PHY294 Term Test #1 (February 9th 2015)

- 75 minutes (closed book, no calculator, one single-sided page of hand-written notes is allowed)
- All the questions are equally weighted (except Extra Credit question #5)
- Note the helpful identities and integrals on the back page
- 1. Consider a 1D simple harmonic oscillator of mass m and spring constant k:
- (a) Use the uncertainty principle to show that the particle's minimum energy is $\sim \hbar \omega_0/2$, where $\omega_0 = (k/m)^{1/2}$.
- (b) Let this oscillator be in the ground state. Show that although it is not an eigenstate of either p^2 or x^2 , it is an eigenstate of the combined operator $p^2/2m + kx^2/2$, consistent with energy being well-defined. Note: the ground-state wave function $\psi(x) = A \exp(-ax^2/2)$, where $A = (a/\pi)^{1/4}$ and $a = (mk/\hbar^2)^{1/2}$.
- **2.** A particle of mass m is in a 1D infinite-potential square well between x = -L and x = L:
- (a) Derive $\psi(x)$ and sketch $|\psi(x)|^2$ for the three lowest-energy eigenstates, and determine these energies.
- **(b)** Initially the particle is in the lowest-energy state. Suddenly the well is tripled in width symmetrically about x=0. Calculate the probability of finding the particle in the 3rd-lowest state of the widened well.
- **3.** A flux of electrons with energy E strikes a potential barrier as shown below (Note: $3V_0 > E > V_0$):
- (a) Write down the proper form of the wave function for each region (I, II, III), in terms of: E, V_0, \hbar, L, m_e .
- **(b)** State all the boundary conditions, and express (need not solve) the transmission probability T in terms of: E, V_0, \hbar, L, m_e and the coefficients of the wave functions.

- **4.** Consider two examples of electrons in motion:
- (a) A fast-moving electron whose DeBroglie wavelength is equal to its Compton wavelength $\lambda_c = h/m_e c$. What are the velocity and kinetic energy of this electron? (Give your answers in terms of: h, m_e , c.)
- **(b)** A slow-moving wave packet at t=0 is represented by $\psi(x) = A \exp[(-x^2/2\sigma^2) + i(p_0x/\hbar)]$; A, σ, p_0 are constants. Show that the probability current $j(x) = |\psi(x)|^2 p_0/m_e$, and the expectation value of momentum $\langle p \rangle = p_0$. Note: $j(x) = -\frac{i\hbar}{2m} \left(\psi^* \frac{d\psi}{dx} \psi \frac{d\psi^*}{dx} \right)$
- 5. Extra Credit (half-weight):

In Question 3(b), if $E = 3V_0$, solve for the reflection probability R in terms of: V_0 , \hbar , L, m_e .

Identities and Integrals:

$$\sin 2\theta = 2 \cdot \sin \theta \cdot \cos \theta$$
$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$$

$$\int_{0}^{\pi} \sin mx \sin nx \, dx = \begin{cases} 0 & \text{if } m \neq n \\ \frac{\pi}{2} & \text{if } m = n \end{cases} m, n \text{ integers}$$

$$\int_{0}^{\pi} \cos mx \cos nx \, dx = \begin{cases} 0 & \text{if } m \neq n \\ \frac{\pi}{2} & \text{if } m = n \end{cases} m, n \text{ integers}$$

$$\int_{-\infty}^{\infty} e^{-ax^{2}} \, dx = \sqrt{\frac{\pi}{a}} \quad (a > 0)$$

$$\int_{-\infty}^{\infty} xe^{-a(x-b)^{2}} \, dx = b\sqrt{\frac{\pi}{a}}$$

$$\int_{-\infty}^{\infty} xe^{-a(x-b)^{2}} \, dx = b\sqrt{\frac{\pi}{a}}$$

$$\int_{-\infty}^{\infty} xe^{-a(x-b)^{2}} \, dx = b\sqrt{\frac{\pi}{a}}$$