Análise Sintática

Sandro Rigo sandro@ic.unicamp.br

- Análise Léxica:
 - Quebra a entrada em palavras conhecidas como tokens
- Análise Sintática:
 - Analisa a estrutura de frases do programa
- Análise Semântica:
 - Calcula o "significado" do programa

Analisador Sintático (Parser)

- Recebe uma seqüência de tokens do analisador léxico e determina se a string pode ser gerada através da gramática da linguagem fonte.
- É esperado que ele reporte os erros de uma maneira inteligível
- Deve se recuperar de erros comuns, continuando a processar a entrada

- ERs são boas para definir a estrutura léxica de maneira declarativa
- Não são "poderosas" o suficiente para conseguir definir declarativamente a estrutura sintática de linguagens de programação

Exemplo de ER usando abreviações:

- digits = [0-9]+
- sum = (digits "+")* digits
- definem somas da forma 28+301+9

Como isso é implementado?

- O analisador léxico substitui as abreviações antes de traduzir para um autômato finito
- sum = ([0-9]+ "+") * [0-9]+

- É possível usar a mesma idéia para definir uma linguagem para expressões que tenham parênteses balanceados?
 - (1+(245+2))
- Tentativa:
 - digits = [0-9]+
 - sum = expr "+" expr
 - expr = "(" sum ")" | digits

- O analisador léxico substituiria sum em expr:
 - expr = "(" expr "+" expr ")" | digits
- Depois substituiria expr no próprio expr:
 - expr = "(" ("(" expr "+" expr ")" | digits) "+" expr ")" | digits
- Continua tendo expr's do lado direito!

- Não é possível pois a linguagem de parênteses balanceados (L) não é regular
- Idéia da prova:
 - Teorema do bombeamento para LR:

Seja L uma LR. Então existe inteiro $p \ge 1$, dependendo de L, tal que toda string w in L de tamanho $\ge p$ pode ser escrita como w = xyz, satisfazendo:

- $\bullet |y| \ge 1$
- $|xy| \le p$
- •for all $i \ge 0$, $xy^iz \in L$

- A prova pode ser feita por contradição
 - Assuma que L seja regular
 - Mostre que uma string que está em L não satisfaz o teorema
 - Para nosso caso, escolha uma string com um no. maior que p de "(" no início.

MC910: Construção de Compiladores http://www.ic.unicamp.br/~sandro

- As abreviações não acrescentam a ERs o poder de expressar recursão.
- É isso que precisamos para expressar a recursão mútua entre sum e expr
- E também para expressar a sintaxe de linguagens de programação

$$expr = ab(c|d)e$$

$$aux = c \mid d$$

$$expr = a b aux e$$

 Descreve uma linguagem através de um conjunto de produções da forma:

symbol -> symbol symbol ... symbol

onde existem zero ou mais símbolos no lado direito.

- Produções funcionam como regras de substituição
- •Símbolos:
 - terminais: pertencem ao alfabeto da linguagem
 - não-terminais: aparecem do lado esquerdo de alguma produção (variáveis)

Símbolos:

- nenhum terminal aparece do lado esquerdo de uma produção
- existe um n\u00e4o-terminal definido como start symbol
 - Normalmente é o da primeira regra

1.
$$A \rightarrow 0A1$$

- 2. $A \rightarrow B$
- $3. B \rightarrow \#$
- Gerar cadeias da linguagem:
 - Escreva a variável inicial.
 - 2. Encontre uma variável escrita e uma regra para essa variável. Substitua essa variável pelo lado direito da regra.
 - Repita 2 até não restar variáveis

- A sequência de substituições é chamada de derivação
- Ex:
 - 000#111
 - $A \rightarrow 0A1 \rightarrow 00A11 \rightarrow ...$
- Linguagem: O conjunto de todas as cadeias que podem ser geradas dessa maneira

MC910: Construção de Compiladores http://www.ic.unicamp.br/~sandro

Hierarquia de Chomsky

Grammar	Languages	Automaton	Production rules (constraints)
Type-0	Recursively enumerable	Turing machine	$\alpha \rightarrow \beta$ (no restrictions)
Type-1	<u>Context-sensitive</u>	Linear-bounded non-deterministic Turing machine	$\alpha A\beta \rightarrow \alpha \gamma \beta$
Type-2	Context-free	Non- deterministic <u>push</u> down automaton	$A{ ightarrow}\gamma$
Type-3	Regular	Finite state automaton	$A \rightarrow a$ and $A \rightarrow aB$

A e B non-terminals e $\alpha\beta\gamma$ strings of terminals and non-terminals, γ non empty

Hierarquia de Chomsky

- 2. NOUN-PHRASE → CMPLX-NOUN | CMPLX-NOUN PREP-PHRASE 3. VERB-PHRASE → CMPLX-VERB | CMPLX-VERB PREP-PHRASE 4. PREP-PHRASE → PREP CMPLX-NOUN 5. CMPLX-NOUN → ARTICLE NOUN
- 6. $CMPLX-VERB \rightarrow VERB \mid VERB \mid NOUN-PHRASE$

1. SENTENCE \rightarrow NOUN-PHRASE VERB-PHRASE

- 7. $ARTICLE \rightarrow a \mid the$
- 8. $NOUN \rightarrow \text{boy} \mid \text{girl} \mid \text{flower}$
- 9. $VERB \rightarrow touches | likes | sees$
- 10. $PREP \longrightarrow with$
- Como é a derivação para:
 - a boy sees

$$1.S \rightarrow S$$
; S
 $2.S \rightarrow \text{id} = E$
 $3.S \rightarrow \text{print } (L)$
 $4.E \rightarrow \text{id}$
 $5.E \rightarrow \text{num}$

$$6.E \rightarrow E + E$$

$$7.E \rightarrow (S, E)$$

$$8.L \rightarrow E$$

$$9.L \rightarrow L$$

Possível código fonte:

$$a : = 7;$$

$$b : = c + (d : = 5 + 6, d)$$

Derivações

$$a := 7; b := c + (d := 5 + 6, d)$$

- <u>S</u>
- S; S
- S; id := E
- id := \underline{E} ; id := E
- id := num ; id := *E*
- id := num ; id := *E* + *E*
- id := num ; id := \underline{E} + (S, E)
- id := num ; id := id + (<u>S</u>, <u>E</u>)
- id := num ; id := id + (id := <u>E</u>, <u>E</u>)
- id := num ; id := id + (id := *E* + *E*, *E*)
- id := num ; id := id + (id := <u>E</u> + E, id)
- id := num ; id := id + (id := num + <u>E</u>, id)
- id := num ; id := id + (id := num + num, id)

Derivações

- left-most: o não terminal mais a esquerda é sempre o expandido;
- right-most: idem para o mais a direita.
- Qual é o caso do exemplo anterior?

Parse Trees

- Constrói-se uma árvore conectando-se cada símbolo em uma derivação ao qual ele foi derivado
- Duas derivações diferentes podem levar a uma mesma parse tree

Parse Trees

$$a := 7; b := c + (d := 5 + 6, d)$$

Gramáticas Ambíguas

 Podem derivar uma sentença com duas parse trees diferentes

- id := id+id+id

É Ambigua?

- 1. SENTENCE \rightarrow NOUN-PHRASE VERB-PHRASE
- 2. NOUN-PHRASE → CMPLX-NOUN | CMPLX-NOUN PREP-PHRASE
- 3. VERB- $PHRASE \rightarrow CMPLX$ - $VERB \mid CMPLX$ - $VERB \mid PREP$ -PHRASE
- 4. $PREP-PHRASE \rightarrow PREP CMPLX-NOUN$
- 5. CMPLX- $NOUN \rightarrow ARTICLE NOUN$
- 6. $CMPLX-VERB \rightarrow VERB \mid VERB \mid NOUN-PHRASE$
- 7. ARTICLE \rightarrow a | the
- 8. NOUN \rightarrow boy | girl | flower
- 9. $VERB \rightarrow touches | likes | sees$
- 10. $PREP \longrightarrow with$
- Analise a sentença
 - the girl touches the boy with the flower

É Ambigua?

$$E \rightarrow id$$

$$E \rightarrow \text{num}$$

$$E \rightarrow E * E$$

$$E \rightarrow E/E$$

$$E \rightarrow E + E$$

$$E \rightarrow E - E$$

$$E \rightarrow (E)$$

Construa Parse Trees para as seguintes expressões:

$$1+2*3$$

Exemplo: 1-2-3

Ambígua!

$$(1-2)-3 = -4 e 1 - (2-3) = 2$$

Exemplo: 1+2*3

Ambígua!

$$(1+2)*3 = 9 e 1+(2*3) = 7$$

Gramáticas Ambiguas

Gera uma mesma cadeia com duas árvores sintáticas diferentes

 E não duas derivações diferentes! Pois podem apresentar a mesma estrutura

Podemos formalizar assim:

- Gramáticas ambíguas geram alguma cadeia ambiguamente
- Uma cadeia é gerada ambiguamente se possui duas ou mais derivações mais à esquerda diferentes.

Gramáticas Ambíguas

- Os compiladores usam as parse trees para extrair o significado das expressões
- A ambiguidade se torna um problema
- Podemos, geralmente, mudar a gramática de maneira a retirar a ambigüidade

Gramáticas Ambíguas

Alterando o exemplo anterior:

- Queremos colocar uma precedência maior para * em relação ou + e -
- Também queremos que cada operador seja associativo à esquerda:
 - (1-2)-3 e não 1-(2-3)
- Conseguimos isso introduzindo novos não-terminais

Gramática para Expressões

$$E \rightarrow E + T$$
 $T \rightarrow T^* F$ $F \rightarrow id$
 $E \rightarrow E - T$ $T \rightarrow T/F$ $F \rightarrow num$
 $E \rightarrow T$ $T \rightarrow F$ $F \rightarrow (E)$

Construa as derivações e Parse Trees para as seguintes expressões:

$$1+2*3$$

Gramática para Expressões

$$E \rightarrow E + T$$
 $T \rightarrow T^* F$ $F \rightarrow id$
 $E \rightarrow E - T$ $T \rightarrow T / F$ $F \rightarrow num$
 $E \rightarrow T$ $T \rightarrow F$ $F \rightarrow (E)$

Essa gramática pode gerar as árvores abaixo?

Gramáticas Ambíguas

- Geralmente podemos trasformar uma gramática para retirar a ambigüidade
- Algumas linguagens não possuem gramáticas não ambíguas
- Mas elas não seriam apropriadas como linguagens de programação

MC910: Construção de Compiladores http://www.ic.unicamp.br/~sandro

Fim de Arquivo

$$S \rightarrow E$$
\$

$$E \rightarrow E + T$$

$$E \rightarrow E - T$$

$$E \rightarrow T$$

$$T \rightarrow T^* F$$

$$T \rightarrow T/F$$

$$T \rightarrow F$$

$$F \rightarrow id$$

$$F \rightarrow \text{num}$$

$$F \rightarrow (E)$$

Criar um novo não terminal como símbolo inicial

Parsing

- CFG geram as linguagens
- Parsers são reconhecedores das linguagens
- Para qualquer CFG é possível obter um parser que roda em O(n³)
 - Algoritmos de Early[70] e CYK (Cocke-Younger-Kasami)[65,66]

MC910: Construção de Compiladores http://www.ic.unicamp.br/~sandro

 O(n³) é muito lento para programas grandes

Parsing

- Existem classes de gramáticas para as quais podemos construir parsers que rodam em tempo linear
- Exemplo:
 - LL: left-to-right, left-most derivation
 - LR: left-to-right, right-most derivation

- Também chamados de recursivedescent ou top-down
- É um algoritmo simples, capaz de fazer o parsing de gramáticas LL
- Cada produção se torna uma cláusula em uma função recursiva
- Temos uma função para cada nãoterminal

$$E \rightarrow +EE$$

 $E \rightarrow *EE$
 $E \rightarrow a|b$

- Expressões pré-fixas
- Considere a cadeia +b*ab
- Como é sua derivação mais à esquerda?

- Análise descendente produz uma derivação à esquerda
- Precisa determinar a produção a ser usada para expandir o não-terminal corrente

MC910: Construção de Compiladores

http://www.ic.unicamp.br/~sandro

 Vejamos um exemplo de implementação

MC910: Construção de Compiladores http://www.ic.unicamp.br/~sandro

 $S \rightarrow if E then S else S$

 $S \rightarrow begin S L$

 $S \rightarrow print E$

 $L \rightarrow end$

 $L \rightarrow ; SL$

 $E \rightarrow num = num$

Como seria um parser para essa gramática?


```
final int IF=1, THEN=2, ELSE=3, BEGIN=4, END=5, PRINT=6,
  SEMI=7, NUM=8, EQ=9;
int tok = getToken();
void advance() {tok=getToken();}
void eat(int t) {if (tok==t) advance(); else error();}
void S() {
  switch(tok) {
  case IF: eat(IF); E(); eat(THEN); S(); eat(ELSE); S();
  break;
  case BEGIN: eat(BEGIN); S(); L(); break;
  case PRINT: eat(PRINT); E(); break;
  default: error(); }}
void L() {
  switch(tok) { case END: eat(END); break;
   case SEMI: eat(SEMI); S(); L(); break;
   default: error(); }}
 void E() { eat(NUM); eat(EO); eat(NUM); }
```

$$S \rightarrow E$$
\$

$$E \rightarrow E + T$$

$$E \rightarrow E - T$$

$$E \rightarrow T$$

$$T \rightarrow T^* F$$

$$T \rightarrow T/F$$

$$T \rightarrow F$$

$$F \rightarrow id$$

$$F \rightarrow \text{num}$$

$$F \rightarrow (E)$$

Vamos aplicar a mesma técnica para essa outra gramática ...

- Como decidir entre E+T e E na função que implementa o não-terminal E?
 - Tanto E como T podem derivar cadeias começando com id, num ou (
 - E se você puder olhar um número k>1 de símbolos para frente na entrada?

- Como decidir entre E+T e E na função que implementa o não-terminal E?
 - Tanto E como T podem derivar cadeias começando com id, num ou (
 - E se você puder olhar um número k>1 de símbolos para frente na entrada?
 - Essas cadeias podem ter tamanho arbitrário
 - O problema permanece


```
void S() { E(); eat(EOF); }
void E() {switch (tok) {
   case ?: E(); eat(PLUS); T(); break;
   case ?: E(); eat(MINUS); T(); break;
   case ?: T(); break;
   default: error(); }}
void T() {switch (tok) {
   case ?: T(); eat(TIMES); F(); break;
   case ?: T(); eat(DIV); F(); break;
   case ?: F(); break;
   default: error(); }}
```

Funciona ???

Como seria a execução para 1*2-3+4? E para 1*2-3?

FIRST and FOLLOW sets

- Dada uma string γ de terminais e não terminais
 - FIRST(γ) é o conjunto de todos os terminais que podem iniciar uma string de terminais derivada de γ.
- Exemplo usando gramática anterior
 - $\gamma = T*F$
 - FIRST(γ) = {id ,num, (}

Predictive Parsing

- Se uma gramática tem produções da forma:
 - -X -> y1
 - $-X \rightarrow \gamma 2$
 - Caso os conjuntos FIRST(γ1) e FIRST(γ2) tenham intersecção, então a gramática não pode ser analisada com um predictive parser
- Por que?
 - A função recursiva não vai saber que caso executar

Calculando FIRST

• Como seria para $\gamma = X Y Z$?

•
$$Z \rightarrow d$$

•
$$Z \rightarrow X Y Z$$

$$\bullet \quad Y \rightarrow$$

•
$$Y \rightarrow C$$

•
$$X \rightarrow a$$

Podemos simplesmente fazer
 FIRST(XYZ) = FIRST(X)?

Resumindo

- Nullable(X) é verdadeiro se X pode derivar a string vazia
- FIRST(γ) é o conjunto de terminais que podem iniciar strings derivadas de γ
- FOLLOW(X) é o conjunto de terminais que podem imediatamente seguir X
 - − t ∈ FOLLOW(X) se existe alguma derivação contendo Xt
 - Cuidado com derivações da forma X Y Z t, onde Y e Z podem ser vazios

Definição FIRST, FOLLOW e nullable

Os menores conjuntos onde:

```
for each terminal symbol Z, FIRST[Z] = \{Z\}.
for each production X \to Y_1 Y_2 \cdots Y_k
    if Y_1 \dots Y_k are all nullable (or if k = 0)
      then nullable [X] = true
    for each i from 1 to k, each j from i + 1 to k
        if Y_1 \cdots Y_{i-1} are all nullable (or if i = 1)
          then FIRST[X] = FIRST[X] \cup FIRST[Y_i]
        if Y_{i+1} \cdots Y_k are all nullable (or if i = k)
          then FOLLOW[Y_i] = FOLLOW[Y_i] \cup FOLLOW[X]
        if Y_{i+1} \cdots Y_{j-1} are all nullable (or if i+1=j)
          then FOLLOW[Y_i] = FOLLOW[Y_i] \cup FIRST[Y_i]
```

Algoritmo FIRST, FOLLOW e nullable

Initialize FIRST and FOLLOW to all empty sets, and nullable to all false.

```
for each terminal symbol Z FIRST[Z] \leftarrow \{Z\}
repeat
  for each production X \rightarrow Y1 \ Y2 \dots Yk
    if Y1 ... Yk are all nullable (or if k = 0) then nullable[X] \leftarrow true
    for each i from 1 to k, each j from i + 1 to k
      if Y1 ... Yi-1 are all nullable (or if i = 1)
        then FIRST[X] \leftarrow FIRST[X] \cup FIRST[Yi]
      if Yi+1 \dots Yk are all nullable (or if i = k)
        then FOLLOW[Yi] ← FOLLOW[Yi] U FOLLOW[X]
      if Yi+1 \dots Yj-1 are all nullable (or if i+1=j)
        then FOLLOW[Yi] ← FOLLOW[Yi] U FIRST[Yi]
until FIRST, FOLLOW, and nullable did not change in this iteration.
```


Algoritmo FIRST, FOLLOW e nullable

- Algoritmo de iteração até um ponto fixo
- Os conjuntos poderiam ser computados de maneira separada
- Mesmo método usado para E-closure
- Aparece também no back-end, para dataflow analysis

Exemplo

•
$$Z \rightarrow d$$

•
$$Z \rightarrow X Y Z$$

$$\bullet$$
 $Y \rightarrow$

•
$$X \rightarrow a$$

nullable	FIRST	FOLLOW
no		
no		
no		

Exemplo

•
$$Z \rightarrow d$$

•
$$Z \rightarrow X Y Z$$

•
$$Y \rightarrow C$$

•
$$X \rightarrow a$$

	nullable	FIRST	FOLLOW
X	yes	аc	a c d
Y	yes	С	a c d
Z	no	a c d	

Generalizando para strings

- FIRST($X\gamma$) = FIRST[X], if not nullable[X]
- FIRST(Xγ) = FIRST[X] U FIRST(γ),
 if nullable[X]
- string γ é nullable se cada símbolo em γ é nullable

- Cada função relativa a um não-terminal precisa conter uma cláusula para cada produção
- Precisa saber escolher, baseado no próximo token, qual a produção apropriada
- Isto é feito através da predictive parsing table

MC910: Construção de Compiladores

http://www.ic.unicamp.br/~sandro

- Dada uma produção X → γ
- Para cada T ∈ FIRST(γ)
 - Coloque a produção $X \rightarrow \gamma$ na linha X, coluna T.
- Se γ é nullable:
 - Coloque a produção na linha X, coluna T para cada T E
 FOLLOW[X].

Exemplo

•
$$Z \rightarrow d$$
 • $Y \rightarrow C$ nullable FIRST FOLLOW
• $Z \rightarrow X \ Y Z$ • $X \rightarrow Y$ $X \ yes$ a c a c d
• $Y \rightarrow$ • $X \rightarrow a$ Z no a c d

Funciona ???

	a	c	d
X	$X \to a$ $X \to Y$	$X \to Y$	$X \to Y$
Y	$Y \rightarrow$	$\begin{array}{c} Y \to \\ Y \to c \end{array}$	$Y \rightarrow$
Z	$Z \to XYZ$	$Z \to XYZ$	$Z \to d$ $Z \to XYZ$

Não!! Por quê?

- A gramática é ambígua
- Note que algumas células da tabela do predictive parser têm mais de uma entrada!
- Isso sempre acontece com gramáticas ambíguas!

ZId

- Linguagens cujas tabelas não possuam entradas duplicadas são denominadas de LL(1)
 - Left to right parsing, leftmost derivation, 1symbol lookahead
- A definição de conjuntos FIRST pode ser generalizada para os primeiros k tokens de uma string
 - Gera uma tabela onde as linhas são os não-terminais e as colunas são todas as seqüências possíveis de k terminais

- Isso é raramente feito devido ao tamanho explosivo das tabelas geradas
- Gramáticas analisáveis com tabelas LL(k) são chamadas LL(k)
- Nenhuma gramática ambígua é LL(k) para nenhum k!

Recursão à Esquerda

Consigo gerar um parser LL(1) para essa gramática?

Problema:

- A função que implementa E precisa chamar a si mesma caso escolha E+T.
- Porém, é a primeira ação dela, antes de avançar na cadeia de entrada
- Laço infinito!
- Acontece devido à recursão à esquerda
 - $E \rightarrow E + T$
 - E → E T
 - T → T * F

Recursão à Esquerda

Gramáticas com recursão à esquerda não podem ser LL(1)

- $E \rightarrow TE'$
- *E'* → +*TE'*
- *E*′ →

Fatoração (recursão à direita)!

Recursão à Esquerda

Generalizando:

- Tendo X → Xγ e X → α, onde α não começa com X
- Derivamos strings da forma αγ*
 - α seguido de zero ou mais γ.
- Podemos reescrever:

$$\begin{pmatrix} X \to X \gamma_1 \\ X \to X \gamma_2 \\ X \to \alpha_1 \\ X \to \alpha_2 \end{pmatrix} \Longrightarrow \begin{pmatrix} X \to \alpha_1 X' \\ X \to \alpha_2 X' \\ X' \to \gamma_1 X' \\ X' \to \gamma_2 X' \\ X' \to \end{pmatrix}$$

Eliminando Recursão à Esquerda

•
$$S \rightarrow E$$
\$

•
$$T \rightarrow FT$$

•
$$F \rightarrow id$$

•
$$E \rightarrow TE'$$

•
$$E \rightarrow TE$$
 • $T \rightarrow^* FT$

•
$$F \rightarrow \text{num}$$

•
$$E \rightarrow + TE$$
 • $T \rightarrow / FT$

•
$$T \rightarrow / F T$$

•
$$F \rightarrow (E)$$

•
$$E \rightarrow TE$$
 • $T \rightarrow$

	nullable	FIRST	FOLLOW
S	no	(id num	
E	no	(id num) S
E'	yes	+ -) S
T	no	(id num)+-\$
T'	yes	* /)+-\$
\boldsymbol{F}	no	(id num) * / + - \$

Eliminando Recursão à Esquerda

•
$$S \rightarrow E$$
\$ • $T \rightarrow FT$ • $F \rightarrow id$
• $E \rightarrow TE'$ • $T \rightarrow^* FT$ • $F \rightarrow num$
• $E \rightarrow + TE'$ • $T \rightarrow / FT$ • $F \rightarrow (E)$

•
$$E \rightarrow TE$$
 • $T \rightarrow$

Fatoração à Esquerda

 Um outro problema para predictive parsing ocorre em situações do tipo:

$$S \rightarrow \text{if } E \text{ then } S \text{ else } S$$

 $S \rightarrow \text{if } E \text{ then } S$

MC910: Construção de Compiladores http://www.ic.unicamp.br/~sandro

 Regras do mesmo não terminal começam com os mesmo símbolos

Fatoração à Esquerda

 Criar um novo não-terminal para os finais permitidos:

$$S \rightarrow \text{if } E \text{ then } S X$$

 $X \rightarrow X \rightarrow E \text{ lse } S$

 Gramática ainda é ambígua, mas conflito pode ser resolvido escolhendo sempre a regra para else.

Recuperação de Erros

- Uma entrada em branco na tabela indica um caractere não esperado
- Parar o processo no primeiro erro encontrado não é desejável
- Duas alternativas:
 - Inserir símbolo:
 - Assume que encontrou o que esperava
 - Deletar símbolo(s):
 - Pula tokens até que um elemento do FOLLOW seja atingido.

Recuperação de Erros

```
void T() {
 switch (tok) {
   case ID:
   case NUM:
  case LPAREN: F(); Tprime(); break;
   default: print("expected id, num, or
 left-paren");
} }
```

MC910: Construção de Compiladores

http://www.ic.unicamp.br/~sandro

Recuperação de Erros

```
int Tprime follow [] = {PLUS, RPAREN, EOF};
void Tprime() {
 switch (tok) {
   case PLUS: break;
   case TIMES: eat(TIMES); F(); Tprime(); break;
   case RPAREN: break;
   case EOF: break;
   default: print("expected +, *, right-paren, or
  end-of-file");
   skipto(Tprime follow);
 } }
```

MC910: Construção de Compiladores http://www.ic.unicamp.br/~sandro