参考答案

1 单项选择题

1.1 答案

题目	1	2	3	4	5	6	7	8	9	10	11	12
答案	A	D	A	В	С	D	D	С	A	С	С	В

1.2 提示

6. 由题意可知应将志愿者分为三人组和两人组. 分情况讨论: 当三人组中包含小明和小李时; 当三人组中不包含小明和小李时.

7. 令 x = 1 得 a = 1. 然后算后面一个因式中,x 和 $\frac{1}{x}$ 的系数,最后相加即的常数项 (与前面的因式相乘后抵消).

8. 作代数变形 $\frac{a_n}{b_n} = \frac{a_{n-1}}{b_{n-1}}$.

9. 单位圆内接正 6n 边形的周长为 $12n\sin\frac{30^{\circ}}{n}$, 外切正 6n 边形的周长为 $12n\tan\frac{30^{\circ}}{n}$.

10. $f(x) = -\frac{2}{e^x + 1} + \frac{1}{2}$. 考察 $-\frac{2}{e^x + 1}$ 的值域. $x \ge 0$ 时, $e^x \ge 1$, $-1 \le -\frac{2}{e^x + 1} < 0$. x < 0 时, $0 < e^x < 1$ 可得 $-2 < -\frac{2}{e^x + 1} < -1$.

11. 考察三角形 $\triangle ABF_1$. 设 $AF_1 = x$, 则 $AF_2 = x - 2a$. 又 $\tan \angle ABF_1 = \frac{3}{4}$, 故 $AB = \frac{4}{3}x$. 则 $BF_2 = \frac{4}{3}x - (x - 2a) = \frac{x}{3} + 2a$. 对三角形 $\triangle ABF_1$ 应用勾股定理解方程. 解出 AF_1, AF_2 , 再对 $\triangle AF_1F_2$ 应用勾股定理.

12. 注意题干 "垂直向上",因而 A,B,C 在底面的投影是底面三角形三边的中点. 故 $\triangle ABC$ 投影是形成一个边长为 1 的等边三角形,因而 $\triangle ABC$ 是边长为 1 的等边三角形。故 O-ABC 是各边为 1 的正四面体(各个边均相等)。则 O 到平面 ABC 的距离是 $\frac{\sqrt{6}}{3}$. 平面 ABC 到底面的距离即点 A 到 DE 的距离 $\sqrt{3}$. 但是球面上最短距离要减去半径.

1

2 填空题

13. $\frac{\ln 5}{1 - \ln 5}$. 提示: 取对数.

14.
$$\frac{\sqrt{10}}{10}$$
 .

15. __5__.

提示:样本的平均值点 (\bar{x},\bar{y}) 也在回归直线上.

16. $6\sqrt{3}$.

提示: 作图. 或运用正弦定理和余弦定理, 像解三角形大题一样.

3 解答题

17. (12 分)

两式相减,得

$$-T_n=4+2^2+2^3+\ldots+2^n-(n+1)\times 2^{n+1}=4+\frac{4\left(1-2^{n-1}\right)}{1-2}-(n+1)\times 2^{n+1}\\ =4-4+2^{n-1}-(n+1)\times 2^{n+1}=n\cdot 2^{n+1}\\ 1-2 -(n+1)\times 2^{n+1}\\ =4-4+2^{n-1}-(n+1)\times 2^{n+1}=-n\cdot 2^{n+1}\\ 1-2 -(n+1)\times 2^{n$$

体积等于四棱锥 $P-BCD$ 的体积		又 $PD \perp AD$, $AD \subset $ 羊面 $ABCD$, $BD \subset $ 平面 $ABCD$, $AD \cap BD = D$, $\therefore PD \perp $ 平面 $ABCD$ 又 $PD \subset $ 平面 PAD , $\therefore $ 平面 $PAD \perp $ 平面 $ABCD$
设 $PD=1,$: 平面 PDE 把四棱雉 $P-ABCD$ 分成体积相等的两部分,三棱雉 $P-ADE$ 自体积等于四棱锥 $P-BCD$ 的体积	(II)	
设梯形 $ABCD$ 的高为 $h, AE = x$, 则 $\frac{1}{2}xh = \frac{1}{2} \cdot (2-x+1)h$, 解得 $x = \frac{3}{2}$,		设 $PD=1,$: 平面 PDE 把四棱雉 $P-ABCD$ 分成体积相等的两部分,三棱雉 $P-ADE$ 的体积等于四棱锥 $P-BCD$ 的体积
故 $D(0,0,0), A(1,0,0), B(0,\sqrt{3},0), P(0,0,1), E\left(\frac{1}{4},\frac{3\sqrt{3}}{4},0\right), C\left(-\frac{1}{2},\frac{\sqrt{3}}{2},0\right),$ $\overrightarrow{PN} = \left(-\frac{1}{2},\frac{\sqrt{3}}{2},-1\right), \overrightarrow{PE} = \left(\frac{1}{4},\frac{3\sqrt{3}}{4},-1\right),$ $\because \text{ 平面 } PAD \bigcap \text{ 平面 } ABCD = AD, BD \subset \text{ 平面 } ABCD, \therefore y \text{ 轴 } \bot \text{ 平面 } PAD, \therefore \text{ 平面 } PAI \text{ 的} - \uparrow \text{ Xb} \cap \frac{1}{2} \text{ in } \overrightarrow{A} = (0,1,0).$ $\underbrace{8 \text{ 5}}_{\text{ \overline{Q}}} \text{ \overline{Q}} \text{ \overline{Q}} \text{ \overline{Q}} = 0$ $\underbrace{\overline{W}}_{\text{\overline{Q}}} PCE \text{ \overline{Q}} \text{ \overline{Q}} - \chi = 0$ $\underbrace{\overline{W}}_{\text{\overline{Q}}} \frac{1}{4}x + \frac{3\sqrt{3}}{4}y - z = 0$ $\underbrace{\overline{W}}_{\text{\overline{Q}}} \frac{\vec{m} \cdot \vec{n}}{4} = \frac{3}{2\sqrt{6}} = \frac{\sqrt{6}}{4}, \dots \qquad 10.5$ $\underbrace{\overline{W}}_{\text{\overline{Q}}} PAD \text{ \overline{Q}} \text{ \overline{Q}} = \frac{3}{4}, \dots \qquad 11.5$ $\underbrace{\overline{W}}_{\text{\overline{Q}}} PAD \text{ \overline{Q}} \text{ \overline{Q}} = \frac{3}{4}, \dots \qquad 11.5$ $\underbrace{\overline{W}}_{\text{\overline{Q}}} PAD \text{ \overline{Q}} \text{ \overline{Q}} = \frac{3}{4}, \dots \qquad 11.5$ $\underbrace{\overline{W}}_{\text{\overline{Q}}} PAD \text{ \overline{Q}} \text{ \overline{Q}} = \frac{3}{4}, \dots \qquad 11.5$ $\underbrace{\overline{W}}_{\text{\overline{Q}}} PAD \text{ \overline{Q}} \text{ \overline{Q}} = \frac{3}{4}, \dots \qquad 11.5$ $\underbrace{\overline{W}}_{\text{\overline{Q}}} PAD \text{ \overline{Q}} \text{ \overline{Q}} PCE \text{ \overline{M}} \text{ \overline{M}} \text{ \overline{M}} \text{ \overline{Q}} = \frac{3}{4}, \dots \qquad 11.5$ $\underbrace{\overline{W}}_{\text{\overline{Q}}} PAD \text{ \overline{Q}} \text{ \overline{Q}} = \frac{3}{4}, \dots \qquad 11.5$ $\underbrace{\overline{W}}_{\text{\overline{Q}}} PAD \text{ \overline{Q}} \text{ \overline{Q}} = \frac{3}{4}, \dots \qquad 11.5$ $\underbrace{\overline{W}}_{\text{\overline{Q}}} PAD \text{ \overline{Q}} \text{ \overline{Q}} \text{ \overline{Q}} = \frac{3}{4}, \dots \qquad 11.5$ $\underbrace{\overline{W}}_{\text{\overline{Q}}} PAD \text{ \overline{Q}} \text{ \overline{Q}} \text{ \overline{Q}} \text{ \overline{Q}} = \frac{3}{4}, \dots \qquad 11.5$ $\underbrace{\overline{W}}_{\text{\overline{Q}}} PAD \text{ \overline{Q}} \text{ \overline{Q}} \text{ \overline{Q}} = \frac{3}{4}, \dots \qquad 11.5$ $\underbrace{\overline{W}}_{\text{\overline{Q}}} PAD \text{ \overline{Q}} \text{ \overline{Q}} \text{ \overline{Q}} = \frac{3}{4}, \dots \qquad 11.5$ $\underbrace{\overline{W}}_{\text{\overline{Q}}} PAD \text{ \overline{Q}} \text{ \overline{Q}} \text{ \overline{Q}} = \frac{3}{4}, \dots \qquad 11.5$ $\underbrace{\overline{W}}_{\text{\overline{Q}}} PAD \text{ \overline{Q}} \text{ \overline{Q}} \text{ \overline{Q}} = \frac{3}{4}, \dots \qquad 11.5$ $\underbrace{\overline{W}}_{\text{\overline{Q}}} PAD \text{ \overline{Q}} \text{ \overline{Q}} = \frac{3}{4}, \dots \qquad 11.5$ $\underbrace{\overline{W}}_{\text{\overline{Q}}} PAD \text{ \overline{Q}} \text{ \overline{Q}} = \frac{3}{4}, \dots \qquad 11.5$ $\underbrace{\overline{W}}_{\text{\overline{Q}}} PAD \text{ \overline{Q}} \text{ \overline{Q}} = \frac{3}{4}, \dots \qquad 11.5$ $\underbrace{\overline{W}}_{\text{\overline{Q}}} PAD \text{ \overline{Q}} = \frac{3}{4}, \dots \qquad 11.5$ $\underbrace{\overline{W}}_{\text{\overline{Q}}} PAD \text{ \overline{Q}} = \frac{3}{4}, \dots \qquad 11.5$ $\underbrace{\overline{W}}_{\text{\overline{Q}}} PAD \text{ \overline{Q}} = \frac{3}{4}, \dots \qquad 1.5$ $\underbrace{\overline{W}}_{\text{\overline{Q}}$		
$\overrightarrow{PN} = \left(-\frac{1}{2}, \frac{\sqrt{3}}{2}, -1\right), \overrightarrow{PE} = \left(\frac{1}{4}, \frac{3\sqrt{3}}{4}, -1\right),$		= = = , , , , = ,
的一个法向量为 $\vec{n}=(0,1,0)$		$\overrightarrow{PN} = \left(-\frac{1}{2}, \frac{\sqrt{3}}{2}, -1\right), \overrightarrow{PE} = \left(\frac{1}{4}, \frac{3\sqrt{3}}{4}, -1\right),$
设平面 PCE 的一个法向量为 $\vec{m} = (x,y,z)$, 则 $\left\{\begin{array}{l} \vec{m} \cdot \overrightarrow{PC} = 0 \\ \vec{m} \cdot \overrightarrow{PE} = 0 \end{array}\right.$ 即 $\left\{\begin{array}{l} -\frac{1}{2}x + \frac{\sqrt{3}}{2}y - z = 0 \\ \frac{1}{4}x + \frac{3\sqrt{3}}{4}y - z = 0 \end{array}\right.$ 取 $x = -\sqrt{3}$, 则 $y = 3$, $z = 2\sqrt{3}$, $\vec{m} = (-\sqrt{3},3,2\sqrt{3})$,		$::$ 平面 PAD ↑ 平面 $ABCD = AD,BD$ ○ 平面 $ABCD,: y$ 轴 \bot 平面 $PAD,:$ 平面 PAD
即 $ \begin{cases} -\frac{1}{2}x + \frac{\sqrt{3}}{2}y - z = 0 \\ \frac{1}{4}x + \frac{3\sqrt{3}}{4}y - z = 0 \end{cases} $ 取 $x = -\sqrt{3}$, 则 $y = 3$, $z = 2\sqrt{3}$, \therefore $\vec{m} = (-\sqrt{3}, 3, 2\sqrt{3})$,		的一个法向量为 $\vec{n} = (0, 1, 0)$ 8 分
即 $ \begin{cases} -\frac{1}{2}x + \frac{\sqrt{3}}{2}y - z = 0 \\ \frac{1}{4}x + \frac{3\sqrt{3}}{4}y - z = 0 \end{cases} $ 取 $x = -\sqrt{3}$, 则 $y = 3$, $z = 2\sqrt{3}$, \therefore $\vec{m} = (-\sqrt{3}, 3, 2\sqrt{3})$,		设平面 PCE 的一个法向量为 $\vec{m} = (x, y, z)$, 则 $\left\{ \begin{array}{c} \vec{m} \cdot \vec{I} \cdot \vec{C} = 0 \\ \vec{m} \cdot \vec{PE} = 0 \end{array} \right.$
取 $x = -\sqrt{3}$, 则 $y = 3$, $z = 2\sqrt{3}$, \therefore $\vec{m} = (-\sqrt{3}, 3, 2\sqrt{3})$,		(1 –
: 平面 PAD 与平面 PCE 所成锐二面角的余弦值为 $\frac{\sqrt{6}}{4}$		取 $x = -\sqrt{3}$, 则 $y = 3$, $z = 2\sqrt{3}$, $\vec{m} = (-\sqrt{3}, 3, 2\sqrt{3})$,
20. (12 分) (I) 过 A, B 分别向 ND 作垂线, 垂足为 A', B' , 设 AB 中点为 P , 过 P 向 ND 作垂线垂足为 P' 则 $ PP' = \frac{1}{2}\left(AA' + BB' \right) = \frac{1}{2} AB $. 又 $:: AB = BC :: PP' = \frac{1}{3} PC \cdot P'C = \sqrt{ PC ^2 - PP' ^2} = \frac{2\sqrt{2}}{3} PC $. 在 Rt $\Delta PP'C$ 中, $\tan \angle P'PC = 2\sqrt{2}$. 故直线 l 的斜率为 $2\sqrt{2}$		1 11 1 ¥ =
(I) 过 A, B 分别向 ND 作垂线, 垂足为 $A', B',$ 设 AB 中点为 P , 过 P 向 ND 作垂线垂足为 P' 则 $ PP' = \frac{1}{2}\left(AA' + BB' \right) = \frac{1}{2} AB $.		\therefore 平面 PAD 与平面 PCE 所成锐二面角的余弦值为 $\frac{\sqrt{6}}{4}$
则 $ PP' = \frac{1}{2} (AA' + BB') = \frac{1}{2} AB .$ 又 $:: AB = BC :: PP' = \frac{1}{3} PC . P'C = \sqrt{ PC ^2 - PP' ^2} = \frac{2\sqrt{2}}{3} PC .$ 在 Rt $\Delta PP'C$ 中, $\tan \angle P'PC = 2\sqrt{2}$. 故直线 l 的斜率为 $2\sqrt{2}$	20. (12 分	`)
在 Rt $\triangle PP'C$ 中, $\tan \angle P'PC = 2\sqrt{2}$. 故直线 l 的斜率为 $2\sqrt{2}$	(I)	1 1
设直线 AB 的方程为 $y = k\left(x - \frac{1}{2}\right), A\left(x_1, y_1\right), B\left(x_2, y_2\right),$		又: $ AB = BC $: $ PP' = \frac{1}{3} PC $. $ P'C = \sqrt{ PC ^2 - PP' ^2} = \frac{2\sqrt{2}}{3} PC $. 在 Rt $\Delta PP'C$ 中, $\tan \angle P'PC = 2\sqrt{2}$. 故直线 l 的斜率为 $2\sqrt{2}$
设直线 AB 的方程为 $y = k\left(x - \frac{1}{2}\right), A\left(x_1, y_1\right), B\left(x_2, y_2\right),$	(II)	:: 正方形边长为 $1, : FD = p = 1$, 抛物线方程为 $y^2 = 2x, : M\left(\frac{1}{2}, 1\right), \dots 6$ 分
$\therefore ND$ 方程为 $x = -\frac{1}{2}$, 得 $C\left(-\frac{1}{2}, -k\right)$ $\therefore k_3 = \frac{1+k}{2} = 1+k$		(- /
$\frac{2}{2}$		$\therefore ND$ 方程为 $x = -\frac{1}{2}$, 得 $C\left(-\frac{1}{2}, -k\right)$, $\therefore k_3 = \frac{1+k}{\frac{1}{2} + \frac{1}{2}} = 1+k$
由 $\begin{cases} y = k\left(x - \frac{1}{2}\right), \\ y^2 = 2x \end{cases}, \ \ \text{得 } 4k^2x^2 - \left(4k^2 + 8\right)x + k^2 = 0,$		由 $\begin{cases} y = k\left(x - \frac{1}{2}\right), \\ y^2 = 2x \end{cases}, \text{待 } 4k^2x^2 - \left(4k^2 + 8\right)x + k^2 = 0,$

$$\Delta = (4k^{2} + 8)^{2} - 4 \cdot 4k^{2} \cdot k = 64k^{2} + 64 > 0.$$

$$x_{1} + x_{2} = \frac{4k^{2} + 8}{4k^{2}} = \frac{k^{2} + 2}{k^{2}}, x_{1}x_{2} = \frac{k^{2}}{4k^{2}} = \frac{1}{4}, \dots$$

$$k_{1} = \frac{y_{1} - 1}{x_{1} - \frac{1}{2}}, k_{2} = \frac{y_{2} - 1}{x_{2} - \frac{1}{2}},$$

$$k_{1} = \frac{y_{1} - 1}{x_{1} - \frac{1}{2}}, k_{2} = \frac{y_{2} - 1}{x_{2} - \frac{1}{2}},$$

$$k_1 + k_2 = \frac{y_1 - 1}{x_1 - \frac{1}{2}} + \frac{y_2 - 1}{x_2 - \frac{1}{2}} = \frac{(y_1 - 1)\left(x_2 - \frac{1}{2}\right) + \left(x_1 - \frac{1}{2}\right)(y_2 - 1)}{\left(x_1 - \frac{1}{2}\right)\left(x_2 - \frac{1}{2}\right)}$$

$$= \frac{\left[k\left(x_1 - \frac{1}{2}\right) - 1\right] + \left[k\left(x_2 - \frac{1}{2}\right) - 1\right]\left(x_1 - \frac{1}{2}\right)}{x_1x_2 - \frac{1}{2}(x_1 + x_2) + \frac{1}{4}}$$

$$= \frac{2kx_1x_2 - (k+1)(x_1 + x_2) + \frac{k}{2} + 1}{x_1x_2 - \frac{1}{2}(x_1 + x_2) + \frac{1}{4}} = \frac{\frac{k}{2} - \frac{(k^2 + 2)(k+1)}{k^2} + \frac{k}{2} + 1}{\frac{1}{4} - \frac{k^2 + 2}{2k^2} + \frac{1}{4}}$$

$$= -k^2(k+1) + (k^2 + 2)(k+1) = 2(k+1) = 2k_3$$

21. (12分)

22. (10 分)

(I) l 的直角坐标方程为 $y = \sqrt{3}x$,化为极坐标方程为 $\theta = \frac{\pi}{3}(\rho \in R)$.

将圆 C 的参数方程变形为 $\begin{cases} x-a=\cos\alpha, \\ y=\sin\alpha, \end{cases}$ 平方相加得 $(x-a)^2+y^2=1$,

(II) 将 $\theta = \frac{\pi}{3}$ 代入圆 C 的极坐标方程得 $\rho^2 - a\rho + a^2 - 1 = 0$.

设 $|\rho_1| = |OP|$, $|\rho_2| = |OQ|$, 则 $\rho_1 + \rho_2 = a \rho_1 \rho_2 = a^2 - 1$, $\Delta = a^2 - 4 \left(a^2 - 1\right) > 0 \text{ , } 解得 \ 0 \le a^2 < \frac{4}{3}.$ 所以 $|OP|^2 + |OQ|^2 = \rho_1^2 + \rho_2^2 = \left(\rho_1 + \rho_2\right)^2 - 2\rho_1 \rho_2 = a^2 - 2 \left(a^2 - 1\right) = 2 - a^2.$

23. (10 分)

 $\text{(I)} \ \ f\left(\frac{1}{2}\right) + f(-1) \geq 8 \ , \ \ \mathbb{P} \ \ |a+1| + |a-2| + 3 \geq 8 \ , \ \ \mathring{\mathcal{T}} \mathbb{P} \ \ |a+1| + |a-2| \geq 5,$

等价于不等式组 $\begin{cases} a \le -1 \\ -a - 1 - a + 2 \ge 5 \end{cases}$ 或 $\begin{cases} -1 < a \le 2 \\ a + 1 - a + 2 \ge 5 \end{cases}$ 或 $\begin{cases} a > 2 \\ a + 1 + a - 2 \ge 5 \end{cases}$

解得 $a \le -2$ 或 a > 3. 故实数

$$\left(b + \frac{1}{b-1} + 1\right)_{\min} = 4.$$
 9 \$\frac{1}{b}\$

故所求实数 *a* 的取值范围是 (-5,3)......10 分

4 说明与注意

4.1 说明

本题改变自某新高考模拟卷. 其中第 8、9 题是北京市高考原题, 第 13 题是自创原题, 保证尽量覆盖原卷精神和知识点比例. 中档题居多, 但整体难度不算高.

4.2 注意

第 10 题的取整函数又来了,如果你这次还是不会写,从两次的考察中总结其通用方法(提示:考虑定义域和值域,并尝试画出取整函数的图像).