E.N.S.P. Niveau II/Année 2014-15, Semestre 1 ND/NG

*** U.E. MAT 217 «Séries et Intégrales généralisées» ***

***** Examen Final (3H 00mn) *****

- 1. TOUT DOCUMENT INTERDIT.
- 2. Le correcteur appréciera le SOIN apporté à la REDACTION et à la PRESENTATION du devoir.
- 3. Toute réponse doit être justifiée, mais éviter des explications INUTILEMENT KILOMETRIQUES.
- 4. L'objectif ici ne doit pas être de chercher à traiter à tout prix toute l'épreuve, en sprintant inconsidérément et en bâclant. Mais, plutôt, d'en couvrir une part significative de manière convaincante.

**** *EXERCICE 1* (8,5 POINTS) ****

Pour $k \in IN$, on pose : $I_k = \int_0^{+\infty} t^k e^{-t} dt$, $J_k = \int_0^{+\infty} x^k e^{-x^2} dx$, $L_k = J_{2k}$ et $M_k = J_{2k+1}$.

- $\mathbf{1}^{\circ}$) Sans calculer ni I_k , ni J_k , montrer que I_k et J_k ∈ IR.
- $\mathbf{2}^{\circ}$) Sans calculer ni I_k , ni M_k , montrer que $M_k = \alpha I_k$, où α est une constante réelle à préciser.
- **3°)** a) Montrer que : $\forall k \in IN$, $I_{k+1} = (k+1)I_k$.
 - **b)** En déduire les valeurs de I_k et M_k , $\forall k \in IN$.
- **4°)** a) Montrer que : $\forall k \in \mathbb{N}^*$, $L_k = \beta \cdot (2k-1) L_{k-1}$, où β est une constante réelle à préciser.
 - b) En déduire que, $\forall k \in \mathsf{IN}$, on a : $L_k = \frac{(p\,k)\,!}{q^k\cdot(k\,!)}\cdot B$, où p,q sont 2 constantes entières, et B est une constante réelle, toutes les 3 à préciser. **NOTA** : On admettra que $\int_{-\infty}^{+\infty} e^{-x^2} \, \mathrm{d}x = \sqrt{\pi}$.
- 5°) a) Trouver un équivalent simple de L_k quand $k \longrightarrow +\infty$.
 - **b)** Etudier la nature de la série $\sum_{k>0} \frac{J_{2k}}{J_{2k+1}}$.

**** *EXERCICE 2* (3 POINTS) ****

Trouver le domaine de définition dans IR de la fonction : $H(a) = \sum_{n=0}^{+\infty} \frac{a^n}{1 + a^{2n}}$.

T.S.V.P./P.T.O.

**** PROBLEME (14 POINTS) ****

- N.B. A condition d'avoir préalablement bien lu l'énoncé de tout ce Problème, les parties $\boxed{\mathrm{II}}$, $\boxed{\mathrm{III}}$, ci-après, peuvent être traitées dans n'importe quel ordre.
- $\boxed{\mathbf{I}}$ Pour $z \in \mathbb{C}$, et sans calculer $F(z) = \sum_{n=0}^{+\infty} \frac{z^n}{n!}$, montrer que $F(z) \in \mathbb{C}$.

N.B. Dans toute la suite de ce Problème, on admettra que : $\forall z \in \mathbb{C}$, $F(z) = e^z$.

$$\boxed{\mathbf{II}} - \text{ On pose}: \ U = \sum_{n=2}^{+\infty} \frac{\sin(n)}{n!}, \quad V = \sum_{n=2}^{+\infty} \frac{\sin^2(n)}{n!}, \quad \text{et} \quad W = \sum_{n=2}^{+\infty} (-1)^n \frac{\sin^2(n)}{n!}.$$

- 1°) Sans calculer ni U, ni V, ni W, montrer que U, V et $W \in \mathbb{R}$. N.B. Soyez efficace!!!
- 2°) Calculer U, V et W.
- **III** Pour un réel $\lambda > 0$ donné, on considère X, une variable aléatoire qui suit la *loi de Poisson* de paramètre λ . Cela signifie que X est une variable aléatoire qui peut prendre comme valeurs les entiers naturels (*i.e.* $0, 1, 2, 3, \cdots$), et avec les probabilités respectives :

$$P_n = \mathbf{Pr}(X = n) = C(\lambda) \cdot \frac{\lambda^n}{n!}, \ \forall n \in \mathsf{IN},$$

où $C(\lambda)$ est une fonction appropriée de λ .

- 1°) Trouver la fonction $C(\lambda)$, sachant qu'on doit avoir : $\sum_{n=0}^{+\infty} P_n = 1$.
- **2°)** La moyenne ou espérance mathématique de X est donnée par : $m_X = \mathbf{E}(X) = \sum_{n=0}^{+\infty} n P_n$, lorsque cette somme infinie existe.
 - a) Sans calculer m_X , montrer que $m_X \in \mathbb{R}$.
 - b) Montrer que $m_X = \lambda^k$, où k est une constante entière à préciser.
- 3°) La variance de X est donnée par : $\mathbf{Var}(X) = \mathbf{E}\left[(X m_X)^2\right] = \mathbf{E}(X^2) (m_X)^2$, avec $\mathbf{E}(X^2) = \sum_{n=0}^{+\infty} n^2 P_n$, lorsque cette somme infinie existe.
 - a) Sans calculer $\mathbf{E}(X^2)$, montrer que $\mathbf{E}(X^2) \in \mathsf{IR}$.
 - b) Calculer Var (X). NOTA: On pourra remarquer que $n^2 = n(n-1) + n$.
- $\mathbf{4}^{\circ}$) Après avoir montré qu'elle existe, calculer la valeur de la somme infinie $A = \sum_{n=0}^{+\infty} n^3 P_n$.

FIN

MEILLEURS VOEUX POUR L'ANNEE QUI COMMENCE!!! BEST WISHES FOR THE NEW YEAR!!!