Chapter 6

Registers and Counters

Sequential Circuits

- Clocked sequential circuits (循序,序向,順序)
 - a group of flip-flops and combinational gates
 - connected to form a feedback path

```
Flip-flops + Combinational gates (essential) (optional)
```


<u>Registers</u>

Clock

Clear

Register:

- a group of flip-flops (正反器)
- gates that determine how the information is transferred into the register

A *n*-bit register

- n flip-flops capable of storing n bits of binary information
- 4-bit register

4-bit register with parallel load

Four-bit register with parallel load

Load Clock A(t+1)

Shift Registers (1/2)

- Shift register
 - a register capable of shifting its binary information in one or both directions
- Simplest shift register

Fig. 6.3 Four-bit shift register

Shift Registers (2/2)

Note: output value is the same if no clock comes

- A chain of FFs in <u>cascade</u>
- All FFs receive common clock pulses that activate the shift from one stage to the next
- Each clock pulse shifts the contents of the register one bit position to the right
- Serial input determines what goes into the leftmost FF during the shift
- Serial output is taken from the output of the rightmost FF.

Shifter

Serial transfer vs. Parallel transfer

- Serial transfer
 - Information is transferred one bit at a time
 - shifts the bits out of the source register into the destination register
- Parallel transfer:
 - All the bits of the register are transferred at the same time

Serial transfer from reg A to reg B

(b) Timing diagram

Timing Pulse	Shift Register A				Shift Register B						
Initial value	1	0	1	1	0	0	1	0			
After T_1	1	1	0	1	1	0	0	1			
After T_2	1	1	1	0	1	1	0	0			
After T_3	0	1	1	1	0	1	1	0			
After T_4	1	0	1	1	1	0	1	1			

Serial addition using D flip-flops

Serial adder using JK flip-flops

carry

Table 6.2 *State Table for Serial Adder*

Present State	Inputs		Next State	Output	Flip-Flop Inputs		
Q	x	y	Q	S	JQ	K _Q	
0	0	0	0	0	0	X	
0	0	1	0	1	0	X	
0	1	O	0	1	0	X	
0	1	1	1	0	1	X	
1	0	0	0	1	X	1	
1	0	1	1	0	X	0	
1	1	0	1	0	X	0	
1	1	1	1	1	X	0	

Excitation Table							
Q(t)	Q(t) Q(t+1)						
0	0	0	X				
0	1	1	X				
1	0	X	1				
1	1	X	0				

Circuit Diagram

$$JQ = x y$$

 $KQ = x' y' = (x + y)'$ $S = x \oplus y \oplus Q$

<u>Universal Shift Register</u>

- Universal Shift Register
 - Unidirectional shift register
 - Bidirectional shift register
 - Universal shift register:
 - has both direction shifts & parallel load/out capabilities

Parallel Load + Shift

4-Bit Universal Shift Register (1/2)

Fig 6-7 4-Bit Universal Shift Register

4-Bit Universal Shift Register (2/2)

- 1. A *clear* control to clear the register to o.
- 2.A *clock* input to synchronize the operations.
- 3.A *shift-right* control to enable the shift right operation and the *serial input* and *output* lines associated w/ the shift right.
- 4.A *shift-left* control to enable the shift left operation and the *serial input* and *output* lines associated w/ the shift left.
- 5.A *parallel-load* control to enable a parallel transfer and the *n parallel input* lines associated w/ the parallel transfer.
- 6.n parallel output lines.
- 7.A control state that leaves the information in the register

Ripple Counters

Counter:

- a register that goes through a prescribed sequence of states
- upon the application of input pulses
 - Input pulses: may be clock pulses or originate from some external source
 - The sequence of states:
 may follow the binary number sequence
 - (⇒ Binary Counter) or any other sequence of states

Counter

Categories of counters

1. Ripple counters

The flip-flop output transition serves as a source for triggering other flip-flops

- ⇒ no common clock pulse (not synchronous)
- 2. Synchronous counters:

The CLK inputs of all flip-flops receive a common clock

Synchronous/Asynchronous Counter

Synchronous counter:

All flip-flops in a synchronous counter receive the same clock pulse and so change state simultaneously.

Asynchronous (Ripple) counter:

Flip-flops transitions ripple through from one flip-flop to the next in sequence until all flip-flops reach a new stable value (state). Each single flip-flop stage divides the frequency of its input signal by two.

Counter Implementation

Synchronous counter

Synchronous Counters

- Synchronous Counter
 - A common clock triggers all flip-flops simultaneously
- Design procedure
 - apply the same procedure of synchronous sequential circuits
 - synchronous counter is simpler than general synchronous sequential circuits

4-bit Binary Counter

0011 0100

 $A_0=1, A_1=1, A_2=0, A_3=0$

 $\rightarrow JA_0=1, KA_0=1$

 $C_{en}A_0=1$ $\rightarrow JA_1=1, KA_1=1$

 $C_{\rho n}A_0A_1=1 \rightarrow JA_2=1, KA_3=1$

 $C_{en}A_0A_1A_2=0 \implies JA_3=0, KA_3=0$

C_en A₀ A₁ C_en $A_0 A_1 A_2$

Count enable

C en A₀

CLK

o next stage

 $A_0=0, A_1=0, A_2=1, A_3=0$

Four-bit synchronous binary counter

4-bit Up/Down Binary Counter

Up Counter

010→ 011→ 100→ 101 → ...

Down Counter

110→ 101→ 100→ 011 → ...

Four-bit up-down binary counter

Synchronous Counter

Synchronous Counter


```
C(old) C(new)
0 0 0 0 1
0 0 1 0 1 0
0 1 0 1 1
....
1 1 0 1 1 1
1 1 1 0 0 0

Draw three K-maps
```

 $0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 0 \rightarrow 1 \rightarrow \dots$

C(old)	C(new)
0 0 0	0 0 1
0 0 1	0 1 0
0 1 0	0 1 1
110 000	110 000 001

0 \(\rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow \limits....

Draw three K-maps

Other Counters (1/2)

- Counters:
 - can be designed to generate any desired sequence of states
- Divide-by-N counter (modulo-N counter)
 - a counter that goes through a repeated
 sequence of N states
 - The sequence may follow the binary count or may be any other arbitrary sequence

Other Counters (2/2)

- n flip-flops $\Rightarrow 2^n$ binary states
- Unused states

Table 6.7

states that are not used in specifying the FSM

0 21222425262021222

 may be treated as don't-care conditions or may be assigned specific next states

Present State		State	Next State			Flip-Flop Inputs					
A	В	C	A	В	C	J _A	K _A	J _B	K _B	Jc	Kc
0	0	0	0	0	1	0	X	0	X	1	X
0	0	1	0	1	0	0	\mathbf{X}	1	\mathbf{X}	\mathbf{X}	1
0	1	0	1	0	0	1	X	X	1	O	X
1	0	0	1	0	1	X	O	0	X	1	X
1	0	1	1	1	0	X	O	1	X	\mathbf{X}	1
1	1	0	0	0	O	X	1	X	1	O	\mathbf{X}

An Example Two unused states: 011 & 111

Table 6.7 *State Table for Counter*

Present State		Next State		Flip-Flop Inputs							
A	В	c	A	В	C	J _A	K _A	JΒ	K _B	Jc	Kc
0	0	0	0	0	1	0	X	0	X	1	X
0	0	1	0	1	0	0	\mathbf{X}	1	\mathbf{X}	\mathbf{X}	1
0	1	0	1	0	0	1	\mathbf{X}	X	1	0	X
1	0	0	1	0	1	X	0	0	X	1	X
1	0	1	1	1	0	X	0	1	X	\mathbf{X}	1
1	1	0	0	0	0	X	1	X	1	0	X
0	1	1				X	X	X	Х	X	X
1	1	1				X	X	X	X	X	X
										_	

	$A \setminus D$	00	01	4 11	10	
	0			X	1	
$J_A = B$	1	X	X	X	X	

<u>Logic Diagram</u>

The simplified flip-flop input equations:

$$J_A = B$$
, $K_A = B$

$$J_B = C$$
, $K_B = 1$

$$J_C = B'$$
, $K_C = 1$

Counter with unsigned states Logic 1 -

Four-bit Binary Ripple Counter

Table 6.4 *Binary Count Sequence*

A ₃	A ₂	A_1	A_0
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0

Four-bit binary ripple counter

BCD ripple counter

State diagram of a decimal BCD counter

Circuit of BCD Ripple Counter

Three-decade BCD counter

Fig. 6.11 Block diagram of a three-decade decimal BCD counter

Ring counter (1/2)

 a circular shift register w/ only one flip-flop being set at any particular time, all others are cleared

(initial value = $1 0 0 \dots 0$)

 The single bit is shifted from one flip-flop to the next to produce the sequence of timing signals.

A_2	A_2	$^{T}A_1$	A_0
1	0	0	0
0	1	0	0
0	0	1	0
0	0	0	1
1	0	0	0

Ring counter (2/2)

(b) Sequence of four timing signals

Johnson Counter

Ring counter vs. Switch-tail ring counter

- Ring counter
 - a *k*-bit ring counter circulates a single bit among the flip-flops to provide *k* distinguishable states.
- Switch-tail ring counter (Johnson Counter)
 - is a circular shift register w/ the complement output of the last flip-flop connected to the input of the first flip-flop
 - a k-bit switch-tail ring counter will go through a sequence of 2k distinguishable states. (initial value = 0 0 ... 0)

Johnson Counter

Sequence	Fli	p-flop	outpu	ıts	AND gate required
number	\overline{A}	B	C	E	for output
1	0	0	0	0	A'E'
2	1	0	0	0	AB'
3	1	1	0	0	BC'
4	1	1	1	0	CE'
5	1	1	1	1	AE
6	0	1	1	1	A'B
7	0	0	1	1	B'C
8	0	0	0	1	C'E

Fig. 6.18 Construction of a Johnson counter

(b) Count sequence and required decoding