CS 710: Complexity Theory Lecture 5: Random Walk Instructor: Jin-Yi Cai Scribe: Jialu Bao

1 Random Walks

A random walk in graph G = (V, E) starts with a vertex $s \in V$ at time step 0. At each time step i, the random walk chooses a neighbor v of the current vertex u with some probability $P_{u,v}$ and jumps to v at the next time step. For simplicity, we work with undirected simple graphs—simple meaning there is no multi-edge and no loop—and assume that the walk picks neighbors with equal probability.

Formally, let y_i be the vertex that the random walk visits at time step i.

$$P_{u,v} := \Pr (y_{i+1} = v \mid y_i = u)$$

$$= \begin{cases} \frac{1}{deg(u)} & \text{if } (u,v) \in E \\ 0 & \text{Otherwise} \end{cases}$$

2 One dimensional Random Walk

Consider the following one dimensional random walk on a chain of n vertices starting from node 1 and will getting absorbed at node n—the random walk stops immediately after it hits node n.

Figure 1: One-dimensional Walk

Definition 1. Define **hitting time** of a random walk as the expected number of steps it takes from the starting state to the absorbing state.

Definition 2. Define $h_{i,j} := \mathbb{E}[number\ of\ steps\ the\ random\ walk\ takes\ to\ go\ from\ node\ i\ to\ node\ j$ in Figure 1

Then the hitting time of random walks in Figure 1 equals $h_{1,n}$.

Note that although the number of steps between any two states must be integral, the expected value of that number does not have to be integral.

Lemma 1. For the random walk in Figure 1, for any i, j, k such that $1 \le j \le i \le k \le n$,

$$h_{i,k} = h_{i,i} + h_{i,k}$$

Proof. By the topology of Figure 1, every path going from node j to node k goes through node i. As random walks are memoryless, the number of steps in every path going from node j to node k

is the sum of the number of steps it takes from node j to i and the number of steps it takes from node i to k. Therefore,

$$h_{j,k} = E[\# \text{ of steps to go from } j \text{ to } k]$$

= $E[\# \text{ of steps to go from } j \text{ to } i + \# \text{ of steps to go from } i \text{ to } k]$
= $E[\# \text{ of steps to go from } j \text{ to } i] + E[\# \text{ of steps to go from } i \text{ to } k]$
= $h_{j,i} + h_{i,k}$

The second to the last step follows from the linearity of expectation, and the last step follows from the definition of $h_{i,i}$ and $h_{i,k}$.

Corollary 1. The hitting time,

$$h_{1,n} = h_{1,2} + h_{2,n}$$

$$= h_{1,2} + h_{2,3} + h_{3,n}$$

$$= \dots$$

$$= \sum_{i=1}^{i=n-1} h_{i,i+1}$$

Corollary 2. For the random walk in Figure 1, for any i such that $2 \le i \le n-1$,

$$h_{i-1,i+1} = h_{i-1,i} + h_{i,i+1}$$

Lemma 2. For $2 \le i \le n-1$, $h_{i,i+1} = 1 + h_{i-1,i+1}$, and $h_{12} = 1$.

Proof. Since we can only go node 2 from node 1, there is only one path from node 1 to 2 and that path has 1 step, so $h_{1,2} = 1$.

From node i such that $2 \le i \le n-1$, the random walk can either goes to i-1 or i+1 for the next step, each with probability $\frac{1}{2}$. If it goes directly to i+1, then it reaches i+1 in 1 step. If it goes to i-1, then in expectation it takes another $h_{i-1,i+1}$ steps after that steps to reach node i+1. Thus,

of steps to go from i to $i+1=\frac{1}{2}\cdot 1+\frac{1}{2}\cdot (1+\# \text{ of steps to go from } i-1 \text{ to } i+1)$

Thus, by substituting it into the definition of $h_{i,j}$, we have

$$\begin{split} h_{i,i+1} &= \mathrm{E}[\text{\# of steps to go from } i \text{ to } i+1] \\ &= \mathrm{E}[\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot (1 + \text{\# of steps to go from } i-1 \text{ to } i+1)] \\ &= \mathrm{E}[1 + \frac{1}{2} \text{\# of steps to go from } i-1 \text{ to } i+1)] \\ &= 1 + \frac{1}{2} \mathrm{E}[\text{\# of steps to go from } i-1 \text{ to } i+1)] \\ &= 1 + \frac{1}{2} h_{i-1,i+1} \end{split}$$

Theorem 1. The hitting time, $h_{1,n}$, is $(n-1)^2$.

Proof. Substitute $h_{i-1,i+1} = h_{i-1,i} + h_{i,i+1}$ from lemma 1 into $h_{i,i+1} = 1 + \frac{1}{2}h_{i-1,i+1}$, then we have,

$$h_{i,i+1} = 1 + \frac{1}{2}(h_{i-1,i} + h_{i,i+1}) \tag{1}$$

$$\implies h_{i,i+1} = 2 + h_{i-1,i} \tag{2}$$

Since $h_{1,2} = 1$, the recurrence solves to $h_{i,i+1} = 2i - 1$. Substitute it into the formula given by Corollary 1, the hitting time equals

$$h_{1,n} = \sum_{i=1}^{n-1} h_{i,i+1} = (n-1)^2$$

3 Expected number of times a walk stops visits a node

Now we consider a different problem of random walks, given a undirected graph G = (V, E) and perform the random walk as described in Section 1, then what is the expected number of times a walk visits a node i? In the following, we use t_i to denote that number and will try to calculate it.

Because node n is the absorbing node and no other node is absorbing state, the walk will eventually visits n and never steps out after that. Thus, without any computations, we can conclude that $t_n=1$. Then we consider node n-1, every time the walk reaches node n-1, with probability $\frac{1}{2}$, it goes to node n, gets absorbed and never comes back; with probability $\frac{1}{2}$, it goes to node n-1, then either directly or after an indefinite number of steps, it comes back and stopst node n-1 again, and repeat the process. Thus, the walk visits a node for only once with probability $\frac{1}{2}$, visits a node twice with probability $\frac{1}{4}$, visits a node three times with probability $\frac{1}{8}$... That is

$$t_{n-1} = \sum_{k \ge 1} k \cdot \Pr(\text{the walk visits node } n - 1 \text{ for } k \text{ times})$$

$$= \frac{1}{2} \sum_{k \ge 1} k \cdot (\frac{1}{2})^{k-1} = \frac{1}{2} \left[\sum_{k \ge 1} (x^k) \right]'_{x = \frac{1}{2}}$$

$$= \frac{1}{2} \left[\frac{x}{1-x} \right]'_{x = \frac{1}{2}} = \frac{1}{2} \left[\frac{1}{(1-x)^2} \right]_{x = \frac{1}{2}}$$

$$= \frac{1}{2} \left[\frac{1}{(1-\frac{1}{2})^2} \right] = 2$$

Alternatively, because the random walk is memoryless, every time it visits node n-1, the expected number of upcoming visits to node n-1 again stays the same. Thus, if the walk visits node n-1 once and then goes to node n-2 at the next steps, the expected number of times of additional visits to node n-1 is still t_{n-1} . Therefore, we have the recurrence $t_{n-1} = \frac{1}{2} \times 1 + \frac{1}{2} \times (1 + t_{n-1})$, which also gives $t_{n-1} = 2$.

How about t_i for the rest of nodes?

Theorem 2. For $3 \le i \le n-2$, $t_i = \frac{1}{2}(t_{i-1} + t_{i+1})$.

Proof. We will first present the intuition and then a more rigorous proof.

Because our graph is just a single chain of nodes, for any node i such that $3 \le i \le n-2$, the walk must passes either node i-1 or node i+1 en route to other node. Meanwhile, every time the walk visits node i-1, it has $\frac{1}{2}$ chance of going to node i the next step; and similarly, every time the walk visits node i+1, it has $\frac{1}{2}$ chance of visiting node i the next step. Thus, the expected number of times that the walk visits node i equals $\frac{1}{2}(t_{i-1}+t_{i+1})$.

To prove it formally, we define random variable W to be the number of steps a random walk takes from node 1 to node n, i.e., the length of time that a random walk is alive. We also define 0-1 random variables $x_{j,i}$ for $i \geq 1, j \geq 0$,

$$x_{j,i} = \begin{cases} 1 & \text{if } W \ge j \text{ and } y_j = i \\ 0 & \text{Otherwise} \end{cases}$$

 $W \geq j$ indicates that a random walk is alive at time j, which guarantees that y_j is defined. y_j is the node the random walk visited at the j^{th} step. So by definition, $x_{j,i} = 1$ if and only if the walk has not yet ended at the j^{th} step and the walk is visiting node i at j^{th} step. Thus,

$$t_i = E[\text{the number of visits to node } i] = E[\sum_{j>0} x_{j,i}]$$

Then, by linearity of expectation and the defintion of expected value,

$$t_i = \sum_{j \ge 0} E[x_{j,i}]$$
$$= \sum_{j \ge 0} \Pr[W \ge j \text{ and } y_j = i]$$

Since the walk starts at node 1 and $i \ge 3$, there is no chance to visit node i in the 0^{th} and 1^{st} step, so

$$\sum_{j \ge 0} \Pr[W \ge j \text{ and } y_j = i] = \sum_{j \ge 1} \Pr[W \ge j \text{ and } y_j = i] = \sum_{j \ge 2} \Pr[W \ge j \text{ and } y_j = i]$$
 (3)

Thus,

$$\begin{split} t_i &= \sum_{j \geq 0} \Pr[W \geq j \text{ and } y_j = i] = \sum_{j \geq 1} \Pr[W \geq j \text{ and } y_j = i] \\ &= \sum_{j \geq 1} \Pr[W \geq j \text{ and } y_{j-1} = i - 1 \text{ and } y_j = i] + \sum_{j \geq 1} \Pr[W \geq j \text{ and } y_{j-1} = i + 1 \text{ and } y_j = i] \\ &= \sum_{j \geq 1} \Pr[W \geq j \text{ and } y_{j-1} = i - 1] \cdot \Pr[y_j = i \mid y_{j-1} = i - 1] + \\ &\qquad \qquad \sum_{j \geq 1} \Pr[W \geq j \text{ and } y_{j-1} = i + 1] \cdot \Pr[y_j \mid y_{j+1}] \\ &= \sum_{j \geq 1} \Pr[W \geq j \text{ and } y_{j-1} = i - 1] \cdot \frac{1}{2} + \sum_{j \geq 1} \Pr[W \geq j \text{ and } y_{j-1} = i + 1] \cdot \frac{1}{2} \end{split}$$

Since $i \le n-2$, the random walk had to continue at least one more steps if it visits node i+1 or node i-1 at $(j-1)^{th}$ step, so

$$\Pr[W \ge j - 1 \text{ and } y_{j-1} = i+1] = \Pr[W \ge j \text{ and } y_{j-1} = i+1]$$
(4)

$$\Pr[W \ge j - 1 \text{ and } y_{j-1} = i - 1] = \Pr[W \ge j \text{ and } y_{j-1} = i - 1]$$
 (5)

Thus,

$$t_{i} = \sum_{j\geq 1} \Pr[W \geq j \text{ and } y_{j-1} = i-1] \cdot \frac{1}{2} + \sum_{j\geq i} \Pr[W \geq j+1 \text{ and } y_{j+1} = i+1] \cdot \frac{1}{2}$$

$$= \sum_{j\geq 1} \Pr[W \geq j-1 \text{ and } y_{j-1} = i-1] \cdot \frac{1}{2} + \sum_{j\geq 1} \Pr[W \geq j-1 \text{ and } y_{j-1} = i+1] \cdot \frac{1}{2} \text{ (By 4,5)}$$

$$= \sum_{j-1\geq 1} \Pr[W \geq j-1 \text{ and } y_{j-1} = i-1] \cdot \frac{1}{2} + \sum_{j-1\geq 1} \Pr[W \geq j-1 \text{ and } y_{j-1} = i+1] \cdot \frac{1}{2} \text{ (By 3)}$$

$$= t_{i-1} \cdot \frac{1}{2} + t_{i+1} \cdot \frac{1}{2}$$

Similarly, $t_1 = \frac{1}{2}t_2 + 1$ because every walk pays one visit to node 1 at the beginning, and after that, it has to go through node 2 once every time it gets to node 1. For node 2, $t_2 = \frac{1}{2}t_3 + t_1$ because every visit to node 2 must come from either node 1 or node 3 at the last step, and from node 1 it always goes to node 2 while from node 3 it goes to node 2 with probability $\frac{1}{2}$. Substituting $t_1 = \frac{1}{2}t_2 + 1$ into $t_2 = \frac{1}{2}t_3 + t_1$, we get $t_2 = t_3 + 2$.

For $3 \le i \le n-2$, $t_i = \frac{1}{2}[t_{i-1} + t_{i+1}]$ implies that $t_{i+1} - t_i = t_i - t_{i-1}$. Thus, $t_2 - t_3 = t_3 - t_4 = \dots = t_{n-2} - t_{n-1}$. Since $t_2 = t_3 + 2$,

$$t_2 - t_3 = t_3 - t_4 = \dots = t_{n-2} - t_{n-1} = 2$$

Since $t_{n-1}=2$, we can solve that $t_i=2(n-i)$ for $2 \le i \le n-1$. In particular, $t_2=2(n-2)$, implying that $t_1=\frac{1}{2}t_2+1=n-1$.

We can do a sanity check of our calculated result, the sum of t_i for all i should be exactly one more than the hitting time.

$$\sum_{i=1}^{n} t_i = t_1 + \sum_{i=2}^{n-1} t_i + t_{n-1} + t_n$$

$$= (n-1) + \left(\sum_{i=2}^{n-2} 2(n-i)\right) + 2 + 1$$

$$= (n-1) + (n^2 - 3n) + 2 + 1$$

$$= n^2 - 2n + 2$$

$$= (n-1)^2 + 1$$

Thus, the sum of our calculated t_i is exactly the hiting time plus one.