Elementos de Probabilidades e Teoria de Números

Elementos de Probabilidades - Soluções da Folha 3

		E[X]	Var[X]	σ_X	$\chi_{0.25}$	$\chi_{0.5}$	$\chi_{0.75}$			
1.	1(a) i.	1	$\frac{1}{2}$	$\frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}}$	0	1	1			
	1(a) ii.	1	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	0	1	1			
	1(a) iii.	$\frac{161}{36}$	$\frac{2555}{1296}$	$\sqrt{\frac{2555}{1296}}$	3	5	6			0.8
	1(a) iv.	$\frac{91}{36}$	$\frac{2555}{1296}$	$\sqrt{\frac{2555}{1296}}$	1	2	3	:	Primeiro decil: 2;	
	1(a) v.	$\frac{70}{36}$	$\frac{2660}{1296}$	$\sqrt{\frac{2660}{1296}}$	1	2	3	,	,	
	1(a) vi.	7	$\frac{210}{36}$	$\sqrt{\frac{210}{36}}$	5	7	9			
	1(a) vii.	$\frac{1}{3}$	$\frac{10}{36}$	$\sqrt{\frac{10}{36}}$	0	0	1			
	3.	$\frac{7}{2}$	$\frac{37}{12}$	$\sqrt{\frac{37}{12}}$	2	4	5	_		

- 2. (a) Sim;
- (b) Sim
- 3. (a) 10; 4.4; (b) 10.1;
 - (c) -3; 14.3
- 4. (a) 25 (valor médio) e 28.75 (variância);
 - (b) N = 11 é o menor
- 5. (a) 4×0.6^9 ; 4.6×0.6^9 ; 0.4^{10} ;
 - (b) 45×0.5^{10} , $1 11 \times 0.5^{10}$;
 - (c) igual a (b)
 - (d) $\left(\frac{3}{5}\right)^4$; $\left(\frac{2}{5}\right)^4$; 0 no caso de extracção sem reposição

_ Exercícios Suplementares à Folha 3 ___

		E[X]	Var[X]	σ_X	$\chi_{0.25}$	$\chi_{0.5}$	$\chi_{0.75}$			
1.	1.	3.15	2.1275	$\begin{array}{c c} \sqrt{2.1275} & 2 \\ \frac{\sqrt{11}}{6} & \sqrt{3} \end{array}$	3	4	_	37 1 11 2	(0.0 1 1/s	
	2.	$\frac{13}{6}$	$\frac{11}{36}$		$\sqrt{3}$	$\sqrt{5}$	$\sqrt{7}$;	Nono decil: 5;	$\sqrt{8.2}; 1 - \frac{\sqrt{3}}{5}$
	3.	0	$\frac{1}{6}$	$\frac{\sqrt{6}}{6}$	$-1 + \frac{\sqrt{2}}{2}$	0	$1 - \frac{\sqrt{2}}{2}$	_		

2. (a)
$$F_X(c) = \begin{cases} 0 & se & c < 0 \\ c^3(4-3c) & se & 0 \le c \le 1 \\ 1 & se & c > 1 \end{cases}$$
; $E[X] = \frac{3}{5}$; $Var[X] = \frac{1}{25}$

(b) i.
$$L: \left\{ \begin{array}{ccc} 8 & 13 & 18 \\ \frac{3}{27} & \frac{13}{27} & \frac{11}{27} \end{array} \right\}$$
; ii. $\frac{391}{27}$

(c)
$$Y \sim Bin(5, \frac{1}{9});$$
 $Y : \begin{cases} 0 & 1 & 2 & 3 & 4 & 5 \\ (\frac{8}{9})^5 & 5 \times \frac{8^4}{9^5} & 10 \times \frac{8^3}{9^5} & 10 \times \frac{8^2}{9^5} & 5 \times \frac{8}{9^5} & (\frac{1}{9})^5 \end{cases}$

3. (a)
$$X: \left\{ \begin{array}{ccc} 1 & 2 & 3 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{array}; & Y: \left\{ \begin{array}{ccc} 2 & 3 \\ \frac{1}{3} & \frac{2}{3} \end{array}; & E[X] = 2; & Var[X] = \frac{2}{3}; & E[Y] = \frac{8}{3}; & Var[Y] = \frac{2}{9} \end{array} \right.$$
 (b) $\frac{1}{4}$ e 0; X e Y não são independentes

4. (a) — (b) $N \sim Exp(n\lambda)$

```
1. (a) \lambda = 1;
```

(b) i.
$$\frac{1}{2}e^{-1}$$
; ii. $\frac{5}{2}e^{-1}$; iii. $1 - \frac{5}{2}e^{-1}$; iv. $1 - 2e^{-1}$; v. $\frac{5}{3} \times \frac{e^{-1}}{1 - e^{-1}}$; (c) $45 \times (e^{-1})^2 (1 - e^{-1})^8$

(c)
$$45 \times (e^{-1})^2 (1 - e^{-1})^8$$

(b)
$$X \sim U([2, 12]);$$

(c) i. 0.6; ii. igual a i.; iii.
$$10 \times 0.4^3 \times 0.6^2 + 5 \times 0.4^4 \times 0.6 + 0.4^5$$
;

(d)
$$\chi_p = 2 + 10 \times p$$

3. (a)
$$\lambda = \frac{1}{10}$$
:

3. (a)
$$\lambda = \frac{1}{10}$$
;
(b) $1 - e^{-0.8}$; $1 - e^{-1}$;
(c) $1 - e^{-1}$

(c)
$$1 - e^{-1}$$

- 4. (d) e (e) são verdadeiras
- $5. \ 1.96; \ -1.96; \ 1.645; \ 2.575; \ 1.645$ (respetivamente, o quantil de ordem 0.975, 0.025, 0.95, 0.995 e 0.95 da distribuição N(0,1)).

6. (a)
$$N(270, 67)$$
;

7.
$$\overline{X}_{10} \sim N\left(3.2, \frac{1.8^2}{10}\right)$$
; (b) $P(\overline{X}_{10} \ge 3.5) = 0.2981$

(b)
$$P(\overline{X}_{10} \ge 3.5) = 0.2981$$

8. (a)
$$1 - 11 \times 0.5^{10}$$
;

(b)
$$P(|\overline{X}_{10} - 12| > 1.5) = 0.2040$$

9. (a)
$$E[\psi_i] = 0$$
; $E[X_i] = m$; $Var[\psi_i] = \frac{1}{3} = Var[X_i], i \in \{1, \dots, n\}$;

(b) Formulação: Dada uma amostra aleatória, X_1, X_2, \ldots, X_n , proveniente de uma v.a. com distribuição $N(m, \frac{1}{3})$, pretende-se determinar n tal que $P\left(|\overline{X}_n - m| > \frac{1}{5}\right) < 0.05$.

Solução: $n \geq 32.013, n = 33$ é o menor

10. Formulação: Dada uma amostra aleatória, X_1, X_2, \dots, X_n , proveniente de uma v.a. com distribuição $N(\mu, \sigma^2)$, pretende-se determinar n tal que $P(|\overline{X}_n - \mu| \le 0.25\sigma) \ge 0.95$. Solução: $n \ge 61.467$, n = 62 é o menor.

___ Exercícios Suplementares à Folha 4 __

1 (a)
$$e^{-0.6}$$
.

1. (a)
$$e^{-0.6}$$
;
(b) $20 \times (e^{-0.6})^3 \times (1 - e^{-0.6})^3$;

(c)
$$P(Z=k) = \frac{(0.6p)^k}{k!}e^{-0.6p}, k \in \mathbb{N}_0;$$

- (d) $Z \sim Poisson(\lambda p)$;
- (e) i. 60 (valor médio) e 6000 (variância); ii. 300 (valor médio) e 30000 (variância)
- 2. (a) $\frac{5}{20}$;
 - (b) igual a (a);
 - (c) $\frac{16}{20}$
- 3. (a) 0.6826;
 - (b) 0.9544;
 - (c) 0.9974
- 4. (a) 20×0.5^6 ;
 - (b) i. $D \sim N(5, \frac{1044}{16});$ ii. $P(D \ge 0) = 0.7324$