# **TLS-3XX Series Consoles**

# **Troubleshooting Guide**



# **Notice**

Veeder-Root makes no warranty of any kind with regard to this publication, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Veeder-Root shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this publication.

Veeder-Root reserves the right to change system options or features, or the information contained in this publication.

This publication contains proprietary information which is protected by copyright. All rights reserved. No part of this publication may be photocopied, reproduced, or translated to another language without the prior written consent of Veeder-Root.

### **DAMAGE CLAIMS**

- Thoroughly examine all components and units as soon as they are received. If damaged, write a complete
  and detailed description of the damage on the face of the freight bill. The carrier's agent must verify the
  inspection and sign the description.
- Immediately notify the delivering carrier of damage or loss. This notification may be given either in person
  or by telephone. Written confirmation must be mailed within 48 hours. Railroads and motor carriers are
  reluctant to make adjustments for damaged merchandise unless inspected and reported promptly.
- 3. Risk of loss, or damage to merchandise remains with the buyer. It is the buyer's responsibility to file a claim with the carrier involved.

### **RETURN SHIPPING**

For the parts return procedure, please follow the appropriate instructions in the "General Returned Goods Policy" and "Parts Return" pages in the "Policies and Literature" section of the Veeder-Root **North American Environmental Products** price list.

| 1 | Introduction                                                                                                                             |     |
|---|------------------------------------------------------------------------------------------------------------------------------------------|-----|
|   | Related Manuals                                                                                                                          | 1-1 |
|   | Contractor Certification Requirements                                                                                                    | 1-1 |
|   | Safety Precautions                                                                                                                       | 1-1 |
|   | Safety Warnings                                                                                                                          | 1-2 |
|   | Explanation of Software Version Numbering                                                                                                | 1-2 |
|   | TLS-300 Consoles                                                                                                                         |     |
|   | TLS-350 Consoles Having Form Numbers 08470xx-xxx                                                                                         |     |
|   | TLS-350J Consoles Having Form Numbers 08470xx-xxx                                                                                        |     |
|   | TLS-350 Plus Consoles Having Form Numbers 08482xx-xxx                                                                                    |     |
|   | TLS-350R Consoles Having Form Numbers 08482xx-xxx                                                                                        |     |
|   | Verifying Installed System Features                                                                                                      |     |
|   | Console has an optional printer:  Console does not have a printer                                                                        |     |
|   | Console does not have a printer                                                                                                          | 1-3 |
| 2 | System Description                                                                                                                       |     |
| _ | System Parts Identification                                                                                                              | 2-1 |
|   | Basic Troubleshooting Procedures                                                                                                         |     |
|   | Intrinsic Safety Check                                                                                                                   |     |
|   | Visual Inspection of Console Interior                                                                                                    |     |
|   | Test Front Panel LEDs, Display, and Console Beeper                                                                                       |     |
|   | root rront ranor EEDO, Dioplay, and Concolo Doopor                                                                                       |     |
| 3 | Software Version Feature List                                                                                                            | 3-1 |
|   |                                                                                                                                          |     |
| 4 | Fuses                                                                                                                                    |     |
|   | TLS-300 Series Console Fuses                                                                                                             |     |
|   | TLS-350 Series Console AC Power Fuses                                                                                                    |     |
|   | TLS-350 Series Interface Module Fuses                                                                                                    | 4-2 |
| _ | Warning and Alarm Massages                                                                                                               |     |
| ວ | Warning and Alarm Messages                                                                                                               | -   |
|   | Alarm Monitoring                                                                                                                         |     |
|   | Alarm Posting What to Do When A Warning or Alarm Occurs                                                                                  | 5-1 |
|   | How To Shut Off Warning and Alarm Indicators                                                                                             |     |
|   | Alarm Reports                                                                                                                            |     |
|   | Displayed Alarm Messages                                                                                                                 |     |
|   | 2.opta/ou/.taliii iiioosagoo                                                                                                             |     |
| 6 | Diagnostic Mode                                                                                                                          | 6-1 |
|   |                                                                                                                                          |     |
| 7 | Console Troubleshooting                                                                                                                  | 7-1 |
| 0 | Sancar Troubleshooting                                                                                                                   |     |
| 0 | Sensor Troubleshooting                                                                                                                   | 0.4 |
|   | Sensor Alarm Will Not Clear                                                                                                              |     |
|   | Sensor Open Alarms                                                                                                                       |     |
|   | Setup Data Warning                                                                                                                       |     |
|   | Unstable Sensor Readings                                                                                                                 |     |
|   | Cleaning Fuel Contaminated Discriminating Sensors                                                                                        |     |
|   | Discriminating Sensors 794360-320, -322, -350, -352, -360, -361, & -362  Discriminating Solid-State Sensor - Optical (P/N 794380-343344) |     |
|   | Smart Sensor Troubleshooting                                                                                                             | 8-2 |

| 9  | Probe Troubleshooting                                                   |       |
|----|-------------------------------------------------------------------------|-------|
|    | Field Troubleshooting Probe-Out Alarms                                  |       |
|    | Minimum Detected Fluid Levels                                           |       |
|    | Mag Probe Channel Counts in Common Liquids                              |       |
|    | Example Probe Status Printouts                                          |       |
|    | Magnetostrictive Probe - Normal                                         |       |
|    | Magnetostrictive Probe - Missing Water Float                            | 9-7   |
| 10 | Dispenser Interface Modules (DIMs)                                      |       |
|    | DIM Descriptions                                                        | 10-1  |
|    | Mechanical Dispenser Interface Module (MDIM) & Low Voltage Dispense     |       |
|    | Interface Module (LVDIM)                                                | 10-1  |
|    | Electronic Dispenser Interface Module (EDIM)                            |       |
|    | Current Loop Dispenser Interface Module (CDIM)                          |       |
|    | LAN Dispenser Interface Module (LDIM)                                   |       |
|    | International Forecourt Standards Forum Dispenser Interface Module (IFS | •     |
|    | DIM Tables                                                              |       |
|    | DIM Installation Examples                                               |       |
|    | Interface Module Hardware Configuration                                 | 10-10 |
|    | DIM Troubleshooting Charts                                              | 10-24 |
| 11 | CSLD Troubleshooting                                                    |       |
|    | CSLD Tank Limitations                                                   |       |
|    | Maximum Tank Capacity                                                   |       |
|    | Monthly Throughput Guidelines                                           |       |
|    | CSLD Block Diagrams                                                     | 11-1  |
|    | CSLD Diagnostic Aids                                                    | 11-4  |
|    | Tank Setup Check Before Troubleshooting                                 | 11-8  |
|    | CSLD Alarms                                                             | 11-8  |
|    | Alarm: CSLD RATE INCR WARN                                              | 11-9  |
|    | Alarm: NO CSLD IDLE TIME                                                | 11-10 |
|    | Alarm: PERIODIC TEST FAIL                                               |       |
|    | Status Message: NO RESULTS AVAILABLE                                    | 11-11 |
|    | Static Leak Test                                                        | 11-12 |
|    | When to Manually Clear the CSLD Rate Table                              | 11-12 |
|    | Contacting Tech Support                                                 | 11-13 |
|    | Actual CSLD Test Problems Analyzed                                      |       |
|    | CSLD Problem 1 - TANK 1 CSLD FAIL                                       |       |
|    | Diagnostics                                                             | 11-14 |
|    | Analysis of Rate Table (IA51)                                           |       |
|    | Analysis of Rate Test (IA52)                                            | 11-17 |
|    | Solution                                                                | 11-17 |
|    | CSLD Problem 2 - Manifolded Tanks 1 And 2 Are Failing                   |       |
|    | Diagnostics                                                             | 11-17 |
|    | CSLD Problem 3 - Increase Rate Warning for Manifolded Tanks 2 and 3.    | 11-19 |
|    | CSLD Problem 4 - No CSLD Idle Time                                      |       |
|    | CSLD Problem 5 - Tank 1 Is Failing                                      |       |
|    | CSLD Problem 6 - CSLD Periodic Failure Tank 1                           |       |
|    | CSLD Problem 7 - No CSLD Results                                        |       |
|    | CSLD Problem 8 - CSLD Failure Tank 1                                    |       |
|    | CSLD Problem 9 - Tank 1 Fail                                            |       |
|    | CSLD Problem 10 - Tank 8 Failing                                        |       |
|    | CSLD Problem 11 - Periodic Test Fail Tank 2                             |       |
|    | CSLD Problem 12 - Periodic Test Fail on Tank 1                          | 11-30 |

| 12 | BIR Troubleshooting                                                                                                               |       |
|----|-----------------------------------------------------------------------------------------------------------------------------------|-------|
|    | BIR Troubleshooting Requirements                                                                                                  | 12-1  |
|    | BIR Features                                                                                                                      |       |
|    | BIR Methods                                                                                                                       | 12-1  |
|    | Inventory Reconciliation                                                                                                          |       |
|    | Adjusted Delivery Reports                                                                                                         |       |
|    | Requirements for BIR with Manifolded Tanks                                                                                        | 12-1  |
|    | AccuChart Restrictions with Manifolded Tanks                                                                                      | 12-2  |
|    | Alarms                                                                                                                            | 12-2  |
|    | BIR Generates 3 Alarms                                                                                                            |       |
|    | Dispenser Interface Modules (DIMs) Generate 3 Alarms                                                                              |       |
|    | BIR Setup Errors                                                                                                                  |       |
|    | Meter Data Present Entry                                                                                                          |       |
|    | BIR Temperature Compensation                                                                                                      | 12-2  |
|    | BIR Alarm Threshold and Offset                                                                                                    |       |
|    | BIR Variance Errors                                                                                                               |       |
|    | General                                                                                                                           |       |
|    | Possible Causes of Lost or Inaccurate TLS Console Volume Data                                                                     |       |
|    | Possible Causes of Lost or Inaccurate Sales Data                                                                                  |       |
|    | Reports Used to Analyze BIR Variance Problems                                                                                     |       |
|    | I20100 Standard Inventory Report                                                                                                  |       |
|    | I11100 and I11200 Priority and Non-Priority Alarm HistoryI@A400 Daily Reconciliation List for Last 31 Days (62 on newer versions) |       |
|    | IA5400 Console 30 Second Average Volume History                                                                                   |       |
|    | I61500 Meter Data Present                                                                                                         |       |
|    | 190200 Software Revision                                                                                                          |       |
|    | Automatic Meter Mapping                                                                                                           |       |
|    | Tank/Meter Cross References                                                                                                       |       |
|    | Tank/Meter Cross Reference Diagram                                                                                                |       |
|    | Manual Meter Mapping                                                                                                              |       |
|    | RS-232 Command 7B1                                                                                                                |       |
|    | 7B1 Report Parameters:                                                                                                            |       |
|    | Command 7B1 Inquiry Examples                                                                                                      | 12-10 |
|    | Command 7B1 Setup Examples                                                                                                        |       |
|    | Command Setup Error Detection                                                                                                     |       |
|    | Manual Meter Mapping Examples                                                                                                     |       |
|    | Automatic Meter-Mapping Errors                                                                                                    |       |
|    | Map Never Completes                                                                                                               |       |
|    | Map Unstable                                                                                                                      |       |
|    | Incorrect Mapping                                                                                                                 |       |
|    | Reports Used in Analyzing Meter Map Problems                                                                                      |       |
|    | I@A002 Meter Map Diagnostics                                                                                                      |       |
|    | I@A900 BIR Messages                                                                                                               |       |
|    | Procedure for Identifying AccuChart Problems                                                                                      |       |
|    | What is the complaint?                                                                                                            |       |
|    | Reports Used to Analyze AccuChart Problems                                                                                        |       |
|    | I@B600 AccuChart Status IB9400 AccuChart Calibration History                                                                      |       |
|    |                                                                                                                                   |       |
|    | Resetting AccuChart                                                                                                               |       |
|    | Contacting Tech Support                                                                                                           |       |
|    | BIR Troubleshooting Examples                                                                                                      | 12-27 |

# **Figures**

| Figure 2-1.  | Console Front Panel                                                              | 2-1  |
|--------------|----------------------------------------------------------------------------------|------|
| Figure 2-2.  | Communication Bay, Power Bay and Intrinsically                                   |      |
|              | Safe Bay Identification (TLS-350 Series Consoles)                                | 2-1  |
| Figure 2-3.  | PC Board Identification (TLS-300 Series Consoles)                                | 2-2  |
| Figure 2-4.  | Console Display/Keyboard Board Components                                        | 2-2  |
| Figure 2-5.  | TLS-350 Consoles CPU board layout with through-hole                              |      |
|              | components and 28-pin RAM chips                                                  | 2-3  |
| Figure 2-6.  | TLS-350 Consoles CPU board layout with through-hole                              |      |
|              | components and 32-pin RAM chips                                                  | 2-3  |
| Figure 2-7.  | TLS-350 Consoles CPU board layout with                                           |      |
|              | surface-mount components                                                         | 2-4  |
| Figure 2-8.  | TLS-350 Consoles ECPU board layout with                                          |      |
|              | through-hole components                                                          | 2-4  |
| Figure 2-9.  | TLS-350 Consoles ECPU board layout                                               | 2-5  |
| Figure 2-10. | TLS-350 Consoles ECPU2 board layout                                              | 2-5  |
| Figure 2-11. | TLS-350 Series Console - 2 Meg ROM Board                                         | 2-6  |
| Figure 2-12. | TLS-350 Series Console - 1/2 Meg RAM Board                                       | 2-6  |
| Figure 2-13. | TLS-350 Series Console - NVMEM Board                                             | 2-6  |
| Figure 2-14. | TLS-300 Series Console CPU board layout w/ through-hole                          |      |
| <b>3</b> · · | components                                                                       | 2-7  |
| Figure 2-15. | TLS-300 Series Console CPU board layout with                                     |      |
| 3            | surface-mount components                                                         | 2-7  |
| Figure 2-16. | TLS-300 Series Console Power Supply Board                                        | 2-8  |
| Figure 2-17. | TLS-300 Series Console Power Supply Board                                        | 2-8  |
| Figure 2-1.  | TLS-300 Series Console I.S. Barrier Board                                        | 2-9  |
| Figure 2-2.  | Example TLS-300 Series Console Sensor/Probe Interface                            |      |
| 1 Iguio 2 2. | Boards (8P/0S, 8S/0P, 8S/2P, and 8S/4P)                                          | 2-9  |
| Figure 6-1.  | Index of Diagnostic Functions                                                    | 6-1  |
| Figure 6-2.  | Key Symbols Used in Diagrams                                                     | 6-1  |
| Figure 6-3.  | System Diagnostic Function Diagram                                               | 6-2  |
| Figure 6-4.  | Service Report Function Diagram                                                  | 6-4  |
| Figure 6-5.  | In-Tank Diagnostic Function Diagram                                              | 6-5  |
| Figure 6-6.  | Fuel Management Diagnostic                                                       | 6-6  |
| Figure 6-7.  | In-Tank Leak Diagnostic Function Diagram                                         | 6-6  |
| Figure 6-8.  | In-Tank Leak Result Diagnostic Function Diagram                                  | 6-7  |
| Figure 6-9.  | AccuChart Diagnostic Function Diagram                                            | 6-8  |
| •            | CSLD Diagnostics Function Diagram                                                | 6-9  |
| Figure 6-10. |                                                                                  | 6-10 |
| Figure 6-11. | Pressure Line Leak Diagnostic Function Diagram  VLLD Diagnostic Function Diagram | 6-10 |
| Figure 6-12. |                                                                                  |      |
| Figure 6-13. |                                                                                  | 6-11 |
| Figure 6-14. | Pump Sensor Diagnostic Function Diagram                                          | 6-11 |
| Figure 6-15. | Liquid Sensor Diagnostic Function Diagram                                        | 6-11 |
| Figure 6-16. | Vapor Sensor Diagnostic Function Diagram                                         | 6-12 |
| Figure 6-17. | · · · · · · · · · · · · · · · · · · ·                                            | 6-12 |
| Figure 6-18. | 2-Wire CL Sensors Diagnostic Function Diagram                                    | 6-13 |
| Figure 6-19. | 3-Wire CL Sensors Diagnostic Function Diagram                                    | 6-13 |
| Figure 6-20. | 1 ( 1 / 0                                                                        | 6-14 |
| Figure 6-21. | Alarm History Report Function Diagram                                            | 6-15 |
| Figure 6-22. | Reconciliation Clear Map Function Diagram                                        | 6-16 |
| Figure 6-23. |                                                                                  | 6-16 |
| Figure 6-24. | Power Diagnostic Function Diagram                                                | 6-17 |
| Figure 6-25. | Communication Diagnostic Function Diagram                                        | 6-18 |
| Figure 6-26. | S S                                                                              | 6-19 |
| Figure 6-27. | Archive Diagnostic Function Diagram                                              | 6-19 |

| Figure 10-1.<br>Figure 10-2. | Simplified DIM Connections to various Dispensing Systems Wiring Diagram of Mechanical Dispenser Applications using two 1871/7697 Series Pulse Transmitters and | 10-5  |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| F: 40.0                      | required Barriers (MDIM)                                                                                                                                       | 10-6  |
| Figure 10-3.                 | Meter Stand Application Using 1871/7697 Series Pulse Transmitter (MDIM)                                                                                        | 10-7  |
| Figure 10-4.                 | Mechanical Dispenser Applications using 7874 Series Pulser/Totalizer (MDIM)                                                                                    | 10-8  |
| Figure 10-5.                 | Installation w/ PetroVend System 2 Site Controller (LVDIM)                                                                                                     | 10-9  |
| Figure 10-6.                 | Installation with Kraus Micon 200 Series Electronic Dispeners (LVDIM)                                                                                          | 10-9  |
| Figure 10-7.                 | Installation with GasBoy 9800 Series Electronic Dispensers (LVDIM)                                                                                             | 10-10 |
| Figure 10-8.                 | Dip Switch Banks - Gasboy Interface Module (LVDIM)                                                                                                             | 10-11 |
| Figure 10-9.                 | Gasboy Island Loop Interface Configuration. for TLS-350 (LVDIM) - Kit No. 331088-XXX                                                                           | 10-11 |
| Figure 10-10.                | Gasboy Console Loop Interface Required Config. for                                                                                                             | 10-11 |
| rigule 10-10.                | TLS-350R w/BIR (LVDIM) - Kit No. 331088-XXX                                                                                                                    | 10-11 |
| Figure 10-11.                | Gasboy CFN Interface (LVDIM) - Kit No. 331088-XXX                                                                                                              | 10-11 |
| Figure 10-11.                | Wayne Dispenser Data Box Current Loop (CDIM) -                                                                                                                 | 10-12 |
| rigule 10-12.                | Kit No. 848703-XXX                                                                                                                                             | 10-12 |
| Figure 10-13.                | Gilbarco Transac Series Current Loop Interface (CDIM) - Kit No. 848702-XXX                                                                                     | 10-13 |
| Figure 10-14.                | Gilbarco Transac System 1000 Current Loop Interface                                                                                                            |       |
| J                            | (CDIM) - Kit No. 848722-XXX                                                                                                                                    | 10-14 |
| Figure 10-15.                | Gilbarco Autogas 510 CRIND Controller with Current Loop Interface (CDIM) - Kit No. 848702-XXX                                                                  | 10-15 |
| Figure 10-16.                | Gilbarco AutoGas 510 CRIND Controller with Serial Interface                                                                                                    |       |
|                              | (CDIM) - Kit No. 848702-XXX                                                                                                                                    | 10-16 |
| Figure 10-17.                | Gilbarco AutoGas 510 CRIND Controller (CDIM) -                                                                                                                 | 10.47 |
| Fig. 40.40                   | Kit No. 848702-XXX                                                                                                                                             | 10-17 |
| Figure 10-18.                | Gilbarco AutoGas 507 CRIND Controller (CDIM) - Kit No. 848741-XXX                                                                                              | 10-18 |
| Figure 10-19.                | Allied ANDI Site Controller Installation with                                                                                                                  | 10-16 |
| rigule 10-13.                | 25 Pin D-Connector (EDIM)                                                                                                                                      | 10-19 |
| Figure 10-20.                | Schlumberger MicroMax POS with Allied Protocol Box Current Loop Interface (CDIM) - Kit No. 848711-XXX                                                          | 10-20 |
| Figure 10-21.                | Schlumberger Pro Series or MicroMax POS with SAM or                                                                                                            | 10-20 |
|                              | XPIC Controller Box and RS-232 Cable Adapter Box Interface                                                                                                     |       |
| F: 40.00                     | (CDIM) - Kit No. 848731-XXX                                                                                                                                    | 10-21 |
| Figure 10-22.                | Schlumberger MicroMax POS with Tokheim DHC                                                                                                                     |       |
|                              | Controller Box and RS-232 Cable Adapter Box Interface                                                                                                          | 40.04 |
| Figure 40.00                 | (CDIM) - Kit No. 848711-XXX                                                                                                                                    | 10-21 |
| Figure 10-23.                | Schlumberger Verifone with SAM and RS-232 Cable Adapter                                                                                                        | 40.00 |
| Figure 40.04                 | Box Interface (CDIM) - Kit No. 848731-XXX                                                                                                                      | 10-22 |
| Figure 10-24.                | Tokheim Vision 100/200 In-Console DHC Installation (EDIM) -<br>Kit No. 330408-XXX                                                                              | 10-22 |
| Figure 10-25.                | Gilbarco PC SITE' Installation - RJ-45 Connector (EDIM) -                                                                                                      | .0    |
|                              | Kit No. 331063-XXX                                                                                                                                             | 10-23 |
| Figure 10-26.                | Gilbarco C-2 G-SITE' Installation - 25-Pin D Connector                                                                                                         |       |
| F: 40.07                     | (EDIM) - Kit No. 332063-XXX                                                                                                                                    | 10-23 |
| Figure 10-27.                | Schlumberger MicroMax POS with Allied Station Site Controller                                                                                                  | 40.01 |
| F: 40.00                     | Box Current Loop Interface (CDIM) - Kit No. 848711-XXX                                                                                                         | 10-24 |
| Figure 10-28.                | Disabled DIM Alarm                                                                                                                                             | 10-25 |
| Figure 10-29.                | EDIM/LDIM Communication Alarms                                                                                                                                 | 10-26 |
| Figure 10-30.                | CDIM Communication Alarm                                                                                                                                       | 10-27 |

| Figure 11-1.<br>Figure 11-2.<br>Figure 11-3.<br>Figure 11-4.<br>Figure 11-5.<br>Figure 11-6.<br>Figure 12-1. | CSLD Decision Process Block Diagram CSLD Leak Test Timing Sequence CSLD Rate Table Example CSLD Rate Test Example CSLD Volume Table Example CSLD Moving Average Table Example. Tank/Meter Map Diagram | 11-2<br>11-3<br>11-5<br>11-6<br>11-7<br>11-8<br>12-9 |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
|                                                                                                              |                                                                                                                                                                                                       |                                                      |
| Table 1-1.                                                                                                   | TLS-350 Series Console SEM Modules & Features                                                                                                                                                         | 1-4                                                  |
| Table 1-2.                                                                                                   | TLS-300 Console SEM Modules and Features                                                                                                                                                              | 1-7                                                  |
| Table 3-1.                                                                                                   | TLS-350 Series Software Versions 1 - 15                                                                                                                                                               | 3-1                                                  |
| Table 3-2.                                                                                                   | TLS-350 Series Software Version 16 and Following                                                                                                                                                      | 3-2                                                  |
| Table 3-3.                                                                                                   | TLS-300 Series Software Versions 1 - 15                                                                                                                                                               | 3-3                                                  |
| Table 3-4.                                                                                                   | TLS-300 Series Software Versions 16 and Following                                                                                                                                                     | 3-3                                                  |
| Table 4-5.                                                                                                   | Console Fuses                                                                                                                                                                                         | 4-1                                                  |
| Table 4-6.                                                                                                   | Console AC Power Fuses                                                                                                                                                                                | 4-1                                                  |
| Table 4-7.                                                                                                   | Interface Module Fuses                                                                                                                                                                                | 4-2                                                  |
| Table 5-1.                                                                                                   | Alarms                                                                                                                                                                                                | 5-2                                                  |
| Table 6-1.                                                                                                   | Console Modules - ID Resistances                                                                                                                                                                      | 6-3                                                  |
| Table 7-1.                                                                                                   | Console Troubleshooting                                                                                                                                                                               |                                                      |
| Table 7-2.                                                                                                   | Data Communications Chart                                                                                                                                                                             | 7-2                                                  |
| Table 9-1.                                                                                                   | Mag Probe Troubleshooting                                                                                                                                                                             | 9-1                                                  |
| Table 9-1.                                                                                                   | Mag Probe Minimum Detected Fluid Levels                                                                                                                                                               | 9-5                                                  |
| Table 9-1.                                                                                                   | Mag Probe Channel Counts in Common Liquids                                                                                                                                                            | 9-6                                                  |
| Table 10-1.                                                                                                  | Interface Module Parity DIP Switch Settings                                                                                                                                                           | 10-10                                                |

**Tables** 

# 1 Introduction

This manual contains troubleshooting information for the TLS-3XX Series Consoles. Most of the components discussed in this manual are replaceable and not repaired. The intent of this manual is to help you identify replaceable parts and assemblies, explain alarms and diagnostic displays, provide accepted troubleshooting guidelines for sensor, probe and DIM problems, and include actual examples illustrating methods for isolating CSLD and BIR problems.

Information on individual plug-in modules is covered in manuals accompanying those components and/or systems.

### **Related Manuals**

----

Troubleshooting of a TLS Console requires knowledge of the system site prep and installation as well as setup, and operation of all installed options. Refer to the Tech Docs CD-ROM (V-R P/N 331650-001) for all relevant manuals:

| 576013-879 | TLS-3XX Series Site Prep and Installation Manual |
|------------|--------------------------------------------------|
| 576013-623 | TLS-3XX Series System Setup Manual               |
| 576013-610 | TLS-3XX Series Operating Manual                  |
| 576013-635 | TLS-3XX Series RS-232 Serial Interface Manual    |
| 577013-750 | Sensor Products Application Guide                |

# **Contractor Certification Requirements**

This manual was written for **Level 3 or Level 4 certified** technicians who have completed system troubleshooting and service training.

In addition, Veeder-Root requires the following minimum training certifications for contractors who install and setup the equipment discussed in this manual:

**Level 1** Contractors holding valid Level 1 Certification are approved to perform wiring and conduit routing, equipment mounting, probe and sensor installation, tank and line preparation, and line leak detector installation.

**Level 2/3** Contractors holding valid Level 2 or 3 Certifications are approved to perform installation checkout, startup, programming and operations training, troubleshooting and servicing for all Veeder-Root Tank Monitoring Systems, including Line Leak Detection and associated accessories.

Warranty Registrations may only be submitted by selected Distributors.

# Safety Precautions

The following safety symbols may be used throughout this manual to alert you to important safety hazards and precautions

# **)** |

### **EXPLOSIVE**

Fuels and their vapors are extremely explosive if ignited.



### **FLAMMABLE**

Fuels and their vapors are extremely flammable.



### **ELECTRICITY**

High voltage exists in, and is supplied to, the device. A potential shock hazard exists.



### TURN POWER OFF

Live power to a device creates a potential shock hazard. Turn Off power to the device and associated accessories when servicing the unit. Introduction Safety Warnings



### **READ ALL RELATED MANUALS**

Knowledge of all related procedures before you begin work is important. Read and understand all manuals thoroughly. If you do not understand a procedure, ask someone who does.

## Safety Warnings

# **⚠** WARNING







equipment is improperly installed or modified or is used in any way other than its intended use. Serious contamination of the environment may also occur.

To ensure proper installation, operation, and continued safe use of this product:



- 1. Read and follow all instructions in this manual, including all safety warnings.
- 2. Have equipment installed by a contractor trained in its proper installation and in compliance with all applicable codes including: the National Electrical Code; federal, state, and local codes; and other applicable safety codes.
- 3. Substitution of components may impair intrinsic safety.
- 4. Do not modify or use service parts other than those provided by Veeder-Root.

### **Explanation of Software Version Numbering**

Software version numbers for TLS Consoles are designated in five formats: 0xx, 1xx, 3xx, 4xx, and 5xx. These formats are assigned based on the console's having a CPU or ECPU board, its model designation, and its enabled features:

### **TLS-300 CONSOLES**

• 424 software (up to 8 tanks and 8 Sensors)

### TLS-350\* CONSOLES HAVING FORM NUMBERS 08470XX-XXX

- 020 software (up to 8 tanks and 6 PLLD line leak transducers)
- 520 software (up to 8 tanks and 9 WPLLD line leak transducers)
- \*Feature enhancements for this console will not be supported beyond V20 software.

### TLS-350J\* CONSOLES HAVING FORM NUMBERS 08470XX-XXX

- **020** software (up to 3 tanks and 3 PLLD line leak transducers)
- **520** software (up to 3 tanks and 3 WPLLD line leak transducers)
- \*Feature enhancements for this console will not be supported beyond V20 software.

### TLS-350 PLUS CONSOLES HAVING FORM NUMBERS 08482XX-XXX

• 124 software (up to 8 tanks and 6 PLLD or 9 WPLLD line leak transducers)

### TLS-350R CONSOLES HAVING FORM NUMBERS 08482XX-XXX

- 124 software (up to 8 tanks, 6 PLLD or 9 WPLLD line leak transducers, and BIR on single tanks only)
- 324 software (up to 12 tanks, 6 PLLD or 9 WPLLD line leak transducers, and/or BIR on manifolded tanks).

## **Verifying Installed System Features**

### **CONSOLE HAS AN OPTIONAL PRINTER:**

If the console has a printer, you can determine which system features, such as Business Inventory Reconciliation (BIR), are available in your console as follows.

1. Press the MODE key until the front panel display reads:

DIAG MODE
PRESS <FUNCTION> TO CONT

2. Press the FUNCTION key until this message appears:

SYSTEM DIAGNOSTIC PRESS <STEP> TO CONTINUE

3. Press the PRINT key and the printer prints:

SOFTWARE REVISION LEVEL

VERSION XXX.XX (first 3 digits = software version e.g. 120. The second two are its rev level)

SOFTWARE# XXXXXXX-XXX-X

CREATED - YY:MM:SS:HH:MM

S-MODULE# XXXXXXX-XXX-X

4. After the S-Module part number prints, a list of your system's current features follows. Press the MODE key to return to the main screen:

MMM DD, YYYY HH:MM:SM XM ALL FUNCTIONS NORMAL

5. Close and secure the left front door.

### **CONSOLE DOES NOT HAVE A PRINTER**

If the console does not have a printer, you can determine which system features, such as BIR, are available in your console by knowing the part number of the S-Module (SEM) installed on the CPU or ECPU board (except CPU boards with 28-pin RAM chips [U4 & U5] - see Figure 2-5) and then looking that number up in Table 1-1 or Table 1-2 below.

1. Press the MODE key until the front panel display reads:

**DIAG MODE** PRESS <FUNCTION> TO CONT

2. Press the FUNCTION key until this message appears:

**SYSTEM DIAGNOSTIC** PRESS <STEP> TO CONTINUE

3. Press STEP until this message appears:

**SOFTWARE MODULE** S-MODULE# XXXXXX-XXX-X

4. Match the first 9 digits of the S-Module number to the SEM part numbers in Table 1-1 or Table 1-2 below to verify what enhancements are enabled in your console.

Table 1-1.- TLS-350 Series Console SEM Modules & Features

# FEATURES LEGEND BIR - BIR - Basic Inventory Reconciliation (TLS-350R) CS - Continuous statistical leak detection MN - CS for manifolded tanks FL - Fuel management reorder P1C2C - PLLD .1 gph & .2 gph continuous TC - Tanker Loading Control WP1D - WPLLD/PLLD .1 gph test on-demand WP1D2C WP1D2C WPLD/PLLD .1 gph test on-demand, & and .2 gph test continuous

| SEM        | Label ID  | Available Features |
|------------|-----------|--------------------|
| 330160-002 | 0-<br>002 | CS, MN             |
| 330160-003 | 0-<br>003 | FL                 |
| 330160-005 | 0-<br>005 | CS, FL, MN         |
| 330160-010 | 0-<br>010 | P1C2C              |
| 330160-012 | 0-<br>012 | P1C2C, CS, MN      |
| 330160-013 | 0-<br>013 | P1C2C, FL          |
| 330160-015 | 0-<br>015 | P1C2C, CS, FL, MN  |
| 330160-020 | 0-<br>020 | тс                 |
| 330160-022 | 0-<br>022 | TC, CS, MN         |
| 330160-023 | 0-<br>023 | TC, FL             |
| 330160-025 | 0-<br>025 | TC, CS, FL, MN     |
| 330160-030 | 0-<br>030 | TC, P1C2C          |

Table 1-1.- TLS-350 Series Console SEM Modules & Features

| SEM        | Label ID  | Available Features     |
|------------|-----------|------------------------|
| 330160-032 | 0-<br>032 | TC, P1C2C, CS, MN      |
| 330160-033 | 0-<br>033 | TC, P1C2C, FL          |
| 330160-035 | 0-<br>035 | TC, P1C2C, CS, FL, MN  |
| 330160-050 | 0-<br>050 | WP1D                   |
| 330160-052 | 0-<br>052 | WP1D, CS, MN           |
| 330160-053 | 0-<br>053 | WP1D, FL               |
| 330160-055 | 0-<br>055 | WP1D, CS, FL, MN       |
| 330160-060 | 0-<br>060 | WP1D2C                 |
| 330160-062 | 0-<br>062 | WP1D2C, CS, MN         |
| 330160-063 | 0-<br>063 | WP1D2C, FL             |
| 330160-065 | 0-<br>065 | WP1D2C, CS, FL, MN     |
| 330160-070 | 0-<br>070 | TC, WP1D               |
| 330160-072 | 0-<br>072 | TC, WP1D, CS, MN       |
| 330160-073 | 0-<br>073 | TC, WP1D, FL           |
| 330160-075 | 0-<br>075 | TC, WP1D, CS, FL, MN   |
| 330160-080 | 0-<br>080 | TC, WP1D2C             |
| 330160-082 | 0-<br>082 | TC, WP1D2C, CS, MN     |
| 330160-083 | 0-<br>083 | TC, WP1D2C, FL         |
| 330160-085 | 0-<br>085 | TC, WP1D2C, CS, FL, MN |
| 330160-100 | 0-<br>100 | BIR                    |

Table 1-1.- TLS-350 Series Console SEM Modules & Features

| SEM        | Label ID  | Available Features         |
|------------|-----------|----------------------------|
| 330160-102 | 0-<br>102 | CS, MN, BIR                |
| 330160-103 | 0-<br>103 | FL, BIR                    |
| 330160-105 | 0-<br>105 | CS, FL, MN, BIR            |
| 330160-110 | 0-<br>110 | P1C2C, BIR                 |
| 330160-112 | 0-<br>112 | P1C2C, CS, MN, BIR         |
| 330160-113 | 0-<br>113 | P1C2C, FL, BIR             |
| 330160-115 | 0-<br>115 | P1C2C, CS, FL, MN, BIR     |
| 330160-120 | 0-<br>120 | TC, BIR                    |
| 330160-122 | 0-<br>122 | TC, CS, MN, BIR            |
| 330160-123 | 0-<br>123 | TC, FL, BIR                |
| 330160-125 | 0-<br>125 | TC, CS, FL, MN, BIR        |
| 330160-130 | 0-<br>130 | TC, P1C2C, BIR             |
| 330160-132 | 0-<br>132 | TC, P1C2C, CS, MN, BIR     |
| 330160-133 | 0-<br>133 | TC, P1C2C, FL, BIR         |
| 330160-135 | 0-<br>135 | TC, P1C2C, CS, FL, MN, BIR |
| 330160-150 | 0-<br>150 | WP1D, BIR                  |
| 330160-152 | 0-<br>152 | WP1D, CS, MN, BIR          |
| 330160-153 | 0-<br>153 | WP1D, FL, BIR              |
| 330160-155 | 0-<br>155 | WP1D, CS, FL, MN, BIR      |
| 330160-160 | 0-<br>160 | WP1D2C, BIR                |

Table 1-1.- TLS-350 Series Console SEM Modules & Features

| SEM        | Label ID   | Available Features        |
|------------|------------|---------------------------|
| 330160-162 | 0-<br>162  | WP1D2C, CS, MN, BIR       |
| 330160-163 | 0-<br>1363 | WP1D2C, FL, BIR           |
| 330160-165 | 0-<br>165  | WP1D2C, CS, FL, MN, BIR   |
| 330160-170 | 0-<br>170  | TC, WP1D, BIR             |
| 330160-172 | 0-<br>172  | TC, WP1D, CS, MN, BIR     |
| 330160-173 | 0-<br>173  | TC, WP1D, FL, BIR         |
| 330160-175 | 0-<br>175  | TC, WP1D, CS, FL, MN, BIR |
| 330160-180 | 0-<br>180  | TC, WP1D2C, BIR           |

Table 1-2 TLS-300 Console SEM Modules and Features

| SEM        | Label ID  | Available Features                            |
|------------|-----------|-----------------------------------------------|
| 330161-001 | 1-<br>001 | 0.1 Leak Detection                            |
| 330161-003 | 1-<br>003 | 0.1 Leak Detection and CSLD                   |
| 330161-020 | 1-<br>020 | Tanker Loading Control                        |
| 330161-021 | 1-<br>021 | Tanker Loading Control and 0.1 Leak Detection |

5. Press the MODE key to return to the main screen:

MMM DD, YYYY HH:MM:SM XM ALL FUNCTIONS NORMAL

6. Close and secure the left front door.

# 2 System Description

# **System Parts Identification**

The following figures identify the components of TLS-3XX Series Consoles. Plug-in modules are not shown.



Figure 2-1. Console Front Panel (except for graphics, console doors are identical)



Figure 2-2. Communication Bay, Power Bay and Intrinsically Safe Bay Identification (TLS-350 Series Consoles)



Figure 2-3. PC Board Identification (TLS-300 Series Consoles shown with doors removed)



Figure 2-4. Console Display/Keyboard Board Components (behind right door)



Figure 2-5. TLS-350 Consoles CPU board layout with through-hole components and 28-pin RAM chips (*This board is no longer in production*)



Figure 2-6. TLS-350 Consoles CPU board layout with through-hole components and 32-pin RAM chips (*This board is no longer in production*)



Figure 2-7. TLS-350 Consoles CPU board layout with surface-mount components (This board is no longer in production)



Figure 2-8. TLS-350 Consoles ECPU board layout with through-hole components (This board is no longer in production)



Figure 2-9. TLS-350 Consoles ECPU board layout



Figure 2-10. TLS-350 Consoles ECPU2 board layout



Figure 2-11. TLS-350 Series Console - 2 Meg ROM Board



Figure 2-12. TLS-350 Series Console - 1/2 Meg RAM Board



Figure 2-13. TLS-350 Series Console - NVMEM Board



Figure 2-14. TLS-300 Series Console CPU board layout w/ through-hole components (This board is no longer in production)



Figure 2-15. TLS-300 Series Console CPU board layout with surface-mount components



Figure 2-16. TLS-300 Series Console Power Supply Board (This board is no longer in production)



Figure 2-17. TLS-300 Series Console Power Supply Board



Figure 2-1. TLS-300 Series Console I.S. Barrier Board



Figure 2-2. Example TLS-300 Series Console Sensor/Probe Interface Boards (8P/0S, 8S/0P, 8S/2P, and 8S/4P)

# **Basic Troubleshooting Procedures**

To help ensure proper and safe troubleshooting and repair procedures for the TLS Consoles, the following steps should be taken in the order they appear, prior to servicing the system:

- 1. Review and thoroughly understand the "Safety Warnings" on page 1-2 of this manual.
- 2. Review the "System Parts Identification" on page 2-1 to locate components.
- 3. Perform an "Basic Troubleshooting Procedures" on page 2-10. If the system fails the Intrinsic Safety Check, turn the AC Power circuit breaker at the service panel to the OFF position, disconnect and cap the AC wires in the monitor, and disconnect and cap all probe and sensor field wires in the probe and sensor junction boxes.
- 4. Perform the "Visual Inspection of Console Interior" on page 2-11.
- 5. Print out all system and tank setup parameters. IMPORTANT! Setup parameters can be lost during some service procedures. This printout will allow you to re-profile the system with the same parameters when service is complete.
- 6. Refer to the appropriate section of this manual (or another manual, see "Related Manuals" on page 1-1) to troubleshoot a faulty component of the system.

## **Intrinsic Safety Check**

Be sure power is OFF before starting this intrinsic safety check.

**Definition of Intrinsic Safety Circuit and System**-\*An intrinsically safe circuit is one in which any spark or thermal effect is incapable of causing ignition of a mixture of flammable or combustible material in air under prescribed test conditions. An intrinsically safe system is an assembly of interconnected intrinsically safe apparatus, associated apparatus, and interconnecting cables in that those parts of the system that may be used in hazardous (classified) locations are intrinsically safe circuits.

\*Excerpt from latest National Electrical Code Handbook.

# **A WARNING**





Explosion could occur if other wires share conduits or troughs with TLS Console intrinsically safe probe, sensor, and thermistor wiring. Conduits and wiring troughs from the console's probes, sensors, and thermistors must not contain any other wires and must enter the console through their designated preformed knockouts.



undetected potential environmental and health hazards if probe-and sensor-to-monitor wiring runs exceed 1,000 feet. Probe-and sensor-to-monitor wiring runs over 1,000 feet are not UL approved for this application.

To avoid electrical shock resulting in death, personal injury, or equipment

Improper system operation could result in inaccurate inventory control or

To avoid electrical shock resulting in death, personal injury, or equipment damage, turn the AC power circuit breaker at the service panel to the OFF position while inspecting, removing, or installing wiring and components.

- 1. Verify that the TLS Console is installed indoors in an accessible location.
- 2. Verify that the TLS Console has #12 AWG (or larger diameter) conductor from barrier to earth ground in the power panel.
- 3. Verify that the TLS Console has a chassis ground connected.

- 4. Verify that power conduit and sensor and probe conduits enter TLS Console only through preformed, designated knock-outs.
- 5. Verify that probe and sensor wiring and conduit meet Veeder-Root requirements (ref. manual P/N 576013-879).
- 6. If the system fails the intrinsic safety check, disconnect and cap the AC wires in the monitor, and disconnect and cap all probe and sensor field wires in the probe and sensor junction boxes.

IMPORTANT! Do not apply power to the system until its installation has been checked and found to be in accordance with the instructions outlined in the Veeder-Root TLS-3XX Series Site Prep and Installation manual; the National Electrical Code; federal, state, and local codes; and other applicable safety codes.

# **Visual Inspection of Console Interior**



It is recommended that whenever troubleshooting, repairing, or replacing components, a visual inspection of the overall condition of the system be made. Inspect the equipment, with the power Off, as follows:

- 1. Inspect for signs of corrosion inside the console.
- 2. Check for broken or frayed insulation on all wires and be sure that the wires are secure at their terminals.
- 3. Check all PC boards for cracks.
- 4. Check to see that there is no loose or missing hardware for components (transformers, PC boards, brackets, etc.).
- 5. Check to see that all interconnecting cable connectors are firmly seated. Check connector ends for cracks and flat cable for breaks.
- 6. Check fuse continuity and fuseholder contacts for corrosion.
- 7. Check monitor for cracked display lens and damaged or missing buttons.
- 8. Check the mounting of the equipment to be sure all components were mounted properly and in accordance with instructions contained in the Site Preparation and Installation manual.
- 9. Verify that no unapproved modifications to equipment have been made, no unapproved parts are being used, and previous repairs and modification bring the unit to original factory condition
- 10. All deficiencies should be corrected and damaged components replaced before continuing with procedures.

# Test Front Panel LEDs, Display, and Console Beeper

Apply power to the console. The display should read the start-up message and the green POWER LED should illuminate. Press the ALARM/TEST button to verify that the red ALARM and yellow WARNING LEDs illuminate and the console beeper switches On.

# **3** Software Version Feature List

Table 3-1 through Table 3-4 list the release dates of all system software versions and when major features were introduced or discontinued for TLS-3XX Series Consoles.

Table 3-1.- TLS-350 Series Software Versions 1 - 15

|                             |          |             |              |             |             | S           | YSTEM SOFT  | WARE VERSI  | ON (Release D | late)         |              |               |              |               |
|-----------------------------|----------|-------------|--------------|-------------|-------------|-------------|-------------|-------------|---------------|---------------|--------------|---------------|--------------|---------------|
| FEATURE                     | 1 (3/92) | 2<br>(8/92) | 3<br>(12/92) | 4<br>(4/93) | 5<br>(8/93) | 6<br>(1/94) | 7<br>(8/94) | 8<br>(1/95) | 9<br>(8/95)   | 10<br>(10/95) | 11<br>(7/96) | 12<br>(10/96) | 14<br>(2/97) | 15<br>(10/97) |
| Cap O Probes                | CO       | CO          | CO           | CO          | CO          | C0,E1       | C0,E1       | C0,E1,E3    | C0,E1,E3      | CO            | CO           | CO            | CO           | CO            |
| Cap 1 Probes                | CO       | CO          | CO           | CO          | CO          | C0,E1       | C0,E1       | CO,E1,E3    | -             | -             | -            | -             | -            | -             |
| Mag 0, 1, 2 Probes          | CO       | CO          | CO           | CO          | CO          | C0,E1       | C0,E1       | CO,E1,E3    | C0,E1,E3      | C0,E1,E3      | C0,E1,E3     | C0,E1,E3      | C0,E1,E3     | C0,E1,E3      |
| Mag 3 Probes                | -        | -           | -            | CO          | CO          | C0,E1       | C0,E1       | CO,E1,E3    | CO,E1,E3      | CO,E1,E3      | C0,E1,E3     | C0,E1,E3      | C0,E1,E3     | C0,E1,E3      |
| Mag 4, 5, 6 Probes          | -        | 1           | -            | 1           | -           | 1           | C0,E1       | CO,E1,E3    | CO,E1,E3      | CO,E1,E3      | CO,E1,E3     | CO,E1,E3      | C0,E1,E3     | C0,E1,E3      |
| Mag 7 - 12 Probes           | -        | -           | -            | -           | -           | -           | -           | -           | -             | CO,E1,E3      | CO,E1,E3     | C0,E1,E3      | C0,E1,E3     | C0,E1,E3      |
| Tank 9 - 16                 | -        | CO          | CO           | CO          | CO          | C0,E1       | C0,E1       | E3          | E3            | E3            | E3           | E3            | E3           | E3            |
| Remote Display              | CO       | CO          | CO           | CO          | CO          | C0,E1       | C0,E1       | CO,E1,E3    | CO,E1,E3      | E1,E3         | E1,E3        | E1,E3         | E1,E3        | E1,E3         |
| Remote Printer <sup>1</sup> | -        | CO          | CO           | CO          | CO          | C0,E1       | C0,E1       | CO,E1,E3    | CO,E1,E3      | E1,E3         | E1,E3        | E1,E3         | E1,E3        | E1,E3         |
| VLLD                        | CO       | CO          | CO           | CO          | CO          | C0,E1       | C0,E1       | CO,E1,E3    | CO,E1,E3      | C0,E1,E3      | E1,E3        | E1,E3         | E1,E3        | E1,E3         |
| PLLD                        | -        | ı           | -            | 1           | -           | ı           | C0,E1       | CO,E1,E3    | CO,E1,E3      | CO,E1,E3      | CO,E1,E3     | C0,E1,E3      | C0,E1,E3     | C0,E1,E3      |
| WPLLD                       | -        | 1           | -            | -           | -           | -           | -           | -           | -             | -             | -            | CO,E1,E3      | C0,E1,E3     | C0,E1,E3      |
| CSLD                        | -        | CO          | CO           | CO          | CO          | C0,E1       | C0,E1       | CO,E1,E3    | CO,E1,E3      | CO,E1,E3      | CO,E1,E3     | CO,E1,E3      | C0,E1,E3     | C0,E1,E3      |
| CSLD (manifolded tanks)     | -        | 1           | -            | ı           | -           | C0,E1       | C0,E1       | CO,E1,E3    | CO, E1,E3     | CO,E1,E3      | CO,E1,E3     | CO,E1,E3      | CO, E1,E3    | C0,E1,E3      |
| SiteFax                     | -        | CO          | CO           | CO          | CO          | C0,E1       | C0,E1       | CO,E1,E3    | CO, E1,E3     | CO,E1,E3      | CO,E1,E3     | CO,E1,E3      | CO,E1,E3     | C0,E1,E3      |
| Fuel Manager                | -        | ı           | -            | ı           | -           | C0,E1       | C0,E1       | CO,E1,E3    | CO,E1,E3      | CO,E1,E3      | CO,E1,E3     | CO,E1,E3      | CO,E1,E3     | C0,E1,E3      |
| BIR                         | -        | ı           | -            | -           | -           | E1          | E1          | E1,E3       | E1,E3         | E1,E3         | E1,E3        | E1,E3         | E1,E3        | E1,E3         |
| BIR (manifolded tanks)      | -        | ı           | -            | ı           | -           | ı           | ı           | -           | -             | E3            | E3           | E3            | E3           | E3            |
| Inform/TLS-PC 32            |          |             |              |             |             |             |             | C0,E1       | CO,E1,E3      | CO,E1,E3      | C0,E1,E3     | C0,E1,E3      | C0,E1,E3     | C0,E1,E3      |

Board Type/Software Version Requirement Legend:

<sup>- =</sup> Feature Not Available/Discontinued

CO = CPU with 0XX Software E1= ECPU with 1XX Software C5 = CPU with 5XX Software E3 = ECPU with 3XX Software

<sup>&</sup>lt;sup>1</sup>Remote printer comm settings are: 1200 baud, 7 data bits, odd parity, & 1 stop bit.

Table 3-2. TLS-350 Series Software Version 16 and Following

|                                | SYSTEM SOFTWARE VERSION (Release Date) - Continued |               |                 |                 |                 |               |              |              |              |  |  |  |
|--------------------------------|----------------------------------------------------|---------------|-----------------|-----------------|-----------------|---------------|--------------|--------------|--------------|--|--|--|
| FEATURE                        | 16<br>(4/98)                                       | 17<br>(10/98) | 18<br>(7/99)    | 19<br>(12/99)   | 20<br>(7/00)    | 21<br>(10/00) | 22<br>(9/01) | 23<br>(4/02) | 24<br>(7/03) |  |  |  |
| Cap O Probes                   | CO                                                 | CO            | -               | -               | -               | -             | -            | -            | -            |  |  |  |
| Mag 0, 1, 2 Probes             | C0,E1,E3                                           | C0,E1,E3      | CO,C5,<br>E1,E3 | C0,C5,<br>E1,E3 | CO,C5,<br>E1,E3 | E1,E3         | E1,E3        | E1,E3        | E1,E3        |  |  |  |
| Mag 3 Probes                   | C0,E1,E3                                           | C0,E1,E3      | C0,E1,E3        | C0,C5,<br>E1,E3 | CO,C5,<br>E1,E3 | E1,E3         | E1,E3        | E1,E3        | E1,E3        |  |  |  |
| Mag 4, 5, 6 Probes             | C0,E1,E3                                           | CO,<br>E1,E3  | CO,<br>E1,E3    | C0,C5,<br>E1,E3 | CO,C5,<br>E1,E3 | E1,E3         | E1,E3        | E1,E3        | E1,E3        |  |  |  |
| Mag 7 - 12 Probes              | C0,E1,E3                                           | C0,E1,E3      | C0,E1,E3        | C0,C5,<br>E1,E3 | CO,C5,<br>E1,E3 | E1,E3         | E1,E3        | E1,E3        | E1,E3        |  |  |  |
| Tank 9 - 16                    | E3                                                 | E3            | E3              | E3              | E3              | E3            | E3           | E3           | E3           |  |  |  |
| Remote Display                 | E1,E3                                              | E1,E3         | E1,E3           | E1,E3           | E1,E3           | E1,E3         | E1,E3        | E1,E3        | E1,E3        |  |  |  |
| Remote Printer <sup>1</sup>    | E1,E3                                              | E1,E3         | E1,E3           | E1,E3           | E1,E3           | E1,E3         | E1,E3        | E1,E3        | E1,E3        |  |  |  |
| VLLD                           | E1,E3                                              | E1,E3         | E1,E3           | E1,E3           | E1,E3           | E1,E3         | E1,E3        | E1,E3        | E1,E3        |  |  |  |
| PLLD                           | C0,E1,E3                                           | C0,E1,E3      | C0,E1,E3        | CO,<br>E1,E3    | CO,<br>E1,E3    | E1,E3         | E1,E3        | E1,E3        | E1,E3        |  |  |  |
| WPLLD                          | C0,E1,E3                                           | C0,E1,E3      | C0,E1,E3        | C5,<br>E1,E3    | C5,<br>E1,E3    | E1,E3         | E1,E3        | E1,E3        | E1,E3        |  |  |  |
| CSLD                           | C0,E1,E3                                           | C0,E1,E3      | C0,E1,E3        | CO,C5,<br>E1,E3 | CO,C5,<br>E1,E3 | E1,E3         | E1,E3        | E1,E3        | E1,E3        |  |  |  |
| CSLD (manifolded tanks)        | C0,E1,E3                                           | C0,E1,E3      | C0,E1,E3        | CO,C5,<br>E1,E3 | CO,C5,<br>E1,E3 | E1,E3         | E1,E3        | E1,E3        | E1,E3        |  |  |  |
| SiteFax                        | C0,E1,E3                                           | CO,E1,E3      | C0,E1,E3        | C0,C5<br>E1,E3  | CO,C5,<br>E1,E3 | E1,E3         | E1,E3        | E1,E3        | E1,E3        |  |  |  |
| Fuel Manager                   | C0,E1,E3                                           | C0,E1,E3      | CO,E1,E3        | CO,C5<br>E1,E3  | CO,C5,<br>E1,E3 | E1,E3         | E1,E3        | E1,E3        | E1,E3        |  |  |  |
| BIR                            | E1,E3                                              | E1,E3         | E1,E3           | E1,E3           | E1,E3           | E1,E3         | E1,E3        | E1,E3        | E1,E3        |  |  |  |
| BIR (manifolded tanks)         | E3                                                 | E3            | E3              | E3              | E3              | E3            | E3           | E1,E3        | E1,E3        |  |  |  |
| BIR Variance Analysis          | E1,E3                                              | E1,E3         | E1,E3           | E1,E3           | E1,E3           | E1,E3         | E1,E3        | E1,E3        | E1,E3        |  |  |  |
| IFSF <sup>2</sup>              | -                                                  | C0,E1,E3      | C0,E1,E3        | C0,C5<br>E1,E3  | CO,C5,<br>E1,E3 | E1,E3         | E1,E3        | E1,E3        | E1,E3        |  |  |  |
| 330743-002 ECPU Board<br>Group | -                                                  | -             | ı               | ı               | CO,C5,<br>E1,E3 | E1,E3         | E1,E3        | E1,E3        | E1,E3        |  |  |  |
| Inform/TLS-PC 32               | C0,E1,E3                                           | C0,E1,E3      | C0,E1,E3        | CO,C5,<br>E1,E3 | CO,C5,<br>E1,E3 | E1,E3         | E1,E3        | E1,E3        | E1,E3        |  |  |  |
| Mag Sensor                     | -                                                  | -             | -               | -               | -               | -             | -            | -            | E1,E3        |  |  |  |

Board Type/Software Version Requirement Legend:

- = Feature Not Available/Discontinued

 C0 = CPU with 0XX Software
 E1= ECPU with 1XX Software

 C5 = CPU with 5XX Software
 E3 = ECPU with 3XX Software

 $<sup>^{1}\</sup>mathrm{Remote}$  printer comm settings are: 1200 baud, 7 data bits, odd parity, & 1 stop bit.

 $<sup>^2</sup>$ Requires 346XXX-3XX software.

Table 3-3.- TLS-300 Series Software Versions 1 - 15

|                         |          | SYSTEM SOFTWARE VERSION (Release Date) |              |             |             |             |             |             |             |               |              |               |              |               |
|-------------------------|----------|----------------------------------------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|---------------|--------------|---------------|--------------|---------------|
| FEATURE                 | 1 (3/92) | 2<br>(8/92)                            | 3<br>(12/92) | 4<br>(4/93) | 5<br>(8/93) | 6<br>(1/94) | 7<br>(8/94) | 8<br>(1/95) | 9<br>(8/95) | 10<br>(10/95) | 11<br>(7/96) | 12<br>(10/96) | 14<br>(2/97) | 15<br>(10/97) |
| Cap O Probes            | CO       | CO                                     | CO           | CO          | CO          | CO          | CO          | CO          | CO          | CO            | CO           | CO            | CO           | CO            |
| Cap 1 Probes            | CO       | CO                                     | CO           | CO          | CO          | CO          | CO          | CO          | -           | -             | -            | -             | -            | -             |
| Mag 0, 1, 2 Probes      | CO       | CO                                     | CO           | CO          | CO          | CO          | CO          | CO          | CO          | CO            | CO           | CO            | CO           | CO            |
| Mag 3 Probes            | -        | -                                      | -            | CO            | CO           | CO            | CO           | CO            |
| Mag 4, 5, 6 Probes      | -        | -                                      | -            | -           | -           | -           | CO          | CO          | CO          | CO            | CO           | CO            | CO           | CO            |
| Mag 7 - 12 Probes       | -        | -                                      | -            | -           | -           | -           | -           | -           | -           | CO            | CO           | CO            | CO           | CO            |
| CSLD                    | -        | CO                                     | CO           | CO          | CO          | CO          | CO          | CO          | CO          | CO            | CO           | CO            | CO           | CO            |
| CSLD (manifolded tanks) | -        | -                                      | -            | -           | -           | CO          | CO          | CO          | CO          | CO            | CO           | CO            | CO           | CO            |
| SiteFax                 | -        | CO                                     | CO           | CO          | CO          | CO          | CO          | CO          | CO          | CO            | CO           | CO            | CO           | CO            |
| Fuel Manager            | -        | -                                      | -            | -           | -           | CO          | CO          | CO          | CO          | CO            | CO           | CO            | CO           | CO            |
| Inform/TLS-PC 32        | -        | ı                                      | -            | ı           | -           | 1           | -           | CO          | CO          | CO            | CO           | CO            | CO           | CO            |

Board Type/Software Version Requirement Legend:

Table 3-4.- TLS-300 Series Software Versions 16 and Following

|                         |              | SYSTEM SOFTWARE VERSION (Release Date) - Continued |              |               |              |               |              |              |              |  |  |  |
|-------------------------|--------------|----------------------------------------------------|--------------|---------------|--------------|---------------|--------------|--------------|--------------|--|--|--|
| FEATURE                 | 16<br>(4/98) | 17<br>(10/98)                                      | 18<br>(7/99) | 19<br>(12/99) | 20<br>(7/00) | 21<br>(10/00) | 22<br>(9/01) | 23<br>(4/02) | 24<br>(7/03) |  |  |  |
| Cap O Probes            | CO           | CO                                                 | -            | -             | -            | -             | -            | -            | -            |  |  |  |
| Mag 0, 1, 2 Probes      | CO           | CO                                                 | C4           | C4            | C4           | C4            | C4           | C4           | C4           |  |  |  |
| Mag 3 Probes            | CO           | CO                                                 | C4           | C4            | C4           | C4            | C4           | C4           | C4           |  |  |  |
| Mag 4, 5, 6 Probes      | CO           | CO                                                 | C4           | C4            | C4           | C4            | C4           | C4           | C4           |  |  |  |
| Mag 7 - 12 Probes       | CO           | CO                                                 | C4           | C4            | C4           | C4            | C4           | C4           | C4           |  |  |  |
| CSLD                    | CO           | CO                                                 | C4           | C4            | C4           | C4            | C4           | C4           | C4           |  |  |  |
| CSLD (manifolded tanks) | CO           | CO                                                 | C4           | C4            | C4           | C4            | C4           | C4           | C4           |  |  |  |
| SiteFax                 | CO           | CO                                                 | C4           | C4            | C4           | C4            | C4           | C4           | C4           |  |  |  |
| Fuel Manager            | CO           | CO                                                 | C4           | C4            | C4           | C4            | C4           | C4           | C4           |  |  |  |
| IFSF <sup>1</sup>       | -            | CO                                                 | C4           | C4            | C4           | C4            | C4           | C4           | C4           |  |  |  |
| Inform/TLS-PC 32        | CO           | CO                                                 | C4           | C4            | C4           | C4            | C4           | C4           | C4           |  |  |  |

Board Type/Software Version Requirement Legend:

<sup>-=</sup> Feature Not Available/Discontinued

CO = CPU with OXX Software

<sup>-=</sup> Feature Not Available/Discontinued

CO = CPU with OXX Software

C4 = CPU with 4XX Software

# 4 Fuses

TLS Consoles use fuses in the input power circuitry and on various Interface Modules. Under no circumstances should you substitute a different rating or fuse type during service.

# **TLS-300 Series Console Fuses**

TLS-300 Series Console fuses for input ac power, dc voltages, and relays are shown in Table 4-1.

**Table 4-1.- Console Fuses** 

| Fuse | Circuit                                         | Fuse Location                    | Fuse Size/Type                | V-R Part No. |
|------|-------------------------------------------------|----------------------------------|-------------------------------|--------------|
| F1   | +8 & +5 Vdc supply                              | Fuseholder on Power Supply board | 2 A Slo-Blo<br>(5 x 20 mm)    | 576010-784   |
| F2   | +20 & +12 Vdc supply                            | Fuseholder on Power Supply board | 2 A Slo-Blo<br>(5 x 20 mm)    | 576010-784   |
| F3   | 110 Vac input power                             | Fuseholder on Power Supply board | 2 A Slo-Blo<br>(5 x 20 mm)    | 576010-784   |
| F4   | Relay fuse #2                                   | Fuseholder on Power Supply board | 2 A Slo-Blo<br>(5 mm x 20 mm) | 576010-784   |
| F5   | Relay fuse #1                                   | Fuseholder on Power Supply board | 2 A Slo-Blo<br>(5 mm x 20 mm) | 576010-784   |
| F1   | 8 Vdc supply for external peripherals (UK only) | Fuse block on CPU board          | 300 mA<br>(5 mm x 20 mm)      | 576010-855   |

## **TLS-350 Series Console AC Power Fuses**

TLS-350 Console ac power fuses are shown in Table 4-2:

**Table 4-2.- Console AC Power Fuses** 

| Fuse | Fuse Location                                                          | Fuse Size/Type               | V-R Part No. |
|------|------------------------------------------------------------------------|------------------------------|--------------|
| F1   | Fuseholder on AC Input board - top of Power Area Compartment           | 2A Slo-Blo<br>(5 mm x 20 mm) | 576010-784   |
| F1   | Fuse block on Power Supply<br>Board<br>left side of Communication Area | 2A Slo-Blo<br>(5 mm x 20 mm) | 576010-784   |
| F2   | Fuse block on Power Supply<br>Board<br>left side of Communication Area | 2A Slo-Blo<br>(5 mm x 20 mm) | 576010-784   |

# **TLS-350 Series Interface Module Fuses**

TLS-350 Console Interface Module fuses are shown in Table 4-3

**Table 4-3.- Interface Module Fuses** 

| Interface Module                        | Fuse    | Fuse Location          | Fuse Size/Type                | V-R Part No. |  |
|-----------------------------------------|---------|------------------------|-------------------------------|--------------|--|
| I/O Combination<br>Module               | F1 - F2 | 2 fuse blocks on board | 2A Slo-Blo<br>(5 mm x 20 mm)  | 576010-784   |  |
| 4 Relay<br>Output Module                | F1 - F4 | 4 fuse blocks on board | 2A Slo-Blo<br>(5 mm x 20 mm)  | 576010-784   |  |
| Line Leak<br>Interface Module           | F1      | Fuse block on board    | 2A Slo-Blo<br>(5 mm x 20 mm)  | 576010-784   |  |
| Pressure Line Leak<br>Controller Module | F1 - F3 | 3 fuse blocks on board | 2A Slo-Blo<br>(5 mm x 20 mm)  | 576010-784   |  |
| WPLLD Controller<br>Module              | F1 -F3  | 3 fuse blocks on board | 2A Slo-Blo<br>(5 mm x 20 mm)  | 576010-784   |  |
| RS-232 (+8V)                            | HF1     | Fuse block on board    | 300 mA<br>(5 mm x 20 mm)      | 576010-855   |  |
| Multiport                               | F1      | Fuse block on board    | 300 mA<br>(5 mm x 20 mm)      | 576010-855   |  |
| TLS-350 EDIM<br>(8V Link)               | F1      | Fuse block on board    | 300 mA<br>(5 mm x 20 mm)      | 576010-855   |  |
| Univ. CAB                               | F1      | Soldered on board      | 125 mA Flatpak                | 576010-758   |  |
| RS-232 CAB                              | F1      | Soldered on board      | 500 mA Flatpak                | 577010-010   |  |
| RS-485 CAB                              | F1      | Soldered on board      | 500 mA Flatpak                | 577010-010   |  |
| Tokheim 67 CAB                          | F1      | Soldered on board      | 500 mA Flatpak                | 577010-010   |  |
| Dispenser Controller                    | F1 - F4 | 4 fuse blocks on board | 10A Slo-Blo<br>(5 mm x 20 mm) | 576010-955   |  |

# $5\,$ Warning and Alarm Messages

## **Alarm Monitoring**

The TLS Console constantly monitors the entire system for warning and alarm conditions including fuel leaks, inventory limit excesses, and equipment problems.

During normal operation when the system is functioning properly and no warning or alarm conditions exist, the "ALL FUNCTIONS NORMAL" message will appear in the system status (bottom) line of the display. If a warning or alarm condition is present, the type and location (tank or sensor number) of the warning or alarm will be indicated by a message on the system status line. If more than one condition exists, the display will alternately flash the appropriate System Status Messages.

# **Alarm Posting**

Warning and alarm conditions detected while the TLS Console is in its normal operating mode are posted by a combination of an audible beep, warning and alarm lights on the front panel and a message on the display.

Displayed messages alert you to the source/number and type of alarm. In this example, the display's second line indicates that the fuel level in Tank #3 (T3) has dropped below the preset low level limit:

MMM DD, YYYY HH:MM XM T3: LOW LIMIT ALARM

Abbreviations used to identify the sources of warnings and alarms are:

C (2-Wire C.L. sensor [type A]) P (Volumetric line leak detector)

D (Receiver [phone, fax, etc.]) Q (Pressure line leak detector)

E (EDIM or CDIM module) R (Output relay)

F (Product) S (Pump sense)

G (Groundwater sensor) s (Smart Sensor)

H (3-Wire C.L. sensor [type B])

I (External input device) V (Vapor sensor)

L (Liquid sensor) W (Wireless pressurized line leak detector)

M (MDIM module)

### WHAT TO DO WHEN A WARNING OR ALARM OCCURS

Specific response instructions for each type of warning or alarm condition should be established and clearly posted by the person responsible for your site. (Be sure you are familiar with the warning and alarm response procedures established for your site.)

### **HOW TO SHUT OFF WARNING AND ALARM INDICATORS**

### 1. Audible Alarm

Push the ALARM/TEST button to silence the audible alarm.

### 2. Red Alarm and Yellow Warning Lights

Warning and Alarm lights cannot be turned off until the cause of the warning or alarm has been corrected. Once the warning or alarm condition is eliminated, the light(s) will shut off automatically.

### 3. Warning and Alarm Display Messages

Display Warning and Alarm Messages will appear on the display until the cause of the message(s) has been eliminated. When the cause(s) of the message(s) is eliminated, the "ALL FUNCTIONS NORMAL" message will appear on the display.

### **ALARM REPORTS**

Consoles equipped with a printer will generate an alarm report when a warning or alarm condition is detected. This report will show the type and location of the warning or alarm and the date and time it occurred. An example alarm report is shown below:



## **Displayed Alarm Messages**

This section contains a complete list of displayed TLS Console alarm messages, the device category for which the alarm is posted (for device code definitions used in this list see inset at left), and a possible cause of the alarm.

Actual alarms displayed by a particular system depend upon the options installed.

Table 5-1. Alarms

| CODE    | DEVICE                        |  |  |  |  |  |
|---------|-------------------------------|--|--|--|--|--|
| D       | Receiver                      |  |  |  |  |  |
| DIM     | Dispenser Interface<br>Module |  |  |  |  |  |
| F       | Product                       |  |  |  |  |  |
| I       | External Input Device         |  |  |  |  |  |
| Р       | VLLD                          |  |  |  |  |  |
| Q       | PLLD                          |  |  |  |  |  |
| s       | Smart Sensor                  |  |  |  |  |  |
| Sensors | Deployed sensor(s)            |  |  |  |  |  |
| System  | System Alarm                  |  |  |  |  |  |
| Т       | Tank                          |  |  |  |  |  |
| W       | WPLLD consoles\dc.eps         |  |  |  |  |  |

| Message              | Device  | Cause                                                                               |  |  |  |
|----------------------|---------|-------------------------------------------------------------------------------------|--|--|--|
| ANN-LINE SELF FAIL P |         | 0.1 gph line self-test failure. (2 consecutive self-test failures.)                 |  |  |  |
| ANN-LINE TEST FAIL   | Р       | 0.1 gph line test failure.                                                          |  |  |  |
| ANN-PUMP SELF FAIL   | Р       | 0.1 gph pumpside self-test failure.                                                 |  |  |  |
| ANN-PUMP TEST FAIL   | Р       | 0.1 gph pumpside test failure.                                                      |  |  |  |
| ANN TST NEEDED ALM   | P,Q,T,W | System failed to perform an annual test (0.1 gph) in the programmed number of days. |  |  |  |
| ANN TST NEEDED WRN   | P,Q,T,W | System failed to perform an annual test (0.1 gph) in the programmed number of days. |  |  |  |

Table 5-1. Alarms

| Message                   | Device | Cause                                                                                              |
|---------------------------|--------|----------------------------------------------------------------------------------------------------|
| ANNUAL LINE FAIL          | Q,W    | 0.1 gph line test failure.                                                                         |
| ANNUAL TEST FAIL          | Т      | System failed an annual in-tank leak test.                                                         |
| AUTODIAL FAILURE          | SYSTEM | System failed to connect to a remote receiver after "n" tries.                                     |
| BATTERY IS OFF            | SYSTEM | Battery switch is off. You will lose system programming if ac power to the console is interrupted. |
| BDIM TRANSACTION<br>ALARM | E      | No transactions received from the block DIM.                                                       |
| CLOCK IS INCORRECT        | SYSTEM | System clock is not within ±10 seconds of last test.                                               |
| CLOSE DAILY PENDING       | SYSTEM | BIR is waiting for an idle period to close for a daily report.                                     |
| CLOSE SHIFT PENDING       | SYSTEM | BIR is waiting for an idle period to close for a daily or shift report.                            |
| COMMUNICATION ALARM       | E,M    | DIM module has stopped communicating with the external equipment or the cable adaptor box.         |
| COMMUNICATION ALARM       | S      | Hardware failure - sensor or interconnecting wiring to console.                                    |
| CSLD INCNR RATE WRN       | Т      | A positive leak rate exceeded the threshold limit.                                                 |
| DELIVERY NEEDED           | Т      | Product level dropped below programmed limit.                                                      |
| DISABLED DIM ALARM        | E,M    | DIM module has stopped communicating with central processing unit of the console.                  |
| EXTERNAL INPUT ALARM      | I      | External device changed from programmed condition.                                                 |
| EXTERN INPUT NORMAL       | I      | (Not displayed, printed out only) External device returned to preset condition.                    |
| FUEL ALARM                | SENSOR | Fuel is present in the area being monitored by the sensor.                                         |
| FUEL ALARM                | S      | Monitored parameter exceeded preset threshold.                                                     |
| FUEL WARNING              | s      |                                                                                                    |
| FUEL OUT                  | P,Q,W  | Tank product level below 10 inch level - cannot pump when active                                   |
| GENERATOR OFF             | I      | Backup generator shut down, in-tank leak testing resumed.                                          |
| GENERATOR ON              | I      | Backup generator switched on, in-tank leak testing halted.                                         |
| GROSS LINE FAIL           | Q,W    | 3.0 gph line test failure. Dispensing halts while the alarm is active.                             |
| GROSS TEST FAIL           | Т      | In-tank leak test failed.                                                                          |
| GRS LINE SELF FAIL        | Р      | 3.0 gph line self-test failure. (3 consecutive self-test failures.)                                |

Table 5-1. Alarms

| Message             | Device | Cause                                                                                                                                                                        |  |
|---------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| GRS LINE TEST FAIL  | Р      | 3.0 gph line test failure.                                                                                                                                                   |  |
| GRS PUMP SELF FAIL  | Р      | 3.0 gph pumpside self-test failure.                                                                                                                                          |  |
| GRS PUMP TEST FAIL  | Р      | 3.0 gph pumpside test failure.                                                                                                                                               |  |
| HANDLE ALARM        | P,Q,W  | Handle signal has been active 16 hours.                                                                                                                                      |  |
| HIGH LIQUID ALARM   | SENSOR | The sensor detects a high liquid level.                                                                                                                                      |  |
| HIGH LIQUID ALARM   | S      | Monitored parameter exceeded preset threshold.                                                                                                                               |  |
| HIGH LIQUID WARNING | S      |                                                                                                                                                                              |  |
| HIGH PRODUCT ALARM  | Т      | Product level in tank rose above programmed limit.                                                                                                                           |  |
| HIGH WATER ALARM    | Т      | Water detected in tank exceeds programmed alarm limit.                                                                                                                       |  |
| HIGH WATER WARNING  | Т      | Water detected in tank exceeds programmed warning limit.                                                                                                                     |  |
| INVALID FUEL LEVEL  | Т      | Product level is too low, causing the fuel and water floats to be too close together.                                                                                        |  |
| INSTALL ALARM       | s      | Sensor not installed in correct position.                                                                                                                                    |  |
| LEAK ALARM          | Т      | A static in-tank leak test failed.                                                                                                                                           |  |
| LINE LEAK SHUTDOWN  | Р      | (VLLD) Line test or pumpside test failure.                                                                                                                                   |  |
| LINE LEAK TEST FAIL | Р      | Line test or pumpside test failure.                                                                                                                                          |  |
| LIQUID WARNING      | SENSOR | The sensor detects a small amount of liquid.                                                                                                                                 |  |
| LLD PRESSURE ALARM  | Р      | Six consecutive attempts to run a test in which the pressure switch never opened (pump not running).                                                                         |  |
| LLD PRESSURE WARN   | Р      | Three consecutive attempts to run a test in which the pressure switch never opened (pump not running).                                                                       |  |
| LLD SELF TEST FAIL  | Р      | Line Leak Detector hardware failure.                                                                                                                                         |  |
| LLD TEST FAULT-ANN  | Р      | Line Leak Detector hardware failure.                                                                                                                                         |  |
| LLD TEST FAULT-GRS  | Р      | Line Leak Detector hardware failure.                                                                                                                                         |  |
| LLD TEST FAULT-PER  | Р      | Line Leak Detector hardware failure.                                                                                                                                         |  |
| LN EQ FAULT         | Q,W    | A problem with the pressure measurement equipment has been detected.                                                                                                         |  |
| LOW LIQUID ALARM    | SENSOR | The sensor in a brine-filled interstice detects a decrease in the brine level. A hole is in the tank's inner wall, or in low groundwater areas, a hole is in the outer wall. |  |
| LOW LIQUID ALARM    | S      | Monitored parameter exceeded preset threshold.                                                                                                                               |  |
| LOW LIQUID WARNING  | S      |                                                                                                                                                                              |  |
| LOW PRESSURE ALARM  | Q      | Low pump dispense pressure is detected during a dispense. Dispensing halts if programmed to do so.                                                                           |  |

Table 5-1. Alarms

| Message              | Device  | Cause                                                                                                                         |
|----------------------|---------|-------------------------------------------------------------------------------------------------------------------------------|
| LOW PRODUCT ALARM    | T       | Tank level dropped below the programmed limit.                                                                                |
| LOW TEMP WARNING     | Т       | Probe temperature dropped below -4°F.                                                                                         |
| MAX PRODUCT ALARM    | Т       | Product level rose above the programmed limit.                                                                                |
| MISSING TICKET WARN  | Т       | Missing ticketed delivery.                                                                                                    |
| NO DIAL TONE ALARM   | D       | System failed to detect an operational line after 3 tries.                                                                    |
| NO CSLD IDLE TIME    | Т       | System has not had enough idle time over previous 24 hours to run a statistical leak detection test.                          |
| OVERFILL ALARM       | Т       | Fuel level has exceeded a programmed limit. Potential overflow of tank may occur.                                             |
| PAPER OUT            | SYSTEM  | Paper roll is empty.                                                                                                          |
| PC(H8) REVISION WARN | SYSTEM  | The CPU and the PC (H8) software versions are not compatible.                                                                 |
| PER-LINE SELF FAIL   | Р       | 0.2 gph line self-test failure.                                                                                               |
| PER-LINE TEST FAIL   | Р       | 0.2 gph line test failure. (2 consecutive self-test failures.)                                                                |
| PER-PUMP SELF FAIL   | Р       | 0.2 gph pumpside self-test failure.                                                                                           |
| PER-PUMP TEST FAIL   | Р       | 0.2 gph pumpside test failure.                                                                                                |
| PER TST NEEDED ALM   | P,Q,T,W | System failed to perform a periodic test (0.20 gph) in the programmed number of days.                                         |
| PER TST NEEDED WRN   | P,Q,T,W | System failed to perform a periodic test (0.20 gph) in the programmed number of days.                                         |
| PERIOD FAIL          | Q,T,W   | 0.2 gph test failure. Dispensing halts if programmed to do so.                                                                |
| PLLD OPEN ALARM      | a       | PLLD transducer is disconnected or is not functioning properly.                                                               |
| PLLD SHUTDOWN ALARM  | a       | A line disable occurred due to a 3.0 gph leak test failure or a programmed alarm.                                             |
| PRINTER ERROR        | SYSTEM  | Printer feed roller release is open.                                                                                          |
| PROBE OUT            | Т       | Hardware failure - interconnecting wiring to console, probe, or module problem.                                               |
| PROD THRESHOLD ALM   | F       | The variance exceeded the BIR calculated threshold of an assigned product for the periodic report.                            |
| RELAY ACTIVE         | S       | Monitored parameter exceeded preset threshold.                                                                                |
| REMOTE DISPLAY ERROR | SYSTEM  | The Remote Display is not communicating properly                                                                              |
| ROM REVISION WARNING | SYSTEM  | Software revisions do not match. The software was replaced in the unit with the backup battery switch SW1 in the ON position. |
| SELF TEST INVALID    | Р       | A self-test failed after a requested test has occurred.                                                                       |

Table 5-1. Alarms

| Message                 | Device  | Cause                                                                                                                               |
|-------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------|
| SENSOR FAULT ALARM      | S       | Monitored parameter exceeded preset threshold.                                                                                      |
| SENSOR OPEN ALARM       | SENSOR  | The sensor setup was performed incorrectly or a sensor is disconnected or is not functioning properly.                              |
| SETUP DATA WARNING      | SYSTEM  | System setup problem or probe out on startup.                                                                                       |
|                         | P, Q, W | The default line length was not changed to reflect the actual line length.                                                          |
|                         | S       | Programming error.                                                                                                                  |
| SHORT ALARM             | SENSOR  | A short has occurred in the sensor wiring or in the sensor.                                                                         |
| SOFTWARE MODULE<br>WARN | SYSTEM  | The wrong software module is installed; or, the software module cannot be read or has an invalid checksum.                          |
| SUDDEN LOSS ALARM       | Т       | System detects a loss of fuel: a) During a period when no pumping is occurring (with pump sense); or, b) During a static leak test. |
|                         |         | Clear this alarm by cycling pump on and off (a), or starting a static leak test (b).                                                |
| SYSTEM SELF TEST ALM    | SYSTEM  | The backup battery switch was turned on before the system displayed the "BATTERY IS OFF" message.                                   |
| TANK SIPHON BREAK       | Т       | The siphon break valve has opened and a static leak test of one of the tanks in a manifolded pair is underway.                      |
| TANK TEST ACTIVE        | Т       | In-tank leak test is underway.                                                                                                      |
| TEMPERATURE WARNING     | S       | Ambient termperature exceeded sensor's operating range (-40 to +122°F [-40 to +50°C]).                                              |
| TOO MANY TANKS          | SYSTEM  | The system detects more tank inputs than the system can accept. The maximum number of probes has been exceeded.                     |
| WATER ALARM             | SENSOR  | The sensor has detected water.                                                                                                      |
| WATER ALARM             | s       | Monitored parameter exceeded preset threshold.                                                                                      |
| WATER OUT ALARM         | SENSOR  | The groundwater sensor is out of the water.                                                                                         |
| WATER WARNING           | S       | Monitored parameter exceeded preset threshold.                                                                                      |
| WPLLD COMM ALARM        | W       | Communication disrupted between the system and the WPLLD Comm Board.                                                                |
| WPLLD SHUTDOWN<br>ALARM | W       | System shut down line because of failed line leak test, or an alarm assigned to disable the line is active.                         |

# 6 Diagnostic Mode

This section contains detailed diagrams, with notes, of all possible console's Diagnostic Mode Functions. Diagnostic functions display (and in certain cases, allow you to print) data useful in analyzing system performance and in troubleshooting.

You enter the DIAG MODE by pressing the MODE key until its display appears. Press the FUNCTION key to select any of the diagnostic functions within the mode, and the STEP key to view each of the Function's displays. Where you can enter changes to displayed data, you do so with the same front keys used enter to system programming selections (ENTER, CHANGE, etc.) See Figure 6-1 below for a legend of key symbols used in the Diag diagrams that follow.

In the upper right corner of each diagnostic function diagram you will notice an index of the Diagnostic Mode (Figure 6-2). This index lists the display sequence of all of the possible DIAG MODE functions. Your system will display only the diagnostic functions of installed and configured modules and options.



Figure 6-1. Index of Diagnostic Functions



Figure 6-2. Key Symbols Used in Diagrams



Figure 6-3. System Diagnostic Function Diagram

**Table 6-1.- Console Modules - ID Resistances** 

| Module                               | ID Resistance - Ohms |
|--------------------------------------|----------------------|
| 4 Probe                              | 2K                   |
| PLLD Sensor                          | 3.9K                 |
| I/O Combo                            | 10K                  |
| Printer Interface                    | 10K                  |
| 4 Relay Output Interface             | 15K                  |
| RS232 Serial Interface               | 15K                  |
| Type B Sensor Interface              | 20K                  |
| 1200 Baud Modem                      | 20K                  |
| Remote Display Interface             | 27K                  |
| Universal Sensor                     | 30.1K                |
| Pump Sense                           | 33K                  |
| Remote/Locol Printer Interface       | 33K                  |
| 8-Input Smart Sensor                 | 39.2K                |
| SiteFax Modem (old)                  | 40.2K                |
| SiteFax Modem (new)                  | 47K                  |
| VLLD Interface                       | 47K                  |
| 8 Probe                              | 47K                  |
| European 232                         | 56K                  |
| Type A Sensor Interface              | 68K                  |
| Mechanical Dim                       | 68K                  |
| DCD Interface                        | 68K                  |
| ISD Comm                             | 82.5K                |
| Dispenser Interface Module           | 100K                 |
| PLLD Controller                      | 100K                 |
| Vapor Sensor                         | 100K                 |
| Remote Only Printer Interface        | 160K                 |
| 4 Probe w/Temp Interface             | 160K                 |
| WPLLD AC Interface                   | 162K                 |
| Interstitial/Liquid Sensor Interface | 200K                 |
| WPLLD Comm                           | 200K                 |
| WPLLD Controller                     | 200K                 |

Table 6-1.- Console Modules - ID Resistances

| Module                                      | ID Resistance - Ohms |
|---------------------------------------------|----------------------|
| Groundwater Sensor                          | 270K                 |
| SiteLink Comm                               | 270K                 |
| Hughes JBox Comm                            | 330K                 |
| 3 Probe, 3 Sensor Interface (TLS-350J only) | 332K                 |
| 3 PLLD Sensor Interface (TLS-350J only)     | 402K                 |
| Serial Satellite Comm                       | 475K                 |



Figure 6-4. Service Report Function Diagram



Figure 6-5. In-Tank Diagnostic Function Diagram



Figure 6-6. Fuel Management Diagnostic



Figure 6-7. In-Tank Leak Diagnostic Function Diagram



Figure 6-8. In-Tank Leak Result Diagnostic Function Diagram



Figure 6-9. AccuChart Diagnostic Function Diagram



Figure 6-10. CSLD Diagnostics Function Diagram



Figure 6-11. Pressure Line Leak Diagnostic Function Diagram



Figure 6-12. VLLD Diagnostic Function Diagram



Figure 6-13. WPLLD Line Leak Diagnostic Function Diagram



Figure 6-14. Pump Sensor Diagnostic Function Diagram



Figure 6-15. Liquid Sensor Diagnostic Function Diagram



Figure 6-16. Vapor Sensor Diagnostic Function Diagram



Figure 6-17. Groundwater Sensor Diagnostic Function Diagram



Figure 6-18. 2-Wire CL Sensors Diagnostic Function Diagram



Figure 6-19. 3-Wire CL Sensors Diagnostic Function Diagram

## **Diagnostic Mode**



Figure 6-20. Groundtemp (VLLD Option) Diagnostic Function Diagram



Figure 6-21. Alarm History Report Function Diagram



Figure 6-22. Reconciliation Clear Map Function Diagram



Figure 6-23. BIR Diagnostic Function Diagram



Figure 6-24. Power Diagnostic Function Diagram



Figure 6-25. Communication Diagnostic Function Diagram



Figure 6-26. Smart Sensor Diagnostic Function Diagram

# 7 Console Troubleshooting

This section lists console (system) troubleshooting help for common system (Table 7-1) and data communication problems (Table 7-2). For parts locations see "System Parts Identification" on page 1-18.

**Table 7-1. Console Troubleshooting** 

| Symptom                        | Cause                                                                   | Corrective Procedure                                                              |  |  |
|--------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|--|
|                                | No AC power to monitor.                                                 | Verify power circuit breaker is switched ON.                                      |  |  |
| No display reading             | #3 Dip Switch (S1 or SW1) on CPU/ECPU board in closed position.         | Place #3 Dip Switch (S1 or SW1) in open position – Cycle power to console OFF/ON. |  |  |
|                                | AC fuse blown.                                                          | Check fuse on AC Input module front panel.                                        |  |  |
|                                | Defective power supply.                                                 | Check power supply voltages.                                                      |  |  |
|                                | Defective display board.                                                | Replace display board.                                                            |  |  |
| Portial diapley comments       | Defective power supply.                                                 | Check power supply voltages.                                                      |  |  |
| Partial display segments       | Defective display board.                                                | Replace display board.                                                            |  |  |
|                                | Ram corrupted.                                                          | Turn off AC power and battery switch and restart system.                          |  |  |
| Display unintelligible         | EPROMS U2 and U3 on CPU board in wrong sockets (U2 in U3 socket, etc.). | Check for correct positions.                                                      |  |  |
|                                | Battery switch set to OFF.                                              | Slide battery switch to ON.                                                       |  |  |
| System loses memory            | Bad battery.                                                            | Measure battery voltage. See Note 1.                                              |  |  |
|                                | Defective CPU/ECPU board.                                               | Replace CPU/ECPU board.                                                           |  |  |
| Blank printout from integral   | Wrong paper type - not thermal paper.                                   | Replace with thermal paper roll (Veeder-Root Part No. 514100-328).                |  |  |
| printer                        | Printer paper in backwards.                                             | Install paper properly.                                                           |  |  |
| Blank printout from integral   | Defective printer communication module.                                 | Replace printer communication module.                                             |  |  |
| printer                        | Defective printer.                                                      | Replace printer.                                                                  |  |  |
| Missing characters on printout | Defective printer.                                                      | Replace printer.                                                                  |  |  |
| Characters "Outs and wind."    | Paper roll installed on take up spool.                                  | Install paper in correct position.                                                |  |  |
| Characters "Overprint"         | Defective printer.                                                      | Replace printer.                                                                  |  |  |

**Table 7-1. Console Troubleshooting** 

| Symptom                              | Cause                                                          | Corrective Procedure                                                |  |  |
|--------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------|--|--|
| Printer will not print or feed paper | Printer Error Alarm - Printer Traction lever in down position. | Raise printer traction lever to up position.                        |  |  |
|                                      | Printer out of paper.                                          | Load thermal paper (Veeder-Root Part No. 514100-328).               |  |  |
|                                      | Loose printer cable.                                           | Check connections between printer communication module and printer. |  |  |
|                                      | Defective printer.                                             | Replace printer.                                                    |  |  |
|                                      | Defective printer communication module.                        | Replace printer communication module.                               |  |  |

**Table 7-2.- Data Communications Chart** 

| Symptom                                                  | Cause                                                         | Corrective Procedure                                                                                      |  |  |
|----------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--|--|
|                                                          | Modem Module in slot 4 of Comm Bay card cage.                 | Move module to slots 1, 2, or 3.                                                                          |  |  |
|                                                          | Incorrect or defective interconnect cable.                    | Check cable between TLS and telephone jack.                                                               |  |  |
|                                                          | Problem with telephone line.                                  | Call phone company.                                                                                       |  |  |
| System will not communicate via internal SiteFax Module. | Incorrect baud rate, parity, data bits, or stop bit settings. | Set all to agree with host device. See System Setup Manual.                                               |  |  |
|                                                          | Security code enabled when not required.                      | Disable security code. See System Setup Manual.                                                           |  |  |
|                                                          | Incorrect security code.                                      | Input correct security code or disable security code. See System Setup Manual.                            |  |  |
|                                                          | Defective modem module.                                       | Replace modem.                                                                                            |  |  |
|                                                          | RS-232 Module in slot 4 of Comm Bay card cage.                | Move Module to slots Comm Cage slots 1, 2, or 3.                                                          |  |  |
|                                                          | Incorrect cable.                                              | Use null cable when connecting to terminal/computer. Use straight cable when connected to external modem. |  |  |
| System will not communicate                              | Incorrect baud rate, parity, data bits, or stop bit settings. | Set all to agree with terminal/host device. See System Setup Manual.                                      |  |  |
| via RS-232 Module                                        | Incorrect security status.                                    | Input security code or disable security code. See System Setup Manual.                                    |  |  |
|                                                          | Defective RS-232 Module.                                      | Replace module.                                                                                           |  |  |
|                                                          | Defective host terminal or modem.                             | See manufacturer's troubleshooting manual.                                                                |  |  |
|                                                          | Excessive cable length between host and TLS.                  | Check cable length50 ft. maximum.                                                                         |  |  |

 $<sup>^{1}</sup> Batteries \ on \ the \ CPU/ECPU \ boards \ are \ replaceable. \ If \ the \ memory \ does \ not \ hold \ during \ power \ outages, \ check \ the \ battery \ voltage.$  Voltage should be approximately 3.6 Volts DC. (Battery part number is 576010-695).

# 8 Sensor Troubleshooting

This section contains suggested corrective actions for troubleshooting sensor problems.

## Sensor Alarm Will Not Clear

Liquid or fuel in containment area.

## **Sensor Open Alarms**

Follow these steps in sequence to troubleshoot Sensor Open alarms.

- 1. Verify that the distance from the sensor to the TLS is less than 1000 feet.
- 2. Verify that the sensor wiring conforms to the requirements detailed in the <u>Site Prep and Installation Manual</u> (P/N 576013-879) and that it connects the console to the sensor.
- 3. Verify that the console grounding is correct. Make sure there are two grounds and that one is at least a 12 AWG (or larger diameter) conductor. Check that the grounding conductors are properly connected to a good ground source. Measure the resistance to ground, it should be less than one ohm.
- 4. Verify that the console is on a separate circuit breaker with no shared branch circuits.
- 5. Verify that the sensor connects to the proper interface module or to the proper connector position (TLS-300 Consoles), and that polarity (required for some sensors) is maintained from the sensor to the console. If necessary, refer to the Sensor Products Application Guide (P/N 577013-750) for correct sensor/console compatibility and sensor specifications.
- 6. Enter the Diagnostic Mode (ref. Section 6) and step through the diagnostic menu for the problem sensor. These diagnostics provide information that may help you determine the root cause of the sensor's problem.
- 7. Consider directly connecting the sensor to the console to confirm a faulty sensor.

## **Setup Data Warning**

This alarm could be posted by one of three setup errors:

- 1. A label for the sensor was not entered during setup (TLS-300/TLS-350 Consoles).
- 2. The wrong sensor type was selected during setup (TLS-300 only).
- 3. The sensor was not configured during setup but the console measures a resistive value and determines a device is connected (TLS-300/TLS-350 Consoles).

# **Unstable Sensor Readings**

Unstable sensor readings may be the result of intermittent signals or electro-magnetic interference (EMI). Some causes of unstable sensor readings are discussed below.

- 1. Shielded cable was not used between the sensor and the console, or if it was, it was not grounded correctly. See the <u>Site Prep and Installation Manual</u> (P/N 576013-879) for installation requirements.
- 2. Extra wires (not connected to the console) in the sensor conduit. They should be removed.

- 3. Damaged wiring insulation exposing bare conductors to moisture in the conduit. This condition may also appear as readings showing lower than normal or the same reading, regardless of the state of the sensor.
- 4. Moisture causing the sensor wiring to short to the conduit. This can become evident after rainy wet weather or flooding. Measuring the resistance with a standard volt-ohm meter may not identify a short due to moisture.
- 5. Connect the sensor directly to the console to determine if the reading is still unstable. If it stabilizes, the problem is between the console and the sensor. If fluctuation continues with the sensor connected directly to the console, change the sensor.

# **Cleaning Fuel Contaminated Discriminating Sensors**

### DISCRIMINATING SENSORS 794380-320, -322, -350, -352, -360, -361, & -362

Sensors exposed to gasoline should be removed from the pan or sump, dried off, and be allowed to recover in a well-ventilated area for up to 7 days. Note: recovery time will vary depending on the ambient temperature and how long the sensor was exposed to fuel. Sensors exposed to diesel fuel must be soaked in Coleman® fuel for 30 minutes and be allowed to recover in a well-ventilated area for up to 7 days.

#### DISCRIMINATING SOLID-STATE SENSOR - OPTICAL (P/N 794380-343, -344)

To clean contaminated optical sensors, dip the sensor into a small container of alcohol and briefly swirl it around to rinse it off.

# Smart Sensor Troubleshooting

The procedures below apply only to Smart Sensors, e.g., Mag Sensor.

- 1. Verify threshold parameters entered during setup for this sensor are correct.
- 2. Following the alarm upgrade delay period, if enabled, any designated Fuel, Water, Hi Liquid, and Lo Liquid 'warnings' will change to 'alarms' even if the liquid in the containment area is only at the warning level.
- 3. For a Sensor Fault Alarm the console is reading the Mag Sensor, but the readings are unstable. The problem could be the sensor itself (float missing, bad probe, etc.) or electrical noise on the line (similar to effects on mag probes).
- 4. For a Communication Alarm the sensor is not responding at all (bad sensor (similar to effects on mag probes), open connection, bad Smart Sensor module, etc.), or an electrically noisy line.
- 5. If the sensor remains unstable/non-communicable, connect the sensor directly to the console to confirm a faulty sensor.

# 9 Probe Troubleshooting

This section contains basic probe problem diagnosis and suggested corrected actions for troubleshooting Magnetostrictive Probes (Table 9-1). Refer to *Site Prep and Installation Manual* (Veeder-Root No. 576013-879) and the appropriate probe installation manual for more information about probe, conduit, and wiring installation.

Note: Removing the probe from the tank while connected to the console will cause a "Sudden Loss Alarm" which must be cleared after the probe is reinstalled.

**Table 9-1. Mag Probe Troubleshooting** 

| Alarm                 | Problem                                     | Probable Cause                                                      | Corrective Procedure                                                                                                                     |  |  |
|-----------------------|---------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                       |                                             | Incorrect float size programmed                                     | Reprogram actual installed float size                                                                                                    |  |  |
|                       |                                             | Incorrect or missing setup data                                     | Print out setup data and check for errors.                                                                                               |  |  |
|                       |                                             | Incorrect tank tilt value                                           | Check tank tilt and correct if necessary.                                                                                                |  |  |
|                       |                                             | Probe wired to wrong probe channel on probe module                  | Verify probe is wired to correct channel.                                                                                                |  |  |
|                       |                                             | Probe not sitting on bottom of tank                                 | Check and correct position of probe, if necessary.                                                                                       |  |  |
| N/A                   | Incorrect height/volume reading             | Fuel float stuck in riser tube.                                     | Remove float from riser and install split-ring collar (P/N 576008-617) on probe shaft below riser tube to prevent recurrence of problem. |  |  |
|                       |                                             | Water or fuel float assembly missing or ring magnet defective.      | Replace float assembly.                                                                                                                  |  |  |
|                       |                                             | Fuel float assembly installed upside down                           | Correct float assembly installation.                                                                                                     |  |  |
|                       |                                             | 2-inch floats with consoles having Version 1 and 2 software.        | See Note 1.                                                                                                                              |  |  |
|                       |                                             | Dirty probe shaft.                                                  | Clean probe shaft so that float moves freely up and down.                                                                                |  |  |
|                       |                                             | Defective probe                                                     | Swap with probe from another tank. If problem follows probe, replace probe.                                                              |  |  |
| Water Warn/           | Incorrect water height read-                | Wrong or missing ballast                                            | Install correct water float assembly.                                                                                                    |  |  |
| High Water<br>Alarm   | ing                                         | Water float sitting on debris at bottom of tank.                    | Check for debris on bottom of tank and clean if necessary.                                                                               |  |  |
| Invalid Fuel<br>Level | Invalid fuel height on warn-<br>ing display | Fuel level is too low and fuel float is sitting on the water float. | Call for delivery.                                                                                                                       |  |  |
| Low Product<br>Alarm  | Low or invalid product                      | Fuel is too low                                                     | Call for delivery.                                                                                                                       |  |  |

**Table 9-1. Mag Probe Troubleshooting** 

| Alarm | Problem                                                                                 | Probable Cause                                                                                                          | Corrective Procedure                                                                                                                                                                         |  |  |
|-------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|       | Fuel level reading equals full tank volume even though fuel level is below full volume. | Fuel float stuck in riser.                                                                                              | Remove float from riser and install split-ring collar (P/N 576008-617) on probe shaft below riser tube to prevent a recurrence of the problem.                                               |  |  |
|       | Probe reading on console display disappears or appears intermittently.                  | Defective probe cable                                                                                                   | Replace cable.                                                                                                                                                                               |  |  |
|       |                                                                                         | Splices in wiring                                                                                                       | See Note 2.                                                                                                                                                                                  |  |  |
|       |                                                                                         | Defective field wiring                                                                                                  | Check for open or shorted wires, or<br>absence of epoxy seal kits around<br>field connections. Refer to "Field Trou-<br>bleshooting Probe-Out Alarms" pro-<br>cedure below for more details. |  |  |
|       | OL ID II                                                                                | Other control wires in probe conduit                                                                                    | See Note 2.                                                                                                                                                                                  |  |  |
|       | Ghost Deliveries.                                                                       | Conduit not grounded properly                                                                                           | See Note 2.                                                                                                                                                                                  |  |  |
|       |                                                                                         | Non-metallic conduit present                                                                                            | See Note 2.                                                                                                                                                                                  |  |  |
|       |                                                                                         | Variable speed submersible pump in use                                                                                  | See Note 2.                                                                                                                                                                                  |  |  |
| N/A   |                                                                                         | Defective barrier board                                                                                                 | Replace barrier board.                                                                                                                                                                       |  |  |
|       |                                                                                         | Defective probe                                                                                                         | Replace probe.                                                                                                                                                                               |  |  |
|       | Ghost tank reading                                                                      | Defective barrier board                                                                                                 | Replace barrier board.                                                                                                                                                                       |  |  |
|       | Fuel temperature reading is incorrect                                                   | Defective thermal sensor in probe.                                                                                      | Replace probe.                                                                                                                                                                               |  |  |
|       | Probe does not read out and there is no probe alarm                                     | Probe channel not configured in tank setup                                                                              | See System Setup Manual.                                                                                                                                                                     |  |  |
|       |                                                                                         | Incorrect software for probe/<br>thermistor module                                                                      | See Note 3.                                                                                                                                                                                  |  |  |
|       | Leak Test Invalid - Recent<br>delivery                                                  | A delivery occurred during the leak detect test or within 8 hours prior to the console's entering the leak detect mode. | Retest, waiting longer than 8 hours after last delivery.                                                                                                                                     |  |  |
|       | Leak Test Invalid - Tank level low                                                      | Fluid level is too low. Insufficient product in tank for satisfactory thermal compensation.                             | Fill tank to half full or more.                                                                                                                                                              |  |  |
|       | Leak Test Invalid - First hour error                                                    | Consult factory.                                                                                                        | Consult factory.                                                                                                                                                                             |  |  |
|       | Leak Test Invalid - Last hour error                                                     | Consult factory.                                                                                                        | Consult factory.                                                                                                                                                                             |  |  |

Alarm **Problem Probable Cause Corrective Procedure** Fuel temp reading is below 0°F Leak test invalid - temp out Retest when product temperature is between 0 -100°F. of range or above 100°F. Defective probe. Replace probe. Temp change error - w/0.1 Temp of fuel changed by more Retest. than 1/10th degree per hour gph test during the leak test. Temp change error - w/0.2 Temp of fuel changed by more Retest. than 2/10th degree per hour N/A gph test (Mag 2 probe only). during the leak test. Temp change error - zone Temp of any covered thermistor Retest. change error changed more than 3/10th degree per hour during leak test. Temp change error - head Temp in head of probe changed Retest. change error more than 1/10th degree per hour during leak test.

**Table 9-1. Mag Probe Troubleshooting** 

NOTE 1. When 2-inch float kits are installed on mag probes, the fuel height reading will not be correct with older systems still using console software Version 1 and two EEPROMS. These versions require a tank tilt adder of +2.25 when used with Mag probes with 2-inch floats. Systems with Version 3 software or higher do not require this adder.

NOTE 2.Refer to Site Prep and Installation Manual (Veeder-Root No. 576013-879).

NOTE 3. The Four-Input Probe/Thermistor Module can only be used in systems with Version 1 software, Rev. F or higher. In Version 2 software or higher, all revision levels are compatible.

## Field Troubleshooting Probe-Out Alarms

Attention all Technicians: You must verify all locations utilizing shielded cable are wired correctly. Verify that the drain wire of the shielded cable is connected to the TLS end only. If the drain wire is connected on both ends this creates a ground loop which can produce Probe-Out Alarms. Remove power from TLS before disconnecting the probe cable from the probe.

Follow these steps in sequence to troubleshoot probe-out alarms.

All probes returned for a warranty claim must be accompanied with the documentation produced during the following troubleshooting procedures to document the failure.

For any of the following steps that produce a printout from the TLSEMC, those printouts must be provided with any returned probe.

If no printer is available then you must record the information specified below:

- 1. Press Alarm Test Button- (Verify System Alarms)
  - Print / record the active alarms
- 2. Press Mode Button to display Diag Mode.

- 3. Press Function until In-Tank Diagnostics appear.
- 4. Press Print. (If the console does not have a printer, manually record the diagnostic data from each diag screen).
  - Print / record the In-Tank Diagnostics
- 5. The Probe distance from the TLS must be less than 1000 feet. If the distance is greater than this probe operation is not guaranteed.
- 6. Ensure the probe wiring conforms to the requirements detailed in the Site Prep and Installation Manual (Veeder-Root No.576013-879).
- 7. Verify the TLS console is grounded correctly.
  - Is the ground wire at least a 12AWG conductor? Remove ground cable from the grounding lug inside the TLS system, use an ohmmeter to measure resistance from the ground wire to a known good ground. The resistance reading should be less than 10hm.
  - If resistance is greater than 1 ohm, the console is not properly grounded. Either repair the ground connection or contact the installation company to ensure proper grounding is established.
- 8. Verify the TLS is on a separate circuit breaker with no shared branch circuits.
- 9. Verify the polarity of the probe wiring is correct from the probe to the console. The probe cable black conductor must be connected to the probe module (-) Negative. The probe cable white conductor must be connected to the probe module (+) Plus.
- 10. Disconnect the probe cable connector from the probe and inspect both the probe cable female pins and the male pins on the probe for corrosion. If corrosion or contamination is suspected clean with electrical cleaning solution and reconnect probe cable. Verify alarm condition is cleared.
- 11. Open probe junction box and inspect connections for the probe wires and the connecting field wiring. These connections must have Veeder-Root supplied epoxy packs on the splices. Corroded splices will create Probe Out alarms. If Veeder-Root supplied epoxy packs are present, inspect them to make sure there is no water inside the packs where the connections are made. Verify that the wire nuts and cable sheathing are immersed in epoxy. The epoxy should be "rock hard". If no epoxy packs were utilized, the Veeder-Root installation procedures were not followed. Refer to the console's Site Prep manual for correct installation procedures.
- 12. Before proceeding, ensure that TLS power is Off. (If only one tank exists or the suspect probe cannot be installed in another tank at the site, proceed to step 13). Swap the non-working probe with a working one from another tank to determine if the problem follows the probe or stays with the tank. When swapping probes, disconnect the probe cable connector on the top of the probes and swap the probes between the tanks. Do not swap probes and cables at the same time. If the problem moves to the other tank, replace the probe. If the problem stays with the original tank after swapping probes, go to step 13. If the Probe Out clears and does not return on either tank wait 30 minutes to see if alarm returns. If it does not return, leave the probes in-place and wait for the customer to contact you if the problem reoccurs. If problem reoccurs within a reasonable period of time on the tank the suspect probe is now in, then replace the probe. If it returns on the original tank then follow the steps for troubleshooting wiring and connectors.
- 13. Replace the probe cable. If the problem persists, move the wires on the probe module from the non-working channel to a known working channel (if possible). If the probe works on the known working channel, replace the probe module. If the problem still exists on the known working channel, remove the probe from the tank and bring it to the console. Connect it directly to the console (you will need a spare probe cable). If the Probe-Out Alarm clears with the probe wires connected directly to the console, then there is a problem with the field wiring.
- 14. Measure the resistance of the probe wiring from the probe end of the cable to the connections at the console. First disconnect the conductors from the console. Then remove the connector from the probe and short across the two pins of the probe cable connector. (Caution: Do not force jumper into cable connector. Doing so may cause the connector pins to separate and produce a poor connection.) Measure the resistance across the two conductors at the console. The resistance should be low. It should equal (approximately) the cable manufacturer's single conductor resistance per foot times the length of the cable run times two:

- -14 AWG should measure 2.52 ohms/1000 feet
- -16 AWG should measure 4.02 ohms/1000 feet
- -18 AWG should measure 6.39 ohms/1000 feet

If the resistance is higher than the cable manufacturer's specification, either the cable is defective or there are poor connections between the console and the probe. If the resistance is within the cable manufacturer's specification, measure the resistance between each probe conductor to a known good ground to verify it is not shorted. This resistance should be very high (megohms to infinity). When conducting the above, please check the resistance at the TLS and probe end.

15. Verify that the probe riser is not magnetized. This can be accomplished by using a metal paper clip on a string. Dangle the paper clip suspended by a string into the probe riser to determine of the riser pipe is magnetized. If the paper clip is attracted to one side of the riser pipe, replace the riser (this is rare, but it has occurred).

## **Minimum Detected Fluid Levels**

Table 9-1. Mag Probe Minimum Detected Fluid Levels

|                 |                               |                |                        |                 | 4" FI                 | oats                   | 3" FI                 | oats                   | 2" F                  | loats                  |
|-----------------|-------------------------------|----------------|------------------------|-----------------|-----------------------|------------------------|-----------------------|------------------------|-----------------------|------------------------|
| Circuit<br>Code | Mag Probe<br>Type             | Leak<br>Detect | Name<br>Plate<br>Color | Water<br>Detect | Min.<br>Fuel<br>Level | Min.<br>Water<br>Level | Min.<br>Fuel<br>Level | Min.<br>Water<br>Level | Min.<br>Fuel<br>Level | Min.<br>Water<br>Level |
| Mag Pro         | bes - Form Numl               | ber 8473       |                        |                 |                       |                        |                       |                        |                       |                        |
| C000            | Std., 2 float                 | 0.10 gph       | Black                  | Yes             | 8"                    | 0.75"                  | -                     | -                      | 9.5"                  | 0.75"                  |
| C001            | Std., 2 float                 | 0.20 gph       | Red                    | Yes             | 8"                    | 0.75"                  | -                     | -                      | 9.5"                  | 0.75"                  |
| D000            | Std., Inv. only,<br>2 flt     | None           | Green                  | Yes             | 8"                    | 0.75"                  | -                     | -                      | 9.5"                  | 0.75"                  |
| D001            | Alt., 1 float                 | 0.10 gph       | Black                  | No              | 5"                    | -                      | -                     | -                      | 7"                    | -                      |
| D002            | Alt., 1 float                 | 0.20 gph       | Red                    | No              | 5"                    | -                      | -                     | -                      | 7"                    | -                      |
| D003            | Alt., Inv. only               | None           | Green                  | No              | 5"                    | -                      | -                     | -                      | 7"                    | -                      |
| Mag Pro         | bes - Form Numl               | bers 8463 &    | 8493                   |                 |                       |                        |                       |                        |                       |                        |
| D004            | 2 float                       | 0.10 gph       | Black                  | Yes             | 3.04"                 | 0.63"                  | 3.04"                 | 0.63"                  | 3.23"                 | .867"                  |
| D005            | 2 float                       | 0.20 gph       | Red                    | Yes             | 3.04"                 | 0.63"                  | 3.04"                 | 0.63"                  | 3.23"                 | .867"                  |
| D006            | Inv. only, 2 flt              | None           | Green                  | Yes             | 3.04"                 | 0.63"                  | 3.04"                 | 0.63"                  | 3.23"                 | .867"                  |
| D007            | 1 float                       | 0.10 gph       | Black                  | No              | 0.985"                | -                      | 0.985                 | -                      | 3"                    | _                      |
| D008            | 1 float                       | 0.20 gph       | Red                    | No              | 0.985"                | -                      | 0.985                 | -                      | 3"                    | _                      |
| D009            | Inv. only, 1 flt              | None           | Green                  | No              | 0.985"                | -                      | 0.985                 | -                      | 3"                    | _                      |
| Mag Pro         | Mag Probes - Form Number 8468 |                |                        |                 |                       |                        |                       |                        |                       |                        |
| D021            | Inv. only 2 flt               | None           | Blue                   | Yes             | 3.04"                 | 0.63"                  | 3.04"                 | 0.63"                  | 3.23"                 | 0.867"                 |

4" Floats 2" Floats Min. Water Level Min. Fuel Min. Fuel Min. Fuel Level Min. Water Level Min. Water Level Name Circuit Code Mag Probe Type Leak Detect Plate Color Water Detect Level Level D022 Inv. only, 2 flt None Blue Yes 3.04" 0.63" 3.04" 0.63" 3.23" 0.867" 3" D023 Inv. only, 1 flt None Blue No 0.985" 0.985 D024 Inv. only, 1 flt 3" None Blue No 0.985" 0.985

Table 9-1. Mag Probe Minimum Detected Fluid Levels

# **Mag Probe Channel Counts in Common Liquids**

The table below shows the normal operating range of channel counts for magnetostrictive probes in common liquids (fuels).

Table 9-1. Mag Probe Channel Counts in Common Liquids

| Probe Length         | Channel        | Normal Count Range* |  |
|----------------------|----------------|---------------------|--|
| All Probes           | C00 (No Water) | 0 - 1500            |  |
| 4 Foot Probe         | C01-C10        | 700 - 17040         |  |
| 5 Foot Probe         | C01-C10        | 700 - 21300         |  |
| 6 Foot Probe         | C01-C10        | 700 - 25560         |  |
| 7 Foot Probe         | C01-C10        | 700 - 29820         |  |
| 7 Foot, 6 Inch Probe | C01-C10        | 700 - 31950         |  |
| 8 Foot Probe         | C01-C10        | 700 - 34080         |  |
| 9 Foot Probe         | C01-C10        | 700 - 38340         |  |
| 10 Foot Probe        | C01-C10        | 700 - 42600         |  |

<sup>\*</sup>Channels C06 - C10 are only updated when necessary. Therefore the counts for C01 - C05 will normally be different from the counts for C06 - C10. Channel counts outside of this range indicate a defective probe – replace probe.

# **Example Probe Status Printouts**

## **MAGNETOSTRICTIVE PROBE - NORMAL**

PROBE DIAGNOSTICS

T1: PROBE TYPE MAG7

SERIAL NUMBER 212617

ID CHAN =  $0 \times D004$ 

GRADIENT = 351.69\*

NUM SAMPLES = 20

| C40 | 760.0   | C41 | 28090.8 |
|-----|---------|-----|---------|
| C42 | 28090.8 | C43 | 28090.8 |
| C44 | 28090.9 | C45 | 28091.0 |
| C46 | 28090.9 | C47 | 28090.9 |
| C48 | 28090.6 | C49 | 28090.9 |
| C10 | 28090.6 | C11 | 43915.1 |
| C12 | 34038.4 | C13 | 34247.9 |
| C14 | 34274.7 | C15 | 34379.1 |
| C16 | 34715.3 | C17 | 34929.8 |
| C18 | 43915.9 |     |         |

SAMPLES READ = 450255

SAMPLES USED = 449269

### **MAGNETOSTRICTIVE PROBE - MISSING WATER FLOAT**

PROBE DIAGNOSTICS

T1: PROBE TYPE MAG7

SERIAL NUMBER 212617

ID CHAN =  $0 \times D004$ 

GRADIENT = 351.6900\*

NUM SAMPLES = 20

| C40 | 27057.2 | C41 | 55118.2 |
|-----|---------|-----|---------|
| C42 | 55117.9 | C43 | 55117.9 |
| C44 | 55118.4 | C45 | 55117.6 |
| C46 | 29493.6 | C47 | 29493.3 |
| C48 | 29493.4 | C49 | 29493.7 |
| C10 | 29493.4 | C11 | 43914.8 |
| C12 | 34048.5 | C13 | 34239.1 |
| C14 | 34270.4 | C15 | 34378.2 |
| C16 | 34718.6 | C17 | 34934.3 |
| C18 | 43915.6 |     |         |

SAMPLES READ = 249626

SAMPLES USED = 249561

<sup>\*</sup>Gradient may be 175 - 185, or 348 - 358.

# 10 Dispenser Interface Modules (DIMs)

#### **DIM Descriptions**

# MECHANICAL DISPENSER INTERFACE MODULE (MDIM) & LOW VOLTAGE DISPENSER INTERFACE MODULE (LVDIM)

Installed in power area of TLS-350R, MDIMs provide an interface for the console to mechanical dispenser heads using high voltage volume pulses. LVDIMs provide an interface for the console to mechanical and electronic dispenser heads and pump controllers using low voltage volume pulses.

Either one of these modules can be installed in any combination with other DIM types.

The MDIM/LVDIM modules allow the console to gather relevant dispensing information including how much product has been dispensed from each fueling station.

MDIMs have 8-pin and LVDIMs have 10-pin external rectangular connectors.

#### **ELECTRONIC DISPENSER INTERFACE MODULE (EDIM)**

Installs in a communication port of TLS-350R. EDIMs are used to communicate via RS-232 to Point of Sale or system controllers.

More than one EDIM can be installed in any combination with other DIM types.

EDIMs have one 25-pin D connector outside of the port.

Red and green LEDs are on this board. When red LED is on EDIM is transmitting to external device; when green LED is on external device is transmitting to EDIM.

#### **CURRENT LOOP DISPENSER INTERFACE MODULE (CDIM)**

Installs in a communication port of TLS-350R. Various CDIM monitoring applications to include current loop, RS-232 and RS-422.

More than one CDIM can be installed in any combination with other DIM types.

CDIMs have three RJ-45, 8-position modular connectors. Three on-board green LEDs being on indicate data is transmitting to CDIM from external device.

CDIMs cannot transmit to external device.

Connects via 4 wire cable to Cable Adapter Box. Adapter box converts target communication format to RS-422 format for CDIM. Adapter boxes are configured with 2-wire flying leads, 25-pin D or 9-Pin D, T-cable connectors for various applications.

#### LAN DISPENSER INTERFACE MODULE (LDIM)

Installs in a communication port of TLS-350R to communicate with or monitor POSs, dispensers or system controllers using RS-485 communication standard.

More than one LDIM can be installed in any combination with other DIM types.

LDIMs have a 5-wire Phoenix connector.

10 DIMs DIM Descriptions

Red and green LEDs are on this board. When red LED is on LDIM is transmitting to external device; when green LED is on external device is transmitting to LDIM.

Can be used in 4-wire or 2-wire, RS-485 and RS-422 applications.

DIP Switch default in OPEN position, loopback jumper on LED side for RUN mode.

R1 - 331076-001 - RS-485 two wire.

R2 - 331076-002 - RS-422 four wire.

R3 - 331076-003 - DIM RS-485 two wire. (Install in TLS-350R only.)

R4 - 331076-004 - DIM RS-422 four wire. (Install in TLS-350R only.)

#### INTERNATIONAL FORECOURT STANDARDS FORUM DISPENSER INTERFACE MODULE (IFSF)

Required for TLS Consoles that are connected to IFSF networks.

Uses Echelon 2-wire FTT10-A medium, as defined by the IFSF standards.

There are 3 LEDs on this board:

- Green LED indicates that the IFSF board is transmitting information to the TLS.
- Red LED indicates the TLS is transmitting information to the IFSF board.
- Amber LED reflects the current state of the IFSF board processor (off is normal state).

There are no LED indicators for network communication.

10 DIMs DIM Tables

#### **DIM Tables**

|                                 |                      | DIM            | Quick Refe       | rence C | hart     |         |      |             |
|---------------------------------|----------------------|----------------|------------------|---------|----------|---------|------|-------------|
| DIM Part<br>Number <sup>0</sup> | Software<br>Revision | Description    | Hardware<br>Type | Default | Settings |         |      | Notes       |
|                                 |                      |                | • •              | Baud    | Parity   | Length  | Stop |             |
| 847492-345                      | 349643               | Gilbarco GSite | EDIM             | 1200    | Even     | 7       | 1    |             |
| 847490-420                      | 349634               | Gilbarco CL    | CDIM             |         | Propr    | rietary |      | <b>2</b>    |
| 847490-431                      | 331353               | Tokheim 67A&B  | CDIMII <b>6</b>  | 9600    | None     | 8       | 1    | 20          |
| 847490-360                      | 330384               | Tokheim DHC    | EDIM             | 1200    | Even     | 7       | 1    | 6           |
| 847490-410                      | 349633               | Wayne CL       | CDIM             |         | Propr    | rietary |      | <b>2</b>    |
| 847490-400                      | 330435               | Schlumberger   | CDIM             | 1200    | Even     | 7       | 2    | <b>6</b> 6  |
| 847400-471                      | 349753               | Gasboy RS422   | LDIM             | 9600    | None     | 8       | 1    |             |
| 847400-472                      | 349753               | Gasboy CFN     | LDIM             | 9600    | None     | 8       | 1    | 0           |
| 847490-340                      | 330273               | BIR            | EDIM             | 9600    | Odd      | 7       | 1    | METRIC 4    |
| 847490-206                      | 330270               | Mechanical     | MDIM             | N/A     |          |         |      | 8           |
| 847490-210                      | 330270               | Low Volt Mech  | LVDIM            | N/A     |          |         |      | 8           |
| 847490-470                      | 349646               | Tominaga       | LDIM             | 19200   | Even     | 8       | 1    | <b>24</b> 6 |
| 847490-440                      | 349633               | Bennett        | CDIM             | 4800    | Even     | 8       | 1    | 0           |
| 847490-391                      | 349631               | UK Block       | EDIM             | 2400    | Even     | 7       | 1    | 8           |
| 847490-395                      | 349641               | Scheidt & Bach | EDIM             | 1200    | None     | 8       | 1    | 8           |

- **1** When ordered as upgrade or replacement.
- 2 Parameter string is not required for serial communication only.
- **3** Will not generate Communication Alarm.
- **4** Metric is the default setting for unit conversion. Requires 'G' in parameter string for gallon units.
- **6** A Two port CDIM. Normal CDIMs have 3 ports, CDIMII has two ports that monitor 2 comm channels each.
- **6** No blending.
- Use 'P' in parameter string for Tokheim 2+1, 3+1, and 4+1 blending dispensers.

|        | CDIM/CDIMII/EDIM Parameter Definitions |        |      |           |      |             |   |            |          |  |
|--------|----------------------------------------|--------|------|-----------|------|-------------|---|------------|----------|--|
| Ba     | aud                                    | Pa     | rity | Stop Bits |      | Data Bits   |   | Conversion |          |  |
| String | Rate                                   | String | Type | String    | Bits | String Bits |   | String     | Unit     |  |
| В9     | 9600                                   | N      | None | Н         | 1    | V           | 7 | G          | Gallons  |  |
| B4     | 4800                                   | Е      | Even | S         | 2    | D           | 8 | M          | Metric   |  |
| B2     | 2400                                   | О      | Odd  |           |      |             |   | I          | Imperial |  |
| B1     | 1200                                   |        |      |           |      |             |   |            |          |  |
| В6     | 600                                    |        |      |           |      |             |   |            |          |  |
| В3     | 300                                    |        |      |           |      |             |   |            |          |  |
| BG     | ***                                    |        |      |           |      |             |   |            |          |  |

|        | LVDIM/MDIM Pulse Conversion                    |  |  |  |  |  |  |
|--------|------------------------------------------------|--|--|--|--|--|--|
| String | Pulses per Unit Volume                         |  |  |  |  |  |  |
| P      | 100 (7697 Pulser)                              |  |  |  |  |  |  |
| F      | 10 (7697 on High Volume Pump)                  |  |  |  |  |  |  |
| T      | 25 (7874 Pulse/Totalizer) MDIM / LVDIM Default |  |  |  |  |  |  |
| Q      | 2.5 (7874 on High Volume Pump)                 |  |  |  |  |  |  |
| A      | 1/2                                            |  |  |  |  |  |  |
| S      | 1                                              |  |  |  |  |  |  |
| W      | 250                                            |  |  |  |  |  |  |
| X      | 500                                            |  |  |  |  |  |  |
| Y      | 1000                                           |  |  |  |  |  |  |

| Female D Connector Pin Outs |               |  |  |  |  |  |
|-----------------------------|---------------|--|--|--|--|--|
| PIN                         | Function      |  |  |  |  |  |
| 2                           | Transmit Data |  |  |  |  |  |
| 3                           | Receive Data  |  |  |  |  |  |
| 7                           | Signal Ground |  |  |  |  |  |

| RS232 Loop Back Tool |  |    |  |  |  |  |  |
|----------------------|--|----|--|--|--|--|--|
| PIN Connect To PIN   |  |    |  |  |  |  |  |
| 2                    |  | 3  |  |  |  |  |  |
| 4                    |  | 5  |  |  |  |  |  |
| 20                   |  | 22 |  |  |  |  |  |

Various example DIM installation diagrams are shown below and on the following pages and are included as references only. For specific DIM installation details, refer to the appropriate Veeder-Root DIM Installation Manual.



Figure 10-1. Simplified DIM Connections to various Dispensing Systems

10 DIMs DIMs



Figure 10-2. Wiring Diagram of Mechanical Dispenser Applications using two 1871/7697 Series Pulse Transmitters and required Barriers (MDIM)



Figure 10-3. Meter Stand Application Using 1871/7697 Series Pulse Transmitter (MDIM)



Figure 10-4. Mechanical Dispenser Applications using 7874 Series Pulser/Totalizer (MDIM)



Figure 10-5. Installation with PetroVend System 2 Site Controller (LVDIM)



Figure 10-6. Installation with Kraus Micon 200 Series Elecronic Dispeners (LVDIM)



Figure 10-7. Installation with GasBoy 9800 Series Electronic Dispensers (LVDIM)

## **Interface Module Hardware Configuration**

Set DIP Switches 1 and 2 to the CFN Communication parity used at your site (Refer to Table 10-1).



Ensure that power is OFF when changing the switch settings.

Table 10-1. Interface Module Parity DIP Switch Settings

| Baud | Data | 0511              |   | SW 1 P | osition |   |   | SW 2 P | osition |   |
|------|------|-------------------|---|--------|---------|---|---|--------|---------|---|
| Rate | Bits | CFN<br>Parity     | 1 | 2      | 3       | 4 | 1 | 2      | 3       | 4 |
| 9600 | 8    | None<br>(Default) | 0 | 0      | 0       | 0 | 0 | 0      | 0       | 0 |
| 9600 | 7    | Even              | 0 | 0      | 0       | 1 | 0 | 0      | 0       | 0 |
| 9600 | 7    | Odd               | 0 | 0      | 1       | 0 | 0 | 0      | 0       | 0 |

0 = Off/Open

1 = On/Closed

Figure 10-8 is a cut-away of the dip switch banks on the Gasboy Interface Module:



Figure 10-8. Dip Switch Banks on the Gasboy Interface Module (LVDIM)



Figure 10-9. Gasboy Island Loop Interface Configuration. for TLS-350 (LVDIM) - Kit No. 331088-XXX



Figure 10-10. Gasboy Console Loop Interface Required Config. for TLS-350R w/BIR (LVDIM) - Kit No. 331088-XXX



Figure 10-11. Gasboy CFN Interface (LVDIM) - Kit No. 331088-XXX



Figure 10-12. Wayne Dispenser Data Box Current Loop (CDIM) - Kit No. 848703-XXX



Figure 10-13. Gilbarco Transac Series Current Loop Interface (CDIM) - Kit No. 848702-XXX



Figure 10-14. Gilbarco Transac System 1000 Current Loop Interface (CDIM) - Kit No. 848722-XXX



Figure 10-15. Gilbarco Autogas 510 CRIND Controller with Current Loop Interface (CDIM) - Kit No. 848702-XXX



Figure 10-16. Gilbarco AutoGas 510 CRIND Controller with Serial Interface (CDIM) - Kit No. 848702-XXX



Figure 10-17. Gilbarco AutoGas 510 CRIND Controller (CDIM) - Kit No. 848702-XXX



Figure 10-18. Gilbarco AutoGas 507 CRIND Controller (CDIM) - Kit No. 848741-XXX



Pin to Pin of Interconnecting Cable (25 DBM)



cab&dim\alldssc.eps

Figure 10-19. Allied ANDI Site Controller Installation with 25 Pin D-Connector (EDIM)



Figure 10-20. Schlumberger MicroMax POS with Allied Protocol Box Current Loop Interface (CDIM) - Kit No. 848711-XXX



Figure 10-21. Schlumberger Pro Series or MicroMax POS with SAM or XPIC Controller Box and RS-232 Cable Adapter Box Interface (CDIM) - Kit No. 848731-XXX



Figure 10-22. Schlumberger MicroMax POS with Tokheim DHC Controller Box and RS-232 Cable Adapter Box Interface (CDIM)
- Kit No. 848711-XXX



Figure 10-23. Schlumberger Verifone with SAM and RS-232 Cable Adapter Box Interface (CDIM) - Kit No. 848731-XXX



Figure 10-24. Tokheim Vision 100/200 In-Console DHC Installation (EDIM) - Kit No. 330408-XXX



Figure 10-25. Gilbarco PC SITE™ Installation - RJ-45 Connector (EDIM) - Kit No. 331063-XXX



Figure 10-26. Gilbarco C-2 G-SITE™ Installation - 25-Pin D Connector (EDIM) - Kit No. 332063-XXX



Figure 10-27. Schlumberger MicroMax POS with Allied Station Site Controller Box Current Loop Interface (CDIM) - Kit No. 848711-XXX

## **DIM Troubleshooting Charts**

The charts below contains basic DIM problem diagnosis and suggested corrected actions for both disabled DIM and DIM communication alarms:

- Disabled DIM Alarm for all DIM types (Figure 10-28)
- EDIM/LDIM Communication Alarm (Figure 10-28)
- CDIM Communication Alarm (Figure 10-30)

In each chart, follow the action steps in the left column, and depending on the result in the right two columns (YES or NO), go to the next action step indicated. The grayed-in steps contain either end results (E) or steps for further action (A).

10 DIMs DIM Troubleshooting Charts

|        | DISABLED DIM ALARM (ALL DIM TYPES)                                                               |          |      |
|--------|--------------------------------------------------------------------------------------------------|----------|------|
| This a | larm means that the DIM module has stopped communicating with central processing unit of the     | console. | ,    |
| There  | are limited number of actions you can take to resolve this problem without having to replace the | DIM bo   | ard. |
| Step   | Description                                                                                      | Yes      | No   |
| 1      | [press the ALARM TEST button] Does the alarm go away?                                            | E1       | 3    |
| 2      | Are the software revision number and created date displayed in the screen?                       |          |      |
|        | Note alarm string message: 'E1:','M2:' etc.                                                      |          |      |
|        | [MODE] -> DIAGNOSTIC                                                                             |          |      |
|        | [FUNCTION]-> SYSTEM DIAGNOSTIC                                                                   | 3        | A1   |
|        | [STEP]-> DIM DIAGNOSTIC DATA                                                                     |          |      |
|        | [ENTER] -> DIM software revision screen.                                                         |          | ł    |
|        | [TANK/SENSOR]-> until screen is displayed for the DIM with the alarm by matching 'E1',           |          | ł    |
|        | 'M1' you noted.                                                                                  |          | ł    |
| 3      | Does the alarm return after 2 minutes?                                                           | A1       | E1   |
|        | Turn the console power 'off' and then back 'on'.                                                 |          |      |
| A1     | Replace the DIM.                                                                                 |          |      |
| E1     | The DIM is working properly.                                                                     |          |      |
|        | •                                                                                                |          |      |

Figure 10-28. Disabled DIM Alarm

10 DIMs DIM Troubleshooting Charts

#### EDIM/LDIM COMMUNICATION ALARM

This alarm indicates that the DIM module has stopped communicating with external equipment to which it is connected by the RS-232 cable. To trouble shoot this problem you will verify that the DIM is operating properly and that all connections to external equipment are correct.

| Step | Description                                                                                                                                                                                                                                                                                                                                | Yes | No |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| 1    | [press ALARM/TEST button] Does the alarm go away?                                                                                                                                                                                                                                                                                          | E1  | 2  |
| 2    | Is there a DISABLED DIM ALARM also posted for this DIM?                                                                                                                                                                                                                                                                                    | A4  | 3  |
| 3    | Is this the correct type of DIM for the external equipment it is connected to?  Verify the DIM part number shipped with the DIM part number listed in the Installation Manual. Or do the following:  Note alarm string message: 'E1:','E2:' or 'M1','M2' etc.  [MODE] -> DIAGNOSTIC  [FUNCTION]-> SYSTEM DIAGNOSTIC                        | 4   | A5 |
|      | [STEP]-> DIM DIAGNOSTIC DATA [ENTER] -> DIM software revision screen. [TANK/SENSOR]-> until screen is displayed for the DIM with the alarm by matching 'E1', 'M1' you noted. Note the software revision number to verify what is required for your application.                                                                            |     |    |
| 4    | Is the cable connected to both the DIM and the correct port on the external equipment?  (Double check the correct port is being used on the external equipment.)                                                                                                                                                                           | 5   | A1 |
| 5    | Are any of the LED's flashing on the DIM board?                                                                                                                                                                                                                                                                                            | 6   | 7  |
| 6    | Is the setup string entered for this DIM correct according to the Installation Manual?  Note alarm string message: 'E1:','E2:' or 'M1','M2' etc.  [MODE] -> SETUP MODE  [FUNCTION]-> RECONCILIATION SETUP  [STEP]-> DISP. MODULE SETUP STRING  [TANK/SENSOR]-> until screen is displayed for the DIM with the alarm by matching 'E1', 'M1' | 7   | A2 |
| 7    | Does the DIM loop-back tool put both LED's ON steady?                                                                                                                                                                                                                                                                                      | 8   | A6 |
| 8    | Does the cable meet Installation Manual specifications? Is it wired according to specification, and pass the ohm tests?                                                                                                                                                                                                                    | E2  | A3 |
| A1   | Connect the cable to both the DIM and External Equipment. Restart the troubleshooting procedures after 2 minutes, or immediately after a console power cycle.                                                                                                                                                                              |     |    |
| A2   | Enter the correct parameter string according the instructions in the Installation Manual. Restart the troubleshooting procedures after 2 minutes, or immediately after a console power cycle                                                                                                                                               |     |    |
| А3   | Install factory authorized cables. Restart the troubleshooting procedures after 2 minutes, or immediately after a console power cycle.                                                                                                                                                                                                     |     |    |
| A4   | Use the DISABLED DIM ALARM troubleshooting table first.                                                                                                                                                                                                                                                                                    |     |    |
| A5   | Obtain the correct DIM and/or Installation Kit.                                                                                                                                                                                                                                                                                            |     |    |
| A6   | Replace the DIM.                                                                                                                                                                                                                                                                                                                           |     |    |
| E1   | The DIM board is operational. It is normal for COMMUNICATION ALARMS to occur if the cable was disconnected for longer than 1 minute, or if the external equipment was turned off for longer than one minute.                                                                                                                               |     |    |
| E2   | All the questions you have answered indicated that the system should be operational. There may be problems with the external equipment such as software compatibility.                                                                                                                                                                     |     |    |

Figure 10-29. EDIM/LDIM Communication Alarms

10 DIMs DIM Troubleshooting Charts

## CDIM COMMUNICATION ALARM

This alarm indicates that the DIM module has stopped receiving communication from cable adapter box (CAB). To trouble shoot this problem you will verify that the DIM is operating properly and that all the connections to external equipment are correct.

| Step       | Description                                                                                                                         | Yes       | No        |
|------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|
| 1          | [press the ALARM TEST button] Does the alarm go away?                                                                               | E1        | 2         |
| 2          | Is there a DISABLED DIM ALARM also posted for this DIM?                                                                             | <b>E2</b> | 3         |
| 3          | Is this the correct type of DIM for the external equipment it is connected to?                                                      |           |           |
|            | Verify the DIM part number shipped with the DIM part number listed in the Installation                                              |           |           |
|            | Manual. Or do the following:                                                                                                        |           |           |
|            | Note alarm string message: 'E1:','E2:' or 'M1','M2' etc.                                                                            |           |           |
|            | [MODE] -> DIAGNOSTIC                                                                                                                |           |           |
|            | [FUNCTION]-> SYSTEM DIAGNOSTIC                                                                                                      | 4         | A3        |
|            | [STEP]-> DIM DIAGNOSTIC DATA                                                                                                        |           |           |
|            | [ENTER] -> DIM software revision screen. [TANK/SENSOR]-> until screen is displayed for the DIM with the alarm by matching 'E1',     |           |           |
|            | [TAINK/SENSOR]-> until screen is displayed for the DIM with the alarm by matching E1, 'M1' you noted.                               |           |           |
|            | Note the software revision number and to verify what is required for your application.                                              |           |           |
| 4          | Is the DIM connected to the correct Cable Adapter Box required for this system?                                                     | 5         | A3        |
| 5          | Is the CAB properly cabled to the external equipment, as defined by the Installation                                                | 6         | A4        |
| 3          | Manual, with the CAB bypass switch in 'RUN' mode?                                                                                   | 0         | A4        |
| 6          | Is the LED on the CAB flashing (fast flicker)?                                                                                      | 7         | 9         |
| 7          | Is the LED on the CAB hashing (last flexer).  Is the LED on the DIM that corresponds to the port connected to the CAB flashing in a | 8         | A5        |
| ,          | similar manner as the CAB?                                                                                                          |           | 113       |
| 8          | Is the setup string entered for this DIM correct according to the Installation Manual?                                              |           |           |
| Ü          | Note alarm string message: 'E1:','E2:' or 'M1','M2' etc.                                                                            |           |           |
|            | [MODE] -> SETUP MODE                                                                                                                |           |           |
|            | [FUNCTION]-> RECONCILIATION SETUP                                                                                                   | 9         | <b>A1</b> |
|            | [STEP]-> DISP. MODULE SETUP STRING                                                                                                  |           |           |
|            | [TANK/SENSOR]-> until screen is displayed for the DIM with the alarm by matching 'E1',                                              |           |           |
|            | 'M1'                                                                                                                                |           |           |
| 9          | Move the RJ45 connection at the DIM to one of the other three ports. <b>Is the LED on the</b>                                       | A5        | <b>A6</b> |
|            | CAB flashing?                                                                                                                       |           |           |
| <b>A</b> 1 | Enter the correct parameter string according the instructions in the Installation                                                   |           |           |
|            | Manual. Restart the troubleshooting procedures after 2 minutes, or immediately after                                                |           |           |
|            | a power cycle.                                                                                                                      |           |           |
| A2         | Use the DISABLED DIM ALARM Trouble shooting table first.                                                                            |           |           |
| A3         | Obtain the correct CDIM and/or Installation Kit.                                                                                    |           |           |
| A4         | Ensure that the entire installation is complete before you begin troubleshooting.                                                   |           |           |
| A5         | Replace the DIM                                                                                                                     |           |           |
| <b>A6</b>  | Replace the DIM card and installation kit. It is not possible to determine which device                                             |           |           |
|            | is the problem from the responses.                                                                                                  |           |           |
| E1         | The CDIM board is operational. It is normal for COMMUNICATION ALARMS to occur                                                       |           |           |
|            | if the cable was disconnected for longer than 1 minute, or if the external equipment                                                |           |           |
|            | was turned off for longer than one minute.                                                                                          | ,         |           |
| E2         | All the questions you have answered indicate that the system should be operational.                                                 |           |           |
|            | There may be problems with the external equipment such as software incompatibility.                                                 |           |           |

Figure 10-30. CDIM Communication Alarm

# 11 CSLD Troubleshooting

CSLD collects information during each idle time to form a highly accurate leak detection database. Since the database is being constantly updated, leak test results are always current. Periodic leak tests are performed using the best data from up to the previous 28 days, and test results are continuously updated as new data is gathered. Invalid data is discarded and only the best data is used to ensure accurate leak test results and fewer false alarms. Test results are provided automatically every 24 hours at 8:00 a.m.

#### **CSLD Tank Limitations**

All applications of CSLD should conform to the following installation guidelines.

#### **MAXIMUM TANK CAPACITY**

Single tank - 30,000 gallons

Manifolded tanks - 30,000 gallons per manifolded set (3 tanks maximum per set).

#### MONTHLY THROUGHPUT GUIDELINES

Table 11-1.Tank Capacity / Monthly Throughput Limitations\*

|          |         | Tank Capacity |         |         |         |  |  |  |
|----------|---------|---------------|---------|---------|---------|--|--|--|
| Product  | <10,000 | 12,000        | 15,000  | 20,000  | 30,000  |  |  |  |
| Gasoline | 200,000 | 200,000       | 200,000 | 150,000 | 100,000 |  |  |  |
| Diesel   | 200,000 | 200,000       | 200,000 | 200,000 | 200,000 |  |  |  |

<sup>\*</sup>Total capacity of manifolded tanks establishes the throughput restrictions for that product. Installations exceeding these limitations may not pass monthly tests.

#### **CSLD Block Diagrams**

Figure 11-1 illustrates the CSLD decision process in block diagram form and Figure 11-2 diagrams the timing of events during a CSLD test.



Figure 11-1. CSLD Decision Process Block Diagram



Figure 11-2. CSLD Leak Test Timing Sequence

#### **CSLD Diagnostic Aids**

Due to the complexity of CSLD, most information required to troubleshoot the product is accessible only using RS-232 commands via direct or modem connection. If you do not have a computer or data terminal to collect this data you will not be able to resolve CSLD alarms.

In order to troubleshoot CSLD problems you must retrieve the following reports via the RS-232 port or modem:

- 1. IA5100 CSLD Rate Table (see Figure 11-3)
  This table contains the last 28 days of leak tests, or a maximum of 80 of the most recent tests.
- IA5200 CSLD Rate Test (see Figure 11-4)
   This report contains the CSLD summary of the evaluation of the raw test data collected in the Rate Table.
- IA5300 CSLD Volume Table (see Figure 11-5)
   This report contains volume samples collected once every hour. CSLD uses this data to determine the amount of dispensing that has occurred during the last 24 hours.
- 4. IA5400 CSLD Moving Average Table (see Figure 11-6)
  This report contains averaged probe data collected every 30 seconds. CSLD uses this data to determine if the tank is idle or active, and to perform the leak test.

```
IA5100
MAR 14, 1996 8:12 AM
CSLD DIAGNOSTICS: RATE TABLE
T 1:SUPER
     TIME ST
                LRT AVTMP TPTMP BDTMP TMRT DSPNS
                                                    VOL INTVL
                                                                  DEL ULLG EVAP
9602202227 0 -0.016 39.2
                                               191 4281 174.5
                                                                  2.7 168 0.000
                            38.3
                                 36.3 0.02
9602210128 0 0.016 39.3
                            38.2 35.9 0.02
                                              169
                                                    4281 174.5
                                                                  5.7 168
                                                                           0.000
                      39.4
9602210428 0 -0.022
                            38.2
                                  35.6
                                        0.03
                                               162
                                                    4281 57.5
                                                                  8.7
                                                                       168
                                                                            0.000
9602210636 1 0.106
                      39.5
                            38.3
                                 35.8
                                       0.02
                                               213
                                                    4207 19.5
                                                                 10.8 172
                                                                           0.000
                                                                 11.5 173 0.000
27.2 204 0.000
                                  35.9 0.00
9602210718 1 0.118
                      39.5
                            38.4
                                               215
                                                    4175 19.5
9602212259 3 0.007
                                                    3557 174.5
                      40.2
                            39.0
                                  37.1 0.02
                                               460
           ---- Partial set of entries shown -----
          Test start time. (YYMMDDHHMM)
TIME
          Test qualification status at last evaluation.
          0 Test valid
          1 Test rejected - duration too short.
          2 Test rejected - start time too close to a delivery.
          3 Test rejected - excessive dispensing prior to test.
          4 Test rejected - excessive temperature change during test.
          6 Test rejected - leak rate outlier.
LRT
          Leak rate in gph (negative number = a loss, no sign = a gain)
AVTMP
          Average fuel temperature
TPTMP
          Temperature of top thermistor in the tank.
BDTMP
          Temperature of thermistor on the board.
TMRT
          Rate of temperature change during the test.
          Factor related to the amount of dispensing prior to the test.
DSPNS
VOL
          Volume at the start of the test.
INTVL
          Test Duration in minutes.
DEL
          Time since the last delivery in hours.
ULLG
          Amount of surface area of the tank that is not covered by fluid.
EVAP
         If the Reid Vapor Pressure table has been entered, the evaporation rate will
          be here.
```

Figure 11-3. CSLD Rate Table Example

```
IA5200
MAR 14, 1996 8:12 AM
CSLD DIAGNOSTICS: RATE TEST
          DATE LRATE INTVL ST AVLRTE
                                            VOL C1 C3 FDBK ACPT
                                                                     THPUT EVAP RJT
    9603140346 -0.031
                        33.7
                                   0.002
                                            3525
                                                  74
                                                      15 38.3 28.9
                                                                     31.63 0.000
    9603140342 0.000 32.2 1
9603140151 0.051 26.8 1
                                   0.004
                                           3184 74
                                                     15 38.3 28.9 29.85 0.000
                                   0.039
                                            6165 49
                                                      16 10.1 8.8
                                                                     43.67 0.000
                                                                                    0
    9603140646 \ -0.000 \ 53.0 \ 1 \ -0.003 \ 1762 \ 80 \ 26 \ 45.0 \ 44.8 \ 20.22 \ 0.000
                                                                                    0
DATE
          The date of the last rate table evaluation (YYDDMMHHMM)
LRATE
          Compensated leak rate in gph (negative number = a loss, no sign = a gain)
INTVL
          Total test duration, sum of all acceptable tests, in hours.
ST
          Status:
          0 NO TEST - no evaluation.
          1 PASS
          2 FAIL
          3 NOT USED.
          4 INVALID - obsolete.
          5 NO DATA: COUNT - not enough tests available to evaluate. There must be
            at least 2 acceptable tests.
          6 NO DATA:INTERVAL - not enough total test time to evaluate (< 6 hours). 7 NO DATA:RANGE - tests did not range over a sufficient time period.
                           test time < 10 hours AND tests date range < 5 DAYS.
                               - excessive positive leak rate.
          8 WARNING INCREASE
          9 WARNING NEGATIVE_HOLD - 2 day waiting period before reporting a
            failure.
AVLRTE
          Uncompensated Leak Rate, in gph (negative number = a loss, no sign = a gain)
VOL
          Average volume of all acceptable tests.
C1
          Total number of tests in the rate table.
C3
          Number of acceptable tests.
FDBK
          Feedback control variable, range 0 to 45 minutes.
ACPT
          Accept control variable, range 0 to 45 minutes.
THPUT
          Estimated monthly throughput in thousands of gallons.
          If the Reid Vapor Pressure table has been entered, the evaporation rate will
EVAP
RJT
          Of the last 20 tests completed, this is the number of tests rejected due
          to excessive positive leak rate (>0.4 gph).
```

Figure 11-4. CSLD Rate Test Example

```
Most recent

CSLD DIAGNOSTICS: VOLUME TABLE
T 1:SUPER
LAST HOUW = 229664

→ 3582.8 2466.7 2466.7 2470.0 2496.6 2522.4 2553.1 2591.0
3682.8 2466.7 2466.7 2470.0 2496.6 2522.4 2553.1 2591.0
3684.5 2702.3 2725.7 2754.5 2823.0 2873.8 2921.8 2991.5 

T 2:SPECIAL
LAST HOUW = 229664
2996.8 3043.5 3107.4 3127.7 3127.8 3127.7 3127.8
3127.3 1090.8 1105.0 1131.4 1170.1 1198.9 1224.3 1329.6
1420.9 1535.5 1603.5 1613.2 1680.6 1739.8 1808.6 1842.4

T 3:REGULAR
LAST HOUW = 229664
7755.0 7960.6 8006.9 8037.9 8049.1 8049.2 8049.3 8049.0
8021.1 4691.9 4716.8 4804.2 4849.0 4966.7 5240.7 5495.2
5668.8 5770.5 5959.2 6067.6 6222.8 6352.4 6495.8 6688.3

T 4:DIESEL
LAST HOUW = 229664
3133.9 3157.1 3157.1 3157.1 3157.1 3157.0 3156.8
31356.7 941.4 941.3 941.3 941.3 941.3 941.3 941.3 941.3
941.3 941.2 1004.7 1004.6 1019.4 1047.6 1064.4 1101.2

The volume table is a 24 hour history of the tank volume recorded every hour. This list starts with the most recent volume and moves to the oldest volume from left to right and top to bottom.
```

Figure 11-5. CSLD Volume Table Example

SMPLS = Samples
TCVOL = Temp. compensated volume
HEIGHT = Product height
AVGTEMP = Avg. fuel temperature
TOPTEMP = Temp. of the highest
thermistor in the probe
BDTEMP = Temp. of the probe circuit
board (in canister)

| CSLD DIAGNOST                | ICS: MO  | JING AVERAG        | E TABLE          |                |                |                |
|------------------------------|----------|--------------------|------------------|----------------|----------------|----------------|
| T 2:SUPER                    |          |                    |                  |                |                |                |
| TIME                         | SMPLS    | TCVOL              | HEIGHT           | AVGTEMP        | TOPTEMP        | BDTEMP         |
| 960312103008<br>960312103038 | 28<br>28 | 2118.16<br>2118.16 | 29.547<br>29.547 | 45.52<br>45.52 | 44.01<br>44.01 | 39.31<br>39.31 |
| 960312103038                 | 28       | 2118.16            | 29.547           | 45.52          | 44.01          | 39.31          |
| 960312103138                 | 27       | 2118.16            | 29.547           | 45.53          | 44.02          | 39.32          |
| 960312103208                 | 24       | 2118.17            | 29.547           | 45.53          | 44.02          | 39.32          |
| 960312103238                 | 28       | 2118.19            | 29.547           | 45.52          | 44.02          | 39.32          |
| 960312103308                 | 28       | 2118.13            | 29.547           | 45.52          | 44.02          | 39.32          |
| 960312103338                 | 28       | 2118.13            | 29.547           | 45.52          | 44.02          | 39.33          |
| 960312103408                 | 28       | 2118.16            | 29.547           | 45.52          | 44.03          | 39.33          |
| 960312103438                 | 28       | 2118.13            | 29.547           | 45.52          | 44.03          | 39.33          |
| 960312103508                 | 28       | 2118.17            | 29.547           | 45.52          | 44.03          | 39.33          |
| 960312103538<br>960312103608 | 27<br>22 | 2118.16<br>2118.21 | 29.547<br>29.547 | 45.52<br>45.52 | 44.04<br>44.04 | 39.34<br>39.34 |
| 960312103608                 | 19       | 2118.21            | 29.547           | 45.52<br>45.52 | 44.04          | 39.34          |
| 960312103038                 | 28       | 2118.23            | 29.548           | 45.52          | 44.05          | 39.34          |
| 960312103700                 | 28       | 2118.19            | 29.547           | 45.52          | 44.05          | 39.34          |
| 960312103808                 | 29       | 2118.17            | 29.547           | 45.52          | 44.06          | 39.35          |
| 960312103838                 | 21       | 2118.13            | 29.547           | 45.52          | 44.06          | 39.35          |
| 960312103908                 | 29       | 2118.21            | 29.547           | 45.52          | 44.06          | 39.35          |
| 960312103938                 | 28       | 2118.12            | 29.546           | 45.53          | 44.06          | 39.36          |
| 960312104008                 | 28       | 2118.11            | 29.546           | 45.53          | 44.06          | 39.36          |
| 960312104038                 | 28       | 2118.21            | 29.547           | 45.53          | 44.06          | 39.37          |
| 960312104108                 | 29       | 2118.14            | 29.547           | 45.53          | 44.06          | 39.37          |
| 960312104138<br>960312104208 | 27<br>29 | 2118.05<br>2115.86 | 29.546<br>29.524 | 45.53<br>45.53 | 44.06<br>44.06 | 39.38<br>39.38 |
| 960312104208                 | 28       | 2112.55            | 29.490           | 45.53          | 44.05          | 39.30          |
| 960312104230                 | 28       | 2109.43            | 29.459           | 45.53          | 44.05          | 39.39          |
| 960312104338                 | 28       | 2106.14            | 29.426           | 45.53          | 44.05          | 39.40          |
| 960312104408                 | 28       | 2102.58            | 29.390           | 45.53          | 44.05          | 39.40          |
| 960312104438                 | 27       | 2099.08            | 29.354           | 45.53          | 44.05          | 39.40          |
| 960312104508                 | 28       | 2095.64            | 29.320           | 45.53          | 44.05          | 39.41          |
| 960312104538                 | 29       | 2092.37            | 29.287           | 45.53          | 44.04          | 39.41          |
| 960312104608                 | 22       | 2091.61            | 29.279           | 45.53          | 44.04          | 39.41          |
| 960312104638                 | 28       | 2091.66            | 29.279           | 45.53          | 44.04          | 39.42          |
| 960312104708<br>960312104738 | 27<br>28 | 2091.64<br>2091.66 | 29.279<br>29.280 | 45.53<br>45.53 | 44.04<br>44.05 | 39.42<br>39.43 |
| 960312104738                 | 28       | 2091.65            | 29.279           | 45.53          | 44.05          | 39.43          |
| 960312104838                 | 28       | 2091.60            | 29.279           | 45.53          | 44.05          | 39.43          |
| 960312104908                 | 28       | 2091.61            | 29.279           | 45.53          | 44.05          | 39.44          |
| 960312105008                 | 23       | 2091.60            | 29.279           | 45.53          | 44.04          | 39.44          |
| 960312105038                 | 29       | 2091.67            | 29.280           | 45.53          | 44.04          | 39.44          |
| 960312105108                 | 29       | 2091.70            | 29.280           | 45.53          | 44.04          | 39.45          |
| 960312105138                 | 21       | 2091.63            | 29.279           | 45.53          | 44.04          | 39.45          |
| 960312105208                 | 28       | 2091.74            | 29.280           | 45.53          | 44.04          | 39.45          |
| 960312105238                 | 29       | 2091.63            | 29.279           | 45.53          | 44.04          | 39.45          |
| 960312105308                 | 29       | 2091.64            | 29.279           | 45.53          | 44.04          | 39.46          |
| MOVING AVERAGI               | £: 20:   | 91.64              |                  |                |                |                |

\* following ACTIVE = Pump sense available

Figure 11-6. CSLD Moving Average Table Example

# **Tank Setup Check Before Troubleshooting**

All in-tank setup data must be correct for CSLD to work properly. Setup data, such as manifolded status, pump sense tank assignment, and temperature coefficient of thermal expansion entries, should be verified before attempting troubleshooting procedures.

#### **CSLD Alarms**

Each of the three CSLD alarms, CSLD Rate Incr Warn, No CSLD Idle Time, and Periodic Test Fail is discussed below. In addition, there is one CSLD status message, No Results Available, which is also discussed.

#### ALARM: CSLD RATE INCR WARN

A CSLD Rate Increase Warning indicates fluid is entering the tank during the leak test. This warning indicates a higher than acceptable positive increase in product calculated from the CSLD Rate Table. The threshold amounts are listed below.

Single tank configuration:

PD - 95% = +0.17 gph

PD - 99% = +0.16 gph

Manifolded Tank configuration:

PD - 95% = +0.16 gph

PD - 99% = +0.15 gph

You can also print out the CSLD DIAGNOSTICS from the DIAGNOSTIC Mode to see the actual calculated value (see Figure 6-7).

#### **SOME POSSIBLE Causes of positive rate increases**

- 1. Incorrect temperature coefficient entered during setup. Verify that the temperature coefficient of thermal expansion is set correctly according to the TLS Setup Manual specifications listing for various product grades.
- 2. Manifold Tank Siphon Bar Leakage

Rate increases can occur in siphon manifolded tanks due to a leaking siphon system. Since the siphon piping is normally full of fuel this can become a source of rate increases. If the siphon does not hold, product will drain back slowly into the tanks during idle periods. The fuel from the siphon piping will increase the volume in the tank which will cause a CSLD rate increase warning. Test and repair the siphon system per the manufacturer's recommendations.

- 3. Leaks In Submersible Pumps
  - a. Around the packer O-ring.
  - b. At the threads of the two-inch pipe coming from the turbine motor.
  - c. The gasket between the turbine motor and mounting flange.
  - d. At any seal which would allow the column of fuel being held in the pump by the check valve to leak back slowly into the tank.
- 4. Manifolded tanks are programmed incorrectly in In-Tank setup.

Tanks in a manifolded set must be programmed as a set, and you must select **CSLD** as the Leak Test Fequency for each of the tanks.

5. Defective Line Check Valves

Fluid from the line piping leaking back into the tank through a defective Line Check Valve may cause a rate increase. Verify that the line piping holds pressure after pumping stops.

6. Thermal Expansion In The Lines

When the product temperature in the tank is lower than the ground temperature, product in the line will expand after dispensing. After pumping ceases the line check valve or pump check valve will maintain pressure in the line. As the ground warms the product in the line expands. This expansion causes a corresponding pressure increase in the line therefore the pressure relief valve opens. The relief valve, relieves this increased pressure by allowing fuel to flow back into the tank. The flow from the line back into the tank can be a source of rate increase warnings. Typically thermal expansion's impact on CSLD is short lived. However, in extreme cases thermal expansion can be a source of CSLD rate increase warnings. If thermal expansion is suspected as the source of CSLD rate increase warnings you

should inspect the site layout to determine if it is susceptible to extreme thermal expansion due to site specific conditions (i.e. shallow line depth combined with extreme temperatures, etc.).

7. Stage II Vapor Recovery System Related Problems

Condensed vapors and liquid drawn into the vapor recovery system can leak back into the tank causing increases.

- a. Check with the manufacturer of the vapor recovery system about possible solutions such as the addition of a vapor pot to collect these condensed vapors.
- b. Have the Stage II vapor recovery system inspected and tested.
- c. Verify that liquid product in the vapor lines cannot drain directly back into the tank. A liquid trap can be installed. The product that collects in the trap can be siphoned back to the tank via the pump siphon system. This will prevent the introduction of liquid into the tank during idle periods.
- 8. Water Leaking into the Tank

Water can leak into the tank and cause rate increase warnings.

- a. Check the water level in the tank.
- b. Monitor the tank for increasing water levels.
- c. Check the alarm history for prior water level alarms.

#### ALARM: NO CSLD IDLE TIME

The system has not detected an idle period in the last 24 hours. All tanks must have at the very least some short idle periods each day. CSLD needs to find an idle time to clear this alarm. This alarm will automatically clear when the system detects that at least one idle period has occurred (this does not require that a CSLD record get stored in the rate table).

Frequent or continuous NO CSLD IDLE TIME messages are an indication of a problem. Possible reasons for this message:

- 1. Very large leaks may look like a product dispense. If this occurs the system will post a NO CSLD IDLE TIME alarm since it appears that product is being continually dispensed from the tank. Stop all activities and run a Static Leak Test.
- 2. Very high activity. Tank capacity or throughput specifications are exceeding CSLD specifications.
- 3. Line leak detection is running the product pump during normally idle periods. Veeder-Root line leak equipment is designed to coordinate line testing and CSLD to prevent this disturbance however in some cases conflicts may arise.
- 4. The site may be having problems determining an idle period due to site specific equipment disturbing the tank level (e.g. vapor recovery equipment).
- 5. The pump is running continuously. Check for a defective product dispenser or pump relay that is keeping the pump turned On.
- 6. A defective probe will sometimes make the tank level appear as though it is changing continuously when it is actually stable. This can be determined by examining the CSLD Moving Average Table (IA5400 Command). This table displays the tank data at 30 second intervals. Increases and decreases of typically around 1 or 2 gallons when the tank is idle are indications that the probe may be the problem. Also verify the amount of samples the TLS is receiving from the probe -there should be at least 7 and as many as 31.

## **ALARM: PERIODIC TEST FAIL**

This message is posted when CSLD data indicates a high probability that a tank is leaking. The threshold for this determination is shown below,

#### **Single Tanks:**

PD - 95% = +0.17 gph

PD - 99% = +0.16 gph

#### **Manifolded Tanks:**

PD - 95% = +0.16 gph

PD - 99% = +0.15 gph

Review the rate table leak rates (LRATE). If the rates are not consistent (-0.83, +0.06,-0.90, -0.62, etc.) most likely the tank is not leaking.

Possible reasons for this message:

- 1. Tank is leaking.
- 2. CSLD is not recognizing the start of a busy period soon enough. These conditions are caused by small and/or slow dispenses, as in the case of operation with blenders. The soulution would be to install a Pump Sense Module.
- 3. An external device is periodically turning On the pump power. This usually results in large negative leak rates. A Pump Sense Module will solve this problem.
- 4. Coefficient of expansion programmed incorrectly.
- 5. Tank is manifolded but programmed incorrectly.
- Excessive compensation. Check in the IA500 report for excessive compensation by comparing the compensated value (LRATE) to the uncompensated value (AVLRTE). The most likely cause of excessive compensation is bad probe temperature readings.
- 7. Stuck floats. Install a collar on the probe shaft to prevent floats from entering riser.
- 8. Floats damaged or installed incorrectly.
- 9. A stuck relay is causing the pump to run continuously. This causes the fluid to heat up around the pump producing temperature compensation errors.
- 10. Excessive evaporation due to an air leak into the tank may be the cause of a periodic leak test failure. Check vapor recovery system, pressure vent cap, all tank sump areas and riser caps, delivery sump plunger valve, etc.

#### STATUS MESSAGE: NO RESULTS AVAILABLE

This message may print when the CSLD Test Results are printed or accessed via the RS-232 command. This message indicates that CSLD has not collected sufficient test data to determine whether or not the tank is leaking, and is normal until 7 -10 days AFTER a CSLD startup. The program must be allowed to build a suitable database to calculate reliable results. At highly active sites some tanks may provide results before others. The busier tanks will take longer to produce the initial results.

Possible reasons for this message:

- 1. Not enough time after startup to generate results.
- 2. Console is being shut Off on a regular basis.
- 3. Tank too busy.
- 4. Defective probe.
- 5. Not enough idle time (see message above).
- 6. Tests are being rejected because the test results indicate a rate increase >+0.4 gph.

#### **Static Leak Test**

If after troubleshooting the Periodic Test Fail Alarm an equipment problem has not been identified, perform a static leak test. Be sure that the prodcut pump cannot come on during the test and that the level in the tank is within the normal operating range (i.e., the results of the static test may not be meaningful if the tank is nearly empty). If the static test verifies the CSLD result follow the procedures as established by the site owner. If the static test passes, contact Technical Support for assistance.

## When to Manually Clear the CSLD Rate Table

You should manually clear the CSLD Rate Table if data, known to be inaccurate, had been stored in the table and the source of the inaccurate data was subsequently removed (e.g., after making tank plumbing repairs).

The CSLD Rate Table can be cleared in the DIAG MODE at the console front panel or via the RS-232 command shown below.

**IMPORTANT!** DO NOT CLEAR THE CSLD RATE TABLE UNLESS IT IS ABSOLUTELY NECESSARY. DATA CLEARED FROM THIS TABLE CAN NOT BE RECOVERED!

```
Function Code: 054
```

Function Type: Delete CSLD Rate Table

Command Format:

Display: <SOH>S054TT149
Computer: <SOH>s054TT149

#### NOTE:

- 1. TT Tank number (command valid for single tank only).
- 2. 149 Verification code.

#### Typical Response Message Display:

```
<SOH>
```

S05402149

JAN 1, 1997 8:03 AM

T2:PRODUCT 2 CSLD RECORDS DELETED

<ETX>

#### typical Response Message Computer:

<SOH>s054TTYYMMDDHHMM&&CCCC<EXT>

#### NOTE:

- 1. YYMMDDHHmm Current time of day
- 2. TT Tank number
- 3. && Data termination flag
- 4. CCCC Message checksum.

## **Contacting Tech Support**

If the CSLD problem cannot be resolved, retrieve the following data via the RS-232 port or SiteFax modem and contact Technical Support:

- 1. <Control-A> IA5100 CSLD RATE TABLE
- 2. <Control-A> IA5200 CSLD RATE TEST
- 3. <Control-A> IA5300 CSLD VOLUME TABLE
- 4. <Control-A> IA5400 CSLD MOVING AVERAGE TABLE
- 5. <Control-A> I10100 SYSTEM STATUS REPORT
- 6. <Control-A> I10200 SYSTEM CONFIGURATION REPORT
- 7. <Control-A> I11100 PRIORITY ALARM HISTORY
- 8. <Control-A> I11200 NON-PRIORITY ALARM HISTORY
- 9. <Control-A> I20100 INVENTORY REPORT
- 10. <Control-A> I20200 DELIVERY REPORT
- 11. <Control-A> I20600 TANK ALARM HISTORY REPORT
- 12. <Control-A> I25100 CSLD RESULTS
- 13. <Control-A> I60900 SET TANK THERMAL EXPANSION COEFFICIENT
- 14. <Control-A> I61200 SET TANK MANIFOLDED PARTNERS

Is tank assigned to a pump sense input or assigned to a line leak device?

If assigned to a pump sense collect the following reports:

- 1. <Control-A> I77100 PUMP SENSE CONFIGURATION REPORT
- 2. <Control-A> 177200 PUMP SENSOR TANK ASSIGNMENT REPORT
- 3. <Control-A> I77300 PUMP SENSOR DISPENSE MODE REPORT
- 4. <Control-A> IB7100 PUMP SENSOR DIAGNOSTIC REPORT
- OR if assigned to PLLD collect the following report:
  - 1. <Control-A> I78000 PRESSURE LINE LEAK GENERAL SETUP INQUIRY
- OR if assigned to WPLLD collect the following report:
  - 1. <Control-A> I7A000 WPLLD LINE LEAK GENERAL SETUP
- OR if assigned to VLLD collect the following reports:
  - 1. <Control-A> I75200 SET VOLUMETRIC LINE LEAK TANK NUMBER
  - 2. <Control-A> I75D00 SET VOLUMETRIC LINE LEAK DISPENSE MODE

## **Actual CSLD Test Problems Analyzed**

## **CSLD PROBLEM 1 - TANK 1 CSLD FAIL**

Report I25101 confirmed the failure. Reports IA5201, and IA5100 were then collected for analysis.

I25101

CSLD TEST RESULTS

TANK PRODUCT RESULT

1 SUPER PER: JUL 26, 1996 FAIL

## **DIAGNOSTICS**

JUL 26, 1996 10:44 AM

IA5101

CSLD DIAGNOSTICS: RATE TABLE

T1: SUPER

| TIME       | SI | LRT    | AVTMP | TPTMP | BDTMP | TMRT  | DISPNS | VOL  | INTVL | DEL  | ULLG | EVAP  |
|------------|----|--------|-------|-------|-------|-------|--------|------|-------|------|------|-------|
| 9606280418 | 1  | 0.105  | 66.1  | 75.3  | 84.8  | -0.05 | 750    | 2837 | 35.5  | 51.9 | 263  | 0.000 |
| 9606290312 | 3  | 0.059  | 69.3  | 76.4  | 86.3  | -0.09 | 488    | 3542 | 127.5 | 5.0  | 227  | 0.000 |
| 9606281743 | 1  | 0.095  | 68.8  | 77.0  | 86.8  | -0.08 | 731    | 2802 | 36.0  | 19.5 | 265  | 0.000 |
| 9606300041 | 3  | -0.212 | 74.0  | 78.6  | 87.7  | -0.15 | 432    | 4432 | 49.5  | 5.5  | 179  | 0.000 |
| 9606300246 | 1  | 0.098  | 73.8  | 78.7  | 87.8  | -0.13 | 441    | 4381 | 33.0  | 7.6  | 182  | 0.000 |
| 9606300353 | 3  | 0.097  | 73.6  | 78.8  | 87.8  | -0.12 | 438    | 4366 | 52.5  | 8.7  | 183  | 0.000 |
| 9606300519 | 1  | 0.079  | 73.5  | 78.8  | 87.8  | -0.11 | 434    | 4352 | 36.0  | 10.1 | 184  | 0.000 |
| 9606300657 | 3  | 0.055  | 73.4  | 78.9  | 87.8  | -0.11 | 4180   | 4316 | 53.5  | 11.8 | 186  | 0.000 |
| 9607010127 | 3  | 0.070  | 72.4  | 79.9  | 89.5  | -0.10 | 633    | 3464 | 39.5  | 30.3 | 231  | 0.000 |
| 9607010240 | 3  | 0.047  | 72.3  | 79.9  | 89.6  | -0.10 | 600    | 3458 | 44.0  | 31.5 | 231  | 0.000 |
| 9607020111 | 1  | 0.050  | 71.4  | 79.5  | 90.2  | -0.05 | 490    | 4492 | 32.0  | 16.5 | 176  | 0.000 |
| 9607020303 | 1  | 0.067  | 71.3  | 79.6  | 90.2  | -0.05 | 474    | 4467 | 26.0  | 18.4 | 178  | 0.000 |
| 9607021054 | 1  | 0.092  | 70.7  | 80.2  | 89.7  | -0.05 | 519    | 4196 | 25.5  | 26.2 | 193  | 0.000 |
| 9607021900 | 1  | 0.105  | 70.9  | 80.5  | 89.8  | -0.07 | 568    | 3837 | 35.0  | 34.3 | 212  | 0.000 |
| 9607030105 | 3  | 0.069  | 71.0  | 80.7  | 89.8  | -0.08 | 616    | 3580 | 41.5  | 40.4 | 225  | 0.000 |
| 9607030222 | 3  | 0.002  | 70.9  | 80.7  | 89.7  | -0.06 | 532    | 3571 | 113.0 | 41.7 | 226  | 0.000 |
| 9607040407 | 1  | -0.175 | 69.5  | 78.0  | 88.6  | 0.08  | 377    | 4297 | 34.0  | 0.9  | 187  | 0.000 |
| 9607041719 | 3  | 0.092  | 69.7  | 79.8  | 88.0  | -0.05 | 679    | 3574 | 42.0  | 14.1 | 226  | 0.000 |
| 9607042049 | 3  | 0.052  | 69.8  | 79.8  | 88.3  | -0.02 | 674    | 3448 | 43.5  | 17.6 | 232  | 0.000 |
| 9607042330 | 3  | 0.010  | 69.8  | 79.8  | 88.3  | -0.04 | 566    | 3423 | 113.5 | 20.3 | 233  | 0.000 |
| 9607050208 | 3  | 0.042  | 69.7  | 79.8  | 88.3  | -0.05 | 558    | 3403 | 39.5  | 23.0 | 234  | 0.000 |
| 9607050323 | 3  | 0.002  | 69.7  | 79.7  | 88.2  | -0.03 | 484    | 3398 | 99.5  | 24.2 | 235  | 0.000 |
| 9607052355 | 3  | 0.062  | 72.6  | 79.8  | 88.6  | -0.06 | 534    | 4442 | 78.5  | 11.8 | 179  | 0.000 |
| 9607060152 | 3  | 0.040  | 72.5  | 79.9  | 88.7  | -0.05 | 492    | 4416 | 146.0 | 13.8 | 180  | 0.000 |
| 9607061838 | 3  | 0.095  | 72.0  | 80.8  | 89.1  | -0.07 | 560    | 3832 | 37.0  | 30.5 | 212  | 0.000 |
| 9607062238 | 1  | -0.195 | 72.2  | 72.6  | 89.0  | 0.09  | 121    | 5631 | 28.5  | 0.0  | 97   | 0.000 |
| 9607070235 | 1  | 0.022  | 72.5  | 74.8  | 89.4  | 0.01  | 208    | 5511 | 35.0  | 4.0  | 108  | 0.000 |
| 9607070414 | 3  | -0.454 | 72.6  | 75.3  | 89.4  | 0.00  | 209    | 5502 | 42.5  | 5.6  | 108  | 0.000 |
| 9607080224 | 3  | -0.004 | 72.5  | 80.9  | 90.7  | -0.05 | 614    | 4585 | 104.0 | 27.8 | 171  | 0.000 |
| 9607080756 | 3  | 0.042  | 72.5  | 81.2  | 90.5  | -0.05 | 650    | 4427 | 41.5  | 33.3 | 180  | 0.000 |
| 9607080923 | 0  | -0.257 | 71.9  | 72.0  | 87.0  | 0.07  | 17     | 6027 | 147.0 | 34.8 | 0    | 0.000 |
| 9607081224 | 0  | -0.341 | 72.1  | 73.1  | 88.5  | 0.07  | 14     | 6026 | 146.5 | 3.0  | 0    | 0.000 |
| 9607081524 | 0  | -0.557 | 72.4  | 74.0  | 89.0  | 0.12  | 13     | 6025 | 146.5 | 6.0  | 0    | 0.000 |

Start of bad data

| 060000000   | _  | 0 0 = 5   |       |      |        |       |    |      | :    |       |       | _     |       |            |
|-------------|----|-----------|-------|------|--------|-------|----|------|------|-------|-------|-------|-------|------------|
| 9607081825  |    | -0.356    | 72.7  | 75.1 | 89.4   | 0.07  |    | 10   | 6024 | 146.0 |       | 0     | 0.000 |            |
| 9607082126  |    | -0.306    | 72.9  | 76.1 | 89.7   | 0.06  |    | 7    | 6023 | 145.5 |       | 0     | 0.000 |            |
| 9607090027  |    | -0.296    | 73.1  | 76.7 | 89.8   | 0.05  |    | 6    | 6022 | 145.0 |       | 0     | 0.000 |            |
| 9607090329  |    | -0.359    | 73.2  | 77.3 | 89.7   | 0.09  |    | 5    | 6021 | 144.0 |       | 0     | 0.000 |            |
| 9607090630  |    | -0.429    | 73.6  | 78.4 | 89.4   | 0.09  |    | 4    | 6020 | 143.0 |       | 0     | 0.000 |            |
| 9607090931  |    | -0.737    | 73.9  | 79.5 | 89.2   | 0.16  |    | 5    | 6018 | 142.5 |       | 0     | 0.000 |            |
| 9607091233  |    | -0.448    | 74.3  | 80.4 | 89.0   | 0.10  |    | 6    | 6017 | 141.5 |       | 0     | 0.000 |            |
| 9607091534  |    |           | 74.5  | 80.8 | 88.9   | 0.05  |    | 5    | 6016 | 141.0 |       | 0     | 0.000 |            |
| 9607091835  |    | -0.393    | 74.7  | 81.1 | 88.8   | 0.08  |    | 5    | 6015 | 140.0 |       | 0     | 0.000 |            |
| 9607092137  |    | -0.080    | 75.1  | 81.5 | 88.7   | 0.02  |    | 5    | 6013 | 139.0 |       | 0     | 0.000 |            |
| 9607100038  |    |           | 75.1  | 81.5 | 88.5   | -0.00 |    | 4    | 6013 | 138.5 |       | 0     | 0.000 |            |
| 9607100339  |    | -0.223    | 75.1  | 81.4 | 88.2   | 0.02  |    | 4    | 6013 | 137.5 |       | 0     | 0.000 |            |
| 9607100640  | 0  | 0.054     | 75.2  | 81.5 | 87.8   | 0.00  |    | 3    | 6013 | 137.0 |       | 0     | 0.000 |            |
| 9607100942  | 0  | -0.178    | 75.2  | 81.5 | 87.4   | 0.05  |    | 2    | 6013 | 136.0 | 48.1  | 0     | 0.000 |            |
| 9607101243  | 0  | -0.555    | 75.5  | 81.5 | 87.2   | 0.13  |    | 3    | 6012 | 135.5 | 51.1  | 0     | 0.000 |            |
| 9607101544  | 0  | -0.093    | 75.9  | 81.6 | 87.2   | 0.04  | :  | 3    | 6010 | 135.0 | 54.1  | 0     | 0.000 |            |
| 9607101845  | 0  | -0.018    | 76.0  | 81.4 | 87.4   | 0.02  |    | 3    | 6010 | 134.5 | 57.1  | 0     | 0.000 |            |
| 9607102146  | 0  | -0.248    | 76.1  | 81.4 | 87.5   | 0.04  | :  | 3    | 6009 | 134.0 | 60.1  | 0     | 0.000 |            |
| 9607110047  | 6  | 0.270     | 76.1  | 81.3 | 87.5   | -0.06 |    | 2    | 6009 | 133.5 | 63.2  | 0     | 0.000 |            |
| 9607110348  | 0  | -0.115    | 76.0  | 81.2 | 87.4   | 0.04  | :  | 2    | 6009 | 133.0 | 66.2  | 0     | 0.000 | End of     |
| 9607110649  | 0  | 0.113     | 76.1  | 81.1 | 87.1   | -0.04 | :  | 2    | 6009 | 44.5  | 69.2  | 0     | 0.000 | _bad data  |
| 9607120336  | 3  | -0.149    | 71.5  | 80.3 | 87.4   | -0.05 |    | 1440 | 3214 | 75.5  | 15.9  | 244   | 0.000 | _ bad data |
| 9607130348  | 3  | -0.211    | 70.8  | 79.3 | 86.5   | -0.02 |    | 587  | 3965 | 99.0  | 4.8   | 205   | 0.000 |            |
| 9607132344  | 3  | 0.054     | 70.9  | 79.9 | 87.5   | -0.05 |    | 638  | 3110 | 51.5  | 24.7  | 249   | 0.000 |            |
| 9607140246  | 2  | 0.133     | 70.1  | 75.1 | 86.5   | 0.04  | :  | 182  | 5030 | 128.5 | 0.1   | 144   | 0.000 |            |
| 9607150252  | 3  | 0.054     | 70.7  | 79.4 | 86.0   | -0.03 |    | 638  | 4088 | 45.0  |       | 199   | 0.000 |            |
| 9607170151  | 1  | 0.019     | 72.8  | 79.6 | 86.3   | -0.07 |    | 795  | 3756 | 29.0  |       | 216   | 0.000 |            |
| 9607170329  | 3  | 0.061     | 72.8  | 86.4 | 87.5   | -0.07 |    | 732  | 3736 | 40.5  |       | 217   | 0.000 |            |
| 9607170752  | 1  | 0.055     | 72.8  | 79.8 | 86.5   | -0.07 |    | 697  | 3593 | 18.5  |       | 224   | 0.000 |            |
| 9607172000  | 1  | 0.059     | 72.5  | 80.2 | 86.1   | -0.05 |    | 614  | 3045 | 30.5  |       | 252   | 0.000 |            |
| 9607180638  | 1  | 0.029     | 72.8  | 80.4 | 84.7   | -0.04 |    | 607  | 2665 | 18.0  |       | 271   | 0.000 |            |
| 9607190226  | 1  | 0.073     | 72.4  | 79.5 | 84.2   | -0.02 |    | 700  | 3614 | 28.0  |       | 223   | 0.000 |            |
| 9607200059  | 3  | 0.024     | 73.1  | 79.5 | 84.8   | -0.09 |    | 980  | 2230 | 38.0  |       | 294   | 0.000 |            |
| 9607200246  | 3  | 0.006     | 73.1  | 79.5 | 84.7   | -0.08 |    | 882  | 2203 | 93.0  |       | 295   | 0.000 |            |
|             | 3  | 0.033     | 71.6  | 78.6 | 84.6   | -0.01 |    | 510  | 4222 | 48.0  |       | 191   | 0.000 |            |
| 9607210433  | 1  | 0.033     | 71.6  | 78.6 | 84.5   | -0.01 |    | 493  | 4218 | 32.0  |       | 191   | 0.000 |            |
| 9607210013  | 1  | 0.027     | 72.4  | 78.9 | 83.3   | -0.02 |    | 637  | 3403 | 16.0  |       | 234   | 0.000 |            |
|             | 3  |           | 72.4  | 78.9 | 83.1   | -0.08 |    | 563  | 3380 |       |       | 234   | 0.000 |            |
|             |    |           |       |      |        |       |    |      |      | 54.5  |       |       |       |            |
| 9607220828  | 1  | 0.107     | 72.4  | 78.8 | 82.6   | -0.07 |    | 604  | 3219 | 16.0  |       | 243   | 0.000 |            |
| 9607232310  | 1  | 0.045     | 72.7  | 78.4 | 83.9   | -0.06 |    | 644  | 3525 | 21.0  |       | 228   | 0.000 |            |
| 9607240105  |    |           | 72.7  |      |        | -0.06 |    | 620  | 3471 | 21.5  |       | 230   |       |            |
| 9607250248  |    |           | 72.0  | 78.5 | 85.1   | -0.05 |    | 654  | 3301 | 20.5  |       | 239   | 0.000 |            |
| 9607250641  |    |           | 72.1  | 78.6 | 84.9   | -0.04 |    | 620  | 3219 | 17.5  |       | 243   | 0.000 |            |
| 9607260126  |    |           | 72.3  | 78.9 |        | -0.07 |    | 793  | 2153 |       |       | 298   | 0.000 |            |
| 9607260336  | 3  | -0.024    | 72.2  | 78.9 | 85.2   | -0.06 |    | 732  | 2145 | 63.0  | 43.2  | 298   | 0.000 |            |
| IA5201      |    |           |       |      |        |       |    |      |      |       |       |       |       |            |
| CSLD DIAGNO | ST | ICS: RATE | TEST  |      |        |       |    |      |      |       |       |       |       |            |
| TK DA       | TE | LRATE     | INTVL | ST   | AVLRTE | VOL   | C1 | C3   | FDBK | ACPT  | THPUT | DFMUL | RJT   |            |

1 9607260947 -0.308 49.8 2 -0.259 6016 79 22 43.9 43.4 5.24 -0.40 0

## **ANALYSIS OF RATE TABLE (IA51)**

#### LRT

Looking in the leak rate column (LRT) the test results start off looking reasonable, if anything they tend to be positive. Leak rates suddenly change on the 8th and are consistently negative. There is another transition on the 13th where the leak rates return to the pattern observed prior to the 8th - slightly positive.

#### ST

the status table indicates that the tests between the 8th and 13th are the only ones contributing to the overall leak rate. This is indicated by a status code of 0. The reason CSLD is favoring these tests will be explained below.

#### DATE

The DATE field indicated that tests are being performed on a regular basis, several tests a day.

CSLD will complete a test after 3 hours and start a new test if the tank remains idle. The tests between the 8th and the 13th are being performed continuously, one test every 3 hours. This is inconsistent with the tests outside this date range.

#### INTVL

This is the length of a test in minutes. With the exception of the period between the 8th and 13th, test lengths are much less than 140 minutes, this indicates the site is a 24-hour site because tests are halted by dispensing, not the 3-hour CSLD limit. Test intervals are less than 3 hours because CSLD eliminates the first part of a test. The amount of time eliminated varies with the feedback variables.

Together, the interval and date information indicates that the tank was IDLE during the 8th and 13th period.

In reference to all the test in the rate table, these tests also have the longest interval time, one of the reasons CSLD is favoring these tests. All the tests with status code 1 were rejected due to short intervals.

#### **DSPNS**

The dispense factor is an indication of the amount of dispensing that occurred during the last 24 hours. It is not as simple as the amount of gallons dispensed during the last 24 hours because the hourly volumes are weighted in such a way that the most recent dispensing value contributes more to the dispense factor than dispensing volume that has occurred 23 hours ago. But it can be used as a relative indication of tank activity. The dispense factor for the above data set shows a typical value of 600. But the dispense factor during the 8th and 13th period drops rapidly to single digit values. This is another indication that there was no dispensing during this period.

CSLD prefers tests with low dispense factors, another reason why CSLD is favoring these tests. All the tests rejected with error code 3 were rejected because of high dispense factors.

#### **VOL**

The volume parameter indicates the volume at the start of the test. The volume during the trouble period started at 6027 and slowly dropped to 6009 gallons. Note that none of the volumes exceeded 6027.

#### EVAP

If the Reid Vapor Pressure table has been entered, the evaporation rate is displayed here.

## **DEL**

The time since last delivery is in hour units. There was no indication of a delivery during the problem period. All tests rejected with error code 2 started within 2 hours of a delivery.

#### ULLG

The ullage factor is the surface area of the walls of the tank that is NOT covered in fluid. It is used for leak rate compensation. This parameter normally provides little diagnostic value, but it actually solves the problem. An ullage factor of zero indicates the tank is completely full, i.e., fluid height is equal to or greater than the tank's diameter.

## **ANALYSIS OF RATE TEST (IA52)**

The average leak rate (AVLRTE) is -0.259. The average leak rate is uncompensated so excessive compensation is not an issue. This leak rate is not excessively high so blender/pump sense issues are probably not involved.

The tank label is SUPER so most likely it is not manifolded.

The DATE is recent so results are up to date.

The maximum number of tests is 80 and because C1 = 79 there are more than enough tests.

## **SOLUTION**

The float was stuck in the riser. A collar was installed on the probe to prevent recurrences of this problem.

## **CSLD PROBLEM 2 - MANIFOLDED TANKS 1 AND 2 ARE FAILING**

Reports I201, I51, IA52, and I752 were collected for analysis.

#### **DIAGNOSTICS**

3

REGULAR

| I2010 | 0         |          |        |    |       |     |          |        |       |         |            |            |           |     |
|-------|-----------|----------|--------|----|-------|-----|----------|--------|-------|---------|------------|------------|-----------|-----|
| STATI | ON HEADER | INFO     |        |    |       |     |          |        |       |         |            |            |           |     |
| MAY 2 | 1, 2000 1 | 0:29 AM  |        |    |       |     |          |        |       |         |            |            |           |     |
| TANK  | PRODUCT   |          | VOLUME | Т  | C VOL | UME | ULLA     | AGE    | HEI   | GHT     | WATER      | TEMP       |           |     |
| 1     | REGULAR   |          | 2311   |    | 2     | 303 | 37       | 05     | 39    | .21     | 0.0        | 65.2       |           |     |
| 2     | REGULAR   | SLAVE    | 3276   |    | 3     | 266 | 47       | 46     | 41    | .07     | 1.6        | 64.1       |           |     |
| 3     | MIDGRADI  | Ξ        | 4378   |    | 4     | 365 | 57       | 774    | 42    | 2.81    | 0.0        | 64.4       |           |     |
| 4     | PREMIUM   |          | 2547   |    | 2     | 548 | 76       | 05     | 28    | 3.68    | 1.3        | 59.7       |           |     |
|       |           |          |        |    |       |     |          |        |       |         |            |            |           |     |
| IA520 | 0         |          |        |    |       |     |          |        |       |         |            |            |           |     |
| JUN 1 | 1, 2000 1 | 2:00 PM  |        |    |       |     |          |        |       |         |            |            |           |     |
| CSLD  | DIAGNOSTI | CS: RATE | TEST   |    |       |     |          |        |       |         |            |            |           |     |
| TK    | DATE      | LRATE    | INTVL  | ST | AVLI  | RTE | VOL      | C1     | С3    | FDBK    | ACPT       | THPUT      | EVAP      | RJT |
| 1 960 | 08220320  | -0.834   | 28.4   | 2  | -0.8  | 09  | 7909     | 58     | 30    | 20.3    | 21.7       | 32.37      | 0.000     | 0   |
| 2 960 | 08220320  | -0.834   | 28.4   | 2  | -0.8  | 09  | 7909     | 58     | 30    | 20.3    | 21.7       | 29.56      | 0.000     | 0   |
| 3 960 | 08220445  | -0.008   | 25.8   | 1  | 0.0   | 05  | 4400     | 67     | 18    | 30.     | 21.7       | 21.23      | 0.000     | 0   |
| 4 960 | 08220402  | 0.005    | 22.3   | 1  | 0.0   | 05  | 1893     | 80     | 13    | 45.0    | 44.8       | 24.45      | 0.000     | 0   |
|       |           |          |        |    |       |     |          |        |       |         |            |            |           |     |
| 17520 | 0         |          |        |    |       |     |          |        |       |         |            |            |           |     |
| JUN 1 | 1, 2000 1 | 0:30 AM  |        |    |       |     |          |        |       |         |            |            |           |     |
| LINE  | LEAK TANK | ASSIGNM  | ENT    |    |       |     |          |        |       |         |            |            |           |     |
| LINE  | LABEI     |          |        | TA | N     |     |          |        |       |         |            |            |           |     |
| 1     | PREMI     | UM       |        |    | 4     | Lin | ne 1 sho | ould k | e lab | elled F | Regular ar | nd assigne | d to tank | 1   |
| 2     | MIDGR     | RADE     |        |    | 3     | Со  | rrect as | s is   |       |         |            |            |           |     |

Line 3 should be labelled Premium and assigned to tank 4

I510 AUG 22, 1996 11:58 AM

CSLD DIAGNOSTICS: RATE TABLE

T1: REGULAR

Large and inconsistent negative leak rates.

| TI: REGULAR | -  |        |       |       |       |       |        |       |       |      |      |       |
|-------------|----|--------|-------|-------|-------|-------|--------|-------|-------|------|------|-------|
| TIME        | ST | LRT /  | AVTMP | TPTMP | BDTMP | TMRT  | DISPNS | VOL   | INTVL | DEL  | ULLG | EVAP  |
| 9607250359  | 1  | -0.802 | 72.3  | 73.7  | 76.0  | -0.09 | 594    | 5214  | 20.0  | 36.3 | 602  | 0.000 |
| 9607260145  | 3  | -0.186 | 73.5  | 74.3  | 76.2  | -0.15 | 451    | 9019  | 25.0  | 0.6  | 443  | 0.000 |
| 9607260309  | 0  | -0.661 | 73.3  | 74.3  | 76.2  | -0.12 | 438    | 9005  | 28.5  | 2.0  | 444  | 0.000 |
| 9607270309  | 0  | -0.666 | 72.4  | 73.5  | 76.2  | -0.04 | 602    | 11409 | 29.5  | 3.4  | 331  | 0.000 |
| 9607270411  | 0  | -0.409 | 72.4  | 73.6  | 76.2  | -0.04 | 552    | 11407 | 55.5  | 4.4  | 331  | 0.000 |
| 9607280030  | 0  | -1.027 | 72.2  | 73.9  | 76.2  | -0.05 | 503    | 9725  | 39.5  | 24.8 | 413  | 0.000 |
| 9607280318  | 0  | -1.064 | 72.1  | 73.9  | 76.2  | -0.05 | 448    | 9688  | 74.5  | 27.6 | 414  | 0.000 |
| 9607280511  | 0  | -0.634 | 72.1  | 73.8  | 76.2  | -0.04 | 410    | 9671  | 57.0  | 29.5 | 415  | 0.000 |
| 9607290118  | 1  | -0.544 | 71.9  | 73.9  | 76.3  | -0.07 | 478    | 8065  | 25.0  | 49.6 | 483  | 0.000 |
| 9607290408  | 0  | -0.932 | 71.8  | 73.8  | 76.3  | -0.05 | 434    | 8032  | 33.0  | 52.4 | 485  | 0.000 |
| 9607300100  | 0  | -1.121 | 71.7  | 73.6  | 76.2  | -0.07 | 601    | 5827  | 84.5  | 73.3 | 577  | 0.000 |
| 9607300258  | 0  | -0.873 | 71.5  | 73.6  | 76.2  | -0.07 | 551    | 5815  | 119.0 | 75.3 | 577  | 0.000 |
| 9607310325  | 2  | -0.621 | 70.3  | 72.7  | 76.0  | 0.02  | 468    | 10592 | 29.5  | 1.8  | 373  | 0.000 |
| 9607310427  | 0  | -0.388 | 70.4  | 72.8  | 76.0  | 0.01  | 431    | 10589 | 43.0  | 2.8  | 373  | 0.000 |
| 9608010046  | 6  | -0.081 | 70.3  | 71.8  | 75.6  | 0.00  | 509    | 11824 | 138.5 | 2.1  | 309  | 0.000 |
| 9608010451  | 1  | -0.521 | 70.3  | 72.4  | 75.5  | 0.00  | 481    | 11804 | 22.5  | 6.2  | 310  | 0.000 |
| 9608020130  | 3  | -0.839 | 70.6  | 73.1  | 75.4  | -0.04 | 689    | 9208  | 107.5 | 26.9 | 436  | 0.000 |
| 9608020349  | 0  | -0.597 | 70.5  | 73.1  | 75.3  | -0.04 | 663    | 9202  | 48.5  | 29.2 | 436  | 0.000 |
| 9608020510  | 1  | -1.061 | 70.5  | 73.1  | 75.3  | -0.03 | 639    | 9191  | 17.0  | 30.5 | 437  | 0.000 |
| 9608030035  | 1  | -0.775 | 70.8  | 72.9  | 75.1  | -0.06 | 783    | 6543  | 15.0  | 49.9 | 546  | 0.000 |
| 9608030351  | 3  | -0.951 | 70.7  | 72.9  | 75.1  | -0.06 | 680    | 6448  | 68.0  | 53.2 | 551  | 0.000 |
| 9608040234  | 3  | -0.839 | 72.8  | 73.7  | 75.1  | -0.08 | 988    | 8570  | 55.5  | 12.4 | 463  | 0.000 |
| 9608040425  | 1  | -0.046 | 72.7  | 73.9  | 75.1  | -0.05 | 944    | 8567  | 16.0  | 14.3 | 462  | 0.000 |
| 9608040649  | 1  | -0.144 | 72.6  | 73.7  | 75.1  | -0.07 | 842    | 8514  | 21.0  | 16.6 | 465  | 0.000 |
| 9608050051  | 0  | -0.228 | 72.3  | 73.4  | 75.2  | -0.07 | 531    | 6661  | 81.5  | 34.7 | 541  | 0.000 |
| 9608050309  | 1  | 0.030  | 72.2  | 73.6  | 75.2  | -0.09 | 509    | 6659  | 20.0  | 37.0 | 541  | 0.000 |
| 9608060123  | 0  | -0.344 | 71.9  | 73.3  | 75.3  | -0.10 | 617    | 4366  | 107.5 | 59.2 | 639  | 0.000 |
| 9608070046  | 3  | -0.942 | 77.8  | 77.3  | 76.4  | -0.20 | 684    | 9861  | 48.0  | 7.2  | 404  | 0.000 |
| 9608070312  | 1  | -0.955 | 77.4  | 77.0  | 76.5  | -0.17 | 647    | 9823  | 26.0  | 9.6  | 406  | 0.000 |
| 9608080356  | 0  | -0.960 | 75.5  | 75.9  | 76.9  | -0.10 | 654    | 7168  | 76.5  | 34.4 | 520  | 0.000 |
| 9608090121  | 0  | -1.035 | 74.6  | 75.4  | 77.2  | -0.11 | 614    | 4957  | 47.0  | 55.6 | 613  | 0.000 |
| 9608090315  | 1  | -1.435 | 74.5  | 75.4  | 77.2  | -0.10 | 599    | 4930  | 22.5  | 57.7 | 614  | 0.000 |
| 9608090410  | 0  | -1.226 | 74.4  | 75.4  | 77.3  | -0.09 | 577    | 4923  | 31.0  | 58.6 | 614  | 0.000 |
| 9608100145  | 1  | -0.738 | 73.3  | 75.0  | 77.4  | -0.06 | 713    | 7261  | 24.0  | 19.6 | 517  | 0.000 |
| 9608110220  | 1  | 0.132  | 72.5  | 74.0  | 77.4  | 0.00  | 420    | 11645 | 22.0  | 1.4  | 317  | 0.000 |
| 9608110445  | 0  | -0.218 | 72.6  | 74.7  | 77.5  | -0.01 | 372    | 11634 | 53.0  | 3.8  | 318  | 0.000 |
| 9608110616  | 0  | -0.628 | 72.6  | 74.7  | 77.5  | -0.01 | 362    | 11624 | 42.5  | 5.3  | 319  | 0.000 |
| 9608120303  | 2  | -0.779 | 72.7  | 73.3  | 77.3  | -0.02 | 302    | 12240 | 31.5  | 0.7  | 282  | 0.000 |
| 9608120409  | 2  | -0.574 | 72.7  | 73.5  | 77.3  | -0.03 | 293    | 12233 | 43.5  | 1.8  | 283  | 0.000 |
| 9608130138  | 0  | -0.874 | 72.8  | 74.8  | 77.2  | -0.04 | 580    | 10045 | 88.0  | 23.3 | 398  | 0.000 |
| 9608130342  | 1  | -0.777 | 72.7  | 74.9  | 77.2  | -0.04 | 560    | 10035 | 21.5  | 25.4 | 398  | 0.000 |
| 9608130520  | 1  | -1.054 | 72.7  | 74.9  | 77.2  | -0.04 | 547    | 10016 | 21.5  | 27.0 | 399  | 0.000 |
| 9608140210  | 0  | -1.442 | 72.7  | 74.9  | 77.1  | -0.05 | 565    | 8025  | 36.5  | 47.8 | 486  | 0.000 |
| 9608140328  | 0  | -1.245 | 72.6  | 74.9  | 77.1  | -0.05 | 523    | 8010  | 47.0  | 49.1 | 486  | 0.000 |
| 9608150117  | 3  | -0.758 | 72.6  | 74.7  | 77.0  | -0.08 | 690    | 5501  | 100.5 | 70.9 | 590  | 0.000 |
| 9608160325  | 2  | -0.843 | 72.1  | 74.1  | 76.9  | 0.00  | 415    | 10443 | 53.0  | 1.7  | 380  | 0.000 |
| 9608160455  | 0  | -0.594 | 72.1  | 74.3  | 77.0  | 0.00  | 398    | 10438 | 30.5  | 3.2  | 380  | 0.000 |
| 9608170055  | 0  | -0.427 | 72.2  | 74.7  | 77.0  | -0.06 | 630    | 8255  | 29.5  | 23.3 | 475  | 0.000 |
| 9608170403  | 0  | -0.704 | 72.2  | 74.7  | 77.0  | -0.04 | 551    | 8193  | 112.0 | 26.4 | 478  | 0.000 |
| 9608180200  | 0  | -1.037 | 72.2  | 74.6  | 76.9  | -0.06 | 504    | 6338  | 78.5  | 48.3 | 555  | 0.000 |
|             | -  |        |       |       |       |       | -      |       |       |      |      |       |

| 9608180357  | 0   | -0.853    | 72.1     | 74.6     | 76.9      | -0.05            | 486        | 6329     | 46.5    | 50.3 | 555  | 0.000 |
|-------------|-----|-----------|----------|----------|-----------|------------------|------------|----------|---------|------|------|-------|
| 9608180523  | 0   | -1.071    | 72.0     | 74.6     | 76.9      | -0.05            | 452        | 6316     | 72.0    | 51.7 | 556  | 0.000 |
| 9608190359  | 2   | -1.182    | 72.0     | 74.1     | 76.8      | 0.00             | 358        | 9680     | 62.0    | 1.7  | 414  | 0.000 |
| 9608200135  | 1   | -0.385    | 72.2     | 74.6     | 76.8      | -0.05            | 618        | 7471     | 22.5    | 23.3 | 508  | 0.000 |
| 9608220158  | 0   | -1.139    | 71.6     | 74.5     | 76.7      | -0.09            | 564        | 3210     | 41.5    | 71.6 | 694  | 0.000 |
| 9608220320  | 0   | -1.284    | 71.5     | 74.5     | 76.7      | -0.08            | 520        | 3194     | 40.0    | 73.0 | 695  | 0.000 |
|             |     |           |          |          |           |                  |            |          |         |      |      |       |
|             |     |           |          |          |           |                  |            |          |         |      |      |       |
| CSLD DIAGNO | ST  | ICS: RATE | E TABLE  | C        |           |                  |            |          |         |      |      |       |
| T2: REGULAR | СI  | 7775      |          |          |           |                  |            |          |         |      |      |       |
| 12. KEGOLAK |     | 744 7     |          |          |           |                  |            |          |         |      |      |       |
| TIME        | ST  | LRT       | AVTMP    | TPTMP    | BDTMP     | TMRT             | DISPNS     | VOL      | INTVL   | DEL  | ULLG | EVAP  |
| RATE TABLE  | EMI | The       | slave ta | nk in ma | anifolded | d sets <u>wi</u> | II have em | pty rate | tables! |      |      |       |

## **Analysis of Rate Table (IA51)**

Rate table shows large negative rates and the rates are inconsistent. This is an indication that CSLD is not detecting dispensing soon enough. If the leak test had stopped after dispensing began, the result would have been a negative rate.

The solution for this type of problem is pump sensing. BUT this site has pump sensing with line leak devices. The problem in this example was that the pump wiring to the line leak devices was correct, but the line leak tank assignments were incorrect.

#### Solution

Reassign Tanks 4 and 1 to their installed line leak devices (in this example, Line 1 [Reg] to Tank 1, Line 2 is correctly assigned to Tank 3, but Line 3 [Premium] should be assigned to Tank 4).

#### CSLD PROBLEM 3 - INCREASE RATE WARNING FOR MANIFOLDED TANKS 2 AND 3

Reports IA52 and IA53 were collected for analysis.

#### **Diagnostics**

```
TA5200
MAR 12, 1996 1:54 PM
                                                           Indicates number of tests rejected
                                                           because leak rates > +0.4 gph.
CSLD DIAGNOSTICS: RATE TEST
         DATE LRATE INTVL ST AVLRTE VOL C1 C3 FDBK ACPT THPUT DFMUL RJT
1 9603121226 -0.033 28.6 1 -0.009 3877 80 20 45.0 44.8 1.42 -0.08
2 9603120523 0.138 36.8 1 0.165 8647 53 31 14.6 15.0 3.26 0.16
3 9603120523 0.138 36.8 1 0.165
                                     8647 53 31 14.6 15.0 3.26 0.16
                              Large positive rates.
CSLD DIAGNOSTICS: RATE TABLE
T 2:REGULAR
               LRT AVIMP TPTMP BDTMP TMRT DSPNS
     TIME ST
                                               VOL INTVL
                                                           DEL ULLG EVAP
9602130541 1 0.181 42.2 41.7 40.1 -0.01
                                          265 10628 20.5
                                                          23.9 304 0.000
9602140033 3 0.320 42.1 41.6 40.3 -0.00 457 9331 59.5
                                                          42.7 366 0.000
9602140318 1 0.285 42.1 41.6 40.4 -0.00 420 9304 21.5
                                                          45.5 366 0.000
9602140406 0 0.178 42.1 41.6 40.4 -0.00 386 9292 100.0 46.3 366 0.000
9602150326 0 0.144 42.1 41.6 40.9 -0.00 382 7994 76.0
                                                          69.6 415 0.000
```

```
9602160140 0 0.354 42.0 41.6 41.2 0.00 440 6451 86.5
                                                           91.8 469 0.000
9602160333 0 0.281 42.0 41.6 41.2 0.00 422 6446 30.0
                                                           93.7 469 0.000
9602160506 1 0.260 42.0 41.7 41.2 0.00 404 6434
                                                     9.0
                                                           95.3 469 0.000
9602160541 0 0.084 42.0 41.7 41.2 0.00
                                         388 6428 44.5
                                                           95.9 469 0.000
9602170444 0 0.353 42.1
                         41.5 41.4 0.00
                                           416 4840 77.0 118.9 526 0.000
9602190128 0 0.307 42.8
                         42.6 41.8 -0.01
                                           287 11416 101.0
                                                           33.9 267 0.000
9602190335 0 0.072 42.8 42.6 41.8 -0.01
                                          259 11411 123.0
                                                           36.0 267 0.000
9602200211 0 0.046 42.7 42.4 41.9 -0.00
                                          357 10165 125.0
                                                           58.6 328 0.000
9602210256 0 0.169 42.7 42.3 41.9 -0.00 366 8726 132.0
                                                           83.3 383 0.000
9602210534 0 0.260 42.7 42.3 41.8 -0.00 351 8721 53.0
                                                          86.0 383 0.000
9602220139 3 0.153 42.6 42.2 41.9 -0.00 499 7285 63.0 106.1 444 0.000
9602220308 3 0.180 42.6 42.2 41.9 -0.00 479 7280 43.5 107.6 444 0.000
CSLD DIAGNOSTICS: RATE TABLE
T 3:REGULAR
     TIME ST LRT AVTMP TPTMP BDTMP TMRT DSPNS
                                               VOL INTVL
                                                            DEL ULLG THPT
RATE TABLE EMPTY
IA5300
IA5300
MAR 12, 1996 1:54 PM
                                             T2 is not tracking T3 which indicates siphon is broken.
CSLD DIAGNOSTICS: VOLUME TABLE
T 2:REGULAR
LAST HOUR = 229621
3768.9 3844.8 3893.5 3938.7 3979.9 4002.5
                                            4002.5
                                                          Volume is not moving.
4003.4 4003.4 4003.3 4003.5
                             4003.1
                                    4003.0
                                            4003.5
                                                   4001.0
4003.8 4024.6 4061.8 4109.2 4162.8 4253.6
                                            4344.8
                                                   4346/6
T 3:REGULAR
LAST HOUR = 229621
3473.6 3457.0 3487.6 3511.8 3537.1
                                    3573.3
                                            3609.7
                                                   3644.7 Volume is moving.
3649.7 3653.7 3655.9 3664.3
                             3670.7
                                    3688.0
                                            3746.6
                                                   3756.3
```

3796.1 3831.2 3850.6 3914.6

The hourly volume table shows that the manifolded tanks are not always tracking. Compare the periods underlined in the volume table below (Tank 2 volume only moved 1.3 gals while Tank 3 volume moves 222.8 gals). This large difference indicates that the siphon is breaking. Fluid leaking into the tank from the siphon is causing the increase rate warning.

3908.1

## Solution

Repair siphon.

#### CSLD PROBLEM 4 - NO CSLD IDLE TIME

Report IA5402 was collected for analysis during an idle period (no dispensing/deliveries).

3941.3

3923.1

## **Diagnostics**

IA5402

JUN 24, 1996 2:30 PM

CSLD DIAGNOSTICS: MOVING AVERAGE TABLE

Excessive differences may indicate a defective probe.

| т | $\sim$ | MIDGRADE |
|---|--------|----------|
|   |        |          |

| TIME         | SMPLS | TCVOL   | HEIGHT | AVGTEMP | TOPTEMP | BDTEMP |
|--------------|-------|---------|--------|---------|---------|--------|
| 960624140631 | 31    | 6521.67 | 53.299 | 78.76   | 81.10   | 86.64  |
| 960624140701 | 31    | 6521.77 | 53.298 | 78.72   | 80.99   | 86.54  |
| 960624140731 | 31    | 6521.85 | 53.297 | 78.67   | 80.88   | 86.44  |
| 960624140801 | 31    | 6522.22 | 53.298 | 78.61   | 80.75   | 86.34  |
| 960624140831 | 31    | 6522.67 | 53.298 | 78.53   | 80.62   | 86.23  |
| 960624140901 | 31    | 6523.02 | 53.298 | 78.46   | 80.49   | 86.11  |
| 960624140931 | 31    | 6523.44 | 53.299 | 78.38   | 80.35   | 85.94  |
| 960624141001 | 31    | 6523.48 | 53.297 | 78.30   | 80.17   | 85.81  |
| 960624141031 | 31    | 6523.90 | 53.297 | 78.22   | 80.04   | 85.67  |
| 960624141101 | 31    | 6524.77 | 53.301 | 78.15   | 79.93   | 85.84  |
| 960624141131 | 31    | 6524.58 | 53.298 | 78.11   | 79.84   | 85.41  |
| 960624141201 | 31    | 6525.14 | 53.301 | 78.09   | 79.77   | 85.28  |
| 960624141231 | 31    | 6524.94 | 53.299 | 78.08   | 79.71   | 85.15  |
| 960624141301 | 31    | 6524.97 | 53.299 | 78.06   | 79.66   | 85.03  |
| 960624141331 | 30    | 6525.22 | 53.300 | 78.04   | 79.62   | 84.91  |
| 960624141401 | 32    | 6525.17 | 53.299 | 78.02   | 79.57   | 84.79  |
| 960624141431 | 30    | 6525.26 | 53.299 | 77.98   | 79.51   | 84.68  |
| 960624141501 | 32    | 6525.63 | 53.299 | 77.93   | 79.24   | 84.52  |
| 960624141531 | 31    | 6526.39 | 53.302 | 77.68   | 79.33   | 84.40  |
| 960624141601 | 31    | 6526.71 | 53.303 | 77.80   | 79.26   | 84.29  |
| 960624141631 | 31    | 6526.88 | 53.302 | 77.74   | 79.20   | 84.17  |
| 960624141701 | 31    | 6527.34 | 53.304 | 77.72   | 79.17   | 84.07  |
| 960624141731 | 31    | 6527.60 | 53.306 | 77.73   | 79.17   | 83.97  |
| 960624141801 | 31    | 6527.49 | 53.308 | 77.81   | 79.27   | 83.89  |
| 960624141831 | 30    | 6527.37 | 53.311 | 77.93   | 79.43   | 83.85  |
| 960624141901 | 32    | 6526.21 | 53.307 | 78.05   | 79.62   | 83.82  |
| 960624141931 | 31    | 6526.36 | 53.311 | 78.16   | 79.78   | 83.81  |
| 960624142001 | 31    | 6525.02 | 53.305 | 78.23   | 79.94   | 83.81  |
| 960624142031 | 31    | 6525.20 | 53.307 | 78.26   | 80.00   | 83.81  |
| 960624142101 | 31    | 6524.84 | 53.304 | 78.25   | 80.01   | 83.80  |
| 960624142131 | 30    | 6523.02 | 53.304 | 78.25   | 80.00   | 83.80  |
| 960624142201 | 32    | 6526.39 | 53.314 | 78.23   | 80.04   | 83.79  |
| 960624142231 | 31    | 6526.65 | 53.319 | 78.35   | 80.19   | 83.81  |
| 960624142301 | 31    | 6525.05 | 53.315 | 78.57   | 80.45   | 83.86  |
| 960624142331 | 30    | 6523.43 | 53.319 | 78.84   | 80.78   | 83.94  |
| 960624142401 | 29    | 6521.88 | 53.310 | 79.11   | 81.12   | 84.05  |
| 960624142431 | 31    | 6519.58 | 53.303 | 79.34   | 81.44   |        |
| 960624142501 | 31    |         | 53.308 | 79.53   | 81.69   |        |
| 960624142531 | 30    | 6518.62 | 53.304 | 79.60   | 81.84   | 84.47  |
| 960624142601 |       | 6518.72 | 53.305 | 79.59   |         | 84.58  |
| 960624142631 | 30    | 6519.02 | 53.305 | 79.53   | 81.89   | 84.67  |
| 960624142701 | 31    | 6519.54 | 53.305 | 79.43   | 81.78   | 84.73  |
| 960624142731 | 31    | 6520.18 | 53.307 | 79.35   | 81.70   | 84.78  |
| 960624142801 | 31    | 6520.59 | 53.308 | 79.31   | 81.66   | 84.83  |
| 960624142831 | 31    | 6519.95 | 53.305 | 79.33   | 81.68   | 84.88  |
| 960624142901 | 30    | 6519.45 | 53.304 | 79.41   | 81.79   | 84.95  |

MOVING AVERAGE: 6523.52

DISPENSE STATE: ACTIVE \* 177.531143

The moving average table shows erratic probe readings. Fluid is rising and falling by several gallons.

## Solution

Replace probe.

## **CSLD PROBLEM 5 - TANK 1 IS FAILING**

Reports I251, I201, IA52, IA51, and I609 were collected for analysis.

## **Diagnostics**

I25100

JUN 26, 1996 2:37

STATION

HEADER

INFO

PHONE

#### CSLD TEST RESULTS

| TANK | PRODUCT        | RESU | LT  |     |      |      |
|------|----------------|------|-----|-----|------|------|
| 1    | UNLEADED       | PER: | JUN | 24, | 1996 | FAIL |
| 2    | UNLEADED PLUS  | PER: | JUN | 26, | 1996 | PASS |
| 3    | SUPER UNLEADED | PER: | JUN | 26, | 1996 | PASS |
| 4    | KEROSENE       | PER: | JUN | 26, | 1996 | PASS |
| 5    | DIESEL         | PER: | JUN | 26, | 1996 | PASS |

I20100

STATION HEADER INFO

JUN 26, 1996 2:36 PM

| TANK | PRODUCT        | VOLUME | TC VOLUME | ULLAGE | HEIGHT | WATER | TEMP |
|------|----------------|--------|-----------|--------|--------|-------|------|
| 1    | UNLEADED       | 8627   | 8617      | 3000   | 63.42  | 0.0   | 76.9 |
| 2    | UNLEADED PLUS  | 9286   | 9278      | 2341   | 67.92  | 0.0   | 72.2 |
| 3    | SUPER UNLEADED | 8315   | 8309      | 3312   | 61.38  | 0.0   | 70.6 |
| 4    | KEROSENE       | 5399   | 5395      | 598    | 60.21  | 0.0   | 70.9 |
| 5    | DIESEL         | 2989   | 2987      | 2940   | 46.27  | 0.0   | 70.1 |

IA5200

JUN 26, 1996 2:37 PM

CSLD DIAGNOSTICS: RATE TEST

TK DATE LRATE INTVL ST AVLRTE VOL C1 C3 FDBK ACPT THPUT EVAP RJT 1 9606240446 -0.270 10.3 2 -0.217 6406 21 20 0.0 0.0 44.32 0.000 1

```
2 9606260806 -0.159 25.1 1 -0.140 8959 67 16 30.4 32.6 77.32 0.000 0
3 9606260928 -0.039 31.3 1 -0.026 9277 80 18 45.0 44.8 87.45 0.000 0
4 9606261351 0.020 102.1 1 0.031 5404 63 41 25.9 24.3 43.32 0.000 0
5 9606261122 -0.010 41.4 1 0.001 3495 80 21 45.0 44.8 27.45 0.000 0
```

IA5100

CSLD DIAGNOSTICS: RATE TABLE (excerpt)

Inconsistent rates - not temperature compensating correctly.

| T1: UNLEAD | ED |        |       |       |       |       |        |      |       |      |      |       |
|------------|----|--------|-------|-------|-------|-------|--------|------|-------|------|------|-------|
| TIME       | ST | LRT    | AVTMP | TPTMP | BDTMP | TMRT  | DISPNS | VOL  | INTVL | DEL  | ULLG | EVAP  |
| 9605270507 | 0  | -0.140 | 65.9  | 70.0  | 73.7  | 0.00  | 1271   | 8521 | 31.5  | 24.7 | 322  | 0.000 |
| 9605290214 | 0  | -0.343 | 66.0  | 70.1  | 72.9  | -0.10 | 1945   | 4983 | 17.0  | 38.9 | 471  | 0.000 |
| 9605290334 | 0  | -0.172 | 65.9  | 70.0  | 72.8  | -0.09 | 1820   | 4937 | 44.0  | 40.3 | 473  | 0.000 |
| 9605290444 | 0  | -0.135 | 65.8  | 70.0  | 72.6  | -0.11 | 1770   | 4911 | 40.5  | 41.4 | 474  | 0.000 |
| 9606020430 | 0  | 0.050  | 70.6  | 72.2  | 76.0  | -0.07 | 1660   | 7254 | 20.0  | 16.1 | 378  | 0.000 |
| 9606020510 | 0  | -0.301 | 70.5  | 72.2  | 76.1  | -0.12 | 1591   | 7247 | 31.5  | 16.8 | 378  | 0.000 |
| 9606020637 | 0  | -0.193 | 70.4  | 72.1  | 75.8  | -0.10 | 1539   | 7215 | 18.0  | 18.3 | 380  | 0.000 |
| 9606030317 | 0  | -0.408 | 69.2  | 71.8  | 73.1  | -0.13 | 1584   | 4802 | 16.5  | 38.9 | 479  | 0.000 |
| 9606030346 | 0  | -0.336 | 69.1  | 71.8  | 73.1  | -0.14 | 1517   | 4799 | 21.5  | 39.4 | 479  | 0.000 |
| 9606030441 | 0  | -0.249 | 69.0  | 71.7  | 73.1  | -0.09 | 1474   | 4779 | 27.5  | 40.3 | 480  | 0.000 |
| 9606100451 | 0  | -0.114 | 68.0  | 71.2  | 72.5  | -0.12 | 1411   | 4303 | 28.5  | 41.1 | 500  | 0.000 |
| 9606110421 | 0  | -0.136 | 67.8  | 70.6  | 72.8  | -0.05 | 1956   | 7132 | 28.5  | 22.5 | 383  | 0.000 |
| 9606110505 | 0  | -0.049 | 67.8  | 70.6  | 72.9  | -0.05 | 1907   | 7105 | 23.0  | 23.2 | 384  | 0.000 |
| 9606120357 | 0  | 0.148  | 68.8  | 70.8  | 72.7  | -0.05 | 1253   | 6644 | 17.0  | 4.7  | 403  | 0.000 |
| 9606120601 | 0  | 0.133  | 68.7  | 70.6  | 72.2  | -0.06 | 1247   | 6535 | 18.5  | 6.7  | 408  | 0.000 |
| 9606130439 | 0  | -0.293 | 73.0  | 73.4  | 75.2  | -0.14 | 745    | 8532 | 44.0  | 5.8  | 321  | 0.000 |
| 9606130608 | 0  | 0.324  | 72.9  | 73.3  | 74.8  | -0.12 | 763    | 8464 | 16.0  | 7.3  | 324  | 0.000 |
| 9606170258 | 0  | -0.254 | 73.1  | 75.4  | 80.0  | -0.12 | 1511   | 4677 | 21.5  | 38.7 | 484  | 0.000 |
| 9606170334 | 0  | -0.424 | 73.0  | 75.5  | 80.2  | -0.16 | 1373   | 4672 | 112.0 | 39.3 | 484  | 0.000 |
| 9606180420 | 6  | -1.046 | 78.9  | 79.2  | 82.8  | -0.26 | 1222   | 6206 | 49.0  | 10.3 | 421  | 0.000 |
| 9606240446 | 0  | -0.350 | 75.2  | 79.0  | 84.5  | -0.20 | 1659   | 3399 | 41.0  | 33.0 | 539  | 0.000 |
| IA5100     |    |        |       |       |       |       |        |      |       |      |      |       |

CSLD DIAGNOSTICS: RATE TABLE (excerpt)

T2: UNLEADED PLUS

| TIME       | ST | LRT    | AVTMP | TPTMP | BDTMP | TMRT  | DISPNS | VOL   | INTVL | DEL  | ULLG | EVAP  |
|------------|----|--------|-------|-------|-------|-------|--------|-------|-------|------|------|-------|
| 9606100818 | 1  | -0.134 | 67.2  | 69.2  | 71.5  | -0.04 | 116    | 10194 | 21.5  | 2.3  | 231  | 0.000 |
| 9606110159 | 3  | -0.081 | 67.4  | 70.1  | 72.3  | -0.02 | 492    | 9489  | 69.5  | 19.9 | 273  | 0.000 |
| 9606110346 | 3  | -0.081 | 67.3  | 70.2  | 72.3  | -0.01 | 460    | 9479  | 90.0  | 21.7 | 274  | 0.000 |
| 9606120140 | 3  | -0.075 | 67.5  | 70.3  | 71.8  | -0.03 | 484    | 8763  | 70.0  | 43.6 | 310  | 0.000 |
| 9606120329 | 3  | -0.083 | 67.5  | 70.4  | 71.9  | -0.02 | 445    | 8759  | 75.0  | 45.4 | 310  | 0.000 |
| 9606120614 | 3  | -0.044 | 67.4  | 70.5  | 71.8  | -0.02 | 395    | 8747  | 57.5  | 48.1 | 311  | 0.000 |
| 9606130250 | 0  | -0.103 | 68.9  | 70.6  | 73.6  | -0.04 | 245    | 9650  | 146.5 | 3.8  | 264  | 0.000 |
| 9606140214 | 3  | -0.111 | 68.6  | 71.2  | 75.3  | -0.02 | 404    | 8974  | 145.5 | 27.1 | 300  | 0.000 |
| 9606140515 | 0  | -0.117 | 68.5  | 71.4  | 75.8  | -0.02 | 369    | 8974  | 66.5  | 30.1 | 300  | 0.000 |
| 9606150445 | 1  | -0.051 | 68.5  | 71.6  | 76.7  | -0.03 | 543    | 8049  | 27.5  | 53.6 | 343  | 0.000 |
| 9606150557 | 3  | -0.108 | 68.5  | 71.8  | 76.7  | -0.02 | 506    | 8035  | 120.0 | 54.8 | 344  | 0.000 |
| 9606160322 | 3  | -0.251 | 70.7  | 73.0  | 78.6  | -0.04 | 415    | 9276  | 113.5 | 14.8 | 284  | 0.000 |
| 9606160601 | 3  | -0.233 | 70.5  | 73.1  | 79.0  | -0.04 | 399    | 9271  | 52.0  | 17.4 | 285  | 0.000 |
| 9606170504 | 1  | -0.142 | 70.2  | 73.4  | 78.9  | -0.04 | 326    | 8731  | 29.0  | 40.4 | 312  | 0.000 |
| 9606180317 | 3  | -0.131 | 70.0  | 73.8  | 79.6  | -0.02 | 395    | 8055  | 76.0  | 62.6 | 343  | 0.000 |
| 9606190158 | 3  | -0.146 | 69.9  | 73.9  | 78.7  | -0.03 | 434    | 7315  | 138.5 | 85.3 | 375  | 0.000 |
| 9606190524 | 3  | -0.136 | 69.8  | 74.1  | 79.4  | -0.03 | 398    | 7310  | 52.5  | 88.7 | 375  | 0.000 |
| 9606191045 | 1  | -0.062 | 69.7  | 74.1  | 77.5  | -0.05 | 354    | 7207  | 28.0  | 94.1 | 380  | 0.000 |

| 9606200101 | 3 | -0.183 | 70.4 | 74.1 | 79.3 | -0.07 | 412 | 7715 | 48.5 | 12.6 | 358 | 0.000 |
|------------|---|--------|------|------|------|-------|-----|------|------|------|-----|-------|
| 9606200241 | 3 | -0.187 | 70.3 | 74.2 | 79.5 | -0.05 | 382 | 7711 | 53.5 | 14.3 | 358 | 0.000 |
| 9606200429 | 0 | -0.175 | 70.3 | 74.3 | 79.6 | -0.04 | 354 | 7708 | 70.5 | 16.0 | 358 | 0.000 |



## Analysis of Rate Table (IA5100)

The test results show that tank 2 is also close to failing. Examining the leak rates for both tanks shows negative rates. the TMRT parameter is showing a negative temperature rate. This means that the fuel is contracting during the test.

## **ANALYSIS OF THERMAL EXPANSION COEFFICIENT REPORT (160900)**

Checking the thermal temperature coefficient of expansion value for the tanks reveals that these values were programmed incorrectly (1 extra zero was entered for each value e.g., 0.000070 instead of 0.00070). CSLD was not able to correct for temperature change when computing the leak rate.

#### Solution

Correctly reprogram the coefficient of thermal expansion for each tank.

### **CSLD PROBLEM 6 - CSLD PERIODIC FAILURE TANK 1**

## **Diagnostics**



Tanks programmed as

manifolded would have a common result.

I25100

JUN 17, 1998 8:32 AM

Station Header 1

Station Header 2

Station Header 3

Station Header 4

CSLD TEST RESULTS

TANK PRODUCT RESULT

 1 UNLEADED SOUTH
 PER: JUN 17, 1998 FAIL

 2 UNLEADED NORTH
 PER: JUN 17, 1998 PASS

 3 POWER PREMIUM
 PER: JUN 17, 1998 PASS

 4 POWER PLUS
 PER: JUN 17, 1998 PASS

IA5200

JUN 17, 1998 8:32 AM

CSLD DIAGNOSTICS: RATE TEST

Positive tests rejected, these occurred when T1 was filing this tank.

| TK | DATE       | LRATE  | ${\tt INTVL}$ | ST | AVLRTE | VOL  | C1 | C3 | FDBK | ACPT | THPUT | DFMUL | RJT |
|----|------------|--------|---------------|----|--------|------|----|----|------|------|-------|-------|-----|
| 1  | 9806170430 | -0.492 | 14.7          | 2  | -0.504 | 6123 | 26 | 20 | 0.0  | 0.0  | 7.13  | 0.61  | Q/  |
| 2  | 9806170254 | 0.025  | 14.8          | 1  | 0.015  | 6238 | 22 | 19 | 0.0  | 0.0  | 6.89  | 0.67  | 3   |
| 3  | 9806170557 | 0.033  | 22.3          | 1  | 0.025  | 6289 | 75 | 19 | 39.4 | 29.8 | 4.01  | 0.14  | 0   |
| 4  | 9806170527 | 0.033  | 26.6          | 1  | 0.018  | 6010 | 44 | 21 | 4.5  | 4.2  | 6.74  | 0.08  | 1   |

I61200

JUN 17, 1998 8:33 AM

TANK MANIFOLDED PARTNERS

| TANK | PRODUCT LABEL  | MANIFOLDED TANKS |                        |
|------|----------------|------------------|------------------------|
| 1    | UNLEADED SOUTH | <u>NONE</u>      | Toules not necessarily |
| 2    | UNLEADED NORTH | NONE             | Tanks not programmed   |
| 3    | POWER PREMIUM  | NONE             | as manifolded.         |
| 4    | POWER PLUS     | NONE             |                        |

IA5100 JUN 17, 1998 8:32 AM

CSLD DIAGNOSTICS: RATE TABLE

# Inconsistent large leak rates. T1 is filling T2 while test is running.

| T 1:UNLEADE | 1:UNLEADED SOUTH |        |       |       |       |       |       |      |       |      |      |      |
|-------------|------------------|--------|-------|-------|-------|-------|-------|------|-------|------|------|------|
| TIME        | ST               | LRT    | AVTMP | TPTMP | BDTMP | TMRT  | DSPNS | VOL  | INTVL | DEL  | ULLG | THPT |
|             |                  |        |       |       |       |       |       |      |       |      |      |      |
| 9806060245  | 3                | -0.307 | 63.0  | 66.4  | 69.8  | -0.08 | 1562  | 4297 | 57.5  | 31.7 | 419  | 6.7  |
| 9806060527  | 0                | -0.452 | 62.9  | 66.3  | 69.5  | 0.12  | 1457  | 4263 | 16.0  | 34.4 | 420  | 6.4  |
| 9806070032  | 2                | 0.073  | 60.5  | 64.8  | 69.5  | 0.03  | 649   | 6411 | 34.5  | 1.1  | 325  | 7.4  |
| 9806070211  | 0                | -0.185 | 60.5  | 65.0  | 69.4  | 0.02  | 601   | 6379 | 111.5 | 2.8  | 327  | 7.0  |
| 9806070414  | 0                | -0.459 | 60.5  | 65.2  | 69.3  | 0.11  | 601   | 6378 | 24.0  | 4.8  | 327  | 7.0  |
| 9806080228  | 2                | 0.081  | 59.9  | 60.2  | 69.7  | 0.07  | 225   | 8870 | 54.5  | 0.7  | 190  | 6.9  |
| 9806100232  | 3                | -0.978 | 60.8  | 64.4  | 69.9  | 0.04  | 1680  | 3968 | 17.5  | 48.7 | 434  | 7.2  |
| 9806100303  | 3                | -1.977 | 60.8  | 64.4  | 69.9  | -0.05 | 1612  | 3966 | 28.5  | 49.2 | 434  | 7.2  |
| 9806110337  | 0                | -0.706 | 63.0  | 64.9  | 70.2  | -0.03 | 916   | 6092 | 27.0  | 13.2 | 339  | 7.1  |
|             |                  |        |       |       |       |       |       |      |       |      |      |      |

CSLD DIAGNOSTICS: RATE TABLE

T 2:UNLEADED NORTH

| TIME       | ST | LRT    | AVTMP | TPTMP | BDTMP | TMRT  | DSPNS | VOL  | INTVL | DEL  | ULLG | THPT |
|------------|----|--------|-------|-------|-------|-------|-------|------|-------|------|------|------|
|            |    |        |       |       |       |       |       |      |       |      |      |      |
| 9806060147 | 6  | -0.747 | 63.4  | 67.8  | 71.8  | -0.02 | 1620  | 4335 | 47.5  | 30.7 | 417  | 7.0  |
| 9806060245 | 0  | -0.008 | 63.4  | 67.7  | 71.7  | -0.02 | 1555  | 4333 | 58.0  | 31.7 | 417  | 6.7  |
| 9806060527 | 0  | -0.420 | 63.3  | 67.4  | 71.2  | -0.01 | 1452  | 4299 | 16.5  | 34.4 | 419  | 6.4  |
| 9806070032 | 2  | -0.061 | 60.9  | 66.0  | 71.3  | 0.07  | 647   | 6442 | 35.5  | 0.7  | 324  | 6.9  |
| 9806070211 | 0  | 0.109  | 61.0  | 66.1  | 71.2  | 0.04  | 599   | 6406 | 112.0 | 2.4  | 325  | 6.6  |
| 9806070414 | 0  | 0.021  | 61.1  | 66.1  | 71.1  | -0.00 | 599   | 6403 | 25.0  | 4.4  | 326  | 6.5  |
| 9806080248 | 2  | 0.046  | 62.1  | 62.6  | 71.2  | 0.01  | 187   | 8886 | 35.5  | 0.6  | 188  | 6.4  |
| 9806080434 | 0  | -0.303 | 62.1  | 63.1  | 71.2  | -0.02 | 202   | 8854 | 29.5  | 2.4  | 191  | 6.3  |
| 9806090040 | 0  | -0.323 | 62.0  | 66.1  | 71.4  | -0.01 | 1470  | 6594 | 23.0  | 22.5 | 317  | 6.7  |
| 9806090425 | 0  | -0.427 | 62.0  | 66.2  | 71.2  | -0.02 | 1329  | 6571 | 20.5  | 26.2 | 318  | 6.5  |

IA5400 JUN 17, 1998 8:33 AM

This tank is filling T2.

CSLD DIAGNOSTICS: MOVING AVERAGE TABLE

|              |       |         | /               |         |         |        |
|--------------|-------|---------|-----------------|---------|---------|--------|
| T 1:UNLEADED | SOUTH |         |                 |         |         |        |
| TIME         | SMPLS | TCVOL   | <b>▶</b> HEIGHT | AVGTEMP | TOPTEMP | BDTEMP |
| 980617081037 | 23    | 5322.01 | 48.612          | 63.50   | 66.17   | 71.45  |
| 980617081107 | 23    | 5321.05 | 48.605          | 63.51   | 66.18   | 71.45  |
| 980617081137 | 22    | 5320.19 | 48.599          | 63.51   | 66.19   | 71.45  |
| 980617081207 | 23    | 5319.40 | 48.593          | 63.51   | 66.19   | 71.45  |
| 980617081237 | 23    | 5318.47 | 48.587          | 63.51   | 66.18   | 71.45  |
| 980617081307 | 24    | 5317.38 | 48.579          | 63.52   | 66.18   | 71.45  |
|              |       |         |                 |         |         |        |

| 980617081337    | 25  | 5316.16 | 48.570 | 63.51 | 66.19 | 71.45 |
|-----------------|-----|---------|--------|-------|-------|-------|
| 980617081407    | 16  | 5315.18 | 48.562 | 63.51 | 66.19 | 71.45 |
| 980617081437    | 20  | 5313.85 | 48.552 | 63.50 | 66.19 | 71.45 |
| 980617081507    | 16  | 5312.97 | 48.546 | 63.50 | 66.19 | 71.45 |
| 980617081537    | 15  | 5311.84 | 48.538 | 63.50 | 66.18 | 71.44 |
| 980617081607    | 10  | 5310.87 | 48.531 | 63.50 | 66.17 | 71.44 |
| 980617081637    | 15  | 5309.86 | 48.523 | 63.51 | 66.15 | 71.44 |
| 980617081707    | 23  | 5308.98 | 48.517 | 63.51 | 66.15 | 71.44 |
| 980617081737    | 24  | 5307.90 | 48.509 | 63.51 | 66.15 | 71.44 |
| 980617081807    | 23  | 5306.60 | 48.500 | 63.51 | 66.16 | 71.44 |
| 980617081837    | 24  | 5305.09 | 48.489 | 63.51 | 66.17 | 71.44 |
| 980617081907    | 22  | 5303.46 | 48.477 | 63.51 | 66.19 | 71.44 |
| 980617081937    | 19  | 5301.98 | 48.466 | 63.51 | 66.19 | 71.44 |
| 980617082007    | 13  | 5300.33 | 48.454 | 63.51 | 66.19 | 71.44 |
| 980617082037    | 19  | 5298.60 | 48.441 | 63.50 | 66.19 | 71.43 |
| 980617082107    | 23  | 5297.30 | 48.431 | 63.50 | 66.20 | 71.44 |
| 980617082137    | 23  | 5295.99 | 48.422 | 63.51 | 66.21 | 71.44 |
| 980617082207    | 22  | 5294.84 | 48.414 | 63.51 | 66.20 | 71.44 |
| 980617082237    | 24  | 5293.70 | 48.406 | 63.52 | 66.19 | 71.44 |
| 980617082307    | 13  | 5292.71 | 48.399 | 63.53 | 66.19 | 71.44 |
| 980617082337    | 23  | 5291.84 | 48.392 | 63.53 | 66.19 | 71.44 |
| 980617082407    | 22  | 5291.12 | 48.387 | 63.53 | 66.19 | 71.44 |
| 980617082437    | 23  | 5290.39 | 48.381 | 63.52 | 66.18 | 71.44 |
| 980617082507    | 24  | 5289.71 | 48.376 | 63.53 | 66.18 | 71.44 |
| 980617082537    | 22  | 5288.92 | 48.370 | 63.52 | 66.20 | 71.44 |
| 980617082607    | 12  | 5287.66 | 48.361 | 63.52 | 66.19 | 71.44 |
| 980617082637    | 24  | 5286.69 | 48.354 | 63.52 | 66.19 | 71.44 |
| 980617082707    | 23  | 5285.51 | 48.346 | 63.52 | 66.19 | 71.44 |
| 980617082737    | 24  | 5284.08 | 48.335 | 63.52 | 66.19 | 71.43 |
| 980617082807    | 23  | 5282.60 | 48.324 | 63.52 | 66.19 | 71.43 |
| 980617082837    | 24  | 5281.25 | 48.314 | 63.51 | 66.20 | 71.43 |
| 980617082907    | 13  | 5280.05 | 48.305 | 63.51 | 66.20 | 71.43 |
| 980617082937    | 13  | 5278.94 | 48.297 | 63.51 | 66.20 | 71.43 |
| 980617083007    | 23  | 5277.81 | 48.289 | 63.50 | 66.21 | 71.43 |
| 980617083037    | 23  | 5276.85 | 48.282 | 63.51 | 66.21 | 71.43 |
| 980617083107    | 24  | 5275.94 | 48.275 | 63.51 | 66.21 | 71.43 |
| 980617083137    | 23  | 5275.23 | 48.270 | 63.52 | 66.21 | 71.43 |
| 980617083207    | 21  | 5274.56 | 48.266 | 63.54 | 66.20 | 71.43 |
| 980617083237    | 15  | 5273.92 | 48.262 | 63.55 | 66.20 | 71.43 |
| 980617083307    | 23  | 5273.35 | 48.258 | 63.55 | 66.20 | 71.43 |
| MOVING AVERAGE: | 528 | 34.02   |        |       |       |       |

DISPENSE STATE: ACTIVE \* 762.432312

TIME SMPLS 24 5358.36 980617081037 980617081107 980617081137 980617081137 980617081207 980617081237 980617081307 24 5350.46 980617081337

T 2:UNLEADED NORTH

980617081407

980617081437

TCVOL \_\_\_HEIGHT AVGTEMP 48.889 63.88 23 5359.32 48.896 22 5360.10 48.901 23 5357.81 48.885 23 5353.93 48.856 48.830 23 5349.34 48.822 16 5347.34 48.808 20 5348.24 48.814

T2's volume increases as T1 fills it.

BDTEMP

67.13 72.66 63.89 67.15 72.66 63.88 67.15 72.66 63.88 67.15 72.67 63.87 67.16 72.67 63.87 67.17 72.67 63.87 67.17 72.67 63.87 67.15 72.67 63.88 67.15 72.67

TOPTEMP

| 980617081507    | 16  | 5349.11 | 48.821 | 63.89 | 67.15 | 72.67 |
|-----------------|-----|---------|--------|-------|-------|-------|
| 980617081537    | 15  | 5348.68 | 48.818 | 63.88 | 67.14 | 72.67 |
| 980617081607    | 10  | 5347.10 | 48.806 | 63.88 | 67.13 | 72.67 |
| 980617081637    | 15  | 5347.82 | 48.811 | 63.88 | 67.12 | 72.67 |
| 980617081707    | 23  | 5345.59 | 48.795 | 63.87 | 67.13 | 72.67 |
| 980617081737    | 24  | 5340.45 | 48.757 | 63.86 | 67.14 | 72.67 |
| 980617081807    | 23  | 5332.53 | 48.699 | 63.85 | 67.14 | 72.67 |
| 980617081837    | 23  | 5327.48 | 48.662 | 63.85 | 67.13 | 72.67 |
| 980617081907    | 22  | 5323.96 | 48.636 | 63.85 | 67.13 | 72.67 |
| 980617081937    | 18  | 5321.93 | 48.621 | 63.85 | 67.13 | 72.67 |
| 980617082007    | 14  | 5323.43 | 48.632 | 63.85 | 67.12 | 72.67 |
| 980617082037    | 19  | 5325.39 | 48.647 | 63.86 | 67.13 | 72.66 |
| 980617082107    | 23  | 5326.68 | 48.656 | 63.86 | 67.14 | 72.66 |
| 980617082137    | 22  | 5327.94 | 48.666 | 63.87 | 67.14 | 72.67 |
| 980617082207    | 23  | 5329.04 | 48.674 | 63.87 | 67.14 | 72.67 |
| 980617082237    | 24  | 5330.24 | 48.682 | 63.86 | 67.14 | 72.68 |
| 980617082307    | 12  | 5331.09 | 48.688 | 63.86 | 67.13 | 72.68 |
| 980617082337    | 24  | 5332.11 | 48.696 | 63.86 | 67.12 | 72.68 |
| 980617082407    | 22  | 5332.77 | 48.701 | 63.86 | 67.12 | 72.68 |
| 980617082507    | 23  | 5329.52 | 48.677 | 63.85 | 67.15 | 72.68 |
| 980617082537    | 22  | 5324.32 | 48.639 | 63.85 | 67.16 | 72.68 |
| 980617082607    | 12  | 5321.19 | 48.616 | 63.86 | 67.16 | 72.68 |
| 980617082637    | 24  | 5319.28 | 48.602 | 63.87 | 67.16 | 72.68 |
| 980617082707    | 23  | 5315.00 | 48.571 | 63.86 | 67.16 | 72.68 |
| 980617082737    | 24  | 5309.65 | 48.531 | 63.86 | 67.15 | 72.68 |
| 980617082807    | 23  | 5309.97 | 48.534 | 63.87 | 67.15 | 72.68 |
| 980617082837    | 23  | 5311.16 | 48.543 | 63.87 | 67.14 | 72.69 |
| 980617082907    | 13  | 5311.96 | 48.549 | 63.87 | 67.14 | 72.69 |
| 980617082937    | 12  | 5313.25 | 48.558 | 63.87 | 67.14 | 72.68 |
| 980617083007    | 24  | 5314.42 | 48.567 | 63.87 | 67.13 | 72.68 |
| 980617083037    | 23  | 5315.37 | 48.574 | 63.87 | 67.14 | 72.68 |
| 980617083107    | 24  | 5316.16 | 48.579 | 63.87 | 67.14 | 72.69 |
| 980617083137    | 22  | 5316.99 | 48.585 | 63.86 | 67.14 | 72.69 |
| 980617083207    | 21  | 5317.58 | 48.590 | 63.86 | 67.14 | 72.69 |
| 980617083237    | 15  | 5316.19 | 48.580 | 63.87 | 67.14 | 72.69 |
| 980617083307    | 23  | 5312.81 | 48.555 | 63.86 | 67.13 | 72.69 |
| 980617083337    | 20  | 5311.06 | 48.542 | 63.86 | 67.13 | 72.69 |
| MOVING AVERAGE: | 531 | 1.55    |        |       |       |       |

DISPENSE STATE: ACTIVE 957.217224

## **Analysis**

Tanks 1 and 2 are siphon manifolded, but they are incorrectly programmed in the console as single tanks.

## Solution

Reprogram tanks 1 and 2 as manifolded and delete the rate table.

## **CSLD PROBLEM 7 - NO CSLD RESULTS**

## **Diagnostics**

I20100

MAY 14, 1998 11:44 AM

Station id 1

Station id 2

Station id 3

Station id 4

IN-TANK INVENTORY

| TANK | PRODUCT          | VOLUME | TC VOLUME | ULLAGE | HEIGHT | WATER | TEMP  |
|------|------------------|--------|-----------|--------|--------|-------|-------|
| 1    | REGULAR UNLEADED | 6912   | 0         | 3115   | 62.50  | 0.00  | 73.39 |
| 2    | PLUS UNLEADED    | 1845   | 0         | 8182   | 22.99  | 0.00  | 74.96 |
| 3    | PREMIUM UNLEADED | 3761   | 0         | 6266   | 38.52  | 0.00  | 73.95 |

IA5200

MAY 14, 1998 11:45 AM



No tests.

IA5300

MAY 14, 1998 11:45 AM

| CSLD DIAG | Table not full.   |        |        |        |        |        |     |             |  |  |  |
|-----------|-------------------|--------|--------|--------|--------|--------|-----|-------------|--|--|--|
| T 1:REGUL | AR UNLEA          | DED    |        |        |        |        | Tab | ie not run. |  |  |  |
| LAST HOUR | AST HOUR = 248651 |        |        |        |        |        |     |             |  |  |  |
| 6876.8    | 6949.6            | 6985.7 | 7110.7 | 7191.0 | 7282.3 | 7354.8 | 0.0 |             |  |  |  |
| 0.0       | 0.0               | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0 |             |  |  |  |
| 0.0       | 0.0               | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0 |             |  |  |  |
|           |                   |        |        |        |        |        |     |             |  |  |  |
| T 2:PLUS  | UNLEADED          | )      |        |        |        |        |     |             |  |  |  |
| LAST HOUR | = 24865           | 1      |        |        |        |        |     |             |  |  |  |
| 1825.8    | 1846.9            | 1868.8 | 1900.3 | 1936.7 | 1936.7 | 1947.3 | 0.0 |             |  |  |  |
| 0.0       | 0.0               | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0 |             |  |  |  |
| 0.0       | 0.0               | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0 |             |  |  |  |

```
T 3:PREMIUM UNLEADED
LAST HOUR = 248651
 3737.9 3773.5 3797.8 3817.8 3883.3 3904.5 3904.7
                                                 0.0
    0.0 0.0 0.0
                      0.0 0.0
                                    0.0
                                           0.0
                                                 0.0
                       0.0
    0.0 0.0
               0.0
                             0.0
                                    0.0
                                           0.0
                                                 0.0
```

The volume table IA53 gets cleared when a gap in time between probe samples is detected. The site operators were turning the console's power Off every evening. This caused a gap between probe readings which cleared the volume table. CSLD does not perform any tests until the volume table is full (24 hours).

#### Solution

Keep power turned On to the console.

## **CSLD PROBLEM 8 - CSLD FAILURE TANK 1**

## **Diagnostics**

```
I25100
JUN 11, 1998 12:45 PM
Site Id 1
Site Id 2
Site Id 3
Site Id 4
CSLD TEST RESULTS
TANK PRODUCT
                            RESULT
                            PER: JUN 11, 1998 FAIL
 1 REGULAR
  2 PLUS
                            PER: JUN 11, 1998 PASS
                            PER: JUN 11, 1998 PASS
  3 PREMIUM
200
Site Id 1
Site Id 2
Site Id 3
Site Id 4
JUN 11, 1998 12:45 PM
```

| TANK           | PRODUCT                                                             |                  |                     | GALLONS   | INCHES                  | WATER      | DEG F               | ULLAGE               |                    |         |  |  |  |  |
|----------------|---------------------------------------------------------------------|------------------|---------------------|-----------|-------------------------|------------|---------------------|----------------------|--------------------|---------|--|--|--|--|
| 1              | REGULAR                                                             |                  |                     | 6439      | 57.38                   | 1.0        | 52.3                | 3289                 |                    |         |  |  |  |  |
| 2              | PLUS                                                                |                  |                     | 6362      | 56.81                   | 0.0        | 68.1                | 3366                 |                    |         |  |  |  |  |
| 3              | PREMIUM                                                             |                  |                     | 7916      | 69.05                   | 0.0        | 67.3                | 1812                 |                    |         |  |  |  |  |
|                |                                                                     |                  |                     |           |                         |            |                     |                      |                    |         |  |  |  |  |
| T 2 5 2 0      | IA5200                                                              |                  |                     |           |                         |            |                     |                      |                    |         |  |  |  |  |
|                | JUN 11, 1998 12:45 PM  Comparing compensated LRATE to uncompensated |                  |                     |           |                         |            |                     |                      |                    |         |  |  |  |  |
|                | ,                                                                   |                  |                     |           | Comp                    | aring co   | mpensa              | ited LRATE to        | o uncompe          | ensated |  |  |  |  |
|                |                                                                     |                  |                     |           | / AVLR                  | ATE sho    | ws exce             | ssive compe          | ensation.          |         |  |  |  |  |
| CSLD :         | CSLD DIAGNOSTICS: RATE TEST                                         |                  |                     |           |                         |            |                     |                      |                    |         |  |  |  |  |
| TK             | DATE                                                                | LRATE            | MTVL                | ST AVLE   | e <b>TE</b> Voi         | L C1 (     | C3 FDBK             | ACPT THPUT           | DFMUL RJT          | 1       |  |  |  |  |
| 1 9            | 806110308                                                           |                  |                     | 2 0.0     | ,                       |            | 22 18.0             |                      | 0.40 0             |         |  |  |  |  |
| 2 9            | 806110404                                                           | -0.011           | 25.0                | 1 0.0     | 25 7865                 | 5 80 1     | L6 45.0             | 44.0 2.28            | 0.02 0             |         |  |  |  |  |
| 3 9            | 806110021                                                           | -0.011           | 26.6                | 1 0.0     | 12 708                  | 7 80 1     | L6 45.0             | 44.2 2.01            | -0.00 0            |         |  |  |  |  |
|                |                                                                     |                  |                     |           |                         |            |                     |                      |                    |         |  |  |  |  |
|                |                                                                     |                  |                     |           |                         |            |                     |                      |                    |         |  |  |  |  |
| I6090          |                                                                     |                  |                     |           |                         |            |                     |                      |                    |         |  |  |  |  |
| JUN 1          | 1, 1998 1                                                           | 2:46 PM          |                     |           |                         |            |                     |                      |                    |         |  |  |  |  |
| TANK '         | THERMAL C                                                           | DEFFICI          | ENT                 |           | ОК                      |            |                     |                      |                    |         |  |  |  |  |
|                |                                                                     |                  |                     |           |                         |            |                     |                      |                    |         |  |  |  |  |
| TANK           | PRODUCT                                                             | LABEL            |                     |           |                         |            |                     |                      |                    |         |  |  |  |  |
| 1              | REGULAR                                                             |                  |                     |           | 00700                   |            |                     |                      |                    |         |  |  |  |  |
| 2              | PLUS                                                                |                  |                     |           | 00700                   |            |                     |                      |                    |         |  |  |  |  |
| 3<br>4         | PREMIUM                                                             |                  |                     |           | 00700                   |            |                     |                      |                    |         |  |  |  |  |
| 4              |                                                                     |                  |                     | 0.0       | 700000                  |            |                     |                      |                    |         |  |  |  |  |
|                |                                                                     |                  | ſ                   | A1        |                         | 4          |                     |                      |                    |         |  |  |  |  |
| IA510          | 1<br>1, 1998 1:                                                     | 0.46 DM          |                     | Abnorma   | l tempera               | tures.     |                     |                      |                    |         |  |  |  |  |
| JUN I          | 1, 1998 1.                                                          | 2.40 PM          |                     |           | La                      | rae iumi   | o in tem            | p following d        | elivery            |         |  |  |  |  |
|                |                                                                     |                  |                     |           | /                       | igo janiş  | <i>, ,,,</i> ,,,,,, | p ronoving a         | on vor yr          |         |  |  |  |  |
| CSLD :         | DIAGNOSTI                                                           | CS: RAT          | E TABLI             | E         |                         |            |                     |                      |                    |         |  |  |  |  |
| T 1:R          | EGULAR                                                              |                  |                     |           |                         |            |                     |                      |                    |         |  |  |  |  |
|                | TIME ST                                                             | LRT .            | AVTMP :             | TPTMP BD7 | MP TMRT                 | DSPNS      | VOL II              | NTVL DEL             | ULLG THPT          | 1       |  |  |  |  |
|                |                                                                     |                  |                     | <b>V</b>  |                         |            |                     |                      |                    |         |  |  |  |  |
| 98052          |                                                                     | 0.050            | 69.2                | /         | 3 -0.02                 | 2052       |                     | 24.5 34.7            | 452 8.2            |         |  |  |  |  |
| 98052          |                                                                     | 0.011            | 69.2                | /         | 3 -0.03                 | 1991       |                     | 30.0 35.3            | 452 8.0            |         |  |  |  |  |
| 98052          |                                                                     | 0.016            | 69.1                |           | .2 -0.02                | 1915       |                     | 38.5 36.0            | 452 7.9            |         |  |  |  |  |
| 98052          |                                                                     | 0.006            | 69.1                | /         | 2 -0.02                 | 1841       |                     | 59.5 36.9            | 453 7.6            |         |  |  |  |  |
| 98052          |                                                                     | 0.021            | 69.0                |           | 2 -0.02                 | 1729       |                     | 29.5 38.9            | 455 7.4            |         |  |  |  |  |
| 98052<br>98052 |                                                                     | 0.017<br>-0.018  | 69.0                |           | 2 -0.00                 | 1687       |                     | 29.5 40.2            | 457 7.3            |         |  |  |  |  |
| 98052          |                                                                     | -0.018<br>-0.041 | <u>55.4</u><br>55.3 |           | 2.0 - 0.03 $2.0 - 0.03$ | 561<br>565 |                     | 33.5 4.6<br>23.5 6.0 | 255 8.1<br>256 7.9 |         |  |  |  |  |
| 98052          |                                                                     | -0.041<br>-0.069 | 55.2                |           | 9 -0.03                 | 565<br>565 |                     | 19.0 6.6             | 256 7.9<br>257 7.9 |         |  |  |  |  |
| 98052          |                                                                     | 0.059            | 55.∠<br>55.1        |           | 9 -0.04                 | 584        |                     | 45.0 7.3             | 257 7.9<br>259 7.8 |         |  |  |  |  |
| 98052          |                                                                     | -0.138           | 54.9                |           | 8 -0.00                 | 594        |                     | 21.5 9.1             | 262 7.7            |         |  |  |  |  |
| 98052          |                                                                     | -0.084           | 54.8                |           | 8 -0.01                 | 593        |                     | 40.0 10.1            | 263 7.5            |         |  |  |  |  |
| 98052          |                                                                     | -0.048           | 51.2                |           | 2.0 -0.03               | 1599       |                     | 32.5 30.5            | 366 7.8            |         |  |  |  |  |
|                |                                                                     |                  |                     |           |                         |            |                     |                      |                    |         |  |  |  |  |

```
9805250340 0 -0.026 51.3 14.7 71.9 -0.04 1481
                                                4988
                                                      24.0
                                                             31.9
                                                                  367
                                                                       7.8
                                                4911
9805250526 1 0.178
                   <u>51.8</u> 14.7 71.7 -0.08 1468
                                                      18.0
                                                             33.7
                                                                  370
                                                                       7.7
                    70.5
9805250617 0
             0.343
                               71.5 -0.13
                                           1424
                                                4821
                                                      26.0
                                                             34.5
                                                                  371
                                                                       7.7
9805250655 1 0.296
                    70.4 14.7
                               71.4 -0.12
                                           1446
                                                4812
                                                      18.5
                                                             35.2 372
                                                                       7.6
9805260040 1 0.183
                   55.6 14.7
                               71.8 -0.08
                                            650
                                                7598 17.5
                                                              5.2 250
                                                                       7.9
9805260118 1 0.124
                    55.5 14.7
                                71.7 -0.07
                                            629 7580 16.5
                                                              5.8 251
9805260227 6 0.242 55.3 14.7
                                71.6 -0.08 604 7540 98.5
                                                              7.0
                                                                  253
                                                                       7.7
                               7] Big swing in temperature even though | 253
9805260417 0 0.277 55.1 14.7
                                                                       7.7
                               7 there has been no delivery.
             0.051
                   46.7 14.7
                                                                   338
                                                                       7.6
9805270015 0
                                                      65.0
9805270109 0 0.053 46.7 14.7
                               71.1 -0.05 1174 5704
                                                                   338
                                                                       7.5
                                                             29.7
9805270303 0 0.019 46.8 14.7
                               70.9 -0.05 1164 5656
                                                      34.0
                                                             31.6 340
                                                                       7.5
9806020056 2 -0.004 55.7 14.7
                               70.5 -0.00
                                            375 8102 28.0
                                                             1.4 222
                                                                       7.9
9806020136 0 0.045 55.7 14.7/ 70.6 -0.00
                                            370
                                                8090 46.0
                                                              2.1 223
                                                                       7.9
                    55.6 14./7 70.5 -0.01
                                                              3.1 223
9806020234 0 0.050
                                            359
                                                8086 63.5
                                                                       7.9
             0.022
                    55.6 14.7 70.5 -0.00
9806020442 0
                                            351
                                                8061 43.0
                                                             5.2 225
                                                                       7.8
                    46.5 1/4.7 71.0 -0.01 1487
9806030030 3 0.026
                                                5697 108.5
                                                             25.0 338
                                                                       7.9
9806030231 1 0.028 46.6 14.7
9806030308 0 0.014 46.7 14.7
                               71.0 -0.02 1487
                                                5688 18.5
                                                             27.0 339
                                                                       7.9
                               70.9 -0.02 1454 5660 44.5
                                                             27.6 340
                                                                       7.9
9806040208 3 0.039 67.7 14.7 70.3 -0.05 2093 2291 23.5
                                                             50.7
                                                                  485
                                                                       8.1
9806040317 3 0.016 67.7 14.7
                               70.1 -0.05 2012 2267 37.5
                                                             51.8
                                                                  486
                                                                       8.1
9806040426 3 0.014
                    67.7 14.7
                               70.0 -0.04 1856 2245 61.5
                                                             52.9 487
                                                                       8.0
9806050031 0 -0.008
                   42.0 14.7
                               70.9 -0.05 1002 6740 34.5
                                                             9.5 294 8.2
9806050118 0 0.015
                    42.1 14.7
                               70.8 -0.05 1002 6726 24.0
                                                             10.3 295 8.2
9806050154 0 0.007
                    42.1 14.7 70.8 -0.04
                                           983 6719 21.0
                                                           10.9 295 8.1
```

Template for A12 command

IA1200

JUN 11, 1998 12:47 PM

TANK 1 REGULAR NUMBER OF SAMPLES = 20 MAG HEIGHT0 HEIGHT1 HEIGHT2 HEIGHT3 HEIGHT4 HEIGHT5 HEIGHT6 WATER HEIGHT7 HEIGHT8 HEIGHT9 TMP REF TMP5 TMP4 TMP3 TMP2 TMPO TMP REF TMP1

Probe Standard Average Buffers

Bad probe thermistor values.

IA1200 JUN 11, 1998 12:47 PM TANK 1 REGULAR MAG NUMBER OF SAMPLES /= 20 1477.000 19845.199 19845.150 19844.699 19845.350 19847.150 19847.19 19847.301 19847.051 19847.400 19847.350 42377.398 17287.949 42375.449 17287.301 42375.898 17286.199 19271.199 42375.051 TANK 2 PLUS MAG NUMBER OF SAMPLES = 2.0 1371.150 19443.000 19443.000 19443.000 19443.000 19442.850 19443.000 19443.000 19443.000 19442.949 19443.000 42508.199 17503.051 18755.250 19174.350 19427.551 19583.150 20000.600 42506.000 TANK 3 PREMIUM NUMBER OF SAMPLES = 20 MAG 1383.000 23473.699 23473.500 23473.699 23473.699 23473.500 23485.051 23484.699 23484.850 23485.150 23484.949 41917.949 17255.750 18685.750 19646.900 19714.150 19804.750 19917.900 41901.301

From the IA52 command compare LRATE (-0.309) with AVLRTE (0.040). This shows that there is excessive compensation. The most likely cause for excessive compensation is a false probe temperature reading. Examing the IA12 command shows that there are two erroneous thermistor values.

#### Solution

Replace probe and delete rate table.

## **CSLD PROBLEM 9 - TANK 1 FAIL**

### **Diagnostics**

200

Site ID

Site ID

Site ID

Site ID

MAY 18, 2000 8:23

| 'I'ANK | PRODUCT  | GALLONS | INCHES | WATER | DEG F | ULLAGE |
|--------|----------|---------|--------|-------|-------|--------|
|        |          |         |        |       |       |        |
| 1      | UNLEADED | 4740    | 44.69  | 0.0   | 61.2  | 4896   |
| 2      | PLUS     | 5740    | 63.65  | 0.0   | 61.9  | 1952   |
| 3      | PREMIUM  | 2712    | 62.65  | 0.0   | 62.0  | 1010   |

CSLD TEST RESULTS

TANK PRODUCT RESULT

1 UNLEADED PER: MAY 18, 2000 FAIL 2 PLUS PER: MAY 18, 2000 PASS 3 PREMIUM PER: MAY 18, 2000 PASS

\_\_ 76687IA5200\_

TA5200
MAY 18, 2000 8:23
CSLD DIAGNOSTICS: RATE TEST

Comparing compensated LRATE to uncompensated AVLRTE shows excessive compensation.

|    |            |               |       |    | ,      |      |    |    |      |      |       |       |     |
|----|------------|---------------|-------|----|--------|------|----|----|------|------|-------|-------|-----|
| TK | DATE       | LRATE         | INTVL | ST | AVLRTE | VOL  | C1 | C3 | FDBK | ACPT | THPUT | EVAP  | RJT |
| 1  | 0005180427 | <u>-0.282</u> | 37.0  | 2  | 0.017  | 6709 | 70 | 17 | 33.8 | 33.8 | 127.1 | 0.000 | 0   |
| 2  | 0005180735 | -0.025        | 32.5  | 1  | 0.026  | 5558 | 80 | 19 | 45.0 | 44.8 | 17.6  | 0.000 | 0   |
| 3  | 0005180531 | -0.061        | 32.3  | 1  | -0.000 | 2589 | 80 | 17 | 45.0 | 44.8 | 8.6   | 0.000 | 0   |

IA5101

MAY 18, 2000 8:25

CSLD DIAGNOSTICS: RATE TABLE

T 1:UNLEADED

| TIME                     | ST | LRT             | AVTMP        | TPTMP         | BDTMP | TMRT          | DSPNS        | VOL  | INTVL         | DEL          | ULLG | EVAP  |
|--------------------------|----|-----------------|--------------|---------------|-------|---------------|--------------|------|---------------|--------------|------|-------|
| 0004200431               | 0  | -0.085          | 53.3         | 52.0          | 56.5  | 0.00          | 2            | 9682 | 50.0          | 48.5         | 0    | 0.000 |
| 0004202332               | 3  | 0.068           | 55.2         | 55.5          | 57.2  | -0.03         | 3073         |      | 129.5         | 14.8         |      | 0.000 |
| 0004210148               | 3  | -0.044          | 55.1         | 55.4          |       | -0.03         | 2712         |      | 174.5         | 17.8         |      | 0.000 |
| 0004210448               |    | -0.174          | 55.0         | 55.4          |       | -0.02         | 2601         | 4904 | 54.0          | 20.8         |      | 0.000 |
| 0004222339               | 0  | -0.023          | 52.3         | 54.1          | 55.8  | 0.02          | 1585         | 6548 | 129.5         | 8.7          | 301  | 0.000 |
| 0004230155               | 0  | 0.012           | 52.4         | 53.5          | 55.6  | 0.01          | 1398         | 6548 | 174.5         | 11.7         | 301  | 0.000 |
| 0004230456               | 0  | 0.027           | 52.4         | 52.6          | 55.4  | 0.01          | 1234         | 6548 | 168.5         | 14.8         | 301  | 0.000 |
| 0004232246               | 3  | 0.038           | 53.2         | 53.0          | 55.8  | -0.00         | 2597         | 2936 | 129.5         | 31.8         | 459  | 0.000 |
| 0004240105               | 3  | 0.005           | 53.2         | 53.1          | 55.8  | -0.00         | 2292         | 2936 | 171.0         | 34.8         | 459  | 0.000 |
| 0004240407               | 3  | -0.011          | 53.2         | 53.2          | 55.7  | 0.00          | 2109         | 2936 | 57.0          | 37.9         | 459  | 0.000 |
| 0004242334               | 0  | 0.052           | 56.6         | 56.0          | 56.5  | -0.06         | 1649         | 5721 | 129.5         | 6.6          | 337  | 0.000 |
| 0004250156               | 0  | -0.002          | 56.4         | 56.0          | 56.4  | -0.05         | 1455         | 5721 | 168.0         | 9.6          | 337  | 0.000 |
| 0004250458               | 1  | -0.047          | 56.3         | 56.0          | 56.2  | -0.04         | 1395         | 5721 | 18.5          | 12.6         | 337  | 0.000 |
| 0004252306               | 2  | -0.024          | 55.8         | 55.9          | 56.8  | -0.02         | 382          | 8435 | 129.5         | 1.0          | 199  | 0.000 |
| 0004260131               | 0  | -0.016          | 55.8         | 55.9          | 56.8  | -0.01         | 337          | 8435 | 165.5         | 4.0          | 199  | 0.000 |
| 0004260432               | 0  | 0.050           | 55.7         | 55.8          |       | -0.01         | 323          | 8435 | 50.5          | 7.0          |      | 0.000 |
| 0004262332               | 3  | -0.036          | 55.8         | 56.0          |       | -0.03         | 2846         |      | 129.5         | 25.4         |      | 0.000 |
| 0004270158               | 3  | 0.024           | 55.8         | 55.9          |       | -0.02         | 2511         | 4236 | 164.0         | 28.4         |      | 0.000 |
| 0004270459               |    | -0.414          | 55.7         | 55.9          |       | -0.02         | 2409         | 4236 | 27.0          | 31.5         |      | 0.000 |
| 0004272326               | 3  | 0.036           | 58.4         | 57.6          |       | -0.08         | 2029         |      | 129.5         | 6.3          |      | 0.000 |
| 0004280154               |    | -0.039          | 58.2         | 57.6          |       | -0.06         | 1790         |      | 162.5         | 9.3          |      | 0.000 |
| 0004282311               | 0  | 0.061           | 59.1         | 57.1          |       | -0.06         | 1659         |      | 129.5         | 6.4          |      | 0.000 |
| 0004290140               |    | -0.002          | 58.9         | 57.1          |       | -0.06         | 1464         |      | 161.0         | 9.4          |      | 0.000 |
| 0004290441               | 0  | 0.021           | 58.8         | 57.0          |       | -0.05         | 1345         | 6434 | 98.0          | 12.4         |      | 0.000 |
| 0004292345               | 3  | 0.074           | 58.3         | 56.0          |       | -0.10         | 3384         |      | 129.5         | 31.0         |      | 0.000 |
| 0004300216               | 3  | 0.028           | 58.0         | 58.0          |       | -0.09         | 2986         |      | 159.0         | 34.0         |      | 0.000 |
| 0004300518               | 3  | 0.007           | 57.8         | 57.9          |       | -0.07         | 2618         |      | 110.5         | 37.0         |      | 0.000 |
| 0004302242               | 3  | 0.050           | 56.8         | 57.5          |       | -0.02         | 2587         |      | 129.5         | 12.9         |      | 0.000 |
| 0005010116               |    | -0.022          | 56.7         | 57.9          |       | -0.02         | 2283         |      | 156.5         | 15.9         |      | 0.000 |
| 0005010417               |    | -0.099<br>0.000 | 56.7<br>58.1 | 57.8<br>58.9  |       | -0.02 $-0.03$ | 2190         | 3950 | 39.0<br>129.5 | 18.9<br>12.1 |      | 0.000 |
| 0005012322<br>0005020159 | 3  | 0.000           | 58.0         | 58.8          |       | -0.03         | 2100<br>1853 |      | 153.5         | 15.1         |      | 0.000 |
| 0005020159               | 3  | 0.027           | 58.0         | 58.8          |       | -0.03         | 2882         |      | 129.5         | 36.5         |      | 0.000 |
| 00050322540              |    | -0.014          | 57.8         | 58.9          |       | -0.06         | 2652         | 1445 | 49.0          | 39.5         |      | 0.000 |
| 0005030225               | 3  | 0.061           | 57.2         | 57.9          |       | -0.03         | 2922         |      | 129.5         | 19.0         |      | 0.000 |
| 0005032323               | 3  | 0.034           | 57.2         | 58.3          |       |               | 2522         |      |               | -22.0        |      | 0.000 |
| 0005042339               |    | 0.032           |              |               |       | _             |              |      | values.       |              |      | 0.000 |
| 0005050222               | 3  | 0.007           |              | -105.1        |       |               | 1791         | 6496 | 147.5         | 10.8         |      | 0.000 |
| 0005052345               | 3  | 0.053           | 61.8         | 61.2          |       | -0.14         | 3175         |      | 129.5         | 31.8         |      | 0.000 |
| 0005060230               | 3  | 0.007           | 61.4         | 60.5          | /     | -0.12         | 2801         |      | 145.5         | 34.8         |      | 0.000 |
| 0005060531               |    | -0.025          | 61.1         | 60.2          | /     | -0.11         | 2571         | 1823 |               | 37.9         |      | 0.000 |
| 0005062349               | 3  | 0.006           | 61.1         | 51.2          | /     | -0.06         | 3140         |      | 129.5         | 14.1         |      | 0.000 |
| 0005070236               | 3  | 0.012           | 60.9         | 51.4          | 67.2  |               | 2771         |      | 143.5         | 17.1         | 429  | 0.000 |
| 0005070537               | 3  | -0.040          | 60.7         |               | 67.3  |               | 2547         | 3581 | 124.0         | 20.1         | 429  | 0.000 |
| 0005072237               | 0  | -0.023          | 66.8         | <u>-107.5</u> | 68.8  | -0.16         | 792          | 7014 | 129.5         | 2.5          | 275  | 0.000 |
| 0005080126               | 0  | 0.020           | 66.4         | <u>-107.4</u> | 69.0  | -0.13         | 699          | 7014 | 141.5         | 5.5          | 276  | 0.000 |
| 0005080427               | 1  | 0.129           | 66.0         | <u>-107.3</u> | 69.1  | -0.11         | 670          | 7014 | 30.5          | 8.5          | 276  | 0.000 |
| 0005082328               | 3  | 0.097           | 64.5         | <u>-107.3</u> | 70.3  | -0.16         | 2854         | 2747 | 129.5         | 27.3         | 467  | 0.000 |
| 0005090218               | 3  | 0.051           | 64.1         | <u>-107.3</u> | 70.3  | -0.14         | 2518         | 2747 | 140.5         | 30.3         | 467  | 0.000 |
| 0005092322               | 3  | 0.003           | 64.6         | <u>-83.9</u>  |       | -0.07         | 1982         |      | 129.5         | 9.1          |      | 0.000 |
| 0005100213               | 0  | 0.036           | 64.4         | 41.9          |       | -0.06         | 1749         |      | 139.5         | 12.1         |      | 0.000 |
| 0005102331               | 3  | 0.039           | 63.7         | 30.1          | 71.2  | -0.13         | 2855         | 1559 | 129.5         | 33.3         | 531  | 0.000 |

```
0005110222 3
               0.036
                      63.4 35.6 71.0 -0.10
                                              2520
                                                    1559 139.0
                                                                 36.3
                                                                       531 0.000
               0.048
                      62.5 -107.1 70.7 -0.04
                                              2878
                                                    4154 129.5
                                                                 15.0
                                                                       404 0.000
0005112319
                      62.3 <u>-72.8</u> 70.7 -0.04
0005120210 3
               0.009
                                              2540
                                                    4154 139.0
                                                                 18.0
                                                                       404 0.000
0005130136 2
               0.030
                      69.8 -107.2 71.1 -0.24
                                               824
                                                    6333 138.5
                                                                  0.2
                                                                       307 0.000
0005130437 0
              0.077
                      69.1 -107.3 71.3 -0.17
                                               723
                                                    6333 114.5
                                                                  3.2 307 0.000
0005132347 3
               0.028
                      67.1 <u>-107.0</u> 71.6 -0.22
                                              3350
                                                    1342 129.5
                                                                 22.2 545 0.000
0005140237 3
               0.008
                      66.5 -107.2 71.4 -0.17
                                              2956
                                                                 25.2 545 0.000
                                                    1342 140.5
                      66.0 -106.0 71.2 -0.16
                                                                 28.3
           3
              0.038
                                              2720
                                                    1342 66.5
                                                                       545 0.000
0005140537
            3 - 0.013
                      60.1 - 79.5
                                  70.7
                                        \sim
                                              2007
                                                                 14.9
                                                                       438 0.000
0005142248
                                         Intermittant bad values.
0005150138 3 0.007
                                                                       438 0.000
                      60.1 - 72.9
                                  70.6 -
                                                                 17.9
0005150438 3 -0.051
                      60.1 - 72.7
                                  70.4 - 0.00
                                              2507
                                                     3396
                                                          45.0
                                                                 20.9
                                                                       438 0.000
              0.054
                      64.5 - 94.8
                                  70.4 /0.07
                                              1260
                                                    5499 129.5
                                                                  5.7
                                                                       345 0.000
0005152328 0
                      64.3 <u>-107.2</u> 70.3/ -0.06
0005160218 0
               0.013
                                              1112
                                                    5499 140.5
                                                                  8.7
                                                                       345 0.000
                      64.1 <u>-106.1</u> 69.7 -0.14
0005162319
            3
               0.052
                                              2548
                                                    1734 129.5
                                                                 29.5 521 0.000
               0.020
                      63.7 <u>-98.6</u> 69.6 -0.12
0005170209 3
                                              2444
                                                    1734
                                                          32.0
                                                                 32.5
                                                                       521 0.000
              0.007
                      60.2 60.5
                                  69.1 0.08
0005170352 2
                                               615
                                                    9215 68.0
                                                                  0.2 131 0.000
              0.034
                      61.5 35.6 68.9 -0.02
0005172312 3
                                              2757
                                                    5141 129.5
                                                                 19.3 361 0.000
2433
                                                    5141 140.5
                                                                 22.3 361 0.000
        76687IA1000_
  I_I_
                                                                         Yet probe's temperature
IA1000
                                                                         readings look good at
MAY 18, 2000 8:27
                                                                         this time!
TANK 1 UNLEADED
                               MAG
                                      NUMBER OF SAMPLES =
                                                           9445
1334.000 15481.000 15480.000 15480.000 15480.000 15482.000 15483.000 15485.000
15489.000 15494.000 15497.000 45689.000 20931.000 23464.000 23409.000 23962.000
24250.000 24810.000 45691.000
TANK 2 PLUS
                                      NUMBER OF SAMPLES =
                               MAG
                                                            523
1309.000 22143.000 22143.000 22143.000 22143.000 22143.000 22145.000 22144.000
22145.000 22145.000 22146.000 45504.000 21342.000 22545.000 23465.000 24019.000
24086.000 24730.000 45503.000
TANK 3 PREMIUM
                                      NUMBER OF SAMPLES =
                               MAG
1312.000 21871.000 21871.000 21871.000 21871.000 21871.000 21871.000 21871.000
21872.000 21871.000 21871.000 44889.000 21445.000 22442.000 22975.000 23510.000
23695.000 24592.000 44892.000
```

From the IA52 command compare LRATE (-0.282) with AVLRTE (0.017). This shows that there is excessive compensation. The most likely cause for excessive compensation is a false probe temperature reading. Examing the IA52 command did not show erroneous thermistor values. However, examining the IA51 command showed that the board temperature value was intermittantly bad.

#### Solution

Replace probe and delete rate table.

#### **CSLD PROBLEM 10 - TANK 8 FAILING**

### **Diagnostics**

```
I61200
MAY 7, 1999 10:10 AM
```

#### TANK MANIFOLDED PARTNERS

| TANK | PRODUCT LABEL | MANIFOLDED TANKS     |
|------|---------------|----------------------|
| 1    | DIESEL 1      | 2, 3, 4, 5           |
| 2    | DIESEL 2      | 1, 3, 4, 5           |
| 3    | DIESEL 3      | 1, 2, 4, 5           |
| 4    | DIESEL 4      | 1, 2, 3, 5           |
| 5    | DIESEL 5      | 1, 2, 3, 4           |
| 6    | AUTO DIESEL   | NONE                 |
| 7    | SUPER         | NONE Manifolded set. |
| 8    | REGULAR 1     | 9 mannoided set.     |
| 9    | REGULAR 2     | <u>—</u><br>8        |
| 10   |               | NONE                 |
| 11   |               | NONE                 |
| 12   |               | NONE                 |
|      |               |                      |

IA5200

MAY 7, 1999 10:11 AM

CSLD DIAGNOSTICS: RATE TEST

Positive rejects.

```
TK DATE LRATE INTVL ST AVLRTE VOL C1 C3 FDBK ACPT THPUT DFMUL RJT
6 9905070326 -0.013 41.1 1 0.000 7740 80 22 45.0 44.8 0.86 -0.36 0
7 9905070456 0.003 22.2 1 0.014 4823 58 23 20.3 16.9 0.87 0.18 1
8 9905070428 0.246 6.8 8 0.241 8708 11 10 0.0 0.0 2.86 0.79 12
```

## Positives

```
T 8:REGULAR 1
             LRT AVTMP TPTMP BDTMP TMRT DSPNS VOL INTVL DEL ULLG THPT
    TIME ST
9904120309 0 0.395 64.3 67.8 71.5 -0.02 980 8808 36.0 36.8 909 3.0
9904130447 0 0.213 64.8 68.5 72.3 -0.01 849 5892 23.0 62.7 1038 3.0
9904280337 0 0.226 67.1 68.9 70.0 -0.02 608 6015 63.5 75.2 1028 3.1
9904280451 0 0.244 67.1 68.9 70.1 -0.03
                                       578 6013 36.5
                                                      76.4 1028 3.1
9904300319 0 0.198 64.8 68.5 72.3 0.05 1102 10406 26.5
                                                       15.5 835 3.1
9905030233 0 0.130 65.9 69.9 74.2 0.01 1124 12183 22.0
                                                      17.1 762 3.1
9905030302 6 -0.032 65.9 69.9 74.2 0.01 983 12183 117.5
                                                      17.8 762 3.1
9905040303 0 0.324 66.8 70.7 74.7 -0.00 902 9501 29.5 41.7 877 2.8
9905040453 0 0.178 66.8 70.6 74.6 -0.01 856 9453 46.5 43.3 879 2.8
9905050339 0 0.186 67.4 71.0 74.8 -0.00 697 11738 90.0
                                                       10. 785 2.8
9905070428 0 0.370 68.2 71.8 75.1 -0.02
                                       719 7068 37.0 59.0 983 2.9
```

I61100

MAY 7, 1999 10:13 AM

LEAK TEST METHOD

TEST CSLD : TANK 8

Pd = 95%

Pd = 95% CLIMATE FACTOR:MODERATE

```
TEST ON DATE: TANK 9

JAN 1, 1996

START TIME: DISABLED

TEST RATE: 0.20 GAL/HR

DURATION: 2 HOURS

S61109

MAY 7, 1999 10:15 AM

LEAK TEST METHOD

-----
TEST CSLD: TANK 9

Pd = 95%

CLIMATE FACTOR: MODERATE

IA5108

MAY 7, 1999 10:16 AM

CSLD DIAGNOSTICS: RATE TABLE
```

T 8:REGULAR 1

T 9:REGULAR 2

S05408

MAY 7, 1999 10:16 AM

Tanks 8 and 9 were manifolded and programmed as manifolded. However, the leak test frequency selected for Tank 9 was not CSLD. The CSLD program was only using Tank 8's volume to perform the test. When Tank 9 was filling, Tank 8's LRATE was positive.

CSLD RECORDS DELETED

CSLD RECORDS DELETED

#### Solution

Set Tank 9's Leak Test Frequency to CSLD and delete rate table.

## **CSLD PROBLEM 11 - PERIODIC TEST FAIL TANK 2**

## **Diagnostics**

```
200
Site ID
Site ID
Site ID
NOV 16, 1999 1:06 PM
```

| TANK PRODU              | CT    |         |         | GALLO                                 | ONS I  | NCHES   | WATER   | DEG    | F U       | LLAGE |       |       |
|-------------------------|-------|---------|---------|---------------------------------------|--------|---------|---------|--------|-----------|-------|-------|-------|
| 1 REGUL                 | AR    |         |         | 8.5                                   | 543    | 61.99   | 0.0     | 77     | . 4       | 3139  |       |       |
| 2 PLUS                  |       |         |         |                                       | 705    | 32.53   | 0.0     |        |           | 7977  |       |       |
| 3 SUPRE                 | ME    |         |         |                                       | )24    | 46.50   | 0.0     |        |           | 5658  |       |       |
| 3 SOFKE                 | 14117 |         |         | 00                                    | 724    | 40.50   | 0.0     | 00     | . 1       | 3030  |       |       |
| 766                     | 871   | A5100_  |         |                                       |        |         |         |        |           |       |       |       |
| IA5100                  |       |         |         |                                       |        |         |         |        |           |       |       |       |
| NOV 16, 199             | 9 1   | 1:06 PM | ľ       |                                       |        |         |         |        |           |       |       |       |
|                         | OMT ( | 70. D70 |         | _ H                                   | igh 90 | s incon | sistent | with o | ther tai  | nks.  |       |       |
| CSLD DIAGNO<br>T 2:PLUS | SIIC  | JS. RAI | LE TABL | 1E /                                  |        |         |         |        |           |       |       |       |
| TIME                    | СT    | T.PT    | AVTMP   | тртмр                                 | מאייתם | тмрт    | DSPNS   | VOT.   | INTVL     | DET.  | ULLG  | тирт  |
| 1111111                 | ) I   | шкт     | AVIME   |                                       | DDINE  | TPIKT   | DDFND   | VOL    | TIVI V II | DEL   | OHLG  | IIIFI |
| 9910181409              | 3 -   | -1.252  | 98.7    | 97.2                                  | 98.9   | 0.36    | 734     | 601    | 50.0      | 26.5  | 717   | 2.4   |
| 9910181537              | 6 -   | -0.824  | 99.2    | 97.2                                  | 98.9   | 0.39    | 582     | 599    | 142.0     | 28.0  | 717   | 2.4   |
| 9910190355              | 1 -   | -0.464  | 91.4    | 96.5                                  | 98.9   | 0.28    | 432     | 2783   | 14.0      | 9.1   | 572   | 2.4   |
| 9910192324              | 3 -   | -0.132  | 96.6    | 96.9                                  | 98.9   | -0.21   | 898     | 1474   | 52.5      | 28.6  | 646   | 2.4   |
| 9910200241              | 3 -   | -0.152  | 96.0    | 96.6                                  | 98.9   | -0.13   | 753     | 1445   | 143.5     | 31.9  | 648   | 2.4   |
|                         | ~     |         |         | _                                     |        |         |         |        |           |       |       |       |
| CSLD DIAGNO             | STIC  | CS: RAT | LE TABL | ıE                                    |        |         |         |        |           |       |       |       |
| T 3:SUPREME<br>TIME     | СTT   | TDT     | AVTMP   | T T T T T T T T T T T T T T T T T T T | DDWMD  | титт    | DSPNS   | TACT   | INTVL     | DEI   | ULLG  | TTDT. |
| TIME                    | 51    | LKI     | AVIMP   | IPIMP                                 | BDIMP  | IMRI    | DSPNS   | VOL    | TINIAL    | DEL   | טבונט | IHPI  |
| 9910190459              | 0 -   | -0.166  | 85.9    | 88.1                                  | 88.8   | 0.02    | 1074    | 5434   | 52.5      | 10.2  | 456   | 6.9   |
| 9910200011              | 0 -   | -0.131  | 85.7    | 88.0                                  | 88.9   | 0.03    | 925     | 5970   | 34.5      | 4.3   | 434   | 6.9   |
| 9910200121              | 0 -   | -0.134  | 85.8    | 88.0                                  | 88.9   | 0.03    | 862     | 5958   | 47.0      | 5.4   | 434   | 6.9   |
| 9910200243              | 0 -   | -0.102  | 85.8    | 88.1                                  | 88.9   | 0.03    | 797     | 5955   | 126.0     | 6.8   | 434   | 6.9   |
|                         |       |         |         |                                       |        |         |         |        |           |       |       |       |
| CSLD DIAGNO             |       | CS: RAT | TE TABI | E                                     |        | Mid 80  | S       |        |           |       |       |       |
| T 1:REGULAR             |       |         |         |                                       |        |         |         |        |           |       |       |       |
| TIME                    | ST    | LRT     | AVTMP   | TPTMP                                 | BDTMP  | TMRT    | DSPNS   | VOL    | INTVL     | DEL   | ULLG  | THPT  |
| 9910200045              | 0 -   | -0.049  | 84.9    | 86.2                                  | 88.6   | 0.04    | 856     | 8970   | 47.0      | 4.6   | 301   | 10.7  |
| 9910200013              |       | -0.022  | 85.0    | 86.3                                  | 88.6   |         | 755     |        | 109.5     | 6.1   |       | 10.7  |
| 9910200451              | 0     | 0.115   | 85.1    | 86.5                                  | 88.6   | -       | 753     | 8940   | 26.0      | 8.7   |       | 10.7  |
| 9910210348              |       | -0.096  | 86.3    | 87.0                                  | 88.7   | -       | 1455    | 8414   | 31.0      | 12.2  |       | 10.7  |
| 9910210459              |       | -0.011  | 86.3    | 87.0                                  | 88.7   | -       | 1394    | 8410   | 32.5      |       |       | 10.7  |
| 9910220344              |       | -0.087  | 84.4    | 85.7                                  | 88.5   | -       | 661     | 9773   | 43.5      | 6.4   |       | 10.7  |
|                         |       |         |         |                                       |        |         |         |        |           |       |       |       |

It can be seen that the temperatures in Tank 2 are abnormally higher than in the other tanks. This problem was traced to a stuck relay. The pump was running continuously and heating up the fuel.

## **Solution**

Replace the stuck relay for pump in Tank 2.

## **CSLD PROBLEM 12 - PERIODIC TEST FAIL ON TANK 1**

## **Diagnostics**

IA5400

NOV 20, 1998 7:31 AM

CSLD DIAGNOSTICS: MOVING AVERAGE TABLE

| T 1:PREM     |       |                  |                 |         |         |        |
|--------------|-------|------------------|-----------------|---------|---------|--------|
| TIME         | SMPLS | TCVOL            | HEIGHT          | AVGTEMP | TOPTEMP | BDTEMP |
| 981120072142 | 30    | 3456.82          | 36.518          | 61.85   | 60.91   | 57.32  |
| 981120072212 | 31    | 3456.80          | 36.518          | 61.85   | 60.90   | 57.32  |
| 981120072242 | 30    | 3456.80          | 36.518          | 61.85   | 60.90   | 57.33  |
| 981120072312 | 30    | 3456.76          | 36.518          | 61.85   | 60.90   | 57.33  |
| 981120072342 | 30    | 3456.78          | 36.518          | 61.85   | 60.90   | 57.34  |
| 981120072412 | 31    | 3456.79          | 36.518          | 61.85   | 60.90   | 57.34  |
| 981120072442 | 30    | 3456.80          | 36.518          | 61.85   | 60.90   | 57.34  |
| 981120072512 | 30    | 3455.51 <b>C</b> | 36.512          | 61.85   | 60.90   | 57.34  |
| 981120072542 | 31    | 3451.16          | 36.489          | 61.85   | 60.90   | 57.35  |
| 981120072612 | 30    | 3446.74          | 36.466          | 61.85   | 60.90   | 57.35  |
| 981120072642 | 31    | 3441.81          | 36.441          | 61.85   | 60.90   | 57.35  |
| 981120072712 | 30    | 3437.17          | 36.417          | 61.85   | 60.90   | 57.35  |
| 981120072742 | 30    | 3435.84          | 3 <b>70</b> 8   | 61.85   | 60.90   | 57.34  |
| 981120072812 | 31    | 3435.37          |                 | 61.85   | 60.90   | 57.34  |
| 981120072842 | 30    | 3435.12          | 3 <b>.5</b> 6   | 61.85   | 60.89   | 57.34  |
| 981120072912 | 31    | 3434.87          | 3 0 5           | 61.85   | 60.89   | 57.33  |
| 981120072942 | 30    | 3434.70          | 3 6 4           | 61.85   | 60.89   | 57.33  |
| 981120073012 | 30    | 3434.65          | 3 2 4           | 61.85   | 60.89   | 57.32  |
| 981120073042 | 31    | 3434.54          | low decrease in | 61.85   | 60.88   | 57.32  |
| 981120073112 | 30    | 3434.45          | 3 0 3           | 61.85   | 60.88   | 57.32  |
| 981120073142 | 31    | 3434.39          | 3 8 3           | 61.85   | 60.87   | 57.31  |
| 981120073212 | 29    | 3434.29          | 3 S 2           | 61.85   | 60.87   | 57.31  |
| 981120073242 | 30    | 3434.18          | 36.402          | 61.85   | 60.86   | 57.30  |
| 981120073312 | 30    | 3434.04          | 36.401          | 61.85   | 60.86   | 57.30  |
| 981120073342 | 30    | 3433.96          | 36.400          | 61.85   | 60.85   | 57.30  |
| 981120073412 | 31    | 3433.91          | 36.400          | 61.85   | 60.85   | 57.30  |
| 981120073442 | 30    | 3433.88          | 36.400          | 61.85   | 60.85   | 57.30  |
| 981120073512 | 31    | 3433.84          | 36.400          | 61.85   | 60.84   | 57.30  |
| 981120073542 | 30    | 3433.85          | 36.400          | 61.85   | 60.84   | 57.31  |
| 981120073642 | 31    | 3433.81          | 36.400          | 61.85   | 60.83   | 57.31  |
| 981120073712 | 30    | 3433.82          | 36.400          | 61.85   | 60.83   | 57.32  |
| 981120073742 | 31    | 3433.77          | 36.399          | 61.85   | 60.83   | 57.32  |
| 981120073812 | 30    | 3433.69          | 36.399          | 61.85   | 60.83   | 57.32  |
| 981120073842 | 31    | 3433.63          | 36.399          | 61.85   | 60.82   | 57.33  |
| 981120073912 | 30    | 3433.62          | 36.399          | 61.85   | 60.82   | 57.33  |
| 981120073942 | 31    | 3433.56          | 36.398          | 61.85   | 60.83   | 57.33  |
| 981120074012 | 30    | 3433.63          | 36.399          | 61.85   | 60.83   | 57.33  |
| 981120074042 | 30    | 3433.58          | 36.398          | 61.85   | 60.83   | 57.33  |
| 981120074112 | 30    | 3433.60          | 36.399          | 61.85   | 60.83   | 57.33  |
| 981120074142 | 30    | 3433.60          | 36.399          | 61.85   | 60.84   | 57.33  |
| 981120074212 | 31    | 3433.57          | 36.398          | 61.85   | 60.84   | 57.33  |

| 001100074040 | 2.0 | 2422 55 | 26 200                          | C1 0E | CO 04 | E7 22 |
|--------------|-----|---------|---------------------------------|-------|-------|-------|
| 981120074242 | 30  | 3433.55 | 36.398                          | 61.85 | 60.84 | 57.33 |
| 981120074312 | 31  | 3433.54 | 36.398                          | 61.85 | 60.85 | 57.33 |
| 981120074342 | 30  | 3433.50 | 36.398                          | 61.85 | 60.85 | 57.34 |
| 981120074412 | 31  | 3433.43 | 36.398                          | 61.85 | 60.85 | 57.34 |
| 981120074442 | 30  | 3433.48 | 36.398                          | 61.85 | 60.86 | 57.34 |
| 981120074512 | 31  | 3433.47 | 36.398                          | 61.85 | 60.86 | 57.34 |
| 981120074542 | 30  | 3433.44 | 36.398                          | 61.85 | 60.86 | 57.34 |
| 981120074612 | 30  | 3433.46 | 36.398                          | 61.85 | 60.87 | 57.35 |
| 981120074642 | 31  | 3433.49 | 36.398                          | 61.85 | 60.87 | 57.35 |
| 981120074712 | 30  | 3433.50 | 36.398                          | 61.85 | 60.87 | 57.35 |
| 981120074742 | 30  | 3433.46 | 36.398                          | 61.85 | 60.88 | 57.35 |
| 981120074812 | 31  | 3433.47 | 36.398                          | 61.85 | 60.88 | 57.35 |
| 981120074842 | 30  | 3433.41 | 36.398                          | 61.85 | 60.88 | 57.36 |
| 981120074912 | 30  | 3433.44 | 36.398                          | 61.85 | 60.88 | 57.36 |
| 981120074942 | 31  | 3433.41 |                                 | 61.85 | 60.88 | 57.36 |
| 981120074942 | 30  | 3433.36 | 3 <b>70</b> 98 97               | 61.85 | 60.88 | 57.36 |
|              |     |         |                                 |       |       |       |
| 981120075042 | 30  | 3433.35 | 3 <b>.!</b> 97<br>3 <b>0</b> 98 | 61.85 | 60.88 | 57.37 |
| 981120075112 | 30  | 3433.41 | 98 98                           | 61.85 | 60.88 | 57.37 |
| 981120075142 | 29  | 3433.41 | 98                              | 61.85 | 60.88 | 57.37 |
| 981120075212 | 29  | 3433.39 | 97                              | 61.85 | 60.88 | 57.37 |
| 981120075242 | 32  | 3433.37 | 97                              | 61.85 | 60.88 | 57.38 |
| 981120075312 | 30  | 3433.41 | 398<br>398<br>997<br>399<br>997 | 61.85 | 60.88 | 57.38 |
| 981120075342 | 30  | 3433.39 | 97                              | 61.85 | 60.88 | 57.38 |
| 981120075412 | 31  | 3433.40 | 98                              | 61.85 | 60.88 | 57.38 |
| 981120075442 | 30  | 3433.37 | 36.397                          | 61.85 | 60.88 | 57.38 |
| 981120075512 | 30  | 3433.34 | 36.397                          | 61.85 | 60.89 | 57.38 |
| 981120075542 | 31  | 3433.35 | 36.397                          | 61.85 | 60.88 | 57.39 |
| 981120075612 | 31  | 3433.38 | 36.397                          | 61.85 | 60.88 | 57.39 |
| 981120075642 | 30  | 3433.31 | 36.397                          | 61.85 | 60.88 | 57.39 |
| 981120075712 | 30  | 3433.31 | 36.397                          | 61.85 | 60.88 | 57.40 |
| 981120075742 | 30  | 3433.29 | 36.397                          | 61.85 | 60.88 | 57.40 |
| 981120075812 | 31  | 3433.29 | 36.397                          | 61.85 | 60.88 | 57.40 |
| 981120075842 | 30  | 3433.30 | 36.397                          | 61.85 | 60.88 | 57.41 |
| 981120075912 | 30  | 3433.27 | 36.397                          | 61.85 | 60.88 | 57.41 |
| 981120075942 | 30  | 3433.28 | 36.397                          | 61.85 | 60.88 | 57.41 |
| 981120080012 | 30  | 3433.30 | 36.397                          | 61.85 | 60.88 | 57.41 |
| 981120080042 | 30  | 3433.26 | 36.397                          | 61.85 | 60.88 | 57.42 |
| 981120080112 |     | 3433.23 | 36.397                          | 61.85 | 60.88 | 57.42 |
| 981120080142 |     | 3433.13 |                                 | 61.85 | 60.89 | 57.42 |
| 981120080212 | 31  | 3433.14 | 36.396                          | 61.85 | 60.89 | 57.42 |
| 981120080242 | 30  | 3433.12 | 36.396                          | 61.85 | 60.89 | 57.42 |
| 981120080312 | 30  | 3433.05 | 36.396                          | 61.85 | 60.89 | 57.42 |
| 981120080342 | 31  | 3433.04 |                                 | 61.85 | 60.89 | 57.42 |
| 981120080412 | 30  |         |                                 | 61.85 | 60.89 | 57.42 |
|              |     | 3433.10 | 36.396                          |       |       |       |
| 981120080442 | 31  | 3433.07 |                                 | 61.85 | 60.89 | 57.41 |
| 981120080512 | 30  | 3433.08 | 36.396                          | 61.85 | 60.90 | 57.40 |
| 981120080542 | 30  | 3433.08 |                                 | 61.85 | 60.90 | 57.40 |
| 981120080612 | 30  | 3433.06 | 36.396                          | 61.85 | 60.90 | 57.40 |
| 981120080642 | 31  | 3433.04 |                                 | 61.85 | 60.90 | 57.39 |
| 981120080712 | 31  | 3433.06 |                                 | 61.85 | 60.90 | 57.39 |
| 981120080742 | 30  | 3432.99 | 36.395                          | 61.85 | 60.90 | 57.39 |

| 981120080812    | 30  | 3432.99 | 36.395 | 61.85 | 60.90 | 57.39 |
|-----------------|-----|---------|--------|-------|-------|-------|
| 981120080842    | 31  | 3433.00 | 36.395 | 61.85 | 60.90 | 57.40 |
| 981120080912    | 30  | 3433.03 | 36.396 | 61.85 | 60.90 | 57.40 |
| 981120080942    | 31  | 3433.02 | 36.396 | 61.85 | 60.89 | 57.40 |
| 981120081012    | 30  | 3433.04 | 36.396 | 61.85 | 60.89 | 57.40 |
| MOVING AVERAGE: | 343 | 33.07   |        |       |       |       |

DISPENSE STATE: IDLE 0.097659

## **Analysis**

Examining the IA54 table showed that following a dispense the level continued dropping for a long period of time. Inspecting the probe revealed that the floats had been installed upside down.

## Solution

Reinstall floats correctly and delete rate table.

## 12 BIR Troubleshooting

Business Inventory Reconciliation (BIR), an option for TLS-350R Consoles, automatically performs tank-to-meter mapping, tank calibration (AccuChart), and delivery and sales reconciliation to provide the customer with real-time, precise inventory control. This section contains BIR troubleshooting information and examples of actual BIR problems and their solutions.

## **BIR Troubleshooting Requirements**

To troubleshoot BIR, you must have a PC or data terminal to collect important diagnostic reports via RS-232 or modem connection. Veeder Root cannot diagnose some of the more complex BIR problems without access to all of the reports discussed in this section. The majority of the reports needed in this analysis can not be printed on the console's printer.

There are three categories of BIR problems:

- Meter mapping errors,
- Tank calibration (AccuChart) errors, and
- Dispenser Interface Modules (DIM) communication problems

Meter mapping problems, and to some degree tank calibration problems, and BIR variance analysis are contained in this section.

#### **BIR Features**

- Inventory reconciliation
- · Automatic tank to dispenser meter mapping
- · Adjusted delivery reports
- Automatic tank calibration (AccuChart)

#### **BIR Methods**

#### INVENTORY RECONCILIATION

Variance = End Volume - Start Volume + Sales - Deliveries

#### ADJUSTED DELIVERY REPORTS

Adjusted Delivery = End Volume - Start Volume + Sales

## Requirements for BIR with Manifolded Tanks

- Both 3XX software and a Memory Expansion Module are required for siphon or a combination of siphon and line manifolding.
- At least 1XX software for line only manifolding.

### ACCUCHART RESTRICTIONS WITH MANIFOLDED TANKS

- Only 2 tanks are allowed in a siphon manifolded set.
- Only 4 siphon manifolded sets per system.
- The tank diameters in a siphon manifolded set must be within 6 inches of each other.
- The total siphon manifolded set's capacity must be less than 30,000 gallons.
- \*If these restrictions are not met BIR will be operational on the siphon manifolded set, but not AccuChart.

## **Alarms**

## **BIR GENERATES 3 ALARMS**

- Close Daily Pending BIR is waiting for an idle period to close the daily report.
- Close Shift Pending BIR is waiting for an idle period to close the shift report.
- Prod Threshold Alm The periodic variance of a product exceeded the BIR calculated threshold.

## **DISPENSER INTERFACE MODULES (DIMS) GENERATE 3 ALARMS**

Because of the many types of DIMs and DIM-to-POS connection possibilities, please refer to the DIM section of this manual to troubleshoot the three DIM alarms:

- · Disabled DIM
- · Communication Alarm
- BDIM Transaction Alarm

## **BIR Setup Errors**

#### METER DATA PRESENT ENTRY

If there is meter data present and this entry is incorrectly set to NO, the map will never complete because the auto-meter mapping program will not assign this tank to a meter.

If there is no meter data present and this entry is incorrectly set to YES, a BIR report will be generated for this tank. There will be large reconciliation errors because there is no sales information.

## **BIR TEMPERATURE COMPENSATION**

If the meters are reporting temperature compensated volumes, this entry must be set to YES. Incorrect setting of this entry will result in variance errors.

#### **BIR ALARM THRESHOLD AND OFFSET**

If the Periodic Reconciliation Alarm is enabled and the BIR Alarm Threshold and/or Alarm Offset values are entered incorrectly, incorrect reporting of the alarm may occur.

If the variance for the reconciliation period exceeds the maximum limit determined by the Alarm Threshold and Alarm Offset values, the Periodic Reconciliation Alarm will be posted. This maximum limit value is determined by the following formula:

Max. variance value = (Alarm Threshold%) x (total sales) + Alarm Offset

For example, the Alarm Threshold is set to 1 percent, the Alarm Offset is set to 130 gallons, total sales for the reconciliation period is 100,000 gallons, the maximum variance limit before posting the Periodic Reconciliation Alarm would be:

(0.01) x (100,000) + 130 = 1000 + 130 = 1130 gallons

## **BIR Variance Errors**

## **GENERAL**

- 1. The periodic variance is the summation of the daily variances.
- 2. The polarity of the variance is either positive or negative.
  - a. A negative variance results when the TLS Console starting and ending volumes indicate more fluid has left the tank than the POS reported sales indicate.
  - b. A positive variance results when the TLS Console starting and ending volumes indicate less fluid has left the tank than the POS reported sales indicate.
- 3. An examination of the BIR daily history table will indicate whether a large periodic variance is a summation of smaller daily variances with the same sign or whether there are isolated instances of large daily variances.
- 4. Typically, variances will be larger on days when there has been a large volume change (large sales or a delivery or both).
- 5. Typically, variances will be larger on days when the tank fluid level is operating at the extremes (full or almost empty). This is due to calibration errors; accuracy should improve as the tank calibrates.
- 6. Large negative variances indicate lost sales data. However, don't overlook the possibility that a negative variance could be caused by a tank or line leak!
- 7. Large positive variances indicate lost delivery data.
- 8. There are severall sources of variance errors: lost or inaccurate VOLUME DATA, lost or inaccurate SALES DATA.

## POSSIBLE CAUSES OF LOST OR INACCURATE TLS CONSOLE VOLUME DATA

- 1. Isolated variances (usually large):
  - a. Fluid level too low (INVALID FUEL LEVEL common)
  - b. Fluid level too high, fluid in the riser, float stuck in the riser (OVERFILL ALARM)
  - c. Malfunctioning probe (possible PROBE OUT ALARM, stuck float, etc.)
  - d. Tank calibrating during the day (V106 and V107 only 3 times)
  - e. Lost Deliveries (V106 and V107 only rare).
  - f. Adding fluid to the tank without tripping a delivery report.
  - g. Removing fluid from the tank, through a means that by-passes the POS (site maintenance, water removal, etc.)
- 2. Continuous variances usually of the same sign:

- a. Inaccurate tank calibration.
- b. Reconciliation temperature compensation incorrectly setup.
- c. One or more meters are not being reported.

## POSSIBLE CAUSES OF LOST OR INACCURATE SALES DATA

- 1. Isolated variances (usually large):
  - a. Malfunctioning DIM (possible DISABLED DIM ALARM).
  - b. NO POS communication (possible COMMUNICATION ALARM).
  - c. A period when the TLS Console was not powered.
  - d. Removing fluid from the tank through a means that by-passes the POS (theft, water removal, etc.).
  - e. Meter-map state changes to incomplete (V106 and V107 only).
  - f. Meter totalizer rollover.
  - g. Meter maintenance.
- 2. Continuous variances usually of the same sign:
  - a. DIM programmed incorrectly.
  - b. Inaccurate meter.
  - c. Incorrect meter-map (usually on start-up due to pattern matching).
  - d. Removing fluid from the tank, through a means that by-passes the POS (meter not connected to POS, leaks, etc.).
  - e. One or more meters are not being reported.

# **Reports Used to Analyze BIR Variance Problems**

#### **120100 STANDARD INVENTORY REPORT**

- 1. Identifies the site for record keeping and evaluation of environmental extremes.
- 2. Develop an overview of the site:
  - a. Only two gasoline grades, e.g., Premium and Regular (could be blenders).
  - b. Two tanks same product (could be manifolded tanks).
  - c. Add ullage and inventory to get ballpark capacities.
  - d. Are there low volume products, such as kerosene, waste oil, etc.
- 3. Check all parameters (volume, temperature, water, etc.), do they make sense?

#### **I20100**

STATION HEADER INFO JUN 26, 1996 2:36 PM

| TANK | PRODUCT  | VOLUME | TC VOLUME | ULLAGE | HEIGHT | WATER | TEMP |
|------|----------|--------|-----------|--------|--------|-------|------|
| 1    | UNLEADED | 8627   | 8617      | 3000   | 63.42  | 0.0   | 76.9 |

| 2 | UNLEADED PLUS  | 9286 | 9278 | 2341 | 67.92 | 0.0 | 72.2 |
|---|----------------|------|------|------|-------|-----|------|
| 3 | SUPER UNLEADED | 8315 | 8309 | 3312 | 61.38 | 0.0 | 70.6 |
| 4 | KEROSENE       | 5399 | 5395 | 598  | 60.21 | 0.0 | 70.9 |
| 5 | DIESEL         | 2989 | 2987 | 2940 | 46.27 | 0.0 | 70.1 |

## **I11100 AND I11200 PRIORITY AND NON-PRIORITY ALARM HISTORY**

Look for Communication, DIM, Invalid Fuel Level, and Probe Out alarms that occurred during the problem period.

## **I11100**

DEC 18, 1997, 3:04 PM

PRIORITY ALARM HISTORY

| ID | CATEGORY | DESCRIPTION | NALARM TYPE         | STATE | DATE     | TIME   |
|----|----------|-------------|---------------------|-------|----------|--------|
| Т3 | TANK     | REGULAR     | LOW PRODUCT ALARM   | CLEAR | 12-18-97 | 1:32AM |
| Т3 | TANK     | REGULAR     | LOW PRODUCT ALARM   | ALARM | 12-17-97 | 5:56PM |
| E1 | OTHER    | B1G         | COMMUNICATION ALARM | CLEAR | 10-15-97 | 9:34AM |
| E1 | OTHER    | B1G         | DISABLED DIM ALARM  | CLEAR | 1-01-96  | 8:08AM |
| E1 | OTHER    | B1G         | DISABLED DIM ALARM  | ALARM | 1-01-96  | 8:08AM |
| E1 | OTHER    | B1G         | COMMUNICATION ALARM | ALARM | 1-01-96  | 8:01AM |
| Т1 | TANK     | SUPER       | PROBE OUT           | ALARM | 1-01-96  | 7:01AM |

# **I11200**

DEC 18, 1997, 3:05 PM

NON-PRIORITY ALARM HISTORY

| ID | CATEGORY | DESCRIPTION | ALARM TY | /PE  |       | STATE | DATE     | TIME   |
|----|----------|-------------|----------|------|-------|-------|----------|--------|
| Т3 | TANK     | REGULAR     | INVALID  | FUEL | LEVEL | CLEAR | 11-08-97 | 1:01AM |
| Т3 | TANK     | REGULAR     | INVALID  | FUEL | LEVEL | ALARM | 11-07-97 | 6:31PM |

# I@A400 DAILY RECONCILIATION LIST FOR LAST 31 DAYS (62 ON NEWER VERSIONS)

An alternate command would be IC0700 which gives you the Current or Previous Periodic Report.

- 1. Determine if the variance problem is associated with a significant number of large variances or the result of small errors of the same polarity.
- 2. Rule of thumb: a daily variance less than 1% of the day's sales is OK.
- 3. Large errors (usually isolated)
  - a. Check sales, if zero or unusually low, look for POS communication problems, DIM problems, or power outages.
  - b. Undetected delivery? TLS Console end volume greater than TLS Console start volume. Deliveries will be lost if TLS Console is not powered, site unmaps (V107), or probe problems.

- c. Mismapped meter(s). Sales are reported to the wrong tank. This tank will have a positive variance. The tank the meter is actually mapped to will have a negative variance of approximately equal magnitude.
- d. Invalid fuel levels, probe outs, stuck floats, site maintenance.
- 4. Small errors of the same polarity.
  - a. Check AccuChart.
  - b. Check temperature compensation setup.

I@A400
DEC 9, 1997 10:12 AM
BASIC\_RECONCILIATION HISTORY

#### T 1:BRONZE

| REQUEST ST | STRT TIME  | END TIME   | STRT_VL | END_VL  | SALES  | DELIV  | OFFSET VARIEN |
|------------|------------|------------|---------|---------|--------|--------|---------------|
| 9711080200 | 9711080200 | 9711090200 | 9256.3  | 7662.2  | 0.0    | 0.0    | 0.0-1594.1    |
| 9711090200 | 9711090200 | 9711100200 | 7662.2  | 6093.3  | 0.0    | 0.0    | 0.0-1568.9    |
| 9711100200 | 9711100200 | 9711110200 | 6093.3  | 4194.3  | 0.0    | 0.0    | 0.0-1899.0    |
| 9711110200 | 9711110200 | 9711120200 | 4194.3  | 9586.9  | 0.0    | 6618.2 | 0.0-1225.5    |
| 9711120200 | 9711120200 | 9711130200 | 9586.9  | 8024.1  | 0.0    | 0.0    | 0.0-1562.8    |
| 9711130200 | 9711130200 | 9711140200 | 8024.1  | 6263.8  | 1477.5 | 0.0    | 0.0 - 282.8   |
| 9711140200 | 9711140200 | 9711150200 | 6285.1  | 7967.5  | 2284.3 | 3945.9 | 0.0 20.8      |
| 9711150200 | 9711150200 | 9711160200 | 7967.5  | 6197.8  | 1788.3 | 0.0    | 0.0 18.6      |
| 9711160200 | 9711160200 | 9711170200 | 6197.8  | 4696.4  | 1514.2 | 0.0    | 0.0 12.8      |
| 9711170200 | 9711170200 | 9711180200 | 4696.4  | 10763.6 | 2176.3 | 8216.9 | 0.0 26.5      |
| 9711180200 | 9711180200 | 9711190200 | 10763.6 | 8969.7  | 1802.6 | 0.0    | 0.0 8.8       |
| 9711190200 | 9711190200 | 9711200200 | 8969.7  | 7451.5  | 1528.4 | 0.0    | 0.0 10.2      |
| 9711200200 | 9711200200 | 9711210200 | 7451.5  | 7551.1  | 1510.3 | 1599.8 | 0.0 10.0      |
| 9711210200 | 9711210200 | 9711220200 | 7551.1  | 5861.0  | 1702.9 | 0.0    | 0.0 12.8      |
| 9711220200 | 9711220200 | 9711230200 | 5861.0  | 4345.7  | 1531.5 | 0.0    | 0.0 16.3      |
| 9711230200 | 9711230200 | 9711240200 | 4345.7  |         | 1289.4 | 0.0    | 0.0 15.7      |
| 9711240200 | 9711240200 | 9711250200 | 3072.0  | 8845.3  | 1381.9 | 7147.6 | 0.0 7.6       |
| 9711250200 | 9711250200 |            | 8845.3  | 7616.4  | 777.2  | 0.0    | 0.0 - 451.7   |
|            | 9711260200 | 9711270200 | 7616.4  | 6194.1  | 0.0    | 0.0    | 0.0-1422.3    |
| 9711270200 | 9711270200 | 9711280200 | 6194.1  | 4439.8  | 0.0    | 0.0    | 0.0-1754.3    |
| 9711280200 | 9711280200 | 9711290200 | 4439.8  | 2527.2  | 0.0    | 0.0    | 0.0-1912.6    |
| 9711290200 | 9711290200 | 9711300200 | 2527.2  | 7825.3  | 0.0    | 7150.2 | 0.0-1852.1    |
| 9711300200 | 9711300200 | 9712010200 | 7825.3  | 6243.7  | 0.0    | 0.0    | 0.0-1581.6    |
| 9712010200 | 9712010200 | 9712020200 | 6243.7  | 4827.5  | 1347.9 | 0.0    | 0.0 -68.3     |
| 9712020200 | 9712020200 | 9712030200 | 4827.5  | 3381.5  | 1463.5 | 0.0    | 0.0 17.5      |

# **IA5400 CONSOLE 30 SECOND AVERAGE VOLUME HISTORY**

Look for volume stability when the **tank is idle** (variation <0.5 gallon typically).

IA5400 DEC 9, 1997 10:11 AM

CSLD DIAGNOSTICS: MOVING AVERAGE TABLE

| T 1:BRONZE   |       |        |        |         |         |        |
|--------------|-------|--------|--------|---------|---------|--------|
| TIME         | SMPLS | TCVOL  | HEIGHT | AVGTEMP | TOPTEMP | BDTEMP |
| 971209094911 | 31    | 7830.4 | 59.7   | 45.10   | 43.47   | 37.76  |
| 971209094941 | 32    | 7830.4 | 59.7   | 45.10   | 43.47   | 37.76  |
| 971209095011 | 31    | 7830.4 | 59.7   | 45.10   | 43.47   | 37.76  |
| 971209095041 | 30    | 7830.3 | 59.7   | 45.10   | 43.46   | 37.76  |
| 971209095111 | 31    | 7830.3 | 59.7   | 45.10   | 43.46   | 37.76  |

## **161500 METER DATA PRESENT**

Pay special attention to any tank in which the flag is set to NO.

#### I61500

| SEP 3, | 1996 9:53 AM     |            |
|--------|------------------|------------|
| TANK   | PRODUCT LABEL    | METER DATA |
| 1      | SUPER            | NO         |
| 2      | UNLEADED STP     | YES        |
| 3      | UNLEADED STORAGE | YES        |
| 4      | KERO             | YES        |

# **190200 SOFTWARE REVISION**

If manifolded tanks are present, system software must be the 3XX series.

T90200
DEC 9, 1997 10:08 AM
SOFTWARE REVISION LEVEL
VERSION 114.04
SOFTWARE# 346114-100-E
CREATED - 97.07.09.16.33
S-MODULE# 330160-103-A
SYSTEM FEATURES:
PERIODIC IN-TANK TESTS
ANNUAL IN-TANK TESTS
BIR
FUEL MANAGER

## **AUTOMATIC METER MAPPING**

Auto tank/meter mapping analyzes the metered sales data and the tank volume data. If a transaction volume for a particular meter event uniquely matches a drop in volume in one of the available tanks, a "vote" in favor of mapping that tank to the meter is made.

When a sufficient number of votes indicates that a meter is connected to an available tank, then the meter will be mapped to that tank. Should the automatic meter mapping algorithm recognize a meter-to-tank pattern it will map the tank, even before there are a sufficient number of votes. Automatic meter mapping is recommended over manual meter mapping (see "Manual Meter Mapping" on page 12-10 for exceptions).

In the case of manifolded tanks, the meter is mapped to the primary tank. The primary tank is defined as the lowest numbered tank in the manifolded set.

A tank can be mapped to only one meter for a given Fuel Position (FP). There is an exception beginning with Version 111 or 311 software. If the FP has only 2 meters and the tank product is diesel (identified by the thermal coefficient of expansion being <0.0005 [U.S. units]), auto meter mapping will allow the mapping of both meters to the same tank.

## A tank will be unavailable for mapping if any of the following conditions are true:

- In-tank programming parameter Meter Data Present set to NO,
- It is manifolded and the console has 1XX software,
- It is not configured,
- · Probe data is not being collected, or
- Probe not magnetostrictive type.

## BIR will not produce reports while the meter map is incomplete

The meter map is declared incomplete when:

- Any reported meter has not been mapped to a tank,
- A probeless tank (one connected to the POS, but not monitored by the console) has not been manually mapped (see "Manual Meter Mapping" on page 12-10 for this procedure), or
- A previously "retired" meter is reactivated.

If an unmapped meter has not been reported by a POS within 24 hours of the last report, the meter is declared "retired". A retired meter may be a phantom meter incorrectly reported by the POS, or it may be a seldom heard from meter, such as one connected to a kerosene tank. Until the "retired" meter is mapped, every time the meter is activated, and for 24 hours thereafter, BIR is suspended.

## TANK/METER CROSS REFERENCES

In addition to the tank/meter map, the following cross references are maintained:

- Real fueling position to logical fueling position cross reference, and
- Real meter to logical meter cross reference.

## TANK/METER CROSS REFERENCE DIAGRAM

A POS terminal identifies a specific meter by reporting a Fueling Position (FP) number and a Meter (M) number (see Figure 12-1). The translation or cross referencing of the FP and M numbers reported by the POS terminal is necessary because of console memory limitations.

The POS reports FP numbers in the range 0 - 99 (referred to as Real FP numbers in the diagram). The console is limited to 36 FPs. The POS FP numbers 0 - 99 are cross referenced by the console to 0 - 35 (referred to as Logical FP numbers in the diagram).

The POS reports Meter numbers in the range 0 - 99 (referred to as Real M numbers in the diagram). The console is limited to 6 meters (M) per FP. The POS M numbers 0 - 99 are cross referenced by the console to 0 - 5 (referred to as Logical M numbers in the diagram).

In addition, more than one DIM board is allowed, so it is possible to have two POS terminals reporting the same FP and M numbers. A number identifying each DIM board is added to the Real FP to ensure a unique number (referred to as the DIM FP in the diagram).

POS===>DIM Event===>Meter Event

Real FP===>DIM FP===>Logical FP

Real M===>Logical M===>Logical M

All attempts are made to obtain a one-to-one mapping. If all Real FP numbers are within 0 to 35, the Real FP number will equal the Logical FP number. If all Real Meter numbers are within 0 to 5, the Real Meter number will equal the Logical Meter number.



Figure 12-1. Tank/Meter Map Diagram

# **Manual Meter Mapping**

A manual tank/meter map can be entered through the keyboard (SETUP MODE, Reconciliation Setup Function, Modify Tank/Meter Map Step) or through the RS-232 command 7B1. The meter must be identified by bus, slot, real FP, and real M.

A manually entered tank/meter map is locked and cannot be changed by auto-meter mapping. In all displays, printouts, and RS-232 diagnostic reports a locked meter is indicated by an asterisk following the tank number.

In some applications the dispensing data sent from the POS terminal to the TLS Console will contain meter transactions from a tank(s) in which there is no probe. Unable to match the transaction with a corresponding height change, the tankmeter mapping algorithm will declare the map incomplete and BIR will be inhibited. You must manually map a "probeless" meter into the tank/meter map before it will be declared complete and BIR can begin.

A manually mapped meter is considered locked. Auto meter mapping will not change a locked meter.

## RS-232 COMMAND 7B1

A manual meter map can be entered through the keyboard (SETUP MODE, RECONCILIATION SETUP Function, MODIFY TANK/METER MAP Step) or through the RS-232 command 7B1.

The 7B1 command requires the meter in question to be fully identified by it's meter number, fueling position, and the bus and slot in which the dispenser interface module (DIM) is located. The bus and slot parameters are required because the Console supports multiple DIM cards. The 7B1 command also requires a tank number to which to map the meter.

A manually mapped meter is considered locked. Auto meter mapping will not change a locked meter.

## **7B1 REPORT PARAMETERS:**

BUS - This is the bus in which the DIM card is placed. There are currently two busses which will support DIM cards:

- Type 2 Console Power Area slots (MDIMs, LVDIMs)
- Type 3 Console Comm Cage slots (EDIMs, CDIMs, LDIMs, and IFSF DIMS)

SLOT - This is the slot in which the DIM board is placed. The slots available are dependent on the bus as follows:

- Slots 9 16 (Type 2 bus)
- Slots 1 6 (Type 3 bus)

FUEL\_P - This is the fueling position number reported by the POS terminal. It must be within the range 0 - 99. (The POS FP numbers 0 - 99 are cross referenced by the console to 0 - 35.)

METER - This is the meter number reported by the POS terminal. It must be within the range 0 - 99. (The POS M numbers 0 - 99 are cross referenced by the console to 0 - 5.)

TANK - Any one of the following tank numbers are acceptable:

- -1 (indicates a tank with no probe [99 for keyboard entry])
- 0 (indicates removal of the meter from the map)
- Any tank number that meets the BIR requirements. Note: Meter Data Present = YES.

#### **COMMAND 7B1 INQUIRY EXAMPLES**

Inquiry Response If The Map Is Empty.

Command:

#### I7B100

Response:

I7B100

JAN 1, 2000 8:41 AM

FUELING POSITION - METER - TANK MAP

BUS SLOT FUEL\_P METER TANK

TANK MAP EMPTY

## **Inquiry Response With Four Meters Reported**

Command:

#### I7B100

Response:

I7B100

JAN 1, 2000 8:42 AM

FUELING POSITION - METER - TANK MAP

| BUS | SLOT | FUEL_P | METER | TANK |
|-----|------|--------|-------|------|
| 3   | 1    | 18     | 1     | 1    |
| 3   | 1    | 18     | 2     | ?    |
| 3   | 1    | 18     | 3     | X    |
| 3   | 1    | 18     | 4     | R    |
| 3   | 1    | 18     | 5     | 2*   |

Definitions of symbols in tank column:

FP18/M1 1 Meter is mapped to tank 1.

FP18/M2 ? Meter is not mapped.

FP18/M3 X Meter is mapped to a probeless tank.

FP18/M4 R Meter is retired. This meter position has not been mapped and has not been reported within 24 or more hours. Retiring a meter allows the meter mapping algorithm to declare the tank map

complete if all other reported meters have been mapped or retired.

\* Indicates the meter has been manually mapped and cannot be changed by the auto meter mapping procedure.

## **COMMAND 7B1 SETUP EXAMPLES**

An explanation of the RS-232 7B1 command is shown below with the entries defined.

**S7B100** B S FP M T

where:

B = bus (2 or 3)

S =slot (bus 2: 9-16, bus 3: 1-6)

FP = fueling position (0-99)\*

M = meter (0-9)\*

12 BIR Troubleshooting

T = tank (-1, 0, or any legitimate tank number)

\*Identify unknown Fueling Positions/Meter Numbers as follows:

- The station must be idle throughout this procedure.
- From the console's front panel, clear the meter map (DIAG mode RECONCILIATION CLEAR MAP function).
- The response from the I7B100 command should be TANK MAP EMPTY.
- Dispense a small amount of product from the meter in question.
- Wait 2 minutes after the completion of the dispensing.
- The response from the I7B100 command should identify the bus, slot, fueling position number, and meter number of the meter in question. The tank parameter will indicate ? because the meter is not mapped.
- If additional meters need to be identified it is not necessary to clear the map; just confirm that 2 minutes after a dispense from the next meter to be identified, a meter was added to the I7B100 command list.

## COMMAND SETUP ERROR DETECTION

All parameters are checked before the command is performed. If an error is detected, the command parameters will be repeated with the parameter in error replaced with ??

## Example of A Rejected Command with the Fueling Position Out of Range

#### Command:



?? indicates FP value out of range.

## MANUAL METER MAPPING EXAMPLES

## Mapping FP18/M1 to tank 1

#### Command:

**s7B100** 3 1 18 1 1

## Response:

```
S7B100
JAN 1, 1995 8:42 AM
FUELING POSITION - METER - TANK MAP
BUS
SLOT FUEL_P METER TANK
3 1 18 1 1
```

## Mapping FP18/M3 to a probeless tank

#### Command:

**S7B100** 3 1 18 3 -1

#### Response:

```
S7B100
JAN 1, 1995 8:43 AM
FUELING POSITION - METER - TANK MAP

BUS
SLOT FUEL_P METER TANK

1 18 3 X
```

## Removing FP18/M4 from the map

#### Command:

**S7B100** 3 1 18 4 0

#### Response:

```
S7B100

JAN 1, 1995 8:43 AM

FUELING POSITION - METER - TANK MAP

BUS

SLOT FUEL_P METER TANK

1 18 4 -
```

# **Automatic Meter-Mapping Errors**

Automatic meter-mapping errors usually occur during the first few days and will be corrected automatically.

## MAP NEVER COMPLETES

- 1. Meter data present set to NO for a tank that has meter data.
- 2. One of the tanks has an invalid fuel height condition.
- 3. One of the tanks has a probe out alarm.
- 4. One of the tanks is not configured.
- 5. A meter with no console height data is reporting sales (probeless tank see below).
- 6. Manifolded tanks with 1XX software (software must be 3XX with extra RAM).
- 7. DIM programmed incorrectly.

#### MAP UNSTABLE

1. Retired Meters - Real Meters (Seldom Used)

This situation may occur when the site has a Fueling Position/Meter combination that is seldom used (e.g., a kerosene tank in the summer). If the map is complete and a dispense occurs on this FP/Meter combo, the map will go incomplete. The map will stay incomplete until this FP/Meter combo is mapped, OR retired after 24 hours of non-use.

The preferred method to map a retired or unmapped meter is to map the meter manually through the keyboard (SET-UP MODE, RECONCILIATION SETUP Function, MODIFY TANK/METER MAP Step) or the RS-232 serial meter mapping command (7B1).

Alternatively, the auto-meter mapping algorithm will map the meter when the following procedure performed. First wait until the station is idle (no dispensing on any tanks for at least 5 minutes), dispense 6 or more gallons from this

FP/Meter combo, wait 5 minutes and dispense 6 more gallons. Wait 5 minutes and verify the map is complete. At this time the dispensed fluid may be returned to the tank.

2. Retired Meters - Phantom Meters

If a POS or a DIM reports a meter that does not exist, the meter mapping algorithm will try to map it. Until the meter is retired the site will be declared unmapped. Possible causes for a phantom meter might be an incompatibility between the POS and DIM (reference Section 10, DIM troubleshooting), or by electrical noise in the cabling.

## **INCORRECT MAPPING**

- 1. Pattern matching may have predicted a pattern that does not exist. As votes build evidence that the map is wrong, the map may be changed to an unmapped state. Eventually the voting will correct the map. This will only be a start up issue.
- 2. Incorrect sales data may produce incorrect votes. Conflict between the POS and the DIM or the DIM setup is incorrect are possible causes.
- 3. Noisy or inaccurate data may produce incorrect votes. Some possible sources of data problems: bad probe, some vapor recovery systems.

# **Reports Used in Analyzing Meter Map Problems**

## **I@A002 METER MAP DIAGNOSTICS**

Typically a site will completely map within a day or two. Low throughput tanks and sites with random mappings that the pattern matching algorithm cannot take advantage of may take longer. If a site is not mapped after two weeks it should be examined.

- 1. Look for unmapped or retired meters.
  - a. Are these meters real or phantom meters?
  - b. Real meters Is TLS Console data available for them?
    - YES: manually map the meter to the proper tank.
    - NO: manually map the meter to a probeless tank.
- 2. Phantom meters

Pursue a DIM, POS, or installation problem.

3. Look for voting stability.

Are most of the votes unanimous? NO: Check TLS Console 30 second average history for volume stability. Check for correct DIM setup for POS.

## I@A002

MAR 26, 1996 9:27 AM MAP IS COMPLETE

| 0  | M0>3:0/0/0 | M1>3:1/1/1 | M2>3:2/2/2 | -:-/-/- | -:-/-/- | -:-/-/- |
|----|------------|------------|------------|---------|---------|---------|
|    | 9603260815 | 9603260747 | 9603252346 | *       | *       | *       |
|    | +          |            |            |         |         |         |
| 1  | M0>2:0/0/0 | M1>1:1/1/1 | M2>2:2/2/2 | -:-/-/- | -:-/-/- | -:-/-/- |
|    | •          | 9603260815 |            | *       | *       | *       |
|    | '          |            |            |         |         |         |
|    | •          |            |            |         |         |         |
|    | '          | M1>1:1/1/1 |            |         | -:-/-/- | -:-/-/- |
|    |            | 9603260856 |            | *       | *       | *       |
|    | +          |            |            |         |         |         |
| 3  | M0>2:0/0/0 | M1>3:1/1/1 | M2>3:2/2/2 | -:-/-/- | -:-/-/- | -:-/-/- |
|    | 9603260916 | 9603260722 | 9603260733 | *       | *       | *       |
|    | +          |            |            |         |         |         |
| 4  | M0>2:0/0/0 | M1>3:1/1/1 | M2>2:2/2/2 | -:-/-/- | -:-/-/- | -:-/-/- |
|    | •          | 9603260915 |            | *       | *       | *       |
|    |            | 9003200913 | 9003200909 |         |         |         |
|    | +          |            |            |         |         |         |
|    |            | M1>3:1/1/1 |            | -:-/-/- | -:-/-/- | -:-/-/- |
|    | 9603260902 | 9603260733 | 9603260916 | *       | *       | *       |
|    | +          |            |            |         |         |         |
| 6  | M0>1:0/0/0 | M1>3:1/1/1 | M2>1:2/2/2 | -:-/-/- | -:-/-/- | -:-/-/- |
|    | 9603260908 | 9603260922 | 9603251410 | *       | *       | *       |
|    | +          |            |            |         |         |         |
| 7  | M0>3:0/0/0 | M1>1:1/1/1 | M2>3:2/2/2 | -:-/-/- | -:-/-/- | -:-/-/- |
|    |            | 9603260856 |            | *       |         | *       |
|    | 9603260808 | 9603260856 | 9603260911 | •       | ^       | r       |
|    | +          |            |            |         |         |         |
| 8  | M3>1:3/3/3 | -:-/-/-    | -:-/-/-    | -:-/-/- | -:-/-/- | -:-/-/- |
|    | 9603260908 | *          | *          | *       | *       | *       |
|    | +          |            |            |         |         |         |
| 9  | M3>2:3/3/3 | -:-/-/-    | -:-/-/-    | -:-/-/- | -:-/-/- | -:-/-/- |
|    | 9603260856 | *          | *          | *       | *       | *       |
|    | '<br>+     |            |            |         |         |         |
|    |            |            |            |         |         |         |
|    | IImmon     | Doting     | Dwoboless  |         |         |         |
|    | ummapped   | Retired    | Properess  |         |         |         |
|    | +          |            |            |         |         |         |
| 15 | U >0:0/8/8 | R >0:8/8/8 | X >0:8/8/8 | -:-/-/- | -:-/-/- | -:-/-/- |
|    | 9603260902 | 9603260733 | *          | *       | *       | *       |
|    | +          |            |            |         |         |         |

Legend for report I@A002 above: U = unmapped, R = retired, X = probe

For Example, the FP9 M0 voting ballet is M3>1:3/3/3

Where: M3 = mapped to tank 4 (3+1\*)

3/3/3 = three votes for tank 4

9603260908 = date of last reported event for this meter, not necessarily the last vote

(YYMMDDHHMM)

## **I@A900 BIR MESSAGES**

- 1. Examine the time messages:
  - a. Identify how long the system has been running.
  - b. Look for excessive time changes, power outages.
- 2. Examine meter map issues:
  - a. Is the map complete?
  - b. How long did it take to complete.
  - c. Is the complete/incomplete status stable? If it was not, was it a startup issue?
  - d. Are meter/tank mappings changing? Check the meter mapping diagnostic
- 3. Pay attention to time stamps. Problems in this message buffer may not be current. They may have resulted from an earlier problem that has been fixed.

## I@A900

SEP 3, 1996 9:53 AM

ASR ERROR EVENT HISTORY BUFFER

| TIME         | CODE | MESSAGE              |
|--------------|------|----------------------|
| 960101080012 | 1008 | 700101000000 FORWARD |
| 960730080310 | 1008 | 960101080309 FORWARD |
| 960730104401 | 1008 | 960730080312 FORWARD |
| 960801081827 | 1011 | MAP IS INCOMPLETE    |
| 960801081827 | 1011 | MAP IS COMPLETE      |
| 960803141857 | 1011 | MAP IS INCOMPLETE    |
| 960804170727 | 1011 | MAP IS COMPLETE      |
| 960805173827 | 1011 | MAP IS INCOMPLETE    |
| 960807132022 | 1011 | MAP IS COMPLETE      |
| 960809113157 | 1011 | MAP IS INCOMPLETE    |
| 960810184600 | 1011 | MAP IS COMPLETE      |
| 960811191224 | 1011 | MAP IS INCOMPLETE    |
| 960815150333 | 1011 | MAP IS COMPLETE      |

<sup>\*</sup>Tank numbers are zero based (e.g., tank 1 is 0, tank 2 is 1, tank 3 is 2 and tank 4 is 3).

| 960816155152 | 1011 | MAP IS INCOMPLETE |
|--------------|------|-------------------|
| 960818143027 | 1011 | MAP IS COMPLETE   |
| 960819151050 | 1011 | MAP IS INCOMPLETE |
| 960819161418 | 1011 | MAP IS COMPLETE   |
| 960820164436 | 1011 | MAP IS INCOMPLETE |
| 960821151357 | 1011 | MAP IS COMPLETE   |

# Procedure for Identifying AccuChart Problems

## WHAT IS THE COMPLAINT?

- 1. Stick/chart reading does not agree with TLS Console volume. This is because AccuChart takes into account tank variations that the stick/chart method does not.
- 2. Excessive variance

#### First determine if AccuChart is the source of the variance error.

If AccuChart is not enabled or the user enable is NO, then BIR is not using AccuChart.

- 1. The reasons why AccuChart would not be enabled are:
  - a. Meter Data Present = NO
  - b. Siphon manifolded with 1XX software.
  - c. Diameter or Capacity not entered.
  - d. User multi-point chart bad.
  - e. Diameter not within 20% of probe length (V108 or V109 software).
  - f. Not a Mag probe.
  - g. Tank profile set to LINEAR.
- 2. The reasons why the user enable flag is NO are:
  - a. There has never been a calibration (too early in the calibration or low throughput)
  - b. The AccuChart update scheduling method is set to Never.
  - c. The AccuChart update scheduling method is set to Complete and AccuChart is still calibrating.
  - d. The AccuChart update scheduling method is set to Periodic and it has been less than 28 days since AccuChart began calibrating.

If AccuChart is being used by BIR, check the Fitness (value). This is a measure of how well the tank chart matches the data. In general, fitness values >1 (>5 for manifolded tanks) indicates an inaccurate calibration.

Causes for inaccurate calibration.

- 1. User programmed incorrectly the tanks's diameter, full volume, profile, or manifolding.
- 2. Inadequate tank usage during the calibration period.
- 3. Meter mapping problems during the calibrating period.
- 4. Noisy or inaccurate data (probe or dispenser).

5. Calibration is incomplete.

# **Reports Used to Analyze AccuChart Problems**

#### **I@B600 ACCUCHART STATUS**

- 1. Check to see if AccuChart is enabled (Enabled = ON).
- 2. Check User Enable parameter, if OFF, AccuChart is not being used.
- 3. Check Mode:
  - a. Calibration: Check duration to determine how long the tank has been calibrating. Depending on throughput, the first COE (capacity, offset, end shape) calibration occurs after two weeks. AccuChart needs 56 days to complete.
  - b. Monitor Mode: Indicates AccuChart is complete. Check alarm status and MSSE (fitness) value. These are an indication of how well the current data compares to the final AccuChart calibration.
- 4. Check MINht and MAXht:

These values will indicate the range over which the tank was calibrated. If it is a small range and the calibration is complete or almost complete, the tank was not adequately exercised during the calibration period.

5. Check CAP O E COUNT:

Check for no calibrations or less accurate capacity-only calibrations.

- a. V108, V109 software If count is 0, then no calibrations have been performed. If count is less than 4, then less accurate capacity-only calibration.
- b. V110 or later software If count is 3, no calibrations have been performed. Capacity-only calibrations have been eliminated.
- 6. Reasons for insufficient calibrations:
  - a. AccuChart not enabled.
  - b. Low throughput (check daily sales or CSLD A52 diag).
  - c. Early in the calibration Period.

## IB@B601

```
JUN 26, 1996 2:36 PM
ACCU-CHART DIAGNOSTICS - CALIBRATION STATUS
TANK 1 CAL STATUS
ENABLE = ON
              MODE = CALIBRATE
                                     ALARM = OFF
                                                      USER ENABLE = OFF
START TIME
             DURATION
                            MSSE
                                    SUMWT
                                              SIGMA
                                                        MINht.
                                                                 maxHT
                                                          19.2
605558407
                  48.0
                            0.56
                                     3372
                                              3.98
                                                                  53.8
CALIBRATION
                       CAP O E
                                          TILT
                                                 SLICE
               CAP
                                   DIAM
                                      0
COUNT
                             6
                                             0
                                                      0
                                      0
                                             0
                                                      0
SUMWEIGHT
               444
                          2142
```

## **IB9400 ACCUCHART CALIBRATION HISTORY**

- 1. Check the startup record: The first record indicates the startup time of AccuChart and the user entered parameters: capacity, diameter, and tank profile (SHAPE F). (Shape F value of 0 = 1 point tank profile was entered, 1 = 4 point tank profile was entered, and 0.5 = 20 point tank profile was entered.) Are the user entered parameters correct?
- 2. Any subsequent records that are identical to the startup record indicate AccuChart was reset.
- 3. Look at the final calibration.
  - a. Determine the type of calibration by looking at the parameters changed.
  - b. There should be at least one calibration where offset was adjusted.
  - c. Look at the Fitness value: values <1.0 indicate AccuChart was able to reduce the errors to an acceptable level at the time of calibration. Manifolded tanks will have larger fitness values (>5.0).

#### **IB9400**

DEC 9, 1997 10:13 AM

ACCU\_CHART CALIBRATION HISTORY

T 1:BRONZE

| DATE/TIME      | DIAM | LENGTH | OFFSET | $\mathtt{TILT}$ | SHAPE F | CAPACITY | FITNESS | Startup |
|----------------|------|--------|--------|-----------------|---------|----------|---------|---------|
| 97/09/19 10:43 | 2400 | 8007   | 0.0    | 25.4            | 1.00    | 43459    | 0.00    |         |
| 97/09/30 14:07 | 2404 | 7959   | 13.6   | 25.4            | 1.00    | 43426    | 0.21    | record. |
| 97/10/07 21:52 | 2401 | 7970   | 14.3   | 25.4            | 1.00    | 43350    | 0.14    |         |
| 97/10/30 19:52 | 2420 | 7878   | 19.9   | 25.4            | 1.00    | 43680    | 0.24    |         |
| 97/11/05 13:43 | 2403 | 7979   | 11.1   | 25.4            | 1.00    | 43480    | 0.27    |         |

# **Resetting AccuChart**

If it has been determined that the calibration is inaccurate and the cause has been repaired, AccuChart should be reset (ref. Accuchart Diagnostics Function - Figure 6-9 on page 6-8).

## **Contacting Tech Support**

If the BIR problem cannot be resolved, retrieve the following data via the RS-232 port or SiteFax modem and contact Technical Support:

- 1. <Control-A> I10200 System Configuration Report
- 2. <Control-A> I11100 Priority Alarm History
- 3. <Control-A> I11200 Non-priority Alarm History
- 4. <Control-A> I20100 Inventory Report
- 5. <Control-A> IC070001 Basic Inventory Reconciliation Periodic "Row" Report (Previous)
- 6. <Control-A> IC070000 Basic Inventory Reconciliation Periodic "Row" Report (Current)
- 7. <Control-A> I60A00 Set Tank Linear Calculated Full Volume
- 8. <Control-A> I61200 Set Tank Manifolded Partners

- 9. <Control-A> I61500 Set BIR Meter Data Present
- 10. <Control-A> I7B100 Set BIR Meter/Tank Mapping
- 11. <Control-A> I90200 System Revision Level Report
- 12. <Control-A> IA5400 CSLD Diagnostics, Moving Average Table
- 13. <Control-A> IB9400 AccuChart Calibration History
- 14. <Control-A> I@A400 Basic Reconciliation History
- 15. <Control-A> I@ A002 Meter Map Diagnostics
- 16. <Control-A> I@A900 ASR Error Event History Buffer
- 17. <Control-A> I@B600 AccuChart Diagnostics Calibration Status

# **BIR Troubleshooting Examples**

# 

#### Example 1:

In this example the fluid level went below the operating level of the probe. An active INVALID FUEL LEVEL during 11-10-94 through 11-11-94 identified this condition. This is a very common problem.

#### I@A400

| REQUEST ST | STRT TIME  | END TIME   | STRT_VL | END_VL | SALES | DELIV  | OFFSET | VARIEN |
|------------|------------|------------|---------|--------|-------|--------|--------|--------|
| 9411090200 | 9411090200 | 9411100200 | 585.1   | 427.6  | 155.9 | 0.0    | 0.0    | -1.5   |
| 9411100200 | 9411100200 | 9411110200 | 427.6   | 275.6  | 174.3 | 0.0    | 0.0    | 22.3   |
| 9411110200 | 9411110200 | 9411120200 | 275.6   | 1953.0 | 217.5 | 1800.1 | 0.0    | 94.8   |
| 9411120200 | 9411120200 | 9411130200 | 1953.0  | 1837.1 | 118.9 | 0.0    | 0.0    | 2.9    |

| NON | NON-PRIORITY ALARM HISTORY |             |                    |       |          |         |  |  |  |  |  |  |
|-----|----------------------------|-------------|--------------------|-------|----------|---------|--|--|--|--|--|--|
| ID  | CATEGORY                   | DESCRIPTION | ALARM TYPE         | STATE | DATE     | TIME    |  |  |  |  |  |  |
| т 1 | TANK                       | SPECIAL     | INVALID FUEL LEVEL | CLEAR | 11-11-94 | 1:03AM  |  |  |  |  |  |  |
| Т 3 | TANK                       | REGULAR     | DELIVERY NEEDED    | CLEAR | 11-11-94 | 10:50AM |  |  |  |  |  |  |
| Т 3 | TANK                       | REGULAR     | DELIVERY NEEDED    | ALARM | 11-10-94 | 6:03PM  |  |  |  |  |  |  |
| т 1 | TANK                       | SPECIAL     | INVALID FUEL LEVEL | ALARM | 11-10-94 | 1:18PM  |  |  |  |  |  |  |

#### 

In the following example a COMMUNICATION ALARM was active from 94/12/03 through 94/12/08. This error is easy to spot because the sales value is 0 and it occurs in all tanks. Note: the lost sales were recovered on the day the POS was reconnected because cumulative meter data was available.

#### TANK 1 - BASIC\_RECONCILIATION HISTORY

```
REQUEST ST STRT TIME
                             END TIME STRT_VL END_VL SALES DELIV OFFSET VARIEN
9412010200 9412010200 9412020200 274.2
9412020200 9412020200 9412030200 274.2
                                                      274.2
                                                                61.5
                                                                           0.0 0.0 61.4
                                            274.2 2414.1 187.6 2321.5
                                                                                    0.0
                                                                                            6.0
9412030200 9412030200 9412040200 2414.1 2270.5
                                                                0.0
                                                                           0.0
                                                                                    0.0 - 143.6
9412040200 9412040200 9412050200 2270.5 2271.1 9412050200 9412050200 9412060200 2271.1 2046.1
                                                                  0.0
                                                                           0.0
                                                                                    0.0
                                                                                             0.6
                                                                  0.0
                                                                           0.0
                                                                                    0.0 - 225.1
                                                                0.0
9412060200 9412060200 9412070200 2046.1 1848.4
                                                                           0.0
                                                                                   0.0 - 197.7
9412070200 9412070200 9412080200 1848.4 1690.6 0.0 9412080200 9412090200 1690.6 1397.9 1017.8 9412090200 9412090200 9412100200 1397.9 1246.7 153.5
                                                                           0.0
                                                                                   0.0 -157.8
                                                                           0.0
                                                                                   0.0 725.1
                                                                                             2.2
                                                                             Lost Sales
```

## TANK 2 - BASIC\_RECONCILIATION HISTORY

REQUEST ST STRT TIME END TIME STRT\_VL END\_VL SALES ØELIV OFFSET VARIEN 0.0 0.0 9412010200 9412010200 9412020200 1995.0 1543.6 9412020200 9412020200 9412030200 1543.6 4096.9 457.9 0.0 446.8 2991.7 6.5 0.0 8.4 9412030200 9412030200 9412040200 4096.9 3924.4 0.0 0.0 0.0 - 172.59412040200 9412040200 9412050200 3924.4 3885.6 9412050200 9412050200 9412060200 3885.6 3576.9 0.0 0.0 -38.8 0.0 0.0 0.0 0.0 - 308.60.0 9412060200 9412060200 9412070200 3576.9 3337.3 0.0 0.0 -239.6 0.0 0.0 0.0 -243.1 0.0 0.0 1010.6 9412090200 9412090200 9412100200 2734.5 2288.6 449.4 0.0 0.0 3.4

```
Example 3:
   This example demonstrates an incorrect meter-map due to pattern matching.
   The meters for Tank 15 (a seldom used kerosene tank) are mapped to Tank 1.
   The errors are roughly similar and opposite in sign. The meter-map shows the inconsistent mapping of the meters which fooled the pattern
   matcher. This situation took longer to correct because of the
                                                                          limited use
   of kerosene tank. Further evidence of this situation is available in the ASR ERROR EVENT HISTORY BUFFER, where the re-mapping t0 => t14 is reported
   (internally tank numbers go from 0 to 15) for Fps 3 and 4.
TANK 1 - BASIC_RECONCILIATION HISTORY
REQUEST ST STRT TIME
                           END TIME STRT_VL END_VL
                                                         SALES DELIV OFFSET VARIEN
9501280200 9501280200 9501290200
                                       3184.7
                                                3167.1
                                                          33.1
                                                                    0.0
                                                                            0.0
                                                                                   15.5
9501290200 9501290200 9501300200
                                       3167.1
                                                3143.3
                                                          42.6
                                                                    0.0
                                                                            0.0
                                                                                   18.8
                                                         243.5
129.7
9501300200 9501300200 9501310200
                                       3143.3
                                                2953.0
                                                                    0.0
                                                                            0.0
                                                                                   53.2
9501310200 9501310200 9502010200
                                       2953.0
                                                2823.1
                                                                    0.0
                                                                            0.0
                                                                                   -0.3
9502010200 9502010200 9502020200
                                       2823.1
                                                2753.6
                                                                    0.0
                                                                            0.0
                                                                                   -2.3
TANK 15 - BASIC RECONCILIATION HISTORY
REOUEST ST STRT TIME
                           END TIME STRT VL END VL
                                                         SALES DELIV OFFSET VARIEN
REQUEST ST STRI TIME END LINE 9501280200 9501280200 9501290200 2964.8
                                                2947.9
                                                           0.0
                                                                   0.0
                                                                            0.0
                                                                                 -16.9
                                       2947.9
                                                2926.9
                                                           0.0
                                                                                 -21.0
                                                                    0.0
                                                                            0.0
9501300200 9501300200 9501310200
                                       2926.9
                                                2862.4
                                                            0.0
                                                                    0.0
                                                                            0.0
                                                                                 -64.5
9501310200 9501310200 9502010200
                                       2862.4
                                                2817.7
                                                          38.5
                                                                    0.0
                                                                            0.0
                                                                                  -6.2
9502010200 9502010200 9502020200 2817.7 2785.9
                                                          30.2
                                                                   0.0
                                                                            0.0
                                                                                   -1.6
I7B000
JAN 8, 1995
               8:54 AM
LOGICAL
                REAL
          FP
              BUS SLOT
                           0
                                         4
                                            5
  FP
                 3
                       2 1
                           2 14 16
                                         TJ
                                           TJ
   1
                                      1
                                                      Pattern Mapping Incorrectly
                       2
                           2 14
   2
           3
                 3
                                 16
                                      1
                                            U
                       2
                           2 14
                                                      Mapped These Meters To Tank 1.
   3
           4
                 3
                                 16
   4
                 3
                           2
                             14 16
T@A900
FEB 2, 1995 8:52 AM
ASR ERROR EVENT HISTORY BUFFER
              CODE MESSAGE
900101062628 1008 700101000000 FORWARD
950101080014 1008 900101062628 FORWARD
950127080052 1008 950101080051 FORWARD
950127094202 1008 950127080131 FORWARD
950127095140 1011 MAP IS INCOMPLETE
950127133642 1011 MAP IS COMPLETE
950131072012 1013 fp m3 t0 => t14
950131072012 1013 fp m3 t0 => t14
                                                        Auto-Meter Mapping Detected
                                                        And Corrected The Error.
I7B000
FEB 2, 1995
             8:54 AM
LOGICAL
               REAL
                                METER
          FP
              BUS SLOT 0 1 2 3
                                             5
  FΡ
                                         4
                       2.
           2.
                 3
                           2 14 16
                                     1 TT
   1
                       2
                           2 14 16
   2
           3
                 3
                                      1
                                             U
   3
           4
                 3
                       2
                           2 14 16 15
                                             U
                                         U
                 3
                           2 14
                                 16
                                    15
```

/\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Example 4. Customer complaint: missing days in reconciliation.

#### I@A400

SEP 3, 1996 9:53 AM

BASIC\_RECONCILIATION HISTORY

#### T1: SUPER

| REQUEST ST | STRT TIME    | END TIME   | STRT_VL | END_VVL | SALES  | DELIV  | OFFSET | VARIEN |  |  |  |
|------------|--------------|------------|---------|---------|--------|--------|--------|--------|--|--|--|
| 9608030000 | 9608031429   | 9608040002 | 10588.0 | 10415.5 | 171.3  | 0.0    | 0.0    | -1.3   |  |  |  |
| 9608040000 | 9608051736   | 9608060000 | 12287.4 | 12159.0 | 123.8  | 0.0    | 0.0    | -4.6   |  |  |  |
|            | MISSING DATA |            |         |         |        |        |        |        |  |  |  |
| 9608060000 | 9608060000   | 9608070002 | 12159.0 | 14025.2 | 652.4  | 2535.7 | 0.0    | -17.1  |  |  |  |
| 9608070000 | 9608091031   | 9608100011 | 8381.6  | 11501.1 | 4283.8 | 7625.3 | 0.0    | -221.9 |  |  |  |
|            |              | MISSING I  | DATA    |         |        |        |        |        |  |  |  |
| 9608100000 | 9608111907   | 9608120000 | 11222.3 | 10421.5 | 796.2  | 0.0    | 0.0    | -4.7   |  |  |  |
|            |              | MISSING I  | DATA    |         |        |        |        |        |  |  |  |
| 9608130000 | 9608130002   | 9608140000 | 11384.5 | 11231.1 | 2849.3 | 2751.2 | 0.0    | -55.3  |  |  |  |
| 9608140000 | 9608140000   | 9608150000 | 11231.1 | 11566.0 | 2556.1 | 2940.9 | 0.0    | -49.9  |  |  |  |

## -- TABLE ABBREVIATED FOR THIS EXAMPLE, BUT IT IS INDICATIVE OF AN UNSTABLE MAP --

200

Station ID

XXXdd

yyydddd

SEP 3, 1996 9:53AM

| TANK | PRODUCT          | GALLONS | INCHES | WATER | DEG F | ULLAGE |
|------|------------------|---------|--------|-------|-------|--------|
| 1    | SUPER            | 10364   | 73.64  | 0.0   | 76.6  | 4612   |
| 2    | UNLEADED STP     | 8736    | 64.10  | 0.8   | 79.4  | 6240   |
| 3    | UNLEADED STORAGE | 8375    | 63.75  | 0.0   | 79.0  | 6601   |
| 4    | KERO             | 3434    | 68.23  | 1.1   | 72.3  | 722 🚤  |

Kerosene is considered an unusual product because of its usually low throughput.

# CONFIRM KEROSENE SALES DATA IS BEING REPORTED BY THE POS.

**I61500** 

SEP 3, 1996 9:53 AM

| TANK | PRODUCT LABEL    | METER DATA PRESENT |
|------|------------------|--------------------|
| 1    | SUPER            | YES                |
| 2    | UNLEADED STP     | YES                |
| 3    | UNLEADED STORAGE | YES                |
| 4    | KERO             | YES -              |

## REPORT @A9 CONFIRMS THAT MAP IS UNSTABLE.

## I@A900

SEP 3, 1996 9:53 AM

ASR ERROR EVENT HISTORY BUFFER

| TIME         | CODE | MESSAGE              |
|--------------|------|----------------------|
| 960101080012 | 1008 | 700101000000 FORWARD |
| 960730080310 | 1008 | 960101080309 FORWARD |
| 960730104401 | 1008 | 960730080312 FORWARD |
| 960801081827 | 1011 | MAP IS INCOMPLETE    |
| 960803141857 | 1011 | MAP IS COMPLETE      |
| 960804170727 | 1011 | MAP IS INCOMPLETE    |
| 960805173827 | 1011 | MAP IS COMPLETE      |
| 960807132022 | 1011 | MAP IS INCOMPLETE    |
| 960809113157 | 1011 | MAP IS COMPLETE      |
| 960810184600 | 1011 | MAP IS INCOMPLETE    |
| 960811191224 | 1011 | MAP IS COMPLETE      |
| 960815150333 | 1011 | MAP IS INCOMPLETE    |
| 960816155152 | 1011 | MAP IS COMPLETE      |
| 960818143027 | 1011 | MAP IS INCOMPLETE    |
| 960819151050 | 1011 | MAP IS COMPLETE      |
| 960819161418 | 1011 | MAP IS INCOMPLETE    |
| 960820164436 | 1011 | MAP IS COMPLETE      |
| 960821151357 | 1011 | MAP IS INCOMPLETE    |
| 960822151457 | 1011 | MAP IS COMPLETE      |

# I7B100

SEP 3, 1996 9:54 AM

FUELING POSITION - METER - TANK MAP

| BUS | SLOT | FUEL_P | METER | TANK |
|-----|------|--------|-------|------|
| 3   | 2    | 1      | 2     | 2    |
| 3   | 2    | 1      | 3     | 1    |
| 3   | 2    | 2      | 2     | 2    |
| 3   | 2    | 2      | 3     | 1    |
| 3   | 2    | 3      | 2     | 2    |
| 3   | 2    | 3      | 3     | 1    |

| 3 | 2 | 4  | 2 | 2        |
|---|---|----|---|----------|
| 3 | 2 | 4  | 3 | 1        |
| 3 | 2 | 5  | 2 | 2        |
| 3 | 2 | 5  | 3 | 1        |
| 3 | 2 | 6  | 2 | 2        |
| 3 | 2 | 6  | 3 | 1        |
| 3 | 2 | 7  | 2 | 2        |
| 3 | 2 | 7  | 3 | 1        |
| 3 | 2 | 8  | 2 | 2        |
| 3 | 2 | 8  | 3 | 1        |
| 3 | 2 | 9  | 2 | 2        |
| 3 | 2 | 9  | 3 | 1        |
| 3 | 2 | 10 | 2 | 2        |
| 3 | 2 | 10 | 3 | 1        |
| 3 | 2 | 11 | 2 | 2        |
| 3 | 2 | 11 | 3 | 1        |
| 3 | 2 | 12 | 2 | 2        |
| 3 | 2 | 12 | 3 | 1        |
| 3 | 2 | 17 | 0 | <u>R</u> |
|   |   |    |   |          |

Retired - there was a sale report for this meter, however, there was not enough information to map it and it was not reported again for a 24-hour period.

## S7B100

SEP 3, 1996 9:56 AM

FUELING POSITION - METER - TANK MAP

BUS SLOT FUEL\_P METER TANK

-----

3 2 17 0  $\underline{4}$  Here we manually map the meter to the kerosene tank.

I7B100

SEP 3, 1996 9:56 AM

FUELING POSITION - METER - TANK MAP

| BUS | SLOT | FUEL_P | METER | TANK |
|-----|------|--------|-------|------|
|     |      |        |       |      |
| 3   | 2    | 1      | 2     | 2    |
| 3   | 2    | 1      | 3     | 1    |
| 3   | 2    | 2      | 2     | 2    |
| 3   | 2    | 2      | 3     | 1    |
| 3   | 2    | 3      | 2     | 2    |
| 3   | 2    | 3      | 3     | 1    |

| 3 | 2 | 4  | 2 | 2    |                                                                      |
|---|---|----|---|------|----------------------------------------------------------------------|
| 3 | 2 | 4  | 3 | 1    |                                                                      |
| 3 | 2 | 5  | 2 | 2    |                                                                      |
| 3 | 2 | 5  | 3 | 1    |                                                                      |
| 3 | 2 | 6  | 2 | 2    |                                                                      |
| 3 | 2 | 6  | 3 | 1    |                                                                      |
| 3 | 2 | 7  | 2 | 2    |                                                                      |
| 3 | 2 | 7  | 3 | 1    |                                                                      |
| 3 | 2 | 8  | 2 | 2    |                                                                      |
| 3 | 2 | 8  | 3 | 1    |                                                                      |
| 3 | 2 | 9  | 2 | 2    |                                                                      |
| 3 | 2 | 9  | 3 | 1    |                                                                      |
| 3 | 2 | 10 | 2 | 2    |                                                                      |
| 3 | 2 | 10 | 3 | 1    |                                                                      |
| 3 | 2 | 11 | 2 | 2    |                                                                      |
| 3 | 2 | 11 | 3 | 1    |                                                                      |
| 3 | 2 | 12 | 2 | 2    |                                                                      |
| 3 | 2 | 12 | 3 | 1    |                                                                      |
| 3 | 2 | 17 | 0 | 4* ◀ | Meter is mapped to Tank 4 - (* indicates meter was manually mapped). |

**Example 5. Customer complaint: No BIR Data** 

200 100550 EAGLE OIL 156 N. LASALLE CHICAGO, IL

SEP 11, 1997 10:39 AM

| TANK | PRODUCT          | GALLONS | INCHES | WATER | DEG F | ULLAGE                   |
|------|------------------|---------|--------|-------|-------|--------------------------|
| 1    | BLUE WEST MASTER | 4642    | 45.14  | 0.0   | 65.6  | 4878                     |
| 2    | BLUE EAST SLAVE  | 4649    | 45.20  | 0.8   | 65.2  | ■ Note manifolded tanks. |
| 3    | SILVER           | 4495    | 44.08  | 0.0   | 64.8  | 5025                     |
| 4    | GOLD             | 3438    | 36.33  | 0.0   | 68.4  | 6082                     |

## **I61200**

SEP 11, 1997 10:39 AM

TANK MANIFOLDED PARTNERS

TANK PRODUCT LABEL MANIFOLDED TANKS

1 BLUE WEST MASTER 2

BLUE WEST MASTER 2 ——— Confirm tanks are manifolded.

2 BLUE EAST SLAVE 1
3 SILVER NONE

4 GOLD NONE

**I61500** 

SEP 11, 1997 10:39 AM

TANK PRODUCT LABEL METER DATA

1 BLUE WEST MASTER YES Always check for Meter Data Present set to Yes.

2 BLUE EAST SLAVE YES

3 SILVER YES

4 GOLD YES

**I@A400** 

SEP 11, 1997 10:41 AM

BASIC\_RECONCILIATION HISTORY

T1: BLUE WEST MASTER

T2: BLUE EAST SLAVE

REQUEST ST STRT TIME END TIME STRT\_VL END\_VL SALES DELIV OFFSET VARIEN

EMPTY Report @A4 confirms complaint - No BIR data

BASIC\_RECONCILIATION HISTORY

T1: BLUE WEST MASTER

T2: BLUE EAST SLAVE

REQUEST ST STRT TIME END TIME STRT\_VL END\_VL SALES DELIV OFFSET VARIEN

EMPTY -

BASIC\_RECONCILIATION HISTORY

T3: SILVER

REQUEST ST STRT TIME END TIME STRT\_VL END\_VL SALES DELIV OFFSET VARIEN

EMPTY  $\blacksquare$ 

BASIC\_RECONCILIATION HISTORY

T4: GOLD

REQUEST ST STRT TIME END TIME STRT\_VL END\_VL SALES DELIV OFFSET VARIEN

EMPTY -

# I@A002 CHECK MAP.

| T@A |                    |             | CHEC               | A MAI.   |          |          |
|-----|--------------------|-------------|--------------------|----------|----------|----------|
| SEP | 11, 1997           | 10:40 AM    |                    |          |          |          |
| MAP | IS INCOMPLI        | ETE         |                    |          |          |          |
|     |                    |             |                    |          |          |          |
| FP  | METER              | **]         | CANK_MAP_BAL       | LOT**    |          |          |
|     | 0                  | 1           | 2                  | 3        | 4        | 5        |
|     | +                  |             |                    |          |          |          |
| 0   | M3>3:3/3/3         | M2>3:2/2/2  | U >2:3/2/2         | -:-/-/-  | -:-/-/-  | -:-/-/-  |
| _   |                    | 9708081326  |                    | *        | *        | *        |
|     | '<br>+             |             |                    |          |          |          |
| 1   | M3>3:3/3/3         | M2>3:2/2/2  | II >3:2/3/2        | -:-/-/-  | -:-/-/-  | -:-/-/-  |
| _   |                    | 9708081404  |                    | *        | *        | *        |
|     | +                  |             |                    |          |          |          |
| 2   | M3 ~ 3 · 3 / 3 / 3 | M2>3:2/2/2  | II >3:3/2/3        | -:-/-/-  | -:-/-/-  | -:-/-/-  |
| 2   | !                  | 9708081239  |                    | * / /    | * / /    | *        |
|     | 19700001330        | 9700001239  | 9700001404         |          |          |          |
|     | M2 > 1 • 2 / 2 / 2 | M2>2:2/2/2  | TT > 2 · 2 / 2 / 2 | • / /    | • / /    | • / /    |
| 3   | !                  |             |                    | -:-/-/-  | -:-/-/-  | -:-/-/-  |
|     | ,                  | 9708081357  | 9/00001412         | •        | ^        | ,        |
|     | na                 | MO: 2:2/2/2 | TT - 1 • 0 / 2 / 2 | . , ,    | . , ,    | • / /    |
| 4   |                    | M2>3:2/2/2  |                    | -:-/-/-  | -:-/-/-  | -:-/-/-  |
|     | 9708081341         | 9708081116  | 9708081324         | *        | *        | *        |
|     | +                  |             |                    |          |          |          |
| 5   |                    | M2>3:2/2/2  |                    | -:-/-/-  | -:-/-/-  | -:-/-/-  |
|     | 9708081307         | 9708081408  | 9708081410         | *        | *        | *        |
|     | +                  |             |                    |          |          |          |
| 6   | 1                  | M2>1:2/2/2  |                    | -:-/-/-  | -:-/-/-  | -:-/-/-  |
|     | 9708081404         | 9708081009  | 9708081314         | *        | *        | *        |
|     | +                  |             |                    |          |          |          |
| 7   |                    | M2>2:2/2/2  |                    | -:-/-/-  | -:-/-/-  | -:-/-/-  |
|     | 9708081335         | 9708081206  | 9708081116         | *        | *        | *        |
|     | +                  |             |                    |          |          |          |
| 8   | M3>1:3/3/3         | M2>2:2/2/2  | U >2:2/3/3         | -:-/-/-  | -:-/-/-  | -:-/-/-  |
|     | 9708081231         | 9708080952  | 9708081351         | *        | *        | *        |
|     | +                  |             |                    |          |          |          |
| 9   | M3 > 2:3/3/3       | M2>1:2/2/2  | U >3:3/2/3         | -:-/-/-  | -:-/-/-  | -:-/-/-  |
|     | 9708081320         | 9708080915  | 9708081408         | *        | *        | *        |
|     | +                  |             |                    |          |          |          |
| 10  | M3>1:3/3/3         | M2>1:2/2/2  | U >1:3/3/3         | -:-/-/-  | -:-/-/-  | -:-/-/-  |
|     |                    | 9708081025  |                    | *        | *        | *        |
|     | +                  |             |                    |          |          |          |
| 11  | M3>3:3/3/3         | M2>2:2/2/2  | U >2:2/2/3         | -:-/-/-  | -:-/-/-  | -:-/-/-  |
|     | 1                  | 9708080829  |                    | , ,<br>* | , ,<br>* | , ,<br>* |
|     | +                  |             |                    |          |          |          |
|     |                    |             |                    |          |          |          |

Meter 2 for all FPs is unmapped.

Only Tanks 3 and 4 are mapped. The manifolded tanks (1 & 2) are not mapped. (Note - Tank numbers are zero based in this report, e.g., M3 = mapped to T4.)

#### **I90200**

DEC 9, 1997 10:08 AM SOFTWARE REVISION LEVEL VERSION 114.04 SOFTWARE# 346114-100-E CREATED - 97.07.09.16.33

S-MODULE# 330160-103-A SYSTEM FEATURES: PERIODIC IN-TANK TESTS ANNUAL IN-TANK TESTS BIR FUEL MANAGER 902 indicates software version is 1XX which does not support BIR for manifolded tanks. Version 3XX software is required.

## **Example 6. Customer complaint: :Large Variance**

The reconciliation shows a variance on the order of 25%. This number is too large to be an accuchart error. This is true for all tanks.

#### I@A401

JAN 4, 2000 3:35 PM BASIC\_RECONCILIATION HISTORY

## T 1:UNLEADED

| REQUEST ST | STRT TIME  | END TIME   | STRT_VL | END_VL | SALES | DELIV  | OFFSET | VARIEN |
|------------|------------|------------|---------|--------|-------|--------|--------|--------|
| 9911030200 | 9911030200 | 9911040200 | 4142.1  | 3719.4 | 545.5 | 0.0    | 0.0    | 122.8  |
| 9911040200 | 9911040200 | 9911050200 | 3719.4  | 3172.6 | 690.2 | 0.0    | 0.0    | 143.4  |
| 9911050200 | 9911050200 | 9911060200 | 3172.6  | 5766.4 | 738.3 | 3165.6 | 0.0    | 166.6  |
| 9911060200 | 9911060200 | 9911070200 | 5766.4  | 5254.9 | 665.9 | 0.0    | 0.0    | 154.3  |

The tank calibration records show a consistent ratio of 25% for tanks 1 and 2, and 15% for tank 3. Because the records are consistent this could not be lost sales, something is wrong with the tls volume or the sales volume.

## I@B900

JAN 4, 2000 3:35 PM

TANK CALIBRATION DATA

T 1:UNLEADED

| Opening | Closing | TLS    | Dispensed | Tank/Meter |   |
|---------|---------|--------|-----------|------------|---|
| Height  | Height  | Volume | Volume    | Ratio      |   |
| 44.336  | 44.146  | 19.79  | 25.50     | 0.7761     | • |
| 44.146  | 44.028  | 12.26  | 16.40     | 0.7478     |   |
| 44.028  | 43.948  | 8.40   | 11.31     | 0.7428     |   |
| 43.947  | 43.918  | 3.04   | 4.10      | 0.7427     |   |

| 43.918 | 43.840 | 8.15  | 10.79 | 0.7550 |
|--------|--------|-------|-------|--------|
| 43.840 | 43.724 | 12.06 | 15.76 | 0.7650 |
| 43.724 | 43.650 | 7.72  | 10.10 | 0.7647 |
| 43.649 | 43.522 | 13.25 | 17.40 | 0.7617 |
| 43.522 | 43.472 | 5.17  | 6.78  | 0.7631 |
| 43.473 | 43.377 | 9.96  | 12.90 | 0.7724 |

For all tanks accuchart is not enabled.

Accuchart is not capable of calibrating linear tanks so it does not enable when the tank profile is set to linear.

#### I@B600

JAN 4, 2000 3:36 PM

ACCU-CHART DIAGNOSTICS - CALIBRATION STATUS

TANK 1 CAL STATUS

ENABLE = OFF MODE = CALIBRATE ALARM = OFF USER ENABLE = OFF

START TIME DURATION MSSE SUMWT SIGMA MINHT MAXHT UPDATES 0 0.00 0.00 0.00 0.00 0.0 0

 CALIBRATION
 CAP
 CAP\_O\_E
 DIAM
 TILT
 SLICE

 COUNT
 0
 0
 0
 0
 0

 SUMWEIGHT
 0
 0
 0
 0
 0
 0

The only way to determine that the profile is set to linear is to run the 60A command.

# I60A00

JAN 4, 2000 3:38 PM

TANK FULL VOLUME

| TANK | PRODUCT LABEL | TANK PROFILE | GALLONS |
|------|---------------|--------------|---------|
| 1    | UNLEADED      | LINEAR       | 10000   |
| 2    | PLUS          | LINEAR       | 6000    |
| 3    | PREMIUM       | LINEAR       | 8000    |
| 4    |               | 1 рт         | 0       |

The 1 Point Full Volume command 604 gives no indication that the profile is linear!

#### I60400

JAN 4, 2000 4:01 PM

# TANK FULL VOLUME

| TANK | PRODUCT LABEL | GALLONS |
|------|---------------|---------|
| 1    | UNLEADED      | 10000   |
| 2    | PLUS          | 6000    |
| 3    | PREMIUM       | 8000    |
| 4    |               | 0       |

# **Headquarters**

125 Powder Forest Drive Simsbury, CT 06070-7684

Tel: (860) 651-2700 Fax: (860) 651-2719

Email: marketing@veeder.com

#### **Australia**

Level 1 441 South Road Moorabbin 3189 Victoria Tel: +61 3 9556 5435 Fax: +61 3 9556 5482

Email: rxdupuy@veeder-australia.com

#### Brazil

Rua ado Benatti, 92 Sao Paulo - SP 05037-904 Tel: +55 (0) 11 3611 2155 Fax: +55 (0) 11 3611 1982

Email: clopez@veeder.com

## Canada

Eastern Canada Tel: (519) 925-9899 Western Canada Tel: (604) 576-4469

Email: marketing@veeder.com

## China

Room 2202, Scitech Tower No. 22 Jian Guomen Wai DaJie Beijing 100004 Tel: +86 10 6512 8081

Fax: +86 10 6522 0887 Email: lu ying@veeder.com

## **England**

Hydrex House, Garden Road Richmond, Surrey TW9 4NR Tel: +44 (0) 20 8392 1355 Fax: +44 (0) 20 8878 6642 Email: sales@veeder.co.uk

#### **France**

94-106 Rue Blaise Pascal 93600 Aulnay Sous Bois Tel: +33 (0) 1 4879 5599 Fax: +33 (0) 1 4868 3900 Email: sales@veeder.co.uk

# **Germany**

Uhlandstrabe 49

78554 Aldingen Tel: +49 (0) 7424 1400 Fax: +49 (0) 7424 1410 Email: sales@veeder.co.uk

## **Mexico**

Sagitario #4529-3 Col. La Calma C.P. 45070 Zapopan, Jalisco Tel: (523) 632 3482

Fax: (523) 133 3219

Email: jmartinez@veeder.com

#### **Poland**

01-517 Warszawa ul. Mickiewicza 18/12 Tel/Fax: +48 (0) 22 839 08 47 Email: sales@veeder.co.uk

## **Singapore**

246 MacPherson Road #08-01 Betime Building 348578

Tel: +65 (0) 6745 9265 Fax: +65 (0) 6745 1791

Email: francis yap@veeder.com

