PMATH333: Introduction to Real Analysis

Instructor Benjamin Passer LATEXer Iris Jiang

Fall 2019

Contents

1	Rea	d Number	2
	1.1	Lecture 2, Sept. 6th	2
		1.1.1 Dedekind Cut	2
	1.2	Lecture 3, Sept. 9th	4
		1.2.1 Real Number	4
		1.2.2 Density of \mathbb{Q} in \mathbb{R}	4
		1.2.3 Bound	E
	1.3	Lecture 4, Sept. 11th	6
		1.3.1 The Completeness of \mathbb{R}	6
	1.4	Lecture 5, Sept. 13th	7
	1.5	Lecture 6, Sept. 16th	8
		1.5.1 Archimedean Property	8

Chapter 1

Real Number

1.1 Lecture 2, Sept. 6th

1.1.1 Dedekind Cut

Definition 1.1 (Dedekind cut). A **Dedekind cut** is a subset $A \subseteq \mathbb{Q}$, such that

- 1. $\emptyset \neq A \neq \mathbb{Q}$
- 2. If $x \in A$ and $q \in \mathbb{Q}$ with $q \leq x$, then $q \in A$
- 3. A has no largest element. That is, if $x \in A$, then there exists $y \in A$ with x < y

Example 1.1. If $q \in \mathbb{Q}$ is given, the $A_q := \{x \in \mathbb{Q} : x < q\}$ is a Dedekind cut

Proof. Let $q \in \mathbb{Q}$ and consider $A_q \subseteq \mathbb{Q}$

- 1. Since q-1 is rational and q-1 < q, we have $q-1 \in A_q$ and $\varnothing \neq A_q$. Similarly, q+1 is rational and $q+1 \not < q$, So $q+1 \notin A_q$, $A_q \neq \mathbb{Q}$. Hence $\varnothing \neq A_q \neq \mathbb{Q}$
- 2. Suppose $x \in A_q$ and $r \in \mathbb{Q}$ with $r \leq x$. By definition, x < q, so r < q and $r \in A_q$.
- 3. Suppose $x \in A_q$, so by definition, x < q. Then $a < \frac{x+q}{2} < q$ and $\frac{x+}{2}$ is rational, so $\frac{x+q}{2} \in A_q$. That is, x is not a largest element of A_q

Definition 1.2 (Rational Cut). A Dedekind cut is called a **rational cut** if $X = A_q$ for some $q \in \mathbb{Q}$. Otherwise we sat the Dedekind cut X is an **irrational cut**

Rational Operations

For $q, r \in \mathbb{Q}$

$$q < r \iff r - q = \frac{a}{b} \text{ for some } a, b \in \mathbb{Z}^+$$

 $q \le r \iff q < r \text{ or } q = r$

For all $q, r, s \in \mathbb{Q}$

• Either q < r or $r \le q$. (any two of rational numbers are comparable)

- $q \le r$ and $r \le q \iff r = q$
- If $q \le r$ and $r \le s$, then $q \le s$

For all $q, r, s, t \in \mathbb{Q}$

- $q \le r$ and $s \le t \implies q + s \le r + t$
- If $0 \le q$ and $0 \le r$, then $\le qr$
- If $q \le r$, then $-r \le -q$

Lemma. Let q be a rational number with 0 < q and $q^2 < 2$. Then there exists some $r \in \mathbb{Q}$ with q < r and $r^2 < 2$

Proof. If $q \le 1$, choose r = 1.3Consider $r = q + \frac{1}{n}, n \in \mathbb{Z}^+$

$$(q + \frac{1}{n})^2 = q^2 + 2q\frac{1}{n} + \frac{1}{n^2}, \quad \leftarrow \text{ want it } < 2$$

$$< q^2 + 4\frac{1}{n} + \frac{1}{n}, \quad \text{ since } q < q^2, \text{ qi} 2$$

$$< q^2 + \frac{5}{n}$$

By definition, since $q^2 < 2$, we can write $2 - q^2 = \frac{a}{b}$ for $a, b \in \mathbb{Z}^+$. Choose n = 5b, then $r_n^2 < q^2 + \frac{1}{b} \le q^2 + \frac{a}{b} = 2$

We have found a rational number r_n with q < r and $r_n^2 < 2$

Goal

We want to show that the collection of Dedekind cuts may be reasonably thought of as a set of numbers. We must be able to define an ordering and algebraic operations on cuts.

We also need the rational cuts A_q to behave just like the rational numbers under these new operations.

The ordering we will use on Dedekind cuts is \subseteq

Theorem 1.1. If X and Y are Dedekind cuts, then either $X \subseteq Y$ or $Y \subseteq X$

Proof Skeleton. Suppose $X \nsubseteq Y$. Then there exists some $x \in X$ such that $x \notin Y$. Let $y \in Y$

- I. If $x \leq y$, then because Y is a Dedekind cut, $x \in Y$, contradiction
- II. y < x. Since $x \in X$ and X is a Dedekind cut, we conclude $y \in X$. We have proved $y \in Y \implies y \in X$, hence $Y \subseteq X$

1.2 Lecture 3, Sept. 9th

1.2.1 Real Number

Definition 1.3 (Real Number). A real number is a Dedekind cut.

We denote the set of real numbers by \mathbb{R} , and we use the following notation:

- If $q \in \mathbb{Q}$, we use "q" to mean A_q
- $\alpha \leq \beta$ means $\alpha \subseteq \beta$

The collection of rational cuts gives us a copy of \mathbb{Q} in \mathbb{R} , we write $\mathbb{Q} \subseteq \mathbb{R}$

Theorem 1.2 ((\mathbb{R}, \leq) is a **totally ordered** space). If $\alpha, \beta, \gamma \in \mathbb{R}$, then

- 1. Either $\alpha \leq \beta$ or $\beta \leq \alpha$
- 2. If $\alpha \leq \beta$ and $\beta \leq \alpha$, then $\alpha = \beta$
- 3. If $\alpha \leq \beta$ and $\beta \leq \gamma$, then $\alpha \leq \gamma$

Proof. Translation into Dedekind Cuts, If W, X, Y are Dedekind cuts, then

- 1. Either $W \subseteq X$ or $X \subseteq W$
- 2. If $W \subseteq X$ and $X \subseteq W$, then X = W
- 3. If $W \subseteq X$ and $X \subseteq Y$, then $W \subseteq Y$

We also set

$$\alpha < \beta \iff \alpha \le \beta \text{ and } \alpha \ne \beta$$

In the language of Dedekind cuts, this is \subseteq ("proper subset").

Goal

The goal of \mathbb{R} is to fill the gaps in \mathbb{Q}

- 1. \mathbb{R} has no gap
- 2. Real number is not too large

We will prove that between any two real numbers, there are rational numbers

1.2.2 Density of \mathbb{Q} in \mathbb{R}

Theorem 1.3 (Density of \mathbb{Q} in \mathbb{R}). If $\alpha, \beta \in \mathbb{R}$ with $\alpha < \beta$, then there exists $q \in \mathbb{Q}$ with $\alpha < q < \beta$

Proof. We need to show that if X and Y are Dedekind cuts with $X \subsetneq Y$, then there exists a rational cut A_q with $X \subsetneq A_q \subsetneq Y$. By assumption, $X \subsetneq Y$ implies that there is some $r \in Y \subseteq \mathbb{Q}$ with $r \notin X$. Since $r \in Y$ and Dedekind cuts have no largest element, there exists some $q \in Y$ with r < q. We will prove $X \subsetneq A_q \subsetneq Y$

Let x be an arbitrary element of X. Suppose $q \leq x$, so r < x. Since X is a Dedekind cut, r < x implies $r \in X$, a contradiction. We conclude $q \nleq x$ and hence x < q. By definition, we have $x \in A_q$. Since $x \in X \implies x \in A_q$. We have $X \subsetneq A_q$. Further, $r \notin X$, but r < q, so $r \in A_q$, we therefore have $X \subsetneq A_q$. Suppose $s \in A_q$, so by definition $s \in \mathbb{Q}$ with s < q. Since $q \in Y$, and Y is a Dedekind cut, this implies $s \in Y$. Since $s \in A_q \implies s \in Y$, we have $s \in Y$ 0 but $s \in Y$ 1. Since $s \in Y$ 2 but $s \in Y$ 3, we have $s \in Y$ 4. Since $s \in Y$ 5 but $s \in Y$ 6, we have $s \in Y$ 8.

We just showed: for any open interval $(\alpha, \beta) = \{x \in \mathbb{R} : \alpha < x < \beta\}$ with $\alpha < \beta$ has $\mathbb{Q} \cap (\alpha, \beta) \neq \emptyset$. (This will later tell us that every real number is a limit of rational numbers)

1.2.3 Bound

Definition 1.4 (Bound). If $S \subseteq \mathbb{R}$, we say $\beta \in \mathbb{R}$ is an **upper bound** of S if every $x \in S$ has $x \leq \beta$. If an upper bound for S exists, we say S is **bounded above**

Definition 1.5 (Supremum). Let $S \subseteq \mathbb{R}$ and $\beta \in \mathbb{R}$. Then β is a supremum, or least upper bound of S if

- 1. β is an upper bound of S
- 2. If γ is an upper bound for \mathcal{S} , then $\beta \leq \gamma$

Theorem 1.4. Let $S \subseteq \mathbb{R}$. If a supremum of S exists, it is unique.

Proof. If β_1 and β_2 are supremum of \mathcal{S} , then $\beta_1 \leq \beta_2$ because is a supremum and β_2 is an upper bound. Similarly, $\beta_2 \leq \beta_1$. Hence $\beta_1 = \beta_2$

1.3 Lecture 4, Sept. 11th

1.3.1 The Completeness of \mathbb{R}

Theorem 1.5 (The Completeness of \mathbb{R}). Let $S \subseteq \mathbb{R}$. If S is <u>nonempty</u> and <u>bounded above</u> (\exists at least one upper bound), then the supremum of S exists.

Proof. We seek a number $\beta \in \mathbb{R}$ which is an upper bound of s and has $\beta \leq \gamma$ for every upper bound γ .

Translation in to Dedekind cuts: If \mathcal{S} is a collection of Dedekind cuts which has

- 1). There exists at least one Dedekind cut $X \in \mathcal{S}$
- 2). There is some Dedekind cut \mathcal{D} with $X \in \mathcal{S} \implies X \subseteq \mathcal{D}$

We are looking for a Dedekind cut \mathcal{B} with

- a). $X \in \mathcal{S} \implies X \subseteq \mathcal{B}$
- b). Every \mathcal{D} as in property 2 has $\mathcal{B} \subseteq \mathcal{D}$

We define $\mathcal{B} = \bigcup \mathcal{S} = \bigcup_{X \in \mathcal{S}} X = x \in \mathbb{Q} : \exists X \in \mathcal{S}, x \in X.$

Suppose $X \in \mathcal{S}$. Consider an arbitrary element $x \in X \subseteq \mathbb{Q}$. By definition, $x \in \mathcal{B}$, hence $X \subseteq \mathcal{B}$ Suppose \mathcal{D} has the property that $X \in \mathcal{S} \implies X \subseteq \mathcal{D}$, we want $\mathcal{B} \subseteq \mathcal{D}$. Consider ant $x \in \mathcal{B} \subseteq \mathbb{Q}$. By definition of \mathcal{B} , there is some $X \in \mathcal{S}$ such that $x \in X$. Since $X \subseteq \mathcal{D}$, we conclude $x \in \mathcal{D}$, hence $\mathcal{B} \subseteq \mathcal{D}$

The only thing left to prove is that $\mathcal{B} \in \mathbb{R}$, i.e. \mathcal{B} is a Dedekind cut.

- 1). We want to show $\emptyset \neq \mathcal{B} \neq \mathbb{Q}$
 - Since $S \neq \emptyset$, there is at least one Dedekind cut $X \in S$. Since Dedekind cuts are nonempty, there exists $x \in X$. By definition, $x \in \mathcal{B}$. We proved $\mathcal{B} \neq \emptyset$
 - By assumption, there is a Dedekind cut \mathcal{D} such that if $X \in \mathcal{S}$ then $X \subseteq \mathcal{D}$. Since \mathcal{D} is a Dedekind cut, there is some rational number q with $q \notin \mathcal{D}$. Since $X \subseteq \mathcal{D}$, we must have $q \notin X$. That is $X \in \mathcal{S} \implies q \notin X$. Since \mathcal{B} contains precisely all of the elements of any $X \in \mathcal{S}$, we must have $q \notin \mathcal{B}$, hence $\mathcal{B} \neq \mathbb{Q}$
- 2). We want to show if $x \in \mathcal{B}, q \in \mathbb{Q}, q \leq x$, then $q \in \mathcal{B}$ If $x \in \mathcal{B}, q \in \mathbb{Q}, q \leq x$, by definition of \mathcal{B} , there exists some $X \in \mathcal{S}$ such that $x \in X$, $\mathcal{S} \subseteq \mathbb{R}$, so $X \in \mathbb{R}$ is a Dedekind cut. Since $q \in \mathbb{Q}$ and $q \leq x$, we have $q \in X$, but $X \in \mathcal{B}$, so $q \in \mathcal{B}$
- 3). We want to show that if $x \in \mathcal{B}$, then $\exists y \in \mathcal{B}$ with x < yIf $x \in \mathcal{B}$, by definition, there exists some $X \in \mathcal{S}$ such that $x \in X$ and X is a Dedekind cut, then \exists some $y \in X$ with x < y. But $X \subseteq \mathcal{B}$, so $y \in \mathcal{B}$

Dictionary: $\sup(\mathcal{S})$ exists in $\mathbb{R} \implies \bigcup \mathcal{S}$ is a Dedekind cut

Note. sup([0,1)) = 1, but $1 \notin [0,1)$

1.4 Lecture 5, Sept. 13th

If we switch all inequalities (\leq to geq)

Definition 1.6. A <u>lower bound</u> of a set $S \subseteq \mathbb{R}$ is some $\gamma \in \mathbb{R}$ such that $x \in S \implies \gamma \leq x$. If some lower bound exists, S is bounded below.

An <u>infimum</u> of S is a lower bound β with $\gamma \leq \beta$ for all lower bounds γ . If an infimum exists, it is unique and hence denoted by $\inf(S)$

Theorem 1.6. If $S \subseteq \mathbb{R}$ is nonempty and bounded below, then $\inf(S)$ exists.

Note. Proof goes roughly the same with $\mathcal{B} = \bigcap \mathcal{S}$. However, \mathcal{B} might not be a Dedekind cut, from existence of a largest element q. In this case, $\mathcal{B}\setminus\{q\}$ is the Dedekind cut you are looking for.

Operations

If $\alpha, \beta, \gamma, \delta \in \mathbb{R}$, then

- 1). $\alpha + \beta = \beta + \alpha$
- 2). $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$
- 3). If $\alpha \leq \beta$ and $\gamma \leq \delta$, then $\alpha + \gamma \leq \beta + \delta$

 \mathbb{Q} also has an additive identity: $q \in \mathbb{Q} \implies q + 0 = q$

Theorem 1.7. If $\alpha \in \mathbb{R}$, then $\alpha + 0 = \alpha$. Moreover, if $\beta \in \mathbb{R}$ has $\alpha + \beta = \alpha$ for all $\alpha \in \mathbb{R}$, then $\beta = 0$

Proof. The official version of the first claim is $\alpha + A_0 = \alpha$, where $A_0 = \{q \in \mathbb{Q} : q < 0\}$, and α is any Dedekind cut. If $a \in \alpha$ and $q \in A_0$, then a + q is rational with a + q < a and $a + q \in \alpha$. That is $\alpha + A_0 \subseteq \alpha$.

If $a \in \alpha$, ten since α is a Dedekind cut, there is some $b \in \alpha$ with a < b, then $a = b + (a - b) \in \alpha + A_0$, hence $\alpha \subseteq \alpha + A_0$ and $\alpha = \alpha + A_0$

For the second claim, suppose $\beta \in \mathbb{R}$ with $\alpha + \beta = \alpha$ for all $\alpha \in \mathbb{R}$. Then $\beta = \beta + 0 = 0 + \beta = 0$

1.5 Lecture 6, Sept. 16th

Theorem 1.8. Fix $\alpha \in \mathbb{R}$, then there exists a <u>unique</u> additive inverse: some $\beta \in \mathbb{R}$ with $\alpha + \beta = 0$. We denote it by $-\alpha$

Proof. Uniqueness: Suppose $\alpha + \beta_1 = \alpha + \beta_2 = 0$ for $\beta_1, \beta_2 \in \mathbb{R}$,

$$\beta_1 = \beta_1 + 0 = \beta_1 + (\alpha + \beta_2) = (\beta_1 + \alpha) + \beta_2 = (\alpha + \beta_1) + \beta_2 = 0 + \beta_2 + \beta_2 + 0 = \beta_2$$

Theorem 1.9. If $\alpha, \beta \in \mathbb{R}$ have $\alpha < \beta$, then $-\beta > -\alpha$

Proof. Suppose for contradiction, $\alpha < \beta$ but $-\alpha \le -\beta$. We know it is valid to add inequalities, so 0 < 0.

Definition 1.7 (Multiplication). If $\alpha, \beta \in \mathbb{R}$ have $\alpha \geq 0$ and $\beta \geq 0$, define

$$\alpha\beta := \{qr : q, r \in \mathbb{Q}, 0 \le q \le \alpha, 0 \le r \le \beta\}$$

We extend this multiplication to all of \mathbb{R} by

$$(-\alpha)\beta = \alpha(-\beta) = -(\alpha\beta)$$

$$(-\alpha)(-\beta) = \alpha\beta$$

The definition is designed so that $|\alpha\beta| = |\alpha||\beta|$

This new multiplication agrees with the old one if $\alpha, \beta \in \mathbb{Q}$

Operations

Let $\alpha.\beta, \gamma \in \mathbb{R}$, then

- 1. $\alpha\beta = \beta\alpha$
- 2. $\alpha(\beta + \gamma) = \alpha\beta + \alpha\gamma$
- 3. $\alpha(\beta\gamma) = (\alpha\beta)\gamma$
- 4. $0\alpha = 0$
- 5. $1\alpha = \alpha$ and this multiplicative identity is unique
- 6. If $\alpha < \beta$ and $\gamma > 0$, then $\alpha \gamma < \beta \gamma$

1.5.1 Archimedean Property

Theorem 1.10 (Archimedean Property). If $\alpha, \beta \in \mathbb{R}$ and $\alpha > 0$, then there exists some $n \in \mathbb{Z}^+$ with $n\alpha > \beta$

Proof. If $\beta < 0$, choose n = 1

If $\beta > 0$, note $\beta < \beta + 1$, so by the density of \mathbb{Q} of \mathbb{R} , there is some $q \in \mathbb{Q}$ with $0 < \beta < q < \beta + 1$. Since $0 < \alpha$, choose a rational $r \in \mathbb{Q}$ with $0 < r < \alpha$. Write $q = \frac{a}{b}$, $r = \frac{c}{d}$ for $a, b, c, d \in \mathbb{Z}^+$. Choose $n = ad \in \mathbb{Z}^+$. Then $n\alpha = (ad)\alpha > (ad)r = ac \ge a \ge q > \beta$

Theorem 1.11. If $\alpha \in \mathbb{R}$ and $\alpha \neq 0$, there is some $\beta \in \mathbb{R} \setminus \{0\}$ with $\alpha\beta = 1$

Proof. We may assume $\alpha > 0$. Let $S = \{r \in \mathbb{R} : \gamma \geq 0, \alpha \gamma < 1\}$. $S \subseteq \mathbb{R}$ is nonempty because $0 \in \mathcal{S}$. By the Archimedean Property, there is some $n \in \mathbb{Z}^+$ with $\alpha n > 1$.

We claim that n is an upper bound of S. Indeed, if γinS but $\gamma > n$, then $\alpha \gamma > \alpha n > 1$, contradicting $\gamma \in \mathcal{S}$. Thus, \mathcal{S} is nonempty and bounded above, so $\sup(\mathcal{S})$ exixts. Let $\beta = \sup(\mathcal{S})$. We claim that $\alpha\beta = 1$.

If $\alpha\beta < 1$, write $\alpha\beta = 1 - \epsilon$ for $\epsilon > 0$. By the Archimedean Property, choose $m \in \mathbb{Z}^+$ with $m\epsilon > \alpha$. Since m is nonzero rational, $\frac{1}{m}$ exists, $a < \frac{1}{m}$. $\alpha \frac{1}{m} < \epsilon$. Then $\alpha(\beta + \frac{1}{m}) = \alpha\beta + \alpha \frac{1}{m} < 1$. We conclude $\beta + \frac{1}{m} \in \mathcal{S}$, contradicting that β is an upper bound of \mathcal{S} .

If $\alpha\beta > 1$, write $\alpha\beta = 1 + \epsilon$ for $\epsilon > 0$. Choose $m \in \mathbb{Z}^+$ with $m\epsilon > \alpha$, so $\epsilon > \alpha \frac{1}{m}$. $\alpha(\beta - \frac{1}{m}) = \alpha\beta - \alpha \frac{1}{m} = (1 + \epsilon) + (-\alpha \frac{1}{m}) > 1$. Since $\beta - \frac{1}{m} < \beta = \sup(\mathcal{S}), \ \beta - \frac{1}{m}$ cannot be an upper bound. Hence $\exists \gamma \in \mathcal{S}$ with $\gamma > \beta = \frac{1}{m}$