The sum of this inverse and (7) is the solution of the problem for $0 < t < \pi$, namely (the sines cancel),

(9)
$$y(t) = 3e^{-t}\cos t - 2\cos 2t - \sin 2t \qquad \text{if } 0 < t < \pi.$$

In the second fraction in (6), taken with the minus sign, we have the factor $e^{-\pi s}$, so that from (8) and the second shifting theorem (Sec. 6.3) we get the inverse transform of this fraction for t > 0 in the form

$$+2\cos(2t - 2\pi) + \sin(2t - 2\pi) - e^{-(t-\pi)} [2\cos(t-\pi) + 4\sin(t-\pi)]$$
$$= 2\cos 2t + \sin 2t + e^{-(t-\pi)} (2\cos t + 4\sin t).$$

The sum of this and (9) is the solution for $t > \pi$,

(10)
$$y(t) = e^{-t} [(3 + 2e^{\pi}) \cos t + 4e^{\pi} \sin t] \qquad \text{if } t > \pi.$$

Figure 136 shows (9) (for $0 < t < \pi$) and (10) (for $t > \pi$), a beginning vibration, which goes to zero rapidly because of the damping and the absence of a driving force after $t = \pi$.

Fig. 136. Example 4

The case of repeated complex factors $[(s-a)(s-\bar{a})]^2$, which is important in connection with resonance, will be handled by "convolution" in the next section.

PROBLEM SET 6.4

 CAS PROJECT. Effect of Damping. Consider a vibrating system of your choice modeled by

$$y'' + cy' + ky = \delta(t).$$

- (a) Using graphs of the solution, describe the effect of continuously decreasing the damping to 0, keeping k constant.
- (b) What happens if c is kept constant and k is continuously increased, starting from 0?
- (c) Extend your results to a system with two δ -functions on the right, acting at different times.
- 2. CAS EXPERIMENT. Limit of a Rectangular Wave. Effects of Impulse.
 - (a) In Example 1 in the text, take a rectangular wave of area 1 from 1 to 1 + k. Graph the responses for a sequence of values of k approaching zero, illustrating that for smaller and smaller k those curves approach

the curve shown in Fig. 134. *Hint:* If your CAS gives no solution for the differential equation, involving k, take specific k's from the beginning.

(b) Experiment on the response of the ODE in Example 1 (or of another ODE of your choice) to an impulse $\delta(t-a)$ for various systematically chosen a > 0; choose initial conditions $y(0) \neq 0$, y'(0) = 0. Also consider the solution if no impulse is applied. Is there a dependence of the response on a? On b if you choose $b\delta(t-a)$? Would $-\delta(t-\widetilde{a})$ with a>a annihilate the effect of a>a? Can you think of other questions that one could consider experimentally by inspecting graphs?

3-12 EFFECT OF DELTA (IMPULSE) ON VIBRATING SYSTEMS

Find and graph or sketch the solution of the IVP. Show the details.

3.
$$y'' + 4y = \delta(t - \pi)$$
, $y(0) = 8$, $y'(0) = 0$

4.
$$y'' + 16y = 4\delta(t - 3\pi)$$
, $y(0) = 2$, $y'(0) = 0$

5.
$$y'' + y = \delta(t - \pi) - \delta(t - 2\pi),$$

 $y(0) = 0, y'(0) = 1$

6.
$$y'' + 4y' + 5y = \delta(t - 1)$$
, $y(0) = 0$, $y'(0) = 3$

7.
$$4y'' + 24y' + 37y = 17e^{-t} + \delta(t - \frac{1}{2}),$$

 $y(0) = 1, y'(0) = 1$

8.
$$y'' + 3y' + 2y = 10(\sin t + \delta(t - 1)), \quad y(0) = 1,$$

 $y'(0) = -1$

9.
$$y'' + 4y' + 5y = [1 - u(t - 10)]e^t - e^{10}\delta(t - 10),$$

 $y(0) = 0, y'(0) = 1$

10.
$$y'' + 5y' + 6y = \delta(t - \frac{1}{2}\pi) + u(t - \pi)\cos t$$
, $y(0) = 0$, $y'(0) = 0$

11.
$$y'' + 5y' + 6y = u(t - 1) + \delta(t - 2),$$

 $y(0) = 0, y'(0) = 1$

12.
$$y'' + 2y' + 5y = 25t - 100\delta(t - \pi)$$
, $y(0) = -2$, $y'(0) = 5$

13. PROJECT. Heaviside Formulas. (a) Show that for a simple root a and fraction A/(s-a) in F(s)/G(s) we have the *Heaviside formula*

$$A = \lim_{s \to a} \frac{(s - a)F(s)}{G(s)}.$$

(b) Similarly, show that for a root a of order m and fractions in

$$\frac{F(s)}{G(s)} = \frac{A_m}{(s-a)^m} + \frac{A_{m-1}}{(s-a)^{m-1}} + \cdots + \frac{A_1}{s-a} + \text{further fractions}$$

we have the Heaviside formulas for the first coefficient

$$A_m = \lim_{s \to a} \frac{(s-a)^m F(s)}{G(s)}$$

and for the other coefficients

$$A_k = \frac{1}{(m-k)!} \lim_{s \to a} \frac{d^{m-k}}{ds^{m-k}} \left[\frac{(s-a)^m F(s)}{G(s)} \right],$$

$$k = 1, \dots, m-1.$$

14. TEAM PROJECT. Laplace Transform of Periodic Functions

(a) **Theorem.** The Laplace transform of a piecewise continuous function f(t) with period p is

(11)
$$\mathcal{L}(f) = \frac{1}{1 - e^{-ps}} \int_0^p e^{-st} f(t) dt \quad (s > 0).$$

Prove this theorem. Hint: Write $\int_0^\infty = \int_0^p + \int_p^{2p} + \cdots$

Set t = (n - 1)p in the *n*th integral. Take out $e^{-(n-1)p}$ from under the integral sign. Use the sum formula for the geometric series.

(b) Half-wave rectifier. Using (11), show that the half-wave rectification of $\sin \omega t$ in Fig. 137 has the Laplace transform

$$\mathcal{L}(f) = \frac{\omega(1 + e^{-\pi s/\omega})}{(s^2 + \omega^2)(1 - e^{-2\pi s/\omega})}$$
$$= \frac{\omega}{(s^2 + \omega^2)(1 - e^{-\pi s/\omega})}.$$

(A *half-wave rectifier* clips the negative portions of the curve. A *full-wave rectifier* converts them to positive; see Fig. 138.)

(c) Full-wave rectifier. Show that the Laplace transform of the full-wave rectification of $\sin \omega t$ is

$$\frac{\omega}{s^2 + \omega^2} \coth \frac{\pi s}{2\omega}$$
.

Fig. 137. Half-wave rectification

Fig. 138. Full-wave rectification

(d) Saw-tooth wave. Find the Laplace transform of the saw-tooth wave in Fig. 139.

Fig. 139. Saw-tooth wave

15. Staircase function. Find the Laplace transform of the staircase function in Fig. 140 by noting that it is the difference of kt/p and the function in 14(d).

Fig. 140. Staircase function