

Dipartimento di Scienze Matematiche, Informatiche e Fisiche Corso di Laurea in \square Informatica, \square IBW, \square TWM

Analisi Matematica, tema A

Prova Scritta del 23 luglio 2020

Cog	nom	ее	Ν	ome	е:

Matricola:																			

Sono permessi libri e appunti cartacei ma non strumenti elettronici. Va riportato lo svolgimento degli esercizi.

1. Calcolare i seguenti limiti, usando il teorema de L'Hôpital dove si ritenga lecito e opportuno

a)
$$\lim_{x\to 0} \frac{e^x(2x-2x^2-2)\sin x + x^2\cos x + 2x\sqrt{1-x}}{(2\sin x - \sin 2x)(1+x)^{1/x}}$$

e)
$$\lim_{n \to +\infty} \frac{((n+1)!)^2}{n^{n+1}}$$

b)
$$\lim_{x\to 0} \frac{8(1-x)^{3/2} - 8\cos(x-x^2) + 3x(1+e^x)^2}{|x^2-x|+x}$$

f)
$$\lim_{n \to +\infty} \frac{e^{2n^2 - n}}{\left(1 + \frac{1}{n}\right)^{2n^3}}$$

c)
$$\lim_{x \to 0} \frac{3(2x+1)^{5/2} + 5(x-2)x \sin 2x + 5(\cos 2x + 2)e^{-x} - 18}{(\sqrt{2x^3 + x^2} - x)\log(1-x)}$$

g)
$$\lim_{n \to +\infty} \sqrt[n]{\frac{n^{2n}}{n!}}$$

d)
$$\lim_{x \to +\infty} \left(x \log \left(\left(1 + \frac{1}{x} \right)^x \right) - x \log \left(\left(1 + \frac{1}{x} \right)^{x+1} \right) \right)$$

h)
$$\lim_{x\to 0} \frac{\arccos(\cos x)}{\cos(\arccos x)}$$

- **2.** Data la funzione $f(x) := (3 + 6x 2x^3) \exp\left(\frac{x+3}{x+1}\right)$ (exp sta per l'esponenziale in base e, cioè $\exp x = e^x$), **a)** trovare dominio, continuità, limiti agli estremi ed eventuali asintoti; **b)** mostrare che f(x) si annulla in esattamente tre punti; **c)** calcolare f'(x), con gli intervalli di crescenza/decrescenza e i punti di massimo/minimo di f, **d)** calcolare f''(x), mostrando che esiste un solo flesso; **e)** tracciare un grafico qualitativo di f.
- 3. Calcolare primitive delle seguenti funzioni (la penultima per parti):

(a)
$$\frac{x^4 - 2x^3 + 1}{(x+2)(x^2 - 2x + 2)}$$
, (b) $\frac{2 + \frac{1}{x}}{1 + (2x + \log x)^2}$, (c) $\frac{2 \log x}{x(2 + \log^2 x)}$ (d) $(x^2 + 1)\log^2 x$, (e) $\frac{1 + \tan^2(\operatorname{arcsen} x)}{\sqrt{1 - x^2}}$

- **4.** Calcolare l'integrale $\int \frac{1}{x-4x^2\sqrt{1-4x^2}} dx$, per esempio con la sostituzione $y=\sqrt{\frac{1}{x^2}-4}$.
- **5.** Si mettano in ordine le successioni seguenti, in modo che per $n \to +\infty$ la precedente sia "o piccolo" della successiva: (2n)!, $\sqrt{n^4-2n+1}$, 2^{-n^2} , n^{2n} , $\left(1-\frac{1}{n}\right)^{n^3}$, $\sqrt[n]{2^n+n}$, $\arccos(n/(n+1))$, e^{-n} .
- **6.** Dimostrare per induzione che per ogni $n \ge 1$ vale la disuguaglianza $1^2 + 2^4 + 3^6 + \cdots + n^{2n} < 4n^{2n}/3$.

Dipartimento di Scienze Matematiche, Informatiche e Fisiche Corso di Laurea in \square Informatica, \square IBW, \square TWM

Analisi Matematica, tema B

Prova Scritta del 23 luglio 2020

C	og	nom	ее	Ν	ome	е:

Mat	ricol	a:											

Sono permessi libri e appunti cartacei ma non strumenti elettronici. Va riportato lo svolgimento degli esercizi.

1. Calcolare i seguenti limiti, usando il teorema de L'Hôpital dove si ritenga lecito e opportuno

a)
$$\lim_{x\to 0} \frac{20e^{-x}(\cos x - 2) + 24 - 4(2x+1)^{5/2} + 25x(x+1)\sin 2x}{(x - \sqrt{x^2 - x^3})\sin x}$$

e)
$$\lim_{x\to 0} \frac{\arccos(\cos x)}{\operatorname{sen}(\arcsin x)}$$

b)
$$\lim_{x \to +\infty} x \left(\log \left(\left(\frac{1}{x} + 1 \right)^{x+1} \right) - \log \left(\left(\frac{1}{x} + 1 \right)^x \right) \right)$$

f)
$$\lim_{n \to +\infty} \sqrt[n]{\frac{n!}{n^{2n}}}$$

c)
$$\lim_{x \to 0} \frac{x^2 \cos x - 2(x^2 - x - 1)e^{-x} \sin x - 2x\sqrt{1 + x}}{(\sin 3x - 3\sin x)(x + 1)^{1/x}}$$

g)
$$\lim_{n \to +\infty} \frac{n^{n+1}}{((n+1)!)^2}$$

d)
$$\lim_{x\to 0} \frac{(2+e^{-x})^2x - 6\cos(x+x^2) + 6(1-x)^{3/2}}{x+|2x^2-x|}$$

h)
$$\lim_{n \to +\infty} \frac{\left(1 + \frac{1}{n}\right)^{2n^3}}{e^{2n^2 - n}}$$

- **2.** Data la funzione $f(x) := (6x 2x^3 3) \exp\left(\frac{x 3}{x 1}\right)$ (exp sta per l'esponenziale in base e, cioè $\exp x = e^x$), **a)** trovare dominio, continuità, limiti agli estremi ed eventuali asintoti; **b)** mostrare che f(x) si annulla in esattamente tre punti; **c)** calcolare f'(x), con gli intervalli di crescenza/decrescenza e i punti di massimo/minimo di f, **d)** calcolare f''(x), mostrando che esiste un solo flesso; **e)** tracciare un grafico qualitativo di f.
- 3. Calcolare primitive delle seguenti funzioni (la penultima per parti):

(a)
$$\frac{x^4 - x^3 + 2}{(x - 2)(x^2 + 2x + 2)}$$
, (b) $\frac{1 - \frac{2}{x}}{1 + (x - 2\log x)^2}$, (c) $\frac{4\log x}{x(1 + 2\log^2 x)}$ (d) $(2 - x^2)\log^2 x$, (e) $\frac{1 + \tan^2(\arccos 2x)}{\sqrt{1 - 4x^2}}$

- **4.** Calcolare l'integrale $\int \frac{1}{x + x^2 \sqrt{2 x^2}} dx$, per esempio con la sostituzione $y = \sqrt{\frac{2}{x^2} 1}$.
- **5.** Si mettano in ordine le successioni seguenti, in modo che per $n \to +\infty$ la precedente sia "o piccolo" della successiva: e^{-n} , $\sqrt[n]{n+2^n}$, $\arccos(n/(n+1))$, n^{2n} , $\sqrt{n^4-2n+1}$, 2^{-n^2} , (2n)!, $\left(1-\frac{1}{n}\right)^{n^3}$.
- **6.** Dimostrare per induzione che per ogni $n \ge 1$ vale la disuguaglianza $1^2 + 2^4 + 3^6 + \cdots + n^{2n} < 11n^{2n}/10$.

Dipartimento di Scienze Matematiche, Informatiche e Fisiche Corso di Laurea in \square Informatica, \square IBW, \square TWM

Analisi Matematica, tema C

Prova Scritta del 23 luglio 2020

Cognome e Nome:

Matricola:																			

Sono permessi libri e appunti cartacei ma non strumenti elettronici. Va riportato lo svolgimento degli esercizi.

Calcolare i seguenti limiti, usando il teorema de L'Hôpital dove si ritenga lecito e opportuno

a)
$$\lim_{x\to 0} \frac{e^x(2x^2-2x-2)\sin x + 3x^2\cos x + 2x\sqrt{x+1}}{(x+1)^{1/x}(2\sin x - \sin 2x)}$$

e)
$$\lim_{n \to +\infty} \sqrt[n]{\frac{n^{2n+2}}{(n+1)!}}$$

Calcolare i seguenti limiti, usando il teorema de L'Hôpital dove si riteria)
$$\lim_{x \to 0} \frac{e^x (2x^2 - 2x - 2) \operatorname{sen} x + 3x^2 \cos x + 2x\sqrt{x + 1}}{(x + 1)^{1/x} (2 \operatorname{sen} x - \operatorname{sen} 2x)}$$
b)
$$\lim_{x \to 0} \frac{24 - 4(2x + 1)^{5/2} - 25(x - 1)x \operatorname{sen} 2x + 20(\cos x - 2)e^{-x}}{(\sqrt{x^2 - x^3} - x) \operatorname{sen} x}$$
c)
$$\lim_{x \to +\infty} x \left(\log \left(\left(1 + \frac{1}{x} \right)^x \right) - \log \left(\left(1 + \frac{1}{x} \right)^{1+x} \right) \right)$$

f)
$$\lim_{n \to +\infty} \frac{(n-1)^{n-1}}{((n-1)!)^2}$$

c)
$$\lim_{x \to +\infty} x \left(\log \left(\left(1 + \frac{1}{x} \right)^x \right) - \log \left(\left(1 + \frac{1}{x} \right)^{1+x} \right) \right)$$

g)
$$\lim_{x\to 0} \frac{\operatorname{sen}(\operatorname{arcsen} x)}{\operatorname{arccos}(\cos x)}$$

d)
$$\lim_{x \to 0} \frac{6\cos(x - x^2) - 6(x+1)^{3/2} + (e^x + 2)^2 x}{|2x^2 - x| + x}$$

h)
$$\lim_{n \to +\infty} e^{2n^2 + n} \left(1 - \frac{1}{n}\right)^{2n^3}$$

- **2.** Data la funzione $f(x) := (2x^3 6x 3) \exp\left(\frac{x+3}{x+1}\right)$ (exp sta per l'esponenziale in base e, cioè exp x = e e^x), a) trovare dominio, continuità, limiti agli estremi ed eventuali asintoti; b) mostrare che f(x) si annulla in esattamente tre punti; c) calcolare f'(x), con gli intervalli di crescenza/decrescenza e i punti di massimo/minimo di f, d) calcolare f''(x), mostrando che esiste un solo flesso; e) tracciare un grafico qualitativo di f.
- Calcolare primitive delle seguenti funzioni (la penultima per parti):

(a)
$$\frac{x^4 + x^3 + 3}{(x-2)(x^2 + 2x + 2)}$$
, (b) $\frac{1 + \frac{2}{x}}{1 + (x+2\log x)^2}$, (c) $\frac{4\log x}{x(1-2\log^2 x)}$ (d) $(2x^2 + 1)\log^2 x$, (e) $\frac{1 + \tan^2(\arccos x)}{\sqrt{1 - x^2}}$

- **4.** Calcolare l'integrale $\int \frac{1}{x^2\sqrt{2-x^2}-x} dx$, per esempio con la sostituzione $y=\sqrt{\frac{2}{x^2}-1}$.
- 5. Si mettano in ordine le successioni seguenti, in modo che per $n \to +\infty$ la precedente sia "o piccolo" della successiva: $\sqrt[n]{2^n - n}$, (2n)!, $\arccos(n/(n+1))$, $\left(1 - \frac{1}{n}\right)^{n^3}$, $\sqrt{n^4 - 2n + 1}$, 2^{-n^2} , e^{-n} , n^{2n} .
- **6.** Dimostrare per induzione che per ogni $n \ge 1$ vale la disuguaglianza $1^2 + 2^4 + 3^6 + \cdots + n^{2n} < 2n^{2n}$.

Dipartimento di Scienze Matematiche, Informatiche e Fisiche Corso di Laurea in \square Informatica, \square IBW, \square TWM

Analisi Matematica, tema D

Prova Scritta del 23 luglio 2020

Cog	nom	e e l	Nom	e:																
Mat	Matricola:																			

Sono permessi libri e appunti cartacei ma non strumenti elettronici. Va riportato lo svolgimento degli esercizi.

- Calcolare i seguenti limiti, usando il teorema de L'Hôpital dove si ritenga lecito e opportuno
 - a) $\lim_{x \to +\infty} \left(x \log \left(\left(\frac{1}{x} + 1 \right)^{x+1} \right) x \log \left(\left(\frac{1}{x} + 1 \right)^{x} \right) \right)$
- e) $\lim_{n \to +\infty} \left(1 \frac{2}{n}\right)^{n^3} e^{2n^2 + 2n}$
- b) $\lim_{x \to 0} \frac{10(2 + \cos 2x)e^{-x} 6(1 2x)^{5/2} 25x(2x 1)\sin 2x 24}{\left(x \sqrt{2x^3 + x^2}\right)\log(x + 1)}$ f) $\lim_{n \to +\infty} \frac{((n 1)!)^2}{(n 1)^{n 1}}$

c) $\lim_{x \to 0} \frac{e^{-x}(x^2 - x + 2) \sin x + 4x^2 \cos x - 2x\sqrt{1 + x}}{(1 + x)^{1/x}(3 \sin x - \sin 3x)}$

g) $\lim_{n \to +\infty} \sqrt[n]{\frac{(n+1)!}{n^{2n+2}}}$

d) $\lim_{x \to 0} \frac{8\cos(x^2 + x) - 8(x+1)^{3/2} + 3x(e^{-x} + 1)^2}{x + |x^2 - x|}$

- h) $\lim_{x\to 0} \frac{\cos(\arccos x)}{\arccos(\cos x)}$
- **2.** Data la funzione $f(x) := (2x^3 6x + 3) \exp\left(\frac{x-3}{x-1}\right)$ (exp sta per l'esponenziale in base e, cioè exp x = e e^x), a) trovare dominio, continuità, limiti agli estremi ed eventuali asintoti; b) mostrare che f(x) si annulla in esattamente tre punti; c) calcolare f'(x), con gli intervalli di crescenza/decrescenza e i punti di massimo/minimo di f, \mathbf{d}) calcolare f''(x), mostrando che esiste un solo flesso; \mathbf{e}) tracciare un grafico qualitativo di f.
- Calcolare primitive delle seguenti funzioni (la penultima per parti):

(a)
$$\frac{x^4 + x^3 + 2}{(x+2)(x^2 - 2x + 2)}$$
, (b) $\frac{2 - \frac{1}{x}}{1 + (2x - \log x)^2}$, (c) $\frac{2 \log x}{x(2 - \log^2 x)}$ (d) $(x^2 - 1)\log^2 x$, (e) $\frac{1 + \tan^2(\operatorname{arcsen} 2x)}{\sqrt{1 - 4x^2}}$

- **4.** Calcolare l'integrale $\int \frac{1}{x + 4x^2\sqrt{1 4x^2}} dx$, per esempio con la sostituzione $y = \sqrt{\frac{1}{x^2} 4}$.
- **5.** Si mettano in ordine le successioni seguenti, in modo che per $n \to +\infty$ la precedente sia "o piccolo" della successiva: 2^{-n^2} , $\sqrt[n]{2^n-n}$, (2n)!, $\arccos(n/(n+1))$, $\left(1-\frac{1}{n}\right)^{n^3}$, n^{2n} , e^{-n} , $\sqrt{n^4-2n+1}$.
- **6.** Dimostrare per induzione che per ogni $n \ge 1$ vale la disuguaglianza $1^2 + 2^4 + 3^6 + \cdots + n^{2n} < 3n^{2n}/2$.