ECE 374 B Language Theory: Cheatsheet

Languages and strings

Strings

- The *length* of a string w (denoted by |w|) is the number of sym-
- For integer $n \geq 0$, Σ^n is set of all strings over Σ of length n.

String operations

Definitions Σ^* is the set of all strings over Σ . $^{'}\Sigma^{*}$ is the set of all strings of all lengths including empty string.

- ε is a *string* containing no symbols.
- · Ø is the empty set. It contains no strings.
- If x and y are strings then xy denotes their concatenation. Recursively:
 - xy = y if $x = \varepsilon$
- $xy = \mathbf{a}(wy)$ if $x = \mathbf{a}w$
- v is substring of $w \iff$ there exist strings x,y such that w = xvy
 - If $x = \varepsilon$ then v is a prefix of w
 - If $y = \varepsilon$ then v is a *suffix* of w
- A subsequence of a string $w=w_1w_2\dots w_n$ is either a subsequence of $w_2\dots w_n$ or w_1 followed by a subsequence of $w_2 \dots w_n$.
- If w is a string then w^n is defined inductively as follows: $w^n=\varepsilon$ if n=0 or $w^n=ww^{n-1}$ if n>0

Overview of language complexity

3 Regular languages

Regular language - overview

A language is regular if and only if it can be obtained from finite languages by applying

- · union.
- · concatenation or
- · Kleene star

finitely many times. All regular languages are representable by regular grammars, DFAs, NFAs and regular expressions.

Regular expressions

Useful shorthand to denotes a language.

A regular expression ${\bf r}$ over an alphabet Σ is one of the following:

Base cases:

- Ø the language Ø
- ε denotes the language $\{\varepsilon\}$
- + a denote the language $\{a\}$

Inductive cases: If ${\bf r_1}$ and ${\bf r_2}$ are regular expressions denoting languages L_1 and L_2 respectively (i.e., $L({\bf r_1})=L_1$ and $L({\bf r_2})=L_2$) then,

- $\mathbf{r_1} + \mathbf{r_2}$ denotes the language $L_1 \cup L_2$
- $\mathbf{r_1} \cdot \mathbf{r_2}$ denotes the language $L_1 L_2$
- \mathbf{r}_1^* denotes the language L_1^*

Examples:

- + 0^* the set of all strings of 0s, including the empty string
- $(00000)^*$ set of all strings of 0s with length a multiple of 5
- $(0+1)^*$ set of all binary strings

Nondeterministic finite automata

NFAs are similar to DFAs, but may have more than one transition destination for a given state/character pair.

An NFA N accepts a string w iff some accepting state is reached by N from the start state on input w.

The language accepted (or recognized) by an NFA N is denoted L(N) and defined as $L(N) = \{w \mid N \text{ accepts } w\}$.

A nondeterministic finite automaton (NFA) $N=(Q,\Sigma,s,A,\delta)$ is a five tuple where

- $\cdot Q$ is a finite set whose elements are called *states*
- Σ is a finite set called the *input alphabet*
- $\delta: Q \times \Sigma \cup \{\varepsilon\} \to \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q)
- s and Σ are the same as in DFAs

Example:

• $Q = \{q_0, q_1, q_2, q_3\}$

 $S = q_0$ $A = \{q_3\}$

For NFA $N=(Q,\Sigma,\delta,s,A)$ and $q\in Q$, the ε -reach(q) is the set of all states that q can reach using only ε -transitions. Inductive definition of $\delta^*:Q\times\Sigma^*\to\mathcal{P}(Q)$:

- $\cdot \ \text{ if } w = \varepsilon \text{, } \delta^*(q,w) = \varepsilon \text{-reach}(q) \\$
- $\cdot \ \text{ if } w = a \text{ for } a \in \Sigma, \quad \ \delta^*(q,a) = \varepsilon \text{reach} \Big(\bigcup_{p \in \varepsilon \text{-reach}(q)} \delta(p,a) \Big)$
- $\begin{array}{lll} \cdot \text{ if } & w & = & ax \text{ for } a \in \Sigma, x \in \Sigma^* \colon & \delta^*(q,w) & = \\ \varepsilon \text{reach}\Big(\bigcup_{p \in \varepsilon\text{-reach}(q)} \Big(\bigcup_{r \in \delta^*(p,a)} \delta^*(r,x)\Big)\Big) & \end{array}$

Regular closure

Regular languages are closed under union, intersection, complement, difference, reversal, Kleene star, concatenation, etc.

Deterministic finite automata

DFAs are finite state machines that can be represented as a directed graph or in terms of a tuple.

The language accepted (or recognized) by a DFA M is denoted by L(M) and defined as $L(M)=\{w\mid M \text{ accepts }w\}.$

A deterministic finite automaton (DFA) $M=(Q,\Sigma,s,A,\delta)$ is a five tuple where

- $oldsymbol{\cdot}$ Q is a finite set whose elements are called states
- Σ is a finite set called the input alphabet
- $\delta: Q \times \Sigma \to Q$ is the transition function
- $\cdot \ s \in Q$ is the start state
- $A \subseteq Q$ is the set of accepting/final states

Example:

Every string has a unique walk along a DFA. We define the extended transition function as $\delta^*:Q\times\Sigma^*\to Q$ defined inductively as follows:

- $\delta^*(q, w) = q \text{ if } w = \varepsilon$
- $\delta^*(q, w) = \delta^*(\delta(q, a), x)$ if w = ax.

Can create a larger DFA from multiple smaller DFAs. Suppose

- $L(M_0) = \{w \text{ has an even number of 0s} \}$ (pictured above) and
- $L(M_1) = \{w \text{ has an even number of } 1s\}.$

 $L(M_C) = \{w \text{ has even number of } 0s \text{ and } 1s\}$

Regular language equivalences

A regular language can be represented by a regular expression, regular grammar, DFA and NFA.

Arden's rule: If R = Q + RP then $R = QP^*$.

Fooling sets

Some languages are not regular (Ex. $L = \{0^n 1^n \mid n \ge 0\}$).

Two states $p,q\in Q$ are distinguishable if there exists a string $w\in \Sigma^*$, such that

Two states $p, q \in Q$ are equivalent if for all strings $w \in \Sigma^*$, we have that

$$\delta^*(p,w) \in A \text{ and } \delta^*(q,w) \notin A.$$

$$\delta^*(p,w) \in A \iff \delta^*(q,w) \in A.$$

$$\delta^*(p,w) \notin A \text{ and } \delta^*(q,w) \in A.$$

For a language L over Σ a set of strings F (could be infinite) is a *fooling set* or *distinguishing set* for L if every two distinct strings $x,y\in F$ are distinguishable.

4 Context-free languages

Context-free languages

A language is context-free if it can be generated by a context-free grammar. A context-free grammar is a quadruple G=(V,T,P,S)

- $\cdot \ V$ is a finite set of nonterminal (variable) symbols
- \cdot T is a finite set of terminal symbols (alphabet)
- P is a finite set of productions, each of the form $A \to \alpha$ where $A \in V$ and α is a string in $(V \cup T)^*$ Formally, $P \subseteq V \times (V \cup T)^*$.
- $S \in V$ is the start symbol

Example: $L=\{ww^R|w\in\{0,1\}^*\}$ is described by G=(V,T,P,S) where V,T,P and S are defined as follows:

- $V = \{S\}$
- · $T = \{0, 1\}$
- $P = \{S \to \varepsilon \mid 0S0 \mid 1S1\}$ (abbreviation for $S \to \varepsilon, S \to 0S0, S \to 1S1$)
- $\cdot S = S$

Pushdown automata

A pushdown automaton is an NFA with a stack.

The language $L=\{0^n1^n\mid n\geq 0\}$ is recognized by the pushdown automaton:

A nondeterministic pushdown automaton (PDA) $P=(Q,\Sigma,\Gamma,\delta,s,A)$ is a ${\bf six}$ tuple where

- $\cdot \; Q$ is a finite set whose elements are called states
- Σ is a finite set called the input alphabet
- \cdot Γ is a finite set called the stack alphabet
- $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \times (\Gamma \cup \{\varepsilon\}) \to \mathcal{P}(Q \times (\Gamma \cup \{\varepsilon\}))$ is the transition function
- s is the start state
- \cdot A is the set of accepting states

In the graphical representation of a PDA, transitions are typically written as $\langle \text{input read} \rangle, \langle \text{stack pop} \rangle \rightarrow \langle \text{stack push} \rangle.$

A CFG can be converted to a pushdown automaton.

The PDA to the right recognizes the language described by the following grammar:

$$S \to \frac{0}{S} |1| \varepsilon$$

Context-free closure

Context-free languages are closed under union, concatenation, and Kleene star.

They are **not** closed under intersection or complement.

5 Recursively enumerable languages

Turing Machines

Turing machine is the simplest model of computation.

- Input written on (infinite) one sided tape.
- · Special blank characters.
- · Finite state control (similar to DFA).
- Ever step: Read character under head, write character out, move the head right or left (or stay).
- Every TM ${\bf M}$ can be encoded as a string $\langle M \rangle$

c/d, L

Transition Function: $\delta: Q \times \Gamma \to Q \times \Gamma \times \{\leftarrow, \rightarrow, \Box\}$

 $\delta(q,c) = (p,d,\leftarrow)$

- q: current state.
- · c: character under tape head.
- p: new state.
- d: character to write under tape head
- \leftarrow : Move tape head left.