Fundamental Algorithms, Assignment 11

Due April 26 in Recitation.

Every block of stone has a statue inside it, and it is the task of the sculptor to discover it. – Michelangelo

- 1. Consider Prim's Algorithm for MST on the complete graph with vertex set $\{1,\ldots,n\}$. Assume that edge $\{i,j\}$ has weight $(j-i)^3$. Let the root vertex r=1. Show the pattern as Prim's Algorithm is applied. In particular, Let n=500 and consider the situation when the tree created has 211 elements and π and key have been updated.
 - (a) What are these 211 elements.
 - (b) What are $\pi[309]$ and key[309].
- 2. Find $d = \gcd(144, 89)$ and x, y with 144x + 89y = 1. [Remark: This is part of a pattern with two consecutive numbers from the Fibonacci sequence $0, 1, 1, 2, 3, 5, 8, 13, 21, \ldots$]
- 3. Find $\frac{311}{507}$ in Z_{1000} .
- 4. Solve the system

 $x \equiv 34 \bmod 101$

 $x \equiv 59 \mod 103$.

- 5. Using the Island-Hopping Method to find 2^{1072} modulo 1073 using a Calculator but NOT using multiple precision arithmetic. (You should never have an intermediate value more than 1072^2 .) What does your result tell you about the primality of 1073.
- 6. (extra from last week!) Suppose that during Kruskal's Algorithm (for MST) and some point we have SIZE[v]=35. What is the interpretation of that in the case when $\pi[v]=v$? What is the interpretation of that in the case when $\pi[v]=u\neq v$? Let w be a vertex. How many different values can $\pi[w]$ have during the course of Kruskal's algorithm? How many different values (as a function of V, the number of vertices) can SIZE[w] have during the course of Kruskal's algorithm? (That is, the maximal number possible.)

The universe is not only queerer than we suppose but queerer than we can suppose. – J.B.S. Haldane