第1关 基本测试

根据 S-AES 算法编写和调试程序,提供 GUI 解密支持用户交互。输入可以是 16bit 的数据和 16bit 的密钥,输出是 16bit 的密文。

1. 加密操作验证

输入一个明文 P: 1100100101000111

密钥 K: 0010110101010101 得到密文 C: 1010011001111101

2. 解密操作验证

输入第一步中加密得到的密文 P:1010011001111101

密钥 K:0010110101010101

得到与第一步相同的明文 P:1100100101000111

		:	×
	S-AES 加解密		
	で 二进制 で 字符		
明文(or密文):	1010011001111101		
密钥:	0010110101010101		
輸出: 11	00100101000111		
	加密解密		

第2关:交叉测试

考虑到是"算法标准",所有人在编写程序的时候需要使用相同算法流程和转换单元(替换盒、列混淆矩阵等),以保证算法和程序在异构的系统或平台上都可以正常运行。

设有 A 和 B 两组位同学(选择相同的密钥 K);则 A、B 组同学编写的程序对明文 P 进行加密得到相同的密文 C;或者 B 组同学接收到 A 组程序加密的密文 C,使用 B 组程序进行解密可得到与 A 相同的 P。

1. 我方加密结果

明文 P: 1100100101000111 密钥 K: 0010110101010101 得到密文 C: 1010011001111101

S-AES加解密		_		×
请输入明文与密	· :钥获取密文,或输入密文与密钥获取明文			
明文	1100100101000111			
密文	1010011001111101			
密钥	0010110101010101			
加密结果: 1010	0011001111101,已复制在密文框中, KEY1=0010110101010101, KEY2=无, KEY3=无			
)双重加密	图 💿 原始	泇密
		解密	מל	密

2. 对方加密结果

明文 P: 1100100101000111 密钥 K: 0010110101010101

得到同样密文 C: 1010011001111101

3. 我方解密结果

密文 C: 1010011001111101 密钥 K: 001011010101010

得到明文 P: 1100100101000111

4. 对方解密结果

密文 C: 1010011001111101 密钥 K: 0010110101010101

得到同样明文 P: 1100100101000111

第3关:扩展功能

考虑到向实用性扩展,加密算法的数据输入可以是 ASII 编码字符串(分组为 2 Bytes),对应地输出也可以是 ACII 字符串(很可能是乱码)。

1. 加密验证

输入字符串 P: HelloWorld 密钥 K: 0010110101010101 得到密文 C:é VÍÇoíL¶È

2. 解密验证

输入字符串 C: HelloWorld 密钥 K: 0010110101010101 得到明文 P:éVÍÇoíL¶È

第4关:多重加密

4.1 双重加密

将 S-AES 算法通过双重加密进行扩展,分组长度仍然是 16 bits,但密钥长度为 32 bits。

1.

输入明文 1010011100111011

分密钥 1 和密钥 2,输入 32bits 密钥 0011100111001010 0100111001011010 执行双重加密结果为 10001011111110000

4.2 中间相遇攻击

假设你找到了使用相同密钥的明、密文对(一个或多个),请尝试使用中间相遇攻击的方法找到正确的密钥 Key (K1+K2)。

因为攻击算法太复杂,所以只生成一种可能存在的密钥 Key

当输入一个明、密文对时:

已知明文: 0110111101101001

已知密文: 1101111011010110

攻击结果: '000000000000000', '0001111110010111'

当输入两个明、密文对时:

已知明文: 0110111101101001, 1101111011010011

已知密文: 1101101001010000, 110111101101100 攻击结果: '000000000000000', '0000010101101100'

4.3 三重加密

将 S-AES 算法通过三重加密进行扩展,按照 32 bits 密钥 Key (K1+K2)的模式进行三重加密解密

明文: 0110111101101001

密钥: 1101101001010000 0000010101101100

三重加密结果: 11010111111001000

第5关:工作模式

基于 S-AES 算法,使用密码分组链(CBC)模式对较长的明文消息进行加密。注意初始向量(16 bits)的生成,并需要加解密双方共享。

在 CBC 模式下进行加密,并尝试对密文分组进行替换或修改,然后进行解密,请对比篡改密文前后的解密结果。

1、CBC 加密

输入明文: 011011110110101111010011101001001

密钥: 1010011100111011

初始向量(IV): 1010101010101010

点击"加密"按钮

加密后的密文为: 01011100011000010111000011101010

		_	×
明文:	01101111011010111010011101001001		
密钥:	1010011100111011		
初始向量:	1010101010101010		
	加密		
密文:	01011100011000010111000011101010		
解密结果:	011011110110101111010011101001001		
	密码分组链模式加密解密成功		
复改位置 (0-based) :			
新分组 (16位):			
	篡改密文		
复改后密文:			
复改后解密结果:			

2、篡改密文

在"篡改位置"输入框中输入要篡改的密文分组的位置(从0 开始)。例如,输入 0 表示篡改第一个分组。

在"新分组"输入框中输入新的 16 位二进制分组。例如,输入 1111000011110000。 点击"篡改密文"按钮

篡改后的密文: 11110000111100000111000011101010

Ø S-AES CBC 加密解密工具		_		×
明文:	01101111011010111010011101001001			
密钥:	1010011100111011			
初始向量:	1010101010101010			
	加密			
密文:	11110000111100000111000011101010			
解密结果:	01101111011010111010011101001001			
密码分组链模式加密解密成功				
篡改位置 (0-based) :	0			
新分组 (16位):	1111000011110000			
	篡改密文			
篡改后密文:	11110000111100000111000011101010			
篡改后解密结果:	00110000110110100000101111011000			

对比篡改密文前后的解密结果

篡改前解密结果: 01101111011011110100111101001001 篡改后解密结果: 00110000110110100000101111011000