Lecture 20
Radiarierely mefficient/Thick (Advection Dominared Accretion Lisk (flows)
RIAF, ADAZ
In the solution of this disks when we considered the energy balance, we saw that
sav flat
$57u_{r}\frac{dS}{dR} = v5\left(R\frac{d\Omega}{dR}\right)^{2} - F_{cooling}$
advected by viscosite lost to
radeation
We made the assumption that cooling is efficient s.t. vadiation takes away
We made the assumption that cooling is efficient s.t. variation takes away locally all the energy that is generated, and advocation com be neglected.
When is that valid?
tool << tacer, = R = 2 R2

T

bet fails when colong time is tool n Eth is long! This happens for two reasons in two different regimes emissivitées (mg) ou small, Recoll that all matiative processes go as m2 (eg. Bremsstrallary) or n (eg synchrotron't Compto, line emission), lu addition thouselizate timescale is dominated by collisional processes (e.g. Colore Callisions between charged particles), which go as ~n2. As a result, in the low licase Fc is low because the gas &s on metficient emitter

In the opposite, high li regime, tool is long for a different high is > high p & high n -> high x, high z So, the diffusion rimescale for radiotion gets longer. Whet thiff > tace, radiation gots trapped in the flow, and is advected with In both cases, in the Eegr, Fc becomes sub-contrant to the other terms, ond 5 Tur ds = 05 (R ds) entropy is advected (corried inword)

At low II, Lisks Can't cool efficiently so TI and approache the vivial temperature, and Con RR => BOOK ADAF/RAF are both pressure and angular momentiem supported. Large To longe thermal pressure -> con't neglect the pressure grondient in the radial direction in the monortum agn (which we did for this disks). - The presence of todial pressure support -> fluid elements over no longer lon kepherian outits -> these flows are sep-kepherian. - The transition from azimutlal.

velocitées to vadial plungage et

the 1500 is not as shorp as

in thir disks.

Wave steepening & Stacks In the small-amplitude perteustation we found solutions of P, p, ce of the form $f(x t c_s t)$. This means that the solutions are of the form p=p(u), e=e(u) or p=p(e) u=ue). For finite guiglited waves dis is no longer ever. But, assuming procue, we can monormen write the tostasein equi as $\frac{\partial u}{\partial t} + \left[u + \frac{1}{e} G_s^2 \frac{\partial e}{\partial u} \right] \frac{\partial u}{\partial x} = 0$ and the continuity equ. as Du + Cute du 7 Du = 0 Comparay the two yields

du = + Cs

de P

 $\frac{\partial u}{\partial t} + (u T C_S) \frac{\partial u}{\partial x} = 0$ $\frac{\partial e}{\partial t} + \left(u \pm c_s \right) \frac{\partial e}{\partial x} = 0$ Chese are non-linear orducation equis. In particular the hopen the or Cs the faster/slower the solution propagates The advection speed is cet G Consider propagentoon along dx = ce + Cs they $\frac{\partial u}{\partial x} = \frac{\partial u}{\partial t} \frac{\partial t}{\partial x} = \frac{1}{cut c_s} \frac{\partial c}{\partial t}$ So $\frac{\partial u}{\partial t} + \frac{\partial u}{\partial t} = 0 \Rightarrow u = const$ Let Cs The Corves $\frac{dx}{dt}$ one colored characteristics

Consider advalue lée E05 P= Red = C, 22.e d-1 = $(d-1)\frac{de}{p} = 2\frac{dCs}{Cs}$ Since $\frac{du}{de} = + \frac{Cs}{p}$ $\frac{1}{s}$ $\frac{1$ $C_{5} = C_{0} + \frac{1}{2}(8)U$ $U + C_{5} = C_{0} + \frac{1}{2}(8)U + U$ $U - C_{5} = C_{0} + \frac{1}{2}(8)U + U$ $U - C_{5} = C_{0} + \frac{1}{2}(8)U$ $U - C_{5} = C_{0} + \frac{1}{2}(8)U$ Thus, larger e = lerger C5 = Consider a new moving to de right, E.R. at U+Cs

+20 faiter moving Slover $t = A_t$ €=21S€

Lec 21 Let's consider a steady shock (time independent) Let's tronsform quantitées to éle Upstream 1 Shack who frame

VI Vs V2 downstream shock Shock frame Upstream exers shock at U,=V,-Vs down sterom leaves shock at Uz=Vz-Vs $\frac{d(eu)}{dx} = 0 \qquad d \qquad \left\{ eu(h + \frac{1}{2}u^2) = 0 \right\}$ $\frac{d(eu^2tp)}{dx} = 0 \qquad dx \qquad \left\{ eu(h + \frac{1}{2}u^2) = 0 \right\}$ $\frac{d(eu^2tp)}{dx} = 0 \qquad \text{Speci.}$ $\frac{d(eu^2tp)}{dx} = 0 \qquad \text{Internal} \rightarrow \text{Expeci.}$ $\frac{d(eu^2tp)}{dx} = 0 \qquad \text{Internal} \rightarrow \text{Expeci.}$