Evidence for Evolution Part 4: Molecular Evidence

Ms. Gill Honors Biology

Agenda

- How are those asses related?
 Biogeography and phylogeny of horses, zebras, and asses
- Notes: molecular evidence
- Cytochrome c protein sequence worksheet
- Finish Canary Island Lizard Lab

 HW: Cytochrome c protein sequence worksheet, FINISH LAB!!!!

How are those asses related? Biogeography and Phylogeny of the Genus *Equus* (horses, zebras, asses)

Draw a phylogenetic tree – use the additional info on your handout

Molecular evidence for evolution

Common genetic code

- Common cell structure and organization
- Sharing of genes for important proteins

Common genetic code

 Basis of life as we know it, incredibly complex, unique, and likely invented only once

•	If life originated multiple times, really unlikely
	would emerge each time

•	Even if it did,	would	
	probably code for		
	, but they're	always the	same

Common cell structure and organization

- All animal cells share the same general structure
- Same with all plant cells
- Same with prokaryotes
- Analogous structures in these cell types
- If life originated multiple times, really unlikely that all lineages would converge on this system

Common genes

- _____share genes
 - the _____, the more shared genes
- Usually genes that code for proteins/RNA with
 - Ribosomal RNA protein synthesis (everything we know)
 - Cytochrome c mitochondria, energy (eukaryotes)
 - Hemoglobin oxygen transport in blood (most animals)

Number of DNA/protein sequence differences measures

	Organism	Number of amino acid differences from humans
a	Chimpanzee	0
330	Rhesus mon	key 1
0	Rabbit	9
W	Cow	10
\$	Pigeon	12
Z	Bullfrog	20
が	Fruit fly	24
0	Wheat germ	37
0	Yeast	42

- Can look at ______
- The ______, the more _____ they will have
- More _____ = more distantly related (less=closer)