1 1-D part

Definition 1.1 (Potts chain). A Potts chain is C chain of spins s_i with $i \in \mathbb{Z}$ and each s_i can assume any integer value from 1 to the vocabulary size V

Definition 1.2 (Windowed Hamiltonian). A windowed Hamiltonian H_i is an Hamiltonian that acts only on the spins inside his finite window of interaction W_i . Without loss of generality, we are going to assume that the lowest energy state has a value of zero

Definition 1.3 (Pseudo-Convolutional Hamiltonian). A pseudo-convolutional Hamiltonian $H = \sum_i H_i$ is an Hamiltonian that can be written as the sum of several windowed Hamiltonians H_i all with the same window width W. For sake of simplicity we are going to assume that there exists an upper bound to the highest energy of every windowed Hamiltonian $E_i^{max} < E^{max}$

The pseudo-convolutional Hamiltonians, in matrix form, are band matrices, meaning that after a certain distance from the diagonal, all of their elements are equal to zero. An example of a band matrix is the matrix B in equation 1

$$B = \begin{bmatrix} B_{11} & B_{12} & 0 & \cdots & \cdots & 0 \\ B_{21} & B_{22} & B_{23} & \ddots & \ddots & \vdots \\ 0 & B_{32} & B_{33} & B_{34} & \ddots & \vdots \\ \vdots & \ddots & B_{43} & B_{44} & B_{45} & 0 \\ \vdots & \ddots & \ddots & B_{54} & B_{55} & B_{56} \\ 0 & \cdots & \cdots & 0 & B_{65} & B_{66} \end{bmatrix}$$
(1)

Definition 1.4 (Stored Pattern). A stored pattern \mathcal{P} is a particular sequence of spins $(\ldots, s_{-1}, s_0, s_1, \ldots)$ such that the energy of the pseudo-convolutional Hamiltonian H associated to this pattern is equal to zero. If more than one stored pattern is present, they can be numbered as $\mathcal{P}^n = (\ldots, s_{-1}^n, s_0^n, s_1^n, \ldots)$.

Theorem 1.1. Let H be a pseudo-convolutional Hamiltonian with N>1 stored patterns. At non-zero temperature the system will be unable to converge to single saved pattern

Proof. Suppose that our Potts chain starts out equal to our first stored pattern $\mathcal{C} = \mathcal{P}^1$. Now we want to know if the formation of a single domain barrier is thermodynamically favorable.

$$\Delta F = \Delta E - T\Delta S < 0 \tag{2}$$

For that to be true, the Free energy of the system must decrease upon the formation of a domain barrier.

Upon the formation of a domain barrier, The windowed Hamiltonians that intersect it will have a non zero, positive energy. Therefore $\Delta E > 0$, however,

we know that the energy of each window Hamiltonian is smaller than E^{\max} and no more that W-1 windows can be affected by a domain wall, therefore

$$0 \le \Delta E \le (\mathcal{W} - 1)E^{\max} \tag{3}$$

At the same time we know that in a sequence long L there can be L-1 possible places where a domain wall can appear, and for each of this possible places it can lead to any of the N-1 other patterns saved, therefore there are (L-1)(N-1) possible configurations where the system has a single domain wall. This means that the change of the entropy of the system is

$$\Delta S = \log[(N-1)(L-1)] \tag{4}$$

Putting equations 3 and 4 all together we have that

$$\Delta F < (\mathcal{W} - 1)E^{\max} - T\log[(N - 1)(L - 1)] \tag{5}$$

In the thermodynamic limit $(L \to \infty)$ we have that the right hand side of the equation becomes eventually negative, therefore the domain barriers are inevitable

Definition 1.5 (Auto-Regressive Model). During inference time, given some input tokens $\{s_i | i_{first} \leq i \leq i_{last}\}$ an auto-regressive model M return a V-dimensional (p_1, \ldots, p_V) vector with an estimate of the probability for the next token in the sequence to predict $i_{pred} = i_{last} + 1$.

$$M(s_{i_{first}}, \dots, s_{i_{last}}) = (p_1, \dots, p_V)$$

$$\tag{6}$$

Theorem 1.2. It is possible to associate pseudo-convolutional Hamiltonian to any auto-regressive model

Proof. Through Botzmann's equation it's possible to turn a probability distribution of equation 6 to some energy levels

$$p_c = \frac{1}{Z} e^{-\frac{E_c}{T}} \quad \text{with} \quad c = 1 \dots V \tag{7}$$

Without loss of generality, we can assume T=1 and set the energy associated with every prediction turns out to be

$$E_c = -\log p_c + \text{const} \quad \text{with} \quad c = 1 \dots V$$
 (8)

Where we can set the constant in such a way that the lowest energy state has a energy equal to zero.

We can now define a windowed Hamiltonian

$$H_{i_{\text{pred}}}(s_{i_{\text{first}}}, \dots, s_{i_{\text{last}}}, s_{i_{\text{pred}}}) = -\log \left[M(s_{i_{\text{first}}}, \dots, s_{i_{\text{last}}}) \cdot s_{i_{\text{pred}}} \right] + \text{const} \quad (9)$$

And the full pseudo-convolutional Hamiltoniaan can now be seen as the sum of all the $H=\sum H_{i_{\mathrm{pred}}}$ of the sequence.

The generation process can now be seen as sampling from the Boltzmann distribution given from

 $p_{\text{sequence}} = \frac{1}{Z} e^{-\frac{1}{T}H(\text{sequence})} \tag{10}$

Corollary 1.2.1. Autoregressive models with fixed window size are incapable of generating infinite length, coherent output

Proof. From theorem 1.2 we know that autoregressive models can be modelled by pseudo-convolutional Hamilonians, which we know that from Theorem 1.1 are not able to converge to any single pattern \Box