Adatbázisok 1. Relációs adatbázis tervezés – 5. rész

Funkcionális függőségek

Felbontások

Normálformák

A harmadik normálforma (third normal form) -- motiváció

- Bizonyos FF halmazok esetén a felbontáskor elveszíthetünk függőségeket.
- AB ->C és C ->B.
 - Példa: A = f_cím, B = város, C = mozi.
- Két kulcs van: {*A*,*B* } és {*A*,*C* }.
- {f_cím, város}, {f_cím, mozi}
- C ->B megsérti a BCNF-t, tehát AC, BC-re dekomponálunk. [mozi->város, nem szuperkulcs C]

FF-ek kikényszerítése

- A probléma az, hogy AC és BC sémákkal nem tudjuk kikényszeríteni AB ->C függőséget.
- Példa A = f_cím, B = város, C = mozi, a következő dián.

Egy kikényszeríthetetlen (*unenforceable*) FF

F_cím	mozi	
Antz	Guild	
Antz	Park	

város	mozi
Cambridge	Guild
Cambridge	Park

Kapcsoljuk össze a sorokat (mozi).

F_cím	város	mozi
	Cambridge	Guild
Antz	Cambridge	Park

A szétbontott relációkban egyik FF sem sérül, az eredményben az F_cím város -> mozi nem teljesül.

A probléma megoldása: 3NF

- 3. normálformában (3NF) úgy módosul a BCNF feltétel, hogy az előbbi esetben nem kell dekomponálnunk.
- Egy attribútum **prím, azaz elsődleges attribútum** (*prime attribute*), ha legalább egy kulcsnak eleme.
- X ->A nem-trivi. FF, megsérti 3NF-t akkor és csak akkor, ha X nem szuperkulcs és A nem prím.
- minden nem triviális függőségre igaz, hogy bal oldala szuperkulcs, vagy jobb oldala csak elsődleges attribútumokat tartalmaz
- 3NF feltétel és a BCNF feltétel közötti különbség a "vagy jobb oldala csak elsődleges attribútumokat tartalmaz"

Példa: 3NF

- A problematikus esetben az AB ->C és C ->B FF-ek esetén a kulcsok AB és AC.
- Ezért A, B és C mindegyike prím.
- Habár *C ->B* megsérti a BCNF feltételét, 3NF feltételét már nem sérti meg.

Miért hasznos 3NF és BCNF?

- A dekompozícióknak három fontos tulajdonsága lehet:
 - Veszteségmentes összekapcsolás (lossless join), információ visszaállíthatóság
 - 2. Függőségek megőrzése (dependency preservation)
 - 3. Anomáliák kiküszöbölése (elimination of anomalies)

3NF és BCNF -- folytatás

- Az (1) tulajdonság teljesül a BCNF esetében.
- A 3NF (1) és (2)-t is teljesíti, de maradhat benne anomália (általában ez nem akkora baj)
- A BCNF esetén (2) sérülhet, viszont (FF-ek okozta) anomália nem lehet benne
 - Az F_cím város mozi erre volt egy példa.

F_cím	város	mozi
Antz	Cambridge	Guild
A Bug's Life	Cambridge	Guild

Minimális bázis létrehozása

- Minimális bázis (minimal basis)
- 1. Jobb oldalak szétvágása.
- Próbáljuk törölni az FF-eket egymás után. Ha a megmaradó FF-halmaz nem ekvivalens az eredetivel, akkor nem törölhető az épp aktuális FF.
- Egymás után próbáljuk csökkenteni a baloldalakat, és megnézzük, hogy az eredetivel ekvivalens FF-halmazt kapunk-e.

3NF-re bontás -(2)

- A minimális bázis minden FF-re megad egy sémát a felbontásban.
 - A séma a jobb- és baloldalak uniója lesz (X-> A FF, XA séma) .
- Ha a minimális bázis FF-jei által meghatározott sémák (X-> A FF, XA séma) között nincs szuperkulcs, akkor hozzáadunk a felbontáshoz egy olyan sémát, amely maga egy kulcs az R relációra.

Példa: 3NF felbontás

- A reláció: R = ABCD.
- FF-ek: A->B és A->C.
- Felbontás: AB és AC az FF-ekből és AD-t is hozzá kell venni, mert AB, AC egyike sem kulcs.

Miért működik?

- Megőrzi a függőségeket: minden FF megmarad a minimális bázisból.
- Veszteségmentes összekapcsolás: a CHASE algoritmussal ellenőrizhető (a kulcsból létrehozott séma itt lesz fontos).
- 3NF: a minimális bázis tulajdonságaiból következik.

Minimális bázist kiszámító algoritmus

Jelölje F^+ az F függőségi halmazból következő függőségek halmazát.

- 1. Kezdetben *G* az üreshalmaz.
- 2. Minden $X \rightarrow Y \in F$ helyett vegyük az $X \rightarrow A$ függőségeket, ahol $A \in Y X$).

Megjegyzés: Ekkor minden G-beli függőség $X \rightarrow A$ alakú, ahol A attribútum.

3. Minden $X \to A \in G$ -re, ha $X \to A \in (G - \{X \to A\})^+$, vagyis ha elhagyjuk az $X \to A$ függőséget G-ből, az még mindig következik a maradékból, akkor $G := G - \{X \to A\}$.

Megjegyzés: Végül nem marad több elhagyható függőség.

4. Minden $X \to A \in G$ -re, amíg van olyan $B \in X$ -re, hogy $A \in (X - B)^+$ a G-szerint, vagyis $(X - B) \to A$ teljesül, akkor X := X - B.

Megjegyzés: E lépés után minden baloldal minimális lesz.