

Лекция 1

Модуль над кольцом

Содержание лекции:

Настоящей лекцией мы вплотную приближаемся к центральному разделу нашего курса - линейным пространствам. Здесь мы обсудим понятие внешнего закона, дадим определение алгебраической структуры, а также сформулируем самые основные определения, связанные с линенми пространствами и их отображениями.

Ключевые слова:

Внешний закон композиции, оператор закона, согласованность закона со структурой, действие на структуре, алгебраическая структура, модуль над кольцом, левый (правый) R-модуль, линейное отображение, мономорфизм, эпиморфизм, ядро и образ линейного отображения, подмодуль, фактор модуль, коядро.

A BTO			
	nti	$\mathbf{w}\mathbf{w}$	າຕລາ
7 1 D 1 O	ועע	17 A P	ou.

Трифанов А. И.

Москаленко М. А.

Ссылка на ресурсы:

1.1 Определение алгебраической структуры

Nota bene Напомним, что внешний закон композиции называется согласованным с внутренним законом, если

$$\forall x, y \in M, \quad \alpha \in \Omega, \quad \alpha(x \circ y) = \alpha(x) \circ \alpha(y).$$

Говорят, что алгебраическая структура Ω действует на алгебраической структуре M, если каждый элемент $\alpha \in \Omega$ является оператором внешнего закона на M и для любой пары элементов из $\alpha, \beta \in \Omega$ имеет место согласованное действие:

$$(\alpha * \beta)(x) = \alpha(\beta(x)), \quad \forall x \in M.$$

Говорят, что имеет место согласованное действие Ω на M, если

$$(\alpha * \beta)(x \circ y) = \alpha(\beta(x \circ y)) = \alpha(\beta x \circ \beta y) = \alpha(\beta x) \circ \alpha(\beta y).$$

Пример 1.1. Внешний закон композиции, со множеством операторов из $\langle \mathbb{N}, \cdot \rangle$, согласован со структурой коммутативной группы $\langle \mathbb{Z}, + \rangle$:

$$n(z_1 + z_2) = nz_1 + nz_2.$$

При этом имеет место согласованное действие:

$$(n \cdot m)(z_1 + z_2) = nmz_1 + nmz_2.$$

Алгебраической структурой на множестве M называется всякая структура, определяемая в M одним или несколькими внутренними законами композиции элементов из M, и одним или несколькими внешними законами композиции из областей операторов $\Omega_1, \Omega_2, \ldots, \Omega_k$, согласованных с внутренними законами.

Пример 1.2. Рассмотрим алфавит $\mathcal{A} = \{p,q\}$ и множество \mathcal{D} всех формальных сумм элементов A с коммутативной операцией +. Тогда произвольный элемент \mathcal{D} имеет вид

$$p+p+\ldots+p+q+\ldots+q$$

Пусть $\langle \mathbb{Z}, +, \cdot \rangle$ множество операторов внешнего закона на \mathcal{D} , согласованных с его внутренним законом:

$$n(p+q) = np + nq, \quad n \in \mathbb{Z},$$

$$(n+m)(p+q) = n(p+q) + m(p+q),$$

$$(nm)p = n(mp).$$

Множество комбинаций \mathcal{D} , наделенное алгебраической структурой коммутативного внутреннего закона и внешнего закона с множеством операторов из кольца \mathbb{Z} называется модулем над кольцом \mathbb{Z} или \mathbb{Z} -модулем.

1.2 Модуль над кольцом

Левым R-модулем (или левым модулем над кольцом R) называется абелева группа (G, +) с заданной бинарной операцией $R \times G \to G$, записываемой как $(\alpha, x) \to \alpha x$ и согласованно действующей на групповой структуре G:

L1. Действие кольца группе:

$$\forall \alpha, \beta \in R, \quad \forall x \in G$$
$$(\alpha + \beta)x = \alpha x + \beta x, \quad (\alpha \beta)x = \alpha(\beta x).$$

L2. Согласованное действие:

$$\forall \alpha \in R, \quad \forall x_1, x_2 \in G \quad \alpha(x_1 + x_2) = \alpha x_1 + \alpha x_2$$

Nota bene Для обозначения модуля G над кольцом R обычно используют G(R).

 $Nota\ bene$ Аналогично можно определить структуру **правого** R-модуля, если определена бинарная операция

$$G \times R \to G$$
, $(x, \alpha) \mapsto x\alpha$.

Если определены оба отображения, то говорят о двустороннем *R*-модуле.

Пример 1.3. Примеры R-модулей:

- Всякий $J \lhd R$ идеал кольца R есть R-модуль.
- ullet Любая абелева группа (G,+) представляет собой ${\mathbb Z}$ модуль, ибо

$$\forall x \in G \quad x + x + x + \dots + x = nx, \quad n \in \mathbb{Z}.$$

• Структру R-модуля имеет $R^n = R \times R \times \ldots \times R$ - множество столбиков вида

$$\xi = (\xi^1, \xi^2, \dots, \xi^n)^T, \quad \xi^i \in R.$$

Гомоморфизмом R**-модулей** X и Y (или R-линейным отображением) называется отображение $\sigma: X \to Y$, такое что:

$$\forall x, x_1, x_2 \in X, \quad \forall \alpha \in R$$
$$\sigma(x_1 + x_2) = \sigma(x_1) + \sigma(x_2), \quad \sigma(\alpha x) = \sigma(x)\alpha.$$

 ${\it Nota \ bene}$ Для множества R-линейных отображений между X и Y используют следующее обозначение ${\it Hom}_R(X,Y).$

МОДУЛЬ НАД КОЛЬЦОМ

Лемма 1.1. На множестве $\operatorname{Hom}_R(X,Y)$ линейных отображений из X в Y можно ввести структуру R-модуля определив операции

$$\forall \varphi, \psi \in \operatorname{Hom}_R(X, Y), \quad \forall x \in X(R), \quad \forall \alpha \in R,$$

 $(\varphi + \psi)(x) = \varphi(x) + \psi(x), \quad (\alpha \varphi)(x) = \alpha \cdot \varphi(x).$

Ядром линейного отображения $\sigma \in \operatorname{Hom}_R(X,Y)$ называется множество

$$\ker \sigma = \{ x \in X(R) : \quad \sigma(x) = 0_X \}$$

Лемма 1.2. Ядро $\ker \sigma \subseteq X(R)$ имеет структуру модуля над кольцом.

Образом линейного отображения $\sigma \in \operatorname{Hom}_R(X,Y)$ называется множество

$$Im = \{ y \in Y : \exists x \in X \ \sigma(x) = y \} = \sigma(X).$$

Лемма 1.3. Образ $\text{Im } \sigma \subseteq Y$ имеет стурктуру модуля над кольцом.

1.3 Подмодуль. Фактор-модуль

Подмножество $L \subseteq X(R)$ называется **подмодулем** R-модуля X, если L само является R-модулем относительно операций, индуцированных из X(R).

Лемма 1.4. Подмножество $L \subseteq X$ является подмодулем тогда и только тогда, когда L замкнуто относительно операций, индуцированных из X(R).

Nota bene Для обозначения этого факта используют запись $L(R) \leqslant X(R)$.

Пример 1.4. Примеры подмодулей:

- $\{0_X\}$ и X тривиальный и несобственный подмодули X(R) соответственно;
- Ядро линейного отображения $\sigma \in \text{Hom}_R(X,Y)$ является подмодулем в X(R);
- Образ линейного отображения $\sigma \in \text{Hom}_{R}(X,Y)$ является подмодулем в Y(R);
- Идеал $J \triangleleft R$ явлеяется подмодулем R-модуля R;
- Множество R^n столбиков ξ , у которых первый элемент $\xi^1 = 0$ подмодуль R^n .

Nota bene На фактор группу X(R)/L(R) переносится структура R-модуля, если умножение определить формулой:

$$\alpha(x+L) = \alpha x + L, \quad \forall x \in X(R), \quad \forall \alpha \in R.$$

 $\| R$ -модуль X(R)/L(R) называется фактор-модулем X по L.

МОДУЛЬ НАД КОЛЬЦОМ

Коядром гомоморфизма $\sigma \in \operatorname{Hom}_R(X,Y)$ называется множество

Coker
$$\sigma = Y / \operatorname{Im} \sigma$$
.

Nota bene Для каждого линейного отображения $\sigma \in \operatorname{Hom}_R(X,Y)$ имеет место теорема об изоморфизме:

$$X(R)/\ker\sigma\simeq\operatorname{Im}\sigma.$$

Задача 1.1. Пусть $Z(R) \leqslant Y(R) \leqslant X(R)$ - некоторые R-модули. Докажите, что

$$(X/Z)/(Y/Z) \simeq X/Y$$
.

Задача 1.2. Докажите, что последовательность R-модулей

$$M' \xrightarrow{f} M \xrightarrow{g} M'' \longrightarrow \{0\}$$

является точной тогда и только тогда, когда для любого R-модуля N точной является последовательность

$$\{0\} \longrightarrow \operatorname{Hom}_R(M'', N) \xrightarrow{\bar{f}} \operatorname{Hom}_R(M, N) \xrightarrow{\bar{g}} \operatorname{Hom}_R(M', N)$$