SpaOTsc

Release 0.2

CONTENTS:

	SpaOTsc API Reference 1.1 The SpaOTsc module	1
2	Indices and tables	13
Рy	thon Module Index	15
In	dex	17

CHAPTER

ONE

SPAOTSC API REFERENCE

1.1 The SpaOTsc module

```
spaotsc.SpaoTsc.choose\_landmarks(pts, n, dmat=None, method='maxmin', assignment='nearest') \\
```

Choose a set of landmark points from a set of points.

[1] De Silva, Vin, and Gunnar E. Carlsson. "Topological estimation using witness complexes." SPBG 4 (2004): 157-166.

Parameters

- pts (class:numpy.ndarray) coordinates of points (n_points, nD) needed if dmat not given
- **n** (*int*) number of landmark points to select
- dmat (class:numpy.ndarray) the distance matrix for the points (n_points, n_points)

Returns the indices of selected points and an assignment matrix to assign original points to landmark points (n_landmarks, n_points)

Return type class:numpy.ndarray

```
\verb|spaotsc.SpaOTsc.compute_mcc|| \textit{true\_labels}, \textit{pred\_labels})|
```

Compute matthew's correlation coefficient.

Parameters

- true_labels (class:numpy.ndarray) 1D integer array
- pred_labels (class:numpy.ndarray) 1D integer array

Returns mcc

Return type float

```
spaotsc.SpaOTsc.knn\_graph(D, k)
```

Construct a k-nearest-neighbor graph as igraph object.

Parameters

- D (class:numpy.ndarray) a distance matrix for constructing the knn graph
- **k** (*int*) number of nearest neighbors

Returns a knn graph object

Return type class:*igraph.Graph*

```
spaotsc.SpaOTsc.knn\_graph\_nx(D, k)
```

Construct a k-nearest-neighbor graph as networkx object.

Parameters

- D (class:numpy.ndarray) a distance matrix for constructing the knn graph
- **k** (*int*) number of nearest neighbors

Returns a knn graph object and a list of edges

Return type class: networkx. Graph, list of tuples

```
spaotsc.SpaOTsc.phi_exp (x, eta, nu, p)
```

The exponential weight kernel. Computes $\exp(-(x/eta)^{n}(p*nu))$.

Parameters

- **x** (float or class:*numpy.ndarray*) the input value
- eta (float) the cutoff for this soft thresholding kernel
- **nu** (*int*) a possitive integer for the power term, a bigger nu gives sharper threshold boundary
- **p** (*int*) p=1: emphasize elements lower than cutoff; p=-1: emphasize elements higher than cutoff

Returns the kernel output with same shape of x

Return type same as x

```
spaotsc.SpaOTsc.sci(x, y, W, scale=False)
```

Computes the spatial correlation index in Eq. (9) of [1].

[1] Chen, Yanguang. "A new methodology of spatial cross-correlation analysis." PloS one 10.5 (2015): e0126158.

Parameters

- **x** (class:*numpy.ndarray*) the variable's values at the spatial locations
- y (class:numpy.ndarray) the other variable's values at the spatial locations
- W (class: numpy.ndarray) weight matrix (symmetric) among the locations with W[i,i] = 0
- scale (boolean) whether to scale the inputs s.t. (1) sum_{i,j}W_{ij} = 1 and (2) x = (x-mu(x))/sigma(x)

Returns a global spatial cross correlation index

Return type float

```
class spaotsc.SpaOTsc.spatial_sc(sc_data=None, is_data=None, sc_data_bin=None, is_data_bin=None, is_pos=None, is_dmat=None, sc_dmat=None)
```

An object for connecting and analysis of spatial data and single-cell transcriptomics data.

A minimal example usage: Assume we have (1) a pandas DataFrame for single-cell data df_sc with rows being cells and columns being genes (2) a numpy array for distance matrix among spatial locations is_dmat (3) a numpy array for dissimilarity between single-cell data and spatial data cost_matrix (4) a numpy array for dissimilarity matrix within single-cell data sc_dmat

Parameters

- sc_data (class:pandas.DataFrame) single-cell data of size (n_cells, n_genes)
- is_data (class:pandas.DataFrame) spatial data of size (n_locations, n_genes)
- sc_data_bin (class:pandas.DataFrame) binarized single-cell data
- is_data_bin (class:pandas.DataFrame) binarized spatial data
- is_pos (class:numpy.ndarray) coordinates of spatial locations (n_locations, n dimensions)
- **is_dmat** (class:*numpy.ndarray*) distance matrix for spatial locations (n_locations, n_locations)
- **sc_dmat** (class:*numpy.ndarray*) dissimilarity matrix for single-cell data (n_cells, n_cells)

List of instance attributes:

Variables

- **sc_data** (class:pandas.DataFrame) single-cell data of size (n_cells, n_genes) __init__
- is_data (class:pandas.DataFrame) spatial data of size (n_locations, n_genes) __init__
- sc_data_bin (class:pandas.DataFrame) binarized single-cell data ___init___
- is_data_bin (class:pandas.DataFrame) binarized spatial data __init__
- **is_pos** (class:*numpy.ndarray*) coordinates of spatial locations (n_locations, n_dimensions) __init__
- **is_dmat** (class:*numpy.ndarray*) distance matrix for spatial locations (n_locations, n_locations) __init__
- **sc_dmat** (class:*numpy.ndarray*) dissimilarity matrix for single-cell data (n_cells, n_cells) __init__
- gamma_mapping (class:numpy.ndarray) the mapping matrix between single-cell data and spatial data (n_cells, n_locations) transport_plan
- sc_dmat_spatial (class:numpy.ndarray) the spatial cell-cell distance for single-cell data (n cells, n cells) cell cell distance
- clustering_ncluster_org (int) number of clusters in original clustering of single-cell data clustering
- clustering_nsubcluster (list of int) number of cell spatial subclusters within each original cluster clustering
- clustering_partition_org (list of numpy integer arrays) the cell indices for each original cluster clustering

- **clustering_partition_inds** (*dictionary*) the cell indices for the cell spatial subclusters, e.g. the key (0,1) returns the cell indices for the second spatial subcluster within the first original cell cluster. clustering
- **gene_cor_scc** (class:*pandas.DataFrame*) the intracellular spearmanr correlation between genes nonspatial_correlation
- **gene_cor_is** (class: pandas. DataFrame) the intercellular spatial correlation between genes spatial_correlation
- **g_bin_edges** (dictionary) the bin edges for the discretization of gene expressions with gene name string as dictionary key discretize_expression

cell_cell_distance (epsilon=0.01, rho=inf, scaling=True, sc_dmat_spatial=None, use_landmark=False, n_landmark=100)

Compute spatial distance between single cells using optimal transport.

Generates: self.sc_dmat_spatial: (n_cell, n_cell) numpy.ndarray

Requires: self.gamma_mapping, self.is_dmat

Parameters

- epsilon (float, defaults to 0.01) weight for entropy regularization term
- **rho** (float, defaults to inf) weight for KL divergence penalizing unbalanced transport
- scaling (boolean, defaults to True) whether to scale the cost_matrix (is_dmat) to avoid numerical overflow
- sc_dmat_spatial (class:numpy.ndarray, optional) the spatial distance matrix for single cells (n_cells, n_cells). If given, simply set the distance matrix without computing.
- use_landmark (boolean, defaults to False) whether to use landmark points for computing transport distance.
- n_landmark (int, defaults to 100) number of landmark points to use if use_landmark

Returns (spatial) cell-cell distance matrix (n_cells, n_cells)

Return type class:numpy.ndarray

clustering (*genes=None*, *pca_n_components=None*, *res_sc=0.5*, *res_is=0.3*, *min_n=3*) Clustering and spatial subclustering.

Generates:

self.clustering_nsubcluster: list of int, numbers of subclusters in each cluster obtained in regular clustering of single-cell data

self.clustering_partition_inds: list of cell index arrays for clusters

self.clustering_partition_org: a dictionary for cell index arrays of spatial subclusters. The key (1,0) gives the first subcluster for the second cluster.

Requires:

self.sc_dmat_spatial, self.sc_data

Parameters

• **genes** (list) – genes to use when clustering single-cell data. All genes in self.sc_data are used if not specified.

- pca_n_components (int) number of pca components when clustering single-cell data
- res_sc (float, defaults to 0.5) resolution parameter in louvain clustering for single-cell data
- **res_is** (*float*, *defaults* to 0.3) resolution parameter in louvain clustering for spatial subclustering of single-cel data
- min_n (int, defaults to 3) minimum number of members to be considered a cluster

discretize_expression(genes=None, p0=1e-15)

Discretize gene expression using Bayesian blocks.

Generate: self.g_bin_edges: a dictionary of block edges with gene names as keys

Requires: self.sc_data

Parameters p0 (*float*, *defaults to 1E-15*) – the p0 score in Bayesian blocks. A smaller p0 has lower tolerance of false rate, i.e. resulting in fewer blocks.

gene_clustering (gene_dmat, res=3, k=5, rng_seed=48823)

Cluster the genes based on their spatial pattern difference.

Parameters

- **gene_dmat** (class:numpy.ndarray) the distance matrix for genes (n_gene, n_gene)
- **res** (*float*, *defaults* to 3) resolution parameter used by louvain clustering, higher res gives more clusters
- **k** (int, defaults to 5) the k for knn graph fed to louvain algorithm
- rng_seed (int) random seed for louvain algorithm to get consistent results

Returns a list of index vectors for the clusters

Return type list of list of int

Compute Wasserstein distance between gene expressions in scRNA-seq data.

Parameters

- **genes** (list of str) the gene names to compute distance
- epsilon (float, defaults to 0.01) weight for entropy regularization term
- **rho** (float, defaults to inf) weight for KL divergence penalizing unbalanced transport
- scaling (boolean, defaults to True) whether to scale the cost matrix
- **sc_dmat_spatial** (class:*numpy.ndarray*) spatial distance matrix over the single cells
- use_landmark (boolean, defaults to False) whether to use landmark points to accelarate computation
- n_landmark (int, defaults to 100) number of landmark genes to use

Returns gene-gene distance matrix

Return type class:numpy.ndarray

Deriving scores for intercellular gene regulation (how much effect does gene_1 in neiborhood have on gene_2) using random forest.

Requires: self.sc_dmat_spatial, self.sc_data, self.gene_cor_scc

Parameters

- gene_1 (str) the name of source gene whose expression in the neighborhood will be examined
- gene_2 (str) the name of target gene whose cellular expression will be used
- background_genes (list of str) a name list for gene that are correlated to gene_2
- **cor_cut** (*float*) the cut_off choosing background genes. used when background_genes is not specified
- n_top_g (int) the number of genes with highest correlation to gene_2 to be used as background_genes. used when both background_genes and cor_cut are not specified
- effect_ranges (list of float) list of spatial distances to consider
- **method** (str, defaults to 'Importance') 'Importance': interpret the feature importance as regulation strength; 'Prediction': interpret prediction accuracy in cross-validation as regulation strength.

Returns a (n_distance, 2) array with the first row recording the spatial distances examined and the second row being the effect strength

Return type class:numpy.ndarray

 $\begin{tabular}{ll} \begin{tabular}{ll} \beg$

The unique information provided by G1_nb (within various ranges) to G2 considering background genes Gi

Requires: self.sc_dmat_spatial, self.sc_data, self.gene_cor_scc

- gene_1 (str) the name of source gene whose expression in the neighborhood will be examined
- gene_2 (str) the name of target gene whose cellular expression will be used
- background_genes (list of str) a name list for gene that are correlated to gene 2
- **cor_cut** (*float*) the cut_off choosing background genes. used when background_genes is not specified
- n_top_g (int) the number of genes with highest correlation to gene_2 to be used as background_genes. used when both background_genes and cor_cut are not specified
- effect_ranges (list of float) list of spatial distances to consider
- **p0** (*float*, *defaults* to 1E-15) the p0 score in Bayesian blocks. A smaller p0 has lower tolerance of false rate, i.e. resulting in fewer blocks.
- output_individual (boolean, defaults to False) where to output the information computed with each background gene

Returns a (n_distance, 2) array with the first row recording the spatial distances examined and the second row being the effect strength

Return type class:numpy.ndarray

Determine spatial distance for given signaling using random forest.

Requires: self.sc_dmat_spatial, self.sc_data, self.gene_cor_scc

Parameters

- Lgenes (list of str) name list of ligand genes
- Rgenes (list of str) name list of receptor genes
- **Dgenes** (list of str) name list of downstream genes
- n_top_g (int, defaults to 50) number of background genes to use when building predictive model.
- effect_ranges (list of float) the spatial distances to examine
- method (str, defaults to 'Importance') the way of interpreting likelihood for each spatial distance
- **custom_dmat** (class:numpy.ndarray) a cell-cell distance matrix given by user. self.sc_dmat_spatial is used if not given.

Returns (n_distance, 2) array for spatial distances (first row) and effect strengths (second row); and a (n_distance, n_DSgenes) array for the effect strength of each downstream genes.

Return type two class:*numpy.ndarray*

nonspatial_correlation(genes=None)

Compute gene-gene correlation matrix for pre-screening of genes.

Generates: *self.gene_cor_scc*

Requires: self.sc_data', self.sc_genes

Parameters genes (list of str) – list of gene names. If not specified, all genes in self.sc data are used.

rank_marker_genes (cid, genes=None, method='ranksum', return_scores=False)

Rank genes to identify markers for cell clusters.

Parameters

- cid (class:numpy.1darray) cell indices for the cluster
- **genes** (list) candidate genes to examine. If not specified, all genes are used.
- method(str, defaults to 'ranksum') method to use. 1. 'roc', using auc-roc score to rank; 2. 'ranksum', using ranksum statistics.
- return_scores (boolean, defaults to False) whether to return scores instead of sorted gene indices

Returns sorted gene indices (if return_scores==False) or gene scores (if return_scores==True)

Return type class:*numpy*.*1darray*

spatial_correlation (*genes=None*, *effect_range=None*, *kernel='lorentz'*, *kernel_nu=10*) Computes spatial correlation between genes for pre-screening.

Generates: self.gene_cor_is pandas DataFrame

Requires: self.sc_data

Parameters

- genes (list of str) list of gene to examine
- effect_range (float) spatial distance
- **kernel** (str, defaults to 'lorentz') type of kernels for weight matrix
- kernel_nu (int, defaults to 10) power for weight kernel

Generate the spatial map for intercellular gene-gene regulatory information flow.

Requires: self.sc_data, self.sc_dmat_spatial, self.gene_cor_scc, self.gene_cor_is

Parameters

- genes (list of str) name list of genes to be examined
- effect_range (float) spatial distance for analyzing the intercellular processes
- **cor_cut** (*float*) the cutoff for spatial correlation between two genes for further examination (used if n_top_edge not specified)
- n_top_edge (int) the number of gene pairs to examine with highest spatial correlation
- **cor_cut_bg** (float) the cutoff for intracellular gene correlation to select background genes
- n_top_g_bg (int) the number of genes with highest intracellular gene correlation with the target gene to use as background genes (used if cor_cut_bg not specified)
- p0 (float, defaults to 1E-15) the p0 value for Bayesian blocks (lower p0 gives fewer number of bins)
- output_individual (boolean, defaults to False) whether to output the individual values computed with each background gene

Returns a data frame with rows being source genes and columns being target genes

Return type class:pandas.DataFrame

```
\begin{tabular}{ll} {\bf signaling\_ot} (Lgenes, & Rgenes, & Tgenes=[], & Rbgenes=[], & DSgenes\_up=[], \\ & DSgenes\_down=[], & gene\_bandwidth=\{\}, & effect\_range=None, \\ & rho=10.0, & epsilon=0.2, & kernel\_nu=5, & use\_kernel\_ligand=False, \\ & use\_kernel\_receptor=False, & return\_weight\_only=False) \end{tabular}
```

Generate cell-cell signaling using optimal transport for a list of ligands and a list of receptors.

Requires: self.sc_dmat_spatial, self.sc_data

- **Lgenes** name list of the ligand gene
- Rgenes (list of str) name list of receptor genes
- Tgenes (list of str, optional) name list of genes for transporters of ligands
- **Rbgenes** (*list of str*, *optional*) name list of genes for proteins bound to receptor for the receptor to work
- DSgenes_up (list of str) name list of up regulated genes by the ligand-receptor

- DSgenes_down (list of str) name list of down regulated genes by the ligandreceptor
- gene_bandwidth (dictionary (str to scalar), all outputs default to 1)—the cutoffs for each gene to be considered expressed
- effect_range (float) spatial distance cutoff for the signaling
- epsilon (float, defaults to 0.2) weight for entropy regularization term
- **rho** (float, defaults to inf) weight for KL divergence penalizing unbalanced transport
- **kernel_nu** (*float*, *defaults* to 5) the power parameter for the exponential kernel, bigger nu means sharper soft cutoff
- use_kernel_ligand (boolean, defaults to False) whether use kernel function to rescale ligand expression
- use_kernel_receptor (boolean, defaults to False) whether use kernel function to rescale receptor expression
- return_weight_only (boolean, defaults to False) whether to only return the weight for source distribution and destination distribution

Returns a scoring matrix for the given signaling genes (cells, cells), (i,j) entry is the score for cell i sending signals to cell j

Return type class:numpy.ndarray

Generate cell-cell signaling using optimal transport for a single ligand.

Requires: self.sc_dmat_spatial, self.sc_data

Parameters

- Lgene (str) name of the ligand gene
- Rgene (list of str) name list of receptor genes
- Tgenes (list of str, optional) name list of genes for transporters of ligands
- **Rbgene** (list of str, optional) name list of genes for proteins bound to receptor for the receptor to work
- DSgenes_up (list of str) name list of up regulated genes by the ligand-receptor
- DSgenes_down (list of str) name list of down regulated genes by the ligand-receptor
- effect_range (float) spatial distance cutoff for the signaling
- epsilon (float, defaults to 0.2) weight for entropy regularization term
- **rho** (float, defaults to inf) weight for KL divergence penalizing unbalanced transport

Returns a scoring matrix for the given signaling genes (cells, cells), (i,j) entry is the score for cell i sending signals to cell j

Return type class:numpy.ndarray

Generate cell-cell signaling using predefined scoring function.

Requires: self.sc_dmat_spatial, self.sc_data

Parameters

- Lgene (str) name of the ligand gene
- Rgene (list of str) name list of receptor genes
- **Rbgene** (list of str, optional) name list of genes for proteins bound to receptor for the receptor to work
- **Tgenes** (list of str, optional) name list of genes for transporters of ligands
- DSgenes_up (list of str) name list of up regulated genes by the ligand-receptor
- DSgenes_down (list of str) name list of down regulated genes by the ligand-receptor
- effect_range (float) spatial distance cutoff for the signaling
- **kernel** (str, defaults to 'exp') weight kernel to use for soft thresholding
- **kernel_nu** (*float*, *defaults* to 5) power for weight kernel, a higher power gives a shaper edge
- gene_eta (list of float, defaults to 1s) a list of threshold values for the downstream genes
- **penalty_type** (str, defaults to 'addition') how to penalize inconsistency of downstream genes. 'addition': relaxed penalty; 'multiplication': strict penalty

Returns a scoring matrix for the given signaling genes (cells, cells), (i,j) entry is the score for cell i sending signals to cell j

Return type class:numpy.ndarray

transport_plan (cost_matrix, cor_matrix=None, alpha=0.1, epsilon=1.0, rho=100.0, G_sc=None, G_is=None, scaling=False)

Mapping between single cells and spatial data as transport plan.

Generates: self.gamma_mapping: (n_cells, n_locations) numpy.ndarray

- **cost_matrix** (class:*numpy.ndarray*) dissimilarity matrix between single-cell data and spatial data (cells, locations)
- cor_matrix (class:numpy.ndarray, optional) similarity matrix between single-cell data and spatial data (cells, locations)
- alpha (float, [0,1], defaults to 0.1) weight for structured part (Gromov-Wassertein loss term)
- epsilon (float, defaults to 1.0) weight for entropy regularization term
- **rho** (float, defaults to 100.0) weight for KL divergence penalizing unbalanced transport
- G_sc (class:numpy.ndarray) dissimilarity matrix within single-cell data (cells, cells)
- G_is (class:numpy.ndarray) distance matrix within spatial data (locations, locations)

• scaling (boolean, defaults to False) - whether scale the cost_matrix to have max=1

Returns a mapping between single-cell data and spatial data (cells, locations)

Return type class:numpy.ndarray

Parameters type (*int*) – the type of visualization type=1 dimension reduction with spatial distance, label with original clusters; type=2 dimension reduction with scRNAseq, label with spatial subclusters; type=3 dimension reduction with spatial distance, label with spatial subclusters; type=4 dimension reduction with scRNAseq, label with original clusters.

Visualize subclusters as a summary and distributions over the original geometry (2D).

- pts (class:numpy.ndarray) the coordinates of original geometry (n_locations, 2)
- **k** (*int*) the number nearest neighbors to connect in the subcluster summary plot
- vmin (float) the vmin for colormap of the edges in the summary plot
- vmax (float) the vmax for colormap of the edges in the summary plot
- $umap_k(int)$ the n_neighbors parameter in umap dimension reduction

CHAPTER

TWO

INDICES AND TABLES

- genindex
- modindex
- search

PYTHON MODULE INDEX

S

spaotsc, 1
spaotsc.SpaOTsc, 1

16 Python Module Index

INDEX

C cell_cell_distance() (spaotsc.SpaOTsc.spatial_sc method), 4 choose_landmarks() (in module spaotsc.SpaOTsc), 1 clustering() (spaotsc.SpaOTsc.spatial_sc method), 4 compute_mcc() (in module spaotsc.SpaOTsc), 1 D discretize_expression() (spaotsc.SpaOTsc.spatial_sc method), 5 G gene_clustering() (spaotsc.SpaOTsc.spatial_sc method),	spaotsc (module), 1 spaotsc.SpaOTsc (module), 1 spatial_correlation() (spaotsc.SpaOTsc.spatial_sc method), 7 spatial_grn_range() (spaotsc.SpaOTsc.spatial_sc method), 8 spatial_sc (class in spaotsc.SpaOTsc), 2 spatial_signaling_ot() (spaotsc.SpaOTsc.spatial_sc method), 8 spatial_signaling_ot_singleligand()
gene_gene_distance() (spaotsc.SpaOTsc.spatial_sc method), 5 gene_pair_ml_effect_range() (spaotsc.SpaOTsc.spatial_sc method), 5 gene_pair_pid_effect_range() (spaotsc.SpaOTsc.spatial_sc method), 6 infer_signal_range_ml() (spaotsc.SpaOTsc.spatial_sc method), 7 K knn_graph() (in module spaotsc.SpaOTsc), 1	T transport_plan() (spaotsc.SpaOTsc.spatial_sc method), 10 V visualize_cells() (spaotsc.SpaOTsc.spatial_sc method),
knn_graph_nx() (in module spaotsc.SpaOTsc), 1 N nonspatial_correlation() (spaotsc.SpaOTsc.spatial_sc	
method), 7 P phi_exp() (in module spaotsc.SpaOTsc), 2 R rank_marker_genes() (spaotsc.SpaOTsc.spatial_sc method), 7	
S sci() (in module spaotsc.SpaOTsc), 2	