1 (4)	Attament was a formation to make	MI		
1 (i)	Attempt use of product rule Obtain $3x^2(x+1)^5 + 5x^3(x+1)^4$	Al		2 or equiv
	Or: (following complete expansion and differentiati		rm l	
	Obtain $8x^7 + 35x^6 + 60x^5 + 50x^4 + 20x^3 + 3x^2$	В2		allow B1 if one term incorrect]
(ii)	Obtain derivative of form $kx^5(3x^4+1)^n$	MI		any constants k and n
	Obtain derivative of form $kx^3(3x^4+1)^{\frac{1}{2}}$	M1		
	Obtain correct $6x^{5}(3x^{4}+1)^{-\frac{1}{2}}$	Al		3 or (unsimplified) equiv
2	Identify critical value x = 2	ВІ		
	Attempt process for determining both critical values	MI		
	Obtain $\frac{1}{3}$ and 2	Al		
	Attempt process for solving inequality	MI		table, sketch
	3 1			implied by plausible answer
	Obtain $\frac{1}{2} < x \le 2$.41	5	
3 (i)	Attempt correct process for composition	MI		numerical or algebraic
	Obtain (16 and hence) 7	Al	2	
(ii)	Attempt correct process for finding inverse	MI		maybe in terms of y so far
(/	Obtain $(x-3)^2$	A1	2	or equiv: in terms of x , not y
(iii)	Sketch (more or less) correct $y = f(x)$	BI		with 3 indicated or clearly implied on y-axis, correct curvature, no maximum point
	Sketch (more or less) correct $y = f^{-1}(x)$ State reflection in line $y = x$	BI BI	3	right hand half of parabola only or (explicit) equiv; independent of earlier marks
4 (i)	Obtain integral of form $k(2x+1)^{\frac{1}{4}}$	MI		or equiv using substitution, any constant k
	Obtain correct $\frac{3}{8}(2x+1)^{\frac{1}{2}}$.11		or equiv
	Substitute limits in expression of form $(2x+1)^n$			
	and subtract the correct way round	M1		using adjusted limits if subn used
	Obtain 30	A I	4	
(ii)	Attempt evaluation of $k(y_0 + 4y_1 + y_2)$	M1		any constant k
	Identify k as $\frac{1}{3} \times 6.5$	Al		
	Obtain 29.6	ΑI	3	or greater accuracy (29.554566)
	[SR: (using Simpson's rule with 4 strips)			
	Obtain $\frac{1}{3} \times 3.25(1 + 4 \times \sqrt[3]{7.5} + 2 \times \sqrt[3]{14} + 4 \times \sqrt[3]{20.5} + 3)$			
	and hence 29.9	Bi		or greater accuracy (29.897)]

		6.64t	ъ.				
5 (i)		664r = 0.5	B1		or equiv		
	Attempt	solution of equation of form $e^{-0.04t} = k$	MI		using sound process; maybe implied		
	Obtain	17	A1	3	or greater accuracy (17.328)		
(ii)	Differen	ntiate to obtain form $k e^{-0.04t}$	*M1		constant k different from 240		
	Obtain	(±) 9.6e ^{-0.04t}	AI		or (unsimplified) equiv		
		attempt at first derivative to (±) 2.1 and			1 - #Yf attend acte classified		
	attempt solution Obtain 38	M1 A1	4	dep *M; method maybe implied or greater accuracy (37.9956)			
6 (i)	Obtain i	integral of form $k_1 e^{2x} + k_2 x^2$	MI		any non-zero constants k_1, k_2		
		correct $3e^{2x} + \frac{1}{3}x^2$	Al				
		$3e^{2a} + \frac{1}{7}a^2 - 3$	ΑI				
		definite integral to 42 and attempt					
		ngement	MI		using sound processes		
	Confirm	$a = \frac{1}{2} \ln(15 - \frac{1}{6} a^2)$	Al	5	AG: necessary detail required		
(ii)		correct first iterate 1 348	BI				
	2 iterate	•	MI				
		at least 3 correct iterates	Al				
	Obtain	1.344	Αl	4	answer required to exactly 3 d.p.:		
		$11 \rightarrow 1.34844 \rightarrow 1.34382$! → 1.	343	allow recovery after error		
7 (i)	Show co	orrect general shape (alternating above					
		ow x-axis)	MI	_	with no branch reaching x-axis		
	Draw (r	nore or less) correct sketch	Al	2	with at least one of 1 and -1 indicated or clearly implied		
(ii)	Attemp	t solution of $\cos x \in \frac{1}{3}$	М1		maybe implied, or equiv		
		1.23 or 0.392π	ΑI		or greater accuracy		
	Obtain	5.05 or 1.61π	Al	3	or greater accuracy and no others		
					within $0 \le v \le 2\pi$, penalise		
					answer(s) to 2sf only once		
(iii)	Either: Obtain equation of form $\tan \theta = k M1$			any constant k, maybe implied			
		Obtain $\tan \theta = 5$	A1				
		Obtain two values only of form θ . $\theta = \pi$	MI		within $0 \le x \le 2\pi$; allow degrees		
		0, 0 - x	NII		at this stage		
		Obtain 1.37 and 4.51 (or 0.437π			-		
		and 1.44π)	A1	4	allow ±1 in third sig fig. or greater		
	Or:	(for methods which involve squaring.etc.)			accuracy		
	QI:	Attempt to obtain eqn in one trig ratio	MI				
		Obtain correct value	AI		$\tan^2 \theta = 25, \cos^2 \theta = \frac{1}{26}, \dots$		
		Attempt solution at least to find one			29		
		value in first quadrant and one value					
		in third	MI				
			A 1		ignoring value in second and form		
		(or equivs as above)	ΑI				
		value in first quadrant and one value	M1 A1		ignoring values in second and for		

8 (i) Attempt use of quotient rule

- M1 allow for numerator 'wrong way round': or equiv
- Obtain $\frac{(4 \ln x + 3) \frac{4}{x} (4 \ln x 3) \frac{4}{x}}{(4 \ln x + 3)^2}$
- Al or equiv

Confirm $\frac{24}{x(4\ln x + 3)^2}$

11 3 AG; necessary detail required

(ii) Identify $\ln x = \frac{3}{4}$

B1 or equiv

State or imply $x = e^{\frac{x}{2}}$

BI

Substitute ek completely in expression for

MI

derivative
Obtain $\frac{2}{3}e^{-\frac{1}{3}}$

- M1 and deal with $\ln e^k$ term

 A1 4 or exact (single term) equiv
- (iii) State or imply $\int \frac{4\pi}{x(4\ln x + 3)^2} dx$
- Ві

Obtain integral of form $k = \frac{4 \ln x - 3}{4 \ln x + 3}$

or $k(4 \ln x + 3)^{-1}$

- *M1 any constant k
- Substitute both limits and subtract right way round
- M1 dep *M

Obtain $\frac{4}{11}\pi$

- Al 4 or exact equiv
- 9 (i) Attempt use of either of $\tan(A \pm B)$ identities
 - Substitute $\tan 60^{\circ} = \sqrt{3}$ or $\tan^2 60^{\circ} = 3$ B1

 Obtain $\frac{\tan \theta + \sqrt{3}}{1 \sqrt{3} \tan \theta} \times \frac{\tan \theta \sqrt{3}}{1 + \sqrt{3} \tan \theta}$ A1
 - A1 or equiv (perhaps with tan 60° still involved)

Obtain $\frac{\tan^2 \theta - 3}{1 - 3\tan^2 \theta}$

A1 **4** AG

(ii) Use $\sec^2 \theta = 1 + \tan^2 \theta$

BI

M1

- Attempt rearrangement and simplification of equation involving $\tan^2 \theta$
- M1 or equiv involving $\sec \theta$

Obtain $\tan^4 \theta = \frac{1}{3}$

A1 or equiv $\sec^2 \theta = 1.57735$ A1 or greater accuracy

Obtain 37.2

1 or greater accuracy

Obtain 142.8

- A1 5 or greater accuracy; and no others between 0 and 180
- (iii) Attempt rearrangement of $\frac{\tan^2 \theta 3}{1 3 \tan^2 \theta} = k^2$ to form
 - $\tan^2\theta = \frac{f(k)}{g(k)}$

MI

Obtain $\tan^2 \theta = \frac{k^2 + 3}{1 + 3k^2}$

- Al
- Observe that RHS is positive for all k, giving one value in each quadrant
- Al 3 or convincing equiv