

Appunti Simulazione

Formulario

Anno Accademico 2021-2022

 $Last\ Update:\ January\ 18,\ 2023$

Contents

1	Distribuzioni													
	1.1	.1 Stimare la Distribuzione												
	1.2													
		1.2.1	Esponenziale	5										
			1.2.1.1 Senza Intervalli	5										
			1.2.1.2 Con Intervalli	5										
		1.2.2	Poisson	5										
		1.2.3	Geometrica	5										
2	Goodness of Fit 6													
	2.1	2.1 Test χ^2												
		2.1.1												
		2.1.2	Dati con Intervalli											
	2.2													
		2.2.1												
		2.2.2	Dati Con Intervalli											
	2.3	Inform	nazioni utili su Formule											
		2.3.1												
			2.3.1.1 <i>cumsum</i>											

"Oi, con quanto sentimento defeco sul tuo naso, così che ti coli sul mento."

Wolfgang Amadeus Mozart

Chapter 1

Distribuzioni

1.1 Stimare la Distribuzione

Per stimare una distribuzione avendo solo i dati iniziali del problema effettua le seguenti operazioni:

- 1. $n = \sum f_i$: assicurati di aver calcolato la somma totale delle osservazioni
- 2. Calcola la **Media**:
 - (a) Aggiungi Colonna Totale: categoria_i * f_i
 - (b) Calcola la media effettiva con: $media = \frac{\sum totale}{n}$
- 3. Calcola la **Varianza** σ^2 :
 - (a) Aggiungi $Colonna\ ris:\ ({\rm categoria}_i {\rm media})^2 * f_i$
 - (b) Calcola la varianza effettiva con: $\sigma^2 = \frac{\sum ris}{n-1}$
- 4. Calcola la **Deviazione Standard** σ :
 - (a) $\sigma = \sqrt{\sigma^2}$
- 5. Calcola $V = \frac{\sigma}{\text{media}}$

Una volta completati tutti i calcoli controlla se il coefficiente V è vicino ad 1 e:

- se lo è allora utilizza l'Esponenziale,
- se non lo è è Poissoniana ma per avere una verifica, controlla che la media e la varianza siano uguali.

Note:

Si può avere una prima idea del tipo di distribuzione anche osservando le frequenze per categoria:

- Se le frequenze hanno valori alti per le prime categorie e poi decrescono, probabilmente è esponenziale negativa.
- Se le frequenze hanno valori bassi per le prime categorie e poi crescono, probabilmente è esponenziale...
- Se le frequenze hanno valori alti nelle categorie centrali e bassi verso le categorie agli estremi, probabilmente è Poissoniana
- Nel caso in cui sia geometrica solitamente viene esplicitato.

1.2 Calcolare la Probabilità di una Distribuzione

1.2.1 Esponenziale

1.2.1.1 Senza Intervalli

$$p(i) = \frac{e^{\frac{-\text{categoria}_i}{\text{media}}}}{\text{media}}$$

1.2.1.2 Con Intervalli

$$p(i) = 1 - e^{\frac{-\text{categoria}_i}{\text{media}}}$$

1.2.2 Poisson

$$p(i) = \frac{e^{-\text{media}} * \text{media}^{\text{categoria}_i}}{\text{categoria}_i!}$$

1.2.3 Geometrica

$$p(i) = \rho * (1 - \rho)^{\operatorname{categoria}_i}$$

Chapter 2

Goodness of Fit

2.1 Test χ^2

Devi utilizzare questa sezione solo se il numero delle **osservazioni totale** n > 30.

2.1.1 Dati senza Intervalli

Devi utilizzare questa sezione solo quando hai dei dati **Senza Intervalli**, devi anche fare attenzione che il **numero di osservazioni** n > 30!!

Operazioni da effettuare:

- 1. Riportare i dati in una tabella in Calc:
 - Colonna 1: categorie
 - Colonna 2: f_i
- 2. Raggruppare le categorie se $\exists categoria < 5$:
 - Parti dall'ultimo a salire (dal basso verso l'alto delle categorie)
 - Raggruppale tutte nell'ultima categoria che le faccia diventare maggiori di 5 sommando le frequenze.
 - Esempio:

	А	В	С	D	Е	4	Α	В	С	D
1	VALORI	frequenze	f(i) raggrup	opate		1	VALORI	frequenze	f(i) raggrup	pate
2	0	59	59			2	0			
3	1	26	26			3	1	26		
4	2	24	24			4	2	24	24	
5	3	18	18			5	3	18		
6	4	12	12			6	4	12		
7	5	5	5			7	- 4	12		
8	6	4	12			/	3	3	9	
9	7	3				8	6	1	L	
10	9	3				9	7	1		
11	11	2				10	9	1		
12		_				11	11	1		

3. Calcolare:

- (a) $n = \sum (f_i)$
- (b) $f(i) = f_i/n$: non serve
- (c) Capire la distribuzione se non è data (vedi 1.1)
- (d) p(i): dipende dalla distribuzione (vedi 1.2)
- (e) $F_i = n * p(i)$: numero di intervalli unitari teorici con i arrivi
- (f) $G_i = \frac{(f_i F_i)^2}{F_i}$
- (g) $V = \sum G_i$: sommare tutti i valori di G
- (h) df = Numero Categorie 1 Numero Parametri Distribuzione

Una volta terminati i calcoli devi guardare la riga nella tabella del χ^2 (AG-GIUNGERE REF) con lo stesso valore di df: devi controllare che il valore V ricada negli intervalli che non superino il P_{95} .

2.1.2 Dati con Intervalli

Devi utilizzare questa sezione solo quando hai dei dati divisi in **Intervalli**, devi anche fare attenzione che il **numero di osservazioni** n > 30!!

Calcoli da effettuare:

- 1. Riportare i dati in una tabella in Calc:
 - Colonna 1: categorie, probabilmente devi aggiungerle tu, parti da 0 in poi
 - Colonna 2: intervallo, del tipo $x_1 x_2$. Fai sempre attenzione che $x_2 \ge x_1$!!! In caso li inverti.
 - Colonna 3: frequenza f_i

- 2. Aggiungere Colonna x_1 (intervallo più piccolo)
- 3. Aggiungere Colonna x_2 (intervallo più grande)
- 4. Aggiungere Colonna media-intervalli tra x_2 e x_1
- 5. Calcolare:
 - (a) frequenze pesate = media-intervallo_i * f_i
 - (b) $n = \sum (f_i)$
 - (c) media = \sum (frequenza pesata_i)/n
 - (d) differenza medie = $(\text{media-intervalli}_i \text{media})^2$
 - (e) frequenze pesate $2 = \text{differenza media}_i * f_i$
 - (f) frequenze relative = $f_i * n$
 - (g) varianza $\sigma^2 = \sum (\text{frequenza pesata } 2_i)/n 1$
 - (h) capire la distribuzione se non è data (vedi 1.1)
 - (i) $f(i) = f_i/n$: non serve
 - (j) $p(i) = p(x_2) p(x_1) = \text{calcolare secondo la distribuzione (vedi 1.2)}$
 - (k) $F_i = n * p(i)$: numero di intervalli unitari teorici con i arrivi
 - (l) $G_i = \frac{(f_i F_i)^2}{F_i}$
 - (m) $V = \sum G_i$: sommare tutti i valori di G
 - (n) df = Numero Categorie 1 Numero Parametri Distribuzione
- 6. Raggruppare le categorie se $\exists categoria < 5$:
 - Parti dall'ultimo a salire (dal basso verso l'alto delle categorie)
 - Raggruppale tutte nell'ultima categoria che le faccia diventare maggiori di 5 sommando le frequenze.
 - Esempio:

Una volta terminati i calcoli devi guardare la riga nella tabella del χ^2 (AG-GIUNGERE REF) con lo stesso valore di df: devi controllare che il valore V ricada negli intervalli che non superino il P_{95} .

2.2 Test Kolmogorov

Devi utilizzare questa sezione solo se il numero delle **osservazioni totale** n < 30.

2.2.1 Dati Senza Intervalli

Devi utilizzare questa sezione solo quando hai dei dati **Senza Intervalli**, devi anche fare attenzione che il **numero di osservazioni totali** n < 30!!

Operazioni da effettuare:

- 1. Riportare i dati in una tabella in Calc:
 - Colonna categorie
 - Colonna frequenze f_i
- 2. Calcolare:
 - (a) $f(i) = f_i/n$: frequenze osservate
 - (b) Individuare la distribuzione di probabilità adatta (vedi 1.1)
 - (c) p(i): probabilità teorica (vedi 1.2)
 - (d) $d_i = cumsum(f(i))$: somma cumulativa delle f(i)
 - (e) $D_i = cumsum(p(i))$: somma cumulativa delle p(i)
 - (f) $D = |d_i D_i|$: la differenza assoluta
 - (g) $D_{max} = \max(D)$: il massimo valore tra le differenze assolute D

Una volta completati tutti i calcoli, cercare nella tabella di *Kolmogorov-Smirnov* la riga corrispondente al valore delle osservazioni totali n: se il valore D_{max} è sotto il $D_{0,10}$ la distribuzione è accettata, altrimenti no.

2.2.2 Dati Con Intervalli

Devi utilizzare questa sezione solo quando hai dei dati **Senza Intervalli**, devi anche fare attenzione che il **numero di osservazioni totali** n < 30!!

N.B.: non abbiamo trovato esercizi con cui testare questa sezione!

Operazioni da effettuare:

- 1. Riportare i dati in una tabella in Calc:
 - Colonna categorie: probabilmente devi aggiungerle tu, parti da 0 in poi
 - Colonna intervallo: del tipo $x_1 x_2$. Fai sempre attenzione che $x_2 \ge x_1$!!! In caso li inverti.
 - Colonna frequenze f_i
- 2. Aggiungere Colonna x_1 (estremo più piccolo dell'intervallo)
- 3. Aggiungere Colonna x_2 (estremo più grande dell'intervallo)
- 4. Calcolare:
 - (a) $f(i) = f_i/n$: frequenze osservate
 - (b) Individuare la distribuzione di probabilità adatta (vedi 1.1)
 - (c) $p(i) = p(x_2) p(x_1)$: probabilità teorica per ogni intervallo (vedi 1.2)
 - (d) $d_i = cumsum(f(i))$: somma cumulativa delle f(i)
 - (e) $D_i = cumsum(p(i))$: somma cumulativa delle p(i)
 - (f) $D = |d_i D_i|$: la differenza assoluta
 - (g) $D_{max} = \max(D)$: il massimo valore tra le differenze assolute D

Una volta completati tutti i calcoli, cercare nella tabella di *Kolmogorov-Smirnov* la riga corrispondente al valore delle osservazioni totali n: se il valore D_{max} è sotto il $D_{0,10}$ la distribuzione è accettata, altrimenti no.

2.3 Informazioni utili su Formule

2.3.1 Komorov

2.3.1.1 cumsum

Per calcolare *cumsum* (somma cumulativa) va eseguito il seguente procedimento:

- La prima cella resta uguale alla prima cella della colonna di riferimento (es. f(i) o p(i))
- Dalla seconda cella in poi si blocca la prima cella della somma cumulativa (quella calcolata al punto precedente) e si somma fino alla cella i di riferimento (vedi Figura 2.1)

Figure 2.1: Esempio di calcolo della funzione cumsum