Tcl Variable Utilities

Version 0.6.1

Alex Baker

https://github.com/ambaker1/vutil

July 27, 2023

Abstract

This package provides various utilities for working with variables in Tcl, including read-only variables, TclOO garbage collection, and an object-variable type system.

Printing Variables to Screen

The *pvar* command is a short-hand function for printing the name and values of Tcl variables, in the same style as the Tcl *parray* command.

```
pvar $name1 $name2 ...
```

name1 name2 ... Name(s) of variables to print

```
Example 1: Printing variables to screen

Code:

set a 5
set b 7
set c(1) 5
set c(2) 6
pvar a b c

Output:

a = 5
b = 7
c(1) = 5
c(2) = 6
```

Initializing Local Namespace Variables

The command *local* is the counterpart to the Tcl *global* command, and creates local variables linked to variables in the current namespace, by simply calling the Tcl *variable* command multiple times.

```
local $name1 $name2 ...
```

 $\mbox{name1}$ $\mbox{name2}$. . . Name(s) of variables to initialize

```
Example 2: Access namespace variables in a procedure
Code:
 # Define global variables
 global a b c
 set a 1
 set b 2
 set c 3
 namespace eval ::foo {
     # Define local variables
     local a b c
     set a 4
     set b 5
      set c 6
 proc ::foo::bar1 {} {
      # Access global variables
      global a b c
     list $a $b $c
 proc ::foo::bar2 {} {
      # Access local variables
     local a b c
     list $a $b $c
 puts [::foo::bar1]; # global a b c
 puts [::foo::bar2]; # local a b c
Output:
 1 2 3
 4 5 6
```

Default Values

The command default assigns values to variables if they do not exist.

default \$varName \$value

\$varNameName of variable to set\$valueDefault value for variable

The example below shows how default values are only applied if the variable does not exist.

```
Example 3: Variable defaults

Code:

set a 5
  default a 7; # equivalent to "if {![info exists a]} {set a 7}"
  puts $a
  unset a
  default a 7
  puts $a

Output:

5
  7
```

Variable Locks

The command lock uses Tcl variable traces to make a read-only variable. This is especially useful for controlling a parameter study of an analysis from a top-level.

lock \$varName <\$value>

\$varName Variable name to lock.

\$value Value to lock variable at. Default self-locks (uses current value).

The command *unlock* unlocks previously locked variables so that they can be modified again.

unlock \$name1 \$name2 ...

\$name1 \$name2 ... Variables to unlock.

Example 4: Variable locks

Code:

lock a 5 set a 7 puts \$a unlock a set a 7 puts \$a

Output:

5 7

Variable-Object Ties

As of Tcl version 8.6, there is no garbage collection for Tcl objects, they have to be removed manually with the "destroy" method. The command *tie* is a solution for this problem, using variable traces to destroy the corresponding object when the variable is unset or modified. For example, if an object is tied to a local procedure variable, the object will be destroyed when the procedure returns. Tie is separate from lock; a tie will override a lock, and a lock will override a tie.

tie \$refName <\$object>

\$refName Name of reference variable to tie to object.

\$object Object to tie variable to. Default self-ties (uses current value).

In similar fashion to unlock, tied variables can be untied with the command untie.

```
untie $name1 $name2 ...
```

\$name1 \$name2 ... Variables to untie.

```
Example 5: Variable-object ties

Code:

oo::class create foo {
    method hi {} {
        puts hi
      }
}
tie a [foo create bar]
set b $a; # alias variable
unset a; # triggers ``destroy''
$b hi; # throws error

Output:
invalid command name "::bar"
```

Variable-Object Links

The command *link* links a global variable to a TclOO object, using the name of the object as the variable name. The value of the linked object variable is accessed by calling the TclOO object with no arguments (the "unknown" method), and writing to the object-variable calls the object's "=" method. Unsetting the linked object variable also calls the object's "destroy" method, and destroying the object unsets the linked object variable. Linked object-variables are unlinked when the object is destroyed, but can also be unlinked with the command *unlink*.

```
link $object
```

```
unlink $object ...
```

\$object ...

Object(s) to link/unlink.

```
Example 6: Linking an object variable
Code:
 ::oo::class create number {
     variable value
      constructor {args} {
          set value [uplevel 1 expr $args]
     method unknown {args} {
          if {[llength $args] == 0} {
              return $value
          next {*}$args
      }
     unexport unknown
      method = {args} {
          set value [uplevel 1 expr $args]
      }
     export =
 link [tie a [number new 5]]; # garbage collection and obj-var link
 puts [$a]; # 5
 a = 10 * [a]
 puts [$a]; # 50
 incr $a
 puts [subst $$a]; # 51
Output:
 5
 50
 51
```

Object Variable Class

The TclOO class var creates linked object variables that are tied to local variables, using link and tie.

Object variables can be manipulated directly with Tcl commands, and calling the object variable directly as a command with no arguments (e.g. [\$var0bj]) returns the object variable value.

```
var new $refName <$value>
var create $objName $refName <$value>
```

\$objName Explicit name for object.

\$refName Name of reference variable to tie to object.

\$value Value to set object variable to.

Example 7: Object variables with garbage collection

```
Code:

# Example showing how object variables behave in procedures
proc foo {value} {

# Create named object with reference variable "result"

var create myObj result $value

append $result { world}

return [list $result [$result]]; # Returns name and value of object
}

set result [foo hello]; # Not the same "result"

lassign $result name value
puts $name; # ::myObj
puts $value; # hello world
puts [info object isa object $name]; # O (object was deleted when procedure returned)

Output:

::myObj
hello world
0
```

Object Variable Operators

In addition to being able to manipulate object variables directly with Tcl commands, variables can also be manipulated with object variable operators.

The operators "=" and ":=" assign the value of the object variable, and return the name of the object.

\$varObj = \$value

```
$varObj := $expr
```

\$value Value to set object variable to.

\$expr Math expression to evaluate and set as object value.

The operator "<-" assigns the value of the object directly from another object variable of the same class, and, like the operator "=", returns the name of the object.

\$varObj <- \$otherVarObj</pre>

\$otherVarObj

Other object variable to assign value from.

The operator "-->" copies the object to a new reference variable, and returns the name of the new object.

\$varObj --> \$refName

\$refName

Name of reference variable to tie to object.

The example below demonstrates the myriad of ways object variables can be manipulated:

Example 8: Object variable manipulation features

```
Code:
```

```
var new x; # Create blank variable $x    [\$x --> y] = 5; # Copy $x to $y, and set to 5    [var new z] <- [\$x <- \$y]; # Create $z and set to x after setting $x to $y. $z := {[\$z] + [\$x]}; # Add $x to $z append $y [set $x 0]; # Append $y the value of $x after setting $x to 0 puts [list [\$x] [\$y] [\$z]]
```

Output:

0 50 10

Object Variable Methods

Additional information about the object variable can be accessed with object variable methods:

The operator " $\pmb{\&}$ " simply returns the name of the object.

\$varObj &

The method *info* accesses all object variable metadata. Fields "exists" and "type" always exist, and "value" is populated when the variable is initialized.

\$varObj info <\$field>

\$field

Info field to get. Default returns dictionary of all info.

The method *print* is a short-hand way to print the value of the variable to screen.

\$varObj print <-nonewline> <\$channelID>

-nonewline Option to print without newline.

\$channelID Channel ID open for writing. Default stdout.

Example 9: Printing the value of a variable

Code:

var new x {Hello World}
puts [\$x info]
\$x print

Output:

exists 1 type var value {Hello World}
Hello World

Object Variable Types

The TclOO class var acts as a superclass for a pure-Tcl type system, managed through the metaclass type.

type \$method \$arg ...

\$method Method name.

\$arg ... Arguments for method.

New type classes can be created using the method *new*. The resulting class, named "::vutil::type.\$type", uses "::vutil::var" as a superclass.

type new \$type \$arg ...

\$type Name of type.

\$arg ... Class definition arguments.

Existing classes can be added to the type library directly with the method *add*. These classes do not need to be subclasses of "::vutil::var", but it is recommended to utilize "::vutil::var" as a superclass.

type add \$type \$class

\$type Name of type.\$class Type class.

To remove a type, use the method *remove*. This does not destroy the associated class, but simply removes the class from the type list.

type remove \$type

\$type Name of type.

Type Queries

A list of all defined types can be queried with the method names.

type names

The existence of a type can be queried with the method *exists*, and the class associated with a type can be queried with the method *class*.

```
type exists $type
```

```
type class $type
```

\$type Name of type.

The method *isa* checks if an object is of a specific type or of one of its subtypes. If the type or object does not exist, this command will return an error.

type isa \$type \$objName

\$type Name of type.\$objName Name of object.

```
Example 10: Type assertion

Code:

proc foo {bar} {
    if {![type isa list $bar]} {
        return -code error "bar must be a list object"
    }
    $bar @ end
}
```

Creating Type Variables

Then, using the types defined by type, the command new creates a new variable object of a specified type.

new \$type \$refName <\$value>

\$type Name of type.

\$refName Name of reference variable to tie to object.

\$value Value to set object variable to.

```
Example 11: New type and object variables
Code:
  type new str {
     method info {args} {
         set (length) [my length]
         next {*}$args
      }
     method length {} {
          string length $(value)
      }
      method @ {i} {
          string index $(value) $i
      export @
 }
 new str x
 set $x {hello world}
 puts [$x length]
 puts [$x info]
 puts [$x @ end]
 $x print
Output:
 exists 1 length 11 type str value {hello world}
 hello world
```

Type Library

This package provides a few basic object variable types: var, string, bool, int, float, list, and dict. If you want to create your own datatype, check out the source code implementation for API documentation.

Type "var"

The type "var" is just an alternative way to create an object variable (same syntax as "new" method for var class). It does not have any additional metadata or methods.

new var \$refName <\$value>

\$refName Name of reference variable to tie to object.

\$value Value to set object variable to.

Type "string"

The type "string" does not do any validation on input (because in Tcl, "everything is a string"), but additionally provides methods for getting string length and string index, and adds the field "length" to the variable info.

new string \$refName <\$value>

\$refName Name of reference variable to tie to object.

\$value String value.

The method length returns the string length. This is the same as "\$stringObj info length".

\$stringObj length

The method "@" returns the character at the specified index.

\$stringObj @ \$i

\$i String index.

Type "bool" (boolean)

The type "bool" validates that the input is a valid boolean.

new bool \$refName <\$value>

\$refName Name of reference variable to tie to object.

\$value Boolean value.

In addition to the standard object variable methods, the "bool" type provides a shorthand if-statement control flow method:

\$boolObj "?" \$body1 <":" \$body2>

\$body1 Body to evaluate if boolean is true.

\$body2 Body to evaluate if boolean is false (optional, required with ":" keyword).

Example 12: String and boolean example

world

```
# proc with types
proc foo {a b c} {
    new string a $a
    new string b $b
    new bool c $c
    $c ? {$a} : {$b}
}
puts [foo hello world true]; # hello
puts [foo hello world false]; # world
Output:
hello
```

Type "int" (integer)

The type "int" validates that the input is a valid integer, and additionally has increment/decrement methods.

new int \$refName <\$value>

\$refName Name of reference variable to tie to object.

\$value Integer value.

In addition to the standard assignment operators "=" and ":=", the "int" type provides the increment/decrement assignment operators "+=" and "-=".

\$intObj \$op \$expr

\$op Assignment operator:

"+=" Increments the variable by the value of \$expr.
"-=" Decrements the variable by the value of \$expr.

\$expr Tcl math expression to evaluate.

There are also two short-hand increment/decrement operators, "++" and "--", which simply increment or decrement the integer object by 1.

\$intObj ++

\$intObj --

```
Example 13: Integer example (for loop)

Code:
    for {new int i 0} {[$i] < 3} {$i ++} {
        puts [$i]
    }

Output:
    0
    1
    2</pre>
```

Type "float" (double-precision floating-point decimal)

The type "float" validates that input is a double-precision floating-point number, passing input through the Tcl ::tcl::mathfunc::double command.

new float \$refName <\$value>

\$refName Name of reference variable to tie to object.

\$value Float value.

In addition to the standard assignment operators "=" and ":=", the "float" type provides the following:

\$floatObj \$op \$expr

\$op Assignment operator:

"+=" Adds the value of \$expr to the variable.

"-=" Subtracts the value of \$expr from the variable.

"*=" Multiplies the variable by the value of \$expr.

"/=" Divides the variable by the value of \$expr.

\$expr Tcl math expression to evaluate.

```
Example 14: Float example (procedure with type assertion)
```

```
Code:

# Harmonic mean of two numbers (converts to float)
proc hmean {x y} {
    new float x $x
    new float z $;
    new float z] := {2*[$x]*[$y]}
    if {[$z] != 0} {
        $z /= {[$x] + [$y]}
    }
    return [$z]
}
puts [hmean 1 2]; # 1.3333
```

ошриг.

1.3333333333333333

Type "list"

The type "list" validates that the input is a list, and provides methods for list indexing/setting and getting list length. Additionally, it adds the field "length" to the variable info.

new list \$refName <\$value>

\$refName Name of reference variable to tie to object.

\$value List value.

The method length returns the list length. This is the same as "\$list0bj info length".

\$listObj length

The method "@" acts as either list indexing or list setting, depending on whether the "=" or ":=" keywords are used. If indexing, it returns the value at the specified index. If setting, it sets the value and returns the object name.

\$listObj @ \$i ... <"=" \$value | ":=" \$expr>

\$i ... List indices.

\$value Value to set.

\$expr Math expression to set.

Example 15: List example

```
Code:
    [new list list1] = {hello world}
    puts [$list1 length]; # 2
    $list1 @ 0 = "hey"
    $list1 @ 1 = "there"
    $list1 @ end+1 = "world"
    puts [$list1 @ end]; # world
    set a 5
    $list1 @ end+1 := {$a + 1}
    puts [$list1 info]; # exists 1 length 4 type list value {hey there world 6}

Output:
2
    world
    exists 1 length 4 type list value {hey there world 6}
```

Type "dict"

The type "dict" validates that the input is a Tcl dictionary, and provides methods for getting/setting/unsetting dictionary values, checking if values exist, and getting the dictionary size. Additionally, it adds the field "size" to the variable info.

new dict \$refName <\$value>

\$refName Name of reference variable to tie to object.

\$value Dictionary value.

The method \$dictObj size returns the dictionary size. This is the same as "\$dictObj info size".

\$dictObj size

The methods set and unset set and unset values in the dictionary, and return the object name. The method get returns values in the dictionary, and the method exists returns whether the key pairing exists.

\$dictObj set \$key ... \$value

\$dictObj unset \$key ...

\$dictObj get \$key ...

\$dictObj exists \$key ...

\$key ... Dictionary keys.

\$value Value to set.

Example 16: Dictionary example Code: # Create dictionary record new dict record { name {John Doe} address { streetAddress {123 Main Street} city {New York} state {NY} zip {10001} phone {555-1234} # Get values puts [\$record size]; # Number of keys (3) puts [\$record get name]; # John Doe # Set/unset and get \$record set address street [\$record get address streetAddress] \$record unset address streetAddress puts [\$record get address street]; # 123 Main Street puts [\$record exists address streetAddress]; # 0 Output: John Doe 123 Main Street