CSCI3320: Homework 4, Spring 2020 Deadline: March 8th, 11:59 pm

Teacher: John C.S. Lui

1. In class, we discussed about the multivariate Gaussian distribution. Assume now we have a bivariate Gaussian distribution with mean vector and covariance matrix as:

mean vector is
$$\boldsymbol{\mu}^T = [\mu_1, \mu_2]$$
 $\boldsymbol{\Sigma} = \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}$

Show that the joint bivariate density function is:

$$p(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left[-\frac{1}{2(1-\rho^2)} \left(z_1^2 - 2\rho z_1 z_2 + z_2^2\right)\right]$$

where $z_i = (x_i - \mu_i)/\sigma_i$, i = 1, 2, are standardized variables

Answer:

Given that

$$\Sigma = \left[\begin{array}{cc} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{array} \right]$$

we have

$$\begin{split} |\Sigma| &= \sigma_1^2 \sigma_2^2 - \rho^2 \sigma_1^2 \sigma_2 = \sigma_1^2 \sigma_2 (1 - \rho^2) \\ |\Sigma|^{1/2} &= \sigma_1 \sigma_2 \sqrt{1 - \rho^2} \\ \Sigma^{-1} &= \frac{1}{\sigma_1^2 \sigma_2 (1 - \rho^2)} \begin{bmatrix} \sigma_2^2 & -\rho \sigma_1 \sigma_2 \\ -\rho \sigma_1 \sigma_2 & \sigma_1^2 \end{bmatrix} \end{split}$$

and $(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})$ can be expanded as

$$\begin{aligned} \left[x_1 - \mu_1 \ x_2 - \mu_2 \right] \left[\begin{array}{cc} \frac{\sigma_2^2}{\sigma_1^2 \sigma_2 (1 - \rho^2)} & -\frac{\rho \sigma_1 \sigma_2}{\sigma_1^2 \sigma_2 (1 - \rho^2)} \\ -\frac{\rho \sigma_1 \sigma_2}{\sigma_1^2 \sigma_2 (1 - \rho^2)} & \frac{\sigma_1^2}{\sigma_1^2 \sigma_2 (1 - \rho^2)} \end{array} \right] \left[\begin{array}{c} x_1 - \mu_1 \\ x_2 - \mu_2 \end{array} \right] \\ = \frac{1}{1 - \rho^2} \left[\left(\frac{x_1 - \mu_1}{\sigma_1} \right)^2 - 2\rho \left(\frac{x_1 - \mu_1}{\sigma_1} \right) \left(\frac{x_2 - \mu_2}{\sigma_2} \right) + \left(\frac{x_2 - \mu_2}{\sigma_2} \right)^2 \right] \end{aligned}$$

CSCI3320: Homework 4, Spring 2020 Deadline: March 8th, 11:59 pm

Teacher: John C.S. Lui

2.

Let us say we have two variables x_1 and x_2 and we want to make a quadratic fit using them, namely,

$$f(x_1, x_2) = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_1 x_2 + w_4 (x_1)^2 + w_5 (x_2)^2$$

How can we find w_i , i = 0, ..., 5, given a sample of $\mathcal{X} = \{x_1^t, x_2^t, r^t\}$?

Answer:

We write the fit as

$$f(x_1, x_2) = w_0 + w_1 z_1 + w_2 z_2 + w_3 z_3 + w_4 z_4 + w_5 z_5$$

where $z_1 = x_1$, $z_2 = x_2$, $z_3 = x_1x_2$, $z_4 = (x_1)^2$, and $z_5 = (x_2)^2$. We can then use linear regression to learn w_i , i = 0, ..., 5. The linear fit in the five-dimensional $(z_1, z_2, z_3, z_4, z_5)$ corresponds to a quadratic fit in the two-dimensional (x_1, x_2) space. We discuss such generalized linear models in more detail (and other nonlinear basis functions) in chapter 10.