Convex Optimization Homework 12

Yongpeng Jiang ID 2019010465

December 6, 2022

1 Proximal Gradient Descent

(a) The derivative of f can be derived as

$$\nabla_x f = \nabla_x \left(\frac{1}{2} \left(Ax - b \right)^T \left(Ax - b \right) \right) \tag{1}$$

$$=A^{T}(Ax-b). (2)$$

Assume $A \in \mathbb{R}^{m \times n}$, $x \in \mathbb{R}^n$ and $b \in \mathbb{R}^m$, and the singular values for $A^T A$ are $\sigma_1 \leq \sigma_2 \leq \cdots \leq \sigma_n$. Then for $\forall x \neq y$, we have

$$\|\nabla f(x) - \nabla f(y)\|_{2} = \|A^{T} A(x - y)\|_{2}$$
(3)

$$\leq \sigma_k \|x - y\|_2. \tag{4}$$

The equality is achieved when x-y is aligned with the right singular vector corresponding to σ_n . Thus ∇f is proved to be Lipschitz and the smallest positive constant scalar M such that $\|\nabla f(x) - \nabla f(y)\|_2 \le M\|x-y\|_2, \forall x, y \text{ equals to the largest singular value of } A^T A$, which is

$$\underline{M} = \sigma_n = \max_{v} \frac{\|Av\|}{\|v\|} \tag{5}$$

(b) The proximal operator

$$\operatorname{Prox}_{\alpha g} = (I + \alpha \partial g)^{-1} = \begin{cases} x - \alpha, & x > \alpha \\ 0, & \text{otherwise}, \\ x + \alpha, & x < -\alpha \end{cases}$$
 (6)

then the iteration could be derived as

$$x_{k+1} = \operatorname{Prox}_{\alpha g} \circ (I - \alpha \nabla f) x_k \tag{7}$$

$$= \operatorname{sgn}(\tilde{x}_k) \cdot \max(|\tilde{x}_k| - \alpha, 0) . \tag{8}$$

where $\tilde{x}_k = x_k - \alpha A^T (Ax_k - b)$. We implement the iteration with $\alpha = \frac{1}{M}$.

- (c) Solve the problem with A, b in A1.csv and b1.csv, the results are shown as (1). Solve the problem with A, b in A2.csv and b2.csv, the results are shown as (2).
- (d) For the same problem with Proximal Gradient Method, the case with A1.csv converged much faster than the case with A2.csv. Since A1.csv is full column rank, the Lasso converges with

 $O(\rho^{-k})$, which resembles $O(-e^{\log k} \cdot \log \rho)$ in logarithm plot. By contrast, the Lasso with non full-rank matrix A2.csv converges with $O(\frac{1}{k})$ and $O(\frac{1}{k^2})$ when accelerated. The convergence speed resembles $O(-\log k)$ in logarithm plot. Exponential speed is obviously faster than linear speed.

Figure 1: result with A1.csv and b1.csv

Figure 2: result with A2.csv and b2.csv