

7035962/DE11

⑤ Int. Cl.⁷: **F 16 H 15/38**

DEUTSCHLAND

PATENT- UND MARKENAMT

Patentschrift [®] DE 197 54 146 C 2

② Aktenzeichen:

197 54 146.1-12

② Anmeldetag:

5. 12. 1997

Offenlegungstag:

25. 6. 1998

(45) Veröffentlichungstag

der Patenterteilung:

8. 2.2001

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

③ Unionspriorität:

8-325410

05. 12. 1996

(73) Patentinhaber:

Nissan Motor Co., Ltd., Yokohama, Kanagawa, JP

(74) Vertreter:

Grünecker, Kinkeldey, Stockmair & Schwanhäusser, 80538 München

(2) Erfinder:

Yamamoto, Takeshi, Yokosuka, Kanagawa, JP

(56) Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

DE

33 04 655 A1

DE 30 02 034 A1

JP 63-130953 A, In: Pat. Abstr. of JP, Sect. M, Vol. 12 (1988), Nr. 378 (M-751);

Stufenlos verstellbares Torusgetriebe

Stufenlos einstellbares Torusgetriebe mit einer Antriebsscheibe (18), einer Abtriebsscheibe (20) und einem Abtriebsgetriebe (26), das mit der Abtriebsscheibe (20) verbunden ist, einer Antriebswelle (14), die in einem Gehäuse (67) eingesetzt ist, wobei die Antriebsscheibe (18), die Abtriebsscheibe (20) und das Abtriebsgetriebe (26) auf der Antriebswelle (14) gelagert sind und ein Antriebsrollkörper (22) zwischen den gegenüberliegenden Flächen der Antriebsscheibe (18) und der Abtriebsscheibe (20) angeordnet ist, dadurch gekennzeichnet, daß

das Abtriebsgetriebe (26) durch ein erstes Kegelrollenlager (2) abgestützt wird, das ein erstes inneres Laufrad (4) aufweist, das sich in Kontakt mit dem Abtriebsgetriebe (26) befindet, ein erstes äußeres Laufrad (6) aufweist, das durch das Gehäuse (67) abgestützt wird, und eine erste Kegelrolle (8) aufweist, die sich unter Berührung mit dem ersten inneren Laufrad (4) und dem ersten äußeren Lauf-

rad (6) dreht, und

die Antriebswelle (14) durch ein zweites Kegelrollenlager (1) abgestützt wird, das ein zweites inneres Laufrad (3) aufweist, das durch die Antriebswelle (14) abgestützt wird, ein zweites äußeres Laufrad (5) aufweist, das durch das Gehäuse (67) abgestützt wird, und eine zweite Kegelrolle (7) aufweist, die sich unter Berührung mit dem zweiten inneren Laufrad (3) und dem zweiten äußeren Laufrad (5) dreht, wobei

ein absatzförmiger Abschnitt (20A) in Berührung mit dem Abtriebsgetriebe (26) an der Antriebsscheibe (20) ausgebildet ist, und ein äußerer Durchmesser (R3) des absatzförmigen Abschnittes (20A) gleich oder kleiner als ein größter Berührungsdurchmesser (R1) ist, entlang dem das erste innere Laufrad (4) die erste Kegelrolle (8) berührt.

Beschreibung

Die vorliegende Erfindung betrifft ein stufenlos einstellbares Torusgetriebe gemäß dem Oberbegriff des Anspruches 1. Insbesondere bezieht sich die Erfindung auf eine Lagerung von Antriebs- und Abtriebswellen eines stufenlos verstellbaren Torusgetriebes für Fahrzeuge.

Die im Jahre 1988 vom Japanischen Patentamt veröffentlichte Tokkai Sho 63-130953, offenbart ein Schrägkugellager, das als Bauelement zum Abstützen der Antriebs-/Abtriebswellen eines stufenlos verstellbaren Torusgetriebes verwendet wird.

Bei diesem stufenlos verstellbaren Torusgetriebe übertragen Antriebsrollkörper, die zwischen einer Antriebsscheibe und einer Abtriebsscheibe erfaßt werden, eine Antriebskraft 15 mit einem Übersetzungsverhältnis, das ihrem Drehungswinkel entspricht.

Bei diesem Stand der Technik sind die Antriebs- und Abtriebswellen koaxial und eine axiale und eine radiale Belastung, die auf diese Wellen wirkt, wird von dem Schrägku- 20 gellager abgestützt. Das Schrägkugellager umfaßt innere und äußere Laufräder und eine Vielzahl von Rollen, die zwischen in den Laufrädern ausgeformten Rillen erfaßt sind.

Um einen Verlust des übertragenen Drehmomentes aufgrund von Schlupf der Antriebsrollkörper zu verhindern, 25 wird der Anpreßdruck zwischen den Rollkörpern und den Scheiben im allgemeinen hoch angesetzt. In ein Getriebegehäuse wird Öl, beispielsweise Gleitöl, das unter hohem Druck eine hohe Zähigkeit aufweist, gefüllt.

Da eine sehr hohe Belastung in Andrückrichtung auf das 30 Schrägkugellager aufgrund der Reaktionskraft, mit der die Antriebsscheibe und die Abtriebsscheibe den Antriebsrollkörper erfassen, ausgeübt wird, ist der Anpreßdruck im Schrägkugellager, d. h. zwischen den Kugeln und den Rillen, groß und kann beispielsweise 1 GigaPascal (GPa) über- 35 schreiten. Bei so einem hohen Druck wird das Gleitöl halbfest. Außerdem ist es bekannt, daß im Falle von Schrägkugellagem ein Schlupf zwischen den Kugeln und den Rillen aufgrund des hohen Auflagerdrucks auftreten kann.

Wenn jedoch das Gleitöl halbfest wird und Schlupf im 40 Schrägkugellager auftritt, steigen die Energieverluste stark an. Dies bewirkt wiederum in einem Abfall des Wirkungsgrades der Drehmomentübertragung des Getriebes.

Aus der DE 30 02 034 A1 ist ein stufenlos einstellbares drehfest verbundene Antriebsscheibe und die mit einer Abtriebswelle drehfest verbundene Abtriebsscheibe jeweils durch ein Kegelrollenlager auf einer Seite der Antriebsbzw. Abtriebsscheibe gegen das Gehäuse abgestützt sind.

Es ist die Aufgabe der vorliegenden Erfindung, ein stu- 50 fenlos einstellbares Torusgetriebe der eingangs genannten Art zu schaffen, das eine sichere und zuverlässige Lagerung aufweist.

Diese Aufgabe wird erfindungsgemäß gelöst durch ein stufenlos einstellbares Torusgetriebe der eingangs genannten Art, wobei das Abtriebsgetriebe durch ein erstes Kegelrollenlager abgestützt wird, das ein erstes inneres Laufrad aufweist, das sich in Kontakt mit dem Abtriebsgetriebe befindet, ein erstes äußeres Laufrad aufweist, das durch das Gehäuse abgestützt wird, und eine erste Kegelrolle aufweist, 60 die sich unter Berührung mit dem ersten inneren Laufrad und dem ersten äußeren Laufrad dreht, und die Antriebswelle durch ein zweites Kegelrollenlager abgestützt wird, das ein zweites inneres Laufrad aufweist, das durch die Antriebswelle abgestützt wird, ein zweites äußeren Laufrad 65 aufweist, das durch das Gehäuse abgestützt wird, und eine zweite Kegelrolle aufweist, die sich unter Berührung mit dem zweiten inneren Laufrad und dem zweiten äußeren

Laufrad dreht, wobei ein absatzförmiger Abschnitt in Berührung mit dem Abtriebsgetriebe an der Antriebsscheibe ausgebildet ist, und ein äußerer Durchmesser des absatzförmigen Abschnittes gleich oder kleiner als ein größter Berührungsdurchmesser ist, entlang dem das erste innere Laufrad die erste Kegelrolle berührt.

Es ist bevorzugt, daß das erste innere Laufrad einen Ring mit einem Durchmesser aufweist, der größer als der größte Berührungsdurchmesser ist und der sich in Kontakt mit dem Abtriebsgetriebe befindet.

Es ist außerdem bevorzugt, daß die Abtriebsscheibe und das Abtriebsgetriebe durch eine Keilwellenverbindung verbunden sind.

Weitere bevorzugte Ausführungsformen des Erfindungsgegenstandes sind in den Unteransprüchen dargelegt.

Nachfolgend wird die vorliegende Erfindung anhand von Ausführungsformen in Verbindung mit den beigefügten Zeichnungen näher beschrieben und erläutert. In diesen Zeichnungen zeigen:

Fig. 1 einen Querschnitt des wesentlichen Teils einer Ausführungsform eines stufenlos verstellbaren Torusgetrie-

Fig. 2 einen Querschnitt des wesentlichen Teils des stufenlos verstellbaren Torusgetriebes, bei dem ein verformter Zustand einer Abtriebsscheibe dargestellt ist,

Fig. 3 ähnlich Fig. 1, aber eine zweite Ausführungsform eines stufenlos verstellbaren Torusgetriebes,

Fig. 4 ähnlich Fig. 1, aber eine dritte Ausführungsform eines stufenlos verstellbaren Torusgetriebes,

Fig. 5 einen Querschnitt eines stufenlos verstellbaren Torusgetriebes.

Zunächst wird ein stufenlos verstellbares Torusgetriebe mit einem Kegelrollenlager beschrieben.

In Fig. 5 der Zeichnungen ist gezeigt, daß ein Paar von Antriebsrollkörpern 22 an den Innenflächen von ringförmig an einer Antriebsscheibe 18 geformten Rillen und von einer Abtriebsscheibe 20 gefaßt wird. Die Antriebsscheibe 18 und die Abtriebsscheibe 20 sind an der äußeren Umfangsfläche einer Antriebswelle 14 angeordnet und die Drehung der Antriebsscheibe 18 wird an die Abtriebsscheibe 20 mit einem beliebigen Übersetzungsverhältnis entsprechend einer Änderung des Drehungswinkels der Antriebsrollkörper 22 übertragen.

An der Antriebswelle 14 ist ein Scheibennocken 77 ange-Torusgetriebe bekannt, wobei die mit einer Antriebswelle 45 bracht und ein Nockenrollkörper 79 wird zwischen dem Scheibennocken 77 und der rückwärtigen Fläche der Antriebsscheibe 18 gefaßt. Der Nockenrollkörper 79 erzeugt entsprechend der Relativdrehung zwischen dem Scheibennocken 77 und der Antriebsscheibe 18 eine Kraft in axialer Richtung und drückt die Antriebsscheibe 18 in Richtung der Abtriebsscheibe 20.

Die Antriebsscheibe 18 ist frei drehbar auf einer Antriebswelle 14 durch ein Nadellager 76 gelagert, dreht sich aber tatsächlich zusammen mit der Antriebswelle 14 aufgrund eines Druckes, der von dem Nockenrollkörper 79 und der Scheibennocke 77 ausgeübt wird.

Die Antriebswelle 14 ist frei drehbar in einem Gehäuse 67 über ein Kegelrollenlager 1 gelagert und ein Nadellager 76 ist in der Nähe des Scheibennockens 77 vorgesehen.

Die Abtriebsscheibe 20 ist mit einem Abtriebsgetriebe 26 verbunden. Die Abtriebsscheibe 20 ist bezüglich der Antriebswelle 14 frei drehbar durch ein Nadellager 73 gelagert, das zwischen der Abtriebsscheibe 20 und der Antriebswelle 14 angeordnet ist, und ein Kegelrollenlager 2 ist zwischen dem Abtriebsgetriebe 26 und dem Gehäuse 67 angeordnet.

Zwischen der Abtriebsscheibe 20 und der äußeren Umfangsfläche des Abtriebsgetriebes 26 wird eine Lücke 27 gebildet. Dies hat den Zweck, daß eine Verformung der Ab3

triebsscheibe 20 nicht einfach an das Abtriebsgetriebe 26 übertragen wird.

Das Abtriebsgetriebe 26 überträgt die Drehung der Abtriebsscheibe 20 durch Eingriff mit anderen, nicht gezeigten Zahnrädern außerhalb des Getriebes. Dieses Abtriebsgetriebe 26 umfaßt daher die Abtriebswelle.

Ein äußeres Laufrad 5 des Kegelrollenlagers 1, das die Antriebswelle 14 abstützt, und ein äußeres Laufrad 6, das das Abtriebsgetriebe 26 abstützt, berühren sich über einen in das Gehäuse 67 eingepaßten Sprengring 9.

Die vom Nockenrollkörper 79 auf die Antriebsscheibe 18 ausgeübte Kraft wirkt auf die Antriebswelle 14 als ein axialer Druck in Richtung der linken Seite der Zeichnung zurück. Eine Lastmutter 69 ist an einem Ende der Antriebswelle 14 befestigt. Der auf die Antriebswelle 14 wirkende 15 axiale Druck wird über diese Lastmutter 69, eine Scheibenfeder 70 und einen Abstandhalter 68 an das Kegelrollenlager 1 übertragen. Der Abstandhalter 68 befindet sich in Kontakt mit einem inneren Laufrad 3 des Kegelrollenlagers 1.

Ein Abschnitt der Kegelrolle 7 mit kleinem Durchmesser 20 ist der linken Seite der Abbildung zugekehrt, so daß das Kegelrollenlager 1 die zuvor erwähnte axiale Druckbelastung abstützt. Das innere Laufrad 4 des Kegelrollenlagers 2 befindet sich in Kontakt mit dem Abtriebsgetriebe 26. Der Abschnitt der Kegelrolle 8 mit kleinem Durchmesser ist der 25 rechten Seite der Abbildung zugekehrt angeordnet, so daß das Kegelrollenlager 2 die axiale Druckbelastung, die vom Abtriebsgetriebe 26 in Richtung der rechten Seite der Abbildung über das innere Laufrad 4 ausgeübt wird, abstützt.

Die Antriebsrollkörper 22 werden durch die Antriebsscheibe 18 und die Abtriebsscheibe 20 aufgrund der anfänglichen Vorspannung der Scheibenfeder 70 und einer Vorschubkraft in axialer Richtung, die durch den Nockenrollkörper 79 erzeugt wird, ergriffen und drehen sich ohne
Schlupf. Ein jeder der Antriebsrollkörper 22 ist über eine in
seinem Auflager 83 angeordnete Exzenterwelle 80 frei drehbar gelagert. Das Auflager 83 verändert entsprechend einer
Verschiebung im rechten Winkel zu sowohl der Antriebswelle als auch der Exzenterachse 80, d. h. in Richtung der
Vorder-/Rückseite der Abbildung, den Drehungswinkel der
Antriebsrollkörper 22. Das Übersetzungsverhältnis verändert sich entsprechend.

In Fig. 1 der Zeichnung ist gezeigt, daß das Abtriebsgetriebe 26 einen zylindrischen Abschnitt 26A, der in Richtung der rechten Seite der Abbildung vorsteht, und einen Keilwellenabschnitt 26E aufweist, der in Richtung der linken Seite der Abbildung vorsteht.

26C und das innere Laufrad 4 ohne Verformung des Abtriebsgetriebes 26 abgestützt. Der Eingriff des Abtriebsgetriebes 26 mit anderen Zahnrädern ist dadurch gut gewährleistet.

Die axiale Andrückkraft, welche die Antriebsrollkörper

Die äußere Umfangsfläche des zylindrischen Abschnittes 26A befindet sich im Eingriff mit dem inneren Laufrad 4 des Kegelrollenlagers 2. Eine Keilverzahnung ist an der äußeren 50 Umfangsfläche des Keilwellenabschnittes 26E angebracht und diese Keilverzahnung befindet sich im Eingriff mit einer ähnlichen Keilverzahnung, die auf der inneren Umfangsfläche der Abtriebsscheibe 20 ausgebildet ist.

An einer Seitenfläche des Abtriebsgetriebes 26, die das 55 innere Laufrad 4 des Kegelrollenlagers 2 berührt, ist ein absatzförmiger Abschnitt 26C angeformt. Der äußere Durchmesser R2 des absatzförmigen Abschnittes 26C ist derart festgesetzt, daß er gleich oder kleiner als ein Durchmesser R1 des größten Durchmessers einer Lauffläche 40 des inneren Laufrades 4 ist, das sich in Kontakt mit der Kegelrolle 8 befindet, d. h. R2 ≤ R1. R1 und R2 bezeichnen die Laufradien von der Mittellinie der Antriebswelle 14 aus.

Ein absatzförmiger Abschnitt 26D mit einem äußeren Durchmesser, der kleiner ist als der äußere Durchmesser R2 65 des schulterförmigen Abschnittes 26C ist auf einer Seitenfläche 26B, die der Abtriebsscheibe 20 zugekehrt ist, des Abtriebsgetriebes 26 angeformt.

4

Der absatzförmige Abschnitt 26D berührt den absatzförmigen Abschnitt 20A, der auf der rückwärtigen Fläche der Abtriebsscheibe ausgebildet ist.

Der äußere Durchmesser R3 des absatzförmigen Absatzes

5 20A ist kleiner als der Durchmesser R1 des Teils der Lauffläche 40 mit dem größten Durchmesser und außerdem kleiner als der größte Durchmesser R2 des absatzförmigen Abschnittes 26C des Abtriebsgetriebes 26. Demzufolge sind die äußeren Durchmesser durch die Beziehung R3 < R2 ≤

10 R1 gegeben.

Ein absatzförmiger Abschnitt 68C mit einem äußeren Durchmesser, der größer ist als der größte Radius der Lauffläche 30 des inneren Laufrades 3 und der das innere Laufrad 3 berührt, ist an einem Flanschabschnitt 68A des Abstandsstückes 68 ausgebildet.

Die Reaktionskraft der Andrückkraft, die den Antriebsrollkörper 22 faßt, wirkt auf die Antriebswelle 14 und das
Abtriebsgetriebe 26. Diese Reaktionskraft wird durch die
Kegelrollenlager 1 und 2 abgestützt. Dieses Kegelrollenlager weist mit geringerer Wahrscheinlichkeit Schlupf auf als
ein Schrägkugellager. Daher ist der Drehmomentverlust innerhalb des Getriebes verglichen mit dem Beispiel aus dem
obengenannten Stand der Technik mit dem Schrägkugellager klein.

Wie in Fig. 2 gezeigt, verformt sich die Abtriebsscheibe 20 in Richtung des Abtriebsgetriebes 26 aufgrund der Andrückkraft der Antriebsrollkörper 22.

In diesem Fall wird die Verformung der äußeren Umfangsfläche der Abtriebsscheibe 20 durch eine Lücke 27 ausgeglichen. Die Verformung der inneren Umfangsfläche der Abtriebsscheibe 20 wird dadurch unterdrückt, daß der Absatz 20A sich in Kontakt mit dem absatzförmigen Abschnitt 26D des Abtriebsgetriebes 26 befindet.

Dabei ist der äußere Durchmesser R3 des absatzförmigen Abschnittes 20A kleiner als der Durchmesser R1 des Abschnittes der Lauffläche 40 des inneren Laufrades 4 mit dem größten Durchmesser, und kleiner als der Durchmesser R2 des absatzförmigen Abschnittes 26C des Abtriebsgetriebes 26. Daher wird die Andrückkraft in axialer Richtung, die durch den absatzförmigen Abschnitt 20A auf das Abtriebsgetriebe 26 ausgeübt wird, durch das Kegelrollenlager 2 über die Berührungsfläche des absatzförmigen Abschnittes 26C und das innere Laufrad 4 ohne Verformung des Abtriebsgetriebes 26 abgestützt. Der Eingriff des Abtriebsgetriebes 26 mit anderen Zahnrädern ist dadurch gut gewährleistet.

Die axiale Andrückkraft, welche die Antriebsrollkörper 22 faßt, drückt das innere Laufrad 3 des Kegelrollenlagers 1 gegen das Abstandsstück 68. Die Kegelrolle 7 neigt daher dazu, einen Ring 31 des inneren Laufrades 3 in Richtung der rechten Seite der Fig. 1 zu verformen. Da jedoch der absatzförmige Abschnitt 68C des Flansches 68A, der einen äußeren Durchmesser aufweist, der größer ist als der größte Radius der Lauffläche 30 des inneren Laufrades 3, diese Verformung unterdrückt, tritt ein Festlaufen der Kegelrolle 7 und des Rings 31 nicht auf und das Kegelrollenlager 1 weist eine hohe Lebensdauer auf. Ähnlich verhindert beim Kegelrollenlager 2 der absatzförmige Abschnitt 26C, der den Laufradius R2 aufweist, der größer ist als der größte Radius R1 der Lauffläche 40 des inneren Laufrades 4, die Verformung eines Ringes 41.

Da die Abtriebsscheibe 20 und das Abtriebsgetriebe 26 über den Keilwellenabschnitt 26E verbunden sind, ist die Festigkeit der Verbindung besser als bei beispielsweise einer Paßfederverbindung. Des weiteren ist der äußere Durchmesser der Keilwellenverbindung im allgemeinen kleiner als der einer Paßfederverbindung. Dadurch ist es einfacher, den äußeren Durchmesser R3 des absatzförmigen Abschnittes 20A

5

der Abtriebsscheibe 20 zu vermindern.

Fig. 3 zeigt eine zweite Ausführungsform.

Bei dieser Ausführungsform ist der äußere Durchmesser R3 des absatzförmigen Abschnittes 20A der Abtriebsscheibe 20 der oben beschriebenen, ersten Ausführungsform 5 gleich dem äußeren Durchmesser R1 des Teiles des inneren Laufrades 4 des Kegelrollenlagers 2 der Lauffläche 40 mit dem größtem Durchmesser gesetzt. Der äußere Durchmesser R2 des absatzförmigen Abschnittes 26C des Abtriebsgetriebes 26 ist ebenfalls gleich dem äußeren Durchmesser R1 des Teils der Lauffläche 40 des inneren Laufrades 4 mit dem größtem Durchmesser.

Die äußeren Durchmesser sind dadurch durch die Beziehung R3 = R2 = R1 gekennzeichnet.

Des weiteren befindet sich der absatzförmige Abschnitt 15 20A der Abtriebsscheibe 20 in direktem Kontakt mit einer Seitenfläche 26B des Abtriebsgetriebes 26, ohne daß der absatzförmige Abschnitt 26D an der Seitenfläche 26B des Abtriebsgetriebes 26 vorgesehen ist.

Die restlichen Kennzeichen der Konstruktion sind die 20 gleichen wie bei der oben beschriebenen, ersten Ausführungsform.

Bei dieser Ausführungsform kann wie im Falle der oben beschriebenen, ersten Ausführungsform eine Verformung des Abtriebsgetriebes 26 aufgrund der vom absatzförmigen 25 Abschnitt 20A der Abtriebsscheibe 20 ausgeübten Kraft maßgeblich verhindert werden. Der äußere Durchmesser R3 des absatzförmigen Abschnittes 20A kann auch aufgrund der obigen Bedingungen für die Abmessungen größer als bei der oben beschriebenen, ersten Ausführungsform gesetzt 30 werden.

Wenn der äußere Durchmesser von R3 erhöht wird, wird der Abstand zwischen dem Punkt, an dem die Antriebsroll-körper 22 in die Abtriebsscheibe 20 drücken und dem absatzförmigen Abschnitt 20A, der die Abtriebsscheibe 20 abstützt, kürzer. Mit anderen Worten wird die Größe der Verformung der Abtriebsscheibe 20 geringer, je kürzer der Abstand zwischen dem Lastangriffspunkt und dem Drehpunkt wird.

Fig. 4 zeigt eine dritte Ausführungsform.

Bei dieser Ausführungsform ist der äußere Durchmesser R2 des absatzförmigen Abschnittes 26C des Abtriebsgetriebes 26 größer als der äußere Durchmesser R1 des Teils der Lauffläche 40 des inneren Laufrades 4 des Kegelrollenlagers 2 mit dem größten Durchmesser gesetzt. Der äußere 45 Durchmesser von R3 des absatzförmigen Abschnittes 20A der Abtriebsscheibe 20 wird ebenfalls gleich oder kleiner als der äußere Durchmesser R1 des Teils der Lauffläche 40 des inneren Laufrades 4 des Kegelrollenlagers 2 mit dem größten Durchmesser gesetzt. Die äußeren Durchmesser haben 50 daher die Beziehungen R3 ≤ R1 und R2 > R1.

Der absatzförmige Abschnitt 20A wird in direktem Kontakt mit der Seitenfläche 26B des Abtriebsgetriebes 26 gebracht, ohne daß der absatzförmige Abschnitt 26C an der Seitenfläche 26B des Abtriebsgetriebes 26 vorgesehen ist. 55

Die übrigen Merkmale der Konstruktion sind dieselben wie bei der oben beschriebenen, ersten Ausführungsform.

Aufgrund der obenerwähnten Wahl der Abmessungen wird der äußere Durchmesser R2 des absatzförmigen Abschnittes 26C beispielsweise tatsächlich gleich dem äußeren 60 Durchmesser des Ringes 41 des inneren Laufrades 4, wie in der Abbildung gezeigt.

Bei dieser Ausführungsform wird die Verformung des Abtriebsgetriebes 26 durch Setzen von R3 ≤ R1 aufgrund des absatzförmigen Abschnittes 20A als Ergebnis der Verformung der Abtriebsscheibe 20 wie im Falle der oben beschriebenen, ersten und zweiten Ausführungsformen maßgeblich verhindert. Außerdem wurde der äußere Durchmes-

ser R2 des absatzförmigen Abschnittes 26C des Abtriebsgetriebes 26 größer als der äußere Durchmesser R1 des Abschnittes größten Durchmessers der Lauffläche 40 gesetzt, so daß eine Verformung des Ringes 41 durch den absatzförmigen Abschnitt 26C verhindert wird und ein Festlaufen der Kegelrolle 8 und des Ringes 41 verhindert wird.

Die Lebensdauer des Kegelrollenlagers 2 wird dadurch verbessert.

Patentansprüche

1. Stufenlos einstellbares Torusgetriebe mit einer Antriebsscheibe (18), einer Abtriebsscheibe (20) und einem Abtriebsgetriebe (26), das mit der Abtriebsscheibe (20) verbunden ist, einer Antriebswelle (14), die in einem Gehäuse (67) eingesetzt ist, wobei die Antriebsscheibe (18), die Abtriebsscheibe (20) und das Abtriebsgetriebe (26) auf der Antriebswelle (14) gelagert sind und ein Antriebsrollkörper (22) zwischen den gegenüberliegenden Flächen der Antriebsscheibe (18) und der Abtriebsscheibe (20) angeordnet ist, dadurch gekennzeichnet, daß

das Abtriebsgetriebe (26) durch ein erstes Kegelrollenlager (2) abgestützt wird, das ein erstes inneres Laufrad (4) aufweist, das sich in Kontakt mit dem Abtriebsgetriebe (26) befindet, ein erstes äußeres Laufrad (6) aufweist, das durch das Gehäuse (67) abgestützt wird, und eine erste Kegelrolle (8) aufweist, die sich unter Berührung mit dem ersten inneren Laufrad (4) und dem ersten äußeren Laufrad (6) dreht, und

die Antriebswelle (14) durch ein zweites Kegelrollenlager (1) abgestützt wird, das ein zweites inneres Laufrad (3) aufweist, das durch die Antriebswelle (14) abgestützt wird, ein zweites äußeres Laufrad (5) aufweist, das durch das Gehäuse (67) abgestützt wird, und eine zweite Kegelrolle (7) aufweist, die sich unter Berührung mit dem zweiten inneren Laufrad (3) und dem zweiten äußeren Laufrad (5) dreht, wobei

ein absatzförmiger Abschnitt (20A) in Berührung mit dem Abtriebsgetriebe (26) an der Antriebsscheibe (20) ausgebildet ist, und ein äußerer Durchmesser (R3) des absatzförmigen Abschnittes (20A) gleich oder kleiner als ein größter Berührungsdurchmesser (R1) ist, entlang dem das erste innere Laufrad (4) die erste Kegelrolle (8) berührt.

2. Stufenlos einstellbares Torusgetriebe gemäß Anspruch 1, dadurch gekennzeichnet, daß das Abtriebsgetriebe (26) einen absatzförmigen Abschnitt (26C) aufweist, der das erste innere Laufrad (4) des ersten Kegelrollenlagers (2) berührt, wobei ein äußerer Durchmesser (R2) des absatzförmigen Abschnitts (26C) des Abtriebsgetriebes (26) gleich dem äußeren Durchmesser (R3) des absatzförmigen Abschnittes (20A) der Antriebsscheibe (20) und dem größten Berührungsdurchmesser (R1) ist.

- 3. Stufenlos einstellbares Torusgetriebe gemäß Anspruch 1, dadurch gekennzeichnet, daß das Abtriebsgetriebe (26) einen absatzförmigen Abschnitt (26C) aufweist, der das erste innere Laufrad (4) des ersten Kegelrollenlagers (2) berührt, wobei ein äußerer Durchmesser (R2) des absatzförmigen Abschnitts (26C) des Abtriebsgetriebes (26) größer als der größte Berührungsdurchmesser (R1) ist.
- 4. Stufenlos einstellbares Torusgetriebe gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das erste innere Laufrad (4) einen Ring (41) mit einem Durchmesser aufweist, der größer ist als der größte Berührungsdurchmesser (R1) und der das Abtriebsge-

triebe (26) berührt.

5. Stufenlos einstellbares Torusgetriebe gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Abtriebsscheibe (20) und das Abtriebsgetriebe (26) durch eine Keilwellenverbindung verbunden sind.

Hierzu 5 Seite(n) Zeichnungen

Nummer: Int. Cl.⁷:

Veröffentlichungstag:

DE 197 54 146 C2 F 16 H 15/38 8. Februar 2001

Nummer: Int. Cl.⁷:

Veröffentlichungstag:

DE 197 54 146 C2 F 16 H 15/38

8. Februar 2001

FIG.4

