

Cours Modélisation et vérification des systèmes informatiques Exercices Modélisation TLA⁺ (2) par Dominique Méry 1^{er} octobre 2024

Exercice 1 Soit le réseau de Petri de la figure 1.

Question 1.1 Déterminer les conditions initiales.

Question 1.2 Déterminer les relations modélisant les transitions.

Question 1.3 Valider les propriétés et les hypothèses que vous pourrez faire sur ce réseau de Petri.

Exercice 2 Soit l'organigramme suivant proposé par Z. Manna dans son ouvrage Mathematical Theory of Computation.

Question 2.1 Construire un module TLA⁺ modélisant les différents pas de calcul.

Question 2.2 Evaluer l'algorithme en posant des questions de sûreté suivantes :

- 1. l'algorithme est partiellement correct.
- 2. l'algorithme n'a pas d'erreurs à l'exécution.

Exercice 3 Soit le schéma suivant définissant un calcul déterminant sir un nombre entier naturel est premier ou non.

FIGURE 1 – Réseau de Petri

Question 3.1 Ecrire un modèle TLA modélisant ce schéma de calcul.

Question 3.2 Ecrire un invariant à partir d'annotations que vous définirez après avoir défini des points de contrôle.

Question 3.3 Vérifier la correction partielle

Question 3.4 Vérifier l'absence d'erreurs à l'exécution.

A dummy module that defines the operators that are defined by the real Naturals module.

```
 \begin{array}{l} Nat \, \triangleq \, \{ \, \} \\ a+b \, \triangleq \, \{a, \, b\} \\ a-b \, \triangleq \, \{a, \, b\} \\ a\cdot b \, \triangleq \, \{a, \, b\} \\ a^b \, \triangleq \, \{a, \, b\} \\ a < b \, \triangleq \, a \, = \, b \\ a > b \, \triangleq \, a \, = \, b \\ a \, \geq \, b \, \triangleq \, a \, = \, b \\ a \, \geq \, b \, \triangleq \, a \, = \, b \\ a \, \% \, b \, \triangleq \, \{a, \, b\} \\ a \, \cdot \, b \, \triangleq \, \{a, \, b\} \\ a \, \cdot \, b \, \triangleq \, \{a, \, b\}
```

- module TLC -

LOCAL INSTANCE Naturals LOCAL INSTANCE Sequences

```
\begin{array}{l} d \, :> \, e \, \triangleq \, [x \, \in \, \{d\} \, \mapsto \, e] \\ f \, @@ \, g \, \triangleq \, [x \, \in \, (\operatorname{DOMAIN} \, f) \cup (\operatorname{DOMAIN} \, g) \, \mapsto \\ & \quad \text{IF} \, x \, \in \, \operatorname{DOMAIN} \, f \, \text{THEN} \, f[x] \, \text{ELSE} \, g[x]] \\ \textit{Permutations}(S) \, \triangleq \\ & \quad \{ f \, \in \, [S \, \to \, S] \, : \, \forall \, w \, \in \, S \, : \, \exists \, v \, \in \, S \, : \, f[v] = w \} \end{array}
```

In the following definition, we use Op as the formal parameter rather than $\protect\operatorname{protect}$ because TLC Version 1 can't handle infix formal parameters.

```
\begin{array}{lll} \textit{SortSeq}(s,\textit{Op}(\_,\_)) &\triangleq \\ \textit{LET}\textit{Perm} &\triangleq \textit{CHOOSE} \; p \; \in \textit{Permutations}(1 \; ... \textit{Len}(s)) \; : \\ &\forall \; i, \; j \; \in \; 1 ... \textit{Len}(s) \; : \\ & (i \; < \; j) \; \Rightarrow \; \textit{Op}(s[p[i]], \; s[p[j]]) \; \lor \; (s[p[i]] \; = \; s[p[j]]) \\ \textit{IN} \quad [i \; \in \; 1 ... \textit{Len}(s) \; \mapsto \; s[\textit{Perm}[i]]] \end{array}
```

 $RandomElement(s) \triangleq CHOOSE x \in s : TRUE$

 $Any \triangleq \text{CHOOSE } x : TRUE$

 $ToString(v) \triangleq (CHOOSE x \in [a : v, b : STRING] : TRUE).b$

 $TLCEval(v) \triangleq v$

Exercice 4 Le module truc permet de résoudre un problème très classique en informatique : trouver un chemin entre un sommet input et des sommets output supposés être des sommets de sortie.

Question 4.1 Pour trouver un chemin de input à l'un des sommets de output, il faut poser une question de sûreté à notre système de vérification. Donner une question de sûreté à poser permettant de trouver un chemin de input vers un sommet de output.

Modifier le module truc pour traiter ce problème et donner la question à poser pour trouver une sortie.

```
MODULE truc —
EXTENDS Integers, TLC
VARIABLES p
{\tt CONSTANTS}\ input, output
n \triangleq 10
nodes \triangleq 1..n
l \triangleq [i \in 1..n \mapsto \text{IF } i = 1 \text{ THEN } \{4, 5\} \text{ ELSE }
                      IF i = 2 THEN \{6, 7, 10\} ELSE
                      IF i = 4 THEN \{7, 8\} ELSE
                      If i = 5 then \{\} else
                      If i = 6 then \{4\} else
                      IF i = 7 THEN \{5\} ELSE
                      IF i = 8 THEN \{5, 2\} ELSE
                      {}
Init \triangleq p = 1
M(i) \triangleq \land i \in l[p]
          \wedge p' = i
Next \triangleq \exists i \in 1..n : M(i)
```


FIGURE 3 – Labyrinthe