DESARROLLO ACTIVIDADES DE LA UNIDAD 3: "ESTRUCTURAS ALGEBRAICAS" — REVISADAS POR LA ING. MARISEL BELDRAN - AÑO 2024

Actividad 3.1

Respuestas

a) En N, las operaciones resta y división no son operaciones cerradas.

Sean a y b $\in \mathbb{N}$, a – b $\in \mathbb{N}$, únicamente si a > b.

Si a ≤ b la operación a – b no tiene solución en N

Sean a y b $\in \mathbb{N}$, a \div b $\in \mathbb{N}$, únicamente si a es múltiplo de b. (b es divisor de a).

Si b no divide a a , la operación a \div b no tiene solución en $\mathbb N$

En Z, la operación resta es una operación cerrada dado que

$$\forall a, b \in \mathbb{Z}, a-b \in \mathbb{Z}$$

Sin embargo la división no lo es, $a \div b \in \mathbb{Z}$, únicamente si a es múltiplo de b. (b es divisor de a).

En ℚ y ℝ la resta es cerrada en ellos dado que

$$\forall a, b \in \mathbb{Q}, a-b \in \mathbb{Q}$$

$$\forall a, b \in \mathbb{R}, a-b \in \mathbb{R}$$

En ℚ y ℝ la división no es cerrada

$$\neg \forall a, b \in \mathbb{Q}, a \div b \in \mathbb{Q}$$

Si b = 0, no está definida la operación a ÷b, ∀ a

$$\neg \ \forall \ a,b \in \mathbb{R} \ , a \div b \in \mathbb{R}$$

Si b = 0, no está definida la operación $a \div b$, $\forall a$

Otra forma de resolver: Podemos condensar toda la información precedente en una tabla :

	N	Z	Q	R
Resta (-)	No ¹	si	si	Si
Division (÷)	No ²	No ³	No ⁴	No ⁵

La demostración en los casos en que las operaciones no son cerradas se puede hacer dando contraejemplos:

- (1) $2 \in \mathbb{N} \land 3 \in \mathbb{N} \text{ pero } (2-3) \notin \mathbb{N}$
- (2) $2 \in \mathbb{N} \land 3 \in \mathbb{N} \text{ pero } (2 \div 3) \notin \mathbb{N}$
- (3) $2 \in Z \land 3 \in Z \text{ pero } (2 \div 3) \notin Z$
- (4) $2 \in Q \land 0 \in Q \text{ pero } (2 \div 0) \notin Q$
- (5) $2 \in R \land 0 \in R \text{ pero } (2 \div 0) \notin R$

b) Sea $A = \{ x/x \text{ es un entero impar} \}$,

Si x_1 , $x_2 \in A \Rightarrow x_1 = 2 k_1 - 1$ y $x_2 = 2k_2 - 1$, por los tanto

 $x_1 + x_2 = 2k_1 + 2k_2 - 1 - 1 = 2k_1 + 2k_2 - 2 = 2(k_1 + k_2 - 1)$ que es siempre un numero par dado que

 $k_1 + k_2 - 1 \in \mathbb{Z}$. Por lo tanto la operación suma usual no es cerrada en A

Otra forma de justificar sería dar un contraejemplo:

1 ∈ A ∧ 3 ∈ A pero (1 + 3) ∉ A y por lo tanto la operación + no es ley de composición interna en A

El producto o multiplicación de dos números impares es:

 x_1 , $x_2 = (2 k_1 - 1).(2k_2 - 1) = 4k_1k_2 - 2k_1 - 2k_2 + 1 = 2(2k_1k_2 - k_1 - k_2) + 1$ es un número impar , llamando dado que $2k_1k_2 - k_1 - k_2 \in Z$. Por lo tanto la operación producto usual es cerrada en A

c) Se observa en el cuerpo de la tabla que todos los resultados pertenecen al conjunto A, por lo tanto * es una operación cerrada en A

Actividad 3.2

Respuestas

- a) En \mathbb{R}^n la operación módulo de un vector no es una operación cerrada ya que el resultado es un número real en lugar de un vector. Si tomamos el vector v=(v1,v2,...,vn) $que \in \mathbb{R}^n$ y calculamos su módulo $|v|=\sqrt{v1^2+v2^2+\cdots vn^2}$, esta operación produce un número real no negativo equivalente a la longitud del vector, por lo tanto $\not\ni \mathbb{R}^n$
- b) En el conjunto de las matrices M_{2x3} (\mathbb{R}), la trasposición no es una operación cerrada, puesto que la traspuesta de una matriz que pertenece a M_{2x3} (\mathbb{R}) es una matriz que no pertenece a este conjunto, sino que pertenece a M_{3x2} (\mathbb{R})
- c) En el conjunto de las matrices $M_{3x3}(\mathbb{R})$, la trasposición es una operación cerrada, puesto que la traspuesta de una matriz que pertenece a $M_{3x3}(\mathbb{R})$ es una matriz que también pertenece a dicho conjunto.

Actividad 3.3

Respuestas

a) Sea S = { p/ p es una proposición simple }

Conectivo → (condicional)

En la Unidad 1 se analizó que p \rightarrow q no es equivalente a q \rightarrow p por lo tanto se puede decir que no se cumple la conmutatividad para \rightarrow

Respecto de la Asociatividad, se puede mostrar realizando tabla de verdad que $(p \to q) \to r \leftrightarrow p \to (q \to r)$ es contingencia, por lo que se puede concluir que $(p \to q) \to r \quad y \quad p \to (q \to r)$ no son equivalentes y por lo tanto la operación \to no es asociativa

Conectivo v (disyunción excluyente)

Se puede mostrar, por tabla de verdad, que $(p \ \underline{v} \ q) \leftrightarrow (q \ \underline{v} \ p)$ es tautología por lo tanto $p \ \underline{v} \ q$ es equivalente a $q \ \underline{v} \ p$ y entonces se puede afirmar que la operación \underline{v} es conmutativa

Del mismo modo, por tabla de verdad se puede ver que [$(p \underline{v} q) \underline{v} r$] \leftrightarrow [$p \underline{v} (q \underline{v} r)$] es tautología por lo que se puede inferir que la operación \underline{v} es asociativa ya que [$(p \underline{v} q) \underline{v} r$] y [$p \underline{v} (q \underline{v} r)$] son equivalentes

b) En A = {a, b} y la operación * dada por tabla

*	а	b
а	b	b
b	а	b

Se observa que la tabla no es simétrica con respecto a la diagonal principal, por lo que no es conmutatividad. Por ejemplo a*b=b b*a=a

Para la asociatividad hay que tomar todas las ternas posibles (2^3) , y mostrar que cada terna cumple la igualdad según los resultados de la tabla de *

Para ver quiénes son las 8 ternas podemos ayudarnos con diagramas de árbol, como el que figura a continuación:

1) (a * a) * a = a * (a * a)	2) (b * b) * a = b * (b * a)		
b * a = a * b	b * a = b * a		
a ≠ b	a = a		
3) (a * a) * b = a * (a * b)	4) (b * a) * b = b* (a * b)		
b * b = a * a	a * b = b * b		
b = b	b = b		
5) (a * b) * a = a * (b * a)	6) (a * b) * b = a * (b * b)		
b * a = a * a	a * b = a * b		
a ≠ b	b = b		
7) (b * a) * a = b * (a * a)	8) (b * b) * b = b * (b * b)		
a * a = b * b	b * b= b * b		
b = b	b = b		

Por lo tanto, luego de analizadas las ocho igualdades, se puede afirmar que * es no es una operación binaria asociativa.

Actividad 3.4

Desarrollo:

- a) En $M_{nxn}(\mathbb{R})$, la matriz nula es el elemento neutro respecto de la suma. Si denotamos con N a la matriz nula, se tiene que A + N = N + A = A , \forall A \in $M_{nxn}(\mathbb{R})$ A su vez, \forall A \in $M_{nxn}(\mathbb{R})$, \exists -A \in $M_{nxn}(\mathbb{R})$ tal que A + (-A) = N .
 - Entonces se cumplen las propiedades de : Existencia del elemento neutro respecto de + (N, matriz nula) y de existencia del inverso respecto de + para cualquier matriz A.
- b) En A = $\{a, 0, b\}$ y la operación \otimes dada por tabla

Se observa que a es el elemento neutro respecto de \otimes ya que operando por izquierda (observar fila de a) y operando por derecha (columna de a) reproduce los encabezados de columna y fila respectivamente.

- 1° fila : $a^*a = a$, $a^*0 = 0$, $a^*b = b$
- 1° columna: a*a = a, 0*a = 0, b*a = b

\otimes	а	0	b
а	а	0	b
0	0	0	а
b	b	а	b

Para determinar si cada elemento tiene inverso, observar en el cuerpo de la tabla aquellas celdas donde el resultado fue el neutro (a) .

De lo observado se desprende que a' = a , 0' = b y b' = 0 . Por lo tanto, todos los elementos poseen inverso respecto de \otimes .

c) En A = { a , b , c } y la operación dada por tabla

Se observa que b es el neutro ya que :

$$2^{\circ}$$
 fila : $b^*a = a$, $b^*b = b$, $b^*c = c$

 2° columna: $a^*b = a$, $b^*b = b$, $c^*b = c$

Para determinar si cada celdas donde el resultado

De lo observado se elementos poseen inverso

elemento tiene inverso, observar en el cuerpo de la tabla aquellas fue el neutro (b) .

desprende que a' = c , b' = b y c' = a . Por lo tanto, todos los respecto de *

Actividad 3.5

Desarrollo:

i) Conmutatividad de \circ a \circ b = a + b + a.b y b \circ a = b + a + b.a ; y como vale conmutatividad de la suma y el producto usuales en $\mathbb Z$ entonces a \circ b = b \circ a . Por lo tanto la operación \circ es conmutativa

```
Asociatividad de o
```

```
(a \circ b) \circ c = (a + b + a.b) \circ c = a + b + a.b + c + (a + b + a.b)c = a + b + ab + c + ac + bc + abc

a \circ (b \circ c) = a \circ (b + c + b.c) = a + b + c + b.c + a.(b + c + b.c) = a + b + c + bc + ab + ac + abc
```

Comparando ambos resultados y considerando que la suma usual es conmutativa y asociativa se llega a la conclusión de que $(a \circ b) \circ c = a \circ (b \circ c)$, esto es, la operación \circ es asociativa

Conmutatividad de *

a * b = a + b + 1 y b * a = b + a + 1, por lo tanto, gracias a la conmutatividad de la suma usual se puede decir que a * b = b * a, la operación * es conmutativa.

Asociatividad de *

Llegamos al mismo resultado asociando de distinta manera por lo tanto la operación * es asociativa.

ii) Determinación de Neutro respecto de o

Llamando e_{\circ} al neutro, si es que existe, debe cumplir que:

```
a \circ e_\circ = a , \foralla (Como ya probamos la conmutatividad, también se cumplirá e_\circ \circ a = a) a + e_\circ+ a. e_\circ = a e_\circ (1+a)=0 Si a \neq -1 entonces e_\circ = 0
```

Conclusión: Podemos afirmar que en el conjunto no existe neutro dado que hay problema para a = -1, pero también se puede decir que existe neutro respecto de \circ , es 0, pero siempre que a \neq -1

Determinación de Neutro respecto de *

Llamando e_* al neutro, si es que existe, debe cumplir que:

```
\mathbf{a} * e_* = \mathbf{a} , \forall \mathbf{a} \mathbf{a} + e_* + \mathbf{1} = \mathbf{a} e_* = -\mathbf{1}
```

Conclusión: Existe neutro respecto de * , es -1

Determinación de inversos respecto de o

Llamando a' al inverso de a respecto de o se tendrá que:

```
a \circ a' =e_\circ (Como ya probamos la conmutatividad, también se cumplirá que a' \circ a =e_\circ) a + a' + a.a' = 0 , esto para a \neq -1 a'(1+a)=-a a'= -a / (1+a) pero este resultado en general no es entero. Sólo es entero para a = 0
```

Conclusión: a' no existe, salvo 0'=0

Determinación de inversos respecto de *

Llamando a" al inverso de a respecto de * se tendrá que:

```
a * a" =e_* (Como ya probamos la conmutatividad, también se cumplirá que a" \circ a =e_*) a + a" + 1 = -1 , \foralla a" = - 2 - a
```

Conclusión: a" existe ∀a y su valor se calcula mediante a"= - 2 - a

Actividad 3.6

Desarrollo:

a) Distributividad de o respecto de *

$$(a*b) \circ c = (a+b+1) \circ c = a+b+1+c+(a+b+1)c = a+b+1+c+ac+bc+c$$

 $(a\circ c) * (b\circ c) = (a+c+ac) * (b+c+bc) = a+c+ac+b+c+bc+1$

Vale la igualdad de ambos resultados gracias a la conmutatividad de la suma, por lo tanto queda demostrado que vale la distributividad por derecha de o respecto de o vesto es

$$(a*b) \circ c = (a \circ c) * (b \circ c)$$

Ahora, también vale la distributividad por izquierda de o respecto de * dado que como o es conmutativa se cumplirá que

 $(a*b) \circ c = c \circ (a*b)$ y $(a \circ c) * (b \circ c) = (c \circ a) * (c \circ b)$ y como los primeros miembros son iguales, los segundos también lo serán.

```
Distributividad de * respecto de \circ (a\circb) *c = (a + b + a.b) *c = a + b + a.b + c + 1 (a*c) \circ (b*c) = (a+c+1) \circ (b+c+1)= (a+c+1)+ (b+c+1)+ (a+c+1)(b+c+1)= a+c+1+ b+c+1+ab+cb+b+ac+c c+c+a+c+1
```

Es evidente que no vale la igualdad entre $(a \circ b) *c y (a*c) \circ (b*c)$. Por lo tanto la operación * no es distributiva respecto de \circ por derecha. Se deja para el estudiante probar que tampoco es distributiva por izquierda.

b) Las operaciones + y . definidas por las tablas dadas se comportan como las operaciones lógicas \vee y \wedge . Sabemos de ellas que son distributivas mutuamente, por lo tanto las operaciones + y . también lo son.

Actividad 3.7

Desarrollo

- a) (P_n, +) es un monoide dado que la operación + de polinomios de grado menor o igual a n da como resultado otro polinomio de grado menor o igual a n
 También (P_n, +) es un semigrupo pues la operación + de polinomios es asociativa
- b) (A, *) es un monoide dado que en el cuerpo de la tabla se observa que todos los resultados posibles son valores que pertenecen al conjunto A

Para ver la Asociatividad hay que tomar todas las ternas posibles (en este caso 27, se las puede ver ayudados por los siguientes arboles)

1*(1*2)= 1*2 = 2
(1*1)*2=3*2 =1
Por lo tanto
1*(1*2) ≠(1*1)*2

En la segunda terna tomada vemos que no se cumple la igualdad, por lo tanto la operación * no es asociativa Entonces (A, *) no es semigrupo

Actividad 3.8

Desarrollo

- a) $(M_{2x3}(\mathbb{R}), +)$ es grupo abeliano dado que se cumplen las siguientes propiedades:
 - i) + es operación cerrada en $M_{2x3}(\mathbb{R})$, la suma de matrices del mismo orden da como resultado otra matriz del mismo orden
 - ii)+ de matrices es asociativa (propiedad demostrada en la asignatura Algebra)
 - iii) Existe elemento neutro. La matriz nula N cuyos elementos son todos 0 es tal que A + N = A , para toda matriz A de $M_{2x3}(\mathbb{R})$
 - iv) Existe elemento inverso respecto de la +. Toda matriz A tiene su opuesta (-A), es tal que sumadas ambas dan por resultado la matriz nula, A + (-A) = (-A) + A = N, para toda matriz A de $M_{2\times3}(\mathbb{R})$
 - v) + es conmutativa (propiedad demostrada en la asignatura Algebra)

Actividad 3.9

- a) Demostrar que (\mathbb{Z} , *) es grupo abeliano, donde * es la operación definida como a * b = a + b + 3
- b) Sea A = $\{a, b, c\}$ y las operaciones $*_1$ y $*_2$ dadas por las tablas 6.14 y 6.15

*	а	b	С
а			
b			
С			

Tabla 3.14

Tabla 3.15

- i) Completar la tabla 6.14 de tal modo que A tenga estructura de Grupo respecto de *2 con elemento neutro b y a' = c .
- ii) Completar la tabla 6.15 de tal modo que A tenga estructura de Grupo Abeliano respecto de * y además las ecuaciones a * $_1$ x = b y c * $_2$ x = a se satisfacen para x = a

Desarrollo

- a) (\mathbb{Z} , *) es grupo abeliano donde * está definicia como a * b = a + b + 3
- i) * es operación binaria cerrada pues si a,b $\in \mathbb{Z}$, se cumple que a + b + 3 $\in \mathbb{Z}$
- ii) * es asociativa pues:

(a*b)*c=(a+b+3)*c=(a+b+3)+c+3=a+b+c+6 (por la Asociatividad y conmutatividad de la + en \mathbb{Z}

a*(b*c) = a*(b+c+3) = a+(b+c+3)+3 = a+b+c+6 (por la Asociatividad y conmutatividad de la + en \mathbb{Z}

Por lo tanto queda probado que (a * b) * c = a * (b * c)

iii) * es conmutativa pues:

$$a * b = a + b + 3$$

$$b * a = b + a + 3$$

Por lo tanto queda probado que a * b = b * a gracias a la conmutatividad de + en \mathbb{Z}

iv) \mathbb{Z} posee neutro respecto de * ya que:

$$a * e = a + e + 3 = a \Rightarrow e = -3$$

(y como vale la conmutatividad se cumple que a * e = e * a)

v) Existe a' para cada $a \in \mathbb{Z}$ respecto de * y es tal que a' = -6 - a ya que

$$a*a'=-3 \Rightarrow a+a'+3=-3 \Rightarrow a'=-6-a \in \mathbb{Z}$$

(y como vale la conmutatividad se cumple que a * a' = a' * a)

Por lo tanto (\mathbb{Z} , *) es Grupo abeliano

b) i)

٠.						
	*1	a	b	С		
	а	С	а	b		
	b	a	b	С		
	С	b	C	a		

ii)

•			
*1	a	b	С
а	b	С	a
b	С	a	b
O	a	b	С

Actividad 3.10

Desarrollo

- a) B = { a , b , c } no es subgrupo de A ya que b*c=d ∉ B
- b) B = $\{a, b\}$ es subgrupo de A ya que todos los resultados pertenecen a B

Se muestra en la siguiente tabla

*	а	b
а	а	b
b	b	а

Actividad 3.11

Sea X = { a, b} y sea A =
$$\mathcal{D}(X)$$
 = { \emptyset , {a}, {b}, {a,b} }.

Demostrar que ($\wp(X)$, \oplus , \cap) es un anillo, donde \oplus , la operación diferencia simétrica y \cap , la operación intersección están dadas por las tablas 3.16 y 3.17

\oplus	Ø	{a}	{b}	{a,b}
Ø	Ø	{a}	{b}	{a,b}
{a}	{a}	Ø	{a,b}	{b}
{b}	{b}	{a,b}	Ø	{a}
{a,b}	{a,b}	{b}	{a}	Ø

Tabla 3.16

\subset	Ø	{a}	{b}	{a,b}
Ø	Ø	Ø	Ø	Ø
{a}	Ø	{a}	Ø	{a}
{b}	Ø	Ø	{b}	{b}
{a,b}	Ø	{a}	{b}	{a,b}

Tabla 3.17

Desarrollo:

- i) $(\wp(X), \oplus)$ es grupo abeliano ya que
 - \oplus es ley de composición interna en $\wp(X)$ (se observa en la tabla)
 - \oplus es asociativa, esto es: (A \oplus B) \oplus C = A \oplus (B \oplus C) , \forall A , B , C \in \wp (X) Y está demostrado en la Unidad 2 de la asignatura
 - \oplus es conmutativa, esto es: A \oplus B = B \oplus A , \forall A , B \in $\mathscr{D}(X)$ Y está demostrado en la unidad 2 de la asignatura
 - Existe elemento neutro respecto de \oplus y es \emptyset (se observa en la tabla)
 - Todo elemento tiene inverso respecto de ⊕ y ellos son:
- ii) $\varnothing' = \varnothing$, $\{a\}' = \{a\}$, $\{b\}' = \{b\}$, $\{a,b\}' = \{a,b\}$
- iii) $(\wp(X), \cap)$ es semigrupo ya que
 - \cap es ley de composición interna en $\wp(X)$ (se observa en la tabla)
 - \bigcirc es asociativa, esto es : (A \bigcirc B) \bigcirc C = A \bigcirc (B \bigcirc C), \forall A, B, C \in $\mathscr{D}(X)$ Y está demostrado en la Unidad 2 de la asignatura
- iv) $\ \ \cap$ es distributiva respecto de \oplus , esto es:

```
(A \oplus B) \cap C = (A \cap C) \oplus (B \cap C) y

C \cap (A \oplus B) = (C \cap A) \oplus (C \cap B)
```

Por todo ello ($\wp(X)$, \oplus , \cap) tienen estructura algebraica de Anillo,

Actividad 3.12

Desarrollo:

- a) (A, +, *) donde $A = \{x \in \mathbb{Z} \mid x \text{ es par }\}$ con +y *, suma y producto usuales
 - + es ley de composición interna en A ya que la suma de números pares es siempre otro número par
 - + es asociativa en A, esto es (a + b) + c = a + (b + c), $\forall a, b, c \in A$
 - + es conmutativa en A , esto es a + b = b + a , $\forall a , b \in A$
 - Existe neutro respecto de + , es 0 el cual pertenece a A pues es par
 - Todo elemento de A , posee inverso respecto de A. Específicamente, si x es par, -x también es par

Entonces (A, +) es grupo abeliano

- * es ley de composición interna en A , el producto de números pares es siempre otro par
- * es asociativa, esto es (a*b)*c=a*(b*c), $\forall a,b,c \in A$
- * es conmutativa, esto es a * b = b * a, $\forall a, b \in A$
- El neutro respecto del producto en Z es 1 pero 1∉ A
- $(A \{0\}, *)$ no es grupo abeliano

Conclusión: (A , + , *) no tiene estructura de cuerpo

b) Las operaciones '+' y '.' Dadas por las tablas se comportan como la disyunción excluyente y la conjunción lógica, esto es, como $\underline{\vee}$ y \wedge . Entonces , por analogía con dichas operaciones podemos decir que:

(A,+) es grupo abeliano ya que:

- + es ley de composición interna
- + es asociativa
- + es conmutativa

Existe el neutro y es 0

Cada elemento posee inverso los cuales son: 0'=0 y 1'=1

 $(A - {0}, .)$ es grupo abeliano ya que

- . es ley de composición interna en A
- . es asociativa
- .es conmutativa

Existe neutro respecto de ., es 1

Considerando que $A - \{0\} = \{1\}$, se tiene que el único elemento que posee este conjunto tiene inverso, y es 1'=1

Como además es distributiva respecto de + se tiene que (A , + , .) tiene estructura algebraica de cuerpo.

Actividad 3.13

a) Sea B = $\{0, 1\}$ y las operaciones "+" y "·" definidas por las tablas 3.23 y 3.24 Demostrar que $(B, +, \cdot)$ tiene estructura de Algebra de Boole.

0 0 1 0

Tabla 3.23

Tabla 3.24

Para determinar si (B,+,·) tiene estructura de Algebra de Boole demostraremos las siguientes leyes

1°) Leyes asociativas

ASOCIATIVIDAD EN	ASOCIATIVIDAD EN LA OPERACIÓN "+"		LA OPERACIÓN "∙ "
0+(0+1) = (0+0)+1	0+(0+1) = (0+0)+1 $1+(0+1) = (1+0)+1$		1• (0•1) = (1•0) •1
0+ 1 = 0+1	1+ 1 = 1+1	0 • 0 = 0 • 0	1 • 0 = 0 • 1
1 = 1	1 = 1	0 = 0	0 = 0
0+(1+0) = (0+1)+0	1+(1+0) = (1+1)+0	0• (1•0) = (0•1) •0	1• (1•0) = (1•1) •0
0+ 1 = 1+0	1+ 1 = 1+0	0 • 0 = 0 • 0	1 • 0 = 1 •0
1 = 1	1 = 1	0 = 0	0 = 0
1+(0+0) = (1+0)+0	1+(1+1) = (1+1)+1	1• (0•0) = (1•0) •0	1• (1•1) = (1•1) •1
1+0 = 1+0	1+ 1 = 1+1	1 • 0 = 0•0	1•1=1•1
1 = 1	1 = 1	0 = 0	1 = 1
0+(1+1) = (0+1)+1	0+(0+0) = (0+0)+0	0• (1•1) = (0•1) •1	0• (0•0) = (0•0) •0
0+ 1 = 1+1	0+0=0+1	0• 1 = 0•1	$0 \bullet 0 = 0 \bullet 0$
1 = 1	0 = 0	0 = 0	0 = 0

2°) Leyes de conmutatividad

Se cumple la propiedad conmutativa en ambas tablas ya que son simétricas con respecto a la diagonal

principal

0 0 0 0 0 1

Tabla 3.23

Tabla 3.24

3°) Leyes distributivas

4°) Existencia del elemento neutro

✓ Se verifica en la tabla que el neutro para la operación + es el 0

 \checkmark Se verifica en la tabla que el neutro para la operación • es el 1

5°) Existencia del complemento

$$x + x' = x' + x = 1$$

 $0 + 1 = 1 + 0 = 1$

$$1 + 0 = 0 + 1 = 1$$

$$x \bullet x' = x' \bullet x = 0$$

$$0 \bullet 1 = 1 \bullet 0 = 0$$

D105

Por lo tanto (B,+, ·) tiene estructura de Algebra de Boole

b) Determinar si los siguientes conjuntos son Algebras de Boole: D21 , D25, D40 , D60,

D₂₁ es Algebra de Boole puesto que 21= 3 • 7

D₂₅ NO es Algebra de Boole puesto que 25= 5 • 5

D₄₀ NO es Algebra de Boole puesto que 40= 2³ •5

 D_{60} NO es Algebra de Boole puesto que $60 = 3 \cdot 5 \cdot 2^2$

 D_{105} es Algebra de Boole puesto que 105 = 3 • 5 • 7