Scilab Textbook Companion for Electronic Instrumentation and Measurements by J. B. Gupta¹

Created by
Sabiya
B.Tech
Electronics Engineering
Uttarakhand Tech. University
College Teacher
Mohd. Rijwan
Cross-Checked by
Lavitha Pereira

July 11, 2017

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Electronic Instrumentation and Measurements

Author: J. B. Gupta

Publisher: S. K. Katariya & Sons, New Delhi

Edition: 3

Year: 2010

ISBN: 81-89757-30-x

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		4
1	Units Dimensions and Standards	5
2	Measurement Errors	6
3	PMMC Instruments	24
4	Digital Meters	39
5	Digital Meters	44
6	Resistance Measurements	54
7	Inductance And Capacitance Measurements	64
8	Cathode Ray Oscilloscopes	86
10	Instrument Calibration And Recorders	96

List of Scilab Codes

Exa 1.1	Unit of resistance capacitance and inductance	5
Exa 2.1	Absolute error of measurement	6
Exa 2.2	Error and correction	6
Exa 2.3	True value of power	7
Exa 2.4	Relative Error	7
Exa 2.5	Limit of inductance	8
Exa 2.6	Limiting error	8
Exa 2.7	Range of the reading	8
Exa 2.8	Limiting error	9
Exa 2.9		10
Exa 2.10		10
Exa 2.12		11
Exa 2.13		12
Exa 2.14	Resolution of instrument	12
Exa 2.15		13
Exa 2.16		13
Exa 2.17	Magnitude of the resultant resistance	14
Exa 2.18	Power and limiting error of power	15
Exa 2.19		16
Exa 2.20	Nominal value of unknown resistance	17
Exa 2.21	Relative error in power factor	17
Exa 2.22		18
Exa 2.23	Uncertainly in the measurement of Z	19
Exa 2.24	Standard Deviation	20
Exa 2.25	Mean standard deviation	20
Exa 2.26		21
Exa 3.1		24
Exa 3.2	Deflection	24

Exa 3.3	Deflection produced by the 300 V
Exa 3.4	Angle through which the coil turns
Exa 3.5	Number of turns
Exa 3.6	Current in the coil
Exa 3.7	Current sensitivity voltage sensitivity megohm sensitivity 27
Exa 3.8	Value of the shunt resistance
Exa 3.9	Current range of instrument
Exa 3.10	Main circuit current
Exa 3.11	Necessary value of resistors
Exa 3.12	Three ranges of ammeter
Exa 3.13	Shunt resistance required
Exa 3.14	Estimate the resistance
Exa 3.15	Applied voltage
Exa 3.16	Additional resistance required
Exa 3.17	Instrument indication
Exa 3.18	New resistance value
Exa 4.1	Meter current voltmeter inpur
Exa 4.2	Meter circuit voltage
Exa 5.2	Analog output voltage 41
Exa 4.4	Suitable value of R1 and Rf
Exa 4.5	Value of R1
Exa 4.6	Value of R2 and meter deflection
Exa 5.1	Resolution and Full scale output
Exa 5.2	Analog output voltage 45
Exa 5.3	Resolution and full scale output 45
Exa 5.4	Value of Vx
Exa 5.5	Conversion time
Exa 5.6	Time of conversion
Exa 5.7	Maximum time upto which the reference voltage can be
	integrated
Exa 5.8	Possible error in volt
Exa 5.9	Resolution of voltmeter
Exa 5.10	Resolution of the instrument
Exa 5.11	Time taken to read the unknown voltage 51
Exa 5.12	Display indication
Exa 5.13	Frequency of the system
Exa 5.14	Resolution of measurement
Exa 5 15	Frequency of input signal 55

Exa 6.1	Apparant resistance of the unknown resistor 54
Exa 6.2	Resulting error
Exa 6.3	Value of unknown resistance and limits of possible error 56
Exa 6.4	Value of unknown resistance
Exa 6.5	Value of unknown resistance
Exa 6.6	Dials required
Exa 6.7	Limiting values of unknown resistance
Exa 6.8	Magnitude and direction of current
Exa 6.9	Sensitivity of the bridge
Exa 6.10	Ratio of galvanometer sensitivities 60
Exa 6.11	Smallest change in resistance 61
Exa 6.12	Series resistance
Exa 6.13	Maximum value of resistance
Exa 6.14	Unknown resistance
Exa 7.1	Balance the bridge under condition 64
Exa 7.2	Whether or not the bridge is complete balance 65
Exa 7.3	Range of measurements of unknown capacitance 66
Exa 7.4	Dissipation Factor
Exa 7.5	Phase angle errors and unknown capacitance 67
Exa 7.6	Values of C1 and r1 and dissipation factor
Exa 7.7	Resistive and capacitive component of unknown capac-
	itor and dissipaition factor
Exa 7.8	Power factor of the specimen
Exa 7.9	Variable capacitor and resistor required
Exa 7.10	Equivalent parallel resistance and capacitance 71
Exa 7.11	Values of C1 and r1 and dissipation factor
Exa 7.12	Resistance and inductance of coil
Exa 7.13	Resistance and inductance of coil
Exa 7.14	Resistance and inductance of inductor
Exa 7.15	Resistance and inductance of unknown inductor 74
Exa 7.16	Resistance and inductance of AB
Exa 7.17	Resistance and inductance of unknown inductor 75
Exa 7.18	Resistance and inductance at balance condition 76
Exa 7.19	Value of R and C
Exa 7.20	Series equivalent inductance and resistance
Exa 7.21	Resistance and inductance of choke coil
Exa 7.22	Effective impedance of the specimen
Exa 7 23	Value of L and C

Exa 7.24	Resistive and reactive component of unknown impedence	80
Exa 7.25	Self capacitance and inductance of the coil	80
Exa 7.26	Self capacitance of the coil	81
Exa 7.27	Value of self capacitance	82
Exa 7.28	Effective inductance and resistance of unknown coil	82
Exa 7.29	Percentage error introduced in the calculated value of Q	83
Exa 7.30	Self capacitance of the radio coil	83
Exa 7.31	Self capacitance of the coil and true and indicated values	
	of Q	84
Exa 8.1	Deflection sensitivity	86
Exa 8.2	Maximum velocity of electrons	87
Exa 8.3	Deflection sensitivity	87
Exa 8.4	Required voltage	88
Exa 8.5	Required deflecting voltage	88
Exa 8.6	Charging current and time period	89
Exa 8.7	RMS value of unknown ac voltage	89
Exa 8.8	Ratio of frequencies of vertical and horizontal signals .	90
Exa 8.9	Frequency of vertical signal	90
Exa 8.10	Frequency of vertical signal	91
Exa 8.11	Mark to space ratio	91
Exa 8.12	Phase angle for each trace	92
Exa 8.13	Pulse duration	93
Exa 8.14	Peak to peak amplitude of the signal and signal frequency	93
Exa 8.15	Value of C1 and input capacitance	94
Exa 8.16	Signal frequency	94
Exa 8.17	Minimum time division	95
Exa 10.1	Instrument accuracy	96
Exa 10.2	Wattmeter error	97

Chapter 1

Units Dimensions and Standards

Scilab code Exa 1.1 Unit of resistance capacitance and inductance

```
1 // Exa 1.1
2 clc;
3 clear;
4 close;
5 // Given data
6 \text{ V_desh= } 100; // \text{ in V}
7 I_desh= 10; // in amp
8 R_desh= V_desh/I_desh; // in
9 disp(R_desh," New unit of resistance will be equal to
            ) is : ")
10 C_desh= I_desh/V_desh; // in F
11 disp(C_desh," New unit of capacitance will be equal
      to (in Farad) is : ")
12 L_desh = V_desh/I_desh; // in L
13 disp(L_desh," New unit of inductance will be equal to
       (in Henrys) is : ")
```

Chapter 2

Measurement Errors

Scilab code Exa 2.1 Absolute error of measurement

```
1 // Exa 2.1
2 clc;
3 clear;
4 close;
5 // Given data
6 Am= 10.25; // in ohm
7 A= 10.22; // in ohm
8 del_A= Am-A; // in ohm
9 disp(del_A, "Absolute error in ohm")
```

Scilab code Exa 2.2 Error and correction

```
1 // Exa 2.2
2 clc;
3 clear;
4 close;
5 // Given data
6 Am= 6.7; // in A
```

```
7 A= 6.54; // in A

8 del_A= Am-A; // in A

9 disp(del_A, "Absolute error in A")

10 disp(-del_A, "Correction in A")
```

Scilab code Exa 2.3 True value of power

```
1 // Exa 2.3
2 clc;
3 clear;
4 close;
5 // Given data
6 Am= 25.34; // in watt
7 del_A= -0.11; // in watt
8 A= Am-del_A;
9 disp(A, "True value in watt")
```

Scilab code Exa 2.4 Relative Error

```
1 // Exa 2.4
2 clc;
3 clear;
4 close;
5 // Given data
6 Am= 205.3*10^-6; // in F
7 A= 201.4*10^-6; // in F
8 epsilon_o= Am-A;
9 epsilon_r= epsilon_o/A*100; // in %
10 disp(epsilon_r, "Percentage relative error")
```

Scilab code Exa 2.5 Limit of inductance

Scilab code Exa 2.6 Limiting error

```
1 // Exa 2.6
2 clc;
3 clear;
4 close;
5 // Given data
6 V=600; // in volt
7 A= 400; // in volt
8 epsilon_r= 2.5/100;
9 del_V= epsilon_r*V;
10 PerLimitError= del_V/A*100; // in %
11 disp(PerLimitError, "The percentage limiting error at 400 volt (in positive and negetive)");
```

Scilab code Exa 2.7 Range of the reading

```
1 // Exa 2.7
2 clc;
3 clear;
4 close;
5 // Given data
6 Am= 500; // in watt
7 epsilon_r= 1.5/100; // in neg and pos
8 // for positive value of epsilon_r
9 A1= Am*(1+epsilon_r); // in watt
10 // for positive value of epsilon_r
11 A2= Am*(1-epsilon_r); // in watt
12 disp("Range of reading of wattmeter is "+string(A2)+" watt to "+string(A1)+" watt")
```

Scilab code Exa 2.8 Limiting error

```
1 // Exa 2.8
2 clc;
3 clear;
4 close;
5 // Given data
6 epsilon_r= 1.5/100; // in neg and pos
7 \text{ A= } 10; // \text{ in amp}
8 del_A= epsilon_r*A; //in amp
9 // The magnitude of current being measured is 2.5 A.
       The relative error at this current is
10 A= 2.5; // in amp
11 epsilon_r = del_A/A;
12 // Hence, the current under measurement is between
      the limits of
13 Am = 2.5; // in amp
14 // for positive value of epsilon_r
15 A1= Am*(1+epsilon_r); // in amp
16 // for positive value of epsilon_r
17 A2= Am*(1-epsilon_r); // in amp
```

Scilab code Exa 2.9 Limiting error

```
1 // Exa 2.9
2 clc;
3 clear;
4 close;
5 // Given data
6 epsilon_r= 1/100;
7 P=1000; // in watt
8 del_P= epsilon_r*P; // in watt
9 // The magnitude of the power being measured is 100 watts.
10 PerLimitError= del_P/100*100; // in %
11 disp(PerLimitError, "The percentage limiting error at 1000 watt")
```

Scilab code Exa 2.10 Addition of resistance

```
1 // Exa 2.10
2 clc;
3 clear;
4 close;
5 // Given data
6 // For positive value of error
7 R1= 100+100*2/100; // in ohm
8 R2= 200+200*2.5/100; // in ohm
9 AddR1R2_pos= R1+R2; // in ohm
10 // For negative value of error
```

```
11 R1= 100-100*2/100; // in ohm
12 R2= 200-200*2.5/100; // in ohm
13 AddR1R2_neg= R1+R2; // in ohm
14 disp("Values of R1+R2 in ohm are "+string(
         AddR1R2_neg)+" ohm to "+string(AddR1R2_pos)+" ohm
         ")
```

Scilab code Exa 2.12 Power dissipated

```
1 // Exa 2.12
2 clc;
3 clear:
4 close;
5 // Given data
6 AV= 110.2; // true value of voltage in volt
7 AI= 5.3;// true value of current in amp
8 v= 0.2;// uncertainties in voltage in volt
9 i= 0.6; // uncertainties in current in amp
10 PLV= v/AV*100;// percentage limiting error to
      voltage drop
11 PLC= i/AI*100; // percentage limiting error to
     current
12 P= AV*AI; // in watt
13 disp(P,"The power dissipated in the resistor in watt
14 LE_P= (PLV+PLC); // limiting error in the power
      dissipation in pos and neg
15 disp(LE_P, "The limiting error in the power
      dissipation with pos and neg")
16 disp("Power dissipation")
17 disp(string(P-P*LE_P/100)+" to "+string(P+P*LE_P
     /100))
```

Scilab code Exa 2.13 Limiting error and power dissipation

```
1 // Exa 2.13
2 clc;
3 clear;
4 close;
5 // Given data
6 AR = 100; // true value of resistance in ohm
7 AI= 2; // true value of current in amp
8 R= 0.2; // uncertainties in resistance in ohm
9 I= 0.01; // uncertainties in current in amp
10 PLR= R/AR*100; // percentage limiting error to
     resistance
11 PLC= I/AI*100; // percentage limiting error to
     current
12 P=AI^2*AR; // in watt
13 LE_P= 2*PLC+PLR; // limiting error in the power
     dissipation
14 disp("Power dissipation")
15 disp(string(P-P*LE_P/100)+" to "+string(P+P*LE_P
     /100))
```

Scilab code Exa 2.14 Resolution of instrument

```
1 // Exa 2.14
2 clc;
3 clear;
4 close;
5 // Given data
6 FullScaleReading= 200; // in V
7 N= 100; // Number of division of scale
8 SD= FullScaleReading/N; // 1 scale division
9 Resolution = 1/5*SD; // in v
10 disp(Resolution, "Resolution in volt")
```

Scilab code Exa 2.15 Limiting error of the resulting capacitance

Scilab code Exa 2.16 Uncertainly in the combined resistance

```
1 // Exa 2.16
2 clc;
3 clear;
4 close;
5 // Given data
6 R1= 1; //in kohm
7 R1=R1*10^3; //in ohm
8 del_R1ByR1= 1;
9 del_R2ByR2= 1;
10 R2= 500; //in kohm
11 R= R1*R2/(R1+R2); //in ohm
12 // Let R= X/Y
13 X= R1*R2;
```

Scilab code Exa 2.17 Magnitude of the resultant resistance

```
1 // Exa 2.17
2 clc;
3 clear;
4 close;
5 // Given data
6 R1= 200; // in ohm
7 R2 = 100; //in ohm
8 R3 = 50; //in ohm
9 \text{ del}_R1ByR1 = 5;
10 \text{ del}_R2ByR2 = 5;
11 del_R3ByR3= 5;
12 // Part (i) when the resistance are connected in
      series
13 Rse= R1+R2+R3; // in ohm
14 disp(Rse, "Equivalent resistance when connected in
      seried in ohm");
15 LimError= R1/Rse*del_R1ByR1 + R2/Rse*del_R2ByR2 + R3
      /Rse*del_R3ByR3;
```

```
16 disp(LimError, "Relative limiting error of series
      resistances in percentage (with pos and neg)");
17 LimError = Rse*LimError/100; //relative limiting error
       of series equivalent resistance in ohm
18 disp(LimError, "Relative limiting error of series
      equivalent resistance in ohm")
19
20 // Part(ii) when the resistance are connected in
      parallel
21 \text{ Rp} = R1*R2*R3/(R1*R2+R2*R3+R3*R1);
22 disp(Rp, "Equivalent resistance when connected in
      parallel in ohm")
23 // Let Rp= X/Y
24 X = R1*R2*R3;
Y = R1 * R2 + R2 * R3 + R3 * R1;
26 \text{ y1} = \text{R1} * \text{R2};
27 \text{ y}2 = R2*R3;
28 y3 = R3*R1;
29 ErrorX= del_R1ByR1 + del_R2ByR2 + del_R3ByR3;
30 Errory1= del_R1ByR1 + del_R2ByR2 ;
31 Errory2= del_R2ByR2 + del_R3ByR3 ;
32 Errory3 = del_R3ByR3 + del_R1ByR1 ;
33 ErrorY= [ y1/Y*Errory1 + y2/Y*Errory2 + y3/Y*Errory3
      ];
34 LimError = ErrorX + ErrorY;
35 disp(LimError, "Percentage error (maximum possible)
      in equivalent parallel resistance in percentage")
36 LimError= Rp*LimError/100;
37 disp(LimError, "Error (maximum possible) in
      equivalent parallel resistance in ohm")
```

Scilab code Exa 2.18 Power and limiting error of power

```
1 // Exa 2.18 2 clc;
```

```
3 clear;
4 close;
5 // Given data
6 epsilon_r= 1.5/100;
7 V=100; // in volt
8 I = 150; // in mA
9 del_V= epsilon_r*V; // in volt
10 Vm= 70; // magnitude of voltage being measured in
11 PerLimError_V = del_V/Vm *100; // in %
12 del_I= epsilon_r*I; // in mA
13 Im = 80; // in mA
14 PerLimError_C= del_I/Im*100; // in %
15 P = Vm*Im/1000; // in watt
16 RelLImError_P= (PerLimError_V+PerLimError_C); // in %
17 disp(RelLImError_P, "Relative limiting error in power
       measurement in percentage")
```

Scilab code Exa 2.19 Nominal power consumed and limiting error of power

```
1 // Exa 2.19
2 clc;
3 clear;
4 close;
5 // Given data
6 E= 200; // in V
7 del_E_by_E= 1;
8 R=1000; // in ohm
9 del_R_by_R= 5;
10 P=E^2/R; // in watt
11 disp(P, "Normal power consumed in watt")
12 LimError= 2*del_E_by_E+del_R_by_R; // in %
13 disp(LimError, "Relative limiting error in measurement of power in percentage")
14 LimError= LimError*P/100; // in watt
```

```
15 disp(LimError, "Limiting error of power in watt")
```

Scilab code Exa 2.20 Nominal value of unknown resistance

```
1 // Exa 2.20
2 clc;
3 clear;
4 close;
5 // Given data
6 R1= 500; // in ohm
7 R2 = 615; // in ohm
8 R3 = 100; // in ohm
9 \text{ delR1ByR1} = 1;
10 \text{ delR2ByR2} = 1;
11 delR3ByR3= 0.5;
12 // Part(i)
13 R4=R1*R2/R3; // in ohm
14 disp(R4, "Unknown resistance in ohm")
15 delR4ByR4= delR1ByR1+delR2ByR2+delR3ByR3;
16 disp(delR4ByR4, "Relative limiting error of unknown
      resistance in percentage")
17 LimError = R4*delR4ByR4/100;
18 disp(LimError, "Limiting error in ohms");
```

Scilab code Exa 2.21 Relative error in power factor

```
1 // Exa 2.21
2 clc;
3 clear;
4 close;
5 // Given data
6 del_PbyP=0.5;
7 del_CbyC=1;
```

```
8 del_VbyV=1;
9 del_PFbyPF=del_PbyP + del_CbyC + del_VbyV;
10 disp(del_PFbyPF, "Relative limiting error in percentage (with pos and neg)")
```

Scilab code Exa 2.22 Magnitude of unknown inductance

```
1 // Exa 2.22
2 clc;
3 clear;
4 close;
5 // Given data
6 C=1; // in miu F
7 C=C*10^-6; // in F
8 P=1000; // in ohm
9 Q = 2000; // in ohm
10 r = 200; // in ohm
11 S=2000; // in ohm
12 del_C_by_C= 1;
13 del_P_by_P = 0.4;
14 \text{ del_Q_by_Q= 1};
15 \text{ del_r_by_r= 0.5};
16 \text{ del_S_by_S= 0.5};
17 Lx = C*P/S*(r*(Q+S)+Q*S); // in Henry
18 disp(Lx,"Unknown inductance in Henry")
19 // Let
20 \text{ u=Q+S;}// \text{ in ohm}
21 Error_u= Q/u*del_Q_by_Q + S/u*del_S_by_S; // in \%
22 // \text{ Let } v = r * (Q+S) = r * u
23 v = r*(Q+S);
24 Error_v= del_r_by_r + Error_u; // in \%
25 // Let
26 \quad x = Q * S;
27 Error_x= del_Q_by_Q + del_S_by_S; // in \%
28 // \text{ Let } y = r * (Q+S) + Q*S = v + x
```

Scilab code Exa 2.23 Uncertainly in the measurement of Z

```
1 // Exa 2.23
2 clc;
3 clear;
4 close;
5 // Given data
6 R=100; // in ohm
7 \text{ del}_R_by_R = 5;
8 L=2; // in Henry
9 \text{ del}_L_by_L= 10;
10 omega= 2*%pi*50;
11 // Let
12 u=R^2;
13 Error_u= 2*del_R_by_R;
14 // Let
15 \text{ v= omega^2*L^2};
16 Error_v= 2*del_L_by_L;
17 // Let
18 x = u + v;
19 Error_x= u/x*Error_u + v/x*Error_v;// in %
20 // Now
21 Z = x^{(1/2)};
22 Error_Z= 1/2*Error_x;
23 disp(Error_Z, "The uncertainly in the measurement of
      Z in percentage")
```

Scilab code Exa 2.24 Standard Deviation

```
1 // Exa 2.24
2 clc;
3 clear;
4 close;
5 // Given data
6 x1 = 49.7;
7 x2 = 50.1;
8 x3 = 50.2;
9 x4 = 49.6;
10 x5 = 49.7;
11 n=5;
12 x_bar = (x1+x2+x3+x4+x5)/5;
13 d1= x1-x_bar;
14 d2 = x2 - x_bar;
15 d3 = x3 - x_bar;
16 	 d4 = x4 - x_bar;
17 	ext{ d5} = x5 - x_bar;
18 s = sqrt((d1^2+d2^2+d3^2+d4^2+d5^2)/(n-1));
19 disp(s, "Standard deviation")
```

Scilab code Exa 2.25 Mean standard deviation

```
1 // Exa 2.25
2 clc;
3 clear;
4 close;
5 // Given data
6 x1= 41.7;
7 x2= 42;
8 x3= 41.8;
9 x4= 42;
10 x5= 42.1;
11 x6= 41.9;
```

```
12 x7 = 42.5;
13 \times 8 = 42;
14 \times 9 = 41.9;
15 \times 10 = 41.8;
16 n = 10;
17 // (i)
18 x_bar = (x1+x2+x3+x4+x5+x6+x7+x8+x9+x10)/10;
19 disp(x_bar, "Arithmetic mean")
20 	 d1 = x1 - x_bar;
21 d2 = x2 - x_bar;
22 d3 = x3 - x_bar;
23 d4 = x4 - x_bar;
24 d5 = x5 - x_bar;
25 	ext{ d6= x6-x_bar;}
26 d7 = x7 - x_bar;
27 d8 = x8 - x_bar;
28 d9 = x9 - x_bar;
29 d10 = x10 - x_bar;
30 // (ii)
31 \text{ sigma= } \frac{\text{sqrt}((d1^2+d2^2+d3^2+d4^2+d5^2+d6^2+d7^2+d8))}{(d1^2+d2^2+d2^2+d3^2+d4^2+d5^2+d6^2+d7^2+d8)}
       ^2+d9^2+d10^2)/(n-1);
32 disp(sigma, "Standard deviation");
33
34 // (iii)
35 \text{ r= } 0.6745*sigma;
36 disp(r, "Probable error of one reading")
```

Scilab code Exa 2.26 Arithmetic mean average deviation

```
1 // Exa 2.26
2 clc;
3 clear;
4 close;
5 // Given data
6 x1= 1.570;
```

```
7 x2 = 1.597;
8 \times 3 = 1.591;
9 x4 = 1.562;
10 x5 = 1.577;
11 x6 = 1.580;
12 x7 = 1.564;
13 \times 8 = 1.586;
14 \times 9 = 1.550;
15 \times 10 = 1.575;
16 n = 10;
17 // (i)
18 x_bar = (x1+x2+x3+x4+x5+x6+x7+x8+x9+x10)/10;
19 disp(x_bar, "Arithmetic mean in gramme")
20 	 d1 = x1 - x_bar;
21 d2 = x2 - x_bar;
22 d3 = x3 - x_bar;
23 	 d4 = x4 - x_bar;
24 	ext{ d5= x5-x_bar};
25 	ext{ d6= } x6-x_bar;
26 d7 = x7 - x_bar;
27 d8 = x8 - x_bar;
28 d9 = x9 - x_bar;
29 	 d10 = x10 - x_bar;
30
31 // (ii)
32 D = (abs(d1) + abs(d2) + abs(d3) + abs(d4) + abs(d5) + abs(d6) +
      abs(d7)+abs(d8)+abs(d9)+abs(d10))/n;// in gramme
33 disp(D, "Average deviation in gramme")
34
35 // (iii)
36 \text{ sigma} = \frac{\text{sqrt}}{(d1^2+d2^2+d3^2+d4^2+d5^2+d6^2+d7^2+d8)}
       ^2+d9^2+d10^2)/(n-1));// in gramme
37 disp(sigma, "Standard deviation in gramme");
38
39 // (iv)
40 V= sigma^2; // variance in gramme^2
41 disp(V, "Variance in gramme^2");
42
```

```
43 // (v)
44 r= 0.6745*sigma;// in gramme
45 disp(r, "Probable error gramme")
46
47 // (vi)
48 rm= r/sqrt(n-1);// in gramme
49 disp(rm, "Probable error of mean in gramme")
```

Chapter 3

PMMC Instruments

Scilab code Exa 3.1 Torque developed by the each coil

```
1 // Exa 3.1
2 clc;
3 clear;
4 close;
5 // Given data
6 N= 100;
7 A=4*3; // in cm^2
8 A=A*10^-4; // in m^2
9 i=20; // in mA
10 i=i*10^-3; // in A
11 B=0.05; // in T
12 T=N*i*B*A; //in Nm
13 disp(T,"Torque developed by the coil in Nm")
```

Scilab code Exa 3.2 Deflection

```
1 // Exa 3.2
2 clc;
```

```
3 clear;
4 close;
5 // Given data
6 N= 125;
7 A=4*2.5; // in cm^2
8 A=A*10^-4; // in m^2
9 i=25; // in mA
10 i=i*10^-3; // in A
11 B=0.06; // in T
12 Td=N*i*B*A; // in Nm
13 Tc_BY_theta= 25*10^-7; // in Nm/
14 // Formula Tc=Td
15 theta= Td/Tc_BY_theta; // in
16 disp(theta, "Deflection in degree")
```

Scilab code Exa 3.3 Deflection produced by the 300 V

```
1 // Exa 3.3
2 clc;
3 clear;
4 close;
5 // Given data
6 N = 100;
7 B=6*10^-2; // in Wb/m<sup>2</sup>
8 A=3*4;// in cm^2
9 A = A * 10^{-4}; // in m^2
10 V = 300; // in volt
11 R=12000; // in ohm
12 i= V/R; // in amp
13 Td=N*i*B*A; //in Nm
14 Tc_BY_theta= 25*10^-7; // in Nm/
15 // Formula Tc=Td
16 theta= Td/Tc_BY_theta; // in
17 disp(theta, "Deflection in degree")
```

Scilab code Exa 3.4 Angle through which the coil turns

```
1 // Exa 3.4
2 clc;
3 clear;
4 close;
5 // Given data
6 d= 42; // in mm
7 d=d*10^-3; // in meter
8 r= 0.6; // in meter
9 // Formula d= 2*theta*r
10 theta= d/(2*r); // radian
11 theta= 180*theta/%pi; // in
12 disp(round(theta), "Angle through which coil turn in ");
```

Scilab code Exa 3.5 Number of turns

```
1 // Exa 3.5
2 clc;
3 clear;
4 close;
5 // Given data
6 B=1.8*10^-3; // in Wb/m^2
7 K= 1.4*10^-7; // in Nm/radian
8 theta= 90; // in
9 theta=theta*%pi/180;
10 Tc= K*theta; // in N-m
11 i=5; // in mA
12 i=i*10^-3; // in amp
13 A=1.5*1.2; // in cm^2
14 A=A*10^-4; // in m^2
```

```
15  // Formula Tc= Td= B*i*A*N;
16  N= Tc/(B*i*A);
17  N=ceil(N);
18  disp(N,"Number of turns is")
```

Scilab code Exa 3.6 Current in the coil

```
1 // Exa 3.6
2 clc;
3 clear;
4 close;
5 // Given data
6 B=0.1; // in T
7 C= 100*10^--7; // in Nm/radian
8 theta= 120;// in
9 theta=theta*%pi/180;
10 Tc= C*theta; // in N-m
11 N=200; // number of turns
12 A=2.5*2; // in cm^2
13 A = A * 10^{-4}; // in m^2
14 // Formula Tc= Td= B*i*A*N;
15 i = Tc/(B*A*N); // in amp
16 disp(i*10^3, "Current in the coil in mA")
```

Scilab code Exa 3.7 Current sensitivity voltage sensitivity megohm sensitivity

```
1 // Exa 3.7
2 clc;
3 clear;
4 close;
5 // Given data
6 d=150; // in mm
```

```
7 i=2.5; // in micro amp
8 R = 200; // in ohm
9 V = R*i; // in micro volt
10 r=2.5; // in meter
11 // Part(i)
12 Si= d/i;// in mm/micro amp
13 disp(Si, "Current sensitivity in mm/micro amp")
14
15 // Part(ii)
16 Sv= d/V; // in mm/micro volt
17 disp(Sv, "Voltage sensitivity in mm/micro volt")
18
19 // Part(iii)
20 So= 1/(1/60*10^-6); // in ohm/mm
21 So=So*10^-6; // in Mohm
22 disp(So, "Megohm sensitivity in Mohm/mm")
23
24 // Part(iv)
25 i=5; // in micro amp
26 d=60*i; // in mm
27 d=d*10^-3; // in meter
28 theta=d/(2*r);//in radian
29 disp(theta, "Deflection in radians")
```

Scilab code Exa 3.8 Value of the shunt resistance

```
1  // Exa 3.8
2  clc;
3  clear;
4  close;
5  // Given data
6  Im= 50*10^-6; // in amp
7  Rm= 1000; // in ohm
8  I=1; // in amp
9  Rs= Rm/(I/Im-1); // in ohm
```

```
10 disp(Rs, "Resistance of ammeter shunt required in ohm
")
```

Scilab code Exa 3.9 Current range of instrument

```
1 // Exa 3.9
2 clc;
3 clear;
4 close;
5 // Given data
6 \text{ Rm} = 1.0; // \text{ in ohm}
7 Rse= 4999; // in ohm
8 V=250; // full scale deflection voltage in volt
9 // Formula V= Im*(Rm+Rse)
10 Im= V/(Rm+Rse); // in amp
11
12 // Part(a)
13 Rs= 1/4999; // in ohm
14 Is= Im*Rm/Rs; //in amp
15 I = Im + Is; // in amp
16 disp(I, "Current range in amp")
17
18 // Part (b)
19 I=50; // in amp
20 N=I/Im;
21 Rs= Rm/(N-1); // in ohm
22 disp(Rs, "Required shunt resistance in ohm")
```

Scilab code Exa 3.10 Main circuit current

```
1 // Exa 3.10
2 clc;
3 clear;
```

```
4 close;
5 // Given data
6 Im= 50;// in micro amp
7 Im = Im * 10^-6; // in amp
8 \text{ Rm} = 49; // \text{ in ohm}
9 Rs= 1; // in ohm
10 Is= Im*Rm/Rs;//in amp
11 I = Im + Is; // in amp
12 // (i)
13 I1= I; // in amp
14 I2= I*0.5;// in amp
15 I3= I*0.1; // in amp
16 disp(I1*10^3, "Main circuit current at FSD in mA")
17 disp(I2*10^3, "Main circuit current at 0.5 FSD in mA"
18 disp(I3*10^3, "Main circuit current at 0.1 FSD in mA"
      )
```

Scilab code Exa 3.11 Necessary value of resistors

```
1  // Exa 3.11
2  clc;
3  clear;
4  close;
5  // Given data
6  Rm= 40; // in ohm
7  Im= 1; // in mA
8  // For switch at position 1 (lowest range of 10 mA)
9  I=10; // in mA
10  N1= I/Im;
11  R1= Rm/(N1-1); // in ohm
12  // For switch at position 2 (range of 20 mA)
13  I=20; // in mA
14  N2= I/Im;
15  R2= (R1+Rm)/N2; // in ohm
```

```
16 // For switch at position 3 (range of 30 mA)
17 I = 30; // in mA
18 N3= I/Im;
19 R3= (R1+Rm)/N3; // in ohm
20 // For switch at position 4 (range of 40 mA)
21 I = 40; // in mA
22 \text{ N4= I/Im};
23 R4= (R1+Rm)/N4; // in ohm
24 // For switch at position 5 (range of 50 mA)
25 I = 50; // in mA
26 \text{ N5} = \text{I/Im};
27 \text{ R5} = (R1 + Rm) / N5; // in ohm
28 r1= R1-R2; // in ohm
29 r2 = R2 - R3; // in ohm
30 r3= R3-R4; // in ohm
31 \text{ r4= R4-R5; // in ohm}
32 \text{ r5} = R5; // in ohm
33 disp ("Resistance of the various sections of the
      Ayrtons shunt in ohm are: ")
34 disp(r1);
35 disp(r2);
36 disp(r3);
37 disp(r4);
38 disp(r5);
```

Scilab code Exa 3.12 Three ranges of ammeter

```
1 // Exa 3.12
2 clc;
3 clear;
4 close;
5 // Given data
6 Rm= 1000; // in ohm
7 Im= 1; // in mA
8 Im=Im*10^-3; // in amp
```

```
9 r3=0.05; // in ohm
10 r2=0.45;// in ohm
11 r1=4.5;// in ohm
12 // For switch at contact 1
13 Rm1 = Rm; // in ohm
14 Rs1= r1+r2+r3; // in ohm
15 I1= Im*(Rm1/Rs1+1); // in A
16 I1=I1*10^3; // in mA
17 I1=round((I1/10))*10;
18
19 disp(I1, "Ammeter range at contact 1 in mA")
20 // For switch at contact 2
21 Rm2= Rm+r1; // in ohm
22 Rs2= r2+r3;// in ohm
23 I2= Im*(Rm2/Rs2+1); // in A
24 I2=round(I2);
25 disp(I2, "Ammeter range at contact 2 in A")
26
27 // For switch at contact 3
28 Rm3= Rm+r1+r2; // in ohm
29 Rs3= r3;// in ohm
30 I3= Im*(Rm3/Rs3+1); // in A
31 I3=round(I3);
32 disp(I3, "Ammeter range at contact 3 in A")
```

Scilab code Exa 3.13 Shunt resistance required

```
1 // Exa 3.13
2 clc;
3 clear;
4 close;
5 // Given data
6 Rm= 10; // in ohm
7 Im= 50; // in mA
8 Im=Im*10^-3; // in amp
```

```
9 V=750; // in volt
10 R= V/Im-Rm; // in ohm
11 disp(R, "External resistance in ohm")
12 // Part(ii)
13 I=100; // in A
14 N=I/Im;
15 Rs= Rm/(N-1); // in ohm
16 disp(Rs, "Shunt resistance required in ohm")
```

Scilab code Exa 3.14 Estimate the resistance

```
1 // Exa 3.14
2 clc;
3 clear;
4 close;
5 // Given data
6 Tc= 120*10^-6; // in N-m
7 B= 0.5; // \text{ in wb/m}^2
8 N = 100;
9 A = 4*3; // in cm^2
10 A = A * 10^{-4} / in m^{2}
11 Rm = 0;
12 V = 100 * 1;
13 // Formula Tc= Td = B*I*N*A
14 I= Tc/(B*N*A); // in amp
15 R= V/I-Rm; // in ohm
16 disp(R, "External required resistance in ohm")
```

Scilab code Exa 3.15 Applied voltage

```
1 // Exa 3.15
2 clc;
3 clear;
```

```
4 close;
5 // Given data
6 Im= 0.2*10^{-3}; // in amp
7 \text{ Rm} = 10; // \text{ in ohm}
8 V=100; // in volt
9 R= V/Im-Rm; // in ohm
10 disp(R*10^-3, "External required resistance in kohm")
11 Im1= 0.75*Im; //in amp
12 V1= Im1*(R+Rm); // in volt
13 disp(V1, "Applied voltage at instrument current 0.75
      FSD in volt");
14
15 Im2 = 0.5*Im; //in amp
16 V2= Im2*(R+Rm); // in volt
17 disp(V2, "Applied voltage at instrument current 0.5
      FSD in volt");
18
19 Im3 = 0.25 * Im; // in amp
20 V3= Im3*(R+Rm); // in volt
21 disp(V3, "Applied voltage at instrument current 0.25
      FSD in volt");
22
23 Im4= 0.1*Im; //in amp
24 V4 = Im4 * (R+Rm); // in volt
25 disp(V4, "Applied voltage at instrument current 0.1
     FSD in volt");
```

Scilab code Exa 3.16 Additional resistance required

```
1  // Exa 3.16
2  clc;
3  clear;
4  close;
5  // Given data
6  CS= 0.1*10^-3; // current sensitivity in amp
```

```
7 VS= 1/CS; // voltage sensitivity in ohm/volt
8 VS = VS*10^-3; // in kohm/volt
9 \text{ Rm} = 500; // \text{ in ohm}
10 Rm = Rm * 10^{-3}; // in kohm
11
12 // (i) 0-10 V range
13 V=10; // full scale delection voltage in volt
14 R_T= VS*V; // in kohm
15 R1= R_T-Rm; // in kohm
16 disp(R1, "Additional required resistance at 0-10 \text{ V}
      range in kohm")
17
18 // (ii) 0-50 V range
19 V=50; // full scale delection voltage in volt
20 R_T= VS*V; // in kohm
21 R2= R_T-R1-Rm; // in kohm
22 disp(R2," Additional required resistance at 0-50 \text{ V}
      range in kohm")
23
24 // (i) 0-100 V range
25 V=100; // full scale delection voltage in volt
26 R_T= VS*V; // in kohm
27 R3 = R_T-R1-R2-Rm; // in kohm
28 disp(R3," Additional required resistance at 0-100 \text{ V}
      range in kohm")
29
30 // (i) 0-500 V range
31 V=500; // full scale delection voltage in volt
32 R_T= VS*V; // in kohm
33 R4= R_T-R1-R2-R3-Rm; // in kohm
34 disp(R4," Additional required resistance at 0-500 \text{ V}
      range in kohm")
```

Scilab code Exa 3.17 Instrument indication

```
1 // Exa 3.17
2 clc;
3 clear;
4 close;
5 // Given data
6 E = 1.5; // in V
7 RladdRm= 10; // addition of Rl and Rm in kohm
8 \text{ Rx} = 0;
9 R=R1addRm+Rx; // in kohm
10 R=R*10^3; // in ohm
11 I= E/R;//meter FSD current in amp
12
13 // At 0.8 FSD
14 Im= 0.8*I; // in amp
15 R= E/Im; // in ohm
16 R=R*10^-3; // in kohm
17 Rx = R-R1addRm; //in kohm
18 disp(Rx,"Unknown resistance at 0.8 FSD in k ")
19
20 // At 0.5 FSD
21 Im= 0.5*I; // in amp
22 R= E/Im; // in ohm
23 R=R*10^-3; // in kohm
24 Rx = R-R1addRm; //in kohm
25 disp(Rx,"Unknown resistance at 0.5 FSD in k ")
26
27 // At 0.25 FSD
28 Im = 0.25*I; // in amp
29 R= E/Im; // in ohm
30 R=R*10^-3; // in kohm
31 Rx = R-R1addRm; //in kohm
32 disp(Rx,"Unknown resistance at 0.25 FSD in k")
33
34 // At 0.1 FSD
35 \text{ Im} = 0.1*I; // in amp
36 R= E/Im; // in ohm
37 R=R*10^-3; // in kohm
38 Rx = R-R1addRm; //in kohm
```

Scilab code Exa 3.18 New resistance value

```
1 // Exa 3.18
2 clc;
3 clear;
4 close;
5 // Given data
6 \text{ Rm} = 50; // in \text{ ohm}
7 R1= 10; // in kohm
8 R1=R1*10^3; // in ohm
9 R2 = 50; // in ohm
10 Im_FSD= 100*10^-6; //meter FSD current in amp
11
12 // At 0.5 FSD , with 1.5 V
13 E=1.5; // in volt
14 Im= 0.5*Im_FSD; // in amp
15 Vm = Im *Rm; // in volt
16 IO = Vm/R2; //in amp
17 I=I0+Im;// in amp
18 Rx = E/I-R1; // in ohm
19 Rx=Rx*10^-3; //in kohm
20 disp(Rx,"Unknown resistance at 0.5 FSD with 1.5 V in
       kohm")
21 // With E= 1.25 V and Rx=0
22 E=1.25; // in volt
23 Rx = 0;
24 I=E/(R1+Rx); // in amp
25 IO=I-Im_FSD;// in amp
26 Vm = Im_FSD*Rm; // in volt
27 R2= Vm/I0; // in ohm
28 disp(R2, "Zero adjuster resistance in ohm")
29
30 // At 0.5 FSD , with 1.25 V
```

```
31 E=1.25; // in volt
32 Im= 0.5*Im_FSD; // in amp
33 Vm= Im*Rm; // in volt
34 I0= Vm/R2; // in amp
35 I=I0+Im; // in amp
36 Rx= E/I-R1; // in ohm
37 Rx=Rx*10^-3; // in kohm
38 disp(Rx,"Unknown resistance at 0.5 FSD with 1.25 V in kohm")
```

Chapter 4

Digital Meters

Scilab code Exa 4.1 Meter current voltmeter inpur

```
1 // Exa 4.1
2 clc;
3 clear;
4 close;
5 // Given data
6 V_CC= 12;// in volt
7 \text{ V_BE=0.7; //in volt}
8 Rsm=4.3; //value o Rs+Rm in kohm
9 I=1; //in mA
10
11 // Part (i)
12 V = 5; //in volt
13 V_E = V - V_BE; // in volt
14 Im= V_E/Rsm; // in mA
15 I_E=Im; // in mA
16 disp(Im, "Meter Current in mA")
17
18 // Part(ii)
19 h_FE = 100;
20 Im = Im * 10^{-3}; // in amp
21 I_B= Im/h_FE; // in amp
```

```
22 Rin= V/I_B; // in ohm
23 disp(Rin*10^-3, "Input resistance with transistor in kohm")
24 // without transistor
25 Rin= Rsm;
26 disp(Rin, "Input resistance without transistor in kohm")
27
28 // Part(iii)
29 V=2.5; // in volt
30 V_E= V-V_BE; // in volt
31 Im= V_E/Rsm; // in mA
32 I_E=Im; // in mA
33 disp(Im, "Meter current when the dc input voltage is 2.5 volt in mA")
```

Scilab code Exa 4.2 Meter circuit voltage

```
1 // Exa 4.2
2 clc;
3 clear;
4 close;
5 // Given data
6 \text{ V_CC} = 12; // \text{ in volt}
7 V_BE=0.7; //in volt
8 R_E1=3.3; // in kohm
9 V_EE= -12;// in volt
10 // Part (a) when V=0
11 V = 0; //in volt
12 V_E1 = V - V_BE - V_EE; // in volt
13 I_E1 = V_E1/R_E1; // in mA
14 disp(I_E1, "emitter current when input voltage is
      zero volt, in mA")
15
16 // Part (b)
```

```
17 // Part (i) when V=2 volt
18 V = 2; //in volt
19 V_P = 0;
20 V_E1 = V - V_BE; // in volt
21 V_E2 = V_P - V_BE; // in volt
22 Vm = V_E1 - V_E2; // in volt
23 disp(Vm, "Meter circuit voltage when input voltage is
       2 volt, in volt")
24
25 // Part (ii) when V=1 volt
26 V= 1; //in volt
27 V_P = 0;
28 V_E1 = V - V_BE; // in volt
29 V_E2 = V_P - V_BE; // in volt
30 Vm = V_E1 - V_E2; // in volt
31 disp(Vm, "Meter circuit voltage when input voltage is
       1 volt, in volt")
```

Scilab code Exa 5.2 Analog output voltage

```
1  // Exa 5.2
2  clc;
3  clear;
4  close;
5  // Given data
6  V_REF = -5; // in volt
7  V_A = -5; // in volt
8  V_C = V_A; // in volt
9  V_D = V_C; // in volt
10  V_B = 0;
11  Vout = -1*(V_A + V_B/2 + V_C/4 + V_D/8);
12  disp(Vout, "Output voltage in volt");
```

Scilab code Exa 4.4 Suitable value of R1 and Rf

```
1 // Exa 4.4
2 clc;
3 clear;
4 close;
5 // Given data
6 Im= 200; // in micro A
7 Im = Im * 10^- - 6; // in amp
8 \text{ Rm} = 5; // \text{ in kohm}
9 Rm = Rm * 10^3; // in ohm
10 I_B = 0.5; // in micro amp
11 I_B=I_B*10^-6; // in amp
12 V = 25; // in mV
13 V = V * 10^{-3}; // in volt
14 Vout = Im * Rm; // in volt
15 I = 500*I_B; // in amp
16 R1= V/I; // in ohm
17 disp(R1, "Resistor in ohm")
18 Rf = (Vout - V)/I; // in ohm
19 disp(Rf*10^-3, "Feedback resistor in kohm")
```

Scilab code Exa 4.5 Value of R1

```
1 // Exa 4.5
2 clc;
3 clear;
4 close;
5 // Given data
6 Im= 1; // in mA
7 Im=Im*10^-3; // in amp
8 Rm= 100; // in ohm
9 V=1.2; // in volt
10 R1= V/Im; // in ohm
11 disp(R1*10^-3, "Resistance in kohm")
```

```
12 Vout= Im*(Rm+R1); // in volt
13 disp(Vout, "Output voltage in volt")
```

Scilab code Exa 4.6 Value of R2 and meter deflection

```
1 // Exa 4.6
2 clc;
3 clear;
4 close;
5 // Given data
6 Vrms=120; // in mV
7 Iav= 1.25;// in mA
8 I_max= 1/0.318*Iav;// in mA
9 Vmax= sqrt(2)*Vrms;// in mV
10 R2= Vmax/I_max; // in ohm
11 disp(R2, "Value of R2 in ohm")
12 // when input voltage is 60 volt
13 Vrms=60; // in mV
14 Vmax = sqrt(2) * Vrms; // in mV
15 I_max = Vmax/R2; // in mA
16 Iav= I_max*0.318; // in mA
17 disp(Iav, "Average value of meter current in mA")
```

Chapter 5

Digital Meters

Scilab code Exa 5.1 Resolution and Full scale output

```
1 // Exa 5.1
2 clc;
3 clear;
4 close;
5 // Given data
6 V_REF= 10; // in volt
7 w2= V_REF/2; // The second MSB weight in volt
8 disp(w2, "The second MSB weight in volt")
9 w3= V_REF/4; // The third MSB weight in volt
10 disp(w3, "The third MSB weight in volt")
11 w4= V_REF/8; // The forth MSB weight in volt
12 disp(w4, "The forth MSB weight in volt")
13
14 // (i)
15 r_DAC= w4; // resolution of the DAC in volt
16 disp(r_DAC, "Resolutio of the DAC in volt");
17
18 //(ii)
19 FSO= V_REF+w2+w3+w4; // full scale output in volt
20 disp(FSO, "Full scale output in volt")
21
```

```
22 // (iii)
23 FSO_R= FSO/4; // full scale output when the feedback
    resistor is made one fourth of R in volt
24 disp(FSO_R, "The full scale output when the feedback
    resistor is made one fourth of R i volt")
```

Scilab code Exa 5.2 Analog output voltage

```
1  // Exa 5.2
2  clc;
3  clear;
4  close;
5  // Given data
6  V_REF = -5; // in volt
7  V_A = -5; // in volt
8  V_C = V_A; // in volt
9  V_D = V_C; // in volt
10  V_B = 0;
11  Vout = -1*(V_A + V_B/2 + V_C/4 + V_D/8);
12  disp(Vout, "Output voltage in volt");
```

Scilab code Exa 5.3 Resolution and full scale output

```
1 // Exa 5.3
2 clc;
3 clear;
4 close;
5 // Given data
6 D=16;
7 D1= D/2; // first MSB output in volt
8 disp(D1, "First MSB output in volt");
9 D2= D/4; // second MSB output in volt
10 disp(D2, "Second MSB output in volt");
```

```
11 D3= D/8; // third MSB output in volt
12 disp(D3, "Third MSB output in volt");
13 D4= D/16; // fourth MSB output in volt
14 disp(D4, "Fourth MSB output in volt");
15 D5= D/32; // fifth MSB output in volt
16 disp(D5, "Fifth MSB output in volt");
17 D6= D/64; // sixth MSB (LSB) output in volt
18 disp(D6, "Sixth MSB (LSB) output in volt");
19 disp(D6,"The resolution is equal to the weight of
      the LSB in volt. ")
20 // Full scale output occurs for a digital input of
      111111
21 FSO= D1+D2+D3+D4+D5+D6; // in volt
22 disp(FSO, "Full scale output occurs for a digital
     input of 111111 in volt")
23 // The output voltage for a digital input of 101011
24 D0 = 16;
25 D1=16;
26 D2=0;
27 D3 = 16;
28 \quad D4 = 0;
29 D5=16:
30 \text{ Vout} = (D0*2^0 + D1*2^1 + D2*2^2 + D3*2^3 + D4*2^4 +
      D5*2^5 )/64;// in volt
31 disp(Vout, "The output voltage for digital input of
      101011 in volt")
```

Scilab code Exa 5.4 Value of Vx

```
1 // Exa 5.4
2 clc;
3 clear;
4 close;
5 // Given data
6 R=100; // in kohm
```

```
7 R=R*10^3; //in ohm
8 C=1*10^-6; // in F
9 V_REF= 5; // in volt
10 t=0.2; // time taken to read unknown voltage in sec
11 T=R*C; // in sec
12 Vx= T/t*V_REF; // in volt
13 disp(Vx,"Unknown voltage in volt")
```

Scilab code Exa 5.5 Conversion time

```
1 // Exa 5.5
2 \text{ clc};
3 clear;
4 close;
5 // Given data
6 // For an 8-bit converter reference voltage V_REF be
       taken as 100 V
7 \text{ V_REF} = 100; // \text{ in volt}
8 f = 75*10^6; // in Hz
9 // For setting
10 D7=1;
11 Vout1= V_REF*2^7/2^8; // in volt
12 disp(Vout1, "Output voltage in volt")
13 // \text{ since } 180-100 = 80 > 50; \text{ set } D7=1
14
15 // For setting
16 D6=1;
17 Vout2= V_REF*2^6/2^8; // in volt
18 disp(Vout2, "Output voltage in volt")
19 // Hence for setting D7=1 and D6=1 output voltage
20 Vout3 = Vout1 + Vout2; // in volt
21 disp(Vout3, "Output voltage in volt")
22 // since 80 > 75; set D6=1
23 // For setting D5=1, D6=1 and D7=1
24 \quad Vout4 = V_REF*2^5/2^8 + Vout1 + Vout2; // in volt
```

```
25 disp(Vout4, "Output voltage in volt")
26 disp("All other digits will be set to zero or 1.
      Output will be accordingly indicated as a result
      of successive approximation. The Converted 8-bit
      digital form will be 1110010")
27 T=1/f;//in sec
28 disp(T*10^9, "Conversion time in ns")
```

Scilab code Exa 5.6 Time of conversion

```
1 // Exa 5.6
2 clc;
3 clear;
4 close;
5 // Given data
6 N=8; // Number of bits
7 f=1*10^6; // in Hz
8 T=1/f;
9 Tc= N*T; // in second
10 disp(Tc*10^6, "Time of conversion in micro second")
```

Scilab code Exa 5.7 Maximum time upto which the reference voltage can be integrated

```
1 // Exa 5.7
2 clc;
3 clear;
4 close;
5 // Given data
6 Vin= 2; // in volt
7 Vout= 10; // in volt
8 R=100; // kohm
9 R=R*10^3; // in ohm
```

Scilab code Exa 5.8 Possible error in volt

```
1 // Exa 5.8
2 clc;
3 clear;
4 close;
5 // Given data
6 n=3;
7 R=1/10^n;
8 fs1=1; // full scale range of 1 v
9 r1= fs1*R; // resolution for full scale range of 1 V
10 disp(r1, "Resolution for full scale range of 1 V")
11 fs2=10; // full scale range of 10 v
12 r2= fs2*R; // resolution for full scale range of 10 V
13 disp(r2, "Resolution for full scale range of 10 V")
14 // The display for 2 V reading on 10 V scale of
     3*1/2 digital meter would be 02.00 i.e
15 reading=2;
16 LSD= 5*R; // in volt
17 Total_pos_Error= reading*0.5/100+LSD; //in volt
18 disp(Total_pos_Error, "Total possible error in volt")
```

Scilab code Exa 5.9 Resolution of voltmeter

```
1 // Exa 5.9
```

```
2 clc;
3 clear;
4 close;
5 // Given data
6 R= 1/10<sup>4</sup>; // resolution
7 disp(R, "Resolution of voltmeter is:")
8 reading1 = 16.58;
9 \text{ reading2} = 0.7254;
10 disp("There are 5 digit places in 4 display, so "+
     string(reading1)+" would be displayed as 16.580 V
       on a 10V range ")
11 disp(reading2, "Any reading up to 4th decimal can be
      displayed. Hence "+string(reading2)+" will be
      displayed as ")
12 R= 10*R; // resolution on 10 V range
13 format('v',6);
14 disp("Resolution of 10 V range is "+string(R)+" So")
15 disp(reading2, "0.7254 will be displayed as ")
```

Scilab code Exa 5.10 Resolution of the instrument

```
1 // Exa 5.10
2 clc;
3 clear;
4 close;
5 // Given data
6 n=3;
7 R=1/10^n;
8 fs1=10; // full scale range of 10 v
9 r1= fs1*R; // resolution for full scale range of 10 V
10 disp(r1, "Resolution for full scale range of 10 V")
11 fs2=100; // full scale range of 100 v
12 r2= fs2*R; // resolution for full scale range of 100 v
13 disp(r2, "Resolution for full scale range of 100 V")
```

```
disp("The display of 14.53 V reading on 10 V scale would be 14.53")
disp("The display of 14.53 V reading on 100 V scale would be 0145.3")
```

Scilab code Exa 5.11 Time taken to read the unknown voltage

```
1 // Exa 5.11
2 clc;
3 clear;
4 close;
5 // Given data
6 Vmax= 255; // in volt
7 Vx= 180; // in volt
8 f=10; // in kHz
9 f=f*10^3; // in Hz
10 t= (Vmax-Vx)/(2*%pi*f*Vmax); // time taken to read
the unknown voltage in second
11 t=t*10^6; // in micro second
12 disp(t, "Time taken to read the unknown voltage in micro second");
```

Scilab code Exa 5.12 Display indication

```
1 // Exa 5.12
2 clc;
3 clear;
4 close;
5 // Given data
6 f=2.5; // in kHz
7 f=f*10^3; // in Hz
8 // Part (i) when
9 t=0.1; // in sec
```

Scilab code Exa 5.13 Frequency of the system

```
1 // Exa 5.13
2 clc;
3 clear;
4 close;
5 // Given data
6 N=045; // unit less
7 t=10; // in ms
8 t=t*10^-3; // in sec
9 f=N/t; // Hz
10 f=f*10^-3; // in kHz
11 disp(f, "Frequency in kHz")
```

Scilab code Exa 5.14 Resolution of measurement

```
1 // Exa 5.14
2 clc;
3 clear;
```

```
close;
// Given data
totalPulse= 174; // unit less
t=100; //time period of total pulses in miu s
t=t*10^-6; // in sec
t1= t/totalPulse; // time period of one pulse in sec
f= 1/t1; // frequency in Hz
f=f*10^-6; // in MHz
disp(f, "Frequency in MHz");
resolution= totalPulse/t; // in sec
resolution=resolution*10^-6; // per micro sec
disp(resolution, "Resolution of measurement per micro sec")
```

Scilab code Exa 5.15 Frequency of input signal

```
1 // Exa 5.15
2 clc;
3 clear;
4 close;
5 // Given data
6 t=1/(2*10^6); // time of one cycle o 2MHz clock in sec
7 N=500; // number of cycle
8 t1= N*t; // time of 1 cycle by the electronic counter in sec
9 f= 1/t1; // in Hz
10 f=f*10^-3; // in kHz
11 disp(f, "Frequency of input signal in kHz")
```

Chapter 6

Resistance Measurements

Scilab code Exa 6.1 Apparant resistance of the unknown resistor

```
1 // Exa 6.1
2 clc;
3 clear;
4 close;
5 // Given data
6 V= 100;// in volt
7 I=5; // in mA
8 I=I*10^-3; // in amp
9 VS= 1000; // sensitivity of voltmeter in ohm
10 VR= 150; // voltmeter range in volt
11 Rv= VS*VR;// in ohm
12 // Part (i)
13 Rm = V/I; // in ohm
14 Rm = Rm * 10^- - 3; // in kohm
15 disp(Rm, "Apparent value of unknown resistor in kohm"
     );
16
17 // Part (ii)
18 Rx = V/(I*(1-V/(I*Rv))); // in ohm
19 Rx = Rx *10^-3; /// in kohm
20 disp(Rx, "Actual value of unknown resistor in kohm")
```

```
21
22  // Part (iii)
23  epsilon_r= (Rm-Rx)/Rx*100; // in %
24  disp(epsilon_r, "Error percentage due to loading effect of voltmeter");
```

Scilab code Exa 6.2 Resulting error

```
1 // Exa 6.2
2 clc;
3 clear;
4 close;
5 // Given data
6 V = 38.4; // in volt
7 I = 0.4; // in amp
8 ammeterRange= 1;// in amp
9 voltmeterRange= 50; // in volt
10 inst_acc= 1/2;// instrument accurcy in %
11 R= 100; // resistance in ohm
12
13 R_A = 2.5; // in ohm
14 R_V= 6000; // in ohm
15 Rx= sqrt(R_A*R_V); // in ohm
16 disp(Rx, "Value of unknown resistance in ohm")
17 disp ("Since the unknown resistance is of value
      smaller than "+string(Rx)+" ohm, the voltmeter
      should be connected directly across the unknown
      resistance as it will give more accurate result")
18 Rm = V/I; // in ohm
19 Rx = V/(I*(1-V/(I*R_V))); // in ohm
20 ErrorAmmeter= inst_acc*ammeterRange/R;// Error in
     ammeter reading in amp
21 ErrorVoltmeter= inst_acc*voltmeterRange/R;// Error
      in voltmeter reading in volt
22 // Percentage error at 0.4 A reading
```

```
23 E1= ErrorAmmeter/0.4*100; //in %
24 // Percentage error at 38.4 V reading
25 E2= ErrorVoltmeter/38.4*100; //in %
26 // Error due to ammeter and voltmeter
27 E= sqrt(E1^2+E2^2);
28 // Absolute error due to ammeter and voltmeter
29 Error_ammeter_voltmeter= E/R*Rx; // in pos and neg
30 disp(Error_ammeter_voltmeter, "Absolute error due to ammeter and voltmeter in ohm")
31 disp("So the resistance is specified as "+string(Rx-Error_ammeter_voltmeter)+" to "+string(Rx+Error_ammeter_voltmeter));
```

Scilab code Exa 6.3 Value of unknown resistance and limits of possible error

```
1 // Exa 6.3
2 clc;
3 clear;
4 close;
5 // Given data
6 V=120; // in volt
7 I=8; // in amp
8 R_A = 0.3; // in ohm
9 ammeterReading= 0.01; // in A
10 voltmeterReading= 0.1; // in V
11 AmmeterRange= 10; //in A
12 VoltmeterRange = 150; //in V
13 EA= 0.25; // constructional error of the ammeter in \%
14 EV= 0.5; // constructional error of the voltmeter in
     %
15
16 Rm = V/I; // in ohm
17 Rx = Rm - R_A; // in ohm
18 ErrorAmmeter= ammeterReading/AmmeterRange*100; // in
```

```
%

19 ErrorVoltmeter= voltmeterReading/VoltmeterRange*100;
    // in %

20 del_I= ErrorAmmeter+EA; // in %

21 del_V= ErrorVoltmeter+EV; // in %

22 // since R=V/I

23 TotalError= del_I+del_V; // in % in neg and pos

24 disp(TotalError, "Total systematic error in measurement in % (neg and pos)")

25 disp("So the value of Rx is specified as "+string(Rx -Rx*TotalError/100)+" ohm to "+string(Rx+Rx* TotalError/100) +" ohm")
```

Scilab code Exa 6.4 Value of unknown resistance

```
1 // Exa 6.4
2 clc;
3 clear;
4 close;
5 // Given data
6 P=100; // in ohm
7 Q=10; // in ohm
8 S=46; // in ohm
9 R= P*S/Q; // in ohm
10 disp(R,"Unknown resistance in ohm")
```

Scilab code Exa 6.5 Value of unknown resistance

```
1 // Exa 6.5
2 clc;
3 clear;
4 close;
5 // Given data
```

```
6 S=6; // in ohm
7 AB= 25; // in cm
8 BC= 75; // in cm
9 R= S*AB/BC; // in ohm
10 disp(R, "Unknown resistance in ohm")
```

Scilab code Exa 6.6 Dials required

```
1 // Exa 6.6
2 clc;
3 clear;
4 close;
5 // Given data
6 resistor= 5000; // in ohm
7 LVR1= resistor-resistor*0.1/100; // Limiting value of 5000 ohm resistor in negative error
8 LVR2= resistor+resistor*0.1/100; // Limiting value of 5000 ohm resistor in positve error
9 disp("Limiting value of 5000 ohm resistance is "+ string(LVR1)+" ohm to "+string(LVR2)+" ohm")
10 disp("Thus dials of 1000 , 100 , 10 and 1 ohm would to be adjusted");
```

Scilab code Exa 6.7 Limiting values of unknown resistance

```
1 // Exa 6.7
2 clc;
3 clear;
4 close;
5 // Given data
6 P=100; // in ohm
7 Q=100; // in ohm
8 S=230; // in ohm
```

```
9 R=P*S/Q; // in ohm
10 del_P_BY_P= 0.02; // in %
11 del_Q_BY_Q= 0.02; // in %
12 del_S_BY_S= 0.01; // in %
13 del_R_BY_R= del_P_BY_P + del_Q_BY_Q + del_S_BY_S; // in %
14 disp(del_R_BY_R, "Relative limiting error of unknown resistance in percentage")
15 disp("So limiting values of unknown resistance "+ string(R-R*del_R_BY_R/100)+" ohm to "+string(R+R*del_R_BY_R/100)+" ohm")
```

Scilab code Exa 6.8 Magnitude and direction of current

```
1 // Exa 6.8
2 clc;
3 clear;
4 close;
5 // Given data
6 P=1000; // in ohm
7 Q=1000; // in ohm
8 \text{ S=100;} // \text{ in ohm}
9 E=2; // in volt
10 Rg=50; // in ohm
11 R_desh= 101; // in ohm
12 R=Q*S/P; // in ohm
13 del_R = R_desh - R; // in ohm
14 E_{Th} = E*[(R+del_R)/(R+del_R+S) - P/(P+Q)]; // in volt
15 R_Th = [(R+del_R)*S/(R+del_R+S) + P*Q/(P+Q)]; //in ohm
16 Ig = E_Th/(R_Th+Rg); // in amp
17 Ig=Ig*10^+6; // in micro amp
18 disp(Ig, "The galvanometer current in micro amp")
```

Scilab code Exa 6.9 Sensitivity of the bridge

```
1 // Exa 6.9
2 clc;
3 clear;
4 close;
5 // Given data
6 P=100; // in ohm
7 \ Q=1000; // in ohm
8 S=2000; // in ohm
9 E=5;// in volt
10 Si= 5; // in mm/miuA
11 Rg=200;// in ohm
12 R_desh= 202; // in ohm
13 R=P*S/Q; // in ohm
14 del_R= R_desh-R; // in ohm
15 E_Th = E*[(R+del_R)/(R+del_R+S) - P/(P+Q)]; // in volt
16 R_Th= [(R+del_R)*S/(R+del_R+S)+ P*Q/(P+Q)]; //in ohm
17 Ig = E_Th/(R_Th+Rg); // in amp
18 Ig=Ig*10^+6; // in micro amp
19 theta= Si*Ig; // in mm
20 disp(theta, "Deflection of the galvanometer in mm")
21 S_B= theta/del_R; // in mm/ohm
22 disp(S_B, "Sensitivity of the bridge in mm/ohm")
```

Scilab code Exa 6.10 Ratio of galvanometer sensitivities

```
1 // Exa 6.10
2 clc;
3 clear;
4 close;
5 // Given data
6 P=1000; // in ohm
7 Q=100; // in ohm
8 R=200; // in ohm
```

```
9 E=5;// in volt
10 Si1= 10;// in mm/miuA
11 Si2= 5;// in mm/miuA
12 Rg1= 400;// in ohm
13 Rg2= 100;// in ohm
14 S=R*Q/P;// in ohm
15 R_Th= R*S/(R+S)+ P*Q/(P+Q);// in ohm
16 // theta=Si1*E*S*del_R/((R+S)^2*(R_Th+Rg))
17 // RatioTheta21= theta2/theta1
18 RatioTheta21= Si2/Si1*(R_Th+Rg1)/(R_Th+Rg2);
19 disp(RatioTheta21, "Ratio of deflection on two galvanometers")
```

Scilab code Exa 6.11 Smallest change in resistance

```
1 // Exa 6.11
2 clc;
3 clear;
4 close;
5 // Given data
6 P=500; // in ohm
7 S=P;
8 Q=S;
9 R=P;
10 R_Th=R; // in ohm
11 Rg=100; // in ohm
12 E=10; // in volt
13 Ig= 1; // in nA
14 Ig=Ig*10^-9; //in amp
15 // Formula Ig= E_Th/(R_Th+Rg) and E_Th= E*del_R/(4*R)
16 // Ig = (E*del_R/(4*R))/(R_Th+Rg) and
17 del_R = Ig*(R_Th+Rg)*4*R/E; // in ohm
18 del_R = del_R * 10^3; // in mohm
19 disp(del_R,"The smallest change in resistance in
```

Scilab code Exa 6.12 Series resistance

```
1 // Exa 6.12
2 clc;
3 clear;
4 close;
5 // Given data
6 R = 200; // in ohm
7 S=R;
8 \text{ P=S};
9 \quad Q=P;
10 r=2;// in ohm
11 E=24; // in volt
12 Power= 0.5; // in W
13 // Formula Power= I^2/R
14 I= sqrt(Power/R); // in A
15 disp(I, "Maximum power dissipation in amp")
16 V=I*2*R;// in volt
17 // Formula E= V+2*I*(r+R)
18 R= (E-V)/(2*I)-r; // in ohm
19 disp(R, "Series resistance in ohm")
```

Scilab code Exa 6.13 Maximum value of resistance

```
1 // Exa 6.13
2 clc;
3 clear;
4 close;
5 // Given data
6 P=10000;// in ohm
7 Q=10;// in ohm
```

```
8 S=5; // in kohm
9 S=S*10^3; // in ohm
10 E=12;// in volt
11 R=P*S/Q; // in ohm
12 disp(R*10^-6, "The maximum value of resistance that
     can be measurement with the given argument in
     Mohm")
13 R_Th= R*S/(R+S)+ P*Q/(P+Q); // in ohm
14
15 // Part (ii)
16 theta= 2.5; // in mm
17 Rg=100; // in ohm
18 Si=100; // in mm/miuA
19 Si=Si*10^6;// in mm/amp
20 del_R= theta*(R_Th+Rg)*(R+S)^2/(Si*E*S); // in ohm
21 disp(del_R*10^-3, "Change in resistance in kohm")
```

Scilab code Exa 6.14 Unknown resistance

```
1 // Exa 6.14
2 clc;
3 clear;
4 close;
5 // Given data
6 p=200.62; // in ohm
7 q=400; // in ohm
8 P=200.48; // in ohm
9 Q=400; // in ohm
10 S=100.03; // in micro ohm
11 S=S*10^-6; // in ohm
12 r=700; // in micro ohm
13 r=r*10^-6; // in ohm
14 X= P*S/Q+q*r/(p+q)*(P/Q-p/q); // in ohm
15 disp(X*10^+6, "Unknown resistance in micro ohm")
```

Chapter 7

Inductance And Capacitance Measurements

Scilab code Exa 7.1 Balance the bridge under condition

```
1 // Exa 7.1
2 clc;
3 clear;
4 close;
5 // Given data
6 \text{ Z1= } 100; // in
7 theta1= 30; // in
8 Z2 = 50; // in
9 theta2= 0;// in
10 Z3= 200; // in
11 theta3= -90; // in
12 \quad Z4 = 100; // in
13 theta4= 30;// in
14 \text{ if } Z1*Z4 = = Z2*Z3 \text{ then}
       disp("The first condition is satisfied")
15
16 end
17 if theta1+theta4 = = theta2+theta3 then
       disp("The second condition is also satisfied, So
18
            it is possible to balance the bridge under
```

```
the given condition")

19 else
20 disp("The second condition is not satisfied.")

21 disp("So balance is not possible under given condition")

22 end
```

Scilab code Exa 7.2 Whether or not the bridge is complete balance

```
1 // Exa 7.2
2 clc;
3 clear;
4 close;
5 // Given data
6 	 Z1 = 1000; // in
7 theta1= -90; // in
8 Z2 = 500; // in
9 theta2= 0;// in
10 Z3= 1000; // in
11 theta3= 0;// in
12 R4= 100; // in
13 XL4 = 500; // in
14 Z4 = abs(R4 + \%i * XL4); // in
15 theta4= atand(imag(R4+\%i*XL4), real(R4+\%i*XL4)); // in
16 if theta1+theta4 = = theta2+theta3 then
17
       disp("The first condiiton is satisfied.")
18 else
19 disp("Balance is not possible with given
      configuration")
20 end
21 // 1/Z1 = 1/R1 + j * omega * C1
                               ( i )
22 // According to figure 1/Z1 = R4/(Z2*Z3) + \%i*XL4/(Z2*Z3)
                  (ii)
23 // Comparing real and j-components of Eqn (i) and (
```

```
ii)
24 R1 = Z2*Z3/R4; // in
25 OmegaC1= Z2*Z3/XL4;// in
26 disp("Since X_C1 is already equal to "+string(
     OmegaC1)+", the bridge can be balanced simply
     by placing a")
27 disp("resistance of "+string(R1)+"
                                          across the
      capacitor arm 1")
28 // Z3 = R3 - j * X_C3
                            (iii)
29 Z3= Z1*expm(%i*theta1*%pi/180)*Z4*expm(%i*theta4*%pi
     /180)/(Z2*expm(%i*theta2*%pi/180));//
30 // Comparing real and j-components of Eqn (iii) and
     (iv)
31 R3 = 1000; // in
32 \text{ XC3} = 200; // in
33 disp("Since R3 is already of "+string(R3)+", the
      bridge can be balanced simply by adding a")
34 disp("capacitor of reactance X_C3 of "+string(XC3)+"
          in series with the resistor R3 in arm 3.")
```

Scilab code Exa 7.3 Range of measurements of unknown capacitance

```
1 // Exa 7.3
2 clc;
3 clear;
4 close;
5 // Given data
6 C2= 0.2; // in micro F
7 Ratio21= 10/1; // resistance ratio R2/R1
8 C1= C2*Ratio21; // in micro F
9 Ratio21_desh= 1/10;
10 C1_desh= C2*Ratio21_desh; // in micro F
11 disp("So range of measurement of unknown capacitance is "+string(C1_desh)+" micro F to "+string(C1)+" micro F")
```

Scilab code Exa 7.4 Dissipation Factor

```
1 // Exa 7.4
2 clc;
3 clear;
4 close;
5 // Given data
6 \text{ R2} = 5; // \text{ in ohm}
7 R3 = 2000; // in ohm
8 R4 = 2950; // in ohm
9 C2= 0.5;// in micro F
10 C2=C2*10^-6; // in F
11 r2=0.4;// in ohm
12 f = 450; // in Hz
13 omega= 2*%pi*f;
14 // Under Balace Condition Z1*Z4=Z2*Z3
15 / [r1+1/(j*omega*C1)]*R4= [r2+R2+1/(j*omega*C2)]*R3
16 // Equating the real parts we have, r1*R4=(r2+R2)*
     R3
17 r1= (r2+R2)*R3/R4; // in ohm
18 disp(r1, "Value of r1 in ohm")
19 // Equating imaginary parts we have R4/(j*omega*C1)=
      R3/(j*omega*C2)
20 C1= R4/R3*C2; // in F
21 disp(C1*10^6, "Value of C1 in micro F");
22 Tan_toh= omega*C1*r1;
23 disp(Tan_toh, "Dissipation Factor is")
```

Scilab code Exa 7.5 Phase angle errors and unknown capacitance

```
1 // Exa 7.5
```

```
2 clc;
3 clear;
4 close;
5 // Given data
6 f = 1000; //in Hz
7 R1 = 1000; //in ohm
8 R2=1000; // in ohm
9 R3=2000; //in ohm
10 R4=2000; // in ohm
11 C1=1*10^-6; //in F
12 r1= 10; // in ohm
13 omega=2*\%pi*f;
14 C2=C1*R1/R2; //in F
15 disp(C2*10^6, "Unknown capacitance in micro F");
16
17 r2=(R2*(R3+r1)-R1*R4)/R1; //in ohm
18 del_1=omega*r1*C1; //in radian
19 del_1=del_1*180/%pi;// in
20 disp(del_1, "Phase angle error1 in degree");
21 del_2=omega*r2*C2;//in radian
22 del_2=del_2*180/%pi;// in degree
23 disp(del_2, "Phase angle error2 in degree");
```

Scilab code Exa 7.6 Values of C1 and r1 and dissipation factor

```
1 // Exa 7.6
2 clc;
3 clear;
4 close;
5 // Given data
6 f=500; //in Hz
7 R2=4.8; //in ohm
8 R3=2*10^3; // in ohm
9 R4=2.85*10^3; //in ohm
10 C2=0.5*10^-6; //in F
```

```
11 r2= 0.4; // in ohm
12 omega=2*%pi*f;
13 C1=C2*R4/R3; // in F
14 disp(C1*10^6, "Unknown capacitance in micro F ");
15 r1=(R3*(R2+r2))/R4; // in ohm
16 disp(r1, "Resistance of unknown capacitance in ohm")
17 Tan_del_1= omega*C1*r1;
18 disp(Tan_del_1, "Dissipation factor is ")
```

Scilab code Exa 7.7 Resistive and capacitive component of unknown capacitor and dissipaition factor

```
1 // Exa 7.7
2 clc;
3 clear;
4 close;
5 // Given data
6 f = 50; //in Hz
7 R2=330*10^3; //in ohm
8 R3=15*10^3; // in ohm
9 R4=22*10^3; //in ohm
10 C2=0.12*10^-6; //in F
11 omega=2*%pi*f;
12 R1= R2*R3/R4; // in ohm
13 disp(R1*10^-3, "Resistive component of unknown
      resistance in kohm")
14 C1 = C2*R4/R3; // in F
15 disp(C1*10^6, "Capacitive component of unknown
      capacitor in micro F")
16 D=1/(omega*C1*R1);
17 disp(D, "Dissipation factor is")
```

Scilab code Exa 7.8 Power factor of the specimen

```
1 // Exa 7.8
2 clc;
3 clear;
4 close;
5 // Given data
6 f = 50; //in Hz
7 R4=309; //in ohm
8 R2 = 100; // in ohm
9 C3=109*10^-12; //in F
10 C4=0.5*10^-6; //in F
11 omega=2*%pi*f;
12 Cx = C3*R4/R2; // in F
13 disp(Cx*10^12, "Equivalent series capacitance in
         F ");
14 Rx = C4*R2/C3; // in ohm
15 // Power factor of the specimen
16 Tan_delta= omega*Cx*Rx;
17 disp(Tan_delta, "Power factor of the specimen is ")
```

Scilab code Exa 7.9 Variable capacitor and resistor required

```
1 // Exa 7.9
2 clc;
3 clear;
4 close;
5 // Given data
6 f=50; //in Hz
7 R4=1000; //in ohm
8 C3=50*10^-12; //in F
9 delta=9; // in
10 epsilon_r= 2.3;
11 epsilon_0= 8.854*10^-12;
12 d= 0.3*10^-2; // in meter
13 A=314; // area of each electrode in square cm
14 A=A*10^-4; // in square meter
```

```
omega=2*%pi*f;
cl= epsilon_r*epsilon_0*A/d;// in F
// Formula tan (delta)= 1/(omega*C1*R1)
R1= 1/(omega*C1*tand(delta));// in ohm
c4= 1/(omega^2*C1*R1*R4);// in F
disp(C4*10^6," Variable capacitor in micro F")
R2= C3*R4*(cosd(delta))^2/C1;// in ohm
disp(R2," Variable resistance in ohm")
// Note: Calculation of R2 in the book is wrong
```

Scilab code Exa 7.10 Equivalent parallel resistance and capacitance

```
1 // Exa 7.10
2 clc;
3 clear;
4 close;
5 format('v',7);
6 // Given data
7 f=25; //in kHz
8 f = f * 10^3; // in Hz
9 R1=3.1*10^3; //in ohm
10 R2=25*10^3; //in ohm
11 R4=100*10^3; //in ohm
12 C1=5.2*10^-6; //in F
13 omega= 2*%pi*f;
14 // From C3/C1= R2/R4-R1/R3
15 // C3 = C1*(R2/R4-R1/R3)
                                       ( i )
16 // and omega= 1/ \operatorname{sqrt} (R1*R3*C1*C3)
17 // R3 = 1/(omega^2*R1*C1*C3), putting this value in (
18 C3 = C1*R2/(R4*(1+R1^2*C1^2*omega^2)); // in F
19 disp(C3*10^12, "Equivalent capacitance in
20 R3= 1/(\text{omega}^2*R1*C1*C3); // \text{ in ohm}
21 disp(R3*10^-3, "Equivalent parallel resistance in
```

```
kohm")

22

23

24 // Note Evaluating the value of C3 in the book is wrong.
```

Scilab code Exa 7.11 Values of C1 and r1 and dissipation factor

```
1 // Exa 7.11
2 clc;
3 clear;
4 close;
5 // Given data
6 format('v',9);
7 R2 = 5; // in ohm
8 R3= 2000; // in ohm
9 R4 = 2950; // in ohm
10 C2 = 0.5; // in miu F
11 C2=C2*10^-6; // in F
12 r2=0.4;// in ohm
13 f=450; // in Hz
14 omega= 2*%pi*f;
15 // Under Balace Condition Z1*Z4=Z2*Z3
16 / [r1+1/(j*omega*C1)]*R4= [r2+R2+1/(j*omega*C2)]*R3
17 // Equating the real parts we have, r1*R4=(r2+R2)*
     R3
18 r1= (r2+R2)*R3/R4; // in ohm
19 disp(r1, "Value of r1 in ohm")
20 // Equating imaginary parts we have R4/(j*omega*C1)=
      R3/(j*omega*C2)
21 C1= R4/R3*C2; // in F
22 disp(C1*10^6, "Value of C1 in micro F");
23 Tan_toh= omega*C1*r1;
24 disp(Tan_toh, "Dissipation Factor is")
```

Scilab code Exa 7.12 Resistance and inductance of coil

```
1 // Exa 7.12
2 clc;
3 clear;
4 close;
5 // Given data
6 L1= 52.6; // in mH
7 r1= 28.5; // in ohm
8 R2= 1.68; // in ohm
9 R3= 80; // resistance in ohm
10 R4= 80; // resistance in ohm
11 r2= r1*R3/R4-R2; // in ohm
12 disp(r2," Resistance of coil in ohm")
13 L2=L1*R3/R4; // in mH
14 disp(L2," Inductance of coil in mH");
```

Scilab code Exa 7.13 Resistance and inductance of coil

```
1 // Exa 7.13
2 clc;
3 clear;
4 close;
5 // Given data
6 L= 47.8; // in mH
7 R= 1.36; // in ohm
8 R2= 100; // in ohm
9 R3= 32.7; // in ohm
10 R4= 100; // in ohm
11 R1= R2*R3/R4-R; // in ohm
12 disp(R1, "Resistance of coil in ohm");
13 L1= R2/R4*L; // in mH
```

```
14 disp(L1, "Inductance of coil in mH")
```

Scilab code Exa 7.14 Resistance and inductance of inductor

```
1 // Exa 7.14
2 clc;
3 clear;
4 close;
5 // Given data
6 R2= 1000; // in ohm
7 R3 = 1000; //in ohm
8 R4 = 1000; //in ohm
9 C4= 0.5; // in miu F
10 C4= C4*10^-6; // in F
11 R1= R2*R3/R4; // in ohm
12 disp(R1, "Resistance of inductor in ohm")
   L1= C4*R2*R3; // in H
13
    disp(L1, "Inductance of inductor in H")
14
```

Scilab code Exa 7.15 Resistance and inductance of unknown inductor

```
1 // Exa 7.15
2 clc;
3 clear;
4 close;
5 // Given data
6 r= 469; // in ohm
7 R2= 1000; // in ohm
8 R3= 218; // in ohm
9 R4= 1000; // in ohm
10 C= 10; // in miu F
11 C= C*10^-6; // in F
12 R1= R2*R3/R4; // in ohm
```

```
disp(R1, "Resistance of inductor in ohm")
L1= C*R2/R4*(r*(R3+R4)+R3*R4); // in H
disp(L1, "Inductance of inductor in H")
```

Scilab code Exa 7.16 Resistance and inductance of AB

```
1 // Exa 7.16
2 clc;
3 clear;
4 close;
5 // Given data
6 r = 500; // in ohm
7 R2 = 400; // in ohm
8 R3 = 400; //in ohm
9 R4= 400; // in ohm
10 C= 2; // in miu F
11 C = C*10^-6; // in F
12 R= R2*R3/R4; // in ohm
13 disp(R, "Resistance of AB in ohm")
14
   L = C*R2/R4*(r*(R3+R4)+R3*R4); // in H
    disp(L,"Inductance of AB in H")
15
```

Scilab code Exa 7.17 Resistance and inductance of unknown inductor

```
1 // Exa 7.17
2 clc;
3 clear;
4 close;
5 // Given data
6 r= 100; // in ohm
7 R2= 1000; // in ohm
8 R3= 500; // in ohm
9 R4= 1000; // in ohm
```

```
10 C= 3; // in micro F

11 C= C*10^-6; // in F

12 Rx= R2*R3/R4; // in ohm

13 disp(Rx," Value of Rx in ohm")

14 Lx= C*R2/R4*(r*(R3+R4)+R3*R4); // in H

15 disp(Lx," Value of Lx in H")
```

Scilab code Exa 7.18 Resistance and inductance at balance condition

```
1 // Exa 7.18
2 clc;
3 clear;
4 close;
5 // Given data
6 R2= 1000; // in ohm
7 \text{ R3} = 16800; // \text{in ohm}
8 R4= 833; //in ohm
9 C4 = 0.38; // in miu F
10 C4= C4*10^-6; // in F
11 f = 50; // in Hz
12 \text{ omega=2*\%pi*f};
13 L1= R2*R3*C4/(1+(omega*C4*R4)^2); // in H
14 disp(L1, "Unknown inductance in H");
15 R1= R2*R3*R4*omega^2*C4^2/(1+(omega*C4*R4)^2); // in
      ohm
16 disp(R1, "Unknown resistance in ohm")
```

Scilab code Exa 7.19 Value of R and C

```
1 // Exa 7.19
2 clc;
3 clear;
4 close;
```

```
5 // Given data
6 R1= 500; //in ohm
7 R2 = 1000; // in ohm
8 R3 = R2; //in ohm
9 L1= 0.18; // in H
10 f = 5000/(2*\%pi); // in Hz
11 omega= 2*%pi*f;
12 // L1 = R2*R3*C4/(1+(omega*C4*R4)^2)
                                              ( i )
13 // and R1= R2*R3*R4*omega^2*C4^2/(1+(omega*C4*R4))
      ^{2}) or R1= omega ^{2}*R4*C4*L1
14 R4C4= R1/(omega^2*L1);
15 // From eq (i)
16 C4= L1*(1+(omega*R4C4)^2)/(R2*R3);// in F
17 disp(C4*10^6, "Value of C in micro F");
18 R4= R4C4/C4; // in ohm
19 disp(round(R4), "Value of R4 in ohm")
```

Scilab code Exa 7.20 Series equivalent inductance and resistance

```
1 // Exa 7.20
2 clc;
3 clear;
4 close;
5 // Given data
6 R2= 1000; //in ohm
7 R3= 10000; // in ohm
8 R4 = 2000; //in ohm
9 C4= 1*10^-6; // in F
10 omega= 3000; // radians/sec
11 L1= R2*R3*C4/(1+(omega*C4*R4)^2); // in H
12 disp(L1, "Equivalent inductance of the network in H")
13 R1= R2*R3*R4*omega^2*C4^2/(1+(omega*C4*R4)^2); // in
     ohm
14 disp(R1*10^-3, "Equivalent resistance of the network
     in kohm")
```

Scilab code Exa 7.21 Resistance and inductance of choke coil

```
1 // Exa 7.21
2 \text{ clc};
3 clear;
4 close;
5 // Given data
6 R2= 2410; // in ohm
7 \text{ R3} = 750; // \text{ in ohm}
8 R4 = 64.5; //in ohm
9 C4= 0.35*10^-6; // in F
10 r4= 0.4; // series resistance of capacitor in ohm
11 f = 500; /// in Hz
12 omega= 2*%pi*f;// radians/sec
13 R4= R4+r4; // in ohm
14 R1= R2*R3*R4*omega^2*C4^2/(1+(omega*C4*R4)^2); // in
      ohm
15 disp(R1, "Resistance of the choke coil in ohm")
16 L1= R2*R3*C4/(1+(omega*C4*R4)^2); // in H
17 disp(L1, "Inductance of the choke coil in H")
18
19 // Note: Calculation of finding the value of L1 in
      the book is wrong
```

Scilab code Exa 7.22 Effective impedance of the specimen

```
1 // Exa 7.22
2 clc;
3 clear;
4 close;
5 // Given data
```

```
6 R2 = 834; // in
7 R3 = 100; // in
8 C2= 0.124; // in F
9 C2 = C2 * 10^- - 6; // in F
10 C4= 0.1; // in F
11 C4= C4*10^-6; // in F
12 L1= R2*R3*C4; // in H
13 f = 2; // in kHz
14 f = f*10^3; // in kHz
15 disp(L1*10^3, "The value of L1 in mH is:
16 R1= R3*C4/C2; // in
17 disp(R1, "The value of R1 in
                                   is : ")
18 Z= R1+%i*2*%pi*f*L1;//in
19 disp(abs(Z), "The magnitude of effective impedence in
          is : ")
20 disp(atand(imag(Z), real(Z)), "The angle of effective
     impedence in is: ")
```

Scilab code Exa 7.23 Value of L and C

```
1 // Exa 7.23
2 clc;
3 clear;
4 close;
5 // Given data
6 fr= 2; // in MHz
7 fr=fr*10^6; // in Hz
8 C=230+8; // in pF
9 C=C*10^-12; // in F
10 // Formula fr= 1/(2*%pi*sqrt(L*C))
11 L= 1/((2*%pi*fr)^2*C); // in H
12 disp(L*10^6," Value of L in H")
13 // From the first set of data
14 fr= 1; // in MHz
15 fr=fr*10^6; // in Hz\
```

```
16 C= 1/((2*%pi*fr)^2*L);// in F
17 disp(C*10^12,"Value of C in pF")
```

Scilab code Exa 7.24 Resistive and reactive component of unknown impedence

```
1 // Exa 7.24
2 clc;
3 clear;
4 close;
5 // Given data
6 C1= 208; // in pF
7 C1=C1*10^-12; // in F
8 Q1 = 80;
9 C2 = 184; // in pF
10 C2=C2*10^-12; // in F
11 \quad Q2 = 50;
12 f = 165; // in kHz
13 f=f*10^3; // in Hz
14 omega= 2*%pi*f;// in radians/sec
15 // Part (i)
16 Rm= 1/\text{omega}*(1/(C2*Q2)-1/(C1*Q1)); // in ohm
17 disp(Rm, "Resistive component of unknown impedence in
       ohm")
18 // Part(ii)
19 Xm = 1/omega*(1/C2-1/C1); // in ohm
20 disp(round(Xm), Reactive component of unknown
      impedence in ohm")
```

Scilab code Exa 7.25 Self capacitance and inductance of the coil

```
1 // Exa 7.25
2 clc;
```

```
3 clear;
4 close;
5 // Given data
6 C1= 160*10^-12; // in F
7 C2= 36*10^-12; // in F
8 \text{ f1=250;} // \text{ in kHz}
9 f1=f1*10^3; // in Hz
10 f2=500; // in kHz
11 f2=f2*10^3; // in Hz
12 Cd= (C1-4*C2)/3; // in F
13 disp(Cd*10^12, "Self Capacitance of the coil in
                                                          F
      ")
14 // Formula f1 = 1/(2*\%pi*sqrt(L*(C1+Cd)))
15 L= 1/((2*\%pi*f1)^2*(C1+Cd)); // in H
16 disp(round(L*10^6), "Self inductance of the coil in
       H ");
```

Scilab code Exa 7.26 Self capacitance of the coil

```
1 // Exa 7.26
2 clc;
3 clear;
4 close;
5 // Given data
6 C1= 251*10^-12; // in F
7 C2= 50*10^-12; // in F
8 f1=3; // in MHz
9 f1=f1*10^6; // in Hz
10 f2=6; // in MHz
11 f2=f2*10^6; // in Hz
12 Cd= (C1-4*C2)/3; // in F
13 disp(Cd*10^12," Self Capacitance of the coil in pF")
```

Scilab code Exa 7.27 Value of self capacitance

```
1 // Exa 7.27
2 clc;
3 clear;
4 close;
5 // Given data
6 C1= 1530; // in pF
7 C2= 162; // in pF
8 f1=1; // in MHz
9 f1=f1*10^6; // in Hz
10 f2=3; // in MHz
11 f2=f2*10^6; // in Hz
12 // f1= 1/(2*%pi*sqrt(L*(C1+Cd)))
13 // f1= 1/(2*%pi*sqrt(L*(C2+Cd))) and f2= 3*f1 so
14 Cd= (C1-9*C2)/8; // in pF
15 disp(Cd, "Self capacitance of the coil in pF")
```

Scilab code Exa 7.28 Effective inductance and resistance of unknown coil

```
1 // Exa 7.28
2 clc;
3 clear;
4 close;
5 // Given data
6 f = 450; // in kHz
7 f = f * 10^3; // in Hz
8 C=250; // in pF
9 C=C*10^-12; // in F
10 Rsh= 0.75; // in ohm
11 Q = 105;
12 omega= 2*%pi*f;// in radians/sec
13 // Formula f = 1/(2*\%pi*sqrt(L*C))
14 L= 1/((2*\%pi*f)^2*C); // in H
15 disp(round(L*10^6), "Inductance of the coil in
                                                      H ")
```

```
16 R= omega*L/Q-Rsh; // in ohm
17 disp(R, "Resistance of the coil in ohm")
```

Scilab code Exa 7.29 Percentage error introduced in the calculated value of Q

```
1 // Exa 7.29
2 clc;
3 clear;
4 close;
5 // Given data
6 f = 500; // in kHz
7 f = f * 10^3; // in Hz
8 C=120; // in pF
9 C=C*10^-12; // in F
10 R= 5; // in ohm
11 r=0.02; // resistance used across the oscillatory
      circuit in ohm
12 omega= 2*%pi*f;// in radians/sec
13 Q_True= 1/(omega*C*R);
14 Q_indicated = 1/(omega*C*(R+r));
15 PerError= (Q_True-Q_indicated)*100/Q_True; // in \%
16 disp(PerError, "Percentage Error is ")
```

Scilab code Exa 7.30 Self capacitance of the radio coil

```
1 // Exa 7.30
2 clc;
3 clear;
4 close;
5 // Given data
6 f1= 800; // in kHz
7 f1=f1*10^3; // in Hz
```

Scilab code Exa 7.31 Self capacitance of the coil and true and indicated values of Q

```
1 // Exa 7.31
2 clc;
3 clear;
4 close;
5 // Given data
6 	 f1 = 1; // in MHz
7 f1=f1*10^6; // in Hz
8 f2 = 2; // in MHz
9 f2=f2*10^6; // in Hz
10 C1 = 480; // in pF
11 C1=C1*10^-12; // in F
12 C2=90; // in pF
13 C2=C2*10^-12; // in F
14 R=10; // in ohm
15 omega1= 2*%pi*f1;// in radians/sec
16 omega2= 2*%pi*f2;// in radians/sec
17
18 // Part (i)
19 Cd= (C1-4*C2)/3; // in F
20 disp(Cd*10^12, "Self capacitance of the coil in pF")
21
```

```
// Part(ii)
Q_indicated1= 1/(omega1*(C1+Cd)*R);
disp(Q_indicated1, "Indicated or effective Q for first measurement")
Comega1*C1*R);
disp(Q_True1= 1/(omega1*C1*R);
disp(Q_True1, "True Q for first measurement is ");
Q_indicated2= 1/(omega2*(C2+Cd)*R);
disp(Q_indicated2, "Indicated or effective Q for second measurement")
Q_True2= 1/(omega2*C2*R);
disp(Q_True2, "True Q for second measurement is ");
```

Chapter 8

Cathode Ray Oscilloscopes

Scilab code Exa 8.1 Deflection sensitivity

```
1 // Exa 8.1
2 clc;
3 clear;
4 close;
5 // Given data
6 1=25; // in mm
7 l=1*10^-3; // in meter
8 d=5;// in mm
9 d=d*10^-3; // in meter
10 S = 20; // in cm
11 S = S*10^-2; // in meter
12 Va= 3000; // in volts
13 TraceLength= 10; // in cm
14 TraceLength=TraceLength*10^-2;// in meter
15 y=TraceLength/2;
16 Vd = 2*d*Va*y/(1*S); // in volts
17 Vrms = Vd/sqrt(2);// in volts
18 Vrms= floor(Vrms);
19 disp(Vrms, "RMS value of the sinusoidal voltage
      applied to the X-deflecting plates in volt");
20 DeflectionSensitivity = 1*S/(2*d*Va); // in m/V
```

```
21 disp(DeflectionSensitivity*10^3, "Deflection Sensitivity in mm/V");
```

Scilab code Exa 8.2 Maximum velocity of electrons

```
1 // Exa 8.2
2 clc;
3 clear;
4 close;
5 // Given data
6 Va= 1000; // in volts
7 e= 1.6*10^-19; // in C
8 m= 9.1*10^-31; // in kg
9 MaxVel= sqrt(2*Va*e/m); // maximum velocity of electrons in m/s
10 disp(MaxVel, "Maximum velocity of electrons in m/s")
```

Scilab code Exa 8.3 Deflection sensitivity

```
1 // Exa 8.3
2 clc;
3 clear;
4 close;
5 // Given data
6 l=20; // in mm
7 l=1*10^-3; // in meter
8 d=5; // in mm
9 d=d*10^-3; // in meter
10 S= 0.20; // in meter
11 Va= 2500; // in volts
12 DeflectionSensitivity= l*S/(2*d*Va); // in m/V
13 disp(DeflectionSensitivity*10^3, "Deflection Sensitivity in mm/V");
```

Scilab code Exa 8.4 Required voltage

```
1  // Exa 8.4
2  clc;
3  clear;
4  close;
5  // Given data
6  l=2.5; // in cm
7  l=1*10^-2; // in meter
8  d=1; // in cm
9  d=d*10^-2; // in meter
10  Va= 1000; // in volts
11  theta= 1; // in degree
12  // Formula tand(theta) = l*Vd/(2*d*Va)
13  Vd= 2*d*Va/l*tand(theta); // in volts
14  disp(Vd, "Voltage required across the deflection plates in volts")
```

Scilab code Exa 8.5 Required deflecting voltage

```
1 // Exa 8.5
2 clc;
3 clear;
4 close;
5 // Given data
6 l=2.5; // in cm
7 l=1*10^-2; // in meter
8 d=.5; // in cm
9 d=d*10^-2; // in meter
10 S= 20; // in cm
11 S= S*10^-2; // in meter
```

```
12 Va= 2500; // in volts
13 // Formula y = OC*AB/OB = (S*d/2)/(1/2)
14 y = (S*d/2)/(1/2); // in meter
15 disp(y*10^2, "Deflection in cm")
```

Scilab code Exa 8.6 Charging current and time period

```
1 // Exa 8.6
2 clc;
3 clear;
4 close;
5 // Given data
6 \text{ R}_{E1} = 5.6; // \text{ in kohm}
7 C1= 0.2; // in miu F
8 V_B1 = 6.3; // in volt
9 V_BE= 0.7; // in volt
10 TL= 2.5; // trigger level for the Schmitt trigger (
      UTP, LTP) in volt
11 del_V1= 2*TL; // in volt
12 I_C1 = (V_B1 - V_BE)/R_E1; // in mA
13 disp(I_C1, "Charging current in mA");
14 toh= del_V1*C1/I_C1; // in ms
15 disp(toh, "Time period in ms")
```

Scilab code Exa 8.7 RMS value of unknown ac voltage

```
1 // Exa 8.7
2 clc;
3 clear;
4 close;
5 // Given data
6 L=10; // trace length in cm
7 DS= 5; // deflection sensitivity in V/cm
```

Scilab code Exa 8.8 Ratio of frequencies of vertical and horizontal signals

```
1 // Exa 8.8
2 clc;
3 clear;
4 close;
5 // Given data
6 Y= 3;// Positive Y-peaks in pattern
7 X= 2;// Positive X-peaks in pattern
8 // Ratio of frequencies of vertical and horizontal signals
9 // f_y/f_x= omega_y/omega_x = Y/X
10 R= Y/X;//Ratio of frequencies
11 disp(R, "Ratio of frequencies of vertical and horizontal signals");
```

Scilab code Exa 8.9 Frequency of vertical signal

```
1 // Exa 8.9
2 clc;
3 clear;
4 close;
5 // Given data
6 Y= 2+1/2; // Positive Y-peaks in pattern
7 X= 1/2+1/2; // Positive X-peaks in pattern
8 f_h= 3// frequency of horizontal voltage signal in kHz
```

```
9 f_yBYf_x= Y/X;
10 // frequency of vertical voltage signal= f_yBYf_x *
    f_h
11 f_v= f_yBYf_x * f_h;// frequency of vertical voltage
    signal in kHz
12 disp(f_v, "frequency of vertical voltage signal in
    kHz");
```

Scilab code Exa 8.10 Frequency of vertical signal

```
1 // Exa 8.10
2 clc;
3 clear;
4 close;
5 // Given data
6 f_x= 1000; // in Hz
7 Y= 2; // points of tangency to vertical line
8 X= 5; // points of tangency to horizontal line
9 f_y= f_x*X/Y; // in Hz
10 disp(f_y, "Frequency of vertical input in Hz")
```

Scilab code Exa 8.11 Mark to space ratio

```
1 // Exa 8.11
2 clc;
3 clear;
4 close;
5 // Given data
6 // Taking 1 div= 1 cm for CRO wave displays
7 Mark= 0.4; // cm
8 Space= 1.6; // cm
9 SAC= 0.2; // signal amplitude control in V/div
10 TBS= 10; // time base control in micro/div
```

```
11 Amplitude= 2.15; // in cm
12 M_S_ratio= Mark/Space; // Mark to Space raio
13 disp(M_S_ratio, "Mark to Space raio ")
14 T= (Mark+Space)*TBS; // in micro sec
15 T=T*10^-6; // in sec
16 f=1/T; // in Hz
17 disp(f*10^-3, "Pulse frequency in kHz")
18 Mag= Amplitude*SAC; // Magnitude of pulse voltage in volt
19 disp(Mag, "Magnitude of pulse voltage in volt")
```

Scilab code Exa 8.12 Phase angle for each trace

```
1 // Exa 8.12
2 clc;
3 clear;
4 close;
5 // Given data
6 // Part (a)
7 d_v0 = 0;
8 Dv = 6;
9 fie= asind(d_v0/Dv);
10 disp(fie, "Phase angle of first figure in degree")
11 // Part (b)
12 d_v0 = 3;
13 Dv = 6;
14 fie= asind(d_v0/Dv);
15 disp(fie, "Phase angle of second figure in degree")
16 // Part (c)
17 d_v0 = 5;
18 Dv = 5;
19 fie= asind(d_v0/Dv);
20 disp(fie, "Phase angle of third figure in degree")
21 // Part (d)
22 d_v0 = 3;
```

```
23 Dv=5;
24 fie= asind(d_v0/Dv);
25 // since ellipse is in 2nd and fourth quartes so the
          valid value of phase angle
26 fie= 180-fie
27 disp(fie, "Phase angle of forth figure in degree")
```

Scilab code Exa 8.13 Pulse duration

```
1 // Exa 8.13
2 clc;
3 clear;
4 close;
5 // Given data
6 f=2000; // in Hz
7 T=1/f; // in sec
8 D=0.2;
9 PulseDuration= D*T; // in sec
10 disp(PulseDuration*10^3, "Pulse duration in ms")
```

Scilab code Exa 8.14 Peak to peak amplitude of the signal and signal frequency

```
1 // Exa 8.14
2 clc;
3 clear;
4 close;
5 // Given data
6 vertical_attenuation= 0.5; // in V/Div
7 TPD= 2; // time/Div control in micro sec
8 P= 4*vertical_attenuation; // peak-to-peak amplitude of the signal in V;
9 disp(P, "Peak-to-Peak amplitude of the signal in V")
```

```
10 T = 4*TPD; // in micro sec

11 T = T * 10^-6; // in sec

12 f = 1/T; // in Hz

13 disp(f * 10^-3, "Frequency in kHz")
```

Scilab code Exa 8.15 Value of C1 and input capacitance

```
1 // Exa 8.15
2 clc;
3 clear;
4 close;
5 // Given data
6 C_1N= 36; // in pF
7 C_2= 150; // in pF
8 R_1N= 1; // in M ohm
9 R_1= 10; // in M ohm
10 // R_1/(omega*(C_2+C_1N)) = R_1N/(omega*C_1)
11 C_1= R_1N*(C_2+C_1N)/R_1; // in pF
12 disp(C_1, "Value of C_1 in pF")
13 C_T= 1/(1/C_1+1/(C_2+C_1N)); // in pF
14 disp(C_T, "Value of C_T in pF")
```

Scilab code Exa 8.16 Signal frequency

```
1  // Exa 8.16
2  clc;
3  clear;
4  close;
5  // Given data
6  C_1N= 36; // in pF
7  C_2= 150; // in pF
8  R_1N= 1; // in M ohm
9  R_1= 10; // in M ohm
```

```
10 R_source= 500; // in ohm
11 // R_1/(omega*(C_2+C_1N)) = R_1N/(omega*C_1)
12 C_1= R_1N*(C_2+C_1N)/R_1; // in pF
13 C_T= 1/(1/C_1+1/(C_2+C_1N)); // in pF
14 C_T= C_T*10^-12; // in F
15 f= 1/(2*%pi*C_T*R_source);
16 disp(f*10^-6, "Signal Frequency in MHz")
```

Scilab code Exa 8.17 Minimum time division

```
1 // Exa 8.17
2 clc;
3 clear;
4 close;
5 // Given data
6 	ext{ f = } 20; // 	ext{ in } MHz
7 f=f*10^6; // in Hz
8 \text{ toh= } 1/f; // in sec
9 toh=toh*10^9; // in ns
10 // For one cycle occupying 4 horizontal divisions,
11 MTD= toh/4; // Minimum time/division in ns/division
12 // Using the 10 times magnifier to provide MTD
13 MTD_setting= 10*MTD; // minimum time/division setting
       in ns/division
14 disp(MTD_setting,"Minimum time/division setting in
      ns/division")
```

Chapter 10

Instrument Calibration And Recorders

Scilab code Exa 10.1 Instrument accuracy

```
1 // Exa 10.1
2 clc;
3 clear;
4 close;
5 // Given data
6 FullScale= 25;// in volt
8 VR= 5;// voltmeter reading in volt
9 Error= -0.25; // in volt
10 Error_Reading= Error/VR*100; // % of reading
11 disp(Error_Reading, "Error percentage of reading");
12 Error_FullScale= Error/FullScale*100; // % of full
     scale
13 disp(Error_FullScale, "Error percentage of full scale
     ")
14
15 VR= 10; // voltmeter reading in volt
16 Error= 0.25; // in volt
17 Error_Reading= Error/VR*100; // % of reading
```

Scilab code Exa 10.2 Wattmeter error

```
1 // Exa 10.2
2 clc;
3 clear;
4 close;
5 // Given data
6 Pm=1250; // in watt
7 V=255; // in volt
8 I=4.8; // in amp
9 P=V*I; // in watt
10 AbsoluteError= Pm-P; // in watt
11 disp(AbsoluteError, "Absolute Error in watt");
12 PerError= AbsoluteError/Pm*100; // in %
13 disp(PerError, "Percentage Error")
```