Logic: Tutorial Week 9

Proof 1, Restricted Quantifiers

 $\forall (x: \neg Fx) \ Gx \vdash \forall (x: \neg Gx) \ Fx$ (1) $\forall (x: \neg Fx) \ Gx$ A α_1 $(2) \neg Ga$ Α $(3) \neg Fa$ Α α_3 $1, 3 \forall E_R$ (4) Ga α_1, α_3 2, 4 $[\alpha_3]$ RAA $(5) \neg \neg Fa$ α_1, α_2 $5 \neg \neg E$ (6)Fa α_1, α_2 (7) $\forall (x: \neg Gx) \ Fx$ $6 \left[\alpha_2\right] \forall I_R$

Proof 2, Restricted Quantifiers

 $\exists (x: Fx) (Gx \land Hx) \vdash \exists (x: Gx) (Fx \land Hx)$ $\exists (x: Fx) (Gx \land Hx)$ α_1 A (for $\exists E_R$) (2) Fa α_2 (3) $Ga \wedge Ha$ A (for $\exists E_R$) α_3 (4) Ga $3 \wedge E$ α_3 α_3 (5) Ha $3 \wedge E$ α_2, α_3 (6) $Fa \wedge Ha$ $2, 5 \land I$ α_2, α_3 (7) $\exists (x:Gx) (Fx \land Hx)$ $4, 6 \exists I_R$ α_1 (8) $\exists (x:Gx) (Fx \land Hx)$ $1, 7 \left[\alpha_2, \alpha_3\right] \exists \mathbf{E}_R$

Proof 3, Restricted Quantifiers

 $\exists (x: Fx) (Gx \lor Hx), \ \forall (x: Gx) \ Hx \vdash \exists (x: Hx) \ Fx$ $\exists (x: Fx) (Gx \lor Hx)$ Α α_1 (2) $\forall (x:Gx) \ Hx$ A α_2 (3)FaΑ α_3 $Ga \vee Ha$ (4)Α α_4 α_5 (5)Ga(6) $2, 5 \forall \mathbf{E}_R$ α_2, α_5 Ha(7)HaΑ (8)Ha4, 6 $[\alpha_5]$, 7 $[\alpha_7] \vee E$ α_2, α_4 $3, 8 \exists I_R$ (9) $\exists (x: Hx) \ Fx$ $\alpha_2, \alpha_3, \alpha_4$ α_1, α_2 (10) $\exists (x: Hx) \ Fx$ $1, 9 \left[\alpha_3, \alpha_4\right] \exists \mathbf{E}_R$

Proof 4, Restricted Quantifiers

 $\forall (x \colon Fx) \ \exists (y \colon Gy) \ Rxy, \ \neg \exists (x \colon Gx) \ Hx \ \vdash \ \forall (x \colon Fx) \ \exists (y \colon Rxy) \ \neg Hy$ $\forall (x: Fx) \; \exists (y: Gy) \; Rxy$ α_1 (2) $\neg \exists (x : Gx) \ Hx$ Α α_2 (3)FaA α_3 $1, 3 \forall \mathbf{E}_R$ α_1, α_3 (4) $\exists (y : Gy) \ Ray$ α_5 (5) GbA α_6 (6) RabA α_7 (7) HbΑ α_5, α_7 (8) $5, 7 \exists I_R$ $\exists (x:Gx)\ Hx$ 2, 8 $[\alpha_7]$ RAA $\alpha_2, \alpha_5 \quad (9)$ $\neg Hb$ $\alpha_2, \alpha_5, \alpha_6$ (10) $\exists (y : Ray) \neg Hy$ $6, 9 \exists I_R$ $\alpha_1, \alpha_2, \alpha_3$ (11) $\exists (y : Ray) \neg Hy$ $4, 10 \left[\alpha_5, \alpha_6\right] \exists \mathbf{E}_R$ α_1, α_2 (12) $\forall (x: Fx) \exists (y: Rxy) \neg Hy$ 11 $[\alpha_3] \forall I_R$

Proof 1, Identity

 $\vdash \ \forall x \forall y (x = y \!\rightarrow\! f(x) = f(y)$

α_1	(1)	a = b	A
	(2)	f(a) = f(a)	=I
α_1	(3)	f(a) = f(b)	1, 2 = E
	(4)	$a = b \to f(a) = f(b)$	$3 [\alpha_1] \rightarrow I$
	(5)	$\forall y (a = y \rightarrow f(a) = f(y))$	$4 \ \forall I$
	(6)	$\forall x \forall y (x = y \to f(x) = f(y))$	$5 \forall I$

Proof 2, Identity

 $\vdash \forall x \forall y (\exists z (Rxz \land \neg Ryz) \rightarrow x \neq y)$

α_1	(1)	$\exists z (Raz \land \neg Rbz)$	A
α_2	(2)	a = b	A
α_3	(3)	$Rac \wedge \neg Rbc$	A
α_3	(4)	Rac	$3 \wedge E$
α_3	(5)	$\neg Rbc$	$3 \wedge E$
α_2, α_3	(6)	Rbc	2, 4 = E
α_3	(7)	$a \neq b$	$5, 6 [\alpha_2] \text{ RAA}$
α_1	(8)	$a \neq b$	$1, 7 [\alpha_3] \exists E$
	(9)	$\exists z (Raz \land \neg Rbz) \rightarrow a \neq b$	$8 [\alpha_1] \rightarrow I$
	(10)	$\forall y (\exists z (Raz \land \neg Ryz) \rightarrow a \neq y)$	9
	(11)	$\forall x \forall y (\exists z (Rxz \land \neg Ryz) \rightarrow x \neq y)$	10 ∀I

Proof 3, Identity

 $\forall x \forall y ((Fx \land Gy) \rightarrow x = y), \ Fa \land Ha \ \vdash \ \forall x (Gx \rightarrow Hx)$ α_1 (1) $\forall x \forall y ((Fx \land Gy) \rightarrow x = y)$ α_2 (2) $Fa \wedge Ha$ Α Gb α_3 (3) Α α_2 (4) Fa $2 \wedge E$ $Fa \wedge Gb$ $3, 4 \land I$ α_2, α_3 (5) α_1 (6) $\forall y ((Fa \land Gy) \rightarrow a = y)$ $1 \ \forall E$ α_1 (7) $(Fa \wedge Gb) \rightarrow a = b$ $6 \ \forall E$ $\alpha_1, \alpha_2, \alpha_3 \quad (8)$ a = b $5, 7 \rightarrow E$ α_2 (9) $2 \wedge E$ Ha $\alpha_1, \alpha_2, \alpha_3$ (10) Hb8, 9 = E

 $10 \ [\alpha_3] \rightarrow I$

 $11 \ \forall I$

Proof 4, Identity

 α_1, α_2 (11) $Gb \rightarrow Hb$

 $\alpha_1, \alpha_2 \quad (12) \quad \forall x (Gx \rightarrow Hx)$

 $\forall x \forall y ((Fx \land Gy) \rightarrow x \neq y) \vdash \neg \exists x (Fx \land Gx)$

$lpha_1 \ lpha_2$	(1) (2)	$\forall x \forall y ((Fx \land Gy) \rightarrow x \neq y)$ $\exists x (Fx \land Gx)$	A A
α_3	(3)	$Fa \wedge Ga$	A
α_1	(4)	$\forall y ((Fa \land Gy) \rightarrow a \neq y)$	$1 \ \forall E$
α_1	(5)	$(Fa \wedge Ga) \rightarrow a \neq a$	$4 \ \forall \mathrm{E}$
α_1, α_3	(6)	$a \neq a$	$3, 5 \rightarrow E$
	(7)	a = a	=I
α_1, α_3	(8)	<u></u>	$6, 7 \neg E$
α_1, α_2	(9)	<u></u>	$2, 8 [\alpha_3] \exists E$
α_1	(10)	$\neg \exists x (Fx \land Gx)$	$9 \left[\alpha_2\right] \neg I$