Forus do work	
torus do work	Select the one response that <u>best</u> answers each question.

1) 4.0 J of work are performed in stretching a spring whose spring constant of 2500 N/m. By how much is the spring stretched? The spring begins in an unstrecthed, uncompressed position.

7.057

- A) 3.2 m
- B) 3.2 cm
- C) 5.7 m
- D) 0.3 cm

2) A mass of 2.0 kg traveling at 3.0 m/s along a smooth, horizontal plane hits a relaxed spring. The mass is slowed to zero velocity when the spring has been compressed by 0.15 m. What is the spring constant of the spring?

B

- (C) 800 N/m
- D) 400 N/m
- E) 20 N/m

3) A constant net force acts on an object. The object has

- (A) a constant, non-zero acceleration.
 - B) zero acceleration.
- C) a decreasing acceleration.
- D) a constant, non-zero velocity.
- E) an increasing acceleration.

4) A 4.00-kg block rests between the floor and a 3.00-kg block as shown in Fig. 5-4. The 3.00-kg block is tied to a wall by a horizontal rope. If the coefficient of static friction is 0.800 between each pair of surfaces in contact, what force must be applied horizontally to the 4.00-kg block to make it move? To be clear, the top block is 3.00 kg and the bottom block is 4.00 kg.

A) 78.4 N

- B) 54.9 N
- C) 23.5 N
- D) 16.2 N
- E) 21.1 N

2 Me law applied to 3 kg will give as f3 = 3 Ms g 2nd law applied to 4kg will give us $f_4 = M_5(49+39)$ AND we see that just before the 4kg block

Stants to move $J |F| = |f_5| + |f_4| = 78,7$ N

We W= SFdx NoTE; Signwill be POSITIVE and you explanate will need to apply physical explanate

		20		2001/35/2	2 36.3			
		D=125	M=74.92	= 2000(125) (2) SIFINGHOU(25) = 11	300006411			
	9) A constant force of 20 N is applied at an angle of 25° to an object of mass 8.0 kg. What is the work done by this force on the object if it causes a displacement of 2.0 m along the horizontal direction?							
	A) 0 J	B) 19 J	C) 17 J	(D) 36 J	E) 40 J			
	10) An object travels a	nt a fixed speed along a c	ircular path. The accele	·				
	B) zero. (C) larger in ma D) smaller in m	direction as the velocity of gnitude the smaller the r agnitude the smaller the	adius of the circle. radius of the circle.	X- Carada	2 marine			
	/	ite direction of the veloci	granders.					
for the permits	A) There are also B) The rope is a C) There are not D) The inertia of E) The object h. 12) A 60.0-kg person upward. What is person. A) 469 N	so one or more other force not transmitting the force other forces acting on the of the object prevents it fras reached its natural starides in elevator while stathe reading on the scale? B) zero	es that act on the object to the object. The object of rest and can no locate and the scale is restricted to the scale is restricted. C) 589 N		on 2.00 m/s ² xperienced by the E) 708 N			
4-36°W	A) 5.60 Ns	B) 1.40 Ns	C) 7.00 Ns	D) 4.90 Ns	E) 9.80 Ns			
P=-m30	away from the wa			nges from 20.0 m/s toward vall was 60.0 ms, what was				
	A) 40.0 N	B) 26.7 N	C) 13.3 N	D) 16.7 N	E)107 N			
Saide - marcular and amount property and an analysis of the said and an analysis of th		Suit ()	40	3 = -12m - 20A	= -6.40			

for the new this

DP=-12m-20m=-6.40 FAVG= DP=-106.70

15) Swimmers at a water park have a choice of two FRICTIONLESS water slides (see Fig. 8-3). Although both slides drop over the same height, h, slide 1 is straight while slide 2 is curved, dropping quickly at first and then leveling out. How does the speed v_1 of a swimmer reaching the end of slide 1 compare with v_2 , the speed of a Contenution of Energy is SAME swimmer reaching the end of slide 2?

A) $v_1 > v_2$

(B) $v_1 = v_2$

C) $v_1 < v_2$

D) No simple relationship exists between v_1 and v_2 .

16) Is it possible for a system to have negative potential energy?

- (A) Yes, since the choice of the zero of potential energy is arbitrary. $^{ar{
 u}}$
- B) Yes, as long as the total energy is positive.
- C) Yes, as long as the kinetic energy is positive.
- D) No, because this would have no physical meaning.
- E) No, because the kinetic energy of a system must equal its potential energy.

17) A force is given by $(4.00 x) \hat{i} + (2.0 x y) \hat{j}$. Note that this force is a function of position. An object begins at the origin. How much work is done by this force on the object as it moves in a straight line to x = 1.00 m, y = 0.00m? All units are SI.

For both productions, so long as no friction

A) 3.00 J B) 1.50 J C) 0.00 J D) 2.50 J E) 2.00 J What is the force that is associated with this potential energy function? All units are SI.

A) $0.500 x^2 + 1.00 x^4$

B) $-0.500x^2 - 1.00x^4$

 \bigcirc -3.00 - 3.00 x^2

 \vec{D}) -3.00 - 1.00 x^2

E) $3.00 + 1.00 x^2$

F(x)=- E(R(x)=-3-3x)

19) A mass of 3.0 kg is subject to a force F(x) = 8.0 - 4.0 x. The potential energy of the mass is 4 at x = 0. What is the potential energy of the mass at x = 2.0 m? All units are SI.

A) 0.0 I

B)-4.0 I

PE(x=0)=4=-0+0+101+

PE(x=0)=4=-0+0+101+

PE(x=0)=4=-0+0+101+

PE(x=2)=-16+8+4=-4] 1 6 1

20) A 4.00-kg block slides down a friction the incline above horizontal?	onless inclined plane with a	$\sum_{M_{S}} \sum_{N_{S}} \sum_{M_{M_{S}}} \sum_{M_{M_{M_{S}}}} \sum_{M_{M_{M_{S}}}} \sum_{M_{M_{M_{S}}}} \sum_{M_{M_{M_{M_{S}}}}} \sum_{M_{M_{M_{M_{M_{S}}}}}} \sum_{M_{M_{M_{M_{M_{M_{M_{M_{M_{M_{M_{M_{M_$	What is the angle of
A) 53.7° B) 17.8°	Fg C) 35.3°	D) 23.6°	E) 45.2°
21) A packing crate slides down an incliture? A) A net downward force is acting of C) The crate is not acted on by a set D) A frictional force is acting on the E) The crate is not acted on by a set D) A frictional force is acting on the E) The crate is not acted on by a set D) A frictional force is acting on the E) The crate is not acted on by a set D) A frictional force is acting on the E) The crate is not acted on by a set D) A frictional force is acting on the E) The crate is not acted on by a set D) A frictional force is acting on the E) The crate is not acted on by a set D) A frictional force is acting on the E) The crate is not acted on by a set D) A frictional force is acting on the E) The crate is not acted on by a set D) A frictional force is acting on the E) The crate is not acted on by a set D) A frictional force is acting on the E) The crate is not acted on by a set D) A frictional force is acting on the E) The crate is not acted on by a set D) A frictional force is acting on the E) The crate is not acted on by a set D) A frictional force is acting on the E) The crate is not acted on by a set D) A frictional force is acting on the E) The crate is not acted on by a set D) A frictional force is acting the E) The crate is not acted on by a set D) A frictional force is acting the E) The crate is not acted on by a set D) A frictional	g on the crate. In the crate. It ignificant gravitational force The crate.		ing statements must be
E) The crate is not acted on by a s	ignificant normal force.	Mus	Thave constructed and Clark!