1. A three-phase full-bridge rectifier is connected to an ideal voltage source (V_{dc}).

$$\text{Let } e_{as} \, = \, E \cos \theta_e \, , \, e_{bs} \, = \, E \cos \left(\theta_e - \frac{2\pi}{3} \right) \, , \, e_{cs} \, = \, E \cos \left(\theta_e + \frac{2\pi}{3} \right) \, \, \text{where} \, \, \theta_e \, = \, \omega_e t \, .$$

- (a) Assume valves 1 and 2 are on with all others off and that $i_{as}(0) = 0$. Express $i_{as}(\theta_e)$.
- (b) Derive an expression (inequality) that defines the value of θ_e at which valve 3 begins to conduct (start of 1,2,3 inverval). You do NOT have to solve for θ_e .
- $\left(33\frac{1}{3}\right)$ 2. Consider the four-quadrant chopper drive shown below. Assume all switches and diodes are ideal

Write in Exam Book Only

Assume steady-state operation.

- (a) If k=0.75 and $\omega_r=200$ rad/s, establish average T_e .
- (b) If the current at the beginning of the t_1 interval is I_1 , express $i_a(t)$ for this interval. Approximate the peak-to-peak armature current ripple (I_2-I_1) . Assume $T \ll L_{AA}/r_a$.

Hint: $e^{-x} \approx 1 - x$ for $x \ll 1$.

 $\left(33\frac{1}{3}\right)$ 3. Consider the full-bridge inverter

The transformation to the stationary reference frame may be expressed

$$\begin{bmatrix} v_q^s \\ v_d^s \end{bmatrix} = \frac{2}{3} \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} v_{ag} - v_{ng} \\ v_{bg} - v_{ng} \\ v_{cg} - v_{ng} \end{bmatrix} = \frac{2}{3} \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} v_{ag} \\ v_{bg} \\ v_{cg} \end{bmatrix}$$

Write in Exam Book Only

(a) Establish the value of v_q^s and v_d^s for each switching state. Assume $V_{dc}=\frac{3}{2}$ V.

Switching State	(S_a, S_b, S_c)	v_q^s	v_d^s
Ι	(000)		
II	(001)		
III	(010)		
IV	(011)		
V	(100)		
VI	(101)		
VII	(110)		
VIII	(111)		

(b) Consider an ideal three phase set $v_{an} = E\cos\theta_e$, $v_{bn} = E\cos\left(\theta_e - \frac{2\pi}{3}\right)$,

 $v_{cn} = E\cos\left(\theta_e + \frac{2\pi}{3}\right)$ where $\theta_e = \omega_e t$. Sketch the corresponding trajectory in the

qs-ds plane. Superimpose and label (I through VIII) the achievable qs-ds voltages from (a) and describe how space vector modulation is used to approximate the ideal trajectory.

Write in Exam Book Only