

Teorie obvodů 2014/2015 Projekt

20. prosince 2014

Autor: Jan Ondruch, xondru14@fit.stud.vutbr.cz

Fakulta Informačních Technologií

Vysoké učení technické v Brně

Příklad 1 – varianta G

Stanovte napětí U_{R7} a proud I_{R7} . Použijte metodu postupného zjednodušování obvodu.

U[V]	$R_1[\Omega]$	$R_2[\Omega]$	$R_3[\Omega]$	$R_4 [\Omega]$	$R_{5}\left[\Omega\right]$	$R_6[\Omega]$	$R_7 [\Omega]$	$R_8 [\Omega]$
130	380	420	330	440	450	650	410	275

1. Obvod transfigurujeme na hvězdu a R_5 a R_6 jsou paralelně zapojené, takže je sjednotíme.

$$R_A = \frac{R_2 * R_3}{R_2 + R_3 + R_4} = \frac{420\Omega * 330\Omega}{420\Omega + 330\Omega + 440\Omega} = 116.4706\Omega$$

$$R_B = \frac{R_2 * R_4}{R_2 + R_3 + R_4} = \frac{420\Omega * 440\Omega}{420\Omega + 330\Omega + 440\Omega} = 155.2941\Omega$$

$$R_B = \frac{R_2 * R_4}{R_2 + R_3 + R_4} = \frac{420\Omega * 440\Omega}{420\Omega + 330\Omega + 440\Omega} = 155.2941\Omega$$

$$R_C = \frac{R_3 * R_4}{R_2 + R_3 + R_4} = \frac{330\Omega * 440\Omega}{420\Omega + 330\Omega + 440\Omega} = 122.0168\Omega$$

$$R_{56} = \frac{R_5 * R_6}{R_5 + R_6} = \frac{450\Omega * 650\Omega}{450\Omega + 650\Omega} = 265.9091\Omega$$

2. R_B a R_{56} jsou sériově zapojené, sjednotíme je. Stejně tak i R_C a R_7 .

$$R_{B56} = R_B + R_{56} = 155.2941\Omega + 265.9091\Omega = 421.2032\Omega$$

$$R_{C7} = R_C + R_7 = 122.0168\Omega + 410\Omega = 532.0168\Omega$$

3. R_{B56} a R_{C7} jsou paralelně zapojené, sjednotíme je.

$$R_{B56C7} = \frac{R_{B56} * R_{C7}}{R_{B56} + R_{C7}} = \frac{421.2032\Omega * 532.0168\Omega}{421.2032\Omega + 532.0138\Omega} = 235.0844\Omega$$

4. R_1 , R_A , R_{B56C7} a R_8 jsou sériově zapojené, sjednotíme je a tím vypočítáme celkový odpor.

$$R = R_1 + R_A + R_{B5C7} + R_8 = 380\Omega + 116.4706\Omega + 235.0844\Omega + 275\Omega = 1006.555\Omega$$

5. Vypočítáme proud *I* procházející obvodem.

$$I = \frac{U}{R} = \frac{130V}{1006.555\Omega} = 0.1292A$$

6. Zpětným postupem užívaje Kirchhoffovy zákony se dopracujeme k hledaným veličinám I_{R7} a U_{R7} .

$$U_{B56C7} = R_{B56C7} * I = 235.0844\Omega * 0.1292A = 30.3729V$$

$$I_{R7} = I_{C7} = \frac{U_{B56C7}}{R_{C7}} = \frac{30.3729V}{532.0168\Omega} = 0.0571A$$

$$U_{R7} = I_{C7} * R_7 = 0.0571A * 410\Omega = 23.411V$$

Příklad 2 – varianta A

Stanovte napětí U_{R3} a proud I_{R3} . Použijte metodu Theveninovy věty.

U[V]	$R_1[\Omega]$	$R_2[\Omega]$	$R_3[\Omega]$	$R_4 [\Omega]$	$R_{5}\left[\Omega\right]$	$R_6[\Omega]$
50	525	620	210	530	130	150

1. Obvod si nejprve překreslíme, vypočítáme odpor náhradního obvodu.

2. Využijeme transfigurace trojúhelník-hvězda a následně vypočítáme odpor mezi svorkami R_i .

$$R_K = \frac{R_1 * R_4}{R_1 + R_4 + R_6} = \frac{525\Omega * 530\Omega}{420\Omega + 330\Omega + 440\Omega} = 230.9192\Omega$$

$$R_L = \frac{R_1 * R_6}{R_1 + R_4 + R_6} = \frac{525\Omega * 150\Omega}{420\Omega + 330\Omega + 440\Omega} = 65.3527\Omega$$

$$R_M = \frac{R_4 * R_6}{R_1 + R_4 + R_6} = \frac{530\Omega * 150\Omega}{420\Omega + 330\Omega + 440\Omega} = 65.9751\Omega$$

$$\begin{split} R_i &= R_K + \frac{(R_L + R_2) * (R_M + R_5)}{(R_L + R_2) + (R_M + R_5)} \\ R_i &= 230.9192\Omega + \frac{(65.3527\Omega + 620\Omega) * (65.9751\Omega + 130\Omega)}{(65.3527\Omega + 620\Omega) + (65.9751\Omega + 130\Omega)} = 383.3166\Omega \end{split}$$

3. Vypočítáme odpor R_{12456} .

$$R_{12456} = \frac{(R_1 + R_4) * (R_2 + R_5)}{(R_1 + R_4) + (R_2 + R_5)} + R_6 = \frac{(525\Omega + 530\Omega) * (620\Omega + 130\Omega)}{(525\Omega + 530\Omega) + (620\Omega + 130\Omega)} + 150\Omega$$
$$= 438.3657\Omega + 150\Omega = 588.3657\Omega$$

4. Vypočítáme náhradní proud I_X .

$$I_X = \frac{U}{R_{12456}} = \frac{50V}{588.3657\Omega} = 0.0845A$$

5. Vypočítáme napětí U_{R1245} .

$$U_{R1425} = I_X * R_{1245} = I_X * (R_{12456} - R_6) = 0.0845A * (588.3657\Omega - 150\Omega) = 37.0419V$$

6. Vypočítáme proudy I_{R14} , I_{R25} .

$$I_{R14} = \frac{U_{R1245}}{R_1 + R_4} = \frac{37.0419V}{525\Omega + 530\Omega} = 0.0351A$$

$$I_{R25} = \frac{U_{R1245}}{R_2 + R_5} = \frac{37.0419V}{620\Omega + 130\Omega} = 0.0494A$$

7. Vypočítáme napětí U_i .

$$U_i = I_{R25} * R_2 - I_{R14} * R_1 = 0.0494A * 620\Omega - 0.0351A * 525\Omega = 12.2005V$$

8. Užívaje Theveninovy věty a obrázku (pro lepší představivost) vypočítáme hledané veličiny.

$$I_{R3} = \frac{U_i}{R_i + R_3} = \frac{12.2005 \text{V}}{383.3166\Omega + 210\Omega} = 0.0206 \text{A}$$

$$U_{R3} = I_{R3} * R_3 = 0.0206 \text{A} * 210 \Omega = 4.326 \text{V}$$

Příklad 3 – varianta G

Stanovte napětí U_{R5} a proud I_{R5} . Použijte metodu uzlových napětí (U_A , U_B , U_C).

$U_1[V]$	$U_1[V]$	<i>I</i> [A]	$R_1[\Omega]$	$R_2[\Omega]$	$R_3[\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6[\Omega]$
160	105	0.45	460	410	535	330	290	210

1. Pro každý uzel vytvoříme rovnice, podle kterých později vypočítáme $U_{\!A}, U_{\!B}, U_{\!C}.$

$$A: I_1 - I_A - I_3 - I = 0$$

$$B: I_3 + I_2 + I - I_B = 0$$

$$C: I_B - I_2 - I_C = 0$$

2. Pomocí Kirchhoffova zákona stanovíme rovnice pro jednotlivé proudy a rovnice dosadíme.

A:
$$\frac{U_1 - U_A}{R_1} - \frac{U_A}{R_2} - \frac{U_A - U_B}{R_3} - I = 0$$

$$B \colon \frac{U_A - U_B}{R_3} + \frac{U_2 - U_B + U_C}{R_6} + I - \frac{U_B - U_C}{R_5} = 0$$

$$C: \frac{U_B - U_C}{R_5} - \frac{U_2 - U_B + U_C}{R_6} - \frac{U_C}{R_4} = 0$$

3. Dosadíme známé hodnoty do rovnic.

$$A: \frac{160V - U_A}{460\Omega} - \frac{U_A}{410\Omega} - \frac{U_A - U_B}{535\Omega} - 0.45A = 0$$

$$B: \frac{U_A - U_B}{535\Omega} + \frac{105V - U_B + U_C}{210\Omega} + 0.45A - \frac{U_B - U_C}{290\Omega} = 0$$

$$C: \frac{U_B - U_C}{290\Omega} - \frac{105V - U_B + U_C}{210\Omega} - \frac{U_C}{330\Omega} = 0$$

4. Vyřešíme soustavu 3 rovnic o 3 neznámých, nejlépe pomocí matic.

$$U_A = 29.4279V$$

 $U_B = 156.7165V$
 $U_C = 69.9855V$

5. Vypočítáme hledané veličiny U_{R5} a I_{R5} .

$$I_{R5} = \frac{U_B - U_C}{R_5} = \frac{156.7165V - 69.9855V}{290\Omega} = 0.2991A$$

$$U_{R5} = I_{R5} * R_5 = 0.2991 * 290 = 86.731V$$

Příklad 4 – varianta G

Pro napájecí napětí platí: $u = U * \sin(2\pi f t)$.

Ve vztahu pro napětí $u_{L2}=U_{L2}*\sin(2\pi ft+\varphi_{L2})$ určete $|U_{L2}|$ a φ_{L2} . Použijte metodu zjednodušování obvodu.

Pozn: Pomocný "směr šipky napájecího zdroje platí pro speciální časový okamžik $(t=\frac{\pi}{2\omega})$ ".

U[V]	$R_1[\Omega]$	$R_2[\Omega]$	$R_3 [\Omega]$	L_1 [mH]	L_2 [mH]	C_1 [μ F]	$C_2 [\mu F]$	f [Hz]
45	145	165	430	500	450	315	255	50

1. Vypočítáme úhlovou rychlost ω .

$$\omega = 2\pi f = 2\pi * 50$$
Hz = 314.1593 rad/s

2. Příklad si překreslíme do následující podoby a vypočítáme jednotlivé impedance.

$$Z_1 = R_1 = 145\Omega$$

$$Z_2 = R_2 - \frac{1}{j * \omega * C_1} = 165\Omega - \frac{1}{j * 314.1593 rad/s * 315 \mu F} = (165 - 10.1051 j)\Omega$$

$$\begin{split} Z_3 &= j*\omega*L_2 = j*314.1593 rad/s*450 \text{mH} = (141.3717 j)\Omega \\ Z_4 &= R_3 + \frac{1}{j*\omega*C_2} = 430\Omega - \frac{1}{j*314.1593 rad/s*255 \mu\text{F}} = (430 - 12.4827 j)\Omega \\ Z_5 &= j*\omega*L_1 = j*314.1593 rad/s*500 \text{mH} = (157.0796 j)\Omega \end{split}$$

3. Z_2 , Z_3 a Z_4 jsou paralelně zapojené, sjednotíme je.

$$Z_{234} = (73.3506 + 58.2354j)\Omega$$

4. Vypočítáme celkovou impedanci obvodu.

$$Z = Z_1 + Z_{234} + Z_5 = 145\Omega + (73.3506 + 58.2354j)\Omega + (157.0796j)$$

= (218.3751 + 215.3150j)\Omega

5. Vypočítáme celkový proud.

$$I = \frac{U}{Z} = \frac{45V}{(218.3751 + 215.3150i)\Omega} = (0.1045 - 0.10302j)A$$

6. Vypočítáme napětí na impedanci Z_{234} .

$$\begin{aligned} U_{Z234} &= Z_{234} * I = (73.3506 + 58.2354j)\Omega * (0.1045 - 0.10302j)A \\ &= (13.3353 - 1.4747j)V \end{aligned}$$

7. Vypočítáme proud procházející \mathbb{Z}_3 .

$$I_{Z3} = \frac{U_{Z234}}{Z_3} = \frac{(13.3353 - 1.4747j)V}{(141.3717j)\Omega} = (-0.0104 - 0.0697j)A$$

8. Vypočítáme napětí na L_2 .

$$U_{L2} = j * \omega * L_2 * I_{Z3} = j * 314.1593 rad/s * 450 mH * (-0.0104 - 0.0697 j) A$$

= $(13.6656 + 1.4747 j) V$

9. Vypočítáme U_{L2} .

$$|U_{L2}| = \sqrt{Re^2 + Im^2} = \sqrt{13.6706^2 + 1.4747^2} = 13.7449V$$

10. Vypočítáme fázový posun φ_{L2} .

$$\varphi_{L2} = \arctan \frac{Im}{Re} = \frac{1.4747}{13.6656} = 6.159^{\circ}$$

Příklad 5 – varianta A

Pro napájecí napětí platí: $u_1 = U_1 * \sin(2\pi f t)$, $u_2 = U_2 * \sin(2\pi f t)$.

Ve vztahu pro napětí $u_{C1}=U_{C1}*\sin(2\pi ft+\varphi_{C1})$ určete $|U_{C1}|$ a φ_{C1} . Použijte metodu smyčkových proudů.

Pozn: Pomocný "směr šipky napájecího zdroje platí pro speciální časový okamžik $(t=\frac{\pi}{2\omega})$ ".

$U_1[V]$	$U_2[V]$	$R_1[\Omega]$	$R_2[\Omega]$	$R_3 [\Omega]$	L_1 [mH]	L_2 [mH]	C_1 [μ F]	$C_2 [\mu F]$	f [Hz]
35	55	125	140	180	120	100	200	105	70

1. Vypočítáme úhlovou rychlost ω .

$$\omega = 2\pi f = 2\pi * 70$$
Hz = 439.8230 rad/s

2. Vypočítáme hodnoty ideálních odporů cívek a kondenzátorů pro zjednodušení následujících výpočtů.

$$\begin{split} X_{L1} &= j * \omega * L_1 = j * 439.8230 rad/s * 120 \text{mH} = (52.7788 \text{j}) \Omega \\ X_{L2} &= j * \omega * L_2 = j * 439.8230 rad/s * 100 \text{mH} = (43.9823 \text{j}) \Omega \\ X_{C1} &= -j * \frac{1}{\omega * C_1} = -\text{j} * \frac{1}{439.8230 rad/s * 200 \mu \text{F}} = (-11.3682 \text{j}) \Omega \\ X_{C2} &= -j * \frac{1}{\omega * C_2} = -\text{j} * \frac{1}{439.8230 rad/s * 105 \mu \text{F}} = (-21.6537 \text{j}) \Omega \end{split}$$

3. Sestavíme rovnice pro jednotlivé smyčky.

$$I_A * R_1 + U_1 + X_{C2} * (I_A - I_C) + R_2 * (I_A - I_B) + X_{C1} * (I_A - I_B) = 0$$

$$I_B * X_{L1} + X_{C1} * (I_B - I_A) + R_2 * (I_B - I_A) + X_{L2} * (I_B - I_C) = 0$$

$$I_C * R_3 + U_2 + X_{L2} * (I_C - I_B) + X_{C2} * (I_C - I_A) = 0$$

4. Rovnici upravíme a dosadíme hodnoty.

$$I_A * (265 - 33.0219j) + I_B * (-140 + 11.3682j) + I_C * (21.6537j) = -35$$

 $I_A * (-140 + 11.3682jj) + I_B * (140 + 85.3929j) - I_C * (43.9823j) = 0$
 $I_A * (21.6537j) - I_B * (-43.9823j) + I_C * (180 + 22.3286j) = -55$

5. Soustavu rovnice vypočítáme a dostaneme I_A , I_B , I_C .

$$I_A = (-0.2307 + 0.0470j)A$$

$$I_B = (-0.1853 + 0.0793j)A$$

$$I_C = (-0.3166 + 0.0217j)A$$

6. Vypočítáme napětí na C_{1}

$$U_{C1} = (I_B - I_A) * X_{C1}$$

$$U_{C1} = ((-0.1853 + 0.0793j) - (-0.2307 + 0.0470j)) * (-11.3682j)$$

$$= (0.3672 - 0.5161j)V$$

7. Vypočítáme U_{C1} .

$$|U_{C1}| = \sqrt{Re^2 + Im^2} = \sqrt{0.3672^2 + 0.5161^2} = 0.6334V$$

8. Vypočítáme fázový posun φ_{C1} .

$$\varphi_{C1} = \arctan \frac{Im}{Re} = \frac{-0.5161}{0.3672} = -54.5685^{\circ}$$

9. Převedeme do správného kvadrantu.

$$\varphi_{C1} = -54.5685^{\circ} + 180^{\circ} = 125.4315^{\circ}$$

Příklad 6 – varianta G

Sestavte diferenciální rovnici popisující chování obvodu na obrázku, dále ji upravte dosazením hodnot parametrů. Vypočítejte analytické řešení $i_L = f(t)$. Proveďte kontrolu výpočtu dosazením do sestavené diferenciální rovnice.

U[V]	L[H]	$R\left[\Omega\right]$	$i_L(0)[A]$
7	45	25	3

1. Pro obvod s cívkou nám platí axiom.

$$i_L' = \frac{1}{L} * U_L$$

2. Pomocí 2. Kirchhoffova zákona stanovíme napětí u_L .

$$U_L = U - U_R$$

3. Využijeme Ohmův zákon a rozložíme napětí u_R .

$$U_R = R * i_R$$

4. V obvodu platí, že máme pouze 1 proud, tzn.

$$i = i_L = i_R$$

5. Rozepíšeme axiom.

$$i_{L'} = \frac{1}{L} * (U - U_R) = \frac{1}{L} * (U - R * i_L)$$
 $L * i_{L'} = U - R * i_L$
 $L * i_{L'} + R * i_L = U$

6. Sestavíme charakteristickou rovnici.

$$L*\lambda + R = 0$$

$$\lambda = -\frac{R}{L}$$

7. Očekávaný tvar výsledné rovnice:

$$i_L(t) = c(t) * e^{\lambda t}$$

$$i_L(t) = c(t) * e^{-\frac{R}{L} * t}$$

- 8. Řešíme rovnici.
- a) zderivujeme i_L

$$i_{L}' = c'(t) * e^{-\frac{R}{L}*t} + c(t) * e^{-\frac{R}{L}*t} * -\frac{R}{L}$$

b) dosadíme do původní rovnice

$$L * \left(c'(t) * e^{-\frac{R}{L} * t} + c(t) * e^{-\frac{R}{L} * t} * - \frac{R}{L}\right) + R * \left(c(t) * e^{-\frac{R}{L} * t}\right) = U$$

c) stejné členy odečteme a rovnici upravíme

$$L * c'(t) * e^{-\frac{R}{L}*t} = U$$

$$c'(t) = \frac{U}{I} * e^{\frac{R}{L} * t}$$

d) rovnici zintegrujeme a po úpravě dostáváme

$$c(t) = K + \frac{U}{L} * e^{\frac{R}{L} * t}$$

9. Dosadíme do očekávaného řešení.

$$i_L(t) = \left(K + \frac{U}{I} * e^{\frac{R}{L} * t}\right) * e^{-\frac{R}{L} * t}$$

$$i_L(t) = K * e^{-\frac{R}{L} * t} + \frac{U}{R}$$

10. Dosadíme $i_L(0) = 3A$, také dosadíme za R a L.

$$3 = K * e^{-\frac{25}{45}*0} + \frac{7}{25}$$

$$K = \frac{68}{25}$$

11. Výsledek (analytické řešení)

$$i_L(t) = \frac{7}{25} + \frac{68}{25} * e^{-\frac{5}{9} * t}$$

12. Uděláme zkoušku, nejprve výsledné $i_L(t)$ zderivujeme a poté $i_L(t)$ a $i_L{'}(t)$ dosadíme do původní rovnice.

$$i_{L}'(t) = \frac{68}{25} * e^{-\frac{5}{9}*t} * (-\frac{5}{9})$$

$$L * i_{L}' + R * i_{L} = U$$

$$45i_{L}' + 25i_{L} = 7$$

$$45 * \left(\frac{68}{25} * e^{-\frac{5}{9}*t} * \left(-\frac{5}{9}\right)\right) + 25 * \left(\frac{7}{25} + \frac{68}{25} * e^{-\frac{5}{9}*t}\right) = 7$$

$$-68 * e^{-\frac{5}{9}*t} + 7 + 68 * e^{-\frac{5}{9}*t} = 7$$

$$7 = 7$$

Souhrn výsledků

Příklad č.	Varianta zadání	Výsledek
1	G	$I_{R7} = 0.0571A$
		$U_{R7} = 23.411 \text{V}$
2	Α	$I_{R3} = 0.0206A$
		$U_{R3} = 4.326 V$
3	G	$I_{R5} = 0.2991A$
		$U_{R5} = 86.731V$
4	G	$ U_{L2} = 13.7449V$
		$\varphi_{L2} = 6.159^{\circ}$
5	Α	$ U_{C1} = 0.6334V$
		$\varphi_{C1} = 125.4315^{\circ}$
6	G	$i_L(t) = \frac{7}{25} + \frac{68}{25} * e^{-\frac{5}{9} * t}$
		25 25