

Structure of a Data Analysis

Part 2

Roger D. Peng, Associate Professor of Biostatistics Johns Hopkins Bloomberg School of Public Health

Steps in a data analysis

- · Define the question
- · Define the ideal data set
- · Determine what data you can access
- · Obtain the data
- · Clean the data
- · Exploratory data analysis
- Statistical prediction/modeling
- Interpret results
- Challenge results
- · Synthesize/write up results
- Create reproducible code

Steps in a data analysis

- · Define the question
- · Define the ideal data set
- · Determine what data you can access
- · Obtain the data
- · Clean the data
- Exploratory data analysis
- Statistical prediction/modeling
- Interpret results
- Challenge results
- Synthesize/write up results
- Create reproducible code

An example

Start with a general question

Can I automatically detect emails that are SPAM or not?

Make it concrete

Can I use quantitative characteristics of the emails to classify them as SPAM/HAM?

Our data set

http://search.r-project.org/library/kernlab/html/spam.html

Subsampling our data set

We need to generate a test and training set (prediction)

```
# If it isn't installed, install the kernlab package
library(kernlab)
data(spam)
# Perform the subsampling
set.seed(3435)
trainIndicator = rbinom(4601, size = 1, prob = 0.5)
table(trainIndicator)
```

```
## trainIndicator

## 0 1

## 2314 2287
```

```
trainSpam = spam[trainIndicator == 1, ]
testSpam = spam[trainIndicator == 0, ]
```

Exploratory data analysis

- · Look at summaries of the data
- · Check for missing data
- · Create exploratory plots
- · Perform exploratory analyses (e.g. clustering)

Names

names(trainSpam)

```
"all"
                             "address"
    [4] "num3d"
                                                  "will"
   [10] "mail"
   [13] "people"
                                                   "email"
## [16] "free"
## [19] "you"
  [25] "hp"
                                                   "george"
## [31] "telnet"
## [34] "num415"
                             "num85"
                             "parts"
  [40] "direct"
## [43] "original"
                             "project"
  [46] "edu"
  [49] "charSemicolon"
                             "charRoundbracket"
                             "charDollar"
```

Head

head(trainSpam)

##	make	address	all	num3d	our	over	remove	interne	t orde	r mail	receive		
## 1	0.00	0.64	0.64	0	0.32	0.00	0.00		0.0	0.00	0.00		
## 7	0.00	0.00	0.00	0	1.92	0.00	0.00		0.0	0 0.64	0.96		
## 9	0.15	0.00	0.46	0	0.61	0.00	0.30		0.9	2 0.76	0.76		
## 1	2 0.00	0.00	0.25	0	0.38	0.25	0.25		0.0	0.00	0.12		
## 1	4 0.00	0.00	0.00	0	0.90	0.00	0.90		0.0	0.90	0.90		
## 1	6 0.00	0.42	0.42	0	1.27	0.00	0.42		0.0	0 1.27	0.00		
##	will	people :	report	addre	esses	free	busines	ss email	you	credit	your for	nt	
## 1	0.64	0.00	0		0	0.32		0 1.29	1.93	0.00	0.96	0	
## 7	1.28	0.00	0		0	0.96		0 0.32	3.85	0.00	0.64	0	
## 9	0.92	0.00	0		0	0.00		0 0.15	1.23	3.53	2.00	0	
## 1	2 0.12	0.12	0		0	0.00		0.00	1.16	0.00	0.77	0	
## 1	4 0.00	0.90	0		0	0.00		0.00	2.72	0.00	0.90	0	
## 1	6 0.00	0.00	0		0	1.27		0.00	1.70	0.42	1.27	0	
##	num0	00 money	hp hp	l geoi	cge ni	.m650	lab lak	s telne	t num8	57 dat	a num415		
## 1		0.00	0	0	0	0	0	0	0	0 0.0	0 0		
## 7		0.00	0	0	0	0	0	0	0	0 0.0	0 0		
## 9		0 0.15	0	0	0	0	0	0	0	0 0.1	5 0		

Summaries

```
table(trainSpam$type)
```

```
##
## nonspam spam
## 1381 906
```

Plots

plot(trainSpam\$capitalAve ~ trainSpam\$type)

Plots

plot(log10(trainSpam\$capitalAve + 1) ~ trainSpam\$type)

Relationships between predictors

plot(log10(trainSpam[, 1:4] + 1))

Clustering

```
hCluster = hclust(dist(t(trainSpam[, 1:57])))
plot(hCluster)
```

Cluster Dendrogram

dist(t(trainSpam[, 1:57])) hclust (*, "complete")

New clustering

```
hClusterUpdated = hclust(dist(t(log10(trainSpam[, 1:55] + 1))))
plot(hClusterUpdated)
```

Cluster Dendrogram

dist(t(log10(trainSpam[, 1:55] + 1))) hclust (*, "complete")

Statistical prediction/modeling

- · Should be informed by the results of your exploratory analysis
- · Exact methods depend on the question of interest
- · Transformations/processing should be accounted for when necessary
- · Measures of uncertainty should be reported

Statistical prediction/modeling

```
## [1] "charDollar"
```

Get a measure of uncertainty

```
## Use the best model from the group
predictionModel = glm(numType ~ charDollar, family = "binomial", data = trainSpam)

## Get predictions on the test set
predictionTest = predict(predictionModel, testSpam)
predictedSpam = rep("nonspam", dim(testSpam)[1])

## Classify as `spam' for those with prob > 0.5
predictedSpam[predictionModel$fitted > 0.5] = "spam"
```

Get a measure of uncertainty

```
## Classification table
table(predictedSpam, testSpam$type)
```

```
##

## predictedSpam nonspam spam

## nonspam 1346 458

## spam 61 449
```

```
## Error rate
(61 + 458)/(1346 + 458 + 61 + 449)
```

```
## [1] 0.2243
```

Interpret results

- · Use the appropriate language
 - describes
 - correlates with/associated with
 - leads to/causes
 - predicts
- · Give an explanation
- Interpret coefficients
- · Interpret measures of uncertainty

Our example

- · The fraction of charcters that are dollar signs can be used to predict if an email is Spam
- · Anything with more than 6.6% dollar signs is classified as Spam
- · More dollar signs always means more Spam under our prediction
- · Our test set error rate was 22.4%

Challenge results

- · Challenge all steps:
 - Question
 - Data source
 - Processing
 - Analysis
 - Conclusions
- Challenge measures of uncertainty
- · Challenge choices of terms to include in models
- Think of potential alternative analyses

Synthesize/write-up results

- · Lead with the question
- · Summarize the analyses into the story
- · Don't include every analysis, include it
 - If it is needed for the story
 - If it is needed to address a challenge
- · Order analyses according to the story, rather than chronologically
- Include "pretty" figures that contribute to the story

In our example

- · Lead with the question
 - Can I use quantitative characteristics of the emails to classify them as SPAM/HAM?
- · Describe the approach
 - Collected data from UCI -> created training/test sets
 - Explored relationships
 - Choose logistic model on training set by cross validation
 - Applied to test, 78% test set accuracy
- · Interpret results
 - Number of dollar signs seems reasonable, e.g. "Make money with Viagra \$ \$ \$ \$!"
- Challenge results
 - 78% isn't that great
 - I could use more variables
 - Why logistic regression?

Create reproducible code

```
index.Rmd ×
 🗀 📄 👭 🔍 🔟 🖋 Knit HTML
                                                                                                Next Prev Replace
                                            Renlace All
☐ In selection ☐ Match case ☐ Whole word ☐ Regex ☑ Wrap
 253 ## New clustering
 254- ```{r, fig.height =6,fig.width=6}
 255 hClusterUpdated = hclust(dist(t(log10(trainSpam[,1:55]+1))))
 256 plot(hClusterUpdated)
 257
258
259 ---
 260 ## Statistical prediction/modeling
 262 * Should be informed by the results of your exploratory analysis
 263 * Exact methods depend on the question of interest
 264 * Transformations/processing should be accounted for when necessary
 265 * Measures of uncertainty should be reported
266
267 ---
 268 ## Statistical prediction/modeling
 269 - ```{r.cache=TRUE}
 270 trainSpamSnumType = as.numeric(trainSpamStype)-1
 271 costFunction = function(x,y){sum(x!=(y > 0.5))}
 272 cvError = rep(NA,55)
 273 library(boot)
 274 - for(i in 1:55){
275 lmFormula = as.formula(paste("numType~".names(trainSpam)[i].sep=""))
276 glmFit = glm(lmFormula,family="binomial",data=trainSpam)
 277  cvError[i] = cv.glm(trainSpam,glmFit,costFunction,2)$delta[2]
278 }
279 which.min(cvError)
 280 names(trainSpam)[which.min(cvError)]
281
282
283
284 ---
                                                                                                          R Markdown
```