Introduction to Matlab

Lesson 02 — Basics of Root Finding, Numerical Differentiation, and Integration

Rafael Serrano-Quintero

Department of Economics University of Barcelona

Root Finding — The Problem

Say we want to find all x such that f(x) = 0. If:

- o $f(x) = ax^2 + bx + c \Rightarrow x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$ solves the problem for any $\{a, b, c\} \in \mathbb{R}$ (and $a \neq 0$).
- \circ Sometimes, we cannot solve explicitly for x even in the realm of polynomials!
- o If $f(x) = ax^5 + bx^4 + cx^3 + dx^2 + ex + f$ where $\{a, b, c, d, e, f\} \in \mathbb{R}$ we do not have an explicit formula to solve for f(x) = 0. Neither for polynomials of order ≥ 5 . But we know such roots do exist! see Fundamental Theorem of Algebra
- Then... what should we do?

Root Finding — Intuition

Say we have a nonlinear f(x) for which we know at least one root exists.

- Suppose we know the root is *somewhere around* x_0 .
- Starting from x_0 construct a sequence of $\{x_k\}$ hoping it converges to a root x^* such that $f(x^*) = 0$.

This highlights two important features of root finding *algorithms*:

- Convergence: is the sequence $\{f(x_k)\}$ getting *closer* to $f(x^*) = 0$?
- Stopping criteria: how do we know we are close enough?

We can discuss convergence and stopping criteria in each method studied.

• Say you have a phone book (old school, I know). You need to find García in there.

• What method do you use?

- Say you have a phone book (old school, I know). You need to find García in there.
- What method do you use?
 - 1. Turn page by page until you find it.

- Say you have a phone book (old school, I know). You need to find García in there.
- What method do you use?
 - 1. Turn page by page until you find it.
 - 2. Turn every two pages.

- Say you have a phone book (old school, I know). You need to find García in there.
- What method do you use?
 - 1. Turn page by page until you find it.
 - 2. Turn every two pages.
 - 3. Open by the middle, check if G is left or right. Discard one half. Repeat until you find it.

Consider $f: \mathbb{R} \to \mathbb{R}$ where the problem is $f(x^*) = 0$. Suppose f(x) is continuous in [a,b] and we know $\exists x^* \in [a,b]$ (The ideas presented generalize to n dimensions)

- **Bisect** the interval [a, b] and take the middle point $c = \frac{a+b}{2}$. If f(c) = 0 we are done. Otherwise, x^* must be in either [a, c] or [c, b].
- Find the one that contains x^* and bisect again. How?!?
- Continue until the interval is as small as the accuracy desired.

Theorem 1 (The Intermediate Value Theorem (IVT))

Suppose f(x) is continuous on $[a,b] \subseteq \mathbb{R}$ and M in between f(a) and f(b). Then, there is at least one $c \in (a,b)$ such that f(c) = M. If f(a) < 0 < f(b) then, there is a root x = c such that f(c) = 0.

- If f(c) < 0, by the IVT, the root of f(x) must be in [c, b]
- Otherwise, if f(c) > 0, by the IVT, the root must be in [a, c]
- Note that this algorithm finds a zero, not all zeros of f(x)
- Run bisection_illustrate.m for a visual example.

Bisection Method — the Algorithm (*)

- 1. Initialize and bracket a zero. (Initial guess)
 - Find $x^L < x^R$ such that $f(x^L)f(x^R) < 0$
 - Choose stopping rule parameters
- 2. Compute $x^M = \frac{x^L + x^R}{2}$
- 3. Test if x^M is a root. If so, stop. (Test if it is an acceptable solution)
- 4. If x^M is not a root, refine interval. (Iterate)
 - If $f(x^M)f(x^L) < 0$ let $x^R = x^M$ and leave x^L unchanged.
 - Else, $x^L = x^M$ and leave x^R unchanged.
- 5. Repeat until the stopping rule tells us to stop.

Bisection Method — Remarks

- The algorithm **always converges** (we always find a solution).
- Convergence can be very slow but it is a very reliable method.
- We have not yet defined proper stopping criteria.

Stopping Criteria:

- 1. The value of the function is lower than or equal to the tolerance $|f(x^M)| \leq \delta$.
- 2. The length of the interval is very small. $(x^R x^L)/(1 + |x^L| + |x^R|) \le \varepsilon$.
- 3. The number of iterations is larger than a predetermined number N.

Newton-Raphson Method — Intuition

- When using bisection, we have only assumed continuity of f(x)
- However, bisection can be slow. Newton-Raphson's method uses properties of smooth functions.
- This method is faster but may not always converge.
- **Key idea:** approximate f(x) by a succession of linear functions. Approximate zeros with the zeros of the linear approximations.

Newton-Raphson — Preliminaries

Definition 1

A number *c* is a **fixed point** of g(x) if g(c) = c.

• Note then that $f(x) = 0 \Rightarrow f(x) = x - g(x) = 0$ and any fixed point c of g(x) is a root of f(x) because

$$f(c) = c - g(c) = c - c = 0$$

- Finding a root of $f(x) \equiv$ find a fixed point of x = g(x) such that f(x) = 0
- **Problem:** How to rewrite f(x) = 0 as x = g(x)?

Newton-Raphson — Preliminaries

- We can know existence, uniqueness, and convergence (see Theorem 3). However, verifying Assumption 1 is not easy.
- This method chooses g(x) as $g(x) = x \frac{f(x)}{f'(x)}$ and the iteration scheme is:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} \tag{1}$$

For this choice, we can state sufficient conditions for convergence.

Theorem 2

Suppose f(x) is C^2 and that $f(x^*) = 0$. If x_0 is sufficiently close to x^* , $f'(x) \neq 0$, and $|f''(x)/f'(x)| < \infty$, the iteration scheme defined by (1) converges to x^* .

Newton-Raphson — Preliminaries

Where does the choice for g(x) come from? Recall Taylor's Theorem and linearly approximate f(x) around x_k :

$$p(x) = f(x_k) + (x - x_k)f'(x_k)$$

- o p(x) and f(x) are tangent at x_k and close in the neighborhood of x_k
- Solving for a zero of $p(x) \Rightarrow x = x_k \frac{f(x_k)}{f'(x_k)}$ which is the iteration scheme (1)
- Which yields our new guess for x_{k+1}

Newton-Raphson — The Algorithm

- 1. Choose stopping criterion parameters $\{\varepsilon, \delta, N\}$, and a starting point x_0 . Set the iteration counter k = 0.
- 2. Compute next iteration using (1)
- 3. Test for convergence. If either one of the following:

$$|x_k - x_{k+1}| \le \varepsilon (1 + |x_{k+1}|)$$

$$\circ |f(x_{k+1})| \le \delta$$

$$\circ$$
 $k > N$

Stop

4. Repeat until one of the convergence criteria is satisfied.

Newton-Raphson — Remarks

- The method is not guaranteed to converge. If after *N* iterations we have not found a root, the method failed.
- Note that we rely on our initial guess being close to the root. If we are far, we may very well fail.
- For some functions and starting points, we may enter an infinite loop. The sequence of iterations will oscillate without converging to any value.
- Even when passing both ε and δ tests, we may not have found a zero.

Newton-Raphson — Some Issues

• Consider
$$f(x) = x^6$$

$$x_{k+1} = (5/6)x_k$$

Still far after 100 iterations!

Figure 1: Convergence Issues with Newton-Raphson

Root Finding in Matlab

- We have learned two very powerful methods to find roots
- Matlab has implemented fzero for such problems.
- This function combines bisection with secant and inverse quadratic interpolation (we have not seen this but many ideas apply).
- Another function is roots which finds the roots of polynomials.
- Familiarize yourselves with these functions and compare them with the methods we have implemented.

Root Finding in Matlab

Example 1

Remember the example in previous lecture. Suppose now the demand curve is $P=10-Q^{1/2}-Q^{1/5}$ and C(Q)=cQ+d.

Solution 1

Now the profit function is $\Pi=10Q-Q^{3/2}-Q^{6/5}-cQ-d$ and the FOC is

$$\frac{3}{2}Q^{1/2} + \frac{6}{5}Q^{1/5} + c - 10 = 0$$

How do we solve this "by hand"? Say $10-c=1\Rightarrow c=9$. Then, we can define $G(Q)\equiv \frac{3}{2}Q^{1/2}+\frac{6}{5}Q^{1/5}-1$ and find G(Q)=0.

$$\circ$$
 $G(0) = -1$ and $G(1) = 1.7 > 0$

We know there exists some $q \in (0,1)$ such that G(q) = 0. But we cannot say much more analytically!

Root Finding in Matlab

- To use fzero we need to define a function whose input is the variable(s) we are solving for (G(Q)).
- We use an anonymous function since it is in one variable only.
- Recall that Newton-Raphson and Bisection both start with a guess.
- We know the solution is in (0, 1), so let's use the initial guess of 0.5.

• Say we have two agents *A* and *B*, and two goods 1 and 2. The preferences of the agents are

$$u_A(x_{1,A}, x_{2,A}) = (x_{1,A})^{\alpha} (x_{2,A})^{1-\alpha}$$
 $u_B(x_{1,B}, x_{2,B}) = (x_{1,B})^{\beta} (x_{2,B})^{1-\beta}$

- Their initial endowments are $\{\omega_{1,i}, \omega_{2,i}\}$
- In equilibrium, it must be that $m_i = p_1 \omega_{1,i} + p_2 \omega_{2,i}$.

• The demand functions are given by:

$$x_{1,A}(p_1, p_2, m_A) = \alpha \frac{m_A}{p_1}$$
 (2)

$$x_{2,A}(p_1, p_2, m_A) = (1 - \alpha) \frac{m_A}{p_2}$$
 (3)

$$x_{1,B}(p_1, p_2, m_B) = \beta \frac{m_B}{p_1} \tag{4}$$

$$x_{2,B}(p_1, p_2, m_B) = (1 - \beta) \frac{m_B}{p_2}$$
 (5)

Define the excess demand for goods 1 and 2 as

$$z_1(p_1, p_2) = x_{1,A}(p_1, p_2, m_A) + x_{1,B}(p_1, p_2, m_B) - \omega_{1,A} - \omega_{1,B}$$
(6)

$$z_2(p_2, p_2) = x_{2,A}(p_2, p_2, m_A) + x_{2,B}(p_2, p_2, m_B) - \omega_{2,A} - \omega_{2,B}$$

$$z_1(p_1, p_2) = x_{1,A}(p_1, p_2, m_A) + x_{1,B}(p_1, p_2, m_B) - \omega_{1,A} - \omega_{1,B}$$

$$z_2(p_2, p_2) = x_{2,A}(p_2, p_2, m_A) + x_{2,B}(p_2, p_2, m_B) - \omega_{2,A} - \omega_{2,B}$$

• Substituting the demand functions (2)-(5) and dividing by p_2 (we only care about relative prices, check Walras' Law if you don't see this).

$$z_{1}(p_{1}, 1) = \alpha \frac{p_{1}\omega_{1,A} + \omega_{2,A}}{p_{1}} + \beta \frac{p_{1}\omega_{1,B} + \omega_{2,B}}{p_{1}} - \omega_{1,A} - \omega_{1,B}$$

$$z_{2}(p_{1}, 1) = (1 - \alpha)(p_{1}\omega_{1,A} + \omega_{2,A}) + (1 - \beta)(p_{1}\omega_{1,B} + \omega_{2,B}) - \omega_{2,A} - \omega_{2,B}$$

$$z_{1}(p_{1}, 1) = \alpha \frac{p_{1}\omega_{1,A} + \omega_{2,A}}{p_{1}} + \beta \frac{p_{1}\omega_{1,B} + \omega_{2,B}}{p_{1}} - \omega_{1,A} - \omega_{1,B}$$
(8)
$$z_{2}(p_{1}, 1) = (1 - \alpha) (p_{1}\omega_{1,A} + \omega_{2,A}) + (1 - \beta) (p_{1}\omega_{1,B} + \omega_{2,B}) - \omega_{2,A} - \omega_{2,B}$$
(9)

- An equilibrium is then a price p_1 such that $z_1(p_1, 1) = z_2(p_2, 1) = 0$.
- We can use any of the two to get the solution for p_1 .
- The analytical solution is

$$p_1^* = \frac{\alpha \omega_{2,A} + \beta \omega_{2,B}}{(1 - \alpha)\omega_{1,A} + (1 - \beta)\omega_{1,B}}$$

Exercise 1

Let's find the equilibrium price of the Arrow-Debreu model in Matlab using $z_1(p_1, 1)$. Use the following values for the parameters:

$$\alpha = 0.6$$
 $\beta = 0.4$ $\omega_{1A} = 10$ $\omega_{2A} = 15$ $\omega_{1B} = 15$ $\omega_{2B} = 10$

Systems of Nonlinear Equations

- We have seen that fzero finds the root of a nonlinear equation.
- What if we have more than one quation? What if we have a system of equations?
- Fortunately, Matlab has this covered with fsolve.

A Profit Maximizing Firm

- Suppose a firm produces using two goods *k* and *l*.
- The firm maximizes its profit function given by

$$\pi(k,l) = a_1k + a_2l - a_3k^2 + a_4kl - a_5l^3 - F$$

• The FOCs:

$$\frac{\partial \pi(k,l)}{\partial k} = a_1 - 2a_3k + a_4l = 0$$
$$\frac{\partial \pi(k,l)}{\partial l} = a_2 + a_4k - 3a_5l^2 = 0$$

A Profit Maximizing Firm

- In this example, we have two equations (FOCs) and two unknowns (k and l).
- We start by writing a function system_focs that takes as inputs a vector of unknowns $x = \begin{pmatrix} k \\ l \end{pmatrix}$ and a vector of parameters a.
- We denote the first element of x as k and the second as 1.

The output of the function is F with two elements. One for each FOC.

```
function F = system_focs(x,a)
k = x(1);
1 = x(2);

F(1) = a(1) - 2 .* a(3) .*
k + 2 .* a(4) .* 1;
F(2) = a(2) + a(4) .* k -
3.*a(5).*1.^2;
end
```

A Profit Maximizing Firm

 We will use now the same structure as before but for fsolve.

- First we define vector a of parameters and the initial guess x0. Note it is a vector with two elements (one for *k* and one for *l*).
- Then we call fsolve and tell it we are solving for x with the part @(x) in function system_focs.

```
1 % Parameters of the system
2 a = [9; 6; 0.04; 0.01; 0.01;
500];

4 x0 = [1,1];
5 xopt = fsolve(@(x) system_focs(x,a), x0);
```

Basics of Numerical Differentiation

Numerical Differentiation — Why?

- Numerical evaluation of the derivatives in economics is **crucial!**
 - Newton-Raphson, optimization, ODEs ...
- Sometimes, it is difficult or cumbersome to compute derivatives analytically. In those cases, we turn to *numerical* evaluation of derivatives.

Recall the definition of the derivative of a function

$$f'(x) = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$
 (can recall why?)

we can approximate f'(x) by choosing a *step size h*.

• That is called, *finite differences*.

Numerical Differentiation — An Example

Take the function

$$f(x) = x^3 - 6x^2 + 11x - 6$$

• The analytical derivative is

$$f'(x) = 3x^2 - 12x + 11$$

- Let's approximate the derivative by using finite differences in Matlab with on $x \in [-5, 5]$
- Compute dy as f(x + h) f(x) for a fixed h and dx = h.
- The numerical derivative is given by $f'(x) = \frac{dy}{dx}$.

Numerical Differentiation — An Example

As $h \to 0$, the derivative converges.

```
1 N = 10;
2 x = linspace(-5,5,N);
3 h = 1;
4 % Numerical derivative
5 dy = myf(x+h) - myf(x);
6 dx = h.*ones(size(dy));
7 fp_num = dy./dx;
```


Figure 2: Accuracy of Finite Difference

Numerical Differentiation — An Application to ODEs

• The Solow-Swan growth model finds an equilibrium solution by solving the ODE

$$\dot{k} = \frac{dk}{dt} = sf(k) - \delta k \tag{10}$$

where k is physical capital, f(k) is the production function, s is an exogenous savings rate, and δ is the depreciation rate of capital.

- Approximate k(t) at N discrete points in the time dimension t^n , n = 1, ..., N and denote the distance between the points by h.
- Approximate \dot{k} using finite differences $\dot{k}(t^n) \approx \frac{k^{n+1}-k^n}{h}$
- We can compute $k(t^{n+1})$ recursively given h and $k(0) = k_0$

$$k(t^{n+1}) = k(t^n) + h\left(sf(k^n) - \delta k^n\right)$$

Numerical Differentiation — An Application to ODEs

• Horizon T = 70

- \circ N = 10 points.
- Compare with ode45 and analytical solution.

Figure 3: Trajectory for k(t)

Symbolic and Automatic Differentiation (*)

- Symbolic differentiation applies the rules of derivatives to symbolic expressions. What we humans do.
- Automatic differentiation breaks codes into smaller sections and applies the chain rule (Kwon, 2019, See Chapter 4).
- The advantage of automatic differentiation is that computes analytical derivatives at the same cost. No error!
- Automatic differentiation evaluates expressions numerically early, symbolic differentiation at the end.

Thus, symbolic is more costly. Check Matlab's documentation

Numerical Integration — Why?

- Numerical evaluation of integrals in economics is ubiquitous.
 - Expectations, posteriors in Bayesian statistics, ODEs (again...)
- Again, sometimes it is computationally expensive to compute integrals.
- The definite integral of f(x) is the area under its graph.
- Furthermore, the definition of the definite integral involves an infinte sum (Riemann Sum).
- We will approximate integrals by computing sums in particular ways.

Numerical Integration — Illustration

Figure 4: Illustration of a Riemann Sum

Numerical Integration — Preliminaries (*)

Definition 2

Let $f:[a,b]\mapsto \mathbb{R}$. Let \mathcal{P} and \mathcal{T} be a **partition pair** such that $\mathcal{P},\mathcal{T}\subset [a,b]$ where $\mathcal{P}=\{x_0,\ldots,x_n\},\mathcal{T}=\{t_1,\ldots,t_n\}$ and

$$a = x_0 \le t_1 \le x_1 \le t_2 \le x_2 \le \cdots \le t_n \le x_n = b$$

where we assume the points $\{x_0, \ldots, x_n\}$ are distinct. The **Riemann sum** corresponding to $f, \mathcal{P}, \mathcal{T}$ is

$$\mathcal{R}(f,\mathcal{P},\mathcal{T}) = \sum_{i=1}^{n} f(t_i) \Delta x_i = f(t_1) \Delta x_1 + f(t_2) \Delta x_2 + \ldots + f(t_n) \Delta x_n$$

and $\Delta x_i = x_i - x_{i-1}$.

Notice this is just the area of the rectangles of base Δx_i under the curve of f.

Numerical Integration — Preliminaries (*)

Definition 3

The **mesh** of the partition \mathcal{P} is the length of the largest subinterval $[x_{i-1}, x_i]$.

Definition 4

A real number I is the **Riemann Integral** of f over [a,b] if it satisfies $\forall \epsilon > 0, \exists \delta > 0$ such that if \mathcal{P}, \mathcal{T} is any partition pair, then

$$\operatorname{mesh}(\mathcal{P}) < \delta \Rightarrow |\mathcal{R}(f, \mathcal{P}, \mathcal{T}) - I| < \epsilon$$

If such an I exists it is unique and we denote it by

$$\int_{a}^{b} f(x)dx = I = \lim_{\text{mesh}(\mathcal{P}) \to 0} \mathcal{R}(f, \mathcal{P}, \mathcal{T})$$

and we say that f is **Riemann integrable** with Riemann integral I.

Numerical Integration — Intuition

- Notice the definition of the **Riemann integral** is just a weighted sum of the values of *f* at certain points.
- If the subintervals $[x_{i-1}, x_i]$ are all the same length, the weights are all equal. But we do not need to choose equal weights.
- The problem of numerical integration is also called *cuadrature*.
- There are many cuadrature methods, we will only study a couple of Newton-Cotes formulas. But the general idea is to use a formula such as (11)

$$\int_{a}^{b} f(x)dx \approx \sum_{i=1}^{n} \omega_{i} f(x_{i})$$
(11)

where ω_i are the weights, and x_i the points.

Numerical Integration — Newton-Cotes Quadratures

General Idea:

- Evaluate f(x) at a finite number of points.
- \circ Construct a piece-wise polynomial approximation of f based on those points.
- Integrate the approximation of f to approximate $\int_a^b f(x)dx$

Numerical Integration — Newton-Cotes Quadratures

- $aUQVb \Rightarrow midpoint$ rule.
- \circ aPRb \Rightarrow trapezoid rule.
- Parabola *PQSR*

Figure 5: See Judd, 1998

Numerical Integration — Newton Cotes Quadratures (*)

Midpoint Rule:

• The simplest quadrature formula with one point given by

$$\int_{a}^{b} f(x)dx = \underbrace{(b-a)f\left(\frac{a+b}{2}\right)}_{Rule} + \underbrace{\frac{(b-a)^{3}}{24}f''(\xi)}_{Error}$$

for some $\xi \in [a, b]$. Based on Taylor's theorem and the IVT.

• Let $n \ge 1$ be the number of subintervals, h = (b-a)/n, and $x_j = a + (j-\frac{1}{2})h$, j = 1, 2, ..., n. The **composite midpoint rule** (omitting the error) is given by

$$\int_a^b f(x)dx = h \sum_{i=1}^n f(x_i) \Rightarrow$$
Same as the Riemann Sum!!

Numerical Integration — Newton-Cotes Quadratures (*)

Example 2 Compute $\int_{1}^{5} x^{2} dx = \frac{124}{3} \approx 41.333$. Errors decline with the number of points n.

```
function [value] =
    midpoint_rule(a,b,n,mvfunc)
   % Numerical integration with
      midpoint rule
   xpts = zeros(n,1);
   h = (b-a)/n;
   for jj=1:n
       xpts(jj,1) = a + (jj -
           1/2)*h:
   end
   value = h*sum(myfunc(xpts));
9 end
```


Figure 6: Relative errors in \log_{10} units

Numerical Integration — Newton-Cotes Quadratures (*)

Trapezoid Rule:

- Use linear approximations of f using the end-points of [a, b].
- The rule is

$$\int_{a}^{b} f(x)dx = \frac{b-a}{2}(f(a)+f(b)) - \frac{(b-a)^{3}}{12}f''(\xi)$$

for some $\xi \in [a, b]$.

• Composite trapezoid rule letting
$$h = (b - a)/n$$
 and $x_i = a + ih$

$$\int_a^b f(x)dx = \frac{h}{2} \left(f(x_0) + 2f(x_1) + \dots + 2f(x_{n-1}) + f(x_n) \right)$$

Numerical Integration in Matlab

- As with root finding, Matlab has routines for numerical integration.
- The trapezoid rule is implemented in trapz.
- Another routine is **integral**.
- The latter uses adaptive quadratures. Basically, adapts the subintervals refining the process. But the quadrature rules can still be Newton-Cotes.
- For double and triple integrals, Matlab has integral2 and integral3 respectively.

Numerical Integration in Matlab

```
Example 3 Compute \int_1^5 x^2 dx = \frac{124}{3} \approx 41.333 using integral and compute the absolute error.
```

```
1 % Define the anonymous function
2 fun = @(x) x.^2
3
4 % Compute integral
5 val = integral(fun, 1, 5);
6
7 % Absolute error
8 abs_err = abs(val - 124/3);
```


Bisection Method — Stopping Criteria

Criterion 1:

- Parameter δ controls the "acceptable error".
- Sometimes, computing f(x) involves other numerical operations that add errors to the computation of f.
- \circ We should take that into account when choosing a value for δ

Bisection Method — Stopping Criteria

Criterion 2:

• The size of the interval is too small whenever

$$\frac{x^R - x^L}{(1 + |x^L| + |x^R|)} \le \varepsilon$$

- No sense in choosing $\varepsilon = 0$, unachievable. Same for $\varepsilon = 10^{-130}$, computers store finite digits.
- Bear in mind the sizes of x^L and x^R . If x^L and x^R are of the order 10¹⁰, convergence of $x^R x^L < 10^{-5}$ is infeasible.
- Note that adding 1 avoids problems when $x^R \approx x^L \approx 0$

Bisection Method — Stopping Criteria

Criterion 3:

- \circ We can compute the minimum number of iterations N to achieve accuracy δ
- We want the length of the interval after N iterations lower than δ

$$\frac{x^R - x^L}{2^N} \le \delta \Rightarrow 2^N \ge \frac{x^R - x^L}{\delta}$$

taking logs on both sides and simplifying

$$N \ge \frac{\log(x^R - x^L) - \log(\delta)}{\log(2)}$$

which depends on the length of the interval $[x^L, x^R]$ and the value of δ

Bisection Method — Example

Compute the positive root of $f(x) = x^3 - 6x^2 + 11x - 6$

- 1. Find the interval $[x^L, x^R]$
- 2. The function has three positive roots, let's focus on the one on the interval [2.5, 4]
- 3. Note $f(2.5)f(4) = -2.25 < 0 \Rightarrow$ by IVT there is a root in [2.5, 4]
- 4. Choose $\delta = 10^{-4}$ and $\varepsilon = 10^{-8}$
- 5. The minimum number of iterations needed to achieve accuracy δ is $N^{min}=13.8$, choose $N=N^{min}+50$

Bisection Method — The Actual Code

• Initialize with a while loop with three conditionals

```
while (error_f > delta) && (error_i > epsil) && (it < maxit
)
Actual algorithm in here
end</pre>
```

Middle steps

```
1 % Compute xm
2 xm = xl + (xr - xl) / 2; % Slightly improves performance
3
4 % Compute value of f at xm
5 fxm = myf(xm);
6
7 % Compute bounds values of f
8 fxl = myf(xl);
9 fxr = myf(xr);
```

Bisection Method — The Actual Code

Compute errors

```
1 % Compute errors
2 error_f = abs(fxm);
3 error_i = (xr - xl)./(1 + abs(xl) + abs(xr));
```

Update iteration counter and refine interval

Newton-Raphson — Existence, Uniqueness, and Convergence

Theorem 3 (Fixed-Point Iteration Theorem)

Let f(x) = 0 be written as x = g(x). Let g(x) satisfy:

- 1. $\forall x \in [a,b], g(x) \in [a,b]$
- 2. $g'(x) \in (a,b)$ and, for $q \in (0,1)$, g'(x) satisfies |g'(x)| < q for all $x \in (a,b)$ then
 - 1. $\exists ! c \in (a, b) : g(c) = c$ (Existence of a unique solution)
 - 2. For any $x_0 \in [a, b]$, the sequence $\{x_k\}$ defined by

$$x_{k+1} = g(x_k)$$
, $k = 0, 1, ...$

converges to the fixed point c = g(c), that is to the root c of f(x) = 0.

Newton-Raphson Method — Example

As with the bisection method, let's compute the root of $f(x) = x^3 - 6x^2 + 11x - 6$ in the interval [2.5, 4]. Keep the same stopping criteria parameters.

1. Choose N = 64, $\delta = 10^{-4}$, and $\varepsilon = 10^{-8}$

2. Choose $x_0 = 2.65$.

Newton-Raphson Method — The Actual Code

• Initialize with a while loop with three conditionals as in bisection

```
while (error_f > delta) && (error_i > epsil) && (it < maxit
   )
% Actual algorithm in here
end</pre>
```

Middle steps

```
1 % Compute next guess
2 xkp = xk - myf(xk) ./ fprime(xk);
3
4 % Compute the errors at current guess
5 error_f = abs(myf(xk));
6 error_i = abs(xk - xkp) ./ (1 + abs(xkp));
7
8 % Update iteration counter and guess
9 it = it+1;
10 xk = xkp;
```

Newton-Raphson vs Bisection

- In previous example, it took 14 iterations for the bisection method to find a solution.
- It took Newton-Raphson half of those. In 7 iterations it was done.
- Both achieved the same solution.
- Note that the first guess for bisection yields $x^M = 3.25$. If we start Newton-Raphson with that guess, only 4 iterations are needed.
- If we give Newton-Raphson $x_0 = 2.5$, we end up in the root $x^* = 1$.
- Both methods have pros and cons. It depends on the problem which one to choose.