# 20. Reinforcement Learning 2

### Toxonomies of RL

- Methods based on value functions
  - $V^{\pi}(x)$  is expected long term reward of starting at x and executing policy  $\pi$
  - Policy Search methods; Actor-critic Methods
  - Policy-Gradient method ⊂ Policy Search
  - PPO, is Actor-critic method
  - Policy gradient as optimizer
- Topic 2
- Topic 3

### Today's Topic outline

- Reinforce ⊂ Policy Gradient
  - $\circ \quad min_{lpha}E[f(x)], x \propto p_{lpha}(x)$  , distribution of x,  $N(lpha, \sigma(fixed))$
  - o write a distribution over possible x's and minimize the expected value
  - delta-like funciton is the goal, highest possibility at lowest value
  - o potimize of gradient descent:  $\frac{\partial}{\partial \alpha} E[f(x)] = E[f(x) \frac{\partial}{\partial \alpha} ln P_{\alpha}(x)]$ , log-likelihood method (or policy gradient "trick")
- Reinforce with additive Gaussian noise
  - $\circ \quad x \sim P_{lpha} \sim N(lpha, \sigma^2)$
  - $\circ \quad x = lpha + eta$  ,  $\,eta \sim N(0,\sigma^2)$
  - $\circ P_{lpha}(x)=Ce^{rac{-(x-lpha)^T(x-lpha)}{2\sigma^2}}$  , probability density funciton of gaussian
  - $\circ \quad lnP_{lpha}(x)=rac{-(x-lpha)^T(x-lpha)}{2\sigma^2}+...$  terms that do not depend on  $\,lpha$
  - $\circ \quad rac{\partial}{\partial lpha} ln P_lpha(x) = rac{1}{\sigma^2} (lpha x)^T = rac{1}{\sigma^2} eta^T$
  - $\circ \quad f(x)rac{\partial}{\partial lpha}lnP_lpha(x)=rac{1}{\sigma^2}f(lpha+eta)eta^T$
  - $\Delta lpha = -\eta rac{1}{\sigma^2} f(lpha + eta) eta^T$  ,  $\eta$  : learning rate

• given a small perturbation:

$$\circ \quad \Delta lpha = -\eta rac{1}{\sigma^2} [f(lpha + eta) - f(lpha)] eta^T$$

- if  $f(\alpha + \beta) > f(\alpha)$ , move  $-\beta$  direction
- if  $f(\alpha + \beta) < f(\alpha)$  , move  $+\beta$  direction
- If you have gradients, why not use them? (from AutoDiff)
  - the answer is subtle!
  - $\circ$  scienrio: a wsg gripper try to grip a brick,  $z_{height}$ 
    - controller: descend until  $z_{close}$  ,close gripper,raise hand
    - rewards:height of brick at time = 5 sec
    - plot reward in Y vs  $z_{close}$  in X, very discontinuous loss landscapes
    - gradient descent on discontinuous landscapes in general doesn't work very well
    - but adding probability density function, the smoothing effect works well
- The idea of Non-smooth optimization
  - is "randomized smoothing"
  - new interpretation that, policy gradient in RL is sort of 1 to 1 mapping Randomized
     Smoothing
  - example,  $min |x|_1$ , l1 norm
- In RL the randomriztion comes from
  - $\circ \quad P_lpha(x)$  , exploration
  - Random initial conditions
  - Domain randomrization
  - the Smoothing effect helps convergence and optimization

### 1. Good papers on RL

- Do Differentiable Simulators Give Better Policy Gradients?
- Do Differentiable Simulators Give Better Policy Gradients.pdf

# Smoothing with stochasticity $\min_{ heta} f( heta)$ vs $\min_{ heta} E_w \left[ f( heta, w) ight]$ $w \sim N(0, \Sigma)$



Do Differentiable Simulators give better policy gradients? the answer is subtle





- Is
- 0

## 2. What does policy gradient look like for control? (open question)

• linear Gaussian dynamics + quadratic cost

## 3. Examples