Theory Of Automata

Defining Languages (Regular Expression)

- Regular Expression (RE) is one of the language defining method.
- Regular Expression (RE) represented in terms of strings.
- In RE, a* means zero or more occurrence of a, where as a+ means one or more occurrence of a.
- Same concept for a* and a+ as of Kleene star and Kleene plus.

As discussed earlier

- \Box a* generates Λ , a, aa, aaa, ...
- □ a⁺ generates a, aa, aaa, aaaa, ...,

- **Example:** Consider alphabet $\Sigma = \{a\}$, language L, Made from given alphabet is L = $\{\Lambda, a, aa, aaa, aaaa, ...\}$. What will be the RE of this language.
- □ Similarly, for $L_2 = \{a, aa, aaa, aaaa, ...\}$ over alphabet $\Sigma = \{a\}$. What will be RE.

- **Example:** Write a RE for string that start from "a" and contain any "b" letter defined over alphabet $\Sigma = \{a,b\}$.
- Hint (According to given condition language must start from letter "a" and contain any no of "b" letter)
- □ So, L could be {a, ab, abb, abbb, abbbb,}
- \blacksquare RE = ab*
- Example: Write a RE for string that start from "a" and contain at least one "b" letter defined over alphabet $\Sigma = \{a,b\}$.
- □ So, L could be {ab, abb, abbb,}
- \square RE = ab⁺

Now consider another language L, consisting of all possible strings, defined over Σ = {a, b}. This language can also be expressed by the regular expression

$$(a + b)^*$$
.

Now consider another language L, of strings having exactly double a, defined over Σ = {a, b}, then it's regular expression may be

b*aab*

- Write a RE for string that contains "a" or "b" defined over alphabet Σ = {a, b}.
- Hint(a or b) Also, when we have OR word in RE, we consider union operation and can be represented by "+" symbol.
- □ So, RE = ?

Class Task (Regular Expression)

■ Write a RE for string that contains at least one "a" **OR** at least one "b" defined over $\Sigma = \{a, b\}$.

Class Task (Regular Expression)

- Write a RE for string that contains at least one "a" **OR** at least one "b" defined over $\Sigma = \{a, b\}$.
- □ Solution: $RE = (a+b)^+$

• Consider language L, of even length, defined over $\Sigma = \{a, b\}$, then it's regular expression may be $((a+b)(a+b))^*$

Now consider another language L, of odd length, defined over Σ = {a, b}, then it's regular expression may be

$$(a+b)((a+b)(a+b))^*$$

 $((a+b)(a+b))^*(a+b)$

Remarks

- It may be noted that a language may be expressed by more than one regular expressions.
- While given a regular expression there exist a unique language generated by that regular expression.

Example:

- Consider the language, defined over Σ={a, b} of words having at least one a, may be expressed by a regular expression (a+b)*a(a+b)*.
- Consider the language, defined over $\Sigma = \{a,b\}$ of words having at least one a and one b, may be expressed by a regular expression $(a+b)^*a(a+b)^*b(a+b)^*+(a+b)^*b(a+b)^*a(a+b)^*$.

- Consider the language, defined over Σ={a, b}, of words starting with double a and ending in double b then its regular expression may be aa(a+b)*bb
- Consider the language, defined over $\Sigma = \{a, b\}$ of words starting with a and ending in b OR starting with b and ending in a, then its regular expression may be $a(a+b)^*b+b(a+b)^*a$

Regular Language

- Definition: The language generated by any regular expression is called a regular language.
- It is to be noted that if r_1 , r_2 are regular expressions, corresponding to the languages L_1 and L_2 then the languages generated by r_{1_1} r_2 are also regular languages.
- Example: If r_1 =(aa+bb) and r_2 =(a+b) then the language of strings generated by r_1 + r_2 , is also a regular language, expressed by (aa+bb)+(a+b)

Regular Language

All finite languages are regular Example:

- Consider the language L, defined over Σ={a,b}, of strings of length 2, starting with a, then
- □ L={aa, ab}, may be expressed by the regular expression aa+ab. Hence L, by definition, is a regular language.

- So far, we have studied Different ways of defining languages i.e., Descriptive, Recursive, Regular Expression.
- Now we move towards Finite Automata (FA).
- In Finite Automata we can represent language in form of diagram or graph.
- □ Finite Automata is also known as:
 - Finite Machine (FM)
 - Finite Automatic Machine (FAM)
 - Finite State Machine (FSM)

Method 4 (Finite Automaton)

Definition:

A **Finite automaton (FA)**, is a collection of the followings

- 1. Finite number of states, having one initial and some (maybe none) final states.
- 2. Finite set of input letters (Σ) from which input strings are formed.
- 3. Finite set of transitions *i.e.*, for each state and for each input letter there is a transition showing how to move from one state to another.

- Also, A finite automaton is a 5-tuple (Q, Σ , δ , q0, F), where:
 - 1. Q is a finite set called the states (e.g., q0, q1, q2, q3,....)
 - 2. Σ is finite set called the alphabet (e.g., $\Sigma = \{a,b\}$)
 - $\it 3.~\delta$: Transition / Movement of data in form of arrows
 - 4. q0: is the start state (initial state)
 - F (final states)

- q0 (start state or initial state) of Finite Automata (FA)
- In every FA, there will be only one initial state
- 3. It is represented by \longrightarrow Q0 OR represent input.
- 4. At final state, machine may stop or may not stop depend on your language (input)
- 5. It is represented by:

Final State

- In FA the minimum number of final state should be 1 and maximum number of final state can be more than 1.
- It means we may have more than q final state in FA.
- At final state, machine may stop or may not stop depending upon language (input).
- It is represented by

- Q (states/normal states) these are the states other then initial and final states.
 - 2. These are states from which our FA neither start nor finish.
 - 3. It is represented by:
 - 4. δ : transition / movement : transition or movement is represented with sign.

20

Types of Finite Automata (FA)

- Finite Automata without output
 - Deterministic Finite Automata (DFA).
 - Non-Deterministic Finite Automata (NFA or NDFA).
 - Non-Deterministic Finite Automata with epsilon moves (e-NFA or e-NDFA).
- Finite Automata with Output
 - Moore machine.
 - Mealy machine.

Will be discussing in future lectures

Finite Automata (FA)

Now Back to Automata

- Also, A finite automaton is a 5-tuple (Q, Σ , δ , q0, F), where:
 - 1. Q is a finite set called the states (e.g., q0, q1, q2, q3,....)
 - 2. Σ is finite set called the alphabet (e.g., $\Sigma = \{a,b\}$)
 - $\it 3.~\delta$: Transition / Movement of data in form of arrows
 - q0: is the start state (initial state)
 - 5. F (final states)

Example

 $\square \Sigma = \{a,b\}$

States: x, y, where x is both initial and final state.

Transitions:

- 1. At state x reading a or b go to state y.
- 2. At state y reading a or b go to state x.

Example Continued ...

These transitions can be expressed by the following transition table

Old States	New States	
	Reading	Reading
	a	b
$x \pm$	y	У
У	X	X

Example Continued ...

It may be noted that the previous transition table may be depicted by the following transition diagram.

Old States	New	States	_	
	Reading	Reading		
	a	b	_	
x ±	У	у		
у	X	X	a, b	
		x ±	a, b	y

Example Continued ...

Thank you, Questions?