Cryptography Dasics — https://powcoder.com Integrity: Hasseherswand MACs

ECEN 4133 Jan 19, 2021

Alice and Bob

Alice wants to send message *m* to Bob

- Can't fully trust the messenger or network carrying the message Assignment Project Exam Help
 Want to be sure what Bob receives is actually what Alice sent

Threat model:

- Mallory can see, modify, forge messages
- Mallory wants to trick Bob into accepting a message Alice didn't send

Solution: Message Authentication Code (MAC)

One approach:

- Alice computes v := f(m)
- Bob verifies that $\mathbf{v'} = f(\mathbf{A'})$ ssignment Project Exam Help

Function *f*?

Easily computable by Alice and Bob; not computable by Mallory
(Idea: Secret only Alice & Bob know)
We're sunk if Mallory can learn f(x) for any x ≠ m!

Candidate f: Random Function

```
Input:
                                                                                                                  Any size
            Output:
                                                                                                                  Fixed size (e.g. 256 bits)
                    Defined by a giant lookun Smignment Project Exam Help
                    filled in by flipping coins
                                                                                                                                                                                                                    https://powcoder.com
                                                                                                                                                                                                                     Add We Chat power of the policy of the polic
                                                                                                                                                                                                                                                                                                                                                      1110011010010100...
                                                                                                                                                                                                                                                                                                                                                    0101010001010000...
Completely impractical [why?]
Provably <u>secure</u>
                                                                                                                                                             [why?]
(Mallory can't do better than randomly guessing)
```

Hash Functions

Random Functions are impractical

Hash functions approximate a random function:
Assignment Project Exam Helphput

- Any size input
- Fixed size output (e.g. 256 billity://powcoder.com
- Hard (but not impossible!) to invert (given output, find input)

Add WeChat powcoder

Properties of a secure cryptographic hash:

- First pre-image resistant Given H(m), hard to find m
- Second pre-image resistant Given m_1 , hard to find m_2 s.t $H(m_1)==H(m_2)$
- Collision resistant Hard to find m₁!= m₂ s.t H(m₁)==H(m₂)

Example Hash Function: SHA256

What is **SHA256**?

"Cryptographic hash function"

Input: arbitrary length dat Signment Project Exam Flelp
Output: 256 bits

Built with "compression function" https://powcoder.com

(256 bits, 512 bits) in → 256 bits out Add WeChat poweoder

Designed to be really hairy (64 rounds of this:)

A B C D E F G H

Ma

A B C D E F G H

Compression functions

Compression function **h** take (two) fixed-length inputs, produce fixed-length output

Assignment Project Exam Help

How do we build a hash function from h/powcoder.combits that takes an arbitrary length input?

Add WeChat powcoder

256 bits

Solution: Merkle-Damgård Construction

Entire algorithm:

- 1. Pad input M to a multiple of 512 bits
- 2. Break into 512-bit blassignment Project Exam Help
- 3. $y_0 = \text{const (IV)},$ $\mathbf{y}_1 = \boldsymbol{h}(\mathbf{y}_0, \mathbf{b}_0),$ $\mathbf{y_i} = h(\mathbf{y_{i-1}}, \mathbf{b_{i-1}})$
- 4. Return y_n

Merkle-Damgård Problem: Length Extension Attacks

Length Extension Attack

Other hash functions

MD5

```
Once ubiquitous, broken in 2004
```

Turns out to be easy to find collisions ent Project Exam Help (pairs of messages with same Exam Help

You'll investigate this in Project 1

SHA1

https://powcoder.com

Deprecated in 2011, but still widely used.
Collisions found in 2017: Add WeChat powcoder

Took 9,223,372,036,854,775,808 SHA1 computations to find (6,500+ CPU-years)

Don't use!

SHA3

Different "sponge" construction

Not susceptible to length-extension

Try hash functions yourself!

Hash functions -> Integrity?

Can we use hash functions to provide integrity?

Hash functions -> Integrity?

Can we use hash functions to provide integrity?

Not directly: Mallory could still change w to m' and compute H(m')

[Alternative?]

Keyed hash function: Message Authentication Code (MAC)

Assume Alice and Bob have a shared secret k

Alice computes MAC over the message **m** with her key **k**:

 $v = MAC_k(m)$

Mallory doesn't know k, so cannot produce $v' = MAC_k(m')$

Building a MAC from a hash function: HMAC

Not vulnerable to length extension!

Using HMAC

https://powcoder.com

Tricky question: are hashes secure?

Assignment Project Exam Help

https://powcoder.com

Tricky question: are hashes secure?

Answer: we don't know!

Hashes have been broken in the past:

- MD5 introduced in 1992, Assignment Project Exam Help
- SHA1 introduced in 1995, first collision in 2017
 SHA2 introduced in 2001, no known polision in 2017
- SHA3 introduced in 2015, no known collision ...vet!
 Add WeChat powcoder

We know collisions exist, but hope they are difficult to find [Why?]

MAC crypto game

Game against Mallory

- 1. Give Mallory MAC(K, m_i) $\forall mi \in M$ and M (but not K!)
- 2. Mallory tries to discover MAC(K, m') for a new m' \notin M
- 3. If Mallory succeeds, MAC is **insecure**

Assignment Project Exam Help

Other uses for hashes/HMACs? https://powcoder.com