Two Dimensional Random Varciable

Discrele (Joint Distribution of Two Voucialeles).

at x and y be two random variables asociated with the random experiment E and E' respectively at 8 be the sample space corresponding to the r.e and S' be that of E'.

ALT n(s) = n & n(s') = m.

Then I hm pairs of values (xi, yi); i=1,..,n

kut Pij be the probability assigned to (xi, Yi)

i.e., þij = Prob (x= xi, y= yi) = P(x=xi, y= yi) i=1,2,..., m.

All possible values of (x,y) and the corresponding probabilities by can be shown in joint distribution as follows:

14/2	y, y 2 y 3 y ym	Total
~	P11 P12 P13 Pij Pim	Pi.
	P21 P22 P23 P2j P2m	þ2.
	P31 P32 P33 P3j P3m	
:		
74	Pin Piz Pis Pij Pin	1 1:
:	hn hnz hnz hnj hnv	n th.
-Xn	h h h	
Total	P.1 P.2 P.3 P.j P.N	

As Pij (i=1,2,...,n; i=1,2,-..,m) represents the joint pmf of the joint random vericable (X, Y), therefore Lecture 10:P(1) thaneign.

Σ Σ Pij =1

Marginal probability distribution:

The prob. dist. of the random variable X is given

$$P_{X}(xi) = P(X=xi), i=1,2,--,n$$

$$P_{X}(xi) = P(X=xi) + P(X=xi) + P(x=xi) + --.$$

$$P(X=xi) + P(x=xi) + P(x=xi)$$

=
$$P_{ij} + P_{i2} + \cdots + P_{ij} + \cdots + P_{im}$$

= $\sum_{j=1}^{m} P_{ij} = P_{i}$

$$| \frac{1}{2} = \frac{$$

The prob. dist. of the roundom vorciable y is given

$$P_{y}(Y_{i}) = P(Y_{i} = Y_{i}) = P_{i} \quad j = 1,2,...,m$$

Hence,
$$\sum_{i=1}^{N} P_{i} = 1$$
 4 $\sum_{j=1}^{M} P_{j} = 1$.

The conditional of distribution of X=X; given Y=4; is given by $P(X=Xi \cap Y=4i)$

the conditional probability distribution of Y=Yj
given X=xi is given by

given
$$x=xi$$
 is given by
$$P(y=y_i|x=xi) = \frac{P(x=xi)P(x=xi)}{P(x=xi)}$$

Table: Conditional dist. of x given y= y3 (say)

Table: Conditional autinity

$$\chi: \chi_1 \quad \chi_2 \quad \chi_2 \quad \chi_1 \quad \chi_2 \quad \chi_2 \quad \chi_2 \quad \chi_1 \quad \chi_2 \quad \chi_1 \quad \chi_2 \quad \chi_1 \quad \chi_2 \quad \chi_2 \quad \chi_1 \quad \chi_2 \quad \chi_1 \quad \chi_2 \quad \chi_1 \quad \chi_2 \quad \chi_1 \quad \chi_2 \quad \chi_2 \quad \chi_2 \quad \chi_1 \quad \chi_2 \quad \chi_2 \quad \chi_1 \quad \chi_2 \quad \chi_2 \quad \chi_2 \quad \chi_1 \quad \chi_2 \quad \chi_2 \quad \chi_1 \quad \chi_2 \quad \chi_2 \quad \chi_2 \quad \chi_2 \quad \chi_2 \quad \chi_3 \quad \chi_3 \quad \chi_4 \quad \chi_4 \quad \chi_4 \quad \chi_4 \quad \chi_4 \quad \chi_5 \quad \chi$$

Table: Conditional dist- of y given X= X, (sey)

E: Tossing a coin, E': Rolling a die, set X be the T. V associated mith E and y be S = \$H,T }, 5'=\$1,2,3,4,5,6} the T.V associated mith, E'. E"= Total 20. on the faces, S"= \$1,2,3,4,5,6,7} At $X = 1 \longrightarrow (0,1) \longrightarrow \{x=0, \gamma=1\}$ $Z = 2 \rightarrow (0,2), (1,1) \rightarrow \{x=0,y=2\} \cup \{x=1,y=2\}$ $2 = 3 \rightarrow (0,3), (1,2) \rightarrow \{x=0, y=3\} \cup \{x=1, y=2\}$ 7 = 4 -> (0,4), (1,3) -> {x=0,y=4}u {x=1, y=3} 4=5 → (0,5), (1,4) + 3x=0, y=5) U 3x=1, y=43 X=6 → (0,6), (1,5) → \$X=0, Y=6} U \$X=1, Y=5} 4=7 → (1,6) + \$x=0, y=7) U } x=1, y=6) Then $P\{z=1\}=\frac{1}{12}$, $P\{z=i\}=\frac{2}{12}=\frac{1}{6}$, i=2,3,4,5,6P } = 7 = 12 $P_{ij} = P(x=i, y=j) = \frac{1}{12}, i=0,1; j=1,2,3,y_1,S,C. \text{ marginal.}$ $\frac{1}{12} = P(x=i, y=j) = \frac{1}{12}, i=0,1; j=1,2,3,y_1,S,C. \text{ marginal.}$ $\frac{1}{12} = P(x=i) = P(x=i)$ $\frac{1}{12} = \frac{1}{12} = \frac{1}{12}$ 1=0 = P.1 Marginal = P(Y=1) prob.

Example: The following table gives the joint distribution

741	2	3	7 1	Total	
2	0.10	0.25	20.0	0.40	
3		0.12	0.15	0.60	
Talal	0.40		0 0.20	1	
10154		1		- 50	1

- (1) How many pairs of values of x and gy are possible? Write them down and show the corresponding probabilities.
 - (11) Show the mereginal distis of x and y
 - (11) Show the conditional dist. of X given Y = 2.
 - (14) show the conditional dist of y given 1 = 3.
 - (v) find the probabilities P(X<X), P(2X+Y>9)

(11)
$$P(x=i)=Pi$$
. 0.40 0.60 | 1
 $x=i$ | 1 3 | Total

$$(111) \frac{X=i \mid Y=2 \mid (X=1 \mid Y=2)}{\sum_{x|y} (i \mid 2) \mid \sum_{x|y} (i \mid$$

(f. h

Joint Cumulative Distribution Function

The joint cumulative distribution function of two random variables x and y is given by

Fxy (x,y) = Prob 3- 00 < x < x, -00 < y < y}

= Cool (x < x , y < y)

- M CX (D) - OOLY CD.

To be a bona fied CDF, a for. must satisfy the following properties, similar to those found in the CDF of a single v.V.

- · O & Fx,y (x,y) &1. -00 (x < 00, -00 < y < 00.
- · FXM (x, -w) = FX,Y (-w, y) = 0 $F_{X,Y}\left(-\infty,-\infty\right)=0$, $F_{X,Y}\left(+\infty,+\infty\right)=1$.
- · Fxy(x,y) must be a non-decreasing for. af both or and y, i.l.,

Fx,y (24,31) < Fx,y (22,32) if 24 < 22 & 31 < 32.

· the marginal edf can be derived from the

lion Fx,y (x,y) = Fx(x)

lim Fry (2,2) = Fy(y).

Lecture 10: P(7) ABaneyi

Example! - The eDF of a single discreti v.v. x is given in the tabular form as follows

a	-2 <x -2="" 1<="" <="" th="" x="" =""><th>-1 <2 <0</th><th>0 4 2 < 1</th><th colspan="2">152</th></x>		-1 <2 <0	0 4 2 < 1	152	
£*(3)	0	1/8	1/4	1/2	1, 1	•

From the table it is understood that

$$P(X<1:0) = \frac{1}{2} = P(X<0:5) = P(X\leq0)$$

Similarly, the joint cdf of two discrete r.vs x and y can also be represented in the tabular form as follows

	0 (0)	-2 474	-1 5240	0 52 4	221.	Fy(4)
472	0	7,8	1/4	1/2	1	1
054<2	0	3/32	3/16	3/8	3/4	3/4
		1/32	1/16	(Y8)	1/4	1/4
-2 = y <0 -2 < y <-2	+	0	D	0	0	0
Fx(2)	0	1/8	of they	1/2	11	

From table it is seen tod that

m table it is seen (
$$(X \le 0.5, Y \le 0)$$
)
$$P(X \le 0.7, Y \le 0) = \begin{cases} P(X \le 0.7, Y \le 0) \\ P(X \le 0.7, Y \le 0) \end{cases}$$

Lecture 10 (P(8)) Assurent

The value of the edf of otwo r.v. x and y at a pt. (2,y) is the prob. of the event that contains all the outcomes that are mapped into the infinite area that lies to the left of a vertical infinite area that lies to the left of a vertical line through x=x and below a horizontal line through Y=4

$$P(x \le a, c < y \le d) = f_{x,y}(a,d) - f_{x,y}(a,c)$$

$$P(X \le a, c < y \le d) = f_{X,Y}(b,d) - f_{X,Y}(a,d) - f_{X,Y}(b,c)$$
$P(a < X \le b, c < y \le d) = f_{X,Y}(a,c) - f_{X,Y}(a,c)$

crearly seen from the figure.

Lecture 10:P(9)