1 第四次作业 1

1 第四次作业

问题 1. 证明 \mathbb{R}_l 的拓扑与 \mathbb{R}_K 的拓扑不可比较。

问题 2. 拓扑空间之间的映射 f如果把开集映成开集 (对任意开集U,f(U)是开集),则称 f为开映射。 X_1,X_2 是两个拓扑空间,证明 $\pi_i:X_1\times X_2\to X_i (i=1,2)$ 是开映射。

问题 3. 假设 T_i, T_i' 均是 X_i 上的拓扑(i = 1, 2).

- (1) 若 $\mathcal{T}_i' \subseteq \mathcal{T}_i (i = 1, 2)$. 证明 $\mathcal{T}_{\mathcal{T}_1' \times \mathcal{T}_2'} \subseteq \mathcal{T}_{\mathcal{T}_1 \times \mathcal{T}_2}$.
- (2) (1)的逆命题成立吗?

问题 4. 设 C_i 是 X_i (i=1,2)上的子集族,令 $T_i=T_{C_i}$ (i=1,2), $C_1\times C_2=\{U_1\times U_2|U_i\in C_i, i=1,2\}$,则

$$\mathcal{T}_{\mathcal{C}_1 \times \mathcal{C}_2} = \mathcal{T}_{\mathcal{T}_1 \times \mathcal{T}_2}.$$

 $\ddot{a}C_i$ 是 X_i (i=1,2)上的拓扑(子)基,则 $C_1 \times C_2$ 是 $X_1 \times X_2$ 上的拓扑(子)基。

问题 5. 设 $X = X_1 \bigcup X_2$, \mathcal{T}_1 , \mathcal{T}_2 分别是 X_1 , X_2 上的拓扑,问何时存在X上的拓扑 \mathcal{T} 满足 $\mathcal{T}_{X_i} = \mathcal{T}_i$, i = 1, 2?