1. Chapter 3, Problem 3/119

Two traffic signals are attached to the 36-ft support cable at equal intervals as shown. Determine the equilibrium configuration angles a, β , and γ , as well as the tension in each cable segment.

The unstretched length of the spring is b. Determine the force which the spring exerts on point B of the space frame if b = 0.30 m. The magnitude of the spring force is the spring constant k multiplied by the deflection (lengthening or shortening) of the spring.

The 180-lb force is applied at point A of the bracket. Determine the moments of this force about point B, about point C, and about the line BC.

The spring which connects point B of the disk and point C on the vertical surface is under a tension of 500 N. Write this tension as it acts on point B as a force vector \mathbf{T} in terms of the unit vectors \mathbf{i} , \mathbf{j} , and \mathbf{k} and determine the moment M_z of this force about the shaft axis OA.

The concrete slab supports the six vertical loads shown. Determine the x- and y-coordinates of the point on the slab through with the resultant of the loading system passes.

