

Data Visualization

Workshop Advertisement

Deep Dive: Parallel Processing

Sept. 22, 2017

Gates Hall G01

5:30-7:30PM

SEP

Deep Dive: Parallel Processing

22

Public · Hosted by Cornell Data Science Edit

Friday at 5:30 PM - 7:30 PM 4 days from now · 55–81°Scattered Clouds

Edit

G01 Gates Hall

Edit

No tickets

Add Tickets

Big Data. Big Servers.

Deep Dives into

Parallel Computing

With Spark and Hadoop

9/22 5:30pm - 7:30pm

9/24 6:00pm - 8:00pm

9/29 5:30pm - 7:30pm

Gates G01

Requires: 8gb RAM, 50GB disk space

Sanity Check

- Did you submit the Quiz?
- Are you getting email notification for Piazza Announcement?
- Are you in a group of 3-4 people for the project?
 - If not, come up to the front after the lecture!

Jupyter Notebook Demo

History

Edward Tufte (1942-)

Statistician and Yale professor

Key figure in the field of data visualization

Recommended text: *The Visual Display of Quantitative Information*

Data Visualization Simple Example: Yelp

Question: What do you notice? What trends do you see?

Data Visualization Simple Example: Yelp

Example: Nurse Hallway Travel Frequency

Why Data Visualization?

- Understanding a dataset
- Communication of knowledge to an audience

Why Data Visualization is Important

- All Different Datasets
 They all have same mean, median, mode, variance, line of best fit
- Same Summary Stat
 But we need to see how
 the actual data looks

What is matplotlib?

- > Python data visualization package
 - Capable of handling most data visualization needs
 - Simple object-oriented library inspired from MATLAB
 - Cheatsheet

Let's start with an easy one... a bar graph!

- Represent magnitude or frequency
- Allows us to compare features

Histograms

Used to observefrequencydistribution ofnumerical data

Data split into bins

Histograms

Density Plot

- Like a histogram, but smooths the shape of the distribution
- Why is Density Plot important?

Histogram vs. Density Plot

Scatterplot

- See relationship between two features
- Can be useful for extrapolating information

Boxplot (a.k.a Box-and-whisker plot)

- > Summary of data
- > Shows **spread** of data
- Gives range, interquartile range, median, and outlier information

Violin Plot

- Combination of boxplot and density plot to show the spread and shape of the data
- Can show whether the data is **normal**

Heatmaps

- Varying degrees of one metric are represented using color¹
- Especially useful in the context of maps to show geographical variation

Correlation Plot

- 2D matrix with all variables on each axis
- Entries represent the correlation coefficients between each pair of variables

Contours

- Used to show distribution of the data or a function
- Observe variation among portions of data
- In maps, they indicate the shape of the land

Using Maps

- Map visualization -> contextual information
 - Trends are not always apparent in the data itself
 - Ex) Longitudes and Latitudes in your data
 - Geographical Visualization

Example: Pittsburgh Data

Applications for Contour Map and Heatmap

Mosaic Plot

- Represents two-way frequency
- Horizontal dimension represents the frequency of one variable while the vertical dimension represents the other

Source

Challenges of Visualization

Higher Dimension

Non-Trivial

Time Consuming

Hard to show Uncertainty

Higher Dimensional Data

Color, time animations, or point shape can be used for higher dimensions

There is a limit to the number of features that can be displayed

Coming Up

Your problem set: Unleash your creativity by visualizing a data set

Next week: Introduction to Supervised Learning

See you then!

