Tabela Periódica

Propriedades periódicas

1

Tabela Periódica Moderna

- Elementos ordenados por ordem crescente de nº atómico ao longo dos períodos.
 eletrões a serem colocados no mesmo nível de energia nível de valência
- nos grupos estão elementos com propriedades químicas semelhantes
 - mesmo nº de eletrões no nível de valência

2

4

Número do grupo (ou último algarismo) = Número de eletrões de valência

Número do período = nível de energia ou camada em preenchimento

Classificação dos Elementos com base na subcamada em preenchimento

5

As propriedades químicas dependem da configuração eletrónica de valência

Configuração eletrónica de valência igual propriedades químicas semelhantes

Classificação dos Elementos com base nas propriedades químicas

6

Variação periódica das propriedades físicas

Carga Nuclear Efetiva (Zef) — «carga positiva» sentida por um eletrão

 $Z_{\text{eff}} = Z - \sigma$ $0 < \sigma < Z \ (\sigma = \text{constante de blindagem})$

Z_{eff} ≈ Z – nº de eletrões das camadas interiores

		Z	Core	Z _{eff}	
Na 1s ² 2s ² 2p ⁶ 3s ¹	Na	11	10	1	
Mg 1s ² 2s ² 2p ⁶ 3s ²	Mg	12	10	2	

- A blindagem reduz a atração eletrostática entre núcleo e eletrões externos

Blindagem das camadas interiores + blindagem na mesma subcamada

Camadas interiores completas exercem blindagem sobre os eletrões exteriores de uma forma mais eficiente do que eletrões na mesma subcamada se blindam mutuamente

Carga Nuclear Efetiva (Z_{eff})

Ao longo do período - Z aumenta, e- interiores mantem-se constante

Ao longo do grupo – Z aumenta, nº camadas interiores aumenta

9

Raio Atómico

- Quanto maior for a carga nuclear efetiva mais fortemente atraídos são os e- de valência e menor será o raio

11

Raio Atómico

Estruturas tridimensionais extensas

- Metade da distância entre os núcleos de dois átomos adjacentes

moléculas

- Metade da distância entre os núcleos dos dois átomos na molécula

8.3

8.3

10

Raio Atómico

Raio iónico

Configurações Electrónicas dos Catiões e Aniões de Elementos Representativos

Na: [Ne]3s1 Na+: [Ne]

Ca: [Ar]4s² Ca²⁺: [Ar]

Al: $[Ne]3s^23p^1$ Al³⁺: [Ne]

Perda de electrões — os catiões têm a configuração electrónica de gás nobre.

H: 1s1

F: $1s^22s^22p^5$

O: $1s^22s^22p^4$

N: $1s^22s^22p^3$

13

Catiões e Aniões de Elementos Representativos

Raio iónico

Configurações Electrónicas dos Catiões e Aniões de Elementos Representativos

Na: [Ne]3s1 Na+: [Ne]

Ca: $[Ar]4s^2$ Ca²⁺: [Ar]

Ganho de electrões
— os aniões têm a

configuração de gás

AI: $[Ne]3s^23p^1$ AI³⁺: [Ne]

Perda de electrões — os catiões têm a configuração electrónica de gás nobre.

H: $1s^1$ H⁻: $1s^2$ ou [He]

F: $1s^22s^22p^5$ F⁻: $1s^22s^22p^6$ ou [Ne]

O: $1s^22s^22p^4$ O²⁻: $1s^22s^22p^6$ ou [Ne]

N: $1s^22s^22p^3$ N³⁻: $1s^22s^22p^6$ ou [Ne]

14

nobre.

lões/átomos isoeletrónicos – possuem igual nº de eletrões

Na*: [Ne] Al3*: [Ne] F-: $1s^2 2s^2 2p^6$ ou [Ne]

O²-: $1s^2 2s^2 2p^6$ ou [Ne] N³-: $1s^2 2s^2 2p^6$ ou [Ne]

Na+, Al3+, F-, O2- e N3- são todos *isoeletrónicos* com Ne

Que átomo neutro é isoeletrónico com H-?

Comparação entre Raios Atómicos e Raios Iónicos

17

19

Raio iónico

Raio iónico — algumas tendências de variação periódica

O catião é sempre mais pequeno do que o átomo a partir do qual se formou.

O **anião** é sempre **maior** do que o átomo a partir do qual se formou.

18

Exercício: Para cada um dos seguintes pares indique a espécie maior justificando.

N	F	Mg	Ca	Fe
7	9	12	20	26

- a) Mg²⁺ e Ca²⁺
- b) N³⁻ e F⁻
- c) Fe²⁺ e Fe³⁺
- d) K⁺ e Li⁺
- e) Au⁺ e Au³⁺
- f) P3- e N3-

Energia de ionização (E_i) — energia mínima necessária para remover um eletrão de um átomo no estado gasoso e no seu estado fundamental. (kJ/mol)

 ${m E}_1 + {f X}_{(g)} {\longrightarrow} {f X}^+_{(g)} + {f e}^ {m E}_1$ primeira energia de ionização

 $\boldsymbol{E}_2 + \boldsymbol{\mathsf{X}}^+_{(q)} \longrightarrow \boldsymbol{\mathsf{X}}^{2+}_{(q)} + \boldsymbol{e}^- \qquad \boldsymbol{E}_2$ segunda energia de ionização

 $E_3 + X^{2+}_{(q)} \longrightarrow X^{3+}_{(q)} + e^ E_3$ terceira energia de ionização

Após remoção de um e⁻ a repulsão entre e⁻ diminui. Como a carga nuclear permanece constante é necessário mais energia para remover outro e-

E₁ < **E**₂ < **E**₃

21

Quanto major E majs difícil é remover o e-

Variação da Primeira Energia de Ionização com o Número Atómico

Ao longo do período Ei aumenta

Gases nobres – maior Ei

Ao longo do grupo Ei diminui

Metais alcalinos - menor Ei

2 2373 5251 520 7300 11 815 Li Be 899 1757 14 850 21 005 801 2430 3 660 25 000 32 820 1086 2350 6 220 38 000 47 261 4 620 1400 2860 4 580 7 500 9 400 53 000 1314 3390 5 300 13 000 7 470 11 000 1680 3370 6 050 8 400 11 000 15 200 3950 2080 6 120 9 370 12 200 15 000 11 495,9 4560 16 600 6 900 9 540 13 400 12 738.1 1450 7 730 10 500 13 600 18 000 13 577,9 1820 2 750 11 600 18 400 14 786,3 1580 3 230 4 360 16 000 20 000 15 1012 1904 2 910 21 000 4 960 6 240 16 17 999,5 2250 8 500 3 3 6 0 4 660 6 990 1251 2297 3 820 5 160 6 540 9 300 18 8 800 1521 2666 3 900 5 770 7 240 19 20 K 3052 418,7 4 4 1 0 5 900 8 000 9 600 Ca 4 900 8 100 11 000

Terceira Quarta

Energias de Ionização (kJ/mol) dos Primeiros 20 Elementos

Segunda

Primeira

22

Variação da Primeira Energia de Ionização

Ao longo do período Ei aumenta da esquerda para a direita

Ao longo do grupo Ei aumenta de baixo para cima

Exercício: qual dos átomos, O ou S, deverá ter uma primeira energia de ionização menor?

80 16S

Exercício: qual dos átomos, O ou S, deverá ter uma primeira energia de ionização menor?

80 16S

$$_{8}\text{O}$$
: $1s^{2}2s^{2}2p^{4}$
 $_{16}\text{S}$: $1s^{2}2s^{2}2p^{6}3s^{2}3p^{4}$

Ei(S) < Ei(O) porque são do mesmo grupo mas tem o e⁻ a ser removido de níveis diferentes

25

Afinidade eletrónica — <u>é a variação de energia</u> que ocorre quando um eletrão <u>é</u> captado por um átomo no estado gasoso para originar um anião. (kJ/mol)

$$X_{(g)} + e^- \longrightarrow X^-_{(g)}$$

- A afinidade eletrónica tem um valor negativo quando há libertação de energia.
- Quanto mais negativa for a afinidade eletrónica maior será a tendência para um átomo captar um e-.
- Os gases nobres que tem subcamadas exteriores s e p completamente preenchidas não tem tendência para captar e-.

Afinidade eletrónica (em módulo) de alguns elementos representativos

	•	40		45	40	47
1	2	13	14	15	16	17
A						
_ 73						
Li	Be	В	C	N	O	F
60	≤ 0	27	122	0	141	328
Na	≤ g	A1	Si	P	S	Cl
53	£0	44	134	72	200	349
K	Ca	Ga	Ge	As	Se	Br
48	2,4	29	118	77	195	325
Rb	Sr	In	Sn	Sb	Te	I
47	4,7	29	121	101	190	295
Cs	Ba	T1	Pb	Bi	Po	At
45	14	30	110	110	?	?

Ao longo do período tendencialmente - aumento da esquerda para a direita

Ao longo do grupo tendencialmente - aumenta de baixo para cima

Grupo 17 - maior afinidade eletrónica

27