

Integrierter kurzschlußfester Treiberschaltkreis 3 UND-Gatter

Der Schaltkreis zeichnet sich durch hohe Störsicherheit und Zerstörfestigkeit aus. Er besteht aus 3 UND-Gattern mit 2, 3 und 4 Eingängen, wobei je einer invertierend wirkt. Im Bereich der Eingangsspannung von 1 ... 44 V ist der Eingangsstrom nahezu konstant. Zur Unterdrückung von Störimpulsen wird bei jeder UND-Funktion durch interne Verzögerungsstufen ein Eingangssignalwechsel verzögert zum Ausgang weitergeleitet. Das 2. UND-Gatter besitzt einen Anschluß E zum Vergrößern dieser Verzögerungszeit durch Anschalten eines externen Kondensators.

Uber den Eingang 2 kann durch eine Spannung U $_{\rm Z}$ der H-Pegel für alle 3 Gatter gemeinsam eingeschaltet werden (U $_{\rm OH}\!pprox\!U_{\rm Z}$).

Abmessungen in mm:

Logik :

positiv

Logische Funktionen: Y1 = A1 · B1 · C1 · D7

 $Y2 = A2 \cdot B2 \cdot \overline{D2}$

 $Y3 = A3 \cdot \overline{D3}$

Masse

≤ 1,5 g

Typstendard:

TGL 37512

Anschlußbelegung: (von oben gesehen)

- A, B, C: nicht negierende Eingänge
 - D: negierende Eingänge
 - E: Anschluß für externen Kondensator zur Einstellung der Signalverzögerungszeit der 2. UND-Funktion
 - Y: Ausgänge
 - Z: Anschluß zum Einstellen der H-Ausgangsspannung
 - M: Masse

Blockschaltbild einer UND-Funktion :

D10A169

- 1 Eingangsschutzschaltung
- 2 Eingangsstromsenken
- 3 UND-Verknüpfung
- 4 Verzögerungsstufe
- 5 Schmitt-Trigger
- 6 Ausgangsstufe
- 7 Ausgangsschutzschaltung, kurzschlußfest gegen $\mathbf{U}_{\mathbf{S}}$ und Masse
- 8 gemeinsame Spannungsversorgung für alle 3 UND-Funktionen

Grenzwerte, gültig für den Betriebstemperaturbereich :

		min.	max.
Betriebsspannung	$\mathbf{u}_{\mathtt{S}}$	141)	35 V
Eingangsspannung ²⁾ vor Schutzwiderstand 5,6 kΩ			
- dauernd	υı	-30	50 V
- für max. 6 us und Wiederholhäufigkeit max. 300 Hz	U _T	-300	300 V
- für max. 12 us und Wiederholhäufigkeit max. 300 Hz	v _I	- 150	150 V
Spannung ²⁾ vor Schutz- widerstand 560Ω am Ausgang für max. 6 us und Wiederholhäufigkeit max. 300 Hz	u _o	-300	300 V
		-500	
Betriebstemperaturbereich	$\mathscr{S}_{\mathtt{a}}$	- 25	85 °C

Alle 3 Ausgänge sind gegen Masse und Betriebsspannung über je einen Widerstand von 560Ω dauernd kurzschlußfest.

Bis zu einer Umgebungstemperatur von \mathscr{P}_{a} = 23°C ist jede beliebige Anzahl gleichzeitiger Kurzschlüsse zugelassen.

Bei einer Temperatur bis 54°C sind dagegen nur 2 Ausgänge gleichzeitig kurzschlußfest und im Temperaturbereich bis 85°C nur ein Ausgang.

- 1) Bei Unterschreitung ist die Funktion nicht mehr gewährleistet
- Zerstörgrenzen

Betriebsbedingungen	:							
		mi		min.		max	max.	
Betriebsspannung			Us	14		32	V	
L-Eingangsspannung			uIT	-0,1	5	5	V	
H-Eingangsspannung			UH	7,5		44	٧	
Auslastungsfaktor			\mathbf{N}_{O}	-		10)	
Elektrische Kennwerte i ($\vartheta_a = -10^{\circ}C \dots +85^{\circ}C$)								
		MeB- schalt	Meß- min schaltung		typ3)	max.		
Stromaufnahme								
U _S = 14 V	Is	104			5,2	12	m.A	
U _S = 24 V	Is	104			5,4	12	mA	
U _S = 30 V	Is	104			5,5	12	m.A	
L-Eingengsstrom								
U _S = 24 V, U _{IL} = 5V	ıIT	105		0,1	0,14	0,3	m.A	
H-Eingangsstrom U _S = 24V, U _{IH} = 30V	IH	106		0,1	0,14	0,3	mA	
U _S = 30V, I _{OI} = 1,6 m U _{IH} = 7,5 V	M U _{OL}	108			0,9	1,4	V	
H-Ausgangsspannung U _S = 14V,-I _{OH} = 3mA U _{IH} =7,5V;U _{IL} = 5 V	U _{OH}	107		12	12,9		٧	
Steuerstrom aus Anschluß Z U _S =30 V;U _{IH} = 7,5V U _{IL} = 5V; U _Z = 5V		109			0,9	2	mA	

		Meß- schaltung	min.	typ.3)	max.			
Kurzschlußstrom gegen Masse								
U _S = 30V; U _{IH} = 7,5 V U _{IL} = 5 V	-I _{OSH}	110		10	18	mA		
gegen U _S								
U _S =30 V;U _{IH} = 7,5 V	-I _{OSH}	110		4,5		m.A		
Dynamische Kennwerte		24V ± 0,4 8,2 kQ)	v, u _{IH} =	7,5V ±	0 , 1 V	,		
Signalverzögerungszeit Gatter 1 und 3								
- beim Ausschalten	t _{DLH}	111	1	4,8	9	/us		
- beim Einschalten	$\mathtt{t}_{\mathtt{DHL}}$	111	1	3,0	9	/us		
Signalverzögerungszeit Gatter 2 C7 = 33 nF								
- beim Ausschalten	t _{DIH}	111	5,5	8,9	12	ms		
- beim Einschalten	t _{DHL}	111	1,5	2,9	4	ms		

³⁾ Für alle typischen Werte gilt $v_a^{g_t} = 25^{\circ}\text{C} - 5\text{K}$

Meßschaltungen :

2 Gatter Us -lash Y2

Jeder Ausgang einzeln

Lg 140/3/80

III/18/397