Mapping Reducibility (Section 5.3)

As mentioned previously, there exist different types of reductions.

A type of reducibility that is often used is what Sisper calls *mapping reducibility*. This is usually called *many-one reducibility*.

Definition 5.20:

A language A is mapping reducible to language B, written as $A \leq_m B$, if there is a computable function $f: \Sigma^* \to \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
.

The function f is called the *reduction* from A to B.

What's a computable function? [Definition 5.17.]

1

Examples

Some of the undecidability results from earlier in this chapter give examples of mapping reducibilities.

For example, $A_{\mathsf{TM}} \leq_m \mathsf{HALT}_{\mathsf{TM}}$ [Example 5.24]. Give the reduction!

Also, $\mathit{HALT}_{\mathsf{TM}} \leq_m \mathit{ALWAYSHALT}_{\mathsf{TM}}.$ In this case, the reduction f maps $\langle M, w \rangle$ to $\langle M_w \rangle$, where M_w is constructed as in the undecidability proof of $\mathit{ALWAYSHALT}_{\mathsf{TM}}$ from the notes.

Properties of mapping reductions

If $A \leq_m B$ and B is decidable, then A is decidable [Theorem 5.22].

Proof: Let M be a decider for B and let f be a mapping reduction from A to B. We describe a decider N for A as follows:

N = "On input w

- 1. Compute f(w).
- 2. Run M on input f(w). If M accepts, accept; otherwise reject."

As an immediate corollary, we get:

If $A \leq_m B$ and A is undecidable, then B is undecidable [Corollary 5.23].

2

Not all undecidability proofs from this chapter give examples of mapping reductions.

For example, look at the proof that $E_{\mbox{\footnotesize{LBA}}}$ is undecidable.

The proof uses a reduction from A_{TM} to E_{LBA} , but it is not a mapping reduction.

Note that $\langle M, w \rangle \in A_{\mathsf{TM}}$ iff $\langle B \rangle \not\in E_{\mathsf{LBA}}$, where B is defined as in the proof of Theorem 5.10.

So, this is a mapping reduction from A_{TM} to \overline{E}_{LBA} (equivalently, a mapping reduction from \overline{A}_{TM} to E_{LBA}).

Show that A_{TM} is *not* mapping reducible to E_{LBA} .

3

4

Questions

If A and B are undecidable, does that imply that $A \leq_m B$?

If A and B are decidable, does that imply that $A \leq_m B ?$

If $A \leq_m B$ and B is regular, does that imply that A is regular?

If $A \leq_m B$ and A is decidable, does that imply that B is decidable?

Reductions and Turing-recognizable sets

If $A \leq_m B$ and B is Turing-recognizable, then A is Turing-recognizable [Theorem 5.28].

Proof: Simple modification of the proof of Theorem 5.22.

As an immediate corollary, we get: If $A \leq_m B$ and A is not Turing-recognizable, then

B is not Turing-recognizable. [Corollary 5.29].

So, for example, if $\overline{A_{\mathsf{TM}}} \leq_m B$, then B is not Turing-recognizable, and if $A_{\mathsf{TM}} \leq_m B$, then B is not co-Turing-recognizable.

See Theorem 5.30 (EQ_{TM} is neither Turing-recognizable nor co-Turing-recognizable) for an application.

5