Exerzitien I

Submit your *concise* solutions in the correct order and no later than 2:10 pm on Sept. 22, in your tutorial.

Reading suggestion: Complex numbers, Definition of vector space, Properties of vector spaces, and Subspaces - first four sections in Axler, chapter 1.

Exercise 1.

1. Let $a, b \in \mathbb{R}$, not both zero. Find $c, d \in \mathbb{R}$ such that

$$(a+bi)^{-1}=c+di.$$

- 2. Prove that $\frac{-1+i\sqrt{3}}{2}$ is a cube root of 1.
- 3. Let $S = \{z \in \mathbb{C} \mid z^3 = 1\}$ and $T = \{z \in \mathbb{C} \mid z^4 = 1\}$. List the elements in S and T, and plot them.

Exercise 2.

1. Let ℓ_1 and ℓ_2 be the lines in \mathbb{R}^2 defined by the linear equations

$$\ell_1 = \{(x, y) \in \mathbb{R}^2 \mid x + y = 2\},\$$

 $\ell_2 = \{(x, y) \in \mathbb{R}^2 \mid 2x - y = 2\}.$

Draw a graph showing ℓ_1 and ℓ_2 , and then find the intersection $\ell_1 \cap \ell_2$ of the two lines

2. Let ℓ_3 be the line in \mathbb{R}^2 defined by the linear equation

$$\ell_3 = \{(x,y) \in \mathbb{R}^2 \mid x = y\},\,$$

and add it to your diagram. Determine the intersections $\ell_1 \cap \ell_3$ and $\ell_2 \cap \ell_3$, as well as the intersection of all three lines $\ell_1 \cap \ell_2 \cap \ell_3$.

3. Which of ℓ_1, ℓ_2, ℓ_3 are linear subspaces? Prove your claim.

Exercise 3. Let V be the set of pairs (x, y) of real numbers and define a modified addition operation

$$(x, y) + (u, v) = (x + u, 0)$$

as well as a modified scalar multiplication by $c \in \mathbb{R}$ via

$$c(x,y)=(cx,0).$$

Using these two modified operations, is V a vector space? Justify your answer.