11/25/2017 hw7.html

HW 7 - Chaoran Lin

1

(note: all proofs assumed that (A,B) = $(A \land B)$)

Prove: Pr(A, B|K) = Pr(A|B, K)Pr(B|K)

 $Pr(A, B \mid K)$

 $= Pr(A \wedge B \mid K)$

 $= \frac{Pr(A \wedge B \wedge K)}{Pr(K)}$

 $= Pr(A \mid B \ \wedge \ K) \ rac{Pr(B \mid K) \ Pr(K)}{Pr(K)}$

 $= Pr(A \mid B \ \wedge \ K) \ Pr(B \mid K)$

 $\mathsf{Prove:} \, Pr(A|B,K) = Pr(B|A,K) Pr(A|K) / Pr(B|K)$

 $Pr(A \mid B, K)$

 $= Pr(A \mid B \wedge K)$

 $=rac{Pr(A\wedge B\wedge K)}{Pr(B\wedge K)}$

 $= \frac{Pr(B \mid A \land K)Pr(A \land K)}{Pr(B \land K)}$

 $= Pr(B \mid A \wedge K) rac{Pr(A \mid K) \ Pr(K)}{Pr(B \mid K) \ Pr(K)}$

 $= Pr(B \mid A \wedge K) \ Pr(A \mid K) \ / \ Pr(B \mid K)$

2

Bayesian network

CPTs

Coin	Pr(C)
а	1/3
b	1/3
С	1/3

Coin	X1	Pr(X1 C)	
а	Head	0.2	
а	Tail	0.8	
b	Head	0.6	
b	Tail	0.4	
С	Head	0.8	
С	Tail	0.2	

11/25/2017					
	Coin	X2	$Pr(X2\ C)$		
	а	Head	0.2		
	а	Tail	0.8		
	b	Head	0.6		
	b	Tail	0.4		
	С	Head	0.8		
	С	Tail	0.2		

Coin	Х3	Pr(X3 C)	
а	Head	0.2	
а	Tail	0.8	
b	Head	0.6	
b	Tail	0.4	
С	Head	0.8	
С	Tail	0.2	

3

Joint probability distribution

W	Black	Square	1	Pr(W)
1	Т	Т	Т	2/13
2	Т	Т	F	4/13
3	Т	F	Т	1/13
4	Т	F	F	2/13
5	F	Т	Т	1/13
6	F	Т	F	1/13
7	F	F	Т	1/13
8	F	F	F	1/13
				1

From the above table, we can conclude the probabilties below:

• $Pr(\alpha_1)$ or Pr(black)

$$= Pr(W = 1) + Pr(W = 2) + Pr(W = 3) + Pr(W = 4)$$

$$= 2/13 + 4/13 + 1/13 + 2/13$$

= 9/13

 ≈ 0.69

• $Pr(\alpha_2)$ or Pr(square)

$$= Pr(W = 1) + Pr(W = 2) + Pr(W = 5) + Pr(W = 6)$$

$$= 2/13 + 4/13 + 1/13 + 1/13$$

= 8/13

pprox 0.62

 $\bullet \ \ Pr(\alpha_3) \ or \ Pr(square \mid one \lor black)$

$$= Pr(W = 1) + Pr(W = 2) + Pr(W = 5)$$

= 2/13 + 4/13 + 1/13

= 7/13

pprox 0.54

With respect to the constructed distribution, we can identify two instances of sentences α , β , γ such that α is independent of β given γ .

We know that this relation can be expressed as:

$$Pr(lpha,eta\mid\gamma)=Pr(lpha\mid\gamma)\;Pr(eta\mid\gamma)$$

$$=> \frac{Pr(\alpha \wedge \beta \wedge \gamma)}{Pr(\gamma)} = \frac{Pr(\alpha \wedge \gamma)}{Pr(\gamma)} * \frac{Pr(\beta \wedge \gamma)}{Pr(\gamma)}$$

$$=> Pr(lpha \wedge eta \wedge \gamma) = rac{Pr(lpha \wedge \gamma)Pr(eta \wedge \gamma)}{Pr(\gamma)}$$

Using this relation as a principle, we obtain the following two sentences:

• α = square

 β = two

 γ = black

$$Pr(lpha \wedge eta \wedge \gamma) = 4/13$$

$$rac{Pr(lpha\wedge\gamma)Pr(eta\wedge\gamma)}{Pr(\gamma)}=rac{rac{36}{169}}{rac{9}{13}}=rac{36}{169}*rac{13}{9}=4/13$$

Thus, square is independent of two given black.

11/25/2017 hw7.html

• α = square

 β = two

 γ = white

$$Pr(\alpha \wedge \beta \wedge \gamma) = 1/13$$

$$rac{Pr(lpha\wedge\gamma)Pr(eta\wedge\gamma)}{Pr(\gamma)}=rac{rac{4}{169}}{rac{4}{16}}=rac{4}{169}*rac{13}{4}=1/13$$

Thus, square is independent of two given white.

4

(a)

- $I(A, \emptyset, BE)$
- $I(B, \emptyset, AC)$
- I(C, A, BDE)
- I(D, AB, CE)
- I(E, B, ACDFG)
- _______
- I(F, CD, ABE)
- I(G, F, ABCDEH)
- I(H, EF, ABCDG)

(b)

• d-separated(A, BH, E):

Are A and E separated given BH? False. There is a path A=>C=>F=>H=>E

• d-separated(G, D, E):

False. There is a path $G \Longrightarrow F \Longrightarrow C \Longrightarrow A \Longrightarrow D \Longrightarrow B \Longrightarrow E$

• d-separated(AB, F, GH):

False. There is a path B=>E=>H

(c)

Pr(a,b,c,d,e,f,g,h)

$$= Pr(a) * Pr(b) * Pr(c|a) * Pr(d|a,b) * Pr(e|b) * Pr(f|c,d) * Pr(g|f) * Pr(h|e,f)$$

(d)

•
$$Pr(A=0,B=0) = 0.8 * 0.3 = 0.24$$

Since A and B are independent events, the probability that A = 0 and B = 0 can simply be obtained through the product of those two individual probabilities.

•
$$Pr(E = 1|A = 1)$$

$$=\frac{Pr(E=1 \land A=1)}{Pr(A=1)}$$

$$= \frac{Pr(E=1) * Pr(A=1)}{Pr(A=1)}$$

 $Pr(A{=}1)$

$$= Pr(E=1)$$

$$= Pr(E=1 \ \land \ B=0) + Pr(E=1 \ \land \ B=1)$$

$$= Pr(E=1|B=0) * Pr(B=0) + Pr(E=1|B=1) * Pr(B=1)$$

$$= 0.9 * 0.3 + 0.1 * 0.7$$

= 0.34

We first compute the probability using the joint probability distribution, which we simplify to Pr(E=1). We realize that this probability is essentially the sum of $Pr(E=1 \land B=0)$ and $Pr(E=1 \land B=1)$, which can be rewritten using the product rule to obtain the final value.