BayesExam

Christophoros Spyretos

2022-10-18

Problem 1

Task b

```
set.seed(12345)

q <- c(322,248,385,341,310)
an <- 2326
bn <- 7
n <- 5
nDraws <- 10000

theta <- rgamma(nDraws,shape = an + sum(q), rate = bn + n)
q6 <- rpois(nDraws,theta)

hist(q6)</pre>
```

Histogram of q6


```
prob1b <- mean(q6>350)
```


The stock that should be held for the next month is 358.

Problem 2

```
source("ExamData.R")
```

Task a

	Mean Values
Beta0	-488.8766671
Beta1	10.7443341
Beta2	-0.0261714
Beta3	33.2477399
Beta4	-0.6083833
Beta5	-0.1344413

	Lower Bound	Upper Bound
Beta0	-1481.4811157	539.0536182
Beta1	5.7870148	15.6251718
Beta2	-0.0364576	-0.0162506
Beta3	-40.9307993	105.2944392
Beta4	-1.9988580	0.7934610
Beta5	-0.3064411	0.0314359

The 99% posterior probability that β_1 in on the interval.

Task b

```
sd <- sqrt(PostDraws$sigma2Sample)

MeanSD <- mean(sd)
MedianSD <- median(sd)</pre>
```

The posterior mean and posterior median of the standard deviation is approximately 40.01 and 39.56 respectively.

Task c

```
x1Grid <- seq(min(X[,2]),max(X[,2]),0.1)
intervals <- matrix(0, nrow = length(x1Grid), ncol = 2)

for (i in 1:length(x1Grid)) {
   mu <- Betas[,1] + Betas[,2]*x1Grid[i] + Betas[,3]*(x1Grid[i]^2) +
        Betas[,4]*27 + Betas[,5]*(27^2) + Betas[,6]*x1Grid[i]*27
   intervals[i,] <- quantile(mu, probs = c(0.025,0.975))
}

plot(x1Grid,intervals[,1], type = "l", col = "navy",
        main = "95% equal tail posterior probability intervals
        for the expected length mu on a grid of values of x1",
        xlab = "x1", ylab = "", ylim = c(20,500))
lines(x1Grid,intervals[,2], type = "l", col = "navy")</pre>
```

95% equal tail posterior probability intervals for the expected length mu on a grid of values of x1

Task d

```
plot(density(Betas[,6]), type = "1", col = "navy",
    main = "Effect on y from x1 on x2",
    xlab = "b5", ylab = "")
```

Effect on y from x1 on x2


```
intervalB5 <- quantile(Betas[,6], probs = c(0.025,0.975))

intervalB5 <- data.frame(lower_bound = intervalB5[1], upper_bound = intervalB5[2])

colnames(intervalB5) <- c("Lower Bound", "Upper Bound")

rownames(intervalB5) <- c("95% Equal Tail Credible Interval")

knitr::kable(intervalB5)</pre>
```

	Lower Bound	Upper Bound
95% Equal Tail Credible Interval	-0.2627378	-0.0057662

There is a substantial mass probability that the effect on y from x1 depends on x2. The 95% equal tail credible intervals strengthens the assumption as β_5 is on the interval.

Task e

```
main = "Posterior predictive distribution of y for a new mollusc",
xlab = "y", ylab = "")
```

Posterior predictive distribution of y for a new mollusc

Task f

```
set.seed(12345)

T_y_rep <- matrix(0,nIter,1)
mu <- Betas%*%t(X)

for (i in 1:nIter) {
   y_values <- rnorm(length(y), mean = mu[i], sd = sd[i])
   T_y_rep[i,] <- max(y_values)
}

prob2f <- mean(T_y_rep >= max(y))
```

The posterior predictive p-value is 0.0026. Hence, the model can not replicate the length of the largest mollusc in the data in a good way.

Problem 3

Task d

```
LogPost <- function(theta,n,sumx3){
  res <- (2+n)*log(theta) - theta*(4+sumx3)
  return(res)
}</pre>
```

Posterior Distribution of theta

Task e

Posterior Distribution of theta

The posterior approximation is not that accurate, the exact posterior is skewed to the right.