Klopné obvody, čítače, stavové automaty, technologie pro realizaci log. obvodů a hradel

Klopné obvody, čítače, registry, stavové automaty, polovodičové technologie pro realizaci log. obvodů, TTL, CMOS

Ing. Pavel Lafata, Ph.D. lafatpav@fel.cvut.cz

Klopné obvody, sekvenční obvody – RS, JK, D a T klopné obvody

- Klopné obvody shrnutí
 - synchronní vs. asynchronní
 - synchronní hladinové (latch) vs. hranové (flip-flop)
 - master-slave konfigurace každý hladinový klopný obvod můžeme takto upravit na hranový klopný obvod – dvojice klopných obvodů, master část připojena přímo na hodinový vstup Clock, slave část přes invertor na negaci Clock
 - ke každému klopnému obvodu můžeme přidat asynchronní vstupy S a R:
 - asynchronní Set obvykle nazýván nastavení (preset)
 - asynchronní Reset obvykle nazýván nulování (clear)
 - asynchronní vstupy jsou vždy aktivní v logické 0
 - asynchronní vstupy jsou aktivovány okamžitě (bez čekání na Clock) a jsou dominantní – převáží funkci synchronních vstupů
 - protože pro RS klopný obvod je R = S = 1 zakázaný stav, nesmí oba asynchronní vstupy žádného klopného obvodu nabývat současně logické 0
 - klopné obvody v jazyce VHDL -> lze vytvořit synchronní i asynchronní klopné obvody, hladinové i hranové, obvykle používáme behaviorální popis (více později)

Sekvenční logické obvody

paměťová část SLO tvořena některým klopným obvodem (obvykle D, JK), příklady SLO:
 čítače, registry, konečné stavové automaty, atd.

Čítače

- obvody čítající požadované výskyty v průběhu dané sekvence obvykle vzestupné či sestupné hrany vstupního signálu -> výstupem je kódové vyjádření načítaného počtu
- výstup obvykle v binárním kódu, ale např. i Grayův kód apod.
- čítač modulo N = čítající v intervalu hodnot 0 až N-1
- každý 1 bitový řád čítače = 1 klopný obvod -> čítač modulo N = log₂N klopných obvodů (kde N je nejbližší vyšší mocnina 2)
- synchronní čítač vs. asynchronní čítač
- dle způsobu distribuce buzení (hodinového taktu)
- vzestupný čítač vs. sestupný čítač vs. obousměrný čítač
- dle směru čítání (přičítání, odečítání, volitelný směr)
- dodatečné vstupy blokování (enable), nulování, nastavení
- tyto vstupy mohou být synchronní nebo asynchronní
- konstrukce čítačů klopné obvody D nebo JK (různé výhody, nevýhody)

Asynchronní čítač

- vnější hodinový signál Clock je připojen pouze na vstup prvního klopného obvodu,
 hodinové vstupy všech dalších jsou připojeny na výstup předchozího klopného obvodu
- buzení se tak šíří postupně -> nejprve překlopí první KO, po jeho překlopení druhý, po
 jeho překlopení třetí... nevýhoda tzv. ripple-effect
- T doba zpoždění (překlopení) jednoho KO -> n-bitový čítač = $n \times T$ celkové zpoždění
- pokud je perioda vstupního signálu **Clock < n x T** -> výstup čítače se nestihne ustálit před příchodem další hrany Clock -> **nestabilní stav čítače**, nelze jeho hodnotu odečíst
- výhoda pro konstrukci čítače si vystačíme jen s klopnými obvody (D, JK), nejsou
 potřeba žádná jiná hradla -> jednoduchá konstrukce, menší plocha, menší spotřeba
- základem je D klopný obvod se zpětnou vazbou, nebo JK se spojenými vstupy dělič 2

- výstup Q představuje signál s poloviční frekvencí (dvojnásobnou periodou) v porovnání se vstupem Clock
- kaskádním řazením n-stupňů (D či JK) obdržíme n-bitový asynchronní čítač

Asynchronní čítač – příklad 3bitového (modulo 8), realizace z D i JK obvodů

- každý stupeň představuje děličku 2 předchozího výstupu
- ripple-effect kaskádní narůstání zpoždění při průchodu jednotlivými stupni = n x T pro n-bitový čítač
- pokud T_{Clock} < n x T čítač nepoužitelný
- řešení zvýšit periodu T_{Clock} (nelze vždy), snížit počet bitů čítače n (nelze vždy), použít synchronní čítač

detail přechodu 111 -> 000

Synchronní čítač – příklad 3bitového (modulo 8), realizace z JK obvodů

detail přechodu 111 -> 000

- idea realizace klopný obvod může překlopit do logické 1 až v případě, že všechny předchozí klopné obvody jsou ve stavu logické 1 – to zajistí hradla AND
- vlastnosti všechny KO připojeny přímo ke zdroji hodinového signálu (buzení) Clock
 -> překlopení všech n KO v jeden okamžik = zpoždění jen 1 x T (nezávisí na n)
- výhoda rychlost čítání (ideálně žádný ripple-effect a nestabilní stav)
- nevýhoda nutnost použít dodatečná hradla (AND), větší složitost zapojení
- ideální čítač (synchronní, asynchronní) vs. reálný čítač
- všechny KO použité v čítači nejsou dokonale stejné malé odchylky
- vliv zpoždění cest (šíření signálů) konečná rychlost šíření signálů

- **Čítače synchronní vs. asynchronní Reset (nulování), blokování (Enable)**
 - využití asynchronních vstupů Set a Reset klopných obvodů
 - můžeme je dodatečně připojit (synchronizovat) s hodinovým vstupem Clock
- čítač s asynchronním resetováním vs. čítač se synchronním resetováním
 - asynchronní vstup Reset nezávislý na stavu hodinového vstupu Clock -> proveden okamžitě
 - synchronní vstup Reset závislý na Clock -> proveden až při detekci vzestupné (sestupné) hrany hodinového vstupu

asynchronní Reset

aktivován Reset Clock Reset

- realizace v jazyce VHDL? snadná ukážeme si později
- obdobně jako Reset blokovací vstup (Enable)

asynchronní Reset:

- výhoda okamžité provedení (zpoždění T)
- nevýhoda výstup po Resetu je asynchronní (pokud je následující připojený obvod synchronní – problém)

synchronní Reset:

- výhoda výstup čítače zůstává plně synchronní
- nevýhoda zpoždění dané čekáním na hranu Clock
- co se stane, pokud před příchodem hrany Clock Reset vrátíme do logické 0?

- Registry statické (paměti) a posuvné
 - 4 základní varianty dle způsobu čtení a zápisu PIPO, SISO, SIPO, PISO
 - základem jsou klopné obvody D nebo JK
 - parallel in-parallel out, PIPO paměť s paralelním vstupem a paralelním výstupem

• **serial in-serial out, SISO** – sériová paměť (zpožďovací článek – výstup *n* x zpožděn)

- serial in-parallel out, SIPO sériová paměť s paralelním čtením při zaplnění
- parallel in-serial out, PISO serializér, převod paralelních toků do sériového výstupu
- registry můžeme doplnit např. o možnost nulování (mazání), posuvu o n-bitových pozic vlevo či vpravo, provádění jednoduchých operací (XOR) apod.

- Konečné stavové automaty (FSM Finite state machines)
 - obecně, konečný stavový automat = jakýkoliv sekvenční logický obvod, který může nabývat konečného počtu vnitřních stavů, vstupů, výstupů (např. čítač)
 - automat smí být vždy právě jen v jednom stavu v čase t současný stav
 - na základě budících podmínek přechází automat z jednoho stavu do druhého –
 nazýváme přechod automat se tak v čase t+1 dostane do následného stavu
 - každý stavový automat tak můžeme popsat (uvažujeme dál jen synchronní obvody):
 - 1. konečnou množinou vstupních stavů **X**: $\mathbf{X} = \{x_1, x_2, \dots, x_M\}$
 - 2. konečnou množinou výstupních stavů **Y**: $\mathbf{Y} = \{y_1, y_2, ..., y_N\}$
 - 3. konečnou množinou vnitřních stavů \mathbf{Q} : $\mathbf{Q} = \{q_1, q_2, ..., q_p\}$
 - 4. konečnou množinou přechodových funkcí G:

$$\mathbf{Q^{t+1}} = \mathbf{G}\left(\mathbf{X^t}; \mathbf{Q^t}\right) = g\left(x_1^t, x_2^t, \dots, x_m^t; q_1^t, q_2^t, \dots, q_p^t\right)$$

- 5. konečnou množinou výstupních funkcí F:
 - a. obvod typu Mealy $\mathbf{Y}^{t+1} = \mathbf{F}(\mathbf{X}^t; \mathbf{Q}^t) = f(x_1^t, x_2^t, ..., x_m^t; q_1^t, q_2^t, ..., q_p^t)$
 - b. obvod typu Moore $\mathbf{Y}^{t+1} = \mathbf{F}(\mathbf{Q}^t) = f(q_1^t, q_2^t, \dots, q_p^t)$

- Obecné schéma automatu typ Mealy a typ Moore
 - typ Mealy

typ Moore

- výstup obvodu typu Moore je závislý pouze na současném vnitřním stavu, zatímco typu
 Mealy je závislý kromě stavu i na současných vstupech obvodu
- uvedená bloková schémata jsou jen obecná a pro specifické obvody mohou být upravena

- Konečné stavové automaty převody typů Mealy a Moore
- převod automatu typu Moore -> na typ Mealy
 - v prvním kroku přepíšeme hodnoty výstupů z uzlů k jednotlivým hranám grafu, které
 do těchto uzlů směřují při daném vstupu obvodu
 - v druhém kroku můžeme sloučit ty hrany, které vycházejí i končí ve stejných stavech a mají stejné výstupní hodnoty
 - ve třetím kroku můžeme sloučit ty stavy, pokud hrany, které z nich vycházejí, vstupují
 do stavů se stejnou výstupní hodnotou při stejné hodnotě vstupu
 - příklad převeďte zadaný automat Mooreova typu na typ Mealy

• můžeme sloučit stavy q_2 a q_3 z Moorova typu do stavu q_2 Mealyho typu, protože oba dávají stejnou výstupní hodnotu a přechody z obou do stavu q_1 jsou shodné

- Konečné stavové automaty převody typů Mealy a Moore
- převod automatu typu Mealy -> na typ Moore
 - pokud do jednoho stavu směřují dvě hrany s odlišnými výstupními hodnotami, musíme tento stav rozštěpit na dva samostatné – do každého nového stavu pak budou vcházet jen hrany se stejným výstupem – pak již jen přesuneme výstupy do uzlů grafu
 - příklad převeďte zadaný automat Mealyho typu na typ Moore

- musíme rozštěpit stav q_1 v Mealyho automatu na stavy q_{10} dává výstup logická 0 a q_{11} dává výstup logická 1 při realizaci typem Moore
- porovnání automatů Mealy vs. Moore
- Mealy obvykle potřeba méně stavů (méně klopných obvodů pro realizaci), ale výstup
 je nesynchronní (výstupní hodnota se objeví již při přechodu do následného stavu)
- Moore obvykle potřeba více stavů (složitější realizace), výstup je ale vždy synchronní (výstupní hodnota se objeví až po přechodu a dosažení následného stavu)

Polovodičové prvky pro HW realizaci logických obvodů

- Technologie pro realizaci logických hradel a obvodů
 - zaměříme se jen na elektrické logické signály a polovodičové součástky
 - pro porovnání jednotlivých technologií definujme nejprve důležité pojmy:
 - 1. **vstupní větvení** počet vstupů hradla
 - obvykle omezené danou technologií výroby a složitostí, např. na vstupu TTL hradla
 NAND je víceemitorový tranzistor, vyrábí se maximálně 8 vstupů
 - vyšší počet vstupů hradla -> obvykle větší parazitní kapacita na vstupu -> větší doba zpoždění hradla, v praxi obvykle hradla s 2, 3, 4 vstupy
 - 2. **logický zisk (výstupní větvení)** počet vstupů následně připojených hradel stejné technologie, které lze zapojit na výstup jednoho předchozího hradla
 - logický zisk je dán výstupním výkonem a vstupní spotřebou reálná hradla mají konečnou výstupní impedanci a nenulovou vstupní impedanci -> logický zisk tak vyjadřuje, kolik lze napájet hradel stejné technologie z výstupu jednoho hradla při zajištění dostatečných napěťových úrovní pro jednotlivé logické hodnoty
 - 3. **logické (napěťové) úrovně** logické hodnoty (logická 1 a 0) mají přiřazeny definované napěťové úrovně -> různé hodnoty pro různé technologie logických hradel
 - pro binární (2stavovou logiku) dvě pásma napěťových úrovní, jedno pro logickou 1 a
 jedno pro logickou 0, mezi nimi pásmo neurčitého stavu
 - pozitivní logika napěťová úroveň definovaná pro logickou 1 je vyšší než napěťová úroveň logické 0 (obě mohou být klidně záporné, kladné, různé), V_{log1} > V_{log0}
 - negativní logika opak pozitivní, V_{log0} > V_{log1}

- Technologie pro realizaci logických hradel a obvodů
 - různé technologie pro realizaci logických hradel mají různé napěťové úrovně
 - 4. **šumová imunita** přesah napěťových úrovní logické 1 a logické 0 mezi vstupními a výstupními hodnotami = (V_{log1výstupMIN} V_{log1vstupMIN}), (V_{log0vstupMAX} V_{log0výstupMAX})

šumová imunita – představuje odolnost hradla proti rušení (proti aditivnímu šumu na vstupu)

- 5. **napájecí napětí, jeho zvlnění** pro každou technologii dané tolerančním pásmem (přípustným rozsahem napájecího napětí Vcc)
- často v rámci jedné technologie existuje několik řad, např. tzv. LV low voltage
- 6. spotřeba hradel daná vstupními proudy a napájecím napětím
- pro různé technologie různá i v rámci jedné technologie řady s různou spotřebou
- se zvyšující se přepínací frekvencí spotřeba hradel narůstá pro různé technologie ale jinak (TTL vs. CMOS)
- spotřeba -> generování odpadního tepla

- Technologie pro realizaci logických hradel a obvodů
 - 7. doba zpoždění obecně časová prodleva mezi okamžikem, kdy signál na vstupu hradla překročí požadovanou rozhodovací úroveň a okamžikem, kdy se na výstupu hradla objeví správná logická hodnota odpovídající dané změně
 - různé technologie, různé doby zpoždění, i v rámci jedné technologie různé řady s
 odlišnými dobami zpoždění, např. tzv. HCMOS High speed CMOS
 - obecně dva hlavní důvody vzniku zpoždění:
 - reálné digitální signály mají konečné strmosti vzestupných (sestupných) hran, krátký okamžik vždy trvá, než úroveň signálu dosáhne rozhodovací úrovně
 - logická hradla obsahují reálné integrované prvky s jejich dynamickými parametry –
 nabíjení parazitních kapacit, doba zaplavování a vyprazdňování PN přechodů
 polovodičových součástek, parazitní indukčnosti signálových cest atd.

- Polovodičové součástky opakování
 - základní stavební prvky polovodičové diody, bipolární tranzistory, unipolární tranzistory

1. Polovodičová dioda

Schottkyho dioda

- 1 PN přechod polovodič Si, Ge, GaAs,... anoda, katoda
- propustný směr:

napětí anoda > katoda – pro otevření křemíkové diody 0,6 V protéká maximální proud, výkonové omezení (tepelný průraz)

závěrný směr:

napětí anoda < katoda protéká jen minimální závěrný proud, průraz diody (při příliš velkém napětí, záleží na konstrukci a typu diody)

- dioda tak slouží jako spínač ovládání napětím anodakatoda můžeme diodu spínat, rozpínat
- PN přechod se chová jako kapacitor nutnost odvést (přivést) nahromaděný náboj z/do vyprázdněné oblasti – tzv. zotavovací čas diody
- Schottkyho dioda místo PN přechodu (P + N) přechod kov-polovodič (kov + N) –> obsahuje jen majoritní nosiče náboje
- rychlejší zotavení (kratší spínací časy) vysokofrekv. aplikace
- nižší úbytek napětí v propustném směru, vyšší závěrný proud

Polovodičové součástky – opakování

2. Bipolární tranzistor

- 3 kontakty (3 oblasti), 2 polovodičové přechody:
 Báze-Emitor a Báze-Kolektor
- NPN nebo PNP v případě NPN elektrony majoritní nosiče náboje, PNP majoritní nosiče díry, v obou typech se ale uplatňují i minoritní nosiče (bipolární)
- každá ze 3 částí jinak dotovaný polovodič:
 emitor > > báze > kolektor
- nastavením napětí V_{BE} a V_{CE} a proudu I_B můžeme nastavit přechody B-E a B-K do propustného či závěrného směru -> 4 pracovní režimy, v logických hradlech používáme 2 režimy:
 - saturace přechody B-E i B-K plně otevřeny, tranzistorem protéká maximální kolektorový proud – tranzistor = sepnutý spínač závěrný režim – oba přechody B-E i B-K jsou v závěrném režimu a tranzistorem protéká jen velmi malý závěrný proud – tranzistor = rozepnutý spínač
 - tranzistor v logických hradlech = programovatelný spínač

- Polovodičové součástky opakování
- 3. MOSFET (Metal-Oxide Semiconductor Field Effect Transistor) unipolární tranz.

- tranzistor řízený elektrickým polem v logických hradlech používáme MOSFETy s
 indukovaným kanálem (v tzv. obohaceném módu) kanál vytvořen přiložením napětí,
 využíváme oba typy: typ-n (NMOS) i typ-p (PMOS)
- 4 oblasti (části): source, gate, drain, substrát (nižší dotace)
- 3 kontakty: S source, G gate, D drain, substrát je propojen se sourcem

- unipolární = jen majoritní nosiče:
 elektrony NMOS, díry PMOS
- napětím mezi gatem-sourcem V_{GS} **řídíme šířku kanálu a jeho vodivost** – nulovým napětím V_{GS} můžeme kanál uzavřít
 - proud tekoucí drainem I_D působí na šířku kanálu u drainu postupné nasycení 3 režimy v logických hradlech **saturace** (sepnutý spínač), **závěrný stav** (rozepnutý spínač), **odporový režim** (řízený odpor)

- Polovodičové součástky opakování
 - shrnutí bipolární tranzistor vs. MOSFET
- porovnání vlastností z hlediska použití pro konstrukci logických hradel
 - bipolární tranzistor oba typy nosičů náboje
 - režimy bipolárního tranzistoru dle jeho zapojení ovládáme pomocí proudu tekoucího do jeho báze (nebo emitoru) – obvykle řádově ~mA
 - oproti tomu MOSFET řídíme napětím G-S, gate je oddělený nevodivou vrstvou SiO₂ -> velmi vysoký vstupní odpor -> typický proud tekoucí do gate ~nA
 - MOS mnohem menší proud pro řízení -> nižší spotřeba, menší generované teplo -> vyšší možnosti integrace (integrace bipol. tranzistorů omezena odvodem tepla)

spínací doby tranzistorů

- bipolární tranzistor použité oba typy nosičů náboje, při přepnutí ze saturace do závěrného stavu nutnost odsát volné nosiče z báze (rekombinace v bázi)
- MOSFET jen majoritní nosiče náboje, vysoký odpor gate v kombinaci s parazitními kapacitami gate-drain a gate-source – zpoždění dané vybíjením kapacit
- bipolární tranzistory citlivější z hlediska teplotní stabilizace a generovaného tepla
- MOSFETy tenká izolační vrstva SiO₂, může být snadno proražena (nevratně zničena) i
 statickou elektřinou při ruční manipulaci, se zvyšující se frekvencí signálů narůstá
 strměji spotřeba v porovnání s bipolárními tranzistory