26-缓存异常(下):如何解决缓存雪崩、击穿、穿透难题?

你好,我是蒋德钧。

上节课,我们学习了缓存和数据库的数据不一致问题和应对方法。除了数据不一致问题,我们常常还会面临 缓存异常的三个问题,分别是维存冒游、缓存击穿相缆存穿远。这三个问题—且发生,会导致大量的请求积 压到数据振昂。如果请求的并发着他大,就会导致被振客和级要的操作。这就是哪一颗的生产事故了一

这节课,我就来和你哪聊这三个问题的表现、诱发原因以及解决方法。俗话说,知己却说,百战不殆。了解 了问题的成因,我们就能够在应用Redi螺存时,进行合理的螺存设置,以及相应的业务应用新闻设置,提 稍做好难备。

接下来,我们就先看下缓存雪崩的问题和应对方案。

缓存雪崩

缓存雪崩是指大量的应用请求无法在Redis操存中进行处理,紧接着,应用将大量请求发送到数据库层,导 致数据库虚约压力资格。

缓存雪崩一般是由两个原因导致的; 应对方案也有所不同, 我们一个个来看。

第一个原因是: 銀作中有大量数据同时过期, 导致大量请求无法得到处理。

具体来说。当我需像存在模存中,并且设置了过期时间时,如果在某一个时刻,大量数据同时过期,此时, 应用再访问这些数据的话,就会发生模存缺失。紧接着,应用就会把请求发送给数据库,从数据库中读取数 据、如果皿用的并发请求量模大,那么数据增加压力包接很大,这会进一步影响到数据库的其他正常业务请 支标题,是供拿一个理解的样本、计可解所法。

针对大量数据图对失效带来的缓存雪崩问题、我给你提供两种解决方案。

置先,我们可以避免给大量的数据设置相同的过期时间。如果业务服务确要求有些数据同时失效。你可以在 用EXPIRE的全给每个常振设置过期时间时,给这些数据的过期时间增加一个较小的格机数(例如、格机增 加1-3分钟),这样一类,不同数据的过期时间有所差别,但差别不会太大、既避免了大量数据同时过 期,则时也保证了这些数据基本在根压的时间失效。仍然能观查业务需求。

除了微调过期时间,我们还可以通过服务降级,来应对缓存雪崩。

所谓的服务降级,是指发生缓存雪崩时,针对不同的数据采取不同的处理方式。

- 当业务应用访问的是非核心数据(例如电商商品属性)时,暂时停止从缓存中查询这些数据,而是直接返回预定义信息、空值或是错误信息;
- 当业务应用访问的是核心数据(例如电商商品库存)时,仍然允许查询缓存,如果缓存缺失,也可以继续 通过数据库该取。

这样一来,只有部分过期数据的请求会发送到数据库,数据库的压力就没有那么大了。下面这张图显示的是 服务降级时数据请求的执行情况,你可以看下。

除了大量数据同时失效会导致缓存雷崩,还有一种情况也会发生缓存雷崩,那就是,Redis缓存实例发生故障容机了,无法处理请求,这就会导致大量请求一下子积压到数据库层,从而发生缓存雷崩。

一般来说,一个Redis实例可以支持数万级别的请求处理吞吐量,而单个数据库可能只能支持数千级别的请求处理吞吐量,它们两个的处理能力可能相差了近十倍。由于缓存增解,Redis缓存失效,所以,数据库就可能要承受近十倍的请求任力。从服因为压力这大面做着。

此时,因为Redis实例发生了宕机,我们需要通过其他方法来应对缓存雪崩了。我给你提供两个建议。

第一个建议,是在业务系统中实现服务熔断或请求阻流机制。

所謂的服务细新,是指在发生媒存雪期时,为了防止引发连锁的数据库雪崩,甚至是整个系统的崩溃,我们 暂停业务应用对媒体系统的接征访问,再具成点说,就是业务应用调用媒体程记时,媒存客户端并不后请求 发始Redis媒体实例,而是直接返回,等到Redis媒体实例重新恢复服务后,两允许应用请求发送到缓存系 标。

这样一来,我们就避免了大量请求因缓存缺失,而积压到数据库系统,保证了数据库系统的正常运行。

在业务系统进行时,我们可以监测Redis城存所在机器和数据集所在机器的负载排标,例如铅砂请求数、 CPU利用率、内存利用率等。如果我们发现Redis城存实例怎机了,而数据原所在机器的负载压力突然增加 (例如新标馆业数类增)。此时,就并全域及思谢了、十届请求地产处型数据库排子标准。我们可以适品解

服务结婚虽然可以保证数据库的正常混行,但是暂停了整个缓存系统的访问,对业务应用的影响范围大。为 了尽可能减少这种影响,我们也可以进行请求限流。这里谈的请求限流,就是指,我们在业务系统的请求入 口前辗控制绳粉进入系统的请求数。海旁过多的请求被发送到数据据。

我给你举个例子。假设业务系统正常运行时,请求入口前端允许每秒进入系统的请求是1万个,其中,9000 个请求都能在缓存系统中进行处理,只有1000个请求会被应用发送到数据库进行处理。

一旦发生了保存霉崩,数概率的每秒请求数突然推加到每秒1万个, 此时, 我们就可以启动请求限流机制, 在请求入口前端只允许每秒进入系统的请求数为1000个, 再多的请求就会在入口前端被直接拒绝服务。所 以, 使用了请求限流, 就可以避免太胆并发请求定力传递到数据库层。

使用服务熔断或是请求限流机制,来应对Redis实例宕机导致的缓存雪前问题,是属于"事后诸葛亮",也就是已经发生缓存雪崩了,我们使用这两个机制,来降低雪崩对数据库和整个业务系统的影响。

我给你的第三个建议就是事前预防。

通过主从节点的方式构建Redis缓存高可靠集群。如果Redis缓存的主节点故障看机了,从节点还可以切换成 为主节点。继续继任编妆额条、避免了由于编妆定例完料而导致的哪炷雪伽问题。

缓存雪崩是发生在大量数据同时失效的场景下,而接下来我要向你介绍的缓存击穿,是发生在某个热点数据 失效的场景下。和缓存雪崩相比,缓存击穿失效的数据数量要小很多,应对方法也不一样,我们来看下。

缓存击穿

缓存击穿星指,针对某个访问非常频繁的热点数据的请求,无法在缓存中进行处理,紧接着,访问该数据的 大量请求,一下子都发送到了后函数据库,导数了数据保压力激增,会影响数据库处理其他请求。缓存击穿 的情况,尽得发生在热点数据调用全效性,如下组形示:

为了避免服存扎穿给我提得带来的激增压力,我们的解决方法也比较直接,对于访问特别频繁的热点数据。 我们就不适置过期间间了。这样一果,对热点数据的访问请求,都可以在缓存中进行处理,而Redis数万级 别的高音处量可以很好地应对大量的计划

好了,到这里,你了解了缓存雪崩和缓存击穿问题,以及它们的应对方案。当发生缓存害崩或击穿时,数据 库中还是保存了应用敷切问的效器。接下来,我向你介绍的循帘穿透问题,和雪脑、击穿问题不一样,继存 穿透发生时,数据也不在数据库中,这会同时拾被存和数据库带来访问压力,那该怎么办呢?我们来具体看 下。

缓存穿透

《董存罗透是指置访问的数据既不在Redis城存中,也不在数据库中,导致请求在访问城存时,发生城存缺失,再去访问政据调片,发股股指挥中也没有要访问的数据。此时,应用也无法从数据库中读取数据带为、效存,来服务后续请求,这样一年,继行也就成了"推设",如果应用持续有大量请求访问数据,就会同时给婚子和数据度带来巨大压力,如下图所示:

那么,缓存穿透会发生在什么时候呢? 一般来说,有两种情况。

- 业务层误操作:缓存中的数据和数据库中的数据被误删除了,所以缓存和数据库中都没有数据;
- 恶意攻击:专门访问数据库中没有的数据。

为了避免缓存穿透的影响,我来给你提供三种应对方案。

第一种方案是,缓存空值或缺省值。

一旦发生概存穿透,我们就可以针对查询的剪据,在Redstvin概存一个空值或是和业务层协商概定的缺省值 (例如,库存的缺省值可以设为0)。案接着,应用发送的后续请求再进行查询时,就可以直接从Redstvit 取空值或转名值,返回给业务应用了,接免了把大量填束发送给数据库处理。保持了数据库的正常运行。

第二种方案是,使用布隆过滤器快速判断数据是否存在,避免从数据库中查询数据是否存在,减轻数据库压 力。

我们先来看下,布隆过滤器是如何工作的。

布隆过滤器由一个初值都为0的bit数组和N个哈希函数组成,可以用来快速判断某个数据是否存在。当我们 拥标记某个数据存在时(例如、数据已被写入数据库),布路过滤器会通过三个操作完成标记:

- 首先、使用N个哈希函数、分别计算这个数据的哈希值、得到N个哈希值。
- · 然后、我们把这N个哈希值对bit数组的长度取模、得到每个哈希值在数组中的对应位置。

如果数据不存在(例如,数据库里没有写入数据),我们也就没有用布隆过滤器标记过数据,那么,bit数 组对应bit位的值仍然为0。

当需要查询某个数据时,我们就执行刚刚说的计算过程,先得到这个数据在\xx数值中对应的N个位置。紧接 着,我们查看\xx数组中这N个位置上的\xxd值。只要这N个\xxd值有一个不为1,这就表明布隆过滤器没有对该 数据做过标记,所以,查询的数据一定没有在数据库中保存。为了便于传理解,我离了一张图,你可以看

图中布隆过速程序——包含10个bi位的数组,使用了3个培养高数,当在布隆过滤器中标记数据X时,X会被 计算3x治希组,计时10取模,取模点带为别是1、3、7。所以,bit效能的第1、3、7位接效置为1。当应用 想要查询x时,只要看看做的69、3、7位是名为1,只要有一个50。形么、X线管之不在数据中中,

正基基于希腊·克波温器的快速能测特性。我们可以在密胶度下入数据意对。使用再接过滤器含个标记。当都存 线头后,应用是由数据原对,可以通过查询布提过滤器快速列斯散聚是否存在。如果不存在,就不用用点数 据和中意识了。这样一系,即使发生缓促导进了,大量源果乃含含物形心场布提注滤器,而完全经出到 据成,也就不会影响数据率的正常运行,布隆过滤器可以使用Pedus实现。本身就能来提较大的并发访问在

最后一种方案是,在请求入口的**前继进行请求检测**,但存穿透的一个原因是有大量的恶意请求访问不存在的 数据,所以,一个有效的应对方案是在请求入口前端,对业务系统接受到的请求进行合法性检测,把恶意的 请求 (例如请求参数不合理、请求参数是非法信、请求字段不存在)直接过滤掉,不让它们访问后端据存和 数据集。这样一来,也就不会出现据存穿透彻器了。

類概存寄解、規存击容突測类问题相比、機存穿透的影响更大一些、希望你能重点发注一下。从帮防的角度 来说,我们需要避免说删除数据库和缓存中的数据;从应对角度来说,我们可以在业务系统中使用缓存空值 成缺省值、使用布隆过滤器,以及进行蒸蒸清末检测等方法。

小结

这节课,我们学习了假存事解、击穿和穿透这三类异常问题。从问题成因来看,缓存雷解和击穿主要是因为 数据不在编字中了,而继有穿透思是因为数据压不在编字中。也不在数据单中,所以,缓存雷崩或击异时, 一旦数据库中的数据被再次写入则缓存后,应用又可以在缓存中快速访问数据了,数据库的压力也会相应地 降低下来。而缓存穿透发星时,Redu编存和数据服务同时持续来受请求压力。 为了方便你掌握,我把这三大问题的原因和应对方案总结到了一张表格,你可以再复习一下。

问题	原因	应对方案
缓存雪崩	大量数据同时过期 缓存实例宕机	给缓存数据的过期时间上加上小的随机数, 避免同时过期 服务接级 服务格断 请求限流 Pedis媒律主从集群
缓存击穿	访问非常频繁的热点数据过期	不给热点数据设置过期时间,一直保留
缓存穿透	缓存和数据库中都没有要访问的 数据	 缓存空值或缺省值 请使用布隆过滤器快速判断 请求入口前端对请求合法性进行检查

题后,是母词一下,服务部底,服务操业。由来现成这些方法是基本了 不同"方案"。在《证证规准和整 体系统稳定的同时,会对业务应用等基本部分域,例论使用服务障碍时,有部分数据的请求就只能得到证 现在他息,无正正常发现,如果他可以使为他们。那么,整个概不有处的服务使被看得了,影响为业务员服 更大,而使用了请求就这样知信,学令业务系统的看让事会降低,能并发处理的用户请求会成少。会影响到 国际经验

所以, 我给你的建议是, 尽量使用预防式方案;

- 针对缓存雪崩。合理地设置数据过期时间、以及搭建高可靠缓存集群;
- 针对缓存击穿, 在缓存访问非常频繁的热点数据时, 不要设置讨期时间;
- 针对缓存穿透、提前在入□前端实现恶意请求检测、或者担范数据底的数据删除操作、避免误删除。

毎课一问

按照惯例, 我给你提个小问题。在讲到缓存雪崩时, 我提到, 可以采用服务熔断、服务降级、请求限流的方 法来应对。请你思考下, 这三个机制可以用来应对缓存穿透问题吗?

欢迎在留言区写下你的思考和答案,我们一起交流讨论。如果你觉得今天的内容对你有所帮助,也欢迎你分享给你的朋友或同事。 我们下节读见。