

Frequentists and Bayesian methods to incorporate recruitment rate stochasticity at the design stage of a clinical trial

Pilar Pastor Martínez

Supervision by Malgorzata Roos

Why recruitment rates?

According to Carter (2004)

- Timely recruitment vital to the success of a clinical trial
- Inadequate number of subjects → lack of power
- Recruitment period too long → competing treatments
- Recruitment of patients varies at each stage
- Methods applicable to all the stages

Target Population

Target Population

Eligibility

Enrollment

Randomization

Statistical Analysis

Patient Leakage

Definitions

- Recruitment rate: Per time-unit (Piantadosi, 2024)

$$\lambda = \frac{\Delta C}{\Delta T} = \frac{C_1 - C_0}{T_1 - T_0} = \frac{C_1}{T_1}$$

- Accrual: Cumulative Recruitment
- Aleatory uncertainty: randomness inherent and unpredictable
- Epistemic uncertainty: arises from limited knowledge about parameters

Models for Counts

Recruitment in unit of time (t=1):

Methods	Counts	Expectation	Variance	Aleatory	Epistemic
Expectation	$C = \lambda$	λ	0	No	No
Poisson	$C \sim Po\left(\lambda ight)$	λ	λ	Yes	No
Poisson - Gamma	$\mathit{C} \sim \mathit{Po}(\Lambda); \Lambda \sim \mathit{G}(\alpha, \beta)$	$\frac{\alpha}{\beta}$	$\frac{\alpha(\beta+1)}{\beta^2}$	Yes	Yes

Accrual for time t [0,t]:

Methods	Counts	Expectation	Variance	Aleatory	Epistemic
Expectation	$C(t) = \lambda t$	λt	0	No	No
Poisson	$C(t) \sim Po(\lambda t)$	λt	λt	Yes	No
Poisson - Gamma	$C(t) \sim Po(\Lambda t); \Lambda \sim G(\alpha, \beta)$	t^{α}_{β}	$t \frac{\alpha(\beta+t)}{\beta^2}$	Yes	Yes

Multicenter Trial on Palliation in Terminal Esophageal Cancer

Example from Carter (2004):

- Recruitment Rate $\lambda = \frac{Counts}{Time} = 0.591$ per day
- Time t = 550 days

Multicenter Trial on Palliation in Terminal Esophageal Cancer

Example from Carter (2004):

- Recruitment Rate $\lambda = \frac{Counts}{Time} = 0.591$ per day
- Time t = 550 days
- Models for Counts at time point t:
 - **Expectation**: $EC(t) = \lambda t = 0.591 \cdot 550 = 325$
 - − Poisson: $C(t) \sim Po(\lambda t)$

Accrual at time point t

- Expectation:
$$EC(t) = E(C + ... + C) = tEC = \lambda t$$
- Poisson: $Po(\lambda) + ... + Po(\lambda) = Po(\lambda t)$

Accrual of 1 study

Master Thesis Biostatistics

Accrual of 1 study

Accrual of 2 studies

Accrual of 2 studies

Accrual of 100 studies

Poisson's uncertainty bands

Poisson's exact PMF at time point t = 550 with

 $\lambda = 0.591$

Poisson's exact CDF at time point t = 550 with

 $\lambda = 0.591$

Cummulative Distribution Function

Multicenter Trial on Palliation in Terminal Esophageal Cancer

Example from Carter (2004):

- Recruitment Rate $\lambda = \frac{Counts}{Time} = 0.591$ per day
- Time t = 550 days
- Models for Counts at time point t:
 - Poisson Gamma: $C(t) \sim Po(\Lambda t)$; $\Lambda \sim G(\alpha, \beta)$
 - $\alpha = 325$
 - $-\beta = 548$
 - $E\Lambda = \frac{\alpha}{\beta} = 0.591 = \lambda$

Negative binomial derived from Poisson-Gamma model at time point t

Let $C(t)|\Lambda \sim Po(\Lambda t)$ and $\Lambda \sim G(\alpha, \beta)$

$$\begin{split} \rho(c) &= \int_0^\infty p(c|\lambda)p(\lambda)d\lambda \\ &= \int_0^\infty \frac{(\lambda t)^c \exp(-\lambda t)}{c!} \left[(\lambda t)^{\alpha - 1} \exp(-\beta \lambda t) \frac{\beta^\alpha}{\Gamma(\alpha)} \right] d\lambda \\ &= \frac{\beta^\alpha t^c \Gamma(\alpha + c)}{c! \Gamma(\alpha)(\beta + t)^{\alpha + c}} \underbrace{\int_0^\infty \frac{(\beta + t)^{\alpha + c}}{\Gamma(\alpha + c)} \lambda^{\alpha + c - 1} \exp(-(\beta + t)\lambda) d\lambda}_{=1} \\ &= \binom{\alpha + c - 1}{\alpha - 1} \left(\frac{t}{\beta + t} \right)^c \left(\frac{\beta}{\beta + t} \right)^\alpha, \end{split}$$

$$C(t) \sim \mathit{NBin}\!\left(lpha, rac{eta}{eta + t}
ight)$$

Expectation and Variance

Using the expressions of iterated expectation and variance (Held and Bové, 2014)

$$E(C(t)) = E_{\Lambda}[E_{C(t)}(C(t)|\Lambda)] = E_{\Lambda}[\Lambda t] = t\alpha/\beta$$

$$Var(C(t)) = Var_{\Lambda}[E_{C(t)}(C(t)|\Lambda)] + E_{\Lambda}[Var_{C(t)}(C(t)|\Lambda)]$$

$$= Var_{\Lambda}[\Lambda t] + E_{\Lambda}[\Lambda t]$$

$$= t^{2}\alpha/\beta^{2} + t\alpha/\beta = \frac{t\alpha(\beta + t)}{\beta^{2}}$$

March 18, 2025 Recruitment rate stochasticity at the design stage of a clinical trial

Gamma Prior

$$\Lambda \sim G(\alpha, \beta)$$

Probability Density Function

March 18, 2025 Recruitment rate stochasticity at the design stage of a clinical trial

Comparison between Poisson and Poisson - Gamma

Probability Mass Function

Comparison between Poisson and Poisson - Gamma

Cummulative Distribution Function

Models for Counts

Recruitment in unit of time (t=1):

Methods	Counts	Expectation	Variance	Aleatory	Epistemic
Expectation	$C = \lambda$	λ	0	No	No
Poisson	$C \sim Po \; (\lambda)$	λ	λ	Yes	No
Poisson - Gamma	$\mathit{C} \sim \mathit{Po}(\Lambda); \Lambda \sim \mathit{G}(\alpha, \beta)$	$\frac{\alpha}{\beta}$	$\frac{\alpha(\beta+1)}{\beta^2}$	Yes	Yes

Accrual for time t [0,t]:

Methods	Counts	Expectation	Variance	Aleatory	Epistemic
Expectation	$C(t) = \lambda t$	λt	0	No	No
Poisson	$C(t) \sim Po(\lambda t)$	λt	λt	Yes	No
Poisson - Gamma	$C(t) \sim Po(\Lambda t); \Lambda \sim G(\alpha, \beta)$	t^{α}_{β}	$t \frac{\alpha(\beta+t)}{\beta^2}$	Yes	Yes

Summary

- Exact distributions which extend Carter's approach
- Exact models for counts and their properties
- Unified notation
- Visualization of study accrual and uncertainty bands
- Sensitivity analysis

Next steps

- Compare exact models for counts to those provided by Carter (2004) based on MC simulations
- Models for time
 - Exact models
 - Compare them to those provided by Carter
- Apply theoretical results to dataset
- Shiny App

References

Carter, R. E. (2004). Application of stochastic processes to participant recruitment in clinical trials. *Controlled Clinical Trials*, 25(5):429–436.

Held, L. and Bové, D. S. (2014). *Applied Statistical Inference*. Springer.

Piantadosi, S. (2024). *Clinical Trials: A Methodologic Perspective*. John Wiley & Sons.

Thank you for your attention