CÁLCULO

Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 2005 PRIMERA PARTE

Ejercicio 1. Un espejo plano de dimensiones 80 cm y 90 cm, se rompe por una esquina según una recta. De los dos trozos que quedan, el menor es un triángulo de catetos 10 cm y 12 cm, correspondientes a las dimensiones menor y mayor del espejo respectivamente. Hallar el área máxima del espejo rectangular que se puede obtener con el trozo mayor.

Solución.

Situando el origen de las coordenadas en el vértice del rectángulo que muestra la figura, la recta de rotura pasa por los puntos (0,78) y (10,90). Entonces, la ecuación de dicha recta es

$$y - 78 = \frac{12}{10}x.$$

El área del espejo rectangular que se puede obtener con el trozo mayor en un punto (x, y) de la recta es

$$A(x) = (80 - x) y = (80 - x) \left(\frac{6}{5}x + 78\right)$$
$$= 96x + 6240 - \frac{6}{5}x^2 - 78x = -\frac{6}{5}x^2 + 18x + 6240,$$

donde $x \in [0, 10]$. El único punto crítico es la solución de la ecuación

$$A'(x) = -\frac{12}{5}x + 18 = 0 \Longrightarrow x = \frac{18 \times 5}{12} = \frac{15}{2} \in [0, 10].$$

Como A''(x) = -12/5 < 0 y la función A es un polinomio de segundo grado, el máximo absoluto se alcanza en x = 15/2 y su valor es A(15/2) = 6307.5

Ejercicio 2. Sea $f:[0,\infty)\to\mathbb{R}$ definida por $f(x)=e^{-x}\sin x$.

- (a) Dibujar un esquema de la gráfica de f y obtener la sucesión $(x_k)_{k\geq 0}$ de ceros de f en $[0,\infty)$.
- (b) Calcular el área A_k de la región comprendida entre la gráfica de f en el intervalo $[x_k, x_{k+1}]$ y el eje x.
- (c) Probar que la sucesión $(A_k)_{k\geq 0}$ es una progresión geométrica cuya razón es menor que 1.
- (d) Hallar la suma de la serie $\sum_{k=0}^{\infty} A_k$.

Solución.

(a)

Dado que $e^{-x}>0$ para todo $x\in\mathbb{R}$, los ceros de f se obtienen resolviendo sen x=0 en $[0,\infty)$. Las soluciones son $x_k=k\pi,\ k=0,1,2,\ldots$

(b) Usando integración por partes con $u=e^{-x}$ y $dv=\sin x\,dx$, tenemos $du=-e^{-x}\,dx$ y $v=-\cos x$. Entonces

$$\int e^{-x} \sin x \, dx = -e^{-x} \cos x - \int e^{-x} \cos x \, dx.$$

Aplicando el mismo método a la primitiva del término derecho, con $u=e^{-x}$ y $dv=\cos x\,dx$, siendo $du=-e^{-x}\,dx$ y $v=\sin x$, obtenemos

$$\int e^{-x} \sin x \, dx = -e^{-x} \cos x - \left(e^{-x} \sin x + \int e^{-x} \sin x \, dx \right).$$

Por tanto

$$\int e^{-x} \operatorname{sen} x \, dx = -\frac{e^{-x}}{2} \left(\cos x + \operatorname{sen} x \right).$$

Para calcular el área A_k de la región comprendida entre la gráfica de f en el intervalo $[k\pi, (k+1)\pi]$ y el eje x, observamos que la integral es positiva si

k=0 o bien par y negativa si k es impar. En consecuencia,

$$A_k = (-1)^k \int_{k\pi}^{(k+1)\pi} e^{-x} \sin x \, dx$$

$$= \frac{(-1)^k}{2} \left[e^{-k\pi} \left(\cos k\pi + \sin k\pi \right) - e^{-(k+1)\pi} \left(\cos \left(k + 1 \right) \pi + \sin \left(k + 1 \right) \pi \right) \right]$$

$$= \frac{(-1)^k}{2} \left[e^{-k\pi} \left(-1 \right)^k - e^{-(k+1)\pi} \left(-1 \right)^{k+1} \right]$$

$$= \frac{e^{-k\pi}}{2} \left(1 + e^{-\pi} \right).$$

(c) Para probar que la sucesión $(A_k)_{k\geq 0}$ es una progresión geométrica, calculamos

$$\frac{A_{k+1}}{A_k} = e^{-\pi} = \frac{1}{e^{\pi}} < 1.$$

(d) La suma de la serie geométrica viene dada por

$$\sum_{k=0}^{\infty} A_k = \sum_{k=0}^{\infty} \frac{e^{-k\pi}}{2} \left(1 + e^{-\pi} \right) = \frac{1}{2} \left(\frac{1 + e^{-\pi}}{1 - e^{-\pi}} \right).$$

CÁLCULO

Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 2005 SEGUNDA PARTE

Ejercicio 3. Calcular las distancias mínima y máxima del plano

$$x + y + 2z = 0$$

a los puntos de la elipse

$$\begin{cases} 3x^2 + y^2 = 12\\ x + y + z = 2 \end{cases}$$

Solución. La distancia de un punto P = (x, y, z) al plano viene dada por

$$d(x,y,z) = \frac{|x+y+2z|}{\sqrt{6}}.$$

Entonces la función que vamos a optimizar es $f(x, y, z) = (x + y + 2z)^2$, sujeta a las restricciones

$$g(x, y, z) = 3x^2 + y^2 - 12 = 0,$$

 $h(x, y, z) = x + y + z - 2 = 0.$

Aplicando el criterio de los multiplicadores de Lagrange, calculamos los puntos solución del sistema $\nabla f(x, y, z) = \lambda \nabla g(x, y, z) + \mu \nabla h(x, y, z)$, resolviendo

$$2(x + y + 2z) = 6\lambda x + \mu,$$

 $2(x + y + 2z) = 2\lambda y + \mu,$
 $4(x + y + 2z) = \mu.$

Usando la tercera ecuación, obtenemos

$$-2(x+y+2z) = 6\lambda x,$$

$$-2(x+y+2z) = 2\lambda y,$$

lo que implica que $6\lambda x = 2\lambda y$.

Si $\lambda=0$ entonces x+y+2z=0, luego x+y=-2z. Usando la restricción x+y+z=2, obtenemos z=-2, por lo que x+y=4. Dado que y=4-x, la primera restricción implica

$$12 = 3x^{2} + (4 - x)^{2} = 3x^{2} + 16 + x^{2} - 8x \iff 0 = 4x^{2} - 8x + 4.$$

La única solución de $0 = x^2 - 2x + 1 = (x - 1)^2$ es x = 1. Así obtenemos el punto $P_1 = (1, 3, -2)$.

Si $\lambda \neq 0$ entonces 3x = y, luego la primera restricción implica

$$12 = 3x^2 + 9x^2 = 12x^2 \iff x = \pm 1.$$

La solución x=1, y=3 con la restricción x+y+z=2, proporciona el punto P_1 obtenido. Si x=-1, y=-3, tenemos que z=2-x-y=6, por lo que $P_2=(-1,-3,6)$ es la segunda solución del sistema. Las distancias de los puntos P_1 y P_2 al plano vienen dadas por

$$d(P_1) = \frac{|1+3-4|}{\sqrt{6}} = 0, \quad d(P_2) = \frac{|-1-3+12|}{\sqrt{6}} = \frac{8}{\sqrt{6}}.$$

Entonces, la distancia mínima se alcanza en P_1 que pertenece al plano y la distancia máxima se alcanza en P_2 .

Ejercicio 4. Hallar el volumen del sólido situado en el exterior del paraboloide $z = x^2 + y^2$ que lo limita, en el semiplano $z \ge 0$ y en el interior del cilindro $x^2 + y^2 = 2x$.

Solución. El sólido Ω viene dado por

$$\Omega = \left\{ (x, y, z) : x^2 + y^2 \le 2x, \ 0 \le z \le x^2 + y^2 \right\}.$$

Entonces, el volumen de Ω es

$$V = \iiint\limits_{\Omega} dx \, dy \, dz = \iint\limits_{D} \left(\int_{0}^{x^{2}+y^{2}} dz \right) \, dx \, dy = \iint\limits_{D} \left(x^{2}+y^{2} \right) \, dx \, dy,$$

donde la proyección sobre el plano xy es $D=\left\{(x,y):x^2+y^2\leq 2x\right\}$. Usando coordenadas polares, la ecuación del cilindro es $r^2=2r\cos\theta\Leftrightarrow r=2\cos\theta$, donde $\theta\in[-\pi/2,\pi/2]$. Para calcular la integral doble, usamos la fórmula del cambio a coordenadas polares

$$V = \iint_{D} (x^{2} + y^{2}) dx dy = \int_{-\pi/2}^{\pi/2} \int_{0}^{2\cos\theta} r^{2}r dr d\theta = \int_{-\pi/2}^{\pi/2} \left[\frac{r^{4}}{4}\right]_{0}^{2\cos\theta} d\theta$$

$$= 4 \int_{-\pi/2}^{\pi/2} \cos^{4}\theta d\theta = 4 \int_{-\pi/2}^{\pi/2} \left(\frac{1 + \cos 2\theta}{2}\right)^{2} d\theta$$

$$= \int_{-\pi/2}^{\pi/2} \left(1 + 2\cos 2\theta + \cos^{2} 2\theta\right) d\theta$$

$$= \int_{-\pi/2}^{\pi/2} \left(1 + 2\cos 2\theta + \frac{1 + \cos 4\theta}{2}\right) d\theta$$

$$= \left[\frac{3}{2}\theta + \sin 2\theta + \frac{\sin 4\theta}{8}\right]_{-\pi/2}^{\pi/2} = \frac{3\pi}{2}.$$