Bases Ortonormais e Processo de Gram-Schmidt

Juliana Pimentel

juliana.pimentel@ufabc.edu.br

http://hostel.ufabc.edu.br/~juliana.pimentel

Sala 507-2 - Bloco A, Torre 2

- ▶ Um conjunto de vetores em um espaço com produto interno é chamado um *conjunto* ortogonal se quaisquer dois vetores distintos do conjunto são ortogonais.
- ▶ Um conjunto ortogonal no qual cada vetor tem norma 1 é chamado *ortonormal*.

 $V = \mathbb{R}^3$ com produto interno usual

$$u_1 = (0, 1, 0), u_2 = (1, 0, 1), u_3 = (1, 0, -1).$$

O conjunto $S = \{u_1, u_2, u_3\}$ é ortogonal, pois

 $V = \mathbb{R}^3$ com produto interno usual

$$u_1 = (0, 1, 0), u_2 = (1, 0, 1), u_3 = (1, 0, -1).$$

O conjunto $S = \{u_1, u_2, u_3\}$ é ortogonal, pois $\langle u_1, u_2 \rangle = \langle u_1, u_3 \rangle = \langle u_2, u_3 \rangle = 0.$

 $V = \mathbb{R}^3$ com produto interno usual

$$u_1 = (0, 1, 0), u_2 = (1, 0, 1), u_3 = (1, 0, -1).$$

O conjunto $S = \{u_1, u_2, u_3\}$ é ortogonal, pois $\langle u_1, u_2 \rangle = \langle u_1, u_3 \rangle = \langle u_2, u_3 \rangle = 0$. As normas dos vetores são $||u_1|| =$

 $V = \mathbb{R}^3$ com produto interno usual

$$u_1 = (0, 1, 0), u_2 = (1, 0, 1), u_3 = (1, 0, -1).$$

O conjunto $S = \{u_1, u_2, u_3\}$ é ortogonal, pois $\langle u_1, u_2 \rangle = \langle u_1, u_3 \rangle = \langle u_2, u_3 \rangle = 0$. As normas dos vetores são $||u_1|| = 1$, $||u_2|| =$

 $V = \mathbb{R}^3$ com produto interno usual

$$u_1 = (0, 1, 0), \ u_2 = (1, 0, 1), \ u_3 = (1, 0, -1).$$

O conjunto $S = \{u_1, u_2, u_3\}$ é ortogonal, pois $\langle u_1, u_2 \rangle = \langle u_1, u_3 \rangle = \langle u_2, u_3 \rangle = 0$. As normas dos vetores são $||u_1|| = 1$, $||u_2|| = \sqrt{2}$, $||u_3|| =$

 $V = \mathbb{R}^3$ com produto interno usual

$$u_1 = (0, 1, 0), \ u_2 = (1, 0, 1), \ u_3 = (1, 0, -1).$$

O conjunto $S = \{u_1, u_2, u_3\}$ é ortogonal, pois $\langle u_1, u_2 \rangle = \langle u_1, u_3 \rangle = \langle u_2, u_3 \rangle = 0$. As normas dos vetores são $||u_1|| = 1$, $||u_2|| = \sqrt{2}$, $||u_3|| = \sqrt{2}$.

 $V = \mathbb{R}^3$ com produto interno usual

$$u_1 = (0, 1, 0), \ u_2 = (1, 0, 1), \ u_3 = (1, 0, -1).$$

O conjunto $S = \{u_1, u_2, u_3\}$ é ortogonal, pois $\langle u_1, u_2 \rangle = \langle u_1, u_3 \rangle = \langle u_2, u_3 \rangle = 0$. As normas dos vetores são $||u_1|| = 1$, $||u_2|| = \sqrt{2}$, $||u_3|| = \sqrt{2}$. A normalização de u_1, u_2, u_3 fornece

 $V = \mathbb{R}^3$ com produto interno usual

$$u_1 = (0, 1, 0), u_2 = (1, 0, 1), u_3 = (1, 0, -1).$$

O conjunto $S = \{u_1, u_2, u_3\}$ é ortogonal, pois $\langle u_1, u_2 \rangle = \langle u_1, u_3 \rangle = \langle u_2, u_3 \rangle = 0$. As normas dos vetores são $||u_1|| = 1$, $||u_2|| = \sqrt{2}$, $||u_3|| = \sqrt{2}$. A normalização de u_1, u_2, u_3 fornece

$$v_1 = \frac{u_1}{\|u_1\|} = (0, 1, 0), \ v_2 = \frac{u_2}{\|u_2\|} = (1/\sqrt{2}, 0, 1/\sqrt{2})$$

$$v_3 = \frac{u_3}{\|u_3\|} = (1/\sqrt{2}, 0, -1/\sqrt{2}).$$

 $V = \mathbb{R}^3$ com produto interno usual

$$u_1 = (0, 1, 0), u_2 = (1, 0, 1), u_3 = (1, 0, -1).$$

O conjunto $S = \{u_1, u_2, u_3\}$ é ortogonal, pois $\langle u_1, u_2 \rangle = \langle u_1, u_3 \rangle = \langle u_2, u_3 \rangle = 0$. As normas dos vetores são $||u_1|| = 1$, $||u_2|| = \sqrt{2}$, $||u_3|| = \sqrt{2}$. A normalização de u_1, u_2, u_3 fornece

$$v_1 = \frac{u_1}{\|u_1\|} = (0, 1, 0), \ v_2 = \frac{u_2}{\|u_2\|} = (1/\sqrt{2}, 0, 1/\sqrt{2})$$

$$v_3 = \frac{u_3}{\|u_2\|} = (1/\sqrt{2}, 0, -1/\sqrt{2}).$$

$$S' = \{v_1, v_2, v_3\}$$
 é ortonormal.

Num espaço com produto interno, uma base constituindo de vetores ortonormais é chamada base ortonormal.

Num espaço com produto interno, uma base constituindo de vetores ortonormais é chamada base ortonormal. Um exemplo é a base canônica do \mathbb{R}^3 :

$$i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1).$$

Num espaço com produto interno, uma base constituindo de vetores ortonormais é chamada base ortonormal. Um exemplo é a base canônica do \mathbb{R}^3 :

$$i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1).$$

Se $S = \{v_1, v_2, \dots, v_n\}$ é uma base ortonormal de um espaço com produto interno V e u é um vetor qualquer de Ventão

$$u = \langle u, v_1 \rangle v_1 + \langle u, v_2 \rangle v_2 + \dots + \langle u, v_n \rangle v_n.$$

Sejam

$$v_1 = (0, 1, 0), v_2 = (-4/5, 0, 3/5), v_3 = (3/5, 0, 4/5).$$

Obtenha as coordenadas de u = (1, 1, 1) em relação a base ortonormal $S = \{v_1, v_2, v_3\}$.

Sejam

$$v_1 = (0, 1, 0), v_2 = (-4/5, 0, 3/5), v_3 = (3/5, 0, 4/5).$$

Obtenha as coordenadas de u = (1, 1, 1) em relação a base ortonormal $S = \{v_1, v_2, v_3\}$.

Solução.

$$\langle u, v_1 \rangle =$$

Sejam

$$v_1 = (0, 1, 0), v_2 = (-4/5, 0, 3/5), v_3 = (3/5, 0, 4/5).$$

Obtenha as coordenadas de u = (1, 1, 1) em relação a base ortonormal $S = \{v_1, v_2, v_3\}$.

Solução.

$$\langle u, v_1 \rangle = 1, \ \langle u, v_2 \rangle = -1/5, \ \langle u, v_3 \rangle = 7/5.$$

Sejam

$$v_1 = (0, 1, 0), v_2 = (-4/5, 0, 3/5), v_3 = (3/5, 0, 4/5).$$

Obtenha as coordenadas de u = (1, 1, 1) em relação a base ortonormal $S = \{v_1, v_2, v_3\}$.

Solução.

$$\langle u, v_1 \rangle = 1, \ \langle u, v_2 \rangle = -1/5, \ \langle u, v_3 \rangle = 7/5.$$

O vetor de coordenadas de u em relação a S é (1,-1/5,7/5).

Coordenadas em relação a bases ortogonais

Se $S = \{v_1, v_2, \dots, v_n\}$ é uma base ortogonal de um espaço com produto interno V, então

$$S' = \{ \frac{v_1}{\|v_1\|}, \frac{v_2}{\|v_2\|}, \cdots, \frac{v_n}{\|v_n\|} \}$$

é uma base ortonormal de V. Então qualquer vetor $u \in V$ pode ser escrito como

$$u = \langle u, \frac{v_1}{\|v_1\|} \rangle \frac{v_1}{\|v_1\|} + \dots + \langle u, \frac{v_n}{\|v_n\|} \rangle \frac{v_n}{\|v_n\|}$$

Coordenadas em relação a bases ortogonais

Podemos expressar u como uma combinação linear dos vetores da base ortogonal S' como

$$u = \frac{\langle u, v_1 \rangle}{\|v_1\|^2} v_1 + \dots + \frac{\langle u, v_n \rangle}{\|v_n\|^2} v_n$$

- ► Construir bases ortogonais e ortonormais de espaços com produto interno.
- A partir de uma base qualquer de um espaço vetorial existe um processo para se obter uma base ortonormal.
- Processo de ortonormalização para uma base.

Se W é um subspaço de dimensão finita de um espaço com produto interno V,

Se W é um subspaço de dimensão finita de um espaço com produto interno V, então cada vetor $u \in V$ pode ser expresso de uma única maneira como

Se W é um subspaço de dimensão finita de um espaço com produto interno V, então cada vetor $u \in V$ pode ser expresso de uma única maneira como

$$u = w_1 + w_2$$

Se W é um subspaço de dimensão finita de um espaço com produto interno V, então cada vetor $u \in V$ pode ser expresso de uma única maneira como

$$u = w_1 + w_2$$

onde $w_1 \in W$ e $w_2 \in W^{\perp}$.

Se W é um subspaço de dimensão finita de um espaço com produto interno V, então cada vetor $u \in V$ pode ser expresso de uma única maneira como

$$u = w_1 + w_2$$

onde $w_1 \in W$ e $w_2 \in W^{\perp}$.

• $w_1 := proj_W u$ é chamado projeção ortogonal $de \ u \ em \ W$,

Se W é um subspaço de dimensão finita de um espaço com produto interno V, então cada vetor $u \in V$ pode ser expresso de uma única maneira como

$$u = w_1 + w_2$$

onde $w_1 \in W$ e $w_2 \in W^{\perp}$.

- $w_1 := proj_W u$ é chamado projeção ortogonal $de\ u\ em\ W$,
- w_2 é chamado componente de u ortogonal a W.

Descreveremos o processo de ortonormalização para uma base $S = \{v_1, v_2\}.$

Descreveremos o processo de ortonormalização para uma base $S = \{v_1, v_2\}$. Seja $v_1' = v_1$.

Descreveremos o processo de ortonormalização para uma base $S=\{v_1,v_2\}$. Seja $v_1'=v_1$. Queremos encontrar v_2' ortogonal a v_1' .

Descreveremos o processo de ortonormalização para uma base $S = \{v_1, v_2\}$.

Seja $v'_1 = v_1$. Queremos encontrar v'_2 ortogonal a v'_1 . Tomaremos $v'_2 = v_2 - cv'_1$, onde c é um número escolhido de modo que $\langle v'_2, v'_1 \rangle = 0$, ou seja,

Descreveremos o processo de ortonormalização para uma base $S = \{v_1, v_2\}$. Seja $v'_1 = v_1$. Queremos encontrar v'_2 ortogonal a v'_1 . Tomaremos $v'_2 = v_2 - cv'_1$, onde c é um número escolhido de modo que $\langle v'_2, v'_1 \rangle = 0$, ou seja, $\langle v_2 - cv'_1, v'_1 \rangle = 0$. Então $c = \frac{\langle v_2, v'_1 \rangle}{\langle v'_1, v'_2 \rangle}$.

Descreveremos o processo de ortonormalização para uma base $S = \{v_1, v_2\}$. Seja $v_1' = v_1$. Queremos encontrar v_2' ortogonal a v_1' . Tomaremos $v_2' = v_2 - cv_1'$, onde c é um número escolhido de modo que $\langle v_2', v_1' \rangle = 0$, ou seja, $\langle v_2 - cv_1', v_1' \rangle = 0$. Então $c = \frac{\langle v_2, v_1' \rangle}{\langle v_1', v_1' \rangle}$. Ficamos com

$$v_1' = v_1$$

$$v_2' = v_2 - \frac{\langle v_2, v_1' \rangle}{v_1', v_1'} v_1'$$

Observe que v'_2 foi obtido de v_2 , subtraindo-se deste a projeção do vetor v_2 na direção de v'_1 .

Observe que v'_2 foi obtido de v_2 , subtraindo-se deste a projeção do vetor v_2 na direção de v'_1 . O vetores v'_1 e v'_2 são vetores ortogonais não nulos.

Observe que v'_2 foi obtido de v_2 , subtraindo-se deste a projeção do vetor v_2 na direção de v'_1 . O vetores v'_1 e v'_2 são vetores ortogonais não nulos. Normalizando obtemos

$$u_1 = \frac{v_1'}{\|v_1'\|}, \ u_2 = \frac{v_2'}{\|v_2'\|},$$

Observe que v'_2 foi obtido de v_2 , subtraindo-se deste a projeção do vetor v_2 na direção de v'_1 . O vetores v'_1 e v'_2 são vetores ortogonais não nulos. Normalizando obtemos

$$u_1 = \frac{v_1'}{\|v_1'\|}, \ u_2 = \frac{v_2'}{\|v_2'\|},$$

A base $S' = \{u_1, u_2\}$ é ortonormal.

Seja $S = \{(2,1), (1,1)\}$ uma base do \mathbb{R}^2 . Obtenha a partir de S uma base ortonormal em relação ao produto interno usual.

Solução. $v_1 = (2, 1), v_2 = (1, 1)$

Seja $S = \{(2,1), (1,1)\}$ uma base do \mathbb{R}^2 . Obtenha a partir de S uma base ortonormal em relação ao produto interno usual.

Solução.
$$v_1 = (2, 1), v_2 = (1, 1)$$

$$v_1' = v_1 = (2, 1)$$

$$v_2' = v_2 - cv_1', \quad c = \frac{\langle v_2, v_1' \rangle}{v_1', v_1'}$$

Seja $S = \{(2,1), (1,1)\}$ uma base do \mathbb{R}^2 . Obtenha a partir de S uma base ortonormal em relação ao produto interno usual.

Solução.
$$v_1=(2,1), v_2=(1,1)$$

$$v_1'=v_1=(2,1)$$

$$v_2'=v_2-cv_1', \quad c=\frac{\langle v_2,v_1'\rangle}{v_1',v_1'}$$

$$v_2' = v_2 - \frac{\langle v_2, v_1' \rangle}{v_1', v_1'} v_1' =$$

Seja $S = \{(2,1), (1,1)\}$ uma base do \mathbb{R}^2 . Obtenha a partir de S uma base ortonormal em relação ao produto interno usual.

Solução.
$$v_1 = (2, 1), v_2 = (1, 1)$$

$$v_1' = v_1 = (2, 1)$$

$$v_2' = v_2 - cv_1', \quad c = \frac{\langle v_2, v_1' \rangle}{v_1', v_1'}$$

$$v_2' = v_2 - \frac{\langle v_2, v_1' \rangle}{v_1', v_1'} v_1' = (1, 1) -$$

Seja $S = \{(2,1), (1,1)\}$ uma base do \mathbb{R}^2 . Obtenha a partir de S uma base ortonormal em relação ao produto interno usual.

Solução.
$$v_1=(2,1), v_2=(1,1)$$

$$v_1'=v_1=(2,1)$$

$$v_2'=v_2-cv_1', \quad c=\frac{\langle v_2,v_1'\rangle}{v_1',v_1'}$$

$$v_2' = v_2 - \frac{\langle v_2, v_1' \rangle}{v_1', v_1'} v_1' = (1, 1) - \frac{\langle (1, 1), (2, 1) \rangle}{(2, 1), (2, 1)} =$$

Seja $S = \{(2,1), (1,1)\}$ uma base do \mathbb{R}^2 . Obtenha a partir de S uma base ortonormal em relação ao produto interno usual.

Solução.
$$v_1 = (2, 1), v_2 = (1, 1)$$

$$v_1' = v_1 = (2, 1)$$

$$v_2' = v_2 - cv_1', \quad c = \frac{\langle v_2, v_1' \rangle}{v_1', v_1'}$$

$$v_2' = v_2 - \frac{\langle v_2, v_1' \rangle}{v_1', v_1'} v_1' = (1, 1) - \frac{\langle (1, 1), (2, 1) \rangle}{(2, 1), (2, 1)} =$$

Normalizando

$$u_1 = \frac{v_1'}{\|v_1'\|}$$

Normalizando

$$u_1 = \frac{v_1'}{\|v_1'\|} = (2/\sqrt{5}, 1/\sqrt{5}),$$
$$u_2 = \frac{v_2'}{\|v_2'\|}$$

Normalizando

$$u_1 = \frac{v_1'}{\|v_1'\|} = (2/\sqrt{5}, 1/\sqrt{5}),$$

$$u_2 = \frac{v_2'}{\|v_2'\|} = (-1/\sqrt{5}, 2/\sqrt{5}).$$

Normalizando

$$u_1 = \frac{v_1'}{\|v_1'\|} = (2/\sqrt{5}, 1/\sqrt{5}),$$

$$u_2 = \frac{v_2'}{\|v_2'\|} = (-1/\sqrt{5}, 2/\sqrt{5}).$$

Então $S' = \{u_1, u_2\}$ é uma base ortonormal.

Considere uma base $S = \{v_1, v_2, \cdots, v_n\}$. Então

Considere uma base $S = \{v_1, v_2, \dots, v_n\}$. Então

$$v'_1 = v_1 = (2, 1)$$

 $v'_2 = v_2 - cv'_1, \quad c = \frac{\langle v_2, v'_1 \rangle}{v'_1, v'_1}$

Assim $v_1' \perp v_2'$.

Considere uma base $S = \{v_1, v_2, \cdots, v_n\}$. Então

$$v'_1 = v_1 = (2, 1)$$

 $v'_2 = v_2 - cv'_1, \quad c = \frac{\langle v_2, v'_1 \rangle}{v'_1, v'_1}$

Assim $v_1' \perp v_2'$. Vamos procurar v_3' ortogonal a v_1' e v_2' .

Considere uma base $S = \{v_1, v_2, \dots, v_n\}$. Então

$$v'_1 = v_1 = (2, 1)$$

 $v'_2 = v_2 - cv'_1, \quad c = \frac{\langle v_2, v'_1 \rangle}{v'_1, v'_1}$

Assim $v_1' \perp v_2'$. Vamos procurar v_3' ortogonal a v_1' e v_2' . Por analogia, escolhemos

$$v_3' = v_3 - mv_2' - kv_1'$$

e escolhemos m, k tais que $\langle v_3', v_2' \rangle = \langle v_3', v_1' \rangle = 0$.

$$0 = \langle v_3', v_1' \rangle = \langle v_3 - mv_2' - kv_1', v_1' \rangle =$$
$$= \langle v_3, v_1' \rangle - m\langle v_2', v_1' \rangle - k\langle v_1', v_1' \rangle$$

Assim, como $\langle v_2', v_1' \rangle = 0$, temos $\langle v_3', v_1' \rangle = 0$ se, e somente se,

$$k = \frac{\langle v_3, v_1' \rangle}{v_1', v_1'}.$$

$$0 = \langle v_3', v_1' \rangle =$$

$$= \langle v_3, v_1' \rangle - m \langle v_2', v_1' \rangle - k \langle v_1', v_1' \rangle$$

Assim, como $\langle v_2', v_1' \rangle = 0$, temos $\langle v_3', v_1' \rangle = 0$ se, e somente se,

$$k = \frac{\langle v_3, v_1' \rangle}{v_1', v_1'}.$$

$$0 = \langle v_3', v_1' \rangle = \langle v_3 - mv_2' - kv_1', v_1' \rangle =$$
$$= \langle v_3, v_1' \rangle - m\langle v_2', v_1' \rangle - k\langle v_1', v_1' \rangle$$

$$0 = \langle v_3', v_1' \rangle = \langle v_3 - mv_2' - kv_1', v_1' \rangle =$$
$$= \langle v_3, v_1' \rangle - m\langle v_2', v_1' \rangle - k\langle v_1', v_1' \rangle$$

Assim, como $\langle v_2', v_1' \rangle = 0$, temos $\langle v_3', v_1' \rangle = 0$ se, e somente se,

$$k = \frac{\langle v_3, v_1' \rangle}{v_1', v_1'}.$$

Da mesma forma, $\langle v_3', v_2' \rangle = 0$ se, e somente se,

$$m = \frac{\langle v_3, v_2' \rangle}{v_2', v_2'}.$$

Da mesma forma, $\langle v_3', v_2' \rangle = 0$ se, e somente se,

$$m = \frac{\langle v_3, v_2' \rangle}{v_2', v_2'}.$$

Portanto,

$$v_3' = v_3 - \frac{\langle v_3, v_2' \rangle}{\langle v_2', v_2' \rangle} v_2' - \frac{\langle v_3, v_1' \rangle}{\langle v_1', v_1' \rangle} v_1'.$$

Procedendo de maneira análoga, obtemos v'_4, v'_5, \cdots, v'_n .

A partir de uma base $S = \{v_1, v_2, \dots, v_n\},$ construímos a base ortogonal $\{v'_1, v'_2, \dots, v'_n\}$:

$$v'_{1} = v_{1}$$

$$v'_{2} = v_{2} - \frac{\langle v_{2}, v'_{1} \rangle}{\langle v'_{1}, v'_{1} \rangle} v'_{1}$$

$$v'_{3} = v_{3} - \frac{\langle v_{3}, v'_{2} \rangle}{\langle v'_{2}, v'_{2} \rangle} v'_{2} - \frac{\langle v_{3}, v'_{1} \rangle}{\langle v'_{1}, v'_{1} \rangle} v'_{1}$$

$$\dots$$

$$v'_n = v_n - \frac{\langle v_n, v'_{n-1} \rangle}{\langle v'_{n-1}, v'_{n-1} \rangle} v'_{n-1} - \dots - \frac{\langle v_n, v'_1 \rangle}{\langle v'_1, v'_1 \rangle} v'_1$$

Se quisermos obter uma base ortonormal, basta normalizar os vetores v'_1, v'_2, \cdots, v'_n , tomando

$$u_1 = \frac{v_1'}{\|v_1'\|}, u_2 = \frac{v_2'}{\|v_2'\|}, \dots, u_n = \frac{v_n'}{\|v_n'\|}$$

A base $\{u_1, u_2, \cdots, u_n\}$ é ortonormal.

Exercício

Considere o espaço vetorial \mathbb{R}^3 com o produto interno usual. Aplique o processo de Gram-Schmidt para transformar a base $S = \{(1, 1, 1), (0, 1, 1), (0, 0, 1)\}$ em uma base ortonormal.

Exercício

Considere o espaço vetorial \mathbb{R}^3 com o produto interno usual. Aplique o processo de Gram-Schmidt para transformar a base $S = \{(1,1,1), (0,1,1), (0,0,1)\}$ em uma base ortonormal. (**Resposta.**

$$\{(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}), (\frac{-2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}), (0, \frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}})\})$$