

Part 3: Beams in Bending Introduction and Shape Functions

FEEG3001/SESM6047 FEA in Solid Mechanics Prof A S Dickinson

From 22nd October 2024

Reminder of linear interpolation functions for rods in axial tension and compression:

- Why use Shape Functions?
 - A continuum has an infinite number of Degrees of Freedom
 - FEA:
 - describes the mechanics of problems approximately,
 - using an equivalent description that has finite DoF, and
 - describes the displacement field in between using a pre-determined shape function.
- Shape Functions should provide continuity between adjoining elements...

- Similar to what we saw for rods, but displacements w(x) are perpendicular to the element's axis
- What parameters give it its bending properties?
 - E, Young's modulus
 - I, Second moment of area

Euler-Bernoulli hypothesis assumptions:

- Cross sections do not change during bending
- Cross section remains perpendicular to the neutral axis during bending

• Without deriving it, we define that the strain energy stored in the bent beam is given by:

$$U = \frac{1}{2} \int_{0}^{L} EI(w(x)'')^{2} dx$$

• where $(\cdot)' = \frac{d}{dx}(\cdot)$

Recalling FEEG1002:

```
EAu'' = longitudinal loading (rods, tens/comp)
EIw'''' = transverse loading (beams)
```

- the axial rod differential equation has a second derivative of deformation
- the beam bending differential equation has a 4th derivative of deformation
- How do we handle this without solving the differential equation?
- We use a shape or interpolation function again;
- We cannot use linear interpolation we need 'cubic' interpolation (i.e. the order of the D.E. minus 1).

- We require continuity of deformation from one element to the next, and continuity
 of 1st derivative of deformation. Beams: transverse deflection and slope
- If we use cubic interpolation for transverse deflection:
 - $M(x) = EI \frac{d^2w(x)}{dx^2}$ can capture linearly varying bending moment within an element
 - Since $\sigma = \frac{My}{I}$ this means we can capture linearly varying stress within an element
 - $V(x) = EI \frac{d^3w(x)}{dx^3}$ can capture constant shear force within an element
- Though deflection and slope must be continuous from element to element, bending moments and shear force are not. This allows us to apply concentrated moments and forces on nodes.
- FEA is popular because it 'weakens' the restriction on continuity of our interpolation functions (interpolation order is order of the differential equation -1)

- Now we will define four cubic interpolation functions in the x=0 to L domain, defined by their value and their slope.
- These are called the 'Hermite cubics':

	Left Node	Right Node
Value	1	0
Slope	0	0

	Left Node	Right Node
Value	0	0
Slope	1	0

	Left Node	Right Node
Value	0	1
Slope	0	0

	Left Node	Right Node
Value	0	0
Slope	0	1

$$f_1(x) = 1 - 3\frac{x^2}{L^2} + 2\frac{x^3}{L^3}$$
 $f_2(x) = x - 2\frac{x^2}{L} + \frac{x^3}{L^2}$ $f_3(x) = 3\frac{x^2}{L^2} - 2\frac{x^3}{L^3}$ $f_4(x) = -\frac{x^2}{L} + \frac{x^3}{L^2}$

$$f_2(x) = x - 2\frac{x^2}{L} + \frac{x^3}{L^2}$$

$$f_3(x) = 3\frac{x^2}{L^2} - 2\frac{x^3}{L^3}$$

$$f_4(x) = -\frac{x^2}{L} + \frac{x^3}{L^2}$$

The Hermite Cubics

 and we make our approximation by saying the displacement anywhere in the element is approximated as:

$$w(x) = f_1(x)q_1 + f_2(x)q_2 + f_3(x)q_3 + f_4(x)q_4$$

• where $f_i(x)$ are the four shape functions or interpolation functions, each having the form:

$$f_i(x) = a_i + b_i x + c_i x^2 + d_i x^3$$

- We also now have four q_i values to find...
- We won't solve it 4 times, and you won't need to remember them, but you should now understand how, based on the axial rod.

$$f_2(x) = x - 2\frac{x^2}{L} + \frac{x^3}{L^2}$$

$$f_3(x) = 3\frac{x^2}{L^2} - 2\frac{x^3}{L^3}$$

$$f_4(x) = -\frac{x^2}{L} + \frac{x^3}{L^2}$$

$$w(x) = f_1(x)q_1 + f_2(x)q_2 + f_3(x)q_3 + f_4(x)q_4$$

What can we say about the values of deflection at each end?

$$w(0) = f_1(0)q_1 + f_2(0)q_2 + f_3(0)q_3 + f_4(0)q_4 = q_1$$

$$w(L) = f_1(L)q_1 + f_2(L)q_2 + f_3(L)q_3 + f_4(L)q_4 = q_3$$

so these are meaningful results! End deflections: generalised coordinates

$$f_2(x) = x - 2\frac{x^2}{L} + \frac{x^3}{L^2}$$

$$f_3(x) = 3\frac{x^2}{L^2} - 2\frac{x^3}{L^3}$$

$$f_4(x) = -\frac{x^2}{L} + \frac{x^3}{L^2}$$

$$w(x) = f_1(x)q_1 + f_2(x)q_2 + f_3(x)q_3 + f_4(x)q_4$$

What can we say about the values of rotation at each end?

$$w'(0) = f_1'(0)q_1 + f_2'(0)q_2 + f_3'(0)q_3 + f_4'(0)q_4 = q_2$$

$$w'(L) = f_1'(L)q_1 + f_2'(L)q_2 + f_3'(L)q_3 + f_4'(L)q_4 = q_4$$

also meaningful results! End slopes/rotations: generalised coordinates.

 because with small deformations, rotations and slopes are equivalent

$$w' = \frac{dw}{dx} = \tan \theta$$
 and for small $\theta \approx \sin \theta \approx \tan \theta$

• recall we don't know what w(x) is, but if we make the elements small enough (refined enough mesh), we can approximate throughout the element using the end deflections and slopes.

Recap:

- These are the shape functions for the 'Euler-Bernoulli Beam'
- This neglects transverse shear but often gives adequate predictions of beam deflection and stress with appropriate length: thickness ratios
- Next we will derive and start assembling beam element Stiffness Matrices!

Part 3: Beams in Bending Stiffness Matrix

FEEG3001/SESM6047 FEA in Solid Mechanics Prof A S Dickinson

From 25th October 2024

$$U = \frac{1}{2} \int_0^L EI\left(\frac{d^2w}{dx^2}\right)^2 dx = \frac{1}{2} \int_0^L EIw''(x)^2 dx$$

$$w(x) = f_1(x)q_1 + f_2(x)q_2 + f_3(x)q_3 + f_4(x)q_4$$

we need

$$w''(x) = f_1''(x)q_1 + f_2''(x)q_2 + f_3''(x)q_3 + f_4''(x)q_4$$

- Notice dimensional analysis might not seem to work here.
- q_1 and q_3 are displacements and q_2 and q_4 are slopes
- but we are working in matrix space, with whatever functions we like; cubics are convenient.

- Since each shape function is a cubic, linear function of x, what can we say about w(x)?
- And if we know this about w(x), what about w''(x)?
- It means we can substitute w''(x) into our elastic strain energy expression:

$$U = \frac{1}{2} \int_{0}^{L} EI(w(x)'')^{2} dx$$

$$U = \frac{1}{2} \int_0^L EI[f_1''(x)q_1 + f_2''(x)q_2 + f_3''(x)q_3 + f_4''(x)q_4]^2 dx$$

$$W(x)$$

$$= dx$$

$$E, I$$

$$U = \frac{1}{2} \int_0^L EI[f_1''(x)q_1 + f_2''(x)q_2 + f_3''(x)q_3 + f_4''(x)q_4]^2 dx$$

expand out the square for a quadratic with 10 terms in q_i ...

$$U = \frac{1}{2}EI \int_0^L \left[f_1''^2(x)q_1^2 + f_2''^2(x)q_2^2 + \dots + 2f_1''(x)q_1f_2''(x)q_2 + \dots \right] dx$$
• so our integration result will arrive in a form something like:

$$U = \frac{1}{2}EI \left[(\cdot)q_1^2 + (\cdot)q_2^2 + \dots + 2(\cdot)q_1q_2 + \dots \right]$$

- There will be 10 integrals. Why?
- We won't go through the full process of these 10 integrals.. but you could! Instead we will just organise it in general:

$$U = \frac{1}{2} EI \int_0^L \left[f_1^{"2}(x) q_1^2 + f_2^{"2}(x) q_2^2 + \dots + 2 f_1^{"}(x) q_1 f_2^{"}(x) q_2 + \dots \right] dx$$

$$U = \frac{1}{2} EI \left[(\cdot) q_1^2 + (\cdot) q_2^2 + \dots + 2 (\cdot) q_1 q_2 + \dots \right]$$

Organising:

How to complete it?

$$U = \frac{1}{2} \begin{cases} q_1 \\ q_2 \\ q_3 \\ q_4 \end{cases}^T EI \begin{bmatrix} \int f_1''^2(x) dx & \int f_1''(x) f_2''(x) dx \\ \int f_1''(x) f_2''(x) dx & \int f_2''^2(x) dx \\ \int f_3''^2(x) dx & \int f_4''^2(x) dx \end{bmatrix} \begin{cases} q_1 \\ q_2 \\ q_3 \\ q_4 \end{cases}$$

$$\begin{cases} q_2 \\ q_3 \\ q_4 \end{cases}$$

$$f_4^{\prime\prime 2}(x)dx$$

Beam Bending Element Stiffness Matrix!

$$U = \frac{1}{2} \begin{cases} q_1 \\ q_2 \\ q_3 \\ q_4 \end{cases} EI \begin{bmatrix} q_1 \\ q_2 \\ q_3 \\ q_4 \end{bmatrix}$$

$$K = \begin{pmatrix} EI \\ \overline{L^3} \end{pmatrix} \begin{bmatrix} 12 & 6L & -12 & 6L \\ 6L & 4L^2 & -6L & 2L^2 \\ -12 & -6L & 12 & -6L \\ 6L & 2L^2 & -6L & 4L^2 \end{bmatrix}$$

Beam Bending Element Stiffness Matrix!

$$\begin{array}{c|c} x \\ \hline & w(x) \\ \hline & -dx \\ \hline \end{array}$$

$$U = {}^{1}/_{2} \{q\}_{4 \times 4}^{T} [K]_{4 \times 4} \{q\}_{4 \times 4}^{T}$$

where

$$[K]_{4\times4} = (EI) \int_0^L f_i'' f_j''(x) dx, i = 1..4, j = 1..4$$

and because it is in quadratic form, this is equivalent to saying

$$U = \frac{1}{2} \sum_{j=1}^{4} \sum_{i=1}^{4} K_{ij} q_i q_j$$

which hopefully you recognise from the 2×2 system for axial rods in tension and compression!

- Now let's try a more complicated example a stepped beam
- You could use differential equations, it would be painful – two different 4th order differential equations. So we use FEM to approximate it
- We calculate the strain energy for each element, locally

- Now let's try a more complicated example a stepped beam
- You could use differential equations, it would be painful – two different 4th order differential equations. So we use FEM to approximate it
- We calculate the strain energy for each element, locally
- Recall we build our model forgetting the fixed end:
 6 d.o.f.
- So how big is our stiffness matrix? And how do we obtain it?

For next time:

- 1. State the elemental and global stiffness matrices
- 2. State the global force vector
- 3. Apply boundary conditions, and
- 4. State the reduced governing equation of equilibrium

Part 3: Beams in Bending: Assembling and Solving Problems

FEEG3001/SESM6047 FEA in Solid Mechanics Prof A S Dickinson

From 29th October 2024

Solving this Problem:

- 1. State the elemental and global stiffness matrices
- 2. State the global force vector
- 3. Apply boundary conditions, and
- 4. State the reduced governing equation of equilibrium

 Recall our Element Stiffness Matrix (which you do not need to remember):

$$U_1 = \frac{1}{2} \begin{Bmatrix} q_1 \\ \vdots \\ q_4 \end{Bmatrix}^T \begin{bmatrix} q_1 \\ \vdots \\ q_4 \end{bmatrix}$$

$$K_{1} = \begin{pmatrix} E_{1}I_{1} \\ L_{1}^{3} \end{pmatrix} \begin{bmatrix} 12 & 6L_{1} & -12 & 6L_{1} \\ 6L_{1} & 4L_{1}^{2} & -6L_{1} & 2L_{1}^{2} \\ -12 & -6L_{1} & 12 & -6L_{1} \\ 6L_{1} & 2L_{1}^{2} & -6L_{1} & 4L_{1}^{2} \end{bmatrix} \qquad K_{2} = \begin{pmatrix} E_{1}I_{1} \\ E_{1}I_{1} \\ E_{2}I_{1} \\ E_{3}I_{1} \\ E_{4}I_{1} \\ E_{5}I_{1} \\$$

$$U_2 = \frac{1}{2} \begin{Bmatrix} q_3 \\ \vdots \\ q_6 \end{Bmatrix}^T \begin{bmatrix} q_3 \\ \vdots \\ q_6 \end{bmatrix}$$

$$K_{2} = \left(\frac{E_{2}I_{2}}{L_{2}^{3}}\right) \begin{bmatrix} 12 & 6L_{2} & -12 & 6L_{2} \\ 6L_{2} & 4L_{2}^{2} & -6L_{2} & 2L_{2}^{2} \\ -12 & -6L_{2} & 12 & -6L_{2} \\ 6L_{2} & 2L_{2}^{2} & -6L_{2} & 4L_{2}^{2} \end{bmatrix}$$

$$U_{1} = \frac{1}{2} \begin{cases} q_{1} \\ q_{2} \\ q_{3} \\ q_{4} \end{cases} \begin{bmatrix} q_{1} \\ q_{2} \\ q_{3} \\ q_{4} \end{bmatrix}$$

$$U_2 = \frac{1}{2} \begin{cases} q_3 \\ q_4 \\ q_5 \\ q_6 \end{cases}^T \begin{bmatrix} q_3 \\ q_4 \\ q_5 \\ q_6 \end{bmatrix}$$

Assemble our global stiffness matrix and apply PMTPE:

$$U = \frac{1}{2} \begin{Bmatrix} q_1 \\ \vdots \\ q_6 \end{Bmatrix}^T \begin{bmatrix} 6 \times 6 \end{bmatrix} \begin{Bmatrix} q_1 \\ \vdots \\ q_6 \end{Bmatrix}$$

Assemble our global stiffness matrix and apply PMTPE:

$$U = \frac{1}{2} \begin{Bmatrix} q_1 \\ \vdots \\ q_6 \end{Bmatrix}^T \begin{bmatrix} 6 \times 6 \end{bmatrix} \begin{Bmatrix} q_1 \\ \vdots \\ q_6 \end{Bmatrix}$$

Assemble our global stiffness matrix and apply PMTPE:

$$U = \frac{1}{2} \begin{Bmatrix} q_1 \\ \vdots \\ q_6 \end{Bmatrix}^T \begin{bmatrix} 6 \times 6 \end{bmatrix} \begin{Bmatrix} q_1 \\ \vdots \\ q_6 \end{Bmatrix}$$

Boundary conditions because:

$$q_1 = 0 \text{ and } q_2 = 0$$

Our reduced stiffness matrix is now:

- and now we can solve for q_{3-6} . You could invert and multiply, but in practice some Gaussian elimination, upper triangulate and back substitute.
- And then return to Global Equation find R and M reactions if you need them.

- Now a challenge: What is the approximate displacement at the middle of the second element?
- ... without creating a new node (which costs time)

- Now a challenge: What is the approximate displacement at the middle of the second element?
- ... without creating a new node (which costs time)
- We have all the qs, nodal deformations
- We use the combined interpolation function:

$$w^{E2}(x) = f_1(x)q_3 + f_2(x)q_4 + f_3(x)q_5 + f_4(x)q_6$$

$$w^{E2}\left(x = \frac{L_2}{2}\right) = f_1\left(\frac{L_2}{2}\right)q_3 + f_2\left(\frac{L_2}{2}\right)q_4 + f_3\left(\frac{L_2}{2}\right)q_5 + f_4\left(\frac{L_2}{2}\right)q_6$$

• We could solve this, because we defined f_i and we found q_i

