Basic bistable element.

Figure 6.1

SR latch. (a) Logic diagrams. (b) Function table where Q^+ denotes the output Q in response to the inputs. (c) Two logic symbols.

Figure 6.2

Inputs		Outputs	
S	R	Q^+ \bar{Q}^+	
0	0	$Q \bar{Q}$	
0	1	0 1	
1	0	1 0	
1	1	0* 0*	

*Unpredictable behavior will result if inputs return to 0 simultaneously (b)

An application of the *SR* latch. (a) Effects of contact bounce. (b) A switch debouncer.

\overline{SR} latch. (a) Logic diagrams. (b) Function table where Q^+ denotes the output Q in response to the inputs. (c) Two logic symbols.

Figure 6.4

Inputs		Outputs		
Ŝ	\bar{R}	Q^+	\bar{Q}^+	
0	0	1*	1*	
0	1	1	0	
1	0	0	1	
1	1	Q	\bar{Q}	

*Unpredictable behavior will result if inputs return to 1 simultaneously (b)

Gated *SR* latch. (a) Logic diagram. (b) Function table where Q^+ denotes the output Q in response to the inputs. (c) Two logic symbols.

Figure 6.5

Inputs		Outputs		
S	R	C	Q^+	\bar{Q}^+
0	0	1	Q	ō
0	1	1	0	1
1	0	1	1	0
1	1	1	1*	1*
X	X	0	Q	\bar{Q}

*Unpredictable behavior will result if S and R return to 0 simultaneously or C returns to 0 while S and R are 1 (b)

Gated *D* latch. (a) Logic diagram. (b) Function table where *Q*⁺ denotes the output *Q* in response to the inputs. (c) Two logic symbols.

Figure 6.6

Propagation delays in an SR latch.

Figure 6.7

Timing diagram for an SR latch.

Figure 6.8

Minimum pulse width constraint.

Figure 6.9

Timing diagram for a gated *D* latch.

Figure 6.10

Illustration of an unpredictable response in a gated *D* latch.

Figure 6.11

Master-slave *SR* flip-flop. (a) Logic diagram using gated *SR* latches. (b) Flip-flop action during the control signal. (c) Function table where Q⁺ denotes the output Q in response to the inputs. (c) Two logic symbols.

Figure 6.12 Master-slave SR flip-flop Clock (C) Master Slave Master disabled Master enabled Master disabled Clock: Slave enabled Slave disabled Slave enabled Time (6) Inputs Outputs C Undefined Undefined 0

(d)

(c)

Timing diagram for a master-slave SR flip-flop.

Master-slave *JK* flip-flop. (a) Logic diagram using gated *SR* latches. (b) Function table where *Q*⁺ denotes the output *Q* in response to the inputs. (c) Two logic symbols.

Inputs	Ou	tputs
J K C	· Q+	\overline{Q}^{+}
ت ه ه	Z Q	$\overline{\mathcal{Q}}$
0 1	~ 0	1
ı o	ı	0
1 1	Z ē	Q
x x o	Q	\overline{Q}

(b)

(c)

Timing diagram for master-slave *JK* flip-flop.

Master-slave *D* flip-flop. (a) Logic diagram using master-slave *SR* flip-flop (b) Two logic symbols.

Figure 6.16

Master-slave *T* flip-flop. (a) Logic diagram using a master-slave *JK* flip-flop. (b) Function table where *Q*⁺ denotes the output *Q* in response to the inputs. (c) Two logic symbols.

Positive-edge-triggered *D* flip-flop. (a) Logic diagram. (b) Function table where *Q*⁺ denotes the output *Q* in response to the inputs. (c) Two logic symbols.

Timing diagram for a positive-edge-triggered *D* flip-flop.

Figure 6.19

Negative-edge-triggered *D* flip-flop. (a) Function table where Q^+ denotes the output Q in response to the inputs. (b) Two logic symbols.

Figure 6.20

Positive-edge-triggered D flip-flop with asynchronous inputs. (a) Logic diagram. (b) Function table where Q^+ denotes the output Q in response to the inputs. (c) Two logic symbols.

Inputs				Outputs		
\overline{PR}	\overline{CLR}	D	C	Q+	\overline{Q}^*	
0	1	x	x	1	0	
1	o	\mathbf{x}	\mathbf{x}	o	1	
0	0	\mathbf{x}	x	1*	1 *	
1	1	0	1	0	1	
1	1	1	1	1	0	
1	1	\mathbf{x}	0	Q	\bar{Q}	
1	1	\mathbf{x}	1	Q	$\bar{\varrho}$	

*Unpredictable behavior will result if \overline{PR} and \overline{CLR} return to 1 simultaneously

(b)

$$\begin{array}{c|c}
\overline{PR} & \overline{PR} \\
\hline
D & Q \\
\hline
C & \overline{Q} \\
\hline
CLR & \overline{CLR}
\end{array}$$

$$\begin{array}{c|c}
\overline{PR} & \overline{PR} \\
\hline
D & Q \\
\hline
CLR & \overline{Q} \\
\hline
CLR & \overline{CLR}
\end{array}$$

(c)

Positive-edge-triggered JK flip-flop. (a) Logic diagram. (b) Function table where Q^+ denotes the output Q in response to the inputs. (c) Two logic symbols.

Figure 6.22

	Inp	uts	Outp	uts	
J	K	С	Q^+	\overline{Q}^+	
0	0	1	Q	\bar{Q}	
0	1	1	0	1	
1	0	1	1	0	
1	1	1	\bar{Q}	Q	
X	X	0	Q	\bar{Q}	
X	X	1	Q	\bar{Q}	
		(b)	1		
	_		_		
	Q		- J		Q
			->0	2	
	\bar{Q}	- 175	K		Q

Positive-edge-triggered *T* flip-flop. (a) Logic diagram. (b) Function table where Q⁺ denotes the output Q in response to the inputs. (c) Two logic symbols.

Figure 6.23

Master-slave *JK* flip-flop with data lockout. (a) Logic diagram. (b) Two logic symbols.

Figure 6.24

Characteristic equations. (a) Derivation of characteristic equation for an *SR* flip-flop. (b) Summary of characteristic equations.

Flip-flop type	Characteristic equation		
SR	$Q^+ = S + \overline{R}Q (SR = 0)$		
JK	$Q^+ = J\overline{Q} + \overline{K}Q$		
D	$Q^+ = D$		
T	$Q^+ = T\overline{Q} + \overline{T}Q = T \oplus Q$		
	(<i>b</i>)		

Serial-in, serial-out unidirectional shift register.

Serial-in, parallel-out unidirectional shift register.

Figure 6.27

Parallel-in unidirectional shift register.

Figure 6.28

Universal shift register. (a) Logic diagram. (b) Mode control. (c) Symbol.

State diagram of a counter.

Figure 6.30

Four-bit binary ripple counter. (a) Logic diagram. (b) Timing diagram. (c) Counting sequence.

Four-bit synchronous binary counter.

Four-bit synchronous binary counter variation.

Four-bit synchronous binary counter with parallel load inputs. (a) Logic diagram. (b) Symbol.

Synchronous mod-10 counter. (a) Connections. (b) Counting sequence.

8-bit synchronous binary counter constructed from two 4-bit synchronous binary counters.

Mod-4 ring counter. (a) Logic diagram. (b) Counting sequence.

Q_A	Q_B	Q_C	Q_D
1	0	0	0
0	1	0	0
0	0	1	0
0	0	0	1
1	0	0	0
	et	tc.	
	(b)	

Mod-8 twisted-ring counter. (a) Logic diagram. (b) Counting sequence.

Mod-7 twisted-ring counter. (a) Logic diagram. (b) Counting sequence.

General structure of a synchronous mod-6 counter using positive-edge-triggered *JK* flip-flops.

Figure 6.40

Determination of the minimal-sum expressions for a synchronous mod-6 counter using clocked *JK* flip-flops.

Logic diagram of a synchronous mod-6 counter.

Figure 6.42

Determination of the minimal-sum expressions for a synchronous mod-6 counter using clocked *D* flip-flops.

 \underline{T}

Determination of the minimal-sum expressions for a synchronous mod-6 counter using clocked *T* flip-flops.

Determination of the minimal-sum expressions for a synchronous mod-6 counter using clocked *SR* flip-flops.

Complete state diagram for the synchronous mod-6 counter of Fig. 6.42.

Figure 6.46

