Convolutional Neural Networks

Changyou Chen

Department of Computer Science and Engineering University at Buffalo, SUNY changyou@buffalo.edu

March 12, 2019

$$\frac{\partial \mathcal{L}}{\partial W_{cij}^{(1)}} = \sum_{k,m,n} \frac{\partial \mathcal{L}}{\partial H_{kmn}^{(1)}} \frac{\partial H_{kmn}^{(1)}}{\partial W_{cij}^{(1)}}$$

$$\frac{\partial \mathcal{L}}{\partial W_{cij}^{(1)}} = \sum_{k,m,n} \frac{\partial \mathcal{L}}{\partial H_{kmn}^{(1)}} \frac{\partial H_{kmn}^{(1)}}{\partial W_{cij}^{(1)}}$$

$$= \sum_{k,m,n} \frac{\partial \mathcal{L}}{\partial H_{kmn}^{(1)}} \frac{\partial \sum_{p,q} W_{pqm}^{(1)} V_{k+p,q,n}}{\partial W_{cij}^{(1)}}$$

$$\frac{\partial \mathcal{L}}{\partial W_{cij}^{(1)}} = \sum_{k,m,n} \frac{\partial \mathcal{L}}{\partial H_{kmn}^{(1)}} \frac{\partial H_{kmn}^{(1)}}{\partial W_{cij}^{(1)}}$$

$$= \sum_{k,m,n} \frac{\partial \mathcal{L}}{\partial H_{kmn}^{(1)}} \frac{\partial \sum_{p,q} W_{pqm}^{(1)} V_{k+p,q,n}}{\partial W_{cij}^{(1)}}$$

$$= \sum_{k,n} \frac{\partial \mathcal{L}}{\partial H_{kjn}^{(1)}} \frac{\partial \sum_{p,q} W_{pqj}^{(1)} V_{k+p,q,n}}{\partial W_{cij}^{(1)}}$$

$$\begin{split} \frac{\partial \mathcal{L}}{\partial W_{cij}^{(1)}} &= \sum_{k,m,n} \frac{\partial \mathcal{L}}{\partial H_{kmn}^{(1)}} \frac{\partial H_{kmn}^{(1)}}{\partial W_{cij}^{(1)}} \\ &= \sum_{k,m,n} \frac{\partial \mathcal{L}}{\partial H_{kmn}^{(1)}} \frac{\partial \sum_{p,q} W_{pqm}^{(1)} V_{k+p,q,n}}{\partial W_{cij}^{(1)}} \\ &= \sum_{k,n} \frac{\partial \mathcal{L}}{\partial H_{kjn}^{(1)}} \frac{\partial \sum_{p,q} W_{pqj}^{(1)} V_{k+p,q,n}}{\partial W_{cij}^{(1)}} \\ &= \sum_{k,n} \frac{\partial \mathcal{L}}{\partial H_{kjn}^{(1)}} V_{k+c,i,n} \end{split}$$

Convolutional Neural Networks (ConvNet)

Convolutional Neural Networks

ConvNet is a sequence of Convolutional Layers, interspersed with activation functions

Features from ConvNet

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Two More Layers to Go: POOL/FC

Pooling Layer

- Makes the representations smaller and more manageable.
- Operates over each activation map independently.

Max Pooling

max pool with 2x2 filters and stride 2

6	8
3	4

Common settings:

• Filter size: 2×2 or 3×3

• Stride: 2

Max pooling is a non-linear operator.

Max Pooling

Q: What is the gradient of a max pooling operation?

Case Study: CNN for MNIST

Padding in Tensorflow

- Input width = 13; Filter width = 6; Stride = 5.
- "VALID" only ever drops the right-most columns (or bottom-most rows).
- "SAME" tries to pad evenly left and right, but if the amount of columns to be added is odd, it will add the extra column to the right.

```
"VALID" = without padding:
```

```
inputs: 1 2 3 4 5 6 7 8 9 10 11 (12 13)
```

"SAME" = with zero padding:

Case Study: LeNet-5 [LeCun et al., 1998]

Conv filters were 5x5, applied at stride 1 Subsampling (Pooling) layers were 2x2 applied at stride 2 i.e. architecture is [CONV-POOL-CONV-POL-CONV-FC]

Implementation

https://github.com/sujaybabruwad/LeNet-in-Tensorflow/blob/master/LeNet-Lab.ipynb

ImageNet

• About 14M images, 1000 classes.

Case Study: AlexNet [Krizhevsky et al., 2012]

- Input: $227 \times 227 \times 3$ images.
- First layer (CONV1): 96 11 × 11 filters applied at stride 4.

Q: What are the output volume and number of parameters in each layer?

Case Study: AlexNet

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons

Details/Retrospectives:

- first use of ReLU
- used Norm layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- batch size 128
- SGD Momentum 0.9
- Learning rate 1e-2, reduced by 10 manually when val accuracy plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble: 18.2% -> 15.4%

Implementation

[4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

https://github.com/vigneshthakkar/Deep-Nets/blob/master/AlexNet.py

Case Study: ZFNet [Zeiler and Fergus, 2013]

- AlexNet but:
 - CONV1: change from (11 \times 11 stride 4) to (7 \times 7 stride 2)
 - CONV3, 4, 5: instead of 384, 384, 256 filters use 512, 1024, 512
- ImageNet top 5 error: 15.4% -> 14.8%.

Implementation

https://github.com/vigneshthakkar/Deep-Nets/blob/master/ZFNet.py

Case Study: VGGNet

[Simonyan and Zisserman, 2014]

Only 3x3 CONV stride 1, pad 1 and 2x2 MAX POOL stride 2

best model

11.2% top 5 error in ILSVRC 2013

->

7.3% top 5 error

		ConvNet C	onfiguration		
A	A-LRN	В	C	D	Е
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight
layers	layers	layers	layers	layers	layers
	i	nput (224×2	24 RGB imag	:)	
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64
	LRN	conv3-64	conv3-64	conv3-64	conv3-64
		max	pool		
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128
		conv3-128	conv3-128	conv3-128	conv3-128
		max	pool		
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
conv3-256	conv3-256	conv3-256	conv3-25	conv3-256	conv3-256
			conv1-256	conv3-256	conv3-256
			55		conv3-256
			pool		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
			pool		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
			pool		
			4096		
			4096		
		FC-	1000		
		soft	-max		

Table 2: Numb	er of parameters (in millions).								
Network	A,A-LRN								
Number of parameters	133	133	134	138	144				

Implementation

https://github.com/vigneshthakkar/Deep-Nets/blob/master/VGGNet.py

Case Study: GoogLeNet [Szegedy et al., 2014]

Case Study: GoogLeNet [Szegedy et al., 2014]

type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool proj	params	ops
convolution	7×7/2	112×112×64	1							2.7K	34M
max pool	3×3/2	56×56×64	0								
convolution	3×3/1	56×56×192	2		64	192				112K	360M
max pool	3×3/2	28×28×192	0								
inception (3a)		28×28×256	2	64	96	128	16	32	32	159K	128M
inception (3b)		28×28×480	2	128	128	192	32	96	64	380K	304M
max pool	3×3/2	14×14×480	0								
inception (4a)		14×14×512	2	192	96	208	16	48	64	364K	73M
inception (4b)		14×14×512	2	160	112	224	24	64	64	437K	88M
inception (4c)		14×14×512	2	128	128	256	24	64	64	463K	100M
inception (4d)		14×14×528	2	112	144	288	32	64	64	580K	119M
inception (4e)		14×14×832	2	256	160	320	32	128	128	840K	170M
max pool	3×3/2	7×7×832	0								
inception (5a)		7×7×832	2	256	160	320	32	128	128	1072K	54M
inception (5b)		7×7×1024	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	$1 \times 1 \times 1024$	0								
dropout (40%)		1×1×1024	0								
linear		1×1×1000	1							1000K	1M
softmax		1×1×1000	0								

Fun features:

 Only 5 million params! (Removes FC layers completely)

Compared to AlexNet:

- 12X less params
- 2x more compute
- 6.67% (vs. 16.4%)

Implementation

https://github.com/vigneshthakkar/Deep-Nets/blob/master/GoogLeNet.py

Case Study: ResNet [He et al., 2015]

ILSVRC 2015 winner (3.6% top 5 error)

Research

MSRA @ ILSVRC & COCO 2015 Competitions

- 1st places in all five main tracks
 - ImageNet Classification: "Ultra-deep" (quote Yann) 152-layer nets
 - ImageNet Detection: 16% better than 2nd
 - ImageNet Localization: 27% better than 2nd
 - COCO Detection: 11% better than 2nd
 - COCO Segmentation: 12% better than 2nd

*improvements are relative numbers

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". arXiv 2015.

Slide from Kaiming He's recent presentation https://www.youtube.com/watch?v=1PGLj-uKT1w

Case Study: ResNet [He et al., 2015]

Case Study: ResNet [He et al., 2015]

Implementation

https://github.com/vigneshthakkar/Deep-Nets/blob/master/ResNet.py

Case Study Bonus: DeepMind's AlphaGo

Case Study Bonus: DeepMind's AlphaGo

The input to the policy network is a $19 \times 19 \times 48$ image stack consisting of 48 feature planes. The first hidden layer zero pads the input into a 23×23 image, then convolves k filters of kernel size 5 \times 5 with stride 1 with the input image and applies a rectifier nonlinearity. Each of the subsequent hidden layers 2 to 12 zero pads the respective previous hidden layer into a 21×21 image, then convolves k filters of kernel size 3×3 with stride 1, again followed by a rectifier nonlinearity. The final layer convolves 1 filter of kernel size 1×1 with stride 1, with a different bias for each position, and applies a softmax function. The match version of AlphaGo used k = 192 filters; Fig. 2b and Extended Data Table 3 additionally show the results of training with k = 128, 256 and 384 filters.

policy network:

[19x19x48] Input

CONV1: 192 5x5 filters, stride 1, pad 2 => [19x19x192]

CONV2..12: 192 3x3 filters, stride 1, pad 1 => [19x19x192]

CONV: 1 1x1 filter, stride 1, pad 0 => [19x19] (probability map of promising moves)

Summary

- ConvNets stack CONV,POOL,FC layers.
- Trend towards smaller filters and deeper architectures.
- Trend towards getting rid of POOL/FC layers (just CONV and action layers).
- Typical architectures look like:

[(CONV-ReLU)*N-Pool?]*M-(FC-ReLU)*K, SOFTMAX

- N is usually up to \sim 5, M is large, $0 \le K \le 2$.
- recent advances such as ResNet/GoogLeNet challenge this paradigm.