Appendix: Symbols and Glossary

Daniel Ari Friedman ORCID: 0000-0001-6232-9096 Email: daniel@activeinference.institute

August 14, 2025

Appendix: Symbols and Glossary

This appendix consolidates the symbols, variables, and constants used throughout the manuscript.

Sets and Spaces

Symbol	Name
\mathbb{R}^n	Euclidean space
IVM	Isotropic Vector Matrix
Coxeter.4D	Euclidean 4D (E)
Einstein.4D	Minkowski spacetime (3+1)
Fuller.4D	Synergetics/Quadray tetrahedral space

Descriptions:

- \mathbb{R}^n : n-dimensional real vector space.
- IVM: Quadray integer lattice (CCP sphere centers).
- Coxeter.4D: Four-dimensional Euclidean geometry (not spacetime); see Coxeter, Regular Polytopes (Dover ed., p. 119); related lattice/packing background in Conway & Sloane.
- Einstein.4D: Relativistic spacetime with Minkowski metric.
- Fuller.4D: Quadrays with projective normalization and IVM unit conventions.

Quadray Coordinates and Geometry

Symbol	Name	Description
$\overline{q = (a, b, c, d)}$	Quadray point	Non-negative coordinates with at least one zero after normalization
A, B, C, D	Quadray axes	Canonical tetrahedral axes mapped by the embedding
k	Normalization offset	$k = \min(a, b, c, d)$ used to set q' = q - (k, k, k, k)
q'	Normalized Quadray	Canonical representative with at least one zero and non-negative entries
P_0,\dots,P_3	Tetrahedron vertices	Vertices used in volume formulas
d_{ij}	Pairwise distances	Distance between vertices P_i and P_j (squared in CM matrix)
$\det(\cdot)$	Determinant	Determinant of a matrix
[-]	Magnitude	Absolute value (determinant magnitude)
V_{ivm}	Tetravolume (IVM)	Tetrahedron volume in synergetics/IVM units; unit regular tetra has $V_{ivm} = 1$
V_{xyz}	Tetravolume (XYZ)	Euclidean tetrahedron volume
S3	Scale factor	$S3 = \sqrt{9/8}$ with $V_{ivm} = S3 V_{xyz}$ (synergetics unit convention)
Coxeter.4D	Namespace	Euclidean É ; regular polytopes
Einstein.4D	Namespace	Minkowski spacetime (metric analogy only here)
Fuller.4D	Namespace	Quadrays/IVM; integer tetravolume
Eq. (lattice_det)	Lattice determinant	Integer-lattice volume via 3x3 determinant

Symbol	Name	Description
Eq. (ace5x5)	Tom Ace 5x5	Direct IVM tetravolume from Quadrays
Eq. (cayley_menger)	Cayley–Menger	Length-based formula: $288 \text{ V}^2 = \det(\cdot)$

Optimization and Algorithms

Symbol	Name
α	Reflection coefficient
γ	Expansion coefficient
ho	Contraction coefficient
σ	Shrink coefficient
V_{ivm}	Integer volume monitor

Descriptions:

- $\alpha, \gamma, \rho, \sigma$: Nelder–Mead parameters (typical values 1, 2, 0.5, 0.5). V_{ivm} : Tracks simplex volume across iterations.

Information Theory and Geometry

Symbol	Name	Description
log	Natural logarithm	Logarithm base e
$\mathbb{E}[\dot{\cdot}]$	Expectation	Mean with respect to a distribution
$F_{i,j}$	Fisher Information	Empirical/expected
v, <i>y</i>	entry	$\mathbb{E}[\partial_{\theta_i} \log p \partial_{\theta_j} \log p]; \text{ Eq.}$
		(??)
${\mathcal F}$	Variational free energy	$-\log P(o \mid$
		$s) + \mathrm{KL}[Q(s) \parallel P(s)];$
		Eq. (??)
$\mathrm{KL}[Q \ P]$	Kullback–Leibler	$\sum Q \log(Q/P);$
	divergence	information distance
$\nabla_{\theta}L$	Gradient	Gradient of loss L with
v		respect to parameters θ
		(column vector)
η	Step size	Learning-rate scalar
•	_	used in updates

Symbol	Name	Description
$\overline{\theta}$	Parameters	Model parameter
ds^2	Minkowski line element	vector; indices θ_i $-c^2 dt^2 + dx^2 + dy^2 + dz^2$; Eq. (??)
c	Speed of light	Physical constant appearing in
		Minkowski metric

Embeddings and Distances

Symbol	Name	Description
\overline{M}	Embedding matrix	Linear map from Quadray to \mathbb{R}^3 (Urner-style unless noted)
$\begin{array}{l} \ \cdot\ _2 \\ R,D \end{array}$	Euclidean norm Edge scales	$\sqrt{x_1^2 + \dots + x_n^2}$ Cube edge R and Quadray edge D with D = 2R (common convention)

Greek Letters (usage)

Symbol	Name	Description
$\overline{lpha,\gamma, ho,\sigma}$	NM coefficients	Nelder-Mead parameters (reflection, expansion, contraction, shrink)
θ	Theta	Parameter vector in models and metrics
μ	Mu	Internal states (Active Inference)
ψ	Psi	External states (Active Inference)
η	Eta	Step size / learning rate

Notes (usage and cross-references)

• Figures referenced: In-text carry identifiers (e.g., Fig. ??).

- Equation references: Use labels defined in the text (e.g., Eq. (??)).
- Namespaces: We use Coxeter.4D, Einstein.4D, Fuller.4D consistently to designate Euclidean E, Minkowski spacetime, and Quadray/IVM synergetics, respectively. This avoids conflation of Euclidean 4D objects (e.g., tesseracts) with spacetime constructs and synergetic tetravolume conventions.
- External validation: Cross-reference implementations from the 4dsolutions ecosystem including qrays.py, tetravolume.py, and educational notebooks in School_of_Tomorrow.
- Multi-language implementations: Rust (rusty_rays), Clojure (synmods), POV-Ray (quadcraft.py), and VPython (BookCovers) provide algorithmic verification and performance comparison baselines.

Acronyms and abbreviations

Acronym	Meaning
CM	Cayley–Menger (determinant-based
	tetrahedron volume)
PdF	Piero della Francesca (Heron-like
	tetrahedron volume)
GdJ	Gerald de Jong (Quadray-native
	tetravolume expression)
K-FAC	Kronecker-Factored Approximate
	Curvature (optimizer using
	structured Fisher)
CCP	Cubic Close Packing (same centers
	as FCC)
FCC	Face-Centered Cubic (same centers
	as CCP)
E	Four-dimensional Euclidean space
	(Coxeter.4D)
NM	Nelder–Mead (simplex optimization
	algorithm)
4d solutions	Kirby Urner's GitHub organization
	with extensive Quadray
	implementations
BEAST	Synergetic modules (B, E, A, S, T)
	in Fuller's hierarchical system
OCN	Oregon Curriculum Network
	(educational framework integrating
	Quadrays)
POV-Ray	Persistence of Vision Raytracer
	(used in quadcraft.py visualizations)

API Index (auto-generated; Methods linkage)

The table below enumerates public symbols from ${\tt src/}$ modules.

Module	Symbol	Kind	Signature	Summary
cayley_menge:	rivm_tetra_v	old ine ctianyley_me	n ģd2)	Compute IVM tetravolume from squared distances via Cayley- Menger.
cayley_menge	r tetra_volum	ne_ɗ ayıl:b iyo <u>r</u> menger	(d2)	Compute Euclidean tetrahedron volume from squared distances (Coxeter.4D).
conversions	quadray_to_	xyzfunction	(q, M)	Map a Quadray to Cartesian XYZ via a 3x4 embedding matrix (Fuller.4D -> Coxeter.4D slice).
conversions	urner_embed	ldirfg nction	(scale)	Return a 3x4 Urner-style symmetric embedding matrix (Fuller.4D -> Coxeter.4D slice).

Module	Symbol	Kind	Signature	Summary
discrete_v	vari ðtikomæl tePath	class	Optimization trajectory on the integer quadray lattice. `discrete_va	ariational`
discrete_v	variæ tpipolnya_l move	function	class (q, delta)	Apply a lattice move and normalize to the canonical representative
discrete_v	vari adiisonæ lte_ivm	_desceiota	<pre>(objective, start, moves=, max_iter=, on_step=)</pre>	Greedy discrete descent over the quadray integer lattice.
discrete_v	vari anteiioghabl or_mov	esfu itvin ion	()	Return the 12 canonical IVM neighbor moves as Quadray deltas.
examples	example_cubo	ct lahetlino m_ne	eigh∜drs	Return twelve- around-one IVM neighbors (vector equilibrium shell).

Module	Symbol	Kind	Signature	Summary
examples	example_cu	boctf ahetino n_v	erti (≱s_xyz	Return XYZ coordinates for the twelve-around-one neighbors.
examples	example_iv	m_n eightion s	()	Return the 12 nearest IVM neighbors as permutations of $\{2,1,1,0\}$ (Fuller.4D).
examples	example_op	tim fze ction	()	Run Nelder-Mead over integer quadrays for a simple convex objective (Fuller.4D).
examples	example_pa	rti tiuon<u>t</u>ite tra	_vol úme , s, a, psi)	Construct a tetrahedron from the four-fold partition and return tetravolume (Fuller.4D).
examples	example_vo	lumeunction	()	Compute the unit IVM tetrahedron volume from simple quadray vertices (Fuller.4D).
geometry	minkowski_	int∉nnali on	(dt, dx, dy, dz, c)	Return the Minkowski interval squared ds^2 (Einstein.4D).

Module	Symbol	Kind	Signature Summary
glossary_gen	ApiEntry	class	 `glossary_gen`
			 `build_api_index`
			function
			`(src_dir)`
			`glossary_gen`
			`generate_markdown_table`
			function
			\ (\(\tau \tau \tau \tau \tau \tau \tau \tau
			`(entries)`
			`glossary_gen`
			`inject_between_markers`
			function
			(manladarm + arrt
			`(markdown_text, begin, end,
			payload)`
			ĪĪ
			`information`
			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
			`action_update` function
			`(action,
			free_energy_fn,
			step_size,
			epsilon) \
			Continuous-time
			action
			update: $da/dt = -$
			dF/da.
			`information`
			1
			`finite_difference_gradier
			function
			`(function,
			X,
			epsilon)`
		_	Compute
		9	numerical
			gradient of
			a scalar function
			via central
			differences.
			1.1

`information`

Module	Symbol	Kind	Signature	Summary
nelder_mea	.d_quaechrtanyoid_e	xcl ưding ion	<pre>(vertices, exclude_idx)</pre>	Integer centroid of three vertices, excluding the specified index.
nelder_mea	ud_qu andmpany te_vo	lumefunction	(vertices)	Integer IVM tetra-volume from the first four vertices.
nelder_mea	.d_qu nadliday r_mea	d_qu fadictiiy n	<pre>(f, initial_vert alpha, gamma, rho, sigma, max_iter, tol, on_step)</pre>	Nelder-Mead i cesthe integer quadray lattice.
nelder_mea	d_qu adka y_simp	lex function	(vertices, f)	Sort vertices by objective value ascending and return paired lists.
nelder_mea	.d_qu nadirjay ct_to	_la tfunct ion	(q)	Project a quadray to the canonical lattice representative via normalize.
paths	get_output	_di#unction	()	Return quadmath/output path at the repo root and ensure it exists.
paths	get_repo_r	oot function	(start)	Heuristically find repository root by walking up from start.

Module	Symbol	Kind	Signature	Summary
quadray	DEFAULT_EMB	ED D:ING tant	 `quadray` `Quadray` class	Quadray vector with non-negative components and at least one zero (Fuller.4D).
quadray	ace_tetravo	lunden 5 kilon	(p0, p1, p2, p3)	Tom Ace 5x5 determinant in IVM units (Fuller.4D).
quadray	dot	function	(q1, q2, embedding)	Return Euclidean dot product <q1,q2> under the given embedding.</q1,q2>
quadray	integer_tet	ra <u>f</u> u o ltiioe	(p0, p1, p2, p3)	Compute integer tetra-volume using det[p1-p0, p2-p0, p3-p0] (Fuller.4D).
quadray	magnitude	function	(q, embedding)	Return Euclidean magnitude q under the given embedding (vector norm).
quadray	to_xyz	function	(q, embedding)	Map quadray to R ³ via a 3x4 embedding matrix (Fuller.4D -> Coxeter.4D slice).

Module	Symbol	Kind	Signature	Summary
symbolic symbolic		nger_f uolttime _symbo yz_v oluumt i <u>o</u> to_ivm_;		Return symbolic Euclidean tetrahedron volume from squared distances. Convert a
2,20110				symbolic Euclidean volume to IVM tetravolume via S3.
visualize	animate_di	scr ɗue<u>c</u>piath	<pre>(path, embedding, save)</pre>	Animate a point moving along a discrete quadray path.
visualize	animate_si	implefunction	<pre>(vertices_li embedding, save)</pre>	stAnimate simplex evolution across iterations.
visualize	plot_ivm_r	neigh hars ion	(embedding, save)	Scatter the 12 IVM neighbor points in 3D.
visualize	plot_parti	tiof <u>u</u> t eti mahedron	<pre>(mu, s, a, psi, embedding, save)</pre>	Plot the four-fold partition as a labeled tetrahedron in 3D.
visualize	plot_simpl	.ex_t ínac tion	(state, save)	Plot per-iteration diagnostics for Nelder– Mead.