

(1) Publication number:

0 431 149 B1

(12)

EUROPEAN PATENT SPECIFICATION

- (3) Date of publication of patent specification: 06.09.95 (5) Int. Cl.⁸: C12Q 1/68
- (21) Application number: 90913802.6
- 2 Date of filing: 31.05.90
- International application number: PCT/US90/03004
- International publication number:
 WO 90/15157 (13.12.90 90/28)
- (S) UNIVERSAL EUBACTERIA NUCLEIC ACID PROBES AND METHODS.
- @ Priority: 31.05.89 US 359158
- 43 Date of publication of application: 12.06.91 Bulletin 91/24
- Publication of the grant of the patent: 06.09.95 Bulletin 95/36
- Designated Contracting States: AT BE CH DE DK FR GB IT LI LU NL SE
- 56 References cited: EP-A- 245 129
 - EF-A- 245 129
 - EP-A- 250 662
 - EP-A- 277 237
 - EP-A- 0 272 009

SCIENCE, vol. 243, March 1989, E.F. DeLONG et al., p. 1360#

DIALOG INFORMATIONAL SERVICES, file 154, medline 83-90, acc.no. 06930668, medline acc.no. 89232668; K. CHEN et al.#

- Proprietor: AMOCO CORPORATION 200 East Randolph Drive P.O. Box 87703 Chicago Illinois 60680-0703 (US)
- 2 Inventor: LANE, David, J.
 9 Oriole Drive
 Milford, MA 01757 (US)
 Inventor: SHAH, Jyotsna
 13 Bates Drive
 Nashua, NH 03060 (US)
 Inventor: BUHARIN, Amelia
 7 Pond Street
 Framingham, MA 01701 (US)
 Inventor: WEISBURG, William, G.
 3 Jillson Circle
 Milford, MA 01757 (US)
- Representative: Sheard, Andrew Gregory et al Kilburn & Strode 30, John Street London WC1N 2DD (GB)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).

DIALOG INFORMATIONAL SERVICES, file 154, medline 83-90, acc.no. 06470172, medline acc.no. 88115172; S.J. GIOVANNONI et al.#

Description

15

20

50

This invention relates to detection of bacteria in clinical and other samples. Methods for the detection of bacteria in ordinarily aseptic bodily tissues or fluids such as blood, urine, and cerebrospinal fluid fluid where the presence of any bacterium may be life threatening are of particular importance. The present invention provides nucleic acid probes and compositions along with methods for their use for the specific detection of any bacterium in such samples.

EP-A-0272009 (Hogan et al, derived from WO-A-8802957) describes a number of nucleic acid probes, that hybridise to bacterial RNA but not to yeast or human rRNA, and a method for their preparation, that can be used in hybridisation assays for detecting non-viral organisms.

EP-A-0245129 (Institut Pasteur and INSERM) refers to oligonucleotide probes capable of hybridising to bacterial rRNA and their use in hybridisation assays for the detection of bacteria.

Background of the Invention

The term "eubacteria" as used herein, refers to the group of prokaryotic organisms (bacteria) as described in, for example, Bergey's Manual of Systematic Bacteriology (N.R. Krieg and J.G. Holt, ed., 1984, Williams & Wilkins, Baltimore). As a group, the eubacteria comprise all of the bacteria which are known to cause disease in humans or animals and are of most concern with respect to detection.

The only other described group of bacteria, the archaebacteria, are biologically and genetically distinct from the eubacteria (C.R. Woese, Scientific American, 1981, Volume 244, pages 90-102). Archaebacteria as a group occupy a variety of "extreme" environments such as hot springs, strongly oxygen-depleted muds, salt brines, etc., which generally do not support the growth of eubacteria. There are no known archaebacterial pathogens and, consequently, their detection is of little clinical significance.

Eukaryotic organisms comprise the third fundamental genetic lineage which, together with the eubacteria and archaebacteria, include all known life forms (Figure 1). Eukaryotes include humans, animals, plants and a host of organizationally less complex, free-living and parasitic "protists," including: protozoans, fungi, ciliates, etc. In a clinical context, it is particularly important that eubacteria be distinguished from eukaryotic, e.g. fungal and protozoan, infections which may present the same symptoms but require a significantly different regime of antimicrobial or chemo-therapy. These genetic distinctions thus are clinically significant from the point of view of diagnosis and antimicrobial chemotherapy.

It is an aspect of the present invention to provide nucleic acid probes which discriminate between eubacterial, human (including human mitochondrial) and fungal rRNA molecules.

It is another aspect of the present invention to provide probes and probe sets which provide a basis for discriminating between Gram positive and Gram negative eubacteria.

Methods for detecting, identifying and enumerating bacteria in normally sterile body fluids vary with the type of sample and the suspected pathogen. No currently available method is optimal for the detection of all pathogens. Often a combination of methods must be used to increase the likelihood that the pathogen will be detected. All commonly used methods for detection of, for example, bacteremia or bacterial septicemia rely on the in vitro cultivation of microbes from clinical samples. Generally, a blood sample is drawn from a patient and incubated in a rich artificial culture medium and monitored for 1 to 14 days. During this time, the medium is examined or blindly sub-cultured (plated), or assayed chemically or isotopically for evidence of bacterial growth or fermentative processes. Clinicians generally draw two or three samples of 10 milliliters of blood which may yield as few as one to ten colony forming units of bacteria for a positive diagnosis. Following the isolation of individual colonies of bacteria on diagnostic solid media and/or by Gram-staining, presumptive identification of the bacteria (or fungus) is made.

All cultivation methods suffer a number of serious shortcomings, including the following:

- High material costs;
- Labor intensive;
- Technologists extensively handle dangerous bodily fluids;
- False positives due to handling;
- False negatives due to low viable cell numbers;
- False negatives due to fastidious media requirements of many potential pathogens; and
- Relatively long time to positive diagnosis and identification.

Because of the relatively long time required by current methods to achieve a diagnosis and because of the potentially life threatening nature of such infections, antimicrobial therapy often is begun empirically before the results of such tests can be known.

Therefore, it is another aspect of the present invention to provide nucleic acid probes which are broadly specific for all eubacteria and which preferably do not react with other eukaryotic pathogens, especially fungi, which may be present in sampled materials.

It is yet another aspect of the present invention to provide probes which may be used in a variety of assay systems which avoid many of the disadvantages associated with traditional, multi-day culturing techniques.

It is still another aspect of the present invention to provide probes that are capable of hybridizing to the ribosomal ribonucleic acid (rRNA) of the targeted eubacterial organisms under normal assay conditions.

While Kohne et al. (Biophysical Journal 8:1104-1118, 1968) discuss one method for preparing probes to rRNA sequences, they do not provide the teaching necessary to make broad-specificity eubacterial probes.

Pace and Campbell (Journal of Bacteriology 107:543-547, 1971) discuss the homology of ribosomal ribonucleic acids from diverse bacterial species and a hybridization method for quantitating such homology levels. They do not identify particular nucleic acid sequences shared by bacteria, but absent in eukaryotes. Woese (Microbiological Reviews 51:221-271, 1987) describes the breadth of the eubacteria, in terms of rRNA sequence, but does not indicate sequences of interest for complete bacterial inclusivity. These references, however, fail to relieve the deficiency of Kohne's teaching with respect to eubacterial probes and, in particular, do not provide eubacterial specific probes useful in assays for detecting eubacteria in clinical or other samples.

Giovannoni et al. (Journal of Bacteriology 170:720-726, 1988) describe a number of probes which are claimed to be useful for the identification of broad groups of eubacteria, archaebacteria and eukaryotes. However, Giovannoni et al. do not disclose the probes of the present invention. Nor do they provide the teaching necessary to design such probes.

Hogan et al. (European patent publication WO 88/03957) describe a number of probes which are claimed to hybridize to a broad representation of eubacteria. However, Hogan et al. do not teach the probes of the present invention and also fail to relieve the deficiency of Kohne's teaching with respect to these probes.

Ribosomes are of profound importance to all organisms because they serve as the only means of translating genetic information into cellular proteins. A clear manifestation of this importance is the observation that all cells have ribosomes. Actively growing bacteria may have 20,000 or more ribosomes per cell. This makes ribosomes one of the most abundant macromolecular entities in a cell, and an attractive diagnostic assay target.

Ribosomes contain three distinct RNA molecules which in <u>Escherichia coli</u> are referred to as 5S, 16S and 23S rRNAs. These names historically are related to the size of the RNA molecules, as determined by their sedimentation rate. In actuality, however, ribosomal RNA molecules vary in size between organisms. Nonetheless, 5S, 16S, and 23S rRNA are commonly used as generic names for the homologous RNA molecules in any bacteria, and this convention will be continued herein. Discussion will be confined to 16S and 23S rRNAs.

As used herein, probe(s) refer to synthetic or biologically produced nucleic acids (DNA or RNA) which, by design or selection, contain specific nucleotide sequences that allow them to hybridize under defined predetermined stringencies, specifically (i.e., preferentially, see below - Hybridization) to target nucleic acid sequences. In addition to their hybridization properties, probes also may contain certain constituents that pertain to their proper or optimal functioning under particular assay conditions. For example, probes nay be modified to improve their resistance to nuclease degradation (e.g. by end capping), to carry detection ligands (e.g. fluorescein, 32-Phosphorous, biotin, etc.), or to facilitate their capture onto a solid support (e.g., poly-deoxyadenosine "tails"). Such modifications are elaborations on the basic probe function which is its ability to usefully discriminate between target and non-target organisms in a hybridization assay.

Hybridization traditionally is understood as the process by which, under predetermined reaction conditions, two partially or completely complementary strands of nucleic acid are allowed to come together in an antiparallel fashion (one oriented 5' to 3', the other 3' to 5') to form a double-stranded nucleic acid with specific and stable hydrogen bonds. (Note that nucleic acids do have a polarity; that is, one end of a nucleic acid strand is chemically different from another. This is defined by the polarity of the chemical linkages through the asymmetric sugar moiety of the nucleotide components. The terms 5' and 3' specifically refer to the ribose sugar carbons which bear those names. Except in rare or unusual circumstances, nucleic acid strands do not associate through hydrogen bonding of the base moieties in a parallel fashion. This concept is well understood by those skilled in the art.)

The stringency of a particular set of hybridization conditions is defined by the base composition of the probe/target duplex, as well as by the level and geometry of mispairing between the two nucleic acids.

Stringency may also be governed by such reaction parameters as the concentration and type of ionic species present in the hybridization solution, the types and concentrations of denaturing agents present, and/or the temperature of hybridization. Generally, as hybridization conditions become more stringent, longer probes are preferred if stable hybrids are to be formed. As a corollary, the stringency of the conditions under which a hybridization is to take place (e. g., based on the type of assay to be performed) will dictate certain characteristics of the preferred probes to be employed. Such relationships are well understood and can be readily manipulated by those skilled in the art.

As a general matter, dependent upon probe length, such persons understand stringent conditions to mean approximately 35 ° C-65 ° C in a salt solution of approximately 0.9 molar.

Summary of the Invention

10

35

45

In accordance with the various principles and aspects of the present invention, there are provided nucleic acid probes and probe sets comprising deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) sequences which hybridize, under specific conditions, to the ribosomal RNA molecules (rRNA), rRNA genes (rDNA), and certain amplification and in vitro transcription products thereof of eubacteria but which do not hybridize, under the same conditions, to the rRNA or rDNA of eukaryotic cells which nay be present in test samples. In addition, certain of the probes and probe sets described herein nay be used as primers for the specific amplification of eubacterial rRNA or rDNA sequences which may be present in a sample by such methods as the polymerase chain reaction (US 4,683,202) or transcriptional amplification systems (e.g. TAS, Kwoh et al., 1989, Proceedings of the National Academy of Science 86:1173-1177).

The probes of the present invention are capable of hybridising to rDNA and rRNA of eubacteria, but not to rRNA or rDNA of mouse L cells, wheat germ, human blood or Candida albicans, and have a sequence that is complementary to, or homologous to, at least 90% of sequence comprising any 10 consecutive nucleotides within any one of 22 probes (which are designated by a four digit number and whose sequences are given later).

The probes of the present invention advantageously provide the basis for development of valuable nucleic acid hybridization assays for the specific detection of eubacteria in clinical samples such as blood, urine, cerebrospinal fluid, biopsy, synovial fluid, or other tissue or fluid samples from humans or animals. The probes also provide the basis for testing, for example in quality control, substances that are presumed sterile, e.g., pharmaceuticals. The probes described herein are specifically complimentary to certain highly conserved bacterial 23S or 16S rRNA sequences.

The detection of bacteria by nucleic acid hybridization constitutes enhanced performance capability compared to the available culture-dependent tests for several reasons including:

- a) increased sensitivity; i.e., the ability to detect said bacteria in a given sample more frequently;
- b) potentially significant reductions in assay cost due to the use of inexpensive reagents and reduced
- c) accurate detection of even nutritionally fastidious strains of bacteria;
- d) faster results because such tests do not require the isolation of the target bacterium from the sample prior to testing:
- e) the ability to screen, in a batch mode, a large number of samples, and only culture those identified as "hybridization positive";
- f) potential detection of phagocytized organisms eliminating the need for multiple, punctuated blood samples in order to sample the cyclical "window" of viable organisms (which probably depends on host immunological cycles);
- g) some reduction of technologist handling of potentially infectious body fluids;
- h) the ability to detect very low numbers of targets by amplifying either the bacterial signal or target using in vitro nucleic acid amplification.

It has been discovered that other advantages incurred by directing the probes of the present invention against rRNA include the fact that the rRNAs detected constitute a significant component of cellular mass. Although estimates of cellular ribosome content vary, actively growing Escherichia coli, for example, may contain upwards of 50,000 ribosomes per cell, and therefore 50,000 copies of each of the rRNAs (present in a 1:1:1 stiochiometry in ribosomes). The abundance of ribosomes in other bacteria particularly under other, less favorable, metabolic conditions may be considerably lower. However, under any circumstances, rRNAs are among the most abundant cellular nucleic acids present in all cell types. In contrast, other potential cellular target molecules such as genes or RNA transcripts thereof, are less ideal since they are present in much lower abundance.

A further unexpected advantage is that the rRNAs (and the genes specifying them) appear not to be subject to lateral transfer between contemporary organisms. Thus, the rRNA primary structure provides an organism-specific molecular target, rather than a gene-specific target as would likely be the case, for example of a plasmid-borne gene or product thereof which may be subject to lateral transmission between contemporary organisms.

Additionally, the present invention provides probes to eubacterial rRNA target sequences which are sufficiently similar in most or all eubacteria tested that they can hybridize to the target region in such eubacteria. Advantageously, these same rRNA target sequences are sufficiently different in most non-eubacterial rRNAs that, under conditions where the probes hybridize to eubacterial rRNAs they do not hybridize to most non-eubacterial rRNAs. These probe characteristics are defined as inclusivity and exclusivity, respectively.

The discovery that probes could be generated with the extraordinary inclusivity and exclusivity characteristics of those of the present invention with respect to eubacteria was unpredictable and unexpected.

The various aspects of the invention for which protection is sought are featured in appending claims.

Brief Description of the Figures

15

25

Further understanding of the principles and aspects of the present invention may be ride by reference to the tables wherein:

Figure 1 - Shows an evolutionary "tree" of the major genetic "kingdoms" of life (Woese, 1987, Microbiological Reviews 51:221- 271). The branching patterns represent the mutational distances between the 16S rRNA sequences of the represented organism. Such comparisons readily distinguish the eubacteria from the archaebacteria and eukaryotes.

Figure 2 - Shows a more detailed evolutionary tree of the eubacterial kingdom (ibid.). So far about 10 major divisions/phyla have been defined based on 16S rRNA sequence comparisons. Certain discriminations among eubacterial divisions can be important in a clinical context and certain of the probes of the present invention do exhibit preferential hybridization to one or more or the eubacterial divisions. Therefore, the test organisms listed in Tables 3, 4 and 5 are grouped according to the divisions shown in Figure 2 so that significant patterns of hybridization may be most easily discerned.

Brief Description of the Tables

Table 1 - Shows alignment of the nucleotide sequences of the preferred 16S rRNA-targeted probes of the present invention with their target nucleotide sequences in <u>E. coli</u> 16S rRNA. Very extensive sequence comparison to some 350 aligned 16S and 18S rRNA sequences were performed during the development of the probes of the present invention. It simply is not practical to show this analysis in detail. However, a consensus sequence (CONS-90%) of highly conserved 16S rRNA nucleotide positions is provided as a summary of the patterns of nucleotide sequence variation discovered among representative eubacteria. A nucleotide on the CONS-90% line indicates that that nucleotide is found at the homologous position in 90% or greater of the eubacterial sequences inspected. Note that the probe target regions all correspond to clusters of high sequence conservation among the eubacterial 16S and 23S rRNA molecules.

Since the <u>E. coli</u> 16S and 23S rRNA sequences were among the first full rRNA sequences obtained, the assigned position numbers have become a convenient and commonly accepted standard for explicitly identifying the homologous regions in other rRNA sequences under consideration. In Table 1, the <u>E. coli</u> RNA (target) sequence is written 5' to 3'. Probe sequences are DNA and written 3' to 5', except for probes 1638, 1642 and 1643 which are designed to hybridize to the rRNA-complementary sequence rather than the rRNA itself. These latter probes have the same "sense" (i. e. polarity) as the rRNA and are written 5' to 3'.

Table 2 - Shows alignment of the nucleotide sequences of the preferred 23S rRNA-targeted probes of the present invention with their target nucleotide sequences in <u>E. coli</u> 23S rRNA. As in Table 1 the <u>E. coli</u> sequence numbering is used as a standard in order to identify the homologous probe target sequences in all 23S rRNAs. CONS-90% has the same meaning as in TABLE 1. For the 23S rRNA analyses only about 30 sequences were available. However, these represent most of the major eubacterial divisions shown in Figure 2. In the probe 1730 sequence, "R" = a 1:1 mixture of A and G at that position.

Table 3 - Exemplifies the inclusivity and exclusivity behavior of a number of the preferred 16S rRNA-targeted probes toward a representative sampling of eubacterial and non-eubacterial rRNAs in a dot blot hybridization assay.

Table 4 - Exemplifies the inclusivity and exclusivity behavior of a number of the preferred 23S rRNA-targeted probes toward a representative sampling of eubacterial and non-eubacterial rRNAs in a dot blot hybridization assay.

Table 5 - Exemplifies the inclusivity and exclusivity behavior of a number of additional preferred 16S and 23S rRNA-targeted probes toward a representative sampling of eubacterial and non-eubacterial rRNAs in a dot blot hybridization assay. These probes exhibit useful patterns of hybridization to specific subgroups of eubacteria - notably Gram positive and Gram negative bacteria.

Detailed Description of the Invention and Best Mode

Probe Development Strategy:

10

35

40

45

The first step taken in the development of the probes of the present invention involved identification of regions of 16S and 23S rRNA which potentially could serve as target sites for eubacteria specific nucleic acid probes. This entailed finding sites which are:

1) highly conserved (few nucleotide changes, deletions, or insertions) among eubacterial rRNA sequences, and

2) substantially different in non-eubacterial rRNA sequences.

For this analysis, precise alignments of available 16S and 23S rRNA sequences were developed. A number of 16S and 23S rRNA sequences were determined as part of this effort. Such nucleotide sequences were determined by standard laboratory protocols either by cloning (Maniatis et al., 1982, Molecular Cloning; A Laboratory Manual, Cold Spring Harbor Laboratory, New York, pp 545) and sequencing (Maxam and Gilbert, 1977, Proceedings of the National Academy of Science, USA 74:560-564: Sanger et al., 1977, Proceedings of the National Academy of Science, USA 74:5463-5467) the genes which specify the rRNAs, and/or by direct sequencing of the rRNAs themselves using reverse transcriptase (Lane et al., 1985, Proceedings of the National Academy of Science, USA 82:6955-6959; Lane, manuscript in preparation).

A computer algorithm, operating on the aligned set of 16S and 23S rRNA sequences, was used to identify regions of greatest similarity among eubacteria. Nucleic acid probes to such regions will hybridize most widely among diverse eubacteria.

Such regions of homology among eubacteria next were assessed for differences with non-eubacterial rRNA sequences. In particular, sequence differences between eubacterial and human, fungal, and mitochondrial sequences were sought.

Forty one probes were designed based on these analyses; 22 targeting 23S rRNA and 19 targeting 16S rRNA.

The hybridization behavior of these probes toward extensive panels of eubacteria was determined by hybridization analysis in a dot blot format.

Physical Description of the Probes:

The foregoing probe selection strategy yielded a number of probes useful for identifying eubacteria in samples and include the following preferred oligonucleotide probes: Probes within the invention are set out in the appended claims, and are nos: 1661, 1739, 1746, 1743, 1639, 1640, 1641, 1656, 1657, 1653, 1654, 1655, 1651, 1652, 1595, 1600, 1601, 1602, 1598, 1599, 1596 or 1597. All other probes are provided for comparison.

16S rRNA-targeted probes:

Probe 1638: 5'-AGAGTTTGATCCTGGCTCAG-3'
Probe 1642: 5'-AGAGTTTGATCATGGCTCAG-3'
Probe 1643: 5'-AGAGTTTGATCCTGGCTTAG-3'
Probe 1738: 5'-CTGAGCCAGGATCAAACTCT-3'

Probe 1744: 5'-CAGCGTTCGTCCTGAGCCAGGATCAAACT-3'

Probe 1659: 5'-CTGCTGCCTCCCGTAGGAGT-3'

Probe 1660: 5'-CTGCTGCCTCCCGTAGGAGTTTGGGCCGTGTCTCAGTTCCAGTGT-3'

*Probe 1661: 5'-TATTACCGCGGCTGCTGGCACGGAGTTAGCCG-3'

*Probe 1739: 5'-GCGTGGACTACCGGGGTATCTAATCCTGTTTGCTCCCCACGCTTTCG-3'

Probe 1740: 5'-GGGTTGCGCTCGTTGCGGGACTTAACCCGACATCTCACGGCACGAGCT GACGACAGCCATGCAT-3'

Probe 1741: 5'-CTCACGGCACGAGCTGACGACAGCCATGCAT-3'

Probe 1742: 5'-GGGTTGCGCTCGTTGCGGGACTTAACCCGACAT-3'

Probe 1745: 5'-AGCTGACGACAACCATGCACCACCTGT-3'

*Probe 1746: 5'TCATAAGGGGCATGATGATTTGACGTCAT-3'

*Probe 1743: 5'-GTACAAGGCCCGGGAACGTATTCACCG-3'

Probe 1637: 5'-AAGGAGGTGATCCAGCC-3'

*Probe 1639: 5'-ACGGTTACCTTGTTACGACTT-3'

*Probe 1640: 5'-ACGGCTACCTTGTTACGACTT-3'

*Probe 1641: 5'-ACGGATACCTTGTTACGACTT-3'

23S rRNA-targeted probes:

Probe 1730: 5'-CTTTTCTCCTTTCCCTCRCGGTACTGGTTCRCTATCGGTC'3

Probe 1731: 5'-CTTTTCGCCTTTCCCTCGCGGTACTGGTTCGCTATCGGTC'3

Probe 1658: 5'-TCTTTAAAGGGTGGCTGCTTCTAAGCCAACATCCTGGTTG-3'

*Probe 1656: 5'-CTACCTGTGTCGGTTTGCGGTACGGGC-3'

*Probe 1657: 5'-GGTATTCTCTACCTGACCACCTGTGTCGGTTTGGGGTACG-3'

*Probe 1653: 5'-CCTTCTCCCGAAGTTACGGGGGCATTTTGCCTAGTTCCTT-3'

*Probe 1654: 5'-CCTTCTCCCGAAGTTACGGGGTCATTTTGCCGAGTTCCTT-3'

*Probe 1655: 5'-CCTTCTCCCGAAGTTACGGCACCATTTTGCCGAGTTCCTT-3'

*Probe 1651: 5'-CTCCTCTTAACCTTCCAGCACCGGGCAGGC-3'

*Probe 1652: 5'-TTCGATCAGGGGCTTCGCTTGCGCTGACCCCATCAATTAA-3'

Probe 1512: 5'-TTAGGACCGTTATAGTTACGGCCGCCGTTTACTGGGGCTT-3'

Probe 1256: 5'-GGTCGGAACTTACCCGACAAGGAATTTCGCTACCTTAG-3'

Probe 1398: 5'-GGTCGGTATTTAACCGACAAGGAATTTCGCTACCTTAG-3'

Probe 1511: 5'-CGTGCGGGTCGGAACTTACCCGACAAGGAATTTCGCTACC3'

*Probe 1595: 5'-CGATATGAACTCTTGGGCGGTATCAGCCTGTTATCCCCGG-3'

*Probe 1600: 5'-CAGCCCCAGGATGAGATGAGCCGACATCGAGGTGCCAAAC-3'

*Probe 1601: 5'-CAGCCCCAGGATGTGATGAGCCGACATCGAGGTGCCAAAC-3'

*Probe 1602: 5'-CAGCCCCAGGATGCGATGAGCCGACATCGAGGTGCCAAAC-3'

*Probe 1598: 5'-CGTACCGCTTTAAATGGCGAACAGCCATACCCTTGGGACC-3' *Probe 1599: 5'-CGTGCCGCTTTAATGGGCGAACAGCCCAACCCTTGGGACC-3'

*Probe 1596: 5'-GATAGGGACCGAACTGTCTCACGACGTTTTGAACCCAGCT-3'

*Probe 1597: 5'-GATAGGGACCGAACTGTCTCACGACGTTCTGAACCCAGCT-3'

The specific behaviors of the aforementioned probes are dependent to a significant extent on the assay format in which they are employed. Conversely, the assay format will dictate certain of the optimal design features of particular probes. The "essence" of the probes of the invention is not to be construed as restricted to the specific string of nucleotides in the named probes. For example, the length of these particular oligonucleotides was optimized for use in the dot blot assay (and certain other anticipated assays) described below. It is well known to those skilled in the art that optimal probe length will be a function of the stringency of the hybridization conditions chosen and hence the length of the instant probes nay be altered in accordance therewith. Also, In considering sets comprised of more than one probe, it is desirable that all probes behave in a compatible manner in any particular format in which they are employed. Thus, the exact length of a particular probe will to a certain extent, reflect its specific intended use. Again, given the probes of the instant invention, these are familiar considerations to one of ordinary skill in the art.

The "essence" of the probes described herein resides in the discovery and utilization of the specific sequences described above and given in Table 1 and Table 2.

* referred to in claim 1.

* referred to in claim 1.

* referred to in claim 1."

Hybridization Analysis of Probe Behavior:

15

20

The sequence comparisons which led to the discovery of the disclosed target sequences suggested that many of the probes should hybridize to a significant number of eubacteria. For the 16S rRNA analyses, some 350 sequences were considered in designing the probes; for the 23S rRNA analyses only about 30 eubacterial sequences were available. Since it is impossible to test every eubacterial strain, greater sequence variation might exist in other eubacterial strains not inspected by sequence analysis which might reduce or eliminate hybridization by the prospective probes to such untested eubacteria. As can be seen in Tables 3, 4 and 5, some probes of extremely broad inclusivity nevertheless fail to hybridize to certain bacteria. Therefore, carefully documenting the hybridization behavior to a large and representative number of eubacteria is an important element in documenting that such probes are capable of detecting all eubacteria or, failing that, for documenting which eubacteria are not detected. Such "failures" may not be clinically significant or alternatively, may be compensated for by appropriate inclusion of other probes of the instant inventions.

Equally as important as the inclusivity behavior of the probes, is their exclusivity behavior, i.e., their reactivity toward non-eubacteria. As mentioned, demonstrating a lack of hybridization to human and fungal rRNAs is of paramount importance in the types of clinical applications envisioned for such probes. Therefore, the behavior of the probes toward representative eubacterial, human and fungal rRNAs was determined by hybridization analysis using a dot blot procedure.

Example 1: Dot-blot analysis of probe hybridization behavior.

Dot-blot analysis, in accordance with well known procedures, involves immobilizing a nucleic acid or a population of nucleic acids on a filter such as nitrocellulose, nylon, or other derivatized membranes which readily can be obtained commercially, specifically for this purpose. Either DNA or RNA can be easily immobilized on such a filter and subsequently can be probed or tested for hybridization under any of a variety of conditions (i.e., stringencies) with nucleotide sequences or probes of interest. Under stringent conditions, probes whose nucleotide sequences have greater complementarity to the target sequence will exhibit a higher level of hybridization than probes containing less complementarity. For most of the oligonucleotide probes described herein, hybridization to rRNA targets at 60°C for 14-16 hours (in a hybridization solution containing 0.9 M NaCl, 0.12 M Tris-HCl, pH 7.8, 6 mM EDTA, 0.1 M KPO4, 0.1% SDS, 0.1% pyrophosphate, 0. 002% ficoll, 0.02% BSA, and 0.002% polyvinylpyrrolidine), followed by standard post-hybridization washes to remove unbound and non-specifically hybridized probe (at 60°C in 0.03 M NaCl, 0. 004 M Tris-HCl, pH 7.8, 0.2 mM EDTA, and 0.1% SDS), would be sufficiently stringent to produce the levels of specificity demonstrated in Tables 3, 4 and 5. The exceptions to these conditions are probe 1738 (which was hybridized at 37°C), and probe 1746 (which was hybridized at 37°C and washed at 50°C).

Techniques also are available in which DNA or RNA present in crude (unpurified) cell lysates can be immobilized without first having to purify the nucleic acid in question (e.g. Maniatis, T., Fritsch, E. F. and Sambrook, J., 1982, Molecular Cloning:A Laboratory Manual).

The dot-blot hybridization data shown in Tables 3, 4 and 5 were generated by hybridization of the indicated probes to purified RNA preparations from the indicated eubacterial, fungal and human specimens. Bacterial and fungal RNAs were purified from pure cultures of the indicated organisms. Mouse RNA was purified from L cells (a tissue culture cell line). Wheat germ RNA was purified from a commercial preparation of that cereal product. Human blood and stool RNAs were purified from appropriate specimens obtained from normal, healthy individuals.

Purified RNA was used, rather than cell lysates for a number of simple technical reasons. The most important of these relate to proper interpretation of the relative signal arising from the hybridization of any particular probe to individual organisms. RNA content per cell is known to vary widely among different bacteria and varies even more between bacteria and eukaryotic cells. In addition, the specific metabolic status of cells at the time of harvest can have a profound influence on the amount and integrity of the RNA recovered. Some bacteria, for example, begin to degrade their RNA very rapidly upon reaching the stationary growth phase. The organisms represented in Tables 3, 4 and 5 comprise an extremely diverse collection in every respect. Represented are Gram positive and Gram negative bacteria, photosynthetic and chemosynthetic, heterotrophic and lithotrophic, and anaerobic and aerobic metabolisms. By using known, equivalent amounts of purified RNA in the individual "dots," relative levels of hybridization of each probe to each organism can be meaningfully compared without regard to the idiosyncracies of nucleic acid preparation from individual types of bacteria represented.

RNA was prepared by a variation on standard published methods which has been developed in our laboratory (W. Weisburg, unpublished). The method rapidly yields bulk high molecular weight RNA in a highly purified but relatively unfractionated form. Little or no DNA, or low molecular weight RNA species are found in RNA prepared in this fashion.

A large proportion of the RNA is 16S and 23S rRNA (18S and 28S rRNA in eukaryotes) as is true of the RNA in the intact cells. The method is rapid and convenient, but otherwise is not relevant to interpretation of the dot-blot results presented in Tables 3, 4 and 5. Most other currently accepted methods available in the literature which yield RNA of reasonable intactness will yield equivalent hybridization results.

For the hybridization experiments reported in Tables 3, 4 and 5, probes were end-labeled with radioactive 32-phosphorous, using standard procedures. Following hybridization and washing as described above, the hybridization filters were exposed to X-ray film and the intensity of the signal evaluated with respect to that of control RNA spots containing known amount of target RNA of known sequence.

A scale of hybridization intensity ranging from + + + + (hybridization signal equivalent to that of control spots) to + (barely detectable even after long exposure of the x-ray film) has been used to compare hybridization signals between organisms and probes. + + + signal indicates a very strong signal only slightly less intense than control spots. + + indicates a clearly discernible hybridization signal, but one that is noticeably weaker than the control spots. Note that while more "quantitative" ways to record hybridization signal are available, they are much more cumbersome to employ and, in our experience, not really any more useful for probe evaluation than the method employed in Tables 3, 4 and 5. In fact, because of certain uncontrollable variables in spotting exactly equivalent amounts of target RNA (of equivalent intactness) from such disparate organisms, numerically more precise counting methods are only deceptively more quantitative. In our experience, an organism generating a + + or greater signal to a particular probe is easily distinguished from one generating a "-" signal. This is true of a variety of assay formats that have been tested.

As is evident in Tables 3 and 4, 23S rRNA-targeted probes 1600, 1602, 1596, 1256 and 1512 and 16S rRNA-targeted probes, 1738, 1660, 1639, 1739, 1740, 1741 and 1743 hybridize most extensively among the eubacteria and are thus the most preferred. Other probes hybridize in a variety of patterns to subgroups of eubacteria and would be preferred for the detection of those subgroups or as components of more broadly inclusive probe sets. For example, probes 1599, 1656, 1744, 1745 and 1746 hybridize preferentially to Gram positive bacteria. Probes 1657, 1598 and 1595 hybridize preferentially to gram-negative bacteria, particularly to members of the so-called "purple bacterial" division (Figure 2 and Table 5).

Other probes exhibit other useful patterns of hybridization as is evident upon inspection of the data in Tables 3, 4 and 5. These probes can be combined in a variety of ways to create probe sets which exhibit the combined hybridization properties of the component probes. An example of one such hybridization format is given below (Example 2).

Alternatively, the probes could be used in a variety of subtractive hybridization schemes in which specific rRNA molecules are removed from the pool present in a mixed population of organisms prior to or simultaneous with the target organism-specific probes (e.g. Collins, European Patent Application 87309308.2, EP-A-0265244).

Example 2: Dual Probe, Sandwich Hybridization Assay

The probes of the present invention or derivatives thereof can be advantageously employed in a variety of other hybridization formats. One such format is a dual probe, sandwich-type hybridization assay such as that described, for example, in USSN 277,579; USSN 169,646, or USSN 233,683. In such a dual probe application, one probe (for example, probe 1602 or a derivative) would be ideally modified at its 3' terminus to contain a tract of about 20 - 200 deoxyadenosine (dA) residues. This would be used to "capture" the target rRNA (following liquid hybridization) from the test sample onto a solid support (e.g., beads, plastic surface, filter, etc.) which had been suitably derivatized with poly-deoxythymidine (dT) for this purpose. A second probe (for example, probe 1596 or derivative) would then be advantageously used as the detection probe and would be suitably derivatized with some detectable ligand (e.g. 32-P, fluorescein, biotin, etc.). Detection of the presence of the target nucleic acid in a test sample then would be indicated by capture of the detection ligand onto the solid surface through the series of hybridization interactions:

This could occur only if the target nucleic acid is present in the test sample. In principle, the above scheme could be employed with multiple capture and detection probes (probe sets) for the purpose of, for example, improving inclusivity or enhancing sensitivity of the assay.

Example 3: PCR Amplification of 16S rRNAs.

10

30

The polymerase chain reaction (PCR) is a well known method for amplifying target nucleic acid by "copying" the nucleic acid sequences located between two target sequences (US 4,683,202). The PCR process could be useful in an assay for the diagnosis of, for example, a non-viral pathogen by amplifying the genes encoding the pathogen's rRNA or rRNA genes and subsequently detecting that product. Implementation of this diagnostic strategy requires the invention of primers capable of amplifying the rRNA of the targeted organism(s). A second important application of such primers is in cloning amplified rRNA genes, and a third application is the direct sequencing of amplified rRNA genes.

Probes 1638, 1642, 1643, 1637, 1639*, 1640*and 1641*may be ideally used as primers for enzymatically copying and/or amplifying eubacterial 16S rRNAs or the genes encoding them. Details of the PCR procedure vary slightly depending on whether the target nucleic acid is single or double stranded, and whether it is DNA or RNA. However, the principle is the same in either case. Briefly, the steps are as follows:

1) Double-stranded DNA is denatured,

2) Oligonucleotide primers complimentary to each of the sister DNA strands are annealed, and

3) deoxynucleotide triphosphate precursors are incorporated into newly synthesized sister DNA strands

by extension of the primers from their 3' termini using DNA polymerase and/or reverse transcriptase.

Thus, a pair of oligonucleotide primers are required for the PCR reaction, one complementary to each strand within the target gene. They are positioned such that the newly synthesized product of one primer is also a target/template for the other primer. Thus the target nucleotide sequence located between the two primer annealing sites nay be amplified many fold by repeating the steps listed above 20 to 30 times.

Probes 1638, 1642, 1643, 1637, 1639*, 1640* and 1641* are suitable for use as primers for enzymatically copying and/or amplifying eubacterial 16S rRNAs or the genes encoding them. That is, as a set, they will anneal very broadly among eubacterial rRNAs and rRNA genes and so will amplify any eubacterial rRNA sequences present in a sample.

Probes 1637, 1639*, 1640* and 1641* hybridize to the 16S rRNA (or rRNA-like strand of the ribosomal RNA gene) near its 3' end (Table 1). The template strand is read in the 3' to 5' direction producing an rRNA-complementary strand with the primer itself incorporated at its 5' terminus.

Probes 1638, 1642, and 1643 hybridize near the 5' end of the rRNA-complementary strand of the rRNA gene or to such a complement produced as described immediately above.

Individually, the above-described 16S rRNA amplification primers have approximately the following specificities:

5' primers:

50

55

Probe 1638: most eubacteria

Probe 1642: enterics and relatives

Probe 1643: Borrelia spirochetes

* referred to in claim 1.

3' primers:

Probe 1637: most eubacteria

*Probe 1639: enterics, Deinococcus, Campylobacter

*Probe 1640: most eubacteria

*Probe 1641: fusobacteria, some Bacillus species

In test samples where the target bacterium is known, specific primers can be used. Where the target organism is not specifically known (for example, any eubacterium) all of the above mentioned primers can be used as a set.

The above described primers have been designed to amplify nearly the entire 16S rRNA sequence. Any of the other probes of the present invention or derivatives thereof can be used to amplify sub-segments of the 16S and 23S rRNAs or genes in a fashion similar to that just described.

Any such primers can be modified in a great number of ways to, for example, incorporate RNA

polymerase promoters, cloning sites, etc. into the amplified transcripts.

While the description of the invention has been made with reference to detecting rRNA, it will be readily understood that the probes described herein and probes complementary to those described herein also will be useful for the detection of the genes (DNA) which specify the rRNA and, accordingly, such probes are encompassed within the present invention.

20 25 30 35 40	16S rrna-targeted probes and target sequences	B AGACUUUGAUC UGGCUCAG GAACGCUGGCG AGACUUUGAUCAUGGCUCAG GAACGCUGGCG 3'-TCTCAAACTAGGACCGAGTC-5' 3'-TCAAACTAGGACCGAGTC-5' 5'-AGAGTTTGATCCTGGCTCAG-3' 5'-AGAGTTTGATCCTGGCTCAG-3' 5'-AGAGTTTGATCCTGGCTTAG-3'	313	535 	910 CGAAAGCGUGGGAGC AACAGGAUUAGAUACCCUGGUAGUCCACGC U GUGCGAAAGCGUGGAAACAGGAUUAGAUAACCUGGUAGUCCACGC U GUGCGAAAGCGUGGGAAACAGGAUUAGAUAACCUGGUAGUCCACGCGU
50	3 7:				
50	TABLE	E. coli#s CONS-90% E. coli Probe 1738 Probe 1643 Probe 1643	E. coli#s CONS-90% E. coli Probe 1660 Probe 1659	E. coli#s CONS-90% E. coli Probe 1661	E. coli#s CONS-90% E. coli Probe 1739
55			и сини	д Сын	м оми

^{*} referred to in claim 1.

SEQUENCES	
TARGET	
AND	
PROBES	
FRNA-TARGETED	
165	
(cont'd):	
F-1	
TABLE	

15

20

25

30

35

40

45

50

E. colf#s CONS-90% E. colf Probe 1745 Probe 1741 Probe 1742 CONS-90% E. colf#s CONS-90% E. colf#s CONS-90% E. colf#s CONS-90% E. colf#s	1114 1044 1044 1044 1044 1044 1044 1044
7 22144	1541

AAGUCGUAACAAGGUA CC UA GAA UG GG UGGAU ACCUCCUUU GUGAAGUCGUAACGUAGGGGAACCUGCGGUUGGAUCACCUCCUUA-3'-CCGACCTAGTGGAA-5'

3'-TYCAGCAITGIYCCAITGGCA-5' 3'-TYCAGCAITGIYCCAICGGCA-5' 3'-TYCAGCAITGIYCCAIAGGCA-5'

> Probe 1639 Probe 1640 Probe 1641

Probe 1637

CONS-90% E. col1

E. coli#s

TABLE 2: 238 rRNA-TARGETED PROBES AND TARGET SEQUENCES

5	E. coli #s	442	,		481
10	CONS-90% E.coli 238 Probe 1730 Probe 1731	ACUGACCGAU	AGUGAACCAGU? TCRCTTGGTCAT	CCGUGAGGGAAAG CCGUGAGGGAAAG CGGCRCTCCCTTTC CGGCGCTCCCTTTC	CGAAAAGAAC CRCTTTTC-5'
15	E. coli #s CONS-90% E. coli 23S Probe 1658	AGACAGCCAG	CAUGUUCGCUU	AGAAGCAGCCA C AGAAGCAGCCAUCA ICTTCGTCGGTGGG	UUUAAAGAAAG
20	E. coli #s (CONS-90% E.coli 238 Probe 1656 Probe 1657	UCAAAUCGU	TCCCCTTTCCCT	CACAGGUGGUCAGG GTGTCCATC-5′	1639 ; A A C AG :UAGAGAAUACCAAG :ATCTCTTATGG-5'
25	E. coli #s	1664			1703
30	CONS-90% E.coli 23S Probe 1653 Probe 1654 Probe 1655	AAGGAA GUGAAGGAA 3'-TICCII 3'-TICCIII	CUAGGCAAAAU CATCCGTTTTA CGAGCCGTTTTA	CCGUAACUUC GUGCCGUAACUUC GGGGGCATTGAAG CTGGGGCATTGAAG	CCCTCTTCC-5'
35	E. coli #s CONS-90% E.coli 238 Probe 1651	GACGCCUG	CCC GUGC GGA CCCGGUGCCGGA CCGCCACGACCT	186 - AGGUUAA G AGGUUAAUUGAUGG TCCAATTCTCCTC-	GG
40					
	E. coli #s	1		G AAG	1890 I A GAAGCC
45	CONS-90% E.coli 23S Probe 1652	AGGUUAA AGGUUAAU 3'-AATTA	G UGAUGGGGUUAG ACTACCCAGTO	CGCAAGCGAAGCU CGCTTCGCTTCGG	UUGAUCGAAGCC

14

TABLE 2 (cont'd): 23S rRNA-TARGETED PROBES AND TARGET SEQUENCES

5		•		
	E. coli #s	1889		1928
	CONS-90% E.coli 23S	TICGAAGCCCCG	GU AACGGCGGCCGUAACU. GUAAACGGCGGCCGUAACU	<u>AUAACGGUCCUAAGGU</u>
10	Probe 1512	3'-TTCGGGGT	CATTTGCCGCCGGCATTGA	TATIGCCAGGATI-5
	E. coli #s	1925		1968
15	E.coli 238 Probe 1256	GUCCUAAGGUA	AGCGAAAUUCCUUGUCGGGU PCGCTITAAGGAACAGCCCA	AAGUUCCGACC GCACGAA AAGUUCCGACCUGCACGAAU TTCAAGGCTGG-5
	Probe 1511 Probe 1398	3'-CCA	rcgctitaaggaacagcca rcgctitaaggaacagccaa	TTCAAGGCTGGGCGTGC-5'
20	E. coli #s	2442		2481
	CONS-90% E.coli 23S Probe 1595	ACUCCGGGGA	UAACAGGCU AU C CC UAACAGGCUGAUACCGCCCI ATTGTCCGACTATGGCGGG	AAGAGUUCAUAUCGACG
25				
	E. coli #s	2490		2529 I
••	CONS-90% E.coli 235	cenemmee	ACCUCGAUGUCGGCUC UC ACCUCGAUGUCGGCUCAUC	ACAUCCUGGGGCUGAAG
30	Probe 1600 Probe 1601	3'-CAAACCG	TCGAGCTACAGCCGAGTAG TGGAGCTACAGCCGAGTAG	ACTACCACCCCGAC-5' TGTACCACCCCGAC-5'
	Probe 1602	3'-CAAACCC	TGCAGCTACAGCCGAGTAG	CGTAGGACCCCGAC-5'
35	E. coli #s	2535		2574
	CONS-90%	G GGUCCCI	AAGGGU GGCUGUUCGCC AAGGGUAUGGCUGUUCGCCA	
	E.coli 23S Probe 1598	3'-CCAGGG	racconnoccococce TTCCCATACCGACAAGCGGT TTCCCAACCGGACAAGCGG	PAAATTTCGCCATGC-5'
40	Probe 1599	3 CURLAGO	T T C CHUNC C CHUCKNEC CONT	141414140404440 J
	E. coli #s	2577		2616 l
45	CONS-90% E.coli 238		GUU A AACGUCGUGAGAC GUUUAGAACGUCGUGAGAC	AGUU GGUC CUAUČ AGUUCGGUCCCUAUCUGC
	Probe 1596 Probe 1597	3'-TCGACC	CAAGTITIGCAGCACTCTG CAAGTCTIGCAGCACTCTG	TCAAGCCAGGGATAG-5'

15

50

TABLE 3: DOT BLOT HYBRIDIZATION of 163 FRNA-TARGETED PROBES

	4	, S	1738]	1739	PROB 1659 1	BE HYE 1660 1	PROBE HYBRIDIZATION 59 1660 1661 1740 1	IZATION 1740	1741	1742	1743
	DATE BALL	Pirnia				+ + + +	+ + +	##	ŧ	‡	
Acinetobacter calcoaceticus			•	-	•	##	+ + + +	†	ŧ	‡	‡
Aerononas sobria	CLOOL	garage.			•	+	+ + +	##	+++	##	‡
Alterogonas putrefaciens	CERTAGO				•	T	‡	‡	‡	‡	#
	GT0690				. 4		‡	_	ŧ	‡	##
	CT0030				. 4	1	‡	#	ŧ	ŧ	#
_	CT0687				. 4		‡	‡	‡	‡	##
4	GI0569	•					ŧ	‡	‡	#	##
	Croes3						İ	‡	ŧ	‡	‡
	CT0686				•		#	+ + + +	ŧ	#	#
Enterobacter sakazakii	CT0062						•	‡	ŧ	##	‡
U	GT1665						. •	‡	ŧ	##	‡
	GT1592				•	i	•	ŧ	ŧ	##	#
	CT1659				•	i	•	Ī	‡	‡	‡
	CT0244	. •			•	:	:	ŧ	ŧ	‡	##
	CT0243					•	#	ŧ	‡	‡	‡
-	GT0241	. 1			•		1	ŧ	‡	‡	##
Marina Bross	GT0303						=	•	###	‡	###
Torgenette morganiae	GT1500		‡ :				: 1	•	‡	‡	+ + + +
	GT1496	B 1	‡ :				‡ ‡	ŧ	+++	#	+++
organisation alcalifacters	GT0371	. 1	‡ :				į	‡	##	‡	‡
	CT1909				•		÷	ŧ	##	+++	‡
	GT0799				7	1	‡	‡ ‡	##	++++	‡
	CT0389					‡	‡	ŧ	+++	###	ŧ
7	CT0392					‡	+++	##	‡	++++	‡
	CT0798					+	‡	##	++++	+++	+++
	Groses			• • • •		‡	#	##	+++	+++	++++
	GT0417					+	#	++++	###	+++	++++
-	CT0419		+++	444			++++	+++	+++	‡	++++
	CT0610	Purple	+++					*	++++	+++	++++
	CT0014	beta	+ :	+++			****	*	++++	++++	++++
•	GTZ022	B :	++++	+++			1	++++	++++	++++	++++
Wantella Indologenes	0246		+ :	+ + +		+	+++	###	++++	++++	+++
Moraxella osloensis	CT0301	•	444	444		+	+++	++++	+++	++++	++++
Moraxella phenylpyruvica	CT0302	ı	}								

TABLE 3 (cont'd): DOT BLOT HYBRIDIZATION of 168 RNA-TARGETED PROBES

					PROB	E HYB	PROBE HYBRIDIZATION	ATION			
		44.0	1738	1739	1659	1660	1661	1740	1659 1660 1661 1740 1741 1742 1743	1742	
Genus species	PECENTI				1	1	‡	**	##	##	##
Borrelia burgdorferi		Spiro					4	4444	‡	+++	1
			ŧ	ŧ	Ė	444			4 4 4	4444	1
DOLLGITA CALACA			‡	ŧ	‡	‡	+++	ŧ	111	111	-
Leptospira interrogans-pomona		•	4	‡	‡	##	‡	+++	‡	‡	+
offlexa.		•			***	444	1	++++	* +++	‡	‡
The said and back (CIN)		8	ŧ	+++						1111	1111
111 1010			‡	##	#	‡	‡	ŧ	ŧ		
		400	1	‡	‡	###	‡	‡	‡	•	‡
Bacteroides fragilis					4 4 4 4	444	****	‡	‡		Ī
	29771		Ė	ţ:				1	****	1	+++
	0572	=	‡	‡	+++	ŧ	Ė	444			
_	ננסס		‡	‡	##	+++	‡	‡	‡	•	-
Bacteroides melaninogenicus	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1	++++	‡	‡	‡	##	‡	‡	Į
Flavobacterium meningosepticum	7670					1	‡	‡	‡	‡ ‡‡	Ŧ
Character seathers		Chian	•	Ė	ı				444	1111	7777
Culding the particular			ŧ	‡	1	‡	ŧ	+++	Ļ		
		77.77	****	+++	‡	‡	##	‡	‡	++++	+
Chlorobium limicola		7	444	1	+	++++	‡	##	++++	++++	T+++
Chloroflexus aurantiacus	00 * ×	1					111	4444	1777	1	+++
1	2608	=	‡	‡	‡	+++					
Delhococcus ragioaus ans	2577	*	‡	‡		+ + + +	‡	‡	‡	•	1
Planctomyces maria							7771	1111	4444	***	1
State Land Comment			‡	*	‡	ŧ	Ė	1		:	
NOLEGE SCOOT WAY	•		•	+		•	‡	•	•		•
			•	1		•	‡	•	ı	t	ŧ
Wheat Germ				1	1	•	‡	•		ŧ	•
Normal Human Blood	10. 504		1	1			‡	•	•	•	•
Candida lusitaniae	403-87		1 1			•	‡	•	•		1
ğ	887-88		•)	ı	۱ ۱	1	•	1	•	1
	224-87		1	ŧ	1	•		ı			
בַּבָּ	1008-88				ı	•	‡ ‡ ‡	ı	i	:	8 -
3	22 500		. •	•	1		‡		ι		1
8	20.0		•			١.	‡	•	ı	١,	١.
Candida albicans	1			;		4	9011100111	001			
							1				

37 C. ++++ a positive - zero, ND = not done. Inclusivity and Exclusivity data was determined after overnight exposures. Each organism is represented by 100ng of CsTFA purified RNA. Probe 1738 - hybridizations and washes were carried out at 37 C. ++++ " purched level of hybridization, + " barely detectable and - " zero, ND =

;	
o	PROBES
15	THE STATE OF THE PROPERTY OF THE TRUE PROBES
20	f 168 r
25	RIDIZATION O
30	BLOT HYE
35	1 DOT 1
40	

TABLE 3 (cont'd): DOT BLOT HYBRIDIZATION	BRIDIZA	TION of		rRNA	163 rrna-targeted probes		PROBE	ห	•	
				PROBE	PROBE HYBRIDIZATION		TION		1742	1743
strain	div	1738 17	1739 1	659 1	1659 1660 1661			1		
ATIC		¥ ‡ ‡	+ + #	•	•	•		-		1
	*.	¥ ##	•	•	•	•		•	#	+++
	•	¥ ##	+ ‡ ‡	•	•				4	+++
productua		¥ ##	+ + + +	+	•				1	+
•	*	+ + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + +	1.	•	•		- 4	+
87	=	•	+ ##	* ‡ ‡	•	:	•			+
		٠		+ + +	+ ‡		•			4
epideraidis		•	٠	+ + +	•	•	•	‡		
haemolyticus		•	+ ##	+ + + + +	+ ‡	:		+		- 4
ngalactiae		•	•	‡	•	:	T .	‡		
bovis		•	+ + + +	##	+ ‡ ‡	:	•	,		
faecalis		•	‡	##	+ ‡ ‡	‡	:	+		
morbillorum		•	-	•	+ ‡	T	•	‡	+ :	
mutans		•	•	•	+ ‡‡	T ###	•	İ	+++	
pneumonfae	=	i	•	•	+ ‡ ‡	T	##	ŧ	+++	֓֞֝֝֝֟֝֝֟֝֝֟֝֝֟֝֓֓֓֓֓֓֓֓֓֓֓֓֡֟
salivarius		7	•	#	+ + + + + + + + + + + + + + + + + + + +	+ + +	*	‡	‡	3
sanguts		•		•	-	+ + + +	* ###	‡	##	+ + +
	מייים.	4		•		##	. ++++	‡	+ + + +	‡
ium	+ 5		•		•	Ť	. +++	+++	*	++
glutamicum				‡	•	##	. ##	‡	###	+
eriticum				‡			###	ŧ	+ + + +	+
m pseudotuberculosis				= }	:		+++	##	###	‡
_	. •		4	İ		ŧ	##	‡	‡	‡
		·	‡	ŧ	•	‡	+++	#	‡	
Merchaeterium bovis	•		‡	##	##	Ť	‡	+++	†	
Mycobacterium kansasii	=	•	·	##	‡	•	‡	+ :		
	Zu Z	•	±±	###	+ + + +	* ##	###	+++		
Rhodococcus rhodochrous	+	•	* * * * *	###	*	•	‡	++++	+ + + +	1 4 4
	5 •	•	+++	++++	T +++	+ + + + + + + + + +	+++	-		
phorum	=		##	‡	* + + +	‡	1			
		•	#	‡	##	‡	+++			: ‡
	•	+ ++++	##	++++	#	+++	+++			: ‡
Heliobacillus mobilis	Cyano	‡	‡	ŧ	‡	‡ :				: ‡
Phormidium ectocarpi	-	ŧ	‡	‡	* * * * *	‡	+) - - -		
Plectonema boryanum										

		‡
5		•
		ŧ
10		<u> </u>
	_	T T
15	PROBE HYBRIDIZATION FROM	ŧŧ
		‡ ‡
20		•
		‡‡
		‡ ‡
25	a a a b b +	
	BRIDIZA GAV Purple alpha delta Gan lowG+C Gan	
30	3	GT0258 IG3299
	עעעעע ע טטטט ט ט ט	ខ្លួម
	THE THE THE THE THE THE THE THE THE THE	
35	s atum ATA ATI sees A	
	TABLE 3 (cont'oningitidis norrhoeae ningitidis ncidovorans relatinosa stercoraria r rerosis r rerosis r tus r tus rtus r tus llata diminuta sphaeroides um rubrum versutus o desulfuricans tularensis r jejuni r pylori r pylori r sputorum vis clostridioforme sordellii sporogenes histolyticum ramosum ii	3
40	3 (c. data data data data data data data dat	arum
	TABLE 3 (conference and a control of a contr	s actuopurs s plantarum ocytogenes
	TABLE generate generate generate generate as acidovo as acidovo the cepacia the cepacia the cepacia the cepacia the cepacia the cepacia the cepacia the cepacia the cepacia the cepacia the caps about the the caps the ca	
45		1111
	Lering and the property of the	obac obac eria
50	Genus species Neisseria genoribi Neisseria genoribi Pseudomonas acido Pseudomonas acido Pseudomonas acido Pseudomonas acido Achromobacterium tum Brucella abortus Fravobacterium ca Fravobacterium ca Fravobacterium ca Fravobacterium ca Fravobacterium ca Fravobacterium ca Cardiobacterium bullata Desulfovibrio des Cardiobacter pol Campylobacter pol Campylobacter pol Campylobacter pol Campylobacter pol Campylobacter pol Campylobacter pol Campylobacter pol Campylobacter pol Campylobacter pol Compylobacter pol Compylobacter pol Campylobacter pol Compylobacter pol Constridium subtilis Clostridium ramos	Lactobaciliu Lactobacillu Listeria mon

		~ !							+					4	- 4	٠,	+		+.				+	+				+	+	+				4	-			
		1651	+ + +		‡	‡	‡	‡	‡	‡	‡	‡	: ‡	. 1				3	+++	‡	‡	‡	Ī	Ŧ	‡	‡	‡	¥ ‡	Ŧ	+	‡	‡	+	·	- +	+	. ‡	:
5		1	‡:	+++	‡	+ ++	++++	##	##	++++	‡	1	1)	, 5	2	‡	‡	‡	‡	###	+++	###	##	‡	###	‡	++++		++++	+++++++++++++++++++++++++++++++++++++++	****	4	*	1	
	•	ATION 1654	‡	‡	ŧ	ŧ	++++	‡	‡	‡	#	1			<u>.</u>	ŧ:	‡!	2	‡	‡	‡	‡	ŧ	##	ŧ	‡	‡	‡	‡	‡	‡	+	1			‡	: 4	-
10	BES	~ ~ 1	+++	‡	‡	+++	‡	‡	+++++++++++++++++++++++++++++++++++++++	‡	1	1				+	‡!	2	‡	‡	+++	++++	##	###	#	‡	‡	‡	‡	++++	‡	+			+++	4	1	
15	D PRO	E HYBI 1658	##	##	##	‡	‡	: ‡	#	=	: 4				‡ :	‡	‡	2	++++	‡	+++	‡	++++	++++	‡	‡	‡	##	_	_	- 4	***	-	٠:				+ + +
,,	RGETE	PROBE	‡	##	‡	‡	‡	= ‡		1	111	:	‡ ;	‡	‡	‡	+	B	++++	‡	‡	‡	###	+++	#	‡	‡	++++	•	-	. ◂		•	++	•	444	•	+++
20	rrna-targeted probes	1730	‡	##	##	‡	1		4 4 4				‡ :	‡	† † † †	‡	‡	문	++++	++++	‡	++++	‡	‡	#	++++	‡	+	1	#	* * * * *			•	‡	++++	+ +	+ +
	23S rR	div	Purple	Campa	*	*	*	*		*	•	: 1		t .	•	*		3	=	=			*	=	*	=		•		=		: =	:	Purple	beta		k :	2
25		strain	CT0002	T00007		069045			200	KOCOIS	SEGUTS	9890.75	3T0062	CT1665	GT1592	GI1659	GT0244	13391	CT0243	T0241	CT0303	CT1500	CT1496	CT012	905 LL	00704	210770 CT0789	000010	90000	06/07	00007	716015	CL0413	CT0610	CT0014	ST2022	0246	GT0301
30	BLOT HYBRIDIZATION OF	184 154	15	5	5 E	i 6	5 8	3 8	3 8	31	5	5	5	5	5	5	5	ATCC33391	E	i	.	: E	5 6	5 6	5 6	5 8	5 6	5 8	3 8	3 5	ָ כּ	51	5	ទ	ខ	ទ		6
	HYBR1		8	ì											•																							
35			eticu								ans		~ !											1	lens	rd	1	Ħ			กร	18	Ca		1 0	Ceum		
	4: DOT		lcoac		Dries		ama Tonaticas	diversus	freund11	tarda	agglomerans	cloacae	sakazakii			٠	4561110078	11111101128	7	aucreya	7	Int	preumoniae	, ,	Illac	aeruginosa	Jna	cypnimurium	ens	편:	olytic	coph11	coliti	alis	catarrhalis	viola	renes	1518
40	rable ,	40,000	tor C		2002 14:14:	מ לאחר								- 2						•	67	Bord	pnem	rabiti	a alca			cypn	arces	lexne	ahaem	g mal	ntero	s fae	a cat	erium	ndolog	osloei
45	F		15	SCTIE CODE	Aerononas sobria	Alteromonas	Citrobacter	Citrobacter	Citrobacter	Edwardsiella	Enterobacter	Enterobacter	Enterobacter	Facherichia	Fechorichia	To-bondohie	Escherichta	naemoput 1	naemoput tus	Haemopulus	Harnia alvei	Morganella morgania	Klebsiella	Proteus mirabilis	Providencia alcalifaciens	Pseudomonas	Salmonella	Salmonella	Serratia marcescens	Shigella flexneri	Vibrio parahaemolyticus	Xanthomonas maltophilia	Versinia enterocolitica	Alraligines faecalis	Branhanella	Chromobacterium violaceum	Kingella indologenes	Moraxella osloensis
																										•												

		1651	##	+	###	++++	•	‡	‡ :	‡:	‡ :	<u> </u>	=	‡		, ;	+	++:	‡:	‡	+ :	‡	. :	‡ :	, -			777		<u> </u>	<u> </u>		‡	+ :	+ :	‡
5		ON	1	##	+++	‡	‡	1	‡	‡	1	ı		ı	•	1	•	ı	ı		ı	ı	1		. :	+ :	+++		+ + +	++++	‡	ı	•	‡	1	‡
	SES	IZATI	‡	‡	‡	##	1	‡	‡	ı		k	1		•	ı	1	##	•	+	‡	•	ı			‡	‡ :		‡ :	++++	‡	‡	1	‡	+ + + +	‡
10	D PRO	PROBE HYBRIDIZATION			ı	4			•	1		•	1	1	1	•	1	‡	1	+	1	ı	ı	1	ı	‡	++++	+	+ + :	+++	‡	1		++++	+	ŧ
	RGETE	OBE H	201	. ‡	#	+++	‡	‡	‡	‡	‡	##	‡	‡	+	+	‡ ‡	+++	‡	‡	1	+++	‡	‡	‡	‡	‡	+	++++	+++	‡	+++		‡	ı	‡
15	rnna-targeted probes	E.	7577	- 1	++++	++++	+++	‡	###	‡	•	‡	‡	ŧ	ŧ	‡	‡	##	‡	+	‡	##	+	‡	‡	‡	‡ ‡	t	+ + + +	+++	‡	‡	+ +	++++	‡	‡
	238 rR		5			: ‡		‡	##	‡	+	‡	##	+ + +	##	‡	‡	‡	‡	+ + +	‡	‡	‡	‡	‡	‡	‡	t	++++	+ +	###	++++	++++	‡ ‡	‡	‡
20			div							Purple	alpha	, ×								delta	i d	5	Campy			105C+C	+ E3	=				•		2		
	TION		ł	4 1	n c	ע ת	o 14	n r		-	_		8	1 20	(M)	. 0	. (64)	• •	4						-			-	-	1	_	4	7	, co	ي ا	œ
25	BLOT HYBRIDIZATION OF		strain	CITO 302	CICOID	CHOOLS		510715 510715		CT0810	ATCC33463	GT2021	ATCC23448	CT2025	CT2023	CT2020	ATC: 17023	ATCC25903	ATCC25364	ATCC 7757	CT2095	GT2172	CT0022	GT0026	GT0027	GT0803	CT0804	ATCC25537	CT0567	ATCC 3587	ATCC19401	ATCC13124	ATCC25582	ATCC33403	GT0256	GT0258
30	T HYB		1					•	ł		TA.	!	PA	đ			FA	14	A	Ā	1							A		AT	A	A	14	TA	1	•
			1											•						_	•							•								
35	DOT			g C		_	10			74				4	1		•	R.				Ω.	•		•			のこのなけれるようかのからと言う				1	ā		1::0	3 4
	(cont'd):			yruv	oese	tidis	Vorar	력.	1005	Stercoraria	9190		7 5 7 2		peute	4	מכש	rola		מבמפ	חזוח	THOUSE OF THE PARTY OF THE PART	ensit	jejuni	Pytori		4	7774	1144	1111	שלבווכי סיידים	17 67	ınger	E	4	plantarum
40	9 (CO	•	es	phenylpyruvica	gonorrhoeae	meningitidis	acidovorans	cepacia			r xer	cryptu		rtus		Taca	diminuca diminuca	spraerores		Vers	odes			r Jej		-	Drevis subtilia	1	croser rus	20108	apor ogenea t.d.e.te.] etdo:	nistolytical	peri ringena	remosca	11	
	TABLE		species			ă			clus	CILLA	Dacte	In TT	rerio	a abo	cteri	ng gu		cter	1511	illus	Vibri	acter	ella	Dacte	Dacte	Dacce								dium	Zopi	c1110
45	Ħ		Genus	13	Neisseria	Neisseria	Pseudomonas	Pseudomonas	Rhodocyclus	Vitreoscilla	Achromobacter xerosis	Acidiputium	Agrobacterium tumeracteria	Brucella abortus	Flavobacterium capsuratum	Mycoplana bullata	Pseudomonas	Rhodobacter	Rhodospirillum rubrum	Thiobacillus versutus	Desulfovibrio desuriuricans	Cardiobacterium nominis	Francisella	Campylobacter	Campy lobacter	Campylonacter	Bacilius previs	10111	Clostrialum	Clostrigium	Clostrialum	Clostrianum	Clostridium	Clostridium	Kurthia zopril	Lactobacillus Lactobacillus
			ü	물	Z	ž	ď	ď	2	5	ĕ	ĕ	K.	Ã.	.	£	מ"	2	2	F.	മ്	ບຶ	<u>.</u>	ບໍ	ບັບ	ا ٽ	3	ă	ច	ا ت	ច រ	ບ	ບ	ပ	₹,	រ៉

‡

Cyano

GT2116 GT0238

> Fusobacterium necrophorum Fusobacterium prausnitzii

Aerococcus viridans

Heliobacillus mobilis

Gemella haemolysans

Phormidium ectocarpi

Rhodococcus rhodochrous

Nocardia asteroides

GT2191

ATCC27768 GT2118

Ŧ

T+++

Ŧ

1658 1653 1654 1655 1651 **+** + + Ŧ Ĭ T++ Ī Ŧ Ŧ ŧ İ # ## PROBE HYBRIDIZATION TABLE 4 (cont'd): DOT BLOT HYBRIDIZATION OF 23S rRNA-TARGETED PROBES bictc C+C ATCC15531 ATCC15718 strain IG3299 CT0410 GT0399 GT0412 GT0012 GT2121 GT0046 ATCC27340 GT1711 ATCC29970 CT0405 **GT0668** GT0406 GT2194 CT0408 CT0411 CT0045 GT2119 ATCC14404 GT2120 GT2122 GT0401 Corynebacterium pseudodiphtheriticum Corynebacterium pseudotuberculosis Peptostreptococcus productus Staphylococcus haemolyticus epidermidis Corynebacterium genitalium Streptococcus morbillorum Crynebacterium glutamicum Streptococcus agalactiae Streptococcus salivarius Corynebacterium pyogenes pneumonfae xerosis Mycoplasma putrefaciens Bifidobacterium dentium Streptococcus faecalis Listeria monocytogenes Mycobacterium kansasii Mycoplasma pneumoniae Staphylococcus aureus Staphylococcus aureus Streptococcus sanguis Streptococcus mutans Mycobacterium bovis Streptococcus bovis Planococcus citreus Corynebacterium Staphylococcus Streptococcus

5

10

15

20

25

30

45

50

55

*** * * * * * * * ***

TABLE 4 (cont'd): DOT BLOT HYBRIDIZATION OF 23S FRNA-TARGETED PROBES

					1				
				E.	ROBE F	YBRIL	12A11	S S S S S S S S S S S S S S S S S S S	166
	strain div	div	1730	1730 1731	1658	1653	1653 1654 1655	201	
Genus apecies		-	‡	‡	•	‡	‡	++	ŧ
Plectonema boryanum		200	444	‡	‡	•	1	•	ŧ
Borrelia burgdorferi		21440	4	1	++++	1	ı	•	ŧ
Rorrella turicatae		•			444	•	•	ŧ	‡
Tartaentre interrogans-bomona			‡	‡ :		i 1	•	1	+
Legicontra present and the Contract of the Con		2	+++	‡	+	•	ı		
Leptospira Diriexa (racue racue)			‡	‡	‡		•	ı	ļ
Leptospira biflexa (CLC)		=	777	‡	‡	1	•		++
Spirochaeta aurantia	6	40.0	1	: ‡	+		1	1	‡
Recteroides fragilis	C97C7	ם פני	+ +	: 1	. 4	1	t	1	Ŧ
	297/1	1 :	-	.		1		ı	+++
	0572	8	+	+	٠	, :			
Bacteroldes theratoracies	1100		•	•	+	‡	‡	ŧ	
Bacteroides melaninogenicus	7460	=	+	•	+			1	Ŧ
Flavobacterium meningosepticum	770		٠ ،	1	•			•	ł
Chipmonth osittaci		Coram		4 4 4	•			•	•
	252		ŧ	-			1111	777	1
Collaborate Communication		Misc.	‡	‡	+	+	-	-	
Chlorobium limicola	V400		+	ı	‡	ı	‡	•	₽ .
Chloroflexus aurantlacus	2608	=	+++	‡	‡	ı	t		+
Definococcus radiodurans	2522		1	ı	‡	•	•	1	•
Planctomyces maris							:	•	4
			‡	‡	‡	‡	‡	+	-
Normal Stool KNA			•	1	ŧ	1		1 ·	ı
Mouse L-Cell			+	‡	1	1	•		•
Wheat Germ			. 1	1	•	ı	•	•	1
Normal Human Blood	70-604		:	•	•	1	•	•	1
Candida lusitaniae				ı	1	•	1	1	ı
Candida parapsilosis	89-79B		. 1	1		1		1	ł
	19-477		1 1	. 1	•	1	ı	1	1
	1008-88)		(1			
	223-87		•	•	ì	t	,	•	٠
Canalda albicana	819-88			ı	1	•	1	`	
			2640	970	overnight exposures,	PXD	sure		

A Inclusivity and Exclusivity data was determined after overnight exposures.
AA Each organism is represented by 100ng of CSTFA purified RNA. ++++ = positive level of hybridization, + = barely detectable and - = zero, ND - not done.

		1597	‡	‡	‡	‡	ŧ	‡	‡.	‡	‡	‡	‡	+ + +	†	‡	‡	‡	ŧ	ŧ	‡	‡	+	‡	‡	<u> </u>	‡	‡	‡	+	+++	‡	‡	‡	‡	‡	
5		1596 1	##	##	+	T	Τ.	•	•	•			•	+			•		+	•	•	•	+			•					+		Τ.	+		•	
				•	~	‡	###	•	•	•	•	•	•	•	‡	# +	‡	•	•	•	‡	•	## +	•	•	•	•	•	-	•	•	‡	‡	+++	•	Ī	
	OBES	ATION 1602	+++	‡	+++	##	###	++++	‡	‡	##	##	+++	+++	##	‡	ŧ	++++	++++	‡	‡	##	++++	++++	+++	+++	++++	‡	‡	+++	++++	+ + +	+++	‡	+ + +	Ĭ	
10	D PRI	IDIZ 1601	++++	‡	‡	‡	‡	‡	+++	‡	‡	‡	‡	‡	‡	‡	. ‡ ‡	‡	‡	###	‡	+++	+++	###	‡	‡	+++	+++	+++	‡	##	+	‡	+++	+ + +	‡	
	CETE	HYBR 1600	‡	##	++ +	‡	‡	‡	‡	ŧ	‡ ‡	ŧ	‡	‡	ŧ	ŧ	ŧ	呈	###	ŧ	‡	+++	+++	##	##	##	##	‡	ŧ	‡	##	ŧ	##	+++	‡	‡	
15	rrna-targeted probes	PROBE HYBRIDIZATION 1398 1600 1601 1602		‡	‡	+	+	+	+	+	+	+	+	+	+	+	Ę	‡	+	+	+	+	+	‡	+	+	+	+	+	+	+	+	+	+	+	+	
	rRN			+	+		+	+	+	+	+	+	+	+		٠		+		+	+	+	+	+	+	+	+	+			+			+			
20	238	1256	1	+++++++++++++++++++++++++++++++++++++++	##	‡	#	‡	###	#	+++	‡	+++	+++	‡	‡	2	+++	‡	++++	++++	+++	#	#	##	‡	##	‡	‡	‡	+++	‡	+++	++++	‡	‡	
		1512	##	#	+	#	#	#	#	#	+++	‡	#	#	#	‡	Ę	1	++++	#	#	: ‡	+++++++++++++++++++++++++++++++++++++++	#	‡	###	++++	++++	###	++++	#	#	++++	++++	++++	++++	
25	IZATION	<u>م</u>	Durnla	Series of						=				.*		=	*	•		s							=	•	=	*	£	Purale	heta				
30	OT HYBRID	5 4	OLUMPI DE			CENTRA	OF COLLEGE	CTOCR7	61015 647015	CEC 25	CT0686	GT0062	100110 CT1665	00110	2551TD	446000	##7075 ###0755JJJWW	TCC33334	CT0241	F02012		907130	611430 176077	POP (12)	PP7075	CT0389	CT0392	GT0798	CTORAB	CTOA17	P1045	CTOVE	410075	CT2022	0246	GT0301	
35	DOT BE		-														Ř	¢																			
40	TABLE 4 (cont'd): DOT BLOT HYBRIDIZATION OF		1	carcoacericas	41.	putreraciens	amalonacicus	diversus	rreunali	tarda	Aggromer ans	Cloacae	Sakazakii	coli	coli	coli	influenza	influenza	ducreyı		ganii	umoniae	.115	alcalifaciens	aeruginosa	zona	cypaimarium	acens	ler.	BOTACICAS	Itopnila	יםכסוורוכם	ecais	catarrnalis	M Violaceum	ogenes	
45 50	TAB		Genus species	Acinetobacter calcoacecicus	Aeromonas sobria				Citropacter Ir				L			_				Hafnia alvei	Morganella morganii	Klebsiella preumoniae			Pseudomonas ae	Salmonella arizona	Salmonella typ	Serracia marcescens	Shigella riexneri	Vibrio paranaemolyticus	Xanthomonas maltophilia	Yersinia enterocolicica	Alcaligenes faecalis	Branhamella ca	Chromobacterium Violaceum	Kingella indologenes Moraxella osloensis	

‡‡

++++

‡ ‡ ‡

++++ +++

ATCC19401 ATCC13124 ATCC25582 ATCC33403 GT0256 GT0258

Lactobacilius acidophilus

Clostridium ramosum

Kurthia zopfii

Lactobacillus plantarum

++++ ‡

++++ ++++

+++ ++++

###

+++ ### ++++

+++

++++

##

++++

ATCC25537 CT0567 ATCC 3587

Clostridium clostridioforme

Clostridium histolyticum Clostridium perfringens

Clostridium sporogenes

Clostridium sordellii

+++

##

o	5	0	5	,	5)						
		TABLE 4	(cont'd	TABLE 4 (cont'd): DOT BLOT HYBRIDIZATION OF	HYBRIDIS	ZĀTIO	N OF	23S rf	NA-T	RGET	23S TRNA-TARGETED PROBES	Sag	
				•		c c	1366		PROBE HYBRIDIZATION	LZIGIN	ATION 1602	1596 159	159
Genus	species			strain	al -	7101	27			‡		‡	Į
Horexe	lla phen	Morexella phenylpyruvica	ed .	GT0302			#	+ +	#	‡	‡	‡	Ŧ
Neisse	Neisseria gonorrhoeae	rrhoeae		01015		#	: ‡	+	#	‡	‡	###	Ŧ
Netase	Neisseria meningitidis	ngitidis		92E045		#	#	+	‡	ŧ	‡	+++	Į
Pseudo	monas ac	Pseudomonas acidovorans		310015		‡	‡	+	‡	‡	‡	‡	Ŧ
Pseudononas	nonas ce	cepacia		51021JULY	*	‡	‡	+	‡	‡	‡	+++	Ŧ
Rhodoc	Rhodocyclus gelatinosa	Lacinosa		***************************************		‡	‡	+	‡	‡	‡	+ + + +	Ŧ
Vitreo	scilla s	Vitreoscilla stercoraria	و	OLBOTT	Pirrale	#	‡	+	‡	‡	‡	‡	Ŧ
Achrom	Achromobacter Xerosis	Xerosis		PAPE COME		‡	‡	+	‡	‡	+++	###	Ŧ
Acidip	Acidiphilium cryptum	ryptum	1	していている		#	‡	+	‡	‡	‡	‡	+
Agroba	cterium	Agrobacterium tumeraciens	91	2445 2446	2	‡	‡	+	‡	ŧ	‡	‡	Ī
Brucel	Brucella abortus	us		はたりでは		‡	‡	+	‡	‡	‡	‡	Į
Flavob	acter 1 um	Flavobacterium capsulatm		5000 P		‡	‡	+	++++	ŧ	‡	‡	Į
Mycopl	Mycoplana bullata	ata		00000	2	+	‡	+	###	‡	‡	+++	Ŧ
Pseudo	Pseudomonas diminuta	minuta		500150 500100mk		-	‡	‡	##	‡	‡‡	+++	Ŧ
Rhodob	acter spi	Rhodobacter sphaeroldes		ATCC TOTAL	•	#	‡	+	‡	ŧ	+++	‡	Ŧ
Rhodos	Rhodospirillum rubrum	ruprum		ALCC23364 ATTC25364	=	‡	‡	+	‡	‡	‡	‡ ‡ ‡	Ŧ
Thioba	Thiobacillus versucus	ersucus		ATT 7757	delta	#	‡	+	‡	‡	ŧ	+	+
Desult	ovibrio (Desultovibrio desulturicans	cans	20012 20012		#	‡	+	++++	‡	‡	‡	Ŧ.
Cardio	bacteriu	Cardiobacterium nominis		CC LCALLY		‡	+++	+	+++	‡	‡	+++	Į
Franci	Francisella tularensis	larensis		CC0012	•	#		‡	‡	‡	‡	+++	Ŧ
Campyl	Campylobacter jejuni	Je juni		32015 320075		#	. 1	‡	##	‡	++++	‡	Į
Campyl	Campylobacter pylori	pytori		CT0012	*	#	ı	‡	‡	‡	‡	‡	Ŧ
Campyl	Campylobacter sputorum	Boucorum		E OBOTO	1000	‡	‡	+	‡	‡	++++	‡	Ŧ
Bacill	Bacillus brevis	en -		CTOROA		‡	‡	+	‡	‡	‡ ‡	‡	Ŧ +
Bacilli	Bacillus subtilis	118		F > 2 2 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5			444	4	+++	‡	‡	*	Ŧ

55

5

10

15

20

25

30

35

40

45

50

		1597	‡	1	‡	‡:	‡:		1	‡	ŧ	‡	‡	‡	‡ :	+ 1	+ ‡	‡	+++	‡	‡	‡	+++	‡:	+ :		‡ :	+ :	+ :	++++	‡	+ + + + +	+++	‡
5	SES	1596	‡	ı	‡	‡	‡	‡ :		+ +	‡	‡	‡	‡	‡:	‡ :		‡	‡	‡	+ + +	‡	‡	‡:	‡ :		‡ :	+++	+++	+ + + + +	+ ++	++++	‡	‡
:	23S rnna-tarceted probes	ATTON 1602	++++	•	+ + +	++++	‡	‡ :			#	‡	‡	‡	‡:	‡		#	++++	‡	++++	‡	‡	‡	‡ :	+++	+ + + + + + + + + + + + + + + + + + +	+++	+++	† † † †	+++	++++	‡	‡ ‡
10	RGET	NIDIZ 1601	ŧ	i	‡	‡	ŧ	‡:	‡:		‡	‡	‡	ŧ	‡	‡:	‡	‡	‡	‡	‡	‡	‡	‡	+ }	+	‡	‡	‡	‡	‡	‡	+	‡
15	NA-T	PROBE HYBRIDIZATION 1398 1600 1601 1602	‡	‡	‡	‡	‡	‡	‡			#	‡	‡	‡	‡	+++		#	#	++++	‡	+++	‡	+++	+ + + + + + + + + + + + + + + + + + +	‡	+++	+ +++	‡	++++	++++	1	+
10	35 rF	PROBE	+	+	1	ı	+	+	+ -	+ -	٠ +	+	+	+	+	+	+ •	+ +	+ +	+	, +	+	+	+	+	+	+	+	+	+	+	+	+	+
20		1256	‡	•	ı	‡	ŧ	+ ++	‡	‡ :	‡	; ‡	: ‡	‡	‡	‡	‡!	2	‡‡	: ‡	‡	‡	‡	‡	‡	‡	‡	‡	+	+ ++	+++	+	‡	‡
	ATION	1512		#	###	##	‡	‡	‡	‡	‡ ‡		#	#	‡	‡	# !	S	. 4	; ‡	: ‡	##	‡	+	+	+ + +	‡	‡	‡ ‡	‡	‡	+	++++	‡
25	tybridiz	5	-		,∎			=	•	= :		=		*					nict.	- 5 =				=	=	2	2	=	Misc	+ 65	=	•	=	Cyano
30	DOT BLOT	4	102299	ATT 5531	200737748 200737748	ATCC27340	ATCC14404	CT0399	GT1711	GT0401	ATCC29970	CO#0.75	GT 0000	T2194	GT0412	CT0408	CT0410	GT0411	ST0015	CEONTS	017775	CT2122	CT2121	CT0046	BCG		GT2191		GT2116	CT0738	3075 3074 3074 3074 3074 3074 3074 3074 3074	CT-7118	24445	
	-			ă	c a	c a	F				Ħ			•							!	1							_		ž	Ź		
35	(cont'd):			Ř	¢ Ā								•									onther it it	מו כמיסיים											
35	TABLE 4 (cont'd): DOT BLOT HYBRIDIZATION OF							•		midis	haemolyticus	galactiae	ovis	aecalis	lorbillorum		medivarius	anguis	dentium	genttalium	glutamicum	pseudoalphonericion		pyogenes			4408			dans			ធនាន	oblils carpi
	4		Senus species					Planococcus citreus	orapiny tococcus act cas deephylococcus any eus	epidermidis	haemolyticus	Streptococcus agalactiae			Streptococcus morbillorum		streptococcus pheumonius streptococcus palivarius	٠.	Bifidobacterium dentium	Corynebacterium genitalium	Crynebacterium glutamicum			-	Corynepacter authorite	ACCELLE DOVIN	Mycobacterium Kanabat	Nocardia asceroides	850	Aerococcus Virianis		UICZII	Genella haemolysans	Helfobacillus mobilis Phormidium ectocarpi

PROBES
IN OF 23S FRNA-TARGETED
238
OF
(cont'd); DOT BLOT HYBRIDIZATION OF
BLOT
DOT
BLE 4 (cont'd):
ស ៤
TABLE

				PRORE	PROBE HYBRIDIZATION	IDIZA	TION		
	44.0		1512 1256		1600	1601	1398 1600 1601 1602 1596 159	1596	띩
Genus species	SCrail utv	1	1		+	+	++++	‡	Ŧ
Plectonema boryanum	718		1	+	‡	‡	##	‡	Ŧ
Borrella burgdorferi	oatde *		1	+	#	##	‡	‡	Ŧ
Borrella turicatae			: : ‡	. +	‡	‡	‡	‡	Į
Leptospira interrogans-pomona	•	4 4 4	: ;	+	‡	‡	+ + + +	‡	Ŧ
Leptospira biflexa (Patoc-Patoc)			1	٠ +	‡	‡	‡	‡	Ŧ
Leptospira biflexa (CDC)		1		. +	‡	##	‡	‡	Ŧ
Spirochaeta aurantia		4 4 4		+	‡	‡	+++	‡	Ŧ
Bacteroides fragilis	13793 Dac 2		: ‡	+	‡	‡	‡	‡	Į
	1//67		: ‡	+	+	+	‡	‡	Ŧ
	7/00	+	‡	+	+	‡	‡	ŧ	+
Bacteroides melaninogenicus	* 1100	‡	‡		‡	##	‡	##	+
Flavobacterium meningosepticum		-	‡		‡	‡	‡	‡	+
Chlamydia psittaci		 	: 1	,	‡	‡	‡	‡	+
Chlamydia trachomatis			444	4	#	#	###	+	Ŧ
Chlorobium limicola	M18C.	٠	4 4 4	- 4	‡	‡	+++	‡	Ŧ
Chloroflexus aurantiacus	¥400	:		- 4	: 1	=	‡	+	Ŧ
Databana radiodurans	2608	+++	! :			1	#	‡	ŧ
Delicotta intecht	. 2277	++++	+	+			:		
		‡	‡	•	‡	‡	‡‡	‡	Ŧ
Normal Stool RNA		1	1	ı	•	ı	ı	1	ŧ
Mouse L-Cell		ı	t	ı	•	1	1	1	1
Wheat Germ		•	•	•	•	ι	1	•	•
Normal Human Blood		4	•	ı	•	,	•		1
Candida lusitaniae	403-87	+ 4	1	t	1	ŧ			•
	887-88	- ۱	1		1	•	•	ı	ı
	19-577	- 4	•	1	ı	•	1	•	1
Candida albicans	00-001	- +	ı	•	ı		1	١,	1
Candida albicans	20-010	- +	•	1	•	•		ı	١
Candida albicans	00-619			en 4 ah	amountable erposures.	sure			
					1				

A Inclusivity and Exclusivity data was determined after overnight exposures.
AA Each organism is represented by 100ng of CsTFA purified RNA. ++++ = positive level of hybridization, + = barely detectable and - = zero, ND - not done.

PROBES	
NECATIVE	
GRAM	
æ	
POSITIVE	
Z,	
E	
1	
HYBRIDIZATION	
BLOT	
E C	
ď	
AREE	
Ľ	

					PROBE	HYBRIDIZATION	DIZA	TION	į	•	
			165	16S RNA-TARCET	ARCET		238			Л.	Į
Genus species	strain	div	1744	1745	1746	1657	1656	1598	1593	-	<u>دا</u> د
t oher	GT0002	Purple	ı	ŧ	1	‡	•	‡	ł	‡	+
	CT0007	CADER	1		•	+++	•	‡	+	Ī	+
ב מ	CT1945		•	•	•	‡	•	*	•	‡	÷
ומ	069012	=	•		•	++++	ŧ	##	•	++	÷
	00000	2		ı	ı	++++	•	##	1	+++	÷
L.	CEOCES			ŧ	•	‡	1	+++	•	##	÷
M M				•	t	‡	. •	++++	•	Ŧ	÷
Edwardsiella tarda	Kaco.T.		,	ì		1 4 4 4	1	1	t	‡	- +
er	GT0683	•		•	t		1	:	=		٠ ﴿
Entercharter cloacae	CT0686	2	+	+	•	‡	•	+	۲		٠ -
	CT0062	E	•	ì	•	+++	ŧ	+++	•	Ē	+
4	CTIFEES	в.	•	1	1	##	1	#	•	‡	+
et /	CEST 1797		ı	•	•	+++	1	‡	1	‡	+
			1	•		++++	+	‡	+	‡	+
U	ACOLTS)	ı (ı	1	+	+	1	‡	+
Haemophilus influenza	AICC33391	: :	•)	1		. 1	4	ı	4	+
Hapmohilus ducrevi	GT0243	k	1	1	•		•) -		-
. 7	CT0241	•	t	ı	ı	‡	•	‡	+		
HOTHER GEACH	CT0303	=	ı	1		‡	1	‡	ŧ	‡	
	CT 500			1	•	+++	ı	+ + + +	t	‡	
	9071400	=		•	•	‡	1	++++	+	ŧ	
2	CL1430		•	1	•	+++++	1	‡	+	‡	
Providencia alcalifaciens	1/6019			. 1	(4	•	‡	+	‡	+
Pseudomonas aeruginosa	GE1909		•) 1	4	•	: ‡	+	‡	+
4	CLO/33	1 1	ı	ı	I		ı		. 1	1	4
Salmonella typhimurium	GT0389		t.	•	•	+ :	•		1 1		٠.
π	GT0392	•	٠	•	•	+	1	-	•		
	GT0798		1	ŧ		++++		+ + + + + + + + + + + + + + + + + + +	i	+ :	
	CT0568		ı	1	•	++++	•	++	+	‡	
	CT0417		1	1	•	+	+	+++	+	‡	
, 1	CT0419	•	1	1		‡	1	+++	+	+++	+
Yersinia encelocolitaca	OLYUN I	Purola	1	ı	•	ŀ	++++	++++	ı	‡	
ימ	10015	hota	•	ŧ	•	++++		++++	•	‡	
Branhamella Catarroalls			- 1	•		‡	+++	++++	+	‡	
Chromobacterium Violaceum	770715	•	١.		ı	1111	. 1	1		+++	
Kingella indologenes	0246		ı		3 1	4 4 4 4	۱ (444	.,4	+	
Moraxella osloensis	CT0301	E.	ı	ŧ)		-	•	4
-	CT0302	:	1	ı	ı	+ + + +	•	+++	i.	-	۰
•											

TABLE 5: (cont'd) DOT BLOT HYBRIDIZATION - GRAM POSITIVE & GRAM NECATIVE PROBES

					20000	HVRD	HVRDITTZATION	TON		
			168	NA-T			23S RNA-TARGET	NA-T	- 1	
u o c c c c c c c c c c c c c c c c c c	strain	div	1744	1745	1746	1657	1656	1598	1599	1595
and not from t		Spiro		+	+	•	+ + + +	‡		
			•	‡	+++	-1	+ + + +	##		+
Borrella turicatae		Ε	1	+	•	1	‡ ‡ ‡	++++	‡	+
_			1	. 1	•	•	++++	‡ ‡	‡	+
Llexa			1		1	1	444	111	‡	+
Leptospira biflexa (CDC)		3 :	ŧ	t	•	ì			1111	٠
irant f		=	+++	1	1	•	‡	ţ	+ -	٠ -
Discounting fraction	25285	Bact	‡	ı		1	1		‡	+
parter and the same	17796	=	++++		1	•	ŧ	1	‡	+
	0573		+	t	ı		ı	•	‡	+
Bacteroides thetalotaomicron	ן רכי סיי	=	. ‡		1	1	ı		‡	+
	1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		1			1	+	ł	‡	1
Flavobacterium meningosepticum	70	1100			. 1	•	. 1	+	+	+
Chlamydia psittaci		Cultamy	ı	• 1	ı		•	‡	‡	‡
Chlamydia trachomatis	> 1				1	ı				
Carottie Tetoole		Misc	‡	ı	t	ı	++	•	, ;	. :
Cittotoficate pirantiacis	Y400	2	++++	•			‡	ı	++++	+
•	2608	=	‡	•			‡	ı	‡	+
Delinococcus rattocarans Disortomeres maris	2577		•		•	ŧ	1	ı	ı	ı
			‡	++++	‡	‡	‡	+	‡	‡
Normal Stool RNA			: 1		. 1		•	1	•	1
Mouse L-Cell				1	•	1		1	•	
			ı	ı	ı	ı	ı			
	70-601		٠,	1	•	,		•		ı
aniae	107104		•	•		1	•	•	ı	
parapsilosis	00-700		۱ ۱	1	•	•	•	ı	•	,
tropicalis	19-677		i (1	i		1	1	ı
albicans	00-007		1 - 1	1			•	•	ı	ŧ
albicans	77.3-87)	ı			1	ı	1	1
albicans	819-88		1	1			1		ŀ	-
		•	•	100		1				

Probe 1746 - = Zero. A Inclusivity and Exclusivity data was determined after overnight exposures.
AA Each organism is represented by 100ng of CsTFA purified RNA.
AAA ++++ = positive level of hybridization, + = barely detectable and - = zero
was hybridized at 37 C and washes at 50 C.

			3	- 1		1	ı	ı	t	1		•	1 1	1 (,		+	+	+	ı	1 4	F 4	+ +	+	‡	+	ı	•	ŧ	1	1	•	ı	
5	ĸ	!	1599				1	‡	‡	‡	‡	‡	‡ :				+		ŧ	‡	‡	‡ :			#	ŧ	##	++++	‡	##	++++	+++	+++	##	
	PROBE	a		1		•	ŀΉ		. +	+	1			+	1	s 1	. 1	1	1	•	+		+	t i		#	•	‡	‡	+	‡		ı	1	
10	TIVE	DIZATION 23S RNA-TARGEI	1656 1598		•		‡ :		1	‡	#	‡	‡	‡	# :	‡:		+ '	1 4	. 1	‡	‡	•	1	a 1			‡		ı	‡	#		+	
	NECA	HYBRIDIZATION 238 RNA-	1657 1	•	1	,	1		· ·	. 1	1	1		•	•	•	•				•	ı	•	‡		ļ.	4444		111	‡	: ,) I		
15	GRAM		1	‡	‡	ŧ	‡ ‡	‡		1	=	‡	‡	· ‡	‡	+++	‡	‡			=	++++	++++	‡	. :	‡ (۱ -	4444		; ;	:		‡ ‡	٠ ا	l
	- GRAM POSITIVE & GRAM NEGATIVE PROBES	PROBE	1745 1	+ + +	+ + + + + + + + + + + + + + + + + + + +	+ + +	+ +++	T '						<u>.</u>	###	+++	i	_			=	#	‡	‡	‡	‡	. :	‡ :				* :	* :	+ :	‡
20	POSIT	NG DY	744 1	١.	+	+ + + +	+ ‡	•	T '	T .		; ;		٠	:	:	+ + + + + + + + + +	+ + + +	•				i		-		‡	‡	+ + +	*	+ :	+++	+++	‡	‡
	RAM 1			1		+	+	+	+	+	•	+ 1	r 1		•	•	_	_		+			•	•		•	•		Hisc	+ 5				Cyano	*
25			7		*				=	= :		. =			=	=	=	=	b1G+C	5			•	•	•	•	-			_	_	_		Č	
30	BLOT HYBRIDIZATION			AMPOUT ER 31	ALCELULA A	ATCC13720	ATCC14404	GT0399	GT1711	GT0401	ATCC29970	GT0405	Grobbs	90 (CILO	C1213	8070LU	CT0410	GT0411	CT0012	GT0045	_		GE2144	7777	BCB		GT2191		CT2116	CT0238	ATCC27768	GT2118			
	1¥B							•																											
35							SI				12											phtheriti	erculosis												
35 40	DOT				fae	ciens	productus	20		GOD Jornfols	moleticus	actiae		alis	111orum	ins	moniae	varius		entium entemitum	tanicum	seudodiphtheriti	endotuberculosis	rogenes	rerosis	\$ 15 E	77688				ropitor Cal		# T T T T T T T T T T T T T T T T T T T	2111	7. H.
	(cont'd) DOT			8	eumontae	trefaciens	occus productus	1treus	s aureus	s aureus i coldermidia				-		_			sanguls	in central fin	ምር	^ =	-		Lum xerosis	bovis	A Kanadata			Irlaans 		prausmitti	o Lysens	S SOUTH S	oryanum oryanum
40	5; (cont'd) DOT	3		cies	preumontae	putrefaciens	tococcus productus	is citreus	sccus aureus					-	-	_			ccus sanguls		ምር	, _	-			rium bovis	rich Kansasta	asteroldes 	us rnogociik ous	s viridans	rich necropios	rium prausnitzii	Aemolysans	erricom enii	m ectocater m boryanum
	(cont'd) DOT	3		Genus species	lasma	Mycoplasma putrefaciens	Peptostreptococcus productus	Planococcus citreus				. «	straptococus syla	-	-	_			Streptococcus sanguis		Corynebacterium gentrations	, _	-		Corynebacterium xerosis	Mycobacterium bovis	Mycobacterium Kansasıı	Nocardia asterologia	Rhodococcus rnogocur ous	Aerococcus Viridans	Fusobacterium necropino	Fusobacterium prausnitzii	Genella haemolysans	Heliobacillus modilis	Phormidium ectocarp. Plectonema boryanum

			1595	‡	+++	‡	+++	‡	‡	‡	ŧ	‡	‡	•	,	+	‡	‡	‡	‡	+	+++		+		1	1	• 1	•	ı	1		+	1	ı	ı	
5	23	RGET	1599	1	1	1	•	1	1	1	1	‡	‡	‡		1	ł	+	1	1	•	•	‡	‡:	‡	+ + + + + + + + + + + + + + + + + + +	+ + +	‡ :	+++	‡ :	+++	++++	++++	+ + + +	‡ ‡‡	++++	‡ ‡
	PROB	TION RNA-TARGET	1598	‡	‡	ŧ	##	‡	‡	‡	•	‡	‡	‡	‡	‡	++	+	‡	‡	‡	‡	‡	‡	+++	+	+			ļ	•	ı		1	•	+	•
10	ATIVE	HYBRIDIZATION 238 RNA-	1656	##	‡	##	‡	•	##	‡	1		•	•	•	1	١.	.1	•	•			##	+	‡	+++	‡	# :	‡	+ + + +	‡	+++	1	+++	‡	‡	ŧ
	N NEC	HYBRI	1657	##	###	‡	‡	ı	1	###	‡	*	* + + +	+++	‡	##	+++	‡	###		##	‡	1		ı	1			•			•	1		•	ı	
15	E GRA		1746	,	1	1	1		1	ı	1		ı			•	1		1	ŧ	1		1	1		##	‡	+++	‡	‡	‡	++++	‡	+++	‡	++++	‡ .
	gram positive & gram negative probes	P. VA-TA	1745 1746	,	ı	ı	ŧ	1	1	ı			1	:	1		•		,		•		ı		1	+++	+++	##	+++	##	·	. ###	+ + +	+++	* * * * *	. +++	‡
20	POSI	9 23			•	,		•	ı	1	•	‡	‡	+	ı	ı,	1	##	‡		•	1	1	ı		+++	+++	++++	+++	###	+++	###	++++	+++	+++	++++	‡
	GRAM		div					si.		Purple	200	 			*					delta	1 2 2 2 2	, E	TOWE'S			104G+C	CH +										
25	ı			1																	_	•	_														
30	5: (cont'd) DOT BLOT HYBRIDIZATION		atrain		CTC070	3750AP	210210 R100110	5105137mg	1	CT0810	ATTOCASAGA	(TIT2021	ATCC23448	CT2025	CT2023	CT2020	FC07177718	NT-0-150-15	かけいいちょうらい	ATC 1757	ALCC TOTAL	C. L. C. T. J. J. J. J. J. J. J. J. J. J. J. J. J.	11110 CT00072	GT0026	CT0027	CT0803	CT0804	ATCC25537	GT0567	ATCC 3587	ATCC19401	ATC[13124	ATCC25582	ATCC23403	7.025.	CT0258	163299
35	DOT BLOT								<u>.</u>	5		1	913	•						1	cans				*	•		Ormo.		-	•	3 .	_			SD.	
40	(cont'd)			9	gonorrhoeae	meningitidis	acidovorans	cepacia	gelatinosa	stercorari	Xerosis	cryptum	I. CUMBIACIO	tus	m capbuta.	Taca	Iminuta	praeroides	a rubrum	versutus	desulturi	um hominis	ularensis	Je juni	Py tora	sputorum	120	1113		ordenin	sporogenes Lintelation	ascory caco	peri rangens	ranosch	1	aciaopnii	piantatum cytogenes
45	TABLE 51			Genus species	Neisseria gon	Neisseria men			Rhodocyclus g	Vitreoscilla stercoraria	Achromobacter xerosis	Acidiphilium cryptum	Agrobacterium tumeraciens	Brucella aportus	Flavobacterium capsutatum	Mycoplana bullata	Pseudomonas diminuta	Rhodobacter sphaeroldes	Rhodospirillum rubrum	Thiobacillus versurus	Desulforibrio desulfuricans	Cardiobacterium hominis	Francisella tularensis	Campylobacter	Campylobacter	Campylobacter	Bacillus previs	Bacillus subtilis Aliminis alpatridioforma	Clostrialum c					Clostridium ra	Kurthia zopili	Lactobacillus acidopulus	Lactobacillus piantatu Listeria monocytogenes
50																						•											_	_			

Claims

50

1. A nucleic acid sequence capable of hybridising to rRNA or rDNA of eubacteria, but not to rRNA or rDNA of Mouse L cells, wheat germ, human blood or Candida albicans, the sequence being complementary to, or homologous to, at least 90% of a sequence comprising any ten consecutive nucleotides within a probe which is:

```
Probe 1661: 5'-TATTACCGCGGCTGCTGGCACGGAGTTAGCCG-3';
      Probe 1739: 5'-GCGTGGACTACCGGGGTATCTAATCCTGTTTGCTCCCCACGCTTTCG-3';
      Probe 1746: 5'TCATAAGGGGCATGATGATTTGACGTCAT-3';
      Probe 1743: 5'-GTACAAGGCCCGGGAACGTATTCACCG-3';
      Probe 1639: 5'-ACGGTTACCTTGTTACGACTT-3':
      Probe 1640: 5'-ACGGCTACCTTGTTACGACTT-3';
      Probe 1641: 5'-ACGGATACCTTGTTACGACTT-3';
      Probe 1656: 5'-CTACCTGTGTCGGTTTGCGGTACGGGC-3';
      Probe 1657: 5'-GGTATTCTCTACCTGACCACCTGTGTCGGTTTGGGGTACG-3';
      Probe 1653: 5'-CCTTCTCCCGAAGTTACGGGGGCATTTTGCCTAGTTCCTT-3';
10
      Probe 1654: 5'-CCTTCTCCCGAAGTTACGGGGTCATTTTGCCGAGTTCCTT-3';
      Probe 1655: 5'-CCTTCTCCCGAAGTTACGGCACCATTTTGCCGAGTTCCTT-3';
      Probe 1651: 5'-CTCCTCTTAACCTTCCAGCACCGGGCAGGC-3';
      Probe 1652: 5'-TTCGATCAGGGGCTTCGCTTGCGCTGACCCCATCAATTAA-3';
      Probe 1595: 5'-CGATATGAACTCTTGGGCGGTATCAGCCTGTTATCCCCGG-3'
15
      Probe 1600: 5'-CAGCCCCAGGATGAGATGAGCCGACATCGAGGTGCCAAAC-3'
      Probe 1601: 5'-CAGCCCCAGGATGTGATGAGCCGACATCGAGGTGCCAAAC-3';
      Probe 1602: 5'-CAGCCCCAGGATGCGATGAGCCGACATCGAGGTGCCAAAC-3';
      Probe 1598: 5'-CGTACCGCTTTAAATGGCGAACAGCCATACCCTTGGGACC-3';
      Probe 1599: 5'-CGTGCCGCTTTAATGGGCGAACAGCCCAACCCTTGGGACC-3';
20
      Probe 1596: 5'-GATAGGGACCGAACTGTCTCACGACGTTTTGAACCCAGCT-3'; or
      Probe 1597: 5'-GATAGGGACCGAACTGTCTCACGACGTTCTGAACCCAGCT-3'.
```

- 2. A nucleic acid sequence as claimed in claim 1 which is probe 1661, probe 1739, probe 1746, probe 1743, probe 1639, probe 1640, probe 1641, probe 1656, probe 1657, probe 1653, probe 1654, probe 1655, probe 1651, probe 1652, probe 1595, probe 1600, probe 1601, probe 1602, probe 1598, probe 1599, probe 1596 or probe 1597, or a complementary sequence thereto.
- 3. A set of probes comprising at least two nucleic acid sequences at least one of which is 1661, 1739, 1746, 1743, 1639, 1640, 1641, 1656, 1657, 1653, 1654, 1655, 1651, 1652, 1595, 1600, 1601, 1602, 1598, 1599, 1596 or 1597, or a complementary sequence thereto.
- A method of detecting the presence of eubacteria in a sample, the method comprising:

 (a) contacting a sample with at least one nucleic acid sequence which is probe 1661, 1739, 1746, 1743, 1639, 1640, 1641, 1656, 1657, 1653, 1654, 1655, 1651, 1652, 1595, 1600, 1601, 1602, 1598, 1599, 1596 or 1597, or a complementary sequence thereto, under conditions that allow the sequence to hybridise to rRNA or rDNA of the eubacteria, if present in the sample, but not to form hybrid nucleic acid complexes to rRNA or rDNA of non-eubacteria; and
 (b) detecting the hybrid nucleic acid complexes as an indication of the presence of eubacteria in the sample.
 - 5. A method as claimed in claim 4 wherein the eubacteria is gram-positive or gram-negative and the nucleic acid sequence is the probe 1599, 1656 or 1746.

45 Patentansprüche

50

55

1. Nucleinsäuresequenz, die mit rRNA oder rDNA von Eubakterien hybridisieren kann, aber nicht mit rRNA oder rDNA von Maus-L-Zellen, Weizenkeimen, menschlichem Blut oder Candida albicans, wobei die Sequenz komplementär zu oder homolog mit mindestens 90 % einer Sequenz ist, die beliebige zehn aufeinanderfolgende Nucleotide innerhalb einer Sonde umfaßt, nämlich:

Sonde 1661: 5'-TATTACCGCGGCTGCTGGCACGGAGTTAGCCG-3';

Sonde 1739: 5'-GCGTGGACTACCGGGGTATCTAATCCTGTTTGCTCCCCACGCTTTCG-3';

Sonde 1746: 5'TCATAAGGGGCATGATGATTTGACGTCAT-3';

Sonde 1743: 5'-GTACAAGGCCCGGGAACGTATTCACCG-3';

Sonde 1639: 5'-ACGGTTACCTTGTTACGACTT-3';

Sonde 1640: 5'-ACGGCTACCTTGTTACGACTT-3';

Sonde 1641: 5'-ACGGATACCTTGTTACGACTT-3';

Sonde 1656: 5'-CTACCTGTGTCGGTTTGCGGTACGGGC-3';

```
Sonde 1657: 5'-GGTATTCTCTACCTGACCACCTGTGTCGGTTTGGGGTACG-3';
      Sonde 1653: 5'-CCTTCTCCCGAAGTTACGGGGGCATTTTGCCTAGTTCCTT-3';
      Sonde 1654: 5'-CCTTCTCCCGAAGTTACGGGGTCATTTTGCCGAGTTCCTT-3';
      Sonde 1655: 5'-CCTTCTCCCGAAGTTACGGCACCATTTTGCCGAGTTCCTT-3';
      Sonde 1651: 5'-CTCCTCTTAACCTTCCAGCACCGGGCAGGC-3';
      Sonde 1652: 5'-TTCGATCAGGGGCTTCGCTTGCGCTGACCCCATCAATTAA-3';
      Sonde 1595: 5'-CGATATGAACTCTTGGGCGGTATCAGCCTGTTATCCCCGG-3';
      Sonde 1600: 5'-CAGCCCCAGGATGAGATGAGCCGACATCGAGGTGCCAAAC-3';
      Sonde 1601: 5'-CAGCCCCAGGATGTGATGAGCCGACATCGAGGTGCCAAAC-3';
      Sonde 1602: 5'-CAGCCCCAGGATGCGATGAGCCGACATCGAGGTGCCAAAC-3';
10
      Sonde 1598: 5'-CGTACCGCTTTAAATGGCGAACAGCCATACCCTTGGGACC-3';
      Sonde 1599: 5'-CGTGCCGCTTTAATGGGCGAACAGCCCAACCCTTGGGACC-3';
      Sonde 1596: 5'-GATAGGGACCGAACTGTCTCACGACCTTTTGAACCCAGCT-3'; oder
      Sonde 1597: 5'-GATAGGGACCGAACTGTCTCACGACGTTCTGAACCCAGCT-3'.
15
```

 Nucleinsäuresequenz nach Anspruch 1, nämlich Sonde 1661, Sonde 1739, Sonde 1746, Sonde 1743, Sonde 1639, Sonde 1640, Sonde 1641, Sonde 1656, Sonde 1657, Sonde 1653, Sonde 1654, Sonde 1655, Sonde 1651, Sonde 1652, Sonde 1595, Sonde 1600, Sonde 1601, Sonde 1602, Sonde 1598, Sonde 1599, Sonde 1596 oder Sonde 1597 oder eine komplementäre Sequenz dazu.

 Sondensatz, umfassend mindestens zwei Nucleinsäuresequenzen, wobei mindestens eine dieser 1661, 1739, 1746, 1743, 1639, 1640, 1641, 1656, 1657, 1653, 1654, 1655, 1651, 1652, 1595, 1600, 1601, 1602, 1598, 1599, 1596 oder 1597 oder eine komplementäre Sequenz dazu ist.

Verfahren zum Nachweis der Gegenwart von Eubakterien in einer Probe, umfassend:

 (a) Inkontaktbringen einer Probe mit mindestens einer Nucleinsäuresequenz, die Sonde 1661, 1739, 1746, 1743, 1639, 1640, 1641, 1656, 1657, 1653, 1654, 1655, 1651, 1652, 1595, 1600, 1601, 1602, 1598, 1599, 1596 oder 1597 oder eine komplementäre Sequenz dazu ist, unter Bedingungen, bei denen die Sequenz mit rRNA oder rDNA von Eubakterien, falls sie in der Probe vorhanden sind, hybridisieren, aber keine Hybridnucleinsäurekomplexe mit rRNA oder rDNA von Nicht-Eubakterien bilden kann; und
 (b) Nachweis der Hybridnucleinsäurekomplexe als ein Anzeichen für die Gegenwart von Eubakterien

 Verfahren nach Anspruch 4, wobei die Eubakterien gram-positive oder gram-negative Bakterien sind und die Nucleinsäuresequenz die Sonde 1599, 1656 oder 1746 ist.

Revendications

in der Probe.

20

45

50

55

1. Séquence d'acide nucléique capable de s'hybrider à l'ARNr ou l'ADNr d'eubactéries, mais non à l'ARNr ou l'ADNr de cellules L de souris, de germe de blé, de sang humain ou de <u>Candida albicans</u>, la séquence étant complémentaire de, ou homologue à, au moins 90% d'une séquence comprenant n'importe quelle dizaine de nucléotides consécutifs dans une sonde qui est :

Sonde 1661: 5'-TATTACCGCGGCTGCTGGCACGGAGTTAGCCG-3'; Sonde 1739: 5'-GCGTGGACTACCGGGGTATCTAATCCTGTTTGCTCCCCACGCTTTCG-3';

Sonde 1746: 5'TCATAAGGGGCATGATGATTTGACGTCAT-3';

Sonde 1743: 5'-GTACAAGGCCCGGGAACGTATTCACCG-3';

Sonde 1639: 5'-ACGGTTACCTTGTTACGACTT-3';

Sonde 1640: 5'-ACGGTTACCTTGTTACGACTT-3';

Sonde 1641: 5'-ACGGATACCTTGTTACGACTT-3'

Sonde 1656: 5'-CTACCTGTGTCGGTTTGCGGTACGGGC-3';

Sonde 1657: 5'-GGTATTCTCTACCTGACCACCTGTGTCGGTTTGGGGTACG-3';

Sonde 1653: 5'-CCTTCTCCCGAAGTTACGGGGGCATTTTGCCTAGTTCCTT-3';

Sonde 1654: 5'-CCTTCTCCCGAAGTTACGGGGTCATTTTGCCGAGTTCCTT-3'; Sonde 1655: 5'-CCTTCTCCCGAAGTTACGGCACCATTTTGCCGAGTTCCTT-3';

Sonde 1851: 5'-CTCCTCTTAACCTTCCAGCACCGGGCAGGC-3';

Sonde 1652: 5'-TTCGATCAGGGGCTTCGCTTGCGCTGACCCCATCAATTAA-3';

Sonde 1595: 5'-CGATATGAACTCTTGGGCGGTATCAGCCTGTTATCCCCGG-3';

Sonde 1600: 5'-CAGCCCCAGGATGAGATGAGCCGACATCGAGGTGCCAAAC-3'; Sonde 1601: 5'-CAGCCCCAGGATGTGATGAGCCGACATCGAGGTGCCAAAC-3'; Sonde 1602: 5'-CAGCCCCAGGATGCGATGAGCCGACATCGAGGTGCCAAAC-3'; Sonde 1598: 5'-CGTACCGCTTTAAATGGCGAACAGCCATACCCTTGGGACC-3'; Sonde 1599: 5'-CGTGCCGCTTTAATGGGCGAACAGCCCAACCCTTGGGACC-3'; Sonde 1596: 5'-GATAGGGACCGAACTGTCTCACGACGTTTTGAACCCAGCT-3'; ou Sonde 1597: 5'-GATAGGGACCGAACTGTCTCACGTTCTGAACCCAGCT-3'.

5

35

40

50

- 2. Séquence d'acide nucléique selon la revendication 1 qui est la sonde 1661, la sonde 1739, la sonde 1746, la sonde 1743, la sonde 1639, la sonde 1640, la sonde 1641, la sonde 1656, la sonde 1657, la sonde 1653, la sonde 1654, la sonde 1655, la sonde 1651, la sonde 1652, la sonde 1595, la sonde 1600, la sonde 1601, la sonde 1602, la sonde 1598, la sonde 1599, la sonde 1596 ou la sonde 1597, ou une séquence complémentaire de l'une de ces sondes.
- Jeu de sondes comprenant au moins deux séquences d'acide nucléique dont l'une au moins est 1661, 1739, 1746, 1743, 1639, 1640, 1641, 1656, 1657, 1653, 1654, 1655, 1651, 1652, 1595, 1600, 1601, 1602, 1598, 1599, 1596 ou 1597, ou une séquence complémentaire de celle-ci.
- Procédé de détection de la présence d'eubactéries dans un échantillon, qui comprend :

 (a) la mise en contact d'un échantillon avec au moins une séquence d'acide nucléique qui est la sonde 1661, 1739, 1746, 1743, 1639, 1640, 1641, 1656, 1657, 1653, 1654, 1655, 1651, 1652, 1595, 1600, 1601, 1602, 1598, 1599, 1596 ou 1597, ou une séquence complémentaire de celle-ci, dans des conditions qui permettent à la séquence de s'hybrider à l'ARNr ou l'ADNr des eubactéries, si elles sont présentes dans l'échantillon mais qui ne permettent pas de former des complexes d'acides nucléiques hybrides avec l'ARNr ou l'ADNr de non-eubactéries; et
 (b) la détection des complexes d'acides nucléiques hybrides en tant qu'indication de la présence d'eubactéries dans l'échantillon.
- Procédé selon la revendication 4, dans lequel les eubactéries sont Gram-positives ou Gram-négatives et la séquence d'acide nucléique est la sonde 1599, 1656 ou 1746.

FIGURE 1: THE THREE KINGDOMS

ARCHAEBACTERIA

FIGURE2: THE EUBACTERIAL KINGDOM

