SC223 - Linear Algebra

Aditya Tatu

Lecture 23

September 27, 2023

Summary: Lecture 22

- **Definition:** (Basis) Let V be a vector space. A subset $\beta \subset V$ is said to be a **Basis** of V if (1) $span(\beta) = V$, and (2) β is a set of linearly independent vectors.
- Proposition 13: For a FDVS, every spanning set can be reduced to a basis.
- Proposition 14: For a FDVS, every LI set can be extended to a basis.
- **Proposition 15:** Every FDVS has a basis.

• **Proposition 16:** A subset $U = \{u_1, \dots, u_n\}$ of VS V is a basis of V if and only if every $v \in V$ can be uniquely written as $v = a_1u_1 + a_2u_2 + \ldots + a_nu_n, a_i \in \mathbb{F}, i = 1, \ldots, n.$ " = " () + v = V, v = a, u, + . + andn. > span (U) = V. 2) 4 UEV, Ja unique LC: 10 = a, 4+ .. + an Un. Contradiction () Assume U is LD-2 Jan, an eff, not all zeros s.t a, U, + ... + anu, = 0. Since 0-4+0-12+-++0-4=08 fi, a, +0.

● **Proposition 16:** A subset $U = \{u_1, \ldots, u_n\}$ of VS V is a basis of V if and only if every $v \in V$ can be uniquely written as $v = a_1u_1 + a_2u_2 + \ldots + a_nu_n, a_i \in \mathbb{F}, i = 1, \ldots, n$. We call the vector $\begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$ $\in \mathbb{F}^n$, the **representation of** v **in the basis** U and denote the

same by $[v]_U$.

- **Proposition 16:** A subset $U = \{u_1, \dots, u_n\}$ of VS V is a basis of V if and only if every $v \in V$ can be uniquely written as $v = a_1u_1 + a_2u_2 + \dots + a_nu_n, a_i \in \mathbb{F}, i = 1, \dots, n$. We call the vector
- $\begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} \in \mathbb{F}^n$, the **representation of** v **in the basis** U and denote the

same by $[v]_U$.

• **Proposition 17:** Any set of basis vectors of a FDVS contains the same number of elements.

Let $\beta_1, \beta_2 \subseteq V$ be two sets of bans β_1 is LI, β_2 spans V, δ . $|\beta_1| \leq |\beta_2|$ β_1 spans V, β_2 is LI, δ . $|\beta_2| \leq |\beta_1|$ $\Rightarrow |\beta_1| = |\beta_2|$ **Proposition 16:** A subset $U = \{u_1, \dots, u_n\}$ of VS V is a basis of V if and only if every $v \in V$ can be uniquely written as

$$v=a_1u_1+a_2u_2+\ldots+a_nu_n, a_i\in\mathbb{F}, i=1,\ldots,n..$$
 We call the vector
$$\left[\begin{array}{c} a_1\\ a_2\\ \vdots\\ a_n \end{array}\right]\in\mathbb{F}^n, \text{ the } \mathbf{representation } \mathbf{of } v \mathbf{ in } \mathbf{the } \mathbf{basis } U \mathbf{ and } \mathbf{ denote } \mathbf{the } \mathbf{ in }$$

same by $[v]_U$.

- Proposition 17: Any set of basis vectors of a FDVS contains the same number of elements.
- **• Dimension of a Vector Space:** Let V be a FDVS. For any set of basis vectors β of V, we define the dimension of V as $dim(V) := |\beta|$.

Theorem 3: (Rank-Nullity Theorem). Let $A \in \mathbb{R}^{m \times n}$, with rank(A) = r. Then r + dim(N(A)) = n.

Proof (Rank-Hullity Theorem) A: IR" - IR" V + dim(N(A)) = M $N(A) \subseteq \mathbb{R}^{M}$ Let B= {w1, ..., wx3 be a basis of N(A). Extend Buras to BCR so that B& a bans
of Rn $\beta = \{ \omega_1, ..., \omega_k, P_1, ..., P_{n-1e} \}$ is a basis of \mathbb{R}^n $A \omega_i^2 = \overrightarrow{O} \quad i=1,...,k$. APi. + 0- $\begin{cases}
AP_{1} & \rightarrow AP_{n-k} \\
N^{-k} & \rightarrow AP_{n-k}
\end{cases} \Rightarrow L_{1}$ $\sum_{i=1}^{N-k} C_{i}AP_{i} = \overrightarrow{O} = A\left(\sum_{i=1}^{N-k} C_{i}P_{i}\right) = \overrightarrow{O}$ $C_{i}^{*} = O, C_{i}^{*} = I, \rightarrow, N-k$ XXCR, Z= Eciwi + Ebipi Any $y \in C(A)$, $y = An = \sum_{(=-1)}^{N-K} b_i A p_i$ $0 \quad N-K = L = (Rauk(A))$ $1 \quad N - len(N(A)) = 2$

- **Theorem 3:** (Rank-Nullity Theorem). Let $A \in \mathbb{R}^{m \times n}$, with rank(A) = r. Then r + dim(N(A)) = n.
- **Proposition 18:** Let U, W be subspaces of FDVS V. Then, dim(U + W) =

- **Theorem 3:** (Rank-Nullity Theorem). Let $A \in \mathbb{R}^{m \times n}$, with rank(A) = r. Then r + dim(N(A)) = n.
- **Proposition 18:** Let U, W be subspaces of FDVS V. Then, $dim(U+W) = dim(U) + dim(W) dim(U \cap W)$.

- **Theorem 3:** (Rank-Nullity Theorem). Let $A \in \mathbb{R}^{m \times n}$, with rank(A) = r. Then r + dim(N(A)) = n.
- **Proposition 18:** Let U, W be subspaces of FDVS V. Then, $dim(U + W) = dim(U) + dim(W) dim(U \cap W)$.
- Theorem 4: Let $A \in \mathbb{R}^{m \times n}$. $N(A) + C(A^T) =$

- **Theorem 3:** (Rank-Nullity Theorem). Let $A \in \mathbb{R}^{m \times n}$, with rank(A) = r. Then r + dim(N(A)) = n.
- **Proposition 18:** Let U, W be subspaces of FDVS V. Then, $dim(U + W) = dim(U) + dim(W) dim(U \cap W)$.
- Theorem 4: Let $A \in \mathbb{R}^{m \times n}$. $N(A) + C(A^T) = N(A) \oplus C(A^T) =$

- **Theorem 3:** (Rank-Nullity Theorem). Let $A \in \mathbb{R}^{m \times n}$, with rank(A) = r. Then r + dim(N(A)) = n.
- **Proposition 18:** Let U, W be subspaces of FDVS V. Then, $dim(U + W) = dim(U) + dim(W) dim(U \cap W)$.
- Theorem 4: Let $A \in \mathbb{R}^{m \times n}$. $N(A) + C(A^T) = N(A) \oplus C(A^T) = \mathbb{R}^n$.

- **Theorem 3:** (Rank-Nullity Theorem). Let $A \in \mathbb{R}^{m \times n}$, with rank(A) = r. Then r + dim(N(A)) = n.
- **Proposition 18:** Let U, W be subspaces of FDVS V. Then, $dim(U + W) = dim(U) + dim(W) dim(U \cap W)$.
- **Theorem 4:** Let $A \in \mathbb{R}^{m \times n}$. $N(A) + C(A^T) = N(A) \oplus C(A^T) = \mathbb{R}^n$. Similarly, $N(A^T) \oplus C(A) = \mathbb{R}^m$.

- **Theorem 3:** (Rank-Nullity Theorem). Let $A \in \mathbb{R}^{m \times n}$, with rank(A) = r. Then r + dim(N(A)) = n.
- **Proposition 18:** Let U, W be subspaces of FDVS V. Then, $dim(U + W) = dim(U) + dim(W) dim(U \cap W)$.
- **Theorem 4:** Let $A \in \mathbb{R}^{m \times n}$. $N(A) + C(A^T) = N(A) \oplus C(A^T) = \mathbb{R}^n$. Similarly, $N(A^T) \oplus C(A) = \mathbb{R}^m$.

