Introduction

Arthur J. Redfern axr180074@utdallas.edu Aug 20, 2018

Outline

- Motivation
- Me
- Class
- Logistics
- Expectations
- Questions

Motivation

Motivation

 Welcome to the special topics in computer science convolutional neural networks course

• The goal of this lecture is to create a framework for understanding the design of the whole class and how the semester will progress

- So this introduction lecture will be a little different than the normal lectures (next class we'll start the more traditional lecture format)
 - More words
 - More stories
 - Less math

Me

Basic Info

• Grew up a little south of Richmond, Virginia

- BS in EE from University of Virginia
 - Started in chemical engineering
 - Moved to electrical engineering
 - Specialized in signal processing
- PhD in ECE from Georgia Tech
 - Thesis on Volterra systems, nonlinear generalization of convolution

Basic Info

- Moved to Dallas, Texas to work at Texas Instruments
 - Physical layer communication system design
 - Signal processing for analog systems
 - Machine learning

- Currently I manage a machine learning lab in the TI Embedded Processors organization
 - Work on algorithms, software and hardware for different applications
 - This class will cover much of the same (that's not an accident)

• Live in Plano, Texas

Class

Official Objectives

- Ability to understand, design and train convolutional neural networks
- Ability to create software for mapping convolutional neural network designs to hardware
- Ability to specify hardware for convolutional neural network optimized data movement and compute
- Ability to evaluate convolutional neural network performance
- Ability to apply convolutional neural networks to applications including vision, speech, language and games

Theory And Application

Problem 1: Information Extraction

• Transformation from un refined data space to data space to feature space to information space to refined information space

- Pre processing
 - Make feature extraction easier
 - Data cleaning, dimensionality reduction, ...
 - Frequently uses application specific side information

- Feature extraction
 - Make prediction easier
 - Hand engineered or learned

Information Extraction

- Prediction
 - Classification (discrete)
 - Regression (continuous)

- Post processing
 - Clean up predictions
 - Frequently uses application specific side information

Definitions (Not Webster Quality)

- Intelligence is the ability to acquire and apply knowledge
 - Artificial intelligence is intelligence exhibited by algorithms

- Learning is the acquisition of knowledge from experience
 - Machine learning is learning from data (experience) applied to an algorithm such that it exhibits artificial intelligence
 - Deep learning is machine learning applied to a deep structure

How CNNs Fit In

- CNNs are deep structures trained using deep learning to exhibit artificial intelligence
 - Perform both feature extraction and prediction

- This semester we'll look at design and training CNNs
 - Tail body head approach to design
 - Supervised learning using back propagation and a variant of stochastic gradient descent for training

- Neural networks are universal approximators
 - Can work on all sorts of problems

Generic Neural Network Fragment

Generic CNN Fragment

CNN style 2D convolution Pooling Matrix multiplication Bias ReLU

. . .

Why

- Why now
 - Data
 - Compute
 - Better network designs
 - Better training algorithms
 - Snowball of success

- Why this is important in practice
 - Instrumentation of everything (objects, people, spaces)
 - Analysis of data, decision optimization and heuristic replacement
 - Successful applications
 - Vision, speech, language, games, ...

Problem 2: Data Generation

- Mapping of information to data
 - Not the typical focus of a machine learning class (this class is no exception)
 - But we'll talk about it a little
 - Examples: labels to images, words to sounds, ...

- Data generation problems are the complement of information extraction problems
 - Can be used as an alternative input to information extraction
 - Synthetic vs natural options
 - Synthetic is helpful when natural is difficult
 - Can use CNNs as a component of data generation

Background And Implementation

- So far
 - What we've talked about will be discussed in the (2) theory and (4) application parts of the course
 - 2 other key parts of the course are (1) background and (3) implementation

Background And Implementation

- How background applies to information extraction and data generation
 - Linear algebra
 - CNN style 2D convolution
 - Fully connected layers
 - Computation strategies later used in hardware, ...
 - Calculus
 - Back propagation and weight update for training
 - Limits and strategy for universal approximation, ...
 - Probability
 - Training extracts knowledge (information) from the training set, testing extracts information from the input given past knowledge (information) extracted from training
 - Initializing coefficients, batch norm, comparing output pdf to target pdf
 - Pdf of the output of a FFT or matrix multiplication, compression, ...

Background And Implementation

- How implementation applies to information extraction and data generation
 - Software
 - High level application specification
 - Low level software runtime
 - Bridge between network specification and hardware implementation
 - Hardware
 - Memory, data movement and compute to run the software that runs the network
 - We'll consider the co design of software and hardware using a low level graph framework to unite them both

This Class In Context

- Not comprehensive of all convolutional neural network information
 - What is presented in lecture is less than what is in the references
 - What is in the references is less than all information on the topic
- A role of a professor is a guide through information and I'll attempt to provide that in this class
 - But realize that there's a lot more useful information out there that could later be critical to you depending on the specifics of your interests
- So an unofficial goal of this class (perhaps more important than any of the official goals) is to help you learn how to learn in this field

Logistics

Grades

- 4 parts of the semester
 - Background
 - Theory
 - Implementation
 - Application
- 4 components of the grade (no final)
 - 25% background and theory test
 - 25% implementation tool
 - 25% project
 - 25% homework

Background And Theory Test

Covers

• Background: linear algebra, calculus and probability

• Theory: machine learning and convolutional neural networks

Format

- In class closed book
- Pencil and paper only

Goals

Make sure that key concepts are well understood from each chapter

Implementation Tool

Tools are critical to making practical progress in CNNs

- Examples of tools
 - High level network design
 - Creating networks from building blocks
 - Visualization
 - High level network training
 - · Monitoring and optimization
 - Transformation
 - Quantization
 - Low level graph software runtime
 - High level to low level mapping and compilation
 - Performance prediction

Implementation Tool

- Format
 - Designed to complement the implementation part
 - Basic idea is to create a tool and also give a quick ~ 1 min demo in class
 - Details closer to time

Project

- Can be on anything related to the class
 - Theory, implementation or application

- Requirements
 - I approve

- Sources
 - Ideas I provide (I'll give many)
 - Ideas related to your thesis work
 - Ideas related to your hobbies
 - Ideas out of nowhere you find interesting

Project

- Format
 - Work in groups of 1-3 (average size 2 for ~ 30 projects)
 - 4 min presentation / demonstration ((4 + 1) x 30 = 150 min so we'll use \sim 2.5 classes at the end)
- Expectations
 - Make it meaningful
 - I want to be impressed

Homework

- Basic strategy is to assign on Wed, due the following Wed
 - Most weeks

- Goal is to make it useful for understanding but not tedious
 - Some overlap of key ideas in class that need quiet time and thought
 - Some new ideas not covered in class
 - Some fun (reading, videos / movies)

Practice And Review Lectures

- I want people to get setup as early as possible with a high level framework
 - Pick 1 (I don't care): PyTorch, TensorFlow, Caffe, ...

- More uses of these lectures.
 - Review previous material
 - Brainstorm ideas for projects etc.

Class Web Site

• GitHub: https://github.com/arthurredfern/UT-Dallas-CS-6301-CNNs

Syllabus Course syllabus, will update plan as necessary

Lectures Post after class

• References Book (early draft form, also see references), links to others

Homework (Usually) post on Wed due next Wed

• Tests Will eventually contain theory test

Tools Will eventually contain implementation tool information

Projects Will eventually contain project information

Code Update as necessary

Expectations

Of Me

My best every class

- My opinions
 - It's a special topics class

- I speak to adults like adults
 - It's a grad class
 - I want to be precise
 - But I don't want to make things unnecessarily complicated

Of Me

- A logically laid out plan for both the whole course and individual lectures
- A willingness to modify the plan as needed
 - It's a new class
- I don't have perfect knowledge with respect to how long different topics will take
 - If I go short in a lecture we'll figure out a way to make use of the extra time
 - If I run out of time in a lecture we'll make it up in the next lecture or have reading for homework (implementation and applications parts lengths are flexible)

Of Me

- I don't have perfect knowledge of what you do and don't know
 - The course covers a lot.
 - It's unlikely that you have a perfect background in everything
 - That's ok
 - Part of the purpose of the course will be to fill in those gaps
 - I'll help via the structuring of the material

Of Students

- Honesty
 - In your work
 - In your interactions with other students
 - In your interactions with me

- Hard work
 - Nothing meaningful in life is easy
 - This won't be an exception

- Correct me if I'm wrong
 - Politely

Of Students

- Friendly environment
 - Great to shine as an individual through individual accomplishments
 - Great to shine by helping others shine
 - Characteristic of a leader

- Be engaged
 - Ask questions freely

- I would like to learn everyone's name
 - Help me out and say it when you ask a question

Questions