- 1 Considereu les paràboles $y = x^2 1$ i $y = x^2 4$.
 - a) Representeu gràficament el recinte del semiplà $y \leq 0$ limitat per les dues paràboles i l'eix d'abcisses.
 - b) Calculeu l'àrea del recinte del semiplà $y \leq 0$ limitat per les dues paràboles i l'eix d'abcisses.
 - c) Trobeu tots els nombres reals x que satisfan la desigualtat següent:

$$\frac{x^2 - 1}{x^2 - 4} \le 0.$$

Digueu si el conjunt de solucions és fitat. En cas afirmatiu, trobeu-ne el suprem i l'ínfim.

- 2 Es vol calcular $\sqrt[3]{7}$ amb un error absolut inferior a $0.5 \cdot 10^{-3}$. (Indicació: calcular $\sqrt[3]{7}$ és equivalent a trobar el zero de la funció $f(x) = x^3 7$).
 - a) Enuncieu el teorema de Bolzano. Trobeu un interval de longitud 1 dins el qual es trobi $\sqrt[3]{7}$.
 - b) Partint de l'interval trobat a l'apartat anterior, determineu el mínim nombre d'iteracions necessàries per calcular $\sqrt[3]{7}$ pel mètode de la bisecció amb la precisió demanada.
 - c) Calculeu l'aproximació de $\sqrt[3]{7}$ amb la precisió demanada pel mètode de Newton-Raphson.
- **3** Considereu la funció $f(x) = \sqrt[3]{x+1}$.
 - a) Obteniu el polinomi de Taylor de grau 2 de la funció f(x) centrat en x=0 i l'expressió del residu corresponent en la forma de Lagrange.
 - b) Fent ús del polinomi de l'apartat anterior calculeu un valor aproximat de $\sqrt[3]{1.02}$.
 - c) Fent ús de l'expressió del residu de l'apartat a), doneu una fita superior de l'error comès en el càlcul de l'apartat anterior.

- 1. Considereu les paràboles $y = x^2 1$ i $y = x^2 4$.
 - a) Representeu gràficament el recinte del semiplà $y \leq 0$ limitat per les dues paràboles i l'eix d'abcisses.
 - b) Calculeu l'àrea del recinte del semiplà $y \leq 0$ limitat per les dues paràboles i l'eix d'abcisses.
 - c) Trobeu tots els nombres reals x que satisfan la designaltat següent:

$$\frac{x^2 - 1}{x^2 - 4} \le 0.$$

Digueu si el conjunt de solucions és fitat. En cas afirmatiu, trobeu-ne el suprem i l'ínfim.

SOLUCIÓ:

a) La figura següent mostra el recinte del semiplà $y \leq 0$ limitat per les dues paràboles i l'eix d'abcisses:

b) L'àrea del recinte dibuixat en l'apartat anterior es pot calcular fent:

$$\int_{-2}^{2} |x^2 - 4| dx - \int_{-1}^{1} |x^2 - 1| dx = \left[-\frac{x^3}{3} + 4x \right]_{-2}^{2} - \left[-\frac{x^3}{3} + x \right]_{-1}^{1} = \frac{32}{3} - \frac{4}{3} = \frac{28}{3}.$$

c)
$$\frac{x^2 - 1}{x^2 - 4} \le 0 \Leftrightarrow [(x^2 - 1 \ge 0) \land (x^2 - 4 < 0)] \lor [(x^2 - 1 \le 0) \land (x^2 - 4 > 0)] \Leftrightarrow$$

$$\Leftrightarrow [(x^2 - 1 \ge 0) \land (x^2 - 4 < 0)] \Leftrightarrow x \in (-2, -1] \cup [1, 2).$$

El conjunt de solucions $(-2,-1] \cup [1,2)$ és fitat. El seu suprem és 2 i el seu ínfim és -2.

- 2. Es vol calcular $\sqrt[3]{7}$ amb un error absolut inferior a $0.5 \cdot 10^{-3}$. (Indicació: calcular $\sqrt[3]{7}$ és equivalent a trobar el zero de la funció $f(x) = x^3 7$).
 - a) Enuncieu el teorema de Bolzano. Trobeu un interval de longitud 1 dins el qual es trobi $\sqrt[3]{7}$.
 - b) Partint de l'interval trobat a l'apartat anterior, determineu el mínim nombre d'iteracions necessàries per calcular $\sqrt[3]{7}$ pel mètode de la bisecció amb la precisió demanada.
 - c) Calculeu l'aproximació de $\sqrt[3]{7}$ amb la precisió demanada pel mètode de Newton-Raphson.

SOLUCIÓ:

- a) Teorema de Bolzano: Si una funció $f: \mathbb{R} \to \mathbb{R}$ és contínua en un interval real [a,b] i $f(a)\dot{f}(b) < 0$, aleshores existeix $c \in (a,b)$ tal que f(c) = 0. La funció $f(x) = x^3 7$ és polinòmica i per tant contínua en tota la recta real. Donat que la funció $f(x) = x^3 7$ és contínua en [1,2] i $f(1) \cdot f(2) < 0$, l'interval demanat pot ser (1,2).
- b) El mínim nombre d'iteracions n necessàries per calcular $\sqrt[3]{7}$ pel mètode de la bisecció amb la precisió demanada és n = 11, ja que:

$$\frac{b-a}{2^n} = \frac{2-1}{2^n} \le 0.5 \cdot 10^{-3} \Rightarrow n \ge 10.97 \Rightarrow n \ge 11$$

c) Apliquem el mètode de Newton-Raphson a la funció $f(x) = x^3 - 7$ amb valor inicial $x_0 = 2$.

La fórmula del mètode és: $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$, prenent $x_0 = 2$ i $f'(x) = 3x^2$ s'obté: $x_1 = 1.916666667$, $x_2 = 1.912938458$, $x_3 = 1.912931183$.

Per x_3 ja es satisfan les dues condicions d'aturada: $|x_3 - x_2| < 0.5 \cdot 10^{-3}$ i $|f(x_3)| < 0.5 \cdot 10^{-3}$, per tant x_3 és una aproximació amb la precisió demanada:

$$\sqrt[3]{7} \simeq 1.9129.$$

- 3. Considereu la funció $f(x) = \sqrt[3]{x+1}$.
 - a) Obteniu el polinomi de Taylor de grau 2 de la funció f(x) centrat en x = 0 i l'expressió del residu corresponent en la forma de Lagrange.
 - b) Fent ús del polinomi de l'apartat anterior calculeu un valor aproximat de $\sqrt[3]{1.02}$.
 - c) Fent ús de l'expressió del residu de l'apartat a), doneu una fita superior de l'error comès en el càlcul de l'apartat anterior.

SOLUCIÓ:

a) El polinomi de Taylor de grau 2 d'una funció f(x) centrat en x=0 és: $P_2(x)=f(0)+f'(0)x+\frac{f''(0)}{2!}x^2$ i l'expressió del residu corresponent en la forma de Lagrange és: $R_2(x)=\frac{f'''(c)}{3!}x^3$ per a cert c entre 0 i x.

Les derivades primera, segona i tercera de f són:

$$f'(x) = \frac{1}{3(x+1)^{\frac{2}{3}}}, \quad f''(x) = -\frac{2}{9(x+1)^{\frac{5}{3}}} \quad i \quad f'''(x) = \frac{10}{27(x+1)^{\frac{8}{3}}}.$$

Per tant, $f'(0) = \frac{1}{3}$, $f''(0) = -\frac{2}{9}$ i el polinomi de Taylor de grau 2 de la funció f(x) centrat en x = 0 és:

$$P_2(x) = 1 + \frac{1}{3}x - \frac{1}{9}x^2.$$

A més, $f'''(c) = \frac{10}{27(c+1)^{\frac{8}{3}}}$ i per tant l'expressió del residu corresponent en la forma de Lagrange és:

$$R_2(x) = \frac{5}{81(c+1)^{\frac{8}{3}}}x^3$$

per a cert c entre 0 i x.

b)
$$\sqrt[3]{1.02} = \sqrt[3]{1+0.02} = f(0.02) \simeq P_2(0.02) = 1 + \frac{1}{3}(0.02) - \frac{1}{9}(0.02)^2 = 1.0066222$$

c) L'error de l'aproximació $\sqrt[3]{1.02} \simeq P_2(0.02) = 1.0066222$ és el valor absolut del residu: $|R_2(0.02)|$. Fent x=0.02 en l'expressió del residu de l'apartat a) s'obté:

$$|R_2(0.02)| = \frac{5}{81(c+1)^{\frac{8}{3}}} (0.02)^3,$$

aquesta expressió és decreixent en c, per tant, en ser 0 < c < 0.02, es té:

$$|R_2(0.02)| = \frac{5}{81(c+1)^{\frac{8}{3}}} (0.02)^3 < \frac{5}{81(0+1)^{\frac{8}{3}}} (0.02)^3 \simeq 0.5 \cdot 10^{-6}.$$

Per tant, $0.5 \cdot 10^{-6}$ és una fita superior de l'error comès en el càlcul de l'apartat anterior.