Правило Штурма

Определение 1. Точка $x_0 \in \mathbb{R}$ называется точкой подьёма функции f, если $\exists \epsilon > 0$, что при $x - \epsilon < t < x$ $f(x_0) > f(t)$ и при $x + \epsilon > t > x$ $f(x_0) < f(t)$.

Точка $x_0 \in \mathbb{R}$ называется точкой спуска функции f, если $\exists \epsilon > 0$, что при $x - \epsilon < t < x \ f(x_0) < f(t)$ и при $x + \epsilon > t > x \ f(x_0) > f(t)$.

Определение 2. Алгебраическим числом прообразов значения y функции f называеся число a(f,y)=p-s, где p и s — количество точек подъёма и спуска среди прообразов y.

Упражнение 1. Докажите, что для многочлена a(f,y) не зависит от y

1. Для многочлена P количество решений уравнения уравнения P(x)=0 равно $-a\left(\frac{P'}{P},y\right)$ для достаточно большого y.

Пусть $P = p_n x^n + \ldots + p_0$ и $Q = q_m x^m + \ldots + q_0$ — многочлены, не имеющие общих непостоянных множителей, $p_n q_m \neq 0$, f = P/Q.

- **2.** Если m < n, то пусть $y \neq 0$, если m = n, пусть $p_n \neq yq_m$. Тогда a(f,y) не зависит от выбора y. Поэтому это число будет обозначаться a(f).
- **3** (Правило Штурма в формулировке Хованского). а) Докажите, что если P и Q многочлены, то $a\left(\frac{P}{Q}\right) = -a\left(\frac{Q}{P}\right)$.
- б) Тели P,G и Q многочлены и $\deg P < \deg Q$, то $a\left(G + \frac{P}{Q}\right) = a(G) a\left(\frac{Q}{P}\right)$.
- в) Предложите алгоритм нахождения количества корней многочлена.
- **4** (Теорема Фурье-Бюдан). Пусть N(t) число перемен знака в последовательности $f(t), f'(t), \ldots, f^{(n)}(t)$, где f многочлен степени f. Тогда число корней многочлена f (с учётом кратности) заключённых между между a и b, где $f(a) \neq 0$, $f(b) \neq 0$ и a < b не превосходит числа N(a) N(b), причём отличается от него на чётное число.
- **5** (Правило Декарта). Количество положительных корней многочлена $f(x) = a_n x^n + \ldots + a_0$ не превосходит числа перемен знака в последовательности a_0, \ldots, a_n .
- **Определение 3.** Пусть f многочлен и $f_1 = f'$. В результате работы алгоритма Евклида для (f, f_1) получается последовательность остатков f_2, \ldots, f_n . Последовательность f, f_1, \ldots, f_n называется nocnedoвameльностью Штурма.
- **6 (Теорема Штурма).** Пусть $\omega(t)$ число перемен знака в последовательности Штурма. Тогда количество корней без учёта кратности на отрезке [a,b], где $f(a) \neq 0$, $f(b) \neq 0$ и a < b в точности равно $\omega(a) \omega(b)$.