

Recommender System

Dr. Rathachai Chawuthai

Department of Computer Engineering
Faculty of Engineering
King Mongkut's Institute of Technology Ladkrabang

Agenda

- Overview
- Evaluating Recommender Systems
- Collaborative Recommendation
- Content-based Recommendation
- Knowledge-based Recommendation
- Hybrid Recommender Approach

Data Analytics

- Four types of analytics capability (Gartner, 2014)
- (image) https://www.healthcatalyst.com/closed-loop-analytics-method-healthcare-data-insights

Overview

Recommender Systems

Recommender Systems: An Introduction

by Dietmar Jannach, Markus Zanker, Alexander Felfernig, Gerhard Friedrich

AVERAGE CUSTOMER RATING:

(Be the first to review)

🖒 Gefällt mir

Registrieren, um sehen zu können, was deinen Freunden gefällt.

FORMAT:

Hardcover

NOOKbook (eBook) - not available

Tell the publisher you want this in NOOKbook format

NEW FROM BN.COM

\$65.00 List Price

\$52.00 Online Price (You Save 20%)

Add to Cart

NEW & USED FROM OUF

New starting at \$56.46 (You S Used starting at \$51.98 (You S

See All Prices

Table of Contents

Customers who bought this also bought

Recommender Systems

Application areas

You may also like

ALTERNATIVE PRODUCTS

Beko Washing Machine Code: WMB81431LW

£269.99

Zanussi Washing Machine

Code: ZWH6130P

£269.99

Blomberg Washing Machine

Code: WNF6221

£299.99

Related hotels...

Hotel 41 London, England

Show Prices

Read Commented Recommended Germany Just Rejected The Idea That The European Bailout

There Is Almost No Gold In The

Fund Would Buy Spanish Debt

Olympic Gold Medal

You may also like

☆☆☆☆☆ (33)

MOST POPULAR

RECOMMENDED

How to Break NRA's Grip on Politics: Michael R.

Growth in U.S. Slows as Consumers Restrain Spending

In the Social Web

Even more ...

Personalized search

"Computational advertising"

Why using Recommender Systems?

Value for the customer

- Find things that are interesting
- Narrow down the set of choices
- Help me explore the space of options
- Discover new things
- Entertainment
- ...

Value for the provider

- Additional and probably unique personalized service for the customer
- Increase trust and customer loyalty
- Increase sales, click trough rates, conversion etc.
- Opportunities for promotion, persuasion
- Obtain more knowledge about customers
- **–** ...

Real-world check

Myths from industry

- Amazon.com generates X percent of their sales through the recommendation lists (30 < X < 70)
- Netflix (DVD rental and movie streaming) generates X percent of their sales through the recommendation lists (30 < X < 70)

There must be some value in it

- See recommendation of groups, jobs or people on LinkedIn
- Friend recommendation and ad personalization on Facebook
- Song recommendation at last.fm
- News recommendation at Forbes.com (plus 37% CTR)

Academia

- A few studies exist that show the effect
 - increased sales, changes in sales behavior

Recommender systems

RS seen as a function

Given:

- User model (e.g. ratings, preferences, demographics, situational context)
- Items (with or without description of item characteristics)

Find:

Relevance score. Used for ranking.

Finally:

Recommend items that are assumed to be relevant

But:

- Remember that relevance might be context-dependent
- Characteristics of the list itself might be important (diversity)

Recommender systems reduce information overload by estimating relevance

Recommender systems: basic techniques

	Pros	Cons
Collaborative	No knowledge-engineering effort, serendipity of results, learns market segments	Requires some form of rating feedback, cold start for new users and new items
Content-based	No community required, comparison between items possible	Content descriptions necessary, cold start for new users, no surprises
Knowledge-based	Deterministic recommendations, assured quality, no cold-start, can resemble sales dialogue	Knowledge engineering effort to bootstrap, basically static, does not react to short-term trends

Evaluating Recommender Systems

Recommender Systems in e-Commerce

- One Recommender Systems research question?
 - What should be in that list?

Customers Who Bought This Item Also Bought

Ref:

Recommender Systems Handbook Francesco Ricci Hardcover

\$167.73

Algorithms of the Intelligent Web Haralambos Marmanis

Paperback (14)

\$26.76

Programming Collective Intelligence: ...

> Toby Segaran

Paperback

\$25.20

Machine Learning: A Probabilistic ...

> Kevin P. Murphy

Hardcover (15)

\$81.00

Data Mining: Practical Machine Learning ...

> Ian H. Witten

*******(29)

Paperback \$42.61

Recommender Systems in e-Commerce

- Another question both in research and practice
 - How do we know that these are good recommendations?

Customers Who Bought This Item Also Bought

Ref:

Recommender Systems Handbook Francesco Ricci Hardcover \$167.73

Algorithms of the Intelligent Web Haralambos Marmanis

Paperback (14)

\$26.76

Programming Collective Intelligence: ...

> Toby Segaran

Paperback

\$25.20

Machine Learning: A Probabilistic ...

> Kevin P. Murphy

Hardcover (15)

\$81.00

Data Mining: Practical Machine Learning ...

> Ian H. Witten

****** (29)

Paperback \$42.61

Recommender Systems in e-Commerce

- This might lead to ...
 - What is a good recommendation?
 - What is a good recommendation strategy?
 - What is a good recommendation strategy for my business?

Customers Who Bought This Item Also Bought

Recommender Systems Handbook Francesco Ricci Hardcover \$167.73

Algorithms of the Intelligent Haralambos Marmanis *******(14) Paperback \$26.76

Programming Collective Intelligence: ... > Toby Segaran ***********(91) Paperback \$25.20

Machine Learning: A Probabilistic . > Kevin P. Murphy ******* (15) Hardcover

Data Mining: Practical Machine Learning > Ian H. Witten ******* (29) Paperback \$81.00 \$42.61

What is a good recommendation?

What are the measures in practice?

- Total sales numbers
- Promotion of certain items
- ...
- Click-through-rates
- Interactivity on platform
- ...

Ref:

- Customer return rates
- Customer satisfaction and loyalty

Mean Absolute Error

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \widehat{y}_i|$$

MAE (for rating)

Movie	Actual Rating (y_i)
А	4
В	3
С	
D	5
E	2
F	

(for rating)

Movie	Actual Rating (y_i)	Predicted Rating (\widehat{y}_i)
А	4	4
В	3	4
С		3
D	5	5
Е	2	3
F		2

Movie	Actual Rating (y_i)	Predicted Rating (\widehat{y}_i)	$ y_i - \widehat{y}_i $
А	4	4	0
В	3	4	1
С		3	
D	5	5	0
E	2	3	1
F		2	

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \widehat{y}_i|$$

(for rating)

Movie	Actual Rating (y_i)	Predicted Rating (\widehat{y}_i)	$ y_i - \widehat{y}_i $
А	4	4	0
В	3	4	1
С		3	
D	5	5	0
E	2	3	1
F		2	

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \widehat{y}_i|$$

$$\sum_{i=1}^n |y_i - \widehat{y}_i|$$

$$1+1 = 2$$

$$\frac{1}{n}\sum_{i=1}^{n}|y_i-\widehat{y}_i|$$

$$2/4 = 0.5$$

(for buying)

Product	is Bought (y_i)
А	1
В	1
С	0
D	1
E	1
F	0

Product	is Bought (y_i)	predicting Score (\widehat{y}_i)	$ y_i - \widehat{y}_i $
А	1	0.8	0.2
В	1	0.6	0.4
С	0	0.3	0.3
D	1	0.5	0.5
E	1	0.8	0.2
F	0	0.2	0.2

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \widehat{y}_i|$$

$$\sum_{i=1}^n |y_i - \widehat{y}_i|$$

$$\frac{1}{n}\sum_{i=1}^{n}|y_i-\hat{y}_i| \qquad 1.8/6 = 0.3$$

$$1.8/6 = 0.3$$

- Pickup *K* items from the recommended list
- Count how many actual items that users interact
 - If there are **N** items,

$$Top-KPrecision=\frac{N}{K}$$

rec(u,i)

Score
0.59
0.66
0.41
0.51
0.67
0.09
0.13
0.49
0.66
0.64
0.13
0.81
0.40
0.06

rec(u,i)

ltem	Score
А	0.59
В	0.66
С	0.41
D	0.51
Е	0.67
F	0.09
G	0.13
Н	0.49
I	0.66
J	0.64
K	0.13
L	0.81
М	0.40
N	0.06

Bought Item

- 🗲 Bought Item
- ← Bought Item

Bought Item

rec(u,i)

ltem	Score _
L	0.81
Е	0.67
I	0.66
В	0.66
J	0.64
А	0.59
D	0.51
Н	0.49
С	0.41
М	0.40
К	0.13
G	0.13
F	0.09
N	0.06

Bought Item

← Bought Item

rec(u,i)

ltem	Score _
L	0.81
Е	0.67
I	0.66
В	0.66
J	0.64
А	0.59
D	0.51
Н	0.49
С	0.41
М	0.40
K	0.13
G	0.13
F	0.09
N	0.06

ТОР

$$Top - 5 Precision = \frac{N}{K}$$

$$=\frac{3}{5}$$

What happened if

ltem	Score 🔻

7

Area Under ROC Curve (AUC)

Area Under ROC Curve for Recommender System

$$AUC = \frac{n' + 0.5n''}{n}$$

For *n* comparisons,

- n' is number of times when the tested items have higher score than the recommended items.
- n" is number of times when the tested items have same score as the recommended items.

AUC

rec(u,i)

Item	Score ▼
Е	0.8
С	0.7
В	0.6
А	0.6
D	0.5
F	0.3
G	0.2

- There are 5 recommended items
- Comparisons are
 - C compares to E, A, D, F and G (5 times)
 - B compares to E, A, D, F and G (5 times)
- There are 5+5 = 10 comparisons
- So, *n* = 10

AUC

rec(u,i)

Item	Score ▼
E	0.8
С	0.7
В	0.6
А	0.6
D	0.5
F	0.3
G	0.2

Focus on tested items

- C compares to E, A, and D
 - C > A, D, F, G

(4 times)

- B compares to E, A, and D
 - B = A

(1 time)

• B > D, F, G

(3 time)

- There are 4+3=7 times that tested items have higher score than recommended items,
 - so n' = 7
- There are 1 times that tested items have the same score as recommended items,

so
$$n'' = 1$$

AUC

rec(u,i)

Item	Score ▼
E	0.8
С	0.7
В	0.6
А	0.6
D	0.5
F	0.3
G	0.2

For *n* comparisons,

- *n'* is number of times when the tested items have higher score than the recommended items.
- n'' is number of times when the tested items have same score as the recommended items.

$$AUC = \frac{n' + 0.5n''}{n}$$
7 + 0.5 × 1 7.5

0.5 is a random recommendation

$$=\frac{7+0.5\times1}{10}=\frac{7.5}{10}=0.75$$

AUC?

ltem	Score 🔻

$$AUC = ?$$

$$AUC = ?$$

$$AUC = ?$$

Decide to Evaluate?

Firstly,

- Use Top-K Precision
 - check the accuracy of top recommended items
 - close to the real situation when the number of recommend items are limited

Secondly,

- Use **AUC**
 - check the overall performance of an algorithm

Collaborative Recommendation

Collaborative Recommendation

- The most prominent approach to generate recommendations
 - used by large, commercial e-commerce sites
 - well-understood, various algorithms and variations exist
 - applicable in many domains (book, movies, DVDs, ..)
- Approach
 - use the "wisdom of the crowd" to recommend items
- Basic assumption and idea
 - Users give ratings to catalog items (implicitly or explicitly)
 - Customers who had similar tastes in the past, will have similar tastes in the future

	Item1	Item2	Item3	Item4	Item5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

- Given an "active user" (Alice) and an item I not yet seen by Alice
- The goal is to estimate Alice's rating for this item, e.g., by
 - find a set of users (peers) who liked the same items as Alice in the past **and** who have rated item I
 - use, e.g. the average of their ratings to predict, if Alice will like item I
 - do this for all items Alice has not seen and recommend the best-rated

- Some first questions
 - How do we measure similarity?
 - How many neighbors should we consider?
 - How do we generate a prediction from the neighbors' ratings?

	ltem1	Item2	Item3	Item4	Item5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

• A popular similarity measure in user-based CF: Pearson correlation

a, b: users

Ref:

r_{a.p}: rating of user a for item p

P : set of items, rated both by a and b

Possible similarity values between -1 and 1; $\overline{r_a}$, $\overline{r_b}$ = user's average ratings

	Item1	Item2	Item3	Item4	Item5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

sim(alice,user1) = 0.85 sim(alice,user2) = 0.70 sim(alice,user0) = 0.00 sim(alice,user4) = -0.79

 $sim(a,b) = \frac{\sum_{p \in P} (r_{a,p} - r_a) (r_{b,p} - r_b)}{\sqrt{\sum_{p \in P} (r_{a,p} - \bar{r}_b)^2}} \sqrt{\sum_{p \in P} (r_{b,p} - \bar{r}_b)^2}$

Pearson Correlation

Takes differences in rating behavior into account

- Works well in usual domains, compared with alternative measures
 - such as cosine similarity

Making Prediction

	Item1	Item2	Item3	Item4	Item5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

$$pred(a,p) = \overline{r_a} + \frac{\sum_{b \in N} sim(a,b) * (r_{b,p} - \overline{r_b})}{\sum_{b \in N} sim(a,b)} \frac{\frac{3+1+2+3+3}{5}}{\frac{4+3+4+3+5}{5}}$$
 pred(alice, item5) =
$$\frac{5+3+4+4}{4} + \frac{0.85*(3-2.4)+0.7*(5-3.8)}{0.85+0.7} = 4.87$$

Improving the metrics / prediction function

- Not all neighbor ratings might be equally "valuable"
 - Agreement on commonly liked items is not so informative as agreement on controversial items
 - Possible solution: Give more weight to items that have a higher variance
- Value of number of co-rated items
 - Use "significance weighting", by e.g., linearly reducing the weight when the number of co-rated items is low
- Case amplification

- Intuition: Give more weight to "very similar" neighbors, i.e., where the similarity value is close to 1.
- Neighborhood selection
 - Use similarity threshold or fixed number of neighbors

Memory-based and model-based approaches

- User-based CF is said to be "memory-based"
 - the rating matrix is directly used to find neighbors / make predictions
 - does not scale for most real-world scenarios
 - large e-commerce sites have tens of millions of customers and millions of items
- Model-based approaches
 - based on an offline pre-processing or "model-learning" phase
 - at run-time, only the learned model is used to make predictions
 - models are updated / re-trained periodically
 - large variety of techniques used
 - model-building and updating can be computationally expensive

- Basic idea:
 - Use the similarity between items (and not users) to make predictions
- Example:
 - Look for items that are similar to Item5
 - Take Alice's ratings for these items to predict the rating for Item5

	ltem1	ltem2	Item3	Item4	Item5
Alice	5	3	4	4	?
User1		1	2		
User2		3	4		
User3		3	1		
User4		5	5		

- Produces better results in item-to-item filtering
 - for some datasets, no consistent picture in literature
- Ratings are seen as vector in n-dimensional space
- Similarity is calculated based on the angle between the vectors

$$sim(\vec{a}, \vec{b}) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| * |\vec{b}|}$$

Adjusted cosine similarity

- take average user ratings into account, transform the original ratings
- U: set of users who have rated both items a and b

$$sim(a,b) = \frac{\sum_{u \in U} (r_{u,a} - \overline{r_u})(r_{u,b} - \overline{r_u})}{\sqrt{\sum_{u \in U} (r_{u,a} - \overline{r_u})^2} \sqrt{\sum_{u \in U} (r_{u,b} - \overline{r_u})^2}}$$

	ltem1	Item2	Item3	Item4	ltem5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

avg of user, or $\overline{r_{\!u}}$
4.0
2.4
3.8
3.2
2.8

	ltem1	Item2	Item3	Item4	ltem5
Alice	5 – 4.0	3 – 4.0	4 – 4.0	4 – 4.0	?
User1	3 – 2.4	1-2.4	2 – 2.4	3 – 2.4	3 – 2.4
User2	4 – 3.8	3-3.8	4 – 3.8	3 – 3.8	5 – 3.8
User3	3 – 3.2	3 – 3.2	1-3.2	5 – 3.2	4 – 3.2
User4	1-2.8	5 – 2.8	5 – 2.8	2 – 2.8	1-2.8

	ltem1	Item2	Item3	Item4	ltem5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

avg of user, or $\overline{r_{\!u}}$
4.0
2.4
3.8
3.2
2.8

	ltem1	Item2	Item3	Item4	Item5
Alice	1.0	-1.0	0.0	0.0	?
User1	0.6	-1.4	-0.4	0.6	0.6
User2	0.2	-0.8	0.2	-0.8	1.2
User3	-0.2	-0.2	-2.2	1.8	0.8
User4	-1.8	2.2	2.2	-0.8	-1.8

Mean-Adjusted
Rating Database

Mean-Adjusted
Rating Database

	Item1	Item2	Item3	Item4	Item5
Alice	1.0	-1.0	0.0	0.0	,
User1	0.6	-1.4	-0.4	0.6	0.6
User2	0.2	-0.8	0.2	-0.8	1.2
User3	-0.2	-0.2	-2.2	1.8	0.8
User4	-1.8	2.2	2.2	-0.8	-1.8

Mean-Adjusted Rating Database

	ltem1	Item2	Item3	Item4	Item5
Alice	1.0	-1.0	0.0	0.0	?
User1	0.6	-1.4	-0.4	0.6	0.6
User2	0.2	-0.8	0.2	-0.8	1.2
User3	-0.2	-0.2	-2.2	1.8	0.8
User4	-1.8	2.2	2.2	-0.8	-1.8

$$sim(a,b) = \frac{\sum_{u \in U} (r_{u,a} - \overline{r_u})(r_{u,b} - \overline{r_u})}{\sqrt{\sum_{u \in U} (r_{u,a} - \overline{r_u})^2} \sqrt{\sum_{u \in U} (r_{u,b} - \overline{r_u})^2}}$$

$$sim(i1, i5) = \frac{0.6 \times 0.6 + 0.2 \times 1.2 + (-0.2) \times 0.8 + (-1.8) \times (-1.8)}{\sqrt{0.6^2 + 0.2^2 + (-0.2)^2 + (-1.8)^2} \times \sqrt{0.6^2 + 1.2^2 + 0.8^2 + (-1.8)^2}} = 0.8$$

after calculation

Ref:

8.0
(

•
$$sim(i5, i2) = -0.9$$

•
$$sim(i5, i3) = -0.8$$

•
$$sim(i5, i4) = +0.4$$

(very high similarity)

(very low similarity)

(very low similarity)

(high similarity)

choose similar items

•
$$sim(i5, i1) = +0.8$$

•
$$sim(i5, i2) = -0.9$$

•
$$sim(i5, i3) = -0.8$$

•
$$sim(i5, i4) = +0.4$$

	ltem1	Item2	Item3	Item4	Item5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

$$pred(u, p) = \frac{\sum_{i \in ratedItem(u)} sim(i, p) \times r_{u, i}}{\sum_{i \in ratedItem(u)} sim(i, p)}$$

$$pred(alice, i5) = \frac{0.8 \times 5 + 0.4 \times 4}{0.8 + 0.4} = \frac{5.6}{1.2} = 4.7$$

	Item5
Alice	4.7

choose similar items

•
$$sim(i5, i1) = +0.8$$

•
$$sim(i5, i2) = -0.9$$

•
$$sim(i5, i3) = -0.8$$

•
$$sim(i5, i4) = +0.4$$

	ltem1	Item2	Item3	Item4	ltem5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

$$pred(u, p) = \frac{\sum_{i \in ratedItem(u)} sim(i, p) \times r_{u, i}}{\sum_{i \in ratedItem(u)} sim(i, p)}$$

$$pred(alice, i5) = \frac{0.8 \times 5}{0.8} = 5$$

	Item5
Alice	5

Pre-processing for item-based filtering

- Item-based filtering does not solve the scalability problem itself
- Pre-processing approach by Amazon.com (in 2003)
 - Calculate all pair-wise item similarities in advance
 - The neighborhood to be used at run-time is typically rather small, because only items are taken into account which the user has rated
 - Item similarities are supposed to be more stable than user similarities
- Memory requirements
 - Up to N^2 pair-wise similarities to be memorized (N = number of items) in theory
 - In practice, this is significantly lower (items with no co-ratings)
 - Further reductions possible
 - Minimum threshold for co-ratings (items, which are rated at least by n users)
 - Limit the size of the neighborhood (might affect recommendation accuracy)

More on ratings

- Pure CF-based systems only rely on the rating matrix
- Explicit ratings
 - Most commonly used (1 to 5, 1 to 7 Likert response scales)
 - Research topics
 - "Optimal" granularity of scale; indication that 10-point scale is better accepted in movie domain
 - Multidimensional ratings (multiple ratings per movie)
 - Challenge
 - Users not always willing to rate many items; sparse rating matrices
 - How to stimulate users to rate more items?
- Implicit ratings
 - clicks, page views, time spent on some page, demo downloads ...
 - Can be used in addition to explicit ones; question of correctness of interpretation

Data sparsity problems

- Cold start problem
 - How to recommend new items? What to recommend to new users?
- Straightforward approaches
 - Ask/force users to rate a set of items
 - Use another method (e.g., content-based, demographic or simply non-personalized) in the initial phase
- Alternatives
 - Use better algorithms (beyond nearest-neighbor approaches), for example:
 - In nearest-neighbor approaches, the set of sufficiently similar neighbors might be to small to make good predictions
 - Assume "transitivity" of neighborhoods

SVD (Singular Value Decomposition)

PCA

Principal Component Analysis (PCA) ภาษาไทย Update Version

https://www.youtube.com/watch?v=1qZyWTTw0mI

SVD

Ref:

Example

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 2 & 2 & 2 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0.18 & 0 \\ 0.36 & 0 \\ 0.18 & 0 \\ 0.90 & 0 \\ 0 & 0.53 \\ 0 & 0.80 \\ 0 & 0.27 \end{bmatrix} X \begin{bmatrix} 9.64 & 0 \\ 0 & 5.29 \end{bmatrix} X$$

$$\begin{bmatrix} 0.58 & 0.58 & 0.58 & 0.58 & 0 \\ 0 & 0 & 0.71 & 0.71 \\ 0 & 0 & 0.71 & 0.71 \end{bmatrix}$$

Matrix Factorization

$$M_k = U_k \times \Sigma_k \times V_k^T$$

U _k	Dim1	Dim2
Alice	0.47	-0.30
Bob	-0.44	0.23
Mary	0.70	-0.06
Sue	0.31	0.93

V_k^{T}	VE FINANCE OF A SECOND	TOTAL		EATPRAYLOVE	
Dim1	-0.44	-0.57	0.06	0.38	0.57
Dim2	0.58	-0.66	0.26	0.18	-0.36

•	Prediction:	$\hat{r}_{ui} = \bar{r}_u + U_k(Alice) \times \Sigma_k \times V_k^T(EPL)$
		= 3 + 0.84 = <mark>3.84</mark>

\sum_{k}	Dim1	Dim2
Dim1	5.63	0
Dim2	0	3.23

2008: Factorization meets the neighborhood: a multifaceted collaborative filtering model, Y. Koren, ACM SIGKDD

- Merges neighborhood models with latent factor models
- Latent factor models
 - good to capture weak signals in the overall data
- Neighborhood models

- good at detecting strong relationships between close items
- Combination in one prediction single function
 - Local search method such as stochastic gradient descent to determine parameters
 - Add penalty for high values to avoid over-fitting

$$\hat{r}_{ui} = \mu + b_u + b_i + p_u^T q_i$$

$$\min_{p_*,q_*,b_*} \sum_{(u,i)\in K} (r_{ui} - \mu - b_u - b_i - p_u^T q_i)^2 + \lambda(\|p_u\|^2 + \|q_i\|^2 + b_u^2 + b_i^2)$$

Collaborative Filtering: Pros & Cons

• Pros:

 well-understood, works well in some domains, no knowledge engineering required

Cons:

• requires user community, sparsity problems, no integration of other knowledge sources, no explanation of results

Content-based Recommendation

Content-based recommendation

- While CF methods do not require any information about the items,
 - it might be reasonable to exploit such information; and
 - recommend fantasy novels to people who liked fantasy novels in the past
- What do we need:
 - some information about the available items such as the genre ("content")
 - some sort of *user profile* describing what the user likes (the preferences)
- The task:

- learn user preferences
- locate/recommend items that are "similar" to the user preferences

Content-based recommendation

What is the "content"?

- Most CB-recommendation techniques were applied to recommending text documents.
 - Like web pages or newsgroup messages for example.
- Content of items can also be represented as text documents.
 - With textual descriptions of their basic characteristics.
 - Structured: Each item is described by the same set of attributes

Title	Genre	Author	Туре	Price	Keywords
The Night of the Gun	Memoir	David Carr	Paperback	29.90	Press and journalism, drug addiction, personal memoirs, New York
The Lace Reader	Fiction, Mystery	Brunonia Barry	Hardcover	49.90	American contemporary fiction, detective, historical
Into the Fire	Romance, Suspense	Suzanne Brockmann	Hardcover	45.90	American fiction, murder, neo- Nazism

Content representation and item similarities

Item representation

Title	Genre	Author	Туре	Price	Keywords
The Night of the Gun	Memoir	David Carr	Paperback	29.90	Press and journalism, drug addiction, personal memoirs, New York
The Lace Reader	Fiction, Mystery	Brunonia Barry	Hardcover	49.90	American contemporary fiction, detective, historical
Into the Fire	Romance, Suspense	Suzanne Brockmann	Hardcover	45.90	American fiction, murder, neo- Nazism

Ref:

 Compute the similarity of an unseen item with the user profile based on the keyword overlap (e.g. using the *Jaccard index*)

Jaccard Index

$$Jaccard\ Index = \frac{|keywords(A) \cap keywords(B)|}{|keywords(A) \cup keywords(B)|}$$

- e.g.
 - Book A contains "Thailand, Bangkok, Market, Tourist, Temple, Cuisine".
 - Book B contains "Thailand, Bangkok, Temple, Museum".

$$Jaccard\ Index = \frac{3}{7}$$

Limitations

- Keywords alone may not be sufficient to judge quality/relevance of a document or web page
 - up-to-date-ness, usability, aesthetics, writing style
 - content may also be limited / too short
 - content may not be automatically extractable (multimedia)
- Ramp-up phase required
 - Web 2.0: Use other sources to learn the user preferences
- Overspecialization

- Or: too similar news items
- Pure content-based systems are rarely found in commercial environments

Knowledge-based Recommendation

Knowledge-Based

Why do we need knowledge-based recommendation?

Products with low number of available ratings

- Time span plays an important role
 - five-year-old ratings for computers
 - user lifestyle or family situation changes
- Customers want to define their requirements explicitly
 - "the color of the car should be black"

Knowledge-based recommender systems

- Constraint-based
 - based on explicitly defined set of recommendation rules
 - fulfill recommendation rules
- Case-based

- based on different types of similarity measures
- retrieve items that are similar to specified requirements
- Both approaches → conversational recommendation process
 - users specify the requirements
 - systems try to identify solutions
 - if no solution can be found, users change requirements

Constraint-based recommendation problem

Select items from this catalog that match the user's requirements

id	price(€)	mpix	opt-zoom	LCD-size	movies	sound	waterproof
P ₁	148	8.0	4×	2.5	no	no	yes
P ₂	182	8.0	5×	2.7	yes	yes	no
P ₃	189	8.0	10×	2.5	yes	yes	no
P ₄	196	10.0	12×	2.7	yes	no	yes
P ₅	151	7.1	3×	3.0	yes	yes	no
P ₆	199	9.0	3×	3.0	yes	yes	no
P ₇	259	10.0	3×	3.0	yes	yes	no
P ₈	278	9.1	10×	3.0	yes	yes	yes

- User's requirements can, for example, be
 - "the price should be lower than 300 €"
 - "the camera should be suited for sports photography"

- Knowledge-based recommender systems
 - constraint-based
 - case-based
- Limitations

- cost of knowledge acquisition
 - from domain experts
 - from users
 - from web resources
- accuracy of preference models
 - very fine granular preference models require many interaction cycles
 - collaborative filtering models preference implicitly
- independence assumption can be challenged
 - preferences are not always independent from each other

Hybrid Recommender Approach

Hybrid Recommender

Abstract

Weighted

Ref:

• The scores (or votes) of several recommendation techniques are combined together to produce a single recommendation.

Recommendation Score =

wN x Score_from_Algorithm_N

Switching

Ref:

• The system switches between recommendation techniques depending on the current situation.

```
If (data is AAA) {
    use Algorithm_A;
}else if (data is BBB) {
    use Algorithm_B;
else{ use Algorithm_C;
```

Mixed

Ref:

 Recommendations from several different recommenders are presented at the same time

Collaborative

Demographics-Based

Hybrid Recommender Systems

- Weighted
- Switching
- Mixed

Machine learning allows us to build software solutions that exceed human understanding and shows us how AI can innervate every industry.

99

Steve Jurvetson