SOLUTIONS

Math 46, Applied Math (Spring 2011): Midterm 2

- 2 hours, 50 points total, 6 questions. Heed the available numbers of points. Good luck!
- 1. [6 points] Use integration by parts to find a 2-term asymptotic expansion for $I(\varepsilon)=\int_0^\varepsilon e^{-1/t}dt$ in the small parameter $\varepsilon \to 0^+$.

Need to be able to integrate
$$e^{-1/k}$$
, ie want $f_{1}e^{-1/k}$

$$= \int_{0}^{2} e^{-1/k} dt = \int_{0}^{2} e^{-1/k} dt = \int_{0}^{2} e^{-1/k} dt = \int_{0}^{2} e^{-1/k} dt$$

$$= e^{2}e^{-1/k} - \int_{0}^{2} e^{-1/k} dt$$

$$= e^{2}e^{-1/k} - \left[2e^{3}e^{-1/k}\right]_{0}^{2} + \int_{0}^{2} e^{-1/k} dt$$

$$= e^{2}e^{-1/k} - 2e^{3}e^{-1/k}$$

* Note if you tried $I(z) = \int_{0}^{2} e^{-1/k} dt = \left[e^{-1/k}\right]_{0}^{2} - \int_{0}^{2} e^{-1/k} dt = \int_{0}^{2} e^{-1/k} dt$

* Note if you tried $I(z) = \int_{0}^{2} e^{-1/k} dt = \left[e^{-1/k}\right]_{0}^{2} - \int_{0}^{2} e^{-1/k} dt = \int_{0}^{2} e^{-1/k} dt$

* Note if you tried $I(z) = \int_{0}^{2} e^{-1/k} dt = \left[e^{-1/k}\right]_{0}^{2} - \int_{0}^{2} e^{-1/k} dt = \left[e^{-1/k}\right]_{0}^{2} - \left[e^$

You get graving terms, so stop & try as above! (R(E) = 0 (last term) = 0 (E3e-1/2)?

[BONUS: prove that the remainder term satisfies the needed condition for an asymptotic expansion]

* If little-o is to hold,
$$\lim_{\xi \to 0^{-1}} \frac{R(z)}{\xi^{3}e^{-1/\xi}} \stackrel{?}{=} 0$$
 both vanish so use l'Hopital, $\lim_{\xi \to 0^{-1}} \frac{\int_{0}^{z} 6t^{2}e^{-1/\xi} dt}{\xi^{3}e^{-1/\xi}} = \lim_{\xi \to 0^{-1}} \frac{6\xi}{3\xi^{2}e^{-1/\xi}} = \lim_{\xi \to 0^{-1}} \frac{6\xi}{3\xi^{2}e^{-1/\xi}} = 0$ DED.

* Instead you could bound
$$R(s) \leq 6\epsilon^2 \int_0^{\epsilon} e^{-1/\epsilon} dt = 6\epsilon^2 I(\epsilon) = 6\epsilon^2 \left[(\epsilon^2 - 2\epsilon^3) e^{-1/\epsilon} + R \right]$$

so $R(s) \leq (1 - 6\epsilon^2)^{-1} 6\epsilon^2 \left(\epsilon^2 - 2\epsilon^3 \right) e^{-1/\epsilon} = O(\epsilon^4 e^{-1/\epsilon}) = o(\epsilon^3 e^{-1/\epsilon})$.

2. [6 points] Write the first 3 terms (i.e. trivial term plus two more) in the Neumann series for the solution

where
$$\lambda \in \mathbb{R}$$
 is some constant.

$$u(t) = 12t^{2} + \lambda \int_{0}^{t} (t-s)u(s) ds, \qquad \text{so } u \to ku = f$$

$$f(t) \qquad \text{ie } u = (1-\lambda k)^{-1} f$$

$$(KF)(t) = \int_{0}^{t} (t-s) 12s^{2} ds = 12(t+\frac{t^{3}}{3}-\frac{t^{7}}{4}) = t^{7}$$

$$12(\pm\frac{t^3}{3}-\frac{t^4}{4})=t^4$$

$$(K^2A)(t) = K(Kf)(t) = \int_0^t (t-s) s^4 ds = t^{\frac{6}{5}} - \frac{t^6}{5} = \frac{t^6}{20}$$

$$= t\frac{t^5}{5} - \frac{t^6}{6} = \frac{t^6}{30}$$

so
$$u(t) = 12t^2 + \lambda t^4 + \lambda^2 \frac{t^6}{30} + \dots$$

- (a) Give the general solution to $Ku(x) 3u(x) = \sin x$, or explain why not possible.

 We degenerate free the least of the solution of the sol $[^{\alpha}]$

convert to linesys
$$f$$
 $\lesssim c_j x_j(x) - 3u(x) = sin x$ (#)

by (β_i, \cdot) $\lesssim (\beta_i, \alpha_i) c_j - 3c_i = f_i = (\beta_i, sin x), \forall i$

$$(\beta_i, \times_i) e_i = 3c_i$$

$$M=1 \quad \text{so} \quad \left(\beta_{1}, \times_{1}\right) \in I = 3C, \quad = \left(\beta_{1}, \sin x\right) = \int_{0}^{1} \sin^{2}x \, dx = \sqrt{2}$$

$$A = \left[a_{11}\right] = \int_{0}^{1} \sin^{2}x \, \sin x \, dx = 0 \quad \text{by Finite site orthog}$$

$$\int_{0}^{1} \sin^{2}x \, \sin x \, dx = 0 \quad \text{by Finite site orthog}$$

Use (*):
$$u(x) = -\frac{1}{3} \left[\sin x - c_1 x_1(x) \right] = -\frac{1}{3} \left[\sin x + \frac{\pi}{6} \sin 2x \right]$$

[2] (b) Give the general solution to $Ku(x) = \sin x$, or explain why not possible.

(c) Give the general solution to $Ku(x) = \sin 2x$, or explain why not possible. (1)

T is in Span [sin 2x] = Solvable.

lin sys is
$$A \subset = f'$$
 is $A \subset = f_1 = (\beta_1, \sin 2x)$

[O] $-(\sinh x, \sin 2x) = O$.

So $C_1 \subseteq \mathbb{R}$ anythmy ... standad method isn't useful here! But... [Fricky]

Writing original egn, sin 2x 50 sing u(g) dy = sin 2x we have the only

constraint on u is (u, sinx) = 1, is $c_1 = 1$. (Ie, u = any fourier sine series with $b_1 = \frac{2\pi}{4\pi}$ coeff)

(d) What are all eigenvalue(s) (with multiplicity) and eigenspace(s) of this operator? [2]

are those of A matrix + 7=0 w/ 00-miltiplicity (treve since degenerate Fredholm). But A = (0) has only 2=0, with corresponding eighnes x1(x) = sin2x

=) $\lambda=0$ is only eigenvalue, as-multiplicity

eigenspace = c sin2x + { all functions orthogonal tea B(x) = sinx}

= {u, ["u(x) sin x dx = 0} this absorber csm2x for cell

- 4. [10 points]
- (a) By converting to a Sturm-Liouville problem, find all positive eigenvalues and eigenfunctions of the operator K which acts as $(Ku)(x) := \int_0^1 k(x,y)u(y)dy$, with kernel

$$k(x,y) = \left\{ egin{array}{ll} 1-x, & y < x \ 1-y, & y > x \end{array}
ight.$$

[Hint: you'll need to extract a boundary condition at each end.]

$$(\kappa_u)(x) = \int_0^x (-x) u(y) dy + \int_x^1 (1-y) u(y) dy = \lambda u(x)$$

$$\frac{d}{dx}$$
, Leibniz. $\left(\int_{0}^{\infty} u(y)dy + (-x)u(x)\right) - \left((-x)u(x)\right) = \lambda u'(x)$ (2)

BCs? insert
$$\kappa=0$$
 into (1): $Q + S_0'(1-y)u(y)dy = \pi u(0)$ not informative $\kappa=1$ into (1): $(I_0)S_0'u(y)dy - + Q = \pi u(1)$ Dirichlet at $\kappa=1$.

Gen SLP. soln:
$$u(x) = A \cos(\frac{1}{4}x) + B \sin(\frac{1}{4}x)$$

 $+ B = 0$ to satisfy Neumann at $x = 0$.

for vanishing at
$$x=1$$
 need $\cos \frac{1}{12} = 0$ ie $\frac{1}{12} = (n_1 \frac{1}{2}) \pi$

$$\partial_{n}(x) = \frac{1}{(n+1/h)^{n+1}} = n = 0, 1, \dots$$

$$\partial_{n}(x) = \cos(n+1/h)\pi x$$

(b) Use the energy method on the SLP to show that there are no negative or zero eigenvalues. [If you couldn't get an SLP above, just demonstrate the energy method on the simplest SLP you can think of.]

think of.]

Multiply us k integrate
$$\int uu'' dx + \frac{1}{2} \int u^2 dx = 0$$

$$- \int u'^2 dx = \int u'' dx = \int u'' dx = \int u'' dx = 0$$

So $\chi = \int u'' dx = \int u'' dx = \int u'' dx = \int u'' dx = 0$

5. [10 points]

A 1D 2π -periodic image f is blurred by applying a Fredholm operator K with convolution kernel k(x,y) = k(x-y), with even, 2π -periodic aperture function $k_1 = \frac{1}{2}$, etc. in cosine series $k(s) = -\ln\left(2\sin\left|\frac{s}{2}\right|\right) = \cos s + \frac{1}{2}\cos 2s + \frac{1}{3}\cos 3s + \cdots$ for k(s).

Recall that such an operator has eigenvalues $\lambda_n = \pi k_n$, n = 0, 1, ..., where k_n are the Fourier cosine $(k_0 = 0)$ coefficients of k(s).

(a) Given the image $f(x) = \sin 7x$ find the blurred image g(x) = (Kf)(x): [3]

Either use fact that convolution kends have Former series as eigenfuncs, or just compute: g(x)= (Kf)(x) = 5 (cos(x-y) + ... +cos7(k-y) + ... | sin/ydy = Steff costx costy + sin /x sin /y) + J sin /y dy = + sin /x Sin /y dy = T sin /x

Note you could have got via mult by $\lambda_7 = \pi k_7 = \frac{1}{100}$ too.

(b) Give a formula for the Fourier coefficients (\hat{a}_n, \hat{b}_n) of the best reconstructed image \hat{f} given those [3] (A_n, B_n) of a measured blurry image g. Can all Fourier coefficients be reconstructed? (explain; you may assume no noise here)

By above reasoning (or see worksheet) $A_n = \pi k_n a_n$ n=0,1,2,... $B_n = \pi k_n b_n$ note!

 $50 \int \hat{a}_{n} = \frac{A_{n}}{\pi k_{n}} = \frac{n}{\pi} A_{n}$ $\int \hat{b}_{n} = \frac{B_{n}}{\pi k_{n}} = \frac{n}{\pi} B_{n}$

n=1,2,...

But n=0 has ko=0 so cannot reconstruct this const. erefficient. (we regularize by setting ao = 0)

(c) If noise of size 10^{-3} pollutes each Fourier coefficient of g, and a noise of size 0.1 (ie 10%) is [i]acceptable in \hat{f} , how many coefficients should be reconstructed?

Recall noise in Am or Ba get multiplied by of above.

So $\frac{N}{11}$? $\leq E$ ie $N \leq \frac{\pi E}{E} = \pi \frac{0.1}{10^{-3}} = 100 \pi$ so 314×2 coeffs can be coeffs this was a red being (inclumit). reconstructed.

(d) The aperture function is unbounded, $\lim_{s\to 0} k(s) = \infty$. Is the aperture function in $L^2([-\pi, \pi])$?

Prove it. $\|k\|^2 := \int_{-\pi}^{\pi} k^2(0) ds = 2 \int_{0}^{\pi} \ln^2(2\sin\frac{\pi}{2}) ds = \int_{0}^{\pi} \int_{0}^{\pi} \int_{0}^{\pi} \ln^2(2\sin\frac{\pi}{2}) ds = \int_{0}^{\pi} \int_{0}^{\pi} \int_{0}^{\pi} \ln^2(2\sin\frac{\pi}$ Parseval to the rescue: $||k||^2 = \frac{5}{5} \left(\sqrt{\frac{1}{2}} k_{\rm H} \right)^2 = \frac{1}{5} \left(\sqrt{$

- 6. [9 points] Short-answer questions.
- (a) Let K be a symmetric Fredholm operator with eigenfunctions $\{\phi_n\}_{n=1}^{\infty}$ and corresponding eigen-

(a) Let
$$K$$
 be a symmetric Frecholm operator with eigenfunctions $\{\psi_n\}_{n=1}^n$ and corresponding eigenvalues $\{\lambda_n\}_{n=1}^\infty$. Either give the general solution to $Ku - \lambda_1 u = \phi_2$ or explain why not possible.

 $\lambda_n = \lambda_1$
 $\lambda_n = \lambda_1$
 $\lambda_n = \lambda_2$

Since $\lambda_n = \lambda_1$
 $\lambda_n = \lambda_1$
 $\lambda_n = \lambda_2$
 $\lambda_n = \lambda_1$
 $\lambda_n =$

(b) Let $\{f_n\}$ be a complete orthogonal set. Prove that no non-trivial function g can be added to the [3] set whilst maintaining orthogonality of the resulting set.

(c) Give an example of an interval and a sequence of functions that converge in L^2 but not uniformly (c) Let's converge to zero, easiest. on that interval (sketching may help.)

Examples.
$$f_n = x^n$$
 on $(0,1)$: $f_n = x^n$ on $(0,$

Example:
$$f_n = \begin{cases} 1 & \times t_n \\ 0 & \text{otherwise} \end{cases}$$
 on $(0,1)$ $\frac{1}{t_n}$ $\frac{1$

[BONUS: give an example as in (c) but the other way round, i.e. uniform but not L^2]

Requires unbounded interval, Example:
$$f_n = \{ \frac{1}{2} \text{ in } |x| \le n \text{ on } |R|$$

$$||f_n||^2 = \int_{-\pi}^{\pi} dx = 2 \quad \forall n \quad \neq 0.$$

But max $|f_n(x)| = f_n \rightarrow 0$ wif convergent.