ANATOMIE PATHOLOGIE

I) Généralité en Anatomo-Pathologie :

- -> En anatomie pathologie, la lésion élémentaire correspond à :
- Altération morphologique d'une structure (analysée isolément)
- · Lésion qui peut être détectable par examen macroscopique
- · Lésion qui peut être détectable par examen microscopique
- -> Les méthodes d'observation des lésions élémentaires :
- · L'examen macroscopique à l'oeil nu
- · L'examen microscopique optique
- · L'examen microscopique électronique
- · L'étude moléculaire
- -> En anatomie pathologie, la biopsie correspond à :
- Un prélèvement de fragment d'un tissu sur être vivant
- · Un fragment tissulaire
- -> Les biopsies peuvent être réalisées :
- · Sous contrôle de l'imagerie
- · A l'aveugle
- · Au cours d'une endoscopie
- · Par ponction d'organe
- -> Les pièces opératoires :
- · Prélèvement d'un organe ou d'une partie d'organe
- · Nécessitent un examen macroscopique
- · Parviennent au laboratoire à l'état frais
- Leur fixation se fait par du formol 10%
- -> Les règles de bon conditionnement d'un prélèvement anatomopathologie :
- · Prélèvement étiqueté
- Fiche de renseignements cliniquement dûment remplie
- · Prélèvement représentatif
- · Récipient adapté au volume du prélèvement
- · Acheminement au laboratoire dans les plus brefs délais
- -> Au cours de la phase pré-analytique des prélèvements tissulaires, une fixation adéquate :
- · Permet de maintenir les tissus dans un état aussi proche que possible du vivant
- · Indispensable au maintien de l'architecture cellulaire
- Se fait par immersion dans du formol (+ utilisé dans les laboratoires d'anatomie pathologie)
- · Le liquide physiologique n'est pas un fixateur tissulaire
- Respecter un rapport : Volume de fixateur = 10x le volume du prélèvement
- 12 à 24h de fixation pour les pièces opératoires
- · Est une étape obligatoire
- · C'est une réaction chimique
- Evite l'autolyse spontanée des tissus
- · Evite la pullulation microbienne
- Doit être immédiate et rapide après obtention du prélèvement
- · Permet de réaliser des techniques complémentaires comme l'immuno-histochimie
- · Adapter le temps de fixation en fonction de la température
- · Adapter le temps de fixation à la taille du prélèvement

- -> L'étude immuno-histochimique :
- Classification des tumeurs
- Recherche de facteurs pronostiques
- Recherche de facteurs prédictifs de la réponse aux TTT
- · La détection des agents infectieux
- -> L'examen cytologique (= cytopathologique) en anatomie pathologie :
- Permet le dépistage (cancer)
- Permet une bonne analyse morphologique des cellules (détails) et des amas cellulaires
- Se fait dans un but d'orientation diagnostique
- Ne permet pas l'étude de l'architecturale tissulaire
- · Nécessite un contrôle histologique
- Méthode facile et rapide
- Fixation se fait par : Mélange alcool-Ether / Séchage à l'air / Laque
- Les prélèvements sont : apposition et cytoponction
- -> L'examen extemporané permet de :
- Déterminer la qualité de l'exérèse chirurgicale
- Indiqué pour connaître l'état des limites/marges/berges d'exérèse
- Indiqué pour connaître en per-opératoire la nature tumorale bénigne ou maligne
- Est réalisé au cours d'une intervention chirurgicale
- Guider l'acte opératoire (le geste thérapeutique)
- Orientation diagnostique rapide
- Réponse rapide
- · Contrôle de la nature du prélèvement
- · Le prélèvement doit être congelé, frais et non fixé
- -> Aplasie:
- · Absence d'un organe
- Exemple : Absence du tissu hématopoïétique au niveau de la moelle osseuse
- -> Hyperplasie:
- · Augmentation anormale du nombre de cellules dans un tissu
- Augmentation de la masse d'un tissu ou d'un organe
- Secondaire à une hyperactivité fonctionnelle (augmentation de l'activité des cellules)
- Survient dans les tissus capables de renouvellement cellulaire
- Souvent associé à l'hypertrophie
- Peut être physiologique ou pathologique
- Organes potentiellement touchés : Peau, Foie, Moelle osseuse, Thyroïde, Glande mammaire, Endomètre, Rein, Prostate
- Exemple :
- Hyperplasie des cellules hépatiques après hépatectomie partielle
- Hyperplasie des cellules épithéliales des lobules mammaires lors de la grossesse
- -> Concernant l'hypertrophie :
- C'est une lésion qui correspond à un phénomène d'adaptation
- Elle correspond à une augmentation réversible de la taille des cellules
- Peut être physiologique ou pathologique
- Exemple:
- Hypertrophie compensatrice du rein restant après néphrectomie
- Hypertrophie du myomètre au cours de la grossesse (Utérus gravide)
- Hypertrophie du muscle strié chez le sportif
- Hypertrophie du muscle cardiaque a cause d'une sollicitation mécanique et trophique
- Hypertrophie des cellules hépatiques après hépatectomie partielle
- -> Les causes de l'atrophie physiologiques :
- Diminution de la stimulation hormonale au cours de la ménopause
- Diminution de l'activité physique
- Thymus à l'age adulte
- -> Causes pathologique : Diminution ou perte de d'innervation des muscles (myopathie)

- -> Concernant la dystrophie :
- Est lié à un trouble nutritionnel
- · Peut se voir au niveau du sein
- Associe plusieurs lésions élémentaires adaptative
- -> La métaplasie est un phénomène adaptatif qui correspond à :
- Transformation d'un tissu normal en un autre tissu normal (structure et fonction différentes)
- Changement de la différentiation cellulaire
- Anomalie acquise
- Exemple : présence de cellules caliciformes au cours d'une gastrite

-> Concernant l'apoptose :

- Est un phénomène le plus souvent physiologique (rarement pathologique)
- Correspond à une mort cellulaire programmée = suicide cellulaire
- Permet le maintien de l'homéostasie des tissus à renouvellement rapide
- Concerne des cellules isolées (Affecte des cellules séparément)
- · La taille des cellules apoptotiques est réduite
- N'induit pas de réaction inflammatoire
- · Est un phénomène altéré dans les cancers
- Est caractérisé par une membrane cellulaire intacte
- Est caractérisé par une fragmentaire nucléaire
- · N'est pas synonyme d'autolyse

-> Concernant la nécrose :

- · Souvent pathologique
- N'est pas synonyme d'apoptose
- Accompagnée de réaction et de cellules inflammatoires
- Lésion irréversible
- Respecte longtemps le noyau
- Modification nucléaire (Pycnose, Caryorrhexis, Caryolyse, rétraction du noyau) et cytoplasmique (Homogène et Vacuolaire, Hyperéosinophilie, Figures myéliniques)
- · Peut être d'origine ischémique, vasculaire
- Touche des groupes de cellules
- · Souvent associée à des calcifications dystrophiques

-> Au cours de la dégénérescence cellulaire :

- · Oedème intracellulaire
- Accumulation de graisse

Substance MEE	Coloration
Dépôts amyloïdes = amylose	Rouge Congo
Fibrose	Trichome de Masson
Glycogène	PAS
Fibres élastiques	Orcéine
Dépôts d'hémosidérine = Fer	Perls

-> Concernant les amyloses :

- C'est l'accumulation en extracellulaire sous forme fibrillaire d'une substance protéique anormale et pathologique
- La nature du composant P de la substance amyloïde est : glycoprotéique
- Dépôt protéique pathologique anormaux (s'accumulant dans différents organes)
- · Le diagnostic de certitude se fait par la biopsie
- L'étude immunohistochimique permet de typer les amyloses
- Le pronostic dépend de l'extension des dépôts amyloses
- Elles peuvent engager le pronostic vital
- Substance éosinophile amorphe au microscope
- Aspect anhiste

- Absence de cellules inflammatoires.
- Biréfringence vert pomme à la lumière polarisée après coloration par le rouge Congo
- Les 2 protéines responsables des 2 types les plus fréquents d'amylose sont : Protéine AA et AL
- -> Au cours des amyloses, le typage des dépôts amyloïdes :
- Fait par étude immunohistochimique
- Utile pour déterminer le pronostic de l'amylose
- Basé sur l'utilisation d'anticorps spécifiques des protéines amyloïdes

Protéine cause dépôts amyloïdes	Conditions qui peuvent se compliquer
Protéine AA	Polyarthrite rhumatoïde Maladie périodique (amylose généralisé familiale héréditaire) Infection chronique
Protéine AL	Myélome
Protéine Transthyrétine	neuropathie périphérique familiale amyloïde
Protéine Beta 2 microglobuline	Hémodialysé chronique

- -> Les différents types de nécrose :
- De coagulation (dénaturation protéique)
- (Cyto)Stéatonécrose (aspect macroscopique crayeux)
- Gangrène
- Liquéfaction (digestion enzymatique)
- -> Les types de nécroses secondaires à l'ischémie :
- De coagulation
- Gangréneuse

Pathologie	Type de nécrose
Pancréatites aigues	Stéatonécrose
Infarctus blanc	De coagulation

- -> Les mécanismes responsables de la teinte éosinophiles du cytoplasme aux cours de la nécrose cellulaire :
- Diminution de l'ARN cytoplasmique
- Augmentation de la liaison de l'éosine aux protéines cytoplasmiques
- -> Caryorrhexis : Fragmentation du noyau (masse nucléaire) au cours de la nécrose
- -> L'infarctus blanc peut être observé au niveau :
- Reins
- Rate
- Cerveau
- Cœur
- -> L'infarctus rouge peut être observé au niveau :
- Poumon
- Intestin
- -> Au cours des œdèmes :
- · Augmentation de la quantité d'eau en extra vasculaire
- Engagement du pronostic vital s'ils se développent au niveau cérébral
- Une gêne de la fonction des organes
- · Issu d'eau a travers la paroi vasculaire

- -> Concernant la Fibrose :
- Il s'agit d'une lésion élémentaire du tissu conjonctif
- · Augmentation de la composante fibrillaire de la matrice extra-cellulaire
- La fibrose est due à une diminution de la dégradation des protéines matricielles
- La fibrose est due à une augmentation de la synthèse des protéines matricielles
- · L'âge de la fibrose est un facteur influençant l'aspect microscopique
- Habituellement irréversible
- Peut être retrouvée dans le stroma des cancers
- La cause la plus fréquente de la fibrose est l'inflammation
- Entraine souvent une atrophie des tissus
- Parfois entraine une augmentation du volume de l'organe
- Entraine une insuffisance fonctionnelle de l'organe
- · Consistence ferme ou dure
- · Peut être mutilante ou systématisé
- Une fibrose systématisé respecte l'architecture des organes et les rapports vasculaires (accentue la charpente interne d'une organe sans la détruire)
- -> La fibrose mutilante se caractérise par :
- Le bouleversement de l'architecture normale de l'organe
- Détruit la charpente interne des organes
- Son important retentissement sur la fonction de l'organe
- -> Les étiologies des fibroses dystrophiques :
- Hypertension artérielle
- Cardiopathie ischémique chronique
- Diabète
- Déficit hormonal
- -> Les aspects histologiques d'une fibrose en voie de constitution :
- · Oedème interstitiel
- Présence de cellules inflammatoires
- · De nombreux fibroblastes
- De nombreux myofibroblastes
- -> Une fibrose ancienne est caractérisée par :
- · Fibres de collagènes épaisses
- Aspect dense
- Cellularité faible
- -> L'adaptation cellulaire :
- Est synonyme d'un nouvel équilibre cellulaire
- Est une réponse cellulaire ou tissulaire à une modification de l'environnement
- Peut se traduire par une diminution de taille des cellules
- Peut se traduire par une augmentation du volume de l'organe
- · Peut être réversible ou irréversible
- -> Vaisseaux pourrait être affecté par l'athérosclérose => Athérome : Artère de gros/moyen calibre
- -> Les lésions initiales de l'athérosclérose sont limitées à : L'intima
- -> Au cours de l'athérosclérose :
- Modification de la média des vaisseaux
- Accumulation focale de lipide aux sein de l'intima
- Risque de survenue d'accidents ischémiques
- Risque de survenue de complications thrombo-embolique
- -> Les facteurs de risques de l'athérosclérose :
- L'âge avancé
- · La sédentarité
- · Le tabac
- · Le diabète

- -> Une lésion d'athérosclérose peut se compliquer par :
- Ulcération
- Hématome
- Thrombose
- -> Médiacalcose : apparition de calcification de la média sans altération de l'intima ou l'adventice
- -> L'anthracose est une accumulation de : Charbon
- -> Les hémorragies extériorisées :
- Rectorragies
- Epistaxis
- Plaie cutanée
- -> Les causes des hémorragies :
- Trouble de la coagulation
- Traumatisme
- · Amylose vasculaire
- -> L'embole le plus fréquemment observée est l'embole : Fibrino cruorique
- -> Un enbol peut être :
- Graisseux
- Microbien
- Athéromateux
- Gazeux
- -> Le facteur pariétal impliqué dans la formation d'une thrombose correspond à :
- Une lésion de la paroi vasculaire (1e étape de la formation du thrombus)
- Une perte des propriétés de thrombo-résistence des cellules endothéliales
- C'est le facteur indispensable à la formation du thrombus
- Sa nature est une brèche endothéliale par effet des toxines sur l'endothélium
- L'interruption de l'endothélium provoque l'activation endothéliale pro-coagulante
- -> Les stries de Zahn des thrombus est constitué par :
- Hématies
- Plaquettes
- Fibrine
- -> Les factures favorisant la formation de thrombose :
- Lésions endothéliales
- · Brèche vasculaire
- Trouble de la coagulation
- · Ralentissement du courant circulatoire
- -> Les modalités évolutives d'un thrombus :
- Calcification
- Organisation fibreuse = Fibrose
- Dégradation = Dissolution
- Embolie = Embole
- -> Les caractéristiques du tophus goutteux :
- Cristaux en aiguilles
- Cellules géantes
- · Granulomes à corps étranger
- -> Concernant la strie lipidique :
- Peut régresser
- Réalise un aspect macroscopique de lignes allongées jaunâtres
- Accumulation de cellules spumeuses
- · L'évolution vers la plaque est lente et progressive

- -> La plaque gélatineuse :
- Lésion réversible
- Peut se transformer en plaque athéromateuse
- Peut se transformer en plaque fibreuse
- -> L'ischémie : Diminution (voir arrêt) de l'apport de sang artériel dans un tissu ou un viscère
- -> Concernant la congestion active :
- Est responsable de la rougeur
- Provoque une hyperthermie locale
- Se voit au cours du processus inflammatoire
- Causes : Inflammation / Activité physique importante / Irritation locale / Traumatisme
- -> Concernant la congestion passive :
- · Refroidissement des organes
- Causes : Insuffisance cardiaque /Stase /Thrombose veineuse
- -> Les éléments histologiques qui caractérisent le foie cardiaque :
- Congestion passive
- Nécrose hépatocytaire
- Atrophie du parenchyme
- Fibrose
- -> Les caractéristiques du foie cholestatique :
- Vert
- Hypertrophique
- Mou
- -> Les causes des stéatoses hépatiques :
- Obésité
- Alcoolisme
- Diabète
- -> Les causes des calcifications métastatiques :
- Hypervitaminose D
- Métastases osseuses
- Hyperparathyroidie
- -> Les causes des hémosidérines généralisées :
- Transfusion répété
- Hémolyse généralisé

II) Inflammation:

- -> La réaction inflammatoire :
- Est une réponse à une agression
- · Se déroule dans le tissu conjonctif vascularisé
- Est stéréotypée
- -> Le processus inflammatoire :
- Dépend du terrain physiologique de l'hôte
- Varie selon la nature de l'agent pathogène
- · A pour but d'éliminer l'agent pathogène
- · Peut entrainer une destruction tissulaire
- Se passe dans le tissu conjonctif
- A besoin d'une bonne vascularisation
- Survient dans les tissus vascularisés
- · Est un phénomène actif/dynamique
- · Peut être d'origine bactérienne
- · Peut évoluer vers la chronicité
- -> Les principales phases de l'inflammation :
- Vasculaire
- Cellulaire
- Réparation
- -> 1er événement qui survient au cours du processus inflammatoire aigu : Constriction artériolaire
- -> 1ères cellules qui apparaissent dans le site inflammatoire : Polynucléaire neutrophile
- -> Concernant l'inflammation aigue :
- · Comprend des phénomènes cellulaires et vasculaires
- · Est souvent lié à une infection
- Réponse rapide à une agression
- · Installation brutale
- Peut guérir spontanément
- · Caractérisé par les signes cardinaux de l'inflammation
- Peut laisser des séquelles
- · Peut être absente ou minime dans la maladies auto-immunes
- · La restitution ad integrum n'est pas constante
- Margination des leucocytes
- · Inflammation riche en polynucléaire neutrophiles
- · Augmentation de la perméabilité vasculaire
- · Phénomènes vasculo-exsudatifs
- · Congestion active
- Réseau fibrineux
- Oedème
- Phénomènes cellulaire : Phagocytose / Détersion
- Phénomènes vasculaires: Vasodilatation / Vasoconstriction transitoire / Oedème / Diapédèse
- Exemple : Hémorragique / Congestive / Suppurée / Oedémateuse / Purulente / Fibrineuse (attention ! et non fibreuse)
- -> Concernant l'inflammation chronique :
- · Destruction tissulaire chronique
- · Granulome inflammatoire mononucléé
- Fibrose
- · Prolifération de fibroblastes
- Infiltrat (lymphocytaire) riche en éléments mononuclées
- Présence de plasmocytes, histiocytes, lymphocytes, macrophages, cellules géantes, cellules épithélioides

- -> Les éventualités évolutives de l'inflammation chronique :
- Amylose
- Fibrose (réparation fibreuse)
- Cancer
- Peut se poursuivre indéfiniment
- -> Au cours du syndrome de leucocytes paresseux, il y a défaut de : Adhésion
- -> Au cours de la granulomatose chronique de l'enfant, il y a défaut de : Digestion
- -> Lors de la phase cellulaire de la réaction inflammatoire, l'adhésion des cellules inflammatoires à l'agent pathogène est favorisée par : L'opsonisation
- -> La phase vasculo-exsudative de l'inflammation :
- · Augmentation de la perméabilité
- Marginsation
- Apports des facteurs hormonaux de défense
- Précipitation de la fibrine
- · Congestion active
- Diapédèse leucocytaire
- Prolifération des fibroblastes
- -> La phase vasculo-exsudative de l'inflammation tuberculeuse comprend :
- Oedème
- · Congestion vasculaire
- Afflux de polynucléaire neutrophiles
- -> Les conséquences de l'exsudat inflammatoire :
- Bloque les lymphatiques
- · Permet la mobilisation des éléments cellulaires
- · Rôle dans la douleur
- Circonscrire le foyer inflammatoire (par un réseau fibrineux)
- Evite la diffusion des germes
- Apport des médiateurs chimiques
- Modifications de la substance fondamentale
- -> Les médiateurs chimiques interviennent tout au long de la réaction inflammatoire
- -> Les médiateurs chimiques de l'inflamation d'origine cellulaire :
- Histamine
- Sérotonine
- Cytokines
- Dérivés de l'acide arachidonique
- Interleukine 1
- TNF alpha
- -> Les médiateurs chimiques de l'inflamation d'origine plasmatique :
- (Protéine du) complément
- Fibrinopeptides
- (Brady)kinine
- -> Les médiateurs chimiques cellulaire nouvellement synthétisés :
- Dérivés de l'acide arachidonique
- Facteur d'activation plaquettaire
- -> Les cellules qui sécrètent les cytokines :
- Lymphocytes activés
- Macrophages
- Cellules épithéliales
- · Cellules endothéliales

- -> Les rôles des cellules endothéliales dans l'inflammation :
- Diapédèse leucocytaire
- · Sécrétion des médiateurs chimiques
- Perméabilité vasculaire
- · Réparation tissulaire
- -> L'endocardite végétante est un exemple d'inflammation : Thrombosante
- -> Les caractéristiques de la nécrose caséeuse :
- Ne se résorbe pas
- · Consistence molle
- · Aspect de fromage blanc
- Aspect histologique amorphe, craquelé, grumeleux, éosinophile sans architecture cellulaire ou tissulaire
- Peut évoluer vers : calcification, fistulisation, nécrose fibrinoïde, fibrose
- Est spécifique de tuberculose
- -> Concernant la nécrose suppurée :
- · L'abcès est l'une de ses formes
- Présence de pus
- Acellulaire
- Grumeleuse
- -> Les lésions macroscopiques classiques de la tuberculose :
- Caverne
- Tuberculome
- Nécrose caséeuse
- · Granulations miliaires
- -> Au cours de la tuberculose, la variété de lésion histologique qui n'est pas spécifique est :
- Exsudative
- -> La présence de granulomes tuberucloides sans nécrose oriente vers :
- Sarcoidose
- Tuberculose
- Histoplasmose
- Maladie de Crohn
- Tophus goutteux
- -> L'inflammation sarcoïdosique :
- Granulome épithélioïde
- Corps de Shaumman
- Présence de cellules géantes
- Corps astéroïdes
- -> Le granulome/follicule tuberucloide est constitué de :
- Cellules épithélioides
- Cellules géantes de Langhans
- Lymphocytes
- Nécrose caséeuse
- -> Les cellules géantes de Müller : Sont notées dans les granulomes à corps étranger
- -> Au cours du processus de réparation tissulaire, la phase de remodelage comprend :
- Modification de la matrice extracellulaire
- · Organisation du réseau vasculaire
- -> Les complications tardives de la réparation :
- Chéloïde
- Granulome pyogénique

- Métaplasie
- · Rétraction du tissu conjonctif
- Carcinome cutané
- -> Les monocytes se transforment en :
- Histiocytes
- Macrophages
- · Cellules épithélioides
- Cellules géantes
- -> Les cellules qui dérivent des histiocytes :
- · Cellules épithélioides
- Macrophages
- Cellules géantes (multinuclées)
- -> Sur le plan microscopique, le pus est constitué de :
- Polynucléaires neutrophiles altérés
- Nécrose cellulaire
- -> Concernant le caséum :
- · Peut se liquéfié
- · Peut se calcifié
- · Ne peut jamais être remplacé par la fibrose
- · N'est pas résorbable
- · A une consistance molle
- · Peut prendre une consistance pierreuse
- -> La couche superficielle d'un bourgeon charnu :
- Nécrose
- · Polynucléaire neutrophile
- -> La couche granulomateuse du bourgeon charnu :
- Polynucléaire neutrophile
- Histiocytes
- -> La couche profonde d'un bourgeon charnu :
- Fibroblastes
- Oedème
- · Capillaires néoformés
- -> Les couches qui constituent le bourgeon charnu :
- Nécrotique
- Fibrillogénèse
- Granulomateuse
- Transition
- -> Le bourgeon charnu est constitué de :
- (Néo)Vaisseaux
- Fibroblastes
- Lymphocytes
- Dépôts de fibrine (fibrineux)
- Polynucléaires neutrophiles
- Oedème
- -> La rétraction du bourgeon charnu au cours de la phase de réparation d'une réaction inflammatoire est liée à l'action des : Myofibroblastes
- -> Les deux mécanismes mis en jeu au cours de la réparation :
- Cicatrisation
- Régénération

- -> Les facteurs qui induisent une mauvaise cicatrisation ou réparation :
- Tabagisme
- Diabète
- Chimiothérapie
- Corticothérapie
- Mobilisation précoce du site
- Radiations ionisantes (facteur local)
- Infection (facteur local)
- -> La détersion :
- Est une étape de la phase cellulaire
- Prépare la phase de cicatrisation
- Peut se faire par fistulisation
- Chirurgicales si lésion étendues
- -> Le botriomycome :
- S'ulcère facilement
- Est un bourgeon charnu hyperplasique
- Correspond au tissu de granulation
- -> Une chéloïde :
- Trouble de cicatrisation
- Cicatrisation hypertrophique
- Hyperproduction collagénique
- Elle peut récidiver
- -> La phagocytose est assurée par :
- Macrophages
- Polynucléaires neutrophiles
- -> Les caractéristiques des macrophages :
- · Sécrétion des médiateurs chimiques
- Coopèrent avec les lymphocytes
- Se transforme en cellule géantes
- Mobilité
- -> Les cellules dites « microphages » : Polynucléaire neutrophile
- -> Les propriétés des polynucléaires neutrophiles :
- Phagocytose
- Margination
- Diapédèse = Passage transendothélial (1e cellule qui migrent au cours de la diapédèse)
- -> Les étapes de la diapédèse (en ordre) :
- Margination
- Adhérence aux cellules endothéliales (Molécules d'adhésion)
- · Passage trans-endothélial
- -> Les cellules qui interviennent dans la réparation tissulaire :
- Fibroblastes
- · Cellules endothéliales
- Plaquettes
- Lymphocytes
- -> L'adhésion des leucocytes à la paroi vasculaire fait intervenir 3 familles de molécules :
- Immunoalobulines
- Sélectines
- Intégrines

Médiateur	Effet
Interleukine 1	Fièvre
Leucotriène B4	Chimiotactisme
Prostaglandines (son rôle le + important est la vasodilatation) Bradykinine	Douleur
Radicaux libres d'oxygènes Enzymes lysosomiales	Lésions/destruction cellulaire et tissulaires

- -> Durant la réaction inflammatoire aigue, la rougeur est la traduction clinique de : Vasodilatation
- -> Durant la réaction inflammatoire aigue, la tuméfaction est due à la : Exsudation
- -> Le facteur étiologique essentiel de l'oedème inflammatoire : Augmentation de la perméabilité vasculaire
- -> Les causes de l'oedème :
- Inflammation
- · Obstacle au drainage lymphatique
- · Rétention hydro-sodée
- Augmentation de la pression hydrostatique
- Diminution de la pression oncotique
- Malnutrition
- -> Dans la 1ère phase du processus inflammatoire, la première cellule qui libère des médiateurs chimique est : Mastocyte
- -> Concernant l'histamine :
- Provient de la dégranulation des mastocytes
- Action rapide et fugace
- 1er médiateur chimique libéré au cours du processus inflammatoire
- Entraine une vasodilatation
- Entraine une stase capillaire
- Augmente la perméabilité capillaire (principal médiateur de l'hyperperméabilité vasculaire)
- Est responsable de l'oedème
- Attention! L'histamine n'est pas responsable de la douleur
- -> Au cours de l'inflammation, le système kinine permet :
- Vasodilatation
- · Augmentation de la perméabilité capillaire
- Margination
- -> Le puissant vasodilatateur appartenant au système Kinines : Bradykinine
- -> Le monoxyde d'azote provient de :
- · Cellule endothéliale
- Macrophages
- -> La résolution de la réaction inflammatoire aigue :
- Arrêt de recrutement des polynucléaire neutrophiles
- · Apoptose des polynucléaires neutrophiles
- Phagocytose des polynucléaires neutrophiles
- Durée de vie courte des médiateurs pro-inflammatoire
- -> Les cellules caractéristiques des inflammations allergiques et parasitaires : Polynucléaires éosinophiles

- -> Les inflammations suppurées :
- Abcès
- Empyème
- Phlegmon
- Pustule
- -> Le phlegmon :
- · Est caractérisé par une diffusion des germes
- · Est fréquent chez les diabétiques
- Est une suppuration non limitée = diffuse
- Aspect non circonscrit
- Inflammation purulente (pus)
- Présence de polynucléaire neutrophiles altérés
- · Est une pathologie grave
- -> Le caractère propre à l'abcès et qui le distingue du phlegmon : Aspect collecté de l'inflammation
- -> L'abcès :
- · Inflammation avec collection purulente dans une cavité néoformé
- · Prédominance des polynucléaires neutrophiles
- -> Les critères de l'empyème :
- Inflammation suppurée
- Collecté dans une cavité naturelle préexistante
- Présence de polynucléaire neutrophile altérés à noyau psychotique au sein d'une cavité naturelle

III) Pathologie tumorale:

- -> Une tumeur est définie comme :
- · Nouvelle prolifération cellulaire
- · Prolifération cellulaire autonome
- Prolifération qui peut ressembler au tissu normal homologue
- Néoplasme = néoplasie = nouvelle croissance
- Est un processus multi-étapes
- · Résulte d'une accumulation d'anomalies génétiques
- · Prolifération anarchique de cellules anormales
- -> Les caractères d'une tumeur :
- Autonomie biologique = prolifération excessive et persistante dans le temps
- Clonalité = capacité de proliférer à partir d'une ou de plusieurs cellules
- Différentiation = ressemblance ou pas à la ou aux cellules mères
- Tuméfaction = Prolifération cellulaire anormale excessive
- -> Les propriétés des cellules tumorales :
- Immortalisation
- · Constitution d'une néo-vascularisation
- · Capacité de générer ses propres signaux mitogènes
- Résistance aux signaux d'inhibition de croissance

Caractères	Caractéristiques d'une tumeur Bénigne	Caractéristiques d'une tumeur Maligne
	Bien limitée	Mal limitée
Macroscopique	Souvent encapsulée (capsule)	Pas de capsule
	Refoulement du tissu	Infiltration du tissu
	Homogène	Hétérogène (Nécrotique, hémorragique)
Intégrité de la membrane basale		Destruction de la membrane basale (si invasif)
	Contour circonscrit	Contour irrégulier et étendu
	Mitoses rares et normales	Mitoses nombreuses et anormales
Microscopique	Bien différencié	Moyennement, peu ou indifférencié
•	Cellules régulières	Cellules irrégulières
	Pas d'anomalie cytonucléaire	Atypies cytonucléaires
	Architecture voisine de la normale	Désorganisation architecturale
	Prolifération cellulaire excessive	Prolifération cellulaire excessive
	Développement local (pas de métastase)	Développement local, loco-régional, à distance Métastase
Frankis	Croissance lentes et progressive Croissance rap	
Evolutif	Bon pronostic	Mauvais pronostic
	Développement à partir de la plupart des tissus	
Exemple	(Suffixe « ome » sauf lymphomes, mélanomes) Adénome, Ostéome, Chondrome, Lipome, Hémangiome, léiomyome	Rhabdomyosarcome, Carcinome épidermoïde, Léiomyosarcome, Adénocarcinome, Ostéosarcome

- -> Les caractéristiques morphologiques nucléaires des cellulaires cancéreuses :
- Mitoses anormales
- Mitonécrose
- · Augmentation du nombre de cellules en mitoses
- Anisocaryose (inégalité de taille)
- Augmentation du rapport nucléo-cytoplasmique
 Hyperchromatisme
- · Irrégularités de forme et de contours
- Multinucléation
- · Gros nucléole
- -> Les caractéristiques morphologiques cytoplasmiques des cellulaires cancéreuses :
- Diminution du volume cytoplasmique = Moins abondant
- Anisocytose (taille inégale)
- Basophile

- -> Les modifications du comportements des cellules cancéreuse :
- Perte de l'inhibition de contact
- Perte de la cohésion et de l'adhésivité cellulaire
- Résistance à l'apoptose
- Caractère immortel = Immortalité (survie facile)
- Prolifération illimitée
- Autonomie
- Clonalité
- Surexpression des télomérases
- Maintien des télomères lors des réplications
- Capacité d'induire une néoangiogénèse
- Désorganisation
- · Agressivité vis-à-vis des cellules normales
- · Capacité de croissance élevée
- · Acquisition du pouvoir métastatique
- Perte de contrôle de la prolifération cellulaire
- Echappement à la différenciation cellulaire
- -> Diagnostic différentiel :
- Hyperplasie
- Hypertrophie
- Inflammation
- · Lésion dysgénétique
- -> Concernant les tumeurs à malignité locale :
- Présentent une morphologie de tumeur maligne
- · Présentent une agressivité locale
- -> Les étapes de naissance d'un cancer : Initiation -> Promotion -> Progression
- -> Au cours de la genèse d'un cancer, l'étape d'initiation constitue :
- Altération irréversible de l'ADN (Non exprimée)
- Irréversible
- Indispensable
- · Cassure, mutation
- -> Au cours de la phase de promotion :
- Expression de l'altération
- Précède la phase de progression
- Survient après la phase d'initiation
- Multiplication cellulaire excessive
- · Se produit sous l'effet de stimuli variés
- Favorise la survenue de nouvelles mutations
- Prolifération clonale de cellules initiées en réponse à des stimulis
- -> Au cours de la phase de progression :
- Acquisition de l'indépendance
- Acquisition des propriétés de multiplication non controlée
- Perte de la différentiation
- · Invasion locale et métastatique
- Résistance à l'apoptose
- -> Les agents initiateurs = facteurs à l'origine d'une initiation cancéreuse :
- Agents alkylants (chimiothérapie)
- · Certains virus (Human Papilloma Virus, Epstein Barr Virus, Hépatite B)
- · Dérivés du tabac
- Consommation de nitrosamines
- Radiations ionisantes, UV

- -> Les agents promoteurs :
- Les hormones
- · L'alcool
- Graisses animales
- Infections chronique : Schistosomiase / Helicobacter pylori / Micro-organismes
- -> La différentiation tumorale :
- Peut constituer un facteur pronostique et thérapeutique
- Représente le degré de similitude (structure et fonction) au tissu normal originaire
- Peut être classé en degré variable
- S'applique aux tumeurs bénignes et malignes
- Peut être étudiée par technique d'immunohistochimie
- Constitue un élément important pour classer la tumeur et définir son type histologique
- -> Un état pré-cancéreux :
- Est un état clinique associé à un risque élevé de survenue de cancer
- Permet de déterminer une population à risque
- -> Une lésion pré-cancéreuse est définie par :
- Ensemble d'anomalies histopathologiques prédisposant au cancer
- Une lésion focale ou diffuse
- Une lésion béniane
- Une lésion non cancéreuse

Lésion pré-cancéreuse avec une évolution vers l'apparition d'un cancer		
Constante	Fréquente	Rare
Polypose adénomateuse familiale Xeroderma Pigmentosum	Rectocolite ulcéra- hémorragique Adénome colique Papillome vésical Kératose actinique	Cirrhose Atrophie gastrique Cystite bilharzienne

- -> Le dépistage d'un cancer a pour but de : Diagnostiquer les lésion pré-cancéreuses
- -> Le degré d'invasion/extension d'une tumeur définit : Le stade
- -> La détermination du stade ou staging d'une tumeur consiste à préciser : Son degré de malignité
- -> Le stade TNM d'une tumeur permet d'évaluer :
- · Le degré d'extension de la tumeur
- La présence ou non de métastase ganglionnaire
- Prend en considération les métastases à distance
- A une valeur pronostic et thérapeutique
- · L'extension à des organes à distance

Nom	Tumeur
Rhabdomyosarcome	Tumeur maligne aux dépens du tissu musculaire strié
Carcinome épidermoïde	Tumeur maligne qui nait à partir d'un épithélium malphigien
Léiomyosarcome	Tumeur maligne des fibres musculaires lisses
Carcinome épidermoïde Papillome	Tumeur à différenciation malphigienne

Adénocarcinome, Carcinome épidermoïde, Adénome, Papillome, Candylome	Tumeur d'origine épithéliale
Léiomyosarcome, Léiomyome, Ostéosarcome, Ostéome, Rhabdomyosarcome, Rhabdomyome, Chondrosarcome, Chondrome, Fibrome, Lipome, Sarcome	Tumeur de nature conjonctive

- -> Les sarcomes regroupent un ensemble de tumeurs :
- Agressives
- Métastasiante
- D'évolution rapide
- -> Léiomyome :
- · Tumeur bénigne des fibres musculaires lisses
- · Survient fréquemment au niveau de l'utérus
- Aspect blanchâtre fasciculé
- -> Tumeur qui prend naissance à partir des mélanocytes : Naevus
- -> Cas clinique : Fibroscopie = Masse gastrique / Biopsie = Adénocarcinome moyennement différencié => Tumeur maligne d'origine épithéliale
- -> Les cancers reconnus par leur caractères lymphophile :
- Col utérin
- Sein
- Thyroïde
- Mélanome
- -> Au cours de la cancérologie, l'amplification génique correspond à :
- Multiplication du nombre de copie d'un gène
- Augmentation de l'expression d'un gène
- · Anomalie génétique qui peut intervenir dans la genèse d'un cancer
- -> Les modifications épigénétiques dans un cancer :
- · Modifient l'expression des gènes
- Sans modification d'une séquence d'ADN
- · Peuvent constituer une cible thérapeutique
- Sont réversibles
- Sont transmissibles d'une génération à une autre
- -> Sur le plan moléculaire, un cancer s'accompagne généralement d'une activation :
- Oncogènes
- Réparateurs des mésappariements de l'ADN
- Gènes anti-apoptotiques
- Télomérases
- -> Les oncogènes :
- Leur activité induit l'apparition de tumeur
- Interviennent dans le contrôle de la prolifération cellulaire
- -> Les caractéristiques des anti-oncogènes :
- Gènes suppresseurs de tumeurs
- · Inhibent la croissance cellulaire
- -> Les gènes suppresseurs de tumeur ont pour rôle :
- · Induction de la mort de cellules non réparées
- · Inhibition de croissance cellulaire

- -> Le développement des tumeurs peut être favorisé par :
- · Activation des gènes de survie cellulaire
- Altération des gènes suppresseurs de tumeurs
- · Altération des gènes de maintien de l'intégrité du génome
- Diminution de l'apoptose
- Surexpression des oncogènes
- -> Les facteurs expliquant la capacité de croissance exagérée d'une cellule cancéreuse :
- · Production autocrine de facteurs de croissance
- Surexpression des récepteurs pour les facteurs de croissance
- Inactivation des mécanismes de contrôles physiologique du cycle cellulaire

A) Phase locale:

- -> La dysplasie :
- Dysplasie = Dysplasie épithéliale = Néoplasie intra-épithéliale
- Peut résulter d'une anomalie de contrôle de la prolifération cellulaire
- · Est responsable d'anomalies de maturation cellulaire
- · Caractérise la phase locale du cancer
- · Strictement épithéliale
- · Respecte la membrane basale
- · Est un trouble acquis
- · Peut régresser (n'évoluent pas constamment vers un cancer)
- · Degré de sévérité variable
- Plus la dysplasie est marquée, plus le risque d'évoluer vers un cancer augmente
- · Peut être diagnostiqué à l'examen histologique ou cytologique
- · Peut compliquer une infection virale, état inflammatoire chronique ou tumeur bénigne
- · Peut être diagnostiquée sur biopsie
- -> La néoplasie intra-épithéliale se traduit histologiquement sur une biopsie par les anomalies :
- Anomalie/Atypies cytonucléaires
- · Trouble/Perte de la polarité cellulaire
- Trouble/Perte de la différentiation = maturation cellulaire
- Désorganisation architecturale cellulaire de l'épithélium
- Mitoses anormale et nombreuses
- · Anomalies de maturation
- Augmentation du rapport nucléo-cytoplasmique
- Anisocytose
- Anisocaryose
- · Pas d'angiogénèse marquée
- · Pas de franchissement de la membrane basale
- -> Il est important de différencier un carcinome in situ d'un carcinome invasif parceque le carcinome in situ :
- · Etape strictement épithéliale
- · Désorganisation épithéliale avec des atypies cytonucléaires
- Etat dysplasique
- Risque d'évoluer vers un carcinome invasif
- · Ne franchit pas la membrane basale
- N'infiltre par le tissu sous-jacent
- · Aucune métastase ne s'est encore constituée
- · Peut être traité par un TTT local et limité
- Guérison possible après TTT
- · Possède un meilleur pronostic

B) Phase loco-régionale :

- -> Un carcinome invasif = phase loco-régionale/d'invasion d'un cancer :
- Peut résulter de l'évolution d'un carcinome in situ
- · Mobilisation des cellules cancéreuses
- · Perte des connections intercellulaires
- Infiltration des tissus sains de voisinage
- Infiltre le tissu sous-jacent
- Destruction de la membrane basale
- Protéolyse/Destruction de la matrice extracellulaire péritumorale
- Développement d'un stroma tumoral
- Développement d'une néovascularisation = angiogénèse tumorale
- · Invasion vasculaire

-> Le stroma tumoral :

- · Charpente (conjonctive) de la tumeur
- Structure qui assure les apports nutritifs d'une tumeur
- Tissu/trame de soutien d'un cancer
- · Est dépendant des cellules tumorales
- Impact l'aspect macroscopique des tumeurs
- · Contient des néo-vaisseaux, tissu conjonctif, matrice extracellulaire, cellules inflammatoires
- · Peut avoir un impact pronostic selon sa richesse en cellules inflammatoires
- Phénomène réactionnel inflammatoire et immunitaire à la présence de cellules cancéreuses

Variations du stroma tumoral	Tumeur
Richement vascularisé	Tumeur endocrine, Carcinome rénal
Abondant et fibreux	Cancer du sein, Cancer du pancréas
Grêle	Lymphome
Riche en cellules inflammatoires	Cancers du sein, du côlon, de l'estomac

- -> L'angiogenèse tumorale correspond :
- Développement de vaisseaux propres à la tumeur
- Son branchés sur des vaisseaux normaux péri tumoraux
- · Se produisent par pousse vasculaire et bourgeonnement endothélial
- Assurent la nutrition des cellules cancéreuses
- De type capillaire
- Sont fragiles

C) Phase de généralisation :

D) Phase de métastases :

- -> Les métastases :
- · Correspondent à une prolifération de cellules tumorales à distance du foyer primitif
- Se développent fréquemment au niveau du foie (tronc porte)
- Sont fréquentes en cas de : mélanome / cancer bronchique
- Ont une croissance indépendante de la tumeur primitive
- · Sont liées à une instabilité génétique et une baisse de l'immunité antitumorale

Potentiel métastatique		
Elevé	Moyen	Faible
Mélanomes Cancer bronchiques	Carcinomes cutanées	Gliomes et tumeurs cérébrales

- -> Les mécanismes pouvant expliquer les localisations métastatiques pour des sites particuliers :
- Affinité sélective pour certains tissus
- Flux sanguin
- Interaction entre chimiokines et récepteurs
- -> Les sites métastatiques les plus fréquent :
- Foie
- Os
- Poumon
- Ganglions
- Surrénales
- -> Les tumeurs donnant préférentiellement des métastases osseuses :
- · Carcinome mammaire
- Carcinome de la prostate
- Neuroblastome
- Cancer pulmonaire
- Cancer thyroïdien
- · Cancer du rein
- -> Le cancer de la prostate a comme site métastatique préférentiel : L'os
- -> Les cancers gastro-intestinaux ont comme site métastatique préférentiel : Le foie
- -> Le 1er territoire atteint lors d'une métastase ganglionnaire est : Sinus sous capsulaire