Question 2

We state the Leibniz determinant of zI - A here for reference:

$$det(zI - A) = \sum_{\sigma \in S_n} sign(\sigma)(zI - A)_{\sigma(1)1}...(zI - A)_{\sigma(n)n}$$

where

$$(zI - A)_{\sigma(i)i} = \begin{cases} z - A_{ii} & \sigma(i) = i \\ -A_{\sigma(i)i} & \sigma(i) \neq i \end{cases}$$

The trivial permutation $\sigma = 1$ contributes the terms

$$(z - A_{11})...(z - A_{nn})$$

which comprise an nth degree polynomial z^n and an n-1th degree polynomial $\sum_{i=1}^n -A_{ii}z^{n-1} = -\operatorname{tr}(A)z^{n-1}$, as well as other lower order terms. Observe that for $\sigma \neq 1$, the terms contributed are of degree $\leq n-2$ because these terms must have both at least one i s.t. $\sigma(i) \neq i$, and a corresponding j s.t. $\sigma(j) = i \neq j$ (since it is required that \exists an element which σ sends to i). Hence the only term in $p_A(z) = \det(zI - A)$ of degree n-1 is from the $\sigma = 1$ permutation, and the leading coefficient of this term is equal to $-\operatorname{tr}(A)$.