Estimación Parámetros de un controlador PID con planta simulada

El grupo debe plantear el problema (función objetivo) y la técnica de optimización Bayesiana a partir del enunciado dado y encuentre la solución optima.

Descripción

Se requiere estimar los parámetros de un sistema de control PID. La función objetivo consistirá en evaluar el desempeño de un conjunto de parámetros proporcional (K_p) , integral (K_i) y derivativo (K_d) , en el control de un sistema basado en resistores. Las ecuaciones diferenciales que describen el sistema se encuentran detalladas en la pagina https://apmonitor.com/pdc/index.php/Main/ArduinoModeling2. Estas ecuaciones diferenciales nos sirven para realizar las simulaciones del sistema, y a la vez poder evaluar el desempeño del controlador. El controlador se puede definir como se muestra en la figura 1.

Figura 1: Esquema general de un controlador PID.

Matematicamente, la señal de control se calcula

$$u(t) = K_p \times e(t) + K_i \times \int_0^t e(t)dt + K_d \times \frac{de(t)}{dt},$$

donde e(t) es el error el cual significa la diferencia entre la referencia r(t) y la salida y(t). En la literatura existe diferentes esquemas para evaluar el desempeño de los controladores y así poder sintonizar o seleccionar las constantes del controlador PID. Se adopta como función objetivo una medida de desempeño para controladores conocida como la integral del error absoluto (IAE), la cual se define

$$IAE = \sum_{n=0}^{N} |e[n]|.$$

El IAE depende directamente de los parámetros del PID empledos.

En este proyecto se construirá una función sustituta de la función objetiva. La función sustituta se entrena a partir de un conjunto de datos y empleando redes neuronales.

C. Guarnizo

Procedimiento

- 1. Descripción matemática y conceptual del problema de optimización y del sistema dinámico.
- 2. Definir y programar la función objetivo de minimización del error del controlador por medio del IAE (Integral Absolute Error) para el sistema suministrado.
- 3. Proponer cuales son los rangos de los valores de los parámetros del controlador PID.
- 4. Programar la generación de los datos de la planta simulada (parámetros del PID) y la medida de desempeño propuesta (ITAE).
- 5. Generar 500 puntos aleatorios o en una malla para los parámetros del controlador PID, y obtener la evaluación de la función objetivo.
- 6. Entrenar un modelo de aprendizaje automático a partir de los datos generados, puede ser una red neuronal.
- 7. Emplear el modelo obtenido como función objetivo y minimizarla usando la función minimize de scipy.
- 8. Analizar los resultados y realizar conclusiones.

Referencias

APMonitor site. https://apmonitor.com/do/uploads/Main/Lab_B_MIMO_Model.pdf. EERO HEINÄNEN, A Method for Automatic Tuning of PID Controller following Luus-Jaakola Optimization. Master thesis, 2018.

Whale Optimization Algorithm - blog. https://www.baeldung.com/cs/whale-optimization-algorithm

C. Guarnizo 2