Conditional Expectation

Matteo Gardini*

November 13, 2024

Abstract

All that you want to know about conditional expectation. Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, we define the conditional expectation with respect a σ -algebra generated by a partition of Ω and then we extend the construction to a general sub- σ -algebra of $\mathcal{G} \subseteq \mathcal{F}$.

Keywords: Conditional expectation, σ -algebras, Radon-Nycodim theorem.

1 The setting

Assume that we have a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ let $A \in \mathcal{F}$ such that $\mathbb{P}(A) > 0$. Under this hypotesis I can define the *conditional probability* as:

$$\mathbb{P}(B|A) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)}.$$
 (1)

This is a new probability measure on (Ω, \mathcal{F}) and hence I can define an expected value with respect this new measure, using the (equivalent) symbols:

$$\mathbb{E}\left[f|A\right], \quad \mathbb{E}_{A}\left[f\right], \quad \int_{\Omega} f dP_{A},$$

where $f:\Omega\to\mathbb{R}$ is a \mathcal{F} -measurable function. Recall from measure theory that the following holds:

$$\mathbb{E}\left[\mathbb{1}_{B}\right] = \mathbb{P}\left(B\right), \text{ for } B \in \mathcal{F},$$

and hence I want a definition which mocks the previous relation, namely:

$$\mathbb{E}\left[\mathbb{1}_B|A\right] = P(B|A)$$

It turns out that a good definition is the following:

$$\mathbb{E}\left[f|A\right] = \frac{\int_{\omega \in \Omega} f(\omega) \cdot \mathbbm{1}_A(\omega) d\mathbb{P}(\omega)}{\mathbb{P}(A)}.$$

Observe that this quantity is a number and that if $f = \mathbb{1}_B$ for $B \in \mathcal{F}$ we have:

$$\mathbb{E}\left[f|A\right] = \frac{\int_{A} \mathbb{1}_{B} d\mathbb{P}}{\mathbb{P}(A)} = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)} = \mathbb{P}(B|A).$$

^{*}Eni Plenitude, Via Ripamonti 85, 20136, Milan, Italy, email matteo.gardini@eniplenitude.com

2 Conditional expectation with respect a σ -algebra generated by a partition of Ω

Assume that we have a partition of Ω , namely a collection of elements $\{A_n\}_{n\geq 1}$ such that:

- $A_n \subseteq \Omega$.
- $\bigcup_{n>1} A_n = \Omega$.
- $A_i \cap A_i = \emptyset$ for $i \neq j$.

We can define $\mathcal{G} = \sigma(A_n, n \geq 1)$ the σ -algebra generated by the partition.

2.1 Preliminary results

First we prove the following lemma.

Lemma 2.1. Define $\mathcal{H} = \left\{ \bigcup_{j \in M} A_j : M \subseteq \mathbb{N} \right\}$. Then \mathcal{H} is a σ -algebra.

Proof. Let be $H \in \mathcal{H}$. Since $\{A_n\}_{n\geq 1}$ is a partition we have that:

$$H^C = \left(\bigcup_{j \in M} A_j\right)^C = \bigcup_{j \in \mathbb{N} \setminus M} A_j \in \mathcal{H}.$$

If $\{H_m\}_{m\in M}$ with $H_m\in\mathcal{H}$, with $M\subseteq\mathbb{N}$ then:

$$H = \bigcup_{m \in M} H_m = \bigcup_{m \in M} \left\{ \bigcup_{j \in M_m} A_j \right\} \in \mathcal{H},$$

since this is a countable union of countable unions and hence it is a countable union of sets of the σ -algebra \mathcal{H} and hence it belongs to \mathcal{H} .

The following proposition characterizes the sets $B \in \mathcal{G}$: they can be written as countable unions of elements of the partition.

Proposition 2.2. $B \in \mathcal{G}$ if and only if $\exists M \subseteq \mathbb{N}$ such that $B = \bigcup_{n \in M} A_n$.

Proof. We have to prove both implications.

- \Rightarrow : Assume that $B \in \mathcal{G}$. Define $\mathcal{H} = \left\{ \bigcup_{j \in M} A_j : M \subseteq \mathbb{N} \right\}$. Clearly we have that $\mathcal{H} \subseteq \mathcal{G}$, since its elements are countable unions of A_j and countable unions belongs to \mathcal{G} bu construction.
 - It turns out (Lemma 2.1) that \mathcal{H} is a σ -algebra containing the partition $\{A_n\}_{n\geq 1}$. But \mathcal{G} is the smallest σ -algebra containing the partition (by definition of generate σ -algebra) and hence $\mathcal{G} \subseteq \mathcal{H}$. Hence $\mathcal{G} = \mathcal{H}$.
- \Leftarrow : Assume $\exists M \subseteq \mathbb{N}$ such that $B = \bigcup_{n \in M} A_n$. $A_n \in \mathcal{G}$ by construction of \mathcal{G} , and \mathcal{G} is a σ -algebra. Then $B \in \mathcal{G}$ since it is a countable union of elements of the σ -algebra.

So far, we have proved that any element of the σ -algebra \mathcal{G} can be written as countable union of elements of the partition. We have the following.

Proposition 2.3. $h: \Omega \to \mathbb{R}$ is \mathcal{G} -measurable if and only if h is constant on each A_i of the partition.

Proof. We have to prove both implications.

• \Leftarrow : Since h is constant over the elements of the partition we can assume that it has the following form:

$$h(\omega) = \sum_{j \in \mathbb{N}} h_j \mathbb{1}_j (\omega)$$

Let $B \in \mathcal{B}(\mathbb{R})$ and take $x \in B$ and observe that $B = \bigcup_{x \in B} \{x\}$. We have only two possibilities: $h^{-1}(\{x\}) \in A_j$ for some j or $h^{-1}(\{x\}) \in \emptyset$. Hence:

$$h^{-1}(B) = \bigcup_{j \in M} A_j$$

for some countable set $M \subset \mathbb{N}$, and hence $h^{-1}(B) \in \mathcal{G}$ since it is the union of elements of the partition.

• \Rightarrow : Assume h is \mathcal{G} -measurable, hence:

$$h^{-1}(B) \in \mathcal{B}, \quad \forall B \in \mathcal{B}(\mathbb{R}).$$

Define the image of h as:

$$B_0 = \{ x \in \mathbb{R} : \exists \omega \in \Omega : h(\omega) = x \}$$

Fix x in B_0 hence $\{x\} \in \mathcal{B}(\mathbb{R})$ and hence $h^{-1}(\{x\}) \in \mathcal{G}$ and then it is a union of elements of the partition.

$$h^{-1}(\lbrace x\rbrace) = \bigcup_{j \in M_x} A_j.$$

If we take two different x and y, clearly we have that $M_x \cap M_y = \emptyset$. M_x is a partition of \mathbb{N} . We can construct a injection between B_0 and the union of M_x by taking:

$$x \mapsto \min\{M_x\}$$

Hence we have that B_0 is countable.

Finally we have:

$$h(\omega) = \sum_{x \in B_0} x \mathbb{1}_{h^{-1}(\{x\})}(\omega) = \sum_{x \in B_0} x \mathbb{1}_{\bigcup_{j \in M_x} A_j}(\omega)$$

Observe that if you take two elements $\omega_1, \omega_2 \in A_{j_0}$ they are mapped on the same value x, and hence this means that h is constant over elements of the partition.

There is also another way to prove this fact, by contradiction. Assume that $\omega_1, \omega_2 \in A_{j_0}$ such that $h(\omega_1) = c_1 \neq c_2 = h(\omega_2)$. We have that:

$$h^{-1}(\{c_1\}) = \{\omega \in \Omega : h(\omega) = c_1\} \in \mathcal{G}$$

But then we have:

$$h^{-1}(\{c_1\}) \subseteq A_{j_0},$$

 $h^{-1}(\{c_1\}) \neq A_{j_0},$

which is a contradiction since $h^{-1}(\{c_1\})$ cannot be written as union of the elements of the partition. (Draw a picture to convince yourself).

2.2 The construction with respect to the sub σ -algebra \mathcal{G}

We consider $(\Omega, \mathcal{F}, \mathbb{P})$, $f : \Omega \to \mathbb{R}$, \mathcal{F} -measurable and integrable and \mathcal{G} the σ -algebra generated by the partition $\{A_j\}_{j\in\mathbb{N}}$. We define the following function:

$$\mathbb{E}\left[f|\mathcal{G}\right](\omega) = \sum_{j \in \mathbb{N}} \mathbb{E}\left[f|A_j\right] \mathbb{1}_{A_j}(\omega)$$

We have the following theorem:

Theorem 2.4. Under the hypothesis of the construction of $\mathbb{E}[f|\mathcal{G}](\omega)$:

- $\mathbb{E}[f|\mathcal{G}](\omega)$ is \mathcal{G} -measurable.
- Given $g \mathcal{G}$ -measurable, bounded and fg integrable then:

$$\int fgd\mathbb{P} = \int \mathbb{E} \left[f|\mathcal{G} \right] gd\mathbb{P}$$

Observe that the identity reminds the usual definition of conditional expectation if $g = \mathbb{1}_B$ for $B \in \mathcal{G}$

Proof. We prove both statements.

• $\mathbb{E}[f|\mathcal{G}](\omega)$ is \mathcal{G} -measurable. Consider $\omega \in A_j$. $\mathbb{E}[f|A_j]$ is a number and hence the function $\mathbb{E}[f|\mathcal{G}](\omega)$ is constant over the elements of the partition. By Proposition 2.3 we have that it is \mathcal{G} -measurable.

• First we have to check that $\mathbb{E}[f|\mathcal{G}]g$ is integrable. Remember that $\mathbb{E}[f|A_j]$ is a number and use its definition. We have that:

$$\begin{split} \int &|\mathbb{E}\left[f|\mathcal{G}\right]|d\mathbb{P} = \int &|\sum_{j\in\mathbb{N}}\mathbb{E}\left[f|A_j\right]\mathbbm{1}_{A_j}|d\mathbb{P} \leq \sum_{j\in\mathbb{N}}\int &|\mathbb{E}\left[f|A_j\right]|\mathbbm{1}_{A_j}d\mathbb{P} \\ &= \sum_{j\in\mathbb{N}} &|\mathbb{E}\left[f|A_j\right]|\mathbb{P}\left(A_j\right) = \sum_{j\in\mathbb{N}}\int &|f|\mathbbm{1}_{A_j}d\mathbb{P} = \int &|f|d\mathbb{P} < \infty. \end{split}$$

Once that we have this we can conclude that:

$$\int |\mathbb{E}\left[f|\mathcal{G}\right]g|d\mathbb{P} \leq M \int |\mathbb{E}\left[f|\mathcal{G}\right]|d\mathbb{P} < \infty.$$

• Now we have to show that the equality holds.

First consider $g = \mathbb{1}_B$ with $B \in \mathcal{G}$ and hence $B = \bigcup_{j \in M} A_j$ by Proposition 2.2. Now, it is a matter of computation (we use the dominated convergence theorem):

$$\begin{split} \int g \mathbb{E} \left[f | \mathcal{G} \right] d \mathbb{P} &= \int \sum_{j \in M} \mathbbm{1}_{A_j} \mathbb{E} \left[f | \mathcal{G} \right] d \mathbb{P} = \sum_{j \in M} \int \mathbbm{1}_{A_j} \mathbb{E} \left[f | \mathcal{G} \right] d \mathbb{P} \\ &= \sum_{j \in M} \int \mathbb{E} \left[f | A_j \right] d \mathbb{P} = \sum_{j \in M} \mathbb{E} \left[f | A_j \right] \mathbb{P}(A_j) \\ &= \sum_{j \in M} \int f \mathbbm{1}_{A_j} d \mathbb{P} = \int \sum_{j \in M} f \mathbbm{1}_{A_j} d \mathbb{P} = \int f \mathbbm{1}_{B} d \mathbb{P} = \int f g d \mathbb{P}. \end{split}$$

Now we can consider the general case in which g is \mathcal{G} -measurable. Since it is \mathcal{G} -measurable we have that it has the form:

$$g(\omega) = \sum_{j \in \mathbb{N}} g_j \mathbb{1}_{A_j} (\omega).$$

Again, by using the dominated convergence theorem and the fact that $\mathbb{E}[f|\mathcal{G}]$ is integrable, we have:

$$\begin{split} \int g \mathbb{E} \left[f | \mathcal{G} \right] d \mathbb{P} &= \int \left(\sum_{j \in \mathbb{N}} g_j \mathbbm{1}_{A_j} \right) \mathbb{E} \left[f | \mathcal{G} \right] d \mathbb{P} \\ &= \int \left(\sum_{j \in \mathbb{N}} g_j \mathbbm{1}_{A_j} \mathbb{E} \left[f | \mathcal{G} \right] \right) d \mathbb{P} \stackrel{DCT}{=} \sum_{j \in \mathbb{N}} \left(\int g_j \mathbbm{1}_{A_j} \mathbb{E} \left[f | \mathcal{G} \right] d \mathbb{P} \right) \\ &= \sum_{j \in \mathbb{N}} g_j \left(\int \mathbbm{1}_{A_j} \mathbb{E} \left[f | \mathcal{G} \right] d \mathbb{P} \right) \stackrel{A_j \in \mathcal{G}}{=} \sum_{j \in \mathbb{N}} g_j \left(\int f \mathbbm{1}_{A_j} d \mathbb{P} \right) \\ &= \int \sum_{j \in \mathbb{N}} g_j f \mathbbm{1}_{A_j} d \mathbb{P} = \int f \sum_{j \in \mathbb{N}} g_j \mathbbm{1}_{A_j} d \mathbb{P} \\ &= \int f g d \mathbb{P}. \end{split}$$

Hence, we have constructed a random variable $\mathbb{E}[f|\mathcal{G}]$ such that it is \mathcal{G} -measurable and such that for g bounded and \mathcal{G} -measurable:

$$\int g\mathbb{E}\left[f|\mathcal{G}\right]d\mathbb{P} = \int fgd\mathbb{P}.$$

Observe that if $g = \mathbb{1}_B$ with $B \in \mathcal{G}$ we have the usual property of the conditional expectation:

$$\int_{B} \mathbb{E}\left[f|\mathcal{G}\right] d\mathbb{P} = \int_{B} f d\mathbb{P}.$$

3 The construction with respect a general sub σ -algebra

References