ANALISI DEI FATTORI CHE INFLUISCONO SULLA QUALITÀ DEL SONNO

Scenario

Un'assicurazione sanitaria è interessata a sapere come migliorare il sonno dei propri clienti tramite la promozione di uno stile di vita sano. L'idea è che in questo modo la compagnia assicurativa sia in grado di migliorare la salute dei propri clienti e, conseguentemente, di ridurre i costi per le cure mediche dei propri assicurati. Per farlo, vuole capire quali aspetti dello stile di vita influiscono maggiormente sulla qualità del sonno.

A tal fine, useremo dataset pubblici contenenti dati su attività fisica, qualità del sonno, informazioni demografiche e condizioni di salute di varie persone per analizzarli in relazione all'obiettivo dell'assicurazione sanitaria. Tramite l'utilizzo di Python, realizzeremo quindi un'analisi approfondita che possa consentire all'assicurazione di decidere **quali cambiamenti di comportamento promuovere tra i propri clienti**.

Raccolta dei dati

Useremo due dataset pubblici, uno artificiale (il primo), che non rappresenta quindi persone reali, pur essendo valido ai fini delle nostre analisi, e uno reale (il secondo):

- https://www.kaggle.com/datasets/hanaksoy/health-and-sleep-statistics
- https://www.kaggle.com/datasets/henryshan/sleep-health-and-lifestyle

Una volta scaricati i due dataset in formato CSV e salvati nella directory di lavoro, andiamoli a caricare in Python usando Pandas.

```
In [1]: import pandas as pd
from pathlib import Path

DATA_DIR = Path("Dataset")
```

```
df1 = pd.read_csv(DATA_DIR / "Health_Sleep_Statistics.csv")
df2 = pd.read_csv(DATA_DIR / "ss.csv")
```

Visualizziamo le prime righe in formato tabulare per farci un'idea di come sono strutturati i due dataset.

```
In [2]: display(df1.head(n=3))
     display(df2.head(n=3))
```

	User ID	Age	Gender	Sleep Quality	Bedtime	Wake-up Time	Daily Steps	Calories Burned	Physical Activity Level	Dietary Habits	Sleep Disorders	Medication Usage
0	1	25	f	8	23:00	06:30	8000	2500	medium	healthy	no	no
1	2	34	m	7	00:30	07:00	5000	2200	low	unhealthy	yes	yes
2	3	29	f	9	22:45	06:45	9000	2700	high	healthy	no	no

	Person ID	Gender	Age	Occupation	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	BMI Category	Blood Pressure	Heart Rate	Daily Steps	Sleep Disorder
0	1	Male	27	Software Engineer	6.1	6	42	6	Overweight	126/83	77	4200	NaN
1	2	Male	28	Doctor	6.2	6	60	8	Normal	125/80	75	10000	NaN
2	3	Male	28	Doctor	6.2	6	60	8	Normal	125/80	75	10000	NaN

Elaborazione dei dati

Trasformazione dei dati

Qualità del sonno

Visto che il nostro obiettivo è capire quali fattori influenzano di più la qualità del sonno, partiamo proprio da quest'ultima. Notiamo che la colonna che identifica la qualità del sonno ha due nomi diversi nei due dataset:

- "Sleep Quality" in df1;
- "Quality of Sleep" in df2.

Per semplificare l'analisi, andiamo a rinominare queste colonne in sleep_quality.

```
In [3]: df1.rename(columns={"Sleep Quality": "sleep_quality"}, inplace=True)
    df2.rename(columns={"Quality of Sleep": "sleep_quality"}, inplace=True)
```

Controlliamo poi che la distribuzione dei valori di sleep_quality sia simile nei due dataset.

```
In [4]: summary = pd.DataFrame({
        "df1": df1["sleep_quality"].describe(),
        "df2": df2["sleep_quality"].describe()
}).loc[["count","mean","std","min","25%","50%","75%","max"]]

display(summary)
```

	df1	df2
count	100.000000	373.000000
mean	7.000000	7.308311
std	1.734964	1.195359
min	4.000000	4.000000
25%	5.750000	6.000000
50%	7.500000	7.000000
75%	8.250000	8.000000
max	9.000000	9.000000

I due dataset descrivono popolazioni simili (stesso range e livello medio di qualità del sonno). La differenza principale sta nella variabilità:

- df1 mostra una qualità del sonno più eterogenea (alcuni dormono molto bene, altri male);
- df2 mostra più coerenza tra i partecipanti.

La media leggermente più alta di df2 (7.3 vs 7.0) non è enorme, ma su 373 osservazioni potrebbe essere statisticamente significativa.

Attività fisica

Guardiamo ora **Physical Activity Level**. In un dataset è una variabile categorica, ovvero può assumere solo tre valori: basso, medio e alto. Nell'altro dataset è un numero intero (minuti giornalieri di attività fisica).

```
display(df1["Physical Activity Level"].value counts())
 print("\n")
 display(df2["Physical Activity Level"].describe())
Physical Activity Level
medium
          38
          36
high
low
          26
Name: count, dtype: int64
         373.000000
count
          59.128686
mean
std
          20.842589
min
          30.000000
25%
          45.000000
50%
          60.000000
75%
          75.000000
max
          90.000000
Name: Physical Activity Level, dtype: float64
```

Visto che in df2 il livello di attività fisica varia da 30 a 90, decidiamo di creare tre intervalli:

- *low* se < 50
- *medium* se 51–70
- *high* se > 70

```
In [6]: df2.loc[df2["Physical Activity Level"] <= 50, "physical_activity"] = "low"
    df2.loc[(df2["Physical Activity Level"] > 50) & (df2["Physical Activity Level"] <= 70), "physical_activity"] = "medium"
    df2.loc[df2["Physical Activity Level"] > 70, "physical_activity"] = "high"
    df2.drop(columns=["Physical Activity Level"], inplace=True)
    df1.rename(columns={"Physical Activity Level": "physical_activity"}, inplace=True)
```

Indice di massa corporea

Guardiamo ora l'indice di massa corporea, presente solo nel secondo dataset.

Notiamo che alcuni pazienti sono contrassegnati da "Normal Weight" e altri da "Normal". Questo probabilmente è un errore di trascrittura dei dati. Uniformiamo la categoria.

```
In [8]: df2.loc[(df2["BMI Category"] == "Normal") | (df2["BMI Category"] == "Normal Weight"), "BMI Category"] = "Normal"
```

Durata del sonno

Vediamo che in df1 vengono forniti gli orari in cui la persona è andata a dormire e si è alzata, mentre in df2 vengono fornite solo le ore totali di sonno. Il dataset df1 ha quindi una maggiore risoluzione rispetto al dataset df2.

Visto che df1 ha più granuralità del secondo, andiamo a calcolare la durata del sonno per df1.

```
In [9]: df1["Wake-up Time"] = pd.to_datetime(df1["Wake-up Time"], format="%H:%M")
    df1["Bedtime"] = pd.to_datetime(df1["Bedtime"], format="%H:%M")
    df1["sleep_duration"] = (df1["Wake-up Time"] - df1["Bedtime"]).dt.seconds / 3600
    df1.drop(columns=["Wake-up Time", "Bedtime"], inplace=True)
    df2.rename(columns={"Sleep Duration": "sleep_duration"}, inplace=True)
```

Pressione del sangue

In [10]: df2["Blood Pressure"].head(n=3)

Notiamo che la pressione del sangue è rappresentata da una stringa con due valori: la pressione sistolica e quella diastolica.

```
Out[10]: 0 126/83
1 125/80
2 125/80
Name: Blood Pressure, dtype: object
Separiamo la pressione in sistolica e diastolica ed eliminiamo le altre colonne che sono state già utilizzate.

In [11]: # Separazione pressione in sistolica e diastolica df2[['systolic_bp', 'diastolic_bp']] = df2["Blood Pressure"].str.split('/', n=2, expand=True).astype(float)
# Eliminazione delle altre colonne che sono state già utilizzate df2.drop(columns=["Blood Pressure"], inplace=True)
```

Disturbi del sonno

Nel dataset df1, i disturbi del sonno sono semplicemente una categoria yes/no. Nel dataset df2, invece, ci sono persone con apnea e insonnia (due tipi diversi di disturbo del sonno) e le persone senza disturbi del sonno hanno NaN in questa colonna. Andiamo a sostituire i NaN con "no" per uniformarli a df1. Manteniamo però la granularità del tipo di disturbo.

```
In [12]: df1.rename(columns={"Sleep Disorders": "has_sleep_disorder"}, inplace=True)
    df2.rename(columns={"Sleep Disorder": "has_sleep_disorder"}, inplace=True)
    df2.loc[df2.has_sleep_disorder.isna(), "has_sleep_disorder"] = "no"
```

Dati restanti

In modo simile, andiamo a rinominare anche altre colonne che corrispondono a informazioni simili.

```
In [13]: # Rinominiamo Le altre colonne
         df1.rename(columns={"User ID": "user id",
                              "Daily Steps": "daily steps",
                              "Age": "age",
                              "Gender": "gender",
                             "Calories Burned": "calories burned",
                              "Dietary Habits": "dietary habits",
                             "Medication Usage": "uses medication"}, inplace=True)
         df2.rename(columns={"Person ID": "user id",
                              "Daily Steps": "daily steps",
                             "Age": "age",
                              "Gender": "gender",
                             "Occupation": "occupation",
                              "Stress Level": "stress level",
                              "BMI Category": "bmi",
                             "Heart Rate": "heart rate"}, inplace=True)
         # Creazione nuova colonna per dataset
         df1["dataset"] = "HSS"
         df2["dataset"] = "SHL"
         # Concateniamo dataset e user id
         df1["user_id"] = df1["dataset"] + "_" + df1["user_id"].astype(str)
         df2["user_id"] = df2["dataset"] + "_" + df2["user_id"].astype(str)
         df1.drop(columns=["dataset"], inplace=True)
         df2.drop(columns=["dataset"], inplace=True)
         # Sostituzione Male con m e Female con f
         df1.loc[df1.gender == 'm', 'gender'] = 'Male'
         df1.loc[df1.gender == 'f', 'gender'] = 'Female'
```

Unione dataset

Siamo ora pronti ad unire i due dataset in uno unico. Da qui in avanti useremo questo dataset aggregato per le analisi.

d	<pre>df = pd.concat([df1, df2]).reset_index(drop=True) display(df.head(n=3)) display(df.tail(n=3))</pre>											
	user_id	age	gender	sleep_quality	daily_steps	calories_burned	physical_activity	dietary_habits	has_sleep_disorder	uses_medication sl		
0	HSS_1	25	Female	8	8000	2500.0	medium	healthy	no	no		
1	HSS_2	34	Male	7	5000	2200.0	low	unhealthy	yes	yes		
2	HSS_3	29	Female	9	9000	2700.0	high	healthy	no	no		
4										•		
	user_	id a	ge gend	er sleep_qualit	y daily_step	s calories_burn	ed physical_activi	ty dietary_habit	s has_sleep_disord	er uses_medication		
47	0 SHL_3	71	59 Fema	ale	9 700	0 Na	ıN hiç	gh Na	N Sleep Apne	ea NaN		
47	1 SHL_3	72	59 Fema	ale	9 700	0 Na	ıN hiç	gh Na	N Sleep Apne	ea NaN		
47	2 SHL_3	73	59 Fema	ale	9 700	0 Na	ıN hig	gh Na	N Sleep Apne	ea NaN		

Analisi dei dati

Correlazione tra stile di vita e qualità del sonno

Possiamo usare il nostro dataset risultante dalle elaborazioni precedenti e le librerie grafiche Matplotlib e Seaborn per fare un po' di analisi qualitative tra le variabili che rappresentano lo stile di vita e la variabile sleep_quality.

Se volessimo quantificare queste relazioni dal punto di vista statistico, potremmo calcolare la correlazione di Pearson.

```
In [15]: import seaborn as sns
import scipy.stats as ss
```

```
import matplotlib.pyplot as plt
from matplotlib.backends.backend_pdf import PdfPages
```

Per esempio, vediamo che le donne hanno, in media, una qualità del sonno più alta degli uomini.

```
In [16]: sns.catplot(data=df, kind="bar", y="sleep_quality", hue="gender", hue_order=["Female", "Male"]);
```


Una dieta salutare porta ad avere una qualità del sonno molto più alta rispetto a una dieta non salutare.

Anche l'indice di massa corporea influisce sulla qualità del sonno: le persone in sovrappeso o obese dormono peggio.

Il livello di attività fisica sembra impattare la qualità del sonno solo sui maschi. Ma questa è una metrica qualitativa, quindi dipende molto da come ha interpretato le varie categorie chi l'ha misurata.

Se invece guardiamo le calorie consumate, che rispetto al livello di attività fisica possono essere viste un po' come l'altra faccia della stessa medaglia, allora vediamo che c'è una correlazione positiva piuttosto forte con la qualità del sonno.

```
In [20]: sns.lmplot(data=df, x="calories_burned", y="sleep_quality")
    print(df.calories_burned.corr(df.sleep_quality))
```

0.9735569454797837

Non sorprendetemente, c'è una forte correlazione negativa tra stress e qualità del sonno, ovvero maggiore è lo stress, minore è la qualità del sonno.

```
In [21]: sns.catplot(data=df, kind="bar", x="stress_level", y="sleep_quality", hue="gender", hue_order=["Female", "Male"])
print(df.stress_level.corr(df.sleep_quality))
```

-0.8982390052798486

Per riassumere, avere una **dieta sana**, **consumare tante calorie** e **ridurre lo stress** sembrano essere i tre comportamenti più importanti per migliorare la qualità del sonno.

Correlazione tra stato di salute e qualità del sonno

In generale, le persone con un disturbo del sonno dormono peggio.

```
, order=["no", "Sleep Apnea", "Insomnia", "yes"]);
```


Un alto battito cardiaco a riposo è sintomo di un sistema cardiovascolare debole. Queste persone hanno anche una qualità del sonno più bassa.

```
In [23]: sns.lmplot(data=df, x="heart_rate", y="sleep_quality", scatter_kws={"s": 20, "alpha": 1, "color": "0.5"})
print(df.heart_rate.corr(df.sleep_quality))
```

-0.659887645566984

La pressione del sangue dovrebbe essere idealmente sotto 120/80 mmHg (sistolica / diastolica). Tuttavia, la qualità del sonno sembra essere solo lievemente peggiore per le persone che ce l'hanno più alta.

```
ax2.set_ylabel("")
 sns.despine()
 print(df.systolic bp.corr(df.sleep quality))
 print(df.diastolic_bp.corr(df.sleep_quality))
-0.12794671756956305
-0.1172738371900214
              Pressione sistolica
                                                             Pressione diastolica
sleep_quality
   5
   4
                                                              80
                                                                       85
                                                                                         95
     115
            120
                  125
                         130
                               135
                                      140
                                                     75
                                                                                90
```

diastolic_bp

Presentazione dei risultati

systolic_bp

Stratificazione dei clienti

Al fine di presentare i risultati dell'analisi precedente e di fornire le dovute raccomandazioni nel modo più chiaro e semplice possibile, andremo a creare una stratificazione dei clienti tale per cui avremo due gruppi: quello dei clienti sani e quello dei clienti con distrubi del sonno.

Clienti sani

Definiamo un cliente sano se:

- non ha disturbi del sonno;
- non assume farmaci.

```
df sani = df.query("(has sleep disorder == 'no') and (uses medication == 'no')")
In [25]:
         df sani.head()
Out[25]:
                    age gender sleep_quality daily_steps calories_burned physical_activity dietary_habits has_sleep_disorder uses_medication
                                                                    2500.0
                                                                                   medium
                                                                                                  healthy
              HSS 1
                      25
                          Female
                                             8
                                                      8000
                                                                                                                         no
                                                                                                                                         no
             HSS_3
                      29 Female
                                                                                                  healthy
                                             9
                                                     9000
                                                                    2700.0
                                                                                      high
                                                                                                                         no
                                                                                                                                         no
             HSS 5
                                             8
                                                     10000
                                                                    2800.0
                                                                                      high
                                                                                                 medium
                      22 Female
                                                                                                                         no
                                                                                                                                         no
                                                                                      high
                                                                                                  healthy
              HSS 7
                      30 Female
                                                                    2600.0
                                             8
                                                      8500
                                                                                                                         no
                                                                                                                                         no
                                             9
                                                                                                  healthy
              HSS 9
                      27 Female
                                                      9500
                                                                    2750.0
                                                                                   medium
                                                                                                                         no
                                                                                                                                          no
```

A questi clienti consigliamo tre cose per migliorare la propria qualità del sonno:

1. Aumentare il numero di calorie consumate giornalmente;

```
In [26]: sns.lmplot(data=df_sani, x="calories_burned", y="sleep_quality")
    corr = df_sani.calories_burned.corr(df_sani.sleep_quality)
```

```
ax = plt.gca()
ax.set_title(f"CLIENTI SANI - Calorie bruciate\nCorrelazione=${corr:.3f}$")
ax.set_xlabel("Calorie giornaliere")
ax.set_ylabel("Qualità del sonno")
plt.tight_layout()
clienti_sani_fig1 = plt.gcf()
```


2. Migliorare la propria dieta;

```
In [27]:
    df_sani = df_sani.copy()
    sns.catplot(data=df_sani, kind="bar", x="dietary_habits", y="sleep_quality", order=["unhealthy", "medium", "healthy"])
    df_sani.loc[df_sani.dietary_habits == "unhealthy", "dietary_habits_code"] = 0
    df_sani.loc[df_sani.dietary_habits == "medium", "dietary_habits_code"] = 1
    df_sani.loc[df_sani.dietary_habits == "healthy", "dietary_habits_code"] = 2
    corr = df_sani.dietary_habits_code.corr(df_sani.sleep_quality)
    ax = plt.gca()
    ax.set_title(f"CLIENTI SANI - Dieta\nCorrelazione={corr:.3f}")
    ax.set_xlabel("Qualità della dieta")
    ax.set_ylabel("Qualità del sonno")
    ax.set_xticks([0, 1, 2])
    ax.set_xticklabels(["Non salutare", "Media", "Salutare"])
    plt.tight_layout()
    clienti_sani_fig2 = plt.gcf()
```

CLIENTI SANI - Dieta Correlazione=0.920

3. Dormire più a lungo.

```
In [28]: sns.lmplot(data=df_sani, x="sleep_duration", y="sleep_quality")
    corr = df_sani.sleep_duration.corr(df_sani.sleep_quality)
    ax = plt.gca()
    ax.set_title(f"CLIENTI SANI - Durata del sonno\nCorrelazione=${corr:.3f}$")
    ax.set_xlabel("Durata del sonno")
    ax.set_ylabel("Qualità del sonno")
```

```
plt.tight_layout()
clienti_sani_fig3 = plt.gcf()
```


Clienti con disturbo del sonno

```
In [29]: df_disturbi_sonno = df.query("has_sleep_disorder != 'no'")
    df_disturbi_sonno.head()
```

Out[29]:		user_id	age	gender	sleep_quality	daily_steps	calories_burned	physical_activity	dietary_habits	has_sleep_disorder	uses_medication
	1	HSS_2	34	Male	7	5000	2200.0	low	unhealthy	yes	yes
	3	HSS_4	41	Male	5	4000	2100.0	low	unhealthy	yes	no
	7	HSS_8	45	Male	4	3000	2000.0	low	unhealthy	yes	yes
	10	HSS_11	50	Female	5	3500	2100.0	low	unhealthy	yes	yes
	13	HSS_14	48	Male	4	3000	2000.0	low	unhealthy	yes	yes
	4										•

A questi clienti, dato che logicamente non è possibile chiedergli di eliminare la causa del disturbo del sonno (apnea notturna, insonnia, ecc.), poiché non sono fattori su cui possono incidere direttamente, almeno nel breve periodo, consigliamo allora due cose per migliorare la propria qualità del sonno:

1. Diminuire lo stress;

```
In [35]: sns.catplot(data=df_disturbi_sonno, kind="bar", x="stress_level", y="sleep_quality")
    corr = df_disturbi_sonno.stress_level.corr(df_disturbi_sonno.sleep_quality)
    ax = plt.gca()
    ax.set_title(f"CLIENTI CON DISTURBI SONNO - Stress\nCorrelazione=${corr:.3f}$")
    ax.set_xlabel("Livello di stress")
    ax.set_ylabel("Qualità del sonno")
    plt.tight_layout()
    disturbi_sonno_fig1 = plt.gcf()
```

CLIENTI CON DISTURBI SONNO - Stress Correlazione=-0.870

2. Fare più attività fisica.

```
df_disturbi_sonno.loc[df_disturbi_sonno.physical_activity == "high", "physical_activity_code"] = 2

corr = df_disturbi_sonno.physical_activity_code.corr(df_disturbi_sonno.sleep_quality)

ax = plt.gca()
ax.set_title(f"CLIENTI CON DISTURBI SONNO - Attività fisica\nCorrelazione=${corr:.3f}$")
ax.set_xlabel("Attività fisica")
ax.set_ylabel("Qualità del sonno")

plt.tight_layout()
disturbi_sonno_fig2 = plt.gcf()
```

CLIENTI CON DISTURBI SONNO - Attività fisica Correlazione=0.557

Creazione e salvataggio report PDF

```
In [44]: import textwrap
         testo = (
             "Ouesto report include alcune raccomandazioni per migliorare il sonno dei nostri clienti "
             "attraverso cambi di comportamento. In particolare, i primi tre grafici, che si riferiscono "
             "ai clienti sani (senza disturbi del sonno), suggeriscono che per questi ultimi occorre "
             "aumentare l'attività fisica, migliorare la dieta e aumentare il numero di ore di riposo "
             "per migliorare la qualità del sonno. Gli ultimi due grafici, invece, che si riferiscono "
             "ai clienti con disturbi del sonno (insonnia, apnea notturna, ecc.), suggeriscono che per "
             "questi ultimi è necessario ridurre lo stress e fare più attività fisica per migliorare "
             "la qualità del sonno."
         wrapped text = "\n".join(textwrap.wrap(testo, width=80))
         with PdfPages("Report qualità del sonno.pdf") as pdf:
             # ==========
             # Pagina 1: Introduzione
             # =========
             fig, ax = plt.subplots(figsize=(10, 6))
             ax.axis("off")
             fig.text(
                 0.5, 0.9, "Introduzione al Report", # titolo
                 ha="center", va="top", fontsize=18, weight="bold"
             fig.text(
                0.5, 0.75, wrapped text, # testo
                ha="center", va="top", fontsize=13, linespacing=1.5
             pdf.savefig(fig)
             plt.close(fig)
             # =========
```