

NumProg WS 20/21 : Tutorübung 12

- 1. Power Iteration
- 2. Satz von Gerschgorin
- 3. Klausurvorbereitung (Blatt 13)

Eigenwerte und -vektoren

Wir haben folgendes Problem:

$$A\overrightarrow{v}=\lambda\overrightarrow{v}$$

Matrix A multipliziert mit Vektor \vec{v} ist das λ -fache des Vektors \vec{v}

 \vec{v} ist **Eigenvektor** der Matrix A

Formel, um **Eigenwerte** λ_i einer Matrix A zu bestimmen:

$$\det(A - \lambda \cdot I) = 0$$

Formel, um **Eigenvektor** \vec{v}_i zu einem zugehörigen Eigenwert λ_i zu bestimmen:

$$(A - \lambda_i \cdot I) \cdot v_i = 0$$

Eigenwerte und -vektoren

Wir haben folgendes Problem: $A\vec{v} = \lambda \vec{v}$

$$A\vec{v} = \lambda \vec{v}$$

Matrix A multipliziert mit Vektor \vec{v} ist das λ -fache des Vektors \vec{v}

 \vec{v} ist Eigenvektor der Matrix A

Formel, um **Eigenwerte** λ_i einer Matrix A zu bestimmen:

$$det(A - \lambda \cdot I) = 0$$
 $\leftarrow \lambda$ mit pq-Formel o.Ä. bestimmen

Formel, um **Eigenvektor** \vec{v}_i zu einem zugehörigen Eigenwert λ_i zu bestimmen:

$$(A - \lambda_i \cdot I) \cdot v_i = 0 \leftarrow \mathsf{LGS} \; \mathsf{mit} \; \mathsf{Gauß} \; \mathsf{l\"{o}sen}$$

Power Iteration

Mit der Power Iteration können wir **Eigenwerte** λ einer Matrix A annähern.

Gegeben sind die Matrix selbst und ein Startvektor x_0 .

Verwenden wir die **direkte Power Iteration**, so nähert sich x_0 mit jedem Iterationsschritt dem Eigenvektor \vec{v}_{max} an, der zu dem **betragsmäßig größten Eigenwert** λ_{max} gehört.

$$x_{k+1} = \frac{A \cdot x_k}{\|A \cdot x_k\|_2}$$

$$\lambda^{(k)} = \frac{x_k^T \cdot A \cdot x_k}{x_k^T \cdot x_k} \quad \text{bzw.} \quad \lambda^{(k)} = x_k^T \cdot A \cdot x_k \text{ (ab } x_1 \text{eh genormt)}$$

Power Iteration

Man kann bei der direkten Power Iteration auch noch einen **Shift** μ einfügen.

Dies verändert die Matrix A so, dass ihre Eigenwerte um μ nach unten geschoben werden.

Warum macht man das?

→ So kann sich das Iterationsverfahren auch anderen Eigenwerten annähern, indem man sie einfach betragsmäßig am größten macht.

$$x_{k+1} = \frac{(A - \mu \cdot I) \cdot x_k}{\|(A - \mu \cdot I) \cdot x_k\|_2}$$

$$\lambda^{(k)} = \frac{x_k^T \cdot (A - \mu \cdot I) \cdot x_k}{x_k^T \cdot x_k} + \mu \quad \text{bzw.} \quad \lambda^{(k)} = x_k^T \cdot (A - \mu \cdot I) \cdot x_k + \mu \text{ (ab } x_1 \text{eh genormt)}$$

Konvergenzrate

Die **Konvergenzrate** $p \in (0,1)$ beschreibt, wie schnell sich eine konvergente Folge ihrem Grenzwert nähert. Je näher p an der 0 ist, desto besser.

Konvergenzrate für **direkte Power Iteration**: $p = \frac{\lambda_{\text{zweitgrößter}}}{\lambda_{\text{größter}}}$

Konvergenzrate für **Shift Power Iteration**: $p = \frac{\lambda_{\text{zweitgr\"{o}\"{S}}\text{ter}} - \mu}{\lambda_{\text{gr\"{o}\'{S}}\text{ter}} - \mu}$

Der Fehler ε verringert sich quasi nach jedem Iterationsschritt, abhängig von p.

$$\varepsilon_{k+1} = \varepsilon_k \cdot p$$

Jeder EW λ von A liegt in mindestens einer Kreisscheibe $K_j \coloneqq \{z \in \mathbb{C} : |z - a_{jj}| \le \sum_{k=1, k \ne j}^n |a_{jk}| \}$

Zeichnen eines Kreises nach Form:

$$|\lambda - MittelPunkt(K_j)| \leq Radius(K_j)$$

Jeder EW λ von A liegt in mindestens einer Kreisscheibe $K_j \coloneqq \{z \in \mathbb{C} : |z - a_{jj}| \le \sum_{k=1, k \ne j}^n |a_{jk}|\}$

Zeichnen eines Kreises nach Form:

$$|\lambda - MittelPunkt(K_j)| \leq Radius(K_j)$$

Links Zeichnung aus Aufgabe 2b)

Jeder EW λ von A liegt in mindestens einer Kreisscheibe $K_j \coloneqq \{z \in \mathbb{C} : |z - a_{jj}| \le \sum_{k=1, k \ne j}^n |a_{jk}|\}$

Zeichnen eines Kreises nach Form:

$$|\lambda - MittelPunkt(K_j)| \leq Radius(K_j)$$

Links Zeichnung aus Aufgabe 2b)

Folgendes schließen wir in 2b):

Jeder EW λ von A liegt in mindestens einer Kreisscheibe $K_j \coloneqq \{z \in \mathbb{C} : |z - a_{jj}| \le \sum_{k=1, k \ne j}^n |a_{jk}|\}$

Zeichnen eines Kreises nach Form:

$$|\lambda - MittelPunkt(K_j)| \leq Radius(K_j)$$

Links Zeichnung aus Aufgabe 2b)

Folgendes schließen wir in 2b):

 \Rightarrow A ist symmetrisch

Jeder EW λ von A liegt in mindestens einer Kreisscheibe $K_j \coloneqq \{z \in \mathbb{C} : |z - a_{jj}| \le \sum_{k=1, k \ne j}^n |a_{jk}|\}$

Zeichnen eines Kreises nach Form:

$$|\lambda - MittelPunkt(K_j)| \le Radius(K_j)$$

Links Zeichnung aus Aufgabe 2b)

Folgendes schließen wir in 2b):

 \Rightarrow A ist symmetrisch

$$\Rightarrow \lambda \in \mathbb{R}$$

Jeder EW λ von A liegt in mindestens einer Kreisscheibe $K_j \coloneqq \{z \in \mathbb{C} : |z - a_{jj}| \le \sum_{k=1, k \ne j}^n |a_{jk}|\}$

Zeichnen eines Kreises nach Form:

$$|\lambda - MittelPunkt(K_j)| \le Radius(K_j)$$

Links Zeichnung aus Aufgabe 2b)

Folgendes schließen wir in 2b):

 \Rightarrow A ist symmetrisch

$$\Rightarrow \lambda \in \mathbb{R}$$

 \Rightarrow wir schauen uns λ nur für Re(z) an

Jeder EW λ von A liegt in mindestens einer Kreisscheibe $K_j \coloneqq \{z \in \mathbb{C} : |z - a_{jj}| \le \sum_{k=1, k \ne j}^n |a_{jk}|\}$

Zeichnen eines Kreises nach Form:

$$|\lambda - MittelPunkt(K_j)| \leq Radius(K_j)$$

Links Zeichnung aus Aufgabe 2b)

Folgendes schließen wir in 2b):

 \Rightarrow A ist symmetrisch

$$\Rightarrow \lambda \in \mathbb{R}$$

 \Rightarrow wir schauen uns λ nur für Re(z) an

$$\Rightarrow \lambda \in [3,11] \cup [3,7] \cup [3,5] \cup [2,4] = [2,11]$$

Jeder EW λ von A liegt in mindestens einer Kreisscheibe $K_j \coloneqq \{z \in \mathbb{C} : |z - a_{jj}| \le \sum_{k=1, k \ne j}^n |a_{jk}| \}$

Zeichnen eines Kreises nach Form:

$$|\lambda - MittelPunkt(K_j)| \le Radius(K_j)$$

Links Zeichnung aus Aufgabe 2b)

Folgendes schließen wir in 2b):

- \Rightarrow A ist symmetrisch
- $\Rightarrow \lambda \in \mathbb{R}$
- \Rightarrow wir schauen uns λ nur für Re(z) an
- $\Rightarrow \lambda \in [3,11] \cup [3,7] \cup [3,5] \cup [2,4] = [2,11]$
- \Rightarrow *A* ist positiv definit ($\lambda > 0$)

Jeder EW λ von A liegt in mindestens einer Kreisscheibe $K_j \coloneqq \{z \in \mathbb{C} : |z - a_{jj}| \le \sum_{k=1, k \ne j}^n |a_{jk}|\}$

Zeichnen eines Kreises nach Form:

$$|\lambda - MittelPunkt(K_j)| \leq Radius(K_j)$$

Links Zeichnung aus Aufgabe 2b)

Folgendes schließen wir in 2b):

- \Rightarrow A ist symmetrisch
- $\Rightarrow \lambda \in \mathbb{R}$
- \Rightarrow wir schauen uns λ nur für Re(z) an
- $\Rightarrow \lambda \in [3,11] \cup [3,7] \cup [3,5] \cup [2,4] = [2,11]$
- \Rightarrow *A* ist positiv definit ($\lambda > 0$)
- $\Rightarrow A^{-1}$ existiert

Klausurvorbereitung

- 5 Aufgaben
 - Gleitkomma-Arithmetik
 - Interpolation
 - Quadratur
 - Abstiegsverfahren
 - Programmieraufgabe
- 45 Minuten Selbstarbeit
 - nicht genug Zeit für alle Aufgaben → sucht euch 2 bis 4 Aufgaben aus
- Danach besprechen wir die problematischsten Aufgaben 30 Minuten lang
 - werden vermutlich wieder überziehen müssen...

Klausurvorbereitung

- 5 Aufgaben
 - Gleitkomma-Arithmetik
 - Interpolation
 - Quadratur
 - Abstiegsverfahren
 - Programmieraufgabe
- 45 Minuten Selbstarbeit
 - nicht genug Zeit für alle Aufgaben → sucht euch 2 bis 4 Aufgaben aus
- Danach besprechen wir die problematischsten Aufgaben 30 Minuten lang
 - werden vermutlich wieder überziehen müssen...
- Tipp: macht auf jeden Fall Aufgaben 1), 2)

Pseudo Cheatsheet für Aufgabe 1-5

Dezimale Brüche zu Binärzahl

 $\frac{x_{10}}{x_{10}}$ in binäre Zahl umwandeln:

Polynomdivision x_2 : $y_2 = \cdots$

Binäre Rundungsregeln

\downarrow	y 0 z'	abrunden, z' beliebig
1	$y \mid 1 z'$	aufrunden, falls $z' \neq 0$
↓	y' 0 1 z'	abrunden, falls $\mathbf{z}' = 0$
1	y' 1 1 z'	aufrunden, falls $\mathbf{z}' = 0$

Verfahren des steilsten Abstiegs

Hyperfläche $f(x) = x^T A x - b^T x$ Gradient (Ableitung Fläche) $\nabla f(x) = Ax - b$

Gauss-Quadratur

 $grad(korrekt integrierbar) \le 2 \cdot AnzahlStützstellen - 1$

Fehler bei Trapez-/Simpsonsumme

Fehler Trapezsumme	$R_{TS}(f;h) = h^2 \cdot H \cdot \frac{f''(\xi)}{12}$	$H \coloneqq b - a$
Fehler Simpsonsumme	$R_{SS}(f;h) = h^4 \cdot H \cdot \frac{f''''(\xi)}{180}$	$h \coloneqq \frac{H}{N}$

Newton-Verfahren (Polynominternolation)

<u>Newton-venanien (Polynominterpolation)</u>							
$p(x) = y_0 + f[0,1](x - x_0) + f[0,2](x - x_0)(x - x_1)$							
$f[i,k] = \frac{f[i+1,k-1] - f[i,k-1]}{x_{i+k} - x_i}$							
x_i	$i \setminus k$	0	1	2			
x_0	0	y_0	f[0,1]	<i>f</i> [0,2]			
x_1	1	y_1	<i>f</i> [1,1]				
x_2	2	y_2					

Altken-Neville (Polynominterpolation						
Auswert	Auswertung Funktion an $x = p[0,2]$					
$p[i,k] = p[i,k-1] + \frac{x - x_i}{x_{i+k} - x_i} (p[i+1,k-1] - p[i,k-1])$						
x_i	$i \setminus k$	0	1	2		
x_0	0	y_0	p[0,1]	p[0,2]		
x_1	1	y_1	<i>p</i> [1,1]			
x_2	2	y_2				