Machine Learning Assignment

Logitboost

1 a

```
In [2]: import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        from sklearn.metrics import roc_curve, roc_auc_score
        from sklearn.preprocessing import StandardScaler
In [6]: def logistic_regression_scaled(X_train, y_train, X_test, y_test, k_values, learning_rate=0.1, regularization_strength=0.01):
            scaler = StandardScaler()
            X_train_scaled = scaler.fit_transform(X_train)
            X_test_scaled = scaler.transform(X_test)
            ones_train = np.ones(X_train_scaled.shape[0])
            ones_test = np.ones(X_test_scaled.shape[0])
            train_data = np.insert(X_train_scaled, 0, ones_train, axis=1)
            test_data = np.insert(X_test_scaled, 0, ones_test, axis=1)
            N_train = train_data.shape[0]
            M train = train data.shape[1]
            loss list = []
            error_train_list = []
            error_test_list = []
            results_list = []
            for k in k_values:
                X_train_copy = train_data.copy()
                X_test_copy = test_data.copy()
                beta = np.zeros(M_train)
                for _ in range(0, k):
                    l pred = np.dot(X train copy, beta)
                    prob = 1.0 / (1.0 + np.exp(-2 * l_pred))
                    weights = prob * (1.0 - prob)
                    resid = 0.5 * (y_train + 1) - prob
                    resid[weights == 0] = 0
                    resid[weights != 0] = resid[weights != 0]
                    / weights[weights != 0]
                    coeff = np.zeros((2, M_train - 1))
                    new_loss = np.zeros(M_train - 1)
                    for j in range(0, M_train - 1):
                        X_j = X_{train\_copy}[:, j + 1]
                        sum_w = np.sum(weights)
                        sum_w_X_j = np.sum(weights * X_j)
                        sum_w_X_j_squared = np.sum(weights * X_j ** 2)
                        sum w residual = np.sum(weights * resid)
                        sum_w_X_j_residual = np.sum(weights * X_j * resid)
                        if (sum_w * sum_w_X_j_squared - sum_w_X_j ** 2) == 0:
                            beta_j = np.array([sum_w_residual / sum_w, 0])
```

```
else:
               beta_j = np.array([sum_w_X_j_squared *
                                  sum_w_residual - sum_w_X_j *
                                  sum_w_X_j_residual, sum_w *
                                  sum_w_X_j_residual - sum_w_X_j
                                  * sum_w_residual]) /
                (sum_w * sum_w_X_j_squared - sum_w_X_j ** 2)
           l_pred_j = l_pred + 0.5 * (beta_j[0] + beta_j[1] * X_j)
           loss_j = np.sum(np.log(1 + np.exp(-2 * y_train * l_pred_j)))
           coeff[:, j] = beta j
           new_loss[j] = loss_j
       min_loss_index = np.argmin(new_loss)
       beta[0] = beta[0] + learning rate *
       (0.5 * coeff[0, min_loss_index] - regularization_strength * beta[0])
       beta[min_loss_index + 1] = beta[min_loss_index + 1]
       + learning_rate * (0.5 * coeff[1][min_loss_index] - regularization_strength
                          * beta[min_loss_index + 1])
       if k == k values[-1]:
           loss_list.append(new_loss[min_loss_index])
   l_pred_train = np.dot(X_train_copy, beta)
   pred_train = np.where(l_pred_train > 0.0, 1, -1)
   error_train = 1 - np.mean(pred_train == y_train)
   error_train_list.append(error_train)
   l_pred_test = np.dot(X_test_copy, beta)
   pred_test = np.where(l_pred_test > 0.0, 1, -1)
   error_test = 1 - np.mean(pred_test == y_test)
   error_test_list.append(error_test)
   results_list.append({"k": k, "Training Errors": error_train,
                        "TestErrors": error_test})
   if k == 300:
       p_train_300 = l_pred_train
       pred_train_300 = pred_train
       p_test_300 = l_pred_test
       pred_train_300 = pred_test
       # Calculate ROC curve and ROC area for training
       train_fpr_300, train_tpr_300, _ = roc_curve(y_train, p_train_300)
       train_auc_300 = roc_auc_score(y_train, p_train_300)
       # Calculate ROC curve and ROC area for testing
       test_fpr_300, test_tpr_300, _ = roc_curve(y_test, p_test_300)
       test_auc_300 = roc_auc_score(y_test, p_test_300)
       # Plot ROC curves
       plt.figure(figsize=(10, 7))
       plt.plot(train_fpr_300, train_tpr_300,
                label=f'Training AUC (k=300): {train_auc_300:.2f}')
       plt.plot(test_fpr_300, test_tpr_300,
                label=f'Testing AUC (k=300): {test_auc_300:.2f}')
       plt.plot([0, 1], [0, 1], 'k--') # Dashed diagonal
       plt.xlabel('False Positive Rate')
       plt.ylabel('True Positive Rate')
       plt.title('ROC Curve for k=300')
       plt.legend(loc="lower right")
       plt.show()
results_df = pd.concat([pd.DataFrame(result, index=[0])
```

```
for result in results_list], ignore_index=True)
    plt.figure(figsize=(12, 5))
    plt.subplot(1, 2, 1)
    plt.plot(range(1, 601), loss_list)
    plt.xlabel('Iteration')
    plt.ylabel('Training Loss')
    plt.show()
    plt.figure(figsize=(12, 5))
    plt.subplot(1, 2, 1)
    plt.plot(k_values, error_train_list, label='Training')
    plt.plot(k_values, error_test_list, label='Testing')
    plt.xlabel('K Values')
    plt.ylabel('Misclassification Error for Train and Test Data')
    plt.legend()
    plt.show()
    return results_df
# Load data
X_train_data = np.loadtxt("/Users/gaganullas19/Documents/Spring2024/AppliedMachineLearning/Homework_6/arcene/arcene_train.data")
y_train_labels = np.loadtxt("/Users/gaganullas19/Documents/Spring2024/AppliedMachineLearning/Homework_6/arcene/arcene_train.labels")
X test data = np.loadtxt("/Users/gaganullas19/Documents/Spring2024/AppliedMachineLearning/Homework 6/arcene/arcene valid.data")
y_test_labels = np.loadtxt("/Users/gaganullas19/Documents/Spring2024/AppliedMachineLearning/Homework_6/arcene/arcene_valid.labels")
# Define values of k
k_values = [10, 30, 100, 300, 600]
# Call the logistic regression function with feature scaling
results_df_scaled = logistic_regression_scaled(X_train_data, y_train_labels,
                                              X_test_data, y_test_labels, k_values)
print("Misclassification Error for Train and Test Data:")
print(results_df_scaled)
```


Misclassification Error for Train and Test Data:

K Values

	k	Training Errors	TestErrors	
0	10	0.20	0.34	
1	30	0.06	0.35	
2	100	0.01	0.33	
3	300	0.00	0.32	
4	600	0.00	0.32	

Ó

```
In [5]: def logistic_regression_logit(X_train, y_train, X_test, y_test, k_values):
            ones_train = np.ones(X_train.shape[0])
            ones test = np.ones(X test.shape[0])
            train_data = np.insert(X_train, 0, ones_train, axis=1)
            test_data = np.insert(X_test, 0, ones_test, axis=1)
            N_train = train_data.shape[0]
            M train = train data.shape[1]
            loss list = []
            error train list = []
            error test list = []
            results list = []
            p train 300 = None
            pred_train_300 = None
            for k in k values:
                X_train_copy = train_data.copy()
                X_test_copy = test_data.copy()
                beta = np.zeros(M train)
                for _ in range(0, k):
                    l_pred = np.dot(X_train_copy, beta)
                    probability = 1.0 / (1.0 + np.exp(-2 * l_pred))
                    weights = probability * (1.0 - probability)
                    residual = 0.5 * (y_train + 1) - probability
                    residual[weights == 0] = 0
                    residual[weights != 0] = residual[weights != 0]
                    / weights[weights != 0]
                    coeff = np.zeros((2, M train - 1))
                    new_loss = np.zeros(M_train - 1)
                    for j in range(0, M train - 1):
                        X_j = X_{train_copy}[:, j + 1]
                        sum_w = np.sum(weights)
                        sum w X j = np.sum(weights * X j)
                        sum_w_X_j_squared = np.sum(weights * X_j ** 2)
                        sum w residual = np.sum(weights * residual)
                        sum_w_X_j_residual = np.sum(weights * X_j * residual)
                        if (sum_w * sum_w_X_j_squared - sum_w_X_j ** 2) == 0:
                            beta_j = np.array([sum_w_residual / sum_w, 0])
                        else:
                            beta_j = np.array([sum_w_X_j_squared *
                                               sum_w_residual - sum_w_X_j * sum_w_X_j_residual, sum_w *
                                               sum_w_X_j_residual - sum_w_X_j * sum_w_residual]) /
                            (sum_w * sum_w_X_j_squared - sum_w_X_j ** 2)
                        l_pred_j = l_pred + 0.5 * (beta_j[0] + beta_j[1] * X_j)
                        loss_j = np.sum(np.log(1 + np.exp(-2 * y_train * l_pred_j)))
                        coeff[:, j] = beta j
                        new_loss[j] = loss_j
                    min_loss_index = np.argmin(new_loss)
                    beta[0] = beta[0] + 0.5 * coeff[0, min_loss_index]
                    beta[min loss index + 1] = beta[min loss index + 1]
                    + 0.5 * coeff[1][min_loss_index]
                    if k == k_values[-1]:
                        loss_list.append(new_loss[min_loss_index])
```

```
l_pred_train = np.dot(X_train_copy, beta)
    pred train = np.where(l pred train > 0.0, 1, -1)
   error_train = 1 - np.mean(pred_train == y_train)
   error train list.append(error train)
   l_pred_test = np.dot(X_test_copy, beta)
   pred test = np.where(l pred test > 0.0, 1, -1)
   error_test = 1 - np.mean(pred_test == y_test)
   error_test_list.append(error_test)
    results_list.append({"k": k, "Training Errors": error_train,
                         "TestErrors": error test})
   if k == 300:
       p_train_300 = l_pred_train
       pred_train_300 = pred_train
       p test 300 = l pred test
       pred_train_300 = pred_test
       # Calculate ROC curve and ROC area for training
       train_fpr_300, train_tpr_300, _ = roc_curve(y_train, p_train_300)
       train_auc_300 = roc_auc_score(y_train, p_train_300)
       # Calculate ROC curve and ROC area for testing
       test_fpr_300, test_tpr_300, _ = roc_curve(y_test, p_test_300)
       test_auc_300 = roc_auc_score(y_test, p_test_300)
       # Plot ROC curves
       plt.figure(figsize=(10, 7))
       plt.plot(train_fpr_300, train_tpr_300,
                 label=f'Training AUC (k=300): {train auc 300:.2f}')
       plt.plot(test_fpr_300, test_tpr_300,
                 label=f'Testing AUC (k=300): {test_auc_300:.2f}')
       plt.plot([0, 1], [0, 1], 'k--') # Dashed diagonal
       plt.xlabel('False Positive Rate')
       plt.ylabel('True Positive Rate')
       plt.title('ROC Curve for k=300')
       plt.legend(loc="lower right")
       plt.show()
results_df = pd.concat([pd.DataFrame(result, index=[0])
                       for result in results_list], ignore_index=True)
plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
plt.plot(range(1, 601), loss_list)
plt.xlabel('Iteration')
plt.ylabel('Training Loss for K= 600')
plt.show()
plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
plt.plot(k_values, error_train_list, label='Training')
plt.plot(k_values, error_test_list, label='Testing')
plt.xlabel('K Values')
plt.ylabel('Misclassification Error for Train and Test Data')
plt.legend()
plt.show()
return results_df
```


Misclassification Error for Train and Test Data:

	k	Training Errors	TestErrors	
0	10	0.073333	0.106667	
1	30	0.003333	0.093333	
2	100	0.000000	0.090000	
3	300	0.000000	0.083333	
4	600	0.000000	0.090000	

```
In [3]: def logistic_regression_logit(X_train, y_train, X_test, y_test, k_values):
            ones_train = np.ones(X_train.shape[0])
            ones test = np.ones(X test.shape[0])
            train_data = np.insert(X_train, 0, ones_train, axis=1)
            test_data = np.insert(X_test, 0, ones_test, axis=1)
            N_train = train_data.shape[0]
            M train = train data.shape[1]
            loss list = []
            error train list = []
            error test list = []
            results list = []
            p train 300 = None
            pred_train_300 = None
            for k in k_values:
                X_train_copy = train_data.copy()
                X_test_copy = test_data.copy()
                beta = np.zeros(M train)
                for _ in range(0, k):
                    l_pred = np.dot(X_train_copy, beta)
                    probability = 1.0 / (1.0 + np.exp(-2 * l_pred))
                    weights = probability * (1.0 - probability)
                    residual = 0.5 * (y_train + 1) - probability
                    residual[weights == 0] = 0
                    residual[weights != 0] = residual[weights != 0]
                    / weights[weights != 0]
                    coeff = np.zeros((2, M train - 1))
                    new_loss = np.zeros(M_train - 1)
                    for j in range(0, M train - 1):
                        X_j = X_{train_copy}[:, j + 1]
                        sum_w = np.sum(weights)
                        sum w X j = np.sum(weights * X j)
                        sum_w_X_j_squared = np.sum(weights * X_j ** 2)
                        sum w residual = np.sum(weights * residual)
                        sum_w_X_j_residual = np.sum(weights * X_j * residual)
                        if (sum_w * sum_w_X_j_squared - sum_w_X_j ** 2) == 0:
                            beta_j = np.array([sum_w_residual / sum_w, 0])
                        else:
                            beta_j = np.array([sum_w_X_j_squared *
                                               sum_w_residual - sum_w_X_j * sum_w_X_j_residual,
                                               sum_w * sum_w_X_j_residual - sum_w_X_j * sum_w_residual]) /
                            (sum_w * sum_w_X_j_squared - sum_w_X_j ** 2)
                        l_pred_j = l_pred + 0.5 * (beta_j[0] + beta_j[1] * X_j)
                        loss_j = np.sum(np.log(1 + np.exp(-2 * y_train * l_pred_j)))
                        coeff[:, j] = beta j
                        new_loss[j] = loss_j
                    min_loss_index = np.argmin(new_loss)
                    beta[0] = beta[0] + 0.5 * coeff[0, min_loss_index]
                    beta[min loss index + 1] = beta[min loss index + 1] +
                    0.5 * coeff[1][min_loss_index]
                    if k == k_values[-1]:
                        loss_list.append(new_loss[min_loss_index])
```

```
l_pred_train = np.dot(X_train_copy, beta)
    pred train = np.where(l pred train > 0.0, 1, -1)
   error_train = 1 - np.mean(pred_train == y_train)
   error train list.append(error train)
   l_pred_test = np.dot(X_test_copy, beta)
   pred test = np.where(l pred test > 0.0, 1, -1)
   error_test = 1 - np.mean(pred_test == y_test)
   error_test_list.append(error_test)
    results_list.append({"k": k, "Training Errors": error_train,
                         "TestErrors": error test})
   if k == 300:
       p_train_300 = l_pred_train
       pred_train_300 = pred_train
       p test 300 = l pred test
       pred_train_300 = pred_test
       # Calculate ROC curve and ROC area for training
       train_fpr_300, train_tpr_300, _ = roc_curve(y_train, p_train_300)
       train_auc_300 = roc_auc_score(y_train, p_train_300)
       # Calculate ROC curve and ROC area for testing
       test_fpr_300, test_tpr_300, _ = roc_curve(y_test, p_test_300)
       test_auc_300 = roc_auc_score(y_test, p_test_300)
       # Plot ROC curves
       plt.figure(figsize=(10, 7))
       plt.plot(train_fpr_300, train_tpr_300,
                 label=f'Training AUC (k=300): {train auc 300:.2f}')
       plt.plot(test_fpr_300, test_tpr_300,
                 label=f'Testing AUC (k=300): {test_auc_300:.2f}')
       plt.plot([0, 1], [0, 1], 'k--') # Dashed diagonal
       plt.xlabel('False Positive Rate')
       plt.ylabel('True Positive Rate')
       plt.title('ROC Curve for k=300')
       plt.legend(loc="lower right")
       plt.show()
results_df = pd.concat([pd.DataFrame(result, index=[0])
                       for result in results_list], ignore_index=True)
plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
plt.plot(range(1, 601), loss_list)
plt.xlabel('Iteration')
plt.ylabel('Training Loss for K= 600')
plt.show()
plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
plt.plot(k_values, error_train_list, label='Training')
plt.plot(k_values, error_test_list, label='Testing')
plt.xlabel('K Values')
plt.ylabel('Misclassification Error for Train and Test Data')
plt.legend()
plt.show()
return results_df
```


Misclassification Error for Train and Test Data:

k	Training Errors	TestErrors	
10	0.074667	0.087	
30	0.033667	0.038	
100	0.012500	0.030	
300	0.000000	0.027	
600	0.000000	0.020	
	10 30 100 300	10 0.074667 30 0.033667 100 0.012500 300 0.000000	30 0.033667 0.038 100 0.012500 0.030 300 0.000000 0.027