CHAPTER - 9 TRIANGLES

EXERCISE - 9.4

- 1. A point **E** is taken on the side **BC** of a parallelogram **ABCD.AE** and **DC** are produced to meet at **F**.Prove that ar (**ADF**) = ar (**ABFC**).
- 2. The diagonals of a parallelogram **ABCD** intersect at a point **O**. Through **O**, a line is drawn to intersect **AD** at **P** and **BC** at **Q**. Show that **PQ** divides the parallelogram into two parts of equal area.
- 3. The medians **BE** and **CF** of a triangle **ABC** intersect at **G**.Prove that the area of \triangle **GBC**= area of the quadrilateral **AFGE**.
- 4. In Fig.1,CD \parallel AE and CY \parallel BA.Prove that ar (CBX) = ar (AXY)

Figure 1

- 5. **ABCD** is a trapezium in which **AB** \parallel **DC**,**DC** = 30cm and **AB** = 50cm. If **X** and **Y** are,respectively the mid-points of **AD** and **BC**,prove that ar (**DCYX**) = $\frac{7}{9}$ ar (**XYBA**).
- 6. In $\triangle ABC$, if L and M are the points on AB and AC, respectively such that LM \parallel BC. Prove that ar (LOB) = ar (MOC).

7. In Fig.2, ABCDE is any pentagon. BP drawn parallel to AC meets DC produced at P and EQ drawn parallel to AD meets CD produced at Q. Prove that ar (ABCDE) = ar (APQ).

Figure 2

8. If the medians of a $\triangle \mathbf{ABC}$ intersect at \mathbf{G} , show that ar $(\mathbf{AGB}) = \text{ar } (\mathbf{AGC}) = \text{ar } (\mathbf{BGC}) = \frac{1}{3} \text{ ar } (\mathbf{ABC})$.

9. In Fig.3,X and Y are the mid-points of AC and AB respectively,QP \parallel BC and CYQ and BXP are straight lines.Prove that ar (ABP) = ar (ACQ).

Figure 3

10. In Fig.4,**ABCD** and **AEFD** are two parallelograms.Prove that ar $(\mathbf{PEA}) = \text{ar } (\mathbf{QFD})$ [Hint:Join PD].

Figure 4