Расширения полей

Числовым полем будем называть подмножество \mathbb{K} комплексных чисел, являющееся полем относительно сложения и умножения. Если $\mathbb{K} \subset \mathbb{L}$ — числовые поля, то \mathbb{L} называется *расширением* поля \mathbb{K} . Размерность \mathbb{L} как векторного пространства над \mathbb{K} называется *степенью расширения* и обозначается $[\mathbb{L} : \mathbb{K}]$.

Два поля называются изоморфными, если между ними существует биекция, сохраняющая сумму и произведение.

Пусть $x_1, x_2, \ldots, x_k \in \mathbb{C}$. Символом $\mathbb{K}[x_1, x_2, \ldots, x_k]$ будем обозначать минимальное по включению числовое поле, включающее \mathbb{K} и содержащее все x_i .

Пусть $\mathbb{K} \subset \mathbb{L}$ — числовые поля, $\alpha \in \mathbb{L}$. Элемент α называется алгебраическим над полем \mathbb{K} , если существует многочлен P(x) с коэффициентами из \mathbb{K} такой, что $P(\alpha)=0$; в противном случае α называется трансцендентным над \mathbb{K} . Для алгебраического α многочлен P(x) с коэффициентами из \mathbb{K} наименьшей степени, удовлетворяющий $P(\alpha)=0$, называется минимальным многочленом α над \mathbb{K} . Если все элементы \mathbb{L} алгебраические над \mathbb{K} , то говорят, что поле \mathbb{L} — алгебраическое расширение поля \mathbb{K} .

- **1.** Какие элементы $\mathbb C$ являются алгебраическими над $\mathbb R$, а какие трансцендентными?
- **2.** Докажите, что $\mathbb{Q} \subset \mathbb{K}$ для любого числового поля \mathbb{K} .
- **3.** (а) Докажите, что $\mathbb{Q}[\sqrt{2}]$ есть множество чисел вида $a+b\sqrt{2}$, где $a,b\in\mathbb{Q}$. (б) Найдите такое же представление для $\mathbb{Q}[\sqrt{2},\sqrt{3}]$ и вычислите $[\mathbb{Q}[\sqrt{2},\sqrt{3}]:\mathbb{Q}]$.
- **4.** Пусть α трансцендентный над $\mathbb Q$ элемент. Докажите, что поле $\mathbb Q[\alpha]$ изоморфно полю рациональных функций над $\mathbb Q$.
- **5.** Пусть \mathbb{K} числовое поле, а $\alpha \in \mathbb{C}$ алгебраический элемент над \mathbb{K} . Докажите, что минимальный многочлен P(x) элемента α над \mathbb{K} неприводим (в кольце многочленов с коэффициентами из \mathbb{K}), и что любой многочлен Q(x) с коэффициентами из \mathbb{K} , удовлетворяющий $Q(\alpha)=0$, делится на P(x).

- **6.** (а) Пусть α, β корни одного и того же неприводимого многочлена степени n над \mathbb{K} . Докажите, что поля $\mathbb{K}[\alpha]$ и $\mathbb{K}[\beta]$ изоморфны.
 - (б) Обязательно ли эти поля совпадают?
- 7. Пусть α корень неприводимого над \mathbb{K} многочлена степени n. Докажите, что $1, \alpha, \dots, \alpha^{n-1}$ базис в пространстве $\mathbb{K}[\alpha]$ над \mathbb{K} .
- 8. Теорема об алгебраичности конечного расширения. Пусть $\mathbb{K} \subset \mathbb{L}$ и $[\mathbb{L} : \mathbb{K}] = n$. Докажите, что каждый элемент из \mathbb{L} корень некоторого многочлена степени не выше n с коэффициентами из \mathbb{K} .
- 9. Лемма о башне. Пусть $\mathbb{K} \subset \mathbb{L} \subset \mathbb{M}$. Докажите, что расширение \mathbb{M} над \mathbb{K} конечно тогда и только тогда когда конечны расширения \mathbb{M} над \mathbb{L} и \mathbb{L} над \mathbb{K} , причем $[\mathbb{M}:\mathbb{K}]=[\mathbb{L}:\mathbb{K}]\cdot[\mathbb{M}:\mathbb{L}]$.
- **10.** Пусть α, β алгебраические элементы над $\mathbb{K}, [\mathbb{K}[\alpha] : \mathbb{K}] = n, [\mathbb{K}[\beta] : \mathbb{K}] = m$ и (m,n)=1. Докажите, что $[\mathbb{K}[\alpha,\beta] : \mathbb{K}] = mn$.
- **11. Теорема.** Пусть $\mathbb{K}\subset\mathbb{L}$. Тогда элементы \mathbb{L} , алгебраические над \mathbb{K} , образуют поле.
 - (а) Докажите теорему непосредственно: для α и β , алгебраических над \mathbb{K} , постройте многочлены из $\mathbb{K}[x]$, корнями которых являются элементы $\alpha+\beta,\ \alpha\cdot\beta$ и $1/\alpha.$
 - (б) Докажите теорему при помощи леммы о башне.
- **12.** Чему равна размерность расширения $[\mathbb{Q}[\sqrt{2}, \sqrt[3]{3}, \sqrt[5]{5}, \sqrt[7]{7}] : \mathbb{Q}]$?
- **13.** Пусть α, β два корня многочлена $x^3 17$. Найдите размерность расширения $[\mathbb{Q}[\alpha, \beta] : \mathbb{Q}]$.
- **14.** Докажите, что $\mathbb{Q}\left[\sqrt{2}, \sqrt{3}, \sqrt{5}, \sqrt[3]{7}, \sqrt[3]{9}, \sqrt[4]{11}\right] \not\ni \sqrt[5]{13}$.
- **15.** Пусть p_1, p_2, \dots, p_n различные простые числа. Докажите, что

$$\left[\mathbb{Q}[\sqrt{p_1},\sqrt{p_2},\ldots,\sqrt{p_n}]:\mathbb{Q}\right]=2^n.$$