Lecture 3: A posteriori error analysis by flux reconstruction

Pr. Ismail Merabet

Univ. of K-M-Ouargla

October 30, 2024

Lecture 3: A posteriori error analysis by flux reconstruction

Pr. Ismail Merabet

Univ. of K-M-Ouargla

October 30, 2024

Contents

- Introduction
- Prager-Synge equality
- 3 Potential and flux reconstructions
- 4 A reliable a posteriori error estimate

The Laplace equation in multiple space dimensions

For $f \in L^2(\Omega)$, we consider the Laplace equation which consists of find $ingu: \Omega \to \mathbb{R}$ such that

$$\begin{cases} -\Delta u = f \text{ in } \Omega \\ u = 0 \text{ on } \partial \Omega \end{cases}$$
 (1)

The classical problem (1) does not have a classical solution (i.e., $u \in C^2(\bar{\Omega})$) in general.

The Laplace equation in multiple space dimensions

For $f \in L^2(\Omega)$, we consider the Laplace equation which consists of find $ingu: \Omega \to \mathbb{R}$ such that

$$\begin{cases} -\Delta u = f \text{ in } \Omega \\ u = 0 \text{ on } \partial \Omega \end{cases}$$
 (1)

The classical problem (1) does not have a classical solution (i.e., $u \in C^2(\bar{\Omega})$) in general. We are thus again led to the variational formulation. In order to define u, we set the variational formulation

$$\begin{cases}
\operatorname{Find} u \in H_0^1(\Omega) \text{ such that} \\
(\nabla u, \nabla v) = (f, v) \quad \forall v \in H_0^1(\Omega)
\end{cases} \tag{2}$$

The Laplace equation in multiple space dimensions

For $f \in L^2(\Omega)$, we consider the Laplace equation which consists of find $ingu: \Omega \to \mathbb{R}$ such that

$$\begin{cases} -\Delta u = f \text{ in } \Omega \\ u = 0 \text{ on } \partial \Omega \end{cases}$$
 (1)

The classical problem (1) does not have a classical solution (i.e., $u \in C^2(\bar{\Omega})$) in general. We are thus again led to the variational formulation. In order to define u, we set the variational formulation

$$\begin{cases}
\operatorname{Find} u \in H_0^1(\Omega) \text{ such that} \\
(\nabla u, \nabla v) = (f, v) \quad \forall v \in H_0^1(\Omega)
\end{cases} \tag{2}$$

The existence and uniqueness of a solution of (2) is ensured by the Riesz representation theorem (or by the Lax-Milgram theorem).

Definition. (Flux)

Let u be the solution of (2). Set

$$\sigma := -\nabla u \tag{3}$$

We will call σ the flux.

Definition. (Flux)

Let u be the solution of (2). Set

$$\sigma := -\nabla u \tag{3}$$

We will call σ the flux.

We recall the definitions of the spaces $H_0^1(\Omega)$ and $\mathbf{H}(\operatorname{div},\Omega)$, we have:

$$H_0^1(\Omega) := \{ v \in L^2(\Omega); \nabla v \in (L^2(\Omega))^d; \gamma_0(v) := v|_{\partial\Omega} = 0 \}$$

 $H(\text{div}, \Omega) := \{ \tau \in (L^2(\Omega))^d; \text{ div } \tau \in L^2(\Omega) \}$

Definition. (Flux)

Let u be the solution of (2). Set

$$\sigma := -\nabla u \tag{3}$$

We will call σ the flux.

We recall the definitions of the spaces $H_0^1(\Omega)$ and $\mathbf{H}(\operatorname{div},\Omega)$, we have:

$$H_0^1(\Omega) := \{ v \in L^2(\Omega); \nabla v \in (L^2(\Omega))^d; \gamma_0(v) := v|_{\partial\Omega} = 0 \}$$

 $H(\text{div}, \Omega) := \{ \tau \in (L^2(\Omega))^d; \text{ div } \tau \in L^2(\Omega) \}$

Theorem 1. (Properties of the weak solution)

Let u be the solution of (2). Let σ be given by (3).

Definition. (Flux)

Let u be the solution of (2). Set

$$\sigma := -\nabla u \tag{3}$$

We will call σ the flux.

We recall the definitions of the spaces $H_0^1(\Omega)$ and $\mathbf{H}(\text{div},\Omega)$, we have:

$$H_0^1(\Omega) := \{ v \in L^2(\Omega); \nabla v \in (L^2(\Omega))^d; \gamma_0(v) := v|_{\partial\Omega} = 0 \}$$

 $H(\text{div}, \Omega) := \{ \tau \in (L^2(\Omega))^d; \text{ div } \tau \in L^2(\Omega) \}$

Theorem 1. (Properties of the weak solution)

Let u be the solution of (2). Let σ be given by (3). Then

$$u \in H_0^1(\Omega), \quad \boldsymbol{\sigma} \in \mathbf{H}(\operatorname{div}, \Omega), \quad \operatorname{div} \, \boldsymbol{\sigma} = f$$

Theorem 2. (Prager-Synge equality)

Let $u \in H_0^1(\Omega)$ be the solution of the continuous problem,

Theorem 2. (Prager-Synge equality)

Let $u \in H_0^1(\Omega)$ be the solution of the continuous problem, $u_h \in H_0^1(\Omega)$ and

Theorem 2. (Prager-Synge equality)

Let $u \in H_0^1(\Omega)$ be the solution of the continuous problem, $u_h \in H_0^1(\Omega)$ and $\sigma_h \in \mathbf{H}(\operatorname{div}, \Omega)$ with $\operatorname{div} \sigma_h = f$ be arbitrary.

Theorem 2. (Prager-Synge equality)

Let $u \in H_0^1(\Omega)$ be the solution of the continuous problem, $u_h \in H_0^1(\Omega)$ and $\sigma_h \in \mathbf{H}(\operatorname{div}, \Omega)$ with $\operatorname{div} \sigma_h = f$ be arbitrary. Then

$$\|\nabla (u - u_h)\|^2 + \|\nabla u + \sigma_h\|^2 = \|\nabla u_h + \sigma_h\|^2$$
 (4)

Proof.

Adding and subtracting ∇u , we develop

$$\|\nabla u_{h} + \sigma_{h}\|^{2} = \|\nabla (u_{h} - u) + \nabla u + \sigma_{h}\|^{2}$$

= $\|\nabla (u_{h} - u)\|^{2} + \|\nabla u + \sigma_{h}\|^{2} + 2(\nabla (u_{h} - u), \nabla u + \sigma_{h})$

Theorem 2. (Prager-Synge equality)

Let $u \in H_0^1(\Omega)$ be the solution of the continuous problem, $u_h \in H_0^1(\Omega)$ and $\sigma_h \in \mathbf{H}(\operatorname{div}, \Omega)$ with $\operatorname{div} \sigma_h = f$ be arbitrary. Then

$$\|\nabla (u - u_h)\|^2 + \|\nabla u + \sigma_h\|^2 = \|\nabla u_h + \sigma_h\|^2$$
 (4)

Proof.

Adding and subtracting ∇u , we develop

$$\|\nabla u_{h} + \sigma_{h}\|^{2} = \|\nabla (u_{h} - u) + \nabla u + \sigma_{h}\|^{2}$$

= $\|\nabla (u_{h} - u)\|^{2} + \|\nabla u + \sigma_{h}\|^{2} + 2(\nabla (u_{h} - u), \nabla u + \sigma_{h})$

But

$$(\nabla (u_h - u), \nabla u + \sigma_h) = (u_h - u, - \text{div } (\nabla u + \sigma_h)) = (u_h - u, f - f) = 0$$
 whence the assertion follows.

Under the assumptions of previous Theorem, it follows from (4) that

$$\|\nabla (u - u_h)\| \le \|\nabla u_h + \sigma_h\| \tag{5}$$

Under the assumptions of previous Theorem, it follows from (4) that

$$\|\nabla (u - u_h)\| \le \|\nabla u_h + \sigma_h\| \tag{5}$$

This is an estimate on the error $\|\nabla (u - u_h)\|$ and has been at the origin of a posteriori analysis from the fundamental works of Mikhlin [74] or Ladevèze [70].

Under the assumptions of previous Theorem, it follows from (4) that

$$\|\nabla (u - u_h)\| \le \|\nabla u_h + \sigma_h\| \tag{5}$$

This is an estimate on the error $\|\nabla (u - u_h)\|$ and has been at the origin of a posteriori analysis from the fundamental works of Mikhlin [74] or Ladevèze [70]. It is practically infeasible to obtain a suitable flux σ_h which satisfies exactly div $\sigma_h = f$ for general $f \in L^2(\Omega)$.

Under the assumptions of previous Theorem, it follows from (4) that

$$\|\nabla (u - u_h)\| \le \|\nabla u_h + \sigma_h\| \tag{5}$$

This is an estimate on the error $\|\nabla (u - u_h)\|$ and has been at the origin of a posteriori analysis from the fundamental works of Mikhlin [74] or Ladevèze [70]. It is practically infeasible to obtain a suitable flux σ_h which satisfies exactly div $\sigma_h = f$ for general $f \in L^2(\Omega)$. It is, though, possible to obtain σ_h in a finite-dimensional subspace V_h of $H(\text{div}, \Omega)$, such that

$$\operatorname{div}\,\boldsymbol{\sigma}_h=\Pi_{Q_h}f.$$

Here $Q_h \subset L^2(\Omega)$ and $\Pi_{Q_h} f$ is the $L^2(\Omega)$ -orthogonal projection onto Q_h .

Under the assumptions of previous Theorem, it follows from (4) that

$$\|\nabla (u - u_h)\| \le \|\nabla u_h + \sigma_h\| \tag{5}$$

This is an estimate on the error $\|\nabla (u - u_h)\|$ and has been at the origin of a posteriori analysis from the fundamental works of Mikhlin [74] or Ladevèze [70]. It is practically infeasible to obtain a suitable flux σ_h which satisfies exactly div $\sigma_h = f$ for general $f \in L^2(\Omega)$. It is, though, possible to obtain σ_h in a finite-dimensional subspace V_h of $H(\text{div}, \Omega)$, such that

$$\operatorname{div}\,\boldsymbol{\sigma}_h=\Pi_{Q_h}f.$$

Here $Q_h \subset L^2(\Omega)$ and $\Pi_{Q_h} f$ is the $L^2(\Omega)$ -orthogonal projection onto Q_h . Then the remaining difference between f and $\Pi_{Q_h} f$ can be treated, giving rise to the so-called data oscillation. Next, we will be inspired by the above result.

Next, we will be inspired by the above result. We will in particular show how to construct a suitable σ_h such that :

$$\mathsf{div}\; \boldsymbol{\sigma}_h = \Pi_{Q_h} f.$$

Importantly, the construction of σ_h will be local, over patches of mesh elements, in contrast to some initial developments where a costly global solve over the entire domain Ω was necessary.

Next, we will be inspired by the above result. We will in particular show how to construct a suitable σ_h such that :

$$\operatorname{div}\,\boldsymbol{\sigma}_h=\Pi_{Q_h}f.$$

Importantly, the construction of σ_h will be local, over patches of mesh elements, in contrast to some initial developments where a costly global solve over the entire domain Ω was necessary. We will also directly treat nonconforming approximate solutions not satisfying the assumptions of Theorem 2 but merely verifying $u_h \in H^1(\mathcal{T}_h)$.

Approximate solution

In order to make the presentation general, not restricted to any particular numerical method, we are led to suppose here that the approximate solution u_h that we are given satisfies

Approximate solution

In order to make the presentation general, not restricted to any particular numerical method, we are led to suppose here that the approximate solution u_h that we are given satisfies

$$u_h \in H^1\left(\mathcal{T}_h\right) \tag{6}$$

where $H^1(\mathcal{T}_h)$ is the broken Sobolev space.

Approximate solution

In order to make the presentation general, not restricted to any particular numerical method, we are led to suppose here that the approximate solution u_h that we are given satisfies

$$u_h \in H^1\left(\mathcal{T}_h\right) \tag{6}$$

where $H^1(\mathcal{T}_h)$ is the broken Sobolev space. In analogy with the 1d case we set:

Definition (Approximate flux)

Let u_h be the approximate solution of u. We will call

$$-\nabla u_h$$
 (7)

the approximate flux.

Potential reconstruction

Remark. (Properties of the approximate solution u_h)

Let u_h be the approximate solution (see 6). Then

$$u_h \notin H^1_0(\Omega), \quad -\nabla u_h \notin \boldsymbol{H}(\operatorname{div}, \Omega), \quad \operatorname{div} (-\nabla u_h) \neq f \quad \text{ in general.} \quad (8)$$

Potential reconstruction

Remark. (Properties of the approximate solution u_h)

Let u_h be the approximate solution (see 6). Then

$$u_h \notin H_0^1(\Omega), \quad -\nabla u_h \notin \boldsymbol{H}(\operatorname{div}, \Omega), \quad \operatorname{div} (-\nabla u_h) \neq f \quad \text{in general.}$$
 (8)

Definition. (Potential reconstruction)

Let u_h be the approximate solution (see (6)). We will call the potential reconstruction any function s_h constructed from u_h which satisfies

$$s_h \in H_0^1(\Omega) \tag{9}$$

In order to obtain satisfactory result we will impose that the flux reconstruction σ_h lies in the correct functional space, but we will also prescribe a condition on its divergence.

Potential reconstruction

Remark. (Properties of the approximate solution u_h)

Let u_h be the approximate solution (see 6). Then

$$u_h \notin H_0^1(\Omega), \quad -\nabla u_h \notin \boldsymbol{H}(\operatorname{div}, \Omega), \quad \operatorname{div} (-\nabla u_h) \neq f \quad \text{in general.}$$
 (8)

Definition. (Potential reconstruction)

Let u_h be the approximate solution (see (6)). We will call the potential reconstruction any function s_h constructed from u_h which satisfies

$$s_h \in H_0^1(\Omega) \tag{9}$$

In order to obtain satisfactory result we will impose that the flux reconstruction σ_h lies in the correct functional space, but we will also prescribe a condition on its divergence. This is linked to the fact that on the continuous level, div $\sigma=f$.

Equilibrated flux reconstruction

Definition. (Equilibrated flux reconstruction)

We will call the equilibrated flux reconstruction any function σ_h constructed from u_h which satisfies

$$\sigma_h \in \mathbf{H}(\operatorname{div},\Omega),$$
 (10)

$$(\operatorname{div} \boldsymbol{\sigma}_h, 1)_K = (f, 1)_K \quad \forall K \in \mathcal{T}_h$$
 (11)

Equilibrated flux reconstruction

Definition. (Equilibrated flux reconstruction)

We will call the equilibrated flux reconstruction any function σ_h constructed from u_h which satisfies

$$\sigma_h \in \mathbf{H}(\mathsf{div},\Omega),$$
 (10)

$$(\operatorname{div} \boldsymbol{\sigma}_h, 1)_K = (f, 1)_K \quad \forall K \in \mathcal{T}_h$$
 (11)

We give here a posteriori error estimate on the distance between u, the unknown solution of (2), and u_h , the known approximate solution characterized by (6). Note that it gives a guaranteed upper bound.

Theorem. (A general a posteriori error estimate for (1)-(??))

Let u be the weak solution of (2). Let u_h be an arbitrary function satisfying (6). Let s_h be a potential reconstruction and σ_h an equilibrated flux reconstruction For any $K \in \mathcal{T}_h$, define the indicators:

$$\eta_{\mathrm{R},K} := \frac{h_K}{\pi} \| f - \operatorname{div} \, \boldsymbol{\sigma}_h \|_K, \quad \eta_{\mathrm{F},K} := \| \nabla u_h + \sigma_h \|_K, \tag{12}$$

and the nonconformity estimator by

$$\eta_{\text{NC},K} := \|\nabla \left(u_h - s_h \right) \|_{K} \tag{13}$$

Then

$$\|\nabla (u - u_h)\|^2 \le \sum_{K \in \mathcal{T}_h} (\eta_{F,K} + \eta_{R,K})^2 + \sum_{K \in \mathcal{T}_h} \eta_{NC,K}^2$$
 (14)

Proof.

Let us define a function $s \in H_0^1(\Omega)$ by

$$(\nabla s, \nabla v) = (\nabla u_h, \nabla v) \quad \forall v \in H_0^1(\Omega)$$
 (15)

Proof.

Let us define a function $s \in H_0^1(\Omega)$ by

$$(\nabla s, \nabla v) = (\nabla u_h, \nabla v) \quad \forall v \in H_0^1(\Omega)$$
 (15)

Then,

$$\|\nabla (u - u_h)\|^2 = \|\nabla (u - s)\|^2 + \|\nabla (s - u_h)\|^2$$
 (16)

Proof.

Let us define a function $s \in H_0^1(\Omega)$ by

$$(\nabla s, \nabla v) = (\nabla u_h, \nabla v) \quad \forall v \in H_0^1(\Omega)$$
 (15)

Then,

$$\|\nabla (u - u_h)\|^2 = \|\nabla (u - s)\|^2 + \|\nabla (s - u_h)\|^2$$
 (16)

This follows from the fact that:

$$\|\nabla (u - u_h)\|^2 = \|\nabla (u - s + s - u_h)\|^2$$

$$= \|\nabla (u - s)\|^2 + \|\nabla (s - u_h)\|^2 + 2(\nabla (u - s), \nabla (s - u_h))$$

Moreover,

$$\|\nabla (s - u_h)\|^2 = \min_{w \in H_0^1(\Omega)} \|\nabla (w - u_h)\|^2$$
 (17)

Moreover,

$$\|\nabla(s - u_h)\|^2 = \min_{w \in H_0^1(\Omega)} \|\nabla(w - u_h)\|^2$$
 (17)

Indeed, we actually have the property (16) for any function $w \in H_0^1(\Omega)$ (any other information about u than $u \in H_0^1(\Omega)$ was not used),

$$\|\nabla (w - u_h)\|^2 = \|\nabla (w - s)\|^2 + \|\nabla (s - u_h)\|^2$$
 (18)

from where do we get

$$\|\nabla (s - u_h)\|^2 = \|\nabla (w - u_h)\|^2 - \|\nabla (w - s)\|^2 \le \|\nabla (w - u_h)\|^2 \quad (19)$$

Moreover,

$$\|\nabla (s - u_h)\|^2 = \min_{w \in H_0^1(\Omega)} \|\nabla (w - u_h)\|^2$$
 (17)

Indeed, we actually have the property (16) for any function $w \in H_0^1(\Omega)$ (any other information about u than $u \in H_0^1(\Omega)$ was not used),

$$\|\nabla (w - u_h)\|^2 = \|\nabla (w - s)\|^2 + \|\nabla (s - u_h)\|^2$$
 (18)

from where do we get

$$\|\nabla (s - u_h)\|^2 = \|\nabla (w - u_h)\|^2 - \|\nabla (w - s)\|^2 \le \|\nabla (w - u_h)\|^2 \quad (19)$$

Returning back to a posteriori analysis, it follows from (17) that, for the potential reconstruction s_h we have the bound

$$\|\nabla (s - u_h)\|^2 \le \|\nabla (s_h - u_h)\|^2 = \sum_{K \in \mathcal{T}_h} \eta_{NC,K}^2$$
 (20)

On the other hand, we have

$$egin{aligned} \|
abla (u-s) \| &= \sup_{arphi \in H^1_0(\Omega); \|
abla arphi \| = 1} (
abla (u-s),
abla arphi) \ &= \sup_{arphi \in H^1_0(\Omega); \|
abla arphi \| = 1} (
abla (u-u_h),
abla arphi) \end{aligned}$$

On the other hand, we have

$$\begin{split} \|\nabla(u-s)\| &= \sup_{\varphi \in H_0^1(\Omega); \|\nabla\varphi\| = 1} (\nabla(u-s), \nabla\varphi) \\ &= \sup_{\varphi \in H_0^1(\Omega); \|\nabla\varphi\| = 1} (\nabla(u-u_h), \nabla\varphi) \end{split}$$

Let $\varphi \in H^1_0(\Omega)$ with $\|\nabla \varphi\| = 1$ be fixed. Using (2) of the weak solution, we have

$$(\nabla (u - u_h), \nabla \varphi) = (f, \varphi) - (\nabla u_h, \nabla \varphi)$$
(21)

and adding and subtracting $(\sigma_h, \nabla \varphi)$, where σ_h is the equilibrated flux reconstruction and using the Green theorem

$$(\sigma_h, \nabla \varphi) = -(\operatorname{div} \sigma_h, \varphi),$$

On the other hand, we have

$$\begin{split} \|\nabla(u-s)\| &= \sup_{\varphi \in H_0^1(\Omega); \|\nabla \varphi\| = 1} (\nabla(u-s), \nabla \varphi) \\ &= \sup_{\varphi \in H_0^1(\Omega); \|\nabla \varphi\| = 1} (\nabla(u-u_h), \nabla \varphi) \end{split}$$

Let $\varphi \in H^1_0(\Omega)$ with $\|\nabla \varphi\| = 1$ be fixed. Using (2) of the weak solution, we have

$$(\nabla (u - u_h), \nabla \varphi) = (f, \varphi) - (\nabla u_h, \nabla \varphi)$$
 (21)

and adding and subtracting $(\sigma_h, \nabla \varphi)$, where σ_h is the equilibrated flux reconstruction and using the Green theorem

$$(\sigma_h, \nabla \varphi) = -(\operatorname{div} \sigma_h, \varphi),$$

we have

$$(\nabla (u - u_h), \nabla \varphi) = (f - \operatorname{div} \sigma_h, \varphi) - (\nabla u_h + \sigma_h, \nabla \varphi) \tag{22}$$

The Cauchy-Schwarz inequality gives

$$-(\nabla u_h + \sigma_h, \nabla \varphi) \leq \sum_{K \in \mathcal{T}_h} \|\nabla u_h + \sigma_h\|_K \|\nabla \varphi\|_K$$
$$= \sum_{K \in \mathcal{T}_h} \eta_{F,K} \|\nabla \varphi\|_K$$

The Cauchy-Schwarz inequality gives

$$-(\nabla u_h + \sigma_h, \nabla \varphi) \leq \sum_{K \in \mathcal{T}_h} \|\nabla u_h + \sigma_h\|_K \|\nabla \varphi\|_K$$
$$= \sum_{K \in \mathcal{T}_h} \eta_{F,K} \|\nabla \varphi\|_K$$

whereas the approximate equilibrium property (11), the Poincaré inequality, and the Cauchy-Schwarz inequality give

$$\begin{split} (f - \operatorname{div} \, \boldsymbol{\sigma}_h, \varphi) &= \sum_{K \in \mathcal{T}_h} (f - \operatorname{div} \, \boldsymbol{\sigma}_h, \varphi)_K = \sum_{K \in \mathcal{T}_h} (f - \operatorname{div} \, \boldsymbol{\sigma}_h, \varphi - \varphi_K)_K \\ &\leq \sum_{K \in \mathcal{T}_h} \frac{h_K}{\pi} \left\| f - \operatorname{div} \, \boldsymbol{\sigma}_h \right\|_K \left\| \nabla \varphi \right\|_K = \sum_{K \in \mathcal{T}_h} \eta_{R,K} \| \nabla \varphi \|_K \end{split}$$

Combining the above results while using the Cauchy-Schwarz inequality gives

$$egin{aligned} \|
abla (u-s) \|^2 & \leq \left(\sup_{arphi \in H^1_0(\Omega): \|
abla arphi \| \| } \left\{ \sum_{K \in \mathcal{T}_h} \left(\eta_{ ext{F},K} + \eta_{ ext{R},K}
ight) \|
abla arphi \|_K
ight\}
ight)^2 \ & \leq \sum_{K \in \mathcal{T}_h} \left(\eta_{ ext{F},K} + \eta_{ ext{R},K}
ight)^2 \end{aligned}$$

whence the assertion of the theorem follows.