Chapter 8 Model Specification

남준우·허인 (2018), 제7장

Gujarati/Porter (2018), Chapter 13

- (1) Omission of Relevant Variables
- (2) Inclusion of Irrelevant Variables
- (3) Decision
- (4) Information Criterion

Model and Assumptions (Revisited)

① Model:

$$y_i = \beta_1 + \beta_2 X_{2i} + \dots + \beta_k X_{ki} + \varepsilon_i$$

- $ightharpoonup X_{ii}$: jth variable, ith observation.
- ► k= # of independent variables <u>including constant term</u>.
- ② Assumptions
- (a) $E(\varepsilon_i) = 0$ for all i.
- (b) $V(\varepsilon_i) = \sigma^2$ for all i.
- (c) $Cov(\varepsilon_i, \varepsilon_j) = 0$ for all $i \neq j$.
- (d) No exact linear relationship among X variables.
- (e) Variation in each column of X.
- (f) X's are non-random.

- Issues of Model Specification:
- (a) Choice of Variables: Include or Omit?
- (b) Functional Form
- (c) Measurement Error
- (d) Error Structure
- (e) Normality Assumption
- (f) Endogeneity of Independent Variables

- Inclusuon or Omission of Variables?
- ► We do not know whether the true model is

(a)
$$y_i = \beta_1 + \beta_2 X_i + \varepsilon_i$$

or

(b)
$$y_i = \beta_1 + \beta_2 X_i + \beta_3 Z_i + \varepsilon_i$$

▶ Parameter of interest: β_2

• Omit Z or not(insert)? \Rightarrow

(a)
$$y_i = b_1 * + b_2 * X_i + e_i *$$

VS.

(b)
$$y_i = b_1 + b_2 X_i + b_3 Z_i + e_i$$

► For the effect of variable X, which one will you report, b_2 * or b_2 ?

- The <u>misspecification error</u> occurs:
- Omission of Relevant Variables
- ② Inclusion of Irrelevant Variables
- ► It is known that $V(b_2) = \frac{V(b_2^*)}{1 \gamma_{XZ}^2}$.

(1) Omission of Relevant Variables $(\beta_3 \neq 0)$

True model: $y_i = \beta_1 + \beta_2 X_i + \beta_3 Z_i + \varepsilon_i \Rightarrow \text{SRF: } y_i = b_1 + b_2 X_i + b_3 Z_i + e_i$

Assumed model: $y_i = \beta_1 + \beta_2 X_i + \varepsilon_i$, \Rightarrow Estimated: $y_i = b_1 * + b_2 * X_i + e_i *$

① Unbiased?

$$E(b_{2}^{*}) = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X}) E(y_{i})}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}} = \beta_{2} + \beta_{3} \frac{\sum_{i=1}^{n} (X_{i} - \overline{X}) Z_{i}}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}} \equiv \beta_{2} + \beta_{3} \gamma \neq \beta_{2} \quad \text{if } S_{xz} \neq 0.$$

► Omitted Variable Bias: $E(b_2^*) - \beta_2 = \beta_3 \frac{S_{XZ}}{S_X^2}$.

Furthermore,

② Variance?

Since
$$V(b_2^*) = \frac{\sigma^2}{\sum_{i=1}^n (X_i - \overline{X})^2}$$
, $V(b_2) = \frac{V(b_2^*)}{1 - \gamma_{XZ}^2}$,

$$E(\hat{V}(b_2^*)) = E(\sigma_{b_2}^*) \neq V(b_2), \quad \text{where} \quad \hat{V}(b_2^*) = \frac{s^2}{\sum_{i=1}^n (X_i - \overline{X})^2}.$$

Inferences are invalid.

(Special case) $\gamma_{XZ} = 0$.

(Example) $Fin_i = \beta_1 + \beta_2 Hedu_i + \beta Wedu_i + \beta_4 KL6_i + \varepsilon_i$

- Parameter of interest: β_2 .
- ► Omit Wedu?
- ► Omit KL6?

(2) Inclusion of Irrelevant Variables $(\beta_3 = 0)$

True model: $y_i = \beta_1 + \beta_2 X_i + \varepsilon_i$

 \Rightarrow SRF: $y_i = b_1^* + b_2^* X_i + e_i^*$

Assumed model:

 $y_i = \beta_1 + \beta_2 X_i + \beta_3 Z_i + \varepsilon_i,$

 \Rightarrow Estimated: $y_i = b_1 + b_2 X_i + b_3 Z_i + e_i$

$$b_2 = \frac{S_{Xy}S_Z^2 - S_{Zy}S_{XZ}}{S_X^2 S_Z^2 - S_{XZ}^2}$$

① Unbiased?

$$E(b_2) = \beta_2.$$

② Efficient?

$$V(b_2) = \frac{V(b_2^*)}{1 - \gamma_{XZ}^2}$$
,

$$V(b_2) \ge V(b_2^*) = \frac{\sigma^2}{\sum_{i=1}^n (X_i - \bar{X})^2},$$

► If $\gamma_{XZ} \neq 0$, $V(b_2) \geq V(b_2^*)$.

- Inclusion of irrelevant variables ⇒ unbiased but inefficient.
- ightharpoonup As $|\gamma_{XZ}| \uparrow$, $V(b_2) \uparrow$, t-ratio of $b_2 \downarrow$.
- Reminds for the multicollinearity.
- ► Sometimes, infact, b_2 is significant, but high $|\gamma_{XZ}|$ makes it insignificant.

- (3) <u>Decision: Mean Squared Error(MSE)</u>
- Two misspecified cases.
- Consider MSE and prefer smaller MSE.
- ① Omitted Relevant Variables(b₂*)

$$MSE(b_{2}^{*}) = V(b_{2}^{*}) + Bias(b_{2}^{*})$$

$$= \frac{\sigma^{2}}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}} + (\gamma \beta_{3})^{2}$$

$$= \frac{\sigma^{2}}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}} + (\beta_{3} \frac{S_{XZ}}{S_{X}^{2}})^{2}$$

② Inclusion of Irrelevant Variables(b₂)

$$MSE(b_{2}) = V(b_{2}) + Bias(b_{2})$$

$$= \frac{\sigma^{2}}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2} (1 - \gamma_{XZ}^{2})}.$$

3 Decision

- $MSE(b_2^*) > < MSE(b_2)$ depends on size of β_3 and γ_{XZ} .
- ► If $|\beta_3|$ is high, $MSE(b_2^*) > MSE(b_2)$.
 - \Rightarrow Prefer b_2 .
 - \Rightarrow Include X_3 .
- ► If $|\gamma_{XZ}|$ is high, $MSE(b_2^*) < MSE(b_2)$.
 - \Rightarrow Prefer b_2 *.
 - \Rightarrow Omit X_3 .

(4) Information Criterion

- ► Omit or not?
- ► Use *X* or *Z* for certain variables?
- Consider both explanatory power and size (k).
- ① \overline{R}^2
- ► Prefer model of higher \overline{R}^2 .

② Akaike Information Criterion(AIC):

$$AIC = \left(\frac{\sum_{i=1}^{n} e_i^2}{n}\right) \cdot e^{2k/n} \qquad \text{or} \qquad \log\left(\frac{\sum_{i=1}^{n} e_i^2}{n}\right) + \frac{2k}{n}.$$

- Prefer model of smaller AIC.
- 3 Schwarz Information Criterion(SC):

$$SC = \left(\frac{\sum_{i=1}^{n} e_i^2}{n}\right) \cdot n^{k/n} \qquad \text{or} \qquad \log\left(\frac{\sum_{i=1}^{n} e_i^2}{n}\right) + \frac{k}{n}\log(n).$$

- ► Prefer model of smaller SC.
- Conflict across criteria is possible.

(Examples) Artprice file

Model 1: OLS, using observations 1-250 Dependent variable: logprice

	Coefficient	Std. Et	rror	t-ratio	p-value	
const	-%s	2.026	97	−%#.4g	0.1092	
AGE	0.172248	0.0615	860	2.797	0.0056	***
ARD	0.0885329	0.0385	425	2.297	0.0225	**
EXB	-%s	0.0025	6821	−%#.4g	0.7290	
LIFE	0.363957	0.170	114	2.139	0.0334	**
SIZE	0.0288943	0.0048	1476	6.001	< 0.0001	***
sq_AGE	-%s	0.00045	8325	−%#.4g	0.0153	**
sq_SIZE	-%s	1.43586	6e-05	−%#.4g	< 0.0001	***
Mean dependent var	3.90	9161	S.D. o	dependent var	1.3	04825
Sum squared resid	328	.2114	S.E. c	of regression	1.1	64580
R-squared	0.22	25806	Adjus	sted R-squared	0.2	03412
F(7, 242)	10.0	08328	P-valu	ue(F)	4.6	64e-11
Log-likelihood	-388	.7593	Akaik	ce criterion	793	3.5185
Schwarz criterion	821	<mark>.6902</mark>	Hanna	an-Quinn	804	4.8568

(Example) 공사유형 재분류에 따른 회귀분석 추정 결과(n=274)

log(낙찰률)	(1)	(2)	(3)	(4)
log(설계금액)	-0.0056	-0.00481	-0.00131	-0.00165
종합심사낙찰제	0.0372	0.0364	0.0401*	0.0401*
일괄입찰	0.1091***	0.109***	0.125***	0.126***
대안입찰	0.0986**	0.102**	0.120***	0.120***
철도시설공단	0.0268	0.0252	0.0294	0.0292
공사유형분류	분류 (1)	분류 (2)	분류 (3)	분류 (4)
log(CBSI)	0.0692***	0.0674***	0.0613***	0.0617***
실업률	-0.0139	-0.0129	-0.0130	-0.0135
분기=2	-0.0253*	-0.0249*	-0.0240	-0.0242*
분기=3	-0.0570***	-0.0566***	-0.0575***	-0.0579***
분기=4	-0.0032	-0.00322	-0.00333	-0.00337
log(입찰참가자수)	-0.0535***	-0.0536***	-0.0460***	-0.0458***
절편	-0.2448	-0.258	-0.312	-0.302
관찰치 수	274	274	274	274
R-squared	0.6623	0.6619	0.6538	0.6538
Adj R-Squared	0.6267	0.6351	<mark>0.6365</mark>	<mark>0.6365</mark>
AIC	-563.27	-574.94	-582.48	<mark>-582.48</mark>
BIC	-465.72	-499.06	-531.90	-531.89

^{***, **, *}는 각각 1%, 5%, 10% 수준에서 통계적으로 유의함을 나타낸다.