Mini Project Report

Jinyuan Wu

January 13, 2022

Problem 1 Consider a one dimensional infinite chain with the lattice constant Λ on the z direction consisting of metallic balls, each of which have radius a and is made of a metal with permittivity

$$\epsilon_{\rm r} = 1 - \frac{\omega_{\rm p}^2}{\omega(\omega + i\gamma)}.\tag{1}$$

When $a \to 0$, the polarizability of a single ball is

$$\alpha(\omega) = 4\pi\epsilon_0 a^3 \frac{\epsilon_{\rm r}(\omega) - 1}{\epsilon_{\rm r}(\omega) + 2},\tag{2}$$

We use Mathematica to plot the real and the imaginary part of $\alpha(\omega)$ and recalculate them with K-K relations

$$\operatorname{Re}\alpha(\omega) = -\frac{1}{\pi}\operatorname{P}\int_{-\infty}^{\infty} \frac{\operatorname{Im}\alpha(\nu)}{\omega - \nu} d\nu, \quad \operatorname{Im}\alpha(\omega) = \frac{1}{\pi}\operatorname{P}\int_{-\infty}^{\infty} \frac{\operatorname{Re}\alpha(\nu)}{\omega - \nu} d\nu$$
 (3)

in Figure 1. It can be found that K-K relations do hold for α .

Note: Numerical details of K-K relations

The prime value integral is implemented using the replacement

$$P \int_{-\infty}^{\infty} \longrightarrow \int_{-\infty}^{\omega - o} + \int_{\omega + o}^{\infty},$$

where $o \sim 0.01$ is a small number. If o is too large, the peak of Im α calculated by the K-K relation will be broader than the exact value (see Figure 1, where the scattered points are slightly "out" of the exact peak). If o is too small, there are severe convergence problems.

Qualitatively, the behavior of $\alpha(\omega)$ is just like the behavior of the response of a driven damped oscillator, where the imaginary part diverges when $\epsilon_r(\omega) + 2 = 0$, or considering that γ is small, when

$$\omega = \sqrt{\frac{1}{3}}\omega_{\rm p} = 3.56\,\text{eV}.\tag{4}$$

This frequency is the frequency of the local surface plasmon polariton of a single ball. When the driving frequency is larger than $\omega_{\rm p}/\sqrt{3}$, the real part of α is positive, which means the system is able to "keep in track with" the driving field. When $\omega > \omega_{\rm p}$, Re $\alpha < 0$, which means that the system is too slow to response "in time" to the driving field and therefore has an opposite phase to the driving field.

Figure 1: The real and the imaginary part of $\alpha(\omega)$. The lines are plotted by definition, and the scattered points are obtained by K-K relations. (a) The real part. (b) The imaginary part.

Problem 2 We need to solve

$$\boldsymbol{p}_{m} = \alpha (\boldsymbol{E}_{\text{ext}}(\boldsymbol{r}_{m}) + \omega^{2} \mu_{0} \sum_{n \neq m} \stackrel{\leftrightarrow}{\boldsymbol{G}} (\boldsymbol{r}_{m} - \boldsymbol{r}_{n}) \cdot \boldsymbol{p}_{n}), \tag{5}$$

and when there is no external field, by the Bloch condition

$$\boldsymbol{p}_m = \boldsymbol{u} \mathrm{e}^{\mathrm{i}kz_m},\tag{6}$$

we have

$$\boldsymbol{u} e^{\mathrm{i}kz_m} = \alpha \omega^2 \mu_0 \sum_{n \neq m} \stackrel{\leftrightarrow}{\boldsymbol{G}} (\boldsymbol{r}_m - \boldsymbol{r}_n) \cdot \boldsymbol{u} e^{\mathrm{i}kz_n},$$

$$\left(\stackrel{\leftrightarrow}{\boldsymbol{I}} - \alpha \omega^2 \mu_0 \sum_{n \neq m} \stackrel{\leftrightarrow}{\boldsymbol{G}} (\boldsymbol{r}_m - \boldsymbol{r}_n) e^{\mathrm{i}kz_n} e^{-\mathrm{i}kz_m} \right) \boldsymbol{u} = 0,$$

and we have

$$\stackrel{\leftrightarrow}{\mathbf{M}} = \alpha^{-1} \stackrel{\leftrightarrow}{\mathbf{I}} -\omega^2 \mu_0 \sum_{n \neq m} \stackrel{\leftrightarrow}{\mathbf{G}} (\mathbf{r}_m - \mathbf{r}_n) e^{\mathrm{i}k(z_n - z_m)}, \quad \stackrel{\leftrightarrow}{\mathbf{M}} \mathbf{u} = 0,$$
(7)

and we need to evaluate

$$\overset{\leftrightarrow}{W} = \omega^2 \mu_0 \sum_{n \neq m} \overset{\leftrightarrow}{G} (r_m - r_n) e^{ik(z_n - z_m)}. \tag{8}$$

The dyadic Green function is

$$\stackrel{\leftrightarrow}{\boldsymbol{G}}(\boldsymbol{R}) = \frac{k_0}{4\pi} \frac{e^{ik_0R}}{k_0R} \left(\stackrel{\leftrightarrow}{\boldsymbol{I}} \left(1 - \frac{4\pi R}{3k_0^2} \delta(\boldsymbol{R}) - \frac{1}{k_0^2 R^2} + \frac{i}{k_0 R} \right) + \frac{\boldsymbol{R}\boldsymbol{R}}{R^2} \left(\frac{3}{k_0^2 R^2} - 1 - \frac{3i}{k_0 R} \right) \right). \tag{9}$$

Since $\mathbf{R} = \mathbf{r}_m - \mathbf{r}_n \neq 0$, the δ -function term vanishes. Since $\mathbf{r}_m - \mathbf{r}_n$ is along the z axis, We have

$$\frac{RR}{R^2} = e_z e_z, \quad R = |z_m - z_n|.$$

Therefore, by the definition (8), we have

$$\begin{split} \stackrel{\leftrightarrow}{\pmb{W}} &= \omega^2 \mu_0 \sum_{m \neq n} \mathrm{e}^{\mathrm{i} k (z_n - z_m)} \frac{k_0}{4\pi} \mathrm{e}^{\mathrm{i} k_0 R} \Bigg(\stackrel{\leftrightarrow}{\pmb{I}} \left(\frac{1}{k_0 R} + \frac{\mathrm{i}}{k_0^2 R^2} - \frac{1}{k_0^3 R^3} \right) \\ &+ \pmb{e}_z \pmb{e}_z \left(-\frac{1}{k_0 R} - \frac{3\mathrm{i}}{k_0^2 R^2} + \frac{3}{k_0^3 R^3} \right) \Bigg) \\ &= \omega^2 \mu_0 \frac{k_0}{4\pi} \left(\sum_{z_m < z_n} + \sum_{z_m > z_n} \right) \mathrm{e}^{\mathrm{i} k_0 R - \mathrm{i} k (z_m - z_n)} \Bigg(\stackrel{\leftrightarrow}{\pmb{I}} \left(\frac{1}{k_0 R} + \frac{\mathrm{i}}{k_0^2 R^2} - \frac{1}{k_0^3 R^3} \right) \right) \\ &+ \pmb{e}_z \pmb{e}_z \left(-\frac{1}{k_0 R} - \frac{3\mathrm{i}}{k_0^2 R^2} + \frac{3}{k_0^3 R^3} \right) \Bigg) \\ &= \omega^2 \mu_0 \frac{k_0}{4\pi} \left(\sum_{l=1}^{\infty} \mathrm{e}^{\mathrm{i} (k_0 - k) \Lambda l} + \sum_{l=1}^{\infty} \mathrm{e}^{\mathrm{i} (k_0 + k) \Lambda l} \right) \left(\stackrel{\leftrightarrow}{\pmb{I}} \left(\frac{1}{k_0 \Lambda l} + \frac{\mathrm{i}}{k_0^2 \Lambda^2 l^2} - \frac{1}{k_0^3 \Lambda^3 l^3} \right) \right) \\ &+ \pmb{e}_z \pmb{e}_z \left(-\frac{1}{k_0 \Lambda l} - \frac{3\mathrm{i}}{k_0^2 \Lambda^2 l^2} + \frac{3}{k_0^3 \Lambda^3 l^3} \right) \Bigg). \end{split}$$

Using formulae from Wikipedia, we have

$$\left(\sum_{l=1}^{\infty} e^{i(k_0-k)\Lambda l} + \sum_{l=1}^{\infty} e^{i(k_0+k)\Lambda l}\right) \frac{1}{l^s} = \operatorname{Li}_s(e^{i(k_0-k)\Lambda}) + \operatorname{Li}_s(e^{i(k_0+k)\Lambda}),$$

So finally we have

$$\overrightarrow{W} = \frac{\omega^2 \mu_0 k_0}{4\pi} \left(\frac{1}{k_0 \Lambda} (\overrightarrow{I} - \boldsymbol{e}_e \boldsymbol{e}_z) (\text{Li}_1(e^{i(k_0 - k)\Lambda}) + \text{Li}_1(e^{i(k_0 + k)\Lambda})) \right)
+ \frac{i}{k_0^2 \Lambda^2} (\overrightarrow{I} - 3\boldsymbol{e}_z \boldsymbol{e}_z) (\text{Li}_2(e^{i(k_0 - k)\Lambda}) + \text{Li}_2(e^{i(k_0 + k)\Lambda}))
- \frac{1}{k_0^2 \Lambda^3} (\overrightarrow{I} - 3\boldsymbol{e}_z \boldsymbol{e}_z) (\text{Li}_3(e^{i(k_0 - k)\Lambda}) + \text{Li}_3(e^{i(k_0 + k)\Lambda})). \right)$$
(10)

Problem 3 When the system is in a single mode, we have $p_m = \alpha_{\text{eff}} E_{\text{eig}}$, and from (5) we have

$$\alpha^{-1} \boldsymbol{p}_{m} = \alpha_{\text{eig}}^{-1} \boldsymbol{p}_{m} + \omega^{2} \mu_{0} \sum_{n \neq m} \overset{\leftrightarrow}{\boldsymbol{G}} (\boldsymbol{r}_{m} - \boldsymbol{r}_{n}) \cdot \boldsymbol{p}_{n},$$

and we find it is equivalent to

$$\stackrel{\leftrightarrow}{M} \cdot \boldsymbol{u} = \frac{1}{\alpha_{\text{eff}}} \boldsymbol{u} = \lambda \boldsymbol{u}. \tag{11}$$

The eigenvalues are inverse effective polarizabilities. (11) is equivalent to

$$\alpha^{-1}\boldsymbol{u} - \overset{\leftrightarrow}{\boldsymbol{W}} \cdot \boldsymbol{u} = \alpha_{\text{eig}}^{-1}\boldsymbol{u},$$

and we known that $\overset{\leftrightarrow}{W}$ is diagonal in the e_x, e_y, e_z basis, so the eigenvectors - which are polarization directions - are just e_x, e_y, e_z , and it is straightforward to find that the polarizabilities on the x and y directions are the same:

$$\alpha_{\text{eig},xy}^{-1} = \alpha^{-1} - \frac{\omega^{2} \mu_{0} k_{0}}{4\pi} \left(\frac{1}{k_{0} \Lambda} (\text{Li}_{1}(e^{i(k_{0}-k)\Lambda}) + \text{Li}_{1}(e^{i(k_{0}+k)\Lambda})) + \frac{i}{k_{0}^{2} \Lambda^{2}} (\text{Li}_{2}(e^{i(k_{0}-k)\Lambda}) + \text{Li}_{2}(e^{i(k_{0}+k)\Lambda})) - \frac{1}{k_{0}^{3} \Lambda^{3}} (\text{Li}_{3}(e^{i(k_{0}-k)\Lambda}) + \text{Li}_{3}(e^{i(k_{0}+k)\Lambda})) \right),$$
(12)

and the polarizability on the z direction is

$$\alpha_{\text{eig},z}^{-1} = \alpha^{-1} - \frac{\omega^2 \mu_0 k_0}{4\pi} \left(-\frac{2i}{k_0^2 \Lambda^2} (\text{Li}_2(e^{i(k_0 - k)\Lambda}) + \text{Li}_2(e^{i(k_0 + k)\Lambda})) + \frac{2}{k_0^3 \Lambda^3} (\text{Li}_3(e^{i(k_0 - k)\Lambda}) + \text{Li}_3(e^{i(k_0 + k)\Lambda})) \right).$$
(13)

Plotting (12) and (13) on the complex plane, we get Figure 2. It can be found that between $3\,\mathrm{eV}$ and $4\,\mathrm{eV}$, $\mathrm{Im}\,\alpha$ is considerably large, indicating that there are bands of eigenmodes in this frequency range. This frequency range is close to $\omega_\mathrm{p}/\sqrt{3}$, which means these eigenmodes are modified (since there is a periodic lattice, and dipoles interact with each other) local surface plasmon polariton modes. The behaviors of the x- and y-polarized modes are the same, which is expected because of the rotational symmetry around the z axis.

We also see two V-shaped blank regions in the plots, which means there are singularities along two $\omega = ak$ lines. These singularity lines come from the fact that $\text{Li}_s z$ is actually a multi-valued function, and its principal branch has a branch cut $1 < z < \infty$. When k_0 is close to k, $e^{i(k_0-k)\Lambda}$ is close to 1. In Figure 4 we plot the points where $k_0 = k$ onto Figure 2, and it can be seen that these points determine the position of the V-shaped blank regions.

We find that there is no $1/k_0\Lambda$ term in (13), because it is a longitude mode (the polarization direction is the same as the direction of the wave vector), while the $\sim 1/r$ term in the electric field generated by an oscillating dipole corresponds to the far-field electromagnetic wave behavior, which is definitely not a longitude mode.

Problem 4 In the $c \to \infty$ limit, $k_0 \to 0$, so all $1/(k_0\Lambda)^s$ terms in (10) diverges, and only the most divergent terms where s = 3 are important, i.e. we only keep the near field terms in G, and we have

$$\overset{\leftrightarrow}{\mathbf{W}} = \omega^2 \frac{\mu_0 k_0}{4\pi} \left(\frac{3\mathbf{e}_z \mathbf{e}_z - \overset{\leftrightarrow}{\mathbf{I}}}{k_0^3 \Lambda^3} \right) (\text{Li}_3(e^{ik\Lambda}) + \text{Li}_3(e^{-ik\Lambda})).$$

Figure 2: $\alpha_{xy}(\omega)$ and $\alpha_z(\omega)$ on the complex plane.

In the $\gamma \to 0$ limit, we have

$$\frac{1}{\alpha} = \frac{1}{4\pi\epsilon_0 a^3} \frac{\epsilon_r + 2}{\epsilon_r - 1} = \frac{1}{4\pi\epsilon_0 a^3} \frac{\omega_p^2 - 3\omega^2}{\omega_p^2}.$$

So $\overrightarrow{W} \cdot u = u/\alpha$ can be written as

$$\frac{1}{\alpha} = \frac{1}{4\pi\epsilon_0 a^3} \frac{\omega_{\rm p}^2 - 3\omega^2}{\omega_{\rm p}^2} \boldsymbol{u} = \underbrace{\omega^2 \frac{\mu_0}{4\pi} \frac{1}{k_0^2}}_{=\frac{\mu_0 c^2}{4\pi} = \frac{1}{4\pi\epsilon_0}} \left(\frac{3\boldsymbol{e}_z \boldsymbol{e}_z - \stackrel{\leftrightarrow}{\boldsymbol{I}}}{\boldsymbol{I}}}{\Lambda^3} \right) (\text{Li}_3(e^{\mathrm{i}k\Lambda}) + \text{Li}_3(e^{-\mathrm{i}k\Lambda})) \boldsymbol{u},$$

and finally

$$\overset{\leftrightarrow}{\boldsymbol{H}} \cdot \boldsymbol{u} = \frac{\omega^2}{\omega_{\rm p}^2} \boldsymbol{u},\tag{14}$$

where

$$\overset{\leftrightarrow}{\boldsymbol{H}} = \frac{1}{3} \left(1 - \frac{a^3}{\Lambda^3} (3\boldsymbol{e}_z \boldsymbol{e}_z - \overset{\leftrightarrow}{\boldsymbol{I}}) (\text{Li}_3(e^{ik\Lambda}) + \text{Li}_3(e^{-ik\Lambda})) \right).$$
(15)

By definition we know that $(\text{Li}_3(e^{ik\Lambda}) + \text{Li}_3(e^{-ik\Lambda}))$ is a real number, so (15) is a Hermitian matrix, and therefore qualifies as a Hamiltonian. Again, we find that \mathbf{H} 's eigenvectors are \mathbf{e}_x , \mathbf{e}_y and \mathbf{e}_z (the same as Problem 3), and the eigenvalues are

$$\frac{\omega_{xy}^2}{\omega_{\rm p}^2} = \frac{1}{3} \left(1 + \frac{a^3}{\Lambda^3} (\text{Li}_3(e^{ik\Lambda}) + \text{Li}_3(e^{-ik\Lambda})) \right),\tag{16}$$

and

$$\frac{\omega_z^2}{\omega_p^2} = \frac{1}{3} \left(1 - \frac{2a^3}{\Lambda^3} (\text{Li}_3(e^{ik\Lambda}) + \text{Li}_3(e^{-ik\Lambda})) \right). \tag{17}$$

These dispersion relations are plotted as Figure 3.

Plotting the dispersion relations and the singularity points into Figure 2, we get Figure 4. It can be seen that α is significantly large at the dispersion relation curves, as is expected. The features of the dispersion relations have been discussed in Problem 3. The reason why the quasi-stationary approximation works well here is because for the quasi-stationary approximation to work we need

$$\hbar\omega \ll \frac{2\pi c\hbar}{\Lambda} = 16.5 \,\mathrm{eV},$$

and for ω around $\omega_p/\sqrt{3}$ this is not a bad approximation.

The fact that all collective modes can be obtained using the quasi-stationary approximation also explains the shape of the dispersion relations. We can just regard the electric field generated

Figure 3: Dispersion relations (16) and (17).

Figure 4: $\operatorname{Im}\alpha$ on the complex plane, with the dispersion relations (the yellow line) obtained from the quasi-stationary approximation and the singularity points (the gray dotted lines) annotated.

Figure 5: The interaction between dipoles: a dipole (blue arrow) induces another dipole (green arrow) in balls nearby. (a) The case of x- or y-polarized mode. (b) The case of z-polarized mode.

by a single dipole as the electric field of a (quasi)-static dipole. For the x- or y-polarized mode, a dipole induces another dipole in the balls nearby that has the opposite direction with itself (see Figure 5(a)), while for a z-polarized mode, a dipole induces another dipole in the balls nearby that has the same direction with itself (see Figure 5(b)). In other words, in x- and y-polarized modes, a dipole suppresses dipoles nearby, while in the z-polarized modes, a dipole enhances dipoles nearby. For a 1D oscillator chain

$$\ddot{x}_n = -\omega_0^2 + K(x_{n+1} + x_{n-1} - 2x_n),$$

where K>0 means an oscillator lifts the neighbors, while K<0 means an oscillator suppresses the neighbors, the periodic solution is

$$x_n = Ae^{ik\Lambda n - i\omega t}, \quad \omega^2 = \omega_0^2 + 2K(1 - \cos(k\Lambda)),$$
 (18)

so if K>0, ω increases when k increases, and when K<0 it is exactly the opposite. This explains why for x- and y-polarized modes, as k goes up, ω decreases, while for z-polarized modes, as k goes up, ω increases.