# Orthogonal Range Searching in 2D using Ball Inheritance

Mads Ravn

Computer Science, Aarhus University

2015





#### Outline

- Introduction
  - Orthogonal Range Searching
  - Previous data structures
- Ball Inheritance Search
  - Ball Inheritance Problem
  - Ball Inheritance Search Data Structure
- Resultater
  - Resultater





#### Outline

- Introduction
  - Orthogonal Range Searching
  - Previous data structures
- Ball Inheritance Search
  - Ball Inheritance Problem
  - Ball Inheritance Search Data Structure
- Resultater
  - Resultater



# Orthogonal Range Searching



#### **Preleminaries**

- Alle koordinater er unikke
- Rank space
- *n* er en potens af 2





# Orthogonal Range Searching

Vi er givet n punkter fra  $\mathbb{R}^2$  som vi ønsker at indsætte i en datastruktur sådan at vi kan svare effektivt på forespørgslen  $q = [x_1, x_2] \times [y_1, y_2]$ . Et punkt  $p = (p_x, p_y)$  ligger i  $q = [x_1, x_2] \times [y_1, y_2]$  hvis  $p_x \in [x_1, x_2]$  og  $p_y \in [y_1, y_2]$ . Man kunne derfor sige at et 2-dimensionelt query består af to 1-dimensional sub-queries. Kommer til at virke for alle tre datastrukturer.

#### Outline

- Introduction
  - Orthogonal Range Searching
  - Previous data structures
- Ball Inheritance Search
  - Ball Inheritance Problem
  - Ball Inheritance Search Data Structure
- 3 Resultater
  - Resultater



#### kd-træ

Givet n punkter: Punkterne bliver sorteret efter x eller y på skift. Median bliver fundet og punkterne mindre end medianen bliver givet til venstre barn og punkterne højere end medianen bliver givet til højre barn. Et punkt per blad i træet.

- $\mathcal{O}(n)$  plads
- $\mathcal{O}(\sqrt{n}+k)$  tid

# Opbygning af kd-træ

Det  $\lceil \frac{n}{2} \rceil$ 'te element bliver valgt som median. Dette element fungerer som en skille-linje mellem de to punkt-mængder. Medianen bliver låst fast på denne plads i arrayet.



# Søgning i kd-træ



#### **BISintro**

Ball Inheritance Search (BIS) er en datastruktur bygget som en simplificering af den datastruktur Chan et al laver.



#### Outline

- Introduction
  - Orthogonal Range Searching
  - Previous data structures
- Ball Inheritance Search
  - Ball Inheritance Problem
  - Ball Inheritance Search Data Structure
- Resultater
  - Resultater





• Vi er givet et perfekt binært træ.



- Vi er givet et perfekt binært træ.
- Roden indeholder *n* punkter(bolde) som er blevet fordelt sådan at hvert blad lagrer et punkt. Elementerne i roden er sorteret.

- Vi er givet et perfekt binært træ.
- Roden indeholder n punkter(bolde) som er blevet fordelt sådan at hvert blad lagrer et punkt. Elementerne i roden er sorteret.
- Hver knude har en liste over hvilke bolder der går igennem den. De bolde ender så i træet med rod i den knude. Boldene i knudens liste har samme rækkefølge som boldene i forældre-knudens liste.

- Vi er givet et perfekt binært træ.
- Roden indeholder n punkter(bolde) som er blevet fordelt sådan at hvert blad lagrer et punkt. Elementerne i roden er sorteret.
- Hver knude har en liste over hvilke bolder der går igennem den. De bolde ender så i træet med rod i den knude. Boldene i knudens liste har samme rækkefølge som boldene i forældre-knudens liste.
- Løs: Givet en knude og et index i knudens liste, hvilket blad ender denne bold ved? Vi kan følge bolden

- Vi er givet et perfekt binært træ.
- Roden indeholder n punkter(bolde) som er blevet fordelt sådan at hvert blad lagrer et punkt. Elementerne i roden er sorteret.
- Hver knude har en liste over hvilke bolder der går igennem den. De bolde ender så i træet med rod i den knude. Boldene i knudens liste har samme rækkefølge som boldene i forældre-knudens liste.
- Løs: Givet en knude og et index i knudens liste, hvilket blad ender denne bold ved? Vi kan følge bolden
- Vi kan nu følge en bold fra en knude til et blad med  $\mathcal{O}(\lg n)$  skridt.









#### **RANK SELECT**

Husk RANK-SELECT struktur. Hvordan fungerer den? Med  $\lg n$  og  $\lg \Sigma$ .









## Faster Queries

Vi ønsker at gøre antallet skridt fra en knude til et blad mindre. Vi udvider alfabetet på udvalgte niveauer. Det bruger

- $\mathcal{O}(\frac{n}{\epsilon}) = \mathcal{O}(n)$  plads
- $\mathcal{O}(\lg^{\epsilon} n)$  tid

hvor  $\epsilon>0$  er en arbitrær lille konstant. Space-time tradeoff. Vis koncept, tid og plads her

#### Outline

- Introduction
  - Orthogonal Range Searching
  - Previous data structures
- Ball Inheritance Search
  - Ball Inheritance Problem
  - Ball Inheritance Search Data Structure
- 3 Resultater
  - Resultater



#### Ball Inheritance Search

- $\mathcal{O}(n)$  plads
- $\mathcal{O}(\lg n + k \cdot \lg^{\epsilon} n)$  tid, hvor  $\epsilon > 0$  er en arbitrær lille konstant

#### x-range

• Vi oversætter vores query til rank space  $[x_1, x_2] \times [y_1, y_2] \Rightarrow [\hat{x}_1, \hat{x}_2] \times [\hat{y}_1, \hat{y}_2].$ 



#### x-range

- Vi oversætter vores query til rank space  $[x_1, x_2] \times [y_1, y_2] \Rightarrow [\hat{x}_1, \hat{x}_2] \times [\hat{y}_1, \hat{y}_2].$
- Vi går ned til least common ancestor af  $\hat{x}_1$  og  $\hat{x}_2$  og herfra ned til  $\hat{x}_1$  og  $\hat{x}_2$ . På den måde finder vi knuder der kun indeholder punkter i  $[x_1, x_2]$ .

#### y-range

• Vi har opdateret  $[\hat{y}_1, \hat{y}_2]$  fra roden til både  $\hat{x}_1$  og  $\hat{x}_2$ . Dvs vi ved hvilke bolde i hver knude vi fandt før der indeholder punkter i  $[y_1, y_2]$ .

#### y-range

- Vi har opdateret  $[\hat{y}_1, \hat{y}_2]$  fra roden til både  $\hat{x}_1$  og  $\hat{x}_2$ . Dvs vi ved hvilke bolde i hver knude vi fandt før der indeholder punkter i  $[y_1, y_2]$ .
- Vi har nu nogle knuder og lister over indeces i disse knuder.
  Det er præcis det problem ball inheritance løser. Vi kan nu bruge ball inheritance på alle disse knuder til at finde ud af hvilke blade der indeholder punkter i [y1, y2].

Vi har nu at hver knude der er fully contained laver ball inheritance på det y-range den får givet. Det tager  $\mathcal{O}(k \cdot \lg^{\epsilon} n)$  tid. Det tager  $\mathcal{O}(\lg n)$  at lave binær søgning og at gå fra roden til  $\hat{x}_1$  og  $\hat{x}_2$ .



Vi har nu at hver knude der er fully contained laver ball inheritance på det y-range den får givet. Det tager  $\mathcal{O}(k \cdot \lg^{\epsilon} n)$  tid. Det tager  $\mathcal{O}(\lg n)$  at lave binær søgning og at gå fra roden til  $\hat{x}_1$  og  $\hat{x}_2$ . Det giver en kørselstid på  $\mathcal{O}(\lg n + k \cdot \lg^{\epsilon} n)$  for at finde k punkter.



Denne datastruktur bruger  $\mathcal{O}(n)$  plads.

Bit vectors.

Denne datastruktur bruger  $\mathcal{O}(n)$  plads.

- Bit vectors.
- Store hop (Kommer vi til)



Denne datastruktur bruger  $\mathcal{O}(n)$  plads.

- Bit vectors.
- Store hop (Kommer vi til)
- Egentlig punkter



Denne datastruktur bruger  $\mathcal{O}(n)$  plads.

- Bit vectors.
- Store hop (Kommer vi til)
- Egentlig punkter
- Binær søgning



# Små hop

Hvert niveau gemmer n bits som indikerer om bolden er gået til højre eller venstre. Hvert 32 bit gemmer vi et 32 bit major checkpoint. Precomputed tabel med 16 bit tal som tæller antal 1-entries.  $\mathcal{O}(n)$  bits per level.

## Store hop

 $\mathcal{O}(\lg \Sigma)$  per entry.  $\Sigma = 2^{B^i}$ . Så plads er  $\mathcal{O}(B^i)$  bits per entry. Det er

$$\sum_{i=1}^{\lg_B \lg n} \frac{\lg n}{B^i} \cdot \mathcal{O}(B^i) = \mathcal{O}(\lg n \cdot \lg_B \lg n)$$

for hele kæden. Vælg nu  $B = \Omega(\lg^{\epsilon} n)$ .



## Store hop

Tiden for de store hop er højst  $\mathcal{O}(B \lg_B \lg n)$ . Vælg  $B = \lg^{\epsilon/2} n = \Omega(\lg \lg n)$ .



### **OBIS**

OBIS af Chan et al. Med  $\mathcal{O}(n)$  plads og  $\mathcal{O}(\lg \lg n + k \cdot \lg^{\epsilon} n)$ . Bruger også Ball Inheritance til at finde de k punkter.



### **OBIS**



- Op til nærmeste level med pred-search
- Gå ned til LCA højst lg lg n levels nede.
- Gå ned og find resultater i begge børn af LCA.



# **OBIS**



#### Outline

- Introduction
  - Orthogonal Range Searching
  - Previous data structures
- Ball Inheritance Search
  - Ball Inheritance Problem
  - Ball Inheritance Search Data Structure
- Resultater
  - Resultater



### setup

- Square area  $\sqrt{n} \cdot \sqrt{k} \times \sqrt{n} \cdot \sqrt{k}$  returnerer k punkter.
- Slices af størrelse k skulle returnere k punkter.  $[0, n] \times [y, y + k]$

• 
$$\sqrt{n} + k = \lg n + k \cdot \lg^{\epsilon} n \Leftrightarrow k = \frac{\sqrt{n} - \lg n}{\lg^{\epsilon} n - 1}$$



• Hvad vil vi gerne vise af resultater?



## Squared







## Squared





## vertical







## vertical



### horizontal







### horizontal























## sizes



