Homework

Ding Yaoyao, 516030910572

2017-09-22

Exercise 1-3

5

- Closure: If $a, b \in G$, there are $c, d \in G$ such that $a = c^m, b = d^m$. Then $ab = c^m d^m = (cd)^m \in G(\text{Beacuse group } G \text{ is an abelian group}).$
- Identity: $e = e^m \in G$.
- Inverse: If $a = b^m \in G$, then $a^{-1} = (b^m)^{-1} = (b^{-1})^m \in G$.

Above all, $H \leq G$.

6

For all $a, b \in gHg^{-1}$, there are $c, d \in H$ such that $a = gcg^{-1}, b = gdg^{-1}$. Then $a^{-1}b = (gcg^{-1})^{-1}gdg^{-1} = gc^{-1}g^{-1}gdg^{-1} = gc^{-1}dg^{-1}$. Beacuse $c^{-1}d \in H$, we have $a^{-1}b \in gHg^{-1}$. Finally, we get $gHg^{-1} \preccurlyeq G$.

7

For all $b, c \in C(a)$, we have ba = ab and ca = ac. Then $b^{-1}c = (aba^{-1})^{-1}aca^{-1} = ab^{-1}a^{-1}aca^{-1} = ab^{-1}ca^{-1}$, which imply that $ab^{-1}c = b^{-1}ca$, $b^{-1} \in C(a)$. Above all, $C(a) \leq G$.

8

 $g\in C(G)\Leftrightarrow \forall a\in G, ga=ag\Leftrightarrow \forall a\in G, g\in C(a)\Leftrightarrow g\in \bigcap_{a\in G}C(a),$ then we have:

$$C(G) = \bigcap_{a \in G} C(a)$$

18

- $< m, n > \subseteq < d >$: $a \in < m, n > \Rightarrow \exists k_1, k_2, a = k_1 m + k_2 n = (k_1 \frac{m}{d} + k_2 \frac{n}{d})d \Rightarrow a \in < d >$.
- $< d > \subseteq < m, n >$: By the Euclid theorem, $\exists k_1, k_2, d = k_1 m + k_2 n$. If $a \in < d >$, we have $a = kd = k(k_1 m + k_2 n) = (kk_1)m + (kk_2)n$, which means $a \in < m, n >$.

Above all, $\langle m, n \rangle = \langle d \rangle$.

19

It's obvious that $m=\pm n$ imply < m> = < n>, we only need to prove $< m> = < n> \Rightarrow m=\pm n$.

If < m > = < n >, we have $m \in < m > = < n >$, which means $n \mid m$. We can get $m \mid n$ by the same method. But $n \mid m$ and $m \mid n$ means $m = \pm n$. That's