Homework 2 (due at the start of class September 08, 2022)

Homework should be submitted as a LATEX document, see template on Canvas for details.

1 Problem

Use the Peano-Baker series to prove that the state transition matrix $\Phi(t,0)$ for the system $\dot{x} = Ax$ with

$$A = \begin{bmatrix} t & t \\ 0 & t \end{bmatrix} \quad \text{is} \quad \mathbf{\Phi}(t,0) = \begin{bmatrix} e^{\frac{1}{2}t^2} & \frac{1}{2}t^2e^{\frac{1}{2}t^2} \\ 0 & e^{\frac{1}{2}t^2} \end{bmatrix}$$

Hint: Use the series definition of the exponential function.

2 Problem

Consider the system $\dot{x} = Ax$ with initial condition $x_0 = [1, 0]^T$. Find the solution x(t) using the Laplace inverse approach with partial fractions.

$$A = \left[\begin{array}{cc} 3 & 4 \\ 2 & 1 \end{array} \right]$$

3 Problem

For the same system as given in the problem above, find the solution x(t) using the eigenvalue approach (with Cayley-Hamilton Theorem).

4 Problem

Consider the following system of coupled second-order equations

$$\ddot{y} - a(\dot{z} - \dot{y}) - b(z - y) = cu_1 + du_2$$

$$\ddot{z} - e\dot{z} - f(y + z) = gu_1$$

where (a, b, c, d, e, f, g) are all constants and z(t) and y(t) are states and $u_1(t)$ and $u_2(t)$ are control inputs. Define an appropriate state vector $x \in \mathbb{R}^n$ and control vector $u \in \mathbb{R}^m$ and then re-write this system as n first-order differential equations in the form $\dot{x} = Ax + Bu$.

5 Problem

An equilibrium point for a nonlinear system $\dot{x} = f(x)$ is a state x^* for which the state-rate is zero (i.e., $\dot{x} = f(x^*) = 0$). For the following nonlinear system

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} x_2 - 2x_1x_2 \\ -x_1 + x_1^2 + x_2^2 \end{bmatrix}$$

determine the four equilibrium points x_a^* , x_b^* , x_c^* and x_d^* . (Hint: one of them is $[1/2, -1/2]^T$). Then state the linearized dynamics $\Delta \dot{x} = A \Delta x$ around each nominal equilibrium. Define exactly what you mean by Δx for each linearized system.