				5)	<u>1)</u> -r5)t1		
$ au_1^{\#2}$	0	0	0	$\frac{i}{k(1+2k^2)(r_1-2r_3-r_5)}$	$\frac{i(6k^2(r_1-2r_3-r_5)-t_1)}{\sqrt{2}k(1+2k^2)^2(r_1-2r_3-r_5)t_1}$	0	$\frac{1}{\frac{-r_1+2r_3+r_5}{(1+2k^2)^2}} + \frac{6k^2}{t_1}$
$\tau_{1^{-}\alpha}^{\#1}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}$	0	0	0	$\frac{1}{\sqrt{2} (k^2 + 2k^4) (r_1 - 2r_3 - r_5)}$	$\frac{1}{\frac{-r_1+2r_3+r_5}{2(k+2k^3)^2}} + \frac{6k^2}{t_1}$	0	$-\frac{i(6k^2(r_1-2r_3-r_5)-t_1)}{\sqrt{2}k(1+2k^2)^2(r_1-2r_3-r_5)t_1}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{1}{k^2 (-r_1 + 2 r_3 + r_5)}$	$\frac{1}{\sqrt{2} (k^2 + 2k^4) (r_1 - 2r_3 - r_5)}$	0	$\frac{i}{k(1+2k^2)(-r_1+2r_3+r_5)}$
$\tau_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{-2ik^3(2r_3+r_5)+ikt_1}{(1+k^2)^2t_1^2}$	$\frac{-2k^4(2r_3+r_5)+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2(2r_3+r_5)+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3(2r_3+r_5)\cdot kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_1^{\#1}{}_+\alpha\beta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$\sigma_{1}^{\#1} \dagger^{\alpha\beta}$	$\sigma_{1}^{\#2} + \alpha^{\beta}$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1^-}^{\#1} +^\alpha$	$\tau_{1}^{\#2} +^{\alpha}$

Massive particle

Pole residue:

Polarisations:

Square mass:

Spin:

Parity:

 $-\frac{1}{r_1} > 0$

 $\frac{t_1}{2r_1} > 0$

Odd

?	?		
	$\xrightarrow{k^{\mu}}$	- ?	
?	?		
	•		

?		
	Quadratic pole	2
$\frac{k^{\mu}}{}$?	Pole residue:	$\left \frac{1}{(r_1 - 2r_3 - r_5)t_1^2} > 0 \right $
	Polarisations:	2
?		

 $2 \, r_3 \, \partial_i \omega^{\kappa \lambda}_{\ \kappa} \, \partial^i \omega_{\lambda}^{\ \alpha} - r_5 \, \partial_i \omega^{\kappa \lambda}_{\ \kappa} \, \partial^i \omega_{\lambda}^{\ \alpha}_{\ \alpha} - \frac{2}{3} \, r_1 \, \partial^\beta \omega^{\theta \alpha}_{\ \kappa} \, \partial_\theta \omega_{\alpha\beta}^{\ \kappa} - \frac{2}{3} \, r_1 \, \partial_\theta \omega_{\alpha\beta}^{\ \kappa} \, \partial_\kappa \omega^{\alpha\beta\theta} +$ $_{\kappa}^{\lambda}\partial^{\prime}\omega_{\lambda}^{\alpha}$ - $2r_5\partial_\theta\omega_\lambda^{\ \alpha}\partial_\kappa\omega^{\kappa\lambda\theta} - \frac{1}{2}t_1\partial^\alpha f_{\theta\kappa}\partial^\kappa f_{\alpha}^{\ \theta} - \frac{1}{2}t_1\partial^\alpha f_{\kappa\theta}\partial^\kappa f_{\alpha}^{\ \theta} - \frac{1}{2}t_1\partial^\alpha f_{\lambda}^{\ \theta} +$ $\tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \, \sigma_{\alpha\beta\chi} + 2 \, r_1 \, \partial_i \omega^{\kappa\lambda}$ $rac{2}{3}r_1\partial_{ heta}\omega_{lphaeta}^{}\partial_{\kappa}\omega^{ hetalphaeta} - 2\,r_1\,\partial_{lpha}\omega_{\lambda}^{lpha}\,\partial_{\kappa}\omega^{ heta\kappa\lambda} + 2\,r_3\,\partial_{lpha}\omega_{\lambda}^{lpha}\,\partial_{\kappa}\omega^{ heta\kappa\lambda} - 2\,r_3\,\partial_{lpha}\omega_{\lambda}^{lpha}\,\partial_{\kappa}\omega^{lpha\kappa\lambda} - 2\,r_3\,\partial_{lpha}\omega_{\lambda}^{lpha}\,\partial_{\kappa}\omega^{lpha}\,\partial_{\kappa}\omega^{lpha} - 2\,r_3\,\partial_{lpha}\omega^{lpha}\,\partial_{\kappa}\omega^{lpha}\,\partial_{\kappa}\omega^{lpha} + 2\,r_3\,\partial_{lpha}\omega^{lpha}\,\partial_{\kappa}\omega^{lpha}\,\partial_{\kappa}\omega^{lpha} - 2\,r_3\,\partial_{\alpha}\omega^{lpha}\,\partial_{\kappa}\omega^{lpha}\,\partial_{\kappa}\omega^{lpha} + 2\,r_3\,\partial_{\alpha}\omega^{lpha}\,\partial_{\kappa}\omega^{lpha}\,\partial_{\kappa}\omega^{lpha} - 2\,r_3\,\partial_{\alpha}\omega^{lpha}\,\partial_{\kappa}\omega^{lpha} + 2\,r_3\,\partial_{\alpha}\omega^{lpha}\,\partial_{\kappa}\omega^{lpha}\,\partial_{\kappa}\omega^{lpha} + 2\,r_3\,\partial_{\alpha}\omega^{lpha}\,\partial_{\kappa}\omega^{lpha} + 2\,r_3\,\partial_{\alpha}\omega^{lpha} + 2\,r_3\,\partial_{\alpha}\omega^{lpha}\,\partial_{\kappa}\omega^{lpha} + 2\,r_3\,\partial_{\alpha}\omega^{lpha}\,\partial_{\kappa}\omega^{lpha} + 2\,r_3\,\partial_{\alpha}\omega^{lpha} + 2\,r_3\,\partial_{\alpha}\omega^{lpha}\,\partial_{\kappa}\omega^{lpha} + 2\,r_3\,\partial_{\alpha}\omega^{lpha} + 2\,r_3\,$ $r_5\,\partial_\alpha\omega_\lambda^{\ \alpha}_{\ \theta}\partial_\kappa\omega^{\theta\kappa\lambda} + 2\,r_1\,\partial_\theta\omega_\lambda^{\ \alpha}_{\ \alpha}\partial_\kappa\omega^{\theta\kappa\lambda} - 2\,r_3\,\partial_\theta\omega_\lambda^{\ \alpha}_{\ \alpha}\partial_\kappa\omega^{\theta\kappa\lambda} +$ $r_5 \, \partial_{\alpha} \omega_{\lambda}^{\ \alpha} \, \partial_{\kappa} \omega^{\kappa \lambda \theta} - 4 \, r_1 \, \partial_{\theta} \omega_{\lambda}^{\ \alpha} \, \partial_{\kappa} \omega^{\kappa \lambda \theta} + 4 \, r_3 \, \partial_{\theta} \omega_{\lambda}^{\ \alpha} \, \partial_{\kappa} \omega^{\kappa \lambda \theta} +$ $r_5 \, \partial_\theta \omega_\lambda^{\ \alpha} \, \partial_\kappa \omega^{\theta \kappa \lambda} + 2 \, r_1 \, \partial_\alpha \omega_\lambda^{\ \alpha} \, \partial_\kappa \omega^{\kappa \lambda \theta} - 2 \, r_3 \, \partial_\alpha \omega_\lambda^{\ \alpha} \, \partial_\kappa \omega^{\kappa \lambda \theta} \frac{1}{3}t_1\;\omega_{_{l}}^{\alpha\prime}\;\omega_{_{k}\alpha}^{}-t_1\;\omega_{_{l}}^{k\lambda}\;\omega_{_{k}\lambda}^{\prime}+f^{\alpha\beta}$

 $\omega_{1^{+}\alpha\beta}^{\#1}$

 $-\frac{t_1}{\sqrt{2}}$

 $\frac{ikt_1}{\sqrt{2}}$

0

0

0

0

 $\omega_{1+}^{\#1} + \alpha \beta k^2 (2 r_3 + r_5) - \frac{t_1}{2}$

 $f_{1+}^{#1} \dagger^{\alpha\beta}$

 $\omega_{1}^{#1} + c$

 $\omega_{1}^{#2} + \alpha_{1}^{\alpha}$

 $f_{1}^{#1} \dagger^{\alpha}$

 $f_{1}^{\#2} \dagger^{\alpha}$

 $\omega_{1^+\alpha\beta}^{\#2}\,f_{1^+\alpha\beta}^{\#1}$

 $\frac{ikt_1}{\sqrt{2}}$

0

0

0

0

0

0

 $-\frac{t_1}{\sqrt{2}}$

0

0

0

0

0

0

 $\omega_{1-\alpha}^{\#1}$

0

0

0

 $k^2 \left(-r_1 + 2 \, r_3 + r_5 \right) + \frac{t_1}{6}$

 $\frac{t_1}{3\sqrt{2}}$

0

 $-\frac{1}{3}\,\bar{l}\,k\,t_1$

 $\frac{1}{2}t_1\partial_k f_{\beta}^{\ \ \lambda}\partial^k f_{\lambda}^{\ \ \theta} + \frac{1}{2}t_1\partial_k f^{\lambda}_{\ \ \theta}\partial^k f_{\lambda}^{\ \ \theta} - \frac{1}{3}t_1\partial^\alpha f^{\lambda}_{\ \ \alpha}\partial^k f_{\lambda k} + \frac{2}{3}r_1\partial_k \omega^{\alpha\beta\theta}\partial^k \omega_{\alpha\beta\theta} - \frac{2}{3}r_1\partial^k \omega_{\alpha\beta} - \frac{2}{3}r_1\partial^k \omega_{\alpha\beta} - \frac{2}{3}r_1\partial^k \omega_{\alpha\beta} + \frac{2}{3}r_1\partial^k \omega_{\alpha\beta} + \frac{2}{3}r_1\partial^k \omega_{\alpha\beta} - \frac{2}{3}r_1\partial$

 $\frac{1}{3}t_{1}\;\omega_{\kappa\alpha}^{\;\;\alpha}\,\partial^{\kappa}f'_{\;\;\prime} + \frac{1}{3}t_{1}\;\omega_{\kappa\lambda}^{\;\;\lambda}\,\partial^{\kappa}f'_{\;\;\prime} + \frac{2}{3}t_{1}\,\partial^{\alpha}f_{\;\kappa\alpha}\,\partial^{\kappa}f'_{\;\;\prime} - \frac{1}{3}t_{1}\,\partial_{\kappa}f^{\lambda}_{\;\;\lambda}\,\partial^{\kappa}f'_{\;\;\prime} +$

 $\omega_{1^-\alpha}^{\#2}$

0

0

0

 $\frac{t_1}{3\sqrt{2}}$

<u>t</u>1 3

0

 $-\frac{1}{3}\,\bar{l}\,\sqrt{2}\,k\,t_1$

 $f_{1-\alpha}^{\#1}$

0

0

0

0

0

0

0

 $f_{1-\alpha}^{\#2}$

0

0

0

 $\frac{ikt_1}{3}$

 $\frac{1}{3} i \sqrt{2} k t_1$

0

 $2k^2t_1$

 $_{\kappa}^{\prime}$ - $r_5 \partial_{\theta} \omega_{\lambda}^{\ \alpha} \partial^{\lambda} \omega^{\theta \kappa}_{\ \kappa}$ $r_5 \, \partial_{\alpha} \omega_{\lambda}^{\ \alpha} \, \partial^{\lambda} \omega^{\theta \kappa}_{\ \kappa} - 2 \, r_1 \, \partial_{\theta} \omega_{\lambda}^{\ \alpha} \, \partial^{\lambda} \omega^{\theta \kappa}_{\ \kappa} + 2 \, r_3 \, \partial_{\theta} \omega_{\lambda}^{\ \alpha} \, \partial^{\lambda} \omega^{\theta \kappa}_{\ \kappa}$

$\sigma_{2^{-}}^{\#1} lpha eta \chi$	0	0	$\frac{2}{2k^2r_1+t_1}$
$\tau_{2}^{\#1}_{\alpha\beta}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_{2}^{\#1}{}_{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
	$\sigma_{2}^{\#1} + \alpha^{\beta}$	$\tau_2^{\#1} + ^{\alpha\beta}$	$\sigma_{2}^{\#1} +^{\alpha eta \chi}$

#

SO(3) irreps

 $\tau_{0}^{#2} == 0$

 $r_{0+}^{\#1} == 0$

Source constraints

2 k ² r ₁ +t ₁	$\omega_{2}^{\#1}$ †	
2 k	$f_{2}^{#1}$ †	_αβ
0	$\omega_{2}^{#1} \dagger^{a}$	αβχ
	#1.	_
0	$\omega_{0}^{\#1}$ †	6
	$f_{0}^{#1}$ †	
$+^{\alpha eta \chi}$	$f_{0+}^{#2}$ †	
#1 2 ⁻	(v) ^{#1} +	

 $\tau_{1}^{\#1}{}^{\alpha\beta} + ik \sigma_{1}^{\#2}{}^{\alpha\beta} == 0$

 $t_1^{\#2}^{\alpha} + 2ik \sigma_1^{\#2}^{\alpha} = 0$

 $\tau_{1}^{\#1\alpha} == 0$

				2
	$\omega_{0^+}^{\sharp 1}$	$f_{0^{+}}^{#1}$	$f_{0^{+}}^{#2}$	$\omega_0^{\#1}$
$\omega_{0}^{\#1}$ †	$6 k^2 (-r_1 + r_3)$	0	0	0
$f_{0}^{#1}\dagger$	0	0	0	0
$f_{0}^{#2} \dagger$	0	0	0	0
$\omega_{0}^{\sharp 1}$ †	0	0	0	-t ₁

 $\frac{i\,k\,t_1}{\sqrt{2}}$

0

 $\omega_{2^{+}\alpha\beta}^{\#1} f_{2^{+}\alpha\beta}^{\#1} \omega_{2^{-}\alpha\beta\chi}^{\#1}$

 $\frac{i k t_1}{\sqrt{2}}$

 $k^2 t_1$

0

0

0

 $k^2 r_1 + \frac{t_1}{2}$

	$\omega_0^{\#1}$	$f_{0+}^{#1}$	$f_{0+}^{#2}$	$\omega_0^{\#1}$
$\omega_{0^+}^{\sharp 1}$ †	$6 k^2 (-r_1 + r_3)$	0	0	0
$f_{0}^{#1}\dagger$	0	0	0	0
$f_{0}^{#2} \dagger$	0	0	0	0
$\omega_{0}^{\sharp 1}$ †	0	0	0	$-t_1$

, .									
^{‡1} †		0		0	0	$-t_1$			
0 5	16				$\sigma_{0}^{\sharp 1}$		$ au_{0}^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\int_{t_{+}^{+}}^{\#1} \alpha \beta - 2 i k \int_{t_{+}^{+}}^{\#1} \alpha \beta = 0$			$\sigma_{0^{+}}^{\#1}$ $\tau_{0^{+}}^{\#1}$ $\tau_{0^{+}}^{\#2}$	$+ \frac{1}{6k}$	1 ² (-r ₁ +	<u></u> ⊦r ₃)	0	0	0
k G			$\tau_{0}^{\#1}$	t	0		0	0	0
- 2 į	::		$\tau_{0}^{\#2}$	t	0		0	0	0
$t_{\perp}^{\#1}\alpha\beta$	Zi Total #:			t	0		0	0	$-\frac{1}{t_1}$