Data Structures

Binomial Heaps Fibonacci Heaps

Yossi Azar & Rani Hod Fall 2023

Heaps / Priority queues

	Binary Heaps	Binomial Heaps	Lazy Binomial Heaps	Fibonacci Heaps
Insert	$O(\log n)$	$O(\log n)$	O(1)	O(1)
Find-min	O(1)	O(1)	O(1)	O(1)
Delete-min	$O(\log n)$	$O(\log n)$	$O(\log n)$	$O(\log n)$
Decrease-key	$O(\log n)$	$O(\log n)$	$O(\log n)$	O(1)
Meld	<u>—</u>	$O(\log n)$	O(1)	O(1)

Worst case

Amortized

Delete can be implemented using Decrease-key + Delete-min Decrease-key in O(1) time important for Dijkstra and Prim

Binomial Heaps [Vuillemin (1978)]

 B_k contains 2^k nodes and its depth is k $\binom{k}{i}$ of the nodes of B_k are at level iThe root of B_k has k children

Min-heap Ordered Binomial Trees

Binomial Heap

A list of binomial trees, at most one of each rank Pointer to root with minimal key

Each number *n* can be written in a unique way as a sum of powers of 2

$$11 = (1011)_2 = 8 + 2 + 1$$

Linking binomial trees

O(1) time

Melding binomial heaps

Link trees of same degree

Melding binomial heaps

Link trees of same degree

Like adding binary numbers

Maintain a pointer to the minimum $O(\log n)$ time

Insert

New item is a one tree binomial heap Meld it to the original heap $O(\log n)$ time

Delete-min

When we delete the minimum, we get a binomial heap

Delete-min

When we delete the minimum, we get a binomial heap

Meld it to the original heap

 $O(\log n)$ time

Linking binomial trees

Delete-min

When we delete the minimum, we get a binomial heap

Meld it to the original heap $O(\log n)$ time

(Need to reverse list of roots in first representation)

Linking binomial trees

Function link(x, y)

Linking in first representation

Linking in second representation

Heaps / Priority queues

	Binary Heaps	Binomial Heaps	Lazy Binomial Heaps	Fibonacci Heaps
Insert	$O(\log n)$	$O(\log n)$	O(1)	O(1)
Find-min	O(1)	O(1)	O(1)	O(1)
Delete-min	$O(\log n)$	$O(\log n)$	$O(\log n)$	$O(\log n)$
Decrease-key	$O(\log n)$	$O(\log n)$	$O(\log n)$	O(1)
Meld	_	$O(\log n)$	O(1)	O(1)

Amortized

Lazy Binomial Heaps

Binomial Heaps

A list of binomial trees, at most one of each rank, sorted by rank (at most O(log n) trees)

Pointer to root with minimal key

Lazy Binomial Heaps

An arbitrary list of binomial trees (possibly *n* trees of size 1)

Pointer to root with minimal key

Lazy Binomial Heaps

An arbitrary list of binomial trees Pointer to root with minimal key

Lazy Meld

Concatenate the two lists of trees
Update the pointer to root with minimal key

O(1) worst case time

Lazy Insert

Add the new item to the list of roots

Update the pointer to root with minimal key

O(1) worst case time

Lazy Delete-min?

Remove the minimum root and meld?

May need $\Omega(n)$ time to find the new minimum

Consolidating / Successive Linking

Consolidating / Successive Linking

Consolidating / Successive Linking

At the end of the process, we obtain a non-lazy binomial heap containing at most log(n+1) trees, at most one of each rank

At the end of the process, we obtain a non-lazy binomial heap containing at most log *n* trees, at most one of each degree

Worst case cost - O(n)

Amortized cost - O(log n)

Cost of Consolidating

Handling the i^{th} tree takes $L_i + 1$ time

Total time for handling the trees =

$$\sum_{i} L_{i} + 1 = L + T_{0} + k - 1 \leq 2(T_{0} + k - 1)$$

$$\leq 2T_{0} + 2\lceil \log_{2} n \rceil \qquad as \ k \leq \lceil \log_{2} n \rceil$$

 T_0 – Number of trees before

 L_i – Number of links when processing tree i

L – Total number of links

k − rank of deleted root

(Scaled)

actual cost =
$$T_0 + \lceil \log_2 n \rceil$$

Amortized Cost of Consolidating

(Scaled) actual cost =
$$T_0 + \lceil \log_2 n \rceil$$

Potential = Number of Trees

Change in potential =
$$\Delta \Phi = T_1 - T_0$$

$$T_1 - \text{Number of trees after}$$
Amortized cost = $(T_0 + \lceil \log_2 n \rceil) + (T_1 - T_0)$

$$= T_1 + \lceil \log_2 n \rceil$$

$$\leq 2 \lceil \log_2 n \rceil \qquad \text{As } T_1 \leq \lceil \log_2 n \rceil$$

Lazy Binomial Heaps

	Actual cost	Change in potential	Amortized cost
Insert	O(1)	1	O(1)
Find-min	O(1)	0	O(1)
Delete-min	T_0 + $\log n$	$T_1 - T_0$	$O(\log n)$
Decrease-key	$O(\log n)$	0	$O(\log n)$
Meld	O(1)	0	O(1)

Heaps / Priority queues

	Binary Heaps	Binomial Heaps	Lazy Binomial Heaps	Fibonacci Heaps
Insert	$O(\log n)$	$O(\log n)$	O(1)	O(1)
Find-min	O(1)	O(1)	O(1)	O(1)
Delete-min	$O(\log n)$	$O(\log n)$	$O(\log n)$	$O(\log n)$
Decrease-key	$O(\log n)$	$O(\log n)$	$O(\log n)$	O(1)
Meld	_	$O(\log n)$	O(1)	O(1)

One-pass successive linking

A tree produced by a link is immediately put in the output list and not linked again

Worst case cost - O(n)

Amortized cost - O(log n)

Potential = Number of Trees

Exercise: Prove it!

Fibonacci Heaps [Fredman-Tarjan (1987)]

Fibonacci Heaps

A list of heap-ordered trees Pointer to root with minimal key

Are simple cuts enough?

A binomial tree of rank k contains at least 2^k

We may get trees of rank k containing only k+1 nodes

Ranks not necessarily $O(\log n)$

Analysis breaks down

Invariant: Each node looses at most one child after becoming a child itself

To maintain the invariant, use a mark bit

Each node is initially unmarked.

When a non-root node loses its first child, it becomes marked

When a marked node loses a second child, it is cut from its parent

Invariant: Each node loses at most one child after becoming a child itself

cut $x \rightarrow y$:

Make x a root x becomes unmarked

If y is unmarked, it becomes marked

If y is marked, cut $y \rightarrow y.parent$

Roots are unmarked

4 pointers + rank + mark bit per node

4 pointers + rank + mark bit per node

Function $\operatorname{cut}(x,y)$ $x.parent \leftarrow null$ $x.mark \leftarrow 0$ $y.rank \leftarrow y.rank - 1$ if x.next = x then $| y.child \leftarrow null$ else $| y.child \leftarrow x.next$ $x.prev.next \leftarrow x.next$ $x.next.prev \leftarrow x.prev$

Cut x from its parent y

```
Function cascading-cut(x, y)

cut(x, y)

if y.parent \neq null then

| if y.mark = 0 then
| y.mark \leftarrow 1

else
| cascading-cut(y, y.parent)
```

Perform a cascading-cut process starting at *x*

Trees formed by cascading cuts

Lemma 2: Let x be a node of rank k and let $y_1, y_2, ..., y_k$ be the current children of x, in the order in which they were linked to x. Then, the rank of y_i is at least i-2.

Proof: When y_i was linked to x, y_1, \dots, y_{i-1} were already children of x. At that time, the rank of x and y_i was at least i-1. As y_i is still a child of x, it lost at most one child.

Trees formed by cascading cuts

Lemma 3: A node of rank k in a Fibonacci Heap has at least $F_{k+2} \ge \phi^k$ descendants, including itself.

Let S_k be the minimum number of descendants of a node of rank at least k

$$S_0 = 1$$
 $S_1 = 2$ $S_k \ge 2 + \sum_{i=0}^{k-2} S_i , k \ge 2$

$$S_k \ge 2 + \sum_{i=0}^{k-2} S_i \ge 2 + \sum_{i=0}^{k-2} F_{i+2} = 2 + \sum_{i=2}^{k} F_i = F_{k+2}$$

Trees formed by cascading cuts

Lemma 3: A node of rank k in a Fibonacci Heap has at least $F_{k+2} \ge \phi^k$ descendants, including itself.

Corollary: In a Fibonacci heap containing n items, all ranks are at most $\log_{\phi} n \le 1.4404 \log_2 n$

Ranks are again $O(\log n)$

Are we done?

Number of cuts

A decrease-key operation may trigger many cuts

Lemma 1: The first *d* decrease-key operations trigger at most 2*d* cuts

Proof in a nutshell:

Number of times a second child is lost is at most the number of times a first child is lost

Potential = Number of marked nodes

Number of cuts

Potential = Number of marked nodes

Amortized number of cuts

$$\leq c + (1-(c-1)) = 2$$

Putting it all together

Are we done?

A cut increases the number of trees...

We need a potential function that gives good amortized bounds on both successive linking and cascading cuts

Potential = #trees + 2 #marked

Fibonacci heaps

	Actual cost	Δ Trees	Δ Marks	Amortized cost
Insert	O(1)	1	0	O(1)
Find-min	O(1)	0	0	O(1)
Delete-min	T_0 + $\log n$	$T_1 - T_0$	\leq 0	$O(\log n)$
Decrease- key	O(c)	C	≤ 2- <i>c</i>	O(1)
Meld	O(1)	0	O Number of	O(1)

Number of cuts performed

Heaps / Priority queues

	Binary Heaps	Binomial Heaps	Lazy Binomial Heaps	Fibonacci Heaps
Insert	$O(\log n)$	$O(\log n)$	O(1)	O(1)
Find-min	O(1)	O(1)	O(1)	O(1)
Delete-min	$O(\log n)$	$O(\log n)$	$O(\log n)$	$O(\log n)$
Decrease-key	$O(\log n)$	$O(\log n)$	$O(\log n)$	O(1)
Meld	_	$O(\log n)$	O(1)	O(1)

