Aarif Munwar Jahan

December 17th, 2021

This notebook contains the visual analysis module for CIS 9760 Fall 2021 Project 3

The analysis will contain three visualizations as follows:

- 1. Interactive Stock Trend Line Plot Line plot to show stock price changes trend over time of day single select panel widget buttons to allow for interactive stock ticker selection.
- 2. Interactive Stock Trend Line Plot Cumulative Line plot to show stock price changes trend for all stock tickers over time of day multi select panel widget buttons to allow adding/removing certain stock tickers from the chart.
- 3. Hourly Stock Heatmap Heatmap to show stock prices distribution for all stock tickers over time of day multi select panel widget buttons to allow adding/removing certain stock tickers from the chart.

Finally, for easier access to this visualization module, a public web application is deployed that contains all of the three charts in this module and allows the user to access these interative charts via a web browser without needing to interact with the python backend. Here is the link to the web application: https://stockpriceviz.herokuapp.com/ (https://stockpriceviz.herokuapp.com/)

```
In [1]: # Import pandas, numpy and matplorlib
    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns

# Import panel library
    import panel as pn
    from panel import widgets

# Set ggplot as the matplotlib style for this notebook
    plt.style.use('ggplot')

# To display the output of plotting commands inline within frontends like the Jupyter notebook
%matplotlib inline

# Declare panel extension
    pn.extension()
```

```
In [2]: # Read data from the csv file and store in a pandas dataframe
        df = pd.read csv("results.csv")
In [3]: # Explore data
         df.head()
Out[3]:
            Company Time HourOfDay HighestStockPrice
         0
               BYND 09:00
                                 1
                                             74.54
         1
               BYND 10:00
                                 2
                                             73.28
               BYND 11:00
                                             71.04
               BYND 12:00
                                             71.02
         3
```

Visualization 1 - Interactive Stock Trend Line Plot

71.24

BYND 13:00

```
In [5]: # Define reactive function to show stock trends based on ticker selection
        @pn.depends(uStock)
        def stock trend(uSVar):
            # Filter based on widget ticker selection
            dframe = df[df.Company == uSVar]
            # Create the figure container and subplot - use tight layout to ensure auto resizing with changing regions
            rFig = plt.Figure(figsize=(12, 6), tight layout = True)
            rPlot = rFig.add_subplot()
            # Plot trend line plot
            ax = dframe.plot.line('Time', 'HighestStockPrice', ax=rPlot, legend = False)
            # Update grid visibilty and format tick labels
            ax.grid(linestyle='-', linewidth=0.35, axis = 'y')
            ax.grid(b=None, axis = 'x')
            # Set dynamic chart title and axes labels
            ax.set title(f"Hourly Stock Trend on 30th November, 2021 for {uSVar}", fontweight = 'bold', color = 'dimgra
            ax.set xlabel('Time', fontweight = "bold")
            ax.set ylabel('Stock Price', fontweight = "bold")
            # Format y-axis tick labels as currency
            formatter = ticker.FormatStrFormatter('$%1.2f')
            ax.yaxis.set major formatter(formatter)
            # Return final figure
            return rFig
```


Visualization 2 - Interactive Stock Trend Line Plot - Cumulative

```
In [7]: # Pivot original table in preperation for visualization
        df1 = pd.pivot table(df, values='HighestStockPrice', index=['Time'],
                            columns=['Company'], aggfunc=np.sum)
```

```
In [8]: # Display pivoted table
df1
```

Out[8]:

	Company	BYND	DDOG	FB	NFLX	OKTA	PINS	SHOP	SNAP	SQ	TTD
	Time										
_	09:00	74.54	186.21	335.37	675.20	226.46	41.71	1629.94	49.40	217.75	110.87
	10:00	73.28	184.10	335.81	675.38	225.35	41.64	1625.99	49.07	215.46	110.28
	11:00	71.04	178.54	329.80	661.99	217.08	40.43	1561.98	47.33	210.63	105.83
	12:00	71.02	177.21	328.29	658.24	216.18	40.09	1544.77	46.98	209.11	103.85
	13:00	71.24	177.73	328.02	651.35	216.71	40.12	1533.19	47.28	208.41	104.69
	14:00	71.40	179.39	328.18	650.59	216.37	40.23	1536.21	47.13	209.03	105.12
	15:00	71.28	179.81	327.30	645.95	215.88	40.42	1529.80	47.68	210.63	104.68

WARNING:param.Select Stock Tickers: Setting non-parameter attribute inline=False using a mechanism intended only for parameters

Out[9]:

BYND	DDOG	FB	NFLX	OKTA	PINS	SHOP	SNAP	SQ	TTD

```
In [10]: # Define reactive function to show cumulative stock trends based on ticker selection
         @pn.depends(uStockMulti)
         def stock trend cumulative(uSMVar):
             # Filter based on widget ticker multi selection
             dframe = df1[list(uSMVar)]
             # Create the figure container and subplot
             rFig = plt.Figure(figsize=(12, 6), tight layout = True)
             rPlot = rFig.add subplot()
             # Plot trend line plot
             ax = dframe.plot.line(ax=rPlot)
             # Update grid visibilty and format tick labels
             ax.grid(linestyle='-', linewidth=0.35, axis = 'y')
             ax.grid(b=None, axis = 'x')
             # Set chart title and axes labels
             ax.set title(f"Hourly Stock Trends on 30th November, 2021", fontweight = 'bold', color = 'dimgray')
             ax.set xlabel('Time', fontweight = "bold")
             ax.set ylabel('Stock Price', fontweight = "bold")
             # Format y-axis tick labels as currency
             formatter = ticker.FormatStrFormatter('$%1.2f')
             ax.yaxis.set major formatter(formatter)
             # Legend added to the bottom to avoid clash with data
             ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
             #ax.legend(loc='cent center', bbox to anchor=(0.5, -0.167),
                   #fancybox=True, shadow=True, ncol=5)
             # Return final figure
             return rFig
```


Visualization 3 - Stock Price Heatmap

```
In [13]: # Display pivoted table
df2
```

Out[13]:

Time	09:00	10:00	11:00	12:00	13:00	14:00	15:00
Company							
BYND	74.54	73.28	71.04	71.02	71.24	71.40	71.28
DDOG	186.21	184.10	178.54	177.21	177.73	179.39	179.81
FB	335.37	335.81	329.80	328.29	328.02	328.18	327.30
NFLX	675.20	675.38	661.99	658.24	651.35	650.59	645.95
ОКТА	226.46	225.35	217.08	216.18	216.71	216.37	215.88
PINS	41.71	41.64	40.43	40.09	40.12	40.23	40.42
SHOP	1629.94	1625.99	1561.98	1544.77	1533.19	1536.21	1529.80
SNAP	49.40	49.07	47.33	46.98	47.28	47.13	47.68
SQ	217.75	215.46	210.63	209.11	208.41	209.03	210.63
TTD	110.87	110.28	105.83	103.85	104.69	105.12	104.68

WARNING:param.Select Stock Tickers: Setting non-parameter attribute inline=False using a mechanism intended only for parameters

Out[14]:

BYND	DDOG	FB	NFLX	OKTA	PINS	SHOP	SNAP	SQ	TTD

```
In [15]: # Define reactive function to show cumulative stock trends based on ticker selection
         @pn.depends(uStockMulti2)
         def stock heatmap cumulative(uSMVar2):
             # Filter based on widget ticker multi selection
             dframe = df[df.Company.isin(uSMVar2)]
             # Pivot table in preperation for visualization
             dframe = pd.pivot table(dframe, values='HighestStockPrice', index=['Company'],
                             columns=['Time'], aggfunc=np.sum)
             # Create the figure container and subplot
             rFig = plt.Figure(figsize=(12, 6), tight_layout = True)
             rPlot = rFig.add_subplot()
             # Plot heatmap line plot
             ax = sns.heatmap(dframe, ax = rPlot, cmap='YlGnBu', cbar kws={'label': '', 'format': ticker.FormatStrFormat
             # Fix y axis label rotation
             ax.set yticklabels(ax.get yticklabels(), rotation=0, horizontalalignment='right')
             # Set chart title and axes labels
             ax.set_title(f"Hourly Stock Heatmap on 30th November, 2021", fontweight = 'bold', color = 'dimgray')
             ax.set xlabel('Time', fontweight = "bold")
             ax.set ylabel('Company', fontweight = "bold")
             # Return final figure
             return rFig
```


Web Application Deployment - Heroku App

```
In [17]: # Add a title for the chart
         title = pn.pane.Markdown('''
         ## <span style="color:SteelBlue">** CIS 9760 Fall 2021 Project 3 Visualization App **</span>
         ### ** Visualizing Stock Prices with data from AWS Pipline **
         #### ** Aarif Munwar Jahan **
         #### ** December 17th, 2021 **
         ''', width=600)
         # Create individual tabs for the three visualizations
         tab0 = pn.Column(uStock, stock_trend)
         tab1 = pn.Column(uStockMulti, stock trend cumulative)
         tab2 = pn.Column(uStockMulti2, stock_heatmap_cumulative)
         # Create master tab
         tabs = pn.Tabs(("Stock Trends", tab0),
                        ("Stock Trends Cumulative", tab1),
                        ("Stock Distribution Heatmap", tab2),
                        tabs location = 'left')
```

```
In [18]: # Deploy app as servable content
pn.Column(title, pn.Spacer(height=10), tabs).servable(title="AWS Stock Prices")
```

Out[18]:

CIS 9760 Fall 2021 Project 3 Visualization App

Visualizing Stock Prices with data from AWS Pipline

Aarif Munwar Jahan

December 17th, 2021

