Aufgaben für 26.11.2015: Operationsverstärker

Aufgaben aus:

Wolf-Jürgen Becker, Walter Hofmann: Aufgabensammlung Elektrische Messtechnik: 337 Übungsaufgaben mit Lösungen

Aufgabe 7.15: Gegeben ist die in Bild 7.25 dargestellte Messverstärkerschaltung mit idealem Operationsverstärker.

- a) Nennen Sie die Betriebsart des Operationsverstärkers. Welche Gegenkopplung wird hier verwendet?
- b) Wie groß sind I_n und I_p sowie U_d beim idealen Operationsverstärker? In welchem Bereich sind I_n und I_p bei tatsächlichen BIFET-OPs anzusiedeln (mA- μ A, μ A-nA, nA-pA).
- c) Welches Potential nimmt der Knoten 1 an. Begründen Sie es! Welche Rolle übernimmt R_2 ? Kann R_2 entfallen?
- d) Zeichnen Sie die neue Schaltung.
- e) Berechnen Sie die Verstärkung mittels Knoten und Maschen unter Berücksichtigung des idealen Operationsverstärkers.
- f) Wozu dient R_5 ?
- g) Berechnen Sie R_5 , wenn die Eingangsspannungsquelle den Innenwiderstand R_q hat. Stellen Sie zuerst die Maschen- und Knotengleichung auf.

Hausaufgaben: 7.16, 7.23

Aufgabe 7.20: Analogrechenstufe. In der Schaltung (Bild 7.33) seien die Widerstände R_1 , R_2 , R_3 und R_4 gegeben, und die Operationsverstärker seien als ideal angenommen. Berechnen Sie die Ausgangsspannung U_a in Abhängigkeit von U_{e1} und U_{e2} .

- a) für beliebige $R_1...R_4$ und
- b) für den Sonderfall $R_1 = R_2 = R_3 = R_4 = R$.

Aufgabe 7.21: Gegeben ist die Messverstärkerschaltung nach Bild 7.34 mit idealem Operationsverstärker. Die Klemme 2 ist zunächst mit Masse kurzgeschlossen.

- a) Nennen Sie die Betriebsart des Verstärkers. Geben Sie die Funktion $u_a = f(u_1, R_1, R_2)$ an.
- b) Durch Temperatureinfluss ändern sich folgende Größen bis zu 1 % vom Sollwert: $R_1 = 10 \text{ k}\Omega$, $R_2 = 100 \text{ k}\Omega$, $u_1 = 5 \text{ V}$. Berechnen Sie die maximal mögliche Abweichung der Ausgangsspannung u_a vom Sollwert.

Die Klemme 2 wird jetzt von der Masse getrennt und es liegt die Spannung u_2 an.

Nennen Sie die Betriebsart des Verstärkers. Berechnen Sie die Abhängigkeit der Ausgangsspannung u_a von den beiden Eingangsspannungen u_1 und u_2 .

Aufgabe 7. 43: Der Operationsverstärker in der Schaltung nach Bild 7.78 sei als ideal angenommen. Bekannt sind $R_1...R_4$ und U_0 .

- a) Berechnen Sie die Spannung U_a .
- b) Berechnen Sie unter Annahme $R_1 = R_2$ den Widerstand R_3 so, dass sich $\frac{dU_a}{dR_4} = v$ ergibt.

Hausaufgaben: 7.44, 7.52, 7.53