CE 315 Hydraulic Engineering Matlab Project

Submission Deadline: 21.01.2021 - 24:00

- ! Please submit your codes as a single folder including .m files to the Dropbox Link below.
- ! Example script names: surname_1 for the first question; surname_2_a_b & surname_2_c for the second question.
- ! Please do not forget to include functions used in the scripts
- !! Please develop your own algorithms; copying someone else's work will be punished.

1) Consider the pump-pipeline system shown in the figure below. The reservoir water surface elevations are z_A = 100m and z_B = 110m. The 0.13-m-diameter cast iron pipe connecting the two reservoirs has a length of 20m.

Develop a matlab code

a) plot the pump characteristic curve using the experimental measurements shown in the table below.

Delivery	Inlet	Flow
Pressure	Pressure	Rate
(bar)	(Bar)	(1/s)
3.90	-1.20	50
3.20	-1.80	100
2.55	-2.10	150
2.00	-2.30	200
1.20	-2.40	250

- b) plot the system curve on the same graph(Assuming no minor losses)(Hint: you can use the <u>frictionf.m</u>).
- c) determine the system flow rate. (Code has to print the result on the command window.)

- 2) A concrete, trapezoidal channel with a 5-m bottom width and side slopes of 1 discharges 35m³/sec. The bottom slope of the channel is 0.004. A dam is placed across the channel and raises the water level to a depth of 3.4m.
 - a) Develop a matlab code to determine the flow classification (e.g, M-2, S-1) upstream of the dam. (you can use normaldepth_trapz.m and criticaldepth_trapz.m)
 - b) Develop the code further using standard step method to compute the water surface profile at 50-m intervals until 250m.(Code has to print the result on the command window.)
 - c) Develop a matlab code using the direct step method to compute the distance between the dam and the hydraulic jump. (when $y=y_c$)