1 Wstęp

Celem tych zadań jest oswojenie Cię z podstawowymi pojęciami teorii kategorii. Nie musisz zrobić wszystkich, jednak szczególnie do tego zachęcamy - warsztaty będą polegać głównie na rozwiązywaniu zadań przy tablicy.

Żadna dodatkowa literatura nie powinna być potrzebna do rozwiązania tych zadań, jednak w razie problemów z zadaniami, sugestii zmian lub chęci zobaczenia określonych kategorii na warsztatach, zachęcamy do kontaktu.

2 Kategorie

Kategoriq nazywamy kolekcję¹ obiektów $A, B, C \ldots$, taką, że dla każdych dwóch obiektów A, B istnieje zbiór Hom(A, B) morfizmów z A do B. Na ogół piszemy $f: A \to B$ zamiast $f \in \text{Hom}(A, B)$. Zakładamy też, że istnieje operacja składania morfizmów o posiadająca następujące własności:

- 1. Jeśli $f: A \to B$ oraz $g: B \to C$, to istnieje morfizm $g \circ f: A \to C$.
- 2. Dla dowolnych trzech morfizmów $f:A\to B, g:B\to C, h:C\to D$ mamy równość: $(h\circ g)\circ f=h\circ (g\circ f).$
- 3. Dla każdego obiektu X istnieje morfizm $\mathrm{Id}_X:X\to X$, taki że dla każdego morfizmu $f:A\to B$ mamy $\mathrm{Id}_B\circ f=f\circ \mathrm{Id}_A$.
- 1. Niech obiektami będą zbiory, morfizmami funkcje, a operacją \circ złożenie funkcji². Pokaż, że jest to kategoria dowodząc, że:
 - 1. dla dowolnych zbiorów A, B, wszystkie funkcje z A do B tworzą zbiór (nazywany $\operatorname{Hom}(A, B)$).
 - 2. dla dowolnych trzech funkcji $f:A\to B, g:B\to C, h:C\to D$ mamy równość: $(h\circ g)\circ f=h\circ (g\circ f).$
 - 3. dla każdego zbioru X znajdź funkcję³ Id_X taką, że dla dowolnej $f:A\to B$ mamy $\mathrm{Id}_B\circ f=f\circ\mathrm{Id}_A.$

Kategorię tę nazywamy **Set**.

¹Można myśleć o tym jak o zbiorze, do którego można włożyć dowolnie dużo elementów. Zainteresowanych jak uniknąć paradoksu zbioru wszystkich zbiorów odsyłamy do teorii klas Morse'a-Kelleya.

²Cóż za niezwykły zbieg okoliczności - to ten sam symbol!

³Ciekawe jak się może nazywać...

3 Morfizmy

3.1 Epimorfizmy

Niech $f:A\to B$ będzie morfizmem. Mówimy, że f is epimorfizmem jeśli dla dowolnego obiektu C oraz morfizmów $g,g':B\to C$ z równości $g\circ f=g'\circ f$ wynika, że g=g'.

- **2.** Pokaż, że jeśli $f:A\to B$ oraz $g:B\to C$ są epimorfizmami, to $g\circ f$ też jest epimorfizmem.
- **3.** Pokaż, że w kategorii **Set** epimorfizmy to dokładnie surjekcje (każdy epimorfizm jest surjekcją, a każda surjekcja epimorfizmem).

Jako, że obiektami kategorii nie muszą być zbiory, pojęcie "funkcji na" w ogólności może nie mieć sensu, dlatego zdanie "każdy epimorfizm to surjekcja" nie musi mieć sensu. Okazuje się, że

4. Skonstruuj kategorię, której obiektami są pewne zbiory (tak więc pojęcie surjekcji ma sens), natomiast istnieje epimorfizm niebędący surjekcją.

3.2 Monomorfizmy

Niech $f:A\to B$ będzie morfizmem. Mówimy, że f is monomorfizmem jeśli dla dowolnego obiektu C oraz morfizmów $g,g':X\to A$ z równości $f\circ g=f\circ g'$ wynika, że g=g'.

- **5.** Pokaż, że jeśli $f:A\to B$ oraz $g:B\to C$ są monomorfizmami, to $g\circ f$ też jest monomorfizmem.
- **6.** Pokaż, że w kategorii **Set** monomorfizmy to dokładnie iniekcje (każdy monomorfizm jest iniekcją, a każda iniekcja monomorfizmem).
- 7. Skonstruuj kategorię, której obiektami są pewne zbiory (tak więc pojęcie surjekcji ma sens), natomiast istnieje monomorfizm niebędący iniekcją.

3.3 Izomorfizmy

Niech $f: A \to B$ będzie morfizmem. Jeśli istnieje $f': B \to A$ takie, że $f \circ f' = \mathrm{Id}_B$ oraz $f' \circ f = \mathrm{Id}_A$, to f nazywamy izomorfizmem.

8. Będziemy wykorzystywać izomorfizmy do utożsamiania pewnych przestrzeni. W tym celu przyda nam się własności podobne do występujących w definicji relacji równoważności ⁴. Pokaż, że:

 $^{^4}$ Nazwanie "dokładności do izomorfizmu" relacją równoważności jest kuszące, natomiast relacje równoważności określone są na zbiorach. Kolekcja obiektów kategorii na ogół jest za duża do bycia zbiorem.

- 1. dla każdego obiektu A istnieje izomorfizm z A do A.
- 2. jeśli istnieje izomorfizm z A do B, to istnieje też izomorfizm z B do A.
- 3. jeśli istnieje izomorfizm z A do B oraz z B do C, to istnieje też izomorfizm z A do C.
- 9. Izomorfizmy dzielą własności, które już wykazaliśmy.
 - 1. Pokaż, że każdy izomorfizm jest monomorfizmem oraz epimorfizmem.
 - 2. Skonstruuj kategorię, dowodzącą, że twierdzenie odwrotne nie jest prawdziwe (czyli, że istnieje morfizm będący epimorfizmem i monomorfizmem, natomiast nie izomorfizmem).
- **10.** Czym są izomorfizmy w kategorii **Set**? Powodzenia!