DS 4 : Chimie & Thermodynamique des systèmes ouvert & Transferts thermiques Éléments de correction

N°	Elts de rép.	Pts	Note
00-00	Titre de l'exo	0	0
0	éléments de réponse	0	0

01-07	Chimie		
01-03	Structure du soufre		
1	électron de cœur : $1s^22s^22p^6$ électron de valence : $3s^23p^4$	1	
2	n=3 donc 3ieme période, 6 électrons de valence donc colonne VI	1	
	ou $6+10 = 16$		
	L'oxygène O qui a 6 électron de valence. O est plus électronégatif		
	car au dessus.		
3	$no(S_2) = 0, no(H_2S) = -II, no(SO_2) = +IV$	1	
04-07	Thermochimie de la silice		
4	La condensation est une réaction de changement d'état de l'état	1	
	gaz à l'état solide. La transformation inverse est la sublimation.		
5	L'état initial pour définir une enthalpie standard de formation est	1	
	un corps dans l'état standard de référence. Or l'élément O est déjà		
	dans son état standard de référence, et Si est thermodynamique-		
	ment le plus stable à 298 K sous forme solide.		
6	La variation d'une fonction d'état ne dépend que des états initial	1	
	et final. Sur un cycle, l'état final est le même que l'état initial :		
	donc la variation d'une fonction d'état est nulle.		
7	$\operatorname{SiO}_2(g) \xrightarrow{\Delta_{cond} H^{\circ}(SiO_2)} \operatorname{SiO}_2(s)$	1	
	et		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
	$SiO_2(s)$		
	d'où $\Delta_{cond}H^{\circ}(SiO_2) = \Delta H_1^{\circ} + \Delta H_f^{\circ}(Si) - \Delta_{sub}H^{\circ}(Si)$		
	on en déduit $\Delta_{cond}H^{\circ}(SiO_2) = -216 \text{ kJ.mol}^{-1} < 0$. Cette réac-		
	tion est effectivement exothermique.		

08-23	Climatisation		
08-13	Principe		
8	Le fluide R134a reçoit de la source froide un transfert thermique	1	
	$Q_F > 0$		
	Le fluide R134a reçoit de la source chaude un transfert thermique		
	$Q_C < 0$		
	Le fluide R134a reçoit du compresseur un travail $W>0$		
	L'air pulsé peut être identifié à la source froide (on souffle de l'air		
	froid dans l'habitacle)		
9	Dans le condenseur le fluide R134a va se liquéfier. En se liquéfiant,	1	
	en se liquéfiant il va céder de l'énergie $Q < 0$ or $Q_c < 0$ donc le		
	condenseur est au contact de la source chaude et est traversé par		
	le fluide R134a. Il permet le transfert thermique du fluide R134a		
10	vers la source chaude.	1	
10	Dans l'évaporateur le fluide R134a va s'évaporer. En se vaporisant	1	
	le fluide reçoit de l'énergie donc $Q > 0$ or $Q_F > 0$ donc l'évapora-		
	teur est au contact de la source froide et est traversé par le fluide		
	R134a. Il permet le transfert thermique de la source froide vers le fluide R134a.		
11	Dans le compresseur, la transformation idéale subie par le fluide	1	
11	est adiabatique et réversible. En effet un compresseur apporte un	1	
	travail au fluide pour faire varier sa pression mais ne le réchauffe		
	pas. S'il fonctionne de manière idéale sans frottement par exemple		
	il peut fonctionner en sens inverse et donner une turbine. La trans-		
	formation est donc isentropique.		
	Si le fluide est un gaz parfait qui subit une transformation isentro-		
	pique, alors il suit les lois de Laplace $pV^{\gamma}=$ cte qui donne pour		
	la température $p^{1-\gamma}T^{\gamma} = \text{cte}$		
12	Dans le détendeur la transformation est aussi adiabatique, on	1	
	n'échange pas de transfert thermique car on est pas en contact		
	avec une source chaude ou froide. Si elle était idéale, elle serait		
	aussi réversible.		
13	L'évaporateur est au contact de la source froide et reçoit de l'éner-	1	
	gie. La source froide est l'air et l'eau de l'habitacle qui va pouvoir		
	de liquéfier en cédant de l'énergie pour former des gouttes d'eau		
44.00	ou se condenser pour former du givre.		
14-23	Etude du DIAGRAMME log(P), h (ANNEXE 1)		
14	identifier les zones L, L+G, et G. Pour un gaz parfait on a	1	
	$\Delta h = c_p \Delta T$, donc une isotherme d'équation $\Delta T = 0$ est aussi		
	une isenthalpe d'équation $\Delta h = 0$ qui est verticale. Si on est dans		
	le domaine gaz, à faible pression et loin de la courbe de rosée, on		
	remarque que les isothermes sont verticales.		

15	Le cycle est parcouru dans le sens trigonométrique, on peut prendre par exemple la réaction à basse pression au contact de la source froide, où $Q_F > 0$ donc h augmente.	1
16	De 1 à 2, compresseur et isentropique De 2 à 3, condenseur et isobare De 3 à 4, détendeur et isenthalpe De 4 à 1, évaporateur et isobare	1
17	Le compresseur suit une transformation isentropique, donc on a un compresseur calorifugé (adiabatique) et réversible (pas de frot- tement)	1
18	on écrit le 1er principe industriel $\Delta h + \Delta e_m = w_u + q$ or adiabatique et sans variation d'énergie mécanique donc $w_u = \Delta h = h_2 - h_1 = 34 \text{ kJ.kg}^{-1} > 0$ ce qui est normal car le fluide reçoit un travail.	
19	on écrit le 1er principe industriel avec pas de variation d'énergie mécanique et pas de travail utile dans l'évaporateur donc $\Delta h = q$ donc $q_F = h_1 - h_4 = 132 \text{ kJ.kg}^{-1} > 0$ ce qui est normal car le fluide prend de l'énergie à l'air de l'habitacle.	1
20	efficacité est $e = \frac{q_F}{w_u} = 3,9$, il peut être plus grand que 1 car il ne s'agit pas d'une conversion d'énergie mais on utilise le travail du compresseur pour orienter le transfert thermique de la source froide vers la source chaude.	1
21	Pour un climatiseur idéal on applique le 1er et 2nd principe sur un cycle : $\Delta U = Q_c + Q_F + W = 0$ et $\Delta S = \frac{Q_c}{T_c} + \frac{Q_F}{T_F} + 0 = 0$ avec $S_c = 0$ car réversible. Donc $e = \frac{Q_F}{W} = -\frac{Q_F}{Q_c + Q_F} = -\frac{1}{\frac{Q_c}{Q_F} + 1} = -\frac{1}{\frac{T_c}{T_F} + 1} = \frac{1}{\frac{T_c}{T_F} - 1} = 4,3$ On a bien une valeur plus grande dans le cas réversible. Le cycle réalisé en annexe 1 n'est pas idéal à cause de la transformation dans le détendeur qui est irréversible, elle suit une isenthalpe différente d'une isentrope.	1

22	Si l'évolution dans le compresseur est irréversible mais toujours	1	
	adiabatique, alors $\Delta s = s_c > 0$ donc le point 2 est déplacé vers la		
	droite, il faut fournie plus de travail w_u .		
23	La puissance fournit par le compresseur est $P_{comp} = D_m w_u = 5, 1$	1	
	kW et le moteur fournit une puissance de $P_{mot} = 30$ kW donc la		
	surconsommation est de $\frac{P_{comp}}{P_{mot}} = 0.17$		

Conditionnement d'air d'une voiture		
Loi empirique de Fourier : $\vec{j}_{th} = -\lambda \overline{\text{grad}} T$ avec la densité de courant thermique \vec{j}_{th} qui s'exprime en W.m ⁻² , le gradient de tem-	1	
pérature grad T qui s'exprime en $K.m^{-1}$ et donc la conductivité thermique λ qui s'exprime en $W.K^{-1}.m^{-1}$.		
On est dans le cas à 1D en coordonnée cartésienne avec $T(x,y,z,t)=T(z,t)$, on est en régime permanent donc $T(z,t)=T(z)$. On effectue un bilan sur un élément de volume mésoscopique entre z et $z+dz$ de volume sdz qui donne $dH(t+dt)-dH(t)=\Phi(z)dt-$	1	
$\Phi(z+dz)dt \text{ donc } \rho s dz (h(t+dt)-h(t)) = -(\Phi(z+dz)-\Phi(z))$ $\text{donc } \rho s \frac{\partial h}{\partial t} = -\frac{\partial \Phi}{\partial z} \text{ donc } \frac{\partial \Phi}{\partial z} = -\rho s c \frac{\partial T}{\partial t} = 0 \text{ donc } \Phi(z) = \Phi =$ cte $\Phi = \iint j_{th}(z) dx dy = j_{th} s = -\lambda s \frac{\partial T}{\partial z} \text{ donc } \frac{\partial T}{\partial z} = -\frac{\Phi}{\lambda s} = \text{cte},$ or les conditions aux limites sont T_{ext} en $z = 0$ et T_{int} en $z = e$		
donc en intégrant la relation précédente entre 0 et e on obtient $T_{int} - T_{ext} = -\frac{e\Phi}{\lambda s}$ d'où $\Delta T = \frac{e}{\lambda s}\Phi$ et $R_{th} = \frac{e}{\lambda s}$		
Association en série si elles sont traversées par le même flux Φ l'un après l'autre : donc 2 couches superposées, on a alors $R=R_1+R_2$ Association en parallèle de 2 si elles ont les mêmes températures aux limites : donc 2 couches côte à côte, on a alors $\frac{1}{R}=\frac{1}{R_1}+\frac{1}{R_2}$ $R_1=\frac{e_1}{\lambda_1 l L},\ R_2=\frac{e_1}{\lambda_1 2 (H-d)(l+L)},\ R_3=\frac{e_2}{\lambda_2 2 d(l+L)}$ faire un schéma de 4 résistances en parallèles $R_1//R_2//R_3//R_1$	1	
$R_1 = \frac{e_1}{\lambda_1 lL}, R_2 = \frac{e_1}{\lambda_1 2(H-d)(l+L)}, R_3 = \frac{e_2}{\lambda_2 2d(l+L)}$	1	
faire un schéma de 4 résistances en parallèles $R_1//R_2//R_3//R_1$ on a donc $R_v = \frac{1}{2/R_1 + 1/R_2 + 1/R_3}$	1	
on a donc $R_v = \frac{1}{2/R_1 + 1/R_2 + 1/R_3}$ $R_v = \frac{1}{14 + 12 + 3450} = 2,9.10^{-4} \text{ K.W}^{-1}$ et $R_3 = \frac{e_2}{\lambda_2 2d(l+L)} = 2,9.10^{-4} \text{ K.W}^{-1}$ La quasi-totalité du flux thermique est perdu par la voiture via les vitres.	1	

Loi de Newton $j.\vec{n} = h(T - T_o)$ avec \vec{n} le vecteur normal à l'inter-	1	
face solide/fluide orienté du solide vers le fluide, T_o la température		
du fluide.		
$\Phi = js = hs\Delta T$ donc $R = \frac{1}{hS}$. On doit ajouter en série de R_v		
une résistance R avant et après pour les interfaces air/solide à		
l'intérieur et à l'extérieur de la voiture.		
On veut que la température intérieure soit constante donc on est	1	
en régime permanent donc $\Delta T = R_{tot} \Phi_{tot}$ donc $\Phi_{tot} = G \Delta T$ donc		
$np + P_1 = G(T_{int} - T_{ext}) \text{ donc } P_1 = G(T_{int} - T_{ext}) - np$		
en été $P_1 = -1800 \text{ W} < 0 \text{ c'est une climatisation}$	1	
en hiver $P_1 = 4200 \text{ W} > 0$ c'est un chauffage		
pas besoin de conditionnement supplémentaire si $P_1 = 0$ donc		
$0 = G(T_{int} - T_{ext}) - np$ d'où $T_{ext} = T_{int} - \frac{np}{G} = 291 \text{ K} = 18 ^{\circ}\text{C}$		