2.2 Let X have distribution function
$$F(x) = \begin{cases} 0 & \text{for } x < -1, \\ 1-p & \text{for } -1 \leqslant x < 0, \\ 1-p+\frac{1}{2}xp & \text{for } 0 \leqslant x \leqslant 2, \\ 1 & \text{for } x > 2 \end{cases}$$

Sketch this function and find (a)
$$P(X = -1)$$
, (b) $P(X = 0)$, (C) $P(X > 1)$.

Solution: (a) P(X=-1) = F(-1) - F(-1) = I - P - 0 = I - P

tion: (a)
$$P(X=-1) = F(-1) - F(-1) = I - P - 0 = I - P$$

(b) $P(X=0) = F(0) - F(0) = I - P - I + P = 0$

(c)
$$P(X>1) = |-F(1)| = |-1+p-\frac{1}{2}p = \frac{p}{2}$$

$$(c) p(\chi > 1) = 1 - f(1) = 1 - 1 + p - \frac{1}{2}p - \frac{p'}{2}$$

2.4 Let
$$X$$
 be a random variable whose distribution function F is given by

om variable whose distribution function
$$F$$
 is given by
$$\begin{cases} 0 & \text{for } x < 0, \end{cases}$$

variable whose distribution function
$$F$$
 is given by
$$\begin{cases}
0 & \text{for } x < 0, \\
x/3 & \text{for } 0 \le x < 1,
\end{cases}$$

$$F(x) = \begin{cases} 0 & \text{for } x < 0, \\ x/3 & \text{for } 0 \le x < 1, \\ x/2 & \text{for } 1 \le x < 2, \\ 1 & \text{for } x \ge 2. \end{cases}$$

Find (a)
$$P(1/2 \le X \le 3/2)$$
,

(b) $P(1/2 \le X \le 1)$, (c) $P(1/2 \le X < 1)$, (d) $P(1 \le X \le 3/2)$,

(e) P(1 < X < 2).

(e) $P(1 \le X \le 2) = F(2^{-}) - F(1) = 1 - \frac{1}{2} = \frac{1}{2}$

2.6 A coin having probability p of coming up heads is successively flipped until the rth head appears. Argue that X, the number of flips required, will be $n, n \ge r$, with probability $P(X = n) = \binom{n-1}{r-1} p^r (1-p)^{n-r}, \quad n \geqslant r.$

This is known as the negative binomial distribution.

Solution: When the number of coin tosses in n, in the first n-1 tosses, heads must have appeared

Y-1 fimes, and tails n-y times.

: p(x=n) = (x-1 pr) (1-p) n-r. p = (x-1 pr(1-p) n-r

Hint: How many successes must there be in the first n-1 trials?

Let
$$X$$
 denote the number of heads that appear in the three tosses. Determine the probability mass function of X .

Solution: When $X = 0$, $P(X) = 0.3^3 = 0.027$

When $X = 1$, $P(X) = C_3^1 \times 0.7 \times 0.3^2 = 0.189$

When $X = 2$, $P(X) = C_3^2 \times 0.7^2 \times 0.3 = 0.441$

When $X = 3$, $P(X) = 0.7^3 = 0.343$

2.7 Suppose that a coin having probability 0.7 of coming up heads is tossed three times.

$$F(x) = P(x = x) = \begin{cases} 0, x < 0 \\ 0.027, 0 \le x < 1 \end{cases}$$

$$0.189, | \le x < 2$$

$$0.441, 2 \le x < 3$$

$$0.343, 3 \le x < 4$$

2.8 Let
$$p(x) = 0$$

$$p(x) = c$$
 where $a > 0$. Find the constant a

where
$$a > 0$$
. Find the constant a .

a = 2

What is the p.f. of X?

Solution: = + + + = = 1

2.10 Suppose that the distribution function of X is given by

Solution: $P(X=0) = F(0) - F(0^{-}) = \frac{1}{2}$ $P(X=1) = F(1) - F(1^{-}) = \frac{3}{2} - \frac{1}{2} = \frac{1}{10}$

 $P(X < 0) = F(\sigma) = 0$

P(X=2)= F(2)-F(2-)= 学- == 生 $p(x=3) = F(3) - F(3^{-}) = \frac{4}{10} - \frac{4}{5} = \frac{1}{10}$ P(X≥3.4)= |- F(3.5-)= |- 70 = 10

 $p(x) = \begin{cases} a/8 & \text{when } x = -1, \\ a/4 & \text{when } x = 0, \\ a/8 & \text{when } x = 1. \end{cases}$

 $F(x) = \begin{cases} 1/2 & \text{for } 0 \leqslant x < 1, \\ 3/5 & \text{for } 1 \leqslant x < 2, \\ 4/5 & \text{for } 2 \leqslant x < 3, \\ 9/10 & \text{for } 3 \leqslant x < 3.5, \end{cases}$

2.11 Let		3						
		$f(x) = \frac{3}{8}(1-x)^2,$	if $-1 < x < 1$.					
	late $F(0)$.							
Solution:	F(0)=P()	$\chi \leq 0$) = $\int_{-1}^{0} f \alpha$	$\int dx = \int_{-1}^{0} dx$	3 (1-X)2dX=	歌十岁73一	$\frac{3}{3}\chi^2\Big _{-1}^{2}=\frac{1}{3}$	7_ 8	
2.13 For s	ome constant c ,	the random variable	X has the p.d	.f.				
		$f(x) = \begin{cases} cx^n \end{cases}$	for $0 < x <$ otherwise.	1,				
		E[c], and (b) $P(X > c]$						
Solution :	(a) $\int_0^1 f(x) dx$	$1x = \int_0^1 cx^n dx =$	mix nti	= 卅=1				
	C= n+)	1						
	(b) P(X>X)	$=\int_{x}^{1}f(x)dx=$	1-xn+1					