REGRESSION ASSIGNMENT 1

A Proof From Linear Regression

Theorem 1. Prove that under Gaussian Assumption Linear Regression Amounts To Least square

 ${f Let}$ us assume that the target variables and the inputs are related via the equation

 $y^{(i)} = \theta^T x^{(i)} + \epsilon^{(i)}$

where $\epsilon^{(i)}$ is an error term that captures either unmodeled effects , or random noise. Let us further assume that the $\epsilon^{(i)}$ are distributed IID according to a Gaussian distribution (also called a Normal distribution) with mean zero and some variation σ . We can write this assumption as

$$\epsilon^{(i)} \sim N(0, \sigma^2)$$

I.e., the density of ϵ^i is given by

$$p(\epsilon^i) = \frac{1}{\sqrt{2\pi}\sigma} exp\left(-\frac{(\epsilon^i)^2}{2\sigma^2}\right)$$

This implies that

$$p(y^{i}|X^{i};\theta) = \frac{1}{\sqrt{2\pi}\sigma} exp\left(-\frac{(y^{(i)} - \theta^{T}x^{(i)})^{2}}{2\sigma^{2}}\right)$$

The notation $p(y^i|x^i;\theta)$ indicates that this is the distribution of $y^{(i)}$ given $x^{(i)}$ and parameterized by θ . The probability of the data is given by $p(\vec{y}|X;\theta)$. This quantity is typically viewed a function of \vec{y} , for a fixed value of θ . When we wish to explicitly view this as a function of θ , we will instead call it the likelihood function

$$L(\theta) = L(\theta, X, \vec{y} = p(y|\vec{X}; \theta))$$

$$= \prod_{i=1}^{m} p(y^{i}|X^{i};\theta) = \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi}\sigma} exp\left(-\frac{(y^{(i)} - \theta^{T}x^{(i)})^{2}}{2\sigma^{2}}\right)$$

Instead of maximizing $L(\theta)$, we can also maximize any strictly increasing function of $L(\theta)$. In particular, the derivatives will be a bit simpler if we instead maximize the \log likelyhood

$$\begin{split} l(\theta) &= \log L(\theta) = \log \prod_{i=1}^m \frac{1}{\sqrt{2\pi}\sigma} \ exp \left(-\frac{(y^{(i)} - \theta^T x^{(i)})^2}{2\sigma^2} \right) \\ &= \Sigma_{i=1}^m log \frac{1}{\sqrt{2\pi}\sigma} \ exp \left(-\frac{(y^{(i)} - \theta^T x^{(i)})^2}{2\sigma^2} \right) \\ \\ mlog \frac{1}{\sqrt{2\pi}\sigma} - \frac{1}{\sigma^2} * \frac{1}{2} \Sigma_{i=1}^m \left(y^{(i)} - \theta^T x^{(i)} \right)^2 \end{split}$$

which we recognize to be $j(\theta)$, our original least-squares cost function.

____*