เซต (Set)

1. เซต เป็นคำที่ใช้บ่งบอกถึงกลุ่มของสิ่งต่าง ๆ และเมื่อกล่าวถึงกลุ่มใดแล้ว สามารถทราบได้แน่นอนว่าสิ่งใดอยู่ในกลุ่ม และสิ่งใดไม่อยู่ในกลุ่ม เช่น

> เซตของสระในภาษาอังกฤษ หมายถึง กลุ่มของอักษร a, e, i, o และ u เซตของจำนวนนับที่น้อยกว่า 10 หมายถึง กลุ่มของตัวเลข 1, 2, 3, 4, 5, 6, 7, 8 และ 9 สิ่งที่อยู่ในเซต เรียกว่า สมาชิก (element หรือ members)

2. **การเขียนเซต** การเขียนเซตอาจเขียนได้สองแบบคือ

การเขียนเซตแบบแจกแจงสมาชิก (Tabular From) โดยเขียนสมาชิกทุกตัวของเซตลงในเครื่องหมายวงเล็บปีกกา และใช้เครื่องหมายจุลภาค (,) คั่นระหว่างสมาชิกแต่ละตัว เช่น

> เซตของจำนวนนับที่น้อยกว่า 7 เขียนแทนด้วย {1, 2, 3, 4, 5, 6} เซตของพยัญชนะไทย 5 ตัวแรก เขียนแทนด้วย {ก, ข, ข, ค, ฅ} เซตของจำนวนคู่ตั้งแต่ 2 ถึง 10 เขียนแทนด้วย {2, 4, 6, 8, 10}

เขียนเซตแบบบอกเงื่อนไข (Builder Form) ใช้ตัวแปรเขียนแทนสมาชิกของเซต แล้วบรรยายสมบัติของสมาชิกที่ อยู่ในรูปของตัวแปร เช่น

 $\{x \mid x \mid \text{ if uase lunner } \}$

อ่านว่า เซตของ x โดยที่ x เป็นสระในภาษาอังกฤษ

 $\{x \mid x \text{ if uinfoulls null aright of } x \}$

อ่านว่า เซตของ x โดยที่ x เป็นเดือนแรกและเดือนสุดท้ายของปี

เครื่องหมาย " | " แทนคำว่า โดยที่

ในการเขียนเชตแบบแจกแจงสมาชิกนั้นจะใช้จุดสามจุด (...) เพื่อแสดงว่ามีสมาชิกอื่น ๆ ซึ่งเป็นที่เข้าใจกันทั่วไป ว่ามีอะไรบ้างที่อยู่ในเซต เช่น

{1, 2, 3, . . ., 10} สัญลักษณ์ . . . แสดงว่ามี 4, 5, 6, 7, 8 และ 9 เป็นสมาชิกของเซต {วันจันทร์, อังคาร, พุธ, . . ., อาทิตย์ } สัญลักษณ์ . . . แสดงว่ามีวันพฤหัสบดี วันศุกร์ และวันเสาร์ เป็น สมาชิกของเซต

3. สัญลักษณ์แทนเซต

ในการเขียนเซตโดยทั่วไปจะแทนเซตด้วยอักษรภาษาอังกฤษตัวพิมพ์ใหญ่ เช่น A, B, C และแทนสมาชิกของ เซตด้วยตัวพิมพ์เล็ก เช่น a, b, c เช่น

A = {1, 4, 9, 16, 25, 36} หมายถึง A เป็นเซตของกำลังสองของจำนวนนับหกจำนวนแรก

4. สมาชิกของเซต เขียนแทนด้วยสัญลักษณ์ " \in " และ จำนวนสมาชิกของ A เขียนแทนด้วย $\mathit{n}(A)$ เช่น

$$A = \{1,2,3,4\}$$

จะได้ว่า 1 เป็นสมาชิกของ $\stackrel{\cdot}{A}$ หรืออยู่ใน A เขียนแทนด้วย $1\in A$

3 เป็นสมาชิกของ A หรืออยู่ใน A เขียนแทนด้วย $3 \in A$

คำว่า "ไม่เป็นสมาชิกของ" หรือ "ไม่อยู่ใน" เขียนแทนด้วยสัญลักษณ์ " ∉ " เช่น

5 ไม่เป็นสมาชิกของ A หรือไม่อยู่ใน A เขียนแทนด้วย 5 $\not\in$ A

7 ไม่เป็นสมาชิกของ A หรือไม่อยู่ใน A เขียนแทนด้วย $7 \not\in A$

สำหรับเซต A ซึ่งมีสมาชิก 4 ตัว เราจะใช้ n(A) เพื่อบอกจำนวนสมาชิกของเซต A นั่นคือ n(A) = 4

ตัวอย่างที่ 1 กำหนดให้ $A = \{1, \{2\}, 3, \{1,2\}, 5\}$

สมาชิกของเซต A คือ และ n(A) =

ตัวอย่างที่ 2 กำหนดให้ $B = \{0, \phi, \{2, \{3\}\}, \{1,2\}, \{5\}, \{1,2,3,\dots\}\}$

สมาชิกของเซต B คือ และ n(B)=

5. ชนิดของเซต

- 5.1 **เซตว่าง** คือ เซตที่<u>ไม่มี</u>สมาชิก เขียนแทนด้วย $\{\}$ หรือ $oldsymbol{\phi}$
- 5.2 **เซตจำกัด** คือ เซตที่สามารถระบุจำนวนสมาชิกที่แน่นอนได้
- 5.3 **เซตอนันต์** คือ เซตที่**ไม่ใช่**เซตจำกัด

6. เซตที่เท่ากัน

กำหนดให้ A และ B เป็นเซตใดๆ เซต A เท่ากับเซต B ก็ต่อเมื่อ สมาชิกทุกตัวของเซต A เป็นสมาชิก ของเซต B และสมาชิกทุกตัวของเซต B เป็นสมาชิกของเซต A เขียนแทนด้วย A=B เช่น $A=\{1,2,3\}$, $B=\{2,3,1\}$ และ $C=\{1,3,2,1\}$

7. เซตที่เทียบเท่ากัน

ให้ A และ B เป็นเซตใดๆ **เซต** A **เทียบเท่าเซต** B ก็ต่อเมื่อ **จำนวนสมาชิกของเซต** A **เท่ากับจำนวน** สมาชิกของเซต B เช่น $A = \{1,2,3\}$, $B = \{\{1\},2,\phi\}$

20 - 30 มีนาคม 2565

8. สับเซต

บทนิยาม ให้ A และ B เป็นเซตใดๆ

A เป็นสับเซตของ B ก็ต่อเมื่อ **สมาชิกทุกตัวของ** A **เป็นสมาชิกของ** B

A **เป็นสับเซตของ** B เขียนแทนด้วย $A \subset B$

A ไม่เป็นสับเซตของ B เขียนแทนด้วย $A \subset B$

สับเซตแท้

- 1. A เป็นสับเซต**แท้**ของ B ก็ต่อเมื่อ $A \subset B$ และ $A \neq B$ (ส**ับเซตที่ไม่ใช่ตัวมันเอง**)
- 2. A เป็นสับเซต**ไม่แท้**ของ B ก็ต่อเมื่อ $A \subset B$ และ A = B

*** เซตว่างเป็นเซตที่**ไม่มี**สับเซตแท้ ***

ข้อตกลงเบื้องต้นเกี่ยวกับสับเซต

- 1. A ⊂ A
- 2. $\phi \subset A$
- 3. ถ้า A $\subset \phi$ แล้ว A = ϕ
- 4. ถ้า A ⊂ B และ B ⊂ A ก็ต่อเมื่อ A = B
- 5. ถ้า A ⊂ B และ B ⊂ C ก็ต่อเมื่อ A ⊂ C
- 6. เซตว่างเป็นสับเซตของทุก ๆ เซต
- 7. เซตทุกเซตเป็นสับเซตของตัวมันเอง

ข้อสังเกต

เมื่อกำหนด A เป็น**เซตจำกัด** เราสามารถหาจำนวนสับเซตทั้งหมดของ A ได้ดังนี้ จำนวนสับเซต**ทั้งหมด**ของ A มี $2^{n(A)}$ เซต จำนวน**สับเซตแท้**ทั้งหมดของ A มี $2^{n(A)}-1$ เซต เช่น กำหนดให้เซต $A=\left\{1,2,\left\{3\right\}\right\}$ จงหาสับเซตทั้งหมดของ A

9. เพาเวอร์เซต

บทนิยาม ถ้า A เป็นเซตใด ๆ เพาเวอร์เซตของ A คือ เซตของสับเซตทั้งหมดของ A เขียนแทนด้วย P(A) นั่นคือ

$$P(A) = \{x | x \subset A\}$$

เชต (Set) 3

สมบัติเกี่ยวกับเพาเวอร์เซต

- 1. $\emptyset \in P(A)$
- 2. $A \in P(A)$
- 3. $P(A) \neq \emptyset$
- 4. ถ้า n(A) = k แล้ว $n(P(A)) = 2^k$

ตัวอย่างที่ 3 กำหนด A = { 2 , 3 , 4 } ต่อไปนี้ข้อใดถูก ข้อใดผิด

8. {2, 3, 4}
$$\subset$$
 A

15.
$$\phi \in \{\phi\}$$

17.
$$\phi \in P(A)$$

18.
$$\phi \subset P(A)$$

- 19. สับเซตของเซตจำกัดต้องเป็นเซตจำกัด
- 20. สับเซตของเซตอนันต์ต้องเป็นเซตอนันต์

ตัวอย่างที่ 4 จงเติมคำตอบต่อไปนี้

1) กำหนด A = { ϕ , {2}, 3 , 4} สับเซตของ A ที่มีสมาชิก 2 ตัว คือ

- 2) กำหนด B = { 1,2,3,4} สับเซตของ B ที่มีสมาชิก 3 ตัว คือ
- 3) กำหนด $D = \{ 0, \{1\}, 2 \}$ สับเซตของ D ทั้งหมด คือ

ตัวอย่างที่ 5 จงหาเพาเวอร์เซตของข้อต่อไปนี้

1.
$$A = \{ \phi \}$$

2.
$$B = \{1, \{2,3\}\}$$

ตัวอย่างที่ 6 กำหนดให้ $A = \{1\}$ จงหา P(P(A))

หมายเหตุ ถ้า $X\subset A$ แล้ว $X\in P(A)$ ตัวอย่างที่ 7 กำหนดให้ $B=\left\{\phi,0,1\right\}$ และ P(B) แทนเพาเวอร์เซตของ B ข้อใดต่อไปนี้ผิด

n.
$$\phi \in P(B)$$
 และ $0 \notin P(B)$

ข.
$$\phi \subset P(B)$$
 แต่ $1 \not\subset P(B)$

ค.
$$\{\phi\} \in P(B)$$
 และ $\{1\} \in P(B)$

ា.
$$\{\phi\}$$
 \subset $P(B)$ และ $\{\,0\,\}$ \subset $P(B)$

ตัวอย่างที่ 8 กำหนดให้ $A = \{1, \{1, 2\}\}$ จงหา

- จำนวนสับเซตทั้งหมดของ A มี

3.
$$n(P(A)) = \dots$$

4.
$$n[P(P(A))] = \dots$$

5.
$$n[P(P(P(A)))] = \dots$$

ตัวอย่างที่ 9 กำหนดให้ $A = \{1,2\}$ และ $B = \{1,2,3,4,5\}$ จงหาจำนวนเซต X ที่ทำให้ $A \subset X \subset B$

ศูนย์คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยสงขลานครินทร์

10.การดำเนินการของเซต (Operation of set)

แผนภาพเวนน์-ออยเลอร์ (Venn-Euler Diagram)

แผนภาพของเวนน์-ออยเลอร์ เป็นแผนภาพที่ใช้แสดงความเกี่ยวข้องของเซต เพื่อช่วยในการคิดคำนวณหรือแก้ปัญหา ซึ่ง ้ตัวชื่อแผนภาพตามชื่อของนักคณิตศาสตร์คือ เวนน์และออยเลอร์ การเขียนแผนภาพเวนน์-ออยเลอร์ มีวิธีการเขียนดังนี้

> เอกภพสัมพทธ์ U แทนด้วยรูปสี่เหลี่ยมผืนผ้าหรือรูปปิดใด ๆ ให้

เซต A, B, C, . . . ซึ่งเป็นสับเซตของ U แทนด้วยวงกลม วงรี หรือรูปปิดอื่น ๆ โดยให้เซต A, B, C, . . . อยู่ใน U ดังตัวอย่าง

ตัวอย่างที่ 10 กำหนด U = {1, 2, 3, . . .} , A = {1, 2, 3, 4, 5} และ B = {2, 4, 6, 8} จงเขียนแผนภาพของเวนน์-ออยเลอร์ แทนเซต

ว**ิธีทำ** : เซต A และเซต B มีสมาชิกร่วมกันคือ 2 และ 4 ซึ่งสามารถเขียนแผนภาพ แทนเซต A และ B ได้ดังนี้

ยูเนียน (Union)

บทนิยาม ยูเนียนของเซต A และ เซต B คือ เซตที่ประกอบด้วยสมาชิก ซึ่งเป็นสมาชิกของเซต A หรือ ของ เซต B หรือ ของทั้งสองเซต

ยูเนียนของเซต A และ เซต B เขียนแทนด้วย A ∪ B

นั่นคือ A \cup B = { x | x ∈ A หรือ x ∈ B หรือ x เป็นสมาชิกของทั้งสองเซต }

เช่น กำหนดให้ A = { 1, 2, 3 }, B = { 2, 3, 4, 5 }

AUB =

เอกสารประกอบการอบรมโอลิมปิกวิชาการและการพัฒนามาตรฐานวิทยาศาสตร์และคณิตศาสตร์ สาขาคอมพิวเตอร์ ศูนย์คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยสงขลานครินทร์ 20 - 30 มีนาคม 2565

อินเตอร์เซกชัน (Intersection)

อินเตอร์เซกชันของเซต A และเซต B คือ เซตที่ประกอบด้วยสมาชิกซึ่งเป็นสมาชิกของทั้ง เซต A และเซต B

อ**ินเตอร์เซกชัน** ของเซต A และเซต B เขียนแทนด้วย A 🦳 B

นั่นคือ A
$$\cap$$
 B = {x | x \in A และ x \in B} เช่น กำหนดให้ A = {a,b,c}, B = {b,c,d,e}

ดังนั้น A∩B =

ผลต่าง (Difference)

บทนิยาม ถ้า A และ B เป็นสับเซตของเอกภพสัมพัทธ์ ผลต่างระหว่างเซต A และเซต B คือ เซต

ที่ประกอบด้วยสมาชิกของเซต A ที่**ไม่เป็น**สมาชิกของเซต B

ผลต่างระหว่างเซต A และเซต B เขียนแทนด้วย A - B

ตัวอย่างผลต่างของเซตสองเซตใด ๆ ที่กำหนดให้

ข้อที่	เซต A	เซต B	ผลต่างของเซต A และเซต B (A – B)
1	$A = \{1, 2, 3, 4, 5\}$	$B = \{1, 2, 3\}$	{4, 5}
2	$A = \{2, 4, 6, 8, 10\}$	$B = \{2, 4\}$	{6, 8, 10}
3	$A = \{a, b, c, d\}$	$B = \{a, b\}$	{c, d}
4	$A = \{a, e, i, o, u\}$	$B = \{o, u\}$	{a, e, i}
5	$A = \{7, 8, 9, 10, 11\}$	$B = \{8, 9, 10\}$	{7, 11}
6	$A = \{20, 21, 22, 23\}$	$B = \{22, 23\}$	{20, 21}

20 - 30 มีนาคม 2565

จากตารางพบว่า ผลต่างของเซต A และเซต B คือเซตที่มีสมาชิกทุกตัวอยู่ในเซต A แต่ไม่อยู่ในเซต B เขียนแทน ด้วย A – B

A - B = { x | x ∈ A และ x
$$\notin$$
 B}

คอมพลีเมนต์ (Compliment)

บทนิยาม ถ้า A เป็นสับเซตของเอกภพสัมพัทธ์ U คอมพลีเมนต์ของเซต A คือ เซตที่ประกอบ ด้วยสมาชิกของ U แต่**ไม่เป็น**สมาชิกของ A

คอมพลีเมนต์ของเซต A เขียนแทนด้วย A' หรือ A^c

นั่นคือ
$$A'=\{\, x\, \Big|\, x\in U$$
 และ $x\not\in A$ $\}=U-A$ เช่น กำหนด $U=\{\, a\,,b\,,c\,,d\,\}$, $A=\{\, a\,,b\,\}$ และ $B=\{\, a\,,d\,\}$

ดังนั้น
$$A' = U - A =$$

สมบัติที่สำคัญของการดำเนินการเกี่ยวกับเซต

$$A-B=A\cap B'$$
 , $(A\cup B)'=A'\cap B'$, $(A\cap B)'=A'\cup B'$, $(A')'=A$

ตัวอย่างคอมพลีเมนต์ของเซตต่าง ๆ ที่กำหนดให้

ข้อที่	เซตที่กำหนดให้	เอกภพสัมพัทธ์ (U)	คอมพลีเมนต์ของเซตที่ กำหนดให้
1	$A = \{1, 2, 3, 5\}$	$U = \{1, 2, 3, \dots, 10\}$	$A^{'} = \{4, 6, 8, 9, 10\}$
2	A = {2, 4, 6, 8, 10, 12}	$U = \{2, 4, 6, 8, 10, 12, 14\}$	$\mathbf{A}^{\prime} = \{14\}$
3	$B = \{1, 3, 5, 7, 9, 11, 13\}$	$U = \{1, 3, 5, 7, 9, 11, 13, 15, 17\}$	$B' = \{15, 17\}$
4	$B = \{6, 7\}$	$U = \{1, 2, 3, 4, 5, 6, 7, 8\}$	$\mathbf{B}' = \{1, 2, 3, 4, 5, 8\}$
5	$C = \{1, 2\}$	$U = \{1, 2, 3, 4, 5, 6\}$	$C' = \{3, 4, 5, 6\}$
6	$C = \{0, 1, 2\}$	$U = \{0, 1, 2, 3, 4, 5, 6, 7\}$	$C' = \{3, 4, 5, 6, 7\}$

เชต (Set) 8

จากตารางพบว่า คอมพลีเมนต์ของเซตใด ๆ คือ เซตที่มีสมาชิกอยู่ใน U แต่ไม่อยู่ในเซตนั้น ๆ เช่น คอมพลี เมนต์ของเซต A คือ เซตที่มีสมาชิกอยู่ใน U แต่ไม่อยู่ใน A คอมพลีเมนต์ของเซต A เขียนแทนด้วย A'

จงหา

1.
$$A \cap B = \dots$$
 4. $B - C = \dots$

7.
$$B' = \dots$$
 8. $(A \cap C) - B = \dots$

11. การหาจำนวนสมาชิกของเซตจำกัด

1. ถ้า A และ B เป็นเซตจำกัด

$$n (A - B) = n(A) - n (A \cap B)$$

$$n (A - B) = n (A \cup B) - n(B)$$

$$n (A \cup B) = n(A) + n(B) - n (A \cap B)$$

 $n(A \cup B) = n(A) + n(B) เมื่อ A \cap B = \emptyset$

3. ถ้า A, B และ C เป็นเซตใด ๆ

$$n (A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B) - n(A \cap C) - n(B \cap C) + n(A \cap B \cap C)$$

ตัวอย่างที่ 11 กำหนด n(U) = 100 , n(A) = 62 , n(B) = 58 และ n(A∩B) = 30 จงหาจำนวนสมาชิก ของเซตในข้อต่อไปนี้

3.
$$n(B-A) = \dots$$

4.
$$n(A') =$$

5.
$$n(B') = \dots$$

6.
$$n(A' \cap B') = \dots$$

7.
$$n(A' \cup B') = \dots$$

8.
$$n(A \cup B') = \dots$$

9.
$$n(A \cup B') = \dots$$

ตัวอย่างที่ 12 จากการสอบถามพ่อบ้านจำนวน 150 คน มีผู้ที่ชอบดื่มชา 90 คน ชอบดื่มกาแฟ 100 คน ชอบดื่มทั้งชา และกาแฟจำนวน 50 คน จงหาจำนวนพ่อบ้านที่ไม่ชอบดื่มทั้งชาและกาแฟ

ตัวอย่างที่ 13 โรงพยาบาลแห่งหนึ่งทำการสำรวจข้อมูลจากผู้ป่วยที่มีอายุเกิน 40 ปี จำนวน 1,000 คน ปรากฏว่ามี คนสูบบุหรี่ 312 คน มีคนเป็นมะเร็งที่ปอด 180 คน และมี 660 คนไม่สูบบุหรี่และไม่เป็นมะเร็งปอด อยากทราบว่า มีผู้ สูบบุหรี่และเป็นมะเร็งที่ปอดจำนวนเท่าใด และคิดเป็นร้อยละเท่าใดของจำนวนผู้สูบบุหรี่ทั้งหมด

ตัวอย่างที่ 14 ในการสำรวจนักเรียนชั้นมัธยมศึกษาปีที่ 6 ของโรงเรียนแห่งหนึ่งจำนวน 69 คน ซึ่งต้องลงทะเบียนเรียน อย่างน้อยหนึ่งวิชา พบว่านักเรียนลงทะเบียนเรียนวิชาคณิตศาสตร์ 30 คน วิชาภาษาอังกฤษ 27 คน วิชา ภาษาไทย 41 คน วิชาคณิตศาสตร์และวิชาภาษาอังกฤษ 19 คน วิชาภาษาอังกฤษและวิชาภาษาไทย 7 คนวิชา คณิตศาสตร์และวิชาภาษาไทย 8 คน จำนวนนักเรียนที่ลงทะเบียนทั้งสามวิชาเท่ากับเท่าใด