Análise

Folha 3 -

Derivadas

1. Determine a derivada direcional de cada uma das funções, no ponto P e segundo um vetor unitário com a direção e sentido de \vec{v} .

(a)
$$f(x,y) = 4 - x^2 - \frac{1}{4}y^2$$
, $P = (1,2)$ e $\vec{v} = \cos\frac{\pi}{3}\vec{e}_1 + \sin\frac{\pi}{3}\vec{e}_2$

(b)
$$f(x,y) = x^2 \operatorname{sen}(2y), P = \left(1, \frac{\pi}{2}\right) e \vec{v} = (3, -4)$$

(c)
$$f(x, y, z) = x^2 + y^2 + z^2$$
, $P = (1, 2, 3)$ e $\vec{v} = (1, 1, 1)$

2. Sendo $f:\mathbb{R}^2 \to \mathbb{R}$ a função definida por $f(x,y)=xy^2+x$, calcule, usando a definição:

(a)
$$\frac{\partial f}{\partial x}(0,0)$$

(b)
$$\frac{\partial f}{\partial x}(x_0, y_0)$$

(a)
$$\frac{\partial f}{\partial x}(0,0)$$
 (b) $\frac{\partial f}{\partial x}(x_0,y_0)$ (c) $\frac{\partial f}{\partial y}(2,-1)$ (d) $\frac{\partial f}{\partial y}(x_0,y_0)$

(d)
$$\frac{\partial f}{\partial y}(x_0, y_0)$$

2019/20

3. Calcule as derivadas parciais de 1ª ordem das funções seguintes, nos pontos possíveis:

(a)
$$f(x, y) = y^2 e^{3x}$$

(d)
$$f(x, y, z) = \frac{x^2 y^2}{z^2}$$

(g)
$$f(x,y) = \arctan(x^2y^3)$$

(b)
$$g(x, y) = (3xy + 2x)^{-1}$$

(e)
$$h(x,y) = \frac{x^2 + y^2}{x^2 - y^2}$$

(h)
$$g(x, y, z) = \ln(e^x + z^y)$$

(c)
$$f(x, y) = e^{x+3y} \sin(xy)$$

(f)
$$\rho(\phi, \theta) = \phi \cos \phi \sin \theta$$

(a)
$$f(x,y) = y^2 e^{3x}$$
 (d) $f(x,y,z) = \frac{x^2 y^3}{z}$ (g) $f(x,y) = \arctan(x^2 y^3)$ (b) $g(x,y) = (3xy + 2x)^5$ (e) $h(x,y) = \frac{x^2 + y^2}{x^2 - y^2}$ (h) $g(x,y,z) = \ln(e^x + z^y)$ (c) $f(x,y) = e^{x+3y} \sec(xy)$ (f) $\rho(\phi,\theta) = \phi \cos \phi \sec \theta$ (i) $f(x,y,z) = \frac{xy^3 + e^z}{x^3y - e^z}$

4. Para cada uma das funções seguintes, calcule, se existirem, $f_x(0,0)$ e $f_y(0,0)$.

(a)
$$f(x,y) = \begin{cases} \frac{x+y}{x^2 + y^2} & \text{se } (x,y) \neq (0,0) \\ \pi & \text{se } (x,y) = (0,0) \end{cases}$$

(a)
$$f(x,y) = \begin{cases} \frac{x+y}{x^2+y^2} & \text{se } (x,y) \neq (0,0) \\ \pi & \text{se } (x,y) = (0,0) \end{cases}$$
 (b) $f(x,y) = \begin{cases} \frac{x^3y-xy^3}{x^2+y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$

5. Encontre o vetor gradiente das seguintes funções (e no ponto assinalado, se for esse o caso):

(a)
$$f(x,y) = \frac{2x}{x-y}$$
, em (3, 1)

(d)
$$f(x, y, z) = e^{-x} \operatorname{sen}(z+2y), \operatorname{em}\left(0, \frac{\pi}{4}, \frac{\pi}{4}\right)$$

(b)
$$f(r, \theta) = r \sin \theta$$

(e)
$$f(x, y, z) = \frac{xyz}{x^2 + y^2 + z^2 + 1}$$

(c)
$$f(x, y) = y \ln x + xy^2$$
, em (1, 2)

(f)
$$f(x, y, z) = (x - y)\cos(\pi z)$$

6. Atente no diagrama de nível, de $f: \mathbb{R}^2 \to \mathbb{R}$, anexo. Indique o sinal de $f_x(1, 1)$, $f_y(1, 1)$, $f_x(-1, 1)$, $f_y(-1, 1)$, $f_x(-1,-1), f_y(-1,-1), f_x(1,-1) \in f_y(1,-1).$

7. Sendo $f: \mathbb{R}^2 \to \mathbb{R}$, representada graficamente pela figura anexa, indique o sinal de cada uma das derivadas parciais de f, para cada um dos três pontos assinalados da superfície.

- 8. Mostre que
 - (a) $u(x,y) = Ax^4 + 2Bx^2y^2 + Cy^4$ (com $A,B\in C\in\mathbb{R}$) satisfaz a equação $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 4u$
 - (b) se $P(T,V)=k\frac{T}{V}$ (com $k\in\mathbb{R}$), então $V\frac{\partial P}{\partial V}=-P$ e $T\frac{\partial P}{\partial T}=P$
 - (c) se $h(x, y, z) = x + \frac{x y}{y z}$, então $h_x + h_y + h_z = 1$
- 9. Seja $f: \mathbb{R}^2 \to \mathbb{R}$ tal que $f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$.
 - (a) Verifique que f possui derivadas parciais em todos os pontos de \mathbb{R}^2 .
 - (b) Verifique que f não é contínua na origem e conclua que f não é diferenciável na origem.
 - (c) Sendo $v=(\alpha,\beta)$, mostre que existe $\frac{\partial f}{\partial v}(0,0)$ se e só se $\alpha\beta=0$.
- 10. Seja $f: \mathbb{R}^2 \to \mathbb{R}$ tal que $f(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$.
 - (a) Mostre que existe $\frac{\partial f}{\partial u}(a)$, $\forall a, u \in \mathbb{R}^2$ com ||u|| = 1.
 - (b) Verifique se f é diferenciável em (0,0).
- 11. Seja $f: \mathbb{R}^2 \to \mathbb{R}$ tal que

$$f(x,y) = \begin{cases} (x^2 + y^2) \operatorname{sen} \frac{1}{\sqrt{x^2 + y^2}} & \operatorname{se} (x,y) \neq (0,0) \\ 0 & \operatorname{se} (x,y) = (0,0) \end{cases}.$$

(a) Calcule $\frac{\partial f}{\partial x}(0,0)$ e $\frac{\partial f}{\partial y}(0,0)$.

- (b) Determine $\frac{\partial f}{\partial x}$ e $\frac{\partial f}{\partial y}$ e verifique que não são contínuas em (0,0).
- (c) Verifique que f é diferenciável em (0,0).

12. Seja
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 tal que $f(x,y) = \left\{ \begin{array}{ll} \dfrac{x^3}{x^2+y^2} & \text{se} \quad (x,y) \neq (0,0) \\ 0 & \text{se} \quad (x,y) = (0,0) \end{array} \right.$. Mostre que:

- (a) f é contínua;
- (b) $\frac{\partial f}{\partial u}(0,0) = f(u)$, para todo o vetor unitário u de \mathbb{R}^2 .
- 13. Calcule as derivadas parciais de 2.ª ordem das seguintes funções e averigue em que casos as derivadas mistas são iguais.

(a)
$$f(x,y) = \frac{2xy}{(x^2 + y^2)^2}$$
;

(c)
$$f(x,y) = e^{-xy^2} + y^3x^4$$
;

(b)
$$f(x, y) = \cos(xy^2)$$
;

(d)
$$f(x,y) = \frac{1}{\cos^2 x + e^{-y}}$$
.

- 14. Mostre que a função $g(x,t) = 2 + e^{-t} \operatorname{sen} x$ satisfaz a equação do calor $\frac{\partial g}{\partial t} = \frac{\partial^2 g}{\partial x^2}$.
- 15. Usando o teorema de Schwarz, mostre que não pode existir uma função $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ de classe C^2 cujas derivadas parciais de primeira ordem sejam:

(a)
$$f_x(x, y) = 2x^3$$
 e $f_y(x, y) = yx^2 + x$;

(b)
$$f_x(x, y) = x \operatorname{sen} y$$
 e $f_y(x, y) = y \operatorname{sen} x$.