FOAM - Week 10 & 11

10.1 Algebra, Linear Equations, Linear Inequalities & Trigonometry

Algebra and Trigonometry

Table of contents

- Arithmetic and Algebra
- Order of operations
- Bases and Exponents
- Evaluation of algebraic expressions
- Cartesian coordinates
- Linear Equations
- Liner Inequalities
- System of Liner equations
- Trigonometry, Degrees and Radians

Arithmetic and Algebra

- Two foundational branches of mathematics
- Arithmetic deals with computations of numbers using basic operations like addition, subtraction, multiplication, and division.

$$14 + 8(49 - 6^2 - 10)^3 \div 12 \times 3$$

• Algebra uses numbers and variables (formally defined later) to solve problems.

$$X + y = 2$$

$$3x - y = 5$$

• First – discuss arithmetic of numbers

Arithmetic expression

- Combination of numbers and operations
- Operations
 - o Addition, subtraction, multiplication, division, exponentiation
- Example

Arithmetic expression:
$$14 + 8(49 - 6^2 - 10)^3 \div 12 \times 3$$

Result: 68

How do we compute arithmetic expressions accurately and consistently?

Order of operations

- Collection of rules applied to arithmetic and algebra for accurate and consistent results
- Rules applied in mathematics and computer programming languages
- We should follow a sequence of binary operations in the right order
- Order of operations dictates evaluation of mathematical expressions and solution of equations
- Pneumonic: PEMDAS

PEMDAS

- P Parenthesis
- E Exponential
- **M** Multiplication
- **D** Division
- A Addition
- **S** Subtraction

Example Illustration and introduction to Sympy

• Example 1 -

Compute

$$14 + 8 \times (49 - 36 - 10)^3 \div 12 \times 3$$

Solution

$$14 + 8 \times (49 - 36 - 10)^{3} \div 12 \times 3 =$$

$$= 14 + 8 \times (49 - 36 - 10)^{3} \div 12 \times 3$$

$$= 14 + 8 \times (49 - 36 - 10)^{3} \div 12 \times 3$$

$$= 14 + 8 \times (13 - 10)^{3} \div 12 \times 3$$

$$= 14 + 8 \times (3)^{3} \div 12 \times 3$$

$$= 14 + 8 \times 27 \div 12 \times 3$$

$$= 14 + 216 \div 12 \times 3$$

$$= 14 + 18 \times 3$$

$$= 14 + 54$$

$$= 68$$

Python interpreter

- #Compute the expression given in Example 1 14+8*(49-36-10)**3/12*3
- 68.0

Sympy

```
from sympy import *
expression_string = "14+8*(49-36-10)**3/12*3"
simplified_expression = simplify(expression_string)
simplified_expression

68
```

• Example 2 -

Compute

$$\frac{14 + 8(41 - 6^2 - 10)^3}{12 \times 3}$$

Solution

$$\begin{aligned} \frac{14+8(41-6^2-10)^3}{12\times3} &= \frac{14+8(41-36-10)^3}{12\times3} \\ &= \frac{14+8(-5)^3}{12\times3} \\ &= \frac{14+8\times-125}{12\times3} \\ &= \frac{14-1000}{12\times3} \\ &= \frac{-986}{36} \\ &= \frac{-493}{18} \end{aligned}$$

Using python

-27.38888888888888

Sympy

$$-\frac{493}{18}$$

• Example 3 -

Compute

$$\frac{\frac{3}{4} + \frac{5}{8}}{\frac{11}{12} - \frac{7}{24}}$$

Solution

$$\frac{\frac{\frac{3}{4} + \frac{5}{8}}{\frac{11}{12} - \frac{7}{24}} = \frac{\frac{\frac{6}{8} + \frac{5}{8}}{\frac{22}{24} - \frac{7}{24}} = \frac{\frac{11}{8}}{\frac{15}{24}} = \frac{11}{8} \times \frac{24}{15} = \frac{33}{15} = \frac{11}{5}$$

Sympy

```
[ ]
    from sympy import *
    str_expr="((3/4)+(5/8))/((11/12)-(7/24))"
    expr=simplify(str_expr)
    expr

    11/5
```

10.2 Algebra, Linear Equations, Linear Inequalities & Trigonometry

Important properties

- Arithmetic and Algebra
- Order of Operations
- Cumulative, Associative and Distributive properties
- Properties applied to addition and multiplication
- Not applicable for subtraction and division
- Important to know for simplification of expressions, solution of equations

Cumulative Property

- A binary operation is commutative if changing the order of operands does not change the result
- Let us understand through examples

$$5 \times 4 = 4 \times 5$$

Note that

$$8 - 3 \neq 3 - 8$$

$$5 \div 4 \neq 4 \div 5$$

Formally

$$X + y = y + x$$

$$X \times y = y \times x$$

Associative Property -

- The associative property means that rearranging the parentheses in an expression will not change the result
- Let us understand through examples

$$13 + 42 + 22 = (13 + 42) + 22 = 55 + 22 = 77$$

 $13 + 42 + 22 = 13 + (42 + 22) = 55 + 22 = 77$

$$8 \times 3 \times 15 = (8 \times 3) \times 15 = 24 \times 15 = 360$$

 $8 \times 3 \times 15 = 8 \times (3 \times 15) = 8 \times 45 = 360$

Formally

$$(x + y) + z = x + (y + z)$$

$$(x \times y) \times z = x \times (y \times z)$$

Distributive property -

- More specifically known as distributive property over addition
- According to the distributive property, multiplying the sum of two operands by a number will give the same results as multiplying each operand individually by the number and then adding the products together.
- Let us understand through examples

$$5 \times (4 + 6) = 5 \times 10 = 50$$

 $5 \times (4 + 6) = 5 \times 4 + 5 \times 6 = 20 + 30 = 50$

Formally

$$x \times (y + z) = x \times y + x \times z$$

10.3 Algebra, Linear Equations, Linear Inequalities & Trigonometry

Constants and Variables

- Constants and variables are used to represent quantities
- Use alphabets to represent both
- Constants quantities that have fixed value
- Variables quantities that have fixed value
- Variables quantities whose values can represent a range of values. Can take any value in the specified range
- Commonly used alphabets for variables: x, y, z
- Commonly used alphabets for constants: a, b, c
- Example

$$ax + by = c$$

Greek letters also used to represent constants and variables

Expressions and Equations

- Variables and constants can be combined to form expressions
- Examples

$$3x + 4y$$

$$ax^2 + bx + c$$

$$xyz$$

$$12$$

- Understand monomials and polynomials
- Multiple expressions that are connected with equality form equations
- Examples

$$3 x + 4 y = 12$$

 $xyz = 12$
 $4 x + 8 y = 3 x + 10 y$

Expressions

- Variables and constants can be combined to form expressions
- Examples

Understand monomials and polynomials

$$a \sin(x)$$

 $\sin(x) + \exp(y)$

Simplification of expressions

Example 1

Simplify the expression

$$12x + 9y + 10x - 4y$$

Solution

$$12x + 9y + 10x - 4y = 12x + 10x + 9y - 4y$$
(Commutative property)
= $x(12+10) + y(9-4)$ (Distributive property)
= $22x + 5y$

· End Solution

Example 2

Simplify the expression

$$12x + 9xy + 10xy - 4y$$

Solution

$$12x + 9xy + 10xy - 4y = 12x + (9+10)xy - 4y$$
(Distributive property)
= $12x + 19xy - 4y$

Exponentiation, Bases, and Exponents (or Powers)

- Exponentiation is a mathematical operation, written as b^n , involving two numbers, the base b and the exponent or power n.
- Pronounce as *b* raised to the power of *n*.
- When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, b^n is the product of multiplying the base n times

$$b^n = \underbrace{b \times b \times \cdots \times b}_{n \text{ times}}$$

Example

$$4^5 = 4 \times 4 \times 4 \times 4 \times 4 = 1024$$

 $e^3 = e \times e \times e = 2.7182 \times 2.7182 \times 2.7182 = 20.0855$

Rules for Exponentiation

$$(a^n) \times (a^m) = a^{n+m}$$

 $5^3 \times 5^2 = 125 \times 25$
 $= 3125$

Using the above rule, we can redo the calculation as

$$5^3 \times 5^2 = 5^{3+2}$$

= 5^5
= 3125

Another rule is given by,

$$\frac{a^n}{a^m} = a^{n-m}$$

An accompanying example would be,

$$\frac{3^5}{3^1} = 3^{5-1} = 3^4 = 81$$

The third rule is.

$$\boxed{(ab)^n = a^n b^n}$$

$$(12 \times 12)^2 = 12^2 \times 12^2 = 144 \times 144 = 20736$$

The fourth rule would be,

$$oxed{\left(rac{a}{b}
ight)^n=rac{a^n}{b^n}} \ oxed{\left(rac{4}{2}
ight)^2=rac{4^2}{2^2}=rac{16}{4}=4}$$

And finally, the fifth rule is given by,

$$(a^m)^n = a^{mn}$$

 $(2^3)^2 = 2^6 = 64$

Examples -

Example 1

Simplify

$$\left(\frac{2a^4}{3b^5}\right)^3$$

Solution

$$egin{aligned} \left(rac{2a^4}{3b^5}
ight)^3 &= rac{2a^4}{3b^5} imes rac{2a^4}{3b^5} imes rac{2a^4}{3b^5} \\ &= rac{2 imes 2 imes 2 imes a^4 imes a^4 imes a^4}{3 imes 3 imes 3 imes b^5 imes b^5 imes b^5} \end{aligned}$$

Here Rule 1 is applied $(a^n) imes (a^m) = a^{n+m}$

$$=\frac{8a^{4+4+4}}{27b^{5+5+5}}$$
$$=\frac{8a^{12}}{27b^{15}}$$

· End Solution

Example 2

Simplify $(4x)^3$

Solution

Rule 3 is applied in this example $(ab)^n = a^n b^n$

$$(4x)^3 = 4^3 \cdot x^3 = 64x^3$$

· End Solution

Example 3

Simplify $(6y^4)^3$

Solution

Rule 3 is applied here also.

$$(6y^4)^3 = 6^3 \cdot y^{4 \times 3} = 216y^{12}$$

· End Solution

10.4 Algebra, Linear Equations, Linear Inequalities & Trigonometry

Evaluation of Algebraic Expressions

- Determine the value of expression for a given value of each variable in the expression.
- We replace each variable with given values and then simplify the resulting expression using the order of operations.
- Example:

Given
$$t = 5$$
, $p = -2$
$$\left(\frac{2t}{3p^2}\right)^5$$

Objective is to thoroughly use python and sympy to solve

Evaluation of Algebraic Expressions – Example

• Example 1:

Given
$$t=4, p=-2,$$
 evaluate
$$\left(\frac{2t}{3p^2}\right)^5$$

Solution

$$\left(\frac{2t}{3p^2}\right)^5 = \left(\frac{2\times 4}{3\times 4}\right)^5 = \left(\frac{8}{12}\right)^5 = \left(\frac{2}{3}\right)^5 = \left(\frac{32}{243}\right)$$

python module fractions -

```
from fractions import Fraction

t = 4
p = -2
numerator = (2*t)**5
denominator = (3*(p**2))**5
numerical_result = numerator/denominator
fractional_result = Fraction(numerator, denominator)
print(f"Result in decimals = {numerical_result}")
print(f"Result in fractions = {fractional_result}")
```

Result in decimals = 0.13168724279835392 Result in fractions = 32/243

python library sympy -

```
from sympy import *

t = Symbol('t')
p = Symbol('p')

expression_string="((2*t)/(3*(p**2)))**5"
init_printing()

simplified_expression = simplify(expression_string)
print(f"Simplified expression = ")
print(simplified_expression)

evaluated_expression = simplified_expression.subs({t:4, p: -2})
print(f"Evaluated expression at t=4 and p=-2 is ")
print(evaluated_expression)
```

Simplified expression = 32*t**5/(243*p**10) Evaluated expression at t=4 and p=-2 is 32/243

• Example 2:

Given x=5, y=2, evaluate

$$\frac{12x + 9y}{5x - 4y}$$

Solution

$$\frac{12x + 9y}{5x - 4y} = \frac{(12 \times 5) + (9 \times 2)}{(5 \times 5) - (4 \times 2)}$$
$$= \frac{60 + 18}{25 - 8}$$
$$= \frac{78}{17}$$

Let's try out using sympy and fraction module.

python module fractions -

```
from fractions import Fraction
x = 5
y = 2
numerator = (12*x)+(9*y)
denominator = (5*x)-(4*y)
numerical_result = numerator/denominator
fractional_result = Fraction(numerator, denominator)
print(f"Result in decimals = {numerical_result}")
print(f"Result in fractions = {fractional_result}")
```

Result in decimals = 4.588235294117647 Result in fractions = 78/17

python library sympy -

```
from sympy import *
    x,y = symbols('x y')
    expression_string = "(12*x+9*y)/(5*x-4*y)"

simplified_expression = simplify(expression_string)
    pprint(f"Simplified expression = ")
    pprint(simplified_expression)

evaluated_expression = simplified_expression.subs({x:5, y: 2})
    print(f"Evaluated expression at x=5 and y=2 is ")
    pprint(evaluated_expression)
```

```
Simplified expression =

3·(4·x + 3·y)

-----

5·x - 4·y

Evaluated expression at x=5 and y=2 is

78

---

17
```

11.1 Algebra, Linear Equations, Linear Inequalities & Trigonometry

Table of contents

- Arithmetic and Algebra
- Order of operations
- Bases and Exponents
- Evaluation of algebraic expressions
- Cartesian coordinates
- Linear Equations
- Liner Inequalities
- System of Liner equations
- Trigonometry, Degrees and Radians

Recap -

Evaluation of expressions – Using Sympy in cutting edge research

Later in the chapter, I used the same transfer-matrix method to derive reflectance formulas for more complicated multi-layer structures—such as graphene with a layer of an optically transparent impurity on top of it. Here I used a symbolic mathematics library (SymPy [27]) to calculate the correct result; getting it right and verifying it with pencil and paper would have been too tedious and too time-consuming for me.

11.2 Algebra, Linear Equations, Linear Inequalities & Trigonometry

Cartesian coordinates

- A coordinate system is used to uniquely used to specify points or positions in space.
- Focus on 2D plane for explanation for now
- Carsian coordinate system most widely used
- Points specified with pair of numbers
- Numbers are signed distances from two fixed perpendicular oriented reference lines.
- Reference lines are called coordinate axis.
- The point where they meet is called origin
- One axis (mostly horizontal) called x axis, other referred as y axis

https://en.wikipedia.org/wiki/Cartesian_coordinate_system

Cartesian coordinates

- First fix coordinate axes x and y as per our choice.
- Intersection point is the origin (0,0)
- Green point 2 units along x axis and 3 unit far along y axis -> point represented by the pair (2,3).
- Red point (-3,1)
- Coordinate axis divide the coordinate plane into four region called quadrants.
- Sequentially numbered in counterclockwise direction I, II, III, IV.
- First quadrant: all numbers of the pairs positive
- Second quadrant: x negative, y positive
- Third quadrant: all negative
- Fourth quadrant: x positive, y negative

Example to practice


```
import matplotlib.pyplot as plt
import numpy as np
x = [2, 5, -6, 0, 4, -3, 0]
y = [5, 0, 0, 6, -7, 4, 6]
color = ['m','g','r','y','b','c','k']
fig, ax = plt.subplots()
plt.scatter(x, y, s=100 , marker='o', c=color)
ax.spines['top'].set_color('none')
ax.spines['bottom'].set_position('zero')
ax.spines['left'].set_position('zero')
ax.spines['right'].set_color('none')
ax.set_xlim([-8,8])
ax.set_ylim([-8,8])
ax.set_xticks(range(-8, 8, 1))
ax.set_yticks(range(-8, 8, 1))
ax.axis('equal')
plt.grid()
plt.show()
```

Example 2 – Which of the following cartesian systems?

Example 3 - A Conceptual Example

One choice of cartesian coordinate system

Another choice of cartesian coordinate system

Coordinate transformations

 Fundamental to many data science and ML concepts

1. Dimensionality reduction

2. Principal Component Analysis

3. Singular Value Decomposition

4. Eigenvalues and Eigen matrix

Coordinate systems -

• Cartesian coordinate system (3D)

Polar coordinate systems

Spherical coordinate systems

• Curvilinear coordinate systems

• Generalize coordinate system

