Section 2 Wrap-Up

Codestates AIB JHLEE

Sprint 1 Linear Models

Supervised learning

Regression

Regularization(Ridge, Lasso)

Classification

Baseline model

One-hot encoding

Train/Validation/Test sets

Overfitting/Underfitting

Supervised Learning

Supervised vs. Unsupervised Learning

Supervised learning

Unsupervised learning

Regression

Regularization(Ridge, Lasso)

Classification

Predicted Y Lies

within

0 and 1 range

Baseline model

One-hot encoding

Numerical One-hot Sticky ID Word Red Clay 0 0 0 Red "Red sticky clay" 1 0 0 Sticky 2 0 0 Clay

Train/Validation/Test sets

Overfitting/Underfitting

Sprint 2 Tree Based Models

Decision tree

Sklearn pipeline

Ensemble(Random forests)

Classification metrics(Accuracy, Precision, Recall, F1, ROC, AUC)

Cross-validation

Hyperparameter tuning

Decision tree

Sklearn pipeline

Ensemble(Random forests, stacked ensemble)

Classification metrics(Accuracy, Precision, Recall, F1, ROC, AUC)

		Predicted condition		Sources: [5][6][7][8][9][10][11][12] view -t	
Actual condition	Total population = P + N	Predicted condition positive (PP)	Predicted condition negative (PN)	Informedness, bookmaker informedness (BM) = TPR + TNR - 1	Prevalence threshold (PT) = √TPR-FPR-FPR TPR - FPR
	Actual condition positive (P)	True positive (TP), hit	False negative (FN), Type II error, miss, underestimation	True positive rate (TPR), recall, sensitivity (SEN), probability of detection, hit rate, power = $\frac{TP}{P}$ = 1-FNR	False negative rate (FNR), miss rate = $\frac{FN}{P}$ = 1-TPR
	Actual condition negative (N)	False positive (FP), Type I error, false alarm, overestimation	True negative (TN), correct rejection	False positive rate (FPR), probability of false alarm, fall-out $= \frac{FP}{N} = 1 - TNR$	True negative rate (TNR), specificity (SPC), selectivity = $\frac{TN}{N}$ = 1-FPR
	Prevalence = $\frac{P}{P+N}$	Positive predictive value (PPV), $precision = \frac{TP}{PP} = 1 - FDR$	False omission rate (FOR) $= \frac{FN}{PN} = 1 - NPV$	Positive likelihood ratio (LR+) = $\frac{TPR}{FPR}$	Negative likelihood ratio (LR-) = FNR TNR
	Accuracy (ACC) $= \frac{TP + TN}{P + N}$	False discovery rate (FDR) = $\frac{FP}{PP}$ = 1-PPV	Negative predictive value (NPV) $= \frac{TN}{PN} = 1 - FOR$	Markedness (MK), deltaP (Δp) = PPV + NPV – 1	Diagnostic odds ratio (DOR) = $\frac{LR+}{LR-}$
	Balanced accuracy (BA) $= \frac{\text{TPR} + \text{TNR}}{2}$	$F_1 \text{ score} = \frac{2 \cdot PPV \cdot TPR}{PPV + TPR} = \frac{2TP}{2TP + FP + FN}$	Fowlkes–Mallows index (FM) = √PPV·TPR	Matthews correlation coefficient (MCC) = √TPR·TNR·PPV·NPV – √FNR·FPR·FOR·FDR	Threat score (TS), critical success index (CSI) $= \frac{TP}{TP + FN + FP}$

Accuracy, Precision, Recall, F1-score, ROC, AUC, ...

MAE, MSE, RMSE, R2, RMSLE, MPE, MAPE

Cross-validation

Hyperparameter tuning

Sprint 3 Applied Predictive Modeling

Data science workflow

Leakage

Imbalanced data

Data wrangling

Boosting models

Feature importances

PDP

SHAP

Data science workflow

Leakage

Imbalanced data

Data wrangling

Boosting model

Feature importances

PDP

SHAP

what a great movie! . . . if you have no taste .

Deep Learning

Image recognition

Natural language processing

Speech recognition

Transfer learning

Semi-Supervised learning

Unsupervised learning, Generative model(GAN, VAE)

. . . .

Machine learning vs Deep learning

Machine Learning

Machine learning algorithms

Machine Learning Algorithms

