

YOLO11 Architecture

OCR – License Plate Extraction

Tool Used: PaddleOCR

Functionality:

Extracts license plate information directly from the vehicle image when visible.

Integration:

 The extracted license plate is used to query an external API for additional vehicle data (model, year).

Benefits:

Enhances the report's reliability with official vehicle details.

https://paddlepaddle.github.io/PaddleOCR/main/en/ppocr/overview.html#pp-ocr 1

<u>LLaMA 3 – Humanized Report Generation</u>

Role in the Pipeline:

- Aggregates inputs from BLIP, YOLO11, OCR, and the external API.
- Generates a coherent, natural, and detailed report.

Why LLaMA 3?

 Excels at natural language generation, ensuring that the final report is clear and standardized.

https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct

Transformer vs LLaMA

Transformer ("Attention is all you need")

LLaMA

Infrastructure & Tools

Development Environment:

Google Colab Pro for training and inference.

Frameworks and Libraries:

- PyTorch, Hugging Face Transformers, PaddleOCR.
- Integration with external APIs for vehicle data.

Hardware:

Utilization of GPU resources to accelerate training and inference.

References & Links

Colab Notebooks:

• BLIP Model: <u>BLIP_Colab</u>

YOLO11 Model: <u>YOLO Colab</u>

OCR & API Integration: OCR Colab

Full Pipeline: Report Colab