Grundbegriffe der Informatik Aufgabenblatt 2

Matr.nr.:		
Nachname:		
Vorname:		
Tutorium:	Nr.	Name des Tutors:
Ausgabe:	25. Oktober 2012	
Abgabe:	2. November 2012, 12:30 Uhr	
	im Briefkasten im Untergeschoss	
	von Gebäude 50.3	4
Lösungen w	verden nur korrigier	rt, wenn sie
• rechtzei	tig,	
	eigenen Handschri	
	er Seite als Deckbla	
	beren linken Ecke z	zusammengeheftet
abgegeben v	verden.	
Vom Tutor at	ıszufüllen:	
erreichte Pu	nkte	
Blatt 2:	/ 20	
Blätter 1 – 2	: / 39	

Aufgabe 2.1 (4 Punkte)

Stellen Sie für folgende Formel eine Wahrheitstabelle auf.

$$((A \Leftrightarrow \neg B) \land \neg((C \Rightarrow B) \lor A))$$

Aufgabe 2.2 (4 Punkte)

Betrachten Sie die folgenden vier Aussagen:

- 1. $\forall x \in \mathbb{N}_0 : \exists y \in \mathbb{N}_0 : x = y$
- 2. $\forall x \in \mathbb{N}_0 : \forall y \in \mathbb{N}_0 : x = y$
- 3. $\exists x \in \mathbb{N}_0 : \forall y \in \mathbb{N}_0 : x = y$
- 4. $\exists x \in \mathbb{N}_0 : \exists y \in \mathbb{N}_0 : x = y$

Welche dieser Aussagen sind wahr, welche sind falsch. Ist eine Aussage wahr, so geben Sie eine Begründung. Ist sie falsch, so geben Sie ein Gegenbeispiel.

Aufgabe 2.3 (2 Punkte)

Gegeben ist folgende Aussage:

• Jeder Mensch hat genau einen besten Freund.

Formalisieren Sie diese Aussage mit Hilfe des Prädikates B(x,y) in Prädikatenlogik:

B(x,y) = y ist bester Freund von x.

Variieren Sie dabei nicht über die Menge der zu betrachtenden Menschen.

Aufgabe 2.4 (4 Punkte)

Gegeben sei ein quadratisches Spielbrett mit Seitenlänge 2^n Feldern $(n \in \mathbb{N}_+)$, aus dem ein einzelnes beliebiges Feld herausgenommen wurde.

Außerdem stehen unbegrenzt viele L-förmige Spielsteine, die jeweils 3 Felder bedecken, zur Verfügung.

Zeigen oder widerlegen Sie: Man kann ohne Überlappungen und Lücken dieses Spielfeld mit den Spielsteinen bedecken.

Aufgabe 2.5 (2+4 Punkte)

Gegeben sei folgende induktiv definierte Folge von Zahlen:

$$x_0 = 0$$
 $x_1 = 1$
 $x_2 = 2$
 $\forall n \in \mathbb{N}_0 \land n \ge 3 : x_n = \frac{n}{n-1} x_{n-1} + \frac{n}{n-2} x_{n-2}$

- a) Berechnen Sie x_3, x_4, x_5 .
- b) Beweisen Sie durch vollständige Induktion: $\forall n \in \mathbb{N}_0 : x_n = n \cdot f_n$ Dabei ist f_n die n-te Fibonacci Zahl.

Hinweis: Die n-te Fibonacci Zahl f_n ist wie folgt definiert: $f_0=0, f_1=1, f_n=f_{n-1}+f_{n-2}$