Practice for Quiz 1

Charlie Meyer

MoWeFri 1:00 - 1:50

Practice 4-2: Logarithms

Question 11

Simplify $\log_2 5 + \log_2 3$

Recall that the sum of two logs with the same base is the log of the product of the arguments.

Therefore, $\log_2 5 + \log_2 3 = \log_2 15$

Question 12

Re-write $\log_3(x^q)$ without exponentiation

 $q * \log_3(x)$

Question 13

Re-write $\log_4 x$ using base-3 logs instead of base 4.

$$\log_4 x = \frac{\log_3 x}{\log_3 4}$$

Question 14

Fill in the blank: $\log_4 9 = \log_2 blank$

$$\log_4 9 = \frac{\log_2 9}{\log_2 4}$$

$$\log_4 9 = \frac{\log_2 9}{2}$$

$$\log_4 9 = \log_2 \sqrt{9}$$

$$\log_4 9 = \log_2 3$$

Question 15

Simplify $\log_5(24) - \log_5(4)$

$$\log_5(24) - \log_5(4) = \log_5(\frac{24}{4})$$

$$\log_5(\frac{24}{4}) = \log_5(6)$$

Question 16

Re-write $\log_{10}(x^7)$ without exponentiation

$$7*\log_{10}(x)$$

Question 17

Skip too easy

Question 18

Fill in the blank: $\log_9(4) = \log_3(blank)$

$$\log_9(4) = \frac{\log_3(4)}{\log_3(9)}$$

$$\log_9(4) = \frac{\log_3(4)}{2}$$

$$\log_9(4) = \log_3(\sqrt{4})$$

$$\log_9(4) = \log_3(2)$$

$$Blank = 2$$

Question 19

Simplify $\log_2 5 + \log_2 3$

$$\log_2 5 + \log_2 3 = \log_2 (5*3)$$

$$\log_2(5*3) = \log_2(15)$$

Question 27

Re-write $\log_2 16x^3$ with no constants or operators in a $\log x$ argument.

$$\log_2 16x^3 = \log_2 16 + \log_2 x^3$$

$$4 + 3\log_2 x$$

Question 28

What is $\log_3 5 * \log_5 3$?

$$\log_3 5 * \log_5 3 = \frac{\log_5 5}{\log_5 3} * \frac{\log_5 3}{\log_5 5}$$

$$\log_3 5 * \log_5 3 = \frac{1}{\log_5 3} * \frac{\log_5 3}{1}$$

$$\log_3 5 * \log_5 3 = 1$$