MATH2010 Advanced Calculus I, 2023-2024 Term 2

HOMEWORK 6

Due: 23:59, 8 Mar 2024

Please submit your solution to Gradescope before it is due.

- **Q1.** Can the function $f(x,y) = \frac{\sin x \sin^3 y}{1 \cos(x^2 + y^2)}$ be defined at (0,0) in such a way that it becomes continuous there?
- **Q2.** Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a function and let $(a,b) \in \mathbb{R}^2$. We define two single variable functions g(x) = f(x,b) and h(y) = f(a,y).
 - (a) If g(x) is continuous at x = a and h(y) is continuous at y = b, does it follow that f is continuous at (a, b)? Why?
 - (b) If f(x, y) is continuous at (a, b), does it follow that g(x) is continuous at x = a and h(y) is continuous at y = b? Why?
- Q3. Compute the gradient for the following functions.
 - (a) $f(x, y, z) = \sec(x + y) + \frac{1}{y+z}$.
 - (b) $f(x,y) = \frac{x+y}{x-y}$.
- **Q4.** Let f(x, y, z) = xy + yz + zx. Using the limit definition, find the directional derivative of f at the point $\mathbf{a} = (1, -1, 1)$ along the direction of $\mathbf{v} = \mathbf{i} + 2\mathbf{j} + \mathbf{k}$.
- **Q5.** Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a function. Fix a point (x_0, y_0) . Consider a linear approximation of f(x, y) near (x_0, y_0) , defined by

$$l(x,y) = f(x_0, y_0) + r(x - x_0) + s(y - y_0),$$

where $r, s \in \mathbb{R}$ are constants. Suppose the error

$$\epsilon(x,y) = f(x,y) - f(x_0, y_0) - r(x - x_0) - s(y - y_0)$$

satisfies

$$\lim_{(x,y)\to(x_0,y_0)} \frac{\epsilon(x,y)}{\sqrt{(x-x_0)^2+(y-y_0)^2}} = 0.$$

Show that the partial derivatives $f_x(x_0, y_0)$ and $f_y(x_0, y_0)$ exist with $r = f_x(x_0, y_0)$ and $s = f_y(x_0, y_0)$.