

STB135N10 STP135N10

N-CHANNEL 100V - 0.007 Ω - 135A D2PAK/TO-220 LOW GATE CHARGE STripFET™ POWER MOSFET

TARGET DATA

TYPE	V _{DSS}	R _{DS(on)}	I _D
STB135N10	100 V	<0.009 Ω	135 A(*)
STP135N10	100 V	<0.009 Ω	135 A(*)

- TYPICAL $R_{DS}(on) = 0.007\Omega$
- EXCEPTIONAL dv/dt CAPABILITY
- 100% AVALANCHE TESTED
- SURFACE-MOUNTING D²PAK (TO-263) POWER PACKAGE IN TUBE (NO SUFFIX) OR IN TAPE & REEL (SUFFIX "T4")

DESCRIPTION

This MOSFET is the result of STMicroelectronics's well established and consolidated STripFET technology utilizing the most recent layout optimization. The device exhibits extremely low on-resistance, gate charge and diode's reverse recovery charge Qrr making it the ideal switch in a very large spectrum of applications such as Automotive, Consumer, Telecom and Industrial.

APPLICATIONS

- PRIMARY SWITCH IN TELECOM DC-DC CONVERTER
- HIGH-EFFICIENCY DC-DC CONVERTERS
- 42V AUTOMOTIVE APPLICATIONS
- SYNCHRONOUS RECTIFICATION
- DIESEL INJECTION
- PWM UPS AND MOTOR CONTROL

ABSOLUTE MAXIMUM RATINGS

INTERNAL SCHEMATIC DIAGRAM

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source Voltage (V _{GS} = 0)	100	V
V_{DGR}	Drain-gate Voltage ($R_{GS} = 20 \text{ k}\Omega$)	100	V
V_{GS}	Gate- source Voltage	± 20	V
I _D (*)	Drain Current (continuous) at T _C = 25°C	135	А
I _D	Drain Current (continuous) at T _C = 100°C	96	Α
I _{DM} (1)	Drain Current (pulsed)	540	Α
P _{tot}	Total Dissipation at T _C = 25°C	150	W
	Derating Factor	1	W/°C
dv/dt (2)	Peak Diode Recovery voltage slope	TBD	V/ns
E _{AS} (3)	Single Pulse Avalanche Energy	TBD	mJ
T _{stg}	Storage Temperature	-55 to 175	°C
Tj	Operating Junction Temperature	-55 10 175	

⁽¹⁾ Pulse width limited by safe operating area.

(*) Value limited by wire bonding

⁽²⁾ $I_{SD} \le 40A$, $di/dt \le 600A/\mu s$, $V_{DD} \le B_{VDSS}$, $T_j \le T_{JMAX}$. (3) Starting $T_j = 25$ °C, $I_D = 40A$, $V_{DD} = 50V$

STB135N10 STP135N10

THERMAL DATA

Rthj-case Thermal Resistance Junc Rthj-amb Thermal Resistance Junc Maximum Lead Temperat	ion-ambient Max	1 62.5 300	°C/W °C
--	-----------------	------------------	------------

ELECTRICAL CHARACTERISTICS ($T_{CASE} = 25~^{\circ}C$ UNLESS OTHERWISE SPECIFIED) OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0$	100			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	$V_{DS} = Max Rating$ $V_{DS} = Max Rating T_C = 125$ °C			1 10	μA μA
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 20V			±100	nA

ON (5)

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$	$I_D = 250 \mu A$	2		4	V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10 V	I _D = 67.5 A		0.007	0.009	Ω

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (5)	Forward Transconductance	$V_{DS} = 25 \text{ V}$ $I_D = 67.5 \text{ A}$		TBD		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V _{DS} = 25V f = 1 MHz V _{GS} = 0		6350 890 250		pF pF pF

STB135N10 STP135N10

ELECTRICAL CHARACTERISTICS (continued)

SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on Delay Time Rise Time	$\begin{split} V_{DD} &= 50 \text{ V} & I_D = 67.5 \text{ A} \\ R_G &= 4.7 \Omega & V_{GS} = 10 \text{ V} \\ \text{(Resistive Load, Figure 3)} \end{split}$		TBD TBD		ns ns
$egin{array}{c} Q_{ m g} \ Q_{ m gd} \end{array}$	Total Gate Charge Gate-Source Charge Gate-Drain Charge	V _{DD} = 50 V I _D = 135 A V _{GS} = 5 V		TBD TBD TBD	95	nC nC nC

SWITCHING OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(Off)} t _f	Turn-off Delay Time Fall Time	$\begin{array}{ccc} V_{DD} = 50 \text{ V} & I_D = 67.5 \text{ A} \\ R_G = 4.7\Omega, & V_{GS} = 10 \text{ V} \\ \text{(Resistive Load, Figure 3)} \end{array}$		TBD TBD		ns ns

SOURCE DRAIN DIODE

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
I _{SD}	Source-drain Current Source-drain Current (pulsed)					135 540	A A
V _{SD} (5)	Forward On Voltage	I _{SD} = 135 A	V _{GS} = 0			1.3	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	I _{SD} = 135 A V _{DD} = 25 V (see test circui	di/dt = $100A/\mu s$ $T_j = 150$ °C t, Figure 5)		TBD TBD TBD		ns μC A

⁽¹⁾ Pulse width limited by safe operating area.
(5) Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %.

Fig. 1: Unclamped Inductive Load Test Circuit

Fig. 3: Switching Times Test Circuits For Resistive Load

Fig. 5: Test Circuit For Inductive Load Switching And Diode Recovery Times

Fig. 2: Unclamped Inductive Waveform

Fig. 4: Gate Charge test Circuit

D²PAK MECHANICAL DATA

DIM.		mm.		inch.			
DINI.	MIN.	TYP.	MAX.	MIN.	TYP.	TYP.	
Α	4.4		4.6	0.173		0.181	
A 1	2.49		2.69	0.098		0.106	
A2	0.03		0.23	0.001		0.009	
В	0.7		0.93	0.028		0.037	
B2	1.14		1.7	0.045		0.067	
С	0.45		0.6	0.018		0.024	
C2	1.21		1.36	0.048		0.054	
D	8.95		9.35	0.352		0.368	
D1		8			0.315		
Е	10		10.4	0.394		0.409	
E1		8.5			0.334		
G	4.88		5.28	0.192		0.208	
L	15		15.85	0.591		0.624	
L2	1.27		1.4	0.050		0.055	
L3	1.4		1.75	0.055		0.069	
М	2.4		3.2	0.094		0.126	
R		0.4			0.015		
V2	0°		8°	0°		8°	

TO-220 MECHANICAL DATA

DIM		mm.		inch.			
DIM.	MIN.	TYP.	MAX.	MIN.	TYP.	TYP.	
Α	4.4		4.6	0.173		0.181	
С	1.23		1.32	0.048		0.051	
D	2.40		2.72	0.094		0.107	
Е	0.49		0.70	0.019		0.027	
F	0.61		0.88	0.024		0.034	
F1	1.14		1.70	0.044		0.067	
F2	1.14		1.70	0.044		0.067	
G	4.95		5.15	0.194		0.203	
G1	2.40		2.70	0.094		0.106	
H2	10		10.40	0.393		0.409	
L2		16.40			0.645		
L3		28.90			1.137		
L4	13		14	0.511		0.551	
L5	2.65		2.95	0.104		0.116	
L6	15.25		15.75	0.600		0.620	
L7	6.20		6.60	0.244		0.260	
L9	3.50		3.93	0.137		0.154	
DIA	3.75		3.85	0.147		0.151	

D2PAK FOOTPRINT

TUBE SHIPMENT (no suffix)*

TAPE AND REEL SHIPMENT (suffix "T4")*

on sales type

4

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is registered trademark of STMicroelectronics ® 2003 STMicroelectronics - All Rights Reserved

All other names are the property of their respective owners.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com