Unidade 1

Introdução aos métodos não paramétricos

Antes de passarmos aos testes é necessário que relembremos alguns conceitos básicos e discutamos alguns outros que serão úteis.

1 - Níveis de mensuração das variáveis

Nível de mensuração significa a escala em que foi medida a variável, objeto de investigação.

- a) **Escala nominal ou classificadora:** a mensuração em seu mais baixo nível existe quando números ou outros símbolos são usados para classificar um objeto, pessoa ou característica.
- **b)** Escala ordinal ou escala por postos: a variável em estudo é partida em categorias ordenadas em graus convencionados havendo uma relação entre categorias do tipo: "maior do que". Pode-se calcular a mediana e todas as estatísticas de postos, além da moda e das freqüências.

A seguir serão apresentados os principais conceitos utilizados na aplicação dos Testes Não-Paramétricos.

2 - Teste de Hipótese

Resumidamente, é uma regra de decisão que, com base na amostra, irá rejeitar ou não Ho.

3 – Hipóteses

Hipótese Nula (H₀):

É uma afirmação acerca do parâmetro (ou parâmetros) em questão. No caso nãoparamétrico estas afirmações nem sempre se referirão a parâmetros, podendo estar associadas a outros interesses, como por exemplo, aderência a determinada distribuição.

Hipótese Alternativa (H₁):

É a hipótese que se deseja testar, expressa sempre em oposição à hipótese nula.

4 - Ordem ou posto (rank)

Alguns testes de Hipóteses não-paramétricos não utilizam os valores mensurados diretamente em suas estatísticas e sim o posto das observações.

Os postos das observações são atribuídos a magnitude de seus valores. É atribuído um número a cada observação. Esse número é atribuído a um item da amostra individual segundo sua ordem na lista ordenada. Ao menor valor é atribuído o posto 1 (um), ao segundo menor o posto (2) e assim sucessivamente.

Exemplo1: Atribuir postos as observações:

25	12	2	3	100	1000

Se ordenarmos em ordem crescente, teremos:

2	3	12	25	100	1000

Logo, a observação menor, que tem o valor 2, tem posto 1. A segunda menor, que é a observação de valor 3, tem o posto 2. A terceira menor que é a 12, tem posto 3 e assim sucessivamente. A atribuição de postos vai de 1 até n.

Resumindo:

Quadro 1: Valores dos postos das observações

Obs	25	12	2	3	100	1000
Posto	4	3	1	2	5	6

Se ocorrer valores observados iguais, atribuímos normalmente os postos de 1 a n, porem para aqueles valores observados iguais, precisamos recalcular os postos através da média aritmética dos postos a eles atribuídos.

Exemplo 2: Atribuir postos as observações:

100	50	50	10	10	50	

Quadro 2: Valores dos postos em caso de observações com mesmo valor

Obs	100	50	50	10	10	50
Pré posto	6	3	4	1	2	5
Posto final	6	4	4	1,5	1,5	4

Observe que no pré-posto atribuímos os postos de 1 até n que é 6. Os valores repetidos continuam contando.

Porém o posto a ser considerado será o final. O valor 100 continua tendo posto 6 pois só temos uma ocorrência do mesmo. Os postos finais das observações 50 e 10, precisarão ser recalculados através das médias dos pré-postos.

Assim o posto final das observações 10 é a média dos pré postos dessas observações:

$$\left(\frac{1+2}{2}\right) = 1,5$$

O mesmo ocorre para as observações 50:

$$\left(\frac{3+4+5}{3}\right) = 4$$

5 – Procedimento geral para execução de um teste de hipóteses

- A) definir a hipótese nula H_o;
- B) escolher um teste estatístico para testar H_0 ;
- C) especificar um nível de significância \square e um tamanho de amostra n;
- D) determinar (ou supor determinada) a distribuição amostral do teste estatístico sob a hipótese nula;
- E) definir a região de rejeição, com base nos itens anteriores;

F) calcular o valor do teste estatístico, utilizando os dados obtidos da(s) amostra(s). se esse valor estiver na região de rejeição, a decisão será rejeitar $\overset{}{}$; se esse valor estiver fora da região de rejeição, a decisão será que $\overset{}{}$ H $_{o}$ não pode ser rejeitada ao nível de significância escolhido.