微分・積分 第1回

慶応義塾大学

総合政策学部・環境情報学部

講義概要

講義概要

微分・積分の基礎事項に関して講義する. 微分は対象の変化を, 積分は対象の累積を解析する理論であり, データサイエンス, 経済学, 理工学など幅広い分野で基礎となる. 実際, その強力な手法と幅広い応用ゆえ, 微分・積分は線形代数と合わせて大学数学の2本柱と位置付けられることが多い. 本講義では, 一変数関数の微分・積分, 多項式近似, 多変数関数の微分・積分などを学習する.

今日の内容

- 微分・積分の概要
- ② 集合, 写像

微分・積分とは何か?

微分

微分: 最も値の大きい・小さいところを探す方法

- 極大点の頂上の手前では坂は上がり、先では下る.
- 極小点の底の手前では坂は下り, 先では上がる.
- 極大点,極小点 ⇒ 傾き 0.
- グラフの傾き = 関数の値の変化率, 未来の判断材料.

応用

最適化問題: 適当な条件を満たす最適解を探す

- 等周問題: 周の長さが l の長方形の中で面積を最大にするものは?
- 面積 A(x) = x(l/2 x)

積分

積分: これまでの蓄積を計算する方法

- 面積 $\int_a^b f(x)dx$ は時刻 a から時刻 b までに移動した距離.
- 平均速度 = 面積/時間.
- 面積 = 過去の蓄積, 過去の判断材料.

積分

時刻 a から時刻 t までに移動した距離は $F(t) = \int_a^t f(x) dx$ で与えられた.

- 「速度」を積分すると「位置」(過去の蓄積).
- 「位置」を微分すると「速度」(現在の変化).
- 一般に, 微分と積分は逆操作.

微分·積分

以上を簡単にまとめると

集合, 濃度

記号の準備も兼ねて,集合論から始める.

定義 3.1

- 対象 (もの) の集まりを<u>集合</u>という. 対象となるものは, 数字, 記号, 文字列など色々考えられる.
- 集合の構成要素を元(要素) という. a が集合 A の元であることを, $a \in A$ と表す. a が A の元であるとき, a は A に含まれるということもある. $a \in A$ の否定を $a \notin A$ と書く.
- 集合 A の元の数を |A| で表し, A の濃度(位数) と呼ぶ. 集合 A で
 - $|A| = \infty$ なるものは無限集合,
 - $|A| \neq \infty$ なるものは有限集合.

集合

例 3.2

- \bullet $A = \{ b, c, a, b, c, r, t, t \}$ $b \in A$.
- ② 都道府県の集合

$$A = \{ 北海道, 青森県, 岩手県, 宮城県, ... \}$$

$$|t||A| = 47.$$

- ℕ = {1,2,3,...}: 自然数,
 - $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$: 整数,
 - ℚ: 有理数 (分数全体), ℝ: 実数

これらは全て無限集合.

外延的記法

集合を定義するには、その集合に含まれる元を指定すれば良い.

外延的記法: その集合が持つ元を全て列挙する直接的な方法. 例えば

$$\{1,2,3,4\}, \{ \}$$
, $\{ \}$

最後の集合は奇数全体の集合を意図したものだが、「...」に何が並ぶのかが明確でないと誤解を招く恐れがある.

例 3.3

自然数の集合

$$\mathbb{N} = \{1, 2, 3, 4, 5, \dots\}.$$

整数の集合

$$\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}.$$

内包的記法

内包的記法: 集合に含まれる元の条件を明示する方法. 「命題 P が真となる $x \in X$ 全体の集合」を

$$\{x \in X \mid P\}$$

と書く. ここで X は変数 x が動く範囲の集合である. 例えば

$$\{n \in \mathbb{Z} \mid -1.4 \le n \le 3\}$$

は「整数 n であって $-1.4 \le n \le 3$ が成立するもの全体の集合」と読む. 外延的方法を用いれば、これは

$$\{-1,0,1,2,3\}$$

とも表せる.

外延的方法 vs 内包的記法

例 3.4

実数 a < b に対して, a, b を端点とする閉区間, 開区間が

$$[a, b] = \{x \in \mathbb{R} \mid a \le x \le b\}, \ (a, b) = \{x \in \mathbb{R} \mid a < x < b\}$$

で定義される. 同様に半開区間

$$(a,b] = \{x \in \mathbb{R} \mid a < x \le b\}, \quad [a,b) = \{x \in \mathbb{R} \mid a \le x < b\}$$

が定義される. これらは外延的方法では記述できない無限集合である.

2つの黒丸に挟まれた区間が閉空間, 2つの白丸に挟まれた区間が開空間:

直積集合

定義 3.5 (直積集合)

A,B を集合とする. $a \in A$ と $b \in B$ を並べた (a,b) を順序対という. 順序対全体のなす集合を A と B の直積集合といい, $A \times B$ と書く.

$$A \times B = \{(a, b) \mid a \in A, b \in B\}.$$

$$A = \{a, b\}, B = \{c, d\} \$$
とすれば

$$A \times B = \{(x, y) \mid x \in A, y \in B\}$$

= \{(a, c), (a, d), (b, c), (b, d)\}.

同様に 3 つの集合 A,B,C の直積集合 $A\times B\times C$ や, n 個の集合 A_1,\ldots,A_n の直積集合

$$A_1 \times \cdots \times A_n$$

が定義される.

n 次元座標空間 \mathbb{R}^n

例 3.6

- 実数全体の集合 \mathbb{R} は実直線 \mathbb{R}^1 と同一視することができた.
- 実平面

$$\mathbb{R}^2 = \mathbb{R} \times \mathbb{R} = \{ (x, y) \mid x \in \mathbb{R}, \ y \in \mathbb{R} \}$$

3次元座標空間

$$\mathbb{R}^3 = \mathbb{R} \times \mathbb{R} \times \mathbb{R} = \{ (x, y, z) \mid x \in \mathbb{R}, \ y \in \mathbb{R} \ z \in \mathbb{R} \}$$

• 一般に, \mathbb{R}^n は n 次元座標空間, もしくは n 次元ユークリッド空間と呼ばれる.

この講義では主に \mathbb{R} , \mathbb{R}^2 , \mathbb{R}^3 を扱う.

包含関係

複数の集合があるとき、それらの間の関係を考えることは自然である. 最も基本的なものが包含関係である.

定義 3.7 (部分集合)

A, B を集合とする.

- ① 任意の A の元が B の元でもあるとき, A は B の部分集合であるといい, $A \subset B$ と書く. $A \subset B$ でないとき, $A \not\subset B$ と書く.
- ② $A \subset B$ かつ $B \subset A$ のとき, $A \in B$ は(集合として)等しいといい, A = B と書く.
- ③ $A \subset B$ かつ $A \neq B$ のとき, A は B の真部分集合であるといい, $A \subseteq B$ とかく.

包含関係

人間の集合を ${ \{ 人間 \} }$ と略記したりする. これは人間1人からなる集合ではない.

例 3.8

- { 人間 } ⊂ { 哺乳類 }, { 犬 } ⊂ { 哺乳類 }
- ③ 実数 a < b に対して, $(a,b) \subsetneq [a,b]$ である. 一方で, $(a,b] \triangleright [a,b)$ の間には包含関係はない.

写像

定義 4.1

- 集合 X の各元に対して、集合 Y の元を唯一つ定める対応のことを写像と呼び、 $f:X\to Y$ と表す. X を定義域、 Y を値域という.
- 写像 $f: X \to Y$ によって $x \in X$ が $y \in Y$ に対応するとき, $y \in Y$ に対応するとき, $y \in Y$ に対応するとき, $y \in Y$ に対応を次のように書く.

$$f: X \longrightarrow Y, \quad x \mapsto y.$$

写像

例 4.2

- ① $f: \{ \text{ 人間 } \} \longrightarrow \mathbb{Z}, \quad A \mapsto A \text{ の年齢}$
- ② $g: \{ \, \mathcal{T} \, \} \longrightarrow \mathbb{R}, \quad A \mapsto A \, \mathcal{O}$ 身長
- **③** h:{猫} → {猫}, A → A の母猫
- \bullet $i: \{ 日本の大学 \} \longrightarrow \mathbb{N}, \quad A 大学 \mapsto A 大学の学生数$
- **③** $j: \{ 日本の大学 \} \longrightarrow \{ 都道府県 \}, A 大学 → A 大学の所在地一方で, 人間 <math>A$ と A の友人の対応は写像ではない. A の友人が 1 人とは限らないからである.

定義 4.3

写像 $f: X \to Y$ の像を

$$Im f = \{ f(x) \mid x \in X \}$$

で定義する. つまり x が X の全ての元を動くとき, x の像 f(x) 全体のなす Y の部分集合のことである.

全射, 単射

定義 4.4

 $f: X \to Y$ を写像とする.

- ① f が全射であるとは $\mathrm{Im} f = Y$ が成立すること. つまり「どの $y \in Y$ に対しても $x \in X$ が存在して y = f(x)」.
- ② f が単射であるとは「 $x_1 \neq x_2$ ならば $f(x_1) \neq f(x_2)$ 」が成立すること.同値な対偶条件は「 $f(x_1) = f(x_2)$ ならば $x_1 = x_2$ 」.
- ∮ が全単射であるとは、全射かつ単射であること。

全射, 単射

例 4.5

- ① $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2(x-1)$ は (全射だが) 単射ではない.
- ② $g: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$ は全射でも単射でもない. $\mathrm{Im} g = \mathbb{R}_{\geq 0}$.
- ③ $h: \mathbb{R} \to \mathbb{R}, x \mapsto x^3$ は全単射である.

問題 4.6

次の写像は全射か? 単射か?

全射, 単射, 恒等写像

例 4.7

次の写像を考える:

 $f: \{ 日本の大学 \} \longrightarrow \mathbb{N}, \quad A 大学 \mapsto A 大学の学生数$

 $g: \{ 日本の大学 \} \longrightarrow \{ 都道府県 \}, A 大学 <math>\mapsto A$ 大学の所在地

写像 f は全射ではない (単射であろうか?). 写像 g は全射だが、単射ではない.

例 4.8

何もしない写像 $\operatorname{id}:X\to X,x\mapsto x$ を

<u>恒等写像</u>という. 恒等写像は全単射である.

全射, 単射, 恒等写像

問題 4.9

次の写像は全射か? 単射か?

● 慶應義塾大学の学生に対して, 学籍番号を対応させる写像

 $f: \{$ 慶応義塾生 $\} \longrightarrow \mathbb{Z}^8$

② 値域を学籍番号となる番号に限ったらどうであろうか?

 $g: \{$ 慶応義塾生 $\} \longrightarrow \{$ 学籍番号 $\} \subset \mathbb{Z}^8$

合成写像

定義 4.10

写像 $f: X \to Y, g: Y \to Z$ に対して、合成写像 $g \circ f: X \to Z$ が

$$g \circ f(x) = g(f(x))$$

で定義される. つまり $x \in X$ に対して $f(x) \in Y$ が定まり, さらに $f(x) \in Y$ に対して $g(f(x)) \in Z$ が定まる. 図示すれば次のようになる.

$$X \xrightarrow{f} Y \xrightarrow{g} Z$$

 $f:X\to Y,g:Y\to Z$ の合成写像の表記「 $g\circ f$ 」において f,g の順序に注意する. これは合成写像が g(f(x)) で定義されていることから理解できる.

逆写像

定理 4.11

写像 $f: X \to Y$ が全単射であれば、写像 $g: Y \to X$ が存在して、

$$g \circ f = id$$
, $f \circ g = id$

が成立する. この g を f の逆写像といい, f^{-1} と書く.

実際, 任意の $y \in Y$ に対して, $x \in X$ で f(x) = y なるものが唯一つ存在するので, g(y) = x と定義すれば良い.

$$X \xrightarrow{f} Y$$

逆写像

例 4.12

先ほど議論した, 慶応義塾生に学籍番号を対応させる写像は全単射であった.

 $g: \{$ 慶応義塾生 $\} \longrightarrow \{$ 学籍番号 $\} \subset \mathbb{Z}^8$

逆写像は, 学籍番号から学生を特定することに対応する.

逆写像

例 4.13

写像 $f:\mathbb{R}\to\mathbb{R},\ x\mapsto 2x-4$ は全単射である. f の逆写像は $g:\mathbb{R}\to\mathbb{R},\ y\mapsto \frac{1}{2}y+2$ で与えられる. 実際,

なので
$$g(f(x)) = x$$
 かつ $f(g(y)) = y$.

f(x) = 2x - 4 の逆写像は、方程式 y = 2x - 4 を x に関して解くことで求まる.

まとめ

- 微分・積分の概要
- ② 集合 (濃度, 外延的記法, 内包的記法, 直積集合, 包含関係)
- ③ 写像 (全射, 単射, 恒等写像, 合成写像, 逆写像)