Определение константы диссоциации молекулы pH-индикатора методом спектрофотометрии дата выполнения - 27.04.2021

Гарина Ольга Аксенова Светлана Криворучко Мария Б04-901

11 мая 2021 г.

Цель работы:

- 1. Регистрация спектров поглощения растворов метилового оранжевого с различными значениями рН в видимой и УФ-областях спектра;
- 2. Определение рабочих длин волн для кислой и основной форм исследуемого индикатора, нахождение изобестической точки; проверка закона Бугера Ламберта Бера;
- 3. Определение коэффициентов экстинкции кислой и основной форм индикатора на выбранных длинах волн;
- 4. Определение константы диссоциации метилового оранжевого.

В работе используются: Мерные колбы на 50 мл -10 шт.; спектрофотометр, кварцевая кювета толщиной 1 см.

1 Теоретическая часть

Кислотно-основные индикаторы (pH-индикаторы) — органические соединения, способные изменять цвет в растворе при изменении кислотности (pH). Индикаторы широко используют в титровании в аналитической химии и биохимии. Их преимуществом является дешевизна, быстрота и наглядность исследования.

Рисунок 1 – Виды индикаторов

1.1 Основной закон спектроскопии

В основе количественных измерений в спектроскопии лежит закон Бугера - Ламберта - Бера, который связывает способность вещества поглощать свет с концентрацией данного вещества:

$$lg\frac{I}{I_0} = \varepsilon Cl = D \tag{1}$$

Для процесса поглощения света веществом характерна аддитивность: если в образце присутствуют несколько поглощающих форм, то оптическая плотность на данной длине волны будет определяться суммой поглощения каждой из них:

$$D = l \sum_{i} \varepsilon_{i} C_{i} \tag{2}$$

Поэтому при исследовании растворов требуется учитывать, что световой поток может поглощаться и молекулами растворителя, концентрация которых обычно на несколько порядков превышает концентрацию растворённого вещества. В итоге необходимым условием для получения спектра поглощения какого-либо вещества в растворе является полная прозрачность в данной спектральной области используемого растворителя $\varepsilon_i << \varepsilon_s$.

Большинство часто используемых растворителей не имеют поглощения в видимой и ближней ультрафиолетовой областях спектра с границей пропускания УФ-излучения от 326 нм (бензол) до 200 нм (вода).

Рисунок 2 – Спектрофотометр

1.2 Особенности спектрофотометрических экспериментов

Закон Бугера - Ламберта - Бера предсказывает наличие линейной зависимости между оптической плотностью вещества и его молярной концентрацией. Так как возможны отклонения от линейной зависимости проводят измерения

оптической плотности на фиксированной длине волны для ряда растворов с различной концентрацией и строится калибровочный график зависимости D от C. Тангенс угла наклона полученной прямой — коэффициент экстинкции вещества.

1.3 Анализ спектров многокомпонентных систем

Рисунок 3 – Спектры поглощения веществ A и B (сплошные линии) и их смесей (пунктирные линии) при условии $C_A + C_B = C_0$

Концентрации двух веществ, находящихся в растворе, связаны так: $C_{HA} + C_{A_-} = C_0 = \text{const.}$ Спектры этих веществ должны отличаться в некоторой области длин волн. Зная 0 и оптическую плотность D на выбранной длине волны λ_2 , концентрацию вещества B в растворе можно найти как:

$$C_B = C_0 \frac{D(\lambda_2)}{D_B(\lambda_2)},\tag{3}$$

где $D_B(\lambda_2)$ — оптическая плотность раствора содержащего только вещество.

Оптическая плотность раствора, содержащего частично диссоциированную кислоту, равна

$$D = D_{HA} + D_A = l(\varepsilon_{HA} \cdot C_{HA} + \varepsilon_{A^-} \cdot C_{A^-}) \tag{4}$$

Если суммарная концентрация кислоты 0 поддерживается постоянной, то это выражение можно переписать в виде

$$D = l \cdot C_0(\varepsilon_{HA} + a(\varepsilon_{A^-}\varepsilon_{HA})) \tag{5}$$

1.4 Анализ кислотно-основных равновесий в растворах

Кислотой называют частицу, способную отдавать протон, а основанием - частицу, способную принимать протон. Данное равновесие характеризуется константой кислотности, которая определяется произведением активностей участвующих в равновесии частиц в степенях, соответствующих стехиометрическим коэффициентам.

В зависимости от рассматриваемого равновесия одна и та же частица может служить как кислотой, так и основанием.

Оптическая плотность раствора является функцией от степени диссоциации кислоты и существенно зависит от рH-среды. При добавлении сильных кислот диссоциация слабой кислоты подавляется, а в растворе с достаточно большим рH она полностью ионизована. Поэтому в кислом растворе можно получить спектр и определить экстинкцию не диссоциированной кислоты ε_{HA} , а в щелочном растворе определить экстинкцию аниона ε_{A^-} .

Коэффициент активности аниона кислотного остатка рассчитывают по формуле Дебая - Хюккеля:

$$lg\gamma = \frac{-0.509 \cdot Z^2 \sqrt{I}}{1 + \sqrt{I}},\tag{6}$$

где I – ионная сила раствора.

Для рассчета константы диссоциации одноосновной кислоты в буферном растворе:

$$lgK_a = lg\frac{a}{1-a} - pH + lg\gamma. (7)$$

2 Эксперимент

Кислотно-основное равновесие, устанавливающееся в растворах метилового оранжевого (натриевой соли 4'-диметиламиноазабензол-4-сульфокислоты) представляется следующим образом:

$$O_3S$$
 O_3S O_3S

Метиловый оранжевый относится к амфотерным индикаторам, так как его молекула содержит одновременно кислотную и основную группы.

2.1 Приготовление растворов

Растворенное вещество	Концентрация
Метиловый оранжевый	1.0 г/л
HCl	0.1 M
NaOH	0.1 M
CH_3COOH	0.3 м

Таблица 1 – Исходные растворы

Буферный раствор I (буфер I), pH = 3.9, готовят в мерной колбе на 200 мл из ацетата натрия и уксусной кислоты. Может использоваться безводный ацетат натрия, дигидрат или тригидрат. Рассчитывают навеску ацетата натрия, чтобы его концентрация в готовом буферном растворе была равна 0.02 М. Необходимое количество уксусной кислоты рассчитывают по формуле Гендерсона:

$$pH = lgK_{\alpha}(AcOH) + lg\frac{C(AcONa)}{C(AcOH)},$$
(8)

где где К $lpha({\rm AcOH})=1{,}75{\cdot}10^{-5}.$ Отсюда

$$u_{AcOH} = 0.0296 \; ext{моль}$$
 $V_{AcOH} = 0.1 \; ext{л}$
 $u_{AcONa} = 0.004 \; ext{моль}$
 $m_{AcONa} = 0.328 \; ext{г}$

Буфер II должен иметь pH=3.7, получен добавлением кислоты к буферу I. Буфер III с pH=3.5 получен аналогично.

Далее в колбах по 50 мл были приготовлены следующие растворы

Номер раствора	Метилоранж 0.2 г/л	Раствор щелочи или кислоты 0.1 М
1	2 мл	5 мл HCl
2	1.5 мл	5 мл HCl
3	1 мл	5 мл HCl
4	0.5 мл	5 мл HCl
5	2.5 мл	5 мл NaOH
6	2 мл	5 мл NaOH
7	1.5 мл	5 мл NaOH
8	1 мл	5 мл NaOH
9	2 мл	25 мл буфера I
10	2 мл	25 мл буфера II
11	2 мл	25 мл буфера III

Таблица 2 – Приготовленные растворы

2.2 Снятие спектров

Спектры поглощения приготовленных растворов индикатора снимаем в области 300-600 нм. Для этогоо используем кюветы с длиной отического пути l=1 см. В качестве раствора сравнения используем дистиллированную воду.

Снимаем спектры поглощения растворов, определяем рабочие длины волн — λ_1 и λ_2 , поглощение и оптические плотности D протонированной и депротонированной форм индикатора на рабочих длинах волн. Проверяем выполнение закона Бугера-Ламберта-Бэра и сторим графики зависимости оптической

плотности от концентрации индикатора для кислых и основных растворов. Рассчитываем коэффициент экстинкции для каждой формы индикатора и заносим получившиеся значения в Таблицы 3 и 4.

Форма инд	Номер р-ра	C_0 индикатора, $10^{-5}~{ m M}$	D	ε
Протон. НА	1	2.44648318	0.999166	40840.91025
Протон. НА	2	1.83486239	0.745096	40607.732
Протон. НА	3	1.22324159	0.465088	38020.944
Протон. НА	4	0.611620795	0.242207	39600.8445
Депротон. А-	5	3.05810398	0.161769	5289.8463
Депротон. А-	6	2.44648318	0.130412	5330.5905
Депротон. А-	7	1.83486239	0.093437	5092.3165
Депротон. А-	8	1.22324159	0.065792	5378.496

Таблица 3 — Определение коэффициентов экстинкции протонированной и депротонированной форм метилового оранжевого на длине волны $\lambda=530$ нм

Форма инд	Номер р-ра	C_0 индикатора, $10^{-5}~{ m M}$	D	arepsilon
Протон. НА	1	2.44648318	0.234249	9574.927875
Протон. НА	2	1.83486239	0.160784	8762.728
Протон. НА	3	1.22324159	0.091118	7448.8965
Протон. НА	4	0.611620795	0.046813	7653.9255
Депротон. А-	5	3.05810398	0.668780	21869.106
Депротон. А-	6	2.44648318	0.539880	22067.595
Депротон. А-	7	1.83486239	0.399550	21775.475
Депротон. А-	8	1.22324159	0.276869	22634.04075

Таблица 4 — Определение коэффициентов экстинкции протонированной и депротонированной форм метилового оранжевого на длине волны $\lambda=438$ нм

Для 530 нм коэф. наклона прямых

 $k_{acid} = 41000.81326220881$ $k_{base} = 5385.597192115259$

Для 438 нм коэф. наклона прямых

 $k_{acid} = 9570.031050531834$ $k_{base} = 21891.129859956793$

Так как все измерения проводятся в кювете с одинаковой толщиной оптического слоя, то степень диссоциации записывается как:

$$\alpha = \frac{D - D_1}{D_6 - D_1}.\tag{9}$$

Рисунок 4 — График зависимости оптической плотности от концентрации индикатора для 530 нм

Рисунок 5 — График зависимости оптической плотности от концентрации индикатора для 438 нм

При измерениях в буферных растворах с известным значением рН константа диссоциации записывается в виде:

$$K_{\alpha} = \frac{\alpha}{1 - \alpha} a_{H+} f_{-},\tag{10}$$

где коэффициент активности аниона кислотного остатка рассчитывается по формуле Дебая-Хюккеля (6).

Итоговая формула для расчета константы дисоциации одноосновной кислоты в буферном растворе – формула (7).

Требуется проверить выполнимость закона Бугера-Ламберта-Бера. С этой целью провелись измерения оптической плотности на фиксированной длине волны для ряда растворов с различной концентрацией. По полученным данным построен калибровочный график зависимости D от C (при постоянной толщине оптического слоя), по которому видна линейнаяя зависимость. В нашем случае точки на графике почти идеально легли на прямую, проходящую через начало координат. Тангенс угла наклона этой прямой и есть коэффициент экстинкции метилового оранжевого (рисунки 4 и 5), коэф. наклона графиков см. выше.

•		ηH	\sim M $^{-1}$ M $^{-1}$]0,7/	Ω		σ		$\log \alpha_{\overline{1-\alpha}}$	د د ا	lgK_{lpha}		$ ext{K}_{lpha}$		
		TI	1C, 1VI	/ 2	λ_1	λ_2	λ_1	λ_2	λ_1 λ_2	λ_2	λ_1	λ_2	λ_1	λ_2	
	<u></u>	2	0.01	-0.046 0.99	0.99	0.234 0	0	0	ı	ı	ı	ı	ı	ı	
	9	12	0.01	-0.046 0.130	0.130	0.539	П	\vdash	ı	ı	ı	1	ı	ı	
	6	3.93	0.004	9 3.93 0.004 -0.03 0.348	0.348	0.462	0.751	0.756	0.479	0.491	0.462 0.751 0.756 0.479 0.491 -3.48 -3.46 0.0003	-3.46	0.0003	0.00033	
	10	3.7	0.004	10 3.7 0.004 -0.03 0.439	0.439	0.411	0.646	0.587	0.262	0.152	0.411 0.646 0.587 0.262 0.152 -3.46 -3.57	-3.57	0.00034	0.00026	
	11	3.5	0.004	11 3.5 0.004 -0.03 0.539	0.539	0.373	0.532	0.462	0.056	-0.065	-3.473	-3.596	0.373 0.532 0.462 0.056 -0.065 -3.473 -3.596 0.000335 0.00025	0.00025	
	Cpe	днее	Эреднее значение	Ие									0.000335	0.000335 0.000285	
	Hor	[огрешность	OCTB										4e-06	3e-05	

3 Вывод

В ходе лабораторной работы было получено значение константы диссоциации метилового оранжевого, согласующееся в пределах порядка с табличным значением.

$$K_{\text{табл}} = 2 \cdot 10^{-4}$$
 (11)

Рисунок 6 — График зависимоти оптической плотности от длины волны у растворов 1, 6, 9-11

Рисунок 7 – Спектр р-ра 1

Рисунок 8 – Спектр р-ра 2

Рисунок 9 – Спектр р-ра 3

Рисунок 10 – Спектр р-ра 4

Рисунок 11 – Спектр р-ра 5

Рисунок 12 – Спектр р-ра 6

Рисунок 13 – Спектр р-ра 7

Рисунок 14 – Спектр р-ра 8

Рисунок 15 – Спектр р-ра 9

Рисунок 16 – Спектр р-ра 10

Рисунок 17 – Спектр р-ра 11

Рисунок 18 — Спектр p-ра 12