|Chapter 28 Magnetic Fields

Introduction to Magnetic Poles

- Magnetic poles: Every magnet has a north and a south pole.
- Interactions:
 - Like poles (e.g., north-north or south-south) repel.
 - Unlike poles (e.g., north-south) attract.

Magnetic Field Concepts

- Magnetic field (B): A vector quantity whose direction is defined from the north to the south pole outside a magnet.
- Magnetic field lines:
 - Show the direction of the field.
 - Can be traced using a compass.

Magnetic Force on a Moving Charge

- Force F_B on a charge in a magnetic field:
 - A charge q moving with velocity v in a magnetic field B experiences a force:

$$F_B = q \cdot (v imes B)$$

Magnitude of the force:

$$F_B = q \cdot v \cdot B \cdot \sin \theta$$

• The force is maximum when $\theta=90^\circ$ and zero when $\theta=0^\circ$ or 180° .

Right-Hand Rule for Magnetic Force

- Procedure:
 - $\bullet \quad \hbox{Point fingers in the direction of } v. \\$
 - Curl fingers towards B.
 - The thumb points in the direction of $F_{\cal B}$ for a positive charge.

Tesla (T)

From magnetic force F_B on a charge q moving with velocity v in a magnetic field B SI Unit for Magnetic Field : Gauss (G)

 $\bullet \ \ 1 \, Tesla = 10^4 \, Gauss$

Effects of Magnetic Force

- Charged particle motion:
 - If v is perpendicular to B, the particle moves in a circular path.
 - The radius r of the path is given by:

$$r = \frac{m^{\alpha}}{aE}$$

• The angular speed ω :

$$\omega = \frac{qB}{m}$$

Comparison with Electric Fields

- Differences:
 - The electric field acts on a charge regardless of its motion.
 - ullet The magnetic force only acts when the charge is moving and is perpendicular to both v and B.

Cyclotron Principles

- Cyclotron: A device used to accelerate charged particles using a magnetic field.
- Exit speed:

$$v = \frac{qBR}{m}$$

• Kinetic energy:

$$KE = rac{1}{2}mv^2 = rac{q^2B^2R^2}{2m}$$

Hall Effect

- Phenomenon
 - When a current-carrying conductor is placed in a magnetic field, a voltage is generated perpendicular to the current and field direction.
- Equation:

$$E_H = v_d \cdot B$$

 v_d : drift velocity of charge carrier

Applications of Magnetic Fields

- Mass spectrometer:
 - Separates ions by their mass-to-charge ratio.
 - Equation for the radius of the path:

$$r = \frac{mv}{aB}$$