Halliday, Resnick, and Walker *Fundamentals of Physics 10e* Problem Answers Volume 2

Chapter 21 Answers

1	0.500
2	0.375
3	1.39 m
4	0.50 C
5	2.81 N
6	(a) 4.9×10^{-7} kg;
	(b) 7.1×10^{-11} C
7	-4.00
8	0.375
9	(a) -1.00 μ C;
	(b) 3.00 μC
10	(a) -2.83;
	(b) no
11	(a) 0.17 N;
	(b) -0.046 N
12	(a) $-83 \mu C$;
	(b) 55 μC
13	(a) -14 cm;
	(b) 0
14	(a) 9.0;
	(b) -25
15	(a) 35 N;
	(b) -10°;
	(c) -8.4 cm;
1.0	(d) +2.7 cm
16	(a) positive;
17	(b) +9.0
17	(a) 1.60 N;
10	(b) 2.77 N
18 19	1.333 (a) 3.00 cm;
19	(a) 5.00 cm, (b) 0;
	(c) -0.444
20	(a) -4;
20	(b) + 16
21	$3.8 \times 10^{-8} \mathrm{C}$
22	(a) 1.92 cm;
	(b) less than

23	(a) 0;
23	(b) 12 cm;
	(c) 0;
	(d) 4.9×10^{-26} N
24	(a) 8.99×10^{-19} N;
	(b) 625
25	6.3×10^{11}
26	$2.89 \times 10^{-9} \text{ N}$ (a) $3.2 \times 10^{-19} \text{ C}$;
27	(a) 3.2×10^{-19} C;
	(b) 2
28	2.25×10^{20}
29	(a) -6.05 cm;
	(b) 6.05 cm
30	(a) 2.00 cm;
	(b) 9.21×10^{-24} N
31	122 mA
32	+13 <i>e</i>
33	$1.3 \times 10^7 \mathrm{C}$
34	(a) 0.654 rad;
	(b) 0.889 rad;
25	(c) 0.988 rad
35	(a) 0;
36	(b) 1.9 × 10 ⁻⁹ N (a) positron;
30	(a) position, (b) electron
37	(a) ⁹ B;
	$(b)^{13}N$:
	$(c)^{12}C$
38	+16e
39	$1.31 \times 10^{-22} \mathrm{N}$
40	-2.25
41	(a) 5.7×10^{13} C;
	(b) cancels out;
	(c) $6.0 \times 10^5 \text{ kg}$
42	(b) 2.4×10^{-8} C
43	(b) 3.1 cm
44	11.9 cm
45	0.19 MC
46	(a) $(3.52 \times 10^{-25} \text{ N})\hat{i}$;
	(b) 0
47	-45 μC
48	(a) 3.60 μ N;
	(b) $2.70 \mu N$;
	(c) 3.60 μN

40	2 0 M
49	3.8 N
50	(a) $(L/2)(1 + kqQ/Wh^2)$;
	(b) $(3kqQ/W)^{0.3}$
51	(a) 2.00×10^{10} electrons;
	(b) 1.33×10^{10} electrons
52	-11.1 μC
53	(a) $8.99 \times 10^9 \mathrm{N}$;
	(b) 8.99 kN
54	9.0 kN
55	(a) 0.5;
	(b) 0.15;
	(c) 0.85
56	(a) 1.25×10^{13} electrons;
	(b) from you to faucet;
	(c) positive;
	(d) from faucet to the cat;
	(e) stroking the cat transfers electrons from you to the
	fur, which then induces charge in the cat's body, with
	negative charge on the surface away from the stroked
	region; if you bring your positive hand near the
	negative nose, electrons can spark across the gap
57	$1.7 \times 10^8 \text{ N}$
58	(a) (89.9 N)î;
	(b) (-2.50 N)î;
	(c) 68.3 cm;
50	(d) 0
59	$-1.32 \times 10^{13} \text{ C}$
60	0 (c) (0.820 N) ⁴
61	(a) (0.829 N)î; (b) (0.621 N)î
62	(b) (-0.621 N)ĵ
02	(a) $6.16 \times 10^{-24} \mathrm{N}$;
62	(b) 208°
63	$2.2 \times 10^{-6} \text{ kg}$
64	$1.2 \times 10^{-5} \mathrm{C}$
65	$4.68 \times 10^{-19} \mathrm{N}$
66	-5.1 m
67	(a) 2.72L;
CO	(b) 0 10 ¹⁸ N
68	
69	(a) 5.1×10^2 N;
70	(b) $7.7 \times 10^{28} \text{m/s}^2$
70	0.707
71	(a) 0; (b) $3.43 \times 10^9 \text{m/s}^2$
72	1.6 nm

73	(a) 2.19×10^6 m/s; (b) 1.09×10^6 m/s; (c) decrease
74	1.3 days
75	4.16×10^{42}

Chapter 22 Answers

1	
	10
2	(a) 6.4×10^{-18} N;
	(b) 20 N/C
3	(a) 3.07×10^{21} N/C
	(b) outward
4	$(-6.39 \times 10^5 \text{ N/C})\hat{i}$
5	56 pC
6	0.111 nC
7	$(1.02 \times 10^5 \text{ N/C})\hat{j}$
8	0
9	(a) 1.38×10^{-10} N/C;
	(b) 180°
10	(a) 34 cm;
	(b) $2.2 \times 10^{-8} \text{ N/C}$
11	-30 cm
12	(a) 3.93×10^{-6} N/C;
	(b) -76.4°
13	(a) 3.60×10^{-6} N/C;
	(b) 2.55×10^{-6} N/C;
	(c) 3.60×10^{-4} N/C;
	(d) 7.09×10^{-7} N/C;
	(e) As the proton nears the disk, the forces on it from
	electrons e _s more nearly cancel.
14	(a) 2.72 <i>L</i>
15	(a) 160 N/C;
	(b) 45°
16	(a) 67.8°;
	(b) -67.8°
17	(a) -90°;
	(b) $+2.0 \mu C$;
	(c) $-1.6 \mu C$
18	(c) $-1.6 \mu\text{C}$ $q d^3 / 4 \pi \varepsilon_0 z^5$
19	(a) $qd/4\pi\varepsilon_0 r^3$;
	(b) -90°
20	0.98
21	

22	I
22	(a) -1.72×10^{-15} C/m;
	(b) $-3.82 \times 10^{-14} \text{C/m}^2$;
	$(c) -9.56 \times 10^{-15} \text{C/m}^2;$
	$(d) -1.43 \times 10^{-12} \text{ C/m}^3$
23	0.506
24	(a) 0;
	(b) 0;
	(c) 0.707 <i>R</i> ;
	(d) 3.46×10^7 N/C
25	(a) 1.62×10^6 N/C;
	(b) -45°
26	(a) 20.6 N/C;
	(b) -90°
27	(a) 23.8 N/C;
	(b) -90°
28	1.70 cm
29	1.57
30	-4.19 <i>Q</i>
31	(a) -5.19×10^{-14} C/m;
	(b) 1.57×10^{-3} N/C;
	(c) -180°;
	(d) 1.52×10^{-8} N/C;
	(e) $1.52 \times 10^{-8} \text{ N/C}$
32	(a) 12.4 N/C;
	(b) 90°
33	
34	$6.3 \times 10^3 \text{ N/C}$
35	0.346 m
36	$2.4 \times 10^{-16} \mathrm{C}$
37	28%
38	6.9 cm
39	-5 <i>e</i>
40	(a) 7.12 cm;
	(b) 28.5 ns;
	(c) 0.112
41	(a) 1.5×10^3 N/C;
	(b) 2.4×10^{-16} N;
	(c) up;
	(d) 1.6×10^{-26} N;
	(e) 1.5×10^{10}
42	(a) 4.8×10^{-13} N;
	(b) $4.8 \times 10^{-13} \text{ N}$
43	$3.51 \times 10^{15} \text{ m/s}^2$

(b) up 45	4.4	() 2 02 10-7 21/3
45	44	(a) 2.03×10^{-7} N/C;
46 (a) 1.02 × 10 ¹² N/C; (b) west 47 (a) 1.92 × 10 ¹² m/s ² ; (b) 1.96 × 10 ⁵ m/s 48 (a) 1.16 × 10 ¹⁶ m/s ² ; (b) 3.94 × 10 ¹⁶ m/s ² ; (c) 3.97 × 10 ¹⁶ m/s ² ; (d) because the net force due to the charged particles near the edge of the disk decreases 49 (a) 0.245 N; (b) -11.3°; (c) 108 m; (d) -21.6 m 50 (a) (-2.1 × 10 ¹³ m/s ²)ĵ; (b) (1.5 × 10 ⁵ m/s)ĵ - (2.8 × 10 ⁶ m/s)ĵ 51 (a) 2.6 × 10 ⁻¹⁰ N; (b) 3.1 × 10 ⁻⁸ N; (c) moves to stigma 52 (a) 27 km/s; (b) 50 μm 53 27 μm 54 (1.53 × 10 ⁶ m/s)ĵ - (4.34 × 10 ⁵ m/s)ĵ 55 (a) 2.7 × 10 ⁶ m/s; (b) 1.0 kN/C 56 (a) 0; (b) 8.5 × 10 ⁻²² N·m; (c) 0 57 (a) 9.30 × 10 ⁻¹⁵ C·m; (b) 2.05 × 10 ⁻¹¹ J 58 5.0 × 10 ⁻²⁸ C·m 59 1.22 × 10 ⁻²⁸ C·m 61 (1/2π)(pE/I) ^{0.5} 62 (a) 2.46 × 10 ¹⁷ m/s ² ; (b) 0.122 ns; (c) 1.83 mm 63 (a) 8.87 × 10 ⁻¹⁵ N; (b) 120 64 Q/3πε ₀ d ² 65 217°	45	$6.6 \times 10^{-15} \mathrm{M}$
(b) west 47 (a) 1.92 × 10 ¹² m/s ² ; (b) 1.96 × 10 ⁵ m/s 48 (a) 1.16 × 10 ¹⁶ m/s ² ; (b) 3.94 × 10 ¹⁶ m/s ² ; (c) 3.97 × 10 ¹⁶ m/s ² ; (d) because the net force due to the charged particles near the edge of the disk decreases 49 (a) 0.245 N; (b) -11.3°; (c) 108 m; (d) -21.6 m 50 (a) (-2.1 × 10 ¹³ m/s ²)j; (b) (1.5 × 10 ⁵ m/s)i - (2.8 × 10 ⁶ m/s)j 51 (a) 2.6 × 10 ⁻¹⁰ N; (b) 3.1 × 10 ⁻⁸ N; (c) moves to stigma 52 (a) 27 km/s; (b) 50 μm 53 27 μm 54 (1.53 × 10 ⁶ m/s)i - (4.34 × 10 ⁵ m/s)j 55 (a) 2.7 × 10 ⁶ m/s; (b) 1.0 kN/C 56 (a) 0; (b) 8.5 × 10 ⁻²² N·m; (c) 0 57 (a) 9.30 × 10 ⁻¹⁵ C·m; (b) 2.05 × 10 ⁻¹¹ J 58 5.0 × 10 ⁻²⁸ C·m 59 1.22 × 10 ²³ J 60 2.5 × 10 ⁻²⁸ C·m 61 (1/2π)(pE/I) ^{0.5} 62 (a) 2.46 × 10 ¹⁷ m/s ² ; (b) 0.12 ns; (c) 1.83 mm 63 (a) 8.87 × 10 ⁻¹⁵ N; (b) 120 64 Q/3πε ₀ d ² 65 217°		
47 (a) 1.92 × 10 ¹² m/s ² ; (b) 1.96 × 10 ⁵ m/s 48 (a) 1.16 × 10 ¹⁶ m/s ² ; (b) 3.94 × 10 ¹⁶ m/s ² ; (c) 3.97 × 10 ¹⁶ m/s ² ; (d) because the net force due to the charged particles near the edge of the disk decreases 49 (a) 0.245 N; (b) -11.3°; (c) 108 m; (d) -21.6 m 50 (a) (-2.1 × 10 ¹³ m/s ²)j; (b) (1.5 × 10 ⁵ m/s)î - (2.8 × 10 ⁶ m/s)ĵ 51 (a) 2.6 × 10 ⁻¹⁰ N; (b) 3.1 × 10 ⁻⁸ N; (c) moves to stigma 52 (a) 27 km/s; (b) 50 μm 53 27 μm 54 (1.53 × 10 ⁶ m/s)î - (4.34 × 10 ⁵ m/s)ĵ 55 (a) 2.7 × 10 ⁶ m/s; (b) 1.0 kN/C 56 (a) 0; (b) 8.5 × 10 ⁻²² N·m; (c) 0 57 (a) 9.30 × 10 ⁻¹⁵ C·m; (b) 2.05 × 10 ⁻¹¹ J 58 5.0 × 10 ⁻²⁸ C·m 59 1.22 × 10 ⁻²³ J 60 2.5 × 10 ⁻²⁸ C·m 61 (1/2π)(pE/I) ^{0.5} 62 (a) 2.46 × 10 ¹⁷ m/s ² ; (b) 0.12 ns; (c) 1.83 mm 63 (a) 8.87 × 10 ⁻¹⁵ N; (b) 120 64 Q/3πε ₀ d ² 65 217°	40	,
(b) 1.96 × 10 ⁵ m/s 48 (a) 1.16 × 10 ¹⁶ m/s ² ; (b) 3.94 × 10 ¹⁶ m/s ² ; (c) 3.97 × 10 ¹⁶ m/s ² ; (d) because the net force due to the charged particles near the edge of the disk decreases 49 (a) 0.245 N; (b) -11.3°; (c) 108 m; (d) -21.6 m 50 (a) (-2.1 × 10 ¹³ m/s ²)j; (b) (1.5 × 10 ⁵ m/s)j - (2.8 × 10 ⁶ m/s)j 51 (a) 2.6 × 10 ⁻¹⁰ N; (b) 3.1 × 10 ⁻⁸ N; (c) moves to stigma 52 (a) 27 km/s; (b) 50 μm 53 27 μm 54 (1.53 × 10 ⁶ m/s)j - (4.34 × 10 ⁵ m/s)j 55 (a) 2.7 × 10 ⁶ m/s; (b) 1.0 kN/C 56 (a) 0; (b) 8.5 × 10 ⁻²² N·m; (c) 0 57 (a) 9.30 × 10 ⁻¹⁵ C·m; (b) 2.05 × 10 ⁻¹¹ J 58 5.0 × 10 ⁻²⁸ C·m 59 1.22 × 10 ⁻²⁸ C·m 61 (1/2π)(pE/f) ^{0.5} 62 (a) 2.46 × 10 ¹⁷ m/s ² ; (b) 0.122 ns; (c) 1.83 mm 63 (a) 8.87 × 10 ⁻¹⁵ N; (b) 120 64 Q/3πε ₀ d ² 65 217°	47	
48 (a) 1.16 × 10 ¹⁶ m/s ² ; (b) 3.94 × 10 ¹⁶ m/s ² ; (c) 3.97 × 10 ¹⁶ m/s ² ; (d) because the net force due to the charged particles near the edge of the disk decreases 49 (a) 0.245 N; (b) -11.3°; (c) 108 m; (d) -21.6 m 50 (a) (-2.1 × 10 ¹³ m/s ²)j; (b) (1.5 × 10 ⁵ m/s)j - (2.8 × 10 ⁶ m/s)j 51 (a) 2.6 × 10 ⁻¹⁰ N; (b) 3.1 × 10 ⁻⁸ N; (c) moves to stigma 52 (a) 27 km/s; (b) 50 μm 53 27 μm 54 (1.53 × 10 ⁶ m/s)j - (4.34 × 10 ⁵ m/s)j 55 (a) 2.7 × 10 ⁶ m/s; (b) 1.0 kN/C 56 (a) 0; (b) 8.5 × 10 ⁻²² N·m; (c) 0 57 (a) 9.30 × 10 ⁻¹⁵ C·m; (b) 2.05 × 10 ⁻¹¹ J 58 5.0 × 10 ⁻²⁸ C·m 59 1.22 × 10 ⁻²³ J 60 2.5 × 10 ⁻²⁸ C·m 61 (1/2π)(pE/f) ^{0.5} 62 (a) 2.46 × 10 ¹⁷ m/s ² ; (b) 0.122 ns; (c) 1.83 mm 63 (a) 8.87 × 10 ⁻¹⁵ N; (b) 120 64 Q/3πε ₁ d ² 65 217°	7/	
(b) 3.94 × 10 ¹⁶ m/s ² ; (c) 3.97 × 10 ¹⁶ m/s ² ; (d) because the net force due to the charged particles near the edge of the disk decreases 49 (a) 0.245 N; (b) -11.3°; (c) 108 m; (d) -21.6 m 50 (a) (-2.1 × 10 ¹³ m/s ²) ¹ ; (b) (1.5 × 10 ⁵ m/s) ¹ - (2.8 × 10 ⁶ m/s) ¹) 51 (a) 2.6 × 10 ⁻¹⁰ N; (b) 3.1 × 10 ⁻⁸ N; (c) moves to stigma 52 (a) 27 km/s; (b) 50 μm 53 27 μm 54 (1.53 × 10 ⁶ m/s) ¹ - (4.34 × 10 ⁵ m/s) ¹) 55 (a) 2.7 × 10 ⁶ m/s; (b) 1.0 kN/C 56 (a) 0; (b) 8.5 × 10 ⁻²² N·m; (c) 0 57 (a) 9.30 × 10 ⁻¹⁵ C·m; (b) 2.05 × 10 ⁻²¹ J 58 5.0 × 10 ⁻²⁸ C·m 59 1.22 × 10 ⁻²³ J 60 2.5 × 10 ⁻²⁸ C·m 61 (1/2π)(pE/I) ^{0.5} 62 (a) 2.46 × 10 ¹⁷ m/s ² ; (b) 0.122 ns; (c) 1.83 mm 63 (a) 8.87 × 10 ⁻¹⁵ N; (b) 120 64 Q/3πε ₀ d ² 65 217°	48	(a) $1.16 \times 10^{16} \text{ m/s}^2$
(c) $3.97 \times 10^{16} \text{ m/s}^2$; (d) because the net force due to the charged particles near the edge of the disk decreases 49 (a) 0.245 N ; (b) -11.3° ; (c) 108 m ; (d) -21.6 m 50 (a) $(-2.1 \times 10^{13} \text{ m/s}^2)^\circ$; (b) $(1.5 \times 10^5 \text{ m/s})^\circ$ - $(2.8 \times 10^6 \text{ m/s})^\circ$] 51 (a) $2.6 \times 10^{-10} \text{ N}$; (b) $3.1 \times 10^{-8} \text{ N}$; (c) moves to stigma 52 (a) 27 km/s ; (b) $50 \mu\text{m}$ 53 $27 \mu\text{m}$ 54 $(1.53 \times 10^6 \text{ m/s})^\circ$ - $(4.34 \times 10^5 \text{ m/s})^\circ$) 55 (a) $2.7 \times 10^6 \text{ m/s}$; (b) 1.0 kN/C 56 (a) 0; (b) $8.5 \times 10^{-22} \text{ N·m}$; (c) 0 57 (a) $9.30 \times 10^{-15} \text{ C·m}$; (b) $2.05 \times 10^{-11} \text{ J}$ 58 $5.0 \times 10^{-28} \text{ C·m}$ 59 $1.22 \times 10^{-23} \text{ J}$ 60 $2.5 \times 10^{-28} \text{ C·m}$ 61 $(1/2\pi)(pE/I)^{0.5}$ 62 (a) $2.46 \times 10^{17} \text{ m/s}^2$; (b) 0.122 ns ; (c) 1.83 mm 63 (a) $8.87 \times 10^{-15} \text{ N}$; (b) 120 64 $Q/3\pi\epsilon_0 d^2$ 65 217°	40	
(d) because the net force due to the charged particles near the edge of the disk decreases 49 (a) 0.245 N ; (b) -11.3° ; (c) 108 m ; (d) -21.6 m 50 (a) $(-2.1 \times 10^{13} \text{ m/s}^2)\mathring{\mathfrak{j}}$; (b) $(1.5 \times 10^5 \text{ m/s})\mathring{\mathfrak{i}} - (2.8 \times 10^6 \text{ m/s})\mathring{\mathfrak{j}}$ 51 (a) $2.6 \times 10^{-10} \text{ N}$; (b) $3.1 \times 10^{-8} \text{ N}$; (c) moves to stigma 52 (a) 27 km/s ; (b) $50 \mu\text{m}$ 53 $27 \mu\text{m}$ 54 $(1.53 \times 10^6 \text{ m/s})\mathring{\mathfrak{i}} - (4.34 \times 10^5 \text{ m/s})\mathring{\mathfrak{j}}$ 55 (a) $2.7 \times 10^6 \text{ m/s}$; (b) 1.0 kN/C 56 (a) 0; (b) $8.5 \times 10^{-22} \text{ N·m}$; (c) 0 57 (a) $9.30 \times 10^{-15} \text{ C·m}$; (b) $2.05 \times 10^{-11} \text{ J}$ 58 $5.0 \times 10^{-28} \text{ C·m}$ 59 $1.22 \times 10^{-23} \text{ J}$ 60 $2.5 \times 10^{-28} \text{ C·m}$ 61 $(1/2\pi)(pE/I)^{0.5}$ 62 (a) $2.46 \times 10^{17} \text{ m/s}^2$; (b) 0.122 ns ; (c) 1.83 mm 63 (a) $8.87 \times 10^{-15} \text{ N}$; (b) 120 64 $Q/3\pi\epsilon_0 d^2$ 65 217°		
near the edge of the disk decreases 49 (a) 0.245 N ; (b) -11.3° ; (c) 108 m ; (d) -21.6 m 50 (a) $(-2.1 \times 10^{13} \text{ m/s}^2)\mathring{\mathfrak{j}}$; (b) $(1.5 \times 10^5 \text{ m/s})\mathring{\mathfrak{i}} - (2.8 \times 10^6 \text{ m/s})\mathring{\mathfrak{j}}$ 51 (a) $2.6 \times 10^{-10} \text{ N}$; (b) $3.1 \times 10^{-8} \text{ N}$; (c) moves to stigma 52 (a) 27 km/s ; (b) $50 \mu\text{m}$ 53 $27 \mu\text{m}$ 54 $(1.53 \times 10^6 \text{ m/s})\mathring{\mathfrak{i}} - (4.34 \times 10^5 \text{ m/s})\mathring{\mathfrak{j}}$ 55 (a) $2.7 \times 10^6 \text{ m/s}$; (b) 1.0 kN/C 56 (a) 0; (b) $8.5 \times 10^{-22} \text{ N·m}$; (c) 0 57 (a) $9.30 \times 10^{-15} \text{ C·m}$; (b) $2.05 \times 10^{-11} \text{ J}$ 58 $5.0 \times 10^{-28} \text{ C·m}$ 59 $1.22 \times 10^{-23} \text{ J}$ 60 $2.5 \times 10^{-28} \text{ C·m}$ 61 $(1/2\pi)(pE/I)^{0.5}$ 62 (a) $2.46 \times 10^{17} \text{ m/s}^2$; (b) 0.122 ns ; (c) 1.83 mm 63 (a) $8.87 \times 10^{-15} \text{ N}$; (b) 120 64 $Q/3\pi\epsilon_0 d^2$ 65 217°		
49 (a) 0.245 N ; (b) -11.3° ; (c) 108 m ; (d) -21.6 m 50 (a) $(-2.1 \times 10^{13} \text{ m/s}^2)^{\circ}$; (b) $(1.5 \times 10^5 \text{ m/s})^{\circ}$ $-(2.8 \times 10^6 \text{ m/s})^{\circ}$ 51 (a) $2.6 \times 10^{-10} \text{ N}$; (b) $3.1 \times 10^{-8} \text{ N}$; (c) moves to stigma 52 (a) 27 km/s ; (b) $50 \mu\text{m}$ 53 $27 \mu\text{m}$ 54 $(1.53 \times 10^6 \text{ m/s})^{\circ}$ $-(4.34 \times 10^5 \text{ m/s})^{\circ}$ 55 (a) $2.7 \times 10^6 \text{ m/s}$; (b) 1.0 kN/C 56 (a) 0 ; (b) $8.5 \times 10^{-22} \text{ N·m}$; (c) 0 57 (a) $9.30 \times 10^{-15} \text{ C·m}$; (b) $2.05 \times 10^{-11} \text{ J}$ 58 $5.0 \times 10^{-28} \text{ C·m}$ 59 $1.22 \times 10^{-23} \text{ J}$ 60 $2.5 \times 10^{-28} \text{ C·m}$ 61 $(1/2\pi)(pE/I)^{0.5}$ 62 (a) $2.46 \times 10^{17} \text{ m/s}^2$; (b) 0.122 ns ; (c) 1.83 mm 63 (a) $8.87 \times 10^{-15} \text{ N}$; (b) 120 64 $Q/3\pi\epsilon_0 d^2$ 65 217°		
(c) 108 m ; (d) -21.6 m 50 (a) $(-2.1 \times 10^{13} \text{ m/s}^2)\mathring{\mathfrak{j}}$; (b) $(1.5 \times 10^5 \text{ m/s})\mathring{\mathfrak{i}} - (2.8 \times 10^6 \text{ m/s})\mathring{\mathfrak{j}}$ 51 (a) $2.6 \times 10^{-10} \text{ N}$; (b) $3.1 \times 10^{-8} \text{ N}$; (c) moves to stigma 52 (a) 27 km/s ; (b) $50 \mu\text{m}$ 53 $27 \mu\text{m}$ 54 $(1.53 \times 10^6 \text{ m/s})\mathring{\mathfrak{i}} - (4.34 \times 10^5 \text{ m/s})\mathring{\mathfrak{j}}$ 55 (a) $2.7 \times 10^6 \text{ m/s}$; (b) 1.0 kN/C 56 (a) 0; (b) $8.5 \times 10^{-22} \text{ N·m}$; (c) 0 57 (a) $9.30 \times 10^{-15} \text{ C·m}$; (b) $2.05 \times 10^{-21} \text{ J}$ 58 $5.0 \times 10^{-28} \text{ C·m}$ 59 $1.22 \times 10^{-23} \text{ J}$ 60 $2.5 \times 10^{-28} \text{ C·m}$ 61 $(1/2\pi)(pE/I)^{0.5}$ 62 (a) $2.46 \times 10^{17} \text{ m/s}^2$; (b) 0.122 ns ; (c) 1.83 mm 63 (a) $8.87 \times 10^{-15} \text{ N}$; (b) 120 64 $Q/3\pi\epsilon_0 d^2$	49	Š
(d) -21.6 m 50 (a) $(-2.1 \times 10^{13} \text{ m/s}^2)\mathring{\mathfrak{j}};$ (b) $(1.5 \times 10^5 \text{ m/s})\mathring{\mathfrak{i}} - (2.8 \times 10^6 \text{ m/s})\mathring{\mathfrak{j}}$ 51 (a) $2.6 \times 10^{-10} \text{ N};$ (b) $3.1 \times 10^{-8} \text{ N};$ (c) moves to stigma 52 (a) $27 \text{ km/s};$ (b) $50 \mu\text{m}$ 53 $27 \mu\text{m}$ 54 $(1.53 \times 10^6 \text{ m/s})\mathring{\mathfrak{i}} - (4.34 \times 10^5 \text{ m/s})\mathring{\mathfrak{j}}$ 55 (a) $2.7 \times 10^6 \text{ m/s};$ (b) 1.0 kN/C 56 (a) 0; (b) $8.5 \times 10^{-22} \text{ N·m};$ (c) 0 57 (a) $9.30 \times 10^{-15} \text{ C·m};$ (b) $2.05 \times 10^{-11} \text{ J}$ 58 $5.0 \times 10^{-28} \text{ C·m}$ 59 $1.22 \times 10^{-23} \text{ J}$ 60 $2.5 \times 10^{-28} \text{ C·m}$ 61 $(1/2\pi)(pE/I)^{0.5}$ 62 (a) $2.46 \times 10^{17} \text{ m/s}^2;$ (b) $0.122 \text{ ns};$ (c) 1.83 mm 63 (a) $8.87 \times 10^{-15} \text{ N};$ (b) 120 64 $Q/3\pi\epsilon_0 d^2$ 65 217°		(b) -11.3°;
50 (a) $(-2.1 \times 10^{13} \text{ m/s}^2)\hat{j};$ (b) $(1.5 \times 10^5 \text{ m/s})\hat{i} - (2.8 \times 10^6 \text{ m/s})\hat{j}$ 51 (a) $2.6 \times 10^{-10} \text{ N};$ (b) $3.1 \times 10^{-8} \text{ N};$ (c) moves to stigma 52 (a) $27 \text{ km/s};$ (b) $50 \mu\text{m}$ 53 $27 \mu\text{m}$ 54 $(1.53 \times 10^6 \text{ m/s})\hat{i} - (4.34 \times 10^5 \text{ m/s})\hat{j}$ 55 (a) $2.7 \times 10^6 \text{ m/s};$ (b) 1.0 kN/C 56 (a) $0;$ (b) $8.5 \times 10^{-22} \text{ N·m};$ (c) 0 57 (a) $9.30 \times 10^{-15} \text{ C·m};$ (b) $2.05 \times 10^{-11} \text{ J}$ 58 $5.0 \times 10^{-28} \text{ C·m}$ 59 $1.22 \times 10^{-23} \text{ J}$ 60 $2.5 \times 10^{-28} \text{ C·m}$ 61 $(1/2\pi)(pE/I)^{0.5}$ 62 (a) $2.46 \times 10^{17} \text{ m/s}^2;$ (b) $0.122 \text{ ns};$ (c) 1.83 mm 63 (a) $8.87 \times 10^{-15} \text{ N};$ (b) 120 64 $Q/3\pi\epsilon_0 d^2$ 65 217°		(c) 108 m;
50 (a) $(-2.1 \times 10^{13} \text{ m/s}^2)\hat{j};$ (b) $(1.5 \times 10^5 \text{ m/s})\hat{i} - (2.8 \times 10^6 \text{ m/s})\hat{j}$ 51 (a) $2.6 \times 10^{-10} \text{ N};$ (b) $3.1 \times 10^{-8} \text{ N};$ (c) moves to stigma 52 (a) $27 \text{ km/s};$ (b) $50 \mu\text{m}$ 53 $27 \mu\text{m}$ 54 $(1.53 \times 10^6 \text{ m/s})\hat{i} - (4.34 \times 10^5 \text{ m/s})\hat{j}$ 55 (a) $2.7 \times 10^6 \text{ m/s};$ (b) 1.0 kN/C 56 (a) $0;$ (b) $8.5 \times 10^{-22} \text{ N·m};$ (c) 0 57 (a) $9.30 \times 10^{-15} \text{ C·m};$ (b) $2.05 \times 10^{-11} \text{ J}$ 58 $5.0 \times 10^{-28} \text{ C·m}$ 59 $1.22 \times 10^{-23} \text{ J}$ 60 $2.5 \times 10^{-28} \text{ C·m}$ 61 $(1/2\pi)(pE/I)^{0.5}$ 62 (a) $2.46 \times 10^{17} \text{ m/s}^2;$ (b) $0.122 \text{ ns};$ (c) 1.83 mm 63 (a) $8.87 \times 10^{-15} \text{ N};$ (b) 120 64 $Q/3\pi\epsilon_0 d^2$ 65 217°		(d) -21.6 m
(b) $(1.5 \times 10^5 \text{ m/s})\hat{\mathbf{n}} - (2.8 \times 10^6 \text{ m/s})\hat{\mathbf{j}}$ 51 (a) $2.6 \times 10^{-10} \text{ N}$; (b) $3.1 \times 10^{-8} \text{ N}$; (c) moves to stigma 52 (a) 27 km/s ; (b) $50 \mu\text{m}$ 53 $27 \mu\text{m}$ 54 $(1.53 \times 10^6 \text{ m/s})\hat{\mathbf{i}} - (4.34 \times 10^5 \text{ m/s})\hat{\mathbf{j}}$ 55 (a) $2.7 \times 10^6 \text{ m/s}$; (b) 1.0 kN/C 56 (a) 0; (b) $8.5 \times 10^{-22} \text{ N·m}$; (c) 0 57 (a) $9.30 \times 10^{-15} \text{ C·m}$; (b) $2.05 \times 10^{-11} \text{ J}$ 58 $5.0 \times 10^{-28} \text{ C·m}$ 59 $1.22 \times 10^{-23} \text{ J}$ 60 $2.5 \times 10^{-28} \text{ C·m}$ 61 $(1/2\pi)(pE/I)^{0.5}$ 62 (a) $2.46 \times 10^{17} \text{ m/s}^2$; (b) 0.122 ns ; (c) 1.83 mm 63 (a) $8.87 \times 10^{-15} \text{ N}$; (b) 120 64 $Q/3\pi\epsilon_0 d^2$ 65 217°	50	
51 (a) 2.6×10^{-10} N; (b) 3.1×10^{-8} N; (c) moves to stigma 52 (a) 27 km/s ; (b) $50 \mu\text{m}$ 53 $27 \mu\text{m}$ 54 $(1.53 \times 10^6 \text{ m/s})\hat{i} - (4.34 \times 10^5 \text{ m/s})\hat{j}$ 55 (a) $2.7 \times 10^6 \text{ m/s}$; (b) 1.0 kN/C 56 (a) 0 ; (b) $8.5 \times 10^{-22} \text{ N·m}$; (c) 0 57 (a) $9.30 \times 10^{-15} \text{ C·m}$; (b) $2.05 \times 10^{-11} \text{ J}$ 58 $5.0 \times 10^{-28} \text{ C·m}$ 59 $1.22 \times 10^{-23} \text{ J}$ 60 $2.5 \times 10^{-28} \text{ C·m}$ 61 $(1/2\pi)(pE/I)^{0.5}$ 62 (a) $2.46 \times 10^{17} \text{ m/s}^2$; (b) 0.122 ns ; (c) 1.83 mm 63 (a) $8.87 \times 10^{-15} \text{ N}$; (b) 120 64 $Q/3\pi\epsilon_0 d^2$ 65 217°		
(b) $50 \ \mu \text{m}$ $53 27 \ \mu \text{m}$ $54 (1.53 \times 10^6 \text{ m/s})\hat{i} - (4.34 \times 10^5 \text{ m/s})\hat{j}$ $55 (a) 2.7 \times 10^6 \text{ m/s};$ (b) 1.0 kN/C $56 (a) 0;$ (b) $8.5 \times 10^{-22} \text{ N·m};$ (c) 0 $57 (a) 9.30 \times 10^{-15} \text{ C·m};$ (b) $2.05 \times 10^{-11} \text{ J}$ $58 5.0 \times 10^{-28} \text{ C·m}$ $59 1.22 \times 10^{-23} \text{ J}$ $60 2.5 \times 10^{-28} \text{ C·m}$ $61 (1/2\pi)(pE/I)^{0.5}$ $62 (a) 2.46 \times 10^{17} \text{ m/s}^2;$ (b) $0.122 \text{ ns};$ (c) 1.83 mm $63 (a) 8.87 \times 10^{-15} \text{ N};$ (b) 120 $64 Q/3\pi\epsilon_0 d^2$ $65 217^\circ$	51	(a) 2.6×10^{-10} N; (b) 3.1×10^{-8} N; (c) moves to stigma
(b) $50 \mu m$ $53 27 \mu m$ $54 (1.53 \times 10^6 \text{ m/s})\hat{i} - (4.34 \times 10^5 \text{ m/s})\hat{j}$ $55 (a) 2.7 \times 10^6 \text{ m/s};$ (b) 1.0 kN/C $56 (a) 0;$ (b) $8.5 \times 10^{-22} \text{ N·m};$ (c) 0 $57 (a) 9.30 \times 10^{-15} \text{ C·m};$ (b) $2.05 \times 10^{-11} \text{ J}$ $58 5.0 \times 10^{-28} \text{ C·m}$ $59 1.22 \times 10^{-23} \text{ J}$ $60 2.5 \times 10^{-28} \text{ C·m}$ $61 (1/2\pi)(pE/D)^{0.5}$ $62 (a) 2.46 \times 10^{17} \text{ m/s}^2;$ (b) $0.122 \text{ ns};$ (c) 1.83 mm $63 (a) 8.87 \times 10^{-15} \text{ N};$ (b) 120 $64 Q/3\pi\epsilon_0 d^2$ $65 217^\circ$		
53	52	(a) 27 km/s;
54 $(1.53 \times 10^6 \text{ m/s})\hat{\mathbf{i}} - (4.34 \times 10^5 \text{ m/s})\hat{\mathbf{j}}$ 55 $(\mathbf{a}) 2.7 \times 10^6 \text{ m/s};$ $(\mathbf{b}) 1.0 \text{ kN/C}$ 56 $(\mathbf{a}) 0;$ $(\mathbf{b}) 8.5 \times 10^{-22} \text{ N·m};$ $(\mathbf{c}) 0$ 57 $(\mathbf{a}) 9.30 \times 10^{-15} \text{ C·m};$ $(\mathbf{b}) 2.05 \times 10^{-11} \text{ J}$ 58 $5.0 \times 10^{-28} \text{ C·m}$ 59 $1.22 \times 10^{-23} \text{ J}$ 60 $2.5 \times 10^{-28} \text{ C·m}$ 61 $(1/2\pi)(pE/I)^{0.5}$ 62 $(\mathbf{a}) 2.46 \times 10^{17} \text{ m/s}^2;$ $(\mathbf{b}) 0.122 \text{ ns};$ $(\mathbf{c}) 1.83 \text{ mm}$ 63 $(\mathbf{a}) 8.87 \times 10^{-15} \text{ N};$ $(\mathbf{b}) 120$ 64 $Q/3\pi\epsilon_0 d^2$ 65 217°		(b) 50 μm
55 (a) 2.7×10^6 m/s; (b) 1.0 kN/C 56 (a) 0; (b) 8.5×10^{-22} N·m; (c) 0 57 (a) 9.30×10^{-15} C·m; (b) 2.05×10^{-11} J 58 5.0×10^{-28} C·m 59 1.22×10^{-23} J 60 2.5×10^{-28} C·m 61 $(1/2\pi)(pE/I)^{0.5}$ 62 (a) 2.46×10^{17} m/s ² ; (b) 0.122 ns; (c) 1.83 mm 63 (a) 8.87×10^{-15} N; (b) 120 64 $Q/3\pi\epsilon_0 d^2$ 65 217°	53	27 μm
(b) 1.0 kN/C 56 (a) 0; (b) $8.5 \times 10^{-22} \text{ N·m}$; (c) 0 57 (a) $9.30 \times 10^{-15} \text{ C·m}$; (b) $2.05 \times 10^{-11} \text{ J}$ 58 $5.0 \times 10^{-28} \text{ C·m}$ 59 $1.22 \times 10^{-23} \text{ J}$ 60 $2.5 \times 10^{-28} \text{ C·m}$ 61 $(1/2\pi)(pE/I)^{0.5}$ 62 (a) $2.46 \times 10^{17} \text{ m/s}^2$; (b) 0.122 ns ; (c) 1.83 mm 63 (a) $8.87 \times 10^{-15} \text{ N}$; (b) 120 64 $Q/3\pi\epsilon_0 d^2$ 65 217°	54	
56 (a) 0; (b) $8.5 \times 10^{-22} \mathrm{N \cdot m}$; (c) 0 57 (a) $9.30 \times 10^{-15} \mathrm{C \cdot m}$; (b) $2.05 \times 10^{-11} \mathrm{J}$ 58 $5.0 \times 10^{-28} \mathrm{C \cdot m}$ 59 $1.22 \times 10^{-23} \mathrm{J}$ 60 $2.5 \times 10^{-28} \mathrm{C \cdot m}$ 61 $(1/2\pi)(pE/I)^{0.5}$ 62 (a) $2.46 \times 10^{17} \mathrm{m/s^2}$; (b) $0.122 \mathrm{ns}$; (c) $1.83 \mathrm{mm}$ 63 (a) $8.87 \times 10^{-15} \mathrm{N}$; (b) 120 64 $Q/3 \pi \varepsilon_0 d^2$ 65 217°	55	(a) 2.7×10^6 m/s;
(b) $8.5 \times 10^{-22} \mathrm{N \cdot m}$; (c) 0 57 (a) $9.30 \times 10^{-15} \mathrm{C \cdot m}$; (b) $2.05 \times 10^{-11} \mathrm{J}$ 58 $5.0 \times 10^{-28} \mathrm{C \cdot m}$ 59 $1.22 \times 10^{-23} \mathrm{J}$ 60 $2.5 \times 10^{-28} \mathrm{C \cdot m}$ 61 $(1/2\pi)(pE/I)^{0.5}$ 62 (a) $2.46 \times 10^{17} \mathrm{m/s^2}$; (b) $0.122 \mathrm{ns}$; (c) $1.83 \mathrm{mm}$ 63 (a) $8.87 \times 10^{-15} \mathrm{N}$; (b) 120 64 $Q/3\pi\epsilon_0 d^2$ 65 217°		(b) 1.0 kN/C
(c) 0 57 (a) 9.30×10^{-15} C·m; (b) 2.05×10^{-11} J 58 5.0×10^{-28} C·m 59 1.22×10^{-23} J 60 2.5×10^{-28} C·m 61 $(1/2\pi)(pE/I)^{0.5}$ 62 (a) 2.46×10^{17} m/s ² ; (b) 0.122 ns; (c) 1.83 mm 63 (a) 8.87×10^{-15} N; (b) 120 64 $Q/3\pi\epsilon_0 d^2$ 65 217°	56	
57 (a) $9.30 \times 10^{-15} \text{ C·m}$; (b) $2.05 \times 10^{-11} \text{ J}$ 58 $5.0 \times 10^{-28} \text{ C·m}$ 59 $1.22 \times 10^{-23} \text{ J}$ 60 $2.5 \times 10^{-28} \text{ C·m}$ 61 $(1/2\pi)(pE/I)^{0.5}$ 62 (a) $2.46 \times 10^{17} \text{ m/s}^2$; (b) 0.122 ns ; (c) 1.83 mm 63 (a) $8.87 \times 10^{-15} \text{ N}$; (b) 120 64 $Q/3\pi\epsilon_0 d^2$ 65 217°		(b) $8.5 \times 10^{-22} \mathrm{N \cdot m}$;
(a) $9.30 \times 10^{-11} \text{ J}$ (b) $2.05 \times 10^{-11} \text{ J}$ $58 5.0 \times 10^{-28} \text{ C·m}$ $59 1.22 \times 10^{-23} \text{ J}$ $60 2.5 \times 10^{-28} \text{ C·m}$ $61 (1/2\pi)(pE/I)^{0.5}$ $62 (a) 2.46 \times 10^{17} \text{ m/s}^2;$ (b) $0.122 \text{ ns};$ (c) 1.83 mm $63 (a) 8.87 \times 10^{-15} \text{ N};$ (b) 120 $64 Q/3\pi\epsilon_0 d^2$ $65 217^{\circ}$		(c) 0
(b) $2.05 \times 10^{-11} \text{ J}$ 58 $5.0 \times 10^{-28} \text{ C·m}$ 59 $1.22 \times 10^{-23} \text{ J}$ 60 $2.5 \times 10^{-28} \text{ C·m}$ 61 $(1/2\pi)(pE/I)^{0.5}$ 62 (a) $2.46 \times 10^{17} \text{ m/s}^2$; (b) 0.122 ns ; (c) 1.83 mm 63 (a) $8.87 \times 10^{-15} \text{ N}$; (b) 120 64 $Q/3\pi\epsilon_0 d^2$ 65 217°	57	(a) 9.30×10^{-15} C·m;
58 $5.0 \times 10^{-28} \mathrm{C} \cdot \mathrm{m}$ 59 $1.22 \times 10^{-23} \mathrm{J}$ 60 $2.5 \times 10^{-28} \mathrm{C} \cdot \mathrm{m}$ 61 $(1/2\pi)(pE/I)^{0.5}$ 62 (a) $2.46 \times 10^{17} \mathrm{m/s^2}$; (b) $0.122 \mathrm{ns}$; (c) $1.83 \mathrm{mm}$ 63 (a) $8.87 \times 10^{-15} \mathrm{N}$; (b) 120 64 $Q/3\pi\epsilon_0 d^2$ 65 217°		
59 $1.22 \times 10^{-23} \text{ J}$ 60 $2.5 \times 10^{-28} \text{ C·m}$ 61 $(1/2\pi)(pE/I)^{0.5}$ 62 (a) $2.46 \times 10^{17} \text{ m/s}^2$; (b) 0.122 ns ; (c) 1.83 mm 63 (a) $8.87 \times 10^{-15} \text{ N}$; (b) 120 64 $Q/3\pi\epsilon_0 d^2$ 65 217°	58	$5.0 \times 10^{-28} \mathrm{Cm}$
61 $(1/2\pi)(pE/I)^{0.5}$ 62 (a) $2.46 \times 10^{17} \text{ m/s}^2$; (b) 0.122 ns ; (c) 1.83 mm 63 (a) $8.87 \times 10^{-15} \text{ N}$; (b) 120 64 $Q/3\pi\epsilon_0 d^2$ 65 217°	59	
61 $(1/2\pi)(pE/I)^{0.5}$ 62 (a) $2.46 \times 10^{17} \text{ m/s}^2$; (b) 0.122 ns ; (c) 1.83 mm 63 (a) $8.87 \times 10^{-15} \text{ N}$; (b) 120 64 $Q/3\pi\epsilon_0 d^2$ 65 217°	60	$2.5 \times 10^{-28} \mathrm{Cm}$
62 (a) $2.46 \times 10^{17} \text{ m/s}^2$; (b) 0.122 ns ; (c) 1.83 mm 63 (a) $8.87 \times 10^{-15} \text{ N}$; (b) 120 64 $Q/3\pi\epsilon_0 d^2$ 65 217°	61	$(1/2\pi)(pE/I)^{0.5}$
(b) 0.122 ns; (c) 1.83 mm 63 (a) 8.87×10^{-15} N; (b) 120 64 $Q/3\pi\epsilon_0 d^2$ 65 217°	62	(a) $2.46 \times 10^{17} \text{ m/s}^2$;
63 (a) 8.87×10^{-15} N; (b) 120 64 $Q/3\pi\epsilon_0 d^2$ 65 217°		
63 (a) 8.87×10^{-15} N; (b) 120 64 $Q/3\pi\epsilon_0 d^2$ 65 217°		(c) 1.83 mm
(b) 120 $64 Q/3\pi\varepsilon_0 d^2$ $65 217^{\circ}$	63	
65 217°		(b) 120
	64	$Q/3\pi\epsilon_0 d^2$
$66 \boxed{3.6 \times 10^2 \text{ N/C}}$	65	
	66	$3.6 \times 10^2 \text{ N/C}$

67	61 N/C
68	$(1.08 \times 10^{-5} \text{ N/C})\hat{i}$
69	(a) 47 N/C;
	(b) 27 N/C
70	1.64 × 10 ⁻¹⁹ C (approx 2% high)
71	38 N/C
72	
73	(a) -1.0 cm;
	(b) 0;
	(c) 10 pC
74	(a) $0.10 \mu\text{C}$;
	(b) 1.3×10^{17} ;
	(c) 5.0×10^{-6}
75	$+1.00 \mu C$
76	$-3.28 \times 10^{-21} \mathrm{J}$
77	(a) 6.0 mm;
	(b) 180°
78	(a) $(2q/4\pi\epsilon_0 d^2)\alpha/(1+\alpha^2)^{1.5}$;
	(c) 0.71;
	(d) 0.20 and 2.0
79	9:30
80	$6.88 \times 10^{-28} \mathrm{C\cdot m}$
81	(a) -0.029 C;
	(b) repulsive forces would explode the sphere
82	5.39 N/C
83	(a) $-1.49 \times 10^{-26} \mathrm{J};$
	(b) $(-1.98 \times 10^{-26} \mathrm{N \cdot m})\hat{k}$;
	(c) $3.47 \times 10^{-26} \mathrm{J}$
84	(a) yes;
	(b) upper plate, 2.72 cm
85	(a) top row: 4, 8, 12;
	middle row: 5, 10, 14;
	bottom row: 7, 11, 16;
	(b) 1.63×10^{-19} C
86	(a) 0°;
	(b) 9.96 pN
87	(a) (-1.80 N/C)î;
	(b) (43.2 N/C)î;
	(c) (-6.29 N/C)î

Chapter 23 Answers

	T
1	$-0.015 \text{ N} \cdot \text{m}^2/\text{C}$
2	(a) $-72 \text{ N} \cdot \text{m}^2/\text{C}$;
	(b) $+24 \text{ N} \cdot \text{m}^2/\text{C}$;
	$(c) -16 \text{ N} \cdot \text{m}^2/\text{C};$
	(d) 0;
	$(e) -48 \text{ N} \cdot \text{m}^2/\text{C}$
3	(a) 0;
	(b) $-3.92 \text{ N} \cdot \text{m}^2/\text{C}$;
	(c) 0;
	(d) 0
4	$-1.1 \times 10^{-4} \mathrm{N \cdot m^2/C}$
5	$3.01 \text{ nN}\cdot\text{m}^2/\text{C}$
6	-4.3 nC
7	$2.0 \times 10^5 \text{ N} \cdot \text{m}^2/\text{C}$
8	(a) $-1.3 \times 10^{-8} \mathrm{C/m}^3$;
	(b) $8.2 \times 10^{10} \text{ charges/m}^3$
9	(a) $8.23 \text{ N} \cdot \text{m}^2/\text{C}$;
	(b) 72.9 pC;
	(c) $8.23 \text{ N} \cdot \text{m}^2/\text{C}$;
1.0	(d) 72.9 pC
10	+0.213 nC
11	-1.70 nC
12	$(-2.8 \times 10^4 \text{ N/C})\hat{i}$
14	$3.54 \mu\text{C}$ (a) +1.8 μC ;
17	(a) +1.6 μ C, (b) -5.3 μ C;
	(c) $+8.9 \mu C$
15	(a) 0;
	(b) 0.0417
16	2.00 N/C·m
17	(a) 37 μ C;
	(b) $4.1 \times 10^6 \text{ N} \cdot \text{m}^2/\text{C}$
18	(b) $4.1 \times 10^6 \text{ N} \cdot \text{m}^2/\text{C}$ $2.0 \ \mu\text{C/m}^2$
19	(a) $4.5 \times 10^{-7} \text{ C/m}^2$;
	(b) $5.1 \times 10^4 \text{ N/C}$
20	(a) $-8.0 \mu\text{C}$;
	(b) $+12 \mu C$;
	(c) $-5.3 \mu C$ (a) $-3.0 \times 10^{-6} C$;
21	
	$(b) +1.3 \times 10^{-5} \text{ C}$

23 (a) $0.32 \mu\text{C}$; (b) $0.14 \mu\text{C}$ 24 (a) 0; (b) $5.99 \times 10^3 \text{N/C}$ 25 $5.0 \mu\text{C/m}$ 26 -5.8nC/m 27 $3.8 \times 10^{-8} \text{C/m}^2$ 28 (a) 0.24kN/C ; (b) -6.4nC/m^2 ; (c) $+3.2 \text{nC/m}^2$ 29 (a) 0.214N/C ; (b) inward; (c) 0.855N/C ; (d) outward; (e) $-3.40 \times 10^{-12} \text{C}$; (f) $-3.40 \times 10^{-12} \text{C}$ 30 8.0cm 31 (a) $2.3 \times 10^6 \text{N/C}$; (b) outward; (c) $4.5 \times 10^5 \text{N/C}$; (d) inward 32 (a) 1.9N/C ; (d) inward 32 (a) 1.9N/C ; (b) 0.5n/C 33 (a) 0; (b) 0; (c) $(-7.91 \times 10^{-11} \text{N/C})\mathring{\text{n}}$ 34 ($0.208 \text{N/C})\mathring{\text{k}}$ 35 -1.5 36 (a) $(2.00 \times 10^{-11} \text{N/C})\mathring{\text{n}}$; (b) 0; (c) $(-2.00 \times 10^{-11} \text{N/C})\mathring{\text{n}}$	22	$2.1 \times 10^{17} \mathrm{m/s^2}$
(b) 0.14 µC 24 (a) 0; (b) 5.99 × 10 ³ N/C 25 5.0 µC/m 26 -5.8 nC/m 27 3.8 × 10 ⁸ C/m ² 28 (a) 0.24 kN/C; (b) -6.4 nC/m ² ; (c) +3.2 nC/m ² 29 (a) 0.214 N/C; (b) inward; (c) 0.855 N/C; (d) outward; (e) -3.40 × 10 ⁻¹² C; (f) -3.40 × 10 ⁻¹² C 30 8.0 cm 31 (a) 2.3 × 10 ⁶ N/C; (b) outward; (c) 4.5 × 10 ⁵ N/C; (d) inward 32 (a) 1.9 N/C; (b) 3.6 N/C 33 (a) 0; (b) 0; (c) (-7.91 × 10 ⁻¹¹ N/C)ĵ; (b) 0; (c) (-2.00 × 10 ⁻¹¹ N/C)ĵ; (b) 0; (c) (-2.00 × 10 ⁻¹¹ N/C)ĵ		
24 (a) 0; (b) 5.99×10^{3} N/C 25 $5.0 \mu\text{C/m}$ 26 -5.8nC/m 27 $3.8 \times 10^{-8} \text{C/m}^{2}$ 28 (a) 0.24kN/C ; (b) -6.4nC/m^{2} ; (c) $+3.2 \text{nC/m}^{2}$ 29 (a) 0.214N/C ; (b) inward; (c) 0.855N/C ; (d) outward; (e) $-3.40 \times 10^{-12} \text{C}$; (f) $-3.40 \times 10^{-12} \text{C}$ 30 8.0cm 31 (a) $2.3 \times 10^{6} \text{N/C}$; (b) outward; (c) $4.5 \times 10^{5} \text{N/C}$; (d) inward 32 (a) 1.9N/C ; (b) 3.6N/C 33 (a) 0; (b) 0; (c) $(-7.91 \times 10^{-11} \text{N/C})^{\frac{5}{1}}$; (b) 0; (c) $(-2.00 \times 10^{-11} \text{N/C})^{\frac{5}{1}}$; (b) 0; (c) $(-2.00 \times 10^{-11} \text{N/C})^{\frac{5}{1}}$;		
(b) 5.99×10^{3} N/C 25 $5.0 \mu\text{C/m}$ 26 -5.8nC/m 27 $3.8 \times 10^{-8} \text{C/m}^{2}$ 28 (a) 0.24kN/C ; (b) -6.4nC/m^{2} ; (c) $+3.2 \text{nC/m}^{2}$ 29 (a) 0.214N/C ; (b) inward; (c) 0.855N/C ; (d) outward; (e) $-3.40 \times 10^{-12} \text{C}$ 30 8.0cm 31 (a) $2.3 \times 10^{6} \text{N/C}$; (b) outward; (c) $4.5 \times 10^{5} \text{N/C}$; (d) inward 32 (a) 1.9N/C ; (b) 3.6N/C 33 (a) 0 ; (b) 0 ; (c) $(-7.91 \times 10^{-11} \text{N/C})\hat{\mathbf{j}}$; (b) 0 ; (c) $(-2.00 \times 10^{-11} \text{N/C})\hat{\mathbf{j}}$; (b) 0 ; (c) $(-2.00 \times 10^{-11} \text{N/C})\hat{\mathbf{j}}$; (b) 0 ; (c) $(-2.00 \times 10^{-11} \text{N/C})\hat{\mathbf{j}}$; (b) 0 ; (c) $(-2.00 \times 10^{-11} \text{N/C})\hat{\mathbf{j}}$; (b) 0 ; (c) $(-2.00 \times 10^{-11} \text{N/C})\hat{\mathbf{j}}$	24	
25 5.0 µC/m 26 -5.8 nC/m 27 3.8 × 10 ⁻⁸ C/m ² 28 (a) 0.24 kN/C; (b) -6.4 nC/m ² ; (c) +3.2 nC/m ² 29 (a) 0.214 N/C; (b) inward; (c) 0.855 N/C; (d) outward; (e) -3.40 × 10 ⁻¹² C; (f) -3.40 × 10 ⁻¹² C 30 8.0 cm 31 (a) 2.3 × 10 ⁶ N/C; (b) outward; (c) 4.5 × 10 ⁵ N/C; (d) inward 32 (a) 1.9 N/C; (b) 3.6 N/C 33 (a) 0; (b) 0; (c) (-7.91 × 10 ⁻¹¹ N/C)ĵ; (b) 0; (c) (-2.00 × 10 ⁻¹¹ N/C)ĵ; (b) 0; (c) (-2.00 × 10 ⁻¹¹ N/C)ĵ		
26 -5.8 nC/m 27 3.8 × 10 ⁻⁸ C/m ² 28 (a) 0.24 kN/C; (b) -6.4 nC/m ² ; (c) +3.2 nC/m ² 29 (a) 0.214 N/C; (b) inward; (c) 0.855 N/C; (d) outward; (e) -3.40 × 10 ⁻¹² C; (f) -3.40 × 10 ⁻¹² C 30 8.0 cm 31 (a) 2.3 × 10 ⁶ N/C; (b) outward; (c) 4.5 × 10 ⁵ N/C; (d) inward 32 (a) 1.9 N/C; (b) 3.6 N/C 33 (a) 0; (b) 0; (c) (-7.91 × 10 ⁻¹¹ N/C) ⁵ 34 (0.208 N/C) ^k 35 -1.5 36 (a) (2.00 × 10 ⁻¹¹ N/C) ⁵ ; (b) 0; (c) (-2.00 × 10 ⁻¹¹ N/C) ⁵	25	
28 (a) 0.24 kN/C ; (b) -6.4 nC/m^2 ; (c) $+3.2 \text{ nC/m}^2$ 29 (a) 0.214 N/C ; (b) inward; (c) 0.855 N/C ; (d) outward; (e) $-3.40 \times 10^{-12} \text{ C}$; (f) $-3.40 \times 10^{-12} \text{ C}$ 30 8.0 cm 31 (a) $2.3 \times 10^6 \text{ N/C}$; (b) outward; (c) $4.5 \times 10^5 \text{ N/C}$; (d) inward 32 (a) 1.9 N/C ; (b) 3.6 N/C 33 (a) 0; (b) 0; (c) $(-7.91 \times 10^{-11} \text{ N/C})\mathring{1}$ 34 (0.208 N/C) $\mathring{\mathbf{k}}$ 35 -1.5 36 (a) $(2.00 \times 10^{-11} \text{ N/C})\mathring{1}$; (b) 0; (c) $(-2.00 \times 10^{-11} \text{ N/C})\mathring{1}$	26	
(b) -6.4 nC/m^2 ; (c) $+3.2 \text{ nC/m}^2$ 29 (a) 0.214 N/C ; (b) inward; (c) 0.855 N/C ; (d) outward; (e) $-3.40 \times 10^{-12} \text{ C}$; (f) $-3.40 \times 10^{-12} \text{ C}$ 30 8.0 cm 31 (a) $2.3 \times 10^6 \text{ N/C}$; (b) outward; (c) $4.5 \times 10^5 \text{ N/C}$; (d) inward 32 (a) 1.9 N/C ; (b) 3.6 N/C 33 (a) 0; (b) 0; (c) $(-7.91 \times 10^{-11} \text{ N/C})\hat{\mathbf{j}}$; (b) 0; (c) $(-7.91 \times 10^{-11} \text{ N/C})\hat{\mathbf{j}}$; (b) 0; (c) $(-2.00 \times 10^{-11} \text{ N/C})\hat{\mathbf{j}}$; (b) 0; (c) $(-2.00 \times 10^{-11} \text{ N/C})\hat{\mathbf{j}}$	27	$3.8 \times 10^{-8} \text{ C/m}^2$
(c) +3.2 nC/m ² 29 (a) 0.214 N/C; (b) inward; (c) 0.855 N/C; (d) outward; (e) -3.40 × 10 ⁻¹² C; (f) -3.40 × 10 ⁻¹² C 30 8.0 cm 31 (a) 2.3 × 10 ⁶ N/C; (b) outward; (c) 4.5 × 10 ⁵ N/C; (d) inward 32 (a) 1.9 N/C; (b) 3.6 N/C 33 (a) 0; (b) 0; (c) (-7.91 × 10 ⁻¹¹ N/C)î 34 (0.208 N/C)k 35 -1.5 36 (a) (2.00 × 10 ⁻¹¹ N/C)ĵ; (b) 0; (c) (-2.00 × 10 ⁻¹¹ N/C)ĵ	28	(a) 0.24 kN/C;
29 (a) 0.214 N/C; (b) inward; (c) 0.855 N/C; (d) outward; (e) -3.40 × 10 ⁻¹² C; (f) -3.40 × 10 ⁻¹² C 30 8.0 cm 31 (a) 2.3 × 10 ⁶ N/C; (b) outward; (c) 4.5 × 10 ⁵ N/C; (d) inward 32 (a) 1.9 N/C; (b) 3.6 N/C 33 (a) 0; (b) 0; (c) (-7.91 × 10 ⁻¹¹ N/C)î 34 (0.208 N/C)k 35 -1.5 36 (a) (2.00 × 10 ⁻¹¹ N/C)ĵ; (b) 0; (c) (-2.00 × 10 ⁻¹¹ N/C)ĵ		l ` '
(b) inward; (c) 0.855 N/C; (d) outward; (e) -3.40 × 10 ⁻¹² C; (f) -3.40 × 10 ⁻¹² C 30 8.0 cm 31 (a) 2.3 × 10 ⁶ N/C; (b) outward; (c) 4.5 × 10 ⁵ N/C; (d) inward 32 (a) 1.9 N/C; (b) 3.6 N/C 33 (a) 0; (b) 0; (c) (-7.91 × 10 ⁻¹¹ N/C)î 34 (0.208 N/C)k 35 -1.5 36 (a) (2.00 × 10 ⁻¹¹ N/C)ĵ; (b) 0; (c) (-2.00 × 10 ⁻¹¹ N/C)ĵ		$(c) +3.2 \text{ nC/m}^2$
(c) 0.855 N/C; (d) outward; (e) -3.40 × 10 ⁻¹² C; (f) -3.40 × 10 ⁻¹² C 30 8.0 cm 31 (a) 2.3 × 10 ⁶ N/C; (b) outward; (c) 4.5 × 10 ⁵ N/C; (d) inward 32 (a) 1.9 N/C; (b) 3.6 N/C 33 (a) 0; (b) 0; (c) (-7.91 × 10 ⁻¹¹ N/C)î 34 (0.208 N/C)k 35 -1.5 36 (a) (2.00 × 10 ⁻¹¹ N/C)ĵ; (b) 0; (c) (-2.00 × 10 ⁻¹¹ N/C)ĵ	29	
(d) outward; (e) $-3.40 \times 10^{-12} \mathrm{C}$; (f) $-3.40 \times 10^{-12} \mathrm{C}$ 30 8.0 cm 31 (a) $2.3 \times 10^6 \mathrm{N/C}$; (b) outward; (c) $4.5 \times 10^5 \mathrm{N/C}$; (d) inward 32 (a) $1.9 \mathrm{N/C}$; (b) $3.6 \mathrm{N/C}$ 33 (a) 0; (b) 0; (c) $(-7.91 \times 10^{-11} \mathrm{N/C})\hat{\mathbf{i}}$ 34 (0.208 N/C) $\hat{\mathbf{k}}$ 35 -1.5 36 (a) $(2.00 \times 10^{-11} \mathrm{N/C})\hat{\mathbf{j}}$; (b) 0; (c) $(-2.00 \times 10^{-11} \mathrm{N/C})\hat{\mathbf{j}}$		
(e) -3.40×10^{-12} C; (f) -3.40×10^{-12} C 30 8.0 cm 31 (a) 2.3×10^6 N/C; (b) outward; (c) 4.5×10^5 N/C; (d) inward 32 (a) 1.9 N/C; (b) 3.6 N/C 33 (a) 0; (b) 0; (c) $(-7.91 \times 10^{-11}$ N/C)î 34 (0.208 N/C)k 35 -1.5 36 (a) $(2.00 \times 10^{-11}$ N/C)ĵ; (b) 0; (c) $(-2.00 \times 10^{-11}$ N/C)ĵ		
$(f) -3.40 \times 10^{-12} C$ $30 8.0 \text{ cm}$ $31 (a) 2.3 \times 10^{6} \text{ N/C};$ $(b) \text{ outward};$ $(c) 4.5 \times 10^{5} \text{ N/C};$ $(d) \text{ inward}$ $32 (a) 1.9 \text{ N/C};$ $(b) 3.6 \text{ N/C}$ $33 (a) 0;$ $(b) 0;$ $(c) (-7.91 \times 10^{-11} \text{ N/C})^{\hat{1}}$ $34 (0.208 \text{ N/C})^{\hat{k}}$ $35 -1.5$ $36 (a) (2.00 \times 10^{-11} \text{ N/C})^{\hat{j}};$ $(b) 0;$ $(c) (-2.00 \times 10^{-11} \text{ N/C})^{\hat{j}}$		
30 8.0 cm 31 (a) 2.3×10^6 N/C; (b) outward; (c) 4.5×10^5 N/C; (d) inward 32 (a) 1.9 N/C; (b) 3.6 N/C 33 (a) 0; (b) 0; (c) $(-7.91 \times 10^{-11}$ N/C)î 34 (0.208 N/C)k 35 -1.5 36 (a) $(2.00 \times 10^{-11}$ N/C)ĵ; (b) 0; (c) $(-2.00 \times 10^{-11}$ N/C)ĵ		
31 (a) $2.3 \times 10^{6} \text{ N/C}$; (b) outward; (c) $4.5 \times 10^{5} \text{ N/C}$; (d) inward 32 (a) 1.9 N/C ; (b) 3.6 N/C 33 (a) 0; (b) 0; (c) $(-7.91 \times 10^{-11} \text{ N/C})\hat{\mathbf{i}}$ 34 (0.208 N/C) $\hat{\mathbf{k}}$ 35 -1.5 36 (a) $(2.00 \times 10^{-11} \text{ N/C})\hat{\mathbf{j}}$; (b) 0; (c) $(-2.00 \times 10^{-11} \text{ N/C})\hat{\mathbf{j}}$		
(b) outward; (c) 4.5×10^5 N/C; (d) inward 32 (a) 1.9 N/C; (b) 3.6 N/C 33 (a) 0; (b) 0; (c) $(-7.91 \times 10^{-11}$ N/C)î 34 (0.208 N/C)k 35 -1.5 36 (a) $(2.00 \times 10^{-11}$ N/C)ĵ; (b) 0; (c) $(-2.00 \times 10^{-11}$ N/C)ĵ	-	
(c) 4.5×10^{5} N/C; (d) inward 32 (a) 1.9 N/C; (b) 3.6 N/C 33 (a) 0; (b) 0; (c) $(-7.91 \times 10^{-11}$ N/C)î 34 (0.208 N/C)k 35 -1.5 36 (a) $(2.00 \times 10^{-11}$ N/C)ĵ; (b) 0; (c) $(-2.00 \times 10^{-11}$ N/C)ĵ	31	
(d) inward 32 (a) 1.9 N/C; (b) 3.6 N/C 33 (a) 0; (b) 0; (c) (-7.91 × 10 ⁻¹¹ N/C)î 34 (0.208 N/C)k 35 -1.5 36 (a) (2.00 × 10 ⁻¹¹ N/C)ĵ; (b) 0; (c) (-2.00 × 10 ⁻¹¹ N/C)ĵ		
32 (a) 1.9 N/C; (b) 3.6 N/C 33 (a) 0; (b) 0; (c) $(-7.91 \times 10^{-11} \text{ N/C})\hat{i}$ 34 $(0.208 \text{ N/C})\hat{k}$ 35 -1.5 36 (a) $(2.00 \times 10^{-11} \text{ N/C})\hat{j}$; (b) 0; (c) $(-2.00 \times 10^{-11} \text{ N/C})\hat{j}$		
(b) 3.6 N/C 33 (a) 0; (b) 0; (c) $(-7.91 \times 10^{-11} \text{ N/C})\hat{i}$ 34 (0.208 N/C) \hat{k} 35 -1.5 36 (a) $(2.00 \times 10^{-11} \text{ N/C})\hat{j}$; (b) 0; (c) $(-2.00 \times 10^{-11} \text{ N/C})\hat{j}$		
33 (a) 0; (b) 0; (c) $(-7.91 \times 10^{-11} \text{ N/C})\hat{\mathbf{i}}$ 34 $(0.208 \text{ N/C})\hat{\mathbf{k}}$ 35 -1.5 36 (a) $(2.00 \times 10^{-11} \text{ N/C})\hat{\mathbf{j}}$; (b) 0; (c) $(-2.00 \times 10^{-11} \text{ N/C})\hat{\mathbf{j}}$	32	
(b) 0; (c) $(-7.91 \times 10^{-11} \text{ N/C})\hat{i}$ 34 $(0.208 \text{ N/C})\hat{k}$ 35 -1.5 36 (a) $(2.00 \times 10^{-11} \text{ N/C})\hat{j}$; (b) 0; (c) $(-2.00 \times 10^{-11} \text{ N/C})\hat{j}$	22	
$(c) (-7.91 \times 10^{-11} \text{ N/C})\hat{i}$ 34	33	
34 $(0.208 \text{ N/C})\hat{k}$ 35 -1.5 36 $(a) (2.00 \times 10^{-11} \text{ N/C})\hat{j};$ (b) 0; $(c) (-2.00 \times 10^{-11} \text{ N/C})\hat{j}$		
35 -1.5 36 (a) $(2.00 \times 10^{-11} \text{ N/C})\hat{j}$; (b) 0; (c) $(-2.00 \times 10^{-11} \text{ N/C})\hat{j}$	24	
36 (a) $(2.00 \times 10^{-11} \text{ N/C})\hat{j}$; (b) 0; (c) $(-2.00 \times 10^{-11} \text{ N/C})\hat{j}$	-	
(b) 0; (c) $(-2.00 \times 10^{-11} \text{ N/C})\hat{j}$		
(c) $(-2.00 \times 10^{-11} \text{ N/C})\hat{j}$	30	· · ·
7		(c) (-2.00 × 10 14/C)j
$1 37 (a) 5 3 \times 10^{7} \text{ N/C}$:	37	(a) 5.3×10^7 N/C;
(b) 60 N/C		
$\frac{38}{2.9 \mu \text{C/m}^2}$	38	
$\frac{2.9 \mu \text{C/m}^2}{39} = 5.0 \text{nC/m}^2$		
40 (a) +69.1 cm;	-	
(b) -69.1 cm;		
(c) + 69.1 cm		· ·
41 0.44 mm	41	0.44 mm
42 4.9×10^{-10} C	42	$4.9 \times 10^{-10} \mathrm{C}$

	T () a
43	(a) 0;
	(b) 1.31 μ N/C;
	(c) $3.08 \mu N/C$;
	(d) $3.08 \mu \text{N/C}$
44	2.2 μC
45	(a) 2.50×10^4 N/C;
	(b) $1.35 \times 10^4 \text{ N/C}$
46	(a) 0.41R;
	(b) 0.50 <i>R</i>
47	-7.5 nC
48	+6.6 µC
49	(a) 0;
	(b) 56.2 mN/C;
	(c) 112 mN/C;
	(d) 49.9 mN/C;
	(e) 0;
	(f) 0;
	(g) -5.00 fC;
	(h) 0
50	-3.3 cm
51	$1.79 \times 10^{-11} \mathrm{C/m^2}$
52	(a) 0;
	(b) 0;
	(c) 0;
	(d) 7.32 N/C;
	(e) 12.1 N/C;
	(f) 1.35 N/C
53	(a) 7.78 fC;
	(b) 0;
	(c) 5.58 mN/C;
	(d) 22.3 mN/C
54	1.125
55	$6K\varepsilon_0 r^3$
56	(a) 0.50 N·m ² /C;
	(b) 2.2 pC
57	(a) 0;
	(b) 2.88×10^4 N/C;
	(c) 200 N/C
58	$7.1 \text{ N} \cdot \text{m}^2/\text{C}$
59	(a) 5.4 N/C;
	(b) 6.8 N/C

60	(a) $E = \rho r/2\varepsilon_0$;
	(b) increases;
	(c) inward;
	(d) 3×10^6 N/C, at inside pipe surface;
	(e) yes, along inside pipe surface
61	(a) 0;
	(b) $q_a/4\pi\varepsilon_0 r^2$;
	$(c) (a_a + a_b)/4\pi\epsilon_0 r^2$
62	(c) $(q_a + q_b)/4\pi\epsilon_0 r^2$ (a) $4.0 \times 10^6 \text{ N/C}$;
	(b) 0
63	-1.04 nC
64	
65	(a) 0.125;
	(b) 0.500
66	(a) $-750 \text{ N} \cdot \text{m}^2/\text{C}$;
	(b) -6.64 nC
67	(a) +2.0 nC;
07	(b) -1.2 nC ;
	(c) +1.2 nC;
	(d) +0.80 nC
68	26.6 nC
69	$(5.65 \times 10^4 \text{N/C})\hat{j}$
70	(a) 4.2 kN/C;
, 0	(b) 2.4 kN/C
71	(a) $-2.53 \times 10^{-2} \mathrm{N \cdot m^2/C}$;
	(b) $+2.53 \times 10^{-2} \mathrm{N \cdot m^2/C}$
72	$-4.2 \times 10^{-10} \mathrm{C}$
73	
74	(a) $3.62 \text{ N} \cdot \text{m}^2/\text{C}$;
	(b) $51.1 \text{ N·m}^2/\text{C}$
75	3.6 nC
76	(b) $\rho R^2/2\varepsilon_0 r$
77	(a) $+4.0 \mu C$;
, ,	(a) $+4.0 \mu C$, (b) $-4.0 \mu C$
78	(a) 15.0 N/C;
70	(b) 25.3 N/C
79	(a) 693 kg/s;
	(b) 693 kg/s;
	(c) 347 kg/s;
	(d) 347 kg/s;
	(e) 575 kg/s
80	(a) 0.282 kN/C;
	(b) 0.621 kN/C

81	(a) 0.25 <i>R</i> ;
	(b) 2.0 <i>R</i>

Chapter 24 Answers

1	(a) 3.0×10^5 C;
	(b) $3.6 \times 10^6 \text{J}$
2	$1.2\times10^9\mathrm{eV}$
3	(a) 3.0×10^{10} J; (b) 7.7×10^3 m/s
4	(a) 2.4×10^4 V/m;
	(b) 2.9 kV
5	8.8 mm
6	(a) 2.46 V;
	(b) 2.46 V;
	(c) 0
7	-32.0 V
8	(a) 30 V;
	(b) 40 V;
	(c) 5.5 m
9	(a) $1.87 \times 10^{-21} \mathrm{J}$;
	(b) -11.7 mV
10	2.5 kV
11	(a) -0.268 mV;
	(b) -0.681 mV
12	-1.1 nC
13	(a) 3.3 nC;
	(b) 12 nC/m ²
14	(a) -4.5 kV;
	(b) -4.5 kV
15	(a) 0.54 mm;
1.5	(b) 790 V
16	2.21 V
17	0.562 mV
18	-32e
19	(a) 6.0 cm;
20	(b) -12.0 cm
20	none
21	16.3 μV
22	$5.6 \times 10^{-37} \text{ C} \cdot \text{m}$
23	(a) 24.3 mV;
	(b) 0
24	-6.20 V
25	(a) -2.30 V;
	(b) -1.78 V

26	$2.18 \times 10^4 \text{ V}$
27	13 kV
28	7.39 mV
29	32.4 mV
30	0
31	47.1 μV
32	(a) 36 V;
32	(b) 18 V
33	18.6 mV
34	$6.7 \times 10^2 \text{ V/m}$
35	$(-12 \text{ V/m})\hat{i} + (12 \text{ V/m})\hat{j}$
36	(a) 39 V/m
	(b) toward
37	150 N/C
38	(a) $(2.90 \text{ mV}) \ln(1 + (0.135 \text{ m})/d)$;
	(b) $(0.392 \text{ mN} \cdot \text{m}^2/\text{C})/[x(x+0.135 \text{ m})];$
	(c) 180°;
	(d) 32.1 mN/C;
	(e) 0
39	$(-4.0 \times 10^{-16} \mathrm{N})\hat{1} + (1.6 \times 10^{-16} \mathrm{N})\hat{1}$
40	(a) 31.6 mV;
	(b) 0.298 N/C
41	(a) 0.90 J;
	(b) 4.5 J
42	(a) $1.15 \times 10^{-19} \text{ J}$;
	(b) decrease
43	-0.192 pJ
44	$2.1 \times 10^{-25} \mathrm{J}$
45	2.5 km/s
46	$1.8 \times 10^{-10} \mathrm{J}$
47	22 km/s
48	$6.63 \times 10^6 \mathrm{m/s}$
49	0.32 km/s
50	0
51	(a) $+6.0 \times 10^4 \text{ V}$;
	(b) $-7.8 \times 10^5 \mathrm{V};$
	(c) 2.5 J;
	(d) increase;
	(e) same;
	(f) same
52	$4.5 \times 10^{-12} \mathrm{C} \cdot \mathrm{m}$
53	(a) 0.225 J;
	(b) $A 45.0 \text{ m/s}^2$, $B 22.5 \text{ m/s}^2$;
	(c) A 7.75 m/s, B 3.87 m/s

54	(a) 0;
J -1	(a) 0, (b) $1.0 \times 10^7 \text{m/s}$
55	$1.6 \times 10^{-9} \text{ m}$
56	-5.7 μC
57	(a) 3.0 J;
	(b) -8.5 m
58	(a) 1.7 cm;
	(b) 20 km/s;
	(c) 4.8×10^{-17} N;
	(d) positive;
	(e) 3.2×10^{-17} N;
	(f) negative
59	(a) proton;
	(b) 65.3 km/s
60	(a) $-12.0 \mu C$;
	(b) $+0.216 \text{ pJ}$
61	(a) 12;
	(b) 2
62	(a) equal;
	(b) 0.333;
	(c) 0.667;
	(d) 2.00
63	(a) $-1.8 \times 10^2 \text{ V}$;
	(b) 2.9 kV;
	(c) -8.9 kV
64	400 V
65	$2.5 \times 10^{-8} \text{ C}$
66	(a) 1.69 kV/m;
	(b) 36.7 kV/m;
	(c) 0;
	(d) 6.74 kV;
	(e) 27.0 kV;
	(f) 34.7 kV;
	(g) 45.0 kV;
	(h) 45.0 kV;
	(i) 45.0 kV
67	(a) 12 kN/C;
	(b) 1.8 kV;
	(c) 5.8 cm
68	-1.93 J
69	(a) 64 N/C;
	(b) 2.9 V;
	(c) 0
70	(a) $V = \rho(R^2 - r^2)/4\varepsilon_0$;
	(b) 78 kV
IL	

71	n/2 = a x ³
72	$p/2\pi\varepsilon_0 r^3$ (2.9 × 10 ⁻² m ⁻³)A
73	
13	(a) $3.6 \times 10^5 \text{ V}$;
7.4	(b) no
74	(a) -24 J;
75	(b) 0
	$6.4 \times 10^8 \text{ V}$
76	$3.71 \times 10^4 \text{ V}$
77	2.90 kV
78	0.956 V
79	$7.0 \times 10^5 \text{ m/s}$
80	10.3 mV
81	(a) 1.8 cm;
	(b) $8.4 \times 10^5 \text{ m/s}$;
	(c) 2.1×10^{-17} N;
	(d) positive;
	(e) $1.6 \times 10^{-17} \mathrm{N};$
02	(f) negative
82	(a) -0.12 V;
	(b) $1.8 \times 10^{-8} \text{ N/C}$;
02	(c) inward
83	(a) $+7.19 \times 10^{-10} \text{ V}$;
	(b) $+2.30 \times 10^{-28}$ J;
0.4	(c) $+2.43 \times 10^{-29} \text{ J}$
84	(a) 3.6 kV;
85	(b) 3.6 kV
	$2.30 \times 10^{-28} \text{ J}$
86	240 kV
87	2.1 days
88	(a) 2.5 MV; (b) 5.1 J;
	(c) 6.9 J
89	$2.30 \times 10^{-22} \mathrm{J}$
90	
91	$(qQ/8\pi\varepsilon_0)(1/r_1 - 1/r_2)$ 1.48 × 10 ⁷ m/s
92	0.334 mV
92	-1.92 MV
93	(a) spherical, centered on q, radius 4.5 m;
)4	(a) spherical, centered on q, radius 4.5 m, (b) no
95	(a) $Q/4\pi\varepsilon_0 r$;
	(a) $Q/4\pi\epsilon_0 r$, (b) $(\rho/3\epsilon_0)(1.5r_2^2 - 0.50r^2 - r_1^3r^{-1})$,
	(b) $(p'3\epsilon_0)(1.3r_2 - 0.30r - r_1r),$ $\rho = Q/[(4\pi/3)(r_2^3 - r_1^3)];$
	$\rho = \mathcal{O}_1(4\%3)(r_2 - r_1);$ (c) $(\rho/2\varepsilon_0)(r_2^2 - r_1^2)$, with ρ as in (b);
	(d) yes

96	(a) $q(3R^2 - r^2)/8\pi\epsilon_0 R^3$;
	(b) $q/8\pi\varepsilon_0 R$
97	(a) 38 s;
	(b) 280 days
98	(a) 749 kV; (b) 0; (c) 20 μ C
99	
100	$8.8 \times 10^{-14} \mathrm{m}$
101	(a) 0.484 MeV;
	(b) 0
102	843 V
103	-1.7

Chapter 25 Answers

1	(a) 3.5 pF;
	(b) 3.5 pF;
	(c) 57 V
3	3.0 mC
3	(a) 144 pF;
	(b) 17.3 nC
4	(a) 84.5 pF;
	(b) 191 cm ²
5	0.280 pF
6	(a) 8.85×10^{-12} m
7	$6.79 \times 10^{-4} \mathrm{F/m^2}$
8	9.09×10^3
9	315 mC
10	7.33 μF
11	3.16 μF
12	(a) $60 \mu\text{C}$;
	(b) $60 \mu \text{C}$
13	43 pF
14	(a) $100 \mu\text{C}$;
	(b) $20.0 \mu\text{C}$
15	(a) $3.00 \mu F$;
	(b) $60.0 \mu\text{C}$;
	(c) 10.0 V;
	(d) $30.0 \mu\text{C}$;
	(e) 10.0 V;
	(f) 20.0 μ C;
	(g) 5.00 V;
	(h) 20.0 μC
16	12 μC

(a) $789 \mu C$;	
(b) 78.9 V	
18 (a) 2.0 μ F;	
(b) $0.80 \ \mu F$	
19 (a) $4.0 \mu F$;	
(b) $2.0 \mu F$	
20 2.28 pF	
21 (a) 50 V;	
(b) 5.0×10^{-5} C;	
(c) 1.5×10^{-4} C	
22 20 μC	
23 (a) 4.5×10^{14} ;	
(b) 1.5×10^{14} ;	
(c) 3.0×10^{14} ;	
(d) 4.5×10^{14} ;	
(e) up;	
(f) up	
24 (a) 2.0×10^7 ;	
(b) away	
25 3.6 pC	
26 (a) 10 V;	
(b) $8.0 \mu \text{F};$	
(c) $2.0 \mu F$	
$(a) 9.00 \mu C;$	
(b) $16.0 \mu\text{C}$;	
(c) 9.00 μ C;	
(d) $16.0 \mu\text{C}$;	
(e) 8.40 μ C;	
(f) 16.8 μ C;	
(g) $10.8 \mu\text{C}$;	
(h) 14.4 μC	
28 (a) 32.0 μ C;	
(b) $16.0 \mu\text{C}$;	
(c) $16.0 \mu\text{C}$	
29 72 F	
30 99.6 nJ	
31 0.27 J	
32 (a) 35 pF;	
(b) 21 nC;	
(c) $6.3 \mu J$;	
(d) 0.60 MV/m;	
(e) 1.6 J/m^3	
33 0.11 J/m^3	

2.4	() 400 G
34	(a) $400 \mu\text{C}$;
	(b) 100 V;
	(c) 20.0 mJ;
	(d) 333 μ C;
	(e) 33.3 V;
	(f) 5.55 mJ;
	(g) $333 \mu C$;
	(h) 66.7 V;
	(i) 11.1 mJ
35	(a) $9.16 \times 10^{-18} \text{ J/m}^3$;
	(b) $9.16 \times 10^{-6} \text{ J/m}^3$;
	(c) $9.16 \times 10^6 \text{ J/m}^3$;
	(d) $9.16 \times 10^{18} \text{J/m}^3$;
	(e) ∞
36	(a) $-0.50 \mu C$;
	(b) 3.6 mJ;
	(c) no
37	(a) 16.0 V;
	(b) 45.1 pJ;
	(c) 120 pJ;
	(d) 75.2 pJ
38	(a) $750 \mu C$;
	(b) 50.0 V;
	(c) 18.8 mJ
	(d) $500 \mu\text{C}$;
	(e) 50.0 V;
	(f) 12.5 mJ;
	(g) $250 \mu\text{C}$;
	(h) 50.0 V;
	(i) 6.25 mJ;
39	(a) 190 V;
40	(b) 95 mJ
40	4.0
41	81 pF/m
42	(a) 6.2 cm;
42	(b) 0.28 nF
43	Pyrex
44	(a) 0.73 nF; (b) 28 kV
45	
45	66 μJ 1.06 nC
46	0.63 m^2
48	
	8.41 pF
49	17.3 pF

50	45.5E
50	45.5 pF
51	(a) 10 kV/m;
	(b) 5.0 nC;
	(c) 4.1 nC
52	(a) 13.4 pF;
	(b) 1.15 nC;
	(c) 1.13×10^4 N/C;
	(d) $4.33 \times 10^3 \text{ N/C}$
53	(a) 89 pF;
	(b) 0.12 nF;
	(c) 11 nC;
	(d) 11 nC;
	(e) 10 kV/m;
	(f) 2.1 kV/m;
	(g) 88 V;
	$(h) -0.17 \mu J$
54	(a) 7.2;
	(b) 0.77 μC
55	(a) 0.107 nF;
	(b) 7.79 nC;
7.0	(c) 7.45 nC
56	(a) $100 \mu\text{C}$;
	(b) 20.0 μC
57	45 μC
58	(a) 41 μ F;
	(b) 42 μF
59	16 μC
60	(a) 4.9 mJ;
	(b) no
61	(a) $7.20 \ \mu\text{C}$;
	(b) $18.0 \mu\text{C}$;
	(c) Battery supplies charges only to plates to which it
	is connected; charges on other plates are due to
	electron transfers between plates, in accord with new
	distribution of voltages across the capacitors. So
	battery does not directly supply charge on capacitor
	4.
62	(a) $2.0 \ \mu F;$
	(b) 6.0 µF
63	(a) $10 \mu\text{C}$;
	(b) 20 μC
64	(a) $36 \mu C$;
	(b) 12 μC
65	1.06 nC
66	

67	T () • 10 =
67	(a) 2.40 μ F;
	(b) 0.480 mC;
	(c) 80 V;
	(d) 0.480 mC;
	(e) 120 V
68	(a) $10.0 \mu \text{F}$;
	(b) 1.20 mC;
	(c) 200 V;
	(d) 0.800 mC;
	(e) 200 V
69	4.9%
70	(a) 0.708 pF;
	(b) 1.67;
	(c) -5.44 J;
	(d) sucked in
71	(a) 0.708 pF;
	(b) 0.600;
	(c) 1.02×10^{-9} J;
	(d) sucked in
72	(a) 0.480 mC;
	(b) 240 V;
	(c) 0.480 mC;
	(d) 60.0 V;
	(e) 0.192 mC;
	(f) 96.0 V;
	(g) 0.768 mC;
	(h) 96.0 V;
	(i) 0;
	(i) 0, (j) 0;
	(k) 0;
	(1) 0
73	5.3 V
74	mica
75	40 μF
76	4
77	(a) 200 kV/m;
	(b) 200 kV/m;
	(c) 1.77 μ C/m ² ;
	(d) $4.60 \mu\text{C/m}^2$;
	(e) $-2.83 \mu\text{C/m}^2$
78	(a) five capacitors in series;
	(b) one possible answer: three rows in parallel, each
	row containing five capacitors in series
79	(a) $q^2/2\varepsilon_0 A$
I	\ / 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

80	(a) 2.00 J; (b) thermal energy in the wires or radiated
	as a brief electromagnetic wave

1	(a) 1.2 kC;
	(b) 7.5×10^{21}
2	5.6 ms
3	$6.7 \mu\text{C/m}^2$
4	14
5	(a) 6.4 A/m^2 ;
	(b) north;
	(c) cross-sectional area
6	(a) yes;
	(b) $4.0 \times 10^2 \text{ A/m}^2$
7	0.38 mm
8	(a) $2.4 \times 10^{-5} \text{ A/m}^2$;
	(b) $1.8 \times 10^{-15} \text{ m/s}$
9	18.1 μA
10	2.59 mA
11	(a) 1.33 A;
	(b) 0.666 A;
	$(c) J_a$
12	(a) $0.654 \ \mu\text{A/m}^2$;
	(b) 83.4 MA
13	13 min
14	100 V
15	2.4 Ω
16	(a) $5.32 \times 10^5 \text{A/m}^2$;
	(b) 1.01 kg/m;
	(c) $3.27 \times 10^5 \text{ A/m}^2$;
	(d) 0.495 kg/m
17	$2.0\times10^6(\Omega\cdot\mathrm{m})^{-1}$
18	(a) 1.53 kA;
	(b) 54.1 MA/m^2 ;
	(c) $10.6 \times 10^{-8} \ \Omega \cdot m$;
	(d) platinum
19	$2.0 \times 10^{-8} \Omega \cdot m$
20	2 <i>R</i>
21	$(1.8 \times 10^3)^{\circ}$ C
22	9.42 mA
23	$8.2 \times 10^{-8} \Omega \cdot m$
L	

24	(a) 1.55 mm;
24	(a) 1.55 mm, (b) 1.22 mm
25	54 Ω
26	(a) $6.00 \times 10^7 (\Omega \text{ m})^{-1}$;
20	$(a) 0.00 \times 10 (2211)$;
27	(b) $7.50 \times 10^6 (\Omega \text{m})^{-1}$
27	3.0
28	3.0 mA
29	$3.35 \times 10^{-7} \mathrm{C}$
30	0.40 Ω
31	(a) 6.00 mA;
	(b) $1.59 \times 10^{-8} \text{ V}$;
	(c) $21.2 \text{ n}\Omega$
32	(a) 3.24 pA/m^2 ;
	(b) 1.73 cm/s
33	(a) 38.3 mA;
	(b) 109 A/m^2 ;
	(c) 1.28 cm/s;
	(d) 227 V/m
34	$5.44 \times 10^{-9} \mathrm{m/s}$
35	981 kΩ
36	52 mA
37	
38	0.10 V
39	150 s
40	11.1 Ω
41	(a) 1.0 kW;
	(b) US\$0.25
42	(a) upward;
	(b) 12 eV;
	(c) 12 eV
43	0.135 W
44	14 kC
45	(a) 10.9 A;
	(b) 10.6Ω ;
	(c) 4.50 MJ
46	(a) 16.9 mV/m;
	(b) 243 J
47	(a) 5.85 m;
	(b) 10.4 m
48	13.0 A
49	(a) US\$4.46;
	(b) 144 Ω;
	(c) 0.833 A
50	12 mW

51	(a) 5.1 V;
	(b) 10 V;
	(c) 10 W;
	(d) 20 W
52	756 kJ
53	(a) 28.8 Ω;
	(b) $2.60 \times 10^{19} \text{ s}^{-1}$
54	0.224 m
55	660 W
56	(a) 1.74 A;
	(b) 2.15 MA/m^2 ;
	(c) 36.3 mV/m;
	(d) 2.09 W
57	28.8 kC
58	(a) $1.3 \text{ m}\Omega$;
	(b) 4.6 mm
59	(a) silver;
	(b) $51.6 \text{ n}\Omega$
60	(a) $\rho \pi R^2 v$;
	(b) 17 μ A;
	(c) no, because current is perpendicular to the radial
	potential difference;
	(d) 1.3 W;
	(e) 0.27 J;
	(f) exit of pipe into silo
61	(a) 2.3×10^{12} ;
	(b) 5.0×10^3 ;
	(c) 10 MV
62	13.3 Ω
63	2.4 kW
64	(a) $1.3 \times 10^5 \text{A/m}^2$;
	(b) 94 mV
65	(a) 1.37;
	(b) 0.730
66	0.20 hp
67	(a) -8.6%;
	(b) smaller
68	57°C
69	146 kJ
70	(a) 0.38 mV;
	(b) negative;
	(c) 3 min 58 s
71	(a) 250°C;
	(b) yes
72	0.536Ω

73	$3.0 \times 10^6 \mathrm{J/kg}$
74	$3.4 \times 10^4 \mathrm{s}$
75	560 W
76	(a) 0.67 A;
	(b) toward
77	0.27 m/s
78	$6.7 \mu\text{C/m}^2$
79	(a) 10 A/cm ² ; (b) eastward
80	(a) 0.0017%; (b) 0.0034%; (c) 0.43%
81	(a) $9.4 \times 10^{13} \text{ s}^{-1}$; (b) $2.40 \times 10^{2} \text{ W}$
82	(a) 3.1×10^{11} ; (b) 25 μ A; (c) 25 MW; (d) 1.3 kW
83	112 min
84	(a) 28 min; (b) 1.6 h
85	(a) $225 \mu\text{C}$; (b) $60.0 \mu\text{A}$; (c) 0.450mW

1	(a) 0.50 A;
	(b) 1.0 W;
	(c) 2.0 W;
	(d) 6.0 W;
	(e) 3.0 W;
	(f) supplied;
	(g) absorbed
3	-10 V
3	(a) 14 V;
	(b) 1.0×10^2 W;
	(c) 6.0×10^2 W;
	(d) 10 V;
	(e) $1.0 \times 10^2 \text{ W}$
4	(a) 80 Ω;
	(b) 200 Ω
5	11 kJ
6	(a) US\$ 3.2×10^2 ;
	(b) US\$0.048
7	(a) 80 J;
	(b) 67 J;
	(c) 13 J
8	14.4 h
9	(a) 12.0 eV;
	(b) 6.53 W
10	(a) $9.9 \times 10^2 \Omega$;
	(b) $9.9 \times 10^{-4} \text{ W}$

11	(a) 50 V;
11	(a) 50 V, (b) 48 V;
	(c) negative
12	(a) 12.0 V;
12	(a) 12.5 V, (b) 2.15 mV;
	(c) 24.0 W;
	(d) 4.30 mW
13	(a) 6.9 km;
	(b) 20 Ω
14	(a) 0.20Ω ;
	(b) 0.30 Ω
15	8.0 Ω
16	(a) $1.0 \text{ k}\Omega$;
	(b) 0.30 V;
	(c) 0.23%
17	(a) 0.004Ω ;
	(b) 1
18	0.25 V
19	(a) 4.00Ω ;
	(b) parallel
20	(a) 4.0Ω ;
	(b) 12 Ω
21	5.56 A
22	(a) 2.50Ω ;
	(b) 3.13 Ω
23	(a) 50 mA;
	(b) 60 mA;
	(c) 9.0 V
24	4.50 Ω
25	3d
26	$100R\mathcal{E}^2 x^2 R_0^2 (100RR_0^{-1} + 10x - x^2)^{-2}, x \text{ in cm}$
27	$3.6 \times 10^3 \mathrm{A}$
28	0.82 mA
29	(a) 0.333 A;
	(b) right; (c) 720 J
30	(a) 0;
30	(a) 0, (b) 1.25 A
31	(a) -11 V;
	(b) -9.0 V
32	(a) 6.0 V;
	(b) 20 Ω;
	(c) 40 Ω
33	48.3 V
	·

34	(a) same;
34	(b) -2.0 V
35	(a) 5.25 V;
33	(a) 5.25 V, (b) 1.50 V;
	(c) 5.25 V;
	(d) 6.75 V
36	(a) 38.2 mA;
30	(b) down;
	(c) 10.9 mA;
	(d) right;
	(e) 27.3 mA;
	(f) left;
	(g) +3.82 V
37	1.43 Ω
38	(a) providing;
	(b) 3.6×10^2 W
39	(a) 0.150Ω ;
	(b) 240 W
40	(a) 24.0 A;
	(b) 30.0 A;
	(c) series;
	(d) 60.0 A;
	(e) 48.0 A;
	(f) parallel
41	(a) 0.709 W;
71	(b) 0.050 W;
	(c) 0.346 W;
	(d) 1.26 W;
	(e) -0.158 W
42	8
43	9
44	(a) 119 Ω;
	(b) 50.5 mA;
	(c) 19.0 mA;
	(d) 19.0 mA;
	(e) 12.5 mA
45	(a) 0.67 A;
	(b) down;
	(c) 0.33 A;
	(d) up;
	(e) 0.33 A;
	(f) up;
16	(g) 3.3 V
46	(a) $2.0 \text{ k}\Omega$;
	$(b) 4.0 k\Omega$

47	(a) 1.11 A.
47	(a) 1.11 A;
	(b) 0.893 A;
40	(c) 126 m
48	(a) 19.5 Ω;
	(b) 0;
	(c) ∞;
	(d) 82.3 W;
	(e) 57.6 W
49	(a) 0.45 A
50	0.143
51	(a) 55.2 mA;
	(b) 4.86 V;
	(c) 88.0 Ω;
	(d) decrease
52	(a) $13.5 \text{ k}\Omega$;
	(b) $1.50 \text{ k}\Omega$;
	(c) 167Ω ;
	$(d) 1.48 k\Omega$
53	-3.0%
54	(a) 12.5 V;
	(b) 50.0 A
55	
56	(a) 70.9 mA;
	(b) 4.70 V;
	(c) 66.3Ω ;
	(d) decrease
57	0.208 ms
58	(a) 2.52 s;
	(b) $21.6 \mu\text{C}$;
	(c) 3.40 s
59	4.61
60	(a) 0.41;
	(b) 1.1
61	(a) 2.41 μ s;
	(b) 161 pF
62	2.35 MΩ
63	(a) 1.1 mA;
	(b) 0.55 mA;
	(c) 0.55 mA;
	(d) 0.82 mA;
	(e) 0.82 mA;
	(f) 0;
	(g) $4.0 \times 10^2 \text{ V}$;
	(h) $6.0 \times 10^2 \text{ V}$

(b) 39.6 mV 65 $411 \mu\text{A}$ 66 $162 \mu\text{s}$ 67 $0.72 \text{M}\Omega$ 68 (a) $1.0 \times 10^{-3} \text{C}$; (b) $1.0 \times 10^{-3} \text{A}$; (c) $(1.0 \times 10^{3} \text{V}) e^{-t}$; (d) $(1.0 \times 10^{3} \text{V}) e^{-t}$; (e) $e^{-2t} \text{W}$ 69 (a) $0.955 \mu\text{C/s}$; (b) $1.08 \mu\text{W}$; (c) $2.74 \mu\text{W}$; (d) $3.82 \mu\text{W}$ 70 (a) 6.0A ; (b) 8.0V ; (c) 60W ; (d) 36W 71 (a) 3.00A ; (b) 3.75A ; (c) 3.94A 72 (a) 3.0A ; (b) 1.5A ; (c) 13A ; (d) 1.5A ; (e) 7.5A 73 (a) $1.32 \times 10^{7} \text{A/m}^{2}$; (b) 8.90V ; (c) copper; (d) $1.32 \times 10^{7} \text{A/m}^{2}$; (e) 51.1V ; (f) iron 74 (a) 4.0A ; (b) up	64	(a) 2.17 s;
65 411 μA 66 162 μs 67 0.72 MΩ 68 (a) 1.0×10^{-3} C; (b) 1.0×10^{-3} A; (c) $(1.0 \times 10^{3} \text{ V})e^{-t}$; (d) $(1.0 \times 10^{3} \text{ V})e^{-t}$; (e) e^{-2t} W 69 (a) $0.955 \mu\text{C/s}$; (b) $1.08 \mu\text{W}$; (c) $2.74 \mu\text{W}$; (d) $3.82 \mu\text{W}$ 70 (a) 6.0 A ; (b) 8.0 V ; (c) 60 W ; (d) 36 W 71 (a) 3.00 A ; (b) 3.75 A ; (c) 3.94 A 72 (a) 3.0 A ; (b) 10 A ; (c) 13 A ; (d) 1.5 A ; (e) 7.5 A 73 (a) $1.32 \times 10^{7} \text{ A/m}^{2}$; (b) 8.90 V ; (c) copper; (d) $1.32 \times 10^{7} \text{ A/m}^{2}$; (e) 51.1 V ; (f) iron 74 (a) 4.0 A ; (b) up 75 (a) 3.0 kV ; (b) 10 s;	0.	
66 162 μs 67 0.72 MΩ 68 (a) 1.0 × 10 ⁻³ C; (b) 1.0 × 10 ⁻³ A; (c) (1.0 × 10 ³ V)e ⁻¹ ; (d) (1.0 × 10 ³ V)e ⁻¹ ; (e) e ⁻²⁷ W 69 (a) 0.955 μC/s; (b) 1.08 μW; (c) 2.74 μW; (d) 3.82 μW 70 (a) 6.0 A; (b) 8.0 V; (c) 60 W; (d) 36 W 71 (a) 3.00 A; (b) 3.75 A; (c) 3.94 A 72 (a) 3.0 A; (b) 10 A; (c) 13 A; (d) 1.5 A; (e) 7.5 A 73 (a) 1.32 × 10 ⁷ A/m ² ; (b) 8.90 V; (c) copper; (d) 1.32 × 10 ⁷ A/m ² ; (e) 51.1 V; (f) iron 74 (a) 4.0 A; (b) up 75 (a) 3.0 kV; (b) 10 s;	65	
67 0.72 MΩ 68 (a) 1.0 × 10 ⁻³ C; (b) 1.0 × 10 ⁻³ A; (c) (1.0 × 10 ³ V)e ⁻¹ ; (d) (1.0 × 10 ³ V)e ⁻¹ ; (e) e ⁻²⁻¹ W 69 (a) 0.955 μC/s; (b) 1.08 μW; (c) 2.74 μW; (d) 3.82 μW 70 (a) 6.0 A; (b) 8.0 V; (c) 60 W; (d) 36 W 71 (a) 3.00 A; (b) 3.75 A; (c) 3.94 A 72 (a) 3.0 A; (b) 10 A; (c) 13 A; (d) 1.5 A; (e) 7.5 A 73 (a) 1.32 × 10 ⁷ A/m ² ; (b) 8.90 V; (c) copper; (d) 1.32 × 10 ⁷ A/m ² ; (e) 51.1 V; (f) iron 74 (a) 4.0 A; (b) up 75 (a) 3.0 kV; (b) 10 s;		
68 (a) 1.0 × 10 ⁻³ C; (b) 1.0 × 10 ⁻³ A; (c) (1.0 × 10 ³ V)e ^{-t} ; (d) (1.0 × 10 ³ V)e ^{-t} ; (e) e ^{-2t} W 69 (a) 0.955 μC/s; (b) 1.08 μW; (c) 2.74 μW; (d) 3.82 μW 70 (a) 6.0 A; (b) 8.0 V; (c) 60 W; (d) 36 W 71 (a) 3.00 A; (b) 3.75 A; (c) 3.94 A 72 (a) 3.0 A; (b) 10 A; (c) 13 A; (d) 1.5 A; (e) 7.5 A 73 (a) 1.32 × 10 ⁷ A/m ² ; (b) 8.90 V; (c) copper; (d) 1.32 × 10 ⁷ A/m ² ; (e) 51.1 V; (f) iron 74 (a) 4.0 A; (b) up 75 (a) 3.0 kV; (b) 10 s;	00	$102 \mu s$
68 (a) 1.0 × 10 ⁻³ C; (b) 1.0 × 10 ⁻³ A; (c) (1.0 × 10 ³ V)e ^{-t} ; (d) (1.0 × 10 ³ V)e ^{-t} ; (e) e ^{-2t} W 69 (a) 0.955 μC/s; (b) 1.08 μW; (c) 2.74 μW; (d) 3.82 μW 70 (a) 6.0 A; (b) 8.0 V; (c) 60 W; (d) 36 W 71 (a) 3.00 A; (b) 3.75 A; (c) 3.94 A 72 (a) 3.0 A; (b) 10 A; (c) 13 A; (d) 1.5 A; (e) 7.5 A 73 (a) 1.32 × 10 ⁷ A/m ² ; (b) 8.90 V; (c) copper; (d) 1.32 × 10 ⁷ A/m ² ; (e) 51.1 V; (f) iron 74 (a) 4.0 A; (b) up 75 (a) 3.0 kV; (b) 10 s;		
68 (a) 1.0 × 10 ⁻³ C; (b) 1.0 × 10 ⁻³ A; (c) (1.0 × 10 ³ V)e ^{-t} ; (d) (1.0 × 10 ³ V)e ^{-t} ; (e) e ^{-2t} W 69 (a) 0.955 μC/s; (b) 1.08 μW; (c) 2.74 μW; (d) 3.82 μW 70 (a) 6.0 A; (b) 8.0 V; (c) 60 W; (d) 36 W 71 (a) 3.00 A; (b) 3.75 A; (c) 3.94 A 72 (a) 3.0 A; (b) 10 A; (c) 13 A; (d) 1.5 A; (e) 7.5 A 73 (a) 1.32 × 10 ⁷ A/m ² ; (b) 8.90 V; (c) copper; (d) 1.32 × 10 ⁷ A/m ² ; (e) 51.1 V; (f) iron 74 (a) 4.0 A; (b) up 75 (a) 3.0 kV; (b) 10 s;	67	0.72 ΜΩ
(b) $1.0 \times 10^{-3} \text{ A}$; (c) $(1.0 \times 10^{3} \text{ V})e^{-t}$; (d) $(1.0 \times 10^{3} \text{ V})e^{-t}$; (e) $e^{-2t} \text{ W}$ 69 (a) $0.955 \mu\text{C/s}$; (b) $1.08 \mu\text{W}$; (c) $2.74 \mu\text{W}$; (d) $3.82 \mu\text{W}$ 70 (a) 6.0 A ; (b) 8.0 V ; (c) 60 W ; (d) 36 W 71 (a) 3.00 A ; (b) 3.75 A ; (c) 3.94 A 72 (a) 3.0 A ; (b) 10 A ; (c) 13 A ; (d) 1.5 A ; (e) 7.5 A 73 (a) $1.32 \times 10^{7} \text{ A/m}^{2}$; (b) 8.90 V ; (c) copper; (d) $1.32 \times 10^{7} \text{ A/m}^{2}$; (e) 51.1 V ; (f) iron 74 (a) 4.0 A ; (b) up 75 (a) 3.0 kV ; (b) 10 s ;		
(c) $(1.0 \times 10^{3} \text{ V})e^{-t}$; (d) $(1.0 \times 10^{3} \text{ V})e^{-t}$; (e) $e^{-2t} \text{ W}$ 69 (a) $0.955 \mu\text{C/s}$; (b) $1.08 \mu\text{W}$; (c) $2.74 \mu\text{W}$; (d) $3.82 \mu\text{W}$ 70 (a) 6.0 A ; (b) 8.0 V ; (c) 60 W ; (d) 36 W 71 (a) 3.00 A ; (b) 3.75 A ; (c) 3.94 A 72 (a) 3.0 A ; (b) 10 A ; (c) 13 A ; (d) 1.5 A ; (e) 7.5 A 73 (a) $1.32 \times 10^{7} \text{ A/m}^{2}$; (b) 8.90 V ; (c) copper; (d) $1.32 \times 10^{7} \text{ A/m}^{2}$; (e) 51.1 V ; (f) iron 74 (a) 4.0 A ; (b) up 75 (a) 3.0 kV ; (b) 10 s ;		
(d) $(1.0 \times 10^3 \text{ V})e^{-t}$; (e) $e^{-2t} \text{ W}$ 69 (a) $0.955 \mu\text{C/s}$; (b) $1.08 \mu\text{W}$; (c) $2.74 \mu\text{W}$; (d) $3.82 \mu\text{W}$ 70 (a) 6.0A ; (b) 8.0V ; (c) 60W ; (d) 36W 71 (a) 3.00A ; (b) 3.75A ; (c) 3.94A 72 (a) 3.0A ; (b) 10A ; (c) 13A ; (d) 1.5A ; (e) 7.5A 73 (a) $1.32 \times 10^7 \text{A/m}^2$; (b) 8.90V ; (c) copper; (d) $1.32 \times 10^7 \text{A/m}^2$; (e) 51.1V ; (f) iron 74 (a) 4.0A ; (b) up		
(e) e ⁻²¹ W 69 (a) 0.955 μC/s; (b) 1.08 μW; (c) 2.74 μW; (d) 3.82 μW 70 (a) 6.0 A; (b) 8.0 V; (c) 60 W; (d) 36 W 71 (a) 3.00 A; (b) 3.75 A; (c) 3.94 A 72 (a) 3.0 A; (b) 10 A; (c) 13 A; (d) 1.5 A; (e) 7.5 A 73 (a) 1.32 × 10 ⁷ A/m ² ; (b) 8.90 V; (c) copper; (d) 1.32 × 10 ⁷ A/m ² ; (e) 51.1 V; (f) iron 74 (a) 4.0 A; (b) up 75 (a) 3.0 kV; (b) 10 s;		(d) $(1.0 \times 10^3 \text{ V})e^{-t}$:
69 (a) 0.955 μC/s; (b) 1.08 μW; (c) 2.74 μW; (d) 3.82 μW 70 (a) 6.0 A; (b) 8.0 V; (c) 60 W; (d) 36 W 71 (a) 3.00 A; (b) 3.75 A; (c) 3.94 A 72 (a) 3.0 A; (b) 10 A; (c) 13 A; (d) 1.5 A; (e) 7.5 A 73 (a) 1.32 × 10 ⁷ A/m ² ; (b) 8.90 V; (c) copper; (d) 1.32 × 10 ⁷ A/m ² ; (e) 51.1 V; (f) iron 74 (a) 4.0 A; (b) up 75 (a) 3.0 kV; (b) 10 s;		(e) e^{-2t} W
(b) 1.08 \(\mu \)W; (c) 2.74 \(\mu \)W; (d) 3.82 \(\mu \)W 70 (a) 6.0 A; (b) 8.0 V; (c) 60 W; (d) 36 W 71 (a) 3.00 A; (b) 3.75 A; (c) 3.94 A 72 (a) 3.0 A; (b) 10 A; (c) 13 A; (d) 1.5 A; (e) 7.5 A 73 (a) 1.32 \times 10^7 A/m^2; (b) 8.90 V; (c) copper; (d) 1.32 \times 10^7 A/m^2; (e) 51.1 V; (f) iron 74 (a) 4.0 A; (b) up 75 (a) 3.0 kV; (b) 10 s;	69	
(c) 2.74 \(\mu \) W; (d) 3.82 \(\mu \) W 70		
(d) 3.82 \(\mu \)W 70 (a) 6.0 A; (b) 8.0 V; (c) 60 W; (d) 36 W 71 (a) 3.00 A; (b) 3.75 A; (c) 3.94 A 72 (a) 3.0 A; (b) 10 A; (c) 13 A; (d) 1.5 A; (e) 7.5 A 73 (a) 1.32 \times 10^7 A/m^2; (b) 8.90 V; (c) copper; (d) 1.32 \times 10^7 A/m^2; (e) 51.1 V; (f) iron 74 (a) 4.0 A; (b) up 75 (a) 3.0 kV; (b) 10 s;		• •
70 (a) 6.0 A; (b) 8.0 V; (c) 60 W; (d) 36 W 71 (a) 3.00 A; (b) 3.75 A; (c) 3.94 A 72 (a) 3.0 A; (b) 10 A; (c) 13 A; (d) 1.5 A; (e) 7.5 A 73 (a) 1.32 × 10 ⁷ A/m ² ; (b) 8.90 V; (c) copper; (d) 1.32 × 10 ⁷ A/m ² ; (e) 51.1 V; (f) iron 74 (a) 4.0 A; (b) up 75 (a) 3.0 kV; (b) 10 s;		· · · · · · · · · · · · · · · · · · ·
(c) 60 W; (d) 36 W 71 (a) 3.00 A; (b) 3.75 A; (c) 3.94 A 72 (a) 3.0 A; (b) 10 A; (c) 13 A; (d) 1.5 A; (e) 7.5 A 73 (a) 1.32 × 10 ⁷ A/m ² ; (b) 8.90 V; (c) copper; (d) 1.32 × 10 ⁷ A/m ² ; (e) 51.1 V; (f) iron 74 (a) 4.0 A; (b) up 75 (a) 3.0 kV; (b) 10 s;	70	
(d) 36 W 71 (a) 3.00 A; (b) 3.75 A; (c) 3.94 A 72 (a) 3.0 A; (b) 10 A; (c) 13 A; (d) 1.5 A; (e) 7.5 A 73 (a) 1.32 × 10 ⁷ A/m ² ; (b) 8.90 V; (c) copper; (d) 1.32 × 10 ⁷ A/m ² ; (e) 51.1 V; (f) iron 74 (a) 4.0 A; (b) up 75 (a) 3.0 kV; (b) 10 s;		(b) 8.0 V;
71 (a) 3.00 A; (b) 3.75 A; (c) 3.94 A 72 (a) 3.0 A; (b) 10 A; (c) 13 A; (d) 1.5 A; (e) 7.5 A 73 (a) 1.32 × 10 ⁷ A/m ² ; (b) 8.90 V; (c) copper; (d) 1.32 × 10 ⁷ A/m ² ; (e) 51.1 V; (f) iron 74 (a) 4.0 A; (b) up 75 (a) 3.0 kV; (b) 10 s;		
(b) 3.75 A; (c) 3.94 A 72 (a) 3.0 A; (b) 10 A; (c) 13 A; (d) 1.5 A; (e) 7.5 A 73 (a) 1.32 × 10 ⁷ A/m ² ; (b) 8.90 V; (c) copper; (d) 1.32 × 10 ⁷ A/m ² ; (e) 51.1 V; (f) iron 74 (a) 4.0 A; (b) up 75 (a) 3.0 kV; (b) 10 s;		
(c) 3.94 A 72 (a) 3.0 A; (b) 10 A; (c) 13 A; (d) 1.5 A; (e) 7.5 A 73 (a) 1.32 × 10 ⁷ A/m ² ; (b) 8.90 V; (c) copper; (d) 1.32 × 10 ⁷ A/m ² ; (e) 51.1 V; (f) iron 74 (a) 4.0 A; (b) up 75 (a) 3.0 kV; (b) 10 s;	71	
72 (a) 3.0 A; (b) 10 A; (c) 13 A; (d) 1.5 A; (e) 7.5 A 73 (a) 1.32 × 10 ⁷ A/m ² ; (b) 8.90 V; (c) copper; (d) 1.32 × 10 ⁷ A/m ² ; (e) 51.1 V; (f) iron 74 (a) 4.0 A; (b) up 75 (a) 3.0 kV; (b) 10 s;		
(b) 10 A; (c) 13 A; (d) 1.5 A; (e) 7.5 A 73 (a) 1.32 × 10 ⁷ A/m ² ; (b) 8.90 V; (c) copper; (d) 1.32 × 10 ⁷ A/m ² ; (e) 51.1 V; (f) iron 74 (a) 4.0 A; (b) up 75 (a) 3.0 kV; (b) 10 s;		
(c) 13 A; (d) 1.5 A; (e) 7.5 A 73 (a) 1.32 × 10 ⁷ A/m ² ; (b) 8.90 V; (c) copper; (d) 1.32 × 10 ⁷ A/m ² ; (e) 51.1 V; (f) iron 74 (a) 4.0 A; (b) up 75 (a) 3.0 kV; (b) 10 s;	72	
(d) 1.5 A; (e) 7.5 A 73 (a) 1.32 × 10 ⁷ A/m ² ; (b) 8.90 V; (c) copper; (d) 1.32 × 10 ⁷ A/m ² ; (e) 51.1 V; (f) iron 74 (a) 4.0 A; (b) up 75 (a) 3.0 kV; (b) 10 s;		
(e) 7.5 A 73 (a) 1.32 × 10 ⁷ A/m ² ; (b) 8.90 V; (c) copper; (d) 1.32 × 10 ⁷ A/m ² ; (e) 51.1 V; (f) iron 74 (a) 4.0 A; (b) up 75 (a) 3.0 kV; (b) 10 s;		
73 (a) $1.32 \times 10^7 \text{ A/m}^2$; (b) 8.90 V ; (c) copper; (d) $1.32 \times 10^7 \text{ A/m}^2$; (e) 51.1 V ; (f) iron 74 (a) 4.0 A ; (b) up 75 (a) 3.0 kV ; (b) 10 s ;		
(b) 8.90 V; (c) copper; (d) 1.32 × 10 ⁷ A/m ² ; (e) 51.1 V; (f) iron 74 (a) 4.0 A; (b) up 75 (a) 3.0 kV; (b) 10 s;	73	
(c) copper; (d) 1.32 × 10 ⁷ A/m ² ; (e) 51.1 V; (f) iron 74 (a) 4.0 A; (b) up 75 (a) 3.0 kV; (b) 10 s;	7.5	
(d) 1.32 × 10 ⁷ A/m ² ; (e) 51.1 V; (f) iron 74 (a) 4.0 A; (b) up 75 (a) 3.0 kV; (b) 10 s;		
(e) 51.1 V; (f) iron 74 (a) 4.0 A; (b) up 75 (a) 3.0 kV; (b) 10 s;		, , , , , , , , , , , , , , , , , , ,
(f) iron 74 (a) 4.0 A; (b) up 75 (a) 3.0 kV; (b) 10 s;		
74 (a) 4.0 A; (b) up 75 (a) 3.0 kV; (b) 10 s;		
(b) up 75 (a) 3.0 kV; (b) 10 s;	74	
75 (a) 3.0 kV; (b) 10 s;		
	75	
(c) 11 GO		(b) 10 s;
(0) 11 000		(c) 11 GΩ

76	(a) 5.00 A;
	(b) left;
	(c) supply;
	(d) 100 W;
	(e) supply;
	(f) 50.0 W;
	(g) supply;
	(h) 56.3 W
77	(a) 85.0Ω ;
	(b) 915 Ω
78	0.90%
79	
80	250 µJ
81	4.0 V
82	2.5 V
83	(a) 24.8Ω ;
	(b) 14.9 kΩ
84	(a) 80 mA;
	(b) 0.13 A;
	(c) 0.40 A
85	the cable
86	(a) 38Ω ;
	(b) 260 Ω
87	-13 μC
88	13.3 Ω
89	20 Ω
90	
91	(a) 3.00 A;
	(b) down;
	(c) 1.60 A;
	(d) down;
	(e) supply;
	(f) 55.2 W;
	(g) supply;
	(h) 6.40 W
92	2.00 A
93	(a) 1.0 V;
	(b) 50 mΩ
94	(a) 6.67Ω ;
	(b) 6.67 Ω;
	(c) 0
95	3
96	2.5 A
97	

98	(a) 0;
	(b) 14.4 W
99	(a) 1.5 mA;
	(b) 0;
	(c) 1.0 mA
100	(a) 7.50 A;
	(b) left;
	(c) 10.0 A;
	(d) left;
	(e) 87.5 W;
	(f) supplied
101	7.50 V
102	(a) $V_T = \mathcal{E} - ir$;
	(b) 13.6 V;
	(c) 0.060Ω
103	(a) 60.0 mA;
	(b) down;
	(c) 180 mA;
	(d) left;
	(e) 240 mA;
	(f) up
104	(a) low position connects larger resistance, middle
	position connects smaller resistance, high position
	connects filaments in parallel;
	(b) 72 Ω;
	(c) 144 Ω
105	(a) 4.0 A;
	(b) up;
	(c) 0.50 A;
	(d) down;
	(e) 64 W;
	(f) 16 W;
	(g) supplied;
	(h) absorbed

1	(a) 400 km/s;
	(b) 835 eV
2	-61k̂ mT
3	(a) $(6.2 \times 10^{-14} \text{ N})\hat{k}$;
	(b) $(-6.2 \times 10^{-14} \text{ N})\hat{k}$

4	(a) 6.2×10^{-18} N;
'	(a) 0.2×10^{-1} TV, (b) $9.5 \times 10^{8} \text{ m/s}^{2}$;
	(c) same
5	-2.0 T
6	(a) -3.5 km/s;
0	(a) -3.5 km/s, (b) 7.0 km/s
7	$(-11.4 \text{ V/m})\hat{i} - (6.00 \text{ V/m})\hat{j} + (4.80 \text{ V/m})\hat{k}$
8	3.75 km/s
9	-(0.267 mT)k
10	(a) $(1.44 \times 10^{-18} \text{ N})\hat{k}$;
10	(a) $(1.44 \times 10^{-10} \text{ N})\hat{k}$; (b) $(1.60 \times 10^{-19} \text{ N})\hat{k}$;
	(c) $(6.41 \times 10^{-19} \text{ N})\hat{i} + (8.01 \times 10^{-19} \text{ N})\hat{k}$
11	0.68 MV/m
12	(a) 1.25 V/m;
12	(b) (25.0 mT)k
13	$7.4 \mu\text{V}$
14	38.2 cm/s
15	(a) (-600 mV/m)k;
	(b) 1.20 V
16	(a) 25 cm;
	(b) 30 cm;
	(c) 20 cm
17	(a) 2.60×10^6 m/s;
	(b) $0.109 \ \mu s$;
	(c) 0.140 MeV;
	(d) 70.0 kV
18	(a) $4.99 \times 10^6 \text{m/s}$;
	(b) 7.10 mm;
	(c) 8.93 ns
19	$1.2 \times 10^{-9} \mathrm{kg/C}$
20	$6.7 \times 10^{-2} \mathrm{T}$
21	(a) 2.05×10^7 m/s;
	(b) $467 \ \mu T$;
	(c) 13.1 MHz;
	(d) 76.3 ns
22	(a) 1.0 MeV;
	(b) 0.50 MeV
23	21.1 μΤ
24	(a) 1.11×10^7 m/s;
	(b) 0.316 mm
25	(a) 0.978 MHz;
	(b) 96.4 cm
26	(a) 0.252 T;
	(b) 130 ns

27	(a) 495 mT;
2,	(b) 22.7 mA;
	(c) 8.17 MJ
28	$2.09 \times 10^{-22} \text{ J}$
29	65.3 km/s
30	8.7 ns
31	5.07 ns
32	0.53 m
33	(a) 0.358 ns;
	(b) 0.166 mm;
	(c) 1.51 mm
34	(a) 84°;
	(b) no;
	(c) no;
	(d) 5.7 nm
35	(a) 200 eV;
	(b) 20.0 keV;
	(c) 0.499%
36	(a) 0.787 T;
	(b) 8.34 MeV;
	(c) 23.9 MHz;
	(d) 33.2 MeV
37	2.4×10^2 m
38	(a) 18.3 MHz;
	(b) 17.2 MeV
39	(a) 28.2 N;
	(b) horizontally west
40	20.1 N
41	(a) 467 mA;
	(b) right
42	(a) $-16\hat{j}$ N;
	(b) 0
43	(a) 0;
	(b) 0.138 N;
	(c) 0.138 N;
	(d) 0
44	0.60 μΝ
45	$(-2.50 \text{ mN})\hat{j} + (0.750 \text{ mN})\hat{k}$
46	(a) 3.34 cm/s;
	(b) left
47	(a) 0.10 T;
10	(b) 31°
48	(-0.35k) N
49	$(-4.3 \times 10^{-3} \text{ N} \cdot \text{m})\hat{j}$
50	$6.58 \times 10^{-26} \mathrm{N \cdot m}$

<i>E</i> 1	2.45.4
51	2.45 A
52 53	3.0 mA
54	(a) 77°;
34	(a) 77 , (b) 77°
55	(a) $2.86 \text{ A} \cdot \text{m}^2$;
	(b) $1.10 \text{ A} \cdot \text{m}^2$
56	(a) $0.184 \text{ A} \cdot \text{m}^2$;
	(b) 1.45 N·m
57	(a) 12.7 A;
	(b) 0.0805 N·m
58	2.08 GA
59	(a) $0.30 \text{ A} \cdot \text{m}^2$;
	(b) 0.024 N·m
60	$(0.150\hat{j} - 0.300\hat{k}) \text{ A} \cdot \text{m}^2$
61	(a) $-72.0 \mu\text{J}$;
	(b) $(96.0\hat{i} + 48.0\hat{k}) \mu N \cdot m$
62	$4.8 \times 10^{-5} \mathrm{A \cdot m}^2$
63	(a) $-(9.7 \times 10^{-4} \mathrm{N \cdot m})\hat{\mathbf{i}} - (7.2 \times 10^{-4} \mathrm{N \cdot m})\hat{\mathbf{j}} + (8.0 \times 10^{-4} \mathrm{N \cdot m})\hat{\mathbf{j}}$
	N⋅m)k̂;
	(b) $-6.0 \times 10^{-4} \text{ J}$
64	110°
65	(a) 90°;
	(b) 1;
	(c) $1.28 \times 10^{-7} \mathrm{N \cdot m}$
66	$\vec{v} = v_{0x}\hat{\mathbf{i}} + v_{0y}\cos(\omega t)\hat{\mathbf{j}} - v_{0y}\sin(\omega t)\hat{\mathbf{k}}, \text{ where } \omega = eB/m$
67	(a) 20 min;
	(b) $5.9 \times 10^{-2} \text{ N} \cdot \text{m}$
68	$(18.8 \mu\text{N})\hat{k}$
69	8.2 mm
70	(-0.34 mT)k
71	127 u
72	(b) out of plane of page
73	(a) $6.3 \times 10^{14} \text{ m/s}^2$;
	(b) 3.0 mm
74	$(-3.0\hat{i} - 3.0\hat{j} - 4.0\hat{k}) T$
75	(a) 1.4; (b) 1.0
76	(b) 1.0
77	(-500 V/m)j
78	(b) 2.84×10^{-3}
/ 0	(U) 4.04 × 1U

79	(a) 0.50;
	(b) 0.50;
	(c) 14 cm
	(d) 14 cm
80	(a) 9.56×10^{-14} N;
	(b) 0;
	(c) 0.267°
81	$(0.80\hat{j} - 1.1\hat{k}) \text{ mN}$
82	(a) 0.67 mm/s;
	(b) $2.8 \times 10^{29} \mathrm{m}^{-3}$
83	-40 mC
84	(-0.600 N)k
85	(a) $(12.8\hat{i} + 6.41\hat{j}) \times 10^{-22} \text{ N};$
	(b) 90°;
	(c) 173°
86	(a) 3.8 mm;
	(b) 19 mm;
	(c) clockwise
87	(a) up; (b) rim; (c) 47.1 V; (d) 47.1 V; (e) 2.36 kW
88	3.8 C
89	$(2mV/ed^2)^{0.5}$
90	qvrB/2
91	n = JB/eE
92	$(0.75 \text{ T})\hat{\mathbf{k}}$

1	(a) 3.3 μ T;
	(b) yes
2	$3.0 \mu\text{T}$
3	(a) 16 A;
	(b) east
4	0
5	(a) 1.0 mT;
	(b) out;
	(c) 0.80 mT;
	(d) out
6	(a) 0;
	(b) 3.82 cm
7	(a) $0.102 \ \mu T$;
	(b) out
8	(a) 1.67 μ T;
	(b) into

9	(a) opposite;
	(b) 30 A
10	(a) $0.118 \mu T$;
	(b) into
11	(a) 4.3 A;
	(b) out
12	(a) 4.0 cm;
	(b) unchanged
13	50.3 nT
14	14.1
15	(a) 1.7 μ T;
	(b) into;
	(c) $6.7 \mu T$;
	(d) into
16	144°
17	132 nT
18	2.00 cm
19	$5.0 \mu T$
20	(a) (253 nT)k;
	(b) $(192 \text{ nT})\hat{i} + (61.2 \text{ nT})\hat{k}$
21	256 nT
22	(a) 30 cm;
	(b) 2.0 nT;
	(c) out;
	(d) into
23	$(-7.75 \times 10^{-23} \mathrm{N})\hat{i}$
24	(a) -7.0 cm;
	(b) 7.0 cm
25	2.00 rad
26	1.8 rad
27	61.3 mA
28	1.0 rad
29	$(80 \mu\text{T})\hat{j}$
30	(a) -90°;
	(b) 4.0 A;
	(c) out;
	(d) 2.0 A;
	(e) into
31	(a) 20 μT;
	(b) into
32	2.3 cm
33	(22.3 pT)ĵ
34	104°
35	88.4 pN/m
32 33 34	(d) 2.0 A; (e) into (a) 20 μ T; (b) into 2.3 cm (22.3 pT)ĵ

36	(a) $(469 \ \mu\text{N})\hat{j}$; (b) $(188 \ \mu\text{N})\hat{j}$; (c) 0; (d) $(-188 \ \mu\text{N})\hat{j}$; (e) $(-469 \ \mu\text{N})\hat{j}$
37	$(-125 \mu\text{N/m})\hat{i} + (41.7 \mu\text{N/m})\hat{j}$
38	(a) 0.50 A; (b) out
39	800 nN/m
40	$(0.794 \text{ mN/m})\hat{i} + (-0.794 \text{ mN/m})\hat{j}$
41	$(3.20 \text{ mN})^{\circ}$
42	$4.5 \times 10^{-6} \mathrm{T\cdot m}$
43	(a) 0; (b) 0.850 mT; (c) 1.70 mT; (d) 0.850 mT
44	(a) -2.5 μT·m;
	(a) 2.3 μ T iii, (b) -16 μ T·m
45	(a) -2.5 μT·m; (b) 0
46	+28.3 nT·m
47	(a) 0; (b) 0.10 μT;
	(c) 0.40 μT
48	(a) 3.00 mA; (b) into
49	(a) 533 μ T;
	(b) 400 μT
50	5.71 mT
51	0.30 mT
52	108 m
53	0.272 A
54	$1.6 \times 10^6 \text{ rev}$
55	(a) 4.77 cm;
	(b) 35.5 μT
56	8.78 μΤ
57	(a) $2.4 \text{ A} \cdot \text{m}^2$;
58	(b) 46 cm (a) 4.0;
30	(a) 4.0; (b) 0.50
59	$0.47 \text{ A} \cdot \text{m}^2$

	T
60	(a) 0.90 A;
C1	(b) 2.7 A
61	(a) $79 \mu T$;
	(b) $1.1 \times 10^{-6} \text{ N} \cdot \text{m}$
62	(a) $0.497 \ \mu T$;
	(b) into;
	(c) $1.06 \text{ mA} \cdot \text{m}^2$;
	(d) into
63	(a) $(0.060 \text{ A} \cdot \text{m}^2)\hat{j}$;
	(b) (96 pT)ĵ
64	(a) 27.5 nT;
	(b) into
65	1.28 mm
66	(a) $(-52.0 \ \mu\text{T})\hat{k}$;
	(b) 8.13 cm;
	(c) 17.5 cm
67	
68	(a) $3.2 \times 10^{-16} \mathrm{N}$;
	(b) $3.2 \times 10^{-16} \mathrm{N}$;
	(c) 0
69	(a) 15 A;
	(b) -z
70	157 nT
71	7.7 mT
72	(a) 5.0 mA;
72	(b) downward
73	(a) 15.3 μT 32.1 A
74 75	(a) (0.24i) nT;
13	(a) (0.241) II1; (b) 0;
	(b) 0, (c) (-43k̂) pT;
	$(d) (0.14\hat{k}) nT$
76	(a) $(-400 \mu\text{T})\hat{i}$;
, 0	(b) $(400 \mu \text{T})\hat{j}$
77	
78	4.0 mm
79	(a) 4.8 mT;
	(b) 0.93 mT;
	(c) 0
80	5.3 mm
81	
82	$(1.25 \mu\text{T})\hat{i}$
83	(-0.20 mT)k

84	(a) 0.17 mN;
	(b) 0.021 mN
85	
86	
87	(a) $\mu_0 i r / 2\pi c^2$; (b) $\mu_0 i / 2\pi r$; (c) $\mu_0 i (a^2 - r^2) / 2\pi (a^2 - b^2) r$;
	(b) $\mu_0 i / 2 \pi r$;
	(c) $\mu_0 i(a^2 - r^2)/2\pi(a^2 - b^2)r$;
	(d) 0
88	(b) 2.3 km/s

1	0
2	0.452 V
3	30 mA
4	(a) -11 mV;
	(b) 0;
	(c) 11 mV
5	0
6	$8.0 \times 10^{-3} \text{T/s}$
7	(a) 31 mV;
	(b) left
8	1.4 T/s
9	0.198 mV
10	(a) 51 mV;
	(b) clockwise
11	$(b) 0.796 \text{ m}^2$
12	(a) 0;
	(b) none;
	(c) 6.00 mV;
	(d) clockwise;
	(e) 1.00 mV;
	(f) clockwise;
	(g) 0;
	(h) none;
	(i) 0;
	(j) none
13	29.5 mC
14	$1.2 \text{ m}\Omega$
15	(a) 21.7 V;
	(b) counterclockwise
16	(a) 8.0 μ A;
	(b) counterclockwise

17	(a) 1.26×10^{-4} T;
17	(a) 1.20 × 10 1, (b) 0;
	(c) $1.26 \times 10^{-4} \mathrm{T};$
	(c) 1.20 × 10 - 1, (d) yes;
	(d) yes, (e) $5.04 \times 10^{-8} \text{ V}$
10	
18	(a) 85.2 Wb;
	(b) 56.8 V; (c) 1
19	5.50 kV
20	
21	15.5 μC
21	(a) 40 Hz; (b) 3.2 mV
22	18 mV
23	(a) $\mu_0 i R^2 \pi r^2 / 2x^3$;
23	
	(b) $3\mu_0 i \pi R^2 r^2 v/2x^4$;
24	(c) counterclockwise
24	(a) $24 \mu V$;
25	(b) from <i>c</i> to <i>b</i>
25	(a) 13 μWb/m;
	(b) 17%;
26	(c) 0
26	(a) $0.598 \mu V$;
27	(b) counterclockwise
27	(a) $80 \mu V$;
20	(b) clockwise
28	(a) 14 nWb;
20	(b) 10 μA
29	(a) 48.1 mV;
	(b) 2.67 mA;
30	(c) 0.129 mW
	$1.0 \mathrm{m}\Omega$
31	3.68 μW
32	750 pJ
33	(a) $240 \mu V$;
	(b) 0.600 mA;
	(c) $0.144 \mu W$;
	(d) $2.87 \times 10^{-8} \text{ N}$;
2.4	(e) $0.144 \mu W$
34	$v_t = mgR/B^2L^2$

(b) up; (c) 1.5 A; (d) clockwise; (e) 0.90 W; (f) 0.18 N; (g) 0.90 W 36 (a) -1.07 mV; (b) -2.40 mV; (c) 1.33 mV 37 (a) 71.5 μ V/m; (b) 143 μ V/m 38 0.030 T/s 39 0.15 V/m 40 0.10 μ Wb 41 (a) 2.45 mWb; (b) 0.645 mH 42 (a) 0.27 μ T; (b) 8.0 nH 43 1.81 μ H/m 44 5.0 A/s 45 (a) decreasing; (b) 0.68 mH 46 (a) 16 kV; (b) 3.1 kV; (c) 23 kV 47 (b) $L_{eq} = \Sigma L_j$, sum from $j = 1$ to $j = N$ 48 (b) $1/L_{eq} = \Sigma 1/L_j$, sum from $j = 1$ to $j = N$ 49 59.3 mH 50 12.3 s 51 46 Ω 52 (a) 1.00; (b) 0.135; (c) 0.693 53 (a) 8.45 ns; (b) 7.37 mA 54 (a) 3.33 A; (b) 3.33 A; (c) 4.55 A; (d) 2.73 A; (e) 0; (f) -1.82 A (reversed);	25	() 0 < 0 × 1
(c) 1.5 A ; (d) clockwise; (e) 0.90 W ; (f) 0.18 N ; (g) 0.90 W 36 (a) -1.07 mV ; (b) -2.40 mV ; (c) 1.33 mV 37 (a) $71.5 \mu\text{V/m}$; (b) $143 \mu\text{V/m}$ 38 0.030 T/s 39 0.15 V/m 40 $0.10 \mu\text{Wb}$ 41 (a) 2.45 mWb ; (b) 0.645 mH 42 (a) $0.27 \mu\text{T}$; (b) 8.0 nH 43 $1.81 \mu\text{H/m}$ 44 5.0 A/s 45 (a) decreasing; (b) 0.68 mH 46 (a) 16 kV ; (b) 3.1 kV ; (c) 23 kV 47 (b) $L_{\text{eq}} = \Sigma L_j$, sum from $j = 1 \text{ to } j = N$ 48 (b) $1/L_{\text{eq}} = \Sigma 1/L_j$, sum from $j = 1 \text{ to } j = N$ 49 59.3 mH 50 12.3 s 51 46Ω 52 (a) 1.00 ; (b) 0.135 ; (c) 0.693 53 (a) 8.45 ns ; (b) 7.37 mA 54 (a) 3.33 A ; (c) 4.55 A ; (d) 2.73 A ; (e) 0 ; (f) -1.82 A (reversed);	35	(a) 0.60 V;
(d) clockwise; (e) 0.90 W; (f) 0.18 N; (g) 0.90 W 36 (a) -1.07 mV; (b) -2.40 mV; (c) 1.33 mV 37 (a) 71.5 μ V/m; (b) 143 μ V/m 38 0.030 T/s 39 0.15 V/m 40 0.10 μ Wb 41 (a) 2.45 mWb; (b) 0.645 mH 42 (a) 0.27 μ T; (b) 8.0 nH 43 1.81 μ H/m 44 5.0 A/s 45 (a) decreasing; (b) 0.68 mH 46 (a) 16 kV; (b) 3.1 kV; (c) 23 kV 47 (b) $L_{eq} = \sum L_i$, sum from $j = 1$ to $j = N$ 48 (b) $I/L_{eq} = \sum I/L_j$, sum from $j = 1$ to $j = N$ 49 59.3 mH 50 12.3 s 51 46 Ω 52 (a) 1.00; (b) 0.135; (c) 0.693 53 (a) 8.45 ns; (b) 7.37 mA 54 (a) 3.33 A; (c) 4.55 A; (d) 2.73 A; (e) 0; (f) -1.82 A (reversed);		
(e) 0.90 W ; (f) 0.18 N ; (g) 0.90 W 36 (a) -1.07 mV ; (b) -2.40 mV ; (c) 1.33 mV 37 (a) $71.5 \mu\text{V/m}$; (b) $143 \mu\text{V/m}$ 38 0.030 T/s 39 0.15 V/m 40 $0.10 \mu\text{Wb}$ 41 (a) 2.45 mWb ; (b) 0.645 mH 42 (a) $0.27 \mu\text{T}$; (b) 8.0 nH 43 $1.81 \mu\text{H/m}$ 44 5.0 A/s 45 (a) decreasing; (b) 0.68 mH 46 (a) 16 kV ; (b) 3.1 kV ; (c) 23 kV 47 (b) $L_{\text{eq}} = \Sigma L_j$, sum from $j = 1 \text{ to } j = N$ 48 (b) $1/L_{\text{eq}} = \Sigma 1/L_j$, sum from $j = 1 \text{ to } j = N$ 49 59.3 mH 50 12.3 s 51 46Ω 52 (a) 1.00 ; (b) 0.135 ; (c) 0.693 53 (a) 8.45 ns ; (b) 7.37 mA 54 (a) 3.33 A ; (c) 4.55 A ; (d) 2.73 A ; (e) 0; (f) -1.82 A (reversed);		
(f) $0.18 \text{ N};$ (g) 0.90 W 36 (a) $-1.07 \text{ mV};$ (b) $-2.40 \text{ mV};$ (c) 1.33 mV 37 (a) $71.5 \mu\text{V/m};$ (b) $143 \mu\text{V/m}$ 38 0.030 T/s 39 0.15 V/m 40 $0.10 \mu\text{Wb}$ 41 (a) $2.45 \text{ mWb};$ (b) 0.645 mH 42 (a) $0.27 \mu\text{T};$ (b) 8.0 nH 43 $1.81 \mu\text{H/m}$ 44 5.0 A/s 45 (a) decreasing; (b) 0.68 mH 46 (a) $16 \text{ kV};$ (b) $3.1 \text{ kV};$ (c) 23 kV 47 (b) $L_{\text{eq}} = \Sigma L_j$, sum from $j = 1 \text{ to } j = N$ 48 (b) $1/L_{\text{eq}} = \Sigma 1/L_j$, sum from $j = 1 \text{ to } j = N$ 49 59.3 mH 50 12.3 s 51 46Ω 52 (a) $1.00;$ (b) $0.135;$ (c) 0.693 53 (a) $8.45 \text{ ns};$ (b) 7.37 mA 54 (a) $3.33 \text{ A};$ (c) $4.55 \text{ A};$ (d) $2.73 \text{ A};$ (e) $0;$ (f) -1.82 A (reversed);		
(g) 0.90 W 36 (a) -1.07 mV ; (b) -2.40 mV ; (c) 1.33 mV 37 (a) $71.5 \mu\text{V/m}$; (b) $143 \mu\text{V/m}$ 38 0.030 T/s 39 0.15 V/m 40 $0.10 \mu\text{Wb}$ 41 (a) 2.45 mWb ; (b) 0.645 mH 42 (a) $0.27 \mu\text{T}$; (b) 8.0 nH 43 $1.81 \mu\text{H/m}$ 44 5.0 A/s 45 (a) decreasing; (b) 0.68 mH 46 (a) 16 kV ; (c) 23 kV 47 (b) $L_{\text{eq}} = \Sigma L_j$, sum from $j = 1 \text{ to } j = N$ 48 (b) $1/L_{\text{eq}} = \Sigma 1/L_j$, sum from $j = 1 \text{ to } j = N$ 49 59.3 mH 50 12.3 s 51 46Ω 52 (a) 1.00 ; (b) 0.135 ; (c) 0.693 53 (a) 8.45 ns ; (b) 7.37 mA 54 (a) 3.33 A ; (c) 4.55 A ; (d) 2.73 A ; (e) 0 ; (f) -1.82 A (reversed);		
36 (a) -1.07 mV; (b) -2.40 mV; (c) 1.33 mV 37 (a) 71.5 μ V/m; (b) 143 μ V/m 38 0.030 T/s 39 0.15 V/m 40 0.10 μ Wb 41 (a) 2.45 mWb; (b) 0.645 mH 42 (a) 0.27 μ T; (b) 8.0 nH 43 1.81 μ H/m 44 5.0 A/s 45 (a) decreasing; (b) 0.68 mH 46 (a) 16 kV; (b) 3.1 kV; (c) 23 kV 47 (b) $L_{eq} = \Sigma L_j$, sum from $j = 1$ to $j = N$ 48 (b) 1/ $L_{eq} = \Sigma 1/L_j$, sum from $j = 1$ to $j = N$ 49 59.3 mH 50 12.3 s 51 46 Ω 52 (a) 1.00; (b) 0.135; (c) 0.693 53 (a) 8.45 ns; (b) 7.37 mA 54 (a) 3.33 A; (b) 3.33 A; (c) 4.55 A; (d) 2.73 A; (e) 0; (f) -1.82 A (reversed);		
(b) -2.40 mV ; (c) 1.33 mV 37 (a) $71.5 \mu\text{V/m}$; (b) $143 \mu\text{V/m}$ 38 0.030 T/s 39 0.15 V/m 40 $0.10 \mu\text{Wb}$ 41 (a) 2.45 mWb ; (b) 0.645 mH 42 (a) $0.27 \mu\text{T}$; (b) 8.0 nH 43 $1.81 \mu\text{H/m}$ 44 5.0 A/s 45 (a) decreasing; (b) 0.68 mH 46 (a) 16 kV ; (b) 3.1 kV ; (c) 23 kV 47 (b) $L_{\text{eq}} = \Sigma L_j$, sum from $j = 1 \text{ to } j = N$ 48 (b) $1/L_{\text{eq}} = \Sigma 1/L_j$, sum from $j = 1 \text{ to } j = N$ 49 59.3 mH 50 12.3 s 51 46Ω 52 (a) 1.00 ; (b) 0.135 ; (c) 0.693 53 (a) 8.45 ns ; (b) 7.37 mA 54 (a) 3.33 A ; (b) 3.33 A ; (c) 4.55 A ; (d) 2.73 A ; (e) 0 ; (f) -1.82 A (reversed);		
(c) 1.33 mV 37 (a) $71.5 \mu\text{V/m}$; (b) $143 \mu\text{V/m}$ 38 0.030 T/s 39 0.15 V/m 40 $0.10 \mu\text{Wb}$ 41 (a) 2.45 mWb ; (b) 0.645 mH 42 (a) $0.27 \mu\text{T}$; (b) 8.0 nH 43 $1.81 \mu\text{H/m}$ 44 5.0 A/s 45 (a) decreasing; (b) 0.68 mH 46 (a) 16 kV ; (b) 3.1 kV ; (c) 23 kV 47 (b) $L_{\text{eq}} = \Sigma L_j$, sum from $j = 1 \text{ to } j = N$ 48 (b) $1/L_{\text{eq}} = \Sigma 1/L_j$, sum from $j = 1 \text{ to } j = N$ 49 59.3 mH 50 12.3 s 51 46Ω 52 (a) 1.00 ; (b) 0.135 ; (c) 0.693 53 (a) 8.45 ns ; (b) 7.37 mA 54 (a) 3.33 A ; (c) 4.55 A ; (d) 2.73 A ; (e) 0 ; (f) -1.82 A (reversed);	36	
37 (a) 71.5 μ V/m; (b) 143 μ V/m 38 0.030 T/s 39 0.15 V/m 40 0.10 μ Wb 41 (a) 2.45 mWb; (b) 0.645 mH 42 (a) 0.27 μ T; (b) 8.0 nH 43 1.81 μ H/m 44 5.0 A/s 45 (a) decreasing; (b) 0.68 mH 46 (a) 16 kV; (c) 23 kV 47 (b) $L_{\rm eq} = \Sigma L_j$, sum from $j = 1$ to $j = N$ 48 (b) 1/ $L_{\rm eq} = \Sigma 1/L_j$, sum from $j = 1$ to $j = N$ 49 59.3 mH 50 12.3 s 51 46 Ω 52 (a) 1.00; (b) 0.135; (c) 0.693 53 (a) 8.45 ns; (b) 7.37 mA 54 (a) 3.33 A; (c) 4.55 A; (d) 2.73 A; (e) 0; (f) -1.82 A (reversed);		(b) -2.40 mV;
(b) $143 \ \mu\text{V/m}$ 38		(c) 1.33 mV
38 0.030 T/s 39 0.15 V/m 40 0.10 μWb 41 (a) 2.45 mWb; (b) 0.645 mH 42 (a) 0.27 μT; (b) 8.0 nH 43 1.81 μH/m 44 5.0 A/s 45 (a) decreasing; (b) 0.68 mH 46 (a) 16 kV; (b) 3.1 kV; (c) 23 kV 47 (b) $L_{eq} = \Sigma L_i$, sum from $j = 1$ to $j = N$ 48 (b) $1/L_{eq} = \Sigma I/L_j$, sum from $j = 1$ to $j = N$ 49 59.3 mH 50 12.3 s 51 46 Ω 52 (a) 1.00; (b) 0.135; (c) 0.693 53 (a) 8.45 ns; (b) 7.37 mA 54 (a) 3.33 A; (c) 4.55 A; (d) 2.73 A; (e) 0; (f) -1.82 A (reversed);	37	(a) 71.5 μ V/m;
38 0.030 T/s 39 0.15 V/m 40 0.10 μWb 41 (a) 2.45 mWb; (b) 0.645 mH 42 (a) 0.27 μT; (b) 8.0 nH 43 1.81 μH/m 44 5.0 A/s 45 (a) decreasing; (b) 0.68 mH 46 (a) 16 kV; (b) 3.1 kV; (c) 23 kV 47 (b) $L_{eq} = \Sigma L_j$, sum from $j = 1$ to $j = N$ 48 (b) $1/L_{eq} = \Sigma 1/L_j$, sum from $j = 1$ to $j = N$ 49 59.3 mH 50 12.3 s 51 46 Ω 52 (a) 1.00; (b) 0.135; (c) 0.693 53 (a) 8.45 ns; (b) 7.37 mA 54 (a) 3.33 A; (c) 4.55 A; (d) 2.73 A; (e) 0; (f) -1.82 A (reversed);		(b) 143 μ V/m
40 0.10 μWb 41 (a) 2.45 mWb; (b) 0.645 mH 42 (a) 0.27 μT; (b) 8.0 nH 43 1.81 μH/m 44 5.0 A/s 45 (a) decreasing; (b) 0.68 mH 46 (a) 16 kV; (b) 3.1 kV; (c) 23 kV 47 (b) $L_{eq} = \Sigma L_j$, sum from $j = 1$ to $j = N$ 48 (b) $1/L_{eq} = \Sigma 1/L_j$, sum from $j = 1$ to $j = N$ 49 59.3 mH 50 12.3 s 51 46 Ω 52 (a) 1.00; (b) 0.135; (c) 0.693 53 (a) 8.45 ns; (b) 7.37 mA 54 (a) 3.33 A; (c) 4.55 A; (d) 2.73 A; (e) 0; (f) -1.82 A (reversed);	38	0.030 T/s
40 0.10 μWb 41 (a) 2.45 mWb; (b) 0.645 mH 42 (a) 0.27 μT; (b) 8.0 nH 43 1.81 μH/m 44 5.0 A/s 45 (a) decreasing; (b) 0.68 mH 46 (a) 16 kV; (b) 3.1 kV; (c) 23 kV 47 (b) $L_{eq} = \Sigma L_j$, sum from $j = 1$ to $j = N$ 48 (b) $1/L_{eq} = \Sigma 1/L_j$, sum from $j = 1$ to $j = N$ 49 59.3 mH 50 12.3 s 51 46 Ω 52 (a) 1.00; (b) 0.135; (c) 0.693 53 (a) 8.45 ns; (b) 7.37 mA 54 (a) 3.33 A; (c) 4.55 A; (d) 2.73 A; (e) 0; (f) -1.82 A (reversed);	39	0.15 V/m
41 (a) 2.45 mWb; (b) 0.645 mH 42 (a) 0.27 μ T; (b) 8.0 nH 43 1.81 μ H/m 44 5.0 A/s 45 (a) decreasing; (b) 0.68 mH 46 (a) 16 kV; (b) 3.1 kV; (c) 23 kV 47 (b) $L_{eq} = \sum L_j$, sum from $j = 1$ to $j = N$ 48 (b) $1/L_{eq} = \sum 1/L_j$, sum from $j = 1$ to $j = N$ 49 59.3 mH 50 12.3 s 51 46 Ω 52 (a) 1.00; (b) 0.135; (c) 0.693 53 (a) 8.45 ns; (b) 7.37 mA 54 (a) 3.33 A; (c) 4.55 A; (d) 2.73 A; (e) 0; (f) -1.82 A (reversed);	40	
(b) 0.645 mH 42 (a) $0.27 \mu\text{T}$; (b) 8.0 nH 43 $1.81 \mu\text{H/m}$ 44 5.0 A/s 45 (a) decreasing; (b) 0.68 mH 46 (a) 16 kV ; (b) 3.1 kV ; (c) 23 kV 47 (b) $L_{\text{eq}} = \sum L_j$, sum from $j = 1 \text{ to } j = N$ 48 (b) $1/L_{\text{eq}} = \sum 1/L_j$, sum from $j = 1 \text{ to } j = N$ 49 59.3 mH 50 12.3 s 51 46Ω 52 (a) 1.00 ; (b) 0.135 ; (c) 0.693 53 (a) 8.45 ns ; (b) 7.37 mA 54 (a) 3.33 A ; (b) 3.33 A ; (c) 4.55 A ; (d) 2.73 A ; (e) 0 ; (f) -1.82 A (reversed);	41	
(b) 8.0 nH 43		(b) 0.645 mH
(b) 8.0 nH 43	42	(a) $0.27 \ \mu T$;
44 5.0 A/s 45 (a) decreasing; (b) 0.68 mH 46 (a) 16 kV; (b) 3.1 kV; (c) 23 kV 47 (b) $L_{eq} = \Sigma L_j$, sum from $j = 1$ to $j = N$ 48 (b) $1/L_{eq} = \Sigma 1/L_j$, sum from $j = 1$ to $j = N$ 49 59.3 mH 50 12.3 s 51 46 Ω 52 (a) 1.00; (b) 0.135; (c) 0.693 53 (a) 8.45 ns; (b) 7.37 mA 54 (a) 3.33 A; (c) 4.55 A; (d) 2.73 A; (e) 0; (f) -1.82 A (reversed);		
44 5.0 A/s 45 (a) decreasing; (b) 0.68 mH 46 (a) 16 kV; (b) 3.1 kV; (c) 23 kV 47 (b) $L_{eq} = \Sigma L_j$, sum from $j = 1$ to $j = N$ 48 (b) $1/L_{eq} = \Sigma 1/L_j$, sum from $j = 1$ to $j = N$ 49 59.3 mH 50 12.3 s 51 46 Ω 52 (a) 1.00; (b) 0.135; (c) 0.693 53 (a) 8.45 ns; (b) 7.37 mA 54 (a) 3.33 A; (b) 3.33 A; (c) 4.55 A; (d) 2.73 A; (e) 0; (f) -1.82 A (reversed);	43	$1.81 \mu\text{H/m}$
(b) 0.68 mH 46 (a) 16 kV ; (b) 3.1 kV ; (c) 23 kV 47 (b) $L_{\text{eq}} = \sum L_j$, sum from $j = 1$ to $j = N$ 48 (b) $1/L_{\text{eq}} = \sum 1/L_j$, sum from $j = 1$ to $j = N$ 49 59.3 mH 50 12.3 s 51 46 Ω 52 (a) 1.00 ; (b) 0.135 ; (c) 0.693 53 (a) 8.45 ns ; (b) 7.37 mA 54 (a) 3.33 A ; (b) 3.33 A ; (c) 4.55 A ; (d) 2.73 A ; (e) 0 ; (f) -1.82 A (reversed);	44	,
(b) 0.68 mH 46 (a) 16 kV ; (b) 3.1 kV ; (c) 23 kV 47 (b) $L_{\text{eq}} = \sum L_j$, sum from $j = 1$ to $j = N$ 48 (b) $1/L_{\text{eq}} = \sum 1/L_j$, sum from $j = 1$ to $j = N$ 49 59.3 mH 50 12.3 s 51 46 Ω 52 (a) 1.00 ; (b) 0.135 ; (c) 0.693 53 (a) 8.45 ns ; (b) 7.37 mA 54 (a) 3.33 A ; (b) 3.33 A ; (c) 4.55 A ; (d) 2.73 A ; (e) 0 ; (f) -1.82 A (reversed);		(a) decreasing;
(b) 3.1 kV ; (c) 23 kV 47		
(c) 23 kV 47 (b) $L_{\text{eq}} = \sum L_j$, sum from $j = 1$ to $j = N$ 48 (b) $1/L_{\text{eq}} = \sum 1/L_j$, sum from $j = 1$ to $j = N$ 49 59.3 mH 50 12.3 s 51 46 Ω 52 (a) 1.00; (b) 0.135; (c) 0.693 53 (a) 8.45 ns; (b) 7.37 mA 54 (a) 3.33 A; (b) 3.33 A; (c) 4.55 A; (d) 2.73 A; (e) 0; (f) -1.82 A (reversed);	46	(a) 16 kV;
47 (b) $L_{eq} = \sum L_j$, sum from $j = 1$ to $j = N$ 48 (b) $1/L_{eq} = \sum 1/L_j$, sum from $j = 1$ to $j = N$ 49 59.3 mH 50 12.3 s 51 46 Ω 52 (a) 1.00; (b) 0.135; (c) 0.693 53 (a) 8.45 ns; (b) 7.37 mA 54 (a) 3.33 A; (b) 3.33 A; (c) 4.55 A; (d) 2.73 A; (e) 0; (f) -1.82 A (reversed);		(b) 3.1 kV;
48 (b) $1/L_{eq} = \Sigma 1/L_j$, sum from $j = 1$ to $j = N$ 49 59.3 mH 50 12.3 s 51 46 Ω 52 (a) 1.00; (b) 0.135; (c) 0.693 53 (a) 8.45 ns; (b) 7.37 mA 54 (a) 3.33 A; (b) 3.33 A; (c) 4.55 A; (d) 2.73 A; (e) 0; (f) -1.82 A (reversed);		(c) 23 kV
48 (b) $1/L_{eq} = \Sigma 1/L_j$, sum from $j = 1$ to $j = N$ 49 59.3 mH 50 12.3 s 51 46 Ω 52 (a) 1.00; (b) 0.135; (c) 0.693 53 (a) 8.45 ns; (b) 7.37 mA 54 (a) 3.33 A; (b) 3.33 A; (c) 4.55 A; (d) 2.73 A; (e) 0; (f) -1.82 A (reversed);	47	(b) $L_{\text{eq}} = \sum L_i$, sum from $j = 1$ to $j = N$
49 59.3 mH 50 12.3 s 51 46 Ω 52 (a) 1.00; (b) 0.135; (c) 0.693 53 (a) 8.45 ns; (b) 7.37 mA 54 (a) 3.33 A; (b) 3.33 A; (c) 4.55 A; (d) 2.73 A; (e) 0; (f) -1.82 A (reversed);	48	
51 46 Ω 52 (a) 1.00; (b) 0.135; (c) 0.693 53 (a) 8.45 ns; (b) 7.37 mA 54 (a) 3.33 A; (b) 3.33 A; (c) 4.55 A; (d) 2.73 A; (e) 0; (f) -1.82 A (reversed);	49	
52 (a) 1.00; (b) 0.135; (c) 0.693 53 (a) 8.45 ns; (b) 7.37 mA 54 (a) 3.33 A; (b) 3.33 A; (c) 4.55 A; (d) 2.73 A; (e) 0; (f) -1.82 A (reversed);	50	12.3 s
52 (a) 1.00; (b) 0.135; (c) 0.693 53 (a) 8.45 ns; (b) 7.37 mA 54 (a) 3.33 A; (b) 3.33 A; (c) 4.55 A; (d) 2.73 A; (e) 0; (f) -1.82 A (reversed);	51	46 Ω
(b) 0.135; (c) 0.693 53 (a) 8.45 ns; (b) 7.37 mA 54 (a) 3.33 A; (b) 3.33 A; (c) 4.55 A; (d) 2.73 A; (e) 0; (f) -1.82 A (reversed);	52	
(c) 0.693 53 (a) 8.45 ns; (b) 7.37 mA 54 (a) 3.33 A; (b) 3.33 A; (c) 4.55 A; (d) 2.73 A; (e) 0; (f) -1.82 A (reversed);		
53 (a) 8.45 ns; (b) 7.37 mA 54 (a) 3.33 A; (b) 3.33 A; (c) 4.55 A; (d) 2.73 A; (e) 0; (f) -1.82 A (reversed);		
(b) 7.37 mA 54 (a) 3.33 A; (b) 3.33 A; (c) 4.55 A; (d) 2.73 A; (e) 0; (f) -1.82 A (reversed);	53	
54 (a) 3.33 A; (b) 3.33 A; (c) 4.55 A; (d) 2.73 A; (e) 0; (f) -1.82 A (reversed);		
(c) 4.55 A; (d) 2.73 A; (e) 0; (f) -1.82 A (reversed);	54	(a) 3.33 A;
(d) 2.73 A; (e) 0; (f) -1.82 A (reversed);		(b) 3.33 A;
(d) 2.73 A; (e) 0; (f) -1.82 A (reversed);		(c) 4.55 A;
(e) 0; (f) -1.82 A (reversed);		
(f) -1.82 A (reversed);		
		(g) 0;
(h) 0		
55 6.91	55	6.91

56	$7.1 \times 10^2 \text{A/s}$
57	(a) 1.5 s
58	(42 + 20t) V
59	(a) $i[1 - \exp(-Rt/L)];$
39	(a) $t[1 - \exp(-Rt/L)]$, (b) $(L/R) \ln 2$
60	(a) 0.29 mH;
00	(a) 0.29 ms
61	(a) 97.9 H;
01	(b) 0.196 mJ
62	(a) 2.4×10^2 W;
	(b) 1.5×10^2 W;
	(c) $3.9 \times 10^2 \text{ W}$
63	25.6 ms
64	1.23
65	(a) 18.7 J;
	(b) 5.10 J;
	(c) 13.6 J
66	(a) 1.3 mT;
	(b) 0.63 J/m^3
67	(a) 34.2 J/m^3 ;
	(b) 49.4 mJ
68	5.58 A
69	$1.5 \times 10^8 \text{ V/m}$
70	(a) 23 mA;
	(b) 70 mA
71	(a) 1.0 J/m^3 ;
	(b) $4.8 \times 10^{-15} \text{ J/m}^3$
72	(a) 1.5 μ Wb;
	(b) $1.0 \times 10^2 \text{ mV}$;
	(c) 90 nWb;
	(d) 12 mV
73	(a) 1.67 mH;
	(b) 6.00 mWb
74	13 H
75	13 μH
76	(b) magnetic field exists only within the solenoid
	cross section
77	(b) have the turns of the two solenoids wrapped in
	opposite directions
78	95.4 Ω

70	() 2 O A
79	(a) 2.0 A;
	(b) 0;
	(c) 2.0 A;
	(d) 0;
	(e) 10 V;
	(f) 2.0 A/s;
	(g) 2.0 A;
	(h) 1.0 A;
	(i) 3.0 A;
	(j) 10 V;
	(k) 0;
	(1) 0
80	1.0 ns
81	
01	(a) 10 μT;
	(b) out;
	(c) $3.3 \mu T$;
	(d) out
82	$(\pi B_0 r^2 / \tau) \exp(-t/\tau)$
83	0.520 ms
84	(a) 25 μ T/s;
	(b) 13 μ T/s
	(c) increasing
85	(a) $(4.4 \times 10^7 \text{m/s}^2)\hat{i}$;
	(b) 0;
	$(c) (-4.4 \times 10^7 \mathrm{m/s^2})\hat{i}$
86	81.1 µs
87	(a) 0.40 V;
	(b) 20 A
88	(a) 3.75 mH;
	(b) 3.75 mH;
	(c) 100 nWb;
	(d) 4.24 mV
89	(a) 10 A;
0)	(b) $1.0 \times 10^2 \text{ J}$
90	1.54 s
91	(a) 0;
71	(a) 0, (b) 8.0×10^2 A/s;
	(c) 1.8 mA;
	(c) 1.8 mA; (d) 4.4×10^2 A/s;
	(e) 4.0 mA;
02	(f) 0
92	(a) 4.7 mH;
6.2	(b) 2.4 ms
93	1.15 W

94	(a) 0.10 H/m;
	(b) 1.3 V/m
95	(a) 20 A/s;
	(b) 0.75 A
96	2.9 mV
97	12 A/s
98	(a) 0.600 mH;
	(b) 120
99	$3 \times 10^{36} J$
100	(a) $3.4(2 + \theta)$ m Ω ; (b) 4.3θ mWb; (c) 2.0 rad; (d) 2.2
	A
101	(a) 13.9 H;
	(b) 120 mA

1	(a) 1.17 μJ;
	(b) 5.58 mA
2	(a) $5.00 \mu s$;
	(b) $2.50 \ \mu s$;
	(c) 1.25 μs
3	(a) $6.00 \ \mu s$;
	(b) 167 kHz;
	(c) $3.00 \mu s$
4	9.14 nF
5	45.2 mA
6	(a) 89 rad/s;
	(b) 70 ms;
	(c) 25 μF
7	(a) 1.25 kg;
	(b) 372 N/m;
	(c) 1.75×10^{-4} m;
	(d) 3.02 mm/s
8	
9	$7.0 \times 10^{-4} \text{ s}$
10	38 μH
11	(a) 6.0;
	(b) 36 pF;
	(c) 0.22 mH
12	(a) 0.500;
4.5	(b) 0.866
13	(a) 0.180 mC;
	(b) 70.7 μs;
	(c) 66.7 W

	·
14	(a) 6.0×10^2 Hz;
	(b) 7.1×10^2 Hz;
	(c) 1.1 kHz
	(d) 1.3 kHz
15	(a) 3.0 nC;
	(b) 1.7 mA;
	(c) 4.5 nJ
16	
17	(a) 275 Hz;
	(b) 365 mA
18	(a) $46.1 \ \mu s$;
	(b) 6.88 nJ;
	(c) 6.88 nJ;
	(d) 1.02×10^3 A/s;
	(e) 0.938 mW
19	
20	(a) 3.60 mH;
	(b) 1.33 kHz;
	(c) 0.188 ms
21	(a) 356 μ s;
	(b) 2.50 mH;
	(c) 3.20 mJ
22	ω
23	(a) 1.98 μJ;
	(b) 5.56 μ C;
	(c) 12.6 mA;
	(d) -46.9°;
	$(e) +46.9^{\circ}$
24	(a) 5.85 μC;
	(b) $5.52 \mu C$;
	(c) $1.93 \mu C$
25	8.66 mΩ
26	$(L/R) \ln 2$
27	
28	(a) 0.283 A;
20	(a) 0.263 A, (b) 2.26 A
29	(a) 95.5 mA;
2)	(b) 11.9 mA
30	(a) 0.600 A;
30	(a) 0.000 A, (b) 0.600 A
31	(a) 0.65 kHz;
J1	(b) 24Ω
32	(a) 5.22 mA;
34	(a) 3.22 mA, (b) 0;
	(c) 4.51 mA
	(C) 4.31 IIIA

33	(a) 6.73 ms;
	(b) 11.2 ms;
	(c) inductor;
	(d) 138 mH
34	(a) 39.1 mA;
	(b) 0;
2.5	(c) 33.8 mA
35	89 Ω
36	(a) 500Ω ;
	(b) 40 μF
37	7.61 A
38	(a) $8.0 \mu \text{F}$;
	(b) 2.0 Ω
39	(a) 267Ω ;
	(b) -41.5°;
	(c) 135 mA
40	-8.00 V
41	(a) 206Ω ;
	(b) 13.7°;
	(c) 175 mA
42	(a) 40Ω ;
	(b) 60 mH
43	(a) 218Ω ;
	(b) 23.4°;
	(c) 165 mA
44	(a) 16.6Ω ;
	(b) 422 Ω;
	(c) 0.521 A;
	(d) increase;
	(e) decrease;
	(f) increase
45	(a) yes;
	(b) 1.0 kV
46	(b) 159 Hz;
	(c) -45°;
	(d) $1.00 \times 10^3 \text{ rad/s}$;
	(e) 170 mA
47	(a) 224 rad/s;
	(b) 6.00 A;
	(c) 219 rad/s;
	(d) 228 rad/s;
	(e) 0.040

48	(a) 100Ω ;
	(b) 30.6 μF;
	(c) 301 mH
49	(a) 796 Hz;
	(b) no change;
	(c) decreased;
	(d) increased
50	(b) 318 Hz;
	(c) +45°;
	(d) $2.00 \times 10^3 \text{ rad/s}$;
	(e) 53.0 mA
51	
52	100 V
53	(a) 12.1Ω ;
	(b) 1.19 kW
54	141 V
55	1.84 A
56	(a) 76.4 mH;
	(b) yes;
	(c) 17.8 Ω
57	(a) 117 μ F;
	(b) 0;
	(c) 90.0 W;
	(d) 0°;
	(e) 1;
	(f) 0;
	(g) -90°;
	(h) 0
58	
59	(a) 2.59 A;
	(b) 38.8 V;
	(c) 159 V;
	(d) 224 V;
	(e) 64.2 V;
	(f) 75.0 V;
	(g) 100 W;
	(h) 0;
	(i) 0
60	(a) 41.4 W;
	(b) -17.0 W;
	(c) 44.1 W;
	(d) 14.4 W;
	(e) equal

61 (a) 0.743; (b) lead; (c) capacitive; (d) no; (e) yes; (f) no; (g) yes; (h) 33.4 W
(c) capacitive; (d) no; (e) yes; (f) no; (g) yes; (h) 33.4 W
(d) no; (e) yes; (f) no; (g) yes; (h) 33.4 W
(e) yes; (f) no; (g) yes; (h) 33.4 W
(f) no; (g) yes; (h) 33.4 W
(g) yes; (h) 33.4 W
(h) 33.4 W
02 1.0 K v
63 (a) 2.4 V;
(b) 3.2 mA;
(c) 0.16 A
64 (a) 1.25;
(b) 4.00;
(c) 5.00;
(d) 0.200;
(e) 0.250;
(f) 0.800
65 (a) 1.9 V;
(b) 5.9 W;
(c) 19 V;
(d) 5.9×10^2 W;
(e) 0.19 kV;
(f) 59 kW
66 (b) 10
67 (a) 6.73 ms;
(b) 2.24 ms;
(c) capacitor;
(d) 59.0 μ F
68 (a) $+1.22 \text{ rad}$;
(b) 0.288 A
69 (a) -0.405 rad;
(b) 2.76 A;
(c) capacitive
70 (a) 4.60 kHz;
(b) 26.6 nF;
(c) $2.60 \text{ k}\Omega$;
(d) $0.650 \text{ k}\Omega$
71 (a) 64.0Ω ;
(b) 50.9 Ω;
(c) capacitive
72 (a) 0.588 rad;
(b) inductive;
(c) 12.0 V

73	(a) 2.41 μ H;
	(b) 21.4 pJ;
	(c) 82.2 nC
74	(a) 5.77×10^3 rad/s;
	(b) 1.09 ms
75	(a) 39.1 Ω;
	(b) 21.7Ω ;
	(c) capacitive
76	(a) 8.84 kHz;
	(b) 6.00 Ω
77	
78	(a) 177Ω ;
7 0	(b) no
79	(a) 0.577 <i>Q</i> ;
00	(b) 0.152
80	(a) 37.0 V;
	(b) 60.9 V; (c) 113 V;
	(d) 68.6 W
81	(a) 45.0°;
01	(a) 43.0, (b) 70.7Ω
82	0.115 A
83	1.84 kHz
84	
04	(a) 707Ω ; (b) 32.2 mH ;
	(c) 21.9 nF
85	(a) 0.689 µH;
0.5	(a) 0.005 µ11, (b) 17.9 pJ;
	(c) $0.110 \mu\text{C}$
86	69.3 Ω
87	(a) 165Ω ;
	(a) 103 \(\frac{1}{2}\), (b) 313 mH;
	(c) 14.9 μ F
88	(a) 1.27 μ C;
	(a) 1.27 μ C, (b) 83.1 μ S;
	(c) 5.44 mW
89	
90	1.59 μF
91	
92	
93	(a) 36.0 V;
	(b) 29.9 V;
	(c) 11.9 V;
	(d) -5.85 V

1	. 2 W/I
1	+3 Wb
2	(a) 1.1 mWb;
2	(b) inward
3	(a) $47.4 \mu \text{Wb}$;
4	(b) inward
4	$(\mu_0 i L/\pi) \ln 3$
5	$2.4 \times 10^{13} \text{ V/m} \cdot \text{s}$
6	52 nT·m
7	(a) $1.18 \times 10^{-19} \mathrm{T}$;
	(b) $1.06 \times 10^{-19} \mathrm{T}$
8	(a) 3.54×10^{-17} T;
	(b) $2.13 \times 10^{-17} \mathrm{T}$
9	(a) 5.01×10^{-22} T;
	(b) $4.51 \times 10^{-22} \mathrm{T}$
10	(a) 3.09×10^{-20} T;
	(b) $1.67 \times 10^{-20} \mathrm{T}$
11	(a) 1.9 pT
12	(a) 30 mm;
	(b) 53 mm;
	(c) 3.0×10^{-5} T
13	$7.5 \times 10^5 \text{ V/s}$
14	
15	
16	$7.2 \times 10^{12} \text{ V/m} \cdot \text{s}$
17	(a) 0.324 V/m;
	(b) 2.87×10^{-16} A;
	(c) 2.87×10^{-18}
18	$8.40 \times 10^{-13} \mathrm{T}$
19	(a) 75.4 nT;
	(b) 67.9 nT
20	(a) $2.22 \mu T$;
	(b) $2.00 \mu\text{T}$
21	(a) 27.9 nT;
	(b) 15.1 nT
22	(a) $20.0 \ \mu T$;
	(b) $12.0 \ \mu T$
23	(a) 2.0 A;
	(b) $2.3 \times 10^{11} \text{ V/m·s}$;
	(c) 0.50 A;
	(d) 0.63 μT·m
•	

24	(a) 2.1×10^{-8} A;
	(b) downward;
	(c) clockwise
25	(a) $0.63 \mu T$;
	(b) $2.3 \times 10^{12} \text{ V/m} \cdot \text{s}$
26	(a) 1.33 A;
	(b) 0.300 cm;
	(c) 4.80 cm
27	(a) 0.71 A;
	(b) 0;
	(c) 2.8 A
28	(a) 0.089 mT;
	(b) 0.18 mT;
	(c) 0.22 mT;
	(d) $6.4 \times 10^{-22} \mathrm{T}$;
	(e) 6.4×10^{-22} T;
	(f) 0;
	(g) out;
	(h) out
29	(a) 7.60 μA;
	(b) 859 kV·m/s;
	(c) 3.39 mm;
	(d) 5.16 pT
30	(a) 13 MWb;
	(b) outward
31	55 μT
32	(a) 0;
	(b)-1, 0, 1;
	$(c) 4.64 \times 10^{-24} J$
33	(a) 0;
	(b) 0;
	(c) 0;
	(d) $\pm 3.2 \times 10^{-25}$ J;
	(e) $-3.2 \times 10^{-34} \text{ J} \cdot \text{s}$;
	(f) 2.8×10^{-23} J/T;
	(g) -9.7×10^{-25} J;
	(h) $\pm 3.2 \times 10^{-25} \text{J}$
34	$4.6 \times 10^{-24} \mathrm{J}$
35	(a) $-9.3 \times 10^{-24} \text{ J/T}$;
	(b) $1.9 \times 10^{-23} \text{ J/T}$
36	32.3 mT
37	(b) $+x$;
	(c) clockwise;
	(d) + x
	n e e

38	$e^2r^2B/4m$
39	yes
40	(a) 1.5×10^2 T;
10	(a) 1.3×10^{-1} ; (b) 6.0×10^2 T;
	(c) no
41	20.8 mJ/T
42	0.48 K
43	(b) K _i /B;
	(c) -z;
	(d) 0.31 kA/m
44	0.30
45	
46	$3.19 \times 10^{-9} \mathrm{kg \cdot m^2}$
47	(a) 1.8×10^2 km;
	(b) 2.3×10^{-5}
48	(a) 8.9 A·m ² ;
	(b) 13 N·m
49	(a) 3.0 μT;
'	(a) 5.0 μ T, (b) 5.6 × 10 ⁻¹⁰ eV
50	(a) $1.49 \times 10^{-4} \text{N·m}$;
30	
51	(b) $-72.9 \mu\text{J}$
	$5.15 \times 10^{-24} \mathrm{A \cdot m}^2$
52	25 km
53	(a) 0.14 A;
54	(b) $79 \mu C$
54	(a) 1.66×10^3 km;
	(b) 383 μ T;
	(c) 61.1 μT;
55	(d) 84.2°
33	(a) 6.3×10^8 A;
	(b) yes; (c) no
56	(b) in the direction of the angular momentum vector
57	0.84 kJ/T
58	(a) $222 \mu T$;
	(b) 167 μ T;
	(c) $22.7 \mu T$;
	(d) $1.25 \mu T$;
	(e) $3.75 \mu T$;
	(f) $22.7 \mu T$
59	(a) $(1.2 \times 10^{-13} \text{ T}) \exp[-t/(0.012 \text{ s})];$
	(a) (1.2×10^{-1}) exp[$u(0.012.5)$], (b) 5.9×10^{-15} T
	(0) 0.0 10 1

60	(a) 9.2 mWb;
00	(b) inward
61	(b) iliward
62	(a) 31.0 μT;
02	
	(b) 0°;
	(c) 55.9 μT;
	(d) 73.9°;
	(e) $62.0 \mu\text{T}$;
	(f) 90.0°
63	(a) 27.5 mm;
	(b) 110 mm
64	(a) 4 K;
	(b) 1 K
65	8.0 A
66	$3.5 \times 10^{-5} \mathrm{A}$
67	(a) $-8.8 \times 10^{15} \text{V/m} \cdot \text{s}$;
	(b) $5.9 \times 10^{-7} \mathrm{T \cdot m}$
68	(a) $-2.78 \times 10^{-23} \text{ J/T}$;
	(b) $3.71 \times 10^{-23} \text{ J/T}$
69	(b) sign is minus;
	(c) no, because there is compensating positive flux
	through open end nearer to magnet
70	(a) $5.3 \times 10^{11} \text{ V/m}$;
	(b) 20 mT;
	(c) 6.6×10^2
71	(b) -x;
	(c) counterclockwise;
	(d) -x
72	(a) 16.7 nT;
	(b) 5.00 mA
73	(a) 7;
	(b) 7;
	(c) $3h/2\pi$,
	(d) $3eh/4\pi m$;
	(e) $3.5h/2\pi$,
	(f) 8
74	0.300 A
75	(a) 9;
	(b) $3.71 \times 10^{-23} \text{ J/T}$;
	(c) $+9.27 \times 10^{-24} \text{ J}$;
	(d) $-9.27 \times 10^{-24} \mathrm{J}$
76	(a) $-2.78 \times 10^{-23} \text{ J/T}$; (b) $3.71 \times 10^{-23} \text{ J/T}$

	I = 40 av
1	7.49 GHz
2	(a) 4.7×10^{-3} Hz;
	(b) 3 min 32 s
3	(a) 515 nm;
	(b) 610 nm;
	(c) 555 nm;
	(d) 5.41×10^{14} Hz;
	(e) 1.85×10^{-15} s
4	30 cm
5	$5.0 \times 10^{-21} \mathrm{H}$
6	4.74 m
7	1.2 MW/m^2
8	$4.8 \times 10^{-29} \text{ W/m}^2$
9	0.10 MJ
10	(a) $1.91 \times 10^8 \text{Hz}$;
	(b) 18.2 V/m;
	(c) 0.878 W/m^2
11	(a) 6.7 nT;
	(b) <i>y</i> ;
	(c) negative direction of y
12	(a) 16.7 nT;
	(b) 33.1 mW/m^2
13	(a) 1.03 kV/m;
	(b) 3.43 μT
14	$3.44 \times 10^6 \mathrm{T/s}$
15	(a) 87 mV/m;
	(b) 0.29 nT;
	(c) 6.3 kW
16	(a) 1.4×10^{-22} W;
	(b) $1.1 \times 10^{15} \text{ W}$
17	(a) 6.7 nT;
	(b) 5.3 mW/m^2 ;
	(c) 6.7 W
18	0.25 kW
19	$1.0 \times 10^7 \text{Pa}$
20	(a) $6.0 \times 10^8 \mathrm{N}$;
	(b) $3.6 \times 10^{22} \text{ N}$
21	$5.9 \times 10^{-8} \text{ Pa}$
22	$3.3 \times 10^{-8} \text{ Pa}$

	11
23	(a) $4.68 \times 10^{11} \mathrm{W};$
	(b) any chance disturbance could move sphere from
	directly above sourcethe two force vectors no
	longer along the same axis
24	0.95 km^2
25	
26	491 nm
27	(a) 1.0×10^8 Hz;
	(b) $6.3 \times 10^8 \text{ rad/s}$;
	(c) 2.1 m ⁻¹ ;
	(d) 1.0 μ T;
	(e) z;
	(f) $1.2 \times 10^2 \text{ W/m}^2$;
	(g) 8.0×10^{-7} N;
	(h) 4.0×10^{-7} Pa
28	(a) 4.7×10^{-6} Pa;
20	(b) 4.7×10^{-11}
29	1.9 mm/s
30	(a) 3.97 GW/m ² ;
30	(a) 3.57 GW/m , (b) 13.2 Pa;
	(c) 1.67×10^{-11} N;
	(d) $3.14 \times 10^3 \text{ m/s}^2$
31	(a) $0.17 \mu m$; (b) toward the Sun
32	0.045%
33	3.1%
34	19 W/m^2
35	4.4 W/m^2
36	(a) 0.16;
	(b) 0.84
37	(a) 2 sheets;
	(b) 5 sheets
38	9.4%
39	(a) 1.9 V/m;
	(b) $1.7 \times 10^{-11} \text{ Pa}$
40	7.3%
41	20° or 70°
42	44%
43	0.67
44	(a) 19.6°;
	(b) 70.4°
45	1.26
46	(a) greater;
	(b) greater;
	(c) 1.9;
	(d) 1.4
·	I to the second

47	1.48
48	(a) greater;
	(b) greater;
	(c) 1.4;
	(d) 1.9
49	180°
50	(a) 1.6;
	(b) need more information;
	(c) 39°
51	(a) 56.9°;
	(b) 35.3°
52	(a) 1.7;
	(b) 38°
53	
54	(a) 0.33°;
	(b) 0°
55	1.07 m
56	(a) 3.1°;
	(b) 0° (no rainbow)
57	182 cm
58	34°
59	(a) 48.9°;
	(b) 29.0°
60	(a) 54.3°;
	(b) yes;
	(c) 51.1°;
	(d) no
61	(a) 26.8°;
	(b) yes
62	(a) 4.56 m;
	(b) increase
63	(a) $(1 + \sin^2 \theta)^{0.5}$; (b) $2^{0.5}$;
	(b) 2 ^{0.3} ;
	(c) yes;
C 4	(d) no
64	(a) 35.6°;
	(b) 53.1°
65	23.2°

66	(a) 3;
	(b) 2;
	(c) 40°;
	(d) none;
	(e) 2;
	(f) 3;
	(g) none;
	(h) 70°
67	(a) 1.39;
	(b) 28.1°;
	(c) no
68	(a) 53°;
	(b) yes
69	49.0°
70	1.0
71	(a) 0.50 ms;
	(b) 8.4 min;
	(c) 2.4 h;
	(d) 5446 B.C.
72	(a) 30.1 nm;
	(b) 345 nm
73	(a) $(16.7 \text{ nT}) \sin[(1.00 \times 10^6 \text{ m}^{-1})z + (3.00 \times 10^{14} \text{ s}^{-1})t];$
	(b) 6.28 μm;
	(c) 20.9 fs;
	(d) 33.2 mW/m^2 ;
	(e) <i>x</i> ;
	(f) infrared
74	(b) 5.8×10^{-7} m
75	1.22
76	0.50 W/m^2
77	(c) 137.6°;
	(d) 139.4°;
	(e) 1.7°
78	(b) 230.4°;
	(c) 233.5°;
	(d) 3.1°;
	(e) 317.5°;
	(f) 321.9°;
	(g) 4.4°
79	
80	(a) $0.33 \mu T$;
	(b) -x
81	(a) z axis;
	(b) 7.5×10^{14} Hz:
	(b) 7.5×10^{14} Hz; (c) 1.9 kW/m^2
	[(*/ *** ******************************

0.2	0.021
82	0.031
83	(a) white;
	(b) white dominated by red end;
	(c) no refracted light
84	0.125
85	$1.5 \times 10^{-9} \mathrm{m/s}^2$
86	0.21
87	(a) $3.5 \mu \text{W/m}^2$;
	(b) $0.78 \mu W$;
	(c) $1.5 \times 10^{-17} \mathrm{W/m^2}$;
	(d) $1.1 \times 10^{-7} \text{ V/m}$;
	(e) 0.25 fT
88	1.07 pT
89	(a) 55.8°;
	(b) 55.5°
90	(a) 0;
70	(a) 0, (b) 20°;
	(b) 20 , (c) 0;
	(d) 20°
01	
91	(a) 83 W/m ² ; (b) 1.7 MW
02	
92	1.3
	35°
94	(a) 83.3 mV/m; (b) 4.00 mT; (c) 265 W/m ² ; (d) –y direction
05	direction
95	E ² 4/2 cm 5
96	$E_m^2 A/2\mu_0 cmc_s$
97	$\cos^{-1}(p/50)^{0.5}$
98	$p_{r\perp}\cos^2\theta$
99	8 <i>RI/3c</i>
100	0.024
101	0.034
102	$9.2 \mu N$
103	$9.43 \times 10^{-10} \mathrm{T}$
104	(a) 15 m/s;
	(b) 8.7 m/s;
	(c) higher;
	(d) 72°
105	(a) -y;
	(b) z;
	(c) 1.91 kW/m^2 ;
	(d) $E_z = (1.20 \text{ kV/m}) \sin[(6.67 \times 10^6 \text{ m}^{-1})y + (2.00 \times 10^6 \text{ m}^{-1})]$
	$10^{15} \mathrm{s}^{-1})t];$
	(e) 942 nm;
	(f) infrared

106	(a) 35.1°; (b) 49.9°; (c) 35.1°; (d) 26.1°; (e) 60.7°;
107	(f) 35.3°
107	(a) 1.60; (b) 58.0°
108	
109	
110	$1.7 \times 10^{-13} \mathrm{N}$

	-
1	9.10 m
2	40 cm
3	1.11
4	1.5 m
5	351 cm
6	-2.5
7	10.5 cm
8	+28 cm
9	(a) +24 cm;
	(b) +36 cm;
	(c) -2.0;
	(d) R;
	(e) I;
	(f) same
10	(a) +20 cm;
	(b) +30 cm;
	(c) -2.0;
	(d) R;
	(e) I;
	(f) same
11	(a) -20 cm;
	(b) –4.4 cm;
	(c) +0.56;
	(d) V;
	(e) NI;
	(f) opposite

12	(a) +72 cm;
	(b) -72 cm;
	(c) +3.0;
	(d) V;
	(e) NI;
	(f) opposite
13	(a) +36 cm;
	(b) –36 cm;
	(c) +3.0;
	(d) V;
	(e) NI;
	(f) opposite
14	(a) -70 cm;
	(b) –14 cm;
	(c) +0.61;
	(d) V;
	(e) NI;
	(f) opposite
15	(a) -16 cm;
	(b) –4.4 cm;
	(c) +0.44;
	(d) V;
	(e) NI;
	(f) opposite
16	(a) -28 cm;
	(b) -7.7 cm;
	(c) +0.45;
	(d) V;
	(e) NI;
	(f) opposite
17	(b) plus;
	(c) +40 cm;
	(e) -20 cm;
	(f) +2.0;
	(g) V;
	(h) NI;
	(i) opposite
18	(a) concave;
	(b) +8.0 cm;
	(c) +16 cm;
	(e) +12 cm;
	(f) minus;
	(g) R;
	(i) same

19	(a) convex;
	(b) -20 cm;
	(d) +20 cm;
	(f) +0.50;
	(g) V;
	(h) NI;
	(i) opposite
20	(a) concave;
	(b) +16 cm;
	(c) + 32 cm;
	(e) +28 cm;
	(g) R;
	(h) I;
21	(i) same
Z1	(a) concave;
	(c) +40 cm;
	(e) +60 cm;
	(f) -2.0;
	(g) R;
	(h) I;
	(i) same
22	(a) convex;
	(b) minus;
	(c) -40 cm;
	(d) +1.8 m;
	(e) -18 cm;
	(g) V;
	(h) NI;
	(i) opposite
23	(a) convex;
	(b) minus;
	(c) -60 cm;
	(d) +1.2 m;
	(e) -24 cm;
	(g) V;
	(h) NI;
	(i) opposite
24	(a) concave;
	(b) +20 cm;
	(c) +40 cm;
	(e) +30 cm;
	(g) R;
	(h) I;
	(i) same
L	\-/ ~

25	
25	(a) concave;
	(b) +8.6 cm;
	(c) +17 cm;
	(e) +12 cm;
	(f) minus;
	(g) R;
	(i) same
26	(a) concave;
	(b) plus;
	(c) +40 cm;
	(e) +30 cm;
	(f) -0.50;
	(g) R;
	(h) I
27	(a) convex;
	(c) -60 cm;
	(d) +30 cm;
	(f) +0.50;
	(g) V;
	(h) NI;
	(i) opposite
28	(a) plane;
	(b) ∞;
	(c) ∞;
	(e) -10 cm;
	(g) V;
	(h) NI;
	(i) opposite
29	(b) -20 cm;
	(c) minus;
	(d) +5.0 cm;
	(e) minus;
	(f) +0.80;
	(g) V;
	(h) NI;
	(i) opposite
30	+0.32
31	(b) 0.56 cm/s;
	(c) 11 m/s;
	(d) 6.7 cm/s
32	(d) -18 cm;
	(e) V;
	(f) same

33	(c) -33 cm;
33	(e) V;
	(f) same
34	
34	(a) 1.0;
	(e) R;
35	(f) opposite
33	(d) -26 cm; (e) V;
	(f) same
36	(b) +10 cm;
30	(e) V;
	(f) same
37	(c) +30 cm;
31	(e) V;
	(f) same
38	(b) +71 cm;
30	(e) R;
	(f) opposite
39	(a) 2.00;
	(b) none
40	7.4 cm
41	(a) +40 cm;
	(b) ∞
42	+0.30
43	5.0 mm
44	+43 cm
45	1.86 mm
46	-16 cm
47	(a) 45 mm;
	(b) 90 mm
48	-2.5
49	22 cm
50	(a) +5.3 cm;
	(b) -0.33;
	(c) R;
	(d) I;
	(e) opposite
51	(a) –48 cm;
	(b) +4.0;
	(c) V;
	(d) NI;
	(e) same

	() 00
52	(a) -88 cm;
	(b) +3.5;
	(c) V;
	(d) NI;
	(e) same
53	(a) -4.8 cm;
	(b) +0.60;
	(c) V;
	(d) NI;
	(e) same
54	(a) -3.8 cm;
	(b) +0.38;
	(c) V;
	(d) NI;
	(e) same
55	(a) - 8.6 cm;
	(b) +0.39;
	(c) V;
	(d) NI;
	(e) same
56	(a) -8.7 cm;
30	(a) 6.7 cm, (b) +0.72;
	(c) V;
	(d) NI;
	(e) same
57	(a) +36 cm;
37	(a) +30 cm; (b) -0.80;
	(c) R;
	(c) K, (d) I;
58	(e) opposite (a) -63 cm;
36	
	(b) +2.2;
	(c) V;
	(d) NI;
50	(e) same
59	(a) +55 cm;
	(b) -0.74;
	(c) R;
	(d) I;
	(e) opposite
60	(a) -26 cm;
	(b) +4.3;
	(c) V;
	(d) NI;
	(e) same

61	(a) -18 cm;
	(b) +0.76;
	(c) V;
	(d) NI;
	(e) same
62	(a) -15 cm;
	(b) +1.5;
	(c) V;
	(d) NI;
	(e) same
63	(a) -30 cm;
	(b) +0.86;
	(c) V;
	(d) NI;
	(e) same
64	(a) -9.2 cm;
	(b) +0.92;
	(c) V;
	(d) NI;
	(e) same
65	(a) -7.5 cm;
	(b) +0.75;
	(c) V;
	(d) NI;
	(e) same
66	(a) –9.7 cm;
	(b) +0.54;
	(c) V;
	(d) NI;
	(e) same
67	(a) +84 cm;
	(b) -1.4;
	(c) R;
	(d) I;
	(e) opposite
68	(a) converging;
	(b) 26.7 cm;
	(c) 8.89 cm
69	(a) C;
	(d) -10 cm;
	(e) +2.0;
	(f) V;
	(g) NI;
	(h) same
L	\

70	() D
70	(a) D;
	(b) minus;
	(d) -5.7 cm;
	(e) +0.71;
	(f) V;
	(h) same
71	(a) D;
, -	(b) -5.3 cm;
	(d) -4.0 cm;
	(f) V;
	(g) NI;
70	(h) same
72	(a) C;
	(b) $+3.2$ cm;
	(d) +4.0 cm;
	(f) R;
	(g) I;
	(h) opposite
73	(a) C;
	(b) +3.3 cm;
	(d) +5.0 cm;
	(f) R;
	(g) I;
	(h) opposite
74	(b) plus;
/ -	(d) +20 cm;
	(d) +20 cm, (e) -1.0;
	(f) R;
	(g) I;
	(h) opposite
75	(a) D;
	(b) minus;
	(d) -3.3 cm;
	(e) +0.67;
	(f) V;
	(g) NI
76	(a) C;
	(b) plus;
	(d) -10 cm;
	(e) +2.0;
	(f) V;
	(g) NI;
	(h) same

	T
77	(a) C;
	(b) +80 cm;
	(d) -20 cm;
	(f) V;
	(g) NI;
	(h) same
78	(a) D;
	(b) -10 cm;
	(d) -5.0 cm;
	(e) plus;
	(f) V;
	(h) same
79	(a) C;
	(b) plus;
	(d) -13 cm;
	(e) +1.7;
	(f) V;
	(g) NI;
	(h) same
80	(a) +10 cm;
	(b) -0.75;
	(c) R;
	(d) I;
	(e) opposite
81	(a) +24 cm;
	(b) +6.0;
	(c) R;
	(d) NI;
	(e) opposite
82	(a) +9.8 cm;
	(b) -0.27;
	(c) R;
	(d) I;
	(e) opposite
83	(a) +3.1 cm;
	(b) -0.31;
	(c) R;
	(d) I;
	(e) opposite
84	(a) -23 cm;
	(b) -13;
	(c) V;
	(d) I;
	(e) same

-	
85	(a) -4.6 cm;
	(b) +0.69;
	(c) V;
	(d) NI;
	(e) same
86	(a) -3.4 cm;
	(b) -1.1;
	(c) V;
	(d) I;
	(e) same
87	(a) -5.5 cm;
	(b) +0.12;
	(c) V;
	(d) NI;
	(e) same
88	2.1 mm
89	(a) 13.0 cm;
	(b) 5.23 cm;
	(c) -3.25;
	(d) 3.13;
	(e) -10.2
90	(a) 5.3 cm;
	(b) 3.0 mm
91	(a) 2.35 cm;
	(b) decrease
92	-125
93	(a) 3.5;
	(b) 2.5
94	-21 cm
95	(a) +8.6 cm;
	(b) +2.6;
	(c) R;
	(d) NI;
	(e) opposite
96	(a) -4.0 cm;
	(b) -1.2;
	(c) V;
	(d) I;
	(e) same
97	(a) +7.5 cm;
	(b) -0.75;
	(c) R;
	(d) I;
	(e) opposite

98	(a) +10 cm;
90	
	(b) +0.75;
	(c) R;
	(d) NI;
	(e) opposite
99	(a) $+24$ cm;
	(b) -0.58;
	(c) R;
	(d) I;
	(e) opposite
100	(a) -5.2 cm;
	(b) +0.29;
	(c) V;
	(d) NI;
	(e) same
101	
102	(a) 3;
	(b) 7;
	(c) 5;
	(d) 1;
	(e) 3
103	
104	(a) 20 cm;
	(b) 60 cm;
	(c) 80 cm;
	(d) 1.0 m
105	(a) 3.00 cm;
	(b) 2.33 cm
106	(a) $2f_1$;
	(b) -1.0;
	(c) real;
	(d) left;
	(e) inverted
107	(a) 40 cm;
	(b) 20 cm;
	(c) -40 cm;
	(d) 40 cm

108	(a) 40 cm;
100	(b) real;
	(c) 80 cm;
	(d) real;
	(e) 2.4 m;
	(f) real;
	(g) –40 cm;
	(h) virtual;
	(i) -80 cm;
	(j) virtual;
	(k) -2.4 m;
	(l) virtual
109	(a) 20 cm;
	(b) 15 cm
110	1.14
111	(a) 6.0 mm;
	(b) 1.6 kW/m^2 ;
	(c) 4.0 cm
112	
113	100 cm
114	
115	2.2 mm ²
116	
117	
118	(a) +36 cm;
	(b) 1.2 cm;
	(c) real;
110	(d) inverted
119	(a) -30 cm;
	(b) not inverted;
	(c) virtual;
120	(d) 1.0
120	(a) -50 cm;
	(b) 5.0; (c) virtual;
	(d) inverted
121	(a) -12 cm
121	(a) -12 cm
122	(a) 0.00 iii, (b) +0.20;
	(c) real;
	(d) left;
	(e) not inverted
123	(a) 80 cm;
123	(a) 60 cm, (b) 0 to 12 cm
124	
125	
149	

	T
126	+10.0 cm
127	(a) 8.0 cm;
	(b) 16 cm;
	(c) 48 cm
128	28.0 cm
129	(a) $\alpha = 0.500$ rad: 7.799 cm; $\alpha = 0.100$ rad: 8.544 cm;
	$\alpha = 0.0100 \text{ rad}$: 8.571 cm; mirror equation: 8.571 cm;
	(b) $\alpha = 0.500 \text{ rad}$: -13.56 cm; $\alpha = 0.100 \text{ rad}$: -12.05
	cm; $\alpha = 0.0100$ rad: -12.00 cm; mirror equation: -
	12.00 cm
130	(a) 1.50 cm;
	(b) negative;
	(c) virtual
131	42 mm
132	(a) 0.15 m;
	(b) 0.30 mm;
	(c) no
133	(b) P_n
134	(b) 8.4 mm;
	(c) 2.5 cm
135	(a) $(0.5)(2-n)r/(n-1)$;
	(b) right
136	
137	2.67 cm
138	(a) convex;
	(b) 1.60 m
139	(a) 3.33 cm;
	(b) left;
	(c) virtual;
	(d) not inverted
140	(a) -0.50 m; (b) diverging; (c) -2.0 diopters
141	(a) $1 + (25 \text{ cm})/f$; (b) $(25 \text{ cm})/f$; (c) 3.5 ; (d) 2.5

1	(a) 155 nm;
	(b) 310 nm
2	(a) 0.25;
	(b) 0.75;
	(c) 1.25
3	(a) $3.60 \mu \text{m}$;
	(b) intermediate closer to fully constructive
4	$2.0 \times 10^8 \text{m/s}$
5	$4.55 \times 10^7 \text{ m/s}$

	() 7.00 1014 11
6	(a) $5.09 \times 10^{14} \text{ Hz}$;
	(b) 388 nm;
	(c) $1.97 \times 10^8 \text{m/s}$
7	1.56
8	(a) 2;
	(b) 0.03
9	(a) 1.55 μ m;
	(b) 4.65 μm
10	(a) 50°;
	(b) 0.14 ps
11	(a) 1.70;
	(b) 1.70;
	(c) 1.30;
	(d) all tie
12	(a) 52.50 nm;
	(b) 157.5 nm
13	(a) 0.833;
	(b) intermediate closer to fully constructive
14	(a) 0.010 rad;
	(b) 5.0 mm
15	648 nm
16	0.15°
17	16
18	(a) 2.90;
	(b) 18.2 rad;
	(c) between $m = 2$ minimum (third minimum from the
	center) and $m = 3$ maximum (third maximum to one
	side of center maximum)
19	2.25 mm
20	(a) 0.216 rad;
	(b) 12.4°
21	72 μm
22	7.5
23	0
24	(a) 0;
	(b) 0;
	(c) ∞;
	(d) 6.00;
	(e) 1.71;
	(f) intermediate closer to minimum
25	7.88 µm
26	(a) 600 nm to 700 nm;
	(b) decreased;
	(c) $0.20 \mu \text{m}$
27	6.64 µm

28	25
	3.5 µm
29	2.65
30	$17 \sin(\omega t + 13^\circ)$
31	$27\sin(\omega t + 8.5^{\circ})$
32	(a) 2.33 μ V/m;
	(b) 0.338;
	(c) between $m = 6$ maximum (sixth side maximum)
	and $m = 6$ minimum (seventh minimum);
	(d) $1.26 \times 10^{15} \text{rad/s}$;
	(e) 39.6 rad
33	$(17.1 \ \mu\text{V/m}) \sin[(2.0 \times 10^{14} \text{rad/s})t]$
34	(a) between central maximum and first minimum ($m =$
	0);
	(b) 0.101
35	120 nm
36	(a) 4;
27	(b) 3
37	70.0 nm
38	(a) 567 nm;
	(b) 425 nm;
20	(c) longer
39	(a) $0.117 \mu m$;
40	(b) 0.352 μm
40	840 nm
41	161 nm
42	608 nm
43	560 nm
44	329 nm
45	478 nm
46	528 nm
47	509 nm
48	339 nm
49	273 nm
50	248 nm
51	409 nm
52	455 nm
53	338 nm
54	673 nm
55	(a) 552 nm; (b) 442 nm
56	(b) 442 nm
56	450 nm
57	608 nm
58	273 nm
59	528 nm
60	509 nm

61	455 nm
62	161 nm
63	248 nm
64	409 nm
65	339 nm
66	560 nm
67	329 nm
68	478 nm
69	1.89 μm
70	(a) 10.3 nm/s;
	(b) 1.09 μm
71	0.012°
72	1.00025
73	140
74	11
75	$[(m + \frac{1}{2})\lambda R]^{0.5}$, for $m = 0, 1, 2,$
76	(a) 34;
, 0	(b) 46
77	1.00 m
78	$1.67 \times 10^{-11} \mathrm{m}^3/\mathrm{s}$
79	588 nm
80	5.2 μm
81	1.00030
82	0.291 mm
83	(a) 50.0 nm;
	(b) 36.2 nm
84	(a) ∞;
	(b) 0;
	(c) 0;
	(d) 6.00;
	(e) 5.80;
	(f) intermediate closer to maximum
85	0.23°
86	(a) 1.8;
	(b) 2.2;
	(c) 1.25
87	(a) 1500 nm;
0,	(b) 2250 nm;
	(c) 0.80
88	(a) 411.4°;
	(b) 51.4°
89	$x = (D/2a)(m + 0.5)\lambda$, for $m = 0, 1, 2,$
90	(a) 2.90
	(b) intermediate closer to fully constructive
	1 7 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

91	(a) 22°;
	(b) refraction reduces θ
92	(a) 1.6;
	(b) 1.4
93	600 nm
94	51.6 ns
95	(a) 1.75 μ m;
	(b) 4.8 mm
96	0.20
97	$I_m \cos^2(2\pi x/\lambda)$
98	310.0 nm
99	(a) 42.0 ps;
	(b) 42.3 ps;
	(c) 43.2 ps;
	(d) 41.8 ps;
	(e) 4
100	492 nm
101	33 μm
102	450 nm
103	(a) bright; (b) 594 nm; (c) Primary reason: the colored
	bands begin to overlap too much to be distinguished.
	Secondary reason: the two reflecting surfaces are too
	separated for the light reflecting from them to be
	coherent.
104	(a) dark; (b) $2h \sin \theta = (m + 0.5)\lambda$; (c) $2h \cos \theta = m\lambda$
105	

1	(a) 2.5 mm;
	(a) 2.5 mm ; (b) $2.2 \times 10^{-4} \text{ rad}$
2	1.41
3	(a) 70 cm;
	(b) 1.0 mm
4	(a) decrease;
	(b) 11°;
	(c) 0.23°
5	(a) 700 nm;
	(b) 4;
	(c) 6

6	(a) 0.430°;
	(a) 0.430 ; (b) 0.118 mm
7	60.4 μm
8	41.2 m
9	1.77 mm
10	24.0 mm
11	160°
12	(a) 2.33 μm;
12	(a) 2.55 µm, (b) 6;
	(c) 15.2°;
	(d) 51.8°
13	(a) 0.18°;
13	(a) 0.16; (b) 0.46 rad;
	(c) 0.93
14	(a) 0.256;
14	(b) between center and first minima
15	(d) 52.5°;
13	(e) 10.1°;
	(f) 5.06°
16	
17	(b) 0;
17	(c) -0.500;
	(d) 4.493 rad;
	(e) 0.930;
	(f) 7.725 rad;
	(g) 1.96
18	30 m
19	(a) 19 cm;
	(b) larger
20	53 m
21	(a) 1.1×10^4 km;
	(b) 11 km
22	(a) 50 m;
	(b) no;
	(c) light pollution on the night side of Earth would be
	a sure sign
23	(a) 1.3×10^{-4} rad;
	(b) 10 km
24	31 μm
25	50 m
26	(a) 32 cm;
	(b) 2.7 m;
	(c) 2.7 m aperture is too large; fine-scale resolution is
	due to computer enhancement, in which a computer
	removes much of the blurring due to turbulence.

27	
29 (a) 8.8×10^{-7} rad; (b) 8.4×10^{7} km; (c) 0.025 mm 30 91 μ m	
(b) 8.4×10^7 km; (c) 0.025 mm 30 91 μ m	
(c) 0.025 mm 30 91 μ m	
30 91 μm	
'	
$\begin{bmatrix} 31 & (a) & 0.340^{\circ}; \end{bmatrix}$	
(b) 0.97°	
32 (a) 6.8°;	
(b) no	
33 (a) 17.1 m;	
(b) 1.37×10^{-10}	
34 (a) red;	
(b) 0.13 mm	
35 5	
36 13	
37 3	
38 11	
20 () 70	
39 (a) 5.0 μ m;	
(b) 20 μm	
40 (a) 11.1 μm;	
(b) 51;	
(c) 0°;	
(d) 79.0°	
41 (a) 7.43×10^{-3} ;	
(b) between the $m = 6$ minimum (the seventh one) a	and
the $m = 7$ maximum (the seventh side maximum);	
(c) between the $m = 3$ minimum (the third one) and	the
m = 4 minimum (the fourth one)	
42 (a) 4;	
(b) every fourth bright fringe missing; (c) two	
43 (a) 9;	
(b) 0.255	
44 2 μm	
45 (a) 62.1°;	
(b) 45.0°;	
(c) 32.0°	
46 635 nm	
47 3	
48 (a) 3;	
(b) 0.051°	

49	(a) 6 0
49	(a) $6.0 \ \mu \text{m}$;
	(b) 1.5 μ m;
	(c) 9;
	(d) 7;
	(e) 6
50	523 nm
51	(a) 2.1°;
	(b) 21°;
	(c) 11
52	(a) third (overlaps with fourth);
	(b) ninth;
	(c) 41.5°;
	(d) 67.2°;
	(e) 73.1°
53	(a) 470 nm;
	(b) 560 nm
54	
55	3.65×10^3
56	(a) 23 100;
	(b) 28.7°
57	(a) 0.032°/nm;
	(b) 4.0×10^4 ;
	(c) 0.076°/nm;
	(d) 8.0×10^4 ;
	(e) 0.24°/nm;
	$(f) 1.2 \times 10^5$
58	(a) 56 pm;
	(b) none
59	0.15 nm
60	491
61	(a) 10 μm;
	(b) 3.3 mm
62	(a) $\tan \theta$,
	(b) 0.89
63	1.09×10^3 rulings/mm
64	2.9°
65	(a) 0.17 nm;
	(b) 0.13 nm
66	39.8 pm
67	(a) 25 pm;
	(b) 38 pm
68	6.8°
69	0.26 nm
70	0.570 nm
, 0	0.070 11111

-	
71	(a) 15.3°;
	(b) 30.6°;
	(c) 3.1°;
	(d) 37.8°
72	(a) 130 pm;
	(b) 3;
	(c) 97.2 pm;
	(d) 4
73	(a) $0.7071a_0$;
	(b) $0.4472a_0$;
	(c) $0.3162a_0$;
	(d) 0.2774 <i>a</i> ₀ ;
	(e) 0.2425 <i>a</i> ₀
74	(a) 1.3×10^{-4} rad;
	(b) 21 m
75	(a) 625 nm;
	(b) 500 nm;
	(c) 416 nm
7.0	4.04 4.03
76	4.84×10^3
77	3.0 mm
78	11
79	
80	30.5 μm
81	
82	
83	(a) 13;
0.4	(b) 6
84	9.0
85	59.5 pm
86	6.1 mm
87 88	4.9 km 3.3
89	1.36×10^4
90	53.4 cm
91	4×10^{-13}
92	
93	4.7 cm
94	500 nm
95	 601 nm
96	691 nm
97	36 cm
98	164 m
99	(a) fourth;
	(b) seventh

100	(a) 625 nm, 500 nm, 416 nm; (b) orange, blue-green,
	violet
101	
102	(a) 80 cm;
	(b) 1.8 mm
103	(a) 2.4 μm;
	(b) 0.80 μm;
	(c) 2
104	106°
105	
106	2.27 m
107	9
108	
109	
110	
111	
112	2
113	
114	

1	0.990 50
2	(a) 0.140 370 76;
	(b) 0.994 987 44;
	(c) 0.999 950 00;
	(d) 0.999 999 50
3	(a) 0.999 999 50
4	0.9959
5	0.446 ps
6	40 s
7	$2.68 \times 10^3 \text{ y}$
8	1.53 cm
9	(a) 87.4 m;
	(b) 394 ns
10	0.63 m
11	1.32 m
12	(a) 0.866;
	(b) 2.00
13	(a) 26.26 y;
	(b) 52.26 y;
	(c) 3.705 y
14	0.25 m

15	(a) 0.999 999 15;
15	(b) 30 ly
16	(a) 0;
10	(b) 2.29 s;
	(c) 6.54×10^8 m;
	(d) 3.16 s
17	(a) 138 km;
	(b) -374 μs
18	(a) 0;
	(b) $-2.5 \mu s$;
	(c) reverse
19	(a) 25.8 μs;
	(b) small flash
20	0.63 µs
21	(a) $\chi [1.00 \ \mu s - \beta (400 \ m)/(2.998 \times 10^8 \ m/s)];$
	(d) 0.750;
	(e) $0 < \beta < 0.750$;
	(f) $0.750 < \beta < 1$;
	(g) no
22	(a) χ [400 m – βc (1.00 μ s)];
	(d) 0.750;
	(e) 265 m
23	(a) 1.25;
2.1	(b) 0.800 μs
24	(a) 0.500 m;
	(b) 1.00 m;
	(c) 1.00 m;
	(d) 19.2 m; (e) 35.5 ns;
	(f) event 2
25	(a) 0.480;
23	(b) negative;
	(c) big flash;
	(d) $4.39 \mu s$
26	2.40 μs
27	0.81 <i>c</i>
28	(a) $0.84c\hat{i}$;
	(b) 1.1 <i>c</i> î;
	(c) $0.21c\hat{i}$;
	(d) $0.15c\hat{i}$
29	(a) 0.35;
	(b) 0.62
30	0.588
31	$1.2 \mu s$

	Tura a a a
32	(a) $-0.36c$;
	(b) - <i>c</i>
33	(a) 1.25 y;
	(b) 1.60 y;
	(c) 4.00 y
34	2.97 nm
35	22.9 MHz
36	(a) $1 \times 10^6 \text{m/s}$;
	(b) receding
37	0.13c
38	(a) 7000 km/s;
	(b) away
39	(a) 550 nm;
	(b) yellow
40	(a) 79.1 keV;
	(b) 3.11 MeV;
	(c) 10.9 MeV
41	(a) 196.695;
	(b) 0.999 987
42	7.28 MeV
43	(a) 1.0 keV;
	(b) 1.1 MeV
44	8.12 MeV
45	110 km
46	(c) 207
47	$1.01 \times 10^7 \text{ km}$
48	(a) 0.948;
	(b) 226 MeV;
	(c) 314 MeV/ c
49	(a) 0.222 cm;
	(b) 701 ps;
	(c) 7.40 ps
50	(a) 20.57;
	(b) 0.9988;
	(c) 1.011;
	(d) 0.1448;
	(e) 1.003;
	(f) 7.310×10^{-2}
51	2.83mc
52	(a) $mv^2/2 + 3mv^4/8c^2$;
	(b) $1.0 \times 10^{-16} \text{ J}$;
	(c) $1.9 \times 10^{-19} \mathrm{J};$
	(d) $2.6 \times 10^{-14} \mathrm{J}$;
	(e) $1.3 \times 10^{-14} \text{ J}$;
	(f) 0.37
	•

<i>5</i> 2	() (2 // ID)
53	(a) $\chi(2\pi m/ q B)$;
	(b) no;
	(c) 4.85 mm;
	(d) 15.9 mm;
	(e) 16.3 ps;
	(f) 0.334 ns
54	(a) 0.943;
	(b) 0.866
55	(a) 0.707;
	(b) 1.41;
	(c) 0.414
56	(a) $1.2 \times 10^8 \mathrm{N}$;
	(b) truck or train;
	(c) 25 N;
	(d) backpack
57	18 smu/y
58	(a) 1.001 957 0;
	(b) 6.2469542×10^{-2} ;
	(c) 2.956 951 4;
	(d) 0.941 079 24;
	(e) 1.9579514×10^3 ;
	(f) 0.999 999 87
59	(a) 2.08 MeV;
	(b) -1.21 MeV
60	(a) $\chi [1.00 \ \mu s - \beta (240 \ m)/(2.998 \times 10^8 \ m/s)];$
	(d) 0.801;
	(e) $0.599 \mu s$;
	(f) yes
61	(d) 0.801
62	(a) -0.86 <i>c</i> ;
	(b) - <i>c</i>
63	(a) $vt \sin \theta$,
	(b) $t[1 - (v/c) \cos \theta]$;
	(c) $3.24c$
64	0.79 m
65	
66	(a) 1/9;
	(b) +0.80;
	(c) +0.80c
67	(b) +0.44 <i>c</i>
68	(a) $2.59 \mu s$;
	(b) $0.572 \ \mu s$;
	(c) $2.59 \mu s$;
	(d) 16.0 µs

69	(a) 1.93 m;
	(b) 6.00 m;
	(c) 13.6 ns;
	(d) 13.6 ns;
	(e) 0.379 m;
	(f) 30.5 m;
	(g) -101 ns;
	(h) no;
	(i) 2;
	(k) no;
	(l) both
70	(a) 2.21×10^{-12} ;
	(b) 5.25 d
71	(a) 5.4×10^4 km/h;
	(b) 6.3×10^{-10}
72	0.75
73	189 MeV
74	55 m
75	8.7×10^{-3} ly
76	0.999 90
77	7
78	(a) 1.87×10^4 km/s;
	(b) receding
79	$2.46 \mathrm{MeV}/c$
80	6.4 cm
81	0.27c
82	(a) 2.24×10^{-13} s;
	(b) 64.4 μm
83	(a) 5.71 GeV;
	(b) 6.65 GeV;
	(c) 6.58 GeV/c;
	(d) 3.11 MeV;
	(e) 3.62 MeV;
	(f) $3.59 \text{ MeV}/c$
84	(a) $\tau_0 (1 - v^2/c^2)^{-0.5}$
85	0.95c
86	(a) $2.7 \times 10^{14} \text{ J}$;
	(b) $1.8 \times 10^7 \mathrm{kg}$;
	(c) 6.0×10^6
87	(a) 256 kV;
07	(b) $0.745c$
88	0.678c
89	(a) 0.858c; (b) 0.185c
90	1.38 µs
91	0.500 <i>c</i>
	0.3000

92	(a) 87.2 m; (b) FF; (c) 0.418 μ s; (d) yes; (e) 87.2 m;
	(f) RN; (g) $0.418 \mu s$; (h) yes
93	(a) 119 MeV; (b) 64.0 MeV/c; (c) 81.3 MeV; (d) 64.0
	MeV/c
94	(a) $2D/c$; (b) $4D/c$; (b) $6D/c$; (d) $D/5c$; (e) $D/6c$; (f)
	D/5c
95	4.00 u, probably a helium nucleus
96	330 mT
97	(a) 534; (b) 0.999 998 25; (c) 2.23 T
98	(a) 65.4 per minute; (b) 1570 m
99	(a) 415 nm; (b) blue
100	(b) 0.80 <i>c</i>
101	(a) 88 kg; (b) no
102	(a) 6.7×10^{-10} s; (b) 2.2×10^{-18} m; (c) acceptable
103	(a) 3×10^{-18} ; (b) 2×10^{-12} ; (c) 8.2×10^{-8} ; (d)
	6.4×10^{-6} ; (e) 1.1×10^{-6} ; (f) 3.7×10^{-5} ; (g)
	9.9×10^{-5} ; (h) 0.10

1	(a) 2.1 μm;
	(b) infrared
2	$8.6 \times 10^5 \text{ m/s}$
3	1.0×10^{45} photons/s
4	$1.7 \times 10^{21} \text{ photons/m}^2 \cdot \text{s}$
5	2.047 eV
6	2.11 eV
7	$1.1 \times 10^{-10} \mathrm{W}$
8	3.3×10^{18} photons/s
9	(a) 2.96×10^{20} photons/s;
	(b) 4.86×10^7 m;
	(c) 5.89×10^{18} photons/m ² ·s
10	(a) 3.61 kW;
	(b) 1.00×10^{22} photons/s;
	(c) 60.2 s
11	(a) infrared;
	(b) 1.4×10^{21} photons/s
12	$3.6 \times 10^{-17} \mathrm{W}$
13	4.7×10^{26} photons
14	6 s ⁻¹
15	170 nm
16	10 eV
17	676 km/s

18	barium and lithium
19	(a) 1.3 V;
19	(a) 1.3 \vee , (b) 6.8×10^2 km/s
20	$9.68 \times 10^{-20} \text{ A}$
21	(a) 3.1 keV;
21	(a) 5.1 keV, (b) 14 keV
22	1.07 eV
23	(a) 2.00 eV;
23	(a) 2.00 c V, (b) 0;
	(c) 2.00 V;
	(d) 295 nm
24	(a) 4.12×10^{-15} eV·s;
	(a) 4.12 × 10 ° CV 3, (b) 2.27 eV;
	(c) 545 nm
25	(a) 382 nm;
	(b) 1.82 eV
26	233 nm
27	(a) 2.73 pm;
	(b) 6.05 pm
28	(a) 0.511 MeV/c;
	(b) 2.43 pm;
	(c) $1.24 \times 10^{20} \text{ Hz}$
29	(a) 8.57×10^{18} Hz;
	(b) $3.55 \times 10^4 \text{ eV}$;
	(c) $35.4 \text{ keV}/c$
30	2.64 fm
31	300%
32	(a) +4.86 pm;
	(b) -40.6 keV;
	(c) 40.6 keV;
	(d) 0°
33	(a) $-8.1 \times 10^{-9}\%$;
	(b) $-4.9 \times 10^{-4}\%$;
	(c) -8.9%;
	(d) -66%
34	$3.0 \times 10^{-14} \mathrm{J}$
35	(a) 2.43 pm;
	(a) 2.43 pm, (b) 1.32 fm;
	(c) 0.511 MeV;
	(d) 939 MeV
36	(a) 2.43 pm;
	(b) 4.86 pm;
	(c) 0.255 MeV
	I

37	(a) 41.8 keV;
31	(b) 8.2 keV
38	
39	44°
40	1.1 keV
41	(a) 2.43 pm;
1.1	(b) 4.11×10^{-6} ;
	(c) -8.67×10^{-6} eV;
	(d) 2.43 pm;
	(e) 9.78×10^{-2} ;
	(f) -4.45 keV
42	(a) 500 nm; (b) visible; (c) 2.73 K
43	(a) 2.9×10^{-10} m; (b) x ray; (c) 2.9×10^{-8} m; (d)
	ultraviolet
44	(a) 3.60×10^6 ; (b) 1.02 ; (c) longer
45	(a) $9.35 \mu \text{m}$; (b) $1.47 \times 10^{-5} \text{ W}$; (c) 6.93×10^{14}
	photons/s; (d) 2.33×10^{-37} W; (e) 5.87×10^{-19}
	photons/s
46	(a) 38.8 pm;
	(b) 1.24 nm;
	(c) 906 fm
47	7.75 pm
48	9.76 kV
49	(a) $1.9 \times 10^{-21} \text{ kg·m/s}$;
	(b) 346 fm
50	(a) 0.025 fm;
	(b) 2.0×10^2
51	4.3 μeV
52	$(4.0 \times 10^{-6})^{\circ}$
53	(a) 1.24 μ m;
	(b) 1.22 nm;
	(c) 1.24 fm;
	(d) 1.24 fm
54	(a) $3.3 \times 10^{-24} \text{ kg·m/s}$;
	(b) $3.3 \times 10^{-24} \text{ kg·m/s}$;
	(c) 38 eV;
	(d) $6.2 \times 10^3 \text{eV}$
55	(a) 15 keV;
	(b) 120 keV
56	(a) 5.2 fm;
	(b) no, the de Broglie wavelength is much less than the
	distance of closest approach
57	neutron

58	(a) 1.24 keV;
36	(a) 1.24 ke v, (b) 1.50 eV;
	(c) 1.24 GeV;
	(d) 1.24 GeV,
59	(a) 3.96×10^6 m/s;
39	(a) 5.90 × 10 m/s, (b) 81.7 kV
60	(U) 61.7 KV
61	
62	
63	
64	
65	
66	(d) $x = n(\lambda/2)$, with $n = 0, 1, 2, 3,$
67	
	$2.1 \times 10^{-24} \text{ kg·m/s}$
68	(a) 124 keV;
(0)	(b) 40.5 keV
69	() 200 Y (1) 0.26 V 10 ⁻²⁴ l /- () 1.02 V 10 ⁷
70	(a) 300 eV ; (b) $9.36 \times 10^{-24} \text{ kg} \cdot \text{m/s}$; (c) 1.03×10^{7}
71	m/s; (d) 7.08×10^{-11} m; (e) 8.87×10^{10} m ⁻¹
71	(a) $1.45 \times 10^{11} \text{ m}^{-1}$; (b) $7.25 \times 10^{10} \text{ m}^{-1}$; (c) 0.111 ;
70	$\begin{array}{c} \text{(d) } 5.56 \times 10^4 \\ \text{(d) } 1.00 \times 10^{11} & -1.00 \times 10^{10} & -1.00 \end{array}$
72	(a) $1.38 \times 10^{11} \text{ m}^{-1}$; (b) $7.73 \times 10^{10} \text{ m}^{-1}$; (c)
7.0	0.0798 ; (d) 2.39×10^8
73	4.81 mA
74	5.1 eV
75	(a) 9.02×10^{-6} ;
	(b) 3.0 MeV;
	(c) 3.0 MeV;
	(d) 7.33×10^{-8} ;
	(e) 3.0 MeV;
	(f) 3.0 MeV
76	(a) 10^{104} y;
	(b) 2×10^{-19} s
77	(a) -20%;
	(b) -10%;
	(c) +15%
78	1.78 mA
79	(a) no;
	(b) plane wavefronts of infinite extent, perpendicular
	to x axis
80	5.9 μeV
81	
82	
83	(a) 38.8 meV;
	(b) 146 pm

84	(a) 73 pm;
	(b) 3.4 nm;
	(c) yes, their average de Broglie wavelength is smaller
	than their average separation
85	(a) $4.14 \times 10^{-15} \text{ eV} \cdot \text{s}$;
	(b) 2.31 eV
86	
87	
88	$1.7 \times 10^{-35} \mathrm{m}$
89	(a) no;
	(b) 544 nm;
	(c) green
90	0.19 m
-	
-	
_	$T = 10^{-x}$, where $x = 7.2 \times 10^{39}$ (<i>T</i> is very small)
_	0.80 nm

1	1.41
2	(a) 9.42 eV;
	(b) $5.13 \times 10^{-3} \text{eV}$
3	0.65 eV
4	90.3 eV
5	0.85 nm
6	0.020 eV
7	1.9 GeV
8	350 pm
9	(a) 72.2 eV;
	(b) 13.7 nm;
	(c) 17.2 nm;
	(d) 68.7 nm;
	(e) 41.2 nm;
	(g) 68.7 nm;
	(h) 25.8 nm
10	(a) 11;
	(b) 10
11	(a) 13;
	(b) 12
12	(a) 68.7 nm;
	(b) 25.8 nm;
	(c) 13.7 nm
13	(a) 0.020; (b) 20

14	$2.86 \times 10^{-17} \mathrm{J}$
15	(a) 0.050;
13	(a) 0.030, (b) 0.10;
	(c) 0.0095
16	
10	(a) 0.091;
	(b) 0.091;
17	(c) 0.82
17	56 eV
18	233 eV
19	109 eV
20	7.0 eV
21	0.724 - V
22	0.734 eV
23	3.21 eV
24	$2.2 \times 10^{-20} \text{ J}$
25	1.4×10^{-3}
26	(a) 1.25;
	(b) 2.00;
	(c) 5.00;
	(d) 1.00
27	(a) 8;
	(b) 0.75;
	(c) 1.00;
	(d) 1.25;
	(e) 3.75;
	(f) 3.00;
	(g) 2.25
28	(a) 3.00;
	(b) 9.00;
	(c) 2.00;
	(d) 3;
	(e) 6
29	(a) 7;
	(b) 1.00;
	(c) 2.00;
	(d) 3.00;
	(e) 9.00;
	(f) 8.00;
	(g) 6.00
30	27.6 nm
31	4.0
32	1.17 eV
33	(a) 12.1 eV;
	(b) $6.45 \times 10^{-27} \text{ kg} \cdot \text{m/s}$;
	(c) 102 nm

34	(a) 0;
34	(a) 0, (b) 10.2 nm ⁻¹ ;
	(c) 5.54 nm ⁻¹
35	(a) 291 nm ⁻³ ;
33	(a) 291 mm, (b) 10.2 nm ⁻¹
36	(a) -3.4 eV;
30	(a) -3.4 eV, (b) 3.4 eV
37	(0) 3.4 6 V
38	2.6 eV
39	2.0 e v
40	(a) 31 nm;
40	(a) 51 hin, (b) 8.2×10^{14} Hz;
	(c) $0.29 \mu\text{m}$;
4.1	(d) $3.7 \times 10^{14} \text{ Hz}$
41	(a) 0.0037;
40	(b) 0.0054
42	4.1 m/s
43	(a) 13.6 eV;
4.4	(b) -27.2 eV
44	(a) 2.6 eV;
	(b) 4;
4.5	(c) 2
45	(a) $(r^4/8a^5)[\exp(-r/a)]\cos^2\theta$,
4.5	(b) $(r^4/16a^5)[\exp(-r/a)] \sin^2 \theta$
46	0.439
47	4.3×10^3
48	(a) 2;
	(b) 1;
	(c) Lyman
49	(a) 13.6 eV;
	(b) 3.40 eV
50	(a) 3;
	(b) 1;
	(c) Lyman
51	0.68
52	(a) 12.8 eV;
	(b) 6;
	(c) 12.8 eV;
	(d) 12.1 eV;
	(e) 10.2 eV;
	(f) 0.661 eV;
	(g) 1.89 eV;
	(h) 2.55 eV
52	
53	

	1 () () (0 3) (0 1) 2
54	(c) $(r^2/8a^3)(2-r/a)^2 \exp(-r/a)$
55	
56	(b) no;
	(c) no;
	(d) yes
57	
58	(b) $\pm (2\pi/h)(2mE)^{0.5}$
59	(b) $(2\pi/h)[2m(U_0 - E)]^{0.5}$
60	(a) $1.3 \times 10^{-19} \text{eV}$;
	(b) 1.2×10^{19} ;
	(c) 1.2×10^{13} ;
	(d) yes
61	(b) meter ^{-2.5}
62	(a) 658 nm;
	(b) 366 nm
63	(a) n ;
	(b) $2\ell + 1$;
	$(c) n^2$
64	
65	(a) $nh/\pi md^2$; (b) $n^2h^2/4\pi^2md^2$
66	1.2× 10 ⁻¹⁴
67	(a) $3.9 \times 10^{-22} \text{ eV}$; (b) 10^{20} ; (c) $3.0 \times 10^{-18} \text{ K}$
68	-
69	-
70	(a) $-e/\pi a_0^3$; (b) $5e \exp(-2)/4\pi \epsilon_0 a_0^2$; (c) radially
	outward
71	(a) $e^2 r / 4\pi \varepsilon_0 a^3$; (b) $e / (4\pi \varepsilon_0 m a_0^3)^{0.5}$
72	(a) 27.2 eV; (b) -27.2 eV (c) 13.6 eV; (d) 13.6 eV
73	18.1, 36.2, 54.3, 66.3, 72.4 µeV

1	24.1°
2	50
3	(a) $3.65 \times 10^{-34} \text{ J} \cdot \text{s};$ (b) $3.16 \times 10^{-34} \text{ J} \cdot \text{s}$
	(b) $3.16 \times 10^{-34} \text{J} \cdot \text{s}$
4	(a) 32;
	(b) 2;
	(c) 18;
	(d) 8
5	(a) 3;
	(b) 3

	(-) 14.
6	(a) 14;
	(b) 6;
	(c) 6;
7	(d) 2
7	(a) 4;
	(b) 5;
8	(c) 2
0	(a) 3; (b) 2:
	(b) 2; (c) 14
9	· · · · · · · · · · · · · · · · · · ·
9	(a) 3.46; (b) 3.46;
	(b) 3.46;
	(c) 3; (d) 3;
	(d) 5, (e) -3;
	(f) 30.0°;
	(g) 54.7°;
10	(h) 150°
10	(a) 3; (b) 5:
	(b) 5; (c) 2;
	(c) 2, (d) 18;
	(d) 18, (e) 3
11	
12	$4.3 \times 10^{-5} \text{rad/s}$
13	72 km/s^2
14	(a) 1.5×10^{-21} N;
	(b) 20 µm
15	(a) 54.7°;
	(b) 125°
16	(a) 58 μeV;
	(b) 14 GHz;
	(c) 2.1 cm;
	(d) short radio wave region
17	19 mT
18	51 mT
19	5.35 cm
20	17.25
21	44
22	66
23	42
24	(a) 18.00;
	(b) 18.25;
	(c) 19.00

25	(a) 51;
	(b) 53;
	(c) 56
26	(a) 45;
	(b) 47;
	(c) 48
27	(a) $(2, 0, 0, +\frac{1}{2}), (2, 0, 0, -\frac{1}{2});$
	(b) $(2, 1, 1, +\frac{1}{2}), (2, 1, 1, -\frac{1}{2}), (2, 1, 0, +\frac{1}{2}), (2, 1, 0, -\frac{1}{2})$
	$\frac{1}{2}$, $(2, 1, -1, +\frac{1}{2})$, $(2, 1, -1, -\frac{1}{2})$
28	
29	g
30	(a) $(1, 0, 0, +\frac{1}{2});$
	(b) $(1, 0, 0, -\frac{1}{2})$
31	(a) $4p$;
	(b) 4;
	(c) 4 <i>p</i> ;
	(d) 5;
	(e) 4 <i>p</i> ;
	(f) 6
32	(a) 15;
	(b) 21
22	12.4137
33	12.4 kV 6.44 keV
34	
35	(a) 35.4 pm;
	(b) 56.5 pm;
36	(c) 49.6 pm
30	(a) 24.8 pm; (b) same
37	(b) same
38	
39	0.563
40	(a) $(Z-1)^2/(Z'-1)^2$;
70	(a) (2-1) /(2-1) ; (b) 57.5;
	(c) 2.07×10^3
41	80.3 pm
42	2.2 keV
43	(a) 69.5 kV;
15	(a) 05.5 kV, (b) 17.8 pm;
	(c) 21.3 pm;
	(d) 18.5 pm
L	(u) 10.5 pm

r	
44	(a) 5.7 keV;
	(b) 87 pm;
	(c) 14 keV;
	(d) 2.2×10^2 pm;
	(e) 5.7 keV
45	(a) 49.6 pm;
	(b) 99.2 pm
46	(a) -25%;
	(b) -15%;
	(c) -11%;
	(d) -7.9%;
	(e) -6.4%;
	(f) -4.7%;
	(g) -3.5%;
	(h) -2.6%;
	(i) -2.0%;
	$\begin{array}{c} \text{(j) -1.5\%} \\ 2.0 \times 10^{16} \text{s}^{-1} \end{array}$
47	$2.0 \times 10^{16} \mathrm{s}^{-1}$
48	4.7 km
49	2×10^7
50	$1.0 \times 10^4 \mathrm{K}$
51	9.0×10^{-7}
52	3.0×10^{18}
53	$7.3 \times 10^{15} \text{ s}^{-1}$
54	$1.3 \times 10^{15} \text{ mol}$
55	(a) 3.60 mm;
	(b) 5.24×10^{17}
56	$-2.75 \times 10^5 \text{ K}$
57	(a) 0;
	(b) 68 J
58	1.8 pm
59	3.0 eV
60	(a) $7.33 \mu m$;
	(b) $7.07 \times 10^5 \text{ W/m}^2$;
	(c) $2.49 \times 10^{10} \text{ W/m}^2$
61	(a) 3.03×10^5 ;
	(b) 1.43 GHz;
	(d) 3.31×10^{-6}
62	1.1 MW
63	186
64	(a) 4.3 μm;
	(b) 10 μm;
	(c) infrared
65	(a) 2.13 meV;
	(b) 18 T

<u> </u>
(a) 6.9 μ eV;
(b) radio waves
(a) 2.55 s;
(b) 0.50 ns;
(c) $(4.5 \times 10^{-4})^{\circ}$ or 1.6" of arc
(a) no;
(b) 140 nm
(a) 20 keV;
(b) 18 keV;
(c) Zr;
(d) Nb
$n > 3$; $\ell = 3$; $m_{\ell} = +3, +2, +1, 0, -1, -2, -3$; $m_s = \pm \frac{1}{2}$
(a) 6.0;
(b) $3.2 \times 10^6 \mathrm{y}$
argon
(a) 3×10^{74} ;
(b) 6×10^{74} ;
(c) 6×10^{-38} rad
0.20 nm
$(Ze/4\pi\varepsilon_0)(r^{-2}-rR^{-3})$

1	
2	$1.9 \times 10^{28} \mathrm{m}^{-3} \mathrm{eV}^{-1}$
3	$8.49 \times 10^{28} \mathrm{m}^{-3}$
4	0.91
5	(b) $6.81 \times 10^{27} \mathrm{m}^{-3} \mathrm{eV}^{-3/2};$
	(c) $1.52 \times 10^{28} \mathrm{m}^{-3} \mathrm{eV}^{-1}$
6	
7	(a) 0;
	(b) 0.0955
8	$5.90 \times 10^{28} \mathrm{m}^{-3}$
9	(a) $5.86 \times 10^{28} \mathrm{m}^{-3}$;
	(b) 5.49 eV;
	(c) 1.39×10^3 km/s;
	(d) 0.522 nm
10	

	1 20 2 1
11	(a) $1.36 \times 10^{28} \text{ m}^{-3} \text{ eV}^{-1}$;
	(b) $1.68 \times 10^{28} \mathrm{m}^{-3} \mathrm{eV}^{-1}$;
	(c) $9.01 \times 10^{27} \text{ m}^{-3} \text{ eV}^{-1}$;
	(d) $9.56 \times 10^{26} \mathrm{m}^{-3} \mathrm{eV}^{-1}$;
	(e) $1.71 \times 10^{18} \mathrm{m}^{-3} \mathrm{eV}^{-1}$
12	about 10 ⁻⁴²
13	(a) 6.81 eV;
	(b) $1.77 \times 10^{28} \mathrm{m}^{-3} \mathrm{eV}^{-1}$;
	(c) $1.59 \times 10^{28} \mathrm{m}^{-3} \mathrm{eV}^{-1}$
14	(a) 90.0%;
	(b) 12.4%;
	(c) sodium
15	(a) 2.50×10^3 K;
	(b) $5.30 \times 10^3 \text{ K}$
16	(a) $2.7 \times 10^{25} \text{ m}^{-3}$;
	(b) $8.43 \times 10^{28} \text{ m}^{-3}$;
	(c) 3.1×10^3 ;
	(d) 3.3 nm;
	(e) 0.23 nm
17	3
18	7.2×10^{24}
19	(a) 1.0;
	(b) 0.99;
	(c) 0.50;
	(d) 0.014;
	(e) 2.4×10^{-17} ;
20	$(f) 7.0 \times 10^2 \text{ K}$
20	5.1×10^{15}
21	(a) 0.0055;
22	(b) 0.018
22	472 K
23	0.94 g/gm ³
24 25	0.84 g/cm ³ (a) 19.7 kJ;
23	(a) 19.7 kJ, (b) 197 s
26	57 meV
27	(a) $1.31 \times 10^{29} \mathrm{m}^{-3}$;
	(a) 1.51 × 10 · III , (b) 9.43 eV;
	(c) 1.82×10^3 km/s;
	(d) 0.40 nm
28	5.52 eV
29	57.1 kJ
30	6.9×10^{19}
	1 000 11 20

21	(-) 226
31	(a) 226 nm;
20	(b) ultraviolet
32	(a) +3e;
	(b) +5e;
22	(c) 2
33	(a) 1.5×10^{-6} ;
	(b) 1.5×10^{-6}
34	
35	0.22 μg
36	(a) above;
	(b) 0.744 eV;
	(c) 7.13×10^{-7}
37	(a) 4.79×10^{-10} ;
	(b) 0.0140;
	(c) 0.824
38	(a) <i>n</i> -type;
	(b) $5 \times 10^{21} \mathrm{m}^{-3}$;
	$(c) 5 \times 10^5$
39	6.0×10^5
40	(b) 2.5×10^8
41	4.20 eV
42	opaque
43	13 μm
44	(a) 5.0×10^{-17} F;
	(b) 3.1×10^2
45	
46	(a) $+8 \times 10^{-11} \ \Omega \cdot m/K$;
	(b) $-2 \times 10^2 \Omega \cdot \text{m/K}$
47	(a) 109.5°;
	(b) 238 pm
48	
49	(b) $1.8 \times 10^{28} \mathrm{m}^{-3} \mathrm{eV}^{-1}$
50	0.03
51	
52	
53	$3.49 \times 10^{3} \text{ atm}$
	· · · · · · · · · · · · · · · · · ·

1	$1.3 \times 10^{-13} \text{ m}$
2	15.8 fm
3	46.6 fm
4	28.3 MeV

5	(a) 0.390 MeV;
3	
-	(b) 4.61 MeV
6	(a) yttrium;
	(b) iodine;
	(c) 50;
	(d) 74;
	(e) 19
7	(a) $2.3 \times 10^{17} \text{ kg/m}^3$;
	(b) $2.3 \times 10^{17} \text{ kg/m}^3$;
	(d) $1.0 \times 10^{25} \text{ C/m}^3$;
	(e) $8.8 \times 10^{24} \text{C/m}^3$
8	(b) 0.05%;
	(c) 0.81%;
	(d) 0.81%;
	(e) 0.74%;
	(f) 0.71%;
	(g) no
9	(a) 6;
	(b) 8
10	(a) $+7.825 \times 10^{-3}$ u;
	(b) $+7.290 \text{ MeV}/c^2$;
	$(c) +8.664 \times 10^{-3} u;$
	(d) $+8.071 \text{ MeV/}c^2$;
	(e) -9.780×10^{-2} u;
	(f) -91.10 MeV/ c^2
11	(a) 6.2 fm;
	(b) yes
12	(a) blow apart;
	(b) 1.15 GeV;
	(c) 12.2 MeV/proton;
	(d) 4.81 MeV/nucleon;
	(e) strong force is strong
13	13 km
14	7.52 MeV/nucleon
15	
16	8.23 MeV/nucleon
17	1.0087 u
18	7.38 MeV/nucleon
19	(a) 9.303%;
	(b) 11.71%
20	7.31 MeV/nucleon
21	(b) 7.92 MeV/nucleon

	() 40 0) () (
22	(a) 19.8 MeV;
	(b) 6.26 MeV;
	(c) 2.23 MeV;
	(d) 28.3 MeV;
	(e) 7.07 MeV;
	(f) no
23	
24	$1.6 \times 10^{25} \text{ MeV}$
25	5.3×10^{22}
26	280 d
27	(a) 0.250;
	(b) 0.125
28	(a) 5.04×10^{18} ;
	(b) $4.60 \times 10^6 \mathrm{s}^{-1}$
29	(a) 64.2 h;
	(b) 0.125;
	(c) 0.0749
30	3.0×10^{19}
31	(a) $7.5 \times 10^{16} \mathrm{s}^{-1}$;
	(b) $4.9 \times 10^{16} \mathrm{s}^{-1}$
32	0.49
33	1×10^{13} atoms
34	0.66 g
35	
36	87.9 mg
37	265 mg
38	4.96×10^9
39	(a) $8.88 \times 10^{10} \text{ s}^{-1}$;
	(b) 1.19×10^{15} ;
	(c) $0.111 \mu g$
40	209 d
41	$1.12 \times 10^{11} \text{ y}$
42	$4.9 \times 10^{13} \mathrm{Bq}$
43	$9.0 \times 10^8 \mathrm{Bq}$
44	60 Bq
45	(a) 3.2×10^{12} Bq;
	(b) 86 Ci
46	(a) β^{-} decay;
10	(a) β decay, (b) $8.2 \times 10^7 \mathrm{s}^{-1}$;
	(b) 6.2×10^{-8} , (c) 1.2×10^{6}
47	(a) 2.0×10^{20} ;
4/	$(a) 2.0 \times 10^{-3}$;
	(b) $2.8 \times 10^9 \mathrm{s}^{-1}$

48	(a) 4.25 MeV;
	(b) -24.1 MeV;
	(c) 28.3 MeV
49	(a) 1.2×10^{-17} ;
	(b) 0
50	(a) -9.50 MeV;
	(b) 4.66 MeV;
	(c) -1.30 MeV
51	4.269 MeV
52	(a) 31.8 MeV;
	(b) 5.98 MeV;
	(c) 86 MeV
	78 MeV
53	1.21 MeV
54	
55	0.783 MeV
56	(a) 0.90 pm;
	(b) 6.4 fm;
	(c) no;
	(d) yes
57	(b) 0.961 MeV
58	(b) 2.7×10^{13} W
59	78.3 eV
60	$1.61 \times 10^3 \text{ y}$
61	(a) 1.06×10^{19} ;
	(b) 0.624×10^{19} ;
	(c) 1.68×10^{19} ;
	(d) 2.97×10^9 y
62	132 μg
63	1.7 mg
64	$4.28 \times 10^9 \mathrm{y}$
65	1.02 mg
66	(a) 145 Bq;
	(b) 3.92 nCi
67	2.50 mSv
68	(a) 18 mJ;
	(b) 2.9 mSv;
	(c) 0.29 rem
69	(a) 6.3×10^{18} ;
	(b) 2.5×10^{11} ;
	(c) 0.20 J;
	(d) 2.3 mGy;
70	(e) 30 mSv
70	$3.87 \times 10^{10} \text{ K}$

	() < < > = 7.77
71	(a) 6.6 MeV;
	(b) no
72	(a) ¹⁸ O, ⁶⁰ Ni, ⁹² Mo, ¹⁴⁴ Sm, ²⁰⁷ Pb; (b) ⁴⁰ K, ⁹¹ Zr, ¹²¹ Sb, ¹⁴³ Nd; (c) ¹³ C, ⁴⁰ K, ⁴⁹ Ti, ²⁰⁵ Tl, ²⁰⁷ Pb
	(b) K, Zr, Sb, Nd;
72	(c) C, K, 11, 11, Pb
73	(a) 25.4 MeV;
	(b) 12.8 MeV; (c) 25.0 MeV
74	$1.7 \times 10^9 \text{ y}$
75	1.7 × 10 y
76	13 mJ
77	$3.2 \times 10^4 \text{ y}$
78	19.7 d
79	730 cm ²
80	(a) 7×10^7 electrons;
	(b) $(7 \times 10^7 \text{ electrons}) \exp[-(\ln 2)(D - 1996)/T_{1/2}],$
0.1	where <i>D</i> is the current year and $T_{1/2} = 30.2 \text{ y}$
81	²²⁵ Ac
82	20 M-M
83	30 MeV
84	(a) $3.66 \times 10^7 \text{ Bq}$;
	(b) $3.66 \times 10^7 \mathrm{Bq}$;
0.5	(c) 6.42 ng
85	
86 87	6.79 MeV
88	$4 \times 10^{-22} \text{ s}$
89	27
90	(a) ¹⁴² Nd, ¹⁴³ Nd, ¹⁴⁴ Nd, ¹⁴⁵ Nd, ¹⁴⁶ Nd, ¹⁴⁸ Nd, ¹⁵⁰ Nd; (b) ⁹⁷ Rb, ⁹⁸ Sr, ⁹⁹ Y, ¹⁰⁰ Zr, ¹⁰¹ Nb, ¹⁰² Mo, ¹⁰³ Tc, ¹⁰⁵ Rh, ¹⁰⁹ In, ¹¹⁰ Sn, ¹¹¹ Sb, ¹¹² Te; ¹¹³ I, ¹¹⁴ Xe, ¹¹⁵ Cs, ¹¹⁶ Ba
	109 _{In} 110 _{Sn} 111 _{Sh} 112 _{To} 113 _I 114 _{Vo} 115 _{Co} 116 _{Do}
	(c) ⁶⁰ Zn, ⁶⁰ Cu, ⁶⁰ Ni, ⁶⁰ Co, ⁶⁰ Fe, ⁶⁰ Mn, ⁶⁰ Cr, ⁶⁰ V
91	(a) 11.906 83 u;
	(a) 11.500 65 u, (b) 236.2025 u
92	(b) $4n + 3$;
	(c) $4n$;
	(d) $4n + 2$;
	(e) $4n + 3$;
	(f) 4n;
	(g) 4n + 1;
	(h) $4n + 2$;
	(i) $4n + 1$
	(j) $4n + 1$
93	600 keV
94	

95	(a) 59.5 d;
	(b) 1.18
96	(b) 1.00; (c) 70.8; (d) 0.0100; (e) 0.708; (f) no
97	(a) $4.8 \times 10^{-18} \mathrm{s}^{-1}$;
	(b) 4.6×10^9 y

1	(a) 16 day ⁻¹ ;
	(b) 4.3×10^8
2	yes
3	4.8 MeV
4	$4.54 \times 10^{26} \mathrm{MeV}$
5	$1.3 \times 10^3 \mathrm{kg}$
6	(a) ⁹⁵ Sr;
	(b) ⁹⁵ Y; (c) ¹³⁴ Te;
	$(c)^{134}$ Te;
	(d) 3
7	$3.1 \times 10^{10} \mathrm{s}^{-1}$
8	(a) +5.00 MeV
9	(a) 2.6×10^{24} ;
	(b) $8.2 \times 10^{13} \text{ J}$;
	(c) 2.6×10^4 y
10	181 MeV
11	-23.0 MeV
12	(a) 10;
	(b) 226 MeV
13	(a) 251 MeV;
	(b) typical fission energy is 200 MeV
14	(a) +25%;
	(b) 0;
	(c) -36%
15	(a) 84 kg;
	(b) 1.7×10^{25} ;
	(c) 1.3×10^{25}
16	(a) 44 kton
17	(a) ¹⁵³ Nd;
	(b) 110 MeV;
	(c) 60 MeV;
	(d) 1.6×10^7 m/s;
10	(e) 8.7×10^6 m/s
18	462 kg
19	
20	$8.03 \times 10^3 \mathrm{MW}$

21	557 W
22	1.6×10^{16}
23	0.99938
24	(a) 1.2 MeV;
	(b) 3.2 kg
25	(b) 1.0;
	(c) 0.89;
	(d) 0.28;
	(e) 0.019;
	(f) 8
26	$3.6 \times 10^9 \text{ y}$
27	(a) 75 kW;
	(b) $5.8 \times 10^3 \text{ kg}$
28	
29	$1.7 \times 10^9 \text{ y}$
30	
31	170 keV
32	(a) 170 kV
33	1.41 MeV
34	0.151
35	10 ⁻¹² m
36	5.49 MeV
37	(a) 4.3×10^9 kg/s;
	(b) 3.1×10^{-4}
38	
39	
40	(a) $4.0 \times 10^{27} \text{ MeV}$;
	(b) $5.1 \times 10^{26} \text{MeV}$
41	$1.6 \times 10^8 \text{ y}$
42	
43	(a) 24.9 MeV;
	(b) 8.65 megatons TNT
44	$5 \times 10^9 \text{ y}$
45	(a) $1.8 \times 10^{38} \text{ s}^{-1}$;
	(b) $8.2 \times 10^{28} \mathrm{s}^{-1}$
46	
47	(a) 4.1 eV/atom;
	(b) 9.0 MJ/kg;
	(c) 1.5×10^3 y
48	
49	14.4 kW

1	
50	(a) 6.3×10^{14} J/kg;
	(b) 6.2×10^{11} kg/s;
	(c) 4.3×10^9 kg/s;
	(e) $1.5 \times 10^{10} \text{ y}$
51	$^{238}\text{U} + \text{n} \Rightarrow ^{239}\text{U} \Rightarrow ^{239}\text{Np} + \text{e} + \nu,$
	$^{239}\text{Np} \rightarrow ^{239}\text{Pu} + \text{e} + \nu$
52	(a) 3.5 MeV;
	(b) 14.1 MeV
53	
54	
55	(a) $3.1 \times 10^{31} \text{ protons/m}^3$;
	(b) 1.2×10^6
56	(b) $5.0 \times 10^5 \text{ m/s}$
57	(a) 35 MJ; (b) 7.6 kg; (c) 3500 MW
58	(a) 9×10^5 m/s; (b) 9×10^{-7} m

1	$\pi^- \rightarrow \mu^- + \nu$
2	1
3	2.4 pm
4	18.4 fm
5	2.4×10^{-43}
6	
7	769 MeV
8	(a) $1.90 \times 10^{-18} \text{ kg·m/s}$;
	(b) 9.90 m
9	2.7 cm/s
10	31 nm
11	(a) angular momentum, L _e ;
	(b) charge, L_{μ} ;
	(c) energy, L_{μ}
12	(a) $2e^+, e^-, 5\nu, 4\bar{\nu},$
	(b) boson;
	(c) meson;
	(d) 0
13	
14	(a) 605 MeV;
	(b) -181 MeV
15	(a) energy;
	(b) strangeness;
	(c) charge
16	(a) yes; (b)-(e) no; (f) yes

17	(a) yes; (b)-(d) no
18	b and d
19	(a) 0;
	(b) -1;
	(c) 0
20	
21	(a) K ⁺ ;
	(b) n;
	$(c) K^0$
22	338 MeV
23	(a) 37.7 MeV;
	(b) 5.35 MeV;
	(c) 32.4 MeV
24	(a) Σ^0 ;
	(b) $7.51 \times 10^6 \text{m/s}$
25	(a) ūūd;
	(b) ūđđ
26	(a) n;
	(b) Σ^+ ;
	(c) Ξ^{-}
27	sd
28	(a) sud
	(b) uss
29	(a) Ξ^0 ; (b) Σ^-
30	(a) not possible;
	(b) uuu
31	$2.77 \times 10^8 \text{ly}$
32	$8.3 \times 10^9 \text{ly}$
33	668 nm
34	(a) 1.0×10^{10} m; (b) 3.3×10^2 m/s
35	$1.4 \times 10^{10} \text{ly}$
36	$102M_{\rm S}$
37	(a) 2.6 K;
	(b) 976 nm
38	(b) $2.39 \times 10^9 \text{ K}$
39	(b) 5.7 H atoms/m ³
40	(b) 0.934;
	(c) 1.28×10^{10} ly 4.57×10^3
41	
42	(a) 0.26 meV;
	(b) 4.8 mm
43	(a) 121 m/s;
	(b) 0.00406;
	(c) 248 y

44	(b) $2\pi r^{1.5} (GM)^{-0.5}$
45	
46	$13 \times 10^9 \text{ y}$
47	$1.08 \times 10^{42} \mathrm{J}$
48	(a) A;
	(b) J;
	(c) I;
	(d) <i>F</i> ;
	(e) <i>G</i> ;
	(f) C;
	(g) <i>H</i> ;
	(h) D;
	(i) E
49	(a) 0.785 <i>c</i> ;
	(b) 0.993 <i>c</i> ;
	(c) C2;
	(d) C1;
	(e) 51 ns;
	(f) 40 ns
51	(c) $r\alpha/c + (r\alpha/c)^2 + (r\alpha/c)^3 + \dots$;
	(d) <i>rα/c</i> ;
	(e) $\alpha = H$;
	(f) 6.5×10^8 ly;
	$(g) 6.9 \times 10^8 \text{ y};$
	(h) 6.5×10^8 y;
	(i) 6.9×10^8 ly;
	$(j) 1.0 \times 10^9 \text{ ly};$
	(k) 1.1×10^9 y;
	$(1) 3.9 \times 10^8 \text{ ly}$
52	$6.03 \times 10^{-29} \text{ kg}$
53	(a) ssd; (b) $\overline{s}\overline{s}\overline{d}$
54	$7.3 \times 10^{20} \text{ Hz}$