1. Introduction to Functions

Definition of a Function:

A function is a relation between a set of inputs (domain) and a set of permissible outputs (range) where each input is related to exactly one output.

- \circ Notation: f:A o B
- Example: $f(x) = x^2$

• Key Components of a Function:

- Domain: The set of all possible input values (independent variable).
- o Range: The set of all possible output values (dependent variable).
- Codomain: The set of all possible values that the function can output (may be larger than the range).

• Example:

For
$$f(x) = x^2$$
:

- Domain: All real numbers (ℝ)
- \circ Range: Non-negative real numbers ($[0,\infty)$)

2. Types of Functions

• 1. Injective (One-to-One) Functions:

- o Each element of the domain maps to a unique element in the range.
- \circ Example: f(x)=2x

• 2. Surjective (Onto) Functions:

- Every element in the codomain is mapped to by at least one element in the domain.
- Example: $f(x) = x^3$

• 3. Bijective Functions:

- o A function that is both injective and surjective.
- Example: f(x) = x

4. Polynomial Functions:

- \circ Functions of the form $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0$.
- Example: $f(x) = 3x^2 + 2x + 1$

• 5. Rational Functions:

 \circ Functions of the form $f(x)=rac{P(x)}{Q(x)}$, where P(x) and Q(x) are polynomials.

$$\circ$$
 Example: $f(x)=rac{x+1}{x-2}$

• 6. Exponential Functions:

 $\circ \ \ {\hbox{Functions of the form}} \ f(x)=a^x \hbox{, where } a>0.$

$$\circ$$
 Example: $f(x)=2^x$

• 7. Logarithmic Functions:

 \circ Functions of the form $f(x) = \log_a(x)$, where a>0 .

$$\circ$$
 Example: $f(x) = \log_2(x)$

• 8. Trigonometric Functions:

o Functions like sine, cosine, and tangent.

$$\circ$$
 Example: $f(x) = \sin(x)$

3. Domain & Range of Different Types of Functions

Polynomial Functions:

- \circ Domain: All real numbers (\mathbb{R})
- o Range: Depends on the degree and leading coefficient.

Rational Functions:

- o Domain: All real numbers except where the denominator is zero.
- o Range: Depends on the function.

Exponential Functions:

- \circ Domain: All real numbers (\mathbb{R})
- \circ Range: $(0,\infty)$

Logarithmic Functions:

- \circ Domain: $(0,\infty)$
- \circ Range: All real numbers (\mathbb{R})

• Trigonometric Functions:

- Example: $f(x) = \sin(x)$
 - lacksquare Domain: All real numbers ($\mathbb R$)
 - Range: [-1, 1]

4. Algebraic Functions

Definition:

Functions that involve only algebraic operations (addition, subtraction, multiplication, division, and roots) on variables.

 \circ Example: $f(x) = \sqrt{x^2 + 1}$

• Types of Algebraic Functions:

- o Polynomial Functions
- o Rational Functions
- Root Functions

6. Composite Functions

Definition:

The composition of two functions f and g, denoted $(f \circ g)(x)$, is defined as f(g(x)).

Example:

$$\circ f(x) = x^2$$

$$g(x) = x + 1$$

$$\circ (f \circ g)(x) = f(g(x)) = (x+1)^2$$

7. Binary Functions

Definition:

A function that takes two inputs and produces one output.

$$\circ \ \ \mathsf{Notation:} \ f: A \times B \to C$$

• Example:
$$f(x,y) = x + y$$

Composition of Binary Functions:

o Example:
$$f(x,y) = x^2 + y^2$$
 and $g(z) = \sqrt{z}$

$$\circ \ (g\circ f)(x,y) = g(f(x,y)) = \sqrt{x^2+y^2}$$

8. Practice Problems

1. Find the domain and range of
$$f(x)=rac{1}{x-3}$$
 .

2. Determine if
$$f(x)=x^3$$
 is bijective. If yes, find its inverse.

3. Compute
$$(f\circ g)(x)$$
 for $f(x)=\sqrt{x}$ and $g(x)=x^2+1$.

9. Summary

- · Functions are fundamental in mathematics and computer science.
- Understanding types of functions, their domains, ranges, and compositions is crucial for advanced topics like algorithms, data structures, and machine learning.