Apellidos: _____ Nombre: _____

1. [2 puntos] Encuentra razonadamente todos los valores $x \in \mathbb{R}$ para los que se cumple que

$$x^2 - 3 \le x |x - 1|$$
.

Solución: Primero rompemos el problema en casos, dependiendo del valor absoluto:

1. Caso 1: $x \ge 1$: Para estos x's, |x-1| = x-1, y la desigualdad queda como

$$x^{2} - 3 \le x(x - 1),$$
 $x^{2} - 3 \le x^{2} - x,$ $-3 \le -x,$ $x \le 3.$

Como nos habíamos limitado a x's con $x \ge 1$, esto nos da los puntos $1 \le x \le 3$.

2. Caso 2. $x \le 1$: Para estos x's, |x-1| = 1 - x, y la desigualdad queda como

$$x^{2} - 3 \le x(1 - x), \quad x^{2} - 3 \le x - x^{2}, \quad 2x^{2} - x - 3 \le 0,$$

así que tenemos que buscar los $x \le 1$ tal que $2x^2 - x - 3 \le 0$.

Para ello vemos cuando la parábola $2x^2 - x - 3$ se hace negativa:

$$2x^2 - x - 3 = 0$$
, $x = \frac{1 \pm \sqrt{1 + 24}}{2}$, $x = 3, x = -2$.

Comprobando, vemos que $2x^2 - x - 3 \le 0$ enel intervalo [-2, 3]. Como en este caso, sólo nos estábamos preocupando de los puntos $x \le 1$, este apartado nos da los x's en el intervalo [-2, 1].

La solución es entonces la unión de ambos conjuntos, lo que da el intervalo [-2,3].

2. [2 puntos] Decide razonadamente la existencia del siguiente límite (y, en su caso, calcula su valor):

$$\lim a_n$$
 con $a_n = \left(\frac{4n^2 + 4}{4n^2 + 1}\right)^{n^2 + 2n}$.

Solución: Primero identificamos que

$$\frac{4n^2+4}{4n^2+1} = 1 + \frac{3}{4n^2+1} = 1 + \frac{1}{\frac{4n^2+1}{3}},$$

así que el término de la sucesión cuyo límite se pide tiene el aspecto

$$\left(1 + \frac{1}{\frac{4n^2 + 1}{3}}\right)^{n^2 + 2n} = \left(1 + \frac{1}{\frac{4n^2 + 1}{3}}\right)^{\frac{4n^2 + 1}{3} \cdot \frac{3(n^2 + 2n)}{4n^2 + 1}}.$$

Ahora observamos que $\lim_{n\to\infty} \frac{4n^2+1}{3} = \infty$, así que

$$\lim_{n \to \infty} \left(1 + \frac{1}{\frac{4n^2 + 1}{3}} \right)^{\frac{4n^2 + 1}{3}} = e,$$

y por otra parte,

$$\lim_{n \to \infty} \frac{3(n^2 + 2n)}{4n^2 + 1} = \frac{3}{4},$$

así que

$$\lim_{n \to \infty} \left(\frac{4n^2 + 4}{4n^2 + 1} \right)^{n^2 + 2n} = e^{3/4}.$$

3. [3 = 1 + 1 + 1 puntos] Dada la sucesión definida de forma recurrente como

$$a_1 = \frac{1}{2}, \qquad a_{n+1} = \sqrt{\frac{1+a_n}{2}} \qquad \text{para todo } n \in \mathbb{N}.$$

(a) Demuestra que $0 < a_n < 1$ para todo $n \in \mathbb{N}$.

Solución: Primero demostramos que $a_n > 0$ para todo n usando inducción:

- $a_1 = \frac{1}{2} > 0;$
- suponemos que $a_n > 0$, y vemos que en ese caso,

$$\frac{1+a_n}{2} > \frac{1}{2},$$

у

$$\sqrt{\frac{1+a_n}{2}} > \sqrt{\frac{1}{2}},$$

donde usamos que la raíz cuadrada es creciente. Por inducción se sigue que $a_n > 0$ para todo n.

Ahora demostramos que $a_{n+1} < 1$ para todo n usando otra vez inducción:

- $a_1 = \frac{1}{2} < 1;$
- suponemos que $a_n < 1$, y observamos que

$$\frac{1+a_n}{2} < \frac{1+1}{2} = 1,$$

У

$$\sqrt{\frac{1+a_n}{2}} < \sqrt{1} = 1.$$

Por inducción, $a_n < 1$ para todo n.

(b) Demuestra que a_n es una sucesión monótona (creciente o decreciente).

Solución: Mirando a_n para n pequeños vemos que de ser algo, a_n debería ser creciente, pero tenemos que demostrarlo. Para ello, volvemos a usar inducción:

- Sea $\mathcal{P}(n)$ la afirmación $a_n \leq a_{n+1}$. Claramente $\mathcal{P}(1)$ es verdad, ya que $a_1 = 1/2, a_2 = \sqrt{3}/4$.
- Asumo ahora que $\mathcal{P}(n)$ es cierta; quiero ver que $\mathcal{P}(n+1)$ también lo es:

$$a_{n+2} = \sqrt{\frac{1+a_{n+1}}{2}} \ge \sqrt{\frac{1+a_n}{2}} = a_{n+1},$$

donde en la desigualdad hemos usado la hipótesis de inducción.

Por inducción se sigue que $a_n \leq a_{n+1}$ para todo n, y la sucesión $\{a_n\}$ es creciente.

(c) Demuestra razonadamente que a_n tiene límite y calcúlalo.

Solución: La sucesión $\{a_n\}$ es acotada (por (a)), y creciente (por (b)); por el Teorema de Bolzano-Weierstrass tiene límite.

Para calcularlo, lo llamamos L, y observamos que

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} a_{n+1} = L,$$

así que

$$L = \lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \sqrt{\frac{1 + a_n}{2}} = \sqrt{\frac{1 + L}{2}}.$$

Despejamos L, y obtenemos la ecuación $2L^2 - L - 1 = 0$, que tiene como soluciones L = 1, L = -1/2. Pero como $a_n \ge 0$ para todo n, su límite L también debe ser no negativo. Por ello la posibilidad L = -1/2 queda eliminada, y el resultado es L = 1.

4. [3 = 1 + 1 + 1 puntos] Considera la función $f(x) = (1 - x)\sqrt{\frac{1 + x}{1 - 2x + x^2}}$.

(a) Calcula su dominio.

Solución: El término bajo la raíz se puede escribir como

$$\frac{1+x}{1-2x+x^2} = frac1 + x(x-1)^2,$$

que es no negativo siempre que $1+x\geq 0$. Eso haría pensar que el dominio de la función es $x\geq -1$, pero hay que quitar de ese conjunto aquellos punto donde el denominador de la fracción se anula, esto es x=1. Por lo tanto el dominio es el conjunto $(-1,1)\cup(1,\infty)$.

(b) Calcula el límite $\lim_{x\to 1} f(x)$.

Solución: Como

$$\frac{1+x}{1-2x+x^2} = \frac{1+x}{(1-x)^2},$$

tenemos que

$$f(x) = (1-x)\sqrt{\frac{1+x}{(1-x)^2}}, = (1-x)\frac{\sqrt{1+x}}{|1-x|} = \sqrt{1+x} \cdot \frac{1-x}{|1-x|}.$$

Para estudiar el límite, uso límites laterales:

$$\lim_{x \to 1^+} \sqrt{1+x} \cdot \frac{1-x}{|1-x|} = \lim_{x \to 1^+} \sqrt{1+x} \cdot \frac{1-x}{-(1-x)} = \lim_{x \to 1^+} \sqrt{1+x} \cdot (-1) = -\sqrt{2},$$

pero

$$\lim_{x \to 1^-} \sqrt{1+x} \cdot \frac{1-x}{|1-x|} = \lim_{x \to 1^-} \sqrt{1+x} \cdot \frac{1-x}{(1-x)} = \lim_{x \to 1^-} \sqrt{1+x} \cdot 1 = \sqrt{2}.$$

Como ambos límites difieren, el límite original no existe.

(c) ¿Es posible definir f(1) para que f sea continua en a=1?

Solución: En el apartado (b) hemos visto que el límite de f(x) cuando $x \to 1$ no existe, así que no podemos definir f(1) para que f sea continua en x = 1.