Notes on compatibility between Carcione's analytical viscoelastic solution and SPECFEM2D

Quentin Brissaud and Dimitri Komatitsch

March 2018

The use of terms as unrelaxed or relaxed moduli can be confusing, especially for the construction of quasi-analytical solutions. Carcione used, in his famous paper Carcione et al. (1988), the following formulation for the unrelaxed moduli, in eq. (38) where we added the (1/L) factor that was missing

$$M_{u_{\nu}} = M_{\nu} \left(1 - \frac{1}{L} \sum_{l=1,L} (1 - \frac{\tau_{\epsilon,l}^{\nu}}{\tau_{\sigma,l}^{\nu}}) \right), \tag{1}$$

where L is the number of Zener solids, M_{ν} the relaxed modulus, $M_{u\nu}$ the relaxed modulus and $(\tau_{\epsilon,l}^{\nu}, \tau_{\sigma,l}^{\nu})_{l=1,L}$ the strain relaxation times for $\nu = 1$ and shear relaxation times for $\nu = 2$. These unrelaxed moduli appear in the stress-strain relationship as

$$\sigma_{ij} = \frac{1}{n} \delta_{ij} (M_{u_1} + \Phi_1^c *) \epsilon_{kk} + (M_{u_2} + \Phi_2^c *) \epsilon_{ij}^d, \tag{2}$$

where n is the spatial dimension, Φ_{ν}^{c} the response function, δ_{ij} the dirac distribution and $\epsilon_{ij} = \partial_{i}\epsilon_{j} + \partial_{j}\epsilon_{i}$. Then if you want to build Carcione's analytical solution you will need to compute the relaxed moduli M_{ν} that read, from eq. (A.27a)-(A.27b)

$$M_1 = \rho(nv_p^2 - 2(n-1)v_s^2), M_2 = 2\rho v s^2,$$
(3)

where v_p, v_s are the relaxed P and S wave velocities.

But in SPECFEM2D, by default, the velocities in the "Par_file" represent the unrelaxed velocities at $f = f_0$, where f_0 is the chosen peak attenuation frequency that matches the option f0_attenuation in the Par_file. Then, in order to compute the right M_{ν} for Carcione's analytical solution, you should use

$$M_{1} = \frac{\rho(nv_{u,p}^{2} - 2(n-1)v_{u,s}^{2})}{\left(1 - \frac{1}{L}\sum_{l=1,L}(1 - \frac{\tau_{\epsilon,1}^{l}}{\tau_{\sigma,1}^{l}})\right)},$$

$$M_{2} = \frac{2\rho v_{u,s}^{2}}{\left(1 - \frac{1}{L}\sum_{l=1,L}(1 - \frac{\tau_{\epsilon,2}^{l}}{\tau_{\sigma,2}^{l}})\right)},$$

$$(4)$$

where $v_{u,p}, v_{u,s}$ are the unrelaxed velocities, for $f \to \infty$, that you used in the Par_file. Note that the option "READ_VELOCITIES_AT_f0 = .true." will change SPECFEM2D behavior by using wave velocities in the Par_file as unrelaxed velocities for $f = f_0$ instead of unrelaxed ones for $f \to \infty$. In that case, the relationship becomes,

$$M_{1} = \frac{\rho(nv_{u,p}^{2} - 2(n-1)v_{u,s}^{2})}{1 - \frac{\tau_{\epsilon,1}^{l}}{\tau_{\sigma,1}^{l}}},$$

$$(1 - \frac{1}{L} \sum_{l=1,L} \frac{\frac{\tau_{\epsilon,1}^{l}}{1 + \frac{1}{(\omega_{0}\tau_{\sigma,1}^{l})^{2}}})}{1 + \frac{1}{(\omega_{0}\tau_{\sigma,1}^{l})^{2}}},$$

$$M_{2} = \frac{2\rho v_{u,s}^{2}}{1 - \frac{\tau_{\epsilon,2}^{l}}{\tau_{\sigma,2}^{l}}},$$

$$(1 - \frac{1}{L} \sum_{l=1,L} \frac{1}{1 + \frac{1}{(\omega_{0}\tau_{\sigma,2}^{l})^{2}}})$$

$$(5)$$

Then, for very high frequency attenuation peaks $(\omega_0 \to \infty)$ you recover the relationship (4). And for low frequency attenuation peaks ω_0 one obtains, as $\omega_0 \to 0$

$$M_1 \to \rho(nv_{u,p}^2 - 2(n-1)v_{u,s}^2),$$

 $M_2 \to 2\rho v_{u,s}^2.$ (6)

References

Carcione, J. M., Kosloff, D., & Kosloff, R., 1988. Wave propagation simulation in a linear viscoelastic medium, *Geophys. J. Int.*, **95**, 597–611.