Feedback — Week 2 - Problem Set

Help

You submitted this homework on **Mon 14 Apr 2014 2:26 PM PDT**. You got a score of **9.00** out of **9.00**.

Question 1

Consider the following five events:

- 1. Correctly guessing a random 128-bit AES key on the first try.
- 2. Winning a lottery with 1 million contestants (the probability is $1/10^{6}\,$).
- 3. Winning a lottery with 1 million contestants 5 times in a row (the probability is $(1/10^6)^5$).
- 4. Winning a lottery with 1 million contestants 6 times in a row.
- 5. Winning a lottery with 1 million contestants 7 times in a row.

What is the order of these events from most likely to least likely?

Your Answer	Score	Explanation
2, 4, 3, 1, 5		
2, 3,4, 1, 5	1.00	 The probability of event (1) is 1/2^128. The probability of event (5) is 1/(10^6)^7 which is about 1/2^{139}. Therefore, event (5) is the least likely. The probability of event (4) is 1/(10^6)^6 which is about 1/2^{19.5} which is more likely than event (1). The remaining events are all more likely than event (4).
2, 3, 1, 5, 4		
2, 3, 4, 5, 1		
Total	1.00 / 1.00	

Question 2

Suppose that using commodity hardware it is possible to build a computer for about \$200 that can brute force about 1 billion AES keys per second. Suppose an organization wants to run an exhaustive search for a single 128-bit AES key and was willing to spend 4 trillion dollars to buy these machines (this is more than the annual US federal budget). How long would it take the organization to brute force this single 128-bit AES key with these machines? Ignore additional costs such as power and maintenance.

Your Answer		Score	Explanation
\bigcirc More than a million years but less than a billion (10^9) years			
●More than a billion (10 ⁹) years	~	1.00	The answer is about 540 billion years. • # machines = 4*10^12/200 = 2*10^10 • # keys processed per sec = 10^9 (2*10^10) = 2*10^19 • # seconds = 2^128 / (2*10^19) = 1.7*10^19 This many seconds is about 540 billion years.
○More than a month but less than a year			
○More than a day but less than a week			
More than a 100 years but less than a million years			
Total		1.00 / 1.00	

Question 3

Let $F: \{0,1\}^n imes \{0,1\}^n o \{0,1\}^n$ be a secure PRF (i.e. a PRF where the key space, input

space, and output space are all $\{0,1\}^n$) and say n=128. Which of the following is a secure PRF (there is more than one correct answer):

Your Answer	S	core	Explanation
$F'(k,\ x) = \left\{egin{array}{ll} F(k,x) & ext{when } x eq 0^n \ 0^n & ext{otherwise} \end{array} ight.$	✓ 0.	17	Not a PRF. A distinguisher will query at $x=0^n$ and output not random if the response is 0^n . This is unlikely to hold for a truly random function.
$\ensuremath{\mathscr{P}} F'(k,x) = \operatorname{reverse}(F(k,x))$ where reverse(y) reverses the string y so that the first bit of y is the last bit of reverse(y), the second bit of y is the second to last bit of reverse(y), and so on.	✓ 0.	17	Correct. A distinguisher for F^\prime gives a distinguisher for F .
${f ec F}'(k,x)=F(k,x)[0,\ldots,n-2]$ (i.e., $F'(k,x)$ drops the last bit of $F(k,x)$)	✓ 0.	17	Correct. A distinguisher for F^\prime gives a distinguisher for F .
$lacksquare F'(k,x) = F(k,x) \parallel 0$ (here \parallel denotes concatenation)	✓ 0.	17	Not a PRF. A distinguisher will output $not\ random$ whenever the last bit of $F(k,0^n)$ is 0 .
$F'(k,\ x) = \left\{egin{array}{ll} F(k,x) & ext{when } x eq 0^n \ k & ext{otherwise} \end{array} ight.$	✓ 0.	17	Not a PRF. A distinguisher will query at $x=0^n$ and obtain \$k\$ and then query at \$x=1^n\$ and output <i>not random</i> if the response is $F(k,1^n)$. This is unlikely to hold for a truly random function.
$F'((k_1,k_2),\;x)=F(k_1,x)igoplus F(k_2,x)$		17	Correct. A distinguisher for F^\prime gives a distinguisher for F .
Total		00 / 00	

Question 4

Recall that the Luby-Rackoff theorem discussed in Lecture 3.2 states that applying a **three** round Feistel network to a secure PRF gives a secure block cipher. Let's see what goes wrong if

we only use a **two** round Feistel. Let $F: K \times \{0,1\}^{32} \to \{0,1\}^{32}$ be a secure PRF. Recall that a 2-round Feistel defines the following PRP $F_2: K^2 \times \{0,1\}^{64} \to \{0,1\}^{64}$:

Here R_0 is the right 32 bits of the 64-bit input and L_0 is the left 32 bits.

One of the following lines is the output of this PRP F_2 using a random key, while the other three are the output of a truly random permutation $f:\{0,1\}^{64} \to \{0,1\}^{64}$. All 64-bit outputs are encoded as 16 hex characters. Can you say which is the output of the PRP? Note that since you are able to distinguish the output of F_2 from random, F_2 is not a secure block cipher, which is what we wanted to show.

Hint: First argue that there is a detectable pattern in the xor of $F_2(\cdot, 0^{64})$ and $F_2(\cdot, 1^{32}0^{32})$. Then try to detect this pattern in the given outputs.

Your Answer

Score Explanation

- On input 0^{64} the output is "4af53267 1351e2e1". On input $1^{32}0^{32}$ the output is "87a40cfa 8dd39154".
- On input 0^{64} the output is "5f67abaf 5210722b". On input $1^{32}0^{32}$ the output is "bbe033c0 0bc9330e".
- \bigcirc On input 0^{64} the output is "9d1a4f78 cb28d863". On input $1^{32}0^{32}$ the output is

$ \odot $ On input 0^{64} the output is "9f970f4e 932330e4". On input $1^{32}0^{32}$ the output is "6068f0b1 b645c008".	✓ 1.0	Observe that the two round Feistel has the property that the left half of $F(\cdot,0^{64})\bigoplus F(\cdot,1^{32}0^{32})$ s 1^{32} . The two outputs in this answer are the only ones with this property.
Total	1.0	00 /
	1.0	00

Question 5

Nonce-based CBC. Recall that in lecture 4.4 we said that if one wants to use CBC encryption with a non-random unique nonce then the nonce must first be encrypted with an **independent** PRP key and the result then used as the CBC IV. Let's see what goes wrong if one encrypts the nonce with the **same** PRP key as the key used for CBC encryption.

Let $F:K\times\{0,1\}^\ell\to\{0,1\}^\ell$ be a secure PRP with, say, $\ell=128$. Let n be a nonce and suppose one encrypts a message m by first computing IV=F(k,n) and then using this IV in CBC encryption using $F(k,\cdot)$. Note that the same key k is used for computing the IV and for CBC encryption. We show that the resulting system is not nonce-based CPA secure.

The attacker begins by asking for the encryption of the two block message $m=(0^\ell,0^\ell)$ with nonce $n=0^\ell$. It receives back a two block ciphertext (c_0,c_1) . Observe that by definition of CBC we know that $c_1=F(k,c_0)$ Next, the attacker asks for the encryption of the one block message $m_1=c_0\bigoplus c_1$ with nonce $n=c_0$. It receives back a one block ciphertext c_0' .

What relation holds between c_0,c_1,c_0' ? Note that this relation lets the adversary win the noncebased CPA game with advantage 1.

Your Answer	Score	Explanation
$\bigcirc \ c_0 = c_0'$		

$$c_0' = c_0 \bigoplus 1^\ell$$

$lee c_1 = c_0'$	✓ 1.00	This follows from the definition of CBC with an encrypted nonce as defined in the question.
$\bigcirc \ c_1 = c_0$		
Total	1.00 /	
	1.00	

Question 6

Let m be a message consisting of ℓ AES blocks (say $\ell=100$). Alice encrypts m using CBC mode and transmits the resulting ciphertext to Bob. Due to a network error, ciphertext block number $\ell/2$ is corrupted during transmission. All other ciphertext blocks are transmitted and received correctly. Once Bob decrypts the received ciphertext, how many plaintext blocks will be corrupted?

Your Answer	S	core	Explanation
$0 \ 1 + \ell/2$			
2	✓ 1	.00	Take a look at the CBC decryption circuit. Each ciphertext blocks affects only the current plaintext block and the next.
$\circ \ell$			
$\odot\ell/2$			
0			
Total		.00 /	

Question 7

Let m be a message consisting of ℓ AES blocks (say $\ell=100$). Alice encrypts m using

randomized counter mode and transmits the resulting ciphertext to Bob. Due to a network error, ciphertext block number $\ell/2$ is corrupted during transmission. All other ciphertext blocks are transmitted and received correctly. Once Bob decrypts the received ciphertext, how many plaintext blocks will be corrupted?

Your Answer	Score	Explanation
0		
0		
$1+\ell/2$		
$\odot\ell/2$		
1	1.00	Take a look at the counter mode decryption circuit. Each ciphertext block affects only the current plaintext block.
$\circ \ell$		
Total	1.00 /	
	1.00	

Question 8

Recall that encryption systems do not fully hide the **length** of transmitted messages. Leaking the length of web requests has been used to eavesdrop on encrypted HTTPS traffic to a number of web sites, such as tax preparation sites, Google searches, and healthcare sites. Suppose an attacker intercepts a packet where he knows that the packet payload is encrypted using AES in CBC mode with a random IV. The encrypted packet payload is 128 bytes. Which of the following messages is plausibly the decryption of the payload:

Your Answer	Score	Explanation
O'If qualified opinions incline to		
believe in the exponential		
conjecture, then I think we		
cannot afford not to make use		
of it.'		

"The most direct computation would be for the enemy to try all 2^r possible keys, one by one."

- 'An enciphering-deciphering machine (in general outline) of my invention has been sent to your organization.'
- 1.00 The length of the string is 106 bytes, which after padding becomes 112 bytes, and after prepending the IV becomes 128 bytes.
- o'The significance of this general conjecture, assuming its truth, is easy to see. It means that it may be feasible to design ciphers that are effectively unbreakable.'

Total

1.00 /

1.00

Question 9

Let $R:=\left\{ 0,1
ight\} ^{4}$ and consider the following PRF $F:R^{5} imes R$ defined as follows:

$$F(k,x) := \left\{ egin{aligned} t = k[0] \ ext{for i=1 to 4 do} \ ext{if } (x[i-1] == 1) \ ext{output } t = t \oplus k[i] \end{aligned}
ight.$$

That is, the key is k=(k[0],k[1],k[2],k[3],k[4]n) R^5 and the function at, for example, 0101 is defined as $F(k,0101)=k[0]\oplus k[2]\oplus k[4]$

For a random key k unknown to you, you learn that

$$F(k,0110)=0011\, {
m and}\ F(k,0101)=1010\, {
m and}\ F(k,1110)=0110.$$

What is the value of F(k, 1101)? Note that since you are able to predict the function at a new point, this PRF is insecure.

You entered:

1111

our Answer		Score	Explanation
11	~	1.00	
tal		1.00 / 1.00	