Time Series Analysis. 1. Intro into TS

Alexey Romanenko alexromsput@gmail.com

Erevan, 2017

Содержание

- About this course
 - Intro
 - Course Plan
 - Practical Work
- Time Series forecasting
 - Time Series
 - Example of Time Series
 - General components of Time Series
- Regression in Time Series Forecasting
 - Regression (reminder)
 - Auto Regression for Time Series
 - Regression Model of TS

Let me introduce: Alexey Romanenko

Education:

- Masters Degree at MIPT, 2011
- PhD thesis: Composition of Time Series Forecasting Algorithm at MIPT, 2017

Work experience:

- SAS Institute (software implementation), 2016 now
- MIPT (teaching assistant), 2011 now
- Svyaznoy (one of the largest cellphone retailer in Russia), 2010–2016
- Forecsys (Machine Learning software for business), 2008-2010

View full profile: https://www.linkedin.com/in/alexromsput/

Course Plan

Date	Торіс
28/05/2017	Intro in TS forecasting
29/05/2017	Exponential Smoothing models
30/05/2017	ARIMA and ARIMAX
31/05/2017	Practice Day 1
01/06/2017	Accuracy of forecast, comparing of models
02/06/2017	ARCH, GARCH models
03/06/2017	Practice Day 2
04/06/2017	rest day
05/06/2017	Compositions, Aggregating Algorithm
06/06/2017	Overview of other approaches
07/06/2017	Overview of other approaches
08/06/2017	TSA in Retail: Hierarchial Forecasting, Demand Forming
09/06/2017	Practice Day 3

You will have to come through:

- 3 practice days
- 8 HW (for 1-2 hours)
- 3 2 Labs (for 4-6 hours)
- 1 Kaggle contest (for 7 days)

Results

Materials for this course:

You will have to come through:

- 3 practice days
- 8 HW (for 1-2 hours)
- 2 Labs (for 4-6 hours)
- 1 Kaggle contest (for 7 days)

Results:

https://drive.google.com/open?id=11-lzxxROaeBmEDGEW1GiIaP4X3fyCTHxTg4b0

Materials for this course:

https://drive.google.com/open?id=OB9ZsO9o9XXqNVOJuQVNLWXRrMTA

- It is interesting!
- It is difficult!
- We will do it!

Time Series definition

Time series: $y_1, \ldots, y_T, \ldots, y_t \in \mathbb{R}$, — a sequence of values of some variable, detected in a constant time interval.

Time series forecasting task — find function f_T :

$$y_{T+d} \approx f_T(y_T, \dots, y_1, d) \equiv \hat{y}_{T+d|T},$$

where $d \in \{1, \dots, D\}$ — delay, D — horizon.

Forecasting interval, confidence of the forecast

Example: April 1997, Grabd-Forks, ND, unexpected flood:

https://www.youtube.com/watch?v=0iJUgddua-g

The city was protected by dam of 51 feet;

The National Weather Service (NWS) had forecast that the river would crest at 49 feet

The river crested at 54.35 feet.

50000 citizens were evacuated, 75% buildings were damaged or destroyed, Property damage \$3.5 billion

The forecasting interval was ± 9 feet

Time series in Retail

Time series in Retail

Specification of the TS in Retail

- \bullet 10^6-10^8 TS to forecast at once
- missing in data
- out-of-stock (no sales by non-zero demand)
- dependence on promo-events, changes in price
- complex loss-function

Time series in Finance

Jndex Daw-Jones:

Time series in Finance

Specification of the TSA in Finance:

- high level of noise
- correlation with other financial index
- highly dependence on external events (big market events, politics)

Time series in Industry: Consumption of Electricity

Time series in Industry: Consumption of Electricity

- complex structure (yearly, weekly, daily seasonality)
- dependence on temperature, price, calendar-events
- nonlinear dependence

Time series in Industry: Manufacturing

Total man-hours in Warehouse:

- depends mainly on external factors
- can be described by clear physical model

Time series in Physics

- a-periodical changes
- ullet complex physical model of dependence (Newton's laws, Kepler's laws, \dots)

Components of Time Series

Level — average level of values;

Trend — monotonic long-term changes of Level;

Seasonality — periodical changes of values with constant period;

Cycle — changes in time series values (economical cycles, solar activity cycles).

Error — random (unbiased) component of time series.

Components of Time Series

Components of Time Series

STL-decomposition:

Least Squared Method

- $\begin{array}{l} \bullet \ \, X- \mbox{ samples }(\mathbb{R}^n); \, Y- \mbox{ answers }(\mathbb{R}); \\ X^\ell = (x_i,y_i)_{i=1}^\ell \mbox{ train samples;} \\ y_i = y(x_i), \ \, y\colon X \to Y- \mbox{ unknown function;} \\ \end{array}$
- $a(x) = f(x, \alpha)$ regression model, $\alpha \in \mathbf{R}^p$ weights of regressors.
- Least Squared Method:

$$Q(\alpha, X^{\ell}) = \sum_{i=1}^{\ell} w_i (f(x_i, \alpha) - y_i)^2 \to \min_{\alpha},$$

where w_i — weight of *i*-th sample.

 $Q(\alpha^*, X^{\ell})$ — loss function (residual sum of squares, RSS).

Maximal Likelihood Approach

Probabilistic Model (with guassian errors):

$$y(x_i) = f(x_i, \alpha) + \varepsilon_i, \quad \varepsilon_i \sim \mathcal{N}(0, \sigma_i^2), \quad i = 1, \dots, \ell.$$

Maximal Likelihood Method (MLE):

$$\begin{split} L(\varepsilon_1,\dots,\varepsilon_\ell|\alpha) &= \prod_{i=1}^\ell \frac{1}{\sigma_i \sqrt{2\pi}} \exp\left(-\frac{1}{2\sigma_i^2} \varepsilon_i^2\right) \to \max_\alpha; \\ &- \ln L(\varepsilon_1,\dots,\varepsilon_\ell|\alpha) = \mathsf{const}(\alpha) + \frac{1}{2} \sum_{i=1}^\ell \frac{1}{\sigma_i^2} \big(f(x_i,\alpha) - y_i\big)^2 \to \min_\alpha; \end{split}$$

Theorem

LS is equal to MLE for linear regression model and $w_i = \sigma_i^{-2}$.

Linear Regression Matrix

 $f_1(x), \ldots, f_n(x)$ — regressors (features); Model of Linear Regression:

$$f(x,\alpha) = \sum_{j=1}^{n} \alpha_j f_j(x), \qquad \alpha \in \mathbb{R}^n.$$

LR in matrix symbols:

$$F_{\ell \times n} = \begin{pmatrix} f_1(x_1) & \dots & f_n(x_1) \\ \dots & \dots & \dots \\ f_1(x_\ell) & \dots & f_n(x_\ell) \end{pmatrix}, \quad y_{\ell \times 1} = \begin{pmatrix} y_1 \\ \dots \\ y_\ell \end{pmatrix}, \quad \alpha_{n \times 1} = \begin{pmatrix} \alpha_1 \\ \dots \\ \alpha_n \end{pmatrix}.$$

Loss Fucntion in matrix:

$$Q(\alpha, X^{\ell}) = \sum_{i=1}^{\ell} (f(x_i, \alpha) - y_i)^2 = \|F\alpha - y\|^2 \to \min_{\alpha}.$$

Solution of linear LS

Necessary condition of minimum:

$$\frac{\partial Q}{\partial \alpha}(\alpha) = 2F^{\mathsf{T}}(F\alpha - y) = 0,$$

linear system for LS:

$$F^{\mathsf{T}}F\alpha = F^{\mathsf{T}}y$$
,

where $F_{n\times n}^{\mathsf{T}}F$ — covariance matrix f_1,\ldots,f_n .

Solution:

$$\alpha^* = (F^{\mathsf{T}}F)^{-1}F^{\mathsf{T}}y = F^+y.$$

Loss functional: $Q(\alpha^*) = ||P_F y - y||^2$,

where $P_F = FF^+ = F(F^{\mathsf{T}}F)^{-1}F^{\mathsf{T}}$ — projection matrix.

Sales of wine in Australia

Dependence between sales for adjacent months

Dependence between sales for months with lag=2

Dependence between sales for months with lag=2

Dependence between sales for months with lag=12

Linear Autoregression for TimeSeries Forecasting

Regressors (features) -n previous points of time series:

$$\hat{y}_{t+1}(\alpha) = \sum_{j=1}^{n} \alpha_j y_{t-j+1}, \quad \alpha \in \mathbb{R}^n$$

Samples are
$$\ell = t - n + 1$$
 moments of time series: $\begin{cases} y_t & y_{t-1} & y_{t-2} & \dots & y_{t-n+1} \\ y_{t-1} & y_{t-2} & y_{t-3} & \dots & y_{t-n} \\ y_{t-2} & y_{t-3} & y_{t-4} & \dots & y_{t-n-1} \\ \dots & \dots & \dots & \dots & \dots \\ y_n & y_{n-1} & y_{n-2} & \dots & y_1 \end{cases}$, $y = \begin{pmatrix} y_{t+1} \\ y_t \\ y_{t-1} \\ \dots \\ y_{n+1} \end{pmatrix}$

Loss Functional:

$$Q_t(\alpha, X^{\ell}) = \sum_{i=n+1}^{t+1} (\hat{y}_i(\alpha) - y_i)^2 = ||Fw - y||^2 \to \min_{\alpha}$$

See example of LR for TS forecasting in 1_intro.ipnb Questions: which problems you can meet when you use LR?

Regression model of TS

$$\begin{array}{ll} y_0,y_1,\ldots,y_t,\ldots & \text{time series,} \\ \vec{x}_0,\vec{x}_1,\ldots,\vec{x}_t,\ldots & -\text{ regressors, } \vec{x}_t = (x_{1,t},\ldots,x_{n,t}) \in \mathbb{R}^n \\ \hat{y}_{t+d}(\alpha) = f_t\left(\vec{x}_{t+d};\vec{\alpha_t}\right) & -\text{ regression model of TS,} \end{array}$$

Question: How can we make LR model adaptive?

LAWR: Local Adaptation of weights with regularization

At each step t weights are found as LS with reweighting samples and smoothing with weights at the moment t-1:

oothing with weights at the moment
$$t-1$$
:
$$\left\{ \begin{bmatrix} \sum\limits_{t=0}^T \beta^{(T-t)} \Big(\sum\limits_{j=1}^k \alpha_j x_{j,t} - y_t \Big)^2 \end{bmatrix} + \lambda \sum\limits_{j=1}^k \Big(\alpha_j - \alpha_{j,T-1}\Big)^2 \to \min_{\alpha_j,j=1,\dots,k} \right. \\ \left. \sum\limits_{j=1}^k \alpha_j \ge 0. \right.$$

Conclusion

- time series differs in business regions
- time series forecasting problem has specific
- LR is the common approach to build the forecast
- LR can be benchmark solution of TS forecasting
- LR is not good enough:

Conclusion

- time series differs in business regions
- time series forecasting problem has specific
- LR is the common approach to build the forecast
- LR can be benchmark solution of TS forecasting
- LR is not good enough:
 - 1 last sample and first sample in train set have the same weight
 - LR needs a lot of machine resources

Conclusion

- time series differs in business regions
- time series forecasting problem has specific properties for each business
- LR is the common approach to build the forecast
- LR can be used as benchmark of TS forecast
- LR is not good enough:
 - last sample and first sample in train set have the same weight
 - 2 LR needs a lot of machine resources
- there are adaptive variations of LR to add adaptation and stabilization