🖈 Analiza teoretyczna zadania

1. Klasyfikacja bayesowska: ogólny wstęp

Klasyfikacja bayesowska opiera się na regule Bayesa:

$$P(y=k\mid x)=rac{P(x\mid y=k)P(y=k)}{P(x)}$$

gdzie:

- y to zmienna docelowa (klasa 0 lub 1),
- x to wektor cech,
- ullet $P(x\mid y=k)$ to rozkład cech w klasie k,
- ullet P(y=k) to prawdopodobieństwo a priori klasy k.

Klasyfikator przypisuje nową obserwację do tej klasy, dla której $P(y=k\mid x)$ jest największe.

2. LDA — Linear Discriminant Analysis

Założenia

• Cechy są warunkowo normalne:

$$X \mid y = k \sim \mathcal{N}(\mu_k, \Sigma)$$

czyli wspólna macierz kowariancji Σ dla wszystkich klas.

• Oznacza to: brak interakcji pomiędzy cechami w kontekście rozróżniania klas.

★ Wzory

- Estymatory:
 - Średnie klas:

$$\hat{\mu}_k = rac{1}{n_k} \sum_{i: u:=k} x_i$$

Wspólna macierz kowariancji:

$$\hat{\Sigma} = rac{1}{n-2} \left(\sum_{i: y_i = 0} (x_i - \hat{\mu}_0) (x_i - \hat{\mu}_0)^T + \sum_{i: y_i = 1} (x_i - \hat{\mu}_1) (x_i - \hat{\mu}_1)^T
ight)$$

• Funkcja dyskryminacyjna (logit):

$$\delta(x) = \log\left(rac{\pi_1}{\pi_0}
ight) - rac{1}{2}(\mu_1^T \Sigma^{-1} \mu_1 - \mu_0^T \Sigma^{-1} \mu_0) + x^T \Sigma^{-1}(\mu_1 - \mu_0)$$

Prawdopodobieństwo klasy 1:

$$P(y=1\mid x)=\sigma(\delta(x))=rac{1}{1+e^{-\delta(x)}}$$

🖈 Implementacja

W klasie LDA:

- fit(x, y) : szacuje μ_0, μ_1 oraz Σ .
- ullet predict_proba(Xtest) : oblicza $\delta(x)$ i używa funkcji sigmoidalnej (expit) do uzyskania prawdopodobieństwa.
- predict(Xtest) : przypisuje klasę 1, jeśli $P(y=1\mid x)>0.5$.

• 3. QDA — Quadratic Discriminant Analysis

📌 Założenia

• Cechy są warunkowo normalne, ale z osobnymi macierzami kowariancji:

$$X \mid y = k \sim \mathcal{N}(\mu_k, \Sigma_k)$$

★ Wzory

- Estymatory:
 - Średnie jak w LDA.
 - Macierze kowariancji:

$$\hat{\Sigma}_k = rac{1}{n_k-1}\sum_{i:u_i=k}(x_i-\hat{\mu}_k)(x_i-\hat{\mu}_k)^T$$

• Funkcja dyskryminacyjna:

$$\delta(x) = \log\left(\frac{\pi_1}{\pi_0}\right) - \frac{1}{2}\log\left(\frac{|\Sigma_1|}{|\Sigma_0|}\right) - \frac{1}{2}\left[(x-\mu_1)^T\Sigma_1^{-1}(x-\mu_1) - (x-\mu_0)^T\Sigma_0^{-1}(x-\mu_0)\right]$$

• Prawdopodobieństwo klasy 1:

$$P(y = 1 \mid x) = \sigma(\delta(x))$$

Implementacja

W klasie QDA:

- fit(x, y) : estymuje μ_0, μ_1 i Σ_0, Σ_1 .
- ullet predict_proba(Xtest) : oblicza $\delta(x)$ i używa funkcji sigmoidalnej.

4. Naive Bayes (NB)

🖈 Założenia

Warunkowa niezależność cech:

$$P(x \mid y = k) = \prod_j P(x_j \mid y = k)$$

• Każda cecha jest modelowana osobno jako rozkład normalny:

$$x_j \mid y = k \sim \mathcal{N}(\mu_{kj}, \sigma_{kj}^2)$$

★ Wzory

Estymatory:

$$\hat{\mu}_{kj} = rac{1}{n_k} \sum_{i:y_i=k} x_{ij}$$

$$\hat{\sigma}_{kj}^2 = rac{1}{n_k} \sum_{i:w=k} (x_{ij} - \hat{\mu}_{kj})^2$$

Log-likelihood:

$$\log P(x \mid y = k) = \sum_{j} -rac{1}{2} \log(2\pi\sigma_{kj}^2) - rac{(x_j - \mu_{kj})^2}{2\sigma_{kj}^2}$$

• Funkcja dyskryminacyjna:

$$\delta(x) = \log\left(rac{\pi_1}{\pi_0}
ight) + \log P(x\mid y=1) - \log P(x\mid y=0)$$

Prawdopodobieństwo klasy 1:

$$P(y = 1 \mid x) = \sigma(\delta(x))$$

Implementacja

W klasie NB:

- fit(X, y) : estymuje μ_{kj} i σ_{kj}^2 .
- predict_proba(Xtest) : sumuje log-likelihoody.

• 5. Generowanie danych

Scheme 1

- Klasa 0: cechy niezależne standardowe normalne.
- Klasa 1: cechy niezależne normalne z przesuniętą średnią a.

★ Scheme 2

- Klasa 0: rozkład normalny 2D z korelacją ρ .
- Klasa 1: rozkład normalny 2D z korelacją $-\rho$.

• 6. Metryka jakości

Accuracy:

$$Accuracy = \frac{\text{liczba poprawnych klasyfikacji}}{\text{liczba wszystkich obserwacji}}$$

Podsumowanie

Twój kod:

- wwzględnia kluczowe założenia teoretyczne (np. wspólna/oddzielna macierz kowariancji w LDA/QDA, niezależność w NB).
- zawiera wzory dla obliczania dyskryminanty (logitu).
- implementuje wszystkie trzy metody w pełni od podstaw.

• Użyte wzory i funkcje w kodzie

- Sigmoid (logit): expit(x) = 1 / (1 + exp(-x))
- Średnia: np.mean()
- Kowariancja: macierze przez (X mu).T @ (X mu) / (n-1)
- Log-determinanty i inwersje: np.linalg.det() i np.linalg.inv()
- Priory: pi_k = n_k / n