- Move R2, (R1)
- R1out,MARin
- R2out,MDR,Write
- MDRout,WMFC
- https://www.youtube.com/watch?v=94p9g0qh
 OSM
- https://slideplayer.com/slide/9377818/
- https://slideplaver.com/slide/4876238/

Add (R3), R1 R3-1000 R1-30

- Fetch the Instruction from memory -IR
- 2. Fetch the first operand from memory
- 3. perform addition operation
- 4. Load the result into Ri

Control sequence

- PCout, MARin, Read, Select4, Add, Zin
- 2.Zout,PCin,WMFC
- 3.MDRout, IRin
- 4. R3out, MARin, Read
- 5. Riout, Y, WMFC
- 6. MDRout, select Y, Add, Zin
- 7. Zout, Riin, End.

Activate Windows

Execution of Branch Instructions

- A branch instruction replaces the contents of PC with the branch target address, which is usually obtained by adding an offset X given in the branch instruction.
- The offset X is usually the difference between the branch target address and the address immediately following the branch instruction.
- Conditional branch

Execution of Branch Instructions

227			
Ste	n A	cti	an
Sie	, ,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

1	PC out, MAR in, Read, Select4, Add, Zin
2	Zout, PC in, Yin, WMF C
3	MDR out , IR in
4	Offset-field-of-IR out, Add, Z in
5	Z out, PC in, End

Figure 7.7. Control sequence for an unconditional branch instruction.

Execution of Branch Instructions

Ste		De	4:	~
Ste	,	ML	м	u

- 1 PC out, MAR in, Read, Select4, Add, Z in
- Z Zout, PC in, Y in, WMF C
- MDR out, IR in
- Offset-field-of-IR out. Add, Z in
- Z out, PC in, End

Figure 7.7. Control sequence for an unconditional branch instruction.

Architecture

A Complete Processor

Overview

- To execute instructions, the processor must have some means of generating the control signals needed in the proper sequence.
- Two categories: hardwired control and microprogrammed control
- Hardwired system can operate at high speed; but with little flexibility.

Control Unit Organization

Figure 7.10. Control unit organization.

Detailed Block Description

Control signals

Generating Zin

• $Z_{in} = T_1 + T_6 \cdot ADD + T_4 \cdot BR + ...$

Generating End

End = T₇ • ADD + T₅ • BR + (T₅ • N + T₄ • N) • BRN +...

Overview

- Control signals are generated by a program similar to machine language programs.
- · Control Word (CW); microroutine; microinstruction

Micro - instruction	 PC.	PC _{Drill}	MAR	Read	MDRour	R _m	Υ,,,	Select	Add	Zm	Zout	R10ut	R1so	R3put	WMFC	End	
1	0	1	1	1	0	0	0	1	1	1	0	0	0	0	0	0	Γ
2	1	0	0	0	0	0	1	0	0	0	1	0	0	0	1	0	ı
3	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	ı
4	0	0	1	1	0	0	0	0	0	0	0	0	0	1	0	0	ı
5	0	0	0	0	0	0	1	0	0	0	0	1	0	0	1	0	l
6	0	0	0	0	1	0	0	0	1	1	0	0	0	0	0	0	l
7	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	1	ı

Figure 7.15 An example of microinstructions for Figure 7.6.