P. Seilel, Differentiating with respect to the Kähler parameter

Curves in A & Hz are counted with 9 Aw.

Differentiate:

$$\frac{d}{dq}\left(2^{\int_{A}\omega}\right) = \left(\int_{A} q^{-1}\omega\right) q^{\int_{A}\omega}$$

Schomatically using the dwar equation,

Question: what if g [w] is itself a Gomov-Witten invariant?

The diff l egutos. 4 +0.

$$(1) \quad \partial_{q} \begin{pmatrix} P \\ \sigma \end{pmatrix} = \begin{pmatrix} O & \psi \\ 4\psi_{z^{(2)}} & 2 \end{pmatrix} \begin{pmatrix} P \\ \sigma \end{pmatrix} = O.$$

(2) Reduction to second order eg'n in
$$\rho$$
 (ok b/c 4 ± 0):
$$2^{2}\rho + 2_{q}\rho \left(\eta - \frac{2_{q}4}{4}\right) - 44^{2}z^{(2)}\rho = 0$$

(recove of fund of p & 4).

(3)
$$\partial_{2} \lambda = \psi \lambda^{2} + \chi \lambda + 4 \psi_{2}(2) = 2 \lambda = \frac{\sigma}{\rho}$$

(one have full solin,
sthe about damly
ove A' or P'
my poles?)

Example: retrieval elliptic surface. $\overline{\tau}: E \longrightarrow \mathbb{CP}^{2}$ $(r_{2} BQCP^{2}, \delta supposition for the surface of the surfac$

Furneative grandy (extremely well known) (9=0, n=1).

Section out $Z^{(1)} = \sum_{A \in H_2(\overline{\Xi})} Z_A \quad Q_A \xrightarrow{G} = \prod_{A \in H_2(\overline{\Xi})} (1) \quad Z_A = \prod_{A \in H_2($

bisectors: $2^{(2)} = \sum_{n=1}^{\infty} -1$ $\in |+^{(n)}(E_j^n)|$ A.M = 2

Appears in the diff'el egins.

(4) Lemma: $g^{-1}[\omega_{\overline{E}}] = \Psi_{Z}^{(1)} - \eta[M]$ for some functions $\Psi \in \mathbb{R}^{+}$, $\eta \in \mathbb{R$

polynomial substitled

(in fact, there is a much more precise cression, saying exactly how & deforms).

	General protine: Anticonomical Letrohetz pencils,
	Start of such a percil (on smooth Fars), & blow-p baselocus to get
	#: E -> CP' "graph of percil" (fruity of CY's ove CP2)
	Lenma (4): $q^2 \left[\omega_{\overline{E}} \right] = \psi_{\overline{e}}^{(1)} - 2 \left[H \right]$, not the in general.
Bu	Assume this is the for now (wals when Fano has bz= 1) or somethy)
	The (5) is always the then
	Thin (5) is always time then. "Thin (6)" " " (but have not carried at all technical work) (1) is a
	Thin (7) is a Conjecture "polynomiality anyeotre for File (CY hyposouriel). Rub: IN some cases, this is a conclusion of HMS, but should be true in general.
~	Whee do these equations come for? (General framework)
	Topological quarter field theory. Topological quarter field theory.
3=0 Sirker	pour. I mus graded vec. space the. St. (one support). es many in out

Similarly for families of surfices one a closed onext) have P:
$(H^{*})^{\otimes lnp-ts} \longrightarrow H^{*} \left[-\partial_{lm} \mathcal{P}\right].$
Finally, allow one additional interior maked point (don't have to have it through) # only allow one particular is sertion on recessary for now-
~> (I+t) @mprts Ht [2-din P]
Outone: is a version of Getzler's analysis.
e.g., have $ \begin{array}{ccccccccccccccccccccccccccccccccccc$
$[-,-]: HOH \longrightarrow H[-1]$
$A: H \rightarrow H[-1], BV algebra.$
This gives H^* the sto-close of a BU algebra, In fact, $[x,y] = \Delta(x+y)$ extra marked pant: $-(H)^{kl}x + \Delta x$
() ~ SEHZ, V [S=D] by gluing argument.

Similarly: $r = [s, \cdot]$ Grant Similarly: $r = [s, \cdot]$

20 tay, not exciting, but
This refinerests: (a) Consider H= H× (C, d) with chair level quetes
(a TFT or TCFT).
(prelias-nam
Have some basic operations, but additional homotopies,
e.s.)
se C2, ds=0, but now
△s = do for some distinguished & & C
(b) Now assure (C*, d) is over IK and & comes a connection
V: C+ -> C+ in q direction:
This satisfies:
Think of d is a soc. to -1 dis's module space = 0 -0/R, & & rinsects of the /R was only 52 freedom is left -)
Similarly, Los - Col = consert anywhere.
(now or is only ch. litpic to [5, -], but can modify so it's achelly
$[\mathscr{C}[S, -]]$.
Think of (5, -) as kidain - Species class, messues failure (inability + more is q directer)
8) Assumption: [5] e H2 Ed is 700.
Concretely, s=d & for some choice of a. (singles at a sto class of theories
travolezates of hidana spacer should aller us be use in quedes.

Not we then get
$$A = [\Delta x + \sigma] \in H^{\bullet} \text{ (depends on denie of } x!).$$

$$(lass b)(c d \Delta x = \Delta d = \Delta s = d \sigma).$$

Thm: If (8) holds, H^{\times} can be equipped u/a anneation ∇ , which is compatible with * and [-,-] and satisfies

$$\nabla \Delta \times - \Delta (\nabla \times) = [A, \times].$$
 $\times \in \mathcal{H}^*$
(not co-pable =/ BV structure).

. Note: We have a family of connections

$$\nabla^{c} \times = \nabla_{x} - cA * \times cascalar.$$

Now, $\Rightarrow \nabla^{-1}$ is compatible with the BV operator (but not with the product) or bracket).

> Calegrand freezet: if add burdy date, >.

SH*(E) Lemma: Z(1) (lies is the kernel of the acceleration map. Hence, assumption (4) (that $g^{2}[w_{\overline{e}}] = 4z^{(2)} - 12[M])$ implies the varishing of s. => conget a connectie don SH* in q-direction, (!) Consectives identity $e \in SH^{\circ}(E)$ satisfies the difflegin (2) with ∂_{ξ} replaced by ∇^{2} $(c=\pm 1!)$ ∇^{-1} (-) nat. (id, Serve) 7+2 L) nat (Seve, id), this one has to occur here". Pont: once you have this, and an De foundish, should - Spolynomiality conjecture. Knother pout: Normally concedes line on HP (SH), & slosh-tion to listing to SH' is the Moderna Spencer dass. When it vanishes,

Con list + 5H is the Moderna Spence (Car). When it varishes,

can list + 5H is the Moderna Spence (Car). When it varishes,

can list + 5H is the Moderna Spence (Car). When it varishes,

which direction to point?

The compact of the compact of the car of