Electrodynamics I

Fall Semester 2023

Prof. Dr. Martin Spinrath TA in charge: Jean Nelson (jeannelson247@gmail.com)

Exercise sheet 7 (bonus)

Due date: 11.01.2024, 1pm online (google classroom)

Please write your name and student number on every page of the solution.

Problem 15: (20 bonus points) Dynamics of Particles in Electromagnetic Fields

There is many applications where one wants to control the motion of a charged particle. This can be achieved using electromagnetic fields and is the subject of this exercise. The equations of motion for a particle with charge q and mass m are

$$m \frac{\mathrm{d}\,\vec{v}}{\mathrm{d}\,t} = q\,\vec{E} + q\,\vec{v} \times \vec{B} \;, \tag{1}$$

$$\frac{\mathrm{d}\,E}{\mathrm{d}\,t} = q\,\vec{v}\cdot\vec{E}\;,\tag{2}$$

with \vec{v} the velocity of the particle, $\vec{p} = m \vec{v}$ its momentum and E its energy. The electric field is \vec{E} and the magnetic field is \vec{B} . Note that we use SI units here. Please use SI units in your solution as well.

1. Consider a constant magnetic field $\vec{B} = B_0 \,\hat{e}_z$ and constant electric field $\vec{E} = E_0 \,\hat{e}_y$. Calculate and plot the position of the particle using the boundary conditions

$$\vec{v}(t=0) = (E_0/B_0, -v_0, 0) \text{ and } \vec{x}(t=0) = (v_0/\Omega, 0, 0)$$
 (3)

with $\Omega \equiv q B_0/m$. What is the drift (linear) velocity \vec{v}_D of the particle? If you consider a charge neutral plasma, would you generate a net current applying this field configuration to the plasma?

2. Consider now a time-dependent magnetic field $\vec{B} = B_0(t) \hat{e}_z$ and $E_0 = 0$. What are the equations of motions in this case? Note that you still need to respect Maxwell's equations. We can define a perpendicular energy increase

$$\Delta W_{\perp} = \oint q \vec{E} \cdot d \vec{l} \tag{4}$$

where the path is a circular orbit around the z-axis. Show that approximately

$$\frac{\mathrm{d}\,\mu}{\mathrm{d}\,t} = 0\;,\tag{5}$$

with $\mu \equiv W_{\perp}/B_0$. This quantity is an adiabatic invariant.

Plot y(x) and $d \mu(t)/dt$ for $B_0(t) = 1 + 0.1t$, m = q = 1, $\vec{x}(0) = (1,0,0)$ and $\vec{v}(0) = (0,-1,0)$ in a time interval $t \in [0,100]$. You can solve the equations of motion numerically.

3. What happens when the perpendicular energy, W_{\perp} , is equal to the total energy, i.e., $E=W_{\perp}$ and the parallel energy $W_{\parallel}=0$?

As a concrete example consider the magnetic field

$$\vec{B} = (B_0 + \alpha z)\,\hat{e}_z - \frac{\alpha}{2}\rho\,\hat{e}_\rho \tag{6}$$

in cylindrical coordinates $\{\rho, \varphi, z\}$. Plot x(z) and x(y) for the initial conditions x(0) = 1, y(0) = 0, z(0) = 0, $v_x(0) = 0$, $v_y(0) = -1$, $v_z(0) = 1$ in the time range $t \in [0, 40]$ and take $q = m = B_0 = 1$ and $\alpha = 0.1$. The point where $E = W_{\perp}$ corresponds to which point in this plots? Note that the magnetic field is not time-dependent here.