Multi-Agent AutoML Report For OTICS

Generated On: 2024-04-11 20:56:37 (EDT)

Best Model(s) Report For admin_aesopowerdemand_csv

MODEL DESCRIPTION

Model Trained On: 2024/04/11 Training Start Time: 2053 Training End Time: 2056 Was Data Normalized: Yes Was Data Shuffled: Yes Deep Analysis: No Total Training Data Set: 947 Training Data Percentage: 75% Total Test Data Set: 319 Total # of Variables: 4 Adjusted for Seasonality: N Total Algorithms Run: 3600

Removed Outliers: Y
Best Distribution FOR ACTUAL Y: VONMISES Dependent Variable: AESO POWER DEMAND

Independent Variables: ['Calgary_Weather', 'Edmonton_Weather', 'FtMac_Weather']

PREDICTION VARIABLE STATS

Mean: 9293.373 STD: 476.794 Kurtosis: -1.220 Skewness: 0.356 Coef. of Variation: 0.051 Shapiro Test for Normality: 0.920 Jarque-Bera Goodness of Fit: 49.887 Anderson: 15.794 KStat: 227712.484

KStat: 297763.223 KStatvar: 67438735.002 Wilcox: 0.000 KStatvar: 164138770.163 Wilcox: 0.000 Theil Slope: -0.553 Theil Slope: -0.302

Statistics Showing Comparison Between Prediction and Actuals Mood(actuals,predictions): 3.548

ACTUAL VARIABLE STATS

Coef. of Variation: 0.059 Shapiro Test for Normality: 0.981

Jarque-Bera Goodness of Fit: 20.836 Anderson: 2.876

Mean: 9281.250

STD: 545.222 Kurtosis: -0.891

Skewness: 0.098

Pearson(actuals, predictions): 0.879 Kendall Tau(actuals,predictions): 0.693 Ansari(actuals,predictions): 174164.000 Jaccard_distance(actuals,predictions): 1.000 Minkowski_distance(actuals,predictions): 119601.793 Euclidean distance(actuals, predictions): 6378.622

IMPORTANT FILE PATHS FOR RAW AND OUTPUT DATA

NOTE: These are DOCKER CONTAINER Paths. You can view these files inside the container by using the command: docker exec -it {container id} bash If you have re-run the container, these files will be GONE but they exist on your HOST machine. The HOST MACHINE location is based on the volumes you mapped when you ran the Docker container. The Docker RUN Volume Mappings are :: (For example here is the docker run command (use multiple -v for multiple mappings):

DOCKER RUN COMMAND: docker run -d -p 5595:5595 -p 5495:5495 -p 10000:10000 -v {HOST MACHINE FOLDER}:{CONTAINER FOLDER}:z --env TRAININGPORT=5595 --env PREDICTIONPORT=5495 --env MAINHOST=127.0.0.1 maadsdocker/maads-batchautoml-otics

Docker Volume Mappings

1. {HOST MACHINE FOLDER}/csvuploads:/mnt/c/maads/agentfilesdocker/dist/maadsweb/csvuploads:z
2. {HOST MACHINE FOLDER}/pdfreports:/mnt/c/maads/agentfilesdocker/dist/maadsweb/pdfreports:z
3. {HOST MACHINE FOLDER}/autofeatures:/mnt/c/maads/agentfilesdocker/dist/maadsweb/autofeatures:z

4. {HOST MACHINE FOLDER}/outliers:/mnt/c/maads/agentfilesdocker/dist/maadsweb/outliers:z 5. {HOST MACHINE FOLDER}/sqlloads:/mnt/c/maads/agentfilesdocker/dist/maadsweb/sqlloads:z

6. (HOST MACHINE FOLDER)/networktemp://mnt/c/maads/agentfilesdocker/dist/maadsweb/networktemp:z
7. {HOST MACHINE FOLDER}/networks:/mnt/c/maads/agentfilesdocker/networks:z
8. {HOST MACHINE FOLDER}/exception:/mnt/c/maads/agentfilesdocker/dist/maadsweb/exception:z

6. (HOST MACHINE FOLDER)/exception:/mni/c/maads/agentifilesdocker/dist/madswelp/exception:2

Path for Training Dataset File: /mni/c/maads/agentifilesdocker/dist/maadswelp/csvuploads/aesopowerdemand.csv

Path for PDF Report (i.e. this file): /mni/c/maads/agentifilesdocker/dist/maadsweb/pdfreports/admin_aesopowerdemand_csv_no_seasons.pdf

Path for AutoFeature File: /mni/c/maads/agentifilesdocker/dist/maadsweb/autofeatures/admin_aesopowerdemand_csv_csv

Path for Outliers File: /mni/c/maads/agentifilesdocker/dist/maadsweb/autofeatures/admin_aesopowerdemand_csv_csv

Path for Algorithm Ziecker/distymaads/agentfilesdocker/distymaadsweb/coxplers/admin_aesopowerdemand_csv_csv_prained_algo_no_seasons.json Folder Path for MySQL Scripts: /mnt/c/maads/agentfilesdocker/dist/maadsweb/sqlloads/
Path for Detailed Prediction File: /mnt/c/maads/agentfilesdocker/dist/maadsweb/csvuploads/admin_aesopowerdemand_csv_prediction_details.csv
Path for Algorithm Zip File (i.e. pickle files): /mnt/c/maads/agentfilesdocker/dist/maadsweb/networktemp/admin_aesopowerdemand_csv.zip
Path for Algorithm Pickle Files:

 $ls/agent files docker/networks/otics_ADMIN_AESOPOWERDEMAND_CSVALLSEASON_AG1_4_Gradient Boosting Regressor_normal_947_0.100_300_3_ensemble_pkl$

nt/c/maads/agentfilesdocker/networks/otics_ADMIN_AESOPOWERDEMAND_CSVALLSEASON_AG1_4_GradientBoostingRegressor_normal_947_0.100_300_3_ensemble_scalery_.pkd

DESCRIPTIVE STATISTICS									
Variables	T-Statistic	Count	Mean	STD	MIN	25%	50%	75%	MAX
Calgary_Weather	-35.442	947.0	5.793	-27.75	10.139	-0.45	6.85	14.0	23.85
Edmonton_Weather	-38.8	947.0	5.824	-26.64	11.798	-2.36	7.0	16.105	25.75
FtMac_Weather	-40.088	947.0	2.228	-32.4	13.732	-7.91	3.94	14.86	23.85
AESO POWER DEMAND	NA	947.0	9242.263	7857.0	558.895	8802.5	9232.0	9664.5	10510.0

BEST ALGORITHM FOUND FOR THIS DATASET (Note: This trained model will be used to predict AESO_POWER_DEMAND)							
Algorithm	Description	Model Results	Accuracy	Forecast Months	Season		
GradientBoostingRegressor	Gradient Boosting for regression.: GB builds an additive model in a forward stage-wise fashion; it allows for the optimization of arbitrary differentiable loss functions. In each stage a regression tree is fit on the negative gradient of the given loss function. (Info)	GradientBoostingRegressor(alpha=0.04709115500459103, learning rate=0.06758979852846976, loss='huber', max_depth=2, random_state=20) R-square: 0.772 Mean Squared Error (MSE): 67811.370 Skewness: -0.553 Kurtosis: 3.611 Mean Square Model (MSM): 136487962.972 F-Statistic (F): 2012.759 Jarque-Bera (JB): 39.903 Explained Variance (EV): 0.772 Multicolinearity Test (Avg. VIF): 19.321 Heteroscedasticity Test (Avg P-Value): -1.000 (Based on White Test, there seems to be heteroscedasticity in the model) Autocorrelation (Durbin-Watson) Test: 0.727 (Based on DW Test - there seems to be autocorrelation in your model)	0.978	1 - 12	allseaso		

					FOR ALLSEASON
Num	Algorithm	Accuracy	Details	Season	Description
1	GradientBoostingRegressor	0.6627	R-square: 0.772 Explained Variance (EV): 0.772 MSE: 67811.37 MSM: 136487962.972 Skewness: -0.553 Kurtosis: 3.611 F: 2012.759 DW: 0.727 JB: 39.903	allseason	GRADIENT BOOSTING FOR REGRESSION.: GB builds an additive model in a forward stage-wise fashion; it allows for the optimization of arbitrary differentiable loss functions. In each stage a regression tree is fit on the negative gradient of the given loss function. URL=http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html
2	NuSVR	0.6618	R-square: 0.752 Explained Variance (EV): 0.752 MSE: 73766.751 MSM: 138650991.536 Skewness: -0.28 Kurtosis: 2.914 F: 1879.587 DW: 0.67 JB: 8.032	allseason	NU SUPPORT VECTOR REGRESSION.: Similar to NuSVC, for regression, uses a parameter nu to control the number of support vectors. However, unlike NuSVC, where nu replaces C, here nu replaces the parameter epsilon of epsilon-SVR. URL=http://scikit-learn.org/stable/modules/generated/sklearn.svm.nuSVR.html
3	ADABoostRegressor	0.6264	R-square: 0.83 Explained Variance (EV): 0.833 MSE: 50493.469 MSM: 154115030.019 Skewness: 0.282 Kurtosis: 2.561 F: 3052.178 DW: 0.691 JB: 12.772	allseason	ADABOOST REGRESSOR: Ada boost URL=http://scikit-learn.org/stable/modules/generated/sklearn.ens emble.AdaBoostRegressor.html
4	DecisionTreeRegressor	0.6140	R-square: 0.729 Explained Variance (EV): 0.73 MSE: 80669.487 MSM: 143174021.422 Skewness: 0.004 Kurtosis: 3.048 F: 1774.823 DW: 0.851 JB: 0.06	allseason	DECISION TREE REGRESSOR: Decision Tree Regressor URL=http://scikit-learn.org/stable/modules/generated/sklearn.tre e.DecisionTreeRegressor.html
5	SVR	0.6095	R-square: 0.711 Explained Variance (EV): 0.712 MSE: 85941.79 MSM: 128383625.669 Skewness: -0.215 Kurtosis: 2.872 F: 1493.844 DW: 0.546 JB: 5.038	allseason	EPSILON-SUPPORT VECTOR REGRESSION.: The method of Support Vector Classification can be extended to solve regression problems. This method is called Support Vector Regression. URL=http://scikit-learn.org/stable/modules/generated/sklearn.svm .SVR.html
6	RANSACRegressor	0.4682	R-square: 0.501 Explained Variance (EV): 0.502 MSE: 148452.867 MSM: 137972795.205 Skewness: 0.342 Kurtosis: 3.377 F: 929.405 DW: 0.387 JB: 15.277	allseason	RANSAC (RANDOM SAMPLE CONSENSUS) ALGORITHM.: RANSAC is an iterative algorithm for the robust estimation of parameters from a subset of inliers from the complete data set. More information can be found in the general documentation of linear models. URL=http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RANSACRegressor.html#sklearn.linear_model.RANSACRegressor
7	LinearSVR	0.4446	R-square: 0.497 Explained Variance (EV): 0.497 MSE: 149639.986 MSM: 135405616.601 Skewness: 0.623 Kurtosis: 3.625 F: 904.876 DW: 0.38 JB: 48.57	allseason	LINEAR SUPPORT VECTOR REGRESSION.: Similar to SVR with parameter kernel='linear', but implemented in terms of liblinear rather than libsvm, so it has more flexibility in the choice of penalties and loss functions and should scale better to large numbers of samples. URL=http://scikit-learn.org/stable/modules/generated/sklearn.svm .LinearSVR.html
8	HuberRegressor	0.4412	R-square: 0.495 Explained Variance (EV): 0.496 MSE: 149984.685 MSM: 136698344.639 Skewness: 0.632 Kurtosis: 3.64 F: 911.415 DW: 0.385 JB: 50.155	allseason	HUBER REGRESSOR: Linear regression model that is robust to outliers. URL=http://scikit-learn.org/stable/modules/generated/sklearn.lin ear_model.HuberRegressor.html#sklearn.linear_model.HuberRegressor
9	ARDRegression	0.4397	R-square: 0.519 Explained Variance (EV): 0.52 MSE: 143063.036 MSM: 112970893.37 Skewness: 0.489 Kurtosis: 3.319 F: 789.658 DW: 0.385 JB: 26.449	allseason	BAYESIAN ARD: Fit the weights of a regression model, using an ARD prior. The weights of the regression model are assumed to be in Gaussian distributions. Also estimate the parameters lambda (precisions of the distributions of the weights) and alpha (precision of the distribution of the noise). The estimation is done by an iterative procedures (Evidence Maximization) URL=http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ARDRegression
10	BayesianRidge	0.4397	R-square: 0.519 Explained Variance (EV): 0.52 MSE: 143043.648 MSM: 113028517.92 Skewness: 0.489 Kurtosis: 3.319 F: 790.168 DW: 0.385 [B: 26.422	allseason	BAYESIAN RIDGE REGRESSION: Fit a Bayesian ridge model and optimize the regularization parameters lambda (precision of the weights) and alpha (precision of the noise). URL=http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.BayesianRidge

TRAINING VARIABLES DEPENDENT VARIABLE: AESO, POWER, DEMAND 250 200 200 100 50 500 8500 9000 9500 10000 10500 11000

Detailed Histograms of Training and Test Data Sets

Bins	[8.56e+03,	[8.79e+03,	[9.03e+03,	[9.27e+03,	[9.50e+03,	[9.74e+03,
DIIIS	8.79e+03]	9.03e+03]	9.27e+03]	9.50e+03]	9.74e+03]	9.97e+03]
Count	22	62	68	34	29	27
Share	7.0%	19.0%	21.0%	11.0%	9.0%	8.0%
Total Rows	319	319	319	319	319	319
Min	8.56e+03	8.56e+03	8.56e+03	8.56e+03	8.56e+03	8.56e+03
Max	1.09e+04	1.09e+04	1.09e+04	1.09e+04	1.09e+04	1.09e+04
Number of Bins	6	6	6	6	6	6

			[-1.74e+01, -1.23e+01]			
Count	5	41	54	72	111	214
Share	0.0%	3.0%	4.0%	6.0%	9.0%	17.0%
Total Rows	1280	1280	1280	1280	1280	1280
Min	-2.70e+01	-2.70e+01	-2.70e+01	-2.70e+01	-2.70e+01	-2.70e+01
Max	2.30e+01	2.30e+01	2.30e+01	2.30e+01	2.30e+01	2.30e+01
Number of Bins	6	6	6	6	6	6

Bins			[-1.61e+01, -1.14e+01]			
Count	10	15	18	14	31	53
Share	3.0%	5.0%	6.0%	4.0%	10.0%	17.0%
Total Rows	319	319	319	319	319	319
Min	-2.50e+01	-2.50e+01	-2.50e+01	-2.50e+01	-2.50e+01	-2.50e+01
Max	2.10e+01	2.10e+01	2.10e+01	2.10e+01	2.10e+01	2.10e+01
Number of Bins	6	6	6	6	6	6

Bins				[-1.09e+01, -5.68e+00]	4.450.011	[-4.45e- 01, 4.79e+00]
Count	16	55	81	96	133	205
Share	1.0%	4.0%	6.0%	8.0%	10.0%	16.0%
Total Rows	1280	1280	1280	1280	1280	1280
Min	-2.60e+01	-2.60e+01	-2.60e+01	-2.60e+01	-2.60e+01	-2.60e+01
Max	2.50e+01	2.50e+01	2.50e+01	2.50e+01	2.50e+01	2.50e+01
Number of Bins	6	6	6	6	6	6

Bins	[-2.24e+01,	[-1.79e+01,	[-1.34e+01,	[-8.91e+00,	[-4.42e+00,	[7.50e-02,
Dins	-1.79e+01]	-1.34e+01]	-8.91e+00]	-4.42e+00]	7.50e-02]	4.57e+00]
Count	20	18	15	21	40	59
Share	6.0%	6.0%	5.0%	7.0%	13.0%	18.0%
Total Rows	319	319	319	319	319	319
Min	-2.20e+01	-2.20e+01	-2.20e+01	-2.20e+01	-2.20e+01	-2.20e+01
		2.20e+01	2.20e+01	2.20e+01	2.20e+01	2.20e+01
Number of Bins	6	6	6	6	6	6

 ${\bf OUTLIERS\ REMOVED\ FROM\ TRAINING\ DATA:\ admin_aes} opower demand_csv$

Date	X	Y
8/11/2015	[21.6 22.78 20.86]	9861.0
8/12/2015	[21.75 22.14 20.7]	9891.0
8/13/2015	[23.35 23.14 19.56]	10008.0
5/8/2016	[12.5 13.6 12.6]	7611.0
5/9/2016	[6.55 7.65 6.4]	7852.0
5/10/2016	[6.25 8.55 6.9]	7833.0
5/11/2016	[7.15 8.6 4.2]	7804.0
5/12/2016	[4.45 6.6 6.]	7900.0
5/13/2016	[4.4 7.9 7.8]	7850.0
5/14/2016	[6.15 11.1 10.35]	7759.0
5/21/2016	[4.4 4.9 10.15]	7764.0
5/23/2016	[6.35 8.5 11.3]	7802.0
5/28/2016	[8.6 12.5 14.35]	7660.0
6/11/2016	[14.1 12.25 13.45]	7832.0

MODEL EXPLANATION

- The x-axis represents the model's output values of AESO_POWER_DEMAND
 The plot is centered on the x-axis at explainer expected value.
 All values are relative to the model's expected value like a linear model's effects are relative to the intercept.
 The y-axis lists the model's features. By default, the features are ordered by descending importance.
 The importance is calculated over the observations plotted. This is usually different than the importance ordering for the entire dataset.
 In addition to feature importance ordering, the decision plot also supports hierarchical cluster feature ordering and user-defined feature ordering.
- Each observation's prediction is represented by a colored line.
 At the top of the plot, each line strikes the x-axis at its corresponding observation's predicted value. This value determines the color of the line on a
- Moving from the bottom of the plot to the top, SHAP values for each feature are added to the model's base value.
 This shows how each feature contributes to the overall prediction.
 At the bottom of the plot, the observations converge at explainer.expected_value.
 The points in the graph are the values of the feature in the training dataset.

FEATURE SELECTION	
RFE Variable (Most important to Least Important)	Value
AESO_Power_Demand	0.307
Calgary_Weather	0.234
Edmonton_Weather	0.232
FtMac_Weather	0.227
Best Variable(s) From Genetic Algorithm	
AESO_Power_Demand	
Calgary_Weather	
FtMac_Weather	
Excluded Variable(s)	
Edmonton_Weather	
PCA for Best Variable(s)	Value
AESO_Power_Demand_pca_1	0.542
AESO_Power_Demand_pca_2	0.836
AESO_Power_Demand_pca_3	-0.081
Calgary_Weather_pca_1	-0.590
Calgary_Weather_pca_2	0.448
Calgary_Weather_pca_3	0.672
FtMac_Weather_pca_1	-0.599
FtMac_Weather_pca_2	0.316
FtMac_Weather_pca_3	-0.736
PCA Explained Variance	Value
PCA1	0.863
PCA2	0.114
PCA3	0.023

- Feature selection shows which variables were more influential than other variables

 It uses two core algorithms: Recursive Feature Elimination (RFE) and Genetic Algorithm to determine influence

 It also performs PCA (principal component analysis) analysis to determine the influence of the best variables in the model

 These results should be used in conjunction with other information as well as theory to establish relevance and confidence in the chosen model formulation

CORR	CORRELATED FEATURES				
Feature(s)	Feature(s)	Correlation >= 0.100			
<pre>O Calgary_Weather</pre>	FtMac_Weather	0.929			
1 Edmonton_Weather	FtMac_Weather	0.964			
2 Calgary_Weather	Edmonton_Weather	0.970			
3 Calgary_Weather	Calgary_Weather	NaN			

SUGGESTED CORRELATED FEATURES TO DELETE					
2 Feature(s) to Delete Correlation					
O Calgary_Weather 0.929					
1 Edmonton_Weather 0.964					

END OF REPORT