

Intro to Deep Learning for NeuroImaging

Andrew Doyle
McGill Centre for Integrative Neuroscience

y @crocodoyle

Montreal Neurological Institute and Hospital

Outline

- 1. GET EXCITED
- 2. Artificial Neural Networks
- 3. Backpropagation
- 4. Convolutional Neural Netwol
- 5. Neuroimaging Applications

ImageNet-1000 Results

BrainBrush

Deep Blood by Team BloodArt

Gatys, Leon A., Alexander S. Ecker, and Matthias Bethge. "Image style transfer using convolutional neural networks." *Computer Vision and Pattern Recognition (CVPR), 2016 IEEE Conference on.* IEEE, 2016.

Text

This bird is blue with white description and has a very short beak

This bird has wings that are brown and has a yellow belly

A white bird with a black crown and yellow beak This bird is white, black, and brown in color, with a brown beak

The bird has small beak. with reddish brown crown and gray belly

This is a small. black bird with a white breast and white on the wingbars.

This bird is white black and vellow in color, with a short black beak

Stage-I images

StackGAN

CycleGAN

MR

CT

CycleGAN

Wolterink, Jelmer M., et al. "Deep MR to CT synthesis using unpaired data." International Workshop on Simulation and Synthesis in Medical Imaging. Springer, Cham, 2017.

Synthetic Images

Synthesized Real

FLAIR

Mehta, R, et al. "RS-Net: Regression-Segmentation 3D CNN for Synthesis of Full Resolution Missing Brain MRI in the Presence of Tumours." SASHIMI Workshop of MICCAI 2018.

Synthetic Images

Cohen, Joseph Paul, Margaux Luck, and Sina Honari. "Distribution Matching Losses Can Hallucinate Features in Medical Image Translation." arXiv preprint arXiv:1805.08841(2018).

Reinforcement Learning

Reinforcement Learning OpenAI

Reinforcement Learning OpenAI

mini-map

Montreal AI Companies

facebook research

Deep Learning

For Deep Learning, you need:

- 1. Artificial Neural Network
- 2. Loss
- 3. Optimizer
- 4. Data

$$o = f(x) = f(\mathbf{w}^T \mathbf{i} + \mathbf{b})$$

Logistic Regression

$$o = \sigma(x) = \sigma(\mathbf{w}^T \mathbf{i} + \mathbf{b})$$

17 parameters $\theta = \{w, b\}$

1. Random θ initialization

Iterate:

1. Forward - compute loss

forward pass

2. Backward - update parameters

backward pass

$L(o, \hat{y})$	$=\frac{1}{2}\sum_{i}(o_{i})^{i}$	$-\hat{y})^2$

XOR i₁ i₂ 0 0 0 0 0 1 1 1 0 1

backward pass

$$\nabla_{\theta}L(o,\hat{y}) = \left[\frac{\partial L}{\partial w_{x_{1},i_{1}}}, \frac{\partial L}{\partial b_{x_{1}}}, \frac{\partial L}{\partial w_{x_{2},i_{2}}}, \frac{\partial L}{\partial b_{x_{2}}}, \dots, \frac{\partial L}{\partial w_{y,h_{2}}}\right]^{T}$$

Gradients in blue

$$\frac{\partial L}{\partial w_{y,h_1}} = \frac{\partial L}{\partial \hat{y}} * \frac{\partial \hat{y}}{\partial w_{y,h_1}}$$

. . .

$$= \sum -\sigma(\hat{y}) \Big(1 - \sigma(\hat{y})\Big) f(h_1)$$

$$\frac{\partial L}{\partial w_{h_1, x_1}} = \frac{\partial L}{\partial y} * \frac{\partial y}{\partial h_1} * \frac{\partial h_1}{\partial w_{h_1, x_1}}$$

$$\frac{\partial L}{\partial w_{h_2,x_2}} = \frac{\partial L}{\partial y} * \frac{\partial y}{\partial h_2} * \frac{\partial h_2}{\partial w_{h_2,x_2}}$$

$$\frac{\partial L}{\partial w_{x_1,i_1}} = \frac{\partial L}{\partial y} * \frac{\partial y}{\partial h_1} * \frac{\partial h_1}{\partial x_1} * \frac{\partial x_1}{\partial w_{x_1,i_1}} + \frac{\partial L}{\partial y} * \frac{\partial y}{\partial h_2} * \frac{\partial h_2}{\partial x_1} * \frac{\partial x_1}{\partial w_{x_1,i_1}}$$

PYTORCH

Optimizers

1. Gradient Descent

$$w' = w - \alpha \frac{\partial J}{\partial w}$$

2. Stochastic Gradient Descent approx. $\frac{\partial J}{\partial w}$ in batches

3. Momentum w' = w + v $v = \gamma v + \alpha \frac{\partial J}{\partial w}$

4. Adagrad/adadelta param-wise decaying learning rate

5. RMSprop avg. gradients

6. Adam RMSprop + momentum

Data Manifold

Data distribution:

- Class 1
- Class 2

X-Y grid:

• Param (θ) space

Data Manifold

Data distribution:

- Class 1
- Class 2

X-Y grid:

Param (θ) space

Convolutional Neural Networks

$$f(t) * g(t) = \int_{\tau = -\infty}^{\infty} f(\tau) \cdot g(t - \tau) d\tau$$

Convolutional Neural Networks

Convolutional Neural Networks

CNN/convnet neurons:

- 1. Have receptive fields
- 2. Share weights
 - Vastly reduces parameters
 - Translational equivariance

AlexNet trained using **Dropout**

90% parameters

Dropout

P(dropout) = 0.5

Dropout

P(dropout) = 0.5

Dropout

P(dropout) = 0.5

Batch Normalization

Subtract mean, divide by standard deviation

Batch Normalization

- Whitens activations
- Speeds training
- Injects noise

Not good for small batch sizes

Group Normalization

- N: training examples
- C : channels
- H, W: spatial dimensions

ResNet

152 convolutional layers
Skip (residual) connections

34-layer residual

GoogLeNet

- 1. Deep Supervision helps training
- 2. 1x1 convolutions can replace fully-connected layers

DenseNet

- Densely-connected blocks & transition layers
- Far more parameter-efficient
- Doesn't need fancy optimizers

Challenges

- 1. Data quantity
- 2. Data size
- 3. Data quality
- 4. Data variability
- 5. Unexpected pathology

Start here

Beyond Linear Decoding Introduction to Deep Learning

bit.ly/ohbmdl

keras.io

deeplearningbook.org

Thanks!

