Sign Language Recognition

College of Computers and Information

Assiut University

- Team Information
- 2 Project description
- 3 Demo
- 4 Contribution
- Data
- 6 Project Architecture
- Methods
- Results

Team Information

Team ID:	1
ID	Team Names
162021323	مروه عامر مرسي
162021331	مريم عادل شحاته
162021330	مريم حسن عبد الشفيق

- Team Information
- 2 Project description
- 3 Demo
- Contribution
- Data
- 6 Project Architecture
- Methods
- Results

Project description

A Sign Language project that converts a video stream of sign language into text using Deep Learning

This model recognizes 5 classes which are:

- Like
- dislike
- Love
- Yes
- No

- Team Information
- 2 Project description
- Oemo
- Contribution
- Data
- 6 Project Architecture
- Methods
- Results

Demo

Fig.1. Demo

- Team Information
- 2 Project description
- 3 Demo
- 4 Contribution
- Data
- 6 Project Architecture
- Methods
- Results

Contribution

- Found an ASL images dataset from Kaggle
- Got a model from Github
- Trained the model on the new dataset
- Edited the training to test data ratio [80%,20%]
- Edited the model to recognize 5 words instead of 25 alphabet
- changed the number of epochs
- Error Analysis: Dislike and Like Signs are not always classified correctly

- Team Information
- 2 Project description
- 3 Demo
- Contribution
- Data
- 6 Project Architecture
- Methods
- Results

Data

We take five words from a datset from kaggle that was uploaded by **Belal Elwikel** Each folder in the dataset represents a Sign ,each folder consists of 4000 images, each image is 200×200 pixels and all images are RGB from this link:

https://www.kaggle.com/datasets/belalelwikel/asl-and-some-words

- Team Information
- 2 Project description
- 3 Demo
- Contribution
- Data
- 6 Project Architecture
- Methods
- Results

Project Architecture

Fig.2.Project Architecture

- Team Information
- Project description
- 3 Demo
- 4 Contribution
- Data
- 6 Project Architecture
- Methods
- Results

Methods

The model consists of the following layers:

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 48, 48, 16)	448
conv2d_1 (Conv2D)	(None, 46, 46, 16)	2,320
conv2d_2 (Conv2D)	(None, 44, 44, 16)	2,320
max_pooling2d (MaxPooling2D)	(None, 22, 22, 16)	e
conv2d_3 (Conv2D)	(None, 20, 20, 32)	4,640
conv2d_4 (Conv2D)	(None, 18, 18, 32)	9,248
conv2d_5 (Conv2D)	(None, 16, 16, 32)	9,248
max_pooling2d_1 (MaxPooling2D)	(None, 8, 8, 32)	e
conv2d_6 (Conv2D)	(None, 6, 6, 64)	18,496
conv2d_7 (Conv2D)	(None, 4, 4, 64)	36,928
conv2d_8 (Conv2D)	(None, 2, 2, 64)	36,928
flatten (Flatten)	(None, 256)	6
dense (Dense)	(None, 128)	32,896
dense_1 (Dense)	(None, 5)	645

Total params: 154,117 (602.02 KB)

Trainable params: 154,117 (602.02 KB)

Non-trainable params: 0 (0.00 B)

Fig.3. Model Layers

Methods

The Learning rate is: 0.001

The Optimizer used is: "adam"

The Loss Function used is: "categorical crossentropy"

- Team Information
- 2 Project description
- 3 Demo
- 4 Contribution
- Data
- 6 Project Architecture
- Methods
- Results

Results

We Show the results using 2 measures: Accuracy and Loss

Fig.4. Results