Problem Set #2 CHEM101A: General College Chemistry

Donald Aingworth IV August 29, 2025

What mass of ${\rm Fe_2O_3}$ would react with 20.00 g of Zn? The chemical equation for this reaction is:

$$3\operatorname{Zn} + \operatorname{Fe_2O_3} \longrightarrow 2\operatorname{Fe} + 3\operatorname{ZnO}$$
 (1)

1.1 Solution

The simple stoichiometry is the way to go here.

$$20.00g \times \frac{1\,\mathrm{mol}\,\mathrm{Zn}}{65.38g} \times \frac{1\,\mathrm{Fe_2O_3}}{3\,\mathrm{Zn}} \times \frac{159.7\,\mathrm{g}\,\mathrm{Fe_2O_3}}{1\,\mathrm{mol}\,\mathrm{Fe_2O_3}} = \boxed{16.28\,\mathrm{g}\,\mathrm{Fe_2O_3}} \tag{2}$$

x moles of C_4H_{10} reacts with oxygen according to the following equation:

$$2 C_4 H_{10} + 13 O_2 \longrightarrow 8 CO_2 + 10 H_2 O$$
 (3)

- a) How many moles of water are formed?
- b) How many moles of oxygen are consumed?

2.1 Solution (a)

The ratio of C_4H_{10} used to H_2O created in this reaction is 1:5. With x moles of C_4H_{10} , that would gives us $5x \mod H_2O$.

2.2 Solution (b)

The ratio of C_4H_{10} used to O_2 consumed in this reaction is 2:13. With x moles of C_4H_{10} , that would gives us $\boxed{\frac{13}{2}x \operatorname{mol} O_2}$.

10.00 g of N_2 is mixed with 33.61 g of F_2 , and the elements react according to the following equation:

$$N_2 + 3 F_2 \longrightarrow 2 NF_3$$
 (4)

- a) Which element is the limiting reactant?
- b) What is the theoretical yield of NF₃?
- c) If the reaction goes to completion, how many grams of the excess reactant will remain?
- d) Set up an ICE table for this reaction.

3.1 Solution (a)

First, we calculate the theoretical yields for each for the reactants.

$$m_{\rm N_2} = 10.00\,\mathrm{g} \times \frac{1\,\mathrm{mol}\,\mathrm{N_2}}{28.02\,\mathrm{g}\,\mathrm{N_2}} \times \frac{2\,\mathrm{NF_3}}{1\,\mathrm{N_2}} \times \frac{71.01\,\mathrm{g}\,\mathrm{NF_3}}{1\,\mathrm{mol}\,\mathrm{NF_3}} = 50.69\,\mathrm{g}\,\mathrm{NF_3} \qquad (5)$$

$$m_{\rm F_2} = 33.61\,\rm g \times \frac{1\,\rm mol\,F_2}{38.00\,\rm g\,F_2} \times \frac{2\,\rm NF_3}{3\,\rm F_2} \times \frac{71.01\,\rm g\,NF_3}{1\,\rm mol\,NF_3} = 41.87\,\rm g\,NF_3 \qquad (6)$$

With a lower final mass, $\boxed{\mathbf{F}_2}$ is the limiting reactant.

3.2 Solution (b)

The theoretical yield was found in part (a). $41.87 \,\mathrm{g}\,\mathrm{NF}_3$

3.3 Solution (c)

Use a similar strategy to part (a).

$$33.61\,\mathrm{g} \times \frac{1\,\mathrm{mol}\,\mathrm{F}_2}{38.00\,\mathrm{g}\,\mathrm{F}_2} \times \frac{1\,\mathrm{N}_2}{3\,\mathrm{F}_2} \times \frac{28.02\,\mathrm{g}\,\mathrm{N}_2}{1\,\mathrm{mol}\,\mathrm{N}_2} = 8.261\,\mathrm{g}\,\mathrm{NF}_3 \tag{7}$$

Subtract this from the available mass of N_2 to get the final N_2 .

$$10.00 \,\mathrm{g} \,\mathrm{N}_2 - 8.261 \,\mathrm{g} \,\mathrm{N}_2 = \boxed{1.74 \,\mathrm{g} \,\mathrm{N}_2} \tag{8}$$

3.4 Solution (d)

I used tabular for this table. Please excuse any poor or improper formatting.

mol	N_2	$+3\mathrm{F}_{2}$	$\longrightarrow 2 \mathrm{NF}_3$
I	0.3569	0.8844	0
С	-0.2948	-0.8844	0.5896
Е	0.0621	0	0.5896

- a) If 58.26 g of iodine reacts with excess aluminum, what is the theoretical yield of aluminum iodide? The reaction is $2\,\mathrm{Al} + 3\,\mathrm{I}_2 \longrightarrow 2\,\mathrm{AlI}_3$.
- b) If 56.11 g of aluminum iodide is actually formed in the reaction in part a, what is the percent yield of aluminum iodide?

4.1 Solution (a)

A chemist mixes 16.00 g of HCl with 10.00 g of Mg and obtains an 81.3% yield of MgCl₂. What mass of MgCl₂ did the chemist obtain? The chemical reaction is:

$$Mg + 2 HCl \longrightarrow MgCl_2 + H_2$$
 (9)

5.1 Solution

Contents

1	Topic A Problem 12 1.1 Solution	2			
2	Topic A Problem 13	3			
	2.1 Solution (a)	. 3			
	2.2 Solution (b)	3			
3	Topic A Problem 14				
	3.1 Solution (a)	4			
	3.2 Solution (b)	4			
	3.3 Solution (c)	4			
	3.4 Solution (d)				
4	Topic A Problem 15	5			
	4.1 Solution (a)	5			
5	Topic A Problem 16	6			
	5.1 Solution	_			