EXERCICE DES 3 ÉTATS SUPERPOSÉS

Un qubit est dans son état $|0\rangle$, puis on fait évoluer cet état à l'aide de l'opérateur $R_y(\theta)$ de paramètre θ , c'est à dire que l'on effectue une rotation autour de l'axe y, d'un angle θ .

$$q_1 |0\rangle - R_Y(\theta)$$

L'état du qubit est donc amené à la valeur :

$$|\Psi(\theta)\rangle = \cos\frac{\theta}{2}|0\rangle + \sin\frac{\theta}{2}|1\rangle$$

(1) Quelle valeur d'angle θ faut-il utiliser afin que la mesure de $|\Psi(\theta)\rangle$ produise le résultat $|0\rangle$ avec la probabilité $\frac{1}{3}$?

Exprimez la formule permettant de calculer θ

Donnez la valeur numérique de θ , en radian, à 10^{-2} près

Comparer la valeur trouvée à $\frac{\pi}{2}\approx 1,57$, qu'en déduisez-vous concernant la position de $|\Psi(\theta)\rangle$ sur la Bloch-sphère ?

(2) On considère le circuit suivant sur 2 qubits :

On cherche à déterminer l'état $|\Psi_2\rangle$ en sortie du circuit. $(|\Psi_0\rangle$ représente l'état à l'entrée du circuit, et on appelle $|\Psi_1\rangle$ l'état des qubits après la première porte H).

- (a) on passe de $|\Psi_0\rangle = |00\rangle$ à $|\Psi_1\rangle$ par la matrice $H \otimes I$, calculez cette matrice
- (b) En déduire les coordonnées de $|\Psi_1\rangle$ (on rappelle les coordonnées de $|00\rangle = \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}$).
- (c) Calculez la matrice correspondant à CONTROL-H
- (d) En déduire les coordonnées de $|\Psi_2\rangle$
- (3) A partir des deux questions précédentes, construisez un circuit avec Python et qiskit produisant un état de deux qubits $|\Gamma\rangle$ qui possède 3 coordonnées non nulles de même amplitude ? (on obtient $|\Gamma\rangle = \frac{1}{\sqrt{3}}\,|00\rangle + \frac{1}{\sqrt{3}}\,|10\rangle + \frac{1}{\sqrt{3}}\,|11\rangle$)
- (4) Exécutez ce circuit sur simulateur (ou machine) et vérifier que le résultat correspond à ce qui est attendu.
- (5) Supplément : comment produire un état sur plusieurs qubits avec exactement 4 coordonnées non nulles et de même amplitude (super facile), plus difficile : 5 coordonnées non nulles et de même amplitude ?
- jmT