Travaux dirigés d'informatique 4

Serie $N^{\circ}3$

NB:

- 1. Ces exercices sont extraits du support de cours "Algo de Base" du Dr NDONG NGUEMA.
- 2. Les algorithmes demandés seront donnés sous forme de fonctions ou procédures algorithmiques.
- 3. Il est vivement conseillé d'implementer et tester ces algorithmes sous : C, Matlab ou Python.

Exercice 1 : (Somme des inverses des carrés d'entiers > 0)

$$\forall n \in \mathbb{N}^*, \text{ on pose } : S_N = \sum_{n=1}^N \frac{1}{n^2} .$$

- 1. Concevoir et écrire une fonction algorithmique **non récursive** qui calcule le terme de rang N arbitraire de la suite S_N . N.B. Essayer d'envisager plusieurs approches.
- 2. On sait que (S_N) est la suite des sommes partielles d'une série numérique convergente. Concevoir et écrire alors une fonction algorithmique qui somme les termes de cette série jusqu'à un rang N tel que la somme S_N est une approximation de la somme totale de cette série avec une incertitude absolue < ε, avec ε réel > 0 donné, et qui renvoie cette approximation comme résultat.

Exercice 2 : (Somme des inverses des factorielles - Calcul du nombre e)

Comme dans l'**Exercice 1**, mais avec :
$$\forall n \in \mathbb{N}, S_N = \sum_{n=0}^N \frac{1}{n!}$$
.

N.B. Bien faire attention ici à la problématique posée par la présence de la fonction factorielle.

Exercice 3 : (Calcul approchée d'une intégrale par développement en série)

On pose :
$$I = \int_0^1 \frac{e^x - 1}{x} dx$$
, $A = \sum_{n=1}^{+\infty} \frac{1}{n \cdot (n!)}$.

- 1. Montrer que $I \in \mathbb{R}$ et $A \in \mathbb{R}$.
- 2. Démontrer que I = A.

- 3. Utiliser ce dernier résultat pour construire une méthode numérique permettant de calculer une approximation de I avec une incertitude absolue $< \varepsilon$, avec ε réel > 0 donné, ainsi qu'une approximation de l'erreur absolue associée à cette approximation de I.
- 4. Concevoir et écrire alors une fonction algorithmique mettant cette méthode numérique en œuvre.

Exercice 4 : (Calcul approchée d'une intégrale par développement en série)

On pose:
$$I = \int_0^1 \frac{1 - \cos x}{x^2} dx$$
, $S = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{(2n)! \cdot (2n-1)}$.

- 1. Montrer que $I \in \mathbb{R}$ et $S \in \mathbb{R}$.
- 2. Démontrer que I = S.
- 3. Utiliser ce dernier résultat pour construire une méthode numérique permettant de calculer une approximation de I avec une incertitude absolue $< \varepsilon$, avec ε réel > 0 donné, ainsi qu'une approximation de l'erreur absolue associée à cette approximation de I.
- 4. Concevoir et écrire alors une fonction algorithmique mettant cette méthode numérique en œuvre.

Exercice 5:

On pose :
$$I = \int_0^{\frac{\pi}{2}} \cos(\sin x) dx$$
, $A = \sum_{n=0}^{+\infty} \frac{(-1)^n}{4^n (n!)^2}$, $B = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n)!} \cdot J_n$, où $J_n = \int_0^{\frac{\pi}{2}} (\sin x)^{2n} dx$. L'objectif ici est de calculer, avec une précision fixée d'avance, la valeur de l'intégrale I .

- 1. Démontrer que : **a)** $A \in \mathbb{R}$; **b)** I = B; **c)** $\forall n \in \mathbb{N}^*$, $(2n) \cdot J_n = (2n-1) \cdot J_{n-1}$.
- 2. Déduire l'égalité : $I = \frac{\pi}{2} \cdot A$.
- 3. Utiliser ce dernier résultat pour construire une méthode numérique permettant de calculer une approximation de I avec une incertitude absolue $< \varepsilon$, avec ε réel > 0 donné, ainsi qu'une approximation de l'erreur absolue associée à cette approximation de I.
- 4. Concevoir et écrire alors une fonction algorithmique mettant cette méthode numérique en œuvre.

Exercice 6:

On pose :
$$I = \int_0^{\frac{\pi}{2}} \sin(\cos x) dx$$
, $A = \sum_{n=0}^{+\infty} (-4)^n \left[\frac{n!}{(2n+1)!} \right]^2$, $J_n = \int_0^{\frac{\pi}{2}} (\cos x)^{2n+1} dx$, $B = \sum_{n=0}^{+\infty} \frac{(-1)^n \cdot J_n}{(2n+1)!}$.

L'objectif ici est de calculer, avec une précision fixée d'avance, la valeur de l'intégrale I.

- 1. Démontrer que : **a)** $A \in \mathbb{R}$; **b)** I = B; **c)** $\forall n \in \mathbb{N}^*$, $(2n+1) \cdot J_n = (2n) \cdot J_{n-1}$.
- 2. Déduire l'égalité : I = A.
- 3. Utiliser ce dernier résultat pour construire une méthode numérique permettant de calculer une approximation de I avec une incertitude absolue $< \varepsilon$, avec ε réel > 0 donné, ainsi qu'une approximation de l'erreur absolue associée à cette approximation de I.
- 4. Concevoir et écrire alors une fonction algorithmique mettant cette méthode numérique en œuvre.