Case Studies I-Chen Wu

- David Silver, Online Course for Deep Reinforcement Learning.
 - http://www.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.html
- M. Szubert and W. Jaśkowski, "Temporal difference learning of n-tuple networks for the game 2048," 2014 IEEE Conference on Computational Intelligence and Games (CIG), Aug. 2014, pp. 1–8.
- Kun-Hao Yeh, et al., Multi-Stage Temporal Difference Learning for 2048-like Games, accepted by IEEE Transactions on Computational Intelligence and AI in Games (SCI), doi: 10.1109/TCIAIG.2016.2593710, 2016.
- Mnih, V. et al. Human-level control through deep reinforcement learning. Nature 518, 529–533 (2015).

Cases

- **2048**
 - Temporal Difference (TD) Learning
 - N-tuple networks
- Atari games
 - Temporal Difference (TD) Learning
 - Deep Q-networks (DQN), a kind of Deep NN
- Go Programs (with Monte-Carlo Tree Search) to be added
 - Monte-Carlo (MC) Learning
 - Multi-Armed Bandits
 - Planning
- AlphaGo (with Reinforcement Learning) to be added.
 - Monte-Carlo (MC) Learning
 - Policy Gradient
- Pole Balancing to be added.
 - Policy Gradient
 - Actor-Critic

Case Study: 2048

[Szubert et al., 2014; Yeh et al., 2016]

2048 RL Agent

- Value function:
 - The expected score/return G_t from a board S
 - But, #states is huge
 - \blacktriangleright About 17^{16} (=10²⁰).
 - Empty, $2 (=2^1)$, $4 (=2^2)$, $8 (=2^3)$, ..., $65536 (=2^{16})$.
 - Need to use value function approximator.
- Policy:
 - Simply choose the action (move) with the maximal value based on the approximator.
- Model: agent's representation of the environment
 - After a move, randomly generate a tile:
 - ▶ 2-tile: with probability of 9/10
 - ▶ 4-tile: with probability of 1/10
 - Reward: simply follow the rule of 2048.

TD Learning in 2048

- State value function: (Normally $\gamma = 1$)
 - Update value $V(S_t)$ toward TD target $R_{t+1} + \gamma V(S_{t+1})$ $V(S_t) \leftarrow V(S_t) + \alpha (R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$
- Making decision (based on value).

$$\pi(s) = argmax_a(R_{t+1} + \mathbb{E}[V(S_{t+1}) | S_t = s, A_t = a])$$

Problem: Less efficient upon making decision.

 S_{t+1}

Q-Learning in 2048

- Q-value function: (Normally $\gamma = 1$)
 - Update value $Q(S_t, A_t)$ toward TD target $R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a)$ $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha (R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t))$
- Making decision (based on value).

$$\pi(s) = argmax_a(Q(S_t, A_t))$$

- more efficient.
- A minor problem: Four times more memory

Afterstates in 2048

- Afterstate S_t^{af} is a state after action A_t at S_t .
 - Why not use S_t^{af} instead of (S_t, A_t) ?
 - Note: in 2048, the reward R_{t+1} is not included in S_t^{af} .
- Afterstate value function: (Normally $\gamma = 1$)
 - Update value $V^{af}(S_t^{af})$ toward TD target $\gamma \max_{a} (R_{t+1} + V^{af}(S_{t+1}^{af}))$

$$V^{af}\left(S_t^{af}\right) \leftarrow V^{af}\left(S_t^{af}\right) + \alpha \left(\gamma \max_{a} (R_{t+1} + V^{af}\left(S_{t+1}^{af}\right) - V^{af}\left(S_t^{af}\right)\right)$$

Making decision (based on value).

$$\pi(s) = argmax_a \left(V^{af} \left(S_t^{af} \right) \right)$$

- For simplicity, we use V, instead of V^{af} , if it can be applied to both.
- More efficient.

$$R_{t+1} + Q(S_{t+1}, A_{t+1})$$

Value Function Approximation

- As mentioned above, #states is huge, so we need to use value function approximation.
 - Use a value function approximator, $\hat{v}(S, w) \approx V(S)$.
 - Simply use deterministic policy: $\pi(S) = argmax_a(\hat{v}(S, w))$
- But, what kind of value function approximator can we use?
 - What features can we choose?
 - ▶ Traditionally, # of empty cells, # of continuous cells, big tiles, etc.
 - Linear (like n-tuple network) vs. non-linear (like NN)
- n-tuple network is a powerful network for 2048.
 - Explore a large set of features.
 - Simplify operations by linear value function approximation.

Linear Value Function Approximation

 Represent value function by a linear combination of features

$$\hat{v}(S;\theta) = x(S)^{\mathrm{T}}\theta = \sum_{j=1}^{n} x_j(S)\theta_j$$

• Gradient of $\hat{v}(S, \theta)$:

$$\nabla_{\theta} \hat{v}(S, \theta) = x(S)$$

Gradient Descent

- Update value $V(S_t)$ towards TD target $y_t = R_{t+1} + V(S_{t+1})$ $\Delta V = (R_{t+1} + V(S_{t+1}) - V(S_t)) = (y_t - V(S_t))$ $V(S_t) \leftarrow V(S_t) + \alpha \Delta V$
 - α : learning rate, or called step size.
 - Note: $\gamma = 1$ here.
- Objective function is to minimize the following loss in parameter θ . (note: $\hat{v}(S, \theta) = x(S)^{T}\theta$)

$$\mathcal{L}(w) = \mathbb{E}\left[\left(y_t - \hat{v}(S, \theta)\right)^2\right]$$

$$\nabla_{\theta} \mathcal{L}(\theta) = \left(y_t - \hat{v}(S, \theta)\right) \cdot \nabla_{\theta} \hat{v}(S, \theta) = \Delta V \cdot x(S)$$

• Update features w: step-size * prediction error * feature value $\theta \leftarrow \theta + \alpha \Delta V \cdot x(S)$

N-Tuple Network

- Example: 4-tuple networks as shown.
 - Each cell has 16 different tiles
 - 16⁴ features for this network.
 - ▶ But only one is on, others are 0.
 - ▶ So, we can use table lookup to find the feature weight.

64	•0	8	4
128	2•1		2
2	8•2		2
128	3		

0123	weight
0000	3.04
0001	-3.90
0002	-2.14
:	:
0010	5.89
:	:
0130	-2.01
:	:

Other N-Tuple Networks

- Left: [Szubert et al., 2014]; Right: [Yeh et al., 2016]
- Some researchers even used 7-tuple network.

Update Features in N-Tuple Networks

- For n-tuple networks, simply update values with $\alpha \Delta V$ at $LUT_i[index(s_i)]$
- Features:
 - 8 x 16⁴ features, x(S) = [0, 1, 0, ..., 0, 0, 1, ..., ..., 1, 0, 0, ...]
 - ▶ All 0s, except for 8 ones.
 - One 1 every 16⁴ features.
 - Let their indices be $s_1, s_2, s_3, s_4, s_5, s_6, s_7, s_8$.
 - Only need to update $\alpha \Delta V$ at the features indexed by these indices.
 - Very efficient and fast.
- \bullet For k n-tuple networks,

$$\hat{v}(S,\theta) = x(S)^{\mathrm{T}}\theta = \sum_{j=1}^{n} x_j(S)\theta_j = \sum_{i=1}^{k} LUT_i[index(s_i)]$$

- LUT_i : the i-th n-tuple network lookup table.
- $index(s_i)$: The index in the i-th n-tuple network of state S.
- Update features w: step-size * prediction error * feature value
 - $-\theta \leftarrow \theta + \alpha \Delta V \cdot x(S)$
 - Only need to update values θ_i with $\alpha \Delta V$ at $LUT_i[index(s_i)]$.

Afterstate Evaluation Function

```
1: function EVALUATE(s, a)

2: s', r \leftarrow \text{COMPUTE AFTERSTATE}(s, a)

3: return r + V(s')

4:

5: function Learn Evaluation(s, a, r, s', s'')

6: a_{next} \leftarrow \arg\max_{a' \in A(s'')} \text{Evaluate}(s'', a')

7: s'_{next}, r_{next} \leftarrow \text{Compute Afterstate}(s'', a_{next})

8: V(s') \leftarrow V(s') + \alpha(r_{next} + V(s'_{next}) - V(s'))
```



```
1: function PLAY GAME
        score \leftarrow 0
 2:
        s \leftarrow \text{Initialize Game State}
        while \negIs Terminal State(s) do
 4:
            a \leftarrow \arg\max_{a' \in A(s)} \text{EVALUATE}(s, a')
 5:
            r, s', s'' \leftarrow \text{MAKE MOVE}(s, a)
 6:
            if LEARNING ENABLED then
 7:
                 LEARN EVALUATION(s, a, r, s', s'')
 8:
9:
            score \leftarrow score + r
            s \leftarrow s''
10:
11:
        return score
12:
13: function MAKE MOVE(s, a)
        s', r \leftarrow \text{COMPUTE AFTERSTATE}(s, a)
14:
    s'' \leftarrow \text{Add Random Tile}(s')
        return (r, s', s'')
16:
```


The N-Tuple Networks Used

• Use the following [Szubert and Jaskowaski 2014]

Ours:

Performance Results (without search)

2048 rate	100%
4096 rate	100%
8192 rate	99.20%
16384 rate	83.30%
32768 rate	8.10%
Maximum score	607488
Average score	331820

Case Study: Atari 2600 Games

• Learn to play Atari games from video only (without knowing the game a priori)

Deep Q-Networks (DQN)

DQN uses experience replay and fixed Q-targets

- Take action according to ϵ -greedy policy
- Store transition $(s_t, a_t, r_{t+1}, s_{t+1})$ in replay memory \mathcal{D}
- Sample random mini-batch of transitions (s, a, r, s') from \mathcal{D}
- Compute Q-learning targets w.r.t. old, fixed parameters θ^-
- Optimize MSE between Q-network and Q-learning targets
 - Minimize a sequence of loss functions $\mathcal{L}(\theta_i)$ that changes at each iteration i.

$$- \mathcal{L}_i(\theta_i) = \mathbb{E}_{s,a,r,s' \sim \mathcal{D}_i} \left[\left(r + \gamma \max_{a'} Q(s', a'; \theta_i^-) - Q(s, a; \theta_i) \right)^2 \right]$$

- Using variant of stochastic gradient descent
 - Differentiating the loss function with respect to the weights we arrive at the following gradient

$$- \nabla_{\theta_i} \mathcal{L}_i(\theta_i) = \mathbb{E}_{s,a,r,s' \sim \mathcal{D}_i} \left[\left(r + \gamma \max_{a'} Q(s',a';\theta_i^-) - Q(s,a;\theta_i) \right) \cdot \nabla_{\theta_i} Q(s,a;\theta_i) \right]$$

DQN in Atari

- End-to-end learning of values Q(s, a) from pixels s
- Input state s
 - stack of raw pixels from last 4 frames
- Output
 - $Q(s, a_i | \theta)$ for 18 joystick/button positions
- $+ Q(s, a_1|\theta)$ **DCNN** (θ) $\rightarrow Q(s, a_n | \theta)$

- Reward
 - change in score for that step

State

Performance of Deep Q-Learning

• Left (stronger than human)

