

Co	.1		1	EN	1	~	= A	A
	α	•		~		•	74	
\mathbf{U}	uc			JI	V.A.	v.		

Register								
Number								

V Semester Diploma Examination, Nov./Dec.-2018

MICRO ELECTRO MECHANICAL SYSTEMS

Time: 3 Hours] [Max. Marks : 100

Note: Answer any six questions from Part -A and seven full questions from Part -B.

PART - A

Answer any six questions.

 $5 \times 6 = 30$

- 1. Explain MEMS.
- Explain the advantages and typical application portable blood analyser. 2.
- 3. Explain substrates and wafers in micro system.

- Explain scaling in Geometry. 4.
- 5.
- 6. Explain design constrains for micro system.

Explain silicon wafer preparation.

- 7. Explain die-packaging.
- 8. Explain thin film deposition by thermal evaporation.
- 9. Explain scaling in Heat Transfer.

5

5

5

5

5

5

1 of 2

Turn over

	PART – B	
	Answer any seven full questions.	$10\times7=70$
10.	. (a) Explain system-on-a-chip with graphical representation.	5
	(b) Explain typical smart system with block diagram.	5
11.	Explain the principle of operation of silicon capacitive accelerometer.	10
12.	Explain the principles of operation of piezoelectric Inject print head.	10
13.	Explain briefly three silicon compounds often used in micro systems.	10
14.	(a) Explain Quartz with its application and advantages.	5
	(b) Explain comparison of Macro and Micro worlds with pictorial depiction	
15.	(a) Explain scaling in Electricity. (b) Explain principal design requirements in packaging design. (a) Explain scaling in Electricity. (b) Explain principal design requirements in packaging design.	5 5 5
16.	Explain with sketches major steps in the LIGA process.	10
17.	Explain thin film deposition by Thermal CVD process.	10
18.	Explain mechanical design parameters with respect to thermo mechanical los	ading. 10
19.	(a) Explain device level packaging.	_
	(b) Explain system level packaging.	5
		5