

Digital-Analog-Wandler DAC 32.

Der Hybridschaltkreis DAC 32 ist ein universeller 10-bzw. 12-Bit-Digital-Analog-Wandler mit interner Referenz und internem Ausgangsverstärker. Der Wandlerschaltkreis wird mit binärer Eingangslogik für die verschiedenen Anforderungen in Genauigkeitsklassen bereitgestellt und ist eingangsseitig low aktiv und TTL low power kompatibel. Durch eine entsprechende Pin-Beschaltung kann entweder der Stromoder der Spannungsausgang genutzt werden. Der Ausgangsbereich kann positiv (CB) oder positiv und negativ (COB) gewählt werden.

Durch ein spezielles System geregelter Stromquellen, werden die Linearitätsparameter im gesamten Temperaturbereich gesichert $(0\cdots70\,^{\circ}\text{C})$.

Bauform D 24/22.5-9 nach TGL 29948/04 Hermetisches Metall-Glas-Gehäuse

Maße in mm

Тур		Erzeugnisnummer		
DAC 32	CB 12	45 87 .8- 17 71.31		
DAC 32	COB 12	45 87 .8- 17 7 2 .31		
DAC 32	CB 10	45 87 .8- 17 7 3 .31		
DAC 32	COB 10	45 87 .8- 17 7 4 .31		

Die fettgedruckten Ziffern ergeben das Typkurzzeichen.

Bestellbeispiel für DAC 32 CB 12:

Hybridschaltkreis 87171 - TGL 39932 (in Vorbereitung)

Elektrische Kennwerte

Kenngröße	Symbol	min.	typ.	max.	Einheit		
Digitaler Eingang Auflösung H-Eingang L-Eingang H-Eingangsstrom L-Eingangsstrom (bei U _{IL} = 0 V)		2 0		12 15 0,8 1	Bit V V μΑ		
Genauigkeit	_l _{[L}			100	μΑ		
(bei 23 °C ± 2 K) Linearitätsfehler diff. Linearitäts-			-	±1/2	LSB		
fehler Gain-Fehler¹)²) Offset-Fehler¹)²)				±½ ±15 ±15	LSB mV mV		
Drift (0···70 °C)							
Gesamtdrift unipolar bipolar Offsetdrift Linearitätsdrift			±0,0025 ±0,0025 ±0,0003 ± ¹ / ₄		% FS/K % FS/K % FS/K LSB		
Umsetzzeit	100401	F.C					
Settling time auf Spannungsausga Stromausgang Slew-Rate) F3	25 2 0,5		μs μs V/μs		
Analoge Ausgänge (s. Tabelle) Kurzschlußverhalten wie MAA 741							
Interne Referenzspo Zusatzbelastung de		nz	10 1		V mA		
Betriebsspannung	+U _{S1} -U _{S2}	14,25 14,25	15 15	15,75 15,75	V V		
Betriebsspannungs abhängigkeit		1.,20	0,002	10,70	% FS/		
		•	0,002		% U _{S1} % FS/ % −U _{S2}		
Stromaufnahme	1 _{S1} ; 1 _{S2}		35	45	% −0 _{S2} mA		
Betriebstemperatur bereich	- Ta	0		70	°C		

- 1) Ausgangsspannungsbereich 10 V (±5 V)
- ²) Abgleich mit externem Potentiometer

DDR obsellië medori Albudinen lykerjedre bigely Straffe./9 Robber 2 Sketerof o 100 Marko 582466 Rolegramme korvelia litermyko (Klaric

hobsinisti eyis)W. epampey) etiy zebiniduost kib dennediginindis

Deligener Edmorratischen Hepublik LDDR: ±1026 Berlin, Alexanderplatz 6: Heus der Elgkrondosme steleton: 2180

Abgleichvorschrift

- Der Abgleich des Nullpunktes erfolgt durch eine additive Korrektur mittels Offset-Regler bei der Eingangsbelegung "aus" (alle digitalen Eingänge = high) auf den Kleinstwert der analogen Ausgangsspannung.
- Der Abgleich des Endwertes (FS) erfolgt durch eine multiplikative Korrektur mittels Gain-Regler bei der Eingangsbelegung "ein" (alle digitalen Eingänge

 i low) auf den Größtwert der analogen Ausgangsspannung. Für 10-Bit-Typen gelten die Klammerausdrücke. Bit 11 und 12 auf U_{IH}

er er er er

Betriebsart	Ausgangsspannung U _o /V	Ausgangsstrom an R _L = 0 I _o /mA	Brücke
СВ	0···+9,9976 (9,9902) 0···+4,9988 (4,9951) 0···+2,4994 (2,4976)	0···-2	1-2; 4-5 1-3; 4-5 1-3; 2-4-5 1-4
СОВ	-10 ···+9,9952 (9,9805) - 5 ···+4,9976 (4,9902) - 2,5 ···+2,4988 (2,4951) - 1,25···+1,2494 (1,2476)	-1···+1	4-5-6*) 1-2; 4-5-6 1-3; 4-5-6 1-3; 2-4-5-6 1-4; 5-6

*) Zwischen 1 und 2 R = 5 KOhm z. B. KWH-Einzelwiderstand 4512.8-7943.31 (5 KOhm, ±0,1 %, TK 25)

Abbildungen und Werte gelten nur bedingt als Unterlagen für Bestellungen. Rechtsverbindlich ist jeweils die Auftragsbestätigung. Änderungen vorbehalten.