Roll No: 20PH20014

Name: Jessica John Britto

Optics Lab PH29204

EXPERIMENT-4

Determination of Cauchy's constants

Aim: To determine Cauchy's constants of the given prism using a mercury vapor lamp.

Apparatus: Spectrometer, Prism, Mercury Vapor Lamp, Prism clamp, Magnifying glass.

Theory: The refractive index of a material depends upon wavelength. Cauchy gave an empirical relation between refractive index (μ) and wavelength (λ) which is:

$$\mu = A + \frac{B}{\lambda^2}$$

Here, A and B are known as Cauchy's constants

This equation is of the form: y = mx + c. Hence, plotting a between μ and $\frac{1}{\lambda^2}$ would give us the constants A and B. The value of Cauchy's constant A is given by the intercept on the y-axis and the value of B is given by the slope of the line.

From the graph above, we get - OR = A and B = $tan\theta = \frac{PN}{QN}$

Apparatus set up

Working Formula-

The refractive index of the material at various wavelengths can be determined by the formula shown below:

$$\mu = \frac{\left(\frac{A+\delta_m}{2}\right)}{\sin\frac{A}{2}} \quad (1)$$

• A = Angle of the prism

$$\mu = A + \frac{B}{\lambda^2}$$
 (2)

Observations:

Table-1: Vernier constant of the spectrometer

Divisions (say, m) of the vernier scale = Divisions (say, n) of the vernier scale

Value of 1 smallest main scale division (l_1) (Min. or sec.)	Value of 1 vernier division $\left(l_2 = \frac{n}{m} \times l_1\right)$ (Min. or sec.)	Vernier constant $= (l_1 - l_2)$ (Min. or sec.)
$l_1 = 30'$	$l_2 = \frac{59}{60} \times 30' = \left(\frac{59}{2}\right)'$	Vernier constant $= \left(30' - \left(\frac{59}{2}\right)'\right) = 30'' = \delta_s$

Table-2: ANGLE OF PRISM

3003747534

598

2642210088

254

129°41'

129°32′

90°20'

90°20'

Yellow

Orange

5769.9

6152.0

Vernier no.	Reading at the 1 st position of the telescope		Reading at the 2 nd position of the telescope				2A	Mean 2A	A - C/2		
	Main scale (M)	Vernier scale (V)	Total (T) = M + V	Mean T	Main scale (M)	vernier scale (V)	Total (T) = M + V	Mean T = b		= (a+b)/2 $= C$	A = C/2
1	31°	35	31°17′30′ ′	31°14′0″	152°	21	152°10′3 0″	152°24′ 30″	121°10′30″		
	31°	21	31°10′30′ ′	$(=a_1)$	151°	77	151°38′3 0″	$(=a_2)$	$a_2 - a_1 = a$	121°17′2	60°38′52.5″
2	210°	9	210°4′30′ ′	210°5′45′	331°	60	331°30′0′ ′	331°35′ 15″	121°24′15″	2.5"	= 60.64°
	211°	14	211°7 '0"	(= b ₁)	331°	81	331°40′30	$(=b_2)$	$b_2 - b_1 = b$		

Table-3: Refractive index of the prism for the different spectral lines of mercury source

Direct reading of the image for left vernier $D_1 = 90^{\circ}20'$ Direct reading of the image for right vernier $D_2 = 270^{\circ}20'30''$

Vernier VVernier VTelescope readings Mean dev. Colour Wavelength **Reading for** of Min. dev. min. Reading for $(in A^{\circ})$ spectral Min. dev. deviation min. deviation D_2 $\delta_{1} = T_{1} - D_{1}$ line $(in m^{-2})$ position position (T₁) (T_1) 6106277224 270°20′ 311°4′ 4046.8 90°20′ 40°43'0" 40°43'30" 40°43'15" Violet 131°3′ 1.532 30" 653.8 5264604538 270°20′ 90°20′ 40°24'0" 40°14'30" 40°19′15" Blue 4358.3 130°44' 310°45′ 1.528 138.7 30" Blue 4136854500 270°20′ 130°7′ 90°20' 39°47'0" 39°47'30" 40°47′15″ 4916.6 310°8′ 1.533 30" green 550.8 3353539021 270°20′ 5460.7 129°52′ 90°20′ 39°32'0" 309°51′ 39°30'30" 39°31′15" 1.533 Green 873.5 30"

39°21′0″

39°12'0"

270°20′

30"

270°20′

30"

39°19'30"

39°14'30"

39°20'15"

39°13′15"

1.517

1.515

309°40′

309°35′

Graph:

X-axis: 1 unit = 10^9 m⁻² Y-axis: 1 unit = 10^{-2}

Calculations:

Using the least squared method, we can find the best-fit curve-

Slope (m) =
$$\frac{\sum_{i=1}^{n} x_{i} y_{i} - (\sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i})}{\sum_{i=1}^{n} x_{i}^{2} - (\sum_{i=1}^{n} x_{i})}$$

Intercept (b) =
$$\frac{\sum_{i=1}^{n} y_i - m \sum_{i=1}^{n} x_i}{n}$$

where n = number of datapoints

Upon substituting the values of the datapoints in the above equations, we get the slope (m) as 4.917×10^{-15} and the intercept (b) as 1.5039 which are the same as those obtained from the graph.

Therefore, from the graph, the values of Cauchy's constants are-

A = intercept (b) =
$$1.5039$$

B = slope (m) = 4.917×10^{-15} m²

These constants can also be calculated considering the two refractive indices μ_1 and μ_2 of the prism and corresponding wavelengths λ_1 and λ_2 respectively.

Now,

$$egin{aligned} \mu_1 &= A + rac{B}{\lambda_1^2} \ \mu_2 &= A \,+ rac{B}{\lambda_2^2} \end{aligned}$$

From these equations, we get-

$$B = rac{(\mu_1 - \mu_2)\lambda_1^2\lambda_2^2}{\lambda_2^2 - \lambda_1^2} \ A = \mu_1 - rac{(\mu_1 - \mu_2)\lambda_2^2}{\lambda_2^2 - \lambda_1^2} = \mu_2 - rac{(\mu_1 - \mu_2)\lambda_1^2}{\lambda_2^2 - \lambda_1^2}$$

Therefore, using the readings 1 and 2 (violet and blue) from table-3, we get A = 1.5112

$$B = 0.0065346078 \times 10^{-12} \text{ m}^2$$

Error Analysis:

Working Formula-

The values of Cauchy's constants can be calculated using the following formula-

$$\mu = A + \frac{B}{\lambda^2}$$

Differentiating the above equation, we get-

$$\Delta \mu = \Delta A + \frac{\Delta B}{\lambda^2}$$
 (Since, λ is given)

 ΔA to be order of $\Delta \mu$ and ΔB is the order of $\Delta \mu \lambda^2$

$$\begin{split} \ln \mu &= \, \ln \sin \left(\frac{\theta + \delta_m}{2} \right) + \ln \sin \frac{\theta}{2} \\ \frac{\Delta \mu}{\mu} &= \, \cot \left(\frac{\theta + \delta_m}{2} \right) \cdot \left(\frac{\Delta \theta}{2} + \frac{\Delta \delta_m}{2} \right) + \cot \frac{\theta}{2} \cdot \frac{\Delta \theta}{2} \\ \frac{\Delta \mu}{\mu} &= \frac{1}{2} \cot \left(\frac{\theta + \delta_m}{2} \right) \cdot (\Delta \theta + 2\Delta \theta) + \frac{1}{2} \cot \left(\frac{\theta}{2} \right) \cdot \Delta \theta \\ \text{Since } |\Delta \delta_m| &= 2|\Delta \theta| \\ \text{And } |\Delta \theta| &= 30'' = 1.454 \, X \, 10^{-4} rad \\ \therefore \frac{\Delta \mu}{\mu} &= \frac{3}{2} \cot \left(\frac{\theta + \delta_m}{2} \right) \cdot \Delta \theta + \frac{1}{2} \cot \left(\frac{\theta}{2} \right) \cdot \Delta \theta \\ \Delta \mu &= \frac{3}{2} \cot \left(\frac{\theta + \delta_m}{2} \right) \cdot \Delta \theta \cdot \mu + \frac{1}{2} \cot \left(\frac{\theta}{2} \right) \cdot \Delta \theta \cdot \mu \\ &- (\mathrm{i}) \end{split}$$

Given the least count is 1V in radians = 1 arc minute = 0.000291 radian.

$$\mu = \frac{\sin\frac{A+d_m}{2}}{\sin\frac{A}{2}}$$

Taking log on both sides of the above equation and then differentiating, we get-

$$\frac{\Delta\mu}{\mu} = \cot\frac{A+d}{2}\left(\frac{\Delta A}{2} + \frac{\Delta d}{2}\right) + \frac{\Delta A}{2}\cot\frac{A}{2}$$

And we know that-

 $\Delta d = 2 \Delta \theta = 2 \times 1 V$ in radians

 $\Delta A = \Delta \theta = 1V \text{ in radians}$

For Violet Light,

On substituting the values in equation (i), we get-

 $\Delta \mu = 0.000468533$

$$\frac{\Delta \mu}{\mu} = 3.05831 \times 10^{-4}$$

Therefore, the percentage error in μ is 3.05831 x 10⁻²

The error in μ is 0.000468533

The refractive index of violet color is 1.532

Therefore, the error in the Cauchy's constants are -

 $\Delta A \approx 0.000468533$ and $\Delta B = 0.000468533$ x $(4046.8 \times 10^{-10})^2 \approx 7.627 \times 10^{-17}$ m²

Similarly, ΔA and ΔB can be calculated for all other spectral lines.

Results:

- 1. The values of Cauchy's constants are
 - a. A = 1.5039 with a percentage error of 0.0306%, i.e, $A = 1.5039 \pm 0.0004$
 - b. $B = 4.917 \times 10^{-15} \text{ m}^2 \text{ with an error of } 0.076 \times 10^{-15} \text{ m}^2,$ i.e.

 $B = (4.917 \pm 0.076) \times 10^{-15} \text{ m}^2$

2. The angle of prism is 60.64°

Precaution:

- 1. Spectrometer levelling and adjustments should be properly done.
- 2. The slit should be sharp and vertical.
- 3. The position of angle of minimum deviation should be accurately determined.
- 4. The refracting surfaces of the prism should not be touched with fingers.
- 5. Zero error must be noted in the measuring instruments.
- 6. To reduce statistical error in measurements, at least 3-5 readings must be taken.
- 7. Parallax and back-lash errors during measurement must be avoided.
- 8. The telescope and the collimator should be separately set for parallel rays.