Annotated slides

2425-MA140 Engineering Calculus

Week 03, Lectures 3 Continuity and The Intermediate Value Theorem

Dr Niall Madden

School of Mathematical and Statistical Sciences, University of Galway

Thursday, 3 October, 2024

These slides are by Niall Madden, with some content based on notes by Dr Kirsten Pfeiffer, and some, such as the figure opposite, taken from Strang & Herman's "Calculus". The typos are Niall's.

Outline

- 1 News!
 - Assignment 1
 - Exercises from class
- 2 Recall... continuity
- 3 Types of discontinuity

- 4 Intermediate Value Theorem
 - Examples
 - Application
 - Some terminology
 - Examples
- 5 Exercises

For more, see Section 7.9 (Continuity) in *Modern Engineering Mathematics*: https://search.library.nuigalway.ie/permalink/f/3b1kce/TN_cdi_askewsholts_vlebooks_9780273742517

And I *highly* recommend Chapter 2 (Limits) in **Calculus** by Strang & Herman. See openstax.org/books/calculus-volume-1/pages/2-introduction. Section 2.4 (Continuity) covers today's material.

Reminder

- ► Assignment 1 has a deadline of 5pm, Friday. You can access it on Canvas... 2425-MA140... Assignments.
- ► The Tutorial Sheet is available at https://universityofgalway.instructure.com/ files/2040359/download?download_frd=1
- A new assignment will be posted later this week.

For help with the assignment, attend a tutorial. The schedule is on the Canvas "Course Information" page:

https://universityofgalway.instructure.com/courses/35693/pages/2425-ma140-information. Note the change of venue for the Irish language tutorials (Tue at 1, AMB-G021).

Support is also available at tutorials and **SUMS**.

- *Exercises are now at the end of each set of slides * These are not for homework - they are for exam prep.
- * Solutions will be posted each week.

Recall... continuity

Definition

A function f is **continuous at** x = a if

- 1. f(a) is defined, i.e., a is in the domain of f,
- 2. $\lim_{x\to a} f(x)$ exists.
- 3. $\lim_{x\to a} f(x) = f(a)$.

If f(x) is not continuous at x = a we say it is **discontinuous** at x = a.

If f is continuous at every point in its domain, we say f is continuous.

f is "discontinuous" neas it is discontinuous at at least one point.

Many functions are continuous, e.g. all polynomial functions, most trigonometric functions (not tan), |x|, and so on.

Recall... continuity

Example

Consider the function

$$f(x) = \begin{cases} x+1, & x < 2 \\ bx^2, & x \geqslant 2 \end{cases}$$

For what value of b is f continuous at x = 2?

First, note that 2 is in the domain of Noxt:
$$\lim_{x\to 2^-} f(x) = \lim_{x\to 2^-} (x+i) = 3$$
.
 $\lim_{x\to 2^-} f(x) = \lim_{x\to 2^-} bx^2 = 4b$.
 $\lim_{x\to 2^+} f(x) = \lim_{x\to 2^-} bx^2 = 4b$.
So we need $4b=3$. That is $b=34$.
So $\lim_{x\to 2^+} f(x)=3=f(2)$

Recall... continuity

Example

For what values of x is $f(x) = \frac{2x+1}{2x-2}$ continuous?

$$f(x)$$
 is continuous for all x , except, possibly, where $2x-2=0$. That is

when x=1. Note that the numerator is $2(i)+i=3 \neq 0$. So, f is not defined at x=1. So it is not continuous

at x=1.

ANS: f is continuoses for all x: x < 1 or x > 1Some as: $x \in (-\infty,1) \cup (1,\infty)$ or $|R/\S|^2$

We have encountered three types of discontinuity.

K (a) **Removable discontinuity**: $\lim_{x\to a} f(x)$ exists but $\lim_{x \to a} f(x) \neq f(a)$

- ► Jump discontinuity: $\lim_{x\to a^-} f(x)$ and $\lim_{x\to a^+f(x)}$ both exist (and
 - are finite), but $\lim_{x \to a^{-}} f(x) \neq \lim_{x \to a^{+}} f(x)$
- ▶ Infinite discontinuity: At least one of the one-sided limits does not exist.

Example

Each of the following functions has a discontinuity at x = 2.

1.
$$f(x) = \frac{x^2 - 4}{x - 2}$$
 But $f(x) = \frac{(x - 2)(x + 2)}{x - 3}$

2.
$$g(x) = \frac{x^2}{x-2}$$

except
$$x=2$$
.

3.
$$h(x) = \begin{cases} -2 \\ -2 \\ x^2 - 3 \end{cases} = 2$$

4.
$$h(x) = \begin{cases} x/2 & x \neq 2 \\ x^2 - 2 & x > 2 \end{cases}$$

Example

Each of the following functions has a discontinuity at x = 2.

Classify it.

Classify it.

Note that $g(z) = \frac{4}{6}$ 1. $f(x) = \frac{4}{2}$ So $\lim_{x \to 2} g(x)$ is not

defined. We have

an infinite

discontinuity:

Example

Each of the following functions has a discontinuity at x = 2.

$$\lim_{x\to 2} h(x) = \lim_{x\to 2} \frac{x}{2} = 1$$

1.
$$f(x) = \frac{x^2 - 4}{x - 2}$$

$$\lim_{x \to 2^+} h(x) = \lim_{x \to z} (x^2 - 3) = 1$$

3.
$$h(x) = \begin{cases} x/2 & x < 2 \\ -2 & x = 2 \\ x^2 - 3 & x > 2 \end{cases}$$

So
$$\lim_{x\to 2} h(x) = 1$$
.

4.
$$h(x) = \begin{cases} x/2 & x \\ x & 2 \\ x & 4 \end{cases}$$

Example

Each of the following functions has a discontinuity at x = 2.

Classify it.

$$f(x) = \frac{x^2 - 4}{x + 2}$$

$$\lim_{x\to 2^-} h(x) = \lim_{x\to 2^-} \left(\frac{x}{z}\right) = 1$$

$$\lim_{x\to 2^+} h(x) = \lim_{x\to 2^-} (x^2-x) = 2$$

3.
$$h(x) = \begin{cases} 4 & \text{if } x = 1/2 \\ x^2 - 3 & \text{if } x > 2. \end{cases}$$

4.
$$h(x) = \begin{cases} x/2 & x < 2 \\ x^2 - 2 & x \geqslant 2. \end{cases}$$

Intermediate Value Theorem

Continuous functions have numerous important properties, many of which we will study in MA140. The first of these is the **Intermediate Value Theorem**.

Intermediate Value Theorem (IVT)

Suppose that f(x) is continuous on an interval [a, b]. Let z be any real number between f(a) and f(b). Then there exists a number $c \in [a, b]$ such that f(c) = z.

- If you travel by train from Galway to Athlone, then there must be a time when you are at Oranmore station, and a time when you are at Athenry, and at Woodlawn, etc.
- ► If your car is stopped, and then accelerates to 100km/h, there was a time when it was travelling at 30 km/h.
- Last week, a packet of 20 cigarettes cost €17. Since the budget on Tuesday, they cost €18. But there wasn't a day when they cost, say, €17.50, because the price had a jump discontinuity (so the IVT does not apply here).

Example

Sketch an example of a function for which the IVT does *not* hold.

One of the main applications of the IVT is in establishing if an equation as a solution:

Solutions to f(x) = 0

If f(x) defined on [a,b] is such that f(a)<0 and f(b)>0, then there must be a value $c\in[a,b]$ such that f(x)=0. More generally, if $f(a)f(b)\leqslant 0$, then f(x) has at least one zero in [a,b].

Example

So that $f(x) = x - \cos(x)$ has at least one zero.

One of the main applications of the IVT is in establishing if an equation as a solution:

Solutions to f(x) = 0

If f(x) defined on [a,b] is such that f(a)<0 and f(b)>0, then there must be a value $c\in[a,b]$ such that f(x)=0. More generally, if $f(a)f(b)\leqslant 0$, then f(x) has at least one zero in [a,b].

Example

So that $f(x) = x - \cos(x)$ has at least one zero.

Idea:
$$f(0) = 0 - 1 = -1 < 0$$
.
 $f(z) = 2 - (0S(z) > 0$
 $f(z) = -1 < (0S(x) \le 1$

So f(x) must have a zoro in [0, 2]

Given a function f(x),

- ▶ When we say c is a **zero** of a function, f, we mean that f(c) = 0.
- Many books and website also use the terminology "c is a **root** of f." This is particularly the case where f(x) is a polynomial.
- If c is a zero of f(x), then it is a solution to the equation f(x) = 0.

Example

How many solutions does $x^3 + 1 = 3x^2$ have?

Step 1: Write this as
$$x^3 - 3x + 1 = 0$$
, of $f(x) = 0$

with
$$f(\infty) = x^3 - 3x + 1$$

•

2 solns

Example

How many solutions does $x^3 + 1 = 3x^2$ have?

To use the lut.

$$f(-1) = (-1) - 3 + 1 = -3 \times 0$$

$$f(0) = 0 - 0 + 1 = 1 \times 0$$

$$f(2) = 8 - 12 + 1 = -3 \times 0$$

$$f(3) = 1 > 0$$

between [0,2]
between [2,3]

Q 1(c) from 2019 Exam

Use the Intermediate Value Theorem to show that the equation

$$2x^3 + 3x^2 - 2x - 1 = 0$$

has three solutions in the range -2 < x < 1.

These notes were added atter class

Exercises 3.3.1 (Based on Q1(a), 23/24)

Let
$$g(x) = \begin{cases} 3 & x \le 0 \\ 2x + 1 & 0 < x < 1 \\ x^2 & x \ge 1. \end{cases}$$

- (i) Sketch the graph of g(x) on the interval [-3, 4], making use of the empty and full circle notation.
- (ii) Compute $\lim_{x\to 1^-} g(x)$ and $\lim_{x\to 1^+} g(x)$. Is g continuous at x=1. If not, classify the type of discontinuity.

Exercise 3.3.2

For what values of
$$b$$
 and c is $f(x) = \begin{cases} x^2 + 1 & x \leqslant -1 \\ x + b & -1 < x < 1 \\ cx^2 & x \geqslant 1. \end{cases}$

continuous at x = -1 and x = 1?

Exercises

Exercise 3.3.3 (23/24 Q(1)(c)(ii)

Use the IVT to show that the equation $x^3 - 3x + 1 = 0$ has three solutions in the range -2 < x < 2.

Exercises

Exercise 3.3.3 (23/24 Q(1)(c)(ii)

Use the IVT to show that the equation $x^3 - 3x + 1 = 0$ has three solutions in the range -2 < x < 2.