An Image is worth 16×16 Words: Transformers for Image Recognition at Scale (Vision Transformer)

1. Model

ViT Overview

1. Patch Embedding (2D image -> 1D sequence)

- Can use feature maps of a CNN as an alternative to raw image patches
- Linear projection to the vector size D (since every layer uses vector size D.)
- Prepend extra learnable [class] embedding
- Add 1D position embeddings

-
$$Z_0 = [X_{class}; X^1 E; X^2 E; \dots; X^N E] + E_{pos}$$

2. Multi-headed Self-Attention and Multi-layer Perceptron

-
$$Z'_{l} = MSA(LN(Z_{l-1}) + Z_{l-1})$$

-
$$Z_l = MLP(LN(Z_l')) + Z_l'$$

- Note the residual connections after every block
- 3. Output: $y = LN(Z_L^0)$
- 4. Fine Tuning
- Remove the pre-trained prediction head and attach a zero-initialized $D \times K$ FC layer (—> Softmax)
- Higher resolution --> Longer sequence length
 - pre-trained position embeddings can be useless —> 2D interpolation

2. Evaluation

	Ours-JFT (ViT-H/14)	Ours-JFT (ViT-L/16)	Ours-I21K (ViT-L/16)	BiT-L (ResNet152x4)	Noisy Student (EfficientNet-L2)
ImageNet	88.55 ± 0.04	87.76 ± 0.03	85.30 ± 0.02	87.54 ± 0.02	88.4/88.5*
ImageNet ReaL	90.72 ± 0.05	90.54 ± 0.03	88.62 ± 0.05	90.54	90.55
CIFAR-10	99.50 ± 0.06	99.42 ± 0.03	99.15 ± 0.03	99.37 ± 0.06	_
CIFAR-100	94.55 ± 0.04	93.90 ± 0.05	93.25 ± 0.05	93.51 ± 0.08	_
Oxford-IIIT Pets	97.56 ± 0.03	97.32 ± 0.11	94.67 ± 0.15	96.62 ± 0.23	_
Oxford Flowers-102	99.68 ± 0.02	99.74 ± 0.00	99.61 ± 0.02	99.63 ± 0.03	_
VTAB (19 tasks)	77.63 ± 0.23	76.28 ± 0.46	72.72 ± 0.21	76.29 ± 1.70	_
TPUv3-core-days	2.5k	0.68k	0.23k	9.9k	12.3k

Comparison with SOTA

Pre-training size and Accuracy

Scaling study

- Convolutional inductive bias is useful for smaller datasets, but for larger ones,
 learning the relevant patterns is sufficient
- For small computational budgets, hybrid is best, but the difference vanishes for larger models.
- ViT is not saturated. Can be better scaled.

3. Further Studies

Inspecting ViT

- 1. Convolution layer 없이 linear projection 만으로도 가로선, 세로선 등을 학습하는 것을 보아 CNN의 low layer와 비슷한 역할을 수행함을 알 수 있다.
- 2. Position embedding similiarity for same rows and columns is high.
- 3. Self-attention을 통해 이미지의 전역적인 특징을 추출할 수 있는가? Both highly localized and globally integrated heads are discovered even in the lowest layers.
- 4. Hybrid model (+ResNet) : 전역추출 효과적 (residual blocks)