Brandon Chen

In-Class Presentation

Construction Problem 16.28

16.28 Let \mathscr{C} be a circle, and A be a point on the circle.

Draw the line \overrightarrow{OA} , and take point P on $\mathscr C$ different from A

Take point G on \overline{OP} with $\frac{PO}{PG}$ equal to the golden ratio

Draw circle \mathscr{D} with center P containing point G.

Then by theorem 14.10, \mathscr{D} contains an interior point in \mathscr{C} , so it must intersect at exactly two other points, call them C, D

Draw circle with center C containing point D, call the other point of intersection B

Draw circle with center D containing point E, call the other point of intersection E

Draw pentagon ABCDE

We know $\overline{PC} \cong \overline{PG} \cong \overline{PD}$, since both are radii of same circle \mathscr{C}

Similary $\overline{OP} \cong \overline{OC}$

We know $\frac{PO}{PC} = \frac{PO}{PG}$, then ΔPOC is a golden triangle.

Then $\angle POC = 36$

Similarly, $\angle POD = 36$

Since D, C on opposite sides of \overrightarrow{OP} , and by two circles theorem, $\angle POC, \angle POD$ are adjacent angles, so $\angle COD = 72$

 $\Delta COD \cong \Delta BOC \cong \Delta DOE$ by SSS

Then $\angle BOC = \angle DOE = 72$

Apply linear triple theorem for angles $\angle AOB, \angle BOC, \angle POC$

Then $\angle AOB$ must be 72

Apply linear triple theorem for $\angle AOE, \angle EOD, \angle POD$, then $\angle AOE = 72$

Then by SAS, triangles $\triangle AOB$, $\triangle AOE$ are congruent to triangles $\triangle BOC$, $\triangle COD$, $\triangle DOE$

Then AB = BC = CD = DE = EA

Then ABCDE is equilateral.