Math 214 Winter 2019 Written Homework 5

-	г								
ı	ns	trı	п	C:1	1.1	റ	n	S	:

INSTRUCTOR:

• Please write your solutions clearly and neatly. Justify them completely.	
• Fill out your name and Section below.	
\bullet Upload your solutions (including this cover page) to Gradescope before the deadline. 22, 11:59pm)	(Friaday, Februar
NAME:	
SECTION NUMBER:	

1. (11 points) You are given that $L: \mathbb{R}^4 \to \mathbb{R}^4$ is a linear map. You are also given that $\mathfrak{B} = (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4)$ is a basis for \mathbb{R}^4 and the matrix of L with respect to the basis \mathfrak{B} is

$$B = \begin{bmatrix} 1 & -1 & 1 & -1 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

Your answers to this question may involve the vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$.

(a) (2 points) Find a basis for the kernel of L.

(b) (3 points) Find a basis for the image of L.

(c) (4 points) Which of the vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$ lies in the image of L? In each case, explain why or why not.

(d) (2 points) Find the vector $L^{100}(\mathbf{v}_1 - \mathbf{v}_2)$ (as a linear combination of the \mathbf{v}_i).

2. (8 points) Let V_1 and V_2 be the subspaces of \mathbb{R}^3 given respectively by the equations:

$$V_1: \quad x_1 + x_2 + x_3 = 0$$

$$V_2: \quad 2x_1 - x_2 - x_3 = 0$$

(a) (2 points) Find a basis for V_1^{\perp} .

(b) (2 points) Find a basis for V_2^{\perp} .

(c) (4 points) Find an orthonormal basis $(\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3)$ of \mathbb{R}^3 such that $(\mathbf{u}_1, \mathbf{u}_2)$ is a basis of V_1 , while $(\mathbf{u}_2, \mathbf{u}_3)$ is a basis of V_2 .

- 3. (11 points) In this question, $f: \mathbb{R} \to \mathbb{R}$ is a differentiable function. We will use linear algebra try to find a good linear approximation to f near a point x = a. Our linear approximation will be of the form y = c + mx.
 - (a) (3 points) Use the values of f at the point x=a and the nearby point x=a+h to find a good approximation. (You will need to set up a linear system involving c, m, a, h, f(a), f(a+h), where c and m are the variables. You should also be able to solve this linear system exactly for the vector $\begin{bmatrix} c \\ m \end{bmatrix}$.)

(b) (2 points) Explain what happens to your solution as $h \mapsto 0$. Why is this reasonable?

(c) (4 points) Now we will use three points x = a, x = a + h and x = a - h. The linear system you get now is overdetermined, so it is not possible in general to solve exactly. Nevertheless you can find a *least-squares* solution. What is the least squares solution for $\begin{bmatrix} c \\ m \end{bmatrix}$? (The answer you get should be quite a bit more complicated than that of part (a). You may continue your work on the next page.)

Part (c) contd ...

(d) (2 points) What happens when you let $h \mapsto 0$ in the solution of part (c)? How does this compare with your answer to part (b)?