Chapitre 18

Polynôme

Table des matières

Ι	Définition	2
II	Évaluation	6
III	${\bf Arithm\acute{e}tique~dans}~\mathbb{K}[X]$	10
IV	L'espace vectoriel $\mathbb{K}[X]$	16

Dans ce chapitre, $\mathbb K$ désigne un corps

Première partie

Définition

I Définition

Definition

- Un polynôme à coefficiants dans $\mathbb K$ est une suite presque nulle de $\mathbb K^{\mathbb N}$
- Le polynôme nul, noté 0 est la suite nulle.
- Soit $P = (a_n)_{n \in \mathbb{N}}$ un polynôme non nul. $\{n \in \mathbb{N} \mid a_n \neq 0_{\mathbb{K}}\}$ est non-vide et majoré. Le <u>degré</u> de P est $\max\{n \in \mathbb{N} \mid a_n \neq 0_{\mathbb{K}}\}$, et on le note $\deg(P)$ et $a_{\deg(P)}$ est le <u>coefficiant dominant</u> de P, il est noté $\dim(P)$.
- Le degré du polynôme nul est $-\infty$

Proposition Définition

Soient $P=(a_n)_{n\in\mathbb{N}}$ et $Q=(b_n)_{n\in\mathbb{N}}$ deux polynômes à coefficiants dans \mathbb{K} . Alors, $P+Q=(a_n+b_n)_{n\in\mathbb{N}}$ est un polynôme appelé somme de P et Q

Proposition Définition

Soient $P = (a_n)_{n \in \mathbb{N}}$ et $Q = (b_n)_{n \in \mathbb{N}}$ deux polynômes à coefficiants dans K. On pose

$$\forall n \in \mathbb{N}, c_n = \sum_{k=0}^n a_k b_{n-k}$$

La suite $(c_n)_{n\in\mathbb{N}}$ est presque nulle. Ce polynôme est appelé <u>produit de P et Q et noté PQ.</u>

Remarque

Notation

Soit $P = (a_n)_{n \in \mathbb{N}}$, un polynôme à coefficients dans \mathbb{K} et $\lambda \in \mathbb{K}$. Le polynôme $(\lambda a_n)_{n \in \mathbb{N}}$ est noté λP

Remarque

Notation

On pose $X = (0_{\mathbb{K}}, 1_{\mathbb{K}}, 0_{\mathbb{K}}, \ldots) = (\delta_{1,n})_{n \in \mathbb{N}}$

Théorème

Soit $P = (a_n)_{n \in \mathbb{N}}$ un polynôme non nul à coefficiants dans K. Alors

$$P = \sum_{k=0}^{n} a_k X^k$$
 où $n = \deg(P)$ et $X^0 = (1, 0, ...)$

I Définition

Remarque

Notation

On note $\mathbb{K}[X]$ l'ensemble des polynômes à coefficiants dans \mathbb{K} dont l'indéterminée $(0,1,0,\ldots)$ est notée X.

Proposition

 $\big(\mathbb{K}[X],+,\times,\cdot\big)$ est une $\mathbb{K}\text{-algèbre}$ commutative i.e.

- 1. $(\mathbb{K}[X], +, \times)$ est un anneau commutatif
- 2. $(\mathbb{K}[X], +, \cdot)$ est un \mathbb{K} -espace vectoriel

3.
$$\forall \lambda \in \mathbb{K}, \forall (P,Q) \in (\mathbb{K}[X])^2, \lambda \cdot (P \times Q) = (\lambda \cdot P) \times Q = P \times (\lambda \cdot Q)$$

Remarque

 $(\mathcal{M}_n(\mathbb{K}), +, \times, \cdot)$ est une \mathbb{K} -algèbre non commutative (si n > 1)

Proposition

 $i: \begin{array}{ccc} \mathbb{K} & \longrightarrow & \mathbb{K}[X] \\ \lambda & \longmapsto & \lambda X^0 \end{array}$ est un morphisme d'algèbre injectif, i.e.

$$\forall \lambda, \mu \in \mathbb{K}, \begin{cases} i(\lambda + \mu) = i(\lambda) + i(\mu) \\ i(\lambda \cdot \mu) = i(\lambda) \times i(\mu) \end{cases}$$

et i est injective.

Remarque

Notation

On identifie $\lambda \in \mathbb{K}$ avec $\lambda X^0 \in \mathbb{K}[X]$. Ainsi, on peut écrire $X^0=1$, on peut écrire $2+X+3X^2$ au lieu de $2X^0+X+3X^2$

Proposition

Soient
$$P, Q \in \mathbb{K}[X]$$

$$\begin{split} &-\operatorname{deg}(P+Q)\leqslant \operatorname{max}\left(\operatorname{deg}(P),\operatorname{deg}(Q)\right)\\ &-\operatorname{Si}\operatorname{deg}(P)\neq\operatorname{deg}(Q),\operatorname{alors}\\ &-\operatorname{deg}(P+Q)=\operatorname{max}\left(\operatorname{deg}(P),\operatorname{deg}(Q)\right)\\ &-\operatorname{dom}(P+Q)=\begin{cases} \operatorname{dom}(P) & \operatorname{si}\operatorname{deg}(P)>\operatorname{deg}(Q)\\ \operatorname{dom}(Q) & \operatorname{si}\operatorname{deg}(P)<\operatorname{deg}(Q) \end{cases}\\ &-\operatorname{Si}\operatorname{deg}(P)=\operatorname{deg}(Q)\operatorname{et}\operatorname{dom}(P)+\operatorname{dom}(Q)\neq0,\\ &\operatorname{alors}\begin{cases} \operatorname{deg}(P+Q)=\operatorname{deg}(P)=\operatorname{deg}(Q)\\ \operatorname{dom}(P+Q)=\operatorname{dom}(P)+\operatorname{dom}(Q) \end{cases}\\ &-\operatorname{Si}\operatorname{deg}(P)=\operatorname{deg}(Q)\operatorname{et}\operatorname{deg}(P)+\operatorname{deg}(Q)=0,\operatorname{alors}\operatorname{deg}(P+Q)<\operatorname{deg}(P) \end{cases}$$

Proposition

I Définition

Soient $P,Q\in\mathbb{K}[X].$ Alors

$$\deg(PQ) = \deg(P) + \deg(Q)$$

Deuxième partie Évaluation

Definition

Soit A une \mathbb{K} -algèble et $P \in \mathbb{K}[X]$. On pose $P = \sum_{k=0}^{n} e_k X^k$. Soit $a \in A$.

On pose

$$P(a) = \sum_{k=0}^{n} e_k a^k$$

= $e_0 1_A + e_1 a + e_2 a^2 + \dots + e_n a^n \in A$

On dit qu'on a <u>évalué</u> P en a, ou spécialisé X avec la valeur de a, ou remplacé X par a, substitué a à X.

Definition

Soit $P \in \mathbb{K}[X]$ et $a \in \mathbb{K}$.

On dit que a est une racine de P si $P(a) = 0_{\mathbb{K}}$

Definition

Soit $P \in \mathbb{K}[X] \in \mathcal{M}_n(\mathbb{K})$. On dit que c'est un polynôme de matrices.

Definition

Soient
$$P, Q \in \mathbb{K}[X], P = \sum_{k=0}^{n} a_k X^k$$
.

Alors
$$P(Q) = \sum_{k=0}^{n} a_k Q^k \in \mathbb{K}[X]$$

C'est la composée de P et Q .

Remarque

$$\bigwedge$$
 Attention

Proposition

Soient
$$P,Q\in\mathbb{K}[X]$$
 avec $\begin{cases} Q\neq 0\\ P\neq 0 \end{cases}$. On a

$$\deg(P(Q)) = \deg(P) \times \deg(Q)$$

Théorème

Évaluation

Soit A une \mathbb{K} -algèbre. L'application

$$\varphi: \mathbb{K}[X] \longrightarrow A^A$$

$$P \longmapsto f_P: \begin{array}{ccc} A & \longrightarrow & A \\ a & \longmapsto & P(a) \end{array}$$

vérifie

II

1.
$$\forall P, Q \in \mathbb{K}[X], \varphi(P+Q) = \varphi(P) + \varphi(Q)$$

2.
$$\forall P, Q \in \mathbb{K}[X], \varphi(PQ) = \varphi(P) \times \varphi(Q)$$

3.
$$\forall \lambda \in \mathbb{K}, \forall P \in \mathbb{K}[X], \varphi(\lambda P) = \lambda \varphi(P)$$

Definition

Soit $P \in \mathbb{K}[X]$,

$$P = \sum_{k=0}^{n} a_k X^k$$

Le polynôme dérivé de P est

$$P' = \sum_{k=0}^{n} k a_k X^{k-1} = \sum_{k=1}^{n} k a_k X^{k-1}$$

οù

$$\forall k \in [1, n], ka_k = \underbrace{a_k + \dots + a_k}_{k \text{ fois}}$$
$$0_{\mathbb{N}} a_k = 0_{\mathbb{K}}$$

Remarque

Si
$$P \in \mathbb{R}[X]$$
, $f_p : \mathbb{R} \longrightarrow \mathbb{R}$
 $f_{P'} : \mathbb{R} \longrightarrow \mathbb{R}$
 $x \longmapsto P'(x)$ alors $f_{P'} = f'_P$

Proposition

$$\forall P \in \mathbb{K}[X], \deg(P') = \begin{cases} \deg(P) - 1 & \text{si } \deg(P) > 0 \\ -\infty & \text{sinon} \end{cases}$$

Proposition

Soient
$$P, Q \in \mathbb{K}[X]$$
 et $\lambda \in \mathbb{K}$.

1.
$$(P+Q)' = P' + Q'$$

2.
$$(PQ)' = P'Q + PQ'$$

II Évaluation

3.
$$(\lambda P)' = \lambda P'$$

Definition

Pour $k\in\mathbb{N}$, on définit la dérivée k-ième d'un polynôme $P\in\mathbb{K}[X]$ par — si k=0, $P^{(k)}=P$ — si k=1, $P^{(1)}=P'$ — si k>1, $P^{(k)}=\left(P^{(k-1)}\right)'$

Proposition

 $\forall k, j \in \mathbb{N}^2, \left(X^k\right)^{(j)} = \begin{cases} 0 & \text{si } j > k \\ k(k-1)\cdots(k-j+1)X^{k-j} = \frac{k!}{(k-j)!}X^k & \text{si } j \leqslant k \end{cases}$

Proposition

Soient $P, Q \in \mathbb{K}[X], \lambda \in \mathbb{K}$

1.
$$\forall k \in \mathbb{N}, (P+Q)^{(k)} = P^{(k)} + Q^{(k)}$$

2.
$$\forall k \in \mathbb{N}, (PQ)^{(k)} = \sum_{i=0}^{k} {k \choose i} P^{(i)} Q^{(k-i)}$$

3.
$$\forall k \in \mathbb{N}, (\lambda P)^{(k)} = \lambda P^{(k)}$$

Troisième partie ${\bf Arithm\acute{e}tique\ dans}\ \mathbb{K}[X]$

Definition

Soient $A,B\in\mathbb{K}[X].$ On dit que A divise B (dans $\mathbb{K}[X])$ s'il existe $C\in\mathbb{K}[X]$ tel que

$$AC = B$$

On dit dans ce cas que A est un <u>diviseur</u> de B ou que B est un <u>multiple</u> de A. On le note alors $A \mid B$

On dit que A et B sont <u>associés</u> s'il existe $\lambda \in \mathbb{K} \setminus \{0\}$ tel que $A = \lambda B$. Il s'agit d'une relation d'équivalence.

Proposition

Soient $A, B \in \mathbb{K}[X]$.

$$\left. \begin{array}{c}
A \mid B \\
B \mid A
\end{array} \right\} \iff A \text{ et } B \text{ sont associés}$$

Lemme

 $\mathbb{K}[X]$ est un anneau intègre.

Lemme

$$\mathbb{K}[X]^{\times} = \mathbb{K} \setminus \{0\}$$

Proposition

est une relation réflexive et transitive.

Proposition

Soient $A, B, C \in \mathbb{K}[X]$ tels que $A \mid B$ et $A \mid C$. Alors

$$\forall (P,Q) \in \mathbb{K}[X]^2, A \mid BQ + CP$$

Proposition Définition

Soit $A \in \mathbb{K}[X], B \in \mathbb{K}[X] \setminus \{0\}$.

$$\exists ! (P,Q) \in \mathbb{K}[X]^2, \begin{cases} A = PQ + R \\ \deg(R) < \deg(B) \end{cases}$$

III

On dit que Q est le <u>quotient</u> et R le <u>reste</u> de la division (euclidienne) de A par B.

Théorème

Soit $P \in \mathbb{K}[X]$ et $a \in \mathbb{K}$.

$$P(a) = 0 \iff X - a \mid P$$

Corollaire

Soit $P \in \mathbb{K}[X]$ non nul de degré n. Alors, P a au plus n racines distinctes dans \mathbb{K}

Definition

Soient A et B deux polynômes dont l'un au moins est non nul, $D \in \mathbb{K}[X]$. On dit que D est un PGCD de A et B si D est un diviseur commun de A et B et de degré maximal.

Proposition

Avec les hypothèse précédents, deux PGCD quelconques de A et B sont nécessairement associés

Remarque

Dans la preuve précédente, on a aussi montré les deux propositions suivantes.

Théorème

Théorème de Bézout

Soient $A, B \in \mathbb{K}[X]$ tels que $A \neq 0$ ou $B \neq 0$ Soit D un PGCD de A et B. Alors

$$\exists (U,V) \in \mathbb{K}[X]^2, AU + BV = D$$

Proposition

Avec les hypothèses précédents,

$$\forall \Delta \in \mathbb{K}[X], \\ \Delta \mid A \\ \Delta \mid B \\ \iff \Delta \mid D$$

III

Definition

On dit qu'un polynôme est <u>unitaire</u> si sont coefficiant dominant vaut 1.

Proposition Définition

Soient A et B deux polynômes dont l'un au moins est non nul. Parmi tous les PGCD de A et B, un seul est unitaire. On le note $A \wedge B$

Proposition

Soient $A, B \in \mathbb{K}[X]$ avec $B \neq 0$. Soit R le reste de la division de A par B. Alors,

$$A \wedge B = B \wedge R$$

Théorème

Théorème de Gauss Soient A,B,C trois polynômes non nuls tels que $\begin{cases}A\mid BC\\A\wedge B=1\end{cases}$ Alors, $A\mid C$

Corollaire

Avec les notations précédentses,

$$\left. \begin{array}{l}
A \mid B \\
B \mid C \\
A \land B = 1
\end{array} \right\} \implies AB \mid C$$

Proposition

Soient A et B deux polynômes non nuls et D un PGCD de A et B. Soit $x \in \mathbb{K}$.

$$A(x) = B(x) = 0 \iff D(X) = 0$$

Definition

Soit $P \in \mathbb{K}[X]$.

On dit que P n'est pas irréductible si il existe $(Q,R) \in \mathbb{K}[X]^2$ non constants

III

tels que P = QR ou si P est constant.

Sinon, on dit que P est <u>irréductible</u>.

Théorème

Théorème de D'alembert - Gauss

 $\forall P \in \mathbb{C}[X] \text{ non constant}, \exists a \in \mathbb{C}, P(a) = 0$

Corollaire

Les polynômes irréductibles de $\mathbb{C}[X]$ sont exactemenent les polynômes de degré 1

Definition

Soit $P \in \mathbb{K}[X]$ et $a \in \mathbb{K}$, $\mu \in \mathbb{N}$.

On dit que a est une racine de P de multiplicité μ si

$$\begin{cases} (X-a)^{\mu} \mid P \\ (X-a)^{\mu+1} \nmid P \end{cases}$$

Si $\mu = 1$, on dit que a est une racine simple.

Si $\mu = 2$, on dit que a est une racine <u>double</u>.

Remarque

a est une racine de multiplicité 0 si et seulement si $P(a) \neq 0$

Lemme

Soient $(A, B) \in \mathbb{R}[X]^2$ non nuls. On suppose que A divise B dans $\mathbb{C}[X]$ Alors, A divise B dans $\mathbb{R}[X]$

Proposition

Soit $P \in \mathbb{R}[X]$ et $a \in \mathbb{C} \setminus \mathbb{R}$, $\mu \in \mathbb{N}$.

Si a est une racine de P de multiplicité μ alors \overline{a} est une racine de P de multiplicité μ .

Corollaire

Les polynômes irréductibles de $\mathbb{R}[X]$ sont les polynômes de degré 1 et les polynômes de degré 2 à discriminant strictement négatifs.

Théorème

14

Soit $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

Tout polynôme de \mathbb{K} se découpe en produit de facteurs irréductibles dans $\mathbb{K}[X]$ et cette décomposition est unique à multiplication par une constante non nulle près.

Proposition

Soient $A, B \in \mathbb{C}[X]$ non nuls.

 $A\mid B\iff \begin{array}{c} \forall a\in\mathbb{C}, \text{ si } a \text{ est une racine de } A \text{ de multiplicit\'e } \mu\in\mathbb{N},\\ \text{alors } a \text{ est racine de } B \text{ avec une multiplicit\'e}\geqslant \mu \end{array}$

Proposition

Soit $P \in \mathbb{C}[X]$ de degré n > 0

Alors P a exactement n racines comptées avec multiplicité.

Quatrième partie $\label{eq:Lespace} \mbox{L'espace vectoriel } \mathbb{K}[X]$

 ${\rm IV}$

Remarque

Rappel

$$(\mathbb{K}[X],+,\cdot)$$
est un K-espace vectoriel engendré par $(1,X,X^2,\ldots)$

Proposition

La famille $(X^n)_{n\in\mathbb{N}}$ est libre.

Corollaire

$$\dim (\mathbb{K}[X]) = +\infty$$

Definition

Pour $n \in \mathbb{N}$, on note

$$\mathbb{K}_n[X] = \{ P \in \mathbb{K}[X] \mid \deg(P) \leqslant n \}$$

Théorème

 $\mathbb{K}_n[X]$ est un sous-espace vectoriel de $\mathbb{K}[X]$ de dimension n+1

Proposition

Soit $(P_i)_{i\in I}$ une famille de polynômes non nuls telle que

$$\forall i \neq j, \deg(P_i) \neq \deg(P_j)$$

Alors $(P_i)_{i \in I}$ est libre.

Théorème

Formule de Taylor

Soit $P \in \mathbb{K}_n[X]$ et $a \in \mathbb{K}$.

$$P(X) = \sum_{k=0}^{n} \frac{P^{(k)}(a)}{k!} (X - a)^{k}$$

Proposition

Soit $P \in \mathbb{K}[X]$ et $a \in \mathbb{K}$.

$$\left. \begin{array}{c} a \text{ est une racine de } P \\ \text{ de multiplicit\'e } \mu \end{array} \right\} \iff \left\{ \begin{array}{c} \forall k \leqslant \mu - 1, P^{(k)}(a) = 0 \\ P^{(\mu)}(a) \neq 0 \end{array} \right.$$

IV

${\bf Corollaire}$

Avec les notations précédentes, si a est une racine de P de multiplicité μ , alors a est une racine de P' de multiplicité $\mu-1$

Definition

On dit qu'un polynôme P est scindé sur $\mathbb K$ si P est un produit de polynômes de $\mathbb K[X]$ de degré 1, i.e. toutes les racines de P sont dans $\mathbb K$

Definition

Soit $(x_1, \ldots, x_n) \in \mathbb{K}^n$ avec

$$\forall i \neq j, x_i \neq x_j$$

On pose

$$\forall i \in \llbracket 1, n \rrbracket, L_i = \prod_{\substack{1 \leqslant j \leqslant n \\ j \neq i}} \frac{X - x_j}{x_i - x_j}$$

 L_i est le $i\text{-\`e}me$ polynôme interpolateur de Lagrange associé à (x_1,\dots,x_n) :

$$\forall j \in \llbracket 1, n \rrbracket, L_i(x_j) = \delta_{i,j}$$

Proposition

Avec les notations précédentes, (L_1, \ldots, L_n) est une base de $\mathbb{K}_{n-1}[X]$.