Assignment 1 Report

1. Objective

This project implements a **Mean-Variance Portfolio (MVP)** optimization framework using fundamental stock selection within the S&P 500 universe. The goal is to identify efficient portfolios that balance return and risk, visualize the efficient frontier, and evaluate performance through backtesting.

2. Data and Pipeline Overview

Step 0 — Fundamental Stock Selection

The first step of the workflow generates the stock_selected.csv file, which contains the list of selected S&P 500 stocks based on fundamental criteria.

This process is implemented in **stock_selection.py**, which reads raw financial data from **final_ratios.csv** and applies filters on key accounting ratios, such as:

Metric	Filter Logic	Example Threshold
P/E Ratio	Positive and below 40	0 < PE < 40
ROE	Above industry median	ROE > median(ROE)
Debt-to-Equity	Below 1	DE < 1
EPS Growth	Positive trend over last 3 years	ΔEPS > 0

Each stock that satisfies all conditions is kept for further analysis.

Output:

The script exports ./result/stock_selected.csv, which serves as the input for the portfolio construction stage (fundamental_portfolio.py).

Example Command:

```
python source_codes/stock_selection.py \
    --input_data ./data/final_ratios.csv \
    --output_path ./result/stock_selected.csv
```

In this project, the selection was based on the raw gvkey identifier (not converted to tic), consistent throughout all subsequent steps.

Input Datasets

- sp500_tickers_daily_price.csv: daily price history of S&P 500 constituents.
- stock_selected.csv: selected stocks based on fundamental screening.

Generated Outputs

- portfolio_output/ directory containing:
 - Result Metrics. json: summary of backtest performance.
 - o Portfolio weight files:
 - mean_weighted.xlsx
 - minimum_weighted.xlsx
 - equally_weighted.xlsx
 - efficient_frontier.png: visualization of efficient frontier.
- Backtest visualizations:
 - Portfolio_Values.png
 - mean portfolio.png
 - MVP portfolio.png

Pipeline Execution

```
# Step 1: Stock Selection
python source_codes/stock_selection.py

# Step 2: Portfolio Construction
python source_codes/fundamental_portfolio.py \
    --stocks_price "../sp500_tickers_daily_price.csv" \
    --stock_selected "./result/stock_selected.csv" \
    --output_dir "./portfolio_output"

# Step 3: Plot Efficient Frontier
python source_codes/plot_efficient_frontier.py --output_dir
./portfolio_output
```

3. Methodology

3.1 Mean-Variance Portfolio (MVP) Model

The optimization problem minimizes total portfolio variance under budget and non-negative constraints:

$$\min_{w} w^{T} \Sigma w \quad \text{s.t.} \quad \sum_{i} w_{i} = 1, \ w_{i} \geq 0$$

where:

- Σ = covariance matrix of returns
- w = portfolio weights

3.2 Core MVP Implementation

Below shows the essential logic used in the optimization routine:

This function calculates the minimum-variance weights using **SciPy's SLSQP solver**, ensuring no short sales and full investment.

4. Results

4.1 Portfolio Backtest Performance

Backtest Period: 2018-01-01 to 2025-10-01

Metric	Value
Cumulative Return	-0.0073
Annual Return	-0.00098
Max Drawdown	-0.0702
Annual Volatility	0.0221

Metric	Value	
Sharpe Ratio	-0.0333	
Win Rate	0.5135	
Information Ratio	-0.6952	

The MVP strategy maintained low volatility but achieved slightly negative cumulative returns. Its defensive nature results in stability but limited upside compared to benchmarks like S&P 500.

4.2 Comparison Across Weighting Schemes

Portfolio Type	Cumulative Return	Annual Volatility	Sharpe Ratio
Minimum Variance	-0.0073	0.022	-0.03
Mean Weighted	-0.0197	0.0215	-0.11
Equal Weighted	-0.0073	0.0221	-0.03

Performance Visualization:

5. Discussion

- The MVP achieved the lowest volatility among all portfolios but underperformed in total return.
- The mean-weighted portfolio showed slightly better stability with modest improvement in win rate but remained negative overall.
- The model's conservative allocation and lack of predictive expected returns constrained upside potential.
- Potential improvements:
 - o Incorporate factor-based expected returns (value, momentum, quality).
 - Relax constraints (e.g., allow limited short selling).
 - Integrate FinGPT/DRL modules to enhance dynamic rebalancing.

6. Deliverables Summary

File	Description	
fundamental_portfolio.py	Core MVP calculation logic	
plot_efficient_frontier.py	Efficient frontier visualization	
Portfolio_Values.png	Backtest performance graph	
Result_Metrics.json	Quantitative results summary	
<pre>mean_weighted.xlsx/minimum_weighted.xlsx/ equally_weighted.xlsx</pre>	Final portfolio weights	

7. Requirements

```
pandas
numpy
scipy
matplotlib
pypfopt
```

8. Conclusion

The MVP framework successfully constructs stable, low-risk portfolios and replicates the efficient frontier. While performance remains conservative, the workflow establishes a strong foundation for incorporating predictive or explainable Al modules in future iterations.