大物实验

温度计

实验步骤

铜电阻的温度特性

热敏电阻的温度特性

霍尔效应

示波器

拉伸法测杨氏模量

温度计

实验步骤

铜电阻的温度特性

- 1. 接入电阻并加热:
 - a. 将铜电阻接入Rx
 - b. 设置加热电流为1A, 初始温度为40°
- 1. 调整仪器:
 - a. 两单桥-3V
 - b. G内接按下B
 - c. R1一千R2十
 - d. 打开开关
 - e. 接入安培量程20mA
- 2. 测量:
 - a. 调R3使得U为0

$$R_{x0} = \frac{R_2}{R_1} R_3$$

b. 算Rx0

表1 铜电阻温度特性
$$R_1$$
= 1000 Ω R_2 =10 Ω R_3 =____ Ω

$$R_3 = \underline{\Omega}$$

R_{-} =	O
11 _{x0}	

t(°C)	40	45	50	55	60	65	70	75	80
$U_0(\text{mV})$									

$$R_{x0} = \frac{R_2}{R_1} R_3$$

3.

热敏电阻的温度特性

- 1. 铜电阻换热敏电阻
- 2. 两单桥一3V
- 3. G内接按下B
- 4. R1一百欧R2十欧
- 5. 开电源
- 6. 按下安培量程20mA
- 7. 调节R3电桥平衡

$$R_x = \frac{R_2}{R_1} R_3$$

表2 热敏电阻温度特性

t(°C)	80	75	70	65	60	55	50	45	40
R_1 (Ω)	100	100	100	100	100	100	100		
R_2 (Ω)	10	10	10	10	10	10	10		
R_3 (Ω)									
R_x (Ω)									

9.

平衡电桥与非平衡电桥有哪些不同?

求救~~

平衡电桥指两臂中点电压相同,为的是测试准确,精度较高。非平衡电桥相对简单精度稍差。

用非平衡电桥设计热敏电阻温度计有什么特点?所测温...

霍尔效应

表1 测量 V_{H} I关系 I_s =6.00mA

$$B = \mu_0 nI \frac{L}{\sqrt{L^2 + D^2}} = \frac{\mu_0 NI}{\sqrt{L^2 + D^2}}$$

I	B		V ₂ (mV)	<i>V</i> ₃ (mV)	V ₄ (mV)	$V_H = \frac{ V_1 + V_2 + V_3 + V_4 }{4} (mV)$
(mA)	(<u>Wb</u> /m ²)	$+I$, $+I_S$	-I, +I _S	-I, -I _S	$+I$, $-I_S$	4
0						
200						
400						
600						
800						
1000						

1.

3、测量霍尔电压 V_H 与工作电流 I_S 的关系

移动霍尔筒, 使霍尔元件处于螺线管中心位置。

$$B = \mu_0 nI \frac{L}{\sqrt{L^2 + D^2}} = \frac{\mu_0 NI}{\sqrt{L^2 + D^2}}$$

调节励磁电流I为600mA,调节工作电流 I_S =0、2.00.....10.00mA,分别测量霍尔电压 V_H 值填入 表2。对每一测量点都要通过换向开关改变I及 I_s 的方向,取四次测量绝对值的平均值作为测量值 。依据测量结果绘出 V_H - I_S 曲线。

表2 测量 V_{H} - I_S 关系 I=600mA

I_{S} (mA)	<i>V</i> ₁ (mV)	V_2 (mV)	V_3 (mV)	V ₄ (mV)	$V_H = \frac{ V_1 + V_2 + V_3 + V_4 }{4} (mV)$
(mA)	$+I$, $+I_S$	$-I$, $+I_S$	-I, -I _S	+I, -I _S	$V_H - \frac{1}{4}$
0					
2.00					
4.00					
6.00					
8.00					
10.00					

2.

表3 测量 V_{H} X关系 I=600mA I_s =5.00mA

$V_{\scriptscriptstyle H}$	=	K	$_{_H}I$	$^{\prime}_{s}B$
11			11	۵

X	V_1 (mV)	V_2 (mV)	<i>V</i> ₃ (mV)	<i>V</i> ₄ (mV)	$V_H = \frac{ V_1 + V_2 + V_3 + V_4 }{4} (mV)$	B (mT)
(mm)	$+I$, $+I_S$	-I, +I _S	$-I$, $-I_S$	$+I$, $-I_S$	$V_H = {4}$	\min_
-150						
-120						
-90						
-60						
-30						
0						
30						
60						
90						
120						
150						

3.

为什么霍尔元件不用金属材料而是用半导体?

广告

哈尔滨芯明天科技有限公司

2019-03-26

由于半导体材料表面电子少,所以在外电场作用下,电势会降落在整个材料上,这样在另一个方向上加磁场时就会在与B和电流I都垂直的面上聚集载流子而形成电场。若是金属材料,则抵抗电场的只是其表面聚集大量的电子,从而形成反向电场,与内部没关系。 之所以要求…点击进入详情页

本回答由 哈尔滨芯明天科技有限公司 提供

采用霍尔效应法测量一个未知磁场时,测量误差有哪些

英普磁电技术开发

广告

2022-01-12

(1) 稳定、可靠的振动系统。(2) 数字化控制的磁场源(超导线圈或电磁铁)。(3) 锁相放大器,用于线圈感应信号的选频和放大。(4) 辅助同步信号源,与样品振动同频率,用来精确控制样品振幅。(5) 磁场测量系统。(6) 控温系统(如果需要测量温度特性)。想…点击进入详情页

示波器

示波器的主要部分有示波管、带衰减器的Y轴放大器、带衰减器的X轴放大器、扫描发生器(锯齿波发生器)、触发同步和电源等,其结构方框图如图1所示。为了适应各种测量的要求,示波器的电路组成是多样而复杂的,这里仅就主要部分加以介绍:

拉伸法测杨氏模量

表1 一次性测量数据

单位: mm

	金属丝原长L	光杠杆H	光杠杆D
读数	737. 5	684. 5	50.00

$$\frac{F}{S} = E\left(\frac{\Delta l}{l}\right)$$

表2 金属丝直径测量数据

千分尺零点误差d0=(0.002 mm)

序号i 1		2	3	4	5	6
视值d/mm	0, 630	0.620	0. 623	0. 620	0.619	0.610

表3 加减力时刻度与对应拉力数据

序号i	1 X	2	3	4	5	6	7	8	9	10
拉力视值皿	0,00	1.00	2. 00	3. 00	4.00	5. 00	6, 00	7.00	8. 00	9. 00
(kg)	0.00	1.00	2.00	3.00	4.00	0.00	0.00	1.00	0.00	9.00
加力时标尺刻度x _i +(mm)	10.0	13. 5	17.0	20.1	23. 1	26. 3	29. 8	32. 5	36. 3	39. 3
减力时标尺刻度x _i -(mm)	10.0	13. 7	17.0	20.1	23. 7	26. 7	29.8	33. 0	36. 0	39. 1
平均标尺刻度(mm) x _i =(x _i ++x _i -)/2	10.0	13. 6	17.0	20.1	23. 4	26. 5	29. 8	32. 8	36.2	39. 2
标尺刻度改变量(mm) $\Delta x_i = x_{i+5} - x_i$	16. 5	16. 2	15.8	16.1	15.8					

(2) 5kg拉力对应的伸长量

$$\overline{\Delta x} = \frac{16.5 + 16.2 + 15.8 + 16.1 + 15.8}{5} = 16.08 mm$$

表1一次性测量数据

L(mm)	H(mm)	D(mm)

表2 金属丝直径测量数据 螺旋测微器零点误差d₀=__mm

序号 <u>i</u>	1	2	3	4	5	6	平均值
直径视值d _{视i} (mm)							

表3 加减力时刻度与对应拉力数据

序号i	1	2	3	4	5	6	7	8	9	10	11
拉力视值m _i (kg)	0.00	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	9.50
加力时标尺刻度x _i + (mm)	起点				测	量顺序					
减力时标尺刻度x _i - (mm)	终点										
平均标尺刻度(mm) $x_i = (x_i^+ + x_i^-)/2$											
标尺刻度改变量(mm) <u>Δx</u> _i =x _{i+5} −x _i						Δ	x				

计算公式: $E = \frac{8gLH}{\pi d^2D} \cdot \frac{\Delta m}{\Delta x}$ $\Delta m = 5 \text{kg}$ 计算时化成国际单位,E 的单位为Pa或 N/m^2

(3) 杨氏模量平均值(最佳值)

$$E = \frac{Fl}{S\Delta l} = \frac{5.00 \times 737.5}{0.300 \times 0.587}$$

$$= 2.094 \times 10^{4} \times kg / mm^{2}$$

$$= 2.094 \times 10^{4} \times 9.8N / mm^{2}$$

$$= 2.094 \times 10^{4} \times 9.8 \times 10^{6} N / m^{2}$$

$$= 2.05 \times 10^{11} M / m^{2}$$

考试内容:

物理实验上	1	理论课(课本1.1-1.5)	2学时	物理实验室		
	2	示波器的应用(课本2.1-2.2)	2学时	物理实验室一(C201/C202)		
	3	霍尔效应 (群文件)	2学时	物理实验室二 (C203/C204)		
	4	光电效应 (群文件)	2学时	光学设计性实验室 (C312/C313)		
	5	基于非平衡电桥的温度计设计实验(群文件)	2学时	电学设计性实验室(C310/C311)		
	6	理想气体状态方程实验(<mark>群文件)</mark>	2学时	演示实验室 (C205)		
	7	拉伸法测量金属杨氏模量(群文件)	2学时	虚拟实验室(C314/C315/C316)		
	考试	之前所做实验中抽签决定	2学时	待定		

置顶 14周考试,学委提前10分钟到c208抽签,四个实验:霍尔效应、示波器、杨氏模量、温度计,随机抽取,当堂测试,可带计算器,手机,资料—律不许;13周周四下午15:00之前大家把报告交到学委处(从上到下顺序为:示波器-杨氏模量-温度计-霍尔效应-光电效应-理想气体状态方程6份),学委点查清楚后于13周周五上午11:00前报告交到c207,过期不候大家一定注意。切记切记!!!!