

Algorithm Efficiency

- There are often many approaches (algorithms) to solve a problem. How do we choose between them?
- At the heart of computer program design are two (sometimes conflicting) goals:
 - To design an algorithm that is easy to understand, code and debug.
 - To design an algorithm that makes efficient use of the computer's resources.

Algorithm Efficiency

- Goal (1) is the concern of Software Engineering.
- Goal (2) is the concern of data structures and algorithm analysis.
- When goal (2) is important, how do we measure an algorithm's cost?

How to Measure Efficiency?

- Empirical comparison (run programs).
- Asymptotic Algorithm Analysis.

- Critical resources:
- Factors affecting running time:

How to Measure Efficiency?

- For most algorithms, running time depends on "size" of the input.
- Running time is expressed as T(n) for some function T on input size n.

Examples of Growth Rate

```
• Example 1:
int largest(int* array, int n) // Find largest value
{ int currlarge = array[0]; // Store largest seen
  for (int i=1; i<n; i++) // For each element
      if (array[i] > currlarge) // If largest
           currlarge = array[i];
                              // Remember it
  return currlarge;
                              // Return largest
```


Examples of Growth Rate

Example 2:
 sum = 0;
 for (i=1; i<=n; i++)
 for (j=1; j<=n; j++)
 sum++;
</pre>

Best, Worst and Average Cases

- Not all inputs of a given size take the same time.
- Sequential search for K in an array of n integers:
 - Begin at first element in array and look at each element in turn until K is found.

Best, Worst and Average Cases

- Best Case:
- Worst Case:
- Average Case:
- While average time seems to be the fairest measure, it may be difficult to determine.
- When is worst case time important?

Faster Computer or Algorithm?

 What happens when we buy a computer 10 times faster?

$\mathbf{T}(n)$	n	n'	Change	n'/n	•
10n	1,000	10,000	n' = 10n	10	
20n	500	5,000	n' = 10n	10	
$5n \log n$	250	1,842	$\sqrt{10}n < n' < 10n$	7.37	
$2n^{2}$	70	223	$n' = \sqrt{10}n$	3.16	
2^n	13	16	n' = n + 3		

n: Size of input that can be processed in one hour (10,000 steps).

n': Size of input that can be processed in one hour on the new machine (100,000 steps).

Þ١

Asymptotic Analysis: Big-oh

- **definition:** (Big-Oh) T(N) is O(F(N)) if there are positive constants c and N_0 such that $T(N) \leq cF(N)$ when $N \geq N_0$.
- **definition:** (Big-Omega) T(N) is $\Omega(F(N))$ if there are positive constants c and N_0 such that $T(N) \ge cF(N)$ when $N \ge N_0$.
- **definition:** (Big-Theta) T(N) is $\Theta(F(N))$ if and only if T(N) is O(F(N)) and T(N) is $\Omega(F(N))$.
- **definition:** (Little-Oh) T(N) is o (F(N)) if and only if T(N) is O(F(N)) and T(N) is not $\Omega(F(N))$.

Meanings

Meanings of the various growth functions

Mathematical Expression	Relative Rates of Growth
T(N) = O(F(N))	Growth of $T(N)$ is \leq growth of $F(N)$.
$T(N) = \Omega(F(N))$	Growth of $T(N)$ is \geq growth of $F(N)$.
$T(N) = \Theta(F(N))$	Growth of $T(N)$ is = growth of $F(N)$.
T(N) = o(F(N))	Growth of $T(N)$ is $<$ growth of $F(N)$.

Asymptotic Analysis: Big-oh

- Usage: The algorithm is in O(n²) in [best, average, worst] case.
- Meaning: For all data sets big enough (i.e., n >n₀), the algorithm always executes in less than cf(n) steps [in best, average or worst case].

Asymptotic Analysis: Big-oh

- Upper Bound.
- Example: if $T(n) = 3n^2$ then T(n) is in $O(n^2)$.
- Wish tightest upper bound:
- While $T(n) = 3n^2$ is in $O(n^3)$, we prefer $O(n^2)$.

Simplifying Rules:

- If f(n) is in O(g(n)) and g(n) is in O(h(n)), then f(n) is in O(h(n)).
 - If f(n) is in O(kg(n)) for any constant k >0, then f(n) is in O(g(n)).
 - If f₁(n) is in O(g₁(n)) and f₂(n) is in O(g₂(n)), then (f₁ +f₂)(n) is in O(max(g₁(n), g₂(n))).

Simplifying Rules:

If f₁(n) is in O(g₁(n)) and f₂(n) is in O(g₂(n)) then f₁(n)f₂(n) is in O(g₁(n)g₂(n)).

Running Time of a Program

• Example 1:

```
a = b;
This assignment takes constant
time, so it is(1).
```

Example 2:
 sum = 0;
 for (i=1; i<=n; i++)
 sum += n;
</pre>

Running Time of a Program

Example 3:
 sum = 0;
 for (j=1; j<=n; j++) // First for loop
 for (i=1; i<=j; i++) // is a double loop
 sum++;
 for (k=0; k<n; k++) // Second for loop
 A[k] = k;</pre>

More Examples

```
Example 4.
  sum1 = 0;
  for (i=1; i <= n; i++) // First double loop
     for (j=1; j <= n; j++) // do n times
           sum1++;
  sum2 = 0;
  for (i=1; i <= n; i++) // Second double loop
     for (j=1; j<=i; j++) // do i times
          sum2++;
```


Other Control Statements

- while loop: analyze like a for loop.
- if statement: Take greater complexity of then/else clauses.
- switch statement: Take complexity of most expensive case.
- Subroutine call: Complexity of the subroutine.

Analyzing Problems

- Upper bound: Upper bound of best known algorithm.
- Lower bound: Lower bound for every possible algorithm.

Space Bounds

- Space bounds can also be analyzed with asymptotic complexity analysis.
- Time: Algorithm
- Space: Data Structure

the maximum contiguous subsequence sum problem

- ◆ if the input is {-2, 11, -4, 13, -5, 2}, then the answer is 20, which represents the contiguous subsequence encompassing items 2 through 4 (shown in boldface type).
- As a second example, for the input { 1, -3, 4, -2,-1,
 6 }, the answer is 7 for the subsequence encompassing the last four items.
- The problem statement gives a maximum contiguous subsequence sum of 0 for the case in which all input integers are negative.

- the obvious $O(N^3)$ algorithm
- an improved O(N²) algorithm
- a linear algorithm