- 3 原点を O とする空間に 3 点 $A(a,\,0,\,0)$, $B(0,\,b,\,0)$, $C(0,\,0,\,c)$ をとり , 四面体 OABC を考える . ただし , a>0 , b>0 , c>0 とする .
- (1) 3 点 A , B , C を通る平面の方程式 , および , 原点とこの平面との距離 h を a , b , c で表せ .
- (2) $\triangle ABC$ の面積を a , b , c で表せ .
- (3) $\triangle ABC$, $\triangle OAB$, $\triangle OBC$, $\triangle OCA$ の面積をそれぞれ S_0 , S_1 , S_2 , S_3 とし,各 三角形の単位法線ベクトルで四面体 OABC の内部から外に向かうものを, $\overrightarrow{u_0}$, $\overrightarrow{u_1}$, $\overrightarrow{u_2}$, $\overrightarrow{u_3}$ とする.ベクトル

$$S_0\overrightarrow{u_0} + S_1\overrightarrow{u_1} + S_2\overrightarrow{u_2} + S_3\overrightarrow{u_3}$$

を求めよ.