Extracción automática de argumentos en textos de opinión en la prensa cubana

Luis Ernesto Ibarra Vázquez

Universidad de La Habana

13 de diciembre del 2022

Argumentación

Argumentación

La argumentación es una actividad verbal, social y racional destinada a convencer a un crítico razonable de la aceptabilidad de un punto de vista mediante la presentación de una constelación de proposiciones que justifican o refutan la proposición expresada en el punto de vista.

Argumentación

Argumentación

La argumentación es una actividad verbal, social y racional destinada a convencer a un crítico razonable de la aceptabilidad de un punto de vista mediante la presentación de una constelación de proposiciones que justifican o refutan la proposición expresada en el punto de vista.

Extracción de Argumentos

La Extracción de Argumentos nace como la rama del Procesamiento de Lenguaje Natural encargada del estudio de métodos para la extracción automática de las **estructuras argumentativas** de los textos y su posterior procesamiento.

Estructuras Argumentativas

Estructuras Argumentativas

• Unidades de discuso argumentativas (UDA).

Estructuras Argumentativas

- Unidades de discuso argumentativas (UDA).
- Relaciones entre las UDAs.

Estructuras Argumentativas

- Unidades de discuso argumentativas (UDA).
- Relaciones entre las UDAs.

Estructuras Argumentativas

- Unidades de discuso argumentativas (UDA).
- Relaciones entre las UDAs.

Tareas de extracción de argumentos

Extracción de las UDAs.

Estructuras Argumentativas

- Unidades de discuso argumentativas (UDA).
- Relaciones entre las UDAs.

- Extracción de las UDAs.
- Clasificación de las UDAs.

Estructuras Argumentativas

- Unidades de discuso argumentativas (UDA).
- Relaciones entre las UDAs.

- Extracción de las UDAs.
- Clasificación de las UDAs.
- Extracción de las relaciones entre las UDAs.

Estructuras Argumentativas

- Unidades de discuso argumentativas (UDA).
- Relaciones entre las UDAs.

- Extracción de las UDAs.
- Clasificación de las UDAs.
- Extracción de las relaciones entre las UDAs.
- Clasificación de las relaciones entre las UDAs.

Estructuras argumentativas como grafo

Objetivo

Objetivo

Proponer un algoritmo para la extracción y análisis de estructuras argumentativas en textos de la prensa cubana.

Objetivo

Proponer un algoritmo para la extracción y análisis de estructuras argumentativas en textos de la prensa cubana.

Objetivo

Proponer un algoritmo para la extracción y análisis de estructuras argumentativas en textos de la prensa cubana.

Propuesta

• Dos modelos de aprendizaje profundo para:

Objetivo

Proponer un algoritmo para la extracción y análisis de estructuras argumentativas en textos de la prensa cubana.

- Dos modelos de aprendizaje profundo para:
 - 1 Extracción y clasificación de UDAs.

Objetivo

Proponer un algoritmo para la extracción y análisis de estructuras argumentativas en textos de la prensa cubana.

- Dos modelos de aprendizaje profundo para:
 - Extracción y clasificación de UDAs.
 - Extracción y clasificación de relaciones.

Objetivo

Proponer un algoritmo para la extracción y análisis de estructuras argumentativas en textos de la prensa cubana.

- Dos modelos de aprendizaje profundo para:
 - Extracción y clasificación de UDAs.
 - 2 Extracción y clasificación de relaciones.
- Proyección de conjuntos de datos al español para el entrenamiento de los modelos propuestos.

Texto

Texto ⇒

Procesamiento de entrada:

- Tokenización.
- Anotación de las partes de la oración.
- Embeddings.

Procesamiento de entrada:

- Tokenización.
- Anotación de las partes de la oración.
- Embeddings.

Procesamiento de entrada:

- Tokenización.
- Anotación de las partes de la oración.
- Embeddings.

Procesamiento de salida:

- Arreglar el formato BIOES de las secuencias.
- Asignar una sola clasificación a cada segmento.

Procesamiento de entrada:

- Tokenización.
- Anotación de las partes de la oración.
- Embeddings.

Procesamiento de salida:

- Arreglar el formato BIOES de las secuencias.
- Asignar una sola clasificación a cada segmento.

Modelo de segmentación y clasificación de UDAs TODO

Modelo de segmentación y clasificación de UDAs TODO

Procesamiento de entrada:

- Tokenización.
- Embeddings.
- Creación de tuplas conteniendo la UDA fuente y la UDA objetivo y distancia argumentativa.

Procesamiento de entrada:

- Tokenización.
- Embeddings.
- Creación de tuplas conteniendo la UDA fuente y la UDA objetivo y distancia argumentativa.

Procesamiento de entrada:

- Tokenización.
- Embeddings.
- Creación de tuplas conteniendo la UDA fuente y la UDA objetivo y distancia argumentativa.

Procesamiento de salida:

 Asignar etiqueta a la relación en dependencia del resultado.

Procesamiento de entrada:

- Tokenización.
- Embeddings.
- Creación de tuplas conteniendo la UDA fuente y la UDA objetivo y distancia argumentativa.

Procesamiento de salida:

 Asignar etiqueta a la relación en dependencia del resultado.

Modelo de extracción y clasificación de relaciones

Modelo de extracción y clasificación de relaciones

Modelo de extracción y clasificación de relaciones

Conjuntos de datos

Conjuntos de datos:

Conjuntos de datos

Conjuntos de datos:

• Ensayos Argumentativos.

Caractecrísticas:

- Documentos: 286 textos
- Segmentado por: Cláusula
- Clasificación de UDAs: Major claim (12 %), claim (25 %) y premise (63 %)
- Clasificación de relaciones: Attack (6 %) y support (94 %)

Conjuntos de datos

Conjuntos de datos:

- Ensayos Argumentativos.
- Cornell eRulemaking Corpus (CDCP).

Caractecrísticas:

- Documentos: 731 comentarios
- Segmentado por: Oración
- Clasificación de UDAs: Policy (17 %), value (45 %), fact (16%), testimony (21 %)y reference (1 %)
- Clasificación de relaciones: Reason (97 %) y evidence (3 %)

Conjuntos de datos

Conjuntos de datos:

- Ensayos Argumentativos.
- Cornell eRulemaking Corpus (CDCP).
- Abstracts Randomized Control Trials (AbsTRCT).

Caractecrísticas:

- Documentos: 500 documentos
- Segmentado por: Oración
- Clasificación de UDAs: Major claim (3 %), claim (30 %) y premise (67 %)
- Clasificación de relaciones: Support (85 %), partial-attack (12 %) y attack (3 %)

Selección del modelo de segmentación

Modelos	POS	Char-CNN	Char-LSTM	Res	Norm	Densa
Modelo 1	×	×	×	×	×	×
Modelo 2	×	✓	✓	√	✓	×
Modelo 3	✓	✓	✓	√	✓	×
Modelo 4	✓	✓	✓	√	✓	✓

Table: Variantes de arquitectura de los modelos de segmentación de UDA.

Selección del modelo de segmentación

Modelos	POS	Char-CNN	Char-LSTM	Res	Norm	Densa
Modelo 1	×	×	×	×	×	×
Modelo 2	×	✓	✓	√	✓	×
Modelo 3	✓	✓	✓	√	✓	×
Modelo 4	✓	✓	✓	√	✓	✓

Table: Variantes de arquitectura de los modelos de segmentación de UDA.

Selección del modelo de segmentación

Modelos	POS	Char-CNN	Char-LSTM	Res	Norm	Densa
Modelo 1	×	×	×	×	×	×
Modelo 2	×	✓	✓	√	✓	×
Modelo 3	✓	✓	✓	√	✓	×
Modelo 4	✓	✓	✓	√	✓	√

Table: Variantes de arquitectura de los modelos de segmentación de UDA.

Corpus	Macro F1	Accuracy	100%F1	50%F1
Ensayos Argumentativos	0,56 / 0,82	0,77 / 0,89	0,72 / 0,81	0,83 / 0,94
CDCP	0,45 / 0,56	0,66 / 0,96	0,61 / 0,82	0,68 / 0,93
AbsTRCT	0,50 / 0,79	0,87 / 0,91	0,61 / 0,66	0,75 / 0,82

Table: Métricas del segmentador en su versión completa y BIOES.

Selección del modelo de predicción de enlace

Modelos	Atención	Pooling	Dropout	T. de aprendizaje	Paciencia	Devolver mejores
Modelo 1	×	5	0,5	0,0015	10	✓
Modelo 2	×	10	0,1	0,003	5	×
Modelo 3	✓	1	0,1	0,003	5	×
Modelo 4	✓	1	0,5	0,0015	10	✓

Table: Variantes de arquitectura de los modelos de predicción de enlaces.

Selección del modelo de predicción de enlace

Modelos	Atención	Pooling	Dropout	T. de aprendizaje	Paciencia	Devolver mejores
Modelo 1	×	5	0,5	0,0015	10	✓
Modelo 2	×	10	0,1	0,003	5	×
Modelo 3	✓	1	0,1	0,003	5	×
Modelo 4	✓	1	0,5	0,0015	10	✓

Table: Variantes de arquitectura de los modelos de predicción de enlaces.

Selección del modelo de predicción de enlace

Modelos	Atención	Pooling	Dropout	T. de aprendizaje	Paciencia	Devolver mejores
Modelo 1	×	5	0,5	0,0015	10	✓
Modelo 2	×	10	0,1	0,003	5	×
Modelo 3	✓	1	0,1	0,003	5	×
Modelo 4	✓	1	0,5	0,0015	10	✓

Table: Variantes de arquitectura de los modelos de predicción de enlaces.

Corpus	Macro F1 Clasif.	Acc. Clasif.	Macro F1 Enlace	Acc. Enlace
Ensayos Argumentativos	0,33	0,57	0,68	0,75
CDCP	0,37	0,63	0,79	0,68
AbsTRCT	0,39	0,61	0,83	0,74

Table: Métricas de predicción de relaciones de las pruebas del predictor de enlace.

Se anotaron las Cartas a la Dirección con los modelos entrenados en los diferentes conjuntos de datos para determinar el modelo que se ajusta a los datos, llegando a las siguientes consideraciones luego de analizar un subconjunto 15 pares de cartas seleccionadas:

AbsTRCT:

- AbsTRCT:
 - Todas las UDAs son clasificadas como Premisa.

- AbsTRCT:
 - Todas las UDAs son clasificadas como Premisa.
 - Existen pocas relaciones extraídas.

- AbsTRCT:
 - Todas las UDAs son clasificadas como Premisa.
 - Existen pocas relaciones extraídas.
 - La precisión de las relaciones de partial-attack es baja.

Se anotaron las Cartas a la Dirección con los modelos entrenados en los diferentes conjuntos de datos para determinar el modelo que se ajusta a los datos, llegando a las siguientes consideraciones luego de analizar un subconjunto 15 pares de cartas seleccionadas:

• Ensayos Persuasivos:

- Ensayos Persuasivos:
 - Mejora en cuanto a la variedad de las clasificaciones de las UDAs.

- Ensayos Persuasivos:
 - Mejora en cuanto a la variedad de las clasificaciones de las UDAs.
 - Posee problemas de segmentación en la que la UDA se queda incompleta.

- Ensayos Persuasivos:
 - Mejora en cuanto a la variedad de las clasificaciones de las UDAs.
 - Posee problemas de segmentación en la que la UDA se queda incompleta.
 - Posee una gran cantidad de falsos positivos en las relaciones.

- Ensayos Persuasivos:
 - Mejora en cuanto a la variedad de las clasificaciones de las UDAs.
 - Posee problemas de segmentación en la que la UDA se queda incompleta.
 - Posee una gran cantidad de falsos positivos en las relaciones.
 - No se encuentran relaciones de attack anotadas.

Se anotaron las Cartas a la Dirección con los modelos entrenados en los diferentes conjuntos de datos para determinar el modelo que se ajusta a los datos, llegando a las siguientes consideraciones luego de analizar un subconjunto 15 pares de cartas seleccionadas:

CDCP:

- CDCP:
 - Mejora en la segmentación (Las oraciones tienden a formar mejores UDAs en este tipo de texto).

- CDCP:
 - Mejora en la segmentación (Las oraciones tienden a formar mejores UDAs en este tipo de texto).
 - Disminuye la cantidad de falsos positivos en las relaciones.

- CDCP:
 - Mejora en la segmentación (Las oraciones tienden a formar mejores UDAs en este tipo de texto).
 - Disminuye la cantidad de falsos positivos en las relaciones.
 - No posee una relación de ataque entre sus candidatos.

Se anotaron las Cartas a la Dirección con los modelos entrenados en los diferentes conjuntos de datos para determinar el modelo que se ajusta a los datos, llegando a las siguientes consideraciones luego de analizar un subconjunto 15 pares de cartas seleccionadas:

- CDCP:
 - Mejora en la segmentación (Las oraciones tienden a formar mejores UDAs en este tipo de texto).
 - Disminuye la cantidad de falsos positivos en las relaciones.
 - No posee una relación de ataque entre sus candidatos.

Se selecciona este conjunto de datos para la anotación final de las Cartas a la Dirección

Argument Mining

Recomendaciones

 Anotar las Cartas a la Dirección con las estructuras argumentativas por lingüístas.

Recomendaciones

- Anotar las Cartas a la Dirección con las estructuras argumentativas por lingüístas.
- Aplicar el uso de otros *embeddings*, como BERT, entrenados sobre el conjunto de datos extraído.

Recomendaciones

- Anotar las Cartas a la Dirección con las estructuras argumentativas por lingüístas.
- Aplicar el uso de otros embeddings, como BERT, entrenados sobre el conjunto de datos extraído.
- Proponer un modelo capaz de tomar en cuenta el contexto del texto completo para la predicción y clasificación de enlaces, por ejemplo Graph Neural Networks.

Extracción automática de argumentos en textos de opinión en la prensa cubana

Luis Ernesto Ibarra Vázquez

Universidad de La Habana

13 de diciembre del 2022

Preguntas del oponente?