GEOMETRÍA II. RELACIÓN DE PROBLEMAS 1

TEMA 1: DIAGONALIZACIÓN DE ENDOMORFISMOS

Curso 2019-20

- 1. Sea f un endomorfismo de un espacio vectorial V sobre \mathbb{R} tal que $f \circ f = -I_V$. Demuestra que f no tiene valores propios y, por tanto, no es diagonalizable. ¿Se puede llegar a la misma conclusión si V es espacio vectorial sobre \mathbb{C} ? Concluye que el endomorfismo f: $\mathbb{R}^2 \to \mathbb{R}^2$ definido como f(x,y) = (y,-x) no es diagonalizable.
- 2. Sea f un endomorfismo de un espacio vectorial V sobre \mathbb{R} . Supongamos que existe r > 0 tal que $f \circ f = rI_V$. Demuestra que los únicos valores propios posibles de f son \sqrt{r} y $-\sqrt{r}$.
- 3. Prueba que toda matriz cuadrada de orden 2 con coeficientes reales simétrica o con determinante negativo es diagonalizable. ¿Es cierto que todos los automorfismos de \mathbb{R}^2 son diagonalizables?
- 4. Sea V un espacio vectorial de dimensión n y $f: V \to V$ un endomorfismo de V tal que $\operatorname{nul}(f) \ge n-1$ y se cumple $\operatorname{Ker}(f) \cap \operatorname{Im}(f) = \{0\}$. Demuestra que f es diagonalizable.
- 5. En el espacio $\mathbb{R}_n[x]$ de los polinomios de grado menor o igual que n con coeficientes en \mathbb{R} se define el endomorfismo $f: \mathbb{R}_n[x] \to \mathbb{R}_n[x]$ como f(p(x)) = xp'(x), donde p'(x) representa la derivada de p(x) con respecto a x. Calcula los valores propios y los subespacios propios de f. Encuentra, si es posible, una base de $\mathbb{R}_n[x]$ formada por vectores propios de f.
- 6. Estudia si las siguientes matrices con coeficientes reales son diagonalizables:

$$A = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}, \quad C = \begin{pmatrix} -1 & -1 & -1 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad D = \begin{pmatrix} -2 & 0 & -8 \\ -2 & -3 & 7 \\ 2 & 9 & -1 \end{pmatrix}.$$

Analiza también si cualesquiera dos matrices de las de arriba son semejantes.

7. Estudia si las siguientes matrices con coeficientes complejos son diagonalizables:

$$A = \begin{pmatrix} -3+i & -3 & -3-2i \\ i & 3i & 3+i \\ -i & 3 & 2i \end{pmatrix}, \quad C = \begin{pmatrix} -1-i & -3 & -1-4i \\ -1+2i & 3i & 2+2i \\ 1-2i & 3 & 1+i \end{pmatrix}.$$

Analiza también si las dos matrices de arriba son semejantes.

8. Consideremos el endomorfismo $f: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ dado por:

$$f\left(\begin{array}{cc}a&b\\c&d\end{array}\right) = \left(\begin{array}{cc}b&b+c\\2a-2c&4d\end{array}\right).$$

 ξ Es f diagonalizable? En caso de serlo, proporciona una base de vectores propios.

9. Estudia si la siguiente matriz con coeficientes reales es semejante a una matriz diagonal

$$A = \left(\begin{array}{rrrr} 3 & 3 & 0 & 1 \\ -1 & -1 & 0 & -1 \\ 1 & 2 & 1 & 1 \\ 2 & 4 & 0 & 3 \end{array}\right).$$

10. En el espacio vectorial real $S_2(\mathbb{R})$ de las matrices simétricas de orden 2 con coeficientes reales consideramos la base

$$B = \left\{ \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right) \right\},$$

y el endomorfismo $f: S_2(\mathbb{R}) \to S_2(\mathbb{R})$ tal que

$$M(f,B) = \begin{pmatrix} 2 & -2 & 1 \\ -1 & 1 & 1 \\ 5 & -6 & -2 \end{pmatrix}.$$

Calcula los valores propios de f. Discute si existe una base de $S_2(\mathbb{R})$ formada por vectores propios de f. Calcula los subespacios propios de f y encuentra una base de cada uno.

11. Estudia para qué valores del parámetro $a \in \mathbb{R}$ la matriz de coeficientes reales

$$A = \left(\begin{array}{ccc} a+1 & -a & a \\ a+2 & -a & a-1 \\ 2 & -1 & 0 \end{array}\right)$$

es diagonalizable. Para dichos valores, encuentra P regular tal que $P^{-1}AP$ sea diagonal.

12. Dada la matriz con coeficientes reales

$$A = \left(\begin{array}{ccc} 2 & -1 & -1 \\ 1 & 0 & -1 \\ -1 & 1 & 2 \end{array}\right),$$

se pide lo siguiente:

a) Estudia si A es diagonalizable. En caso afirmativo, encuentra una matriz regular P tal que $P^{-1}AP$ sea diagonal.

- b) ¿Existe una matriz cuadrada C con coeficientes reales tal que $C^4 = A$?
- 13. Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$ el endomorfismo que en la base usual de \mathbb{R}^3 tiene como matriz

$$A = \begin{pmatrix} 2a+4 & 1-a & -2a-a^2 \\ 0 & 4-a & 0 \\ 0 & 0 & 4-a^2 \end{pmatrix}.$$

Se pide lo siguiente:

- a) ¿Para qué valores de a hay un valor propio de f con multiplicidad algebraica 3?
- b) Estudia para qué valores de a el endomorfismo f es diagonalizable.
- c) Para a = 1 y a = 2 encuentra una base de \mathbb{R}^3 formada por vectores propios de f.
- 14. Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$ el endomorfismo que en la base usual de \mathbb{R}^3 tiene como matriz

$$A = \left(\begin{array}{ccc} 3 & -2 & -2 \\ -1 & 4 & a \\ 1 & -a & 0 \end{array}\right).$$

Se pide lo siguiente:

- a) Calcula a para que 2 sea un valor propio de f.
- b) Para el valor de a calculado en el apartado anterior, determina si f es diagonalizable. Si f es diagonalizable calcula una base de \mathbb{R}^3 que diagonalice el endomorfismo.
- c) Estudia si la matriz

$$\widetilde{A} = \left(\begin{array}{ccc} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{array}\right)$$

es diagonalizable. ¿Puede ser \widetilde{A} la matriz del endomorfismo f respecto de alguna base?

15. Se considera la siguiente matriz cuadrada con coeficientes reales

$$A = \begin{pmatrix} 2a - b & 0 & 2a - 2b \\ 1 & a & 2 \\ -a + b & 0 & -a + 2b \end{pmatrix},$$

donde a y b son números reales con $a \ge b$. Se pide lo siguiente:

- a) Calcula el polinomio característico y los valores propios de A.
- b) Calcula las multiplicidades algebraicas y geométricas de los valores propios de *A*. Estudia cuando *A* es diagonalizable.

- c) En los casos en los que A sea diagonalizable, encuentra una matriz regular P tal que $P^{-1}AP$ sea diagonal.
- 16. Sea V un espacio vectorial real tridimensional y $B = \{v_1, v_2, v_3\}$ una base de V. Supongamos que $f: V \to V$ es un endomorfismo del que sabemos lo siguiente:
 - a) f(u) = u, con $u = 6v_1 + 2v_2 + 5v_3$.
 - b) $U = \{v \in V \mid x + 6y 3z = 0\}$ es un subespacio propio de f. Aquí x, y, z representan las coordenadas de v con respecto a B.
 - c) La traza de f es 5.

Calcula los valores propios de f y la matriz M(f,B).

- 17. Sea V un espacio vectorial real tridimensional y $B = \{v_1, v_2, v_3\}$ una base de V. Supongamos que $f: V \to V$ es un endomorfismo del que sabemos lo siguiente:
 - a) $f(v_1) = 3v_1 + 2v_2 + 2v_3$.
 - b) $f(v_2) = 2v_1 + 2v_2$.
 - c) El vector $v = 2v_1 2v_2 v_3$ está en el núcleo de f.

Calcula M(f,B) y estudia si f es diagonalizable. En caso afirmativo, da una base B' de V tal que M(f,B') sea diagonal.

- 18. Sea \mathbb{K} un cuerpo y $A \in M_2(\mathbb{K})$. Definimos $F_A : M_2(\mathbb{K}) \to M_2(\mathbb{K})$ como $F_A(X) = AX$.
 - *a*) Prueba que F_A es un endomorfismo de $M_2(\mathbb{K})$. Calcula la matriz que representa a F_A en la base usual de $M_2(\mathbb{K})$.
 - b) Demuestra que el polinomio característico de F_A coincide con $p_A(\lambda)^2$.
 - c) Prueba que si A es diagonalizable, entonces F_A también lo es.
- 19. Consideramos el endomorfismo f de \mathbb{R}^3 que verifica:

$$f(0,1,1) = (-4,-3,-3)$$
 , $f(0,1,0) = (-3,-2,-3)$, $f(1,-1,0) = (7,5,6)$.

- a) Calcula la matriz de f respecto a la base can $\hat{\mathbf{U}}$ nica.
- b) Calcula los valores propios de f y una base de cada uno de los subespacios propios asociados.
- c) ¿Es f un monomorfismo?
- d) Determina si f es diagonalizable. En caso afirmativo, calcula una base de \mathbb{R}^3 que diagonalice el endomorfismo.
- *e*) Calcula $f^{50}(0,0,\pi)$.

20. Sea $A \in M_3(\mathbb{R})$ dada por:

$$A = \left(\begin{array}{rrr} -2 & 1 & -2 \\ -2 & 1 & -4 \\ 8 & -3 & 0 \end{array}\right),$$

Demuestra que A no es diagonalizable. ¿Es diagonalizable si se considera con entradas en \mathbb{C} ? Utiliza el Teorema de Cayley-Hamilton para poner A^{2018} como combinación lineal de $\{A^2,A,I_3\}$.

21. Dados $a, b \in \mathbb{R}$ con $b \neq 0$ se define la matriz cuadrada de orden $n \geq 2$

$$A = \left(\begin{array}{cccc} a & b & b & \dots & b \\ b & a & b & \dots & b \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ b & b & b & \dots & a \end{array}\right).$$

- a) Prueba que $\lambda_1 = a b$ y $\lambda_2 = a + (n-1)b$ son valores propios de A. (Ayuda: Para λ_1 comprueba que $\det(A \lambda_1 I_n) = 0$ y para λ_2 comprueba que (1, 1, ..., 1) es un vector propio asociado a λ_2).
- b) Se definen los vectores $v_1 = (1, -1, 0, ..., 0)$, $v_2 = (1, 1, -2, 0, ..., 0)$, ..., $v_{n-1} = (1, 1, 1, ..., 1, -(n-1))$, $v_n = (1, 1, 1, ..., 1, 1)$. Prueba que
 - i) $\{v_1, v_2, \dots, v_{n-1}\}$ son vectores propios asociados a λ_1 y que v_n es un vector propio asociado a λ_2 .
 - ii) $v_i \cdot v_j = 0$ para $\forall i, j \in \{1, \dots, n\}, i \neq j$.
 - iii) La matriz que tiene por columnas los vectores v_1, v_2, \dots, v_n tiene determinante n!. (Ayuda: utiliza inducción sobre n).
 - iv) Como consecuencia de i) y iii) se tiene que $\{v_1, v_2, \dots, v_n\}$ es una base de \mathbb{R}^n formada por vectores propios de A, A es diagonalizable, los únicos valores propios de A son λ_1 con multiplicidad n-1 y λ_2 con multiplicidad 1, el polinomio característico de A es $p_A(t) = (a-b-t)^{n-1} \cdot (a+(n-1)b-t)$, el subespacio propio asociado a λ_1 es $L(\{v_1, v_2, \dots, v_{n-1}\})$ y el subespacio propio asociado a λ_2 es $L(\{v_n\})$.
- c) Se definen los vectores $w_1 = \frac{1}{\sqrt{2}}(1, -1, 0, \dots, 0)$, $w_2 = \frac{1}{\sqrt{2 \cdot 3}}(1, 1, -2, 0, \dots, 0)$, ..., $w_{n-1} = \frac{1}{\sqrt{(n-1) \cdot n}}(1, 1, 1, \dots, 1, -(n-1))$, $w_n = \frac{1}{\sqrt{n}}(1, 1, 1, \dots, 1, 1)$. Prueba que la matriz P que tiene por columnas los vectores w_1, w_2, \dots, w_n verifica:
 - i) $P^t \cdot P = P \cdot P^t = I_n$. (Ayuda: utiliza el apartado 2.ii)).
 - ii)

$$P^{-1} \cdot A \cdot P = P^{t} \cdot A \cdot P = \begin{pmatrix} a-b & 0 & 0 & \dots & 0 \\ 0 & a-b & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & a-b & 0 \\ 0 & 0 & 0 & \dots & a+(n-1)b \end{pmatrix}.$$

- 21. Discute de forma razonada si las siguientes afirmaciones son verdaderas o falsas:
 - a) Si $f: V \to V$ es un endomorfismo diagonalizable, entonces el endomorfismo traspuesto $f^t: V^* \to V^*$ también es diagonalizable.
 - b) La suma de dos valores propios de un endomorfismo es siempre un valor propio del mismo endomorfismo.
 - c) Si A es diagonalizable, entonces A^n también lo es para cada $n \in \mathbb{N}$.
 - d) Si una matriz de orden dos es singular, entonces es diagonalizable.
 - e) Si el polinomio característico de un endomorfismo $f: \mathbb{R}^3 \to \mathbb{R}^3$ es $(1 \lambda)(1 + \lambda^2)$ entonces f no es diagonalizable.
 - f) Si dos endomorfismos son diagonalizables y tienen los mismos valores propios, entonces son iguales.
 - g) Toda matriz cuadrada regular es diagonalizable.
 - h) Si un endomorfismo f de un espacio vectorial V cumple $f \circ f = f$, y 0 no es un valor propio de f, entonces $f = I_V$.
 - i) Sea f un endomorfismo de \mathbb{R}^3 con $\text{Im}(f) = \{(x, y, z) \in \mathbb{R}^3 / x y + 2z = 0\}$, y tal que $\lambda_1 = -1$, $\lambda_2 = 13$ son valores propios de f. Entonces, f es diagonalizable.
 - *j*) Si dos matrices tienen la misma traza, el mismo determinante y el mismo polinomio característico, entonces son semejantes.
 - k) Un endomorfismo diagonalizable puede ser diagonalizado en varias bases diferentes.
 - *l*) Si A y C son matrices cuadradas diagonalizables entonces $A + C y A \cdot C$ son diagonalizables.
 - m) Existe un endomorfismo de \mathbb{R}^4 que verifica:
 - 1) 2 y 5 son los únicos valores propios de f.
 - 2) Las multiplicidades algebraicas y geométricas de dichos valores coinciden.
 - 3) f no es diagonalizable.
 - *n*) Si λ es un valor propio de una matriz regular $M \in M_n(\mathbb{K})$, entonces $\lambda \neq 0$ y $\frac{1}{\lambda}$ es un valor propio de M^{-1} .
 - \tilde{n}) Sea $A \in M_n(\mathbb{K})$. Entonces A es diagonalizable si y sólo si $A + aI_n$ es diagonalizable $\forall a \in \mathbb{K}$.
 - o) Sea $A \in M_n(\mathbb{R})$ que verifica $A(A I_n) = 0_n$, donde I_n es la matriz identidad de orden $n \neq 0_n$ la matriz nula de orden $n \times n$. Si λ es un valor propio de A entonces $\lambda = 0$ o $\lambda = 1 \neq A$ es diagonalizable.