

Big Data and the Evolution of Tape Technologies

Kevin Dudak Spectra Logic

Abstract

- The explosion of Big Data is breaking the traditional ways we store data.
- Evolutions in tape technology have opened up new ways to store and manage these massive data sets.
- This session will look at new hardware and software that opens up new possibilities for massive data storage

Big Data

- Data sets are getting more massive
- Most of the data growth is in unstructured data
- The growth will never end

Analytics changes the growth curve

- Analytics is driving
 - New Value to old data
 - Data is now being used for unintended purposes

What should we save

- It isn't as easy to tell anymore what data has value
 - Server logs
 - Surveillance videos
 - What's the next thing?

Scale causes new problems

- How do you effectively store Petabytes for years?
 - How do you protect it?
 - How do you move it?
 - 1 PB of data will take 10 days to move over a single 10 GbE link
 - How do you insure it's integrity?
 - How do you afford to store it all?

Tape as a storage location

- □ Tape provides cost effective bulk digital storage
- Traditionally hidden behind a backup application
 - This made it difficult to use for storage needs outside of backup
- New Technologies allow you to use and integrate tape into non backup systems

Modern Tape

- Most scalable storage systems in the world
 - Multiple library systems can scale to Exabytes
- Lowest energy consumption of any storage type
- Better Bit Error Rates than Disk

Bit Error Rates

Number of bits written before the failure of a bit

Device	Hard error rate in bits	PB equivalent
SATA consumer	1.00E+14	.11
SATA Enterprise	1.00E+15	1.11
Enterprise SAS/FC	1.00E+16	11.10
LTO	1.00E+17	111.02
Enterprise Tape Drives	1.00E+19	11,102.22

- Error rate for disk is number of bits before a failure of a sector
 512 bytes today, 4096 soon
- Error rate for tape is number of bits before the failure of a bit 2012 Storage Developer Conference. © Spectra Logic. All Rights Reserved.

Time to Error

What difference does a storage device make?

The number of hours of operation (per 100 devices) at maximum rated throughput before a write error occurs.

- Consumer SATA disk: 2.3 Hours
- Enterprise SATA disk: 21.6 Hours
- Enterprise SAS/FC disk: 6.7 Days
- LTO-5 tape: 96.2 Days
- Enterprise tape: 15 Years

Common Tape Features

- LTO and TS1140 both support
 - □ AES-256 Encryption
 - Speed matching drives
 - Read back 2 generations
 - Write back 1 generation
 - LTFS
 - Compression
 - **ECC**

LTO Tape

- Linear Tape-Open
 - Multiple drive and library manufactures
- Multi Vendor Open Format
- Over 80,000 PB of data protected so far
- Costs pennies per GB to store data in an automated system
- Roadmap through Generation 8

LTO Tape

- □ LTO 6 will be shipping soon
 - Up to 6.25 TB compressed per tape*
 - Up to 400MB/s compressed transfer rate*
- LTO 6 more than doubles the density of LTO5
 - LTO5 density in enterprise library 352 TB/Sq Ft
 - LTO6 density in enterprise library 733 TB/Sq/Ft
 - *LTO Consortium Press Release
 - http://www.lto-technology.com/pdf/LTO%20PR%20Maintains%20Top%20Momentum.pdf

TS1140 Tape

- IBM manufactured drive supported by 2 library manufacturers
- Higher Capacity, Speed and better Bit Error Rate than LTO
 - □ TS1140 density in enterprise library 1,074 TB/Sq/Ft
 - 4 TB compressed per tape
 - 650 MB/sec compressed transfer rate
- □ Up formats TS1130 tapes to higher capacity
- Roadmap through Generation 6

Linear Tape File System (LTFS)

- □ File interface to tape
- Introduced with LTO5
- Open source and specification
 - Stand alone tape drive looks like a USB memory key
 - Currently, the specification does not address tape libraries
- Makes the tape self describing

LTFS 2.0 Specification

http://www.ultrium.com/technology/LTFS_Format_To%20Print.pdf

LTFS

- Enhances Data Portability: Physical and Logical
 - Move data easily between sites
 - Move data between applications

LTFS

- ☐ How does it work?
 - □ Tape is divided into 2 partitions
 - ■One Index partition
 - One data partition
 - Data partition has indexes as well
 - Indexing is XML based

LTFS Data Partition

Source: LTO Consortium (http://www.ultrium.com/technology/LTFS Format To%20Print.pdf)

LTFS

The specification supports data reduction or deduplication

Source: LTO Consortium (http://www.ultrium.com/technology/LTFS Format To%20Print.pdf)

Tape and Big Data

- NAS Tape
 - Leverage a NAS interface and LTFS to create an infinite file storage system
 - Easy to integrate into numerous external data systems

Tape and Big Data

- Lowest cost storage available
- LTFS changes things
 - Easier than ever to use tape
 - You can create your own
 - Makes it easy to move massive data sets

Next Steps

- Consider long term storage needs
- Should you buy or build?
- LTFS Format Specification Document

Questions?