

FACULTAD DE CIENCIAS ÁLGEBRA LINEAL 1

Tarea 06

Semestre 2024 - 1

Profesora:

Mindy Yaneli Huerta Pérez

Ayudantes:

Elizabeth Chalnique Ríos Alvarado Gilbert Raúl Avendaño Aguilar Aldair Reyes Gónzalez

Alumnos:

Paul César Cabañas Segura Marco Silva Huerta José Luis Cruz Mayen

10 de Noviembre de 2023

Ejercicio 1

Sean V un F-espacio vectorial de dimensión finita con base ordenada $\beta = \{x_1, \dots x_n\}$ y $x_0 = 0_V$. Demostrar que existe una transformación lineal $T: V \to V$ que satisface $T(x_j) = x_j - x_{j-1}$ para $j = 1, \dots, n$ y calcular $[T]_{\beta}$

Solución:

Tenemos a V como el espacio vectorial con la base $\beta = \{x_1, x_2, \dots, x_n\}$ y la transformación $T: V \to V$ definida por $T(x_j) = x_j - x_{j-1}$ y $x_0 = 0$

Usando esto, calculemos $T(v_1)$ y $T(v_2)$:

$$T(x_1) = x_1 - x_0$$
$$= x_0 - 0$$
$$= x_1$$

$$T(x_2) = x_2 - x_1, T(x_3) = x_3 - x_2, \dots, T(x_n) = x_n - x_{n-1}$$

Sean V y W espacios vectoriales sobre F, $\{x_1, x_2, \ldots, x_n\}$ es la base de V.

Para n vectores cualesquiera w_1, w_2, \ldots, w_n en W, existe exactamente una transformación lineal $T: V \to W$ tal que $T(x_i) = w_i$ para $i = 1, 2, \ldots, n$.

Las combinaciones lineales de vectores en un espacio vectorial V son nuevamente un vector en V. Por eso $\{x_1, x_2 - x_1, x_3 - x_2, \dots, x_n - x_{n-1}\}$ es un subconjunto de n vectores en V.

Entonces hay una transformación lineal única $T: V \to W$ tal que $T(x_j) = x_j - x_{j-1}$.

Entonces, la base para V es $\beta=\{x_1,x_2,\cdots,x_n\}$ y el conjunto de imágenes de vectores bajo T es

$$\{x_1, x_2 - x_1, x_3 - x_2, \dots, x_n - x_{n-1}\}$$

Ahora escribiremos estos vectores como combinaciones lineales de los vectores base.

$$x_1 = 1x_1 + 0x_2 + 0x_3 + \dots 0x_n$$

$$x_2 - x_1 = -1x_1 + 0x_2 + 0x_3 + \dots 0x_n$$

$$x_3 - x_2 = 0x_1 + (-1x_2) + 1x_3 + \dots 0x_n$$

$$\vdots$$

$$\vdots$$

$$x_n - x_{n-1} = 0x_1 + 0x_2 + 0x_3 + \dots + (-1x_{n-1}) + 1x_n$$

Escribimos los coeficientes de las combinaciones lineales como las columnas de la matriz. Entonces esta es la matriz requerida $[T]_{\beta}$

$$[T]_{\beta} = \begin{bmatrix} 1 & 1 & 0 & \dots & 0 \\ 0 & -1 & 1 & \dots & 0 \\ 0 & 0 & -1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & -1 \end{bmatrix}$$

Ejercicio 2

Sean V un F-espacio vectorial de dimensión finita, W un subespacio vectorial de V y $T:V\to V$ una proyección sobre W. Escoger una base ordenada adecuada de V tal que $[T]_{\beta}$ sea la matriz diagonal.

Solución:

Proyección sobre un subespacio vectorial: Una proyección sobre un subespacio vectorial W es una transformación lineal $T:V\to V$ tal que para cualquier vector v en V, T(v) es el punto más cercano a v que está en el subespacio W. En otras palabras, T(v) es el vector en W que está más cerca de v.

Matriz de transformación lineal: Cualquier transformación lineal $T:V\to V$ puede representarse mediante una matriz. En particular, si tenemos una base ordenada β de V, la matriz de T respecto a β , denotada como $[T]_{\beta}$, es la matriz que describe cómo T actúa sobre los vectores en V cuando se expresan en términos de la base β .

Paso 1: Encontrar una base ordenada para W

Supongamos que para $\beta_W = \{w_1, w_2, \dots, w_k\}$ es base de W. Sea la cantidad de vectores que pueda tener forsozamente deben ser linealmente independiente y generar W.

Paso 2: Ampliar β_W a una base ordenada de V

Tomamos los vectores de β_W para formar una base ordenada de V. Supongamos que

$$\beta = \{w_1, w_2, \dots, w_k, v_{k+1}, v_{k+2}, \dots, v_n\}$$

es una base para V, donde n es la dimensión de V. Esta base tiene k vectores de W y (n-k) vectores adicionales que completan la base de V.

Paso 3: Proyección T en términos de la base β

Para cualquier vector v en V, la proyección T(v) es igual a v si v está en W, y es igual a v si v está en el complemento ortogonal de v. Podemos expresar v0 en términos de la base v0 de la siguiente manera:

$$T(v) = \begin{cases} v, & \text{si } v \in W \\ \mathbf{0}, & \text{si } v \in \text{complemento ortogonal de } W \end{cases}$$

Paso 4: Matriz $[T]_{\beta}$

La matriz $[T]_{\beta}$ tendrá una forma diagonal, donde los bloques correspondientes a W serán matrices identidad y los bloques correspondientes al complemento ortogonal de W serán matrices nulas. Es decir,

$$[T]_{\beta} = \begin{pmatrix} I_k & 0 \\ 0 & 0 \end{pmatrix}$$

donde I_k es la matriz identidad de tamaño $k \times k$, y 0 representa una matriz nula de tamaño $(n-k) \times (n-k)$. Ahora vamos a considerar el espacio vectorial $V = \mathbb{R}^3$ con la proyección $T : \mathbb{R}^3 \to \mathbb{R}^3$ sobre el subespacio W generado por (1,0,0).

- $\beta_W = \{(1,0,0)\}$ es una base para W.
- Ampliando β_W , obtenemos la base $\beta = \{(1,0,0),(0,1,0),(0,0,1)\}$ para V.

La matriz $[T]_{\beta}$ en esta base es:

$$[T]_{\beta} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Para demostrar que $[T]_{\beta}$ tiene una forma diagonal, consideremos cómo actúa T sobre los vectores en V expresados en la base β . Para cualquier v en V, T(v) tiene dos posibles casos:

- 1. Si v está en W, entonces T(v) = v. En términos de la matriz $[T]_{\beta}$, esto corresponde a multiplicar $[T]_{\beta}$ por v y obtener v. Esto se logra usando el bloque I_k en la esquina superior izquierda de $[T]_{\beta}$.
- 2. Si v está en el complemento ortogonal de W, entonces $T(v) = \mathbf{0}$. En términos de la matriz $[T]_{\beta}$, esto corresponde a multiplicar $[T]_{\beta}$ por v y obtener el vector nulo. Esto se logra usando los bloques de 0 en la parte inferior de $[T]_{\beta}$.

Por lo tanto, la matriz $[T]_{\beta}$ tiene una forma diagonal como se muestra en el paso 4.

Ejercicio 3

Sea $T: \mathbb{R}3 \to \mathbb{R}3$ dada por T(x, y, z) = (x, 2y + x, z).

1. Demuestre que T es una transformación lineal inyectiva y suprayectiva Veamos que para que $T=\overline{0}$, se tiene que cumplir el siguiente sistema de ecuaciones:

$$x = 0$$
$$2y + x = 0$$
$$z = 0$$

$$x = 0 \Longrightarrow 2y + 0 = 0 \Longrightarrow y = 0/2 = 0$$

 $T(x, y, z) = (0, 0, 0) \Longrightarrow x = y = z = 0$

Tenemos que $T:\mathbb{R}^3 \to \mathbb{R}^3$, por el Teorema 1.22, T es inyectiva, y dado a que ambos espacios son el mismo, su dimensión coincide, por lo que, por el Teorema 1.25, T es suprayectiva.

2. Calcular
$$[T]^{\gamma}_{\beta}$$
 y $([T]^{\gamma}_{\beta})^{-1}$

$$\beta = \{(1,0,0), (1,2,0), (0,0,1)\}$$

y

$$\gamma = \{(0,0,1), (3,0,0), (0,1,0)\}$$

Necesitamos encontrar los escalares que cumplen con la definición de vectores de representación para cada T de β :

$$T((1, 0, 0))=[(1), 2(0)+(1), (0)]=(1,1,0)=_{-}(0, 0, 1)+_{-}(3, 0, 0)+_{-}(0, 1, 0)$$

$$T((1, 2, 0))=[(1), 2(2)+(1), (0)]=(1,5,0)=(0, 0, 1)+(3, 0, 0)+(0, 1, 0)$$

$$T((0, 0, 1))=[(0), 2(0)+(0), (1)]=(0,0,1)=(0,0,1)+(3,0,0)+(0,1,0)$$

Tenemos que:

$$(1,1,0)=0(0, 0, 1)+1/3(3, 0, 0)+1(0, 1, 0)$$

$$(1,5,0)=0(0, 0, 1)+1/3(3, 0, 0)+5(0, 1, 0)$$

$$(0,0,1)=1(0,0,1)+0(3,0,0)+0(0,1,0)$$

Por lo tanto, la matriz de representación $[T]^{\gamma}_{\beta}$ es la siguiente:

$$[T]_{\beta}^{\gamma} = \begin{pmatrix} 0 & 0 & 1\\ 1/3 & 1/3 & 0\\ 1 & 5 & 0 \end{pmatrix}$$

Ahora, calculamos la inversa de $[T]^{\gamma}_{\beta}$:

$$([T]_{\beta}^{\gamma})^{-1} = \frac{1}{\det[T]_{\beta}^{\gamma}} Adj([T]_{\beta}^{\gamma})$$

$$Adj([T]_{\beta}^{\gamma}) = \begin{pmatrix} 0 & 5 & -1/3 \\ 0 & -1 & 1/3 \\ 4/3 & 0 & 0 \end{pmatrix}$$

$$Det[T]_{\beta}^{\gamma}) = 1(5(1/3) - 1(1/3)) = 4/3$$

$$\frac{1}{4/3} Adj([T]_{\beta}^{\gamma}) = \frac{3}{4} \begin{pmatrix} 0 & 5 & -1/3 \\ 0 & -1 & 1/3 \\ 4/3 & 0 & 0 \end{pmatrix}$$

$$([T]_{\beta}^{\gamma})^{-1} = \begin{pmatrix} 0 & 15/4 & -1/4 \\ 0 & -3/4 & 1/4 \\ 1 & 0 & 0 \end{pmatrix}$$

3. Calcule T^{-1} y verifique que $\left([T]_{\beta}^{\gamma}\right)^{-1}=[T]_{\gamma}^{\beta}$

Dado a que T es biyectiva, es invertible, por lo que podemos calcular T^{-1} :

$$T^{-1}(\mathsf{T}(\mathsf{x},\mathsf{y},\mathsf{z})) = (\mathsf{x},\mathsf{y},\mathsf{z})$$

$$T^{-1}((x, 2y+x, z))=(x,y,z)$$

$$x = x$$

$$2y - x \Longrightarrow y = \frac{y - x}{2}$$

$$z = z$$

$$T^{-1} = (x, \frac{y - x}{2}, z)$$

Hacemos la representación matricial en torno a
$$\gamma$$
 y β $T^{-1}((0,0,1))=[(0),\frac{(0)-(0)}{2},(1)]=(0,0,1)=_(1,0,0)+_(1,2,0)+_(0,0,1)$

$$T^{-1}((3,0,0))=[(3),\frac{(0)-(3)}{2},(0)]=(3,-\frac{3}{2},0)=_(1,0,0)+_(1,2,0)+_(0,0,1)$$

$$T^{-1}((0, 1, 0)) = [(0), \frac{(1)-(0)}{2}, (1)] = (0, \frac{1}{2}, 0) = (1, 0, 0) + (1, 2, 0) + (0, 0, 1)$$

Tenemos entonces que:

$$(0, 0, 1)=0(1, 0, 0)+0(1, 2, 0)+1(0, 0, 1)$$

$$(3,-\frac{3}{2},0)=\frac{15}{4}(1,0,0)+-\frac{3}{4}(1,2,0)+(0,0,1)$$

$$(0,\frac{1}{2},0) = -\frac{1}{4}(1,0,0) + \frac{1}{4}(1,2,0) + 0(0,0,1)$$

Tenemos que la matriz de representación de la inversa de T es:

$$[T^{-1}]_{\gamma}^{\beta} = \begin{pmatrix} 0 & 15/4 & -1/4 \\ 0 & -3/4 & 1/4 \\ 1 & 0 & 0 \end{pmatrix}$$

Tenemos entonces que:

$$[T^{-1}]^{\beta}_{\gamma} = ([T]^{\gamma}_{\beta})^{-1}$$