

각 경로별 해상 운임 지수에 대한 중요 변수 분석 및 예측

EDA & 모델 학습 & 향후 계획

Contents

- EDA
- 모델 학습
- 향후계획

[Data]

- 경로별 SCFI
- 외부 변수 (결측치에 대해서는 생각 x, 이유는 아래에 표기)
- 항만 대기량
- 항만 대기량 데이터는 16년 1월 1일부터, SCFI 데이터는 09년 10월 16일부터, 외부 변수 데이터는 08년 1월 4일부터 보유
- 항만 대기량 데이터를 사용하기 위해 16년 1월 1일 이후의 데이터만 추출 (16년 1월 1일 이후의 외부 변수 데이터에 결측치가 없음)
- 전체 데이터 중에서 코로나 발생 이후 데이터만 활용(2019년 12월 31일 이후 데이터)
- 우리가 예측하는 y는 SCFI 지수
 - SCFI: 09년 10월 16일~, 1주일 간격
 - 외부 변수: 08년 1월 4일~, 1주일 간격
 - 항만 대기량 : 16년 1월 1일~, <mark>하루 간격</mark>
 - => 각 데이터의 추출은 16년 1월 1일부터(항만 대기량 데이터 사용 위해) 간격은 일주일로 예측(SCFI 예측 위해)
- 데이터 전처리
 - Object(,) -> Float로 타입 변환, Datetime으로 변환
 - 분석을 위해 2016년 1월 1이후의 SCFI, 외부 변수, 항만 대기량 데이터 통합

전체 기간(2016.01.01~)

SCFI Comprehensive Container Freight Rate Index
Shanghai-Europe (base port)
SCFI Shanghai-Med (base port)
SCFI Shanghai-WC America (base port)
SCFI Shanghai-EC America (base port)
SCFI Shanghai-EC America (base port)
SCFI Shanghai-Persian Gulf (Dubai)
SCFI Shanghai-ANZ (Melbourne)
SCFI Shanghai-W Africa (Lagos)
SCFI Shanghai-S Africa (Durban)
SCFI Shanghai-S America (Santos)
SCFI Shanghai-B Japan (base port)
SCFI Shanghai-E Japan (base port)
SCFI Shanghai-SE Asia (Singapore)

dex	0.95	0.46	-0.38	-0.26	0.41	0.8	0.76	0.92	-0.62	0.78	0.86	0.93	0.85	0.57		0.61	
oort)	0.95	0.46	-0.36	-0.25	0.41	0.82	0.73	0.93	-0.58	0.73	0.83	0.9	0.83	0.52		0.56	
oort)	0.95	0.45	-0.36	0.24	0.42	0.81	0.75	0.92	-0.6	0.75	0.83	0.91	0.84	0.54		0.57	
ort)	0.9	0.44	-0.37	-0.26	0.41	0.74	0.76	0.86	-0.63	0.79	0.86	0.91	0.84	0.62		0.65	
ort)	0.96	0.47	-0.36	-0.25	0.47	0.86	0.77	0.94	-0.5€	0.76	0.84	0.85	0.85	0.55		0.58	
bai)	0.96	0.43	-0.35		0.48	0.82	0.77	0.93	-0.58	0.78	0.84	0.87	0.84	0.56		0.62	
rne)	0.93	0.41	-0.38	-0.23	0.4	0.76	0.71	0.86	-0.61	0.78	0.86	0.87	0.79	0.51		0.57	
jos)	0.89	0.46	-0.39	-0.26	0.46	0.7	0.82	0.87	-0.59	0.85	0.87	0.94	0.85	0.66		0.71	
oan)	0.97	0.47	-0.4	-0.28	0.4	0.83	0.7	0.92	-0.57	0.73	0.84	0.87	0.83	0.51		0.53	
tos)	0.87	0.45	-0.44	-0.34		0.67	0.61	0.8	-0.62	0.68	0.8	0.91	0.82	0.52	0.044	0.54	
ort)	0.83	0.63	-0.49	-0.35	0.47	0.66	0.73	0.78	-0.33	0.77	0.83	0.77	0.77	0.61		0.61	
ort)	0.79	0.58	-0.47		0.49		0.77	0.74	-0.35	0.85	0.83	0.77	0.76	0.65		0.68	
ore)	0.84	0.43	-0.4	-0.28		0.65	0.71	0.81	-0.6	0.76	0.84	0.94	0.82	0.6		0.61	
san)	0.81	0.57	-0.51	0.42	0.39	0.68	0.65	0.79	-0.41	0.66	0.8	0.86	0.78	0.49		0.47	
		_	+	_		10	10	10	Ţ.	_	_			_		_	

- 각 경로에 대한 모든 feature(외부변수&항만대기량) 의 상관관계
- 같은 feature 여도 SCFI에 주는 영향이 다름(동그라미)
- 특정 SCFI에 대해서 어떤 변수를 사용할지 분석
- 307개의 데이터

Clarksons Average Containership Earr
HSFO 380cst Bunker Prices (3.5% Sulphur), Rotter
Total Containerships - % IdleLaid Up/Scrubber Re

5 Year \$10m Finance based on Libor 1st yr Port Congestion Index - Containerships In Port, m.TEU, 7dmz

Containership 13,000/13,500 TEU G'less Newbuilding Price

or Congestion Index - Containerships in Port, Lass Coast North America, In. TEU, 7dm rt Congestion Index - Containerships in Port, West Coast North America, In. TEU, 7dm rt Congestion Index - Containerships in Port, United Kingdom/Continent, In. TEU, 7dm ort Congestion Index - Containerships in Port, Mediterranean/Black Sea, In. TEU, 7dm Port Congestion Index - Containerships in Port, East Asia, In. TEU, 7dm

Port Congestion Index - Containerships In Port, South East Asia, m.TEU, 7dma Port Congestion Index - Containerships In Port, China P.R., m.TEU, 7dma

각 경로끼리의 상관관계

CFI Comprehensive Container Freight Rate Index	1	0.99	0.99	0.96	0.97	0.98	0.95	0.96	0.98	0.96	0.84	0.81	0.95	0.86	0.95
Shanghai-Europe (base port)	0.99	1	1	0.93	0.96	0.98	0.93	0.95	0.98	0.96	0.82	0.79	0.93	0.85	0.95
SCFI Shanghai-Med (base port)	0.99	1	1	0.93	0.96	0.98	0.93	0.96	0.97	0.96	0.82	0.8	0.94	0.85	0.95
SCFI Shanghai-WC America (base port)	0.96	0.93	0.93	1	0.96	0.92	0.93	0.92	0.92	0.89	0.81	0.79	0.9	0.82	0.9
SCFI Shanghai-EC America (base port)	0.97	0.96	0.96	0.96	1	0.97	0.93	0.92	0.96	0.89	0.83	0.81	0.87	0.8	0.96
SCFI Shanghai-Persian Gulf (Dubai)	0.98	0.98	0.98	0.92	0.97	1	0.92	0.95	0.97	0.93	0.84	0.83	0.9	0.81	0.96
SCFI Shanghai-ANZ (Melbourne)	0.95	0.93	0.93	0.93	0.93	0.92	1	0.89	0.96	0.9	8.0	0.78	0.9	0.82	0.93
SCFI Shanghai-W Africa (Lagos)	0.96	0.95	0.96	0.92	0.92	0.95	0.89	1	0.92	0.93	0.84	0.86	0.94	0.84	0.89
SCFI Shanghai-S Africa (Durban)	0.98	0.98	0.97	0.92	0.96	0.97	0.96	0.92	1	0.95	0.84	0.8	0.9	0.85	0.97
SCFI Shanghai-S America (Santos)	0.96	0.96	0.96	0.89	0.89	0.93	0.9	0.93	0.95	1	0.79	0.77	0.94	0.84	0.87
SCFI Shanghai-W Japan (base port)	0.84	0.82	0.82	0.81	0.83	0.84	0.8	0.84	0.84	0.79	1	0.98	0.77	0.77	0.83
SCFI Shanghai-E Japan (base port)	0.81	0.79	0.8	0.79	0.81	0.83	0.78	0.86	0.8	0.77	0.98	1	0.76	0.73	0.79
SCFI Shanghai-SE Asia (Singapore)	0.95	0.93	0.94	0.9	0.87	0.9	0.9	0.94	0.9	0.94	0.77	0.76	1	0.9	0.84
SCFI Shanghai-Korea (Pusan)	0.86	0.85	0.85	0.82	0.8	0.81	0.82	0.84	0.85	0.84	0.77	0.73	0.9	1	0.81

각 경로끼리도 높은 상관관계를 확인할 수 있음 => 추가 분석을 할 때 활용될 가치가 높음

코로나 발생 이후(2019.12.31~

SCFI Comprehensive Container Freight Rate Index

Shanghai-Europe (base port)
SCFI Shanghai-Med (base port)
SCFI Shanghai-WC America (base port)
SCFI Shanghai-EC America (base port)
SCFI Shanghai-Persian Gulf (Dubai)
SCFI Shanghai-ANZ (Melbourne)
SCFI Shanghai-W Africa (Lagos)
SCFI Shanghai-S Arrica (Durban)
SCFI Shanghai-S America (Santos)
SCFI Shanghai-W Japan (base port)
SCFI Shanghai-E Japan (base port)
SCFI Shanghai-E Japan (base port)
SCFI Shanghai-SE Asia (Singapore)

SCFI Shanghai-Korea (Pusa

dex	0.94	0.91	.69 -0.6	0.62	0.87	0.85	0.9	-0.5	0.75	0.91	0.86	0.88	.31	-0.37	0.33	0.:
ort)	0.94	0.91	.64 -0.6	0.65	0.87	0.87	0.9	-0.5	0.78	0.88	0.84	0.86	.27			
ort)	0.93	0.91	.65 -0.6	0.64	0.86	0.86	0.8	-0.5	0.77	0.88	0.85	0.87	28			
ort)	0.89	0.85	.74 -0.7	0.55	0.83	0.79	0.8	-0.6	0.64	0.88	0.83	0.82	.34	-0.44		۰.0
	0.97	0.85	. 62 -0.6	0.72	0.94	0.89	0.9	-0.5	0.73	0.85	0.73	0.84	124			
ort)	0.96	0.88	.63 -0.5	0.71	0.91	0.87	0.9	-0.4	0.75	0.86	0.77	0.86	25			
bai)	0.95	0.83	.64 -0.6	0.65	0.86	0.78	8.0	-0.5	0.73	0.92	0.8	0.79	25			
ne)	0.86	0.91	0.7 -0.6	0.51	0.77	0.78	0.8	-0.5	0.71	0.86	0.89	0.85	.28	-0.42		ه.ه.
os)	0.97	0.89	.63 -0.6	0.71	0.91	0.87	0.9	-0.4	0.78	0.91	0.81	0.85	.25			
an)	0.84	0.91	.77 -0.7	0.45	0.73	0.72	8.0	-0.5	0.67	0.89	0.93	0.87	31			-0.1
tos)	0.9	0.82	.54 -0.5	0.72	0.86	0.84	0.8	-0.4	0.74	0.82	0.7	0.75	086			
ort)	0.85	0.8	.51 -0.4	0.67	0.8	0.8	8.0	-0.4	0.71	0.76	0.67	0.7	004			
011,	0.75	0.83	.68 -0.6	0.4	0 34	0.67	0.7	-0.5	0.63	0.85	0.89	0.81	:41	-0.51		-O.
ort)	0.76	0.85	0.6 -0.5	0.51	0.69	0.75	0.7	-0.4	0.67	0.84	0.86	0.76	.34			
ore)	1	0.83	.53 -0.4	0.82	0 97	0.91	0.9	-0.3	0.81	0.88	0.71	0.81	.23			
an)	0.83	1	.74 -0.7	0.56	0.76	0.78	0.8	-0.4	0.65	0.88	0.84	0.86	.28	-0.43		۰.
			_													

각 경로에 대한 모든 feature(외부변수&항만대기량)의 상관관계

=> 전체 기간을 다룰 때와 상관 관계가 높은 변수가 다름

- 같은 feature여도 SCFI 주는 영향이 다름(동그라미)
- 특정 SCFI에 대해서 어떤 변수를 사용할지 분석
- 104개의 데이터 (과소적합 가능성)
- 코로나 기간 동안 각 SCFI의 추세를 예측하는 것이 목표 기 때문에 이 데이터를 활용하여 분석

Clarksons Average Containership Earnings HSFO 380cst Bunker Prices (3.5% Sulphur), Rotterdam Total Containerships - % IdleLaid Up/Scrubber Retroff Port Congestion Index - Containerships In Port, m. TEU, 7dma 99

Containership 3,500/4,000 TEU (Wide Beam) Gless Newbuilding Pri

hips In Port, West Coast North America, m.TEU, 7dn

Port Conges

Port Congestion Index - Containerships in Port, East Asia, m.TEU, 7dma vot Congestion Index - Containerships in Port, South East Asia, m.TEU, 7dma Port Congestion Index - Containerships in Port, China P.R., m.TEU, 7dma

부산대학교 PUSAN NATIONAL UNIVERSITY

전체 기간을 다룰 때와 코로나 이후에 영향을 끼치는 변수가 다른 것을 확인 가능

<전체 기간>

<코로나 발생 이후>

코로나 발생 이후 학습 및 예측

- 2019년 1월 1일 이후의 104개의 데이터 활용
- 전체 SCFI(SCFI Comprehensive Container Freight Rate Index)를 y로 두고 학습 및 예측
 - 각 경로에 대한 SCFI를 분석하기 전에 전체 SCFI를 활용하여 학습과 분석이 잘 되는지 확인
- 활용한 feature(=코로나 발생 이후 기간과 상관 관계가 높았던 변수) => 총 10개
 - 'Clarksons Average Containership Earnings' (0.94)
 - 'HSFO 380cst Bunker Prices (3.5% Sulphur), Rotterdam' (0.91)
 - 'Containership 1,650/1,850 TEU FCC, G'less Newbuilding Prices' (0.62) => 약간 낮은 수치이지만 일 단 포함
 - 'Containership 13,000/14,000 TEU Newbuilding Prices' (0.87)
 - 'Containership 3,500/4,000 TEU (Wide Beam) G'less Newbuilding Prices' (0.85)
 - 'Containership 13,000/13,500 TEU G'less Newbuilding Prices' (0.93)
 - 'Port Congestion Index Containerships In Port, m.TEU, 7dma' (0.75)
 - 'Port Congestion Index Containerships In Port, East Coast North America, m.TEU, 7dma' (0.91)
 - 'Port Congestion Index Containerships In Port, West Coast North America, m.TEU, 7dma' (0.86)
 - 'Port Congestion Index Containerships In Port, United Kingdom/Continent, m.TEU, 7dma' (0.88)
- MinMaxScaler를 활용하여 전처리

코로나 발생 이후 학습 및 예측

Window_size: 내가 얼마동안(기간)의 다음날 데이터를 예측할 것인가를 정하는 parameter

- 데이터 분리
 - 총 104개의 데이터에서 80개를 Train, 나머지 24개를 Test 데이터셋으로 활용
 - Window_size를 12로 하여 학습 데이터 생성
 - Window_size = 12: 데이터 하나가 1주일이니 이것이 12개 모여 3달 => 3달씩 학습

(간단한)모델생성

코로나 발생 이후 학습 및 예측

- 모델 학습
 - 에폭 100, 배치사이즈 8로 학습
 - Loss: 0.3187, val_loss: 0.2939 => loss: 0.0019, val_loss: 0.0025까지 학습

코로나 발생 이후 학습 및 예측

• 모델예측

<16 hidden layer, 100 epoch, batch size 8 >

<16 hidden layer, 200 epoch, batch size 16 >

코로나 발생 이후 학습 및 예측

실장님께서 port congestion 변수 중에서 가장 중요한 것은 LA라고 설명 LA = West Coast이기 때문에 Port congestion 변수 중에서 'Port Congestion Index - Containerships In Port, West Coast North America, m.TEU, 7dma' 이 변수만 사용한 후 학습

• 모델예측

<16 hidden layer, 200 epoch, batch size 4 >

향후 계획

- '외부 변수 결측치를 개선하여 2016년 1월 1일 이후의 SCFI 데이터 분석'혹은 '2019년 12월 31일 코로나 발생 이후 SCFI 데이터 분석'중 확실하게 방향 결정하기
 - 전자면 결측치에 대한 도메인 지식 도움 부탁드리고, 후자면 부족한 데이터 보완 방안 마련
- 시계열 분석 모델(CNN, LSTM, GRU, ATTENTION 등) 공부하여 예측이 더 잘되는 모델 생성 => 각 경로에 따른 모델 각각 생성
- 각 경로에 대한 SCFI를 예측하기 위해 영향력 있는 변수를 뽑아내어 사회적 요인과 관련하여 분석하는 방향도 좋지만 <mark>차별화</mark>된 방안 생각해보기
- 한국 무역 협회에서 발표한 2021년 4분기의 SCFI 지수 급등 원인 중에서 물류현장에서 직원들의 코로나 확진도 있었음 => 크롤링 등 방법을 강구해서 활용