Artificial Intelligence Machine Learning Intro

Instructor: Qiang Yu

Why Study Learning?

- Considered a hallmark of intelligence
- Viewed as way to reduce programming burden
 - Not enough programmers in the world to produce custom solutions to all problems – even if we knew how
 - Programmers are expensive!
- Many algorithms assume parameters that are difficult to determine exactly a priori
 - What is the right formula to filter spam?
 - When should your smart thermostat turn on the heat?

What is Machine Learning?

- Learning Element
 - The thing that learns
- Performance Element
 - Objective measure of progress
- Learning is simply an increase in the ability of the learning element over time (with data) to achieve the task specified by the performance element

ML vs. Statistics?

- Machine learning is:
 - Younger
 - More empirical
 - More algorithmic
 - (arguably) More practical
 - (arguably) More decision theoretic
- Statistics is:
 - More mature
 - (arguably) More formal and rigorous

Look at this cool result!

Maybe somebody can explain why it works later?

Let's model this situation and prove that we converge to a consistent answer!

Different kinds of learning... (Feedback)

Supervised learning:

- Someone gives us examples and the right answer (*label*) for those examples
- We have to predict the right answer for unseen examples

Unsupervised learning:

- We see examples but get no feedback (no labels)
- We need to find patterns in the data

Semi-supervised learning:

- Small amount of labeled data, large amount of unlabeled data
- Reinforcement learning:
 - We take actions and get rewards
 - Have to learn how to get high rewards

Types of Supervised Learning

- Training input:
 - Feature vector for each datum: x₁...x_n
 - Target value: y

- Classification assigning labels/classes
- Regression assigning real numbers

Features and Targets

- Features can be anything
 - Images, sounds, text
 - Real values (height, weight)
 - Integers, or binaries
- Targets can be discrete classes:
 - Safe mushrooms vs. poisonous
 - Malignant vs. benign
 - Good credit risk vs. bad
 - Label of image
- Or numbers
 - Selling price of house
 - Life expectancy

How Most Supervised Learning Algorithms Work

- Main idea: Minimize error on training set
- How this is done depends on:
 - Hypothesis space
 - Type of data

 Some approaches use a regularizer or prior to trade off training set error vs. hypothesis space complexity

What is the Best Choice of Polynomial?

Degree 0 Fit

Degree 1 Fit

Degree 3 Fit

Degree 9 Fit

Observations

- Degree 3 is the best match to the source
- Degree 9 is the best match to the samples
- We call this over-fitting
- Performance on test data:

What went wrong?

- Is the problem a bad choice of polynomial?
- Is the problem that we don't have enough data?
- Answer: Yes

Classification vs. Regression

 Regression tries to hit the target values with the function we are fitting

 Classification tries to find a function that separates the classes

Decision Boundaries

 A classifier can be viewed as partitioning the input space or feature space X into decision regions

 A linear threshold unit always produces a linear decision boundary. A set of points that can be separated by a linear decision boundary is linearly separable.

Limitations of Linearly Separable Functions

Is red linearly separable from green?

Are the circles linearly separable from the squares?

Feature Engineering

- All data are represented in "feature space"the space spanned by all possible values of all features
- Feature space is largely a choice, like the degree of your polynomial

 If you don't like your performance, you can change your feature space – but don't forget peril of overfitting

Suppose we're in 1-dimension

Easy to find a linear separator

Harder 1-dimensional dataset

What can be done about this?

Harder 1-dimensional dataset

Remember how permitting non-linear basis functions made linear regression so much nicer?

Let's permit them here too

$$\Phi = (x, x^2)$$

Harder 1-dimensional dataset

$$\Phi = (x, x^2)$$

Motivation for non-linear Classifiers

- Linear methods are "weak"
 - Make strong assumptions
 - Can only express relatively simple functions of inputs
- Coming up with good features can be hard
 - Requires human input
 - Knowledge of the domain
- Role of neural networks
 - Neural networks started as linear models of single neurons
 - Combining ultimately led to non-linear functions that don't necessarily need careful feature engineering

Neural Network Motivation

- Human brains are only known example of actual intelligence
- Individual neurons are slow, boring
- Brains succeed by using massive parallelism
- Idea: Copy what works

	Computers	Brains
Computational Units	10 ¹⁰ transistors/CPU	10 ¹¹ neurons/brain
Storage Units	10 ¹¹ bits RAM 10 ¹³ bits HD	10 ¹¹ neurons 10 ¹⁴ synapses
Cycle Time	10 ⁻⁹ S	10 ⁻³ S
Bandwidth	10 ¹⁰ bits/s*	10 ¹⁴ bits/s
Compute Power	10 ¹⁰ Ops/s	10 ¹⁴ Ops/s

Neural Network Lore

- Neural nets have been adopted with an almost religious fervor within the AI community – several times
 - First coming: Perceptron
 - Second coming: Multilayer networks
 - Third coming (present): Deep networks

Artificial Neurons

h can be any function, but usually a smoothed step function

Threshold Functions

Special Case: Perceptron

h is a simple step function (sgn)

Perceptron is a Linear Classifier

Good News/Bad News

Good news

- Perceptron learning rule can learn to distinguish any two classes that are linearly separable
- If classes are separable, perceptron learning rule will converge for any learning rate

Bad news

- Linear separability is a <u>strong assumption</u>
- Failure to appreciate this led to excessive optimism and first neural network crash

Multilayer Networks

- Once people realized how simple perceptrons were, they lost interest in neural networks for a while
- Multilayer networks turn out to be much more expressive (with a smoothed step function)
 - Use sigmoid, e.g., h=tanh(w^Tx) or logistic sigmoid
 - With 2 layers, can represent any continuous function
 - With 3 layers, can represent many discontinuous functions
- Tricky part: How to adjust the weights

NN History Through the Second Coming

- Second wave of interest in neural networks lost research momentum in the 1990s – though still continued to enjoy many practical applications
- Neural network tricks were not sufficient to overcome competing methods:
 - Support vector machines
 - Clever feature selection methods wrapped around simple or linear methods
- 2000-2010 was an era of linear + special sauce
- What changed?

Deep Networks

- Not a learning algorithm, but a family of techniques
 - Improved training techniques (though still essentially gradient descent)
 - Clever crafting of network structure convolutional nets
 - Some new activation functions
- Exploit massive computational power
 - Parallel computing
 - GPU computing
 - Very large data sets (can reduce overfitting)