Assignment -2

Data Visualization and Preprocessing

Assignment Date	19 September 2022
Student Name	MUKESHKUMAR
Student Roll Number	211419104169
Maximum Marks	2 Marks

Question-1:

Download the dataset:

Question-2:

Load the dataset.

Solution:

import pandas as pd
df=pd.read_csv('/content/Churn_Modelling.csv')

In [1]:	import pandas as pd														
	N-11-														
In [3]:	df=pd.	read_csv('	//content/Cl	nurn_Model	lling.csv')										
In [4]:	df														
Out[4]:	Re	owNumber	Customerld	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
	0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	1	101348.88	1
	1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	1	112542.58	0
	2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	0	113931.57	1
	3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	0	93826.63	0
	4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	1	79084.10	0
	1								7.2					444	
	9995	9996	15606229	Obijiaku	771	France	Male	39	5	0.00	2	1	0	96270.64	0
	9996	9997	15569892	Johnstone	516	France	Male	35	10	57369.61	1	1	1	101699.77	0
	9997	9998	15584532	Liu	709	France	Female	36	7	0.00	1	0	1	42085.58	1
	9998	9999	15682355	Sabbatini	772	Germany	Male	42	3	75075.31	2	1	0	92888.52	1
	9999	10000	15628319	Walker	792	France	Female	28	4	130142.79	1	1	0	38190.78	0

Question-3:

Perform Below Visualizations.

1)Univariate Analysis

Solution:

```
import matplotlib.pyplot as plt import
numpy as np
df_ex_0=df.loc[df['Exited']==0]
df_ex_1=df.loc[df['Exited']==1]
plt.plot(df_ex_0['Balance'],np.zeros_like(df_ex_0['Balance']),color='green')
plt.xlabel('Balance') plt.show()
```


2)Bi - Variate Analysis

Solution:

import seaborn as sns
sns.FacetGrid(df,hue='Exited',size=5).map(plt.scatter,'CreditScore','Balance').add_legend()

1) Multivariate Analysis

Solution:

sns.pairplot(df,hue='Exited',height=5)

Question-4:

Perform descriptive statistics on the dataset.

Solution: df.describe(include='all')

Descriptive Statistics In [12]: df.describe(include='all') RowNumber CustomerId Surname CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember Estim count 10000,00000 1,000000e+04 10000 10000,000000 10000 10000 10000.000000 10000.000000 10000.000000 10000.000000 10000.00000 10000,000000 unique NaN NaN 2932 NaN 3 2 NaN NaN NaN NaN NaN NaN France Male top freq NaN NaN 32 NaN 5014 5457 NaN NaN</ min 1.00000 1.556570e+07 NaN 350.00000 NaN NaN 18.00000 0.00000 0.00000 1.00000 25% 2500.75000 1.562853e+07 NaN 584.00000 NaN NaN 32.000000 3.000000 0.000000 1.000000 0.00000 0.000000 511 50% 5000.50000 1.569074e+07 NaN 652.00000 NaN NaN 37.00000 5.00000 97198.540000 1.000000 1.00000 1.000000 100 75% 7500.25000 1.575323e+07 NaN 718.000000 NaN NaN 44.000000 7.000000 127644.240000 2.000000 1.00000 1.000000 149 max 10000.00000 1.581569e+07 NaN 850.00000 NaN NaN 92.000000 10.00000 250898.090000 4.00000 1.00000

Question-5:

Handle the Missing values.

Solution:

df.isnull().sum()

Question-6:

Find the outliers and replace the outliers

Solution:

import seaborn as sns
sns.boxplot(df['Balance'])

Question-7:

Check for Categorical columns and perform encoding.

Solution:

from sklearn.preprocessing import LabelEncoder from
collections import Counter as count le=LabelEncoder()
df['Geography']=le.fit_transform(df['Geography'])
df['Gender']=le.fit_transform(df['Gender'])
df['Surname']=le.fit_transform(df['Surname'])

Enco	oding													
	om sklearn.pre om collections													
le=	-LabelEncoder(()												
df['Geography']= 'Gender']=le. 'Surname']=le	fit_transfo	orm(df['G	ender'])	'1)									
df														
	D N 1	C	Curnama	CreditScore	Geography	Gender	Age	Tenure	Ralance	NumOfProducts	HarCrCard	Is Active Member	FetimatedSalary	Eviter
	KowiNumber	Customeria	Juillaille	Cicuitocoic	ocograpiny	dellaci			Dalance	realiton roducts	Hascicalu	ISACTIVEINIETIDE	Estimatedodiary	LAILCE
0		15634602	1115	619	0	0	42	2	0.00	1	1	1	101348.88	
) 1						42		0.00			1	101348.88	1
C	1 2	15634602	1115	619	0	0	42	2	0.00	1	1	1	101348.88 112542.58	1
1	1 2 2 3	15634602 15647311	1115 1177	619 608	0 2	0	42 41 42	2	0.00 83807,86 159660.80	1	1 0	1 1 0	101348.88 112542.58 113931.57	1
1 2	1 2 3 3 4	15634602 15647311 15619304	1115 1177 2040	619 608 502	0 2	0 0	42 41 42	2 1 8	0.00 83807.86 159660.80	1 1 3	1 0	1 1 0	101348.88 112542.58 113931.57 93826.63	1 0
1 2 3	1 2 3 3 4 5	15634602 15647311 15619304 15701354	1115 1177 2040 289	619 608 502 699	0 2 0	0 0 0	42 41 42 39	2 1 8	0.00 83807,86 159660.80 0.00	1 1 3 2	1 0 1	1 1 0	101348.88 112542.58 113931.57 93826.63	1 0
0 1 2 3	1 2 2 3 3 4 4 5	15634602 15647311 15619304 15701354 15737888	1115 1177 2040 289 1822	619 608 502 699 850	0 2 0 0 2	0 0 0 0	42 41 42 39 43	2 1 8 1 2	0.00 83807.86 159660.80 0.00 125510.82	1 1 3 2 1	1 0 1 0	1 1 0 0	101348.88 112542.58 113931.57 93826.63 79084.10	1 0 0
1 2 3 4	1 2 3 3 4 4 5	15634602 15647311 15619304 15701354 15737888	1115 1177 2040 289 1822	619 608 502 699 850	0 2 0 0 2	0 0 0 0 0	42 41 42 39 43 	2 1 8 1 2 	0.00 83807.86 159660.80 0.00 125510.82	1 1 3 2 1	1 0 1 0 1	1 1 0 0 1 	101348.88 112542.58 113931.57 93826.63 79084.10 	11 00 00 00 00 00 00 00 00 00 00 00 00 0
3 4 	1 2 3 3 4 5	15634602 15647311 15619304 15701354 15737888 15606229	1115 1177 2040 289 1822 	619 608 502 699 850 	0 2 0 0 2 0	0 0 0 0 0 1	42 41 42 39 43 	2 1 8 1 2 	0.00 83807.86 159660.80 0.00 125510.82 	11 13 2 11 2	1 0 1 1 1	1 1 0 0 0 1 1 0 1 1	101348.88 112542.58 113931.57 93826.63 79084.10 96270.64 101699.77	000000000000000000000000000000000000000
9995	1 2 3 3 4 5	15634602 15647311 15619304 15701354 15737888 15606229 15569892	1115 1177 2040 289 1822 1999	619 608 502 699 850 771 516	0 2 0 0 2 0 0	0 0 0 0 0 0 0 0 1 1 1	42 41 42 39 43 39 35 36	2 1 8 1 2 5 10 7	0.00 83807.86 159660.80 0.00 125510.82 0.00 57369.61	11 13 2 11 2	1 0 1 0 1 1 1 1 1	1 1 0 0 1 0	101348.88 112542.58 113931.57 93826.63 79084.10 96270.64 101699.77 42085.58	11 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

Question-8:

Split the data into dependent and independent variables.

Solution:

x=df.iloc[:,0:13]
y=df['Exited']

```
Dependent and Independent variables

In [20]: x=df.iloc[:,0:13]

In [21]: y=df['Exited']
```

Question-9:

Scale the independent variables

Solution: from sklearn.preprocessing import StandardScaler sc=StandardScaler() sc_xtrain=sc.fit_transform(xtrain) sc_xtest=sc.transform(xtest)

```
Scaling

In [24]: from sklearn.preprocessing import StandardScaler

In [25]: sc.StandardScaler()

In [26]: sc_xtrain=sc.fit_transform(xtrain)

In [27]: sc_xtrain=sc.fit_transform(xtrain)

In [28]: sc_xtrain

Out[28]: array([[ 0.21769112, 1.02728282, -0.54142705, ..., 0.83998842, -1.0223952, -1.58012433], -1.0223952, -1.58012433], -1.0223952, -1.58012433], -1.0323952, -1.58012433], -1.0323952, -1.58012433], -1.0323952, -1.58012433], -1.0323952, -1.58012433], -1.0323952, -1.0323952, -1.0323952, -0.134972672, ..., 0.63998842, -1.03223952, -0.0399772, ], -1.03223952, -0.0399772, ], -1.03223952, -0.0399772, ], -1.03223952, -0.0399772, ], -1.03223952, -0.0399872, -1.03223952, -0.0399872, -1.03223952, -0.0399872, -1.03223952, -0.0399872, -1.03223952, -0.0399872, -1.03223952, -1.03223952, -1.032998952, -1.03223952, -1.0322952, -1.03223952, -1.03223952, -0.85998842, -1.03223952, -1.03223952, -1.03223952, -0.85998842, -1.03223952, -1.03223952, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885293, -1.03885233, -1.03885233, -1.03885233, -1.03885233, -1.03885233, -1.03885233, -1.03885233, -1.03885233, -1.03885233, -1.03888523, -1.03888523, -1.03888523, -1.03888523, -1.03888523, -1.03888523, -1.038
```

Question-10:

Testing and training data

Solution: from sklearn.model_selection import train_test_split

xtrain,xtest,ytrain,ytest=train_test_split(x,y,test_size=0.3,random_state=10)