Inferência Estatística II

Prof. Fernando de Souza Bastos fernando.bastos@ufv.br

Departamento de Estatística Programa de Pós-Graduação em Estatística Aplicada e Biometria Universidade Federal de Viçosa Campus UFV - Viçosa

Sumário

- Introdução a Testes de Hipóteses
 - Função de Decisão
 - Tipos de Erros
- Punção Poder
 - Tamanho do Teste
- Teste para Média Baseado em Grandes Amostras
- Teste para Média sob Normalidade
- Teste Bilateral para a Média Baseado em Grandes Amostras
- 6 Exercícios da Seção 4.5
- Exercícios da Seção 4.6

Chamamos de hipótese estatística qualquer afirmação sobre a distribuição de probabilidade de uma ou mais variáveis aleatórias.

https://est711.github.io/

Chamamos de hipótese estatística qualquer afirmação sobre a distribuição de probabilidade de uma ou mais variáveis aleatórias.

Denominamos por H_0 (hipótese nula) a hipótese de interesse. Se a variável aleatória X é distribuída de acordo com a função de densidade (ou de probabilidade) $f(x|\theta)$, com $\theta \in \Theta$, dizemos que a distribuição de X está completamente especificada quando conhecemos $f(x|\theta)$ e θ . A distribuição de X é considerada parcialmente especificada quando conhecemos a função de densidade (ou de probabilidade) $f(x|\theta)$, mas não conhecemos o valor de θ .

Seja X_1, \ldots, X_n uma amostra aleatória de uma distribuição indexada por um parâmetro $\theta \in \Theta$. Considere as seguintes hipóteses $H_0: \theta \in \Theta_0$ e $H_1: \theta \in \Theta - \Theta_0$.

- H_0 é chamada de hipótese nula.
- H_1 é chamada de hipótese alternativa.

Uma regra de decisão para aceitar H_0 ou H_1 é baseada na amostra X_1, \ldots, X_n .

Seja X_1, \ldots, X_n uma amostra aleatória de uma distribuição indexada por um parâmetro $\theta \in \Theta$. Considere as seguintes hipóteses $H_0: \theta \in \Theta_0$ e $H_1: \theta \in \Theta - \Theta_0$.

- H_0 é chamada de hipótese nula.
- \bullet H_1 é chamada de hipótese alternativa.

Uma regra de decisão para aceitar H_0 ou H_1 é baseada na amostra X_1, \ldots, X_n .

Podemos também escrever de outra forma: Seja $(\Omega, \mathcal{A}, \mathcal{P})$ um modelo estatístico paramétrico em que $\mathcal{P} = \{\mathbb{P}_{\theta} : \theta \in \Theta\}$, em que $\Theta \subset \mathbb{R}^p, p \in \mathbb{N}$. Considere as seguintes hipóteses $H_0 : \mathbb{P}_{\theta} \in \mathcal{P}_0$ (A medida que gera os dados do estudo pertence a \mathcal{P}_0) e $H_1 : \mathbb{P}_{\theta} \in \mathcal{P} - \mathcal{P}_0$. Da mesma forma, Uma regra de decisão para aceitar H_0 ou H_1 será baseada na amostra X_1, \ldots, X_n .

Em resumo, a diferença essencial é que $H_0:\theta\in\Theta_0$ lida com afirmações sobre parâmetros populacionais específicos, enquanto $H_0:P_\theta\in\mathcal{P}_0$ lida com afirmações sobre a distribuição de probabilidade que modela os dados. Ambas as formas são usadas em testes de hipóteses, dependendo do contexto e da pergunta que se deseja responder.

Suponha que você esteja conduzindo um teste de hipóteses para determinar se a média de altura da população adulta em uma determinada cidade é igual a 170 centímetros. Aqui estão os elementos da hipótese:

Suponha que você esteja conduzindo um teste de hipóteses para determinar se a média de altura da população adulta em uma determinada cidade é igual a 170 centímetros. Aqui estão os elementos da hipótese:

 H_0 : Esta é a hipótese nula. Neste caso, H_0 afirma que a média da altura populacional, representada por θ , pertence a um conjunto específico de valores Θ_0 . Por exemplo, H_0 pode ser H_0 : $\theta=170$.

Suponha que você esteja conduzindo um teste de hipóteses para determinar se a média de altura da população adulta em uma determinada cidade é igual a 170 centímetros. Aqui estão os elementos da hipótese:

 H_0 : Esta é a hipótese nula. Neste caso, H_0 afirma que a média da altura populacional, representada por θ , pertence a um conjunto específico de valores Θ_0 . Por exemplo, H_0 pode ser H_0 : $\theta=170$.

 Θ_0 : É o conjunto de valores possíveis que o parâmetro θ pode assumir sob a hipótese nula. Neste caso, Θ_0 pode ser $\{170\}$, indicando que a média populacional sob H_0 é fixa em 170 centímetros. Se, após coletar uma amostra representativa da população e realizar o teste de hipóteses, você obtiver evidências estatísticas suficientes para rejeitar H_0 , isso indicaria que há razões para acreditar que a média populacional é diferente de 170 centímetros.

Exemplo 2 - Hipótese $H_0: P_\theta \in \mathcal{P}_0$:

Exemplo 2 - Hipótese $H_0: P_\theta \in \mathcal{P}_0$:

Agora, considere um cenário diferente, em que você está testando se os dados de vendas diárias de um produto seguem uma distribuição de probabilidade normal. Neste caso, os elementos da hipótese seriam:

 H_0 : Esta é a hipótese nula. Neste caso, H_0 afirma que a distribuição de probabilidade dos dados de vendas diárias, representada por P_{θ} , pertence a um conjunto específico de distribuições \mathcal{P}_0 . Por exemplo, H_0 pode ser $H_0: P_{\theta} \in \mathcal{P}_0$, onde \mathcal{P}_0 representa o conjunto de todas as possíveis distribuições normais.

Exemplo 2 - Hipótese $H_0: P_\theta \in \mathcal{P}_0$:

Agora, considere um cenário diferente, em que você está testando se os dados de vendas diárias de um produto seguem uma distribuição de probabilidade normal. Neste caso, os elementos da hipótese seriam:

 H_0 : Esta é a hipótese nula. Neste caso, H_0 afirma que a distribuição de probabilidade dos dados de vendas diárias, representada por P_{θ} , pertence a um conjunto específico de distribuições \mathcal{P}_0 . Por exemplo, H_0 pode ser $H_0: P_{\theta} \in \mathcal{P}_0$, onde \mathcal{P}_0 representa o conjunto de todas as possíveis distribuições normais.

 \mathcal{P}_0 : É o espaço de hipóteses nula. Neste caso, \mathcal{P}_0 é o conjunto de todas as distribuições normais possíveis. Sob a hipótese nula, você está testando se os dados seguem uma distribuição normal, mas não especifica um valor fixo para um parâmetro específico.

Se, após coletar os dados de vendas diárias e realizar o teste de hipóteses, você obtiver evidências estatísticas suficientes para rejeitar H_0 , isso indicaria que os dados não seguem uma distribuição normal, mas não fornece informações sobre um valor específico do parâmetro. Em resumo, a diferença fundamental entre os dois exemplos está na natureza da afirmação sob teste. O primeiro exemplo $(H_0:\theta\in\Theta_0)$ testa uma afirmação sobre um parâmetro populacional específico, enquanto o segundo exemplo $(H_0:P_\theta\in\mathcal{P}_0)$ testa uma afirmação sobre a forma da distribuição subjacente dos dados.

Vamos considerar aqui que $\Theta_1 = \Theta - \Theta_0$. Nesse contexto, dada X_1, \ldots, X_n uma amostra aleatória de uma distribuição indexada por um parâmetro $\theta \in \Theta$. Considere as seguintes hipóteses $H_0: \theta \in \Theta_0$ e $H_1: \theta \in \Theta_1$, em que $\Theta_0 \cap \Theta_1 = \emptyset$ e $\Theta_0 \cup \Theta_1 = \Theta$. Ou seja, dessa forma, H_1 será a negação de H_0 e, vice-versa. Uma regra de decisão para não rejeitar H_0 ou H_1 é baseada na amostra X_1, \ldots, X_n .

Chamamos de teste de uma hipótese estatística a função de decisão ou função teste $d: \mathcal{X} \to \{a_0, a_1\}$, em que a_0 corresponde à ação de considerar a hipótese H_0 como verdadeira e a_1 corresponde à ação de considerar a hipótese H_1 como verdadeira.

 $\mathcal X$ denota o espaço amostral associado à amostra X_1,\ldots,X_n . A função de decisão d divide o espaço amostral $\mathcal X$ em dois conjuntos

$$A_0 = \{(x_1, \dots, x_n) \in \mathcal{X}; d(x_1, \dots, x_n) = a_0\}$$

$$A_1 = \{(x_1, \dots, x_n) \in \mathcal{X}; d(x_1, \dots, x_n) = a_1\},$$

em que $A_0 \cup A_1 = \mathcal{X}$ e $A_0 \cap A_1 = \emptyset$. Uma vez que em A_0 temos os pontos amostrais $x = (x_1, \dots, x_n)$ que levam à aceitação de H_0 , vamos chamar A_0 de região de aceitação e, por analogia, A_1 de região de rejeição de H_0 , também chamada de região crítica.

Exemplo

Uma caixa contém duas moedas. Uma delas apresenta cara com probabilidade p=0,5 (equilibrada) e a outra apresenta cara com probabilidade p=0,6. Uma moeda é escolhida aleatoriamente e lançada três vezes. Suponhamos que as hipóteses de interesse são $H_0: p=0,5$ e $H_1: p=0,6$. Seja X_i a variável de Bernoulli que assume o valor 1 se ocorre cara no i-ésimo lançamento e 0 caso contrário, i=1,2,3. Nesse caso,

$$\mathcal{X} = \{(0,0,0), (1,0,0), (0,1,0), (0,0,1), (0,1,1), (1,0,1), (1,1,0), (1,1,1)\}.$$

Podemos considerar, por exemplo, a região crítica

$$A_1 = \{(x_1, x_2, x_3); x_1 + x_2 + x_3 \ge 2\},\$$

de modo que

$$A_0 = \{(x_1, x_2, x_3); x_1 + x_2 + x_3 < 2\}.$$

Note que $A_0 \cup A_1 = \mathcal{X}$ e $A_0 \cap A_1 = \emptyset$. No caso em que $H_0 : \theta = \theta_0$ (simples) e $H_1 : \theta = \theta_1$ (simples), considerando a função de perda $L(\theta,d) = 0$ ou 1, se a decisão correta ou incorreta, respectivamente, é tomada, a função de risco é, então, dada por

$$egin{aligned} R(heta_0,d) &= E[L(heta_0,d)] \ &= 0 \cdot P[oldsymbol{X} \in A_0 | heta_0] + 1 \cdot P[oldsymbol{X} \in A_1 | heta_0] \ &= P[oldsymbol{X} \in A_1 | heta_0] = lpha = P_{H_0}(ext{ Rejeitar } H_0) \end{aligned}$$

$$egin{aligned} R(heta_1,d) &= E[L(heta_1,d)] \ &= 0 \cdot P[oldsymbol{X} \in A_1| heta_1] + 1 \cdot P[oldsymbol{X} \in A_0| heta_1] \ &= P[oldsymbol{X} \in A_0| heta_1] = eta = P_{H_1}(ext{ N\~ao Rejeitar } H_0). \end{aligned}$$

Os riscos α e β são conhecidos na literatura como as probabilidades de erro do Tipo I e do Tipo II, respectivamente. Mais precisamente, o erro do Tipo I ocorre quando rejeitamos H_0 sendo que H_0 é verdadeira, enquanto que o erro do Tipo II ocorre quando aceitamos H_0 sendo que H_0 é falsa. A situação descrita acima está ilustrada na Tabela do próximo slide.

Decisão	H ₀ é verdadeira	H_0 é falsa
Não rejeita H_0	Correta	Erro Tipo II
	Probabilidade $= (1 - \alpha)$	$ Probabilidade = \beta $
Rejeita H ₀	Erro Tipo I	Correta
	Nível de significância α	$Poder = (1 - \beta)$

Outras Exemplos de Funções Teste

Defina $d_1: \mathbb{R}^3 o \{0,1\}$ tal que

$$d_1(X_1, X_2, X_3) = \begin{cases} 0, & x_1 x_2 x_3 < 1 \\ 1, & x_1 x_2 x_3 \ge 1 \end{cases}$$

Outras Exemplos de Funções Teste

Defina $d_2: \mathbb{R}^3 \to \{0,1\}$ tal que

$$d_2(X_1, X_2, X_3) = \begin{cases} 0, & x_1 + x_2 + x_3 < 1 \\ 1, & x_1 + x_2 + x_3 \ge 1 \end{cases}$$

Outras Exemplos de Funções Teste

Defina $d_3: \mathbb{R}^3 \to \{0,1\}$ tal que

$$d_3(X_1, X_2, X_3) = 1, \ \forall \ (X_1, X_2, X_3) \in \mathbb{R}^3$$

1 Daqui em diante, $a_0 = 0$ e $a_1 = 1$;

- **1** Daqui em diante, $a_0 = 0$ e $a_1 = 1$;
- 2

$$\alpha = P_{\theta_0}(d(\boldsymbol{X}) = 1)$$

- **1** Daqui em diante, $a_0 = 0$ e $a_1 = 1$;
- 2

$$\alpha = P_{\theta_0}(d(\boldsymbol{X}) = 1)$$

Ou seja, sob H_0 , a medida que gera os dados do nosso estudo é P_{θ_0} . Na prática, escolhemos a medida que foi especificada em H_0 e a utilizamos para calcular a probabilidade de rejeitar H_0 , o valor encontrado é a probabilidade do erro tipo 1.

- **1** Daqui em diante, $a_0 = 0$ e $a_1 = 1$;
- 2

$$\alpha = P_{\theta_0}(d(\boldsymbol{X}) = 1)$$

Ou seja, sob H_0 , a medida que gera os dados do nosso estudo é P_{θ_0} . Na prática, escolhemos a medida que foi especificada em H_0 e a utilizamos para calcular a probabilidade de rejeitar H_0 , o valor encontrado é a probabilidade do erro tipo 1.

$$P(\text{erro tipo II}) = \beta = P_{\theta_1}(d(X) = 0)$$

- **1** Daqui em diante, $a_0 = 0$ e $a_1 = 1$;
- 2

$$\alpha = P_{\theta_0}(d(\boldsymbol{X}) = 1)$$

Ou seja, sob H_0 , a medida que gera os dados do nosso estudo é P_{θ_0} . Na prática, escolhemos a medida que foi especificada em H_0 e a utilizamos para calcular a probabilidade de rejeitar H_0 , o valor encontrado é a probabilidade do erro tipo 1.

$$P(\text{erro tipo II}) = \beta = P_{\theta_1}(d(X) = 0)$$

Notem que, nesse caso, estamos considerando que H_1 é a negação de H_0 .

De todas as regiões de tamanho α , queremos encontrar aquela que tem o menor erro do tipo II. Ou, de forma equivalente, maximizar a probabilidade de rejeitar H_0 , quando H_1 é verdadeira. Ou seja, para $\theta \in \Theta$, queremos maximizar

$$1 - P(\text{erro tipo II}) = \underbrace{P_{\theta}(d(X) = 1)}_{\text{Poder do Teste para } \theta}$$

Considerando que $\Theta_0 \cup \Theta_1 = \Theta$, $\Theta_0 \cap \Theta_1 = \emptyset$, podemos definir a função poder usando a função teste, da seguinte forma,

$$\gamma_d:\Theta\to[0,1]$$

tal que
$$\gamma_d(\theta) = P_{\theta}(d(\boldsymbol{X}) = 1)$$

Considerando que $\Theta_0 \cup \Theta_1 = \Theta$, $\Theta_0 \cap \Theta_1 = \emptyset$, podemos definir a função poder usando a função teste, da seguinte forma,

$$\gamma_d:\Theta\to[0,1]$$

tal que
$$\gamma_d(\theta) = P_{\theta}(d(\boldsymbol{X}) = 1)$$

Notem que, se $\Theta=\{\theta_0,\theta_1\},\ \Theta_0=\{\theta_0\}$ e $\Theta_1=\{\theta_1\},$ então,

- $\gamma_d(\theta_0) = P_{\theta_0}(d(X) = 1) = \alpha$; é a probabilidade de cometer o erro tipo I.
- ② $\gamma_d(\theta_1) = P_{\theta_1}(d(\mathbf{X}) = 1) = 1 P_{\theta_1}(d(\mathbf{X}) = 0) = 1 \beta$; é a probabilidade complementar de cometer o erro tipo II, isto é, o poder do teste.

O tamanho do teste d é definida por

$$\alpha_{d} = \max_{\theta \in \Theta_{0}} \gamma_{d}(\theta).$$

O tamanho do teste d é definida por

$$\alpha_d = \max_{\theta \in \Theta_0} \gamma_d(\theta).$$

Isto é, o tamanho do teste é a probabilidade máxima de cometer o erro Tipo I.

À medida que estudamos mais estatísticas, descobrimos que frequentemente são utilizados outros nomes para o tamanho, α , da região crítica. Frequentemente, α também é chamado de nível de significância do teste associado a essa região crítica. Além disso, às vezes, α é chamado de "máxima probabilidade de cometer um erro do Tipo I" e o "máximo do poder do teste quando H0 é verdadeira".

De outra forma:

Seja \mathcal{D} o espaço da amostra (X_1, \ldots, X_n) . Um teste para H_0 contra H_1 é baseado em um subconjunto de \mathcal{D} , $(\mathcal{D}$ espaço $\{X_1, \ldots, X_n\}$), digamos \mathcal{C} . Tal conjunto \mathcal{C} é chamado de região crítica e a regra de decisão associada é

- Rejeite H_0 (Aceita H_1), se $(X_1, \ldots, X_n) \in \mathcal{C}$;.
- Aceita H_0 (Rejeite H_1), se $(X_1, \ldots, X_n) \notin \mathcal{C}$;.

De outra forma:

Seja \mathcal{D} o espaço da amostra (X_1,\ldots,X_n) . Um teste para H_0 contra H_1 é baseado em um subconjunto de \mathcal{D} , $(\mathcal{D}$ espaço $\{X_1,\ldots,X_n\}$), digamos \mathcal{C} . Tal conjunto \mathcal{C} é chamado de região crítica e a regra de decisão associada é

- Rejeite H_0 (Aceita H_1), se $(X_1, \ldots, X_n) \in \mathcal{C}$;
- Aceita H_0 (Rejeite H_1), se $(X_1, \ldots, X_n) \notin \mathcal{C}$;.

Notem que $C = A_1$ do exemplo anterior!

Definição 5

Dizemos que uma região crítica ${\mathcal C}$ tem tamanho α se

$$\alpha = \max_{\theta \in \Theta_0} P_{\theta}[(X_1, \dots, X_n) \in \mathcal{C}]$$

De todas as regiões de tamanho α , queremos encontrar aquela que tem o menor erro do tipo II. Ou, de forma equivalente, maximizar a probabilidade de rejeitar H_0 , quando H_1 é verdadeira. Ou seja, para $\theta \in \Theta_1$, queremos maximizar

$$1 - P(\text{erro tipo II}) = \underbrace{P_{\theta}[(X_1, \dots, X_n) \in \mathcal{C}]}_{\text{Poder do Teste em } \theta}$$

Definição 6

A função poder de uma região crítica ${\cal C}$ é

$$\gamma_{\mathcal{C}}(\theta) = P_{\theta}[(X_1, \dots, X_n) \in \mathcal{C}], \ \theta \in \Theta_1$$

Definição 6

A função poder de uma região crítica C é

$$\gamma_{\mathcal{C}}(\theta) = P_{\theta}[(X_1, \dots, X_n) \in \mathcal{C}], \ \theta \in \Theta_1$$

Observação:

Se duas regiões críticas \mathcal{C}_1 e \mathcal{C}_2 tem o mesmo tamanho α , dizemos que \mathcal{C}_1 é melhor do que \mathcal{C}_2 se $\gamma_{\mathcal{C}_1} \geq \gamma_{\mathcal{C}_2}, \forall \theta \in \Theta_1$.

Exemplo 1

Sejam X_1, \ldots, X_n uma amostra aleatória de tamanho n da distribuição da variável aleatória $X \sim \mathcal{N}(\mu, 1)$. Consideremos as hipóteses $H_0: \mu = 0$ e $H_1: \mu = 1$. Consideremos o teste com região crítica $A_1 = \{x; \bar{x} \geq c\}$.

Exemplo 1

Suponhamos que n=16 e que estamos interessados em fixar $\alpha=0,05$. Então, para determinar c, temos que resolver a equação $\alpha=P(H_0[\bar{X}\geq c])$, ou seja,

$$0,05 = P(H_0[\bar{X} \ge c]) = P(Z \ge c\sqrt{n}),$$

onde $Z=\bar{X}\sqrt{n}\sim N(0,1)$. Portanto, $c\sqrt{n}=1,64$, pois na distribuição N(0,1), o valor 1,64 é o percentil 95%. Logo, c=0,41, de modo que $A_1=\{x;\bar{x}\geq 0,41\}$.

Exemplo 2 - Teste para média baseado em grandes amostras

Seja X uma variável aleatória com média μ e variância σ^2 . Estamos interessados em testar $H_0: \mu = \mu_0$ contra $H_1: \mu > \mu_0$ (μ_0 especificado). Seja X_1, \ldots, X_n uma amostra aleatória de X e denote por \bar{X} e S^2 a média e a variância amostral, respectivamente.

Exemplo 2 - Teste para média baseado em grandes amostras

Seja X uma variável aleatória com média μ e variância σ^2 . Estamos interessados em testar $H_0: \mu = \mu_0$ contra $H_1: \mu > \mu_0$ (μ_0 especificado). Seja X_1, \ldots, X_n uma amostra aleatória de X e denote por \bar{X} e S^2 a média e a variância amostral, respectivamente.

De forma intuitiva, adotamos a seguinte regra de decisão:

• Rejeitamos H_0 en favor de H_1 , se \bar{X} é muito maior que μ_0 .

Do TCL e usando o fato que $S^2 \stackrel{P}{\rightarrow} \sigma^2$, temos que, sob H_0 ,

$$\frac{\bar{X} - \mu_0}{\frac{S}{\sqrt{n}}} \stackrel{D}{\to} N(0,1)$$

Do TCL e usando o fato que $S^2 \stackrel{P}{\rightarrow} \sigma^2$, temos que, sob H_0 ,

$$\frac{\bar{X} - \mu_0}{\frac{S}{\sqrt{n}}} \stackrel{D}{\to} N(0, 1)$$

Com isso, podemos propor um teste com tamanho α , aproximadamente. Queremos encontrar c tal que $P_{\mu_0}(\bar{X}>c)\approx \alpha$. Temos que,

$$P(\bar{X} > c) = P\left(\frac{\bar{X} - \mu_0}{\frac{S}{\sqrt{n}}} > \frac{c - \mu_0}{\frac{S}{\sqrt{n}}}\right)$$
$$= 1 - \Phi\left(\frac{c - \mu_0}{\frac{S}{\sqrt{n}}}\right)$$
$$= \Phi\left(\frac{\mu_0 - c}{\frac{S}{\sqrt{n}}}\right) = \alpha$$

Logo,
$$\frac{\mu_0 - c}{\frac{S}{\sqrt{n}}} = z_\alpha \Rightarrow c = \mu_0 - z_\alpha \frac{S}{\sqrt{n}} \Rightarrow c = \mu_0 + z_{(1-\alpha)} \frac{S}{\sqrt{n}}$$

Logo,
$$\frac{\mu_0 - c}{\frac{S}{\sqrt{n}}} = z_\alpha \Rightarrow c = \mu_0 - z_\alpha \frac{S}{\sqrt{n}} \Rightarrow c = \mu_0 + z_{(1-\alpha)} \frac{S}{\sqrt{n}}$$

O teste de tamanho, aproximadamente, α fica dado por $\bar{X}>z_{(1-\alpha)}\frac{s}{\sqrt{n}}+\mu_0$

Suponha de outra forma $H_0: \mu \leq \mu_0$ contra $H_1: \mu > \mu_0$.

Suponha de outra forma $H_0: \mu \leq \mu_0$ contra $H_1: \mu > \mu_0$.

A função poder fica dada por (aproximadamente):

$$\gamma(\mu) \approx P_{\mu}(\bar{X} > z_{(1-\alpha)} \frac{S}{\sqrt{n}} + \mu_0)$$

$$= P_{\mu} \left(\frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}}} > z_{(1-\alpha)} + \frac{\mu_0 - \mu}{\frac{S}{\sqrt{n}}} \right)$$

$$= 1 - \Phi \left(z_{(1-\alpha)} + \frac{\mu_0 - \mu}{\frac{S}{\sqrt{n}}} \right)$$

$$= \Phi \left(-z_{(1-\alpha)} - \frac{\mu_0 - \mu}{\frac{S}{\sqrt{n}}} \right)$$

Nesse caso, é possível ver que, $\max_{\mu < \mu_0} \gamma(\mu) \approx \alpha(\text{Exercício 4.5.1}).$

Exemplo - Teste para média sob normalidade

Considere $X \sim N(\mu, \sigma^2)$ e X_1, \dots, X_n a.a de X. Sob as condições do exemplo anterior,

$$H_0: \mu = \mu_0 \text{ contra } H_1: \mu > \mu_0.$$

Temos que $\frac{X-\mu_0}{\frac{S}{\sqrt{n}}}\sim t_{n-1}$. Então, um teste exato de tamanho lpha fica dado por

$$\frac{X-\mu_0}{\frac{S}{\sqrt{n}}} > t_{(1-\alpha)}(n-1)$$
, em que

$$P(T > t_{(1-\alpha)}(n-1)) = \alpha, \ T \sim t_{(n-1)}$$

Exemplo - Teste bilateral para a média baseado em grandes amostras

Seja X uma v.a. com média μ e variância σ^2 e X_1,\ldots,X_n uma amostra aleatória de X. Aqui estamos interessados em testar as hipóteses

$$H_0: \mu = \mu_0$$
 contra $H_1: \mu \neq \mu_0$.

Então, uma regra de decisão intuitiva é,

• Rejeitamos H_0 em favor de H_1 se $\bar{X} \leq h$ ou $\bar{X} \geq k, \ h < k$ e h e k tais que,

$$\alpha = P_{\mu_0}(\{\bar{X} \leq h\} \cup \{\bar{X} \geq k\}) = P_{\mu_0}(\{\bar{X} \leq h\}) + P_{\mu_0}(\{\bar{X} \geq k\})$$

Como \bar{X} tem aproximadamente distribuição simétrica em torno de $\mu=\mu_0$, sob H_0 , escolhemos h e k, tais que,

$$P_{\mu_0}(ar{X} \leq h) = rac{lpha}{2} \; \mathrm{e} \; P_{\mu_0}(ar{X} \geq k) = rac{lpha}{2}$$

Com isso, um teste de tamanho aproximadamente lpha fica dado por,

$$\left|\frac{\bar{X} - \mu_0}{\frac{S}{\sqrt{n}}}\right| \ge z_{(1 - \frac{\alpha}{2})}$$

Para 🕋

• Exercícios da seção 4.5: 1, 4, 5, 8, 9, 11.

Para 🕋

• Exercícios da seção 4.6: 2,3,4,6,8,9 e 10.

Referências I

Hogg, RV, J McKean e AT Craig (2019). *Introduction to Mathematical Statistics*.