

(PTIB0301) Elemi lineáris algebra

Dr. Facskó Gábor, PhD

tudományos főmunkatárs

Pécsi Tudományegyetem, Természettudományi Kar, Matematikai és Informatikai Intézet, 7624 Pécs, Ifjúság útja 6. Wigner Fizikai Kutatóközpont, Űrfizikai és Űrtechnikai Osztály, 1121 Budapest, Konkoly-Thege Miklós út 29-33. https://facsko.ttk.pte.hu

2024. november 28.

Ismétlés - Lineáris transzformációk

Definíció: Legyenek V_1 és V_2 lineáris vektorterek. A $\varphi:V_1\to V_2$ függvényt lineáris leképezésnek nevezzük, ha

additív :
$$\varphi(\mathbf{a} + \mathbf{b}) = \varphi(\mathbf{a}) + \varphi(\mathbf{b})$$

és homogén : $\varphi(\lambda \mathbf{a}) = \lambda \varphi(\mathbf{a})$,

- ahol $\mathbf{a}, \mathbf{b} \in V_1$ és $\lambda \in \mathbb{R}$.
- ► <u>Tétel:</u> (Mátrixreprezentáció) A $\varphi : \mathbb{R}^n \to \mathbb{R}^m$ leképezés akkor és csak akkor lineáris, ha $\exists A \in \mathcal{M}_{m \times n}$ úgy, hogy $\varphi(\mathbf{x}) = A \cdot \mathbf{x}$, ahol $\mathbf{x} \in \mathbb{R}^n$.
- Definíció: Legyen V vektortér. A $\varphi:V\to V$ lineáris leképezéseket lineáris transzformációnak nevezzük. A V-n ható összes lineáris transzformációk halmazát \mathcal{T}_V -vel jelöljük.

Gram-Schmidt féle ortogonalizáció

- Ortogonalizációs eljárás:
 - 1. $\mathbf{e}_{1}^{'} = \mathbf{b}_{1}$ és $\mathbf{e}_{1} = \frac{\mathbf{e}_{1}^{'}}{\|\mathbf{e}_{1}^{'}\|}$.
 - 2. Kiszámítjuk az $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_k$ vektorokat.
 - 3. Végül

$$\mathbf{e}_{k+1}^{'} = \mathbf{b}_{k+1} - (\mathbf{b}_{k+1} \cdot \mathbf{e}_1) \, \mathbf{e}_1 - (\mathbf{b}_{k+1} \cdot \mathbf{e}_2) \, \mathbf{e}_2 - \dots - (\mathbf{b}_{k+1} \cdot \mathbf{e}_k) \, \mathbf{e}_k,$$

továbbá

$$\mathbf{e}_{k+1} = rac{\mathbf{e}_{k+1}^{'}}{\left\|\mathbf{e}_{k+1}^{'}
ight\|}.$$

Sajátérték, sajátvektor

- Definíció: Legyen V egy vektortér $\mathbb R$ felett. Legyen $\varphi:V\to V$ lineáris leképezés. Ha az $\mathbf a\in V$ nemnulla vektorra és $\lambda\in\mathbb R$ -re $\varphi(a)=\lambda \mathbf a$ teljesül, akkor azt mondjuk, hogy $\mathbf a$ sajátvektora φ -nek és λ az $\mathbf a$ -hoz tartozó sajátértéke φ -nek.
- Definíció: Legyen $L_{\lambda} = \{ \mathbf{a} \in V : \varphi(\mathbf{a}) = \lambda \mathbf{a} \}$ a λ-hoz tartozó sajátvektorok és a nullvektor halmaza. A L_{λ} alteret alkot, ezért a λ-hoz tartozó sajátaltérnek nevezzük.
- ▶ <u>Definíció:</u> (A sajátértékek meghatározása) Az $A \in \mathcal{M}_{n \times n}$ -e mátrix karakterisztikus polinomja alatt az

fit az
$$f(x) = |A - xE_n| = \begin{vmatrix} a_{11} - x & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - x & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} - x \end{vmatrix}$$

n-edfokú polinomot értjük.

Vége

Köszönöm a figyelmüket!