

Plataforma de Estudo para Auxílio no Aprendizado de Banco de Dados

João Pedro Valladão Pinheiro

Projeto Final de Graduação

Centro Técnico Científico Departamento de Informática Curso de Engenharia de Computação

Orientador: Prof. Sérgio Lifschitz

João Pedro Valladão Pinheiro

Plataforma de Estudo para Auxílio no Aprendizado de Banco de Dados

Relatório de Projeto Final, apresentado ao programa do Curso de Engenharia de Computação da PUC-Rio como requisito parcial para a obtenção do título de Engenheiro de Computação.

Prof. Sérgio LifschitzOrientador
Departamento de Informática — PUC-Rio

Agradecimentos Agradeço ao apoio incondicional de toda a minha família em todos os momentos da minha vida.

Resumo

João Pedro, Pinheiro; Lifschitz, Sérgio. Plataforma de Estudo para Auxílio no Aprendizado de Banco de Dados. Rio de Janeiro, 2014. ??p. Relatório de Projeto Final — Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro.

Elaboração de uma plataforma web que auxilie o aprendizado do aluno da disciplina Banco de Dados. O tema surgiu a partir do conceito flipped classroom, que se trata de um modelo que sugere o aprendizado online. O aluno assiste, pratica e discute determinados assuntos em casa, trazendo as dúvidas para a sala de aula. Dessa forma, as aulas tornam-se mais dinâmicas e menos expositivas.

Palavras-chave

Plataforma de Estudo. Banco de Dados. SQL.

Abstract

João Pedro, Pinheiro; Lifschitz, Sérgio. Study Platform to Aid Database Learning. Rio de Janeiro, 2014. ??p. PhD Thesis — Department of Informática, Pontifícia Universidade Católica do Rio de Janeiro.

Elaboration of web platform which aids student learning of database discipline. The topic came up from flipped classroom concept, whose model suggests online learning. The student attends, practice and discusses certain subjects at home, bringing doubts to classroom. Thus, classes became more dynamic and less expository.

Keywords

Study Platform. Database. SQL.

Sumário

1	Introdução	g
2 2.1	Proposta Avaliações dos Concorrentes – Análise SWOT	11 11
	Projeto Modelagem Conceitual Modelagem Lógica	13 13 18
4	Plataforma Web	20
5	Considerações Finais	21
Ref	erências Bibliográficas	22

Lista de figuras

1.1	Inversão nos padrões de ensino sugerida pelo modelo flipped classroom	10
2.1	Ilustração que demonstra todos os critérios utilizados na Análise SWOT	12
3.1	Fases do projeto e da implementação de banco de dados sugerida no livro 'Sistemas de Banco de Dados', 4a edição, Elsmari e	
	Navathe	14
3.2	Primeira versão da Modelagem Conceitual	15
3.3	Segunda versão da Modelagem Conceitual; solução focada no fórum	16
3.4	Segunda versão da Modelagem Conceitual; solução focada nos	
	exercícios	17
3.5	Terceira versão da Modelagem Conceitual; solução focada no fórum	18
3.6	Terceira versão da Modelagem Conceitual; solução focada nos	
	exercícios	19

Lista de tabelas

1 Introdução

Através do advento e popularização da internet, pessoas envolvidas com educação encontraram uma possível solução para déficit de ensino global. A diminuição das distâncias entre educadores e alunos gerou uma gama de possíveis serviços a serem prestados em prol de um melhor ensino.

A partir disso, algumas iniciativas foram desenvolvidas e estão inseridas com sucesso no mercado. Foram contempladas desde ideias sem fins lucrativos, como **Edx** e **Khanacademy** (ambos serão explicadas em detalhes na seção 2.1), até startups que oferecem parte dos cursos gratuitamente e outra parte paga, como o caso da **Code School** (também explicada em maiores detalhes na seção 2.1).

Essa metodologia de ensino a distância recebeu um nome: **flipped classroom**. Trata-se de uma inversão nos padrões de ensino adotados pelas escolas, no qual a passagem de conhecimento passa a ser online, através de vídeos de curta duração, e a sala de aula torna-se um ambiente de resolução de exercícios.

Figura 1.1: Inversão nos padrões de ensino sugerida pelo modelo flipped classroom

2 Proposta

O presente trabalho tem como objetivo desenvolver uma ferramenta, de cunho acadêmico e opensource, que auxilie o ensino de banco de dados. O escopo do projeto abrangerá o ensino da linguagem SQL, através da disponibilização de exercícios online e fórum para discussão dos mesmos ou de assuntos referentes à disciplina. Além disso, todas as listas de exercícios contidas no site serão, em um primeiro momento, as mesmas oferecidas na disciplina de Banco de Dados da PUC-Rio (INF 1383).

Atualmente, os alunos da disciplina podem resolver os exercícios propostos em algumas aulas práticas, durante horário de aula, ou utilizar um programa desktop que se conecta ao servidor da disciplina com o SGBD já configurado. Os exercícios estão vinculados, na maioria das vezes, a um ou mais esquemas contidos no SGBD em questão. Dessa forma, os alunos acessam um mesmo esquema para tentar solucionar determinada questão. Quando trata-se de uma lista de exercícios que envolve puramente o comando SELECT, não há maiores problemas quanto ao esquema compartilhado. Porém, quando há comandos DML do tipo INSERT, UPDATE ou DELETE, ou comandos DDL envolvidos na resolução da lista, pode-se gerar uma indisponibilização momentânea, caso um comando seja executado de forma incorreta.

Sendo assim, duas das principais características do sistema proposto serão a utilização de esquemas distintos por alunos a cada questão e a possibilidade de voltar em uma determinada modificação feita anteriormente no esquema. Logo, além de ter liberdade de executar qualquer comando na base, sabendo que não interferirá os demais alunos, o aluno poderá voltar em um estado anterior da base quando bem entender.

2.1 Avaliações dos Concorrentes – Análise SWOT

A Análise SWOT é um sistema simples para posicionar ou verificar a posição estratégica da empresa no ambiente em questão. O termo SWOT é uma sigla oriunda dos termos ingleses Strenghts (Forças), Weaknesses (Fraquezas), Opportunities (Oportunidades) e Threats (Ameaças).

- Strengths (forças) vantagens internas da empresa em relação às concorrentes. Ex.: qualidade do produto oferecido, bom serviço prestado ao cliente, solidez financeira, etc.
- Weaknesses (fraquezas) desvantagens internas da empresa em relação às concorrentes. Ex.: altos custos de produção, má imagem, instalações desadequadas, marca fraça, etc.;
- Opportunities (oportunidades) aspectos externos positivos que podem potenciar a vantagem competitiva da empresa. Ex.: mudanças nos gostos dos clientes, falência de empresa concorrente, etc.;
- Threats (ameaças) aspectos externos negativos que podem por em risco a vantagem competitiva da empresa. Ex.: novos competidores, perda de trabalhadores fundamentais, etc.

Figura 2.1: Ilustração que demonstra todos os critérios utilizados na Análise SWOT

A seguir, seguem as análises dos principais competidores da plataforma de ensino a ser desenvolvida:

3 Projeto

Neste tópico serão expostos todas as abstrações de projeto realizadas em ordem cronológica. Essa evolução sequencial permitiu um melhor entendimento do problema e, consequentemente, uma clara definição de escopo.

Iniciando pela Modelagem Conceitual [3.1], com a utilização do modelo entidade relacionamento, foi possível obter uma alta abstração da plataforma, assim como um melhor entendimento das regras de negócios envolvidas. Logo após foram feitas as modelagens Lógica [3.2] e Física [3.3]. Na lógica, explicitamos a estrutura a ser utilizada para persistência dos dados, que no caso fora em tabelas, e os tipos de dados de cada atributo. Já na física, foi definido o SGBD utilizado, que no caso fora o **PostgreSQL 9.1**, e definidas os comandos SQL do tipo DDL para criação das tabelas, chaves primárias e estrangeiras, triggers, constraints, entre outros.

Após terminadas as abstrações referentes ao armazenamento dos dados, partimos para a definição da interação entre os usuários envolvidos e o sistema, através dos Casos de Uso [3.4], e para a definição da arquitetura a ser utilizada no desenvolvimento da plataforma, através do Diagrama de Classes [3.5].

3.1 Modelagem Conceitual

Nesta seção vamos mostrar a evolução da concepção do projeto através das três versões elaboradas com o uso do diagrama entidade relacionamento.

A entidade usuário serve como representação tanto para aluno, quanto para professor. Como não foram encontrados atributos únicos que fossem capazes de diferenciar as possíveis entidades aluno e professor, não houve necessidade da utilização de herança (também chamado de "IS-A"). No caso, haveria a possibilidade de aluno e professor herdarem características da entidade usuário. Para a diferenciação do papel, aluno ou professor, fora utilizado o atributo 'professor' (depois será possível perceber que o mesmo deixou de ser utilizado, por não se fazer necessária a distinção de papéis nesse nível de abstração do modelo).

Cada exercício proposto poderá, ou não, ser vinculado, a um esquema.

Figura 3.1: Fases do projeto e da implementação de banco de dados sugerida no livro 'Sistemas de Banco de Dados', 4a edição, Elsmari e Navathe

Dessa forma, o sistema foi idealizado para permitir não só questões relacionadas a SQL, mas a qualquer tema abordado na disciplina Banco de Dados. Como características, a entidade esquema possui um nome, como identificador, e um campo destinado a seu DDL de criação, chamado criação. Quando um aluno inicia um novo exercício e caso o mesmo seja vinculado a um esquema para ser respondido, é criado uma instância. A instância nada mais é do que uma cópia, em seu estado inicial, do esquema associado ao exercício. Essa escolha foi tomada a fim de dar maior liberdade na utilização da base por parte dos alunos. É comum, em outras plataformas, a existência de bases compartilhadas para resolução dos exercícios em SQL. Porém, acredita-se que essa prática inibe o aluno (como mencionado em seção anterior), que passa a ter medo de errar e prejudicar a turma.

Ainda em relação a instância, foi dada a liberdade para que o aluno possa compartilhá-la com seus colegas de turma. O mesmo fica explícito ao analisarmos a cardinalidade do relacionamento "visualiza", entre as entidades usuário e instância. Já em relação a ação de "modificação" da instância, apenas

Figura 3.2: Primeira versão da Modelagem Conceitual

o usuário dono na mesma poderá realizá-la. Para haver maior interação dos usuário com a plataforma, foi possibilitada a criação uma área de fórum por disciplina. E o usuário com o papel de professor seria o moderador, já os alunos participariam com dúvidas e comentários relacionados a matéria dada.

A característica preponderante desta versão era fazer uma plataforma que englobasse diversas disciplinas. Porém, conforme foi sendo definido o escopo, pôde-se observar que um fator de diferenciação perante os demais sistemas seria o foco no tema banco de dados. Essa escolha provocou uma melhor visualização da solução, que pode ser percebido nas duas seguintes versões.

Tendo em vista que a primeira versão havia ficado muito confusa, foi decidido particionar a solução em dois sistemas distintos: fórum e exercício. Dessa forma, houve uma simplificação do problema, além da melhor compreensão do mesmo, que certamente ajudará nas próximas etapas do projeto.

Alguns aspectos relevantes precisam ser ressaltados. A modelagem referente ao fórum apresenta um caminho fechado, o que deve ser evitado. Porém, um caminho fechado não necessariamente é um ciclo. Já um ciclo é, necessariamente, um caminho fechado. Assim sendo, devemos observar o sentido do relacionamento. E como um usuário, no papel de aluno, relata a dúvida e um usuário, no papel de aluno ou professor, escreve o comentário, podemos perceber que não há geração de ciclo.

Mesmo com a evolução entre as versões, alguns requisitos do sistema não foram contemplados, tais como os moderadores do fórum e a persistência das respostas dos alunos às questões dos exercícios. Além disso uma dúvida se fez

Figura 3.3: Segunda versão da Modelagem Conceitual; solução focada no fórum

presente: será mesmo que uma instância é um esquema?

Com relação a modelagem referente ao fórum, podemos perceber a adição das datas no relacionamento "relatar" e "escrever", ao invés de estarem presentes nas entidades dúvida e comentário, respectivamente. Também foram adicionadas as ações de "moderação" do fórum, que anteriormente não foram contempladas. Em ambas um campo de 'justificativa' fora inserido, para permitir que o moderador possa explicar os motivos de um possível cancelamento de dúvida ou comentário.

Além disso, perceba que a entidade dúvida agora pode, ou não, estar relacionada com a entidade questão. Dessa maneira, foi possibilitada a inserção de dúvidas não somente aos exercícios contidos na plataforma, mas como dúvidas teóricas, que tenham sido abordadas na disciplina, ou exercícios de fontes externas, por exemplo de outras faculdades.

Com relação a modelagem referente aos exercícios, as entidades esquema

Figura 3.4: Segunda versão da Modelagem Conceitual; solução focada nos exercícios

e instância deixarem de ser, respectivamente, superclasse e subclasse uma da outra. Logo, houve uma substituição da representação de herança por uma de relacionamento, com a ação "originar".

Outro ponto importante é a persistência das respostas dos usuários às questões. Serão armazenadas tanto as respostas corretas como as incorretas. Houve a opção de representar a ação de "acerto" separado da ação de "resposta". Logo, deve-se tomar cuidado para manter a restrição de integridade semântica nesse caso, já que devemos identificar quais das respostas do usuário fora a correta.

Perceba que o relacionamento da ação "vínculo" era entre as entidades exercício e esquema. Todavia, uma lista de exercícios pode conter questões referentes a diferentes esquemas. Assim sendo, a entidade questão passa a estar vinculada a um determinado esquema.

Figura 3.5: Terceira versão da Modelagem Conceitual; solução focada no fórum

Modelagem Lógica

Nesta fase, o mapeamento ainda não considera nenhuma característica específica ou casos especiais que se aplicam à implementação do modelo de dados do SGBD. Ou seja, tudo que for relatado pode ser aplicado a qualquer escolha de SGBD na próxima etapa.

Dessa forma, foram listadas todas as tabelas com suas chaves primárias e estrangeiras identificadas, atributos e tipos de dados. Além disso, foram identificados os campos: Entidade, Atributo e Relacionamento. Com esses campos, foi possível realizar o rastro entre a Modelagem Conceitual e a Modelagem Lógica.

Figura 3.6: Terceira versão da Modelagem Conceitual; solução focada nos exercícios

4 Plataforma Web

5 Considerações Finais

Referências Bibliográficas