CENG 114 BİLGİSAYAR BİLİMLERİ İÇİN AYRIK YAPILAR Prof. Dr. Tufan TURACI tturaci@pau.edu.tr

Pamukkale Üniversitesi

• Hafta 10

- Mühendislik Fakültesi
- Bilgisayar Mühendisliği Bölümü

Ders İçereği

Sayılar Teorisine Giriş

- --- Öklit Algoritması
- --- Diyafont Denklemler ve Çözümleri
- --- Asal Sayılar ve Asal Sayıların Bulunması

• Modüler Aritmetik

--- Doğrusal Denklikler

Öklit Algoritması

İspatlar:

Teoreni act, breact alon. b= q.a+r, 0 < r < a zortin sostegon tele soliste a no - temsonitor, nordir. Janu = a b, c E 7 don. cla ve c/5 ise c'up aile b'nin ortok Ortak bölenlerin en büyüğü (OBEB) gcd(a,b) veya (a,b) ile gösterilir.

For zedelim ke alpes ornon. Aselopri is on or ardinize solvide duran chisa (こ) 100) のくしいくり しゅんらんらららららららららい p=10.91+1, 2/2/2 10= 1. 92 + 12 , 0612 X -1 The = (+1 9 +1 + 16+2 , 0 / 16+2 2 0 16+1 12 =0 ise god(0,6)= Ck+1 gir.

$$205 = 39.2 + 1$$

$$39 = 7.14 + 1$$

$$7 = 1.7 + 0$$

302 (20), 91) 'F Vercloyme. 203 = 91.2 + 21, 06 21 691 067621 21=7.3 + 0 ged(a,b) = 7 gcd(a,b)=> greatest common divisor (Ortak bölenlerin en büyüğü - OBEB)

lcm(a,b)=> least common multiple (Ortak katların en küçüğü - OKEK)

Teorem: a ve b iki pozitif tamsayı olmak üzere gcd(a,b)*lcm(a,b) = a*b

NOT: Öklit algoritması ve yukarıdaki teorem yardımıyla iki sayının OKEK değeri de bulunabilir.

Psedo Kodo print '2 temson diriniz' asb read a, b besz: K = 9 basi; kek-b If (E>=6) + honge to best end if ,1f (k=0) then print obob = 1, b go to son; aEb bek go to 6052; SON; END.

```
C kodu: #include<stdio.h>
           #include<conio.h>
           int main()
           { int a,b,s,t;
           printf("a degerini giriniz: ");
           scanf("%d",&a);
           printf("b degerini giriniz: ");
           scanf("%d",&b);
           if (a<b) {s=a; a=b; b=s;}
           bas:
           t=a%b;
           if (t==0) {printf ("iki sayinin obebi= %d", b);
                    goto son;}
           a=b;
           b=t;
           goto bas;
           son:
           getch ();
           return 0;
```

```
a degerini giriniz: 16
b degerini giriniz: 24
iki sayinin obebi= 8
```

```
a degerini giriniz: 12
b degerini giriniz: 29
iki sayinin obebi= 1
```

```
a degerini giriniz: 8
b degerini giriniz: 1
iki sayinin obebi= 1
```

```
a degerini giriniz: 205
b degerini giriniz: 99
iki sayinin obebi= 1
```

```
a degerini giriniz: 203
b degerini giriniz: 91
iki sayinin obebi= 7
```

Diyafont Denklemler

a=240, 6=936 obon. gcd (a, b) = ax+ by dorklenin: sos loyer x ve y tem sos bons 936=2603+216 9cd(240,976)= 26 240 = 216.1 + 26 216 = 24.5 + 6

$$24 = 240 \times + 936 \text{ y 'y} = 256000 \times \text{ x ce y}$$

$$24 = 240 - 216.1$$

$$= 240 - (936 - 240.3)$$

$$= 240 - 536 + 740.3$$

$$= 4.240 + (-17) > 36$$

$$8 = 64x + 202.y \quad exthering soften$$

$$202 = 64.3 + 10$$

$$64 = 10.6 + 4$$

$$10 = 4.2 + 26$$

$$4 = 2.2 + 0$$

$$= 10 - 64.2 + 10.12$$

$$= 13.10 - 64.2$$

$$= 13.(202 - 66.3) - 66.7$$

$$= 13.207 - 39.64 - 66.7$$

$$2 = 13.207 - 41.64$$

$$8 = 52.202 - 164.64$$

$$= 52.207 + (-164).64$$

$$y = 57$$

Çalışma Sorusu: d= a.x+b.y şeklinde diyafont denklemleri çözen bir program yazınız. (d=gcd(a,b), a ve b pozitif tamsayılardır.)

Asal Sayılar

a 1'e ve Icerdine withinen saytera say i per geric. Tight pirizzer ases divases son was bilosik son lor deric. 5-3 asol son 10 -> PI POSIS 1, absyonation salipora ares salipor gares. I he asd, he bilesile segrilir. \$ 5.9 ailt son gar tour osulgur.

Tooren: 1, ger poining mer pour de la os pie (ii) n Gir Gibsik soy: ise a sognama in iden bissik almagen Gir asol corpen voodin.

C kodu:

```
#include <stdio.h>
#include<conio.h>
#include <math.h>
int main()
\{\text{int i,j,x,a,z,s=0};
 printf("x degerini giriniz: ");
 scanf("%d",&x);
 a=floor(sqrt(x));
//printf("a degeri= %d", a);
 for(i=2;i<=a;i++)
  { z=0;
      for(j=2;j<=i-1;j++)
   { if (i\% j==0) z++;
      if (z==0) printf("%d sayisi asal sayidir, %d sayisina bolunup bolunmedigi kontrol edilecektir...\n", i,x);
      if ((z==0) && (x%i==0)) s++; // x sayısına bölünüp bölünmediği kontrol ediliyor!
if (s==0) printf ("%d sayisi asal sayidir...",x);
      else
      printf ("%d sayisi asal sayi degildir...",x);
getch ();
return 0;
                                                 CENG 114-Bilgisayar Bilimleri için Ayrık Yapılar
```

```
x degerini giriniz: 105
2 sayisi asal sayidir, 105 sayisina bolunup bolunmedigi kontrol edilecektir...
3 sayisi asal sayidir, 105 sayisina bolunup bolunmedigi kontrol edilecektir...
5 sayisi asal sayidir, 105 sayisina bolunup bolunmedigi kontrol edilecektir...
7 sayisi asal sayidir, 105 sayisina bolunup bolunmedigi kontrol edilecektir...
105 sayisi asal sayi degildir...
```

```
x degerini giriniz: 137
2 sayisi asal sayidir, 137 sayisina bolunup bolunmedigi kontrol edilecektir...
3 sayisi asal sayidir, 137 sayisina bolunup bolunmedigi kontrol edilecektir...
5 sayisi asal sayidir, 137 sayisina bolunup bolunmedigi kontrol edilecektir...
7 sayisi asal sayidir, 137 sayisina bolunup bolunmedigi kontrol edilecektir...
11 sayisi asal sayidir, 137 sayisina bolunup bolunmedigi kontrol edilecektir...
137 sayisi asal sayidir...
```

Eratosthenes Kalburu Yardımıyla Asal Sayıların Bulunması

1 den *n* ye kadar olan tüm asal sayıların listelenmesi Eratosthenes Kalburu yardımıyla yapılır.

n=40 a kadar olan tüm asal sayıları listeleyelim.


```
#include <stdio.h>
#include<conio.h>
#include <math.h>
#include <stdlib.h>
int main()
{ int i,j,x,*asal;
  printf("x degerini giriniz: ");
  scanf("%d",&x);
  asal=(int *)malloc((x+1)*sizeof(int));
  for (i=2;i<=x;i++) // Dizinin tüm elemanlarını 1 yaptık. (2 den itibaren)
    {asal[i]=1;}
```



```
// Karekök x e kadar asal sayıların katlarını sıfıra işaretleriz.
  for (i=2;i < sqrt(x);i++)
     { if (asal[i]==1){for (j=i;i*j <=x;j++)
                  {asal[i*j]=0;}
    // İşaretlenmemiş sayılar ekrana yazdırılır.
    j=0;
  for (i=2; i <= x; i++)
     if (asal[i]==1) \{j++;
                     printf("%d. Asal Sayi = %d\n",j,i);}
getch();
return 0;
```

Örnekler:

```
x degerini giriniz: 40
1. Asal Sayi = 2
2. Asal Sayi = 3
3. Asal Sayi = 5
4. Asal Sayi = 7
5. Asal Sayi = 11
6. Asal Sayi = 13
7. Asal Sayi = 17
8. Asal Sayi = 19
9. Asal Sayi = 23
10. Asal Sayi = 29
11. Asal Sayi = 31
12. Asal Sayi = 37
```

```
x degerini giriniz: 60
1. Asal Sayi = 2
2. Asal Sayi = 3
3. Asal Sayi = 5
4. Asal Sayi = 7
5. Asal Sayi = 11
6. Asal Sayi = 13
7. Asal Sayi = 17
8. Asal Sayi = 19
9. Asal Sayi = 23
10. Asal Sayi = 29
11. Asal Sayi = 31
12. Asal Sayi = 37
13. Asal Sayi = 41
14. Asal Sayi = 43
15. Asal Sayi = 47
16. Asal Sayi = 53
17. Asal Sayi = 59
```

Arithotigin Tonel Topents

L'der lagisk her temsogs asol sour corpus

don't yorder he la yorder tell controlier.

100 = 25.4

=52.22 = 5.5.2.2

Moderator Aritable Tonm: MEZ dison. Eger m sayon 2 tomsquin forki a-b'ys bölügersa, modül bige göre a deriction to dering up a = b (melon) solchide soute:). 64 = 4 (mad(0)

Terren 1: i) a = b(mod m) ise b = a(mod m) dir. ii) a = b(madm) ue b = c(madm) ise a = c(madm) dir. iii) a = b (modm) re c= b (modm) ise a fc = b + b (mod m) din iv) a = b (mob m) ise ca = c.b (mob m) dir, ce 2t. 1) c, a ve 6 mm bir otak lähvi olmk izere a = 12 mob m) (=) = = (mob m) dir.

a-b= m.9 (6) = benimadin)

Teorem 2'.

- i) a = b (med m) ve c=b(med m) ise a.c = b-b (med m) dir.
- 11) a = 6 (mod m) ise a = b (mod m), n = 2t.
- (iii) p(x) tam katsagili bir polinam almak üzere
 - a = 6(ma2m) ise p(a) = p(b) (mo2 m) dir.

$$\begin{array}{lll}
 & 0 = 6 & (mdm) & ise & 0^n = 6^n & (mdm) & 10 = 2^{\frac{1}{n}} \\
 & 0 = 6 & dir & (mdd tennm) \\
 & 0 = 6 = m.9 & dir & (dir & tennmod) \\
 & 0 = 6 + m.9 & x & e.
 & 0 = 6 + m.9 & x & e.
 & 0 = 6 + m.9 & x & e.
 & 0 = 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 & e.
 & 0 = 6 + 6 + 6 + 6 + 6 & e.
 & 0 = 6 + 6 + 6 & e.
 & 0 = 6 + 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 = 6 + 6 & e.
 & 0 =$$

Dogrusal Denkliklur Tanini ax = b (newan) dentisionin assermi x, ise a ×1 = 6 (modm) yportlobilir. Geralleten x, bir Costum ve x, = x2 (modm) ise, x2'de bir Gostudir. Bu domma xa ve xz agni côtim sayilira Buns X = X, (modm) ERhinde Bisherip,

CX = 6(modm) donkliginin aszimi dige dounne,

27 =
$$\times$$
 (mod 5) ise $\times = ?$

2 = $2 + 5$ k yer $2 = 2 - 3$, $2 + 12$,

2 = $2 + 5$ k yer $2 = 2 - 3$, $2 + 12$,

10. $\times = 4$ (mod 13) ise $\times = ?$
 $\times = 1$ icin $\times = 3$ on $\times = 4$
 $\times = 2$ if $\times = 4 + 13$ k

 $\times = 4 + 2$ is $\times = 4$
 $\times = 4 + 2$ is $\times = 4$
 $\times = 4 + 2$ is $\times = 4$
 $\times = 4 + 2$ is $\times = 4$
 $\times = 4 + 2$ is $\times = 4$
 $\times = 4 + 2$ is $\times = 4$
 $\times = 4 + 2$ is $\times = 4$
 $\times = 4 + 2$ is $\times = 4$
 $\times = 4 + 2$ is $\times = 4$
 $\times = 4 + 2$ is $\times = 4$
 $\times = 4 + 2$ is $\times = 4$
 $\times = 4 + 2$ is $\times = 4$
 $\times = 4 + 2$ is $\times = 4$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times =$

Çözümü birazdan yapılacaktır...

Rasyonel sayılarda mod alma işlemi:

$$\frac{1}{3} = x \pmod{5} \text{ ise } x = 1$$

$$\frac{1+5}{3} = \frac{6}{3} = \frac{1}{2} \qquad |x = \overline{2}|$$

$$\frac{1}{3} = x \pmod{4}$$

$$\frac{1}{3} = x \pmod{4}$$

$$\frac{1+4}{3} = \frac{5+4}{3} = \frac{7}$$

Tearent $0 \times = 6 \pmod{n}$ desklipinin bir azzonos

dinosi deneste $0 \times -my = 6$ digrefort deskleninin

bir azzonos denestir.

Oir 10 \times 14 (mod 24) ise \times = ?

CENG 114-Bilgisayar Bilimleri için Ayrık Yapılar

Böylece;

elde edilir.

$$(3)^{1/2} = 28 (nod 1943) is x=7$$

11x-1943y=28 diyafont denkleminin çözümünün olması gerekir.

= 530.11-3.1963

Her iki taraf 28 ile çarpılırsa: 28 = 14840.11 - 84.1943 × => harroys box cistin 14840 = 1239 (mad 1963) X=1239 year X= 1239+19976 x = 1239x = 3182 elde edilir.

Çalışma Sorusu:

 $16x \equiv 12 \pmod{60}$ doğrusal denklik sisteminin çözümü sağlayan en küçük pozitif x tamsayı değeri nedir?

Yanıt: 12

Gelecek Haftanın Konuları:

- Sayılar Teorisi ile İlgili Önemli Teoremler
 - --- Çinli Kalan Teoremi
 - --- Wilson Teoremi
 - --- Fermat Teoremi
 - --- Euler Teoremi
- Sayılar Teorisinin Kriptolojiye Uygulaması

Kaynaklar

- Discrete Mathematics and Its Applications, Kennet H. Rosen (Ayrık Matematik ve Uygulamaları, Kennet H. Rosen (Türkçe çeviri), Palme yayıncılık)
- Discrete Mathematics: Elementary and Beyond, L. Lovász, J. Pelikán, K. Vesztergombi, 2003.
- *Introduction to Algorithms*, T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, 2009.
- Introduction To Design And Analysis Of Algorithms, A. Levitin, 2008.