

SISTEMAS DE BANCO DE DADOS 1

AULA 8

Álgebra Relacional

Vandor Roberto Vilardi Rissoli

APRESENTAÇÃO

- Álgebra Relacional
 - Operadores de Conjuntos
 - Operadores Relacionais
- Funções Agregadas ao Modelo Relacional
- Referências

Operadores de Conjuntos

Estes operadores se aplicam as duas relações que obedeçam à "compatibilidade de união", ou seja, ambas as relações devem <u>apresentar</u> como esquema <u>atributos</u> que <u>pertençam</u> respectivamente aos <u>mesmos domínios</u>.

a) <u>União</u> (\cup): o resultado da união de duas relações consiste no conjunto de todas as tuplas que pertençam a ambas as relações.

Exemplo:

- Seja A = conjunto de tuplas dos fornecedores do estado de SP B = conjunto dos fornecedores da peça P_1
- A união B $(A \cup B)$ = conjunto de tuplas dos fornecedores de SP ou que fornecem a peça P_1 (ou ambos)

b) <u>Interseção</u> (<u>\(\cap\)</u>): o resultado da interseção de duas relações consiste no conjunto de todas as tuplas que aparecem ao mesmo tempo nas duas relações.

Exemplo:

Seja A = conjunto de tuplas dos fornecedores do estado de SP B = conjunto dos fornecedores da peça P_1

A interseção B $(A \cap B)$ = conjunto de tuplas dos fornecedores de SP e que forneçam a peça P_1 (estão em ambos)

c) <u>Diferença (-):</u> a diferença em duas relações (R e S por exemplo) consiste no conjunto de tuplas que aparecem na relação R, mas não aparecem na relação S.

Exemplo:

Seja A = conjunto de tuplas dos fornecedores do estado de SP B = conjunto dos fornecedores da peça P_1

A minus B (A-B) = conjunto de tuplas dos fornecedores de SP e não fornecem a peça P_1 (está em A mas não está em B)

B minus A (B-A) = conjunto de tuplas dos fornecedores que fornecer a peça P_1 e que não são de SP (está em B mas não está em A)

Resultados diferentes

d) **Produto Cartesiano** (x): aplica-se as duas relações que não precisam ser "compatíveis de união", resultando em uma relação que apresenta tuplas formadas pela combinação dos atributos pertencentes a ambas as relações.

Exemplo:

Seja A = conjunto de todos os códigos dos fornecedores de SP B = conjunto de todos os códigos de peças

A cartesiano B (AxB) = conjunto de todos os possíveis pares de códigos de fornecedores com os códigos de todas as peças

Exercício de Fixação

1) Sejam as seguintes relações existentes em um banco

de dados:

 $FORNECEDOR (F) \rightarrow$

	codigo	nome	idPeca	valor
1	23	Altar	10	35,00
2	35	Mecânica Jair	22	50,00
3	44	Eletrons	07	99,00
4	57	Thorque	22	47,00
5	89	Rápido	10	35,00

PECAS (P)

	codigo	nome	cor	peso
1	07	Mola estreita	Prata	10 gr.
2	10	Correia lisa	Preto	0,5 gr.
3	22	Amortecedor	Preto	2000 gr.
4	35	Tambor	Azul	500 gr.

NOVOS_FORNECIMENTOS (G)

Seja uma nova relação representando os novos fornecedores:

	codigo	nome	idPeca	valor
1	57	Thorque	35	45,00
2	90	Solução Final	10	50,00

Exercício de Fixação (continuação)

Construa as relações resultantes das operações algébricas abaixo:

- a) União (de F com G)
- b) Interseção (de F com G) (para o mesmo fornecedor)
- c) Diferença em relação ao fornecedor (de F com G e também de G com F)
- d) Produto cartesiano (de P com G)

Observação: entende-se

F = FORNECEDOR

P = PECAS

G = NOVOS_FORNECIMENTOS

Operadores Relacionais

1) Operação de Seleção (select): quando aplicado resulta em uma relação contendo tuplas com os mesmos atributos da relação que satisfazem a uma determinada condição de seleção. É um operador unário, sendo executado sobre apenas uma relação, uma tupla de cada vez.

σ [<condição de seleção>] (<nome da relação>)

Em geral, pode-se usar os operadores relacionais (\neq , =, <, \leq , >, \geq) na operação de seleção, além da condição ser composta por mais que um predicado condicional, interligados pelos conectivos E ($^{\wedge}$) e OU (\vee) lógicos.

Exemplo: para a relação FORNECEDOR a seguir tem-se:

FORNECEDOR

	codigo	nome	idPeca	valor
1	23	Altar	10	35,00
2	35	Mecânica Jair	22	50,00
3	44	Eletrons	07	99,00
4	57	Thorque	22	47,00
5	44	Eletrons	35	52,00

a) σ [codigo = 44] (FORNECEDOR)

	codigo	nome	idPeca	valor
1	44	Eletrons	07	99,00
2	44	Eletrons	35	52,00

b) σ [codigo = 35] (FORNECEDOR)

	codigo	nome	idPeca	valor
1	35	Mecânica Jair	22	50,00

c) σ [codigo = 89] (FORNECEDOR)

	codigo	nome	idPeca	balor
0				

Na solução do item **c** não é recuperado NENHUM dado (tupla), então seu resultado seria um conjunto vazio e não um erro.

2) <u>Operação de Projeção (project)</u>: seleciona atributos de uma relação de acordo com uma lista de atributos. Os atributos são exibidos na mesma ordem que aparecem na lista. Como resultado é uma relação que não pode existir repetições nas tuplas produzidas

π sta de atributos> (<nome da relação>)

Exemplo: para a mesma relação do exemplo anterior (FORNECEDOR) o resultado da

projeção seguinte seria:

 π nome, idPeca (FORNECEDOR)

	nome	idPeca
1	Altar	10
2	Mecânica Jair	22
3	Eletrons	07
4	Thorque	22
5	Eletrons	35

Uma operação relacional sempre resulta em uma outra relação que pode ser usada na elaboração de consultas mais

complexas.

FORNECEDOR

	codigo	nome	idPeca	valor
1	23	Altar	10	35,00
2	57	Thorque	35	45,00
3	44	Eletrons	07	99,00
4	57	Thorque	22	47,00

π codigo, valor (σ [nome = "Thorque"] (FORNECEDOR))

	codigo	valor
1	57	45,00
2	57	47,00

→ Observe que ao invés de declarar uma relação como argumento na operação de projeção, inseriu-se uma expressão que evoluirá para uma relação.

3) <u>Operação de Junção (join)</u>: é utilizada para combinar tuplas relacionadas de duas relações (operação binária) em uma tupla simples. Esta combinação é realizada de acordo com uma condição indicada.

Θ [<condição>] (<nome das relações>)

Exemplo: para as relações à seguir observe a junção efetuada entre PECAS e NOVOS_FORNECIMENTOS

PECAS

NOVOS_FORNECIMENTOS

	codigo	nome	idPeca	valor
1	57	Thorque	35	45,00
2	90	Solution	10	50,00

	codigo	nome	cor	peso
1	07	Mola estreita	Prata	10 gr.
2	10	Correia lisa	Preto	0,5 gr.
3	22	Amortecedor	Preto	2000 gr.
4	35	Tambor	Azul	500 gr.

Θ [idPeca = codigo] (NOVOS_FORNECIMENTOS, PECAS)

	codigo	nome	cor	peso	codigo	nome	idPeca	valor
1	10	Correia lisa	Preto	0,5 gr.	90	Solução Final	10	50,00
2	35	Tambor	Azul	500 gr.	57	Thorque	35	45,00

Funções Agregadas

- a) <u>Funções Agregadas</u>: consistem em funções que podem ser aplicadas a valores numéricos. Elas são: *Average* (média aritmética), *Count* (contador), *Sum* (soma), *Maximum* (maior), *Minimum* (menor) entre outras.
- → Existem outras operações que formam a álgebra relacional, porém essas que estão representadas neste material serão utilizadas no decorrer desta disciplina.

Exercício de Fixação

- 02) Usando as relações a seguir, escreva a expressão em álgebra relacional que representa o item da solicitação e elabore as relações resultantes das seguintes operações:
 - a) União de B com Y
 - b) Interseção de B com Y
 - c) Diferença de B com Y e de Y com B
 - d) Produto cartesiano de B com Y
 - e) Projeção de idAgencia, cidade e estado sobre a agência
 - f) Seleção dos clientes de Brasília
 - g) Junção da conta com a agência
 - h) Projeção da agência, tipo conta e cidade da seleção de contas com saldo não negativo
 - i) Projeção do nome, saldo, estado da seleção do estado diferente de "DF" da junção do cliente com a conta

BANCO (Y)

	1100 (1	. <i>]</i>
	codigo	nome
1	001	Brasil
2	350	Real

BANCOS (B)

<u>D</u>	DANCOS (D)					
	codigo	nome				
1	001	Brasil				
2	104	C.E.F.				
3	341	Itaú				

Exercício de Fixação (relações do exercício 2) AGENCIA (A)

	idAgencia	rua	numero	compl	bairro	cidade	estado	banco
1	5101	W 3	505	Cnj. 3	A.Norte	Brasília	DF	001
2	930	L 2	407	Bloco A	A.Sul	Brasília	DF	001
3	4146	Q.S.	07	Lote 1	Águas Claras	Taguatinga	DF	341

CONTA (C)

	conta	tipoConta	saldo	agencia
1	59431	Poupança	1000,00	4146
2	47856	Corrente	- 50,00	930
3	30124	Corrente	200,00	4146

CLIENTE (L)

	cpf	nome	foneReside	cidade	estado
1	100	João Castro	4563760	Brasília	DF
2	200	José Sechi	3576721	Brasília	DF
3	300	Ana Morais	3787289	Taguatinga	DF
4	400	Maria Alves	4684592	Luziânia	GO

CONTA_CLIENTE (CC)

	nConta	nCpf
1	59431	100
2	47856	200
3	30124	300
4	47856	400

Referência de Criação e Apoio ao Estudo

Material para Consulta e Apoio ao Conteúdo

- ELMASRI, R. e NAVATHE, S. B., Fundamentals of Database Systems, Addison-Wesley, 3rd edition, 2000
 - Capítulo 7
- SILBERSCHATZ, A. & KORTH, H. F., Sistemas de Banco de Dados - livro
 - Capítulo 3
- Universidade de Brasília (UnB Gama)
 - ➤ http://cae.ucb.br/conteudo/unbfga (escolha a disciplina **Sistemas de Banco de Dados**)

