MATEMATIKA ANGOL NYELVEN MATHEMATICS

KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA STANDARD LEVEL FINAL EXAMINATION

Az írásbeli vizsga időtartama: 180 perc Time allowed for the examination: 180 minutes

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ MARKSCHEME

OKTATÁSI MINISZTÉRIUM MINISTRY OF EDUCATION

Instructions to examiners

Formal requirements:

- Mark the paper in **ink**, **different in colour** from the one used by the candidate. Indicate the errors, incomplete solutions, etc. in the conventional way.
- The first one of the rectangles under each problem shows the maximum attainable score on that problem. The **points** given by the examiner are to be entered **in the rectangle** next to that
- If the solution is perfect, it is enough to enter the maximum scores in the appropriate rectangles.
- If the solution is incomplete or incorrect, please indicate the individual **subtotals** on the paper, too.

Assessment of content:

- The markscheme contains more than one solution for some of the problems. If the solution by the candidate is different, allocate the points by identifying the parts of the solution equivalent to those of the one given in the markscheme.
- The subtotals in the markscheme can be **further divided**, but the scores awarded should always be whole numbers.
- If it is clear that the reasoning and the final answer are both correct, you may award the maximum score even if the solution is **less detailed** than the one in the markscheme.
- If there is a **calculation error** or inaccuracy in the solution, only take off the points for that part where the error is made. If the reasoning remains correct and the error is carried forward, the points for the rest of the solution should be awarded.
- In the case of a principal error, no points should be awarded at all for that section of the solution, not even for steps that are formally correct. (These logical sections of the solutions are separated by double lines in the markscheme.) However, if the wrong information obtained owing to the principal error is carried forward to the next section or in the next part of the problem and used correctly, the maximum score is due for the next part.
- Where the markscheme shows a **unit** in brackets, the solution should be considered complete without that unit as well.
- If there are more than one different approaches to a problem, **assess only one** of them (the one that is worth the largest number of points).
- **Do not give extra points** (i.e. more than the score due for the problem or part of problem).
- **Do not take off points** for steps or calculations that contain errors but are not actually used by the candidate in the solution of the problem.
- Assess only two out of the three problems in part B of Paper II. The candidate was requested to indicate in the appropriate square the number of the problem not to be assessed and counted in their total score. Should there be a solution to that problem, it does not need to be marked. However, if it is still not clear which problem the candidate does not want to be assessed, assume automatically that it is the last one in the question paper, and do not assess that problem.

I.

1.		
$F\left(-\frac{3}{2};1\right)$.	2 points	I point should be awarded if only one coordinate is correct.
Total:	2 points	

2.		
В.	2 points	
	Total: 2 points	

3.			
[2; 6] Or: $2 \le y \le 6$.		-	I point should be subtracted if the left or right end of the interval is wrong or if the interval is open or partly open.
	Total:	3 points	

4.		
A: false.	1 point	
B: true.	1 point	
C: false.	1 point	
	Total: 3 points	

5.	
$(x+3)^2 + (y-5)^2 = 16$.	2 points
Or: $x^2 + y^2 + 6x - 10y + 18 = 0$.	
Total	l: 2 points

6.		
$\frac{21}{150}$ or 14% or 0.14.	2 points	Any form of the answer is acceptable.
Total:	2 points	

7.		
3	1 point	I point is given for indicating the data in the diagram.
$\tan 18.5^{\circ} = \frac{3}{x}.$	1 point	
The other leg is $x \approx 8.966 \approx 9$ (cm).	1 point	It is also correct without rounding.
Total:	3 points	

8.	
$a_5 = \frac{1}{2} .$	2 points
Total:	2 points

9.		
The number of edges is 4.	2 points	I point should be awarded if there is only a correct sketch.
Total:	2 points	

írásbeli vizsga 0511 4 / 12 2005. május 10.

11.		
a)		
$\binom{22}{5} = 26\ 334.$	2 points	The 2 points should also be awarded if the binomial coefficient is not evaluated.
Total:	2 points	
b)		
5! = 120.	2 points	The 2 points should also be awarded if the factorial is not evaluated.
Total:	2 points	

12.		
$V = \frac{4r^3\pi}{3}.$		
$V = \frac{4 \cdot 13^3 \pi}{3} .$	1 point	
$V \approx 9202.8 \text{ (cm}^3\text{)}.$	1 point	
There is ≈ 9.2 litres of air in the ball.	1 point	The 1 point is for the
		conversion.
Total:	3 points	

II/A

12		
13.		
$\cos^2 x + 4\cos x = 3(1 - \cos^2 x).$	2 points	
Rearranged:		
$4\cos^2 x + 4\cos x - 3 = 0.$	1 point	
The roots of this equation are		
$\cos x = \frac{1}{2} \text{ or }$	1 point	
$\cos x = -\frac{3}{2}.$	1 point	
If $\cos x = \frac{1}{2}$, then $x_1 = \frac{\pi}{3} + 2k\pi$, or $x_2 = \frac{5\pi}{3} + 2k\pi$,	3 points	
where $k \in \mathbb{Z}$.	1 point	
If $\cos x = -\frac{3}{2}$, then there is no solution, since $\cos \ge -1$ for all x .	2 points	
Since the transformations have been equivalent, both sets of roots are solutions of the original equation.	1 point	The 1 point for checking is also due if periods are not indicated but the two roots obtained are substituted into the equation.
Total:	12 points	

14.		
(a)		
$a_2 = 17$ and $a_3 = 21$. d = 4.	1 point	The 1 point is due for the common difference.
$a_1 = 13$.	1 point	
$a_{150} = 609.$	1 point	The value of a_{150} is also accepted if it only appears in the summation formula.
$S_{150} = \frac{13 + 609}{2} \cdot 150.$	1 point	
$S_{150} = 46 650.$	1 point	
Total:	5 points	

b)		
The rule for divisibility by three can be applied.	1 point	The 2 points are also due if
The digits of 25 863 add up to 24, thus it is divisible		the divisibility rule is not
by three.	1 point	stated, only applied.
The sum remains the same for any order, so the		
statement is true.	1 point	
Total:	3 points	

(c)		
The rule for divisibility by four can be applied.	1 point	The 1 point is also due if the rule is not stated but
		there is evidence of its
		correct application.
In this case, the condition is met if the last two digits		
are 28;		
32;		If there are only four or
36;		five out of the six endings
52;		listed, award 1 point
56;		instead of 2. If there are
68.	2 points	fewer than that, award 0
		points.
Thus the digit in the tenths' place may be 2, 3, 5 or	1 point	This point is only due if all
6.		solutions are listed.
Total:	4 points	

If none of the six endings are listed but the rule of divisibility is applied correctly and the answer is also correct, award 4 points.

Award 4 points as well if the rule of divisibility is not stated but the endings are listed correctly and the answer is correct, too.

15.		
(a)		
The arithmetic mean is		
$3 \cdot 100 + 2 \cdot 95 + 91 + 2 \cdot 80 + 65 + 2 \cdot 31 + 2 \cdot 17 + 8 + 5$	2 points	
15	2 points	
= 61.	1 point	
Mode: 100.	1 point	
Median: 80.	1 point	
Total:	5 points	

b)							
Grade	excellent	good	satisfactory	pass	fail		
Number of students	8	1	0	2	4	2 points	
					Total:	2 points	

c)	
Excellent: 192°.	The calculation of the
Good: 24°.	central angles does not
Satisfactory: 48°.	need to be shown but the
Fail: 96°.	 angles have to be stated.

II/B
Out of problems 16 to 18, do not assess the one indicated by the candidate.

16.			
a)			
a = 2r.	2 points*	The longitudinal section containing the axis is an equilateral triangle.	
, , ,	2 points*	equitates at intangre.	
From the Pythagorean theorem: $a^2 = r^2 + (5\sqrt{3})^2$.	1 point*		
$4r^2 = r^2 + (5\sqrt{3})^2$.	2 points*		
r = 5 cm.	1 point*		
a = 10 cm.	1 point*		
$A = r^2 \pi + r \pi a .$			
$A = 25\pi + 50\pi.$	1 point		
$A = 75\pi$.	•		
Or $A \approx 235.6 \text{ cm}^2$.	1 point		
Total:	9 points		
* Award the appropriate points as well if these results only appear in the answers to parts			
b) or c).		-	

b)		
$V = \frac{r^2 \pi \cdot m}{3} .$		
$V = \frac{25\pi \cdot 5\sqrt{3}}{3} \ .$	1 point	
$V \approx 226.7 \text{ cm}^3$.	1 point	
Total:	2 points	

c)		
Solution 1.		
The radius of the sector is <i>a</i> .	1 point	
The length of the arc is $a\pi$.	2 points	
$\frac{\alpha}{360^{\circ}} = \frac{a\pi}{2a\pi}.$	2 points	
The central angle in question is $\alpha = 180^{\circ}$.	1 point	The point is also due for correct calculation with an approximate value.
Total:	6 points	

Solution 2.		
The radius of the sector is <i>a</i> .	1 point	
The length of the arc is $a\pi$.	2 points	
The perimeter of the whole circle is $2a\pi$.	1 point	
The arc length is one half of it, i.e. it is a semicircle.	1 point	
Thus $\alpha = 180^{\circ}$.	1 point	
Total:	6 points	

17.		
a)		
Let x denote the price of the magazine.	1 point	This I point is also due if the unknown is not defined but its meaning is made clear by the verbal answer.
Anna had 0.88x forints.	1 point	
Zsuzsi had $\frac{4}{5}x$ forints.	1 point	
The equation:		Award 4 points altogether
$0.88x + \frac{4}{5}x - x = 714.$	2 points	for setting up the equation.
x = 1050.	1 point	
0.88x = 924 and	1 point	
$\boxed{\frac{4}{5}x = 840.}$	1 point	
The magazine cost 1050 forints. Anna originally had		
924 forints and Zsuzsi had 840 forints.	1 point	
Checking:	1 point	
Total:	10 points	

b)				
Solution 1.				
Anna receives a share of a forints, and Zsuzsi gets $714 - a$ forints out of the money remaining.	1 point	This 1 point is also due if the unknown is not defined but its meaning is made clear by the verbal answer.		
$\frac{924}{840} = \frac{a}{714 - a}$ or $\frac{0.88}{0.8} = \frac{a}{714 - a}$.	2 points	Either equation is acceptable.		
Hence				
a = 374;	1 point			
714 - a = 340.	1 point			
Thus Anna will have 374 forints and Zsuzsi will				
have 340 forints left after buying the magazine.	1 point			
Checking:	1 point			
Total:	7 points			

Solution 2.	
The two of them had 1764 forints.	1 point
Anna receives $\frac{924}{1764}$ of the money remaining,	1 point
that is $714 \cdot \frac{924}{1764} =$	1 point
= 374 forints, and	1 point
Zsuzsi gets $\frac{840}{1764}$ of it,	1 point
that is $714 \cdot \frac{840}{1764} =$	1 point
= 340 forints.	1 point
Total:	7 points

18.		
a)		
Solution 1.		
4 7 8	2 points	If only one or two of the three numbers in the set diagram are correct, award 1 point only.
The number of differences that at least one of them		
noticed is $4 + 7 + 8 = 19$.	1 point	
Neither of them noticed $23 - 19 = 4$ differences.	1 point	
Total:	4 points	

Solution 2.		
The number of differences found can also be	2 mainta	Do not give partial credit
expressed without a set diagram: $11 + 15 - 7$.	2 points	here.
Thus the number of differences that at least one of	1 point	
them noticed is 19.		
Neither of them noticed $23 - 19 = 4$ differences.	1 point	
Total:	4 points	

b)			
2 3 3 3 2 4 5		7 points	One point for each correct number in the diagram.
	Total:	7 points	
(c)			
There is a difference that Enikő did not find.			
OR: Enikő did not find every difference.			Do not give partial credit
OR: Enikő did not find all the differences.		2 points	here.
	Total:	2 points	

d)		
The number of favourable cases is 14.	1 point	These points are also due
The number of all cases is 23.	1 point	if the diagram in part b) is filled out with errors but those values are carried forward consistently here.
The probability in question is $\frac{14}{23}$ or ≈ 0.61 or 61%.	2 points	The result is acceptable in any form, including values rounded correctly.
Total:	4 points	