Université: Mohamed Khider

Faculté des Sciences exactes, des Sciences de la nature et de la vie

Département: de Mathématéques

Nivaux Master 01

Module: Lois des probabilités 2020/2021

Cours N^o 02

Définition 2.1. Soient (Ω, \mathcal{F}) un ensemble muni d'une tribu, et $E \subseteq \mathbb{N}$ un ensemble quelconque. On dit que X est une variable aléatoire discrète sur (Ω, \mathcal{F}) (ou sur Ω) à valeurs dans E si et seulement si

- 1) X est une application de Ω dans E,
- 2) l'ensemble des valeurs prises par X sur Ω (soit l'ensemble $X(\Omega)$) est au plus dénombrable,
 - 3) $\forall x \in E, X^{-1}(\{x\}) \in F$, autrement dit $X^{-1}(\{x\})$ est un évènement.

Pour $x \in E$, on notera (X = x) ou $\{X = x\}$ l'évènement $X^{-1}(\{x\})$.

Théorème 2.1. Soient (Ω, \mathcal{F}) un ensemble muni d'une tribu et X une variable aléatoire discrète sur Ω à valeurs dans E.

Alors $\forall U \subset X(\Omega), X^{-1}(U) \in \mathcal{F}$, et donc $X^{-1}(U)$ est un évènement.

On notera parfois

$$X^{-1}(U) = \{ w \in \Omega : X(w) \in U \}.$$

Théorème 2.2. Soient (Ω, \mathcal{F}, P) un espace probabilisé et X une variable aléatoire discrète sur Ω à valeurs dans un ensemble E. Alors l'application P_X de $P(X(\Omega))$ dans [0,1] définie par

$$\forall A \in P(X(\Omega)), \ P_X(A) = P(X^{-1}(A)),$$

définit une probabilité sur $(X(\Omega), P(X(\Omega)))$.

En particulier, si $x \in X(\Omega)$, on notera plus simplement P(X = x) la quantité

$$P(X = x) = P_X(X^{-1}(\{x\})) = P(\{w \in \Omega : X(w) = x\}).$$

De même, si $A \subset X(\Omega)$, on notera plus simplement $P(X \in A)$ la quantité

$$P(X \in A) = P_X(X^{-1}(A)).$$

L'application P_X est appelée loi (ou de loi de probabilité) de la variable aléatoire X.

Théorème 2.3. Soient (Ω, \mathcal{F}, P) un espace probabilisé et X une variable aléatoire discrète sur Ω à valeurs dans E. Alors la loi de X est entièrement déterminée par la connaissance des $P(X = x_k)$, où (x_k) correspond à une énumération de $X(\Omega)$.

Théorème 2.4. Soient (Ω, \mathcal{F}) un ensemble muni d'une tribu et X une variable aléatoire discrète sur Ω à valeurs dans un ensemble E. Soient par ailleurs (x_n) les valeurs prises par X dans E, et (p_n) une suite d'éléments de [0,1] telle que $\sum_{n\geq 0} p_n$. Alors il existe une probabilité

sur
$$(\Omega, \mathcal{F})$$
 telle que $\forall n \in \mathbb{N}, P(X = x_n) = p_n$.

Définition 2.2. Soient (Ω, \mathcal{F}, P) un espace probabilisé et X une variable aléatoire discrète réelle sur Ω . On appelle fonction de répartition de X la fonction F_X définie sur par $\forall x \in \mathbb{R}, F_X(x) = P(X \leq x)$.