<u>Appendix A</u> List of Formulae (with the usual notations)

Op-Amps:

Closed-Loop Negative Feedback Inverting Gain, $A_{VCL} = \frac{v_o}{v_i} = -\frac{R_f}{R_i}$ Figure (a)

Closed-Loop Negative Feedback Non-Inverting Gain, $A_{VCL} = \frac{v_o}{v_i} = \left(1 + \frac{R_f}{R_i}\right)$ Figure (b)

Op-Amp's Slew Rate,
$$SR \ge \left| \frac{dv_o}{dt} \right|_{max} = A_{VCL} \omega a_m = A_{VCL} a_m 2\pi f$$
,

where $v_i = a_m \sin(\omega t)$, $v_o = A_{VCL}v_i$, $v_o = A_{VCL}a_m \sin(\omega t)$ and $\left|\frac{dv_o}{dt}\right| = A_{VCL}\omega a_m \cos(\omega t)$

Op-Amp's frequency response: $A_{VOL}(jf) = \frac{A_o}{\left(1 + \frac{jf}{f_p}\right)}$

Gain-Bandwidth Product: $A_o f_p = f_o = \frac{1}{\beta} (BW)_{CL}$

where
$$\frac{1}{\beta} = \frac{R_f + R_i}{R_i}$$

$$t_r = \frac{0.35}{(BW)_{CL}}$$

Diodes:

$$v_D \approx nV_T \ln \left(\frac{i_D}{I_S}\right) \text{ or } i_D \approx I_S e^{\left(\frac{v_D}{nV_T}\right)}$$

where $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots$

Diode conductance: $g_D = \frac{1}{r_D} = \frac{I_D}{nV_T}$

BJT in Forward Active Region:

Ignore early effect:
$$i_C = I_S \exp\left(\frac{\left|v_{BE}\right|}{V_T}\right)$$

With early effect:
$$i_C = I_S \exp\left(\frac{|v_{BE}|}{V_T}\right) \left(1 + \frac{|v_{CE}|}{V_A}\right)$$

where I_s : Saturation current,

 V_T : Thermal voltage, assume 25 mV at room temperature,

 V_A : Early voltage.

For npn transistor, $|v_{BE}| = v_{BE}$ and $|v_{CE}| = v_{CE}$;

For pnp transistor, $|v_{BE}| = v_{EB}$ and $|v_{CE}| = v_{EC}$.

Small-signal model parameters of BJT:

$$g_m = \frac{I_C}{V_T}$$
, $r_\pi = \frac{\beta}{g_m}$ and $r_o = \frac{V_A + |V_{CE}|}{I_C} \approx \frac{V_A}{I_C}$

where I_C : DC collector current at Q-point

 V_{CE} : DC collector-emitter voltage at Q-point

Criterion for small-signal operation of BJT: $|v_{be}| \le 0.2V_T$

MOSFET in Saturation Region:

Criterion: $V_{DS} \ge V_{GS} - V_{TN}$ for NMOS;

 $|V_{DS}| \ge |V_{GS}| - |V_{TP}|$ for PMOS

where V_{TN} , V_{TP} : Threshold voltage,

 V_{DS} : DC drain-source voltage,

 V_{GS} : DC gate-source voltage.

Ignore channel-length modulation effect: $i_D = \frac{K_n}{2} (v_{GS} - V_{TN})^2$ for NMOS,

$$i_D = \frac{K_p}{2} (|v_{GS}| - |V_{TP}|)^2$$
 for PMOS.

With channel-length modulation effect: $i_D = \frac{K_n}{2} (v_{GS} - V_{TN})^2 (1 + \lambda v_{DS})$ for NMOS,

$$i_D = \frac{K_p}{2} \left(\left| v_{GS} \right| - \left| V_{TP} \right| \right)^2 \left(1 + \lambda \left| v_{DS} \right| \right) \text{ for PMOS.}$$

where λ : channel length modulation parameter,

For NMOS
$$K_n = K'_n \left(\frac{W}{L}\right)$$
 and $K'_n = \mu_n C_{ox}$; For PMOS $K_p = K'_p \left(\frac{W}{L}\right)$ and $K'_p = \mu_p C_{ox}$.

MOSFET in Triode Region:

 $V_{DS} < V_{GS} - V_{TN}$ for NMOS; $|V_{DS}| < |V_{GS}| - |V_{TP}|$ for PMOS Criterion:

 $i_D = K_n \left(v_{GS} - V_{TN} - \frac{v_{DS}}{2} \right) v_{DS}$ for NMOS, Ignore channel-length modulation effect:

 $i_D = K_p \left(\left| v_{GS} \right| - \left| V_{TP} \right| - \frac{\left| v_{DS} \right|}{2} \right) \left| v_{DS} \right| \text{ for PMOS.}$

With channel-length modulation effect: $i_D = K_n \left(v_{GS} - V_{TN} - \frac{v_{DS}}{2} \right) v_{DS} \left(1 + \lambda v_{DS} \right)$ for NMOS,

$$i_D = K_p \left(|v_{CS}| - |V_{TP}| - \frac{|v_{DS}|}{2} \right) |v_{DS}| \left(1 + \lambda |v_{DS}| \right) \text{ for PMOS.}$$

Small-signal model parameters of MOSFET

For NMOS: $g_m = \sqrt{2K_n I_D (1 + \lambda V_{DS})} \approx \sqrt{2K_n I_D}$ and $r_o = \frac{\frac{1}{\lambda} + V_{DS}}{I_D} \approx \frac{1}{\lambda I_D}$

For PMOS: $g_m = \sqrt{2K_p I_D \left(1 + \lambda |V_{DS}|\right)} \approx \sqrt{2K_p I_D}$ and $r_o = \frac{\frac{1}{\lambda} + |V_{DS}|}{I_D} \approx \frac{1}{\lambda I_D}$

where I_D : DC drain current at Q-point

 V_{DS} : DC drain-source voltage at Q-point

Criterion for small-signal operation:

For NMOS: $|v_{gs}| \le 0.2 (V_{GS} - V_{TN})$

For PMOS: $|v_{gs}| \le 0.2 (|V_{GS}| - |V_{TP}|)$

where V_{GS} : DC gate-source voltage at Q-point.

Frequency Response: OCTC and SCTC

0) DISABLE DC sources...

voltage sources -> SHORT CIRCUIT, current sources -> OPEN CIRCUIT

- 1) Identify capacitors contributing (reducing V₀ or causing trouble) to the frequency of interest (i.e. lower or higher cut-off).
- 2) DISABLE all independent AC sources... voltage sources -> SHORT CIRCUIT, current sources -> OPEN CIRCUIT DO NOT remove or "disable" dependent sources!

3) Idealize irrelevant capacitors by SHORT CIRCUIT (because at high f, cap \rightarrow short)

Next step to find time constant

- 4) For each contributing capacitor C_i , set all other capacitors (other than the one you are looking at) removed (i.e. OPEN CIRCUITS) and determine the resistance, R_i seen by C_i

5) Higher cut-off frequency is estimated as:
$$\omega_{H-3dB} \approx \frac{1}{\sum_{i} C_{i} R_{i}} = \frac{1}{C_{1} R_{1} + C_{2} R_{2} + \dots}$$

3) Idealize irrelevant capacitors by OPEN CIRCUIT (because at low f, cap \rightarrow open)

Next step to find time constant

- 4) For each contributing capacitor C_i , set all other capacitors (other than the one you are looking at) removed (i.e. SHORT CIRCUITS) and determine the resistance, R_i seen by C_i
- 5) Lower cut-off frequency is estimated as:

$$\omega_{L-3dB} \approx \sum_{i} \frac{1}{C_{i}R_{i}} = \frac{1}{C_{1}R_{1}} + \frac{1}{C_{2}R_{2}} + \dots$$

END OF PAPER