NC STATE UNIVERSITY

Department of Biological and Agricultural Engineering

GaugeCam:

An Image-Based System to Measure Water Levels in Streams

> Troy Gilmore, François Birgand, Kenneth Chapman, Andrew Brown

NC STATE UNIVERSITY

Can we detect water level?

NC STATE UNIVERSITY

Can we measure water level?

NC STATE UNIVERSITY

The System: Edge Detection

The System: Edge Detection

NC STATE UNIVERSITY

The System: Edge Detection

Bie&Ag*

The System: Calibration

The System: Calibration

Lab Research Objective:

Quantify source and magnitude of uncertainty when measuring water level with images

Uncertainty: Sources

- 1. Image Resolution
- 2. Lighting effects
 - 3. Perspective
- 4. Lens distortion
- 5. Water meniscus

Uncertainty: Three Experiments

Uncertainty: Three Experiments

Benchmark I ____ 1. Image Resolution

- 2. Lighting effects
 - 3. Perspective
- 4. Lens distortion
- 5. Water meniscus

NC STATE UNIVERSITY

Uncertainty: Benchmark I

NC STATE LINIVERSITY

Uncertainty: Benchmark I

Bie&Ag*

Uncertainty: Benchmark I

Uncertainty Calculation

- Many images per resolution
- Error = measured known value
- Calculated distribution of errors for each resolution
- Calculated bias, SD and RMSE of each distribution

Benchmark I: RESULTS

Benchmark I: RESULTS

Uncertainty: Three Experiments

Benchmark II

NC STATE UNIVERSITY

Uncertainty: Sources

0.4 Mean Bias, SD, RMSE (cm) 0.2 0.1 0.0 0.1 as -0.2 0.28 0.22 0.24 0.26 0.30 0.32 0.34 cm per pixel

Benchmark II: RESULTS

NC STATE LIMIT/EDSITY

Uncertainty: Three Experiments

Benchmark I

Benchmark II

2. Lighting effects*

3. Perspective

4. Lens distortion

5. Water meniscus

NC STATE UN

Uncertainty: Camera effects

Water Level: Posture Angle

For camera at 6 meters

Water Level: 6m, 16mm lens

NC STATE UNIVERSITY

Conclusions

- 1. Lens distortion must be minimized
- 2. Posture angle may interact with meniscus
- 3. With reasonable precautions, accuracy of +/- 3 mm (0.01 ft) is achievable in the lab

NC STATE LINIVERSITY

Acknowledgements

Salt Marsh Images: Randall Etheridge, Brad Smith

Lab Analysis Assistance: Kelly Chapman

Camera Equipment: www.Microseven.com www.Colorado-Video.com

Software: www.GaugeCam.com

Check out our ASABE 2011 booth!

Louisville Belle waterline