Section 4.1 Subsonic Airspeed and Mach Equations

True Airspeed

$$V_{T} = \left[\frac{2\gamma}{\gamma - 1} \frac{P_{a}}{\rho_{a}} \left[\left[\frac{P_{T} - P_{a}}{P_{a}} + 1 \right]^{\frac{\gamma - 1}{\gamma}} - 1 \right] \right]^{\frac{1}{2}}$$

Equivalent Airspeed

(= V_T equation with assumption of std day sea level density)

$$V_e = \sqrt{7 \frac{P_a}{\rho_o} \left[\left[\frac{P_T - P_a}{P_a} + 1 \right]^{\frac{2}{7}} - 1 \right]} = V_T \sqrt{\frac{\rho_a}{\rho_o}} = V_T \sqrt{\sigma}$$

Calibrated Airspeed

(= V_e equation with assumption of std day sea level pressure)

$$V_{c} = \left[\frac{2\gamma}{\gamma - 1} \frac{P_{o}}{\rho_{o}} \left[\left[\frac{P_{T} - P_{a}}{P_{o}} + 1 \right]^{\frac{\gamma - 1}{\gamma}} - 1 \right] \right]^{\frac{1}{2}}$$

$$\sqrt{7 \frac{P_0}{\rho_0} \left(\left[\frac{q_0}{P_0} + 1 \right]^{-2857} - 1 \right)}$$

Applying British units (lb/ft^2) and converting from ft/sec to knots yields

$$V_c = 1479 \sqrt{\left[\frac{P_T - P_a}{2116} + 1\right]^{\frac{2}{7}} - 1}$$
 (kts)

Mach Number

$$M = \frac{V_T}{a} = \sqrt{\frac{2}{\gamma - 1} \left[\left(\frac{P_T - P_a}{P_a} + 1 \right)^{\frac{\gamma - 1}{\gamma}} - 1 \right]} = \sqrt{5 \left[\left(\frac{q_c}{P_a} + 1 \right)^{\frac{2}{\gamma}} - 1 \right]}$$