IE30301-Datamining Assignment 3 (70 Points)

Prof. Junghye Lee

April 11, 2021

Exercise 1

Write a detailed description of the following concepts and their differences. (Explain at least 2 lines about each concepts and write differences in 1 sentence. If not, there are 3 points deduction per problem. [20 pts, 5 pts for each.]

- 1. Likelihood & Probability
- 2. Feature Selection & Feature Extraction
- 3. PC Score & PC loading
- 4. Newton-Raphson Method & Gradient Descent

Exercise 2

In multiple linear regression, we can estimate $\hat{\beta}$ as follows by least square method.

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y} \in \mathbb{R}^{(p+1)\times 1}, \quad \mathbf{X} \in \mathbb{R}^{N\times (p+1)}, \quad \mathbf{y} \in \mathbb{R}^{N\times 1}$$
(2.1)

The regression model can be derived as follows:

$$\hat{y} = X\hat{\beta} = X(X^{T}X)^{-1}X^{T}y = Hy$$
 (2.2)

And in the above equation, $X(X^TX)^{-1}X^T$ is specifically referred to as **H**, hat matrix.

$$\mathbf{H} = \mathbf{X}(\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}} \tag{2.3}$$

2.1

Show that **H** is symmetric ($\mathbf{H}^{T} = \mathbf{H}$) and idempotent ($\mathbf{H}^{2} = \mathbf{H}$). [3 pts]

2.2

An estimator of a given parameter is said to be unbiased if its expected value is equal to the true value of the parameter. ($\mathbb{E}[\hat{\theta}] = \theta$)

Show that $MSE = \hat{\sigma}^2 = \frac{SSE}{N - p - 1} = \frac{(\mathbf{y} - \hat{\mathbf{y}})^T (\mathbf{y} - \hat{\mathbf{y}})}{N - p - 1}$ is unbiased estimator through using following properties (2.4) - (2.8) & results of above problem **2.1** [10 pts]

If c is a scalar, and **A** is a n × n square matrix, $(c \in \mathbb{R}, \mathbf{A} \in \mathbb{R}^{n \times n})$

$$c = \operatorname{Tr}(c), \quad \operatorname{Tr}(c\mathbf{A}) = c\operatorname{Tr}(\mathbf{A})$$
 (2.4)

If **A**, **B** are n × n square matrix that have same dimension, (**A**, **B** $\in \mathbb{R}^{n \times n}$)

$$Tr(A + B) = Tr(A) + Tr(B), \quad Tr(A - B) = Tr(A) - Tr(B)$$
(2.5)

If **A** is a n × n square matrix, $\mathbf{A} \in \mathbb{R}^{n \times n}$

$$E[Tr(A)] = Tr(E[A])$$
(2.6)

If **A** is a n × m matrix and **B** is a m × n matrix ($\mathbf{A} \in \mathbb{R}^{n \times m}$, $\mathbf{B} \in \mathbb{R}^{m \times n}$)

$$Tr(\mathbf{AB}) = Tr(\mathbf{BA}) \tag{2.7}$$

If \mathbf{x} is random vector,

$$Var[\mathbf{x}] = E[\mathbf{x}\mathbf{x}^{T}] - E[\mathbf{x}]E[\mathbf{x}]^{T}, \quad E[\mathbf{x}\mathbf{x}^{T}] = Var[\mathbf{x}] + E[\mathbf{x}]E[\mathbf{x}]^{T}$$
(2.8)

Exercise 3

For matrix **A**, solve the following problems

$$\mathbf{A} = \begin{pmatrix} 6 & -3 \\ 5 & -2 \end{pmatrix}$$

3.1

Compute the eigenvalues λ_1 , λ_2 ($\lambda_1 < \lambda_2$) and its corresponding eigenvectors v_1 , v_2 of matrix **A** [2 pts]

3.2

Find matrix **P** to diagonalize **A**. Here **D** is a diagonal matrix of size 2×2 [3 pts]

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{D}$$

3.3

Compute the determinant of A^{2521} . The calculation should be trivial if you use the properties of determinant. [3 pts]

Exercise 4

Given data **X**, solving following problems

$$\mathbf{X} = \begin{pmatrix} 1 & 3 & 9 \\ 2 & 5 & 7 \\ 4 & 4 & 6 \\ 9 & 8 & 2 \end{pmatrix}$$

i.e., data with four samples and three features (predictors).

4.1

Find the mean value of each column. [1 pts]

4.2

Subtract each mean from each element of the corresponding column. Now, let us set the derived matrix as X'. [1 pts]

4.3

Calculate $\frac{1}{4-1}\mathbf{X'}^T\mathbf{X'}$. [1 pts]

4.4

For the calculated matrix in **4.3**, find eigenvalues $\lambda_1, \lambda_2, \lambda_3$ in descending order ($\lambda_1 > \lambda_2 > \lambda_3$) up to four decimal places. [2 pts] (https://www.symbolab.com/solver/matrix-eigenvalues-calculator/eigenvalues)

4.5

Calculate $\frac{\lambda_1}{(\lambda_1 + \lambda_2 + \lambda_3)}$. (up to four decimal places) [2 pts]

4.6

Find eigenvectors \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 corresponding to λ_1 , λ_2 , λ_3 . [2 pts] (https://www.symbolab.com/solver/matrix-eigenvalues-calculator/eigenvectors)

Exercise 5

Consider three random variables X, Y, Z. The three variables have the covariance matrix in the form of;

$$\Sigma = \begin{pmatrix} a & ka & 0 \\ ka & a & ka \\ 0 & ka & a \end{pmatrix}$$

, where $0 < k < \frac{1}{\sqrt{2}}$

5.1

Calculate the eigenvalues λ_1 , λ_2 , λ_3 . (Show process of calculation neatly) [4 pts]

5.2

Find PC(Principal Component) \mathbf{p}_1 , \mathbf{p}_2 , \mathbf{p}_3 of each random variable X, Y, Z. [3 pts]

5.3

Calculate how much total variance is explained by each principal component. [3 pts]

Exercise 6

The following table is the outcome of the logistic regression model for an iris flower being species Versicolor versus species Virginica. (Y = 1 for Versicolor, Y = 0 for Virginica) [9 pts]

Variables	Intercept	Length of Sepals	Width of Sepals	Length of petals	Width of Petals
Estimated	25.21	-3	-0.7	2.4	-10.3
Coefficient					

6.1

Interpret the effect of length of sepals on the relative risks of an iris flower being species Versicolor versus species Virginica. Fill up the \mathbf{A} , \mathbf{B} , \mathbf{C} in the below interpretation of the outcome and select the appropriate word for \mathbf{D} . (Tips from TA : Think about the meaning of odds(X)!) [4 pts]

Interpretation: Species A is B times more probable than Species C when the length of sepals D(Increase or Decrease) by 1 unit.

4

\mathbf{x}_1	6.4	3.1	4.3	1.3
\mathbf{x}_2	6.9	3.0	3.9	1.4

6.2

What is the predicted class for the following new data \mathbf{x}_1 and \mathbf{x}_2 ? You should provide the probability of $P(Y_1 = 1|\mathbf{x}_1), P(Y_1 = 0|\mathbf{x}_1), P(Y_2 = 1|\mathbf{x}_2), P(Y_2 = 0|\mathbf{x}_2)$. [6 pts]