Does Monitoring Make Food Safer?

Jason Huang

June 5, 2017

Jason Huang Health Inspection June 5, 2017 1 / 35

Motivation

 Sanitation at retail food establishments is a great public health concern but is also difficult for average consumers to enforce or observe

Jason HuangHealth InspectionJune 5, 20172 / 35

Motivation

- Sanitation at retail food establishments is a great public health concern but is also difficult for average consumers to enforce or observe
- Municipal health departments conduct regular food inspections to ensure restaurants uphold hygiene standards

Jason HuangHealth InspectionJune 5, 20172 / 35

Motivation

- Sanitation at retail food establishments is a great public health concern but is also difficult for average consumers to enforce or observe
- Municipal health departments conduct regular food inspections to ensure restaurants uphold hygiene standards
- Dearth of empirical studies that measure the efficacy of inspections on restaurant compliance
 - Inspection outcomes are endogenous interaction between inspector and restaurant behaviors

Research Questions

Jason HuangHealth InspectionJune 5, 20173 / 35

Research Questions

- Do citations from inspections incentivize restaurants to improve their sanitation practices?
 - Do restaurants shift attention and effort away from areas that they did well toward areas that got flagged?
 - How do the magnitudes of the results vary across different types of establishments (heterogenous effects)

Main Findings

- Marginal increase in the number of citations leads to improved conditions in subsequent inspections
 - Instead of focusing only on areas that they got cited, restaurants seem to improve in other areas as well
 - Limited heterogeneity based on Yelp characteristics
- More citations also reduces the probability that an establishment receives a complaint call

Road Map

Related Literature

Background

Data

Food Inspection Data

311 Call Data

Yelp Data

Inspector Specific Stringencies as Instrument

Impact of Violation Citations on Restaurant Cleanliness

Multi-Tasking

Complaint Calls

Robustness

Conclusion

1. Literature Review

Audit and Compliance

- Restaurants: Jin and Lee (2014, 2016)
- Environmental Regulation: Duflo et al (2014)
- Workplace Safety: Levine, Toffel, and Johnson (2012)
- Tax: Feinstine (1991), Kleven et al (2011), Gemmell and Ratto (2012)

Certification and Customer Reviews

- LA Letter Grades: Leslie and Jin (2003, 2009)
- NYC Letter Grades: Ho (2012), Meltzer et al (2015), Wong et al (2015)

Yelp: Kang et al (2013)

Jason Huang

- Inspection occurs at least once a year
 - During inspection, inspector cites violations, assign scores based on severity, and sum up scores
 - 67 scored violations, grouped into 8 groups

Jason HuangHealth InspectionJune 5, 20177 / 35

- Inspection occurs at least once a year
 - During inspection, inspector cites violations, assign scores based on severity, and sum up scores
 - 67 scored violations, grouped into 8 groups
- Total score is converted to letter grades based on the following cutoffs:
 - ≤ 13: A
 - \geq 14 and \leq 27: B
 - > 28: C

Jason Huang Health Inspection

- Inspection occurs at least once a year
 - During inspection, inspector cites violations, assign scores based on severity, and sum up scores
 - 67 scored violations, grouped into 8 groups
- Total score is converted to letter grades based on the following cutoffs:
 - ≤ 13: A
 - \geq 14 and \leq 27: B
 - > 28: C
- Dual Inspection: anything lower than A during initial inspection results in a second inspection within a month
 - In the meantime, post previous grade

7 / 35

Jason Huang Health Inspection June 5, 2017

- Inspection occurs at least once a year
 - During inspection, inspector cites violations, assign scores based on severity, and sum up scores
 - 67 scored violations, grouped into 8 groups
- Total score is converted to letter grades based on the following cutoffs:
 - < 13: A
 - > 14 and < 27: B
 - > 28: C
- Dual Inspection: anything lower than A during initial inspection results in a second inspection within a month
 - In the meantime, post previous grade
- The health department temporally closes a restaurant if it finds critical violations

Food Inspection Data

- Universe of all food inspections conducted in NYC (2007 2016)
- Inspection date and inspector ID
- Individual violation codes, total score, corresponding adjudication date, and modified score
- Restaurant level info: name, address, cuisine, service type, and venue type

Jason HuangHealth InspectionJune 5, 20178 / 35

NYC Food Inspection Pipeline

Jason Huang Health Inspection June 5, 2017 9 / 35

 $^{^{}m 0}$ The numbers in the parenthesis are the number of inspections in those steps $_{
m 2}$

Scores Clearly Bunch Around Grade Thresholds

10 / 35

Jason Huang Health Inspection June 5, 2017

311 Call Data

- 311 is a phone line for non-emergency municipal services also carries complaint calls to Department of Health and Mental Hygiene concerning restaurants
 - Examples of complaints: 'Rodents/Insects/Garbage', 'Bare Hands in Contact w/ Food', 'Food Contains Foreign Object', 'Food Spoiled'
- From 2010 to present
- Each complaint has an incident address and date
- Use fuzzy string matching on street address to the inspection data

 ${\sf Jason\ Huang} \qquad \qquad {\sf Health\ Inspection} \qquad \qquad {\sf June\ 5,\ 2017} \qquad {\sf 11\ /\ 35}$

Yelp Data

- Restaurants' current star ratings and review counts
- Successfully matched over 20,000 establishments

Jason HuangHealth InspectionJune 5, 201712 / 35

Outcomes of Interests from Subsequent Inspections

- Overall inspection scores
- Whether a restaurants receives an A and does not need an re-inspection
- Whether a restaurant commits critical violations that results in temporarily closure

Jason HuangHealth InspectionJune 5, 201713 / 35

Empirical Strategy

$$Y_{i,t^{\mathsf{next}}} = \beta \mathit{Score}_{i,t} + \delta_i + \tau_t + \tau_{t^{\mathsf{next}}} + \varepsilon_{it}$$

- $Y_{i,t^{next}}$: outcome from next inspection: overall score, temporary closure, getting an A
- t^{next}: time period of next inspection
- Score_{i,tnext}: inspection score from the next inspection
- τ_t : time fixed effect
- δ_i: restaurant fixed effect
- ε_{it} : two-way clustered at zipcode and inspector levels¹

¹(Cameron at el 2009)

Empirical Strategy

A challenge of OLS is that SCORE_{it} is endogenous

- If β positive, places that do poorly in the past tend to do poorly in the future
 - Restaurant FE does not fix problem if we have persistence
- If β is negative, cannot rule out mechanical mean reversion.

Jason HuangHealth InspectionJune 5, 201715 / 35

Use Inspector Assignment as Instrument

Instrument for when inspector j assigned to restaurant i

$$Z_{ij} = \frac{1}{n_j - I_{ij}} \left(\sum_{kjt \neq ijt} Y_{kjt} \right)$$

- n_i total number of inspections done by inspector j
- I_{ij} is the number of times inspector j has inspected restaurant i
- Y_{kjt} is the outcome used to calculate inspector tendencies

4□ > 4□ > 4 = > 4 = > = 90

Jason Huang Health Inspection June 5, 2017 16 / 35

Inspector Stringency is Highly Predictive of Inspection Score

$$score_{it} = \gamma Z_{it} + \delta_i + \tau_t + \varepsilon_{it}$$

where Z_{it} is the leave-out propensity of inspector assigned to restaurant i in period t.

	(1)	(2)	(3)
VARIABLES	Score	Score	Score
Z	0.961***	0.997***	1.135***
	(0.00948)	(0.00983)	(0.0162)
Observations	330,469	330,466	325,681
R-squared	0.149	0.201	0.414
Restaurant Controls	NO	YES	NO
Restaurant FE	NO	NO	YES
F Statistics	10271	10270	4908

Robust standard errors in parentheses
*** p<0.01. ** p<0.05. * p<0.1

Jason Huang Health Inspection June 5, 2017 17 / 35

¹First column consists of all inspections after 10/1/2010. The sample for the second column is reduced to inspections with non-empty zipcode, chain indicator, cuisine type, venue type, and service type. Standard errors are two-way clustered at the inspector and zipcode level.

Graphical Representation of First Stage

Jason Huang Health Inspection June 5, 2017 18 / 35

Assignment Process of Inspectors to Restaurants

- DOHMH claims that each inspector is randomly assigned to each inspection
- Implies:

$$Z_{ijt} = \beta X_i + \delta L_{i,t-1} + \varepsilon,$$

with X_i as restaurant characteristics (cuisine, service type, venue type, chain, etc) and $L_{i,t-1}$ as restaurant specific lag terms (previous scores and previous grades), $\beta = \delta = 0$.

□ > <□ > <□ > < □ > < □ > < □ >

Jason HuangHealth InspectionJune 5, 201719 / 35

Coefficients Close to 0 and Insignificant

VARIABLES	Score		Inspector Stringency		Inspector Stringency	
VARIABLES	(> 50 Inspections)	se	(> 50 Inspections)	se	(> 650 Inspections)	se
last score	0.218***	(0.00746)	-0.000440	(0.00199)	-0.00193	(0.00205)
last grade = B	1.430***	(0.131)	0.0178	(0.0628)	0.0837	(0.0683)
last grade = C	1.495***	(0.206)	-0.0494	(0.0764)	0.0240	(0.0807)
last inspector propensity	-0.298***	(0.0104)	-0.00363	(0.00491)	-0.00529	(0.00551)
chain	-3.644***	(0.179)	-0.0274	(0.0644)	-0.0300	(0.0734)
Sea Food	0.301	(0.412)	-0.0687	(0.129)	-0.0648	(0.136)
Chinese	1.588***	(0.307)	-0.0952*	(0.0510)	-0.0511	(0.0546)
Pizza/Italian	0.305**	(0.118)	-0.0893***	(0.0342)	-0.0614	(0.0384)
Coffee/Tea	-2.219***	(0.162)	-0.0421	(0.0889)	-0.0514	(0.0966)
Latin	1.534***	(0.303)	-0.0714	(0.0556)	-0.0390	(0.0583)
Spanish	1.560***	(0.261)	0.0125	(0.0615)	-0.0435	(0.0691)
Caribbean	1.542***	(0.288)	-0.0637	(0.0608)	-0.0619	(0.0544)
Sandwich	0.661**	(0.297)	-0.00916	(0.0472)	0.0180	(0.0488)
Concession Stands	-4.379***	(0.722)	0.295	(0.197)	0.209	(0.211)
Fast Food Restaurant-Food Court	0.570***	(0.187)	0.0394	(0.0881)	-0.0211	(0.0868)
Restaurant	1.453***	(0.158)	0.0449	(0.0662)	0.00343	(0.0641)
Buffet Service	2.564***	(0.365)	-0.182*	(0.107)	-0.196	(0.118)
Cater Service	-1.897***	(0.609)	-0.200	(0.190)	-0.193	(0.219)
Counter Service	-0.635***	(0.185)	0.0273	(0.0613)	0.0123	(0.0684)
Take-out Service	-1.410***	(0.185)	-0.153	(0.110)	-0.173	(0.123)
Wait Service	1.205***	(0.166)	0.0418	(0.0481)	0.0404	(0.0525)
Cafeteria Service	-3.541***	(0.500)	-0.280*	(0.156)	-0.200	(0.168)
Observations	299,174		299,174		244,099	
F Statistics	101.6		2.423		2.249	

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Jason Huang Health Inspection June 5, 2017 20 / 35

TSLS Regression Results

	(1)	(2)	(3)	(4)	(5)	(6)
VARIABLES	Score (OLS)	Score (IV)	Closure (OLS)	Closure (IV)	Grade A (OLS)	Grade Á (IV)
Score	-0.139*** (0.00492)	-0.242*** (0.0162)	-0.000565*** (7.05e-05)	-0.00101*** (0.000185)	-8.49e-05 (0.000127)	0.00222*** (0.000556)
Observations	149,831	149,831	134,365	138,674	149,831	149,831
Inspection Date FE	YES	YES	YES	YES	YES	YES
Restaurant FE	YES	YES	YES	YES	YES	YES
dependent mean	21.08	21.08	0.0154	0.0162	0.372	0.372

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Jason Huang Health Inspection June 5, 2017 21 / 35

¹Standard errors are two-way clustered at zipcode and inspector levels. Closure samples exclude inspections resulting in scores over 28 points. イロト 不倒り イヨト イヨト

Heterogenous Effects Based on Yelp Characteristics

- Might restaurants with more "exposure" or higher rating on yelp respond differently to inspections?
 - Define "exposure" as number of reviews divided by length of time in business

$$Y_{it^{next}} = \tau_t + \delta_i + \beta_1 Score_{it} + \beta_2 plus_4_i \times Score_{it} + \beta_3 high_exp_i \times Score_{it} + \beta_4 high_exp_i \times plus_4_i Score_{it} + \varepsilon_{it},$$

- plus_4_i is an indicator for whether restaurant i's current rating is at least 4
- high exposure; is whether "exposure" in top half

Jason HuangHealth InspectionJune 5, 201722 / 35

Heterogenous Effect Based on Yelp Characteristics: Result

	(1)	(2)	(3)
VARIABLES	Score	Closure	Grade A
Score	-0.244***	-0.00114***	0.00238***
	(0.0213)	(0.000230)	(0.000699)
Score X Plus_4	0.0251	0.000118	-0.00127
	(0.0217)	(0.000243)	(0.000847)
Score X High Exposure	-0.00544	-2.90e-05	0.000529*
	(0.00868)	(9.44e-05)	(0.000294)
Score X Plus 4 X High Exposure	-0.0125	-0.000247	-5.70e-06
	(0.0140)	(0.000154)	(0.000495)
Observations	86,273	86,273	86,273
			,
Inspection Date FE	YES	YES	YES
Restaurant FE	YES	YES	YES
dependent mean	20.77	0.0161	0.379

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

4D + 4A + 4B + B + 990

Health Inspection June 5, 2017 23 / 35

Multi-Dimensionality of Food Inspections

Individual Violation Codes Groped into Eight Groups:

Jason HuangHealth InspectionJune 5, 201724 / 35

Multi-dimensional 1st Stage

Instrument Construction:

$$Z_{ijg} = \frac{1}{n_j - I_{ij}} \left(\sum_{kjgt \neq ijgt} \#Cited_{ijgt} \right)$$

Jason Huang Health Inspection June 5, 2017 25 / 35

Multi-dimensional 1st Stage

Instrument Construction:

$$Z_{ijg} = \frac{1}{n_j - I_{ij}} \left(\sum_{kjgt \neq ijgt} \#Cited_{ijgt} \right)$$

1st Stage:

$$\#\mathit{Cited}_{\mathit{ijgt}} = \sum_{g' \in \mathcal{G}} \theta_{gg'} Z_{\mathit{ijg'}} + \varepsilon_{\mathit{ijgt}}$$

- #Cited_{iigt} is the number of group g violation that inspector j finds in restaurant i at time t and \mathcal{G} is the set of violation groups
- $\theta_{gg'}$: measures how inspector's propensity to find violation in group g'relates to one's probability of finding violation in group g

Jason Huang Health Inspection June 5, 2017 25 / 35

Multi-task First Stage Equations

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
VARIABLES	Facility Maintenance	Food Protection	Personal Hygiene	Food Temperature	Vermin/Garbage	Gen. Food Source	Facility Design	Crit. Food Source
Facility Maintenance	1.051***	-0.0550**	0.0115	-0.0256*	-0.0104	0.00857	0.00276	0.000821
	(0.0177)	(0.0227)	(0.0147)	(0.0132)	(0.0139)	(0.00553)	(0.00395)	(0.00139)
Food Protection	-0.00719	0.726***	-0.00429	0.0709*	-0.0911***	0.00237	-0.0105	0.00328
	(0.0372)	(0.0419)	(0.0287)	(0.0388)	(0.0284)	(0.0126)	(0.00883)	(0.00391)
Personal Hygiene	0.00395	-0.127***	0.952***	-0.00446	-0.0686***	0.00179	-0.00719*	-0.00161
	(0.0197)	(0.0199)	(0.0192)	(0.0193)	(0.0128)	(0.00524)	(0.00415)	(0.00185)
Food Temperature	0.000328	-0.0810***	-0.0890***	0.808***	-0.0638***	0.00215	-0.0150**	-0.00488***
	(0.0236)	(0.0297)	(0.0179)	(0.0226)	(0.0182)	(0.00836)	(0.00609)	(0.00181)
Vermin/Garbage	0.0116	0.121**	-0.118***	-0.186***	1.011***	-0.0250	-0.0274**	-0.00804*
	(0.0486)	(0.0562)	(0.0419)	(0.0601)	(0.0383)	(0.0178)	(0.0136)	(0.00466)
Gen. Food Source	-0.00784	-0.0505	-0.0105	-0.0591	-0.0410	0.959***	-0.0233*	0.00318
	(0.0456)	(0.0451)	(0.0393)	(0.0407)	(0.0281)	(0.0220)	(0.0129)	(0.00365)
Facility Design	-0.0288	-0.112	-0.0860	0.0153	-0.116*	-0.0878**	0.845***	-0.0102
	(0.0915)	(0.130)	(0.0950)	(0.0930)	(0.0680)	(0.0347)	(0.0256)	(0.0105)
Crit. Food Source	-0.0660	0.0496	-0.487*	-0.115	0.145	-0.0241	-0.0630	0.921***
	(0.333)	(0.440)	(0.260)	(0.329)	(0.244)	(0.0868)	(0.0686)	(0.0454)
Observations	149,831	149,831	149,831	149,831	149,831	149,831	149,831	149,831
dependent mean	1.013	0.840	0.863	0.671	0.518	0.135	0.0827	0.0149

obust standard errors in parenthes

*** p<0.01, ** p<0.05, * p<0.1

 ${\sf Jason\ Huang} \qquad \qquad {\sf Health\ Inspection} \qquad \qquad {\sf June\ 5,\ 2017} \qquad 26\ /\ 35$

Multi-dimensional 2nd Stage

$$\#\textit{Cited}_{\textit{igt}^{\textit{next}}} = \sum_{\textit{g'} \in \mathcal{G}} \beta_{\textit{gg'}} \#\textit{Cited}_{\textit{igt}} + \delta_{\textit{i}} + \tau_{\textit{t}} + \varepsilon_{\textit{igt}},$$

where

- #Cited_{igt}: number of group g violations that restaurant i receives on date t
- τ_t: date fixed effect
- δ_i: restaurant fixed effect

Jason Huang Health Inspection June 5, 2017 27 / 35

How Current Citations Affect Subsequent Citations

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
VARIABLES	Facility Maintenance	Food Protection	Personal Hygiene	Food Temperature	Vermin/Garbage	Gen. Food Source	Facility Design	Crit. Food Source
Facility Maintenance	-0.236***	0.00733	0.000184	-0.00506	-0.000922	-0.00159	0.000981	-0.000509
	(0.00961)	(0.0119)	(0.0107)	(0.00944)	(0.00766)	(0.00380)	(0.00295)	(0.00140)
Food Protection	-0.0776**	-0.177***	-0.00731	-0.0142	-0.0397*	-0.0100	0.00372	0.00780*
	(0.0378)	(0.0306)	(0.0410)	(0.0253)	(0.0227)	(0.0113)	(0.0108)	(0.00400)
Personal Hygiene	0.0222	-0.00484	-0.189***	-0.00771	-0.000551	0.00458	0.00129	0.00217
	(0.0156)	(0.0103)	(0.0148)	(0.00957)	(0.00892)	(0.00489)	(0.00320)	(0.00173)
Food Temperature	0.0148	-0.0261	0.0133	-0.214***	-0.00923	0.00613	-0.00622	-0.00153
	(0.0216)	(0.0163)	(0.0162)	(0.0134)	(0.0128)	(0.00722)	(0.00573)	(0.00243)
Vermin/Garbage	0.132***	-0.0784*	0.00134	0.0446	-0.174***	0.0128	-0.0105	-0.00126
	(0.0439)	(0.0404)	(0.0544)	(0.0318)	(0.0283)	(0.0159)	(0.0138)	(0.00404)
Gen. Food Source	-0.0114	-0.00139	-0.0456	-0.0103	-0.0395*	-0.191***	-0.0147	-0.000895
	(0.0291)	(0.0348)	(0.0374)	(0.0334)	(0.0202)	(0.0199)	(0.00933)	(0.00395)
Facility Design	0.0265	-0.195**	-0.00742	0.0168	-0.0235	0.00421	-0.199***	0.0169*
	(0.0787)	(0.0925)	(0.0776)	(0.0551)	(0.0612)	(0.0296)	(0.0239)	(0.00977)
Crit. Food Source	0.274	-0.284	0.279	0.125	-0.0346	-0.0233	-0.0643	-0.185***
	(0.248)	(0.207)	(0.244)	(0.195)	(0.142)	(0.0848)	(0.0682)	(0.0298)
Observations	149,831	149,829	149,831	149,829	149,829	149,831	149,829	149,831
Dependent mean	0.989	0.802	0.842	0.645	0.503	0.125	0.0694	0.0126

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Jason Huang **Health Inspection** June 5, 2017 28 / 35

¹Standard errors are two-way clustered at zipcode and inspector levels ()

Impact of Inspection Results on Complaint Calls

Sample Construction

- Convert from inspection level data to a restaurant-month level panel data
- When an inspection occurs in the middle of a month:
 - Consider only calls that were made in between the latest event and the end of the month
 - Calculate a weight variable as the fraction of days since the event to the end of the month

Jason Huang Health Inspection June 5, 2017 29 / 35

Impact of Restaurant Score on Complaint Call Specification

• 2nd Stage

$$Pr(Called_{it}) = \delta_i + \tau_t + \beta_0 Score_{it} + \beta_1 Month_Since_Inspection_{it} + \beta_2 Month_Since_Inspection_{it} \times Score_i t + \varepsilon_{it}$$

- β_3 tests whether the effect of the inspection score changes across time
- Instrument Score_{it} with inspector stringency

(B) (B) (B) (B) (B) (C)

Jason Huang Health Inspection June 5, 2017 30 / 35

Results

	(1)	(2)	(3)	(4)	(5)	(6)
VARIABLES	Prob Call (OLS)	Prob Call (OLS)	Prob Call (OLS)	Prob Call (IV)	Prob Call (IV)	Prob Call (IV)
SCORE	-4.67e-05*** (1.53e-05)	-6.95e-06 (1.57e-05)	-9.01e-05*** (1.78e-05)	-8.98e-05* (4.77e-05)	-9.18e-05* (4.99e-05)	-6.21e-05 (6.17e-05)
Months Since Inspection	,	0.000540*** (3.72e-05)	-1.81e-05 (6.61e-05)	,	0.000498*** (4.33e-05)	0.000735* (0.000435)
Months Since Inspection \times SCORE		(0.720 00)	5.02e-05*** (5.80e-06)		(1.550 55)	-2.16e-05 (3.98e-05)
Observations	1,223,207	1,223,207	1,223,207	1,223,207	1,223,207	1,223,207
Year-Month FE	YES	YES	YES	YES	YES	YES
Restaurant FE	YES	YES	YES	YES	YES	YES
dependent mean	0.0145	0.0145	0.0145	0.0145	0.0145	0.0145

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Jason HuangHealth InspectionJune 5, 201731 / 35

Concerns of Empirical Strategy

Exclusion Restriction

- Inspectors adjust their grading, given the identities of the previous inspectors
 - Unlikely, given geographically dispersed and random assignment, inspectors need to mentally track the tendencies of hundreds of inspectors
- Inspectors affect restaurant outcomes through channels other than the inspections
- The causal channel of inspection results is through its influence on the subsequent inspectors' behaviors

Jason Huang Health Inspection June 5, 2017 32 / 35

Concerns of Empirical Strategy

Exclusion Restriction

- Inspectors adjust their grading, given the identities of the previous inspectors
 - Unlikely, given geographically dispersed and random assignment, inspectors need to mentally track the tendencies of hundreds of inspectors
- Inspectors affect restaurant outcomes through channels other than the inspections
- The causal channel of inspection results is through its influence on the subsequent inspectors' behaviors

Monotonicity condition

The inspection score is strictly increasing in inspector stringency

June 5, 2017 32 / 35

Monotonicity Tests

- Because inspections are multi-dimensional, monotonicity might not hold
 - Ex. A frozen yogurt establishment may get a better score from a more stringent inspector if that inspector cares only about hot food being kept above a certain temperature
- Two empirical implications:
 - Test 1: Stringent inspectors should be strict for different types of restaurants
 - Run first stage for various sub-samples (baseline sample)
 - Test 2: Inspectors who are strict for one type of restaurants should be strict for other types
 - Recalculate inspector stringency for each sub-sample with inspection results outside of that sub-sample (inverse-sample)

Jason Huang Health Inspection June 5, 2017

Monotonicity Test Results

VARIABLES 1st Quartile 2nd Quartile 3nd Quartile 4th Quartile VARIABLES 1st Quartile 2nd Quartile 3nd Quartile 4th Quartil	(4)
VARIABLES 1st Quartile 2nd Quartile 3nd Quartile 4th Quartile VARIABLES 1st Quartile 2nd Quartile 3nd Quartile 4th	
ANTINDEED THE AND AND THE AND	Quartile
Estimate 0.407*** 0.681*** 0.852*** 1.231*** Estimate 0.369*** 0.612*** 0.779*** 1.000	609***
(0.0270) (0.0240) (0.0213) (0.0256) (0.0340) (0.0247) (0.0254) (0.0254)	0.0674)
Observations 80,172 81,817 81,901 86,433 Observations 75,188 81,328 81,481 8	85,851
Robust standard errors in parentheses Robust standard errors in parentheses	
*** p<0.01, ** p<0.05, * p<0.1	
Baseline-Sample Inverse-Sample	
(1) (2) (3) (4) (5) (1) (2) (3) (4)	(5)
VARIABLES Manhattan Bronx Brooklyn Queens Staten-Isl VARIABLES Manhattan Bronx Brooklyn Queens	Staten-Is.
Estimate 1.005*** 1.082*** 0.985*** 0.969*** 0.944*** Estimate 0.990*** 1.082*** 0.954*** 0.934***	0.938***
(0.0156) (0.0275) (0.0198) (0.0206) (0.0286) (0.0269) (0.0344) (0.0238) (0.0248)	(0.0308)
Observations 131,900 31,010 79,664 77,186 10,507 Observations 128,977 30,334 76,973 74,933	10,468
Robust standard errors in parentheses Robust standard errors in parentheses	
*** p<0.01, ** p<0.05, * p<0.1	
Baseline-Sample Inverse-Sample	
(1) (2) (3) (4) (5) (1) (2) (3) (4)	(5)
VARIABLES American Pizza/Italian Chinese Coffee Japanese VARIABLES American Pizza/Italian Chinese Coffee	Japanese
Estimate 0.957*** 0.994*** 1.086*** 0.796*** 1.096*** Estimate 0.929*** 0.990*** 1.070*** 0.782***	
(0.0241) (0.0180) (0.0402) (0.0354) (0.0262) (0.0298) (0.0199) (0.0449) (0.0363)	()
Observations 75,330 38,432 38,785 13,303 10,915 Observations 74,954 38,312 38,424 13,292	10,910
Robust standard errors in parentheses Robust standard errors in parentheses	
*** p<0.01, ** p<0.05, * p<0.1	
Baseline-Sample Inverse-Sample	
(1) (2) (3) (1) (2) (3)	
VARIABLES Counter Service Takeout Service Wait Service VARIABLES Counter Service Takeout Service Wait Service	e
Estimate 1.055*** 0.894*** 1.127*** Estimate 1.064*** 0.810*** 1.160***	
(0.0177) (0.0140) (0.0178) (0.0269) (0.0181) (0.0236)	
Observations 127,981 127,365 73,381 Observations 126,011 124,867 72,645	_
Robust standard errors in parentheses Robust standard errors in parentheses	
*** p<0.01, ** p<0.05, * p<0.1	

¹ To reduce noise, only inspections conducted by inspectors who have done at least 50 inspections remain in the regressions.

Health Inspection Jason Huang June 5, 2017 34 / 35

Conclusion and Discussion

- Marginally more citations leads to improved subsequent inspection results
 - Restaurants improve the most in the areas in which they received citations
 - Some complementarity in cleanliness (ex. better refrigerator leads to few food temperature and food protection violations).
- Customers also perceive the improvement in sanitation by reducing complaint calls
 - \bullet One standard deviation increase in inspection score decreases the probability of complaint call by 10%

Jason HuangHealth InspectionJune 5, 201735 / 35