SOLUTION OF HW2

1)

Day	ET (mm)	Rainfall (mm)		
1	12			
2	8.5			
3	10.0	35.7		
4	7.0	7.0		
5	6.5	25.5		
6	6.0			
7	8.0			
8	9.8			
9	4.0	13.5		
10	7.0			
11	7.0			
12	8.6			
13	10.0			
14	12.0			
15	9.0			
16	7.0			
17	7.0			
18	6.5	4.3		
19	5.0	18.76		
20	2.0	41.2		
21	6.5			
22	6.0			
23	7.5			
24	9.0			
25	10.4			
26	9.5			
27	11.1			
28	5.3	12.4		
29	6.3			
30	2.5			
	Σ ET = 227 mm	$\Sigma R = 158.36 \text{ mm}$		

 Σ Available water in soil = Σ R - Σ ET = 158.36 - 227 = -68.64 mm \therefore 68.64 mm irrigation water must be supplied.

Day	ET (mm)	R (mm)	H ₂ O Deficit	Initiate Irrigation	
1	12		12		
2	8.5		20.5		
3	10.0	35.7	0		
4	7.0	7.0	0		
5	6.5	25.5	0		
6	6.0		6.0		
7	8.0		14.0		
8	9.8		23.8	>22.28 Irrigate	
9	4.0	13.5	0		
10	7.0		7.0		
11	7.0		14.0		
12	8.6		22.6	>22.28 Irrigate	
13	10.0		10.0		
14	12.0		22.0		
15	9.0		31.0	>22.28 Irrigate	
16	7.0		7.0		
17	7.0		14.0		
18	6.5	4.3	16.2		
19	5.0	18.76	2.44		
20	2.0	41.2	0		
21	6.5		6.5		
22	6.0		12.5		
23	7.5		20.0		
24	9.0		29.0	>22.28 Irrigate	
25	10.4		10.4		
26	9.5		19.9		
27	11.1		31.0	>22.28 Irrigate	
28	5.3	12.4	0		
29	6.3		6.3		
30	2.5		8.8		

Soil water capacity = 10.8 cm/mRAW = 0.75 AW = 0.75 * 10.8 = 8.1 cm/m

For Irrigation = 0.5 * RAW = 4.05 cm/m

Available water for crop use = 4.05 * 0.55 = 2.228 cm = 22.28 mm.

When H_2O Deficit > 22.28 cm, Initiate irrigation

Location 40^{0} Latitude For 1980 a = 1.195 For 1981 a = 1.175

Month	1980				1981			
	$T^{0}C$	i	$L_d/12$	PET(cm)	T^0C	i	$L_d/12$	PET(cm)
June	18.20	7.071	1.25	9.7	20.30	8.343	1.25	8.5
July	22.40	9.686	1.225	8.4	21.60	9.165	1.225	8.1
Aug.	22.70	9.881	1.15	7.8	20.30	8.343	1.15	7.8

Most important parameter effecting PET is the monthly average temperature values.

4) Use Average temperatures of 1980 and 1981 of June, July and August

$$\begin{split} t_{june} &= (18.2 {+} 20.3)/2 = 19.25 \\ t_{july} &= (22.4 {+} 21.6)/2 = 22 \\ t_{Aug} &= (22.7 {+} 20.3)/2 = 21.5 \end{split}$$

Month	t	P	f	\mathbf{k}_1	k_2	k	$u = 25.4 \times k \times f$
							(mm)
June	19.25	9.95	6.632	0.8	0.46	0.37	62.3
July	22	10.10	7.232	0.8	1.46	1.17	214.9
August	21.5	9.47	6.695	0.8	1.63	1.30	221.1

5)
$$T_{max} = 28.3$$
 °C, $T_{min} = 17.2$ °C, and $T_{mean} = T_a = 22.75$ °C, $\frac{n}{N} = 0.5$ $v_6 = 13$ km/h at $h = 6$ m $v_6 = 13$ x $24 = 312$ km/d

$$PET = \left(\frac{1}{L}\right)\left(\frac{\Delta}{\Delta + \gamma} \times R_n + \frac{\gamma}{\Delta + \gamma}(15.36)(1 + 0.0062v_2)(e_s - e_d)\right)$$

$$L = 595 - 0.51 T_{mean} = 595 - 0.51 \times 22.75 = 583.4 \text{ cal/g}$$

$$\gamma = 386/583.4 = 0.662$$

$$v_2 = v_h \ln(2) / \ln(h) = 312 \cdot \ln(2) / \ln(6) = 120.7 \text{km/d}$$

 α for vegetation is about 0.22 (grass-clipped)

$$\sigma = 11.71 \times 10^{-8} \text{ cal/cm}^2 - \text{d}$$

 R_{se} can be estimated from Table 5.5 \Rightarrow $R_{se} = 975$ for latitude 30° North,

$$e = 33.86 ((7.38 \times 10^{-3} \times T + 0.807)^{8} - 1.9 \times 10^{-5} (1.8 \times T + 48) + 1.32 \times 10^{-3}) = 28.89 \text{ mb}$$

Using
$$T=T_a=22.75$$
 ^oC $e=e_s=27.615$ mb

$$T = T_{min} = 17.2$$
 ⁰C $e = e_d = 19.592$ mb

$$\Delta = de_a/dT = \ 2 \ (7.38 \ x \ 10^{\text{-}3} T + 0.807)^7 - 1.16 \ x \ 10^{\text{-}3} \ ,$$

$$\Delta = 2 (7.38 \times 10^{-3} \times 22.75 + 0.807)^7 - 1.16 \times 10^{-3} = 1.673$$

$$\frac{\Delta}{\Delta + \gamma} = \frac{1.673}{1.673 + 0.662} = 0.716$$

$$\frac{\gamma}{\Delta + \gamma} = 1 - 0.716 = 0.284$$

$$R_n = R_{se} \left(1 - \alpha \right) \left(0.18 + \frac{0.55n}{N} \right) - \sigma T_a^4 \left(0.56 - 0.08 \sqrt{e_d} \right) \left(0.10 + \frac{0.9n}{N} \right)$$

$$R_{n} = 975(1 - 0.22)(0.18 + 0.55 \cdot 0.5) - 11.71 \cdot 10^{-8} \cdot (22.75 + 273)^{4} (0.56 - 0.08\sqrt{19.592})(0.10 + 0.9 \cdot 0.5)$$

$$R_n = 244.57 \frac{\text{cal}}{\text{cm}^2 - \text{day}}$$

and

$$\left(\frac{\gamma}{\Delta + \gamma}\right) 15.36(1 + 0.0062 \times v_2)(e_s - e_d) = (0.284 \times 15.36)(1 + 0.0062 \times 120.7)(27.615 - 19.592)$$

=61.189

PET =
$$\left(\frac{1}{583}\right)$$
 $\left((0.716)(244.57) + 61.189\right) = 0.41 \frac{\text{cm}}{\text{day}}$