Probability Theory, pt. III

ECON 3640-001

Marcio Santetti Spring 2022

Motivation

Housekeeping

Notes based on Blitzstein & Hwang (2019), ch. 2

• sections 2.3 & 2.4.

Motivation

Last time, we saw that **conditional probabilities** are the "soul" of Statistics.

$$P(A|B) = rac{P(A \cap B)}{P(B)}$$

Although being an extremely **simple** definition, it has far-reaching applications and possibilities.

An application

An application

Based on survey data, CNBC ran a study last Summer regarding vaccine mandates.

With a sample size (n) of 802 individuals, the survey found that:

- 68% of Americans had been vaccinated;
- Among those who had been vaccinated, 63% approved of vaccine mandates;
- Among unvaccinated interviewees, 17% supported these mandates.

As a **first task**, set up a **contingency table** for these data.

An application

Based on survey data, CNBC ran a study last Summer regarding vaccine mandates.

With a sample size (n) of 802 individuals, the survey found that:

- 68% of Americans had been vaccinated;
- Among those that had been vaccinated, 63% approved of vaccine mandates;
- Among unvaccinated interviewees, 17% supported these mandates.

Secondly, given that an individual **supports** a vaccine mandate, what is the probability that they **are** vaccinated?

The law of total probability

The law of total probability

Without explicitly calling for it, in the previous exercise, you have applied the Law of Total Probability.

It directly follows from the definition of **conditional probability** that

$$P(A \cap B) = P(B)P(A|B) = P(A)P(B|A)$$

Then, suppose the set of events $\{A_1,A_2,A_3,\ldots,A_k\}$ partition the sample space S. For any event $B\subseteq S$

$$B = igcup_{i=1}^k (B \cap A_i) = (B \cap A_1) \ \cup \ (B \cap A_2) \ \cup \ \ldots \ \cup \ (B \cap A_k)$$

For pairwise **disjoint** events,

$$P(B) = \sum_{i=1}^k P(B\cap A_i) = \sum_{i=1}^k P(B|A_i)P(A_i)$$

The law of total probability

In case we have the simple partition $\{A,A^C\}$, the Law of Total Probability looks like

$$P(B) = P(B \cap A) + P(B \cap A^C) = P(A)P(B|A) + P(A^C)P(B|A^C)$$

Therefore, the **LTP** is useful when we want to compute an **unconditional** probability, such as P(B), and the only available information are conditional probabilities, $P(B|A_i)$.

Bayes' Theorem

Bayes' Theorem

Another thing that you have done was to use **Bayes' Theorem** without calling for it.

It is defined by

$$P(A|B) = rac{P(A) \; P(B|A)}{P(B)}$$

It tells us that the **posterior** probability of A, in light of information B, P(A|B), is given by

- The **prior** probability of A, P(A);
- The **chances** of observing data B if A occurs, $P(B|A)^{1}$;
- The **overall** chance of observing *B*, *P*(*B*).

Bayes' Theorem

$$P(A|B) = rac{P(A) \ P(B|A)}{P(B)}$$

This theorem is extremely useful when we want to know the *conditional* probability P(A|B), but only have knowledge of the *reverse conditional*, P(B|A).

As we will explore in detail in future lectures, the above theorem is the foundation of **Bayesian Statistics**.

Next time: Random variables and probability distributions