## Semi-Supervised Locally Linear Embedding (SSLLE)

**Application & Sensitivity Analysis of Critical Hyperparameters** 

#### 0 AGENDA

- 1 Problem
- 2 Local graph-based manifold learning (LGML)
- 3 Techniques
  - 1 Unsupervised
  - 2 Semi-supervised SSLLE
  - 3 Challenges
- 4 Sensitivity analysis
  - 1 Setup
  - 2 Results
- 5 Discussion

#### 1 PROBLEM MANIFOLD LEARNING

Situation. Rapidly increasing amount of data thanks to novel applications and data sources

Problem. High data dimensionality detrimental to

- → Model functionality
- $\rightarrow$  Interpretability
- → Generalization ability

**Manifold assumption.** Data in high-dimensional observation space truly sampled from low-dimensional manifold



How to find a meaningful, structure-preserving embedding?

#### 1 PROBLEM MANIFOLD LEARNING

#### Formal goal of manifold learning.

- ightarrow Given. Data  $\mathcal{X}=(\mathbf{x}_1,\mathbf{x}_2,...,\mathbf{x}_N)$ , with  $\mathbf{x}_i\in\mathbb{R}^D\ \forall i\in\{1,2,...,N\}$  and  $N,D\in\mathbb{N}$ , supposedly lying on d-dimensional manifold  $\mathcal{M}$   $\Rightarrow \psi:\mathcal{M}\to\mathbb{R}^d$  with  $d\ll D,d\in\mathbb{N}$   $\Rightarrow \mathcal{X}\sim\mathcal{M}\subset\mathbb{R}^D$
- ightarrow Goal. Find *d*-dimensional Euclidean representation  $\Rightarrow \mathcal{Y} = (\mathbf{y}_1, \mathbf{y}_2, ..., \mathbf{y}_N)$ , with  $\mathbf{y}_i = \psi(\mathbf{x}_i) \in \mathbb{R}^d \ \forall i \in \{1, 2, ..., N\}$ .





# 2 LGML

#### 2 LGML TAXONOMY

Landscape. Various approaches, many of which may be translated into one another



#### 2 LGML CONCEPT

Idea. Capture intrinsic geometry, find principal axes of variability, retain most salient ones



#### 2 LGML CONCEPT

**Graph representation**. Constructing a skeletal model of the manifold in  $\mathbb{R}^D$ 

**Vertices.** Given by observations **Edges.** Present between neighboring points

- $\rightarrow$  Typically, k-neighborhoods
- → Edge weights determined by nearness

**Graph functional**. Belief about intrinsic manifold properties at the heart of each method

- ightarrow Smoothness LEM
- ightarrow Local linearity LLE SSLLE
- → Curvature HLLE
- ightarrow ...



#### 2 LGML CONCEPT

#### Eigenanalysis. Finding axes of variability in intrinsic manifold structure

- → Matrix representation of manifold properties
- → Assessment through eigenanalysis
  - → Directions of variability ⇒ eigenvectors
  - → Respective degrees of variability ⇒ eigenvalues

**Dimensionality reduction**. Projection into subspace spanned by *d* principal eigenvectors







## 3 TECHNIQUES

#### 3.1 UNSUPERVISED LEM

#### Proposal. Donoho and Grimes (2003)

Idea. Forcing nearby inputs to be mapped to nearby outputs

- ightarrow Second-order penalty on large gradients

Graph Laplacian. Coercing neighborhood graph information into a matrix

- 0 o Weight matrix.  $m{W} = (w)_{ij} \in \mathbb{R}^{N \times N}$ , where  $w_{ij} = w_{ij} (\| m{x}_i m{x}_j \|^2)$
- o Diagonal matrix of row sums.  $extbf{ extit{D}} = diag(\sum_i w_{ij}) \in \mathbb{R}^{N imes N}$
- ightarrow Graph Laplacian.  $extbf{\emph{L}} = extbf{\emph{D}} extbf{\emph{W}} \in \mathbb{R}^{ extit{N} imes extbf{N}}$

#### Generalized eigenvalue problem.

$$\min_{\mathcal{Y}} trace(\mathcal{Y}^T \mathbf{L} \mathcal{Y}), \quad \text{s.t. } \mathcal{Y}^T \mathbf{D} \mathcal{Y} = \mathbf{I}$$
 (1)

### 3.2 SEMI-SUPERVISED SSLLE

## 3.3 CHALLENGES NEIGHBORHOOD RELATIONS

## 4 SENSITIVITY ANALYSIS

### 4.1 SETUP SCENARIOS

### 4.1 SETUP EVALUATION

### 4.2 RESULTS FOO

## 5 DISCUSSION

## 5 DISCUSSION FOO



Donoho, D. L. and Grimes, C. (2003). Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data, *Proceedings of the National Academy of Sciences of the United States of America* **100**(10): 5591–5596.