Материал курса Функциональный анализ, 2025

Содержание

1.	Теоремы Бэра о категориях	- 2 -
2.	Мера и интеграл	- 3 -
	2.1. Пространства с мерой	- 3 -
	2.2. Интеграл по мере	- 4 -
	2.3. Свойства интеграла	- 4 -
3.	Топологические векторные пространства	- 5 -
	3.1. Основные понятия	- 5 -
	3.2. Топологические свойства	- 6 -
	3.3. Линейные операторы	- 8 -
	3.4. Конечномерные пространства	10 -
	3.5. Метризуемость	12 -

1. Теоремы Бэра о категориях

Определение 1.1. (плотность): Пусть X — топологическое пространство. Множество $A \subset X$ называется всюду плотным в X, если $\overline{A} = X$. Множество A называется нигде не плотным, если $\left(\overline{A}\right)^{\circ} = \emptyset$, иначе говоря, если замыкание множества A не содержит ни одного открытого подмножества X.

Упражнение 1.2. Покажите, что если A нигде не плотно в X, то его дополнение $A^C = X - A$ всюду плотно в X. Верно ли обратное?

Определение 1.3. (категории Бэра): Подмножество $A \subset X$ является множеством I категории, если A представимо как счётное объединение нигде не плотных множеств:

$$A = \bigcup_{n \in \mathbb{N}} S_n, \quad S_n$$
 нигде не плотны в $X.$

Mножества II категории состоят из всех подмножеств X, не относящихся к I категории.

Определение 1.4. (локальная компактность): Топологическое пространство X называется локально компактным, если каждая точка $x \in X$ имеет окрестность V_x такую, что $\overline{V_x}$ компактно.

Утверждение 1.5. Пусть X локально компактно и хаусдорфово. Тогда каждое непустое открытое множество $U \subset X$ содержит замыкание \overline{V} некоторого непустого относительно компактного открытого множества V.

Доказательство: Рассмотрим открытое множество U и точку $x\in U$. По локальной компактности точка x имеет относительно компактную окрестность V_x . Рассмотрим множество $W=U\cap V_x$. Теперь для каждой точки $y\in \overline{V_x}\cap W^C$ рассмотрим множества A_y и B_y такие, что $y\in A_y, x\in B_y, A_y\cap B_y=\varnothing$. Множество $\overline{V_x}\cap W^C$ компактно, а значит мы имеем

$$\overline{V_x}\cap W^C\subset A_{y_1}\cup A_{y_2}\cup\ldots\cup A_{y_n}.$$

Наконец, положим $V=B_{y_1}\cap B_{y_2}\cap\ldots\cap B_{y_n}$. Множество V непусто, так как оно содержит точку x. Так как V не пересекается с $\bigcup_{k=1}^n A_{y_k}\supset W^C\cap \overline{V_x}$ и $V\subset \overline{V_x}$, мы видим, что $\overline{V}\subset W\subset U$. Кроме того, \overline{V} компактно, как замкнутое подмножество компактного множества $\overline{V_x}$.

Определение 1.6. (полнота): Метрическое пространство (M,d) называется *полным*, если каждая ϕ ундаментальная последовательность, т.е. такая последовательность $x_n \in M$, что

$$\lim_{n,m\to\infty} d(x_n, x_m) = 0,$$

имеет некий предел $x_{\infty} \in M$.

Теорема 1.7. (Первая теорема Бэра о категориях): *Пусть* $X - \pi u \delta o$

- (а) полное метрическое пространство, либо
- (b) локально компактное хаусдорфово пространство.

Тогда пересечение счётного семейства открытых всюду плотных множеств также всюду плотно.

Доказательство: Пусть $\left\{U_n\right\}_{n\in\mathbb{N}}$ — семейство открытых всюду плотных множеств. Мы будем индуктивно строить последовательность открытых множеств B_n таким образом, чтобы выполнялось свойство

$$\overline{B_n} \subset U_n \cap B_{n-1}$$
.

1. В качестве B_1 возьмём произвольное открытое непустое подмножество X.

2. Пусть множество B_{n-1} уже построено. Тогда в случае (а) можно рассмотреть некий шар B_n с радиусом не более 1/n, такой что $\overline{B_n} \subset U_n \cap B_{n-1}$, так как множество $U_n \cap B_{n-1}$ открыто. В случае (b) <u>утверждение 1.5</u> позволяет выбрать множество B_n таким образом, что $\overline{B_n}$ компактно и $\overline{B_n} \subset U_n \cap B_{n-1}$.

Теперь рассмотрим множество

$$K \coloneqq \bigcap_{n \in \mathbb{N}} \overline{B_n}.$$

В случае (а) центры x_n указанных шаров образуют фундаментальную последовательность, так как $d(x_n,x_m)<1/n$ всякий раз когда $m\geq n$. Следовательно, множество K содержит предел этой последовательности и потому непусто.

В случае (b) множество K является пересечением вложенной последовательности компактных множеств и потому непусто. В обоих случаях мы получили, что множество

$$K\subset B_1\cap \bigcap_{n\in\mathbb{N}}U_n$$

непусто. Так как B_1 было выбрано произвольно, мы показали, что пересечение семейства $\left\{U_n\right\}_{n\in\mathbb{N}}$ всюду плотно.

2. Мера и интеграл

2.1. Пространства с мерой

Определение 2.1.1. (пространство с мерой): Пара (S, \mathfrak{B}) , где $\mathfrak{B} \subset 2^S$, называется σ -алгеброй подмножеств S, если выполнены следующие условия:

- (1) Всё множество S лежит в \mathfrak{B} ;
- (2) Если $B \in \mathfrak{B}$, то дополнение $B^C = S B$ также является элементом \mathfrak{B} ;
- (3) Если $B_n \in \mathfrak{B}$ при всех $n \in \mathbb{N}$, то $\bigcup_{n \in \mathbb{N}} B_n$ также лежит в \mathfrak{B} . (σ -аддитивность)

Упражнение 2.1.2. Докажите, что и всякое счётное пересечение элементов σ -алгебры (S,\mathfrak{B}) лежит в \mathfrak{B} .

Определение 2.1.3. (мера): Пусть (S,\mathfrak{B}) — некая σ -алгебра. Тогда функция $m:\mathfrak{B}\to\mathbb{R}_0^+$ называется σ -аддитивной мерой, если выполнены следующие условия:

- (1) $m\left(\bigsqcup_{n\in\mathbb{N}}B_n\right)=\sum_{n=1}^\infty m(B_n)$, для каждой счётной системы попарно непересекающихся множеств $B_n\in\mathfrak{B};$ (σ -аддитивность)
- (2) Множество S можно представить в виде счётного объединения множеств $B_n \in \mathfrak{B}$, таких, что $m(B_n) < \infty$ при всех $n \in \mathbb{N}$.

Значение m(B) называется m-мерой множества B, а множества $B \in \mathfrak{B}$ называются \mathfrak{B} -измеримыми.

Определение 2.1.4. (измеримые функции): Вещественная функция $x:S\to\mathbb{R}$, определённая на множестве S, называется *измеримой*, если прообраз всякого открытого множества $U\subset\mathbb{R}$ представляет из себя измеримое подмножество S, т.е. $x^{-1}(U)\in\mathfrak{B}$.

Определение 2.1.5. (почти всюду): Свойство P, относящееся к точкам множества S, выполняется m-почти всюду на S, если множество точек, в которых оно не выполняется, имеет m-меру нуль.

2.2. Интеграл по мере

Определение 2.2.1. (простая функция): Вещественная функция $x:S\to\mathbb{R}$ называется *простой*, если существует конечный набор попарно непересекающихся множеств $B_1,...,B_n\in\mathfrak{B}$, такой, что на каждом из множеств B_j функция x принимает постоянное значение, и x(s)=0 при $x\notin\bigcup_{j=1}^n B_j$.

Такая функция x называется m-интегрируемой на множестве S, если

$$\sum_{j=1}^{n} |x_j| \cdot m(B_j) < \infty, \tag{1}$$

где x_j есть постоянное значение x на множестве B_j . Величина (1) называется интешралом функции x и обозначается

$$\int\limits_S x(s) \ m(ds)$$
 или $\int\limits_S x(s).$

Определение 2.2.2. (интеграл по мере): Произвольная вещественная функция x, определённая m-почти всюду на S, называется

m-интегрируемой, если существует последовательность $\left\{x_n\right\}_{n=1}^{\infty}$ простых m-интегрируемых функций, сходящаяся m-п.в. к x, и при этом

$$\int\limits_{S} |x_n(s)-x_m(s)| \ m(ds) \xrightarrow[n,m\to\infty]{} 0.$$

Так как пространство $\mathbb R$ полно, существует конечный предел

$$\lim_{n\to\infty}\int\limits_S x_n(s)\;m(ds),$$

не зависящий от выбора аппроксимирующей последовательности $\{x_n\}$. Этот предел называется интегралом функции x.

Упражнение 2.2.3. Докажите, что если поменять значения интегрируемой функции x на множестве меры нуль, то интеграл не изменится.

2.3. Свойства интеграла

(1) Если x, y — интегрируемые функции, то линейная комбинация $\alpha x + \beta y$ (где $\alpha, \beta \in \mathbb{R}$) также представляет собой интегрируемую функцию, и

$$\int_{S} (\alpha x + \beta y)(s) \ m(ds) = \alpha \int_{S} x(s) \ m(ds) + \beta \int_{S} y(s) \ m(ds).$$

- (2) Функция x интегрируема тогда и только тогда, когда интегрируема |x| (упражнение).
- (3) Если функция x интегрируема и $x(s) \geq 0$ почти всюду на S, то $\int_S x(s) \ m(ds) \geq 0$.
- (4) Если функция x интегрируема, то для любого множества $B \in \mathfrak{B}$ мы полагаем

$$\int\limits_{B} x(s) \ m(ds) \stackrel{ ext{def}}{=} \int\limits_{S} x(s) \cdot \chi_{B}(s) \ m(ds),$$

где χ_B — характеристическая функция множества B. В таком случае, функция $X:\mathfrak{B}\to\mathbb{R}$, определённая как $X(B)=\int_B x(s)\ m(ds)$ является σ -аддитивной.

(5) Опреденённая выше функция X является абсолютно непрерывной относительно меры m, т.е. выполняется сходимость $X(B) \xrightarrow[m(B) \to 0]{} 0$ равномерно по $B \in \mathfrak{B}$. (упражнение)

3. Топологические векторные пространства

3.1. Основные понятия

Определение 3.1.1. (ТВП): Пусть X — векторное пространство над полем $\mathbb R$, и пусть τ — топология на множестве X. Тогда X называется топологическим векторным пространством, если

- (1) каждая точка $x \in X$ является замкнутым множеством;
- (2) операции $(+): X \times X \to X$ и $(\cdot): \mathbb{R} \times X \to X$ непрерывны относительно топологии τ .

В таком случае au называется векторной топологией.

Определение 3.1.2. Пусть X — топологическое векторное пространство. Пожмножество $C \subset X$ называется

- (1) выпуклым, если $tC + (1-t)C \subset C$ при всех $t \in [0,1]$;
- (2) уравновешенным, если $\alpha C \subset C$ при всех $|\alpha| \leq 1$;
- (3) поглощающим, если $X = \bigcup_{\alpha > 0} \alpha C$.
- (4) ограниченным, если для любой окрестности нуля V найдётся число s>0, такое что $C\subset tV$ при $t\geq s$.

Замечание 3.1.3. Условие (2) означает, что

(1) для любой окрестности U точки $x_1+x_2\in X$, существуют окрестности V_1 и V_2 точек x_1 и x_2 , такие, что

$$V_1 + V_2 \subset U$$
.

(2) Для любой окрестности U точки $\alpha x \in X$, существуют открестности $V_{\alpha} \subset \mathbb{R}$ и $V_x \subset X$, такие, что

$$V_{\alpha} \cdot V_x = \{\beta y \mid \beta \in V_{\alpha}, y \in V_x\} \subset U.$$

Утверждение 3.1.4. Отображения $T_a=\lambda x.\ x+a\ u\ M_{\alpha}=\lambda x.\ \alpha x$ являются гомеоморфизмами.

Доказательство: Упражнение.

Замечание 3.1.5. По <u>утверждению 3.1.4</u>, векторная топология *инвариантна относительно сдвигов*: множество U открыто тогда и только тогда, когда открыты все сдвиги a+U, где $a\in X$. Таким образом, топология определяется любой своей локальной базой. Термин локальная база всегда будет означать локальную базу в нуле.

Определение 3.1.6. (типы ТВП): Топологическое пространство X называется

- (1) локально выпуклым, если в нём есть локальная база, состоящая из выпуклых множеств;
- (2) локально ограниченным, если существует ограниченная окрестность нуля;
- (3) локально компактным, если существует относительно компактная окрестность нуля;
- (4) метризуемым, если его топология совметима с некоторой метрикой;
- (5) пространством Фреше, если топология на X порождается некоторой полной инвариантной метрикой d (в том смысле, что d(x+z,y+z)=d(x,y));
- (6) нормируемым, если его топология порождается некоторой нормой;
- (7) пространством Банаха, если X нормируемо и его норма индуцирует полную метрику.

3.2. Топологические свойства

Определение 3.2.1. (аксиомы отделимости): Пусть X — топологическое пространство. Выделяют 5 основных *аксиом отделимости*:

- (1) \mathbb{T}_0 : для любых отличных точек $x, y \in X$, одна из них имеет окрестность, не содержащую другую;
- (2) \mathbb{T}_1 : для любых двух точек $x \neq y$, каждая содержит окрестность, не содержащую другую;
- (3) \mathbb{T}_2 : Каждые две отличные точки X имеют непересекающиеся окрестности;
- (4) \mathbb{T}_3 : Каждые точка $x \in X$ и замкнутое множество $E \not\ni x$ имеют непересекающиеся окрестности;
- (5) \mathbb{T}_4 : Каждая пара непересекающихся замкнутых множеств имеет непересекающиеся окрестности.

Утверждение 3.2.2. Каждая окрестность нуля U в ТВП X допускает симметричную окрестность нуля W (в том смысле, что -W=W), такую, что $W+W\subset U$.

Доказательство: По непрерывности сложения имеем окрестности V_1 , V_2 со свойством $V_1+V_2\subset U$. Теперь, полагая

$$W = V_1 \cap V_2 \cap (-V_1) \cap (-V_2),$$

имеем искомую оеркстность нуля.

Теорема 3.2.3. Пусть $X-TB\Pi, K, E\subset X$, причём K компактно, E замкнуто, и $K\cap E=\emptyset$. Тогда существует такая окрестность нуля V, что

$$(K+V)\cap (E+V)=\varnothing.$$

(заметим, что множества K+V и E+V открыты)

Доказательство: Заметим, что по предыдущему утверждению для любой окрестности U найдётся симметричная окрестность V таким образом, что

$$V + V + V + V \subset U$$
.

Теперь предположим, что множество K непусто, $x \in K$. Так как E замкнуто, имеем окрестность нуля V_x такую, что

$$V_x + V_x + V_x + V_x \subset E^C - x \Longrightarrow (x + V_x + V_x + V_x) \cap E = \varnothing.$$

Следовательно,

$$(x+V_x+V_x)\cap (E+V_x)=(x+V_x+V_x)\cap (E-V_x)=\varnothing.$$

Так как множество K компактно, найдётся конечное число точек $x_1, x_2, ..., x_n \in K$, таких что

$$K \subset \bigcup_{k=1}^{n} \left(x_k + V_{x_k} \right)$$

Положим $V\coloneqq V_{x_1}\cap\ldots\cap V_{x_n}.$ Имеем

$$\begin{split} K+V \subset \bigcup_{k=1}^n \left(x_k + V_{x_k} + V\right) \subset \bigcup_{k=1}^n \left(x_k + V_{x_k} + V_{x_k}\right) \subset (E+V)^C \\ \Longrightarrow (K+V) \cap (E+V) = \varnothing, \end{split}$$

и доказательство завершено.

Следствие 3.2.4. Всякое ТВП X удовлетворяет аксиомам \mathbb{T}_0 - \mathbb{T}_3 отделимости (упражнение).

Следствие 3.2.5. Если $\mathcal{B}-$ локальная база ТВП X, то <u>Теорема 3.2.3</u>, применённая ко множествам $\{0\}$ и $U\in\mathcal{B}$, влечёт существование некой другой окрестности $V\in\mathcal{B}$, такой, что $\overline{V}\subset U$.

Следующее техническое утверждение содержит некоторые свойства операторов замыкания и внутренности:

Лемма 3.2.6. Пусть X — топологическое векторное пространство.

- (a) Для всякого $A\subset X$, имеем $\overline{A}=\bigcap_{0\in V}(A+V)$, где V пробегает все окрестности нуля;
- (b) Если $A, B \subset X$, то $\overline{A} + \overline{B} \subset \overline{A + B}$. Если $\alpha \in \mathbb{R}$, то $\alpha \overline{A} = \overline{\alpha A}$;
- (c) Eс π и $Y\leqslant X$, то $\overline{Y}\leqslant X$; (замыкание подпространства есть подпространство)
- (d) Если $C \subset X$ выпукло, то множества \overline{C} и C° также выпуклы;
- (e) Если $B\subset X$ уравновешено, то \overline{B} также уравновешено. Если к тому же $0\in B^\circ$, то B° уравновешено;
- (f) Если $E\subset X$ ограничено, то \overline{E} ограничено.

Доказательство:

- (a) $x\in\overline{A}$ тогда и только тогда, когда $(x+V)\cap A\neq\varnothing$ для любой окрестности нуля V. Это эквивалентно условию $x\in A-V$ для всех V, что равносильно $x\in\bigcap_{0\in V}(A+V)$, так как (-V) окр. нуля $\Longleftrightarrow V$ окр. нуля.
- (b) По непрерывности операции сложения, имеем $(x_n+y_n)\to x+y$ при $x_n\to x$ и $y_n\to y$. Равенство $\alpha\overline{A}=\overline{\alpha A}$ остаётся как упражнение.
- (с) Достаточно воспользоваться предыдущим утверждением:

$$\alpha \overline{Y} + \beta \overline{Y} = \overline{\alpha Y} + \overline{\beta Y} \subset \overline{\alpha Y + \beta Y} \subset \overline{Y},$$

а значит \overline{Y} — подпространство X.

(d) Пусть $C\subset X$ выпукло. Выпуклость \overline{C} — упражнение. Теперь, так как $C^\circ\subset C$ и C выпукло, имеем

$$tC^{\circ} + (1-t)C^{\circ} \subset tC + (1-t)C \subset C$$

при $0 \le t \le 1$. Оба слагаемых слева являются открытыми множествами, я значит их сумма тоже открыта. Так как внутренность C есть объединение всех открытых множеств, содержащихся в C, имеем

$$tC^\circ + (1-t)C^\circ \subset C^\circ,$$

и C° выпукло.

(e) Пусть $B\subset X$ уравновешено. Уравновешенность \overline{B} — упражнение. Если $0\in B^\circ$, то имеем $0\cdot B^\circ\subset B^\circ$. В то же время, при $0<|\alpha|\le 1$ имеем

$$\alpha B^{\circ} = (\alpha B)^{\circ} \subset \alpha B \subset B,$$

так как λx . αx — гомеоморфизм. Но αB° открыто, а значит $\alpha B^{\circ} \subset B^{\circ}$.

(f) Пусть $E\subset X$ ограничено и пусть V — произвольная окрестность нуля. По следствию 3.2.5 имеем такую окрестность нуля W, что $\overline{W}\subset V$. Далее, при достаточно больших t имеем

$$E\subset tW\Longrightarrow \overline{E}\subset \overline{tW}=t\overline{W}\subset tV,$$

и доказательство завершено.

Лемма 3.2.7. Пусть $X - TB\Pi$. Тогда:

- (а) Каждая окрестность нуля содержит уравновешенную окрестность нуля;
- (b) Каждая выпуклая окрестность нуля содержит выпуклую уравновешенную окрестность нуля.

Доказательство:

- (а) Пусть U произвольная окрестность нуля в X. Так как операция умножения непрерывна, найдутся такое число $\delta>0$ и такая окрестность нуля W, что $\alpha W\subset U$ при $|\alpha|<\delta$. Рассмотрим окрестность $V:=\bigcup_{|\alpha|<\delta}\alpha W$. Очевидно, что $V\subset U$ и что V уравновешено.
- (b) Пусть U выпуклая окрестность нуля. Рассмотрим множество $A=U\cap (-U)$. Как пересечение выпуклых множеств, A выпукло. Кроме того, A симметрично. Теперь, если $|t|\leq 1$, мы имеем

$$tA = |t| \ A \subset |t| \ A + (1 - |t|)A \subset A,$$

то есть множество A уравновешено,

что и требовалось доказать.

Следствие 3.2.8. Каждое $TB\Pi X$ имеет уравновешенную локальную базу. Если же X локально выпукло, оно имеет выпуклую уравновешенную локальную базу.

Теорема 3.2.9. Пусть X- топологическое векторное пространство, а V- окрестность нуля. (a) Если $r_n \to \infty$ при $n \to \infty$, то

$$X = \bigcup_{n=1}^{\infty} r_n V;$$

- (b) Каждое компактное подмножество $K \subset X$ ограничено;
- (c) Если окрестность V ограничена и $\delta_n \to 0$ при $n \to \infty$, то семейство

$$\{\delta_n V \mid n \in \mathbb{N}\}$$

является локальной базой пространства X.

Доказательство:

(a) Фиксируем точку $x\in X$. Так как Отображение $\lambda\alpha$. αx непренывно, множество $\{\alpha\in\mathbb{R}\mid \alpha x\in V\}$ — окрестность нуля в \mathbb{R} . Оно содержит $1/r_n$, НСНМ. Тогда для некоторого n имеем

$$(1/r_n)\cdot x\in V\Longrightarrow x\in r_nV.$$

(b) Пусть $W \subset V$ — уравновешенная окрестность нуля. Согласно (a), имеем

$$K \subset \bigcup_{n \in \mathbb{N}} nW$$
.

Поскольку K компактно, найдётся такой конечный набор $n_1 < n_2 < \ldots < n_k$, что

$$K\subset n_1W\cup n_2\cup\ldots\cup n_kW=n_kW.$$

Отсюда следует, что $K \subset tW \subset tV$ при $t \geq n_k$.

(c) Пусть U — произвольная окрестность нуля в X. Поскольку V ограничена, то $V \subset tU$ при $t \geq s$, для некоторого s>0. Тогда $(1/t)V \subset U$ при больших t, а значит $\delta_n V \subset U$, HCHM.

3.3. Линейные операторы

Определение 3.3.1. Напомним, что отображение $\Lambda: X \to Y$ называется *линейным*, если

$$\Lambda(\alpha x + \beta y) = \alpha \Lambda x + \beta \Lambda y.$$

Линейное отображение пространства в его поле скаляров называется линейным функционалом.

Упражнение 3.3.2. Пусть $\Lambda: X \to Y$ линейно. Тогда

- (a) $\Lambda 0 = 0$;
- (b) Если A подпространство X (или выпуклое, или уравновешенное множество), тогда то же справедливо и для $\Lambda(A)$.
- (c) Если B подпространство Y (или выпуклое/уравновешенное/поглощающее множество), тогда то же справедливо и для $\Lambda^{-1}(B)$.
- (d) В частности, множество $\ker \Lambda = \{x \in X \mid \Lambda x = 0\}$ является подпространством X и называется ядром Λ .

Теорема 3.3.3. Пусть $\Lambda: X \to Y$ — линейный оператор между двумя ТВП. Тогда если Λ непрерывно в нуле, то Λ непрерывно на всём X, причём более того, равномерно непрерывно: для каждой окрестности W нуля в Y, найдётся окрестность V нуля в X, так что

$$y-x\in V\Longrightarrow \Lambda y-\Lambda x\in W.$$

Доказательство: Пусть W — окрестность нуля в Y. Тогда по непрерывности в нуле, найдётся такая окрестность нуля $V\subset X$, что $\Lambda(V)\subset W$. Тогда $y-x\in V$ влечёт $\Lambda y-\Lambda x=\Lambda(y-x)\subset W$. Наконец, при всех $x\in X$, оператор Λ отображает окрестность x+V в окрестность $\Lambda x+W$, так что Λ непрерывно в точке x.

Теорема 3.3.4. Пусть Λ — линейный функционал на ТВП X. Допустим также, что $\Lambda x \neq 0$ для некоторого $x \in X$. Тогда СУР:

- (a) Λ непрерывен;
- (b) ядро $\ker \Lambda$ замкнуто в X;
- (c) ядро $\ker \Lambda$ не плотно в X;
- (d) функционал Λ ограничен в некоторой окрестности нуля V.

Доказательство:

 $(a)\Longrightarrow (b)$: Рассмотрим последовательность $x_n\in\ker\Lambda,$ сходящуюся к точке $x\in X.$ В силу непрерывности, имеем

$$\Lambda x = \Lambda \Bigl(\lim_{n \to \infty} x_n \Bigr) = \lim_{n \to \infty} \Lambda x_n = \lim_{n \to \infty} 0 = 0,$$

откуда мы заключаем, что $x \in \ker \Lambda$.

- $(b)\Longrightarrow (c)$: По условию $\ker\Lambda\neq X$, так что замкнутое множество $\ker\Lambda$ не пересекается с непустым открытым множеством $X\setminus\ker\Lambda$, откуда следует, что $\ker\Lambda$ не плотно в X.
- $(c)\Longrightarrow (d)$: Условие (c) равносильно тому, что множество $X\setminus\ker\Lambda$ имеет непустую внутренность. По теореме 3.2.7 имеем такую уравновешенную окрестность нуля V и такую точку $x\in X$, что

$$(x+V) \cap \ker \Lambda = \emptyset. \tag{2}$$

Тогда образ $\Lambda(V)$ — уравновешенное подмножество $\mathbb R$. Следовательно, либо $\Lambda(V)$ ограничено, либо $\Lambda(V)=\mathbb R$ (упражнение). В первом случае всё доказано. Во втором, найдётся такой элемент $y\in V$, что $\Lambda y=-\Lambda x$. Тогда имеем $x+y\in (x+V)\cap\ker\Lambda$, что невозможно в силу (2).

 $(d)\Longrightarrow (a)$: Пусть для некоторой окрестности V и числа M>0 справедливо $|\Lambda x|< M$ при $x\in V$. Тогда для любого r>0, положив W=(r/M)V, имеем $|\Lambda x|< r$ для всех $x\in W$. Следовательно, функционал Λ непрерывен в нуле, а значит непрерывен.

3.4. Конечномерные пространства

Пример 3.4.1. Самый простой пример n-мерного пространства — \mathbb{R}^n , с нормой

$$||x||_2 = \left(\sum_{k=1}^n |x_k|^2\right)^{1/2}.$$

Можно также рассмотреть другие нормы:

$$||x||_1 = \sum_{k=1}^n |x_k|, \qquad ||x||_\infty = \max_{1 \le k \le n} |x_k|.$$

Нетрудно проверить, что все они индуцируют одну и ту же топологию. Кроме того, всякое n-мерное пространство над \mathbb{R} естественно изоморфно \mathbb{R}^n . Мы докажем, что естественная топология на \mathbb{R}^n — это единственная вукторная топология, возможная в произвольном вещественном n-мерном ТВП.

Определение 3.4.2. Система множеств \mathcal{B} называется *центрированной*, если для всякого конечного набора $B_1, B_2, ..., B_n \in \mathcal{B}$, его пересечение непусто:

$$\bigcap_{k=1}^{n} B_k \neq \emptyset.$$

Упражнение 3.4.3. Покажите, что пересечение всякой центрированной системы компактов непусто.

Лемма 3.4.4. Пусть $X - TB\Pi$, а Y - локально-компактное (в индуцированной топологии) подпространство <math>X. Тогда множество Y замкнуто в X.

Доказательство: Существует такое компактное множество $K\subset Y$, что $0\in K^\circ$ в топологии Y. Следовательно, найдётся такая окрестность U нуля в X, что $U\cap Y\subset K$. Выберем симметричную окрестность $V\subset X$ таким образом, чтобы $\overline{V}+\overline{V}\subset U$.

Далее, мы покажем, что $\overline{Y}=Y$. Рассмотрим $x\in \overline{Y}$. Пусть $\mathcal B$ содержит все окрестности нуля в X, которые включены в V. Каждому $W\in \mathcal B$ сопоставим множество

$$E_W = Y \cap \left(x + \overline{W}\right).$$

Так как $x\in \overline{Y}$, каждое из множеств E_W непусто. Рассмотрим множество $W\in \mathcal{B}$ и фиксируем точку $y_0\in E_W$. Для любой точки $y\in E_W$, имеем

$$y-y_0=(y-x)+(x-y_0)\in \overline{W}+\left(-\overline{W}\right)\subset \overline{V}+\overline{V}\subset U.$$

Кроме того, $E_W \subset Y$. Следовательно, $E_W \subset Y \cap U \subset K$, а значит E_W компактно как замкнутое подмножество компакта K. Наконец, конечное пересечение множеств из $\mathcal B$ остаётся в $\mathcal B$.

Другими словами, $\{E_W \mid W \in \mathcal{B}\}$ — центрированная система компактных множеств, а значит существует точка $z \in \bigcap_{W \in \mathcal{B}} E_W$.

С одной стороны, $z\in Y$. Однако в то же время $z\in x+\overline{W}$ для всех $W\in \mathcal{B}$, а значит z=x, так как пространство X хаусдорфово. Значит, $x\in Y$.

Теорема 3.4.5. Пусть $X-TB\Pi,Y-$ его подпространство $u\dim Y=n,$ где $n\in\mathbb{N}.$ Тогда

- (a) Каждый изоморфизм пространства \mathbb{R}^n на Y является гомеоморфизмом;
- (b) Y замкнуто.

- <u>База:</u> n = 1.
 - Пусть $\Lambda:\mathbb{R}\to Y$ изоморфизм векторных пространств. Возьмём $u=\Lambda 1$. Тогда по линейности $\Lambda\alpha=\alpha u$, и из непрерывности домножения на скаляр следует, что Λ непрерывно. Заметим, что Λ^{-1} линейный функционал $Y\to\mathbb{R}$ с ядром $\{0\}$, а значит по теореме 3.3.4 отображение Λ^{-1} также непрерывно. Наконец, заметим, что $Y\cong\mathbb{R}$ локально компактно, и по лемме 3.4.4 Y замкнуто.
- <u>Переход:</u> $n-1 \to n$. Пусть $\Lambda: \mathbb{R}^n \to Y$ изоморфизм. Определим $u_k = \Lambda e_k$, где $\{e_1,...,e_n\}$ стандартный базис в

$$\Lambda(\alpha_1, \alpha_2, ..., \alpha_n) = \alpha_1 u_1 + \alpha_2 u_2 + ... + \alpha_n u_n,$$

и по непрерывности операции (\cdot) на Y мы заключаем, что Λ непрерывно. Теперь, для каждого $y \in Y$ имеем

$$y=\Lambda\big(\Lambda^{-1}y\big)=\gamma_1(y)u_1+\ldots+\gamma_n(y)u_n.$$

Ядро каждого из функционалов γ_k является (n-1)-мерным подпространством Y, и по предположению индукции $\ker \gamma_k$ замкнуто. Тогда по <u>теореме 3.3.4</u> каждый функционал γ_k непрерывен, а значит

$$\Lambda^{-1}(y) = (\gamma_1(y), \gamma_2(y), ..., \gamma_n(y))$$

также непрерывно, что доказывает (a). Наконец, поскольку $Y \cong \mathbb{R}^n$ локально компактно, по <u>лемме 3.4.4</u> мы видим, что (b) также справедливо.

Теорема 3.4.6. Пусть X — локально компактное ТВП. Тогда X конечномерно.

Доказательство: Пусть V — окрестность нуля в X, и \overline{V} компактно. Окрестность V ограничена (упражнение), а значит по теореме 3.2.9 множества $\left\{2^{-n}V\right\}_{n\in\mathbb{N}}$ образуют локальную базу X. Так как \overline{V} компактно, найдётся такой конечный набор $x_1,x_2,...,x_m\in X$, что

$$\overline{V}\subset \left(x_1+\frac{1}{2}V\right)\cup\ldots\cup\left(x_m+\frac{1}{2}V\right).$$

Пусть Y — подпространство X, порождённое векторами $x_1,...,x_m$. Тогда $\dim Y \leq m$. По теореме 3.4.5 множество Y замкнуто в X.

Поскольку $V\subset Y+\frac{1}{2}V$ и $\alpha Y=Y$ для любого скаляра α , имеем

$$\frac{1}{2}V \subset \frac{1}{2}Y + \frac{1}{4}V = Y + \frac{1}{4}V,$$

откуда

$$V \subset Y + \frac{1}{2}V \subset Y + Y + \frac{1}{4}V = Y + \frac{1}{4}V.$$

Продолжая этот принцип, мы видим, что

$$V \subset \bigcap_{n=1}^{\infty} (Y + 2^{-n}V).$$

Так как $\{2^{-n}V\}$ — локальная база, из утверждения (а) <u>леммы 3.2.6</u> следует, что $V \subset \overline{Y}$. Однако $\overline{Y} = Y$, а значит $V \subset Y$. Тогда $kV \subset kY = Y$ при всех $k \in \mathbb{N}$, и, согласно утверждению (а) <u>теоремы 3.2.9</u>, $X = \bigcup_{k \in \mathbb{N}} kV = Y$. Следовательно, $\dim X \leq m$.

Теорема 3.4.7. Пусть X — локально ограниченное ТВП, обладающее свойством Гейне-Бореля. Тогда X конечномерно.

Доказательство: По условию в X существует ограниченная окрестность нуля V. По <u>лемме 3.2.6,</u> \overline{V} также ограничено. По свойству Гейне-Бореля \overline{V} компактно. Следовательно, пространство X локально компактно и потому конечномерно.

3.5. Метризуемость

Замечание 3.5.1. Пусть X — ТВП, топология которого совместима с некоторой метрикой d. Тогда в X нетрудно построить счётную локальную базу: $V_n = B_{1/n}(0)$. Поэтому метризуемость влечёт существование счётной базы. Оказывается, что для ТВП справедливо и обратное:

Теорема 3.5.2. Пусть $X-TB\Pi$, и в X есть счётная локальная база $\{V_n\}_{n\in\mathbb{N}}$. Тогда существует такая метрика d на X, что

- $(a) \ d \ coвместима \ c \ monoлогией пространства <math>X$;
- (b) открытые шары с центром в точке 0 уравновешены;
- (c) d инвариантна (m.e. d(x+z,y+z) = d(x,y) для всех $x,y,z \in X$).

Доказательство: По демме 3.2.7 и утверждению 3.2.2 можно считать, что все окрестности V_n уравновешены, и

$$V_{n+1} + V_{n+1} \subset V_n, \quad \forall n \in \mathbb{N}.$$

Пусть $D\subset \mathbb{Q}$ — множество всех рациональных чисел r, представимых в виде конечной суммы

$$r = \sum_{k=1}^{n(r)} \frac{c_k(r)}{2^k},$$

где «двоичный разряд» $c_k(r)$ равен 0 или 1, и $n(r) \in \mathbb{N}$. Таким образом, $0 \le r < 1$ для всех $r \in D$.

Далее, положим A(r)=X для $r\geq 1$, а для $r\in D$ определим

$$A(r) = \sum_{k=1}^{n(r)} c_k(r) V_k.$$

Для всякого $x \in X$ положим

$$f(x) = \inf \{r \mid x \in A(r)\}$$
 и $d(x,y) = f(x-y)$.

Нам нужно доказать три свойства метрики:

1. $d(x,y) = 0 \Longleftrightarrow x = y$. Имеем

$$d(x,y)=0$$
 $\iff f(x-y)=0$ $\iff x-y\in A(r)$ для сколь угодно малых r $\iff x-y\in V_n$ для сколь угодно больших n $\iff x-y=0$ $\iff x=y$

- 2. d(x,y) = d(y,x). Заметим, что все множества V_n , а значит и A(r), симметричны. Отсюда и следует симметричность метрики (упражнение).
- 3. $d(x,z) \le d(x,y) + d(y,z)$. Для доказательства неравенства треугольника мы докажем по индукции следующее утверждение:

$$\forall N \in \mathbb{N}, \quad \forall r, s \in D : n(r) \leq N \land n(s) \leq N \land r + s < 1, \quad A(r) + A(s) \subset A(r + s).$$

- <u>База:</u> N=1. В таком случае A(0)+A(1/2)=A(1/2).
- <u>Переход:</u> $N-1 \to N$. Рассмотрим r,s как в условии. Положим

$$r = r' + \frac{c_N(r)}{2^N}, \quad s = s' + \frac{c_N(s)}{2^N}.$$

Мы сразу же имеем

$$A(r) + A(s) = A(r') + A(s') + c_N(r)V_N + c_N(s)V_N \subset A(r' + s') + c_N(r)V_N + c_N(s)V_N.$$

Рассмотрим три случая:

- 1) $c_N(r) = c_N(s) = 0$. Тогда всё очевидно.
- 2) $c_N(r) = 1, c_N(s) = 0$ (не умаляя общности). Тогда $r + s = r' + s' + 2^{-N}$, и мы имеем

$$A(r'+s') + V_N = A(r'+s'+2^{-N}) = A(r+s),$$

и утверждение доказано.

3) $c_N(r) = c_N(s) = 1$. Тогда

$$\begin{split} A(r'+s') + V_N + V_N \subset A(r'+s') + V_{N-1} &= A(r'+s') + A\big(2^{-N+1}\big) \subset \\ &\subset A(r'+s'+2^{-N+1}) = A(r+s). \end{split}$$

Заметим, что, так как каждое из множеств A(r) содержит 0, при r < s выполнено включение

$$A(r)\subset A(r)+A(s-r)\subset A(s).$$

Иными словами, смейство множеств $\{A(r)\}$ линейно упорядочено по включению. Мы утверждаем, что для всех $x,y\in X$,

$$f(x+y) \le f(x) + f(y). \tag{3}$$

Если $f(x)+f(y)\geq 1$, то неравенство очевидно. В противном случае, фиксируем $\varepsilon>0$. Найдутся такие $r,s\in D$, что

$$f(x) < r$$
, $f(y) < s$, $r + s < f(x) + f(y) + \varepsilon$.

Таким образом, $x \in A(r), y \in A(s)$, и потому

$$x + y \in A(r) + A(s) \subset A(r + s)$$
$$\implies f(x + y) \le r + s \le f(x) + f(y) + \varepsilon.$$

Так как ε взято произвольно, мы убеждаемся в справедливости (3), и неравенство треугольника доказано.

Теперь, по построению d — инвариантрая метрика. Открытые шары с центром в нуле являются открытыми множествами:

$$B_\varepsilon^d(0) = \{x \in X \mid f(x) < \varepsilon\} = \bigcup_{r < \varepsilon} A(r)$$

(упражнение). Если $\varepsilon<1/2^n$, то $B^d_\varepsilon(0)\subset V_n$. Следовательно, $\left\{B^d_\varepsilon(0)\right\}$ — локальная база топологии на X, а значит метрика d совместима с топологией. Так как все A(r) уравновешены (упражнение), то такими же являются и $B^d_\varepsilon(0)$. Теорема доказана.