

Linear Programming - Simplex

Operations research

Paweł Obszarski

Gausian eliminiation

$$\begin{cases} x_1 + x_2 + x_3 &= 6 \\ 3x_1 + 2x_2 + 2x_3 &= 13 \\ 2x_1 + x_2 + 2x_3 &= 10 \end{cases}$$

The Standard Maximum Problem

Find

$$X = [x_1, x_2, ..., x_n]^T \tag{1}$$

Subject to

$$\begin{array}{rcl}
a_{11}x_1 + a_{12}x_2 + & \dots + a_{1n}x_n & \leq & a_{10} \\
a_{21}x_1 + a_{22}x_2 + & \dots + a_{2n}x_n & \leq & a_{20} \\
& \dots & & \\
a_{m1}x_1 + a_{m2}x_2 + & \dots + a_{mn}x_n & \leq & a_{m0}
\end{array} \tag{2}$$

$$x_1 \ge 0, x_2 \ge 0 \dots x_n \ge 0$$
 (3)

Maximize objective function

$$z = c_1 x_1 + c_2 x_2 + \ldots + c_n x_n \tag{4}$$

Properties

THEOREM 7 Point P is a corner point of LP feasible solution if and only if it sharply satisfies n linearly independent inequalities.

Standard Equation Problem

Determine vector
$$X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in R^n$$
 that maximizes

$$z = c_1 x_1 + c_2 x_2 + \ldots + c_n x_n$$

Subject to:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = a_{10}$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = a_{20}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = a_{m0}$$

$$x_1 \ge 0, \dots, x_n \ge 0$$

Standard Matrix Representation

Find $X \in \mathbb{R}^n$, subject to

$$A \cdot X = A_0$$

$$X \geq 0_n$$

where

$$z = C \cdot X$$

gets its maximum.

Where

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}, \ 0_n = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \ C = [c_1, c_2, \dots, c_n]$$

Standard Vector Representation

Find $X \in \mathbb{R}^n$, that maximizes function

$$z = C \cdot X$$

subject to

$$A_1x_1 + A_2x_2 + \ldots + A_nx_n = A_0$$
$$X \ge 0_n$$

Where

$$A_j = \begin{bmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{bmatrix}, \ \mathbf{0}_n = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \vdots \\ \mathbf{0} \end{bmatrix}, \ C = [c_1, c_2, \dots, c_n]$$

Properties

THEOREM 6. The most important theorem A vector $x = [x_1, x_2, ..., x_n]^T$ represents the coordinates of a feasible corner point if and only if in the linear combination

$$A_1x_1 + A_2x_2 + \dots + A_nx_n = A_0$$

if A_j is an independent vector then $x_j > 0$ (so if A_j is a dependent vector then $x_j = 0$).

Standard Simplex Representation

Find $X \in \mathbb{R}^n$ that maximizes the function

$$z = c_1 x_1 + c_2 x_2 + \ldots + c_n x_n$$

subject to:

$$a_{1,1}x_{1} + a_{1,2}x_{2} + \dots + a_{1,n-m}x_{n-m} + x_{n-m+1} = a_{1,0}$$

$$a_{2,1}x_{1} + a_{2,2}x_{2} + \dots + a_{2,n-m}x_{n-m} + x_{n-m+2} = a_{2,0}$$

$$\vdots \quad \vdots \quad \ddots \quad \vdots \quad \ddots \quad \vdots$$

$$a_{m1}x_{1} + a_{m2}x_{2} + \dots + a_{m,n-m}x_{n-m} + x_{n} = a_{m,0}$$

$$x_{1} \ge 0, x_{2} \ge 0, \dots, x_{n} \ge 0, a_{1,0} \ge 0, a_{2,0} \ge 0, \dots, a_{m}, 0 \ge 0$$

Standard Simplex Representation - Example

Find $X = [x_1, x_2]^T$ that maximizes

$$z = 4x_1 + 6x_2$$

subject to

$$6x_1 + 8x_2 \le 48$$

 $10x_1 + 6x_2 \le 60$
 $5x_1 + 15x_2 \le 75$

$$x_1 \ge 0, \ x_2 \ge 0$$

Standard Simplex Representation - Example

Find $X = [x_1, x_2, x_3, x_4, x_5]^T$ that maximizes

$$z = 4x_1 + 6x_2 + 0x_3 + 0x_4 + 0x_5$$

subject to

$$6x_1 + 8x_2 + x_3 = 48$$

 $10x_1 + 6x_2 + x_4 = 60$
 $5x_1 + 15x_2 + x_5 = 75$
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0$

Standard Simplex (matrix) Representation

Find $X \in \mathbb{R}^n$ that maximizes function

$$z = C \cdot X$$

subject to

$$A \cdot X = A_0$$

$$X \ge 0_n$$

$$A_0 \ge 0_n$$

where

where
$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1,n-m} & 1 & 0 & \dots & 0 \\ a_{21} & a_{22} & \dots & a_{2,n-m} & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{m,n-m} & 0 & 0 & \dots & 1 \end{bmatrix}, 0_n = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, C = [c_1, c_2, \dots, c_n]$$

Standard Simplex (vector) representation

Find $X \in \mathbb{R}^n$ that maximizes function

$$z = C \cdot X$$

subject to

$$A_1x_1 + A_2x_2 + \ldots + A_nx_n = A_0$$

$$X \ge 0_n$$

$$A_0 \ge 0_n$$

where
$$A_j=\left[\begin{array}{c}a_{1j}\\a_{2j}\\ \vdots\\a_{mj}\end{array}\right]$$
, $0_n=\left[\begin{array}{c}0\\0\\ \vdots\\0\end{array}\right]$, $C=[c_1,c_2,\ldots,c_n]$

Simplex tableau

			c_1	c_2		c_{n-m}	c_{n-m+1}	c_{n-m+2}		c_n	c_0
i	base	c_i	A_1	A_2		A_{n-m}	A_{n-m+1}	A_{n-m+2}		A_n	A_0
1	A_{n-m+1}	c_{n-m+1}	$x_{1,1}$	$x_{1,2}$		$x_{1,n-m}$	1	0		0	$x_{1,0}$
2	A_{n-m+2}	c_{n-m+2}	$x_{2,1}$	$x_{2,2}$		$x_{2,n-m}$	0	1		0	$x_{2,0}$
:	:	:	:	:	٠	:	:	÷	٠	:	:
\overline{m}	A_n	c_n	$x_{m,1}$	$x_{m,2}$		$x_{m,n-m}$	0	0		1	$x_{m,0}$
	$z_k - c_k$		$z_1 - c_1$	$z_2 - c_2$		$z_{m,n-m}-c_{m,n-m}$	0	0		0	$z_0 - c_0$

Simplex tableau - Example

		C	4	6	0	0	0	0
			x_1	x_2	x_3	x_4	x_{5}	
i	Base		A_1	A_2	A_3	A_{4}	A_5	A_0
1	A_3	0	6	8	1	0	0	48
2	A_{4}	0	10	6	0	1	0	60
3	A_5	О	5	15	0	0	1	75
	$z_j - c_j$		-4	-6	0	0	0	0

- 1. If $z_j c_j \ge 0$ for all j ($1 \le j \le n$) then the optimal (maximal) solution was found stop the algorithm. Otherwise go to step 2.
- 2. Find that k which satisfies the condition

$$z_k - c_k = \min_{1 \le j \le n} (z_j - c_j)$$

3. Find that l which satisfies the condition

$$\frac{x_{j0}}{x_{lk}} = \min_{x_{ik} > 0} \frac{x_{i0}}{x_{ik}}$$

If $x_{ik} \leq 0$ for all i ($1 \leq i \leq m$) then the objective function reaches $+\infty$, so stop the algorithm. Otherwise go to step 4.

4. Calculate new coefficients of the simplex tableou according to formulas (determine a new corner-point feasible solution)

$$x'_{ij} = x_{ij} - \frac{x_{lj}}{x_{lk}} x_{ik}$$
 for $i = 1, 2, ..., l - 1, l + 1, ..., m + 1$ and $j = 1, 2, ..., n, 0$ $x'_{lj} = \frac{x_{lj}}{x_{lk}}$ for $j = 1, 2, ..., n, 0$

where $x'_{m+1,j} = z'_j - c_j$ for j = 1, 2, ..., n, 0.

Come back to step 1.

		C	4	6	0	0	0	0
			x_1	x_2	x_3	x_4	x_{5}	
i	Base		A_1	A_2	A_3	A_{4}	A_5	A_0
1	A_3	0	6	8	1	0	0	48
2	A_{4}	0	10	6	0	1	0	60
3	A_5	0	5	15	0	0	1	75
	$z_j - c_j$		-4	-6	0	0	0	0

$$X^{(0)} = [0, 0, 48, 60, 75]^T$$

 $z(x^{(0)}) = 0$

		C	4	6	0	0	0	0
			x_1	x_2	x_3	x_4	x_{5}	
i	Base		A_1	A_2	A_3	A_{4}	A_5	A_0
1	A_3	0	6	8	1	0	0	48
2	A_{4}	0	10	6	0	1	0	60
3	A_5	0	5	15	0	0	1	75
	$z_j - c_j$		-4	-6	0	0	0	0

$$X^{(0)} = [0, 0, 48, 60, 75]^T$$

 $z(x^{(0)}) = 0$

		C	4	6	0	0	0	0
			x_1	x_2	x_3	x_4	x_5	
i	Base		A_1	A_2	A_3	A_{4}	A_5	A_0
1	A_3	0	$\frac{10}{3}$	0	1	0	$-\frac{8}{15}$	8
2	A_{4}	0	8	0	0	1	$-\frac{6}{15}$	30
3	A_2	6	$\frac{1}{3}$	1	0	0	$\frac{1}{15}$	5
	$z_j - c_j$		-2	0	0	0	<u>2</u> 5	30

$$X^{(1)} = [0, 5, 8, 30, 0]^T$$

 $z(x^{(1)}) = 30$

		C	4	6	0	0	0	0
			x_1	x_2	x_3	x_4	x_5	
i	Base		A_1	A_2	A_3	A_{4}	A_5	A_0
1	A_3	0	$\frac{10}{3}$	0	1	О	$-\frac{8}{15}$	8
2	A_{4}	0	8	0	0	1	$-\frac{6}{15}$	30
3	A_2	6	$\frac{1}{3}$	1	0	0	$\frac{1}{15}$	5
	$z_j - c_j$		-2	0	0	0	<u>2</u> 5	30

$$X^{(1)} = [0, 5, 8, 30, 0]^T$$

 $z(x^{(1)}) = 30$

		C	4	6	0	0	0	0
			x_1	x_2	x_3	x_{4}	x_5	
i	Base		A_1	A_2	A_3	A_{4}	A_5	A_0
1	A_1	4	1	0	$\frac{3}{10}$	0	$-\frac{8}{50}$	$\frac{12}{5}$
2	A_{4}	0	0	0	$-\frac{24}{10}$	1	44 50	<u>4</u> 5
3	A_2	6	0	1	$-\frac{1}{10}$	0	6 50	2 <u>1</u> 5
	$z_j - c_j$		0	0	<u>3</u> 5	0	$\frac{2}{25}$	$34\frac{4}{5}$

$$X^{(2)} = \left[\frac{12}{5}, \frac{21}{5}, 0, \frac{4}{5}, 0\right]^{T}$$
$$z(x^{(2)}) = 34\frac{4}{5}$$

Consider corner point $X^0 = [x_{1,0}^0, x_{2,0}^0, x_{m,0}^0, 0, ..., 0]^T$ represented by set of linearly independent $A_1, A_2, ..., A_m$ of vectors. (See Theorem 6.)

Vectors from the base are kept in form of versors.

Consider introducing vector A_k to the base. Before transforming (Gaussian elimination) it to versor we need to decide which vector is to be deleted from base.

Let us assume that vector associated with l-th row is deleted. We may not allow any negative value in A_0 so:

•
$$x_{1,0}^1 = x_{1,0}^0 - \frac{x_{1,k}^0 x_{l,0}^0}{x_{l,k}^0} \ge 0$$

•
$$x_{2,0}^1 = x_{2,0}^0 - \frac{x_{2,k}^0 x_{l,0}^0}{x_{l,k}^0} \ge 0$$

•
$$x_{m,0}^1 = x_{m,0}^0 - \frac{x_{m,k}^0 x_{l,0}^0}{x_{l,k}^0} \ge 0$$

Let us assume that vector associated with l-th row is deleted. We may not allow any negative value in A_0 so:

$$\bullet \ \frac{x_{1,0}^0}{x_{1,k}^0} \ge \frac{x_{l,0}^0}{x_{l,k}^0}$$

$$\frac{x_{2,0}^0}{x_{2,k}^0} \ge \frac{x_{l,0}^0}{x_{l,k}^0}$$

$$\bullet \ \frac{x_{m,0}^0}{x_{m,k}^0} \ge \frac{x_{l,0}^0}{x_{l,k}^0}$$

$$\bullet \ \frac{x_{1,0}^0}{x_{1,k}^0} \ge \frac{x_{l,0}^0}{x_{l,k}^0}$$

$$\bullet \frac{x_{2,0}^0}{x_{2,k}^0} \ge \frac{x_{l,0}^0}{x_{l,k}^0}$$
:

$$\bullet \ \frac{x_{m,0}^0}{x_{m,k}^0} \ge \frac{x_{l,0}^0}{x_{l,k}^0}$$

Take l such that $\min_{j \in \{1, \dots, m\}} (\frac{x_{j,0}^0}{x_{j,k}^0}) = \frac{x_{l,0}^0}{x_{l,k}^0}.$

Explanation 1. How to get better corner point?

$$z(X^0) = c_1 x_{1,0}^0 + c_2 x_{2,0}^0 + \dots + c_m x_{m,0}^0$$

$$z(X^{1}) = c_{1}x_{1,0}^{1} + c_{2}x_{2,0}^{1} + \dots + c_{l-1}x_{l-1,0}^{1} + c_{l+1}x_{l+1,0}^{1} + \dots + c_{m}x_{m,0}^{1} + c_{k}x_{k}^{1}$$

Explanation 1. How to get better corner point?

$$z(X^{1}) = c_{1}x_{1,0}^{1} + c_{2}x_{2,0}^{1} + \dots + c_{l-1}x_{l-1,0}^{1} + c_{l+1}x_{l+1,0}^{1} + \dots + c_{m}x_{m,0}^{1} + c_{k}x_{k}^{1}$$

Let
$$t = \frac{x_{l,0}^0}{x_{l,k}^0}$$

$$x_{1,0}^1 = x_{1,0}^0 - \frac{x_{1,k}^0 x_{l,0}^0}{x_{l,k}^0}; \ x_{2,0}^1 = x_{2,0}^0 - \frac{x_{2,k}^0 x_{l,0}^0}{x_{l,k}^0}; \ \dots x_{m,0}^1 = x_{m,0}^0 - \frac{x_{m,k}^0 x_{l,0}^0}{x_{l,k}^0}$$

$$z(X^{1}) = c_{1}(x_{1,0}^{0} - tx_{1,k}^{0}) + c_{2}(x_{2,0}^{0} - tx_{2,k}^{0}) + \dots + c_{l-1}(x_{l-1,0}^{0} - tx_{l-1,k}^{0}) + c_{l+1}(x_{l+1,0}^{0} - tx_{l+1,k}^{0}) + \dots + c_{m}(x_{m,0}^{0} - tx_{m,k}^{0}) + c_{k}t$$

Explanation 1. How to get better corner point?

$$z(X^0) = c_1 x_{1,0}^0 + c_2 x_{2,0}^0 + \dots + c_m x_{m,0}^0$$

$$z_k = c_1 x_{1,k}^0 + c_2 x_{2,k}^0 + \dots + c_m x_{m,k}^0$$

$$z(X^{1}) = c_{1}(x_{1,0}^{0} - tx_{1,k}^{0}) + c_{2}(x_{2,0}^{0} - tx_{2,k}^{0}) + \dots + c_{l-1}(x_{l-1,0}^{0} - tx_{l-1,k}^{0}) + c_{l+1}(x_{l+1,0}^{0} - tx_{l+1,k}^{0}) + \dots + c_{m}(x_{m,0}^{0} - tx_{m,k}^{0}) + c_{k}t$$

$$z(X^{1}) = z(X^{0}) - c_{l}x_{l,0}^{0} - tz_{k} + tc_{l}x_{l,k}^{0} + c_{k}t$$

$$z(X^{1}) = z(X^{0}) - t(z_{k} - c_{k}) - c_{l}x_{l,0}^{0} + \frac{x_{l,0}^{0}}{x_{l,k}^{0}}c_{l}x_{l,k}^{0}$$