Digital Electronics- 2CS303

UNIT-1 Binary Codes

Dr. Sudeep Tanwar, Dr. Pimal Khanpara, Prof. Preksha Pareek

Binary Codes

- 1. Weighted Codes (8421, 5421)
- 2. Non Weighted codes (Excess-3, BCD, Gray/Reflected codes)
- 3. Error Detection Codes (PARITY Bits, Hamming Codes)
- 4. Alphanumeric Codes (ASCII, EBCDIC)

Codes

- The **problem** found with computer is how to represent numerals, alphabets, and special characters
- Since data is in the binary form, it must be **converted to a more readable** form known as **Coded form**

1: Weighted Codes:

Weighted binary codes are those binary codes which obey the positional weight principle. Each position of the number represents a

specific weight.

Decimal.	8421	7421	5421	5211	4221	3321	2421	8421	742
.0	0000		0 0 0 0	The same of					
1+ 2	0001		0001						
. (2)	0010		0 0 1 0		1		15		
3	0011	0011	0 0 11	0101	0011	0100	0011	0101	0101
4	0100	0100	0100	0111	1000	0101	0100	0100	0100
5	0101	0101	1000	1000	1001	0110	0101	1011	1010
V	0110	0110	1001	1010	1010	1100	0110	1010	1001
0	0111	1000	1010	1100	1011	1101	0111	1001	1000
9	1001	1001	1011	1110	1110	1110	0110	1000	1111

2: Non-Weighted Codes:

They do **not have a fixed weight** assigned to each symbol position in the ode word For example, ASCII, BCD, Exess-3, and Gray code.

2.1: Excess-3 is a non-weighted coding method. With excess-3, we add 3 to a decimal number before converting it to binary.

```
Example: (0001)2 = (0100)Excess-3 (0010)2 = (0101)Excess-3
```

2.2: BCD (Binary Coded Decimals) is a non-weighted coding method. Individual decimal digits are converted into equivalent binary bits.

```
Example:

(321)2 = (0011 0010 0000)BCD

(000)2 = (0000 0000 0000)BCD

(80)2 = (1000 0000)BCD

(00)2 = (0000 0000)BCD

(10)10 = (0001 0000) BCD

(11)10 = (0001 0001) BCD
```

BCD

Delin	ial.	8421 BCD.
0		0000 7
20002	11:00	0001
1003	0010	0010
0004		0011
5	0110	0100 Unbacked BC
6		0101
010	1110	0110
1018	000 f	0111
bil a	- 1001	1000
10	013	1001
10		0001 00007
12		0001 0001
1004		0001 00 10 - Packed BCD.
13		0001 0011
14		0001 0100
13		0001 0101

2: Non-Weighted Codes:

2.3: Gray Codes: It is also called as Reflected Binary codes. It is generated via getting mirror image of given data. Only 1 bit will change each time when the decimal number is incremented. Where as the binary system requires all four bits to change when going from 7 to 8

Example: 4 bit Gray codes.

Delimat	0	1	2	3	4	5	6	7	8	9	10	41	12
Gray.	0000	0001	0011	0010	0110	0111	0101	0100	lloo	1101	HIL	1110	1010
Decimal,	13	14	1	15					010		11	10	
Gray.	1011	100	01 1	000								01	

2: Code Conversion:

Converting Binary Codes to Gray codes

Method:

- 1. Copy MSB of Binary code to MSB of Gray code. (As it is)
- 2. Add MSB of Binary with Next MSB of Binary to get next Gray code.
- 3. Discard the carry
- 4. Repeat the same process till we get the LSB

Example: Convert (0001)2 into Gray code.

Binary.	Gray.
0000	0000
0001	0001
0010	0011
0011	0010
0100	0110
0101	0111
0110	0 101
0111	0 100
1000	1 100
1001	1 10 1001
1010	111111
1011	1010
1100	1010
1101	1011
1110	1 50
1111	1001
	0000 0001 0010 0011 0100 0101 0110 0111 1000 1010 1010 1101

2: Code Conversion:

Converting Binary Codes to Gray codes

Method:

- 1. Copy MSB of Binary code to MSB of Gray code.
- 2. Add MSB of Binary with Next MSB of Binary to get next Gray code.
- 3. Discard the carry
- 4. Repeat the same process till we get the LSB

Example: Convert (1011)2 into Gray code.

Decemal.	Binany.	Gray.
0	.0000	0000
1	0001	0001
2	0010	0011
3	0011	0010
4	0100	0110
5	0101	0111
6	0110	0 101
87131	0111	0 100
8	1000	1100
1001	1001	110100
10	1010	1111110
11	1011	1010
12	1100	1010
13	1101	1011
14	11.10	1 55
15	1111	1001

2: Code Conversion:

Converting Gray Codes to Binary codes

Method:

- 1. Copy MSB of Gray code to MSB of Binary code. (As it is)
- 2. If next bit of Gray code is "1", then invert the present binary bit as next bit.
- 3. If next bit of Gray code is "0" then copy the present binary bit as next bit.

Example: Convert (1011) gray into Binary code.

Delimal	Gray.	Binary.
0	0000	0000
1	0001	0001
2	0011	0010
3	0010	0011
4	0110	0100
6	0111	0101
7	0101	0110
8	0100	0111
9	1100	1 000
10	1101	1 001
19 0	1111	01010
12	1010	1011
13	1010	1100
14	1001	1101
15	1000	0 1110
		1111

Binary to BCD and BCD to Binray:

Decir	4 3	DA BUSIN		Delin	al BCD	Binary	
0	0000	0000					
1	0001	0001	×		0000	7000	OP
2	0010	0010		1	0001	0001	
3	0011			2	0010	0010	
4	0100			3	0011	0011	
5	0101	0101	OTO HELONIE	0 1100	0100	0000	
6	0110			6	0101	0101	
7	0111	0110		7	0110	0110	
8		0111		2	0111	0111	N.
9	1000	1000		9	1000	1000	
10	1001	1001	L Car	10	1001	1001	
11	1010	00010000	24 M	11	0001 0000	1010	
2	1011	00010001	Openi	15 2h	000 000	1011	9
3	1100	00010010	S and the	13	00010010	1100	
4	101	00010011		1.	00010011	1101	
5	110	00010100	windo,		00010100	1110 La	is you
1	111	00010101		13	00010101	1111	

BCD to Excess-3 and Excess-3 to BCD:

D. D.	D to EX	ass-3:-		47 Exce	13-3 to BC	D:-
allimal.	BCD	Excess-3	203	Decimal	Excess-3	BCD.
0	0000	0011	100	0	0011	0000
	0001	0 100	01.61	,	0100	0001
2	0010	0101		2	0101	0010
3	0011	0110	tit	3	0110	0011
5	0100	0111	DIL	9 4	0111	0100
6	0101	1000	ILL	5	1000	0101
7	0110	1001	101	0	1001	0110
8	0111	1010		7	1010	0111
9	1000	1011	00		1011	1000
	1001	1100	LAI	20 9000	1100	1001

Binary to Excess-3 and Excess-3 to Binary:

6)	U				V
. Delinal	Bin.	Excess-3.	Decimal	Excess-3	Bon.
0	0000	001100	200	0011	0000
2	0001	0100	· • • • • • • • • • • • • • • • • • • •	0100	0001
3	0010	0101	0.2	0101	0010
4	0011	0110	3	0110	0011
5	0100	0111110	0343	0111	0100
6	0101	1000	5	1000	0101
7	0110	1001	060	1001	0110
8	1000	1010	7	1010	0111
9	1001	101101	8	1011	1000
10	1010	1100		1100	1001
12	1011	1101	1001	1101	1010
12	1100	1111	12011	1110	1011

BCD Arithmetic: