TD de probabilités ENSAE 1A

Gabriel Romon

Version du 26 janvier 2019 à 19:45

Ce document rédigé pendant l'année scolaire 2016-2017 contient les corrections personnelles des chapitres 1 à 3 du cours de Théorie des Probabilités, enseigné alors par Sandie Souchet.

La dernière version du document est disponible à l'adresse

 $\verb|https://github.com/gabsens/TDProba/raw/master/main.pdf|$

Vous êtes évidemment invités à contribuer au repo Github https://github.com/gabsens/TDProba/.

Ce document ne se substitue pas à la présence ou à la participation active aux séances de TD.

1. Loi de probabilité, Espérance et Fonction de répartition

Exercice 1

Soit (X,Y) un couple aléatoire continu de densité donnée par

$$f(x,y) = \frac{1}{x}e^{-x}\mathbb{1}_D(x,y)$$
 avec $D = \{(x,y) \in \mathbb{R}^2, 0 < y < x\}$

On pose U = X et $V = \frac{Y}{X}$.

- 1. Loi marginale de X.
- 2. Avec la formule de changement de variables montrer que (U, V) est un couple aléatoire continu et donner sa densité.
- 3. Déterminer la loi de U et celle de V. Ces variables aléatoires sont-elles indépendantes?
- 1. Le couple (X,Y) étant continu, X et Y sont également continues, et la densité de X est donnée par

$$f_X(x) = \int f(x,y)d\lambda(y) = \int \frac{1}{x}e^{-x}\mathbb{1}_{(0,\infty)}(x)\mathbb{1}_{(0,x)}(y)d\lambda(y) = \frac{1}{x}e^{-x}\mathbb{1}_{(0,\infty)}(x)\int_0^x d\lambda(y)$$
$$= e^{-x}\mathbb{1}_{(0,\infty)}(x)$$

Donc X suit une loi exponentielle de paramètre 1.

- 2. On définit $\varphi = \begin{cases} \mathbb{R} \setminus \{0\} \times \mathbb{R} & \longrightarrow \mathbb{R} \setminus \{0\} \times \mathbb{R} \\ (x,y) & \longmapsto (x,\frac{y}{x}) \end{cases}$ $\mathbb{R} \setminus \{0\} \times \mathbb{R}$ est un ouvert de \mathbb{R}^2 , son complémentaire $\{0\} \times \mathbb{R}$ étant clairement fermé.
- φ est bijective de réciproque $\varphi^{-1} = \begin{cases} \mathbb{R} \setminus \{0\} \times \mathbb{R} & \longrightarrow \mathbb{R} \setminus \{0\} \times \mathbb{R} \\ (x,y) & \longmapsto (x,xy) \end{cases}$ $\varphi_1 \colon (x,y) \mapsto x \text{ et } \varphi_2 \colon (x,y) \mapsto \frac{y}{x}$. Les dérivées partielles de φ_1 et φ_2 existent et sont continues donc φ est

$$\operatorname{Jac}(\varphi)(x,y) = \begin{pmatrix} \frac{\partial \varphi_1}{\partial x} & \frac{\partial \varphi_1}{\partial y} \\ \frac{\partial \varphi_2}{\partial x} & \frac{\partial \varphi_2}{\partial y} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -\frac{y}{x^2} & \frac{1}{x} \end{pmatrix}$$

• φ_1^{-1} : $(x,y) \mapsto x$ et φ_2^{-1} : $(x,y) \mapsto xy$. Les dérivées partielles de φ^{-1} existent et sont continues donc φ^{-1} est C^1 avec

$$\operatorname{Jac}(\varphi^{-1})(x,y) = \begin{pmatrix} \frac{\partial \varphi_1^{-1}}{\partial x} & \frac{\partial \varphi_1^{-1}}{\partial y} \\ \frac{\partial \varphi_2^{-1}}{\partial x} & \frac{\partial \varphi_2^{-1}}{\partial y} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ y & x \end{pmatrix}$$

•
$$P_{(X,Y)}(\mathbb{R} \setminus \{0\} \times \mathbb{R}) = P_X(\mathbb{R} \setminus \{0\}) = \int_{\mathbb{R} \setminus \{0\}} e^{-x} \mathbb{1}_{(0,\infty)}(x) d\lambda(x) = \int_0^\infty e^{-x} d\lambda(x)$$

Alors $(U, V) = \varphi(X, Y)$ est un vaR continu de densité donnée par

$$g(u,v) = f(\varphi^{-1}(u,v)) \cdot |\det \operatorname{Jac}(\varphi^{-1})(u,v)| \cdot \mathbb{1}_{\mathbb{R}\setminus\{0\}\times\mathbb{R}}(u,v)$$

$$= f(u,uv) \cdot |u| \cdot \mathbb{1}_{\mathbb{R}\setminus\{0\}}(u)$$

$$= e^{-u} \cdot \mathbb{1}_{(0,\infty)}(u) \cdot \mathbb{1}_{(0,u)}(uv) \cdot \mathbb{1}_{\mathbb{R}\setminus\{0\}}(u)$$

$$= e^{-u} \cdot \mathbb{1}_{(0,\infty)}(u) \cdot \mathbb{1}_{(0,1)}(v)$$

2

3. En tant que marginales, U et V sont des var continus de densités

$$g_U(u) = \int e^{-u} \cdot \mathbb{1}_{(0,\infty)}(u) \cdot \mathbb{1}_{(0,1)}(v) d\lambda(v)$$

= $e^{-u} \cdot \mathbb{1}_{(0,\infty)}(u) \int \mathbb{1}_{(0,1)}(v) d\lambda(v)$
= $e^{-u} \cdot \mathbb{1}_{(0,\infty)}(u)$

et

$$g_V(v) = \int e^{-u} \cdot \mathbb{1}_{(0,\infty)}(u) \cdot \mathbb{1}_{(0,1)}(v) d\lambda(u)$$
$$= \mathbb{1}_{(0,1)}(v) \int e^{-u} \mathbb{1}_{(0,\infty)}(u) d\lambda(u)$$
$$= \mathbb{1}_{(0,1)}(v)$$

U suit donc la loi exponentielle de paramètre 1 et V la loi uniforme sur (0,1). On remarque que pour tout $(u,v) \in \mathbb{R}^2$, $g(u,v) = g_U(u)g_V(v)$ donc U et V sont P-indépendants.

Exercice 2

Soient X et Y deux var continues indépendantes de loi respective $\Gamma(a,1)$ et $\Gamma(b,1)$. Soient S = X + Y et $Z = \frac{X}{X+Y}$

- 1. Avec la formule de changement de variables montrer que (S, Z) est un couple aléatoire continu et donner
- 2. Déterminer la loi de S et celle de Z. Ces variables aléatoires sont-elles indépendantes?

1. X et Y étant des var continus indépendants, (X,Y) est un vaR continu de densité donnée par $f_{(X,Y)}(x,y)$ $f_X(x)f_Y(y)$.

On définit $B = \{(a, -a), a \in \mathbb{R}\}, U = \mathbb{R}^2 \setminus B, V = \mathbb{R} \setminus \{0\} \times \mathbb{R}$ et

$$\varphi = \begin{cases} U & \longrightarrow V \\ (x,y) & \longmapsto (x+y, \frac{x}{x+y}) \end{cases}$$

- B est fermé car il est l'image réciproque du fermé $\{0\}$ par l'application continue $(x,y)\mapsto x+y$. U est un ouvert de \mathbb{R}^2 en tant que complémentaire de B.
- V est ouvert (cf exo précédent).
- φ est bijective de réciproque $\varphi^{-1} = \begin{cases} V & \longrightarrow U \\ (x,y) & \longmapsto (xy,x-xy) \end{cases}$ $\varphi_1 \colon (x,y) \mapsto x+y \text{ et } \varphi_2 \colon (x,y) \mapsto \frac{x}{x+y}$. Les dérivées partielles de φ_1 et φ_2 existent et sont continues donc
- φ est C^1 avec

$$\operatorname{Jac}(\varphi)(x,y) = \begin{pmatrix} \frac{\partial \varphi_1}{\partial x} & \frac{\partial \varphi_1}{\partial y} \\ \frac{\partial \varphi_2}{\partial x} & \frac{\partial \varphi_2}{\partial y} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ -\frac{y}{(x+y)^2} & -\frac{x}{(x+y)^2} \end{pmatrix}$$

• φ_1^{-1} : $(x,y)\mapsto xy$ et φ_2^{-1} : $(x,y)\mapsto x-xy$. Les dérivées partielles de φ^{-1} existent et sont continues donc φ^{-1} est C^1 avec

$$\operatorname{Jac}(\varphi^{-1})(x,y) = \begin{pmatrix} \frac{\partial \varphi_1^{-1}}{\partial x} & \frac{\partial \varphi_1^{-1}}{\partial y} \\ \frac{\partial \varphi_2^{-1}}{\partial x} & \frac{\partial \varphi_2^{-1}}{\partial y} \end{pmatrix} = \begin{pmatrix} y & x \\ 1 - y & -x \end{pmatrix}$$

• $P_{(X,Y)}(U) = 1 - P_{(X,Y)}(B)$. Or $((X,Y) \in B) \subset (X \le 0) \cup (Y \le 0)$ donc $P_{(X,Y)}(B) \le P(X \le 0) + P(Y \le 0) = 0 + 0$. La dernière égalité vient du fait que X et Y suivent des lois hypergéométriques dont le support est $(0, \infty)$.

Donc $P_{(X,Y)}(U) = 1$.

Alors $(S,T) = \varphi(X,Y)$ est un vaR continu de densité donnée par

$$\begin{split} g(s,t) &= f_{(X,Y)}(st,s-st) \cdot |s| \cdot \mathbbm{1}_{V}(st,s-st) \\ &= \left(\frac{1}{\Gamma(a)}(st)^{a-1}e^{-st}\mathbbm{1}_{(0,\infty)}(st)\right) \left(\frac{1}{\Gamma(b)}(s-st)^{b-1}e^{-(s-st)}\mathbbm{1}_{(0,\infty)}(s-st)\right) |s|\mathbbm{1}_{R\backslash\{0\}}(st) \\ \text{Or } \begin{cases} st > 0 \\ s-st > 0 \end{cases} &\iff \begin{cases} s > 0 \\ 1 > t > 0 \end{cases} \text{ d'où} \\ g(s,t) &= \frac{1}{\Gamma(a+b)}s^{a+b-1}e^{-s}\mathbbm{1}_{(0,\infty)}(s) \cdot \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}t^{a-1}(1-t)^{b-1}\mathbbm{1}_{(0,1)}(t) \end{split}$$

2. En tant que marginales, S et T sont des var continues de densités

$$\begin{split} g_S(s) &= \int g(s,t) d\lambda(t) \\ &= \frac{1}{\Gamma(a+b)} s^{a+b-1} e^{-s} \mathbbm{1}_{(0,\infty)}(s) \underbrace{\int \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} t^{a-1} (1-t)^{b-1} \mathbbm{1}_{(0,1)}(t) d\lambda(t)}_{\text{masse de la densit\'e d'une loi } \beta(a,b)} \\ &= \frac{1}{\Gamma(a+b)} s^{a+b-1} e^{-s} \mathbbm{1}_{(0,\infty)}(s) \\ g_T(t) &= \int g(s,t) d\lambda(s) \\ &= \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} t^{a-1} (1-t)^{b-1} \mathbbm{1}_{(0,1)}(t) \underbrace{\int \frac{1}{\Gamma(a+b)} s^{a+b-1} e^{-s} \mathbbm{1}_{(0,\infty)}(s) d\lambda(s)}_{\text{masse de la densit\'e d'une loi } \Gamma(a+b,1)} \\ &= \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} t^{a-1} (1-t)^{b-1} \mathbbm{1}_{(0,1)}(t) \end{split}$$

Donc S suit une loi $\Gamma(a+b,1)$ et T une loi $\beta(a,b)$. On remarque que pour tout $(s,t) \in \mathbb{R}^2$, $g(s,t) = g_S(s)g_T(t)$ donc S et T sont P-indépendants.

Exercice 3

Soit (X,Y) deux var continues, indépendantes, de loi respective $\overline{\mathcal{N}(0,\sigma^2)}$ et $\mathcal{N}(0,\tau^2)$. Déterminer la loi de $Z=\frac{X}{Y}$.

La démarche est similaire à celle de l'exercice 1.

On definit
$$\varphi = \begin{cases} \mathbb{R} \times \mathbb{R} \setminus \{0\} & \longrightarrow \mathbb{R} \times \mathbb{R} \setminus \{0\} \\ (x,y) & \longmapsto (\frac{x}{y},y) \end{cases}$$

 $\varphi(X,Y)$ admet pour densité

$$\begin{split} g(u,v) &= f(uv,v) \cdot |v| \cdot \mathbbm{1}_{\mathbb{R} \setminus \{0\}}(v) \\ &= \frac{1}{\sqrt{2\pi\sigma^2}} \frac{1}{\sqrt{2\pi\tau^2}} e^{-\frac{v^2}{2}(\frac{1}{\tau^2} + \frac{u^2}{\sigma^2})} \cdot |v| \cdot \mathbbm{1}_{\mathbb{R} \setminus \{0\}}(v) \end{split}$$

En tant que marginale, Z est continue et de densité donnée par

$$\begin{split} g_Z(u) &= \frac{2}{\sqrt{2\pi\sigma^2}} \frac{1}{\sqrt{2\pi\tau^2}} \int_0^\infty v e^{-\frac{v^2}{2} (\frac{1}{\tau^2} + \frac{u^2}{\sigma^2})} d\lambda(v) \\ &= \frac{2}{\sqrt{2\pi\sigma^2}} \frac{1}{\sqrt{2\pi\tau^2}} \left[-\frac{2}{2 \left(\frac{u^2}{\sigma^2} + \frac{1}{\tau^2} \right)} e^{-\frac{v^2}{2} (\frac{1}{\tau^2} + \frac{u^2}{\sigma^2})} \right]_0^\infty \\ &= \frac{1}{\pi} \frac{\frac{\sigma}{\tau}}{u^2 + \frac{\sigma^2}{\tau^2}} \end{split}$$

Z suit donc une loi de Cauchy de paramètre $\frac{\sigma}{\tau}$.

Soit (X,Y) un couple de var de loi $P_{(X,Y)}$ admettant une densité par rapport à $N \otimes \lambda$, N étant la mesure de comptage sur \mathbb{N}^* . Cette densité est donnée par

$$f(x,y) = (1-p)\frac{(py)^{x-1}}{(x-1)!}e^{-y}\mathbb{1}_{(0,\infty)}(y)$$

- 1. Déterminer les lois marginales de X et Y.
- 2. X et Y sont-elles indépendantes?
- 1. Soit $A \in (\mathbb{R})$. On a

$$\begin{split} P_X(A) &= P_{(X,Y)}(A \times \mathbb{R}) = \int \mathbbm{1}_{A \times \mathbb{R}}(u) f(u) dN \otimes \lambda(u) \\ &= \int \mathbbm{1}_A(x) f(x,y) d(N \otimes \lambda)(x,y) = \int \delta_{\{x\}}(A) \left(\int f(x,y) d\lambda(y) \right) dN(x) \\ &= \int \delta_{\{x\}}(A) (1-p) \frac{p^{x-1}}{(x-1)!} \Gamma(x) dN(x) \\ &= \sum_{x \in \mathbb{N}^*} (1-p) p^{x-1} \delta_{\{x\}}(A) \end{split}$$

Donc X suit une loi géométrique de paramètre 1-p. Soit $B \in \mathcal{B}(\mathbb{R})$. On a

$$\int \mathbb{1}_{B}(y)dP_{Y}(y) = P_{Y}(B) = P_{(X,Y)}(\mathbb{N}^{*} \times B)$$

$$= \int \mathbb{1}_{\mathbb{N}^{*} \times B}(x,y)f(x,y)d(N \otimes \lambda)(x,y)$$

$$= \int \mathbb{1}_{B}(y) \left(\int f(x,y)dN(x) \right) d\lambda(y) \quad \text{Fubini positif}$$

$$= \int \mathbb{1}_{B}(y)\mathbb{1}_{(0,\infty)}(y)(1-p)e^{-y}e^{py}d\lambda(y)$$

$$= \int \mathbb{1}_{B}(y) \underbrace{\mathbb{1}_{(0,\infty)}(y)(1-p)e^{-(1-p)y}}_{:=f_{Y}(y)} d\lambda(y)$$

- f_Y est dans $\mathcal{M}^+(\mathcal{B}(\mathbb{R}), \mathcal{B}(\overline{\mathbb{R}}))$
- $\int f_Y(y)d\lambda(y) = 1$

Donc Y est continue et admet f_Y pour densité de probabilité. On reconnait la densité d'une loi exponentielle de paramètre 1 - p.

2. Supposons par l'absurde que X et Y sont indépendantes. On dispose alors de $M \in \mathcal{B}(\mathbb{R})$ un négligeable tel que $\forall (x,y) \in M^c$, $f(x,y) = f_X(x)f_Y(y)$ ce qui équivaut à

$$\frac{y^{x-1}}{(x-1)!} \mathbb{1}_{(0,\infty)}(y) = (1-p)e^{py} \mathbb{1}_{(0,\infty)}(y)$$

Or, pour x=1, il existe un unique y_1 tel que $1=(1-p)e^{py_1}$. Par conséquent, $(\{1\}\times\{y_1\}^c)\subset M$, or $N\otimes\lambda(\{1\}\times\{y_1\}^c)=N(\{1\})\lambda(\{y_1\}^c)$ $=1\cdot\infty$ $=\infty$

Or M est négligeable, ce qui est absurde.

Soit $(X_n)_{n\geq 1}$ une suite de var indépendantes et de même loi uniforme sur $\{-1,1\}$ ie

$$\forall n \ge 1, P_{X_n} = \frac{1}{2}\delta_{\{-1\}} + \frac{1}{2}\delta_{\{1\}}$$

On note τ la var définie par $\tau = \inf\{n \geq 1, X_n = 1\}$

- 1. Calculer $\tau(\Omega)$. Que pouvez-vous en déduire?
- 2. Montrer que $P(\tau < \infty) = 1$.
- 3. Déterminer la loi de τ .
- 1. $\tau(\Omega) \subset \mathbb{N}^*$ donc τ est une var discrète.

2.
$$P(\tau < \infty) = P(\bigsqcup_{n=1}^{\infty} (\tau = n)) = \sum_{n=1}^{\infty} (\tau = n)$$

= $\sum_{n=1}^{\infty} (X_1 = -1 \cap \dots \cap X_{n-1} = -1 \cap X_n = 1) = \sum_{n=1}^{\infty} \frac{1}{2^n} = 1$

3.
$$P(\tau = n) = P(X_1 = -1 \cap ... \cap X_{n-1} = -1 \cap X_n = 1) = \frac{1}{2^n}$$
 donc

$$P_{\tau} = \sum_{n=1}^{\infty} \frac{1}{2^n} \delta_{\{n\}}$$

Exercice 6

Soit X une variable aléatoire de loi $\mathcal{N}(0,1)$.

- 1. Déterminer la loi de $Z = \frac{X + |X|}{2}$.
- 2. Montrer que P_Z n'est ni discrète ni continue.
- 1. On note que Z prend des valeurs ≥ 0 . Pour $w \in \Omega$, si $X(w) \geq 0$ alors Z(w) = X(w) et si X(w) < 0, alors Z(w) = 0. Pour $A \in \mathcal{B}(\mathbb{R})$,

$$\begin{split} P_Z(A) &= P((Z \in A) \cap (X < 0)) + P((Z \in A) \cap (X \ge 0)) \\ &= P((0 \in A) \cap (X < 0)) + P((X \in A) \cap (X \ge 0)) \\ &= \mathbb{1}_A(0)P(X < 0) + \mathbb{1}_{A^c}(0)P(\emptyset) + P((X \in A) \cap (X \ge 0)) \\ &= \frac{1}{2}\delta_{\{0\}}(A) + P_X(A \cap [0, \infty)) \end{split}$$

2. D'après 1., pour $a \in \mathbb{R}$,

si
$$a < 0, P_Z(\{a\}) = 0$$

si
$$a = 0, P_Z(\{a\}) = \frac{1}{2}$$

$$\text{si } a > 0, P_Z(\{a\}) = 0$$

L'ensemble des atomes de P_Z est donc réduit à $\{0\}$, avec $P_Z(\{0\}) = \frac{1}{2} \neq 1$, donc P_Z n'est pas discrète. De plus, P_Z charge ce singleton, donc elle n'est pas continue.

6

Soit X une var continue de loi exponentielle de paramètre $\theta > 0$. Soit S une var discrète de loi uniforme sur $\{-1,1\}$ indépendante de X et Y = XS.

- 1. Exprimer la fonction de répartition de Y en fonction de X.
- 2. En déduire la loi de Y.
- 1. Soit $a \in \mathbb{R}$. On note $D_S = \{-1, 1\}$ le support de S.

$$\begin{split} P(Y \leq a) &= P(XS \leq a) \\ &= P((XS \leq a) \cap (S \in D_S)) + \underbrace{P((XS \leq a) \cap S \in D_S^c)}_{\leq P(S \in D_S^c) = 0} \\ &= P((X \leq a) \cap (S = 1)) + P((-X \leq a) \cap (S = -1)) \\ &= P(X \leq a) P(S = 1) + P(-X \leq a) P(S = -1) \quad \text{par indépendance} \\ &= \frac{1}{2} F_X(a) + \frac{1}{2} (1 - P(X < -a)) \\ &= \frac{1}{2} F_X(a) + \frac{1}{2} (1 - P(X \leq -a)) \quad \text{car X continue} \\ &= \frac{1}{2} F_X(a) + \frac{1}{2} (1 - F_X(-a)) \end{split}$$

2. En développant l'expression précédent on fait apparaitre la fonction de répartition d'une loi de Laplace de paramètre θ .

Donc Y suit une loi de Laplace de paramètre θ .

Soit U une variable aléatoire de loi uniforme sur (0,1).

Soit F la fonction de répartition associée à une mesure de probabilité μ . On pose

$$\forall u \in (0,1), F^{-1}(u) = \inf\{t \in \mathbb{R}, F(t) \ge u\}$$

- 1. Montrer que $\{u \in (0,1), F^{-1}(u) \le t\} = \{u \in (0,1), u \le F(t)\}$
- 2. Justifier que $F^{-1}(U)$ est une var.
- 3. Déterminer la fonction de répartition de $F^{-1}(U)$ puis sa loi.
- 4. Construire une var de loi exponentielle de paramètre θ .
- 5. Construire une var de loi de Bernoulli de paramètre p.
- 6. Construire une var de loi géométrique de paramètre p.
- 1. F^{-1} est bien définie : soit $u \in (0,1)$. Comme $F \xrightarrow[+\infty]{} 1$, il existe $t \in \mathbb{R}$ tel que $F(t) \geq u$. D'autre part, $\{t \in \mathbb{R}, F(t) \geq u\}$ est minoré car F tend vers 0 en $-\infty$
- Lemme : $F(F^{-1}(u)) \ge u$: en considérant t_n une suite de $\{t \in \mathbb{R}, F(t) \ge u\}$ qui tend en décroissant vers $F^{-1}(u)$, on a $F(t_n) \ge u$ pour tout n, et la continuité à droite de F donne $F(F^{-1}(u)) \ge u$.
- On fixe $t \in \mathbb{R}$.
- \subset : soit $u \in (0,1)$ tel que $F^{-1}(u) \leq t$. Par croissance de F et le lemme, $u \leq F(F^{-1}(u)) \leq F(t)$.
- \supset : soit $u \in (0,1)$ tel que $u \leq F(t)$. Par définition de $F^{-1}(u)$, on a $F^{-1}(u) \leq t$.
- 2. Il suffit de montrer que $F^{-1} \in \mathcal{M}(\mathcal{B}(\mathbb{R}), \mathcal{B}(\mathbb{R}))$. Il suffit encore de montrer que pour tout $a \in \mathbb{R}$, $(F^{-1})^{-1}((-\infty, a]) \in \mathcal{B}(\mathbb{R})$.

On a
$$(F^{-1})^{-1}$$
 $((-\infty, a]) = \{u \in (0, 1), F^{-1}(u) \in (-\infty, a]\}$

$$= \{u \in (0, 1), F^{-1}(u) \le a\}$$

$$= \{u \in (0, 1), u \le F(a)\}$$

$$= (-\infty, F(a)] \cap (0, 1)$$

$$\in \mathcal{B}(\mathbb{R})$$

3. Pour $a \in \mathbb{R}$,

$$P(F^{-1}(U) \le a) = P\left(U^{-1}\left[\left(F^{-1}\right)^{-1}((-\infty, a])\right]\right)$$

$$= P\left(U^{-1}\left[\left(-\infty, F(a)\right] \cap (0, 1)\right]\right)$$

$$= \begin{cases} P\left(U^{-1}(\emptyset)\right) & \text{si } F(a) = 0\\ P\left(U^{-1}((0, F(a)])\right) & \text{si } 0 < F(a) < 1\\ P\left(U^{-1}((0, 1))\right) & \text{si } F(a) = 1 \end{cases}$$

$$= \begin{cases} 0 & \text{si } F(a) = 0\\ F(a) & \text{si } 0 < F(a) < 1\\ 1 & \text{si } F(a) = 1 \end{cases}$$

$$= F(a)$$

8

La fonction de répartition de $F^{-1}(U)$ est donc F et $F^{-1}(U)$ est en égal en loi à μ .

- 4. Dans ce cas, $F^{-1}: u \mapsto -\frac{\ln(1-u)}{\theta}$
- 5. Dans ce cas, $F^{-1}: u \mapsto \mathbb{1}_{(1-p,1]}(u)$
- 6. Dans ce cas, $F^{-1}: u \mapsto \sum_{n=1}^{\infty} (n+1) \mathbbm{1}_{((1-p)^n p, (1-p)^{n+1} p]}(u)$

Soit (Ω, \mathcal{A}, P) un espace probabilisé et X une var sur Ω .

Pour tout t > 0, on note $B_t = \{w \in \Omega, X(w) > t\}$.

On suppose que P(X > 0) > 0 et pour tout t, s > 0, $P(B_{t+s}) = P(B_t)P(B_s)$.

- 1. Montrer que $\forall t > 0, P(B_t) > 0$.
- 2. Montrer que $P(B_1) < 1$.
- 3. Soit $m: \mathbb{R}_+^* \to \mathbb{R}, t \mapsto \ln(P(B_t))$. Montrer que $\forall t > 0, m(t) = m(1)t$.
- 4. En déduire la fonction de répartition de X sur \mathbb{R}_{+}^{*} puis sur \mathbb{R}_{-} . Quelle est la loi de X?
- 1. Supposons par l'absurde qu'il existe t > 0 tel que $P(B_t) = 0$. Considérons alors $A = \{t > 0 / P(B_t) = 0\}$ et $t_0 = \inf A$. Comme $P(B_t) = 1 F_X(t)$, $t \mapsto P(B_t)$ est continue à droite et en considérant $(t_n) \in A^{\mathbb{N}}$ qui décroit vers t_0 , on a $t_0 \in A$. Comme $0 < P(X > 0) = P(\bigcup (X > \frac{1}{n})) = \lim_n P(X > \frac{1}{n})$ on dispose de $\varepsilon_0 := \frac{1}{n_0}$ tel que $P(B_{\varepsilon_0}) > 0$. Or $\varepsilon \le \varepsilon_0 \implies B_{\varepsilon_0} \subset B_{\varepsilon}$, donc pour tout $\varepsilon \le \varepsilon_0$, $P(B_{\varepsilon}) > 0$. Soit $\delta = \frac{\min(t_0, \varepsilon_0)}{2}$ alors $0 = P(B_{t_0}) = P(B_{t_0-\delta}) \underbrace{P(B_{\delta})}_{>0}$ donc $P(B_{t_0-\delta}) = 0$ avec $0 < t_0 \delta < t_0$. Absurde.
- 2. Supposons $P(B_1)=1$. Alors pour tout t>0, $P(B_{t+1}|B_1)=P(B_{t+1})$, donc $P(B_{t+1})=P(B_t)$ pour tout t>0. On démontre alors par récurrence que pour tout $n\geq 1$, $P(B_n)=P(B_1)$, donc $P(B_n)=1$. Or B_n est une suite décroissante d'événements avec $\cap_n B_n=\emptyset$ (car X ne prend que des valeurs finies). Par conséquent, $0=P(\emptyset)=P(\cap_n B_n)=\lim_n P(B_n)=1$ ce qui est absurde.
- 3. L'hypothèse de départ se réécrit

$$\forall t, s > 0, \ m(t+s) = m(t) + m(s)$$

En fixant s=1, on a pour tout t>0, m(t+1)=m(t)+m(1) et une récurrence montre que pour tout $n\in\mathbb{N}^*$, m(n)=m(1)n.

Soit $p,q \in \mathbb{N}^*$. On note que $m(1) = m(q\frac{1}{q})$. On montre par ailleurs par récurrence que

$$\forall n \in \mathbb{N}^*, \ m(n\frac{1}{q}) = nm(\frac{1}{q}) \quad (*)$$

Donc $m(1) = m(q\frac{1}{q}) = qm(\frac{1}{q})$, et $m(\frac{1}{q}) = \frac{m(1)}{q}$.

De même (*) donne

$$m(\frac{p}{q}) = m(p\frac{1}{q}) = pm(\frac{1}{q}) = m(1)\frac{p}{q}$$

Donc pour tout $r \in \mathbb{Q}_+^*$, m(r) = m(1)r.

Comme $\forall t > 0, P(B_t) = 1 - F_X(t), m$ est continue à droite en tout point.

Soit t > 0. Soit t_n une suite de rationnels qui tend en décroissant vers t. On a

$$m(t) = \lim_{n} m(t_n) = \lim_{n} (m(1)t_n) = m(1) \lim_{n} t_n = m(1)t_n$$

Le résultat est donc prouvé.

4. Pour t > 0 on a donc $F_X(t) = 1 - e^{m(1)t}$. Rappelons que $m(1) = \ln(P(B_1)) < 0$. F_X est continue à droite en 0, donc

$$P(X \le 0) = F_X(0) = \lim_{n} F_X(\frac{1}{n}) = 1 - \lim_{n} e^{\frac{m(1)}{n}} = 0$$

En particulier, si $a \le 0$, $(X \le a) \subset (X \le 0)$, donc $P(X \le a)) \le P((X \le 0)) = 0$ et $F_X(a) = 0$. La fdr de X est donnée par

$$F_X(t) = \begin{cases} 1 - e^{m(1)t} & \text{si } t > 0\\ 0 & \text{si } t \le 0 \end{cases}$$

qui est la fdr d'une loi exponentielle de paramètre -m(1). X suit donc une loi exponentielle de paramètre -m(1).

Soit $T = (U_1, \dots, U_n)$ un vaR constitué de var indépendantes et iid. On note F la fonction de répartition de U_1 . Soit h et p_k les applications telles que

$$\forall t = (t_1, \dots, t_n) \in \mathbb{R}^n, \ h(t) = (t_{(1)}, \dots, t_{(n)}) \text{ avec } t_{(1)} \le \dots \le t_{(n)}$$

$$\forall t = (t_1, \dots, t_n) \in \mathbb{R}^n, \ p_k(t) = t_k$$

- 1. Déterminer la fonction de répartition de la var $Y = (p_k \circ h)(T)$.
- 2. On suppose que $S = \sum_{i=1}^{n} \mathbb{1}_{(-\infty,c]}(U_i)$ pour c fixé.
 - (a) Etablir un lien entre $S^{-1}(\{k\})$ et $Y^{-1}((-\infty, c])$.
 - (b) En déduire la loi de S.

1. Soit
$$y \in \mathbb{R}$$
. $P(Y \leq y) = P(\bigcup_{\substack{I \subset [\![1,n]\!] \\ |I| \geq k}} \bigcap_{i \in I} (U_i \leq y))$

$$= P(\bigcup_{j=k}^n \bigcup_{\substack{I \subset [\![1,n]\!] \\ |I| = j}} \bigcap_{i \in I} (U_i \leq y) \cap \bigcap_{i \in I^c} (U_i > y))$$

$$= \sum_{j=k}^n \sum_{\substack{I \subset [\![1,n]\!] \\ |I| = j}} P(\bigcap_{i \in I} (U_i \leq y) \cap \bigcap_{i \in I^c} (U_i > y))$$

$$= \sum_{j=k}^n \sum_{\substack{I \subset [\![1,n]\!] \\ |I| = j}} (F(y))^j (1 - F(y))^{n-j} \quad \text{indépendance}$$

$$= \sum_{j=k}^n \binom{n}{j} (F(y))^j (1 - F(y))^{n-j}$$
2. a) On a $S^{-1}(\{k\}) = ((p_k \circ h)(T) \leq c) \cap ((p_{k+1} \circ h)(T) > c)$

$$\subset ((p_k \circ h)(T) \leq c)$$

$$= Y^{-1}((-\infty, c])$$

b) Chaque indicatrice $\mathbb{1}_{(-\infty,c]}(U_i)$ suit une loi de Bernoulli de paramètre F(c), les indicatrices sont indépendantes par composition, donc S suit une loi binomiale de paramètre (n, F(c)).

Exercice 11

Soit X une var de loi P_X et de fonction de répartition F_X telle que $P(X \ge 0) = 1$.

1. Avec Fubini, établir que

$$E(X) = \int_{\mathbb{D}^+} (1 - F_X(t)) d\lambda(t)$$

- 2. On suppose que P_X est une loi discrète de support \mathbb{N} . Exprimer E(X) en fonction de F_X dans ce cas.
- 1. X étant ≥ 0 Pps, E(X) existe dans $\overline{\mathbb{R}}$.

$$\begin{split} \int_{\mathbb{R}^+} (1-F_X(t)) d\lambda(t) &= \int_{\mathbb{R}^+} P(X>t) d\lambda(t) = \int_{\mathbb{R}^*_+} P(X>t) d\lambda(t) \\ &= \int \mathbbm{1}_{(0,\infty)}(t) \int \mathbbm{1}_{(t,\infty)}(u) dP_X(u) d\lambda(t) \\ &= \int \int \mathbbm{1}_{(0,\infty)}(t) \mathbbm{1}_{(t,\infty)}(u) dP_X(u) d\lambda(t) \\ &= \int \int \mathbbm{1}_{D}((t,u)) dP_X(u) d\lambda(t) \quad \text{où } D = \{(t,u) \in \mathbb{R}^2, 0 < t < u \ \} \end{split}$$

or D est l'intersection de deux ouverts de \mathbb{R}^2 , donc ouvert, donc $D \in \mathcal{B}(\mathbb{R}^2)$ et $\mathbb{1}_D \in \mathcal{M}^+(\mathcal{B}(\mathbb{R}^2), \mathcal{B}(\mathbb{R}))$. D'après Fubini positif,

$$\begin{split} \int \int \mathbbm{1}_{(0,\infty)}(t) \mathbbm{1}_{(t,\infty)}(u) dP_X(u) d\lambda(t) &= \int \int \mathbbm{1}_{(0,\infty)}(t) \mathbbm{1}_{(t,\infty)}(u) d\lambda(t) dP_X(u) \\ &= \int \int \mathbbm{1}_{(0,\infty)}(u) \mathbbm{1}_{(0,u)}(t) d\lambda(t) dP_X(u) \\ &= \int \mathbbm{1}_{[0,\infty)}(u) u \ dP_X(u) \\ &= \int \mathbbm{1}_{[0,\infty)}(u) u \ dP_X(u) \quad \text{car } \mathbbm{1}_{(0,\infty)}(u) u = \mathbbm{1}_{[0,\infty)}(u) u \\ &= \int \mathbbm{1}_{[0,\infty)}(X(w)) X(w) \ dP(w) \quad \text{transfert pour fonction positive} \\ &= \int X(w) \ dP(w) \quad \text{car } \mathbbm{1}_{[0,\infty)}(X) = 1 \ P\text{-p.s} \\ &= E(X) \end{split}$$

2. Dans ce cas, en notant N la mesure de comptage sur \mathbb{N} ,

$$\sum_{n \in \mathbb{N}} (1 - F_X(n)) = \int (1 - F_X(n)) dN(n)$$

$$= \int P_X((n, \infty)) dN(n)$$

$$= \int \int \mathbb{1}_{(n,\infty)}(t) dP_X(t) dN(n)$$

$$= \int \int \mathbb{1}_{(n,\infty)}(t) dN(n) dP_X(t)$$

$$= \int \left(\int \mathbb{1}_{(-\infty,t)}(n) dN(n)\right) dP_X(t)$$

$$= \sum_{t \in \mathbb{N}} P_X(\{t\}) \sum_{n < t, n \in \mathbb{N}} 1$$

$$= \sum_{t \in \mathbb{N}} P_X(\{t\}) t$$

$$= E(X)$$

Exercice 12

Soit X une var de loi $\mathcal{N}(0,1)$.

- 1. Pour tout $t \in \mathbb{R}$, calculer l'espérance et la variance de $U = e^{tX}$.
- 2. Pour quelles valeurs de a>0, la variable $V=e^{aX^2}$ est-elle de carré intégrable? Dans ce cas, calculer sa variance.

1. $x \mapsto e^{tx}$ est $(\mathcal{B}(\mathbb{R}), \mathcal{B}(\mathbb{R}))$ mesurable (car continue), positive et P_X est continue, donc :

$$\int e^{tx} dP_X(x) = \int e^{tx} f_X(x) d\lambda(x) = \frac{1}{\sqrt{2\pi}} \int e^{tx} e^{-x^2/2} d\lambda(x)$$

$$= \frac{1}{\sqrt{2\pi}} \int e^{t^2/2} e^{-(x-t)^2/2} d\lambda(x)$$

$$= e^{t^2/2} \frac{1}{\sqrt{2\pi}} \int e^{-x^2/2} d\lambda(x)$$

$$= e^{t^2/2}$$

Donc U admet une espérance finie donnée par $E(U) = e^{t^2/2}$.

Comme $U^2=e^{2tX}$, un calcul similaire en remplaçant t par 2t montre que U admet un moment d'ordre 2 avec $E(U^2)=e^{(2t)^2/2}=e^{2t^2}$.

Donc $V(U) = e^{2t^2} - (e^{t^2/2})^2 = e^{2t^2} - e^{t^2}$

2. Soit a > 0. $x \mapsto e^{ax^2}$ est $(\mathcal{B}(\mathbb{R}), \mathcal{B}(\mathbb{R}))$ mesurable (car continue), positive et P_X est continue, donc :

$$\int e^{ax^2} dP_X(x) = \int e^{ax^2} f_X(x) d\lambda(x) = \frac{1}{\sqrt{2\pi}} \int e^{ax^2} e^{-x^2/2} d\lambda(x)$$
$$= \frac{1}{\sqrt{2\pi}} \int e^{-x^2(\frac{1}{2} - a)} d\lambda(x)$$

Vadmet une espérance si et seulement si l'intégrale précédente est finie, ie $a<\frac{1}{2}.$

Dans ce cas, $E(V) = \frac{1}{\sqrt{2\pi}} \int e^{-x^2(\frac{1}{2}-a)} d\lambda(x) = \frac{1}{\sqrt{1-2a}}$.

Comme $V^2=e^{2aX^2}$, en reprenant le calcul précédent avec 2a au lieu de a,V admet un moment d'ordre 2 si et seulement si $2a<\frac{1}{2}$ ie $a<\frac{1}{4}$ et dans ce cas $E(V^2)=\frac{1}{\sqrt{1-4a}}$.

La variance de V est donnée par $\frac{1}{\sqrt{1-4a}} - \frac{1}{1-2a}$

Exercice 13

Soit Z une var continue de loi de Laplace de paramètre θ . Soient $U=\mathbbm{1}_{[0,\infty)}(Z)-\mathbbm{1}_{(-\infty,0)}(Z)$ et T=|Z|.

- 1. Montrer que U est une var discrète de loi uniforme sur $\{-1,1\}$.
 - 2. Montrer que T est une var continue de loi exponentielle $\mathcal{E}(\theta)$
 - 3. Montrer que U et T sont indépendantes (critère utilisant les espérances).

1.
$$U(w)=1$$
 ssi $Z(w)\geq 0$ et $U(w)=-1$ ssi $Z(w)<0$. U est à valeurs dans $\{-1,1\}$ donc discrète. $P(U=1)=P(Z\geq 0)=\int_0^\infty \frac{\theta}{2}e^{-\theta|x|}d\lambda(x)=\frac{1}{2}.$ De même $P(U=-1)=\frac{1}{2},$ donc $P_U=\frac{1}{2}\delta_{\{-1\}}+\frac{1}{2}\delta_{\{1\}}.$

2. Soit $a \in \mathbb{R}$. Si a < 0, $P(T \le a) = 0$.

Si
$$a \ge 0$$
, $P(T \le a) = P(Z \in [-a, a]) = \int_{-a}^{a} \frac{\theta}{2} e^{-\theta |x|} d\lambda(x)$
$$= 1 - e^{-\theta a}$$

On peut aussi écrire $P(Z \in [-a,a]) = F_Z(a) - F_Z(-a) = (1 - e^{-\theta a}) \mathbb{1}_{a \in (0,\infty)}$.

La fdr de T est donc celle d'une loi exponentielle de paramètre θ , donc T suit la loi exponentielle de paramètre θ .

Autre méthode : pour h mesurable positive,

$$\begin{split} E(h(T)) &= \int h(|z|) f_Z(z) dz \\ &= \int_{\mathbb{R}^-} h(-z) f_Z(z) dz + \int_{\mathbb{R}^+} h(z) f_Z(z) dz \\ &= \int h(z) \underbrace{(f_Z(z) + f_Z(-z)) \mathbbm{1}_{(0,\infty)}(z)}_{\text{densité de } T} dz \end{split}$$

3. Montrons que pour tout $h,g\in\mathcal{M}^+(\mathcal{B}(\mathbb{R}),\mathcal{B}(\mathbb{R})), \ E(h(U)g(T))=E(h(U))E(g(T)).$ On a $E(h(U))E(g(T))=\left(\frac{h(1)}{2}+\frac{h(-1)}{2}\right)\int_{\mathbb{R}^+}g(t)\theta e^{-\theta t}dt$ et $E(h(U)g(T))=E(h(\mathrm{sign}(Z))g(|Z|))$ $=\int h(\mathrm{sign}(z))g(|z|)\frac{\theta}{2}e^{-\theta|z|}dz$ $=\int_{\mathbb{R}^-}h(-1)g(-z)\frac{\theta}{2}e^{\theta z}dz+\int_{\mathbb{R}^+}h(1)g(z)\frac{\theta}{2}e^{-\theta z}dz$ $=\int_{\mathbb{R}^+}h(-1)g(t)\frac{\theta}{2}e^{-\theta t}dt+\int_{\mathbb{R}^+}h(1)g(z)\frac{\theta}{2}e^{-\theta z}dz$ $=\left(\frac{h(1)}{2}+\frac{h(-1)}{2}\right)\int_{\mathbb{R}^+}g(t)\theta e^{-\theta t}dt$

Exercice 14

Soit X une var de loi uniforme sur (0,1) et Y définie par $Y=\mathbb{1}_{(0,p)}(X)$ avec $p\in(0,1)$.

- 1. Loi de Y.
- 2. Soit Z = X + Y. Loi de Z.
- 3. Montrer de deux manières que X et Y ne sont pas indépendantes.
- 1. Y est à valeurs dans $\{0,1\}$ donc discrète, avec $P(Y=1)=P(X\in(0,p))=p$. Donc X suit la loi de Bernoulli de paramètre p.
- 2. Soit $a \in \mathbb{R}$. Si $a \leq 0$, $P(X + Y \leq a) = 0$. Si $a \geq 0$,

$$\begin{split} P(X+Y \leq a) &= P((X+1 \leq a) \cap X \in (0,p)) + P((X \leq a) \cap X \in (p,1)) \\ &= P(X \in (0,a-1) \cap (0,p)) + P(X \in (0,a) \cap (p,1)) \\ &= \begin{cases} 0 & \text{si } a \in (0,p) \\ a-p & \text{si } a \in (p,1) \\ a-p & \text{si } a \in (1,1+p) \\ 1 & \text{si } a > 1+p \end{cases} \end{split}$$

La fdr de X + Y est donc celle de la loi uniforme sur (p, 1 + p), donc Z suit la loi uniforme sur (p, 1 + p).

3. On a $V(X+Y)=V(Z)=\frac{1}{12}$ et $V(X)+V(Y)=\frac{1}{12}+p(1-p)$, donc X et Y ne sont pas indépendantes.

Autrement,
$$E(XY) = E(X \mathbbm{1}_{(0,p)}(X))$$

$$= \int x \mathbbm{1}_{(0,p)}(x) f_X(x) d\lambda(x)$$

$$= \int_0^p x d\lambda(x)$$

$$= \frac{p^2}{2}$$
et $E(X)E(Y) = \frac{1}{2}p$ donc X et Y ne sont pas indépendantes.

2. Espérance conditionnelle

Exercice 1

Soient X_1 et X_2 deux var indépendantes de loi binomiale de paramètre respectif (n_1, p) et (n_2, p) . Déterminer la loi conditionnelle de X_1 sachant $X_1 + X_2$. En déduire $E(X_1|X_1 + X_2)$.

 \bullet X_1 et X_2 étant des var indépendants et discrets, (X_1,X_2) est un var discret de loi

$$P_{(X_1,X_2)} = \sum_{(x,y) \in [0,n_1] \times [0,n_2]} \binom{n_1}{x} \binom{x_2}{y} p^{x+y} (1-p)^{n_1+n_2-(x+y)}$$

- Déterminons $P_{(X_1+X_2,X_1)}$.
- * Soit $\varphi:(x,y)\mapsto (x+y,x)$. φ est continue donc $(\mathcal{B}(\mathbb{R}^2),\mathcal{B}(\mathbb{R}))$ mesurable. Donc $\varphi(X_1,X_2)$ est discret et

$$P_{(X_1+X_2,X_1)} = \sum_{(t,u)\in\varphi([\![0,n_1]\!]\times[\![0,n_2]\!])} P_{(X_1,X_2)}(\varphi^{-1}((t,u))\cap [\![0,n_1]\!]\times[\![0,n_2]\!])$$

$$\begin{split} \star \text{ On a } \varphi(\llbracket 0, n_1 \rrbracket \times \llbracket 0, n_2 \rrbracket) &= \{ (t+u, t), \ t \in \llbracket 0, n_1 \rrbracket \text{ et } u \in \llbracket 0, n_2 \rrbracket \} \\ &= \{ (x, y), \ y \in \llbracket 0, n_1 \rrbracket \text{ et } x \in \llbracket y, y + n_2 \rrbracket \} \\ &= \{ (x, y), \ x \in \llbracket 0, n_1 + n_2 \rrbracket \text{ et } y \in \llbracket \max(0, x - n_2), \min(n_1, x) \rrbracket \} \end{split}$$

 \star Pour $(t,u)\in\varphi(\llbracket 0,n_1\rrbracket\times\llbracket 0,n_2\rrbracket),$ on a

$$\begin{split} P_{(X_1,X_2)}(\varphi^{-1}((t,u)) \cap \llbracket 0,n_1 \rrbracket \times \llbracket 0,n_2 \rrbracket) &= P(\{w \in \Omega, \ \varphi(X_1(w),X_2(w)) = (t,u) \ \text{et} \ (X_1(w),X_2(w)) \in \llbracket 0,n_1 \rrbracket \times \llbracket 0,n_2 \rrbracket \}) \\ &= P(\{w \in \Omega, \ X_1(w) = u \ \text{et} \ X_2(w) = t - u\}) \quad \text{car} \ t \in \llbracket u,u+n_2 \rrbracket \\ &= P((X_1 = u) \cap (X_2 = t - u)) \\ &= P(X_1 = u)P(X_2 = t - u) \\ &= \binom{n_1}{u} \binom{n_2}{t-u} p^t (1-p)^{n_1+n_2-t} \end{split}$$

* Donc

$$P_{(X_1+X_2,X_1)} = \sum_{\substack{t \in [0,n_1+n_2]\\ u \in [\max(0,t-n_2),\min(n_1,t)]}} \binom{n_1}{u} \binom{n_2}{t-u} p^t (1-p)^{n_1+n_2-t} \delta_{\{(t,u)\}}$$

• Déterminons $P_{X_1+X_2}$. Par projection,

$$\begin{split} P_{X_1+X_2} &= \sum_{t \in [\![0,n_1+n_2]\!]} \left(\sum_{u \in [\![\max(0,t-n_2),\min(n_1,t)]\!]} P_{(X_1+X_2,X_1)}(\{(t,u)\}) \right) \delta_{\{t\}} \\ &= \sum_{t \in [\![0,n_1+n_2]\!]} \left(\sum_{u \in [\![\max(0,t-n_2),\min(n_1,t)]\!]} \binom{n_1}{u} \binom{n_2}{t-u} p^t (1-p)^{n_1+n_2-t} \right) \delta_{\{t\}} \\ &= \sum_{t \in [\![0,n_1+n_2]\!]} \binom{n_1+n_2}{t} p^t (1-p)^{n_1+n_2-t} \delta_{\{t\}} \end{split}$$

- Déterminons la loi conditionnelle de X_1 sachant $X_1 + X_2$. Ces deux vaR sont discrets.
- \star pour $t \in [0, n_1 + n_2],$

$$\mathcal{U}_t = \{ u, \ P_{(X_1 + X_2, X_1)}(t, u) > 0 \}$$

= $[\max(0, t - n_2), \min(n_1, t)]$

De sorte que

$$P_{X_1}^{X_1+X_2=t} = \sum_{u \in \mathcal{U}_t} \frac{\binom{n_1}{u} \binom{n_2}{t-u} p^t (1-p)^{n_1+n_2-t}}{\binom{n_1+n_2}{t} p^t (1-p)^{n_1+n_2-t}} \delta_{\{u\}} = \sum_{u \in \mathcal{U}_t} \frac{\binom{n_1}{u} \binom{n_2}{t-u}}{\binom{n_1+n_2}{t}} \delta_{\{u\}}$$

* pour $t \notin [0, n_1 + n_2]$ on pose $P_{X_1}^{X_1 + X_2 = t} = P_{X_1}$.

• Déterminons $E(X_1|X_1+X_2)$.

Posons $h:(t,u)\mapsto u$. h est continue donc $(\mathcal{B}(\mathbb{R}^2),\mathcal{B}(\mathbb{R}))$ -mesurable. Alors $h(X_1+X_2,X_1)\in\mathcal{M}^+(B(\mathbb{R}^2),\mathcal{B}(\mathbb{R}))$ de sorte que

$$\Psi(t) = \int h(t, u) dP_{X_1}^{X_1 + X_2 = t}(u)$$

$$= \begin{cases} \sum_{u \in \mathcal{U}_t} u \frac{\binom{n_1}{u} \binom{n_2}{t - u}}{\binom{n_1 + n_2}{t}} & \text{si } t \in [0, n_1 + n_2] \\ \sum_{u \in [0, n_1]} u \binom{n_1}{u} p^u (1 - p)^{n_1 - u} & \text{sinon} \end{cases}$$

$$= \begin{cases} \frac{t n_1}{n_1 + n_2} & \text{si } t \in [0, n_1 + n_2] \\ n_1 p & \text{sinon} \end{cases}$$

Et

$$E(X_1|X_1+X_2) = \frac{n_1}{n_1+n_2} (X_1+X_2) \mathbb{1}_{\llbracket 0,n_1+n_2 \rrbracket} (X_1+X_2) + n_1 p \underbrace{\mathbb{1}_{\llbracket 0,n_1+n_2 \rrbracket^c} (X_1+X_2)}_{= 0 P-\text{p.s}}$$

$$= \frac{n_1}{n_1+n_2} (X_1+X_2) \quad P-\text{p.s}$$

Exercice 2

Soit (X,Y) un couple aléatoire continu de densité

$$f(x,y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x}{2}(y+x)} \mathbb{1}_{(\mathbb{R}_+^*)^2}(x,y)$$

- 1. Déterminer la loi conditionnelle de Y sachant X.
- 2. Déterminer E(Y|X).
- 1. (X,Y) étant continu, X est continu de densité $f_X(x) = \int \frac{1}{\sqrt{2\pi}} e^{-\frac{x}{2}(y+x)} \mathbb{1}_{\mathbb{R}_+^*}(x,y) d\lambda(y)$ Le support de $=\frac{2}{\sqrt{2\pi}}e^{-x^2/2}\mathbb{1}_{(0,\infty)}(x)$

X est $(0,\infty)$.

 \star Pour $x \in (0, \infty)$, $P_Y^{X=x}$ est une loi continue de densité

$$y \mapsto \frac{f(x,y)}{f_X(x)} = \mathbb{1}_{(0,\infty)}(x)\frac{x}{2}e^{-\frac{x}{2}y}$$

ie une loi exponentielle de paramètre $\frac{x}{2}$.

- * Pour $x \le 0$, on pose $P_Y^{X=x} = P_Y$.
- 2. Posons $h:(x,y)\mapsto y.$ h est continue donc $(\mathcal{B}(\mathbb{R}^2),\mathcal{B}(\mathbb{R}))$ -mesurable. D'après la forme de la densité f,

2. Posons
$$h: (x,y) \mapsto y$$
. h est continue donc $(\mathcal{B}(\mathbb{R}), Y)$ est ≥ 0 P -p.s, de sorte que $h(X,Y) \in \mathcal{M}^+(\mathcal{A},\mathcal{B}(\mathbb{R}))$.

Donc $\Psi(x) = \begin{cases} \int y \mathbb{1}_{(0,\infty)}(x) \frac{x}{2} e^{-\frac{x}{2}y} d\lambda(y) & \text{si } x > 0 \\ \int y f_Y(y) d\lambda(y) & \text{si } x \leq 0 \end{cases}$

$$= \begin{cases} \frac{2}{x} & \text{si } x > 0 \\ \int y f_Y(y) d\lambda(y) & \text{si } x \leq 0 \end{cases}$$

Comme P(X > 0) =

$$E(Y|X) = \frac{2}{X}$$
 P-p.s

Soit (X,Y) un couple aléatoire continu de densité $f(x,y) = e^{-y} \mathbb{1}_D(x,y)$ avec $D = \{(x,y), 0 < x < y\}$.

- 1. Déterminer la loi conditionnelle de X sachant Y.
- 2. Soit $h \in \mathcal{M}^+(\mathcal{B}(\mathbb{R}), \mathcal{B}(\mathbb{R}))$. Déterminer $E(h(\frac{X}{Y})|Y)$.
- 3. Sans calculer la loi de $(\frac{X}{Y}, Y)$, montrer que $\frac{X}{Y}$ et Y sont indépendantes.

1.
$$(X,Y)$$
 étant continu, Y est continu de densité $f_Y(y)=\int e^{-y}\mathbbm{1}_D(x,y)d\lambda(x)$
$$=\int e^{-y}\mathbbm{1}_{(0,\infty)}(y)\mathbbm{1}_{(0,y)}(x)d\lambda(x)$$

$$=ye^{-y}\mathbbm{1}_{(0,\infty)}(y)$$

Le support de Y est $(0, \infty)$.

- \star Pour y>0, $P_X^{Y=y}$ est une loi continue de densité $x\mapsto \frac{1}{y}\mathbbm{1}_{(0,y)}(x).$
- \star Pour $y \leq 0$, on pose $P_X^{Y=y} = P_X$.
- 2. Soit $h \in \mathcal{M}^+(\mathcal{B}(\mathbb{R}), \mathcal{B}(\mathbb{R}))$. Posons $g:(x,y) \mapsto h(\frac{x}{y})$. g est mesurable positive.

On a
$$\Psi(y) = \begin{cases} \int h(\frac{x}{y}) \frac{1}{y} \mathbbm{1}_{(0,y)}(x) d\lambda(x) & \text{si } y > 0 \\ \int h(\frac{x}{y}) dP_X(x) & \text{sinon} \end{cases}$$

$$= \begin{cases} \int h(u) \mathbbm{1}_{(0,1)}(u) d\lambda(u) & \text{si } y > 0 \\ \int h(\frac{x}{y}) dP_X(x) & \text{sinon} \end{cases}$$

Comme P(Y > 0) = 1,

$$E(h(\frac{X}{Y})|Y) = \int h(u) \mathbb{1}_{(0,1)}(u) d\lambda(u) \quad P\text{-p.s}$$

3. On fait appel au critère des espérances. Soient $g, h \in \mathcal{M}^+(\mathcal{B}(\mathbb{R}), \mathcal{B}(\mathbb{R}))$.

$$\begin{split} E\left[g(Y)h(\frac{X}{Y})\right] &= E\left[E\left(g(Y)h(\frac{X}{Y})\middle|Y\right)\right] \\ &= E\left[g(Y)E\left(h(\frac{X}{Y})\middle|Y\right)\right] \quad \text{car } g(Y) \in \mathcal{M}(\sigma(Y),\mathcal{B}(\mathbb{R})) \\ &= E\left[g(Y)\int\ldots\right] \quad \text{d'après 2.} \\ &= \left(\int\ldots\right)E\left(g(Y)\right) \quad \text{l'intégrale est une constante} \\ &= E\left(\int\ldots\right)E\left(g(Y)\right) \quad \text{l'intégrale est une constante} \\ &= E\left[E\left(h(\frac{X}{Y})\middle|Y\right)\right]E\left(g(Y)\right) \quad \text{d'après 2.} \\ &= E\left(h(\frac{X}{Y})\right)E\left(g(Y)\right) \end{split}$$

Donc $\frac{X}{Y}$ et Y sont indépendantes.

Soit (X,Y) un couple aléatoire continu de densité

$$f(x,y) = \frac{1}{4\pi} e^{-\frac{1}{2}(\frac{x^2}{2} - xy + y^2)}$$

- 1. Déterminer la loi conditionnelle de Y sachant X.
- 2. Montrer que $Y \frac{X}{2}$ est indépendant de X et préciser sa loi.

1.
$$(X,Y)$$
 étant continu, X est continu de densité $f_X(x) = \frac{1}{4\pi} \int e^{-\frac{1}{2}(y-\frac{x}{2})^2} e^{-\frac{x^2}{8}} d\lambda(y)$
$$= \frac{e^{-x^2/8}\sqrt{2\pi}}{4\pi}$$

Le support de X est \mathbb{R} . Pour tout $x\in\mathbb{R},$ $P_Y^{X=x}$ est une loi continue de densité

$$y \mapsto \frac{\frac{1}{4\pi}e^{-\frac{1}{2}(\frac{x^2}{2} - xy + y^2)}}{\frac{e^{-x^2/8}\sqrt{2\pi}}{4\pi}} = \frac{e^{-\frac{1}{2}(y - \frac{x}{2})^2}}{\sqrt{2\pi}}$$

qui est la densité d'une loi normale de paramètres $(\frac{x}{2}, 1)$.

2. Soit $h \in \mathcal{M}^+(\mathcal{B}(\mathbb{R}), \mathcal{B}(\mathbb{R}))$. Posons $\varphi : (x,y) \mapsto h(y-\frac{x}{2})$. φ étant mesurable positive, on a pour $x \in \mathbb{R}$, $\Psi(x) = \int \varphi(x, y) dP_Y^{X=x}(y)$ $= \int h(y - \frac{x}{2}) \frac{e^{-\frac{1}{2}(y - \frac{x}{2})^2}}{\sqrt{2\pi}} d\lambda(y)$ $= \int h(y) \frac{e^{-\frac{1}{2}y^2}}{\sqrt{2\pi}} d\lambda(y)$

De sorte que $E\left(h(Y-\frac{X}{2})\big|X\right)=C_h$ P-p.s

Soit
$$g \in \mathcal{M}^+(\mathcal{B}(\mathbb{R}), \mathcal{B}(\mathbb{R}))$$
. On a $E\left[g(X)h(Y-\frac{X}{2})\right]=E\left[E\left(g(X)h(Y-\frac{X}{2})\Big|X\right)\right]$

$$=E\left[g(X)E\left(h(Y-\frac{X}{2})\Big|X\right)\right]$$

$$=E[g(X)C_h]$$

$$=C_hE[g(X)]$$

$$=E(C_h)E[g(X)]$$

$$=E\left[E\left(h(Y-\frac{X}{2})\Big|X\right)\right]E[g(X)]$$

$$=E\left(h(Y-\frac{X}{2})\right)E(g(X))$$

Donc X et $Y - \frac{X}{2}$ sont indépendants.

Par ailleurs,
$$\int h(u)dP_{Y-\frac{X}{2}}(u) = E(h(Y-\frac{X}{2})) = E\left[E\left(h(Y-\frac{X}{2})\Big|X\right)\right]$$
$$= E(C_h)$$
$$= C_h$$
$$= \int h(y)\frac{e^{-\frac{1}{2}y^2}}{\sqrt{2\pi}}d\lambda(y)$$

Ceci étant vrai pour tout $h, Y - \frac{X}{2}$ admet une densité par rapport à λ donnée par $y \mapsto \frac{e^{-\frac{1}{2}y^2}}{\sqrt{2\pi}}$.

Donc $Y - \frac{X}{2}$ suit la loi normale de paramètres (0,1).

Exercice 5

Soit (X,Y) un couple aléatoire continu de loi $P_{(X,Y)}$ admettant une densité par rapport à $N \otimes \lambda$, N étant la mesure de comptage sur \mathbb{N} . Cette densité est donnée par

$$f(x,y) = \frac{y^{p+x-1}}{x!} \frac{\theta^p}{(p-1)!} e^{-(\theta+1)y} \mathbb{1}_{\mathbb{N}}(x) \mathbb{1}_{(0,\infty)}(y)$$

avec $p \in \mathbb{N}^*$ et $\theta > 0$.

- 1. Calculer P_X .
- 2. Déterminer la loi conditionnelle de Y sachant X.
- 3. Calculer E(Y|X).
- 1. X est la marginale d'un couple à densité, de sorte que

$$f_X(x) = \int f(x,y)d\lambda(y) = \mathbb{1}_{\mathbb{N}}(x) \binom{p+x-1}{x} \frac{\theta^p}{(\theta+1)^{p+x}}$$

Alors $P_X(\{x\}) = \sum_{k=0}^{\infty} \mathbb{1}_{\{x\}}(k) f_X(k)$. X est donc discrète, de support \mathbb{N} , de loi

$$P_X = \sum_{k \in \mathbb{N}} f_X(k) \delta_{\{k\}}$$

2. On a pour $(A, B) \in \mathcal{B}(\mathbb{R})^2$

$$P_{(X,Y)}(A,B) = P_{(X,Y)}(A \cap \mathbb{N}, B) + P_{(X,Y)}(A \cap \mathbb{N}^c, B)$$

Avec

$$P_{(X,Y)}(A \cap \mathbb{N}, B) = \int_{A \cap \mathbb{N}} f_X(x) \left(\frac{(\theta+1)^{p+x}}{(p+x-1)!} \int_{B \cap \mathbb{R}_+^*} y^{p+x-1} e^{-(\theta+1)y} d\lambda(y) \right) dN(x)$$

$$= \int_A \mathbb{1}_{\mathbb{N}}(x) \frac{(\theta+1)^{p+x}}{(p+x-1)!} \int_{B \cap \mathbb{R}_+^*} y^{p+x-1} e^{-(\theta+1)y} d\lambda(y) dP_X(x)$$

 $P_{(X,Y)}(A \cap \mathbb{N}^c, B) \leq P_{(X,Y)}(\mathbb{N}^c, \mathbb{R}) = P_X(\mathbb{N}^c) = 0$, donc

$$P_{(X,Y)}(A,B) = \int_A \mathbb{1}_{\mathbb{N}}(x) \frac{(\theta+1)^{p+x}}{(p+x-1)!} \int_{B \cap \mathbb{R}_+^*} y^{p+x-1} e^{-(\theta+1)y} d\lambda(y) \ dP_X(x)$$

On pose donc
$$N(x,B) = \begin{cases} \frac{(\theta+1)^{p+x}}{(p+x-1)!} \int_{B \cap \mathbb{R}_+^*} y^{p+x-1} e^{-(\theta+1)y} d\lambda(y) & \text{si } x \in \mathbb{N} \\ P_y(B) & \text{sinon} \end{cases}$$

$$= \begin{cases} \int_B \frac{(\theta+1)^{p+x}}{(p+x-1)!} y^{p+x-1} e^{-(\theta+1)y} \mathbb{1}_{\mathbb{R}_+^*}(y) d\lambda(y) & \text{si } x \in \mathbb{N} \\ P_y(B) & \text{sinon} \end{cases}$$

Pour $x\in\mathbb{N},\,N(x,\cdot)$ admet une densité par rapport à λ donnée par

$$\frac{(\theta+1)^{p+x}}{(p+x-1)!}y^{p+x-1}e^{-(\theta+1)y}\mathbb{1}_{\mathbb{R}_+^*}(y)$$

On reconnait la densité d'une loi $\Gamma(p+x,\theta+1)$.

3. Posons $h:(x,y)\mapsto y$. h est continue donc $(\mathcal{B}(\mathbb{R}^2),\mathcal{B}(\mathbb{R}))$ -mesurable. D'après la forme de la densité f, Y est ≥ 0 P-p.s, de sorte que $h(X,Y)\in\mathcal{M}^+(\mathcal{A},\mathcal{B}(\mathbb{R}))$.

$$\begin{aligned} \operatorname{Donc} \, \Psi(x) &= \begin{cases} \int y \frac{(\theta+1)^{p+x}}{(p+x-1)!} y^{p+x-1} e^{-(\theta+1)y} \, \mathbbm{1}_{\mathbb{R}_+^*}(y) d\lambda(y) & \text{si } x \in \mathbb{N} \\ \int y dP_y(y) & \text{sinon} \end{cases} \\ &= \begin{cases} \frac{p+x}{\theta+1} & \text{si } x \in \mathbb{N} \\ \int y dP_y(y) & \text{sinon} \end{cases} \\ \operatorname{Comme} \, P(X \in \mathbb{N}) &= 1, \end{cases}$$

$$E(Y|X) = \frac{p+X}{\theta+1}$$

Soient U une var de loi exponentielle de paramètre $\lambda > 0$ et X une variable positive P-p.s, indépendante de U. Calculer $E(\inf(X,U)|X)$.

Comme X et U sont indépendants, la loi conditionnelle de U sachant X est simplement $P_U^{X=x} = P_U$. Par ailleurs, $\inf(X, U) = X \mathbbm{1}_{X \le U} + U \mathbbm{1}_{U < X}$, de sorte que

$$\begin{split} E(\inf(X,U)|X) &= E(X \mathbb{1}_{X \leq U} + U \mathbb{1}_{U < X}|X) \\ &= E(X \mathbb{1}_{X \leq U}|X) + E(U \mathbb{1}_{U < X}|X) \\ &= X E(\mathbb{1}_{X < U}|X) + E(U \mathbb{1}_{U < X}|X) \end{split}$$

 $(x,u)\mapsto \mathbbm{1}_{x\leq u}$ est mesurable positive (il s'agit de $(x,u)\mapsto \mathbbm{1}_D(x,u)$ avec $D=\{(x,u),\ u\geq x\}$ qui est fermé donc borélien), et $(x,u)\mapsto u\mathbbm{1}_{u\leq x}$ est mesurable comme produit de $(x,u)\mapsto u$ et $(x,u)\mapsto \mathbbm{1}_D(x,u)$ où $D=\{(x,u),\ x>u\}$ qui est ouvert donc borélien). De plus, U est ≥ 0 P-p.s, donc $U\mathbbm{1}_{U\leq X}\in \mathcal{M}^+(\mathcal{A},\mathcal{B}(\mathbb{R}))$. En calculant les deux intégrales correspondantes (en passant par la densité de U),

$$E(\mathbb{1}_{X \le U}|X) = \mathbb{1}_{\mathbb{R}_{-}^*}(X) + \mathbb{1}_{\mathbb{R}_{+}}(X)e^{-\lambda X}$$

et

$$E(U \mathbb{1}_{U < X} | X) = \mathbb{1}_{\mathbb{R}_+}(X) \left(-Xe^{-\lambda X} + \frac{1}{\lambda} - \frac{e^{-\lambda X}}{\lambda} \right)$$

Comme $X \ge 0$ P-p.s, $E(\mathbb{1}_{X \le U}|X) = e^{-\lambda X}$ et

$$E(U\mathbb{1}_{U < X}|X) = -Xe^{-\lambda X} + \frac{1}{\lambda} - \frac{e^{-\lambda X}}{\lambda}$$

Finalement,

$$E(\inf(X, U)|X) = \frac{1 - e^{-\lambda X}}{\lambda}$$

Exercice 7

Soit N une var discrète de loi P_N de support [0, n] donnée par

$$P_N = \sum_{k \in [0,n]} \alpha_k \delta_{\{k\}}$$

Soit (X_n) une suite de var indépendantes et de même loi de Bernoulli de paramètre $p \in (0,1)$. On suppose que N et les X_n sont indépendants.

Soit S la var définie par $S = \sum_{k=0}^{N} X_k$.

- 1. Déterminer la loi conditionnelle de S sachant N.
- 2. Calculer E(S|N) et $E(S^2|N)$. En déduire E(S) et $E(S^2)$ en fonction de E(N) et $E(N^2)$.
- 3. Déterminer la loi de (N, S).
- 4. Soit $q \in (0,1)$. Déterminer la loi de N pour que la loi conditionnelle de N sachant S=0 soit la loi binomiale de paramètre (n,q)

- 1. X_0, \ldots, X_n, N étant discrets et indépendants, (X_0, \ldots, X_n, N) est un vaR discret. Par ailleurs, $S = \sum_{k=0}^n \mathbbm{1}_{k \le N} X_k$. Or $\varphi : (x_0, \ldots, x_n, m) \mapsto (p, \sum_{k=0}^n \mathbbm{1}_{k \le m} x_k)$ est $(\mathcal{B}(\mathbb{R}^{n+2}), \mathcal{B}(\mathbb{R}^2))$ -mesurable, de sorte que (N, S) est un var discret, de support $[\![0, n]\!] \times \varphi(\{0, 1\}^{n+1} \times [\![0, n]\!]) = [\![0, n]\!] \times [\![0, n+1]\!]$.

$$=P((N=m)\cap \left(\sum_{k=0}^m X_k=s\right))$$

Or à m fixé, $X_1, \ldots X_m, N$ sont indépendantes, et d'après le lemme des coalitions, $\sum_{k=1}^m X_k$ et N sont indépendantes, de sorte que

$$P_{(N,S)}(\{(m,s)\}) = P((N=m) \cap \left(\sum_{k=0}^{m} X_k = s\right))$$

$$= P(N=m)P(\sum_{k=0}^{m} X_k = s)$$
suit une loi $\mathcal{B}(m+1,p)$

$$= \alpha_m \binom{m+1}{s} p^s (1-p)^{m+1-s}$$

Par conséquent,

$$P_{(N,S)} = \sum_{(m,s) \in [0,n] \times [0,n+1]} \alpha_m \binom{m+1}{s} p^s (1-p)^{m+1-s} \delta_{\{(m,s)\}}$$

 \bullet Déterminons la loi conditionnelle de S sachant N. N et S sont discrets.

On a pour $m \in [0, n]$, $U_m = \{s \in \mathbb{R}, P_{(N,S)}(\{(m, s)\} > 0)\}$

$$= [0, m+1]$$
* Pour $m \in [0, n]$, $P_S^{N=m} = \sum_{s \in U_m} \frac{P_{(N,S)}(\{(m, s)\}}{P_N(\{m\})} \delta_{\{s\}}$

$$= \sum_{s=0}^{m+1} {m+1 \choose s} p^s (1-p)^{m+1-s} \delta_{\{s\}}$$

- * Pour $m \notin [0, n]$, on pose $P_S^{N=m} = P_S$.
- 2. S est un var positif, donc E(S|N) est bien défini et vaut

$$\begin{split} E(S|N) &= E(\sum_{k=0}^n \mathbbm{1}_{k \leq N} X_k | N) \\ &= \sum_{k=0}^n E(\mathbbm{1}_{k \leq N} X_k | N) \quad \text{par linéarité} \\ &= \sum_{k=0}^n \mathbbm{1}_{k \leq N} E(X_k | N) \quad \text{car } \mathbbm{1}_{k \leq N} \in \mathcal{M}(\sigma(N), \mathcal{B}(\mathbb{R})) \\ &= \sum_{k=0}^n \mathbbm{1}_{k \leq N} E(X_k) \quad \text{par indépendance} \\ &= p \sum_{k=0}^n \mathbbm{1}_{k \leq N} \\ &= p(N+1) \end{split}$$

On a
$$S^2 = (\mathbb{1}_{[0,n]}(N) + \underbrace{\mathbb{1}_{[0,n]^c}(N)}_{=0P\text{-p.s.}})S^2 = \mathbb{1}_{[0,n]}(N)S^2$$
$$= \sum_{j=0}^n \mathbb{1}_{\{j\}}(N) \left(\sum_{k=0}^j X_k\right)^2$$

De sorte que

$$E(S^{2}|N) = \sum_{j=0}^{n} \mathbb{1}_{\{j\}}(N)E\left[\left(\sum_{k=0}^{j} X_{k}\right)^{2}\right]$$

Or à j fixé, $Y_j := \sum_{k=0}^j X_k$ suit une loi binomiale de paramètres (j+1,p), de sorte que

$$E\left[\left(\sum_{k=0}^{j} X_k\right)^2\right] = V(Y_j) + E(Y_j)^2 = (j+1)p(1-p) + (j+1)^2p^2 = p(j+1)(jp+1)$$

D'où
$$E(S^2|N) = \sum_{j=0}^n \mathbb{1}_{\{j\}}(N)p(j+1)(jp+1) = p(N+1)(pN+1) = p(pN^2 + (p+1)N + 1)$$

Par conséquent, E(S) = p(E(N) + 1) et $E(S^2) = p(pE(N^2) + (p+1)E(N) + 1)$

3. cf 1.

4. Avec des calculs similaires à 1, $P_N^{S=0} = \sum_{m=0}^n \alpha_m \delta_{\{m\}} = P_N$. $P_N^{S=0}$ suit $\mathcal{B}(n,q)$ si et seulement si $P_N = \mathcal{B}(n,q)$.

Soit (X_n) une suite de va intégrables, indépendantes et de même loi. Pour tout $n \ge 1$ on pose $S_n = \sum_{k=1}^n X_k$.

- 1. Pour tout $i \in [1, n]$, calculer $E(S_n|X_i)$.
- 2. Montrer que pour tout $k \in [2, n]$, $P_{(X_1, S_n)} = P_{(X_k, S_n)}$
- 3. En déduire que pour tout $k \in [2, n]$, $E(X_1|S_n) = E(X_k|S_n)$.
- 4. Calculer $E(S_n|S_n)$. En déduire $E(X_1|S_n)$.
- 1. On montre facilement que S_n est intégrable, donc $E(S_n|X_i)$ existe. On a $E(S_n|X_i) = E\left(\sum_{k=1}^n X_k \middle| X_i\right)$ $= \sum_{k=1}^n E(X_k|X_i)$ $= E(X_i|X_i) + \sum_{k \neq i} E(X_k|X_i)$ $= X_i + (n-1)E(X_1)$
- 2. Par indépendance de $X_1, \ldots, X_n, P_{(X_1, \ldots, X_n)} = P_{X_1} \otimes \ldots \otimes P_{X_n}$. Comme les variables sont identiquement distribuées, $P_{X_1} = P_{X_2}$, de sorte que

$$P_{(X_1,...,X_n)} = P_{X_1} \otimes ... \otimes P_{X_n}$$

$$= P_{X_2} \otimes P_{X_1} \otimes ... \otimes P_{X_n}$$

$$= P_{(X_2,X_1,...,X_n)}$$

Considérons $\varphi:(x_1,\ldots,x_n)\mapsto (x_1,\sum_{k=1}^n x_k)$. φ est continue, donc $(\mathcal{B}(\mathbb{R}^n),\mathcal{B}(\mathbb{R}^2))$ -mesurable. L'égalité en loi est préservée : $P_{\varphi(X_1,\ldots,X_n)}=P_{\varphi(X_2,\ldots,X_n)}$ ie

$$P_{(X_1,S_n)} = P_{(X_2,S_n)}$$

On procède de même avec k > 2.

3. Soit $k \in [2, n]$. Considérons $C \in \sigma(S_n)$. On dispose de $B \in \mathcal{B}(\mathbb{R})$ tel que $C = S_n^{-1}(B)$. Alors

$$\begin{split} E(\mathbbm{1}_C E(X_1|S_n)) &= E(\mathbbm{1}_C X_1) = E(\mathbbm{1}_B(S_n) X_1) \\ &= \int x \mathbbm{1}_B(s) dP_{(X_1,S_n)}(x,s) \quad \text{transfert justifi\'e par} \\ &\int |X_1(w)| \mathbbm{1}_B(S_n(w)) dP(w) \leq \int |X_1(w)| dP(w) < \infty \\ &= \int x \mathbbm{1}_B(s) dP_{(X_k,S_n)}(x,s) \\ &= E(\mathbbm{1}_C X_k) \\ &= E(\mathbbm{1}_C E(X_k|S_n)) \end{split}$$

Ceci étant vrai pour tout $C \in \sigma(S_n)$, on a $E(X_1|S_n) = E(X_k|S_n)$

4. On a par linéarité $E(S_n|S_n) = \sum_{k=1}^n E(X_k|S_n)$

$$= nE(X_1|S_n)$$
 par 3.

Or $S_n \in \mathcal{M}(\sigma(S_n), \mathcal{B}(\mathbb{R}))$, donc $E(S_n|S_n) = S_n$. En conclusion :

$$E(X_1|S_n) = \frac{S_n}{n}$$

3. Fonction caractéristique

Exercice 1

Déterminer la fonction caractéristique des lois suivantes

- 1. Loi de Bernoulli de paramètre $p \in [0, 1]$.
- 2. Loi de Poisson de paramètre $\lambda > 0$.
- 3. Loi géométrique de paramètre $p \in (0,1)$.
- 4. Loi binomiale $\mathcal{B}(n,p)$.
- 5. Loi exponentielle de paramètre $\theta > 0$.
- 6. Soient X_1, \ldots, X_n n var discrètes, indépendantes et de même loi de Bernoulli de paramètre $p \in (0,1)$. Déterminer la loi de $S_n = \sum_{i=1}^n X_i$.

Dans chaque cas on applique le théorème de transfert, ce qui est licite car $x \mapsto e^{itx}$ est bornée.

1.
$$\phi_X(t) = e^{it \cdot 1}p + e^{it \cdot 0}(1-p) = 1-p+pe^{it}$$

2.
$$\phi_X(t) = \sum_{k=0}^{\infty} e^{itk} e^{-\lambda} \frac{\lambda^k}{4!} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{(\lambda e^{it})^k}{4!} = e^{-\lambda + \lambda e^{it}} = e^{\lambda(e^{it} - 1)}$$

1.
$$\phi_X(t) = c^{-p} + c^{-1} + c^{-p} + c^{-p}$$

4.
$$\phi_X(t) = \sum_{k=0}^n e^{itk} \binom{n}{k} p^k (1-p)^{n-k} = \sum_{k=0}^n \binom{n}{k} (pe^{it})^k (1-p)^{n-k}$$

$$= (1 - p + pe^{it})^n$$

5.
$$\phi_X(t) = \int e^{itx} \theta e^{-\theta x} \mathbb{1}_{(0,\infty)}(x) d\lambda(x) = \int_{(0,\infty)} \theta e^{x(-\theta + it)} d\lambda(x)$$

$$=\frac{\theta}{\theta-it}$$

 $=\frac{\theta}{\theta-it}$ 6. X_1,\ldots,X_n étant indépendantes et de même loi,

$$\phi_{S_n}(t) = (\phi_{X_1}(t))^n = (1 - p + pe^{it})^n$$

Exercice 2

On admet que la fonction caractéristique de la loi $\mathcal{C}(1)$ est $\forall t, \ \phi(t) = e^{-|t|}$.

Soient X_1, \ldots, X_n n var continues, indépendantes, et de même loi $\mathcal{C}(1)$.

- 1. Calculer la fonction caractéristique de $X_1 + X_2$ et celle de $2X_1$. Que constatez-vous?
- 2. Soient ϕ_U et ϕ_V les fonctions caractéristiques respectives de deux var U et V qui vérifient $\phi_{U+V} = \phi_U \phi_V$. Cela implique-t-il que U et V sont indépendantes?
- 3. Calculer la loi de $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$.
- 1. Par indépendance, $\phi_{X_1+X_2}(t)=(\phi_{X_1}(t))^2=e^{-2|t|}$. Par ailleurs,

$$\phi_{2X_1}(t) = E(e^{it2X_1}) = \phi_{X_1}(2t) = e^{-2|t|}$$

Par injectivité, $2X_1 \sim X_1 + X_2$.

2. Non. On a $\phi_{X_1+X_1}=\phi(X_1)^2$, pourtant X_1 n'est pas indépendant de X_1 . Sinon,

$$P(X_1 \ge 0) = P((X_1 \ge 0) \cap (X_1 \ge 0)) = P(X_1 \ge 0)^2$$

donc $P(X_1 \ge 0) \in \{0, 1\}$, or $P(X_1 \ge 0) = \frac{1}{2}$, absurde.

3.
$$\phi_{\overline{X}_n}(t) = E(e^{it\frac{1}{n}\sum_{i=1}^n X_i}) = E(\prod_{k=1}^n e^{i\frac{t}{n}X_i}) = \prod_{k=1}^n E(e^{i\frac{t}{n}X_i}) = \prod_{k=1}^n \phi_{X_i}(\frac{t}{n})$$

$$= (\phi_{X_1}(\frac{t}{n}))^n = e^{-|t|}$$

Par injectivité, \overline{X}_n suit $\mathcal{C}(1)$.

Exercice 3

Soit X une var ayant une fonction caractéristique du type $\phi(t) = e^{At^2 + Bt + C}$ avec $A, B, C \in \mathbb{C}^3$. Montrer que X suit une loi normale et en déterminer les paramètres.

 ϕ étant une fonction caractéristique, $\phi(0) = 1$, donc $e^C = 1$, de sorte que $\phi(t) = e^{At^2 + Bt}$ pour tout $t \in \mathbb{R}$.

Lemme : Si $z \in \mathbb{C}$, $\overline{e^z} = e^{\overline{z}}$.

En effet,

$$\overline{e^z} = \overline{\exp(\operatorname{Re} z + i \operatorname{Im} z)} = \overline{\exp(\operatorname{Re} z) \exp(i \operatorname{Im} z)} = \exp(\operatorname{Re} z) \exp(-i \operatorname{Im} z)$$
$$-e^{\overline{z}}$$

 ϕ étant une fonction caractéristique, $\overline{\phi(t)} = \phi(-t)$ ie $e^{\overline{A}t^2 + \overline{B}t} = e^{At^2 - Bt}$ soit encore $e^{(A-\overline{A})t^2} = e^{(B+\overline{B})t}$ ie $e^{2i\operatorname{Im} At^2} = e^{2\operatorname{Re} Bt}$ (*).

Le membre de droite est réel, de sorte que pour t,

$$\operatorname{Im} e^{2i\operatorname{Im} At^2} = 0$$

donc $\sin(2\operatorname{Im} At^2) = 0$ pour tout $t \in \mathbb{R}$.

Donc Im A = 0. (*) devient $e^{2\operatorname{Re} Bt} = 1$ pout tout $t \in \mathbb{R}$, donc $\operatorname{Re} B = 0$.

Donc $\phi(t) = e^{\operatorname{Re} At^2 + i \operatorname{Im} Bt}$. Comme ϕ est une fonction caractéristique, $|\phi| \le 1$, donc $\operatorname{Re} A \le 0$.

- Si Re $A=0, \phi(t)=e^{i\operatorname{Im} Bt}$. Par injectivité, X est constante presque-sûrement (égale à $\operatorname{Im} B$).
- Si Re A < 0, $\phi(t) = e^{i \operatorname{Im} Bt t^2 \frac{(\sqrt{-2 \operatorname{Re} A})^2}{2}}$

Par injectivité, X suit la loi normale de paramètre (Im B, $-2 \operatorname{Re} A$)

Culture : Si $e^{P(t)}$ est une fonction caractéristique (où P est un polynôme), alors $\deg P \leq 2$. (théorème de Marcinkiewicz 1933)

Exercice 4

Soit X une var continue de loi de Laplace de paramètre 1.

- 1. Montrer que X a des moments à tout ordre. Calculer $E(X^{2n+1})$ et $E(X^{2n})$.
- 2. Montrer que la fonction caractéristique de X est donnée par $\phi(t) = \frac{1}{1+t^2}$.
- 3. En déduire que $\forall t \in (-1,1), \ \phi(t) = \sum_{n=0}^{\infty} (-1)^n t^{2n}.$
- 4. On admet que $\phi^{(k)}(t) = \sum_{n=1}^{\infty} \left[(-1)^n t^{2n} \right]^{(k)}$. Déterminer $\phi^{(2n)}(0)$. En déduire $E(X^{2n})$.
- 1. La densité de X par rapport à λ est donnée par $f_X(x)=\frac{1}{2}e^{-|x|}$. Pour $n\in\mathbb{N},$

$$\int |x|^n dP_X(x) = \int |x|^n f_X(x) d\lambda(x) = \frac{1}{2} \int |x|^n e^{-|x|} d\lambda(x) < \infty$$

par un argument asymtotique. Donc $E(|X|^n) < \infty$ et X admet des moments à tout ordre. Par ailleurs, $E(X^{2n+1}) = \frac{1}{2} \int \underbrace{x^{2n+1} e^{-|x|}}_{\text{impaire}} d\lambda(x) = 0$ et

$$E(X^{2n}) = \frac{1}{2} \int x^{2n} e^{-|x|} d\lambda(x) = \int_{\mathbb{R}^+} x^{2n} e^{-x} d\lambda(x) = \Gamma(2n+1) = (2n)!$$

2. La fonction caractéristique de X est donnée par

$$\begin{split} \phi(t) &= E(e^{itX}) = \int e^{itx} \frac{1}{2} e^{-|x|} d\lambda(x) = \frac{1}{2} \left(\int_{\mathbb{R}^-} e^{itx} e^x d\lambda(x) + \int_{\mathbb{R}^+} e^{itx} e^{-x} d\lambda(x) \right) \\ &= \frac{1}{2} \left(\int_{\mathbb{R}^-} e^{x(1+it)} d\lambda(x) + \int_{\mathbb{R}^+} e^{x(-1+it)} d\lambda(x) \right) \\ &= \frac{1}{1+t^2} \end{split}$$

3. En développant en série entière le résultat obtenu, on a pour $t \in (-1,1)$,

$$\phi(t) = \sum_{n=0}^{\infty} (-1)^n t^{2n}$$

4. On a $\phi^{(k)}(t) = \sum_{k=n}^{\infty} (-1)^k 2k(2k-1) \dots (2k-(2n-1))t^{2k-2n}$ donc $\phi^{(2n)}(0) = (-1)^n (2n)!$. D'après le cours, $\phi^{(k)}(0) = i^k E(X^k)$, donc

$$E(X^{2n}) = (2n)!$$

Exercice 5

Soit (X_n) une suite de var indépendantes et de même loi μ symétrique. On suppose que pour tout $n \ge 1$, $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ suit la loi μ .

- 1. Montrer que ϕ la fonction caractéristique associée à μ est paire et réelle.
- 2. Trouver une relation de récurrence sur ϕ .
- 3. Montrer par l'absurde que $\forall t \in \mathbb{R}, \ \phi(t) > 0$.
- 4. On pose $\forall t \in \mathbb{R}, \ p(t) = \ln(\phi(t))$.
 - (a) Montrer que $\forall t \in \mathbb{N}, \ p(t) = tp(1)$.
 - (b) Montrer que $\forall t \in \mathbb{Q}^+, \ p(t) = tp(1)$.
 - (c) Montrer que $\forall t \in \mathbb{R}^+, \ p(t) = tp(1)$.
 - (d) En déduire p(t) pour tout $t \in \mathbb{R}$.
 - (e) Montrer que p(1) < 0.
 - (f) En déduire ϕ et μ .
- 1. μ étant symétrique, $P_{X_1} = P_{-X_1}$, donc d'après le cours, ϕ est paire et réelle.
- 2. Pour $n \geq 1$, \overline{X}_n et X_1 ont même loi, donc même fonction caractéristique, de sorte que pour tout $t \in \mathbb{R}$, $\phi_{\overline{X}_n}(t) = \phi(t)$ donc $E(\prod_{i=1}^n e^{i\frac{t}{n}X_i}) = \phi(t)$ et par indépendance, $\phi(\frac{t}{n})^n = \phi(t)$.
- 3. Supposons par l'absurde qu'il existe $t_0 \in \mathbb{R}$ tel que $\phi(t_0) = 0$. Alors pour tout $n \geq 1$, $0 = \phi(t_0) = \phi(\frac{t_0}{n})^n$ donc $\phi(\frac{t_0}{n}) = 0$ pour tout $n \geq 1$. Or $\lim_n \frac{t_0}{n} = 0$ et ϕ est continue en 0 avec $\phi(0) = 1$. Donc $0 = \lim_n \phi(\frac{t_0}{n}) = \phi(0) = 1$. Absurde.
- $\phi: \mathbb{R} \to \mathbb{R}$ est continue, et ne s'annule pas, donc garde un signe constant. Or $\phi(0) = 1$. Donc $\phi > 0$.
- 4. a) L'égalité de 2. se réécrit $\forall t \in \mathbb{R}, \forall n \geq 0, \phi(t)^n = \phi(nt)$ et en passant au log $(\phi > 0$ par 3.), on a

$$\forall t \in \mathbb{R}, \forall n \geq 0, \ p(nt) = np(t) \quad (*)$$

Avec t = 1 on a bien p(n) = np(1) pour tout $n \ge 0$.

b) • Pour $b \in \mathbb{N}^*$, avec $t = \frac{1}{b}$ dans (*), on a $p(1) = p(b \cdot \frac{1}{b}) = bp(\frac{1}{b})$, de sorte que

$$p(\frac{1}{b}) = \frac{p(1)}{b}$$

- Pour $a \in \mathbb{N}$ et $b \in \mathbb{N}^*$, $p(\frac{a}{b}) = p(a \cdot \frac{1}{b}) = ap(\frac{1}{b}) = a\frac{p(1)}{b} = \frac{a}{b}p(1)$ Donc pour tout $t \in \mathbb{Q}^+$, p(t) = tp(1).
- c) ϕ et ln étant continus, p est continue sur \mathbb{R} . On étend l'égalité précédente à \mathbb{R}^+ par densité des rationnels.
- d) Par parité, on a pour tout $t \leq 0$, p(t) = p(-t) = (-t)p(1) = |t|p(1), donc p(t) = |t|p(1) pour tout $t \in \mathbb{R}$.
- e) On a $0 < \phi(t) \le |\phi(t)| \le 1$, donc $p(t) \le 0$ pour tout $t \in \mathbb{R}$. En particulier, $p(1) \le 0$.
- f) Si p(1)=0, pour tout t, $\phi(t)=1=E(e^{it0})$ et par injectivité, X est presque sûrement constante, égale à 0.
- Si p(1) < 0, pour tout t, $\phi(t) = e^{-|t|(-p(1))}$ donc μ est la loi de Cauchy de paramètre -p(1).

Soient X et Y des var indépendantes, de même loi, de carré intégrable et telles que E(X) = 0, V(X) = 1. On note ϕ la fonction caractéristique de X.

- 1. On suppose que $\frac{X+Y}{\sqrt{2}}$ et X ont même loi.
 - (a) Calculer $\phi'(0)$, $\phi''(0)$ et montrer que pour tout $t \in \mathbb{R}$, $\phi(t) = \phi\left(\frac{t}{\sqrt{2}}\right)^2$
 - (b) En déduire une relation de récurrence satisfaite par ϕ puis donner la loi de X.
- 2. On suppose que X + Y et X Y sont indépendantes.
 - (a) Calculer les fonctions caractéristiques de X + Y, X Y et 2X.
 - (b) En déduire que $\forall t \in \mathbb{R}$, $\phi(2t)\phi(-2t) = [\phi(t)\phi(-t)]^4$ puis une relation de récurrence sur ϕ .
 - (c) Montrer que ϕ ne s'annule pas.
 - (d) Notons $p(t) = \frac{\phi(t)}{\phi(-t)}$. Montrer que $p(2t) = p(t)^2$ et établie une relation de récurrence sur p.
 - (e) Montrer que p(t) = 1 pour tout $t \in \mathbb{R}$.
 - (f) En déduire une relation de récurrence sur ϕ .
 - (g) Déterminer ϕ puis la loi de X.
- 1. a) X admet un moment d'ordre 2. D'après le cours on a $\phi'(0)=iE(X)=0$ et $\phi''(0)=-E(X^2)=-1$. $\frac{X+Y}{\sqrt{2}}$ et X ont même loi, donc même fonction caractéristique : pour $t\in\mathbb{R}$, $\phi_{\frac{X+Y}{\sqrt{2}}}(t)=\phi_X(t)$ ie $E(e^{i\frac{t}{\sqrt{2}}X}e^{i\frac{t}{\sqrt{2}}Y})=\phi_X(t)$ et par indépendance, $E(e^{i\frac{t}{\sqrt{2}}X})E(e^{i\frac{t}{\sqrt{2}}Y})=\phi_X(t)$. Comme X et Y ont même loi, on obtient

$$\phi(t) = \phi\left(\frac{t}{\sqrt{2}}\right)^2$$

b) L'égalité précédente se réécrit $\phi(\sqrt{2}t) = \phi^2(t)$ ie $\phi(2^{1/2}t) = \phi^{2^1}(t)$. En remplaçant t par $\sqrt{2}t$, $\phi(2t) = \phi^2(\sqrt{2}t) = \phi^4(t)$ ie $\phi(2^1t) = \phi^{2^2}(t)$. En remplaçant t par $\sqrt{2}t$, $\phi(2^{3/2}t) = \phi^4(\sqrt{2}t) = \phi^8(t) = \phi^{2^3}(t)$. On conjecture et on prouve facilement par récurrence que

$$\forall t \in \mathbb{R}, \forall n \ge 1, \ \phi(2^{n/2}t) = \phi^{2^n}(t)$$

ce qui se réécrit encore

$$\forall t \in \mathbb{R}, \forall n \geq 1, \ \phi(t) = \phi^{2^n}(\frac{t}{2^{n/2}})$$

ce qui implique

$$\forall t \in \mathbb{R}, \forall n \ge 1, \ \phi(t) = \phi^{2^{2n}}(\frac{t}{2^n})$$

D'après le cours, ϕ est C^2 et on peut écrire pour tout $t \in \mathbb{R}$, $\phi(t) = 1 - \frac{t^2}{2} + o(t^2)$ où le terme d'erreur est **potentiellement complexe**. On dispose alors de $\varepsilon : \mathbb{R} \to \mathbb{C}$ une fonction continue et nulle en 0 telle que pour tout t,

$$\phi(t) = 1 - \frac{t^2}{2} + t^2 \varepsilon(t^2)$$

On fixe $t \in \mathbb{R}$ et on a

$$\phi^{2^{2n}}(\frac{t}{2^n}) = \left(1 - \frac{t^2}{2} \frac{1}{2^{2n}} + \frac{t^2}{2^{2n}} \varepsilon \left(\frac{t^2}{2^{2n}}\right)\right)^{2^{2n}}$$

On dispose de N_0 tel que $n \ge N_0 \implies 1 - \frac{t^2}{2^{2n+1}} \ge 0$. Pour $n \ge N_0$,

$$\left(1 - \frac{t^2}{2} \frac{1}{2^{2n}} + \frac{t^2}{2^{2n}} \varepsilon \left(\frac{t^2}{2^{2n}}\right)\right)^{2^{2n}} = \sum_{k=0}^{2^{2n}} {2^{2n} \choose k} \left(1 - \frac{t^2}{2} \frac{1}{2^{2n}}\right)^k \left[\frac{t^2}{2^{2n}} \varepsilon \left(\frac{t^2}{2^{2n}}\right)\right]^{2^{2n} - k} \\
= \left(1 - \frac{t^2}{2} \frac{1}{2^{2n}}\right)^{2^{2n}} + \sum_{k=0}^{2^{2n} - 1} {2^{2n} \choose k} \left(1 - \frac{t^2}{2} \frac{1}{2^{2n}}\right)^k \left[\frac{t^2}{2^{2n}} \varepsilon \left(\frac{t^2}{2^{2n}}\right)\right]^{2^{2n} - k}$$

Or $\left(1 - \frac{t^2}{2} \frac{1}{2^{2n}}\right)^{2^{2n}}$ est une sous-suite de $\left(1 - \frac{t^2/2}{n}\right)^n$. Cette suite converge (moyennant un développement asymptotique classique) vers $e^{-t^2/2}$. Il suffit donc de prouver que

$$\sum_{k=0}^{2^{2n}-1} \binom{2^{2n}}{k} \left(1 - \frac{t^2}{2} \frac{1}{2^{2n}}\right)^k \left[\frac{t^2}{2^{2n}} \varepsilon \left(\frac{t^2}{2^{2n}} \right) \right]^{2^{2n}-k} \xrightarrow[n \to \infty]{} 0$$

On a

$$\sum_{k=0}^{2^{2n}-1} {2^{2n} \choose k} \underbrace{\left(1 - \frac{t^2}{2} \frac{1}{2^{2n}}\right)^k}_{\geq 0} \left[\frac{t^2}{2^{2n}} \varepsilon \left(\frac{t^2}{2^{2n}} \right) \right]^{2^{2n}-k} \\
\leq \sum_{k=0}^{2^{2n}-1} {2^{2n} \choose k} \left(1 - \frac{t^2}{2} \frac{1}{2^{2n}}\right)^k \left[\frac{t^2}{2^{2n}} \left| \varepsilon \left(\frac{t^2}{2^{2n}} \right) \right| \right]^{2^{2n}-k} \\
= \left(1 - \frac{t^2}{2} \frac{1}{2^{2n}} + \frac{t^2}{2^{2n}} \left| \varepsilon \left(\frac{t^2}{2^{2n}} \right) \right| \right)^{2^{2n}} - \left(1 - \frac{t^2}{2} \frac{1}{2^{2n}}\right)^{2^{2n}} \\
= \left(1 - \frac{t^2}{2} \frac{1}{2^{2n}} + o\left(\frac{1}{2^{2n}}\right) \right)^{2^{2n}} - \left(1 - \frac{t^2}{2} \frac{1}{2^{2n}}\right)^{2^{2n}}$$

Or
$$\left(1 - \frac{t^2}{2} \frac{1}{2^{2n}} + o\left(\frac{1}{2^{2n}}\right)\right)^{2^{2n}} - \left(1 - \frac{t^2}{2} \frac{1}{2^{2n}}\right)^{2^{2n}} = \exp\left[2^{2n} \ln\left(1 - \frac{t^2}{2} \frac{1}{2^{2n}} + o\left(\frac{1}{2^{2n}}\right)\right)\right] - e^{-t^2/2} + o(1)$$

$$= \exp\left[2^{2n} \left(-\frac{t^2}{2} \frac{1}{2^{2n}} + o\left(\frac{1}{2^{2n}}\right)\right)\right] - e^{-t^2/2} + o(1)$$

$$= \exp\left(-\frac{t^2}{2} + o(1)\right) - e^{-t^2/2} + o(1)$$

$$= e^{-t^2/2} + o(1) - e^{-t^2/2} + o(1)$$

$$= o(1)$$

Donc $\lim_{n} \phi^{2^{2n}}(\frac{t}{2^n}) = e^{-t^2/2}$ ie $\phi(t) = e^{-t^2/2}$ et par injectivité X suit la loi normale $\mathcal{N}(0,1)$.

2. a) Par indépendance de X et Y et égalité des lois, $\phi_{X+Y}(t) = \phi^2(t)$, $\phi_{X-Y}(t) = \phi(t)\phi(-t)$ et $\phi_{2X}(t) = \phi(2t)$.

b) Par indépendance de X + Y et X - Y,

$$\phi_{2X}(t) = \phi_{(X+Y)+(X-Y)}(t) = \phi_{X+Y}(t)\phi_{X-Y}(t) = \phi^{3}(t)\phi(-t)$$

donc $\phi(2t) = \phi^3(t)\phi(-t)$. En remplaçant t par -t, $\phi(-2t) = \phi(t)\phi^3(-t)$ et en multipliant les deux égalités,

$$\phi(2t)\phi(-2t) = (\phi(t)\phi(-t))^4$$

En posant $\psi: t \mapsto \phi(t)\phi(-t)$, on a $\psi(2t) = \psi^4(t)$, donc (récurrence immédiate) pour tout $n \geq 1$ et $t \in \mathbb{R}$, $\psi(2^n t) = \psi^{2^{2n}}(t)$ ou encore $\psi(t) = \psi^{2^{2n}}(\frac{t}{2^n})$.

c) En supposant l'existence de t_0 tel que $\phi(t_0)=0$, on a $\psi(t_0)=0$ donc pour tout $n, \psi^{2^{2n}}(\frac{t_0}{2^n})=0$ ie $0 = \psi(\frac{t_0}{2^n}) = \phi(\frac{t_0}{2^n})\phi(-\frac{t_0}{2^n})$. On dispose alors de $t_n \to 0$ telle que pour tout $n, \phi(t_n) = 0$, ce qui contredit la continuité de ϕ en 0.

d) On a
$$p(2t)=\frac{\phi(2t)}{\phi(-2t)}=\frac{\phi^3(t)\phi(-t)}{\phi^3(-t)\phi(t)}=\frac{p(t)^3}{p(t)}=p(t)^2$$

On en déduit par récurrence immédiate que pour tout $n\geq 1$ et $t\in\mathbb{R},$

$$p(2^n t) = p^{2^n}(t)$$

ou encore

$$p(t) = p^{2^n}(\frac{t}{2^n})$$

e) Par ailleurs,
$$p(t) = \frac{\phi(t)}{\phi(-t)} = \frac{1 - t^2/2 + o(t^2)}{1 - t^2/2 + o(t^2)} = \left(1 - \frac{t^2}{2} + o(t^2)\right) \left(1 + \frac{t^2}{2} + o(t^2)\right)$$
 où $\varepsilon : \mathbb{R} \to \mathbb{C}$ continue $= 1 + o(t^2) = 1 + t^2 \varepsilon(t^2)$

et nulle en 0.

De même que précédemment, $p(t) = \lim_n p^{2^n}(\frac{t}{2^n}) = 1$.

- f) ϕ est donc réelle, avec $\phi(2t) = \phi^4(t)$, donc $\phi(2^n t) = \phi^{2^{2n}}(t)$ et $\phi(t) = \phi^{2^{2n}}(\frac{t}{2^n})$
- g) ϕ ne s'annule pas donc $\phi > 0$. On peut directement faire le développement asymptotique et obtenir $\phi(t) = e^{-t^2/2}$.

Exercice 7

Soit ϕ la fonction caractéristique d'une var X.

- 1. Supposons qu'il existe $t_0 \neq 0$ tel que $|\phi(t_0) = 1|$.
 - (a) Montrer qu'il existe θ tel que $P(\cos(t_0X \theta) = 1) = 1$.
 - (b) Montrer qu'il existe $(a,b) \in \mathbb{R}^2$ tels que $P(X \in \{a+nb, n \in \mathbb{Z}\}) = 1$. Que pouvez-vous en déduire sur la nature de P_X ?
- 2. Réciproquement, si $P_X(\{a+nb,\ n\in\mathbb{Z}\})=1$, que peut-on en déduire de sa fonction caractéristique ?

1. a)Comme $|\phi(t_0)| = 1$, il existe $\theta \in \mathbb{R}$ tel que $\phi(t_0) = e^{i\theta}$. Alors $E(e^{i(t_0X - \theta)}) = 1$ ie $E(\cos(t_0X - \theta)) + 1$ $iE(\sin(t_0X-\theta))=1$, donc $E(\cos(t_0X-\theta))=1$ ou encore $E(1-\cos(t_0X-\theta))=0$. Or $1 - \cos(t_0 X - \theta) \ge 0$, donc $1 - \cos(t_0 X - \theta) = 0$ *P*-p.s, donc

$$P(\cos(t_0X - \theta) = 1) = 1$$

b) Pour $\omega \in \Omega$ on a l'équivalence

$$\cos(t_0 X(w) - \theta) = 1 \iff \exists k \in \mathbb{Z}, \ X(w) = \frac{2\pi}{t_0} k + \frac{\alpha}{t_0}$$

de sorte que $1 = P(\cos(t_0 X - \theta) = 1) = P(X \in \bigcup_{k \in \mathbb{Z}} \left(\frac{\alpha}{t_0} + k \frac{2\pi}{t_0}\right)).$

Notons A l'ensemble obtenu. A est dénombrable et $P_X(A) = 1$. Montrons que X est discret. Notons D_X le support de X. On a

$$1 = P_X(A) = P_X(A \cap D_X) + P_X(A \cap D_X^c) = P_X(A \cap D_X)$$

car $A \cap D_X^c$ est dénombrable ($\subset A$) et que si $t \in D_X^c$, $P_X(\{t\}) = 0$, de sorte que $P_X(A \cap D_X^c) \leq \sum_{t \in A \cap D_X^c} P_X(\{t\}) = 0$.

De l'égalité $P_X(A \cap D_X) = 1$ on déduit $P_X(D_X) = 1$ et X discret.

Par ailleurs on prouve facilement que $D_X \subset A$, donc

$$P_X = \sum_{n \in \mathbb{Z}} P_X(\{a+nb\}) \delta_{\{a+nb\}}.$$

2. Réciproquement, on a encore $D_X \subset A$, donc $P_X = \sum_{n \in \mathbb{Z}} P_X(\{a+nb\})\delta_{\{a+nb\}}$.

Alors
$$\phi(t) = \int e^{itx} dP_X(x) = \sum_{n \in \mathbb{Z}} e^{it(a+nb)} P_X(\{a+nb\})$$

= $e^{ita} \sum_{n \in \mathbb{Z}} e^{itnb} P_X(\{a+nb\})$

et $|\phi(t)| = \left|\sum_{n \in \mathbb{Z}} e^{itnb} P_X(\{a+nb\})\right|$ qui est $\frac{2\pi}{b}$ -périodique si $b \neq 0$ et constant égal à 1 sinon. Dans les deux cas, il existe $t_0 \neq 0$ tel que $|\phi(t_0)| = 1$.

Exercice 8

Soient X_1, X_2, X_3, X_4 des var indépendantes et de même loi $\mathcal{N}(0,1)$. Soit $Y = \det \begin{pmatrix} X_1 & X_2 \\ X_3 & X_4 \end{pmatrix}$.

- 1. Pour tout $t \in \mathbb{R}$, calculer $E(e^{itX_1X_4}|X_4)$.
- 2. En déduire la fonction caractéristique de X_4 .
- 3. Déterminer la fonction caractéristique de Y puis la loi de Y.

1. $e^{itX_1X_4}$ étant bornée, elle est intégrable par rapport à n'importe quelle mesure de probabilité donc $E(e^{itX_1X_4}|X_4)$ existe. Soit $h:(x,y)\mapsto e^{itxy}$. h est bornée, donc élément de $\mathscr{L}^1(\mathcal{B}(\mathbb{R}^2),\mathcal{B}(\mathbb{C}),P_{(X_1,X_4)})$. Par conséquent, $E(e^{itX_1X_4}|X_4)=\Psi(X_4)$ où $\Psi(y)=\int e^{itxy}dP_{X_1}^{X_4=y}(x)$. Comme X_1 et X_4 sont indépendantes, $P_{X_1}^{X_4=y}=P_{X_1}$, donc $\Psi(y)=\int e^{itxy}dP_{X_1}(x)=E(e^{ityX})=\phi(ty)=e^{-(ty)^2/2}$ et $E(e^{itX_1X_4}|X_4)=\Psi(X_4)=e^{-t^2X_4^2/2}$.

2.On a
$$\phi_{X_1X_4}(t) = E(e^{itX_1X_4}) = E[E(e^{itX_1X_4}|X_4)] = E[e^{-t^2X_4^2/2}] = \frac{1}{\sqrt{2\pi}} \int e^{-t^2x^2/2}e^{-t^2/2}d\lambda(x)$$

$$= \frac{1}{\sqrt{1+t^2}} \frac{1}{\sqrt{2\pi}} \int e^{-u^2/2}d\lambda(x) = \frac{1}{\sqrt{1+t^2}}$$

3. X_1, X_2, X_3, X_4 étant indépendantes, X_1X_4 et X_2X_3 sont indépendantes par coalition, de sorte que

$$\phi_Y(t) = E(e^{it(X_1X_4 - X_2X_3)}) = \phi_{X_1X_4}(t)\phi_{X_2X_3}(-t) = \frac{1}{1 + t^2}$$

donc Y suit la loi de Laplace de paramètre 1.

Exercice 9

Soit N une var de loi de Poisson de paramètre $\lambda > 0$.

Soit (X_n) une suite de var indépendantes, de même loi et indépendantes de N. Soit $S = \sum_{k=0}^{N} X_k$. Calculer la fonction caractéristique de S en fonction de celle de X_1 .

On a l'égalité $e^{itS} = \mathbb{1}_{\mathbb{N}}(N)e^{itS} + \mathbb{1}_{\mathbb{N}^c}(N)e^{itS}$ et comme N est discrète de support \mathbb{N} , $\mathbb{1}_{\mathbb{N}^c}(N)e^{itS}$ est nulle P-p.s de sorte que $e^{itS} = \mathbb{1}_{\mathbb{N}}(N)e^{itS}$ P-p.s.

Or $\mathbbm{1}_{\mathbb{N}}(N)e^{itS}=\sum_{j=0}^{\infty}\mathbbm{1}_{\{j\}}(N)e^{it\sum_{k=0}^{j}X_{j}}.$ Considérons

$$Y_n = \sum_{j=0}^n \mathbb{1}_{\{j\}}(N)e^{it\sum_{k=0}^j X_j}$$

- On a \bullet chaque Y_n est $(\mathcal{A}, \mathcal{B}(\mathbb{C}))$ -mesurable. $\bullet |Y_n| \leq \sum_{j=0}^n \mathbbm{1}_{\{j\}}(N) = 1 \text{ avec } \int 1dP(\omega) = P(\Omega) = 1 < \infty.$
- (Y_n) converge simplement vers $\sum_{i=0}^{\infty} \mathbb{1}_{\{j\}}(N)e^{it\sum_{k=0}^{j} X_j}$.

Par convergence dominée, $\int Y_n(\omega)dP(\omega) \to \int \sum_{j=0}^\infty \mathbbm{1}_{\{j\}}(N(\omega))e^{it\sum_{k=0}^j X_j(\omega)}dP(\omega)$ ie

$$\sum_{i=0}^n \int \mathbbm{1}_{\{j\}}(N(\omega)) e^{it\sum_{k=0}^j X_j(\omega)} dP(\omega) \to \int \mathbbm{1}_{\mathbb{N}}(N) e^{itS(\omega)} dP(\omega) = \int e^{itS(\omega)} dP(\omega) = E(e^{itS})$$

Or
$$\sum_{j=0}^{n} \int \mathbb{1}_{\{j\}}(N(\omega))e^{it\sum_{k=0}^{j} X_j(\omega)}dP(\omega) = \sum_{j=0}^{n} E(\mathbb{1}_{\{j\}}(N)e^{it\sum_{k=0}^{j} X_j}).$$

Donc $\sum_{j=0}^{\infty} E(1_{\{j\}}(N)e^{it\sum_{k=0}^{j} X_j}) = E(e^{itS})$ (*)

Par ailleurs, pour $n \geq 0, X_0, \ldots, X_n, N$ sont indépendants, donc par coalition, $\sum_{j=0}^n X_k$ et N sont indépendants. De plus, $x \mapsto \mathbb{1}_n(x)$ est $(\mathcal{B}(\mathbb{R}), \mathcal{B}(\mathbb{R}))$ -mesurable (car $n \in \mathcal{B}(\mathbb{R})$), donc $\sum_{j=0}^n X_k$ et $\mathbb{1}_{\{n\}}(N)$ sont indépendants.

(*) devient
$$E(e^{itS}) = \sum_{j=0}^{\infty} E(1_{\{j\}}(N)) E(e^{it\sum_{k=0}^{j} X_j}) = \sum_{j=0}^{\infty} P(N=j) (\phi_{X_1}(t))^{j+1}$$

$$= \phi_{X_1}(t) e^{-\lambda} \sum_{j=0}^{\infty} \frac{\lambda^j}{j!} (\phi_{X_1}(t))^j$$

$$= \phi_{X_1}(t) e^{-\lambda} e^{\lambda \phi_{X_1}(t)}$$

Donc

$$\phi_S(t) = \phi_{X_1}(t)e^{\lambda(\phi_{X_1}(t)-1)}$$

Exercice 10

Soit P_1 la loi de probabilité continue de densité f_1 par rapport à λ et de fonction caractéristique ϕ_1 . On suppose que ϕ_1 est réelle, positive sur \mathbb{R} et intégrable par rapport à λ . Soit

$$P_2: \mathcal{B}(\mathbb{R}) \to \mathbb{R}, A \mapsto \frac{1}{\|\phi_1\|_1} \int_A \phi_1(t) d\lambda(t)$$

- 1. Montrer que P_2 est une loi de probabilité continue.
- 2. Exprimer la fonction caractéristique associée à P_2 en fonction de f_1 .
- 3. On suppose que P_1 est la loi de Laplace de paramètre 1. En déduire ϕ_2 . Quelle est cette loi?
- 1. Montrons que P_2 est une mesure de probabilité sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

 P_2 est à valeurs dans [0,1], $P_2(\mathbb{R}) = \frac{\|\phi_1\|_1}{\|\phi_1\|_1} = 1$ et pour (A_i) une suite d'éléments disjoints de $\mathcal{B}(\mathbb{R})$, la suite de fonctions mesurables positives

 $f_n: t \mapsto \mathbb{1}_{\bigcup_{i=1}^n A_i}(t)\phi_1(t)$ tend en croissant vers $t \mapsto \mathbb{1}_{\bigcup_{i=1}^\infty A_i}(t)\phi_1(t)$, donc par convergence monotone:

$$P_{2}(\bigcup_{i=1}^{\infty} A_{i}) = \frac{1}{\|\phi_{1}\|_{1}} \int \mathbb{1}_{\bigcup_{i=1}^{\infty} A_{i}}(t)\phi_{1}(t)d\lambda(t)$$

$$= \lim_{n} \frac{1}{\|\phi_{1}\|_{1}} \int \mathbb{1}_{\bigcup_{i=1}^{n} A_{i}}(t)\phi_{1}(t)d\lambda(t)$$

$$= \lim_{n} \frac{1}{\|\phi_{1}\|_{1}} \int \sum_{i=1}^{n} \mathbb{1}_{A_{i}}(t)\phi_{1}(t)d\lambda(t)$$

$$= \sum_{i=1}^{\infty} \frac{1}{\|\phi_{1}\|_{1}} \int_{A_{i}} \phi_{1}(t)d\lambda(t)$$

$$= \sum_{i=1}^{\infty} P_{2}(A_{i})$$

Par ailleurs, $P_2(A) = \int_A \frac{\phi_1(t)}{\|\phi_1\|_1} d\lambda(t)$, avec $t \mapsto \frac{\phi_1(t)}{\|\phi_1\|_1}$ mesurable positive, donc P_2 est continue, de densité

$$f_2(x) = \frac{\phi_1(x)}{\|\phi_1\|_1}$$

2. On a
$$\phi_2(t) = \int e^{itx} dP_2(x) = \int e^{itx} \frac{\phi_1(x)}{\|\phi_1\|_1} d\lambda(x)$$

$$= \frac{2\pi}{\|\phi_1\|_1} \frac{1}{2\pi} \int e^{-i(-t)x} \phi_1(x) d\lambda(x)$$

$$= \frac{2\pi}{\|\phi_1\|_1} f_1(-t)$$

3. Dans le cas d'une Laplace 1, $f_1(t)=\frac{1}{2}e^{-|t|}$ et $\|\phi_1\|_1=\int \frac{1}{1+t^2}d\lambda(t)=\pi$, donc $\phi_2(t)=e^{-|t|}$. P_2 est donc la loi associée à $\mathcal{C}(1)$.