ESPECTROFOTOMETRÍA UV-VISIBLE

2. Absorción de luz

- 2.1. Fenómeno de la absorción
- 2.2. Espectros de absorción molecular
- 2.3. Tipos de transiciones electrónicas

3. Ley de Lambert-Beer

- 4.1. Fuente de radiación
- 4.2. Selector de longitud de onda
- 4.3. Recipientes para muestra
- 4.4. Detector

Onda

$$\lambda v = c$$

Longitud de onda x Frecuencia = velocidad de la luz

ESPECTRO ELECTROMAGNÉTICO

- Cuando una molécula absorbe luz aumenta su energía
- Cuando una molécula emite luz disminuye su energía

vibración

Rotura de enlace

e ionización

Transiciones electrónicas y espectros UV-Visible en moléculas

ESPECTRO DE ABSORCIÓN

LONGITUD DE ONDA DE LA ABSORCIÓN MÁXIMA (nm)	COLOR ABSORBIDO	COLOR OBSERVADO
380-420	Violeta	Amarillo-verdoso
420-440	Azul-violeta	Amarillo
440-470	Azul	Nar anj a
<i>470-500</i>	Verde-azuloso	Rojo
500-520	Verde	Púrpura
520-550	Verde-amarillento	Violeta
550-580	Amarillo	Azul-violeta
580-620 🗯	Naranja	Azul
620-680	Rojo	Verde-azuloso
680-780	Púrpura	Verde

AZUL DE BROMOFENOL ($\lambda_{max} = 614 \text{ nm}$)

LONGITUD DE ONDA DE LA ABSORCIÓN MÁXIMA (nm)	COLOR ABSORBIDO	COLOR OBSERVADO
380-420	Violeta	Amarillo-verdoso
420-440	Azul-violeta	Amarillo
440-470	Azul	Naranja
470-500 🜟	Verde-azuloso	Rojo
500-520	Verde	Púrpura
520-550	Verde-amarillento	Violeta
550-580	Amarillo	Azul-violeta
580-620	Naranja	Azul
620-680	Rojo	Verde-azuloso
680_780 🚖	Púrnura	Vordo

Espectro de absorción de la clorofila en la región visible. Obsérvese que absorbe en las regiones del rojo y del azul.

2. Absorción de luz

- 2.1. Fenómeno de la absorción
- 2.2. Espectros de absorción molecular
- 2.3. Tipos de transiciones electrónicas

Ley de Lambert-Beer

- 4.1. Fuente de radiación
- 4.2. Selector de longitud de onda
- 4.3. Recipientes para muestra
- 4.4. Detector

 $I \leq I_o$

3. Ley de Lambert-Beer

- Transmitancia → T = I / I_o

 →(fracción de la luz incidente que sale de la muestra)

 → varía entre 0 y 1
 - Absorbancia → A = log T = log (I_o / I)

Ley de Lambert-Beer \rightarrow A = ϵ b c

ε: coeficiente de absortividad molar (1 mol-1 cm-1)

b : espesor de la célula (cm) c : concentración (moles/l)

2. Absorción de luz

- 2.1. Fenómeno de la absorción
- 2.2. Espectros de absorción molecular
- 2.3. Tipos de transiciones electrónicas

Ley de Lambert-Beer

- 4.1. Fuente de radiación
- 4.2. Selector de longitud de onda
- 4.3. Recipientes para muestra
- 4.4. Detector

Espectrofotómetro

- * Fuente de radiación
- Sistema de selección de longitud de onda
- Recipiente para la muestra
- Detector

MONOCROMADOR

MONOCROMADOR DE RED

4. Instrumentación

4.3. Recipientes de muestra

Material ()

Visible: cuarzo o vidrio

Esquema de un espectrofotómetro de haz simple

ESPECTROFOTÓMETROS, FOTÓMETROS, COLORÍMETROS

Espectrofotómetro de doble haz

Espectrofotómetros portátiles