2	forming a strip of interconnected battery grids from a grid material, each
3	interconnected battery grid including a grid network bordered by at least one frame
4	element, one of the frame elements having a current collector lug, the grid network
5	comprising a plurality of spaced apart grid wire elements, each grid wire element
6	having opposed ends, each opposed end being joined to one of a plurality of nodes to
7	define a plurality of open spaces in the grid network;
8	deforming at least a portion of the grid wire elements at a position
9	intermediate the opposed ends of the grid wire element such that a first transverse cross
10	section taken at the position intermediate the opposed ends of the grid wire element
11	differs from a second transverse cross-section taken at one of the opposed ends of the
12	opposed ends of the grid wire element;
13	applying battery paste to the strip;
14	cutting the strip to form a plurality of battery plates;
15	wherein the grid network and each of the frames define opposed planar
16	surfaces, and each first transverse cross-section does not extend above or below the
17	planar surfaces.
1	116. The method of claim 1 wherein the step of deforming at least a portion of
2	the grid wire elements comprises: stamping the grid wire element at the position
3	intermediate the opposed ends of the grid wire element.
1	117. The method of claim 2 wherein the first transverse cross-section
2	substantially has a shape selected from group consisting of diamond, oval, rhomboid,
3	hexagon, and octagon.
1	118. The method of claim 1 wherein the step of forming a strip of
2	interconnected battery grids from a grid material comprises: feeding a continuous strip
3	of the grid material along a linear path aligned with the longitudinal direction of the
4	strip; and
5	punching grid material out of the strip to form the strip of interconnected
6	battery grids.

1	119. The method of claim 4 wherein the continuous strip of the grid material
2	is formed by a continuous casting process.
1	120. The method of claim 4 wherein the continuous strip of the grid material
2	is formed by a rolling process.
1	121. The method of claim 1 wherein the step of forming a strip of
2	interconnected battery grids from a grid material comprises:
3	feeding a continuous strip of the grid material along a linear path aligned
4	with the longitudinal direction of the strip;
5	piercing apertures in the strip of grid material; and
6	laterally expanding the strip of grid material to form the strip of
7	interconnected battery grids.
1	122. The method of claim 1 wherein the step of forming a strip of
2	interconnected battery grids from a grid material comprises:
3	melting the grid material,
4	continuously casting the grid material to form a continuous web; and
5	rolling the web to form the strip of interconnected battery grids.
1	123. The method of claim 1 wherein the step of forming a strip of
2	interconnected battery grids from a grid material comprises:
3	melting the grid material; and
4	continuously casting the grid material to form the strip of interconnected
5	battery grids.
1	124. The method of claim 1 further comprising the step of deforming at least a
2	portion of the nodes before applying battery paste to the strip.
1	125. A method of making a plurality of battery grids, the method comprising:
2	forming a strip of interconnected battery grids from a grid material, each
3	interconnected battery grid including a grid network bordered by at least one frame
4	element, one of the frame elements having a current collector lug, the grid network

comprising a plurality of spaced apart grid wire element, each grid wire element

5

having opposed ends, each opposed end being joined to one of a plurality of nodes to 6 7 define a plurality of open spaces in the grid network; 8 deforming at least a portion of the grid wire elements at a position intermediate the opposed ends of the grid wire element such that a first transverse cross-9 section taken at the position intermediate the opposed ends of the grid wire element 10 11 differs from a second transverse cross-section taken at one of the opposed ends of the 12 grid wire element; and 13 cutting the strip to form a plurality of battery grids, 14 wherein the grid network and each of the frames define opposed planar 15 surfaces, and each first transverse cross-section does not extend above or below the 16 planar surfaces. 126. The method of claim 11 wherein the step of deforming at least a portion 1

of the grid wire elements comprises stamping the grid wire element at the position

intermediate the opposed ends of the grid wire element.

2

3