Media preparation

Version 1.6

Gleb Ebert

20 May 2025

General Notes

- Each recipe is for 1 L of medium.
- Before autoclaving, place lid on bottle, screw until it starts gripping and then turn it back a full rotation. This is to ensure that expanding gases can escape the bottle and it doesn't explode. Then tape the lid in this position with a piece of autoclaving tape
- We usually run a short autoclave cycle for liquids (15–20 minutes of sterilisation), but longer cycles are permissible

Minimal Marine Sea Water (MSW) + D-Gluconic Acid 0.1%

- 1. Autoclave one empty 1 L bottle and 1 L of MilliQ in a separate bottle
- 2. After autoclaving, add MilliQ and magnetic stir bar to beaker. Then, add the following chemicals (use high-precision scale in antibiotic station for the last two ingredients):
 - 1.0g D-Gluconic acid sodium salt
 - 1.0g KH₂PO₄
 - 1.0g H₄N₂O₃
 - 10.0g NaCl
 - 0.2g MgSO₄ · 7H₂O
 - 10mg FeSO₄ · 7H₂O
 - 10mg CaCl₂ · 2H₂O
- 3. Adjust pH to 7
 - 1. Turn on pH meter, take electrode out of storage buffer, rinse with MilliQ water and carefully dry with lab wipes
 - 2. While stirring, lower the electrode into the liquid medium and press the measure button
 - 3. Add NaOH slowly until the pH reaches 7 (6.95 7.05 are permissible). 1000 mL medium require \sim 1000 μ L of NaOH (5M)
 - 4. When done, rinse and dry the electrode before putting in back into the storage solution and turning off the pH meter
- 4. Sterile filtration
 - 1. Inside a sterile hood, screw the sterile filter onto the autoclaved empty bottle
 - 2. Turn on the vacuum pump and stick the hose onto the sterile filter nozzle
 - 3. Add the liquid medium (and any remaining autoclaved water) to the sterile filter
 - 4. First take the hose off the nozzle, then turn off the vacuum pump
 - 5. Finally, screw off the sterile filter in a hood and close the bottle with its cap
- 5. Clean up and storage
 - 1. Wipe bench and scales
 - 2. Turn off stirring plate, scales and pH meter (if not off already)
 - 3. Put away dry beakers, spatulas and weighing boats before washing your own ones
 - 4. Label liquid medium bottle with "MSW + D-Gluc.", your name and the date
 - 5. Store in the fridge at 4°C

Minimal Marine Sea Water Agar 1% (MSWA) + D-Gluconic Acid 0.1%

- 1. Dissolve 15g of BactoAgar in 800 mL of MilliQ, then add to 1 L bottle
- 2. Autoclave agar and 200 mL of MilliQ in a separate (e.g. 250 mL) bottle
- 3. After autoclaving, add 200 mL MilliQ and magnetic stir bar to beaker. Then, add the following chemicals (use high-precision scale in antibiotic station for the last two ingredients)
 - 1.0g D-Gluconic acid sodium salt

- 1.0g KH₂PO₄
- 1.0g H₄N₂O₃
- 10.0g NaCl
- 0.2g MgSO₄ · 7H₂O
- $10mg FeSO_4 \cdot 7H_2O$
- 10mg CaCl₂ · 2H₂O
- 4. Adjust pH to 7
 - 1. Turn on pH meter, take electrode out of storage buffer, rinse with MilliQ water and carefully dry with lab wipes
 - 2. While stirring, lower the electrode into the liquid medium and press the measure button
 - 3. Add NaOH slowly until the pH reaches 7 (6.95 7.05 are permissible). 1000 mL medium require \sim 1000 μ L of NaOH
 - 4. When done, rinse and dry the electrode before putting in back into the storage solution and turninig off the pH meter
- 5. Sterile filtration
 - 1. Inside a sterile hood, screw the sterile filter onto the autoclaved bottle containing 800 mL agar
 - 2. Turn on the vacuum pump and stick the hose onto the sterile filter nozzle
 - 3. Add the liquid medium (and any remaining autoclaved water) to the sterile filter
 - 4. First take the hose of the nozzle, then turn off the vacuum pump
 - 5. Finally, screw off the sterile filter in a hood and close the bottle with its cap. Mix well by swirling and inverting
- 6. Clean up and storage
 - 1. Wipe bench and scales
 - 2. Turn off stirring plate, scales and pH meter (if not off already)
 - 3. Put away dry beakers, spatulas and weighing boats before washing your own ones
 - 4. Label medium bottle with "MSWA + D-Gluc.", your name and the date. Preferably pour agar plates immediately (otherwise heat-sensitive components might decay). Otherwise store in media incubator at 50°C

Marine Broth (MB)

- 0. First, check the Marine broth 2216 (Sigma Aldrich) bottle for instructions. If they exist, follow those instead of this protocol.
- 1. Add 37.4 g of Marine broth 2216 powder to roughly 900 mL of MilliQ. Once dissolved, fill volume up to 1000 mL, then add to 1L bottle
- 2. Autoclave and store in the fridge at 4°C

Marine Agar (MA)

- 0. First, check the Marine broth 2216 (Sigma Aldrich) bottle for instructions. If they exist, follow those instead of this protocol
- 1. Add 15 g of BactoAgar to roughly 900mL of MilliQ
- 2. Add 37.4 g of Marine broth 2216 powder the beaker. Once dissolved (excluding the agar), add to 1 L bottle
- 3. After autoclaving, store bottle in 50°C incubator to prevent solidifying

LB Medium

This is the Miller formulation of LB. For Lennox use 5 g of NaCl and for Luria use 0.5 g of NaCl

- 1. Dissolve the following ingredients in 800 mL of MilliQ
 - 10 g tryptone
 - 5 g yeast extract
 - 10 g NaCl
- 2. Add MilliQ up to a total volume of 1 L
- 3. Move medium to bottle. If preparing solid medium, add 15 g of agar
- 4. After autoclaving, store bottle at room temperature

TYP Medium

- 1. Dissolve the following ingredients in 800 mL of MilliQ
 - 16 g tryptone
 - · 16 g yeast extract

- 10 g NaCl
- 2. Add MilliQ up to a total volume of 1 L
- 3. Move medium to bottle. If preparing solid medium, add 15 g of agar
- 4. After autoclaving, store bottle at room temperature

Casitone-Tris (CTT) Liquid

- 1. Dissolve the following components in 900 mL MilliQ:
 - 10 mL 1.0 M Trish-HCl (pH 8.0)
 - 10 mL 0.8 M MgSO₄
 - 10g Bacto Casitone
- 2. Fill up volume to 1 L with MilliQ and adjust pH to 7.6
- 3. Autoclave using cycle 003 (liquid media, 50 min at 121°C)
- 4. After cooling <50°C add 1 mL 1 M KH₂PO₄-K₂HPO₄

Phosphate-Buffered Saline (PBS; 10x Solution)

Instructions according to Sigma

- 1. Dissolve the following components in 900 mL MilliQ:
 - 17.8 g of $Na_2HPO_4 \cdot 2H_2O$
 - 2.4 g of KH₂PO₄
 - 80 g of NaCl
 - 2 g of KCl
- 2. Adjust final volume to 1 L with MilliQ
- 3. Measure pH using the pH meter. The pH of the 10X stock will be approximately 6.8, but when diluted to 1x PBS the pH should change to 7.4
- 4. Autoclave or filter-sterilize into a sterile bottle
- 5. Store in the fridge at 4° C