

EXAMENUL DE BACALAUREAT – 2007 Proba scrisă la MATEMATICĂ

PROBA D

Varianta050

Profilul: Filiera Teoretică: sp.: matematică-informatică, Filiera Vocațională, profil Militar, Specializarea: specializarea matematică-informatică

♦ Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore.

La toate subiectele se cer rezolvări cu soluții complete

SUBIECTUL I (20p)

- (4p) a) Să se calculeze modulul numărului complex -4-3i.
- (4p) b) Să se calculeze lungimea segmentului cu capetele în punctele A(3, -2) și C(4, -3).
- (4p) c) Să se calculeze suma de numere complexe $S = i + i^3 + i^5 + i^7$.
- (4p) d) Să se determine $a, b \in \mathbb{R}$, astfel încât punctele A(3, -2) și C(4, -3) să fie pe dreapta de ecuație x + ay + b = 0.
- (2p) e) Să se calculeze aria triunghiului cu vârfurile în punctele A(3,-2), B(2,2) și C(4,-3).
- (2p) | f) Să se determine distanța de la punctul O(0,0) la dreapta x + y 1 = 0.

SUBIECTUL II (30p)

1.

- (3p) a) Să se calculeze elementul $\hat{2}^{10}$ în (Z_8, \cdot) .
- (3p) b) Să se calculeze expresia $E = C_8^3 C_8^5$.
- (3p) c) Să se rezolve în mulțimea numerelor reale strict pozitive ecuația $log_5 x = 1$.
- (3p) d) Să se rezolve în mulțimea numerelor reale ecuația $16^x 32 = 0$.
- (3p) e) Să se calculeze probabilitatea ca un element $n \in \{1, 2, 3, 4, 5\}$ să verifice relația $3^n > 19$.
 - 2. Se consideră funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = x^{15} + 2x 1$.
- (3p) a) Să se calculeze f'(x), $x \in \mathbb{R}$.
- (3p) b) Să se calculeze $\int_{0}^{1} f(x) dx.$
- (3p) c) Să se calculeze $\lim_{x\to 0} \frac{f(x)-f(0)}{x}$.
- (3p) d) Să se arate că funcția f este strict crescătoare pe \mathbf{R} .
- (3p) e) Să se calculeze $\lim_{n \to \infty} \frac{2\sqrt{n} + 3}{5\sqrt{n} 2}.$

1

SUBIECTUL III (20p)

Se consideră matricele $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ și $G = \{A \in M_2(\mathbf{R}) \mid A \cdot A^T = I_2\}$, unde prin A^T am notat transpusa matricei A.

- (4p) a) Să se arate că $I_2 \in G$ și $C \in G$.
- (4p) b) Să se arate că dacă $A \in G$ şi $B \in G$, atunci $A \cdot B \in G$.
- (4p) c) Să se arate că dacă $A \in G$, atunci matricea A este inversabilă și $A^{-1} \in G$.
- (2p) d) Să se arate că (G,\cdot) este grup în raport cu înmulțirea matricelor.
- (2p) e) Să se arate că funcția $f: G \to \{-1,1\}$, $f(A) = \det(A)$ este surjectivă dar nu este injectivă.
- (2p) **f**) Să se arate că mulțimea $H = \left\{ \begin{pmatrix} \cos a & -\sin a \\ \sin a & \cos a \end{pmatrix} \middle| a \in \mathbf{R} \right\}$ este un subgrup al lui G.
- (2p) g) Să se dea exemplu de subgrup al lui G care are 2007 elemente.

SUBIECTUL IV (20p)

Se consideră funcțiile $f:[0,1] \to \mathbf{R}$, $g:[0,1] \to \mathbf{R}$, $h:[0,1] \to \mathbf{R}$, $G:[0,1] \to \mathbf{R}$, definite prin $g(x) = \frac{\ln(1+x)}{x}$, $\forall x \in (0,1]$, g(0) = 1, $f(x) = \ln(1+x) - x$, $h(x) = f(x) + \frac{x^2}{2}$, $\forall x \in [0,1]$, $G(x) = \int_{0}^{x} g(t)dt$, $\forall x \in [0,1]$ și șirul $(a_n)_{n \geq 1}$, definit prin $a_n = \int_{0}^{1} \ln(1+x^n)dx$, $\forall n \in \mathbf{N}^*$.

- (4p) a) Să se calculeze f'(x) și h'(x), $x \in [0,1]$.
- (4p) b) Să se arate că $f'(x) \le 0$ și $h'(x) \ge 0$, $\forall x \in [0,1]$.
- (4p) c) Să se arate că $x \frac{x^2}{2} \le \ln(1+x) \le x$, $\forall x \in [0,1]$.
- (2p) d) Să se arate că funcția g este continuă pe intervalul [0,1].
- (2p) e) Să se arate că $0 \le a_n \le \frac{1}{n+1}$, $\forall n \in \mathbb{N}^*$ și că $\lim_{n \to \infty} a_n = 0$.
- (2p) **f**) Utilizând metoda integrării prin părți, să se arate că $n \cdot a_n = G(1) \int_0^1 G(x^n) dx$, $\forall n \ge 1$.
- (2**p**) $| \mathbf{g} |$ Să se arate că $\lim_{n \to \infty} n \cdot a_n = G(1)$.