

MAT1610 - Clase 4

Los límites al infinito

Diego De la Vega

Facultad de Matemáticas Pontificia Universidad Católica de Chile

13 de marzo del 2024

Objetivos

- > Aprender límites al infinito
- > Aprender sobre asíntotas horizontales

Límites al infinito

Sea f una función definida sobre algún intervalo (a, ∞) . Entonces,

$$\lim_{x \to \infty} f(x) = L$$

Significa que los valores de f(x) pueden aproximarse arbitrariamente a L tanto como desee, eligiendo a x suficientemente grande.

Límites al infinito

Sea f una función definida sobre algún intervalo $(-\infty, a)$. Entonces,

$$\lim_{x \to -\infty} f(x) = L$$

Significa que los valores de f(x) pueden aproximarse arbitrariamente a L tanto como desee, eligiendo a x sea negativa y suficientemente grande en magnitud

Ejercicio: Calcule los siguientes límites:

I)
$$\lim_{x \to \infty} \frac{x^2 - 1}{x^2 + 1}$$

2)
$$\lim_{x \to -\infty} \frac{x^2 - 1}{x^2 + 1}$$

Asíntotas horizontales

La recta y = L se llama **asíntota horizontal** de la curva y = f(x) si

$$\lim_{x \to -\infty} f(x) = L \qquad \text{\'o} \qquad \lim_{x \to \infty} f(x) = L$$

Ejemplo: La recta y=1 es asíntota horizontal de la función $f(x)=\frac{x^2-1}{x^2+1}$, dado que:

$$\lim_{x \to \infty} \frac{x^2 - 1}{x^2 + 1} = 1$$

Ejercicio: Determine la(s) asíntota(s) horizontales(es) de $f(x) = \arctan(x)$

Asíntotas

Ejercicio: Determine las asíntotas de la función cuya gráfica es la siguiente:

Asíntotas

Teorema: Si r > 0 es un número racional, entonces

$$\lim_{x \to \infty} \frac{1}{x^r} = 0$$

Si r > 0 es un número racional tal que x^r está definida por toda x, entonces

$$\lim_{x \to -\infty} \frac{1}{x^r} = 0$$

Ejercicio: Determine las asíntotas horizontales de $f(x) = \frac{1}{x}$

Ejercicios

Ejercicio I: Determine

$$\lim_{x \to \infty} \frac{3x^2 - x - 2}{5x^2 + 4x + 1}$$

Ejercicio 2: Encuentre la asíntotas horizontales y verticales de la función

$$f(x) = \frac{\sqrt{2x^2 + 1}}{3x - 5}$$

Ejercicio 3: Determine

$$\lim_{x \to \infty} \left(\sqrt{x^2 + 1} - x \right)$$

Ejercicio 4: Determine

$$\lim_{x \to 2^+} \arctan\left(\frac{1}{x-2}\right)$$

Ejercicios

$$\lim_{x\to-\infty}e^x$$

$$\lim_{x\to 0^-} e^{1/x}$$

$$\lim_{x\to\infty}e^{1/x}$$

Límites al infinito – Definición exacta

Sea f una función definida sobre algún intervalo (a, ∞) . Entonces,

$$\lim_{x \to \infty} f(x) = L$$

Significa que para todo $\varepsilon > 0$ existe un correspondiente número N tal que

Si
$$x > N$$
 entonces $|f(x) - L| < \varepsilon$

Límites al infinito – Definición exacta

Ejemplo: Demuestre, por definición, que $\lim_{x\to\infty}\frac{1}{x}=0$

Dado $\varepsilon > 0$, queremos encontrar N tal que:

Si
$$x > N$$
 entonces $\left|\frac{1}{x} - 0\right| < \varepsilon$

Al calcular el límite podemos suponer que x > 0. Luego,

$$\frac{1}{x} < \varepsilon \iff x > \frac{1}{\varepsilon}$$

Elegimos $N = 1/\varepsilon$.

Límites al infinito – Definición exacta

Ejemplo: Demuestre, por definición, que $\lim_{x\to\infty}\frac{1}{x}=0$

Demostración: Para todo $\varepsilon > 0$, se escoge $N = 1/\varepsilon$, así que

Si
$$x > N = \frac{1}{\varepsilon}$$
, luego $x > \frac{1}{\varepsilon} \Leftrightarrow \frac{1}{x} < \varepsilon \Leftrightarrow |\frac{1}{x} - 0| < \varepsilon$

Por lo tanto, por definición,

$$\lim_{x \to \infty} \frac{1}{x} = 0$$

Límites infinitos en el infinito

La notación

$$\lim_{x\to\infty}f(x)=\infty$$

se utiliza para indicar que los valores de f(x) se hacen más grandes cuando x se hace muy grande. Un significado similar está asociado con los siguientes símbolos:

$$\lim_{x \to -\infty} f(x) = \infty$$

$$\lim_{x \to \infty} f(x) = -\infty$$

$$\lim_{x \to -\infty} f(x) = -\infty$$

Límites infinitos en el infinito

Ejercicio: Determine

$$\lim_{x \to \infty} x^3 \quad \mathsf{y} \quad \lim_{x \to -\infty} x^3$$

Ejercicio 2: Determine

$$\lim_{x \to \infty} x^2 - x$$

Ejercicio 3: Determine

$$\lim_{x \to \infty} \frac{x^2 + x}{3 - x}$$

Ejercicio 4: Determine la gráfica de $y=(x-2)^4(x+1)^3(x-1)$ encontrando las intersecciones y sus límites cuando $x\to -\infty$ y $x\to \infty$

Límites infinitos en el infinito – Definición exacta

Sea f una función definida sobre algún intervalo (a, ∞) . Entonces,

$$\lim_{x\to\infty}f(x)=\infty$$

Significa que para todo número positivo M existe un correspondiente número positivo N tal que

Si
$$x > N$$
 entonces $f(x) > M$

Conclusión

> Abordamos los límites al infinito y asíntotas horizontales.

Libro guía

> Págs. 130-140.