

UNIVERSITY OF GHANA

(All right reserved)

FACULTY OF ENGINEERING SCIENCES

BSc. (ENG) MATERIALS SCIENCE AND ENGINEERING

END OF FIRST SEMESTER EXAMINATIONS: 2012/2013

MTEN 313: ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES OF MATERIALS (3 CREDITS)

TIME ALLOWED: 3 HOURS

Take $\epsilon_o = 8.85 \times 10^{-12}$ F/m, $|e| = 1.6 \times 10^{-19}$ C, $h = 4.13 \times 10^{-15}$ eV.s, $c = 3 \times 10^8$ m/s, $\mu_o = 4\pi \times 10^{-7}$ H/m.

Answer all questions

SECTION A (40 Marks)

- 1. Describe the phenomena of ferroelectricity and piezoelectricity.
- 2. State the two Ohm's law equations and prove that they are equivalent.
- 3. Differentiate between soft and hard magnets.
- 4. Explain the two sources of magnetic moments for electrons.
- 5. Briefly explain why metallic materials are opaque to visible light.
- 6. State the equation that relates the electromagnetic constant c and the electrical and magnetic constants.
- 7. Visible light having a wavelength of 6×10^{-7} m appears orange. Compute the frequency and energy of a photon of this light.
- 8. Mention the types of polarization of dielectric materials and explain one of them.
- 9. What is MOSFET?
- 10. Explain the Hall effect as applied under semiconductivity.

1

ġ

SECTION B

(60 Marks)

- 11. As a Materials Engineer in company X, you analysed a magnetic material in a laboratory. The magnetization of that ceramic material was 3.2×10^5 A/m at an H field of 50 A/m. Calculate,
 - a) the magnetic susceptibility of that material
 - b) the permeability and
 - c) the magnetic flux density within the material.

What type(s) of magnetism is being displayed by the ceramic material and why?

- 12. A charge of 3.5×10^{-11} C is to be stored on each plate of a parallel-plate capacitor having an area of 160 mm^2 and a plate separation of 3.5 mm.
 - a) What voltage is required if a material having a dielectric constant of 5.0 is positioned within the plates?
 - b) What voltage would be required if a vacuum were used?
 - c) What are the capacitances for parts (a) and (b)?
 - d) Compute the dielectric displacement for part (a).
 - e) Compute the polarization for part (a).
- 13. a) Calculate the resistance of a copper wire 3 mm in diameter and 2 m long.
 - b) What would be the current flow if the potential drop across the ends of the wire is 0.05 V?
 - -c) What is the current density?
 - d) What is the magnitude of the electric field across the ends of the wire? [Take $\sigma_{Cu} = 6 \times 10^7 \, (\Omega \, \text{m})^{-1}$].
- 14. a) Prove that the maximum and minimum band gap energies for E_g (max) and E_g (min) are 3.1 eV and 1.8 eV respectively provided that the wavelengths are 0.7 μ m minimum and 0.4 μ m maximum.
 - b) Compute the velocity of light in calcium fluoride, which has a dielectric constant ϵ_r of
 - 2.056 (at frequencies within the visible range) and a magnetic susceptibility of -1.43×10^{-1}
 - ⁵. What is the refractive index of this material?