### 02

# 머신러닝 필수 개념

# 2.1 지도학습과 비지도학습

### 2.1.1 지도학습

- 정답을 알려주면서 진행되는 학습.
- 학습시 데이터와 함께 레이블(정답)이 항상 제공돼야 함.

### 2.1.2 비지도학습

- 레이블(정답)이 없이 진행되는 학습.
- 학습할 때 레이블 없이 데이터만 필요.

# 2.2 분류와 회귀

### 2.2.1 분류

 데이터가 입력됐을 때 지도학습을 통해 미리 학습된 레이블 중 하나 또는 여러 개의 레이블로 예측.

Ex) 이진 분류, 다중 분류

### 2.2.2 회귀

• 입력된 데이터에 대해 연속된 값으로 예측.

Ex) 날씨 예측



다중 레이블 분류 테스트 데이터 예제

# 2.3 과대적합과 과소적합

### 2.3.1 과소적합

- 모델 학습 시 충분한 데이터의 특징을 활용하지 못할 경우 발생.
- 테스트 데이터뿐만 아니라 학습 데이터에 대해서도 정확도가 낮게
  나올 경우 과소적합된 모델일 가능성이 높음.

#### 과소적합 학습 데이터의 예

| 사물<br>야구공<br>농구공<br>테니스공 | 분류값 | 생김새  |
|--------------------------|-----|------|
| 야구공                      | 구0  | 동그라미 |
| 농구공                      | 구   | 동그라미 |
| 테니스공                     | 고   | 동그라미 |
| 딸기                       | 과일  | 세모   |
| 포도알                      | 과일  | 동그라미 |

# 2.3 과대적합과 과소적합

### 2.3.2 과대적합

학습 데이터에 대한 정확도는 상당히 높지만 테스트 데이터 또는
 학습 데이터 외의 데이터에는 정확도가 낮게 나오는 모델.

#### 과대적합 학습 데이터의 예

| 사물<br>야구공<br>농구공<br>테니스공<br>딸기<br>포도알 | 분류값 | 생김새 | 크기             | 줄무늬                  |
|---------------------------------------|-----|-----|----------------|----------------------|
| 야구공                                   | 고   | 원형  | 중간             | 줄무늬<br>있음            |
| 농구공                                   | 고   | 원형  | 큼              | 있음                   |
| 테니스공                                  | 공   | 원형  | 중간             | 있음                   |
| 딸기                                    | 과일  | 세모  | 중간             | 있음<br>있음<br>없음<br>없음 |
| 포도알                                   | 과일  | 원형  | 중간<br>중간<br>작음 | 없음                   |

명제: "생김새가 원형이고 크기가 작지 않으며, 줄무늬가 있으면 공이다"

# 2.3 과대적합과 과소적합

### 2.3.2 과대적합

테스트 데이터

명제: "생김새가 원형이고 크기가 작지 않으며, 줄무늬가 있으면 공이다"

| 사물                                   | <del>분</del> 류값 | 생김새 | 크기 | 줄무늬       |
|--------------------------------------|-----------------|-----|----|-----------|
| 골프공                                  | 구0              | 원형  | 작음 | 줄무늬<br>없음 |
| 수박                                   | 과일              | 원형  | 큼  | 있음        |
| 당구공                                  | 공               | 원형  | 중간 | 없음        |
| 럭비공                                  | 공               | 타원형 | 큼  | 있음        |
| 사물<br>골프공<br>수박<br>당구공<br>럭비공<br>볼링공 | 70              | 원형  | 큼  | 없음        |

- 과대적합은 특징이 필요 이상으로 많을 경우(분산이 높을 경우) 발생.
  - 더 많은 데이터를 확보해서 부족한 학습 데이터를 충분히 채움.
  - 특징들의 수치값을 정규화함으로써 특정 특징에 의한 편향을 줄임.
  - ➤ 딥러닝인 경우 조기 종료(early stopping) 및 드롭아웃(drop out)을 사용.

# 2.4 혼동행렬

• 모델의 성능을 평가할 때 사용되는 지표.

#### 혼동행렬의 예

|              |   | 예측값 |    |    |    |
|--------------|---|-----|----|----|----|
|              |   | Α   | В  | С  | D  |
|              | А | 9   | 1  | 0  | 0  |
| Д I т II フ L | В | 1   | 15 | 3  | 1  |
| 실제값          | С | 5   | 0  | 24 | 1  |
|              | D | 0   | 4  | 1  | 15 |

- 혼동한다는 정보를 알아낼 수 있고 그에 따른 모델 개선을 생각해볼 수 있음.
- 대략적인 모델의 성능도 눈으로 확인할 수 있음.

### 2.5.1 TP(true positive) - 맞는 것을 올바르게 예측한 것

• 데이터를 입력했을 때 데이터의 실제값을 올바르게 예측한 케이스

#### 혼동행렬에서 TP 찾기

|      |   | 예측값 |    |    |    |
|------|---|-----|----|----|----|
|      |   | Α   | В  | С  | D  |
|      | Α | 9   | 1  | 0  | 0  |
| ᄼᆝᆌᆉ | В | 1   | 15 | 3  | 1  |
| 실제값  | С | 5   | 0  | 24 | 1  |
|      | D | 0   | 4  | 1  | 15 |

### 2.5.2 TN(true negative) - 틀린 것을 올바르게 예측한 것

• 데이터를 입력했을 때 틀린 것을 올바르게 예측한 것

혼동행렬에서 A 클래스의 TN 찾기

|      |   | 예측값 |    |    |    |
|------|---|-----|----|----|----|
|      |   | Α   | В  | С  | D  |
|      | А | 9   | 1  | 0  | 0  |
| ᄼᆝᆌᆉ | В | 1   | 15 | 3  | 1  |
| 실제값  | С | 5   | 0  | 24 | 1  |
|      | D | 0   | 4  | 1  | 15 |

### 2.5.2 TN(true negative) - 틀린 것을 올바르게 예측한 것

• 데이터를 입력했을 때 틀린 것을 올바르게 예측한 것

혼동행렬에서 D 클래스의 TN 찾기

|      |   | 예측값 |    |    |    |
|------|---|-----|----|----|----|
|      |   | Α   | В  | С  | D  |
|      | Α | 9   | 1  | 0  | 0  |
| ᄼᆝᆌᆉ | В | 1   | 15 | 3  | 1  |
| 실제값  | С | 5   | 0  | 24 | 1  |
|      | D | 0   | 4  | 1  | 15 |

### 2.5.3 FP(false positive) — 틀린 것을 맞다고 잘못 예측한 것

• 데이터를 입력했을 때 틀린 것을 맞다고 잘못 예측한 것

#### 혼동행렬에서 A 클래스의 FP 찾기

|      |   | 예측값 |    |    |    |
|------|---|-----|----|----|----|
|      |   | Α   | В  | С  | D  |
|      | Α | 9   | 1  | 0  | 0  |
| ᄼᆝᆌᆉ | В | 1   | 15 | 3  | 1  |
| 실제값  | С | 5   | 0  | 24 | 1  |
|      | D | 0   | 4  | 1  | 15 |

### 2.5.3 FP(false positive) - 틀린 것을 맞다고 잘못 예측한 것

• 데이터를 입력했을 때 틀린 것을 맞다고 잘못 예측한 것

혼동행렬에서 B 클래스의 FP 찾기

|      |   | 예측값 |    |    |    |
|------|---|-----|----|----|----|
|      |   | Α   | В  | С  | D  |
|      | Α | 9   | 1  | 0  | 0  |
| ᄼᆝᆌᆉ | В | 1   | 15 | 3  | 1  |
| 실제값  | С | 5   | 0  | 24 | 1  |
|      | D | 0   | 4  | 1  | 15 |

### **2.5.4** FN(false negative) – 맞는 것을 틀렸다고 잘못 예측한 것

• 데이터를 입력했을 때 맞는 것을 틀렸다고 잘못 예측한 것

혼동행렬에서 A 클래스의 FN 찾기

|      |   | 예측값 |    |    |    |
|------|---|-----|----|----|----|
|      |   | Α   | В  | С  | D  |
|      | Α | 9   | 1  | 0  | 0  |
| ᄼᆝᆌᆉ | В | 1   | 15 | 3  | 1  |
| 실제값  | С | 5   | 0  | 24 | 1  |
|      | D | 0   | 4  | 1  | 15 |

### 2.5.5 정확도

- 입력된 데이터에 대해 얼마나 정확하게 예측하는지를 나타내는 지표.
- 혼동 행렬 상에서는 대각선(TP)을 전체 셀로나눈 값에 해당.

#### 혼동행렬에서 정확도 구하기

|     |   |   | 예를 | 측값 |    |
|-----|---|---|----|----|----|
|     |   | Α | В  | С  | D  |
|     | Α | 9 | 1  | 0  | 0  |
| 시ᅰ가 | В | 1 | 15 | 3  | 1  |
| 실제값 | С | 5 | 0  | 24 | 1  |
|     | D | 0 | 4  | 1  | 15 |

정확도 = 9 + 15 + 24 + 15 / 80 = 0.78

### 2.5.6 정밀도

• 모델의 예측값이 얼마나 정확하게 예측됐는가를 나타내는 지표.

정밀도 = TP / (TP + FP)

#### 암 예측 모델 A의 혼동행렬

|      | 암환자 | 일반환자 |
|------|-----|------|
| 암환자  | 9   | 1    |
| 일반환자 | 30  | 60   |

모델 A의 암환자 정밀도 = 9/39 = 23%,

#### 암 예측 모델 B의 혼동행렬

|      | 암환자 | 일반환자 |
|------|-----|------|
| 암환자  | 1   | 9    |
| 일반환자 | 20  | 70   |

모델 B의 암환자 정밀도 = 1/21 = 4.7%,

### 2.5.7 재현율

• 실제값 중에서 모델이 검출한 실제값의 비율을 나타내는 지표.

재현율 = TP / (TP + FN)

#### 암 예측 모델 A의 혼동행렬

|      | 암환자 | 일반환자 |
|------|-----|------|
| 암환자  | 9   | 1    |
| 일반환자 | 30  | 60   |

모델 A의 암환자 재현율 = 9/10 = 90%,

#### 암 예측 모델 B의 혼동행렬

|      | 암환자 | 일반환자 |
|------|-----|------|
| 암환자  | 1   | 9    |
| 일반환자 | 20  | 70   |

모델 B의 암환자 재현율 = 1/10 = 10%,

### **2.5.7** F1점수

• 정밀도와 재현율 두 값을 조화평균 내서 하나의 수치로 나타낸 지표.

조화평균 = 2 \* a \* b / (a + b)

F1 점수 = 2 \* 재현율 \* 정밀도 / (재현율 + 정밀도)



a와 b의 조화 평균 시각화(h = 조화평균/2)

### **2.5.7** F1점수

• 정밀도와 재현율 두 값을 조화평균 내서 하나의 수치로 나타낸 지표.

조화평균 = 2 \* a \* b / (a + b)

F1 점수 = 2 \* 재현율 \* 정밀도 / (재현율 + 정밀도)



F1 점수의 작동 원리

### **2.5.7** F1점수

• 하지만, 데이터의 레이블이 불균일하게 분포돼 있을 경우 정확도는 왜곡된 성능 평가로 이어질 수 있음.

혼동행렬에서 정확도 구하기

|                    |   | 예측값 |    |    |    |  |
|--------------------|---|-----|----|----|----|--|
|                    |   | Α   | В  | С  | D  |  |
| A<br>실제값<br>C<br>D | Α | 9   | 1  | 0  | 0  |  |
|                    | В | 1   | 15 | 3  | 1  |  |
|                    | С | 5   | 0  | 24 | 1  |  |
|                    | D | 0   | 4  | 1  | 15 |  |

정확도 = (9 + 8 + 7 + 9) / 40 = 82.5%

### **2.5.7** F1점수

• 아래의 모델 1은 B, C, D 레이블에 대해 하나도 예측을 제대로 하지 못했음에도 A 레이블을 가진 데이터가 너무 많아서 정확도가 96.6%로 나타나게 되어성능 평가가상당히 높아지는 문제를 보임.

모델1의 정확도 구하기

|       |   | 예측값 |   |   |   |  |
|-------|---|-----|---|---|---|--|
|       |   | Α   | В | С | D |  |
| 실제값 C | Α | 955 | 5 | 0 | 0 |  |
|       | В | 8   | 0 | 1 | 1 |  |
|       | С | 10  | 0 | 0 | 1 |  |
|       | D | 0   | 1 | 9 | 0 |  |

정확도 = (995 + 0 + 0 + 0) / 1030 = 96.6%

### **2.5.7** F1점수

• 아래의 모델 2는A에 대한 예측율은 떨어지지만 보편적으로 예측을 상당히 잘하는 모델임에도 정확도는 모델1보다 낮게 평가됨.

#### 모델2의 정확도 구하기

|     |   | 예측값 |     |     |     |  |
|-----|---|-----|-----|-----|-----|--|
|     |   | Α   | В   | С   | D   |  |
| 실제값 | А | 700 | 100 | 100 | 100 |  |
|     | В | 0   | 9   | 1   | 0   |  |
|     | С | 0   | 0   | 9   | 1   |  |
|     | D | 0   | 1   | 0   | 9   |  |

정확도 = (700 + 9 + 9 + 9) / 1030 = 70.5%

### **2.5.7** F1점수

• 레이블이 데이터 상에서 불균일하게 분포된 경우 F1 점수를 사용하면 정확도보다 나은 성능 평가 비교가 가능.

### **2.5.7** F1점수

모델1의 F1 점수 계산

|     | А    | В | С | D | 재현율  |
|-----|------|---|---|---|------|
| Α   | 955  | 5 | 0 | 0 | 0.99 |
| В   | 8    | 0 | 1 | 1 | 0    |
| С   | 10   | 0 | 0 | 1 | 0    |
| D   | 0    | 1 | 9 | 0 | 0    |
| 정밀도 | 0.98 | 0 | 0 | 0 |      |

$$= 0.246$$

### **2.5.7** F1점수

모델2의 F1 점수 계산

|     | Α   | В    | С    | D    | 재현율 |
|-----|-----|------|------|------|-----|
| Α   | 700 | 100  | 100  | 100  | 0.7 |
| В   | 0   | 9    | 1    | 0    | 0.9 |
| С   | 0   | 0    | 9    | 1    | 0.9 |
| D   | 0   | 1    | 0    | 9    | 0.9 |
| 정밀도 | 1   | 0.08 | 0.08 | 0.08 |     |

$$= 0.527 / 1.16$$

$$= 0.454$$

## 2.5 k-폴드 교차 검증

• 학습 데이터의 일정 부분을 검증데이터로 쓰되, n번의 검증 과정을 통해학습 데이터의 모든 데이터를 한 번씩 검증데이터로 사용해서 n개의 검증결과를 평균낸 값을 검증 성능 평가 지표로 사용하는 방식.

#### • 장점

- 검증 결과가 일정 데이터에 치우치지 않고 모든 데이터에 대한 결과이므로 신빙성이 높음.
- 2. 별도로 검증 데이터를 분리하지 않아도 됨.

# 2.5 k-폴드 교차 검증



k-폴드 검증의 작동 원리