Unit-1 Important Formula

SUMMARY

• Measurement of large distance (Parallax Method)

equation
$$D = \frac{b}{a}$$
 where

D = distance of the planet from the earth.

where

 θ = parallax angle.

b = distance between two place of observation.

• Measurement of the size of a planet or a star.

equation
$$\alpha = \frac{d}{D}$$

where

D = distance of planet from the earth,

d = diameter of planet.

 α = angular diameter of planet.

• Measurement of mass

The gravitational force on an object, of mass m, is called the weight of the object.

$$1 \text{ amu} = 1.66 \times 10^{27} \text{ kg} = 1 \text{ u}$$

• Estimation of Error

then
$$\bar{a} = \frac{a_1 + a_2 + \dots + a_n}{n} = \frac{1}{n} \sum_{i=1}^{n} a_i$$

$$\Delta a_1 = \overline{a} - a_1$$
, $\Delta a_2 = \overline{a} - a_2$, $\Delta a_n = \overline{a} - a_n$

 Δa_2 , Δa_2 Δa_n are called absolute error

Average absolute error

$$\Delta a = \frac{\left|\Delta a_1\right| + \left|\Delta a_2\right| + \dots + \left|\Delta a_n\right|}{n} = \frac{1}{n} \sum_{i=1}^n a_i$$

- Fractional Error $\delta_a = \frac{\Delta \overline{a}}{a}$
- Percentage Error

Percentage error =
$$\delta a \times 100 \% = \frac{\Delta \overline{a}}{a} \times 100 \%$$

• Combination of errors

Addition
$$Z = A + B \implies \Delta Z = \Delta A + \Delta B$$

Substraction
$$Z = A - B \implies \Delta Z = \Delta A + \Delta B$$

Division
$$Z = \frac{A}{B} \implies \frac{\Delta Z}{Z} = \frac{\Delta A}{A} + \frac{\Delta B}{B}$$

Multiplication
$$Z = A \cdot B \Rightarrow \frac{\Delta Z}{Z} = \frac{\Delta A}{A} + \frac{\Delta B}{B}$$

Power
$$Z = A^n \implies \frac{\Delta Z}{Z} = n \frac{\Delta A}{A}$$

- Rule for determining number of significant figures
 - All the non zero digits are significant
 - All the zeros between two non zero digits are significant no matter where the decimal point is it at all.
 - If the number is less then 1 then zeros on the right of decimal point but to the left of the first non zero digit are not significant.
 - In a number without decimal point the zeros on the right side of the last non zero digit are not significant.
- Dimensions and Dimensional formulas.
 - The expression of a physical quantity with appropriate powers of M, L, T, K, A etc is called the dimensional formula of that physical quantity.
 - The power of exponents of M, L, T, K, A are called dimensions of that quantity.
- Some important units of distance

1 fermi (fm) =
$$10^{-15}$$
 m
1 $\overset{\circ}{A} = 10^{-10}$ m
1 AU = 1.496×10^{11} m

1 light year = 9.46×10^{15} m

1 par sec = 3.08×10^{16} m

MCQ Questions

For the answer of the following questions choose the correct alternative from among the given ones.

Pnys	ics - scope and Excited	ment				
	- Physics, Technolog	gy and society.				
	- Fundamental source	ces of nature.				
	- Nature of Physical	l laws				
1.	Physics is one of the	basic disciplines in the	category of	sciences.		
	(A) Astro	(B) Natural	(C) Space	(D) Genetic		
2.	'Physics' comes from	a word mea	ning nature			
	(A) Hindi	(B) German	(C) Greek	(D) Sanskrit		
3.	Mechanics and newto	on's motion laws as	laws dependad.			
	(a) liner momentum		(b) Energy conservation			
	(c) Gravitational		(d) Charge conservati	on		
4.	What is the approxin	nate value of the Radio	us of a nucleus?			
	(a) 10^{-14} m	(b) 10^{-31} m		(d) 10^{-15} m		
5.	The scope for ratio of	of length is in order to				
	(a) 10^{-40}	(b) 10^{40}	(c) 10^{20}	(d) 10^{30}		
6.	The range of time sc	The range of time scale is about				
	(a) 10^{-10} sec to 10^{26} sec	(c) 10^{-15} sec to 10^{15} sec				
	(b) $10^{-22} \sec to 10^{18} \sec$	(d) 10^{20} sec to 10^{25} sec				
7.	Birth, evolution and	Birth, evolution and death of stars etc. are studid in branch of physics known as				
	(a) Thermodynamics	(c) Astro physics				
	(b) Quantam physics	(d) Electronics				
8.	is a branch	of physics in wich hea	•	-		
	(a) optics	(b) Thermodynamics	(c) Mechanics	(d) Quantom physics		
9.	What is full name of					
	(a) Large hadron coll		(c) Large heavy cullent			
1.0	(b) Large hadron cull		(d) Light heavy cullent			
10.	The range of mass va					
	(a) 10^{-15} kg to 10^{26} kg	(b) 10^{-20} kg to 10^{28} kg	(c) 10^{-30} kg to 10^{55} kg	(d) 10^{-20} kg to 10^{20} kg		
11.	Length of Galaxies is	s in order of				
	(a) 10^{26} m	(b) 10^{36} m	(c) 10^{28} m	(d) 10^{-14} m		
12.	The approximate value	ue of charge of an elect	ron is			
	(a) 10^{-18} c	(b) 10^{+15} c	(c) 10^{-38} c	(d) 10^{-19} c		
13.	The universe is made	e up of				
	(a) matter only	(b) radiation only	(c) vaccum	(d) matter and radiation		
			$\overline{}$			

14. Nucleus of molecule is made up of wich fundamental constituents?				
	(a) only Electron		(c) Electron and Proton	
	(b) Proton and neutron		(d) Electron and neutro	n
15.	In the development o	f nenotechnology and b	iotechnology h	ave played a vital role.
	(a) ECG	(b) ESR	(c) NMR	(d) AFM
16.	What is full form of	AFM ?		
	(a) Atomatic force mi	oroscope	(c) Atomatic fire micros	scope
	(b) Atomic force mirr	or	(d) Atomic force micros	scope
17.	What is full name of	ECG?		
	(a) Electron cardiograph		(c) Electron colour gran	n
	(b) Electro cardiograp	oh .	(d) Electric colour grap	h
18.	What is full name of	ESR ?		
	(a) Electric space Ra	dar	(c) Electron spin Reson	ance
	(b) Electron space Ra	ange	(d) Electric spin Resona	ance
19.	What is full name of NMR ?			
	(a) Nuclear magnetic Resonance		(c) Nuclear mega Radar	
	(b) Neutron mega Resonance		(d) Nuclear micro Radar	
20.	deals with	electric charge and mag	natic phenomenna	
	(a) Dynamics	(b) Electro dynamic	(c) Themodynamic	(d) Mechanis
21.	At present state, there	e are fundame	ental forces in nature.	
	(a) six	(b) four	(c) two	(d) five
22.	When charges are at rest the force is given by law.			
	(a) coulomb's	(b) Newton's	(c) Ampere's	(d) Faraday's
23.	The force is masses.	is the force of mutual att	raction between any two	objects by virtue of their
	(a) Weak	(b) Electromagnetic	(c) Nuclear	(d) Gravitational
24.	The force i	is the strongest of all fu	ndamental forces.	
	(a) nuclear	(b) Electromagnetic	(c) Gravitational	(d) Weak nuclear
25.	Electromagnetic force	is		
	(a) attractive force on	aly	(c) repulsive force only	
	(b) attractive and repulsive force		(d) a short range force	
26.	Which of the following	ng force binds The part	icle in the nucleons?	
	(a) Electromagnetic f	force (b) Strong force	(c) Gravitational force	(d) Weak force
27.	Electromagnetic force	e is range force	ee	
	(a) Short	(b) long	(c) medium	(d) very short
28.	Quarks - Quarks for	ce is produced between	1 -	
	(a) Proton - neutron	(b) proton - proton	(c) neutron - neutron	(d) (a),(b), (c) are true

29.	Which partical are	emitted during the β de	ecay from the nucleus?	y from the nucleus ?		
	(a) neutron and proton		(c) electron and neut	rino		
	(b) electron and neutron (d) electron			con		
30.	and	law's are called in	nverse square law			
	(a) Gravitation and weak		(c) Coulomb's and st	trong		
	(b) Gravitation and	coulomb's	(d) Electromagnetic a	and coulomb's		
31.	Which property of	object is responsible for	r the electric force ?			
	(a) electric charge	(b) pressure	(c) volume	(d) mass		
32.	Which property of o	object is responsible for	the Gravitational force.			
	(a) electric charge	(b) mass	(c) pressure	(d) volume		
33.	How much times is	the strong nuclear force	e stronger then weak nu	uclear force ?		
	(a) 10^{13}	(b) 10^2	(c) 10^{-13}	(d) 10^{-2}		
34.	How much times is	the strong nuclear force	e stronger then electro i	magnatic force ?		
	(a) 10^{13}	(b) 10^2	(c) 10^{-13}	(d) 10^{-2}		
35.	How much times is the electromagnatic force stronger then Gravitational force					
	(a) 10^{13}	(b) 10^{-13}	(c) 10^{36}	(d) 10^{-36}		
36.	Who has unified ele	ctromagnetism and opti	cs ?			
	(a) Newton	(b) Maxwell	(c) Coulomb	(d) Faraday		
37.	Who has unified terrestrial and celestial domains under a common law of Gravitational					
	(a) Newton	(b) Maxwell	(c) Coulomb	(d) Farady		
38.	The weak nuclear force, Gravitational force and electromagnatic force are A, B and C Respectively then					
	(a) $C > A > B$	(b) $C > A < B$	(c) $B > A > C$	(d) $C < A < B$		
39.	Range of weak nuclear force is					
	(a) 10^{-15} km	(b) 10^{-14} km	(c) 10^{-18} km	(d) 10^{-20} km		
40.	Strong nuclear force	e close not exist on				
	(a) Proton	(b) nuclear	(c) neutron	(d) electron		
41.	of charge are double		_	nce is F ₁ Now magnitude ce acting between them is		
	(a) 16 : 1	(b) 1: 16	(c) 1: 1	(d) 1: 8		
42.				of the system is constant of the system is		
	(a) total energy, angu	ılarmomentum	(c) linermomentam, es	(c) linermomentam, energy		
	(b) liner momentam,	angularmomentum	(d) angular and linear	r momentam		

43.	Space is homogeneo	us and isotropic so		law of servation is	the result of this	
	(a) linear and angular	momentum		(c) energy and charge		
	(b) angular and linear momentum			(d) charge and energy		
44.	Time is homogeneou	s so law	of co	nserbation is the result of	of this	
	(a) angular momentur	n (b) linear moment	um	(c) energy	(d) charge	
45.	The basic reason bel	nind existance of wl	nich c	onseration of law is still	not known?	
	(a) angular momentur	n (c) energy				
	(b) linear momentum	(d) charge				
46.	The Gravitational for	ce between any two	body	charges with distance as I	$F_{\alpha} r^{n}$ where $n = \dots$	
	(a) -1	(b) 2		(c) -3	(d) -2	
47.	Match the column					
	Column - I			Column - II		
	(1) space is isotropic		(P)	conservation of linear n	nomentum	
	(2) space is homogeneous		(Q)	conservation of energy		
	(3) Time is homogeneous		(R)	conservation of charge	still not known	
	(4) Time is isotropic		(S)	conservation of angular	momentam	
	(a) 1- (S), 2-(P), 3-	(R), 4-(Q)		(c) 1-(P), 2-(S), 3-(R),	4-(Q)	
(b) 1-(S), 2-(P), 3-(Q), 4-(R)			(d) 1-(R), 2-(Q), 3-(P)	, 4-(S)		
	Measurement ar	nd system of u	nits			
•	Units of physical quantities, system of units, SI system of units, fundamental or Base units. precision in measurement. Error in measurement and significant figures.					
•	Dimensions and Dime	ensional formula, Di	mensi	ional analysis and its uses		
48.	Which of the followi	ng unit is not of ler	ngth?			
	(a) light year	(b) fermi		(c) A	(d) becquerel	
49.	becquerel is a	unit and its syr	nbol	is		
	(a) supplementary, Bo	q (b) fundamental, I	3q	(c) derived, Bq	(d) derived, Bv	
50.	How many fundamen	ntal units are there	in SI	system ?		
	(a) 5	(b) 7		(c) 6	(d) 4	
51.	Which of the following	ng physical quantity	is fur	ndamental?		
	(a) viscosity	(b) velocity		(c) force	(d) time	
52.	Poise is the unit of					
	(a) viscosity	(b) velocity		(c) force	(d) time	
53.	Which unit of physic	al quantity remains	same	for all unit system ?		
	(a) meter	(b) second		(c) ampere	(d) kilogram	

54.	Which of the following	ng system of unit is not	based on only units of n	nass	length and time.
	(a) SI	(b) MKS	(c) CGS	(d)	FPS
55.	Which of the following	g symbol of unit does not	follow practical norms for	r the	use of SI system?
	(a) Kg	(b) kg.	(c) k	(d)	A
56.	Why derive luminous	intensity simbol form o	f SI system ?		
	(a) cd	(b) Cd	(c) cd.	(d)	CD
57.	What is the ratio of	10 micron to 1 nenome	eter ?		
	(a) 10^4	(b) 10^3	(c) 10^{16}	(d)	10^{15}
58.	$\frac{1 \text{ femtometer}}{100 \text{ nenometer}} =$				
	` '	(b) 10^{-8}	(c) 10^{24}		10^{-24}
59.	If value of gravitat	tional constant in MK	$S_{is} = 6.67 \times 10^{-11} \frac{Nm^2}{kg^2}$	then	value of G in
	$CGS = \dots \frac{dy}{dx}$	$\frac{\text{yn} - \text{cm}^2}{\text{gm}^2}$	ĸg		
	(a) 6.67×10^{-9}	(b) 6.67×10^{-7}	(c) 6.67×10^{-8}	(d)	6.67×10^{-5}
60.	A partical has an acc	eleration of 72 km/min ²	2 find acceleration in SI s	syste	m.
	(a) $0.5 \mathrm{m/s^2}$	(b) 30 m/s^2	(c) $18 \mathrm{m/s^2}$	(d)	20 m/s^2
61.	950 dyne =	newton			
	(a) 9.5×10^{-3}	(b) 95×10^{-5}	(c) 950×10^{-7}	(d)	9.5×10^{-4}
62.	100 picometer =				
	$(a)10^{-8}$ cm	(b) 10^{-7} m	(c) 10×10 ⁻⁶ μm	(d)	$10\times10^{-8}~\mu m$
63.	100 walt hour =	joule.			
	(a) $3.6 \times 10^5 \text{ J}$	(b) $3.6 \times 10^6 \text{ J}$	(c) $36 \times 10^5 \text{ J}$	(d)	$36 \times 10^6 \text{ J}$
64.	If x meter is a unit of	of length then area of 1	$m^2 = \dots$		
	(a) <i>x</i>	(b) x^2	(c) x^{-2}		(d) x^{-1}
65.	1 Mev =	ev			
	(a) 10^7	(b) 10^4	(c) 10^5	(d)	10^{6}
66.	Wave length of light	radiation 0.000015 m =			
	(a) 15 micron	(b) 1.5 micron	(c) 150 micron	(d)	0.15 micron
67.	$1^0 = \dots$				
	(a) 600"	(b) 3600"	(c) 180"	(d)	3600'
68.	1 rad =		(180)		$(\pi)^0$
	(a) 180°	(b) 3.14°	(c) $\left(\frac{180}{\pi}\right)^0$	(d)	$\left(\frac{\pi}{180}\right)^0$
			_		

69.	1 g = amu	1			
	(a) 6.02×10^{23}	(b) 6.02×10^{-23}	(c) 1.66×10^{-27} (d) 1.66×10^{-27}	10^{27}	
70.	1 parsec =				
	(a) 10^{-15} m	(b) 1.496×10^{11} m	(c) 1.496×10^{15} m	(d) 3.08×10^{16} m	
71.	Which of the following	ng unit does not represe	ent the unit of power?		
	(a) ampere/volt	(c) $(ampere)^2 \times ohm$			
	(c) joule/second	(d) ampere \times volt			
72.	Write the unit of ang	ular acceleration in the S	SI system.		
	(a) N.Kg	(b) $\operatorname{rad} / (\operatorname{sec})^2$	(c) m/sec	(d) N/kg	
73.	unit of universal gravi	tational constant is			
	(a) kg m sec ⁻¹	(b) N m ⁻¹ sec	(c) $N m^2 kg^{-2}$	(d) $N m kg^{-1}$	
74.	The unit of stefen Bo	oltzman constant (σ) is .			
	(a) $w^2 m^{-2} k^{-1}$	(b) $w m^2 k^{-3}$	(c) $w m^{-2} k^4$	(d) $w m^{-2} k^{-4}$	
75.	Unit of momentum pl	nysical quantity?			
	(a) newton - second	(b) newton/second	(c) Jule	(d) Jule/second	
76.	Light year is a unit of	f			
	(a) Mass	(b) volume	(c) density	(d) Distance	
77.	Joule/seed is the unit	of			
	(a) Work	(b) angular momentum	(c) Pressure	(d) Energy	
78.	The SI unit of mome	ntum is			
	(a) $kg \times newton$	(b) $kg m^{-2}s^2$	(c) $kg m^{-1}$	(d) kg ms ⁻¹	
79.	Volt/meter is the unit of				
	(a) Work	(b) viscosity	(c) Electric fild intensity	(d) velosity	
80.	The force F is represented by equation $F = P\ell^{-1} + Q\ell$, where ℓ is the length. The unit of P is same as that of				
	(a) Surface tension	(b) velocity	(c) force	(d) momentum	
81.	Write the unit of surface tension in SI system.				
	(a) $\frac{N}{m^2}$	(b) $\frac{N}{m}$	(c) $\frac{\text{dyne}}{\text{cm}^2}$	(d) $\frac{\text{dyne}}{\text{cm}}$	
82.	Which physical quant	tity has unit of pascal -	secod?		
	(a) Velocity	(b) viscocity	(c) energy (d) of	coefficient of viscocity	
83.	Which physical quant	ity has unit of joule - s	econd?		
	(a) velocity	(b) plank's constant	(c) energy	(d) vescocity	
			_		

84.	What is the least count of vernier callipers ?			
	(a) 10^{-4} m	(b) 10^{-5} m	(c) 10^{-2} m	(d) 10^{-3} m
85.	What is the least cou	nt of screw gauge?		
	(a) 10^{-4} m	(b) 10^{-5} m	(c) 10^{-2} m	(d) 10^{-6} m
86.	For measurement of a	stronomical distance	is used.	
	. ,	(b) spherometer	` ,	(d) indirect method
87.	Which mictoscope is 4000 A ^o ?	used to measure the di	mension of particle havin	g dimension less than
	(a) electron microsco	pe (b) simple microsco	pe (c) optical microscop	e (d) none of above
88.	1	e electron behave like		
0.0	(a) charge	(b) mass	(c) particles	(d) wave
89.	e	f light is used in an opt	•	(1) : 11
00	(a) radiowave	(b) X - ray	(c) infrared	(d) visible
90.	cm what will be solid	_	about the center is 0.25n	nr naving diameter 30
	(a) $4 \times 10^{-1} \text{ sr}$	(b) 1×10^3 sr	(c) 10^{-1} sr	(d) $5 \times 10^{-1} \text{ sr}$
91.	subtended at the plane	et by the two directions	y opposite point A and B s of observations is 1.8°.	Given the diameter of
	the earth to be about	$1.2/6 \times 10^{7} \mathrm{m}$. What Wi	ll be distance of the plan	et from the earth?
	(a) 40.06×10^8 m	(b) 4.06×10^8 m	(c) 400.6×10^{13} m	(d) 11×10^8 m
92.	Find the distance at v	which 4 AU would subt	tend an angle of exactly	ı" of arc.
	$[1AU=1.496 \times 10^{11} \text{m}, 1]$	$'=4.85\times 10^{16} \text{ rad}$		
	(a) 1.123×10^5 m	(b) 11.23×10^5 m	(c) 1.123×10^{17} m	(d) 11.23×10^{17} m
93.	The percentage error	in the distance 100 ± 5	cm is	
	(a) 5 %	(b) 6%	(c) 8 %	(d) 20 %
94.	In an experiment to determine the density of a cube the percentage error in the measurement of mass is 0.25 % and the percentage error in the measurement of length is 0.50 % what will be the percentage error in the determination of its density?			
	(a) 2.75 %	(b) 1.75 %	(c) 0.75 %	(d) 1.25 %
95.		al error in A is		
	U	(b) $\frac{\Delta b}{b}$		(d) $(\Delta b)^4$
96.	If $P = \frac{A^2B}{C^3}$ where per	rcentage error in A, B	and C are respectively ±	$2\% \pm 3\%$ and $\pm 5\%$ then
	total percentage error	-		
	(a)18 %	(b) 14 %	(c) 21 %	(d) 12 %

10

97.	97. In the experiment of simple pendulum error in length of pendulum (ℓ) is 5 % and the is 3 % then find percentage error in measurement of periodic time for pendulum				
	(a) 4.2 %	(b) 1.2 %	(c) 2 %	(d) 4 %	
98.	Acceleration due to gr	ravity is given by $g = \frac{GM}{R^2}$	what is the equation of the	e fractional error $\Delta g/g$	
	in measurement of gr	ravity g? [G & M cons	stant]		
	(a) $-\frac{\Delta R}{R}$	(b) $2\frac{\Delta R}{R}$	(c) $-2\frac{\Delta R}{R}$ m is given by $T = 2\pi \sqrt{\frac{\ell}{g}}$ v	(d) $\frac{1}{2} \frac{\Delta R}{R}$	
99.	The period of oscillat	tion of a simple pendulu	m is given by $T = 2\pi \sqrt{\frac{g}{g}}$	what is the equation of	
	the relative error $\frac{\Delta T}{T}$	in measurement of per	riod T ?		
	1	(b) $2\frac{\Delta\ell}{\ell}$		(d) $4\frac{\Delta\ell}{\ell}$	
100.	The length of a rod	is (10.15 ± 0.06) cm wha	at is the length of two su	ich rods?	
	(a) (20.30 ± 0.06) cm	(b) (20.30 ± 1.6) cm	(c) (10.30 ± 0.12) cm	(d) (20.30 ± 0.12) cm	
101.	For a sphere having	volume is given by V=	$\frac{4}{3}\pi r^3$ What is the equatio	n of the relative error	
	$\frac{\Delta V}{V}$ in measurement of the volume V ?				
	(a) $3\frac{\Delta r}{r}$	(b) $4\frac{\Delta r}{r}$	(c) $\frac{4}{3} \frac{\Delta r}{r}$	(d) $\frac{1}{3} \frac{\Delta r}{r}$	
102.	Kinetic energy K and	linear momentum P are	related as $K = \frac{p^2}{2m}$. What	is the equation of the	
	relative error $\frac{\Delta k}{k}$ in	measurement of the K	? (mass in constant)		
	(a) $\frac{p}{\Delta p}$	(b) $2\frac{\Delta p}{p}$	(c) $\frac{p}{2\Delta p}$	(d) $4\frac{\Delta p}{p}$	
103.	_		Fing wire is $H = I^2Rt$ it pen total percentage error in	_	
	(a) 8 %	(b) 15 %	(c) 5 %	(d) 10 %	
104.			$R_1 = (100 \pm 5)\Omega$ and $R_2 = (20$ the equivalent resistance		
	(a) 35Ω	(b) 12Ω	(c) 4Ω	(d) 9Ω	
105.	The periodic time of	simple pendulum is $T = 2$	$2\pi\sqrt{\frac{\ell}{g}}$ relative error in the	measurement of T and	
	ℓ are $\pm a$ and $\pm b$ re	espectively find relative	error in the measurement	of g	
	(a) $a + b$	(b) $2b + a$	(c) $2a + b$	(d) $a - b$	
	11				

106	A physical quantity v	is given by $y = A^4 B^{\frac{1}{4}}$	due to which physical a	uantaity produced the
100.	06. A physical quantity x is given by $x = \frac{A^4B^{\frac{1}{4}}}{C^3D^{\frac{4}{3}}}$ due to which physical quantity produced			uantgity produced the
	maximum percentage	error in x		
	(a) B	(b) C	(c) A	(d) D
107.	The resistance $R = \frac{V}{I}$ error in R.	where $V=100 \pm 5$ volts a	and $I = 10 \pm 0.3$ anperes ca	lculate the percentage
	(a) 8 %	(b) 10 %	(c) 12 %	(d) 14 %
108.	The number of significant	cant figures in 0.000150	is	
	(a) 3	(b) 5	(c) 2	(d) 4
109.	Which of the followin	g numerical value have	significant figure 4?	
	(a) 1.011	(b) 0.010	(c) 0.001	(d) 0.100
110.	What is the number o	f significant figures in 5	5.50×10^3 ?	
	(a) 2	(b) 7	(c) 3	(d) 4
111.	The mass of substance significant figure is		olume is 25 cm ² . It's den	sity up to the correct
	(a) 3.02 gm/cm^3	(b) 3.200 gm/cm^3	(c) 3.02 gm/cm^3	(d) 3.1gm/cm^3
112.	The area of a rectang	le of size 1.25×2.245 cm	in significant figure is	
	(a) $2.80625 \mathrm{cm}^2$	(b) 2.81 cm ²	(c) $2.806 \mathrm{cm}^2$	(d) 2.8062 cm ²
113.	The significant figures	s in 500.5000 are		
	(a) 5	(b) 3	(c) 7	(d) 6
114.	Addition of measuren	nent 15.225 cm, 7.21 cm	n and 3.0 cm in significan	nt figure is
	(a) 25.43 cm	(b) 25.4 cm	(c) 25.435 cm	(d) 25.4350 cm
115.	Substract 0.2 J from 7	7.36 J and express the re	esult with correct number	of significant figures.
	(a) 7.160 J	(b) 7.016 J	(c) 7.16 J	(d) 7.2 J
116.	After rounding of the	number 9595 to 3 signi	ificant digits the value be	comes
	(a) 9600	(b) 9000	(c) 9590	(d) 9500
117.	How many significant	numbers are there in (2	$2.30 + 4.70 \times 10^5$?	
	(a) 3	(b) 4	(c) 2	(d) 5
118.	The radius of circle is be represented as -	1.26 cm. According to	the concept of significant	figures area of it can
	(a) $4.9850 \mathrm{cm}^2$	(b) 4.985 cm ²	(c) 4.98cm^2	(d) 9.98 cm ²
119.	If $A = 3.331 \text{ cm B} =$	= 3.3 cm then with rega	ard to significant figure A	Y + B =
	(a) 6.6 cm	(b) 6.31 cm	(c) 6.631 cm	(d) 6 cm

120.	If the length of rod A longer than rod A by	` ′	that of B is (5.68 ± 0.01)	cm then the rod B is	
	(a) (2.43 ± 0.00) cm	(b) (3.33 ± 0.02) cm	(c) (2.43 ± 0.01) cm	(d) (2.43 ± 0.001) cm	
121.	In acceleration, The	dimensions for mass	for length and f	or time	
	(a) 0,1,–2	(b) 1,0,–2	(c) -2,0,1	(d) -2,1,0	
122.	Dimensional formula	for power is			
	(a) $M^2L^{-2}T^{-3}$	(b) $M^1L^2T^{-2}$	(c) $M^1L^3T^{-1}$	(d) $M^0L^2T^{-2}$	
123.	Dimensional formula	for calories is			
	(a) $M^1L^1T^{-2}$	(b) $M^2L^1T^{-2}$	(c) $M^{1}L^{2}T^{-2}$	(d) $M^2L^2T^{-2}$	
124.	Dimensional formula	for thermal conductivity	(k) is		
	(a) $M^2L^1T^{-2}K^{-1}$	(b) $M^{1}L^{1}T^{-2}K^{1}$	(c) $M^1L^0T^{-3}K^{-1}$	(d) $M^{1}L^{1}T^{-3}K^{-1}$	
125.	Dimensional formula	for Resistance (R) is			
	(a) $M^1L^1T^{-3}A^{-1}$	(b) $M^1L^1T^0A^{-1}$	(c) $M^1L^2T^{-3}A^{-2}$	(d) $M^1L^0T^{-3}A^{-1}$	
126.	Dimensional formula	for conductance is			
	(a) $M^{-1}L^2T^{-3}A^2$	(b) $M^{1}L^{2}T^{-2}A^{1}$	(c) $M^1L^{-2}T^3A^2$	(d) $M^{-1}L^{-2}T^3A^2$	
127.	Which physical quant	Which physical quantity is represented by $M^1L^3T^{-3}\overline{A}^2$?			
	(a) Resistivily	(b) Resistance	(c) conductance	(d) conductivity	
128.	Which physical quant	tity is represented by M	$I^{-1}L^{-3}T^3A^2$?		
	(a) Resistivity	(b) Resistance	(c) conductance	(d) conductivity	
129.	Which physical quant	tity is represented by M	$I^{1}L^{1}T^{-3}A^{-1}$?		
	(a) Stress	(b) Resistance	(c) Electricfield	(d) potential Difference	
130.	The dimensional form	nula of plank's constant	IS		
	(a) $M^3L^2T^{-1}$	(b) $M^1L^2T^{-1}$	(c) $M^2L^1T^{-1}$	(d) $M^1L^2T^{-3}$	
131.	Dimensional formula	of latent heat is			
	(a) $M^0L^2T^{-2}$	(b) $M^2L^0T^{-2}$	(c) $M^{1}L^{2}T^{-1}$	(d) $M^2L^2T^{-1}$	
132.	Dimensions of impuls	e are.			
	(a) $M^{-1}L^{-1}T^1$	(b) $M^{1}L^{1}T^{-1}$	(c) $M^1L^1T^1$	(d) $M^1L^2T^{-2}$	
133.	Write dimensional for	mula of coefficient of vis	scosity		
	(a) $M^1L^2T^{-1}$	(b) $M^{-1}L^1T^1$	(c) $M^{1}L^{-1}T^{-1}$	(d) $M^{1}L^{1}T^{-1}$	
134.	Dimensional formula	for torque is			
	(a) $M^2L^2T^{-3}$	(b) $M^2L^1T^{-2}$	(c) $M^{1}L^{1}T^{-2}$	(d) $M^1L^2T^{-2}$	
135.	Dimensional formula	for capisitance (C)			
	(a) $M^{-1}L^{-2}T^4A^2$	(b) $M^1L^{-2}T^4A^2$	(c) $M^{-1}L^{-2}T^3A^1$	(d) $M^3L^1T^{-1}A^{-2}$	

136.	Dimensional formula for Boltzmann's constant is			
	(a) $M^{1}L^{1}T^{-2}K^{-1}$	(b) $M^2L^1T^{-2}K^{-1}$	(c) $M^{1}L^{2}T^{-2}K^{-1}$	(d) $M^2L^2T^1K^{-2}$
137.	Dimensional formula f	for electromotive force (e	emf)	
	(a) $M^2L^1T^{-1}K^{-3}$	(b) $M^{1}L^{2}T^{-3}K^{-1}$	(c) $M^1L^1T^{-3}K^{-1}$	(d) $M^{1}L^{2}T^{3}K^{-1}$
138.	Which physical quantit	y has dimensional formula	a as CR where C - capisitan	ice and R - Resistance?
	(a) Frequency	(b) current	(c) Time period	(d) acceleration
139.	Write the dimensional	formula of the ratio of	linear momentum to angu	lar momentum.
	(a) $M^0L^{-1}T^0$	(b) $M_1\Gamma_1L_0$	(c) $M_0\Gamma_1L_0$	(d) $M^0L^1T^1$
140.	If L and R are respess	ented as the inductance	and resistance respectively	y then the dimensional
	formula of $\frac{R}{L}$ will be			
	(a) $M^{-2}L^{1}T^{-2}A^{1}$	(b) $M^0L^0T^{-1}A^0$	(c) $M^1L^{-1}T^0A^1$	(d) $M^1L^3T^1A^0$
141.	Write the dimensional	formula of r.m.s (root	mean square) speed.	
	(a) $M^1L^2T^{-2}$	(b) $M^0L^2T^{-2}$	(c) $M^0L^1T^{-1}$	(d) $M^1L^0T^{-1}$
142.	One physical quantity then quantity is	represented by an equa	ation as $\frac{\pi}{2}(p-q)c$ where	p, q and c are length
	(a) length	(b) velocity	(c) Area	(d) volume
143.	` ,	ula of magnetic flux is	` '	
		(b) $M^{1}L^{2}T^{1}A^{2}$		(d) $M^{-1}L^{-2}T^1A^2$
144.	Which physical quant	ity has unit of pascal -	second?	
	(a) Force	(b) Energy	(c) Coefficient of viscoci	ity (d) velocity
145.	Dimensional formula	of CV ? where C - cap	pacitance and V - potentia	al different
	(a) $M^1L^{-2}T^4A^2$	(b) $M^1L^2T^{-3}A^1$	(c) $M^0L^0T^1A^{-1}$	(d) $M^0L^0T^1A^1$
146.	The equation of a way	we is given by $Y = A \sin \theta$	$\omega \left[\frac{x}{v} - k \right]$ where ω is the	e angular velocity and
	v is the linear velocity	y. Write the dimensional	formula of K	
	(a) $M^0L^0T^1$	(b) $M^{1}L^{0}T^{-1}$	(c) $M^0L^1T^1$	(d) $M^{1}L^{-1}T^{1}$
147.	If P and q are diffrent p	hysical quantities then whi	ich one of following is only	possible dimensionally?
	(a) $p + q$	(b) $\frac{p}{q}$	(c) p - q	(d) p = q
148.	From $\left(p + \frac{a}{v^2}\right) (v - b)$	= constant equation is di	imensionally correct find the	ne dimensional formula
	for b ? where $P = p$	reasure $V = volume$		
	(a) $M^0L^3T^0$	(b) $M^1L^3T^0$	(c) $M^0L^1T^3$	(d) $M^1L^1T^{-1}$
			_	

149.	Pressure $P = A \cos Bx + c \sin Dt$ where xin meter and t in time then find dimensional formula				
	of $\frac{D}{B}$				
	(a) $M^{1}L^{1}T^{-1}$	(b) $M^0L^1T^{-1}$	(c) $M_1\Gamma_1 L_0$	(d) $M^{-1}L^0T^1$	
150.	Find the dimensional	formula for energy per	unit surface area per unit	time	
	(a) $M^1L^0T^{-2}$	(b) $M^0L^1T^{-1}$	(c) $M^1L^0T^{-3}$	(d) $M^{1}L^{-1}T^{1}$	
151.	Equation of force $F = $ of b.	$at + bt^2$ where F is force	e in Newton t is time in s	econd, then write unit	
	(a) Nm^{-1}	(b) Nm^2	(c) Nm	(d) Nm^{-2}	
152.	Pressure $P = \frac{at^2}{bx}$ whe	$ext{re } x = ext{distance}, t = ext{time}$	e find the dimensional for	mula for $\frac{a}{b}$	
	(a) $M^1L^0T^{-4}$	(b) $M^{1}L^{1}T^{-1}$	(c) $M^1L^0T^{-2}$	(d) $M^{+1}L^0T^{-2}$	
153.	$F = A_0 (1 - e^{-Bxt^2})$ whe	ere F is force and x is d	esplacement. write the di	mension formula of B	
	(a) $M^2L^1T^{-1}$	(b) $M^0L^{-1}T^{-2}$	(c) $M^{1}L^{0}T^{-2}$	(d) $M^1L^2T^{-1}$	
154.	Equation of physical of formula of a in this ed		re v = velocity t = time so	write the dimensional	
	(a) $M^0L^1T^{-1}$	(b) $M^1L^1T^{-1}$	(c) $M^0L^1T^{-2}$	(d) $M^1L^2T^0$	
155.	Density of substance	in CGS system is 3.125	5 gm/cm³ what is its mag	gnitude is SI system?	
	(a) 0.3125	(b) 3.125	(c) 31.25	(d) 3125	
156.	The resistivity of resi	stive wire is $\rho = \frac{AR}{L}$ w	where L = length of wire	A = Area of wire and	
	R is resistance of wire find dimension formula of ρ .				
	(a) $M^1L^3T^{-3}A^{-2}$	(b) $M^1L^2T^{-3}A^{-2}$	(c) $M^2L^3T^1A^2$	(d) $M^2L^3T^{-3}A^{-2}$	
157.	A cube has numerical	lly equal volume and su	rface area calculate the ve	olume of such a cube.	
	(a) 2000 Unit	(b) 216 Unit	(c) 2160 Unit	(d) 1000 Unit	
158.		owing is dimensionally co			
	(a) $p^2 = h \rho g$	(b) $p = h\rho^2 g$	(c) $p = h \rho g$	(d) $p = h^2 \rho g$	
159.			gravitational constant. h s of p, q and r are respe	_	
	(a) $-\frac{1}{2}, \frac{1}{2}, \frac{5}{2}$	(b) $\frac{1}{2}, \frac{1}{2}, \frac{5}{2}$	(c) $\frac{5}{2}, \frac{1}{2}, -\frac{1}{2}$	(d) $\frac{1}{2}$, $-\frac{1}{2}$, $\frac{5}{2}$	
160.	If the centripetel force	ce is of the form mavbrc	find the values of a, b a	and c	
	(a) 1,2,1	(b) 1,2,–1	(c) 1,3,–2	(d) -1,3,-1	

161.	equation of $\ell_t = \ell_0 [1 + \alpha (T_2 - T_1)]$ find out the dimensions of the coefficient of linear expansion α suffix.							
	(a) $M^0L^0T^1K^1$	(b) $M^0L^1T^1K^1$	(c) $M^1L^1T^0K^1$	(d) $M^0L^0T^0K^{-1}$				
162.	Test if the following equation are dimensionally correct (S = surface tension ρ = density P = pressure v = volume n = coefficient of viscocity r = redious)							
	(a) $h = \frac{2S\cos\theta}{\rho rg}$	(b) $v = \sqrt{\frac{p}{\rho}}$	(c) $v = \frac{\pi p r^4 t}{8n\ell}$	(d) all correct				
163.	Match list - I with list - II							
	List - I		List - II					
	(1) Joule		(a) henry × ampere/sec					
	(2) Walt(3) volt(4) Resistivity		(b) coulomb × volt					
			(c) metre \times ohm					
			(d) $(ampere)^2 \times ohm$					
	(a) b,d,c,a	(b) c,a,b,d	(c) b,d,a,c	(d) b,c,a,d				
164.	Match column - I with column - II							
	Column -I		Column - II					
	(1) capacitance		(a) $M^{1}L^{1}T^{-3}A^{-1}$ (b) $M^{1}L^{2}T^{-1}$					
	(2) Electricfield							
	(3) planck's constant		(c) $M^{-1}L^{-2}T^4A^2$					
	(4) Angular momentum		(d) $M^{1}L^{2}T^{-1}$					
	(a) a,c,b,d	(b) c,a,d,b	(c) c,a,b,d	(d) a,b,d,c				
165.	In the relation $P = \frac{\alpha}{\beta} e^{\frac{-\alpha z}{k_B \theta}}$, P is pressure, z is distance, k is boltz mann constant and θ is							
	the temperature. The dimensional formula of B will be							
	(a) $M^0L^2T^0$	(b) $M^1L^0T^1$	(c) $M^{1}L^{1}T^{-1}$	(d) $M^1L^1T^0$				

KEY NOTE

1(B)	26(B)	51(D)	76(D)	101(A)	126(D)	151(D)
2(C)	27(B)	52(A)	77(B)	102(B)	127(A)	152(A)
3(C)	28(A)	53(B)	78(D)	103(D)	128(D)	153(B)
4(A)	29(C)	54(A)	79(C)	104(B)	129(C)	154(C)
5(B)	30(B)	55(B)	80(A)	105(C)	130(B)	155(D)
6(B)	31(A)	56(A)	81(B)	106(C)	131(A)	156(A)
7(C)	32(B)	57(A)	82(D)	107(A)	132(B)	157(B)
8(B)	33(A)	58(B)	83(B)	108(A)	133(C)	158(C)
9(A)	34(B)	59(C)	84(A)	109(A)	134(C)	159(A)
10(C)	35(C)	60(D)	85(B)	110(C)	135(D)	160(B)
11(A)	36(B)	61(A)	86(D)	111(D)	136(A)	161(D)
12(D)	37(A)	62(C)	87(A)	112(B)	137(B)	162(D)
13(D)	38(A)	63(A)	88(D)	113(C)	138(C)	163(C)
14(B)	39(C)	64(C)	89(D)	114(B)	139(A)	164(B)
15(D)	40(D)	65(D)	90(A)	115(D)	140(B)	165(B)
16(D)	41(C)	66(A)	91(B)	116(C)	141(C)	
17(B)	42(B)	67(B)	92(C)	117(A)	142(C)	
18(C)	43(A)	68(C)	93(A)	118(C)	143(A)	
19(A)	44(C)	69(A)	94(B)	119(A)	144(C)	
20(B)	45(D)	70(D)	95(C)	120(B)	145(D)	
21(B)	46(D)	71(A)	96(C)	121(A)	146(A)	
22(C)	47(B)	72(B)	97(D)	122(B)	147(B)	
23(D)	48(D)	73(C)	98(B)	123(C)	148(A)	
24(A)	49(A)	74(D)	99(A)	124(D)	149(B)	
25(B)	50(B)	75(A)	100(D)	125(C)	150(C)	

HINT

33
$$\frac{\text{Strong nuclear force}}{\text{Electronmagnatic force}} = \frac{1}{10^{-2}} = 10^2$$

34
$$\frac{\text{Strong nuclear force}}{\text{Weak nuclear force}} = \frac{1}{10^{-13}} = 10^{13}$$
 $D = \frac{b}{\theta} = 4.06 \times 10^8 \text{ m}$

35
$$\frac{\text{Electronmagnetic force}}{\text{Gravational force}} = \frac{10^{-2}}{10^{-38}} = 10^{36}$$
 94 $\frac{\text{density}(\rho) = \frac{\text{mass}(m)}{\text{volume}(1^3)}}{\text{volume}(1^3)}$

$$F_1 = \frac{kq_1q_2}{r_1^2} \quad F_2 = \frac{kq_1q_2}{r_2^2}$$

$$49 \qquad \frac{10 \times 10^{-6}}{10^{-9}} = 10^4$$

$$58 \qquad \frac{10^{-15}}{100 \times 10^{-9}} = 10^{-8}$$

60
$$72 \frac{km}{(\min)^2} = \frac{72 \times 1000}{3600} = 20 \frac{m}{(\sec)^2}$$

64 Area =
$$\ell^2$$

$$A = x^2 m^2$$

$$1 \text{ m}^2 = \frac{A}{x^2} = \frac{1}{x^2} = x^{-2}$$

69 1 amu =
$$1.66 \times 10^{-27}$$
 kg
= 1.66×10^{-24} gm

$$1gm = 6.023 \times 10^{23}$$
 amu

$$F = p\ell^{+1} + q\ell^{-1}$$

$$p\ell^{+|l} = F$$

$$P = \frac{F}{\ell} = \frac{N(Neuton)}{\ell(meter)} = surface tension$$

90
$$\Delta A = 0.025 \text{ m}^2$$

$$2r = 0.5m$$

Solid angle =
$$\frac{\Delta A}{r^2}$$
 = 0.4 Sr

$$=4 \times 10^{-1} \text{ Sr}$$

91
$$\theta = 1.8^{\circ} = 0.01 \,\pi \,\text{rad}$$

$$b = 1.27 \times 10^7 \text{ m}$$

$$D = \frac{b}{\theta} = 4.06 \times 10^8 \text{ m}$$

94 density
$$(\rho) = \frac{\text{mass}(m)}{\text{volume}(1^3)}$$

percentage error in density

$$= \left[\frac{\Delta M}{M} + 3\left(\frac{\Delta l}{l}\right)\right] \times 100$$
$$= 1.75 \%$$

$$96 P = \frac{A^2B}{C^3}$$

$$\frac{\Delta P}{P}\% = \left[2\frac{\Delta A}{A} + \frac{\Delta B}{B} + 3\frac{\Delta C}{C}\right]$$
$$= 21\%$$

$$97 T = 2\pi \sqrt{\frac{1}{g}}$$

$$\frac{\Delta T}{T} \times 100 = \left[\frac{1}{2} \times \frac{\Delta l}{l} \times \frac{1}{2} \times \frac{\Delta g}{g}\right] \times 100$$
$$= 4 \%$$

length of two rods =
$$21$$

$$= 2(10.15 \pm 0.06)$$

$$= (20.30 \pm 0.12) \text{ cm}$$

heat energy
$$H = I^2RT$$

$$\frac{\Delta H}{H} \times 100 = \left[2\frac{\Delta I}{I} + \frac{\Delta R}{R} + \frac{\Delta T}{T}\right] \times 100$$
$$= 10 \%$$

105
$$g = 4\pi^2 \frac{l}{T^2}$$

$$\frac{\Delta g}{g} = \frac{\Delta l}{l} + 2 \times \frac{\Delta T}{T}$$

$$= b + 2c$$

107 Resistance
$$R = \frac{V}{I}$$

$$\frac{\Delta R}{R} = \frac{\Delta V}{V} + \frac{\Delta I}{I}$$

$$\frac{\Delta R}{R} = \frac{5}{100} + \frac{0.3}{10}$$

$$\frac{\Delta R}{R} = \frac{8}{100}$$

$$\frac{\Delta R}{R} \% = 8\%$$

111 density =
$$\frac{\text{mass}}{\text{volume}} = \frac{75.5}{25}$$

= 3.02 = 3.1 g/cm³

128 Resistivity =
$$\frac{\text{Re sis tan ce} \times \text{Area}}{\text{length}}$$

129 Electric field =
$$\frac{\text{force}}{\text{electric charg e}}$$

130 plank's constant =
$$\frac{\text{mass} \times (\text{dis} \tan \text{ce})^2}{\text{time}}$$

131 latent heat(Q) =
$$\frac{\text{heat energy}}{\text{mass}}$$

133 coefficient of viscosity =
$$\frac{\text{Force} \times \text{time}}{(\text{length})^2}$$

141 Urms =
$$\sqrt{\langle u^2 \rangle}$$
 = root mean square speed

142 If
$$p = q = c = L$$

then $(p - q)c = L^2 = Area$

144 If
$$F = nA \frac{dv}{dx}$$

$$\therefore n = \frac{F}{A \frac{dv}{dx}} = \text{ pascal second}$$

146
$$y = A \sin \omega (\frac{x}{v} - k)$$
$$\therefore \frac{x}{v} = k$$
$$k = \frac{x}{v} = M^{0}L^{0}T^{1}$$

148
$$\left(P + \frac{a}{v^2}\right)(v - b) = \cos \tan t$$

$$PV - Pb + \frac{a}{v} - \frac{ab}{v^2} = constant$$

$$\therefore PV - Pb$$

$$\therefore V = b = M^0 L^3 T^0$$

$$\cos Bx = \dim \text{ensionl less}$$

$$Bx = M^0 L^0 T^0$$

$$B = \frac{M^0 L^0 T^0}{X} = M^0 L^{-1} T^0$$

Same as

$$D = M^0 L^0 T^{-1}$$

$$\therefore \frac{D}{B} = M^0 L^1 T^{-1}$$

$$151 F = at + bt^2$$

$$F = bt^2 = at$$

$$b = \frac{F}{t^2} = \frac{N}{m^2}$$

153
$$F = A (1 - e^{-Bxt^2})$$

 $Bxt^2 = dimensional less$

$$B = \frac{M^0 L^0 T^0}{xt^2} = M^0 L^{-1} T^{-2}$$

155 Density =
$$3.125 \times \frac{\text{gm}}{\text{cm}^3}$$

$$= \frac{3.125 \times 10^{-3} \text{ kg}}{10^{-6} \text{ m}^3}$$
$$= 3125 \text{ kg/m}^3$$

volume of cube $V = a^3$

total surface area of cube $A = 6a^2$

$$\therefore V = A$$

$$a^3 = 6a^2$$

$$a = 6$$

:.
$$V = (6)^3 = 216$$
 unit

$$E = G^{P}h^{q}c^{r}$$

$$E = M^{1}L^{2}T^{-2}$$

$$G = M^{-1}L^{3}T^{-2}$$

$$h = M^{1}L^{2}T^{-1}$$

$$c = M^{0}L^{1}T^{-1} \text{ take it}$$

$$(M^{1}L^{2}T^{-2}) = (M^{-1}L^{3}T^{-2})^{p}(M^{1}L^{2}T^{-1})^{q}$$

$$(M^{0}L^{1}T^{-1})^{c}$$

$$= M^{-p+q}L^{3p+2q+r}T^{-2p-q-r}$$

$$\therefore P = \frac{1}{2}, q = \frac{1}{2}, r = \frac{5}{2}$$

$$160 \qquad F \alpha m^{a}v^{b}r^{c}$$

$$F = M^{1}L^{1}T^{-2}$$

$$v = M^{0}L^{1}T^{-1}$$

$$r = M^{0}L^{1}T^{0}$$

$$m = M^{1}L^{0}T^{0} \text{ take it}$$

$$(M^{1}L^{1}T^{-2}) = (M^{1})^{a}(L^{1}T^{-1})^{b}(L^{1})^{c}$$

$$= M^{a}L^{b+c}T^{-b}$$

$$\therefore a = 1, b = 2, c = -1$$

165
$$\frac{\alpha z}{kB\theta} = M^{0}L^{0}T^{0}$$

$$\therefore \alpha = \frac{kB\theta}{z} \quad \text{and } P = \frac{\alpha}{\beta}$$

$$\therefore \beta = \frac{\alpha}{p} = \frac{kB\theta}{pz}$$

$$= M^{0}L^{2}T^{0}$$