УДК 622.276



# LABORATORY TESTS FOR THE SELECTION OF HALITE INHIBITOR FOR THE YARAKTA OIL AND GAS CONDENSATE FIELD

ДЛЯ ЯРАКТИНСКОГО НЕФТЕГАЗОКОНДЕНСАТНОГО МЕСТОРОЖДЕНИЯ

### Колесникова Александра Романовна

специалист отдела НИР и КК, Общество с ограниченной ответственностью «Иркутская нефтяная компания» kolesnikova ar@irkutskoil.ru

## Карпекова Нина Игоревна

инженер-химик, Общество с ограниченной ответственностью «Иркутская нефтяная компания» karpekova\_ni@irkutskoil.ru

#### Лебедева Ирина Павловна

кандидат химических наук, Начальник отдела ПХиКК, Общество с ограниченной ответственностью «Иркутская нефтяная компания» lebedeva@irkutskoil.ru

**Аннотация.** В статье приведены результаты лабораторных исследований процесса выпадения в осадок галита и его ингибирования. Для исследования ингибиторов галитообразования не существует стандартных методов.

**Ключевые слова:** ингибитор, галит, эксперимент, эффективность.

## Kolesnikova Aleksandra Romanovna

Specialist of Research and Development Department, Limited Liability Company «Irkutsk Oil Company» kolesnikova\_ar@irkutskoil.ru

# Karpekova Nina Igorevna

Chemical Engineer, Limited Liability Company «Irkutsk Oil Company» karpekova\_ni@irkutskoil.ru

#### Lebedeva Irina Pavlovna

Candidate of Chemical Sciences, Head of quality control and field chemistry Department, Limited Liability Company «Irkutsk Oil Company» lebedeva@irkutskoil.ru

**Annotation.** The article presents the results of laboratory studies of the process of precipitation of halite and its inhibition. There are no standard methods for studying halite inhibitors.

**Keywords:** inhibitor, halit, experiment, efficiency.

отпожение неорганических солей на поверхности устьевого и погружного оборудования является одной из причин снижения эффективности при добыче нефти. На настоящий момент солеотложение является основным фактором, осложняющим разработку Ярактинского нефтегазоконденсатном месторождении. В литературе достаточно хорошо описаны механизмы ингибирования гипса и кальцита, однако отложения галита считаются нетрадиционными, процесс их выпадения является слабоизученным, отсутствуют устоявшиеся методики тестирования ингибиторов галитообразования [1].

ООО «ИНК» ведет активную работу по поиску эффективных ингибиторов галита.

В качестве объекта исследования взят насыщенный раствор NaCl и пластовая вода Ярактинского НГКМ. Методология тестирования включает в себя перенасыщение раствора в присутствии и отсутствии ингибиторов галита и выполняется сравнение количества осадка. Перенасыщение достигается путем испарения воды из раствора пластовой воды.

Испарение проводили в химических стаканах по 500 мл, в раствор воды были опущены U-образные трубки соединенные латексным шлангом, трубки подключены к и циркуляционному водоснабжению (комнатная температура воды). После взвешивания U-образные трубки кладем в химические стаканы, стаканы ставим на приборы для нагрева (рис.7), нагреваем, пока вода не испарилась до 400мл, далее U-образные трубки взвешиваем. По массе соли делаем расчет эффективности ингибирования.

Для приготовления насыщенного раствора брали 200 г NaCl на 500 мл деионизованной воды. Испарение проводили до 400 мл (рис. 1).

Эксперимент был проведен для 7 ингибиторов галита (ИГ) с дозировкой 0,1 %, 0,2 %, 0,3 %масс (рис. 2). Предварительно была проверена совместимость реагентов с водой. Реагенты, обладающие максимальной эффективностью в концентрированном растворе NaCl, приведены в таблице 1.





Рисунок 1 – Эксперимент после испарения без реагента и с реагентом

**Таблица 1** – Реагенты, обладающие максимальной эффективностью в концентрированном растворе NaCl

| Проба        | Концентрация ИСО, % | Macca соли<br>m1-m2, г | Эффективность ингибирования % |
|--------------|---------------------|------------------------|-------------------------------|
| Без реагента | 0                   | 10,03                  | -                             |
| ИГ3          | 0,1                 | 8,98                   | 10                            |
|              | 0,2                 | 0,53                   | 95                            |
|              | 0,3                 | 0,73                   | 93                            |
|              | 0,1                 | 9,38                   | 6                             |
| ИГ6          | 0,2                 | 4,63                   | 54                            |
|              | 0,3                 | 3,48                   | 65                            |



**Рисинук 2** – Эксперимент с водой, насыщенной NaCl без реагента и с дозировкой регента 0,2 % масс

Следующим этапом проводилась работа по тестированию ИГ на реальной воде Ярактинкого НГКМ, состав которой приведен в таблице 2. Химический состав рассолов по преобладающим ионам хлоридный кальциевый с минерализацией до 500 г/дм³ и плотностью до 1,3 г/см³

Таблица 2 - Состав воды Ярактинского НГКМ

| <b>№</b><br>п/п | Определяемые показатели                     | НД на метод испытания   | Ед.<br>измерения   | Результат<br>испытания |
|-----------------|---------------------------------------------|-------------------------|--------------------|------------------------|
| 1               | Содержание ионов кальция                    | ГОСТ 23268.5-78         | мг/дм <sup>3</sup> | 69138,0                |
| 2               | Содержание ионов магния                     | ГОСТ 23268.5-78         | мг/дм³             | 12768,0                |
| 3               | Содержание ионов натрия                     | ГОСТ 23268.6-78         | мг/дм <sup>3</sup> | 23650,9                |
| 4               | Содержание хлорид-ионов                     | ПНД Ф 14.1:2.111-97     | мг/дм³             | 195861,3               |
| 5               | Содержание гидрокарбонат-ионов              | ГОСТ 23268.3-78         | мг/дм³             | 85,4                   |
| 6               | Содержание сульфат-ионов                    | ПНД Ф 14.1:2.159-2000   | мг/дм³             | 134,1                  |
| 7               | Плотность                                   | Ареометр АОН-1          | г/см <sup>3</sup>  | 1224,0                 |
| 8               | рН                                          | ПНД Ф 14.1:2:3:4.121-97 | ı                  | 6,34                   |
| 9               | Жесткость общая                             | ΓΟCT P 52407-2005       | ОЖ                 | 4500,0                 |
| 10              | Содержание ионов железа общего (железа III) | OCT 39-191-85           | мг/дм <sup>3</sup> | 167,2/3,1              |

Эффективность ингибирования галита в реальной среде Ярактинского НГКМ приведена в таблице 3.

Таблица 3 – Результаты по испытаниям на воде Ярактинского НГКМ

| Проба        | Концентрация ИСО, % | Масса соли m₁−m₂, г | Эффективность ингибирования % |
|--------------|---------------------|---------------------|-------------------------------|
| Без реагента | 0                   | 4,65                | -                             |
|              | 0,1                 | 1,43                | 69                            |
| NL3          | 0,2                 | 0,92                | 80                            |
|              | 0,3                 | 0,30                | 94                            |
|              | 0,1                 | 4,20                | 10                            |
| ИГ6          | 0,2                 | 4,00                | 14                            |
|              | 0,3                 | 3,85                | 17                            |







Рисунок 3 – Эксперимент с водой Ярактинского НГКМ без реагента и с регентом дозировкой 0,2 %масс

К ОПИ рекомендован реагент ИГЗ, эффективность которого 69–94 % в отношении галита на пробе пластовой воды.

Осадки были исследованы под микроскопом (рис. 4).

Без реагента ИГЗ кристаллы галита состоят из крупных 6-сторонних гранул высокой твердости, после добавления реагента они разделяются на микрогранулы, большая часть которых распределяется по объему и выводится из скважины вместе с производимой жидкостью.

Ингибитор абсорбируеется в активные точки роста кристаллов и соединяться с металлическими ионами, кристаллическая решетка вырастает, провоцируя тем самым изменение кристаллической решетки, напряжение в кристаллах увеличивается, и они легко раскалываются, таким образом кристаллизация солей не разрастается.







**Рисунок 4** – Морфология кристаллов в водном растворе под микроскопом: а – без реагента; б – с реагентом

Представлены способы предупреждения и технологические решения по борьбе с отложениями галита при добыче нефти в скважинах, оснащенных электроцентробежными насосами на Ярактинском нефтегазоконденсатном месторождении. Протестированы ингибиторы галита на насыщенном растворе хлорида натрия, а также на реальный пластовой воде. Приведен опыт применения устьевого дозирования ингибитора галита с целью защиты глубинного оборудования на добывающем нефтяном фонде.

## Литература

- 1. Voloshin A., Ragulin V., Ganiev I., Neviadovskyi E. Technical and Economic Strategy in the Scale Deposition Management is an Important Factor in Enhancement the Efficiency of Oil Production // SPE. 138066. 2010.
- 2. Отложения галита при добыче нефти и газа на Верхнечонском нефтегазоконденсатном месторождении / Е.О. Чертовских, В.А. Качин, А.В. Карпиков // Вестник ИрГТУ. 2013. № 5 (76). С. 82–91.
- 3. Проблемы добычи нефти и газа на Ярактинском и Даниловском месторождениях, связанные с солеотложениями / А.Н. Черемисин [и др.] // Нефтепромысловое дело. № 10. С. 45–51.
  - 4. Кащавцев В.Е., Мищенко И.Т. Солеобразование при добыче нефти. М.: Орбита-М, 2004. 432 с.
- 5. Шабля В.В. Опыт работы ТПП «Когалымнефтегаз» с солеобразующим фондом скважин // Инженерная практика. Пилотный выпуск, декабрь 2009. С. 24–28.

#### References

- 1. Voloshin A., Ragulin V., Ganiev I., Neviadovskyi E. Technical and Economic Strategy in the Scale Deposition Management is an Important Factor in Enhancement the Efficiency of Oil Production // SPE. 138066. 2010.
- 2. Galite deposits at oil and gas production at Verkhnechonsk oil-gas-condensate field / E.O. Chertovskikh, V.A. Kachin, A.V. Kapikov // Vestnik IrGTU. 2013. № 5 (76). P. 82–91.
- 3. Problems of oil and gas extraction at Yaraktinskiy and Danilovskiy oilfields connected with salt deposits / A.N. Cheremisin [et al.] // Nefteproizvodstvo. № 10. P. 45–51.
  - 4. Kashchavtsev V.E., Mischenko I.T. Salt formation at oil production. M.: Orbita-M, 2004. 432 c.
- 5. Shabla V.V. Experience of work of Kogalymneftegaz with salt-forming well stock // Engineering practice. Pilot issue, December 2009. P. 24–28.