Review of 3.6 - 4.1

Liang Ling E0220121@...

MATH@NUS

October 16, 2018

Table of Contents

1 Main Theorem on Invertible Matricex

2 Transition Matrices

3 Vector Space Associated with Matrices

Main Theorem on Invertible Matricex

Theorem (3.6.11)

Let A be an $n \times n$ matrices. The following statements are equivalent.

- A is invertible.
- 2 The linear system Ax = 0 has only the trivial solution.
- The reduced row-echelon form of A is an identity matrix.
- A can be expressed as a product of elementary matrices.
- **1** The rows of A form a basis for \mathbb{R}^n .
- The columns of A form a basis for \mathbb{R}^n .

A simple application of Theorem 3.6.11

- Question: We want to verify that whether a set of n vectors $S = \{u_1, \dots, u_n\} \subset \mathbb{R}^n$ is a basis for \mathbb{R}^n , how to do it?
- Let $u_i = (a_{i1}, \cdots, a_{in}) \in \mathbb{R}^n, 1 \leq i \leq n$, and let

$$A = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{bmatrix}$$

• Now if $det(A) \neq 0$ then S is a basis for \mathbb{R}^n , otherwise it is not a basis for \mathbb{R}^n . (By 7 of Theorem 3.6.11.)

Table of Contents

Main Theorem on Invertible Matricex

2 Transition Matrices

3 Vector Space Associated with Matrices

Column Coordinate vector

• $S = \{u_1, \dots, u_k\}$, is a basis for V, and let $v \in V$, then

$$v = c_1u_1 + \cdots + c_ku_k$$
, $(v)_S = (c_1, \cdots, c_k) \in \mathbb{R}^k$.

 Sometimes, it is more convenient to write the coordinate vector in the form of column vector.

$$[v]_{S} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_k \end{bmatrix}$$

Transition Matrices

Let $S = \{u_1, \dots, u_k\}$, $T = \{v_1 \dots v_k\}$ be two bases for V. We want to find out the relation between $[w]_S$ and $[w]_T$.

• Since T is a basis, we can have $[u_1]_T, \dots, [u_k]_T$. Which means

$$u_i^T = (v_1^T v_2^T \cdots v_k^T)[u_i]_T, \quad 1 \leq i \leq k.$$

Then

$$w^{T} = (u_{1}^{T} u_{2}^{T} \cdots u_{k}^{T})[w]_{S}$$

= $(v_{1}^{T} v_{2}^{T} \cdots v_{k}^{T})([u_{1}]_{T} [u_{2}]_{T} \cdots [u_{k}]_{T})[w]_{S}$
= $(v_{1}^{T} v_{2}^{T} \cdots v_{k}^{T})[w]_{T}.$

• So $[w]_T = ([u_1]_T [u_2]_T \cdots [u_k]_T)[w]_S$.

Transition Matrices — Continued.

Let
$$P=([u_1]_T\,[u_2]_T\,\cdots\,[u_k]_T)$$
, then
$$[w]_T=P[w]_S.$$

Definition

Let $S = \{u_1, \dots, u_k\}$, $T = \{v_1 \dots v_k\}$ be two bases for a vector space V. The $k \times k$ square matrix $P = ([u_1]_T [u_2]_T \dots [u_k]_T)$ is called the **transition matrix from** S to T.

Theorem (3.7.5)

Let S and T be two bases of a vector space and let P be the transition matrix from S to T. Then

- P is invertible; and

Table of Contents

Main Theorem on Invertible Matrices

2 Transition Matrices

3 Vector Space Associated with Matrices

Row Space and Column Space

Let A be a $m \times n$ matrix, we can write A as

$$A = \begin{bmatrix} r_1 \\ r_2 \\ \vdots \\ r_m \end{bmatrix} = \begin{bmatrix} c_1 & c_2 & \cdots & c_n \end{bmatrix}.$$

Where r_i is the *ith* row of A and c_j is the *jth* column of A.

- The row space of $A = span\{r_1, r_2, \cdots, r_m\} \subset \mathbb{R}^n$.
- The column space of $A = span\{c_1, c_2, \cdots, c_n\} \subset \mathbb{R}^m$.

Find a basis for V = span(S) — method 1.

$$A = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_k \end{bmatrix}.$$

- ② So a basis for V = span(S) is equal to a basis of the row space of matrix A.
- Use Gauss-Jordan Algorithm to get the reduced row-echelon R form of A.
- The set of non-zero rows in R is a basis for the row space of A. (See Remark 4.1.9)

Find a basis for V = span(S) — method 2.

$$A = \begin{bmatrix} u_1^T & u_2^T & \cdots & u_k^T \end{bmatrix}.$$

- ② So a basis for V = span(S) is equal to a basis of the column space of matrix A.
- Use Gauss-Jordan Algorithm to get the reduced row-echelon R form of A.
- The set of pivot columns in R is a basis for the column space of R. (See Example 4.1.12)
- If we want a basis for V such that it is a subset of S, then the columns in A that correspond to the pivot columns in R is a basis for V. (See Theorem 4.1.11 and Example 4.1.12)