Navy Experimental Diving Unit 321 Bullfinch Rd. Panama City, FL 32407-7015

1.3 ATA PO₂-in-He DECOMPRESSION TABLES FOR MK 16 MOD 1 DIVING: SUMMARY REPORT AND OPERATIONAL GUIDANCE

Authors:

T. M. JOHNSON CDR, MC, USN Principal Investigator

W. A. GERTH, Ph.D. Associate Investigator

DISTRIBUTION STATEMENT A: Approved for public release; Distribution is unlimited.

20020313 063

The REPORT SECURITY CLASSIFICATION AUTHORITY				REPORT DOCU	MENTATIO	N PAG	E				
2b. DECLASSIFICATION/DOWNGRADING AUTHORITY 4. PERFORMING ORGANIZATION REPORT NUMBER (S) NEUU TECHNICAL REPORT No. 14-01 6b. OFFICE SYMBOL (If Applicable) Navy Experimental Diving Unit 0c. ADDRESS (City, State, and Zip Code) 323 Bullifons (ORGANIZATION NAVAL SEA SYSTEMS COMMAND 8b. OFFICE SYMBOL (If Applicable) NAVAL SEA SYSTEMS COMMAND 8c. ADDRESS (City, State, and Zip Code) 2531 Jefferson Davis Highway, Arlington, VA 22242-5160 8c. ADDRESS (City, State, and Zip Code) 2531 Jefferson Davis Highway, Arlington, VA 22242-5160 8c. ADDRESS (City, State, and Zip Code) 2531 Jefferson Davis Highway, Arlington, VA 22242-5160 8c. ADDRESS (City, State, and Zip Code) 2531 Jefferson Davis Highway, Arlington, VA 22242-5160 8c. ADDRESS (City, State, and Zip Code) 2531 Jefferson Davis Highway, Arlington, VA 22242-5160 8c. ADDRESS (City, State, and Zip Code) 2531 Jefferson Davis Highway, Arlington, VA 22242-5160 8c. ADDRESS (City, State, and Zip Code) 2531 Jefferson Davis Highway, Arlington, VA 22242-5160 8c. ADDRESS (City, State, and Zip Code) 2531 Jefferson Davis Highway, Arlington, VA 22242-5160 8c. ADDRESS (City, State, and Zip Code) 2531 Jefferson Davis Highway, Arlington, VA 22242-5160 8c. ADDRESS (City, State, and Zip Code) 2531 Jefferson Davis Highway, Arlington, VA 22242-5160 8c. ADDRESS (City, State, and Zip Code) 2531 Jefferson Davis Highway, Arlington, VA 22242-5160 8c. ADDRESS (City, State, and Zip Code) 2531 Jefferson Davis Highway, Arlington, VA 22242-5160 8c. ADDRESS (City, State, and Zip Code) 2531 Jefferson Davis Highway, Arlington, VA 22242-5160 8c. ADDRESS (City, State, and Zip Code) 2531 Jefferson Davis Highway, Arlington, VA 22242-5160 8c. ADDRESS (City, State, and Zip Code) 2531 Jefferson Davis Highway, Arlington, VA 22242-5160 8c. ADDRESS (City, State, and Zip Code) 2531 Jefferson Davis Highway, Arlington, VA 22242-5160 8c. ADDRESS (City, State, and Zip Code) 2531 Jefferson Davis Highway, Arlington, VA 22242-5160 8c. ADDRESS (City, State, and Zip Code) 2631 Jefferson Davis Highway, Arl	1a. REPORT SECURITY				1b. RESTR	CTIVE	MARKIN	IGS			
4. PERRORMING ORGANIZATION REPORT NUMBER (S) NEDU TECHNICAL REPORT No. 14-01 66. NAME OF PERRORMING ORGANIZATION (If Applicable) ORGANIZATION (If Applicable) ORGANIZATION ORGANIZATION Navy Experimental Diving Unit ORGANIZATION		ICATION AUTHO	DRITY	ITY	DISTRIBU"					lic rel	lease; Distribution is
NEDU TECHNICAL REPORT No. 14-01 Ga. NAME OF PERFORMING ORGANIZATION ORGANIZATIO	20. DECEMBON TOTALO										
ORGANIZATION Navy Experimental Diving Unit 6c. ADDRESS (City, State, and ZIP Code) 221 Bullfinch Road, Panama City, FL 32497-7015 8. NAME OF FUNDING 8. ADDRESS (City, State, and ZIP Code) 2231 Jefferson Davis Highway, Arlington, VA 22242-5160 8. CADRESS (City, State, and ZIP Code) 2231 Jefferson Davis Highway, Arlington, VA 22242-5160 8. FROGRAM 1. TITLE (Include Security Classification) 1. ATA PO-in-life DECOMPRESSION TABLES FOR MK 16 MOD 1 DIVING: SUMMARY REPORT AND OPERATIONAL GUIDANCE 12. PERSONAL AUTHOR(S) T. M. JOHNSON, CDR, MC, USN and W. A. GERTH, PhD 13a. TYPE OF REPORT 13b. TIME COVERED FROM 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT TECHNICAL REPORT Oct 00 - Jul 01 2001, October, 31 45 16. SUBPLEMENTARY NOTATION 17. COSATI CODES FIELD GROUP SUB-GROUP SUB-GROUP SUB-GROUP 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) My 16 MOD 1 Underwater Breathing Apparatus, decompression, decompression sickness, probabilistic model, deterministic model, helium-oxygen 19. ABSTRACT: The Nay Experimental Diving Unit (NEDU) was tasked by PMS-EOD to develop repetitive helium-oxygen (HeO ₂) decompression sickness, probabilistic model, deterministic model, which was then analytically mapped onto a deterministic model (EOD) diver. These profiles were then man-tested 227 lines, with one diagnosed case and one possible case of decompression sickness (DCS). These data were used to recalibrate the LEM model, which was then analytically mapped onto a deterministic model to allow the generation of repetitive decompression and guidance for their operational use. The tables are recommended for single no-decompression and decompression and guidance for their operational use. The tables are recommended for single no-decompression and decompression and guidance for their operational use. The tables are recommended of these tables, and forw	1			R (S)	5. MONITO	RING	ORGANIZ	ZATION	REPORT NUM	IBER	R(S)
6c. ADDRESS (City, State, and ZIP Code) 321 Bullfinch Road, Panama City, Ft. 32407-7015 8 NAME OF FUNDING SPONSORING ORGANIZATION NAVAL SEA SYSTEMS COMMAND 00C 8c. ADDRESS (City, State, and Zip Code) 2531 Jefferson Davis Highway, Arlington, VA 22242-5160 8c. ADDRESS (City, State, and ZiP Code) 2531 Jefferson Davis Highway, Arlington, VA 22242-5160 8c. ADDRESS (City, State, and ZiP Code) 2531 Jefferson Davis Highway, Arlington, VA 22242-5160 8c. ADDRESS (City, State, and ZiP Code) 2531 Jefferson Davis Highway, Arlington, VA 22242-5160 8c. ADDRESS (City, State, and ZiP Code) 2531 Jefferson Davis Highway, Arlington, VA 22242-5160 8c. ADDRESS (City, State, and ZiP Code) 2531 Jefferson Davis Highway, Arlington, VA 22242-5160 8c. ADDRESS (City, State, and ZiP Code) 2531 Jefferson Davis Highway, Arlington, VA 22242-5160 8c. ADDRESS (City, State, and ZiP Code) 2531 Jefferson Davis Highway, Arlington, VA 22242-5160 8c. ADDRESS (City, State, and ZiP Code) 2531 Jefferson Davis Highway, Arlington, VA 22242-5160 8c. ADDRESS (City, State, and ZiP Code) 2531 Jefferson Davis Highway, Arlington, VA 22242-5160 8c. ADDRESS (City, State, and ZiP Code) 2531 Jefferson Davis Highway, Arlington, VA 22242-5160 9c. PROGRAM ELEMENT NO. 8c. ADDRESS (City, State, and ZiP Code) 3c.		IING		· · · · · · · · · · · · · · · · · · ·	7a. NAME	OF MO	NITORIN	G ORGA	NIZATION		
321 Bullfinch Road, Panama City, FL 32407-7015 8a NAME OF FUNDING NAVAL SEA SYSTEMS COMMAND 8c. ADDRESS (City, State, and ZIP Code) 2531 Jefferson Davis Highway, Arlington, VA 22242-5160 8c. ADDRESS (City, State, and ZIP Code) 2531 Jefferson Davis Highway, Arlington, VA 22242-5160 PROGRAM ELEMENT NO. 10. SOURCE OF FUNDING NUMBERS 11. STITLE (Include Security Classification) 1.3 ATA POin-He DECOMPRESSION TABLES FOR MK 16 MOD 1 DIVING: SUMMARY REPORT AND OPERATIONAL GUIDANCE 12. PERSONAL AUTHORS) 1. M. JOHNSON, CDR, MC, USN and W. A. GERTH, PhD 13a. TYPE OF REPORT 15b. TIME COVERED FROM 16c. SUPPLEMENTARY NOTATION 17. COSATI CODES FIELD 17. GROUP 18. SUB-GROUP 19. ABSTRACT: 19. ABSTRAC			02								
88. NAME OF FUNDING SPONSORING ORGANIZATION NAVAL SEA SYSTEMS COMMAND 00C 8c. ADDRESS (City, State, and ZIP Code) 2531 Jefferson Davis Highway, Arlington, VA 22242-5160 8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS PROGRAM ELMENT NO. 10. PROJECT NO. 17ASK NO. 98-029 11. TITLE (Include Security Classification) 11. 3 ATA POin-He DECOMPRESSION TABLES FOR MK 16 MOD 1 DIVING: SUMMARY REPORT AND OPERATIONAL GUIDANCE 12. PERSONAL AUTHOR(S) 13. A TYPE OF REPORT 13b. TIME COVERED FROM 15b. SUPPLEMENTARY NOTATION 17. COSATI CODE 19. ABSTRACT: The Navy Experimental Diving Unit (NEDU) was tasked by PMS-EOD to develop repetitive helium-oxygen (HeO ₂) decompression tables for use with the MK 16 MOD 1 Underwater Breathing Apparatus. Statistical and probabilistic decompression technology (LEM model) was used to generate profiles with depths, bottom times, and surface intervals of operational relevance to the fleet Explosive Ordinance Disposal (EOD) diver. These profiles were then man-tested 227 times, with one diagnosed case and one possible case of decompression sickness (DCS). These data were used to recalibrate the LEM model, which was then analytically mapped onto a deterministic model to allow the generation of repetitive decompression tables in U.S. These of the stables were man-tested 299 times with 0 elven with 10 per possible case of decompression sickness (DCS). These data were used to recalibrate the LEM model, which was then analytically mapped onto a deterministic model to allow the generation of repetitive decompression tables in U.S. These of DCS of 2.3%. Selected profiles from these tables were man-tested 299 times with 6 elven to the fleet compression tables in U.S. These of DCS of 10 per value of the possible and of the compression of the test with elven to recalibrate the LEM model, which was then analytically mapped onto a deterministic model to allow the generation of repetitive decompression tables in U.S. These of DCS of 2.3%. Selected profiles from these tables were man	1 ' '	•	405 5015		7b. ADDRE	SS (Ci	ty, State, a	nd Zip C	ode)		
SPONSORING ORGANIZATION (If Applicable) 00C 8c. ADDRESS (City, State, and ZIP Code) 2531 Jefferson Davis Highway, Arlington, VA 22242-5160 PROGRAM ELEMENT NO. PROJECT NO. TASK NO. 98-029 11. TITLE (Include Security Classification) 1.3 ATA PO-in-ih- DECOMPRESSION TABLES FOR MK 16 MOD 1 DIVING: SUMMARY REPORT AND OPERATIONAL GUIDANCE 12. PERSONAL AUTHOR(S) T. M. JOHNSON, CDR, MC, USN and W. A. GERTH, PhD 13a. TYPE OF REPORT 13b. TIME COVERED FROM 2001, October, 31 45 16. SUPPLEMENTARY NOTATION 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP 19. ABSTRACT: The Navy Experimental Diving Unit (NEDU) was tasked by PMS-EOD to develop repetitive helium-oxygen (HeO ₂) decompression tables for use with the MK 16 MOD 1 Underwater Breathing Apparatus. Statistical and probabilistic model, helium-oxygen (LEM model) was used to generate profiles with depths, bottom times, and surface intervals of operational relevance to the fleet Explosive Ordanace Disposal (EOD) diver. These profiles were then man-tested 227 times, with one diagnosed case and one possible case of decompression sickness (DCS). These data were used to recalibrate the LEM model, which was then analytically mapped onto a deterministic model to allow the generation of repetitive decompression tables in US. These sets of DCS in conformance with the intended risk. This report summarizes the work completed at NEDU during the development and testing of these tables, and forwards the tables with recommendations and guidance for their operational use. The tables are recommended for single no-decompression and decompression MK 16 MOD 1 HeO ₂ divers to depths from 40 to 300 flw, and within certain limits, for repetitive MK 16 MOD 1 HeO ₂ diving in the 40 to 200 flw range with surface intervals as short as 30 minutes. A more detailed description of this work will be released in a subsequent report or reports. 20. DISTRIBUTION/NAVALIABILITY OF ABSTRACT: 1 INCLASSIFIED/UNLIMITED X			T	E CVMDOI	0 PPOCITE	EMEN	T INISTRI	IMENT	IDENTIFICAT	ION	
8c. ADDRESS (City, State, and ZIP Code) 2531 Jefferson Davis Highway, Arlington, VA 22242-5160 PROGRAM ELEMENT NO. PROJECT NO. BASK NO. BASK NO. BELEMENT NO. PROJECT NO. PRO				olicable)			II INSTRU	JIVIEN I	IDENTIFICAT.	ION	
2531 Jefferson Davis Highway, Arlington, VA 22242-5160 PROGRAM PROJECT NO. TASK NO. WORK UNIT ACCESSION NO. 11. TITLE (Include Security Classification) 12. PERSONAL AUTHOR(S) T. M. JOENSON, CDR, MC, USN and W. A. GERTH, PhD 13a. TYPE OF REPORT 13b. TIME COVERED FROM 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT TECHNICAL REPORT Oct 00 - Jul 01 2001, October, 31 45 16. SUPPLEMENTARY NOTATION 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Mt. 16 MOD 1 Underwater Breathing Apparatus. Statistical and probabilistic model, helium-oxygen (HeO ₂) decompression tables for use with the MK 16 MOD 1 Underwater Breathing Apparatus. Statistical and probabilistic decompression technology (LEM model) was used to generate profiles with depths, bottom times, and surface intervals of operational relevance to the fleet Explosive Ordnance Disposal (EOD) diver. These profiles were then man-tested 227 times, with one diagnosed case and one possible case of decompression sickness (DCS). These data were used to recalibrate the LEM model, which was then analytically mapped onto a deterministic model to allow the generation of repetitive decompression tables in U. S. Navy Diving Manual format with a predicted risk of DCS of 2.3%. Selected profiles from these tables were man-tested 299 times with oce diagnosed case and one possible case of decompression sickness (DCS). These data were used to recalibrate the LEM model, which was then analytically mapped onto a deterministic model to allow the generation of repetitive decompression tables in U. S. Navy Diving Manual format with a predicted risk of DCS of 2.3%. Selected profiles from these tables were man-tested 299 times with oce diagnosed case and one operational use. The tables are recommended for single no-decompression in the decompression and decompression and flow of the possible case of decompression and decompression and decompression and decompression and decompression and decompression an				00C							
PROGRAM ELEMENT NO. PROJECT NO. TASK NO. WORK UNIT ACCESSION NO.	8c. ADDRESS (City, State	e, and ZIP Code)			10. SOURC	E OF F	UNDING	NUMBE	irs		
11. TITLE (Include Security Classification) 1.3 ATA PO_rin-He DECOMPRESSION TABLES FOR MK 16 MOD 1 DIVING: SUMMARY REPORT AND OPERATIONAL GUIDANCE 12. PERSONAL AUTHOR(S) T. M. JOHNSON, CDR, MC, USN and W. A. GERTH, PhD 13a. TYPE OF REPORT 13b. TIME COVERED FROM 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT TECHNICAL REPORT Oct 00 - Jul 01 2001, October, 31 45 16. SUPPLEMENTARY NOTATION 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) MK 16 MOD 1 Underwater Breathing Apparatus, decompression sickness, probabilistic model, deterministic model, helium-oxygen (HeO₂) decompression tables for use with the MK 16 MOD 1 Underwater Breathing Apparatus. Statistical and probabilistic decompression technology (LEM model) was used to generate profiles with depths, bottom times, and surface intervals of operational relevance to the fleet Explosive Ordnance Disposal (EOD) diver. These profiles were then man-tested 227 times, with one diagnosed case and one possible case of decompression sickness (DCS). These data were used to recalibrate the LEM model, which was then analytically mapped onto a deterministic model to allow the generation of repetitive decompression tables in U.S. Navy Diving Manual format with a predicted risk of DCS of 2.3%. Selected profiles from these tables were man-tested 299 times with 6 cases of DCS, yielding a 2.0% overall observed incidence of DCS in conformance with the intended risk. This report summarizes the work completed at NEDU during the development and testing of these tables, and forwards the tables with recommendations and guidance for their operational use. The tables are recommended for single no-decompression and decompression and guidance for their operational use. The tables are recommended for single no-decompression and decompression and guidance for their operational use. The tables are recommended for single no-decompression and decompression of a subsequent report or reports. UNICLASSIFIED/UNILMITED	2531 Jefferson Davis	Highway, Arlingto	n, VA 22242	2-5160			PROJEC	T NO.			
13 ATA PO-in-He DECOMPRESSION TABLES FOR MK 16 MOD 1 DIVING: SUMMARY REPORT AND OPERATIONAL GUIDANCE 12. PERSONAL AUTHOR(S) T. M. JOHNSON, CDR, MC, USN and W. A. GERTH, PhD 13a. TYPE OF REPORT 13b. TIME COVERED FROM 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT TECHNICAL REPORT Oct 00 - Jul 01 2001, October, 31 45 16. SUPPLEMENTARY NOTATION 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) MK 16 MOD 1 Underwater Breathing Apparatus, decompression sickness, probabilistic model, deterministic model, helium-oxygen (LEM model) was used to generate profiles with depths, bottom times, and surface intervals of operational relevance to the fleet Explosive Ordnance Disposal (EOD) diver. These profiles were then man-tested 227 times, with one diagnosed case and one possible case of decompression sickness (DCS). These data were used to recalibrate the LEM model, which was then analytically mapped onto a deterministic model to allow the generation of repetitive decompression tables in U.S. Navy Diving Manual format with a predicted risk of DCS of 2.3%. Selected profiles from these tables were man-tested 229 times with 6 cases of DCS, yielding a 2.0% overall observed incidence of DCS in conformance with the intended risk. This report summarizes the work completed at NEDU during the development and testing of these tables, and forwards the tables with recommendations and guidance for their operational use. The tables are recommended for single no-decompression and decompression MK 16 MOD 1 HeO2 dives to depths from 40 to 300 fsw, and within certain limits, for repetitive MK 16 MOD 1 HeO2 diving in the 40 to 200 fsw range with surface intervals as short as 30 minutes. A more detailed description of this work will be released in a subsequent report or reports. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT DTIC USERS Unclassified 21. ABSTRACT SECURITY CLASSIFICATION Unclassified	11 TITLE (Include Secur	ity Classification)					1		70-027	L	
12. PERSONAL AUTHOR(S) T. M. JOHNSON, CDR, MC, USN and W. A. GERTH, PhD 13a. TYPE OF REPORT 13b. TIME COVERED FROM 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT TECHNICAL REPORT Oct 00 - Jul 01 2001, October, 31 45 16. SUPPLEMENTARY NOTATION 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) MK 16 MOD 1 Underwater Breathing Apparatus, decompression sickness, probabilistic model, deterministic model, helium-oxygen 19. ABSTRACT: The Navy Experimental Diving Unit (NEDU) was tasked by PMS-EOD to develop repetitive helium-oxygen (HeO2) decompression tables for use with the MK 16 MOD 1 Underwater Breathing Apparatus. Statistical and probabilistic decompression technology (LEM model) was used to generate profiles with depths, bottom times, and surface intervals of operational relevance to the fleet Explosive Ordnance Disposal (EOD) diver. These profiles were then man-tested 227 times, with one diagnosed case and one possible case of decompression sickness (DCS). These data were used to recalibrate the LEM model, which was then analytically mapped onto a deterministic model to allow the generation of repetitive decompression tables in U.S. Navy Diving Manual format with a predicted risk of DCS of 2.3%. Selected profiles from these tables were man-tested 299 times with 6 cases of DCS, yielding a 2.0% overall observed incidence of DCS in conformance with the intended risk. This report summarizes the work completed at NEDU during the development and testing of these tables, and forwards the tables with recommendations and guidance for their operational use. The tables are recommended for single no-decompression and decompression MK 16 MOD 1 HeO2 dives to depths from 40 to 300 fsw, and within certain limits, for repetitive MK 16 MOD 1 HeO2 diving in the 40 to 200 fsw range with surface intervals as short as 30 minutes. A more detailed description of this work will be released in a subsequent report or reports. 20. DISTRIBUTION/AVAILABILITY OF A										~~~	TD 11100
13a. TYPE OF REPORT 13b. TIME COVERED FROM 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT TECHNICAL REPORT 16. SUPPLEMENTARY NOTATION 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) MK 16 MOD 1 Underwater Breathing Apparatus, decompression, decompression tables for use with the MK 16 MOD 1 Underwater Breathing Apparatus. Statistical and probabilistic decompression technology (LEM model) was used to generate profiles with depths, bottom times, and surface intervals of operational relevance to the fleet Explosive Ordnance Disposal (EOD) diver. These profiles were then man-tested 227 times, with one diagnosed case and one possible case of decompression sickness (DCS). These data were used to recalibrate the LEM model, which was then analytically mapped onto a deterministic model to allow the generation of repetitive decompression tables in U.S. Navy Diving Manual format with a predicted risk of DCS of 2.3%. Selected profiles from these tables were man-tested 299 times with 6 cases of DCS, yielding a 2.0% overall observed incidence of DCS in conformance with the intended risk. This report summarizes the work completed at NEDU during the development and testing of these tables, and forwards the tables with recommendations and guidance for their operational use. The tables are recommended for single no-decompression and decompression MK 16 MOD 1 HeO ₂ dives to depths from 40 to 300 fsw, and within certain limits, for repetitive MK 16 MOD 1 HeO ₂ diving in the 40 to 200 fsw range with surface intervals as short as 30 minutes. A more detailed description of this work will be released in a subsequent report or reports. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 1 UNCLASSIFIED/UNLIMITED X SAME AS PT. DTIC USERS Unclassified 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) 22c. OFFICE SYMBOL			ON TABLES	FOR MK 16 MOD 1 I	DIVING: SUN	<u>IMAR</u>	Y REPOR	AND C	PERATIONAL	. GU	IDANCE
13b. TIME COVERED FROM TECHNICAL REPORT Oct 00 - Jul 01 2001, October, 31 16. SUPPLEMENTARY NOTATION 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) MK 16 MOD 1 Underwater Breathing Apparatus, decompression, decompression sickness, probabilistic model, deterministic model, helium-oxygen 19. ABSTRACT: The Navy Experimental Diving Unit (NEDU) was tasked by PMS-EOD to develop repetitive helium-oxygen (HeO2) decompression tables for use with the MK 16 MOD 1 Underwater Breathing Apparatus. Statistical and probabilistic decompression technology (LEM model) was used to generate profiles with depths, bottom times, and surface intervals of operational relevance to the fleet Explosive Ordnance Disposal (EOD) diver. These profiles were then man-tested 227 times, with one diagnosed case and one possible case of decompression sickness (DCS). These data were used to recalibrate the LEM model, which was then analytically mapped onto a deterministic model to allow the generation of repetitive decompression tables in U.S. Navy Diving Manual format with a predicted risk of DCS of 2.3%. Selected profiles from these tables were man-tested 299 times with 6 cases of DCS, yielding a 2.0% overall observed incidence of DCS in conformance with the intended risk. This report summarizes the work completed at NEDU during the development and testing of these tables, and forwards the tables with recommendations and guidance for their operational use. The tables are recommended for single no-decompression and decompression MK 16 MOD 1 HeO2 diving in the 40 to 200 fav arnage with surface intervals as short as 30 minutes. A more detailed description of this work will be released in a subsequent report or reports. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT UNCLASSIFIED/UNLIMITED X SAME AS RPT. DTIC USERS Unclassified 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Are Code) 22c. OFFICE SYMBOL	12. PERSONAL AUTHO	R(S)									
TECHNICAL REPORT Oct 00 - Jul 01 2001, October, 31 45 16. SUPPLEMENTARY NOTATION 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) MK 16 MOD 1 Underwater Breathing Apparatus, decompression, decompression sickness, probabilistic model, deterministic model, helium-oxygen 19. ABSTRACT: The Navy Experimental Diving Unit (NEDU) was tasked by PMS-EOD to develop repetitive helium-oxygen (HeO2) decompression tables for use with the MK 16 MOD 1 Underwater Breathing Apparatus. Statistical and probabilistic decompression technology (LEM model) was used to generate profiles with depths, bottom times, and surface intervals of operational relevance to the fleet Explosive Ordnance Disposal (EOD) diver. These profiles were then man-tested 227 times, with one diagnosed case and one possible case of decompression sickness (DCS). These data were used to recalibrate the LEM model, which was then analytically mapped onto a deterministic model to allow the generation of repetitive decompression tables in U.S. Navy Diving Manual format with a predicted risk of DCS of 2.3%. Selected profiles from these tables were man-tested 299 times with 6 cases of DCS, yielding a 2.0% overall observed incidence of DCS in conformance with the intended risk. This report summarizes the work completed at NEDU during the development and testing of these tables, and forwards the tables with recommendations and guidance for their operational use. The tables are recommended for single no-decompression and decompression MK 16 MOD 1 HeO2 dives to depths from 40 to 300 fsw, and within certain limits, for repetitive MK 16 MOD 1 HeO2 diving in the 40 to 200 fsw range with surface intervals as short as 30 minutes. A more detailed description of this work will be released in a subsequent report or reports. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 10. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION 11. UNCLASSIFIED/UNLIMITED X SAME AS RPT. DTIC USERS Unclassified	T. M. JOHNSON, CI	OR, MC, USN and	W. A. GERTI	H, PhD							
16. SUPPLEMENTARY NOTATION 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) MK 16 MOD 1 Underwater Breathing Apparatus, decompression, decompression sickness, probabilistic model, deterministic model, helium-oxygen 19. ABSTRACT: The Navy Experimental Diving Unit (NEDU) was tasked by PMS-EOD to develop repetitive helium-oxygen (HeO2) decompression tables for use with the MK 16 MOD 1 Underwater Breathing Apparatus. Statistical and probabilistic decompression technology (LEM model) was used to generate profiles with depths, bottom times, and surface intervals of operational relevance to the fleet Explosive Ordnance Disposal (EOD) diver. These profiles were then man-tested 227 times, with one diagnosed case and one possible case of decompression sickness (DCS). These data were used to recalibrate the LEM model, which was then analytically mapped onto a deterministic model to allow the generation of repetitive decompression tables in U.S. Navy Diving Manual format with a predicted risk of DCS of 2.3%. Selected profiles from these tables were man-tested 299 times with 6 cases of DCS, yielding a 2.0% overall observed incidence of DCS in conformance with the intended risk. This report summarizes the work completed at NEDU during the development and testing of these tables, and forwards the tables with recommendations and guidance for their operational use. The tables are recommended for single no-decompression and decompression MK 16 MOD 1 HeO2 dives to depths from 40 to 300 fsw, and within certain limits, for repetitive MK 16 MOD 1 HeO2 diving in the 40 to 200 fsw range with surface intervals as short as 30 minutes. A more detailed description of this work will be released in a subsequent report or reports. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED/UNLIMITED X SAME AS RPT. DTIC USERS 22a. NAME OF RESPONSIBLE NDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL	13a. TYPE OF REPORT		13b. TIME	COVERED FROM	14. D	ATE OF	F REPORT	Year, N	Month, Day)		15. PAGE COUNT
16. SUPPLEMENTARY NOTATION 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) MK 16 MOD 1 Underwater Breathing Apparatus, decompression, decompression sickness, probabilistic model, deterministic model, helium-oxygen MK 16 MOD 1 Underwater Breathing Apparatus, decompression tables for use with the MK 16 MOD 1 Underwater Breathing Apparatus. Statistical and probabilistic decompression technology (LEM model) was used to generate profiles with depths, bottom times, and surface intervals of operational relevance to the fleet Explosive Ordnance Disposal (EOD) diver. These profiles were then man-tested 227 times, with one diagnosed case and one possible case of decompression sickness (DCS). These data were used to recalibrate the LEM model, which was then analytically mapped onto a deterministic model to allow the generation of repetitive decompression tables in U.S. Navy Diving Manual format with a predicted risk of DCS of 2.3%. Selected profiles from these tables were man-tested 299 times with 6 cases of DCS, yielding a 2.0% overall observed incidence of DCS in conformance with the intended risk. This report summarizes the work completed at NEDU during the development and testing of these tables, and forwards the tables with recommendations and guidance for their operational use. The tables are recommended for single no-decompression and decompression MK 16 MOD 1 HeO ₂ divise to depths from 40 to 300 fsw, and within certain limits, for repetitive MK 16 MOD 1 HeO ₂ diving in the 40 to 200 fsw range with surface intervals as short as 30 minutes. A more detailed description of this work will be released in a subsequent report or reports. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT UNCLASSIFIED/UNLIMITED X SAME AS RPT. DTIC USERS Unclassified 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL	TECHNICAL REPO	RT	Oct 00	- Jul 01	2	001, O	ctober, 31				45
FIELD GROUP SUB-GROUP 19. ABSTRACT: The Navy Experimental Diving Unit (NEDU) was tasked by PMS-EOD to develop repetitive helium-oxygen (HeO2) decompression tables for use with the MK 16 MOD 1 Underwater Breathing Apparatus. Statistical and probabilistic decompression technology (LEM model) was used to generate profiles with depths, bottom times, and surface intervals of operational relevance to the fleet Explosive Ordnance Disposal (EOD) diver. These profiles were then man-tested 227 times, with one diagnosed case and one possible case of decompression sickness (DCS). These data were used to recalibrate the LEM model, which was then analytically mapped onto a deterministic model to allow the generation of repetitive decompression tables in U.S. Navy Diving Manual format with a predicted risk of DCS of 2.3%. Selected profiles from these tables were man-tested 299 times with 6 cases of DCS, yielding a 2.0% overall observed incidence of DCS in conformance with the intended risk. This report summarizes the work completed at NEDU during the development and testing of these tables, and forwards the tables with recommendations and guidance for their operational use. The tables are recommended for single no-decompression and decompression MK 16 MOD 1 HeO2 dives to depths from 40 to 300 fsw, and within certain limits, for repetitive MK 16 MOD 1 HeO2 diving in the 40 to 200 fsw range with surface intervals as short as 30 minutes. A more detailed description of this work will be released in a subsequent report or reports. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT UNCLASSIFIED/UNLIMITED X SAME AS RPT. DTIC USERS Unclassified UNCLASSIFIED/UNLIMITED X SAME AS RPT. DTIC USERS Unclassified UNCLASSIFIED/UNLIMITED X SAME AS RPT. DTIC USERS Unclassified											
19. ABSTRACT: The Navy Experimental Diving Unit (NEDU) was tasked by PMS-EOD to develop repetitive helium-oxygen (HeO2) decompression tables for use with the MK 16 MOD 1 Underwater Breathing Apparatus. Statistical and probabilistic decompression technology (LEM model) was used to generate profiles with depths, bottom times, and surface intervals of operational relevance to the fleet Explosive Ordnance Disposal (EOD) diver. These profiles were then man-tested 227 times, with one diagnosed case and one possible case of decompression sickness (DCS). These data were used to recalibrate the LEM model, which was then analytically mapped onto a deterministic model to allow the generation of repetitive decompression tables in U.S. Navy Diving Manual format with a predicted risk of DCS of 2.3%. Selected profiles from these tables were man-tested 299 times with 6 cases of DCS, yielding a 2.0% overall observed incidence of DCS in conformance with the intended risk. This report summarizes the work completed at NEDU during the development and testing of these tables, and forwards the tables with recommendations and guidance for their operational use. The tables are recommended for single no-decompression and decompression MK 16 MOD 1 HeO2 dives to depths from 40 to 300 fsw, and within certain limits, for repetitive MK 16 MOD 1 HeO2 diving in the 40 to 200 fsw range with surface intervals as short as 30 minutes. A more detailed description of this work will be released in a subsequent report or reports. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT UNCLASSIFIED/UNLIMITED X SAME AS RPT. DTIC USERS Unclassified 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL	17.	COSATI COI	DES						reverse if neces	ssary	and
The Navy Experimental Diving Unit (NEDU) was tasked by PMS-EOD to develop repetitive helium-oxygen (HeO ₂) decompression tables for use with the MK 16 MOD 1 Underwater Breathing Apparatus. Statistical and probabilistic decompression technology (LEM model) was used to generate profiles with depths, bottom times, and surface intervals of operational relevance to the fleet Explosive Ordnance Disposal (EOD) diver. These profiles were then man-tested 227 times, with one diagnosed case and one possible case of decompression sickness (DCS). These data were used to recalibrate the LEM model, which was then analytically mapped onto a deterministic model to allow the generation of repetitive decompression tables in U.S. Navy Diving Manual format with a predicted risk of DCS of 2.3%. Selected profiles from these tables were man-tested 299 times with 6 cases of DCS, yielding a 2.0% overall observed incidence of DCS in conformance with the intended risk. This report summarizes the work completed at NEDU during the development and testing of these tables, and forwards the tables with recommendations and guidance for their operational use. The tables are recommended for single no-decompression and decompression MK 16 MOD 1 HeO ₂ dives to depths from 40 to 300 fsw, and within certain limits, for repetitive MK 16 MOD 1 HeO ₂ diving in the 40 to 200 fsw range with surface intervals as short as 30 minutes. A more detailed description of this work will be released in a subsequent report or reports. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED/UNLIMITED X SAME AS RPT. DTIC USERS Unclassified 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL	FIELD	GROUP		SUB-GROUP	MK 16 M sickness, j	OD 1 U probabi	Inderwater listic mod	Breathin el, detern	g Apparatus, de ninistic model, l	ecom heliu	pression, decompression m-oxygen
The Navy Experimental Diving Unit (NEDU) was tasked by PMS-EOD to develop repetitive helium-oxygen (HeO ₂) decompression tables for use with the MK 16 MOD 1 Underwater Breathing Apparatus. Statistical and probabilistic decompression technology (LEM model) was used to generate profiles with depths, bottom times, and surface intervals of operational relevance to the fleet Explosive Ordnance Disposal (EOD) diver. These profiles were then man-tested 227 times, with one diagnosed case and one possible case of decompression sickness (DCS). These data were used to recalibrate the LEM model, which was then analytically mapped onto a deterministic model to allow the generation of repetitive decompression tables in U.S. Navy Diving Manual format with a predicted risk of DCS of 2.3%. Selected profiles from these tables were man-tested 299 times with 6 cases of DCS, yielding a 2.0% overall observed incidence of DCS in conformance with the intended risk. This report summarizes the work completed at NEDU during the development and testing of these tables, and forwards the tables with recommendations and guidance for their operational use. The tables are recommended for single no-decompression and decompression MK 16 MOD 1 HeO ₂ dives to depths from 40 to 300 fsw, and within certain limits, for repetitive MK 16 MOD 1 HeO ₂ diving in the 40 to 200 fsw range with surface intervals as short as 30 minutes. A more detailed description of this work will be released in a subsequent report or reports. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED/UNLIMITED X SAME AS RPT. DTIC USERS Unclassified 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL											
(0.00) 0.00 0.00	The Navy Experiment tables for use with the (LEM model) was use Explosive Ordnance possible case of decompand onto a determined a predicted risk 2.0% overall observed NEDU during the decoperational use. The from 40 to 300 fsw, intervals as short as 20. DISTRIBUTION/AV.	ne MK 16 MOD sed to generate properties of Disposal (EOD ompression sick ministic model of DCS of 2.3% and incidence of evelopment and extables are record and within certa and minutes. A part of Allability of All	cal and per interval 227 times rate the I ression tal an-tested This repe s with re ecompre diving i released ABSTRAC	robabil als of opes, with LEM me bles in 1 299 ti ort sum comme ssion M in the 40 in a su T SECUI	istic decomponential	ress leval sed of was pivin cases world guil 1 H rang	sion technology nce to the fleet case and one then analytically ng Manual format s of DCS, yielding a k completed at idance for their teO ₂ dives to depths ge with surface or reports.				
	22a. NAME OF RESPON NEDU Librarian	ISIBLE INDIVIDU	JAL			Code)		22c. O	FFICE SYMBO	L	

CONTENTS

	Page No.
Introduction	1
Methodological Overview	1
Phase I: LEM Model Development	1
LEM Model Re-optimization and Table Calculation	3
Phase II: Table Validation	3
Other Issues	5
Conclusions and Recommendations	6
References	8
Appendix A: MK 16 MOD 1 HeO ₂ Single and Repetitive Dive Tables	A1
Table 1. No-Decompression Limits and Repetitive Group Designators for MK 16 MOD 1 HeO₂ No-Decompression Dives	А3
Table 2. Schedules and Repetitive Group Designators for MK 16 MOD 1 HeO2 Decompression Dives	A4
Table 3. MK 16 MOD 1 HeO ₂ Surface Interval Credit and Residual Gas Time Table	A20
Repetitive Dive Worksheet for MK 16 MOD 1 HeO ₂ DIVES	A21
Appendix B: Test Dives Completed	В1

INTRODUCTION

The Navy Experimental Diving Unit (NEDU) was tasked by PMS-EOD to develop repetitive helium-oxygen (HeO₂) decompression tables for use with the MK 16 MOD 1 Underwater Breathing Apparatus (UBA). Statistical and probabilistic decompression technology (LEM model) was used to generate profiles with depths. bottom times. and surface intervals of operational relevance to the fleet Explosive Ordnance Disposal (EOD) diver. These profiles were then man-tested 227 times, with one diagnosed case and one possible case of decompression sickness (DCS). These data were used to recalibrate the LEM model, which was then analytically mapped onto a deterministic model to allow the generation of repetitive decompression tables in U.S. Navy Diving Manual format with a predicted risk of DCS of 2.3%. Selected profiles from these tables were man-tested 299 times with 6 cases of DCS, yielding a 2.0% overall observed incidence of DCS in conformance with the intended risk. This report summarizes the work completed at NEDU during the development and testing of these tables, and forwards the tables with recommendations and guidance for their operational use. The tables are recommended for single no-decompression and decompression MK 16 MOD 1 HeO₂ dives to depths from 40 to 300 feet sea water (fsw), and within certain limits, for repetitive MK 16 MOD 1 HeO2 diving in the 40 to 200 fsw range with surface intervals as short as 30 minutes. A more detailed description of this work will be released in a subsequent report or reports.

METHODOLOGICAL OVERVIEW

NEDU developed 1.3 ATA PO₂-in-N₂ decompression tables using a modified version of the deterministic model that had been used to produce the 0.7 ATA PO₂-in-N₂ tables currently in the U.S. Navy Diving Manual. A similar modification of the model used to produce the current 0.7 ATA PO₂-in-He tables was used to compute 1.3 ATA PO₂-in-He tables, but schedules in these tables were found to have unacceptably high risks of DCS under the LEM model. Although the LEM model can be used to directly generate tables of pre-specified DCS risk, the parts of such tables that support repetitive diving are extremely difficult to cast in the U.S. Navy Diving Manual format. Therefore, the project was divided into two phases. In Phase I, data on Heliox dives were collected and integrated into the LEM model. The model was then mapped onto a deterministic model that was used to generate repetitive decompression tables in appropriate format. Thirty-seven different single and repetitive dive profiles produced with these tables were then man-tested 299 times in Phase II of the study.

PHASE I: LEM MODEL DEVELOPMENT

Data were collected in Phase I to optimize the LEM model. This was done in a variety of ways. Data from the Defense and Civil Institute of Environmental Medicine (DCIEM, Downsview, Ontario CA) for single 1.3 ATA PO₂-in-He dives and repetitive 1.3 ATA PO₂-in-He dives preceded by three and six hour surface intervals, as well as data from

the Defence Evaluation Research Agency (DERA, Alverstoke U.K.) for single 1.3 ATA PO_2 -in-He dives, were obtained and integrated into the LEM model. Unfortunately, there were still no data available for 1.3 ATA PO_2 -in-He repetitive dives preceded by surface intervals less than three hours. Therefore, a series of repetitive dive profiles with 30-minute surface intervals was computed using the LEM model and man-tested to obtain data to address this deficiency.

Dives Completed

A total of 227 man-exposures were completed in the NEDU Ocean Simulation Facility (OSF) on 45 different dive profiles. A description of the profiles, with the number of exposures and DCS outcome for each profile, is given in Appendix B.

The first 42 profiles were repetitive dive profiles consisting of two or three dives separated by 30-minute surface intervals. The dives were to depths of 80, 120, 160, or 200 fsw, with bottom times ranging from 15 to 130 minutes. The last three profiles in this program phase were single and repetitive dives to 80 fsw. These dives were completed to obtain a "quick look" at a potentially longer acceptable no-stop limit for MK 16 MOD 1 HeO₂ dives to this depth than prescribed by the LEM model at 2.3% DCS risk. In all profiles, the divers were fully water-immersed and breathed the MK 16 MOD 1 UBA, with 88/12 (%He/%O₂) diluent gas, throughout each dive. All divers performed 50-watt cycle ergometry in approximate 5-minute work/5-minute rest cycles while they were on the bottom. Divers breathed air during all but the last 3 min of any surface interval, when they breathed 0.7 ATA O₂ in He from the MK 16 MOD 1.

Results

One diver who participated in a dive profile consisting of a first dive to 120 fsw for 20 minutes, a 30 minute surface interval, then a second dive to 160 fsw for 20 minutes, reported feeling "dizzy" and exhibited other neurological signs of difficulty with balance when examined within hours of surfacing from the second dive. The case was diagnosed as decompression sickness, but whether the injury involved the vestibular system or the central nervous system could not be determined, even after repeated physical examination, ENT evaluation, and brain imaging. The diver was treated with three U.S. Navy Treatment Table (TT) 6s, and then two TT 9s with full recovery.

One diver experienced transient nausea and vomiting on the bottom in a single dive to 200 fsw for 15 minutes. The remainder of his planned dive profile was aborted. He developed a mild rash on his abdomen several hours after surfacing from the dive. It was not clear that he had DCS, but his case was managed conservatively with administration of a TT 6, during which he experienced rapid recovery.

One diver experienced transient nausea while on the bottom during a single 80 fsw dive for 130 minutes, which resolved spontaneously before surfacing.

LEM MODEL RE-OPTIMIZATION AND TABLE CALCULATION

The dives performed in Phase I of the study provided the only available information about repetitive helium-oxygen diving with surface intervals less than three hours. This information was integrated into the LEM model to improve its accuracy in this operationally critical area. While the LEM model could then be used with confidence to directly compute schedules for repetitive dives, it could not be readily used to produce repetitive dive tables in the format that such tables currently have in the U.S. Navy Diving Manual. In order to produce such tables for MK 16 MOD 1 HeO2 diving, a method was developed to map the probabilistic LEM model onto a deterministic model similar to that previously used⁴ to produce the MK 16 MOD 1 N₂-O₂ tables. The method parameterizes the deterministic model to compute schedules at any pre-specified risk of DCS. The resultant model is then readily used to produce tables for repetitive diving in the desired U.S. Navy Diving Manual format. This method was used to produce the parts of new MK 16 MOD 1 HeO2 decompression tables in which repetitive diving is supported; i.e., schedules for dives to depths of 200 fsw or less. The remaining parts of the new tables in which repetitive diving is not supported; i.e., schedules for dives to depths of 210 fsw or greater; were computed using LEM directly. All schedules were computed using an acceptable estimated DCS risk of 2.3%. The complete set of final tables is given in Appendix A.

PHASE II: TABLE VALIDATION

Selected profiles from the new MK 16 MOD 1 HeO₂ decompression tables were mantested in Phase II of the study. Repetitive dives were dived as computed directly by the algorithm used to generate Table 2 of Appendix A; Schedules and Repetitive Group Designators for MK 16 MOD 1 HeO₂ Decompression Dives. Decompressions for these dives were consequently less conservative than those prescribed through use of Table 3 of Appendix A; the MK 16 MOD 1 HeO₂ Surface Interval Credit and Residual Gas Time Table.

Dives Completed

A total of 299 dives on 37 different profiles were completed during this phase. A description of the profiles, with the number of exposures and DCS outcome for each profile, is given in Appendix B.

Each dive profile consisted of one to three dives. The surface intervals in the repetitive dive profiles were either 30 or 180 minutes in duration. The dives were to depths from 100 to 300 fsw with bottom times ranging from 15 to 60 minutes. Total bottom time for any given profile was less than 140 minutes, and the total in-water times for the profiles, including decompression time, but not surface interval time, ranged from approximately 30 to 230 minutes. All divers were fully water-immersed and breathed the MK 16 MOD 1 UBA, with 88/12 (%He/%O₂) diluent gas, throughout each dive. All divers performed 50-watt cycle ergometry in approximate 5-minute work/5-minute rest cycles

while they were on the bottom. Divers breathed air during all but the last 3 min of any surface interval, when they breathed 0.7 ATA O₂ in He from the MK 16 MOD 1.

Because of the concern about oxygen toxicity due to the PO_2 overshoot on descent, a PO_2 breathe-down procedure was adopted from Royal Navy procedures for diving with the Royal Navy MK 16 MOD 1 analog, the Clearance Divers Breathing Apparatus (CDBA). This procedure, which entails repeated inhalation from the rig followed by exhalation into the surrounding air via the Emergency Breathing System (EBS) exhaust until the diver hears his diluent valve firing, was used on dives to depths of 240 fsw and greater. The procedure is performed as described in item 10 of the Conclusions and Recommendations section of this report.

Results

Six cases of DCS were diagnosed in 299 exposures, giving an overall observed DCS incidence of 2.01% (0.74 - 4.32%; 95% binomial confidence limits). This incidence conforms to the 2.3% target DCS risk used in the decompression algorithm to compute the dive profiles.

The six DCS cases had presentations and outcomes as outlined following:

- One diver had shoulder pain and some upper extremity numbness upon surfacing from a dive to 220 fsw for 15 minutes. He was diagnosed with Type II DCS and treated with a TT 6 with complete relief of symptoms.
- Two divers had transient paresthesias, excessive fatigue and decreased mental alertness after completing a three-dive profile in which the deepest dive was to 180 fsw. An additional diver complained simply of excessive fatigue and decreased mental alertness after performing the same profile. Two other divers also complained of excessive fatigue and decreased mental alertness; one after completing a single dive to 200 fsw for 15 minutes, and the other after completing a single dive to 180 fsw for 20 minutes. The excessive fatigue and decreased mental alertness in all of these cases were subtle, subjective complaints that were not accompanied by any objective findings on physical examination. All five of these divers were diagnosed as having Type II DCS, treated with a TT 6, and claimed complete relief of symptoms within minutes of starting treatment.

Other clinically significant dive outcomes occurred as follows:

- One diver felt acutely fatigued and then suffered a loss of consciousness within 30 minutes of surfacing from a single dive to 140 fsw for 30 minutes. He was diagnosed as having AGE, and was treated with a TT 6A and two subsequent TT 9s with complete relief of symptoms.
- One diver experienced an episode of near loss of consciousness while on the bottom in a single dive to 180 fsw for 25 minutes. It is not clear what precipitated

this episode, but the diver's rapid recovery upon ascent suggests that it was a breathing gas problem.

- Finally, two additional divers had post-dive pain that was treated with a TT 6 with minimal relief, motivating final diagnosis of musculo-skeletal injury in each case.

OTHER ISSUES

Diver inspired PO₂ was monitored throughout each dive using mass spectrometric and paramagnetic techniques in order to track diver O₂ exposure and rig performance.

Oxygen Toxicity

The "breathe-down" procedure described in item 10 of the Conclusions and Recommendations section was performed immediately before descent on dives to depths of 240 fsw and deeper in order to mitigate the PO₂ increases that occur during descent on such dives. This breathe-down procedure should only be performed on the surface. No unambiguous cases of O₂ toxicity occurred during either phase of the present study.

UBA Performance

The oxygen sensors in the MK 16 MOD 1 UBA were found to be inaccurate after prolonged use at depth, even if they had been properly calibrated and appeared accurate at one atmosphere. These inaccuracies may explain some or all of the PO₂ fluctuations that were occasionally observed beyond those attributable to PO₂ overshoots accompanying descent. PMS-EOD was informed of the problem and subsequently provided new and improved sensors (Teledyne R10 DN) for testing. Twenty-two dive profiles, 14 of which consisted of repetitive dives, were completed without incident during the last week of the study using these new sensors.

CONCLUSIONS AND RECOMMENDATIONS

- 1. A complete set of new 1.3 ATA PO₂-in-He decompression tables for MK 16 MOD 1 diving has been developed and tested. These tables, which are given in attached Appendix A, support repetitive diving as per U.S. Navy EOD requirements at an approximate 2.3% risk of DCS. No clear-cut cases of O₂ toxicity were observed during testing.
- 2. We recommend approval of the attached tables for use with the MK 16 MOD 1 UBA using 88/12 (%He/%O₂) as the diluent gas.
- 3. Recommended usage is limited to:
 - Single no-decompression and decompression dives to depths of 40 to 300 fsw;
 - No-decompression dives to depths of 40 to 200 fsw followed by up to two repetitive dives preceded by surface intervals no shorter than 30 minutes;
 - Decompression dives to depths of 40 to 200 fsw followed by one repetitive dive after a surface interval no shorter than 30 minutes.
- 4. If the surface interval preceding a repetitive dive is shorter than 30 minutes, the adjusted bottom time of the repetitive dive should be obtained by adding the bottom time of the previous dive to that of the repetitive dive.
- 5. Reports of fatigue and decreased mental alertness after otherwise safe completion of helium dives are not uncommon in the literature. Divers should be aware that subtle mental status changes may occur after diving profiles prescribed by the present tables, and that though these changes may affect their ability to carry out assigned duties, the changes are amenable to treatment by standard U.S. Navy DCS treatment tables.
- 6. An unacceptable incidence of DCS during operational use of any particular dive profile prescribed by these tables will require further study.
- 7. Selected profiles from these tables have been tested on dives in which the descent rate was less than 60 fpm and the ascent rate was 30 fpm. We recommend that divers using these tables descend at rates no faster than 60 fpm and ascend at 30 fpm.
- 8. The MK 16 MOD 1 UBA primary display should indicate a transition from 0.7 to 1.3 ATA at 33 fsw. The diver should verify this transition by monitoring his secondary display. If there is no indication of this transition with continued descent past 40 fsw, the dive should be aborted.

- Under normal conditions, the diver should not add oxygen on descent or at any time while on the bottom due to the increased risk of oxygen toxicity that such practice engenders.
- 10. The diver should perform the breathe-down procedure immediately before descent on dives to depths of 240 fsw or deeper. This procedure must be performed **only at surface**, because its performance at depth can dangerously deplete the diluent gas supply. The procedure is performed as follows:
 - Diver inhales from the rig and holds breath;
 - While in end-inspiratory breath-hold, diver switches barrel valve on MK 24 Full Face Mask (FFM) or T-bit to closed position;
 - Diver exhales into surrounding water or air and holds his or her breath;
 - Diver switches barrel valve on FFM or T-bit back to UBA gas;
 - Repeat three times or until diluent valve is heard to fire.
- 11. The MK 16 MOD 1 UBA did not always maintain a mean PO₂ of 1.3 ATA. This was due, at least in part, to problems with the oxygen sensor that have been solved to unknown extent by introduction of new sensors for the rig. Information bearing on improvements in MK 16 MOD 1 UBA performance afforded by these new sensors is forthcoming from a current NEDU program.
- 12. New analytic technology has been developed to map a probabilistic model into a deterministic algorithm that readily produces decompression tables in U.S. Navy Diving Manual format. This analytic technology can potentially be used to generate different tables for optimizing the balance between DCS risks and other hazards in different EOD operational scenarios. The algorithm produced by this technology is operable in currently available diver-worn dive computers.

REFERENCES

- 1. Butler, F.K., Thalmann, E.D. *Purging Procedures for the Draeger LAR V Underwater Breathing Apparatus*. NEDU Report 5-84, Navy Experimental Diving Unit, Panama City, FL. 1984.
- 2. Butler, F.K., Thalmann, E.D. "Central Nervous System Oxygen Toxicity in Closed-Circuit SCUBA Divers II." *Undersea Biomed. Res.* 13(2): 193-223. 1986.
- 3. Butler, F.K. Central Nervous System Oxygen Toxicity in Closed-Circuit SCUBA Divers III. NEDU Report 5-86, Navy Experimental Diving Unit, Panama City, FL. March 1986.
- 4. Johnson, T.M., Gerth, W.A., Southerland, D.G. 1.3 ATA PO₂ N₂-O₂ Decompression Table Validation. NEDU TR 9-00, Navy Experimental Diving Unit, Panama City, FL. September 2000.
- 5. Naval Sea Systems Command, *U. S. Navy Diving Manual*, NAVSEA SS521-AG-PRO-010, Vol. #5, Rev. 4, Table 18-5,18-4. 1999.

APPENDIX A

MK 16 MOD 1 HeO2 SINGLE AND REPETITIVE DIVE TABLES

Tables 1 to 3 are used to plan single and repetitive dives in precisely the same manner as the Standard Air Tables in the current U.S. Navy Diving Manual. The tables are designed for use with the MK 16 MOD 1 UBA with a PO_2 set point of 1.3 ATA and an 88/12 He/ O_2 diluent. All bottom times include the descent time at the designated rate of 60 fsw/min.

Table 1 gives the no-decompression limits and repetitive group designators for no-decompression dives to depths up to 200 fsw. To find the repetitive group designator for a dive, locate the row for the maximum depth of the dive in the left-most column. If there is no entry for the exact dive depth, use the row for the next deeper depth. Then move to the right in the row to the column with the appropriate bottom time (descent time + time on bottom). If the row does not have an entry equal to the exact bottom time, use the column with the next larger time. The repetitive group letter designator for the dive is obtained from the top entry in the column.

Table 2 gives the decompression schedules and surfacing repetitive group designators for decompression dives. Schedules are grouped with solid line separators according to maximum dive depth. A limit line also appears within each group. Only schedules above the limit line in each dive depth group should be used in normal operations. Note that a surfacing repetitive group designator is not given for one or more dives above the limit line in some dive depth groups, indicating that a repetitive dive after such dives is not supported. Schedules below the limit line in each group should be dived only with approval of the on-site commander.

Table 2 is used by locating the row for the intended maximum depth and bottom time for a dive. If exact table entries are not found, use the next deeper depth and the next longer bottom time. Required stops during the decompression are then listed in the columns to the right, with ascent time to first stop, total ascent time (ascent time + time at stops), and the surfacing repetitive group designator for the dive. Stop times are in minutes and do not include ascent times to the stops.

Table 3 gives surface interval credits (top) and residual gas times (bottom) for use in planning repetitive MK 16 MOD 1 HeO_2 dives after designated times at surface. All times in the body of the top Surface Interval Credit table show the elapsed time in ranges of hours:minutes after surfacing. All elapsed times were computed assuming air breathing at surface, but any N_2 - O_2 mix with PO_2 in excess of 0.21 ATA may be breathed.

Table 3 is used by locating the row in the Surface Interval Credit table for the surfacing repetitive group designator from the last completed dive, as obtained from Table 1 if the dive was a no-decompression dive, or from Table 2 if the dive was a decompression dive. Then the column to the right along this row with entry equal to or just greater than the actual or planned time at surface is found. The end-interval, or final, repetitive group

designator is read from the bottom of this column. A column directly below this column in the Residual Gas Time Table gives residual gas times for this final repetitive group for MK 16 MOD 1 HeO₂ repetitive dives. In order to determine the residual gas time for such a dive, locate the row in the latter table for the maximum depth of the planned repetitive dive. The entry along this row in the column for the end-interval, or final, repetitive group designator is the residual gas time in minutes. This residual gas time is added to the bottom time for the planned repetitive dive to obtain an equivalent single dive bottom time. The equivalent single dive bottom time and the planned maximum dive depth are then used to locate the appropriate decompression schedule and surfacing repetitive group designator for the repetitive dive in Table 1 or 2.

A Repetitive Dive Worksheet for MK 16 MOD 1 HeO₂ dives is provided to assist with these calculations.

Limit Lines

Table 2 contains limit lines in the each of the dive depth groups. Schedules below the limit line in each group should not be used in normal operations. Limit lines are placed according the same rule to limit O₂ exposure used to place limit lines in the constant 1.3 ATA PO₂-in-N₂ tables.⁴

In order to limit O2 toxicity risks during MK 25 MOD 0, MOD 1 and MOD 2 (Draeger LAR V UBA) diving, the current U.S. Navy Diving Manual limits the duration of such dives to 240 min at 25 fsw,⁵ in accord with studies completed by Butler and Thalmann.^{2,3} This limit is shortened if the dive includes short excursions to deeper depths. Diver inspired PO2 while breathing the MK 25 varies with the purge procedure used prior to beginning the dive. 1 Using the recommended Single Fill/Empty Cycle (SFE) purge procedure, an average oxygen fraction of 74% is attained, which changes little throughout the course of the ensuing dive. This fraction corresponds to an inspired PO2 of 1.3 ATA at 25 fsw. Therefore, in order to remain consistent with the sustained O2 exposure limits for the MK 25 UBA, limit lines in the present MK 16 MOD 1 HeO₂ decompression table (Table 3) are placed to allow total dive times no longer than 240 min. Note that in considering bottom times up to 720 min in Table 1, the table gives repetitive dive groups for no-stop dives that are prohibited under this recommendation. (It should also be noted that the U.S. Navy Diving Manual imposes no limit for breathing 1.3 ATA PO₂ in surface supplied HeO₂ diving operations. However, this lack of constraint is not applicable to MK 16 dives because, unlike MK 16 dives, surface supplied HeO2 dives are undertaken with full helmet and communications with the surface.)

Table 1. No-Decompression Limits and Repetitive Group Designators for MK 16 MOD 1 HeO₂ No-Decompression Dives

1.30 ATA FIXED PO2 IN HELIUM

RATES: DESCENT 60 FPM; ASCENT 30 FPM

NO-DECOMPRESSION DIVES

REPETITIVE GROUP DESIGNATOR BOTTOM TIME (MIN)

DEPTH (FSW)	NO-STOP LIMIT	A	В	С	D	E	F	G	Н	I	J	K	L	М	N	0	Z
20	720	129	269	720													
30	332	27	43	60	78	100	124	152	185	227	281	332					
40	720	122	246	720													
50	325	27	43	59	78	99	123	150	183	223	276	325					
60	134	15	23	32	41	51	61	71	83	95	108	123	134				
70	86	11	16	22	28	34	41	47	54	61	69	77	85	86			
80	63	8	12	17	21	26	30	35	40	45	51	56	62	63			
90	44	6	10	13	17	20	24	28	32	36	40	44					
100	31	5	8	11	14	17	20	23	26	30	31						
110	24	4	7	9	12	14	17	20	22	24							
120	20	4	6	8	10	13	15	17	19	20							
130	17	3	5	7	9	11	13	15	17								
140	15	3	4	6	8	10	12	13	15								
150	13	3	4	6	7	9	10	12	13								
160	12		3	5	6	8	9		12								
170	11		3	4	6	7	9		11								
180	10		3	4	5	6	8	9	10								
190	9		3	4	5	6	7	8	9								
200	8			3	4	5	7	8									

Table 2. Schedules and Repetitive Group Designators for MK 16 MOD 1 HeO₂ Decompression Dives

1.3	O ATA	A FIXE	D PO2 I	N HEI	JUM				RA	TES:	DES	CENT	60	FPM;	ASC	ENT 30	FPM
	MIT	TM TO FIRST STOP (M:S)	150 14			STO	P TI	MES	STOPS (MIN 70)			30	20	10	TOTAL ASCNT TIME (M:S)	
40	238	1:20												0	0	1:20	В
limit 1	ine -					 											
40	720	1:20												0	0	1:20	С
50	238	1:40												0	0	1:40	J
limit 1	ine -					 											
50	325	1:40												0	0	1:40	K
50	330	1:00												1	0	2:40	K
50	340	1:00												2	0	3:40	K
50	350	1:00												3	0	4:40	K
50	360	1:00												4	0	5:40	K
60	134	2:00												0	0	2:00	L
60	140	1:20												3	0	5:00	L
60	150	1:20												8	0	10:00	L
60	160	1:20												12	0	14:00	L
60	170	1:20												16	0	18:00	L
60	180	1:20												20	0	22:00	K
60	190	1:20												24	0	26:00	K
60	200	1:20												27	0	29:00	K
limit 1:	ine -					 											
60	210	1:20												31	0	33:00	K
60	220	1:20												34	0	36:00	K
60	230	1:20												37	0	39:00	J
60	240	1:20												39	0	41:00	J
60	250	1:20												42	0	44:00	J
60	260	1:20												45	0	47:00	J
60	270	1:20												47	0	49:00	J
60	280	1:20												49	0	51:00	J

	MIT	TM TO FIRST STOP (M:S)	150	140	130	120		P TI	MES	(MIN))		40	30	20	10	TOTAL ASCNT TIME (M:S)	RPT GRP DES
60	290	1:20													51	0	53:00	J
60	300	1:20													53	0	55:00	J
60	310	1:20													55	0	57:00	J
60	320	1:20													57	0	59:00	I
60	330	1:20													59	0	61:00	I
60	340	1:20													61	0	63:00	I
60	350	1:20													64	0	66:00	I
60	360	1:20													66	0	68:00	I
70	86	2:20													0	0	2:20	M
70	90	1:40													3	0	5:20	M
70	95	1:40													7	0	9:20	L
70	100	1:40													12	0	14:20	L
70	110	1:40													19	0	21:20	L
70	120	1:40													26	0	28:20	L
70	130	1:40													33	0	35:20	K
70	140	1:40													39	0	41:20	K
70	150	1:40													45	0	47:20	K
70	160	1:40													50	0	52:20	K
70	170	1:40													55	0	57:20	J
limit l	ine							 				- -						
70	180	1:40													60	0	62:20	J
70	190	1:40													64	0	66:20	J
70	200	1:40													68	0	70:20	J
70	210	1:40													72	0	74:20	J
70	220	1:40													76	0	78:20	I
							-	 	<u>-</u>									
80	63	2:40													0	0	2:40	М
80	65	2:00													2	0	4:40	М
80	70	2:00													8	0	10:40	L
80	75	2:00													13	0	15:40	L
80	80	2:00													19	0	21:40	L
80	85	2:00													24	0	26:40	L

	TIM	TM TO FIRST STOP							P TI	MES	(MIN))		.0		1		TOTAL ASCNT TIME	RPT GRP DES
		(M:S)	150	140	130	120	110	100	90	80	70	60	50	40	30		10	(M:S)	
80	90	2:00														29		31:40	L
80	95	2:00														34	0	36:40	L
80	100	2:00														39	0	41:40	K
80	110	2:00														47	0	49:40	K
80	120	2:00														56	0	58:40	K
80	130	2:00														63	0	65:40	K
80	140	2:00														70	0	72:40	J
80	150	2:00														76	0	78:40	J
limit l	ine -																		
80	160	2:00														82	0	84:40	J
80	170	2:00														88	0	90:40	J
80	180	2:00														93	0	95:40	I
80	190	2:00														98	0	100:40	I
90	44	3:00														0	0	3:00	K
90	45	2:20														1	0	4:00	K
90	50	2:20														2	0	5:00	L
90	55	2:20														7	0	10:00	M
90	60	2:20														15	0	18:00	L
90	65	2:20														22	0	25:00	L
90	70	2:20														29	0	32:00	L
90	75	2:20														35	0	38:00	L
90	80	2:20														41	0	44:00	L
90	85	2:20														47	0	50:00	K
90	90	2:20														53	0	56:00	K
90	95	2:20														58	0	61:00	K
90	100	2:20														63	0	66:00	K
90	110	2:20														73	0	76:00	J
90	120	2:20														82	0	85:00	J
90	130	2:20														90	0	93:00	J
limit 1	ine -																		

	TIM	TM TO FIRST STOP (M:S)	150	140	130	120		P TI	MES)	W) 50	40	30	20	10	TOTAL ASCNT TIME (M:S)	RPT GRP DES
90	140	2:20												97	0	100:00	J
90	150	2:20												104	0	107:00	J
90	160	2:20												112	0	115:00	I
100	31	3:20												0	0	3:20	J
100	35	2:40												2	0	5:20	K
100	40	2:40												4	0	7:20	L
100	45	2:40												6	0	9:20	M
100	50	2:40												16	0	19:20	L
100	55	2:40												24	0	27:20	L
100	60	2:40												33	0	36:20	L
100	65	2:40												40	0	43:20	L
100	70	2:40												48	0	51:20	K
100	75	2:40												55	0	58:20	K
100	80	2:40												62	0	65:20	K
100	85	2:40												68	0	71:20	K
100	90	2:40												74	0	77:20	K
100	95	2:40												80	0	83:20	J
100	100	2:40												85	0	88:20	J
100	110	2:40												96	0	99:20	J
100	120	2:40												105	0	108:20	J
limit 1	ine						 			 							
100	130	2:20											1	114	0	118:36	I
100	140	2:20											1	123	0	127:36	I
110	24	3:40												0	0	3:40	I
110	25	3:00												1	0	4:40	I
110	30	3:00												4	0	7:40	J
110	35	3:00												7	0	10:40	L
110	40	3:00												10	0	13:40	M
110	45	3:00												21	0	24:40	L
110	50	3:00												31	0	34:40	L
110	55	3:00												40	0	43:40	L

	TIM	TM TO FIRST STOP (M:S)	150	140	130	120		P TI	MES	(MIN))	40	30	20	10	TOTAL ASCNT TIME (M:S)	RPT GRP DES
110	60	2:40											1	49	0	53:40	K
110	65	2:40											2	56	0	61:40	ĸ
110	70	2:40											3	63	0	69:40	K
110	75	2:40											4	70	0	77:40	K
110	80	2:40											5	77	0	85:40	J
110	85	2:40											5	83	0	91:40	J
110	90	2:40											6	89	0	98:40	J
110	95	2:40											6	95	0	104:40	J
110	100	2:40											6	101	0	110:40	J
110	110	2:40											7	111	0	121:40	J
limit 1	ine -						 					 					
110	120	2:40											7	123	0	133:40	
110	130	2:40											7	136	0	146:56	
110	140	2:20										1	7	148	0	159:56	
120	20	4:00												0	0	4:00	I
120	25	3:20												4	0	8:00	J
120	30	3:20												8	0	12:00	K
120	35	3:20												12	0	16:00	М
120	40	3:20												23	0	27:00	L
120	45	3:00											2	33	0	39:00	L
120	50	3:00											4	43	0	51:00	L
120	55	3:00											6	51	0	61:00	K
120	60	3:00											7	60	0	71:00	K
120	65	2:40										1	7		0	80:00	K
120	70	2:40										2	7		0	89:00	K
120	75	2:40										3	7			97:00	J
120	80	2:40										4	7			105:00	J
120	85	2:40										5	7	97	0	113:00	J
120												_	_		_		_
	90	2:40										5		103		119:00	J
120 120		2:40										5 6 6	7	103 109 116	0	119:00 126:00 133:00	J J

	MIT	TM TO FIRST STOP (M:S)	150	140	130	120		P TI	MES	(MIN))		40	30	20	10	TOTAL ASCNT TIME (M:S)	RPT GRP DES
120	110	2:40											6	7	130	0	147:00	
120	120	2:40											7	7	145	0	163:00	
130	17	4:20													0	0	4:20	Н
130	20	3:40							•						3	0	7:20	I
130	25	3:40													8	0	12:20	K
130	30	3:40													13	0	17:20	L
130	35	3:20												2	21	0	27:20	L
130	40	3:20												5	32	0	41:20	L
130	45	3:00											1	7	42	0	54:20	L
130	50	3:00											3	7	53	0	67:20	K
130	55	3:00											5	7	62	0	78:20	K
130	60	3:00											6	7	71	0	88:20	K
130	65	2:40										1	7	7	80	0	99:20	J
130	70	2:40										2	7	7	88	0	108:20	J
130	75	2:40										3	7	7	96	0	117:20	J
130	80	2:40										3	7	7	104	0	125:20	J
130	85	2:40										4	7	7	111	0	133:20	J
130	90	2:40										5	7	7	118	0	141:20	
limit l	ine					-	 											
130	95	2:40	ı									5	7	7	126	0	149:20	
130	100	2:40	ı									5	8	7	135	0	159:20	
130	110	2:40	ı									6	7	7	151	0	175:20	
130	120	2:40	}									7	7	18	158	0	194:20	
		_					 											
140	15	4:40)												0	0	4:40	H
140	20	4:00)												7	0	11:40	J
140	25	4:00)												12	0	16:40	K
140	30	3:40)											2	16	0	22:40	M
140	35	3:40)											7	28	0	39:40	L
140	40	3:20)										3	7	41	0	55:40	L
140	45	3:20)										6	7	52	0	69:40	K
140	50	3:00)									1	7	7	63	0	82:40	K

	MIT	TM TO FIRST STOP (M:S)	150	140	120	120			P TI	MES	(MIN))		40	20	20	1.0	TOTAL ASCNT TIME	RPT GRP DES
1.40		,	150	140	130	120	110	100	90	80	70	60					10	(M:S)	**
140		3:00											3	7	7			95:40	K
140	60	3:00											5	7	7			106:40	J
140	65	3:00											7	7		92		117:40	J
140	70	2:40										1	7	7	7	101	0	127:40	J
140	75	2:40										2	7	7	7	109	0	136:40	J
140	80	2:40										3	7	7	7	117	0	145:40	
limit 1	ine -																		
140	85	2:40										3	8	7	7	126	0	155:40	
140	90	2:40										4	7	7	7	137	0	166:40	
140	95	2:40										5	7	7	7	146	0	176:40	
140	100	2:40										5	7	7	8	154	0	185:40	
																			
150	13	5:00														0	0	5:00	Н
150	15	4:20														3	0	8:00	Н
150	20	4:20														10	0	15:00	J
150	25	4:00													2	14	0	21:00	L
150	30	4:00													7	23	0	35:00	L
150	35	3:40												4	7	37	0	53:00	L
150	40	3:20											1	7	7	50	0	70:00	K
150	45	3:20											4	7	7	63	0	86:00	K
150	50	3:20											7	7	7	74	0	100:00	K
150	55	3:00										2	7	7	7	85	0	113:00	J
150	60	3:00										4	7	7	7	95	0	125:00	J
150	65	3:00										6	7	7	7	104	0	136:16	J
150	70	3:00										7	7	7	7	114	0	147:00	I
150	75	2:40									1	7	7	7	7	124	0	158:16	
limit l	ine -	-																	
150	80	2:40									2	7	7	7	7	135	0	170:16	
150	85	2:40									3	7	7	7	7	146	0	182:16	
150	90	2:40									4	7	7	7	8	155	0	193:00	

DEPTH (FSW)	TIM	TM TO FIRST STOP (M:S)	150	140	130	120			P TI	MES	(MIN))		40	30	20	10	TOTAL ASCNT TIME (M:S)	RPT GRP DES
160	12															0	0	5:20	Н
160	15	4:40													,	5	0	10:20	I
160	20	4:40														13	0	18:20	K
160	25	4:20													6	15	0	26:20	M
160	30	4:00												4	7	31	0	47:20	L
160	35	3:40											2	7	7	46	0	67:20	L
160	40	3:40											6	7	7	60	0	85:20	K
160	45	3:20										2	8	7	7	73	0	102:20	J
160	50	3:20										5	7	7	8	84	0	116:20	J
160	55	3:00									1	7	7	7	7	96	0	130:20	J
160	60	3:00									3	7	7	7	7	107	0	143:20	J
160	65	3:00									5	7	7	7	7	117	0	155:36	
160	70	3:00									6	7	7	7	7	129	0	168:36	
limit l	ine																		
160	75	3:00									7	7	8	7	7	141	0	182:36	
160	80	2:40								1	7	8	7	7	7	153	0	195:20	
160	85	2:40								2	7	7	7	7	16	157	0	208:36	
160	90	2:40								3	7	7	7	7	25	161	0	222:36	
170	11	5:40					-									0	0	5:40	н
170	15	5:00														8	0	13:40	I
170	20	4:40													2	15	0	22:40	K
170	25	4:20												2	7	22	0	36:40	L
170	30	4:00						•					1	8	7	38	0	59:40	L
170	35	4:00											7	7	7	55	0	81:40	K
170	40	3:40										4	7	7	7	70	0	100:40	K
170	45	3:20									1	7	7	7	7	83	0	117:40	J
170	50	3:20									4	7	7	7	7	96	0	133:40	J
170	55	3:20									7	7	7	7	7	108	0	148:40	J
170	60	3:00								2	7	7	7	7	7	119	0	161:40	
limit 1	ine																		
170	65	3:00								4	7	7	7	7	7	134	0	178:56	
170	70	3:00								5	7	7	7	7	8	146	0	192:40	

DEPTH (FSW)	TIM	TM TO FIRST STOP					DE	COMPR STO	ESSI P TI				W)					TOTAL ASCNT TIME	RPT GRP DES
	, ,	(M:S)	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	(M:S)	
170	75	3:00								7	7	7	7	7	11	156	0	207:56	
170	80	2:40							1	7	7	7	7	7	22	160	0	223:40	
180	10	6:00														0	0	6:00	н
180	15															11	0	17:00	J
180	20	5:00													6		0	26:00	L
														_					
180	25	4:40												6	7	29	0	48:00	L
180	30	4:20											6	7	7	47	0	73:00	K
180	35	4:00										4	7	7	7	64	0	95:00	K
180	40	3:40									2	7	7	7	7	79	0	115:00	J
180	45	3:40									6	7	7	7	7	94	0	134:00	J
180	50	3:20								2	7	8	7	7	7	107	0	151:00	J
180	55	3:20								5	7	7	7	7	8	119	0	166:00	
limit li	ine -																		
180	60	3:00							1	7	7	7	7	7	7	136	0	185:00	
180	65	3:00							3	7	7	7	7	7	7	151	0	202:16	
180	70	3:00							5	7	7	7	7	7	16	158	0	220:00	

	TIM	TM TO FIRST STOP							ST	RESSI OP TI	MES	(MIN)		W)						TOTAL ASCNT TIME	RPT GRP DES
		(M:S)	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	(M:S)	
190	9	6:20																0	0	6:20	H
190	10	5:40																2	0	8:20	H
190	15	5:40																14	0	20:20	J
190	20	4:40													1	1	7	16	0	31:20	М
190	25	3:20									1	0	0	0	2	7	7	37	0	60:20	L
190	30	3:00								1	0	0	1	1	7	7	7	56	0	86:20	K
190	35	2:40							1	0	0	1	0	7	7	7	7	74	0	110:20	J
190	40	2:20						1	0	0	0	1	5	7	7	8	7	90	0	132:20	J
190	45	2:20						1	0	0	0	4	7	7	7	7	7	105	0	151:20	J
190	50	2:20						1	0	0	0	7	7	7	7	7	7	119	0	168:20	I
limit l	ine ·																				
190	55	2:20						1	0	0	3	7	7	7	7	7	7	137	0	189:20	
190	60	2:20						1	0	0	6	7	7	7	7	7	7	153	0	208:20	
190	65	2:20						1	0	1	7	7	7	7	7	7	19	159	0	228:36	
190	70	2:20						1	0	3	7	7	7	7	7	7	31	164	0	247:20	
																	·- <u>-</u>				
200	8	6:40																	0	6:40	G
200	10	6:00																4	0	10:40	I
200	15	5:20														1	1	14	0	22:40	K
200	20	3:20								1	0	0	1	0	0	4	7	24	0	43:40	L
200	25	2:00				1	. 0	0	0	1	0	0	0	1	6	7	7	47	0	76:40	K
200	30	1:20		1	0) 1	. 0	0	0	1	0	0	7	7	7	7	68	0	105:40	K
200	35	1:20		1	0	1	. 0	0	0	1	0	0	6	7	7	7	7	87	0	130:40	J
200	40	1:00	1	0	1) 0	0	1	0	0	4	7	7	7	7	7	104	0	152:40	J
200	45	1:00	1	0	1) 0	1	0	0	1	7	8	7	7	7	7	120	0	173:40	I
limit 1	ine ·																				
200	50	1:00	1	0	1) 0	1	0	0	5	7	7	7	7	7	7	139	0	195:40	
200	55	1:00	1	0	1	. () 0	1	0	1	7	7	7	7	7	7	8	155	O	215:40	
200	60	1:00	1	0	1	. () (1	0	4	7	7	7	7	7	7	23	160	0	238:40	

	TIM	TM TO FIRST STOP								ON S		3					TOTAL ASCNT TIME
		(M:S)	140	130	120	110	100	90	80	70	60	50	40	30	20	10	(M:S)
210	5	7:00															7:00
210	10	6:00												2	2	0	11:00
210	15	5:00									1	1	3	2	5	0	19:00
210	20	4:40								2	3	2	2	2	28	0	46:00
210	25	4:00						1	3	2	2	3	1	3	57	0	79:00
210	30	3:40					1	3	2	2	2	3	4	12	76	0	112:00
210	35	3:20				1	2	3	2	2	2	6	11	12	95	0	143:00
210	40	3:20				3	2	2	2	2	5	12	11	11	113	0	170:00
limit l	ine -																
210	45	3:00			1	3	2	2	3	2	12	11	12	11	130	0	196:00
210	50	3:00			2	2	2	3	2	9	12	11	11	11	148	0	220:00
210	55	3:00			3	2	2	2	6	11	11	11	11	12	165	0	243:00
210	60	2:40		1	2	3	1	3	10	11	11	11	11	20	173	0	264:00
																_	
220	5	7:20														0	7:20
220	10	6:00											1	2	2	0	12:20
220	15	5:20									2	2	2	3	5	0	21:20
220	20	4:40							2	2	2	3	2	2	36	0	56:20
220	25	4:00					1	2	2	2	3	2	2	8	64	0	93:20
220	30	3:40				1	3	2	2	2	3	2	10	11	85	0	128:20
220	35	3:20			1	2	2	3	3	1	2	11	12	12	104	0	160:20
220	40	3:20			2	3	2	2	2	3	11	11	11	11	124	0	189:20
limit li	ine -																
220	45	3:00		1	2	3	2	2	2	10	11	11	11	12	143	0	217:20
220	50	3:00		2	2	2	3	2	7	11	11	11	11	12	162	0	243:20
220	55	3:00		2	3	2	2	4	11	11	11	11	11	19	174	0	268:20

	TIM	TM TO FIRST STOP							ESSI TIME								TOTAL ASCNT TIME
	\ ,	(M:S)	140	130	120	110	100	90	80	70	60	50	40	30	20	10	(M:S)
230	5	7:40														0	7:40
230	10	6:20											1	3	2	0	13:40
230	15	5:20								1	2	2	2	3	8	0	25:40
230	20	4:40						1	2	2	3	2	2	2	46	0	67:40
230	25	4:20					2	3	2	3	2	2	2	12	71	0	106:40
230	30	3:40			1	2	2	2	3	2	2	6	12	11	93	0	143:40
230	35	3:20		1	2	2	2	3	2	2	7	12	12	12	114	0	178:40
limit l	ine -																
230	40	3:20		2	2	3	2	2	2	8	11	12	11	11	136	0	209:40
230	45	3:00	1	2	2	3	2	2	7	12	10	11	11	12	157	0	239:40
230	50	3:00	2	2	2	2	3	4	12	11	11	11	11	16	173	0	267:40
230	55	3:00	2	3	. 2	3	2	10	11	11	11	11	11	37	172	0	293:40
240	5	8:00														0	8:00
240	10	6:40											2	3	3	0	16:00
240	15	5:40								2	2	2	3	2	16	0	35:00
240	20	5:00						2	3	2	2	2	3	2	54	0	78:00
240	25	4:20				2	2	3	2	2	3	2	7	11	79	0	121:00
240	30	4:00			3	2	2	2	2	3	2	11	12	11	103	0	161:00
240	35	3:40		3	2	2	3	1	3	3	12	11	12	11	126	0	197:00
limit l	ine ·																
240	40	3:20	2	2	3	2	2	2	4	12	11	11	11	12	149	0	231:00
240	45	3:20	3	3	1	3	2	4	11	11	12	11	11	12	171	0	263:00
240	50	3:20	4	2	2	2	3	11	11	11	11	11	11	33	173	0	293:00

	MIT	TM TO FIRST STOP							ESSI TIME		TOPS						TOTAL ASCNT TIME
	(11)	(M:S)	140	130	120	110	100	90	80	70	60	50	40	30	20	10	(M:S)
250	5	8:20														0	8:20
250	10	6:40										1	2	2	4	0	17:20
250	15	5:40							1	2	2	3	3	1	24	0	44:20
250	20	5:00					2	2	2	2	3	2	3	5	61	0	90:20
250	25	4:20			1	3	2	2	2	2	3	2	12	12	86	0	135:20
250	30	4:00		2	3	2	2	2	2	3	6	12	12	12	111	0	177:20
limit 1:	ine -																
250	35	3:40	2	2	3	2	2	2	2	10	11	12	11	11	137	0	215:20
250	40	3:40	4	2	3	2	2	2	11	11	11	11	11	11	163	0	252:20
250	45	3:40	5	3	2	2	2	10	12	11	11	11	11	25	173	0	286:20
250	50	3:40	6	2	2	3	9	11	11	12	10	12	11	47	174	0	318:20
260	5	8:40														0	8:40
260	10	7:00										2	2	2	4	0	18:40
260	15	6:00							2	2	3	2	2	3	31	0	53:40
260	20	5:00				1	2	2	3	2	3	2	2	10	67	0	102:40
260	25	4:40			3	3	2	2	2	2	2	7	12	12	95	0	150:40
260	30	4:00	2	2	3	2	2	2	2	3	11	12	12	10	123	0	194:40
limit l	ine -																
260	35	4:00	4	2	2	3	2	2	6	11	12	11	11	11	150	0	235:40
260	40	4:00	6	2	2	2	3	7	11	12	11	11	11	13	175	0	274:40
260	45	4:00	7	2	3	2	7	12	11	11	11	11	11	42	172	0	310:40

DEPTH (FSW)	TIM	TM TO FIRST STOP								ON S S (M							TOTAL ASCNT TIME
	(11)	(M:S)	140	130	120	110	100	90	80	70	60	50	40	30	20	10	(M:S)
270	5	8:20													1	0	10:00
270	10	7:00									1	2	2	3	4	0	21:00
270	15	6:00						1	2	3	2	3	2	2	39	0	63:00
270	20	5:20				3	2	2	3	2	2	2	4	12	74	0	115:00
270	25	4:40	0	3	2	2	2	2	3	2	3	11	11	12	103	0	165:00
270	30	4:20	4	2	2	2	2	3	3	7	11	11	12	11	133	0	212:00
limit l	ine -																
270	35	4:20	6	2	2	3	2	3	10	12	11	11	11	11	163	0	256:00
270	40	4:20	8	2	2	2	5	11	11	12	10	11	11	29	175	0	298:00
270	45	4:20	9	3	2	4	12	11	11	11	11	11	11	56	175	0	336:00
280	5	8:40													1	0	10:20
280	10	7:40										4	2	3	5	0	23:20
280	15	6:20						3	2	2	2	3	2	2	47	0	72:20
280	20	5:20			1	3	3	2	2	3	1	2	9	12	80	0	127:20
280	25	4:40	1	3	2	3	2	2	3	2	7	11	12	11	113	0	181:20
limit l	ine ·		-														
280	30	4:40	5	3	2	2	3	2	3	12	11	11	11	12	144	0	230:20
280	35	4:40	8	2	2	2	3	7	12	12	10	11	11	12	176	0	277:20
280	40	4:40	10	2	2	3	10	11	11	11	11	11	11	44	175	0	321:20
280	45	4:40	11	2	3	11	11	11	11	11	11	11	11	71	178	0	362:20
290	5	8:40												1	1	0	11:40
290	10	8:00										4	3	3	5	0	24:40
290	15	6:20					2	2	2	3	2	2	2	3	54	0	81:40
290	20	5:40			3	3	2	2	2	3	2	3	12	11	88	0	140:40
290	25	5:00	4	2	2	2	3	3	1	2	12	11	12	11	121	0	195:40
limit l	ine																

	MIT	TM TO FIRST STOP							ESSI TIME		TOPS						TOTAL ASCNT TIME
	(11)	(M:S)	140	130	120	110	100	90	80	70	60	50	40	30	20	10	(M:S)
290	30	5:00	7	2	3	2	2	3	8	11	12	11	11	11	156	0	248:40
290	35	5:00	10	2	2	2	4	12	11	11	11	11	11	27	175	0	298:40
290	40	5:00	12	2	2	7	12	11	11	11	11	10	11	58	178	0	345:40
290	45	5:00	13	3	8	11	11	11	12	12	9	10	19	82	179	0	389:40
300	5	9:00												1	2	0	13:00
300	10	7:40								1	3	2	2	3	7	0	28:00
300	15	6:40					3	2	2	3	2	2	2	5	60	0	91:00
300	20	5:40		1	4	2	2	3	2	2	2	7	12	12	95	0	154:00
300	25	5:20	5	3	2	2	2	2	3	6	12	11	12	11	131	0	212:00
limit 1:	ine -																
300	30	5:20	9	2	2	3	2	4	12	11	11	11	11	12	168	0	268:00
300	35	5:20	12	2	2	2	10	11	12	11	10	11	11	41	177	0	322:00
300	40	5:20	14	2	4	11	11	11	11	11	11	11	11	73	180	0	371:00
limit l	ine -																
310	6	9:00											1	3	2	0	16:20
310	10	8:00								3	2	2	2	3	14	0	
310	15	6:40				1	3	2	3	2		1	3	8			101:20
310	20	6:00		4	3	2	2	2	3	2	2	11	12	11	103	0	167:20
310	25	5:40	7	3	1	3	2	2	3	11	11	11	11	12	141	0	228:20
310	30	5:40	11	2	2	2	3	9	11	12	11	11	11	16	177	0	288:20
310	35	5:40	14	2	2	6	11	12	11	11	11	10	11	54	179	0	344:20
310	40	5:40	16	2	10	11	11	11	12	11	9	11	19	82	182	0	397:20
limit li	ine -																
320	6	9:00										1	1	2	3	0	17:40
320	10	8:00							1	3	2	2	3	2	20	0	43:40

DEPTH (FSW)	BTM TIM (M)	TM TO FIRST STOP							ESSI TIME		TOPS IN)						TOTAL ASCNT TIME
		(M:S)	140	130	120	110	100	90	80	70	60	50	40	30	20	1,0	(M:S)
320	15	7:00				3	3	2	2	2	2	3	2	12	70	0	111:40
320	20	6:00	1	5	2	3	1	3	3	1	6	11	12	12	110	0	180:40
320	25	6:00	9	2	2	3	2	2	6	12	11	11	11	12	152	0	245:40
320	30	6:00	13	2	2	2	6	11	11	11	11	11	11	29	178	0	308:40
320	35	6:00	15	3	2	11	12	11	11	11	10	11	11	68	182	0	368:40
320	40	6:00	18	7	11	11	11	11	10	11	11	12	36	83	182	0	424:40

Table 3. MK 16 MOD 1 HeO₂ Surface Interval Credit and Residual Gas Time Table

START																
A																2:01
В															1:10	3:11
С														0:50	2:00	4:01
D													0:42	1:32	2:43	4:44
E												0:42	1:25	2:15	3:25	5:26
F											0:42	1:25	2:07	2:57	4:08	6:08
G										0:42	1:25	2:07	2:49	3:39	4:50	6:51
H									0:42	1:25	2:07	2:49	3:32	4:22	5:32	7:33
I								0:42	1:25	2:07	2:49	3:32	4:14	5:04	6:15	8:15
J							0:42	1:25	2:07	2:49	3:32	4:14	4:56	5:46	6:57	8:58
K						0:42	1:25	2:07	2:49	3:32	4:14	4:56	5:39	6:29	7:39	9:40
L					0:42	1:25	2:07	2:49	3:32	4:14	4:56	5:39	6:21	7:11	8:22	10:22
M				0:42	1:25	2:07	2:49	3:32	4:14	4:56	5:39	6:21	7:03	7:53	9:04	11:05
N			0:42	1:25	2:07	2:49	3:32	4:14	4:56	5:39	6:21	7:03	7:46	8:36	9:46	11:47
0		0:42	1:25								7:03			9:18	10:29	12:29
Z	0:42		2:07											10:00		
FINAL	Z	0	N פרע הפ	M IXIT	L PO	K 2 TN I	J HET.TH	I	Н	G	F	E	D	С	В	A
FINAL PETS BRE DEPTH 10			и ата Об						Н	G	F	E	D	С	В	720
PETS BRE									Н	G	F	E	D	720	B 269	720
PETS BRE DEPTH 10									185	G 152	F 124	E 100	D 78			720 129
PETS BRE DEPTH 10 20				A FIXI	ED PO2	2 IN I	HELIU	4						720	269	720 129 27
PETS BRE DEPTH 10 20 30				A FIXI	ED PO2	2 IN I	HELIU	4						720 60	269 43	720 129 27 122
PETS BRE DEPTH 10 20 30 40				720	ED PO2	2 IN 1	HELIUI 281	227	185	152	124	100	78	720 60 720	269 43 246	720 129 27 122 27
PETS BRE DEPTH 10 20 30 40 50	EATHING	g 1.:	30 ATA	720 720	ED PO2 516 490	2 IN 1 362 352	281 276	227 223	185 183	152 150	124	100	78 78	720 60 720 59	269 43 246 43	720 129 27 122 27
PETS BRE DEPTH 10 20 30 40 50 60	EATHING 220	195	30 ATA	720 720 155	516 490 138	362 352 123	281 276 108	227 223 95	185 183 83	152 150 71	124 123 61	100 99 51	78 78 41	720 60 720 59 32	269 43 246 43 23	720 129 27 122 27 15
PETS BRE DEPTH 10 20 30 40 50 60 70	220 123	195 112	174 103	720 720 155 94	516 490 138 85	362 352 123 77	281 276 108 69	227 223 95 61	185 183 83 54	152 150 71 47	124 123 61 41	100 99 51 34	78 78 41 28	720 60 720 59 32 22	269 43 246 43 23 16	720 129 27 122 27 15
PETS BRE DEPTH 10 20 30 40 50 60 70 80	220 123 86	195 112 80	174 103 74	720 720 155 94 67	516 490 138 85 62	362 352 123 77 56	281 276 108 69 51	227 223 95 61 45	185 183 83 54 40	152 150 71 47 35	124 123 61 41 30	100 99 51 34 26	78 78 41 28 21	720 60 720 59 32 22	269 43 246 43 23 16 12	720 129 27 122 27 15
PETS BRE DEPTH 10 20 30 40 50 60 70 80 90	220 123 86 67	195 112 80 62	174 103 74 57	720 720 720 155 94 67 53	516 490 138 85 62 48	362 352 123 77 56 44	281 276 108 69 51	227 223 95 61 45 36	185 183 83 54 40 32	152 150 71 47 35 28	124 123 61 41 30 24	100 99 51 34 26 20	78 78 41 28 21	720 60 720 59 32 22 17 13 11	269 43 246 43 23 16 12 10 8	720 129 27 122 27 15 11 8
PETS BRE DEPTH 10 20 30 40 50 60 70 80 90 100	220 123 86 67 54	195 112 80 62 51	174 103 74 57	720 720 720 155 94 67 53 43	516 490 138 85 62 48 40	362 352 123 77 56 44 36	281 276 108 69 51 40 33	227 223 95 61 45 36 30	185 183 83 54 40 32 26	152 150 71 47 35 28 23	124 123 61 41 30 24 20	100 99 51 34 26 20	78 78 41 28 21 17	720 60 720 59 32 22 17 13 11 9	269 43 246 43 23 16 12 10 8 7	720 129 27 122 27 15 11 8
PETS BRE DEPTH 10 20 30 40 50 60 70 80 90 100 110	220 123 86 67 54 46	195 112 80 62 51 43	174 103 74 57 47	720 720 720 155 94 67 53 43 37	516 490 138 85 62 48 40 34	362 352 123 77 56 44 36 31	281 276 108 69 51 40 33 28	227 223 95 61 45 36 30 25	185 183 83 54 40 32 26 22	152 150 71 47 35 28 23 20	124 123 61 41 30 24 20 17	100 99 51 34 26 20 17	78 78 41 28 21 17 14	720 60 720 59 32 22 17 13 11 9 8	269 43 246 43 23 16 12 10 8 7 6	720 129 27 122 27 15 11 8
PETS BRE DEPTH 10 20 30 40 50 60 70 80 90 100 110 120	220 123 86 67 54 46 40	195 112 80 62 51 43 37	174 103 74 57 47 40 34	720 720 720 155 94 67 53 43 37 32	516 490 138 85 62 48 40 34 29	362 352 123 77 56 44 36 31 27	281 276 108 69 51 40 33 28 24	227 223 95 61 45 36 30 25 22	185 183 83 54 40 32 26 22 19	152 150 71 47 35 28 23 20 17	124 123 61 41 30 24 20 17	100 99 51 34 26 20 17 14	78 78 41 28 21 17 14 12 10 9	720 60 720 59 32 22 17 13 11 9 8 7	269 43 246 43 16 12 10 8 7 6 5	720 129 27 122 27 15 11 8 6 4 4 4 3
PETS BRE DEPTH 10 20 30 40 50 60 70 80 90 100 110 120 130	220 123 86 67 54 46 40 35	195 112 80 62 51 43 37 32	174 103 74 57 47 40 34 30	720 720 155 94 67 53 43 37 32 28	516 490 138 85 62 48 40 34 29 26	362 352 123 77 56 44 36 31 27 24	281 276 108 69 51 400 33 28 24 21	227 223 95 61 45 30 25 22	185 183 83 54 40 32 26 22 19	152 150 71 47 35 28 23 20 17	124 123 61 41 30 24 20 17 15	100 99 51 34 26 20 17 14 13	78 78 41 28 21 17 14 12 10 9 8	720 60 720 59 32 22 17 13 11 9 8 7 6 6	269 43 246 43 23 16 12 10 8 7 6 5 5	720 129 27 122 27 11 11 8 6 8
PETS BRE DEPTH 10 20 30 40 50 60 70 80 90 100 110 120 130 140	220 123 86 67 54 46 40 35 31	195 112 80 62 51 43 37 32 29	174 103 74 57 47 40 34 30 27	720 720 155 94 67 53 43 37 32 28	516 490 138 85 62 48 40 34 29 26 23	362 352 123 77 56 44 36 31 27 24	281 276 108 69 51 40 33 28 24 21	227 223 95 61 45 36 30 25 22 19	185 183 83 54 40 32 26 22 19 17	152 150 71 47 35 28 23 20 17 15	124 123 61 41 30 24 20 17 15 13	100 99 51 34 26 20 17 14 13 11	78 78 41 28 21 17 14 12 10 9	720 60 720 59 32 22 17 13 11 9 8 7	269 43 246 43 16 12 10 8 7 6 5 4 4 3	720 129 27 122 27 15 15 44 43 33
PETS BRE DEPTH 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150	220 123 86 67 54 46 40 35 31 28	195 112 80 62 51 43 37 32 29 26	174 103 74 57 47 40 34 30 27	720 720 720 155 94 67 53 43 37 32 28 25 22	516 490 138 85 62 48 40 34 29 26 23 21	362 352 123 77 56 44 36 31 27 24 21	281 276 108 69 51 40 33 28 24 21 19	227 223 95 61 45 36 30 25 22 19 17	185 183 83 54 40 32 26 22 19 17 15	152 150 71 47 35 28 23 20 17 15 13	124 123 61 41 30 24 20 17 15 13 12	100 99 51 34 26 20 17 14 13 11 10 9	78 78 41 28 21 17 14 12 10 9 8	720 60 720 59 32 22 17 13 11 9 8 7 6 6	269 43 246 43 23 16 12 10 8 7 6 5 5	720 129 27 122 27 15 11 8 6 4 3 3
PETS BRE DEPTH 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170	220 123 86 67 54 46 40 35 31 28 25	195 112 80 62 51 43 37 32 29 26 24	174 103 74 57 47 40 34 30 27 24	720 720 720 155 94 67 53 43 37 32 28 25 22	516 490 138 85 62 48 40 34 29 26 23 21	362 352 123 77 56 44 36 31 27 24 21 19	281 276 108 69 51 40 33 28 24 21 19 17	227 223 95 61 45 36 30 25 22 19 17 15	185 183 83 54 40 32 26 22 19 17 15 14	152 150 71 47 35 28 23 20 17 15 13	124 123 61 41 30 24 20 17 15 13 12	100 99 51 34 26 20 17 14 13 11 10 9	78 78 41 28 21 17 14 12 10 9 8 7 6	720 60 720 59 32 22 17 13 11 9 8 7 6 6	269 43 246 43 16 12 10 8 7 6 5 4 4 3	720 129 27 122 27 15 11 8 6 4 3 3 3 3
PETS BRE DEPTH 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160	220 123 86 67 54 46 40 35 31 28 25 23	195 112 80 62 51 43 37 32 29 26 24 22	174 103 74 57 47 40 34 30 27 24 22	720 720 720 155 94 67 53 43 37 32 28 25 22 20	516 490 138 85 62 48 40 34 29 26 23 21 19	362 352 123 77 56 44 36 31 27 24 21 19 17	281 276 108 69 51 40 33 28 24 21 19 17 16	227 223 95 61 45 36 30 25 22 19 17 15 14	185 183 83 54 40 32 26 22 19 17 15 14 12	152 150 71 47 35 28 23 20 17 15 13 12 11	124 123 61 41 30 24 20 17 15 13 12 10 9	100 99 51 34 26 20 17 14 13 11 10 9 8	78 78 41 28 21 17 14 12 10 9 8 7 6	720 60 720 59 32 22 17 13 11 9 8 7 6 6 5	269 43 246 43 23 16 12 10 8 7 6 5 4 4 3 3	

REPETITIVE DIVE WORKSHEET FOR MK 16 MOD 1 HeO₂ DIVES

Part 1 Previous Dive:	minutes feet repetitive group designator from Table 1 if the dive was a no-decompression dive, or from Table 2 if the dive was a decompression dive
Part 2. Surface Interval:	
horizontally to the right to the column in which	the repetitive group designator from Part 1 and move the time equal to or just greater than the actual or tal repetitive group designator from the bottom of this
hours _	minutes on the surface
final re	petitive group from Table 3
Part 3. Equivalent Single Dive Time for t	he Repetitive Dive:
dive. Move horizontally to the right to the column	w for the maximum depth of the planned repetitive on of the final repetitive group designator from Part 2 s RGT to the planned bottom time for the repetitive
minutes: RGT	
+ minutes: planned bottom time	
= minutes: equivalent single dive time	9
Part 4. Decompression Schedule for the	Repetitive Dive:
to the column with bottom time equal to or just the surfacing repetitive group for the repetitive single dive time exceeds the no-decompression	petitive dive in Table 1. Move horizontally to the right greater than the equivalent single dive time and read e dive from the top of the column. If the equivalent on limit, locate the row for the depth and equivalent decompression stops and surfacing repetitive group
minutes: equivalent single dive time	from Part 3
feet: depth of the repetitive dive	
Schedule (depth/bottom time) from	Table 2, if a decompression dive

APPENDIX B

TEST DIVES COMPLETED

The dive profiles tested in Phases I and II of the study are listed in the following table, where "- SI30 -" indicates a 30 minute surface interval; or "-SI180-" indicates a 180 minute surface interval. Divers breathed air during all but the last 3 min of any surface interval, when they breathed 0.7 ATA O_2 in He from the MK 16 MOD 1. Any required decompression stops (Depth/Stop time) are listed in order of decreasing depth under each dive. The dive numbers range from one to five, depending on the number of repetitive dives in the profile. All depths are in fsw and all times are in minutes. Bottom times include descent time. Ascent times to stops are not included in the stop times. The number of exposures and number of DCS cases on each profile are in the two right-most columns.

Phase I.

Profile #	Dive 1		Dive 2		Dive 3	# Exposures	# DCS
1	160/ 25 50/ 2 40/ 2 30/ 3 20/ 6	- SI30 -	160/ 25 50/ 2 40/ 3 30/ 4 20/ 79			2	1
2	120/ 20	- SI30 -	160/ 15 30/ 2 20/ 14	- SI30 -	160/ 20 40/ 2 30/ 3 20/ 65	3	0
3	200/ 15 50/ 1 40/ 2 30/ 3 20/ 4	- SI30 -	160/ 15 30/ 2 20/ 36	- SI30 -	160/ 15 30/ 1 20/ 49	4	0
4	200/ 15 50/ 1 40/ 2 30/ 3 20/ 4	- SI30 -	200/ 20 70/ 2 60/ 2 50/ 2 40/ 3 30/ 12 20/ 73			3	0
5-B	200/ 22 80/ 2 70/ 2 60/ 3 50/ 2 40/ 2 30/ 2 20/ 47	- SI30 -	160/ 15 30/ 1 20/ 49			4	0
6-B	120/ 15	- SI30 -	200/ 23 80/ 2 70/ 3 60/ 2 50/ 2 40/ 2 30/ 12 20/ 71			4	0
7-B	160/ 15 30/ 1 20/ 2	- SI30 -	200/ 23 80/ 2 70/ 3 60/ 2 50/ 3 40/ 7 30/ 12 20/ 81			4	0

Profile #	Dive 1		Dive 2		Dive 3	# Exposures	# DCS
8-B	120/ 15	- SI30 -	160/ 20 40/ 2 30/ 2 20/ 23	- SI30 -	120/ 21 20/ 52	4	0
9-B	120/ 19 20/ 2	- SI30 -	120/ 15 20/ 2	- SI30 -	200/ 15 50/ 2 40/ 2 30/ 3 20/ 68	4	0
10-B	160/ 20 40/ 2 30/ 2 20/ 4	- SI30 -	120/ 15 20/ 13	- SI30 -	160/ 17 40/ 2 30/ 3 20/ 65	4	0
11-B	200/ 22 80/ 2 70/ 2 60/ 3 50/ 2 40/ 2 30/ 2 20/ 47	- SI30 -	120/ 20 20/ 40			4	0
12-B	120/ 15	- SI30 -	160/ 15 30/ 2 20/ 14	- SI30 -	200/ 15 50/ 2 40/ 2 30/ 2 20/ 69	4	0
13-B	160/ 20 40/ 2 30/ 2 20/ 4	- SI30 -	200/ 18 70/ 2 60/ 2 50/ 2 40/ 2 30/ 12 20/ 72			4	1
14-B	200/ 15 50/ 1 40/ 2 30/ 3 20/ 4	- SI30 -	120/ 15 20/ 15	- SI30 -	200/ 13 50/ 2 40/ 2 30/ 3 20/ 68	3	0
15-B	120/ 20	- SI30 -	160/ 16 40/ 2 30/ 3 20/ 34	- SI30 -	160/ 15 30/ 1 20/ 48	3	0

Profile #	Dive 1		Dive 2		Dive 3	# Exposures	# DCS
16-B	160/ 20 40/ 2 30/ 2 20/ 4	- SI30 -	120/ 25 20/ 40	- SI30 -	120/ 16 20/ 40	4	0
17-B	200/ 20 70/ 1 60/ 2 50/ 2 40/ 3 30/ 2 20/ 18	- SI30 -	160/ 17 40/ 2 30/ 3 20/ 64			4	0
18-B	120/ 20	- SI30 -	120/ 20 20/ 20	- SI30 -	160/ 15 30/ 1 20/ 49	3	0
19-B	160/ 15 30/ 1 20/ 2	- SI30 -	200/ 11 50/ 2 40/ 3 30/ 2 20/ 42	- SI30 -	120/ 15 20/ 28	3	0
20-B	200/ 17 70/ 1 60/ 2 50/ 2 40/ 3 30/ 2 20/ 18	- SI30 -	200/ 15 50/ 2 40/ 2 30/ 2 20/ 68			4	0
21-B	120/ 25 20/ 2	- SI30 -	120/ 20 20/ 17	- SI30 -	200/ 13 50/ 2 40/ 2 30/ 3 20/ 67	4	0
22-B	120/ 25 20/ 2	- SI30 -	200/ 18 70/ 2 60/ 2 50/ 3 40/ 2 30/ 7 20/ 68			4	0
23-B	200/ 17 70/ 1 60/ 2 50/ 2 40/ 3 30/ 2 20/ 18	- SI30 -	200/ 15 50/ 2 40/ 2 30/ 2 20/ 68			4	0

Profile #	Dive 1	D	ve 2		Dive 3	# Exposures	# DCS
24-B	160/ 25 50/ 2 40/ 2 30/ 3 20/ 6	50 40 30	/ 22 / 2 / 3 / 4 / 79			4	0
25-B	120/ 25 20/ 2	70 60 50 40 30	/ 18 / 2 / 2 / 3 / 2 / 7			4	0
26-B	160/ 20 40/ 2 30/ 2 20/ 4	70 60 50 40 30)/ 18)/ 2)/ 2)/ 2)/ 2)/ 12)/ 72			3	0
27-B	200/ 22 80/ 2 70/ 2 60/ 3 50/ 2 40/ 2 30/ 2 20/ 47		0/ 20 0/ 40			4	0
28-B	160/ 25 50/ 2 40/ 2 30/ 3 20/ 6	5 4 3	0/ 22 0/ 2 0/ 3 0/ 4 0/ 79			4	0
29-B	160/ 15 30/ 1 20/ 2	8 7 6 5 4 3	0/ 23 0/ 2 0/ 3 0/ 2 0/ 3 0/ 7 0/ 12 0/ 81			4	0
30-B	200/ 15 50/ 1 40/ 2 30/ 3 20/ 4		0/ 20 0/ 28	- SI30 -	120/ 16 20/ 41	4	0

Profile #	Dive 1	- 123 · · ·	Dive 2		Dive 3	# Exposures	# DCS
31-B	120/ 25 20/ 2	- SI30 -	120/ 15 20/ 2	- SI30 -	200/ 13 50/ 2 40/ 2 30/ 3 20/ 68	4	0
32-B	160/ 15 30/ 1 20/ 2	- SI30 <i>-</i>	200/ 23 80/ 2 70/ 3 60/ 2 50/ 3 40/ 7 30/ 12 20/ 81			3	0
33-B	120/ 20	- SI30 -	200/ 23 80/ 2 70/ 3 60/ 2 50/ 3 40/ 4 30/ 12 20/ 79			3	0
35-B	200/ 17 70/ 1 60/ 2 50/ 2 40/ 3 30/ 2 20/ 18	- SI30 -	200/ 15 50/ 2 40/ 2 30/ 2 20/ 68			4	0
36-B	120/ 15	- SI30 -	120/ 15	- SI30 -	160/ 22 50/ 2 40/ 3 30/ 2 20/ 68	4	0
37-B	200/ 22 80/ 2 70/ 2 60/ 3 50/ 2 40/ 2 30/ 2 20/ 47	- SI30 -	120/ 20 20/ 40			4	0
38-B	120/ 15	- SI30 -	160/ 21 50/ 2 40/ 3 30/ 2 20/ 42	- SI30 -	120/ 20 20/ 40	3	0

Profile #	Dive 1	Dive 2		Dive 3	# Exposures	# DCS	
40-B	120/ 20	- SI30 - 160/ 15 30/ 2 20/ 14	- SI30 -	120/ 21 20/ 53	4	0	
41-B	120/ 20	- SI30 - 120/ 25 20/ 20	- SI30 -	200/ 13 50/ 2 40/ 2 30/ 3 20/ 67	3	0	
42-B	160/ 20 40/ 2 30/ 2 20/ 4	- SI30 - 200/ 18 70/ 2 60/ 2 50/ 2 40/ 2 30/ 12 20/ 72			4	0	
43	120/ 25 20/ 2	- SI30 - 120/ 25 20/ 30		120/ 25 20/ 53	23	0	
44	160/ 25 50/ 2 40/ 2 30/ 3 20/ 6	- SI30 - 160/ 25 50/ 2 40/ 3 30/ 4 20/ 79			14	0	
45	80/ 110				7	0	
46	80/ 130				24	0	
Profile #	Dv 1	Dv 2	Dv 3	Dv 4	Dv 5	# Exposures	# DCS
47	80/25 - SI	30 - 80/25 - SI30 -	80/25 - SI3	0 - 80/25	- SI30 - 80/25	12	0

Phase II.

Profile #	Dive 1	Dive 2	Dive 3	# Exposures	# DCS
II.1	120/ 60 30/ 7 20/ 60			14	0
II.2	140/ 20 20/ 7			9	0
II.3	140/ 45 40/ 6 30/ 7 20/ 52			8	0
II.4	160/ 20 20/ 13			8	0
II.5	160/ 45 60/ 2 50/ 8 40/ 7 30/ 7 20/73			10	0
11.6	180/ 15 20/ 11			7	0
II.7	180/ 40 70/ 2 60/ 7 50/ 7 40/ 7 30/ 7 20/ 79			11	0
II.8	200/ 15 40/ 1 30/ 1 20/ 14			4	0
II.9	200/ 35 160/ 1 140/ 1 100/ 1 70/ 6 60/ 7 50/ 7 40/ 7 30/ 7 20/ 87			4	0

Profile #	Dive 1	Dive 2	Dive 3	# Exposures	# DCS
II.10	220/ 15 60/ 2 50/ 2 40/ 2 30/ 3 20/ 5			13	0
II.11	220/ 25 100/ 1 90/ 2 80/ 2 70/ 2 60/ 3 50/ 2 40/ 2 30/ 8 20/ 64			12	1
II.12	220/ 35 120/ 1 110/ 2 100/ 2 90/ 3 80/ 3 70/ 1 60/ 2 50/ 11 40/ 12 30/ 12 20/ 104			7	0
II.13	240/ 15 70/ 2 60/ 2 50/ 2 40/ 3 30/ 2 20/ 16			12	0
II.14	240/ 20 90/ 2 80/ 3 70/ 2 60/ 2 50/ 2 40/ 3 30/ 2 20/ 54			8	0

Profile #	Dive 1	Dive 2	Dive 3	# Exposures	# DCS
II.15	240/ 25 110/ 2 100/ 2 90/ 3 80/ 2 70/ 2 60/ 3 50/ 2 40/ 7 30/ 11 20/ 79			8	0
II.16	260/ 15 80/ 2 70/ 2 60/ 3 50/ 2 40/ 2 30/ 3 20/ 31			4	0
II.17	260/ 25 120/ 3 110/ 3 100/ 2 90/ 2 80/ 2 70/ 2 60/ 2 50/ 7 40/ 12 30/ 12 20/ 95			3	0
II.18	280/ 15 90/ 3 80/ 2 70/ 2 60/ 2 50/ 3 40/ 2 30/ 2 20/ 47			20	0

Profile #	Dive 1		Dive 2		Dive 3	# Exposures	# DCS
II.19 II.20	280/ 20 120/ 1 110/ 3 100/ 3 90/ 2 80/ 2 70/ 3 60/ 1 50/ 2 40/ 9 30/ 12 20/ 80 300/ 15 100/ 3 90/ 2 80/ 2 70/ 3 60/ 2 50/ 2 40/ 2 30/ 5					8	0
II.21	20/ 60 300/ 20 130/ 1 120/ 4 110/ 2 100/ 2 90/ 3 80/ 2 70/ 2 60/ 2 50/ 7 40/ 12 30/ 12 20/ 95					7	0
II.22	120/ 30 20/ 8	- SI30 -	120/ 35 30/ 4 20/ 62	- SI30 -	120/ 25 20/ 53		0
11.23	100/ 15	- SI180 -	100/ 30	- SI180 -	120/ 30		0
II.24	120/ 35 20/ 12	- SI30 -	100/ 35 20/ 52		20/ 39	8	0
II.25	140/ 35 ¹ 30/ 3 20/ 16	- SI30 -	120/ 30 30/ 1 20/ 62			6	0

¹ Profile II.25 was computed with first dive as 140/30, but dove with first dive as shown due to typographical error.

Profile #	Dive 1		Dive 2		Dive 3	# Exposures	# DCS
II.26	140/ 30 30/ 3 20/ 16	- SI180 -	140/ 30 30/ 5 20/ 60			5	0
II.27	140/ 20 20/ 7	- SI30 -	140/ 30 40/ 4 30/ 7 20/ 57			7	0
II.28	160/ 30 40/ 4 30/ 7 20/ 31	- SI30 -	160/ 25 40/ 2 30/ 7 20/ 74			8	0
II.29	120/ 25 20/ 4	- SI180 -	160/ 20 30/ 3 20/ 32	- SI30 -	140/ 15 20/ 42	6	3 ²
II.30	160/ 25 30/ 6 20/ 15	- SI180 -	120/ 35 20/ 57			8	0
II.31	140/ 20 20/ 7	- SI30 -	160/ 30 50/ 5 40/ 7 30/ 7 20/ 70			7	0
II.32	180/ 25 40/ 6 30/ 7 20/ 29	- SI180 -	160/ 30 40/ 4 30/ 7 20/ 72			6	0
II.33	180/ 20 30/ 6 20/ 14	- SI180 -	180/ 35 60/ 7 50/ 7 40/ 7 30/ 7 20/ 95			7	0
II.34	180/ 20 30/ 6 20/ 14	- SI30 -	180/ 25 60/ 2 50/ 7 40/ 7 30/ 7 20/ 80			11	1

This profile is outside the recommended limit of only one repetitive dive after a decompression stop dive (c.f., item 3 in Conclusions and Recommendations).

Profile #	Dive 1		Dive 2	Dive 3	# Exposures	# DCS
II.35	200/ 20 140/ 1 100/ 1 60/ 1 50/ 6 40/ 7 30/ 7 20/ 47	- SI30 -	180/ 25 40/ 6 30/ 6 20/ 84		3	0
II.36	200/ 15 40/ 1 30/ 1 20/ 14	- SI180 -	180/ 35 60/ 7 50/ 7 40/ 7 30/ 7 20/ 91		8	0
II.37	200/ 20 100/ 1 70/ 1 40/ 4 30/ 7 20/ 24	- SI30 -	180/ 15 30/ 4 20/ 57		6	0