

NAVAL POSTGRADUATE SCHOOL Monterey, California

Δ

MODELS OF CONFLICT, WITH EXPLICIT REPRESENTATION OF COMMAND AND CONTROL CAPABILITIES AND VULNERABILITIES

by

Donald P. Gaver

February 1981

Approved for public release; distribution unlimited.

Prepared for:

Naval Postgraduate School Monterey, Ca. 93940

THE FILE COP

81 6 25 054

NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA

Rear Admiral J.J. Ekelund Superintendent

David A. Schrady Acting Provost

This work was supported in part by the DARPA and ONR.

Reproduction of all or part of this report is authorized.

Prepared by:

DONALD P. GAVER, Professor

Department of Operations Research

Reviewed by:

Released by:

KNEALE T. MARSHALL, CHATRMAN

Department of Operations Research

WILLIAM M. TOLLES Dean of Research

	SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)								
	REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM							
14	NPS55-81-808 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER							
6	Models of Conflict, with Explicit Representation	5. VPE OF REPORT & PERIOD COVERED Technical							
	of Command And Control Capabilities and Vulnerabilities •	6. PERFORMING ORG. REPORT NUMBER 6. CONTRACT OR GRANT NUMBER(*)							
	Donald P./Gaver								
	9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS							
	Naval Postgraduate School Monterey, CA 93940								
	11. CONTROLLING OFFICE NAME AND ADDRESS	12 ASPORT DATE							
	Naval Postgraduate School Monterey, CA 93940	February 81 13. NUMBER OF PAGES 50							
	14. MONITORING AGENCY NAME & ADDRESS(IL different from Controlling Office)	is: SECURITY CLASS. (of this report) Unclassified							
	12 7	154. DECLASSIFICATION DOWNGRADING SCHEDULE							
	Approved for public release; distribution unlimited.								
17. DISTRIBUTION STATEMENT (of the ebstract entered in Block 20, if different from Report)									
	18. SUPPLEMENTARY NOTES								
	19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Command and control, games, combat models, simulat								
	This report describes combat models between two fo control facilities actively enhance combat effectivulnerable. Numerical examples are given; a compuincluded.	veness, but are also							

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-014-6601

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Whân Dete Entered)

251450

EXECUTIVE SUMMARY

This report describes dynamic combat models that reflect the effect of information flows together with attrition capability upon combat progress and outcome. Command and Control assets for each participant are modeled as endowed with the capacity to guide combat; C_{\perp}^2 is also vulnerable in that it may be deliberately targetted and reduced in effectiveness. Physical attrition is modeled first by a deterministic rate process (Lanchesterian in nature), secondly by a stochastic process related to the first by ideas related to those of stochastic difference and differential equations.

The models are best exercised and explored on an interactive computer display

A FORTRAN program exists for this purpose, with displays of hypothetical "historical" combat outcomes now appearing in tabular form. Graphical displays will be
provided in future work.

It seems likely that this model simulation can be developed into a gaming tool, very conveniently playable by two persons who can elect various strategies for force allocation, play the game, and learn from the results. An elaboration of the model may serve as a means for assessing the importance of increased effectiveness of equipment, either with respect to firing rate and accuracy or time for information flow.

MODELS OF CONFLICT, WITH EXPLICIT REPRESENTATION OF COMMAND AND CONTROL CAPABILITIES AND VULNERABILITIES

Donald P. Gaver

1. INTRODUCTION

Many, if not most, conflicts between opposing forces R and B are conducted under some form of Command, Control and Communications (C^3) establishment supervision. Yet few, if any, simple analytical models seem to attempt portrayal of the relationship between C^3 and combat effectiveness. This report suggests models involving C^3 capabilities and vulnerabilities, and indicates the manner in which the models suggested may be utilized in a gaming context.

Models constructed in the present manner were proposed by Gaver and Tonguç (1979). In that study the opposing forces were each split into two groups characterized by their respective <u>information states</u>: those "in the know," or capable of engaging in efficient attrition activities, and those "in the dark," and capable only of less appropriate action, or none at all. It was illustrated by Tonguç (1980) that a capability for quick transition from one information state to another could sometimes outbalance raw physical capability, such as firing rate and single-shot kill probability, thus acting as a "force multiplier."

Once the potential of the ${\rm C}^3$ component is recognized, the latter also becomes a potential target. It is, therefore, of interest to incorporate the ${\rm C}^3$ component explicitly into attrition-type models, and then to exercise the models so as to expose vulnerabilities and possibly suggest sensible doctrine. We make a stab at this program here in a highly simplified manner, feeling that informative elaborations may well be suggested after an initial look. The idea is to stray in a gingerly fashion into the area between classical Lanchester combat theory and the extensive and elaborate terrain of the modern wargame.

1

2. MODELS OF POSITION DEFENSE

2.1. Model I: Defense of a Stronghold (or Bastion or Beachhead)

An initial model for this situation was presented by Gaver and Tonguc (1979); see Tonguc (1979), henceforth call this the GT Model. Suppose an R-force of size R attacks a bastion (e.g. beachhead or defended position) held by B. The significance is that B is advantageously located, and in GT was assumed to suffer no casualties initially, while R is exposed and vulnerable and can only succeed by (a) surprise, or (b) B's inability to critically diminish R before being overrun. Suppose that R's speed of advance is (nearly) constant, and that R wins if $R(t_0) \geq kB$, where $R(t_0)$ is R's force size when the stronghold is reached at time t_0 ; k represents R's necessary advantage over B at final stages or "hand-to-hand" in order to win.

In the GT model, (and here) it was (and is) assumed that B's divide into two combat groups: one in number $B_{u}(t)$, e.g. the number of those able to fire in an ineffective, specifically unaimed, manner, and another of size $B_{a}(t)$, e.g. the number of those capable of firing in a more effective, specifically aimed way. All sorts of refinements are possible, but for the present two information states are sufficient.

In GT it was assumed that dynamic transition between $B_u(t)$ and $B_a(t)$ occurred: the rate of transition $B_u(t) \rightarrow B_a(t)$ measured the power of the C^3 system. However, no attempt was made to represent that system as an explicit entity, itself being vulnerable and hence an inviting target. In the present model assume that the C^3 assets of B are vulnerable to R, and that the rate of transition from $B_u(t)$ to $B_a(t)$ is made possible by the C^3 force $B_c(t)$; the latter's effectiveness can in turn be effected by R's actions. In other words, R can attempt to, or inadvertently, target $B_c(t)$ -- and only $B_c(t)$ in the present model -- using the force $R_{cc}(t)$ assigned for that purpose. To the extent that

 $R_{cc}(t)$, called the <u>Counter-C³</u> (C-C³) <u>Force</u>, is effective, the C³ capability of B, namely $B_c(t)$, is reduced by temporary suppression or outright destruction. Such reduction in turn adversely affects the quality of B's response to R's attack. Since in this model the effort (in terms of force size) allocated to C-C³ activity is removed from the Red active list, thus diminishing R_A and hence the number available to encounter B once the bastion is reached, there is clearly a trade-off opportunity for R. Too large an active force R_A at the expense of C-C³, R_{cc} , allows extensive attrition by B on R_A free of charge: $B_c(t)$ may work at full effectiveness. On the other hand, too large a C-C³ force obviously penalizes the attacking force, R_A . Similar choices exist for B. Only by setting down a quantitative representation of the combat dynamics and studying its implications numerically can informed intuition be developed that may lead to a wise trade-off.

Lanchester-Style Equations

Here are some specific Lanchester-style differential equations that represent the dynamics described above in words.

• Blue's C³ Interactions; Red's Counter-C³.

$$\frac{dB_{u}(t)}{dt} = -C_{ua}(B_{c}(t), B_{u}(t))$$
 (2.1)

$$\frac{dB_a(t)}{dt} = C_{ua}(B_c(t), B_u(t))$$
 (2.2)

$$\frac{dB_c(t)}{dt} = C_{cc}(B_c(t), R_{cc}(t))$$
 (2.3)

These equations represent the rate of change of the B-force segments with time. They describe only C^3 -related activities, since physical change (attrition) of B_u and B_a has not been allowed in the present scenario. Expression (2.1) states that the rate of change reduction of the Blue ineffective (unaimed) force depends

through the function $C_{ua}(.,.)$ upon the capacity of the Blue C^3 activity, measured by $B_c(t)$, and upon the number of ineffective forces, $B_u(t)$, awaiting conversion to the effective state. Notice that this expression is left general; $C_{ua}(.,.)$ can be specified at will, and must represent the general features of the C^3 activity, including sensor performance and output analysis as well as communication. One simple, tentative, but specific representation might be

$$C_{ua}(B_{c}(t), B_{u}(t)) = \theta_{ua}B_{c}(t) B_{u}(t),$$
 (2.1,a)

 θ_{ua} being a positive constant. This expresses the appealing intuition that the rate of transfer of B_u to B_a should increase jointly with the C^3 capability, B_c , and the number available for change, B_u . On the other hand, (2.1,a) does not reflect processing constraints: if each C^3 -equivalent B_c - unit can service one B_u - unit at a time, then the appropriate function should resemble

$$C_{ua}(B_c(t), B_u(t)) = \theta_{ua} \min(KB_c(t), B_u(t));$$
 (2.1,b)

here K represents the conversion factor that allows combat units (e.g. tanks) to be interchanged for sensor-communication units, or "channels" for short. Other forms for the conversion rate C_{ua} may be derived, possibly by modeling this operational segment in the light of empirical study of any data that happens to be available.

Together, the two equations (2.1) and (2.2) simply state that a decrease in $B_u(t)$ translates into an increase in $B_a(t)$ during the time period (t, t+dt). For simplicity, there is no attrition of B by R, except for that allowed to deplete B's C^3 capability, $B_c(t)$.

The equation (2.3) states that the rate of decrease of the Blue C^3 force, B_c , depends upon the magnitude of Red Counter- C^3 activity, $R_{cc}(t)$, as well as

Blue's C^3 activity, $B_c(t)$. Tentatively illustrate by the simple relationship

$$C_{cc}(R_{cc}(t)) = -\phi \cdot R_{cc}(t), \qquad (2.3,a)$$

 ϕ being a constant. This is a conventional Lanchester aimed-fire model. Another similar model might better reflect R's lack of knowledge of B $_{\rm C}$ location:

$$C_{cc}(R_{cc}(t)) = -\phi \cdot \left(\frac{B_c(t)}{B_0}\right) \cdot R_{cc}(t)$$
 (2.3,b)

where B_{o} is proportional to the area in which B_{c} is concentrated, and on which R_{cc} concentrates activity. This is essentially an unaimed fire model of classical Lanchester vintage. There may be reason to transition from (2.3,b) to (2.3,a) during the course of the engagement, as information about Blue C^{3} increases.

• Blue and Red Physical Attrition.

$$\frac{dR_{cc}}{dt} = -\alpha_{cc}(R_{cc}(t), B_{u}(t), B_{a}(t))$$
 (2.4)

$$\frac{dR_{A}}{dt} = -\alpha_{A}(R_{A}(t), B_{u}(t), B_{a}(t)) \qquad (2.5)$$

The rate functions $\alpha_{\rm CC}(\cdot)$ and $\alpha_{\rm A}(\cdot)$ represent the physical attrition exacted by R on the two identified B-force components: the C-C³ force R_{CC}, and the active attacking force R_A. It is the magnitude of R_A(t₀), i.e. the attack force survivorship at the time t₀ when the bastion is reached, that determines whether the bastion is actually taken. However, the size effectiveness and vulnerability of R_{CC} can indirectly but decisively influence the latter variable and hence the conflict outcome. The interplay of the variables described by equations (2.1) - (2.5) quantifies the qualitative system behaviour.

Here are some specific expressions for physical attrition

$$\alpha_{cc}(R_{cc}(t), B_{u}(t), B_{a}(t)) =$$

$$\rho_{u,cc} \cdot \left(\frac{R_{cc}(t)}{R_0}\right) B_u(t) + \rho_{a,cc} \cdot \left[\frac{kR_{cc}(t)}{kR_{cc}(t) + R_A(t)}\right] B_a(t)$$
 (2.4,a)

The first right-hand-side (rhs) term represents the rate of attrition of $R_{\rm CC}$ by unaimed B fire; the parameter $\rho_{u,cc}$ is composed of both B'_u s fire rate and single-shot kill probability. The second rhs term represents the rate of attrition of R_{cc} by aimed B fire; the parameter $\rho_{a,cc}$ summarizes the joint effect of B_a firing rate and kill probability. The ratio k $R_{\rm cc}/kR_{\rm cc}$ + $R_{\rm A}$) expresses the fraction of the aimed fire that is directed at the $\rm\,R_{cc}$ force, where k is a parameter that may be adjusted to account for various combatrelated effects, for example: the relative hardness or invulnerability of the $R_{\rm cc}$ force segment as compared to the R_{Δ} force segment. It also accounts for the relative exposures of the two forces (R $_{\rm cc}$ and R $_{\rm A}$) to aimed fire by B $_{\rm a}$. Note that if k = 1 the probability that a unit of aimed fire will be directed at the R_{cc} element is simply $R_{cc}/(R_{cc}+R_A)$ -- the fraction of the existing P force at time to that is devoted to $C-C^3$. If k=0, no aimed shots are directed at the C-C 3 element, instead being concentrated on the attackers, $R_{\mbox{\scriptsize A}}$, while if $k \rightarrow \infty$ B aimed fire is concentrated on R_{CC} , the C-C³ element. In short, the simple parameter k expresses the capabilities, vulnerabilities, and priorities of both B and R. It, or a more elaborately developed counterpart, represents combat decision choice, and would appear to have important influence on the progress of the combat.

The rate of decrease of the attack force may be specifically expressed as follows:

$$\alpha_{A}(R_{A}(t), B_{u}(t), B_{a}(t) =$$

$$\rho_{uA} \cdot \left[\frac{R_{A}(t)}{R_{0}}\right] B_{u}(t) + \rho_{aA} \cdot \left[\frac{R_{A}(t)}{k R_{cc}(t) + R_{A}(t)}\right] B_{a}(t) \qquad (2.5,a)$$

Again the first rhs term represents the attrition rate component resulting from the relatively ineffective (unaimed) B fire. The second rhs component represents the attrition rate from aimed fire by B. The fraction $R_A/(k\ R_{CC}+R_A)$ is simply the complement of that appearing in (2.4,a); it expresses in the simplest way a composition of the relative vulnerabilities of R components and the priorities of B.

There appears to be little hope of obtaining insights directly from the differential equations (2.1) - (2.5). Of course such equations can be solved numerically, as was done for the GT model by Tonguc (1979). But another, somewhat simpler, alternative is to express the functions directly in discrete time, taking the time steps to be of unit size; perhaps 0.25 hr. might be appropriate for a start.

Lanchester-Style Equations in Discrete Time

 \bullet Blue's ${\mbox{C}}^3$ and Physical Interactions; Red's C-C 3

$$B_{u}(t + 1) = B_{u}(t) - C_{ua}(B_{c}(t), B_{u}(t))$$
 (2.6)

$$B_a(t + 1) = B_a(t) + C_{ua}(B_c(t), B_u(t))$$
 (2.7)

$$B_c(t + 1) = B_c(t) + C_{cc}(B_c(t), R_{cc}(t))$$
 (2.8)

These are easily seen to be the counterparts of (2.1) - (2.3). They may be solved recursively, starting with the initial conditions specified by $B_u(0)$, $B_a(0)$, and $B_c(0)$. Choice of the initial condition by B constitutes a decision, for if initial force size is B = 100, then choosing $B_c(0) = 20$ leaving $B_u(0) = 80$ and $B_a(0) = 0$ implies more faith by B in his C^3 capabilities and invulnerability than does the choice $B_c(0) = 50$ leaving $B_u(0) = 50$ with $B_a(0) = 0$. The same considerations hold true for R also.

Red's Physical Attrition

$$R_{cc}(t + 1) = R_{cc}(t) - \alpha_{cc}(R_{cc}(t), B_{u}(t), B_{a}(t))$$
 (2.9)

$$R_A(t+1) = R_A(t) - \alpha_A(R_A(t), B_u(t), B_a(t))$$
 (2.10)

Here again one starts with initial conditions $R_{cc}(0)$ and $R_A(0)$ and solves recursively to find the Red attacker force size at t_0 , when the defended position is reached. If R has considerable faith in the unit effectiveness of its C-C³, then presumably $R_{cc}(0)$ is chosen to be relatively small, permitting the majority of its resources to be allocated to the attack force $R_A(0)$.

3. NUMERICAL ILLUSTRATIONS OF MODEL I PERFORMANCE

The present version of Model I is as simple as seems consistent with our attempts to blend elements of Command and Control with combat interactions between forces. Even so five state variables are needed to describe system behavior, and their inter-related evolution in time is sufficiently complex to make a direct mathematical discussion appear unprofitable. As an alternative we have elected to create a computer program that produces the numerical sequences of values assumed by the various forces as combat progresses. The computer program is written in FORTRAN; a listing appears in an Appendix. If combat is terminated at a particular time point, t_0 , the relationship of $R_{\rm A}(t)$ to $R_{\rm A}(t)$ will be assumed to determine the outcome. The latter relationship is itself influenced by decision variables on each side. Here are some options and constraints for the combatants.

• Initial Red attacker force size, R(0), and its division into attackers, $R_A(0)$; and Counter-C³ (C-C³), $R_{CC}(0)$; then

$$R(0) = R_A(0) + R_{cc}(0)$$

• Initial Blue defender force size, B(0), and its disposition into Uneffectives/Undesignated, $B_u(0)$; Effectives, $B_a(0)$; and C^3 Forces, $B_c(0)$;

$$B(0) = B_u(0) + B_a(0) + B_c(0)$$

Often, $B_a(0) \simeq 0$ will be reasonable as an initial condition; this would represent surprise by the Red force.

Note that Blue has a technological constraint that limits its C^3 capacity. Two parameters actually play this role: (1) θ_{ua} , representing the rate per unit time of acquisition and transfer, and thus of converting B_u 's into B_a 's, and (ii) K, the capacity factor according to which force units (B_c (t) = tank equivalents, say) are made equivalent to C^3 units

(sensor-communication combinations or "channels" for short); see (2.1,b) for the rate expression actually used. Initially imagine Blue to be merely endowed with these parameters, and allow them to remain fixed. It may be reasonable for them to change as combat progresses and sensors are disabled, etc. The current computer program can be straightforwardly altered to reflect such combat related damage or degradation.

Blue is assumed to be in possession of the decision parameter, k, see (2.4,a) and (2.5,a): increases in k directs a greater proportion of B_a 's fire at R_{cc} forces, while reduction of k concentrates B_a fire at the Red attacking force, R_A ; k = 0 means exclusive concentration on R_A . Although the present model explicitly makes k a constant throughout the combat period, no such restriction need be at all permanent: it may perhaps be best for B to switch from $k = \infty$ at early stages of combat -- thus maximally reducing R_{CC} 's interference with initial rapid buildup of the β_a 's force -- finally switching to k = 0 later on so as to concentrate on decimating the R_{Δ} force before the defended position is reached. If for example, $B_c(t)$ is (i) hardly reduced at all after a few periods, or (ii) is almost wiped out, then there would seem to be little reason for B_a to target R_{cc} units any longer. Of course if B_{u} forces are almost entirely converted to B_a 's there would again seem to be little reason to target R_{cc} , for B_{c} 's function has been accomplished -- at least so far as the current engagement is concerned.

Switching betwen two extreme values of k is reminiscent of the "bang-bang" policies of control "optimal," but there is no measure of effectiveness or figure of merit yet specified for B.

Numerical Cases

Here are the parameter values selected for initial exercise of the model

$$R_A(0) = 120$$
, $R_{cc}(0) = 30$
 ϕ , (attrition rate of B_c by R_{cc}), = 1.
 $B_a(0) = 0$, $B_u(0) = 80$, $B_c(0) = 20$
 $\rho_{uA} = \rho_{u,cc} = 0$

For simplicity we are assuming that the Unaffective Blues have no combat performance capability, but are merely a pool of assets from which Effectives are created by the information from the central $\,{\rm C}^3\,$ facility. This assumption can easily be modified if desired.

Note carefully that in all that follows the numerical values for various parameters have been chosen for illustrative purposes only, and need bear no close resemblance to any actual values, which are in fact unknown to us. The purposes of the cases discussed is entirely exploratory. But of course we hope that that the suggestions and implications noted will promote interest in further work, leading to model refinements and the use of more nearly correct parameter values, if such can be agreed upon.

Case 1: $\rho_{a,cc} = 1.0$, $\rho_{aA} = 1.0$ (Blue Attrition rates) $\phi = 1.0$ (Red Attrition rate on Blue C³)

Me	edium Speed Biu	Rapid E	lue C ³	
	get: <u>Attack</u>	<u>c-c³</u>	<u>Attack</u>	$C-C^3$
	k=0.2	k=5	k=0.2	k=5
	θua=1	θ _{ua} ≈1	θua=2	θua=2
↓ t				
1	(∞)	(∞)	co	00
2	6.0	6.00	3.0	3.0
3	2.97	3.27	1.20	1.50
4	1.57	2.12	0.21	0.60
5	0.56	1.07	0.00	0.00
6	0.00	. 06	1	ł
7		0.00		}
8	1	+	\downarrow	\downarrow

Red/Blue Active Force Ratio as Combat Progresses (Red C-C³ Attrition Rate $\phi = 1.0$)

Fig. 3.1

The numbers in the above figure suggest that

- Increasing the speed θ_{ua} , (reducing the response time) of Blue C^3 activity has a profound effect upon the Red/Blue Force Ratio: e.g. at t = 4 when k = 0 (Blues concentrated on Red Attackers) Reds outnumber Blues by 1.6 to 1 if Blue's C^3 speed is θ_{ua} = 1, while doubling that rate to θ_{ua} = 2 under otherwise the same circumstances cuts the ratio to a Bluefavorable 0.21 to 1, i.e. by a factor of about eight.
- For the parameters considered, concentration by Blue on Red Attack forces pays off more than does concentration on the Red C-C³: e.g. at t = 4 with Rapid Blue C³ the advantage to Red changes from a force ratio of 1.6 to 2.1 with an increased concentration of fire by Blue on Red's C-C³.

The comparative advantage of Red to Blue $(R_A(t)/B_a(t),$ yielded by Blue emphasis on Red Attackers (k=0.2) instead of Blue emphasis on Red C-C³ (k=5) diminishes as Blue C³ speed θ_{ua} decreases. The reason may be that when the crucial Blue C³ function is relatively weak or slow, it is profitable to spend more effort n its defense, at least until it has served its assigned purpose of converting B_u 's to B_a 's .

Case 2:
$$\rho_{a,cc}(t) = 0.25 + 0.075t = \rho_{aA}(t)$$

 $\phi = 1.0$

In this case a space (and hence time) varying representation of the attrition rate is introduced: at t=0 when the Red force is far away, attrition rates on it are taken to be low, but they increase steadily with decreasing range (increasing t).

	Medium-Spee	d Blue C ³	Rapid B	lue C ³
	Attack	<u>c-c³</u>	<u>Attack</u>	<u>c-c³</u>
	k=0.2	k=5	k=0.2	k=5
	θ _{ua} =1.0	θua≂1.0	θ <mark>ua</mark> =2.0	θ _{ua} =2.0
↓ t				
1	∞	οs	∞	œ
2	6.0	6.00	3.00	3.00
3	3.35	3.44	1.58	1.60
4	2.25	2.50	0.88	1.12
5	1.37	1.82	0.23	0.60
6	0.40	0.89	0.00	0.00
7	0.00	0.00	\downarrow	\downarrow

Red/Blue Active Force Ratio as Combat Progresses (Red C-C³ Attrition Rate ϕ = 1.0)

Fig. 3.2

There is little qualitative change in the numbers obtained, as compared to those of Fig. 3.1. The change in the attrition rate function, increasing from a small to a larger value as time goes on, allows a larger number of Reds to survive longer than was true for Case 1. Again it seems profitable for Blue to expend most of its energy on Red Attackers.

Case 3:
$$\mu_{a,cc} = 0.25$$
, $\mu_{aA} = 0.25$
 $\phi = 1.0$ (Red Attrition Rate vs Blue C³)
$$\begin{cases} \omega_{ua} = 0.5 \text{ (Relatively Slow Blue C}^3 \text{)} \\ \omega_{ua} = 1.0 \text{ (Relatively Rapid Blue C}^3 \text{)} \end{cases}$$

In order to describe the results the entire computer printout is now presented. Parameter values are shown across the page top; note that KC (computer printout) = k (text); the larger (smaller) this parameter becomes the greater (less) is concentration of Elue fire on Red C-C³.

- Compare cases for which $\theta_{ua} = 0.5$ to $\theta_{ua} = 1.0$: the force nation R_A/B_a for the slower system ($\theta_{ua} = 0.5$) is about twice that for the faster ($\theta_{ua} = 1.0$) system, no matter which firing strategy is adopted (k = 0.2.5, or 10).
- The time period during which R_A/B_a is above unity (Redshave advantage), or there is near parity, is about 15 to 16 for $\theta_{ua}=0.5$ (Relatively Slow Blue C^3); the same period is about 8 to 9 for $\phi_{ua}=1.00$. After that period the R_A force is quickly wiped out, but there are wide differences in the readiness of the B_a 's: for k=KC=5, 10 the B_a 's soon reach their maximum of 80, (t \approx 12), while at k=KC=0.2 the maximum is not reached until $t\approx42$.

ì

32	30.00	0.00	13.33	66.67	•00	0.00	
1.0	00° .200	RHOUC 0.000	RHDUA 0.000	RHDAA RHDAC .250 .250	PHI 1.000	1.000	THUA S
123456789	RCC(T) 30.00 30.00 29.76 29.34 28.78 28.06 27.16	RA(T) 120.00 120.00 115.24 107.16 96.77 84.81 71.79 58.99	BU(T) 80.00 60.00 46.00 36.20 29.32 24.45 20.99	0.000 000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.	20.00 14.00 9.80 6.88 4.86 3.46 21.81	(A/FU+BA 1.50 1.50 1.34 1.21 1.06 .703	RA/BA -1.000 -3.000 -3.45 -1.53 53 54
1234567890123456789012345678901234567890123456	27164000000000000000000000000000000000000	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	155437660048260482604826065159405000000000000000000000000000000000	26663440628406284062849517395173950000 266677888990011223333445566778899990000 26666666666777777777777777777777777	111111066666666666666666666666666666666	17.0400000000000000000000000000000000000	44400000000000000000000000000000000000

Red/Blue Force Changes as Combat Progresses ($\phi=1.0$)

(K = KC = 0.2)

Fig. 3.3a

47	0.00	0.00	0.00	80.			
1.0	000 5.000	RHOUC 0.000	RHOUA RHO	AA RHDAC 50 .250	1.000	1.000	THUA 1.000 0.000
123456789	RCC(T) 30.00 27.22 22.67 17.20 11.57 2.49	RA(T) 1200.000 1173.83 118.35 108.227 80.296	BU(T) 800.00 46.00 36.20 23.59 114.95	BA(T) 0.00 34.00 43.80 50.93 56.45 65.05	20.00 14.00 9.1557 4.557 4.78	A/BU+55545751 1455751 14575751	RA/RA -1.000 -1.000 -1.403 -1.751 -1.524 -77
9 10 11 12 13 14 15 16 78	0.00 0.00 0.00 0.00 0.00 0.00 0.00	26.87 50.06 31.93 12.89 0.00 0.00 0.00 0.00	11.17 7.48 3.81 0.00 0.00 0.00 0.00 0.00	68.83 72.52 76.19 79.86 80.00 80.00 80.00 80.00	3.687 3.6677 3.66677 3.66677 3.6677 3.6677	.440 .400 .000 .000 .000 .000 .000 .000	.97 .42 .14 0.00 0.00 0.00 0.00

(k = KC = 5.0)

Fig. 3.3b

1.00	K 10.000	RHDUC 0.000	RHOUA 0.000	RHDAA .250	RHOAC .250	PHI 1.000	1.000 H	THUA 1.000	0.000
12345678901234567890123456789012345	10036685000000000000000000000000000000000	7000749924679700000000000000000000000000000000000	#0000000000000000000000000000000000000	00443161605000000000000000000000000000000000	T000807 6388400000000000000000000000000000000000	B20.0001353777777777777777777777777777777777	#555444570865100000000000000000000000000000000000	O0000000000000000000000000000000000000	007507 84558700000000

(k = KC = 10)

Fig. 3.3c

Case 4:
$$\rho_{a,u} = 0.10, \rho_{aA} = 0.1$$

 $\phi = 0.20, \theta_{ua} = 0.25$

$B_{u}(0)=90(=B_{A}(\infty)), B_{c}(0)=10$		B _u (0)=80(=B _A (∞)), $B_{c}(0)=20$	$B_{u}(0)=60(=B_{A}(\infty)), B_{c}(0)=40$		
↓t	k: 0	10	0	10	0	10
1	48.0	48.0	24.0	24.0	12.0	12.0
2	24.7	24.7	12.3	12.4	6.1	6.2
3	16.9	17.0	8.4	8.5	4.2	4.2
4	13.0	13.1	6.4	6.5	3.2	3.3
5	10.6	10.8	5.2	5.4	2.6	2.8
10	5.74	6.05	2.62	2.92	1.54	1.92
15	3.95	4.39	1.57	1.95	0.97	1.47
20	2.91	3.43	0.88	1.22	0.46	0.97
30	1.52	1.96	0.00	0.07	0.00	0.00
40	0.44	0.71	\	0.00	↓	\downarrow

Red/Blue Active Force Ratio as Combat Progresses

Fig. 3.4

The most striking effect visible in the table is that Blue improves his performance relative to Red by <u>decreasing</u> the Effectives and increasing the allocation of his forces to C^3 . A nearly 3-to-1 improvement (for B) of the force ratio at t=5 is apparent. The effect of the parameter k, which dictates the fraction of B energy expended to deplete Red C- C^3 , is very small.

4. A STOCHASTIC VERSION OF MODEL I.

The evolutionary equations (2.1) - (2.5), or equivalently (2.6) - (2.10) are entirely deterministic, a feature that seems unrealistic since in reality uncertainty and random variability abound. There are several ways in which uncertainty may be allowed to intrude into the formulations; for instance

- (i) Through the necessity of estimating parameters $(\rho_{u,cc}, \rho_{a,cc}, k, \underline{etc}.)$ from data, assuming the model specification is "correct", or at least adequate.
- (ii) Through the necessity of using simplistic models such as (2.1) (2.5) to represent a more complex reality.
- (iii) By explicitly permitting randomness to enter the dynamic equations as an additional driving force.
 - (iv) Other possibilities; combinations of the above, for example.

Begin by adding a random perturbation term to the discrete time equations (2.6) - (2.10) as in (iii) above:

$$\begin{split} & \mathcal{B}_{u}(t+1) = \mathcal{B}_{u}(t) - C_{ua}(\mathcal{B}_{c}(t), \mathcal{B}_{u}(t)) + \sigma_{u}(\Delta \mathcal{W}_{t+1}(u)) \\ & \mathcal{B}_{a}(t+1) = \mathcal{B}_{a}(t) + C_{ua}(\mathcal{B}_{c}(t), \mathcal{B}_{u}(t)) + \sigma_{a}(\Delta \mathcal{W}_{t+1}(a)) \\ & \mathcal{B}_{c}(t+1) = \mathcal{B}_{c}(t) - C_{cc}(\mathcal{B}_{c}(t), \mathcal{R}_{cc}(t) + \sigma_{c}\Delta \mathcal{W}_{t+1}(c)) \\ & \mathcal{R}_{cc}(t+1) = \mathcal{R}_{cc}(t) - \alpha_{cc}(\mathcal{R}_{cc}(t), \mathcal{B}_{u}(t), \mathcal{B}_{a}(t)) + \sigma_{cc}(\Delta \mathcal{W}_{t+1}(cc)) \\ & \mathcal{R}_{A}(t+1) = \mathcal{R}_{A}(t) - \alpha_{A}(\mathcal{R}_{A}(t), \mathcal{B}_{u}(t), \mathcal{B}_{a}(t)) + \sigma_{A}(\Delta \mathcal{W}_{t+1}(A)) \end{split}$$

The notation X denotes a random function. The vector of random components $W_t(u)$, $W_t(a)$, $W_t(c)$, $W_t(cc)$, $W_t(A)$ will be taken to be one of not necessarily independent Wiener processes, sampled at time points $t=1,2,3,\ldots$ Thus the equations (4.1) turn out to be analogous to Ito-type stochastic differential equations; such equations have been used by Lehoczky and Perla (1978) to describe combat situations.

4.1. Explicit Representation of Random Terms.

By arguments analogous to those of Lehoczky and Perla (1978), or of Gaver and Lehoczky (1977) in a different context, we write down expressions for the scales $\sigma(\cdot)$ of the random components written as $\sigma \cdot (\Delta W_{t+1}(\cdot))$ in (4.1). We argue heuristically that if the stochastic processes are nearly Markovian and further are superpositions of many point (e.g. birth-death) processes describing the changes of individuals states in a relatively short time period, then it is reasonable that $\sigma(\cdot)$ be equal to the square-root of the individual drift (deterministic) terms, the latter being given by the expression $C_{ua}(B_c(t), B_u(t)), C_{cc}(B_{cc}(t), B_u(t), B_a(t)),$ etc. appearing on the rhs of (4.1). is suggested by the approximately Poisson nature of the changes in state of the system over relatively short time intervals. Recall that the standard deviation of a Poisson random variable (state change, here) is equal to the square-root of the mean (state change), or drift in diffusion theory jargon. Furthermore, the random elements $\Delta W_{t+1}(n)$, $\Delta W_{t+1}(a)$, etc., are realizations of independent unit normal or Gaussian random variables. Some readers will recognize the resulting system to be a discrete-time version of Itô-type stochastic) for basic information. differential equations; see Arnold (

Here are some explicit examples, following (2.1,b), (2.3), (2.4,a), (2.5,a).

$$\sigma_{\mathbf{u}} \cdot \left(\Delta W_{t+1}(\mathbf{u}) \right) = \left[\sqrt{\theta_{\mathbf{u}\mathbf{a}}} \frac{KB_{\mathbf{c}}(\mathbf{t})}{KB_{\mathbf{c}}(\mathbf{t})}, B_{\mathbf{u}}(\mathbf{t}) \right] \left(\Delta W_{t+1}(\mathbf{u}) \right)$$

$$\sigma_{\mathbf{a}} \cdot \left(\Delta W_{t+1}(\mathbf{a}) \right) = \left[\sqrt{\theta_{\mathbf{u}\mathbf{a}}} \frac{KB_{\mathbf{c}}(\mathbf{t})}{KB_{\mathbf{c}}(\mathbf{t})}, B_{\mathbf{u}}(\mathbf{t}) \right] \left(\Delta W_{t+1}(\mathbf{a}) \right), \qquad (4.2)$$

where

 $\Delta W_{t+1}(a) \sim N(C,1)$, i.e. has the Normal distribution with mean 0, and standard deviation 1,

and

$$\Delta W_{t+1}(a) = -\Delta W_{t+1}(u),$$

the latter because a fluctuation away from the mean change in one direction--down, say--for $B_u(t)$ is exactly matched by one in the up direction for $B_a(t)$ during time interval t to t+1. Next, using (2.3,b),

$$\sigma_{c} \cdot \left(\Delta W_{t+1}(c) \right) = \left[\sqrt{\phi \cdot \left(\frac{B_{c}(t)}{B_{o}} \right) R_{cc}(t)} \right] \left(\Delta W_{t+1}(c) \right)$$
(4.3)

where $\Delta W_{t+1}(c) \sim N(0,1)$, and $\Delta W_{t+1}(c)$ is independent of $\Delta W_{t+1}(a)$ as well as of past values $\Delta W_{\tau}(c)$, τ = 0,1,2,...,t.

Next,

$$\sigma_{cc} \cdot \left(\Delta W_{t+1}(cc)\right) = \left[\sqrt{\rho_{u,cc} \cdot \left[\frac{R_{cc}}{R_{o}}\right] B_{u}(t)}\right] \left(\Delta W_{t+1}(u,cc)\right)$$

$$+ \left[\sqrt{\rho_{a,cc} \left[\frac{kR_{cc}(t)}{kR_{cc}(t) + R_{A}(t)}\right] B_{a}(t)}\right] \left(\Delta W_{t+1}(a,cc)\right)$$
(4.4)

where $\Delta W_{t+1}(cc,u)$ and $\Delta W_{t+1}(cc,a)$ are independent random elements, both $\sim N(0,1)$, that represent respectively the fluctuation away from mean attrition on the Red C-C³ facility caused by unaimed (ineffective) fire and by aimed (effective) fire.

Finally, use of (2.5a) provides

$$\sigma_{A} \cdot \left(\Delta W_{t+1}(A) \right) = \left[\sqrt{\rho_{uA} \left[\frac{R_{A}(t)}{R_{0}} \right] B_{u}(t)} \left(\Delta W_{t+1}(u,A) \right) + \left[\sqrt{\rho_{aA} \cdot \left[\frac{R_{A}(t)}{kR_{cc}(t) + R_{A}(t)} \right] B_{a}(t)} \right] \left(\Delta W_{t+1}(a,A) \right).$$

$$(4.5)$$

Again, $\Delta W_{t+1}(u,A)$ and $\Delta W_{t+1}(a,A)$ are independent and normally distributed, representing fluctuations around mean attrition on the R_A - component. Under the

present simple circumstances in which approximate independence may be justified, we can actually combine the two "noise" terms in (3.4) and (3.5) to obtain the simpler forms

$$= \sqrt{\sum_{c} \left(\frac{R_{cc}(t)}{R_{o}}\right)} B_{u}(t) + \sum_{a,cc} \left(\frac{R_{cc}(t)}{R_{cc}(t) + R_{A}(t)}\right) B_{a}(t) \left(\Delta W_{t+1}(cc)\right)$$
(4.4,a)

Jind

$$\left[\sqrt{-uA}\left[\frac{R_{A}(t)}{R_{Q}}\right]B_{u}(t) + \rho_{aA}\left[\frac{R_{A}(t)}{kR_{cc}(t) + R_{A}(t)}\right]B_{a}(t)\right]\left(\Delta W_{t+1}(A)\right)$$
(4.5,b)

This will reduce simulation difficulties by making it unnecessary to sample two normal random variables for each of the last equations. The introduction of correlation is easy, if justified.

It might be pointed out that considerable freedom exists in the choice of the distribution of all of the noise terms $\Delta W_{t+1}(\cdot)$: they need not be normal, nor need they be independent, nor, in fact, need they be independent of the corresponding state value. Of course a random fluctuation that sends, say, $R_A(17)$ for ally negative must in truth merely wipe out the A-force, i.e. reduce it to term. Intuition indicates that a formal (and forbidden) passage below zero for $R_A(t+1)$, and that the latter is unlikely to be extensive by virtue of the small noise variation near $R_A=0$ for the particular form of (4.5,b). However, choice of a more gaudily variable noise increment, e.g. with $\Delta W_{t+1}(\cdot)$ now chosen to be long tailed, perhaps in a Cauchy-like manner, will likely require more extensive fixing at the boundary. This is no reason to avoid such models, for there is received holy about the normal (or Wiener-like) variation save for its appearance

as the noise when a basic Markov structure is assumed to underlie the present models. Actually, over-variation (from the Gaussian/normal) and serial dependence may well usefully represent mixtures of normals (or other) distributions resulting from factors such as terrain, visibility, and many other features which combine to generate departures from the systematic deterministic models analogous to the classical Lanchester forms (2.1) - (2.5).

5. MODEL II: TWO FORCES IN COMBAT WITH MUTUAL ATTRITION

The model described earlier dealt with a special situation in which one force (Red) was the attacker of another in a defended position (Blue). Lack of symmetry was evident. The model of this section represents an equally stylized but now symmetric situation in which both forces are capable of causing attrition on each other. Once again, guidance is furnished by explicitly represented, and vulnerable, ${\tt C}^3$ agencies. Our models allow for different targetting strategies.

Notation is as follows:

- $R_a(t)$ = the number of <u>active</u> Reds at t, meaning the number of R's actually targetted on, and firing at, Blue units.
- $B_a(t)$ = the corresponding Blue force size.
- $R_i(t)$ = the number of <u>ineffective</u> (or <u>inactive</u>) R's at t, meaning the number of R's currently untargetted and awaiting new assignment.
- $B_{i}(t)$ = the corresponding Blue force size.
- $R_c(t)$ = the size of the Red C^3 agency at t, i.e. the force responsible for switching R_i units to R_a units.
- $B_c(t)$ = the corresponding Blue force size.

The quantities $R_c(t)$ and $B_c(t)$ are to be viewed as the command and control authorities responsible for the individual direct combat elements on their respective sides. The state variables $R_a(t)$, $R_i(t)$, $B_a(t)$, $B_i(t)$ may be thought of in units of individual tanks or ships, or as aggregations such as battalions, companies, naval task groups, or whatever is appropriate for the particular situation under consideration. The intention of the present model is to <u>simply</u> express changes in the respective force sizes in terms of rate processes—both information transfer rates and physical attrition rates—and in terms of initial allocations of resources.

It is clear that when Red and Blue forces come into contact a variety of possible behaviors may occur. The models developed here are intended to represent the

consequences of a few simplified versions of the true complexity possible. In particular, they permit the study of different target category priority schemes.

Red(Blue) Force State Equations

The general form of the state change equations now follows. They are given only for Red, but the Blue equations are symmetric.

$$R_{\mathbf{a}}(t+1) = R_{\mathbf{a}}^{*}(t) - \underbrace{C_{\mathbf{BRA}}(R_{\mathbf{a}}^{*}(t), R_{\mathbf{i}}^{*}(t), R_{\mathbf{c}}^{*}(t), B_{\mathbf{a}}^{*}(t))}_{\mathbf{Physical Attrition, R_{\mathbf{a}}}}$$

$$+ \underbrace{D_{\mathbf{RA}}(R_{\mathbf{a}}^{*}(t), R_{\mathbf{i}}^{*}(t), R_{\mathbf{c}}^{*}(t), B_{\mathbf{a}}^{*}(t), B_{\mathbf{i}}^{*}(t), B_{\mathbf{c}}^{*}(t))}_{\mathbf{Effect of Information State Change, R_{\mathbf{a}}}}$$
(5.1)

$$R_{i}(t+1) = R_{i}^{*}(t) - \underbrace{C_{BRI}(R_{a}^{*}(t), R_{i}^{*}(t), R_{c}^{*}(t), B_{a}^{*}(t))}_{Physical Attrition, R_{i}}$$

$$+ \underbrace{D_{RI}(R_{a}^{*}(t), R_{i}^{*}(t), R_{c}^{*}(t), B_{a}^{*}(t), B_{i}^{*}(t), B_{c}^{*}(t))}_{Effect of Information State Change, R_{i}}$$

$$(5.2)$$

$$R_{c}(t+1) = R_{c}^{*}(t) - \underbrace{C_{BRC}(R_{a}^{*}(t), R_{i}^{*}(t), R_{c}^{*}(t), B_{a}^{*}(t))}_{Red \ C^{3} \ Capacity \ Attrition \ and \ Suppression}$$

$$+ \underbrace{D_{RC}(R_{a}^{*}(t), R_{i}^{*}(t), R_{c}^{*}(t), B_{a}^{*}(t))}_{Red \ C^{3} \ Capacity \ Restoration \ and \ Recovery}$$
(5.3)

• Additionally, to compute R_a^* , R_i^* , R_c^* from R_a , R_i , R_c , utilize the appropriate physical constraints:

$$R_{a}^{*}(t+1) = \min \left[R_{a}(0) + R_{i}(0), \max\{R_{a}(t+1), 0\} \right]$$

$$R_{i}^{*}(t+1) = \min \left[R_{a}(0) + R_{i}(0), \max\{R_{i}(t+1), 0\} \right]$$

$$R_{c}^{*}(t+1) = \min \left[R_{c}(0), \max\{R_{c}(t+1), 0\} \right]$$

- Initial conditions, i.e. values of $R_a(0)$, $R_i(0)$, $R_c(0)$, are required to start the process, after which the various force sizes are calculated recursively in time.
- Abbreviate: $C_{BRA}(arguments \ as \ in \ (5.1)) \equiv C_{BRA}(t)$ $D_{RA}(arguments \ as \ in \ (5.1)) \equiv D_{RA}(t),$ $\underline{etc.}$
- Blue State Equations resemble (5.1), (5.2), (5.3) with changes in rate definition and notation

There now follow some specific expression for the above rates, intended to illustrate possible effort allocation strategies.

A. Greedy Allocation (Blue vs. Red)

Priority Order: Red Actives, Red Inactives, Red C³

a)
$$C_{BRA}(t) = \rho_A B(R_a^*(t))$$
,

$$B(R_a^*(t)) = \text{Number of Blue Actives } \underline{vs}. \text{ Red Actives}$$

$$= \min \left[B_a^*(t), R_a^*(t) \right] \tag{5.4}$$

- Note that <u>all</u> B_a 's fire one-on-one on R_a 's if B_a force < R_a force; otherwise one-on-one until R_a targets are insufficient, leaving $B_a^*(t) R_a^*(t)$ to be used against R_i 's, which are next on the priority list.
- b) $C_{BRI}(t) = \rho_I B(R_i^*(t)),$

$$B(R_{I}^{*}(t)) = \text{Number of Blue Actives } \underline{vs}. \text{ Red Inactives}$$

$$= \min \left\{ \max\{B_{a}^{*}(t) - B(R_{a}^{*}(t))\}, 0\}, R_{i}^{*}(t) \right\}$$
(5.5)

c)
$$C_{BRC}(t) = \rho_c B(R_c^*(t))$$

$$B(R_c^*(t)) = \text{Number of Blue Actives } \underline{\text{vs.}} \text{ Red } C^3$$

$$= \min \left[\max\{B_a(t) - B(R_a^*(t)) - B(R_i^*(t)), 0\}, R_c^*(t) \right] \qquad (5.6)$$

 Change of priority is easily accomplished: if priority sequence is

x first, y second, z third

$$C_{BRx}(t) = \rho_{x} B(R_{x}^{*}(t)), \quad B(R_{x}^{*}(t)) = \min \left[B_{a}^{*}(t), R_{x}^{*}(t)\right]$$

$$C_{BRy}(t) = \rho_{y} B(R_{y}^{*}(t)), \quad B(R_{y}^{*}(t)) = \min \left[\max\{B_{a}^{*}(t) - B(R_{x}^{*}(t)), 0\}, R_{y}^{*}(t)\right]$$

$$C_{BRz}(t) = \rho_{z} B(R_{z}^{*}(t)), \quad B(R_{z}^{*}(t)) = \min \left[\max\{B_{a}^{*}(t) - B(R_{x}^{*}(t)) - B(R_{y}^{*}(t)), 0\}, R_{z}^{*}(t)\right]$$

- Same, with obvious changes, for Red on Blue
- Attrition rates of Blue, by Red, are denoted respectively by β_a , β_i , β_c .
- Attrition rates can be made time (space) dependent.
- Note that the attrition law is <u>assumed for illustration only</u> to be in accordance with a Lanchesterian linear law. Other types of laws can clearly replace this one.
- B. <u>Proportional Allocation</u> (Blue vs. Red)

a)
$$C_{BRA}(t) = \rho_A \left[\frac{k_A R_a^*(t)}{k_A R_a^*(t) + k_I R_I^*(t) + k_C R_C^*(t)} \right] B_a^*(t)$$
 (5.8)

- k_A , k_I ° k_C are control "constants", representing target priorities. They can be changed or combat progresses, if desired. If $k_A \mid \infty$ (practically $k_A/k_I \simeq k_A/k_C \simeq 10$ should do) there is heavy emphasis on R_a 's
- ullet $c_{f A}$ is attrition rate (firing rate times single-shot kill probability).

b)
$$C_{BRI}(t) = \rho_I \left[\frac{k_I R_i^*(t)}{k_A R_a^*(t) + k_I R_i^*(t) + k_C R_c^*(t)} \right] B_a^*(t)$$
 (5.9)

c)
$$C_{BRC}(t) = \rho_C \left[\frac{k_C R_c^*(t)}{k_A R_a^*(t) + k_I R_i^*(t) + k_C R_c^*(t)} \right] B_a^*(t)$$
 (5.10)

- Same for Red on Blue with appropriate notational changes.
- This is an alternative strategy that allocates some B_a -effort to all components of the Red force. It samples rather than gulps. There are many possible alternatives.

Red(Blue) Information State Change Equations

Here are some sample equations that are tentatively proposed to model the effects of philosophy and capability of the $\,{\rm C}^2\,$ component.

(1) Tight Central Control(Reds); C^2 Attrition Only R_a 's may fire at Blues. When a Red firing engagement terminates, it returns to the R_i status (becomes inactive). The R_c force acts to change or return R_i 's to R_a 's. Thus

(a)
$$D_{RA}(t) = \min\{C_R \ K_R \ R_C^*(t), \ C_R \ R_i(t), \ R_i(t)\}$$

$$(R_i \rightarrow R_a \ rate; \ C^2 \ process)$$

$$-\left[C_{RBA}(t) + C_{RBI}(t) + C_{RBC}(t)\right]$$
(Number of Red vs Blue Engagements Terminated in tth Period, or Number of R_a 's Released to R_i .)

(b)
$$D_{RI}(t) = -D_{RA}(t)$$
 (5.12)

(c)
$$D_{RC}(t) = 0$$
. (No Red C^2 recovery from suppression.) (5.13)

- Note that in this model both physical attrition (which is permanent) \underline{and} lack of information (temporary, unless C^2 is inadequate) reduce Red effectiveness.
- (2) Loose Central Control; C² Attrition

Same as (1), but retain only the first term

(a)
$$D_{RA}(t) = min\{C_R K_R R_C^*(t), C_R R_i(t), R_i(t)\}$$
 (5.14)

(b)
$$D_{RI}(t) = -D_{RA}(t)$$
 (5.15)

(c)
$$D_{RC}(t) = 0$$
 (5.16)

- ullet Note that this model assumes that once an R $_{i}$ changes to R $_{a}$ status it remains so until physically removed.
- A model that lies between (1) and (2) may be attractive, in which case one might multiply the second term in (5.11) by a time (distance) dependent factor less than unity to represent the fraction of the terminating Red engagements that must have recourse to central C² re-direction.

6. NUMERICAL ILLUSTRATIONS OF MODEL II PERFORMANCE.

In this section we present some examples of Model II behavior. Once again these numerical results are obtained from a computer program written in FORTRAN; a listing appears in an Appendix. The intention is to provide some feeling for the sensitivity of the model to changes in parameters and combat philosophy or priorities. Careful study of the outcomes will be helpful in leading one to comprehend the complex dynamics of this model and others evolving from it. Discussion. For convenience, consider the columns in the Figure labelled $1 \rightarrow 9$ from the left; e.g. Col. 3 is headed $c_R=1$,(2), under $\rho_C=0.1$, meaning that Red's C^2 rate is unity, the attrition rate of Blue on Red is $\rho_C=0.1$, and (1) Strong Central Control is in use by both antagonists.

- Each combatant's Active component first grows, as C² changes Inactive to Actives, and then dwindles by attrition. This is to be expected.
- Compute Col. 2 and Col. 3: Strong Central Control tends to overload C² to the detriment of Red Actives. See also Col. 6 and Col. 7: same lesson for Blue Actives. A tradeoff would occur if S.C.C. by Red was combined with higher attrition rates for Red than Blue, Blue using L.C.C.
- Compare Col. 2 and Col. 4: increasing (doubling) C² processing rate under S.C.C. provides a decided initial improvement for Red. but this disappears later; the number of Inactives becomes small, so there are no resources from which to draw to increase the complement of Actives.

	ρ _c =0.1		ρ _c =0.5		Pc=0.1		ρ _C =0.5	
<u>t</u>	c _R =1,(1)	c _R =1,(2)	c _R =2,(1)	$c_{R}=2,(2)$	c _R =1,(1)	c _R =1,(2)	$c_{R}=2,(1)$	c _R =2,(2)
0	0	0	0	0	0	0	0	0
1	20	20	40	40	10	10	10	10
2	37	39	75	79	18	19	18	19
3	52	57	90	97	24	27	24	27
4	75	91	83	91	34	41	34	41
6	81	87	81	87	37	47	37	47
7	77	82	77	82	40	52	40	52
8	73	77	73	77	42	57	42	57
9	69	71	69	71	43	61	44	61
10	65	65	65	65	45	<u>65</u>	45	65
15	44	38	44	38	48	64	<u>48</u>	52
20	26	23	26	23	44	48	32	36
25	16	13	16	13	35	38	21	26
Co1:								
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)

Fig. 6.1

 $c_{B} = 1.0, c = 0.10$

<u>Priorities</u>: Actives - Inactives - C²

(1): Strong Central Control

(2): Loose Central Control

<u>Discussion</u>. This Fig. 6.2 illustrates the effect of changes in target priority under different philosophies of central control.

- All else being equal, S.C.C., indicated by (1), is a handicap as illustrated by comparison of Col. 2 and 4 for Reds, and corresponding Cols. 6 and 8 for Blues. The penalty for Blue is higher possibly because of its original smaller complement of C² assets, and hence its poorer traffic handling capability.
- Suppose Blue reverses firing priority, targetting C^2 first, then R_a , finally R_i . Compare Cols. (3) and (7) to Cols. (2) and (6). Note that initially R_a actually improves when C^2 is first priority because R_a is only lightly diminished and R_c remains temporarily adequate. It appears that this strategy change by B is ineffective because Red's C^2 facilities are ample enough to withstand the attack.
- Suppose Red reverses firing strategy, targetting Blue C^2 first, then B_a , and finally R_i . Adopt loose control, (2), for illustration. Note that the effect on B_a of Reds C^2 -first strategy is initially small, but as the combat proceeds B_a force size is considerably reduced.

The last two comparisons suggest that primary attach on the opponent's C^2 force is advantageous when that force is meager (or especially vulnerable), while such an attack is actually counterproductive in case the C^2 force is adequate. Of course this simply suggests that high priority is best placed on attacking the weakest point in the system. In the present example weakness is merely a matter of numbers (C^2 force size), whereas in reality there must be an assessment of a potential target's capability or performance rate. Models of the present type and their offspring and siblings, should be of use for evaluating different proposed targetting strategies or doctrine.

	R _a (t)				$B_{\mathbf{a}}(\mathbf{t})$			
	(A-I-C)	(C-A-I)	(A-I-C)	(A-I-C)	(A-I-C)	(A-I-C)	(A-I-C)	(C-A-I)
<u>t</u>	c _R =1,(1)	c _R -1,(1)	$c_{R}=1,(2)$	c _R =1,(2)	$c_{R}=1.(1)$	c _R =1,(1)	c _R =1,(2)	c _R =1,(2)
0	0	0	0	0	0	0	0	0
1	20	20	20	20	10	10	10	10
2	37	38	39	39	18	18	19	19
3	52	53	57	57	24	24	27	26
4	64	64	74	75	30	30	34	32
5	75	72	91	91	34	34	41	36
6	81	77	87	88	37	37	47	39
7	77	79	82	84	40	40	52	41
8	73	80	77	80	72	72	57	42
9	69	79	71	76	43	43	61	43
10	65	76	65	71	45	45	65	43
15	44	55	39	51	48	48	64	38
20	26	33	23	33	33	33	48	30
25	16	19	13	20	21	21	38	22
Col:								
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)

Fig. 6.2

$$c_R = c_B = 1$$
, $\rho_C = \beta_C = 0.10$

Various Priorities

Cases: Cols. 2 & 6 Cols. 3 & 7

Cols. 4 & 8

Cols. 5 & 9

(1): Strong Central Control

(2): Loose Central Control

PROGRAM LISTING MODEL I (DETERMINISTIC & STOCHASTIC)

FILE: RWAR FORTRAN A NAVAL POSTGRADUATE SCHOOL

```
REAL BU(100), BA(100), BC(100), RCC(100), RA(100)

REAL KC, K, H, THUA, PHI, BO, RO, RHOUC, RHUAC

INTEGER T, TO
REAL*R TITLE(3,2)
DATA TITLE/*DETEK MIN*, *ISTIC C3*, *MODEL *, *STOCHAST*, *IC C3 MO*, RWA00060
RWA00060
RWA00060
RWA00060
RWA00070
RWA00070
RWA00070
RWA00070
RWA00070
RWA00070
RWA00070
                 X
C
          D.
                                                                                                                                                                                                                                                     CPUCUAWA
                     RHOUCED.
                                                                                                                                                                                                                                                     KWAUJ100
                     RHOUA=J.
                                                                                                                                                                                                                                                     RWAJOLIU
                     BU(1)=30.
B4(1)=0.
BC(1)=20.
                                                                                                                                                                                                                                                     RWAJOI 20
                                                                                                                                                                                                                                                     RWADUL 30
                                                                                                                                                                                                                                                     C+10CAWA
                     ŘČČ( i) = 30.
                     RA(1)=120.
                                                                                                                                                                                                                                                     KW AUU LOO
                     H=1.
T0=61
                                                                                                                                                                                                                                                     RNAUD170
C
                                                                                                                                                                                                                                                     RWAUDIBJ
          5
                                                                                                                                                                                                                                                     UP ICCAWS
                     CONTINUE
                    HAITE(5,121)
READ(5,122) K,KC,RHOAA,RHOAC,S,THUA,PHI,ITYPE
IF(K .LT. U.) STUP
                                                                                                                                                                                                                                                     RWA00200
                                                                                                                                                                                                                                                     RWA00210
RWA00220
                                                                                                                                                                                                                                                     RW40J230
                     WRITE(0,111) K.KC, RHOUC, RHOUA, RHOAA, RHOAC, PHI, H, THUA, S
WRITE(5,123) (TITELE(1,1TYPE), L=1,3)
                                                                                                                                                                                                                                                     RWA 33240
                                                                                                                                                                                                                                                    RWA00250
RWA00260
                     WRITE(6,1))}
                                                                                                                                                                                                                                                    R#A00260
R#A00260
R#A00260
                     RO=RCC(1) + (A(1)
BO=BA(1)+3J(1)+3C(1)
                     BUAD=64(1)+3J(1)
                                                                                                                                                                                                                                                     RNAJU301
C
                     DO 10 T=1,TJ
                                                                                                                                                                                                                                                     RWA00313
                       R_1=-1.

IF(BU(T)+3\Delta(T) \cdot NE \cdot O \cdot ) R_1=RA(T)/(BU(T)+3\Delta(T) )
                                                                                                                                                                                                                                                     RW AUU32J
                                                                                                                                                                                                                                                     RWA00330
                                                                                                                                                                                                                                                     CAEUDAWN
                        R2=-1.
                                                                                                                                                                                                                                                     KWA00350
                        181 BALT) . WE. U. ) R2=RAIT)/34(T)
                                                                                                                                                                                                                                                     RWA00360
                        IF(RA(1) .NE. O.) R3=(RA(T)-RA(1))/RA(1)
                                                                                                                                                                                                                                                     RWADO37J
                                                                                                                                                                                                                                                     RWADDESO
                        R4=-1.
                        \overrightarrow{IF}(\overrightarrow{T}.3T.1.A.ID.KA(T).1E.0.) KA=(FA(T)-3A(T-1))XA(T-1) \overrightarrow{IT}=\overrightarrow{T}-1
                                                                                                                                                                                                                                                     KWA00390
                                                                                                                                                                                                                                                     RHAUU400
RHAU0410
                        #RITE(5,101)171,300(T),84(T),8U(T),8U(T),3U(T),3C(T),3L,32,33,34
                                                                                                                                                                                                                                                     RWA9042U
C
                       CUAR=CUA(3C(T), 11(T), THU4, %)
RCUA=SGRT(CHA1) # $105S(IX, I2, I1YPE)
BU(T+1)=444XI(3U(T)-CUA';-10U4, 0.)
BA(T+1)=A8I(1(0A(I)+CUAH+CUA, 0U4))
                                                                                                                                                                                                                                                     RWADD43D
                                                                                                                                                                                                                                                     RWA00440
                                                                                                                                                                                                                                                     RWAJJ450
                                                                                                                                                                                                                                                      RWAD0463
                                                                                                                                                                                                                                                     KWAU0473
C
                        RWAUD480
                                                                                                                                                                                                                                                     KWA 90490
                                                                                                                                                                                                                                                     RWADD500
C
                                                                                                                                                                                                                                                     RWA00510
RWA00520
                       CALL AECC(ROS(T),SU(T),SA(T),SETUJC,RHIAC,RA(T),PD,RC, AG1,AC2) RCC(T+1)=AAAA1(-ASC(T)+(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+SJMT(AG1+AG2)+S
                                                                                                                                                                                                                                                     RWADUS JU
                                                                                                                                                                                                                                                      RWAQJ540
C
                                                                                                                                                                                                                                                      RWACOSSÓ
                        CALL ALA( (\(T), 5)(T), SA(T), NOS(T), RHOJA, NO, RHOJA, KO , ALL, ALZ)
```

FILE: RWAR FORTRAN A NAVAL POSTGRADUATE SCHOOL

```
RWA00560
                                                                                                                                                                                                                                                                        RWA00573
                                                                                                                                                                                                                                                                        RWA00580
                                                                                                                                                                                                                                                                       KWAJUSYU
                                                                                                                                                                                                                                                                        CC ADD A H H
                                                                                                                                                                                                                                                                        RWAJJ61J
                                                                                                                                                                                                                                                                        RWADD62J
                                                                            RCC(T) RA(T) BU(T) BA(T) BC(T)' BC(T)
                                                                                                                                                                                                                                                                        RWAJ0630
                                                                                                                                                                                                                                                                       RWA03643
RWA03653
                   FORMAT(13,7F9.2,F17.2,F22.2)
FORMAT(13,7F9.2,F17.2,F22.2)
KC RHOUG RHOUA RHOAC PH
X FURMAT(11,F717F7,K,KC,RHOAA,RHOAC,S,THUA,PHI,TYPE (F6.0):1)
                                                                                                                                                                                                                                                                        RWAUUAAQ
                                                                                                                                                                                                                                   PHI',
                                                                                                                                                                                                                                                                        RW400670
        121 FURMAT (11 FYTER K
122 FORMAT (765.0,16)
123 FORMAT (731X,3A3)
END
                                                                                                                                                                                                                                                                        C8AUUAKR
                                                                                                                                                                                                                                                                        CPOLUANS
                                                                                                                                                                                                                                                                        RWADU73J
                                                                                                                                                                                                                                                                        RWAJO71)
RWAJO72J
                                                                                                                                                                                                                                                                        RW AUD 730
C
                                                                                                                                                                                                                                                                        RWAJ0740
                       SUBROUTINE ALCCIRCO, BU, BA, RHOUC, RHUAC, RA, RO, KC, ALCI, ALC2)
                         REAL KC

ALCI= RHQUC*RCC*BU/RO

ALC2= 0.

IFIRCC .LT. .00001 .DR. KC .LT. .000011 GO TO 10

ALC2= RHOAC*KC*KCC*BA/(KC*RCC + RA)

RETUKN
                                                                                                                                                                                                                                                                        RW 400750
                                                                                                                                                                                                                                                                        RWADJ760
                                                                                                                                                                                                                                                                        RWAUU770
                                                                                                                                                                                                                                                                        RNAUUT83
                                                                                                                                                                                                                                                                       RWA00800
           10
                                                                                                                                                                                                                                                                        RWA0U810
                                                                                                                                                                                                                                                                        RWAU0820
RWAU0830
C
                       SUBROUTINE ALAIRA, BU, BA, RCC, KHQUA, RO, KHQAA, KG, AL], AL2)
                                                                                                                                                                                                                                                                        RWAD0840
                         REAL KC
ALL = RHOUA +RA+BU/RU
                                                                                                                                                                                                                                                                        RW ADUSSU
                         ALZ= D.

IF IRA .LI. . ODCOL) GO TU LO

ALZ= RHDAA*RA*BA/(KC*RCC+RA)
                                                                                                                                                                                                                                                                        COBCCAWA
                                                                                                                                                                                                                                                                        RH400870
                                                                                                                                                                                                                                                                        RWAUD88U
                          RETURN
                                                                                                                                                                                                                                                                        RWA 0 0890
                                                                                                                                                                                                                                                                        RWADUYOU
                      END
                                                                                                                                                                                                                                                                        CIPCOAWA
C
                                                                                                                                                                                                                                                                        RWAU0920
                      FUNCTION CUA(BC, BU, THUA, K)
                         REAL K
CUA=AMINI(THUA*K#3L,THUA*AJ,BU)
                                                                                                                                                                                                                                                                        RW A00930
RW A00940
                          RETURN
                                                                                                                                                                                                                                                                        RWAQQ95Q
                                                                                                                                                                                                                                                                        COPULAWA
C
                                                                                                                                                                                                                                                                        RWAGU973
                     FUNCTION CON [200,PH1,30,80]
CCC= PHI#KOC+60733
RETURA
END
                                                                                                                                                                                                                                                                        CBYOCAWR
                                                                                                                                                                                                                                                                        RWADU990
                                                                                                                                                                                                                                                                        RWAULDOD
                                                                                                                                                                                                                                                                        RW AUTOTO
                                                                                                                                                                                                                                                                        RWADIOZO
C
          FUNCTION AUSS(IY, IP, ITYPE)
REAL A(1) DO!
GAUSS=0.
IF(ITYPE .E.G. 1) METURN
IF(IP .GT. )) GO TO 10
CALL LNORA(IX, A, 1000, 11, c)
IP=1000
10 GAUSS =A(IP)
                                                                                                                                                                                                                                                                        CECTOAWA
                                                                                                                                                                                                                                                                        C401049
                                                                                                                                                                                                                                                                        RWA01050
                                                                                                                                                                                                                                                                        COOLCAMB
                                                                                                                                                                                                                                                                        RWADIO70
                                                                                                                                                                                                                                                                        (EDICAWA
                                                                                                                                                                                                                                                                        CPUICAWS
                                                                                                                                                                                                                                                                        RWA01100
```

FILE: RWAR FORTHAN A NAVAL POSTGRADUATE SCHOOL

IP = IP - 1 RETURN END RWA01110 RWA01120 RWA01130

PROGRAM LISTING MODEL II (DETERMINISTIC)

```
FILE: WACT
                                                                                     FURTRAN 4
                                                                                                                                                            NAVAL POSTGRADUATE SCHOOL
                                 REAL R(3,100),d(3,100),DRA,DBA
REAL KH,KB, RU(3),BE(3), CBR(3),CRR(3)
INTEGER NAME(3)/'A','I','C'/
INTEGER NAME(3)/'B','I','C'/
INTEGER T,TJ,VK(3),VB(3), PR(3),PB(3)
REAL*8 TITLE(3)
DATA TITLE/'PRIORITY',' TARGETT','ED MODEL'/
OATA IX/123496/, IP/O/
GAVER COMBAT MODEL PRIORITY TARGETTED
R(1,1)**O.
R(2,1)**100.
R(3,1)**20.
B(1,1)**00.
B(3,1)**100.
VR(1),I**100.
VR(1),I**100.
VR(1),I**100.
VR(1),I**100.
VR(1),I**100.
                                                                                                                                                                                                                                                                                                                                                                                                               11/100012
                                                                                                                                                                                                                                                                                                                                                                                                               "AC 00037
                                                                                                                                                                                                                                                                                                                                                                                                                MACJOUND
                                                                                                                                                                                                                                                                                                                                                                                                                "AC 00050
                                                                                                                                                                                                                                                                                                                                                                                                                 MALUUUNN
                                                                                                                                                                                                                                                                                                                                                                                                                AAÇ ÖÜÜ 7.Ö
                                                                                                                                                                                                                                                                                                                                                                                                              WAC 00070
WAC 00000
WAC 00110
WAC 00110
WAC 00110
WAC 00110
WAC 001107
WAC 001177
 C
                 ۵.
 C .
                                   VR { 1 } = 1
VR { 2 } = 2
                                   VR (3 1= 3
                                                                                                                                                                                                                                                                                                                                                                                                               AALJUIE)
                                  VB(2)=2
VB(3)=3
                                                                                                                                                                                                                                                                                                                                                                                                                ACTUZOS
                                                                                                                                                                                                                                                                                                                                                                                                               #ACOUZED
#ACOUZED
#ACOUZED
#ACOUZED
#ACOUZED
                                  TO=61
 C
                  5
                                 CONTINUE
                                 WRITE(3,121)
READ(5,122) KR,KB,CR,CB,(RO(I),BE(I),I=1,3)
IF(KR .LT. 3.) STUP
DO 6 I=1,3
PR(VK(I))=1
                                                                                                                                                                                                                                                                                                                                                                                                                 VACOUZED
                                                                                                                                                                                                                                                                                                                                                                                                             MACOUSTI
MACUUSTI
MACUUSTI
MACOUSTI
MAC
                                 PB(VB([])=[
CRB([])=-].
CBR([])=-1.
CONTINUE
                 6
                                                                                                                                                                                                                                                                                                                                                                                                               NACOJ3JJ
C
                                                                                                                                                                                                                                                                                                                                                                                                               "AC0334)
                                 BAIO=B(1,11+3(2,1)
RAIO=P(1,1)+X(2,1)
                                                                                                                                                                                                                                                                                                                                                                                                               14633353
                                                                                                                                                                                                                                                                                                                                                                                                               1AC 3336)
                               RAIU=M(1,1,1,1,2,2,2,2,2,3)

DRA=-1.

WRITE(6,111) KR, KB, CR, CB, (RO(I), BE(I), I=1,3)

WRITE(5,127) (NAME(VB(I)), I=1,3), (NAME(VR(I)), I=1,3)

WRITE(5,123) (TITLE(I), I=1,3)

WRITE(5,100)
                                                                                                                                                                                                                                                                                                                                                                                                                C1 EC-C - A+
                                                                                                                                                                                                                                                                                                                                                                                                               WAC 13393
                                                                                                                                                                                                                                                                                                                                                                                                               14033403
                                                                                                                                                                                                                                                                                                                                                                                                               VÃŬ JÖ415
JAC JJ420
VAC JJ430
C
                                 00 10 T=1.TO
                                                                                                                                                                                                                                                                                                                                                                                                               -iACO0440
                                                                                                                                                                                                                                                                                                                                                                                                               へふじ りりゅうり
                                     WRITE(6,101) IT1,(R(1,T),1=1,3),(P(1,T),1=1,3),
(CBR(1),1=1,3),(CRB(1),1=1,3),DRA,DBA
                                                                                                                                                                                                                                                                                                                                                                                                                ALJ0450
                                                                                                                                                                                                                                                                                                                                                                                                                14(.JO-7)
C
                                                                                                                                                                                                                                                                                                                                                                                                            4AC00453
4AC10490
                                     CR8(1)=AMINI( B(P3(1),T), R(1,T) )

CR8(2)=AMAXI(0., AMINI(B(PB(2),T),R(1,T)=GX3(1)) )

CR8(3)=AMAXI(0., AMINI(B(PB(3),T),R(1,T)=GX3(1)-CX3(1)) )
                                                                                                                                                                                                                                                                                                                                                                                             #ALJ 1510
#ALJ 1510
#ALJ 10513
#ACJ 10523
C
                                      CBR(1)=AMINI( R(PR(1),T), 6(1,T))

CBR(2)=A44XI(0., 4MINI(R(PR(2),T),D(1,T)=32(1)))

CBR(3)=A44XI(0., 4MINI(R(PR(3),T),D(1,T)=C32(1)-C32(1)))
                                                                                                                                                                                                                                                                                                                                                                                            .3 C 0 J 5 3 0
a 4 C J 7 5 4 J
c 4 C J 7 5 5 0
```

The second s

```
4AC00563
C
                                                   #AC 00590
#AC 00590
#AC 00600
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    MACCOCCE TO MACCOC
                      19
C
                                                     R(1,T+1)=AMIN1(KA10, AMAX1(0., R(1,T)-C3R(VK(1)) + DR4))
C
                                                     R(2,T+1)=minl(kaio, Amaxilo, R(2,T)-CBR(VK(2)) - CRA))
C
                                                   R(3,T+1)=AMIN1(R(3,1), AMAX1(0., R(3,T)-CBR(VR(3))))
C
                                                     B(1,T+1)=AMINI(3AIC, AAAXI(0, U(1,T)-CRB(/3(1)) + D3A))
C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       NALJU730
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       WAL 00740
                                                     B(2,T+1)=AMINI(UAIC, AMAX1(0., 3(2,T)-CRE(V3(2)) - 384))
C
                                                     B(3,T+1)=A4[VL(6(3,1), A1AA](4., 5(3,T)-CK3(/3(3))))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    MACOURIO
MACOURIO
MACOURIO
MACOURIO
MACOURIO
MACOURIO
MACOURIO
MACOURIO
MACOURIO
                      10 CONTINUE
                                             GU TC 5
                                                                                                                                                                                                                                                                                                                                                                                      BALTI
                                                                                                                                                                                                                                                                                                                                                                                                                                                            31(T)',
                                                                                                                                                                                                                                            KILLI
                                                                                                                                                                                                                                                                                                                 RC(T)
                100 FORMAT(/
                                                                                                                                                                        RALTI
                                                                                                          BC(T)' 1
               101 FURMAT(|3,6F).2,JF/.2)
111 FURMAT(| KR KR K3 CR CR RJA K3 CR RJA K4 K5 CR K5 RJA K5 R
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         11635850
                                                                                                                      CR CR RUA BEA

EL ROC BELLINDET.3)

ENTER KRINDICKICO RUA BEA ROLIBELIROCIBEC: 1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      #4600880
#4600880
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          ROLL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     000000m
000000m
0100000m
0100000m
```

REFERENCES

Arnold, L. (1974) <u>Stochastic Differential Equation</u>: Theory and Application. Wiley-Interscience. John Wiley and Sons. New York.

Bonder, S., and Farrell, R. (1970). "Development of models for defense systems planning." Systems Reserach Lab., Dept. of Industrial Eng., University of Michigan.

Gaver, D.P. and Tonguc K. (1979) "Modelling the influnece of information on the progress of combat." MIT/ONR Symposium on Command & Control. Naval Postgraduate School.

Lechoczky, J.P. and Perla, P.P. (1978). "Approximation technique and optimal decision making for stochastic Lanchester models." Carnegie-Mellon Statistic Dept. Technical Report 137.

Taylor, J. (1979). "Attrition modelling," pp. 139-183 in Operational Research Games for Defense, ed. by Huber, Niemeyer, and Hofmann, R. Oldenburg, Verlag, Munich. (This paper contains many other useful references.)

Tonguc K. (1979). Modelling the effect on information on conflict outcome. Naval Postgraduate School M.S. Thesis, Operations Research Department.

DISTRIBUTION LIST

		No. of Copies
Attn:	Code 61Me Prof. P. H. Moose Naval Postgraduate School	1
	Code 52Ra Prof. G. A Rahe Naval Postgraduate School	1
	Code 61Rc Prof. W. Reese Naval Postgraduate School	1
	Code 52R1 LTCOL R. J. Roland Naval Postgraduate School	1
	Code 62Ya CAPT R. D. Yingling Naval Postgraduate School	1
	Code 74 Prof. J. M. Wozencraft, Chairman Naval Postgraduate School	1
	Stuart Brodsky Officer of Naval Research 800 N. Quincy St. Arlington, VA 22217	1
	Robert R. Fossum Director, Defense Advance Research Project Agency 1400 Wilson Blvd. Arlington, VA 22209	1

Cop	otes		Copies
Statistics and Probability Program (Code 436) Office of Naval Research Arlington, VA 22217	3	Office of Naval Research Scientific Liaison Group Attn: Scientific Director American Embassy - Tokyo APO San Francisco 96503	1
Defense Technical Information Center Cameron Station Alexandria, VA 22314 Office of Naval Research	2	Applied Mathematics Laborator David Taylor Naval Ship Reser and Development Center Attn: Mr. G. H. Gleissner Bethesda, Maryland 20084	
New York Area Office 715 Broadway - 5th Floor New York, New York 10003 Commanding Officer	1	Commandant of the Marine Corr (Code AX) Attn: Dr. A. L. Slafkosky Scientific Advisor	os
Office of Naval Research Eastern/ Central Regional Office Attn: Director for Science 666 Summer Street Boston, MA 02210	1	Washington, DC 20380 Director National Security Agency Attn: Mr. Stahly and Dr. Mai	l ar
Commanding Officer Office of Naval Research Western Regional Office Attn: Dr. Richard Lau 1030 East Green Street Pasadena, CA 91101	1	(R51) Fort Meade, MD 20755 Navy Library National Space Technology Lal Attn: Navy Librarian Bay St. Louis, MS 39522	2 boratory 1
Commanding Officer Office of Naval Research Branch Office Attn: Director for Science 536 South Clark Street Chicago, Illinois 60605	1	U.S. Army Research Office P.O. Box 12211 Attn: Dr. J. Chandra Research Triangle Park, NC 27706	1

Leon Slavin

(NSEA O5H)

Naval Sea Systems Command

Crystal Mall #4, Rm. 129 Washington, DC 20036

ATAA-SL, Library U.S. Army TRADOC Systems Analysis Activity Department of the Army White Sands Missile Range, NM 88002	1
Dr. Edward J. Wegman Statistics and Probability Program Office of Naval Research Arlington, VA 22217	1
Library (Code 0142) Naval Postgraduate School Monterey, CA 93940	2

1

	Copies	Capte
Technical Library Naval Ordnance Station Indian Head, MD 20640 Bureau of Naval Personnel	1	Mr. Jim Gates Code 9211 Fleet Material Support Office U.S. Navy Supply Center Mechanicsburg, PA 17055
Department of the Navy Technical Library Washington, DC 20370	1	Mr. Ted Tupper Code M-311C Military Sealift Command
Library Naval Ocean Systems Center San Diego, CA 92152	1	Department of the Navy Washington, DC 20390 1
Defense Logistics Studies Information Exchange Army Logistics Management Center Attn: Mr. J. Dowling Fort Lee, VA 23801	1	Mr. F. R. Del Priori Code 224 Operational Test and Evaluation Force (OPTEVFOR) Norfolk, VA 23511
Reliability Analysis Center (RAC) RADC/RBRAC Attn: I. L. Krulac Data Coordinator/	•	Professor D. P. Gaver Department of Operations Research Naval Postgraduate School Monterey, CA 93940
Government Programs Griffiss AFB, New York 13441 Dr. M. J. Fischer Defense Communications Agency	1	Professor Barnard H. Bissinger Mathematical Sciences Capitol Campus Pennsylvania State University Middletown, PA 17057
Defense Communications Engineering Center 1860 Wiehle Avenue Reston, VA 22090	g 1	Professor Robert Serfling Department of Mathematical Sciences The Johns Hopkins University Baltimore, Maryland 21218
Mr. David S. Siegel Code 260 Office of Naval Research Arlington, VA 22217	1	Professor Ralph A. Bradley Department of Statistics Florida State University Tallahassee, FL 32306

Co	pies	Copie	S
Professor G. S. Watson Department of Statistics Princeton University		Professor H. Chernoff Department of Mathematics Massachusetts Institute of Technology	
Princeton, NJ 08540	1	Cambridge, MA 02139	
Professor P. J. Bickel Department of Statistics		Professor D. O. Siegmund Department of Statistics	
University of California Berkeley, CA 94720	1	Stanford University Stanford, CA 94305	
Professor F. J. Anscombe Department of Statistics		Professor Grace Wahba Department of Statistics	
Yale University		University of Wisconsin	
Box 2179 - Yale Station New Haven, CT 06520	1	Madison, Wisconsin 53706	
Professor S. S. Gupta		Professor Walter L. Smith Department of Statistics	
Department of Statistics		University of North Carolina	
Purdue University West Lafayette, Indiana 47907	1		
Professor R. E. Bechhofer		Professor S. E. Fienberg Department of Statistics	
Department of Operations Research Cornell University		Carnegie-Mellon University Pittsburgh, PA 15213	
Ithaca, New York 14850	1		
Professor D. B. Owen		Professor Gerald L. Sievers Department of Mathematics	
Department of Statistics Southern Methodist University		Western Michigan University Kalamazoo, Michigan 49008	
Dallas, Texas 75275	1	Professor Richard L. Dykstra	
Professor Herbert Solomon		Department of Statistics University of Missouri	
Department of Statistics Stanford University	_	Columbia, Missouri 65201	
Stanford, CA 94305	1	Professor Franklin A. Graybill	
Professor R. L. Disney Department of Industrial Engineering		Department of Statistics Colorado State University	
and Operations Research		Fort Collins, CO 80523	
Virginia Polytechnic Institute and State University	•	Professor J. S. Rustagi	
Blacksburg, VA 24061	1	Department of Statistics Ohio State University Research	
Dr. D. E. Smith Desmatics, Inc.		Foundation Columbus, Ohio 43212	ĺ
P.O. Box 618 State College, PA 16801	1		
	•		

	Copies		Copies
Professor E. J. Dudewicz Department of Statistics Ohio State University Research Foundation Columbus, Ohio 43212	1	Professor T. P. Hettmansperger Department of Statistics The Pennsylvania State University University Park, PA 16801	1
Professor Joseph C. Gardiner Department of Statistics Michigan State University East Lansing, MI 48824	1	Professor Samuel Kotz Department of Management Science and Statistics University of Maryland College Park, MD 20742	1
Professor Peter J. Huber Department of Statistics Harvard University Cambridge, MA 02318	1 _	Professor Gene H. Golub Department of Computer Science Stanford University Stanford, CA 94305	1
Dr. H. Leon Harter Department of Mathematics Wright State University Dayton, Ohio 45435	1	Professor P.A.W. Lewis Department of Operations Research Naval Postgraduate School Monterey, CA 93940	
Professor F. T. Wright Department of Mathematics University of Missouri Rolla, Missouri 65401	ī		
Professor Tim Robertson Department of Statistics University of Iowa Iowa City, Iowa 52242	1		
Professor K. Ruben Gabriel Division of Biostatistics Box 630 University of Rochester Medical Center			
Rochester, NY 14642	1		
Professor J. Neyman Department of Statistics University of California Berkeley, CA 94720	1		
Professor William R. Schucany Department of Statistics Southern Methodist University Dallas, Texas 75275	1		

DISTRIBUTION LIST

No. of Copies

Naval Postgraduate School Monterey, CA 93940

Attn:	Code 55Mt Code 55As Code 55Bn Code 55Bw Code 55Cu Code 55Ei Code 55Ey Code 55Fo Code 55Hh Code 55Hk Code 55Hk Code 55La Code 55La Code 55Lw Code 55Ls Code 55Mg Code 55SMg Code 55SMg Code 55SMg Code 55SMg Code 55SMg Code 55SNg Code 55Ng Code 55N	
	Code 55Ze L. Ishii	
	•	

		1
		1
		1
		1
		ī
		1
		1
		1
		ī
		1
		1
		1
		ī
		1
		ļ
		1
		ī
		1
		1
		ĭ
		ī
		1
		1
		ı 1
		1
		1
		+

