Robust convex programming Computational Intelligence, Lecture 9

by Sergei Savin

Spring 2023

CONTENT

- Robust convex programming problems
- Robust convex programming: Linear constraint
- Robust convex programming: Quadratic constraint
- Max over norm of a sum of vectors
- Robust convex programming: Conic constraint
- Homework

ROBUST CONVEX PROGRAMMING PROBLEMS

Consider the following problem:

Example

Find smallest $x \in \mathbb{R}$, such that $x + y \ge 1$, where $|y| \le 2$.

In that example we need to find optimal value of x subject to a constraint where another unknown variable is present; the solution we find has to satisfy the constraint for any allowed value of y. The solution here is x=3

ROBUST CONVEX PROGRAMMING: LINEAR CONSTRAINT

Consider the following problem:

$$\min_{\mathbf{x}} \sup_{\mathbf{y}} \quad ||\mathbf{x}||,
\text{subject to} \quad \mathbf{c}^{\top} \mathbf{x} + \mathbf{d}^{\top} \mathbf{y} \le h,
||\mathbf{y}|| \le p$$
(1)

It is clear that worst-case scenario corresponds to the largest value of $\mathbf{d}^{\top}\mathbf{y}$. We note that $\max(\mathbf{d}^{\top}\mathbf{y}) = \max(||\mathbf{d}|| \cdot ||\mathbf{y}|| \cdot \cos(\mathbf{d}^{\wedge}\mathbf{y})) = ||\mathbf{d}||p$; hence $\mathbf{y} = p \frac{\mathbf{d}}{||\mathbf{d}||}$.

ROBUST CONVEX PROGRAMMING: LINEAR CONSTRAINT

Therefore $\mathbf{c}^{\top}\mathbf{x} + \mathbf{d}^{\top}\mathbf{y} \leq h$ becomes:

$$\mathbf{c}^{\top}\mathbf{x} + p||\mathbf{d}|| \le h \tag{2}$$

Thus our problem becomes:

$$\min_{\mathbf{x}} \quad ||\mathbf{x}||, \\
\text{subject to} \quad \mathbf{c}^{\top} \mathbf{x} \le h - p||\mathbf{d}|| \tag{3}$$

Consider the following problem, where \mathbf{x}^* is the desired value of \mathbf{x} :

$$\min_{\mathbf{x}} \sup_{\mathbf{y}} ||\mathbf{x} - \mathbf{x}^*||,$$
subject to $\mathbf{y}^{\top} \mathbf{D} \mathbf{x} \le h$,
$$||\mathbf{y}|| \le p$$
(4)

This time worst-case scenario corresponds to \mathbf{y} aligned with $\mathbf{D}\mathbf{x}$ and having its maximum possible length p. From that we conclude that $\mathbf{y} = p \frac{\mathbf{D}\mathbf{x}}{||\mathbf{D}\mathbf{x}||}$. Let us substitute it to $\mathbf{y}^{\top}\mathbf{D}\mathbf{x}$:

$$p\left(\frac{\mathbf{D}\mathbf{x}}{||\mathbf{D}\mathbf{x}||}\right)^{\top}\mathbf{D}\mathbf{x} = p\frac{\mathbf{x}^{\top}\mathbf{D}^{\top}\mathbf{D}\mathbf{x}}{||\mathbf{D}\mathbf{x}||} = p\frac{||\mathbf{D}\mathbf{x}||^{2}}{||\mathbf{D}\mathbf{x}||} = p||\mathbf{D}\mathbf{x}||$$
(5)

Thus our problem becomes:

$$\min_{\mathbf{x}} \qquad ||\mathbf{x} - \mathbf{x}^*||,
\text{subject to} \quad ||\mathbf{D}\mathbf{x}|| \le \frac{h}{p}$$
(6)

which is an SOCP.

A more general case of the previous problem is:

$$\min_{\mathbf{x}} \sup_{\mathbf{y}} \quad ||\mathbf{x} - \mathbf{x}^*||,
\text{subject to} \quad (\mathbf{y} - \mathbf{a})^{\top} \mathbf{D}(\mathbf{x} - \mathbf{b}) \le h,
||\mathbf{y}|| \le p$$
(7)

We can rewrite $(\mathbf{y} - \mathbf{a})^{\top} \mathbf{D} (\mathbf{x} - \mathbf{b}) \leq h$ as:

$$\mathbf{y}^{\top} \mathbf{D}(\mathbf{x} - \mathbf{b}) - \mathbf{a}^{\top} \mathbf{D}(\mathbf{x} - \mathbf{b}) \le h \tag{8}$$

With that we see that the worse case scenario is \mathbf{y} is aligned with $\mathbf{D}(\mathbf{x} - \mathbf{b})$ and has length p:

$$\mathbf{y} = p \frac{\mathbf{D}(\mathbf{x} - \mathbf{b})}{||\mathbf{D}(\mathbf{x} - \mathbf{b})||} \tag{9}$$

Then $\mathbf{y}^{\top}\mathbf{D}(\mathbf{x} - \mathbf{b}) - \mathbf{a}^{\top}\mathbf{D}(\mathbf{x} - \mathbf{b}) \le h$ becomes:

$$p\frac{(\mathbf{x} - \mathbf{b})^{\top} \mathbf{D}^{\top} \mathbf{D} (\mathbf{x} - \mathbf{b})}{||\mathbf{D} (\mathbf{x} - \mathbf{b})||} - \mathbf{a}^{\top} \mathbf{D} (\mathbf{x} - \mathbf{b}) \le h$$
 (10)

which is the same as:

$$p||\mathbf{D}(\mathbf{x} - \mathbf{b})|| - \mathbf{a}^{\top}\mathbf{D}(\mathbf{x} - \mathbf{b}) \le h$$
 (11)

$$||\mathbf{D}(\mathbf{x} - \mathbf{b})|| \le \frac{1}{p} \mathbf{a}^{\top} \mathbf{D}(\mathbf{x} - \mathbf{b}) + \frac{h}{p}$$
 (12)

which is an SOCP constraint.

And thus we get:

$$\min_{\mathbf{x}} \qquad ||\mathbf{x} - \mathbf{x}^*||,
\text{subject to} \quad ||\mathbf{D}(\mathbf{x} - \mathbf{b})|| \le \frac{1}{p} \mathbf{a}^{\top} \mathbf{D}(\mathbf{x} - \mathbf{b}) + \frac{h}{p} \tag{13}$$

which is SOCP.

A more general case of the previous problem is:

$$\min_{\mathbf{x}} \sup_{\mathbf{y}} \quad ||\mathbf{x} - \mathbf{x}^*||,
\text{subject to} \quad (\mathbf{y} - \mathbf{a})^{\top} \mathbf{D}(\mathbf{x} - \mathbf{b}) \leq h,
||\mathbf{H}\mathbf{y} + \mathbf{f}|| \leq p$$
(14)

where \mathbf{H} is has an inverse. We start by making substitution:

$$\mathbf{v} = \mathbf{H}\mathbf{y} + \mathbf{f} \tag{15}$$

meaning $\mathbf{y} = \mathbf{H}^{-1}(\mathbf{v} - \mathbf{f})$:

$$(\mathbf{H}^{-1}(\mathbf{v} - \mathbf{f}) - \mathbf{a})^{\top} \mathbf{D}(\mathbf{x} - \mathbf{b}) \le h \tag{16}$$

$$\mathbf{v}^{\mathsf{T}}\mathbf{H}^{-\mathsf{T}}\mathbf{D}(\mathbf{x} - \mathbf{b}) - (\mathbf{H}^{-1}\mathbf{f} + \mathbf{a})^{\mathsf{T}}\mathbf{D}(\mathbf{x} - \mathbf{b}) \le h$$
 (17)

$$\mathbf{v}^{\mathsf{T}}\mathbf{H}^{\mathsf{T}}\mathbf{D}(\mathbf{x} - \mathbf{b}) - (\mathbf{H}\mathbf{a} + \mathbf{f})^{\mathsf{T}}\mathbf{H}^{\mathsf{T}}\mathbf{D}(\mathbf{x} - \mathbf{b}) \le h$$
 (18)

We can introduce notation:

$$\mathbf{M} = \mathbf{H}^{-\top} \mathbf{D} \tag{19}$$

$$\mathbf{g} = \mathbf{H}\mathbf{a} + \mathbf{f} \tag{20}$$

With that we can re-write our constraint:

$$\mathbf{v}^{\top} \mathbf{M} (\mathbf{x} - \mathbf{b}) - \mathbf{g}^{\top} \mathbf{M} (\mathbf{x} - \mathbf{b}) \le h$$
 (21)

$$(\mathbf{v} - \mathbf{g})^{\mathsf{T}} \mathbf{M} (\mathbf{x} - \mathbf{b}) \le h$$
 (22)

And now we formulated type 3 problem as type 2:

$$\min_{\mathbf{x}} \sup_{\mathbf{v}} \quad ||\mathbf{x} - \mathbf{x}^*||,
\text{subject to} \quad (\mathbf{v} - \mathbf{g})^{\top} \mathbf{M} (\mathbf{x} - \mathbf{b}) \leq h,
\quad ||\mathbf{v}|| \leq p$$
(23)

Try solving this problem on your own:

$$\min_{\mathbf{x}} \sup_{\mathbf{y}} ||\mathbf{x} - \mathbf{x}^*||,
\text{subject to} \quad (\mathbf{y} - \mathbf{a})^\top \mathbf{D}(\mathbf{x} - \mathbf{b}) + \mathbf{s}^\top \mathbf{y} + \mathbf{q}^\top \mathbf{x} \le h,
||\mathbf{H}\mathbf{y} + \mathbf{f}|| \le p$$
(24)

Max over norm of a sum of vectors

Consider the problem $\max_{\mathbf{x}}(||\mathbf{a} + \mathbf{x}||)$ and $||\mathbf{x}|| \leq p$. Let us open the norm:

$$||\mathbf{a} + \mathbf{x}|| = \sqrt{(\mathbf{a} + \mathbf{x})^{\top}(\mathbf{a} + \mathbf{x})} = \sqrt{\mathbf{a}^{\top}\mathbf{a} + 2\mathbf{a}^{\top}\mathbf{x} + \mathbf{x}^{\top}\mathbf{x}}$$
 (25)

If **a** is a constant, then the expression $\mathbf{a}^{\top}\mathbf{a} + 2\mathbf{a}^{\top}\mathbf{x} + \mathbf{x}^{\top}\mathbf{x}$ attains a maximum when $\mathbf{x}^{\top}\mathbf{x} = p^2$ and $\mathbf{a}^{\top}\mathbf{x} = ||\mathbf{a}||p$. This implies that:

$$\mathbf{x} = p \frac{\mathbf{a}}{||\mathbf{a}||} \tag{26}$$

And thus:

$$\max_{\mathbf{x}}(||\mathbf{a} + \mathbf{x}||) = ||\mathbf{a} + p_{\frac{\mathbf{a}}{||\mathbf{a}||}}|| = ||\mathbf{a}|| \left(1 + \frac{p}{||\mathbf{a}||}\right) = ||\mathbf{a}|| + p$$

ROBUST CONVEX PROGRAMMING: CONIC CONSTRAINT

Consider the following problem:

$$\min_{\mathbf{x}} \sup_{\mathbf{y}} ||\mathbf{x} - \mathbf{x}^*||,$$
subject to $||\mathbf{A}\mathbf{x} + \mathbf{b} + \mathbf{y}|| \le \mathbf{c}^\top \mathbf{x} + d,$ $||\mathbf{y}|| \le p$ (27)

As we discussed in the last slide, expression $||\mathbf{A}\mathbf{x} + \mathbf{b} + \mathbf{y}||$ is biggest when $\mathbf{y} = p \frac{\mathbf{A}\mathbf{x} + \mathbf{b}}{||\mathbf{A}\mathbf{x} + \mathbf{b}||}$, and the conic constraint becomes:

$$||\mathbf{A}\mathbf{x} + \mathbf{b} + p\frac{\mathbf{A}\mathbf{x} + \mathbf{b}}{||\mathbf{A}\mathbf{x} + \mathbf{b}||}|| \le \mathbf{c}^{\top}\mathbf{x} + d$$
 (28)

$$||\mathbf{A}\mathbf{x} + \mathbf{b}|| \left(1 + \frac{p}{||\mathbf{A}\mathbf{x} + \mathbf{b}||}\right) \le \mathbf{c}^{\top}\mathbf{x} + d$$
 (29)

ROBUST CONVEX PROGRAMMING: CONIC CONSTRAINT

Continue the derivation:

$$||\mathbf{A}\mathbf{x} + \mathbf{b}|| \left(1 + \frac{p}{||\mathbf{A}\mathbf{x} + \mathbf{b}||}\right) \le \mathbf{c}^{\mathsf{T}}\mathbf{x} + d$$
 (30)

$$||\mathbf{A}\mathbf{x} + \mathbf{b}|| + p \le \mathbf{c}^{\top}\mathbf{x} + d \tag{31}$$

Finally the problem becomes:

$$\min_{\mathbf{x}} \quad ||\mathbf{x} - \mathbf{x}^*||,
\text{subject to} \quad ||\mathbf{A}\mathbf{x} + \mathbf{b}|| \le \mathbf{c}^\top \mathbf{x} + d - p$$
(32)

Lecture slides are available via Github, links are on Moodle

You can help improve these slides at: github.com/SergeiSa/Computational-Intelligence-Slides-Spring-2023

