

Graph Structure

Contents

- Terminologies
- Graph representation
- Graph traversal
- Spanning tree
- Shortest path

Graph

- A graph consists of a finite set of vertices (or nodes) and set of edges which connect a pair of nodes.
- G = {V, E}
 - V: set of vertices. $V = \{v_1, v_2, ..., v_n\}$
 - E: set of edges. $E = \{e_1, e_2, ..., e_m\}$
- Example:
 - $V = \{0, 1, 2, 3, 4\}$
 - $E = \{01, 04, 12, 13, 14, 23, 34\}$

- A **subgraph** consists of a subset of a graph's vertices and a subset of its edges.
 - G'= $\{V', E'\}$ is a subgraph of G = $\{V, E\}$ if $V' \subseteq V, E' \subseteq E$

Dormitory

Gymnasium

Student Union

Student Union

- (a) A campus map as a graph;
- (b) a subgraph

(a)

• Vertex: also called a node.

• Edge: connects two vertices.

• **Loop** (*self-edge*): An edge of the form (*v*, *v*).

• Adjacent: two vertices are adjacent if they are joined by an edge.

- **Path**: A sequence of edges that begins at one vertex and ends at another vertex.
 - If all vertices of a path is distinct, the path is **simple**.

- **Cycle**: A path that starts and ends at the same vertex and does not traverse the same edge more than once.
- Acyclic graph: A graph with no cycle.

• Null graph: A graph having no edges

• Trivial graph: A graph with only one vertex.

trivial graph

null graph

- Connected graph: A graph in which each pair of distinct vertices has a path between them.
- **Disconnected graph:** A graph that contains two vertices not connected.
- Complete graph: A graph in which each pairs of distinct vertices has an edge between them
- Graph cannot have duplicate edges between vertices.
 - Multigraph: does allow multiple edges

connected graph

disconnected graph

complete graph

 Undirected graph: the graph in which edges do not indicate a direction.

 Directed graph, or digraph: a graph in which each edge has a direction.

• Weighted graph: a graph with numbers (weights, costs) assigned to its edges.

(a): undirected graph

(b): directed graph

Graph Representation

Graph Representation

Adjacency Matrix

Adjacency List

Adjacency Matrix

A[n][n] with n is the number of vertices.

•
$$A[i][j] = \begin{cases} 1 & \text{if there is an edge}(i,j) \\ 0 & \text{if there is no edge}(i,j) \end{cases}$$

•
$$A[i][j] = \begin{cases} w & \text{with } w \text{ is the weight of } edge(i,j) \\ \infty & \text{if there is no edge } (i,j) \end{cases}$$

Adjacency Matrix

(b)		0	1	2	3	4	5	6	7	8
		Р	Q	R	S	Т	W	Χ	Υ	Z
0	Р	0	0	1	0	0	1	0	0	0
1	Q	0	0	0	0	0	0	1	0	0
2	R	0	0	0	0	0	0	1	0	0
3	S	0	0	0	0	1	0	0	0	0
4	Т	0	0	0	0	0	1	0	0	0
5	W	0	0	0	1	0	0	0	1	0
6	X	0	0	0	0	0	0	0	0	0
7	Υ	0	0	1	0	0	0	0	0	1
8	Z	0	0	0	0	0	0	0	0	0

fit@hcmus | DSA | 2020

16

Adjacency Matrix

Adjacency List

A graph with n vertices has n linked chains.

• The i^{th} linked chain has a node for vertex j if and only if having edge (i,j).

Adjacency List

Adjacency List

Graph Traversal

Graph Traversal

• Visits (all) the vertices that it can reach.

• **Connected component** is subset of vertices visited during traversal that begins at given vertex.

Goes as far as possible from a vertex before backing up.

```
DFS(v: vertex)
{
    Mark v as visited
    for (each unvisited vertex u adjacent to v)
        DFS(u)
}
```



```
DFS(v: vertex)
      s = new empty stack
      s.push(v)
      Mark v as visited
      while (s is not empty) {
            if (no unvisited vertices are adjacent to the vertex on
the top of the stack)
                  s.pop()
            else {
                  s.push(u)
                  Marked u as visited
```


DFS starts at a:

DFS starts at **e**:

Visits all vertices adjacent to vertex before going forward.

• Breadth-first search uses a queue.


```
BFS(v: Vertex)
     q = a new empty queue
     q.enqueue (v)
     Mark v as visited
     while (q is not empty) {
          w = q.dequeue()
          for (each unvisited vertex u adjacent to w) {
               Mark u as visited
               q.enqueue(u)
```


BFS starts at **a**:

BFS starts at **e**:

Minimum Spanning Tree

- A spanning tree
 - is a **subgraph** of undirected graph G
 - has all the vertices covered with minimum possible number of edges.
- does not have cycles
- cannot be disconnected.

- A connected graph G can have more than one spanning tree.
- All possible spanning trees of graph G, have the same number of edges and vertices.
- The spanning tree does not have any cycle (loops).
- The spanning tree is minimally connected.
- The spanning tree is maximally acyclic.

• Depth-first-search spanning tree

• Breadth-first-search spanning tree

DFS spanning tree

Spanning Tree

BFS spanning tree

Minimum Spanning Tree

 A minimum spanning tree is a spanning tree that has minimum weight than all other spanning trees of the same graph.

- Begins with any vertex.
- Initially, the tree T contains only the starting vertex.
- At each stage,
 - Select the least cost edge e(v, u) with v in T and u not in T.
 - Add u and e to T


```
primAlgorithm(v: Vertex)
   Mark \boldsymbol{v} as visited and include it in the minimum
spanning tree
   while (there are unvisited vertices)
         Find the least-cost edge e(v, u) from a
visited vertex \mathbf{v} to some unvisited vertex \mathbf{u}
         Mark u as visited
         Add the vertex \boldsymbol{u} and the edge \boldsymbol{e}(\boldsymbol{v}, \boldsymbol{u}) to the
minimum spanning tree
```



```
PrimSpanningTree (matrix[N][N], source)
  for v = 0 to N-1 {
        length[v] = matrix[source][v]
        parent[v] = source 
  Mark source //Add source to the spanning tree
  for step = 1 to N-1 {
        Find the vertex \mathbf{v} such that length[v] is smallest
and {m v} is not in spanning tree
        Mark v
        for all vertices u not in vertexSet
              if (length[u] > matrix[v][u]) {
                    length[u] = matrix[v][u]
                    parent[u] = v }
```


fit@hcmus | DSA | 2020

47

Shortest Path

Dijkstra's Shortest Path Algorithm

• Given a graph and a source vertex in the graph, find shortest paths from source to all vertices in the given graph.

• **Dijkstra's** algorithm is very **similar** to **Prim's** algorithm for minimum spanning tree.

• This algorithm is applicable to graphs with non-negative weights only.

Dijkstra's Shortest Path Algorithm

shortestPath (matrix[N][N], source, length[])

Input:

 $\mathbf{matrix}[N][N]$: adjacency matrix of Graph G with N vertices

source: the source vertex

Output:

length[]: the length of the shortest path
from source to all vertices in G.

Dijkstra's Shortest Path Algorithm

```
shortestPath (matrix[N][N], source, length[])
  for v = 0 to N-1
        length[v] = matrix[source][v]
  length[source] = 0 //why?
  for step = 1 to N {
        Find the vertex \mathbf{v} such that length[v] is smallest
and v is not in vertexSet
        Add v to vertexSet
        for all vertices u not in vertexSet
              if (length[u] > length[v] + matrix[v][u]) {
                   length[u] = length[v] + matrix[v][u]
                   parent[u] = v
```


Initialize:

for
$$v = 0$$
 to N-1
length[v] = matrix[$source$][v]
length[$source$] = 0 //why?

$$V = \{\}$$

non-V = $\{a, b, c, d, e, f, g, h, i\}$

source =	e
step = 0	

	а	b	С	d	е	f	g	h	i
Index	0	1	2	3	4	5	6	7	8
Length[i]	∞	9	3	∞	0	∞	8	∞	∞
Parent[i]		е	е		е		е		

Loop:


```
for step = 1 to N {
   Find vertex v: length[v] smallest, v not in V
   Add v to V
   for all vertices u not in V
    if (length[u] > length[v] + matrix[v][u]) {
       length[u] = length[v] + matrix[v][u]
       parent[u] = v }
}
```

$$V = \{e\}$$

non- $V = \{a, b, c, d, f, g, h, i\}$

source =	e
step = 1	

	а	b	С	d	е	f	g	h	i
Index	0	1	2	3	4	5	6	7	8
Length[i]	∞	9	3	∞	0	∞	8	∞	∞
Parent[i]		е	е		е		е		


```
for step = 1 to N {
   Find vertex v: length[v] smallest, v not in V
   Add v to V
   for all vertices u not in V
    if (length[u] > length[v] + matrix[v][u]) {
       length[u] = length[v] + matrix[v][u]
       parent[u] = v }
}
```

$$V = \{e, c\}$$

non-
$$V = \{a, b, d, f, g, h, i\}$$

source =	e
step = 2	

	а	b	C	d	е	f	g	h	i
Index	0	1	2	3	4	5	6	7	8
Length[i]	∞	9	3	7	0	∞	8	∞	∞
Parent[i]		е	е	С	е		е		


```
for step = 1 to N {
   Find vertex v: length[v] smallest, v not in V
   Add v to V
   for all vertices u not in V
    if (length[u] > length[v] + matrix[v][u]) {
       length[u] = length[v] + matrix[v][u]
       parent[u] = v }
}
```

$$V = \{e, c, d\}$$

non-
$$V = \{a, b, f, g, h, i\}$$

source =	e
step = 3	

	a	b	С	d	е	f	g	h	i
Index	0	1	2	3	4	5	6	7	8
Length[i]	∞	9	3	7	0	∞	8	8	∞
Parent[i]		е	е	C	е		е	d	


```
for step = 1 to N {
   Find vertex v: length[v] smallest, v not in V
   Add v to V
   for all vertices u not in V
    if (length[u] > length[v] + matrix[v][u]) {
       length[u] = length[v] + matrix[v][u]
       parent[u] = v }
}
```

$$V = \{e, c, d, g\}$$

non-
$$V = \{a, b, f, h, i\}$$

source =	E
step = 4	

	а	b	С	d	е	f	g	h	i
Index	0	1	2	3	4	5	6	7	8
Length[i]	∞	9	3	7	0	10	8	8	∞
Parent[i]		е	е	С	е	g	е	d	


```
for step = 1 to N {
   Find vertex v: length[v] smallest, v not in V
   Add v to V
   for all vertices u not in V
    if (length[u] > length[v] + matrix[v][u]) {
       length[u] = length[v] + matrix[v][u]
       parent[u] = v }
}
```

$$V = \{e, c, d, g, h\}$$

non-
$$V = \{a, b, f, i\}$$

source =	e
step = 5	

	a	b	С	d	е	f	g	h	i
Index	0	1	2	3	4	5	6	7	8
Length[i]	∞	9	3	7	0	10	8	8	∞
Parent[i]		е	е	С	е	g	е	d	


```
for step = 1 to N {
   Find vertex v: length[v] smallest, v not in V
   Add v to V
   for all vertices u not in V
    if (length[u] > length[v] + matrix[v][u]) {
       length[u] = length[v] + matrix[v][u]
       parent[u] = v }
}
```

$$V = \{e, c, d, g, h, b\}$$

$$non-V = {a, f, i}$$

source =	e
step = 6	

	a	b	С	d	е	f	g	h	i
Index	0	1	2	3	4	5	6	7	8
Length[i]	15	9	3	7	0	10	8	8	∞
Parent[i]	b	е	е	С	е	g	е	d	


```
for step = 1 to N {
   Find vertex v: length[v] smallest, v not in V
   Add v to V
   for all vertices u not in V
    if (length[u] > length[v] + matrix[v][u]) {
       length[u] = length[v] + matrix[v][u]
       parent[u] = v }
}
```

$$V = \{e, c, d, g, h, b, f\}$$

source =	e
step = 7	

	а	b	С	d	е	f	g	h	i
Index	0	1	2	3	4	5	6	7	8
Length[i]	14	9	3	7	0	10	8	8	∞
Parent[i]	f	е	е	С	е	g	е	d	


```
for step = 1 to N {
   Find vertex v: length[v] smallest, v not in V
   Add v to V
   for all vertices u not in V
    if (length[u] > length[v] + matrix[v][u]) {
       length[u] = length[v] + matrix[v][u]
       parent[u] = v }
}
```

$$V = \{e, c, d, g, h, b, f, a\}$$

$$non-V = \{i\}$$

source =	e
step = 8	

	a	b	С	d	е	f	g	h	i
Index	0	1	2	3	4	5	6	7	8
Length[i]	14	9	3	7	0	10	8	8	16
Parent[i]	f	е	е	С	е	g	е	d	а


```
for step = 1 to N {
   Find vertex v: length[v] smallest, v not in V
   Add v to V
   for all vertices u not in V
    if (length[u] > length[v] + matrix[v][u]) {
       length[u] = length[v] + matrix[v][u]
       parent[u] = v }
}
```

$$non-V = \{\}$$

source =	e
step = 9	

	a	b	С	d	е	f	g	h	\mathbf{i}
Index	0	1	2	3	4	5	6	7	8
Length[i]	14	9	3	7	0	10	8	8	16
Parent[i]	f	е	е	С	е	g	е	d	a

Questions and Answers

Directed acyclic graph

• dag: directed acyclic graph

- Topological order: order to take to satisfy all the prerequisites.
- Topological sorting: arranging the vertices in topological order.

• Prerequisite structure of the courses.


```
topSort1 (theGraph: Graph, aList: List)
    n = number of vertices in theGraph
     for (step = 1 to n)
          Select a vertex v that has no successors
          aList.addHead(v)
          Remove from the Graph vertex v and its edges
```



```
L: Empty list that will contain the sorted elements
S: Stack of all nodes with no incoming edge
while S is not empty
    remove a node n from S //n = S.pop()
    add n to tail of L
    for each node m with an edge e from n to m do
        remove edge e from the graph
        if m has no other incoming edges then
            insert m into S // S.push(m)
if graph has edges then
    return error //(graph has at least one cycle)
else
               //(a topologically sorted order)
```


• Try this one

