ShunZhu

Courseware

Course Info Discussion

ssion Progress

Textbook

Slides

Syllabus

MATLAB

Video Downloads

LEVEL SETS (20 points possible)

Some level sets of a function f are shown below. The curve labeled 1 shows $\{x \mid f(x)=1\}$, etc.

Which of the following properties could f have?

- Convex
- □ Concave
- Quasiconvex
- Quasiconcave

Now consider the following function:

Which of the following properties could f have?

- Convex
- Concave
- Quasiconvex
- Quasiconcave

Show Answer

You have used 0 of 2 submissions

FUNCTIONS AND EPIGRAPHS (30 points possible)

The epigraph of a function f is a halfspace if and only if

- \circ f is convex
- \circ f is affine
- \circ f is quasiconvex
- \bigcirc f is concave.

The epigraph of a function f is a convex cone if and only if

- $\bigcirc f$ is affine
- $\bigcirc f$ is linear
- ullet f is convex and positively homogeneous, i.e., f(lpha x)=lpha f(x) for any x and any $lpha\geq 0$.

The epigraph of a function f is a polyhedron if and only if

- ${}^{\bigcirc}\,f$ is piecewise affine
- igcup f is convex and piecewise affine
- igcup f is quasiconvex and piecewise affine.

(Piecewise affine is also called piecewise linear.)

CONVEXITY AND QUASICONVEXITY (40 points possible)

For each of the following functions, determine whether it is convex, concave, quasiconvex, or quasiconcave. (Check all that apply.)

$$f(x)=e^x-1$$
 on ${f R}$ is

- ☐ Convex
- Concave
- Quasiconvex
- Quasiconcave.

$$f(x_1,x_2)=x_1x_2$$
 on ${f R}_{++}^2$ is

- Convex
 - Concave
 - Quasiconvex
 - Quasiconcave.

$$f(x_1,x_2)=1/(x_1x_2)$$
 on ${f R}_{++}^2$ is

- Convex
- Concave
- Quasiconvex
- Quasiconcave.

$$f(x_1,x_2)=x_1/x_2$$
 on ${f R}_{++}^2$ is

- Convex
- Concave
- Quasiconvex
- Quasiconcave.

Show Answer

You have used 0 of 2 submissions

A GENERAL VECTOR COMPOSITION RULE (20 points possible)

Suppose

$$f(x) = h(g_1(x), g_2(x), \ldots, g_k(x))$$

where $h: {f R}^k o {f R}$ is convex, and $g_i: {f R}^n o {f R}$. Suppose that for each i, one of the following holds:

h is nondecreasing in the ith argument, and g_i is convex

 g_i is affine.

Fill in the blanks in the proof below to show that f is convex. (This composition rule subsumes all the ones given in the book and is the one used in software systems such as CVX.) Assume that $\operatorname{\mathbf{dom}}\ h = \mathbf{R}^k$; the result also holds in the general case when the monotonicity conditions above are imposed on \tilde{h} , the extended-valued extension of h.

Proof.

Fix x, y, and $\theta \in [0,1]$, and let $z=\theta x+(1-\theta)y$. Let's re-arrange the indexes so that g_i is affine for $i=1,\ldots,p$, g_i is convex for $i=p+1,\ldots,q$, and g_i is concave for $i=q+1,\ldots,k$. Therefore we have

$$g_i(z) = \theta g_i(x) + (1- heta)g_i(y), \ \ i=1,\ldots,p,$$

$$g_i(z) = \theta g_i(x) + (1- heta)g_i(y), \ \ i=p+1,\dots,q,$$

$$g_i(z) = \theta g_i(x) + (1-\theta)g_i(y), \ i = q+1,\ldots,k.$$

The correct inequalities in the above equations are

$$\circ =, \geq, \leq$$

$$0 \ge, \le, \le$$

$$\bigcirc=,\leq,\geq$$

$$\bigcirc =, \geq, \geq$$

We then have

$$egin{aligned} f(z) &= h(g_1(z), g_2(z), \ldots, g_k(z)) \ &\leq h(heta g_1(x) + (1- heta) g_1(y), \ldots, heta g_k(x) + (1- heta) g_k(y)) \ &\leq heta h(g_1(x), \ldots, g_k(x)) + (1- heta) h(g_1(y), \ldots, g_k(y)) \ &= heta f(x) + (1- heta) f(y). \end{aligned}$$

The second line holds since, for $i=p+1,\ldots,q$, we have ______ the ith argument of h, which is (by assumption) nondecreasing in the ith argument, and for $i=q+1,\ldots,k$, we have _____ the ith argument, and h is nonincreasing in these arguments. The third line follows from _____

The correct phrases that fill the blank spots are

- ullet increased, decreased, convexity of h
- ullet increased, increased, convexity of f
- lacksquare decreased, increased, convexity of h.

Show Answer

You have used 0 of 2 submissions

CONJUGATE FUNCTIONS (10 points possible)

What is the conjugate function of $f(x) = \max_{i=1,\ldots,n} \, x_i$ on ${f R}^n$?

$$f^*(y) = egin{cases} 0 & ext{if } y \succeq 0, \ \mathbf{1}^T y = 1 \ \infty & ext{otherwise} \end{cases}$$

$$f^{st}(y) = egin{cases} 0 & ext{if } y \succeq 0, \ \mathbf{1}^T y \leq 1 \ \infty & ext{otherwise} \end{cases}$$

$$f^*(y) = egin{cases} 0 & ext{if } 0 \preceq y \preceq 1 \ \infty & ext{otherwise} \end{cases}$$

$$f^*(y) = egin{cases} 0 & ext{if } y \succeq 0, \ \mathbf{1}^T y = n \ \infty & ext{otherwise} \end{cases}$$

Show Answer

You have used 0 of 2 submissions

Stanford University

SU Home Maps & Directions Search Stanford Terms of Use Copyright Complaints

© Stanford University, Stanford, California 94305