Geodesic X-ray transform and streaking artifacts on simple surfaces or on spaces of constant curvature

Hiroyuki Chihara (University of the Ryukyus)

3-6 June 2024

International Conference on Analysis and Applications City University of Hong Kong

X-ray transform on the plane

ullet All the planar lines are parametrized by $(heta,t)\in [0,\pi] imes \mathbb{R}$ by

$$\ell = \{ (-s\sin\theta + t\cos\theta, s\cos\theta + t\sin\theta) : s \in \mathbb{R} \}.$$

The X-ray transform of f(x,y) on \mathbb{R}^2 is defined by

$$\mathcal{R}f(\theta,t) := \int_{\ell} f = \int_{-\infty}^{\infty} f(-s\sin\theta + t\cos\theta, s\cos\theta + t\sin\theta) ds.$$

This is considered to be the measurements of CT scanners for normal tissue. The FBP formula $f = (-\partial_x^2 - \partial_y^2)^{1/2} \circ \mathcal{R}^T \circ \mathcal{R} f$ is well-known.

We consider a model of human body f containing a metal region D such as dental
implants, stents in blood vessels, and etc. We observe that the metal streaking artifacts
caused by beam hardening effect in the energy level of X-ray. The main term is the filtered
back-projection of nonlinear term

$$(-\partial_x^2 - \partial_y^2)^{1/2} \circ \mathcal{R}^T [(\mathcal{R}1_D)^2],$$

This is a conormal distribution whose singular support is the streaking artifact.

Figures: metal streaking artifacts

The main part of artifacts: $(-\partial_x^2 - \partial_y^2)^{1/2} \mathcal{R}^T \left[(\mathcal{R} \mathbf{1}_D)^2 \right]$.

Conormal distributions

Definition 1 (Conormal distributions)

Let X be an N-dim manifold, and let Y be a closed submanifold of X. We say that $u \in \mathscr{D}'(X)$ is conormal with respect to Y of degree m if $L_1 \cdots L_{\mu} u \in {}^{\infty}H^{loc}_{(-m-N/4)}(X)$ for all $\mu = 0, 1, 2, \ldots$ and all vector fields L_1, \ldots, L_{μ} tangential to Y. Denote by $I^m(N^*(Y))$ the set of all distributions on X conormal wrt Y of degree m. Note that $WF(u) \subset N^*(Y) \setminus 0$.

• The characteristic function of a domain: $1_D \in I^{-1/2-n/4}(N^*(\partial D))$ for $D \subset \mathbb{R}^n$, which is a domain with smooth boundary.

• The Schwartz kernel of a PsDO: $\int_{\mathbb{R}^n} e^{i(x-y)\cdot\xi} a(x,\xi) d\xi \in I^m(N^*(\Delta)),$ $\Delta = \{(x,x)\} \text{ for } a(x,\xi) \in S^m(\mathbb{R}^n \times \mathbb{R}^n).$

Assumption

- Suppose that (M, g) is a compact nontrapping simple Riemannian manifold with strictly convex smooth boundary.
- In addition we assume that dim(M) = 2 or (M, g) is a space of constant curvature.
- Suppose that the metal region $D \subset M^{\text{int}}$ is a disjoint union of D_j $(j=1,\ldots,J)$ which are simply connected, strictly convex and bounded with smooth boundaries ∂D_j .

A hypersurface $\mathscr L$ surrounding the metal region D

- For any j and $x \in \partial D_j$, denote by $v_j(x)$ the unit outer normal vector at x. Consider the tangent hyperplane $\exp_x v_j(x)^{\perp} \cap M^{\text{int}}$ at $x \in \partial D_j$.
- There are some common tangent hyperplanes of ∂D_j and ∂D_k for $j \neq k$. In this case there is common tangent geodesics in such hyperplanes. The union of all these geodesics forms a conical or cylindrical hypersurface denoted by $\mathscr{L}_{jk}^{(\pm)}$. Set $\mathscr{L} := \bigcup \left(\mathscr{L}_{jk}^{(+)} \cup \mathscr{L}_{jk}^{(-)} \right)$.

Main Theorem

The geodesic X-ray transform of a function f on M is defined by

$$\mathcal{X}f(\gamma_w) := \int_0^{ au_+(w)} fig(\gamma_w(s)ig) ds, \quad
abla_{\dot{\gamma}_w(s)} \dot{\gamma}_w(s) = 0, \quad \dot{\gamma}_w(0) = w \in \partial_-S(M),$$

where $\tau_+(w)$ is the exit time of γ_w . The nonlinear part of the CT image is supposed to be

$$f_{\mathsf{MA}} := f_{\mathsf{CT}} - f_{\mathsf{normal}} = \sum_{k=1}^{\infty} A_k Q \mathcal{X}^{\mathsf{T}}[(\mathcal{X}1_D)^{2k}] \mod C^{\infty}(M^{\mathsf{int}}), \quad \{A_k\} \subset \mathbb{R},$$

where Q is a parametrix of $\mathcal{X}^T \circ \mathcal{X}$: $Q\mathcal{X}^T \mathcal{X} = Id$ modulo smoothing operators locally.

Theorem 2

$$\mathit{f}_{MA} \in \mathit{I}^{-3n/4-1/2}\big(\mathit{N}^*(\mathscr{L})\big) \text{ away from } \partial \mathit{D}, \text{ and } \sigma_{\mathit{prin}}\big(\mathit{Q}\mathcal{X}^{\mathsf{T}}[(\mathcal{X}1_{\mathit{D}})^2]\big) \neq 0.$$

- Park-Choi-Seo (2017) proved that WF $(f_{MA}) \subset N^*(\mathcal{L})$ for $M = \mathbb{R}^2$.
- Palacios-Uhlmann-Wang (2018) proved Theorem 2 for $M = \mathbb{R}^2$.
- C (2022) proved Theorem 2 for the d-plane transform on \mathbb{R}^n .

What does Theorem 2 say?

- If ∂D_j and ∂D_k have a common tangent hyperplane, then the conormal singularities propagate along the common tangent geodesic. See the left figure.
- Suppose $n \ge 3$. If ∂D_j and ∂D_k have a common tangent geodesic, but the conormal directions at the tangent points are different, then the conormal singularities do not propagate along the common tangent geodesic. See the right figure.

How to prove Theorem 2

• The canonical relation $C_{\mathcal{X}}$ of \mathcal{X} : $(\xi, \eta) \in C_{\mathcal{X}}$ if $\exists v \in S(M^{\text{int}})$ such that

$$\xi \in T^*_{F(v)}\big(\partial_-S(M)\big) \setminus \{0\}, \quad \eta \in T^*_{\pi_M(v)}(M^{\mathsf{int}}) \setminus \{0\}, \quad DF|_v^T \xi = D\pi_M|_v^T \eta,$$

where $F: S(M) \ni \dot{\gamma}_w(t) \mapsto w \in \partial_- S(M)$ for any t. See Holman-Uhlmann (2018).

- The story of the proof is basically due to Palacios-Uhlmann-Wang (2018) for $M=\mathbb{R}^2$:
 - $\mathcal{X}1_{D_i}$ is a conormal distribution supported on a hypersurface Σ_j in $\partial_-S(M)$.
 - $\Sigma_j \cap \Sigma_k$ is a transversal intersection, and $\bigcup_{1 \leq j < k \leq J} C_{\mathcal{X}}^T \circ N^*(\Sigma_j \cap \Sigma_k) = N^*(\mathscr{L}).$
- The additional strange condition ensures that

a Jacobi field along $\gamma = \text{a scalar function} \times \text{a paralell transport along } \gamma.$

We can obtain $\bigcup_{1 \leq j < k \leq J} C_{\mathcal{X}}^T \circ N^*(\Sigma_j \cap \Sigma_k) = N^*(\mathscr{L})$ by using simplicity and this fact. \square

References

- H. S. Park, J. K. Choi and J. K. Seo, *Characterization of metal artifacts in X-ray computed tomography*, Comm. Pure Appl. Math., **70** (2017), pp.2191–2217.
- B. Palacios, G. Uhlmann and Y. Wang, *Quantitative analysis of metal artifacts in X-ray tomography*, SIAM J. Math. Anal., **50** (2018), pp.4914–4936.
- S. Holman and G. Uhlmann, *On the microlocal analysis of the geodesic X-ray transform with conjugate points*, J. Diff. Geom., **108** (2018), pp.459—494.
- H. Chihara, *Microlocal analysis of d-plane transform on the Euclidean space*, SIAM J. Math. Anal., **54** (2022), pp.6254–6287.
- H. Chihara, Geodesic X-ray transform and streaking artifacts on simple surfaces or on spaces of constant curvature, arXiv:2402.06899.