EXPERIMENT NO: 5

Implementation of Adder Half Adder and Full Adder

APPARATUS:

7486, 7432, 7408, 7404 IC's, logic kit and connecting leads.

HALF ADDER:

Half Adder is combinational logic circuit that generates the sum of two binary numbers (each having 1 bit length). The logic circuit has two inputs and two outputs i.e. Sum & Carry abbreviated as S_{HA} & C_{HA} respectively.

First of all, we shall construct Truth Table of Half Adder

Inputs		Output s					
		$S_{HA} = x^{!}y + xy^{!}$		Сна = х у			
X	У	Actual	Observed	Actual	Observed		
0	0						
0	1						
1	0						
1	1						

Now we write Boolean function from above Truth Table as

$$S_{HA} = x^{\prime}y +$$

$$xy'CHA = xy$$

IMPLEMENTATION

Now we implement above Boolean expression by basic logic gates i.e.

Now we shall check this logic circuit by the Truth Table of Half Adder.

Lab Exercise:

- 1. Students are required to write outputs of Full adder using Basic logic gates..
- 2. Then implement Half Adder using basic logic gates.

FULL ADDER:

Full Adder is combination logic circuit that performs the sum of 3 input binary numbers, (each having 1 bit length). Two of the binary input variables are x and y represent the two significant bits to be added the third input z, represents the carry from previous lower significant position. Outputs of Full Adder are Sum and Carry represented as S_{FA} and C_{FA} respectively.

First of all, we shall construct Truth Table of Full Adder i.e.

Truth Table										
Input s			Outputs							
x	у	z	SFA		CFA					
			Actu al	Observe d	Actu al	Observe d				
0	0	0								
0	0	1								
0	1	0								
0	1	1								
1	0	0								
1	0	1	_			_				
1	1	0								
1	1	1								

Now we write Boolean expression for Sum and Carry of Full Adder.

1) Sum =
$$x'y'z+x'yz'+xy'z'+xyz$$

Simplifying by using Boolean Postulates & theorems/k-map, we get

Sum =
$$(x'y+xy')$$
 '. $z + (x'y+xy') \cdot z'$
 $S_{FA} = (x \oplus y) \oplus z$
2) Carry = $x'yz + xy'z + xyz'+xyz$

Simplifying by using Boolean Postulates & theorems/k-map, we get

$$Carry = (x'y+xy') . z+xy$$

$$C_{FA} = (x \oplus y) z + xy$$

<u>Implementation</u>

Now we implement simplified Boolean expressions of SFA & CFA i.e.

We shall checkth(s logic circuit by the Truth Table of Full Adder