UNIT 2: Linear population models

1 Constructing models

1.1 Dynamical models

Tools to link scales

- Models are what we use to link:
 - Individual-level to population-level processes
 - Short time scales to long time scales
- In both directions

Assumptions

- Models are always simplifications of reality
 - "The map is not the territory"
 - "All models are wrong, but some are useful"
- Models are useful for:
 - linking assumptions to outcomes
 - identifying where assumptions are broken

Dynamical models

- Dynamical models describe rules for how a system changes at each point in time
- We will see what these assumptions about how the system *changes* lead to conclusions about what the system *does* over longer time periods

States and state variables

- Our dynamic models imagine that a system has a **state** at any given time, described by one or more **state variables**
- These are the things that follow our rules and change
- Examples:
 - Dandelions: state is population size, described by one state variable (the number of individuals)
 - Bacteria: state is population density, described by one state variable (the number of individuals per ml)
 - Pine trees: state is amount of wood, described by one state variable (tons per hectare)
- Limiting the number of state variables is key to simple models

Parameters

- Parameters are the quantities that describe how the rules for our system work
- Examples:
 - Birth rate, death rate, fecundity, survival probability

How do populations change?

- I survey a population in 2009, and again in 2013. I get a different answer the second time.
- Poll: What are some reasons why this answer might change?

Censusing and intermediate variables

- Often, our population models will imagine that the population is **censused** (counted) at particular periods of time
- Calculations of what happens between census times may be part of how we make our population model, without showing up in the main model itself
 - For example, our moth and dandelion examples

Linear population models

- We will focus mostly on births and deaths
- Births and deaths are done by individuals
 - We model the rate of each individual (per capita rates)
 - Total rate is the per capita rate multiplied by population size
- If per capita rates are constant, we say that our population models are linear
 - Linear models do not usually correspond to linear growth!

*

1.2 Examples

Moth example

Would example
• Poll: State variable
_
• Parameters
_
_
_
_
• Census time
_
Bacteria
• State variables
_
• Poll: Parameters
_
• Census time
_
Dandelions
• State variables
_
Poll: Are there intermediate variables?*
• Parameters
_
• Census time
_
_

1.3 A simple discrete-time model

Assumptions

- If we have N individuals after T time steps, what determines how many individuals we have after T+1 time steps?
 - A fixed proportion p of the population (on average) survives to be counted at time step T+1
 - Each individual creates (on average) f new individuals that will be counted at time step T+1
- How many individuals do we expect in the next time step?
- Diagram
- Individuals are **independent**: what I do does not depend on how many other individuals are around
- The population is censused at regular time intervals Δt
 - Usually $\Delta t = 1 \,\mathrm{yr}$
- All individuals are the same at the time of census
- Population changes deterministically

Definitions

- p is the survival probability
- f is the **fecundity**
- $\lambda \equiv p + f$ is the finite rate of increase
 - ... associated with the time step Δt
 - (Δt has units of time)

Model

• Dynamics:

$$-N_{T+1} = \lambda N_T$$
$$-t_{T+1} = t_T + \Delta t$$

• Solution:

$$- N_T = N_0 \lambda^T$$
$$- t_T = T \Delta t$$

- \bullet Poll: How does N behave in this model?

Interpretation

- Assumptions are simplifications based on reality
- We can understand why populations change exponentially sometimes
- We can look for reasons when they don't

Examples

• Moths

$$-p=0$$
, so $\lambda=f$.

- * Moths are **semelparous** (reproduce once); they have an **annual** population
- Dandelions
 - If p > 0, then the dandelions are **iteroparous**; they are a **perennial** population

1.4 A simple continuous-time model

Assumptions

- If we have N individuals at time t, how does the population change?
 - Individuals are giving birth at per-capita rate \boldsymbol{b}
 - $-\,$ Individuals are dying at per-capita rate d
- \bullet How we describe the population dynamics?
 - _

- Individuals are **independent**: what I do does not depend on how many other individuals are around
- The population can be censused at any time
- Population size changes continuously
- All individuals are the same all the time

Definitions

- \bullet b is the birth rate
- d is the death rate
- $r \equiv b d$ is the instantaneous rate of increase.
- These quantities are not associated with a time period, but they have units:

k

*

Model

• Dynamics:

$$-\frac{dN}{dt} = rN$$

• Solution:

$$- N(t) = N_0 \exp(rt)$$

• Behaviour

_

Bacteria

- Conceptually, this is just as simple as the dandelions or the moths
 - In fact, simpler
- But we can't do an infinite number of simulation steps on the computer
 - We need fancier methods

N0=1 indiv, r=0.5/day

N0=1 indiv, r=1/day

Summary

- We can construct simple, conceptual models and make them into dynamic models
- If we assume that *individuals* behave independently, then
 - we expect *populations* to grow (or decline) exponentially

2 Units and scaling

Units are our friends

- $\bullet\,$ Keep track of units at all times
- Use units to confirm that your answers make sense
 - Or to find quick ways of getting the answer
- What is $3 \, \text{day} \cdot 4 \, \text{espressoes/day}$?
- What is $1 \operatorname{hr} \cdot 0.2 \operatorname{cm} / \operatorname{day}$?
 - _
 - _

Manipulating units

- We can multiply quantities with different units by keeping track of the units
- We *cannot* add quantities with different units (unless they can be converted to the same units)
- Poll: How many seconds are there in a day?

_

• http://www.alysion.org/dimensional/fun.htm

Scaling

- Quantities with units set scales, which can be changed
 - If I multiply all the quantities with units of time in my model by 10, I should get an answer that looks the same, but with a different time scale
 - If a multiply all the quantities with units of dandelions in my model by 10, I should get an answer that looks the same, but with a different number of dandelions

Scaling time in bacteria

Days

N0=1 indiv, r=1/day

Thinking about units

• Poll: What is 10^3 day ?

_

• What is 10^{72}hr ?

_

• What is $3 \, \text{day} \cdot 3 \, \text{day}$?

_

Unit-ed quantities

• Quantities with units scale

- If you change everything with the same units by the same factor, you should not change the behaviour of your system
- We typically make sense of quantities with units by comparing them to other quantities with the same units, e.g.:
 - birth rate vs. death rate
 - characteristic time of exponential growth vs. observation time

Unitless quantities

- Quantities in exponents must be unitless
- Quantities with variable exponents (quantities that can be multiplied by themselves over and over) must be unitless
- ullet Quantities that determine how a system behaves must have a unitless form
 - Otherwise, they could be scaled
 - Zero works as a unitless quantity:
 - * 0 km = 0 cm
- What unitless quantities have we already talked about?

_

Moths

- $600 \, \text{egg/rF}$
- $\cdot 0.1 \, \text{larva/egg}$
- ·0.1 pupa/larva
- ·0.5 A/ pupa
- \bullet ·0.5 rA/A
- Poll: What's the product?

Closing the loop

- Once we close the loop, it doesn't matter where we start:
 - Reproductive adults to reproductive adults
 - Larvae to larvae
 - Pupae to pupae is common in real studies

• If we don't close the loop, we can't correctly move from step to step

Calculating λ

- $\lambda \equiv p + f$ is the finite rate of increase
- If $N_{T+1} = \lambda N_T$, what are the units of λ ?

- \bullet Therefore p and f must be unitless
 - example, rA/rA; seed/seed
 - to do it right, we close the loop

3 Key parameters

3.1 Discrete-time model

- $N_{T+1} = \lambda N_T$
- $\lambda \equiv p + f$

Calculating fecundity

- \bullet Fecundity f in our model must be unitless
- Multiply:
 - Probability of surviving from census to reproduction
 - Expected number of offspring when reproducing (maternity)
 - Probability of offspring surviving to census
- Need to end where we started
- Diagram

Calculating survival

- \bullet Survival p must be unitless
- Multiply:
 - Probability of surviving from census to reproduction
 - Probability of surviving the reproduction period
 - Probability of surviving until the next census

Finite rate of increase

- Population increases when $\lambda > 1$
- So λ must be unitless
- But it is associated with the time step Δt
 - This means it is potentially confusing. It is often better to use \mathcal{R} or r (see below).

Reproductive number

- \bullet The reproductive number $\mathcal R$ measures the average number of offspring produced by a single individual over the course of its lifetime
- ullet Poll: The population will increase when $\mathcal{R}...$:
- Poll: What are the units of \mathcal{R} ?

Lifespan

- In this model world, how long do individuals live, on average in this model?
- \bullet If p is the proportion of individuals that survive, then the proportion that die is:
- How many time steps do you expect to survive, on average?
 - *

Calculating \mathcal{R}

- \bullet \mathcal{R} is fecundity multiplied by lifespan
- $\mathcal{R} = f/\mu = f/(1-p)$
- Why do we multiply by time *steps* instead of lifetime?

_

Comparison

Lifetime reproduction

- $\mathcal{R} = f/\mu = f/(1-p)$
- Unitless
- ullet Population behaviour depends on the comparison ${\cal R}:1$
 - Equivalent to $f: \mu$

Reproduction over one time step

- $\lambda = f + p = f + (1 \mu)$
- Unitless
- Population behaviour depends on the comparison $\lambda:1$
 - Equivalent to $f:\mu$

Is the population increasing?

• What does λ tell us about whether the population is increasing?

_

• What does \mathcal{R} tell us about whether the population is increasing?

_

• Therefore, these two criteria must be the same!

_

3.2 Continuous-time model

Calculating birth rate

- The birth rate b in the continuous-time model is new individuals per individual per unit time
 - An instaneous rate
 - Units of [1/time] implies what assumption?

*

*

*

Calculating death rate

- The death rate d in the continuous-time model is deaths per individual per unit time
 - An instaneous rate
 - Units of [1/time]
- Is there a concern with these units?

Instaneous rate of increase

- Population increases when r = b d > 0
- r is not unitless, units are:

_

• So how can r = 0 be a criterion?

_

_

Calculating \mathcal{R}

- The mean lifespan is L = 1/d
 - Equivalent to the characteristic time for the death process
- ullet R is the average number of births expected over that time frame:

$$- \mathcal{R} = bL = b/d$$

Comparison

Lifetime reproduction

- $\mathcal{R} = bL = b/d$
- Unitless
- Population behaviour depends on the comparison $\mathcal{R}:1$
 - Equivalent to b:d

 $Instantaneous\ change$

- r = b d
- Units [1/t] (a rate)
- Population behaviour depends on the comparison r:0
 - Equivalent to b:d

Is the population increasing?

- ullet What does r tell us about whether the population is increasing?
- ullet What does ${\cal R}$ tell us about whether the population is increasing?
- Therefore, these two criteria must be the same!

3.3 Links

- After one time step in a discrete-time model
 - $-N_0 \rightarrow N_0 \lambda$
 - $-t \rightarrow t + \Delta t$
- In a continuous model
 - $-N_0 \rightarrow N_0 \exp(r\Delta t)$ in the same time period
- To link them, we set:
 - $-\lambda = \exp(r\Delta t)$
- In the other direction:

Characteristic time

- We can now find characteristic times of exponential change:
 - $-T_c = 1/r$ for exponential growth when r > 0
 - $-T_c = -1/r$ for exponential decline when r < 0
- Rule of thumb: population changes by a factor of 20 after 3 characteristic times

4 Growth and regulation

Example: Human population growth

- In the last 50,000 years, the population of modern humans has increased from about 1000 to about 7 billion
- What value of r does this correspond to? If we use a time step of 20-year generations, what value of λ does it correspond to?

Long-term growth rate

- What is the long-term average exponential growth rate (using either r or λ) of:
 - A successful population?

*

- An unsuccessful population?

Time scales

•	Estimated characteristic	time scale	s for	exponential	growth	or	decay	are	usually	a	few
	(or a few tens) of generation	ations									

- years to a few kiloyears
- Species typically persist for far longer
 - many kiloyears to megayears

Balance

•	If populations	grow	and	shrink	propos	rtionally	to	their	size,	why	don't	they	go	expo-
	nentially to ze	ro or	infini	ity?										

 $\bullet\,$ How is this possible

Changing growth rates

• Poll: What sort of factors can make species growth rates change?

Regulation

• What do we expect to happen if a population's growth rate is affected only by seasons and climate?

_

• What sort of mechanism could keep a population in a reasonable range for a long time?

_

• This is even true for modern humans!

© 2010-2020, Jonathan Dushoff and the 3SS teaching team. May be reproduced and distributed, with this notice, for non-commercial purposes only.