

香港中文大學 The Chinese University of Hong Kong

CENG3430 Rapid Prototyping of Digital Systems

Lab01: Introduction to Vivado & Software Simulation

Vivado

- Programming using IDE for VHDL (Lab01)
- Running simulation to test your design (Lab01)
- Downloading the compiled code to FPGA (Lab02)

Focus of Lab01: Behavioral Simulation

I. Create a Vivado Project

Step 1: Start the Software

- Double click the icon of "Vivado"
- Or start "Vivado" from the Start Menu

- Click "Create Project"
- Or click "File" -> "Project" -> "New"

- Enter the "Project name" (e.g., lab01)
- Specify a proper "Project location" for storage

Select "RTL Project" -> "Next"

Click "Next"

Click "Boards" -> Select "ZedBoard" -> Click "Next"

If you see this box, just click "OK"

This is the programming interface of Vivado:

II. Writing the VHDL Code

Step 3: Start Programming

This is the programming interface of Vivado:

Step 3: Start Programming

 In the "Source Directory", double click the source file (e.g., lab01.vhd) created.

Seeing the file name appears twice in "Syntax Error Files" and "Non-module Files" is normal if the source code is empty or having syntax

errors.

Step 3: Start Programming

Implement a simple AND logic and save

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity lab01 is
  Port (
    A: in std_logic;
    B: in std logic;
    C: out std logic
end lab01;
architecture Behavioral of lab01 is
begin
    C \leftarrow A AND B;
end Behavioral;
```


III. Perform the Simulation

 Under the source window, right click on the "Simulation Sources" -> "Add sources..."

Select "Add or Create Simulation Sources" -> "Next"

If you see this box, just click "OK"

- The testbench file will not be generated automatically
- An easy way is to use Testbench Template Generator
 - 1. Visit https://vhdl.lapinoo.net/testbench/
 - 2. Paste your source code into it, and the website will generate the testbench file for you
 - ✓ Select "No clock generation"
 - ✓ Select "No reset generation"
 - 3. Copy the content generated by the website, and replace the content on tb_lab01.vhd

 Make sure that the entity name (i.e., tb_lab0) in the testbench file matches the testbench file name

Finish the stimuli process with one style below

```
port map (A => A,
                      B \Rightarrow B,
                      C \Rightarrow C):
29
           stimuli : process
30
31
           begin
               -- EDIT Adapt initialization as needed
32
               A <= '0';
33
34
               B \ll '0';
               wait for 100ms;
               A <= '0';
36
               B <= '1';
               wait for 100ms;
               A <= '1';
               B <= '0';
               wait for 100ms;
               A <= '1';
               B <= '1';
               wait for 100ms;
               wait:
           end process;
      end tb;
```

```
stimuli : process
30 □
31
           begin
32
               -- EDIT Adapt initialization as needed
33
               A <= '0';
               B \ll '0';
34
35
               wait for 100ms;
36
               assert(C = '0')
               report "Test failed for input 00" severity error;
38
               A <= '0':
39
               B <= '1';
               wait for 100ms;
41
42
               assert(C = '0')
               report "Test failed for input 01" severity error;
44
45
               A <= '1';
               B <= '0';
46
47
               wait for 100ns;
48
               assert(C = '0')
49
               report "Test failed for input 10" severity error;
50
               A <= '1';
51
52
               B <= '1';
53
               wait for 100ms;
54
               assert(C = '1')
55
               report "Test failed for input 11" severity error;
56
57
               wait:
58 🗀
           end process;
```

Style 1 (Simpler) (copyable version on the next slide)

Style 2 (With assertion)

Testbench Style 1

```
stimuli : process
   begin
       A <= '0';
       B <= '0';
       wait for 100ns;
       A <= '0';
       B <= '1';
       wait for 100ns;
       A <= '1';
       B <= '0';
       wait for 100ns;
       A <= '1';
       B <= '1';
       wait for 100ns;
       wait;
   end process;
```

You can copy this

Why Style 2 ?

Step 5: Run Simulation

Click "Run simulation" and select "Run Behavioral

Simulation"

Step 5: Run Simulation

- Verify the output(s) by checking all possible input(s)
 - Click it first, and use a la to adjust the timeline
 - If everything is alright, click X to exit

IV. Lab01 Task

Lab01: 2-bit Comparator

- Objectives and Aims:
 - Get familiar with VHDL and Vivado
- Requirements:
 - 1. Create a new project named "lab01"
 - 2. Implement a **2-bit comparator** using VHDL
 - 3 outputs are required (Both are std_logic)
 - less: When A < B, the output would be 1, otherwise 0</p>
 - equal: When A = B, the output would be 1, otherwise 0
 - greater: When A > B, the output would be 1, otherwise 0
 - Hint: Refer the 4-bit comparator in Lec01 (Page 31)
 - 3. Write a **testbench** file to test **all possible** input(s)
 - Run the behavioral simulation and screen capture the resulting waveform

Hint

• For 2.

One possible solution is using when else syntax

```
less <= '1' when (A < B) else '0';
equal <= '1' when (A = B) else '0';
greater <= '1' when (A > B) else '0';
```

• For 3.

You can check all test cases with an Excel spreadsheet

	A <= "00";	A <= "01";	A <= "10";	A <= "11";
B <= "00";				
B <= "01";				
B <= "10";				
B <= "11";				

Lab01: 2-bit Comparator

One possible problem: The simulation might stop earlier than you expect

Solution 1: Shorter the wait time (wait for 100ns ->

10ns)

• Solution 2:

- Change to a longer duration
- Click "Restart" then "Run All"

Lab01: 2-bit Comparator

A sample simulation result of 2-bit comparator

Lab01: Submission File Checklist

Submission Rule:

- 1. Submit the zip file following the above format to Blackboard Deadline: 12:30 on 22 Jan. 2025
 - Late submission is NOT acceptable (unless otherwise approved)

香港中文大學

The Chinese University of Hong Kong

Thank You!

