

FACULTY OF ELECTRICAL ENGINEERING **DEPARTMENT OF TELECOMMUNICATION ENGINEERING**

B(E)2M32BTSA - Wireless Technologies

Wireless technologies

Introduction and fundamentals

Zdeněk Bečvář

Czech Technical University in Prague Faculty of Electrical Engineering Department of Telecommunication Engineering

Outline

Overview and plan of the course

- ► Lectures & labs
- ► Exam

Fundamentals of wireless communications

- ► Classification of wireless technologies
- ► Wireless channel, signal propagation
- Medium sharing
- ► Topologies of wireless networks

Course overview

Lecturers

doc. Ing. **Zdeněk Bečvář**, Ph.D. room no. 503a/A4, FEL **zdenek.becvar@fel.cvut.cz** tel. 2 2435 5964

doc. Ing. Lukáš Vojtěch, Ph.D. room no. 903/B3, FEL lukas.vojtech@fel.cvut.cz tel. 2 2435 5800

Ing. Pavel Mach, Ph.D. č. m. 503b/A4, FEL machp2@fel.cvut.cz tel. 2 2435 5994

Ing. **Zbyněk Kocur**, Ph.D. room no. 601/B3, FEL **zbynek.kocur@fel.cvut.cz** tel. 2 2435 4054

In case of any <u>questions, complains, or problems</u> related to lectures, <u>send an email as soon as possible</u> (do not wait till end of semester) to <u>zdenek.becvar@fel.cvut.cz</u>

You can also use MS Teams channels in the course to provide a quick feedback

Labs

Ing. **Zbyněk Kocur**, Ph.D. room no. 601/B3, FEL **zbynek.kocur@fel.cvut.cz** tel. 2 2435 4054

Ing. Pavel Mach, Ph.D. č. m. 503b/A4, FEL machp2@fel.cvut.cz tel. 2 2435 5994

Ing. **Ján Kučerák** č. m. 701/B3, FEL **machp2@fel.cvut.cz** tel. 2 2435 4050

In case of any <u>questions</u>, <u>complains</u>, <u>or problems</u> related to labs, <u>send an email as soon as possible</u> to <u>both zbynek.kocur@fel.cvut.cz</u> and <u>zdenek.becvar@fel.cvut.cz</u>

You can also use MS Teams channels in the course to provide a quick feedback

Lectures

Week	Date	Topic	
1.	21. 2.	Introduction to wireless networks (Z. Bečvář)	
2.	28. 2.	Medium access for wireless networks (Z. Bečvář)	Danier of windows
3.	7. 3.	Routing in wireless sensor networks – metrics and protocols (Z. Bečvář)	Basics of wireless
4.	14. 3.	Wi-Fi – topology, physical layer, medium access control and data transmission (P. Mach)]
5.	21. 3.	Communications of autonomous systems (P. Mach)	Medium/Long-
6.	28. 3.	LPWAN/LPN protocols for IoT (LoRa/LoRaWAN, etc.) (Z. Bečvář)	range technologies
7.	4. 4.	IoT communication in mobile networks (Z. Bečvář)	
8.	11. 4.	RFID – basic principles & physical layer (L. Vojtěch)]
9.	18. 4.	RFID – evolution, technologies, communication chain (L. Vojtěch)	Short-range
10.	25. 4.	Short range low power communication (Bluetooth, ZigBee, 6LoWPAN, etc.) (L. Vojtěch)	technologies
11.	2. 5.	Wireless system design (L. Vojtěch)	J
12.	9. 5.	No lecture (teaching acc. to Monday's timetable)	1
13.	16. 5.	Integration of wireless networks into TCP/IP environment (Z. Kocur)	Practical aspects
14.	23. 5.	Wireless communications in industry, Industry 4.0. (L. Vojtěch)	

Labs

Week	Date	Topic	
1.	24. 2.	Introduction (Z. Kocur)	
2.	3. 3.	Medium access methods (P. Mach)	Theoretical work in
3.	10. 3.	Wireless routing protocols (P. Mach)	Matlab
4.	17. 3.	Assessment of Matlab tasks, Introduction to labs (P. Mach, Z. Kocur)	
5.	24. 3.	LAB 1. – group A – Configuration and hacking of WiFi (Z. Kocur, J. Kučerák)	
6.	31. 3.	LAB 1. – group B – Configuration and hacking of WiFi (Z. Kocur, J. Kučerák)	
7.	7. 4.	Holidays	
8.	14. 4.	LAB 2. – group A – V2X communication (Z. Kocur, J. Kučerák)	Dunatical
9.	21. 4.	LAB 2. – group B – V2X communication (Z. Kocur, J. Kučerák)	Practical experiments
10.	28. 4.	LAB 3. – group A – LoRaWAN telecommunication chain (Z. Kocur, J. Kučerák)	Two weeks per lab
11.	5. 5.	LAB 3. – group B – LoRaWAN telecommunication chain (Z. Kocur, J. Kučerák)	+ preparation
12.	12. 5.	LAB 4. – group A – Evaluation of NB-IoT operating parameters (Z. Kocur, J. Kučerák)	
13.	19. 5.	LAB 4. – group B – Evaluation of NB-IoT operating parameters (Z. Kocur, J. Kučerák)	
14.	26. 5.	Assessment, lab replacement (Z. Kocur, P. Mach, J. Kučerák)	

Preparation for labs in advance is required!

If anything is unclear in materials for lab, send an email to zbynek.kocur@fel.cvut.cz BEFORE the lab so that he can clarify it. You can also use MS Teams channels in the course

Grading and Exam

Classification and grading

- ► Semester/labs (max 20 points)
 - > Two labs in Matlab 8 points
 - 4 points per lab (2 points for the assignment, 2 points bonus)
 - Possibility to complete work at home (by week 4: March 17)
 - Four laboratory tasks 12 points
 - 3 points per lab
 - Preparation before labs is a must!
 - Instructions available about a week before the lab let us know in Teams or via email if not available or something is not clear!
 - Home preparation
 - · Physical measurement in lab
 - Possibility to complete reports during a week after the lab
 - > At least 8 points for assessment
 - Details to be provided during the first lab
- ► Exam (max 30 points)
 - Written exam topics from lectures and labs
- ► Extra points during lectures (max 3 points)
 - Activity during lectures

Expected knowledge of all topics from lectures and labs

- ▶ No need to memorize all numbers and abbreviations
- Important is to understand <u>principles</u>

Grade		Points
Α	Excellent	50 – 45
В	Very good	44 – 40
С	Good	39 – 35
D	Satisfactory	34 – 30
E	Sufficient	29 – 25
F	Fail	< 25

Literature and sources

Lectures/labs

- Slides will be available at: https://moodle.fel.cvut.cz/
 - Slides include all what you need to understand fundamentals (and pass the exam)

Books

- 1. O. Liberg, M. Sundberg, E. Wang, J. Bergman, and J. Sachs, "Cellular Internet of Things: Technologies, Standards, and Performance," Academic Press, 2018.
- 2. H.Y. Wei, J. Rykowski, S. Dixit, "WiFi, WiMAX and LTE Multi-hop Mesh Networks: Basic Communication Protocols and Application Areas," Wiley, 2013.
- 3. W.W. Dargie, C. Poellabauer, "Fundamentals of Wireless Sensor Networks: Theory and Practice," Wiley, 2010.
- 4. K. Townsend, C. Cufí, Akiba, R. Davidson, "Getting Started with Bluetooth Low Energy: Tools and Techniques for Low-Power Networking," O'Reilly Media, 2014.
- 5. V. Coskun, K. Ok, B. Ozdenizci, "Near Field Communication (NFC): From Theory to Practice," Wiley 2012.
- 6. K. Finkenzeller, D. Muller, RFID Handbook: Fundamentals and Applications in Contactless Smart Cards, Radio Frequency Identification and Near-Field Communication, 3rd Edition", Wiley 2010.

Standards (optional, not needed to pass exam)

- ► ETSI (www.etsi.org)
- ► IEEE (www.ieee.org)
- **...**

Introduction to wireless technologies

Classification of wireless networks

Range

- ► **Personal** (WPAN) neighborhood of a person, few meters
- ► Local (WLAN) from meters to hundreds of meters
- ► Metropolitan (WMAN) coverage of cities, few km
- ▶ Wide (WWAN) global coverage mob. nets, LPWAN

Mobility

- ► Fixed no mobility at all
- ► Nomadic access limited mobility (e.g., in a room)
- ► Full mobility no limits on mobility (handover) mobile networks

Topology

- ▶ Infrastructure-based
 - Point-to-point (P2P)
 - Point-to-multipoint (P2MP)
- ► Infrastructure-less
 - Ad-hoc
 - Mesh

Wireless technologies

Scope of this course: **Wireless networks and technologies** except mobile networks Mobile (cellular) networks in winter semester: B(E)2M32MKSA - "Mobile Networks"

Communication system

Wireline vs. Wireless

Channel:

Wireless channel is more prone to errors, interference and noise, and it is time varying Mobility:

Wireless networks allows mobility of end devices

Flexibility and scalability:

Wireless networks offer more flexibility and topology is easy to change

Deployment:

▶ Deployment of wireless networks is typically faster, cheaper, and easier

Hardware:

Wireless HW is usually more expensive

Radio waves

Radio waves: "electromagnetic waves of frequencies arbitrarily lower than 3 000 GHz, propagated in space without artificial guide"

- ▶ Definition by ITU in "ITU Radio Regulations Article 1, Definitions of Radio Services"
 - http://www.ictregulationtoolkit.org/en/toolkit/notes/PracticeNote/2824
- ▶ Behavior like light (refraction, diffraction, ...)

History

- Existence of electromagnetic waves postulated by J. C. Maxwell (1867)*
- ► Existence of waves demonstrated by H. Hertz transmission over few meters (1887)**
- ► First long-range radio transmission by G. Marconi (18 miles) (1895)**

Wavelength (λ) vs frequency (f)

[A. Shenoy, "What is the difference between gravitational wave and electromagnetic wave? The same wave but the different initiator or totally different?,"]

Spectrum of (radio) signal

Time domain - signal represented as a sum of *sin* signals **Frequency domain** - signal represented by "spectrum"

Transition between Frequency and Time domains:

► Fourier Transform, FT (time domain to frequency domain)

$$ightharpoonup S(f) = \int_{-\infty}^{+\infty} s(t)e^{-i2\pi ft}dt$$

► Inverse Fourier Transform, IFT (frequency domain to time domain)

Wireless channel concept

Channel attenuation:

- ▶ Path loss
 - Distance, frequency
- Shadowing
 - Obstacles (buildings, etc)
- ▶ Fast fading
 - > Multipath propagation

Signal propagation

Levels of signals received by MS1: $s_{MS1} = Tx_{BS1} - PL_{BS1-MS1}$ [dB]

Note: PL includes Sh and Ff for simplification of figure

<u>dB ⇔ W</u>

 $P[mW] = 10^{(P[dBm]/10)}$

 $P[dBm] = 10*log_{10} (P[W]/1mW)$

Signal, *s* - desired signal carrying information **Transmitting power**, *Tx* - power the base station transmits with

Received signal level/strength at the MS: s = Tx - (PL + Sh + Ff) [dB]

Interference and noise

 $\frac{d\mathbf{B} \Leftrightarrow \mathbf{W}}{\mathsf{P}[\mathbf{m}\mathbf{W}] = 10^{(\mathsf{P}[\mathsf{dBm}]/10)}}$

 $P[dBm] = 10*log_{10} (P[W]/1mW)$

Signal, s - desired signal carrying information

function of distance and frequency (plus other parameters) Note: PL includes Sh and Ff for simplification of figure

Noise, N - in general, any undesired signal; not carrying any information **Interference**, I - undesired signal from neighboring communications at the same resources, $I = \sum I_i$, where I_i is the interference from the i-th source [W]

Signal to Interference plus Noise Ratio, $SINR = \frac{s}{I+N}$ [W]; SINR = s - IN[dB]

▶ Noise threated as interference (compute IN in W, $IN = N + \sum I_i$ [W], then convert to dB)

Duplexing (Alternating Uplink and Downlink)

Half-duplex

► Frequency division duplex (FDD)

Multiplexing

(Sharing resources among multiple users)

Frequency Division Multiple Access (FDMA)

Users allocated with different frequencies, but at same time

Time Division Multiple Access (TDMA)

Users allocated with same frequencies, but at different time

Code Division Multiple Access (CDMA)

Users allocated with same frequency and same time, but with different codes

Orthogonal Frequency Division Multiple Access (OFDMA)

Users allocated with different frequencies and different times; orthogonal carries

Multiple antennas

SISO (Single Input Single Output)

► Conventional communication

SIMO/MISO (Single/Multiple Input Multiple/Single Output) - same data

► Increase resistance against fading effects

MIMO (Multiple Input Multiple Output)

- ► Capacity (parallel transmissions) or diversity (fading robustness)
- ► Interference among parallel paths
 - Signal processing

Devices in wireless networks

Client/Terminal/User Device/User Equipment/...

- ► Source/destination for information communicated over network
- ► E.g., sensor, machine, tablet, PC, phone, ...

Access point (AP), Base Station (BS)

► Entity controlling communication and/or providing interface to network

Relay

► Forwarding (relaying) information between two or more devices (Clients, APs)

Device in wireless network can act in more roles at the same time

Network topologies

Wireline (computer) networks - star, ring, bus, mesh, tree, ...

What is different for wireless?

Limits of wireline vs wireless network topologies

Wireless not limited by availability of a wire (cable, fiber)

- Cost of cable and its deployment avoided
- ► Higher scalability and flexibility

Wireless limited by:

- ► Signal propagation
 - > Environment (walls, obstacles, weather,...)
 - Antennas (directional, gain,...)
 - > Transmission power and receiver sensitivity
- Interference and noise
- ► Energy (critical in some scenarios and use-cases always)

Wireless networks topologies

Point-to-point (P2P)

- ► Communication between two points (devices)
 - Access Point and Client, Client and Client
- ► Pair of communicating devices

Point-to-MultiPoint (P2MP)

- ▶ Direct communication of many (multiple) devices with single AP/device
- ▶ Many communicating devices

Ad-hoc

- Communication channels between two points (devices, APs)
- ► Any device can communicate directly with another device in its communication range
- High dynamicity

Mesh

- Extension of ad-hoc
 - > Relaying/routing of communication via intermediate nodes

Client

Client

Client

Client

Projects and activities in wireless

Projects and theses for students

Experiments and/or implementation in mobile/wireless networks

PROTOTYPING FLYING BASE STATION - UAVS AND SATELLITES

TESTING MACHINE LEARNING IN MOBILE NETWORKS

2-5 students

Scholarship 3.000-12.000 CZK/month
(subject to time availability)

Diploma thesis (theory and practice)

PROTOTYPING VEHICLE (MODEL) COMMUNICATING VIA MOBILE NETWORKS

6Gmobile laboratory

HW and SW for emulation of 4G, **5G and beyond** networks

- USRPs B210/B205mini/B310 running a Software Define Radio
- OpenAirInterface and srsRAN emulating 4G/5G/beyond 5G network
- ► Edge computing servers for Mobile Edge Computing applications
- ▶ **Drone** as a flying base station
- Machine learning for network control
- ► **GPU** for machine learning processing

web: http://6Gmobile.fel.cvut.cz

twitter: @5Gmobile_CTU

Network Group Projects and Theses

Network Measurement Tools and Devices

- Experiments with network performance measurement.
- Design and implementation of network devices.
- Various work with HW and SW with a focus on computer networks.
- Real working with the latest technologies (5G, LPWAN etc.).
- Work on projects with an overlap into the business.
- Do you know: x86, STM32, Arm, Linux, Windows, Mac OS, C, C++, Lua, Python, JavaScript, ubus, JSON, XML, http, users ©?

Project and theses for students

Scholarship

Simulator for emergency dispatch center

- Javascript (Node.js, Vue.js) programming of individual functions
- Strong team to be learned from

High-Altitude Pseudo-Satellite (HAPS) communication

- Satellite communication (HAPS HAPS GEO/LEO)
- Earth HAPS communication
- HAPS DRONES communication (for 6G network)
- Radio link, IDS/IPS security, HAPS data network

IDS/IPS security probe

- Embedded system configuration adding new functions, sensors...
- IoT, Industry 4.0, network security, cyber physical systems,

Study abroad

Double degree

NTUST (Taipei, Taiwan)

- ► Top technical university (#50 in Asia, #327 worldwide- QS ranking)
- Resides in the center of TaiPei
- Conditions
 - 3 semesters in Prague + 2 semesters in TaiPei
 - Diploma from ČVUT and from NTUST
 - Scholarship (covering travel and accommodation)
 - Only one diploma thesis (written and defended in English)
 - All branches of Electronics and Communications program
 - http://www.fel.cvut.cz/cz/education/abroad/taiwan.html

EURECOM (Sophia Antipolis, Cote d'Azur, France)

► Top European institute in communication systems (5★ in QS)

- ► French Riviera (Antibes, Cannes, Nice, St. Tropez,...)
- Conditions
 - 2 semesters in Prague + 2 semesters in France + 1 semester in company
 - Diploma from ČVUT and from EURECOM
 - Scholarship (covering travel and accommodation) +5000 EUR for an
 - Only one diploma thesis (if in company → paid)
 outstanding student(s)
 - KSI and IoT branches (extension to MK under preparation)
 - https://www.fel.cvut.cz/cz/education/abroad/eurecom.html

FACULTY OF ELECTRICAL ENGINEERING

DEPARTMENT OF TELECOMMUNICATION ENGINEERING

Questions?

zdenek.becvar@fel.cvut.cz

