```
In [1]:
         1 pickles = {}
         2 os.system('ls ../model_spectra/pickles/*.fits > list')
            with open('list') as a:
                z = a.read().splitlines()
         5
            for line in z:
         6
                f = fits.getdata(line)
         7
                fhead = fits.getheader(line)
         8
                pickles.update({fhead['COMMENT1'].split(' ')[2]:f})
         9
            import pickle
        10
            pickle.dump(pickles,open('../model_spectra/pickle_models.pkl','wb'))
```

```
In [2]: 1 spt = [key for key in pickles.keys()]
2 spt
```

```
Out[2]: ['05V',
           '09V',
           'B0V',
           'B1V',
           'B3V',
           'B57V',
           'B8V',
           'B9V',
           'A0V',
           'A2V',
           'A3V',
           'A5V',
           'A7V',
           'F0V',
           'F2V',
           'F5V',
           'F6V',
           'F8V',
           'G0V',
           'G2V',
           'G5V',
           'G8V',
           'KOV',
           'K2V',
           'K3V',
           'K4V',
           'K5V',
           'K7V',
           'MOV',
           'M1V',
           'M2V',
           'M2.5V',
           'M3V',
           'M4V',
           'M5V',
           'M6V',
           '08III',
           'B12III',
           'B3III',
           'B5III',
           'B9III',
           'AOIII',
           'A3III',
           'A5III',
           'A7III',
           'FOIII',
           'F2III',
           'F5III',
           'GOIII',
           'G5III',
           'G8III',
           'KOIII',
           'K1III',
           'K2III',
           'K3III',
           'K4III',
           'K5III',
```

```
'MOIII',
'M1III',
'M2III',
'M3III',
'M4III',
'M5III',
'M6III',
'M7III',
'M8III',
'M9III',
'M10III']
```


f6535 = pd.read_table('../filter_curves/magaox_wfs-open_bs-65-35_atm.da In [4]: names=['wavelength [m]', 'transmission'], delim whites 2 f6535['wavelength [nm]'] = f6535['wavelength [m]']*u.m.to(u.nm) 3 4 f6535['normalized transmission'] = f6535['transmission']/np.max(f6535[' 5 fhair = pd.read_table('../filter curves/magaox wfs-open_bs-halpha-ir.da 7 names=['wavelength [m]','transmission'], delim_whites fhair['wavelength [nm]'] = fhair['wavelength [m]']*u.m.to(u.nm) fhair['normalized transmission'] = fhair['transmission']/np.max(fhair[' fhair 10

Out[4]:

	wavelength [m]	transmission	wavelength [nm]	normalized transmission
0	3.990000e-07	0.000000e+00	399.0	0.00000e+00
1	4.000000e-07	1.471580e-09	400.0	7.498994e-09
2	4.010000e-07	1.882230e-09	401.0	9.591616e-09
3	4.020000e-07	1.715430e-09	402.0	8.741624e-09
4	4.030000e-07	3.365860e-09	403.0	1.715202e-08
697	1.096000e-06	2.995650e-05	1096.0	1.526547e-04
698	1.097000e-06	2.358150e-05	1097.0	1.201685e-04
699	1.098000e-06	1.770760e-05	1098.0	9.023579e-05
700	1.099000e-06	1.305950e-05	1099.0	6.654963e-05
701	1.100000e-06	0.000000e+00	1100.0	0.000000e+00

702 rows × 4 columns

Out[6]:

	wavelength [nm]	G	eG	ВР	eBP	RP	eRP
0	320.0	2.373670e-08	2.341033e-11	0.0	99.99	0.0	99.99
1	321.0	1.577744e-07	1.540369e-10	0.0	99.99	0.0	99.99
2	322.0	9.085548e-07	8.780532e-10	0.0	99.99	0.0	99.99
3	323.0	4.780723e-06	4.573254e-09	0.0	99.99	0.0	99.99
4	324.0	2.394281e-05	2.266986e-08	0.0	99.99	0.0	99.99
776	1096.0	0.000000e+00	9.999000e+01	0.0	99.99	0.0	99.99
777	1097.0	0.000000e+00	9.999000e+01	0.0	99.99	0.0	99.99
778	1098.0	0.000000e+00	9.999000e+01	0.0	99.99	0.0	99.99
779	1099.0	0.000000e+00	9.999000e+01	0.0	99.99	0.0	99.99
780	1100.0	0.000000e+00	9.999000e+01	0.0	99.99	0.0	99.99

781 rows × 7 columns

```
In [7]: 1 %matplotlib notebook
2 plt.plot(g['wavelength [nm]']*u.nm.to(u.um),g['G'])
3 plt.plot(g['wavelength [nm]']*u.nm.to(u.um),g['BP'])
4 plt.plot(g['wavelength [nm]']*u.nm.to(u.um),g['RP'])
5 plt.xlabel('Wavelength [$\mu$m]')
6 plt.ylabel('Transmission')
7 plt.tight_layout()
```



```
directory = '/Users/loganpearce/Dropbox/Uarizona/research/filter_curves
In [8]:
         2
         3
            %matplotlib notebook
         4
            #plt.plot(g['wavelength [nm]']*u.nm.to(u.um),g['normalized G'], label='
            plt.plot(f6535['wavelength [m]']*u.m.to(u.um),f6535['normalized transmi
            plt.plot(fhair['wavelength [m]']*u.m.to(u.um),fhair['normalized transmi
            plt.xlabel('Wavelength [$\mu$m]')
            plt.ylabel('Transmission')
            plt.legend(fontsize=15,loc='upper left')
            plt.tight_layout()
        11
           plt.grid(ls=':')
            plt.savefig('../MagAO-X_public/WFS-curves.png')
            plt.savefig(directory+'WFS-curves.png')
```



```
g['normalized G'] = g['G']/np.max(g['G'])
In [10]:
             g['normalized BP'] = g['BP']/np.max(g['BP'])
           3
             g['normalized RP'] = g['RP']/np.max(g['RP'])
           5
             %matplotlib notebook
             plt.plot(g['wavelength [nm]'],g['normalized G'], label='Gaia g',color='
             plt.plot(f6535['wavelength [nm]'],f6535['normalized transmission'], lab
             plt.plot(fhair['wavelength [nm]'],fhair['normalized transmission'], lab
             plt.xlabel('Wavelength [nm]')
             plt.ylabel('Transmission')
          10
          11
             plt.legend(fontsize=15,loc='upper left')
          12
             plt.tight_layout()
          13
             plt.grid(ls=':')
             plt.savefig('../MagAO-X public/WFS-Gaia-curves.png')
             plt.savefig(directory+'WFS-Gaia-curves.png')
```



```
In [11]:
                          # Determine step sizes for each filter set:
                     2
                          dl_f6535 = np.mean([f6535['wavelength [nm]'][i+1] - f6535['wavelength [
                     3
                                               for i in range(1,len(f6535['wavelength [nm]'])-1)])
                     4
                         dl_fhair = np.mean([fhair['wavelength [nm]'][i+1] - fhair['wavelength [
                     5
                                               for i in range(1,len(fhair['wavelength [nm]'])-1)])
                     6
                          dl_g = np.mean([g['wavelength [nm]'][i+1] - g['wavelength [nm]'][i]
                     7
                                                for i in range(1,len(g['wavelength [nm]'])-1)])
                     8
                     9
                          # Determine effective wavelength:
                   10
                          GaiaG_lambda0 = np.sum(g['wavelength [nm]']*g['normalized G']* dl_g)/
                   11
                                                 np.sum(g['normalized G']* dl g)
                   12
                          GaiaBP_lambda0 = np.sum(g['wavelength [nm]']*g['normalized BP']* dl_g)/
                   13
                                                 np.sum(g['normalized BP']* dl g)
                   14
                          GaiaRP lambda0 = np.sum(g['wavelength [nm]']*g['normalized RP']* dl g)/
                   15
                                                 np.sum(g['normalized RP']* dl_g)
                   16
                          f6535_lambda0 = np.sum(f6535['wavelength [nm]']*f6535['normalized trans
                   17
                                                 np.sum(f6535['normalized transmission']* dl_f6535)
                          fhair_lambda0 = np.sum(fhair['wavelength [nm]']*fhair['normalized trans
                   18
                   19
                                                 np.sum(fhair['normalized transmission']* dl fhair)
                          dl_f6535 = np.mean([f6535['wavelength [nm]'][i+1] - f6535['wavelength [
In [12]:
                     1
                     2
                                               for i in range(1,len(f6535['wavelength [nm]'])-1)])
                     3
                         dl fhair = np.mean([fhair['wavelength [nm]'][i+1] - fhair['wavelength [
                                               for i in range(1,len(fhair['wavelength [nm]'])-1)])
                     4
                     5
                         dl_g = np.mean([g['wavelength [nm]'][i+1] - g['wavelength [nm]'][i]
                                               for i in range(1,len(g['wavelength [nm]'])-1)])
                          dl_g,dl_f6535,dl fhair
Out[12]: (1.0, 0.99999999999999, 1.0)
In [13]:
                     1
                         k = fits.getdata(z[0])
                     2
                         k wavenm = k['wavelength']*u.AA.to(u.nm)
                     3
                         from scipy.interpolate import interpld
                     4
                     5
                         spl = interpld(k wavenm, k['flux'])
                     7
                         F lambda0 g = spl(GaiaG lambda0)
                         F lambda0 bp = spl(GaiaBP lambda0)
                         F lambda0 rp = spl(GaiaRP lambda0)
                         F lambda0 f6535 = spl(f6535 lambda0)
                         F lambda0 fhair = spl(fhair lambda0)
                   11
                   12
                   13
                         # Colors:
                   14
                         GaiaG to f6535 = -2.5*np.log10(F lambda0 g) - (-2.5*np.log10(F l
                         GaiaG to fhair = -2.5*np.log10(F lambda0 g) - (-2.5*np.log10(F lambda0
                          GaiaBP RP = -2.5*np.log10(F lambda0 bp) - (-2.5*np.log10(F lambda0 rp))
                   16
                          print(GaiaBP RP, GaiaG to f6535, GaiaG to fhair)
```

-1.7532864681297404 -0.913168607991345 -1.1443593022930152

```
In [14]:
                                1
                                        from scipy.interpolate import interpld
                                2
                                3
                                       G6535_colors = np.array([])
                                4
                                       GHaIR_colors = np.array([])
                                5
                                       BPRP_colors = np.array([])
                                7
                                        for SpT in spt:
                                8
                                                    k = pickles[SpT]
                                9
                                                    k wavenm = k['wavelength']*u.AA.to(u.nm)
                             10
                             11
                                                    from scipy.interpolate import interpld
                                                    spl = interpld(k wavenm, k['flux'])
                             12
                             13
                             14
                                                    F lambda0 g = spl(GaiaG lambda0)
                             15
                                                    F_lambda0_bp = spl(GaiaBP_lambda0)
                             16
                                                    F_lambda0_rp = spl(GaiaRP_lambda0)
                             17
                                                    F lambda0 f6535 = spl(f6535 lambda0)
                                                    F lambda0 fhair = spl(fhair lambda0)
                             18
                             19
                                                    # Colors:
                             20
                             21
                                                    GaiaG to f6535 = -2.5*np.log10(F_lambda0_g) - (-2.5*np.log10(F_lambda0_g))
                             22
                                                    GaiaG to fhair = -2.5*np.log10(F_lambda0_g) - (-2.5*np.log10(F_lambda0_g))
                             23
                                                    GaiaBP_RP = -2.5*np.log10(F_lambda0_bp) - (-2.5*np.log10(F_lambda0_bp)) - (-2.5*np.log10(F_l
                             24
                             25
                                                    G6535 colors = np.append(G6535 colors, GaiaG to f6535)
                             26
                                                    GHaIR_colors = np.append(GHaIR_colors, GaiaG_to_fhair)
                             27
                                                    BPRP colors = np.append(BPRP colors, GaiaBP RP)
                             28
                             29
                                       p wfs = pd.DataFrame()
                                       p_wfs['SpT'],p_wfs['Gaia BP-RP'],p_wfs['G - 65/35 color'],p_wfs['G - Ha
                             30
                             31
                                                                                        G6535 colors, GHaIR colors
                             32 p_wfs
```

Out[14]:

	SpT	Gaia BP-RP	G - 65/35 color	G - Ha/IR color
0	O5V	-1.753286	-0.913169	-1.144359
1	O9V	-1.759123	-0.876533	-1.122929
2	B0V	-1.691478	-0.858265	-1.115505
3	B1V	-1.576876	-0.816744	-1.074639
4	B3V	-1.522363	-0.769310	-0.973999
63	M6III	2.861989	1.167731	1.838463
64	M7III	3.690518	1.445635	2.439192
65	M8III	4.309958	1.565400	2.786293
66	M9III	4.147218	1.428649	2.673833
67	M10III	4.413303	1.540157	3.102000

68 rows × 4 columns

```
In [15]:
             dwarfs = [i for i in p wfs['SpT'] if 'V' in i]
             giants = [i for i in p_wfs['SpT'] if 'III' in i]
           2
           3
             dwarfs_colors = [p_wfs['G - 65/35 color'][i] for i in range(len(dwarfs)
             giants_colors = [p_wfs['G - 65/35 color'][i] for i in range(len(dwarfs)
             dwarfs_gaia_colors = [p_wfs['Gaia_BP-RP'][i] for i in range(len(dwarfs)
             giants_gaia_colors = [p_wfs['Gaia BP-RP'][i] for i in range(len(dwarfs)
           8
             dwarfs_colors2 = [p_wfs['G - Ha/IR color'][i] for i in range(len(dwarfs
             giants_colors2 = [p_wfs['G - Ha/IR color'][i] for i in range(len(dwarfs
          10
          11
             spt_letter_conv = {'O':0,'B':1,'A':2,'F':3,'G':4,'K':5,'M':6}
In [16]:
          1
           2
           3
             spt numbers = np.array([])
             for s in spt:
           4
           5
                 letter = s[0]
           6
                 number = spt_letter_conv[letter]
           7
           8
                 type number = np.float(s[1]) / 10
           9
          10
                 spt_numbers = np.append(spt_numbers,number + type_number)
          11
             spt numbers[-1] = 7.0
          12
          13
             spt numbers[5] = 1.6
             spt numbers dwarfs = spt numbers[range(len(dwarfs))]
             spt numbers giants = spt numbers[range(len(dwarfs),len(spt numbers))]
             spt numbers dwarfs, spt numbers giants
Out[16]: (array([0.5, 0.9, 1. , 1.1, 1.3, 1.6, 1.8, 1.9, 2. , 2.2, 2.3, 2.5, 2.7,
                 3. , 3.2, 3.5, 3.6, 3.8, 4. , 4.2, 4.5, 4.8, 5. , 5.2, 5.3, 5.4,
                 5.5, 5.7, 6., 6.1, 6.2, 6.2, 6.3, 6.4, 6.5, 6.6]),
          array([0.8, 1.1, 1.3, 1.5, 1.9, 2., 2.3, 2.5, 2.7, 3., 3.2, 3.5, 4.,
                 4.5, 4.8, 5. , 5.1, 5.2, 5.3, 5.4, 5.5, 6. , 6.1, 6.2, 6.3, 6.4,
                 6.5, 6.6, 6.7, 6.8, 6.9, 7. ]))
```

Out[17]:

	SpT	Gaia BP-RP	G - 65/35 color	G - Ha/IR color	SpT Number
0	O5V	-1.753286	-0.913169	-1.144359	0.5
1	O9V	-1.759123	-0.876533	-1.122929	0.9
2	B0V	-1.691478	-0.858265	-1.115505	1.0
3	B1V	-1.576876	-0.816744	-1.074639	1.1
4	B3V	-1.522363	-0.769310	-0.973999	1.3
63	M6III	2.861989	1.167731	1.838463	6.6
64	M7III	3.690518	1.445635	2.439192	6.7
65	M8III	4.309958	1.565400	2.786293	6.8
66	M9III	4.147218	1.428649	2.673833	6.9
67	M10III	4.413303	1.540157	3.102000	7.0

68 rows × 5 columns

Out[18]:

	SpT	Gaia BP-RP	G - 65/35 color	G - Ha/IR color	SpT Number
0	O5V	-1.753286	-0.913169	-1.144359	0.5
1	O9V	-1.759123	-0.876533	-1.122929	0.9
2	B0V	-1.691478	-0.858265	-1.115505	1.0
3	B1V	-1.576876	-0.816744	-1.074639	1.1
4	B3V	-1.522363	-0.769310	-0.973999	1.3
5	B57V	-1.414522	-0.708785	-0.919704	1.6
6	B8V	-1.378287	-0.738685	-0.913619	1.8
7	B9V	-1.333443	-0.770971	-0.945338	1.9
8	A0V	-1.299172	-0.680670	-0.882710	2.0
9	A2V	-1.243093	-0.669132	-0.853022	2.2
10	A3V	-1.188863	-0.640910	-0.822082	2.3
11	A5V	-1.122917	-0.624290	-0.766289	2.5
12	A7V	-1.019593	-0.573833	-0.738065	2.7
13	F0V	-0.835827	-0.493682	-0.651311	3.0
14	F2V	-0.764432	-0.463906	-0.588959	3.2
15	F5V	-0.667340	-0.436827	-0.568548	3.5
16	F6V	-0.534392	-0.387383	-0.488193	3.6
17	F8V	-0.432657	-0.309275	-0.415122	3.8
18	G0V	-0.306904	-0.325406	-0.435026	4.0
19	G2V	-0.333389	-0.318766	-0.433490	4.2
20	G5V	-0.292217	-0.345564	-0.452592	4.5
21	G8V	-0.133017	-0.284652	-0.363772	4.8
22	K0V	0.016583	-0.324673	-0.398000	5.0
23	K2V	0.196112	-0.274918	-0.330736	5.2
24	K3V	0.540885	-0.154610	-0.253983	5.3
25	K4V	0.704193	-0.093564	-0.145960	5.4
26	K5V	0.857385	-0.032463	-0.117300	5.5
27	K7V	1.097466	0.166133	0.142296	5.7
28	M0V	1.145770	0.282430	0.304490	6.0
29	M1V	1.316385	0.442299	0.497946	6.1
30	M2V	1.518757	0.490685	0.539141	6.2
31	M2.5V	1.617733	0.700961	0.814714	6.2
32	M3V	1.820338	0.895735	1.048387	6.3
33	M4V	2.207078	1.138602	1.350243	6.4

	SpT	Gaia BP-RP	G - 65/35 color	G - Ha/IR color	SpT Number
34	M5V	2.366079	1.351703	1.712598	6.5
35	M6V	2.892390	1.717700	2.277202	6.6

```
In [19]:
            %matplotlib notebook
            c=['blue','orange']
           2
            plt.plot(dwarfs gaia colors, dwarfs colors, color=c[0], label=r'Gaia G -
             plt.plot(dwarfs_gaia_colors,dwarfs_colors2,color=c[1],label=r'Gaia G -
            plt.plot(dwarfs gaia colors, dwarfs colors, color=c[0], label=r'Dwarfs')
             plt.plot(giants gaia colors, giants colors, color=c[0], ls=':', label=r'G
           7
             plt.plot(giants gaia colors, giants colors2, color=c[1], ls=':')
             #plt.plot(spt numbers dwarfs,dwarfs_colors,color=c[0],label='Dwarf')
          10
          11
          12
             \#plt.ylim(-2.7,1)
          13 \#ticks = np.arange(1, 7.5, 1)
          14 ##labels = ['B0','A0','F0','G0','K0','M0','M10']
            #plt.gca().set xticks(ticks)
          15
          16 #plt.gca().set xticklabels(labels)
          17
            plt.ylabel('color [mags]')
            plt.xlabel('Gaia BP - RP')
          19
             plt.legend(fontsize=15)
          20
          21 \#ax1 = plt.gca()
          22 \#ax2 = ax1.twiny()
          23 #lims = ax1.get xlim()
             #ax2.set xlim(ax1.get xlim())
          25 #ticks = np.linspace(lims[0],lims[1],7)
          26 #labels = ['B0','A0','F0','G0','K0','M0','M10']
          27 #ax2.set xticks(ticks)
          28
            #ax2.set xticklabels(labels)
          29
          30 plt.tight layout()
          31 plt.grid(ls=':')
          32 plt.savefig('GaiaG to MagAO-X WFS color conversion-ByBPRPcolor.png',dpi
          33 plt.savefig(directory+'GaiaG to MagAO-X WFS color conversion-ByBPRPcolo
          34 plt.show()
```



```
In [20]:
             %matplotlib notebook
             c=['blue','orange']
           2
             plt.plot(spt_numbers_dwarfs,dwarfs_colors,color=c[0],label='Gaia G - WF
           3
             plt.plot(spt_numbers_dwarfs,dwarfs_colors2,color=c[1],label=r'Gaia G -
           5
             plt.plot(spt_numbers_dwarfs,dwarfs_colors,color=c[0],label='Dwarf')
             plt.plot(spt_numbers_giants,giants_colors,color=c[0],ls=':',label = 'Gi
           7
             plt.plot(spt numbers giants, giants colors2, color=c[1], ls=':')
           9
          10
             #plt.ylim(-2.7,1)
          11
             ticks = np.arange(1,7.5,1)
             labels = ['B0','A0','F0','G0','K0','M0','M10']
          12
          13
             plt.gca().set_xticks(ticks)
          14
             plt.gca().set xticklabels(labels)
             plt.ylabel('color [mags]')
          15
          16
             plt.legend(fontsize=15)
          17
          18
             \#ax1 = plt.gca()
          19
             \#ax2 = ax1.twiny()
             #ax2.set xlim(ax1.get xlim())
          20
          21
             #ax2.set xticks(p wfs['Gaia BP-RP'])
          22
          23
             plt.tight_layout()
          24
             plt.grid(ls=':')
          25
             plt.savefig('GaiaG to MagAO-X WFS color conversion.png',dpi=300)
          26 plt.savefig(directory+'GaiaG to MagAO-X WFS color conversion.png',dpi=3
          27
             plt.show()
```


In []: 1