Generating Efficient Execution Plans for Vertically Partitioned XML Databases

Research paper review by

QING Pei, Edward 11500811g LO Wing Yi, Wing 11523479g SHAO Shuai, Philip 11552402g

What?

Why?

How?

What?

Query Processing

	Centralized	Distributed
RDBMS		
XML		This paper

XML in the Cloud

Why?

Distributed architecture leads to Different execution plans

For a single query, the **order** in which *joins* are performed results in various time consumed.

Response time = local execution time + joining time

local execution time

snip(i): the number of document subtrees accessed by the local plan at *fragment i*

smaller snip(i) preferred

joining time

card(i): the number of tuples that are returned by the local plan when evaluated at fragment i

smaller card(i) preferred

Which plan has the minimum response time?

How?

Optimizing distributed plans

Optimizing distributed plans

Pushing Cross-Fragment Joins

fully works on left-deep plans

Optimizing distributed plans

Label Path Filtering

//book//reference

Evaluation

Selective XPathMark Performance Results (Collection 12GB)

Conclusion

Greatly improves response time of querying large XML collections.

Small overhead. Choosing the fastest plan took < 0.01 seconds.

Q&A

Merci beaucoup