

Global United Technology Services Co., Ltd.

Report No.: GTSE15060113801

FCC REPORT

Applicant: Shenzhen Awood Computer Technology Co., Ltd.

Address of Applicant: 8/F.Huichao technology Building, Jinhai Rd, Xixiang-Baoan

District, Shenzhen, China

Equipment Under Test (EUT)

Product Name: **Notebook Computer**

Model No.: X1

FCC ID: 2AFLU-X1

FCC CFR Title 47 Part 15 Subpart C Section 15.407:2014 **Applicable standards:**

Date of sample receipt: July 20, 2015

Date of Test: July 21-30, 2015

Date of report issue: August 03, 2015

PASS * Test Result:

In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Lo **Laboratory Manager**

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the GTS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of GTS or testing done by GTS in connection with, distribution or use of the product described in this report must be approved by GTS in writing.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	August 03, 2015	Original

Prepared By:	Sam. Gao	Date:	August 03, 2015
	Project Engineer		
Check By:	hank. yan	Date:	August 03, 2015

Reviewer

3 Contents

			Page
1	CO	VER PAGE	1
2	VE	RSION	2
3	СО	NTENTS	3
4	TES	ST SUMMARY	4
	4.1	MEASUREMENT UNCERTAINTY	4
5	GE	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF EUT	5
	5.3	TEST MODE	6
	5.4	TEST FACILITY	6
	5.5	TEST LOCATION	6
	5.6	DESCRIPTION OF SUPPORT UNITS	6
	5.7	DEVIATION FROM STANDARDS	
	5.8	ABNORMALITIES FROM STANDARD CONDITIONS	
	5.9	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	5.10	TEST INSTRUMENTS LIST	7
5	TES	ST RESULTS AND MEASUREMENT DATA	9
	5.1	ANTENNA REQUIREMENT:	9
	5.2	CONDUCTED EMISSIONS	
	5.3	EMISSION BANDWIDTH AND 99% OCCUPIED BANDWIDTH	
	5.4	PEAK TRANSMIT POWER	
	5.5	PEAK POWER SPECTRAL DENSITY	
	5.6	BAND EDGE	
	5.7	RADIATED EMISSION	
	5.8	FREQUENCY STABILITY	56
6	TES	ST SETUP PHOTO	61
7	FII	T CONSTRUCTIONAL DETAILS	63

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203	PASS
AC Power Line Conducted Emission	15.207	PASS
Peak Transmit Power	15.407(a)(1)	PASS
Power Spectral Density	15.407(a)(1)	PASS
Undesirable Emission	15.407(b)(6), 15.205/15.209	PASS
Radiated Emission	15.205/15.209	PASS
Band Edge	15.205	PASS
Frequency Stability	15.407(g)	PASS

Remark:

Pass: The EUT complies with the essential requirements in the standard.

Fail: The EUT does not comply with the essential requirements in the standard.

4.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)
Radiated Emission	1GHz ~ 40GHz	± 4.68dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	± 3.45dB	(1)

Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.

Remark: Test according to ANSI C63.10:2013 and ANSI C63.4:2014

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5 General Information

5.1 Client Information

Applicant:	Shenzhen Awood Computer Technology Co., Ltd.		
Address of Applicant:	8/F.Huichao technology Building, Jinhai Rd, Xixiang-Baoan District, Shenzhen, China		
Manufacturer:	Shenzhen Awood Computer Technology Co., Ltd.		
Address of Manufacturer:	8/F.Huichao technology Building, Jinhai Rd, Xixiang-Baoan District, Shenzhen, China		
Factory:	SHENZHEN IEZO ELECTRONIC TECHNOLOGIES CO., LTD.		
Address of Factory:	102 Room for F Buliding 1 Floor, 3 Floor, 2 Floor for Eest West, 4 Floor for East, 201 Room for E Buliding, New Wood Road 6th, New Wood Community, Pinghu Street, Longgang District, Shenzhen, China		

5.2 General Description of EUT

Product Name:	Notebook Computer
Model No.:	X1
Operation Frequency:	802.11a/802.11n(HT20)/802.11ac(HT20): 5180MHz ~ 5240MHz;
	802.11n(HT40)/ 802.11ac(HT40): 5190MHz ~ 5230MHz
	802.11ac(HT80): 5210MHz
Channel numbers:	802.11a/802.11n(HT20)/802.11ac(HT20): 4;
	802.11n(HT40)/ 802.11ac(HT40): 2
	802.11ac(HT80): 1
Channel separation:	802.11a/802.11n(HT20)/802.11ac(HT20): 20MHz;
	802.11n(HT40)/ 802.11ac(HT40): 40MHz
	802.11ac(HT80): 80MHz
Modulation technology:	OFDM
Antenna Type:	Integral Antenna
Antenna gain:	0.85dBi (declare by Applicant)
Power supply:	Adapter:
	Model No.:HKA03619021-6C
	Input: AC 100~240V~50/60Hz 1.0A
	Output: DC 19.0V 2.1A

5.3 Test mode

Transmitting mode	Keep the EUT in transmitting with modulation.
	EUT was test with 99% duty cycle at its maximum power control level.
Pemark: During the test t	the test voltage was tuned from 85% to 115% of the nominal rated supply

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, June 28, 2013.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. Has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, June 26, 2013.

5.5 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: Room 301-309, 3th Floor, Block A, Huafeng Jinyuan Business Building, No. 300

Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.6 Description of Support Units

None

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

Page 6 of 76

5.10 Test Instruments list

Rad	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	Mar. 28 2015	Mar. 27 2016	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A	
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June 30 2015	June 29 2016	
4	Spectrum analyzer	Agilent	E4447A	GTS516	June 30 2015	June 29 2016	
5	Spectrum Analyzer	Agilent	E4440A	GTS533	Nov. 19 2014	Nov. 18 2015	
6	BiConiLog Antenna	SCHWARZBECK MESS- ELEKTRONIK	VULB9163	GTS214	Feb. 22 2015	Feb. 21 2016	
7	Double -ridged waveguide horn	SCHWARZBECK MESS- ELEKTRONIK	9120D-829	GTS208	June 30 2015	June 29 2016	
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 28 2015	Mar. 27 2016	
9	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
10	Coaxial Cable	GTS	N/A	GTS213	Mar. 28 2015	Mar. 27 2016	
11	Coaxial Cable	GTS	N/A	GTS211	Mar. 28 2015	Mar. 27 2016	
12	Coaxial cable	GTS	N/A	GTS210	Mar. 28 2015	Mar. 27 2016	
13	Coaxial Cable	GTS	N/A	GTS212	Mar. 28 2015	Mar. 27 2016	
14	Amplifier(100kHz- 3GHz)	HP	8347A	GTS204	June 30 2015	June 29 2016	
15	Amplifier(2GHz- 20GHz)	HP	8349B	GTS206	June 30 2015	June 29 2016	
16	Amplifier (18-40GHz)	MITEQ	AMF-6F-18004000- 29-8P	GTS534	June 30 2015	June 29 2016	
17	Band filter	Amindeon	82346	GTS219	Mar. 28 2015	Mar. 27 2016	
18	Constant temperature and humidity box	Oregon Scientific	BA-888	GTS248	Mar. 28 2015	Mar. 27 2016	
19	D.C. Power Supply	Instek	PS-3030	GTS232	Mar. 28 2015	Mar. 27 2016	
20	Universal radio communication tester	Rohde & Schwarz	CMU200	GTS235	Mar. 28 2015	Mar. 27 2016	
21	Splitter	Agilent	11636B	GTS237	Mar. 28 2015	Mar. 27 2016	
22	Power Meter	Anritsu	ML2495A	GTS540	June 30 2015	June 29 2016	
23	Power Sensor	Anritsu	MA2411B	GTS541	June 30 2015	June 29 2016	

Con	Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Shielding Room	ZhongYu Electron	7.0(L)x3.0(W)x3.0(H)	GTS264	June 30 2015	June 29 2016	
2	EMI Test Receiver	Rohde & Schwarz	ESCS30	GTS223	June 30 2015	June 29 2016	
3	10dB Pulse Limita	Rohde & Schwarz	N/A	GTS224	June 30 2015	June 29 2016	
4	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June 30 2015	June 29 2016	
5	LISN	SCHWARZBECK MESS- ELEKTRONIK	NSLK 8127	GTS226	June 30 2015	June 29 2016	
6	Coaxial Cable	GTS	N/A	GTS227	June 30 2015	June 29 2016	
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	

Gen	General used equipment:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Barometer	ChangChun	DYM3	GTS257	July 07 2015	July 06 2016	

5 Test results and Measurement Data

5.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The antenna is Integral antenna. The best case gain of the antenna is 0.85dBi.

Directional Gain Calculations is below:

The same digital data are transmitted from the two antennas in a given symbol period, thus the antennas is categorization as correlated.

Accroding to KDB 662911 D01 Multiple Transmitter Output v02r01 Section F)2)a)(i), the Directional Gain = G_{ANT} + 10log(2) dBi = 0.85 + 3.01 dBi = 3.86dBi.

5.2 Conducted Emissions

Test Method: Al	FCC Part15 C Section 15.207 ANSI C63.10:2013				
	150KHz to 30MHz				
1 7 9	lass B				
	BW=9KHz, VBW=30KHz				
Limit:	Limit (dBuV)				
	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	56 to 46*			
	0.5-5	56	46		
	5-30	60	50		
*!	Decreases with the logarithm	of the frequency.			
im coordinate of the coordinat	The E.U.T and simulators are connected to the main power through a line impedance stabilization network(L.I.S.N.). The provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement.				
Test setup:	Reference Plane				
	AUX Equipment Test table/Insulation plane Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m				
Test Instruments: Re	efer to section 5.10 for detail	S			
Test mode: Re	Refer to section 5.3 for details. All of list mode were tested, and found the 802.11n(HT40) mode as the worst case. Only the data of worst case is reported.				
	Pass				

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

No. 300 Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, China Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Page 10 of 76

Line:

Condition : FCC PART15 CLASSB QP LISN-2013 LINE

Job No. Test mode : 1138RF

: Wifi mode(5G)

Test Engineer: Song

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBuV	dB	₫B	dBu₹	dBuV	dB	
1	0.150	58.07	0.15	0.12	58.34	66.00	-7.66	QP
2 3	0.150	42.34	0.15	0.12	42.61	56.00	-13.39	Average
3	0.223	46.90	0.12	0.12	47.14	62.70	-15.56	QP
4	0.223	33.15	0.12	0.12	33.39	52.70	-19.31	Average
4 5 6	0.466	34.49	0.12	0.11	34.72	56.58	-21.86	QP
6	0.466	21.71	0.12	0.11	21.94	46.58	-24.64	Average
7	2. 237	35.91	0.13	0.15	36.19	56.00	-19.81	QP
8	2. 237	23.18	0.13	0.15	23.46	46.00	-22.54	Average
9	4.202	33.44	0.20	0.15	33.79	56.00	-22.21	QP
10	4. 202	11.79	0.20	0.15	12.14	46.00	-33.86	Average
11	16.486	40.61	0.39	0.22	41.22	60.00	-18.78	QP
12	16.486	31.22	0.39	0.22	31.83	50.00	-18.17	Average

Neutral:

Condition : FCC PART15 CLASSB QP LISN-2013 NEUTRAL

Job No. : 1138RF

Test mode : Wifi mode(5G)

Test Engineer: Song

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBuV	dB	dB	dBuV	dBuV	dB	
1	0.150	58.21	0.07	0.12	58.40	66.00	-7.60	QP
2 3	0.150	42.40	0.07	0.12	42.59	56.00	-13.41	Average
3	0.229	46.97	0.06	0.12	47.15	62.48	-15.33	QP
4	0.229	34.16	0.06	0.12	34.34	52.48	-18.14	Average
4 5 6	0.398	35.26	0.06	0.11	35.43	57.90	-22.47	QP
6	0.398	20.43	0.06	0.11	20.60	47.90	-27.30	Average
7	2.178	36.69	0.09	0.15	36.93		-19.07	
	2.178	29.93	0.09	0.15	30.17	46.00	-15.83	Average
8 9	2.765	36.09	0.10	0.15	36.34		-19.66	
10	2.765	25.35	0.10	0.15	25.60	46.00	-20.40	Average
11	17.109	37.06	0.39	0.22	37.67		-22.33	
12	17.109	24.67	0.39	0.22	25.28			Äverage

5.3 Emission Bandwidth and 99% Occupied Bandwidth

Test Requirement:	FCC Part15 E Section 15.407					
Test Method:	ANSI C63.10:2013 and KDB 789033 D02 General UNII Test Procedures New Rules v01					
Limit:	N/A					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test procedure:	According to KDB 789033 D02 General UNII Test Procedures New Rules v01.					
Test Instruments:	Refer to section 5.10 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Pass					

Measurement Data:

ANT:1

CH	F=====================================	99% Occ	upied Bandwi	dth (MHz)	26dB Occupied Bandwidth (MHz)			
CH. No.	Frequency (MHz)	802.11a	802.11n(HT 20)	802.11ac(H T20)	802.11a	802.11n(HT 20)	802.11ac(H T20)	
36	5180.00	16.527	17.831	17.890	20.473	25.557	24.627	
40	5200.00	16.511	17.872	17.874	20.101	24.950	24.212	
48	5240.00	16.492	17.866	17.911	20.427	23.634	24.857	

CH.	Frequency	99% Occupied E	Bandwidth (MHz)	26dB Occupied I	Bandwidth (MHz)	
No.	(MHz) 802.11n(HT40)		802.11ac(HT40)	802.11n(HT40)	802.11ac(HT40)	
38	5190.00	35.910	35.916	41.117	42.749	
46	5230.00	35.925	35.952	41.131	42.866	

CH.	Frequency	99% Occupied Bandwidth (MHz)	26dB Occupied Bandwidth (MHz)		
No.	(MHz)	802.11ac(HT80)	802.11ac(HT80)		
42	5210.00	74.664	80.691		

ANT:2

CH. No.	Frequency (MHz)	99% Occ	upied Bandwi	dth (MHz)	26dB Occupied Bandwidth (MHz)			
		802.11a	802.11n(HT 20)	802.11ac(H T20)	802.11a	802.11n(HT 20)	802.11ac(H T20)	
36	5180.00	16.532	17.840	17.983	20.340	22.954	25.333	
40	5200.00	16.490	17.829	17.869	20.047	22.880	24.598	
48	5240.00	16.518	17.850	17.897	20.408	22.959	24.155	

CH.	Frequency	99% Occupied E	Bandwidth (MHz)	26dB Occupied I	Bandwidth (MHz)	
No.	(MHz)	802.11n(HT40)	802.11ac(HT40)	802.11n(HT40)	802.11ac(HT40)	
38	5190.00	35.879	35.951	41.433	42.481	
46	5230.00	35.840	35.883	41.173	42.125	

CH.	Frequency	99% Occupied Bandwidth (MHz)	26dB Occupied Bandwidth (MHz)		
No.	(MHz)	802.11ac(HT80)	802.11ac(HT80)		
42	5210.00	74.679	81.315		

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test plots as followed:

ANT:2

5.4 Peak Transmit Power

Test Requirement:	FCC Part15 E Section 15.407
Test Method:	ANSI C63.10:2013 and KDB 789033 D02 General UNII Test Procedures New Rules v01
Limit:	For the band 5.15-5.25 GHz, the maximum conducted output power over the frequency bands of operation shall not exceed 250 mW.
Test setup:	Power Meter E.U.T Non-Conducted Table
Test procedure:	(i) Measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the conditions listed below are satisfied a) The EUT is configured to transmit continuously or to transmit with a constant duty cycle. b) At all times when the EUT is transmitting, it must be transmitting at its maximum power control level. c) The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.
	(ii) If the transmitter does not transmit continuously, measure the duty cycle, x, of the transmitter output signal as described in section B).
	(iii) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.
	(iv) Adjust the measurement in dBm by adding 10 log(1/x) where x is the duty cycle (e.g., 10log(1/0.25) if the duty cycle is 25 percent).
Test Instruments:	Refer to section 5.10 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Measurement Data

	802.11a mode (SISO)											
	Frequency (MHz)		Measured Power (dBm)									
CH No.						Duty Factor	Total ANT1 Output Power	Total ANT2 Output Power	Limit (dBm)	Result		
				Factor	(dBm)	(dBm)						
36	5180.00	16.08	16.14	0.04	16.12	16.18	23.98	Pass				
40	5200.00	16.13	16.20	0.04	16.17	16.24	23.98	Pass				
48	5240.00	16.17	16.24	0.04	16.21	16.28	23.98	Pass				

			8	02.11n(F	IT20) mod	de (MIMO))		
СН	Frequency		Measu	red Powe	er (dBm)		Output		
No.	(MHz)	ANT1	ANT2	Duty Factor	Total ANT1	Total ANT2	Power (dBm)	Limit (dBm)	Result
36	5180.00	11.45	11.58	0.04	11.49	11.62	14.57	23.98	Pass
40	5200.00	11.37	11.50	0.04	11.41	11.54	14.49	23.98	Pass
48	5240.00	11.22	11.43	0.04	11.26	11.47	14.38	23.98	Pass
			80	02.11ac(l	HT20) mo	de (MIMO)		
СН	Frequency		Measu	red Powe	er (dBm)		Output		
No.	(MHz)	ANT1	ANT2	Duty Factor	Total ANT1	Total ANT2	Power (dBm)	Limit (dBm)	Result
36	5180.00	11.60	11.75	0.04	11.64	11.79	14.73	23.98	Pass
40	5200.00	11.54	11.64	0.04	11.58	11.68	14.64	23.98	Pass
48	5240.00	11.48	11.57	0.04	11.52	11.61	14.58	23.98	Pass
			8	02.11n(H	IT40) mod	de (MIMO))		
СН	Frequency (MHz)	Measured Power (dBm)				Output			
No.		ANT1	ANT2	Duty Factor	Total ANT1	Total ANT2	Power (dBm)	Limit (dBm)	Result
38	5190.00	11.32	11.47	0.04	11.36	11.51	14.45	23.98	Pass
46	5230.00	11.35	11.49	0.04	11.39	11.53	14.47	23.98	Pass
			80	02.11ac(l	HT40) mo	de (MIMO)		
СН	Frequency		Measu	red Powe	er (dBm)		Output		
No.	(MHz)	ANT1	ANT2	Duty Factor	Total ANT1	Total ANT2	Power (dBm)	Limit (dBm)	Result
38	5190.00	11.34	11.48	0.04	11.38	11.52	14.46	23.98	Pass
46	5230.00	11.38	11.43	0.04	11.42	11.47	14.46	23.98	Pass
			80	02.11ac(l	HT80) mo	de (MIMO))		
СН	Frequency		Measu	red Powe	er (dBm)		Output		
No.	(MHz)	ANT1	ANT2	Duty Factor	Total ANT1	Total ANT2	Power (dBm)	Limit (dBm)	Result
42	5210.00	10.35	10.47	0.04	10.39	10.51	13.46	23.98	Pass

Note: Output Power = Measured Power + Duty Factor

Duty Factor = 10 log (1/Duty Cycle)

5.5 Peak Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.407
Test Method:	ANSI C63.10:2013 and KDB 789033 D02 General UNII Test Procedures New Rules v01
Limit:	11dBm/MHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test procedure:	 Create an average power spectrum for the EUT operating mode being tested by following the instructions in section E)2) for measuring maximum conducted output power using a spectrum analyzer or EMI receiver: select the appropriate test method (SA-1, SA-2, SA-3, or alternatives to each) and apply it up to, but not including, the step labeled, "Compute power". Use the peak search function on the instrument to find the peak of the spectrum. Make the following adjustments to the peak value of the spectrum, if applicable: a) If Method SA-2 or SA-2 Alternative was used, add 10 log(1/x), where x is the duty cycle, to the peak of the spectrum. b) If Method SA-3 Alternative was used and the linear mode was used in step E)2)g)(viii), add 1 dB to the final result to compensate for the difference between linear averaging and power averaging. The result is the PPSD.
Test Instruments:	Refer to section 5.10 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Measurement Data

ANT:1

	802.11a mode (SISO)							
Channel No.	Frequency (MHz)	Measured PPSD (dBm/MHz)	Total PPSD (dBm/MHz)	Limit (dBm/MHz)	Result			
36	5180.00	-0.10	-0.06	11.00	Pass			
40	5200.00	-0.84	-0.80	11.00	Pass			
48	5240.00	1.17	1.21	11.00	Pass			

	802.11n(HT20) mode (MIMO)							
Channel No.	Frequency (MHz)	Measured PPSD (dBm/MHz)	Total PPSD (dBm/MHz)	Limit (dBm/MHz)	Result			
36	5180.00	1.21	1.25	11.00	Pass			
40	5200.00	1.51	1.55	11.00	Pass			
48	5240.00	0.98	1.02	11.00	Pass			

	802.11ac(HT20) mode (MIMO)						
Channel No.	Frequency (MHz)	Measured PPSD (dBm/MHz)	Total PPSD (dBm/MHz)	Limit (dBm/MHz)	Result		
36	5180.00	0.19	0.23	11.00	Pass		
40	5200.00	1.63	1.67	11.00	Pass		
48	5240.00	2.10	2.14	11.00	Pass		

	802.11n(HT40) mode (MIMO)						
Channel No.	Frequency (MHz)	Measured PPSD (dBm/MHz)	Total PPSD - (dBm/MHz)	Limit (dBm/MHz)	Result		
38	5190.00	-1.65	-1.61	11.00	Pass		
46	5230.00	-0.99	-0.95	11.00	Pass		

	802.11ac(HT40) mode (MIMO)						
Channel No.	Frequency (MHz)	Measured PPSD (dBm/MHz)	Total PPSD (dBm/MHz)	Limit (dBm/MHz)	Result		
38	5190.00	-1.78	-1.74	11.00	Pass		
46	5230.00	-0.26	-0.22	11.00	Pass		

	802.11ac(HT80) mode (MIMO)						
Channel No.	Frequency (MHz)	Measured PPSD (dBm/MHz)	Total PPSD (dBm/MHz)	Limit (dBm/MHz)	Result		
42	5210.00	-3.45	-3.41	11.00	Pass		

ANT:2

	802.11a mode (SISO)							
Channel No.	Frequency (MHz)	Measured PPSD (dBm/MHz)	Total PPSD (dBm/MHz)	Limit (dBm/MHz)	Result			
36	5180.00	-0.31	-0.27	11.00	Pass			
40	5200.00	-1.38	-1.34	11.00	Pass			
48	5240.00	1.15	1.19	11.00	Pass			

	802.11n(HT20) mode (MIMO)						
Channel No.	Frequency (MHz)	Measured PPSD (dBm/MHz)	Total PPSD (dBm/MHz)	Limit (dBm/MHz)	Result		
36	5180.00	-1.03	-0.99	11.00	Pass		
40	5200.00	-0.31	-0.27	11.00	Pass		
48	5240.00	0.69	0.73	11.00	Pass		

	802.11ac(HT20) mode (MIMO)						
Channel No.	Frequency (MHz)	Measured PPSD (dBm/MHz)	Total PPSD (dBm/MHz)	Limit (dBm/MHz)	Result		
36	5180.00	-0.75	-0.71	11.00	Pass		
40	5200.00	-1.18	-1.14	11.00	Pass		
48	5240.00	1.31	1.35	11.00	Pass		

802.11n(HT40) mode (MIMO)						
Channel No.	Frequency (MHz)	Measured PPSD (dBm/MHz)	Total PPSD (dBm/MHz)	Limit (dBm/MHz)	Result	
38	5190.00	-3.05	-3.01	11.00	Pass	
46	5230.00	-1.37	-1.33	11.00	Pass	

802.11ac(HT40) mode (MIMO)						
Channel No.	Frequency (MHz)	Measured PPSD (dBm/MHz)	Total PPSD (dBm/MHz)	Limit (dBm/MHz)	Result	
38	5190.00	-3.88	-3.84	11.00	Pass	
46	5230.00	-1.13	-1.09	11.00	Pass	

802.11ac(HT80) mode (MIMO)							
Channel No.							
42	5210.00	-4.61	-4.57	11.00	Pass		

ANT 1+ANT 2

802.11n(HT20) mode (MIMO)								
Channel No.	Frequency (MHz)	ANT 1 Total PPSD (dBm/MHz)	ANT 2 Total PPSD (dBm/MHz)	Total	(dBm/MHz)	Result		
36	5180.00	1.25	-0.99	3.28	11.00	Pass		
40	5200.00	1.55	-0.27	3.74	11.00	Pass		
48	5240.00	1.02	0.73	3.89	11.00	Pass		

802.11ac(HT20) mode (MIMO)								
Channel No.	Frequency (MHz)	ANT 1 Total PPSD (dBm/MHz)	ANT 2 Total PPSD (dBm/MHz)	Total	(dBm/MHz)	Result		
36	5180.00	0.23	-0.71	2.80	11.00	Pass		
40	5200.00	1.67	-1.14	3.50	11.00	Pass		
48	5240.00	2.14	1.35	4.77	11.00	Pass		

802.11n(HT40) mode (MIMO)								
Channel No.	Frequency (MHz)	ANT 1 Total PPSD (dBm/MHz)	ANT 2 Total PPSD (dBm/MHz)	Total	(dBm/MHz)	Result		
38	5190.00	-1.61	-3.01	0.76	11.00	Pass		
46	5230.00	-0.95	-1.33	1.87	11.00	Pass		

	802.11ac(HT40) mode (MIMO)								
Channel No.	Frequency (MHz)	ANT 1 Total PPSD (dBm/MHz)	ANT 2 Total PPSD (dBm/MHz)	Total	(dBm/MHz)	Result			
38	5190.00	-1.74	-3.84	0.34	11.00	Pass			
46	5230.00	-0.22	-1.09	2.38	11.00	Pass			

802.11ac(HT80) mode (MIMO)								
Channel No.	Frequency (MHz)	ANT 1 Total PPSD (dBm/MHz)	ANT 2 Total PPSD (dBm/MHz)	Total	(dBm/MHz)	Result		
42	5210.00	-3.41	-4.57	-0.94	11.00	Pass		

Note: Total PPSD = Measured PPSD + 10 log (1/Duty Cycle)

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test plots as followed:

ANT:1

ANT:2

5.6 Band Edge

_	1							
Test Requirement:	FCC Part15 E Se	ection 15.407	and 5.205					
Test Method:	ANSI C63.10:201	13						
Test site:	Measurement Dis	stance: 3m (S	Semi-Anecho	ic Chambe	r)			
Receiver setup:								
	Frequency	Detector	RBW	VBW	Remark			
	30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak Value			
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
	Above Toriz	AV	1MHz	3MHz	Average Value			
Limit:								
	Frequen		Limit (dBuV	/m @3m)	Remark			
	30MHz-88	MHz	40.0		Quasi-peak Value			
	88MHz-216	6MHz	43.5		Quasi-peak Value			
	216MHz-96		46.0		Quasi-peak Value			
	960MHz-1	GHz	54.0		Quasi-peak Value			
	Above 1GHz 54.0 Average Value							
	74.0 Peak Value							
	 Undesirable emission limits: (1) For transmitters operating in the 5.15-5.25 GHz band: all emi outside of the 5.15-5.35 GHz band shall not exceed an EIRP dBm/MHz. (2) For transmitters operating in the 5.25-5.35 GHz band: all emi outside of the 5.15-5.35 GHz band shall not exceed an EIRP dBm/MHz. Devices operating in the 5.25-5.35 GHz band generate emissions in the 5.15-5.25 GHz band must me applicable technical requirements for operation in the 5.15-5.2 band (including indoor use) or alternatively meet an out-openission EIRP limit of -27 dBm/MHz in the 5.15-5.25 GHz band: (3) For transmitters operating in the 5.47-5.725 GHz band: all emi outside of the 5.47-5.725 GHz band shall not exceed an EIRP dBm/MHz. 							
Test Procedure:	 a. The EUT was placed on the top of a rotating table 1.5 m above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not 							

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

	10port 10 010E10000110001						
	have 10dB margin would be re-tested one by one using peak, quasi- peak or average method as specified and then reported in a data sheet.						
Test setup:	Antenna Tower Horn Antenna Turn Table 1.5m Amplifier						
Test Instruments:	Refer to section 5.10 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Pass						

Remark:

According to KDB 789033 D02V01 section G) 1) (d), for For measurements above 1000 MHz @ 3m distance, the limit of field strength is computed as follows:

E[dBuV/m] = EIRP[dBm] + 95.2;

For example, if EIRP = -27dBm

E[dBuV/m] = -27 + 95.2 = 68.2dBuV/m.

Measurement Data:

ANT 1:

ANT 1:											
Мо	de:	802	.11a	Frequ	iency:	5180)MHz				
Antenna Pol.	Frequency (MHz)	Reading Level	Factor	Measure Level	Limit (dBuV/m)	Margin (dB)	Detector				
Н	5150.00	38.42	17.18	55.60	68.20	-12.60	PK				
Н	5178.00	78.83	17.16	95.99	N/A	N/A	PK				
V	5150.00	40.26	17.18	57.44	68.20	-10.76	PK				
V	5178.00	85.71	17.16	102.87	N/A	N/A	PK				
Мо	de:	802	.11a	Frequ	iency:	5180)MHz				
Antenna Pol.	Frequency (MHz)	Reading Level	Factor	Measure Level	Limit (dBuV/m)	Margin (dB)	Detector				
Н	5150.00	28.35	17.18	45.53	54.00	-8.47	AV				
Н	5178.00	70.12	17.16	87.28	N/A	N/A	AV				
V	5150.00	30.16	17.18	47.34	54.00	-6.66	AV				
V	5178.00	77.49	17.16	94.65	N/A	N/A	AV				
Мо	de:	802	.11a	Frequ	iency:	5240)MHz				
Antenna Pol.	Frequency (MHz)	Reading Level	Factor	Measure Level	Limit (dBuV/m)	Margin (dB)	Detector				
Н	5237.94	78.45	17.11	95.56	N/A	N/A	PK				
Н	5350.00	35.58	17.20	52.78	68.20	-15.42	PK				
V	5237.94	85.40	17.11	102.51	N/A	N/A	PK				
V	5350.00	36.26	17.20	53.46	68.20	-14.74	PK				
Мо	de:	802	.11a	Frequ	iency:	5240	MHz				
Antenna Pol.	Frequency (MHz)	Reading Level	Factor	Measure Level	Limit (dBuV/m)	Margin (dB)	Detector				
Н	5237.94	70.05	17.11	87.16	N/A	N/A	AV				
Н	5350.00	26.39	17.20	43.59	54.00	-10.41	AV				
V	5237.94	76.38	17.11	93.49	N/A	N/A	AV				
V	5350.00	27.66	17.20	44.86	54.00	-9.14	AV				

ANT 2:

Мс	ode:	802	.11a	Frequ	uency:	5180)MHz
Antenna Pol.	Frequency (MHz)	Reading Level	Factor	Measure Level	Limit (dBuV/m)	Margin (dB)	Detector
Н	5150.00	38.92	17.18	56.10	68.20	-12.10	PK
Н	5178.00	76.35	17.16	93.51	N/A	N/A	PK
V	5150.00	39.89	17.18	57.07	68.20	-11.13	PK
V	5178.00	78.03	17.16	95.19	N/A	N/A	PK
Мо	ode:	802	.11a	Frequ	uency:	5180MHz	
Antenna Pol.	Frequency (MHz)	Reading Level	Factor	Measure Level	Limit (dBuV/m)	Margin (dB)	Detector
Н	5150.00	29.25	17.18	46.43	54.00	-7.57	AV
Н	5178.00	66.30	17.16	83.46	N/A	N/A	AV
V	5150.00	30.08	17.18	47.26	54.00	-6.74	AV
V	5178.00	69.29	17.16	86.45	N/A	N/A	AV
Mo	ode:	802.11a		Frequ	uency:	5240)MHz
Antenna Pol.	Frequency (MHz)	Reading Level	Factor	Measure Level	Limit (dBuV/m)	Margin (dB)	Detector
Н	5237.94	75.87	17.11	92.98	N/A	N/A	PK
Н	5350.00	39.25	17.20	56.45	68.20	-11.75	PK
V	5237.94	77.47	17.11	94.58	N/A	N/A	PK
V	5350.00	39.19	17.20	56.39	68.20	-11.81	PK
Mo	ode:	802	.11a	Frequ	uency:	5240)MHz
Antenna Pol.	Frequency (MHz)	Reading Level	Factor	Measure Level	Limit (dBuV/m)	Margin (dB)	Detector
Н	5237.94	66.63	17.11	83.74	N/A	N/A	AV
Н	5350.00	26.03	17.20	43.23	54.00	-10.77	AV
V	5237.94	67.81	17.11	84.92	N/A	N/A	AV
V	5350.00	26.86	17.20	44.06	54.00	-9.94	AV

ANT 1 + ANT 2:

Мс	ode:	802.11r	n(HT20)	Frequ	iency:	5180)MHz
Antenna Pol.	Frequency (MHz)	Reading Level	Factor	Measure Level	Limit (dBuV/m)	Margin (dB)	Detector
Н	5150.00	37.78	17.18	54.96	68.20	-13.24	PK
Н	5178.00	79.35	17.16	96.51	N/A	N/A	PK
V	5150.00	39.71	17.18	56.89	68.20	-11.31	PK
V	5178.00	86.27	17.16	103.43	N/A	N/A	PK
Мо	ode:	802.11r	n(HT20)	Frequency: 5180MHz)MHz	
Antenna Pol.	Frequency (MHz)	Reading Level	Factor	Measure Level	Limit (dBuV/m)	Margin (dB)	Detector
Н	5150.00	27.64	17.18	44.82	54.00	-9.18	AV
Н	5178.00	70.26	17.16	87.42	N/A	N/A	AV
V	5150.00	29.59	17.18	46.77	54.00	-7.23	AV
V	5178.00	77.67	17.16	94.83	N/A	N/A	AV
Mo	ode:	802.11n(HT20)		Frequ	iency:	5240)MHz
Antenna Pol.	Frequency (MHz)	Reading Level	Factor	Measure Level	Limit (dBuV/m)	Margin (dB)	Detector
Н	5238.00	79.52	17.11	96.63	N/A	N/A	PK
Н	5350.00	36.29	17.20	53.49	68.20	-14.71	PK
V	5238.00	85.91	17.11	103.02	N/A	N/A	PK
V	5350.00	37.23	17.20	54.43	68.20	-13.77	PK
Mo	ode:	802.11r	n(HT20)	Frequ	iency:	5240)MHz
Antenna Pol.	Frequency (MHz)	Reading Level	Factor	Measure Level	Limit (dBuV/m)	Margin (dB)	Detector
Н	5238.00	70.14	17.11	87.25	N/A	N/A	AV
Н	5350.00	27.06	17.20	44.26	54.00	-9.74	AV
V	5238.00	78.42	17.11	95.53	N/A	N/A	AV
V	5350.00	27.79	17.20	44.99	54.00	-9.01	AV

Mo	ode:	802.11a	c(HT20)	Frequ	uency:	5180)MHz
Antenna Pol.	Frequency (MHz)	Reading Level	Factor	Measure Level	Limit (dBuV/m)	Margin (dB)	Detector
Н	5150.00	38.15	17.18	55.33	68.20	-12.87	PK
Н	5178.00	78.57	17.16	95.73	N/A	N/A	PK
V	5150.00	38.75	17.18	55.93	68.20	-12.27	PK
V	5178.00	85.36	17.16	102.52	N/A	N/A	PK
Mode:		802.11a	c(HT20)	Frequ	uency:	5180)MHz
Antenna Pol.	Frequency (MHz)	Reading Level	Factor	Measure Level	Limit (dBuV/m)	Margin (dB)	Detector
Н	5150.00	28.82	17.18	46.00	54.00	-8.00	AV
Н	5178.00	68.99	17.16	86.15	N/A	N/A	AV
V	5150.00	29.30	17.18	46.48	54.00	-7.52	AV
V	5178.00	76.58	17.16	93.74	N/A	N/A	AV
Mo	ode:	802.11ac(HT20)		Frequency:		5240)MHz
Antenna Pol.	Frequency (MHz)	Reading Level	Factor	Measure Level	Limit (dBuV/m)	Margin (dB)	Detector
Н	5238.00	77.68	17.11	94.79	N/A	N/A	PK
Н	5350.00	35.32	17.20	52.52	68.20	-15.68	PK
V	5238.00	84.87	17.11	101.98	N/A	N/A	PK
V	5350.00	36.11	17.20	53.31	68.20	-14.89	PK
Mo	ode:	802.11a	c(HT20)	Frequ	uency:	5240)MHz
Antenna Pol.	Frequency (MHz)	Reading Level	Factor	Measure Level	Limit (dBuV/m)	Margin (dB)	Detector
Н	5238.00	68.61	17.11	85.72	N/A	N/A	AV
Н	5350.00	26.64	17.20	43.84	54.00	-10.16	AV
V	5238.00	75.88	17.11	92.99	N/A	N/A	AV
V	5350.00	27.11	17.20	44.31	54.00	-9.69	AV

Mo	ode:	802.11r	n(HT40)	Frequ	iency:	5190)MHz
Antenna Pol.	Frequency (MHz)	Reading Level	Factor	Measure Level	Limit (dBuV/m)	Margin (dB)	Detector
Н	5150.00	40.31	17.18	57.49	68.20	-10.71	PK
Н	5185.20	75.61	17.16	92.77	N/A	N/A	PK
V	5150.00	41.76	17.18	58.94	68.20	-9.26	PK
V	5185.20	83.41	17.16	100.57	N/A	N/A	PK
Mo	ode:	802.11r	n(HT40)	Frequ	iency:	5190)MHz
Antenna Pol.	Frequency (MHz)	Reading Level	Factor	Measure Level	Limit (dBuV/m)	Margin (dB)	Detector
Н	5150.00	30.65	17.18	47.83	54.00	-6.17	AV
Н	5185.20	66.72	17.16	83.88	N/A	N/A	AV
V	5150.00	31.38	17.18	48.56	54.00	-5.44	AV
V	5185.20	74.30	17.16	91.46	N/A	N/A	AV
Mo	ode:	802.11n(HT40)		Frequency:		5230)MHz
Antenna Pol.	Frequency (MHz)	Reading Level	Factor	Measure Level	Limit (dBuV/m)	Margin (dB)	Detector
Н	5226.25	75.91	17.12	93.03	N/A	N/A	PK
Н	5350.00	41.40	17.20	58.60	68.20	-9.60	PK
V	5226.25	83.41	17.12	100.53	N/A	N/A	PK
V	5350.00	42.77	17.20	59.97	68.20	-8.23	PK
Mo	ode:	802.11r	n(HT40)	Frequ	iency:	5230)MHz
Antenna Pol.	Frequency (MHz)	Reading Level	Factor	Measure Level	Limit (dBuV/m)	Margin (dB)	Detector
Н	5226.25	66.42	17.12	83.54	N/A	N/A	AV
Н	5350.00	30.33	17.20	47.53	54.00	-6.47	AV
V	5226.25	74.27	17.12	91.39	N/A	N/A	AV
V	5350.00	31.36	17.20	48.56	54.00	-5.44	AV

Mo	ode:	802.11a	c(HT40)	Frequ	iency:	5190	OMHz
Antenna Pol.	Frequency (MHz)	Reading Level	Factor	Measure Level	Limit (dBuV/m)	Margin (dB)	Detector
Н	5150.00	40.70	17.18	57.88	68.20	-10.32	PK
Н	5185.20	75.79	17.16	92.95	N/A	N/A	PK
V	5150.00	41.77	17.18	58.95	68.20	-9.25	PK
V	5185.20	84.06	17.16	101.22	N/A	N/A	PK
Ma	ode:	802 11a	c(HT40)	Frequ	iency:	5190)MHz
Antenna Pol.	Frequency (MHz)	Reading Level	Factor	Measure Level	Limit (dBuV/m)	Margin (dB)	Detector
Н	5150.00	30.92	17.18	48.10	54.00	-5.90	AV
Н	5185.20	67.09	17.16	84.25	N/A	N/A	AV
V	5150.00	31.83	17.18	49.01	54.00	-4.99	AV
V	5185.20	74.55	17.16	91.71	N/A	N/A	AV
Mo	ode:	802.11ac(HT40)		Frequ	iency:	5230)MHz
Antenna Pol.	Frequency (MHz)	Reading Level	Factor	Measure Level	Limit (dBuV/m)	Margin (dB)	Detector
Н	5226.25	76.11	17.12	93.23	N/A	N/A	PK
Н	5350.00	41.31	17.20	58.51	68.20	-9.69	PK
V	5226.25	83.68	17.12	100.80	N/A	N/A	PK
V	5350.00	42.66	17.20	59.86	68.20	-8.34	PK
Mo	ode:	802 11a	c(HT40)	Frequ	iency:	5230)MHz
Antenna Pol.	Frequency (MHz)	Reading Level	Factor	Measure Level	Limit (dBuV/m)	Margin (dB)	Detector
Н	5226.25	67.00	17.12	84.12	N/A	N/A	AV
Н	5350.00	30.45	17.20	47.65	54.00	-6.35	AV
V	5226.25	74.54	17.12	91.66	N/A	N/A	AV
V	5350.00	31.73	17.20	48.93	54.00	-5.07	AV

Ma	do	902 110	o(UT00)	Ггоди	lono.	5210MHz		
IVIC	ode:	802.11a	c(HT80)	Frequ	iency:	5210	VIVIHZ	
Antenna Pol.	Frequency (MHz)	Reading Level	Factor	Measure Level	Limit (dBuV/m)	Margin (dB)	Detector	
Н	5150.00	42.71	17.18	59.89	68.20	-8.31	PK	
Н	5204.00	70.93	17.18	88.11	N/A	N/A	PK	
Н	5350.00	37.23	17.20	54.43	68.20	-13.77	PK	
V	5150.00	43.08	17.18	60.26	68.20	-7.94	PK	
V	5204.00	80.07	17.18	97.25	N/A	N/A	PK	
V	5350.00	37.44	17.20	54.64	68.20	-13.56	PK	
Mo	ode:	802.11ac(HT80)		Frequency:		5210MHz		
Antenna Pol.	Frequency (MHz)	Reading Level	Factor	Measure Level	Limit (dBuV/m)	Margin (dB)	Detector	
Н	5150.00	31.41	17.18	48.59	54.00	-5.41	AV	
Н	5204.00	62.13	17.18	79.31	N/A	N/A	AV	
Н	5350.00	28.29	17.20	45.49	54.00	-8.51	AV	
V	5150.00	31.60	17.18	48.78	54.00	-5.22	AV	
V	5204.00	70.41	17.18	87.59	N/A	N/A	AV	
V	5350.00	29.03	17.20	46.23	54.00	-7.77	AV	

5.7 Radiated Emission

Test Requirement:	FCC Part15 C Section 15.209 and 15.205								
Test Method:	ANSI C63.10:20	013							
Test Frequency Range:	30MHz to 40GH	łz							
Test site:	Measurement D)istance: 3m (Semi-Anecho	ic Chambe	r)				
Receiver setup:	Frequency	Detector	RBW	VBW	Value				
	30MHz- 1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak Value				
	Above 1GHz	Peak AV	1MHz 1MHz	3MHz 3MHz	Peak Value Average Value				
Limit:	Freque	ency	Limit (dBuV/	m @3m)	Remark				
	30MHz-8	8MHz	40.0		Quasi-peak Value				
	88MHz-2		43.5		Quasi-peak Value				
	216MHz-9		46.0		Quasi-peak Value				
		-			•				
Test Procedure:		L							
	960MHz-1GHz 54.0 Quasi-peak Value Frequency Limit (dBm/MHz) Remark Above 1GHz -27.0 Peak Value Substitution method was performed to determine the actual ERP emission levels of the EUT. The following test procedure as below: 1>.Below 1GHz test procedure: 1. The EUT was placed on the top of a rotating table (0.8m for below 1GHz and 1.5 meters for above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotable table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower thar the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reporte in a data sheet. 2>.Above 1GHz test procedure: 1. On the test site as test setup graph above, the EUT shall be placed at the 0.8m support on the turntable and in the position closest to norma								

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 50 of 76

Report No.: GTSE15060113801 2. The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter. The output of the test antenna shall be connected to the measuring receiver. 3. The transmitter shall be switched on, if possible, without modulation and the measuring receiver shall be tuned to the frequency of the transmitter under test. 4. The test antenna shall be raised and lowered from 1m to 4m until a maximum signal level is detected by the measuring receiver. Then the turntable should be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver. 5. Repeat step 4 for test frequency with the test antenna polarized horizontally. 6. Remove the transmitter and replace it with a substitution antenna 7. Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a nonradiating cable. With the antennas at both ends vertically polarized, and with the signal generator tuned to a particular test frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output. 8. Repeat step 7 with both antennas horizontally polarized for each test frequency. 9. Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps 7 and 8 by the power loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna by the following formula: EIRP(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dBi)

Pg is the generator output power into the substitution antenna.

Test setup:

Below 1GHz

where:

Measurement Data:

Below 1GHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
46.02	31.72	15.49	0.73	30.02	17.92	40.00	-22.08	Vertical
76.51	25.14	10.03	1.00	29.82	6.35	40.00	-33.65	Vertical
144.84	36.87	10.23	1.53	29.43	19.20	43.50	-24.30	Vertical
239.99	27.14	14.09	2.07	29.56	13.74	46.00	-32.26	Vertical
383.93	26.19	16.68	2.78	29.57	16.08	46.00	-29.92	Vertical
675.21	23.99	20.72	4.00	29.22	19.49	46.00	-26.51	Vertical
41.42	24.08	15.57	0.68	30.04	10.29	40.00	-29.71	Horizontal
62.21	31.89	13.77	0.88	29.91	16.63	40.00	-23.37	Horizontal
107.51	30.16	14.49	1.26	29.65	16.26	43.50	-27.24	Horizontal
189.74	38.85	12.48	1.79	29.24	23.88	43.50	-19.62	Horizontal
293.08	26.14	14.92	2.32	29.95	13.43	46.00	-32.57	Horizontal
642.86	24.86	20.61	3.88	29.26	20.09	46.00	-25.91	Horizontal

Above 1GHz:

Only the data of worst case at each channel plan (nominal bandwidth =20MHz, 40MHz, 80MHz) is reported.

ANT1:

				802.11 a mo	ode			
CH. No.	Antenna Pol.	Frequency (MHz)	Reading Level	Factor	Measure Level	Limit (dBuV/m)	Margin (dB)	Detector
	Н	10360.00	27.64	21.64	49.28	54(Note3)	-4.72	PK
26	Н	15540.00	28.08	21.80	49.88	54(Note3)	-4.12	PK
36	V	10360.00	29.58	21.64	51.22	54(Note3)	-2.78	PK
	V	15540.00	29.71	21.80	51.51	54(Note3)	-2.49	PK
	Н	10400.00	28.18	21.67	49.85	54(Note3)	-4.15	PK
40	Н	15600.00	29.20	21.83	51.03	54(Note3)	-2.97	PK
40	V	10400.00	29.76	21.67	51.43	54(Note3)	-2.57	PK
	V	15600.00	28.19	21.83	50.02	54(Note3)	-3.98	PK
	Н	10480.00	28.11	21.64	49.75	54(Note3)	-4.25	PK
40	Н	15720.00	26.27	22.16	48.43	54(Note3)	-5.57	PK
48	V	10480.00	27.79	21.64	49.43	54(Note3)	-4.57	PK
	V	15720.00	26.86	22.16	49.02	54(Note3)	-4.98	PK

ANT2:

	802.11 a mode									
CH. No.	Antenna Pol.	Frequency (MHz)	Reading Level	Factor	Measure Level	Limit (dBuV/m)	Margin (dB)	Detector		
	Н	10360.00	27.68	21.64	49.32	54(Note3)	-4.68	PK		
36	Н	15540.00	28.13	21.80	49.93	54(Note3)	-4.07	PK		
30	V	10360.00	29.62	21.64	51.26	54(Note3)	-2.74	PK		
	V	15540.00	29.75	21.80	51.55	54(Note3)	-2.45	PK		
	Н	10400.00	28.23	21.67	49.90	54(Note3)	-4.10	PK		
40	Н	15600.00	29.25	21.83	51.08	54(Note3)	-2.92	PK		
40	V	10400.00	29.81	21.67	51.48	54(Note3)	-2.52	PK		
	V	15600.00	28.25	21.83	50.08	54(Note3)	-3.92	PK		
	Н	10480.00	28.15	21.64	49.79	54(Note3)	-4.21	PK		
48	Н	15720.00	26.31	22.16	48.47	54(Note3)	-5.53	PK		
40	V	10480.00	27.83	21.64	49.47	54(Note3)	-4.53	PK		
	V	15720.00	26.92	22.16	49.08	54(Note3)	-4.92	PK		

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

ANT1 + ANT2:

802.11 n(HT20) mode								
CH. No.	Antenna Pol.	Frequency (MHz)	Reading Level	Factor	Measure Level	Limit (dBuV/m)	Margin (dB)	Detector
	Н	10360.00	26.90	21.64	48.54	54(Note3)	-5.46	PK
36	Н	15540.00	27.08	21.80	48.88	54(Note3)	-5.12	PK
30	V	10360.00	28.65	21.64	50.29	54(Note3)	-3.71	PK
	V	15540.00	28.88	21.80	50.68	54(Note3)	-3.32	PK
	Н	10400.00	27.03	21.67	48.70	54(Note3)	-5.30	PK
40	Н	15600.00	28.12	21.83	49.95	54(Note3)	-4.05	PK
40	V	10400.00	28.85	21.67	50.52	54(Note3)	-3.48	PK
	V	15600.00	26.86	21.83	48.69	54(Note3)	-5.31	PK
	Н	10480.00	27.32	21.64	48.96	54(Note3)	-5.04	PK
48	Н	15720.00	25.39	22.16	47.55	54(Note3)	-6.45	PK
	V	10480.00	26.98	21.64	48.62	54(Note3)	-5.38	PK
	V	15720.00	25.73	22.16	47.89	54(Note3)	-6.11	PK

802.11n(HT40) mode									
CH. No.	Antenna Pol.	Frequency (MHz)	Reading Level	Factor	Measure Level	Limit (dBuV/m)	Margin (dB)	Detector	
	Н	10380.00	28.66	21.64	50.30	54(Note3)	-3.70	PK	
38	Н	15570.00	28.51	21.80	50.31	54(Note3)	-3.69	PK	
30	V	10380.00	26.99	21.64	48.63	54(Note3)	-5.37	PK	
	V	15570.00	28.18	21.80	49.98	54(Note3)	-4.02	PK	
	Н	10460.00	28.38	21.67	50.05	54(Note3)	-3.95	PK	
46	Н	15690.00	27.23	21.83	49.20	54(Note3)	-4.80	PK	
	V	10460.00	27.17	21.67	48.84	54(Note3)	-5.16	PK	
	V	15690.00	25.38	21.83	47.35	54(Note3)	-6.65	PK	

802.11ac(HT80) mode									
CH. No.	Antenna Pol.	Frequency (MHz)	Reading Level	Factor	Measure Level	Limit (dBuV/m)	Margin (dB)	Detector	
	Н	10420.00	28.56	21.65	50.21	54(Note3)	-3.79	PK	
42	Н	15630.00	28.37	21.81	50.18	54(Note3)	-3.82	PK	
42	V	10420.00	26.87	21.65	48.52	54(Note3)	-5.48	PK	
	V	15630.00	28.07	21.81	49.88	54(Note3)	-4.12	PK	

Note:

- 1. Measure Level = Reading Level + Factor.
- 2. The test trace is same as the ambient noise (the test frequency range: 18GHz~40GHz), therefore no data appear in the report.
- 3. This limit applies for using average detector, if the test result on peak is lower than average limit, then average measurement needn't be performed.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5.8 Frequency stability

Test Requirement:	FCC Part15 C Section 15.407(g)				
Test Method:	ANSI C63.10:2013, FCC Part 2.1055				
Limit:	Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified				
Test Procedure:	The EUT was setup to ANSI C63.4, 2014; tested to 2.1055 for compliance to FCC Part 15.407(g) requirements.				
Test setup:	Spectrum analyzer EUT Att. Variable Power Supply Note: Measurement setup for testing on Antenna connector				
Test Instruments:	Refer to section 5.10 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Pass				

Measurement data:

ANT:1

	Frequency stability versus Temp.								
		Pov	wer Supply: DC 3.7V						
Tomp	Operating	0 minute	2 minute	5 minute	10 minute				
Temp. (°C)	Frequency	Measured	Measured	Measured	Measured				
(0)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)				
	5180	5179.9851	5179.9858	5179.9875	5179.9876				
30	5200	5199.9856	5199.9862	5199.9880	5199.9880				
-30	5220	5219.9860	5219.9867	5219.9884	5219.9884				
	5240	5239.9865	5239.9871	5239.9888	5239.9888				
	5180	5179.9869	5179.9876	5179.9892	5179.9891				
-20	5200	5199.9874	5199.9880	5199.9896	5199.9895				
-20	5220	5219.9878	5219.9884	5219.9899	5219.9898				
	5240	5239.9882	5239.9888	5239.9903	5239.9902				
	5180	5179.9886	5179.9891	5179.9906	5179.9905				
-10	5200	5199.9890	5199.9895	5199.9910	5199.9908				
-10	5220	5219.9894	5219.9899	5219.9913	5219.9911				
	5240	5239.9897	5239.9902	5239.9916	5239.9914				
	5180	5179.9856	5179.9862	5179.9880	5179.9880				
0	5200	5199.9860	5199.9867	5199.9884	5199.9884				
0	5220	5219.9865	5219.9871	5219.9888	5219.9888				
	5240	5239.9869	5239.9875	5239.9892	5239.9891				
	5180	5179.9874	5179.9880	5179.9895	5179.9895				
10	5200	5199.9878	5199.9884	5199.9899	5199.9898				
10	5220	5219.9882	5219.9887	5219.9903	5219.9902				
	5240	5239.9886	5239.9891	5239.9906	5239.9905				
	5180	5179.9890	5179.9895	5179.9910	5179.9908				
20	5200	5199.9894	5199.9898	5199.9913	5199.9911				
20	5220	5219.9897	5219.9902	5219.9916	5219.9914				
	5240	5239.9901	5239.9905	5239.9919	5239.9917				
	5180	5179.9849	5179.9856	5179.9874	5179.9874				
30	5200	5199.9854	5199.9861	5199.9878	5199.9879				
30	5220	5219.9859	5219.9866	5219.9882	5219.9883				
	5240	5239.9864	5239.9870	5239.9887	5239.9886				
	5180	5179.9868	5179.9874	5179.9890	5179.9890				
40	5200	5199.9872	5199.9878	5199.9894	5199.9894				
40	5220	5219.9877	5219.9882	5219.9898	5219.9897				
	5240	5239.9881	5239.9886	5239.9902	5239.9901				
	5180	5179.9885	5179.9890	5179.9905	5179.9904				
FO	5200	5199.9889	5199.9894	5199.9909	5199.9907				
50	5220	5219.9892	5219.9897	5219.9912	5219.9910				
	5240	5239.9896	5239.9901	5239.9915	5239.9913				

Project No.: GTSE150601138RF

Report No.: GTSE15060113801

Frequency stability versus Voltage							
Temperature: 25°C							
Power	Operating	0 minute	2 minute	5 minute	10 minute		
Supply	Frequency	Measured	Measured	Measured	Measured		
(VDC)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)		
	5180	5179.9864	5179.9871	5179.9888	5179.9887		
2.2	5200	5199.9867	5199.9874	5199.9890	5199.9890		
3.3	5220	5219.9870	5219.9877	5219.9893	5219.9893		
	5240	5239.9873	5239.9879	5239.9895	5239.9895		
	5180	5179.9876	5179.9882	5179.9898	5179.9897		
2.7	5200	5199.9879	5199.9885	5199.9900	5199.9900		
3.7	5220	5219.9882	5219.9887	5219.9903	5219.9902		
	5240	5239.9885	5239.9890	5239.9905	5239.9904		
	5180	5179.9887	5179.9893	5179.9908	5179.9907		
4.4	5200	5199.9890	5199.9895	5199.9910	5199.9909		
4.1	5220	5219.9892	5219.9898	5219.9912	5219.9911		
	5240	5239.9895	5239.9900	5239.9914	5239.9913		

ANT:2

Frequency stability versus Temp.									
Power Supply: DC 3.7V									
Temp.	Operating	0 minute	2 minute	5 minute	10 minute				
(°C)	Frequency	Measured	Measured	Measured	Measured				
(0)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)				
	5180	5179.9864	5179.9871	5179.9888	5179.9889				
-30	5200	5199.9869	5199.9875	5199.9893	5199.9893				
-30	5220	5219.9873	5219.9880	5219.9897	5219.9897				
	5240	5239.9878	5239.9884	5239.9901	5239.9901				
	5180	5179.9882	5179.9889	5179.9905	5179.9904				
-20	5200	5199.9887	5199.9893	5199.9909	5199.9908				
-20	5220	5219.9891	5219.9897	5219.9912	5219.9911				
	5240	5239.9895	5239.9901	5239.9916	5239.9915				
	5180	5179.9899	5179.9904	5179.9919	5179.9918				
40	5200	5199.9903	5199.9908	5199.9923	5199.9921				
-10	5220	5219.9907	5219.9912	5219.9926	5219.9924				
	5240	5239.9910	5239.9915	5239.9929	5239.9927				
	5180	5179.9869	5179.9875	5179.9893	5179.9893				
0	5200	5199.9873	5199.9880	5199.9897	5199.9897				
0	5220	5219.9878	5219.9884	5219.9901	5219.9901				
	5240	5239.9882	5239.9888	5239.9905	5239.9904				
	5180	5179.9887	5179.9893	5179.9908	5179.9908				
40	5200	5199.9891	5199.9897	5199.9912	5199.9911				
10	5220	5219.9895	5219.9900	5219.9916	5219.9915				
	5240	5239.9899	5239.9904	5239.9919	5239.9918				
	5180	5179.9903	5179.9908	5179.9923	5179.9921				
00	5200	5199.9907	5199.9911	5199.9926	5199.9924				
20	5220	5219.9910	5219.9915	5219.9929	5219.9927				
	5240	5239.9914	5239.9918	5239.9932	5239.9930				
	5180	5179.9862	5179.9869	5179.9887	5179.9887				
00	5200	5199.9867	5199.9874	5199.9891	5199.9892				
30	5220	5219.9872	5219.9879	5219.9895	5219.9896				
	5240	5239.9877	5239.9883	5239.9900	5239.9899				
	5180	5179.9881	5179.9887	5179.9903	5179.9903				
40	5200	5199.9885	5199.9891	5199.9907	5199.9907				
40	5220	5219.9890	5219.9895	5219.9911	5219.9910				
	5240	5239.9894	5239.9899	5239.9915	5239.9914				
	5180	5179.9898	5179.9903	5179.9918	5179.9917				
5 0	5200	5199.9902	5199.9907	5199.9922	5199.9920				
50	5220	5219.9905	5219.9910	5219.9925	5219.9923				
	5240	5239.9909	5239.9914	5239.9928	5239.9926				

Frequency stability versus Voltage								
Temperature: 25°C								
Power	Operating	0 minute	2 minute	5 minute	10 minute			
Supply	Frequency	Measured	Measured	Measured	Measured			
(VDC)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)			
	5180	5179.9869	5179.9876	5179.9893	5179.9892			
3.3	5200	5199.9872	5199.9879	5199.9895	5199.9895			
3.3	5220	5219.9875	5219.9882	5219.9898	5219.9898			
	5240	5239.9878	5239.9884	5239.9900	5239.9900			
	5180	5179.9881	5179.9887	5179.9903	5179.9902			
2.7	5200	5199.9884	5199.9890	5199.9905	5199.9905			
3.7	5220	5219.9887	5219.9892	5219.9908	5219.9907			
	5240	5239.9890	5239.9895	5239.9910	5239.9909			
	5180	5179.9892	5179.9898	5179.9913	5179.9912			
1 1	5200	5199.9895	5199.9900	5199.9915	5199.9914			
4.1	5220	5219.9897	5219.9903	5219.9917	5219.9916			
	5240	5239.9900	5239.9905	5239.9919	5239.9918			

6 Test Setup Photo

Radiated Emission

Conducted Emission

7 EUT Constructional Details

---END---