Variáveis Aleatórias Discretas (VAD)

O que são?

Uma variável aleatória discreta é uma função que atribui um número real a cada resultado possível de um experimento aleatório, com a característica de que essa variável pode assumir apenas valores distintos e contáveis. Isso significa que podemos listar todos os valores possíveis que a variável pode tomar, mesmo que essa lista seja infinita (como os números naturais \$1, 2, 3, \dots\$).

Na prática, a variável aleatória discreta é usada para **quantificar eventos aleatórios**, permitindo a aplicação de ferramentas matemáticas (como a probabilidade, esperança, variância) para estudar os comportamentos esperados e as incertezas de um processo aleatório.

A palavra "aleatória" indica que o valor assumido pela variável depende de um fenômeno **não determinístico**, ou seja, de um experimento cujos resultados não podem ser previstos com certeza antes da realização.

A palavra "discreta" significa que a variável **não assume valores contínuos** (como qualquer número real em um intervalo), mas sim **valores pontuais e isolados**.

Exemplos clássicos:

- O número obtido ao lançar um dado (\$X \in {1, 2, 3, 4, 5, 6}\$).
- O número de filhos em uma família.
- O número de chamadas recebidas por uma central em uma hora.
- O resultado de um teste que retorna "positivo" ou "negativo" (representado por 1 ou 0).

Representação formal:

Seja \$S\$ o espaço amostral de um experimento (o conjunto de todos os resultados possíveis). Uma variável aleatória discreta \$X\$ é uma função:

\$

X: S \rightarrow \mathbb{R}

\$

tal que o conjunto dos valores possíveis $\{x_1, x_2, \dots \}$ \subset \mathbb{R}\$ é finito ou enumerável.

Por exemplo, ao jogar dois dados, o espaço amostral tem 36 pares ordenados, mas uma variável aleatória pode representar a **soma dos valores dos dados**, que varia de 2 a 12. Ou seja, o espaço amostral é complexo, mas a variável aleatória nos ajuda a extrair e analisar um aspecto específico desse espaço — nesse caso, a soma dos dados.

Por que são importantes?

PROFESSEUR: M.DA ROS

As variáveis aleatórias discretas são fundamentais em:

• Modelagem estatística, onde muitos fenômenos reais envolvem contagens ou decisões binárias.

- Teoria da probabilidade, como base para outras distribuições (binomial, geométrica, Poisson).
- Ciência de dados e IA, onde eventos discretos como cliques, falhas, aprovações, etc., são representados por variáveis discretas.
- Engenharia e computação, como em redes de filas, processos estocásticos, codificação e criptografia.

Características principais:

Uma **variável aleatória discreta (VAD)** é definida por suas propriedades matemáticas e probabilísticas fundamentais, que a distinguem de outros tipos de variáveis (como as contínuas). As principais características são:

1. Conjunto de valores finito ou enumerável

Isso significa que a variável aleatória pode assumir apenas um número **contável** de valores distintos. Os valores podem ser:

- Um conjunto **finito**, como \${0, 1}\$, \${1, 2, 3, 4, 5, 6}\$, etc.
- Um conjunto **infinito enumerável**, como os números naturais \$\mathbb{N} = {0, 1, 2, 3, \dots}\$.

Esse conjunto é chamado de **suporte** da variável aleatória, e é onde sua função de probabilidade é diferente de zero.

Exemplo:

Se \$X\$ é o número de chamadas recebidas em uma central de atendimento por minuto, então \$X \in {0, 1, 2, 3, ...}\$ — conjunto infinito enumerável.

2. Cada valor tem uma probabilidade associada

A variável aleatória discreta é definida por sua **função de probabilidade de massa** (f.p.m.), ou em inglês **Probability Mass Function (PMF)**. Essa função é uma associação:

```
f(x) = P(X = x), \quad \text{para cada } x \in \text{suporte de } X $
```

Ou seja, para cada valor x que X pode assumir, existe uma probabilidade P(X = x), tal que:

- \$0 \leq P(X = x) \leq 1\$ (todas as probabilidades são válidas)
- A soma das probabilidades é igual a 1:

```
$
\sum_{x \in \text{suporte}} P(X = x) = 1
$
```

Exemplo (lançamento de um dado justo):

A variável \$X \in {1, 2, 3, 4, 5, 6}\$ tem:

```
$
P(X = x) = \frac{1}{6}, \quad \text{para todo } x
```

3. O comportamento de \$X\$ pode ser descrito por propriedades estatísticas

Uma variável aleatória discreta permite o cálculo de medidas importantes como:

• Esperança matemática (valor esperado):

```
\lor = \sum_{x} x \cdot P(X = x)
```

Interpreta-se como a média ponderada dos valores possíveis, de acordo com suas probabilidades.

• Variância:

```
$
\label{eq:linear_exp} $\operatorname{L}(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \sum_{x \in \mathbb{E}[X]} (x - \mathbb{E}[X])^2 \cdot \mathbb{E}[X] 
X)
$
```

Mede a dispersão dos valores em torno da média.

 Moda (valor com maior probabilidade), mediana, função de distribuição acumulada (FDA ou CDF), entre outras.

4. São base para modelagem de muitos fenômenos discretos

Variáveis aleatórias discretas são amplamente usadas para modelar:

- Contagens (número de eventos, chamadas, falhas, etc.)
- Experimentos com resultado binário (sucesso/fracasso)
- Jogos de azar (dados, moedas, cartas)
- Processos estocásticos discretos (cadeias de Markov)
- Modelos probabilísticos de algoritmos (randomização, hashing, simulações de Monte Carlo)

O que é a Função de Probabilidade de Massa (PMF)?

A função de probabilidade de massa é a forma como atribuímos probabilidades a cada valor possível de uma variável aleatória discreta.

Formalmente, para uma variável aleatória discreta \$X\$, a PMF é uma função \$f\$ tal que:

```
f(x) = P(X = x), \quad \text{para cada } x \text{ no suporte de } X
```

\$

Essa função precisa satisfazer duas condições fundamentais:

1. Não-negatividade:

```
$
P(X = x) \geq 0 \quad \text{para todo } x
$
```

2. Soma das probabilidades igual a 1:

```
$
\sum_{x \in \text{suporte}} P(X = x) = 1
$
```

Exemplo Passo a Passo: Jogar um dado justo de 6 lados

Etapa 1: Definir o experimento

Lançamento de um dado comum, com 6 faces numeradas de 1 a 6.

Etapa 2: Definir a variável aleatória

Seja \$X\$ a variável aleatória que representa o **número obtido** ao lançar o dado.

Então:

```
$
X \in {1, 2, 3, 4, 5, 6}
$
```

Etapa 3: Atribuir probabilidades

Como o dado é **justo**, todos os valores têm **igual chance** de acontecer. Como há 6 possibilidades:

```
P(X = x) = \frac{1}{6}, \quad \text{(1, 2, 3, 4, 5, 6)}
```

Etapa 4: Montar a Tabela da PMF

\$x\$	\$P(X = x)\$
1	\$\frac{1}{6}\$
2	\$\frac{1}{6}\$
3	\$\frac{1}{6}\$
4	\$\frac{1}{6}\$

\$x\$	\$P(X = x)\$	
5	\$\frac{1}{6}\$	
6	\$\frac{1}{6}\$	

Etapa 5: Verificar propriedades da PMF

1. Não-negatividade:

Todas as probabilidades são $\frac{1}{6} > 0$ \rightarrow ok.

2. Soma das probabilidades:

\$ \sum_{x=1}^6 P(X = x) = 6 \cdot \frac{1}{6} = 1 \$
$$\rightarrow$$
 ok.

Etapa 6: Usar a PMF para cálculos

Cálculo da esperança (valor esperado):

```
$ \lor = \sum_{x=1}^6 x \cdot P(X = x) = \sum_{x=1}^6 x \cdot \frac{1}{6} = \frac{1}{6}(1 + 2 + 3 + 4 + 5 + 6) = \frac{21}{6} = 3{,}5$
```

Cálculo da variância:

$$\text{text{Var}(X) = \sum_{x=1}^6 (x - 3{,}5)^2 \cdot frac{1}{6}}$$

Calculando os termos individualmente:

\$x\$	\$(x - 3{,}5)^2\$
1	\$6{,}25\$
2	\$2{,}25\$
3	\$0{,}25\$
4	\$0{,}25\$
5	\$2{,}25\$
6	\$6{,}25\$

Somando:

```
\star \text{Var}(X) = \frac{1}{6} (6_{,}25 + 2_{,}25 + 0_{,}25 + 0_{,}25 + 2_{,}25 + 6_{,}25) = \frac{17_{,}5}{6} = 2_{,}9167
```

A função de probabilidade de massa (PMF) é uma **ferramenta essencial** na estatística e probabilidade, pois permite:

- Mapear os valores possíveis de uma variável aleatória para suas respectivas probabilidades.
- Fazer cálculos analíticos como esperança, variância e distribuição acumulada.
- Aplicar modelos estatísticos para simular ou prever comportamentos.

Esse exemplo do dado é um **caso clássico de PMF equiprovável**, mas podemos fazer o mesmo com distribuições **não uniformes**, como a Bernoulli, binomial, geométrica, etc.

2. Distribuição Equiprovável (ou uniforme discreta)

Definição Formal

A distribuição uniforme discreta, também conhecida como distribuição equiprovável discreta, ocorre quando uma variável aleatória discreta \$X\$ pode assumir \$n\$ valores distintos e todos têm a mesma probabilidade de ocorrência. Isto é, não há nenhum viés ou preferência entre os valores possíveis: o sistema é completamente simétrico do ponto de vista probabilístico.

Seja o espaço amostral finito:

```
$
S = {x_1, x_2, \dots, x_n}
$
Então:
$
P(X = x_i) = \frac{1}{n} \quad \text{para todo } i = 1, 2, ..., n
$
```

Interpretação Intuitiva

Imagine uma urna com \$n\$ bolas numeradas de 1 até \$n\$, todas do mesmo tamanho e sem marcações externas. Se você sortear uma bola sem olhar, a chance de qualquer número aparecer é exatamente \$\frac{1}{n}\$. Isso é uma distribuição equiprovável.

É a base conceitual para definir o que chamamos de "experimento justo".

Representação Gráfica

A função de massa de probabilidade (f.p.m.) de uma distribuição uniforme discreta pode ser representada por um gráfico de **barras com a mesma altura**.

Exemplo: \$X \sim \text{Uniforme}(1, 5)\$

Valores possíveis: \${1, 2, 3, 4, 5}\$

Probabilidades: P(X = x) = 0, 2 para cada x

Gráfico:

📊 Função de Distribuição Acumulada (F.D.A)

A função acumulada $F(x) = P(X \mid x)$ da distribuição uniforme discreta é uma **função em degraus**. Para $X \sim \text{Uniforme}(a, b)$:

```
$
F(x) =
\begin{cases}
0 & x < a \
\frac{\lfloor x \rfloor - a + 1}{b - a + 1} & a \leq x \leq b \
1 & x > b
\end{cases}
$
```

Esperança Matemática

Se $X \in \{x_1, x_2, ..., x_n\}$ com todos os x_i igualmente prováveis, a **esperança matemática** (valor esperado ou média) é dada por:

```
$

= \sum_{i=1}^{n} x_i \cdot \frac{1}{n} = \frac{1}{n} \sum_{i=1}^{n} x_i
$
```

Caso clássico:

```
Se X \in \{1, 2, ..., n\}:

$\forall = \frac\{1 + 2 + \cdots + n\{n\} = \frac\{n+1\}\{2\}
```

Variância

A variância mede o quanto os valores da variável aleatória se afastam da média.

```
$
\text{Var}(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2
$
Para $X \in {1, 2, ..., n}$, a formula fechada é:
$
\text{Var}(X) = \frac{(n^2 - 1)}{12}
```

✓ Isso deriva da soma dos quadrados dos \$n\$ primeiros números naturais:

```
\label{eq:continuous} $$ \mathbb{E}[X^2] = \frac{1}{n} \sum_{i=1}^{n} i^2 = \frac{(n+1)(2n+1)}{6n} $$
```

Entropia

A **entropia** \$H(X)\$, que mede a incerteza associada à distribuição, é máxima quando os eventos são equiprováveis:

```
 H(X) = -\sum_{i=1}^{n} \left( \frac{1}{n} \right) = \log_2(n)
```

Portanto, quanto maior \$n\$, maior a incerteza.

Aplicações

1. Teoria das Probabilidades

- Ponto de partida para definir espaço amostral e eventos equiprováveis.
- Definição de **probabilidade clássica**:

```
$
P(A) = \frac{\text{número de casos favoráveis}}{\text{número total de casos possíveis}}
$
```

📤 2. Jogos e Simulações

- Lançamento de dados (6 valores).
- Roletas, cartas, loterias.
- Geração de números aleatórios simulando cenários onde todos os casos têm a mesma chance.

3. Computação e Algoritmos

• Algoritmos de embaralhamento (ex: Fisher-Yates).

- Distribuição base para random walk e simulações Monte Carlo.
- · Balanceamento de carga aleatória.

4. Inferência e Estatística

- Amostragem aleatória simples: escolher unidades da população com igual probabilidade.
- Testes estatísticos onde a hipótese nula assume distribuição uniforme dos resultados.

Extensões

- Uniforme Contínua: Quando os valores possíveis formam um intervalo contínuo \$[a, b]\$, com densidade constante \$f(x) = \frac{1}{b - a}\$.
- Multivariada Uniforme Discreta: Variáveis vetoriais onde todos os vetores de um domínio discreto têm mesma chance de serem observados.

A distribuição uniforme discreta é um modelo fundamental e simétrico na teoria das probabilidades. Ela é simples, mas extremamente útil, aparecendo em contextos didáticos, computacionais e estatísticos. A igualdade de chances entre os valores possíveis a torna um modelo neutro de referência, essencial para modelagem inicial de incerteza, simulação e inferência estatística.

- 1. Definir a variável aleatória com \$n\$ valores igualmente prováveis.
- 2. Simular valores com numpy.
- 3. Plotar a distribuição de frequências com matplotlib.
- 4. Calcular a média e a variância empíricas e comparar com os valores teóricos.

Exemplo prático: Lançamento de uma moeda viciada

Cenário

Imagine uma moeda que não é justa — ela tem 70% de chance de dar **cara** e 30% de chance de dar **coroa**. Queremos modelar essa situação usando uma variável aleatória Bernoulli, onde:

• Sucesso (X = 1): sair cara

• Fracasso (X = 0): sair coroa

Assim, p = 0.7.

Passo 1: Definir a variável aleatória \$X\$

Definimos \$X\$ como:

\$

X = \begin{cases}

1 & \text{se sair cara} \

0 & \text{se sair coroa}

\end{cases}

\$

Passo 2: Escrever a função de probabilidade

A função de massa de probabilidade é:

\$

$$P(X = x) = p^x (1 - p)^{1 - x}$$
, \quad x \in {0,1}

\$

Para nosso caso:

- P(X=1) = 0.7\$
- P(X=0) = 0.3\$

Passo 3: Calcular a esperança (valor esperado)

\$

$$\sqrt{\ }$$
 = 1 \times P(X=1) + 0 \times P(X=0) = 1 \times 0.7 + 0 \times 0.3 = 0.7

\$

Interpretação: Em muitos lançamentos, a média de caras será 70%.

Passo 4: Calcular a variância

\$

$$\text{text{Var}}(X) = p(1-p) = 0.7 \text{ times } 0.3 = 0.21$$

\$

Isso mede a variabilidade dos resultados.

Passo 5: Interpretar resultados

- A moeda tem alta probabilidade de dar cara (70%).
- Em muitas repetições, a média de caras será próxima a 0.7.
- A variância indica que há alguma dispersão (não é 0, logo nem sempre sai cara).

Passo 6: Simular 10 lançamentos (exemplo)

Suponha que lançamos essa moeda 10 vezes, observando \$X_i\$ em cada lançamento.

Lançamento	Resultado (X_i)	
1	1 (cara)	
2	0 (coroa)	

Lançamento	Resultado (X_i)
3	1 (cara)
4	1 (cara)
5	0 (coroa)
6	1 (cara)
7	1 (cara)
8	0 (coroa)
9	1 (cara)
10	1 (cara)

Número de caras: 7 (ou seja, 7 sucessos)

Média amostral: $\frac{7}{10} = 0.7$, exatamente o valor esperado!

Exemplo em Python

PROFESSEUR: M.DA ROS

```
import numpy as np
import matplotlib.pyplot as plt
# Parâmetros da distribuição
a = 1
              # menor valor
b = 6 # maior valor
n = b - a + 1 # número de valores possíveis
# Número de simulações
N = 100 000
# Simulação da variável aleatória uniforme discreta
valores = np.random.randint(a, b + 1, size=N)
# Cálculo das frequências relativas (probabilidades empíricas)
valores_unicos, contagens = np.unique(valores, return_counts=True)
frequencias_relativas = contagens / N
# Cálculo teórico
media teorica = (a + b) / 2
variancia_teorica = ((b - a + 1)**2 - 1) / 12
# Cálculo empírico
media_empirica = np.mean(valores)
variancia_empirica = np.var(valores)
# Impressão dos resultados
print(f"Valores possíveis: {valores_unicos}")
print(f"Frequências relativas: {frequencias_relativas}")
```

```
print(f"Média teórica: {media_teorica:.4f} | Média empírica:
{media_empirica:.4f}")
print(f"Variância teórica: {variancia_teorica:.4f} | Variância empírica:
{variancia_empirica:.4f}")
# Plotagem do gráfico de barras
plt.figure(figsize=(8, 4))
plt.bar(valores_unicos, frequencias_relativas, color='royalblue',
edgecolor='black')
plt.axhline(y=1/n, color='red', linestyle='--', label=f'Prob. teórica =
{1/n:.2f}')
plt.title(f'Distribuição Uniforme Discreta (a={a}, b={b})')
plt.xlabel('Valores')
plt.ylabel('Frequência Relativa')
plt.legend()
plt.grid(True, axis='y', linestyle=':', alpha=0.7)
plt.tight_layout()
plt.show()
```

Exemplo 1: Lançamento de um dado - "obter número 6"

Cenário

- Experimento: lançar um dado justo de 6 faces.
- Definimos o sucesso como "sair o número 6".
- Resultado possível da variável \$X\$:

```
\circ $X = 1$ se sair 6 (sucesso).
```

\$X = 0\$ se sair outro número (fracasso).

Passo 1: Determinar \$p\$

Probabilidade de sucesso:

```
$
p = P(X=1) = P(\text{sair 6}) = \frac{1}{6} \approx 0,1667
$
Logo,
$
P(X=0) = 1 - p = \frac{5}{6} \approx 0,8333
$
```

Passo 2: Escrever a função de probabilidade

```
P(X=x) = p^{x} (1-p)^{1-x}, \quad x \in \{0,1\}
```

Ou seja,

- P(X=1) = 0.1667\$
- P(X=0) = 0.8333

Passo 3: Calcular expectativa e variância

• Esperança:

```
$
```

Interpretação: em média, o dado "sai 6" em cerca de 16,67% dos lançamentos.

• Variância:

```
$
\text{text{Var}}(X) = p(1-p) = 0,1667 \text{ times } 0,8333 = 0,1389
```

Passo 4: Interpretação final

Esse modelo Bernoulli ajuda a responder perguntas do tipo: "Qual a chance de obter um 6 no dado em um lançamento?", "Qual é o comportamento esperado e variabilidade?".

Exemplo 2: Um teste médico para detectar uma doença

Cenário

- Um teste clínico detecta a doença em pacientes com 90% de eficácia (probabilidade de sucesso).
- Variável \$X\$:
 - \$X = 1\$ se o teste detectar corretamente a doença (sucesso).
 - \circ \$X = 0\$ se o teste falhar (fracasso).

Passo 1: Determinar \$p\$

```
$
p = 0.9
Logo,
P(X=1) = 0.9, \quad P(X=0) = 0.1
```

Passo 2: Função de probabilidade

```
$ P(X=x) = 0.9^{x} \times 0.1^{1-x}, \quad x \in \{0,1\}
```

- P(X=1) = 0.9\$
- P(X=0) = 0.1\$

Passo 3: Calcular expectativa e variância

• Esperança:

• Variância:

```
\text{text{Var}}(X) = p(1-p) = 0.9 \times 0.1 = 0.09
```

Passo 4: Interpretação

O teste é muito eficiente, com alta chance de sucesso. A variância baixa indica que a chance de falha é pequena.

📊 Saída Esperada

- Um gráfico de barras onde todas as alturas (frequências relativas) estão próximas de \$\frac{1}{n}\$, indicando equiprobabilidade.
- Impressão da média e variância teóricas e empíricas, que devem estar muito próximas quando \$N\$ é grande.

Explicação

- np.random.randint(a, b+1, size=N) gera amostras da distribuição uniforme discreta no intervalo \$[a, b]\$.
- np.unique(..., return_counts=True) contabiliza a frequência de cada valor.
- As comparações entre **teoria** e **simulação** mostram como a distribuição se comporta na prática.

🔵 3. Distribuição de Bernoulli

Claro! Vamos aprofundar bastante a seção sobre a **Distribuição de Bernoulli**, detalhando sua origem, propriedades matemáticas, interpretações, generalizações, exemplos práticos, e sua importância no contexto estatístico e computacional.

3. Distribuição de Bernoulli (versão aprofundada)

Introdução e contexto histórico

A distribuição de Bernoulli é uma das distribuições probabilísticas mais simples e fundamentais. Seu nome vem do matemático suíço **Jacob Bernoulli** (1654–1705), que foi um dos pioneiros no estudo da probabilidade e da análise combinatória. A distribuição modela o resultado de um experimento ou ensaio que possui exatamente **dois resultados possíveis mutuamente exclusivos e exaustivos**, comumente chamados de **"sucesso"** e **"fracasso"**.

Definição formal

Seja \$X\$ uma variável aleatória discreta que representa o resultado de um ensaio com dois possíveis resultados:

- \$X = 1\$ (sucesso)
- \$X = 0\$ (fracasso)

A variável \$X\$ segue uma distribuição de Bernoulli com parâmetro \$p\$, denotada por \$X \sim \text{Bernoulli}(p)\$, se

```
$ P(X = 1) = p, \quad P(X = 0) = 1 - p$
```

onde

- \$p \in [0,1]\$ é a probabilidade de sucesso;
- \$1-p\$ é a probabilidade de fracasso.

A função de massa de probabilidade (f.p.m.) é dada por:

```
$ P(X = x) = p^{x} (1-p)^{1-x}, \quad \text{(0,1)}$
```

Interpretação intuitiva

Imagine uma moeda que, ao ser lançada, pode dar "cara" ou "coroa". Se a moeda for justa, \$p = 0.5\$ e ambos os resultados são igualmente prováveis. Porém, se a moeda for viciada, \$p \neq 0.5\$, e a chance de "cara" é diferente da chance de "coroa". Essa é a essência da distribuição de Bernoulli.

Mas essa distribuição não se limita a moedas. Qualquer situação binária pode ser modelada por ela, como:

- Passar ou não em um teste.
- Acontecimento ou não de um evento (ex: um dispositivo falha ou funciona).
- Compra ou não de um produto pelo consumidor.

Propriedades matemáticas importantes

1. Esperança (média):

A esperança de \$X\$, que indica o valor médio esperado de sucesso, é

```
$
v = 1 \cdot p + 0 \cdot (1-p) = p
$
```

Ou seja, o valor esperado é simplesmente a probabilidade de sucesso.

2. Variância:

A variância mede a dispersão dos valores em torno da média. Para Bernoulli:

```
$
\text{Var}(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2
$
Como $X^2 = X$ para $X \in {0,1}$,
$
\text{Var}(X) = p - p^2 = p(1-p)
$
```

Note que a variância é máxima quando \$p = 0.5\$ e mínima (zero) quando \$p = 0\$ ou \$p = 1\$, refletindo a certeza no resultado.

3. Momento gerador (MGF):

O momento gerador é uma função útil para calcular momentos e para caracterizar a distribuição:

```
M_X(t) = \mathbb{E}[e^{tX}] = (1-p) + p e^{t}
```

Função de distribuição acumulada (CDF)

A CDF $F(x) = P(X \leq x)$ para $X \sim \text{Hernoulli}(p)$ é:

```
$
F(x) = \begin{cases}
0, & x < 0 \
1 - p, & 0 \leq x < 1 \
1, & x \geq 1 \end{cases}
$
\phi$
```

Por ser discreta, a CDF tem saltos em \$x=0\$ e \$x=1\$.

Relações e generalizações

• **Distribuição Binomial:** A soma de \$n\$ variáveis aleatórias independentes e identicamente distribuídas (i.i.d.) Bernoulli(\$p\$) tem distribuição Binomial(\$n,p\$).

 $Y = \sum_{i=1}^n X_i \sim \text{Binomial}(n,p)$

- Distribuição Geométrica: Modela o número de ensaios até o primeiro sucesso em uma sequência de Bernoullis.
- **Distribuição de Poisson:** Pode ser vista como um limite da distribuição binomial para eventos raros.

Exemplo detalhado

Suponha que um teste médico tenha 80% de chance de detectar corretamente uma doença (sucesso). Seja \$X\$ a variável que indica se o teste foi positivo (1) ou negativo (0).

- P(X=1) = 0.8
- P(X=0) = 0.2\$

✓ = 0.8\$, indicando que, em média, o teste detecta a doença 80% das vezes. A variância é \$0.8 \times
 0.2 = 0.16\$, mostrando a dispersão do resultado em torno da média.

Aplicações práticas em ciência e tecnologia

• Machine Learning e Estatística:

Classificadores binários, testes de hipóteses, modelos probabilísticos e redes neurais usam a Bernoulli para modelar saídas binárias (verdadeiro/falso).

• Engenharia de Confiabilidade:

Modelagem de falhas de componentes (funciona/falha).

• Marketing e Economia:

Análise de compra vs. não compra, sucesso vs. fracasso em campanhas.

• Ciência da Computação:

Simulações de eventos aleatórios, algoritmos probabilísticos.

Exemplo

import numpy as np

```
# Parâmetro da Bernoulli
p = 0.7

# Número de lançamentos
n = 10

# Simulação dos lançamentos (0 ou 1)
resultados = np.random.binomial(n=1, p=p, size=n)

# Mostrar resultados
print("Resultados dos lançamentos:", resultados)
print("Número de caras (sucessos):", np.sum(resultados))
print("Média amostral:", np.mean(resultados))
```

Curiosidades e observações

- Embora simples, a Bernoulli é a base para modelos probabilísticos mais complexos.
- O parâmetro \$p\$ pode ser interpretado como a "taxa de sucesso".
- Em inferência estatística, estimar \$p\$ a partir de dados Bernoulli é um problema clássico (ex: proporção amostral).

A **distribuição de Bernoulli** é o alicerce para entender processos aleatórios binários. Sua simplicidade esconde uma riqueza matemática e uma ampla aplicabilidade prática que permeia quase todas as áreas da ciência e da engenharia.

Se quiser, posso mostrar códigos para simulação, exemplos de estimativa de \$p\$ em amostras, ou explicações de como a Bernoulli conecta com outras distribuições. Quer que eu faça?

Aplicações:

- Modelagem de ensaios binários (sucesso/fracasso).
- Fundamento da distribuição **binomial** (soma de Bernoullis).
- Em IA, aprendizado supervisionado binário.
- Testes A/B em marketing, produção ou ciência de dados.

Comparando Equiprovável e Bernoulli

Característica	Distribuição Equiprovável	Distribuição de Bernoulli
Valores possíveis	\$x_1, x_2,, x_n\$	0 ou 1
Probabilidades	Iguais	\$p\$ e \$1-p\$
Tamanho do espaço amostral	\$n\$	2
Esperança	\$\frac{1}{n} \sum x_i\$	\$p\$
Variância	Depende de \$x_i\$	\$p(1 - p)\$

Característica	Distribuição Equiprovável	Distribuição de Bernoulli
Uso comum	Jogos, sorteios	Sucesso/fracasso binário

Conclusão

As distribuições equiprovável e de Bernoulli são fundamentais para compreender experimentos aleatórios discretos. Enquanto a equiprovável lida com simetria (todos os resultados com mesma chance), a Bernoulli introduz assimetria binária, sendo essencial para aplicações probabilísticas em estatística, aprendizado de máquina e ciências aplicadas.

Se quiser, posso complementar com simulações em Python, exercícios resolvidos ou comparações com distribuições contínuas como a Uniforme contínua ou Normal. Deseja seguir por algum desses caminhos?