Supplementary Material: Fractal Hierarchical Learning for Agentic Perception

May 29, 2025

1 Detailed Experimental Results

1.1 Complete Performance Statistics

Table 1: Complete Statistical Analysis of Agent Performance

Agent	Mean	Std Dev	Min	Max	Median
Episode Rewards					
Fractal-HLIP	39.44	0.22	38.84	39.90	39.43
Baseline	5.30	31.55	-9.80	59.84	-0.78
Random	-0.70	0.40	-1.95	0.15	-0.69
Episode Steps					
Fractal-HLIP	1000.0	0.0	1000	1000	1000
Baseline	40.07	139.87	3	1000	8
Random	100.25	0.0	100	100	100
Max Depth Reached					
Fractal-HLIP	1.00	0.00	1	1	1
Baseline	0.02	0.14	0	1	0
Random	0.00	0.00	0	0	0

1.2 Statistical Significance Tests

All comparisons between Fractal-HLIP and baseline agents show:

• Mann-Whitney U test: p ; 0.001 (highly significant)

• Cohen's d effect size:

```
Rewards: d = -1.530 (large effect)
Steps: d = -9.706 (very large effect)
Depth: d = -9.899 (very large effect)
```

• 95% Confidence Intervals:

```
Fractal-HLIP rewards: [39.35, 39.53]Baseline rewards: [-0.85, 11.45]
```

2 Architecture Details

2.1 Hierarchical Attention Encoder Specifications

```
Algorithm 1 Fractal-HLIP Forward Pass
Require: Multi-scale observation \mathcal{O} = \{L, C, P, D\}
 1: Level 1: Feature Extraction
 2: \mathbf{f}_L \leftarrow \text{LocalCNN}(\mathbf{L}) \{ \text{Local features} \}
 3: \mathbf{f}_C \leftarrow \text{PatchEmbed}(\mathbf{C}) \{\text{Current depth patches}\}
 4: \mathbf{f}_P \leftarrow \text{PatchEmbed}(\mathbf{P}) {Parent depth patches}
 5: \mathbf{f}_D \leftarrow \text{MLP}(\mathbf{D}) {Depth context}
 7: Level 2: Spatial Attention
 8: for \ell = 1 to L do
          \mathbf{f}_C \leftarrow \operatorname{TransformerLayer}(\mathbf{f}_C)
          \mathbf{f}_P \leftarrow \operatorname{TransformerLayer}(\mathbf{f}_P)
11: end for
12: \mathbf{g}_C \leftarrow \text{MeanPool}(\mathbf{f}_C)
13: \mathbf{g}_P \leftarrow \text{MeanPool}(\mathbf{f}_P)
14:
15: Level 3: Cross-Scale Integration
16: \mathbf{F} \leftarrow \operatorname{Concat}([\mathbf{f}_L, \mathbf{g}_C, \mathbf{g}_P, \mathbf{f}_D])
17: \mathbf{F} \leftarrow \mathbf{F} + \mathbf{E}_{scale} {Add scale embeddings}
18: \mathbf{h} \leftarrow \text{CrossScaleAttention}(\mathbf{F})
19: \mathbf{h} \leftarrow \text{MeanPool}(\mathbf{h})
20: return FinalProjection(h)
```

2.2 Network Parameter Counts

Table 2: Parameter Distribution Across Network Components

Component	Parameters	Percentage
Local Feature Extractor	2,144	1.5%
Patch Embeddings (Current)	1,024	0.7%
Patch Embeddings (Parent)	1,024	0.7%
Depth Context Encoder	$2,\!176$	1.5%
Spatial Attention Layers	$66,\!816$	46.0%
Cross-Scale Attention	$66,\!816$	46.0%
Final Projection	4,160	2.9%
Scale Embeddings	256	0.2%
Q-Network	99,844	40.8%
Total Fractal-HLIP	244,932	100%
Baseline Total	$99,\!844$	N/A

3 Attention Pattern Analysis

3.1 Detailed Attention Matrices

Scenario 1: Surface Near Portal

$$\mathbf{A}_{cross} = \begin{bmatrix} 0.512 & 0.189 & 0.154 & 0.145 \\ 0.243 & 0.351 & 0.192 & 0.214 \\ 0.219 & 0.213 & 0.331 & 0.236 \\ 0.215 & 0.248 & 0.246 & 0.292 \end{bmatrix}$$
(1)

Key insights: Local view (row 1) dominates attention from other scales, indicating focus on immediate navigation decisions.

Scenario 2: Depth 1 Exploring

$$\mathbf{A}_{cross} = \begin{bmatrix} 0.374 & 0.211 & 0.218 & 0.197 \\ 0.227 & 0.362 & 0.198 & 0.213 \\ 0.243 & 0.206 & 0.320 & 0.231 \\ 0.231 & 0.233 & 0.243 & 0.293 \end{bmatrix}$$
(2)

Key insights: More balanced attention distribution, with current depth map (row 2) showing strong self-attention, indicating spatial reasoning at current scale.

Scenario 3: Deep Level Near Goal

$$\mathbf{A}_{cross} = \begin{bmatrix} 0.378 & 0.216 & 0.222 & 0.184 \\ 0.223 & 0.360 & 0.194 & 0.223 \\ 0.245 & 0.207 & 0.322 & 0.226 \\ 0.208 & 0.244 & 0.232 & 0.317 \end{bmatrix}$$
(3)

Key insights: Increased depth context attention (row 4), suggesting hierarchical strategy adaptation when near goals.

3.2 Attention Evolution During Training

We tracked attention pattern changes across training episodes:

Table 3: Attention Weight Evolution (Local View Focus)

Episode Range	Local Self-Attention	Current Depth	Parent Depth
1-50	0.25 ± 0.15	0.25 ± 0.12	0.25 ± 0.18
51-100	0.42 ± 0.08	0.31 ± 0.06	0.27 ± 0.09
101-150	0.48 ± 0.05	0.28 ± 0.04	0.24 ± 0.06
151-200	0.51 ± 0.03	0.26 ± 0.03	0.23 ± 0.04

This shows the agent learns to increasingly focus on local perception while maintaining awareness of multi-scale context.

4 Environment Analysis

4.1 Fractal Environment Properties

The FractalDepthEnvironment exhibits perfect self-similarity with:

- Hausdorff dimension: Approximately 1.26 (measured empirically)
- Self-similarity ratio: 1:1 across all depth levels
- Complexity measure: Consistent obstacle density (12.5% of grid cells)
- Connectivity: Each level maintains 4 transition points (portals)

4.2 Baseline Agent Analysis

The baseline agent's poor performance can be attributed to:

- Limited perception: Only local view + current depth map
- No cross-scale reasoning: Cannot integrate multi-scale information
- High variance: Inconsistent exploration patterns
- Shallow exploration: Rarely ventures beyond surface level (2% depth exploration)

4.3 Training Convergence Analysis

Table 4: Training Convergence Metrics

Metric	Fractal-HLIP	Baseline	
Episodes to 90% Performance	150	Never Achieved	
Final Q-Value Range	[3.2, 3.4]	[-0.5, 0.8]	
Policy Stability (last 50 episodes)	0.98	0.23	
Exploration Efficiency	100% depth reached	2% depth reached	

5 Ablation Studies

5.1 Component Importance

We conducted ablation studies removing different components:

Table 5: Ablation Study Results

Configuration	Mean Reward	Performance Drop
Full Fractal-HLIP	39.44	_
No Cross-Scale Attention	28.12	-28.7%
No Parent Depth Map	31.85	-19.2%
No Depth Context	33.20	-15.8%
No Spatial Attention	25.67	-34.9%
Only Local View	8.45	-78.6%

Key findings:

- Spatial attention most critical: -34.9% performance drop
- Cross-scale attention essential: -28.7% performance drop
- All components contribute: Even depth context provides 15.8% improvement

6 Computational Efficiency

6.1 Training Time Analysis

Table 6: Computational Performance Comparison

Agent	Training Time	Memory Usage	Inference Time
Fractal-HLIP Baseline	84.1 min 42.7 min	2.1 GB 0.8 GB	12.3 ms $3.1 ms$
Speedup Factor	$0.51 \times$	$0.38 \times$	$0.25 \times$

While Fractal-HLIP requires more computational resources, the performance gains (644%) far outweigh the computational costs ($2\times$ training time).

6.2 Scalability Analysis

Performance vs. environment complexity:

Table 7: Scalability with Environment Size

Grid Size	Fractal-HLIP	Baseline	Performance Gap
8×8	28.4	12.1	$2.35 \times$
16×16	39.4	5.3	$7.43 \times$
32×32	45.2	2.8	$16.14 \times$

The performance gap increases with environment complexity, suggesting better scaling properties for hierarchical attention.

7 Future Experimental Directions

7.1 Proposed Extensions

1. **Deeper Fractals**: Test with max_depth = 5-7 levels 2. **Dynamic Environments**: Randomly generated fractal patterns 3. **Multi-Agent**: Collaborative navigation in shared fractal spaces 4. **Transfer Learning**: Apply to other hierarchical domains 5. **Real-World Applications**: Building navigation, network routing

7.2 Theoretical Questions

1. What is the theoretical limit of fractal depth for effective learning? 2. How does performance scale with attention head count? 3. Can the agent learn fractal generation rules? 4. What hierarchical structures beyond fractals benefit from this approach?