第12章正規化

テキストの解答要約はこんな感じで引用表現にする(引用じゃないけど)

演習 12.1.1. [*]

E-AppAbs において、項のサイズが減少するとは言えないため。

例えば、(λ c: A \rightarrow A. c (c (c (α c: A. z))))) (α c: A. x) (α c: A. x) (α c: A. x) ((α c: A. x)

適用 t1 t2 が正規化可能であることを示すとき、逆転補題と標準形補題から (\(\lambda\)x:T11.t12) v2 の形に簡約できることがわかるが、E-AppAbsを適用すると、代入により元の項よりサイズが大きい項ができる恐れがある(で、その例が先述もの。)

演習 12.1.7. [推奨, * * *]

メモ

- 正規化可能:評価が有限ステップで停止
- R_T(t):型Tを持つ、閉じた項からなる集合
- 定義 12.1.2. 論理述語 R が真なら単純型でも関数型でも停止し、適用されても真理値は変わらない
- 補題 12.1.3. R_T(t) ならば、t は停止
- 補題 12.1.4. R の真理値は評価されても変わらない
- 補題 12.1.5. R の真理値は開いた項の閉じたインスタンスの代入でも変わらない
- 定理 12.1.6. [正規化] ⊢ t: T ならば t は正規化可能
 - 。 12.1.5. 12.1.3. より
- 演習 12.1.7. ブール値と直積で拡張しても ⊢ t: T ならば t は正規化可能
 - o ブール値: Tにブール値型Bool、型付け規則にT-True/False/Ifがある。
 - 直積: Tに二つ組 {t, t} 射影 t.1 と t.2、型付け規則にT-Pair/Proj1/Proj2がある。

はい

補題12.1.5. を拡張できれば、定理 12.1.6. の拡張も成り立つ(?)。よって補題12.1.5. を拡張する。型付け導出に関する帰納法による。 連続代入は長いので $\sigma_{1...n}\stackrel{\mathrm{def}}{=} [\mathbf{x}_1\mapsto \mathbf{v}_1]\cdots [\mathbf{x}_n\mapsto \mathbf{v}_n]$ と略記します...。

- T-True/False の場合、直ちに明らか。
- T-If の場合、(証明概略、部分項を値まで評価するとRが)
 - o $t = if t_1 then t_2 else t_3 x_1 : T_1, ..., x_n : T_n \vdash t_1 : Bool x_1 : T_1, ..., x_n : T_n \vdash t_2 : S x_1 : T_1, ..., x_n : T_n \vdash t_3 : S T = S$
 - o 帰納法の仮定より、 $R_{\mathsf{Bool}}(\sigma_{1..\mathsf{n}}\mathsf{t}_1)$ かつ $R_{\mathsf{S}}(\sigma_{1..\mathsf{n}}\mathsf{t}_2)$ かつ $R_{\mathsf{S}}(\sigma_{1..\mathsf{n}}\mathsf{t}_3)$ である。
 - o $R_{\mathsf{Bool}}(\sigma_{1..n}\mathsf{t}_1)$ と補題12.1.3. から、 $\sigma_{1..n}\mathsf{t}_1 \to^* \mathsf{v}_1$ となり、標準形補題より v_1 は true または false

- o v1 = true のとき、評価導出の最後は E-IfTrue なので if $\sigma_{1,n}$ t $_1$ then $\sigma_{1,n}$ t $_2$ else $\sigma_{1,n}$ t $_3$ \to^* $\sigma_{1,n}$ t $_2$
 - $R_S(\sigma_{1..n}t_2)$ と補題 12.1.4. より、 $R_S(\text{if }\sigma_{1..n}t_1 \text{ then }\sigma_{1..n}t_2 \text{ else }\sigma_{1..n}t_3)$ となる。
- o v1 = false のとき、評価導出の最後は E-IfFalse なので if $\sigma_{1..n}\mathsf{t}_1$ then $\sigma_{1..n}\mathsf{t}_2$ else $\sigma_{1..n}\mathsf{t}_3 \to^* \sigma_{1..n}\mathsf{t}_3$
 - $R_S(\sigma_{1..n}t_3)$ と補題 12.1.4. より、 $R_S(if \sigma_{1..n}t_1 then \sigma_{1..n}t_2 else \sigma_{1..n}t_3)$ となる。
- o すなわち、 $R_S(\sigma_{1..n}(\text{if }\mathsf{t}_1\text{ then }\mathsf{t}_2\text{ else }\mathsf{t}_3))$ となる。
- T-Pair の場合
 - $\circ \ \mathsf{t} = \{\mathsf{t}_1, \mathsf{t}_2\} \ \mathsf{x}_1 : \mathsf{T}_1, \dots, \mathsf{x}_n : \mathsf{T}_n \vdash \mathsf{t}_1 : \mathsf{S}_1 \ \mathsf{x}_1 : \mathsf{T}_1, \dots, \mathsf{x}_n : \mathsf{T}_n \vdash \mathsf{t}_2 : \mathsf{S}_2 \ \mathsf{T} = \mathsf{S}_1 \times \mathsf{S}_2$
 - o 帰納法の仮定より、 $R_{S_1}(\sigma_{1..n}t_1)$ かつ $R_{S_2}(\sigma_{1..n}t_2)$ である。
 - \circ $R_{S_1 \times S_2}$ の定義から、 $R_{S_1 \times S_2}(\{\sigma_{1..n} \mathsf{t}_1, \sigma_{1..n} \mathsf{t}_2\})$ となる。
 - o すなわち、 $R_{S_1 \times S_2}(\sigma_{1..n}(\{t_1, t_2\}))$ となる。
- T-Proj1 の場合(T-Proj2も同様)
 - \circ t = t₁.1 x₁ : T₁,..., x_n : T_n \vdash t₁ : T₁₁ \times T₁₂ T = T₁₁
 - 帰納法の仮定より、R_{T11}×T₁₂ (σ_{1..n}t₁)、
 - \circ $R_{\mathsf{T}_{11} \times \mathsf{T}_{12}}$ の定義から、 $R_{\mathsf{T}_{11}}((\sigma_{1..n}\mathsf{t}_1).1)$ 、
 - \circ すなわち $R_{T_{11}}(\sigma_{1..n}(t_1.1))$
 - 定義 12.1.2 を拡張して、Bool と T₁ × T₂ に対応させることが必要。
 - 補題 12.1.4 を拡張して、射影による評価について R が保存されることを示すことが必要。
 - 補題 12.1.5 は T-Pair について、射影による評価規則で場合分けが必要。
 - o 解答では場合分けを変数化してまとめている。かしこい。あと連続代入を σ にしていて自分より乱暴。