

CPCS-211 Digital Logic Design (10%) Xerox machine

CS3 - Dr. Asaad Ahmed - CPCS-211

Student:

Mahmued Alardawi - 2135209

- **Submission Date: 19/11/2022**

Table of content Input specification	4
Determination of System components	5
Determination of truth tables, state/characteristic tables, characteristic	equations6
4-bit 7-segment encoder	6
Truth table	6
4-bit 7-segment decoders	7
Truth table	7
4-bit comparator	8
Truth table	8
K-maps	8
2x1 multiplexer	9
Truth table	9
1x2 demultiplexer	9
Truth table	9
JK flip flop	10
Truth table	10
Characteristic table	10
Excitation table	10
K-maps	10
4x4 bit multiplier	
Costume 2-digit 7-segment display encoders	11
Truth table	11
K-maps	11
mplementation of state diagrams, time tracing, timing diagrams	13
Implementation for the 3-bit KJ flip flop counter	13
State table	13

K-maps	13
State diagram	
Time trace	
Timing table	
Output Specification	
CONCLUSION	17
References	18

Input specification

- On/Off switch.
- 32-bit password inputted as 8 decimal numbers.
- Inputting 1 or 2 for both printing properties.
- Number of copies wanted.

Determination of System components

- (4) 1-bit input switches.
- (9) 4-bit 7-segment encoders.
- (8) 4-bit 7-segment decoders.
- (9) 4-bit comparators.
- (2) 2x1 multiplexer.
- (2) 1x2 demultiplexer.
- (3) JK flip flops.
- (1) Clock.
- 4x4 bit multiplier.
- Costume 2-digit 7-segment display encoders.

Determination of truth tables, state/characteristic tables, characteristic equations

4-bit 7-segment encoder

Truth table

N	а	b	С	d	е	f	g	b3	b2	b1	b0
0	1	1	1	1	1	1	0	0	0	0	0
1	0	1	1	0	0	0	0	0	0	0	1
2	1	1	0	1	1	0	1	0	0	1	0
3	1	1	1	1	0	0	1	0	0	1	1
4	0	1	1	0	0	1	1	0	1	0	0
5	1	0	1	1	0	1	1	0	1	0	1
6	1	0	1	1	1	1	1	0	1	1	0
7	1	1	1	0	0	0	0	0	1	1	1
8	1	1	1	1	1	1	1	1	0	0	0
9	1	1	1	1	0	1	1	1	0	0	1
10	Х	Χ	Χ	X	X	X	X	Х	Х	Х	х
11	Χ	Χ	Χ	Χ	Χ	Χ	X	Х	Х	X	х
12	х	Х	Х	Χ	Х	Х	X	Х	Х	X	х
13	Х	Χ	X	X	Х	Х	Х	Х	Х	Х	Х
14	Х	Х	Х	Χ	Х	Х	X	Х	X	Х	Х
15	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х

4-bit 7-segment decoders

Truth table

Ν	b3	b2	b1	b0	a	b	С	d	е	f	g
0	0	0	0	0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	1	0	0	0	0
2	0	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	0	0	1
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
6	0	1	1	0	1	0	1	1	1	1	1
7	0	1	1	1	1	1	1	0	0	0	0
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	1	0	1	1
10	Х	Х	Χ	Х	Х	Х	Х	Χ	Х	Х	Х
11	X	Х	X	Х	Х	Х	Х	Χ	Х	Х	Х
12	Χ	Х	Χ	Х	X	Х	Х	Χ	Х	Х	Х
13	Χ	Х	Χ	Х	Χ	Х	Х	Χ	Х	Х	Х
14	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х
15	Χ	Х	Χ	Х	Χ	Х	Х	Χ	Х	Х	Х

4-bit comparator

Truth table

A1	A0	B1	B0	A > B	A = B	A < B
0	0	0	0	0	1	0
0	0	0	1	0	0	1
0	0	1	0	0	0	1
0	0	1	1	0	0	1
0	1	0	0	1	0	0
0	1	0	1	0	1	0
0	1	1	0	0	0	1
0	1	1	1	0	0	1
1	0	0	0	1	0	0
1	0	0	1	1	0	0
1	0	1	0	0	1	0
1	0	1	1	0	0	1
1	1	0	0	1	0	0
1	1	0	1	1	0	0
1	1	1	0	1	0	0
1	1	1	1	0	1	0

The truth should be for 4x4 comparator bit but doing that table will take 256 rows so I will do the truth table of 2x2 bit comparator.

K-maps

A>B	00	01	11	10
00	Q	0	0	0
01	1	0	0	0
11 /	1	1	0	(1
10	1	1	0	0

00	01	11	10
(1)	0	0	0
0	(1)	0	0
0	0	(1)	0
0	0	0	(1)
	0	$ \begin{array}{c c} 1 & 0 \\ 0 & 1 \end{array} $	1 0 0 0 0 0 0 0 0

A<B = A1'B1 + A1'A0'B0 + A0'B1B0

2x1 multiplexer

Truth table

S	Υ
0	I _O
1	I_1

1x2 demultiplexer

Truth table

S	YO	Y1
0	1	0
1	0	1

JK flip flop

Truth table

CIK	J	K	Qn+1
0	X	X	Qn
1	0	0	Qn
1	0	1	0
1	1	0	1
1	1	1	Qn'

Characteristic table

Qn	J	K	Qn+1
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Excitation table

Qn	Qn+1	J	K
0	0	0	Χ
0	1	1	Х
1	0	Х	1
1	1	Х	0

K-maps

J	0	1
0	0	1
1	Х	X

$$J = Qn+1$$

K	0	1
0	X	Х
1	1	0

$$K = Qn'+1$$

Qn+1	00	01	11	10
0	0	0	1	1
1	1)	0	0	(1

$$Qn+1 = Qn'J + QnK'$$

4x4 bit multiplier

Is not included in the lectures but I used it.

Costume 2-digit 7-segment display encoders

Truth table

Hex	A	В	C	D	d1	a1	b1	c1	d1	e1	f1	g1	d2	a2	b2	c2	d2	e2	f2	g2	N
00	0	0	0	0	0	1	1	1	1	1	1	0	0	1	1	1	1	1	1	0	00
01	0	0	0	1	0	1	1	1	1	1	1	0	1	0	1	1	0	0	0	0	01
02	0	0	1	0	0	1	1	1	1	1	1	0	2	1	1	0	1	1	0	1	02
03	0	0	1	1	0	1	1	1	1	1	1	0	3	1	1	1	1	0	0	1	03
04	0	1	0	0	0	1	1	1	1	1	1	0	4	0	1	1	0	0	1	1	04
05	0	1	0	1	0	1	1	1	1	1	1	0	5	1	0	1	1	0	1	1	05
06	0	1	1	0	0	1	1	1	1	1	1	0	6	1	0	1	1	1	1	1	06
07	0	1	1	1	0	1	1	1	1	1	1	0	7	1	1	1	0	0	0	0	07
08	1	0	0	0	0	1	1	1	1	1	1	0	8	1	1	1	1	1	1	1	08
09	1	0	0	1	0	1	1	1	1	1	1	0	9	1	1	1	1	0	1	1	09
10	1	0	1	0	1	0	1	1	0	0	0	0	0	1	1	1	1	1	1	0	10
11	1	0	1	1	1	0	1	1	0	0	0	0	1	0	1	1	0	0	0	0	11
12	1	1	0	0	1	0	1	1	0	0	0	0	2	1	1	0	1	1	0	1	12
13	1	1	0	1	1	0	1	1	0	0	0	0	3	1	1	1	1	0	0	1	13
14	1	1	1	0	1	0	1	1	0	0	0	0	4	0	1	1	0	0	1	1	14
15	1	1	1	1	х	Х	х	Х	х	х	х	х	х	х	х	х	Х	х	х	х	15

K-maps

b1 = A' + A

1 1 0

d1 = A' + AB'C'

e1	00	01	11	10		
00	1	1	1	1		
01	1_	1	1	1		
11	0	0	Х	0		
10 (1	1	0	0		
-1 A/ · AD/C/						

00/	1	1	1
01	1	1	1
11	0	0	Х
10	1	1) C

f1 = A' + AB'C'

f1 00 01 11 10

g1	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	0	0	Х	0
10	0	0	0	0
		71 – C	<u> </u>	

a2	00	01	11	10
00	1)	0	1	1
01	0	1	1	1
11	1		X	0
10	1	1	0	(1

b2	00	01	11	10
00	(1)	1	1	
01	1	0	1	0
11	1	1	х	1
10	1	1	1	_1/
1.0	A/D/		C/D/ .	CD

c2	00	01	11	10		
00	1	1	1	0		
01	$\sqrt{1}$	1/	1	1		
11	0 /	1	X	1		
10	\bigcirc	1	1/	1>		
c2 = A'C' + CD + A'B + AB' +						

d2	00	01	11	10
00	1	0 (1	(1)
01	0	1	0	1
11	1	1	Х	0
10	1	1	0	1

a2 = AC	+ A'C +	BD +	B'D'

b2 = A'B		

c2 = A'C' + CD + A'B + AB' +
DC - AD

d2 = A'B'C + AC' + BC'D +A'CD' + B'D'

e2	00	01	11	10
00	1	0	0	$\sqrt{1}$
01	0	0	0	1
11	(1)	0	х	0
10	1	0	0	1

f2	00	01	11	10
00	1	0	0	0
01	1	1	0	1
11	Ŏ	0	Х	1
10 (1	1	0	1

H			

g2 00 01 11 10 00 0 0 1 01 1 1 0 1 11 1 x 1 10 1 1 0 0 g2 = BC' + A'B'C + BCD' + AC'

f2 = A'C'D' + AB'C' + BCD' + A'BC' e2 = AC'D' + A'CD' + B'D'AB'D'

Implementation of state diagrams, time tracing, timing diagrams

Implementation for the 3-bit KJ flip flop counter

State table

A	В	C	A *	B*	C*	J_A	K _A	J _B	K _B	J _C	Kc
0	0	0	0	0	1	0	х	0	Х	1	Х
0	0	1	0	1	0	0	Х	1	Х	Х	1
0	1	0	0	1	1	0	х	Х	0	1	Х
0	1	1	1	0	0	1	Х	Х	1	Х	1
1	0	0	1	0	1	Х	0	0	Х	1	х
1	0	1	1	1	0	Х	0	1	Х	Х	1
1	1	0	1	1	1	Х	0	Х	0	1	х
1	1	1	0	0	0	Х	1	Х	1	Х	1

K-maps

J_{B}	00	01	11	10			
0	0	1	X	Х			
1	0	1	x	Х			
	$J_B = C$						

K _A	00	01	11	10		
0	Х	Х	X	Χ		
1	0	0	1	0		
	K _A = BC					

kc	00	01	11	10		
0	X	1	1	X		
1	Х	1	1	X)		
K _C = 1						

Time trace

Timing table

Clock	С	В	А	Decimal Eq
Initially	0	0	0	0
1	0	0	1	1
2	0	1	0	2
3	0	1	1	3
4	1	0	0	4
5	1	0	1	5
6	1	1	0	6
7	1	1	1	7

Output Specification

- LED lamps
- (8) 4-bit 7-segment decoders.
- Costume 2-digit 7-segment display encoders.

CONCLUSION

From this project I learnt a lot about combinational and sequential circuits and how to implement what I studies in real life. I will harness that new experience to something great In Shaa Allah.

Extra: there might be malfunction in the 2-digit 7-segment display and due to the shortage of time I was not unable to fix it so sorry for that.

References

• https://youtu.be/s1DSZEaCX g (Neso Academy)