

数字逻辑设计

Digital Logic Design

秦阳 School of Computer Science csyqin@hit.edu.cn

Unit 6 组合逻辑电路设计

- 使用有限扇入门设计组合电路
- 组合电路中的险象
 - Gate Delays
 - Static hazard
- 险象判断及消除
 - 代数法
 - 卡诺图法

使用有限扇入门设计组合电路

扇入系数(fan-in)?

■逻辑门最大输入端的个数

Example

利用与非门(扇入系数为2)和反相器设计 指定逻辑函数

$$f_2 = \sum m(0, 2, 3, 4, 7)$$

 $f_3 = \sum m(1, 2, 6, 7)$

使用有限扇入门设计组合电路

$$f_2 = \sum m(0, 2, 3, 4, 7)$$

$$f_1 = b'c' + ab' + a'b$$

 $f_2 = b'c' + bc + a'b$
 $f_3 = a'b'c + ab + bc'$

Multi-Level Gate Circuits

$$f_1 = b'c' + ab' + a'b
f_2 = b'c' + bc + a'b
f_3 = a'b'c + (ab + bc')$$

$$f_1 = b'(\underline{a + c'}) + \underline{a'b}
f_2 = (b' + c)(b + c') + \underline{a'b}
f_3 = a'b'c + b(\underline{a + c'})$$

a'b'c = a'(b'c) = a'(b + c')'

Multi-Level Gate Circuits

Unit 6 组合逻辑电路设计

■ 使用有限扇入门设计组合电路

- 组合电路中的险象
 - Gate Delays
 - Static hazard
 - 险象判断及消除
 - 代数法
 - 卡诺图法

1. 门延迟

当输入发生变化,逻辑门的输出不会同步发生改变

- 对于组合逻辑电路, 多数情况下可以忽略门的延迟.
- 但是,门的延迟对时序电路的影响不容忽视

当一个逻辑门的两个输入端的信号同时向相反方向变化,则该电路存在竞争。

两路信号到达逻辑 门的时间存在差异。

逻辑门因输入端的竞争而导致输出了不应有的 尖峰干扰脉冲(又称过渡 干扰脉冲)称为冒险。

2. 险象

险象类型	概念	输出波形	
■静态冒险	输入信号发生一次 变化只引起 一个 错	■静态1冒险	0
	误信号脉冲	■静态0冒险	0 0
■ 动态冒险	输入信号发生一次改 错误信号脉冲		
■功能冒险	<mark>多个</mark> 输入信号的变化不同步而产 生的错误信号脉冲		

Example

组合电路中的险象

$$F = AB + \overline{A}C$$

if $B = C = 1 \Rightarrow F = A + \overline{A} = 1$

▶静态冒险

$$F = (A+B)(\overline{A}+C)$$

if
$$B=C=0$$
 理论上
then $F=A\overline{A}=0$

Example

组合电路中的险象

■ 动态冒险

- 通常发生在多级电路情况下
- 不同的路径有不同的传输延迟
- 当输入发生一次变化,输出将发生多次变化。

F=(W+X)(Y+X')+ZW'X'

if WYZ=001, F=X'

from X to F: 存在3条路径

■功能冒险

多个输入信号 同时改变,因 速度不同产生 错误信号脉冲

$$F(100) = F(111) = 1$$

初值 过渡值 终值

C 较快: 100 → 101 → 111

B 较快: 100 → 110 → 111

F值

 $1 \longrightarrow 1 \longrightarrow 1$

 $1 \longrightarrow 0 \longrightarrow 1$

静态1冒险

BC: $00 \rightarrow 11$

真值表

A	В	C	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Unit 6 组合逻辑电路设计

- 使用有限扇入门设计组合电路
- 组合电路中的险象
 - Gate Delays
 - Static hazard

- 代数法
- 卡诺图法

3. 险象的判断——代数法

检查表达式中是否存在某个变量X,它同时以 原变量和反变量的形式出现;并能在特定条件 下简化成下面形式之一:

- $X+\overline{X}$
- $X \cdot \overline{X}$

$$F = \overline{A}\overline{C} + \overline{A}B + AC$$

Check variable: A, C

C:

$$AB=00$$
 $F=\overline{C}$
 $AB=01$ $F=1$
 $AB=10$ $F=C$
 $AB=11$ $F=C$

没有险象

$$F = \overline{A}\overline{C} + \overline{A}B + AC$$

A:

$$BC = 00$$
 $F = \overline{A}$
 $BC = 01$ $F = A$
 $BC = 10$ $F = \overline{A}$
 $BC = 11$ $F = A + \overline{A}$

static-1 hazard

$F=(A+B)(\overline{A}+C)(\overline{B}+C)$

Check variable: A, B

B :	A C=0 0	$F=B\overline{B}$
	A C=0 1	F=B
	A C=1 0	F=0
	A C=1 1	F=1

A:

$$B C=0 0$$
 $F=A\overline{A}$

 B C=0 1
 $F=A$

 B C=1 0
 $F=\overline{A}$

 B C=1 1
 $F=1$

4. **险象的判断—— k. maps**

化简后是否存在相切的卡诺圈

$$F1 = A' \cdot C + B \cdot C'$$

$$F2 = (A'+C) \cdot (B+C')$$

When A = 0, B = 1: F1 = C + C'

When A = 1, B = 0: $F2 = C \cdot C'$

$$F = \overline{AD} + \overline{AC} + AB\overline{C}$$

When B=D=1, C=0

CD^{AA}	B 00	01	11	10
00			1	
01	1	1	1	
11	1	1		
10	1	1		

5. 现象的消除

① 添加卡诺圈

$$F1 = A' \cdot C + B \cdot C' + A' \cdot B$$

$$F2 = (A'+C)\cdot (B+C')\cdot (A'+B)$$

When
$$A = 0, B = 1: F1 = 1$$

When
$$A = 1, B = 0 : F2 = 0$$

Add new term to cover the neighboring cells!

$$F = AB + \overline{A}C$$

② 添加冗余项: BC

$$F = AB + \overline{A}C + \overline{B}C$$

$$F = AB + \overline{A}C + \overline{B}C$$

③ 添加滤波电容

④ 加封锁/选通脉冲

Unit 6 组合逻辑电路设计

- 使用有限扇入门设计组合电路
- 组合电路中的险象
 - Gate Delays
 - Static hazard
- 险象判断及消除
 - 代数法
 - 卡诺图法