```
In [2]: import scipy.stats as stats
         import statsmodels.api as sm
         import numpy as np
         import pandas as pd
         import warnings
         warnings.filterwarnings("ignore")
         from PIL import ImageGrab import matplotlib.pyplot as plt
         import seaborn as sns
```

In [3]: data = pd.read\_csv('LabTAT.csv')
 data.head()

## Out[3]:

|   | Laboratory 1 | Laboratory 2 | Laboratory 3 | Laboratory 4 |
|---|--------------|--------------|--------------|--------------|
| 0 | 185.35       | 165.53       | 176.70       | 166.13       |
| 1 | 170.49       | 185.91       | 198.45       | 160.79       |
| 2 | 192.77       | 194.92       | 201.23       | 185.18       |
| 3 | 177.33       | 183.00       | 199.61       | 176.42       |
| 4 | 193.41       | 169.57       | 204.63       | 152.60       |

In [4]: data.describe()

## Out[4]:

|       | Laboratory 1 | Laboratory 2 | Laboratory 3 | Laboratory 4 |
|-------|--------------|--------------|--------------|--------------|
| count | 120.000000   | 120.000000   | 120.000000   | 120.00000    |
| mean  | 178.361583   | 178.902917   | 199.913250   | 163.68275    |
| std   | 13.173594    | 14.957114    | 16.539033    | 15.08508     |
| min   | 138.300000   | 140.550000   | 159.690000   | 124.06000    |
| 25%   | 170.335000   | 168.025000   | 188.232500   | 154.05000    |
| 50%   | 178.530000   | 178.870000   | 199.805000   | 164.42500    |
| 75%   | 186.535000   | 189.112500   | 211.332500   | 172.88250    |
| max   | 216.390000   | 217.860000   | 238.700000   | 205.18000    |

In [5]: data.isnull().sum()

Out[5]: Laboratory 1

Laboratory 2

Laboratory 3 Laboratory 4 0

0 dtype: int64

```
In [6]: plt.subplots(figsize = (16,9))
    plt.subplot(221)
    plt.boxplot(data['Laboratory 1'])
    plt.title('Laboratory 1')
    plt.subplot(222)
    plt.boxplot(data['Laboratory 2'])
    plt.title('Laboratory 2')
    plt.subplot(223)
    plt.boxplot(data['Laboratory 3'])
    plt.title('Laboratory 3')
    plt.subplot(224)
    plt.boxplot(data['Laboratory 4'])
    plt.title('Laboratory 4')
    plt.show()
```







```
In [8]:
    plt.figure(figsize = (8,6))
    labels = ['Lab 1', 'Lab 2', 'Lab 3', 'Lab 4']
    sns.distplot(data['Laboratory 1'], kde = True)
    sns.distplot(data['Laboratory 2'], hist = True)
    sns.distplot(data['Laboratory 3'], hist = True)
    sns.distplot(data['Laboratory 4'], hist = True)
    plt.legend(labels)
```

Out[8]: <matplotlib.legend.Legend at 0x26e49daf850>



```
In [9]: sm.qqplot(data['Laboratory 1'], line = 'q')
            plt.title('Laboratory 1')
sm.qqplot(data['Laboratory 2'], line = 'q')
            plt.title('Laboratory 2')
            sm.qqplot(data['Laboratory 3'], line =
            plt.title('Laboratory 3')
            sm.qqplot(data['Laboratory 4'], line = 'q')
plt.title('Laboratory 4')
            plt.show()
                                             Laboratory 1
                220
                210
                200
             Sample Quantiles
180
170
160
                160
                150
                140
                          -2
                                           0
Theoretical Quantiles
                                             Laboratory 2
                220
                210
                200
             Sample Quantiles
                190
                180
                170
                160
                150
                140
                                           0
Theoretical Quantiles
                                             Laboratory 3
                240
                220
            Sample Quantiles 000 200
                180
                160
                                           Theoretical Quantiles
                                             Laboratory 4
                200
                190
             Sample Quantiles
170
160
150
                140
                130
                          -2
                                           0
Theoretical Quantiles
                                                                              2
```

```
In [10]: test_statistic , p_value = stats.f_oneway(data.iloc[:,0],data.iloc[:,1],data.iloc[:,2],data.iloc[:,3])
print('p_value =',p_value)
```

p\_value = 2.1156708949992414e-57

```
In [11]: alpha = 0.05
print('Significnace=%.3f, p=%.3f' % (alpha, p_value))
if p_value <= alpha:
    print('We reject Null Hypothesis there is a significance difference between TAT of reports of the laboratories')
else:
    print('We fail to reject Null hypothesis')</pre>
Significnace=0.050, p=0.000
```

We reject Null Hypothesis there is a significance difference between TAT of reports of the laboratories

In [ ]: