Student t Testi

Doç. Dr. Ertuğrul ÇOLAK

Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

Konu Başlıkları

- Tek örnek t testi
- SPSS'de tek örnek t testi uygulaması
- Bağımsız iki örnek t testi (Paralel Denemeler)
- SPSS'de bağımsız iki örnek t testi uygulaması
- Bağımlı iki örnek t testi (Çapraz Denemeler)
- SPSS'de bağımlı iki örnek t testi uygulaması

Normal dağılım gösteren toplum ya da toplumlardan alınan örneklerde;

örnek birim sayısının az olduğu (n<30),

hipotezleri test etmek için t testi kullanılır.

 örneğin alındığı toplumun standart sapmasının bilinmediği büyük hacimli örneklerde (n>30), toplum parametrelerine dayalı tek ve iki örnek

 İnterval/Oransal Ölçekli Değişkenlere ilişkin t testleri (Ortalamaya Dayalı hipotezlerin t testleri)

 Nominal/Ordinal Ölçekli Değişkenlere ilişkin t testleri (Orana Dayalı hipotezlerin t testleri)

t testi;

- Tek örnek t testi
- Bağımsız iki örnek t testi
- Bağımlı iki örnek t testi

olmak üzere 3 farklı tipte uygulanır.

Burada en yaygın olarak **ortalamalara dayalı hipotezlerin** testlerinde kullanılan 3 yöntem anlatılacaktır.

Tek örnek t testi n hacimli tek örnek düzeninde elde edilen bir değişkenin toplum parametresine dayalı hipotezlerini test eder.

Bağımsız iki örnek t testi bağımsız iki toplumun parametrelerine dayalı olarak kurulan hipotezlerin, bağımsız iki örnekten elde edilen veriler aracılığı ile test edilmesinde yararlanılır.

Bağımlı iki örnek t testi bir gruptaki n birimden farklı zamanlarda ya da farklı işlemlerden elde edilmiş iki veri setinin farklarının sıfır ortalamalı toplumun rasgele örneği olup olmadığını test eder.

Hipotez testinde aşağıdaki t testi modellerinden yararlanılır.

Tek Örnek Modeli

$$H_0: \mu = \mu_0 \quad H_1: \mu \neq \mu_0$$

$$t = \frac{(\overline{X} - \mu_0)}{S / \sqrt{n}}$$

Bağımsız İki Örneklem Modeli

$$H_0: \mu_1 = \mu_2 \quad H_1: \mu_1 \neq \mu_2$$

$$t = \frac{(\overline{X}_1 - \overline{X}_2)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$$

Bağımlı İki Örneklem Modeli

$$H_0: \mu_D = 0$$
 $H_1: \mu_D \neq 0$

$$t = \frac{(\overline{X}_d - 0)}{S_d / \sqrt{n}}$$

Bağımsız iki örnek t testinde farklı varyansa dayalı

hipotez testi

$$H_0: \mu_1 = \mu_2$$
 $H_1: \mu_1 \neq \mu_2$

$$t = \frac{(\overline{X}_1 - \overline{X}_2)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$$

- Normal dağılım gösteren toplumdan tek örneklem ya da iki örneklem durumuna göre rastgele olarak elde edilmiş veri setleri belirlenir.
- Hipotezler ve bu hipotezlere uygun t test modelini belirlenir.
- Örnek istatistikleri (Ortalama, Standart Sapma) hesaplanır.

- t test istatistiği hesaplanır, serbestlik derecesi hesaplanır.
- t test istatistiğinin gözlenme olasılığı ve önemlilik düzeyini belirlenir.
- P>0.05 için önemsiz, P<0.05 için önemli kararı alınır.

t test istatistiği, hesaplanan serbestlik derecesine (sd) göre farklı t dağılımı gösterir.

- Tek örneklem t test modelinde, sd=n-1
- İki örneklem t test modelinde, sd=n1+n2-2
- Bağımlı iki örneklem t test modelinde, sd=n-1 olarak hesaplanır.

KARAR VERME

- t test istatistiği hesaplanır.
- sd hesaplanır.
- sd parametreli teorik t dağılımının α yanılma payına göre kritik değerleri belirlenir, $t(\alpha,sd)$.

İki yönlü hipotez test sonuçlarına göre;

- $|t| < t(\alpha/2, sd)$, önemsiz (p> α)
- $t(\alpha/2,sd) < |t|$ önemli (p< α)

kararına varılır.

15	bireye	ait	sisto	olik	kan
bas	ınçları	yand	laki	tab	loda
ver	ilmiştir.	Bu	b	irey	lerin
sist	olik kan	bası	nçlar	ı sa	ğlıklı
bire	eylere	ait	t	top	lum
par	ametres	i			olan
120	mm/Hg	' ye e	şit m	nidir	?

Sistolik Kan Basınçları mm/Hg
117
125
118
140
104
120
127
113
112
128
119
126
104
130
134

Örneğe ait hipotezler

aşağıdaki gibi kurulur.

 H_0 : μ =120 mm/Hg

H₁: μ≠120 mm/Hg

Sistolik Kan Basınçları mm/Hg
117
125
118
140
104
120
127
113
112
128
119
126
104
130
134

15 bireye ait sistolik kan basınçları SPSS veri sayfasına SKB değişkeni olarak yandaki gibi girilir.

	SKB	var
1	117	
2	125	
3	118	
4	140	
5	104	
6	120	
7	127	
8	113	
9	112	
10	128	
11	119	
12	126	
13	104	
14	130	
15	134	

Örnekte yer alan verilerin tek örneklem t testi ile analiz edilebilmesi için öncelikle normal dağılım göstermesi gerekmektedir.

Bunun için verilerin <u>normal dağılıma</u> uygun olup olmadıkları test edilir.

Analyze -> Descriptive Statisticsc -> Explore menüsü

kullanılır.

Açılan Explore penceresinde SKB değişkeni Dependent List alanına taşınır. Plots düğmesi tıklanır ve açılan pencerede Normality plots with test seçeneği seçilir. Continue ve OK tıklanır.

Normalite testlerinde kullanılan hipotez testi aşağıdaki gibi kurulur.

H₀:SKB değerleri normal dağılım göstermektedir.

H₁:SKB değerleri normal dağılım göstermemektedir.

Bu durumda test sonucunda elde edilen p değeri (Sig.) belirlenen α yanılma payından küçük ise H_1 , büyük ise H_0 hipotezi kabul edilir.

α yanılma payı 0.05 olarak belirlenir. Bu değere önemlilik düzeyi de denilmektedir.

Tests of Normality

	Kolmogorov-Smirnov ^a			Shapiro-Wilk		
	Statistic	df	Sig.	Statistic	df	Sig.
SKB	,113	15	,200*	,974	15	,909

^{*.} This is a lower bound of the true significance.

a. Lilliefors Significance Correction

Kolmogorov-Smirnov ve Shapiro-Wilk test sonuçlarına göre 15 bireye ait SKB değerleri normal dağılım göstermektedir.

Tests of Normality

	Kolmogorov-Smirnov ^a			Shapiro-Wilk		
	Statistic	df	Sig.	Statistic	df	Sig.
SKB	,113	15	,200*	,974	15	,909

- *. This is a lower bound of the true significance.
- a. Lilliefors Significance Correction

büyüktür.

Çünkü test sonuçlarında yer alan anlamlılık düzeyi (Sig.) p=0.200 (Kolmogorov-Smirnov) ve 0.909 (Shapiro-Wilk) değeridir ve bu değer 0.05 değerinden

Tek örneklem t testi uygulamak için Analyze -> Compare Means -> One-Sample T Test seçeneği tıklanır.

Açılan pencerede Test Variable alanına SKB değişkeni taşınır. Test Value alanına ise 120 değeri girilir. Son olarak OK tıklanır ve test sonuçları alınır.

One-Sample S	tatistics
--------------	-----------

	N	Mean	Std. Deviation	Std. Error Mean
SKB	15	121,13	10,315	2,663

One-Sample Test

	Test Value = 120					
				Mean	95% Confidenc Differ	
	t	df	Sig. (2-tailed)	Difference	Lower	Upper
SKB	,426	14	,677	1,133	-4,58	6,85

Sonuçlar incelendiğinde bireylerin sistolik kan basınçları sağlıklı bireylere ait toplum parametresi olan 120 mm/Hg' ye eşit olduğu, başka bir anlatımla bu bireyler sağlıklı topluma ait bireylerdir sonucuna varırız.

One-Sample Statistics				
	N	Mean	Std. Deviation	Std. Error Mean
SKB	15	121,13	10,315	2,663

One-Sample Test

	Test Value = 120					
				Mean	95% Confidenc Differ	
	t	df	Sig. (2-tailed)	Difference	Lower	Upper
SKB	,426	14	,677	1,133	-4,58	6,85

Çünkü hesaplana p değeri 0.677'dir ve bu değer yanılma payı olan 0.05 kritik değerinden büyüktür.

Tek Örnek t testi İşlemlerle Çözümü

$$H_0: \mu = 120$$
 $H_1: \mu \neq 120$

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{117 + \dots + 134}{15} = \frac{1817}{15} = 121.1333$$

$$S = \sqrt{\frac{\sum_{i=1}^{n} x_i^2 - \frac{\left(\sum_{i=1}^{n} x_i\right)^2}{n}}{n-1}} = \sqrt{\frac{\left(117^2 + \dots + 134^2\right) - \frac{\left(117 + \dots + 134\right)^2}{15}}{14}} = \sqrt{\frac{221589 - \frac{1817^2}{15}}{14}} = 10.315$$

$$t = \frac{\overline{X} - \mu_0}{S / \sqrt{n}} = \frac{121.133 - 120}{10.315 / \sqrt{15}} = 0.426$$

t=0.426<t_{0.025.14}=2.14479 için p>0.05 elde edilir.

SPSS'te Bağımsız Örneklerde t testi

İki grup dişi sıçan üzerinde yüksek (n_1 =12 sıçan) ve düşük (n_2 =7 sıçan) proteinli iki farklı diyet uygulanıyor. 28 günlük yaştan 84 günlük yaşa kadar bu diyet uygulanıyor ve aldıkları kilolar gram olarak ölçülüyor.

SPSS'te Bağımsız Örneklerde t testi

Yüksek ve	düşü	Yüksek P
		134
proteinli	diye	t 146
	-	104
uygulamak	kilo alım	119
		124
üzerine etk	ili oluyo	r 161
	·	107
mu? Acaba	iki grul	O 83
	_	113
arasında ör	nemli bi	r 1129
		97
farklılık var ı	nıdır?	123

Yüksek Protein	Düşük Protein
134	70
146	118
104	101
119	85
124	107
161	132
107	94
83	
113	
1129	
97	
123	

SPSS'te Bağımsız Örneklerde t testi

Örneğe ait hipotezler aşağıdaki gibi kurulur.

$$H_0$$
: $\mu_{YP} = \mu_{DP}$

$$H_1$$
: $\mu_{YP} \neq \mu_{DP}$

YP: Yüksek Protein

DP: Düşük Protein

Yüksek Protein	Düşük Protein
134	70
146	118
104	101
119	85
124	107
161	132
107	94
83	
113	
1129	
97	
123	

Veriler yanda görüldüğü iki sütun
halinde SPSS veri sayfasına girilir.
Ağırlık değişkeni iki grup alt alta
gelecek şekilde girilir. Grup
sütununa ise ağırlıkların hangi
gruba ait olduğunu gösteren
grup kodları girilir.

	Ağırlık	Grup
1	134	Yüksek Protein
2	146	Yüksek Protein
3	104	Yüksek Protein
4	119	Yüksek Protein
5	124	Yüksek Protein
6	161	Yüksek Protein
7	107	Yüksek Protein
8	83	Yüksek Protein
9	113	Yüksek Protein
10	129	Yüksek Protein
11	97	Yüksek Protein
12	123	Yüksek Protein
13	70	Düşük Protein
14	118	Düşük Protein
15	101	Düşük Protein
16	85	Düşük Protein
17	107	Düşük Protein
18	132	Düşük Protein
19	94	Düşük Protein

Örnekte yer alan verilerin bağımsız örneklerde t testi ile analiz edilebilmesi için öncelikle normal dağılım göstermesi gerekmektedir.

Bunun için verilerin <u>normal dağılıma</u> uygun olup olmadıkları test edilir.

Analyze -> Descriptive Statisticsc -> Explore menüsü

kullanılır.

Açılan Explore penceresinde Ağırlık Dependent List alanına taşınır. Factor List alanına ise Grup değişkeni atanır. Çünkü her iki grupta da verilerin normal dağılıma uygun olup olmadığı test edilmelidir.

Plots düğmesi tıklanır ve açılan pencerede Normality plots with test seçeneği seçilir. Continue ve OK tıklanır.

Tests of Normality

		Kolmogorov-Smirnov ^a			Ç	Shapiro-Wilk	
	Grup	Statistic	df	Sig.	Statistic	df	Sig.
Ağırlık	Yüksek Protein	,092	12	,200*	,992	12	1,000
	Düşük Protein	,100	7	,200*	,998	7	1,000

^{*.} This is a lower bound of the true significance.

a. Lilliefors Significance Correction

Kolmogorov-Smirnov ve Shapiro-Wilk test sonuçlarına göre hem yüksek hem de düşük proteinli grupta ağırlık değerleri normal dağılım göstermektedir. Çünkü test sonuçlarında yer alan anlamlılık düzeyleri her iki grup içinde (Sig.) p=0.200 (Kolmogorov-Smirnov) ve p=1.000 (Shapiro-Wilk) değeridir ve bu değer 0.05 değerinden büyüktür.

Açılan pencerede Test Variable(s) alanına Ağırlık değişkeni taşınır.

Grouping Variable alanına ise Grup değişkeni taşını ve Define Groups

Düğmesi tıklanarak grup kodları girilir. Son olarak OK tıklanır ve test

sonuçları alınır.

hipotezi kabul edilir.

Group Statistics					
	Grup	N	Mean	Std. Deviation	Std. Error Mean
Ağırlık	Yüksek Protein	12	120,00	21,388	6,174
	Düşük Protein	7	101,00	20,624	7,795

Independent Samples Test

		Levene's Test for Equality of Variances					t-test for Equality	of Means		
							Mean	Std. Error	95% Confidenc Differ	
		F	Sig.	t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper
Ağırlık	Equal variances assumed	,015	,905	1,891	17	,076	19,000	10,045	-2,194	40,194
	Equal variances not assumed			1,911	13,082	,078	19,000	9,944	-2,469	40,469

Sonuçlar incelendiğinde yüksek ve düşük protein uygulanan grupların kilo alımı bakımından önemli bir farklılık göstermediği sonucuna varılır çünkü hesaplanan p değeri 0.76'dır ve bu değer yanılma payı olan 0.05 kritik değerinden büyüktür. Dolayısıyla H_0

Bağımsız Örneklerde t testi İşlemlerle Çözümü

$$H_0: \mu_{YP} = \mu_{DP} \quad H_1: \mu_{YP} \neq \mu_{DP}$$

$$\overline{x}_{YP} = \frac{\sum_{i=1}^{n_{YP}} x_{YPi}}{n_{YP}} = \frac{134 + \dots + 123}{12} = \frac{1440}{12} = 120$$

$$\overline{x}_{DP} = \frac{\sum_{i=1}^{n_{DP}} x_{DPi}}{n_{DP}} = \frac{70 + \dots + 94}{7} = \frac{707}{7} = 101$$

Bağımsız Örneklerde t testi İşlemlerle Çözümü

$$S_{YP} = \sqrt{\frac{\sum_{i=1}^{n_{YP}} x_{YPi}^2 - \frac{\left(\sum_{i=1}^{n_{YP}} x_{YPi}\right)^2}{n_{YP}}}{n_{YP}}} = \sqrt{\frac{\left(134^2 + \dots + 123^2\right) - \frac{\left(134 + \dots + 123\right)^2}{12}}{11}} = \sqrt{\frac{177832 - \frac{1440^2}{12}}{11}} = 21.388$$

$$S_{DP} = \sqrt{\frac{\sum_{i=1}^{n_{DP}} x_{DPi}^2 - \frac{\left(\sum_{i=1}^{n_{DP}} x_{DPi}\right)^2}{n_{DP}}}{n_{DP}}} = \sqrt{\frac{\left(70^2 + ... + 94^2\right) - \frac{\left(70 + ... + 94\right)^2}{7}}{6}} = \sqrt{\frac{73959 - \frac{707^2}{7}}{6}} = 20.624$$

$$t = \frac{\overline{X}_{YP} - \overline{X}_{DP}}{\sqrt{\frac{S_{YP}^2 + S_{DP}^2}{n_{YP}}}} = \frac{120 - 101}{\sqrt{\frac{21.388^2}{12} + \frac{20.624^2}{7}}} = 1.91$$

Bağımsız Örneklerde t testi İşlemlerle Çözümü

Burada eşit varyans yaklaşımı kullanılmamıştır.

 $t=1.91 < t_{0.025,17}=2.109$ için p>0.05 elde edilir.

Kodeinin çabuk salım ve sürekli salım formülasyonlarını karşılaştırmak için bir çalışma planlanıyor. 13 birey çalışmaya dahil ediliyor ve her bir kişi her iki formülasyondan da rastgele ve körleme olarak alıyor.

Farmakokinetik parametreler arasında yer alan Cmax değeri hem çabuk hem de sürekli salım içim ölçülüyor. Acaba kodeinin çabuk salım Cmax toplum ortalaması sürekli salım Cmax toplum ortalamasından farklı mıdır?

Kodeir	ı'in	çabuk	Sã	alım
ve	sür	ekli	Sã	alım
formül	asy	onların	ın	
Cmax	d	eğerler	İ	13
kişide	ö	lçülüyo	r	ve
sonuçl	ar	yandak	İ	gibi
elde e	diliy	or.		

Sürekli Salım C-max	Çabuk Salım C-max
195,7	181,8
167	166,9
217,3	136
375,7	221,3
285,7	195,1
177,2	112,7
220,3	84,2
243,5	78,5
141,6	85,9
127,2	85,3
345,2	217,2
112,1	49,7
223,4	190
127,2 345,2 112,1	85,3 217,2 49,7

Bu çalışma için

hipotezler aşağıdaki

şekilde kurulur.

H0: $\mu_D = 0$

H1: μ_D≠0

Sürekli Salım C-max	Çabuk Salım C-max
195,7	181,8
167	166,9
217,3	136
375,7	221,3
285,7	195,1
177,2	112,7
220,3	84,2
243,5	78,5
141,6	85,9
127,2	85,3
345,2	217,2
112,1	49,7
223,4	190

Burada	Sürekli Salım C-max	Çabuk Salım C-max
	195,7	181,8
$\mu_D = \mu_{SSCmax} - \mu_{ÇSCmax}$	167	166,9
	217,3	136
μ_{SSCmax} :	375,7	221,3
kodeinin sürekli salım	285,7	195,1
No de l'illi	177,2	112,7
Cmax toplum ortalaması	220,3	84,2
	243,5	78,5
μ_{CSCmax} :	141,6	85,9
kodeinin çabuk salım	127,2	85,3
kodenini Çabuk Sanın	345,2	217,2
Cmax toplum ortalaması	112,1	49,7
	223,4	190

Örnekte yer alan verilerin eşleştirilmiş t testi ile analiz edilebilmesi için öncelikle farkların normal dağılım gerekmektedir. göstermesi Bunun için öncelikle verilerin farkları hesaplanır ve SPSS veri sayfasına yanda gösterildiği

gibi girilir.

2 167,00 166,90 ,10 3 217,30 136,00 81,30 4 375,70 221,30 154,40 5 285,70 195,10 90,60 6 177,20 112,70 64,50 7 220,30 84,20 136,10 8 243,50 78,50 165,00 9 141,60 85,90 55,70				
2 167,00 166,90 ,10 3 217,30 136,00 81,30 4 375,70 221,30 154,40 5 285,70 195,10 90,60 6 177,20 112,70 64,50 7 220,30 84,20 136,10 8 243,50 78,50 165,00 9 141,60 85,90 55,70		SS_Cmax	ÇS_Cmax	Fark
3 217,30 136,00 81,30 4 375,70 221,30 154,40 5 285,70 195,10 90,60 6 177,20 112,70 64,50 7 220,30 84,20 136,10 8 243,50 78,50 165,00 9 141,60 85,90 55,70	1	195,70	181,80	13,90
4 375,70 221,30 154,40 5 285,70 195,10 90,60 6 177,20 112,70 64,50 7 220,30 84,20 136,10 8 243,50 78,50 165,00 9 141,60 85,90 55,70	2	167,00	166,90	,10
5 285,70 195,10 90,60 6 177,20 112,70 64,50 7 220,30 84,20 136,10 8 243,50 78,50 165,00 9 141,60 85,90 55,70	3	217,30	136,00	81,30
6 177,20 112,70 64,50 7 220,30 84,20 136,10 8 243,50 78,50 165,00 9 141,60 85,90 55,70	4	375,70	221,30	154,40
7 220,30 84,20 136,10 8 243,50 78,50 165,00 9 141,60 85,90 55,70	5	285,70	195,10	90,60
8 243,50 78,50 165,00 9 141,60 85,90 55,70	6	177,20	112,70	64,50
9 141,60 85,90 55,70	7	220,30	84,20	136,10
,	8	243,50	78,50	165,00
10 127,20 85,30 41,90	9	141,60	85,90	55,70
	10	127,20	85,30	41,90
11 345,20 217,20 128,00	11	345,20	217,20	128,00
12 112,10 49,70 62,40	12	112,10	49,70	62,40
13 223,40 190,00 33,40	13	223,40	190,00	33,40

Açılan Explore penceresinde Fark Dependent List alanına taşınır. Plots düğmesi tıklanır ve açılan pencerede Normality plots with test seçeneği seçilir. Continue ve OK tıklanır.

Tests of Normality

	Kolmogorov-Smirnov ^a			Shapiro-Wilk		
	Statistic	df	Sig.	Statistic	df	Sig.
Fark	,146	13	,200*	,951	13	,620

^{*.} This is a lower bound of the true significance.

a. Lilliefors Significance Correction

Kolmogorov-Smirnov ve Shapiro-Wilk test sonuçlarına göre Fark değerleri normal dağılım göstermektedir. Çünkü test sonuçlarında yer alan anlamlılık düzeyi (Sig.) p=0.200 (Kolmogorov-Smirnov) ve p=0.620 (Shapiro-Wilk) değeridir ve bu değer 0.05 değerinden büyüktür.

Eşleştirilmiş t testi uygulamak için Analyze -> Compare Means -> Paired-Samples T Test seçeneği tıklanır.

Açılan pencerede Paired Variables alanına SS_Cmax ve ÇS_max değişkenleri birinci çift olarak alınır. Son olarak OK tıklanır ve test sonuçları alınır.

Paired Samples Statistics						
		Mean	N	Std. Deviation	Std. Error Mean	
Pair 1	SS_Cmax	217,8385	13	79,77918	22,12676	
1	CS Cmax	138.8154	13	59.36351	16.46448	

Paired Samples Test

			Paired Differences						
				Std. Error	95% Confidence Interval of the Difference				
		Mean	Std. Deviation	Mean	Lower	Upper	t	df	Sig. (2-tailed)
Pair 1	SS_Cmax - ÇS_Cmax	79,02308	53,09591	14,72615	46,93754	111,10861	5,366	12	,000

Sonuçlar incelendiğinde Kodeinin sürekli ve çabuk salım Cmax toplum ortalamalarının birbirinden farklı olduğu sonucuna varılır, çünkü hesaplana p değeri<0.001'dir ve bu değer yanılma payı olan 0.05 kritik değerinden küçüktür. Bu durumda H₁ hipotezi kabul edilir.

Bağımlı Örneklerde t testi İşlemlerle Çözümü

$$H_0: \mu_D = 0 \quad H_1: \mu_D \neq 0$$

$$\overline{x}_d = \frac{\sum_{i=1}^{n} x_{di}}{n} = \frac{13.90 + \dots + 33.40}{13} = \frac{1027.3}{13} = 79.023$$

$$S_d = \sqrt{\frac{\sum_{i=1}^n x_{di}^2 - \frac{\left(\sum_{i=1}^n x_{di}\right)^2}{n}}{n-1}} = \sqrt{\frac{\left(13.90^2 + \dots + 33.40^2\right) - \frac{\left(13.90 + \dots + 33.40\right)^2}{13}}{12}} = \sqrt{\frac{115010.51 - \frac{1027.3^2}{13}}{12}} = 53.096$$

$$t = \frac{\overline{X}_d - 0}{S_d / \sqrt{n}} = \frac{79.023 - 0}{53.096 / \sqrt{13}} = 5.37$$

 $t=5.37Z>t_{0.025.12}=2.178$ için p<0.05 elde edilir.

Nadir gözlenen ve doğumsal bir hastalık olan Everley sendromlu hastalarda plazma kalsiyum konsantrasyonunun araştırılması hedefleniyor. Daha önceki araştırmalardan elde edilen sonuçlara göre 20-44 yaş arası sağlıklı bireylerde plazma kalsiyum konsantrasyonu 2.5 mmol/l olarak saptanmıştır.

Bu amaçla 18 Everley sendromlu hastanın plazma kalsiyum değerleri ölçülmüş sonuçlar yandaki tablodadır.

Acaba Everley sendromlu hataların plazma kalsiyum değerleri sağlıklı bireylerden farklı mıdır?

Plazma Kalsiyum Değerleri mmol/l
4,27
2,00
1,15
2,9
2,83
3,31
3,41
4,46
4,05
2,52
3,65
4,26
4,87
2,97
2,42
1,68
3,82
2,47

Tests of Normality

	Kolm	nogorov-Smi	rnov ^a	Shapiro-Wilk			
	Statistic	df	Sig.	Statistic	df	Sig.	
Kalsiyum	,082	18	,200*	,980	18	,951	

^{*.} This is a lower bound of the true significance.

a. Lilliefors Significance Correction

Kalsiyum değerleri normal dağılıma uygunluk göstermektedir.

One-Sample Statistics

	N	Mean	Std. Deviation	Std. Error Mean
Kalsiyum	18	3,1687	1,02313	,24115

One-Sample Test

		Test Value = 2.5									
			95% Confidenc Differ	ce Interval of the rence							
	t	df	Sig. (2-tailed)	Difference	Lower	Upper					
Kalsiyum	2,773	17	,013	,66869	,1599	1,1775					

Sonuç: t=2.773, p=0.013

P=0.013<0.05 olduğumdan Everley sendromlu hastaların plazma kalsiyum konsantrasyonları sağlıklı bireylerden farklıdır.

Siklosporin'nin (cyclosporine), sağlıklı ve böbrek nakli yapılacak olan hastalardaki etkisini değerlendirmek üzere bir çalışma planlanıyor. Farmakokinetik bir parametre olan oral biyoyararlanım (bioavailability) yüzde olarak hem sağlıklı hem de hastalarda ölçülüyor.

Elde	ediler	n biyoya	rarlanım%
değer	leri	yandaki	tabloda
veriln	niştir.		

Acaba sağlıklı bireylerdeki
Siklosporinin biyoyararlanımı,
hasta bireylerdeki
Siklosporinin
biyoyararlanımından farklı

midir?

Sağlıklı Bireylerde Biyoyararlanım %	Hasta Bireylerde Biyoyararlanım %
20,97	29,99
15,2	27,48
19,3	25,65
15,89	22,63
17,87	24,46
18,74	26,78
14,53	29,82
29,78	22,14

Tests of Normality

		Kolmogorov-Smirnov ^a			Shapiro-Wilk			
	Grup	Statistic	df	Sig.	Statistic	df	Sig.	
Biyoyararlanım	Sağlıklı	,228	8	,200*	,826	8	,054	
	Hasta	,143	8	,200*	,937	8	,578	

^{*.} This is a lower bound of the true significance.

Biyoyararlanım değerleri hem sağlıklı hem de hasta bireylerde normal dağılıma uygunluk göstermektedir.

a. Lilliefors Significance Correction

Group Statistics

	Grup	N	Mean	Std. Deviation	Std. Error Mean
Biyoyararlanım	Sağlıklı	8	19,0347	4,86611	1,72043
	Hasta	8	26,1202	2,97494	1,05180

Independent Samples Test

Levene's Test for Equality of Variances				t-test for Equality of Means						
							Mean	95% Confidence Intervi ean Std. Error Difference		
		F	Sig.	t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper
Biyoyararlanım	Equal variances assumed	,403	,536	-3,514	14	,003	-7,08543	2,01647	-11,41033	-2,76052
	Equal variances not assumed			-3,514	11,591	,004	-7,08543	2,01647	-11,49619	-2,67466

Sonuç: t=-3.514, p=0.003

P=0.003<0.05 olduğundan sağlık bireylerdeki Siklosporinin biyoyararlanımı, hasta bireylerdeki Siklosporinin biyoyararlanımından farklıdır.

Siklosporin'nin (cyclosporine), sağlıklı bireylerdeki yüksek yağ diyetine ve düşük yağ diyetine bağlı olarak etkisini değerlendirmek üzere bir çalışma planlanıyor. Farmakokinetik bir parametre klirens değerleri önce yüksek yağ diyetinde ölçülüyor, sonra aynı kişilerde düşük yağ diyetinde tekrar ölçülüyor.

Bu amaçla çalışmaya 7 sağlıklı birey alınıyor. Elde edilen sonuçlar yandaki tabloda verilmiştir.

Acaba Siklosporin'nin klirens değerleri yüksek yağ ve düşük yağ diyete göre farklılık göstermekte midir?

CL _{iv} (L/hr/Kg)									
Yüksek Yağ Diyeti	Düşük Yağ Diyeti								
0,569	0,479								
0,668	0,400								
0,624	0,358								
0,521	0,372								
0,679	0,563								
0,939	0,636								
0.882	0.448								

Tests of Normality

	Kolm	nogorov-Smi	rnov ^a	Shapiro-Wilk			
	Statistic	df	Sig.	Statistic	df	Sig.	
Fark_Klirens	,182	7	,200*	,933	7	,575	

^{*.} This is a lower bound of the true significance.

a. Lilliefors Significance Correction

Klirens değerlerinin farkı normal dağılıma uygunluk göstermektedir.

Paired Samples Statistics

		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	Yüksek_Yağ_Klirens	,69743	7	,156334	,059089
	Düşük_Yağ_Klirens	,46514	7	,102999	,038930

Paired Samples Test

		Paired Differences							
				95% Confidence Interval of the Std. Error Difference					
		Mean	Std. Deviation	Mean	Lower	Upper	t	df	Sig. (2-tailed)
Pair 1	Yüksek_Yağ_Klirens - Düşük_Yağ_Klirens	,232286	,121659	,045983	,119770	,344801	5,052	6	,002

Sonuç: t=5.052, p=0.002

P=0.002<0.05 olduğundan Siklosporin'nin klirens değerleri yüksek yağ ve düşük yağ diyete göre farklılık göstermektedir.