In [3]:

```
import pandas as pd
import seaborn as sbn
import matplotlib.pyplot as plt
from statsmodels.stats.proportion import proportions_ztest # For proportion Z-test
from statsmodels.formula.api import ols # For n-way ANOVA
from statsmodels.stats.anova import anova_lm # For n-way ANOVA
from scipy.stats import chi2_contingency # For Chi-Sq
from scipy import stats
```

In [4]:

```
!wget 'https://d2beiqkhq929f0.cloudfront.net/public_assets/assets/000/001/681/origin
```

```
--2022-07-27 19:15:47-- https://d2beigkhg929f0.cloudfront.net/public
assets/assets/000/001/681/original/scaler apollo hospitals.csv (http
s://d2beiqkhq929f0.cloudfront.net/public assets/assets/000/001/681/ori
ginal/scaler apollo hospitals.csv)
Resolving d2beigkhg929f0.cloudfront.net (d2beigkhg929f0.cloudfront.ne
t)... 143.204.253.229, 143.204.253.200, 143.204.253.39, ...
Connecting to d2beiqkhq929f0.cloudfront.net (d2beiqkhq929f0.cloudfron
t.net) | 143.204.253.229 | :443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 53047 (52K) [text/plain]
Saving to: 'scaler apollo hospitals.csv.4'
in
0.003s
2022-07-27 19:15:47 (15.7 MB/s) - 'scaler apollo hospitals.csv.4' save
d [53047/53047]
```

In [5]:

```
df=pd.read_csv('scaler_apollo_hospitals.csv')
```

In [10]:

df.head()

Out[10]:

	Unnamed: 0	age	sex	smoker	region	viral load	severity level	hospitalization charges
0	0	19	female	yes	southwest	9.30	0	42212
1	1	18	male	no	southeast	11.26	1	4314
2	2	28	male	no	southeast	11.00	3	11124
3	3	33	male	no	northwest	7.57	0	54961
4	4	32	male	no	northwest	9.63	0	9667

In []:

```
df.info()
```

In [6]:

```
df.isnull().sum()/len(df)*100
```

Out[6]:

Unnamed: 0 0.0 0.0 age 0.0 sex 0.0 smoker region 0.0 viral load 0.0 severity level 0.0 hospitalization charges 0.0 dtype: float64

In [8]:

```
df.drop(columns=['Unnamed: 0'],inplace=True)
```

In [9]:

df

Out[9]:

	age	sex	smoker	region	viral load	severity level	hospitalization charges
0	19	female	yes	southwest	9.30	0	42212
1	18	male	no	southeast	11.26	1	4314
2	28	male	no	southeast	11.00	3	11124
3	33	male	no	northwest	7.57	0	54961
4	32	male	no	northwest	9.63	0	9667
1333	50	male	no	northwest	10.32	3	26501
1334	18	female	no	northeast	10.64	0	5515
1335	18	female	no	southeast	12.28	0	4075
1336	21	female	no	southwest	8.60	0	5020
1337	61	female	yes	northwest	9.69	0	72853

1338 rows × 7 columns

In [9]:

```
df.select_dtypes('object').columns
```

Out[9]:

```
Index(['sex', 'smoker', 'region'], dtype='object')
```

In [10]:

```
plt.figure(figsize=(15,6))
for i,j in enumerate(list(df.select_dtypes('object').columns)):
    plt.subplot(1,3,i+1)
    plt.subplots_adjust(hspace = 0.8)
    sbn.boxplot(x=j, y='hospitalization charges', data=df)
    plt.tight_layout(pad=1)
```


In [11]:

```
df.describe(include='object').T
```

Out[11]:

	count	unique	top	freq
sex	1338	2	male	676
smoker	1338	2	no	1064
region	1338	4	southeast	364

In [12]:

```
import numpy as np
df.describe(include=np.number).T
```

Out[12]:

	count	mean	std	min	25%	50%	75%	
age	1338.0	39.207025	14.049960	18.00	27.0000	39.00	51.0000	
viral load	1338.0	10.221233	2.032796	5.32	8.7625	10.13	11.5675	
severity level	1338.0	1.094918	1.205493	0.00	0.0000	1.00	2.0000	
hospitalization charges	1338.0	33176.058296	30275.029296	2805.00	11851.0000	23455.00	41599.5000	

In [13]:

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1338 entries, 0 to 1337
Data columns (total 7 columns):
#
     Column
                               Non-Null Count Dtype
 0
                               1338 non-null
                                               int64
     age
 1
     sex
                               1338 non-null
                                               object
 2
                               1338 non-null
                                               object
     smoker
 3
     region
                               1338 non-null
                                               object
 4
     viral load
                               1338 non-null
                                               float64
 5
     severity level
                               1338 non-null
                                               int64
     hospitalization charges 1338 non-null
                                               int64
dtypes: float64(1), int64(3), object(3)
memory usage: 73.3+ KB
```

In [14]:

```
df.select_dtypes(np.number).columns
```

Out[14]:

```
Index(['age', 'viral load', 'severity level', 'hospitalization charge
s'], dtype='object')
```

In [15]:

```
#outlier treatment
for i,j in enumeraxte(list(df.select_dtypes(np.number).columns)):
    q1=df[j].quantile(0.25)
    q3=df[j].quantile(0.75)
    iqr=q3-q1
    df=df[(df[j]>=q1-1.5*iqr)&(df[j]<=q3+1.5*iqr)]</pre>
```

In [16]:

```
plt.figure(figsize=(15,6))
for i,j in enumerate(list(df.select_dtypes('object').columns)):
    plt.subplot(1,3,i+1)
    plt.subplots_adjust(hspace = 0.8)
    sbn.boxplot(x=j, y='hospitalization charges', data=df)
    plt.tight_layout(pad=1)
```


In [17]:

```
plt.figure(figsize=(15,6))
for i,j in enumerate(list(df.select_dtypes('object').columns)):
    plt.subplot(1,3,i+1)
    plt.subplots_adjust(hspace = 0.8)
    sbn.boxplot(x=j, y='xd', data=df)
    plt.tight_layout(pad=1)
```


In [18]:

```
plt.figure(figsize=(15,6))
for i,j in enumerate(list(df.select_dtypes('object').columns)):
    plt.subplot(1,3,i+1)
    plt.subplots_adjust(hspace = 0.8)
    sbn.boxplot(x=j, y='severity level', data=df)
    plt.tight_layout(pad=1)
```


In [19]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1191 entries, 0 to 1337
Data columns (total 7 columns):
```

#	Column	Non-Null Count	Dtype
0	age	1191 non-null	int64
1	sex	1191 non-null	object
2	smoker	1191 non-null	object
3	region	1191 non-null	object
4	viral load	1191 non-null	float64
5	severity level	1191 non-null	int64
6	hospitalization charges	1191 non-null	int64
dt.vpe	es: float64(1), int64(3),	object(3)	

dtypes: float64(1), int64(3), object(3)

memory usage: 106.7+ KB

In [20]:

```
plt.figure(figsize=(15,5))
sbn.heatmap(df.corr(),annot=True ,cmap="YlGn" )
plt.show()
```


Deep Dive into Age

In [21]:

as age has the highest correlation with the charges, therefore, let's check charge df['age bins']=pd.cut(x=df['age'], bins=[0,18,28,38,48,58,68,100],labels=['0-18','18

In [22]:

```
plt.figure(figsize=(12,8))
sbn.lineplot(x='age', y='hospitalization charges', data=df, hue='sex')
```

Out[22]:

<AxesSubplot:xlabel='age', ylabel='hospitalization charges'>

In [23]:

```
plt.figure(figsize=(12,8))
sbn.barplot(x='age bins', y='hospitalization charges', data=df)
```

Out[23]:

<AxesSubplot:xlabel='age bins', ylabel='hospitalization charges'>

In [24]:

df.groupby(['region','sex','smoker']).mean()['hospitalization charges'].unstack()

Out[24]:

	smoker	no	yes
region	sex		
northeast	female	24105.053435	48756.263158
northeast	male	21660.096000	56480.500000
northwest	female	21967.518519	58942.350000
northwest	male	20801.734848	56219.444444
southeast	female	20590.739130	56240.470588
Southeast	male	19123.868217	53855.058824
southwest	female	19585.122302	54129.909091
Southwest	male	19447.293651	50628.571429

Some Conclusions based on EDA

- As expected, as the age of the beneficiary increases, the cost to insurance increases.
- Males who smoke have most claims and have higher bills.

Female who are nonsmoker also have more claims to nonsmoker males this may be because of child birth
, need to explore claims type to understand better.

1. Prove (or disprove) that the hospitalisation of people who do smoking is greater than those who don't? (t-test Right tailed)

In [25]: df.groupby('smoker')['hospitalization charges'].describe() Out[25]: count 25% 50% 75% mean std min max smoker 20907.971564 14563.067125 2805.0 18313.0 28387.5 83680.0 1055.0 9962.5 no 136.0 54578.154412 13360.849267 32074.0 44663.5 51899.5 61421.5 85758.0

Step 1: Define null and alternative hypothesis

 $H_0: \mu_1 \le \mu_2$ The average charges of smokers is less than or equal to nonsmokers

 $H_a: \mu_1 > \mu_2$ The average charges of smokers is greater than nonsmokers

Step 2: Decide the significance level. If P values is less than alpha reject the null hypothesis.

a = 0.05

Step3:

Standard deviation of the population is not known ,will perform a T stat test . The > sign in alternate hypothesis indicate test is right tailed, that is all z values that would cause us to reject null hypothesis are in just one tail to the right of sampling distribution curve.

```
In [26]:
```

```
smoker=df[df['smoker']=='yes']['hospitalization charges'].sample(109)
non_smoker=df[df['smoker']=='no']['hospitalization charges'].sample(109)
```

```
In [27]:
```

```
tats.ttest_ind(smoker, non_smoker,equal_var=False)
ch test--> doesn't assume variance to be equal
2

{} , Pvalue ={} , OnetailPvalue = {}".format(t_statistic,p_value, p_value_onetail ))
```

```
Test statistic = 19.10483863138369 , Pvalue =2.768869225260506e-48 , O netailPvalue = 1.384434612630253e-48
```

```
In [28]:
```

```
n:Since P value {} is less than alpha {} ". format (p_value_onetail,alpha) )
ll Hypothesis that Average charges for smokers are less than or equal to nonsmoker."

n:Since P value {} is greater than alpha {} ". format (p_value_onetail,alpha))
Reject Null Hypothesis that Average charges for smokers are less than nonsmoker.")
```

Conclusion: Since P value 1.384434612630253e-48 is less than alpha 0.05 Reject Null Hypothesis that Average charges for smokers are less than or equal to nonsmoker.

In [29]:

#Alternative hypothesis is true

or

```
In [30]:
```

```
alpha=0.05
t_statistic, p_value = stats.ttest_ind(smoker, non_smoker, alternative='greater', ec
print("Here Pvalue is automatically of ONE TAIL P VALUE ={} as you have specified the
```

Here Pvalue is automatically of ONE TAIL P VALUE =1.384434612630253e-4 8 as you have specified that the alternative = greater which means one tail test

2. Prove (or disprove) with statistical evidence that the viral load of females is different from that of males

```
In [31]:
```

```
df.groupby('sex')['viral load'].describe()
Out[31]:
                                                 75%
       count
                 mean
                          std
                              min
                                   25%
                                         50%
                                                      max
   sex
       610.0
              9.966541 1.96940 5.60 8.585
                                        9.855 11.1725 15.58
 female
       581.0 10.030947 1.94495 5.32 8.600 9.940 11.2900 15.51
In [33]:
male=df[df['sex']=='male']['viral load'].sample(581)
female=df[df['sex']=='female']['viral load'].sample(581)
```

Step 1: Define null and alternative hypothesis

 $H_a: \mu_1! = \mu_2$ Difference in the viral load of females and males

Step 2: Decide the significance level. If P values is less than alpha reject the null hypothesis.

a = 0.05

Step3:

Standard deviation of the population is not known, will perform a T stat test. Not equal to sign in alternate hypothesis indicate its a two tailed test.

In [34]:

```
alpha=0.05
t_statistic, p_value = stats.ttest_ind(male, female, alternative='two-sided')
print("Test statistic = {} , Pvalue ={} ".format(t statistic,p value ))
```

Test statistic = 0.5501358940572972 , Pvalue =0.5823320795804493

In [35]:

```
sbn.distplot(male,color='green',hist=False)
sbn.distplot(female,color='red',hist=False)
```

/Users/suraaj/opt/anaconda3/lib/python3.9/site-packages/seaborn/distri butions.py:2619: FutureWarning: `distplot` is a deprecated function an d will be removed in a future version. Please adapt your code to use e ither `displot` (a figure-level function with similar flexibility) or `kdeplot` (an axes-level function for kernel density plots). warnings.warn(msg, FutureWarning)

/Users/suraaj/opt/anaconda3/lib/python3.9/site-packages/seaborn/distri butions.py:2619: FutureWarning: `distplot` is a deprecated function an d will be removed in a future version. Please adapt your code to use e ither `displot` (a figure-level function with similar flexibility) or `kdeplot` (an axes-level function for kernel density plots).

warnings.warn(msg, FutureWarning)

Out[35]:

<AxesSubplot:xlabel='viral load', ylabel='Density'>

We fail to reject the null hypothesis and can conclude that There is no difference between viral load of Female and viral load of Males.

3. Is the proportion of smoking significantly different across different regions? (chi-square)

 H_0 : Smokers proportions is not significantly different across different regions

 H_1 : Smokers proportions is different across different regions

Here we are comparing two different categorical variables, smoker and different region. So perform a Chi-sq Test.

```
In [36]:
```

```
contigency= pd.crosstab(df.region, df.smoker)
contigency
```

Out[36]:

smoker	no	yes
region		
northeast	256	39
northwest	267	38
southeast	267	34
southwest	265	25

In [37]:

```
df.groupby(['region','smoker'])['age'].count().unstack()
```

Out[37]:

smoker	no	yes
region		
northeast	256	39
northwest	267	38
southeast	267	34
southwest	265	25

In [38]:

```
contigency.plot(kind='bar')
```

Out[38]:

<AxesSubplot:xlabel='region'>

In [39]:

Failed to reject Null Hypothesis

4. Is the mean viral load of women with 0 Severity level, 1 Severity level, and 2 Severity level the same? Explain your answer with statistical evidence.

 H_0 : $\mu 1 = \mu 2 = \mu 3$ The mean viral load of women with no severity level, one severity level, two severity level is same

 H_a : Atleast one of mean viral load of women is not same

One-way ANOVA - Equality of population through variances of samples.

```
In [41]:
df[df['sex']=='female'].groupby('severity level')['viral load'].describe().head(3)
Out[41]:
                                                  50%
                                                          75%
             count
                                           25%
                                 std
                                     min
                      mean
                                                                max
 severity level
             268.0 9.963209 1.936862 5.76 8.6075
                                                  9.695 11.1300 14.92
             147.0 9.908844 1.918987 5.60 8.6000
                                                  9.670 11.1300
                                                               15.36
            106.0 9.945000 2.092305 5.73 8.3450 10.060 11.2025 15.57
In [42]:
```

```
df_female_severe=df[df['sex']=='female'].loc[df[df['sex']=='female']['severity level
```

In [43]:

```
df_female_severe.head()
```

Out[43]:

	age	sex	smoker	region	viral load	severity level	hospitalization charges	age bins
0	19	female	yes	southwest	9.30	0	42212	18-28
5	31	female	no	southeast	8.58	0	9392	28-38
6	46	female	no	southeast	11.15	1	20601	38-48
9	60	female	no	northwest	8.61	0	72308	58-68
11	62	female	yes	southeast	8.76	0	69522	58-68

```
In [44]:
```

```
df_female_severe['severity level'].value_counts()
```

```
Out[44]:
```

```
0 268
1 147
2 106
```

Name: severity level, dtype: int64

In [45]:

```
sbn.boxplot(x='severity level', y='viral load', data=df_female_severe)
```

Out[45]:

<AxesSubplot:xlabel='severity level', ylabel='viral load'>

Normality Assumption Check

Shapiro-Wilk's test

We will test the null hypothesis

 H_0 : viral load follows normal distribution

against the alternative hypothesis

 H_a : viral load doesn't follow normal distribution

In [46]:

```
# Assumption 1: Normality
# import the required function
from scipy.stats import shapiro

# find the p-value
w, p_value = shapiro(df_female_severe['viral load'])
print('The p-value is', p_value)
```

The p-value is 0.006814346183091402

```
In [47]:
```

```
sbn.displot(df_female_severe['viral load'],bins=25) #this looks normal. since the de
```

Out[47]:

<seaborn.axisgrid.FacetGrid at 0x7fc050eb3040>

In [49]:

```
# Assumption 1: Normality
# import the required function
from scipy.stats import shapiro

# find the p-value
w, p_value = shapiro(np.log(df_female_severe['viral load']) )
print('The p-value is', p_value)
```

The p-value is 0.009911485947668552

Please continue doing the analysis even If some assumption fail (levene's test) but double check using visual analysis and report wherever necessary

Anova is not very sensitive to moderate deviations from normality; simulation studies, using a variety of non-normal distributions, have shown that the false positive rate is not affected very much by this violation of the assumption (Glass et al. 1972, Harwell et al. 1992, Lix et al. 1996). This is because when you take a large number of random samples from a population, the means of those samples are approximately normally distributed even when the population is not normal.

Homogeneity of variance Assumption Check

Levene's test

We will test the null hypothesis

 H_0 : All the viral load variances are equal

against the alternative hypothesis

 H_a : At least one variance is different from the rest

In [53]:

The p-value is 0.8835210445559333

In [54]:

```
p_value>0.05
```

Out[54]:

True

Anova

In [55]:

The p-value is 0.552014453161594

In [56]:

```
based on p-value
alue {p_value} is less than the level of significance, we reject the null hypothesis
alue {p_value} is greater than the level of significance, we fail to reject the null
```

As the p-value 0.552014453161594 is greater than the level of signific ance, we fail to reject the null hypothesis.

Recommendation Examples

Based on EDA and statistical evidence it can be seen that customer who smoke or have higher viral load have more higher hospitalization charges.

We can encourage customers to quit smoking by providing them incentive points for talking to life coach, get help for improving lifestyle habits, Quit Tobacco- 28 day program. Give gift cards when customer accumulates specific number of points.

High viral load is primarily because of less immunity in the body. We can provide patients with high vitamins rich diet plans and wellness health coaches which can help them to make right choices.

