Preliminary migrate analysis of M. californianus

MIGRATION RATE AND POPULATION SIZE ESTIMATION

using the coalescent and maximum likelihood or Bayesian inference

Migrate-n version 3.7.2 [April-12-18]

Program started at Wed Jun 2 17:54:48 2021 Program finished at Wed Jun 2 22:56:04 2021

Options

Datatype: DNA sequence data

Inheritance scalers in use for Thetas:

All loci use an inheritance scaler of 1.0

[The locus with a scaler of 1.0 used as reference]

Random number seed: (with internal timer) 1494060328

Start parameters:

Theta values were generated from guessed values

Theta = 0.01000

M values were generated from guessed values

M-matrix:

100000.00 [all are the same]

Connection type matrix:

where m = average (average over a group of Thetas or M,

s = symmetric M, S = symmetric 4Nm, 0 = zero, and not estimated,

* = free to vary, Thetas are on diagonal

Population	1	2	3	4	5	6	7	8	9	10	11	12
1 ElfinCo	m	m	m	m	m	m	m	m	m	m	m	m
2 Bamfiel	m	m	m	m	m	m	m	m	m	m	m	m
3 PortRen	m	m	m	m	m	m	m	m	m	m	m	m
4 WalkOnB	m	m	m	m	m	m	m	m	m	m	m	m
5 BodegaH	m	m	m	m	m	m	m	m	m	m	m	m
6 Davenpo	m	m	m	m	m	m	m	m	m	m	m	m
7 VistaDe	m	m	m	m	m	m	m	m	m	m	m	m
8 HazardR	m	m	m	m	m	m	m	m	m	m	m	m
9 Refugio	m	m	m	m	m	m	m	m	m	m	m	m
10 Carpint	m	m	m	m	m	m	m	m	m	m	m	m

11 WhitePo	* *	* * *	* * * * * *
	* *	* * *	* * * * * *
12 LaJolla	^ *	^	
Order of param		0	
1	$\Theta_1 =$	Θ_1 [m]	
2	Θ_2 =	Θ_1 [m]	
3	$\Theta_3^2 =$	Θ_1 [m]	
4	$\Theta_4 =$	Θ_1 [m]	
5	$\Theta_5^{T} =$	Θ_1 [m]	
6	Θ_6 =	Θ_1 [m]	
7	$\Theta_7 =$	Θ_1 [m]	
8	$\Theta_8 =$	Θ_1 [m]	
9	$\Theta_{0} =$	Θ_1 [m]	
10	Θ_{10} =	Θ_1 [m]	
11	Θ_{11}		<displayed></displayed>
12	Θ_{12}		<displayed></displayed>
13	$M_{2->1}^{12} =$	$M_{2->1}$ [m]	<displayed></displayed>
14	$M_{3->1} =$	$M_{2->1}$ [m]	
15	$M_{4->1}^{3} =$	$M_{2->1}^{2}$ [m]	
16	$M_{5->1}^{7-1} =$	M $_{2->1}^{2}$ [m]	
17	$M_{6->1}^{5->1} =$	$M_{2->1}^{2->1}$ [m]	
18	$M_{7->1} =$	$M_{2->1}$ [m]	
19	$M_{8->1}^{7->1} =$	$M_{2->1}$ [m]	
20	$M_{9->1}^{6->1} =$	M $_{2->1}^{2->1}$ [m]	
21	M	$M_{2->1}$ [m]	
22	10->1	M $_{2->1}^{2->1}$ [m]	
23	M	M $_{2->1}^{2->1}$ [m]	
24	12->1	$M_{2->1}$ [m]	
25	$M_{1->2} = M_{3->2} = M_{1->2}$	$M_{2->1}$ [m]	
26	$M_{4->2} = M_{4->2}$	$M_{2->1}$ [m]	
27	$M_{5->2} = M_{5->2}$	$M_{2->1}$ [m] $M_{2->1}$ [m]	
28	$M_{5->2} = M_{6->2} = M_{10}$	$M_{2->1}$ [m] $M_{2->1}$ [m]	
29	$M_{6\rightarrow 2} = M_{7\rightarrow 2} =$	M [m]	
30	1-22	$ \begin{array}{ccc} M & [m] \\ M & [m] \end{array} $	
31	M _{8->2} =	$M = \begin{bmatrix} M \\ 2->1 \end{bmatrix} $ [m]	
32	M _{9->2} =	$M_{2\rightarrow 1} [m]$	
33	$M_{10->2} = M_{10->2}$	M = [m] $M = [m]$	
34	$M_{11->2} = M_{11->2}$	$M = \begin{bmatrix} M \\ 2->1 \end{bmatrix} $ [m]	
35	$M_{12->2} =$	M = [m]	
	$M_{1->3} = M_{1->3}$	$M_{2\rightarrow 1} [m]$	
36	$M_{2->3} =$	$M_{2\rightarrow 1} \text{ [m]}$	
37	$M_{4->3} =$	$M_{2->1}$ [m]	
38	$M_{5->3} =$	$M_{2->1}$ [m]	
39	IVI _{6->3} =	$M_{2->1}$ [m]	
40	$M_{7->3} =$	$M_{2->1}$ [m]	

```
\overline{\mathsf{M}}_{8->3} =
41
                                   M _{2->1} [m]
                  M _{9->3} =
42
                                   M_{2->1} [m]
                 M _{10->3} =
43
                                   M_{2->1} [m]
                 M _{11->3} =
44
                                   M _{2->1} [m]
                 M _{12->3} =
                                   M _{2->1} [m]
45
                  M_{1->4} =
46
                                   M_{2->1} [m]
                 M _{2\rightarrow 4} =
47
                                   M _{2->1} [m]
                  M_{3->4} =
48
                                   M _{2->1} [m]
49
                  M_{5->4} =
                                   M _{2->1} [m]
                 M _{6->4} =
50
                                   M_{2->1} [m]
                 M _{7->4} =
51
                                   M _{2->1} [m]
52
                  M_{8->4} =
                                   M_{2->1} [m]
53
                  M_{9->4} =
                                   M _{2->1} [m]
                 M _{10->4} =
54
                                   M_{2->1} [m]
55
                  M_{11->4} =
                                   M _{2->1} [m]
56
                 M _{12->4} =
                                   M _{2->1} [m]
                 \mathsf{M}_{1->5} \;\; = \;\;
                                   M _{2->1} [m]
57
                  M_{2->5} =
58
                                   M_{2->1} [m]
                 M_{3->5} =
                                   M_{2->1} [m]
59
                 M_{4->5} =
                                   M _{2->1} [m]
60
                 M _{6->5} =
61
                                   M_{2->1} [m]
                 M _{7->5} =
62
                                   M _{2->1} [m]
                 M_{8->5} =
                                   M _{2->1} [m]
63
                  M_{9->5} =
                                   M_{2->1} [m]
64
                 M _{10->5} =
65
                                   M_{2->1} [m]
                  M_{11->5} =
66
                                   M_{2->1} [m]
                 M _{12->5} =
                                   M _{2->1} [m]
67
                 M_{1->6} =
                                   M _{2->1} [m]
68
                 M_{2->6} =
69
                                   M_{2->1} [m]
                 M _{3->6} =
70
                                   M _{2->1} [m]
71
                  M_{4->6} =
                                   M_{2->1} [m]
                 M _{5->6} =
72
                                   M_{2->1} [m]
                 M _{7->6} =
73
                                   M _{2->1} [m]
74
                  M_{8->6} =
                                   M _{2->1} [m]
                 M _{9->6} =
75
                                   M _{2->1} [m]
                 M _{10->6} =
                                   M _{2->1} [m]
76
77
                  M_{11->6} =
                                   M_{2->1} [m]
78
                 M_{12->6} =
                                   M_{2->1} [m]
                 M_{1->7} =
79
                                   M_{2->1} [m]
                  M_{2->7} =
80
                                   M_{2->1} [m]
                 M_{3->7} =
81
                                   M _{2->1} [m]
                 M_{4->7} =
82
                                   M _{2->1} [m]
                  M _{5->7} =
83
                                   M_{2->1} [m]
                 M _{6\rightarrow7}
                                   M _{2->1} [m]
84
                 M _{8->7}
                                   M _{2->1} [m]
85
```

```
\overline{\mathsf{M}}_{9->7} =
                                     _{2\rightarrow 1} [m]
86
                 M _{10->7} =
87
                                  M_{2->1} [m]
                                  M _{2->1} [m]
88
                     11->7 =
                                  M _{2->1} [m]
89
                 M
                     12->7 =
                                  M_{2->1} [m]
90
                 M
                     1->8 =
91
                 M
                                  M_{2->1} [m]
                     2->8 =
92
                 M
                                  M_{2->1} [m]
                     3->8 =
                                  M _{2->1} [m]
93
                     4->8 =
94
                 M
                                  M_{2->1} [m]
                     5->8 =
95
                 M
                                  M_{2->1} [m]
                     6->8 =
                 M _{7->8} =
96
                                  M_{2->1} [m]
97
                 M_{9->8} =
                                  M_{2->1} [m]
                 M _{10->8} =
98
                                  M _{2->1} [m]
                 M _{11->8} =
99
                                  M_{2->1} [m]
100
                                  M_{2->1} [m]
                     12->8 =
                 M_{1->9} =
101
                                  M_{2->1} [m]
102
                 M
                                  M_{2->1} [m]
                     2->9 =
103
                 M
                     3->9 =
                                  M_{2->1} [m]
104
                                  M_{2->1} [m]
                 M
                     4->9 =
105
                 M
                                  M _{2->1} [m]
                     5->9 =
106
                 M
                                  M_{2->1} [m]
                     6->9 =
107
                                  M_{2->1} [m]
                     7->9 =
108
                                  M _{2->1} [m]
                 M
                     8->9 =
109
                 M
                                  M_{2->1} [m]
                     _{10->9} =
110
                 M
                     <sub>11->9</sub> =
                                  M_{2->1} [m]
111
                 M
                                  M_{2->1} [m]
                     12->9 =
                                  M _{2->1} [m]
112
                     1->10
                 M _{2->10} =
113
                                  M_{2->1} [m]
114
                 M
                                  M_{2->1} [m]
                     _{3->10} =
                                  M _{2->1} [m]
115
                 M
                     4->10
116
                                  M _{2->1} [m]
                     5->10 =
117
                 M
                     6->10
                                  M_{2->1} [m]
                                  M _{2->1} [m]
118
                     7->10
                 M _{8->10} =
                                  M _{2->1} [m]
119
                 M _{9->10} =
120
                                  M _{2->1} [m]
                                  M _{2->1} [m]
121
                 M
                     11->10
122
                 M
                     12->10
                                  M_{2->1} [m]
                 M _{1->11}
123
                                                    <displayed>
                 M _{2\rightarrow11}
124
                                                    <displayed>
                 M _{3->11}
125
                                                    <displayed>
                 M _{4->11}
126
                                                    <displayed>
                 M _{5->11}
127
                                                    <displayed>
128
                 Μ
                                                    <displayed>
                     6->11
129
                 M
                                                    <displayed>
                     7->11
130
                 M
                                                    <displayed>
                     8->11
```

		FIGIII	illiary migrate and	ilysis of M. Calliott	lianus COT hapit	otypes for Evolution 2 5
131	M ₉₋	->11	<(displayed>		
132	N A)->11	<	displayed>		
133	N/I	2->11	<	displayed>		
134	R A	->12	<	displayed>		
135	N A	->12	<	displayed>		
136	Ν.1	->12	<	displayed>		
137	N/I	->12	<	displayed>		
138	N /	->12	<	displayed>		
139	N/I	->12	<	displayed>		
140	R A	->12	<(displayed>		
141	N A	->12	<(displayed>		
142	R A	->12	<(displayed>		
143	N/I)->12	<(displayed>		
144	N/I	l->12	<	displayed>		
Mutation	rate among loc	i:			M	flutation rate is constant
Analysis	strategy:					Bayesian inference
Proposal	distributions fo	r parameter				
Paramete	er		Proposal			
Theta		Me	tropolis sampling			
М			Slice sampling			
Prior dist	ribution for para	meter				
Paramete	er Prior	Minimum	Mean*	Maximum	Delta	a Bins
Theta	Exp window	0.000010	0.010000	10.000000	1.000000	500
М	Exp window	0.000100	100000.000000	1000000.000000	100000.000000	500
Markov c	hain settings:					Long chain
Number of	of chains					1
Record	led steps [a]					1000
Increm	ent (record eve	ry x step [b]				100
Numbe	er of concurrent	chains (repli	cates) [c]			3
	(sampled) para	, ,	,			300000
	er of discard tree					1000
		·	,			
Multiple N	Markov chains:					
	neating scheme	!			4 ch	nains with temperatures
	<u> </u>			1000	00.00 3.00	•
						Swapping interval is 1
I						-11 3

Print options:

Data file:	//mcalifornianus_210528.mig
Output file:	outfile.txt
Posterior distribution raw histogram file:	bayesfile
Print data:	No
Print genealogies [only some for some data type]:	None

Data summary

Datatype: Sequence data
Number of loci: 1

Population	Locus	Gene copies	
1 ElfinCo	1	19	
2 Bamfiel	1	23	
3 PortRen	1	15	
4 WalkOnB	1	16	
5 BodegaH	1	7	
6 Davenpo	1	17	
7 VistaDe	1	19	
8 HazardR	1	23	
9 Refugio	1	16	
10 Carpint	1	19	
11 WhitePo	1	11	
12 LaJolla	1	8	
Total of all populations	1	193	
1			

Bayesian Analysis: Posterior distribution table

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	Θ_1	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00059
1	Θ_2	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00059
1	Θ_3^-	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00059
1	Θ_4	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00059
1	Θ_5	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00059
1	Θ_6	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00059
1	Θ_7	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00059
1	Θ_8	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00059
1	Θ_9	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00059
1	Θ_{10}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00059
1	Θ_{11}^{10}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00896
1	Θ_{12}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00518
1	M _{2->1}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7
1	M _{3->1}	36000.0	50000.0	61000.0	68000.0	0.00008	63000.0	60173.7
1	M _{4->1}	36000.0	50000.0	61000.0	68000.0	0.00008	63000.0	60173.7
1	M _{5->1}	36000.0	50000.0	61000.0	68000.0	0.00008	63000.0	60173.7
1	M _{6->1}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7
1	M _{7->1}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7
1	M _{8->1}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7
1	M _{9->1}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7
1	M _{10->1}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7
1	M _{11->1}	36000.0	50000.0	61000.0	68000.0	0.00008	63000.0	60173.7
1	M _{12->1}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7
1	M _{1->2}	36000.0	50000.0	61000.0	68000.0	0.00008	63000.0	60173.7
1	M _{3->2}	36000.0	50000.0	61000.0	68000.0	0.00008	63000.0	60173.7
1	M _{4->2}	36000.0	50000.0	61000.0	68000.0	0.00008	63000.0	60173.7
1	M _{5->2}	36000.0	50000.0	61000.0	68000.0	0.00008	63000.0	60173.7
1	M _{6->2}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7
1	M _{7->2}	36000.0	50000.0	61000.0	68000.0	0.00008	63000.0	60173.7
1	M _{8->2}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7
1	$M_{9->2}$	36000.0	50000.0	61000.0	68000.0	0.00008	63000.0	60173.7
1	M _{10->2}	36000.0	50000.0	61000.0	68000.0	0.00008	63000.0	60173.7
1	M _{11->2}	36000.0	50000.0	61000.0	68000.0	0.00008	63000.0	60173.7
1	M _{12->2}	36000.0	50000.0	61000.0	68000.0	0.00008	63000.0	60173.7
1	M _{1->3}	36000.0	50000.0	61000.0	68000.0	0.00008	63000.0	60173.7
1	M _{2->3}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	M _{4->3}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7
1	$M_{5->3}$	36000.0	50000.0	61000.0	68000.0	0.00008	63000.0	60173.7
1	$M_{6->3}$	36000.0	50000.0	61000.0	68000.0	0.00008	63000.0	60173.7
1	M _{7->3}	36000.0	50000.0	61000.0	68000.0	0.00008	63000.0	60173.7
1	M _{8->3}	36000.0	50000.0	61000.0	68000.0	0.00008	63000.0	60173.7
1	$M_{9->3}$	36000.0	50000.0	61000.0	68000.0	0.00008	63000.0	60173.7
1	M _{10->3}	36000.0	50000.0	61000.0	68000.0	0.00008	63000.0	60173.7
1	M _{11->3}	36000.0	50000.0	61000.0	68000.0	0.00008	63000.0	60173.7
1	M _{12->3}	36000.0	50000.0	61000.0	68000.0	0.00008	63000.0	60173.7
1	M _{1->4}	36000.0	50000.0	61000.0	68000.0	0.00008	63000.0	60173.7
1	M _{2->4}	36000.0	50000.0	61000.0	68000.0	0.00008	63000.0	60173.7
1	M _{3->4}	36000.0	50000.0	61000.0	68000.0	0.00008	63000.0	60173.7
1	M _{5->4}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7
1	M _{6->4}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7
1	M _{7->4}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7
1	M _{8->4}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7
1	M _{9->4}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7
1	M _{10->4}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7
1	M _{11->4}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7
1	M _{12->4}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7
1	M _{1->5}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7
1	M _{2->5}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7
1	M _{3->5}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7
1	M _{4->5}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7
1	M _{6->5}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7
1	M _{7->5}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7
1	M _{8->5}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7
1	8->5 M _{9->5}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7
1	9->5 M _{10->5}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7
1	M _{11->5}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7
1	11->5 M _{12->5}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7
1	12->5 M _{1->6}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7
1	M _{2->6}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7
1	M _{3->6}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7
1	M _{4->6}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7
1	M _{5->6}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7
1	M _{7->6}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7
1		36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7
1	M _{8->6}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7
1	M _{9->6}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7
1	M _{10->6} M _{11->6}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	M _{12->6}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7
1	M _{1->7}	36000.0	50000.0	61000.0	68000.0	0.00008	63000.0	60173.7
1	M _{2->7}	36000.0	50000.0	61000.0	68000.0	0.00008	63000.0	60173.7
1	M _{3->7}	36000.0	50000.0	61000.0	68000.0	0.00008	63000.0	60173.7
1	M _{4->7}	36000.0	50000.0	61000.0	68000.0	0.00008	63000.0	60173.7
1	M _{5->7}	36000.0	50000.0	61000.0	68000.0	0.00008	63000.0	60173.7
1	M _{6->7}	36000.0	50000.0	61000.0	68000.0	0.00008	63000.0	60173.7
1	M _{8->7}	36000.0	50000.0	61000.0	68000.0	0.00008	63000.0	60173.7
1	M _{9->7}	36000.0	50000.0	61000.0	68000.0	0.00008	63000.0	60173.7
1	M _{10->7}	36000.0	50000.0	61000.0	68000.0	0.00008	63000.0	60173.7
1	M _{11->7}	36000.0	50000.0	61000.0	68000.0	0.00008	63000.0	60173.7
1	M _{12->7}	36000.0	50000.0	61000.0	68000.0	0.00008	63000.0	60173.7
1	M _{1->8}	36000.0	50000.0	61000.0	68000.0	0.00008	63000.0	60173.7
1	M _{2->8}	36000.0	50000.0	61000.0	68000.0	0.00008	63000.0	60173.7
1	M _{3->8}	36000.0	50000.0	61000.0	68000.0	0.00008	63000.0	60173.7
1	M _{4->8}	36000.0	50000.0	61000.0	68000.0	0.00008	63000.0	60173.7
1	M _{5->8}	36000.0	50000.0	61000.0	68000.0	0.00008	63000.0	60173.7
1	M _{6->8}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7
1	M _{7->8}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7
1	M _{9->8}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7
1	M _{10->8}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7
1	M _{11->8}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7
1	M _{12->8}	36000.0	50000.0	61000.0	68000.0	0.00008	63000.0	60173.7
1	M _{1->9}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7
1	M _{2->9}	36000.0	50000.0	61000.0	68000.0	0.00008	63000.0	60173.7
1	M _{3->9}	36000.0	50000.0	61000.0	68000.0	0.00008	63000.0	60173.7
1	M _{4->9}	36000.0	50000.0	61000.0	68000.0	0.00008	63000.0	60173.7
1	M _{5->9}	36000.0	50000.0	61000.0	68000.0	0.00008	63000.0	60173.7
1	M _{6->9}	36000.0	50000.0	61000.0	68000.0	0.00008	63000.0	60173.7
1	M _{7->9}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7
1	M _{8->9}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7
1	M _{10->9}	36000.0	50000.0	61000.0	68000.0	0.00008	63000.0	60173.7
1	M _{11->9}	36000.0	50000.0	61000.0	68000.0	0.00008	63000.0	60173.7
1	M _{12->9}	36000.0	50000.0	61000.0	68000.0	0.00008	63000.0	60173.7
1	12->9 M _{1->10}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7
1	1->10 M _{2->10}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7
1	2->10 M _{3->10}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7
1	M _{4->10}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7
1	M _{5->10}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7
1	M _{6->10}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7
1	M _{7->10}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	M _{8->10}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7
1	M _{9->10}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7
1	M _{11->10}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7
1	M _{12->10}	36000.0	50000.0	61000.0	68000.0	80000.0	63000.0	60173.7
1	M _{1->11}	40000.0	106000.0	129000.0	160000.0	178000.0	119000.0	114684.2
1	M _{2->11}	36000.0	50000.0	65000.0	0.00008	230000.0	129000.0	125981.4
1	M _{3->11}	6000.0	20000.0	35000.0	46000.0	168000.0	95000.0	88687.6
1	M _{4->11}	16000.0	36000.0	53000.0	74000.0	146000.0	67000.0	72670.0
1	M _{5->11}	38000.0	108000.0	131000.0	158000.0	210000.0	129000.0	125597.9
1	M _{6->11}	76000.0	104000.0	123000.0	144000.0	192000.0	131000.0	132057.0
1	M _{7->11}	38000.0	52000.0	71000.0	92000.0	130000.0	87000.0	116457.7
1	M _{8->11}	48000.0	60000.0	75000.0	0.00088	246000.0	163000.0	149879.6
1	M _{9->11}	34000.0	64000.0	85000.0	100000.0	124000.0	83000.0	80970.2
1	M _{10->11}	2000.0	14000.0	31000.0	52000.0	102000.0	75000.0	89499.4
1	M _{12->11}	54000.0	124000.0	143000.0	170000.0	196000.0	133000.0	127659.3
1	M _{1->12}	4000.0	62000.0	75000.0	92000.0	118000.0	71000.0	63471.6
1	$M_{2->12}$	42000.0	46000.0	65000.0	0.00088	254000.0	143000.0	144168.1
1	$M_{3->12}$	52000.0	130000.0	173000.0	186000.0	218000.0	141000.0	135576.4
1	M _{4->12}	136000.0	168000.0	191000.0	208000.0	248000.0	191000.0	191029.7
1	M _{5->12}	20000.0	32000.0	53000.0	72000.0	182000.0	67000.0	83247.6
1	M _{6->12}	24000.0	100000.0	117000.0	146000.0	186000.0	113000.0	106883.9
1	M _{7->12}	36000.0	86000.0	109000.0	128000.0	148000.0	103000.0	97579.2
1	M _{8->12}	18000.0	34000.0	51000.0	68000.0	110000.0	59000.0	60746.9
1	M _{9->12}	90000.0	132000.0	151000.0	168000.0	206000.0	135000.0	108097.1
1	M _{10->12}	4000.0	14000.0	35000.0	58000.0	122000.0	53000.0	58801.9
1	M _{11->12}	22000.0	64000.0	85000.0	106000.0	140000.0	83000.0	80148.4

Citation suggestions:

Beerli P., 2006. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341-345

Beerli P., 2007. Estimation of the population scaled mutation rate from microsatellite data, Genetics, 177:1967-1968.

Beerli P., 2009. How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use? In Population Genetics for Animal Conservation, G. Bertorelle, M. W. Bruford, H. C. Hauffe, A. Rizzoli, and C. Vernesi, eds., vol. 17 of Conservation Biology, Cambridge University Press, Cambridge UK, pp. 42-79.

Bayesian Analysis: Posterior distribution over all loci

Log-Probability of the data given the model (marginal likelihood)

Use this value for Bayes factor calculations:

BF = Exp[ln(Prob(D | thisModel) - ln(Prob(D | otherModel) or as LBF = 2 (ln(Prob(D | thisModel) - ln(Prob(D | otherModel)) shows the support for thisModel]

(1a)
(1b) (2)

(1a, 1b and 2) are approximations to the marginal likelihood, make sure that the program run long enough! (1a, 1b) and (2) should give similar results, in principle.

But (2) is overestimating the likelihood, it is presented for historical reasons and should not be used (1a, 1b) needs heating with chains that span a temperature range of 1.0 to at least 100,000.

(1b) is using a Bezier-curve to get better approximations for runs with low number of heated chains

Citation suggestions:

Beerli P. and M. Palczewski, 2010. Unified framework to evaluate panmixia and migration direction among multiple sampling locations, Genetics, 185: 313-326.

Acceptance ratios for all parameters and the genealogies

19/1091 19/1091 19/1091 19/1091 19/1091 19/1091 19/1091 19/1091 19/1091 563/1033 401/1025 964/964 964/964 964/964	0.01742 0.01742 0.01742 0.01742 0.01742 0.01742 0.01742 0.01742 0.01742 0.01742 0.01742 1.001742 0.010000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
19/1091 19/1091 19/1091 19/1091 19/1091 19/1091 19/1091 563/1033 401/1025 964/964 964/964 964/964 964/964	0.01742 0.01742 0.01742 0.01742 0.01742 0.01742 0.01742 0.01742 0.54501 0.39122 1.00000 1.00000 1.00000 1.00000
19/1091 19/1091 19/1091 19/1091 19/1091 19/1091 563/1033 401/1025 964/964 964/964 964/964 964/964	0.01742 0.01742 0.01742 0.01742 0.01742 0.01742 0.01742 0.54501 0.39122 1.00000 1.00000 1.00000 1.00000
19/1091 19/1091 19/1091 19/1091 19/1091 563/1033 401/1025 964/964 964/964 964/964 964/964 964/964	0.01742 0.01742 0.01742 0.01742 0.01742 0.01742 0.54501 0.39122 1.00000 1.00000 1.00000 1.00000
19/1091 19/1091 19/1091 19/1091 563/1033 401/1025 964/964 964/964 964/964 964/964 964/964	0.01742 0.01742 0.01742 0.01742 0.01742 0.54501 0.39122 1.00000 1.00000 1.00000 1.00000
19/1091 19/1091 19/1091 563/1033 401/1025 964/964 964/964 964/964 964/964 964/964	0.01742 0.01742 0.01742 0.01742 0.54501 0.39122 1.00000 1.00000 1.00000 1.00000
19/1091 19/1091 19/1091 563/1033 401/1025 964/964 964/964 964/964 964/964 964/964	0.01742 0.01742 0.01742 0.54501 0.39122 1.00000 1.00000 1.00000 1.00000
19/1091 19/1091 563/1033 401/1025 964/964 964/964 964/964 964/964 964/964	0.01742 0.01742 0.54501 0.39122 1.00000 1.00000 1.00000 1.00000
19/1091 563/1033 401/1025 964/964 964/964 964/964 964/964 964/964	0.01742 0.54501 0.39122 1.00000 1.00000 1.00000 1.00000
563/1033 401/1025 964/964 964/964 964/964 964/964 964/964	0.54501 0.39122 1.00000 1.00000 1.00000 1.00000
401/1025 964/964 964/964 964/964 964/964 964/964	0.39122 1.00000 1.00000 1.00000 1.00000
964/964 964/964 964/964 964/964 964/964	1.00000 1.00000 1.00000 1.00000
964/964 964/964 964/964 964/964 964/964	1.00000 1.00000 1.00000 1.00000
964/964 964/964 964/964 964/964	1.00000 1.00000 1.00000 1.00000
964/964 964/964 964/964	1.00000 1.00000 1.00000
964/964 964/964 964/964	1.00000 1.00000
964/964 964/964	
964/964	
964/964	1.00000
964/964	1.00000
964/964	1.00000
964/964	1.00000
964/964	1.00000
964/964	1.00000
964/964	1.00000
964/964	1.00000
964/964	1.00000
964/964	1.00000
964/964	1.00000
	1.00000
	1.00000
	1.00000
	1.00000
	1.00000
	1.00000
964/964	1.00000
964/964 964/964	1.00000
	964/964 964/964 964/964 964/964

	Preliminary migrate analysis of M. callioma	and och haplotypes for Evolution 2
M _{5->3}	964/964	1.00000
M _{6->3}	964/964	1.00000
M _{7->3}	964/964	1.00000
$M_{8->3}$	964/964	1.00000
$M_{9->3}$	964/964	1.00000
$M_{10->3}$	964/964	1.00000
M _{11->3}	964/964	1.00000
M _{12->3}	964/964	1.00000
M _{1->4}	964/964	1.00000
M _{2->4}	964/964	1.00000
$M_{3->4}$	964/964	1.00000
M _{5->4}	964/964	1.00000
M _{6->4}	964/964	1.00000
$M_{7->4}$	964/964	1.00000
$M_{8->4}$	964/964	1.00000
M _{9->4}	964/964	1.00000
$M_{10->4}$	964/964	1.00000
M 11->4	964/964	1.00000
$M_{12->4}$	964/964	1.00000
M _{1->5}	964/964	1.00000
$M_{2->5}$	964/964	1.00000
$M_{3->5}$	964/964	1.00000
$M_{4->5}$	964/964	1.00000
M _{6->5}	964/964	1.00000
M _{7->5}	964/964	1.00000
M _{8->5}	964/964	1.00000
M _{9->5}	964/964	1.00000
M _{10->5}	964/964	1.00000
M _{11->5}	964/964	1.00000
$M_{12->5}$	964/964	1.00000
M _{1->6}	964/964	1.00000
M _{2->6}	964/964	1.00000
$M_{3->6}$	964/964	1.00000
M _{4->6}	964/964	1.00000
M _{5->6}	964/964	1.00000
M _{7->6}	964/964	1.00000
M _{8->6}	964/964	1.00000
M _{9->6}	964/964	1.00000
M 10->6	964/964	1.00000
M 11->6	964/964	1.00000
$M_{12->6}$	964/964	1.00000
M _{1->7}	964/964	1.00000
M _{2->7}	964/964	1.00000
$M_{3->7}$	964/964	1.00000
M _{4->7}	964/964	1.00000

M _{5->7}	964/964	1.00000
M _{6->7}	964/964	1.00000
M _{8->7}	964/964	1.00000
M _{9->7}	964/964	1.00000
M _{10->7}	964/964	1.00000
M _{11->7}	964/964	1.00000
M _{12->7}	964/964	1.00000
M _{1->8}	964/964	1.00000
M _{2->8}	964/964	1.00000
M _{3->8}	964/964	1.00000
M _{4->8}	964/964	1.00000
M _{5->8}	964/964	1.00000
M _{6->8}	964/964	1.00000
M _{7->8}	964/964	1.00000
M _{9->8}	964/964	1.00000
M 10->8	964/964	1.00000
M 11->8	964/964	1.00000
M _{12->8}	964/964	1.00000
M _{1->9}	964/964	1.00000
M _{2->9}	964/964	1.00000
M _{3->9}	964/964	1.00000
M _{4->9}	964/964	1.00000
M _{5->9}	964/964	1.00000
M _{6->9}	964/964	1.00000
M _{7->9}	964/964	1.00000
M _{8->9}	964/964	1.00000
M _{10->9}	964/964	1.00000
M _{11->9}	964/964	1.00000
M _{12->9}	964/964	1.00000
M _{1->10}	964/964	1.00000
M _{2->10}	964/964	1.00000
M _{3->10}	964/964	1.00000
M _{4->10}	964/964	1.00000
M _{5->10}	964/964	1.00000
M _{6->10}	964/964	1.00000
M _{7->10}	964/964	1.00000
M _{8->10}	964/964	1.00000
M _{9->10}	964/964	1.00000
M 11->10	964/964	1.00000
M _{12->10}	964/964	1.00000
M 1->11	1026/1026	1.00000
M 2->11	1049/1049	1.00000
M 3->11	1037/1037	1.00000
M _{4->11}	1007/1007	1.00000
M _{5->11}	1092/1092	1.00000

M _{6->11}	1098/1098	1.00000
M _{7->11}	1080/1080	1.00000
M _{8->11}	958/958	1.00000
$M_{9->11}$	1070/1070	1.00000
M 10->11	1036/1036	1.00000
M _{12->11}	1084/1084	1.00000
$M_{1->12}$	988/988	1.00000
$M_{2->12}$	983/983	1.00000
$M_{3->12}$	1043/1043	1.00000
$M_{4\rightarrow 12}$	1072/1072	1.00000
$M_{5->12}$	1045/1045	1.00000
$M_{6->12}$	1049/1049	1.00000
$M_{7->12}$	1088/1088	1.00000
$M_{8->12}$	1043/1043	1.00000
$M_{9->12}$	1039/1039	1.00000
$M_{10->12}$	1041/1041	1.00000
$M_{11->12}^{10->12}$	1071/1071	1.00000
Genealogies	22495/149833	0.15013

MCMC-Autocorrelation and Effective MCMC Sample Size

Parameter	Autocorrelation	Effective Sampe Size
Θ_1	0.98897	16.62
Θ_2	0.98897	16.62
Θ_3^2	0.98897	16.62
Θ_4°	0.98897	16.62
) ₅	0.98897	16.62
) ₆	0.98897	16.62
07	0.98897	16.62
) ₈	0.98897	16.62
	0.98897	16.62
10	0.98897	16.62
11	0.80292	329.02
12	0.84306	257.38
1 2->1	0.98960	15.67
1 3->1	0.98960	15.67
1 4->1	0.98960	15.67
1 5->1	0.98960	15.67
6->1	0.98960	15.67
7->1	0.98960	15.67
8->1	0.98960	15.67
9->1	0.98960	15.67
10->1	0.98960	15.67
11->1	0.98960	15.67
12->1	0.98960	15.67
1->2	0.98960	15.67
3->2	0.98960	15.67
4->2	0.98960	15.67
5->2	0.98960	15.67
6->2	0.98960	15.67
7->2	0.98960	15.67
1 8->2	0.98960	15.67
1 9->2	0.98960	15.67
10->2	0.98960	15.67
11->2	0.98960	15.67
12->2	0.98960	15.67
12->2 1	0.98960	15.67
1->3 2->3	0.98960	15.67
1 4->3	0.98960	15.67

M _{5->3}	0.98960	15.67
M 6->3	0.98960	15.67
M 7->3	0.98960	15.67
M _{8->3}	0.98960	15.67
M _{9->3}	0.98960	15.67
M _{10->3}	0.98960	15.67
M 11->3	0.98960	15.67
M _{12->3}	0.98960	15.67
M 1->4	0.98960	15.67
M _{2->4}	0.98960	15.67
M _{3->4}	0.98960	15.67
M _{5->4}	0.98960	15.67
$M_{6->4}$	0.98960	15.67
$M_{7->4}^{0->4}$	0.98960	15.67
$M_{8->4}$	0.98960	15.67
$M_{9->4}^{8->4}$	0.98960	15.67
M 10->4	0.98960	15.67
M 11->4	0.98960	15.67
M _{12->4}	0.98960	15.67
M 1->5	0.98960	15.67
M _{2->5}	0.98960	15.67
M 3->5	0.98960	15.67
M _{4->5}	0.98960	15.67
M _{6->5}	0.98960	15.67
M _{7->5}	0.98960	15.67
M _{8->5}	0.98960	15.67
M _{9->5}	0.98960	15.67
M _{10->5}	0.98960	15.67
M _{11->5}	0.98960	15.67
M _{12->5}	0.98960	15.67
M _{1->6}	0.98960	15.67
M _{2->6}	0.98960	15.67
M _{3->6}	0.98960	15.67
M _{4->6}	0.98960	15.67
M _{5->6}	0.98960	15.67
M _{7->6}	0.98960	15.67
M _{8->6}	0.98960	15.67
M _{9->6}	0.98960	15.67
M _{10->6}	0.98960	15.67
M _{11->6}	0.98960	15.67
M 12->6	0.98960	15.67
M 1->7	0.98960	15.67
M 2->7	0.98960	15.67
M 3->7	0.98960	15.67
M _{4->7}	0.98960	15.67

		1 71
M _{5->7}	0.98960	15.67
M _{6->7}	0.98960	15.67
M _{8->7}	0.98960	15.67
M _{9->7}	0.98960	15.67
M 10->7	0.98960	15.67
M 11->7	0.98960	15.67
M 12->7	0.98960	15.67
M 1->8	0.98960	15.67
$M_{2->8}^{1->8}$	0.98960	15.67
$M_{3->8}^{2->8}$	0.98960	15.67
$M_{4->8}^{5->8}$	0.98960	15.67
M 5->8	0.98960	15.67
$M_{6->8}^{5->8}$	0.98960	15.67
M 7->8	0.98960	15.67
$M_{9->8}$	0.98960	15.67
$M_{10->8}^{9->8}$	0.98960	15.67
$M_{11->8}^{10->8}$	0.98960	15.67
$M_{12->8}^{11->8}$	0.98960	15.67
M 1->9	0.98960	15.67
$M_{2\rightarrow 9}^{1\rightarrow 9}$	0.98960	15.67
$M_{3->9}^{2->9}$	0.98960	15.67
M _{4->9}	0.98960	15.67
M _{5->9}	0.98960	15.67
M _{6->9}	0.98960	15.67
M _{7->9}	0.98960	15.67
M _{8->9}	0.98960	15.67
M 10->9	0.98960	15.67
M 11->9	0.98960	15.67
M _{12->9}	0.98960	15.67
M _{1->10}	0.98960	15.67
M _{2->10}	0.98960	15.67
M _{3->10}	0.98960	15.67
M _{4->10}	0.98960	15.67
M _{5->10}	0.98960	15.67
M _{6->10}	0.98960	15.67
M _{7->10}	0.98960	15.67
M _{8->10}	0.98960	15.67
M _{9->10}	0.98960	15.67
M _{11->10}	0.98960	15.67
M _{12->10}	0.98960	15.67
M 1->11	0.90523	149.11
M 2->11	0.91122	139.82
M 3->11	0.89571	165.06
M _{4->11}	0.91956	127.17
M _{5->11}	0.91313	137.17

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M _{6->11}	0.88176	190.31
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\ /	0.88119	192.03
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. A	0.91318	136.74
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\ A	0.88211	187.88
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. /	0.87906	192.89
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. /	0.87880	193.98
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Λ	0.87119	206.81
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Λ	0.87285	204.89
$M_{4\rightarrow 12}$ 0.85863 228.68 $M_{5\rightarrow 12}$ 0.88621 182.14 $M_{6\rightarrow 12}$ 0.87803 195.06 $M_{7\rightarrow 12}$ 0.87865 202.15 $M_{8\rightarrow 12}$ 0.88787 178.02 $M_{9\rightarrow 12}$ 0.91847 128.74	Λ	0.90332	152.39
$M_{5->12}$ 0.88621 182.14 $M_{6->12}$ 0.87803 195.06 $M_{7->12}$ 0.87865 202.15 $M_{8->12}$ 0.88787 178.02 $M_{9->12}$ 0.91847 128.74	Λ	0.85863	228.68
$M_{6\rightarrow 12}$ 0.87803 195.06 $M_{7\rightarrow 12}$ 0.87865 202.15 $M_{8\rightarrow 12}$ 0.88787 178.02 $M_{9\rightarrow 12}$ 0.91847 128.74	A	0.88621	182.14
$M_{7\rightarrow 12}$ 0.87865 202.15 $M_{8\rightarrow 12}$ 0.88787 178.02 $M_{9\rightarrow 12}$ 0.91847 128.74	Л	0.87803	195.06
$M_{8\rightarrow 12}$ 0.88787 178.02 $M_{9\rightarrow 12}$ 0.91847 128.74	Λ	0.87865	202.15
$M_{9->12}$ 0.91847 128.74	Λ	0.88787	178.02
7 7 12	A	0.91847	128.74
$M_{10\to 12}$ 0.91965 125.72	Λ	0.91965	125.72
$ \Lambda = \frac{10 \times 12}{11 - 12} $ 0.88081 191.65	Λ	0.88081	191.65
.n[Prob(D G)] 0.97197 42.61		0.97197	42.61

Potential Problems

This section reports potential problems with your run, but such reporting is often not very accurate. Whith many parameters in a multilocus analysis, it is very common that some parameters for some loci will not be very informative, triggering suggestions (for example to increase the prior range) that are not sensible. This suggestion tool will improve with time, therefore do not blindly follow its suggestions. If some parameters are flagged, inspect the tables carefully and judge wether an action is required. For example, if you run a Bayesian inference with sequence data, for macroscopic species there is rarely the need to increase the prior for Theta beyond 0.1; but if you use microsatellites it is rather common that your prior distribution for Theta should have a range from 0.0 to 100 or more. With many populations (>3) it is also very common that some migration routes are estimated poorly because the data contains little or no information for that route. Increasing the range will not help in such situations, reducing number of parameters may help in such situations.

- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short! Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short! Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!

Param 13: Effective sample size of run seems too short! Param 13: Effective sample size of run seems too short!

Param 13: Effective sample size of run seems too short!
Param 13: Effective sample size of run seems too short!
Param 13: Effective sample size of run seems too short!