Some explanations about the histograms

Charles Meyer-Hilfiger

Inria de Paris & Sorbonne Université

1 Notation

We use the same notation as in arXiv version of the Statistical Decoding 2.0 article.

Let $\mathbf{y} = \mathbf{c} + \mathbf{e}$ be a noisy codeword at distance t from an [n, k] linear code \mathscr{C} , namely $\mathbf{c} \in \mathscr{C}$ and $|\mathbf{e}| = t$. Let $\mathscr{P} \subset [1; n]$ such that $\#\mathscr{P} = s$ and define $\mathscr{N} = [1; n] \setminus \mathscr{P}$.

Let \mathscr{H} be a set of N parity-checks of \mathscr{C} of weight w on \mathscr{N} and so that their restriction to \mathscr{P} leads to a set \mathscr{H} of N different vectors of \mathbb{F}_2^s , we let for $\mathbf{a} \in \mathscr{H}$, $\widetilde{\mathbf{a}}$ be the unique parity-check in $\widetilde{\mathscr{H}}$ such that $\widetilde{\mathbf{a}}_{\mathscr{P}} = \mathbf{a}$.

We denote by \mathcal{D} the code

$$\mathcal{D} \stackrel{\triangle}{=} \{ \mathbf{c}_{\mathbf{x}}, \ \mathbf{x} \in \mathbb{F}_2^s \} \text{ where } \mathbf{c}_{\mathbf{x}} \stackrel{\triangle}{=} (\langle \mathbf{x}, \mathbf{a} \rangle)_{\mathbf{a} \in \mathcal{X}},$$

and by $\mathbf{u}_{\mathbf{y},\mathscr{H}}$ the word we want to decode in \mathscr{D} , namely: $\mathbf{u}_{\mathbf{y},\mathscr{H}} = (\langle \mathbf{y}, \widetilde{\mathbf{a}} \rangle)_{\mathbf{a} \in \mathscr{H}}$. We define

$$f_{\mathbf{y},\mathcal{H}}: \mathbb{F}_{2}^{s} \to \mathbb{R}$$

$$\mathbf{a} \mapsto \begin{cases} (-1)^{\langle \mathbf{y}, \tilde{\mathbf{a}} \rangle} & \text{if } \mathbf{a} \in \mathcal{H} \\ 0 & \text{otherwise} \end{cases}$$

$$(1.1)$$

and denote by

$$\widehat{f_{\mathbf{y},\mathscr{H}}}(\mathbf{x}) = \#\mathscr{H} - 2|\mathbf{u}_{\mathbf{y},\mathscr{H}} - \mathbf{c}_{\mathbf{x}}|$$

the Fourier transform of $f_{\mathbf{y},\mathcal{H}}$.

We denote by GV(k,n) the smallest integer d such that $\sum_{i=0}^{d} {n \choose i} > 2^{n-k}$.

2 Experimental procedure

Each file $\widehat{\text{histogram}_{\text{w}}}_{\text{s}_{\text{k}}}$ w_s_k_n_u_t.pdf shows 4 histograms. Each histogram is made from the values of $\widehat{f_{\text{y},\mathcal{H}}}$. We get the 4 samples as follows:

We choose an [n,k] linear code $\mathscr C$ at random and choose a random codeword $\mathbf c$ of $\mathscr C$. Then we iterate 4 times the following procedure:

- $\mathcal{P} \xleftarrow{\$} \{ \mathcal{F} \subseteq [[1, n]] : \#\mathcal{F} = s \}$
- $-\mathbf{e} \stackrel{\$}{\leftarrow} \{\mathbf{e} \in \mathbb{F}_2^n : |\mathbf{e}_{\mathscr{P}}| = t u \text{ and } |\mathbf{e}_{\mathscr{N}}| = u\}$
- $-\mathbf{y} \leftarrow \mathbf{c} + \mathbf{e}$
- Compute the set $\widetilde{\mathscr{H}}' = \{ \mathbf{h} \in \mathscr{C}^{\perp} : |\mathbf{h}_{\mathscr{N}}| = w \}$
- Compute $\widetilde{\mathscr{H}}$ by choosing for each $\mathbf{a} \in \mathbb{F}_2^s$ a random element in $\{\mathbf{h} \in \widetilde{\mathscr{H}}' : \mathbf{h}_{\mathscr{P}} = \mathbf{a}\}$. This set can be empty in which case \mathbf{a} does not appear in \mathscr{H} .
- Store $(\widehat{f_{\mathbf{y},\mathscr{H}}})$

Reading the files 3

histogram_w_s_k_n_u_t.pdf shows 4 histograms corresponding to the values of $\widehat{f_{\mathbf{y},\mathscr{X}}}$ for the 4 iterations of our experimental procedure.

histogram_w_s_k_n_u_t_zoom.pdf shows the same histograms but where we only consider the values of $f_{\mathbf{y},\mathcal{H}}$ greater than $0.6 * GV(s, \#\mathcal{H})$.

For the sake of readability in both files we only show on the histograms the values of $\widehat{f_{\mathbf{y},\mathscr{K}}}$ that are below $2 * GV(s, \#\mathcal{H})$.

The following values are present in these files:

- $-\mathcal{F}(GV) = \#\mathcal{H} 2*GV(s,\#\mathcal{H})$. It is the theoretical value of the Walsh transform of a word at distance $GV(s, \#\mathcal{H})$ from the code \mathscr{D} .
- $-\mathcal{F}(\epsilon) = \#\mathcal{H} 2\lfloor \frac{1-\epsilon}{2} * \#\mathcal{H} \rfloor$. It is the theoretical value of the Walsh transform of a word at distance $\lfloor \frac{1-\epsilon}{2} * \# \mathcal{H} \rfloor$ from the code \mathscr{D} where $\epsilon = \frac{K_w^{n-s}(u)}{\binom{n-s}{w}}$ is the bias of the LPN samples.
- $-\frac{\mathcal{F}(GV)+\mathcal{F}(\epsilon)}{2}$ represents the threshold of acceptation of $\mathbf{x}_0 = \arg\max\widehat{f_{\mathbf{y},\mathscr{K}}}$ (it is basically the one we use in Algorithm 3.1). If $\widehat{f_{\mathbf{y},\mathcal{K}}}(\mathbf{x}_0) > \frac{\mathcal{F}(GV) + \mathcal{F}(\epsilon)}{2}$ then \mathbf{x}_0 is considered as a valid solution.

- $-\mathcal{F}(e_P) = \widehat{f_{\mathbf{y},\mathscr{H}}}(\mathbf{e}_{\mathscr{P}}).$ It is the experimental value of the Walsh transform of $\mathbf{e}_{\mathscr{P}}.$
- The second highest Walsh coefficient. It is the experimental value: $\max_{\mathbf{x}\neq\mathbf{x}_0}\widehat{f_{\mathbf{y},\mathscr{H}}}$