INDICATORS FOR PLURISUBHARMONIC FUNCTIONS OF LOGARITHMIC GROWTH

Alexander RASHKOVSKII

ABSTRACT. A notion of indicator for a plurisubharmonic function u of logarithmic growth in \mathbb{C}^n is introduced and studied. It is applied to evaluation of the total Monge-Ampère measure $(dd^cu)^n(\mathbb{C}^n)$. Upper bounds for the measure are obtained in terms of growth characteristics of u. When $u = \log |f|$ for a polynomial mapping f with isolated zeros, the indicator generates the Newton polyhedron of f whose volume bounds the number of the zeros.

1 Introduction

We consider plurisubharmonic functions u of logarithmic growth in \mathbb{C}^n , i.e. satisfying the relation

$$u(z) \le C_1 \log^+ |z| + C_2$$
 (1)

with some constants $C_j = C_j(u) \ge 0$. The class of such functions will be denoted by $\mathcal{L}(\mathbf{C}^n)$ or simply by \mathcal{L} . (It is worth mentioning that in the literature the notation \mathcal{L} is used sometimes for the class of functions satisfying (1) with $C_1 = 1$; for our purposes we need to consider the whole class of functions of logarithmic growth, and denoting it by \mathcal{L} we follow, for example, [13], [14].) It is an important class containing, in particular, functions of the form $\log |P|$ with polynomial mappings $P: \mathbf{C}^n \to \mathbf{C}^N$. Various results concerning the functions of logarithmic growth can be found in [10]-[14], [20], [6], see also the references in [6] and [5]. For general properties of plurisubharmonic functions and the complex Monge-Ampère operators, we refer the reader to [11], [16], [6], and [3].

A remarkable property of functions $u \in \mathcal{L}$ is finiteness of their total Monge-Ampère measures

$$M(u; \mathbf{C}^n) = \int_{\mathbf{C}^n} (dd^c u)^n < \infty$$

as long as $(dd^cu)^n$ is well defined on the whole \mathbb{C}^n ; we use the notation $d = \partial + \bar{\partial}$, $d^c = (\partial - \bar{\partial})/2\pi i$. Moreover, the total mass is tied strongly to the growth of the function. For example, if

$$\log^{+}|z| + c \le u(z) \le \log^{+}|z| + C, \tag{2}$$

then $M(u; \mathbf{C}^n) = M(\log |z|; \mathbf{C}^n) = 1$. The objectives for the present paper is to study $M(u; \mathbf{C}^n)$ when no regularity condition on u like (2) is assumed. In case of

 $u = \log |P|$ with $P : \mathbb{C}^n \to \mathbb{C}^N$ a polynomial mapping with isolated zeros, $M(u; \mathbb{C}^n)$ equals (if N = n) or dominates (if N > n) the number of the zeros counted with their multiplicities.

If u = v near the boundary of a bounded pseudoconvex domain Ω , then

$$\int_{\Omega} (dd^c u)^n = \int_{\Omega} (dd^c v)^n,$$

so the total measure $M(u; \mathbf{C}^n)$ is determined by the asymptotic behavior of u at infinity. For its evaluation we thus need precise characteristics of the behavior. The basic one is the *logarithmic type*

$$\sigma(u) = \limsup_{z \to \infty} \frac{u(z)}{\log|z|}.$$
 (3)

Another known characteristic is the *logarithmic multitype* $(\sigma_1(u), \ldots, \sigma_n(u))$ [14]:

$$\sigma_1(u) = \sup \left\{ \tilde{\sigma}_1(u; z') : z' \in \mathbf{C}^{n-1} \right\}$$
(4)

where $\tilde{\sigma}_1(u; z')$ is the logarithmic type of the function $u_{1,z'}(z_1) = u(z_1, z') \in \mathcal{L}(\mathbf{C})$ with $z' \in \mathbf{C}^{n-1}$ fixed, and similarly for $\sigma_2(u), \ldots, \sigma_n(u)$. For example, if P is a polynomial of degree d_k in z_k , then $\sigma_k(\log |P|) = d_k$.

Due to the certain symmetry between the behavior of $u \in \mathcal{L}$ at infinity and the local behavior of a plurisubharmonic function at a fixed point of its logarithmic singularity, the type $\sigma(u)$ can be regarded as the Lelong number of u at infinity:

$$\sigma(u) = \nu(u, \infty). \tag{5}$$

One can also consider the directional Lelong numbers at infinity with respect to directions $a = (a_1, \ldots, a_n) \in \mathbf{R}^n_+$:

$$\nu(u, a, \infty) = \limsup_{z \to \infty} \frac{u(z)}{S_a(z)},\tag{6}$$

where

$$S_a(z) = \sup_k a_k^{-1} \log |z_k|.$$
 (7)

In [17], the residual Monge-Ampère measure of a plurisubharmonic function u at a point $x \in \mathbb{C}^n$, $(dd^c u)^n|_{\{x\}}$, was studied by means of the local indicator of u at x. Using the same approach, we introduce here a notion of the indicator of $u \in \mathcal{L}$:

$$\Psi_{u,x}(y) = \lim_{R \to +\infty} R^{-1} \sup \{ u(z) : |z_k - x_k| \le |y_k|^R, \ 1 \le k \le n \}.$$

It is a plurisubharmonic function of the class \mathcal{L} which is the (unique) logarithmic tangent to u at x, i.e. the weak limit in $L^1_{loc}(\mathbf{C}^n)$ of the functions $m^{-1}u(x_1 + u_1)$

 $y_1^m, \ldots, x_n + y_n^m$) as $m \to \infty$ (Theorem 2). The above characteristics of u can be easily expressed in terms of its indicator (see Proposition 3); moreover, it controls the behavior of u in the whole \mathbb{C}^n (Theorem 1):

$$u(z) \le \Psi_{u,x}(x-x) + C_x \quad \forall z \in \mathbf{C}^n.$$

If $(dd^cu)^n$ is defined on \mathbb{C}^n , the indicator also controls the total Monge-Ampère mass of u (Theorem 4):

$$M(u; \mathbf{C}^n) \le M(\Psi_{u,x}; \mathbf{C}^n). \tag{8}$$

Since $\Psi_{u,x}(y) = \Psi_{u,x}(|y_1|, \dots, |y_n|)$, the evaluation of its mass is much more easy than that for the original function u. It gives us, in particular, the bounds

$$M(u; \mathbf{C}^n) \le \frac{[\nu(u, a, \infty)]^n}{a_1 \dots a_n} \quad \forall a \in \mathbf{R}^n_+$$

(Theorem 5) and

$$M(u; \mathbf{C}^n) \leq n! \, \sigma_1(u) \dots \sigma_n(u)$$

(Theorem 8). A particular case of the latter result (when u is the logarithm of modulus of an equidimensional polynomial mapping with isolated zeros of regular multiplicities) was obtained in [15].

In Theorems 6 and 7 we give a geometric description for the mass of an indicator. Denote $\psi_{u,x}(t) = \Psi_{u,x}(e^{t_1}, \dots, e^{t_n}), t = (t_1, \dots, t_n) \in \mathbf{R}^n$, and

$$\Theta_{u,x} = \{ a \in \mathbf{R}^n : \langle a, t \rangle \le \psi_{u,x}^+(t) \ \forall t \in \mathbf{R}^n \}.$$

Then

$$M(\Psi_{u,x}; \mathbf{C}^n) = n! \, Vol(\Theta_{u,x}). \tag{9}$$

When $u = \log |P|$ with P a polynomial mapping, the set $\Theta_{u,0}$ is the Newton polyhedron for P at infinity (see, for example, [8]), i.e. the convex hull of the set $\omega_0 \cup \{0\}$,

$$\omega_0 = \{ s \in \mathbf{Z}_+^n : \sum_j \left| \frac{\partial^s P_j}{\partial z^s}(0) \right| \neq 0 \},$$

and so the right-hand side of (9) is the Newton number of P at infinity. Therefore, a hard result due to A.G. Kouchnirenko on the number of zeros of an equidimensional polynomial mapping [7] follows directly from (8) and (9).

2 Indicators as growth characteristics

Let u be a plurisubharmonic function in \mathbb{C}^n . Given $x \in \mathbb{C}^n$ and $t \in \mathbb{R}^n$, denote by g(u, x, t) the mean value of u over the set $T_t(x) = \{z \in \mathbb{C}^n : |z_k - x_k| = e^{t_k}, 1 \le k \le n\}$, and by g'(u, x, t) the maximum of u on $T_t(x)$.

Proposition 1 Let $u \in \mathcal{L}$, $x \in \mathbb{C}^n$. Then for every $t \in \mathbb{R}^n$ the following limits exist and coincide:

$$\lim_{R \to +\infty} R^{-1} g(u, x, Rt) = \lim_{R \to +\infty} R^{-1} g'(u, x, Rt) =: \psi_{u, x}(t) < \infty.$$

Moreover, if $g'(u, x, 0) \leq 0$, the common limit $\psi_{u,x}(t)$ is obtained by the increasing values.

Proof. For $x \in \mathbf{C}^n$ and $t \in \mathbf{R}^n$ fixed, the function f(R) := g(u, x, Rt) is convex on \mathbf{R} and has the bound $f(R) \le C_1 R + C_2 \ \forall R > 0$ with some $C_1, C_2 > 0$. Therefore, for all $R_0 \in \mathbf{R}$, the ratio

$$\frac{f(R) - f(R_0)}{R - R_0} \tag{10}$$

is increasing in $R > R_0$ and bounded and thus has a limit as $R \to +\infty$. It implies the existence of $\hat{g}(u,x,t) = \lim_{R \to +\infty} R^{-1}g(u,x,Rt)$. In the same way we get the value $\hat{g}'(u,x,t) = \lim_{R \to +\infty} R^{-1}g'(u,x,Rt)$. Evidently, $\hat{g}(u,x,t) \leq \hat{g}'(u,x,t)$, and the standard arguments using Harnack's inequality give us $\hat{g}(u,x,t) = \hat{g}'(u,x,t)$. The last statement of the proposition follows from the increasing of (10) with $R_0 = 0$.

Now we proceed, as in [17], to a plurisubharmonic characteristic of growth for $u \in \mathcal{L}$. Denote $\mathbf{C}^{*n} = \{z \in \mathbf{C}^n : z_1 \dots z_n \neq 0\}$. The mappings $Log : \mathbf{C}^{*n} \to \mathbf{R}^n$ and $Exp : \mathbf{R}^n \to \mathbf{C}^{*n}$ are defined as $Log(z) = (\log |z_1|, \dots, \log |z_n|)$ and $Exp(t) = (\exp t_1, \dots, \exp t_n)$, respectively. Let \mathcal{L}^c be the subclass of \mathcal{L} formed by n-circled plurisubharmonic functions u, i.e. $u(z) = u(|z_1|, \dots, |z_n|)$. By $\mathcal{L}(\mathbf{R}^n)$ we denote the class of functions $\varphi(t)$, $t \in \mathbf{R}^n$, which are convex in t, increasing in each t_k and such that there exists a limit $\lim_{T\to +\infty} T^{-1}\varphi(T, \dots, T) < \infty$.

The mappings Exp and Log generate an isomorphism between the cones \mathcal{L}^c and $\mathcal{L}(\mathbf{R}^n)$ ([14], Th. 1): $u \in \mathcal{L}^c \iff Exp^*u \in \mathcal{L}(\mathbf{R}^n)$, $h \in \mathcal{L}(\mathbf{R}^n) \iff Log^*h$ extends to a (unique) function from the class \mathcal{L}^c . Given $u \in \mathcal{L}^c$, the function Exp^*u will be referred to as the *convex image* of u.

If $h = Exp^*u \in \mathcal{L}(\mathbf{R}^n)$ satisfies the homogeneity condition

$$h(ct) = ch(t) \quad \forall c > 0, \ \forall t \in \mathbf{R}^n,$$

the function u will be called an indicator. We denote the collection of all indicators by \mathcal{I} . It is easy to see that any indicator Ψ satisfies $\Psi \leq 0$ in the unit polydisk

$$D = \{ z \in \mathbf{C}^n : |z_k| < 1, \ 1 \le k \le n \}$$

and $\Psi > 0$ in

$$D^{-1} = \{ z \in \mathbf{C}^n : |z_k| > 1, \ 1 \le k \le n \}$$

if $\Psi \not\equiv 0$.

Clearly, the function $\psi_{u,x}$ defined in Proposition 1 belongs to the class $\mathcal{L}(\mathbf{R}^n)$, so $Log^*\psi_{u,x}$ extends to a function $\Psi_{u,x} \in \mathcal{L}^c$:

$$\Psi_{u,x}(y) = \psi_{u,x}(\log |y_1|, \dots, \log |y_n|), \ y \in \mathbf{C}^{*n}.$$

Moreover, $\Psi_{u,x} \in \mathcal{I}$. We will call it the indicator of $u \in \mathcal{L}$ at x.

The restriction of $\Psi_{u,x}$ to the polydisk D coincides with the local indicator of u at x introduced in [17]. In particular, $\Psi_{u,x} \equiv 0$ in D if and only if the Lelong number of u at x equals 0. Besides, the directional Lelong numbers of $\Psi_{u,x}$ at 0 are the same as those of u at x.

Proposition 2 Let $\Phi \in \mathcal{I}$, then

- (a) Φ is continuous as a function $\mathbb{C}^n \to \mathbb{R} \cup \{-\infty\}$;
- (b) $\Psi_{\Phi,x}(y) = \Phi(\tilde{y})$ where $\tilde{y}_k = \sup\{|y_k|, 1\}$ if $x_k \neq 0$, and $\tilde{y}_k = y_k$ otherwise.

Proof. (a) Since $Exp^*\Phi \in C(\mathbf{R}^n)$, $\Phi \in C(\mathbf{C}^{*n})$. Its continuity on \mathbf{C}^n can be shown by induction in n. Let it be already proved for $n \leq l$ (the case n = 1 is obvious). Consider any point $z^0 \in \mathbf{C}^{l+1}$ with $z_j^0 = 0$ for some j. If $\Phi(z^0) = -\infty$, then $\Phi(z^s) \to -\infty$ for every sequence $z^s \to z^0$. If $\Phi(z^0) > -\infty$, consider the projections \tilde{z}^s of $z^s \to z^0$ to the subspace $L_j = \{z \in \mathbf{C}^{l+1} : z_j = 0\}: \tilde{z}_j^s = 0 \text{ and } \tilde{z}_m^s = z_m^s \ \forall m \neq j$. Since $\Phi|_{L_j} \not\equiv -\infty$, the induction assumption implies $\Phi(\tilde{z}^s) \to \Phi(z^0)$. Therefore, $\lim \inf \Phi(z^s) \geq \lim \inf \Phi(\tilde{z}^s) = \Phi(z^0)$ that proves lower semicontinuity of Φ at z^0 and thus its continuity.

(b) For any $t \in \mathbf{R}^n$ and R > 0,

$$R^{-1}g'(\Phi, x, Rt) = R^{-1}\Phi(|x_1| + e^{Rt_1}, \dots, |x_n| + e^{Rt_n})$$

= $\Phi([|x_1| + e^{Rt_1}]^{1/R}, \dots, [|x_n| + e^{Rt_n}]^{1/R}).$

The argument $[|x_k| + e^{Rt_k}]^{1/R}$ tends to $\exp\{t_k^+\}$ if $x_k \neq 0$, and to $\exp\{t_k\}$ otherwise, so the statement follows from (a).

The growth characteristics (3), (4), (6) of functions $u \in \mathcal{L}$ can be expressed in terms of the indicators. We will use the following notation:

$$\mathbf{1} = (1, \dots, 1), \ \mathbf{1}_1 = (1, 0, \dots, 0), \ \mathbf{1}_2 = (0, 1, 0, \dots, 0), \ \dots, \mathbf{1}_n = (0, \dots, 0, 1).$$
 (11)

Proposition 3 (a) $\nu(u, \infty) = \nu(\Psi_{u,x}, \infty) = \psi_{u,x}(\mathbf{1});$

(b)
$$\nu(u, a, \infty) = \nu(\Psi_{u,x}, a, \infty) = \psi_{u,x}(a) \quad \forall a \in \mathbf{R}_+^n$$
;

(c)
$$\sigma_k(u) = \sigma_k(\Psi_{u,x}) = \psi_{u,x}(\mathbf{1}_k), \ k = 1, \dots, n.$$

Proof. The relation $\nu(u, a, \infty) = \psi_{u,x}(a)$ follows directly from the definition of $\psi_{u,x}$. The equalities $\nu(u, \infty) = \psi_{u,x}(1)$ and $\sigma_k(u) = \psi_{u,x}(1_k)$ are proved in Theorems 1 and 2 of [14]. Being applied to the function $\Psi_{u,x}$ instead of u, they give us the first equalities in (a)–(c) in view of Proposition 2. The proof is complete.

Theorem 1 Let $u \in \mathcal{L}$, $x \in \mathbb{C}^n$. Then

$$u(z) \le \Psi_{u,x}(z-x) + C \quad \forall z \in \mathbf{C}^n$$
 (12)

with C = g'(u, x, 0). Moreover, $\Psi_{u,x}$ is the least indicator satisfying (12) with some constant C.

Proof. By Proposition 1,

$$g'(u, x, Rt) \le R \psi_{u,x}(t) + g'(u, x, 0) \quad \forall R > 0, \ \forall t \in \mathbf{R}^n,$$

that implies (12) since $u(z+x) \leq g'(u, x, Log(z))$.

If $\Phi \in \mathcal{I}$ satisfies $u(z) \leq \Phi(z-x) + C$, then

$$\Psi_{u,x} \le \Psi_{\Phi(\cdot+x),x} = \Psi_{\Phi,0} = \Phi,$$

the latter equality being a consequence of Proposition 2. The theorem is proved.

The indicator $\Psi_{u,x}$ can be easily calculated in the algebraic case, i.e. when u is the logarithm of modulus of a polynomial mapping. Recall that the index I(P, x, a) of a polynomial P at $x \in \mathbb{C}^n$ with respect to the weight $a \in \mathbb{R}^n_+$ is defined as

$$I(P, x, a) = \inf \{ \langle a, J \rangle : J \in \omega_x \}$$

where

$$\omega_x = \{ J \in \mathbf{Z}_+^n : \frac{\partial^J P}{\partial z^J}(x) \neq 0 \}$$

(see e.g. [9]). For any $t \in \mathbf{R}^n$ we define

$$I_{up}(P, x, t) = \sup \{ \langle t, J \rangle : J \in \omega_x \}, \tag{13}$$

the upper index of P at $x \in \mathbb{C}^n$ with respect to $t \in \mathbb{R}^n$. Clearly, $I_{up}(P, x, t) = -I(P, x, -t)$ for all $t \in -\mathbb{R}^n_+$.

Proposition 4 Let $u = \log |P|$, $P : \mathbb{C}^n \to \mathbb{C}$ being a polynomial. Then

$$\psi_{u,x}(t) = I_{up}(P, x, t) \quad \forall t \in \mathbf{R}^n, \ \forall x \in \mathbf{C}^n.$$

Proof. Let

$$P(z) = \sum_{J \in \omega_x} c_J (z - x)^J$$

and $d = I_{up}(P, x, t)$, so $b_J := \langle t, J \rangle - d \leq 0 \ \forall J \in \omega_x$. Then

$$R^{-1}g'(u,x,t) = d + R^{-1} \sup_{\theta} \{ \log |\sum_{J} c_{J} \exp[Rb_{J}i\langle \theta, J\rangle] | \}.$$

Since there exists $J_0 \in \omega_x$ with $b_{J_0} = 0$, the second term here tends to 0 as $R \to +\infty$, and the statement follows.

Proposition 5 Let $u_1, \ldots, u_m \in \mathcal{L}$, $u = \sup_k u_k$, $v = \log \sum_k \exp u_k$. Then

$$\Psi_{u,x} = \Psi_{v,x} = \sup_{k} \Psi_{u_k,x}.$$

Proof. Since $u \ge u_k$, we have $\Psi_{u,x} \ge \sup_k \Psi_{u_k,x}$. On the other hand, by (12),

$$u(z) \le \sup_{k} \left\{ \Psi_{u_k,x} + C_k \right\} \le \sup_{k} \Psi_{u_k,x} + \sup_{k} C_k,$$

and the equality $\Psi_{u,x} = \sup_k \Psi_{u_k,x}$ results from Theorem 1.

Similarly, the relations $\Psi_{v,x} \geq \Psi_{u,x}$ and

$$v(z) \le \log \sum_{k} \exp[\Psi_{u_k,x}(z-x) + C_k] \le \Psi_{u,x}(z-x) + m + \sup_{k} C_k$$

imply $\Psi_{u,x} = \Psi_{v,x}$, and the proof is complete.

As a corollary of Propositions 4 and 5 we get

Proposition 6 Let

$$u = \frac{1}{q} \log \sum_{k=1}^{m} |P_k|^q$$

with P_1, \ldots, P_m polynomials and q > 0. Then $\psi_{u,x}(t) = \sup_k I_{up}(P_k, x, t)$.

The indicator $\Psi_{u,x}$ can be described as a tangent (in logarithmic coordinates) to the original function $u \in \mathcal{L}$. For $z \in \mathbb{C}^n$ and $m \in \mathbb{N}$, we set $z^m = (z_1^m, \dots, z_n^m)$ and define the function

$$(\mathcal{T}_{m,x}u)(z) = m^{-1}u(x+z^m) \in \mathcal{L}.$$

Theorem 2 $\mathcal{T}_{m,x}u \to \Psi_{u,x}$ in $L^1_{loc}(\mathbf{C}^n)$ as $m \to +\infty$.

Proof. First, the family $\{\mathcal{T}_{m,x}u\}_m$ is relatively compact in $L^1_{loc}(\mathbf{C}^n)$. Really, (12) implies

$$(\mathcal{T}_{m,x}u)(z) \le \Psi_{u,x}(z-x) + m^{-1}C \quad \forall m.$$
(14)

Therefore, the family is uniformly bounded above on each compact subset of \mathbb{C}^n . Besides, $g(\mathcal{T}_{m,x}u,0,0)=m^{-1}g(u,x,0)\to 0$ and hence $g(\mathcal{T}_{m,x}u,0,0)\geq -1$ for all $m\geq m_0$, and the compactness follows.

Now let v be a partial weak limit of $\mathcal{T}_{m,x}u$, i.e. $\mathcal{T}_{m_s,x}u \to v$ for some subsequence m_s . By (14),

$$v \le \Psi_{u,x}.\tag{15}$$

On the other hand, the convergence of $\mathcal{T}_{m_s,x}u$ to v implies

$$g(\mathcal{T}_{m_s,x}u,0,t) \to g(v,0,t) \quad \forall t \in \mathbf{R}^n.$$

At the same time, by the definition of $\psi_{u,x}$,

$$g(\mathcal{T}_{m_s,x}u,0,t) = m^{-1}g(u,x,mt) \to \psi_{u,x}(t) \quad \forall t \in \mathbf{R}^n,$$

so $g(v,0,t) = \psi_{u,x}(t)$ and thus $g(v,0,t) = g(\Psi_{u,x},0,t)$. Being compared to (15) it gives us $v = \Psi_{u,x}$, that completes the proof.

We conclude this section by studying dependence of $\Psi_{u,x}$ on x.

Proposition 7 Let $u \in \mathcal{L}$. Then

- (a) $\Psi_u(z) := \sup \{\Psi_{u,x}(z) : x \in \mathbf{C}^n\} \in \mathcal{L};$
- (b) for any $z \in \mathbf{C}^n$, $\Psi_{u,x}(z) = \Psi_u(z)$ for all $x \in \mathbf{C}^n \setminus E_z$, E_z being a pluripolar subset of \mathbf{C}^n ;
- (c) for any $z \in D^{-1}$, $\Psi_{u,x}(z) = \Psi_u(z)$ for all $x \in \mathbf{C}^n$;
- (d) $\Psi_u(z) \ge 0 \quad \forall z \in \mathbf{C}^n, \quad \Psi_u \equiv 0 \text{ in } D.$

Proof. Since $u \in \mathcal{L}$, there is a constant A > 0 such that $u(z) \leq A S^+(z) \ \forall z \in \mathbf{C}^n$, where $S^+(z) = S_1^+(z) = \sup_k \log^+ |z_k|$.

We fix a point $z \in \mathbb{C}^n$ and consider the function

$$u_R(x) = R^{-1}g'(u, x, R Log(z)), \quad R > 0.$$

It is plurisubharmonic in \mathbb{C}^n , and

$$u_R(x) \le R^{-1}A S^+(|x_1| + |z_1|^R, \dots, |x_n| + |z_n|^R).$$

Therefore, the family $\{u_R\}_{R>1}$ is uniformly bounded above on compact subsets of \mathbb{C}^n , and

$$u_{\infty}(x) := \lim_{R \to +\infty} \sup u_R(x) \le A S^+(z) \quad \forall x \in \mathbf{C}^n.$$
 (16)

Its regularization $u_{\infty}^*(x) = \limsup_{y \to x} u_{\infty}(y)$ is then plurisubharmonic in \mathbb{C}^n and bounded and so $u_{\infty}^* = const$. We have $u_{\infty}(x) \leq u_{\infty}^*(x)$ for all $x \in \mathbb{C}^n$ with the equality outside a pluripolar set $E_z \subset \mathbb{C}^n$. We observe now that $u_{\infty}(x) = \Psi_{u,x}(z)$ and $u_{\infty}^*(x) = \Psi_u(z)$, so (b) is proved.

Let $z^{(j)} \to z$, then the set

$$E = \bigcup_{j=1}^{\infty} E_{z^{(j)}} \cup E_z$$

is pluripolar. For $x \in \mathbb{C}^n \setminus E$,

$$\Psi_u(z) = \Psi_{u,x}(z) = \lim_{j \to \infty} \Psi_{u,x}(z^{(j)}) = \lim_{j \to \infty} \Psi_u(z^{(j)}),$$

that proves continuity of Ψ_u . Therefore, $\Psi_u = \Psi_u^*$ is plurisubharmonic and belongs to \mathcal{L} in view of (16), that gives us (a).

If $x, y \in \mathbb{C}^n$ and $a \in \mathbb{R}^n_+$, we have for any $\epsilon > 0$, $g'(u, x, Ra) \leq g'(u, y, (1+\epsilon)Ra)$ for all $R > R_0(\epsilon, x, y)$, so $\psi_{u,x}(a) \leq \psi_{u,y}(a)$ that implies (c).

Finally, (d) follows from the relation $\Psi_{u,x}|_D = 0$ provided $\nu(u,x) = 0$.

3 Monge-Ampère measures

Now we pass to study the Monge-Ampère measures of functions $u \in \mathcal{L}$. We can benefit by the plurisubharmonicity of the growth characteristic Ψ_u as well as by its specific properties established in the previous section.

Any indicator Φ belongs to $L^{\infty}_{loc}(\mathbf{C}^{*n})$, so $(dd^c\Phi)^n$ is well defined on \mathbf{C}^{*n} . If $\Phi \in L^{\infty}_{loc}(\mathbf{C}^n \setminus \{0\})$, then $(dd^c\Phi)^n$ is defined on the whole space \mathbf{C}^n ; the class of such indicators will be denoted by \mathcal{I}_0 .

Let T denote the distinguished boundary $\{z \in \mathbf{C}^n : |z_1| = \ldots = |z_n| = 1\}$ of the unit polydisk D.

Proposition 8 Let $\Phi \in \mathcal{I}$. Then

- (a) $(dd^c\Phi)^n = 0$ on $\mathbb{C}^{*n} \setminus T$;
- (b) if $\Phi \in \mathcal{I}_0$, then $(dd^c\Phi)^n = \tau'_{\Phi} \delta(0) + \tau''_{\Phi} dm_T$ where $\tau'_{\Phi}, \tau''_{\Phi} \geq 0$, $\delta(0)$ is the Dirac measure at 0, and $dm_T = (2\pi)^{-n} d\theta_1 \dots d\theta_n$ is the normalized Lebesgue measure on T.

Proof. (a) It suffices to show that for every $y \in \mathbb{C}^{*n}$ there exists an analytic disk γ_y containing y such that the restriction of Φ to γ_y is harmonic near y ([4], Lemma 6.9). Let $y = (|y_1|e^{i\theta_1}, \ldots, |y_n|e^{i\theta_n}) \in \mathbb{C}^{*n}$. Consider the mapping $\lambda_y : \mathbb{C} \to \mathbb{C}^n$ given by

$$\lambda_y(\zeta) = (|y_1|^{\zeta} e^{i\theta_1}, \dots, |y_n|^{\zeta} e^{i\theta_n});$$

note that $\lambda_y(1) = y$. Since $y \in \mathbf{C}^{*n} \setminus T$, λ_y is not constant. Set $\Delta = \{\zeta \in \mathbf{C} : |\zeta - 1| < 1/2\}$ and $\gamma_y = \lambda_y(\Delta) \subset \mathbf{C}^{*n}$. Then $\Phi(\lambda_y(\zeta)) = \operatorname{Re} \zeta \cdot \Phi(\lambda_y(1))$, so the restriction of Φ to γ_y is harmonic.

(b) follows from (a) since locally plurisubharmonic functions cannot charge pluripolar sets and $\Phi(y)$ is independent of $\arg y_k$, $1 \le k \le n$.

We will say that the unbounded locus of $u \in PSH(\mathbb{C}^n)$ is separated at infinity if there exists an exhaustion of \mathbb{C}^n by bounded pseudoconvex domains Ω_k such that inf $\{u(z): z \in \partial \Omega_k\} > -\infty$ for each k. The collection of all functions $u \in \mathcal{L}$ whose unbounded loci are separated at infinity will be denoted by \mathcal{L}_* . By [3], Corollary 2.3, the Monge-Ampère current $(dd^c u)^n$ is well defined on \mathbb{C}^n for any function $u \in \mathcal{L}_*$. Note also that $\Psi_{u,x} \in \mathcal{I}_0 \ \forall x \in \mathbb{C}^n$ for any $u \in \mathcal{L}_*$.

We are going to compare the total Monge-Ampère mass

$$M(u; \mathbf{C}^n) = \int_{\mathbf{C}^n} (dd^c u)^n$$

of $u \in \mathcal{L}_*$ with that of its indicator. The key result is the following comparison theorem (which is actually a variant of B.A. Taylor's theorem [21]).

Theorem 3 Let $u, v \in \mathcal{L}_*$, $v \geq 0$ outside a bounded set, and

$$\limsup_{z \to \infty} \frac{u(z)}{v(z) + \eta \log |z|} \le 1 \quad \forall \eta > 0.$$

Then $M(u; \mathbf{C}^n) \leq M(v; \mathbf{C}^n)$.

Proof. By the definition of the class \mathcal{L}_* , there exist numbers $0 \leq m_1 \leq m_2 \leq \ldots$ such that $u(z) > -m_k$ near $\partial \Omega_k$, $\{\Omega_k\}$ being the pseudoconvex exhaustion of \mathbb{C}^n . Let $w(z) = \sup\{u(z), -m_k\}$ for $\Omega_k \setminus \Omega_{k-1}$ (assuming $\Omega_0 = \emptyset$), then $w \in \mathcal{L} \cap L^{\infty}_{loc}(\mathbb{C}^n)$ and satisfies the same asymptotic relation at infinity as u does. Besides,

$$\int_{\Omega_k} (dd^c u)^n = \int_{\Omega_k} (dd^c w)^n \quad \forall k,$$

SO

$$M(u; \mathbf{C}^n) = M(w; \mathbf{C}^n). \tag{17}$$

Denote $v_{\eta}(z) = v^{+}(z) + \eta \log^{+}|z|$, $\eta > 0$. Let $\epsilon > 0$ and C > 0, then $w(z) \leq (1 + \epsilon)v_{\eta} - 2C$ for all $z \in \mathbb{C}^{n} \setminus B_{\alpha}$ with B_{α} a ball of the radius $\alpha = \alpha(\eta, C, \epsilon)$. Therefore,

$$E(\eta, C, \epsilon) := \{ z \in \mathbf{C}^n : (1 + \epsilon)v_{\eta} - C < w(z) \} \subset \subset B_{\alpha}.$$

By the Comparison Theorem for bounded plurisubharmonic functions,

$$\int_{E(\eta,C,\epsilon)} (dd^c w)^n \le \int_{E(\eta,C,\epsilon)} (dd^c [(1+\epsilon)v_{\eta} - C])^n \le (1+\epsilon) \int_{\mathbf{C}^n} (dd^c v_{\eta})^n. \tag{18}$$

For any compact $K \subset \mathbf{C}^n$ one can find C > 0 such that $K \subset E(\eta, C, \epsilon)$, so (18) gives us

$$M(w; \mathbf{C}^n) \le (1+\epsilon)M(v_{\eta}; \mathbf{C}^n).$$

Since v_{η} decreases to v^{+} as $\eta \to 0$ and in view of the arbitrary choice of ϵ , we then get

$$M(w; \mathbf{C}^n) \le M(v^+; \mathbf{C}^n) = M(v; \mathbf{C}^n),$$

which by (17) completes the proof.

As an immediate consequence we have

Theorem 4 For any $u \in \mathcal{L}_*$,

$$M(u; \mathbf{C}^n) \leq M(\Psi_{u,x}; \mathbf{C}^n) \leq M(\Psi_u; \mathbf{C}^n).$$

To get effective bounds for $M(u; \mathbb{C}^n)$, we estimate the Monge-Ampère masses of the indicators.

Proposition 9 Let $\Phi \in \mathcal{I}$, $z^0 \in D^{-1}$. Then

$$\Phi(z) \le \Phi(z^0) \sup_k \frac{\log^+ |z_k|}{\log |z_k^0|} \quad \forall z \in \mathbf{C}^n.$$

Proof. Denote $\psi = [\Phi(z^0)]^{-1} Exp^*\Phi$, $a = Log(z^0) \in \mathbf{R}_+^n$. It suffices to prove the relation $\psi(t) \leq s_a^+(t)$ for all t with $|t_k| < a_k$, $1 \leq k \leq n$; here $s_a = Exp^*S_a$ with S_a defined in (7), so $s_a^+(t) = \sup_k t_k^+/a_k$.

We fix such a point t and denote $\alpha = s_a^+(t) < 1$, $\beta = (1 - \alpha)^{-1} > 1$. Consider the segment $l_t = \{a + \lambda (t - a) : 0 \le \lambda \le \beta\} \subset \mathbf{R}^n$; observe that

$$a_k + \beta (t_k - a_k) = \beta a_k (t_k a_k^{-1} - \alpha) \le 0, \ 1 \le k \le n.$$
 (19)

Let $u(\lambda)$ be the restriction of ψ to l_t , $v(\lambda) = (\alpha - 1)\lambda + 1$. The function u is convex on l_t , and v is linear. Besides, u(0) = v(0) = 1, $v(\beta) = 0$, and $u(\beta) \leq 0$ in view of (19). Therefore, $u \leq v$ on l_t . In particular, $\psi(t) = u(1) \leq v(1) = s_a^+(t)$, and the proposition is proved.

Theorem 5 Let $\Phi \in \mathcal{I}_0$, $z^0 \in D^{-1}$. Then

$$M(\Phi; \mathbf{C}^n) \le \frac{[\Phi(z^0)]^n}{\log |z_1^0| \dots \log |z_n^0|}.$$

In particular, for any $u \in \mathcal{L}$,

$$M(\Psi_u; \mathbf{C}^n) \le \frac{[\nu(u, a, \infty)]^n}{a_1 \dots a_n} \quad \forall a \in \mathbf{R}^n_+.$$

Proof. The first relation follows from Proposition 9 and Theorem 3, since (taking $a = Log(z^0) \in \mathbf{R}^n_+$)

$$M(S_a^+; \mathbf{C}^n) = M(S_a; \mathbf{C}^n) = [\log |z_1^0| \dots \log |z_n^0|]^{-1}.$$

The second inequality results now from Proposition 3 (b).

We can give a geometric interpretation for the total Monge-Ampère masses of indicators, which in many cases leads to their exact calculation.

Let $\Phi \in \mathcal{I}$, $\varphi = Exp^*\Phi$. Denote

$$\Theta_{\Phi}^+ = \{ a \in \mathbf{R}^n : \langle a, t \rangle \le \varphi^+(t) \quad \forall t \in \mathbf{R}^n \}.$$

Proposition 10 Θ_{Φ}^+ is a convex compact subset of $\overline{\mathbf{R}_+^n}$, $\Theta_{\Phi}^+ \subset \{a \in \mathbf{R}^n : 0 \le a_k \le \varphi^+(\mathbf{1}_k), 1 \le k \le n\}$.

Proof. Convexity of Θ_{Φ}^+ is evident. Further, if $a \in \Theta_{\Phi}^+$, then $\langle a, \pm \mathbf{1}_k \rangle \leq \varphi^+(\pm \mathbf{1}_k)$, $\mathbf{1}_k$ being defined by (11), and the statement follows because $\varphi^+(-\mathbf{1}_k) = 0$.

By Vol(P) we denote the Eucledean volume of $P \subset \mathbf{R}^n$.

Theorem 6 For any $\Phi \in \mathcal{I}_0$,

$$M(\Phi; \mathbf{C}^n) = n! \, Vol(\Theta_{\Phi}^+).$$

Proof. By Proposition 8,

$$M(\Phi; \mathbf{C}^n) = M(\Phi^+; \mathbf{C}^n) = \int_T (dd^c \Phi^+)^n.$$

It can be easily checked that the complex Monge-Ampère operator $(dd^cU)^n$ of an n-circled locally bounded plurisubharmonic function U is related to the real Monge-Ampère operator $\mathcal{MA}[u]$ of its convex image u by the equation

$$\int_{G} (dd^{c}U)^{n} = n! \int_{Log(G)} \mathcal{M}\mathcal{A}[u]$$

for every n-circled Borelean set $G \subset \mathbb{C}^n$ (see e.g. [19]). Since $Log(T) = \{0\}$,

$$M(\Phi^+; \mathbf{C}^n) = n! \,\mathcal{M}\mathcal{A}[\varphi^+](\{0\}). \tag{20}$$

As was established in [18], for any convex function v on a domain $\Omega \subset \mathbf{R}^n$,

$$\mathcal{MA}[v](F) = Vol(\omega(F, v)) \quad \forall F \subset \Omega,$$
 (21)

where

$$\omega(F, v) = \bigcup_{t^0 \in F} \{ a \in \mathbf{R}^n : v(t) \ge v(t^0) + \langle a, t - t^0 \rangle \ \forall t \in \Omega \}$$

is the gradient image of the set F for the surface $\{y=v(x),\ x\in\Omega\}$. In our situation, it means that

$$\omega(\{0\}, \varphi^+) = \{ a \in \mathbf{R}^n : \varphi^+(t) \ge \langle a, t \rangle \ \forall t \in \mathbf{R}^n \} = \Theta_{\Phi}^+, \tag{22}$$

so the statement follows from (20)–(22).

The set Θ_{Φ}^+ for $\Phi = \Psi_{u,x}$, $u \in \mathcal{L}$, $x \in \mathbb{C}^n$, will be denoted by $\Theta_{u,x}^+$, and by Θ_u^+ for $\Phi = \Psi_u$. Then Theorems 4 and 6 give us

Theorem 7 For any $u \in \mathcal{L}_*$ and $x \in \mathbb{C}^n$,

$$M(u; \mathbf{C}^n) \le n! \, Vol(\Theta_{u,x}^+) \le n! \, Vol(\Theta_u^+). \tag{23}$$

Remark. Let $u = \log |P|$, $P = (P_1, \ldots, P_N)$ being a polynomial mapping. By Proposition 6,

$$\psi_{u,x}(t) = I_{up}(P, x, t) = \sup_{1 \le j \le N} I_{up}(P_j, x, t),$$

the upper indices $I_{up}(P_i, x, t)$ defined by (13). In this case,

$$\Theta_{u,x}^+ = \{ a \in \mathbf{R}^n : \langle a, t \rangle \le I_{un}^+(P, x, t) \ \forall t \in \mathbf{R}^n \},$$

so $\Theta_{u,0}^+$ coincides with the Newton polyhedron for P at infinity (see Introduction). If N = n and $P^{-1}(0)$ is discrete, then $M(u; \mathbb{C}^n)$ is the number of zeros of P counted with the multiplicities. For this case, (23) gives the bound due to Kouchnirenko [7].

Theorem 7 produces also an upper bound for $M(u; \mathbb{C}^n)$ via the multitype $(\sigma_1(u), \ldots, \sigma_n(u))$ of the function u:

Theorem 8 Let $u \in \mathcal{L}_*$, then

$$M(u; \mathbf{C}^n) \le n! \, \sigma_1(u) \dots \sigma_n(u);$$
 (24)

in particular,

$$\sum_{x} [\nu(u,x)]^n \le n! \, \sigma_1(u) \dots \sigma_n(u). \tag{25}$$

Proof. By Propositions 3 and 10, $\Theta_u^+ \subset \{a \in \mathbf{R}^n : 0 \le a_k \le \sigma_k(u), 1 \le k \le n\}$, and (24) follows from Theorem 7. It implies (25) in view of the known inequality $(dd^c u)^n|_{\{x\}} \ge [\nu(u,x)]^n$.

Remark. It can be shown that inequality (24) implies Dyson's lemma for algebraic hypersurfaces with isolated singular points (see [22]).

References

- [1] E. Bedford and B.A. Taylor, *Plurisubharmonic functions with logarithmic singularities*, Ann. Inst. Fourier **38** (1988), 133-171.
- [2] E. BEDFORD AND B.A. TAYLOR, Uniqueness for the complex Monge-Ampère equation for functions of logarithmic growth, Indiana Univ. Math. J. 38 (1989), 455-469.
- [3] J.-P. Demailly, Monge-Ampère operators, Lelong numbers and intersection theory, Complex Analysis and Geometry (Univ. Series in Math.), ed. by V. Ancona and A. Silva, Plenum Press, New York 1993, 115-193.
- [4] J.E. Fornaess and N. Sibony, Complex dynamics in higher dimensions. II, Modern Methods in Complex Analysis, Princeton Univ. Press, 1995, pp. 135-182.
- [5] C.O. Kiselman, Plurisubharmonic functions and potential theory in several complex variables, U.U.D.M. Report 1998:1, Uppsala University.
- [6] M. KLIMEK, Pluripotential theory. Oxford University Press, London, 1991.
- [7] A.G. KOUCHNIRENKO, Newton polyhedron and the number of solutions of a system of k equations with k indeterminates, Uspekhi Mat. Nauk **30** (1975), no. 2, 266-267.
- [8] A.G. KOUCHNIRENKO, *Polyèdres de Newton et nombres de Milnor*, Invent. Math. **32** (1976), 1-31.
- [9] S. LANG, Fundamentals of Diophantine Geometry, Springer, New York, 1983.
- [10] P. LELONG, Fonctions entières de type exponentiel dans \mathbb{C}^n , Ann. Inst. Fourier, 16 (1966), 271-318.
- [11] P. Lelong, Plurisubharmonic functions and positive differential forms, Gordon and Breach, New York, and Dunod, Paris, 1969.
- [12] P. LELONG, Théorème de Banach-Steinhaus pour les polynômes; applications entières d'espaces vectoriels, Séminaire Pierre Lelong (Analyse), Année 1970. Lecture Notes Math. 205, pp. 87-112. Springer, Berlin, 1971.
- [13] P. LELONG, Fonctions plurisousharmoniques de croissance logarithmique dans \mathbb{C}^n , parti principale, extension du résultant des polynômes. Semin. Conf. 8, pp. 211-229. Cetraro, Editel Italie, 1991. (1991)

- [14] P. Lelong, Mesure da Mahler et calcul de constantes universelles pour les polynômes de N variables, Math. Ann. 299 (1994), 673-695.
- [15] P. Lelong, *Remarks on pointwise multiplicities*, Linear Topologic Spaces and Complex Analysis **3** (1997), 112-119.
- [16] P. LELONG AND L. GRUMAN, Entire Functions of Several Complex Variables, Springer-Verlag, Berlin - Heidelberg - New York, 1986.
- [17] P. LELONG AND A. RASHKOVSKII, Local indicators for plurisubharmonic functions, J. Math. Pures Appl. **78** (1999), 233-247.
- [18] J. RAUCH AND B. A. TAYLOR, The Dirichlet problem for the multidimensional Monge-Ampère equation, Rocky Mountain Math. J. 7 (1977), 345-364.
- [19] A. Rashkovskii, Newton numbers and residual measures of plurisubharmonic functions, El. preprint http://xxx.lanl.gov/abs/math/990562.
- [20] J. Siciak, Extremal plurisubharmonic functions in \mathbb{C}^n , Ann. Polon. Math. 39 (1981), 175-211.
- [21] B.A. TAYLOR, An estimate for an extremal plurisubharmonic function on Cⁿ, Séminaire P. Lelong, P. Dolbeault, H. Skoda, Année 1982/1983. Lecture Notes in Math. 1028 (1983), 318-328.
- [22] C. Viola, On Dyson's lemma in several variables, In: Diophantine Approximations and Transcendental Numbers, Lumini 1990. Walter de Gruyter & Co., Berlin New York, 1992, 281-284.

Mathematical Division, Institute for Low Temperature Physics 47 Lenin Ave., Kharkov 310164, Ukraine

E-mail: rashkovskii@ilt.kharkov.ua, rashkovs@rashko.ilt.kharkov.ua