

Fondamenti di Chimica industriale

15 Gennaio 2015

Esercizio N. 1

Processo di cristallizzazione.

- Alimentazione fresca: 4500 kg/h di soluzione contenente sale (30 wt%), acqua e un'impurezza solubile in acqua (1 wt%).
- Riciclo: 35 wt% sale.
- Evaporatore: la corrente uscente è costituita da una miscela omogenea (45 wt% sale).
- Il pannello umido in uscita dalla sezione di filtrazione trattiene una soluzione contenente il 35 wt% di sale.
- Il sale anidro uscente dall'essiccatore contiene l'1 wt% di impurezza.
- Resa globale di processo 98%.
 - Si etichetti lo schema di processo e si proceda al calcolo dei gradi di libertà con il metodo delle tie streams.
 - Si proceda alla quantificazione di portata e composizione della corrente di spurgo, portata di sale anidro prodotto, portata di acqua separata nella sezione di essiccamento, portata di riciclo e portata di acqua evaporata nell'evaporatore.

Esercizio N. 2

Deidrogenazione dell'etanolo.

$$C_2H_5OH \rightarrow CH_3CHO + H_2$$

- Si etichetti lo schema e si proceda al calcolo dei gradi di libertà su base molecolare e su base atomica.
- · Svolgendo i bilanci su base atomica, determinare la conversione dell'etanolo.

	C_p (J/mol·K)	$\Delta H_{\rm f}^0$ (kJ/mol)
C ₂ H ₅ OH	28.6	- 235.3
CH ₃ CHO	18.6	- 166.2
H_2	6.7	

Esercizio N. 3

Aria a 45° C e temperatura di rugiada di 9° C è alimentata ad un essiccatore alla portata di 13.65 m^3 /min ed esce satura. L'essiccatore opera adiabaticamente. Determinare la portata di aria secca (kg/h), la temperatura finale dell'aria e la quantità (kg/h) di acqua evaporata.