

WHAT IS CLAIMED IS:

- 1 1. A magnetoresistive sensor comprising:
2 a stack of magnetoresistive layers including an anti-ferromagnetic layer, a pinned
3 layer, a non-magnetic layer, and a free layer;
4 an underlayer of said stack of magnetoresistive layers;
5 a magnetic domain control film; and
6 a pair of electrode films for supplying current to said stack of magnetoresistive
7 layers;
8 wherein a center position of an upper surface and a lower surface of said magnetic
9 domain control film is positioned within a range of an upper surface and a lower surface of said
10 free layer; and
11 further comprising:
12 an underlayer formed below said magnetic domain control film; and
13 an amorphous metal film layer formed below said underlayer for controlling
14 crystallization of said underlayer.

- 1 2. A magnetoresistive sensor according to claim 1, wherein
2 said stack of magnetoresistive layers comprises said underlayer, said anti-
3 ferromagnetic layer, said pinned layer, said non-magnetic layer, said free layer and a protection
4 layer formed in this order from the lower layer to the upper layer.

- 1 3. A magnetoresistive sensor according to claim 1, wherein
2 said stack of magnetoresistive layers comprises said underlayer, said anti-
3 ferromagnetic layer, said pinned layer, said non-magnetic layer, said free layer, said upper non-
4 magnetic layer, said upper pinned layer, said upper anti-ferromagnetic layer and a protection
5 layer formed in this order from the lower layer to the upper layer.

- 1 4. A magnetoresistive sensor according to claim 1, wherein
2 said stack of magnetoresistive layers comprises said underlayer, said free layer,
3 said upper non-magnetic layer, said upper pinned layer, said upper anti-ferromagnetic layer and a
4 protection layer formed in this order from the lower layer to the upper layer.

1 5. A magnetoresistive sensor according to claim 1, wherein
2 said amorphous metal film layer is formed on any one of surfaces within a range
3 from a lower surface of said underlayer to an upper surface of said non-magnetic layer of said
4 stack of magnetoresistive layers.

1 6. A magnetoresistive sensor according to claim 1, wherein
2 said magnetoresistive sensor has a structure in which a lower surface of said free
3 layer is flush with a lower surface of said magnetic domain control film, and a bias magnetic
4 field of said magnetic domain control film is mainly applied to said free layer.

1 7. A magnetoresistive sensor according to claim 6, wherein
2 said underlayer is formed of Cr or Cr alloy and comprise a body-centered cubic
3 lattice (BCC) polycrystal thin film, and polycrystal orientation to formed plane is isometric
4 random crystal orientation having no particular crystal orientation.

1 8. A magnetoresistive sensor according to claim 1, wherein
2 said magnetic domain control film is formed of a Co alloy film, said underlayer
3 disposed below said magnetic control film controls a crystallization state of said magnetic
4 domain control film, and said amorphous metal film layer controls a crystallization state of said
5 underlayer.

1 9. A magnetoresistive sensor according to claim 1, wherein
2 said magnetic domain control film is formed of a Co alloy film, said underlayer is
3 formed of a Cr or Cr alloy film, and said amorphous metal film layer is formed of an Ni series
4 alloy or Co series alloy film.

1 10. A magnetoresistive head constituted by using a magnetoresistive sensor
2 according to claim 1.

1 11. A magnetoresistive sensor comprising:
2 a stack of magnetoresistive layers including an anti-ferromagnetic layer, a pinned
3 layer, a non-magnetic layer, and a free layer;
4 an underlayer of said stack of magnetoresistive layers;

5 a magnetic domain control film; and
6 a pair of electrode films for supplying current to said stack of magnetoresistive
7 layers;
8 wherein a center position of an upper surface and a lower surface of said free
9 layer is positioned within range of an upper surface and a lower surface at a position near an end
10 of said magnetic domain control film; and
11 further comprising:
12 an underlayer formed below said magnetic domain control film and
13 an amorphous metal film layer formed below said underlayer for controlling
14 crystallization state of said underlayer.

1 12. A magnetoresistive sensor according to claim 11, wherein
2 said stack of magnetoresistive layers comprises said underlayer, said anti-
3 ferromagnetic layer, said pinned layer, said non-magnetic layer, said free layer and a protection
4 layer formed in this order from the lower layer to the upper layer.

1 13. A magnetoresistive sensor according to claim 11, wherein
2 said stack of magnetoresistive layers comprises said underlayer, said anti-
3 ferromagnetic layer, said pinned layer, said non-magnetic layer, said free layer, said upper non-
4 magnetic layer, said upper pinned layer, said upper anti-ferromagnetic layer and a protection
5 layer formed in this order from the lower layer to the upper layer.

1 14. A magnetoresistive sensor according to claim 11, wherein
2 said stack of magnetoresistive layers comprises said underlayer, said free layer,
3 said upper non-magnetic layer, said upper pinned layer, said upper anti-ferromagnetic layer and a
4 protection layer formed in this order from the lower layer to the upper layer.

1 15. A magnetoresistive sensor according to claim 11, wherein
2 said amorphous metal film layer is formed on any one of surfaces within a range
3 from a lower surface of said underlayer to an upper surface of said non-magnetic layer of said
4 stack of magnetoresistive layers.

1 16. A magnetoresistive sensor according to claim 11, wherein
2 said magnetoresistive sensor has a structure in which a lower surface of said free
3 layer is flush with a lower surface of said magnetic domain control film, and a bias magnetic
4 field of said magnetic domain control film is mainly applied to said free layer.

1 17. A magnetoresistive sensor according to claim 16, wherein
2 said underlayer is formed of Cr or Cr alloy and comprise a body-centered cubic
3 lattice (BCC) polycrystal thin film, and polycrystal orientation to formed plane is isometric
4 random crystal orientation having no particular crystal orientation.

1 18. A magnetoresistive sensor according to claim 11, wherein
2 said magnetic domain control film is formed of a Co alloy film, said underlayer
3 disposed below said magnetic control film controls a crystallization state of said magnetic
4 domain control film, and said amorphous metal film layer controls a crystallization state of said
5 underlayer.

1 19. A magnetoresistive sensor according to claim 11, wherein
2 said magnetic domain control film is formed of a Co alloy film, said underlayer is
3 formed of a Cr or Cr alloy film, and said amorphous metal film layer is formed of an Ni series
4 alloy or Co series alloy film.

1 20. A magnetoresistive head constituted by using a magnetoresistive sensor
2 according to claim 11.

1 21. A method of manufacturing a magnetoresistive sensor comprising:
2 (1) forming a multi-layered film containing an anti-ferromagnetic layer, a pinned
3 layer, a non-magnetic layer and a free layer continuously and collectively in a vacuum on a
4 substrate;
5 (2) applying a lift-off resist to form a track width on said continuous film;
6 (3) removing a region not applied with said lift-off resist to said non-magnetic
7 layer, to said pinned layer, to said anti-ferromagnetic layer, or to an intermediate layer of said
8 anti-ferromagnetic layer by utilizing ion beams or the like with a good reproducibility;

9 (4) forming an amorphous layer, an underlayer, a magnetic domain control layer
10 and an electrode film layer at a region in which a portion of said multi-layered film is removed;
11 and

12 (5) removing said resist for lift-off.

1 22. A method of manufacturing a magnetoresistive sensor according to claim
2 21, wherein

3 forming said amorphous metal film layer, a surface oxidation layer of said
4 amorphous metal film layer, said underlayer, said magnetic domain control film and said
5 electrode film are conducted continuously in one identical vacuum vessel.