Stats 319 Review: Distance correlation

(AKA Brownian distance covariance)
Székely, Rizzo, and Bakirov (2007). Measuring and testing dependence by correlation of distances. *Annals of Statistics*, **35**, 2769-94.

Haben Michael

April 15, 2015

Outline

Postulates

Example alternative measures

Distance correlation

Statistics

Some Properties and Analogies

Test statistic

Let R(X,Y) be a measure of the independence of two random variables X and Y. Desirable properties could include:

- 1. R(X,Y)=0 iff X and Y are independent
- 2. R invariant under transformations $(X, Y) \mapsto (\epsilon X, \epsilon Y), \epsilon > 0$
- 3. X and Y may have arbitrary (finite) dimension

Outline

Postulates

Example alternative measures

Distance correlation

Statistics

Some Properties and Analogies

Test statistic

Pearson product-moment correlation

$$\rho = \frac{Cov[X, Y]}{\sqrt{Var[X]Var[Y]}}, \quad X, Y \in \mathbb{R}$$

$$\hat{\rho} = \sum_{i}^{n} (X_i - \bar{X})(Y_i - \bar{Y}) / \sqrt{\sum_{i}^{n} (X_i - \bar{X})^2 \sum_{i}^{n} (Y_i - \bar{Y})^2}$$

Pearson product-moment correlation

$$\rho = \frac{Cov[X, Y]}{\sqrt{Var[X]Var[Y]}}, \quad X, Y \in \mathbb{R}$$

$$\hat{\rho} = \sum_{i}^{n} (X_i - \bar{X})(Y_i - \bar{Y}) / \sqrt{\sum_{i}^{n} (X_i - \bar{X})^2 \sum_{i}^{n} (Y_i - \bar{Y})^2}$$

Pearson product-moment correlation

$$\rho = \frac{Cov[X, Y]}{\sqrt{Var[X]Var[Y]}}, \quad X, Y \in \mathbb{R}$$

$$\hat{\rho} = \sum_{i}^{n} (X_i - \bar{X})(Y_i - \bar{Y}) / \sqrt{\sum_{i}^{n} (X_i - \bar{X})^2 \sum_{i}^{n} (Y_i - \bar{Y})^2}$$

doesn't meet 1st property for X,Y not jointly normal

▶ rank-based methods, e.g., spearman correlation—product-moment on ranks $X_i \mapsto \hat{X}_i := rank(X_i), Y_i \mapsto \hat{Y}_i := rank(Y_i)$

$$\hat{
ho}_{\mathsf{spearman}} = \sum_{i}^{n} (\hat{X}_{i} - \bar{\hat{X}})(\hat{Y}_{i} - \bar{\hat{Y}}) / \sqrt{\sum_{i}^{n} (\hat{X}_{i} - \bar{\hat{X}})^{2} \sum_{i}^{n} (\hat{Y}_{i} - \bar{\hat{Y}})^{2}}$$

▶ rank-based methods, e.g., spearman correlation—product-moment on ranks $X_i \mapsto \hat{X}_i := rank(X_i), Y_i \mapsto \hat{Y}_i := rank(Y_i)$

$$\hat{\rho}_{spearman} = \sum_{i}^{n} (\hat{X}_{i} - \bar{\hat{X}})(\hat{Y}_{i} - \bar{\hat{Y}}) / \sqrt{\sum_{i}^{n} (\hat{X}_{i} - \bar{\hat{X}})^{2} \sum_{i}^{n} (\hat{Y}_{i} - \bar{\hat{Y}})^{2}}$$

doesn't meet 1st property for non-monotone X,Y relationships

Renyi correlation (Rényi 1959)

$$sup\left\{corr(f(X),g(Y)):f\in L_2(X),g\in L_2(Y)\right\}$$

- ▶ = 0 iff independent
- ▶ = 1 implies $\mathbb{P}[f(X) = g(Y)] = 1$ for some "non-trivial" functions f, g
- $ightharpoonup = |\rho|$ for bivariate normal X, Y with correlation ρ
- but, much harder to approximate

Outline

Postulates

Example alternative measures

Distance correlation

Statistics

Some Properties and Analogies

Test statistic

 Distance correlation exploits that the characteristic functions of X and Y factor,

$$f_{X,Y}(t,s) = f_X(t)f_Y(s)$$
 $X, t \in \mathbb{R}^p, Y, s \in \mathbb{R}^q,$

iff X and Y are independent, whatever the dimension of X and Y

$$(f_{X,Y}(t,s) := \mathbb{E}exp(itX + isY), f_X(t) := \mathbb{E}exp(itX), f_Y(s) := \mathbb{E}exp(isY))$$

 Distance correlation exploits that the characteristic functions of X and Y factor,

$$f_{X,Y}(t,s) = f_X(t)f_Y(s)$$
 $X, t \in \mathbb{R}^p, Y, s \in \mathbb{R}^q,$

iff \boldsymbol{X} and \boldsymbol{Y} are independent, whatever the dimension of \boldsymbol{X} and \boldsymbol{Y}

$$(f_{X,Y}(t,s) := \mathbb{E}exp(itX + isY), f_X(t) := \mathbb{E}exp(itX), f_Y(s) := \mathbb{E}exp(isY))$$

▶ Use a weighted L2 distance on \mathbb{R}^{p+q} between the LHS and RHS

Definition

$$V^{2}(X, Y; w) = ||f_{X,Y}(t,s) - f_{X}(t)f_{Y}(s)||_{w}^{2}$$

= $\int_{\mathbb{R}^{p+q}} |f_{X,Y}(t,s) - f_{X}(t)f_{Y}(s)|^{2}w(t,s)dtds$

Definition

$$\mathcal{V}^{2}(X,Y;w) = ||f_{X,Y}(t,s) - f_{X}(t)f_{Y}(s)||_{w}^{2}$$

$$= \int_{\mathbb{R}^{p+q}} |f_{X,Y}(t,s) - f_{X}(t)f_{Y}(s)|^{2}w(t,s)dtds$$

$$\mathcal{V}^{2}(X;w) = \mathcal{V}^{2}(X,X;w) = ||f_{X,X}(t,s) - f_{X}(t)f_{X}(s)||_{w}^{2}$$

$$= \int_{\mathbb{R}^{p+q}} |f_{X,X}(t,s) - f_{X}(t)f_{X}(s)|^{2}w(t,s)dtds$$

Definition

$$\mathcal{V}^{2}(X, Y; w) = ||f_{X,Y}(t,s) - f_{X}(t)f_{Y}(s)||_{w}^{2}$$

$$= \int_{\mathbb{R}^{p+q}} |f_{X,Y}(t,s) - f_{X}(t)f_{Y}(s)|^{2}w(t,s)dtds$$

$$\mathcal{V}^{2}(X; w) = \mathcal{V}^{2}(X, X; w) = ||f_{X,X}(t,s) - f_{X}(t)f_{X}(s)||_{w}^{2}$$

$$= \int_{\mathbb{R}^{p+q}} |f_{X,X}(t,s) - f_{X}(t)f_{X}(s)|^{2}w(t,s)dtds$$

$$\mathcal{R}(X, Y; w) = \frac{\mathcal{V}(X,Y;w)}{\sqrt{\mathcal{V}(X;w)\mathcal{V}(Y;w)}}$$

- ▶ taking weights $w(t,s) = c_p c_q |t|_p^{1+p} |s|_q^{1+q}, c_d = \frac{\pi^{(1+d)/2}}{\Gamma((1+d)/2)}$
- ▶ non-negative, $\mathcal{R}^2(X, Y; w) = 0$ iff X and Y are independent

- Where does this choice of weights come from?
 - w should be non-integrable. Otherwise it can be shown that $\lim_{\epsilon \to \infty} \mathcal{R}^2(\epsilon X, \epsilon Y; w) \to \rho^2(X, Y)$
 - 2005 result, $\int_{\mathbb{R}^d} (1 \cos\langle t, x \rangle) / |t|^{d+1} dt = c_d |x|$
 - good properties (below) "only the weight functions [w] lead to distance covariance type statistics" meaning/proof?

- ▶ Where does this choice of weights come from?
 - w should be non-integrable. Otherwise it can be shown that $\lim_{\epsilon \to \infty} \mathcal{R}^2(\epsilon X, \epsilon Y; w) \to \rho^2(X, Y)$
 - lacksquare 2005 result, $\int_{\mathbb{R}^d} (1-\cos\langle t,x
 angle)/|t|^{d+1} dt = c_d|x|$
 - good properties (below) "only the weight functions [w] lead to distance covariance type statistics" meaning/proof?
- ► The choice is interesting because it is what appears to distinguish Székeley & Rizzo from prior work using characteristic functions to measure independence. Bickel mentions:
 - Feuerverger, A. and Mureika, R.A. (1977). The empirical characterisic function and its applications. *Ann. Statistic.* 5 88-97.
 - Chen, A. and Bickel, P.J. (2005).

Outline

Postulates

Example alternative measures

Distance correlation

Statistics

Some Properties and Analogies

Test statistic

On the other hand, simple to compute statistics are part of the appeal to applied statisticians

compute Euclidean distances within samples

$$a_{kl} := |X_k - X_l|$$

$$b_{kl} := |Y_k - Y_l|$$

and arrange in a matrix

$$\begin{bmatrix} a_{11} & \dots & a_{1n} & a_{1.} \\ \vdots & \ddots & \vdots & \vdots \\ a_{n1} & \dots & a_{nn} & a_{n.} \\ \hline a_{.1} & \dots & a_{.n} & a_{..} \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix}$$

$$\begin{bmatrix} a_{11}-a_{1.} & \dots & a_{1n}-a_{1.} \\ \vdots & & \ddots & & \vdots \\ a_{n1}-a_{n.} & \dots & a_{nn}-a_{n.} \end{bmatrix}$$

$$\begin{bmatrix} a_{11} - a_{1.} - a_{.1} + a_{..} & \dots & a_{1n} - a_{1.} - a_{.n} + a_{..} \\ \vdots & & \ddots & & \vdots \\ a_{n1} - a_{n.} - a_{.n} + a_{..} & \dots & a_{nn} - a_{n.} - a_{.n} + a_{..} \end{bmatrix} =: (A_{kl})_{n \times n}$$

and analogously for B_{kl} , giving 2 centered interpoint distance matrices

Definition

$$\mathcal{V}_n^2(\boldsymbol{X}, \boldsymbol{Y}) = \frac{1}{n^2} \sum_{k,l} A_{kl} B_{kl}$$

$$\mathcal{V}_n^2(\boldsymbol{X}) = \mathcal{V}_n^2(\boldsymbol{X}, \boldsymbol{X}) = \frac{1}{n^2} \sum_{k,l} A_{kl}^2$$

$$\mathcal{R}_n^2(\boldsymbol{X}, \boldsymbol{Y}) = \frac{\mathcal{V}_n^2(\boldsymbol{X}, \boldsymbol{Y})}{\sqrt{\mathcal{V}_n^2(\boldsymbol{X})\mathcal{V}_n^2(\boldsymbol{Y})}}$$

where $X_{n \times p}$, $Y_{n \times q}$ contain n samples iid $\stackrel{d}{=} X, Y$

It turns out that this definition of $\mathcal{V}_n^2(X, Y)$ is equivalent to the empirical formulation of $\mathcal{V}(X, Y)$:

Theorem

$$\mathcal{V}_{n}^{2}(X,Y) = \frac{1}{n^{2}} \sum_{k,l} A_{kl} B_{kl} = ||f_{X,Y}^{n}(t,s) - f_{X}^{n}(t) f_{Y}^{n}(s)||_{w}^{2}$$

Here $f_{X,Y}^n(t,s) := \frac{1}{n} \sum_k^n \exp(i\langle t, X_k \rangle + i\langle s, Y_k \rangle)$ is the empirical characteristic function of the sample $(\boldsymbol{X}, \boldsymbol{Y})$, and analogously for $f_X^n(t), f_Y^n(s)$

Theorem

If X and Y are integrable, then almost surely $\lim_{n\to\infty}\mathcal{V}_n^2(\boldsymbol{X},\boldsymbol{Y})=\mathcal{V}(X,Y)$ and $\lim_{n\to\infty}\mathcal{R}_n^2(\boldsymbol{X},\boldsymbol{Y})=\mathcal{R}(X,Y)$

Theorem

If X and Y are integrable, then almost surely $\lim_{X \to X} V^2(X, Y) - V(X, Y)$ and $\lim_{X \to X} R^2(X, Y) - V(X, Y)$

$$\lim_{n\to\infty}\mathcal{V}_n^2(\boldsymbol{X},\boldsymbol{Y})=\mathcal{V}(X,Y) \text{ and } \lim_{n\to\infty}\mathcal{R}_n^2(\boldsymbol{X},\boldsymbol{Y})=\mathcal{R}(X,Y)$$

 $\mathcal{V}_n^2(\boldsymbol{X},\boldsymbol{Y})$ is biased for $\mathcal{V}^2(X,Y)$ (later work)

▶ Worked example: $X \sim bernoulli(p), Y \sim bernoulli(q)$ iid

$$A_{kl} = \begin{cases} -2\bar{X}^2, & X_k = X_l = 0 \\ -2(1 - \bar{X})^2, & X_k = X_l = 1 \\ -2(\bar{X} - \bar{X}^2), & \text{otherwise} \end{cases}$$

$$(A_{kl}) = \frac{-2}{n}(\bar{X}\mathbb{1} - X)(\bar{X}\mathbb{1}^T - X^T) =: \frac{-2}{n}u_x u_x^T$$

$$n^2 \mathcal{V}_n^2(X, Y) = \sum_{k,l} A_{kl} B_{kl} = \frac{4}{n^2} tr(u_x u_x^T u_y u_y^T) = \frac{4}{n^2} tr(u_y^T u_x u_x^T u_y)$$

$$= 4(\frac{1}{n}(Y - \mathbb{1}\bar{Y})^T (X - \mathbb{1}\bar{X}))^2 \propto Cov_{MLE}(X, Y)^2$$

▶ More generally, $|X_k - X_l| \mapsto (X_k - X_l)^2$ reduces the statistics $\mathcal{V}_n, \mathcal{R}_n$ to MLEs for usual covariance and correlation (but then we lose empirical ch. fn. formulation, scale-free property, etc.)

- ▶ For bivariate normal X, Y with correlation ρ , $\mathcal{R}^2(X, Y)$ (the population parameter) is a function of ρ
- ► Theorem: $\inf_{\rho \neq 0} \frac{\mathcal{R}(X, Y)}{|\rho|} = (4(1 + \pi/3 \sqrt{3}))^{-1/2} \approx .89$

(Source: Wikipedia/Michael Newton paper)

- ▶ scale-free property: $\mathcal{R}^n(\epsilon \mathbf{X}, \epsilon \mathbf{Y}) = \mathcal{R}^n(\mathbf{X}, \mathbf{Y})$
- ▶ $\mathcal{R}^n(\mathbf{X}, \epsilon \mathbf{Y}) = \mathcal{R}^n(\mathbf{X}, \mathbf{Y})$, might want something continuous at $\mathcal{R}^n = 0$

$$X = (1, ..., n), Y = (0, ..., 0, d)$$

$$\sum A_{ij}B_{ij} = dn(n-1)/2, \quad \sum B_{ij}^2 = nd^2, \quad \sum A_{ij}^2 = \sum (i-j)^2 = n^2(n-1)^2/6, \quad \mathcal{R}_n^2(X, Y) = \frac{dn(n-1)}{2}\sqrt{\frac{1}{nd^2}}\frac{6}{n^2(n-1)^2} = \Theta(1/\sqrt{n})$$

Outline

Postulates

Example alternative measures

Distance correlation

Statistics

Some Properties and Analogies

Test statistic

$$\mathcal{V}^2(\boldsymbol{X}, \boldsymbol{Y}) \geq 0 \ (\Rightarrow \mathcal{V}^2(\boldsymbol{X}) \geq 0) \ | \ \mathcal{V}^2(X) = 0 \ \text{iff} \ X = \mathbb{E}[X] \ \text{a.s.} \ | \ \mathcal{V}^2(a + bQX) = b^2\mathcal{V}^2(X) \ \text{for} \ Q^TQ = I \ | \ \mathcal{V}(X + Y) \leq \mathcal{V}(X) + \mathcal{V}(Y) \ \text{for} \ X, \ Y \ \text{independent} \ 0 \leq \mathcal{R}(X, Y) \leq 1$$

$$Cov[X] \ge 0$$

 $Cov[X] = 0$ iff $X = \mathbb{E}[X]$ a.s.
 $Cov[a + bAX] = b^2 A Cov[X] A^T$
 $Cov[X + Y] = Cov[X] + Cov[Y]$
 $-1 \le \rho \le 1$

$$egin{aligned} &\mathcal{V}_n^2(m{X},m{Y}) \geq 0 \ (\Rightarrow \mathcal{V}_n^2(m{X}) \geq 0) \ &\mathcal{V}_n^2(m{X}) = 0 \Rightarrow X_i = X_j, orall i,j \ &\mathcal{R}_n(m{X},m{Y}) = 1 \Rightarrow span(m{X}) = span(m{Y}) \ &\mathcal{R}_n(m{X},m{Y}) = 1 \Rightarrow m{Y} = a + bm{X}Q \ & ext{some} \ a \in \mathbb{R}^q, b \in \mathbb{R}, Q \ ext{orthogonal} \end{aligned}$$

$$Cov_n[X] \ge 0$$

 $Cov[X] = 0 \Rightarrow X_i = X_j$
 $\hat{\rho}(X, Y) = 1 \Rightarrow Y = a + bX$

Outline

Postulates

Example alternative measures

Distance correlation

Statistics

Some Properties and Analogies

Test statistic

Theorem

If X and Y are integrable, then

- ▶ under independence, $nV_n^2/(a_..b_..) \rightsquigarrow Q = \sum_1^\infty \lambda_j Z_j^2$ for Z_j iid standard normal and $\{\lambda_j\}$ nonegative constants depending on the distributions of X and Y s.t. $\mathbb{E}[Q] = 1$
 - the test rejecting when $nV_n^2/(a_..b_{..}) > z_{1-\alpha/2}^2$ is asymptotically level α
- if X and Y are dependent, $n\mathcal{V}_n^2/(a_..b_..) \to \infty$ in probability

the authors recommend permutation/randomization to get a reference distribution for small samples (used in R package)

Outline

Postulates

Example alternative measures

Distance correlation

Statistics

Some Properties and Analogies

Test statistic

"Brownian distance covariance"

- ▶ X is an \mathbb{R}^n -valued RV and U a random process on \mathbb{R}^n
- ▶ Denote $X_U = U(X) \mathbb{E}[U(X)|U]$
- ► Consider $\mathbb{E}[X_U X_U' Y_V Y_v']$
 - $ightharpoonup = \mathcal{V}^2(X,Y)$ when U,V are two independent copies of brownian motion (conditions...)
 - $ightharpoonup = Cov^2(X, Y)$ when U, V are the identity

- Székely, Rizzo, and Bakirov (2007). Measuring and testing dependence by correlation of distances. *Annals of Statistics*, 35, 2769-94.
- Székely and Bakirov (2008). Brownian covariance and CLT for stationary sequences. TR 08-01, Dept Math. and Statistics, Bowling Green State Univ.
- 3. Discussion papers in *Annals of Applied Statistics* 2009, Vol. 3, No. 4.

The 2007 paper is mostly self-contained except for a few places:

- $ightharpoonup \int_{\mathbb{R}^d} (1-\cos\langle t,x
 angle)/|t|^{d+1}dt = c_d|x|$ in Székely, Rizzo (2005)
- ▶ $\mathbb{P}[Q \ge z_{1-\alpha/2}^2] \le \alpha$ in Székely, Rizzo (2003)
- ▶ $||\zeta||^2 \stackrel{d}{=} \sum^{\infty} \lambda_j Z_j^2$ for certain Gaussian processes, ζ , results on V-statistics