2.

CS 446: Machine Learning Homework

Due on Tuesday, April 10, 2018, 11:59 a.m. Central Time

1.	[2]	points	KL	Divergence

Your answer:

(a)	[1 point] What is the	expression of	the KL	divergence	$D_{KL}(q(x) p(x))$	given	two	con-
	tinuous distributions	p(x) and $q(x)$	defined	on the dom	ain of \mathbb{R}^1 ?			

tinuous distributions $p(x)$ and $q(x)$ defined on the domain of \mathbb{R}^{1} ?	
Your answer:	
(b) [1 point] Show that the KL divergence is non-negative. You can use Jensen's inequality	ity.
Your answer:	
[4 points] In the class, we derive the following equality:	
$\log p_{\theta}(x) = \int_{z} q_{\phi}(z x) \log \frac{p_{\theta}(x,z)}{q_{\phi}(z x)} dz + \int_{z} q_{\phi}(z x) \log \frac{q_{\phi}(z x)}{p_{\theta}(z x)} dz$	
Instead of maximizing the log likelihood $\log p_{\theta}(x)$ w.r.t. θ , we find a lower bound for $\log p_{\theta}$ and maximize the lower bound.	(x)
(a) [1 point] Use the above equation and your result in (b) to give a lower bound $\log p_{\theta}(x)$.	for
Your answer:	
(b) [1 point] What do people usually call the bound?	
Your answer:	
(c) [1 point] When will the bound be tight?	
Your answer:	
(d) [1 point] Write down the objective function for maximizing the lower bound formally	7.

Y	our answer:
is (points] In VAEs, the encoder computes the mean μ_z and σ_z^2 of $q_{\phi}(z x)$ assuming $q_{\phi}(z x)$ Gaussian. Explain why we usually model σ_z^2 in log space, i.e., model $\log \sigma_z^2$ instead of σ_z^2 en implementing it using neural nets?
	on impromonous to dome notice needs
Y	our answer:
5. [2	points] Reparameterization trick
5. [2	points] Reparameterization trick [1 point] Why do we need the reparameterization trick when training VAEs instead of
(a	points] Reparameterization trick [1 point] Why do we need the reparameterization trick when training VAEs instead of directly sampling from the latent distribution $\mathcal{N}(\mu_z, \sigma_z^2)$?