

FCC 15.247& RSS-247 2.4 GHz Test Report

for

Qisda Corporation

157, Shan-Ying Road, Gueishan, Taoyuan 333, Taiwan, R.O.C.

Product Name : LCD Monitor

Model Name : (1)HSD-0015-Q (2)OMEN X 65

(3)Omen X Emperium 65 Display (4)OMEN X Emperium 65 with

NVIDIA G-SYNC HDR

(5)OMEN X Emperium 65 Big Format Gaming Display with

NVIDIA G-SYNC HDR

Brand HP

REF. No. : RL-24029, RL-24472

FCC ID : VRSHSD-0015-Q

IC : 8729A-HSD0015Q

Prepared by: : AUDIX Technology Corporation,

EMC Department

The test report is based on a single evaluation of one sample of the above-mentioned products. It does not imply an assessment of the whole production and does not permit the use of the test lab logo.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

File Number: C1M1809237

Tel: +886 2 26099301 Fax: +886 2 26099303

Report Number: EM-F180510

TABLE OF CONTENTS

<u>De</u>	escription	Page
TE	ST REPORT CERTIFICATION	4
1.	REVISION RECORD OF TEST REPORT	5
2.	SUMMARY OF TEST RESULTS	6
3.	GENERAL INFORMATION	
	3.1. Description of Application	7
	3.2. Description of EUT	8
	3.3. Antenna Information	
	3.4. EUT Specifications Assessed in Current Report	
	3.5. Description of Key Components	
	3.6. Test Configuration3.7. Tested Supporting System List	
	3.8. Setup Configuration	
	3.9. Operating Condition of EUT	
	3.10. Description of Test Facility	
	3.11. Measurement Uncertainty	15
4.	MEASUREMENT EQUIPMENTLIST	
	4.1. Conducted Emission Measurement	
	4.2. Radiated Emission Measurement	
	4.3. RF Conducted Measurement	
5.	CONDUCTED EMISSION	
	5.1. Block Diagram of Test Setup	
	5.2. Conducted Emission Limit	
	5.3. Test Procedure	
_	RADIATED EMISSION	
6.		
	6.1. Block Diagram of Test Setup6.2. Radiated Emission Limits	
	6.3. Test Procedure	
	6.4. Measurement Result Explanation	
	6.5. Test Results	
7.	20dB BANDWIDTH	22
	7.1. Block Diagram of Test Setup	22
	7.2. Specification Limits	
	7.3. Test Procedure	22
	7.4. Test Results	22
8.	CARRIER FREQUENCY SEPARATION	23
	8.1. Block Diagram of Test Setup	23
	8.2. Specification Limits	
	8.3. Test Procedure	
	8.4. Test Results	
9.	TIME OF OCCUPANCY	
	9.1. Block Diagram of Test Setup	
	9.2. Specification Limits	
	9.3. Test Procedure	

Audix Technology Corp. No. 53-11, Dingfu, Linkou, Dist., New Taipei City244, Taiwan

Tel:	+886	2	26099301
Fax:	+886	2	26099303

	9.4.	Test Results	24
10.	NUN	MBER OF HOPPING CHANNELS	25
	10.1.	Block Diagram of Test Setup	25
	10.2.	Specification Limits	25
	10.3.	Test Procedure	25
	10.4.	Test Results	25
11.	MAX	XIMUM PEAK OUTPUT POWER	26
	11.1.	Block Diagram of Test Setup	26
		Specification Limits	
		Test Procedure	
		Test Results	
12.	EMI	SSION LIMITATIONS	27
		Block Diagram of Test Setup	
	12.2.	Specification Limits	27
		Test Procedure	
		Test Results	
13.	DEV	TATION TO TEST SPECIFICATIONS	28

APPENDIX A TEST DATA AND PLOTS APPENDIX B TEST PHOTOGRAPHS

TEST REPORT CERTIFICATION

Applicant : Qisda Corporation

Manufacturer : Qisda Corporation

Factory #1 : Qisda (Suzhou) Co., Ltd.

Factory #2 : Qisda Czech s.r.o. Factory #3 : Qisda Czech s.r.o.

Factory #4 : QisdaOptronics (Suzhou) Co., Ltd. Factory #5 : Shanghai Hewiett-Packard Co., Ltd.

Factory #6 : HP Singapore Personal Service Division Asia.

Factory #7 : Hewiett-Packard Company

EUT Description

(1) Product : LCD Monitor

(2) Model : (1) HSD-0015-Q (2) OMEN X 65 (3) Omen X Emperium 65 Display

(4)OMEN X Emperium 65 with NVIDIA G-SYNC HDR(5)OMEN X Emperium 65 Big Format Gaming Display with

NVIDIA G-SYNC HDR

(3) Brand : HP

(4) Ref. No. : RL-24029, RL-24472(5) Power Rating : AC 100-240V, 50/60Hz

Applicable Standards:

47CFRFCC Part 15 Subpart C RSS-Gen (Issue 5), April 2018 RSS-247 (Issue 2), February 2017 ANSI C63.10:2013

Audix Technology Corp. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Audix Technology Corp. does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens and samples.

Date of Report: 2018. 12. 07

Reviewed by:

(Annie Yu/Administrator)

Approved by:

(Ben Cheng/Manager)

File Number: C1M1809237 Report Number: EM-F180510

1. REVISION RECORD OF TEST REPORT

Edition No	Issued Date	Revision Summary	Report Number
0	2018. 12. 07	Original Report	EM-F180510

2. SUMMARY OF TEST RESULTS

Rule		Description	Results
FCC	IC	Description	Results
15.207	RSS-Gen §8.8	Conducted Emission	PASS
15.247(d)/15.205	RSS-Gen §8.9 RSS-247 §5.5	Radiated Band Edge and Radiated Spurious Emission	PASS
15.247(a)(1)	RSS-247 §5.1(2)	20dB Bandwidth	PASS
15.247(a)(1)	RSS-247 §5.1(2)	Carrier Frequency Separation	PASS
15.247(a)(1)(iii)	RSS-247 §5.1(4)	Time of Occupancy	PASS
15.247(a)(1)(iii)	RSS-247 §5.1(4)	Number of Hopping Channels	PASS
15.247(b)(1)	RSS-247 §5.1(2)	Maximum Peak Output Power	PASS
15.247(d)	RSS-247 §5.5	Conducted Band Edges and Conducted Spurious Emission	PASS
15.203	RSS-Gen §8.3	Antenna Requirement	Compliance

3. GENERAL INFORMATION

3.1. Description of Application

Applicant	Qisda Corporation 157, Shan-Ying Road, Gueishan, Taoyuan 333, Taiwan, R.O.C.		
Manufacturer	Qisda Corporation NO. 157 & 159, SHANYING RD., GUEISHAN DIST., TAOYUAN CITY 33341, TAIWAN, R.O.C.		
Factory #1	Qisda (Suzhou) Co., Ltd. No. 169, Zhujiang Road, New District, Suzhou, Jiangsu Province, P.R. China		
Factory #2	Qisda Czech s.r.o. Turanka 114, 62700 BmoSlatina Czech Repubilc		
Factory #3	Qisda Czech s.r.o. Turanka 98B, 62700 BmoSlatina Czech Repubilc		
Factory #4	Qisda Optronics(Suzhou)Co., Ltd No. 169, Zhujiang Road, New District, Suzhou, Jiangsu Province, P.R. China		
Factory #5	Shanghai Hewiett-Packard Co., Ltd. 25 Yun Qiao Rd., Pudong, 201206 Shanghai, China.		
Factory #6	HP Singapore Personal Service Division Asia. 452 ALEXSNDRA ROAD SINGAPORE 119961		
Factory #7	Hewiett-Packard Company 11445 Compaq Center Drive West Houston, TX77070, U.S.A.		
Product	LCD Monitor		
Model	(1)HSD-0015-Q (2)OMEN X 65 (3)Omen X Emperium 65 Display (4)OMEN X Emperium 65 with NVIDIA G-SYNC HDR		
iviodei	(5)OMEN X Emperium 65 Big Format Gaming Display with NVIDIA G-SYNC HDR		
	The difference between above models is in sales marketing.		
Brand	HP		

3.2. Description of EUT

Test Model	HSD-0015-Q			
Serial Number	N/A			
Power Rating	AC 100-240, 50/60Hz			
RF Features	WLAN:802.11a/b/g/n/ac Bluetooth: BT and BLE			
	2.4 GHz			
	802.11b 1T1R			
	802.11g 1T1R			
	802.11n-HT20 2T2R			
	BT/BLE 1T1R			
Transmit Type	UNII Bands			
	802.11a 1T1R 802.11n-HT20/ 2T2P			
	802.11n-H120/ 802.11ac-VHT20			
	802 11n-HT40/			
	802.11ac-VHT40 2T2R			
	802.11ac-VHT80 2T2R			
Sample Status	Production			
Date of Receipt	2018. 09. 26			
Date of Test	2018. 10. 08 ~ 11. 06			
Interface Ports of EUT	Left Side View One RJ-45 Port Two USB Type A Down Stream Ports One Display Port Two HDMI Ports One HDMI (ARC) Port One S/PDIF Port One Headphone out Port			
	Right Side View Two USB Type A Charge Port			
	Back View			
Accessories Supplied	 One DC In Port Display Cable HDMI Cable AC Power Cord (3C) SHIELD Remote (FCC ID:VOB -P2930/IC: 7361A-P2930) 			

3.3. Antenna Information

2.4G	2.4G Antenna									
No.	Antenna Part Number	Manufacture	Manufacture Antenna Type Frequency		Max Gain (dBi)					
					-0.07					
1	AEM6Y-100000 (Main)	ACON	PIFA	2450	-0.42					
				2500	-0.57					
	1 F1 ((1 1 1 0 0 0 0 1	Lay 100001		2400	2.73					
2	AEM6Y-100001 (AUX)	ACON	PIFA	2450	2.43					
				2500	2.53					

5G A	5G Antenna									
No.	Antenna Part Number	Manufacture	Antenna Type	Frequency (MHz)	Max Gain (dBi)					
				5150	2.89					
1	AEM6Y-100000 (Main)	ACON	PIFA	5350	2.77					
1				5470	2.98					
				5850	1.32					
				5150	3.86					
2	AEM6Y-100001 (AUX)	ACON	PIFA	5350	2.93					
				5470	2.64					
				5850	1.71					

3.4. EUT Specifications Assessed in Current Report

Mode	Fundamental Range (MHz)	Channel Number	Modulation	Data Rate (Mbps)
Bluetooth	2402-2480	79	FHSS (GFSK, π /4 DQPSK, 8-DPSK)	1/2/3

	Channel List						
Channel Number	Frequency (MHz)						
00	2402	20	2422	40	2442	60	2462
01	2403	21	2423	41	2443	61	2463
02	2404	22	2424	42	2444	62	2464
03	2405	23	2425	43	2445	63	2465
04	2406	24	2426	44	2446	64	2466
05	2407	25	2427	45	2447	65	2467
06	2408	26	2428	46	2448	66	2468
07	2409	27	2429	47	2449	67	2469
08	2410	28	2430	48	2450	68	2470
09	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

3.5. Description of Key Components

None

3.6. Test Configuration

Mode	Duty Cycle (x)	T (ms)	Duty Cycle Factor (dB)
BT	N/A	2.891	N/A

AC Conduction				
Test Case	Normal operation			

	Item	Modulation	Data Rate	Test Channel
Radiated Test Case	Radiated Band Edge Note1	GFSK	1Mbps	00/78
	Radiated Band Edge	8-DPSK	3Mbps	00/78
	Radiated Spurious Emission Note1	GFSK	1Mbps	00/39/78
	20 dB B di dd	GFSK	1Mbps	00/39/78
	20dB Bandwidth	8-DPSK	3Mbps	00/39/78
	Coming Engage Segmention	GFSK	1Mbps	00/39/78
	Carrier Frequency Separation	8-DPSK	3Mbps	00/39/78
	T: of O	GFSK	1Mbps	00/39/78
	Time of Occupancy	8-DPSK	3Mbps	00/39/78
Conducted Test	Namel and Gillery in Changels	GFSK	1Mbps	Hopping
Case Note2	Number of Hopping Channels	8-DPSK	3Mbps	Hopping
	Mariana Paula Outunt Paula	GFSK	1Mbps	00/39/78
	Maximum Peak Output Power	8-DPSK	3Mbps	00/39/78
	Dan d Edana	GFSK	1Mbps	00/78
	Band Edges	8-DPSK	3Mbps	00/78
	Savaious Emission	GFSK	1Mbps	00/39/78
	Spurious Emission	8-DPSK	3Mbps	00/39/78

I vote 1. I vioune De vie	Note	1:	Mobi	le I	Devic	e
---------------------------	------	----	------	------	-------	---

Portable Device, and 3 axis were assessed. The worst scenario for Radiated Spurious Emission	on as
follow: Lie Side Stand	

Note 2: We performed testing of the highest and lowest data rate.

3.7. Tested Supporting System List

3.7.1. Support Peripheral Unit

No.	Product	Brand	Model No.	Serial No.	Approval
		FUJITSU	ESPRIMO P757/E94+	S26361-K1444-V220	FCC By DoC
1.	PC System	НР	HP ProDesk 490 G1 MT Business PC	SGH437TNKC	FCC By DoC
2.	Notebook PC	Lenovo	TP00034A	895097	FCC By DoC
3.	Notebook PC	HP	P7Q52PA	N/A	Contains FCC ID:PD98260NG
4.	USB Keyboard	HP	KB-0316	N/A	FCC By DoC
5.	USB Mouse	HP	M-UAE96	FATSK0K8FYKADW	FCC By DoC
6.	Printer	HP	Deskjet 2000	CN25N13K36	FCC By DoC
7.	I-POD Player	APPLE	A1204	4H722TFVVTE	FCC By DoC
	USB 3.0 HDD #1	SONY	HD-B1	BBW3DEK78041FC8	FCC By DoC
0	USB 3.0 HDD #2	SONY	HD-B1	BBW3DEK78041FC3	FCC By DoC
8.	USB 3.0 HDD #3	SONY	HD-B1	BBW3DEK78041FEF	FCC By DoC
	USB 3.0 HDD #4	SONY	HD-B1	BBW3DEK78041FE7	FCC By DoC
0	DVD Player #1	SONY	BDP-S370	3213944	N/A
9.	DVD Player #2	SONY	BDP-S780	3201205	N/A
10.	Speaker	Edifier	S330D	N/A	N/A
11.	Earphone	LGITON	FS-99	N/A	N/A
12.	Wireless Router	D-Link	DIR-868L	R3WE1D7002319	FCC ID:KA2IR868LA1 Contains FCC ID: RRK2012060056-1

3.7.2. Cable Lists

No.	Cable Description Of The Above Support Units
	HDMI Cable: Shielded, Detachable, 1.8m, Bonded two ferrite cores
1.	DP Cable: Shielded, Detachable, 1.8m
	AC Power Cord: Unshielded, Detachable, 1.8m
2.	LAN Cable: Unshielded, Detachable, 3m
	USB Cable: Unshielded, Detachable, 1.5m
3.	Adapter: HP, M/N HSTNN-CA40,
3.	DC Cord: Shielded, Undetachable, 1.8m, Bonded a ferrite core
	AC Power Cord: Unshielded, Detachable, 1.8m
4.	PS2 Cable: Shielded, Detachable, 1.8m
5.	USB Cable: Shielded, Detachable, 1.8m
6.	USB Cable: Unshielded, Detachable, 1.5m
7.	USB Cable: Unshielded, Detachable, 1.0m
8.	USB Cable: Unshielded, Detachable, 1.1m
9.	HDMI Cable: Shielded, Detachable, 1.8m
10.	Optical Cable: Unshielded, Detachable, 1.5m
11.	Audio Cable: Unshielded, Detachable, 1.1m
12.	LAN Cable: Unshielded, Detachable, 10m

3.8. Setup Configuration

3.8.1. EUT Configuration for Power Line

3.8.2. EUT Configuration for Radiated Emission

3.8.3. EUT Configuration for RF Conducted Test Items

3.9. Operating Condition of EUT

Test program "cmd" is used for enabling EUT BT function under continues transmitting and choosing data rate/ channel.

3.10.Description of Test Facility

Name of Test Firm	Audix Technology Corporation / EMC Department No. 53-11, Dingfu, Linkou Dist., New Taipei City 244, Taiwan Tel: +886-2-26092133 Fax: +886-2-26099303 Website: www.audixtech.com Contact e-mail: attemc_report@audixtech.com
Accreditations	The laboratory is accredited by following organizations under ISO/IEC 17025:2005 (1) NVLAP(USA) NVLAP Lab Code 200077-0 (2) TAF(Taiwan) No. 1724
Test Facilities	FCC OET Designation Number under APEC MRA by NCC is: TW1724 (1) No. 8 Shielding Room (2) Semi-Anechoic Chamber (IC Test Site Registration No.:5183B-1)

3.11.Measurement Uncertainty

Test Item	Test Item Frequency Range	
Conduction Test	150kHz~30MHz	±3.50dB
Radiation Test	30MHz~1000MHz	± 3.68dB
(Distance: 3m)	Above 1GHz	±5.82dB

Remark : Uncertainty = $ku_c(y)$

Test Item	Uncertainty
20dB Bandwidth	±0.2kHz
Carrier Frequency Separation	±0.2kHz
Time of Occupancy	±0.03sec
Maximum peak Output power	± 0.52dB
Conducted Emission Limitations	± 0.13dB

4. MEASUREMENT EQUIPMENTLIST

4.1. Conducted Emission Measurement

Item	Туре	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval
1.	Test Receiver	R&S	ESCI	101276	2018. 03. 21	1 Year
2.	A.M.N.	R&S	ESH2-Z5	100366	2018. 07. 18	1 Year
3.	L.I.S.N.	Kyoritsu	KNW-407	8-1539-3	2018. 01. 09	1 Year
4.	Pulse Limiter	R&S	ESH3-Z2	101495	2018. 01. 16	1 Year
5.	Signal Cable	Thermax/CDT	RG-142	CE-07	2018. 05. 24	1 Year
6.	Digital Thermo- Hygro Meter	iMax	HTC-1	No.7 S/R	2018. 04. 20	1 Year

4.2. Radiated Emission Measurement

Item	Туре	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval
1.	Spectrum Analyzer	Agilent	N9010A-526	MY53400071	2018. 09. 13	1 Year
2.	Test Receiver	R & S	ESCS30	100338	2018. 06. 20	1 Year
3.	Amplifier	HP	8447D	2944A06305	2018. 01. 30	1 Year
4.	Amplifier	HP	8449B	3008A02678	2018. 03. 06	1 Year
5.	Loop Antenna	R&S	HFH2-Z2	891847/27	2017. 12. 18	1 Year
6.	Bilog Antenna	CHASE	CBL6112D	33821	2018. 01. 21	1 Year
7.	Horn Antenna	EMCO	3116	2653	2017 .12. 19	1 Year
8.	Horn Antenna	EMCO	3115	9609-4927	2018. 06. 22	1 Year
9.	2.4GHz Notch Filter	K&L	7NSL10-2441. 5E130.5-00	1	2018. 07. 24	1 Year
10.	3GHz High-pass Filter	Microwave	H3G018G1	484796	2018. 08. 22	1 Year
11.	Digital Thermo-Hygro Meter	iMax	HTC-1	No.1 3m A/C	2018. 04. 20	1 Year
12.	Test Software	Audix	e3	V.6.110601	N.C.R.	N.C.R.

4.3. RF Conducted Measurement

Item	Туре	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval
1.	Spectrum Analyzer	Keysight	N9010B-544	MY55460198	2018. 04. 26	1 Year
2.	Power Meter	Anritsu	ML2495A	1145008	2018. 11. 07	1 Year
3.	Power Sensor	Anritsu	MA2411B	1126096	2018. 11. 07	1 Year
4.	Digital Thermo-Hygro Meter	Shenzhen Datronn Electronics	KT-905	RF	2018. 04. 20	1 Year

File Number: C1M1809237 Report Number: EM-F180510

5. CONDUCTED EMISSION

5.1. Block Diagram of Test Setup

5.1.1. Block Diagram of EUT Indicated as section 3.8

5.1.2. Shielded Room Setup Diagram

Ground Plane

5.2. Conducted Emission Limit

Emagnamay	Conducted Limit		
Frequency	Quasi-Peak Level	Average Level	
150kHz ~ 500kHz	66 ~ 56 dBμV	$56 \sim 46 \text{ dB}\mu\text{V}$	
500kHz ~ 5MHz	56 dBμV	46 dBμV	
$5MHz \sim 30MHz$	60 dBμV	50 dBμV	

Remark 1.: If the average limit is met when using a Quasi-Peak detector, the measurement using the average detector is not required.

2.: The lower limit applies to the band edges.

5.3. Test Procedure

- 5.3.1. To set up the EUT as indicated in ANSI C 63.10. The EUT was placed on the table which has 80 cm height to the ground and 40 cm distance to the conducting wall.
- 5.3.2. Power supplier of the EUT was connected to the AC mains through an Artificial Mains Network (A.M.N.).
- 5.3.3. The AC power supplies to all peripheral devices must be provided through line impedance stabilization network (L.I.S.N.)
- 5.3.4. Checking frequency range from 150kHz to 30 MHz and record the emission which does not have 20 dB below limit.

5.4. Test Results

6. RADIATED EMISSION

6.1. Block Diagram of Test Setup

- 6.1.1. Block Diagram of EUT Indicated as section 3.8
- 6.1.2. Setup Diagram for 9kHz-30MHz

6.1.3. Setup Diagram for 30-1000 MHz

6.1.4. Setup Diagram for above 1GHz

6.2. Radiated Emission Limits

In any 100kHz bandwidth outside the frequency band, the radio frequency power produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level. In addition, radiated emissions which fall in restricted bands, as defined in Section 15.205/RSS-Gen Section 8.10 table 6, must also comply with the radiated emission limits specified as below.

Frequency (MHz)	Distance(m)	Limits	
		dBμV/m	μV/m
0.009 - 0.490	300	67.6-20 log f(kHz)	2400/f kHz
0.490 - 1.705	30	87.6-20 log f(kHz)	24000/f kHz
1.705 - 30	30	29.5	30
30 - 88	3	40.0	100
88- 216	3	43.5	150
216- 960	3	46.0	200
Above 960	3	54.0	500
Above 1000	3	74.0 dBμV/m (Peak) 54.0 dBμV/m (Average)	

Remark: (1) $dB\mu V/m = 20 \log (\mu V/m)$

- (2) The tighter limit applies to the edge between two frequency bands.
- (3) Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.
- (4) Fundamental and emission fall within operation band are exempted from this section.
- (5) Pursuant to ANSI C63.10: 6.6.4.3, if the maximized peak measured value complies with the average limit, then it is unnecessary to perform an average measurement.

6.3. Test Procedure

Frequency Range 9kHz~30MHz:

The EUT setup on the turntable which has 0.8 m height to the ground. The turn table rotated 360 degrees and antenna fixed to 1 m to find the maximum emission level. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10-2013 regulation.

- (1) RBW = 9kHz with peak and average detector.
- (2) Detector: average and peak (9kHz-490kHz)

Q.P. (490kHz-30MHz)

Frequency Range 30MHz ~ 25GHz:

The EUT setup on the turn table which has 80 cm (for 30-1000MHz) and 1.5m (for above 1GHz) height to the ground. The turn table rotated 360 degrees and antenna varied from 1 m to 4 m tofind the maximum emission level. Both horizontal and vertical polarization are required. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10-2013 regulation.

Frequency below 1GHz:

Spectrum Analyzer is used for pre-testing with following setting:

- (1)RBW = 120KHz
- (2)VBW $\geq 3 \times RBW$.
- (3)Detector = Peak.
- (4)Sweep time = auto.
- (5)Trace mode = max hold.
- (6) Allow sweeps to continue until the trace stabilizes.
- (7) When peak-detected value is lower than limit that the measurement using the Q.P. detector is not required, otherwise using Q.P. for final measurement.

Frequency above 1GHz to 10th harmonic(up to 25 GHz): Peak Detector:

- (1)RBW = 1MHz
- (2)VBW $\geq 3 \times RBW$.
- (3)Detector = Peak.
- (4)Sweep time = auto.
- (5)Trace mode = max hold.
- (6) Allow sweeps to continue until the trace stabilizes.
- (7) When peak-detected value is lower than limit that the measurement using the average detector is not required, otherwise using average detector for final measurement.

File Number: C1M1809237 Report Number: EM-F180510

Average Detector:

Option 1:

- (1)RBW = 1MHz
- (2) $VBW \ge 1/T$.
- (3)Detector = Peak.
- (4)Sweep time = auto.
- (5)Trace mode = max hold.
- (6) Allow sweeps to continue until the trace stabilizes.

\square Option 2:

Average Emission Level= Peak Emission Level+ D.C.C.F.

6.4. Measurement Result Explanation

- Peak Emission Level=Antenna Factor + Cable Loss + Meter Reading
- Average Emission Level l=Antenna Factor + Cable Loss + Meter Reading
- Average Emission Level= Peak Emission Level+ DCCF

Duty Cycle Correction Factor (DCCF)= 20log(TX on/TX on+off) presented in section 3.6

ERP= Peak Emission Level-95.2dB-2.14dB

6.5. Test Results

7. 20dB BANDWIDTH

7.1. Block Diagram of Test Setup

7.2. Specification Limits

Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band may have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

7.3. Test Procedure

Following measurement procedure is reference to ANSI C63.10:2013:

- (1) Set RBW close to 1% to 5% of OBW.
- (2) Set VBW≥3RBW.
- (3) Detector = Peak.
- (4) Trace mode = Max hold.
- (5) Sweep = Auto couple.
- (6) Allow the trace to stabilize.
- (7) Setting channel bandwidth function x dB to -20 dB to record the final bandwidth.

7.4. Test Results

8. CARRIER FREQUENCY SEPARATION

8.1. Block Diagram of Test Setup

8.2. Specification Limits

Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band may have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output no greater than 125mW.

8.3. Test Procedure

Following measurement procedure is reference to ANSI C63.10:2013:

- (1) Span = Wide enough to capture the peaks of two adjacent channels
- (2) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- (3) VBW≥RBW
- (4) Sweep = Auto
- (5) Detector function = Peak
- (6) Trace = Max hold
- (7) Allow the trace to stabilize.

8.4. Test Results

9. TIME OF OCCUPANCY

9.1. Block Diagram of Test Setup

9.2. Specification Limits

Frequency hopping systems in the 2400-2483.5MHz shall use at least 15 non-overlapping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by number of hopping channels employed.

9.3. Test Procedure

Following measurement procedure is reference to ANSI C63.10:2013:

- (1) Span: Zero span, centered on a hopping channel.
- (2) RBW shall be \leq channel spacing and where possible RBW should be set >> 1/T, where T is the expected dwell time per channel.
- (3) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel.
- (4) Detector function = Peak
- (5) Trace = Max hold

9.4. Test Results

10.NUMBER OF HOPPING CHANNELS

10.1.Block Diagram of Test Setup

10.2. Specification Limits

Frequency hopping systems which use fewer than 20 hopping frequencies may employ intelligent hopping techniques to avoid interference to other transmissions. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 non-overlapping channels.

10.3. Test Procedure

Following measurement procedure is reference to ANSI C63.10:2013:

- (1) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
- (2) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
- (3) $VBW \ge RBW$
- (4) Sweep = Auto
- (5) Detector function = Peak
- (6) Trace = m=Max hold
- (7) Allow the trace to stabilize.

10.4. Test Results

11.MAXIMUM PEAK OUTPUT POWER

11.1.Block Diagram of Test Setup

11.2. Specification Limits

The Limits of maximum Peak Output Power for frequency hopping systems in 2400-2483.5MHz is: 0.125Watt. (21dBm)

11.3.Test Procedure

Following measurement procedure is reference to ANSI C63.10:2013:

- (a) Use the following spectrum analyzer settings
 - (1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.
 - (2) RBW > 20 dB bandwidth of the emission being measured.
 - (3) $VBW \ge RBW$
 - (4) Sweep: Auto
 - (5) Detector function: Peak
 - (6) Trace: Max hold
- (b) Allow trace to stabilize.
- (c) Use the marker-to-peak function to set the marker to the peak of the emission.

11.4.Test Results

12. EMISSION LIMITATIONS

12.1.Block Diagram of Test Setup

12.2. Specification Limits

In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, that the required attenuation shall be 30 dB instead of 20 dB.

Attenuation below the general limits specified in Section 15.209(a)/RSS-Gen Section 8.9table 4is not required. In addition, radiated emissions which fall in restricted bands, as defined in Section 15.205(a)/RSS-Gen Section 8.10 table 6,, must also comply with the radiated emission limits specified in Section 15.209(a)/RSS-Gen Section 8.9 table 4 (See Section 15.205(c)).

12.3. Test Procedure

Following measurement procedure is reference to ANSI C63.10:2013:

- (1) Set span wide enough to capture the peak level of the in-band emission and all spurious emissions; up to 10th harmonic.
- (2) RBW = 100 kHz
- (3) $VBW \ge RBW$
- (4) Sweep = Auto
- (5) Detector function = Peak
- (6) Trace = Max hold

12.4. Test Results

13. DEVIATION TO TEST SPECIFICATIONS

[NONE]

APPDNDIX A

TEST DATA AND PLOTS

(Model: HSD-0015-Q)

APPDNDIX B

TEST PHOTOGRAPHS

(Model: HSD-0015-Q)