Определение 1. Пусть функция f определена в некоторой окрестности U точки a. Для каждой точки $\alpha \in U$, $\alpha \neq a$, рассмотрим ceкушую: прямую $l_{\alpha} = k_{\alpha}x + c_{\alpha}$, проходящую через точки (a, f(a)) и $(\alpha, f(\alpha))$ (напишите её уравнение). Если существует предельная прямая $l = (\lim_{\alpha \to a} k_{\alpha})x + (\lim_{\alpha \to a} c_{\alpha})$ для семейства прямых l_{α} при $\alpha \to a$, то она называется k графику k в точке k.

Задача 1°. Напишите уравнение касательной к графику функции f(x) в точке x_0 .

Задача 2. Под каким углом пересекаются кривые: **a)** $y = x^2$ и $x = y^2$; **б)** $y = \sin x$ и $y = \cos x$?

Задача 3. Найдите геометрическое место точек, из которых парабола $y=x^2$ видна под прямым углом.

Задача 4. Найдите касательную к параболе $y = \frac{x^2 - 3x + 3}{3}$, параллельную прямой y = x.

Задача 5. Докажите, что отрезок любой касательной к графику функции y = 1/x, концы которого расположены на осях координат, делится точкой касания пополам.

Задача 6. Докажите, что касательная к гиперболе $xy=a^2$ образует с осями координат треугольник постоянной площади.

Задача 7. а) Напишите уравнение касательной к окружности $x^2 + y^2 = 1$ в точке (x_0, y_0) . 6) Докажите, что эта касательная перпендикулярна радиусу, проведённому в точку (x_0, y_0) .

Задача 8. В каком наибольшем конечном числе точек прямая может касаться синусоиды?

Задача 9. Пусть функция f дифференцируема на \mathbb{R} , точка A плоскости не лежит на графике функции f, и M — такая точка графика функции f, что расстояние AM минимально. Докажите, что отрезок AM перпендикулярен касательной к графику f в точке M.

Задача 10. Параллельный пучок лучей, падающий на параболу $y=x^2$ по вертикали сверху, отражается от неё по закону «угол падения равен углу отражения». Докажите, что все лучи этого пучка после первого отражения пройдут через одну и ту же точку, и найдите эту точку.

Задача 11*. Докажите, что любая касательная к гиперболе y=1/x образует равные по величине углы с двумя прямыми, одна из которых проходит через точку касания и точку $(\sqrt{2};\sqrt{2})$, а другая — через точку касания и точку $(-\sqrt{2};-\sqrt{2})$.

Задача 12*. Дана гипербола с фокусами F_1 и F_2 . Докажите, что поток лучей из точечного источника света F_1 , отразившись от гиперболы, предстанет стороннему наблюдателю как поток лучей от точечного источника в F_2 .

Задача 13*. а) Из точки A проведены касательные AB и AC к эллипсу с фокусами F_1 и F_2 . Докажите, что $\angle F_1AB = \angle F_2AC$. б) Докажите, что луч, выпущенный из внутренней точки эллипса, отражаясь от зеркальных стенок эллипса, будет всегда касаться некоторого другого эллипса или гиперболы, если он не проходит через фокусы эллипса и не летает по одной прямой.

Задача 14*. Существует ли окружность, пересекающая параболу $y=x^2$ ровно в двух точках, причём в одной из этих точек у параболы и окружности есть общая касательная, а в другой — нет?

1	2 a	2 6	3	4	5	6	7 a	7 6	8	9	10	11	12	13 a	13 6	14