TrenchP[™] Power MOSFETs

IXTT68P20T IXTH68P20T

 $V_{DSS} = -200V$ $I_{D25} = -68A$ $R_{DS(on)} \le 55m\Omega$

P-Channel Enhancement Mode Avalanche Rated

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	T _J = 25°C to 150°C	- 200	V	
V _{DGR}	$T_J = 25^{\circ}C$ to 150°C, $R_{GS} = 1M\Omega$	- 200	V	
V _{GSS}	Continuous	±15	V	
V _{GSM}	Transient	±25	V	
I _{D25}	T _C = 25°C	- 68	A	
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, Pulse Width Limited by $T_{\rm JM}$	- 200	Α	
I _A	T _C = 25°C	- 68	A	
E _{as}	$T_{c} = 25^{\circ}C$	2.5	J	
dv/dt	$I_{_{S}} \le I_{_{DM}}, V_{_{DD}} \le V_{_{DSS}}, T_{_{J}} \le 150^{\circ}C$	10	V/ns	
P_{D}	T _C = 25°C	568	W	
T _J T _{JM} T _{stg}		- 55 +150 150 - 55 +150	0° 0° 0°	
T _L T _{SOLD}	1.6mm (0.062 in.) from Case for 10s Plastic Body for 10s	300 260	°C °C	
M_d	Mounting Torque (TO-247)	1.13 / 10	Nm/lb.in.	
Weight	TO-268 TO-247	4 6	g g	

TO-247 (IXTH)	
G D S	D (Tab)

G	= Gate	D	=	Drain
S	= Source	Tab	=	Drain

Features

- International Standard Packages
- Avalanche Rated
- Extended FBSOA
- Fast Intrinsic Diode
- $^{\bullet}$ Low $\rm R_{\rm DS(ON)}$ and $\rm Q_{\rm G}$

Advantages

- Easy to Mount
- Space Savings
- High Power Density

Applications

- High-Side Switching
- Push Pull Amplifiers
- DC Choppers
- Automatic Test Equipment
- Current Regulators
- Battery Charger Applications

		Chara Min.	cteristic Typ.	Values Max.	
BV _{DSS}	$V_{GS} = 0V, I_{D} = -250\mu A$	- 200			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	- 2.0		- 4.0	V
I _{GSS}	$V_{GS} = \pm 15V, V_{DS} = 0V$			±100	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$ T_{J} :	= 125°C		- 10 - 200	•
R _{DS(on)}	$V_{GS} = -10V, I_{D} = 0.5 \cdot I_{D25}, \text{ Note 1}$			55	mΩ

Symbo (T _J = 25		Test Conditions Unless Otherwise Specified)	Chara Min.	acteristic Typ.	Values Max.
g _{fs}		$V_{DS} = -10V, I_{D} = 0.5 \bullet I_{D25}, \text{ Note 1}$	55	90	S
C _{iss})			33.4	nF
\mathbf{C}_{oss}	}	$V_{GS} = 0V, V_{DS} = -25V, f = 1MHz$		1300	pF
\mathbf{C}_{rss}	J			307	pF
t _{d(on)})	Resistive Switching Times		63	ns
t _r	Ţ	G		29	ns
$\mathbf{t}_{d(off)}$		$V_{GS} = -10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_{D} = 0.5 \cdot I_{D25}$ $R_{G} = 1\Omega$ (External)		115	ns
t _f	J			18	ns
$\mathbf{Q}_{g(on)}$)			380	nC
\mathbf{Q}_{gs}	}	$V_{GS} = -10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_{D} = 0.5 \cdot I_{D25}$		125	nC
\mathbf{Q}_{gd}	J			70	nC
R _{thJC}					0.22 °C/W
$\mathbf{R}_{\mathrm{thCS}}$		TO-247		0.21	°C/W

Source-Drain Diode

SymbolTest ConditionsChara $(T_J = 25^{\circ}\text{C}, \text{ Unless Otherwise Specified})$ Min.		ecteristic Values Typ. Max.			
I _s	$V_{GS} = 0V$			- 68	Α
I _{SM}	Repetitive, Pulse Width Limited by T_{JM}			- 270	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1			-1.4	V
$\left\{ egin{array}{c} \mathbf{t}_{rr} & \\ \mathbf{Q}_{RM} & \\ \mathbf{I}_{RM} & \end{array} ight. \right\}$	$I_{_{\rm F}}$ = - 34A, -di/dt = -100A/ μ s $V_{_{\rm R}}$ = -100V, $V_{_{ m GS}}$ = 0V		245 2.6 - 21.4		ns µC A

Note 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from data gathered during objective characterizations of preliminary engineering lots; but also may yet contain some information supplied during a pre-production design evaluation. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

Terminals: 1 - Gate 2,4 - Drain 3 - Source

MYZ	INCHES		MILLIMETERS	
2114	MIN	MAX	MIN	MAX
Α	.193	.201	4.90	5.10
A1	.106	.114	2.70	2.90
A2	.001	.010	0.02	0.25
b	.045	.057	1.15	1.45
b2	.075	.083	1.90	2.10
С	.016	.026	0.40	0.65
C2	.057	.063	1.45	1.60
D	.543	.551	13.80	14.00
D1	.488	.500	12.40	12.70
E	.624	.632	15.85	16.05
E1	.524	.535	13.30	13.60
е	.215 BSC		5.45 BSC	
Н	.736	.752	18.70	19.10
Ĺ	.094	.106	2.40	2.70
L1	.047	.055	1.20	1.40
L2	.039	.045	1.00	1.15
L3	.010 BSC		0.25	BSC
L4	.150	.161	3.80	4.10

Terminals: 1 - Gate 3 - Source

2 - Drain

A 4.7 5.3 .185 . A ₁ 2.2 2.54 .087	Max. .209 .102
A ₁ 2.2 2.54 .087	
'	.102
A ₂ 2.2 2.6 .059	.098
b 1.0 1.4 .040 .	.055
b ₁ 1.65 2.13 .065	.084
b ₂ 2.87 3.12 .113	.123
	.031
D 20.80 21.46 .819 .	.845
E 15.75 16.26 .610 .	.640
e 5.20 5.72 0.205 0.	.225
L 19.81 20.32 .780 .	.800
L1 4.50	.177
ØP 3.55 3.65 .140 .	.144
Q 5.89 6.40 0.232 0.	.252
R 4.32 5.49 .170 .	.216
S 6.15 BSC 242 BS	SC

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

 $\ensuremath{\mathsf{IXYS}}$ Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 13. Resistive Turn-on Rise Time vs.
Junction Temperature

Fig. 14. Resistive Turn-on Rise Time vs.

Drain Current

Fig. 15. Resistive Turn-on Switching Times vs.
Gate Resistance

Fig. 16. Resistive Turn-off Switching Times vs.

Junction Temperature

Fig. 17. Resistive Turn-off Switching Times vs.

Fig. 18. Resistive Turn-off Switching Times vs.

Gate Resistance

Fig. 19. Maximum Transient Thermal Impedance

