HKDSE MATH EP

M2

HONG KONG EDUCATIONAL PUBLISHING COMPANY

HONG KONG DIPLOMA OF SECONDARY EDUCATION EXAMINATION

MATHEMATICS Extended Part

Module 2 (Algebra and Calculus) MOCK EXAM 4 Question-Answer Book

Time allowed: 2½ hours
This paper must be answered in English

INSTRUCTIONS

- 1. After the announcement of the start of the examination, you should first write your Candidate Number in the space provided on Page 1 and stick barcode labels in the spaces provided on Pages 1, 3, 5, 7, 9 and 11.
- 2. This paper consists of TWO sections, A and B.
- 3. Attempt ALL questions in this paper. Write your answers in the spaces provided in this Question-Answer Book. Do not write in the margins. Answers written in the margins will not be marked.
- 4. Graph paper and supplementary answer sheets will be supplied on request. Write your Candidate Number, mark the question number box and stick a barcode label on each sheet, and fasten them with string **INSIDE** this book.
- 5. Unless otherwise specified, all working must be clearly shown.
- 6. Unless otherwise specified, numerical answers must be exact.
- 7. In this paper, vectors may be represented by bold-type letters such as $\bar{\mathbf{u}}$, but candidates are expected to use appropriate symbols such as $\bar{\mathbf{u}}$ in their working.
- 8. The diagrams in this paper are not necessarily drawn to scale.
- 9. No extra time will be given to candidates for sticking on the barcode labels or filling in the question number boxes after the 'Time is up' announcement.
- © 香港教育圖書公司 保留版權 Hong Kong Educational Publishing Company All Rights Reserved 2016

Please	stick	the	barc	ode	lal	oel	her	e.
Candidate								
Number								

FORMULAS FOR REFERENCE

$$\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan (A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$2 \sin A \cos B = \sin (A + B) + \sin (A - B)$$

$$2\cos A\cos B = \cos (A+B) + \cos (A-B)$$

$$2 \sin A \sin B = \cos (A - B) - \cos (A + B)$$

$$\sin A + \sin B = 2\sin\frac{A+B}{2}\cos\frac{A-B}{2}$$

$$\sin A - \sin B = 2\cos \frac{A+B}{2}\sin \frac{A-B}{2}$$

$$\cos A + \cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$$

$$\cos A - \cos B = -2\sin\frac{A+B}{2}\sin\frac{A-B}{2}$$

SECTION A (50 marks)

<u> 2015</u>

Answers written in the margins will not be marked.

1. Find
$$\frac{d}{dx}(x^3 + 2x)$$
 from first principles. (4 marks)

Please stick the barcode label here.

		•	<u> </u>	-
2.	Let $e^x + \ln y + 7xy = 1$. Find $\frac{dy}{dx}$ v	when $x = 0$.		(4 marks)
_				
	•			
				, , .
		·		
				·
				 .
	,			

Answers written in the margins will not be marked.

	٠.	
	marked	
	will not be	
•	Ξ	١
	3	
	nargins	
	ä	Ì
	-	۰
	Έ.	۰
	II the I	۰
	Έ.	۰
	II the I	۰

a tangent to the c	point (x, y) of a curve is given by $\frac{dy}{dx}$ surve, find the equation of the curve.		(4 marks)
,			
		 	,
		74 ·	
_		-	
	CONTRACTOR PROPERTY.		
-			
		4	
			-
			,, , ,
	•		
•			
	,		
			

Please stick the barcode label here.

(1	$(-x^2)^n + (1+2x)^n$	
is 104, find the value(s) of n .		_
	(4	marks
	/	
	/	
		.,,-
		
	11 to 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	· · · · · · · · · · · · · · · · · · ·	

Answers written in the margins will not be marked.

Please stick the barcode label here.

6.	(a)	Show that	$t \sin^2 x \cos^2 x$	$=\frac{1-\cos 4x}{8}$
	()			Q

(b) Hence find $\int (\sin^4 x + \cos^4 x) dx$.

Answers written in the margins will not be marked.

(5 marks)

		•

.

Please stick the barcode label here.

(2013) 8.

Figure 1

Figure 1 shows the shaded region with boundaries C: $y = (x - 1)^2$, L_1 : y = 1 and L_2 : x = 3. It is given that C intersects L_1 at (0, 1) and (2, 1).

(a) Find the area of the shaded region.

(b) Find the volume of solid of revolution when the shaded region is revolved about L_1 .

(6 marks)

Answers written in the margins will not be marked.

•	<u></u>
	1
	**
· · · · · · · · · · · · · · · · · · ·	
	. *
	· ·
	<u> </u>

Let $\overrightarrow{AB} = \mathbf{i} + 3\mathbf{j}$, $\overrightarrow{AC} = 3\mathbf{i} - 4\mathbf{k}$ and $\overrightarrow{AD} = 4\mathbf{i} - 3\mathbf{j} + \mathbf{k}$. Figure 2 shows the parallelepiped *ABECFDGH* formed by \overrightarrow{AB} , \overrightarrow{AC} and \overrightarrow{AD} .

- (a) Find the area of the parallelogram ABEC.
- (b) Find the volume of the tetrahedron ABCD.
- (c) If D' is a point different from D such that the volume of the tetrahedron formed by \overrightarrow{AB} , \overrightarrow{AC} and $\overrightarrow{AD'}$ is the same as that of ABCD, find a possible vector $\overrightarrow{AD'}$.

(6 marks)

Answers written in the margins will not be marked.

*	.	
		,
1110. 1.00		

Answers written in the margins will not be marked.

Please stick the barcode label here.

- 10. (a) Let $M = \begin{pmatrix} \cos x & -\sin x \\ \sin x & \cos x \end{pmatrix}$. Prove, by mathematical induction, that $M^n = \begin{pmatrix} \cos nx & -\sin nx \\ \sin nx & \cos nx \end{pmatrix}$

for all positive integers n.

- (b) Let $A = \begin{pmatrix} -\sqrt{3} & 1 \\ -1 & -\sqrt{3} \end{pmatrix}$.
 - (i) Suppose that $A = r \begin{pmatrix} \cos x & -\sin x \\ \sin x & \cos x \end{pmatrix}$, where r > 0 and $0^{\circ} < x < 360^{\circ}$. Find r and x.
 - (ii) A matrix of the form $\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$ is called a 2 × 2 diagonal matrix. Find the least positive integer n such that A^n is a 2 × 2 diagonal matrix, and evaluate A^n for this value of n.

 (8 marks)

Answers written in the margins will not be marked.

SECTION B (50 marks)

- 11. Let $M = \begin{pmatrix} 3+x & -y \\ -x & 3+y \end{pmatrix}$ and $P = \begin{pmatrix} y & 1 \\ x & -1 \end{pmatrix}$, where x and y are real numbers such that xy > 0.
 - (a) Show that P is an invertible matrix.

(2 marks)

(b) Evaluate $P^{-1}MP$.

Hence find $P^{-1}M^nP$ in terms of x, y and n, where n is a positive integer.

(5 marks)

(c) Suppose that $A = \begin{pmatrix} 2 & 3 \\ 1 & 0 \end{pmatrix}$.

Using the result of (b), find A^{2n} in terms of n, where n is a positive integer.

(5 marks)

	 	
-		

Answers written in the margins will not be marked.

- 12. Let C_1 be the curve $y = \frac{px + q}{2x + r}$, where p, q and r are constants with $p \neq 0$ and $x \neq -\frac{r}{2}$. It is given that C_1 passes through (0, 0) and it has a vertical asymptote $x = -\frac{3}{2}$ and a horizontal asymptote y + 1 = 0. Let C_2 be the curve $y = \frac{2x + r}{px + q}$, where $x \neq -\frac{q}{p}$.
 - (a) Find the equation of C_1 .

- (4 marks)
- (b) Find the coordinates of the point(s) of intersection of C_1 and C_2 .
- (2 marks)
- (c) Show that $\frac{d}{dx} \left(\frac{px+q}{2x+r} \right) < 0$ for $x \neq -\frac{r}{2}$ and $\frac{d}{dx} \left(\frac{2x+r}{px+q} \right) > 0$ for $x \neq -\frac{q}{p}$. (3 marks)
- (d) Write down all the asymptotes of C_2 .

(2 marks)

not be marked.

Answers written in the margins will

(e) Sketch the curves C_1 and C_2 on the same diagram, indicating their asymptotes, intercepts and their point(s) of intersection. (3 marks)

- 13. (a) Using the substitution $\tan x = 2 \tan \theta$, find $\int \frac{dx}{1 + 3\cos^2 x}$. (5 marks)
 - (b) Let f(x) be a continuous function such that $f(2\pi x) = -f(x)$ for all real numbers x. Using the substitution $y = 2\pi x$, prove that

$$\int_{\frac{3\pi}{4}}^{\frac{5\pi}{4}} f(x) \ln{(1 + e^{\sin x})} dx = \frac{1}{2} \int_{\frac{3\pi}{4}}^{\frac{5\pi}{4}} f(x) \sin{x} dx.$$

(3 marks)

(c) Hence evaluate $\int_{\frac{3\pi}{4}}^{\frac{5\pi}{4}} \frac{\sin x \ln(1 + e^{\sin x})}{1 + 3\cos^2 x} dx$. (Give the answer correct to 3 significant figures.)

(4 marks)

Answers written in the margins will not be marked.

14.

Answers written in the margins will not be marked.

In Figure 3, S is a point on PQ such that RS is an altitude of ΔPQR . V divides RS in the ratio 1:2. PV and QV are produced to meet QR and PR at T and U respectively. Suppose QT: TR = r:1, where r is a constant.

Let \mathbf{a} , $k\mathbf{a}$ (k>1) and \mathbf{b} be \overrightarrow{PS} , \overrightarrow{PQ} and \overrightarrow{SV} respectively.

(a) Find \overrightarrow{PV} in terms of a and b.

(1 mark)

(b) Express \overrightarrow{PT} in terms of r, k, \mathbf{a} and \mathbf{b} . Hence find r in terms of k.

(4 marks)

- (c) It is given that $|\mathbf{a}| = |\mathbf{b}|$ and V is the orthocentre of $\triangle PQR$.
 - (i) Find \overrightarrow{PT} in terms of a and b.
 - (ii) Find $\frac{RU}{UP}$.

(7 marks)

Answers	written	in the	margins	will	not b	e marked