A rendre par trinôme

EXERCICE 1

- 1. On se propose l'étude des trois propositions suivantes : $(A_1):\exists a_0>0\ /\ \forall x>0,\ (a\geqslant a_0\Longrightarrow \ln x\leqslant x^a)$ $(A_2):\forall a>0,\ \exists x_0>0\ /\ (x\geqslant x_0\Longrightarrow \ln x\leqslant x^a)$ $(A_3):\exists x_1>0\ /\ \forall a>0,\ (x\geqslant x_1\Longrightarrow \ln x\leqslant x^a)$
 - a) A l'aide de l'étude de $f_a: x \mapsto x^a \ln x$, discuter l'affirmation (A_1) .
 - b) A l'aide de $\lim_{x\to +\infty} f_a$, discuter l'affirmation (A_2) .
 - c) A l'aide de $\lim_{a\to 0^{+}}f_{a}\left(x\right)$, x>e fixé, discuter l'affirmation (A_{3}) .

EXERCICE 2

- 1. Calculer les primitives sur $\left]0,\frac{\pi}{2}\right[$ de $x\mapsto \frac{1}{\sin x + \tan x}$ à l'aide du changement de variable : $t=\tan\frac{x}{2}$
- **2.** Calculer les primitives sur \mathbb{R} de $u\mapsto \frac{1}{\left(1+u^2\right)^2}$ à l'aide du changement de variable $u=\tan t,\ t\in\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$.
- **3.** Calculer les primitives sur \mathbb{R} de $x \mapsto \frac{\sinh^2 x}{\cosh^3 x}$ à l'aide du changement de variable $u = \sinh x$.

PROBLEME

A tout couple $(p,q) \in \mathbb{N}^2$, on associe $I(p,q) = \int_0^1 t^p (1-t)^q dt$

- **1.** a) Montrer que $\forall p \in \mathbb{N}, \ \forall q \in \mathbb{N}^*, \quad I\left(p,q\right) = \frac{q}{p+1} \, I\left(p+1,q-1\right).$
 - b) Calculer I(p+q,0).
 - c) Démontrer que $\forall (p,q) \in \mathbb{N}^2$, $I(p,q) = \frac{p!q!}{(p+q+1)!}$
- **2.** a) Montrer que $\forall t \in [0,1], \quad 0 \le t(1-t) \le \frac{1}{4}$
 - b) En déduire à l'aide de I(n,n) que $\forall n \in \mathbb{N}, (2n+1)! \geqslant 4^n (n!)^2$
- 3. On pose $w_n = \sum_{k=0}^n \frac{2^k (k!)^2}{(2k+1)!}$
 - a) Calculer $\int_0^1 \frac{dt}{2t^2 2t + 1}.$
 - b) Démontrer que $\forall n \in \mathbb{N}, \quad 0 \leqslant \int_0^1 \frac{2^{n+1}t^{n+1}\left(1-t\right)^{n+1}}{2t^2-2t+1}\,dt \leqslant \frac{\pi}{2^{n+2}}$
 - c) Démontrer que $\forall t \in \mathbb{R}$, $\sum_{k=0}^{n} 2^k t^k (1-t)^k = \frac{1}{2t^2 2t + 1} \frac{2^{n+1} t^{n+1} (1-t)^{n+1}}{2t^2 2t + 1}$
 - d) Déduire des questions précédentes que $\forall n \in \mathbb{N}, \quad 0 \leqslant \frac{\pi}{2} w_n \leqslant \frac{\pi}{2^{n+2}}$ et en déduire $\lim_{n \to +\infty} w_n$?
- **4.** On pose, pour tout $(p,q) \in \mathbb{N}^2$, $J(p,q) = \int_0^{\pi/2} \sin^{2p+1} t \cos^{2q+1} t \, dt$.
 - a) A l'aide du changement de variable $x=\sin^2 t$, montrer que $J\left(p,q\right)=\frac{1}{2}I\left(p,q\right)$.
 - b) A l'aide du changement de variable $y=\sin t$, montrer que $\sum_{k=0}^q \binom{q}{k} \frac{\left(-1\right)^k}{p+k+1} = \frac{p!q!}{(p+q+1)!}$.

PCSI 1 2019/2020