Неравенства

Факт (Неравенства между средними). Для положительных чисел $a_1, a_2, \dots a_n$ методом Штурма докажите неравенство

$$\sqrt{\frac{a_1^2 + a_2^2 + \ldots + a_n^2}{n}} \geqslant \frac{a_1 + a_2 + \ldots + a_n}{n} \geqslant \sqrt[n]{a_1 a_2 \ldots a_n} \geqslant \frac{n}{\frac{1}{a_1} + \ldots + \frac{1}{a_n}}$$

Факт (Транс-неравенство). Если $a_1 \ge a_2 \ge ... \ge a_n, b_1 \ge b_2 \ge ... \ge b_n$ и $c_1, c_2, ..., c_n$ – некоторая перестановка чисел $b_1, b_2, ..., b_n$, то

$$a_1b_1 + a_2b_2 + \ldots + a_nb_n \ge a_1c_1 + a_2c_2 + \ldots + a_nc_n \ge a_1b_n + a_2b_{n-1} + \ldots + a_nb_1.$$

Задача 1. Сумма неотрицательных чисел x и y равна 1. Докажите, что $x^2+y^2\geq 1/2$.

Задача 2. Сумма неотрицательных чисел x_1, x_2, \ldots, x_n равна 1/2. Докажите неравенство

$$\frac{1 - x_1}{1 + x_1} \cdot \frac{1 - x_2}{1 + x_2} \cdot \dots \cdot \frac{1 - x_n}{1 + x_n} \ge \frac{1}{3}.$$

Задача 3. Сумма вещественных чисел a, b и c равна 1. Докажите, пожалуйста, неравенство $a^2+b^2+c^2+1 \geq 4(ab+bc+ca)$.

Задача 4. Вещественные числа a,b и c удовлетворяют условию $a^2+b^2+c^2=1$. Докажите, что $(a-b)^2+(b-c)^2+(c-a)^2\leq 3$.

Задача 5. Докажите, что при любых положительных числах a, b и c справедливо неравенство

$$\frac{1}{a+b} + \frac{1}{b+c} + \frac{1}{c+a} \le \frac{1}{2} \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right).$$

Задача 6. Покажите, что для положительных a и b имеет место неравенство

$$2\sqrt{a} + 3\sqrt[3]{b} > 5\sqrt[5]{ab}.$$

Задача 7. Для положительных чисел a, b, c и d докажите неравенство

$$(a+2b+3c+4d)\left(\frac{1}{a}+\frac{2}{b}+\frac{3}{c}+\frac{4}{d}\right) \ge 100.$$

Задача 8. Для положительных a, b и c докажите неравенство

$$a+b+c \geqslant \frac{a(b+1)}{a+1} + \frac{b(c+1)}{b+1} + \frac{c(a+1)}{c+1}.$$