# 6- MISE EN ÉVIDENCE DU TYPE RESPIRATOIRE

Noter la zone de développement des colonies et en déduire le type respiratoire



# 7 - MISE EN EVIDENCE DU METABOLISME ENERGETIQUE

- Oxydase
- Catalase
- Nitrate réductase

# Mise en évidence du cytochrome c par le test de « l 'oxydase »

#### N-diméthyl-paraphénylene diamine

$$H_3C$$
 $N$ 
 $CH_3$ 
 $CH_3$ 

En effet, en présence de dioxygène, la cytochrome-oxydase est capable de catalyser l'oxydation de la forme réduite de dérivés N-méthylés du <u>paraphénylènediamine</u> en semi-quinone (rose violacé).





# Catalase : enzyme de détoxification

- en présence d'O<sub>2</sub> l'oxydation ou l'oxygénation de nombreux substrats produit du FADH<sub>2</sub>
- une partie du FADH<sub>2</sub> peut être réoxydée par O<sub>2</sub> à l'air, avec formation de 2 produits très toxiques qui doivent être détruits par des enzymes de détoxification :
  - I 'eau oxygénée H<sub>2</sub>O<sub>2</sub>
  - I 'ion superoxyde O<sub>2</sub> -

# Catalase : enzyme de détoxification

- Test de la catalase:
  - verser une goutte d'eau oxygénée sur une colonie
  - observer le dégagement de gaz en présence d 'H₂O₂



Pas d'effervescence : catalase "-"



Effervescence: catalase "+"

## Nitrate Réductase

La réduction des nitrates par la nitrate réductase se traduit par la production de nitrites. Parfois, certaines bactéries peuvent poursuivre cette réduction, jusqu'à une dénitrification.



# Nitrate Réductase

#### **Test**

#### **Étape 1 : Vérification le nitrite**



## 8 - MÉTABOLISME DU CARBONE

#### 8.1 – Test Oxydative ou Fermentaire

Voie oxydative ou fermentaire de 4 souches seront testées : E.Coli, staphylococcus (MEVAG), bacillus, pseudomonas dans (culture liquide) Hugh et Leifson.

#### 8.2 – Fermentation les différents sucres : Maltose et Lactose

#### 8.3. Mise en évidence de la fermentation mixte

Deux souches E.coli et Entérobacter sur milieu de CLARK et LUBS

8.4 – Mise en evidence de l'utilisation d'une source de carbone organique autre que les glucides

Deux souches : E.coli et Salmonella sur milieu de Simmons (milieu solide incliné) contenant du citrate de sodium comme seule source de carbone et un indicateur de pH

# Les indicateurs colorés



# 8.1 – <u>Test Oxydative ou Fermentaire</u>

#### Aspect du milieu avant utilisation



Aspect du milieu après utilisation





Milieu: Hugh et Leifson

milieu MEVAG



# Hugh et Leifson

#### Lecture

- 1 Tubes tel qu'ils doivent être après ensemencement
- 2 Haut du Tube O jaune → il y a eu un changement de couleur du à l'acidification dans le haut du tube O uniquement : les bactéries ont besoin d'oxygène pour dégrader le glucose. Les bactéries sont oxydatives.
- **3** Tubes O et F entièrement jaunes → il y a eu virage de l'indicateur coloré à cause de la production d'acide dans tout le tube : les bactéries ont utilisé le glucose en présence et en absence d'oxygène. Les bactéries sont donc fermentatives.
- **4** Haut du tube O bleu → bactéries inertes au glucose : utilisation des peptides comme source d'énergie.

### 8.2 – Mise en evidence des fermentations sucrees



Inoculum provenant d'un milieu solide ou liquide sans sucre

Galactose
Lactose, saccharose, maltose, cellobiose
Arabinose, xylose
Inositol, mannitol, sorbitol
dextrines

# Lactose - enzyme galactosidase

La β-galactosidade est un endoenzyme qui hydrolyse le lactose en galactose + glucose



ONPGest hydrolysé par la β galactosidase en orthonitrophénol jaune







# Lactose - Enzyme galactosidase

Le milieu Hajna Kligler

Fermentation du glucose : observer le culot



Fermentation du lactose: observer la pente



# Lactose - Enzyme galactosidase

#### Le milieu Hajna Kligler



glucose + et lactose +



glucose + et lactose -



glucose - et lactose -

glucose - et lactose +

# Détection la galactosidase par ONPG

β -gal

La réaction est la suivante : ONPG  $\longrightarrow$  ONP + galactose

Faire une suspension dense en eau stérile (tube à hémolyse)

- ✓ Déposer un ½ disque d'ONPG
- ✓ Placer au bain-marie à 37°C
- ✓ Lire après 30 minutes

| Observation |                     | Interprétation                                                             | Conclusion                                                               |  |
|-------------|---------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------|--|
| 1           | Coloration<br>jaune | La bactérie a hydrolysée l'ONPG<br>en ONP (produit coloré jaune)           | La bactérie possède la β-galactosidase elle est dite ONPG +              |  |
|             | Incolore            | Il n'y a pas d'ONP dans le milieu, la<br>bactérie n'a pas hydrolysé l'ONPG | La bactérie ne possède pas la<br>β-galactosidase<br>elle est dite ONPG - |  |

## 8.3. Mise en évidence de la fermentation mixte

#### Le milieu Clark et Lubs

Aspect du milieu avant utilisation

Aspect du milieu après utilisation



- ⇒ Test VP : rouge : VP+, jaune : VP-
- ⇒ Test RM, rouge : RM+, jaune : RM-



test RM: ajouter 2 à 3 gouttes de rouge de méthyl, la lecture est immédiate.

✓ soit de nombreux acides par la voie des fermentations acides mixtes qui sont mis en évidence par le test RM (au rouge de méthyl),

| ROUGE acide | JAUNE | base | Rouge de méthyle (RM) |
|-------------|-------|------|-----------------------|

<u>test VP</u>: ajouter 10 gouttes d'alpha naphtol et le même volume de soude concentrée (ou de potasse). incliner le tube pour permettre une bonne oxygénation. attendre quelques min à 1 heure.

✓ soit d'acétoïne produit par fermentation butanediolique qui est mise en évidence par le test VP (Voges-Proskauer)

## Le devenir du pyruvate : Résumé Fermentation



Cours 4 : Métabolisme partie 2 mhchatain@isara.fr

# L'utilisation d'une source de carbone organique autre que les glucides : citrate de sodium.



#### Milieu citrate de Simmons



Virage de l'indicateur de pH au bleu : il y a eu alcalinisation du milieu et la souche est citrate +