✓ 6. La somme des solutions de l'équation $ix^2 + (1 - 5i)x + 8i - 2 = 0$ est :

6. La somme des solutions de l'équation
$$ix^2 + (1 - 5i)x + 8i - 2 = 0$$
 est :
 $1.-5 - i$ 2. $4 + 10i$ 3. 14 4. $\frac{i}{2}$ 5. Pas reprise (MB. -77)

■ 7. $\left[\left(\sqrt[3]{2} \cos 50^{\circ} + i \sin 50 \right) \right]^{9} =$

8. L'application qui, à tout z fait correspondre zi dans le corps de

complexes représente dans le plan de Gauss : une symétrie par rapport à l'axe des imaginaires

une homothétie de rapport i une translation de vecteur de composante (0, 1) une dilatation de point fixe l'origine

5. une rotation de $\frac{\pi}{-}$ (M. - 78)9. Les solutions dans C de l'équation $iz^2 + (1 - 5i)z + 6i - 2 = 0$ sont :

1. $z_1 = -3 + i$; $z_2 = 2$ 3. $z_1 = 3 + i$; $z_2 = 2$ 5. $z_1 = -1 + i$; $z_2 = 1 - i$ 2. $z_1 = 3 - i$; $z_2 = -2$ 4. $z_1 = 1 + i$; $z_2 = 3 + i$ (M. - 82)

■ 10. Le nombre complexe $\frac{a+3i}{2+bi}$ vaut 1-i si et seulement si : 1. a = 4 et b = -12. a = 3 et b = 53. a = 8 et b = -54. a = 4 et b = 15. a = 7 et b = 5

(M, -78)11. L'argument à 2 k π près du nombre complexe $\left(-\frac{3}{2} + \frac{\sqrt{3}}{2}i\right)^3$ vaut :

1. $\frac{5\pi}{6}$ 2. $\frac{5\pi}{3}$ 3. $\frac{2\pi}{3}$ 4. $\frac{7\pi}{6}$ 5. $\frac{4\pi}{3}$ (B. -82)

12. On donne dans C l'équation $z^2 + 2z + 4 = 0$ et on note z_1 et z_2 ses racines complexes. L'expression $\frac{z_1}{z_2} + \frac{z_2}{z_1}$ vaut :

1. -2 2. 1 3. $-\frac{1}{2}$ 4. 1-i 5. $-1+\frac{i}{3}$