Esercitazione 3 - Linguaggi e Calcolabilità

12-04-2019

Antonio Cruciani antonio.cruciani@alumni.uniroma2.eu

Esercizi a lezione

Esercizio 1:

Sia L il linguaggio definito come segue:

$$L_{HB} = \{ \langle M \rangle : M \text{ è una macchina di turing e } M(\epsilon) \text{ Termina} \}$$

Si discuta la decidibilità di tale linguaggio.

Esercizio 2:

Sia $L_1 \subseteq \Sigma^*$ un linguaggio decidibile deciso da una macchina di Turing T_1 , e sia $L_2 \subseteq \Sigma^*$ un linguaggio accettabile, accettado dalla macchina di Turing T_2 . Dimostrare se il seguente linguaggio:

$$L = \{(x, k) : x \in \Sigma^* \land k \in \mathbb{N} \land T_1(x) \text{ accetta in } r \geq k \text{ passi } \land T_2(x) \text{ rigetta in } s \leq k \text{ passi } \}$$
è decidibile

Esercizio 3:

Si consideri il seguente linguaggio:

 $L_{NH} = \{(\langle M \rangle, x) : \langle M \rangle \text{ non è la codifica di una macchina di Turing } \vee M(x) \text{ non termina}\}$ Si dimostri l'accettabilità o la non accettabilità di tale linguaggio.

Esercizi per casa

Esercizio 1:

Sia $L_1 \subseteq \Sigma^*$ un linguaggio decidibile deciso da una macchina di Turing T_1 , e sia $L_2 \subseteq \Sigma^*$ un linguaggio accettabile ma non decidibile, accettado dalla macchina di Turing T_2 . Dimostrare se il seguente linguaggio:

$$L = \{(x, k) : x \in \Sigma^* \land k \in \mathbb{N} \land T_1(x) \text{ accetta in } r \geq k \text{ passi } \land T_2(x) \text{ rigetta in } s \geq k \text{ passi } \}$$

è decidibile

Esercizio 2:

Sia $f:\{0,1\}^*\to\mathbb{N}$ una funzione totale e calcolabile, si consideri il seguente linguaggio:

(Versione modificata dell'Halting Problem)

$$L_H(f) = \{(\langle M \rangle, x) : M(x) \text{ Termina in } f(x) \text{ Passi}\}$$

Si dimostri se $L_H(f)$ è decidibile o non decidibile.

Esercizio 3*:

Sia L_{NE} il linguaggio dalle macchine di Turing che accettano un linguaggio non vuoto, ovvero:

$$L_{NE} = \{ \langle M \rangle : M \text{ è un macchina di Turing } \land \mathcal{L}(M) \neq \emptyset \}$$

Si discuta l'accettabilità e la decidibilità di tale linguaggio.

Esercizio 4**:

Sia

$$L_{EQ} = \{ \langle M_1, M_2 \rangle : M_1 \ e \ M_2 \ \text{sono due macchine di Turing} \ \land \mathcal{L}(M_1) = \mathcal{L}(M_2) \}$$

Si discuta la decidibilità di L_{EQ}

Esercizio 5*:

In una macchina di Turing si definisce stato inutile uno stato al quale non si fa mai accesso per qualsiasi parola in input. Si consideri il problema di determinare se uno stato in una macchina di Turing è inutile. Si definisca questo problema come linguaggio e se ne dimostri la decidibilità o la non decidibilità.

Legenda:

Sia M una macchina di Turing tale che accetta $x \in \Sigma^*$,

scriviamo $\mathcal{L}(M) = \{x \in \Sigma^* : M \text{ Accetta } x\}$ e ci riferiamo a $\mathcal{L}(M)$ come al linguaggio accettato da M.

Gli asterischi dopo il numero degli esercizi indicano la loro difficoltà, più sono gli * e più richiede impegno l'esercizio.

Soluzioni esercizi a lezione

Esercizio 1:

Mostriamo che L_{HB} non è decidibile in quanto $L_{ATM} \leq_m L_{HB}$:

Sia $x \in \Sigma^*$ e si assuma che $x = \langle M, w \rangle$ dove M è una macchina di Turing. (Se x non è di questa forma allora possiamo definire f(x) affinché sia qualcosa non in L_{HB} . In generale assumeremo che l'input sarà **ben formato**).

Sia $f(x) = \langle M' \rangle$ dove M' lavora come segue sul nastro vuoto (non ci interessa cosa faccia M' quando il nastro non è vuoto).

Spieghiamo il funzionamento di M': per prima cosa M' scrive w sul nastro (questo può farlo poiché possiamo assumere che la parola w sia memorizzata negli stati interni di M' in quanto w è sempre una parola finita) e poi simula la computazione M(w):

- a) Se M(w) termina e accetta allora **Accetta**
- b) Se M(w) termina e rigetta allora Non termina

Osserviamo esplicitamente che f(x) è una funzione calcolabile e soprattutto, osserviamo che :

$$x \in L_{ATM} \iff f(x) \in L_{HB}$$

poiché

M Accetta $w \iff M'$ Termina sul nastro vuoto

Quindi possiamo concludere che L_{HB} non è decidibile.

Esercizio 2:

Osserviamo che il linguaggio L è decidibile.

Dimostriamolo.

Osserviamo esplicitamente che L_1 è un linguaggio decidibile, quindi esiste una macchina di Turing T_1 che decide tale linguaggio. L_2 è un linguaggio accettabile ma non decidibile, quindi esiste una macchina di Turing che accetta tale linguaggio.

Osserviamo che L è definito come segue:

$$L = \{(x, k) : x \in \Sigma^* \land k \in \mathbb{N} \land T_1(x) \text{ accetta in } r \geq k \text{ passi } \land T_2(x) \text{ rigetta in } s \leq k \text{ passi } \}$$

Definiamo la macchina di Turing T che decide tale linguaggio.

Senza perdita di generalità definiamo T come segue: T è composta da 4 nastri:

- N_1) Nastro d'input che contiene (x, k)
- N_2) Nastro dove trascriverà k in unario
- N_3) Nastro dove simulerà la computazione $T_1(x)$
- N_4) Nastro dove simulerà la computazione $T_2(x)$

Illustriamo il funzionamento di tale macchina:

- 1. input (x, k)
- 2. Controlla che $x \in \Sigma^* \land k \in \mathbb{N}$, se $x \notin \Sigma^* \lor k \notin \mathbb{N}$ Rigetta, altrimenti prosegui con il passo 3)
- 3. leggi k presente in N_1 e trascrivilo in unario in N_2
- 4. Posiziona la tesista di N_2 sul primo \square a sinistra su N_2
- 5. Simula la computazione $T_1(x)$ come segue: Ad ogni passo della simulazione di $T_1(x)$ sposta a destra la testina su N_2 di una posizione. Ora,
 - Se T₁(x) accetta e la testina su N₂ legge blank allora prosegui con il passo 5 riposizionando la testina sul primo □ a sinistra su N₂.
 - Se $T_1(x)$ accetta e la testina su N_2 legge 1 allora, sposta a destra di una posizione la testina su N_2 :
 - se legge 1 allora **Rigetta**
 - se legge \square allora Prosegui con il passo 5
 - Se $T_1(x)$ rigetta allora **Rigetta**
- 6. Simula $T_2(x)$ come alla fase 5 e se :
 - Se $T_2(x)$ accetta e su N_2 legge 1 allora **Rigetta**
 - Se $T_2(x)$ non ha né accettato né rifiutato e sul nastro N_2 legge blank, allora **Rigetta**
 - Se $T_2(x)$ rigetta e sul nastro N_2 legge un 1 allora **Accetta**

Osserviamo esplicitamente che la macchina T appena descritta decide L. Abbiamo quindi dimostrato che L è decidibile.

Esercizio 3:

Osserviamo che il linguaggio non è accettabile in quanto è il complemento del linguaggio L_{HALT} .

Assumiamo per assurdo che L_{NH} sia accettabile, allora possiamo costruire una macchina di Turing che decide il linguaggio L_{HALT} . Ovvero, sia T_1 la macchina di Turing composta di tre nastri: sul primo nastro sarà presente l'input, sul secondo nastro verrà simulata la macchina T_{Halt} che accetta $\forall (\langle M \rangle, x) \in L_{Halt}$ e sul terzo nastro verrà simulata T_{NH} che accetta $\forall (\langle M \rangle, x) \in L_{NH}$. T_1 lavorerà come segue:

- 1) Controlla se $\langle M \rangle$ è la codifica di una macchina di Turing, se non lo è **Rigetta**, altrimenti prosegui con il passo 2).
- 2) Alterna un passo di simulazione di $T_{Halt}(\langle M \rangle, x)$ e $T_{NH}(\langle M \rangle, x)$, se T_{Halt} accetta allora **Accetta** se T_{NH} accetta allora **Rigetta**.

Abbiamo quindi definito una macchina di Turing in grado di decidere L_{Halt} , ma tale linguaggio non è decidibile, è solo accettabile (ovvero non è co-Turing-recognizable) quindi tale macchina T_{NH} non può esistere e quindi L_{NH} non è un linguaggio accettabile.

Soluzioni esercizi per casa

Esercizio 1:

Il lunguaggio L non è decidibile.

Dimostriamolo. Osserviamo esplicitamente che L_1 è un linguaggio decidibile e che L_2 è un linguaggio accettabile ma non decidibile.

Procediamo con la dimostrazione della non decidibilità di L:

Assumiamo per assurdo che L sia decidibile, allora esiste una macchina di Turing T_L che decide L, ovvero. Tale macchina, senza perdita di generalità, sarà a 4 nastri, definita come segue:

- N_1) Nastro d'input che contiene (x, k)
- N_2) Nastro dove trascriverà k in unario
- N_3) Nastro dove simulerà la computazione $T_1(x)$
- N_4) Nastro dove simulerà la computazione $T_2(x)$

Illustriamo il funzionamento di tale macchina:

ASSUNZIONE: Ogni coppia (x, k) sarà ben formata, ovvero $\forall (x, k)$ avremo sempre che $x \in \Sigma^* \land k \in \mathbb{N}$. Quest'assunzione serve per facilitare l'analisi del linguaggio e può essere, chiaramente, rilassata.

- 1. input (x,k)
- 2. leggi k presente in N_1 e trascrivilo in unario in N_2
- 3. Posiziona la tesista di N_2 sul primo \square prima del primo 1 a sinistra su N_2
- 4. Simula la computazione $T_1(x)$ come segue: Ad ogni passo della simulazione di $T_1(x)$ sposta a destra la testina su N_2 di una posizione. Ora,
 - Se $T_1(x)$ accetta e la testina su N_2 legge \square allora **prosegui con** il **passo 5** riposizionando la testina sul primo \square a sinistra su N_2 .
 - Se $T_1(x)$ accetta e la testina su N_2 legge 1 allora, sposta a destra di una posizione la testina su N_2 :
 - se legge 1 allora **Rigetta**
 - -se legge \square allora Prosegui con il passo 5
 - Se $T_1(x)$ rigetta allora **Rigetta**

- 5. Simula $T_2(x)$ come alla fase 4 e se :
 - Se $T_2(x)$ accetta e su N_2 legge 1 allora **Rigetta**
 - Se $T_2(x)$ rigetta e su N_2 legge 1 allora, sposta a destra di una posizione la testina su N_2 :
 - se legge 1 allora **Rigetta**
 - se legge □ allora Accetta
 - Se $T_2(x)$ rigetta e sul nastro N_2 legge un \square allora **Accetta**
 - Se $T_2(x)$ accetta e sul nastro N_2 legge un \square allora **Rigetta**

Tale macchina riesce a decidere L, abbiamo però che L_2 è un linguaggio accettabile ma non decidibile, quindi abbiamo che al passo 5 la computazione $T_2(x)$ per $x \in L_2^c$, senza perdita di generalità, non termina e di conseguenza non termina nemmeno T_L . Quindi abbiamo che L non è decidibile, ma per ipotesi iniziale abbiamo che L è decidibile, abbiamo quindi ottenuto un assurdo. Possiamo concludere che L è un linguaggio non decidibile.

Esercizio 2:

Mostriamo che $L_H(f)$ è un linguaggio decidibile.

Abbiamo $f: \{0,1\}^* \to \mathbb{N}$ la quale è una totale e calcolabile.

Allora poiché è una funzione totale e calcolabile essa viene calcolata da un trasduttore che $\forall x \in \{0,1\}^*$ scrive f(x) (in questo caso un numero naturale) sul nastro di output. Senza perdita di generalità assumiamo che tale numero naturale sia in unario.

Detto questo, mostriamo che $L_H(f)$ è decidibile, sia T_1 la TM che decide tale linguaggio (il quale è una modifica dell' halting problem), quindi, T_1 senza perdita di generalità, sarà una macchina a 3 nastri, la quale funzionerà come segue: Per prima cosa simula sul nastro 1) il trasduttore che calcola f(x) e scrivi l'output della computazione di tale trasduttore sul nastro 3), poi una volta terminata tale computazione (e tale computazione termina sempre poiché f è totale e calcolabile), riavvolgi la testina del nastro 3) tutta a sinistra e simula sul nastro 2) M(x) come segue: ad ogni passo di M(x) muovi a destra la testina sul nastro d'output. Se M(x) è terminata e sulla cella sulla quale si trova la testina del nastro 3) leggi 1 allora T_1 accetta.

Se M(x) non è ancora terminata e sul nastro 3) leggi un \square allora T_1 rigetta, in quanto M(x) non è terminata in f(x) passi.

Osserviamo esplicitamente che T_1 decide $L_H(f) \Rightarrow L_H(f)$ è decidibile.

Esercizio 3*:

 L_{NE} è un linguaggio accettabile ma non decidibile.

Dimostriamo l'accettabilità di L_{NE} costruendo una macchina di Turing M_0 tale che $L_{NE} = \mathcal{L}(M_0)$. M_0 prende in input $x = \langle M \rangle$ ed M_0 si comporta come segue:

- Simula M su tutti gli input di lunghezza ≤ 1 per un passo
- Simula M su tutti gli input di lunghezza ≤ 2 per due passi
- Simula M su tutti gli input di lunghezza ≤ 3 per tre passi
- Simula M su tutti gli input di lunghezza ≤ 4 per quattro passi
- etc..

Se e quando M_0 "scopre" M accetta un qualche input allora M_0 Accetta e termina.

Chiaramente $\mathcal{L}(M_0) = L_{NE}$, allora L_{NE} è accettabile.

Procediamo con il dimostrare che tale linguaggio non è decidibile, per fare questo, mostriamo una riduzione $L_{HB} \leq_m L_{NE}$.

Sia x un input di L_{HB} , assumiamo che x sia ben formato, ovvero $x = \langle M \rangle$. Definiamo $f(x) = \langle M' \rangle$ dove M' lavora come segue:

- Su ogni input
 - 1. M' cancella il suo inupt
 - 2. M' simula $M(\epsilon)$
- Se e quando M termina allora M' Accetta e termina.

Osserviamo esplicitamente

$$\langle M \rangle \in L_{HB} \iff \langle M' \rangle \in L_{NE} \Rightarrow L_{HB} \leq_m L_{NE}$$

E questo ci permette di dire che L_{NE} non è decidibile.

Esercizio 4**:

Dimostriamo la non decidibilità di questo linguaggio mostrando che se fosse decidibile allora potremmo decidere L_{NE} il quale è non decidibile. Si supponga che esista una macchina di Turing T_{EQ} che decide L_{EQ} . Allora possiamo costruire una macchina di Turing T' in grado di decidere L_{NE} . Definiamo tale T':

- Controlla se l'input è della forma $\langle T_1 \rangle$ dove T_1 è una macchina di Turing. Se non lo è **rigetta**, altrimenti esegui i seguenti passi:
- 1) Costruisci la parola $\langle T_1, T_{\emptyset} \rangle$, dove T_{\emptyset} è una macchina di Turing che rigetta tutti gli input (ovvero abbiamo che $\mathcal{L}(T_{\emptyset}) = \emptyset$).
- 2) Simula $T_{EQ}(\langle T_1, T_{\emptyset} \rangle)$.
 - Se tale computazione è accettante allora **Rigetta**
 - Se tale computazione è rigettante allora **Accetta**.

Osserviamo esplicitamente che:

- Se $\langle T_1 \rangle \notin L_{NE} \Rightarrow \mathcal{L}(T_1) = \emptyset = \mathcal{L}(T_{\emptyset})$ e $T_{EQ}(\langle T_1, T_{\emptyset} \rangle)$ ACCETTA \Rightarrow T' Rigetta
- Se $\langle T_1 \rangle \in L_{NE} \Rightarrow \mathcal{L}(T_1) \neq \emptyset = \mathcal{L}(T_{\emptyset})$ e $T_{EQ}(\langle T_1, T_{\emptyset} \rangle)$ rigetta \Rightarrow T' Accetta

Quindi T' decide L_{NE} il quale non è decidibile, quindi tale macchina non può esistere e di conseguenza nemmeno T_{EQ} esiste e quindi possiamo concludere che L_{EQ} non è decidibile.

Esercizio 5*:

Definiamo il linguaggio:

 $L_{ITM} = \{\langle M, q \rangle : M \text{ è una macchina di Turing } \land \text{ q è uno stato inutile in M} \}$ Dimostriamo la non decidibilità di tale linguaggio.

Si supponga per assurdo che L_{ITM} sia decidibile, allora esiste T_{ITM} che lo decide. Si noti che per ogni macchina di Turing T_i con stato accettante q_a , q_a è inutile se e solo se $\mathcal{L}(T_i) = \emptyset$.

Quindi, poiché T_{ITM} decide L_{ITM} , abbiamo un mezzo per controllare se q_a è uno stato inutile e decidere L_{NE} (che sappiamo essere non decidibile).

Definiamo il funzionamento di una tale macchina T' che utilizza T_{ITM} per decidere L_{NE} :

- Su input $\langle M \rangle$ dove M è una macchina di Turing
- 1) Simula $T_{ITM}(\langle M, q_a \rangle)$ dove q_a è lo stato accettante di M.
 - Se $T_{ITM}(\langle M, q_a \rangle)$ accetta allora **Rigetta**
 - Se $T_{ITM}(\langle M, q_a \rangle)$ rigetta allora **Accetta**

Si osservi che:

Se la computazione $T_{ITM}(\langle M, q_a \rangle)$ è accettante allora significa che q_a è uno stato inutile, ovvero significa che il linguaggio accettato dalla macchina di Turing M è vuoto $(\mathcal{L}(M) = \emptyset)$.

Se, invece, la computazione $T_{ITM}(\langle M, q_a \rangle)$ è rigettante allora significa che q_a non è uno stato inutile e quindi che il linguaggio accettato da M non è vuoto $(\mathcal{L}(M) \neq \emptyset)$.

Alla luce di queste due osservazioni, possiamo concludere osservando esplicitamente che tale macchina di Turing T' non può esistere in quanto decide L_{NE} e di conseguenza T_{ITM} non può esistere.

Quindi L_{ITM} non è decidibile.