Essential Probability & Statistics

(Lecture for CS510 Advanced Topics in Information Retrieval)

ChengXiang Zhai

Department of Computer Science
University of Illinois, Urbana-Champaign

Prob/Statistics & Text Management

- Probability & statistics provide a principled way to quantify the uncertainties associated with natural language
- Allow us to answer questions like:
 - Given that we observe "baseball" three times and "game" once in a news article, how likely is it about "sports"? (text categorization, information retrieval)
 - Given that a user is interested in sports news, how likely would the user use "baseball" in a query? (information retrieval)

Basic Concepts in Probability

- Random experiment: an experiment with uncertain outcome (e.g., tossing a coin, picking a word from text)
- Sample space: all possible outcomes, e.g.,
 - Tossing 2 fair coins, S ={HH, HT, TH, TT}
- Event: E⊆S, E happens iff outcome is in E, e.g.,
 - E={HH} (all heads)
 - E={HH,TT} (same face)
 - Impossible event ({}), certain event (S)
- Probability of Event : 1≥P(E) ≥0, s.t.
 - P(S)=1 (outcome always in S)
 - $P(A \cup B)=P(A)+P(B)$ if $(A \cap B)=\emptyset$ (e.g., A=same face, B=different face)

Basic Concepts of Prob. (cont.)

- Conditional Probability :P(B|A)=P(A∩B)/P(A)
 - $P(A \cap B) = P(A)P(B|A) = P(B)P(A|B)$
 - So, P(A|B)=P(B|A)P(A)/P(B) (Bayes' Rule)
 - For independent events, $P(A \cap B) = P(A)P(B)$, so P(A|B)=P(A)
- Total probability: If A₁, ..., A_n form a partition of S, then
 - $= P(B) = P(B \cap S) = P(B \cap A_1) + \dots + P(B \cap A_n) \text{ (why?)}$
 - So, $P(A_i|B)=P(B|A_i)P(A_i)/P(B)$ = $P(B|A_i)P(A_i)/[P(B|A_1)P(A_1)+...+P(B|A_n)P(A_n)]$
 - This allows us to compute $P(A_i|B)$ based on $P(B|A_i)$

Interpretation of Bayes' Rule

Hypothesis space: $H=\{H_1, ..., H_n\}$ Evidence: E

$$P(H_i \mid E) = \frac{P(E \mid H_i)P(H_i)}{P(E)}$$

If we want to pick the most likely hypothesis H^* , we can drop P(E)

Posterior probability of
$$H_i$$
 Prior probability of H_i
$$P(H_i \mid E) \propto P(E \mid H_i) P(H_i)$$
 Likelihood of data/evidence if H_i is true

Random Variable

- X: S → ℜ ("measure" of outcome)
 - E.g., number of heads, all same face?, ...
- Events can be defined according to X
 - $E(X=a) = {s_i|X(s_i)=a}$
 - $E(X \ge a) = \{s_i | X(s_i) \ge a\}$
- So, probabilities can be defined on X
 - -P(X=a) = P(E(X=a))
 - $P(a \ge X) = P(E(a \ge X))$
- Discrete vs. continuous random variable (think of "partitioning the sample space")

An Example: Doc Classification

Sample Space $S=\{x_1,...,x_n\}$

For 3 topics, four words, n=?

Topic	the	computer	game	baseball	Conditional Probabilities:
X ₁ : [sport	1	0	1	1]	$P(E_{sport} E_{baseball}), P(E_{baseball} E_{sport}), P(E_{sport} E_{baseball}, \neg computer),$
X ₂ : [sport	1	1	1	1]	Thinking in terms of random variables
X ₃ : [computer	1	1	0	0]	
X_4 : [computer X_5 : [other	1 0	1 0	1 1	0] 1]	Topic: $T \in \{\text{``sport''}, \text{``computer''}, \text{``other''}\},$ "Baseball'': $B \in \{0,1\}, \dots$ $P(T=\text{``sport''} B=1), P(B=1 T=\text{``sport''}), \dots$

Events

$$E_{sport} = \{x_i \mid topic(x_i) = "sport"\}$$

$$E_{baseball} = \{x_i \mid baseball(x_i) = 1\}$$

$$E_{baseball,\neg computer} = \{x_i \mid baseball(x_i) = 1 \& computer(x_i) = 0\}$$

An inference problem:

Suppose we observe that "baseball" is mentioned, how likely the topic is about "sport"?

$$P(T="sport"|B=1) \propto P(B=1|T="sport")P(T="sport")$$

Getting to Statistics ...

- P(B=1|T="sport")=? (parameter estimation)
 - If we see the results of a huge number of random experiments, then
 - But, what if we ponly see a small sample (e.g., 2)? Is this estimate still reliable?
- In general, statistics has to do with drawing conclusions on the whole population based on observations of a sample (data)

Parameter Estimation

- General setting:
 - Given a (hypothesized & probabilistic) model that governs the random experiment
 - The model gives a probability of any data $p(D|\theta)$ that depends on the parameter θ
 - Now, given actual sample data $X=\{x_1,...,x_n\}$, what can we say about the value of θ ?
- Intuitively, take your best guess of θ -- "best" means "best explaining/fitting the data"
- Generally an optimization problem

Maximum Likelihood vs. Bayesian

- Maximum likelihood estimation
 - "Best" means "data likelihood reaches maximum"
 - Problem: small-sample $P(X|\theta)$
- Bayesian estimation
 - "Best" means being consistent with our "prior" knowledge and explaining data well
 - Problem: how to define prior?

$$\hat{\theta} = \underset{\theta}{\operatorname{arg\,max}} P(\theta \mid X) = \underset{\theta}{\operatorname{arg\,max}} P(X \mid \theta) P(\theta)$$

Maximum a Posteriori (MAP) estimate

Illustration of Bayesian Estimation

Bayesian inference: $f(\theta)$ =?

Maximum Likelihood Estimate

Data: a document d with counts $c(w_1), ..., c(w_N)$, and length |d|

Model: multinomial distribution M with parameters $\{p(w_i)\}$

Likelihood: p(d|M)

Maximum likelihood estimator: $M=argmax_{M} p(d|M)$

$$p(d \mid M) = {\binom{|d|}{c(w_1)...c(w_N)}} \prod_{i=1}^{N} \theta_i^{c(w_i)} \propto \prod_{i=1}^{N} \theta_i^{c(w_i)} \quad \text{where, } \theta_i = p(w_i) \quad \sum_{i=1}^{N} \theta_i = 1$$

$$l(d \mid M) = \log p(d \mid M) = \sum_{i=1}^{N} c(w_i) \log \theta_i$$

$$l'(d \mid M) = \sum_{i=1}^{N} c(w_i) \log \theta_i + \lambda (\sum_{i=1}^{N} \theta_i - 1)$$

$$\frac{\partial l'}{\partial \theta_i} = \frac{c(w_i)}{\theta_i} + \lambda = 0 \quad \Rightarrow \quad \theta_i = -\frac{c(w_i)}{\lambda}$$

Since
$$\sum_{i=1}^{N} \theta_i = 1$$
, $\lambda = -\sum_{i=1}^{N} c(w_i) = -|d|$ So, $\theta_i = p(w_i) = \frac{c(w_i)}{|d|}$

Use Lagrange multiplier approach

Set partial derivatives to zero

$$\theta_i = p(w_i) = \frac{c(w_i)}{|d|}$$

ML estimate

What You Should Know

- Probability concepts:
 - sample space, event, random variable, conditional prob. multinomial distribution, etc
- Bayes formula and its interpretation
- Statistics: Know how to compute maximum likelihood estimate