

Data & Donuts

Friday, February 17 3:00-4:00 pm 164 Angell Street, 3rd floor

Join us this week with Peter Hull, Professor of Economics

Organized by the DSI DUG.
Gourmet donuts, fruit, and coffee will be served.

CSCI 1470/2470 Spring 2023

Ritambhara Singh

February 17, 2023 Friday

Recap

Stacking multiple layers

Activation functions

More layers □ more complicated function

Linear layers are not sufficient!

Need non-linearity

Exploding gradients

Vanishing gradients

ReLU, Leaky ReLU

Recap: Reasons to use other activation functions

- Bounding network outputs to a particular range
 - Tanh: [-1, 1]
 - Sigmoid: [0,1]
 - Softplus: [0, ∞]

- Example: Predicting a person's age from other biological features
 - Age is a strictly positive quantity
 - We can help our network learn by restricting it to output only positive numbers
 - Use a Softplus activation on the output

Today's goal – continue to learn about multi-layer networks and learn about convolution

- (1) What are hidden layers and hyperparameters?
- (2) Universal approximate theorem what a one-hidden layer network can learn?
- (3) Intro to CNNs Convolution

Recap: Consequences of adding activation layers

"Hidden Layers"

- The output of a function that doesn't feed into the output layer (like softmax) is called a *hidden layer*
- Have to set the size h of these hidden layers
- More linear units → more hidden layer sizes

Hyperparameters

- Hidden layer sizes are a hyperparameter configuration external to model, value usually set before training begins
 - Number of epochs, batch size, etc.
 - Contrast this with a learnable parameter, we keep talking about
- Rule of thumb
 - Start out making hidden layers the same size as the input
 - Then, tweak it to see the effect
- There are more principled (and time-consuming) ways to set them
 - Grid search, random search, Bayesian optimization...
 - See here for an overview and more references

What a multi-layer neural network could look like?

What functions can a one-hidden-layer neural net learn?

Universal Approximation Theorem [Cybenko '89]

- Remarkably, a one-hidden-layer network can actually represent any function (under the following assumptions):
 - Function is continuous
 - We are modeling the function over a closed, bounded subset of \mathbb{R}^n
 - Activation function is sigmoidal (i.e. bounded and monotonic)
- The proof of this theorem is an existence proof
 - i.e. it tells us that a network exists which can approximate any function, not how to actually learn it

A "Proof By Picture"

- Start with a complex one dimensional function that relates some input x to some output y
- We don't know what the function that relates x and y is

 We can build up this function using simpler functions, i.e. box functions

How does this relate to activation functions?

We can subtract two sigmoids to create these box functions

 Summing up these simpler functions can do a pretty good job of approximating the actual function

- Using more functions lets us model a complex function more accurately
 - Up to an arbitrary degree of accuracy, if we want

of" ?

Universal Approximation Theorem "Proof"

- **Very** inefficient way to approximate
 - Need *lots* of box functions □ *lots* of sigmoids □ very large hidden layer
- Real networks trained with gradient descent can't even learn these kinds of approximations
 - They **find smooth approximations**, require more hidden layers to get this same level of complexity.
- Nevertheless, the theorem is often cited to back up claims that a sufficiently complex neural net "can learn any function"

Do you remember what function a perceptron could not learn?

Can a multi-layer network learn XOR?

Let's find out

Google Tensorflow Playground

What kind of datasets CNNs are popularly applied to?

Convolution and CNNs

Images!

Does a network have to be fully connected?

Why would you ever want to do this?

Partially Connected Networks?

- Fewer connections == Worse results? ...right?
- Advantages of Partial Connections
 - Fewer connections □ fewer weights to learn
 - Faster training; more compact models; better generalization performance
 - Can design connectivity pattern that exploits knowledge of the data (like connecting patterns in features)

What's a data type where we can do this?

Images!

When partially connected networks are useful

 Observation: Nearby pixels are more likely to be related

 Assumption: It is okay to only connect the nearby pixels

Limitations of Full Connections for MNIST

Suppose we've got a well-trained MNIST classifier...

Limitations of Full Connections for MNIST

Limitations of Full Connections for MNIST

This would **not** be a problem for the human visual system

This would **not** be a problem for the human visual system

Translational Invariance

- To make a neural net f robust in this same way, it should ideally satisfy **translational invariance**: f(T(x)) = f(x), where
 - x is the input image
 - T is a translation (i.e. a horizonal and/or vertical shift)

Fully Connected Nets are *not*Translationally Invariant

How to make the network translationally invariant?

Focus on local differences/patterns

Sum of these three: $0.6 \cdot 0.8 + 0.1 \cdot 0 + 0.9 \cdot 1 = 1.38$

Sum of these three: $0.6 \cdot 0 + 0.1 \cdot 0.4 + 0.9 \cdot 0 = 0.4$

Focusing on local patterns = partial connections

Fully Connected

Partially Connected

How do we do that?

The Main Building Block: Convolution

Convolution is an operation that takes two inputs:

(1) An image (2D - B/W)

1	1	1
0	0	0
-1	-1	-1

2D array of numbers; could be any values

filter/kernel

Overlay the filter on the image

Sum up multiplied values to produce output value

Move the filter over by one pixel

image

1	1	1	3
0	0	0	0
-1	-1	-1	0
0	5	1	4

output

Move the filter over by one pixel

image output

2	1	1	1
7	0	0	0
0	-1	-1	-1
0	5	1	4

Repeat (multiply, sum up)

image

2	0 _{x1}	1 _{x1}	3 _{x1}
7	1 _{x0}	1 _{x0}	0 _{x0}
0	2 _{x-1}	5 _{x-1}	0 _{x-1}
0	5	1	4

output

Repeat (multiply, sum up)

Repeat...

Repeat...

In summary:

Try it out yourself!

Convolve this image

2	0	3	1
1	1	0	0
1	0	2	0
1	0	1	2

With this filter

2	0	თ	1
1	1	0	0
1	0	2	0
1	0	1	2

Recap

Building multi-layer neural networks

Introduction to CNNs

Hidden layers

What a one-hidden layer network can learn

What a multi-layer network can learn

Partially connected networks are useful (e.g., for images!)

Fully connected networks are not transitionally invariant

Convolutional filter

