

Grundzüge der Informatik 1

Vorlesung 13

Dynamische Programmierung

Überblick

- Gierige Algorithmen
 - Entwurfsprinzip "gierige Algorithmen"
 - Beispiel: Zeitplanerstellung
 - Diskussion unterschiedlicher Strategien
 - Optimale Lösung durch gierigen Algorithmus

Entwurfsprinzip "Gierige Algorithmen"

- Ziel: Lösung eines Optimierungsproblems
- Herangehensweise: Konstruiere Lösung Schritt für Schritt, indem immer ein einfaches "lokales" Kriterium optimiert wird
- Vorteil: Typischerweise einfache, schnelle und leicht zu implementierende Algorithmen
- Schwierigkeit: Löst der Algorithmus tatsächlich das Optimierungsproblem optimal?

Einfaches Beispiel: Wechselgeldproblem

- Eingabe: Betrag in Cent zwischen 1 und 99
- Ausgabe: Minimale Anzahl Münzen (der Einfachheit halber aus: 50, 10, 5, 1), die benötigt werden, um Betrag darzustellen

Gierige Strategie

- Für Betrag B wähle die größte Münze M mit M≤B
- Zahle M aus und wende die gierige Strategie auf Betrag B-M an

Beobachtung

Der gierige Algorithmus löst das Wechselgeldproblem korrekt

Beweisskizze

- Wir beobachten zunächst, dass der gierige Algorithmus für jeden Betrag eine Menge von Münzen findet, die diesem Betrag entspricht
- Die Münzen 50 und 5 kommen maximal einmal in einer optimalen Lösung vor
- Die Münzen 10 und 1 kommen maximal viermal in einer optimalen Lösung vor
- Damit kann mit den Münzen 10, 5 und 1 in einer opt. Lösung nur ein Wert bis zu 49 dargestellt werden
- Somit muss für B≥50 die Münze 50 in einer optimale Lösung genutzt werden

Beobachtung

Der gierige Algorithmus löst das Wechselgeldproblem korrekt

Beweisskizze

- Mit den Münzen 5 und 1 kann in einer opt. Lösung nur ein Wert bis 9 darstellt werden und mit 1 nur bis zu 4
- Damit muss für 49≥B≥10 und 9≥B≥5 jeweils 10 und 5 in der optimalen Lösung sein
- Somit ist der Algorithmus korrekt

Zweites Beispiel: Wechselgeldproblem mit 7-Cent Münze

- Eingabe: Betrag in Cent zwischen 1 und 99
- Ausgabe: Minimale Anzahl Münzen (aus: 50, 10, 7, 5, 1), die benötigt werden, um Betrag darzustellen

Gierige Strategie funktioniert hier nicht!

- Für Betrag B=14 liefert die gierige Strategie 10+1+1+1+1
- Mann kann aber B=7+7 darstellen

Erstes Fazit

- Gierige Algorithmen optimieren einfaches lokales Kriterium
- Dadurch werden nicht alle möglichen Lösungen betrachtet
- Dies macht die Algorithmen oft schnell
- Je nach Problem und Algorithmus kann die optimale Lösung übersehen werden

Intervall Zeitplanerstellung (Scheduling)

- Motivation: Ressource (Maschine, Hörsaal, Parallelrechner, etc.) soll möglichst gut genutzt werden
- Eingabe: Anzahl Intervalle n, Felder A und E, so dass A[i] den Anfangszeitpunkt des i-ten Intervalls und E[i] seinen bezeichnet (1≤i≤n)
- Ausgabe: Menge S⊂{1,..,n} von Intervallen, so dass |S| maximiert wird unter der Bedingung, dass für alle i,j∈S, i≠j, E[i]≤A[j] oder E[j]≤A[i] gilt (die Intervalle überlappen nicht)

Intervall Zeitplanerstellung (Scheduling)

- Motivation: Ressource (Maschine, Hörsaal, Parallelrechner, etc.) soll möglichst gut genutzt werden
- Eingabe: Anzahl Intervalle n, Felder A und E, so dass A[i] den Anfangszeitpunkt des i-ten Intervalls und E[i] seinen bezeichnet (1≤i≤n)
- Ausgabe: Menge S⊆{1,..,n} von Intervallen, so dass |S| maximiert wird unter der Bedingung, dass für alle i,j∈S, i≠j, E[i]≤A[j] oder E[j]≤A[i] gilt (die Intervalle überlappen nicht)

Definition

Zwei Intervalle i,j, i≠j, heißen kompatibel wenn A[i]≥E[j] oder A[j]≥E[i] gilt.

Generelle Überlegung (Gierige Algorithmen)

- j=1
- Wiederhole bis Intervalle mehr vorhanden sind:
 - Wähle Intervall i_i geschickt und füge es in S ein
- * Auswahlschritt
- Entferne alle Intervalle, die nicht mit i kompatibel sind
- Erhöhe j um 1

Herausforderung

Wie wähle ich das nächste Intervall

Aufgabe 1

- Betrachten Sie folgende gierige Strategie:
- Wähle immer das Intervall, was am frühesten startet (wir wollen die Ressource möglichst früh auslasten)
- Frage: Liefert diese Strategie eine optimale Lösung?

Strategie 1 liefert keine optimale Lösung

 Wähle immer das Intervall, was am frühesten startet (wir wollen die Ressource möglichst früh auslasten)

Aufgabe 2

- Betrachten Sie folgende gierige Strategie:
- Wähle immer das kürzeste Intervall (wir wollen die Ressource möglichst wenig nutzen)
- Frage: Liefert diese Strategie eine optimale Lösung?

Strategie 2 liefert keine optimale Lösung

 Wähle immer das kürzeste Intervall (wir wollen die Ressource möglichst wenig nutzen)

Aufgabe 3

- Betrachten Sie folgende gierige Strategie:
- Wähle immer das Intervall mit den wenigsten nicht kompatiblen Intervallen; bei Gleichheit wähle das kürzeste Intervall (wir wollen die Ressource möglichst wenig nutzen)
- Frage: Liefert diese Strategie eine optimale Lösung?

Strategie 3 liefert keine optimale Lösung

 Wähle immer das Intervall mit den wenigsten nicht kompatiblen Intervallen; bei Gleichheit wähle das kürzeste Intervall (wir wollen die Ressource möglichst wenig nutzen)

Zwischenfazit

- Die Wahl einer geeigneten Strategie ist nicht einfach
- Auf den ersten Blick plausibel erscheinende Strategien sind u.U. nicht sinnvoll

Gierige Algorithmen

- Einfache Algorithmen
- Leicht zu implementieren

Wie können wir das erste Intervall wählen?

- Idee: Wir müssen die Ressource möglichst bald wieder freigeben
- Nimm das Intervall mit dem frühesten Endzeitpunkt (und entferne dann alle nicht kompatiblen Intervalle)

IntervalScheduling(A,E,n)

2.
$$j=1$$

- 3. **for** i=2 **to** n **do**
- 4. if $A[i] \ge E[j]$ then
- 5. S=S∪{i}
- 6. j=i
- 7. return S

Α	1	2	4	7	5
Е	3	5	6	8	9

Annahme:

Intervalle nach Endzeitpunkt sortiert

Beweisidee: Der gierige Algorithmus "liegt vorn"

- Wir vergleichen eine optimale Lösung mit der Lösung des gierigen Algorithmus zu verschiedenen Zeitpunkten
- Wir zeigen: Die Lösung des gierigen Algorithmus is bzgl. eines bestimmten Kriteriums mindestens genauso gut wie die optimale Lösung

Vergleichszeitpunkte

 Nach Hinzufügen des i-ten Intervalls zur aktuellen Lösung beider Algorithmen

Vergleichkriterium

Maximaler Endzeitpunkt der bisher ausgewählten Intervalle

Beobachtung

S ist eine Menge von kompatiblen Intervallen.

Beweis

- Der Algorithmus erhält die Invariante aufrecht, dass j das Intervall aus S ist, was den größten Endzeitpunkt hat
- Ein Intervall wird nur zu S hinzugefügt, wenn sein Startzeitpunkt mindestens so groß ist wie der Endzeitpunkt von Intervall j
- Damit ist das zugefügte Intervall kompatibel zu allen Intervallen in S

Wie können wir Optimalität zeigen?

- Sei O eine optimale Menge von Intervallen
- U.U. viele unterschiedliche optimale Lösungen
- Wir wollen zeigen: |S|=|O|

Notation

- i₁,...,i_k: Intervalle von S in Ordnung des Hinzufügens
- $j_1,...,j_m$: Intervalle von O sortiert nach Endpunkt
- Zu zeigen: k=m

Der gierige Algorithmus liegt vorn

- Idee des Algorithmus: Die Ressource soll so früh wie möglich wieder frei werden
- Dies ist wahr für das erste Intervall: f[i₁]≤ f[j₁]
- Zu zeigen: Gilt für alle Intervalle 1,...,k

Lemma 13.1

Für alle r≤k gilt f[i_r]≤f[j_r].

Beweis (Induktion über r)

- Induktionsanfang: Für r=1 ist die Aussage offensichtlich korrekt
- Induktionsannahme: Die Aussage gelte für r-1
- Induktionsschluss: Nach Induktionsannahme gilt f[i_{r-1}] ≤f[j_{r-1}]
- Da die Intervalle in O kompatibel sind, gilt $f[j_{r-1}] \le s[j_r]$ und somit auch $f[i_{r-1}] \le s[j_r]$
- Damit ist j_r in der Menge der Intervalle, die mit den ersten r-1 Intervallen kompatibel sind, die IntervalScheduling ausgewählt hat
- Da der Algorithmus das Interval mit kleinstem f-Wert auswählt, gilt f[i_r] ≤f[j_r]

Satz 13.2

Die von Algorithmus IntervalSchedule berechnete Lösung S ist optimal.

Beweis durch Widerspruch

- Annahme: S ist keine optimale Lösung
- Ist S nicht optimal, so hat O mehr Intervalle, d.h. es gilt m>k. Nach unserem Lemma mit r=k gilt f[i_k]≤f[j_k]
- Da m>k gibt es ein Intervall j_{k+1} in O, das startet, nachdem j_k und somit auch i_k endet, d.h. s[j_{k+1}] ≥ f[i_k]. Außerdem gilt natürlich f[j_{k+1}] > s[j_{k+1}] ≥ f[i_k]
- Betrachten wir nun den Zeitpunkt, zu dem IntervalScheduling IntervalLi_k in S aufnimmt. Da die Intervalle nach Endzeitpunkten sortiert sind, wurde j_{k+1} noch nicht betrachtet.

Satz 13.2

Die von Algorithmus IntervalSchedule berechnete Lösung S ist optimal.

Beweis durch Widerspruch

- Da kein weiteres Intervall in S aufgenommen wird, muss für alle noch nicht betrachteten Intervalle der Startzeitpunkt vor f[ik] liegen
- Widerspruch, denn wir haben bereits gezeigt, dass s[j_{k+1}] ≥ f[i_k] gilt

IntervalScheduling(A,E,n)

- 1. S={1}
- 2. j=1
- 3. for i=2 to n do
- 4. if $A[i] \ge E[j]$ then
- 5. S=S∪{i}
- 6. j=i
- 7. return S

Annahme:

Intervalle nach Endzeitpunkt sortiert

Satz 13.3

 Algorithmus IntervalSchedule berechnet in O(n) Zeit eine optimale Lösung, wenn die Eingabe nach Endzeit der Intervalle (rechter Endpunkt) sortiert ist. Die Sortierung kann in O(n log n) Zeit berechnet werden.

Zusammenfassung

- Entwurfprinzip "gierige Algorithmen"
 - Löse globales Optimierungsproblem mit Hilfe von einfachen, lokalen Optimierungsstrategien
- Gierige Algorithmen sind einfach und leicht zu implementieren
- Es ist oft schwierig einen optimalen gierigen Algorithmus zu finden
- Korrektheitsbeweis erfolgt häufig mit Hilfe eines Widerspruchsbeweises
- Beispiel Zeitplanerstellung:
 - Drei verschiedenen plausible, aber nicht optimale Strategien
 - Vierte Strategie hat funktioniert

Referenzen

J. Kleinberg, E. Tardos. Algorithm Design. Pearson, 2006.

