SISTEMI OPERATIVI e LABORATORIO DI SISTEMI OPERATIVI

(A.A. 11-12) – 13 Febbraio 2013

IMPORTANTE:

- 1) Fare il login sui sistemi in modalità Linux usando il proprio **username** e **password**, attivare syncexam.sh e passare in modalità testuale.
- 2) I file prodotti devono essere collocati in un **sottodirettorio** (che deve essere nella directory studente_XXX) che deve essere creato e avere nome **ESAME13Feb13-1-1.** FARE ATTENZIONE AL NOME DEL DIRETTORIO, in particolare alle maiuscole e ai trattini indicati. Verrà penalizzata l'assenza del direttorio con il nome indicato e/o l'assenza dei file nel direttorio specificato, al momento della copia automatica del direttorio e dei file. **ALLA SCADENZA DEL TEMPO A DISPOSIZIONE VERRÀ INFATTI ATTIVATA UNA PROCEDURA AUTOMATICA DI COPIA, PER OGNI STUDENTE DEL TURNO, DEI FILE CONTENUTI NEL DIRETTORIO SPECIFICATO.**
- 3) Il tempo a disposizione per la prova è di **120 MINUTI** per lo svolgimento di tutto il compito e di **75 minuti** per lo svolgimento della sola parte C.
- 4) Non è ammesso **nessun tipo di scambio di informazioni** né verbale né elettronico, pena la invalidazione della verifica.
- 5) L'assenza di commenti significativi verrà penalizzata.
- 6) AL TERMINE DELLA PROVA È INDISPENSABILE CONSEGNARE IL TESTO DEL COMPITO (ANCHE IN CASO CHE UNO STUDENTE SI RITIRI): IN CASO CONTRARIO, NON POTRÀ ESSERE EFFETTUATA LA CORREZIONE DEL COMPITO MANCANDO IL TESTO DI RIFERIMENTO.

Esercizio

Si realizzi un programma concorrente per UNIX che deve avere una parte in Bourne Shell e una parte in C.

La <u>parte in Shell</u> deve prevedere tre parametri: il primo deve essere il **nome assoluto di un direttorio** che identifica una gerarchia (**G**) all'interno del file system mentre il secondo e il terzo devono essere considerati singoli caratteri (**C1** e **C2**). Il programma deve cercare nella gerarchia **G** specificata (compresa la radice) tutti i direttori che contengono almeno un file che ha nel suo contenuto istanze sia del carattere **C1** che del carattere **C2**. Si riporti il nome assoluto di tali direttori sullo standard output. In ognuno di tali direttori trovati, si deve invocare la parte in C, passando come parametri i nomi degli **N** file trovati (**F0**, **F1**, ... **FN-1**) che soddisfano la condizione precedente e i caratteri **C1** e **C2**.

La parte in C accetta un numero variabile N+2 di parametri (maggiore o uguale a 4) che rappresentano i primi N nomi di file (F0, F1, ... FN-1), mentre gli ultimi due rappresentano singoli caratteri (C1 e C2) (da controllare). Il processo padre deve generare con 2*N processi figli concorrenti (P0 ... PN-1 e PN ... P2N-1), ognuno dei quali è associato ad uno dei file Fi: P0 e PN sono associati al file F0, P1 e PN+1 al file F1 e così via fino a PN-1 e P2N-1 che sono associati al file FN-1. Ogni coppia di processi figli Pi e Pi+N (con i da 0 a N-1) deve leggere concorrentemente i caratteri del file associato Fi, cercando indipendentemente le occorrenze del carattere Cx (C1 e C2): in particolare, i primi N processi devono cercare le occorrenze del carattere C1, mentre gli altri N processi le occorrenze del carattere C2. I processi figli devono attenersi ad uno schema di comunicazione a pipeline ad N ad N compreso il processo padre: in particolare, il figlio P0 comunica con il figlio P1 che comunica con il figlio P2 etc. fino al figlio PN-1 che comunica con il padre e la stessa cosa per gli altri N figli e cioè il figlio PN comunica con il figlio PN+1 che comunica con il figlio PN+2 etc. fino al figlio P2N-1 che comunica con il padre. Le strutture dati che i processi figli devono comunicare nelle due pipeline devono avere 3 campi, indice, occmin e occtotale: indice deve essere l'indice del processo che ha trovato nel suo file associato il minimo numero di occorrenze di Cx, occmin il valore di tale minimo e occtotale il conteggio globale ottenuto fino a quel momento. Il padre ha il compito di stampare su standard output tutti i campi delle due strutture ricevute dalle due pipeline (prima quella dei primi N figli e poi l'altra) aggiungendo anche l'indicazione del carattere Cx cui si

Al termine, ogni processo figlio **Pi** deve ritornare al padre il carattere **Cx** e il padre deve stampare su standard output il **PID** di ogni figlio e il valore ritornato.