Анализ графовых данных и глубокое обучение

В предыдущих сериях

Ограничения

- Рассмотренные методы для получения эмбеддингов не позволяют работать с новыми вершинами
- Отсутствие общих параметров у эмбеддингов вершин, всего O(|V|d) параметров
- Не используют признаки вершин, рёбер, графов

Deep learning for graphs

Deep Graph Encoders

• Мы рассматривали

$$ENC(u) = z_u$$

• Основная идея теперь

ENC(u) = MLP (основанный на структуре графа)

Deep Learning

Графовые данные

- ullet Пусть имеется граф G с множеством вершин $\,V\,$ и матрицей смежности $\,A\,$
- ullet N(v) соседи вершины v
- Будем рассматривать числовые признаки вершин $X \in \mathbb{R}^{|V| imes m}$
 - Информация о профиле в социальных сетях
 - Свойства молекул в биологических сетях
 - Если нету признаков, можно добавить one-hot кодирование вершин или вектор из единиц

Наивный подход

• Добавить к признакам матрицу смежности и скормить нейронной сети

- Много параметров O(|V|)
- Зависит от размера графа и порядка вершин

Сверточные сети

 Идея — обобщить классические сверточные сети от изображений/текстов (простые графы) до произвольных графов

CNN on an image:

Сложность

- Нету порядка на вершинах
- Нету фиксированного определения локальности или скользящего окна по вершинам графа
- Граф инвариантен к перестановкам вершин
- Граф и представления вершин должны быть одинаковыми, не важно какой порядок обхода мы выбрали

Инвариантность к перестановкам

Инвариантность к перестановкам

- ullet Пусть мы обучаем функцию fкоторая отображает граф G=(A,вX) вектор \mathbb{R}^d
- Тогда f инвариантна к перестановкам, если $f(A,X) = f(PAP^T, \mathbb{A}X)$ любой перестановки P
- Например, $f(A_1, X_1) = f(A_2, X_2)$

Эмбеддинги для каждой вершины

Эквивариантность к перестановкам

- ullet Пусть мы обучаем функцию f , которая отображает граф G=(A,X)в матрицу $\mathbb{R}^{|V| imes d}$
- Тогда f эквивариантна к перестановкам, если $Pf(A,X) = f(PAP^T,PX)$ Я любой перестановки P
- Например, GNN состоят из инвариантных и эквивариантных к перестановкам вершин функций

Цель

- Спроектировать нейронные сети, которые будут инвариантны/эквивариантны к перестановкам вершин
- Классические нейронные сети не являются таковыми, поэтому наивный подход не работает

Graph Convolutional Networks

GCN

- Граф вычислений определяется соседями вершин
- Через них информация распространяется и агрегируется

Графы вычислений

Глубина графа вычислений

• Глубина может быть любой, от нее зависит насколько далекое соседство рассматривается для распространения информации

Вершины имеют различные эмбеддинги на каждом слое Layer-0 Layer-1 TARGET NODE Layer-2 INPUT GRAPH

Базовый подход

Базовый подход

Свойства GCN для одной вершины

• GCN, вычисляющая эмбеддинг одной вершины, инвариантна относительно перестановок вершин

Эквивариантность GCN

Обучение

 Оптимизируем любую loss-функцию от полученных эмбеддингов, например с помощью SGD

Агрегация в матричной форме

- Let $H^{(k)} = [h_{1k}^{(k)} ... h_{|V|}^{(k)}]^{T}$ Then: $\sum_{u \in N_{v}} h_{u}^{(k)} = A_{v} H^{(k)}$
- Let D be diagonal matrix where

$$D_{v,v} = \text{Deg}(v) = |N(v)|$$

• The inverse of $D: D^{-1}$ is also diagonal: $D_{v,v}^{-1} = 1/|N(v)|$

Therefore,

Matrix of hidden embeddings $H^{(k-1)}$

GCN в матричной форме

Re-writing update function in matrix form:

$$H^{(k+1)} = \sigma(\tilde{A}H^{(k)}W_k^{\mathrm{T}} + H^{(k)}B_k^{\mathrm{T}})$$
 where $\tilde{A} = D^{-1}A$
$$H^{(k)} = [h_1^{(k)} ... h_{|V|}^{(k)}]^T$$

- Red: neighborhood aggregation
- Blue: self transformation
- Можно использовать реализации умножения разреженных матриц (A разреженная матрица)
- Другие GNN с более сложными агрегациями не всегда могут быть записаны в такой простой матричной форме

Процесс обучения

- Полученные эмбеддинги используются для предсказания
- Обучение с учителем: у метки в тренировочном наборе

$$\min_{\Theta} \mathcal{L}(\boldsymbol{y}, f_{\Theta}(\boldsymbol{z}_{v}))$$

• Обучение без учителя: нету меток, используем структуру графа

Пример обучения без учителя

• Схожие вершины должны иметь близкие эмбеддинги

$$\min_{\Theta} \mathcal{L} = \sum_{z_u, z_v} CE(y_{u,v}, DEC(z_u, z_v))$$

- where $y_{u,v} = 1$ when node u and v are similar
- $z_u = f_{\Theta}(u)$ and DEC (\cdot, \cdot) is the dot product
- Схожесть вершин определяем самостоятельно
 - Случайные блуждания (DeepWalk, node2vec, ...)

Пример обучения с учителем

• Классификация вершин

Архитектура

Архитектура

Архитектура

Общие параметры

- Количество параметров сублинейно от |V|
- Модель может получать эмбеддинги и для новых вершин

Использование на новых графах

Добавление новых вершин

CNN

Convolutional neural network (CNN) layer with 3x3 filter:

CNN formulation:
$$\mathbf{h}_v^{(l+1)} = \sigma(\sum_{u \in \mathbf{N}(v) \cup \{v\}} \mathbf{W}_l^u \mathbf{h}_u^{(l)}), \ \ \forall l \in \{0, \dots, L-1\}$$

N(v) represents the 8 neighbor pixels of v.

GNN vs. CNN

Convolutional neural network (CNN) layer with

3x3 filter:

Graph

- GNN formulation: $h_v^{(l+1)} = \sigma(\mathbf{W}_l \sum_{u \in N(v)} \frac{h_u^{(l)}}{|N(v)|} + B_l h_v^{(l)}), \forall l \in \{0, ..., L-1\}$
- CNN formulation: (previous slide) $\mathbf{h}_{v}^{(l+1)} = \sigma(\sum_{u \in \mathbf{N}(v) \cup \{v\}} \mathbf{W}_{l}^{u} \mathbf{h}_{u}^{(l)}), \forall l \in \{0, ..., L-1\}$ $\mathbf{h}_{v}^{(l+1)} = \sigma(\sum_{u \in \mathbf{N}(v)} \mathbf{W}_{l}^{u} \mathbf{h}_{u}^{(l)} + \mathbf{B}_{l} \mathbf{h}_{v}^{(l)}), \forall l \in \{0, ..., L-1\}$ if we rewrite:

Процесс обучения

- В CNN фиксируются соседи, порядок вершин
- CNN не инвариантна/эквивариантна относительно перестановок вершин
- GNN можно рассмотреть как обобщение CNN от изображений до любых графов

Заключение

