OpenStreetMap Project

Map Area: Miami, FL, United States - mapzen.com/data/metro-extracts

TABLE OF CONTENTS

<u>OVERVIEW</u>

GOALS

TABLE OF CONTENTS

PROBLEMS ENCOUNTERED

Tag Review - mapparser.py & tags.py

Audit - audit.py

DATA OVERVIEW

ADDITIONAL IDEAS

OVERVIEW

This project aims to assess the data quality for Miami, FL on OpenStreetMap for validity, accuracy, completeness, consistency and uniformity. Throughout the Wrangle OpenStreetMap Data project I have learned how to gather and parse data from popular file formats (json, xml, csv, html). I have also learned to store, query and aggregate data using MongoDB.

I will demonstrate what I've learned in the following sections.

GOALS

- 1. Process the Miami, FL OpenStreetMap data acquired on MapZen.com
 - a. audit and clean the dataset
 - b. convert it from XML to JSON
 - c. import clean JSON file into a MongoDB database
- 2. Document the problems encountered along the way.

PROBLEMS ENCOUNTERED

Tag Review - mapparser.py & tags.py

For my initial review of the dataset I parsed the map file and built a dictionary of the XML tags to get an idea of what I could expect to work with in subsequent steps.

```
{'bounds': 1,
  'member': 42426,
  'nd': 1807642,
  'node': 1516787,
  'osm': 1,
  'relation': 1523,
  'tag': 1477841,
  'way': 198244}
```

In looking closer at the key tags I initially try and identify patterns within the data that would easily parse into a clean address for a dictionary to import into MongoDB. ~97% of the keys in the tags met the criteria of containing lower case or lower case with a single colon which would allow us to nicely parse the dictionary. Some of the other common differences were upper case and upper case with a single colon.

```
{'lower': 602295,
  'lower_colon': 829057,
  'lower_upper_colon': 2406,
  'other': 28768,
  'problemchars': 2,
  'upper': 15198,
  'upper_colon': 115}
```

Digging deeper I built a dictionary of the keys and found that we only had address information on $^{\sim}20,000$ locations. This seems like a small number of locations for such a large county. Something to investigate further.

```
{'addr:city': 20011,
  'addr:country': 18304,
  'addr:full': 18244,
  'addr:housename': 82,
  'addr:housenumber': 20311,
  'addr:postcode': 19615,
  'addr:state': 20683,
  'addr:street': 20445,
  'addr:suburb': 17254}
```

Audit - audit.py

A fair amount of auditing was involved in cleaning up the addresses. The majority of the address cleanup focused on the following:

- abbreviated directions (S for South). The county is on a grid most streets and avenues have a direction associated with them.
 - O 713 NW 1st Ave
 - O I normalized the following items:

```
mapping_direction = {
   "N": "North", "S": "South", "E": "East", "W": "West",
   "NE": "Northeast", "Northwest": "Northwest", "NW": "Northwest",
   "SE": "Southeast", "SW": "Southwest", "sw": "Southwest", "southwest":
   "Southwest"}
```

- street names (Ave for Avenue). There are some unique street names to this area, such as Causeway, Trace and Point.
- misspellings and capitalization (St, ST)
- two word city names weren't both capitalized
 - O Coconut grove / coconut Grove
- state names spelled in full (Florida) were changed to FL
- zip_codes contained state abbreviations (FL) and + 4 codes, these were removed
- house numbers contained non alphanumeric characters, these were removed

DATA OVERVIEW

File	Туре	File Size (MB)
miami_florida	OSM	362.3
maimi_florida	JSON	399.3
miami_florida_ sample	OSM	18.3

MongoDB Analysis

After importing the scrubbed OSM file into MongoDB I came across the following findings:

- # of Documents
 - O db.master1.find().count()
 - O 1,715,031
- # of Nodes
 - O db.master1.find({"type":"node"}).count()
 - 0 1,515,916
- # of Unique Users
 - O len(db.master1.distinct("created.user"))
 - O 1,048
- # of Users with 1 post ~20% of of the users only have one post

```
{"$group": {"_id": "$created.user", "count": {"$sum": 1}},
{"$group": {"_id": "$count", "num_users": {"$sum": 1}}},
{"$sort": {"_id": 1}},
{"$limit": 1}
```

- O 218
- Top 10 Users bots make up 2 of 10 largest contributors

```
{"$group": {"_id": "$created.user", "count": {"$sum": 1}},
{"$sort": {"count": -1}},
{"$limit": 10}

{u'_id': u'grouper', u'count': 302908},
{u'_id': u'woodpeck_fixbot', u'count': 235504},
{u'_id': u'Latze', u'count': 137309},
{u'_id': u'carciofo', u'count': 92536},
{u'_id': u'freebeer', u'count': 78338},
{u'_id': u'bot-mode', u'count': 61612},
{u'_id': u'NE2', u'count': 58715},
{u'_id': u'westendguy', u'count': 49373},
{u'_id': u'seandebasti', u'count': 48176},
{u'_id': u'georafa', u'count': 39763}
```

 Postal Codes by User - 1 user has provided the bulk of the postal code contributions for zip codes in Weston, FL

```
{u'_id': {u'postcode': u'33178', u'user': u'williehlh'}, u'postcode_count': 20}
```

- Key overview
 - O I found a nice tool for analyzing a Mongo DB schema here, https://github.com/variety/variety
 - O I used this to choose additional categories to analyze
 - O I noticed the "tiger:[x]" categories make up a large majority of the contributions
 - more info on tiger data can be found here:

http://www.census.gov/geo/maps-data/data/tiger.html

```
| occurrences | percents
key
                                       l types
_id
                                       | ObjectId
                                                                          1715031 | 100.0000000000000000000000
created
                                       1 Object
                                                                          1715031 | 100.000000000000000000000
created.changeset
                                         String
                                                                          1715031 | 100.0000000000000000000000
created.timestamp
                                       | String
                                                                          1715031 | 100.000000000000000000000
created.uid
                                         String
                                                                          1715031 | 100.000000000000000000000
created.user
                                                                          1715031 | 100.000000000000000000000
                                         String
created.version
                                         String
                                                                          1715031 | 100.0000000000000000000000
                                                                          1715031 | 100.0000000000000000000000
                                         String
                                                                          1715031 | 100.0000000000000000000000
type
                                         String
                                                                          1516787
                                                                                     88.44079203233060582079
                                         Array
pos
node_refs
                                                                           198244
                                                                                     11.55920796766938885014
                                         Array
                                                                           161288 |
                                                                                      9.40437811328191664018
highway
                                         String
                                                                           116369 |
                                                                                      6.78524178280159340204
                                                                                      5.15186022876554439165
tiger:county
                                         String
                                                                            88356 |
                                                                                      5.14136479165682747094
tiger:cfcc
                                         String
                                                                            88176
tiger:reviewed
                                                                            87305 |
                                                                                      5.09057853764742418434
                                         String
                                                                                      4.77116740163880415082
tiger:name_base
                                                                            81827
                                         String
tiger:name_type
                                                                            79221 |
                                                                                      4.61921679549815689114
                                         String
tiger:zip_left
                                         String
                                                                            65459 |
                                                                                      3.81678232055280641788
                                                                                      3.68815490798708589537
tiger:zip_right
                                         String
                                                                            63253 |
                                                                                      3.07551292075770055234
tiger:name_direction_prefix
                                         String
                                                                            52746 |
building
                                         String
                                                                            34769 |
                                                                                      2.02731029351656033555
source
                                         String
                                                                            34449
                                                                                      2.00865173865661894581
address
                                       | Object (22133), String (1)
                                                                            22134 |
                                                                                      1.29058891646856532809
                                                                            21542
                                                                                      1.25607058997767384589
                                       | String
power
                                       | String
                                                                            21162 |
                                                                                      1.23391355608149355660
oneway
```

Top 10 Waterway Categories - unique to coastal area like South Florida

```
{"$group": {"_id": "$waterway", "count": {"$sum": 1}},
{"$sort": {"count": -1}},
{"$limit": 10}

{u'_id': None, u'count': 1711186},
{u'_id': u'canal', u'count': 2952},
{u'_id': u'weir', u'count': 397},
{u'_id': u'riverbank', u'count': 122},
{u'_id': u'drain', u'count': 118},
{u'_id': u'stream', u'count': 90},
{u'_id': u'ditch', u'count': 62},
{u'_id': u'river', u'count': 42},
{u'_id': u'yes', u'count': 38},
{u'_id': u'dock', u'count': 12}
```

Top 10 'Natural' categories - give you a sense of the landscape

```
{"$group": {"_id": "$natural", "count": {"$sum": 1}}},
{"$sort": {"count": -1}},
{"$limit": 10}

{u'_id': None, u'count': 1705241},
{u'_id': u'water', u'count': 5714},
{u'_id': u'tree', u'count': 2479},
{u'_id': u'sand', u'count': 433},
{u'_id': u'coastline', u'count': 358},
{u'_id': u'wood', u'count': 266},
{u'_id': u'tree_row', u'count': 230},
{u'_id': u'wetland', u'count': 150},
{u'_id': u'scrub', u'count': 63},
{u'_id': u'beach', u'count': 47}
```

Top 10 'Leisure' categories - south florida is a big tourist destination!

```
{"$group": {"_id": "$leisure", "count": {"$sum": 1}}},
{"$sort": {"count": -1}},
{"$limit": 10}

{u'_id': None, u'count': 1710726},
{u'_id': u'pitch', u'count': 1969},
{u'_id': u'park', u'count': 1013},
{u'_id': u'swimming_pool', u'count': 713},
{u'_id': u'playground', u'count': 1004},
{u'_id': u'golf_course', u'count': 100},
{u'_id': u'sports_centre', u'count': 79},
{u'_id': u'stadium', u'count': 45},
{u'_id': u'marina', u'count': 43}
```

ADDITIONAL IDEAS

After exploring the data set some of the items I would like to pursue further are:

- Additional clean up and grouping of TIGER and GNIS data. There are a lot of occurrences that could use similar clean up to what was done with the addresses.
- I'd like to see more contributions across more PostalCodes. User 'maggot27' did a great job of working on Weston, FL. Perhaps towns could sponsor hackathons for users to work on enhancing information in their community.
- There are a number of categories unique to this region that would be interesting to explore further such as:
 - O bicycle, horse, foot, footway, bridge, golf, cycleway, aeroway, railway, tourism