Graph Problems

- □Critical Path Analysis
- **■**Maximum Flow Problem
- **□Other Difficult Problems**

Other Difficult Problems

Data Structures

□ Eulerian circuit (Euler tour)

 Find a tour that would pass each <u>edge</u> exactly once and finally return to the starting vertex

 Find a tour that would visit each <u>vertex</u> exactly once and finally return to the starting vertex

Other Difficult Problems

Data Structures

- **□** Eulerian circuit (Euler tour)
 - Find a tour that would pass each <u>edge</u> exactly once and finally return to the starting vertex
- □ DFS-based Algorithm [Carl Hierholzer, 1873]

Not exist!

Eulerian Circuit (Euler Tour)

Data Structures |

□ DFS-based Algorithm

ABED

ABEFJIED

ABEFJIHDCGHKLIED

Traveling Salesman Problem (TSP)

Data Structures

☐ Hamilton circuit

- Find a tour that would visit each <u>vertex</u> exactly once and finally return to the starting vertex
- Decision problem (NP-complete)

☐ Traveling Salesman Problem

- Find the shortest path (Hamilton path) that would visit each vertex exactly once and finally return to the starting vertex
- Optimization problem (NP-hard)

Traveling Salesman Problem (TSP)

NP is the set of all *decision problems* for which the instances where the answer is "yes" have *efficiently verifiable proofs* of the fact that the answer is indeed "yes".

wikipedia ©

TSP on the Web

Data Structures

- ☐ Georgia Tech.
 - http://www.tsp.gatech.edu/index.html
- **□** Progress
 - TSP is one of the most intensely studied problems in computational mathematics and yet no effective solution method is known for the *general* case.
 - A breakthrough came when George Dantzig, Ray Fulkerson, and Selmer Johnson (1954) published a description of a method for solving the TSP and illustrated the power of this method by solving an instance with 49 cities, an impressive size at that time.

TSP on the Web: Milestones

Data Structures

George Dantzig, Ray Fulkerson, and Selmer Johnson (1954) n=49

TSP on the Web: Milestones

Nata Structures Groetschel and Holland (1987) n=666 Applegate, Bixby, Chvátal, and Cook (1998) n=13509Georgia Tech. © http://www.tsp.gatech.edu/index.html P. 9

TSP on the Web: Milestones

Nata Structures

Applegate, Bixby, Chvátal, Cook, and Helsgaun

(2004) n=24978

The Traveling Salesman Problem: A Computational Study. (2006) n=85900

3-utility problem: Planar Graph

Data Structures

© The McGraw-Hill Companies, Inc. all rights reserved.

Planar Graph: Definitions

Data Structures

Definition:

A graph that can be drawn in the plane without any of its edges intersecting is called a planar graph.

Definition:

A planar graph G that is drawn in the plane so that no two edges intersect (that is, G is embedded in the plane) is called a plane graph.

(Euler's Formula)

If G is a connected plane graph with p vertices, q edges, and r regions, then

Nata Structures

Data Structures |

© The McGraw-Hill Companies, Inc. all rights reserved.

Data Structures

© The McGraw-Hill Companies, Inc. all rights reserved.

p-q+r=8-12+6=2

Data Structures

© The McGraw-Hill Companies, Inc. all rights reserved.

Data Structures

(Kuratowski's Theorem)

A graph is planar if and only if it contains no subgraph that is **isomorphic** to or is a **subdivision** of K_5 or $K_{3,3}$.

$$3p-6=9 < q=10$$

4-color Problem: Basics

Data Structures

□Story...

P. 18

4-color Problem: Basics

Data Structures

- □ At most *four* colors are required to color the vertices of a *planar graph* so that *no adjacent* vertices have the same color
 - Every planar graph is four-colorable

chromatic number = 3

wikipedia © P. 19

4-color Problem: Basics

Data Structures

☐ After more than 120 years...

- Proven in 1976 by <u>Kenneth Appel</u> and <u>Wolfgang Haken</u>. It was the first major theorem to be proved using a computer.
 - 1. Showed by computer programs in UIUC that there is a particular set of 1,936 maps, each of which cannot be part of a smallest-sized *counterexample* to the four color theorem.
 - 2. Any map must have a portion that looks like one of these 1,936 maps.
 - 3. Concluded that no smallest *counterexamples* existed because any must contain, yet not contain, one of these 1,936 maps.

wikipedia © P. 20

Graph Coloring Problem: Application

Data Structures

□ Scheduling of final exams for 7 courses

Time Period Courses

I 1, 6

II 2

III 3, 5

IV 4, 7

chromatic number = 4

Graph Coloring Problem: Algorithm

Data Structures

- **□** Vertex Coloring (Edge Coloring)
- **□** Sequential ordering algorithms
 - Heuristics for a specific ordering of vertices
 - ■No guarantee on using the *least* number of colors
 - Welsh-Powell algorithm (greedy coloring)

Greedy Coloring: Example

Data Structures

 \square Color the graph by using as *less* colors as possible.

- **□** 4-color game!
 - http://www.gamedesign.jp/flash/fourcolor/fourcolor.html

Bi-connected Graph: Algorithm

Data Structures

□ Articulation point

A vertex v in G is an articulation point iff
the deletion of v, together with the
deletion of all edges incident to v, leaves
behind a graph that has at least two
connected components (disconnected)

☐ Bi-connected graph

 A connected graph that has no articulation point

Bi-connected Graph: Definitions

Nata Structures

☐ Finding the articulation points

- Graph traversal algorithm
- DFS-tree based algorithm

Practice 13: Coloring & Bi-connected

Data Structures

- 1. Color the graph by max-degree first algorithm
- 2. Find the articulation points by DFS-tree based algorithm

Some NP-Complete Problems

Data Structures

- **□** Boolean satisfiability problem
- **□** Knapsack problem
- **□** Hamiltonian path problem
- **□** Travelling salesman problem
- **□** Subgraph isomorphism problem
- **□** Subset sum problem
- ☐ Clique problem
- **□** Vertex cover problem
- **□** Independent set problem
- **□** Dominating set problem
- ☐ Graph coloring problem

wikipedia ©

P. 27

Summary

Data Structures

☐ An Euler circuit in an undirected graph is

 A cycle that begins at vertex v, passes through every <u>edge</u> in the graph exactly once, and terminates at v

□ A Hamilton circuit in an undirected graph is

 A cycle that begins at vertex v, passes through every <u>vertex</u> in the graph exactly once, and terminates at v