NATIONAL UNIVERSITY OF SINGAPORE MATHEMATICS SOCIETY

PAST YEAR PAPER SOLUTIONS

with credits to Teo Wei Hao

MA2202 Algebra I

AY 2002/2003 Sem 2

Question 1

Let $(a_1, b_1), (a_2, b_2), (a_3, b_3) \in A$. We have,

$$\begin{aligned} \left[(a_1,b_1)*(a_2,b_2) \right] * (a_3,b_3) &= (a_1a_2 - b_1b_2, a_1b_2 + b_1a_2) * (a_3,b_3) \\ &= (a_1a_2a_3 - b_1b_2a_3 - a_1b_2b_3 - b_1a_2b_3, a_1a_2b_3 - b_1b_2b_3 + a_1b_2a_3 + b_1a_2a_3), \\ (a_1,b_1) * \left[(a_2,b_2)*(a_3,b_3) \right] &= (a_1,b_1) * (a_2a_3 - b_2b_3, a_2b_3 + b_2a_3) \\ &= (a_1a_2a_3 - a_1b_2b_3 - b_1a_2b_3 - b_1b_2a_3, a_1a_2b_3 + a_1b_2a_3 + b_1a_2a_3 - b_1b_2b_3). \end{aligned}$$

Thus $[(a_1, b_1) * (a_2, b_2)] * (a_3, b_3) = (a_1, b_1) * [(a_2, b_2) * (a_3, b_3)]$, i.e. (A, *) is associative.

Also $(a_1, b_1) * (a_2, b_2) = (a_1a_2 - b_1b_2, a_1b_2 + b_1a_2) = (a_2, b_2) * (a_1, b_1)$. Thus (A, *) is commutative.

We have (1,0)*(a,b)=(a,b) for all $(a,b)\in A$, thus $(1,0)\in A$ is the identity in (A,*).

For all $(a,b) \in A$, as $(a,b) \neq (0,0)$, $a^2 + b^2 \neq 0$, and so we have $\left(\frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2}\right) \in A$.

Since $(a,b) * \left(\frac{a}{a^2+b^2}, \frac{-b}{a^2+b^2}\right) = (1,0)$, it is the inverse of (a,b) in (A,*).

Therefore, (A, *) is an abelian group.

Question 2

Let us be given that HK = KH, which is non-empty. Let $a_1, a_2 \in HK$.

This implies that there exists $h_1, h_2 \in H$, $k_1, k_2 \in K$ such that $a_1 = h_1 k_1$, $a_2 = h_2 k_2$.

Since K is a group, there exists $k_3 \in K$ such that $k_3 = k_1 k_2^{-1}$.

Since HK = KH, there exists $h_3 \in H$, $k_4 \in K$ such that $h_3k_4 = k_3h_2^{-1}$.

Lastly since H is a group, there exists $h_4 \in H$ such that $h_4 = h_1 h_3$.

Thus we have $a_1 a_2^{-1} = (h_1 k_1)(h_2 k_2)^{-1} = h_1 k_1 k_2^{-1} h_2^{-1} = h_1 k_3 h_2^{-1} = h_1 h_3 k_4 = h_4 k_4 \in HK$.

Therefore $HK \leq G$.

Now instead let us be given that $HK \leq G$.

For any $h \in H$, $k \in K$, we have $(kh)^{-1} = h^{-1}k^{-1} \in HK$. Since HK is a group, we have $kh \in HK$. Thus $KH \subseteq HK$.

We have $k^{-1}h^{-1} \in KH \subseteq HK$. Thus there exists $h' \in H$, $k' \in K$ such that $k^{-1}h^{-1} = h'k'$. This give us $hk = (k^{-1}h^{-1})^{-1} = (h'k')^{-1} = k'^{-1}h'^{-1} \in KH$, i.e. $HK \subseteq KH$.

Page: 1 of 3

Therefore HK = KH.

Question 3

Since a is a generator of G, we have $b = a^i$ for some $i \in \mathbb{Z}^+$.

For b to be not a generator of G, we have $gcd(p^n, i) \neq 1$, i.e. $i = p^k$ for some $k \in \mathbb{Z}^+, k \leq n$. This give us $ab = a^{p^k+1}$.

Now since p is a prime and $p \nmid p^k + 1$, we have $\gcd(p^k + 1, p^n) = 1$.

Thus there exists $s, t \in \mathbb{Z}$ such that $s(p^k + 1) + tp^n = 1$.

Therefore $a = a^{s(p^k+1)+tp^n} = \left(a^{p^k+1}\right)^{\hat{s}} \left(a^{p^n}\right)^{\hat{t}} = (ab)^s \in \langle ab \rangle$, i.e. $G = \langle a \rangle \subseteq \langle ab \rangle$.

Since $\langle ab \rangle \subseteq G$, we conclude that $\langle ab \rangle = G$, i.e. ab is a generator of G.

Question 4

Let lcm(a,n) = l, gcd(a,n) = d, and o(a) = k. This give us an = ld, i.e. $\frac{l}{a} = \frac{n}{d} \in \mathbb{Z}^+$.

Since $(\frac{l}{a}) a \equiv 0 \mod n$, we have $k \mid \frac{l}{a}$.

Also, we have $ka \equiv 0 \mod n$, i.e. $n \mid ka$. This implies that $\frac{n}{d} \mid k\left(\frac{a}{d}\right)$.

Since $\gcd\left(\frac{a}{d}, \frac{n}{d}\right) = 1$, by consequence of Euclid's Lemma, we have $\frac{n}{d} \mid k$.

Therefore the order of a is $\frac{l}{a}$.

Question 5

Let $\circ(a) = n \in \mathbb{Z}^+$. We have $a^n = 1_G \in H$, and so $k \leq n$.

Assume on the contrary that $k \nmid n$.

Then by Division Algorithm, there exists $q, r \in \mathbb{Z}_{>0}$ such that n = kq + r, where 0 < r < k.

Since H is a group, $a^r = a^{n-kq} = (a^n)(a^k)^{-q} = (\bar{a}^k)^{-q} \in H$, contradicting the minimality of k.

Therefore $k \mid n$.

Question 6

Since conjugation preserve permutation structure, we have the set of conjugates of σ in S_4 to be,

$$\sigma^{S_4} = \{ (1 \ 2) (3 \ 4), (1 \ 3) (2 \ 4), (1 \ 4) (2 \ 3) \}.$$

Now τ is a solution iff $\tau \sigma \tau^{-1} = \sigma$, i.e. $\tau \in C_{S_4}(\sigma)$. Notice that $|C_{S_4}| = \frac{|S_4|}{|\sigma^{S_4}|} = \frac{24}{3} = 8$.

Since $(\tau(1) \ \tau(2))(\tau(3) \ \tau(4)) = (1 \ 2)(3 \ 4)$, from the structure, we deduce that $(1 \ 2), (3 \ 4), (1 \ 3)(2 \ 4) \in C_{S_4}$. As $\langle (1 \ 2), (3 \ 4), (1 \ 3)(2 \ 4) \rangle$ is a 8-element subset of C_{S_4} , it is C_{S_4} .

Thus we have,

Page: 2 of 3

Question 7

There exists $g \in aH \cap bK$ since it is non-empty.

This give us $g \in aH$ and $g \in bK$, i.e. gH = aH and gK = bK.

Thus, $aH \cap bK = gH \cap gK = g(H \cap K)$, i.e. $aH \cap bK$ is a left coset of $H \cap K$ in G.

Question 8

Let $\circ(a_1a_2\cdots a_n)=k$, and b_i be the inverse of $a_i, i=1,2,\ldots,n$. Notice that all the b_i 's are distinct, thus $G=\{b_1,b_2,\ldots,b_n\}$. Since G is abelian, we have,

$$(a_1 a_2 \cdots a_n)^2 = (a_1 a_2 \cdots a_n) (b_1 b_2 \cdots b_n)$$

= $(a_1 b_1) (a_2 b_2) \cdots (a_n b_n)$
= 1_G .

Thus $k \mid 2$.

However the order of G is odd, and so by consequence of Lagrange's Theorem, k is odd. This implies that k = 1, i.e. $a_1 a_2 \cdots a_n = 1_G$.

Question 9

For $g \in G$, $h \in H$, let $ghg^{-1} = a$, i.e. gh = ag. This give us gH = ghH = agH. Thus, we have Hg = Hag, i.e. $a = (ag)(g^{-1}) \in H$.

Question 10

There are $\varphi(\varphi(11)) = \varphi(10) = 4$ primitive roots of 11. Now, $10 = 2 \times 5$. Since,

$$2^2 = 4 \not\equiv 1 \mod 11;$$

 $2^5 \equiv -1 \not\equiv 1 \mod 11,$

we conclude that 2 is a primitive root of unity modulo 11.

Now $(\mathbb{Z}/10\mathbb{Z})^* = \{[1]_{10}, [3]_{10}, [7]_{10}, [9]_{10}\}$. Since,

$$2^{3} \equiv 8 \mod 11;$$

$$2^{7} \equiv 7 \mod 11;$$

$$2^{9} \equiv 6 \mod 11,$$

Page: 3 of 3

we have the primitive roots of unity modulo 11 to be 2, 6, 7, 8.