1 Analysis Tools

Data Analysis is inherently build upon two foundational components: High Quality Data that allows to gain insight into the underlying data generating process and a structured and reproducible way to extract information out of the collected data.

Thus, Section 1.1 introduces the two data sets we worked with whereas Section 1.2 provides an overview about the postforecasts package, a unified framework to apply and analyze various post-processing methods.

1.1 Data & Methodology

This section first introduces the two data sources that all of our analysis is based on. The final paragraphs continue with a description of our evaluation procedure from a theoretical point of view.

1.1.1 UK Covid-19 Crowd Forecasting Challenge

As part of an ongoing research project by the *epiforecasts* group at the London School of Hygiene & Tropical Medicine the UK Covid-19 Crowd Forecasting Challenge¹ consisted of submitting weekly predictions of Covid-19 Cases and Deaths in the United Kingdom in 2021. The challenge was not restricted to experienced researchers in the field but rather intended to collect quantile predictions for the upcoming four weeks by non-expert individuals.

One of the main motivations was to gather evidence for or against the hypotheses that humans are highly capable of submitting precise *point forecasts.*# Yet, at the same time, they tend to be too confident in their beliefs such that prediction *intervals* are chosen too narrow. In fact, this tendency represents one motivation for post-processing: Extract valuable information from point forecasts and adjust the corresponding prediction intervals with a systematic correction procedure.

In case of individuals that are unfamiliar with statistical methodology,d specifying forecasts for very specific quantiles of the predictive distribution might lead to inconsistencies. Therefore all participants could determine an uncertainty parameter around their median prediction via an interactive web application such that all quantile predictions could be concluded in an automatic fashion. Note that this procedure leads to *symmetric* forecast intervals.

The results of the 12-week challenge are publicly available².

1.1.2 European Covid-19 Forecast Hub

According to their webpage³ the European Covid-19 Forecast Hub collects short-term forecasts of Covid-19 cases and deaths across Europe, created by a multitude of infectious disease modelling teams.

In contrast to the compact UK data described above, the European Forecast Hub data contains almost two million observations for over 20 European countries. Further, the forecasters are knowledgeable research groups that submit their weekly predictions based on statistical models. Although the data collection continues in regular frequency up to this day, our data set is limited to a 32-week span from March 2021 until October 2021.

The overall structure of the two data sets introduced above is very similar. Since we will refer to some particularly important columns by name frequently throughout the next chapters, they are briefly described here:

- location: The country for which the forecasts were submitted. Equals GB for the UK data; our analysis for the European Forecast Hub data selects 18 different European countries.
- model: The forecaster (group). Mostly (non-expert) individuals for the UK data and international research groups for the European Forecast Hub.

¹https://www.crowdforecastr.org/2021/05/11/uk-challenge/

²https://epiforecasts.io/uk-challenge/

³https://covid19forecasthub.eu/index.html

- target_type: Either Covid-19 Cases or Covid-19 Deaths.
- horizon: The time horizon how far in advance the predictions were submitted. Ranges from 1
 week-ahead to 4 weeks-ahead.
- forecast_date: The exact date when the forecasts were submitted.
- target_end_date: The exact date for which the forecasts were submitted.
- quantile: One of 23 different quantile values ranging from 0.01 to 0.99.
- prediction: The predicted value for one specific combination of the variables above.
- true_value: The actual, observed number of Covid-19 Cases or Deaths. This value is repeated 23 times, once for each quantile value.

1.1.3 Weighted Interval Score

In order to quantify if the post-processed prediction intervals improve the original forecasts we chose the Weighted Interval Score (WIS) (Bracher et al. 2021) as our evaluation metric. The WIS is a so-called Proper Scoring Rule (Gneiting and Raftery 2007): It incentivizes the forecaster to state their true best belief and cannot be manipulated to its own benefit. It combines measures for interval sharpness as well as overprediction and underprediction and can thus be understood as a trade-off between prediction accuracy and precision.

More specifically, for a given quantile level α , true observed value y as well as lower bound l and upper bound u of the corresponding $(1 - \alpha) \cdot 100\%$ prediction interval, the Weighted Interval Score is computed as

$$Score_{\alpha}(y) = (u - l) + \frac{2}{\alpha} \cdot (l - y) \cdot \mathbb{1}(y \le l) + \frac{2}{\alpha} \cdot (y - u) \cdot \mathbb{1}(y \ge u). \tag{1}$$

The score of an entire model can then be obtained from a weighted sum over all (included) quantile levels α .

1.1.4 Time Series Cross Validation

Just like any statistical model the post-processing methods must be evaluated on *out-of-sample* data. Rather than starting from the raw data, i.e. the observed Covid-19 Cases and Deaths, our data sets already consist of existing quantile predictions. As a consequence, no part of our data set must be dedicated to fitting the quantile regression models in the first place and our evaluation procedure can be split in two steps:

- 1. Use a training set to learn parameters of the post-processing procedure in consideration.
- 2. Use a validation set to evaluate how the learned parameters generalize to unseen data.

Instead of a hard cut-off between the splits we used *Time Series Cross Validation* to leverage a higher fraction of the data set for training. In contrast to classical cross validation for independent and identically distributed data, time series cross validation iterates through the data set along the time dimension one step at a time.

The process is nicely illustrated in Figure 1^4 .

At each iteration the validation set is composed of the one step ahead prediction based on all observations prior to and including the current time point. The algorithm typically starts with a minimum number of observations as the initial training set, which can be considered a hyperparameter that has to be specified at the beginning of training.

1.2 The postforecasts Package

One core aspect of our project was the development of a fully functional R package that unites a collection of different post-processing algorithms into a well-designed and user friendly interface. This section can be understood as a compact guide how to use our package effectively and explains some of the thought process that went into the implementation. It is worth noting that the postforecasts package adheres to all formal requirements for an R package such that RCMDCHECK does not produce any warnings or errors.

⁴Image Source: https://otexts.com/fpp3/tscv.html (Hyndman and Athanasopoulos 2021).

Figure 1: Time Series Cross Validation

1.2.1 Overview

The postforecasts functions that are meant to be visible to the end-user can be grouped into three categories:

1. Exploratory

The plot_quantiles(), plot_intervals() and plot_intervals_grid() functions visualize the development of true Covid19 Cases and Deaths over time as well as corresponding original and post-processed quantile predictions.

2. Model Fitting

The update_predictions() function is the workhorse of the entire postforecasts package. It specifies both the raw data and the post-processing method(s) that should be applied to this data set. The function returns a list of k + 1 equally shaped data frames for k selected post-processing methods, the first element being the original, possibly filtered, data frame.

All list elements can be analyzed separately or collectively by stacking them into one large data frame with the collect_predictions() function. The combined data frame is designed to work well with analysis functions that are provided by the scoringutils package⁵ (Bosse, Sam Abbott, and Gruson 2022). If multiple post-processing methods are applied, an ensemble model of all selected methods can be added via the add_ensemble() function, which lets the user access both the weighted ensemble predictions and a data frame with the corresponding weights. The ensemble approach will be further explained in ??.

3. Evaluation

As noted in Section 1.1 the Weighted Interval Score is our primary metric to evaluate the *quality* of prediction intervals. The <code>score()</code> function of the <code>scoringutils</code> package computes this score for each observation in the data set which can then be aggregated by the related <code>summarise_scores()</code> function. Depending on the *granularity* of the aggregation the output might contain many interval scores of vastly different magnitudes. To simplify interpretation the <code>eval_methods()</code> function computes relative or percentage changes in the Weighted Interval Score for each selected method compared to the original quantile predictions. Further, these relative changes can be conveniently visualized by the <code>plot_eval()</code> function.

The following section demonstrates the complete workflow described above to give an impression how all these functions interact.

⁵https://epiforecasts.io/scoringutils/

1.2.2 Workflow

We use the Covid-19 data for Germany in 2021 that is provided by the European Forecast Hub.

Figure 2 illustrates the 5%, 20% 80% and 95% quantile predictions of the EuroCOVIDhub-ensemble during the summer months of 2021 in Germany.

```
plot_quantiles(
  hub_germany,
  model = "EuroCOVIDhub-ensemble", quantiles = c(0.05, 0.2, 0.8, 0.95)
)
```

Predicted Quantiles in Germany model: EuroCOVIDhub-ensemble

____ 0.05 ____ 0.2 ____ 0.8 ____ 0.95

Figure 2: Original Quantile Predictions for Covid-19 Cases and Deaths in Germany 2021

The original predictions look quite noisy overall with the clear trend that uncertainty and the interval width increases with growing forecast horizon. Thus, we want to analyze if one particular post-processing method, Conformalized Quantile Regression which is explained in much more detail in ??, improves the predictive performance for this model on a validation set by computing the Weighted Interval Scores for Covid Cases and Covid Deaths separately.

```
df_updated <- update_predictions(
  hub_germany,
  methods = "cqr", models = "EuroCOVIDhub-ensemble", cv_init_training = 0.5
)
df_combined <- collect_predictions(df_updated)

df_combined |>
  extract_validation_set() |>
  scoringutils::score() |>
  scoringutils::summarise_scores(by = c("method", "target_type"))
```

Table 1 shows that CQR improved the Weighted Interval Score for Covid Cases on the validation set, whereas

Table 1: Comparison of the Weighted Interval Score after CQR Adjustments

method	target_type	interval_score	dispersion
cqr	Cases	13.37	5.05
original cqr	Cases Deaths	$13.78 \\ 0.05$	$3.81 \\ 0.01$
original	Deaths	0.05	0.03

the predictive performance for Covid Deaths dropped slightly.

The update_predictions() and collect_predictions() combination immediately generalize to multiple post-processing methods. The only syntax change is a vector input of strings for the methods argument instead of a single string. Hence, if not desired, the user does not have to worry about which input and output features each method requires in its raw form nor how exactly each method is implemented. This design allows for maximum syntactic consistency through masking internal functionality. Moreover, the update_predictions() function automatically takes care of quantile crossing (Bassett and Koenker 1982) by reordering the output predictions in increasing quantile order.

In the output above CQR increased the *dispersion* of the predictions for Cases significantly. These wider intervals for specific covariate combinations are visualized in Figure 3.

Predicted Incidences (Cases per 100k) in Germany 2 weeks ahead model: EuroCOVIDhub-ensemble | quantile: 0.05

Figure 3: Original and CQR-adjusted Prediction Intervals for Covid-19 Cases in Germany

Indeed, the 2 weeks-ahead 90% prediction intervals for Cases in Germany are increased by CQR. The grey dashed line indicates the end of the training set within the time-series cross validation process.

Recall that uncertainty increases with larger horizons. Similarly, CQR adjustments also increase in size for

forecasts that are submitted further in advance, which can be seen in Figure 4.

```
plot_intervals_grid(df_combined, facet_by = "horizon", quantiles = 0.05)
```

Predicted Incidences (per 100k) in Germany model: EuroCOVIDhub-ensemble | quantile: 0.05

Figure 4: Original and CQR-adjusted Prediction Intervals for different Forecast Horizons

Interestingly, CQR expands the intervals only for Cases whereas the forecasts for Deaths are narrowed!

Besides the target type (Cases or Deaths), it is also useful to compare CQR effects across forecast horizons or quantiles. Quite intuitively, CQR generally has a stronger *relative* benefit for large time horizons and extreme quantiles, where the original forecaster faced a greater uncertainty. Figure 5 illustrates how, in special cases like this one, the effect on the validation set can show rather mixed trends due to disadvantageous adjustments for the two and three weeks-ahead 98% prediction intervals.

```
df_eval <- eval_methods(df_combined, summarise_by = c("quantile", "horizon"))
plot_eval(df_eval)</pre>
```

Bassett, Gilbert, and Roger Koenker. 1982. "An Empirical Quantile Function for Linear Models with | Operatornameiid Errors." Journal of the American Statistical Association 77 (378): 407. https://doi.org/10.2307/2287261.

Bosse, Nikos, Sam Abbott, and Hugo Gruson. 2022. Scoringutils: Utilities for Scoring and Assessing Predictions.

Bracher, Johannes, Evan L. Ray, Tilmann Gneiting, and Nicholas G. Reich. 2021. "Evaluating Epidemic Forecasts in an Interval Format." *PLOS Computational Biology* 17 (2): e1008618. https://doi.org/10.137 1/journal.pcbi.1008618.

Gneiting, Tilmann, and Adrian E Raftery. 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation." Journal of the American Statistical Association 102 (477): 359–78. https://doi.org/10.1198/016214506000 001437.

Hyndman, Rob, and George Athanasopoulos. 2021. Forecasting: Principles and Practice. Third. OTexts. https://otexts.com/fpp3/.

Figure 5: Relative Changes in the WIS through CQR for all Quantile-Horizon combinations