Optimization and Tips for Neural Network Training

Geena Kim

Gradient Descent

Optimization Goal

Find a set of (optimized) weights which minimize the error (or loss function) at the output

Weight update rule

$$W_{nm}^{L}$$
 \leftarrow W_{nm}^{L} $-\alpha * \delta W_{nm}^{L}$

$$W_{ij} \leftarrow W_{ij} - \overset{\checkmark}{\alpha} \frac{\partial \mathcal{L}}{\partial W_{ij}}$$

Global minimum vs. local minimum

Stochastic Gradient Descent

How many training samples at a time do we include to calculate the error?

Practically we use mini batches

lep

Training speed and accuracy vs. minibatch size

Stochastic Gradient Descent

With decreasing learning rate (Learning rate scheduling)

```
Algorithm 8.1 Stochastic gradient descent (SGD) update
Require: Learning rate schedule \epsilon_1, \epsilon_2, \ldots
Require: Initial parameter \theta
   k \leftarrow 1
   while stopping criterion not met do
      Sample a minibatch of m examples from the training set \{x^{(1)}, \dots, x^{(m)}\} with
      corresponding targets y^{(i)}.
      Compute gradient estimate: \hat{\boldsymbol{g}} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})
      Apply update: \theta \leftarrow \theta - \epsilon_k \hat{q}
      k \leftarrow k + 1
   end while
```


Stochastic Gradient Descent

(notations)

SGD tuning parameters

```
tf.keras.optimizers.SGD(
    learning_rate=0.01, momentum=0.0, nesterov=False, name='SGD', **kwargs)
```

Popular options to tweak

- learning_rate: the base learning rate
- momentum
- decay
- nestrov
- (advanced) callback

Stochastic Gradient Descent with momentum

SGD with learning rate alone is slow to converge

Adding a momentum (moving average of a weight) can make it faster

$$oldsymbol{v} \leftarrow lpha oldsymbol{v} - \overbrace{\epsilon}^{oldsymbol{v}} oldsymbol{\theta} \left(rac{1}{m} \sum_{i=1}^{m} L(oldsymbol{f}(oldsymbol{x}^{(i)}; oldsymbol{ heta}), oldsymbol{y}^{(i)})
ight), \ oldsymbol{ heta} \leftarrow oldsymbol{ heta} + oldsymbol{v}.$$

^{**} see what happens when the gradient is 0 (on plateau)

Stochastic Gradient Descent with decay

Learning rate scheduling using decay

For iteration k (epoch)

$$\epsilon_k = (1 - \alpha)\epsilon_0 + \alpha\epsilon_{\tau}$$

$$\alpha = \frac{k}{\tau}$$

^{**} In the algorithm pseudocode k is for step (each mini batch), and decay learning rate by step, but normally we decrease learning rate each epoch

Learning rate scheduling

```
tf.keras.optimizers.SGD(
    learning_rate=0.01, momentum=0.0, nesterov=False, name='SGD', **kwargs
)
```

learning_rate=0.1, momentum=0, decay=0, nestrov=False

Learning rate scheduling (custom)

```
tf.keras.callbacks.LearningRateScheduler(
    schedule, verbose=0
)
```

Learning rate scheduling (custom)

```
tf.keras.callbacks.LearningRateScheduler(
    schedule, verbose=0
)
```


comparison

Nestrov momentum

Nestrov momentum does early correction on gradient It's supposed to make converge faster, but on SGD it doesn't do much

Regular momentum

$$\boldsymbol{v} \leftarrow \alpha \boldsymbol{v} - \epsilon \nabla_{\boldsymbol{\theta}} \left(\frac{1}{m} \sum_{i=1}^{m} L(\boldsymbol{f}(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)}) \right),$$

 $\theta \leftarrow \theta + v$.

Nestrov momentum

$$oldsymbol{v} \leftarrow lpha oldsymbol{v} - \epsilon
abla_{oldsymbol{ heta}} \left[rac{1}{m} \sum_{i=1}^{m} L \Big(oldsymbol{f}(oldsymbol{x}^{(i)}; oldsymbol{ heta} + lpha oldsymbol{v}), oldsymbol{y}^{(i)} \Big) \right], \ oldsymbol{ heta} \leftarrow oldsymbol{ heta} + oldsymbol{v},$$

Adagrad

learning rate is normalized by the sqrt of the total sum of the gradient

$$\theta_{t+1,i} = \theta_{t,i} - \frac{\eta}{\sqrt{G_{t,ii} + \epsilon}} \cdot g_{t,i}$$

An overview of gradient descent optimization algorithms https://arxiv.org/pdf/1609.04747.pdf

Adadelta

learning rate is normalized by the RMS of the gradient Weight change is proportional to the RMS ratio

$$\Delta \theta_t = -\frac{\eta}{RMS[g]_t} g_t \qquad \Delta \theta_t = -\frac{RMS[\Delta \theta]_{t-1}}{RMS[g]_t} g_t \\ \theta_{t+1} = \theta_t + \Delta \theta_t$$

RMSprop

Variant of Adadelta RMSprop takes a moving average when it calculate the RMS of the gradient

$$E[g^{2}]_{t} = 0.9E[g^{2}]_{t-1} + 0.1g_{t}^{2}$$

$$\theta_{t+1} = \theta_{t} - \frac{\eta}{\sqrt{E[g^{2}]_{t} + \epsilon}}g_{t}$$

An overview of gradient descent optimization algorithms https://arxiv.org/pdf/1609.04747.pdf

Adaptive Moment Estimation (Adam)

Mimics momentum for gradient and gradient-squared

mt and vt are estimates of the first moment (the mean) and the second moment (the uncentered variance) of the gradients

An overview of gradient descent optimization algorithms https://arxiv.org/pdf/1609.04747.pdf

animated image source: https://imgur.com/a/Hqolp

Tips for training NN

Monitor overfitting as epoch goes

Train hyperparameter tuning: learning rate and other hyperparams

Architecture hyperparameter tuning: NN architecture, # layers, # neurons, activation ft, etc

Try different optimization methods

Regularization: Dropout and Batch Normalization, or add L1/L2 reg on the loss

Monitoring Overfitting in Training

Dataset split
Train / Validation / Test

Diagram credit: Fei-Fei Li

Monitoring Overfitting in Training

Ways to reduce overfitting

Dropout

(a) Standard Neural Net (b) After applying dropout.

Batch normalization

https://www.kaggle.com/c/cub-csci-4622-kaggle-2-2020/overview

To participate please check the Piazza post for the invitation link.