Esame di Analisi I, 07/02/2022

Fila 2

1. Dato l'insieme $A = \bigcup_{n \in \mathbb{N}} (2^{-n} - 2, 2 + 3^n)$, si determini l'estremo superiore, quello inferiore ed

NOME......COGNOME.....

MATRICOLA.....

eventuali minimi e massimi.

	(a) $\inf_{A} = -3/2$, $\sup_{A} = -3/2$	$_{A} = 5.$	(b) $\inf_{A} = -2$, so	$\operatorname{ap}_A = \infty.$						
	(c) $\inf_{A} = -3/2$, $\sup_{A} = -3/2$	$A=\infty$.	(d) $\inf_{A} = -2$, so	$ap_A = 5.$						
2.	2. L'equazione $\mathbf{Re}(iz\bar{z}+z+\bar{z}+1/z)=0$ ha									
	(a) infinite soluzioni i	reali.	(b) infinite soluz	ioni immaginarie.						
	(c) nessuna soluzione	4.	(d) finite soluzion	ni reali.						
3.	 Dati due numeri complessi z₁, z₂, che rappresentati sul piano complesso sono simmetrici rispetto all'origine, si determini quale delle seguenti affermazioni è vera. (a) z₁ = z									
	(c) z_1/z_2 ha argomento 0.									
	(d) esiste $w \in \mathbb{C}$ tale che $z^2 = w$ ha come soluzioni z_1, z_2 .									
4.	l. Si scelga un valore del parametro $a \in \mathbb{R}$ per il quale la funzione									
	$f(x) = \begin{cases} \frac{\sin(ax^2)}{x(\sqrt{1+x}-1)} & x > 0 ,\\ a3^x + 2 & x \le 0 ; \end{cases}$									
	è continua in $x = 0$.									
	(a) $a = 1$.	(b) $a = 2$.	(c) $a = 3$.	(d) $a = 4$.						
5.	Calcolare l'equazione della retta tangente al grafico della funzione $f(x) = x \ln x $ nel punt $x = -e$.									
	(a) $y = 2x - e$	(b) $y = 2x + e$	(c) $y = -2x - e$	(d) y = -2x + e						
6.	6. Sia $h: \mathbb{R} \to \mathbb{R}: x \mapsto h(x)$ una funzione derivabile su tutto \mathbb{R} . Se $h(-5) = -6$ e $h(-8) =$ allora esiste un punto $x_0 \in (5,8)$ tale che									
	(a) $h'(x_0) = -\frac{3}{7}$.		(b) $h'(x_0) = \frac{7}{3}$.							
	(c) $h'(x_0) = -\frac{7}{13}$.		(d) nessuna delle	(d) nessuna delle precedenti.						
7. Si calcoli, utilizzando il teorema di de l'Hospital, il seguente limite										
	$\lim_{x \to 1^-} \frac{\arccos x}{\sqrt{1-x}}.$									
	v - ~									
	(a) $\sqrt{2}$	(b) $-\frac{\sqrt{2}}{2}$	(c) $\frac{\sqrt{2}}{2}$	(d) $-\sqrt{2}$						
8.	Calcolare lo sviluppo	di Taylor in $x = 0$ di	$f(x) = \sqrt{1 + 2x} - \sqrt{1}$	-2x fino all'ordine 3.						
	(a) $T_0^3 f(x) = 2x + x^2 - x^3 + o(x^3)$. (b) $T_0^3 f(x) = 2x + x^3 + o(x^3)$.									
	(c) $T_0^3 f(x) = 2x - x^2$	$+x^3+o(x^3).$	(d) $T_0^3 f(x) = 2x$	(d) $T_0^3 f(x) = 2x - x^3 + o(x^3)$.						

9. Calcolare una primitiva $G(x)$ di $g(x) = 4x \arctan x$ e calcolare							
		$\lim_{x \to \infty} \frac{G(x)}{x^2}.$					
	(a) 0	(b) 1	((c) π	(d) ∞		
10.). Si calcoli il seguente integrale definito.						
	$I = \int_0^\pi \cos^3(x) dx \ .$						

(a) 0. (b)
$$\frac{\pi}{3}$$
. (c) $\frac{4}{3}$. (d) $\frac{\pi}{4}$.

11. Si calcoli direttamente il valore del seguente integrale improprio:

(b) $-\frac{\pi^2}{8}$

(a) 0

$$J = \int_{-\infty}^{0} \frac{\arctan x}{1 + x^2} \ .$$

(c) $-\frac{\pi^2}{4}$

(d) $-\infty$

12. Data la funzione $f(x) = e^{x^3 - 3x + 1}$, si trovi quante soluzioni distinte ha l'equazione f(x) = 3(a) 1 (b) 2 (c) 3 (d) 4

13. Data la soluzione dell'equazione differenziale $x'(t)(1+t^2)+x^2=0$ tale che $\lim_{t\to\infty}x(t)=1/\pi$, si calcoli $x(\sqrt{3})$.

(a)
$$x(\sqrt{3}) = 0$$
 (b) $x(\sqrt{3}) = \frac{2}{3\pi}$ (c) $x(\sqrt{3}) = \frac{6}{5\pi}$ (d) $x(\sqrt{3}) = \frac{4}{5\pi}$

14. Si trovi la soluzione x(t) al seguente problema di Cauchy

$$\begin{cases} x''(t) + 4x'(t) + 4x(t) = 0\\ x(0) = 1, x'(0) = 0 \end{cases}$$

(a)
$$x(t) = e^{-2t}(2t+1)$$
 (b) $x(t) = (t-1)e^{-2t}$ (c) $x(t) = -(2-t)e^{-2t}$ (d) $x(t) = e^{-2t}(t-2)$

15. Data la soluzione u(t) al problema di Cauchy

$$\begin{cases} u''(t) - u(t) = te^t \\ u(0) = -2, \ u'(0) = 0 \ ; \end{cases}$$

si il polinomio di Taylor di u(t) nell'intorno di t=0 fino all'ordine 4.

(a)
$$T_0^4 u(x) = -2 - t^2 + \frac{1}{3}t^3 + o(x^4)$$
.
(b) $T_0^4 u(x) = -2 - t^2 + \frac{1}{6}t^3 + o(x^4)$.
(c) $T_0^4 u(x) = -2 - t^2 + \frac{1}{6}t^3 + o(x^4)$.
(d) $T_0^4 u(x) = -2 - t^2 + \frac{1}{6}t^3 - \frac{1}{12}t^4 + o(x^4)$.