Introducción a la estadística Bases indispensables y uso de

Olivier Devineau olivier.devineau@fcdarwin.org.ec

Fundación Charles Darwin

Taller interno, 27-30 abril 2010

Noción de test estadístico

Distribución de probabilidad

 Representación de las probabilidades asociadas con los estados posibles de una variable aleatoria

Ejemplo: X = número de hijos en una familia de 2 niños

- 29, $(10^{\circ}, 19)$, $(19, 10^{\circ})$, 20°
- $p(X = 0 \ \columnwdel{o}) = 1/4$
- $p(X = 1 \circlearrowleft) = 1/4 + 1/4$ $\sum p(X) = 1$
- $p(X = 2 \, \circlearrowleft) = 1/4$

- Serie de *n* intentos independientes
- Cada intento → Éxito / Fracaso
- Probabilidad de éxito: p

Procedimiento

¿Cuál test

Distribución binomial

- Serie de *n* intentos independientes
- Cada intento → Éxito / Fracaso
- Probabilidad de éxito: p

- Serie de *n* intentos independientes
- Cada intento \rightarrow Éxito / Fracaso
- Probabilidad de éxito: p

- Serie de *n* intentos independientes
- Cada intento → Éxito / Fracaso
- Probabilidad de éxito: p
- Distribución discontinua
- $X \rightsquigarrow \mathcal{B}(n,p)$
- $P(r) = \binom{n}{r} p^r (1-p)^{n-r}$

Distribuciones

Binomial

Normal Otras

Procedimiento

¿Cuál test?

- 39% de los habitantes tienen ojos azules
- $X \sim \mathcal{B}(1, 0.39)$

de persona con ojos azules

Binomial

- 39% de los habitantes tienen ojos azules
- $X \sim \mathcal{B}(3, 0.39)$

Binomial

- 39% de los habitantes tienen ojos azules
- $X \sim \mathcal{B}(5, 0.39)$

ia estadistree

Distribuciones

Binomial

Normal

Procedimiento

¿Cuál test?

- 39% de los habitantes tienen ojos azules
- $X \sim \mathcal{B}(50, 0.39)$

Procedimiento

¿Cuál test

Distribución binomial

¿Cuando se aplica?

- Porcentaje de mortalidad
- Tasa de infección
- Proporción: sexos, respuesta a un tratamiento, intenciones de voto . . .

Se necesita saber cuantos individuos hay en categoría *éxito* y cuantos hay en categoría *fracaso*

Introducción a la estadística

Distribuciones Generalidades Binomial Poisson

Б. ...

¿Cuál test

Normal

Distribución de Poisson Definición

 Cuantas veces un evento raro occurre por unidad de tiempo/espacio

Normal

Distribución de Poisson Definición

- Cuantas veces un evento raro occurre por unidad de tiempo/espacio
- Distribución discontinua

•
$$X \rightsquigarrow \mathcal{P}(\lambda)$$

•
$$P(k) = \frac{\lambda^k e^{-\lambda}}{k!}$$

Distribución de Poisson Definición

- Cuantas veces un evento raro occurre por unidad de tiempo/espacio
- Distribución discontinua
- $X \rightsquigarrow \mathcal{P}(\lambda)$
- $P(k) = \frac{\lambda^k e^{-\lambda}}{k!}$

Distribución de Poisson Definición

- Cuantas veces un evento raro occurre por unidad de tiempo/espacio
- Distribución discontinua
- $X \rightsquigarrow \mathcal{P}(\lambda)$
- $P(k) = \frac{\lambda^k e^{-\lambda}}{k!}$

Procedimient

¿Cuál test?

Distribución de Poisson

- Plantas en una parcela
- Semillas comidas por una ave por minuto
- Bebes naciendo por hora en un hospital
- Errores en un texto
- Degradación de substancia radioactiva

Normal

- Teorema del límite central
- Suficientes muestras → medias → distribución normal

Introducción a la estadística

Distribuciones
Generalidades
Binomial
Poisson
Normal

Procedimiento

¿Cuál test

- Teorema del límite central
- Suficientes muestras → medias → distribución normal

- Teorema del límite central
- Suficientes muestras → medias → distribución normal
- Distribución continua

•
$$X \rightsquigarrow \mathcal{N}(\mu, \sigma)$$

•
$$f(y) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2}\left(\frac{y-\mu}{\sigma}\right)^2}$$

- Teorema del límite central
- Suficientes muestras → medias → distribución normal
- Distribución continua
- $X \rightsquigarrow \mathcal{N}(\mu, \sigma)$

•
$$f(y) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2}\left(\frac{y-\mu}{\sigma}\right)^2}$$

- Teorema del límite central
- Suficientes muestras → medias → distribución normal
- Distribución continua
- $X \rightsquigarrow \mathcal{N}(\mu, \sigma)$

•
$$f(y) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\left(\frac{y-\mu}{\sigma}\right)^2}$$

Introducción a la estadística

Distribuciones
Generalidades
Binomial
Poisson
Normal

Procedimiento

¿Cuál test?

Distribución normal

- ¡Todo el tiempo!
- Regresión lineal, análisis de varianza . . .

Procedimiento

¿Cuál test?

Normal

Distribución normal

- ¡Todo el tiempo!
- Regresión lineal, análisis de varianza . . .

Distribuciones Generalidades Binomial

Procedimiento

¿Cuál test?

Normal

Distribución normal

- ¡Todo el tiempo!
- Regresión lineal, análisis de varianza ...

Procedimiento

Cuál test

Normal

Distribución normal

- ¡Todo el tiempo!
- Regresión lineal, análisis de varianza ...

Procedimiento

: Cuál test?

Normal

Distribución normal

- ¡Todo el tiempo!
- Regresión lineal, análisis de varianza . . .

Distribución Normal Estándar

 $X \sim \mathcal{N}(0,1)$

- + 1 $\sigma \sim 68\%$
- $\pm 2 \sigma \sim 95\%$
- $+ 3 \sigma \sim 99\%$

Distribución Normal Estándar

 $X \sim \mathcal{N}(0,1)$

Procedimiento

¿Cuál test?

Normal

Distribución Normal Estándar

 $X \leadsto \mathcal{N}(0,1)$

Distribución Normal Estándar

 $X \sim \mathcal{N}(0,1)$

Otras

Otras distribuciones de variables

- Lognormal (largo, peso . . .)
- Exponencial (Tiempo de fracaso)
- Gamma
- Distribución de Weibull
- Beta

Normal Otras

Distribuciones de estadísticos

- Distribución z
- Distribución t de Student
- Distribución del χ^2
- Distribución F de Fischer

Distribuciones

Procedimiento

¿Qué es un test?

Hipótesis Procedimien Decisión Poder Colleción de datos Cálculo Valor P

: Cuál test?

¿Qué es un test estadístico?

Herramienta para tomar decisión

- Calcular un estadístico T_{obs} de una muestra
- Comparar T_{obs} con la distribución de T_{teo} cuando la hipótesis es verdadera
- La posición de T_{obs} informa sobre la probabilidad de que la hipótesis sea verdadera

¿Qué es un test?

Generalidades Poder

Colleción de

Test estadístico: procedimiento

- 1 Pregunta biológica: ¿Hay cóndores en el parque?

Dietribusiones

Procedimient

¿Qué es un test? Generalidades Hipótesis

Decisión
Poder
Colleción de datos
Cálculo
Valor P

· Cuál tost?

Test estadístico: procedimiento

- 1 Pregunta biológica: ¿Hay cóndores en el parque?
- 2 Pregunta estadística: Hipótesis H_0
- 3 Elección del test estadístico: ¿Cuál usar?
- 4 Criterios de decisión: ¿Qué riesgo de error? ¿Qué nivel de confianza?

¿Qué es un test?

Generalidades
Hipótesis
Procedimiento
Decisión
Poder

Colleción de datos Cálculo Valor PSignificancia

Cuál test

- 1 Pregunta biológica: ¿Hay cóndores en el parque?
- **2** Pregunta estadística: Hipótesis H_0
- 3 Elección del test estadístico: ¿Cuál usar?
- 4 Criterios de decisión: ¿Qué riesgo de error? ¿Qué nivel de confianza?

¿Qué es un test?

Generalidades
Hipótesis
Procedimiento
Decisión

Poder
Colleción de datos
Cálculo
Valor P
Significancia

: Cuál tost

- 1 Pregunta biológica: ¿Hay cóndores en el parque?
- 2 Pregunta estadística: Hipótesis H_0
- 3 Elección del test estadístico: ¿Cuál usar?
- 4 Criterios de decisión: ¿Qué riesgo de error? ¿Qué nivel de confianza?

Poder Colleción de

- ¡Colección de los datos!

Procedimiento

¿Qué es un test? Generalidades

Hipótesis Procedimient Decisión Poder Colleción de datos Cálculo

Cuál test?

- 5 ¡Colección de los datos!
- 6 Cálculo de el estadístico del test
- 8 Inferencia y explicación biológica

Procedimiento

¿Qué es un test? Generalidades

Procedimiento
Decisión
Poder
Colleción de
datos

Cálculo Valor P Significancia

Cuál test

- 5 ¡Colección de los datos!
- 6 Cálculo de el estadístico del test
- 7 Decisión estadística: ¿Se puede rechazar H_0 o no?
- Inferencia y explicación biológica

Procedimiento

¿Qué es un test? Generalidades

Hipótesis Procedimiento Decisión Poder Colleción de

Cálculo Valor P Significancia

Cuál test

- 5 ¡Colección de los datos!
- 6 Cálculo de el estadístico del test
- **7** Decisión estadística: ¿Se puede rechazar H_0 o no?
- 8 Inferencia y explicación biológica

Buenas y malas hipótesis

Distribuciones

Drocodimiont

¿Qué es un test?

Hipótesis

Procedimiento
Decisión
Poder
Colleción de
datos
Cálculo
Valor P

· Cuál tact

• Una buena hipótesis se puede rechazar/falsear

¿Qué es un test?

Generalidades

Hipótesis

Decisión
Poder
Colleción de datos
Cálculo
Valor P

: Cuál test?

Buenas y malas hipótesis

- Una buena hipótesis se puede rechazar/falsear
- 1 Hay cóndores en el parque

Distribusions

Procedimiento

¿Qué es un test?

Hipótesis

Decisión
Poder
Colleción de datos
Cálculo
Valor P
Significancia

Cuál test

Buenas y malas hipótesis

- Una buena hipótesis se puede rechazar/falsear
- 1 Hay cóndores en el parque
- 2 No hay cóndores en el parque

Procedimiento

¿Qué es un test?

Hipótesis

Decisión
Poder
Colleción de datos
Cálculo
Valor P
Significancia

Cuál test

Buenas y malas hipótesis

- Una buena hipótesis se puede rechazar/falsear
- 1 Hay cóndores en el parque
- 2 No hay cóndores en el parque
- ¡Ausencia de prueba no es prueba de ausencia!

Hipótesis

Poder Colleción de

- "Nada está pasando"
- "Las medias de dos muestras son las mismas"
- "La pendiente de la relación es cero"

Hipótesis

Poder Colleción de

- "Nada está pasando"
- "Las medias de dos muestras son las mismas"
- "La pendiente de la relación es cero"

Hipótesis

Poder Colleción de

- "Nada está pasando"
- "Las medias de dos muestras son las mismas"
- "La pendiente de la relación es cero"

Procedimiento

¿Qué es un test?

Hipótesis

Decisión
Poder
Colleción de datos
Cálculo
Valor P

: Cuál test?

- "Nada está pasando"
- "Las medias de dos muestras son las mismas"
- "La pendiente de la relación es cero"
- ⇒ La hipótesis nula se puede falsear. Rechazar cuando los datos muestran que es suficientemente improbable

Procedimiento

Poder Colleción de

Elección del test

- Tipo de variables: cualitativas, cuantitativas . . .
- Número y tamaño de las muestras
- Condiciones de cada test.

Procedimiento

¿Qué es un test?

Hipótesis

Procedimi

Decisión

Poder

Colleción de datos

Valor P

Significancia

¿Cuál test?

rocealmiento

¿Qué es un test?

Hipótesis

Procedimin

Decisión

Poder Colleción de datos

Cálculo Valor P

Valor P Significancia

Cuál test?

Decisión

Poder Colleción de

Decisión

Poder Colleción de

Decisión

Poder Colleción de

- + 2 $\sigma \sim 95\%$
- Valores umbrales
- Región de aceptación
- 5% menos probable
- Región de rechazo

rrocedimiento

¿Qué es un test?

Hipótesis

Procedimi

Decisión

Poder

Colleción de datos

Valor P

Significancia

Cuál test?

- $\pm 2 \sigma \sim 95\%$
- Valores umbrales
- Región de aceptación
- 5% menos probable
- Región de rechazo
- Riesgo lpha

Procedimiento

¿Qué es un test?

Hipótesis Procedimie

Decisión

Poder Colleción de datos Cálculo

Cálculo Valor *P* Significancia

¿Cuál test?

Criterios de decisión (2)

• 2 errores posibles :

Tipo I : Rechazar H_0 cuando es verdadera

	Situación real	
Hipótesis nula		

Decisión

Poder

Colleción de datos

Criterios de decisión (2)

• 2 errores posibles :

Tipo I: Rechazar H_0 cuando es verdadera

	Situación real		
Hipótesis nula	Verdadera	Falsa	
Acepta	Decisión correcta Poder $1 - \beta$	Tipo II Riesgo β	
Rechaza	Tipo I Riesgo α	Decisión correcta	

Procedimiento

¿Qué es un test? Generalidades

Procedimie Decisión

Poder Colleción de datos Cálculo

Cálculo Valor *P* Significancia

¿Cuál test

Criterios de decisión (2)

• 2 errores posibles :

Tipo I : Rechazar H_0 cuando es verdadera

_	Situación real	
Hipótesis nula	Verdadera	Falsa
Acepta	Decisión correcta Poder $1 - \beta$	Tipo II Riesgo β
Rechaza	Tipo I Riesgo α	Decisión correcta

¿Qué es un test?

Que es un tes Generalidades

Procedimie Decisión

Poder Colleción de datos Cálculo

Cálculo Valor *P* Significancia

Cuál test

Criterios de decisión (2)

• 2 errores posibles :

Tipo I : Rechazar H_0 cuando es verdadera

	Situación real	
Hipótesis nula	Verdadera	Falsa
Acepta	Decisión correcta Poder $1-\beta$	Tipo II Riesgo β
Rechaza	Tipo I Riesgo $lpha$	Decisión correcta

¿Qué es un test?

¿Qué es un tes Generalidades

Procedimie

Decisión Poder

Colleción de datos Cálculo Valor P

¿Cuál test

Criterios de decisión (2)

• 2 errores posibles :

Tipo I : Rechazar H_0 cuando es verdadera

_	Situación real	
Hipótesis nula	Verdadera	Falsa
Acepta	Decisión correcta Poder $1 - \beta$	Tipo II Riesgo β
Rechaza	Tipo I Riesgo $lpha$	Decisión correcta

Poder Colleción de

Hay que comprometer . . .

Poder: Probabilidad de rechazar H_0 cuando es falsa

• Error I: rechazar H_0 cuando es verdadera α

Hay que comprometer . . .

- Error II: aceptar H_0 cuando es falsa β
- Poder: 1β
- α y β relacionados
- Cuando $\alpha \setminus \beta \nearrow$

Poder Colleción de

Hay que comprometer . . .

- Error I: rechazar H_0 cuando es verdadera α
- Error II: aceptar H_0 cuando es falsa β
- Poder: 1β
- α y β relacionados
- Cuando $\alpha \setminus \beta \nearrow$

Poder Colleción de

Hay que comprometer . . .

- Error I: rechazar H_0 cuando es verdadera α
- Error II: aceptar H_0 cuando es falsa β
- Poder: 1β
- α y β relacionados
- Cuando $\alpha \setminus \beta \nearrow$

Poder Colleción de

Hay que comprometer . . .

- Error I: rechazar H_0 cuando es verdadera α
- Error II: aceptar H_0 cuando es falsa β
- Poder: 1β
- α y β relacionados
- Cuando $\alpha \setminus \beta \nearrow$

Poder Colleción de

Hay que comprometer . . .

- Error I: rechazar H_0 cuando es verdadera α
- Error II: aceptar H_0 cuando es falsa β
- Poder: 1β
- α y β relacionados
- Cuando $\alpha \setminus \beta \nearrow$

Poder Colleción de

Hay que comprometer . . .

- Error I: rechazar H_0 cuando es verdadera α
- Error II: aceptar H_0 cuando es falsa β
- Poder: 1β
- α y β relacionados
- Cuando $\alpha \setminus \beta \nearrow$

D1 - 11 - 1

Procedimient

¿Qué es un test? Generalidades Hipótesis Procedimiento

 $\begin{array}{c} \textbf{Poder} \\ \textbf{Colleción de} \\ \textbf{datos} \\ \textbf{Cálculo} \\ \textbf{Valor } P \end{array}$

. C., 41 + - - + 2

¿Cuando α debe ser alto?

Ejemplo: Efectos secundarios de una droga

- Test final antes de comercializar
- Grupo A: droga | Grupo B: placebo
- H_0 : no hay diferencia entre grupos A y B
- ullet H_1 : A tiene mayor frecuencia de anomalías que B

Procedimient Decisión

Poder
Colleción de datos
Cálculo
Valor P

Cuál test?

¿Cuándo α debe ser alto?

Aceptar riesgo α más alto para reducir riesgo β

α alto: error de tipo l

- ullet H_0 rechazada pero verdadera
- No se comercializa
- Más estudios para determinar efecto real

Cálculo
Valor P
Significancia

Cuál test?

¿Cuándo α debe ser alto?

Aceptar riesgo α más alto para reducir riesgo β

α alto: error de tipo I

- ullet H_0 rechazada pero verdadera
- No se comercializa
- Más estudios para determinar efecto real

β alto: error de tipo II

- H_0 "aceptada" pero falsa
- Comercialización
- ¡Mucha gente sufre de los efectos secundarios!

¿Qué es un test?

Poder

Colleción de datos

Colección de los datos

¡Acuérdense!

- Aleatorización
- Replicación

D ...

¿Qué es un test?
Generalidades
Hipótesis
Procedimiento
Decisión
Poder

Colleción de datos Cálculo

Valor P Significancia

Cuál test?

Computación del estadístico del test

- "La prevalencia es la misma en A y en B"
- $H_0: \mu_A = \mu_B$
- El estadístico del test representa la diferencia de prevalencia: $T = f(prev_A prev_B)$
- Distribución de T corresponde a H_0 verdadera

Drocodimion

¿Qué es un test? Generalidades Hipótesis Procedimiento

Decisión Poder

Cálculo

Valor P Significancia

Cuál test?

Computación del estadístico del test

- "La prevalencia es la misma en A y en B"
- $H_0: \mu_A = \mu_B$
- El estadístico del test representa la diferencia de prevalencia: $T = f(prev_A prev_B)$
- Distribución de T corresponde a H_0 verdadera

Computación del estadístico del test

- "La prevalencia es la misma en A y en B"
- $H_0: \mu_A = \mu_B$
- El estadístico del test representa la diferencia de prevalencia: $T = f(prev_A - prev_B)$
- Distribución de T corresponde a H_0 verdadera

Computación del estadístico del test

- "La prevalencia es la misma en A y en B"
- $H_0: \mu_A = \mu_B$
- El estadístico del test representa la diferencia de prevalencia: $T = f(prev_A prev_B)$
- Distribución de T corresponde a H_0 verdadera

Procedimient

¿Qué es un test? Generalidades Hipótesis

Procedimiento Decisión Poder

Colleción de datos

Cálculo Valor P

Cuál test?

Comparación de T con la distribución teórica

- T_{obs} no está en la región de rechazo
- No se puede rechazar H_0
- No es posible afirmar que hay una diferencia de prevalencia entre A y B

Procedimient

¿Qué es un test? Generalidades Hipótesis Procedimiento

Procedimiento Decisión Poder

Colleción de datos Cálculo

Valor P Significancia

¿Cuál test?

Comparación de *T* con la distribución teórica

- T_{obs} está en la región de rechazo
- Se puede rechazar H_0
- Se concluye que la prevalencia de la malaria es diferente entre A y B
- El riesgo de que esta conclusión sea falsa es $\alpha = 5\%$

Valor P

Distribuciones

Dunandindonta

¿Qué es un test? Generalidades

Hipótesis Procedimies

Decisión

Colleción de datos Cálculo

Valor P Significancia

Cuál test?

• Medida de la credibilidad de la hipótesis nula

¿Qué es un test?

Generalidades Hipótesis Procedimiento

Poder Colleción de datos Cálculo

Valor P Significant

Cuál test

• Medida de la credibilidad de la hipótesis nula

- $H_0: \mu_A = \mu_B$
- p < 0.05
- p = 0.23

Procedimient

¿Qué es un test? Generalidades Hipótesis Procedimiento Decisión

Poder
Colleción de datos
Cálculo
Valor P
Significancia

¿Cuál test

• Medida de la credibilidad de la hipótesis nula

•
$$H_0: \mu_A = \mu_B$$

•
$$p < 0.05$$

•
$$p = 0.23$$

Procedimient

¿Qué es un test? Generalidades Hipótesis Procedimiento Decisión Poder Colleción de datos

Cálculo
Valor P
Significano

¿Cuál test

• Medida de la credibilidad de la hipótesis nula

- $H_0: \mu_A = \mu_B$
- $p < 0.05 \Rightarrow$ improbable que H_0 sea verdadera: $\mu_A \neq \mu_B$
- p = 0.23

¿Qué es un test?

Generalidades Hipótesis Procedimiento

Decisión Poder Colleción de datos Cálculo

Valor P Significant

Cuál test

• Medida de la credibilidad de la hipótesis nula

•
$$H_0: \mu_A = \mu_B$$

•
$$p < 0.05$$

•
$$p = 0.23$$

• Medida de la credibilidad de la hipótesis nula

•
$$H_0: \mu_A = \mu_B$$

•
$$p < 0.05$$

•
$$p=0.23 \Rightarrow {\sf No}$$
 hay suficiente evidencia para rechazar H_0

¿Qué es un test?

Poder

Colleción de

Significancia

- ¿Qué significa "Resultado significativo"?
- Estadística: Improbable que haya ocurrido por azar si la
- Improbable: Occurre menos de 5% de las veces

¿Qué es un test?

Poder Colleción de

Significancia

- ¿Qué significa "Resultado significativo"?
- Diccionario: Que tiene sentido
- Improbable: Occurre menos de 5% de las veces

7 Tocediment

¿Qué es un test?

Hipótesis

Decisión

Poder

Colleción de datos

Cálculo Valor P

Significancia

Cuál test

- ¿Qué significa "Resultado significativo"?
- Diccionario: Que tiene sentido
- Estadística: Improbable que haya ocurrido por azar si la hipótesis nula es verdadera
- Improbable: Occurre menos de 5% de las veces

Poder Colleción de

Significancia

- ¿Qué significa "Resultado significativo"?
- Diccionario: Que tiene sentido
- Estadística: Improbable que haya ocurrido por azar si la hipótesis nula es verdadera
- Improbable: Occurre menos de 5% de las veces

Poder Colleción de

Significancia

- ¿Qué significa "Resultado significativo"?
- Diccionario: Que tiene sentido
- Estadística: Improbable que haya ocurrido por azar si la hipótesis nula es verdadera
- Improbable: Occurre menos de 5% de las veces

Arból de decisión

¿Como elegir el test adecuado?

Algunas directrices (1)

la estadística

Arból de decisión

¿Como elegir el test adecuado?

Algunas directrices (2)

Introducción a la estadística

Distribuciones

Procedimien

¿Cuál test

Arból de decisión Comparación Asociación Más directrices

Dependencia – Asociación Tests asociados

- Muestras asociadas: vienen del mismo grupo
- Relacionadas por correlación o por regresión
- Conexión espacial
- Conexión temporal
- ⇒ Usar tests específicos: e.g., "paired t-test"

Introducción a la estadística

Distribuciones

Procedimien

¿Cuál test

Arból de decisión Comparación Asociación Más directrices

Comparar una muestra con una distribución teórica

⇒ Test de conformidad

- Test t de conformidad
- Test de Wilcoxon
- Test binomial
- Test χ^2 de conformidad
-

Arból de decisión Comparación

Comparar dos muestras

- ⇒ Test de comparación (de homogeneidad)
 - Test t (posiblemente "asociado")
 - Test de Mann-Whitney
 - Test de Fisher
 - Test χ^2

Arból de decisión Comparación

Comparar *más* de dos muestras

- ⇒ Test de comparación (continuación)
 - Anova / Manova
 - Test de Kruskal-Wallis
 - Test de Friedman
 - Test χ^2

¿Cuál test

Arból de decisión Comparación Asociación Más directrices

Evaluar el grado de asociación entre variables

Muestras independientes

⇒ Correlación y regresión

- Correlación de Pearson / de Spearman (n = 2)
- Regresión simple / regresión logística (n=2)
- Regresión no paramétrica
- Regresión múltiple / regresión logística múltiple (n > 2)
- . . .

Comparar un grupo con una distribución teórica

$\begin{matrix} Medidas \\ X \leadsto \mathcal{N}(\mu, \sigma) \end{matrix}$	Categoría, grado, sin distribución	Binomial
Test t 1 muestra	Test de Wilcoxon	Test χ^2 , test binomial

Comparar 2 grupos no asociados

$\begin{matrix} & Medidas \\ X \leadsto \mathcal{N}(\mu, \sigma) \end{matrix}$	Categoría, grado, sin distribución	Binomial
Test t 1 muestra	Test de Wilcoxon	Test χ^2 , test binomial
Test t no asociado	Test de Mann-Whitney	Test de Fisher, test χ^2

Comparar 2 grupos asociados

$\begin{matrix} Medidas \\ X \leadsto \mathcal{N}(\mu, \sigma) \end{matrix}$	Categoría, grado, sin distribución	Binomial
Test t 1 muestra	Test de Wilcoxon	Test χ^2 , test binomial
Test t no asociado	Test de Mann-Whitney	Test de Fisher, test χ^2
Test t asociado	Test de Wilcoxon	Test de McNemar

Comparar $\geqslant 3$ grupos no asociados

$\begin{matrix} Medidas \\ X \leadsto \mathcal{N}(\mu, \sigma) \end{matrix}$	Categoría, grado, sin distribución	Binomial
Test t 1 muestra	Test de Wilcoxon	Test χ^2 , test binomial
Test t no asociado	Test de Mann-Whitney	Test de Fisher, test χ^2
Test t asociado	Test de Wilcoxon	Test de McNemar
Anova simple	Test de Kruskal-Wallis	Test χ^2

${\sf Comparar}\geqslant 3 \ {\sf grupos} \ {\sf asociados}$

$\begin{matrix} Medidas \\ X \leadsto \mathcal{N}(\mu, \sigma) \end{matrix}$	Categoría, grado, sin distribución	Binomial
Test t 1 muestra	Test de Wilcoxon	Test χ^2 , test binomial
Test t no asociado	Test de Mann-Whitney	Test de Fisher, test χ^2
Test t asociado	Test de Wilcoxon	Test de McNemar
Anova simple	Test de Kruskal-Wallis	Test χ^2
Anova con medidas repetidas	Test de Friedman	Test ${\cal Q}$ de Cochran

Cuantificar asociación entre 2 variables

$\begin{matrix} Medidas \\ X \leadsto \mathcal{N}(\mu, \sigma) \end{matrix}$	Categoría, grado, sin distribución	Binomial
Test t 1 muestra	Test de Wilcoxon	Test χ^2 , test binomial
Test t no asociado	Test de Mann-Whitney	Test de Fisher, test χ^2
Test t asociado	Test de Wilcoxon	Test de McNemar
Anova simple	Test de Kruskal-Wallis	Test χ^2
Anova con medidas repetidas	Test de Friedman	$Test\ Q\ de\ Cochran$
Correlación de Pearson	Correlación de Spearman	Coeficientes de contingencia

Predecir valor desde 1 variable

$\begin{matrix} Medidas \\ X \leadsto \mathcal{N}(\mu, \sigma) \end{matrix}$	Categoría, grado, sin distribución	Binomial
Test t 1 muestra	Test de Wilcoxon	Test χ^2 , test binomial
Test t no asociado	Test de Mann-Whitney	Test de Fisher, test χ^2
Test t asociado	Test de Wilcoxon	Test de McNemar
Anova simple	Test de Kruskal-Wallis	Test χ^2
Anova con medidas repetidas	Test de Friedman	$Test\ Q\ de\ Cochran$
Correlación de Pearson	Correlación de Spearman	Coeficientes de contingencia
Regresión (no)lineal simple	Regresión no paramétrica	Regresión logística simple

Predecir valor desde varias variables

$\begin{matrix} Medidas \\ X \leadsto \mathcal{N}(\mu, \sigma) \end{matrix}$	Categoría, grado, sin distribución	Binomial
Test t 1 muestra	Test de Wilcoxon	Test χ^2 , test binomial
Test t no asociado	Test de Mann-Whitney	Test de Fisher, test χ^2
Test t asociado	Test de Wilcoxon	Test de McNemar
Anova simple	Test de Kruskal-Wallis	Test χ^2
Anova con medidas repetidas	Test de Friedman	$Test\ Q\ de\ Cochran$
Correlación de Pearson	Correlación de Spearman	Coeficientes de contingencia
Regresión (no)lineal simple	Regresión no paramétrica	Regresión logística simple
Regresión (no)lineal multiple		Regresión logística multiple

la estadística

Arból de decisión Asociación Más directrices

Más recursos para elegir un test

- Handbook of Biological Statistics: http://udel.edu/~mcdonald/statbigchart.html
- Statistics Online Computational Resources: www.socr.ucla.edu/Applets.dir/ChoiceOfTest.html
- GraphPad / Intuitive Biostatistics: www.graphpad.com/www/Book/Choose.htm
- Social Research Methods: www.socialresearchmethods.net/selstat/ssstart.htm
- James D. Leeper, University of Alabama: http://bama.ua.edu/~jleeper/627/choosestat.html
- S. Holttum, B. Blizard, Canterbury Christ Church University: www.whichtest.info/index.html