HỌC VIỆN CÔNG NGHỆ BƯU CHÍNH VIỆN THÔNG

KHOA: CÔNG NGHỆ THÔNG TIN I

ĐỀ THI KẾT THÚC HỌC PHẦN (Hình thức thi viết)

BỘ MÔN: KHOA HỌC MÁY TÍNH

Học phần: Toán rời rạc 2 (Học kỳ 2 năm học 2018-2019)

Lóp: D17CN, D17AT

Thời gian thi: 90 phút

Đề số: 3

Câu 1 (1 điểm)

Cho đồ thị có hướng $G = \langle V, E \rangle$ gồm 10 đinh được biểu diễn dưới dạng danh sách kề như sau:

$$Ke(1) = \{2,3\}$$
 $Ke(6) = \{7,8\}$
 $Ke(2) = \{3,4,5\}$ $Ke(7) = \{4,8\}$
 $Ke(3) = \{9,10\}$ $Ke(8) = \{1,2\}$
 $Ke(4) = \{6,7\}$ $Ke(9) = \{6,10\}$
 $Ke(5) = \{6\}$ $Ke(10) = \{1,2\}$

- a) Tìm bán bậc vào và bán bậc ra của mỗi đỉnh trên đồ thị.
- b) Biểu diễn đồ thị G dưới dạng ma trận kề.

Câu 2 (2 điểm)

- a) Viết hàm có tên **DFS** (int u) bằng C/C++ thực hiện thuật toán tìm kiếm theo chiều sâu bắt đầu từ đinh u trên đồ thị $G = \langle V, E \rangle$ được biểu diễn dưới dạng ma trận kề a[][].
- b) Sử dụng thuật toán tìm kiếm theo chiều sâu **DFS** để tìm đường đi từ đỉnh 1 đến đỉnh 8 trên đồ thị G cho trong Câu 1, chỉ rõ từng bước thực hiện thuật toán.

Câu 3 (2 điểm)

Cho đồ thị có hướng $G = \langle V, E \rangle$ gồm 10 đinh được biểu diễn dưới dạng ma trận kề như sau:

	7	2	3	1	ζ	6	7	8	9	1/_
1	0	1	0	0	1	0	0	0	0	0
2	0	0	1	1	0	0	0	0	0	0
3	0	1	0	0	0	0	-	0	0	0
9	0	0	0	0	0	1	0	0	0	0
5	0	0	0	0	0	0	0	1	1	0
6	0	0	0	0	1	0	0	0	0	0
7	0	0	0	0	0	0		0	0	1
8	1	0	0	0	0	0	1	0	0	0
9	0	1	0	0	0	0	0	0	0	0
10	1	0	0	0	0	0	0	0	0	0

- a) Trình bày điều kiện cần và đủ để một đồ thị có hướng lễ nửa Euler. Áp dụng chứng minh đồ thị có hướng G là nửa Euler.
- b) Áp dụng thuật toán tìm đường đi Euler trên đồ thị, tìm một đường đi Euler trên đồ thị G, chỉ rõ kết quả sau mỗi bước thực hiện.

Câu 4 (2 điểm)

Cho đồ thị vô hướng G = <V, E> gồm 12 đinh được biểu diễn dưới dạng ma trận trọng số như sau:

	1	2	3	4	5	6	7	.8	9	10	11	12
1	0	1	œ	∞	4	5	œ	∞	o	œ	œ	œ
2	1	0	2	∞	6	3	∞	∞	œ	œ	∞	2
3	œ	2	0	3	5	œ	∞	∞	∞	∞	œ	∞
4	o o	∞	3	0	∞	∞	∞	2	∞	∞	œ	∞ .
5	4	6	5	∞	0	∞	1	00	3	2	œ	∞ .
6	5	3	00	œ	∞	0	4	∞	∞	3	∞	∞
7	œ	∞	∞	∞	1	4	0	5	∞	3	œ	∞
8	∞.	œ	∞	2	∞	∞	5	0	∞	œ	œ	∞
9	∞	œ	∞	∞	3	œ	∞	∞	0	œ	œ	∞
10	∞	œ	∞	∞	2	3	3	∞	œ	0	• 1	∞
11	- ∞	œ	∞	œ	œ	œ	∞	œ	· 000	1	0	∞
12	∞	2	œ	œ	∞	œ	œ	œ	œ	œ	œ	0

- a) Trình bày thuật toán Prim tìm cây khung nhỏ nhất trên đồ thị vô hướng, liên thông, có trong số.
- b) Áp dụng thuật toán Prim tìm cây khung nhỏ nhất của đồ thị G xuất phát từ đinh 1, chi rõ kết quả tại mỗi bước thực hiện thuật toán.

Câu 5: (3 điểm)

Cho đồ thị có hướng $G = \langle V, E \rangle$ như hình bên, trọng số được ghi bên mỗi cung.

- a) Viết hàm có tên **DIJKSTRA**(int u) mô tả thuật toán Dijkstra trên C/C++ tìm đường đi ngắn nhất xuất phát từ đinh u đến các đinh khác của đồ thị G=(V,E) được biểu diễn dưới dang ma trận trọng số a[][].
- b) Áp dụng thuật toán Dijkstra tìm đường đi ngắn nhất từ đình số 1 đến các đình còn lại của đồ thị G, chi ra đường đi ngắn nhất từ đình số 1 tới đình số 6.

Ghi chú: Sinh viên không được tham khảo tài liệu