JÖNKÖPING UNIVERSITY

School of Engineering

SQLITE

Peter Larsson-Green

Jönköping University

Autumn 2018

SQLITE

A very simple relational database.

- The entire database is stored in a single file.
- No users.
- Runs as part of the application.

Different SQLite managers exists.

• DB Browser for SQLite http://sqlitebrowser.org/

SQL CREATING TABLES

```
CREATE TABLE tableName (
  columnA datatype,
  columnB datatype,
  ...
)
```

```
CREATE TABLE Humans (

Name TEXT,

Age INTEGER,

City TEXT
)
```

Some available datatypes:

- INTEGER
- REAL
- TEXT

Name	Age	City
Alice	10	Atlanta
Belle	15	Buenos Aires
Chloe Clair	20	Cairo

Table: Humans

SQL CREATING TABLES

```
CREATE TABLE IF NOT EXISTS tableName
  columnA datatype,
  columnB datatype,
CREATE TABLE IF NOT EXISTS Humans (
 Name TEXT,
 Age INTEGER,
  City TEXT
```

Name	Age	City
Alice	10	Atlanta
Belle	15	Buenos Aires
Chloe Clair	20	Cairo

Table: Humans

SQL INSERTING DATA

INSERT INTO tableName (columnA, columnB, ...)

```
VALUES (valueA, valueB, ...)
INSERT INTO Humans (Name, Age, City)
VALUES ("Alice", 10, "Atlanta")
INSERT INTO Humans (Name, Age, City)
VALUES ("Belle", 15, "Buenos Aires")
INSERT INTO Humans (Name, Age, City)
VALUES ("Chloe Clair", 20, "Cairo")
```

Name	Age	City
Alice	10	Atlanta
Belle	15	Buenos Aires
Chloe Clair	20	Cairo

Table: Humans

SELECT * FROM tableName

SELECT * FROM Humans

Name	Age	City
Alice	10	Atlanta
Belle	15	Buenos Aires
Chloe Clair	20	Cairo

Name	Age	City
Alice	10	Atlanta
Belle	15	Buenos Aires
Chloe Clair	20	Cairo

Table: Humans

SELECT columnA, columnB, ... FROM tableName

SELECT Name, Age FROM Humans

Name	Age
Alice	10
Belle	15
Chloe Clair	20

Name	Age	City
Alice	10	Atlanta
Belle	15	Buenos Aires
Chloe Clair	20	Cairo

Table: Humans

SELECT columnA, columnB, ... FROM tableName WHERE columnX op value

SELECT Name FROM Humans WHERE

Age >= 15

Some available op:

• < <= > >= == !=

• AND OR

Name

Belle

Chloe Clair

Name	Age	City
Alice	10	Atlanta
Belle	15	Buenos Aires
Chloe Clair	20	Cairo

Table: Humans

SELECT columnA, columnB, ... FROM tableName
WHERE columnX op value ORDER BY columnY sort

SELECT Name FROM Humans WHERE Age < 20 ORDER BY Age DESC

Available sort:

- DESC (Descending)
- ASC (Ascending)

Name
Belle
Alice

Name	Age	City
Alice	10	Atlanta
Belle	15	Buenos Aires
Chloe Clair	20	Cairo

Table: Humans

SQL UPDATING DATA

UPDATE tableName SET columnA = valueA, columnB = valueB, ... WHERE columnX op value

UPDATE Humans SET Age = 10
WHERE Name == "Alice"

Name	Age	City
Alice	5	Atlanta
Belle	15	Buenos Aires
Chloe Clair	20	Cairo

Table: Humans

SQL DELETING DATA

DELETE FROM tableName

WHERE columnX op value

DELETE FROM Humans

WHERE Name == "Alice"

Name	Age	City
Alice	10	Atlanta
Belle	15	Buenos Aires
Chloe Clair	20	Cairo

Table: Humans

SQL PRIMARY KEY

```
CREATE TABLE Humans (

Id INTEGER PRIMARY KEY AUTOINCREMENT,

Name TEXT,

Age INTEGER
)
```

Id	Name	Age
1	Alice	10
2	Alice	10
3	Chloe Clair	20
Table: Humans		
D	atabase: 🏾	Γest

SQL UNIQUE CONSTRAINTS

```
CREATE TABLE Accounts (

Id INTEGER PRIMARY KEY AUTOINCREMENT,

Name TEXT UNIQUE,

Age INTEGER
)
```

Id	Name	Age	
1	Alice	10	
2	Bob	15	
3	Chloe Clair	20	
Table: Accounts			
Database: Test			

SQL FOREIGN KEYS

```
CREATE TABLE Humans (

Id INTEGER PRIMARY KEY AUTOINCREMENT,

Name TEXT UNIQUE,

Age INTEGER
```

Id	Name	Age
1	Alice	10
2	Bob	15
3	Chloe Clair	20

Table: Humans

Id	Name	HumanId
1	Doggy	1
2	Catty	2
3	Fishy	1

Table: Pets

```
CREATE TABLE Pets (

Id INTEGER PRIMARY KEY AUTOINCREMENT,

Name TEXT,

Humanid INTEGER,

FOREIGN KEY(Humanid) REFERENCES Humans(Id) ON DELETE CASCADE
)
```

PRACTICAL DEMONSTRATION

Go through DB Browser for SQLite.

