COMPSCI 371 Homework 5

Group Members: Mayur Sekhar, Jai Kasera, Rithvik Neti

Problem 0 (3 points)

Part 1: Hyperplane Geometry

Problem 1.1 (Exam Style)

A. Formulas for conversions between hyperplane representations

1. Normal Vector and Projection: The vector \mathbf{w} is the normal vector to the hyperplane, and \mathbf{p} must also be normal in order to represent the point on the hyperplane with the shortest distance to the origin. Hence, \mathbf{p} is a scalar multiple of \mathbf{w} , i.e., $\mathbf{p} = c\mathbf{w}$. Substituting $\mathbf{x} = \mathbf{p}$ into the hyperplane equation, we get:

$$b + \mathbf{w} \cdot \mathbf{x} = 0$$

Substituting **p**:

$$b + \mathbf{w} \cdot \mathbf{p} = 0$$

Since $\mathbf{p} = c\mathbf{w}$:

$$b + \mathbf{w} \cdot c\mathbf{w} = 0$$

Simplifying:

$$b + c \|\mathbf{w}\|^2 = 0$$

Solving for c:

$$c = -\frac{b}{\|\mathbf{w}\|^2}$$

Therefore, $\mathbf{p} = -\frac{b}{\|\mathbf{w}\|^2}\mathbf{w}$.

Additionally, every column of U is orthogonal to \mathbf{w} , but U is not unique. Hence, U is one of the possible orthonormal matrices that spans the subspace orthogonal to \mathbf{w} , i.e.,

 $U \in \mathbf{w}^{\perp}.$ If U is not already orthonormal, we can apply the Gram-Schmidt process to make it so.

Conversion from implicit representation (b, w) to canonical representation (p, U):

$$p = -\frac{b}{\|w\|^2}w$$

$$U=w^{\perp}$$

where w^\perp denotes any orthonormal basis of the subspace orthogonal to (w).

2. Parametric to Implicit Representation:

The vector \mathbf{w} is orthogonal to the hyperplane and therefore orthogonal to every column of matrix A, implying $A^T\mathbf{w}=\mathbf{0}$. This shows that \mathbf{w} lies in the kernel of A^T , i.e., $\mathbf{w}\in\ker(A^T)$. Since the null space of A^T is orthogonal to the row space of A, we conclude that $\mathbf{w}\in(A)^\perp$.

Now, substituting $\mathbf{x} = \mathbf{a} + A\alpha$ into the equation $b + \mathbf{w} \cdot \mathbf{x} = 0$, we get:

$$b + \mathbf{w} \cdot (\mathbf{a} + A\alpha) = 0$$

Expanding:

$$b + \mathbf{w} \cdot \mathbf{a} + \mathbf{w}^T A \alpha = 0$$

Since $\mathbf{w}^T A = 0$, this simplifies to:

$$b + \mathbf{w} \cdot \mathbf{a} = 0$$

Thus:

$$b = -\mathbf{w}^T \mathbf{a}$$

Conversion from parametric representation (a, A) to implicit representation (b, w):

- $ullet w \in A^T.$
- $b = -w \cdot a$.
- B. Numerical expressions for the sample hyperplanes
 - 1. Hyperplane H_1 :
 - Implicit representation:

$$b = -3, \quad w = (0)$$

(since it's a point).

• Canonical representation:

$$p=(3), \quad U=\emptyset$$

(since it's a point in \mathbb{R}).

- 2. Hyperplane H_2 :
 - Implicit representation: Find w orthogonal to the vectors $u_0=(4,0)$ and $u_1=(0,3)$:

$$w = (3,4), \quad b = -w \cdot u_0 = -12$$

• Canonical representation:

$$p=rac{12}{25}iggl[rac{3}{4} iggr]$$

(the point on the line closest to the origin).

$$U = \frac{1}{5} \left[\begin{array}{c} -4\\3 \end{array} \right]$$

- 3. Hyperplane H_3 :
 - Implicit representation:

$$b = -12, \quad w = (1, 4, 8)$$

Canonical representation:

$$p = \frac{12}{81} \begin{bmatrix} 1\\4\\8 \end{bmatrix}$$

Using Gram-Schmidt to find U orthogonal to w, we get:

$$U = \left(egin{array}{ccc} -rac{4}{\sqrt{17}} & -rac{8}{9\sqrt{17}} \ rac{1}{\sqrt{17}} & -rac{32}{9\sqrt{17}} \ 0 & rac{17}{9\sqrt{17}} \end{array}
ight)$$

In [1]: import numpy as np

Problem 1.2 (Exam Style)

The signed Euclidean distance Δ_d from point p to the hyperplane S_d (with implicit equation $\sum_{i=1}^d x_i - 1 = 0$) can be computed as:

$$\Delta_d(p) = rac{\sum_{i=1}^d p_i - 1}{\sqrt{d}}$$

```
In [2]: import numpy as np
        import matplotlib.pyplot as plt
        def signed_distance(p, d):
            return (np.sum(p) - 1) / np.sqrt(d)
        d_{values} = np.arange(1, 11)
        p0 = np.zeros(10)
        p1 = np.ones(10)
        d_p0 = [signed_distance(p0[:d], d) for d in d_values]
        d_p1 = [signed_distance(p1[:d], d) for d in d_values]
        plt.figure(figsize=(8, 6))
        plt.scatter(d_values, d_p0, label='p0 = (0, ..., 0)', color='blue')
        plt.scatter(d_values, d_p1, label='p1 = (1, ..., 1)', color='red')
        plt.xlabel('Dimension d')
        plt.ylabel('Signed Euclidean Distance')
        plt.title('Signed Euclidean Distance to Hyperplane $S_d$')
        plt.legend()
        plt.grid(True)
        plt.show()
```


Problem 1.3 (Exam Style)

- 1. For $\ell_1 : x = \alpha(1, 1, 1)$:
 - The parametric form intersects S_3 since $\sum x_i = 1$ for lpha = 1/3.
 - Point of intersection: $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$.
- 2. For $\ell_2 : x = \alpha(1, -1, 0)$:
 - ullet Does not intersect $S_3.$ Compute the shortest distance and closest points:
 - Distance = $\frac{1}{\sqrt{3}}$.
 - All of the points on ℓ_2 , are nearest to \mathcal{S}_3 .
 - lacktriangle Closest Points on line: $(t+rac{1}{3},-t+rac{1}{3},rac{1}{3})$ $(t\in\mathbb{R})$ are on \mathcal{S}_3 and nearest to ℓ_2 .

Dimension d

- 3. For $\ell_3: x=(1,1,1)+lpha(1,-1,0)$:
 - ullet Does not intersect $S_3.$ Compute the shortest distance and closest points:

- Distance = $\frac{2}{\sqrt{3}}$.
- All of the points on ℓ_3 , are nearest to \mathcal{S}_3 .
- Closest Points on line: $(t+\frac{1}{3},-t+\frac{1}{3},\frac{1}{3})$ $(t\in\mathbb{R})$ are on \mathcal{S}_3 and nearest to ℓ_3 .
- 4. For ℓ_1 and ℓ_2 :
 - They intersect at (0,0,0).
- 5. For ℓ_2 and ℓ_3 :
 - Does not intersect. Compute the shortest distance and closest points:
 - Distance = $\sqrt{3}$.
 - All of the points on ℓ_2 are nearest to ℓ_3 and all of the points on ℓ_3 are nearest to ℓ_2 .
- 6. For ℓ_1 and ℓ_3 :
 - They intersect at (1,1,1)
- 7. For ℓ_1 and ℓ_4 : Does not intersect. Compute the shortest distance and closest points:
 - Distance = $2\sqrt{2}$.
 - Closest Points on line: (2,2,2) on ℓ_1 is nearest to ℓ_4 . and (2,4,0) on ℓ_4 is nearest to ℓ_1 .