Topics in Physics - C. Mukku

Siddharth Bhat

Contents

1	Tensor algebra preliminaries		
	1.1	Raising and lowering of two indeces simeltaneously	5
2	Lagrangian, Hamiltonian mechanics 7		
	2.1	Lagrangian	7
	2.2	Variational principle	7
3	Functional calculus		
	3.1	Functional Derivative - take 1	9
	3.2	Functional Derivative as taught in class	10
	3.3		10
		2 2 4 2	10
	3.4	Deriving E-L from functional magic	10
	3.5		10
4	Maxwell's equations in Minkowski space		
	4.1	Constructing F , or Tensorifying Maxwell's equations	11
	4.2	Expressing B, E in terms of F	
	4.3	Rewriting Maxwell's equations in terms of F	
		4.3.1 Combining (1) $\nabla E = \frac{\rho}{\epsilon_0}$, (4) $\nabla \times B = \mu_0 J + \frac{\partial E}{\partial t}$	
		4.3.2 Combining (2) $\nabla \times E = -\frac{\partial B}{\partial x}$ (3) $\nabla B = 0$	

4 CONTENTS

Tensor algebra preliminaries

1.1 Raising and lowering of two indeces simeltaneously

Note that

$$a_i b^i = (a^j g_{ij}) b^i = (a^j g_{ij}) (b_k g^{ki})$$

In minkowski space, we know that $g^{ij}=0$ if $i\neq j$, and $(g^{ii}g_{ii})^2=1$, so we can rewrite the above expression as:

$$(a^{j}g_{ij})(b_{k}g^{ki}) =$$
$$(a^{i}g_{ii})(b_{i}g^{ii}) =$$
$$a^{i}b_{i}$$

Lagrangian, Hamiltonian mechanics

Mechanics in terms of generalized coords.

2.1 Lagrangian

Define a functional. L over the config. space of partibles q^i , $qdot^i$. $L = L(q^i, qdot^i)$. We have an explicit dependence on t.

$$L = KE - PE$$

Assuming a 1-particle system of unit mass,

$$L = \frac{1}{2}\dot{q}^2 - V(q)$$

Assuming an n-particle system of unit mass,

$$L = \sum_{i} \frac{1}{2} q dot^{i^2} - V(q^i)$$

2.2 Variational principle

Take a minimum path from A to B. Now notice that the path that is slightly different from this path will have some delta from the minimum.

Action

$$S(t0, t1) = \int L dt = \int_{t0}^{t1} L(q^i, qdot^i) dt$$

. Least action: $\delta S = 0$

Functional calculus

this chapter develops a completely handway physics version of functional analysis.

Definition 1 A functional F is a function: $F: (\mathbb{R} \to \mathbb{R}) \to \mathbb{R}$

Notation 1 Evaluation of a functional F with respect to f is denoted by F[f].

3.1 Functional Derivative - take 1

Consider a functional $F: (\mathbb{R} \to \mathbb{R}) \to \mathbb{R}$, a function $f: \mathbb{R} \to \mathbb{R}$, and a "test function" $\phi: \mathbb{R} \to \mathbb{R}$. Consider a functional F. We only define the derivative of a functional F with respect to a function f by what happens under an integral sign as follows:

$$\int \frac{\delta F}{\delta f}(x)\phi(x)dx = \lim_{\epsilon \to 0} \frac{F[f + \epsilon \phi] - F[f]}{\epsilon}$$

Now, we can define a small variation in F as:

$$\delta F : (\mathbb{R} \to \mathbb{R}) \times (\mathbb{R} \to \mathbb{R}) \to \mathbb{R}$$
$$\delta F(f, \phi) \equiv \int \frac{\delta F}{\delta f}(x) \phi(x) dx$$

Intuitively, δF tells us the variation of the function f along a test function ϕ . So, it encapsulates some kind of "directional derivative".

So, we can look at $\frac{\delta F}{\delta f}$ as a functional as follows:

$$\frac{\delta F}{\delta f} : (\mathbb{R} \to \mathbb{R}) \to \mathbb{R}$$
$$\frac{\delta F}{\delta f}(\phi) = \delta F(f, \phi)$$

Wehre $\frac{\delta F}{\delta f}$ allows us to "test" the change of F with respect to f along a given "direction" ϕ .

3.2 Functional Derivative as taught in class

Substitute $\phi = \delta(x - p)$. Now, the quantity:

$$\frac{\delta F}{\delta f}\phi(x) = \delta F(f,\delta(x-p))$$

Rewriting δF by sticking it under an integral:

$$\int \frac{\delta F}{\delta f}(x)\delta(x-p)dx = \lim_{\epsilon \to 0} \frac{F[f + \epsilon \delta(x-p)] - F[f]}{\epsilon}$$
$$\frac{\delta F}{\delta f}\Big|_{p} = \lim_{\epsilon \to 0} \frac{F[f + \epsilon \delta(x-p)] - F[f]}{\epsilon}$$

That is, we can start talking about "derivative of the functional F with respect to a function f at a point p" as long as we only test the functional F against δ -functions.

So, we can alternatively define this quantity as:

$$\left. \frac{\delta F}{\delta f} \right|_{p} \equiv \lim_{\epsilon \to 0} \frac{F[f + \epsilon \delta(x - p)] - F[f]}{\epsilon}$$

While this does not "look like a functional", it actually is, if we mentally replace:

$$p \to \int - \delta(x-p) \mathrm{d}x$$

This is how mukku got that expression.

3.3 Common functional derivatives

3.3.1 Derivative of $F[\phi] \equiv \int (\frac{\partial \phi}{\partial u})^2$

$$\left. \frac{\delta F}{\delta f} \right|_p = \int \left(\frac{\partial \phi}{\partial y} \right)^2$$

3.4 Deriving E-L from functional magic

3.5 Weird things in Functional Analysis as taught in class

Consider the functional

$$J[f] = \int g[f']dy$$
:

since g is a functional, it has a type $g:(\mathbb{R}\to\mathbb{R})\to\mathbb{R}$. So, our integrand must be some function df, and not some space component dy. I don't understand what the definition of J means.

Maxwell's equations in Minkowski space

Let us first review Maxwell's equations:

$$\nabla \cdot E = \frac{\rho}{\epsilon_0}$$
 (Electric charges produce fields)

 $\nabla \cdot B = 0$ (Only magnetic dipoles exist)

$$\nabla \times E = -\frac{\partial B}{\partial t}$$
 (Lenz Law / Faraday's law - time varying magnetic field induces current that opposes it)

$$\nabla \times B = \mu_0 \left(J + \epsilon_0 \frac{\partial E}{\partial t} \right)$$
 (Ampere's law + fudge factor)

4.1 Constructing F, or Tensorifying Maxwell's equations

Begin with the equation that $\nabla \cdot B = 0$. This tells that B can be written as the curl of some other field:

$$B \equiv \nabla \times A \tag{4.1}$$

Expanding this equation of B in tensorial form:

$$B^{i} = \mathcal{E}^{ijk} \partial_{j} A^{k}$$

$$\tag{4.2}$$

Next, take $\nabla \times E = -\frac{\partial B}{\partial t}$.

$$\nabla \times E = -\frac{\partial B}{\partial t} = \frac{\partial (\nabla \times A)}{\partial t} = \nabla \times \frac{\partial A}{\partial t}$$
$$\nabla \times \left(E + \frac{\partial A}{\partial t} \right) = 0$$

writing this as the divergence of some field ϕ scaled by $\alpha : \mathbb{R}$

$$E + \frac{\partial A}{\partial t} = \alpha (\nabla \cdot \phi)$$
$$E = \alpha \nabla \cdot \phi - \frac{\partial A}{\partial t}$$

Since electrostatics is time-independent, we choose to think of $\alpha = -1$, so we can interpret ϕ as the potential.

$$E^{i} = -\frac{\partial \phi}{\partial x^{k}} g^{ik} - \frac{\partial A^{i}}{\partial t} \tag{4.3}$$

A slight reformulation (since we know that in Minkowski space, $\partial_t = \partial_0$) we get the equation:

$$E^{i} = -g^{ik}\partial_{k}\phi - \partial_{0}A^{i}$$

$$\tag{4.4}$$

We get the metric $g^i k$ involved to raise the covariant $\frac{\partial \phi}{\partial x^k}$ into the contravariant E^i .

(Sid question: how does one justify switching $\nabla \times$ and ∂ ? It feels like some algebra)

Here be magic! We define A new rank-2 tensor in Minkowski space-time, called F (for Faraday),

$$F_{\mu\nu} \equiv \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} \tag{4.5}$$

(Sid question: why is this object $F_{\mu\nu}$ covariant? What does this mean?)

Lemma 1 $F_{\mu\nu}$ is antisymmetric.

Lemma 2 $F_{\mu\nu}$ has 6 degrees of freedom

Proof. Number of degrees of freedom of F:

$$\frac{4^2 \text{ (total)} - 4 \text{ (diagonal)}}{2 \text{ (anti-symmetry)}} = 6$$

Notice that F is a 1-form!

4.2 Expressing B, E in terms of F

We now wish to re-expresss B^{ij} and E^{ij} in terms of F, so that this F captures all of maxwell's equations.

$$B^{i} = \mathcal{E}^{ijk} \partial_{j} A^{k} = \mathcal{E}^{ikj} \partial_{k} A^{j}$$
 by k, j being free variables
$$B^{i} = \frac{1}{2} \left(\mathcal{E}^{ijk} \partial_{j} A^{k} + \mathcal{E}^{ikj} \partial_{k} A^{j} \right)$$
 Substituting $\partial_{j} A_{k} - \partial_{k} A_{j} = F_{jk}$,
$$B^{i} = \frac{1}{2} \mathcal{E}^{ijk} F_{jk}$$

So, B in terms of F is:

$$B^{i} = \frac{1}{2} \mathcal{E}^{ijk} F_{jk}$$

$$\tag{4.6}$$

Similarly, we wish to write E in terms of F. The algebra is as follows:

$$E^{i} = -g^{ik}\partial_{k}\phi - \partial_{0}A^{i}$$

$$E^{i} = -g^{ik}\partial_{k}\phi - \partial_{0}g^{ik}A_{k}$$
 Is this allowed? Am I always allowed to insert the g_{ik} ?
$$E^{i} = -g^{ik}(\partial_{k}\phi + \partial_{0}A_{k})$$

Since $k = \{1, 2, 3\}$ (k is spacelike coordinates), and we would like to relate ϕ with A (to unify E), we set:

$$A_0 \equiv -\phi \tag{4.7}$$

Continuing the derivation,

$$E^{i} = -g^{ik}(\partial_{k}(-A_{0}) + \partial_{0}A_{k})$$

$$E^{i} = -g^{ik}(\partial_{0}A_{k} - \partial_{k}A_{0})$$

$$E^{i} = -g^{ik}F_{0k}$$

So, finally, the relation is:

$$E^i = -g^{ik} F_{0k} \tag{4.8}$$

Let us reconsider what we believed E to be. We had:

$$E = -\nabla \phi - \frac{\partial A}{\partial t}$$

However, comparing dimensions, space derivative of $\phi =$ time derivative of A. This means that $\frac{\delta\phi}{\delta x} = \frac{\delta A}{\delta y}$, and so $\frac{\delta\phi}{\frac{\delta x}{\delta t}} = \delta A$. We arbitrarily pick c as our measuring stick for $\frac{\delta x}{\delta t}$. Also, in minkowski space, our measuring stick is actually (ct, x, y, z), so $\partial_0 = \partial_{ct}$ So, when we write the equation for E, we should actually write

$$E = c \left(-\frac{\nabla \phi}{c} - \frac{\partial A}{\partial ct} \right)$$

$$E^{i} = cF^{i0}$$
(4.9)

which becomes:

4.3 Rewriting Maxwell's equations in terms of F

Now that we have constructed the Faraday tensor F, we wish to re-expresss Maxwell's equations in terms of this object. This will give us a compact form of the laws which are invariant under coordinate transforms.

4.3.1 Combining (1)
$$\nabla E = \frac{\rho}{\epsilon_0}$$
, (4) $\nabla \times B = \mu_0 J + \frac{\partial E}{\partial t}$

1. Using (4)
$$\nabla \times B = \mu_0 J + \frac{\partial E}{\partial t}$$

We consider the 4th Maxwell equation:

$$\nabla \times B = \mu_0 J + \epsilon_0 \mu_0 \frac{\partial E}{\partial t}$$

$$\nabla \times B = \mu_0 J + \frac{1}{c^2} \frac{\partial E}{\partial t}$$
Converting to indices,
$$(\nabla \times B)^i = \mu_0 J^i + \frac{1}{c} \frac{\partial E^i}{\partial ct}$$

$$= \mu_0 J^i + \frac{1}{c} \frac{\partial E^i}{\partial X^0}$$

$$= \mu_0 J^i + \frac{\partial F^{i0}}{\partial X^0}$$

$$= \mu_0 J^i + \partial_0 F^{i0}$$
(From $E^i = cF^{i0}$)
$$= \mu_0 J^i + \partial_0 F^{i0}$$

Now, we start to simplify the LHS, $\nabla \times B$:

$$(\nabla \times B)^{i} = \mathcal{E}^{ijk} \partial_{j} B_{k}$$
Since $B^{k} = \frac{1}{2} \mathcal{E}^{kmn} F_{mn}$,
$$B_{k} = \frac{1}{2} \mathcal{E}_{kmn} F^{mn}$$
,
$$(\mathbf{TODO:} \text{ this is scam})$$

$$(\nabla \times B)^{i} = \mathcal{E}^{ijk} \partial_{j} \left(\frac{1}{2} \mathcal{E}_{kmn} F^{mn} \right) = \frac{1}{2} \mathcal{E}^{ijk} \mathcal{E}_{kmn} \partial_{j} F^{mn}$$

Aside: We need to know how to evaluate $\mathcal{E}^{ijk}\mathcal{E}_{kmn}$

$$\mathcal{E}_{i_1,i_2,\dots,i_n}\mathcal{E}_{j_1,j_2,\dots j_n} = \det \left\{ \begin{vmatrix} \delta_{i_1j_1} & \delta_{i_1j_2} & \dots & \delta_{i_1j_n} \\ \delta_{i_2j_1} & \delta_{i_2j_2} & \dots & \delta_{i_2j_n} \\ \vdots & \vdots & \ddots & \vdots \\ \delta_{i_nj_1} & \delta_{i_nj_2} & \dots & \delta_{i_nj_n} \end{vmatrix} \right\}$$

$$\mathcal{E}^{ijk}\mathcal{E}^{imn} = -1(\delta^m_j \delta^n_k - \delta^n_j \delta^m_k)$$

He argued that we get a -1 factor here due to the presence of the metric. I'm not fully convinced, but I can handwave this using the magic words "tensor density".

Plugging both equations together,

$$\begin{split} &\frac{1}{2}\mathcal{E}^{ijk}\mathcal{E}_{kmn}\partial_{j}F^{mn} = \mu_{0}J^{i} + \partial_{0}F^{i0} \\ &(\text{Since }kij \text{ is an even permutation of }ijk): \\ &\frac{1}{2}\mathcal{E}^{kij}\mathcal{E}_{kmn}\partial_{j}F^{mn} = \mu_{0}J^{i} + \partial_{0}F^{i0} \\ &(\text{Using }\mathcal{E}^{kij}\mathcal{E}^{kmn} = -1(\delta^{m}_{i}\delta^{n}_{j} - \delta^{n}_{i}\delta^{m}_{j})): \\ &\frac{1}{2}\big[-\left(\delta^{i}_{m}\delta^{j}_{n} - \delta^{i}_{n}\delta^{j}_{m}\right)\big]\partial_{j}F^{mn} = \mu_{0}J^{i} + \partial_{0}F^{i0} \\ &-\frac{1}{2}\big[\partial_{n}F^{in} - \partial_{m}F^{mi}\big] = \mu_{0}J^{i} + \partial_{0}F^{i0} \\ &(F \text{ is anti-symmetric, so rewriting }\partial_{m}F^{mi} = -\partial_{m}F^{im}): \\ &-\frac{1}{2}\big[\partial_{n}F^{in} + \partial_{m}F^{im}\big] = \mu_{0}J^{i} + \partial_{0}F^{i0} \\ &(\text{Replacing }\partial_{m}F^{im} \equiv \partial_{n}F^{in} \text{ since }m \text{ is free}): \\ &-\left[\partial_{m}F^{im}\right] = \mu_{0}J^{i} + \partial_{0}F^{i0} \\ &\mu_{0}J^{i} + \partial_{0}F^{i0} + \partial_{m}F^{im} = 0 \\ &\mu_{0}J^{i} + \partial_{u}F^{i\mu} = 0 \end{split} \qquad (\mu = \{0, 1, 2, 3\})$$

This gives us a continuity-style equation, linking the current density J to the rate of change of F.

$$\mu_0 J^i + \partial_\mu F^{i\mu} = 0$$
 (\(\mu = \{0, 1, 2, 3\}\))

Second part, using 1st equation

$$\begin{split} & \boldsymbol{\nabla} E = \frac{\rho}{\epsilon_0} \\ & \partial_i E^i = \frac{\rho}{\epsilon_0} \\ & (\text{Substituting } E^i = c F^{i0}) \colon \\ & c \partial_i F^{i0} = \frac{\rho}{\epsilon_0} = \frac{\rho \mu_0}{\mu_0 \epsilon_0} = \rho c^2 \\ & \partial_i F^{i0} = \mu_0 c \rho \\ & (\text{Since } F \text{ is anti-symmetric, } F^{00} = 0, \text{ Hence}) \colon \\ & \partial_0 F^{00} + \partial_i F^{i0} = \mu_0 c \rho \\ & \partial_\mu F^{\mu 0} = \mu_0 c \rho \end{split}$$

$$\left|\partial_{\mu}F^{\mu 0} = \mu_0 c\rho\right| \tag{4.10}$$

Combining part 1 and part 2:

$$\mu_0 J^i + \partial_\mu F^{i\mu} = 0$$
 (From B)

$$\partial_\mu F^{i\mu} = -\mu_0 J^i \partial_\mu F^{\mu 0} = \mu_0 c \rho$$

$$\partial_\mu F^{0\mu} = -\mu_0 c \rho$$

To combine these equations, we set:

$$\boxed{J^0 \equiv c\rho} \tag{4.11}$$

We arrive at the unified equation:

$$\partial_{\mu}F^{\nu\mu} = -\mu_0 J^{\nu}$$

Choose units such that $c = \frac{h}{2\pi} = G_n = 1$, which gives us:

$$\partial_{\mu}F^{\nu\mu}=-J^{\nu}$$
 F is antisymmetric, so flipping indices $\partial_{\mu}F^{\mu\nu}=J^{\nu}$

$$\partial_{\mu}F^{\mu\nu} = J^{\nu} \tag{4.12}$$

Note that this is **Ampere's law!**

4.3.2 Combining (2) $\nabla \times E = -\frac{\partial B}{\partial t}$, (3) $\nabla B = 0$

$$\nabla \times E = -\frac{\partial B}{\partial t}$$

$$(\nabla \times E)^{i} = \mathcal{E}^{ijk} \partial_{j} E_{k} = -\partial_{0} B$$

$$\mathcal{E}^{ijk} \partial_{j} E_{k} = -\partial_{0} (\frac{1}{2} \mathcal{E}^{ijk} F_{jk})$$

$$\mathcal{E}^{ijk} \partial_{j} E_{k} + \partial_{0} (\frac{1}{2} \mathcal{E}^{ijk} F_{jk}) = 0$$

$$2\mathcal{E}^{ijk} \partial_{j} E_{k} + \partial_{0} (\mathcal{E}^{ijk} F_{jk}) = 0$$

Now we begin from the other direction, and start the derivation. We know that the equation we want is:

$$\mathcal{E}^{\alpha\beta\mu\nu}\partial_{\beta}F_{\mu\nu} = 0 \tag{4.13}$$

 $\alpha = 0$ case:

First, set $\alpha = 0$. So now, the other β, μ, ν are forced to be become space components — (i, j, k). Therefore, the equation now becomes:

$$\mathcal{E}^{0ijk}\partial_i F_{ik} = 0$$

However, note that $\mathcal{E}0ijk = \mathcal{E}ijk$, because if (ijk) is an even permutation, so will (0ijk), and vice versa for odd (since 0 < i, j, k).

Using this, the equation becomes

$$\mathcal{E}^{ijk}\partial_{i}F_{jk} = 0$$

$$\partial_{i}(\mathcal{E}^{ijk}F_{jk}) = 0$$
Since $B^{i} = \frac{1}{2}\mathcal{E}^{ijk}F_{jk}$:
$$\partial_{i}\left(\frac{B^{i}}{2}\right) = 0$$

$$\partial_{i}B^{i} = 0$$

$$\nabla B = 0$$

Hence, the above equation does encode $\nabla B = 0$.

 $\alpha=m$ case:

Let α be a spatial dimension $m = \{1, 2, 3\}$.

$$\mathcal{E}^{\alpha\beta\mu\nu}\partial_{\beta}F_{\mu\nu} = 0$$
$$\mathcal{E}^{m\beta\mu\nu}\partial_{\beta}F_{\mu\nu} = 0$$

Once again, we get two cases, one where $\beta = 0$, and one where $\beta = n$ where n is a spatial dimension.

$$\mathcal{E}^{m\beta\mu\nu}\partial_{\beta}F_{\mu\nu} = 0$$

$$\mathcal{E}^{m0\mu\nu}\partial_{0}F_{\mu\nu} + \mathcal{E}^{mn\mu\nu}\partial_{n}F_{\mu\nu} = 0$$

Now note that $\mathcal{E}^{m0\mu\nu} = -\mathcal{E}0m\mu\nu = -\mathcal{E}m\mu\nu$. Using this, we can rewrite the above equation as:

$$\mathcal{E}^{m0\mu\nu}\partial_0 F_{\mu\nu} + \mathcal{E}^{mn\mu\nu}\partial_n F_{\mu\nu} = 0$$
$$-\mathcal{E}^{m\mu\nu}\partial_0 F_{\mu\nu} + \mathcal{E}^{mn\mu\nu}\partial_n F_{\mu\nu} = 0$$

We now consider cases for μ in the second term, where either $\mu = 0$ or $\mu = o \in \{1, 2, 3\}$

If $\mu = 0$, then the other dimension ν must be a spatial dimension p. If $\mu = q$, then the other dimension ν must be a time dimension 0 (This is because we are not allowed to have 4 spatial dimensions, since the \mathcal{E} evaluates to 0 on repeated dimensions).

$$-\mathcal{E}^{m\mu\nu}\partial_{0}F_{\mu\nu} + \mathcal{E}^{mn\mu\nu}\partial_{n}F_{\mu\nu} = 0$$

$$-\mathcal{E}^{m\mu\nu}\partial_{0}F_{\mu\nu} +$$

$$\mathcal{E}^{mn0p}\partial_{n}F_{0p} \qquad (\mu = 0, \nu = p)$$

$$\mathcal{E}^{mnq0}\partial_{n}F_{q0} \qquad (\mu = q, \nu = 0)$$

$$= 0$$

Rearranging, and using the fact that $F_{0p} = -Fp0$, $\mathcal{E}mn0p = \mathcal{E}0mnp = \mathcal{E}mnp$, $\mathcal{E}mnq0 = -\mathcal{E}0mnq = -\mathcal{E}mnq$,

$$-\mathcal{E}^{m\mu\nu}\partial_0 F_{\mu\nu} + \mathcal{E}^{mnp}(-\partial_n F_{p0}) + (-\mathcal{E}^{mnq})\partial_n F_{q0} = 0$$

Multiplying throughout by -1, and noticing that since p, q are dummy indeces, we can set p = q. This allows us to get:

$$\mathcal{E}^{m\mu\nu}\partial_0 F_{\mu\nu} + 2\mathcal{E}^{mnp}\partial_n F_{p0} = 0$$