

Übungen

Teil 6

Aufgabe 1:

Gegeben ist die folgende Ereignis-Tabelle:

Alter Zustand	Eingabe	Neuer Zustand	Ausgabe
Z _a	e_0	z a	a ₂
z _a	e_1	z_b	a_0
z _b	e_3	z _c	a_0
z _b	e_2	z_e	a_{1}
z _b	e_1	z _e	a ₂
z_c	e_0	z f	a_1
z _c	e_1	z _d	a_1
z_e	e_0	z_d	a_1
z _e	e_1	z _d	a_1
z_f	e_1	z _b	a_0
z _f	e_2	z _d	-

Übungen

Teil 6

Aufgabe 1:

Gegeben ist die folgende Ereignis-Tabelle:

a) Konstruieren (zeichnen) Sie den entsprechenden *Mealy- Automaten*

Übungen

Teil 6

Aufgabe 1: (Forts.)

b) [Optionale Teilaufgabe]

Wenn Sie anstelle eines *Mealy-Automaten* einen *Moore-Automaten* konstruieren, welches sind die kritischen Zustände und wie können Sie diese einfach bei der Konstruktion berücksichtigen?

Übungen

Teil 6

Aufgabe 1: (Forts.)

c) [Optionale Teilaufgabe]

Konstruieren (zeichnen) Sie den entsprechenden *Moore-*

Übungen

Teil 6

Aufgabe 2:

Gegeben ist ein *ungerichteter Graph G* = {V, E} mit den Knoten $V = \{X, Y, Z, U, V, W\}$ und den Kanten $E = \{a, b, c, d, e\}$, a = (U,Y), b = (Y,V), c = (U,Z) und e = (U,V)

a) Zeichnen Sie den Graphen G

Übungen

Teil 6

Aufgabe 2:

Gegeben ist ein *ungerichteter Graph G* = {V, E} mit den Knoten $V = \{X, Y, Z, U, V, W\}$ und den Kanten $E = \{a, b, c, d, e\}$, a = (U,Y), b = (Y,V), c = (U,Z) und e = (U,V)

b) Ist *G vollständig* ? (Antwort bitte kurz begründen)

Übungen

Teil 6

Aufgabe 2:

Gegeben ist ein *ungerichteter Graph G* = {V, E} mit den Knoten $V = \{X, Y, Z, U, V, W\}$ und den Kanten $E = \{a, b, c, d, e\}$, a = (U,Y), b = (Y,V), c = (U,Z) und e = (U,V)

c) Ist *G zusammenhängend* ? (Antwort bitte kurz begründen)

Übungen

Teil 6

Aufgabe 2:

Gegeben ist ein *ungerichteter Graph G* = {V, E} mit den Knoten $V = \{X, Y, Z, U, V, W\}$ und den Kanten $E = \{a, b, c, d, e\}$, a = (U,Y), b = (Y,V), c = (U,Z) und e = (U,V)

d) Gibt es in G eine Schleife?

Übungen

Teil 6

Aufgabe 3:

Gegeben ist ein *gerichteter Graph G'* = $\{V, E\}$ mit den Knoten $V = \{A, B, C, D, E, F, G, H, I, J, K, L, M\}$ und den gerichteten Kanten (D,B), (B,C), (C,A), (C,E), (B,G), (G,F) und (F,I)

a) Zeichnen Sie den Graphen G'als Baum

Übungen

Teil 6

Aufgabe 3:

Gegeben ist ein *gerichteter Graph G'* = $\{V, E\}$ mit den Knoten $V = \{A, B, C, D, E, F, G, H, I, J, K, L, M\}$ und den gerichteten Kanten (D,B), (B,C), (C,A), (C,E), (B,G), (G,F) und (F,I)

b) Welcher Knoten ist die *Wurzel*, welche Knoten sind die *Blätter* in *G*′?

Übungen

Teil 6

Aufgabe 3: (Forts.)

- c) Ist G'zusammenhängend? (Antwort bitte kurz begründen)
- d) Welche Höhe hat G'?

Übungen Teil 6 Aufgabe 3: (Forts.)

e) Warum ist G' kein ausgewogener Baum?

Übungen

Teil 6

Aufgabe 3: (Forts.)

- f) Konstruieren Sie einen binären Baum *G"*, der dieselben Knoten (und Wurzel) wie *G'* besitzt, jedoch *ausgewogen* ist
- g) Welche Höhe hat G"?