Leo C. Stein — Publications

CONTACT Information

205 Lewis Hall University of Mississippi University, MS 38677-1848 USA lcstein@olemiss.edu duetosymmetry.com 1-662-915-1941

PUBLICATION SUMMARY

h-index —As of 2024-10-13: 62 (according to Google Scholar), or 55 (according to INSPIRE). Both include collaboration papers.

Top five cited —Excluding LIGO/Virgo collaboration papers.

- 1. Berti, E., (5 authors), **Stein, L. C.**, (46 more authors) (2015) Testing General Relativity with Present and Future Astrophysical Observations, Class. Quantum Grav. **32** 243001 [arXiv:1501.07274].
- 2. Barack, L., et al. (2019) Black holes, gravitational waves and fundamental physics: a roadmap, Class. Quantum Grav. 36 143001 [arXiv:1806.05195].
- 3. Boyle, M., et al. (**LCS** is corresponding author) (2019) The SXS Collaboration catalog of binary black hole simulations, Class. Quantum Grav. **36** 195006 [arXiv:1904.04831].
- 4. Varma, V, et al. (2019) Surrogate models for precessing binary black hole simulations with unequal masses, Phys. Rev. Research 1, 033015 [arXiv:1905.09300].
- Yunes, N., Stein, L. C. (2011), Nonspinning black holes in alternative theories of gravity, Phys. Rev. D 83 104002 [arXiv:1101.2921].

SUBMITTED PUBLICATIONS

Collaboration Publications

70. Berti, E. et al., (2025) Black hole spectroscopy: from theory to experiment, [arXiv:2505.23895].

From 2008–2012, I was coauthor on 34 referred LIGO and/or LIGO/Virgo collaboration publications. I only list short author-list publications below.

Refereed Publications

- 69. De Amicis, M. (5 authors), **Stein, L. C.**, (13 more authors) (2025) Late-time tails in nonlinear evolutions of merging black holes, Phys. Rev. Lett. **135** 171401, [arXiv:2412.06887].
- 68. Scheel, M. (3 authors), **Stein, L. C.**, (54 more authors) (2025) The SXS Collaboration's third catalog of binary black hole simulations, Class. Quantum Grav. **42** 195017, [arXiv:2505.13378].
- 67. Magaña Zertuche, L., **Stein, L. C.**, et al., (2025) High-Precision Ringdown Surrogate Model for Non-Precessing Binary Black Holes, Phys. Rev. D. **112** 024077, [arXiv:2408.05300].
- 66. Da Re, G., Mitman, K., **Stein, L. C.**, et al., (2025) Modeling the BMS transformation induced by a binary black hole merger, Phys. Rev. D. **111** 124019, [arXiv:2503.09569].
- 65. Mitman, K., Stein, L. C., et al., (2025) Length dependence of waveform mismatch: a caveat on waveform accuracy, Class. Quantum Grav. 42 117001, [arXiv:2502.14025].
- 64. Field, S. et al., (2025) GWSurrogate: A Python package for gravitational wave surrogate models, J. Open Source Softw., 10(107), 7073, [arXiv:2504.08839].
- 63. Witzany, V. Skoupý, V., **Stein, L. C.**, Tanay, S., (2025) Actions of spinning compact binaries: Spinning particle in Kerr matched to dynamics at 1.5 post-Newtonian order, Phys. Rev. D. **111** 044032, [arXiv:2411.09742].
- 62. Khairnar, A., Stein, L. C., Boyle, M., (2025) Approximate helical symmetry in compact binaries, Phys. Rev. D. 111 024072, [arXiv:2410.16373].
- Zhu, H., (9 authors), Stein, L. C., (2024) Imprints of Changing Mass and Spin on Black Hole Ringdown, Phys. Rev. D. 110 124028, [arXiv:2404.12424].
- Sun, D., Boyle, M., Mitman, K., Scheel, M. A., Stein, L. C., Teukolsky, S. A., Varma, V., (2024) Optimizing post-Newtonian parameters and fixing the BMS frame for numerical-relativity waveform hybridizations, Phys. Rev. D. 110 104076, [arXiv:2403.10278].

- Mitman, K., Boyle, M., Stein, L. C., et al., (2024) A Review of Gravitational Memory and BMS Frame Fixing in Numerical Relativity, Class. Quantum Grav. 41 223001, [arXiv:2405.08868].
- 58. Stein, L. C., (2024) Can a radiation gauge be horizon-locking?, Class. Quantum Grav. 41 157001 [arXiv:2404.10113].
- 57. Samanta, R., Tanay, S., **Stein, L. C.**, (2023) Closed-form solutions of spinning, eccentric binary black holes at 1.5 post-Newtonian order, Phys. Rev. D **108**, 124039 [arXiv:2210.01605].
- Bronicki, D., Cárdenas-Avendaño, A., Stein, L. C., (2023) Tidally-induced nonlinear resonances in EMRIs with an analogue model, Class. Quantum Grav. 40 215015 [arXiv:2203.08841].
- Yoo, J., et al., (2023) Numerical relativity surrogate model with memory effects and post-Newtonian hybridization, Phys. Rev. D 108, 064027 [arXiv:2306.03148].
- 54. Ma, S., Varma, V., **Stein, L. C.**, et al. (2023) Numerical simulations of black hole–neutron star mergers in scalar-tensor gravity, Phys. Rev. D **107**, 124051 [arXiv:2304.11836].
- 53. Tanay, S., **Stein, L. C.**, Cho, G., (2023) Action-angle variables of a binary black-hole with arbitrary eccentricity, spins, and masses at 1.5 post-Newtonian order, Phys. Rev. D **107**, 103040 [arXiv:2110.15351].
- 52. Grant, A. M., Saffer, A., **Stein, L. C.**, Tahura, A., (2023) Gravitational-wave energy and other fluxes in ghost-free bigravity, Phys. Rev. D **107**, 044041 [arXiv:2208.02123].
- 51. Mitman, K., Lagos, M., **Stein, L. C.**, et al. (2023) Nonlinearities in black hole ringdowns, Phys. Rev. Lett. **130**, 081402 [arXiv:2208.07380]. § Editors' Suggestion, Featured in Physics.
- Clark, W. A., Gomes, M. W., Rodriguez-Gonzalez, A., Stein, L. C., Strogatz, S. H., (2023) Surprises in a classic boundary-layer problem, SIAM Review 2023 65:1, 291-315 [arXiv:2107.11624].
- 49. Mitman, K., **Stein, L. C.**, Boyle, M., et al. (2022) Fixing the BMS Frame of Numerical Relativity Waveforms with BMS Charges, Phys. Rev. D **106**, 084029 [arXiv:2208.04356].
- 48. Okounkova, M, Farr, W. M., Isi, M., **Stein, L. C.**, (2022) Constraining gravitational wave amplitude birefringence and Chern-Simons gravity with GWTC-2, Phys. Rev. D **106**, 044067 [arXiv:2101.11153].
- 47. Magaña Zertuche, L., Mitman, K., Khera, N., Stein, L. C., et al., (2022) High Precision Ringdown Modeling: Multimode Fits and BMS Frames, Phys. Rev. D 105, 104015 [arXiv:2110.15922].
- 46. Gálvez Ghersi, J. T., **Stein, L. C.**, (2021) Numerical renormalization group-based approach to secular perturbation theory, Phys. Rev. E **104**, 034219 [arXiv:2106.08410].
- 45. Mitman, K., Khera, N., Iozzo, D. A. B., Stein, L. C., et al., (2021) Fixing the BMS frame of numerical relativity waveforms, Phys. Rev. D 104, 024051 [arXiv:2105.02300].
- Iozzo, D. A. B., Khera, N., Stein, L. C., et al., (2021) Comparing Remnant Properties from Horizon Data and Asymptotic Data in Numerical Relativity, Phys. Rev. D 103, 124029 [arXiv:2104.07052].
- 43. Tahura, S., Nichols, D. A., Saffer, A., **Stein, L. C.**, Yagi, K. (2020) Brans-Dicke theory in Bondi-Sachs form: Asymptotically flat solutions, asymptotic symmetries and gravitational-wave memory effects, Phys. Rev. D **103**, 104026 [arXiv:2007.13799].
- 42. Tanay, S., Stein, L. C., Gálvez Ghersi, J. T., (2020) Integrability of eccentric, spinning black hole binaries up to second post-Newtonian order, Phys. Rev. D 103, 064066 [arXiv:2012.06586].
- 41. Gálvez Ghersi, J. T., **Stein, L. C.**, (2020) A fixed point for black hole distributions, Class. Quantum Grav. **38** 045012 [arXiv:2007.11578].
- Okounkova, M., Stein, L. C., Moxon, J., Scheel, M. A., Teukolsky, S. A., (2020) Numerical relativity simulation of GW150914 beyond general relativity, Phys. Rev. D 101, 104016 [arXiv:1911.02588].
- Stein, L. C., Warburton, N., (2020) Location of the last stable orbit in Kerr spacetime, Phys. Rev. D 101, 064007 [arXiv:1912.07609].
- 38. Okounkova, M., Stein, L. C., Scheel, M. A., Teukolsky, S. A., (2019) Numerical binary black hole collisions in dynamical Chern-Simons gravity, Phys. Rev. D 100, 104026 [arXiv:1906.08789].

- 37. Varma, V, et al. (2019) Surrogate models for precessing binary black hole simulations with unequal masses, Phys. Rev. Research 1, 033015 [arXiv:1905.09300].
- Stein, L. C., (2019) qnm: A Python package for calculating Kerr quasinormal modes, separation constants, and spherical-spheroidal mixing coefficients, J. Open Source Softw., 4(42), 1683 [arXiv:1908.10377].
- 35. Boyle, M., et al. (**LCS** is corresponding author) (2019) The SXS Collaboration catalog of binary black hole simulations, Class. Quantum Grav. 36 195006 [arXiv:1904.04831].
- 34. Barack, L., et al. (2019) Black holes, gravitational waves and fundamental physics: a roadmap, Class. Quantum Grav. 36 143001 [arXiv:1806.05195].
- 33. Varma, V., **Stein, L. C.**, Gerosa, D., (2019) The binary black hole explorer: on-the-fly visualizations of precessing binary black holes, Class. Quantum Grav. **36** 095007 [arXiv:1811.06552], [project website].
- 32. Varma, V., Gerosa, D., **Stein, L. C.**, Hébert, F., Zhang, H., (2019) *High-accuracy mass, spin, and recoil predictions of generic black-hole merger remnants*, Phys. Rev. Lett. **122**, 011101 [arXiv:1809.09125].
- 31. Isi, M., **Stein, L. C.** (2018) Measuring stochastic gravitational-wave energy beyond general relativity, Phys. Rev. D **98**, 104025 [arXiv:1807.02123].
- 30. Prabhu, K., **Stein, L. C.** (2018) Black hole scalar charge from a topological horizon integral in Einstein-dilaton-Gauss-Bonnet gravity, Phys. Rev. D **98**, 021503(R) (Rapid Communication) [arXiv:1805.02668].
- 29. Gerosa, D., Hébert, F., **Stein, L. C.** (2018) Black-hole kicks from numerical-relativity surrogate models, Phys. Rev. D **97**, 104049 [arXiv:1802.04276].
- 28. Chen, B., **Stein, L. C.** (2018) Deformation of extremal black holes from stringy interactions, Phys. Rev. D **97**, 084012 [arXiv:1802.02159].
- 27. Chen, B., **Stein, L. C.** (2017) Separating metric perturbations in near-horizon extremal Kerr, Phys. Rev. D **96**, 064017 [arXiv:1707.05319].
- Okounkova, M., Stein, L. C., Scheel, M. A., Hemberger, D. A. (2017) Numerical binary black hole mergers in dynamical Chern-Simons: I. Scalar field, Phys. Rev. D 96, 044020 [arXiv:1705.07924].
- 25. Tso, R., Isi, M., Chen, Y., **Stein, L. C.** (2017) Modeling the Dispersion and Polarization Content of Gravitational Waves for Tests of General Relativity, CPT and Lorentz Symmetry: pp. 205–208 [arXiv:1608.01284].
- McNees, R., Stein, L. C., Yunes, N. (2016) Extremal Black Holes in Dynamical Chern-Simons Gravity, Class. Quantum Grav. 33 235013 [arXiv:1512.05453].
- Flanagan, É. É., Nichols, D. A., Stein, L. C., Vines, J. (2016) Prescriptions for Measuring and Transporting Local Angular Momenta in General Relativity, Phys. Rev. D 93, 104007 [arXiv:1602.01847].
- 22. Yagi, K., Stein, L. C. (2016) Black Hole Based Tests of General Relativity, Class. Quantum Grav. 33 054001 [arXiv:1602.02413].
- 21. Yagi, K., Stein, L. C., Yunes, N. (2016) Challenging the Presence of Scalar Charge and Dipolar Radiation in Binary Pulsars, Phys. Rev. D 93 024010 [arXiv:1510.02152].
- Berti, E., (5 authors), Stein, L. C., (46 more authors) (2015) Testing General Relativity with Present and Future Astrophysical Observations, Class. Quantum Grav. 32 243001 [arXiv:1501.07274].
- 19. Tsang, D., Galley, C. R., **Stein, L. C.**, Turner, A. (2015) "Slimplectic" Integrators: Variational Integrators for General Nonconservative Systems, ApJ **809** L9 [arXiv:1506.08443].
- 18. Yagi, K., **Stein, L. C.**, Pappas, G., Yunes, N., Apostolatos, T. (2014) Why I-Love-Q: Explaining why universality emerges in compact objects, Phys. Rev. D **90** 063010 [arXiv:1406.7587].
- 17. **Stein, L. C.** (2014) Rapidly rotating black holes in dynamical Chern-Simons gravity: Decoupling limit solutions and breakdown, Phys. Rev. D **90** 044061 [arXiv:1407.2350].

- Stein, L. C., Yagi, K., Yunes, N. (2014) Three-Hair Newtonian Relations for Rotating Stars, ApJ 788 15 [arXiv:1312.4532].
- 15. **Stein, L. C.**, Yagi, K. (2014) Parameterizing and constraining scalar corrections to general relativity, Phys. Rev. D **89** 044026 [arXiv:1310.6743].
- 14. Yagi, K., Stein, L. C., Yunes, N., Tanaka, T. (2013) Isolated and Binary Neutron Stars in Dynamical Chern-Simons Gravity, Phys. Rev. D 87 084058 [arXiv:1302.1918].
- 13. Yagi, K., **Stein, L. C.**, Yunes, N., Tanaka, T. (2012), Post-Newtonian, Quasi-Circular Binary Inspirals in Quadratic Modified Gravity, Phys. Rev. D **85** 064022 [arXiv:1110.5950].
- 12. Vigeland, S., Yunes, N., Stein, L. C. (2011), Bumpy black holes in alternative theories of gravity, Phys. Rev. D 83 104027 [arXiv:1102.3706].
- 11. Yunes, N., Stein, L. C. (2011), Nonspinning black holes in alternative theories of gravity, Phys. Rev. D 83 104002 [arXiv:1101.2921].
- 10. **Stein, L. C.**, Yunes, N. (2011), Effective gravitational wave stress-energy tensor in alternative theories of gravity, Phys. Rev. D **83** 064038 [arXiv:1012.3144].
- Lutomirski, A., Tegmark, M., Sanchez, N. J., Stein, L. C., Urry, W. L., Zaldarriaga, M. (2011), Solving the corner-turning problem for large interferometers, MNRAS 410 2075 [arXiv:0910.1351].
- 8. Sutton, P., Jones, G., Chatterji, S., Kalmus, P., Leonor, I., Poprocki, S., Rollins, J., Searle, A., Stein, L., Tinto, M., Was, M. (2010), X-Pipeline: an analysis package for autonomous gravitational-wave burst searches, New J. Phys. 12 053034 [arXiv:0908.3665].
- Chatterji, S., Lazzarini, A., Stein, L., Sutton, P., Searle, A. (2006), Coherent network analysis technique for discriminating gravitational-wave bursts from instrumental noise, Phys. Rev. D 74 082005 [arXiv:gr-qc/0605002].

UNREFEREED PUBLICATIONS

- 6. Galley, C. R., Tsang, D., **Stein, L. C.** (2014) The principle of stationary nonconservative action for classical mechanics and field theories, [arXiv:1412.3082].
- 5. **Stein, L. C.** (2014), Note on Legendre decomposition of the Pontryagin density in Kerr, [arXiv:1407.0744].
- 4. Stein, L. C. (2012), Probes of Strong-field Gravity, Ph.D. thesis at Massachusetts Institute of Technology [hdl:1721.1/77256].
- 3. Betancourt, M., Stein, L. C. (2011) The Geometry of Hamiltonian Monte Carlo, [arXiv:1112.4118].
- 2. Stein, L. C. (2009), Binary Inspiral Gravitational Waves from a Post-Newtonian Expansion, Contribution to the Wolfram Demonstrations Project, http://demonstrations.wolfram.com/BinaryInspiralGravitationalWavesFromAPostNewtonianExpansion/
- 1. **Stein, L. C.** (2006), Gravitational Wave Burst Source Localization in a Coherent Network Analysis, Senior thesis at California Institute of Technology