Examples of Division A/B

 $A/B = { < x > | \forall < y > \in B, < x, y > \in A }$

cid	bname
c1	b1
c1	b2
c1	b3
c1	b4
c2	b1
c2	b2
c3	b2
c4	b2
c4	b4
•	

bname
b2
B1

bname		
b1		
b2		
b4		
B3		

cid
c1
c2
c3
c4

c1	
c4	

cid
c1

A/B

A/B

A/B

1

2

3

24

Expressing A/B Using Basic Operators

- Can be equivalently expressed using basic operators
- Idea: For A/B, compute all x values that are not disqualified by some y value in B
 - x value is disqualified if by attaching y value from B, we obtain an <x,y> tuple that is not in A

Can you express this operator using basic operators?

A/B:
$$\pi_{\chi}(A) - \pi_{\chi}((\pi_{\chi}(A) \times B) - A)$$
Disqualified χ
values

Examples of Division A/B

$$\pi_{\chi}(A) - \pi_{\chi}((\pi_{\chi}(A) \times B) - A)$$

cid	bname
c1	b1
c1	b2
c1	b3
c1	b4
c2	b1
c2	b2
сЗ	b2
c4	b2
c4	b4

bname
b2
b4

B

cid	bname
c1	<u>b2</u>
c 1	b4
c2	<u>b2</u>
c2	b4
c3	b2
c3	b4
c4	<u>b2</u>
c4	b4

cid c1 c4

A/B

A

-A

$$\pi_{\chi}(A) \times B$$

Find names of sailors who have reserved a red OR green boat

- Identify all red or green boats, then
- find sailors who have reserved one of these boats

Sailors

sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

Reserves

sid	bid	day
22	101	10/10/98
22	102	10/10/98
22	103	10/8/98
22	104	10/7/98
31	102	11/10/98
31	103	11/6/98
31	104	11/12/98
64	101	9/5/98
64	102	9/8/98
74	103	9/8/98

bid	bname	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

Find names of sailors who have reserved a red OR green boat

- Identify all red or green boats, then
- find sailors who have reserved one of these boats:

$$\rho \ (\textit{Tempboats}, (\sigma_{color = 'red' \lor color = 'green'}, \textit{Boats}))$$

$$\pi_{sname} (\textit{Tempboats} \ \boxtimes \ \textit{Reserves} \ \boxtimes \ \textit{Sailors})$$

Equivalent:

$$\rho(\textit{Tempboats}, (\sigma_{color='red'}(\textit{Boats}) \cup \sigma_{color='green'}(\textit{Boats}))) \\ \pi_{sname}(\textit{Tempboats} \ \boxtimes \ \text{Reserves} \ \boxtimes \ \textit{Sailors})$$

Find names of sailors who have reserved a red AND green boat


```
\rho \ (\textit{Tempboats}, (\sigma_{color} = 'red' \land color = 'oren', Boats)) \pi_{sname} (\textit{Tempboats} \boxtimes \land Reserves \boxtimes Sa. Sors)
```


Find names of sailors who have reserved a red AND green boat

- Identify
 - sailors who have reserved red boats
 - sailors who have reserved green boats
- Then find the intersection (sid is a key for Sailors):

Sailors

sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

Reserves

sid	bid	day
22	101	10/10/98
22	102	10/10/98
22	103	10/8/98
22	104	10/7/98
31	102	11/10/98
31	103	11/6/98
31	104	11/12/98
64	101	9/5/98
64	102	9/8/98
74	103	9/8/98

bid	bname	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

Find names of sailors who have reserved a red AND green boat

- Identify
 - sailors who have reserved red boats
 - sailors who have reserved green boats
- Then find the intersection (sid is a key for Sailors):

$$\rho$$
 (Tempred, π_{sid} (($\sigma_{color='red}$, Boats)\mathbb{M} Reserves))

$$\rho$$
 (Tempgreen, π_{sid} (($\sigma_{color='green'}$, Boats) \boxtimes Reserves))

$$\pi_{sname}((Tempred \cap Tempgreen) \square Sailors)$$

Find the SIDs of sailors over age 20 who have not reserved a red boat

$$\pi_{sid}(\sigma_{age>20}Sailors) -$$
 $\pi_{sid}((\sigma_{color='red}, Boats) \boxtimes \mathbb{R}eserves)$

Sailors

sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

Reserves

sid	bid	day
22	101	10/10/98
22	102	10/10/98
22	103	10/8/98
22	104	10/7/98
31	102	11/10/98
31	103	11/6/98
31	104	11/12/98
64	101	9/5/98
64	102	9/8/98
74	103	9/8/98

bid	bname	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

Find the names of sailors who have reserved **all** boats

 Uses division; schemas of the input relations must be carefully chosen:

$$\rho \; (\textit{Tempsids}, (\pi \; \textit{sid,bid} \; \textit{Reserves}) \; / \; (\pi \; \textit{bid} \; \textit{Boats})) \\ \pi \; \textit{sname} \; (\textit{Tempsids} \; \boxtimes \; \textit{Sailors})$$

Sailors

sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

Reserves

bid	day
101	10/10/98
102	10/10/98
103	10/8/98
104	10/7/98
102	11/10/98
103	11/6/98
104	11/12/98
101	9/5/98
102	9/8/98
103	9/8/98
	101 102 103 104 102 103 104 101

bid	bname	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red