$\mathrm{ULB} \hspace{2.5cm} 2018/2019$

MATHF214 - Compléments de mathématiques

Assistant : Robson Nascimento Titulaire : Paolo Roselli

Liste 5 – Opérateurs Linéaires

Exercice 1. Montrer que la fonction f définie par

$$f: \mathbb{R} \longrightarrow \mathbb{C}: x \mapsto e^{-\frac{1}{2}(x+\frac{i}{2})^2}$$

est fonction propre de l'opérateur A défini par

$$A = -\frac{d^2}{dx^2} + x^2 + ix$$

avec la valeur propre $\frac{5}{4}$.

Exercice 2. Dans l'espace $\mathcal{X} = \{ f \in C^{\infty}([0,\pi]), f(0) = f(\pi) = 0 \}$, on considère l'opérateur

$$A = -\frac{d^2}{dx^2}.$$

- a) Cet opérateur est-il hermitien?
- b) Déterminer les valeurs propres et fonctions propres de cet opérateur.

Exercice 3. Dans l'espace $\mathcal{Y} = \{ f \in C^{\infty}([-\pi, \pi]), f(-\pi) = f(\pi), f'(-\pi) = f'(\pi) \}$, on considère l'opérateur

$$A = -\frac{d^2}{dx^2}.$$

- a) Cet opérateur est-il hermitien?
- b) Déterminer les valeurs propres et fonctions propres de cet opérateur.

Exercice 4. Dans l'espace $\mathcal{Z} = \{ f \in C^{\infty}([0,\pi]), f(0) = f(\pi) = 0 \}$, on considère l'opérateur

$$A = 2ix\frac{d}{dx} + i.$$

Cet opérateur est-il hermitien?

Exercice 5. On considère l'espace vectoriel $\mathcal{V} = \{ f \in C^{\infty}([-\pi, \pi]), f(-\pi) + f(\pi) = 0 \}$, muni de l'application $\langle ., . \rangle_{x^2} : \mathcal{V} \times \mathcal{V} \to \mathbb{C}$ définie par

$$\langle f, g \rangle_{x^2} = \int_{-\pi}^{\pi} f(x) \overline{g(x)} x^2 dx$$

et l'opérateur

$$A = i\frac{d}{dx} + \frac{i}{x}.$$

- a) Montrer que $\langle .,. \rangle_{x^2}$ est un produit scalaire sur \mathcal{V} .
- b) L'opérateur A est-il hermitien?
- c) Déterminer les valeurs propres et fonctions propres de cet opérateur.

Exercice 6. Dans l'espace $\mathcal{W}=\{f\in C^{\infty}([-\pi,\pi]),\, f(-\pi)=f(\pi)=0\}$, on considère l'opérateur

$$A = -\frac{d^2}{dx^2} + 2i\frac{d}{dx} + 1.$$

- a) Cet opérateur est-il hermitien?
- b) Déterminer les valeurs propres et fonctions propres de cet opérateur.

Exercice 7. On considère l'espace vectoriel

$$\mathcal{E} = \{ f \in C^{\infty}([-\pi/2, \pi/2]), f(-\pi/2) = f(\pi/2) \},\$$

muni de l'application $\langle .,. \rangle_* : \mathcal{E} \times \mathcal{E} \to \mathbb{C}$ définie par

$$\langle f, g \rangle_* = \int_{-\pi/2}^{\pi/2} f(x) \overline{g(x)} (3 - x^2)^2 dx$$

et l'opérateur

$$A = -\frac{d}{dx} + \frac{2x}{3 - x^2}.$$

- a) Montrer que $\langle .,. \rangle_*$ est un produit scalaire sur \mathcal{E} .
- b) L'opérateur A est-il hermitien?
- c) Déterminer les valeurs propres et fonctions propres de cet opérateur.