Introduction to Reinforcement Learning

Lecture 2: Function Approximation & Deep RL

Shimon Whiteson Dept. of Computer Science University of Oxford

(based on material from Rich Sutton & Andrew Barto)

August 28, 2019

Where are we so far? (1)

- MDP planning method that exploits the Bellman equation
- Complexity of value iteration:
 - ▶ Per iteration: quadratic in |S| and linear in |A|
 - \blacktriangleright Number of iterations: polynomial in |S| and $\frac{1}{1-\gamma}$
- Efficient considering there are $|A|^{|S|}$ deterministic policies
- But states are usually described using state features

$$\mathbf{x}(s) = (x_1(s), x_2(s), \dots, x_d(s))^{\top}$$

- Curse of dimensionality: |S| is exponential in d
- Missing ingredient is generalisation

Where are we so far? (2)

- Model-free RL methods like Q-learning and Sarsa exploit the Bellman equation without needing a model
- Guaranteed to converge to the optimal policy in the limit if:
 - \bigcirc S and A are finite
 - 2 $\sum_{t} \alpha_{t}^{sa} = \infty$ and $\sum_{t} (\alpha_{t}^{sa})^{2} < \infty$ (GLIE)

 - $0 \gamma < 1$
- Massively data inefficient
- Missing ingredients:
 - Generalisation
 - Data reuse
 - ► Smart exploration

Approximate value functions

• Value function parameterised by $\mathbf{w} \in \mathcal{R}^d$ where $d \ll |S|$:

$$\hat{V}(s,\mathbf{w}) pprox V^{\pi}(s)$$

Formulate objective wrt MSE:

$$\min_{\mathbf{w}} \sum_{s \in S} \mu(s) [V^{\pi}(s) - \hat{V}(s, \mathbf{w})]^2,$$

where μ is the *on-policy distribution*

 Reduces policy evaluation to an (active, incremental, nonstationary) supervised learning problem

Update rule

Update using SGD:

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \frac{\alpha}{2} \nabla \left[V^{\pi}(s_t) - \hat{V}(s_t, \mathbf{w}_t) \right]^2$$
$$= \mathbf{w}_t + \alpha \left[V^{\pi}(s_t) - \hat{V}(s_t, \mathbf{w}_t) \right] \nabla \hat{V}(s_t, \mathbf{w}_t)$$

• Since $V^{\pi}(s_t)$ is unknown, use Monte Carlo:

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha \big[R_t - \hat{V}(s_t, \mathbf{w}_t) \big] \nabla \hat{V}(s_t, \mathbf{w}_t)$$

ullet Any unbiased target like R_t ensures convergence to a local optimum

Semi-gradient TD(0)

Bootstrapping target:

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha \left[\mathbf{r}_{t+1} + \gamma \hat{V}(\mathbf{s}_{t+1}, \mathbf{w}_t) - \hat{V}(\mathbf{s}_t, \mathbf{w}_t) \right] \nabla \hat{V}(\mathbf{s}_t, \mathbf{w}_t)$$

- Semi-gradient: treats the \mathbf{w}_t in the target as a constant
- Converges in linear case
- There are true gradient methods, e.g., residual gradients [Baird 1995]:

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha \big[r_{t+1} + \gamma \hat{V}(s_{t+1}, \mathbf{w}_t) - \hat{V}(s_t, \mathbf{w}_t) \big] \big(\nabla \hat{V}(s_t, \mathbf{w}_t) - \gamma \nabla \hat{V}(s_{t+1}, \mathbf{w}_t) \big)$$
or gradient TD [Sutton et al. 2009] but these are slow in practice

Linear function approximation (1)

• Let $\mathbf{x}(s) = (x_1(s), x_2(s), \dots, x_d(s))^{\top}$ be a feature vector such that

$$\hat{V}(s, \mathbf{w}) = \mathbf{w}^{ op} \mathbf{x}(s) = \sum_{i=1}^d w_i x_i(s)$$

• The gradient becomes $\nabla \hat{V}(s, \mathbf{w}) = \mathbf{x}(s)$ and $\mathsf{TD}(0)$ is:

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha \big[r_{t+1} + \gamma \hat{V}(s_{t+1}, \mathbf{w}_t) - \hat{V}(s_t, \mathbf{w}_t) \big] \mathbf{x}(s_t)$$

ullet Convergence to local optimum \Longrightarrow convergence to global optimum

Linear function approximation (2)

- But linear semi-gradient TD(0) converges to TD fixed point instead
- The update rule can be rearranged, where $\mathbf{x}_t = \mathbf{x}(s_t)$:

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha (\mathbf{r}_{t+1} + \gamma \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_{t+1} - \mathbf{w}_t^{\mathsf{T}} \mathbf{x}_t) \mathbf{x}_t$$
$$= \mathbf{w}_t + \alpha (\mathbf{r}_{t+1} \mathbf{x}_t - \mathbf{x}_t (\mathbf{x}_t - \gamma \mathbf{x}_{t+1})^{\mathsf{T}} \mathbf{w}_t)$$

• The expected next weight vector is then:

$$\mathbb{E}[\mathbf{w}_{t+1}|\mathbf{w}_t] = \mathbf{w}_t + \alpha(\mathbf{b} - \mathbf{A}\mathbf{w}_t),$$

where:

$$\mathbf{A} = \mathbb{E} ig[\mathbf{x}_t (\mathbf{x}_t - \gamma \mathbf{x}_{t+1})^{ op} ig] \quad ext{and} \quad \mathbf{b} = \mathbb{E} [r_{t+1} \mathbf{x}_t]$$

Linear function approximation (3)

Convergence implies:

$$\begin{aligned} \textbf{b} - \textbf{A} \textbf{w}_{\mathcal{T} \mathcal{D}} &= \textbf{0} \\ \textbf{b} &= \textbf{A} \textbf{w}_{\mathcal{T} \mathcal{D}} \\ \textbf{w}_{\mathcal{T} \mathcal{D}} &= \textbf{A}^{-1} \textbf{b}, \end{aligned}$$

Relationship to minimum:

$$\mathsf{MSE}(\mathbf{w}_{TD}) \leq \frac{1}{1-\gamma} \min_{\mathbf{w}} \mathsf{MSE}(\mathbf{w})$$

Least squares temporal differences

Estimate A and b directly, not iteratively:

$$\hat{\mathbf{w}}_t = \hat{\mathbf{A}}_t^{-1} \hat{\mathbf{b}}_t,$$

where:

$$\hat{\mathbf{A}} = \sum_{k=0}^{t-1} \mathbf{x}_k (\mathbf{x}_k - \gamma \mathbf{x}_{k+1})^\top + \epsilon \mathbf{I} \quad \text{and} \quad \hat{\mathbf{b}} = \sum_{k=0}^{t-1} r_{k+1} \mathbf{x}_k$$

f o Cost to compute $\hat{f A}$ and $\hat{f b}$ depends on t unless updated incrementally:

$$\hat{\mathbf{A}}_t = \hat{\mathbf{A}}_{t-1} + \mathbf{x}_t (\mathbf{x}_t - \gamma \mathbf{x}_{t+1})^{ op}$$
 and $\hat{\mathbf{b}}_t = \hat{\mathbf{b}}_{t-1} + r_{t+1} \mathbf{x}_t$

• Matrix inversion is generally $O(d^3)$ but $\hat{\mathbf{A}}_t$ is a sum of outer products and can be inverted in $O(d^2)$ using the Sherman-Morrison formula

Nonlinear function approximation

- Neural networks represent the value function
- *d* inputs: $x_1(s), x_2(s), \dots, x_d(s)$
- Single output estimates V(s)
- Early success: TD-Gammon [Tesauro, 1992, 1995, 1996, 2002]
- Uses partial model and evaluates afterstates

On-policy semi-gradient control

• Now **w** parameterises Q instead of V:

$$\hat{Q}(s,a,\mathbf{w})pprox Q^{\pi}(s,a)$$

Semi-gradient Sarsa:

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha \left[r_{t+1} + \gamma \hat{Q}(s_{t+1}, a_{t+1}, \mathbf{w}_t) - \hat{Q}(s_t, a_t, \mathbf{w}_t) \right] \nabla \hat{Q}(s_t, a_t, \mathbf{w}_t)$$

- Continuous states are fine
- Continuous actions make policy improvement hard

Nonlinear control

- Neural networks represent the value function
- *d* inputs: $x_1(s), x_2(s), \dots, x_d(s)$
- |A| outputs: $Q(s, a_1), Q(s, a_2), \dots, Q(s, a_{|A|})$
- Allows action selection with one forward pass

Off-policy function approximation

• Naive off-policy semi-gradient TD(0):

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha \frac{\pi(s_t, a_t)}{\pi'(s_t, a_t)} [r_{t+1} + \gamma \hat{V}(s_{t+1}, \mathbf{w}_t) - \hat{V}(s_t, \mathbf{w}_t)] \nabla \hat{V}(s_t, \mathbf{w}_t)$$

• Semi-gradient Q:

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha \left[r_{t+1} + \gamma \max_{a} \hat{Q}(s_{t+1}, a, \mathbf{w}_t) - \hat{Q}(s_t, a_t, \mathbf{w}_t) \right] \nabla \hat{Q}(s_t, a_t, \mathbf{w}_t)$$

• Both known to be vulnerable to divergence

Baird's counterexample [1995]

Tsitsiklis & Van Roy counterexample [1997]

- $V(s) = w\phi(s)$, where $\phi(s_i) = i$
- $\forall i, R(s_i) = 0 \implies w^* = 0$
- Only update s_1 :
 - $ightharpoonup \Delta w \propto \gamma 2w w$
 - $\gamma > 0.5 \implies$ divergence
- ullet Even uniform updates of s_1 and $s_2 \implies$ divergence for large γ

Mountain car

- Boyan & Moore [1995] showed Q-learning's failure with nonlinear FA
- Sutton [1996] succeeded with Sarsa with linear tile coding

Tile coding

Deadly triad [Sutton & Barto 2018]

- Function approximation
- Bootstrapping
- Off-policy learning

Are all three essential?

Deadly triad [Sutton & Barto 2018]

- Function approximation
- Bootstrapping
- Off-policy learning

Are all three essential?

Not in the triad:

- Control
- 2 Learning
- Nonlinearity

Experience replay [Lin 1992]

- All methods discussed so far (except LSTD) are sample inefficient
- Binning the data after one use is madness
- Experience replay stores samples $d_t = (s_t, a_t, r_{t+1}, s_{t+1})$
- Repeatedly replays them to the agent
- More computation but fewer samples

(Neural) fitted Q-iteration [Riedmiller 2005] [Ernst et al. 2005]

- Store all samples as in experience replay
- Initialise w
- For i = 0, 1, ...
 - For each d_t , construct target $y_t^i = r_{t+1} + \gamma \max_a \hat{Q}(s_t, a_t, \mathbf{w})$
 - For j = 0, 1, ...
 - \star Sample a datapoint d_t
 - * $\mathbf{w} \leftarrow \mathbf{w} + \alpha [y_t^i \hat{Q}(s_t, a_t, \mathbf{w})] \nabla \hat{Q}(s_t, a_t, \mathbf{w})$
- Targets remain fixed during inner loop

Atari learning environment

Deep reinforcement learning

DQN [Mnih et al. 2015]

DQN [Mnih et al. 2015]

DQN update rule:

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha \big[r_{t+1} + \gamma \max_{a} \hat{Q}(s_{t+1}, a, \mathbf{w}^-) - \hat{Q}(s_t, a_t, \mathbf{w}_t) \big] \nabla \hat{Q}(s_t, a_t, \mathbf{w}_t)$$
 where \mathbf{w}^- are the weights of a frozen target network

- Every k updates: $\mathbf{w}^- \leftarrow \mathbf{w}_t$
- Yields a cheap approximation to NFQ
- Gradients estimated from mini-batches
- Mini-batches randomly sampled via experience replay

DQN results

Rainbow [Hessel et al. 2017]

- Double Q-learning [van Hasselt et al. 2015]
- Prioritised replay [Schaul et al. 2015]
- Duelling networks [Wang et al. 2016]
- Multi-step targets [Sutton 1988]
- Distributional RL [Bellemare et al. 2017]
- Noisy nets [Fortunato et al. 2017]

Double DQN [van Hasselt et al. 2015]

- ullet Q-learning takes max of noisy Q estimate: yields bias
- Instead separate estimation from maximisation
- Note that:

$$\max_{a} \hat{Q}(s_{t+1}, a, \mathbf{w}_t) = \hat{Q}(s_{t+1}, \arg\max_{a} \hat{Q}(s_{t+1}, a, \mathbf{w}_t), \mathbf{w}_t)$$

• Double *Q*-learning uses two independent sets of weights:

$$\hat{Q}(s_{t+1}, \arg\max_{a} \hat{Q}(s_{t+1}, a, \mathbf{w}_t), \mathbf{w}_t')$$

• Double DQN uses target network, yielding update target:

$$r_{t+1} + \gamma \hat{Q}(s_{t+1}, rg \max_{a} \hat{Q}(s_{t+1}, a, \mathbf{w}_t), \mathbf{w}^-)$$

• Why not swap \mathbf{w}_t and \mathbf{w}^- ?

Prioritised replay [Hessel et al. 2017]

- Prioritised sweeping [Moore & Atkeson 1993]
 - Model-based RL
 - Efficient planning upon model updates
 - ▶ Starting from updated state, put tree of predecessors in priority queue
 - Priority is magnitude of update, i.e., TD error
- Prioritised replay [Schaul et al. 2015] extends to model-free RL
 - Sample transitions from replay buffer with probability based on last encountered absolute TD error:

$$p_t \propto \left| r_{t+1} + \gamma \max_{a} \hat{Q}(s_{t+1}, a, \mathbf{w}^-) - \hat{Q}(s_t, a_t, \mathbf{w_t})
ight|^{\omega}$$

- New transitions have maximal priority
- ► Can inappropriately favour stochastic transitions

Duelling networks [Wang et al. 2016]

Advantage function compares given action to expected action:

$$A(s,a) = Q(s,a) - V(s)$$

• Could represent Q(s, a) as sum of two parts:

$$\hat{Q}(s,a) = \hat{V}(s) + \hat{A}(s,a)$$

• To improve identifiability force advantage of a* to be zero:

$$\hat{Q}(s,a) = \hat{V}(s) + \hat{A}(s,a) - max_{a'}\hat{A}(s,a')$$

• More stable to use average instead of max:

$$\hat{Q}(s,a) = \hat{V}(s) + \hat{A}(s,a) - \frac{1}{|A|} \sum_{a'} \hat{A}(s,a')$$

Multi-step targets [Sutton 1988]

• The *n*-step return is:

$$R_t^n = \sum_{k=0}^{n-1} \gamma^k r_{t+k+1}$$

• Multi-step DQN target:

$$R_t^n + \gamma^n \max_{a} \hat{Q}(s_{t+1}, a, \mathbf{w}^-)$$

Is this on-policy or off-policy?

Distributional RL [Bellemare et al. 2017]

- Distributional RL learns the distribution of returns instead of the expected returns
- Represent distribution with probability masses placed at discrete support points
- Return distribution satisfies as variant of the Bellman equation
- TD error becomes a KL divergence
- Models aleatoric, not epistemic, uncertainty
- Why does it work? [Imani & White 2018]

Noisy nets [Fortunato et al. 2017]

• Replace linear layer b + Wx with:

$$\mathbf{b} + \mathbf{W}\mathbf{x} + (\mathbf{b}_{noisy} \odot \epsilon^b + \mathbf{W}_{noisy} \odot \epsilon^w)\mathbf{x})$$

where ϵ^b and ϵ^w are random variables, e.g., Gaussian and \odot denotes element-wise product

- Over time network can learn to ignore noisy stream
- Rate differs across search space
- Automatic state-conditional annealing of exploration