App Rating Prediction python

Importing all the libraries

In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
```

Steps to perform:

1. Load the data file using pandas.

```
In [2]:
```

```
1 df = pd.read_csv('Dataset\googleplaystore.csv')
```

In [3]:

1 df

Out[3]:

	Арр	Category	Rating	Reviews	Size	Installs	Туре	Price
0	Photo Editor & Candy Camera & Grid & ScrapBook	ART_AND_DESIGN	4.1	159	19M	10,000+	Free	0
1	Coloring book moana	ART_AND_DESIGN	3.9	967	14M	500,000+	Free	0
2	U Launcher Lite – FREE Live Cool Themes, Hide	ART_AND_DESIGN	4.7	87510	8.7M	5,000,000+	Free	0
3	Sketch - Draw & Paint	ART_AND_DESIGN	4.5	215644	25M	50,000,000+	Free	0
4	Pixel Draw - Number Art Coloring Book	ART_AND_DESIGN	4.3	967	2.8M	100,000+	Free	0
10836	Sya9a Maroc - FR	FAMILY	4.5	38	53M	5,000+	Free	0
10837	Fr. Mike Schmitz Audio Teachings	FAMILY	5.0	4	3.6M	100+	Free	0
10838	Parkinson Exercices FR	MEDICAL	NaN	3	9.5M	1,000+	Free	0
10839	The SCP Foundation DB fr nn5n	BOOKS_AND_REFERENCE	4.5	114	Varies with device	1,000+	Free	0
10840	iHoroscope - 2018 Daily Horoscope & Astrology	LIFESTYLE	4.5	398307	19M	10,000,000+	Free	0
10841	rows × 13 co	olumns						
4)

In [4]:

1 df.head()

Out[4]:

	Арр	Category	Rating	Reviews	Size	Installs	Type	Price	Content Rating	
0	Photo Editor & Candy Camera & Grid & ScrapBook	ART_AND_DESIGN	4.1	159	19M	10,000+	Free	0	Everyone	
1	Coloring book moana	ART_AND_DESIGN	3.9	967	14M	500,000+	Free	0	Everyone	D€
2	U Launcher Lite – FREE Live Cool Themes, Hide	ART_AND_DESIGN	4.7	87510	8.7M	5,000,000+	Free	0	Everyone	
3	Sketch - Draw & Paint	ART_AND_DESIGN	4.5	215644	25M	50,000,000+	Free	0	Teen	
4	Pixel Draw - Number Art Coloring Book	ART_AND_DESIGN	4.3	967	2.8M	100,000+	Free	0	Everyone	Des
4										•

In [5]:

1 df.tail()

Out[5]:

	Арр	Category	Rating	Reviews	Size	Installs	Туре	Price
10836	Sya9a Maroc - FR	FAMILY	4.5	38	53M	5,000+	Free	0
10837	Fr. Mike Schmitz Audio Teachings	FAMILY	5.0	4	3.6M	100+	Free	0
10838	Parkinson Exercices FR	MEDICAL	NaN	3	9.5M	1,000+	Free	0
10839	The SCP Foundation DB fr nn5n	BOOKS_AND_REFERENCE	4.5	114	Varies with device	1,000+	Free	0
10840	iHoroscope - 2018 Daily Horoscope & Astrology	LIFESTYLE	4.5	398307	19M	10,000,000+	Free	0
4								•

In [6]:

1 df.head(10)

Out[6]:

	Арр	Category	Rating	Reviews	Size	Installs	Туре	Price	Content Rating	
0	Photo Editor & Candy Camera & Grid & ScrapBook	ART_AND_DESIGN	4.1	159	19M	10,000+	Free	0	Everyone	
1	Coloring book moana	ART_AND_DESIGN	3.9	967	14M	500,000+	Free	0	Everyone	D
2	U Launcher Lite – FREE Live Cool Themes, Hide	ART_AND_DESIGN	4.7	87510	8.7M	5,000,000+	Free	0	Everyone	
3	Sketch - Draw & Paint	ART_AND_DESIGN	4.5	215644	25M	50,000,000+	Free	0	Teen	
4	Pixel Draw - Number Art Coloring Book	ART_AND_DESIGN	4.3	967	2.8M	100,000+	Free	0	Everyone	De
5	Paper flowers instructions	ART_AND_DESIGN	4.4	167	5.6M	50,000+	Free	0	Everyone	
6	Smoke Effect Photo Maker - Smoke Editor	ART_AND_DESIGN	3.8	178	19M	50,000+	Free	0	Everyone	
7	Infinite Painter	ART_AND_DESIGN	4.1	36815	29M	1,000,000+	Free	0	Everyone	
8	Garden Coloring Book	ART_AND_DESIGN	4.4	13791	33M	1,000,000+	Free	0	Everyone	
9	Kids Paint Free - Drawing Fun	ART_AND_DESIGN	4.7	121	3.1M	10,000+	Free	0	Everyone	De
4										•

In [7]:

1 # To check the shape of a DataFrame i.e. total no of rows & columns

```
In [8]:
    1 | df.shape
```

Out[8]:

(10841, 13)

In [9]:

1 # To check the info of the DataFrame such as index, columns, dtype, non-null values & me

In [10]:

```
1 df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10841 entries, 0 to 10840
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	Арр	10841 non-null	object
1	Category	10841 non-null	object
2	Rating	9367 non-null	float64
3	Reviews	10841 non-null	object
4	Size	10841 non-null	object
5	Installs	10841 non-null	object
6	Туре	10840 non-null	object
7	Price	10841 non-null	object
8	Content Rating	10840 non-null	object
9	Genres	10841 non-null	object
10	Last Updated	10841 non-null	object
11	Current Ver	10833 non-null	object
12	Android Ver	10838 non-null	object
d+vn	oc. float64(1)	object(12)	

dtypes: float64(1), object(12)

memory usage: 1.1+ MB

In [11]:

To find the description (statistical measures) of the data in the DataFrame such as co

```
In [12]:
```

```
1 df.describe()
```

Out[12]:

	Rating
count	9367.000000
mean	4.193338
std	0.537431
min	1.000000
25%	4.000000
50%	4.300000
75%	4.500000
max	19.000000

2. Check for null values in the data. Get the number of null values for each column.

In [13]:

1 # sum() calculates the sum of elements for each row and column as True=1 and False=0

In [14]:

```
1 df.isnull().sum()
```

Out[14]:

Арр	0
Category	0
Rating	1474
Reviews	0
Size	0
Installs	0
Type	1
Price	0
Content Rating	1
Genres	0
Last Updated	0
Current Ver	8
Android Ver	3
dtype: int64	

```
In [15]:
 1 df.notnull().sum()
Out[15]:
                  10841
App
                  10841
Category
Rating
                   9367
Reviews
                  10841
Size
                  10841
Installs
                  10841
Type
                  10840
Price
                  10841
Content Rating
                  10840
Genres
                  10841
Last Updated
                  10841
Current Ver
                  10833
Android Ver
                  10838
dtype: int64
```

3. Drop records with nulls in any of the columns.

```
In [16]:

1  # dropna() method removes the Rows/Columns that contains NULL values.
2  # inplace: It is a boolean which makes the changes in data frame itself if True.
3  #If (inplace = True) not specified, then returns a new DataFrame object

In [17]:

1  df.dropna(inplace = True)

In [18]:

1  df.shape

Out[18]:

(9360, 13)

In [19]:

1  # To reset index after droping null records
```

In [20]:

1 2	df = df.re df	set_index(drop=True)								
	Paint	/11/1_/11/0DE01014	1.0	210011	ZOIVI	00,000,000.	1100	J	10011	_
4	Pixel Draw - Number Art Coloring Book	ART_AND_DESIGN	4.3	967	2.8M	100,000+	Free	0	Everyone	Desi
935	FR Calculator	FAMILY	4.0	7	2.6M	500+	Free	0	Everyone	
9356	Sya9a Maroc - FR	FAMILY	4.5	38	53M	5,000+	Free	0	Everyone	
9357	Fr. Mike Schmitz Audio Teachings	FAMILY	5.0	4	3.6M	100+	Free	0	Everyone	
9358	The SCP Foundation	BOOKS_AND_REFERENCE	4.5	114	Varies with	1,000+	Free	0	Mature ₁フ⊥	•
4										

4. Variables seem to have incorrect type and inconsistent formatting. You need to fix them:

- 1. Size column has sizes in Kb as well as Mb. To analyze, you'll need to convert t hese to numeric
- 2. Extract the numeric value from the column
- 3. Multiply the value by 1,000, if size is mentioned in Mb

```
In [21]:
```

```
1 df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9360 entries, 0 to 9359
Data columns (total 13 columns):
     Column
                     Non-Null Count
 #
                                      Dtype
     ----
                     -----
                                     ----
0
     App
                     9360 non-null
                                      object
 1
                     9360 non-null
                                      object
     Category
 2
                                      float64
     Rating
                     9360 non-null
 3
     Reviews
                     9360 non-null
                                      object
 4
                     9360 non-null
                                      object
     Size
 5
     Installs
                     9360 non-null
                                      object
 6
                     9360 non-null
     Type
                                      object
 7
     Price
                     9360 non-null
                                      object
 8
     Content Rating 9360 non-null
                                      object
 9
     Genres
                     9360 non-null
                                      object
 10
    Last Updated
                     9360 non-null
                                      object
 11
     Current Ver
                     9360 non-null
                                      object
 12 Android Ver
                     9360 non-null
                                      object
dtypes: float64(1), object(12)
memory usage: 950.8+ KB
In [22]:
 1 # To extract single column
 2 # df["Size"] or df.Size
In [23]:
   df["Size"]
Out[23]:
0
                       19M
1
                       14M
2
                      8.7M
3
                       25M
4
                      2.8M
9355
                      2.6M
9356
                       53M
9357
                      3.6M
9358
        Varies with device
9359
                       19M
Name: Size, Length: 9360, dtype: object
In [24]:
 1 | df["Size"] = [ (1000 * float(i.split('M')[0])) if 'M' in i else (float(i.split('k')[0])
```

In [25]:

1 df

Out[25]:

	Арр	Category	Rating	Reviews	Size	Installs	Туре	Price
0	Photo Editor & Candy Camera & Grid & ScrapBook	ART_AND_DESIGN	4.1	159	19000.0	10,000+	Free	0
1	Coloring book moana	ART_AND_DESIGN	3.9	967	14000.0	500,000+	Free	0
2	U Launcher Lite – FREE Live Cool Themes, Hide	ART_AND_DESIGN	4.7	87510	8700.0	5,000,000+	Free	0
3	Sketch - Draw & Paint	ART_AND_DESIGN	4.5	215644	25000.0	50,000,000+	Free	0
4	Pixel Draw - Number Art Coloring Book	ART_AND_DESIGN	4.3	967	2800.0	100,000+	Free	0
9355	FR Calculator	FAMILY	4.0	7	2600.0	500+	Free	0
9356	Sya9a Maroc - FR	FAMILY	4.5	38	53000.0	5,000+	Free	0
9357	Fr. Mike Schmitz Audio Teachings	FAMILY	5.0	4	3600.0	100+	Free	0
9358	The SCP Foundation DB fr nn5n	BOOKS_AND_REFERENCE	4.5	114	0.0	1,000+	Free	0
9359	iHoroscope - 2018 Daily Horoscope & Astrology	LIFESTYLE	4.5	398307	19000.0	10,000,000+	Free	0
9360	rows × 13 co	olumns						
4								•

2. Reviews is a numeric field that is loaded as a string field. Convert it to numeric (int/float)

```
In [26]:
   # df["Reviews"] = pd.to numeric(df["Reviews"])
In [27]:
 1 df["Reviews"] = df["Reviews"].astype(float)
In [28]:
 1 df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9360 entries, 0 to 9359
Data columns (total 13 columns):
#
    Column
                    Non-Null Count Dtype
0
    App
                    9360 non-null
                                   object
 1
    Category
                    9360 non-null object
 2
    Rating
                    9360 non-null
                                   float64
                    9360 non-null float64
 3
    Reviews
 4
    Size
                    9360 non-null float64
 5
                    9360 non-null
                                   object
    Installs
 6
    Type
                    9360 non-null object
 7
    Price
                    9360 non-null object
 8
    Content Rating 9360 non-null object
9
    Genres
                    9360 non-null object
 10 Last Updated
                    9360 non-null
                                   object
 11 Current Ver
                    9360 non-null
                                    object
12 Android Ver
                    9360 non-null
                                    object
dtypes: float64(3), object(10)
memory usage: 950.8+ KB
```

3. Installs field is currently stored as string and has values like 1,000,000+

- 1. Treat 1,000,000+ as 1,000,000
- 2. remove '+', ',' from the field, convert it to integer

```
In [29]:
```

```
1 # To display dataframe
2
3 df
```

Out[29]:

		Арр	Category	Rating	Reviews	Size	Installs	Туре	Price	Content Rating		
	0	Photo Editor & Candy Camera & Grid & ScrapBook	ART_AND_DESIGN	4.1	159.0	19000.0	10,000+	Free	0	Everyone		
	1	Coloring book moana	ART_AND_DESIGN	3.9	967.0	14000.0	500,000+	Free	0	Everyone	[
	2	U Launcher Lite – FREE Live Cool	ART_AND_DESIGN	4.7	87510.0	8700.0	5,000,000+	Free	0	Everyone		•
4											•	

In [30]:

```
1 df["Installs"]
```

Out[30]:

```
0
            10,000+
1
           500,000+
2
         5,000,000+
        50,000,000+
3
           100,000+
9355
               500+
9356
             5,000+
               100+
9357
9358
             1,000+
9359
        10,000,000+
Name: Installs, Length: 9360, dtype: object
```

In [31]:

```
1 df["Installs"] = [ (i.replace('+','').replace(',', '')) if '+' in i or ',' in i else floor
```

In [32]:

```
1 df["Installs"] = df["Installs"].astype(int)
```

In [33]:

```
1 df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9360 entries, 0 to 9359
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype		
0	Арр	9360 non-null	object		
1	Category	9360 non-null	object		
2	Rating	9360 non-null	float64		
3	Reviews	9360 non-null	float64		
4	Size	9360 non-null	float64		
5	Installs	9360 non-null	int32		
6	Type	9360 non-null	object		
7	Price	9360 non-null	object		
8	Content Rating	9360 non-null	object		
9	Genres	9360 non-null	object		
10	Last Updated	9360 non-null	object		
11	Current Ver	9360 non-null	object		
12	Android Ver	9360 non-null	object		
dtyp	es: float64(3),	<pre>int32(1), object</pre>	(9)		

In [34]:

1 df

Out[34]:

	Арр	Category	Rating	Reviews	Size	Installs	Туре	Price	(
0	Photo Editor & Candy Camera & Grid & ScrapBook	ART_AND_DESIGN	4.1	159.0	19000.0	10000	Free	0	E
1	Coloring book moana	ART_AND_DESIGN	3.9	967.0	14000.0	500000	Free	0	Ε
2	U Launcher Lite – FREE Live Cool Themes, Hide	ART_AND_DESIGN	4.7	87510.0	8700.0	5000000	Free	0	E
3	Sketch - Draw & Paint	ART_AND_DESIGN	4.5	215644.0	25000.0	50000000	Free	0	
4	Pixel Draw - Number Art Coloring Book	ART_AND_DESIGN	4.3	967.0	2800.0	100000	Free	0	Е
9355	FR Calculator	FAMILY	4.0	7.0	2600.0	500	Free	0	Ε
9356	Sya9a Maroc - FR	FAMILY	4.5	38.0	53000.0	5000	Free	0	Ε
9357	Fr. Mike Schmitz Audio Teachings	FAMILY	5.0	4.0	3600.0	100	Free	0	Е
9358	The SCP Foundation DB fr nn5n	BOOKS_AND_REFERENCE	4.5	114.0	0.0	1000	Free	0	
9359	iHoroscope - 2018 Daily Horoscope & Astrology	LIFESTYLE	4.5	398307.0	19000.0	10000000	Free	0	Е
9360 ı	rows × 13 co	olumns							
4								ı	

4. Price field is a string and has symbol. Remove' sign, and convert it to numeric

```
In [35]:
 1 df["Price"]
Out[35]:
1
         a
2
         0
3
9355
9356
         0
9357
9358
9359
Name: Price, Length: 9360, dtype: object
In [36]:
 1 df['Price'].unique()
Out[36]:
array(['0', '$4.99', '$3.99', '$6.99', '$7.99', '$5.99', '$2.99', '$3.49',
        '$1.99', '$9.99', '$7.49', '$0.99', '$9.00', '$5.49', '$10.00',
        '$24.99', '$11.99', '$79.99', '$16.99', '$14.99', '$29.99', '$12.99', '$2.49', '$10.99', '$1.50', '$19.99', '$15.99', '$33.99',
        '$39.99', '$3.95', '$4.49', '$1.70', '$8.99', '$1.49', '$3.88',
        '$399.99', '$17.99', '$400.00', '$3.02', '$1.76', '$4.84', '$4.77',
        '$1.61', '$2.50', '$1.59', '$6.49', '$1.29', '$299.99', '$379.99',
        '$37.99', '$18.99', '$389.99', '$8.49', '$1.75', '$14.00', '$2.00',
        '$3.08', '$2.59', '$19.40', '$3.90', '$4.59', '$15.46', '$3.04', '$13.99', '$4.29', '$3.28', '$4.60', '$1.00', '$2.95', '$2.90',
        '$1.97', '$2.56', '$1.20'], dtype=object)
In [37]:
    df['Price'] = [ float (i.split('$')[1]) if '$' in i else float(0) for i in df['Price']
In [38]:
 1 | df["Price"] = df["Price"].astype(int)
```

In [39]:

```
1 df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9360 entries, 0 to 9359
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype				
0	Арр	9360 non-null	object				
1	Category	9360 non-null	object				
2	Rating	9360 non-null	float64				
3	Reviews	9360 non-null	float64				
4	Size	9360 non-null	float64				
5	Installs	9360 non-null	int32				
6	Туре	9360 non-null	object				
7	Price	9360 non-null	int32				
8	Content Rating	9360 non-null	object				
9	Genres	9360 non-null	object				
10	Last Updated	9360 non-null	object				
11	Current Ver	9360 non-null	object				
12	Android Ver	9360 non-null	object				
<pre>dtypes: float64(3), int32(2), object(8)</pre>							
memory usage: 877.6+ KB							

In [40]:

```
1 df.shape
```

Out[40]:

(9360, 13)

5. Sanity checks:

- 1. Average rating should be between 1 and 5 as only these values are allowed on the e play store. Drop the rows that have a value outside this range.
- 2. Reviews should not be more than installs as only those who installed can review the app. If there are any such records, drop them.
- 3. For free apps (type = "Free"), the price should not be >0. Drop any such rows.

```
In [41]:
 1 df["Rating"]
Out[41]:
0
        4.1
1
        3.9
2
        4.7
3
        4.5
        4.3
9355
        4.0
9356
        4.5
        5.0
9357
9358
        4.5
9359
        4.5
Name: Rating, Length: 9360, dtype: float64
In [42]:
 1 # Observation: Rating column is already in Range between 1 to 5
In [43]:
 1 df = df[(df["Reviews"]<= df["Installs"])].reset_index(drop = True)</pre>
In [44]:
 1 df.shape
Out[44]:
(9353, 13)
In [45]:
 1 df.drop(df[(df['Type'] =='Free') & (df['Price'] > 0 )].index, inplace = True)
In [46]:
 1 df.shape
Out[46]:
(9353, 13)
```

Performing univariate analysis:

- Boxplot for Price: Are there any outliers? Think about the price of usual apps on Play Store.
- Boxplot for Reviews : Are there any apps with very high number of reviews? Do the values seem right?
- Histogram for Rating: How are the ratings distributed? Is it more toward higher ratings?
- · Histogram for Size

Note down your observations for the plots made above. Which of these seem to have outliers?

Boxplot for Price

In [47]:

```
1 sns.boxplot(df["Price"])
2 plt.title("Boxplot for Price")
3 plt.ylabel("Price")
4 plt.show()
```



```
In [48]:
 1 df["Price"].describe()
Out[48]:
         9353.000000
count
            0.899711
mean
           15.776941
std
            0.000000
min
            0.000000
25%
50%
            0.000000
75%
            0.000000
max
          400.000000
Name: Price, dtype: float64
In [49]:
 1 # To round off to 2 decimels
In [50]:
 1 round(df["Price"].describe(),2)
Out[50]:
         9353.00
count
            0.90
mean
           15.78
std
            0.00
min
25%
            0.00
            0.00
50%
75%
            0.00
          400.00
max
```

Observation: There are outliers and the price of usual apps on Play Store is 0.90.

Name: Price, dtype: float64

Boxplot for Reviews

In [51]:

```
1 sns.boxplot(df["Reviews"])
2 plt.title("Boxplot for Reviews")
3 plt.ylabel("Reviews")
4 plt.show()
```


In [52]:

```
1 df["Reviews"].describe()
```

Out[52]:

count 9.353000e+03
mean 5.147606e+05
std 3.146169e+06
min 1.000000e+00
25% 1.870000e+02
50% 5.967000e+03
75% 8.174700e+04
max 7.815831e+07

Name: Reviews, dtype: float64

50%

75%

```
In [53]:
```

```
1 round(df["Reviews"].describe(),2)

Out[53]:

count    9353.00
mean    514760.58
std    3146168.75
min     1.00
25%     187.00
```

max 78158306.00 Name: Reviews, dtype: float64

5967.00

81747.00

Observation : There are apps with very high number of Reviews and the value 78158306 don't seem to be correct

Histogram for Rating

In [54]:

```
1 sns.histplot(df["Rating"])
2 plt.title("Histogram for Rating")
3 plt.xlabel("Rating")
4 plt.ylabel("Distribution")
5 plt.show()
```


Observation: Ratings are left skewed distributed and it is more toward higher ratings.

Histogram for Size

In [55]:

```
1 sns.histplot(df["Size"])
2 plt.title("Histogram for Size")
3 plt.xlabel("Size")
4 plt.ylabel("Distribution")
5 plt.show()
```

Histogram for Size

Observation: Size are right skewed distributed.

6. Outlier treatment:

- Price: From the box plot, it seems like there are some apps with very high price. A price of \$200 for an application on the Play Store is very high and suspic ious!
 - A. Check out the records with very high price
 - a. Is 200 indeed a high price?
 - ii. Drop these as most seem to be junk apps

- 2. Reviews: Very few apps have very high number of reviews. These are all star app s that don't help with the analysis and, in fact, will skew it. Drop records ha ving more than 2 million reviews.
- 3. Installs: There seems to be some outliers in this field too. Apps having very high number of installs should be dropped from the analysis.
 - A. Find out the different percentiles 10, 25, 50, 70, 90, 95, 99
 - h Donido a thurshold as sutoff for sutline and does assends begins uslues

In [56]:

```
1 df.drop(df[df["Price"] > 200].index, inplace = True)
```

In [57]:

```
1 df.shape
```

Out[57]:

(9338, 13)

In [58]:

```
1 df.drop(df[df['Reviews'] > 2000000].index, inplace = True)
```

In [59]:

```
1 df.shape
```

Out[59]:

(8885, 13)

In [60]:

```
1 df.quantile([.1, .25, .5, .70, .90, .95, .99])
```

C:\Users\nidhi\AppData\Local\Temp\ipykernel_26168\2610616657.py:1: FutureWarn ing: The default value of numeric_only in DataFrame.quantile is deprecated. In a future version, it will default to False. Select only valid columns or specify the value of numeric_only to silence this warning.

df.quantile([.1, .25, .5, .70, .90, .95, .99])

Out[60]:

	Rating	Reviews	Size	Installs	Price
0.10	3.5	18.00	0.0	1000.0	0.0
0.25	4.0	159.00	2600.0	10000.0	0.0
0.50	4.3	4290.00	9500.0	500000.0	0.0
0.70	4.5	35930.40	23000.0	1000000.0	0.0
0.90	4.7	296771.00	50000.0	10000000.0	0.0
0.95	4.8	637298.00	68000.0	10000000.0	1.0
0.99	5.0	1462800.88	95000.0	100000000.0	7.0

In [61]:

```
# dropping more than 10000000 (threshold) Installs value

df.drop(df[df["Installs"] > 10000000].index, inplace = True)
```

In [62]:

```
1 df.shape
```

Out[62]:

(8496, 13)

7. Bivariate analysis:

Let's look at how the available predictors relate to the variable of interest, i.e., our target variable rating. Make scatter plots (for numeric features) and box plots (for character features) to assess the relations between rating and the other features.

- 1. Make scatter plot/joinplot for Rating vs. Price
 - a. What pattern do you observe? Does rating increase with price?
- 2. Make scatter plot/joinplot for Rating vs. Size
 - b. Are heavier apps rated better?
- 3. Make scatter plot/joinplot for Rating vs. Reviews
 - c. Does more review mean a better rating always?
- 4. Make boxplot for Rating vs. Content Rating
 - d. Is there any difference in the ratings? Are some types liked better?
- 5. Make boxplot for Ratings vs. Category
 - f. Which genre has the best ratings?

For each of the plots above, note down your observation.

Scatterplot for Rating vs. Price

In [63]:

```
sns.scatterplot(data=df, x="Rating", y="Price", hue="Price")
plt.title("Scatterplot for Rating vs. Price")
plt.xlabel("Rating")
plt.ylabel("Price")
plt.show()
```

Scatterplot for Rating vs. Price

Observation: Paid apps have higher ratings as compared to free apps.

Scatterplot for Rating vs. Size

In [64]:

```
sns.scatterplot(data=df, x="Rating", y="Size", hue="Size")
plt.title("Scatterplot for Rating vs. Size")
plt.xlabel("Rating")
plt.ylabel("Size")
plt.show()
```

Scatterplot for Rating vs. Size

Observation: It is clear that heavier apps are rated better.

Scatterplot for Rating vs. Reviews

In [65]:

```
sns.scatterplot(data=df, x="Rating", y="Reviews", hue="Reviews")
plt.title("Scatterplot for Rating vs. Reviews")
plt.xlabel("Rating")
plt.ylabel("Reviews")
plt.show()
```


Observation: It is cristal clear that more reviews means better rating always.

Boxplot for Rating vs. Content Rating

In [66]:

```
sns.boxplot(data=df, x="Rating", y="Content Rating")
plt.title("Boxplot for Rating vs. Content Rating")
plt.xlabel("Rating")
plt.ylabel("Content Rating")
plt.show()
```


Observation : Apps which are for everyone has more bad ratings compare to other sections as it has so much outliers value, while Adults only 18+ apps have better ratings.

Boxplot for Rating vs. Category

In [67]:

```
sns.set(rc={'figure.figsize':(8,7)})
sns.boxplot(data=df, x="Rating", y="Category")
plt.xticks(fontsize=10)
plt.yticks(fontsize=10)
plt.title("Boxplot for Rating vs. Category", fontsize=15)
plt.xlabel("Rating", fontsize=15)
plt.ylabel("Category",fontsize=15)
plt.show()
```


Observation: Events category has best ratings compare to others.

8. Data pre-processing

For the steps below, create a copy of the dataframe to make all the edits. Name it inp1.

- 1. Reviews and Install have some values that are still relatively very high. Befor e building a linear regression model, you need to reduce the skew. Apply log tr ansformation (np.log1p) to Reviews and Installs.
- 2. Drop columns App, Last Updated, Current Ver, and Android Ver. These variables a re not useful for our task.

3. Get dummy columns for Category, Genres, and Content Rating. This needs to be do ne as the models do not understand categorical data. and all data should be num

In [68]:

```
1 inp1 = df.copy()
```

In [69]:

```
1 inp1.skew()
```

C:\Users\nidhi\AppData\Local\Temp\ipykernel_26168\3545313420.py:1: FutureWarn ing: The default value of numeric_only in DataFrame.skew is deprecated. In a future version, it will default to False. In addition, specifying 'numeric_on ly=None' is deprecated. Select only valid columns or specify the value of num eric_only to silence this warning.

inp1.skew()

Out[69]:

Rating -1.749753 Reviews 4.576494 Size 1.657766 Installs 1.543697 Price 18.074542

dtype: float64

In [70]:

```
1 sns.set(rc={'figure.figsize':(6,4)})
2 
3 sns.displot(data=inp1, x="Reviews", kind="kde")
4 plt.title('Reviews skewness')
5 plt.xlabel('Reviews')
6 plt.show()
```


In [71]:

1 # We can see that Reviews is right skewed

Applying Log transformation to Reviews

In [72]:

```
1 reviewskew = np.log1p(inp1['Reviews'])
2 inp1['Reviews'] = reviewskew
3 reviewskew.skew()
```

Out[72]:

-0.20039949659264134

In [73]:

```
sns.displot(data=inp1, x="Reviews", kind="kde")
plt.title('Reviews reduce the skewness')
plt.xlabel('Reviews')
plt.show()
```


In [74]:

```
1 sns.displot(data=inp1, x="Installs", kind="kde")
2 plt.title('Installs skewness')
3 plt.xlabel('Installs')
4 plt.show()
```


Applying Log transformation to Installs

In [75]:

```
installsskew = np.log1p(inp1['Installs'])
inp1['Installs'] = installsskew
installsskew.skew()
```

Out[75]:

-0.5097286542754812

In [76]:

```
1 sns.displot(data=inp1, x="Installs", kind="kde")
2 plt.title('Installs reduce the skewness')
3 plt.xlabel('Installs')
4 plt.show()
```


Drop columns App, Last Updated, Current Ver, and Android Ver. These variables are not useful for our task.

In [77]:

```
inp1.drop(["Last Updated","Current Ver","Android Ver","App","Type"],axis=1,inplace=True
inp1.head()
```

Out[77]:

	Category	Rating	Reviews	Size	Installs	Price	Content Rating	Genres
0	ART_AND_DESIGN	4.1	5.075174	19000.0	9.210440	0	Everyone	Art & Design
1	ART_AND_DESIGN	3.9	6.875232	14000.0	13.122365	0	Everyone	Art & Design;Pretend Play
2	ART_AND_DESIGN	4.7	11.379520	8700.0	15.424949	0	Everyone	Art & Design
4	ART_AND_DESIGN	4.3	6.875232	2800.0	11.512935	0	Everyone	Art & Design;Creativity
5	ART_AND_DESIGN	4.4	5.123964	5600.0	10.819798	0	Everyone	Art & Design

In [78]:

```
1 inp2 = inp1.copy()
```

Get dummy columns for Category, Genres, and Content Rating. This needs to be done as the models do not understand categorical data, and all data should be numeric. Dummy encoding is one way to convert character fields to numeric. Name of dataframe should be inp2.

In [79]:

```
1 # apply Dummy Encoding on Column "Category"
2 # get unique values in Column "Category"
3 inp2['Category'].unique()
```

Out[79]:

In [80]:

```
1  x = inp2[['Category']]
2  del inp2['Category']
3
4  dummies = pd.get_dummies(x, prefix = 'Category')
5  inp2 = pd.concat([inp2,dummies], axis=1)
6  inp2.head()
```

Out[80]:

	Rating	Reviews	Size	Installs	Price	Content Rating	Genres	Category_ART_AND_D
0	4.1	5.075174	19000.0	9.210440	0	Everyone	Art & Design	_
1	3.9	6.875232	14000.0	13.122365	0	Everyone	Art & Design;Pretend Play	
2	4.7	11.379520	8700.0	15.424949	0	Everyone	Art & Design	
4	4.3	6.875232	2800.0	11.512935	0	Everyone	Art & Design;Creativity	
5	4.4	5.123964	5600.0	10.819798	0	Everyone	Art & Design	

5 rows × 40 columns

→

In [81]:

1 inp2.shape

Out[81]:

(8496, 40)

In [82]:

```
1 # apply Dummy EnCoding on Column "Genres"
2 # get unique values in Column "Genres"
3
4 inp2["Genres"].unique()
```

Out[82]:

```
array(['Art & Design', 'Art & Design; Pretend Play',
        'Art & Design; Creativity', 'Auto & Vehicles', 'Beauty',
        'Books & Reference', 'Business', 'Comics', 'Comics; Creativity',
        'Communication', 'Dating', 'Education', 'Education; Creativity',
        'Education; Education', 'Education; Music & Video',
        'Education; Action & Adventure', 'Education; Pretend Play',
        'Education; Brain Games', 'Entertainment',
        'Entertainment; Brain Games', 'Entertainment; Creativity',
        'Entertainment; Music & Video', 'Events', 'Finance', 'Food & Drink',
        'Health & Fitness', 'House & Home', 'Libraries & Demo',
        'Lifestyle', 'Lifestyle; Pretend Play', 'Card', 'Casual', 'Puzzle',
        'Action', 'Arcade', 'Word', 'Racing', 'Casual; Creativity',
        'Sports', 'Board', 'Simulation', 'Role Playing', 'Adventure',
        'Strategy', 'Simulation; Education', 'Action; Action & Adventure',
        'Trivia', 'Casual; Brain Games', 'Simulation; Action & Adventure',
        'Educational;Creativity', 'Puzzle;Brain Games',
        'Educational; Education', 'Card; Brain Games',
        'Educational; Brain Games', 'Educational; Pretend Play',
        'Casual; Action & Adventure', 'Entertainment; Education',
        'Casual; Education', 'Casual; Pretend Play', 'Music; Music & Video',
        'Racing; Action & Adventure', 'Arcade; Pretend Play',
        'Adventure; Action & Adventure', 'Role Playing; Action & Adventure',
        'Simulation; Pretend Play', 'Puzzle; Creativity',
       'Sports; Action & Adventure', 'Educational; Action & Adventure', 'Arcade; Action & Adventure', 'Entertainment; Action & Adventure', 'Puzzle; Action & Adventure', 'Strategy; Action & Adventure',
        'Music & Audio; Music & Video', 'Health & Fitness; Education',
        'Adventure; Education', 'Board; Brain Games',
        'Board; Action & Adventure', 'Board; Pretend Play',
        'Casual; Music & Video', 'Role Playing; Pretend Play',
        'Entertainment; Pretend Play', 'Video Players & Editors; Creativity',
        'Card; Action & Adventure', 'Medical', 'Social', 'Shopping',
        'Photography', 'Travel & Local',
        'Travel & Local; Action & Adventure', 'Tools', 'Tools; Education',
        'Personalization', 'Productivity', 'Parenting',
        'Parenting; Music & Video', 'Parenting; Brain Games',
        'Parenting; Education', 'Weather', 'Video Players & Editors',
        'Video Players & Editors; Music & Video', 'News & Magazines',
        'Maps & Navigation', 'Health & Fitness; Action & Adventure',
        'Music', 'Educational', 'Casino', 'Adventure; Brain Games', 'Lifestyle; Education', 'Books & Reference; Education',
        'Puzzle; Education', 'Role Playing; Brain Games',
        'Strategy; Education', 'Racing; Pretend Play',
        'Communication; Creativity', 'Strategy; Creativity'], dtype=object)
```

#Since, There are too many categories under Genres. Hence, we will try to reduce some categories which have very few samples under them and put them under one new common category i.e. "Other".

In [83]:

```
pd.set_option("display.max_rows", None)
 2 inp2["Genres"].value_counts()
Trivia
                                             27
Word
                                             25
Entertainment; Music & Video
                                             23
Education; Pretend Play
                                             23
Racing; Action & Adventure
                                             18
Puzzle; Brain Games
                                             18
Casual; Action & Adventure
                                             17
Action; Action & Adventure
                                            17
Educational;Pretend Play
                                            15
Board; Brain Games
                                             15
Music
                                             15
Casual; Brain Games
                                             13
Arcade; Action & Adventure
                                            13
Simulation; Action & Adventure
                                             11
Entertainment; Brain Games
                                             8
Education; Creativity
                                             7
                                              7
Art & Design;Creativity
Casual; Creativity
                                              7
                                              7
Role Playing; Action & Adventure
Danonting Music & Vidoo
```

In [84]:

```
1 lists = []
2 for i in inp2['Genres'].value_counts().index:
3    if inp2['Genres'].value_counts()[i] < 20:
4         lists.append(i)
5 inp2['Genres'] = ['Other' if i in lists else i for i in inp2['Genres']]</pre>
```

In [85]:

1 inp2["Genres"].value_counts()

Out[85]:

Tools	672
Entertainment	501
Education	468
Medical	349
Finance	311
Sports	308
Lifestyle	305
Other	303
Business	293
Health & Fitness	290
Personalization	290
Productivity	285
Action	279
Photography	248
Communication	243
News & Magazines	222
Social	213
Shopping	208
Travel & Local	204
Dating	195
Simulation	184
Books & Reference	171
Arcade	150
Casual	142
Video Players & Editors	133
Maps & Navigation	118
Food & Drink	109
Role Playing	103
Puzzle	99
Strategy	81
House & Home	76
Auto & Vehicles	73
Adventure	70
Weather	70
Racing	69
Libraries & Demo	64
Comics	57
Art & Design	54
Events	45
Card	44
Education; Education	43
Beauty	42
Parenting	40
Board	39
Educational; Education	38
Casino	36
Educational	32
Casual; Pretend Play	29
Trivia	27
Word	25
Entertainment; Music & Video	23
Education; Pretend Play	23
Name: Genres, dtype: int64	

In [86]:

```
1  x = inp2[["Genres"]]
2  del inp2['Genres']
3  dummies = pd.get_dummies(x, prefix = 'Genres')
4  inp2 = pd.concat([inp2,dummies], axis=1)
5  inp2.head()
```

Out[86]:

	Rating	Reviews	Size	Installs	Price	Content Rating	Category_ART_AND_DESIGN	Category _.
0	4.1	5.075174	19000.0	9.210440	0	Everyone	1	_
1	3.9	6.875232	14000.0	13.122365	0	Everyone	1	
2	4.7	11.379520	8700.0	15.424949	0	Everyone	1	
4	4.3	6.875232	2800.0	11.512935	0	Everyone	1	
5	4.4	5.123964	5600.0	10.819798	0	Everyone	1	

5 rows × 91 columns

→

In [87]:

```
1 inp2.shape
```

Out[87]:

(8496, 91)

In [88]:

```
# apply Dummy EnCoding on Column "Content Rating"
# get unique values in Column "Content Rating"
inp2["Content Rating"].unique()
```

Out[88]:

In [89]:

```
1  x = inp2[['Content Rating']]
2  del inp2['Content Rating']
3
4  dummies = pd.get_dummies(x, prefix = 'Content Rating')
5  inp2 = pd.concat([inp2,dummies], axis=1)
6  inp2.head()
```

Out[89]:

	Rating	Reviews	Size	Installs	Price	Category_ART_AND_DESIGN	Category_AUTO_AN
0	4.1	5.075174	19000.0	9.210440	0	1	
1	3.9	6.875232	14000.0	13.122365	0	1	
2	4.7	11.379520	8700.0	15.424949	0	1	
4	4.3	6.875232	2800.0	11.512935	0	1	
5	4.4	5.123964	5600.0	10.819798	0	1	

5 rows × 96 columns

→

In [90]:

```
1 inp2.shape
```

Out[90]:

(8496, 96)

9. Train test split and apply 70-30 split. Name the new dataframes df_train and df_test.

```
In [94]:
```

```
!pip install scikit-learn
Collecting scikit-learn
 Downloading scikit learn-1.3.0-cp311-cp311-win amd64.whl (9.2 MB)
                                            0.0/9.2 MB ? eta -:--:--
                                            0.0/9.2 MB 1.3 MB/s eta 0:00:08
                                            0.1/9.2 MB 1.3 MB/s eta 0:00:07
                                            0.2/9.2 MB 2.0 MB/s eta 0:00:05
                                            0.4/9.2 MB 2.7 MB/s eta 0:00:04
     --
                                            0.6/9.2 MB 3.0 MB/s eta 0:00:03
                                            1.1/9.2 MB 4.5 MB/s eta 0:00:02
                                            1.6/9.2 MB 5.2 MB/s eta 0:00:02
                                            2.2/9.2 MB 6.5 MB/s eta 0:00:02
     ------
                                            3.1/9.2 MB 7.8 MB/s eta 0:00:01
     _ _ _ _ _ _ _ _ _ _ _ _ _
                                            3.9/9.2 MB 8.8 MB/s eta 0:00:01
     _____
                                            4.6/9.2 MB 9.5 MB/s eta 0:00:01
                                            6.9/9.2 MB 13.3 MB/s eta 0:00:0
1
                                            7.7/9.2 MB 13.7 MB/s eta 0:00:0
                                            9.0/9.2 MB 14.8 MB/s eta 0:00:0
1
     ----- 9.2/9.2 MB 13.7 MB/s eta 0:00:0
0
Requirement already satisfied: numpy>=1.17.3 in c:\users\nidhi\appdata\local
\programs\python\python311\lib\site-packages (from scikit-learn) (1.24.2)
Requirement already satisfied: scipy>=1.5.0 in c:\users\nidhi\appdata\local\p
rograms\python\python311\lib\site-packages (from scikit-learn) (1.10.1)
Collecting joblib>=1.1.1 (from scikit-learn)
  Downloading joblib-1.3.1-py3-none-any.whl (301 kB)
                                            0.0/302.0 kB ? eta -:--:--
                                            276.5/302.0 kB ? eta -:--:--
     ----- 302.0/302.0 kB 4.6 MB/s eta 0:00:
00
Collecting threadpoolctl>=2.0.0 (from scikit-learn)
  Downloading threadpoolctl-3.1.0-py3-none-any.whl (14 kB)
Installing collected packages: threadpoolctl, joblib, scikit-learn
Successfully installed joblib-1.3.1 scikit-learn-1.3.0 threadpoolctl-3.1.0
In [95]:
 1 from sklearn.model selection import train test split
    from sklearn.linear_model import LinearRegression
    from sklearn.metrics import mean_squared_error
```

10. Separate the dataframes into X_train, y_train, X_test, and y_test.

```
In [96]:
```

```
1 d1 = inp2.copy()
2
3 X = d1.drop('Rating', axis=1)
4 y = d1['Rating']
5
6 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
```

In [97]:

```
1 X_train.shape[0], X_test.shape[0]
Out[97]:
```

(5947, 2549)

11. Model building

- Use linear regression as the technique
- Report the R2 on the train set

In [98]:

```
1 LR_model = LinearRegression()
2 LR_model.fit(X_train, y_train)
```

Out[98]:

```
v LinearRegression
LinearRegression()
```

In [99]:

```
1 R2_train = LR_model.score(X_train, y_train)
2 print("The R2 value of the Training Set is : {}".format(R2_train))
```

The R2 value of the Training Set is : 0.16437115581874862

In [100]:

```
1 R2_train = round(LR_model.score(X_train, y_train),3)
2 print("The R2 value of the Training Set is : {}".format(R2_train))
```

The R2 value of the Training Set is: 0.164

12. Make predictions on test set and report R2.

```
In [101]:
```

```
1 R2_test = round(LR_model.score(X_test, y_test), 3)
2 print("The R2 value of the Testing Set is : {}".format(R2_test))
```

The R2 value of the Testing Set is : 0.125

In []:

1