MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 6 - MARCH 2015 SOLUTION KEY

Round 5

A) Since $d = \frac{n(n-3)}{2} = 135$, by trial and error, we have $\frac{18 \cdot 15}{2} = 9 \cdot 15 = 135$ and n = 18.

Thus, there are 18 sides and 15 diagonals at each vertex.

The 18 vertices divide the circle into 18 congruent arcs, each measuring 20°.

The 1st and 15th diagonal at any vertex form an inscribed angle consisting of 14 of these 18

arcs. Its measure is $\frac{1}{2}(14 \cdot 20) = \underline{140}^{\circ}$.

B) If x is the longest side, x < 10 + 15 = 25.

If it were a right triangle, x would be the hypotenuse and $10^2 + 15^2 = x^2$. In an obtuse triangle, $x^2 > 10^2 + 15^2 = 325$. So, we have a lower limit for x; specifically, since $18^2 = 324$, x > 19.

In this case 19 < x < 24 (6 possibilities)

If 15 is the longest side, $x + 10 > 15 \Rightarrow x \ge 6$ and $x^2 + 100 < 225$. $x^2 < 125 \Rightarrow x < 11$.

In this case, $6 \le x \le 11$ (6 possibilities)

Total: 12

C) Given: (AB,CD) = (16,19)

Let x and y denote the lengths of \overline{PA} and \overline{PC} respectively.

According to the product chord theorem, x(16-x) = y(19-y)

where *x* and *y* are integers. Without this restriction there are infinitely many solutions. Examine the products of the lengths of each chord.

on
$$\overline{AB}$$
: (1, 15) - 15, (2, 14) - 28, (3,13) - 39, (4, 12) - **48**, (5, 11) - 55, (6, 10) - **60**, (7, 9) - 63, (8, 8) - 64

on
$$\overline{CD}$$
: $(1, 18)$ - 18, $(2, 17)$ - 34, $(3, 16)$ - 48, $(4, 15)$ - 60, $(5, 14)$ - 70, $(6, 13)$ - 78, $(7, 12)$ - 84, $(8, 11)$ - 88 $(9, 10)$ - 90

 \overline{ON} bisects \overline{AB} and \overline{OM} bisects \overline{CD} .

$$x = 4 \Rightarrow NP = OM = 8 - 4 = 4$$

$$MD = 9.5$$
. In $\triangle MOD$, $r^2 = 4^2 + 9.5^2 = 16 + \frac{19^2}{4} = \frac{64 + 361}{4} = \frac{425}{4} = \frac{25 \cdot 17}{4} \Rightarrow r = \frac{5}{2}\sqrt{17}$.

For x = 6, we get $r^2 = 2^2 + 9.5^2$ and clearly this r-value will be smaller.

See additional comments on the original 5C at the end of the solution key.

