COL776 (Assignment -3) J. Shikhar Murty

Implementation Language: Python

Experiments

Gibbs sampling on OCR datasets:

data-loops.dat

Algorithm	Char accuracy	Word accuracy	Log likelihood	Time taken
Gibbs	53.2374	7.1429	-7.5979	61.20
LBP	56.8345	7.1429	-7.5454	7.311

data-loopsWS.dat

Algorithm	Char accuracy	Word accuracy	Log likelihood	Time taken
Gibbs	65.8951	14.6154	-6.9397	295.6
LBP	67.9012	15.3846	-6.9084	34.06

data-tree.dat

Algorithm	Char accuracy	Word accuracy	Log likelihood	Time taken
Gibbs	68.0965	14.2857	-6.6070	175.9
LBP	67.5603	16.6667	-6.6065	21.95

data-treeWS.dat

Algorithm	Char accuracy	Word accuracy	Log likelihood	Time taken
Gibbs	65.7837	13.0435	-7.2200	399.2
LBP	66.7770	16.8478	-7.2095	48.21

Comments:

- 1) The performance of the 2 algorithms is very similar, however LBP takes much less time compared to gibbs sampling.
- 2) 20,000 iterations of gibbs sampling were performed with an initial burn-in of 10,000 iterations

Evaluation:

Markov Network

Dataset	Avg-Acc (test)	Avg-LL (test)
Hepar2	78.1065	-20.6913
Andes	77.0985	-110.3366
Insurance	76.7606	-17.6943

Bayesian Network

Dataset	Avg-Acc (test)	Avg-LL (test)
Hepar2	78.9941	-16.2037
Andes	78.1022	-61.2748
Insurance	83.0986	-5.8233

Comments:

- 1) The convergence criteria used for gradient descent was checking if each of the updates are less than an epsilon. If so, stop the loop.
- 2) The learning rate was fixed to 0.5 for insurance, and 0.1 for andes and hepar2.

3) Note that the performance of both the bayesian Network and the Markov Network are very similar except for the insurance dataset.

Varying C for datasets

Insurance dataset

Hepar2 Dataset

Comments

- 1) For the insurance dataset, the average log-likelihood peaks at C = 1000, indicating that we could expect optimal performance around this value of C. After this, increasing C further decreases the log likelihood.
- 2) For the hepar2 dataset, an anomalous value is obtained for C=10, and on increasing C beyond that the log likelihood decreases further.