Homework 5

	/ 🗖	$\alpha\alpha\alpha$	
Ν Δ Ν/Ι Η :	/ 👟 -	SCORE	
TATIVITIES	\sim	 SCOILL.	

Subject: Quantum Mechanics I

Deadline: Wednesday 14 September 2022 (until the end of the day)

Credits: 20 points Number of problems: 4

Type of evaluation: Formative Evaluation

- This homework consists of problems related to units 3 and 4 of the course.
- You may submit this assignment either individually or in pairs. Submitted assignments should have maximum two authors.
- Unless stated otherwise, write your answers in SI units, and consider all bolded quantities as vector quantities. Please highlight the answers.

1. (7 points) Angular momentum

- (a) Let L_x , L_y , and L_z be the components of the orbital angular momentum operator \vec{L} . Calculate the value of the commutator: $[L_xL_y, L_z]$.
- (b) Suppose we have a spin- $\frac{1}{2}$ particle, whose quantum state can be represented by the eigenstates $|\uparrow\rangle$ and $|\downarrow\rangle$ of the S_z operator. Using the Pauli matrix σ_x , calculate a normalised eigenstate of the S_x operator with an eigenvalue $-\frac{\hbar}{2}$.
- (c) Calculate the normalised spin eigenfunctions of a system with two spin- $\frac{1}{2}$ particles. These are called singlet and triplet states, why?
- (d) Calculate the orbital angular momentum eigenfunction $Y_{\ell}^{m}(\theta, \phi)$ in a quantum state for which the operator \mathbf{L}^{2} has an eigenvalue $6\hbar^{2}$ and the operator \mathbf{L}_{z} has an eigenvalue $-\hbar$.

2. (4 points) Spin

Consider an electron in the spin state:

$$\chi = C \begin{bmatrix} 1 - 3i \\ 2 \end{bmatrix}$$

- (a) Determine the normalisation constant C.
- (b) Find the expectation values of S_x , S_y , and S_z .
- (c) Find the uncertainties σ_{S_x} , σ_{S_y} , and σ_{S_z} .
- (d) Are the results consistent with all three uncertainty principles?

3. (4 points) Spherical harmonics

- (a) Construct all the possible spherical harmonics, $Y_{\ell}^{m}(\theta, \phi)$, for $\ell = 3$.
- (b) Choose two of them and check that they are normalised and orthogonal.
- (c) Using your favourite programming language, make 3D plots of all of them.

4. (5 points) Hydrogen atom

- (a) Construct all the possible spatial wave functions, $\psi_{nlm}(r,\theta,\phi) = R_{n\ell}(r)Y_{\ell}^{m}(\theta,\phi)$, of the hydrogen atom for $(n,\ell,m) = (2,1,m)$ and $(n,\ell,m) = (4,2,m)$.
- (b) Using your favourite programming language, make density plots of all of these states.
- (c) Calculate the energy levels of these states in units of eV.
- (d) In terms of the Bohr radius, find $\langle r \rangle$, $\langle x \rangle$, $\langle r^2 \rangle$ and $\langle x^2 \rangle$ for an electron in the ground state of hydrogen.
- (e) Find $\langle x^2 \rangle$ in the states $(n, \ell, m) = (2, 1, m)$ and $(n, \ell, m) = (4, 2, m)$ with the highest possible value of m allowed in each of them.