Calcolo Numerico ed Elementi di	Prof. L. Dedè	Firma leggibile dello studente
Analisi	Prof. A. Manzoni	
CdL Ingegneria Aerospaziale	Prof. S. Micheletti	
Prima Prova in Itinere		
15 aprile 2019		
Cognome:	Nome:	Matricola:

ISTRUZIONI

- Riportare le risposte nello spazio indicato.
- Alcuni esercizi richiedono di utilizzare MATLAB; per tali esercizi riportare sul foglio esclusivamente gli output richiesti.
- Utilizzare esclusivamente una penna nera o blu.
- Tempo a disposizione: 1h 30m.

SPAZIO RISERVATO AL DOCENTE

Pre Test	
Esercizio 1	
Esercizio 2	
Totale	

1. (2 punti) Si consideri la matrice $A = \begin{bmatrix} 1 & 8 & 8 \\ 1 & 1 & 3 \\ 3 & 0 & 1 \end{bmatrix}$ e si determini la sua fattorizzazione LU senza pivoting. Riportare i valori degli elementi $l_{32} = (L)_{32}$ e $u_{33} = (U)_{33}$ rispettivamente delle matrici triangolari inferiore L e superiore U.

10 punti

$$l_{32} = rac{24}{7}$$
 $u_{33} = -rac{41}{7}$

2. (1 punto) Si consideri il sistema lineare $A\mathbf{x} = \mathbf{b}$, dove $A \in \mathbb{R}^{n \times n}$, $\mathbf{x} \in \mathbf{b} \in \mathbb{R}^n$. Assumendo che A sia una matrice non singolare triangolare superiore, quante operazioni vengono eseguite dall'algoritmo delle sostituzioni all'indietro per la risoluzione di $A\mathbf{x} = \mathbf{b}$ se n = 10?

3. (2 punti) Si consideri la matrice $A = \begin{bmatrix} 4 & 1 \\ 2 & \alpha \end{bmatrix}$ dipendente da un parametro $\alpha \in \mathbb{R}$. Per quali valori di $\alpha > 0$ è soddisfatta la condizione necessaria e sufficiente per la convergenza del metodo di Gauss–Seidel applicato alla soluzione di $A\mathbf{x} = \mathbf{b}$ per $\mathbf{b} \in \mathbb{R}^2$?

$$\alpha > \frac{1}{2} = 0.5$$

4. (1 punto) Si consideri la matrice $A = \begin{bmatrix} 2 & 5 \\ 1 & 9 \end{bmatrix}$. Sia $\widetilde{\mathbf{x}} = (7, 10)^T$ un'approssimazione di un autovettore di A; si riporti il valore $\widetilde{\lambda}$ dell'approssimazione dell'autovalore corrispondente a $\widetilde{\mathbf{x}}$.

$$\widetilde{\lambda} = \frac{1418}{149} = 9,516\,779$$

5. (2 punti) Si consideri la matrice $A = \begin{bmatrix} 2 & 3 \\ 0 & 6 \end{bmatrix}$ e il metodo delle potenze inverse. Posta l'iterata iniziale $\mathbf{x}^{(0)} = (1, 1)^T$, si riporti l'approssimazione dell'autovettore normalizzato $\mathbf{y}^{(1)} = \mathbf{x}^{(1)} / \|\mathbf{x}^{(1)}\|$.

$$\mathbf{y}^{(1)} = (3, \ 2)^T / \sqrt{13}$$

6. (1 punto) Si consideri la funzione $f(x) = (x-2)^3$ e il metodo di bisezione per l'approssimazione dell'unico zero α di f(x). Si riporti il valore dell'iterata $x^{(1)}$ ottenuto partendo dall'intervallo iniziale [0,5].

$$x^{(1)} = \frac{5}{4} = 1,25$$

7. (1 punto) Si consideri la funzione $f(x) = e^{3x} - 3$. Si riporti il valore della prima iterata del metodo di Newton $x^{(1)}$ ottenuta per il valore dell'iterata iniziale $x^{(0)} = 0$.

$$x^{(1)} = \frac{2}{3} = 0,666667$$

	ERCIZIO 1. Si consideri il sistema lineare $A \mathbf{x} = \mathbf{b}$ con $A \in \mathbb{R}^{n \times n}$ non singolare e \mathbf{b} , $\mathbf{x} \in \mathbb{R}^n$, endo $n \ge 1$.
(a)	$(4~punti)$ Assumendo che la matrice A sia simmetrica e definita positiva, si riporti l'algoritmo $(non~in~stretto~linguaggio~Matlab^{\circledR})$ del metodo del $gradiente$ per la soluzione del $sistema~lineare$
	$A \mathbf{x} = \mathbf{b}$; si definisca tutta la notazione utilizzata.
	Quale funzione Φ ha minimo nella soluzione ${\bf x}$ del sistema lineare? Si riporti l'espressione di Φ .
	Qual è la direzione di discesa del metodo del gradiente in corrispondenza dell'iterata $\mathbf{x}^{(k)}$? Si
	riporti inoltre la sua espressione in termini della funzione Φ di cui sopra.
(b)	(2 munti) Si riporti con completazza il rigultato (teorema) di convergenza del metodo del cradica
	$(2 \ punti)$ Si riporti con completezza il risultato (teorema) di convergenza del metodo del $gradiente$ (si definisca tutta la notazione utilizzata), discutendo in particolare quali caratteristiche della matrice A influenzano la velocità di convergenza del metodo a \mathbf{x} .

12 punti

$$A = \begin{bmatrix} 6 & -2 & -1 & & & & 0 \\ -2 & 6 & -2 & -1 & & & & \\ -1 & -2 & 6 & -2 & -1 & & & \\ & \ddots & \ddots & \ddots & \ddots & \ddots & \\ & & -1 & -2 & 6 & -2 & -1 \\ & & & -1 & -2 & 6 & -2 \\ 0 & & & & -1 & -2 & 6 \end{bmatrix}.$$

Il metodo del gradiente coniugato risulta convergente alla soluzione ${\bf x}$ per ogni scelta dell'iterata iniziale $\mathbf{x}^{(0)} \in \mathbb{R}^{100}$? Si motivi dettagliatamente e con completezza la risposta data.

(d) (2 punti) Si utilizzi opportunamente la funzione Matlab $^{\mathbb{R}}$ pcg per approssimare la soluzione del sistema lineare di cui al punto (c) mediante il metodo del gradiente coniugato; si considerino la tolleranza tol = 10^{-3} e nmax = 100 (pcg considera di default l'iterata iniziale $\mathbf{x}^{(0)} = (0,0,\ldots,0)^T$). Si riportino: il numero di iterazioni N effettuato, la terza componente della soluzione approssimata $\mathbf{x}^{(N)}$, ossia $x_3^{(N)}$, e il valore del corrispondente residuo normalizzato $r_{rel}^{(N)}$ in formato esponenziale.

 $x_3^{(N)} = \underline{\qquad} 184,315714 \qquad \qquad r_{rel}^{(N)} = \underline{\qquad} 8.1012 \cdot 10^{-5}$

			7	. 9		
RCIZIO 2.	Si consideri la f	funzione di iteraz	ione $\phi(x) = \frac{7x}{2x}$	$\frac{+2}{+7}$, dotata del p	unto fisso $\alpha = 1$.	
	i tracci e si riport ,1.5] e si evidenzi i		te il grafico dell	a funzione di ite	razione $\phi(x)$ per	10
CI = [0.0]	,1.0] c si evidenzi i	1 punto naso α.				
	determini se il m $\alpha = 1$ per ogni sce					
	risposta riportando					
onverge ad						
onverge ad						
onverge ad						
onverge ad						

(1 punto) Si riporti l'algor	ritmo del metodo	delle iterazioni di	punto fisso.
utilizzando il criterio d'arr		lifferenza tra due i	nella funzione Matlab [®] puntofisso iterate successive. La struttura della nmax,tol,phi)
sentite nmax; la tolleranza	sul criterio d'arre ome <i>output</i> : un ve	esto tol; la funzio	numero massimo di iterazioni con- one di cui si vuole calcolare il punto enente tutte le iterate del metodo; i
Si utilizzi la funzione Mat punto fisso $\alpha = 1$ di $\phi(x)$ il numero massimo di iter valore approssimato $x^{(N)}$ de e i valori delle iterate $x^{(1)}$	o. Si considerino l razioni nmax= 100 lel punto fisso, la d	'iterata iniziale x . Si riportino: il mifferenza tra le due	$t^{(0)} = 0.5$, la tolleranza tol = 10^{-4} enumero N di iterazioni effettuate, i e ultime iterate $\delta^{(N)} = x^{(N)} - x^{(N-1)} $
Si utilizzi la funzione Mat punto fisso $\alpha = 1$ di $\phi(x)$ il numero massimo di iter valore approssimato $x^{(N)}$ de e i valori delle iterate $x^{(1)}$ riportare i risultati).	o. Si considerino le azioni nmax= 100 del punto fisso, la de $x^{(2)}$ (si utilizzino per si utilizzino del punto fisso) (si utilizzino per si utilizzio pe	l'iterata iniziale x . Si riportino: il 1 ifferenza tra le due o almeno 4 cifre de	precedentemente per approssimare i $n^{(0)} = 0.5$, la tolleranza $n^{(0)} = 10^{-4}$ enumero $n^{(0)} = 10^{-4}$ di iterazioni effettuate, i e ultime iterate $n^{(N)} = x^{(N)} - x^{(N-1)} $ ecimali e il formato esponenziale per $n^{(N)} = \frac{7,904075 \cdot 10^{-5}}{10^{-5}}$
Si utilizzi la funzione Mat punto fisso $\alpha = 1$ di $\phi(x)$ il numero massimo di iter valore approssimato $x^{(N)}$ de e i valori delle iterate $x^{(1)}$ riportare i risultati).	o. Si considerino le azioni nmax= 100 del punto fisso, la de $x^{(2)}$ (si utilizzino per si utilizzino del punto fisso) (si utilizzino per si utilizzio pe	l'iterata iniziale x . Si riportino: il 1 ifferenza tra le due o almeno 4 cifre de	$toleron = 0.5$, la tolleranza $toleron = 10^{-4}$ enumero N di iterazioni effettuate, il e ultime iterate $\delta^{(N)} = x^{(N)} - x^{(N-1)} $ ecimali e il formato esponenziale per
Si utilizzi la funzione Mat punto fisso $\alpha=1$ di $\phi(x)$ il numero massimo di iter valore approssimato $x^{(N)}$ de i valori delle iterate $x^{(1)}$ riportare i risultati). $N=\underline{\qquad \qquad 15}$ $x^{(1)}=\underline{\qquad \qquad 0,6875}$ (2 punti) Dopo aver rispo	o. Si considerino le azioni nmax= 100 lel punto fisso, la de $x^{(2)}$ (si utilizzino $x^{(N)} = $ sto al punto (d), se $\phi(x)$. Si riporti	'iterata iniziale x . Si riportino: il rifferenza tra le due o almeno 4 cifre de $0,999901$ $0,813433$ si stimi l'ordine di il valore di p illustrationes in similare di p	$toleranza$ tol $=10^{-4}$ enumero N di iterazioni effettuate, i e ultime iterate $\delta^{(N)}= x^{(N)}-x^{(N-1)} $ ecimali e il formato esponenziale per $\delta^{(N)}=\underline{7,904075\cdot 10^{-5}}$ convergenza p del metodo al punto ustrando nel dettaglio la procedura
Si utilizzi la funzione Mat punto fisso $\alpha=1$ di $\phi(x)$ il numero massimo di iter valore approssimato $x^{(N)}$ de i valori delle iterate $x^{(1)}$ riportare i risultati). $N=\qquad \qquad $	o. Si considerino le azioni nmax= 100 lel punto fisso, la de $x^{(2)}$ (si utilizzino $x^{(N)} = $ sto al punto (d), se $\phi(x)$. Si riporti	'iterata iniziale x . Si riportino: il rifferenza tra le due o almeno 4 cifre de $0,999901$ $0,813433$ si stimi l'ordine di il valore di p illustrationes in similare di p	$toleron = 0.5$, la tolleranza $toleron = 10^{-4}$ enumero N di iterazioni effettuate, i e ultime iterate $\delta^{(N)} = x^{(N)} - x^{(N-1)} $ ecimali e il formato esponenziale per $\delta^{(N)} = \frac{7,904075\cdot 10^{-5}}{10^{-5}}$ convergenza p del metodo al punto ustrando nel dettaglio la procedura