Министерство образования Республики Беларусь

Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

Кафедра теоретических основ электротехники

Типовой расчет №1 по курсу: «Теория электрических цепей» Шифр студента №950502-12

Проверил: Батюков С. В. Выполнил: ст. гр. 950502

Деркач А.В.

1. Чертеж исходной схемы

Исходные данные приведены в таблице 1.

	Таблина 1	– Исходные	ланные
--	-----------	------------	--------

E_1 ,	E_3 ,	E_4 ,	J_2 ,	J_3 ,	R_1 ,	R_2 ,	R_3 ,	R_4 ,	R_5 ,	R_6 ,	R_7 ,	R_8 ,
В	В	В	Α	Α	Ом							
700	500	900	2	6	110	470	640	120	280	150	140	690

Начертим схему согласно заданному варианту (рис. 1):

Рисунок 1 – Исходная схема

2. Преобразование схемы к двухконтурной

Заменим источник тока J_3 эквивалентным ему источником напряжения E_{03} .

$$E_{03} = J_3 \cdot R_3 = 3840 \text{ B}$$

Заменим источники напряжения E_3 , E_{03} и E_4 эквивалентным им источником тока J_{34} :

$$J_{34} = \frac{E_3 + E_4 + E_{03}}{R_3 + R_4} = 6,895 \text{ A}$$

Преобразуем треугольник R_2 - R_3 - R_4 - R_8 в эквивалентную звезду (рис. 2):

$$R_{234} = \frac{R_2 \cdot (R_3 + R_4)}{R_2 + R_3 + R_4 + R_8} = 186,042 \text{ Ом}$$

$$R_{348} = \frac{R_8 \cdot (R_3 + R_4)}{R_2 + R_3 + R_4 + R_8} = 273,125 \text{ Ом}$$

$$R_{234} = \frac{R_2 \cdot R_8}{R_2 + R_3 + R_4 + R_8} = 168,906 \text{ Ом}$$

Преобразуем все источники тока в источники напряжения:

$$\begin{split} E_{28} &= J_2 \cdot R_{28} = 337,813 \text{ B} \\ E_{234} &= J_{34} \cdot R_{234} - J_2 \cdot R_{234} = 910,625 \text{ B} \\ E_{348} &= J_{34} \cdot R_{348} = 1883,125 \text{ B} \end{split}$$

После всех преобразований получим двухконтурную схему (рис. 3):

Рисунок 3

3. Метод двух узлов

Принимаем $\phi_0 = 0$ и находим узловое напряжение U_{06} .

$$U_{06} \cdot g_{66} = J_{11} - J_{55} - J_{77}$$

Находим узловые токи:

$$J_{11} = \frac{E_1 + E_{28}}{R_1 + R_{28}} = 3,721 \text{ A}$$

$$J_{55} = \frac{E_{348}}{R_5 + R_6 + R_{348}} = 2,678 \text{ A}$$

$$J_{77} = \frac{-E_{234}}{R_7 + R_{234}} = -2,793 \text{ A}$$

Определяем собственную проводимость:

$$g_{66} = \frac{1}{R_7 + R_{234}} + \frac{1}{R_1 + R_{28}} + \frac{1}{R_5 + R_6 + R_{348}} = 0,008 \frac{1}{\text{OM}}$$

Определяем напряжение U_{06} :

$$U_{06} = \frac{J_{11} - J_{55} - J_{77}}{g_{66}} = 475,031 \text{ B}$$

4. Нахождение токов и исходной схеме

Найдем токи в ветвях I_1 , I_5 и I_7 на основании закона Ома:

$$I_1 = \frac{E_1 + E_{28} - U_{06}}{R_1 + R_{28}} = 2,018 \text{ A}$$

$$I_5 = \frac{E_{348} + U_{06}}{R_5 + R_6 + R_{348}} = 3,354 \text{ A}$$

$$I_7 = \frac{-E_{234} + U_{06}}{R_7 + R_{234}} = -1,336 \text{ A}$$

Определяем напряжение между узлами 2, 3 и 2, 5:

$$U_{23} = I_1 \cdot R_{28} + I_7 \cdot R_{234} - E_{28} + E_{234} = 665,081 \text{ B}$$

$$U_{25} = I_1 \cdot R_{28} + I_5 \cdot R_{348} - E_{28} - E_{348} = -964,103 \text{ B}$$

Определим токи I_2 и I_8 :

$$I_2 = \frac{U_{23}}{R_2} = 1,415 \text{ A}$$

$$I_8 = \frac{U_{25}}{R_9} = -1,397 \text{ A}$$

Определим оставшиеся токи, используя первый закон Кирхгофа:

$$I_6 = I_5 = 3,354 \text{ A}$$
 $I_3 = I_2 - I_7 + J_2 - J_3 = -1,249 \text{ A}$
 $I_4 = I_3 + J_3 = 4,751 \text{ A}$

5. Нахождение напряжения между узлами 4 и 2

$$U_{42} = I_6 \cdot R_6 + I_1 \cdot R_1 - E_1 = 25,033 \text{ B}$$

6. Баланс мощностей

Составим баланс мощностей:

Найдём мощность источников энергии:

$$P_{ucm} = E_1 \cdot I_1 - J_2 \cdot I_2 \cdot R_2 + E_3 \cdot I_3 + J_3 \cdot (E_3 - I_3 \cdot R_3) + E_4 \cdot I_4 =$$
=11529,69 Bt

Найдём мощность приёмников энергии:

$$P_{np} = I_1^2 \cdot R_1 + I_2^2 \cdot R_2 + I_3^2 \cdot R_3 + I_4^2 \cdot R_4 + I_5^2 \cdot R_5 + I_6^2 \cdot R_6 + I_7^2 \cdot R_7 + I_8^2 \cdot R_8 = 11529,69 \text{ Bt}$$

Поскольку мощность источников энергии равна мощности приемников энергии, то баланс мощностей выполняется.

7. Метод законов Кирхгофа

Число уравнений для законов Кирхгофа определяем по формулам:

$$N_{\text{yp. y}_3} = N_{\text{y}_3} - 1 = 6 - 1 = 5$$

 $N_{\text{yp. K}} = N_{\text{B}} - N_{\text{y}_3} + 1 - N_{\text{J}} = 10 - 6 + 1 - 2 = 3$

Выбор контуров указан на рисунке 4:

6

Составляем систему уравнений:

$$\begin{cases} I_3 + J_3 = I_4 - 1 \text{ узел} \\ I_1 = I_2 + J_2 + I_8 - 2 \text{ узел} \\ I_2 + J_2 = I_3 + J_3 + I_7 - 3 \text{ узел} \\ I_5 = I_6 - 4 \text{ узел} \\ I_8 + I_4 = I_5 - 5 \text{ узел} \\ I_1 \cdot R_1 + I_8 \cdot R_8 + I_5 \cdot R_5 + I_6 \cdot R_6 = E_1 - \text{I контур} \\ I_2 \cdot R_2 + I_3 \cdot R_3 + I_4 \cdot R_4 - I_8 \cdot R_8 = E_3 + E_4 - \text{II контур} \\ -I_7 \cdot R_7 - I_2 \cdot R_2 - I_1 \cdot R_1 = -E_1 - \text{III контур} \end{cases}$$

Решение системы уравнений приведено в приложении А:

$$I_1 = 2,018 \text{ A}$$
 $I_2 = 1,415 \text{ A}$
 $I_3 = -1,249 \text{ A}$
 $I_4 = 4,751 \text{ A}$
 $I_5 = 3,354 \text{ A}$
 $I_6 = 3,354 \text{ A}$
 $I_7 = -1,336 \text{ A}$
 $I_8 = -1,397 \text{ A}$

8. Метод контурных токов

Число уравнений находим по данной формуле:

$$N_{\text{yp. K}} = N_{\text{B}} - N_{\text{y3}} + 1 - N_{\text{J}} = 9 - 5 + 1 - 2 = 3.$$

Выбор контуров указан на рисунке 5.

Контурные токи I_{44} и I_{55} равны соответствующим источникам тока:

$$I_{44} = J_2 = 1 \text{ A}$$

 $I_{55} = J_3 = 1 \text{ A}$

Составляем систему уравнений:

$$\begin{cases} I_{11} \cdot (R_1 + R_8 + R_5 + R_6) - I_{22} \cdot R_8 - I_{33} \cdot R_1 = E_1 \\ I_{22} \cdot (R_2 + R_3 + R_4 + R_8) - I_{11} \cdot R_8 - I_{33} \cdot R_2 - I_{44} \cdot R_2 - I_{55} \cdot R_3 = E_3 + E_4 \\ I_{33} \cdot (R_1 + R_7 + R_2) - I_{11} \cdot R_1 - I_{22} \cdot R_2 + I_{44} \cdot R_2 = -E_1 \end{cases}$$

Решение системы уравнений приведено в приложении Б:

$$I_{11} = 3,354 \text{ A}$$

 $I_{22} = 4,751 \text{ A}$
 $I_{33} = 1,336 \text{ A}$

Токи в цепи находим следующим образом:

$$I_1 = I_{11} - I_{33} = 2,018 \text{ A}$$
 $I_2 = I_{22} - I_{33} - I_{44} = 1,415 \text{ A}$
 $I_3 = I_{22} - I_{55} = -1,249 \text{ A}$
 $I_4 = I_{22} = 4,751 \text{ A}$

$$I_5 = I_{11} = 3,354 \text{ A}$$
 $I_6 = I_{11} = 3,354 \text{ A}$
 $I_7 = -I_{33} = -1,336 \text{ A}$
 $I_8 = I_{11} - I_{22} = -1,397 \text{ A}$

9. Метод узловых напряжений

Число уравнений, составляемых по методу узловых напряжений, равно:

$$N_{yp} = N_y - 1 - N_{\mathcal{I}\!\!\!/\mathcal{I}\!\!\!/C} = 5 - 1 - 0 = 4$$

Базисный узел $\phi_2=0$ В, искомые узловые напряжения – $U_{12},\,U_{32},\,U_{52},\,U_{62}.$

Схема для решения методом узловых напряжений представлена на рисунке 6:

Составим систему уравнений для неизвестных узловых напряжений:

$$\begin{cases} U_{12} \cdot (\frac{1}{R_4} + \frac{1}{R_3}) - U_{32} \cdot \frac{1}{R_3} - U_{52} \cdot \frac{1}{R_4} = J_3 + \frac{E_3}{R_3} - \frac{E_4}{R_4} \\ U_{32} \cdot (\frac{1}{R_3} + \frac{1}{R_2} + \frac{1}{R_7}) - U_{12} \cdot \frac{1}{R_3} - U_{62} \cdot \frac{1}{R_7} = J_2 - J_3 - \frac{E_3}{R_3} \\ U_{52} \cdot (\frac{1}{R_4} + \frac{1}{R_5 + R_6} + \frac{1}{R_8}) - U_{12} \cdot \frac{1}{R_4} - U_{62} \cdot \frac{1}{R_5 + R_6} = \frac{E_4}{R_4} \\ U_{62} \cdot (\frac{1}{R_5 + R_6} + \frac{1}{R_1} + \frac{1}{R_7}) - U_{52} \cdot \frac{1}{R_6 + R_5} - U_{32} \cdot \frac{1}{R_7} = \frac{-E_1}{R_1} \end{cases}$$

Решение системы уравнений приведено в приложении В.

Решив систему уравнений, получили следующие значения узловых напряжений:

$$U_{12} = 634,232 \text{ B}$$

 $U_{32} = -665,081 \text{ B}$
 $U_{52} = 964,103 \text{ B}$
 $U_{62} = -478,04 \text{ B}$

Находим токи в узлах с помощью закона Ома:

$$I_{1} = \frac{U_{62} + E_{1}}{R_{1}} = 2,018 \text{ A}$$

$$I_{2} = \frac{-U_{32}}{R_{2}} = 1,415 \text{ A}$$

$$I_{3} = \frac{U_{32} - U_{12} + E_{3}}{R_{3}} = -1,249 \text{ A}$$

$$I_{4} = \frac{U_{12} - U_{52} + E_{4}}{R_{4}} = 4,751 \text{ A}$$

$$I_{5} = \frac{U_{52} - U_{62}}{R_{5} + R_{6}} = 3,354 \text{ A}$$

$$I_{6} = I_{5} = 3,354 \text{ A}$$

$$I_{7} = \frac{U_{32} - U_{62}}{R_{7}} = -1,336 \text{ A}$$

$$I_{8} = \frac{-U_{52}}{R_{9}} = -1,397 \text{ A}$$

10. Метод эквивалентного генератора

Исключаем сопротивление R_3 и получаем следующую цепь (рис. 7):

Находим токи с помощью метода контурных токов. Для этого выберем контуры, которые показаны на рисунке 8.

Составляем систему уравнений:

$$\begin{cases} I_{11} \cdot (R_1 + R_8 + R_5 + R_6) + I_{22} \cdot R_1 = E_1 + J_3 \cdot R_8 \\ I_{22} \cdot (R_1 + R_2 + R_7) + I_{11} \cdot R_1 = E_1 + J_2 \cdot R_2 - J_3 \cdot R_2 \end{cases}$$

Решение системы уравнений:

$$I_{11} = 4,138 \text{ A}$$

 $I_{22} = -2,271 \text{ A}$

Находим напряжение холостого хода:

$$U_{xx} = I_{11} \cdot R_8 - I_{22} \cdot R_2 + J_2 \cdot R_2 + E_3 - J_3 \cdot R_2 - J_3 \cdot R_4 - I_3 \cdot R_8 + I_4 = -1417,321 \text{ B}$$

Найдем R_{3KB} , для этого преобразуем схему в пассивную (рис. 9).

Преобразуем треугольник R_1 - R_8 - R_{56} в эквивалентную звезду (рис. 10)

$$R_{18} = \frac{R_1 \cdot R_8}{R_1 + R_8 + R_5 + R_6} = 61,707 \text{ Om}$$

$$R_{156} = \frac{R_1 \cdot (R_5 + R_6)}{R_1 + R_8 + R_5 + R_6} = 38,455 \text{ Om}$$

$$R_{568} = \frac{R_8 \cdot (R_5 + R_6)}{R_1 + R_8 + R_5 + R_6} = 241,22 \text{ Om}$$

Рассчитаем $R_{\text{экв}}$:

$$R_{_{9 \mathit{K} \mathit{B}}} = \frac{(R_7 + R_{156}) \cdot (R_{18} + R_2)}{R_7 + R_{156} + R_{18} + R_2} + R_{568} + R_4 = 494,831 \; \mathrm{Om}$$

Находим I_3 по формуле:

$$I_3 = \frac{U_{xx}}{R_{9\kappa\theta} + R_3} = -1,249 \text{ A}$$

Результаты расчета занесены в таблицу 2:

Таблица 2 – Результаты расчетов

таотпіца		J	ALDIE PRO 1010D								
I_1 ,	I_2 ,	I_3 ,	I_4 ,	I_5 ,	I_6 ,	I_7 ,	I_8 ,	U_{42} ,	U_{xx} ,	$R_{\text{ген}}$,	Р,
A	Α	A	A	A	A	A	A	В	В	Ом	Вт
2,018	1,415	-1,249	4,751	3,354	3,354	-1,336	-1,397	25,033	-1417,32	494,831	11529,69

11. Построение потенциальной диаграммы

Построим потенциальную по контуру по контуру 6-62-2-3-31-51-5-4-6 (рис. 11)

Найдем потенциалы узлов по следующим формулам:

$$\phi_{6} = 0 \text{ B}$$

$$\phi_{62} = \phi_{6} - I_{1} \cdot R_{1} = -221,96 \text{ B}$$

$$\phi_{2} = \phi_{62} + E_{1} = 478,04 \text{ B}$$

$$\phi_{3} = \phi_{2} - I_{2} \cdot R_{2} = -187,041 \text{ B}$$

$$\phi_{31} = \phi_{3} - I_{3} \cdot R_{3} = 612,272 \text{ B}$$

$$\phi_{1} = \phi_{31} + E_{3} = 1112,272 \text{ B}$$

$$\phi_{51} = \phi_{1} - I_{4} \cdot R_{4} = 542,144 \text{ B}$$

$$\phi_{5} = \phi_{51} + E_{4} = 1442,144 \text{ B}$$

$$\phi_{4} = \phi_{5} - I_{5} \cdot R_{5} = 503,073 \text{ B}$$

$$\phi_{6} = \phi_{2} - I_{6} \cdot R_{6} = 0 \text{ B}$$

Потенциальная диаграмма изображена на рисунке 12:

ПРИЛОЖЕНИЕ А

Определение токов методом законов Кирхгофа (расчеты MATHCAD)

	E1 = 700	$J2 \coloneqq 2$	R1 = 110	R5 = 280
	E3 = 500	J3 = 6	$R2 \coloneqq 470$	R6 = 150
	E4 = 900		R3 = 640	R7 = 140
			R4 = 120	R8 = 690
87	I1 = 0	I5 = 0		
GH				
Ž	I2 = 0	<i>I</i> 6 := 0		
9Иб	I3 = 0	<i>I</i> 7 := 0		
E E	I4 = 0	I8 = 0		
Ограния вамяные приближения	70 . 70	-	TO . T. T.	
anus	I3 + J3 =		I8 + I4 = I5	
H8M6	I1 = I2 +			$R8 + I5 \cdot R5 + I6 \cdot R6 = E1$
ран		I3 + J3 + I7		$R3 + I4 \cdot R4 - I8 \cdot R8 = E3 + E4$
ō	I5 = I6		$-I1 \cdot R1 - I2$	$2 \cdot R2 - I7 \cdot R7 = -E1$
f	$\lceil I1 \rceil$			[2.018]
	I2			1.415
_0	<i>I</i> 3			-1.249
Te-	I4	C 1/71 TO	TO TA TE TO	4.751
Решатель	15	= find $(I1, I2)$	13,14,15,16	(0.17,18) = 3.354
Pe	16			3.354
	17			-1.336
	18			-1.397
	[]			L 2.00. J

ПРИЛОЖЕНИЕ Б

Определение токов методом контурных токов (расчеты MATHCAD)

I	E1 := 700	$J2 \coloneqq 2$	R1 =	110	R5 = 280
I	E3 = 500	J3 = 6	R2 =	470	R6 = 150
I	E4 = 900		R3 =	640	R7 = 140
			R4 =	120	R8 = 690
E					
Z	I11 = 0				
X	I22 = 0				
167	I33 = 0				
dП	I44 = 0				
Ограничен ия чальные приближения	I55 = 0				
алы					
4a u	I44 = J2				
le H	I55 = J3				
Ĭ.					$R8 - I33 \cdot R1 = E1$
гра					$R8 - I33 \cdot R2 - I44 \cdot R2 - I55 \cdot R3 = E3 + E4$
0	<i>I</i> 33 ⋅ (<i>R</i>	7+R2+R1) - I11	$\cdot R1 - I$	$22 \cdot R2 + I44 \cdot R2 = -E1$
	[<i>I</i> 11]				[3.354]
Д	I11 $ I22 $				4.751
Решатель		$\operatorname{find}(I11,I$		3 111	
ems	144	- iiid (111,1	22,10	5,144,	2
ď	I55				6
4	[100]				[6]
	I1 = I11	1 - I33 = 2.0	18		I5 := I11 = 3.354
	$I2 \coloneqq I22$	2 - I33 - I44	=1.4	15	I6 := I11 = 3.354
	I3 := I22	2 - I55 = -1	.249		I7 := -I33 = -1.336
	$I4 \coloneqq I22$	2 = 4.751			I8 := I11 - I22 = -1.397

ПРИЛОЖЕНИЕ В

Определение токов методом узловых напряжений (расчеты MATHCAD)

	E1 = 700	J2 := 2	R1 = 110	R5 = 280	
	E3 := 500	J3 := 6	R2 = 470	R6 = 150	
	E4 = 900		R3 = 640	R7 = 140	
			R4 = 120	R8 = 690	
Ограничения Начальные приближения	U12 = 0				
Xe	U32 := 0				
5	U52 = 0				
현	U62 = 0				
ele -					
8		/ 1 1 \		1 F9 F	
ача	$U12 \cdot$	$\frac{1}{D_1} + \frac{1}{D_2}$	$-U32 \cdot \frac{1}{Dr} - U$	$52 \cdot \frac{1}{R_{1}} = J3 + \frac{E3}{R_{2}} - \frac{E4}{R_{3}}$	1
T		R4 R3	R3	R4 R3 R/	1
표	$U32 \cdot$	$\frac{1}{D_0} + \frac{1}{D_0} +$	$-\frac{1}{D^{-}}$ $-U12 \cdot -$	$-U62 \cdot \frac{1}{D} = J2 - J3$	_ <u>E3</u>
ž		R3 $R2$	R7) F	3 R7	R3
pa	$U52 \cdot$	$\frac{1}{D} + \frac{1}{D}$	$\left(-\frac{1}{D_{0}} + \frac{1}{D_{0}}\right) - U$	$12 \cdot \frac{1}{R} - U62 \cdot \frac{1}{R}$	$=\frac{E4}{R}$
ō		R4 $R5+$	R6 R8	R4 $R5+R6$	6 R4
	U62 ·	Do . Dr	$\frac{1}{D_{t}} + \frac{1}{D_{t}} - U$	$52 \cdot \frac{1}{R4} = J3 + \frac{E3}{R3} - \frac{E4}{R4}$ $\frac{1}{R3} - U62 \cdot \frac{1}{R7} = J2 - J3$ $12 \cdot \frac{1}{R4} - U62 \cdot \frac{1}{R5 + R6}$ $52 \cdot \frac{1}{R6 + R5} - U32 \cdot \frac{1}{R7}$	= -E1
Щ	'	R6+R5	R1 R7)	R6+R5 $R7$	R1
	$\lceil U12 \rceil$			[634.232]	
Решатель	U32	or 1/77.		$62) = \begin{bmatrix} 634.232 \\ -665.081 \\ 964.103 \\ -478.04 \end{bmatrix}$	
E	U52	= find $(U1)$	2, U32, U52, U	62)=	
Pe	U62			-478.04	
4		'			
	$I_1 = U62$	$\frac{2+E1}{R1} = 2.0$	18	$I5 := \frac{U52 - U62}{R5 + R6} = 3.3$	354
			.0	R5+R6	501
	$I_2 = -U_3$	$\frac{32}{2}$ = 1.415		I6 := I5 = 3.354	
	R_2	2			
	$I_{3:=}U_{32}$	E - U12 + E3	=-1.249	$I7 := \frac{U32 - U62}{R7} = -1$	336
		<i>B</i> 3			
	$I_4 = U_{12}$	2-U52+E4	-=4.751	$I8 := \frac{-U52}{R8} = -1.397$	
	1-1	R4	1.101	R8	