⑲ 日本国特許庁(JP)

⑪特許出願公開

⑫ 公 開 特 許 公 報(A)

平1-300506

⑤Int. Cl. ⁴

識別記号

庁内整理番号

43公開 平成1年(1989)12月5日

H 01 F 40/06

7354-5E

審査請求 未請求 請求項の数 1 (全8頁)

図発明の名称 磁気平衡式電流変成器

②特 顧 昭63-130329

男

②出 願 昭63(1988)5月30日

@発明者 森川

東京都千代田区有楽町1丁目1番2号 旭化成電子株式会

社内

⑫発明者 直井 敏

静岡県富士市鮫島2番地の1 旭化成電子株式会社内

⑩発明者 名井 一展

宮崎県延岡市旭町 6 丁目4100番地 旭化成電子株式会社内

人 旭化成電子株式会社 東京都千代田区有楽町1丁目1番2号

個代 理 人 弁理士 谷 義 一

明細音

1. 発明の名称

勿出 顋

磁気平衡式電流変成器

2. 特許請求の範囲

1)被測定電流の流れる1次導線を周回しかかつ空際を有する強磁性体からなる次導線と、前記コアの少でなくとも一部に巻回された2次導線と、前記2次の空隙に挿入る電源とを少なくとも有する電流とを少なくとも有する電流とを少なる極路で突き合わせて接触または接合の時を異なる磁路で突き合わせて接触または接合してなる磁路を形成することを特徴とする磁路で成器

(以下余白)

3. 発明の詳細な説明

[産業上の利用分野]

本発明は磁電変換素子を用いた磁気平衡式電流 変成器に関するものである。

[従来の技術]

第2図は従来の磁電変換素子を用いた電流変成器のの基本的な構成を示す。この電流変成器の原理を説明する。1次導線1を流れる1次電流近にはまりコア2に磁東が生起する。空はホール素子のは水ではないなりできるでは、2次電流では、2次電流では、3とには、2次電流では、3とには、2次電流では、4次電流では、2次電流にないできる。

第3図に避束計測式電流変成器を示す。1次導線1に流れる電流IIによってコア2に生ずる磁束を直接計測して電流IIを測定する。すなわち、空

酸3内に磁電変換素子4を挿入し、その出力を増 幅器6によって増幅し、出力端子14から電流また は電圧として取出す。

第2図に示した磁気平衡式電流変成器は、変流 比1.//12が2次導線と1次導線の巻線比n2/n1に 等しく、また、ホール素子4は定常的には零ガウ ス付近の磁束密度を測定するため、素子の感度の 温度依存性に影響されないことから、第3図に示 した磁束計測式電流変成器と比較して高精度の電 流測定が可能である。

[発明が解決しようとする課題]

しかし従来の磁気平衡式電流変成器は第2図に 示すような狭い空隙を有するコアに2次導線を巻 回するが、その際、トロイダル状のコイルを形成 するためには特別の巻線機を必要とし、かつ、巻 回速度が低いため工業的に量産することが困難 で、コストも高い。

また、磁気平衡式ではコアに生起する磁東を消去させるための2次電流を供給する必要があり、

別巻きコイルを使用する他の方法としては、第6図に示すように、コア2Aおよび2Bをコイル5に差し込んで組み立てる例もある。同図(A) は上面図、図(B) は側面図である。ホール素子4を挿入する空隙3に対向する積層部Bにおいて、図(B) に示すようにコアの厚さが大きくなり、図イルを積層部Bにも設ける場合にはコア2およびコイル5の寸法・形状に制約を受ける。また、コアは絶縁された状態で面接触しているため、温流変成 提集は減少するが 漏洩磁束 は多くなり、 電流変成 器の性能が悪化するという問題が起こる。

従来、ホール素子等の磁電変成素子を用いた磁 気平衡式電流変成器が、非接触の電流測定器としては高精度であるという長所があるにもかかわらず、広く一般に使われるまでに至っていないのは、上記の問題点に起因して工業的な量産に大きな支降を有し、コストが高いためである。

[課題を解決するための手段]

本発明は、上述した問題点を解決するために成

磁東計測式に比较して電源の消費電流が増す。

一般に、 2 次電流は変流比または垂数比に反比例する関係から、消費電流を低減するためには 2 次導線の巻数を増せばよいが、コア・コイルの寸法または形状およびトロイダル巻線機の構造から巻数にも限界があり、消費電流の低減が困難である

での問題点を解決するため、第4図およように、通常のトランスと同じよように、通常のトランスと同じよように、3分かに、3分かに、3分かに、3分かに、3分かに、3分かに、3分かに、3分がは4個では、3分がでは、3かがで

されたものであり、被測定電流の流れる1次海線を周回しかつ空陵を有する強磁性体からなるコアと、コアの少なくとも一郎に巻回された2次海線と、空際に挿入された磁電変換案子と、2次変成器において、コアが積層された強磁性体片からなり、かつ積層の隣接する層において強磁性体なる。

まず、積層方法から説明する。

第7 A 図は本発明における強磁性体片からなるコアの積層方法を、第7 B 図は従来の積層方法を示す。

第7 A 図に示すように、本発明においては、コアの隣接する層におけるコア 2 A と 2 B との突き合わせ位置が異なっている。一方従来法においては、第7 B 図に示すように、コア 2 A と 2 B との突き合せ位置は、コアの全層において同一位置である。

本発明の方法は突き合わせ部分に間隙があって

も、 隣接する層の強磁性体片は連続しているため、 隣接する強磁性体内に容易に迂回磁路が形成されて、コアの表面層を除けば強磁性体から外部へ漏洩する磁束を生起しない。 従ってコアの全積 層厚さに対して強磁性体片の厚さを十分に小さくすれば磁気抵抗の増加は極めて小さく、 動特性が 改良される。

一方、従来の方法では突き合わせ部分に間際があると、強磁性体片の端面が同じ位置にあるため、迂回磁路が空隙部分および周囲の空間部分に形成されて漏洩する磁束が増大する。

電流変成器の精度・周波数特性および直線性を、特に、電流変成器の測定範囲のうちでも小電流領域で良好にするためには、コアの磁気抵抗を極力低減する必要があり、従来はコアの端面に精密な表面研磨を施して密着させることが不可欠であったが、本発明はその必要がない。

具体的には、本発明では強磁性体片の突き合わせ部分は、第8図(A) に示すように、単に接触させる方法および第8図(B) に示すように、隙間部

第11図 (A) および (B) に示すように 1 個のポピン 9 (コイル 5) 、あるいは、同図 (C) に示すように 2 個のポピン 9 (コイル 5) が配設でき、本発明が解決しようとする問題点である容易で高速のコイル形成、および巻数増加による消費電流の低減を工業的に量産が可能な状態で解決できる。

さらに、強磁性体片を4分割し、かつ、辺の幅を等しくすると、たとえば、第12図に示すようにコア2A、2B、2Cおよび2Dを層毎に位置12Cないし12Hで突き合せることによって、第13図(A)~(D)に示すようにコイル5を1個から4個まで直列に接続して、巻数を段階的に広範囲に変えて変流比が大幅に調整できる。従って助特性が改良されるのみならず、測定範囲が異なる電流変成器を容易に製作できる。

[作用]

本発明によれば、強磁性体片を突き合わせた積 層構造と、ポピンの使用とにより、従来の方法と 比較して工業的に量産が可能で消費電流が少な 分に強磁性体を含む高透磁率の充填剂11を注入して接合する方法等により磁路を形成する。

なお、 秋暦方法は、第 7 A 図に示すように 1 暦 毎に異なる位置で突き合わせる場合の他に、第 9 図に示すように、複数層を単位として、隣接する 単位毎に異なる位置で突き合わせるようにして強 磁性体片の積層を容易にしてもよい。

次に、コイルを説明する。本発明ではボビンを 使用して別巻で量産性の優れた2次導線のコイル を作製し、そのコイルに強磁性体片を挿入してまた は近れたの形状は短れている。コア大は短短では は正方形とし、それらのかどは丸みがあっては はですることにより、 があっている。とはれるのかがあっても はい、平行な辺の幅を等しくと個コア上に配設で はのボビンを1個ないし2個コア上に配設で る。すなわち第10図(A)に上面図を、同図(B) するのすように、空隙3の中心線10に対けと 対称な位置12Aおよび12Bにおいて強強性体と で 対称な位置12Aおよび12Bにおいて強強性体と とれぞれ等しく、または、4辺全部の幅を すれば、1対の強磁性体片をコイルに は、1対の強磁性体片をコイルに は、1対の

く、広い測定範囲の計測が出来るばかりでなく、 高周波特性の良いコアと組み合わせると、高周波 特性を損なうことなく種々の電流変成器が低コス トで量産できる。

[実施例]

本発明の電流変成器のコアに用いられる強磁性体片は高透磁率で飽和磁束密度が大きく、残留留東密度と保磁力の小さい軟磁性材料として、、のでは、ないながない。その板を対すために確い方が良いが、板の変形で積層時に密着性を損なわないため、0.1~0.4mm が良好であった。また、コアを強磁性のの焼結体、例えばMn2n系フェライト材で構成してもよく、その場合積層数は最低2でもよい。

2 次導線の線径は大きくして抵抗を低減し発熱量を小さくするが、巻き上げたコアの外径が増大すると特性が劣るため、変流比1000ないし2000程度では直径0.05ないし0.12mmの銅線が良好であった。

磁電変換素子は、InSb. InAs. InおよびAsを含む3元または4元の化合物半導体薄膜からなるホール素子やGaAsホール素子等は良好で、特に、ホール素子感磁部の少なくとも一方の側に強磁性体片が配設されて磁気増幅作用を持つホール素子はより好ましい。

以下に本発明の一実施例を第1図に従って説明 する。第1図(A) は上面図、(B) は空隙3と対向 する側から変成器を見た背面図である。

第1図において、2Aおよび2Bは1対の強磁性体片で厚さは0.2mm、幅は5mmのパーマロイ板を用いた。構造は第10図に示したように中心線10に対して対称な位置12Aおよび12Bにおいて、すなわち隣接する層で異なる位置において、強磁性体片2Aおよび2Bを突き合わせて接触させて磁路を形成し、積層数は12であった。

2 次導線はポピン 9 に巻回されてコイル 5 としたが、直径 0.08 mmの網線で巻数は 1000回とし、 2 個のポピン 9 をコア上に設けて両コイルを直列接続とした。即ち変流比は 2000であった。

構成した場合の周波数特性を示し、この場合周波 数特性が平坦化して、従来技術によるトロイダル 巻きと同等もしくはそれ以上に性能が向上する効 果が得られた。

[発明の効果]

以上述べたように、本発明によれば磁気平衡式電流変成器が隣接する層で異なる位置において強磁性体片を突き合わせた積層構造と、ポピンにコイルを巻回して強磁性体片を挿入した構造とを有するので、高精度で非接触の電流測定が、少ない消毀電流で、かつ、広い測定範囲にわたって可能な種々の電流変成器を低コストで製造できる。

本発明の電流変成器の周波数特性は特に良好で、第2図に示されるようなトロイダル型コアを使う電流変成器と同等もしくはそれ以上の特性を有する。

磁気平衡式電流変成器のコアは、零磁東付近が 動作領域となるため高透磁率の磁性材料、たとえば、高ニッケル含有のパーマロイ材等を使うこと

電源 6 にホール素子 4 の出力電圧を入力すると 共に、電源 6 によりコイル 5 に給電して 1 次導線 によってコアに生起する磁束を消失させた。

電流変成器の出力は、端子14から電流信号として 2 次電流が取り出されるが、端子14に抵抗器を接続して電圧信号として取り出すことも可能であ

この様な装置において、直線型ポピン9を使用することによって、コイルは1個当たり約10秒で簡単な巻線機により形成され、電源6の消災電流は1次電流100Aの場合に2次電流50mAを含めて60mAになった。

第14図に本装置を巻数1000回のコイル1個、すなわち変流比1000で構成した場合、一定の1次電流に対する2次電流の周波数依存性、いわゆる周波数特性を示す。第15図は、前述の変流比2000で

が望ましいが、同材の優れた磁気特性を発揮させるためには高温の厳密なアニール処理が不可欠である。一般に、この種の電流変成器は、コアの磁路形状を円形とし、かつ、 2 次導線をコア全周に均一に巻く構造のものが優れた特性を有するが、コア材料の特性を損なわずに量産することは困難であった。

本発明によれば、角形の磁路形状として2次導線をコアの一郎に巻く構造でも、磁極片を差し込むだけで残留応力を発生させずにコアを形成できるため、高透磁率材がその優れた磁気特性を保持したまま使用できた結果、良好な特性の電流変成器を付する。また焼結体コアにおいても分割が可能となり、同様に良好な特性の電流変成器と低コストで量産でき、工業的に大きな効果を有する。

4. 図面の簡単な説明

第1図は本発明の実施例を示す図、

第2図は従来の磁気平衡式電流変成器の基本的

特開平1-300506(5)

な構成を示す図、

第3図は磁東計測式電流変成器の基本的な構成を示す図。

第4図および第5図は通常のトランス型のコア の構造を示す図、

第 6 図は別巻きコイルを使用する従来のコアの 構造を示す図、

第7A図および第7B図はそれぞれ本発明および従来のコアの積層構造を示す図、

第8図、第9図および第10図は本発明の強磁性体件を突き合わせてコアを積層して形成する構造を示す図、

第 1 1 図 は コ イ ル お よ び ボ ピ ン の 配 設 を 示 す 図、

第12図は4分割の強磁性体片からなるコアを示す図、

第13図は4分割の強磁性体片からなるコアにコイルおよびコアを配設する例を示す図、

第14図は変流比1000の磁気平衡式電流変成器の 2次電流の周波数依存性を示す特性図、 第15図は本発明の実施例の周波数依存性を示す 特性図である。

1 … 1 次導線、

2…強磁性体コア、

2 A . 2 B . 2 C . 2 D ... 強磁性体片、

3 … 空隙、

4 … 磁電変換架子、

5…コイル、

6…電源および増幅器、

7…コアの端面、

8 … 積層部、

9…ポピン、

10…中心線、

11…高透磁率の充塡剤、

12A, 12B ··· 強磁性体片の突合せ部、

13…中空の隔壁、

14…電流変成器の出力端子。

本発明の実施例を示す図 第 1 図

従来の磁気平衡式 电流变成器 の基本的 な構成 を示す図 第2図

磁束計測式電流変成器の基本的な構成を示す図 第 3 図

通常のトランス型のコアの構造を示す図 第 4 図

通常のトランス型のコアの構造を示す図 第 **5 図**

本発明におけるコア積層構造を示す図 第8図

本発明にかけるコア積層構造を示す図

第 9 図

別巻きコイルを使用する従来のコアの構造を示す囚 第 6 図

本発明にかけるコア積月 構造を示す図 第7A 図

従来のコア特層構造 を示す図 第78 図

発明におけるコアの種屋構造を示す図 第10図

本発明にかける4分割の残磁性体片からなるコアを示す図 第12図

第13図

変流比 1000の磁気平衡式電流変成器の2次電流の 周波教 依存性を示す特性図

第14図

本発明の実施例の周波教依存性を示す特性図 第15図