Статистические модели анализа повторных наблюдений

Редкокош Кирилл Игоревич

гр. 21.М03-мм

Санкт-Петербургский государственный университет
Кафедра статистического моделирования
Научный руководитель: к. ф.-м. н., доцент Алексеева Нина Петровна
Рецензент: к. т. н., доцент Белякова Людмила Анатольевна

9 июня 2023 г.

Введение. Цель и задачи

Целью данной работы является исследование методов анализа повторных наблюдений в условиях неполных данных, в частности адаптация метода MANOVA Repeated Measures в случае неполных данных.

Введение. Цель и задачи

Целью данной работы является исследование методов анализа повторных наблюдений в условиях неполных данных, в частности адаптация метода MANOVA Repeated Measures в случае неполных данных.

Среди задач можно выделить:

- Рассмотрение теоретических аспектов темы;
- Систематизация материала;
- Моделирование для проверки точности критерия;
- Апробация на реальных данных.

Общий вид данных

Многомерные повторные наблюдения с внутригрупповым временным фактором В и межгрупповым фактором группы А:

		Фактор В(повторные наблюдения)									
Фактор А	Объекты	B_1			B_2			B_t			
(группа)		Y_{11}		Y_{p1}	Y_{12}		Y_{p2}		Y_{1t}		Y_{pt}
	S_{11}	y_{1111}		y_{11p1}	y_{1112}		y_{11p2}		y_{111t}		y_{11pt}
	S_{12}	y_{1211}		y_{12p1}	y_{1212}		y_{12p2}		y_{121t}		y_{12pt}
A_1	:	:		:	:		:		:		:
	S_{1n_1}	$y_{1n_{1}11}$		$y_{1n_1p_1}$	y_{1n_112}		$y_{1n_1p_2}$		$y_{1n_{1}1t}$		y_{1n_1pt}
:	:	:	:	:	:	:	÷	:	:	:	÷
	S_{g1}	y_{g111}		y_{g1p1}	y_{g112}		y_{g1p2}		y_{g11t}		y_{g1pt}
A_g	S_{g2}	y_{g211}		y_{g2p1}	y_{g212}		y_{g2p2}		y_{g21t}		y_{g2pt}
	:	:		:	:		:		:		:
	S_{1n_g}	y_{gn_g11}		y_{gn_gp1}	y_{gn_g12}		y_{gn_gp2}		y_{gn_g1t}		y_{gn_qpt}

Описание модели

Рассмотрим один признак.

Модель для j-го индивида из i-ой группы в k-ый момент времени имеет вид:

$$y_{ijk} = \mu + \alpha_i + \epsilon_{ij}^1 + \beta_k + \gamma_{ik} + \epsilon_{ijk},$$

 $\mathbf{y}_{11},\mathbf{y}_{12},...,\mathbf{y}_{1n}$ является выборкой из $N_p(\mu_1,\mathbf{\Sigma})$, $\mathbf{y}_{21},\mathbf{y}_{22},...,\mathbf{y}_{2n}$ — так же из $N_p(\mu_2,\mathbf{\Sigma})$ и это верно для всех g групп.

Проверяемые гипотезы

В модели отражено влияние двух факторов: группы и времени, и взаимодействия этих факторов. Как следствие мы имеем для проверки три гипотезы.

Первая из них- гипотеза об отсутствии эффекта группы:

$$H_{0_A}: \alpha_i = 0 \ \forall i = 1, \dots, g.$$

Вторая- гипотеза об отсутствии эффекта времени:

$$H_{0_B}: \beta_k = 0 \ \forall k = 1, \dots, t.$$

Третья— гипотеза об отсутствии эффекта взаимодействия группы и времени:

$$H_{0_{AB}}: \gamma_{ik} = 0 \ \forall i = 1, \dots, g, \ \forall k = 1, \dots, t.$$

Групповая поправка

Как известно из литературы [Alexeyeva N., 2017] для борьбы с неполными данными вводятся индивидуальная и групповая поправки.

Введем M и N:

 m_{ik} - количество наблюдений в i-ой группе в момент времени k.

$$\mathbf{M} = \mathbf{M}_{(I,T)} \begin{bmatrix} \frac{m_{11}}{m_{1.}} & \cdots & \frac{m_{1T}}{m_{1.}} \\ \vdots & \ddots & \vdots \\ \frac{m_{I1}}{m_{I.}} & \cdots & \frac{m_{IT}}{m_{I.}} \end{bmatrix} \mathbf{N} = \mathbf{N}_{(T,I)} \begin{bmatrix} \frac{m_{11}}{m_{.1}} & \cdots & \frac{m_{I1}}{m_{.1}} \\ \vdots & \ddots & \vdots \\ \frac{m_{1T}}{m_{.T}} & \cdots & \frac{m_{IT}}{m_{.T}} \end{bmatrix}$$

$$\mathbf{P}_0 = \mathbf{M}\mathbf{N}, \mathbf{P}_0^\infty = \lim_{n o \infty} \mathbf{P}_0^n$$
– стационарная матрица.

Вектор групповой поправки:

$$G=\sum_{i=0}^{\infty}\mathbf{P}_{0}^{i}(\mathbf{M}L-\mathbf{P}_{0}K)$$
, где

$$L = (y_{..1} - y_{...}, \dots, y_{..T} - y_{...})^{T}, K = (y_{1...} - y_{...}, \dots, y_{I...} - \dots)^{T}$$

Индивидуальная поправка

Обозначения: матрица инциденций— \mathbf{J}_i ; диагональная матрица $\mathbf{\Lambda}_{\nu_i}$ с элементами $\frac{1}{n_{ij}}$; диагональная матрица $\mathbf{\Lambda}_{iT}$ с элементами $\frac{1}{m_{it}}$; матрица $\mathbf{R}_i = \mathbf{\Lambda}_{\nu_i} \mathbf{J}_i$ и матрицу $\mathbf{P}_i = \mathbf{R}_i \mathbf{\Lambda}_{iT} (\mathbf{J}_i)^T$; $U_i = \{y_{i,t}\}_{t=1}^T, V_i = \{y_{i,t}\}_{j=1}^{\nu_i}$.

$$A_i(k) = \mathbf{P}_i A_i(k-1)$$
, где $A_i(0) = \mathbf{R}_i U_i - \mathbf{P}_i V_i$.

Вектор **индивидуальной поправки** i-ой группы определим следующим образом:

$$H_i = \sum_{k=1}^{\infty} A_i(k)$$

Полученные результаты. Применимость метода

Из литературы также известно, что метод применим, если хоть в один момент времени есть наблюдения для всех индивидов. В работе было доказано более общее утверждение:

Так как стохастическая матрица \mathbf{P}_i является матрицей переходных вероятностей для цепи Маркова, то вопрос применимости данного метода эквивалентен вопросу о регулярности матрицы \mathbf{P}_i .

Теорема

Если в каждой паре строк исходной матрицы данных найдётся хоть одна пара непропущенных значений и нет индивидов, у которых пропущены все значения, то \mathbf{P}_i – регулярная стохастическая матрица.

Получение линейной комбинации

Приведём многомерный случай к одномерному, для этого рассмотрим линейную комбинацию исходных признаков в k-ый $(k=1,\ldots,t)$ момент времени:

$$Z_k = \mathbf{Y}_k A = a_1 Y_{1k} + \dots + a_p Y_{pk},$$
 где $A = (a_1, \dots, a_p)^T,$

где a_1,\dots,a_p – неизвестные коэффициенты линейной комбинации, которые нам и предстоит найти.

В результате введения «новых» признаков Z_k мы приходим к модели одномерного дисперсионного анализа.

Получение наиболее значимой комбинации. Численное решение

Для получения линейной комбинации исходных признаков с коэффициентами a_1,\ldots,a_p , для которой достигается наибольшее различие индивидов необходимо решить следующую задачу:

• Для эффекта группы:

$$F_A(a_1,\ldots,a_p) \to \max_{a_1,\ldots,a_p}$$
.

• Для эффекта времени:

$$F_B(a_1,\ldots,a_p) \to \max_{a_1,\ldots,a_p}$$
.

• Для эффекта взаимодействия группы и времени:

$$F_{AB}(a_1,\ldots,a_p) \to \max_{a_1,\ldots,a_p}$$
.

Где F_A, F_B, F_{AB} — статистики для проверки гипотез об отсутствии соответствующего эффекта.

Получение наиболее значимой комбинации. Матричный метод

$$F=F(A)=rac{A^T\mathbf{H}A/
u_{\mathbf{H}}}{A^T\mathbf{E}A/
u_{\mathbf{E}}}\sim F_{
u_{\mathbf{H}},
u_{\mathbf{E}}},$$
 где

H— матрица межгрупповых отклонений, а **E**— внутригрупповых отклонений, $\nu_{\mathbf{H}}$ и $\nu_{\mathbf{E}}$ соответсвующие степени свободы.

Для нахождение признака максимально разделяющего наши данные получим задачу:

$$\frac{A^T \mathbf{H} A}{A^T \mathbf{E} A} \to \max_A$$

Решение: $A_1 = \arg\max\frac{A^T\mathbf{H}A}{A^T\mathbf{E}A}$, где A_1 – собственный вектор $\mathbf{E}^{-1}\mathbf{H}$, который соответствует максимальному собственному числу– λ_1 . Полученная линейная комбинация \mathbf{Y}_kA_1 – первая каноническая переменная.

Полученные результаты. Распределение p-value для Wilks's lambda

Рассмотрим p-value как случайную величину:

$$\alpha_{\mathbf{I}} = P_{H_0}(H_0 \text{ отвергается}) = \alpha \Leftrightarrow P_{H_0}(\alpha > p) = \alpha \Leftrightarrow P_{H_0}(p < \alpha) = \alpha$$

Если верна H_0 , то p-value равномерно распределено на [0,1], критерий является применимым.

Рис. 3.4. График эмпирической функции распределения p-value (эффект группы), 50% пропусков

Полученные результаты. Одномерный случай для Roy's Largest root

Прикладное значение канонических переменных приводит к использованию их как отдельных признаков, что требует рассмотрения также статистики основанной на одном собственном числе— Roy's Largest root.

Критерий является **применимым** для одномерного дисперсионного анализа.

Полученные результаты. Многомерный случай для Roy's Largest root

Перейдём к многомерному случаю, рассмотрим два признака (n=2):

Рис. 3.13. График эмпирической функции распределения p-value (эффект взаимодействия), n=2

Как видно критерий является **радикальным**, что делает невозможным его применение.

Полученные результаты. Нормирующий множитель для Roy's Largest root

Введем нормирующий множитель, имеющей вид:

$$\frac{1}{n \cdot \sqrt{log_m(n+1)}},$$

где n- это количество признаков, а m- количество моментов времени.

Рис. 3.27. График эмпирической функции распределения p-value (эффект взаимодействия), m=3. с поправкой

Полученные результаты. Описание данных

Данные о n=160 женщинах, которым проводилось лечение препаратами железа, данные разделены на g=3 группы:

- 0- контрольная группа;
- 1- препараты вводились внутривенно;
- 2- препараты в форме таблеток.

Далее нас будут интересовать следующие признаки, измеренные в $t=\mathbf{5}$ моментов времени: HB — гемоглобин, MCV — средний объём эритроцита, MCH — среднее содержание гемоглобина в отдельном эритроците, MCHC — средняя концентрация гемоглобина в эритроцитарной массе, HT — гематокрит, Lk — лейкоциты, Tr — тромбоциты, Er — эритроциты.

Полученные результаты. Одномерный анализ

Проведём одномерный анализ каждой переменной. В столбцах таблицы приведены p-value для соответствующих эффектов.

Таблица: Результат применения одномерного дисперсионного анализа

Переменная	Эф.группы	Эф.времени	Эф.взаимодействия		
Hb	10e-16	0.684	10e-16		
MCV	6e-5	0.215	8e-10		
MCH	1e-5	0.294	1e-6		
MCHC	0.003	0.441	0.89		
Ht	10e-16	0.608	4e-10		
Er	0.018	0.946	0.02		
Tr	0.096	0.646	0.16		
Lk	0.285	0.923	0.594		

Полученные результаты. Эффект взаимодействия: иллюстрация

Рассмотрим первую каноническую переменную для эффекта взаимодействия (p-value=1e-4)-1,3*Hb+1,2*MCV+0,6*MCH+0,4*Ht-0,4*Er:

Интерпретация: при внутривенном вливание резко увеличивается гемоглобин, а также наблюдается увеличение качества эритроцитов в смысле наполняемости кислородом.

Полученные результаты. Вторая компонента: иллюстрация

Рассмотрим вторую каноническую переменную для эффекта взаимодействия (p-value=1e-4)-0.2*Hb+1*MCV-0.9*MCH-1.3*Ht+0.2*Er:

Интерпретация: компонента связана с избыточной жидкостью в организме, которая повышается при внутривенном вливания во второй точке.

Полученные результаты. Заключение

В результате исследования были достигнуты следующие результаты:

- Доказана теорема об условиях применимости дисперсионного анализа в случае неполных данных;
- Реализован комплекс программ на языке программирования R;
- Предложен нормирующий множитель, позволяющий применять критерии;
- Метод апробирован на реальных данных;
- Получена линейная комбинация, соответствующая второму собственному числу.