$$\Upsilon(1s) \to \gamma f_2(1270)$$
 Decay

Bing An Li

Department of Physics and Astronomy, University of Kentucky

Lexington, KY 40506, USA

September 30, 2009

Abstract

Decay $\Upsilon(1s) \to \gamma f_2(1270)$ is studied by an approach in which the tensor meson, $f_2(1270)$, is strongly coupled to gluons. Besides the strong suppression of the amplitude $\Upsilon(1s) \to \gamma gg, gg \to f_2$ by the mass of b-quark, d-wave dominance in $\Upsilon(1s) \to \gamma f_2(1270)$ is revealed from this approach, which provides a large enhancement. The combination of these two factors leads to larger $B(\Upsilon(1s) \to \gamma f_2(1270))$. The decay rate of $\Upsilon(1s) \to \gamma f_2(1270)$ and the ratios of the helicity amplitudes are obtained and they are in agreement with data.

The measurements

$$B(\Upsilon(1S) \to \gamma f_2(1270)) = (10.2 \pm 0.8 \pm 0.7) \times 10^{-5},$$
 (1)

$$B(\Upsilon(1S) \to \gamma f_2(1270)) = (10.5 \pm 1.6(stat)^{+1.9}_{-1.8}(syst)) \times 10^{-5}$$
 (2)

have been reported by CLEO in the channel of $\Upsilon(1S) \to \gamma f_2(1270), f_2(1270) \to \pi^+\pi^-[1]$ and $f_2 \to \pi^0\pi^0[2]$ respectively. It is known that

$$B(J/\psi \to \gamma f_2(1270) = (1.43 \pm 0.11) \times 10^{-3}[3].$$
 (3)

 $B(\Upsilon(1S) \to \gamma f_2(1270))$ is about one order of magnitude smaller than $B(J/\psi \to \gamma f_2(1270))$. CLEO Collaboration has reported the measurements of $B(\Upsilon(1S) \to \gamma \eta'(\eta))$ whose upper limits are smaller than $B(J/\psi \to \gamma \eta'(\eta))$ by almost three order of magnitudes[4]. In Refs.[5] the dependencies of $B(J/\psi, \Upsilon(1S) \to \gamma \eta'(\eta))$ on corresponding quark masses are found and explanation of very small $B(\Upsilon \to \gamma (\eta', \eta))$ is presented. The question is that comparing with $B(J/\psi, \Upsilon(1S) \to \gamma \eta'(\eta))$, why $B(\Upsilon \to \gamma f_2)$ is not too small. $B(\Upsilon \to \gamma f_2)$ has been studied by many authors. In Ref.[6] a QCD analysis for $B(\Upsilon(1S) \to \gamma f_2(1270))$ has been done. In Ref.[7] the ratio $\frac{B(\Upsilon \to \gamma f_2)}{B(J/\psi \to \gamma f_2)}$ has been studied by using soft-collinear theory and nonrelativistic QCD. In 1983 we have studied the radiative decay $J/\psi \to \gamma f_2(1270)$ [8]. In this letter the same approach exploited in Ref.[8] is used to study $\Upsilon \to \gamma f_2$.

The study done in Ref. [8] is based on the arguments presented in Refs. [9] that the tensor

meson $f_2(1270)$ contains glueball components

$$|f_2\rangle = \cos\phi|q\bar{q}\rangle + \sin\phi|gg\rangle.$$
 (4)

Tensor glueball has been studied by many authors[10]. Lattice QCD predicts the existence of light 2^{++} glueball[11]. It is reasonable to assume that there is mixing between $f_2(1270)$ and a tensor glueball. In radiative decay $J/\psi \to \gamma f_2$ the $q\bar{q}$ component of $f_2(1270)$ is suppressed by $O(\alpha_s^2(m_c))[9]$

$$\frac{\Gamma(J/\psi \to \gamma + (q\bar{q}))}{\Gamma(J/\psi \to \gamma + (gg))} \sim \alpha_s^2(m_c). \tag{5}$$

Therefore, the glueball component of f_2 is dominant in the decay $J/\psi \to \gamma f_2$. It is the same that the glueball component of f_2 is dominant in the decay $\Upsilon(1S) \to \gamma f_2$ too. In QCD the radiative decays J/ψ , $\Upsilon \to \gamma$ f_2 are described as J/ψ , $\Upsilon \to \gamma gg$, $gg \to f_2$. The coupling between f_2 and two gluons is written as[8]

$$G_{\alpha\beta,\lambda_2}^{ab}(x_1,x_2) = \langle f_{gg\lambda_2} | T\{A_{\alpha}^a(x_1)A_{\beta}^b(x_2)\} | 0 \rangle = \delta_{ab} e^{\frac{i}{2}p_f(x_1x_2)} G(0) \sum_{m_1m_2} c_{1m_11m_2}^{2\lambda_2} e_{\alpha}^{*m_1} e_{\beta}^{*m_2}, \quad (6)$$

where G(0) is taken as a parameter. Using Eq.(6), the helicity amplitudes of $J/\psi \to \gamma f_2$ are presented in Ref.[8]. Replacing m_c by m_b in Eqs.(3,4,11) of Ref.[8], the helicity amplitudes of $\Upsilon(1S) \to \gamma f_2$ are obtained

$$T_0 = -\frac{2}{\sqrt{6}}(A_2 + p^2 A_1),$$

$$T_1 = -\frac{\sqrt{2}}{m_J}(EA_2 + m_f p^2 A_3),$$

$$T_2 = -2A_2, (7)$$

$$E = \frac{1}{2m_f}(m_{\Upsilon}^2 + m_f^2), \quad p = \frac{1}{2m_f}(m_{\Upsilon}^2 - m_f^2), \tag{8}$$

where

$$A_{1} = -a \frac{2m_{f}^{2} - m_{J}(m_{\Upsilon} - 2m_{b})}{m_{b}m_{\Upsilon}[m_{b}^{2} + \frac{1}{4}(m_{\Upsilon}^{2} - 2m_{f}^{2})]},$$

$$A_{2} = -a \frac{1}{m_{b}} \{ \frac{m_{f}^{2}}{m_{\Upsilon}} - m_{\Upsilon} + 2m_{b} \},$$

$$A_{3} = -a \frac{m_{f}^{2} - \frac{1}{2}(m_{\Upsilon} - 2m_{b})^{2}}{m_{b}m_{\Upsilon}[m_{b}^{2} + \frac{1}{4}(m_{\Upsilon}^{2} - 2m_{f}^{2})]},$$

$$a = \frac{16\pi}{3\sqrt{3}} \alpha_{s}(m_{b})G(0)\psi_{J}(0) \frac{\sqrt{m_{\Upsilon}}}{m_{b}^{2}},$$
(9)

where $\psi_{\Upsilon}(0)$ is the wave functions of Υ at origin. The decay width of $\Upsilon \to \gamma f_2$ is derived as

$$\Gamma(\Upsilon \to \gamma f_2) = \frac{32\pi\alpha}{81} sin^2 \phi \alpha_s^2(m_b) G^2(0) \psi_{\Upsilon}^2(0) \frac{1}{m_t^4} (1 - \frac{m_f^2}{m_{\Upsilon}^2}) \{ T_0^2 + T_1^2 + T_2^2 \}.$$
 (10)

The ratios of the helicity amplitudes are defined as

$$x = \frac{T_1}{T_0}, \quad y = \frac{T_2}{T_0}. (11)$$

The expressions of these quantities for $J/\psi \to \gamma f_2$ can be found from Ref.[8].

The wave functions of Υ or J/ψ at the origin are related to their rates of decaying to ee^+

$$\frac{\psi_{\Upsilon}^{2}(0)}{\psi_{J}^{2}(0)} = 4 \frac{\Gamma_{\Upsilon \to ee^{+}}}{\Gamma_{J/\psi \to ee^{+}}} \frac{m_{\Upsilon}^{2}}{m_{J/\psi}^{2}}.$$
(12)

The parameters $sin^2\phi G^2(0)$ are canceled in the ratio

$$R = \frac{B(\Upsilon \to \gamma f_2)}{B(J/\psi \to \gamma f_2)}$$

Taking $\alpha_s(m_c) = 0.3$, $\alpha_s(m_b) = 0.18[6]$, and $m_c = 1.29 GeV$ (experimental value is $m_c = 1.27^{+0.07}_{-0.11} GeV[4]$), $m_b = (5.04 \pm 0.075 \pm 0.04) GeV[4]$ is obtained

$$R = 0.071(1 \pm 0.17) \tag{13}$$

which agrees with experimental data[4].

The ratios of the helicity amplitudes are obtained

$$x^2 = 0.058, \ y^2 = 5.9 \times 10^{-3}.$$
 (14)

They are consistent with experimental values[1]

$$x^{2} = 0.00^{+0.02+0.01}_{-0.00-0.00}, \quad y^{2} = 0.09^{+0.08+0.04}_{-0.07-0.03}. \tag{15}$$

Eqs.(7,9,10) show that the approach[8] used to study the decay $\Upsilon \to \gamma f_2$ leads to strong suppression by the mass of b-quark. On the other hand, eq.(14) shows that this approach leads to

$$A_2 \sim 0 \tag{16}$$

and very small $T_{1,2}$. Therefore, the amplitude T_0 makes dominant contribution to the decay rate of $\Upsilon \to \gamma f_2$. Because of Eq.(16)

$$\Gamma(\Upsilon \to \gamma f_2) \propto p^2,$$
 (17)

Eq.(17) leads to a strong enhancement for the decay rate. The T_0 dominance has been found in Ref.[6] and $R \sim 0.059$ is obtained. In Ref.[6] $m_c = 1.5 GeV$ is taken. The value used in

this study is consistent with the experimental data[4] and the amplitudes are sensitive to the value of m_c . Therefore, there is competition between the suppression and the enhancement in the decay $\Upsilon \to \gamma f_2$. In QCD J/ψ , $\Upsilon \to light\ hadrons$ are described as J/ψ , $\Upsilon \to 3g$ whose decay width is proportional to $\alpha_s^3 m_V$, where m_V is the mass of J/ψ , Υ respectively. Putting these factors together, the ratio is expressed as

$$R = \frac{B(\Upsilon \to \gamma f_2)}{B(J/\psi \to \gamma f_2)} = \frac{\Gamma(\Upsilon \to \gamma f_2)}{\Gamma(J/\psi \to \gamma f_2)} \frac{\Gamma(J/\psi \to lh)}{\Gamma(\Upsilon \to lh)} \frac{B(\Upsilon \to lh)}{B(J/\psi \to lh)}$$

$$= 1.06 \frac{\alpha_s(m_c)}{\alpha_s(m_b)} \frac{p_{\Upsilon}^4}{p_J^4} \frac{m_J m_c^6}{m_{\Upsilon} m_b^6} \frac{[m_c^2 + \frac{1}{4}(m_J^2 - 2m_f^2)]^2}{[m_b^2 + \frac{1}{4}(m_{\Upsilon}^2 - 2m_f^2)]^2} \frac{(1 - \frac{m_f^2}{m_{\Upsilon}^2})}{(1 - \frac{m_f^2}{m_{\Upsilon}^2})}$$

$$\frac{\{2m_f^2 - m_{\Upsilon}(m_{\Upsilon} - 2m_b)\}^2}{\{2m_f^2 - m_J(m_J - 2m_c)\}^2 + 6\frac{m_f^2}{m_{\Upsilon}^2} \{m_f^2 - \frac{1}{2}(m_J - 2m_c)^2\}^2},$$
(18)

where

$$p_J = \frac{m_J^2}{2m_f} (1 - \frac{m_f^2}{m_J^2}). \tag{19}$$

The competition between the suppression and the enhancement in the decay $\Upsilon \to \gamma f_2$ makes the dependence of $\frac{B(\Upsilon \to \gamma f_2)}{B(J/\psi \to \gamma f_2)}$ on quark masses much weaker than the ratio $\frac{B(\Upsilon \to \gamma \eta'(\eta))}{B(J/\psi \to \gamma \eta'(\eta))}[5]$.

In summary, the approach[4] in which $f_2(1270)$ is strongly coupled to two gluons leads to very small ratios of helicity amplitudes, x and y, and not small branching ratio of $\Upsilon \to \gamma f_2$

References

[1] S.B.Athar et al., CLEO Collaboration, Phys.Rev. D73, 032001(2006).

- [2] D.Besson et al., CLEO Collaboration, Phys.Rev. D75, 072001(2007).
- [3] C.Amsler et al., Particle Data Group, Phys. Lett. **B667**, 192008).
- [4] S.B.Athar et. al., CLEO Collaboration, Phys. Rev. **D76**, 072003(2007).
- [5] Bing An Li, Phys.Rev.**D77**,097502(2008).
- [6] J.P.Ma, Nucl. Phys. **B605**,625(2001).
- [7] S.Fleming, C.Lee, and A.K.Leibovich, Phys.Rev.**D71**,074002(2005).
- [8] Bing An Li and Q.X.Shen, Phys. Lett.**B126**,125(1983).
- [9] J.L.Rosner, Phys. Rev. **D24**,1347(1981); J.F.Donoghue, Phys. Rev. **D25**,1875(1982).
- [10] V.V.Anisovich et al., Phys. Atom.Nucl. 69,520(2006), Int.Mod.Phys.A20,6327(2005;
 F.Giacosa, T.Gutsche, V.E.Lyubovitskij, A.Faessler, Phys. Rev.D72,114021(2005);
 S.R.Cotanch, R.A.Williams, Phys.Lett.B621,269(2005); C.Amsler et al., Crystal Barrel
 Coll., Phys.Lett.B520,175(2001); A.Sarantsev, Nucl.Phys.A675,193C(2000); K.F.Liu,
 B.A.Li, and K.Ishikawa, Phys.Rev.D40,3648(1989); K.Ishikawa, I.Tanaka, K.F.Liu,
 B.A.Li, Phys.Rev.D37,3216(1988).
- [11] Y.Chen et al., Phys.Rev.**D73**,014516(2006); S.A.Chin, C.Long, and D.Robson, Phys.Rev.Lett.**60**,1467(1988); T.A.DeGrand, Phys.Rev.**D36**,3522(1987).