กับกิก Altributes ในได้เป็นตัวเล่า Attributes เป็น Binary Attributes Proximity Measure for Binary Attributes

A contingency table for binary data

		Ob [.]	ject <i>j</i>	
		1	0	sum
Object i	1	q	r	q+r
	0	s	(t)	s+t
	sum	q + s	r+t	p
				10-00 15 150 100 OU

$$d(i,j) = \frac{r+s}{q+r+s+t}$$

 $sim_{Jaccard}(i,j) = \frac{q}{q+r+s}$

- Distance measure for symmetric binary variables $d(i,j) = \frac{r+s}{q+r+s+t}$ Distance measure for asymmetric binary variables: $d(i,j) = \frac{r+s}{q+r+s}$
- Jaccard coefficient (*similarity* measure for asymmetric binary variables):
- Note: Jaccard coefficient is the same as

(a concept discussed in Pattern Discovery)

$$coherence(i,j) = \frac{sup(i,j)}{sup(i) + sup(j) - sup(i,j)} = \frac{q}{(q+r) + (q+s) - q}$$

Example: Dissimilarity between Asymmetric Binary Variables

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	Male	Y 445/No	Negative	P	N	N	N
Mary	Female	Y	N	P	N	P	N
Jim	M	Y	Positive	N	N	N	N

- Gender is a symmetric attribute (not counted in)
- The remaining attributes are asymmetric binary
- Let the values Y and P be 1, and the value N be 0
- Distance: $d(i, j) = \frac{r+s}{q+r+s}$

$d(jack, mary) = \frac{0+1}{2+0+1} = 0.33$			M	lary	
			1	0	Σ_{row}
$d(jack, jim) = \frac{1+1}{1+1+1} = 0.67 \frac{2}{5}$		1	1	1	2
	Jim	0	2	2	4
$d(jim, mary) = \frac{1+2}{1+1+2} = 0.75^{\frac{5}{4}}$		$\sum_{\alpha \in \Gamma}$	3	3	6

				Ν	/lary	
			1		0	\sum_{row}
la	ck	1	2		0	2
Jack	CIX	0	1		3	4
		\sum_{col}	3		3	6

		Jin	า	
		1	0	Σ_{row}
	1	1	1	2
Jack	0	1	3	4
	\sum_{col}	2	4	6

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y 1	N a	P 1	N D	No	No
Mary	F o	Yı	N D	P 1	N s	Pı	No
Jim	M	Y	P	N	N	N	N

Symmetric binary
$$d(i,j)=\frac{r+s}{q+r+s+t}$$

$$=\frac{\frac{1+1}{2+1+1+3}}{\frac{2}{7}}$$

Mary I 0 Sum I 2 8 1 1 2 Jack 0 1 5 11 4 Sum 3 4 7

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M 1	Y¹	$N \circ \backslash$	Pι	N o	N o	N o
Mary	F	Y	N	P	N	P	N
Jim	M ·	Yı	P_1	N o	N o	N >	No
					'	!	!

$$d(i,j) = \frac{r+s}{q+r+s+t}$$

Jin

		1	٥	Sum
	١	%	۴	
k	0	5	ł	
	Sum			

Proximity Measure for Categorical Attributes

- Categorical data, also called nominal attributes
 - Example: Color (red, yellow, blue, green), profession, etc.
- Method 1: Simple matching
 - m: # of matches, p: total # of variables

$$d(i,j) = \underbrace{p-m}_{p}$$

■ Method 2: Use a large number of binary attributes

Creating a new binary attribute for each of the M nominal states

	4	อาไพ	
	۲	ዛ ጣይ.	
	۴	ଧ୍ୟ.	
	9	ษฝช.	
r _i g	<i>)</i> <mark> </mark> b	איני בינ איני בינ	u or o

	3 R	* 6	3 B	ארו נית	นศษ	٥١.	Sub
1	1	D	0	0	1	D	0
2	1	٥	0	0	ס	1	Ð
3	D	ſ	٥	0	1	0	٥

ระยะหาง ระหาง เก็บ 3 นากัน เพ่าไม่ (Binany)

Ordinal Variables

- An ordinal variable can be discrete or continuous
- Order is important, e.g., rank (e.g., freshman, sophomore, junior, senior)
- Can be treated like interval-scaled
 - lacksquare Replace an ordinal variable value by its rank: $(r_{ij}) \in \{1,...,M_f\}$
 - Map the range of each variable onto [0, 1] by replacing *i*-th object in the *f*-th variable by $r_{if} 1$
 - Example: freshman: 0; sophomore: 1/3; junior: 2/3; senior 1
 - \Box Then distance: d(freshman, senior) = 1, d(junior, senior) = 1/3
 - Compute the dissimilarity using methods for interval-scaled variables

Attributes of Mixed Type

- A dataset may contain all attribute types
 - □ Nominal, symmetric binary, asymmetric binary, numeric, and ordinal
- One may use a weighted formula to combine their effects:

$$d(i,j) = \frac{\sum_{f=1}^{p} w_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} w_{ij}^{(f)}} \rightarrow \Im(\frac{4}{6}) \wedge \chi(\frac{2}{6})$$

- \Box If f is numeric: Use the normalized distance
- ☐ If f is binary or nominal: $d_{ij}^{(f)} = 0$ if $x_{if} = x_{jf}$; or $d_{ij}^{(f)} = 1$ otherwise
- \Box If f is ordinal

 - Treat z_{if} as interval-scaled

Cosine Similarity of Two Vectors

A document can be represented by a bag of terms or a long vector, with each attribute recording the frequency of a particular term (such as word, keyword, or phrase) in the document

Document	team	coach	hockey	baseball	soccer	penalty	score	win	loss	season
Document1	5	0	3	0	2	0	0	2	0	0
Document2	3	0	2	0	1	1	0	1	0	1
Document3	0	7	0	2	1	0	0	3	0	0
Document4	0	1	0	0	1	2	2	0	3	0

- Other vector objects: Gene features in micro-arrays
- Applications: Information retrieval, biologic taxonomy, gene feature mapping, etc.
- \square Cosine measure: If d_1 and d_2 are two vectors (e.g., term-frequency vectors), then

$$cos(d_1, d_2) = \frac{d_1 \bullet d_2}{\|d_1\| \times \|d_2\|}$$

where \bullet indicates vector dot product, ||d||: the length of vector d

אר שינים אין אישונים אין איש היים איש