ACH2053 – Introdução à Estatística (2024.1)

Primeira Prova – Junho/2024

Nome:	Nº USP:	

Explicitar o raciocínio na resolução; a mera apresentação das respostas não é digna de pontuação positiva

87

- -1) Frequência (em %):
- 100
- 97
- 93

90

- 83
- 80
- 77
- 73 70
- 1) Estudantes de uma certa disciplina estão interessados em estimar a média final (um número em [0.00, 10.00]) da turma. Com base nos semestres anteriores, concordou-se que a distribuição das notas dos alunos poderia ser aproximada por uma distribuição normal $N(\mu, 2^2)$. Conjecturou-se que μ também poderia ser uma variável aleatória seguindo uma distribuição normal $N(5.0, 1^2)$. Os estudantes conseguiram, contudo, obter as notas finais de somente trinta e seis alunos de toda a turma; a média simples destes dados foi de 4.0.
- a) [3.0 pontos] Determinar o intervalo de credibilidade de sorte que μ possa estar nele com probabilidade 98%. Escolha este intervalo de sorte a possuir a menor amplitude possível.
- b) [3.0 pontos] Determinar o intervalo de confiança com nível de significância de 2%. Escolha este intervalo de sorte a possuir a menor amplitude possível.
- c) [4.0 pontos] Suponha que duas hipóteses tenham sido levantadas, $H_0: \mu = 5.0$ e $H_1: \mu \neq 5.0$. Determinar a região crítica K com nível de significância 5% e, com base nela, concluir qual hipótese acatar.
- 1)
a) Sabe-se que $X_1, \ldots, X_n \sim N(\mu, 2^2)$, com n=36 e a média observada desses dados $\overline{x}_n=4.0$. Ademais, de $\mu \sim N(5.0, 1^2)$, a distribuição a posteriori segue uma distribuição normal $N(\mu^*, (\sigma^*)^2)$, onde

$$\mu^* = \frac{5.0 \cdot 2^2 + 36 \cdot 4.0 \cdot 1^2}{2^2 + 36 \cdot 1^2} = \frac{41}{10} = 4.1 \qquad e \qquad (\sigma^*)^2 = \frac{2^2 \cdot 1^2}{2^2 + 36 \cdot 1^2} = \frac{1}{10}.$$

Denotando por θ (nota) uma variável aleatória tal que $X \sim N(\mu^*, (\sigma^*)^2)$, defina

$$Z := \frac{\theta - \mu^*}{\sigma^*} \sim N(0, 1^2).$$

Escolhendo o intervalo I = (a, b) de credibilidade a 98%, tem-se $P(a < \theta < b) = 98\%$ ou

$$P\left(\frac{a-\mu^*}{\sigma^*} < \frac{\theta-\mu^*}{\sigma^*} < \frac{b-\mu^*}{\sigma^*}\right) = P\left(\frac{a-\mu^*}{\sigma^*} < Z < \frac{b-\mu^*}{\sigma^*}\right) = 98\%.$$

Como a amplitude do intervalo de credibilidade deve ser mínima, escolhe-se

$$-z^* := \frac{a - \mu^*}{\sigma^*}$$
 e $z^* := \frac{b - \mu^*}{\sigma^*}$ de sorte que $P(-z^* < Z < z^*) = 98\%$,

onde a simetria da distribuição foi explorada. Ademais, tem-se $P(0 \le Z < z^*) = \frac{98\%}{2} = 0.49$, donde se tem $z^* \approx 2.33$. Consequentemente, $a \approx 3.36$ e $b \approx 4.84$, e o intervalo de credibilidade a 98% é (3.36, 4.84).

b) O ponto de partida é a variável aleatória $\overline{X_n} \sim N(\mu, \sigma^2/n)$ da média de X_1, \dots, X_n . De sua padronização

$$Z_n := \frac{\overline{X}_n - \mu}{\sigma / \sqrt{n}} \sim N(0, 1^2),$$

deve-se encontrar $c,d \in \mathbb{R}$ tais que $P(c < Z_n < d) = 98\%$. Como o intervalo de confiança deve ter amplitude mínima e explorando a simetria da distribuição, deve-se ter d=-c=z tal que $P(-z < Z_n < z) = 98\%$ ou $P(0 \le Z_n < z) = \frac{98\%}{2} = 0.49$. Com isto, encontra-se $z \approx 2.33$. Como consequência, $Z_n = \frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} \in (-z, z)$ com probabilidade de 98% ou, equivalentemente,

$$\mu \in \left(\overline{X}_n - z \frac{\sigma}{\sqrt{n}}, \overline{X}_n + z \frac{\sigma}{\sqrt{n}}\right)$$
 com probabilidade de 98%.

Contudo, levando-se em considerção o resultado das medidas $\overline{x}_n=4.0$,

$$\mu \in \left(\overline{x}_n - z \frac{\sigma}{\sqrt{n}}, \overline{x}_n + z \frac{\sigma}{\sqrt{n}}\right)$$
 com nível de confiança de 98%.

Substituindo as informações acima ($\overline{x}_n = 4.0$, n = 36, $\sigma = 2$ e $z \approx 2.33$), chega-se ao intervalo de confiança (3.22, 4.78).

c) A região crítica é dada neste problema como sendo $K = (-\infty, \ell_c) \cup (r_c, \infty)$, onde $P(-\infty < \overline{X}_n < \ell_c) = P(r_c < \overline{X}_n < \infty) = \frac{5\%}{2} = 0.025$. Da padronização da variável aleatória \overline{X}_n ,

$$Z_n := \frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} \sim N(0, 1^2),$$

tem-se

$$P\left(-\infty < \frac{\overline{\overline{X}_n - \mu}}{\sigma/\sqrt{n}} < \frac{\ell_c - \mu}{\sigma/\sqrt{n}}\right) = P\left(\frac{r_c - \mu}{\sigma/\sqrt{n}} < \frac{\overline{\overline{X}_n - \mu}}{\sigma/\sqrt{n}} < \infty\right) = 0.025,$$

donde se tem

$$\frac{\ell_c - \mu}{\sigma / \sqrt{n}} = -1.96 \qquad \text{e} \qquad \frac{r_c - \mu}{\sigma / \sqrt{n}} = 1.96,$$

visto que tem-se $P(0 \le Z_n < z_c) = 0.0025$ para $z_c \approx 1.96$. Por conseguinte (com $\mu = 5$, $\sigma = 2$ e n = 36), $\ell_c \approx 4.35$ e $r_c \approx 5.65$. A região crítica é, pois, $K = (-\infty, 4.35) \cup (5.64, \infty)$. No contexto de notas, $K = (0.00, 4.35) \cup (5.64, 10.00)$, mas admite-se a aproximação pela distribuição normal como sendo satisfatória. A observação $\overline{x}_n = 4.0$ encontra-se na região crítica, o que leva a rejeitar a hipótese nula.

$$P(0 \le Z \le Z_c)$$
 $f_Z(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}.$

Z	0	1	2	3	4	5	6	7	8	9
0.0	0.00000	0.00399	0.00798	0.01197	0.01595	0.01994	0.02392	0.02790	0.03188	0.03586
0.1	0.03983	0.04380	0.04776	0.05172	0.05567	0.05962	0.06356	0.06749	0.07142	0.07535
0.2	0.07926	0.08317	0.08706	0.09095	0.09483	0.09871	0.10257	0.10642	0.11026	0.11409
0.3	0.11791	0.12172	0.12552	0.12930	0.13307	0.13683	0.14058	0.14431	0.14803	0.15173
0.4	0.15542	0.15910	0.16276	0.16640	0.17003	0.17364	0.17724	0.18082	0.18439	0.18793
0.5	0.19146	0.19497	0.19847	0.20194	0.20540	0.20884	0.21226	0.21566	0.21904	0.22240
0.6	0.22575	0.22907	0.23237	0.23565	0.23891	0.24215	0.24537	0.24857	0.25175	0.25490
0.7	0.25804	0.26115	0.26424	0.26730	0.27035	0.27337	0.27637	0.27935	0.28230	0.28524
0.8	0.28814	0.29103	0.29389	0.29673	0.29955	0.30234	0.30511	0.30785	0.31057	0.31327
0.9	0.31594	0.31859	0.32121	0.32381	0.32639	0.32894	0.33147	0.33398	0.33646	0.33891
1.0	0.34134	0.34375	0.34614	0.34849	0.35083	0.35314	0.35543	0.35769	0.35993	0.36214
1.1	0.36433	0.36650	0.36864	0.37076	0.37286	0.37493	0.37698	0.37900	0.38100	0.38298
1.2	0.38493	0.38686	0.38877	0.39065	0.39251	0.39435	0.39617	0.39796	0.39973	0.40147
1.3	0.40320	0.40490	0.40658	0.40824	0.40988	0.41149	0.41308	0.41466	0.41621	0.41774
1.4	0.41924	0.42073	0.42220	0.42364	0.42507	0.42647	0.42785	0.42922	0.43056	0.43189
1.5	0.43319	0.43448	0.43574	0.43699	0.43822	0.43943	0.44062	0.44179	0.44295	0.44408
1.6	0.44520	0.44630	0.44738	0.44845	0.44950	0.45053	0.45154	0.45254	0.45352	0.45449
1.7	0.45543	0.45637	0.45728	0.45818	0.45907	0.45994	0.46080	0.46164	0.46246	0.46327
1.8	0.46407	0.46485	0.46562	0.46638	0.46712	0.46784	0.46856	0.46926	0.46995	0.47062
1.9	0.47128	0.47193	0.47257	0.47320	0.47381	0.47441	0.47500	0.47558	0.47615	0.47670
2.0	0.47725	0.47778	0.47831	0.47882	0.47932	0.47982	0.48030	0.48077	0.48124	0.48169
2.1	0.48214	0.48257	0.48300	0.48341	0.48382	0.48422	0.48461	0.48500	0.48537	0.48574
2.2	0.48610	0.48645	0.48679	0.48713	0.48745	0.48778	0.48809	0.48840	0.48870	0.48899
2.3	0.48928	0.48956	0.48983	0.49010	0.49036	0.49061	0.49086	0.49111	0.49134	0.49158
2.4	0.49180	0.49202	0.49224	0.49245	0.49266	0.49286	0.49305	0.49324	0.49343	0.49361
2.5	0.49379	0.49396	0.49413	0.49430	0.49446	0.49461	0.49477	0.49492	0.49506	0.49520
2.6	0.49534	0.49547	0.49560	0.49573	0.49585	0.49598	0.49609	0.49621	0.49632	0.49643
2.7	0.49653	0.49664	0.49674	0.49683	0.49693	0.49702	0.49711	0.49720	0.49728	0.49736
2.8	0.49744	0.49752	0.49760	0.49767	0.49774	0.49781	0.49788	0.49795	0.49801	0.49807
2.9	0.49813	0.49819	0.49825	0.49831	0.49836	0.49841	0.49846	0.49851	0.49856	0.49861
3.0	0.49865	0.49869	0.49874	0.49878	0.49882	0.49886	0.49889	0.49893	0.49896	0.49900
3.1	0.49903	0.49906	0.49910	0.49913	0.49916	0.49918	0.49921	0.49924	0.49926	0.49929
3.2	0.49931	0.49934	0.49936	0.49938	0.49940	0.49942	0.49944	0.49946	0.49948	0.49950
3.3	0.49952	0.49953	0.49955	0.49957	0.49958	0.49960	0.49961	0.49962	0.49964	0.49965
3.4	0.49966	0.49968	0.49969	0.49970	0.49971	0.49972	0.49973	0.49974	0.49975	0.49976
3.5	0.49977	0.49978	0.49978	0.49979	0.49980	0.49981	0.49981	0.49982	0.49983	0.49983
3.6	0.49984	0.49985	0.49985	0.49986	0.49986	0.49987	0.49987	0.49988	0.49988	0.49989
3.7	0.49989	0.49990	0.49990	0.49990	0.49991	0.49991	0.49992	0.49992	0.49992	0.49992
3.8	0.49993	0.49993	0.49993	0.49994	0.49994	0.49994	0.49994	0.49995	0.49995	0.49995
3.9	0.49995	0.49995	0.49996	0.49996	0.49996	0.49996	0.49996	0.49996	0.49997	0.49997
4.0	0.49997	0.49997	0.49997	0.49997	0.49997	0.49997	0.49998	0.49998	0.49998	0.49998

$$X_1, \dots, X_n \sim N(\mu, \sigma^2)$$
 e $\mu \sim N(\mu_0, \sigma_0^2)$: $\mu | \{X_1 = x_1, \dots, X_n = x_n\} \sim N(\mu^*, (\sigma^*)^2)$

$$\mu^* = \frac{\mu_0 \sigma^2 + n \overline{x}_n \sigma_0^2}{\sigma^2 + n \sigma_0^2}$$
 e $(\sigma^*)^2 = \frac{\sigma^2 \sigma_0^2}{\sigma^2 + n \sigma_0^2}$

$$\sqrt{2}\approx 1.4 \qquad \sqrt{3}\approx 1.7 \qquad \sqrt{5}\approx 2.2 \qquad \sqrt{6}\approx 2.4 \qquad \sqrt{7}\approx 2.6 \qquad \sqrt{10}\approx 3.2$$

$$\sqrt{11}\approx 3.3 \qquad \sqrt{13}\approx 3.6 \qquad \sqrt{14}\approx 3.7 \qquad \sqrt{15}\approx 3.9 \qquad \sqrt{17}\approx 4.1 \qquad \sqrt{19}\approx 4.4$$