Areas and Distance

Topics: Finding area under a curve; calculating distance traveled

An ancient problem of mathematics was to calculate areas of various shapes. While polygons were somewhat simple, shapes with curves (e.g., circles) were very difficult!

Example 1. Use rectangles to estimate the area under the parabola $y = x^2$ from 0 to 1.

Take-away:			

The **area** A that lies under the graph of the continuous function f on the interval [a,b] is the limit of the sum of the areas of approximating rectangles of width $\Delta x = \frac{b-a}{n}$:

$$A =$$

Sigma notation

We have the following nice notation for our work today:

$$\sum_{i=1}^{n} f(x_i) \Delta x =$$

1.
$$\sum_{i=1}^{5} i =$$

2.
$$\sum_{i=1}^{n} i^2 =$$

3.
$$\sum_{i=1}^{n} 1 =$$

4.
$$\frac{1}{10}\Delta x + \frac{2}{10}\Delta x + \dots + \frac{10}{10}\Delta x =$$

5.
$$\frac{1}{1} + \frac{1}{4} + \frac{1}{9} + \dots + \frac{1}{81} =$$

Take-away:		

The Distance Problem

Recall that if velocity is constant then d = rt. However, if velocity is not constant, then how would we compute distance traveled?

Example 4. Consider the following measured values:

Time 0 5 10 15 20 25 30

Velocity 25 31 35 43 47 46 41.

Approximate the distance traveled.