STAT 500

ANOVA - Model Diagnostics and Non-parametric Test for One-Way ANOVA

Model Assumptions

ANOVA F-test, contrasts and pairwise comparisons assume:

$$\epsilon_{ij}$$
 are i.i.d. $N(0,\sigma^2)$

- Independence of samples and observations
- Homogeneous variance $\sigma_1^2 = \sigma_2^2 = \ldots = \sigma_r^2 = \sigma^2$
- Normal Distribution Random error terms have a normal distribution

Model Diagnostics

- Many results from two-sample model diagnostics apply.
 - Independence critical aspect
 - Equal Variances very important
 - Normality only a concern for small sample sizes, or very skewed distributions
 - Outliers results not robust
- Use residuals to assess model assumptions

$$e_{ij} = Y_{ij} - \overline{Y}_i$$
. Not independent of each other because all e_ij depend on bar(Y_i)

Independence Assumption

- Data Collection
 - Random Sample(s) from multiple populations
 - Observations from multiple treatment groups
- Study designed to produce independent responses.

Homogeneous Variances Assumption

- Construct histograms or boxplots of residuals for each sample
- Plot residuals versus predicted values, and there should be no trend.
 - Beware of interpretation if n_i 's are very unequal
 - Expect larger range of ϵ_{ij} if n_i is larger
- Study ratio of sample standard deviations

$$rac{\mathsf{max} S_i}{\mathsf{min} S_i}$$

Homogeneous Variances Assumption

- Tests for equality of variances
 - Brown-Forsythe test
 - Levene's test
 - etc.
- Consequences of unequal variances on F test:
 - Minor if sample sizes are the same.
 - Large distortion of α level if very unequal sample sizes
 - Decreased power

If unequal variance, we can use power transformation, just like t-test.

Normality

- Histogram of **residuals**
- Normal probability plot of residuals
- Numerical summaries skewness and kurtosis
- Tests for Normality
 - Kolmogorov-Smirnov
 - Cramer-von Mises
 - Anderson-Darling

One-Way ANOVA

- Assumptions
 - Independence Assumption
 - Homogeneous Variances Assumption
 - Normal Distribution Assumption
- What if the homogeneous variances and/or normal distribution assumptions are violated to the point where p-values and confidence levels cannot be trusted?
- Transform data and check whether the homogeneous variances and normal distribution assumptions are appropriate for transformed data.
- Non-parametric Tests

One way ANOVA is called "one way" because there is only one independent variable or factor.

Kruskal-Wallis Test One-way ANOVA on Ranks

- Assumptions
 - Independence
- ullet Null hypothesis: r populations have the same distribution
 - Distribution is not required to be normal.
 - Implies equal medians, percentiles, means and variances

Kruskal-Wallis Test

- Combine the data into a single data set
- ullet Order the N observations from smallest to largest
- ullet Assign ranks R_{ij}
 - The smallest observation gets rank=1, the second smallest gets rank=2, etc...
 - For tied observations, average the ranks

Kruskal-Wallis Test

- ullet Calculate $ar{R}_{i.}=$ the mean rank of observations in group i.
- The test statistic is:

$$H = (N-1) \frac{\sum_{i=1}^{r} n_i (\bar{R}_{i.} - \bar{R})^2}{\sum_{i=1}^{r} \sum_{j=1}^{n_i} (R_{ij} - \bar{R})^2}$$

where $\overline{R}=(N+1)/2=$ the average of all ranks 1 through N

Kruskal-Wallis Test

- If H_0 is true, H will have an approximate χ^2 distribution with r-1 degrees of freedom.
- ullet Approximation is best when $n_i \geq 5$ for all i.
- ullet P-value $=P(\chi^2_{r-1}>H)$