Teoria kategorii

Weronika Jakimowicz

Lato 2024/25

Spis treści

1	Początek końca		1
	24.02.2025	Podstawowe definicje	1
	1.	Przykłady kategorii	1
	2.	Funktory	2
	25.02.2025	Produkty i koprodukty kategorii	5
	1.	O obiektach początkowych i końcowych słów kilka	5
	2.	(Ko)granice funktorów a (ko)produtky	6
	3.	Obiekty i kategorie monoidalne	9

Początek końca

W 1945 Eilenberg oraz Mac Lane napisali książkę "General theory of natural equivalences". Jest to powszechnie uznawane jako początek ery abstrakcyjnego nonsenu.

24.02.2025 Podstawowe definicje

1. Przykłady kategorii

Definicja 1.1: kategoria

Kategoria (lokalnie mała) C składa się z:

- obiektów Ob(C)
- oraz zbiorów morfizmów dla wszystkich par $A, B \in \mathsf{Ob}(\mathcal{C})$ oznaczanego $\mathcal{C}(A, B) = \mathsf{Hom}_{\mathcal{C}}(A, B)$, które spełniają:
 - id_X ∈ C(X, X)
 - składają się w dobry sposób, tzn. mamy dobrze określone odwzorowanie

$$\mathcal{C}(A, B) \times \mathcal{C}(B, C) \to \mathcal{C}(A, C)$$

które jest łączne.

Powiemy, że kategoria jest mała, jeśli jej obiekty są zbiorem, a nie klasą.

Dla wygody oznaczymy

$$C_0 := \mathsf{Ob}(C)$$

a jako C_1 będziemy rozumieć wszystkie morfizmy w kategorii C.

Rozważmy kilka prostych przykładów kategorii.

Przykłady

- 1. Kategoria Set, której obiekty Set_0 to wszystkie zbiory, a Set_1 to funkcje między zbiorami z normalnym składaniem funkcji.
- 2. Set_* to kategoria zbazowanych zbiorów, tzn. jej obiektami są pary (X, x_0) , gdzie X to zbiór, a $x_0 \in X$. Morfizmy muszą wtedy zachowywać wyróżniony punkt: $f: (X, x_0) \to (Y, y_0)$, $f(x_0) = y_0$.

- 3. Top to kategoria, której obiekty to przestrzenie topologiczne, a Top_1 to funkcje ciągłe między nimi.
- 4. Toph to kategoria przestrzeni topologicznych, w której morfizmy to klasy homotopii odwzorowań między przestrzeniami. To znaczy, jeśli $X, Y \in Ob(Toph)$ oraz $f_0, f_1: X \to Y$ jest ciągłym odwzorowaniem, dla którego istnieje ciągłe przekształcenie

$$F: X \times [0,1] \rightarrow Y$$

takie, że $F(x,0)=f_0(x)$ oraz $F(x,1)=f_1(x)$, to $f_0=f_1$ jako morfizm w kategorii Toph.

Pozostaje sprawdzić, że jeśli f, f' oraz g, g' to pary homotopijnie równoważnych odwzorowań, to wówczas $f \circ g$ jest homotopijnie równoważne $f' \circ g'$.

- 5. Kategoria *Hask*, której obiekty to typy w Haskelly, a morfizmy to klasy programów.
- 6. Kategoria relacji Rel, w której obiektami Rel_0 są zbiory, a morfizmami są podzbiory produktu, tzn. Rel(X,Y) zawiera wszystkie $S\subseteq X\times Y$. Wówczas składanie $S\subseteq X\times Y$ oraz $R\subseteq Y\times Z$ definiujemy jako zbiór

$$S \circ R = \{(x, z) : (\exists y \in Y) xRy \land ySz\},$$

gdzie xRy oznacza, że $(x,y) \in R$. Złożenie to działa jak połączenie dwóch relacji spójnikiem "i".

- 7. Niech R będzie tranzytywną i zwrotną relacją na zbiorze X. Definiujemy wtedy kategorię $\mathcal C$ o obiektach $\mathcal C_0=X$ będących elementami zbioru X, a morfizmy między $a,b\in X$ to zbiór 1-elementowy $\mathcal C(a,b)=\{\star\}$, gdy xRy jest prawdą lub zbiór pustym w przeciwnym wypadku.
 - Szczególnym przypadkiem tej kategorii jest topologia na przestrzeni topologicznej, gdzie relacja *R* to zawieranie zbiorów otwartych.
- 8. Graf skierowany tworzy kategorię, której obiektami są jego wierzchołki, a morfizmy to zorientowane ścieżki.

2. Funktory

Definicja 1.2: funktor

Funktor F między kategoriamii $\mathcal C$ a $\mathcal D$

- każdemu obiektowi X kategorii \mathcal{C} przypisuje obiekt F(X) kategorii \mathcal{D}
- każdemu morfizmowi $\varphi\in\mathcal{C}(X,Y)$ przypisuje morfizm $F(\varphi):F(X)\to F(Y)$ w kategorii $\mathcal D$ taki, że

- $F(\psi \circ \varphi) = F(\psi) \circ F(\varphi)$
- $F(id_X) = id_{F(X)}$

Przykład

 $Ab: Gr \to Ab$ to funktor między kategorią wszystkich grup a kategorią grup abelowych, który grupie G przypisuje jej abelianizację $Ab(G) = G/[G, G] = G^{ab}$.

Definicja 1.3: kategoria odwrotna

Przez **kategorię odwrotną** do kategorii C rozumiemy kategorię C^{op} , której

- obiekty to obiekty oryginalnej kategorii: $\mathsf{Ob}(\mathcal{C}^{\mathsf{op}}) = \mathsf{Ob}(\mathcal{C})$
- morfizmy C(X, Y) "odwracają się" $C^{op}(Y, X)$.

Mówimy, że funktor $F: \mathcal{C} \to \mathcal{D}$ jest **kowariantny**, a funktor $F: \mathcal{C} \to \mathcal{D}^{op}$ kontrawariantny.

Zdefiniujmy teraz **kategorię funktorów** między kategoriami \mathcal{C} a \mathcal{D} , $Fun(\mathcal{C}, \mathcal{D})$, której obiekty to wszystkie funktory $F: \mathcal{C} \to \mathcal{D}$, a morfizmy to φ takie, że dla dowolnych $X, Y \in \mathsf{Ob}\,\mathcal{C}$ oraz $f: X \to Y$ komutuje diagram

$$F(X) \xrightarrow{\varphi_X} G(X)$$

$$F(f) \downarrow \qquad \qquad \downarrow G(f)$$

$$F(Y) \xrightarrow{\varphi_Y} G(Y)$$

Zbiór morfizmów w tej kategorii oznaczymy Nat(F, G) - **naturalne przekształcenia** funktora F w funktor G.

Przykład

Cup product na kohomologiach $\cup: H^m(X) \otimes H^n(X) \to H^{m+n}(X)$ jest naturalnym przekształceniem między funktorami $H^m(-) \otimes H^n(-)$ i $H^{m+n}(-)$.

Definicja 1.4: równoważność kategorii

Powiemy, że kategorie \mathcal{C} i \mathcal{D} są **równoważne**, jeśli istnieją funktory $F:\mathcal{C}\to\mathcal{D}$ oraz $G:\mathcal{D}\to\mathcal{C}$ takie, że złożenie $F\circ G$ jest naturalnie izomorficzne do $Id_{\mathcal{D}}$, a $G\circ F$ - do $Id_{\mathcal{C}}$.

Przykład

Kategoria skończenie wymiarowych przestrzeni wektorowych nad ciałem k, $Vect_k^{fin}$, jest równoważna kategorii skończenie wymiarowych macierzy nad ciałem k, $Mat^{fin}(k)$.

25.02.2025 Produkty i koprodukty kategorii

1. O obiektach początkowych i końcowych słów kilka

Definicja 1.5: obiekt początkowy i końcowy

Powiemy, że obiekt $C \in \mathcal{C}_0$ jest **początkowy**, jeśli dla każdego $D \in \mathcal{C}_0$ istnieje dokładnie jeden morfizm $C \to D$, $|\mathcal{C}(C, D)| = 1$. Analogicznie definiujemy **obiekt końcowy** C: $\forall D \in \mathcal{C}_0 |\mathcal{C}(D, C)| = 1$.

Przykłady -

- 1. W kategorii, której obiektami jest odcinek $C_0 = [0, 1]$, a morfizmy to relacja \leq obiektem początkowym jest 0, a końcowym 1.
- 2. W kategorii zbiorów obiektem początkowym jest \emptyset , a obiektem końcowym jest singleton.
- 3. W Gr grupa trywialna jest zarówno obiektem początkowym jak i końcowym.
- 4. Kategoria, która ma dwa obiekty bez morfizmów między nimi nie ma obiektu końcowego ani początkowego.

Fakt 1.6

Obiekty końcowe i początkowe, jeśli istnieją, to są jedyne z dokładnością do izomorfizmu.

Dowód

Niech C i C' będą obiektami końcowymi kategorii C. Wiemy, że $C(C,C)=\{id_C\}$, czyli komutujący diagram

$$C \xrightarrow{id_C} C$$

$$\exists !f \qquad C'$$

daje $g \circ f = id_C$. Analogiczny diagram daje $f \circ g = id_{C'}$. Stąd f i g to para wzajemnie odwrotnych izomorfizmów między C i C'

2. (Ko)granice funktorów a (ko)produtky

Niech $F:\mathcal{I}\to\mathcal{C}$ będzie funktorem, gdzie o kategorii \mathcal{I} myślimy jako o kategorii indeksów. Przez $\mathcal{C}^{\mathcal{I}}$ oznaczmy kategorię wszystkich takich funktorów. Powiemy, że funktor C jest stały, jeżeli C(i)=C dla każdego $i\in\mathcal{I}_0$ oraz $C(f)=id_C$ dla każdego morfizmu.

Budujemy kategorię, której

• obiekty to wszystkie naturalne przekształcenia funktora F w funktory stałe C, $\varphi: F \implies C$, czyli komutujące diagramy (kostożki)

- a morfizmy to strzałki C o D takie, że diagram

komutuje.

Diagram wyżej można rozpisać jako:

Definicja 1.7: kogranica funktora

Kogranicą (*granica prosta*) funktora F, $\varinjlim F$, nazywamy obiekt początkowy w wyżej zdefiniowanej kategorii naturalnych przekształceń.

Diagram wyżej możemy zdualizować i zamiast rozpatrywać naturalne przekształcenia $\varphi: F \implies C$ możemy rozważyć naturalne przekształcenia $\varphi: C \implies F$, czyli diagramy (stożki)

z morfizmami definiowanymi analogicznie.

Definicja 1.8: granica funktora

Granica (granica odwrotna) to obiekt końcowy powyższej kategorii stożków, lim F.

Rozważmy kategorię \mathcal{I} , która ma dwa obiekty $\mathcal{I}_0 = \{0,1\}$. Niech $F: \mathcal{I} \to Set$ będzie funktorem, dla którego F(0) = A, a F(1) = B. Niech φ oraz ψ będzie parą naturalnych przekształceń, dla których

gdzie pionowa strzałka istnieje i jest jedyna, bo $\varinjlim F$ to obiekt końcowy. Jeśli weźmiemy $\varinjlim F = A \times B$, a $\varphi_0 = \pi_A$ oraz $\varphi_1 = \pi_B$ będą rzutami i $f(d) = (\psi_0(d), \varphi_1(d))$, to diagram nadal jest prawdziwy.

Granica odwrotna tego samego funktora, to z kolei suma rozłączna $A \sqcup B$, bo diagram

$$F(0) = A \xrightarrow{\psi_0} D \xleftarrow{\psi_1} F(1) = B$$

$$\lim_{\varphi_0 = i_A} F = A \sqcup B$$

gdzie $f(x) = \varphi_0(x)$, jeśli $x \in A$ oraz $f(x) = \psi_1(x)$ jeśli $x \in B$, komutuje.

Definicja 1.9: (ko)produkt —

Produktem obiektów A i B kategorii C nazywamy granicę prostą (kogranicę) funktora $F: \mathcal{I} \to C$ dla \mathcal{I} oraz F jak wyżej.

Koproduktem obiektów A i B kategorii C nazywamy granicę odwrotną (granicę) funktora $F: \mathcal{I} \to C$

Przykłady -

1. W kategorii grup produkt to iloczyn kartezjański dwóch grup, tak jak w kategorii zbiorów, tj. dla grup *A*, *G*, *H* komutuje diagram

Koprodukt to z kolei produkt wolny tych dwóch grup:

gdzie f nakłada na litery słów G*H pochodzące z G morfizm g, a na litery pochodzące z H - morfizm h.

2. Niech $F:\mathcal{I}\to (P,\leq)$ z dwuobiektowej kategorii \mathcal{I} w zbiór uporządkowany. Wtedy jeśli mamy diagram

$$F(0) = \mathbf{a} \longleftrightarrow \mathbf{d} \longrightarrow F(1) = \mathbf{b}$$

to znaczy, że $d \le a$, $d \le b$ oraz $d \le \varinjlim F$. Żeby więc miało to sens dla dowolnego $d \le a$, b to $\varinjlim F = \inf\{a,b\}$. Analogicznie dostajemy, że $\varprojlim F = \sup\{a,b\}$.

3. Jeśli $\mathcal I$ jest kategorią o nieskończenie wielu obiektach bez morfizmów między różnymi obiektami, a $F:\mathcal I\to Set$ jest funktorem w kategorię zbiorów, to wówczas kogranicą tego funktora jest nieskończony iloczyn kartezjański $\prod_{i\in\mathcal I_0}F(i)$, a granicą – nieskończona suma rozłączna $\bigsqcup_{i\in\mathcal I_0}F(i)$.

Fakt 1.10 -

Granica i kogranica funktora, jeśli istnieje, to jest jedyna z dokładnością do izomorfizmu. Stąd również produkty i koprodukty są unikalne.

Dowód

Wynika z uniwersalności obiektów końcowych i początkowych.

Przykład

Rozważmy funktor $F:\mathcal{I}^{op}\to Grp$, gdzie $\mathcal{I}=(\mathbb{N},\leq)$ taki, że dla każdych $i,j\in\mathbb{N}$, $i\leq j$ mamy

$$F(j) = \mathbb{Z}/p^j\mathbb{Z} \xrightarrow{F(i \to j) = q} F(i) = \mathbb{Z}/p^j\mathbb{Z}$$

gdzie q to morfizm ilorazowy.

Liczby *p*-adyczne to rozszerzenie liczb wymiernych różne od liczb rzeczywistych i zespolonych. Całkowite liczby *p*-adyczne to szeregi

$$\sum_{i=k}^{\infty} a_i p^i,$$

gdzie $k \in \mathbb{N}$ oraz $0 \le a_i < p$. Okazuje się, że całkowite liczby p-adyczne, \mathbb{Z}_p , można zdefiniować jako granicę funktora F:

3. Obiekty i kategorie monoidalne

Monoid $(M, \star, 1)$ to struktura algebraiczna z binarną operacją oraz elementem neutralnym. Dodatkowo, komutować ma diagram

$$\begin{array}{ccc}
M^3 & \xrightarrow{\star \times id} & M^2 \\
id \times \star \downarrow & & \downarrow \star \\
M^2 & \xrightarrow{\star} & M
\end{array}$$

co znaczy, że działanie jest łączne.

Definicja 1.11: obiekt monoidalny, kategoria monoidalna

Niech $\mathcal C$ będzie kategorią z produktem i elementem początkowym. Niech $M \in \mathcal C$ będzie obiektem, dla którego mamy $\mu: M^2 \to M$ oraz $\varepsilon: \{1\} \to M$ takie, że komutują diagramy

$$\begin{array}{ccc}
M^3 & \xrightarrow{\mu \times id} & M^2 \\
id \times \mu \downarrow & & \downarrow \mu \\
M^2 & \xrightarrow{\mu} & M
\end{array}$$

Wtedy M jest obiektem monoidalnym.

Obiekt monoidalny w kategorii Cat nazywa się kategorią monoidalną.

Przykłady

- 1. Dowolna kategoria ${\cal C}$ z koproduktem i obiektem końcowym jest kategorią monoidalna.
- 2. Kategoria endofunktorów ma strukturę monoidalną. To znaczy, jeśli mamy dwa endofunktory $F, G \in End(\mathcal{C})$, to potrafimy je złożyć w dobry sposób. Funktor $T \in End(\mathcal{C})$ oraz dwa naturalne przekształcenia $\mu: T^2 \to T$, $\varepsilon: Id \to T$, nazywa się **monadą**.