

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE ESCUELA DE INGENIERIA DEPARTAMENTO DE CIENCIA DE LA COMPUTACION

Diseño y Análisis de Algoritmos - IIC2283 Interrogación 2

1. En esta pregunta usted va a analizar un algoritmo para transformar una moneda cargada en una moneda no cargada. De manera más precisa, sea **Moneda**() un procedimiento que retorna 0 con probabilidad p y 1 con probabilidad 1-p, donde 0 , y defina**Lanzar**() como el siguiente algoritmo:

```
egin{aligned} \mathbf{Lanzar}(\,) & a_1 := \mathbf{Moneda}(\,) \ a_2 := \mathbf{Moneda}(\,) & \mathbf{if} \ a_1 
eq a_2 \ \mathbf{then} \ \mathbf{return} \ a_1 & \mathbf{else} \ \mathbf{return} \ \mathrm{sin\_resultado} \end{aligned}
```

- (a) [0.7 puntos] Calcule Pr(Lanzar() retorne sin_resultado).
- (b) [0.7 puntos] Demuestre que $Pr(\mathbf{Lanzar}() \text{ retorne } 0) = Pr(\mathbf{Lanzar}() \text{ retorne } 1)$, vale decir, $\mathbf{Lanzar}()$ se puede considerar como una moneda no cargada.
- (c) [0.6 puntos] Considere la siguiente versión modificada del algoritmo **Lanzar**():

```
egin{aligned} \mathbf{RepLanzar}() \ a_1 &:= \mathbf{Moneda}() \ a_2 &:= \mathbf{Moneda}() \ \mathbf{while} \ a_1 &= a_2 \ a_1 &:= \mathbf{Moneda}() \ a_2 &:= \mathbf{Moneda}() \ \mathbf{return} \ a_1 \end{aligned}
```

Indique cuál es el número esperado de veces que se debe llamar al procedimiento $\mathbf{Mone-da}()$ hasta que $\mathbf{RepLanzar}()$ entregue un resultado. Nótese que este número esperado es una función de p, y recuerde que p es la probabilidad de que $\mathbf{Moneda}()$ retorne 0.

2. [1.6 puntos] Dada una función $f:A\to B$, recuerde que: (i) f es 1-1 si para cada $a,b\in A$ tal que $a\neq b$, se tiene que $f(a)\neq f(b)$; (ii) f es sobre si para cada $b\in B$, existe $a\in A$ tal que f(a)=b; (iii) f es biyectiva si f es 1-1 y sobre. Además, dada una función $g:B\to C$, recuerde que la composición $(g\circ f):A\to C$ es una función definida como $(g\circ f)(x)=g(f(x))$ Sea $n\geq 1$ un número natural, y sea \mathcal{B}_n el conjunto de todas las biyecciones $f:\{1,\ldots,n\}\to\{1,\ldots,n\}$. Demuestre que (\mathcal{B}_n,\circ) es un grupo, donde \circ es la composición de funciones.

- 3. Sea p un número primo.
 - (a) [1.2 puntos] Demuestre que un polinomio r(x) de grado k tiene a lo más k raíces en módulo p, vale decir, existen a lo más k elementos $a \in \{0, \ldots, p-1\}$ tales que $r(a) \equiv 0 \mod p$.
 - (b) [1.2 puntos] Suponiendo que p es impar, sean

$$S_p^+ = \{a \in \mathbb{Z}_p^* \mid a^{\frac{p-1}{2}} \equiv 1 \mod p\},$$

$$S_p^- = \{a \in \mathbb{Z}_p^* \mid a^{\frac{p-1}{2}} \equiv -1 \mod p\}.$$

Demuestre que $|S_p^+| = |S_p^-| = \frac{p-1}{2}$.