# Design

- Sampling design
  - observational
  - estimation
- Experimental design
  - manipulative
  - causal inference

To find out what happens when you change something, it is necessary to change it

Box, Hunter, and Hunter (1978)

## Design fundamentals

- Identify a population of inference: scope
- Identify sample or experimental unit
- Confounding main issue
- Replication
- Randomization
- Control

main remedies

## Replication

- 1 replicate = confounded with unit
- How much replication?
  - depends on effect size and variance
  - rule of thumb: < 20 d.f. is treacherous
- Degrees of freedom (d.f.)
  - = n number of parameters

# Confounding examples



burn and site are confounded

# Confounding examples

Confounding in time

e.g. Process all of treatment 1

before linch.

Finic! Environment 1

Process all of Freatment 2

after lunch.

time 2

Environment 2

# Pseudoreplication

- Replicates are grouped
- Grouping = confounding

## Randomization

- Fixes confounding by shuffling potential confounders
- Random sampling: allows inference to population (scope)
- Random assignment: allows causal inference about a treatment

# Simple random sample

- Number each individual in the population
- Use a random number generator to draw individuals at random
- Unbiased sample
- Ensures unbiased estimate

## Stratified random sample

- Divide the statistical population into subpopulations
- Random sample within sub-populations
- Examples
  - male/female
  - different habitat types
  - species 1 / species 2

## Nested random sample

- Example
  - trees / branches / leaves
- Randomly sample trees within forest
- Randomly sample branches within trees
- Randomly sample leaves within branches
- Scope: leaves within a forest

# Systematic sampling

- Opposite of random
- Examples
  - transects with equal spacing of samples
  - spatial grid
  - every Thursday
- Bias
- Autocorrelation
- Scope

Example: spatial sample

Transect

Simple random sample



Bias: Autocorrelation: Scope: one x; gradient on y? strong, systematic this transect

none weak, diffuse population

## Controls

#### Systematically controlling for potential confounders

Classic example: Does Paramecium aurelia exclude P. caudatum?



P. aurelia present actual outcome

P. aurelia absent possible outcome 1

P. aurelia absent possible outcome 2

Presence of *P. aurelia* is confounded with time. We need a control (absence of *P. aurelia*) to distinguish the two possible outcomes through time.

## Controls

- Cage effects
  - examples: pollinator exclusion, herbivore exclusion
  - exclusion is confounded with changes to the environment caused by the cage



control 2: bag with holes

e.g. exclude pollinators from flowers. Control 2 attempts to measure confounding effect of environment while allowing pollinators. Very difficult issue to control.

## Controls

- Handling effects
  - confounder: handling changes behavior
- Example: hormone treatment
  - catching and injecting an animal changes it's behavior
  - control: catch and sham inject

# Factorial design



Advantage: allows us to estimate interactions

# Factorial versus response surface design



50 experimental units no interaction # parameters = 7 df = 50 - 7 = 43 with interaction # parameters = 11 df = 50 - 11 = 39



50 experimental units 3 parameters per curve df = 50 - 7 = 435 parameters per curve df = 50 - 11 = 39

Advantage: can get much better nonlinear resolution for same replication

## Multilevel designs

#### Randomized block



Example spatial design with three treatments (box colors)

Contrasted with completely randomized design

Pros: account for large scale variation

Cons: penalty for more complex model

Whether it helps depends on this tradeoff

# Multilevel designs

### Split plot



Plots are split into subplots.

Watering treatment is at large scale (plot), fertilizer treatment is at small scale (sub-plot).

Pro: watering simpler Con: replication of large scale factor is reduced (3)

Con: penalty for model complexity (need a grouping variable)

# Boulder county trails

Example from ecology undergrad field class Effect of distance from hiking trails

How would you design this?

Think about this in terms of

- scope of inference
- amount of replication
- logistics
- grouping vs no grouping
- autocorrelation
- pseudoreplication