Probabilidad y Estadística (93.24) Trabajo Práctico Nº 6: Respuestas Procesos de Poisson y Cadenas de Markov

1. a) El recorrido de X_n es el conjunto $\{-n, -n+2, \ldots, n-2, n\}$. El espacio de estados es $E = \mathbb{Z}$.

b) La distribución de probabilidades de X_n viene dada por $P(X_n = k) = \binom{n}{(n+k)/2} (\frac{1}{2})^n$. Por ejemplo si n=3 se tiene:

k	$P(X_3 = k)$
-3	0.125
-1	0.375
1	0.375
3	0.125

c) La variable aleatoria X_n es una suma de variables aleatorias independientes con idéntica distribución, esto es:

$$X_n = \sum_{k=1}^n Z_k$$

si $X_0 = 0$ y donde Z_k es la variable aleatoria que toma los valores -1 y 1 ambos con probabilidad $\frac{1}{2}$, con valor esperado 0 y varianza 1. De esta manera el valor esperado de X_n es cero $\forall n$, mientras que la varianza es n.

2. a) En el caso general se tiene $P(X_n = k) = \binom{n}{(n+k)/2} p^{(n+k)/2} (1-p)^{(n-k)/2}$, para $k \in \{-n, -n+2, \dots, n-2, n\}$. b) $E(X_n) = n (2p-1)$ y $V(X_n) = 4 n p (1-p)$.

3. a) El par (valor, probabilidad) para X_0 es (0,1), para X_1 se tienen los pares (-2 , 0.1), (-1, 0.25), (0, 0.3), (1, 0.25), y (2, 0.1). La distribución de probabilidades de X_2 viene dada por los pares (-4, 0.01), (-3, 0.05), (-2, 0.1225), (-1, 0.2), (0, 0.235), (1, 0.2), (2, 0.1225), (3, 0.05), y (4, 0.01). b) $E(X_n) = 0$ y $V(X_n) = 1.3$ n.

4. a) Para n > 0 el espacio de estados E es el conjunto de números reales que es el recorrido de la variable aleatoria normal. b) La distribución de probabilidades de X_n es la de una suma de n variables aleatorias normales estándar independientes y por consiguiente es normal con media 0 y varianza n.

5. a) 0.000335 b) 0.9084 c) 0.10484 d) 0.00115 e) 0.13534 f) 0.7619.

- **6.** a) 0.0519. c) 0.03926.
- **7.** a) 0.9474. b) 0.0699.
- **8.** a) 0.2149 b) 0.1353 c) 0.1941 d) 0.1374.
- 9. a) Tiene distribución de Poisson con parámetro $\lambda=12$ b) 0.5543 c) 0.1353 d) El valor esperado es 50 min y la varianza 250 min 2 e) Usando la aproximación normal se obtiene 0.0146 (haciendo la corrección por continuidad). El valor obtenido con la distribución de Poisson es 0.0172
- 10. a) $\exp(-\lambda t)$ b) $\exp(-\lambda t) (1 + \lambda t)$ c) Usando la distribución binomial la probabilidad pedida es 0.9642. La aproximación normal (haciendo la corrección por continuidad) da 0.965.
- **11.** b) 0 c) 0.3. d) 0.22 e) $\pi(1) = (0.33 \quad 0.45 \quad 0.22)$ f) (0.3 0.6 0.1)
- **12.** b) $\frac{11}{32}$ c)

$$P^{n} = \begin{pmatrix} \frac{2}{3} 0.25^{n} + \frac{1}{3} & -\frac{2}{3} 0.25^{n} + \frac{2}{3} \\ -\frac{1}{3} 0.25^{n} + \frac{1}{3} & \frac{1}{3} 0.25^{n} + \frac{2}{3} \end{pmatrix}$$

La matriz de transición de n pasos tiende a una matriz cuyas dos filas son iguales al vector fila de la distribución estacionaria de probabilidades. La probabilidad de *éxito* a largo plazo es $\frac{1}{3}$.

- **13.** b) 0.326 . c) (0.191 0.243 0.567); (0.179 0.239 0.582); (0.17774 0.23860 0.5837); (0.17767 0.23858 0.58375)
- d) para 100 meses (0.1776 0.2386 0.5838)
- e) (0.1776 0.2386 0.5838) con 4 decimales.
- **14.** b1) (0.39 0.19 0.42) b2) 0.381 0.183 0.436) c) luego de transcurrido mucho tiempo ($\frac{1}{3}$ $\frac{1}{6}$ $\frac{1}{2}$).
- **15.** c) El 40 % del tiempo en la ciudad A, 45 % del tiempo en B y el 15 % del tiempo en C.
- **16.** Si.
- **17.** a) 1 b) 0.49 c) $\frac{10}{27}$.

18. b)

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{6} & \frac{5}{6} & 0 & 0 & 0 & 0 \\ 0 & \frac{2}{7} & \frac{5}{7} & 0 & 0 & 0 \\ 0 & 0 & \frac{3}{8} & \frac{5}{8} & 0 & 0 \\ 0 & 0 & 0 & \frac{4}{9} & \frac{5}{9} & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \end{bmatrix}.$$

c) $\frac{19}{36}$. d) $(1 \ 0 \ 0 \ 0 \ 0 \ 0)$.

19. a)

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{3}{4} & 0 & 0 & \frac{1}{4} & 0 & 0 & 0 & 0 \\ 0 & \frac{3}{4} & 0 & 0 & \frac{1}{4} & 0 & 0 & 0 \\ 0 & 0 & \frac{3}{4} & 0 & 0 & \frac{1}{4} & 0 & 0 \\ 0 & 0 & 0 & \frac{3}{4} & 0 & 0 & \frac{1}{4} & 0 \\ 0 & 0 & 0 & 0 & \frac{3}{4} & 0 & 0 & \frac{1}{4} \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

b) $\frac{27}{64}$.

20. a)

n	$p_{21}^{(n)}$	$p_{33}^{(n)}$	$p_{11}^{(n)}$	$p_{22}^{(n)}$
1	0	0	0	$\frac{p_{22}^{(n)}}{\frac{2}{3}}$
2	$\frac{1}{6}$	$\frac{\frac{1}{6}}{15}$	0	$\frac{33}{54}$
3	$\frac{1}{9}$		$\frac{1}{6}$	$\frac{37}{54}$
4	$\frac{11}{108}$	$ \begin{array}{r} 54 \\ \hline 23 \\ \hline 108 \\ \hline 35 \\ \end{array} $	$\frac{1}{9}$	$\frac{217}{324}$
5	$\frac{37}{324}$	$\frac{35}{162}$	$\frac{11}{108}$	$\frac{324}{161}$

- b) Todos los estados resultan conectados en 3 o más pasos por lo tanto la cadena es regular. La distribución de probabilidades para $tiempo\ grande$ es el vector ($\frac{1}{9}$ $\frac{6}{9}$ $\frac{2}{9}$).
- **21.** a) Todos los estados resultan conectados en 3 o más pasos por lo tanto la cadena es regular. b) $\frac{1}{6}$ c) La distribución de probabilidades para *tiempo grande* es el vector ($\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{6}$).
- **23.** a) $\beta_n = (2p-1)^n \beta \frac{1}{2} ((2p-1)^n 1)$ n: 0, 1, 2... b) $\beta = \frac{1}{2} (\frac{1}{(2p-1)^2} + 1)$.

24. a)

$$P = \begin{bmatrix} 1 & 0 \\ 1 - (1-p)^n & (1-p)^n \end{bmatrix}.$$

b)
$$p_0 = p$$
 , $p_n = p(1-p)^n$ $n \in \{1, 2, ...\}$ c) $E(N) = \frac{1-p}{p}$.

25. a) $(0,0,0,1) \to (p,0,(1-p),0) \to (1-(1-p)^2,0,(1-p)^2,0) \to \dots, (1-(1-p)^n,0,(1-p)^n,0)\dots$ La distribución de probabilidades de largo plazo $(n \to \infty)$ es (1,0,0,0).