PHY2301P - Molécules et Cristaux - TD 3

Exercice 1 : Le trioxyde de tungstène

L'élément tungstène de symbole W (de son ancien nom wolfram) est toujours combiné à l'élément oxygène dans ses minerais. La plupart des traitements de ces minerais aboutissent à l'obtention du trioxyde de tungstène (VI) de formule WO₃. Il présente des propriétés optiques particulières, et c'est à partir de lui que se fait l'élaboration du métal tungstène.

- 1. L'élément tungstène a pour numéro atomique Z=74.
 - (a) Donner la configuration électronique d'un atome de tungstène à l'état fondamental.
 - (b) A quelle famille appartient-il?
 - (c) Justifier sa grande facilité à former l'ion W^{6+} .
- 2. Donner la formule de Lewis et la géométrie de la molécule de trioxyde de tungstène gazeux WO₃. On précisera la valeur de l'angle \widehat{OWO} (W est l'atome central).
- 3. Le trioxyde de tungstène WO₃ solide est, en première approximation, un oxyde ionique. Il présente une structure cubique telle que les ions tungstène W⁶⁺ occupent les sommets de la maille et les ions oxyde O²⁻ le milieu des arêtes. On note *a* le paramètre de maille.
 - (a) Dessiner une maille et vérifier la stœchiométrie du cristal.
 - (b) Quelle est la coordinence de l'ion tungstène (par rapport à l'ion oxyde) et le nom du polyèdre de coordination de cet ion? Quelle est la coordinence de l'ion oxyde (par rapport à l'ion tungstène)? En déduire le nombre de polyèdres auxquels appartient chaque ion oxyde.
 - (c) Représenter une nouvelle maille déduite de celle de la question par une translation $(\frac{a}{2}, \frac{a}{2}, \frac{a}{2})$ et proposer une autre description simple de la structure.
 - (d) On admet une tangence anion-cation. Calculer la compacité du cristal WO₃. Conclure.
 - (e) Le centre du cube et les centres des faces de la maille dessinée au 1. sont vides.
 - Calculer le rayon maximal des cations M⁺ qui pourraient s'insérer dans ces deux sites sans déformation de la structure.
 - ii. On observe expérimentalement que les cations M⁺ (où M peut être H, Li, Na, K) peuvent s'insérer dans le cristal et qu'ils s'insèrent tous dans le même type de site. En déduire le type de site occupé.

Espèce	H ⁺	Li ⁺	Na ⁺	K+	O^{2-}	W^{6+}
Rayon Ionique (pm)	10^{-5}	78,0	98,0	133	132	62,0

Figure 1 – Maille de WO₃

PHY2301P - TD - 2022

Exercice 2 : Étude de la glace Ih

La glace est présente sous plusieurs variétés allotropiques. À 273 K et sous 1 bar, l'eau se solidifie pour donner la structure cristalline appelée glace I_h , de densité 0,92 (masse volumique 0,92 g · cm⁻³).

On donne la représentation de sa structure tridimensionnelle ci-dessous. Pour plus de clarté, on a uniquement représenté les atomes d'oxygène. Il s'agit d'une structure de type hexagonal compact (HC), de paramètres de maille a et c, avec occupation d'un site tétraédrique sur deux.

- 1. Déterminer la relation entre c et a.
- 2. Combien de molécules d'eau sont contenues dans une maille?
- 3. À partir de la valeur de la densité, déterminer la distance ℓ entre deux atomes d'oxygène.
- 4. Chaque atome d'oxygène est entouré de quatre atomes d'hydrogène, dont deux sont liés à O par une liaison covalente, avec $\ell_{\rm O-H} = 96 \, \rm pm$.
 - (a) Dessiner l'environnement local d'un atome d'oxygène.
 - (b) En déduire la distance d entre un atome O et un atome H non liés de façon covalente.
 - (c) Conclure sur les interactions responsables de la cohésion de la glace.

Figure 2 – Maille de la glace I_h

PHY2301P - TD - 2022

Exercice 3 : Une structure cubique particulière

À l'état solide, l'oxyde de bismuth présente une structure cubique telle que les ions oxyde occupent les centres des arêtes et les centres des faces du cube, alors que les ions Bi^{3+} ont pour coordonnées :

(1/4, 1/4, 3/4); (1/4, 3/4, 1/4); (3/4, 1/4, 3/4); (3/4, 3/4, 1/4).

On admettra qu'il y a tangence des anions et des cations. On donne les rayons suivants :

 $R_{\rm O^{2-}} = 140 \, \rm pm \, et \, R_{\rm Bi^{3+}} = 108 \, \rm pm.$

- 1. Donner la configuration électronique d'un atome de bismuth (Z = 83) à l'état fondamental.
- 2. Donner la formule de Lewis et la géométrie de la molécule de l'oxyde de bismuth(III) gazeux Bi₂O₃, sachant que tous les atomes respectent la règle de l'octet et que l'on ne considère pas la liaison peroxyde –O O–.
- 3. Dessiner cette structure. Vérifier la stœchiométrie de l'oxyde et préciser la coordinence de chaque ion par rapport à l'autre.
- 4. Déterminer la masse volumique de l'oxyde de bismuth.
- 5. Calculer la compacité de cet oxyde.

PHY2301P - TD - 2022