Solutions to Flow Network Practice Problems

Practice problems:

1. [DPV] Problem 7.10 (max-flow = min-cut example)

Here is a max flow in the given flow network:

flow,capacity

The residual network G^f is the following:

Looking at the residual network G^f , the set L of vertices reachable from s in G^f is $L = \{s, c, f\}$. This set L has capacity 13 = 6 + 1 + 2 + 4. Note the capacity of the cut is determined by the original capacities, it does not depend on the flow. The capacity of this st-cut matches the size of the flow f and hence f is a max-flow and L defines a min-st-cut. Here is an illustration of this min-st-cut:

2. [DPV] Problem 7.17 (bottleneck edges)

Parts (a) and (b):

Here is the max flow in the given flow network:

Here is the residual graph G^f for the above flow:

In G^f the set of vertices reachable from s is $\{s, a, b\}$ and the set of vertices that can reach t is $\{c, t\}$. This gives the following min-st-cut:

Notice that the set $\{s, a, b\}$ has capacity 11 = 4 + 2 + 2 + 3 which matches the size of the above flow.

Part (c):

An edge \overrightarrow{uv} in the original flow network G is a bottleneck edge if increasing its capacity results in an increase in the size of the maximum flow.

There are two bottleneck edges in the above network, they are the edges \overrightarrow{ac} and \overrightarrow{bc} .

Part (d):

Here is an example of a flow network with 4 vertices and no bottleneck edges:

Alternatively, in the flow network from question 7.17, if the capacity of the edge \overrightarrow{ct} was reduced from 9 to 6 then there will be no bottleneck edges in this flow network.

Part (e):

(a) Algorithm:

Our algorithm for finding bottleneck edges is as follows:

- (1) Find a maximum flow f on G.
- (2) Using f^* , create the residual graph G^f
- (3) Run Explore from s in G^f . Let S be the set of vertices reachable from s in G^f .
- (4) Create the reverse of G^f , G^r
- (5) Run Explore from t in the reverse graph G^r . Let T be the set of vertices reachable from t in G^r ; note the set T are those vertices which can reach t in G^f .
- (6) For each $\overrightarrow{vw} \in E(G)$, output \overrightarrow{vw} as a bottleneck edge if $v \in S$ and $w \in T$.

(b) Correctness:

We start by finding a maximum flow f for the flow network G. Consider an edge \overrightarrow{vw} in the flow network G. Increasing the capacity of \overrightarrow{vw} results in an increase in maximum flow value if and only if there exists a path from s to v and a path from w to t in G^f . This is because if there exists these two paths then more flow can be sent from s to v, then along the edge \overrightarrow{vw} , and finally from v to t.

Note that this algorithm looks for a path $s \to v$ and $w \to t$. What if these two paths share one or more edges? Then, the joined path will have one or more cycles. So, we can drop that cycle (or cycles) and get a shorter path from $s \to t$, but will this path still go through (v, w)? If one of the cycles contains edge e = (v, w), then we have an augmenting path in G^f not using e, which would mean f is not a max flow. Hence, e cannot be in any of the cycles, so our algorithm works.

(c) Run time Analysis:

Since steps 2 through 6 each take O(n+m) time, the running time is dominated by the running time of the maximum flow algorithm used in step 1 (either O(mC) for Ford-Fulkerson or $O(m^2n)$ for Edmonds-Karp)

4. [DPV] Problem 7.19 (verifying max-flow)

Given a flow network G = (V, E) and a flow f, we need to verify if f is a **valid max-flow** in linear time.

(a) Algorithm:

First, we check whether f is valid. That is,

- we check if flow f violates edge capacities, i.e., $0 \le f_e \le c_e$ for all $e \in E$. W
- we check if flow f is conserved, i.e., for any node $u \in V \setminus \{s, t\}$,

$$\sum_{(w,u)\in E} f_{wu} = \sum_{(u,z)\in E} f_{uz}.$$

Next, if f is valid (otherwise we return false), we check if f is a maximum flow. To verify that f is of maximum size, we construct the residual graph G^f . We then run Explore from s on G^f to check if there is a path from s to t. If t is reachable from s then there is an augmenting path and hence f is not of maximum size. On the other hand if t is not reachable from s in G^f then we know that f is of maximum size.

(b) Correctness:

We know that f is a maximum flow if and only if there is no augmenting path from s to t in the residual graph.

(c) Run time Analysis:

Validating the flow takes O(n+m) to check edge capacities and if flow is conserved. A single round of Explore on the flow network is also O(n+m), thus the algorithm runs in linear time.