Valuation of Distributed Energy Resources in Transactive Energy Markets

- PRAVEEN ASHOK KUMAR, RUPAL MEHTA

Agenda

- Introduction
- Methodology & Software Simulation
- Case Description
- Impacts
- Results and Discussion
- Conclusion
- ► Contributions of team members

- ▶ Definition from NIST for TE: "a system of economic and control mechanisms that allows the dynamic balance of supply and demand across the entire electrical infrastructure using value as a key operational parameter"
- More than 14 million electric consumers are supplying power back to the grid
- Distributed solar capacity has nearly doubled from 7.3 GW in 2014 to 13.8 GW in February 2017
- More than 16 million customers participate in wholesale or utility demand response programs

Transactive
Energy –
How is value
added?

Affordability – forward pricing structures enable customer-side investments, new IT provides automation and can lower cost

Reliability – with incorporation of new functions and controls, greater local and customer control possible

Sustainability – societal benefits from largescale clean DER adoption

Transactive Energy Simulation Platform

Zoomed in view of a typical section in an electrical network

Selected network for simulation

Case Description

- Case a = base case
- Case b = Case a + 755 TE controllers for HVAC
- Case c = Case b + add 10% PV and 5% battery storage
- Case d = Case c + additional 10% PV and 5% battery storage
- Case e = Case d + additional 10% PV and 5% battery storage

Case	Houses	HVAC Contro Is	Water Heate rs	PV System	Storage System
No TE	1594	1	1151	0	0
Year 0	1594	755	1151	0	0
Year 1	1594	755	1151	159	82
Year 2	1594	755	1151	311	170
Year 3	1594	755	1151	464	253

Impacts on the transmission system

Total Load and LMP at Bus

Total Load and LMP at Bus During 30-48 Hrs.

Case	LMP Avg (\$/kWh)	LMP Max (\$/kWh)	LMP Min (\$/kWh)
a	0.220	1.275	0.016
b	0.213	1.280	0.016
С	0.176	1.169	0.016
d	0.145	1.051	0.016
е	0.101	0.839	0.016

Statistics of LMP at Bus

Impacts on the distribution system

Total Feeder Load by Case

Case	Total Feeder Electricity (kWh)	Total Residential Energy Consumption (kWh)
а	154129	141645
b	150063	137677
С	138897	137640
d	128496	137623
е	118157	137632

Total Electricity Consumption by Case

Impacts on the customers

Case	Total Billed (USD)	Electricity Bill per Customer (USD /customer)
a	19158	12.02
b	18653	11.70
С	17265	10.83
d	15972	10.02
е	14687	9.21

Electricity Bills of Customers on One Feeder by Case ID

Case	Total Billed (USD)	Electricity Bill per Customer (USD /customer)
a	-	-
b	-	-
С	2733	24
d	3782	68
е	3137	66

Battery Outputs and Revenue by Case ID

Case	Total Billed (USD)	Electricity Bill per Customer (USD /customer)
a	-	-
b	-	-
С	128438	3325
d	250468	5172
е	373898	5203

PV Outputs and Revenue by Case

Impacts on the generators

The Total Operation Costs, Revenues, and Profits of the Bulk Generators by Case

Case	Operation Cost (M\$)	Revenue (M\$)	Profit (M\$)
a	0.60	4.74	4.14
b	0.59	4.58	3.99
С	0.51	3.73	3.21
d	0.46	3.02	2.56
е	0.41	2.05	1.64

Energy consumption and emissions

Case	Total House HVAC Energy Consumption (kWh)		
a	65002		
b	61021		
С	61025		
d	61044		
е	61098		

Case	CO2 (1000lb)	SOx (lb)	NOx (lb)
a	17941.9	153.2	1149.3
b	17848.5	152.4	1143.4
С	17647.5	150.7	1130.5
d	17464.0	149.2	1118.7
е	17274.7	147.5	1106.6

Results and Discussion

- Transactive energy systems increases the benefits of the system
- From simulation result: Cost for Case-a is maximum
- Cost reduced at Case-b with Transactive Energy based HVAC Controller
- Significant savings at Case-c with 10% PV power source & 5% Battery storage
- Additional cost savings at Case-d & Case-e with increase of PV by 10% & Storage by 5%

Case-a < Case-b < Case-c < Case-d < Case-e

Conclusion

- ▶ Valuation of DER and DES increases cost savings
- ▶ With many states, such as NY working towards REV defining TES regulations might be a good idea
- ► Further research on TES would potentially lead to better optimized markets
- ▶ Increase the benefits of stakeholders

Contributions by team members

- Praveen Ashok Kumar
 - Methodology and Software Simulation
 - Results and Discussion
- Rupal Mehta
 - ► Introduction
 - ▶ Literature Review