





# همطراحی سختافزار نرمافزار

جلسه چهارم: توصیف سیستم-مدل

ارائهدهنده: آتنا عبدی a\_abdi@kntu.ac.ir

## مباحث این بخش



- توصیف یک سیستم (system specification)
  - مدلهای محاسباتی
    - معماريها
    - زبانهای توصیف



### توصيف سيستم





### توصيف سيستم



- در ابتدای فرایند طراحی لازم است سیستم، براساس الزامات آن توصیف شود
  - فرایند توصیف سیستم توسط مدلها، معماریها و زبانها انجام می گیرد
- توصیف سیستم به عنوان نخستین گام در متدولوژی طراحی توام، توسط مدل رفتاری
  - استفاده از این مدل به عنوان پایه در ادامه فرایند ساخت و بهینه سازی
  - لحاظ شدن تمامی الزامات و مشخصات سیستم مستقل از جزئیات پیادهسازی
    - عدم جهتگیری این مدل به سمت سختافزار یا نرمافزار
      - متفاوت بودن ذات پیادهسازی این دو بخش

# الزامات روشهای توصیف



- نمایش سلسلهمراتب
- سیستم با اجزای محدود و پیادهسازی سلسلهمراتب در هر جزء مطلوبتر است
  - نمایش رفتار و مشخصات زمانی سیستم
  - نمایش رفتار مبتنی بر حالت (در سیستمهای تعاملی)
    - نمایش مشخصات و جریان دادهای
    - واضح بودن و داشتن قابلیت پیادهسازی موثر

## مدل، معماری و زبان



- **مدل:** دید مفهومی از عملکرد سیستم
- در هر مرحله از طراحی، برحسب اطلاعات موجود انواع مختلفی دارد
- معماری: پیادهسازی توصیفات در یک فرایند بهبودیافته (دید مختصر از پیادهسازی)
  - فرایند طراحی از مدل شروع شده و به استخراج معماری ختم میشود



(Implementation)

# مدل، معماری و زبان



| زبان                                                                                                          | معماری                               | مدل       |
|---------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------|
| module Add_half(sum, a ,b); input a, b; output sum, reg sum, always@(a or b) begin sum = a + b; end endmodule | Adder  Register A  Refister A  Total | a b + sum |

# مدلهای محاسباتی (MOC)



- مدل، یک خط فکری طراح را نشان میدهد.
  - برای ایجاد مدل سیستم لازم است
- سیستم به صورت مجموعه ای از اجزا درنظر گرفته شود (Components)
- با اتصال این اجزا، الزامات کار کردی سیستم براورده شده و سیستم ایجاد می شود (Communication)
  - لازم است هر مدل
  - توصیف رسمی داشته باشد، کامل، قابل درک و قابل تغییر و بهبود باشد

# انواع مدلهای سیستم سختافزار/نرمافزار



- مدلهای مبتنی بر حالت
- Petri Nets 'Finite State Machines
  - مدلهای مبتنی بر فعالیت
  - Flow Chart Data Flow Graph
    - مدلهای مبتنی بر ساختار
    - Gate netlist 'Block Diagram
      - مدلهای ناهمگن
- Queuing Model 'PSM 'CDFG 'UML •

## مدلهای مبتنی بر حالت



### ۱ - ماشین حالت محدود (FSM)، مناسبترین مدل برای توصیف سیستمهای کنترلی

- بدلیل نشان دادن رفتار زمانی این سیستمها و گذار بین حالات
  - متشکل از مجموعهای از حالات و گذار بین آنها
- در هر کلاک، ورودی بررسی شده و برحسب آن عملیات مناسب صورت می گیرد
  - قابل تعریف در دو مدل میلی و مدل مور
  - میلی: خروجی سیستم تابع ورودی و حالت فعلی
    - مور: خروجي تابع حالت فعلي

# ماشین حالت محدود (FSM)







### مثال: ماشین فروشنده (Vending Machine)

آدامس پس از پرداخت ۱۵ سنت به مشتری داده شود

سکههای قابل قبول: ۵ و ۱۰ سنتی

بقیه پول پس داده نمی شود

# ماشین حالت محدود (FSM)



### مثال: سیستم کنترلر آسانسور



# ماشین حالت محدود (FSM)



### • مزایا:

- مشخصات رفتاری سیستم در زمان را بهطور واضح نشان میدهد
  - مناسب در مدلسازی عملکرد سیستمهای کنترلی

### • معایب:

- پشتیبانی نکردن از سلسلهمراتب و همروندی در مدلسازی سیستمهای پیچیده
  - مقیاسپذیر نبودن و افزایش نمایی تعداد حالات

## مدلهای مبتنی بر حالت



### ۲- شبکههای Petri Nets):

- مدل مبتنی بر حالت، مناسب برای توصیف سیستمهای متشکل از وظایف مرتبط و همروند
- شبکههای Petri از مکان (Place)، گذار (Transition) و توکن (Token) تشکیل می شوند
  - توكنها داخل مكانها قرار دارند و با فعال شدن گذارها توليد يا مصرف ميشوند
  - برای فعال شدن گذار، هریک از ورودیهایش باید حداقل یک توکن داشته باشند



• با فعال شدن گذار، توكنها مصرف شده و به خروجي مي روند

# شبکههای Petri





• روال کار شبکه پتری:

• مثال:



# شبکههای Petri (ادامه)





## شبکههای Petri



### • مزایا:

- مناسب در مدلسازی و تحلیل سیستمهای همروند
- کوچک بودن مدل تولید شده با این روش و مناسب در کاربردهای بزرگ

### • معایب:

- عدم پشتیبانی و نمایش جنبههای زمانی دادهای اجزای سیستم
- قابل فهم نبودن مدل در کاربردهای پیچیده و دشواری دنبال کردن شرایط

# مباحثی که این جلسه آموختیم



- توصيف سيستم
- مدل، معماری و زبان
- انواع مدلهای محاسباتی
- مدلهای مبتنی بر حالت



## مباحث جلسه آینده



- ادامه فرآیند مدلسازی
- مدلهای مبتنی بر فعالیت
  - مدلهای ترکیبی
    - معماری

