MIEEC Computer Networks Lecture note 9

Routing and shortest paths

Graphs and shortest paths

Graph notation

b) Undirected graph

- G={V,E}
- V={v1,v2,v3,v4,v5,v6}|V| = 6
- E={(v1,v2), (v2,v3), (v2,v4), (v3,v4), (v4,v3), (v3,v5), (v4,v5), (v5,v6)}
 |E|=8

- G={V,E}
- V={v1,v2,v3,v4,v5,v6}|V|=6
- E={(v1,v2), (v2,v3), (v2,v4), (v4,v3), (v3,v5), (v4,v5), (v5,v6)}
 |E|=7

Tree

- Tree T = {V,E} is a graph
 - No cycles
 - |E| = |V| 1
 - Connected
 - a path exists between any pair of vertices
- Spanning tree
 - $G=\{V,E\}$
 - T={V,E'} is a tree and
 - $E' \subseteq E$ (is a subset of or equal to)

Shortest path tree

- Weight on graph edges
 - $G=\{V,E,w\}$
 - T={V,E',w}
 - w: $E \to \mathbb{R}$

Total cost of Tree T

$$- C_{total}(T) = \sum_{i=1}^{|E'|} w(e'_i)$$

- Minimum spanning tree T*
 - $C_{total}(T^*) = \min_{T}(C_{total}(T))$
 - Single MST for each graph G
 - Prism, Kruskal

Shortest path tree

- Shortest Path Tree SPT at vertex s
 - Tree composed of
 - Union of shortest paths between s and the other vertices
 - Yes, it's a tree
 - Dijkstra, Bellman-Ford
- One SPT per vertex
 - Minimum spanning tree is not necessarily a SPT

Routing in Layer 3 networks

Forwarding vs. Routing

- Forwarding
 - Take packets from input ports
 - Send them to output ports
 - Which output port? Forwarding table
 - DATA PLANE
- Routing
 - Compute forwarding table entries
 - By computing the (best) path packets should take
 - Distributed
 - Routers compute best paths locally
 - Send messages to each other to update routing/link information
 - CONTROL PLANE

Importance of routing

- I.e. "Why do you want the best path?"
- End-to-end performance
 - Path affects QoS delay, throughput, fairness
- Balanced used of network resources
 - Avoid congestion by choosing paths with lessloaded links
- Responsive routing
 - Compute paths on the fly
 - Responsive to link/router failures/maintenance
 - Smaller packet loss and delay

Shortest Path Routing

- Path selection model:
 - Destination-based
 - Load-insensitive (link weights are static)
 - Minimum hop count / sum of link weights

Shortest Path Problem

- Given network topology with link costs
 - -c(x,y)
 - No link -> infinite cost
- Compute least-cost paths from source u to all other nodes
 - p(v): predecessor to v in the path from u

Dijkstra's Shortest Path Algorithm

- Iterative Algorithm
 - After k iterations know least-cost paths to k nodes
- S: set of nodes whose least-cost path is known
 - Initially S={u}, u is the source node
 - Add one node to S per iteration
- D(v): current cost of path from source to node v
 - Initially
 - D(v) = c(u, v) for each node v adjacent to u
 - D(v) = ∞ , other nodes v
 - Update D(v) when shortest paths are learned

Dijkstra's Shortest Path Algorithm

```
1 function Dijkstra(Graph, source):
     for each vertex v in Graph:
                                          // Initializations
3
        dist[v] := infinity ;
                                          // Unknown distance function from source to v
        previous[v] := undefined ;
                                          // Previous node in optimal path from source
     end for:
     dist[source] := 0;
                                          // Distance from source to source
     Q := the set of all nodes in Graph ; // All nodes in the graph are unoptimized - thus are in Q
8
     while Q is not empty:
                                          // The main loop
        u := vertex in Q with smallest distance in dist[];
9
        if dist[u] = infinity:
10
                                          // all remaining vertices are inaccessible from source
           break;
11
        end if;
12
13
        remove u from Q;
        for each neighbor v of u:
14
                                          // where v has not yet been removed from Q.
           alt := dist[u] + dist_between(u, v);
15
           if alt < dist[v]:</pre>
                                          // Relax (u,v,a)
16
17
              dist[v] := alt ;
                                                                                    Retrieve path from source to target
              previous[v] := u ;
18
                                                                                    1 S := empty sequence
19
              decrease-key v in Q;
                                          // Reorder v in the Oueue
                                                                                    2 u := target
                                                                                    3 while previous[u] is defined:
           end if:
20
                                                                                         insert u at the beginning of S
        end for;
21
                                                                                         u := previous[u]
22
      end while;
                                                                                    6 end while;
23
      return dist[];
24 end Dijkstra.
```


Dijkstra's example (1)

Dijkstra's example (2)

Forwarding table at u

• Shortest Path Tree

link
(u,v)
(u,w)
(u,w)
(u,v)
(u,v)
(u,w)
(u,w)

TO THINK

 How does router u know the link costs of non-adjacent routers?

Link state routing

- Each router keeps track of its incident links
 - Link up/down
 - Link cost
- Each router broadcasts the link state
 - Every router gets a full view of the network graph
- Each router runs Dijkstra's to
 - Compute shortest paths
 - Construct forwarding table
- Example protocols
 - OSPF, Open Shortest Path First
 - IS-IS, Intermediate System Intermediate System

Detection of topology changes

- Beacons generated by routers on their links
 - Periodic "hello" messages on both directions
 - A few missed "hellos" => link down

Broadcasting link state

- How to flood the link state?
 - Every node sends link-state information through their links
 - Next nodes forward link-state info on all links
 - except the one on which the info arrived
- When to start flooding?
 - Upon topology change
 - Link failure/recovery
 - Link cost change
 - Periodically
 - Refresh link-state information
 - typically 30 min

Scalability of link-state routing

- Overhead of link-state routing
 - Flooding link-state info on all the network
 - Running Dijkstra's with all nodes
- OSPF "areas" introduce hierarchy
 - Split the network, the flooding, and routing computation

TO THINK

- Link-state/Dijkstra's requires knowledge of network topology at every router
 - -c(x,y)
- Is it possible to compute shortest paths without knowing the whole topology of the network?
 - Is the distance to other nodes enough?

Bellman-Ford Algorithm

- Define distances at each node x
 - $-d_x(y)$: cost of lest-cost path from x to y
- Update distances based on neighbors
 - $-d_x(y) = \min(c(x, v) + d_{v(y)})$, on all neighbors v

Distance Vector Algorithm

- c(x,v) = cost for direct link (x,v)
 - Node x keeps costs of direct links on x
- $D_x(y)$ = estimate of least cost from x to y
 - Node x keeps vector $\mathbf{D}_{x} = [D_{x}(y): y \in N]$
- Node x also keeps estimate of neighbors distance vectors
 - For each neighbor v, x keeps $\mathbf{D}_{v} = [D_{v}(y): y \in N]$
- ullet Each node v periodically sends $oldsymbol{D}_v$ to neighbors
 - And neighbors update their distance vectors
 - $-D_x(y) \leftarrow \min_v \{c(x,v) + D_v(y)\}$ for each node $y \in N$
- Over iterations (time) vector D_x converges

Distance Vector Algorithm

Each node:

wait for (change in local link cost or message from neighbor)

recompute estimates

if DV to any destination has changed, notify neighbors

Iterative

- Each local iteration is caused by
 - Local link cost change
 - DV update message from neighbor
- Distributed
 - Node notifies neighbors when DV changes
 - Neighbors notify neighbors, if necessary

DV Example (Initialization)

Ta	Table for A			able for	В		(F					
Dst	Cst	Нор	Dst	Cst	Нор		E		3		1	
Α	0	Α	Α	4	Α				<u> </u>			\ 1
В	4	В	В	0	В		2	,		F		\
С	∞	==	С	∞	-		- [6		\	1	7
D	∞	==	D	3	D	1			,	,	\	3 D
Е	2	Е	E	∞	-	\	A		4	_		
F	6	F	F	1	F					1	В	_
Ta	able for C		Table fo		D	Ta	Table for E Table for F					
Dst	Cst	Нор	Dst	Cst	Нор	Dst	Cst	Нор	Dst	Cst	Нор	
Α	8	_	Α	8	ı	Α	2	Α	Α	6	Α	
В	8	-	В	3	В	В	8	-	В	1	В	
С	0	С	С	1	С	С	∞	=	С	1	С	
D	1	D	D	0	D	D	∞.	=	D	∞	=	
E	8	-	Е	∞	=	Е	0	Е	Е	3	Е	
F	1	F	F	∞	_	F	3	F	F	0	F	

DV Example (Step 1)

Ta	able for	Α	Ta	able for	В							
Dst	Cst	Нор	Dst	Cst	Нор		E		3		1	
Α	0	Α	Α	4	Α		- 1			F		\1
В	4	В	В	0	В		2	6				\
С	7	F	O	2	F		-	6		\	1	
D	7	В	D	3	D	(1	,	\	3 D
Е	2	Е	ш	4	F	\	A)-		4	_	B	
F	5	Е	F	1	F						В	
Та	Table for C		Ta	Table for D			Table for E Table for F					
Dst	Cst	Нор	Dst	Cst	Нор	Dst	Cst	Нор	Dst	Cst	Нор	
Α	_											
	7	F	Α	7	В	Α	2	Α	Α	5	В	
В	2	F	A B	7 3	ВВ	A B	2	A F	A B	5 1	B B	
		_						100 100				
В	2	F	В	3	В	В	4	F	В	1	В	
ВС	2	F	В	3	В	В	4	F F	В	1	В	

DV Example (Step 2)

Ta	able for	·A	Ta	able for	Table for B								
Dst	Cst	Нор	Dst	Cst	Нор	Ì	E		3		1		
A	0	Α	Α	4	Α		_ [F		\setminus_1	
В	4	В	В	0	В		2	6		F		\	
O	6	E	С	2	F		- [6		\	1		
D	7	В	D	3	D	(1	`	\	3 D	
ш	2	Е	Е	4	F	\	A)-		4		P		
F	5	Е	F	1	F				==-		В		
Ta	Table for C		Ta	Table for D			Table for E Table for F						
Dst	Cst	Нор	Dst	Cst	Нор	Dst	Cst	Нор	Dst	Cst	Нор		
Α	6	F	Α	7	В	Α	2	Α	Α	5	В		
В	2	F	В	3	В	В	4	F	В	1	В		
С	0	С	С	1	С	C	4	F	C	1	С		
				0	D	D	5	F	D	2	O		
D	1	D	D	U		S. Correct							
D E	1	D F	E	5	С	Е	0	Е	Е	3	Е		

RIP Routing Information Protocol

- Distance Vector protocol
 - Nodes send distance vectors to neighbors every 30 seconds
 - Or when an update message causes change in routing
- RIP is limited to small networks

BGP Exterior gateway routing protocol

- Path vector protocol
- Internet routing

Information F receives from its neighbors about D

From B: "I use BCD"
From G: "I use GCD"
From I: "I use IFGCD"
From E: "I use EFGCD"

Unique spanning trees in Ethernet networks

Networks of Layer 2 switches

- Ethernet frame
 - No hop-count
 - Could loop forever
 - Broadcast frame, misconfiguration
- Layer 2 network
 - Requires tree topology
 - Single path between any station pair
- Spanning Tree Protocol
 - Runs in bridges
 - Helps building the spanning tree
 - Blocks ports

Constructing a Spanning Tree

- Distributed algorithm
 - Switches need to elect a "root" for the tree
 - The switch with the smallest identifier
 - Each switch finds out if its interface is on the shortest path from the root
 - Messages (Y,d,X)
 - From node X
 - Claiming node Y is the root
 - And the distance is d

Steps in ST algorithm

- Initially each switch thinks it's the root
 - Sends message out on every interface
 - Identifies itself as root
 - Switch X announces (X,0,X)
- Other switches update their view of the root
 - Upon receiving a message, check root id
 - If the new id is smaller, start viewing that switch as root
- Switches compute their distance from the root
 - Add 1 to the distance received from neighbor
 - Identify interfaces not in the shortest path to root
 - Exclude these interfaces from the spanning tree

Example - Switch #4 viewpoint

- Switch #4 thinks it's the root
 - Sends (4,0,4) to 2 and 7
- Then switch #4 hears from #2
 - Receives (2,0,2)
 - Thinks #2 is the root
 - Realizes it's 1 hop from the root
- Switch #4 hears from #7
 - Receives (2,1,7) from #7
 - Realizes this is a longer path
 - Prefers its 1 hop path to #2
 - Removes 4-7 link from tree

Example - Switch #4 viewpoint

- Switch #2 hears about #1
 - Hears (1,1,3) from #3
 - Starts treating #1 as root
 - Sends (1,2,2) to neighbors
- Then switch #4 hears from #2
 - Starts treating #1 as root
 - Sends (1,3,4) to neighbors
- Switch #4 hears from #7
 - Receives (1,3,7) from #7
 - Realizes this is a longer path
 - Prefers its 3 hop path to #1
 - Removes 4-7 link from tree

Maximum flow in a network

Flow network model

- Flow network
 - Source s
 - Sink t
 - Nodes a,b,c

- (e.g. bit/s)
- Communication networks are not flow networks
 - They are queue networks
 - Flow network approach used to find limit values

Maximum capacity of a flow network

- Max-flow min-cut theorem
 - Maximum amount of flow transferrable through a network
 - Equals minimum value of all simple cuts in the network
- Cut
 - Split of nodes V in G={V,E} into disjoints sets S and T
 - $S \cup T = V$
 - There are $2^{|V|-2}$ possible cuts
- Capacity of cut (S,T)
 - $-c(S,T) = \sum_{(u,v)|u \in S,v \in T,(u,v) \in E} c(u,v)$

Max-flow Min-cut example

Max-flow = 10

 $2^{|5|-2} = 8$ possible cuts

		V	ertic	es			
Cut	S	a	b	С	t	c(S,T)	Feasability
1	S	S	S	S	T	10	✓
2	S	S	S	T	T	19	✓
3	S	S	T	S	T	13	✓
4	S	S	T	T	T	17	✓
5	S	T	S	S	T	-	×
6	S	T	S	T	T	-	×
7	S	Т	T	S	T	11	✓
8	S	T	T	T	T	12	✓

- What is a graph?
- What is a spanning tree?
- What is a shortest path tree?
- How are paths defined in a network?
- How does Dijkstra's algorithm work?
- How does a link-state algorithm work?
- How do nodes find out about their neighbors?
- How does the Bellman-Ford algorithm work?
- How does a Distance-Vector algorithm work?
- What are the limitations of a layer 2 network of switches?
- How does the IEEE Spanning Tree protocol work?
- What is the maximum capacity of a flow network?

HOMEWORK

Review slides

- Read from Tanenbaum
 - Section 5.2 Routing Algorithms
 - Section 4.7.3 Spanning Tree Bridges
- Do your Moodle homework