Announcements

- Please log on Canvas before class
- Project 0: Python Tutorial
 - Due next Monday
 - Don't wait for last moment!
- * HW 1 will also be released on next Monday
- Project 1 will also be released on next Wednesday
- Survey for deciding OHs and Recitation times
 - Respond by the end of the week
 - * OH and Recitation start next week
- Survey for flipped classroom

Ve492: Introduction to Artificial Intelligence

Agents and Environments

Paul Weng

UM-SJTU Joint Institute

Slides adapted from http://ai.berkeley.edu, AIMA

Outline

- * Agents and Environments
- * PEAS (Performance measure, environment, actuators,

sensors)

- Environment types
- Agent types
- * Complexity

Agents and Environments

What is an Agent?

- * Agents: humans, robots, software, cars...
- * Mathematical view:
 - * Function from percept or percept sequence to action
- * CS view:
 - Program that takes a percept as an input and returns an action

Example: Vacuum Cleaner

- * What are the percepts?
 - * Readings from sensors
 - * Location
 - * Dirt detection
 - Obstacle detection
- What are the actions?
 - * Move, brush, vacuum

Example: Adaptive Video Player

Huysegems et al. 2015

- * What are the percepts?
 - Network conditions
- * What are the actions
 - Request of the most suited quality version of the next video chunks

Example: Autonomous Trader

- * What are the percepts?
 - Financial prices
 - Economic data
 - * News
- * What are the actions?
 - * Buy/sell/hold stocks

Recommender Systems

- * What are the percepts?
 - User's search query
 - User's previous interactions (clicks, page views, purchases...)
 - * User's information
- What are the actions?
 - * Product lists

How to Select Actions?

- * What is the right function from intercepts to actions?
 - * Performance measure for environment sequence
 - * 1pt per m^2 cleaned in time T
 - * 1pt per m^2 cleaned / time step
 - * -1pt per dirty m^2

Can it be implemented as a small/efficient program?

Rationality

- * Being rational = maximizing "expected utility"
- * What is rational depends on:
 - * Agent's prior knowledge of environment
 - Current percept sequence
 - Actions available to agent
 - * Performance measure

Rational Agents

- Are rational agents omniscient?
 - No they are limited by the available percepts and limited prior knowledge
- * Are rational agents clairvoyant?
 - * No they may lack knowledge of the environment dynamics
- * Do rational agents explore and learn?
 - * Yes in unknown environments these are essential
- * So rational agents are not necessarily successful, but they are autonomous

PEAS

- * To design a rational agent, we must specify the task environment
- * Consider, e.g., the task of designing an automated taxi:
- * Performance measure
 - * Safety, destination, profits, legality, comfort, ...
- * Environment
 - Streets/highway, traffic, pedestrians, weather...
- * Actuators
 - Steering, brake, accelerate, display/speaker...
- * Sensors
 - * Camera, radar, accelerometer, engine sensors, microphone...

PEAS for Recommender System

* Performance measure

* CTR (Click-Through-Rate), profits, happy customer...

* Environment

- Users, products
- * Actuators
 - * Product lists
- * Sensors
 - Database accesses, APIs

Environment Types

	Mahjong solitaire	Mahjong	Recommender system	Taxi	Real world
Fully or partially observable					
Single agent or multi-agent					
Deterministic or stochastic					
Static or dynamic					
Discrete or continuous					
Episodic or sequential					

Different Types of Agents

Simple Reflex Agents

Model-based Reflex Agents

Goal-based Agents

Utility-based Agents

Learning Agents

Overview of Complexity Theory

- Measure of difficulty wrt size of problem instance
- Problem vs algorithm complexity
- Space vs computational vs sample complexity
 - * $O(1) \subset O(\log(n)) \subset O(\sqrt{n}) \subset O(n)$
 - * $O(n \log(n)) \subset O(n^{1+\alpha}) \subset O(2^n) \subset O(n!)$
 - * 2¹⁰⁰ on machine 1e9 op/sec requires 4e13 years

Important Complexity Classes

- Class = set of problems; Problem = set of instance of problem
- * P: problems that can be solved in polynomial time $O(n^k)$
 - * Shortest path problem, linear programming, matching
- * NP: problems where if solutions can be verified in polynomial time
 - Traveling salesman problem, Boolean satisfiability problem

Million Dollar Question: P=NP?

- * NP-hard = as hard as NP
- * NP-complete = hardest problems in NP

Some Other Complexity Classes

- PSPACE: problems that can be solved using polynomial amount of space
- * EXPTIME: problems that can be solved in exponential time $O(2^{p(n)})$

For More Information

- * AIMA, Chapter 2 for Intelligent Agents
- * AIMA, Chapter A.1 for Complexity