TRIGONOMETRY TOMO 2

FEEDBACK

De la figura, calcule ab+cd.

Resolución:

POR SIMETRÍA RESPECTO AL EJE Y

$$a=-3$$
 \land $b=5$

POR SER RADIOS VECTORES ORTOGONALES

$$c = 1 \qquad \land \qquad d = -4$$

$$ab + cd = -19$$

Dos jóvenes se encuentran en un lugar, tal como lo muestra la figura, luego se desplazan una cierta cantidad de pasos hacia el este y 6 pasos hacia el norte, uno de ellos decide alejarse del otro dando 15 pasos hacia el este y 8 pasos hacia el norte. Determine a cuántos pasos se encuentran

Teorema de Pitágoras:

$$D^2 = 15^2 + 8^2$$

$$D^2 = 225 + 64$$

$$D^2 = 289$$

Se tiene un terreno de forma triangular determinado por los puntos A(2; 3), B(a; 2) y C(-2; -5). Si el área del terreno es 18 u², calcule el valor de a. (considere a<0).

Resolución: A(2; 3)B(a; 2) C(-2; -5)

Ordenando:

$$18 = \frac{-8a + 12}{2}$$

Si los puntos (5 ; t) y (r ; –1) pertenecen a la recta \mathcal{L} : x + 3y – 11 = 0, calcule t + r.

Resolución:

Como: (5; t) y (r, -1) $\in \mathcal{L}$, entonces tienen que cumplir con la ecuación \mathcal{L} : $\mathbf{x} + 3\mathbf{y} - 11 = 0$

$$5 + 3(t) - 11 = 0$$
 $t = 2$

$$r + 3(-1) - 11 = 0$$
 $r = 14$

Se tiene los puntos P(-3; 4) y Q(7; 2). Halle la ecuación de la recta que pasa por el punto medio de \overline{PQ} y el origen de coordenadas.

 $oldsymbol{\mathsf{PQ}}$ Como $oldsymbol{\mathsf{M}}$ es punto medio de $oldsymbol{\overline{\mathsf{PQ}}}$

$$x = \frac{-3+7}{2} \Rightarrow x = 2$$

$$y = \frac{4+2}{2}$$
 $y=3$

Calculando la ecuación de \mathscr{L}

$$y - y_1 = m(x - x_1)$$

$$y-0=\frac{3}{2}(x-0)$$

$$3x - 2y = 0$$

Dadas las rectas: \mathcal{L}_1 : ax+5y+1=0; \mathcal{L}_2 : 3x+2y+7=0 y \mathcal{L}_3 : 4y-bx-6=0; donde

 \mathcal{L}_{1} y \mathcal{L}_{2} son paralelas y \mathcal{L}_{2} es perpendicular a \mathcal{L}_{3} . Calcule ab.

Resolución:

$$\mathcal{L}$$
: ax+5y+1=0

$$\mathcal{L}_2$$
: 3x+2y+7=0

$$\mathcal{L}_1 //\mathcal{L}_2$$

$$\frac{-a}{5} = \frac{-3}{2}$$

$$a=\frac{15}{2}$$

$$\mathcal{L}_2$$
: $3x+2y+7=0$

$$\mathcal{L}: -bx+4y-6=0$$

$$\mathcal{L}_2 \perp \mathcal{L}_3$$

$$\frac{-3}{2} \cdot \frac{-(-b)}{4} = -1$$

$$b=\frac{8}{3}$$

$$ab = 20$$

El lado terminal de un ángulo α en posición estándar pasa por el punto P(12 ; –5). Calcule el valor de csc α + cot α .

Resolución:

Radio vector

$$r = \sqrt{12^2 + (-5)^2}$$

$$\Rightarrow r = 13$$

Recordar:

csc	cot
r	X
_	_
y	y

Calculamos:

$$csc\alpha + cot\alpha = \frac{13}{-5} + \frac{12}{-5} = \frac{25}{-5}$$

$$csc\alpha + cot\alpha = -5$$

Del gráfico, si tan θ = 2 ; calcule: $M = \sqrt{5}\cos\theta - 3n$

Resolución:

Del dato:

$$tan\theta = 2 = \frac{3n-5}{n-2}$$

Calculando "n"

Recordar

sen	cos	tan
<u>y</u>	<u>x</u>	<u>y</u>
\boldsymbol{r}	\boldsymbol{r}	\boldsymbol{x}

Reemplazamos:

$$M = \sqrt{5}\cos\theta - 3n$$

$$M = \sqrt{5} \left(\frac{-1}{\sqrt{5}}\right) - 3(1)$$

$$M = -1 - 3$$

En el gráfico, A(-10; 0) y B(15; 0). Calcule $6\tan\theta + 15$.

Calculamos:

$$6 \tan \theta + 15 = 6 \left(\frac{y}{x}\right) + 15$$

$$= 6 \left(\frac{-12}{6}\right) + 15$$

$$= -12 + 15$$

$$\therefore 6\tan\theta + 15 = 3$$

En la figura, la región triangular sombreada representa el plano de un terreno. Si todas las medidas están dadas en metros y el metro cuadrado del terreno cuesta S/1000, ¿Cuántos millones de soles cuesta el terreno?

Calculando el área S:

$$S = \frac{(300)(30)}{2}$$

costo por $m^2 = S/1000$ costo total = (4500)(1000) costo total = S/4500000

costo total = S/4, 5 millones