

■评分标准

- □例2.14中(4)(5)(7)(8)(11)共70分,每题14分,附加题每道14分
- □习题2.3中(2)(4)(6)共30分, 每题10分, 附加题 每道10分

情况汇总

- □27份作业100分,12份作业没有给予成绩(下次提交时补全错误及未完成部分)
- □错误率较高的为例2.14中的(5)。

(x) -YXF(X) += X7F(X) 对危险(5) 常四次作业 最一大大(x)↔ 3次一下(x) 1. 本下到各的的黄菜是到 是明晚婚。 (x) チャダモ (x)チャダモ (x) (1) YX F(K,Y)→ BY HSF(K,Y) 対を起的 N((M) TXE ← (M) TXE) 特有基項文 (コイフトは)→コスフト(の) ◆ ¬ ∀x = y F (x,y) y = x ∀y F (x,y) 強なりしょ 等幂件 (かまかったん)→ヨケフチ(の) ● ヨスHス ¬ FKX EV(C, x) 対域が 益分號式 (a) frate ((a) frate) WARRENT TO BANGE (EIN) TERME 黄斑戏物的 (WFTXEV (WFX) 梅名秋则 ⇔ Ha Fun V∃ga F(3) ◆ヨメヤタ(コをサモド(s,も)ソデチは、ツ)支操権 建%1.1 ↔ YX =7 (Fa) V+(n) HISE (16, K) FLX (FISA) V-FLX, Y) ENEN 考进一名 化箱,可得原公儿是逻辑效式

あまなまる子(x,な)→サスサタテ(x,な) 対した(こ) 明、マヨxヨgFは、y) V YxygFはigh 基件似十七分的 ⇔ ∀x∀ŋ¬ F(x,y) V ∀x ∀ŋ F(x, 8) 操名规则 ↔ HXYg-F(x,y)VH8Y+F(s,t) 是%1.1 ↔ tx yy (¬F(x,y)) V E Y+ F(s,t) 放射

1238H

→ YXY (48 42 F(8, 2) V= F(X, 3))

↔ YXYMYSY+ (FLS,+)X-F(X,M))

(4) Ya (Fu) VGex) -> (YaFa) V YaGen) 爾. tha (Fax) V Gax) - (Yx Fax) V Vx Gax)) 7 4x (Fix) V G(x) V (Yx F(x) V 4x G(x)) 基分的: 到可能够到. ヨソー(アイタンのはり)と(タイトイス)とくなるはり) 接線叫 =1x - (Fon y 6an) y (45 F(5) V Y = Gtt)) 统律 3x - (FM) V GM) V 48 FG) V YEGEL) 路1.1 =x (-(F(x) V 6(x)) V Y & F(5) V YE (xto)) 3x (46 F(6) V YeF(2) V - (F(x) V 6(x))) 被抢

FMV6(FG) VFH) Y (FM) VG(M))

图1-1

(5) - (4xf(x) -> 4y 6(y)) (4y 6(y)) 解. T (HXFOX) > Hy L(y)) A Yy L(y) 7 (7 tx Fex) V43 6(3) 1 47 6(3) Yx Fen A-ty Gern A ty Ger) ·サストのハヨターははハイサるはり、 サストのハヨターははハイをはして HX 39 42 (FIM) MIG(3) MG(3))

刃左起(11)

蕴含省级

德摩福轮

753 对超23中的(2)(4)(6)命题符号化,只使用全征 解: (2). 有些入喜欢所有的花.

设FIX): X是人

G(y): y是在

H(x,y): x喜欢y:

若使用存在量词,命题符号化为

ax (FIX) ∧ ¥y (G(y) > H(X,y))

反使用全科量词,则命题铝化为:

¬ ∀x (¬Fix) V ¬ ∀y (Giy) > Hixiy)1)

(4). 在北京工作的人未必都是北京人。 设: F(x): x是机的了20多的人 G(x): X是北京人, 命题等号化为: ¬ Yx (F(x) -> G(x)) 16) 凡对顶角都拥等。 设: FIX,y): X,y是对顶角 高點符号化为: ∀X ∀Y (F(X,y)→>+G(X,y))

没有听课,不懂换名规则

.

第4章 二元关系与函数

- 4.1 集合的笛卡儿积与二元关系
- 4.2 关系的运算
- 4.3 关系的性质
- 4.4 关系的闭包
- 4.5 等价关系和偏序关系
- 4.6 函数的定义和性质
- 4.7 函数的复合和反函数

4.1 集合的笛卡儿积和二元关系

- ■有序对
- 笛卡儿积及其性质
- 二元关系的定义
- 二元关系的表示

有序对

定义 由两个客体x和y,按照一定的顺序组成的

二元组称为有序对,记作<x,y>

实例:点的直角坐标(3,-4)

有序对性质

有序性 $\langle x,y \rangle \neq \langle y,x \rangle$ (当 $x \neq y$ 时)

<x,y> 与 <u,v> 相等的充分必要条件是

$$\langle x,y\rangle = \langle u,v\rangle \iff x=u \land y=v$$

例1
$$\langle 2, x+5 \rangle = \langle 3y-4, y \rangle$$
, 求 x, y . 解 $3y-4=2, x+5=y \Rightarrow y=2, x=-3$

有序n元组

定义 一个有序 n ($n \ge 3$) 元组 $< x_1, x_2, ..., x_n >$ 是一个有序 n 有序对,其中第一个元素是一个有序 n - 1 元组,即 $< x_1, x_2, ..., x_n > = < < x_1, x_2, ..., x_{n-1} >, x_n >$ 当 n = 1 时,< x > 形式上可以看成有序 1 元组.

实例 n 维向量是有序 n元组.

10

笛卡儿积

定义 设A,B为集合,A 与 B 的笛卡儿积记作 $A \times B$,即 $A \times B = \{ \langle x,y \rangle \mid x \in A \land y \in B \}$

例2
$$A=\{1,2,3\}, B=\{a,b,c\}$$

 $A\times B=\{<1,a>,<1,b>,<1,c>,<2,a>,<2,b>,<2,c>,
 $<3,a>,<3,b>,<3,c>\}$
 $B\times A=\{,,,,,,
 $,,\}$
 $A=\{\varnothing\}, P(A)\times A=\{$$$

笛卡儿积的性质

不适合交换律 $A \times B \neq B \times A$ $(A \neq B, A \neq \emptyset, B \neq \emptyset)$ 不适合结合律 $(A \times B) \times C \neq A \times (B \times C)$ $(A \neq \emptyset, B \neq \emptyset)$ 对于并或交运算满足分配律 $A \times (B \cup C) = (A \times B) \cup (A \times C)$ $(B \cup C) \times A = (B \times A) \cup (C \times A)$ $A \times (B \cap C) = (A \times B) \cap (A \times C)$ $(B \cap C) \times A = (B \times A) \cap (C \times A)$ $A \times \emptyset = \emptyset \times B = \emptyset$ $\mathsf{Z}|A|=m$, |B|=n, 则 $|A\times B|=mn$

性质的证明

证明
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

证 任取 $\langle x,y \rangle$
 $\langle x,y \rangle \in A \times (B \cup C)$
 $\Leftrightarrow x \in A \land y \in B \cup C$
 $\Leftrightarrow x \in A \land (y \in B \lor y \in C)$
 $\Leftrightarrow (x \in A \land y \in B) \lor (x \in A \land y \in C)$
 $\Leftrightarrow \langle x,y \rangle \in A \times B \lor \langle x,y \rangle \in A \times C$
 $\Leftrightarrow \langle x,y \rangle \in (A \times B) \cup (A \times C)$
所以有 $A \times (B \cup C) = (A \times B) \cup (A \times C)$.

例题

例3 (1) 证明 $A=B \land C=D \Rightarrow A \times C=B \times D$

 $(2) A \times C = B \times D$ 是否推出 $A = B \land C = D$? 为什么?

解(1)任取<x,y>

 $\langle x,y \rangle \in A \times C \iff x \in A \land y \in C$ $\iff x \in B \land y \in D \iff \langle x,y \rangle \in B \times D$

(2) 不一定. 反例如下: $A=\{1\}$, $B=\{2\}$, $C=D=\emptyset$, 则 $A\times C=B\times D$ 但是 $A\neq B$.

二元关系的定义

定义 如果一个集合满足以下条件之一:

- (1) 集合非空, 且它的元素都是有序对
- (2) 集合是空集

则称该集合为一个二元关系,简称为关系,记作R.

如 $\langle x,y\rangle \in R$,可记作 xRy; 如果 $\langle x,y\rangle \notin R$,则记作 $x \otimes y$

实例: $R=\{\langle 1,2\rangle,\langle a,b\rangle\}, S=\{\langle 1,2\rangle,a,b\}.$

R是二元关系,当a,b不是有序对时,S不是二元关系根据上面的记法,可以写 1R2,aRb,a = c 等.

从A到B的关系与A上的关系

定义设A,B为集合, $A \times B$ 的任何子集所定义的二元关系叫做从A到B的二元关系,当A=B时则叫做A上的二元关系。

例4 $A=\{0,1\}$, $B=\{1,2,3\}$, $R_1=\{<0,2>\}$, $R_2=A\times B$, $R_3=\emptyset$, $R_4=\{<0,1>\}$.

那么 R_1 , R_2 , R_3 , R_4 是从 A 到 B的二元关系, R_3 和 R_4 同时也是 A上的二元关系.

计数

|A|=n, $|A\times A|=n^2$, $A\times A$ 的子集有 2^{n^2} 个. 所以 A上有 2^{n^2} 个不同的二元关系.

例如 |A|=3,则 A上有=512个不同的二元关系.

A上重要关系的实例

设A为任意集合, \emptyset 是A上的关系,称为空关系 E_{A},I_{A} 分别称为全域关系与恒等关系,定义如下: $E_A = \{\langle x,y \rangle | x \in A \land y \in A \} = A \times A$ $I_{A} = \{\langle x, x \rangle | x \in A\}$ 例如, $A=\{1,2\}$,则 $E_A = \{<1,1>,<1,2>,<2,1>,<2,2>\}$ $I_{\Lambda} = \{<1,1>,<2,2>\}$

10

A上重要关系的实例(续)

小于等于关系 L_A , 整除关系 D_A , 包含关系 R_{\subseteq} 定义: $L_A = \{ \langle x,y \rangle | x,y \in A \land x \leq y \}$, $A \subseteq R$, R为实数集合 $D_B = \{ \langle x,y \rangle | x,y \in B \land x$ 整除 $y \}$, $B \subseteq Z^*$, Z^* 为非0整数集

 $R_{\subseteq}=\{\langle x,y\rangle|x,y\in A\land x\subseteq y\},A$ 是集合族. 类似的还可以定义大于等于关系,小于关系,大于 关系,真包含关系等等.

实例

例如
$$A = \{1, 2, 3\}, B = \{a, b\}, 则$$

$$L_A = \{<1,1>,<1,2>,<1,3>,<2,2>,<2,3>,<3,3>\}$$

$$D_A = \{<1,1>,<1,2>,<1,3>,<2,2>,<3,3>\}$$

$$C=P(B)=\{\emptyset,\{a\},\{b\},\{a,b\}\}, 则 C上的包含关系是$$
 $R_{\subseteq}=\{\langle\emptyset,\emptyset\rangle,\langle\emptyset,\{a\}\rangle,\langle\emptyset,\{b\}\rangle,\langle\emptyset,\{a,b\}\rangle,\langle\{a\},\{a\}\rangle,\langle\{a,b\}\rangle,\langle\{a$

关系的表示

表示方式: 关系的集合表达式、关系矩阵、关系图关系矩阵: 若 $A=\{x_1, x_2, ..., x_m\}$, $B=\{y_1, y_2, ..., y_n\}$, R是从A到B的关系,R的关系矩阵是布尔矩阵 $M_R=[r_{ij}]_{m\times n}$, 其中 $r_{ij}=1\Leftrightarrow < x_i, y_j> \in R$. 关系图: 若 $A=\{x_1, x_2, ..., x_m\}$, R是A上的关系,R的关系图是 $G_R=<A$, R>, 其中A为结点集,R为边集.如果 $< x_i, x_j>$ 属于关系R,在图中就有一条从 x_i 到 x_j 的有向边.

注意: A, B为有穷集,关系矩阵适于表示从A到B的关系或者A上的关系,关系图适于表示A上的关系

$$A = \{1,2,3,4\},$$

 $R = \{<1,1>,<1,2>,<2,3>,<2,4>,<4,2>\},$
 R 的关系矩阵 M_R 和关系图 G_R 如下:

$$M_R = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

4.2 关系的运算

- ■基本运算定义
 - □定义域、值域、域
 - □逆、合成、限制、像
- ■基本运算的性质
- ■幂运算
 - □定义
 - □求法
 - □性质

关系的基本运算定义

```
定义域、值域和域
     \mathbf{dom}R = \{ x \mid \exists y \ (\langle x,y \rangle \in R) \}
     ranR = \{ y \mid \exists x (\langle x,y \rangle \in R) \}
     fldR = dom R \cup ran R
 例1 R=\{<1,2>,<1,3>,<2,4>,<4,3>\},则
         dom R = \{1, 2, 4\}
         ranR = \{2, 3, 4\}
         fldR = \{1, 2, 3, 4\}
```

.

关系的基本运算定义 (续)

逆与合成

$$R^{-1} = \{ \langle y, x \rangle \mid \langle x, y \rangle \in R \}$$

$$R \circ S = |\langle x, z \rangle \mid \exists y (\langle x, y \rangle \in R \land \langle y, z \rangle \in S) \}$$

例2
$$R = \{<1,2>, <2,3>, <1,4>, <2,2>\}$$
 $S = \{<1,1>, <1,3>, <2,3>, <3,2>, <3,3>\}$
 $R^{-1} =$
 $R \circ S =$
 $S \circ R =$

合成运算的图示方法

利用图示(不是关系图)方法求合成

$$R \circ S = \{ <1,3>, <2,2>, <2,3> \}$$

 $S \circ R = \{ <1,2>, <1,4>, <3,2>, <3,3> \}$

限制与像

```
定义 F 在A上的限制
        F \upharpoonright A = \{ \langle x,y \rangle \mid xFy \land x \in A \}
        A 在F下的像
        F[A] = \operatorname{ran}(F[A])
实例 R=\{<1,2>,<2,3>,<1,4>,<2,2>\}
         R \upharpoonright \{1\} = \{<1,2>,<1,4>\}
         R[\{1\}]=\{2,4\}
         R \upharpoonright \emptyset = \emptyset
         R[\{1,2\}]=\{2,3,4\}
注意: F[A \subset F, F[A] \subset ranF
```

м

关系基本运算的性质

定理1 设F是任意的关系,则

- $(1) (F^{-1})^{-1} = F$
- (2) $dom F^{-1} = ran F$, $ran F^{-1} = dom F$
- 证 (1) 任取 $\langle x,y \rangle \in (F^{-1})^{-1}$, 由逆的定义有 $\langle x,y \rangle \in (F^{-1})^{-1} \Leftrightarrow \langle y,x \rangle \in F^{-1} \Leftrightarrow \langle x,y \rangle \in F$ 所以有 $(F^{-1})^{-1} = F$
 - (2) 任取x,

$$x \in \text{dom} F^{-1} \Leftrightarrow \exists y (\langle x, y \rangle \in F^{-1})$$

$$\Leftrightarrow \exists y (\langle y, x \rangle \in F) \Leftrightarrow x \in \operatorname{ran} F$$

所以有 $dom F^{-1} = ran F$. 同理可证 $ran F^{-1} = dom F$.

关系基本运算的性质 (续)

定理2 设F, G, H是任意的关系, 则

- $(1) (F \circ G) \circ H = F \circ (G \circ H)$
- (2) $(F \circ G)^{-1} = G^{-1} \circ F^{-1}$

$$\langle x,y\rangle \in (F\circ G)\circ H$$

$$\Leftrightarrow \exists t (\langle x,t \rangle \in F \circ G \land \langle t,y \rangle \in H)$$

$$\Leftrightarrow \exists t \ (\exists s (\langle x,s \rangle \in F \land \langle s,t \rangle \in G) \land \langle t,y \rangle \in H)$$

$$\Leftrightarrow \exists t \; \exists s \; (\langle x,s \rangle \in F \land \langle s,t \rangle \in G \land \langle t,y \rangle \in H)$$

$$\Leftrightarrow \exists s \ (\langle x,s \rangle \in F \land \exists t \ (\langle s,t \rangle \in G \land \langle t,y \rangle \in H))$$

$$\Leftrightarrow \exists s \ (\langle x,s \rangle \in F \land \langle s,y \rangle \in G \circ H)$$

$$\Leftrightarrow \langle x,y \rangle \in F \circ (G \circ H)$$

所以
$$(F \circ G) \circ H = F \circ (G \circ H)$$

.

关系基本运算的性质 (续)

$$(F \circ G)^{-1} = G^{-1} \circ F^{-1}$$

(2) 任取<x,y>,

$$\langle x,y\rangle \in (F\circ G)^{-1}$$

$$\Leftrightarrow \langle y, x \rangle \in F \circ G$$

$$\Leftrightarrow \exists t \ (\langle y,t \rangle \in F \land (t,x) \in G)$$

$$\Leftrightarrow \exists t (\langle x,t \rangle \in G^{-1} \land (t,y) \in F^{-1})$$

$$\Leftrightarrow \langle x,y \rangle \in G^{-1} \circ F^{-1}$$

所以
$$(F \circ G)^{-1} = G^{-1} \circ F^{-1}$$

м

A上关系的幂运算

设R为A上的关系,n为自然数,则R的n次幂定义为:

(1)
$$R^0 = \{ \langle x, x \rangle \mid x \in A \} = I_A$$

$$(2) R^{n+1} = R^n \circ R$$

注意:

对于A上的任何关系 R_1 和 R_2 都有

$$R_1^0 = R_2^0 = I_A$$

对于A上的任何关系 R 都有

$$R^1 = R$$

м

幂的求法

对于集合表示的关系R, 计算 R^n 就是n个R右复合. 矩阵表示就是n个矩阵相乘, 其中相加采用<mark>逻辑加:</mark> 0+0=0, 0+1=1, 1+0=1, 1+1=1

例3 设 $A=\{a,b,c,d\}$, $R=\{\langle a,b\rangle,\langle b,a\rangle,\langle b,c\rangle,\langle c,d\rangle\}$, 求R的各次幂, 分别用矩阵和关系图表示.

解 $R与R^2$ 的关系矩阵分别为

$$M = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} M^{2} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

同理, $R^0=I_A$, R^3 和 R^4 的矩阵分别是:

$$M^{0} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad M^{3} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad M^{4} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

因此
$$M^4=M^2$$
, 即 $R^4=R^2$. 因此可以得到 $R^2=R^4=R^6=...$, $R^3=R^5=R^7=...$

幂的求法(续)

$$A = \{a,b,c,d\}$$

 $R = \{\langle a,b \rangle, \langle b,a \rangle, \langle b,c \rangle, \langle c,d \rangle\}$

 R^0 , R^1 , R^2 , R^3 ,...的关系图如下图所示

幂运算的性质

定理3 设A为n元集, R是A上的关系,则存在自然数s和t,使得 $R^s = R^t$.

证 R为A上的关系,由于|A|=n,A上的不同关系只有 2^{n^2} 个.

当列出 R 的各次幂

 R^0, R^1, R^2, \dots

必存在自然数 s 和 t 使得 $R^s = R^t$.

幂运算的性质(续)

定理4 设 R 是 A 上的关系, $m, n \in N$, 则

- (1) $R^m \circ R^n = R^{m+n}$
- (2) $(R^m)^n = R^{mn}$

证用归纳法

(1) 对于任意给定的 $m \in N$,施归纳于n.

若n=0,则有

$$R^m \circ R^0 = R^m \circ I_A = R^m = R^{m+0}$$

假设 $R^m \circ R^n = R^{m+n}$,则有

$$R^m \circ R^{n+1} = R^m \circ (R^n \circ R) = (R^m \circ R^n) \circ R = R^{m+n+1}$$

所以对一切 $m, n \in N$ 有 $R^m \circ R^n = R^{m+n}$.

м

幂运算的性质 (续)

 $(\mathbf{R}^m)^n = \mathbf{R}^{mn}$

(接上页证明)

(2) 对于任意给定的 $m \in \mathbb{N}$, 施归纳于n.

若n=0,则有

$$(R^m)^0 = I_A = R^0 = R^{m \times 0}$$

假设 $(R^m)^n=R^{mn}$,则有

$$(R^m)^{n+1} = (R^m)^n \circ R^m = (R^{mn}) \circ R^m = R^{mn+m} = R^{m(n+1)}$$

所以对一切 $m,n \in \mathbb{N}$ 有 $(R^m)^n = R^{mn}$.

4.3 关系的性质

- ■自反性
- ■反自反性
- ■对称性
- ■反对称性
- ■传递性

100

自反性与反自反性

定义 设R为A上的关系,

- (1) 若 $\forall x(x \in A \rightarrow \langle x, x \rangle \in R)$, 则称R在A上是自反的.
- (2) 若 $\forall x(x \in A \rightarrow \langle x, x \rangle \notin R)$, 则称R在A上是反自反的.

实例:

自反关系:A上的全域关系 E_A ,恒等关系 I_A

小于等于关系 L_A ,整除关系 D_A

反自反关系: 实数集上的小于关系

幂集上的真包含关系

例1
$$A=\{1,2,3\}, R_1, R_2, R_3$$
是 A 上的关系, 其中 $R_1=\{<1,1>,<2,2>\}$ $R_2=\{<1,1>,<2,2>,<3,3>,<1,2>\}$ $R_3=\{<1,3>\}$

 R_2 自反,

 R_3 反自反,

 R_1 既不是自反也不是反自反的

对称性与反对称性

定义 设R为A上的关系,

- (1) 若 $\forall x \forall y (x,y \in A \land \langle x,y \rangle \in R \rightarrow \langle y,x \rangle \in R)$,则称R为A上对称的关系.
- (2) 若 $\forall x \forall y (x,y \in A \land \langle x,y \rangle \in R \land \langle y,x \rangle \in R \rightarrow x = y)$, 则称R为A上的反对称关系.

实例:

对称关系: A上的全域关系 E_A ,恒等关系 I_A 和空 关系 \emptyset

反对称关系: 恒等关系 I_A , 空关系是A上的反对称关系.

例2 设 $A = \{1,2,3\}, R_1, R_2, R_3 和 R_4 都是A 上的关系,$ 其中

$$R_1 = \{<1,1>,<2,2>\}, R_2 = \{<1,1>,<1,2>,<2,1>\}$$

 $R_3 = \{<1,2>,<1,3>\}, R_4 = \{<1,2>,<2,1>,<1,3>\}$

 R_1 对称、反对称.

 R_2 对称,不反对称. $反对称 \neq 不对称$

 R_3 反对称,不对称.

 R_4 不对称、也不反对称.

传递性

定义 设R为A上的关系,若 $\forall x \forall y \forall z (x,y,z \in A \land \langle x,y \rangle \in R \land \langle y,z \rangle \in R \rightarrow \langle x,z \rangle \in R)$, 则称R是A上的传递关系.

实例:

A上的全域关系 E_A ,恒等关系 I_A 和空关系Ø 小于等于关系,小于关系,整除关系,包含关系, 真包含关系

例3 设
$$A = \{1,2,3\}, R_1, R_2, R_3$$
是 A 上的关系, 其中
$$R_1 = \{<1,1>,<2,2>\}$$

$$R_2 = \{<1,2>,<2,3>\}$$

$$R_3 = \{<1,3>\}$$

 R_1 和 R_3 是A上的传递关系 R_3 不是A上的传递关系

关系性质的充要条件

设R为A上的关系,则

- (1) R在A上自反当且仅当 I_A $\subseteq R$
- (2) R在A上反自反当且仅当 $R \cap I_A = \emptyset$
- (3) R在A上对称当且仅当 $R=R^{-1}$
- (4) R在A上反对称当且仅当 $R \cap R^{-1} \subseteq I_A$
- (5) R在A上传递当且仅当 R°R⊆R

注意:

反对称 \neq 不对称 (I_A) 不自反 \neq 反自反

关系性质判别

	自反	反自反	对称	反对称	传递
表达式	$I_A \subseteq R$	$R \cap I_A = \emptyset$	$R=R^{-1}$	$R \cap R^{-1} \subseteq I_A$	$R^{\circ}R\subseteq R$
关系 矩阵	主对 角线 元素 全是1	主对角 线元素 全是0	矩阵是对称 矩阵		对M ² 中1 所在位置, M中相应 位置都是1
关系图	每个 顶点 都 环	每个顶 点都没 有环	如果两个顶点之间有边, 是一对方向相反的边 (无单边)	如果两点 之间有边, 是一条有 向边(无双 向边)	如果顶点 x_i <mark>连通</mark> 到 x_k ,则从 x_i 到 x_k 有边

例8 判断下图中关系的性质,并说明理由.

- (a)不自反也不反自反;对称,不反对称;不传递.
- (b)反自反,不是自反的;反对称,不是对称的; 是传递的.
- (c)自反,不反自反;反对称,不是对称;不传递.

自反性证明

```
证明模式 证明R在A上自反
任取x,
x \in A \Rightarrow \dots \Rightarrow \langle x, x \rangle \in R
前提 推理过程 结论
```

例4 证明若 $I_A \subseteq R$,则 R在A上自反. 证 任取x, $x \in A \Rightarrow \langle x, x \rangle \in I_A \Rightarrow \langle x, x \rangle \in R$

因此 R 在 A 上是自反的.

对称性证明

```
证明模式 证明R在A上对称
任取< x, y>
< x, y> \in R \Rightarrow \Rightarrow < y, x> \in R
前提 推理过程 结论
```

例5 证明若 $R=R^{-1}$,则R在A上对称. 证 任取 $\langle x,y \rangle$ $\langle x,y \rangle \in R \Rightarrow \langle y,x \rangle \in R^{-1} \Rightarrow \langle y,x \rangle \in R$ 因此 R 在 A 上是对称的.

反对称性证明

证明模式 证明
$$R$$
在 A 上反对称
任取 $< x, y>$
 $< x, y> \in R \land < y, x> \in R \Rightarrow \dots \Rightarrow x=y$
前提 推理过程 结论

例6 证明若 $R \cap R^{-1} \subseteq I_A$,则R在A上反对称. 证 任取 $\langle x,y \rangle$ $\langle x,y \rangle \in R \land \langle y,x \rangle \in R \Rightarrow \langle x,y \rangle \in R \land \langle x,y \rangle \in R \cap R^{-1}$ $\Rightarrow \langle x,y \rangle \in R \cap R^{-1} \Rightarrow \langle x,y \rangle \in I_A \Rightarrow x = y$ 因此 R 在 A 上是反对称的.

ne.

传递性证明

证明模式 证明R在A上传递 任取< x, y>,< y, z> $< x, y> \in R \land < y, z> \in R \Rightarrow \dots \Rightarrow < x, z> \in R$ 前提 推理过程 结论

例7 证明若 $R^{\circ}R \subseteq R$,则R在A上传递.

证 任取<*x*,*y*>, <*y*, *z*>

 $\langle x,y \rangle \in R \land \langle y,z \rangle \in R \Rightarrow \langle x,z \rangle \in R^{\circ}R \Rightarrow \langle x,z \rangle \in R$ 因此 R 在 A 上是传递的.

运算与性质的关系

	自反性	反自反性	对称性	反对称性	传递性
R_1^{-1}	\checkmark	$\sqrt{}$	$\sqrt{}$	V	\checkmark
$R_1 \cap R_2$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	√	\checkmark
$R_1 \cup R_2$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	×	×
R_1 - R_2	×	$\sqrt{}$	$\sqrt{}$	V	×
$R_1 \circ R_2$	$\sqrt{}$	×	×	×	×

4.4 关系的闭包

- ■闭包定义
- ■闭包的构造方法
 - □ 集合表示
 - □ 矩阵表示
 - □ 图表示
- ■闭包的性质

闭包定义

定义 设R是非空集合A上的关系,R的自反(对称或传递)闭包是A上的关系R,使得R′满足以下条件:

- (1) R'是自反的(对称的或传递的)
- (2) $R \subseteq R'$
- (3)对A上任何包含R的自反(对称或传递) 关系 R'' 有 R'⊆R''.
- 一般将 R 的自反闭包记作 r(R), 对称闭包记作 s(R), 传递闭包记作 t(R).

.

闭包的构造方法

定理1 设R为A上的关系,则有

$$(1) r(R) = R \cup R^0$$

(2)
$$s(R) = R \cup R^{-1}$$

$$(3) t(R) = R \cup R^2 \cup R^3 \cup \dots$$

说明:

- 对于有穷集合A(|A|=n)上的关系,(3)中的并最多不超过 \mathbb{R}^n .
- 若 R是自反的,则 r(R)=R; 若 R是对称的,则 s(R)=R; 若 R是传递的,则 t(R)=R.

闭包的构造方法(续)

设关系R, r(R), s(R), t(R)的关系矩阵分别为M, M_r , M_s 和 M_t , 则

$$M_r = M + E$$

$$M_s = M + M'$$

$$M_t = M + M^2 + M^3 + \dots$$

E 是和 M 同阶的单位矩阵, M'是 M 的转置矩阵. 注意在上述等式中矩阵的元素相加时使用逻辑加. 57

闭包的构造方法(续)

设关系R, r(R), s(R), t(R)的关系图分别记为G, G_r , G_s , G_t , 则 G_r , G_s , G_t 的顶点集与G 的顶点集相等. 除了G 的边以外, 以下述方法添加新边:

- 考察G的每个顶点,如果没有环就加上一个环,最终得到 G_r .
- 考察G的每条边,如果有一条 x_i 到 x_j 的单向边, $i \neq j$,则在G中加一条 x_j 到 x_i 的反方向边,最终得到 G_s .
- 考察G的每个顶点 x_i ,找从 x_i 出发的每一条路径,如果从 x_i 到路径中任何结点 x_j 没有边,就加上这条边. 当检查完所有的顶点后就得到图 G_t .

例1 设 $A=\{a,b,c,d\}$, $R=\{\langle a,b\rangle,\langle b,a\rangle,\langle b,c\rangle,\langle c,d\rangle$, $\langle d,b\rangle\}$, R和 r(R), s(R), t(R)的关系图如下图所示.

м

作业

- (4) R-1 的关系图?
- $(5) R \upharpoonright \{1,2\} = ?$
- (6) $R[\{1,2\}] = ?$

作业

■课件53页证明反对角线,对"×"举出反例

□必做:

	自反性	反自反性	对称性	反对称性	传递性
R_1^{-1}	1	$\sqrt{}$	V	V	V
$R_1 \cap R_2$	√	V	V	V	$\sqrt{}$
$R_1 \cup R_2$	1	V	V	X	×
R_1-R_2	X	V	√	V	X
$R_1 \circ R_2$	$\sqrt{}$	×	X	×	X

□选做:全部