DAA-SAMPLE-QUESTION-4TH-SEM (CSE AND CSIT)-2020

1. The method will choose when sub problems share sub problems

(a) Divide and conquer (b) Greedy method
(c) Dynamic programming
(d) Back tracking
Ans- (c)
2. Steps of Divide and Conquer approach
Select one:
a. Divide, Conquer and Combine
b. Combine, Conquer and Dividec. Combine, Divide and Conquer
d. Divide, Combine and Conquer.
3. How many number of comparisons are required in insertion sort to sort a file if the file is already sorted?
A. N2
B. N
C. N-1
D. N/2
Ans-c
4. The worst-case time complexity of Quick Sort isA. O(n2)
B. O(log n)
C. O(n)
D. O(n logn)
Ans-a
5. Dijkstra's Algorithm is used to solve problems. a) All pair shortest path
b) Single source shortest path
c) Network flow

d) Sorting

View Answer

Answer: b

6. Consider the following graph.

If b is the source vertex, what is the minimum cost to reach f vertex?

- a) 8
- b) 9
- c) 4
- d) 6

Answer: d

- 7. A graph is said to have a negative weight cycle when?
- a) The graph has 1 negative weighted edge
- b) The graph has a cycle
- c) The total weight of the graph is negative
- d) The graph has 1 or more negative weighted edges

View Answer

Answer: c

- 8. Which one is not the characteristics of algorithm?
 - a. Finiteness

a. Top up fashion b. Bottom up fashion Correct c. In any way
17. Which algorithm approach is used in Quick Sort?
a. Divide-and-Conquer√
b. Greedy method
c. Dynamic Programming
d. Branch-and-Bound
18. Creating a heap requires time.
a. $O(n)$
b. O(logn)
c. O(nlogn)
d. $O(n^3)$
19. The best case running time for quick sort occurs when pivot element is at
position.
a. Leftmost
b. Middle√
c. Rightmost
d. Any
20. The number of operations in Matrix multiplications M1, M2, M3, M4 and M5 of size 5X10, 10X100, 100X2, 2X20 and 20X50 Select one:
a. 5830
b. 4600 Correct
c. 6900
d. 12890
21. In which method the decision once made is never changed
(a) Divide and conquer
(b) Greedy method
(c) Dynamic programming
(d) Back tracking
Answer- (b) Greedy method
22. The total running time of Print-LCS()on the set of n characters is
(a) $O(m,n)$
(b) O(mn)
(c) O(m+n) (d) O(log mn)
Answer- (c) O(m+n)

- 23. The total running time of matrix-chain-order() for n matrices _____. (a) Θ (n⁴) (b) Θ (n³) (c) Θ (n²) $(d) \Theta(n)$ Answer- (b) Θ (n³) 24. Which of the following technique is using for divide and conquer problem?
 - - (b) Matrix Chain Multiplication
 - (c) Heap Sort
 - (d) Activity selection problem

Answer - (c)

25. Which case of Master's theorem is applicable in the recurrence relation T(n)=0.5*T(n/2)+1/n?

Select one:

- a. Case 3
- b. Case 1
- c. Master's theorem is not applicable Correct
- d. Case 2
- 26. If f(n) = O(g(n)) and g(n) = O(h(n)) then
 - a. $f(n) = O(h(n))\sqrt{n}$
 - b. f(n) = Theta(h(n))
 - c. f(n) = Big-omega(h(n))
 - d. f(n) = small-oh(h(n))
- 27. In master method if $f(n)=O(n^{\log_b a-\epsilon})$ then
 - a. $T(n)=Theta(n^{\log_b a})\sqrt{1}$
 - b. $T(n)=Theta(n^{\log_b a} \lg n)$
 - c. $T(n)=O(n^{\log_b a} \lg n)$
 - d. $T(n)=O(n^{\log_b a})$
- 28. If i is the index of a node in a heap, then what are the indices of its left child and right child? Assume that index of the root starts from 0.
 - a. 2i+3 and 2i+4
 - b. 2i+2 and 2i+4

 c. 2i+1 and 2i+2√ d. 2i and 2i+2 29. An almost complete binary tree T has 20 nodes. The number of nodes in T having two children is a. 7 b. 9√ c. 12 d. 8
30. Division Pattern of Problems in Divide and Conquer approach
Select one:
a. Iterative
b. Recursive Correct
c. Parallel
d. Random
31. The running time of quick sort depends on the selection of.
Select one:
a. Selection of pivot elements Correct
b. Number of input
c. Number of passes.
d. Arrangements of the elements
32. Which of the following sorting algorithms does not have a worst case running time of $O(n2)$?
Select one:
a. Quick sort
b. Merge sort Correct
c. Insertion sort

d. Bubble sort
33. Merge Sort divides the list in
Select one:
a. N equal parts
b. Two equal parts Correct
c. Two parts, may not be equal
d. N parts, may not be equal.
34. Time complexity of matrix chain multiplication
Select one:
a. O(n2)
b. O(n)
c. O(nlogn)
d. O(n3) Correct
35. For the function $f(n)=2n^2+5$, which is not correct bound?
 a. O(n²) b. O(n³)
c. $O(n)\sqrt{}$
$d. O(n^4)$
36. What is the value of the following recurrence: $T(n)=5T(n/5)+sqrt(n)$?
a. Theta(n) $\sqrt{}$
b. Theta(sqrt(n))
c. Theta (n^2)
d. Theta(nlogn)
37. Suppose $T(n)=2T(n/2)+n$, $T(0)=T(1)=1$. Which one of the following is false?
a. T(n)=BigOmega(nlgn)
b. T(n)=Theta(nlgn)
c. $T(n)=BigOmega(n^2)$
d. $T(n)=O(n\lg n)$
38. For the function $f(n)=2n^3+n$, which is not correct bound?
a. $\Omega(n^2)$
b. Ω (n!) $\sqrt{}$

```
c. \Omega(n)
```

d.
$$\Omega(1)$$

- 39. The correct order of growth in increasing order for the following functions is: $nlogn,n,logn,n^2,2^n$
 - a. nlogn, n², n, logn, 2ⁿ
 - b. n, nlogn, n², logn, 2ⁿ
 - c. $\log n$, n, $\log n$, n^2 , $2^n \sqrt{ }$
 - d. n, logn, n², nlogn, 2ⁿ
- $40. \log(n!) = O(?).$
 - a. $O(nlogn)\sqrt{ }$
 - b. O(n)
 - c. $O(n^3)$
 - d. O(logn)
- 41. F(n) = little omega g(n), when
 - a. $\lim_{n\to\infty} f(n)/g(n) = \infty \sqrt{\frac{1}{n}}$
 - b. $\lim_{n\to\infty} f(n)/g(n) = 0$
 - c. $\lim_{n\to 0} f(n)/g(n) = \infty$
 - d. $\lim_{n\to 0} f(n)/g(n) = 0$
- 42. What is the time complexity for activity selection problem to select optimal job from the schedule?
 - (a) $\Theta(n)$
 - (b) Θ (lg n)
 - (c) $\Theta(\log n^2)$
 - (d) O (nlog n)

Answer: $(a)\Theta(n)$

43. Which is optimal value in the case of fractional knapsack problem, capacity of knapsack is 20

item: 1 2 3 profit: 25 24 15 weight: 18 15 10

- (a) 498
- (b) 480
- (c) 499
- (d) 485

Ans- (a)

44. What is an optimal Huffman code for alphabet 'a' of the following set of frequencies

: 05, b: 48, c		7, e: 1			
(a) 10: Ans-	10 (a) 1010		(b)0101	(c) 1001	(d) 1100
45. We us	e dynam	ic prog	gramming appı	roach when	
(B) Th (C) Th	ne solutione given	on has proble		ucture ced to the 3-SAT probl	em
(D) II	s faster 1	nan G	reedy		
	, ,		ed for average	case analysis?	
b.	Big-on	nega			
c.	theta $\sqrt{}$				
d.	small-c	h			
			called Guess	method?	
	Master				
	Recurs				
	Substit				
	-		gramming		
				for solving recurrence	relation?
	Binary				
b.	Recurs	ion tre	e√		
c.	Heap tr	ree			
d.	Binary	tree			
49. If an o	ptimal s	olutior	n can be created	d for a problem by con	structing optimal solutions for
its sub	problem	s, the	problem posses	sses pro	operty.
a.	Overla	pping	subproblems		
b.	Optima	ıl subs	tructure√		
c.	Memoi	zation			
d.	Greedy	•			
50. Find th	ne maxir	num p	rofit using 0/1	knapsack problem whe	ere the capacity of knapsack is
item:	1	2	3		
profit:		24	15		
weight:	18	15	10		
(a) 39					
(b) 49					
(c) 40					

(d) 54Answer- (a) 39 51. A sort which relatively passes through a list to exchange the first element with any element less than it and then repeats with a new first element is called_ Select one: a. Quick sort b. heap sort c. Insertion sort Correct d. Bubble sort 52. Apply Master theorem to $T(n)=3.T(n/2)+n^2$ and write what is f(n)Select one: a. $f(n)=n/2+n^2$ b. f(n)=n/2c. $f(n)=n^2$ Correct d. f(n)=3n/253. Run Time of Merge Sort is Select one: a. BIG O of N log N b. Gamma of n log N c. Theta of N log N Correct d. Omega of N log N. 54. Time complexities of three algorithms are given. Which should execute the slowest for large values of N? Select one:

a. O(N) Correct

b. $O(N \frac{1}{2})$

c. O(log n).
55. In dynamic programming, the output to stage n become the input to
Select one:
a. stage n-1 Correct
b. stage n+1
c. stage n itself
d. stage n-2
56. Time complexity of knapsack 0/1 where n is the number of items and W is the capacity of knapsack.
Select one:
a. O(W)
b. O(n)
c. O(nW) Correct.
57. In dynamic programming, the output to stage n become the input to
Select one:
a. Objective function
b. Feasible solution
c. Decision stages Correct
d. Optimum solution
58. Master theorem applies to recurrences of the form (a=1 and b>1) are two constants.
Select one:
a. $T(n)=a.T(n/b)+f(n)$ Correct
b. $T(n)=n.T(n/2)+b.f(n)$
c. $T(n)=a.T(n-1)+b$

d. T(n)=n.T(n-3)+b Incorrect
59. Time complexity of LCS
Select one:
a. O(m!)
b. O(mn) Correct
c. O(n!)
60. What is an optimal Huffman code in variable length for alphabet 'e' of the following set of frequencies?
a: 45, b: 13, c: 12, d: 16, e: 9, f: 5
(a) 0
(b)1011 (c) 111
(d) 1101
Answer - (d) 1101
61. LCS for input sequences "AGGTAB" and "GXTXAYB" is
(a) AGGTAB (b) GTAB
(c) GGAT
(d) AGGTB
Answer: (B) GTAB
62. If a problem can be broken into subproblems which are reused several times, the problem
possesses property.
a. Overlapping subproblems√
b. Optimal substructure
c. Memoization
d. Greedy63. Which of the following is/are property/properties of a dynamic programming problem?
a. Optimal substructure
b. Overlapping subproblems
c. Greedy approach
d. Both optimal substructure and overlapping subproblems√
64. Which of the following problems should be solved using dynamic programming?
a. Mergesort
b. Binary search
c. Longest common subsequence√
d. Quicksort

65		-	rogran	nming,	the tech	nique c	of storin	g the previ	iously calcul	ated values is
	called		~ volv.	-	.					
	a.		_	e prope	•					
		Storin Memo	_		erty					
				n v						
	u.	Mapp	nng							
66	Which	s is the o	ntimal	voluo in	casa of	octivity	calaction	n problem?		
00	Job	: 1	2	3	4	5	6	7		
	St		3					6		
	Ft		5					10		
		. 4 3, 4, 6, 7	_	U	,	9	9	10		
	(a) 1, . (b) 2,									
	(c) 1,									
	(d) 1	•								
Ar	iswer:- ((c)								
		(-)								
67	Find (an mini	mum n	umbar	of coals	r multii	alication	ne raquirad	l for a matri	x chain product
07		an minin e sequei				-	-	is required	i ioi a iliani	x cham product
	(a) 1:	-	(b) 1				(d) 1	57		
	` '	(c) 158	, ,		(0) 1		(u) 1	51		
		\ /								
68	. Which	is the o	ptimal	value in	case of	activity	selection	n problem?		
	Job	: 1	2	3	4	5	6	7		
	St	: 1	3	4	5		8	10		
	Ft	: 4	5	6	7	9	9	14		
	(a) $1, 1$	3, 4, 6, 7	1							
	(b) 2 ,									
	(c) $1, 1$									
	(d) 1,2									
	Answ	er: - (c)	1,3,5,7	7						
69	Find t	he mini	imum ı	number	of scal	ar multi	inlicatio	ns require	d for a matri	x chain product
0,							,30,40,5	-	W 101 W 111W11	ir ciidiii product
	(a) 2	-					, , ,			
	(b) 3									
	(c) 4	5000								
	(d) 5	1000								
	Ansv	ver - (b)	30000)						
7 0	TC1		, •			1.1.11		11 .		
70		-		matrix	chain	multipli	cation p	problem is		
	a.	$O(n^2)$								

- (c)solvable and verifiable in polynomial time. (d)deterministic. 78. Which of the following is true? $(a)P \subseteq NP$ (b)P≠Co-NP
- (c)NP≠Co-NP
- (d)P=NP
- 79. Which of the following is NP complete problem?
- (a)Kruskal's algorithm
- (b)Clique problem
- (c)Prim's algorithm
- (d)Bellman-Ford algorithm
 - 80. Which of the following standard algorithms is not a Greedy algorithm?
 - a. Bellman-Ford shortest path algorithm√
 - b. Kruskal's minimum spanning tree
 - c. Dijkstra shortest path algorithm
 - d. Huffman coding
 - 81. Which of the following methods can be used to solve the fractional Knapsack problem?
 - a. Dynamic programming
 - b. Greedy method√
 - c. Divide-and-Conquer
 - d. Backtracking
 - 82. You are given a knapsack that can carry a maximum weight of 60. There are 4 items with weights {20, 30, 40, 70} and values {70, 80, 90, 200}. What is the maximum value of the items you can carry using the knapsack if fractions are allowed?
 - a. 160√
 - b. 200
 - c. 170
 - d. 90
 - 83. How many edges are there in a minimum cost spanning tree if there are n number of vertices in the corresponding graph?
 - a. n/2-1
 - b. n-2
 - c. n/2
 - d. n-1√
 - 84. The output of Prim's and Kruskal's algorithm is
 - a. Maximum spanning tree
 - b. Spanning tree
 - c. Minimum spanning tree√
 - d. None of these

a.	O(n)		
b.	O(nlogn)		
c.	$O(n^2)$		
d.	$O(n\log^2 n)$		
86. Activi	ties ai and aj are compa	tible if	
a.	$s_i \ge f_j \text{ or } s_j \ge f_i \sqrt{}$		
b.	$s_i \le f_j \text{ or } s_j \ge f_i$		
c.	$s_i \ge f_j$ or $s_j \le f_i$		
d.	$s_i \leq f_j \text{ or } s_j \leq f_i$		
87. The ru	unning time of kruskal's	s algorithm for M	ST
(a) O(1		(c) $O(E \log V)$	(d) $O(V^2)$
Ans-(c) O(E le	og V)		
88. The ru	unning time of BFS is		
а	O(V)		
	O (V log E)		
	O(V+E)		
d.	$O(V^2)$		
Ans-(C) O(V-	+E)		
89. The ru	unning time of Floyd-W	arshall algorithm	is
		(C) Θ (n ²)	
Ans-(b) Θ (n ³)			
00 Harri		to find out about	oot woth weige Dellaren Fond elecuithan?
	• •		est path using Bellman Ford algorithm?
(a) V (t Ans-(c)	b) E (c) V-1	(d) E-1	
7 HIS (C)			
91. Dijkst	ra algorithm is also call	led the	shortest path problem.
A) mu	ıltiple source		
B) sing	gle source		
C) sing	gle destination		
D) mu	Iltiple destination		
Ans-(B)			
92. 0/1 Kr	napsack problem is the	problem in which	1
` /	e taken or left behind.		
	fractionally or more th	an once.	
(c)item is only remov	-		
(d)item is only inserted	eu into the knapsack.		

85. What is the time complexity of Huffman coding algorithm?

93. Travelling salesman problem is
(a)P
(b)NP
(c) <mark>NPC</mark> (d)Co-NP
94. A language is NP complete if
(a)L is in NP
(b)L is NP-hard
(c)L is in P (d) <mark>L is in NP and L is NP-hard</mark>
95. If L is a language such that complement of L is polynomial time reducible to L for some
complement language belongs to NPC then L is
(a)NPC
(b) NP hard
(c)P (d)Co-NP
96. If $S = \{1,2,5,7,14,15,18,20\}$ and $t = 14$, then the subset
(a) $S_1 = \{14\}$ or $S_1 = \{1,2,5\}$ is a subset sum problem.
(b) $S_1 = \{14\}$ or $S_1 = \{2,5,7\}$ is a subset sum problem.
(c) S_1 ={14} or S_1 ={7, 14} is the subset sum problem. (d) S_1 =empty set is the subset sum problem.
97. Merge sort uses
(a)Greedy method
(b)Array
(c)Linked list (d)Divide-Conquer strategy
(d)Divide-Conquer strategy
98. Which of the problems cannot be solved by backtracking method?
a) n-queen problem
b) subset sum problem
c) hamiltonian circuit problem
d) travelling salesman problem
Answer: d
99. Backtracking algorithm is implemented by constructing a tree of choices called as?
a) State-space tree
b) State-chart tree
c) Node tree

d) Backtracking	g tree
Answer: a	
100.	How many solutions are there for 8 queens on 8*8 board?
a) 12	
b) 91	
c) 92	
d) 93	
Answer: c	
101.	In how many directions do queens attack each other?
a) 1	
b) 2	
c) 3	
d) 4	
Answer: c	
	If a problem can be solved by combining optimal solutions to non-overlapping ns, the strategy is called
a) Dynamic pro	ogramming
b) Greedy	
c) Divide and c	conquer
d) Recursion	
Answer: c	
103.	In the deletion operation of max heap, the root is replaced by
` '	le value in the left sub-tree
	le value in right sub-tree tof the last level
	of the last level

- 104. Which of the following sorting procedures is the slowest?
- (a) Quick sort
- (b) Heap sort
- (c) Shell sort
- (d) Bubble sort
 - 105. Two main measures for the efficiency of an algorithm are
- (a) Processor and memory
- (b) Complexity and capacity
- (c) Time and space
- (d) Data and space
 - 106. The concept of order Big O is important because
- (a) It can be used to decide the best algorithm that solves a given problem
- (b) It determines the maximum size of a problem that can be solved in a given amount of time
- (c) It is the lower bound of the growth rate of algorithm
- (d) It determines the minimum size of a problem that can be solved in a given amount of time
 - 107. In activity selection problem, activities are sorted according to
 - a. monotonically decreasing order of finish time
 - b. monotonically increasing order of start time
 - c. monotonically increasing order of finish time√
 - d. monotonically decreasing order of start time
 - 108. In greedy approach, which of the following problem fits ordering paradigm?
 - a. KNAPSACK PROBLEM
 - b. JOB SEQUENCING WITH DEADLINES
 - c. SINGLE-SOURCE SHORTEST PATHS $\sqrt{}$
 - d. MINIMUM-COST SPANNING TREE
 - 109. In greedy approach, which of the following problem fits subset paradigm?
 - a. OPTIMAL STORAGE ON TAPE
 - b. TREE VERTEX SPLITTING $\sqrt{}$
 - c. OPTIMAL MERGE PATTERNS
 - d. SINGLE-SOURCE SHORTEST PATHS
 - 110. Which of the following properties is exhibited by both dynamic programming and greedy method?
 - a. Greedy choice property
 - b. Overlapping subproblems
 - c. Optimal substructure√
 - d. None of these

111.	Longest common subsequence is an example of				
a) Greedy algorithm					
b) 2D dynamic	b) 2D dynamic programming				
c) 1D dynamic	e programming				
d) Divide and conquer					
Answer: b					
112.	The worst-case efficiency of solving a problem in polynomial time is?				
a) O(p(n))					
b) O(p(n log 1	1))				
c) O(p(n2))					
d) O(p(m log i	n))				
Answer: a					
113.	Problems that cannot be solved by any algorithm are called?				
a) tractable pro	oblems				
b) intractable j	problems				
c) undecidable	e problems				
d) decidable p	roblems				
Answer: c					
114. proble	Which of the following problems is similar to that of a Hamiltonian path m?				
a) knapsack pr	roblem				
b) closest pair	problem				
c) travelling salesman problem					
d) assignment	d) assignment problem				
Answer: c					

115.		Which type of the following algorithm proceeds in top-down manner?	
	a.	Dynamic Programming	
	b.	Divide-and-Conquer	
	c.	Branch-and-Bound	
	d.	Greedy method√	
116.		The 0/1 knapsack problem can be solved by which technique?	
	a.	Greedy method	
	b.	Dynamic Programming√	
	c.	Divide-and-Conquer	
	d.	None of these	
117.		The objects in fractional knapsack problem are arranged in to get	
ma	axin	num profit.	
	a.	Increasing order of weights	
	b.	Decreasing order of profits	
	c.	Decreasing order of profit per weight√	
	d.	Increasing order of profit per weight	
118.		Path Compression algorithm performs in which of the following operations?	
	a.	Create operation	
		Insert operation	
	c.	Find operation√	
	d.	Delete operation	
119.		In a disjoint set forest, each member points only to its	
	a.	Children	
	b.	Left child	
		Right child	
	d.	Parent $\sqrt{}$	
120.		In the Union/Find algorithm, the ranks of the nodes on a path will increase	
mo	onot	onically from?	
	a.	leaf to root√	
	b.	root to node	
	c.	root to leaf	
	d.	left subtree to right subtree	
) O(l c) O	The running time of Prim's algorithm for MSTE) (b) O(V) (c) O(E log V) (d) O(V log E) (E log V)	
122. The running time of DFS is (A) O (1) (B) O(V) (C) O(V+E) (D) O(E) Ans-(C) O(V+E)			

123.	The ru	nning time of	BELLMAN-FOR	D algorithm is	
,	A) O (V)	(B) O (E)	(C) O (VE)	(D) O $(V+E)$	
Ans-(c) C	O(VE)				
124.	Floyd	Warshall'salge	orithm is used for		shortest path problem.
\mathbf{A}) multiple so	ource			
B)) single sour	rce			
\mathbf{C}_{i}) All pair				
D) singlepair				
Answer:	(c) All Pair				
125.	Which	operation is n	ot supported by c	lisjoint set?	
(A	A) FIND-SE	T(x)			
(E	B) DELETE	-SET(x)			
(0	C) UNION(2	K)			
(Γ	O) MAKE-S	ET(x)			
A maxxami	(D) DELET	E CET(**)			
126.	(B) DELET	` '	three matrices as	··· A. A. A. vyith	the corresponding
					-
			na 3x30 respectiv	vely then which of	the following
gives less numbe	r of scalar n	nultiplications			
a) $A_1(A_2A_3)$ b) $(A_1A_2)A_3$					
c) $A_1(A_3A_2)$					
d) (A_1A_3)	A_2				
127.		lexity of matri	x chain order is		
a) $O(n^3)$	Comp	ionity of matri	order is		
b) $o(n^3)$					
c) $w(n^2)$					
$d) \Omega(n^3)$					
128.	Activi	ties i and j are	compatible if		
a)s _j ≥ f _i					
b) $s_j \le f_i$					
$c)f_{j}\geq s_{i}$					
d) $s_i=s_j$					
129.			-	•	weights and values are
W	=<5,10,20,3	0,40> and $v=$	<30,20,100,90,16	0> . The solution t	to the fractional knapsack
pr	oblem whos	se capacity W=	=60 is		
a)140					
b) 270					
c)160					
d) 130					

b) c) d)	a=00, a=0,b a=0,b 131. nected of k repre	b=10 0,b=1 0=101 0=010 comp	If we have a sequence of characters with their frequencies a:4,b:2,c:3,d:1. Then des of each character using Huffman coding technique are: 011,c=11,d=100 00,c=111,d=100 0,c=00,d=011 One application of disjoint set data structures are to determining conents of an undirected graph tion
	132.		A MAKE-SET operation creates a tree with node.
			3
		c. d.	1√
	133.	a.	Running time of Prim's algorithm in adjacency matrix implementation is
	133.	a.	O(ElogV)
			$O(V^2)$
			O(VlogE)
			O(Vlog V)
	134.		Which of the following is false in the case of a spanning tree of a graph G?
		a.	It is a tree that spans G
			It is a subgraph of G
			It includes every vertex of G
		d.	It can be cyclic or acyclic√
	135.		The travelling salesman problem can be solved using
		a.	
			A minimum spanning tree \(Pall and a larger of the second of the
			Bellman – Ford algorithm DFS traversal
	136.	u.	Consider a undirected graph G with vertices { A, B, C, D, E}. In graph G, every
		lge h	as distinct weight. Edge CD is edge with minimum weight and edge AB is edge
		_	naximum weight. Then, which of the following is false?
		a.	Every minimum spanning tree of G must contain CD
		b.	If AB is in a minimum spanning tree, then its removal must disconnect G
		c.	No minimum spanning tree contains AB√
			G has a unique minimum spanning tree

- 137. What are the appropriate data structures for following algorithms?
 - i. Breadth First Search
 - ii. Depth First Search
 - iii. Prim's Minimum Spanning Tree
 - iv. Kruskal' Minimum SpanningTree
 - (A) Stack, Queue, Priority queue, Union Find
 - (B) Queue, Stack, Priority queue, Union Find
 - (C) Stack, Queue, Union Find, Priority queue
 - (D) Priority Queue, Queue, Stack, Union Find

Answer: (B)

- 138. How many different spanning tree we can have of a complete graph with n-vertices.
 - (A)n
 - (B) n-1
 - $(C) n^n$
 - (D) n^{n-2}

Answer: (D)

139.

Which one of the following Adjacency List representation (implemented using linked list) is correct for the above graph?

Ans (a)

- 140. Indicate the runtime of Dijkstra's algorithm when the implementation is based on a binary heap. (E = edges; V = vertices)
 - a. $O(ElogV)\sqrt{ }$
 - b. $O(V^2)$
 - c. O(E + V log V)
 - d. O(E + V)
- 141. Which of the following is the most commonly used data structure for implementing Dijkstra's Algorithm?
 - a. Max priority queue
 - b. Stack
 - c. Circular queue
 - d. Min priority queue√
- 142. Dijkstra's Algorithm cannot be applied on _____
 - a. Directed and weighted graphs
 - b. Graphs having negative weight function $\sqrt{}$
 - c. Unweighted graphs
 - d. Undirected and unweighted graphs
- 143. The Bellmann Ford algorithm returns _____ value.
 - a. Boolean√
 - b. Integer
 - c. String
 - d. Double
- Bellmann ford algorithm provides solution for _____ problems.
 - a. All pair shortest path
 - b. Sorting
 - c. Network flow
 - d. Single source shortest path $\sqrt{}$
- 145. How many solution/solutions are available for a graph having negative weight cycle?
 - a. One solution
 - b. Two solutions

- c. No solution√
- d. Infinite solutions
- 146. Consider the following graph:

What is the minimum cost to travel from node A to node C?

- a. 5
- b. 2√
- c. 1
- d. 3
- 147. In which sequence the following Graph will be traversed using DFS (starting from vertex no 2).

- (A) 2013
- (B) 2301
- (C) 2130
- (D) 2031
- Answer: (a) 2 0 1 3
- 148. Floyd Warshall's Algorithm is used for solving _____
 - a. All pair shortest path problems√

	b.	Single Source shortest path problems
	c.	Network flow problems
	d.	Sorting problems
149.		What approach is being followed in Floyd Warshall Algorithm?
1 . , .	а	Greedy technique
		Dynamic Programming√
		Linear Programming
150	a.	Backtracking El 187 1 11 11 11 11 11 11 11 11 11 11 11 11
150.		Floyd Warshall's Algorithm can be applied on
		Undirected and unweighted graphs
		Undirected graphs
	c.	Directed graphs√
	d.	Acyclic graphs
151.		Which tree is used to solve problems using backtracking and branch-and-bound
m	etho	d?
		Binary search tree
		State space tree√
		Heap tree
	d.	AVL tree
152.		Tree organizations that are problem instance dependent are called trees.
	a.	Static tree
	b.	Expression tree
	c.	Dynamic tree√
	d.	Threaded binary tree
153.		States that correspond to solutions to the problem are called
		Problem state
		Answer state
		Solution state
151	d.	Goal state√
154.		Which search method is used in Backtracking?
		Breadth-first search
	b.	Depth-first search√
	c.	Least cost search
	d.	Max profit search
155.		A node is called if it cannot lead to a feasible (or optimal) solution.
	a.	Nonpromising√
	b.	Promising
		Succeeding
	d.	Preceding
156.		A node which has been generated and all of whose children have not yet been
ge		ted is called
		Expanded node
	b.	Dead node

157. Which of the following notation gives asymptotic upper bound?a) Big oh notationb) Little oh notationc) Big omega notation
d) Little omega notation
158. Worst case is the worst case time complexity of Prim's algorithm if adjacency matrix is used?
a) O(log V)
b) O(V2)
c) O(E2)
d) O(V log E)
Answer: b
159. Fractional knapsack problem is also known as
a) 0/1 knapsack problem
b) Continuous knapsack problem
c) Divisible knapsack problem
d) Non continuous knapsack problem
Answer: b
160. Given items as {value,weight} pairs {{40,20},{30,10},{20,5}}. The capacity of knapsack=20. Find the maximum value output assuming items to be divisible.
a) 60
b) 80
c) 100
d) 40
Answer: a

c. Feasible noded. Live node√

Which of the following algorithms is the best approach for solving Huffman codes?
a) exhaustive search
b) greedy algorithm
c) brute force algorithm
d) divide and conquer algorithm
Answer: b
162. The type of encoding where no character code is the prefix of another character code is called?
a) optimal encoding
b) prefix encoding
c) frequency encoding
d) trie encoding
Answer: b
163. The result of intersection of o(g(n)) and w(g(n)) is the a) Singleton set b) Empty set c) Lower bound set d) Upperbound set 164. Which of the following is correct? a) n!=w(n ⁿ) b)n!=O(2 ⁿ) c) n!=w(n ²) d) n!=o(n ⁿ)
How many methods are there for solving recurrences? a) 2 b) 3 c) 4 d) 5
 The solution of the recurrence T(n)=T(n^{0.5})+1 is a) O(loglogn) b) O(logn) c) Ω(logn)

d) O(loglogn)

167. The lower bound for decision tree sorting is

a) $\Omega(nlgn)$

b) O(nlgn)

c) o(nlgn)

d) w(nlgn)

Which of the following is the LCS of the sequences $X=\{A,B,C,B,D,A,B\}$

and $Y = \{B,D,C,A,B,A\}$?

 $a)\{B,D,A,C\}$

b) {B,D,A,B}

c){B,C,D,B}

 $d)\{B,C,A,B\}$

169. Which one is the correct MST for the following graph –

170. Consider the following graph. Which one from the four options depicts the shortest path (represented using solid lines) generated by applying Dijkstra's algorithm to it?

Answer: d

172. Kruskal's algorithm is a _____

- a) divide and conquer algorithm
- b) dynamic programming algorithm
- c) greedy algorithm
- d) approximation algorithm

Answer: c

- 173. What is the time complexity of Kruskal's algorithm?
- a) O(log V)
- b) O(E log V)
- c) O(E2)
- d) O(V log E)

Answer: b

- 174. Consider the following statements.
- S1. Kruskal's algorithm might produce a non-minimal spanning tree.
- S2. Kruskal's algorithm can efficiently implemented using the disjoint-set data structure.
- a) S1 is true but S2 is false
- b) Both S1 and S2 are false
- c) Both S1 and S2 are true
- d) S2 is true but S1 is false

Answer: d

175. Consider the given graph.

What is the weight of the minimum spanning tree using the Prim's algorithm, starting from vertex a?

- a) 23
- b) 28

c) 27		
d) 11		
Answer: o	2	
176.		In the 8-Queen problem, the solution space consists of number of
	ples	if only explicit constraint is applied.
	a.	8^8
	b.	8!
	c. d.	$rac{8^2}{2^8}$
177.	u.	The solution to 8-queen problem is
	a.	(1, 5, 4, 2, 3, 6, 8, 7)
		(8, 6, 3, 4, 5, 1, 2, 5)
		(7, 5, 8, 6, 4, 1, 3, 2)
178.	a.	(4, 6, 8, 2, 7, 1, 3, 5) The branch-and-bound method was first proposed by A. H. Land and A. G. Doig
in		
		1950
		1970
		1960√
179.	a.	1940 Which technique is not used in branch-and-bound strategy?
177.	a.	Max Profit search√
		Least Cost search
		First-in-first-out search
100	d.	Last-in-first-out search
180.	a.	The number of nodes generated in the state space tree for 4-queens' problem is 66
		46
		65√
	d.	58

- 181. In fixed-tuple formulation of 0/1 knapsack problem consisting of 4 objects, the number of nodes generated in the tree organization is
 - a. 32
 - b. 31√
 - c. 33
 - d. 30
- 182. Consider the following graph.

Which one of the following cannot be the sequence of edges added, in that order, to a minimum spanning tree using Kruskal's algorithm?

- (A)(a-b),(d-f),(b-f),(d-c),(d-e)
- (B) (a-b),(d-f),(d-c),(b-f),(d-e)
- (C)(d-f),(a-b),(d-c),(b-f),(d-e)
- (D)(d-f),(a-b),(b-f),(d-e),(d-c)

Answer: (D)

183. The Breadth First Search algorithm has been implemented using the queue data structure. One possible order of visiting the nodes of the following graph is

- (A) MNOPQR
- (B) NQMPOR
- (C) QMNPRO
- (D) QMNPOR

Answer: (C)

- 184. What is the basic formula applied in Rabin Karp Algorithm to get the computation time as Theta(m)?
- a) Halving rule
- b) Horner's rule
- c) Summation lemma

d) Cancellation lemma Answer: b 185. What is the basic principle in Rabin Karp algorithm? a) Hashing b) Sorting c) Augmenting d) Dynamic Programming Answer: a 186. Which of the following is false in the case of a spanning tree of a graph G? a) It is tree that spans G b) It is a subgraph of the G c) It includes every vertex of the G d) It can be either cyclic or acyclic Answer: d 187. Consider a complete graph G with 4 vertices. The graph G has _____ spanning trees. a) 15 b) 8 c) 16 d) 13 Answer: c The travelling salesman problem can be solved using _____ 188. a) A spanning tree b) A minimum spanning tree c) Bellman – Ford algorithm d) DFS traversal

Answer: b

View Answer

189. Consider the following graph. Which one is the correct spanning tree using Prim's algorithm?

(d)

Answer: (a)

190. Which one of the correct matrix for above graph in Floyd Warshal's algorithm?

$$\begin{pmatrix} 0 & -1 & -2 & 0 \\ 4 & 0 & 2 & 4 \\ 5 & 1 & 0 & 2 \\ 3 & -1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 & -2 & 0 \\ 4 & 0 & 2 & 4 \\ 5 & 1 & 0 & 2 \\ 3 & -1 & 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & -1 & 2 & 0 \\ 4 & 0 & 2 & 4 \\ 5 & 1 & 0 & 2 \\ 3 & 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 & 2 & 0 \\ 4 & 0 & 2 & 4 \\ 5 & 1 & 0 & 2 \\ 3 & 1 & 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 & -2 & 0 \\ 4 & 0 & 2 & -4 \\ 5 & 1 & 0 & 2 \\ 3 & -1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & -2 & 0 \\ 4 & 0 & 2 & -4 \\ 5 & 1 & 0 & 2 \\ 3 & -1 & 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix}
0 & -1 & -2 & 0 \\
4 & 0 & 2 & 4 \\
5 & 1 & 0 & -2 \\
3 & 1 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
0 & -1 & -2 & 0 \\
4 & 0 & 2 & 4 \\
5 & 1 & 0 & -2 \\
3 & 1 & 1 & 0
\end{pmatrix}$$

Answer (a)

191.		The number of operations supported to specify nondeterministic algorithms is
	a.	5
	b.	4
	c.	3
	d.	2
192.		The class of problems that can be solved by nondeterministic polynomial time
	gorit	hm is known as
	_	NP Complete
		P
		NP
		NP Hard
193.	٠.	The time complexity of traveling salesperson problem is
170.	а	$O(2^{n/2})$
		$O(n^22^n)$
		$O(2^n)$
		$O(n^2)$
194.	u.	The number conditions to be satisfied by a problem to be NP-Complete is
177.		The number conditions to be satisfied by a problem to be 141 -complete is
_	 a	<u> </u>
		3
		4
		2
195.	u.	Which class the Hamiltonian cycle problem belongs to?
193.	0	Class P
		Class NP
		Class NP Hard
106	u.	Class NP Complete V
196.		Which of the following relationships between different complexity classes is not
ur	ue?	P is a subset of NP
		NP Complete is a subset of NP
		NP Complete is a subset of NP Hard
107	d.	NP Hard is a subset of NP√
197.		Which of the following statements is not true?
	a.	
		Class P is closed under complementation
		Class P is closed under union
	d.	Class P is not closed under intersection√
198.		The problems that can be solved in polynomial time are problems.
	a.	Tractable√
	b.	Intractable
	c.	Decidable
	d.	Undecidable
160		
199.		Floyd Warshall Algorithm can be used for finding
Single	sour	ce shortest path

b) Topologica	l sort
c) Minimum s	panning tree
d) Transitive of	closure
View Answer	
Answer: d	
200. called? a) vertex mate	
b) chromatic i	ndex
c) chromatic n	umber
d) color numb	er
View Answer	
Answer: c	
201. a) Hamiltonia	Which of the following is an NP complete problem? n cycle
b) Travelling	salesman problem
c) Calculating	chromatic number of graph
d) Finding ma	ximum element in an array
View Answer	
Answer: c	
202. a) T(n-2)+c	What is the recurrence relation for the linear search recursive algorithm?
b) 2T(n-1)+c	
c) $T(n-1)+c$	

d) T(n+1)+c

Answer: c

- 203. Merge sort uses which of the following technique to implement sorting?
- a) backtracking
- b) greedy algorithm
- c) divide and conquer
- d) dynamic programming

Answer: c