Análise Matemática I

2011'12 —

1. Calcule, caso existam, os seguintes limites:

(a)
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$
;
 (b) $\lim_{x \to 3} \frac{\sqrt{x} - \sqrt{3}}{x - 3}$;
 (c) $\lim_{x \to 2} \frac{x^2 + x + 1}{x^2 + 2x}$;
 (d) $\lim_{x \to 0} \frac{-3x^4 + 2x^3 - x}{x^3 - x}$;
 (e) $\lim_{x \to 1} \frac{x^3 + x^2 + x - 3}{x - 1}$;
 (f) $\lim_{x \to 0} \pi x \cos\left(\frac{1}{3\pi x}\right)$.

(b)
$$\lim_{x \to 3} \frac{\sqrt{x} - \sqrt{3}}{x - 3}$$
; (d) $\lim_{x \to 0} \frac{-3x^4 + 2x^3 - x}{x^3 - x}$; (f) $\lim_{x \to 0} \pi x \cos\left(\frac{1}{3\pi x}\right)$

2. Determine os valores dos parâmetros a e b para que a função f(x) = ax + b satisfaça

$$\lim_{x \to -1} f(x) = 5 \quad \text{e} \quad \lim_{x \to 1} f(x) = \lim_{x \to 1} \left[(x-1) \operatorname{sen} \left(\frac{1}{x-1} \right) \right].$$

3. Considere a função $f: \mathbb{R} \setminus \{0\} \longrightarrow \mathbb{R}$ definida por f(x) = |x|/x. Estude a existência do limite de f quando

4. Calcule, caso existam, os seguintes limites:

(a)
$$\lim_{x\to\infty}\frac{1}{x}$$
; (b) $\lim_{x\to\infty}\frac{2x+1}{3x+1}$.

5. Considere a função $f: \mathbb{R} \setminus \{1\} \longrightarrow \mathbb{R}$ definida por $f(x) = (x^5 - 1)/(x - 1)$. Construa um prolongamento g de f a $\mathbb R$ que verifique

$$\lim_{x \to 1} g(x) = g(1).$$

6. Seja $f: \mathbb{R} \longrightarrow \mathbb{R}$ a função definida por

$$f(x) = \begin{cases} e^{x-1} + a & \text{se } x \le 1 \\ 1 - ax & \text{se } x > 1 \end{cases}.$$

Determine o valor de a de modo que f seja contínua em 1.

7. Seja $g: \mathbb{R} \longrightarrow \mathbb{R}$ definida por

$$g(x) = \begin{cases} 2 & \text{se} \quad x \neq 1 \\ 0 & \text{se} \quad x = 1 \end{cases}$$

e f(x)=x+1, para todo o $x\in\mathbb{R}$. Verifique que $\lim_{x\to 0}(g\circ f)(x)\neq (g\circ f)(0)$.

Haverá alguma contradição com o teorema sobre a continuidade da função composta? Justifique.

8. Defina funções $f, g : \mathbb{R} \longrightarrow \mathbb{R}$ nas condições indicadas:

- (a) f contínua, g descontínua, $g \circ f$ contínua;
- (b) f descontínua, g contínua, $g \circ f$ contínua;
- (c) f e g descontínuas, $g \circ f$ e $f \circ g$ contínuas.

Haverá alguma contradição com o teorema sobre a continuidade da função composta? Justifique.

- **9.** Seja $f(x) = x^2$.
 - (a) Calcule f'(-1) e interprete geometricamente o resultado obtido.
 - (b) Escreva a equação reduzida da recta tangente ao gráfico de f no ponto de abcissa -1.

10. Seja
$$f(x) = \begin{cases} x^2 & \text{se } x \leq 1 \\ 2-x & \text{se } x > 1 \end{cases}$$
 . Verifique se f é derivável em $x = 1$.

11. Calcule y', sendo:

(a)
$$y = 2x^3 - x^2 + 7$$
;

(d)
$$y = \frac{1}{x^2}$$
;

(g)
$$y = \operatorname{tg} x$$
;

(b)
$$y = \sqrt[3]{x^2} + x^{\pi}$$
;

(e)
$$y = \frac{x^3}{x^2 - 4}$$
;

(h)
$$y = e^{\operatorname{sen} x}$$
;

(c)
$$y = x \ln x$$
;

(f)
$$y = x \ln(x^2 + x + 1);$$

(i)
$$y = \operatorname{sen}(\cos(x^2));$$

12. A figura seguinte representa o gráfico de uma função f e da recta tangente a esse gráfico no ponto (x,y)=(2,2). Sendo $g(x)=f(x^2-2)$, qual o valor da derivada g'(2)?

13. A figura seguinte representa o gráfico de uma função f e da recta perpendicular a esse gráfico no ponto (x,y)=(4,2). Sendo $g(x)=f(5x-x^2)$, qual o valor da derivada g'(1)?

