AND / FA

B11901027 王仁軒

NM with Wa Variation

□SNM:

Noise margin does not change with Wa

```
Wa = 0.36 \text{ um} Wa = 0.48 \text{ um} Wa = 0.60 \text{ um} 0.794 = 0.794
```

RNM:

■ Noise margin ↓ with Wa ↑

```
Wa = 0.36 \text{ um} Wa = 0.48 \text{ um} Wa = 0.60 \text{ um} 0.373 > 0.291 > 0.222
```

■ WNM

■ Noise margin ↑ with Wa ↑

AND

- ☐ Fastest at FF, slowest at SS
- □ No Sizing -> rise time = 2x fall time

AND

- □ Delay: FS > TT
 - Unbalanced size -> maximum delay + at falling

AND

□ High VDD -> Faster

Delay of VDD variation

AND (Adjust W by 40%) Adjust Wn, nand 84 73 64.9 59.9 55.1 56.7 ■ wn*1.4 29.7 28.5 27.3 ■ wn/1.4 rise time fall time delay smaller caps Adjust Wp,nand 79 73 69 56.7 57.1 **L** 58.9 ■wp*1.4 28.5 29.9 26.7 ■ wp/1.4

delay

6

fall time

rise time

AND (Adjust W by 40%)

□ Adjust Wn,inv

□ Adjust Wp,inv

■ Structure

- \blacksquare Cout = MAJ(A , B , Cin)
- Sum = ABC + $(A + B + Cin)\overline{Cout}$
- \blacksquare Wp = 0.75u, Wn = 0.25u

☐ Fastest at FF, slowest at SS

☐ High VDD -> Faster

Delay of VDD variation

- Critical path
 - A: 1->0 , B: 1 , Cin: 0, Cout: 1->0, Sum: 0->1

- Critical path
 - A: 1->0 , B: 1 , Cin: 0, Cout: 1->0, Sum: 0->1
 - Delay can be estimated by Elmore RC model
 - Longer path -> larger effective capacitance

28T Full Adder (Adjsut W by 40%)

□ Adjust Wn (excluding inverters)

Wn, nand

- Adjust Wp (excluding inverters)
 - Shorter delay when reducing size of Wp
 - Max/Min delay happens at Sum: 0 -> 1

