Anéis

José Antônio O. Freitas

MAT-UnB

2 de outubro de 2020

Seja $A \neq \emptyset$ um conjunto.

Seja $A \neq \emptyset$ um conjunto. Dizemos que A está munido

Seja $A \neq \emptyset$ um conjunto. Dizemos que A está munido (ou equipado)

Seja $A \neq \emptyset$ um conjunto. Dizemos que A está munido (ou equipado) de uma **operação binária**

Seja $A \neq \emptyset$ um conjunto. Dizemos que A está munido (ou equipado) de uma **operação binária** quando existe uma função

Seja $A \neq \emptyset$ um conjunto. Dizemos que A está munido (ou equipado) de uma **operação binária** quando existe uma função

$$\Delta: A \times A \to A$$
$$(a,b) \longmapsto a\Delta b$$

Uma operação binária também é chamada de uma **operação interna** em A.

Seja $A \neq \emptyset$ um conjunto. Dizemos que A está munido (ou equipado) de uma **operação binária** quando existe uma função

$$\Delta: A \times A \to A$$
$$(a,b) \longmapsto a\Delta b$$

Uma operação binária também é chamada de uma **operação interna** em A.

1) A soma usual

3/19

1) A soma usual nos conjuntos \mathbb{Z} ,

1) A soma usual nos conjuntos \mathbb{Z} , \mathbb{Q} ,

1) A soma usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R}

1) A soma usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C}

1) A soma usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.

- 1) A soma usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 2) A multiplicação usual

- 1) A soma usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 2) A multiplicação usual nos conjuntos \mathbb{Z} ,

- 1) A soma usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 2) A multiplicação usual nos conjuntos \mathbb{Z} , \mathbb{Q} ,

- 1) A soma usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 2) A multiplicação usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R}

- 1) A soma usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 2) A multiplicação usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.

- 1) A soma usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 2) A multiplicação usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 3) Seja m > 1,

- 1) A soma usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 2) A multiplicação usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 3) Seja m > 1, $m \in \mathbb{Z}$ fixo.

- 1) A soma usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 2) A multiplicação usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 3) Seja m > 1, m $\in \mathbb{Z}$ fixo. A soma

- 1) A soma usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 2) A multiplicação usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 3) Seja m > 1, m $\in \mathbb{Z}$ fixo. A soma e a multiplicação definidos em $\mathbb{Z}_m =$

- 1) A soma usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 2) A multiplicação usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 3) Seja m>1, $m\in\mathbb{Z}$ fixo. A soma e a multiplicação definidos em $\mathbb{Z}_m=\{\overline{0},\overline{1},...,\overline{m-1}\}$

- 1) A soma usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 2) A multiplicação usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 3) Seja m > 1, $m \in \mathbb{Z}$ fixo. A soma e a multiplicação definidos em $\mathbb{Z}_m = \{\overline{0}, \overline{1}, ..., \overline{m-1}\}$ são operações binárias.

- 1) A soma usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 2) A multiplicação usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 3) Seja m > 1, $m \in \mathbb{Z}$ fixo. A soma e a multiplicação definidos em $\mathbb{Z}_m = \{\overline{0}, \overline{1}, ..., \overline{m-1}\}$ são operações binárias.
- 4) A operação ÷

- 1) A soma usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 2) A multiplicação usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 3) Seja m > 1, $m \in \mathbb{Z}$ fixo. A soma e a multiplicação definidos em $\mathbb{Z}_m = \{\overline{0}, \overline{1}, ..., \overline{m-1}\}$ são operações binárias.
- 4) A operação \div em \mathbb{Q}^*

- 1) A soma usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 2) A multiplicação usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 3) Seja m > 1, $m \in \mathbb{Z}$ fixo. A soma e a multiplicação definidos em $\mathbb{Z}_m = \{\overline{0}, \overline{1}, ..., \overline{m-1}\}$ são operações binárias.
- 4) A operação \div em \mathbb{Q}^* é uma operação binária.

- 1) A soma usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 2) A multiplicação usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 3) Seja m > 1, $m \in \mathbb{Z}$ fixo. A soma e a multiplicação definidos em $\mathbb{Z}_m = \{\overline{0}, \overline{1}, ..., \overline{m-1}\}$ são operações binárias.
- 4) A operação \div em \mathbb{Q}^* é uma operação binária.
- 5) Já em \mathbb{N} ,

- 1) A soma usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 2) A multiplicação usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 3) Seja m > 1, $m \in \mathbb{Z}$ fixo. A soma e a multiplicação definidos em $\mathbb{Z}_m = \{\overline{0}, \overline{1}, ..., \overline{m-1}\}$ são operações binárias.
- 4) A operação \div em \mathbb{Q}^* é uma operação binária.
- 5) Já em \mathbb{N} , \mathbb{Z} ,

- 1) A soma usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 2) A multiplicação usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 3) Seja m > 1, $m \in \mathbb{Z}$ fixo. A soma e a multiplicação definidos em $\mathbb{Z}_m = \{\overline{0}, \overline{1}, ..., \overline{m-1}\}$ são operações binárias.
- 4) A operação \div em \mathbb{Q}^* é uma operação binária.
- 5) Já em \mathbb{N} , \mathbb{Z} , \mathbb{Z}^*

- 1) A soma usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 2) A multiplicação usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 3) Seja m > 1, $m \in \mathbb{Z}$ fixo. A soma e a multiplicação definidos em $\mathbb{Z}_m = \{\overline{0}, \overline{1}, ..., \overline{m-1}\}$ são operações binárias.
- 4) A operação \div em \mathbb{Q}^* é uma operação binária.
- 5) Já em \mathbb{N} , \mathbb{Z} , \mathbb{Z}^* e em \mathbb{Q}

- 1) A soma usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 2) A multiplicação usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 3) Seja m > 1, $m \in \mathbb{Z}$ fixo. A soma e a multiplicação definidos em $\mathbb{Z}_m = \{\overline{0}, \overline{1}, ..., \overline{m-1}\}$ são operações binárias.
- 4) A operação \div em \mathbb{Q}^* é uma operação binária.
- 5) Já em \mathbb{N} , \mathbb{Z} , \mathbb{Z}^* e em \mathbb{Q} a operação \div

- 1) A soma usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 2) A multiplicação usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 3) Seja m > 1, $m \in \mathbb{Z}$ fixo. A soma e a multiplicação definidos em $\mathbb{Z}_m = \{\overline{0}, \overline{1}, ..., \overline{m-1}\}$ são operações binárias.
- 4) A operação \div em \mathbb{Q}^* é uma operação binária.
- 5) Já em \mathbb{N} , \mathbb{Z} , \mathbb{Z}^* e em \mathbb{Q} a operação \div não é uma operação binária.

- 1) A soma usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 2) A multiplicação usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 3) Seja m > 1, $m \in \mathbb{Z}$ fixo. A soma e a multiplicação definidos em $\mathbb{Z}_m = \{\overline{0}, \overline{1}, ..., \overline{m-1}\}$ são operações binárias.
- 4) A operação \div em \mathbb{Q}^* é uma operação binária.
- 5) Já em \mathbb{N} , \mathbb{Z} , \mathbb{Z}^* e em \mathbb{Q} a operação \div não é uma operação binária.

Seja $A \neq \emptyset$ um conjunto

Seja $A \neq \emptyset$ um conjunto no qual estão definidas duas operações binárias

Seja $A \neq \emptyset$ um conjunto no qual estão definidas duas operações binárias \oplus

Seja A $\neq \emptyset$ um conjunto no qual estão definidas duas operações binárias \oplus e \otimes ,

Seja $A \neq \emptyset$ um conjunto no qual estão definidas duas operações binárias \oplus e \otimes , chamadas **soma**

Seja $A \neq \emptyset$ um conjunto no qual estão definidas duas operações binárias \oplus e \otimes , chamadas **soma** e **produto**

Seja $A \neq \emptyset$ um conjunto no qual estão definidas duas operações binárias \oplus e \otimes , chamadas **soma** e **produto** ou **multiplicação**.

Seja $A \neq \emptyset$ um conjunto no qual estão definidas duas operações binárias \oplus e \otimes , chamadas **soma** e **produto** ou **multiplicação**. Dizemos que (A, \oplus, \otimes)

Seja $A \neq \emptyset$ um conjunto no qual estão definidas duas operações binárias \oplus e \otimes , chamadas **soma** e **produto** ou **multiplicação**. Dizemos que (A, \oplus, \otimes) é um **anel**

Seja $A \neq \emptyset$ um conjunto no qual estão definidas duas operações binárias \oplus e \otimes , chamadas **soma** e **produto** ou **multiplicação**. Dizemos que (A, \oplus, \otimes) é um **anel** quando as seguintes condições são verdadeiras:

Seja $A \neq \emptyset$ um conjunto no qual estão definidas duas operações binárias \oplus e \otimes , chamadas **soma** e **produto** ou **multiplicação**. Dizemos que (A, \oplus, \otimes) é um **anel** quando as seguintes condições são verdadeiras:

i) **Associatividade**:

Seja $A \neq \emptyset$ um conjunto no qual estão definidas duas operações binárias \oplus e \otimes , chamadas **soma** e **produto** ou **multiplicação**. Dizemos que (A, \oplus, \otimes) é um **anel** quando as seguintes condições são verdadeiras:

i) **Associatividade**: para todos x,

Seja $A \neq \emptyset$ um conjunto no qual estão definidas duas operações binárias \oplus e \otimes , chamadas **soma** e **produto** ou **multiplicação**. Dizemos que (A, \oplus, \otimes) é um **anel** quando as seguintes condições são verdadeiras:

i) **Associatividade**: para todos x, y,

Seja $A \neq \emptyset$ um conjunto no qual estão definidas duas operações binárias \oplus e \otimes , chamadas **soma** e **produto** ou **multiplicação**. Dizemos que (A, \oplus, \otimes) é um **anel** quando as seguintes condições são verdadeiras:

Seja $A \neq \emptyset$ um conjunto no qual estão definidas duas operações binárias \oplus e \otimes , chamadas **soma** e **produto** ou **multiplicação**. Dizemos que (A, \oplus, \otimes) é um **anel** quando as seguintes condições são verdadeiras:

Seja $A \neq \emptyset$ um conjunto no qual estão definidas duas operações binárias \oplus e \otimes , chamadas **soma** e **produto** ou **multiplicação**. Dizemos que (A, \oplus, \otimes) é um **anel** quando as seguintes condições são verdadeiras:

i) **Associatividade**: para todos x, y, $z \in A$ vale

 $(x \oplus y)$

Seja $A \neq \emptyset$ um conjunto no qual estão definidas duas operações binárias \oplus e \otimes , chamadas **soma** e **produto** ou **multiplicação**. Dizemos que (A, \oplus, \otimes) é um **anel** quando as seguintes condições são verdadeiras:

$$(x \oplus y) \oplus z$$

Seja $A \neq \emptyset$ um conjunto no qual estão definidas duas operações binárias \oplus e \otimes , chamadas **soma** e **produto** ou **multiplicação**. Dizemos que (A, \oplus, \otimes) é um **anel** quando as seguintes condições são verdadeiras:

$$(x \oplus y) \oplus z = x \oplus$$

Seja $A \neq \emptyset$ um conjunto no qual estão definidas duas operações binárias \oplus e \otimes , chamadas **soma** e **produto** ou **multiplicação**. Dizemos que (A, \oplus, \otimes) é um **anel** quando as seguintes condições são verdadeiras:

$$(x \oplus y) \oplus z = x \oplus (y \oplus z).$$

Seja $A \neq \emptyset$ um conjunto no qual estão definidas duas operações binárias \oplus e \otimes , chamadas **soma** e **produto** ou **multiplicação**. Dizemos que (A, \oplus, \otimes) é um **anel** quando as seguintes condições são verdadeiras:

i) **Associatividade**: para todos x, y, $z \in A$ vale

$$(x \oplus y) \oplus z = x \oplus (y \oplus z).$$

Essa propriedade é chamada de

Seja $A \neq \emptyset$ um conjunto no qual estão definidas duas operações binárias \oplus e \otimes , chamadas **soma** e **produto** ou **multiplicação**. Dizemos que (A, \oplus, \otimes) é um **anel** quando as seguintes condições são verdadeiras:

i) **Associatividade**: para todos x, y, $z \in A$ vale

$$(x \oplus y) \oplus z = x \oplus (y \oplus z).$$

Essa propriedade é chamada de **propriedade associativa**

Seja $A \neq \emptyset$ um conjunto no qual estão definidas duas operações binárias \oplus e \otimes , chamadas **soma** e **produto** ou **multiplicação**. Dizemos que (A, \oplus, \otimes) é um **anel** quando as seguintes condições são verdadeiras:

i) **Associatividade**: para todos x, y, $z \in A$ vale

$$(x \oplus y) \oplus z = x \oplus (y \oplus z).$$

Essa propriedade é chamada de **propriedade associativa** da soma.

Seja $A \neq \emptyset$ um conjunto no qual estão definidas duas operações binárias \oplus e \otimes , chamadas **soma** e **produto** ou **multiplicação**. Dizemos que (A, \oplus, \otimes) é um **anel** quando as seguintes condições são verdadeiras:

i) **Associatividade**: para todos x, y, $z \in A$ vale

$$(x \oplus y) \oplus z = x \oplus (y \oplus z).$$

Essa propriedade é chamada de **propriedade associativa** da soma.

ii) **Comutatividade**:

Seja $A \neq \emptyset$ um conjunto no qual estão definidas duas operações binárias \oplus e \otimes , chamadas **soma** e **produto** ou **multiplicação**. Dizemos que (A, \oplus, \otimes) é um **anel** quando as seguintes condições são verdadeiras:

i) **Associatividade**: para todos x, y, $z \in A$ vale

$$(x \oplus y) \oplus z = x \oplus (y \oplus z).$$

Essa propriedade é chamada de **propriedade associativa** da soma.

ii) **Comutatividade**: Para todos x,

Seja $A \neq \emptyset$ um conjunto no qual estão definidas duas operações binárias \oplus e \otimes , chamadas **soma** e **produto** ou **multiplicação**. Dizemos que (A, \oplus, \otimes) é um **anel** quando as seguintes condições são verdadeiras:

i) **Associatividade**: para todos x, y, $z \in A$ vale

$$(x \oplus y) \oplus z = x \oplus (y \oplus z).$$

Essa propriedade é chamada de **propriedade associativa** da soma.

Seja $A \neq \emptyset$ um conjunto no qual estão definidas duas operações binárias \oplus e \otimes , chamadas **soma** e **produto** ou **multiplicação**. Dizemos que (A, \oplus, \otimes) é um **anel** quando as seguintes condições são verdadeiras:

i) **Associatividade**: para todos x, y, $z \in A$ vale

$$(x \oplus y) \oplus z = x \oplus (y \oplus z).$$

Essa propriedade é chamada de **propriedade associativa** da soma.

Seja $A \neq \emptyset$ um conjunto no qual estão definidas duas operações binárias \oplus e \otimes , chamadas **soma** e **produto** ou **multiplicação**. Dizemos que (A, \oplus, \otimes) é um **anel** quando as seguintes condições são verdadeiras:

i) **Associatividade**: para todos x, y, $z \in A$ vale

$$(x \oplus y) \oplus z = x \oplus (y \oplus z).$$

Essa propriedade é chamada de **propriedade associativa** da soma.

$$x \oplus y =$$

Seja $A \neq \emptyset$ um conjunto no qual estão definidas duas operações binárias \oplus e \otimes , chamadas **soma** e **produto** ou **multiplicação**. Dizemos que (A, \oplus, \otimes) é um **anel** quando as seguintes condições são verdadeiras:

i) **Associatividade**: para todos x, y, $z \in A$ vale

$$(x \oplus y) \oplus z = x \oplus (y \oplus z).$$

Essa propriedade é chamada de **propriedade associativa** da soma.

$$x \oplus y = y \oplus x$$
.

Seja $A \neq \emptyset$ um conjunto no qual estão definidas duas operações binárias \oplus e \otimes , chamadas **soma** e **produto** ou **multiplicação**. Dizemos que (A, \oplus, \otimes) é um **anel** quando as seguintes condições são verdadeiras:

i) **Associatividade**: para todos x, y, $z \in A$ vale

$$(x \oplus y) \oplus z = x \oplus (y \oplus z).$$

Essa propriedade é chamada de **propriedade associativa** da soma.

$$x \oplus y = y \oplus x$$
.

iii) Elemento Neutro:

iii) Elemento Neutro: Existe em A

iii) Elemento Neutro: Existe em A um elemento denotado por 0

iii) **Elemento Neutro**: Existe em A um elemento denotado por 0 (zero) ou 0_A

iii) **Elemento Neutro**: Existe em A um elemento denotado por 0 (zero) ou 0_A tal que para todo elemento $x \in A$

iii) **Elemento Neutro**: Existe em A um elemento denotado por 0 (zero) ou 0_A tal que para todo elemento $x \in A$ vale

iii) **Elemento Neutro**: Existe em A um elemento denotado por 0 (zero) ou 0_A tal que para todo elemento $x \in A$ vale

 $x \oplus 0_A$

iii) **Elemento Neutro**: Existe em A um elemento denotado por 0 (zero) ou 0_A tal que para todo elemento $x \in A$ vale

$$x \oplus 0_A = x$$

iii) **Elemento Neutro**: Existe em A um elemento denotado por 0 (zero) ou 0_A tal que para todo elemento $x \in A$ vale

$$x\oplus 0_A=x=0_A\oplus x.$$

iii) **Elemento Neutro**: Existe em A um elemento denotado por 0 (zero) ou 0_A tal que para todo elemento $x \in A$ vale

$$x\oplus 0_A=x=0_A\oplus x.$$

Tal elemento 0_A

iii) **Elemento Neutro**: Existe em A um elemento denotado por 0 (zero) ou 0_A tal que para todo elemento $x \in A$ vale

$$x \oplus 0_A = x = 0_A \oplus x$$
.

Tal elemento 0_A é chamado de **elemento neutro da soma**

iii) **Elemento Neutro**: Existe em A um elemento denotado por 0 (zero) ou 0_A tal que para todo elemento $x \in A$ vale

$$x \oplus 0_A = x = 0_A \oplus x$$
.

Tal elemento 0_A é chamado de **elemento neutro da soma** ou simplesmente **elemento neutro**.

iii) **Elemento Neutro**: Existe em A um elemento denotado por 0 (zero) ou 0_A tal que para todo elemento $x \in A$ vale

$$x \oplus 0_A = x = 0_A \oplus x$$
.

Tal elemento 0_A é chamado de **elemento neutro da soma** ou simplesmente **elemento neutro**.

iv) Elemento Oposto:

iii) **Elemento Neutro**: Existe em A um elemento denotado por 0 (zero) ou 0_A tal que para todo elemento $x \in A$ vale

$$x \oplus 0_A = x = 0_A \oplus x$$
.

Tal elemento 0_A é chamado de **elemento neutro da soma** ou simplesmente **elemento neutro**.

iv) **Elemento Oposto**: Para cada elemento $x \in A$,

iii) **Elemento Neutro**: Existe em A um elemento denotado por 0 (zero) ou 0_A tal que para todo elemento $x \in A$ vale

$$x \oplus 0_A = x = 0_A \oplus x$$
.

Tal elemento 0_A é chamado de **elemento neutro da soma** ou simplesmente **elemento neutro**.

iii) **Elemento Neutro**: Existe em A um elemento denotado por 0 (zero) ou 0_A tal que para todo elemento $x \in A$ vale

$$x \oplus 0_A = x = 0_A \oplus x$$
.

Tal elemento 0_A é chamado de **elemento neutro da soma** ou simplesmente **elemento neutro**.

iii) **Elemento Neutro**: Existe em A um elemento denotado por 0 (zero) ou 0_A tal que para todo elemento $x \in A$ vale

$$x \oplus 0_A = x = 0_A \oplus x$$
.

Tal elemento 0_A é chamado de **elemento neutro da soma** ou simplesmente **elemento neutro**.

$$x \oplus y$$

iii) **Elemento Neutro**: Existe em A um elemento denotado por 0 (zero) ou 0_A tal que para todo elemento $x \in A$ vale

$$x \oplus 0_A = x = 0_A \oplus x$$
.

Tal elemento 0_A é chamado de **elemento neutro da soma** ou simplesmente **elemento neutro**.

$$x \oplus y = 0_A$$

iii) **Elemento Neutro**: Existe em A um elemento denotado por 0 (zero) ou 0_A tal que para todo elemento $x \in A$ vale

$$x \oplus 0_A = x = 0_A \oplus x$$
.

Tal elemento 0_A é chamado de **elemento neutro da soma** ou simplesmente **elemento neutro**.

$$x \oplus y = 0_A = y \oplus x$$
.

iii) **Elemento Neutro**: Existe em A um elemento denotado por 0 (zero) ou 0_A tal que para todo elemento $x \in A$ vale

$$x \oplus 0_A = x = 0_A \oplus x$$
.

Tal elemento 0_A é chamado de **elemento neutro da soma** ou simplesmente **elemento neutro**.

iv) **Elemento Oposto**: Para cada elemento $x \in A$, existe $y \in A$ tal que

$$x \oplus y = 0_A = y \oplus x$$
.

Tal elemento y

iii) **Elemento Neutro**: Existe em A um elemento denotado por 0 (zero) ou 0_A tal que para todo elemento $x \in A$ vale

$$x \oplus 0_A = x = 0_A \oplus x$$
.

Tal elemento 0_A é chamado de **elemento neutro da soma** ou simplesmente **elemento neutro**.

iv) **Elemento Oposto**: Para cada elemento $x \in A$, existe $y \in A$ tal que

$$x \oplus y = 0_A = y \oplus x$$
.

Tal elemento y é chamado de oposto aditivo

iii) **Elemento Neutro**: Existe em A um elemento denotado por 0 (zero) ou 0_A tal que para todo elemento $x \in A$ vale

$$x \oplus 0_A = x = 0_A \oplus x$$
.

Tal elemento 0_A é chamado de **elemento neutro da soma** ou simplesmente **elemento neutro**.

iv) **Elemento Oposto**: Para cada elemento $x \in A$, existe $y \in A$ tal que

$$x \oplus y = 0_A = y \oplus x$$
.

Tal elemento y é chamado de **oposto aditivo** de x

iii) **Elemento Neutro**: Existe em A um elemento denotado por 0 (zero) ou 0_A tal que para todo elemento $x \in A$ vale

$$x \oplus 0_A = x = 0_A \oplus x$$
.

Tal elemento 0_A é chamado de **elemento neutro da soma** ou simplesmente **elemento neutro**.

iv) **Elemento Oposto**: Para cada elemento $x \in A$, existe $y \in A$ tal que

$$x \oplus y = 0_A = y \oplus x$$
.

Tal elemento y é chamado de **oposto aditivo** de x ou simplesmente **oposto** de x.

iii) **Elemento Neutro**: Existe em A um elemento denotado por 0 (zero) ou 0_A tal que para todo elemento $x \in A$ vale

$$x \oplus 0_A = x = 0_A \oplus x$$
.

Tal elemento 0_A é chamado de **elemento neutro da soma** ou simplesmente **elemento neutro**.

iv) **Elemento Oposto**: Para cada elemento $x \in A$, existe $y \in A$ tal que

$$x \oplus y = 0_A = y \oplus x$$
.

Tal elemento y é chamado de **oposto aditivo** de x ou simplesmente **oposto** de x.

v) **Associatividade**:

v) **Associatividade**: Para todos x,

v) **Associatividade**: Para todos x, y,

$$(x \otimes y)$$

$$(x \otimes y) \otimes z$$

$$(x \otimes y) \otimes z = x \otimes$$

$$(x \otimes y) \otimes z = x \otimes (y \otimes z).$$

v) **Associatividade**: Para todos x, y, $z \in A$, vale

$$(x \otimes y) \otimes z = x \otimes (y \otimes z).$$

vi) **Distributividade**:

v) **Associatividade**: Para todos x, y, $z \in A$, vale

$$(x \otimes y) \otimes z = x \otimes (y \otimes z).$$

vi) **Distributividade**: Para todos x,

v) **Associatividade**: Para todos x, y, $z \in A$, vale

$$(x \otimes y) \otimes z = x \otimes (y \otimes z).$$

vi) **Distributividade**: Para todos x, y,

v) **Associatividade**: Para todos x, y, $z \in A$, vale

$$(x \otimes y) \otimes z = x \otimes (y \otimes z).$$

v) **Associatividade**: Para todos x, y, $z \in A$, vale

$$(x \otimes y) \otimes z = x \otimes (y \otimes z).$$

v) **Associatividade**: Para todos x, y, $z \in A$, vale

$$(x \otimes y) \otimes z = x \otimes (y \otimes z).$$

$$(x \oplus y)$$

v) **Associatividade**: Para todos x, y, $z \in A$, vale

$$(x \otimes y) \otimes z = x \otimes (y \otimes z).$$

$$(x \oplus y) \otimes z$$

v) **Associatividade**: Para todos x, y, $z \in A$, vale

$$(x \otimes y) \otimes z = x \otimes (y \otimes z).$$

$$(x \oplus y) \otimes z = x \otimes z$$

v) **Associatividade**: Para todos x, y, $z \in A$, vale

$$(x \otimes y) \otimes z = x \otimes (y \otimes z).$$

$$(x \oplus y) \otimes z = x \otimes z \oplus$$

v) **Associatividade**: Para todos x, y, $z \in A$, vale

$$(x \otimes y) \otimes z = x \otimes (y \otimes z).$$

$$(x \oplus y) \otimes z = x \otimes z \oplus y \otimes z.$$

v) **Associatividade**: Para todos x, y, $z \in A$, vale

$$(x \otimes y) \otimes z = x \otimes (y \otimes z).$$

vi) **Distributividade**: Para todos x, y, $z \in A$ vale

$$(x \oplus y) \otimes z = x \otimes z \oplus y \otimes z.$$

Essa propriedade é chamada **distributiva da soma em relação ao produto**.

v) **Associatividade**: Para todos x, y, $z \in A$, vale

$$(x \otimes y) \otimes z = x \otimes (y \otimes z).$$

vi) **Distributividade**: Para todos x, y, $z \in A$ vale

$$(x \oplus y) \otimes z = x \otimes z \oplus y \otimes z.$$

Essa propriedade é chamada **distributiva da soma em relação ao produto**.

vii) Distributividade:

vii) **Distributividade**: Para todos x,

vii) Distributividade: Para todos x, y,

$$x \otimes (y \oplus z)$$

$$x \otimes (y \oplus z) = x \otimes y$$

vii) **Distributividade**: Para todos x, y, $z \in A$ vale

$$x \otimes (y \oplus z) = x \otimes y \oplus$$

7/19

$$x \otimes (y \oplus z) = x \otimes y \oplus x \otimes z$$
.

vii) **Distributividade**: Para todos x, y, $z \in A$ vale

$$x \otimes (y \oplus z) = x \otimes y \oplus x \otimes z$$
.

Essa é a propriedade distributiva do produto em relação à soma.

vii) **Distributividade**: Para todos x, y, $z \in A$ vale

$$x \otimes (y \oplus z) = x \otimes y \oplus x \otimes z$$
.

Essa é a propriedade distributiva do produto em relação à soma.

Seja (A, \oplus, \otimes)

Seja (A, \oplus, \otimes) um anel.

Seja (A, \oplus, \otimes) um anel.

1) **Comutatividade**: Se para todos x,

Seja (A, \oplus, \otimes) um anel.

1) **Comutatividade**: Se para todos x, $y \in A$

Seja (A, \oplus, \otimes) um anel.

1) **Comutatividade**: Se para todos x, $y \in A$ vale

 $x \otimes y$

Seja (A, \oplus, \otimes) um anel.

1) **Comutatividade**: Se para todos x, $y \in A$ vale

$$x \otimes y = y \otimes x$$
.

Seja (A, \oplus, \otimes) um anel.

1) **Comutatividade**: Se para todos x, $y \in A$ vale

$$x \otimes y = y \otimes x$$
.

Dizemos que (A, \oplus, \otimes)

Seja (A, \oplus, \otimes) um anel.

1) **Comutatividade**: Se para todos x, $y \in A$ vale

$$x \otimes y = y \otimes x$$
.

Dizemos que (A, \oplus, \otimes) é um **anel comutativo**.

Seja (A, \oplus, \otimes) um anel.

1) **Comutatividade**: Se para todos x, $y \in A$ vale

$$x \otimes y = y \otimes x$$
.

Dizemos que (A, \oplus, \otimes) é um **anel comutativo**.

2) Unidade:

Seja (A, \oplus, \otimes) um anel.

1) **Comutatividade**: Se para todos x, $y \in A$ vale

$$x \otimes y = y \otimes x$$
.

Dizemos que (A, \oplus, \otimes) é um **anel comutativo**.

2) **Unidade**: Se existe em A

Seja (A, \oplus, \otimes) um anel.

1) **Comutatividade**: Se para todos x, $y \in A$ vale

$$x \otimes y = y \otimes x$$
.

Dizemos que (A, \oplus, \otimes) é um **anel comutativo**.

2) **Unidade**: Se existe em A um elemento denotado por 1

Seja (A, \oplus, \otimes) um anel.

1) **Comutatividade**: Se para todos x, $y \in A$ vale

$$x \otimes y = y \otimes x$$
.

Dizemos que (A, \oplus, \otimes) é um **anel comutativo**.

Seja (A, \oplus, \otimes) um anel.

1) **Comutatividade**: Se para todos x, $y \in A$ vale

$$x \otimes y = y \otimes x$$
.

Dizemos que (A, \oplus, \otimes) é um **anel comutativo**.

Seja (A, \oplus, \otimes) um anel.

1) **Comutatividade**: Se para todos x, $y \in A$ vale

$$x \otimes y = y \otimes x$$
.

Dizemos que (A, \oplus, \otimes) é um **anel comutativo**.

$$x \otimes 1$$

- Seja (A, \oplus, \otimes) um anel.
 - 1) **Comutatividade**: Se para todos x, $y \in A$ vale

$$x \otimes y = y \otimes x$$
.

Dizemos que (A, \oplus, \otimes) é um **anel comutativo**.

$$x \otimes 1 = x$$

Seja (A, \oplus, \otimes) um anel.

1) **Comutatividade**: Se para todos x, $y \in A$ vale

$$x \otimes y = y \otimes x$$
.

Dizemos que (A, \oplus, \otimes) é um **anel comutativo**.

$$x \otimes 1 = x = 1 \otimes x$$

Seja (A, \oplus, \otimes) um anel.

1) **Comutatividade**: Se para todos x, $y \in A$ vale

$$x \otimes y = y \otimes x$$
.

Dizemos que (A, \oplus, \otimes) é um **anel comutativo**.

2) **Unidade**: Se existe em A um elemento denotado por 1 ou 1_A tal que

$$x \otimes 1 = x = 1 \otimes x$$

para todo $x \in A$,

Seja (A, \oplus, \otimes) um anel.

1) **Comutatividade**: Se para todos x, $y \in A$ vale

$$x \otimes y = y \otimes x$$
.

Dizemos que (A, \oplus, \otimes) é um **anel comutativo**.

2) **Unidade**: Se existe em A um elemento denotado por 1 ou 1_A tal que

$$x \otimes 1 = x = 1 \otimes x$$
,

para todo $x \in A$, então dizemos que (A, \oplus, \otimes)

Seja (A, \oplus, \otimes) um anel.

1) **Comutatividade**: Se para todos x, $y \in A$ vale

$$x \otimes y = y \otimes x$$
.

Dizemos que (A, \oplus, \otimes) é um **anel comutativo**.

2) **Unidade**: Se existe em A um elemento denotado por 1 ou 1_A tal que

$$x \otimes 1 = x = 1 \otimes x$$
,

para todo $x \in A$, então dizemos que (A, \oplus, \otimes) é um **anel com unidade**

Seja (A, \oplus, \otimes) um anel.

1) **Comutatividade**: Se para todos x, $y \in A$ vale

$$x \otimes y = y \otimes x$$
.

Dizemos que (A, \oplus, \otimes) é um **anel comutativo**.

2) **Unidade**: Se existe em A um elemento denotado por 1 ou 1_A tal que

$$x \otimes 1 = x = 1 \otimes x$$
,

para todo $x \in A$, então dizemos que (A, \oplus, \otimes) é um **anel com unidade** ou um **anel unitário** ou ainda um **anel com identidade**.

Seja (A, \oplus, \otimes) um anel.

1) **Comutatividade**: Se para todos x, $y \in A$ vale

$$x \otimes y = y \otimes x$$
.

Dizemos que (A, \oplus, \otimes) é um **anel comutativo**.

2) **Unidade**: Se existe em A um elemento denotado por 1 ou 1_A tal que

$$x \otimes 1 = x = 1 \otimes x$$
,

para todo $x \in A$, então dizemos que (A, \oplus, \otimes) é um **anel com unidade** ou um **anel unitário** ou ainda um **anel com identidade**. O elemento 1_A

Seja (A, \oplus, \otimes) um anel.

1) Comutatividade: Se para todos $x, y \in A$ vale

$$x \otimes y = y \otimes x$$
.

Dizemos que (A, \oplus, \otimes) é um **anel comutativo**.

2) **Unidade**: Se existe em A um elemento denotado por 1 ou 1_A tal que

$$x \otimes 1 = x = 1 \otimes x$$
,

para todo $x \in A$, então dizemos que (A, \oplus, \otimes) é um **anel com unidade** ou um **anel unitário** ou ainda um **anel com identidade**. O elemento 1_A é chamado de **unidade** de A

Seja (A, \oplus, \otimes) um anel.

1) **Comutatividade**: Se para todos x, $y \in A$ vale

$$x \otimes y = y \otimes x$$
.

Dizemos que (A, \oplus, \otimes) é um **anel comutativo**.

2) **Unidade**: Se existe em A um elemento denotado por 1 ou 1_A tal que

$$x \otimes 1 = x = 1 \otimes x$$
,

para todo $x \in A$, então dizemos que (A, \oplus, \otimes) é um **anel com unidade** ou um **anel unitário** ou ainda um **anel com identidade**. O elemento 1_A é chamado de **unidade** de A ou **elemento neutro da multiplicação**

Seja (A, \oplus, \otimes) um anel.

1) **Comutatividade**: Se para todos x, $y \in A$ vale

$$x \otimes y = y \otimes x$$
.

Dizemos que (A, \oplus, \otimes) é um **anel comutativo**.

2) **Unidade**: Se existe em A um elemento denotado por 1 ou 1_A tal que

$$x \otimes 1 = x = 1 \otimes x$$
,

para todo $x \in A$, então dizemos que (A, \oplus, \otimes) é um **anel com unidade** ou um **anel unitário** ou ainda um **anel com identidade**. O elemento 1_A é chamado de **unidade** de A ou **elemento neutro da multiplicação** de A.

Seja (A, \oplus, \otimes) um anel.

1) **Comutatividade**: Se para todos x, $y \in A$ vale

$$x \otimes y = y \otimes x$$
.

Dizemos que (A, \oplus, \otimes) é um **anel comutativo**.

2) **Unidade**: Se existe em A um elemento denotado por 1 ou 1_A tal que

$$x \otimes 1 = x = 1 \otimes x$$
,

para todo $x \in A$, então dizemos que (A, \oplus, \otimes) é um **anel com unidade** ou um **anel unitário** ou ainda um **anel com identidade**. O elemento 1_A é chamado de **unidade** de A ou **elemento neutro da multiplicação** de A.

3) Se um anel (A, \oplus, \otimes)

3) Se um anel (A, \oplus, \otimes) satisfaz as duas propriedades anteriores

9/19

3) Se um anel (A, \oplus, \otimes) satisfaz as duas propriedades anteriores dizemos que (A, \oplus, \otimes) é um **anel comutativo com unidade**

3) Se um anel (A, \oplus, \otimes) satisfaz as duas propriedades anteriores dizemos que (A, \oplus, \otimes) é um anel comutativo com unidade ou um anel comutativo unitário.

- 3) Se um anel (A, \oplus, \otimes) satisfaz as duas propriedades anteriores dizemos que (A, \oplus, \otimes) é um anel comutativo com unidade ou um anel comutativo unitário.
- 4) Seja (A, \oplus, \otimes) um anel.

- 3) Se um anel (A, \oplus, \otimes) satisfaz as duas propriedades anteriores dizemos que (A, \oplus, \otimes) é um anel comutativo com unidade ou um anel comutativo unitário.
- 4) Seja (A, \oplus, \otimes) um anel. Quando não houver chance de confusão com relação às operações envolvidas diremos simplesmente que

- 3) Se um anel (A, \oplus, \otimes) satisfaz as duas propriedades anteriores dizemos que (A, \oplus, \otimes) é um anel comutativo com unidade ou um anel comutativo unitário.
- 4) Seja (A, \oplus, \otimes) um anel. Quando não houver chance de confusão com relação às operações envolvidas diremos simplesmente que A é uma anel.

- 3) Se um anel (A, \oplus, \otimes) satisfaz as duas propriedades anteriores dizemos que (A, \oplus, \otimes) é um anel comutativo com unidade ou um anel comutativo unitário.
- 4) Seja (A, \oplus, \otimes) um anel. Quando não houver chance de confusão com relação às operações envolvidas diremos simplesmente que A é uma anel.

1)
$$(\mathbb{Z}, +, .)$$
,

1)
$$(\mathbb{Z}, +, .)$$
, $(\mathbb{Q}, +, .)$,

1)
$$(\mathbb{Z}, +, .)$$
, $(\mathbb{Q}, +, .)$, $(\mathbb{R}, +, .)$,

1) $(\mathbb{Z},+,.)$, $(\mathbb{Q},+,.)$, $(\mathbb{R},+,.)$, $(\mathbb{C},+,.)$ são anéis comutativos

1) $(\mathbb{Z},+,.)$, $(\mathbb{Q},+,.)$, $(\mathbb{R},+,.)$, $(\mathbb{C},+,.)$ são anéis comutativos e com unidade.

1) $(\mathbb{Z},+,.)$, $(\mathbb{Q},+,.)$, $(\mathbb{R},+,.)$, $(\mathbb{C},+,.)$ são anéis comutativos e com unidade.

2) Considere as operações \star e \odot em $\mathbb Q$ definidas por

$$x \star y = x + y - 8$$
$$x \odot y = x + y - \frac{xy}{8}.$$

Mostre que $(\mathbb{Q}, \star, \odot)$ é um anel comutativo e com unidade.

Observação: Seja (A, \oplus, \cdot)

Seja (A, \oplus, \cdot) um anel.

Seja (A, \oplus, \cdot) um anel. Para simplificar a notação

Seja (A, \oplus, \cdot) um anel. Para simplificar a notação vamos denotar a operação \oplus

Seja (A, \oplus, \cdot) um anel. Para simplificar a notação vamos denotar a operação \oplus por +

Seja (A, \oplus, \cdot) um anel. Para simplificar a notação vamos denotar a operação \oplus por + e a operação \otimes

Seja (A, \oplus, \cdot) um anel. Para simplificar a notação vamos denotar a operação \oplus por + e a operação \otimes por \cdot

Seja (A, \oplus, \cdot) um anel. Para simplificar a notação vamos denotar a operação \oplus por + e a operação \otimes por \cdot e assim escrever simplesmente

Seja (A, \oplus, \cdot) um anel. Para simplificar a notação vamos denotar a operação \oplus por + e a operação \otimes por \cdot e assim escrever simplesmente que $(A, +, \cdot)$

Seja (A, \oplus, \cdot) um anel. Para simplificar a notação vamos denotar a operação \oplus por + e a operação \otimes por \cdot e assim escrever simplesmente que $(A, +, \cdot)$ é um anel.

Seja (A, \oplus, \cdot) um anel. Para simplificar a notação vamos denotar a operação \oplus por + e a operação \otimes por \cdot e assim escrever simplesmente que $(A, +, \cdot)$ é um anel.

Seja $(A, +, \cdot)$ um anel.

Seja $(A, +, \cdot)$ um anel. Então:

i) O elemento neutro é único.

- i) O elemento neutro é único.
- ii) Para cada $x \in A$

- i) O elemento neutro é único.
- ii) Para cada $x \in A$ existe um único oposto.

- i) O elemento neutro é único.
- ii) Para cada $x \in A$ existe um único oposto.
- iii) Para todo $x \in A$,

- i) O elemento neutro é único.
- ii) Para cada $x \in A$ existe um único oposto.
- iii) Para todo $x \in A$,

$$-(-x)=x.$$

Seja $(A, +, \cdot)$ um anel. Então:

- i) O elemento neutro é único.
- ii) Para cada $x \in A$ existe um único oposto.
- iii) Para todo $x \in A$,

$$-(-x)=x.$$

iv) Dados x_1 ,

Seja $(A, +, \cdot)$ um anel. Então:

- i) O elemento neutro é único.
- ii) Para cada $x \in A$ existe um único oposto.
- iii) Para todo $x \in A$,

$$-(-x)=x.$$

iv) Dados x_1 , x_2 ,

Seja $(A, +, \cdot)$ um anel. Então:

- i) O elemento neutro é único.
- ii) Para cada $x \in A$ existe um único oposto.
- iii) Para todo $x \in A$,

$$-(-x)=x.$$

iv) Dados x_1 , x_2 , ..., $x_n \in A$,

Seja $(A, +, \cdot)$ um anel. Então:

- i) O elemento neutro é único.
- ii) Para cada $x \in A$ existe um único oposto.
- iii) Para todo $x \in A$,

$$-(-x)=x.$$

Seja $(A, +, \cdot)$ um anel. Então:

- i) O elemento neutro é único.
- ii) Para cada $x \in A$ existe um único oposto.
- iii) Para todo $x \in A$,

$$-(-x)=x.$$

Seja $(A, +, \cdot)$ um anel. Então:

- i) O elemento neutro é único.
- ii) Para cada $x \in A$ existe um único oposto.
- iii) Para todo $x \in A$,

$$-(-x)=x.$$

$$-(x_1+x_2+\cdots+x_n)$$

Seja $(A, +, \cdot)$ um anel. Então:

- i) O elemento neutro é único.
- ii) Para cada $x \in A$ existe um único oposto.
- iii) Para todo $x \in A$,

$$-(-x)=x.$$

$$-(x_1 + x_2 + \cdots + x_n) = (-x_1)$$

Seja $(A, +, \cdot)$ um anel. Então:

- i) O elemento neutro é único.
- ii) Para cada $x \in A$ existe um único oposto.
- iii) Para todo $x \in A$,

$$-(-x)=x.$$

$$-(x_1 + x_2 + \cdots + x_n) = (-x_1) + (-x_2)$$

Seja $(A, +, \cdot)$ um anel. Então:

- i) O elemento neutro é único.
- ii) Para cada $x \in A$ existe um único oposto.
- iii) Para todo $x \in A$,

$$-(-x)=x.$$

$$-(x_1 + x_2 + \cdots + x_n) = (-x_1) + (-x_2) + \cdots + (-x_n).$$

Seja $(A, +, \cdot)$ um anel. Então:

- i) O elemento neutro é único.
- ii) Para cada $x \in A$ existe um único oposto.
- iii) Para todo $x \in A$,

$$-(-x)=x.$$

$$-(x_1 + x_2 + \cdots + x_n) = (-x_1) + (-x_2) + \cdots + (-x_n).$$

v) Para todos α ,

v) Para todos α , x,

v) Para todos α , x, $y \in A$,

v) Para todos α , x, $y \in A$, se

$$\alpha + x$$

v) Para todos α , x, $y \in A$, se

$$\alpha + x = \alpha + y,$$

v) Para todos α , x, $y \in A$, se

$$\alpha + x = \alpha + y$$
,

então x = y.

v) Para todos α , x, $y \in A$, se

$$\alpha + x = \alpha + y$$
,

então x = y.

v) Para todos α , x, $y \in A$, se

$$\alpha + x = \alpha + y$$

então x = y.

$$x \cdot 0_A$$

v) Para todos α , x, $y \in A$, se

$$\alpha + x = \alpha + y$$

então x = y.

$$x \cdot 0_A = 0_A$$

v) Para todos α , x, $y \in A$, se

$$\alpha + x = \alpha + y$$

então x = y.

$$x \cdot 0_A = 0_A = 0_A \cdot x.$$

v) Para todos α , x, $y \in A$, se

$$\alpha + x = \alpha + y$$

então x = y.

$$x \cdot 0_A = 0_A = 0_A \cdot x$$
.

v) Para todos x,

v) Para todos $x, y \in A$,

$$x(-y)$$

$$x(-y) = (-x)y$$

$$x(-y) = (-x)y = -(xy).$$

v) Para todos $x, y \in A$, temos

$$x(-y) = (-x)y = -(xy).$$

vi) Para todos x,

v) Para todos $x, y \in A$, temos

$$x(-y) = (-x)y = -(xy).$$

v) Para todos $x, y \in A$, temos

$$x(-y) = (-x)y = -(xy).$$

vi) Para todos x, $y \in A$,

хy

v) Para todos $x, y \in A$, temos

$$x(-y) = (-x)y = -(xy).$$

$$xy = (-x)(-y).$$

v) Para todos $x, y \in A$, temos

$$x(-y) = (-x)y = -(xy).$$

$$xy = (-x)(-y).$$

i) Suponha que existam 0_1 ,

i) Suponha que existam 0_1 , $0_2 \in A$

i) Suponha que existam 0_1 , $0_2 \in A$ elementos neutros

i) Suponha que existam 0_1 , $0_2 \in A$ elementos neutros de A.

$$x + 0_1$$

$$x + 0_1 = x$$

$$x + 0_1 = x$$
 e $x + 0_2$

$$x + 0_1 = x$$
 e $x + 0_2 = x$

i) Suponha que existam 0_1 , $0_2 \in A$ elementos neutros de A. Assim

$$x + 0_1 = x$$
 e $x + 0_2 = x$

para todo $x \in A$.

i) Suponha que existam 0_1 , $0_2 \in A$ elementos neutros de A. Assim

$$x + 0_1 = x$$
 e $x + 0_2 = x$

i) Suponha que existam 0_1 , $0_2 \in A$ elementos neutros de A. Assim

$$x + 0_1 = x$$
 e $x + 0_2 = x$

para todo $x \in A$. Assim

 0_1

i) Suponha que existam 0_1 , $0_2 \in A$ elementos neutros de A. Assim

$$x + 0_1 = x$$
 e $x + 0_2 = x$

$$0_1 = 0_1 +$$

i) Suponha que existam 0_1 , $0_2 \in A$ elementos neutros de A. Assim

$$x + 0_1 = x$$
 e $x + 0_2 = x$

$$0_1 = 0_1 + 0_2$$

i) Suponha que existam 0_1 , $0_2 \in A$ elementos neutros de A. Assim

$$x + 0_1 = x$$
 e $x + 0_2 = x$

$$0_1 = 0_1 + 0_2 = 0_2$$

i) Suponha que existam 0_1 , $0_2 \in A$ elementos neutros de A. Assim

$$x + 0_1 = x$$
 e $x + 0_2 = x$

para todo $x \in A$. Assim

$$0_1 = 0_1 + 0_2 = 0_2$$

e portanto o elemento neutro é único.

i) Suponha que existam 0_1 , $0_2 \in A$ elementos neutros de A. Assim

$$x + 0_1 = x$$
 e $x + 0_2 = x$

para todo $x \in A$. Assim

$$0_1 = 0_1 + 0_2 = 0_2$$

e portanto o elemento neutro é único.

ii) De fato,

ii) De fato, dado $x \in A$

ii) De fato, dado $x \in A$ suponha que existam y_1 ,

$$x + y_1 = 0_A$$

$$x + y_1 = 0_A$$
 e $x + y_2$

$$x + y_1 = 0_A$$
 e $x + y_2 = 0_A$.

$$x + y_1 = 0_A$$
 e $x + y_2 = 0_A$.

$$x + y_1 = 0_A$$
 e $x + y_2 = 0_A$.

Daí

*y*1

$$x + y_1 = 0_A$$
 e $x + y_2 = 0_A$.

$$y_1 = y_2$$

$$x + y_1 = 0_A$$
 e $x + y_2 = 0_A$.

$$y_1=y_2+0_A$$

$$x + y_1 = 0_A$$
 e $x + y_2 = 0_A$.

$$y_1 = y_2 + 0_A = y_1$$

$$x + y_1 = 0_A$$
 e $x + y_2 = 0_A$.

$$y_1 = y_2 + 0_A = y_1 + (x + y_2)$$

$$x + y_1 = 0_A$$
 e $x + y_2 = 0_A$.

$$y_1 = y_2 + 0_A = y_1 + (x + y_2) = (y_1 + x)$$

$$x + y_1 = 0_A$$
 e $x + y_2 = 0_A$.

$$y_1 = y_2 + 0_A = y_1 + (x + y_2) = (y_1 + x) + y_2$$

$$x + y_1 = 0_A$$
 e $x + y_2 = 0_A$.

$$y_1 = y_2 + 0_A = y_1 + (x + y_2) = (y_1 + x) + y_2 = 0_A$$

$$x + y_1 = 0_A$$
 e $x + y_2 = 0_A$.

$$y_1 = y_2 + 0_A = y_1 + (x + y_2) = (y_1 + x) + y_2 = 0_A + y_2$$

$$x + y_1 = 0_A$$
 e $x + y_2 = 0_A$.

$$y_1 = y_2 + 0_A = y_1 + (x + y_2) = (y_1 + x) + y_2 = 0_A + y_2 = y_2.$$

$$x + y_1 = 0_A$$
 e $x + y_2 = 0_A$.

Daí

$$y_1 = y_2 + 0_A = y_1 + (x + y_2) = (y_1 + x) + y_2 = 0_A + y_2 = y_2.$$

Logo o oposto de x é único

$$x + y_1 = 0_A$$
 e $x + y_2 = 0_A$.

Daí

$$y_1 = y_2 + 0_A = y_1 + (x + y_2) = (y_1 + x) + y_2 = 0_A + y_2 = y_2.$$

Logo o oposto de x é único e daí será denotado por -x.

$$x + y_1 = 0_A$$
 e $x + y_2 = 0_A$.

Daí

$$y_1 = y_2 + 0_A = y_1 + (x + y_2) = (y_1 + x) + y_2 = 0_A + y_2 = y_2.$$

Logo o oposto de x é único e daí será denotado por -x.

iii) Dado $x \in A$,

$$x + y_1 = 0_A$$
 e $x + y_2 = 0_A$.

Daí

$$y_1 = y_2 + 0_A = y_1 + (x + y_2) = (y_1 + x) + y_2 = 0_A + y_2 = y_2.$$

Logo o oposto de x é único e daí será denotado por -x.

iii) Dado $x \in A$, então -x é oposto de x,

$$x + y_1 = 0_A$$
 e $x + y_2 = 0_A$.

Daí

$$y_1 = y_2 + 0_A = y_1 + (x + y_2) = (y_1 + x) + y_2 = 0_A + y_2 = y_2.$$

Logo o oposto de x é único e daí será denotado por -x.

iii) Dado $x \in A$, então -x é oposto de x, isto é,

$$x + y_1 = 0_A$$
 e $x + y_2 = 0_A$.

Daí

$$y_1 = y_2 + 0_A = y_1 + (x + y_2) = (y_1 + x) + y_2 = 0_A + y_2 = y_2.$$

Logo o oposto de x é único e daí será denotado por -x.

iii) Dado $x \in A$, então -x é oposto de x, isto é, x

$$x + y_1 = 0_A$$
 e $x + y_2 = 0_A$.

Daí

$$y_1 = y_2 + 0_A = y_1 + (x + y_2) = (y_1 + x) + y_2 = 0_A + y_2 = y_2.$$

Logo o oposto de x é único e daí será denotado por -x.

iii) Dado $x \in A$, então -x é oposto de x, isto é, x + (-x)

$$x + y_1 = 0_A$$
 e $x + y_2 = 0_A$.

Daí

$$y_1 = y_2 + 0_A = y_1 + (x + y_2) = (y_1 + x) + y_2 = 0_A + y_2 = y_2.$$

Logo o oposto de x é único e daí será denotado por -x.

iii) Dado $x \in A$, então -x é oposto de x, isto é, $x + (-x) = 0_A$.

$$x + y_1 = 0_A$$
 e $x + y_2 = 0_A$.

Daí

$$y_1 = y_2 + 0_A = y_1 + (x + y_2) = (y_1 + x) + y_2 = 0_A + y_2 = y_2.$$

Logo o oposto de x é único e daí será denotado por -x.

iii) Dado $x \in A$, então -x é oposto de x, isto é, $x + (-x) = 0_A$. Logo o oposto de (-x)

$$x + y_1 = 0_A$$
 e $x + y_2 = 0_A$.

Daí

$$y_1 = y_2 + 0_A = y_1 + (x + y_2) = (y_1 + x) + y_2 = 0_A + y_2 = y_2.$$

Logo o oposto de x é único e daí será denotado por -x.

iii) Dado $x \in A$, então -x é oposto de x, isto é, $x + (-x) = 0_A$. Logo o oposto de (-x) é x,

$$x + y_1 = 0_A$$
 e $x + y_2 = 0_A$.

Daí

$$y_1 = y_2 + 0_A = y_1 + (x + y_2) = (y_1 + x) + y_2 = 0_A + y_2 = y_2.$$

Logo o oposto de x é único e daí será denotado por -x.

iii) Dado $x \in A$, então -x é oposto de x, isto é, $x + (-x) = 0_A$. Logo o oposto de (-x) é x, ou seja,

$$x + y_1 = 0_A$$
 e $x + y_2 = 0_A$.

Daí

$$y_1 = y_2 + 0_A = y_1 + (x + y_2) = (y_1 + x) + y_2 = 0_A + y_2 = y_2.$$

Logo o oposto de x é único e daí será denotado por -x.

iii) Dado $x \in A$, então -x é oposto de x, isto é, $x + (-x) = 0_A$. Logo o oposto de (-x) é x, ou seja, -(-x)

$$x + y_1 = 0_A$$
 e $x + y_2 = 0_A$.

Daí

$$y_1 = y_2 + 0_A = y_1 + (x + y_2) = (y_1 + x) + y_2 = 0_A + y_2 = y_2.$$

Logo o oposto de x é único e daí será denotado por -x.

iii) Dado $x \in A$, então -x é oposto de x, isto é, $x + (-x) = 0_A$. Logo o oposto de (-x) é x, ou seja, -(-x) = x.

$$x + y_1 = 0_A$$
 e $x + y_2 = 0_A$.

Daí

$$y_1 = y_2 + 0_A = y_1 + (x + y_2) = (y_1 + x) + y_2 = 0_A + y_2 = y_2.$$

Logo o oposto de x é único e daí será denotado por -x.

iii) Dado $x \in A$, então -x é oposto de x, isto é, $x + (-x) = 0_A$. Logo o oposto de (-x) é x, ou seja, -(-x) = x.

- iv) Segue usando indução sobre n.
- v) Suponha que $\alpha + x$

- iv) Segue usando indução sobre n.
- v) Suponha que $\alpha + x = \alpha + y$.

- iv) Segue usando indução sobre n.
- v) Suponha que $\alpha + x = \alpha + y$. Seja $-\alpha$

- iv) Segue usando indução sobre n.
- v) Suponha que $\alpha + x = \alpha + y$. Seja $-\alpha$ o oposto de α .

- iv) Segue usando indução sobre n.
- v) Suponha que $\alpha + x = \alpha + y$. Seja $-\alpha$ o oposto de α . Daí

- iv) Segue usando indução sobre n.
- v) Suponha que $\alpha+x=\alpha+y$. Seja $-\alpha$ o oposto de α . Daí $x=0_A$

- iv) Segue usando indução sobre n.
- v) Suponha que $\alpha+x=\alpha+y$. Seja $-\alpha$ o oposto de α . Daí $x=0_A+x=[(-\alpha)+\alpha]$

- iv) Segue usando indução sobre n.
- v) Suponha que $\alpha + x = \alpha + y$. Seja $-\alpha$ o oposto de α . Daí $x = 0_A + x = [(-\alpha) + \alpha] + x =$

- iv) Segue usando indução sobre n.
- v) Suponha que $\alpha + x = \alpha + y$. Seja $-\alpha$ o oposto de α . Daí $x = 0_A + x = [(-\alpha) + \alpha] + x = (-\alpha)$

v) Suponha que
$$\alpha + x = \alpha + y$$
. Seja $-\alpha$ o oposto de α . Daí $x = 0_A + x = [(-\alpha) + \alpha] + x = (-\alpha) + (\alpha + x)$

v) Suponha que
$$\alpha + x = \alpha + y$$
. Seja $-\alpha$ o oposto de α . Daí $x = 0_A + x = [(-\alpha) + \alpha] + x = (-\alpha) + (\alpha + x) = (-\alpha) + (-\alpha)$

v) Suponha que
$$\alpha + x = \alpha + y$$
. Seja $-\alpha$ o oposto de α . Daí $x = 0_A + x = [(-\alpha) + \alpha] + x = (-\alpha) + (\alpha + x) = (-\alpha) + (\alpha + y)$

v) Suponha que
$$\alpha + x = \alpha + y$$
. Seja $-\alpha$ o oposto de α . Daí $x = 0_A + x = [(-\alpha) + \alpha] + x = (-\alpha) + (\alpha + x) = (-\alpha) + (\alpha + y) = [(-\alpha) + \alpha]$

v) Suponha que
$$\alpha + x = \alpha + y$$
. Seja $-\alpha$ o oposto de α . Daí $x = 0_A + x = [(-\alpha) + \alpha] + x = (-\alpha) + (\alpha + x) = (-\alpha) + (\alpha + y) = [(-\alpha) + \alpha] + y$

v) Suponha que
$$\alpha+x=\alpha+y$$
. Seja $-\alpha$ o oposto de α . Daí $x=0_A+x=[(-\alpha)+\alpha]+x=(-\alpha)+(\alpha+x)=(-\alpha)+(\alpha+y)=[(-\alpha)+\alpha]+y=0_A+y$

v) Suponha que
$$\alpha+x=\alpha+y$$
. Seja $-\alpha$ o oposto de α . Daí $x=0_A+x=[(-\alpha)+\alpha]+x=(-\alpha)+(\alpha+x)=(-\alpha)+(\alpha+y)=[(-\alpha)+\alpha]+y=0_A+y=y$

- iv) Segue usando indução sobre n.
- v) Suponha que $\alpha+x=\alpha+y$. Seja $-\alpha$ o oposto de α . Daí $x=0_A+x=[(-\alpha)+\alpha]+x=(-\alpha)+(\alpha+x)=(-\alpha)+(\alpha+y)=[(-\alpha)+\alpha]+y=0_A+y=y$ como queríamos.

- iv) Segue usando indução sobre n.
- v) Suponha que $\alpha+x=\alpha+y$. Seja $-\alpha$ o oposto de α . Daí $x=0_A+x=[(-\alpha)+\alpha]+x=(-\alpha)+(\alpha+x)=(-\alpha)+(\alpha+y)=[(-\alpha)+\alpha]+y=0_A+y=y$ como queríamos.

$$x \cdot 0_A +$$

$$x \cdot 0_A + 0_A$$

$$x \cdot 0_A + 0_A = x \cdot 0_A$$

$$x \cdot 0_A + 0_A = x \cdot 0_A = x \cdot (0_A + 0_A)$$

$$x \cdot 0_A + 0_A = x \cdot 0_A = x \cdot (0_A + 0_A) = x \cdot 0_A$$

$$x \cdot 0_A + 0_A = x \cdot 0_A = x \cdot (0_A + 0_A) = x \cdot 0_A + x \cdot 0_A.$$

$$x \cdot 0_A + 0_A = x \cdot 0_A = x \cdot (0_A + 0_A) = x \cdot 0_A + x \cdot 0_A.$$

Assim do item anterior

$$x \cdot 0_A + 0_A = x \cdot 0_A = x \cdot (0_A + 0_A) = x \cdot 0_A + x \cdot 0_A.$$

Assim do item anterior segue que $x \cdot 0_A$

$$x \cdot 0_A + 0_A = x \cdot 0_A = x \cdot (0_A + 0_A) = x \cdot 0_A + x \cdot 0_A.$$

Assim do item anterior segue que $x \cdot 0_A = 0_A$.

$$x \cdot 0_A + 0_A = x \cdot 0_A = x \cdot (0_A + 0_A) = x \cdot 0_A + x \cdot 0_A.$$

Assim do item anterior segue que $x \cdot 0_A = 0_A$.

vii) Provemos que

$$x \cdot 0_A + 0_A = x \cdot 0_A = x \cdot (0_A + 0_A) = x \cdot 0_A + x \cdot 0_A.$$

Assim do item anterior segue que $x \cdot 0_A = 0_A$.

vii) Provemos que x(-y)

$$x \cdot 0_A + 0_A = x \cdot 0_A = x \cdot (0_A + 0_A) = x \cdot 0_A + x \cdot 0_A.$$

Assim do item anterior segue que $x \cdot 0_A = 0_A$.

vii) Provemos que x(-y) = -(xy)

$$x \cdot 0_A + 0_A = x \cdot 0_A = x \cdot (0_A + 0_A) = x \cdot 0_A + x \cdot 0_A.$$

Assim do item anterior segue que $x \cdot 0_A = 0_A$.

vii) Provemos que
$$x(-y) = -(xy)$$
:

$$x(-y)$$

$$x \cdot 0_A + 0_A = x \cdot 0_A = x \cdot (0_A + 0_A) = x \cdot 0_A + x \cdot 0_A.$$

Assim do item anterior segue que $x \cdot 0_A = 0_A$.

vii) Provemos que
$$x(-y) = -(xy)$$
:

$$x(-y) + xy$$

$$x \cdot 0_A + 0_A = x \cdot 0_A = x \cdot (0_A + 0_A) = x \cdot 0_A + x \cdot 0_A.$$

Assim do item anterior segue que $x \cdot 0_A = 0_A$.

vii) Provemos que x(-y) = -(xy):

$$x(-y) + xy = x[(-y) + y]$$

$$x \cdot 0_A + 0_A = x \cdot 0_A = x \cdot (0_A + 0_A) = x \cdot 0_A + x \cdot 0_A.$$

Assim do item anterior segue que $x \cdot 0_A = 0_A$.

vii) Provemos que x(-y) = -(xy):

$$x(-y) + xy = x[(-y) + y] = x \cdot 0_A$$

$$x \cdot 0_A + 0_A = x \cdot 0_A = x \cdot (0_A + 0_A) = x \cdot 0_A + x \cdot 0_A.$$

Assim do item anterior segue que $x \cdot 0_A = 0_A$.

vii) Provemos que x(-y) = -(xy):

$$x(-y) + xy = x[(-y) + y] = x \cdot 0_A = 0_A,$$

$$x \cdot 0_A + 0_A = x \cdot 0_A = x \cdot (0_A + 0_A) = x \cdot 0_A + x \cdot 0_A.$$

Assim do item anterior segue que $x \cdot 0_A = 0_A$.

vii) Provemos que x(-y) = -(xy):

$$x(-y) + xy = x[(-y) + y] = x \cdot 0_A = 0_A,$$

portanto -xy

$$x \cdot 0_A + 0_A = x \cdot 0_A = x \cdot (0_A + 0_A) = x \cdot 0_A + x \cdot 0_A.$$

Assim do item anterior segue que $x \cdot 0_A = 0_A$.

vii) Provemos que x(-y) = -(xy):

$$x(-y) + xy = x[(-y) + y] = x \cdot 0_A = 0_A,$$

portanto -xy = x(-y).

$$x \cdot 0_A + 0_A = x \cdot 0_A = x \cdot (0_A + 0_A) = x \cdot 0_A + x \cdot 0_A.$$

Assim do item anterior segue que $x \cdot 0_A = 0_A$.

vii) Provemos que x(-y) = -(xy):

$$x(-y) + xy = x[(-y) + y] = x \cdot 0_A = 0_A,$$

portanto
$$-xy = x(-y)$$
.

viii) Basta usar o caso anterior.

$$x \cdot 0_A + 0_A = x \cdot 0_A = x \cdot (0_A + 0_A) = x \cdot 0_A + x \cdot 0_A.$$

Assim do item anterior segue que $x \cdot 0_A = 0_A$.

vii) Provemos que x(-y) = -(xy):

$$x(-y) + xy = x[(-y) + y] = x \cdot 0_A = 0_A,$$

portanto
$$-xy = x(-y)$$
.

viii) Basta usar o caso anterior.