Assignment 14, Infinitesimal Calculus

Oleg Sivokon

<2015-04-03 Fri>

Contents

1	Pro	roblems															2								
	1.1	Problem 1															2								
		1.1.1	Answer 1																						2
		1.1.2	Answer 2		•			•								•				•	•	•			3
	1.2	Proble	m 2		•			•							•	•				•	•	•			3
		1.2.1	Answer 3					•					•		•	•				•	•	•			4
		1.2.2	Answer 4													•	•			•	•	•		•	4
		1.2.3	Answer 5									•				•			•	•	•	•			4
		1.2.4	Answer 6		•			•								•				•	•	•			5
		1.2.5	Anser 7																						5

1 Problems

1.1 Problem 1

- 1. Find the domain of f defined as $f(x) = \sqrt{\tan x 1}$.
- 2. Find all values of x in segment $[0, \pi]$, for which $|\tan x| \leq \sin 2x$.

1.1.1 Answer 1

 $\tan x > 1$ where $\frac{\pi}{4} < x \mod \frac{\pi}{2} < \frac{\pi}{2}$. Since we assume that f is real-valued, we cannot extract roots from negative numbers.

Hence $Dom(f) = \{x \in \mathbb{R} \mid \frac{\pi}{4} < x \mod \frac{\pi}{2} < \frac{\pi}{2}\}.$

```
programmode: false;
gnuplot_pdf_command: %command;
print(plot2d (tan(x),
   [x, -2 * %pi, 2 * %pi], [y, -3, 3], grid2d,
   [xtics, 0.25 * %pi, %pi, 1.5 * %pi],
   [ytics, 1, 1, 1], [label, ["(0, 0)", -1.4, 0.4]],
   [title, "Tangent curve"], [pdf_file, %out]));
```


1.1.2 Answer 2

Both functions attain the same values at 0 and $\frac{\pi}{4}$. But sine is a concave function and tanget is a convex function, thus tangent must be less than sine at this interval. Tangent keeps increasing until $\frac{\pi}{2}$, while sine will be decreasing until $\frac{3\pi}{2}$, thus, on this interval tangent is greater than sine. The functions meet again at $x = \pi$.

```
programmode: false;
gnuplot_pdf_command: %command;
print(plot2d ([abs(tan(x)), sin(2 * x)],
  [x, -2 * %pi, 2 * %pi], [y, -1.5, 3], grid2d,
  [xtics, 0.25 * %pi, 0.75 * %pi, 1.5 * %pi],
  [ytics, 1, 1, 1], [label, ["(0, 0)", -1.4, 0.4]],
  [title, "Tangent curve"], [pdf_file, %out]));
```


1.2 Problem 2

Let f, g and h be functions from \mathbb{R} to \mathbb{R} .

- 1. If $f \circ g = f \circ h$, does it follow g = h?
- 2. If $f \circ g = f \circ h$, and f is one-to-one, does it follow g = h?

- 3. If $f \circ g = f \circ h$, and f is onto, does it follow g = h?
- 4. If $f \circ g$ is increasing, and f is decreasing, does it follow that g is increasing?
- 5. If $f \circ g$ is increasing, and f is one-to-one, does it follow that g is monotonic?

1.2.1 Answer 3

No, g and h are not necessarily equal. Whenever co-domain of f doesn't contain some real number, g and h may differ in that input. For example, let f(x) = 2x, $g(x) = (x \mod 2) + x$ and $h(x) = (x \mod 2) * 2 + x$. Because f in this example will only generate even numbers, the $(x \mod 2)$ term will always be zero, thus $f \circ g = f \circ h$, but, obviously, $g \neq h$.

1.2.2 Answer 4

No, it isn't sufficient for f to be one-to-one to ensure right-cancellation property under composition. The example given in 1.2.1 is applicable in this case too since whenever f(x) = f(y) so is x = y (since multiplication does have the cancellation property).

1.2.3 Answer 5

Yes, if f is onto, then the composition is right-cancellable. Suppose, for contradiction it wasn't, then for some y $g(y) \neq h(y)$, but y = f(x) (since by definition of a total function, every element in its co-domain has an element in its domain). Hence $g(f(x)) \neq h(f(x))$, but we are given that $g \circ f = h \circ f$, which is a contradiction. Hence functions are equal.

1.2.4 Answer 6

No, g doesn't need to be increasing. Put g(x) = f(x) = -x, both f and g are decreasing but $f \circ g = Id$, which is an increasing function.

1.2.5 Anser 7

No, g is not necessarily monotonic. Put $f(x) = x(-1)^x$ and g(x) = |x|. Then $(f \circ g)(x) = |x(-1)^x| = x|(-1)^x| = x$. $f \circ g$ is increasing, f is one-to-one, but g isn't monotonic: it decreases whenever x is negative and increases whenever x is positive.