APPLICATION CERTIFICATION FCC Part 15C On Behalf of VP9 Vietnam., JSC

Internet TV Box Model No.:VP9B2, VP9B1, VP9B3, VP9B4, VP9B5, VP9B6, VP9B7, VP9B8, VP9B9

FCC ID: 2ACLW-VP9B2

Prepared for : VP9 Vietnam., JSC

Address : Buoi Market, Buoi ward, Tay Ho district, Hanoi, Vietnam

Prepared by : ACCURATE TECHNOLOGY CO., LTD

Address : F1, Bldg. A, Changyuan New Material Port, Keyuan Rd.

Science & Industry Park, Nanshan, Shenzhen, Guangdong

P.R. China

Tel: (0755) 26503290 Fax: (0755) 26503396

Report Number : ATE20141053
Date of Test : June 18-21, 2014
Date of Report : June 30, 2014

TABLE OF CONTENTS

Description Page

Test Report Certification	Test 1	Report	Certif	ication
---------------------------	--------	--------	--------	---------

		•	
1.	GF	ENERAL INFORMATION	5
	1.1.	Description of Device (EUT)	5
	1.2.	Carrier Frequency of Channels	
	1.3.	Special Accessory and Auxiliary Equipment	6
	1.4.	Description of Test Facility	
	1.5.	Measurement Uncertainty	7
2.	\mathbf{M}	EASURING DEVICE AND TEST EQUIPMENT	8
3.		PERATION OF EUT DURING TESTING	
•	3.1.	Operating Mode	
	3.2.	Configuration and peripherals	
4.		EST PROCEDURES AND RESULTS	
5.		OB BANDWIDTH MEASUREMENT	
	5.1.	Block Diagram of Test Setup	
	5.2.	The Requirement For Section 15.247(a)(2)	
	5.3.	EUT Configuration on Measurement	
	5.4.	Operating Condition of EUT	
	5.5. 5.6.	Test Procedure	
_			
6.		AXIMUM CONDUCTED (AVERAGE) OUTPUT POWER	
	6.1.	Block Diagram of Test Setup	
	6.2.	The Requirement For Section 15.247(b)(3)	
	6.3. 6.4.	EUT Configuration on Measurement	
	6.5.	Test Procedure	
	6.6.	Test Result	
7.		OWER SPECTRAL DENSITY MEASUREMENT	
/•			
	7.1. 7.2.	Block Diagram of Test Setup	
	7.2.	EUT Configuration on Measurement	
	7.3. 7.4.	Operating Condition of EUT	
	7.5.	Test Procedure	
	7.6.	Test Result	
8.	BA	AND EDGE COMPLIANCE TEST	
•	8.1.	Block Diagram of Test Setup	
	8.2.	The Requirement For Section 15.247(d)	
	8.3.	EUT Configuration on Measurement	
	8.4.	Operating Condition of EUT	
	8.5.	Test Procedure	38
	8.6.	Test Result	39
9.	RA	ADIATED SPURIOUS EMISSION TEST	68
	9.1.	Block Diagram of Test Setup	
	9.2.	The Limit For Section 15.247(d)	
	9.3.	Restricted bands of operation	
	9.4.	Configuration of EUT on Measurement	69

9.5.	Operating Condition of EUT	69
9.6.	Test Procedure	
9.7.	The Field Strength of Radiation Emission Measurement Results	70
10. CO	NDUCTED SPURIOUS EMISSION COMPLIANCE TEST	119
10.1.	Block Diagram of Test Setup	119
10.2.	The Requirement For Section 15.247(d)	119
10.3.	EUT Configuration on Measurement	
10.4.	Operating Condition of EUT	119
10.5.	Test Procedure	120
10.6.	Test Result	120
11. AC	POWER LINE CONDUCTED EMISSION FOR FCC PART 15 SECTION 15.2	207(A) 133
11.1.	Block Diagram of Test Setup	133
11.2.	The Emission Limit	133
11.3.	Configuration of EUT on Measurement	134
11.4.	Operating Condition of EUT	134
11.5.	Test Procedure	134
11.6.	Power Line Conducted Emission Measurement Results	135
12. AN	TENNA REQUIREMENT	138
12.1.	The Requirement	138

Test Report Certification

Applicant : VP9 Vietnam., JSC

Manufacturer : VP9 Vietnam., JSC

EUT Description : Internet TV Box

(A) MODEL NO.:VP9B2, VP9B1, VP9B3, VP9B4, VP9B5, VP9B6, VP9B7, VP9B8, VP9B9

(B) SERIAL NO.: N/A

(C) POWER SUPPLY: DC 5.5V (Power by Adapter)

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.4: 2009

The EUT was tested according to DTS test procedure of April 09, 2013 KDB558074 D01 DTS Meas Guidance v03 for compliance to FCC 47CFR 15.247 requirements

The device described above is tested by ACCURATE TECHNOLOGY CO. LTD to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section 15.247 limits. The measurement results are contained in this test report and ACCURATE TECHNOLOGY CO. LTD is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of ACCURATE TECHNOLOGY CO. LTD.

Date of Test:	June 18-21, 2014		
Prepared by :	BobWarg		
	(Engineer)		
Approved & Authorized Signer:	4 em		
	`		
	(Manager)		

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

EUT : Internet TV Box

Model Number : VP9B2, VP9B1, VP9B3, VP9B4, VP9B5, VP9B6,

VP9B7, VP9B8, VP9B9

(Note: We hereby state that these models are identical in interior structure, electrical circuits and components, and just appearance color is different for the marketing requirement. So we prepare VP9B2

for test only.)

Frequency Range : 802.11b/g/n(20MHz): 2412-2462MHz

802.11n(40MHz): 2422-2452MHz

Number of Channels : 802.11b/g/n (20MHz):11

802.11n (40MHz): 7

Antenna Gain : 0dBi

Power Supply : DC 5.5V (Power by Adapter)

Adapter : Model number: SUN-0550200

Input: AC 100-240V; 50/60Hz 0.3A Max

Output: DC 5.5V/2A

Data Rate : 802.11b: 11, 5.5, 2, 1 Mbps

802.11g: 54, 48, 36, 24, 18, 12, 9, 6 Mbps

802.11n: up to 150Mbps

Applicant : VP9 Vietnam., JSC

Address : Buoi Market, Buoi ward, Tay Ho district, Hanoi, Vietnam

Manufacturer : VP9 Vietnam., JSC

Address : Buoi Market, Buoi ward, Tay Ho district, Hanoi, Vietnam

Date of sample received: June 16, 2014
Date of Test: June 18-21, 2014

1.2. Carrier Frequency of Channels

802.11b, 802.11g, 802.11n (20MHz)

Channel	Channel Frequency(MHz)		Frequency(MHz)
01	2412	07	2442
02	2417	08	2447
03	2422	09	2452
04	2427	10	2457
05	2432	11	2462
06	2437		

802.11n (40MHz)

Channel	Frequency(MHz)	Channel	Frequency(MHz)
		07	2442
		08	2447
03	2422	09	2452
04	2427		
05	2432		
06	2437		

1.3. Special Accessory and Auxiliary Equipment

n.a.

1.4.Description of Test Facility

EMC Lab : Accredited by TUV Rheinland Shenzhen

Listed by FCC

The Registration Number is 752051

Listed by Industry Canada

The Registration Number is 5077A-2

Accredited by China National Accreditation Committee

for Laboratories

The Certificate Registration Number is L3193

Name of Firm Site Location

: ACCURATE TECHNOLOGY CO. LTD

: F1, Bldg. A, Changyuan New Material Port, Keyuan Rd. Science & Industry Park, Nanshan, Shenzhen, Guangdong

P.R. China

1.5.Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2

Radiated emission expanded uncertainty = 3.08dB, k=2

(9kHz-30MHz)

Radiated emission expanded uncertainty = 4.42dB, k=2

(30MHz-1000MHz)

Radiated emission expanded uncertainty = 4.06dB, k=2

(Above 1GHz)

2. MEASURING DEVICE AND TEST EQUIPMENT

Table 1: List of Test and Measurement Equipment

Kind of equipment	Manufacturer	Type	S/N	Calibrated date	Calibrated until
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 11, 2014	Jan. 10, 2015
EMI Test Receiver	Rohde&Schwarz	ESPI3	101526/003	Jan. 11, 2014	Jan. 10, 2015
Spectrum Analyzer	Agilent	E7405A	MY45115511	Jan. 11, 2014	Jan. 10, 2015
Pre-Amplifier	Rohde&Schwarz	CBLU118354 0-01	3791	Jan. 11, 2014	Jan. 10, 2015
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 15, 2014	Jan. 14, 2015
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 15, 2014	Jan. 14, 2015
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 15, 2014	Jan. 14, 2015
Horn Antenna	Schwarzbeck	BBHA9170	9170-359	Jan. 15, 2014	Jan. 14, 2015
LISN	Rohde&Schwarz	ESH3-Z5	100305	Jan. 11, 2014	Jan. 10, 2015
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 11, 2014	Jan. 10, 2015

3. OPERATION OF EUT DURING TESTING

3.1. Operating Mode

The mode is used: 1.802.11b Transmitting mode

Low Channel: 2412MHz Middle Channel: 2437MHz High Channel: 2462MHz

2.802.11g Transmitting mode

Low Channel: 2412MHz Middle Channel: 2437MHz High Channel: 2462MHz

3.802.11n (20MHz) Transmitting mode

Low Channel: 2412MHz Middle Channel: 2437MHz High Channel: 2462MHz

4.802.11n (40MHz) Transmitting mode

Low Channel: 2422MHz Middle Channel: 2437MHz High Channel: 2452MHz

5. On

3.2.Configuration and peripherals

4. TEST PROCEDURES AND RESULTS

FCC Rules Description of Test		Result
Section 15.247(a)(2)	6dB Bandwidth Test	Compliant
Section 15.247(e)	Power Spectral Density Test	Compliant
Section 15.247(b)(3)	Maximum Peak Output Power Test	Compliant
Section 15.247(d)	Band Edge Compliance Test	Compliant
Section 15.247(d) Section 15.209	Radiated Spurious Emission Test	Compliant
Section 15.247(d)	Conducted Spurious Emission Test	Compliant
Section 15.207	AC Power Line Conducted Emission Test	Compliant
Section 15.203	Antenna Requirement	Compliant

5. 6DB BANDWIDTH MEASUREMENT

5.1.Block Diagram of Test Setup

5.2. The Requirement For Section 15.247(a)(2)

Section 15.247(a)(2): Systems using digital modulation techniques may operate in the 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

5.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

5.4. Operating Condition of EUT

- 5.4.1. Setup the EUT and simulator as shown as Section 5.1.
- 5.4.2. Turn on the power of all equipment.
- 5.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2412-2462 and 2422-2452MHz. We select 2412MHz, 2437MHz, 2462MHz and 2422MHz, 2437MHz, 2452MHz TX frequency to transmit.

5.5.Test Procedure

- 1. Set resolution bandwidth (RBW) = 100 kHz.
- 2. Set the video bandwidth (VBW) $\geq 3 \times RBW$.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

5.6.Test Result

The test was performed with 802.11b				
Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Limit (MHz)	
Low	2412	10.12	> 0.5MHz	
Middle	2437	10.12	> 0.5MHz	
High	2462	10.12	> 0.5MHz	

The test was performed with 802.11g				
Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Limit (MHz)	
Low	2412	15.16	> 0.5MHz	
Middle	2437	15.44	> 0.5MHz	
High	2462	15.44	> 0.5MHz	

The test was performed with 802.11n (Bandwidth: 20 MHz)				
Channel Frequency (MHz) 6dB Bandwidth Limit (MHz) (MHz)				
Low	2412	16.40	> 0.5MHz	
Middle	2437	16.40	> 0.5MHz	
High	2462	16.40	> 0.5MHz	

The test was performed with 802.11n (Bandwidth: 40 MHz)				
Channel Frequency (MHz) 6dB Bandwidth (MHz) Limit (MHz)				
Low	2422	36.44	> 0.5MHz	
Middle	2437	36.48	> 0.5MHz	
High	2452	36.40	> 0.5MHz	

The spectrum analyzer plots are attached as below.

802.11b Channel Low 2412MHz

802.11b Channel Middle 2437MHz

802.11b Channel High 2462MHz

802.11g Channel Low 2412MHz

802.11g Channel Middle 2437MHz

802.11g Channel High 2462MHz

802.11n Channel Low 2412MHz (20MHz)

802.11n Channel Middle 2437MHz(20MHz)

802.11n Channel High 2462MHz(20MHz)

802.11n Channel Low 2422MHz (40MHz)

802.11n Channel Middle 2437MHz(40MHz)

802.11n Channel High 2452MHz(40MHz)

6. MAXIMUM CONDUCTED (AVERAGE) OUTPUT POWER

6.1.Block Diagram of Test Setup

6.2. The Requirement For Section 15.247(b)(3)

Section 15.247(b)(3): For systems using digital modulation in the 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz bands: 1 Watt.

6.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

6.4. Operating Condition of EUT

- 6.4.1. Setup the EUT and simulator as shown as Section 6.1.
- 6.4.2. Turn on the power of all equipment.
- 6.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2412-2462 and 2422-2452MHz. We select 2412MHz, 2437MHz, 2462MHz and 2422MHz, 2437MHz, 2452MHz TX frequency to transmit.

6.5.Test Procedure

- 6.5.1.The EUT was tested according to DTS test procedure of Jun 05, 2014 KDB558074 D01 DTS Meas Guidance v03r02 for compliance to FCC 47CFR 15.247 requirements.
- 6.5.2. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 6.5.3.Set RBW = 1-5% of the OBW, not to exceed 1 MHz, VBW \geq 3 x RBW, Sweep time = auto, Set span to at least 1.5 times the OBW, Detector = RMS.
- 6.5.4. Measurement the Maximum conducted (average) output power.

6.6.Test Result

The test was performed with 802.11b					
Channel Frequency (MHz) Ave output power (MHz) Ave output power (mW) Limits (dBm / W					
Low	2412	9.34	8.59	30 dBm / 1 W	
Middle	2437	9.24	8.39	30 dBm / 1 W	
High	2462	8.93	7.82	30 dBm / 1 W	

The test was performed with 802.11g					
Channel Frequency (MHz) Ave output power (dBm) Ave output power (mW) Limits dBm/W					
Low	2412 7.73 5.93 30 dBm / 1		30 dBm / 1 W		
Middle	Middle 2437 7.62 5.78 30 dBm		30 dBm / 1 W		
High	2462	6.72	4.70	30 dBm / 1 W	

The test was performed with 802.11n (20MHz)					
Channel Frequency (MHz) Ave output power Ave output power (mW) Limits dBm / W					
Low	v 2412 7.10 5.13 30 dBm / 1 W				
Middle	2437	6.83	4.82	30 dBm / 1 W	
High	2462	6.61	4.58	30 dBm / 1 W	

The test was performed with 802.11n (40MHz)				
Channel Frequency (MHz) Ave output power (dBm) Ave output power (mW) Limits dBm/W				
Low	Low 2422 4.01 2.52 30 dBm / 1		30 dBm / 1 W	
Middle	2437	4.90	3.09	30 dBm / 1 W
High	2452	4.96	3.13	30 dBm / 1 W

The spectrum analyzer plots are attached as below.

802.11b Channel Low 2412MHz

802.11b Channel Middle 2437MHz

802.11b Channel High 2462MHz

802.11g Channel Low 2412MHz

802.11g Channel Middle 2437MHz

802.11g Channel High 2462MHz

802.11n Channel Low 2412MHz (20MHz)

802.11n Channel Middle 2437MHz (20MHz)

802.11n Channel High 2462MHz (20MHz)

802.11n Channel Low 2422MHz (40MHz)

802.11n Channel Middle 2437MHz (40MHz)

802.11n Channel High 2452MHz (40MHz)

7. POWER SPECTRAL DENSITY MEASUREMENT

7.1.Block Diagram of Test Setup

7.2. The Requirement For Section 15.247(e)

Section 15.247(e): For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

7.4. Operating Condition of EUT

- 7.4.1. Setup the EUT and simulator as shown as Section 7.1.
- 7.4.2. Turn on the power of all equipment.
- 7.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2412-2462 and 2422-2452MHz. We select 2412MHz, 2437MHz, 2462MHz and 2422MHz, 2437MHz, 2452MHz TX frequency to transmit.

7.5.Test Procedure

7.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.

7.5.2.Measurement Procedure PKPSD:

This procedure must be used if maximum peak conducted output power was used to demonstrate compliance to the fundamental output power limit, and is optional if the maximum (average) conducted output power was used to demonstrate compliance.

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the RBW $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 7.5.3.Measurement the maximum power spectral density.

7.6.Test Result

The test was performed with 802.11b				
Channel	Frequency (MHz)	Power Spectral Density (dBm)	Limits (dBm)	
Low	2412	-23.94	8 dBm	
Middle	2437	-23.08	8 dBm	
High	2462	-22.40	8 dBm	

The test was performed with 802.11g				
Channel	Frequency (MHz)	Power Spectral Density (dBm)	Limits (dBm)	
Low	2412	-25.97	8 dBm	
Middle	2437	-24.77	8 dBm	
High	2462	-24.29	8 dBm	

The test was performed with 802.11n (20MHz)				
Channel Frequency (MHz) Power Spectral Density (dBm) Limits (dBm)				
Low	2412	-28.09	8 dBm	
Middle	2437	-26.98	8 dBm	
High	2462	-26.41	8 dBm	

The test was performed with 802.11n (40MHz)				
Channel Frequency (MHz) Power Spectral Density (dBm) Limits (dBm)				
Low	2422	-29.17	8 dBm	
Middle	2437	-29.33	8 dBm	
High	2452	-29.52	8 dBm	

The spectrum analyzer plots are attached as below.

802.11b Channel Low 2412MHz

802.11b Channel Middle 2437MHz

802.11b Channel High 2462MHz

802.11g Channel Low 2412MHz

802.11g Channel Middle 2437MHz

802.11g Channel High 2462MHz

802.11n Channel Low 2412MHz (20MHz)

802.11n Channel Middle 2437MHz (20MHz)

802.11n Channel High 2462MHz(20MHz)

802.11n Channel Low 2422MHz (40MHz)

802.11n Channel Middle 2437MHz(40MHz)

802.11n Channel High 2452MHz(40MHz)

8. BAND EDGE COMPLIANCE TEST

8.1.Block Diagram of Test Setup

8.2. The Requirement For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

8.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

8.4. Operating Condition of EUT

- 8.4.1. Setup the EUT and simulator as shown as Section 8.1.
- 8.4.2. Turn on the power of all equipment.
- 8.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2412-2462 and 2422-2452MHz MHz. We select 2412MHz, 2462MHz and 2422MHz, 2452MHz TX frequency to transmit.

8.5. Test Procedure

Conducted Band Edge:

- 8.5.1. The transmitter output was connected to the spectrum analyzer via a low loss cable.
- 8.5.2.Set RBW of spectrum analyzer to 100kHz and VBW to 300kHz.

Radiate Band Edge:

- 8.5.3. The EUT is placed on a turntable, which is 0.8m above the ground plane and worked at highest radiated power.
- 8.5.4. The turntable was rotated for 360 degrees to determine the position of maximum emission level.
- 8.5.5. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 8.5.6. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:

8.5.7. The band edges was measured and recorded.

8.6.Test Result

The test was performed with 802.11b										
Frequency Result of Band Edge Limit of Band Edge										
(MHz)	(dBc)	(dBc)								
2412	36.81	> 20dBc								
2462	50.12	> 20dBc								

The test was performed with 802.11g									
Frequency Result of Band Edge Limit of Band Edge (MHz) (dBc) (dBc)									
2412 32.63 > 20dBc									
2462	44.59	> 20dBc							

The test was performed with 8	The test was performed with 802.11n (20MHz)									
Frequency	Result of Band Edge	Limit of Band Edge								
(MHz)	(dBc)	(dBc)								
2412	30.32	> 20dBc								
2462	44.17	> 20dBc								

The test was performed with 802.11n (40MHz)										
Frequency Result of Band Edge Limit of Band Edge										
(MHz) (dBc) (dBc)										
2422	2422 27.13 > 20dBc									
2452	43.12	> 20dBc								

802.11b Channel Low 2412MHz

802.11b Channel High 2462MHz

802.11g Channel Low 2412MHz

802.11g Channel High 2462MHz

802.11n Channel Low 2412MHz (20MHz)

802.11n Channel High 2462MHz (20MHz)

802.11n Channel Low 2422MHz (40MHz)

802.11n Channel High 2452MHz (40MHz)

Radiated Band Edge Result

Date of Test:June 21, 2014Temperature:25°CEUT:Internet TV BoxHumidity:50%Model No.:VP9B2Power Supply:AC 120V/60HzTest Mode:802.11b Channel Low 2412MHzTest Engineer:Pei

Frequency	Reading	(dBµV/m)	Factor(dB)	Result(dBμV/m)	Limit(dBµV/m)		Margin(dB)		Polarization
(MHz)	AV	PEAK	Corr.	AV	PEAK	AV	PEAK	AV	PEAK	
2310.000	35.74	43.27	-6.99	28.75	36.28	54.00	74.00	-25.25	-37.72	Vertical
2390.000	36.19	44.15	-6.78	29.41	37.37	54.00	74.00	-24.59	-36.63	Vertical
2310.000	33.75	42.84	-6.99	26.76	35.85	54.00	74.00	-27.24	-38.15	Horizontal
2390.000	34.29	42.53	-6.78	27.51	35.75	54.00	74.00	-26.49	-38.25	Horizontal

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Date of Test: June 21, 2014 Temperature: 25°C

EUT: Internet TV Box Humidity: 50%

Model No.: VP9B2 Power Supply: AC 120V/60Hz

Test Mode: 802.11b Channel High 2462MHz Test Engineer: Pei

Frequency	Reading(dBµV/m)		Factor(dB)	Result(dBµV/m)		Limit(dBµV/m)		Margin(dB)		Polarization
(MHz)	AV	PEAK	Corr.	AV	PEAK	AV	PEAK	AV	PEAK	
2483.500	36.00	43.57	-6.54	29.46	37.03	54.00	74.00	-24.54	-36.97	Vertical
2500.000	34.77	43.19	-6.50	28.27	36.69	54.00	74.00	-25.73	-37.31	Vertical
2483.500	36.77	45.66	-6.54	30.23	39.12	54.00	74.00	-23.77	-34.88	Horizontal
2500.000	33.48	42.25	-6.50	26.98	35.75	54.00	74.00	-27.02	-38.25	Horizontal

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Date of Test: June 21, 2014 Temperature: 25°C

EUT: Internet TV Box Humidity: 50%

Model No.: VP9B2 Power Supply: AC 120V/60Hz

Test Mode: 802.11g Channel Low 2412MHz Test Engineer: Pei

Frequency	Reading(dBµV/m)		Factor(dB)	Result(dBµV/m)		Limit(dBµV/m)		Margin(dB)		Polarization
(MHz)	AV	PEAK	Corr.	AV	PEAK	AV	PEAK	AV	PEAK	
2310.000	35.28	43.00	-6.99	28.29	36.01	54.00	74.00	-25.71	-37.99	Vertical
2390.000	44.69	53.13	-6.78	37.91	46.35	54.00	74.00	-16.09	-27.65	Vertical
2310.000	35.41	43.34	-6.99	28.42	36.35	54.00	74.00	-25.58	-37.65	Horizontal
2390.000	38.99	47.03	-6.78	32.21	40.25	54.00	74.00	-21.79	-33.75	Horizontal

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Date of Test: June 21, 2014

EUT: Internet TV Box

Model No.: VP9B2

Test Mode: 802.11g Channel High 2462MHz

Test Engineer: Pei

Frequency	Reading	(dBµV/m)	Factor(dB)	Result(dBμV/m)	Limit(dl	Limit(dBµV/m)		Margin(dB)	
(MHz)	AV	PEAK	Corr.	AV	PEAK	AV	PEAK	AV	PEAK	
2483.500	46.80	52.61	-6.54	40.26	46.07	54.00	74.00	-13.74	-27.93	Vertical
2500.000	35.99	43.91	-6.50	29.49	37.41	54.00	74.00	-24.51	-36.59	Vertical
2483.500	39.85	48.16	-6.54	33.31	41.62	54.00	74.00	-20.69	-32.38	Horizontal
2500.000	34.71	43.00	-6.50	28.21	36.50	54.00	74.00	-25.79	-37.50	Horizontal

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Date of Test: June 21, 2014

EUT: Internet TV Box

Model No.: VP9B2

802.11n Channel Low 2412MHz

Temperature: 25°C

Humidity: 50%

Power Supply: AC 120V/60Hz

Test Engineer: Pei

Frequency	Reading	(dBµV/m)	Factor(dB)	Result(Result(dBμV/m)		Limit(dBµV/m)		Margin(dB)	
(MHz)	AV	PEAK	Corr.	AV	PEAK	AV	PEAK	AV	PEAK	
2310.000	34.70	42.38	-6.99	27.71	35.39	54.00	74.00	-26.29	-38.61	Vertical
2390.000	43.69	52.10	-6.78	36.91	45.32	54.00	74.00	-17.09	-28.68	Vertical
2310.000	37.25	45.08	-6.99	30.26	38.09	54.00	74.00	-23.74	-35.91	Horizontal
2390.000	41.69	49.16	-6.78	34.91	42.38	54.00	74.00	-19.09	-31.62	Horizontal

Note:

Test Mode:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

(20MHz)

Date of Test: June 21, 2014

EUT: Internet TV Box

Model No.: VP9B2

802.11n Channel High 2462MHz

Temperature: 25°C

Humidity: 50%

Power Supply: AC 120V/60Hz

Test Engineer: Pei

	1									1
Frequency	Reading(dBµV/m)		Factor(dB)	Result(dBµV/m)		Limit(dBµV/m)		Margin(dB)		Polarization
(MHz)	AV	PEAK	Corr.	AV	PEAK	AV	PEAK	AV	PEAK	
2483.500	48.96	56.14	-6.54	42.42	49.60	54.00	74.00	-11.58	-24.40	Vertical
2500.000	38.54	45.30	-6.50	32.04	38.80	54.00	74.00	-21.96	-35.20	Vertical
2483.500	44.66	52.54	-6.54	38.12	46.00	54.00	74.00	-15.88	-28.00	Horizontal
2500.000	36.24	44.24	-6.50	29.74	37.74	54.00	74.00	-24.26	-36.28	Horizontal

Note:

Test Mode:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

(20MHz)

Date of Test: June 21, 2014

EUT: Internet TV Box

Model No.: VP9B2

802.11n Channel Low 2422MHz

Temperature: 25°C

Humidity: 50%

Power Supply: AC 120V/60Hz

Test Engineer: Pei

Frequency	Reading	(dBµV/m)	Factor(dB)	Result(Result(dBµV/m)		Limit(dBµV/m)		Margin(dB)	
(MHz)	AV	PEAK	Corr.	AV	PEAK	AV	PEAK	AV	PEAK	
2310.000	34.18	42.55	-6.99	27.19	35.56	54.00	74.00	-26.81	-38.44	Vertical
2390.000	44.60	52.15	-6.78	37.82	45.37	54.00	74.00	-16.18	-28.63	Vertical
2310.000	35.14	42.25	-6.99	28.15	35.26	54.00	74.00	-25.85	-38.74	Horizontal
2390.000	38.55	46.42	-6.78	31.77	39.64	54.00	74.00	-22.23	-34.36	Horizontal

Note:

Test Mode:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

(40MHz)

Date of Test: June 21, 2014 Temperature: 25°C

EUT: Internet TV Box Humidity: 50%

Model No.: VP9B2 Power Supply: AC 120V/60Hz

802.11n Channel High 2452MHz

Test Engineer: Pei

Frequency	Reading	(dBµV/m)	Factor(dB)	Result(dBμV/m)	Limit(d)	Limit(dBµV/m)		Margin(dB)	
(MHz)	AV	PEAK	Corr.	AV	PEAK	AV	PEAK	AV	PEAK	
2483.500	36.47	44.12	-6.54	29.93	37.58	54.00	74.00	-24.07	-36.42	Vertical
2500.000	34.52	43.29	-6.50	28.02	36.79	54.00	74.00	-25.98	-37.21	Vertical
2483.500	35.69	43.04	-6.54	29.15	36.50	54.00	74.00	-24.85	-37.50	Horizontal
2500.000	34.90	42.09	-6.50	28.40	35.59	54.00	74.00	-25.60	-38.41	Horizontal

Note:

Test Mode:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

(40MHz)

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: star2014 #635 Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Internet TV Box Mode: TX Channel 1(802.11b)

Model: VP9B2

Manufacturer: VP9 Vietnam., JSC

Note: Report No.:ATE20141053

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 14/06/21/ Time: 13/38/36

Engineer Signature: STAR

Distance: 3m

54.00

-26.49

AVG

4

34.29

-6.78

27.51

2390.000

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: star2014 #636

Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT:

Internet TV Box

Mode: TX Channel 1(802.11b)

Model: VP9B2

Manufacturer: VP9 Vietnam., JSC

Engineer Signature: STAR

Power Source: AC 120V/60Hz

Polarization: Vertical

Distance: 3m

Date: 14/06/21/

Time: 13/43/33

Report No.:ATE20141053

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2310.000	43.27	-6.99	36.28	74.00	-37.72	peak			
2	2310.000	35.74	-6.99	28.75	54.00	-25.25	AVG			
3	2390.000	44.15	-6.78	37.37	74.00	-36.63	peak			
4	2390.000	36.19	-6.78	29.41	54.00	-24.59	AVG			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: star2014 #637 Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Internet TV Box

Mode: TX Channel 11(802.11b)

Model: VP9B2

Manufacturer: VP9 Vietnam., JSC

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 14/06/21/ Time: 13/49/47

Engineer Signature: STAR

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: star2014 #638 Polarization:

Standard: FCC PK Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Internet TV Box

Mode: TX Channel 11(802.11b)

Model: VP9B2

Manufacturer: VP9 Vietnam., JSC

Note: Report No.:ATE20141053 Horizontal

Power Source: AC 120V/60Hz

Date: 14/06/21/ Time: 13/53/47

Engineer Signature: STAR

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
1	2483.500	45.66	-6.54	39.12	74.00	-34.88	peak				
2	2483.500	36.77	-6.54	30.23	54.00	-23.77	AVG				
3	2500.000	42.25	-6.50	35.75	74.00	-38.25	peak				
4	2500.000	33.48	-6.50	26.98	54.00	-27.02	AVG				

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: star2014 #641 Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Internet TV Box Mode: TX Channel 1(802.11g)

Model: VP9B2

Manufacturer: VP9 Vietnam., JSC

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 14/06/21/ Time: 14/11/38

Engineer Signature: STAR

Distance: 3m

46.35

37.91

-6.78

-6.78

74.00

54.00

-27.65

-16.09

peak

AVG

3

4

2390.000

2390.000

53.13

44.69

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: star2014 #642 Standard: FCC PK

Test item: Radiation Test
Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Internet TV Box
Mode: TX Channel 1(802.11g)

Model: VP9B2

Manufacturer: VP9 Vietnam.,JSC

Note: Report No.:ATE20141053

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 14/06/21/ Time: 14/17/45

Engineer Signature: STAR

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290

Job No.: star2014 #639 Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Internet TV Box

Mode: TX Channel 11(802.11g)

VP9B2 Model:

Manufacturer: VP9 Vietnam., JSC

Report No.:ATE20141053

Fax:+86-0755-26503396

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 14/06/21/ Time: 13/59/47

Engineer Signature: STAR

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: star2014 #640

Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Internet TV Box

Mode: TX Channel 11(802.11g)

VP9B2 Model:

Manufacturer: VP9 Vietnam., JSC

Note: Report No.:ATE20141053 Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 14/06/21/ Time: 14/05/48

Engineer Signature: STAR

Distance: 3m

peak

AVG

-23.57

4

2500.000

36.93

-6.50

30.43

54.00

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: star2014 #643 Standard: FCC PK Test item: Radiation Test

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Internet TV Box
Mode: TX Channel 1(802.11n)

Model: VP9B2

Manufacturer: VP9 Vietnam.,JSC

Note: Report No.:ATE20141053

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 14/06/21/ Time: 14/30/37

Engineer Signature: STAR

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2310.000	45.08	-6.99	38.09	74.00	-35.91	peak			
2	2310.000	37.25	-6.99	30.26	54.00	-23.74	AVG			
3	2390.000	49.16	-6.78	42.38	74.00	-31.62	peak			
4	2390.000	41.69	-6.78	34.91	54.00	-19.09	AVG			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: star2014 #644

Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Internet TV Box

Mode: TX Channel 1(802.11n)

Model: VP9B2

Manufacturer: VP9 Vietnam., JSC

Note: Report No.:ATE20141053

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 14/06/21/ Time: 14/35/39

Engineer Signature: STAR

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: star2014 #645

Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT:

Internet TV Box

(dBuV/m)

56.14

48.96

45.30

38.54

(dB)

-6.54

-6.54

-6.50

-6.50

(dBuV/m)

49.60

42.42

38.80

32.04

(MHz)

2483,500

2483,500

2500.000

2500.000

1

2

3

4

Mode: TX Channel 11(802.11n)

Model: VP9B2

Manufacturer: VP9 Vietnam., JSC

Report No.:ATE20141053 Note:

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 14/06/21/ Time: 14/41/24

Engineer Signature: STAR

Distance: 3m

(dBuV/m)

74.00

54.00

74.00

54.00

(dB)

-24.40

-11.58

-35.20

-21.96

peak

AVG

peak

AVG

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: star2014 #646 Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Internet TV Box

Mode: TX Channel 11(802.11n)

Model: VP9B2

Manufacturer: VP9 Vietnam.,JSC

Note: Report No.:ATE20141053

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 14/06/21/ Time: 14/46/27

Engineer Signature: STAR

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: star2014 #650

Standard: FCC PK Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Internet TV Box Mode: TX Channel 3(802.11n)

Model: VP9B2

Manufacturer: VP9 Vietnam., JSC

Report No.:ATE20141053 Note:

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 14/06/21/ Time: 15/08/03

Engineer Signature: STAR

Distance: 3m

74.00

54.00

74.00

54.00

-38.74

-25.85

-34.36

-22.23

peak

AVG

peak

AVG

1

2

3

4

2310.000

2310,000

2390.000

2390.000

42.25

35.14

46.42

38.55

-6.99

-6.99

-6.78

-6.78

35.26

28.15

39.64

31.77

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: star2014 #649

Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Internet TV Box

Mode: TX Channel 3(802.11n)

Model: VP9B2

Manufacturer: VP9 Vietnam.,JSC

Note: Report No.:ATE20141053

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 14/06/21/ Time: 15/04/17

Engineer Signature: STAR

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: star2014 #648

Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT:

Internet TV Box

Mode: TX Channel 9(802.11n)

Model: VP9B2

Manufacturer: VP9 Vietnam., JSC

Note:

Report No.:ATE20141053

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 14/06/21/ Time: 14/59/37

Engineer Signature: STAR

Distance: 3m

No.

1

2

3

4

(MHz)

2483.500

2483.500

2500.000

2500.000

(dBuV/m)

44.12

36.47

43.29

34.52

(dB)

-6.54

-6.54

-6.50

-6.50

(dBuV/m)

37.58

29.93

36.79

28.02

(dBuV/m)

74.00

54.00

74.00

54.00

(dB)

-36.42

-24.07

-37.21

-25.98

Remark

(deg.)

(cm)

peak

AVG

peak

AVG

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: star2014 #647 Standard: FCC PK Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Internet TV Box
Mode: TX Channel 9(802.11n)

Model: VP9B2

Manufacturer: VP9 Vietnam.,JSC

Note: Report No.:ATE20141053

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 14/06/21/ Time: 14/52/33

Engineer Signature: STAR

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2483.500	43.04	-6.54	36.50	74.00	-37.50	peak			
2	2483.500	35.69	-6.54	29.15	54.00	-24.85	AVG			
3	2500.000	42.09	-6.50	35.59	74.00	-38.41	peak			
4	2500.000	34.90	-6.50	28.40	54.00	-25.60	AVG			

9. RADIATED SPURIOUS EMISSION TEST

9.1.Block Diagram of Test Setup

9.1.1.Block diagram of connection between the EUT and peripherals

Setup: Transmitting mode

9.1.2.Semi-Anechoic Chamber Test Setup Diagram

9.2. The Limit For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the

transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

9.3. Restricted bands of operation

9.3.1.FCC Part 15.205 Restricted bands of operation

(a) Except as shown in paragraph (d) of this section, Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	$\binom{2}{}$
13.36-13.41			

Until February 1, 1999, this restricted band shall be 0.490-0.510

(b) Except as provided in paragraphs (d) and (e), the field strength of emission appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, Compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

9.4. Configuration of EUT on Measurement

The equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

9.5. Operating Condition of EUT

²Above 38.6

- 9.5.1. Setup the EUT and simulator as shown as Section 9.1.
- 9.5.2. Turn on the power of all equipment.
- 9.5.3.Let the EUT work in TX modes measure it. The transmit frequency are 2412-2462 and 2422-2452MHz. We select 2412MHz, 2437MHz, 2462MHz and 2422MHz, 2437MHz, 2452MHz TX frequency to transmit.

9.6. Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4: 2009 on radiated emission measurement. The EUT was tested in 3 orthogonal planes.

The worst-case data rate for this channel to be 1Mbps for 802.11b mode and 6Mbps for 802.11g mode and 150Mbps for 802.11n mode, based on previous with 802.11 WLAN product design architectures.

The bandwidth of test receiver is set at 9kHz in below 30MHz. and set at 120kHz in 30-1000MHz, and 1MHz in above 1000MHz.

The frequency range from 9kHz to 25GHz is checked.

The final measurement in band 9-90kHz, 110-490kHz and above 1000MHz is performed with Average detector. Except those frequency bands mention above, the final measurement for frequencies below 1000MHz is performed with Quasi Peak detector.

The field strength is calculated by adding the antenna factor, and cable loss, and subtracting the amplifier gain from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss – Amplifier Gain

9.7. The Field Strength of Radiation Emission Measurement Results

Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported.

- 2. *: Denotes restricted band of operation.
- 3. The fundamental radiated emissions were reduced by Band Reject Filter in the attached plots.
- 4. The EUT is tested radiation emission at each test mode(802.11 b/g/n) in three axes. The worst emissions are reported in all test mode and channels.
 - 5. The 18-25GHz emissions are not reported, because the levels are too low against the limit.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: star2014 #561

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Internet TV Box
Mode: TX Channel 1(802.11b)

Model: VP9B2

Manufacturer: VP9 Vietnam.,JSC

Note: Report No.:ATE20141053

57.41

44.43

414.7223

793,3960

-15.41

-7.87

42.00

36.56

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 14/06/21/ Time: 9/34/03

Engineer Signature: STAR

Distance: 3m

46.00

46.00

-4.00

-9.44

QP

QP

2

3

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: star2014 #562

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Internet TV Box

Mode: TX Channel 1(802.11b)

Model: VP9B2

Manufacturer: VP9 Vietnam., JSC

Note: Report No.:ATE20141053

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 14/06/21/ Time: 9/38/44

Engineer Signature: STAR

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: star2014 #563

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Internet TV Box Mode: TX Channel 6(802.11b)

Model: VP9B2

Manufacturer: VP9 Vietnam., JSC

Note: Report No.:ATE20141053

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 14/06/21/ Time: 9/43/14

Engineer Signature: STAR

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: star2014 #564

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Internet TV Box Mode: TX Channel 6(802.11b)

Model: VP9B2

Manufacturer: VP9 Vietnam.,JSC

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 14/06/21/ Time: 9/47/56

Engineer Signature: STAR

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: star2014 #565

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Internet TV Box

Mode: TX Channel 11(802.11b)

Model: VP9B2

Manufacturer: VP9 Vietnam.,JSC

Note: Report No.:ATE20141053

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 14/06/21/ Time: 9/51/28

Engineer Signature: STAR

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: star2014 #566

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Internet TV Box

Mode: TX Channel 11(802.11b)

Model: VP9B2

Manufacturer: VP9 Vietnam.,JSC

Note: Report No.:ATE20141053

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 14/06/21/ Time: 9/54/11

Engineer Signature: STAR

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: star2014 #567

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Internet TV Box
Mode: TX Channel 1(802.11q)

Model: VP9B2

Manufacturer: VP9 Vietnam.,JSC

Note: Report No.:ATE20141053

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 14/06/21/ Time: 9/59/51

Engineer Signature: STAR

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: star2014 #568

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Internet TV Box Mode: TX Channel 1(802.11g)

Model: VP9B2

Note:

Manufacturer: VP9 Vietnam., JSC

Report No.:ATE20141053

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 14/06/21/ Time: 10/03/28

Engineer Signature: STAR

70.0	dBuV/m									
60									limit	1: —
50										
40							d			3
30	M	Mn	,	a May an	V	Advan	, <u> </u>	Wi		
20	, A 5 1	M	M	lat. A.	M.	N	W W	" W/\		
20	MM	V	The state of the s	1	Mar.	7		1		
	MA	V	W		v					
10 0.0	10.000 40	50 60 70	1 80		V	30	00 40	00 500	0 600 7	700 1000.0 MHz
10 0.0 3	Freq. (MHz)	Seading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	00 40	00 500 Height (cm)	Degree (deg.)	700 1000.0 MHz
10 0.0 3	Freq.	Reading	Factor			Margin		Height	Degree	
20 10 0.0 3	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	(dBuV/m)	(dBuV/m)	Margin (dB)	Detector	Height	Degree	

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: star2014 #569

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Internet TV Box
Mode: TX Channel 6(802.11g)

Model: VP9B2

Manufacturer: VP9 Vietnam., JSC

Note: Report No.:ATE20141053

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 14/06/21/ Time: 10/07/07

Engineer Signature: STAR

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: star2014 #570

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Internet TV Box

Mode: TX Channel 6(802.11g)

Model: VP9B2

Manufacturer: VP9 Vietnam.,JSC

Note: Report No.:ATE20141053

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 14/06/21/ Time: 10/11/48

Engineer Signature: STAR

