Реляционные операции над отношениями

При разработке реляционной модели Эдгар Кодд ввел реляционную алгебру, которая состоит из набора операторов, использующих отношения в качестве операндов и возвращающих отношения в качестве результата (свойство замкнутости). Она включает восемь операций:

- традиционные операции над множествами объединение, пересечение, вычитание, декартово произведение;
 - специальные реляционные операции выборку, проекцию, соединение, деление.

Говоря о реляционной алгебре, нельзя обойти свойство замкнутости, оно заключается в том, что результат реляционной операции также является отношением.

Следовательно, результат одной операции может использоваться в качестве исходных данных для другой, таким образом, можно использовать вложенные выражения

Для уточнения термина Отношение выделяются понятия Заголовка отношения и тела, то есть отношение содержит две части: заголовок и тело.

Заголовок отношения — это фиксированное значение атрибутов отношения *(то есть заголовков столбцов таблицы)*, он статичен и не меняется во время работы с базами данных.

Тело отношения содержит множество кортежей отношения (то есть записей в таблице). Каждый кортеж отношения представляет собой множество пар вида «Имя атрибута: Значение». Тело отношения может изменяться во время работы с базой данных, так как кортежи могут изменяться, добавляться и удаляться.

Число атрибутов в отношении называется степенью (либо арностью) отношения, а множество кортежей отношения кардинальностью (либо мощностью) отношения.

Введем еще одно определение

Два реляционных отношения совместимы по типу, если

- 1) каждое из них имеет одно и тоже множество атрибутов;
- 2) соответствующие атрибуты (то есть атрибуты с одинаковыми именами) определены на одном и том же домене.

Рассмотрим реляционные операции

1) Объединением двух совместимых по типу отношений R1 и R2 называется отношение с тем же заголовком, что и у отношений R1 и R2, и телом, состоящим из кортежей, принадлежащих или R1, или R2, или обоим отношениям

В результате объединения двух отношений R1 и R2 строится новое отношение R, с тем же составом атрибутов и совокупностью кортежей за исключением повторяющихся строк.

Для записи используют одно из двух обозначений

R1 U R2

R1 union R2

Пример, пусть даны два отношения R1 и R2 с информацией о начислении стипендии студентам

Отношение R1

StudID	ФИО	Группа
121	Иванов И.П.	382
122	Петров А.П.	382

Отношение R2

StudID	ФИО	Группа
121	Иванов И.П.	382
123	Сергеев А.И.	383

Отношение R – объединение R1 и R2

StudID	ФИО	Группа
121	Иванов И.П.	382
122	Петров А.П.	382
123	Сергеев А.И.	383

2) Пересечением двух совместимых по типу отношений R1 и R2 называется отношение с тем же заголовком, что и у отношений R1 и R2, и телом, состоящим из кортежей, принадлежащим одновременно обоим отношениям R1 и R2. Таким образом, операция пересечения двух отношений дает отношение, включающее все кортежи, входящие в оба отношения.

Записывается операция так:

 $R1 \cap R2$

R1 intersect R2

Отношение R – пересечение R1и R2

StudID	ФИО	Группа
121	Иванов И.П.	382

3) Вычитанием двух совместимых по типу отношений R1 и R2 называется отношение с тем же заголовком, что и у отношений R1 и R2, и телом, состоящим из кортежей, принадлежащих отношению R1 и не принадлежащих отношению R2. Таким образом, отношение, которое является разностью двух отношений, включает все кортежи, входящие в отношение-первый операнд, такие, что ни один из них не входит в отношение, являющееся вторым операндом. Формы записи:

 $R1 \setminus R2$

R1 minus R2

Отношение R – вычитание R1и R2

StudID	ФИО	Группа
122	Петров А.П.	382

4) Декартово произведение двух отношений R1 и R2 (где R1 и R2 не имеют общих имен атрибутов) определяется как отношение с заголовком, который представляет собой объединение (сцепление) двух заголовков исходных отношений R1 и R2 и телом, состоящим из множества всех кортежей

Запись:

R1 x R2

R1 times R2

Отношение R1

StudID	ФИО
121	Иванов И.П.
122	Петров А.П.
123	Сергеев А.И.

Отнопление R2

Код предмета	Предмет
П1	Математика
П2	Информатика

Отношение R – декартово произведение

StudID	ФИО	Код предмета	Предмет
121	Иванов И.П.	П1	Математика
121	Иванов И.П.	П2	Информатика
122	Петров А.П.	П1	Математика
122	Петров А.П	П2	Информатика
123	Сергеев А.И.	П1	Математика
123	Сергеев А.И.	П2	Информатика

Декартово произведение двух отношений R1 и R2 дает новое отношение R, которое содержит все атрибуты исходных отношений. В полученное новое отношение целесообразно добавить атрибут «Оценка» для записи результатов, например, экзамена

5) В ы б о р к о й на отношении R с условием C называется отношение с тем же заголовком, что и у отношения R, и телом, состоящим из кортежей, значение атрибутов которых при подстановке в условие C дают значение ИСТИНА. Таким образом, результирующее отношение будет иметь ту же структуру, но количество записей может быть меньше. Формы записи:

R [X θ Y], где θ - обозначает любой скалярный оператор сравнения (=, >, <, ... и т.д.) R where X θ Y

Например, есть отношение R Студент

StudID	ФИО	Группа
121	Иванов И.П.	382
122	Петров А.П.	382
123	Сергеев А.И.	383

Выборка Студент [группа = 382]

StudID	ФИО	Группа
121	Иванов И.П.	382
122	Петров А.П.	382

6) Проекцией отношения A по атрибутам V, W, ..., Z (где каждый из атрибутов принадлежит отношению A) называется отношение с заголовком $\{V,W,...,Z\}$ и телом, содержащим множество всех кортежей $\{V:v,W:w,...,Z:z\}$, для которых в отношении A существовал кортеж со значением атрибута V, равным v, атрибута W - w, ... и атрибута Z-z. Таким образом, в результате проекции часть атрибутов исходного отношения исключается, после чего может потребоваться удаление повторяющихся кортежей.

Проекция отношения A по атрибутам V, W, Z обозначается

A[V, W, Z]

Пусть дано отношение А - Студенты с информацией о студентах факультетов

Личный номер	Фамилия	Факультет
11	Кошкин	исторический
22	Серов	математический
33	Лазарев	исторический
44	Серов	физический

Проекция по атрибуту Факультет

Факультет	
Факультет 	
исторический	
математический	
физический	

После отбрасывания атрибутов Личный номер и Фамилия был получен дублирующий кортеж Исторический, который в результате оставлен в одном экземпляре.

7) Соединение. Эта операция, наряду с операциями выборки и проекции, является одной из наиболее важных реляционных операций. При соединении двух отношений по некоторому условию образуется результирующее отношение, кортежи которого являются конкатенацией (операция соединения строк) кортежей первого и второго отношений и удовлетворяют этому условию.

Наиболее важной разновидностью является операция естественного соединения, оно обозначается A join B

Рассмотрим на примере данную операцию

Отношение А - Студенты

Номер	Фамилия	Группа
123	Иванов	382
124	Петров	382
127	Сергеев	383

Отношение В - Группы

Староста	Группа
Петров	382
Сергеев	384

Естественное соединение Студенты и Группы

Номер	Фамилия Группа		Староста
123	Иванов	382	Петров
124	Петров	382	Петров

Из-за того, что в первом отношении нет кортежей со значением атрибута группа, равным 384, а во втором нет кортежей со значением того же атрибута 383, в результирующем отношении остались только кортежи, содержащие данные о студентах группы 382

8) Деление. Пусть отношения A и B имеют заголовки $\{X,Y\}$ и $\{Y\}$ соответственно. Результатом деления отношения A на B будет отношение с заголовком $\{X\}$ и телом, содержащим множество всех кортежей $\{X:x\}$, таких, что в A существует кортеж $\{X:x,Y:y\}$, для всех кортежей $\{Y:y\}$ из B.

Операция обозначается

R1/R2

R1 divideby R2

Пример. Отношение А содержит информацию о том, какой студент сдавал какой предмет. Отношение В содержит список предметов. Необходимо получить список номеров студентов, сдавших все перечисленные в таблице В предметы.

Отношение А

Номер	Предмет
123	Физика
123	Математика
124	Математика
127	Физика

Отношение В

Предмет	
Физика	
Математика	

Деление A / B

	_ r	١.	
			Номер
123			