

Approved By AICTE And NAAC+ Accredited

INTRODUCTION

- o Hebbian Learning Rule, also known as Hebb Learning Rule, was proposed by Donald O Hebb.
- o It is one of the first and also easiest learning rules in the neural network. It is used for pattern classification.
- o It is a single layer neural network, i.e. it has one input layer and one output layer. The input layer can have many units, say n.
- o The output layer only has one unit. Hebbian rule works by updating the weights between neurons in the neural network for each training sample.
- The weight and bias update in Hebb rule is given by:

$$w_i(new) = w_i(old) + x_i y$$

b(new) = b(old) + y

HEBBIAN LEARNING RULE ALGORITHM

- 1. Set all weights to zero, $w_i = 0$ for i=1 to n, and bias to zero.
- 2. For each input vector, S(input vector): t(target output pair), repeat steps 3-5.
- 3. Set activations for input units with the input vector $X_i = S_i$ for i = 1 to n.
- 4. Set the corresponding output value to the output neuron, i.e. y = t.
- 5. Update weight and bias by applying Hebb rule for all i = 1 to n:

IMPLEMENTING AND GATE

INPUT			TARGET		
	x ₁	x ₂	b		у
X ₁	-1	-1	1	Y ₁	-1
X ₂	-1	1	1	Y ₂	-1
X ₃	1	-1	1	Y ₃	-1
X,	1	1	1	Y	1

Truth Table of AND Gate using bipolar sigmoidal function

Applications of Hebb Networks in Soft Computing

- 1.Pattern Recognition & Associative Memory: Hebb networks learn to recognize and recall patterns by strengthening synaptic connections with repeated exposure, making them useful for tasks like image/speech recognition and content-addressable memory.
- 2.Data Clustering: By adjusting weights based on input similarity, Hebb networks cluster similar data, applied in market segmentation, document clustering, and bioinformatics.
- 3.Adaptive Control Systems: Hebbian learning helps adaptive control systems, such as robotics, by adjusting to environmental feedback for tasks like navigation and control.
- **4.Feature Extraction**: Hebb networks extract key features from data, useful for tasks like dimensionality reduction while preserving essential information.
- 5.Neurobiological & NLP Modeling: Hebb networks model biological learning processes and are used in NLP for word association and semantic memory by learning word co-occurrences in text.

Name: Omkar Deshpande Raghunath Bhusare Yadnesh Shirke

Roll NO: B20,B41,B42

Division: B

nder guidance of: Prof. Barkha Kumari

Management Engineering

Law

Schools

Other Courses