Seminar 9

- 1. Fie $x=(1,0,-1),\,y=(3,-1,1)\in\mathbb{R}^3.$ Calculati $x+y,\,x\cdot y,\,||x||,\,||-2y||$ si ||x-y||.
- 2. Fie $x, y \in \mathbb{R}^m$. Demonstrati ca
 - a) $||x+y||^2 + ||x-y||^2 = 2(||x||^2 + ||y||^2)$ (identitatea paralelogramului)
 - b) $|||x|| ||y||| \le ||x y||$
- 3. Determinati intA, frA, precum si daca A este multime deschisa, respectiv multime inchisa.
 - a) $A = [2, \infty) \times [2, \infty) \subseteq \mathbb{R}^2$
 - b) $A = \mathbb{R} \times \{0\} \subseteq \mathbb{R}^2$
 - c) $A = B(O_2, 1) \subseteq \mathbb{R}^2$
 - $d) A = \mathbb{R} \setminus \mathbb{Z} \subseteq \mathbb{R}$
 - e) $A = \mathbb{Q} \subseteq \mathbb{R}$
- 4. $\forall A, B \subseteq \mathbb{R}^m$ multimi nevide, au loc afirmatiile
 - a) Daca A si B sunt multimi deschise atunci $A \cup B$ si $A \cap B$ sunt multimi deschise
 - b) Daca A si B sunt multimi inchise atunci $A \cup B$ si $A \cap B$ sunt multimi inchise.
- 5. $\forall A \subseteq \mathbb{R}^m$ multime nevida, au loc afirmatiile
 - a) $int A \subseteq A$
 - b) $A' \subseteq A \cup \operatorname{fr} A$
 - c) $int A = A \setminus fr A$
 - d) $\operatorname{fr} A = \operatorname{fr} (\mathbb{R}^m \setminus A)$
 - e) $\operatorname{int} A \cup \operatorname{fr} A \cup \operatorname{int} (\mathbb{R}^m \setminus A) = \mathbb{R}^m$
 - f) intA este multime deschisa
 - g) frA este multime inchisa.
- 6. $\forall A \subseteq \mathbb{R}^m$ multime nevida, au loc afirmatiile
 - a) Daca Aeste multime deschisa atunc
i $A\subseteq A'$
 - b) Daca A este multime inchisa atunci $A' \subseteq A$

Reciprocele afirmatiilor sunt adevarate?