UNIVERSITY OF JAFFNA FACULTY OF ENGINEERING

END SEMESTER EXAMINATION- AUGUST 2018

DISCRETE MATHEMATICS

MC 4010

Reading Time: 10 Minutes

Writing Time: TWO Hours

Permitted Materials: Calculators; Mathematical tables

Instructions

- 1. This is a <u>Closed-book exam</u> exam.
- 2. This paper contains **TWO** (2) parts:
 - (a) Part 1 contains 40 questions: Each question in this part is a <u>multiple choice</u> with four answer choices. Read each question and answer carefully and choose the ONE best answer. There will be <u>NEGATIVE MARKING</u> (each correct answer, you will get +1 point, and for 2 wrong answers, you will loose 1 point) for the wrong answers.
 - (b) Part 2 contains 04 questions.
- 3. Answer all questions in the space provided.
- 4. Read all the problems first before beginning to answer any of them. Start with the one you feel most comfortable with, and only move on to the next problem when you are certain you have completed it perfectly.
- 5. If you have any doubt as to the interpretation of the wording of a question, make your own decision, but clearly state in the script.
- 6. This examination accounts for 60% of module assessment. Total maximum mark attainable is 100.
- 7. Write your registration number, the module code and the title of the paper in the answer book. Also write your registration number on each additional sheet attached.

Part 1[40 marks]

Answer **all** questions in this part and you are advised to spend 50 minutes answering the questions in Part 1. You must mark your answers on the separate answer sheet.

1.	A function in which second elements of order pair are distinct is called			
	(a) onto function		(c) identity function	
	(b) one -one fund	etion	(d) inverse function	
2.	A finite non-empty	y set of symbol i	is called	
	(a) alphabet		(c) string	
	(b) letter		(d) language	
3.	The number of ver	ctices in a full bi	inary tree is	
	(a) odd	(b) even	(c) equal	
4.	What is the secre Caesar cipher?	t message produ	uced from the message 'MEET YOU' using t	the
	(a) JBBQ VLR		(c) PHHW BRX	
	(b) LHHW WKG)	(d) LQQW BRX	
5.		~	is the contra-positive of the statement, 'you v t are not overconfident'?	vin
	(a) If you lose th	e game then you	ı don't know the rules or you are overconfiden	t.
	(b) A sufficient coare not overce	*	u win the game is that you know the rules or y	ou
	(c) If you know t	the rules or are o	overconfident then you lose the game.	
	(d) If you know t	the rules and are	e overconfident then you win the game.	
6.	Floor(-3.6782)+ C	eil(2.965)		
	(a) -2	(b) 2	(c) 0 (d) -1	
7.	Geometric distribu	ition has par	rameters	
	(a) 3	(c) 1	(e) None	
	(b) 2	(d) 4		

8.		andom variable X ance of X is	Thas a binomial distr	ribution with $n = 10$	and $p = 0.3$. The
	(a)	10	(b) 12	(c) 2.1	(d) 21
9.	Whi	ch of the followin	g is not the property	of binomial distribut	ion?
	(b) (c)	n is fixed has two outcome Trials are independent Probability of su		l to trial	
10.			nt, If n is divisible by g statements is equive		• .
	(a)	If n is not divisi by 5	ble by 30 then n is di	visible by 2 or divisib	ole by 3 or divisible
	(b)	If n is not divising not divisible by	ble by 30 then n is not 5	ot divisible by 2 or n	ot divisible by 3 or
	(c)	If n is divisible by 30	by 2 and divisible by 3	and divisible by 5 th	nen n is divisible by
	(d)	If n is not divisible by	ible by 2 or not divisi 30	ible by 3 or not divis	sible by 5 then n is
11.	In cı	ryptography, wha	t is cipher?		
		algorithm for pe encrypted messa	rforming encryption ε	and decryption	
	` ,	decrypted messa			
	(d)	none of the men	tionedabove		
12.	Wha	at is the value of	$11 \mod 7$ and -11 med	od 7?	
	(a)	4 and 5	(b) $4 \text{ and } -4$	(c) 5 and 3	(d) 4 and 4
13.	Whi	ch of the followin	g problems can be so	lved using recursion?	
	` ′	Factorial of a nu n^{th} Fibonacci nu		(c) Length of a strin(d) All of the mention	
14.	Whi	ch of the followin	g pairs is not congrue	ent modulo 11?	
	(a)	25, 13	(b) $-31, 12$	(c) 33, 10	(d) $-64, 8$
15.	If th	here are n distinct	et components in a st	tatement then there	are

combinations of values in the truth table.

	(a) 2^n	(b) $n+1$	(c) n	(d) $n+2$
16.	If truth table answer said to be	column has the truth	values of both true	and false, then it is
	(a) tautology		(c) contingency	
	(b) contradiction		(d) equivalence rela	tion
17.	To prove the statemenough to prove that		lly equivalent to the	statement Q , it is
	(a) P conditional Q	is a contradiction		
	(b) P conditional Q	is a tautology		
	(c) P bi-conditional	Q is a contradiction		
	(d) P bi-conditional	Q is a tautology		
18.	Consider the statement is	ent, 'either $-2 \le x \le$	$-1 \text{ or } 1 \le x \le 2$ '. T	The negation of this
	(a) $x < -2 \text{ or } 2 < x$	x or -1 < x < 1		
	(b) $x < -2 \text{ or } 2 < x$	C		
	(c) $-1 < x < 1$			
	(d) $x < -2 \text{ or } 2 < x$	x or -1 < x < 1		
19.	A relation R in $\{1, 2\}$ relation is	$\{2, 3, 4, 5, 6\}$ is given by	$y \{(1,2), (2,3), (3,4),$	$(4,4),(4,5)$ }. This
	(a) reflexive			
	(b) symmetric			
	(c) transitive			
	(d) non of the above	e		
20.	How many functions	are there from a set w	with m elements to a s	set with n elements?
	(a) $n!m!$		(c) m^n	
	(b) n^m		(d) $n \times (n-1) \times (n-1)$	$2) \times \dots \dots \times (n-m+1)$
21.	What is the coefficien	at of $x^{12}y^{13}$ in the exp	pansion of $(x+y)^{25}$?	
	(a) $5,300,200$		(c) $4,300,200$	
	(b) 5, 200, 300		(d) $4,200,300$	
22.	How many different l 3 letters followed by		lable, if each plate con	ntains a sequence of

23.	Each user on a comp where each character at least one digit. Ho	is an uppercase letter	r or	a digit. Each pas	0,
	(a) $26^6 - 26^7 - 26^8$		(c)	$36^6 + 36^7 + 36^8$	
	(b) $10^6 + 10^7 + 10^8 -$	$+26^6+26^7+26^8$	` /		$-26^6 - 26^7 - 26^8$
24.	How many students me the same score on the points?	9			
	(a) 102	(b) 100	(c)	101	(d) None of them
25.	How many bit strings values 00?	of length eight either	r sta	rt with a bit valu	e 1 or end with bits
	(a) 128	(b) 64	(c)	32	(d) 160
26.	A computer company Suppose that 220 of t business, and 51 majo these applicants major	these applicants majored both in compute	red er sc	in computer scienience and in busi	nce, 147 majored in ness. How many of
	(a) 220	(b) 367	(c)	124	(d) 316
27.	Consider the recurrent and $a_1 = 2$. Which of provided the constant	the following is an ex			
	(a) $a_n = A3^n + B$		(c)	$a_n = A3^n + B(-$	$(-1)^n$
	(b) $a_n = A(-3)^n + A(-3)^n$	$B(-1)^n$	` ′	None of them	,
28.	How many seven digwithout repetition?	it telephone number	can	be made up usin	ng the digits $0-9$
	(a) 604,800		(c)	608, 400	
	(b) 3,628,800		` ′	None of them	

(a) $26C_3 \times 10C_3$ (b) $26^3 \times 10^3$ (c) $26P_3 \times 10P_3$

(d) None of them.

29. Which of the following is not a condition of the binomial distribution?

	(a) only 2 possible outcomes	(c)	must have at least 3 trials
	(b) have constant probability of success	(d)	trials must be independent
30.	The linear combination of $gcd(24, 138) = 6$	is	
	(a) $138 \times (-1) + 24 \times 6$	(c)	$138 \times (3) + 24 \times 2$
	(b) $138 \times (6) + 24 \times (-1)$	(d)	$138 \times (6) + 24 \times 6$
31.	In a Poisson probability distribution		
	(a) the mean and variance of the distribu	tion	are same
	(b) the probability of success is always gr	ater	than 5
	(c) the number of trials is always less that	ın 5	
	(d) it always contains a contingency table	9	
32.	Each trial in Binomial distribution has		
	(a) one outcome	(c)	three outcome
	(b) two outcome	(d)	four outcome
33.	Which of the following statements is False (a) $C - (B \cup A) = (C - B) - A$ (b) $A - (C \cup B) = (A - B) - C$ (c) $B - (A \cup C) = (B - C) - A$)?	
	(d) $A - (B \cup C) = (B - C) - A$		
34.	A discrete probability distribution may be	repi	resented by
	(a) a table	(c)	a mathematical equation
	(b) a graph	(d)	all of these
35.	Let $P(A)$ denote the power set of A . If $P(A)$	$(A) \subseteq$	$\equiv B \text{ then}$
	(a) $2^{ A } \le B $	(c)	$2^{ A } < B $
	(b) $2^{ A } \ge B $	(d)	$2^{ A } \ge 2^{ B }$
36.	In proving $\sqrt{5}$ as irrational, we begin with of proof?	assu	Imption $\sqrt{5}$ is rational in which type
	(a) Direct proof	(c)	Mathematical induction
	(b) Proof by contradiction	(d)	Constructive proof

39.	The truth table for $(p \lor q) \lor (p \land r)$ is the s		
	(a) $(p \lor q) \land (p \lor r)$ (b) $p \lor q$	(c) $(p \lor q)$ (d) $(p \land q)$	
40.	Let $f: X \to Y$, $g: Y \to Z$ and $h = g \circ f$ onto. Which of the following is false ?	$X:X\to Z$. Suppose g is one to one and
	(a) If f is one to one then h is one to one(b) If f is not onto then h is not onto(c) If f is onto then h is onto.	e and onto	
	(d) If f is one to one then h is one to one).	

37. Logic gate in which output is zero for inputs in which one input is one and other

38. Let $\sum = \{x, y\}$ be an alphabet. The strings of length seven over \sum are listed in dictionary order. What is the first string after xxxxyxx that is a palindrome?

(c) OR gate

(d) OUT gate

(c) xyxxxyx

(d) xxxyxxx

inputs are zero is classified as

(a) AND gate

(b) NOT gate

(a) xxxxyxy

(b) xxyxyxx

 $[This page intentionally \ left \ blank]$

Registration Number:	

$Part\ II[60\ marks]$

Answer **all** questions in this part and you are advised to spend 70 minutes answering the questions in Part II. You must answer in the space provided.

Question 1

1.	(a)	A rectangular floor measures $299cm \times 221cm$. Use the Euclidean algorithm to find the largest square tiles that can be used to cover the floor exactly?
	(b)	If two factories c and b manufactures a mowing machine every 299 and 221 days respectively, calculate the number of days it will take for them to manufacture at the same time.
_	()	
2.	(a)	Find the solution of the recurrence relation $a_{n+2} + a_{n+1} - 12a_n = 0, n \ge 0$ satisfying the initial conditions $a_o = 1$ and $a_1 = 1$
	(b)	Find the general solution of the recurrence relation $a_n = 5a_{n-1} - 6a_{n-2} + 7^n$

		$f(n) = \frac{n^2 + \log_2 n}{n+1}; n \ge 1$
	Prov	The from the definition that $f(n) = O(n)$.
4.		following function $M: \mathbb{Z}^+ \to \mathbb{Z}$ was defined by John McCarthy, a pioneer in theory of computation and in the study of artificial intelligence:
		$G(n) = \begin{cases} n - 10; & \text{if } n > 100\\ M(M(n+11)); & \text{if } n \le 100 \end{cases}$
	For a	all positive integers n , find $M(99)$.
		Question 2
1.	(a)	Use the Vigenere cipher with encrypting key $SECRET$ to encrypt the message $DO\ NOT\ OPEN\ THE\ ENVELOPE.$

3. Let $f: \mathbb{N} \to \mathbb{R}$ be defined by

	(b)	Decrypt the message $RTOLK\ TOLK$ which is encrypted using the affine transformation $C \cong 3P + 24 \mod 26$.
2.	tran mos In E	wo of the most common letters in a long cipher text, encrypted by an Affine sformation $C \cong aP + b \pmod{26}$ are X and Q respectively then by finding the t likely values for a and b , encrypt the plaintext $ATTACK$ AT $DAWN$.[Hint: English the two most frequently occurring alphabets are E and T receptively.]
3.	(a)	Suppose you have a computer with eight empty slots for interface cards, two parallel ports for printers, and four serial ports for modems, scanners or mice. Suppose you have three interface cards, one printer, one mouse, and one modem. In how many ways you can connect them to your computer?
	(b)	There are 40 computer programmers for a job. 25 know Java, 28 know oracle and 7 know neither language. Using principle of inclusion-exclusion find how many programmers know both languages.

4.	A recruiting firm finds that 30 of the applicants for a certain industrial job have advanced training in computer programming. Applicants are selected at random from the pool and are interviewed sequentially. Find the probability that the first applicant having advanced training is found on the fifth interview.
	Question 3
1.	Let $F = \{(1,1), (-1,1), (2,4), (-2,4)\}$.
	(a) Is F a function from $A = \{1, 2, 3\}$ to $B = \{1, 4\}$?
	(b) Is F a function from $A=\{\pm 1,\pm 2\}$ to $B=\{1,2,3,4\}$?
2.	Show that $\{x: 2x^2 + 5x - 3 = 0\} \subseteq \{x: 2x^2 + 7x + 2 = 3/x\}$.
3.	Prove that $(\overline{p} \wedge q) \vee (\overline{p \vee q}) \equiv \overline{p}$.
4.	Prove that for any finite sets A, B and C, $ A\cup B\cup C = A + B + C -(A\cap B + A\cap C + B\cap C)+ A\cap B\cap C $

5. L	et $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^3 + 1$
((a) Show that f is a bijection.
(b) What is $f^{-1}(x)$.
	Question 4
1. C	onsider the following propositions:
q:	Mathematicians are generous. Spiders hate algebra. Vrite the compound propositions symbolized by:
	(i) $p \vee \overline{q}$
(ii) $(\overline{q \wedge p})$
(i	ii) $\overline{p} \rightarrow q$
(
(i	$\overline{p} \leftrightarrow \overline{q}$.

$(ii) \ \overline{p} \wedge \overline{q}$ $(iii) \ \overline{q} \rightarrow p$ $(iv) \ \overline{p} \leftrightarrow \overline{q}.$	(i)	$\overline{p} \lor q$
$(ii) \ \overline{p} \wedge \overline{q}$ \vdots $(iii) \ \overline{q} \rightarrow p$ \vdots $(iv) \ \overline{p} \leftrightarrow \overline{q}.$		
$(ii) \ \overline{p} \wedge \overline{q}$ \vdots \vdots $(iii) \ \overline{q} \rightarrow p$ \vdots \vdots $(iv) \ \overline{p} \leftrightarrow \overline{q}.$		
$(ii) \ \overline{p} \wedge \overline{q}$ \vdots $(iii) \ \overline{q} \rightarrow p$ \vdots \vdots $(iv) \ \overline{p} \leftrightarrow \overline{q}.$		
$(ii) \ \overline{p} \wedge \overline{q}$ $(iii) \ \overline{q} \rightarrow p$ $(iv) \ \overline{p} \leftrightarrow \overline{q}.$		
(iii) $\overline{p} \wedge \overline{q}$ (iii) $\overline{q} \rightarrow p$ (iv) $\overline{p} \leftrightarrow \overline{q}$.		
(iii) $\overline{q} o p$ (iv) $\overline{p} \leftrightarrow \overline{q}$.		
(iii) $\overline{q} o p$ (iv) $\overline{p} \leftrightarrow \overline{q}$.	(ii)	$\overline{p} \wedge \overline{q}$
(iii) $\overline{q} \to p$ (iv) $\overline{p} \leftrightarrow \overline{q}$.		
(iii) $\overline{q} \to p$		
(iii) $\overline{q} \to p$		
$(iii) \ \overline{q} \to p$ \vdots $(iv) \ \overline{p} \leftrightarrow \overline{q}.$		
(iii) $\overline{q} o p$ (iv) $\overline{p} \leftrightarrow \overline{q}$.		
(iii) $\overline{q} o p$ (iv) $\overline{p} \leftrightarrow \overline{q}$.		
$(\mathrm{iv}) \ \overline{p} \leftrightarrow \overline{q}.$		
(iv) $\overline{p} \leftrightarrow \overline{q}$.	(iii)	$\overline{q} o p$
(iv) $\overline{p} \leftrightarrow \overline{q}$.		
(iv) $\overline{p} \leftrightarrow \overline{q}$.		
(iv) $\overline{p} \leftrightarrow \overline{q}$.		
(iv) $\overline{p} \leftrightarrow \overline{q}$.		
(iv) $\overline{p} \leftrightarrow \overline{q}$.		
(iv) $\overline{p} \leftrightarrow \overline{q}$.		
	(iv)	$\overline{p} \leftrightarrow \overline{q}$.

——— End of Examination ———