Coffee Shop Simulation

Griffin Arnone, Anhua Cheng, Bailey Scoville MSDS 460 | Winter 2024

- Objective: Maximize profits
- Concerns:
 - Labor Cost no tips, \$18/hr
 - Balking lost revenue
 - Reneging lost revenue
 - Tourism-heavy location
 - Working professionals
 - Vacationer and retirees

Customer Profiles

Event Graph

Coffee Shop Simulation with Balking and Reneging

Q = number of customers in queue

B = number of baristas available

t_A = time until next customer arrives

t_s = time to serve customer

t_w = time in line

Use random number generators to determine t_A and t_s for each event Balking parameter Qmax shows the longest line a customer will join t_w max shows the longest a customer would wait in line before leaving

Code Review

Balking Condition

```
#create function for random arrivals and balking condition
def arrival(env, caseid, caseid_queue, event_log):
  caseid = 0
  while True:
    inter_arrival_time = round(60*np.random.exponential(scale = mean_inter_arrival_time))
    print("Next arrival time: ", env.now + inter_arrival_time)
    vield env.timeout(inter_arrival_time)
    caseid += 1
    time = env.now
    activity = 'arrival'
    env.process(event_log_append(env, caseid, time, activity, event_log))
    yield env.timeout(0)
    #define balking condition
    if caseid_queue.qsize() < balk_queue_length:
      caseid_queue.put(caseid)
       print("Customer joins queue --> caseid = ".caseid.', time = '.env.now,', queue_length = '.caseid_queue.gsize())
      time = env.now
       activity = 'join_queue'
      env.process(event_log_append(env, caseid, time, activity, event_log))
      env.process(service_process(env, caseid_queue, event_log))
    else:
       print("Customer balks --> caseid =",caseid,', time = ',env.now,', queue_length =',caseid_queue.gsize())
      env.process(event log append(env. caseid, env.now, 'balk', event log))
```


Code Review

Reneging Condition & Barista Service Adjustment

```
#create function for flow of service and renege condition and number of baristas
```

```
def service_process(env, caseid_queue, event_log):
  with baristas_on_shift.request() as req:
    yield rea
    if not caseid_queue.empty():
      queue_length_on_entering_service = caseid_queue.qsize()
      caseid = caseid_queue.get()
      wait_time = env.now - queue_length_on_entering_service * (mean_service_time * 60)
      if wait_time > (max_wait_time * 60) and random.random() <= 0.3: #define reneging condition
         print("Customer", caseid, 'left the queue after waiting for', wait_time, 'minutes')
         env.process(event_log_append(env, caseid, env.now, 'renege', event_log))
      else:
         adjusted_mean_service_time = mean_service_time / baristas #adjusts service time based on baristas working
         adjusted_max_service_time = max_service_time / baristas #adjusts service time based on baristas working
         print("Begin_service --> caseid =",caseid,', time = ',env.now,', queue_length =', queue_length_on_entering_service)
         env.process(event_log_append(env, caseid, env.now, 'begin_service', event_log))
         service_time = round(60*random_service_time(min_service_time, mean_service_time, max_service_time))
         vield env.timeout(service time)
         queue_length_on_leaving_service = caseid_queue.qsize()
         print("End_service --> caseid =",caseid,', time = ',env.now,', queue_length =', queue_length_on_leaving_service)
         env.process(event log append(env. caseid, env.now, 'end service', event log))
```


Applications to Management

Morning Shift					
Assumptions					
Average Revenue per Customer (drink + food)	10	10	10		
Baristas Hourly Wage	18	18	18		
Variables			e e		
# of Baristas Working	1	2	3		
Mean Interval Arrival Time (min)	1	1	1		
Min Service Time (min)	1	1	1		
Mean Service Time (min)	4	4	4		
Max Service Time (min)	8	8	8		
Balking Queue Length	6	6	6		
Max Wait Time (min)	6	6	6		
Simulation Outputs			S.		
# of Customers Arrived	232	232	216		
# of Customers Serviced	58	115	155		
Min Wait Time (min)	0	0.02	0		
Mean Wait Time (min)	15.46	4.96	2.62		
Max Wait Time (min)	29.73	13.45	9.88		
# of Customer Balked	146	56	15		
# of Customer Left the Queue	21	54	44		
Estimated Gross Revenue	580	1150	1550		
Estimated Cost	72	144	216		
Estimated Income	508	1006	1334		
Estimated Lost Revenue	1670	1100	590		

Observations & Recommendation:

- To maximize profit, <u>3 baristas</u> is the optimal hiring level given the high customer traffic flow in the morning
- With 3 baristas, there is an estimated revenue loss of \$590 due to customers that did not wish to wait in line or left the queue after waiting for too long. That accounts for almost 40% of the gross revenue
- In addition to hiring 3 baristas, we recommend implementing measures such as offering pre-order option to accommodate time-sensitive customers and minimize lost business

Applications to Management

Afternoon Shift					
Assumptions	10	10			
Aerage Revenue per Customer (drink)	5	5	5		
Baristas Hourly Wage	18	18	18		
Variables					
# of Baristas Working	1	2	3		
Mean Interval Arrival Time (min)	5	5	5		
Min Service Time (min)	1	1	1		
Mean Service Time (min)	2	2	2		
Max Service Time (min)	5	5	5		
Balking Queue Length	10	10	10		
Max Wait Time (min)	10	10	10		
Simulation Outputs	20				
# of Customers Arrived	38	45	41		
# of Customers Serviced	23	31	28		
Min Wait Time	0	0	0		
Mean Wait Time	6.27	0.03	0		
Max Wait Time	39.67	0.9	0		
# of Customer Balked	0	0	0		
# of Customer Left the Queue	13	14	13		
Estimated Gross Revenue	115	155	140		
Estimated Cost	72	144	216		
Estimated Income	43	11	-76		
Estimated Lost Revenue	65	70	65		

Observations & Recommendation:

- To maximize profit, <u>1 baristas</u> is the optimal hiring level given the medium customer traffic flow in the afternoon
- With 1 baristas working, the average wait time is 6.27 minutes while the maximum wait time is almost 40 minutes (39.67), which seems quite long
- Validate population profile in the neighborhood to confirm if majority of the potential customers are not time sensitive in the afternoon
- In addition to hiring 1 baristas, the coffee shop can keep customers updated on their orders while they wait. Or they can diversify product offerings and sell products those customers might be interested in shopping while they wait

Applications to Management

Evening Shift				
Assumptions				
Aerage Revenue per Customer (drink)	5	5	5	
Baristas Hourly Wage	18	18	18	
Variables				
# of Baristas Working	1	2	3	
Mean Interval Arrival Time (min)	7	7	7	
Min Service Time (min)	1	1	1	
Mean Service Time (min)	2	2	2	
Max Service Time (min)	5	5	5	
Balking Queue Length	10	10	10	
Max Wait Time (min)	10	10	10	
Simulation Outputs				
# of Customers Arrived	26	32	27	
# of Customers Serviced	17	24	19	
Min Wait Time	0	0	0	
Mean Wait Time	0.25	0	0	
Max Wait Time	3.97	0	0	
# of Customer Balked	0	0	0	
# of Customer Left the Queue	9	8	7	
Estimated Gross Revenue	85	120	95	
Estimated Cost	72	144	216	
Estimated Income	13	-24	-121	
Estimated Lost Revenue	45	40	35	

Observations & Recommendation:

- To maximize profit, <u>1 baristas</u> is the optimal hiring level given the low customer traffic flow in the evening
- With 1 baristas working, the net profit is only \$13 per day
- Per our sensitivity analysis, the coffee shop will experience net loss if the average customer arrival interval time increases to 11 minutes
- More research is needed to validate the customer traffic flow during this shift before committing the resources

Thank you

References

- BBC. 2017. "British Queuing and 'The Power of Six." BBC. https://www.bbc.com/news/uk-38990535.
- Dagkakis, G., and C. Heavey. 2017. "A Review of Open Source Discrete Event Simulation Software for Operations Research." *Journal of Simulation* 10, no. 3 (December): 193-206. https://doi.org/10.1057/jos.2015.9.
- Helfand, Zach. 2023. "Has Gratuity Culture Reached a Tipping Point." *The New Yorker*, December 25, 2023. https://www.newyorker.com/magazine/2023/01/01/has-gratuity-culture-reached-a-tipping-point.
- Peyman, Mohammad, Pedro Copado, Javier Panadero, Angel A. Juan, and Mohammad Dehghanimohammadabadi. 2021. "A Tutorial on How to Connect Python with Different Simulation Software to Develop Rich Simheuristics," Presentation at the 2021 Winter Simulation Conference (WSC), Phoenix, AZ. https://doi.org/10.1109/WSC52266.2021.9715511.