PERFORMANCE AND FINAL SUBMISSION PHRASE

Date	21 November 2023
Team ID	Team- 592184
Project Name	ASL - Alphabet image recognition
Maximum Marks	10 Marks

Model Performance Testing:

1. Metrics Classification Model: VGG16 model Confusion Matrix:- Confusion Matrix, Classification Report & Classification Report & Classification C	S.No.	Parameter	Values	Screenshot
Model: VGG16	1.	Metrics	Classification	Confusion Matrix:-
Model Confusion			Model:	
model			VGG16	[[578 1 0 0 2 0 0 0 0 0 0 5 1 0 0 0 0
Confusion Matrix , Classification Report & I 1 2 8 9 9 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9			model	
Confusion Matrix , Classification Report & I 1 0 0 0 0 0 0 1 50 0 0 0 0 0 0 0 0 0 0				[0 1585 0 0 0 0 3 0 0 0 0 0 3 0 1 0
Matrix			Confusion	0 0 0 1 0 0 0 0 0 0 0]
Classification Report & 1			Matrix,	
Report & Compare Comp			Classification	2 0 0 2 0 0 1 1 0 0 1]
Accuracy Scores- Training accuracy:- 94.98% Testing accuracy:- 95.03% Testing accuracy:- 95.03%			Report &	0 0 0 0 0 0 2 0 2 0]
Scores- [2			•	
Training			Accuracy	[2 0 0 0 0 0 2 0 5 3 0 572 0 0 0 0 0
Training accuracy:- 94.98% Testing accuracy:- 1			Scores-	
Training accuracy:- 94.98% Testing accuracy:- [[0 0 0 0 0 0 1 0 0 0 39551 0 0 0 0 4 0 3 0 0 0 0 1 1 0]
accuracy:- 94.98%			Training	7 0 0 0 0 0 1 1 0 1]
94.98% 6			accuracy:-	
Testing accuracy:- 95.03% Testing			94.98%	6 0 18 6 0 4 0 0 0 0 0]
Testing [e				578 2 2 0 0 4 0 3 0 1 1] [0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0
accuracy:- 95.03% 7			Testing	[0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 50 4 0 539 2 0 4 0 0 0 0 0]
95.03% 2			accuracy:-	7 1 5 548 8 6 0 0 0 0 0]
4 1 0 0 0 590 2 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0			95.03%	[2 0 0 0 0 0 0 0 1 0 0 1 2 0 0 0 0 8 44 3 3 1 0 529 0 5 0 1 0]
9 0 0 0 1 3 584 0 0 0 0 1 1 1 1 2 0 0 0 0 0 0 1 1 1 1 2 0 1 0 0 0 0				4 1 0 0 0 0 590 2 0 0 0]
				9 0 0 0 0 1 3584 0 0 0]
0 1 0 0 0 0 0 0 0 0 0				
				Classification report:-
Classification report:				Classification report

136/136 [====				
	precision	recall	f1-score	support
А	0.95	0.95	0.95	600
В	0.94	0.96	0.95	600
C	1.00	0.97	0.98	600
D	0.99	0.98	0.98	600
E	0.98	0.94	0.96	600
F	0.99	0.97	0.98	600
G	0.99	0.95	0.97	600
н	0.97	0.98	0.97	600
I	0.97	0.96	0.96	600
3	0.97	0.97	0.97	600
K	0.94	0.91	0.93	600
L	1.00	0.96	0.98	600
M	0.93	0.93	0.93	600
N	0.94	0.95	0.94	600
0	0.97	0.99	0.98	600
P	0.98	0.98	0.98	600
Q	0.99	0.98	0.98	600
R	0.84	0.93	0.88	600
S	0.81	0.96	0.88	600
T	0.98	0.95	0.96	600
U	0.91	0.89	0.90	600
V	0.91	0.91	0.91	600
W	0.98	0.93	0.96	600
X	0.96	0.87	0.91	600
Y	0.97	0.97	0.97	600
Z	0.95	0.98	0.96	600
del	0.98	0.97	0.98	600
nothing	0.98	1.00	0.99	600
space	0.98	0.98	0.98	600
accuracy			0.95	17400
macro avg	0.96	0.95	0.95	17400
weighted avg	0.96	0.95	0.95	17400

Accuracy Score:-

2. Tune the Model

Hyperparameter Tuning:

The model is tuned with following hyper parametersOptimizer - Adam
Learning rate - 0.0001
Loss - Categorical cross entropy
Batch size - 128
EPOCHS - 10

Validation Method:

The validation of the model is done through the validation data, which is set to 20% of training data. Data augmentation and callbacks are also used to validate performance. Accuracy is the validation parameter that we have monitored

Hyperparameter Tuning:-

```
# Configuration

class CFG:

# Set the batch size for training

batch_size = 128

# Set the height and width of input images

img_height = 32

img_width = 32

epochs = 10
```

Validation Method:-

```
# Split the data into train and test sets
X_train, X_test, y_train, y_test = train_test_split(
    metadata['image_path'],
    metadata['label'],
    test_size=0.2,
    random_state=2253,
    shuffle=True,
    stratify=metadata['label']
)

# Create a DataFrame for the training set test set

data_train = pd.DataFrame({
    'image_path': X_train,
    'label': y_train
})

data_test = pd.DataFrame({
    'image_path': X_test,
    'label': y_test
}

4 # Create a ModelCheckpoint callback
S checkpoint_callback = ModelCheckpoint()
    filegath / Cortent/Sample_data/Dest_model_weights.h5',
    monitor='val_scurmacy', # Monitor validation accuracy for saving the best model
    sooke="accuracy", # Monitor validation accuracy for saving the best model
    verbose=1
```

CONFUSION MATRIX:-

tf.	Ter	nsor(55				32				
[[:	78	1	0	0	2	0	0	0	0	0	0	0	5	1	0	0	0	0
200	7	1	1	0	0	1	0	3	0	0	0]							
1	0	585	0	0	1	1	0	0	0	0	1	0	0	0	1	0	0	5
22	0	0	- 5	0	0	0	0	0	0	1	6]							
[0		585	0	0	0	. 0	3	0	9	0	0	0	0	3	0	1	0
20	1	1	0	0	0	0	0	0	2	0	3]							
[0	6	0	584	0	2	0	0	1	9	0	. 6	. 0	0	- 5	0	0	1
	0	0	0	1	0	0	0	0	0	0	0]							
[12	6	9	0	565	1	. 0	0	5	0	0	0	2	0	1	0	0	0
	7	0	0	1	0	0	0	0	0	0	0]							
[]	0	2	0	3		590	0	0	0	0	0	0	1	0	1	0	0	9
	1	0	0	0	0	0	1	0	0	0	0]							
[3	0	0	0	0	0	572	5	2	6	0	0	0	0	0	5	0	0
	2	0	0	2	0	0	1	1	0	0	1]							
[9	0	0	0	0	0		589	0	1	0	0	0	0	1	. 0	0	0
	0	0	0	0	0	0	0	2	0	2	0]							
[1	6	0	1	4	0	0	0		8	0	0	0	0	0	0	0	4
1212	1	0	1	1	0	0	2	3	0	0	0]							
[0	0	0	0	0	0	0	3		584	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	4	3	0	0	0]							
[0	12	0	2	0	0	0	0	2		544	0	0	0	0	0	0	9
	0	0	0	27	3	0	0	0	0	1	9]							
[2	0	0	0	0	0	2	0	5	3		572	0	0	0	. 0	0	0
	1	10	0	0	0	3	1	1	0	0	0]							
[0	0	0	0	1	0	0	0	0	0	0	0	578	18	2	0	0	0
	1	0	0	0	0	0	0	0	0	0	0]							
]	0	0	0	0	0	0	0	1	0	0	0	0	39	551	0	0	0	0
	4	0	3	0	0	0	0	0	1	1	0]							
1	0	0	0	2	0	0	0	0	0	0	0	0	0	0	585	2	0	1
	7	0	0	0	0	0	0	1	1	0	1]							
	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	593	2	0
	1	0	1	0	0	0	0	0	1	0	1]							
[0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	592	0
	0	0	0	0	0	0	0	1	4	0	1]							
1	0	0	0	0	0	0	0	1	4	0	1	0	0	0	0	0	0	560
	6	0	18	6	0	4	0	0	0	0	0]							
1	3	0	0	0	0	0	0	0	0	0	0	0	3	3	0	0	0	0
	578	2	2	0	0	4	0	3	0	1	1]							
1	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	. 0	0
	12	576	0	0	0	0	4	6	0	0	0]							
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	50
	4	0	539	2	0	4	0	0	0	0	0]							
I	0	0	0	0	0	0	0	0	2	0	12	0	1	0	0	0	0	10
,,,,,,,,	7	1	5	548	8	6	0	0	0	0	0]							
1	0	0	0	0	0	0	0	0	0	0	6	0	1	0	0	0	0	2
	2	0	1	22	563	0	2	1	0	0	0]							
[2	0	0	0	0	0	0	0	1	0	0	1	2	0	0	0	. 0	8
94	44	3	3	1	0	529	0	5	0	1	0]							
1	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0
	4	1	0	0	0	0	590	2	0	0	0]							
I	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
	9	0	0	0	0	1	. 3	584	0	0	0]							
1	0	0	0	0	0	0	0	2	0	0	0	0	1	1	1	1	2	0
	1	0	0	0	0	0	1	2	584	2	2]							
200	223	-				9 (42)												
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0

CLASSIFICATION REPORT:-

136/136 [====	.=======		====] - 25	s 181ms/step
	precision	recall	f1-score	support
А	0.95	0.95	0.95	600
В	0.94	0.96	0.95	600
C	1.00	0.97	0.98	600
D	0.99	0.98	0.98	600
E	0.98	0.94	0.96	600
F	0.99	0.97	0.98	600
G	0.99	0.95	0.97	600
Н	0.97	0.98	0.97	600
I	0.97	0.96	0.96	600
J	0.97	0.97	0.97	600
K	0.94	0.91	0.93	600
L	1.00	0.96	0.98	600
M	0.93	0.93	0.93	600
N	0.94	0.95	0.94	600
0	0.97	0.99	0.98	600
P	0.98	0.98	0.98	600
Q	0.99	0.98	0.98	600
R	0.84	0.93	0.88	600
S	0.81	0.96	0.88	600
T	0.98	0.95	0.96	600
U	0.91	0.89	0.90	600
V	0.91	0.91	0.91	600
W	0.98	0.93	0.96	600
X	0.96	0.87	0.91	600
Υ	0.97	0.97	0.97	600
Z	0.95	0.98	0.96	600
del	0.98	0.97	0.98	600
nothing	0.98	1.00	0.99	600
space	0.98	0.98	0.98	600
accuracy			0.95	17400
macro avg	0.96	0.95	0.95	17400
weighted avg	0.96	0.95	0.95	17400

ACCURACY SCORE:-

```
[7] WARNING:absl:`lr` is deprecated in Keras optimizer, please use `learning_rate` or use the legacy optimizer, e.g.,tf.keras.optimizers.legacy.Adam.
  543/543 [============] - ETA: 0s - loss: 2.5409 - accuracy: 0.1969
  Epoch 1: val_accuracy improved from -inf to 0.42445, saving model to /content/sample_data/best_model_weights.h5
  543/543 [============] - 163s 269ms/step - loss: 2.5409 - accuracy: 0.1969 - val_loss: 1.7111 - val_accuracy: 0.4244
  Epoch 2/10
  543/543 [===
         Epoch 2: val accuracy improved from 0.42445 to 0.73911, saving model to /content/sample data/best model weights.h5
  Epoch 3: val_accuracy improved from 0.73911 to 0.87142, saving model to /content/sample_data/best_model_weights.h5
  543/543 [===========] - 125s 230ms/step - loss: 0.5650 - accuracy: 0.8141 - val_loss: 0.4190 - val_accuracy: 0.8714
  Epoch 4/10
  Epoch 4: val accuracy did not improve from 0.87142
          Epoch 5: val_accuracy improved from 0.87142 to 0.93473, saving model to /content/sample_data/best_model_weights.h5
  543/543 [===========] - 125s 230ms/step - loss: 0.3016 - accuracy: 0.9099 - val_loss: 0.2324 - val_accuracy: 0.9347
  Fnoch 6/10
  Epoch 6: val accuracy did not improve from 0.93473
         Epoch 7: val_accuracy improved from 0.93473 to 0.94279, saving model to /content/sample_data/best_model_weights.h5
  543/543 [============] - 147s 270ms/step - loss: 0.2280 - accuracy: 0.9352 - val_loss: 0.2000 - val_accuracy: 0.9428
  Fnoch 8/10
  Epoch 8: val accuracy did not improve from 0.94279
  Epoch 9: val_accuracy improved from 0.94279 to 0.95756, saving model to /content/sample_data/best_model_weights.h5
  543/543 [===========] - 127s 234ms/step - loss: 0.2054 - accuracy: 0.9439 - val_loss: 0.1446 - val_accuracy: 0.9576
  Fnoch 10/10
  Epoch 10: val_accuracy did not improve from 0.95756
```

HYPERPARAMETER TUNING:-

```
1 # Compile the model
2 model.compile(optimizer=Adam(lr=0.0001), loss='categorical_crossentropy', metrics=['accuracy'])
3
```

VALIDATION METHOD:-

```
# Configuration
   class CFG:
     # Set the batch size for training
     batch_size = 128
     # Set the height and width of input images
     img_height = 32
     img_width = 32
     epochs = 10
   22 # Split the training set into training and validation sets
   23 X_train, X_val, y_train, y_val = train_test_split(
         data_train['image_path'],
          data train['label'],
   25
   26
        test size=0.2/0.7, # Assuming you want 20% for validation out of the training set
   27 random state=2253,
   28 shuffle=True,
   29
          stratify=data_train['label']
   30)
   32 # Create a DataFrame for the validation set
   33 data_val = pd.DataFrame({
          'image_path': X_val,
          'label': y_val
   35
   36 })
 4 # Create a ModelCheckpoint callback
 5 checkpoint callback = ModelCheckpoint(
       filepath='/content/sample data/best model weights.h5',
 7
       monitor='val accuracy', # Monitor validation accuracy for saving the best model
```

8

9

10

11)

save_best_only=True,

mode='max',

verbose=1