BECA / Dr. Huson / Geometry 05-Transformations pset ID: $71\,$

Name:

5-9bDN-Multi-step

1. A translation maps triangle PQR onto triangle STU.

Write each corresponding object.

- (a) $Q \rightarrow \underline{\hspace{1cm}}$
- (b) $\angle QRP \cong \underline{\hspace{1cm}}$
- (c) $\underline{\hspace{1cm}} \cong \overline{ST}$
- (d) Justify $\triangle PQR \cong \triangle STU$. Use the words "rigid motion".

2. Triangle ABC is dilated with a scale factor of k centered at A, yielding $\triangle ADE$, as shown. Given AB=8, BC=10, AC=12, and DE=15.

Find AD, CE, and k (the scale factor).

3. A dilation with k=3 centered at the origin maps $\triangle DEF$ onto $\triangle LMN$.

The following is given:

$$\begin{aligned} DE &= 10 \\ m \angle E &= 40^{\circ} \\ m \angle F &= 110^{\circ} \\ m \angle M &= 2x + 10^{\circ} \end{aligned}$$

Fill in the blanks:

(a)
$$D \rightarrow \underline{\hspace{1cm}}$$

(b)
$$LM =$$

(c)
$$m \angle M =$$

(d) Solve for x

4. Translate $\triangle ABC$ by $(x,y) \rightarrow (x+3,y+4)$. Make a table of the coordinates and plot and label the image on the axes.

5. Given $\triangle JKL \sim \triangle MNO$. $m \angle K = 40^{\circ}$ and $m \angle M = 100^{\circ}$. Find the measure of $\angle N$.

Name:

6. Apply a translation of $(x, y) \to (x - 4, y - 6)$ to $\triangle ABC$. Plot and label the image on the axes below and make a table of its coordinates.

7. Given isosceles $\triangle ABC$ with $\overline{AC} \cong \overline{AB}$, $m \angle A = x$, $m \angle B = 55$, and $m \angle C = y$. Find x and y. (the diagram is not to scale)

8. Given isosceles $\triangle RSU$ with $\overline{UR} \cong \overline{RS}$. If $m \angle UST = 140$ find $m \angle U$.

9. Find the area of the parallelogram ABCD shown below, with AB=9.5 and height h=7.1.

10. Find the sum of the measures of the internal angles of a hexagon. Show the formula.

11. A wooden cutting board is $8\frac{1}{2}$ inches long, 7 inches wide, and $1\frac{1}{4}$ inches thick. Find the volume of the box. Show the calculation.

12. Of two complementary angles, the measure of $\angle A$ is two times that of $\angle B$. Find $m\angle A$.

13. An angle bisector is shown below, with \overrightarrow{AC} bisecting $\angle BAD$. Given $m \angle BAC = 6x - 5$ and $m \angle BAD = 9x + 17$, find $m \angle BAD$. (Show check)

14. Angles APC and CPD form a linear pair. $m \angle APC = 10x - 10$ and $m \angle CPD = 3x - 5$. Find $m \angle CPD$. Check your answer for full credit.

Do Not Solve!

Model the situation with an equation in terms of x.

15. Given \overline{ABC} , with AB = 2x - 1, BC = 3x + 7, and AC = 21. Find x.

16. Given $m \angle 3 = x + 35$ and $m \angle 5 = 4x - 25$. Find x.

17. In the diagram below $m \angle AOB = 6x + 5$ and $m \angle COB = 8x + 15$. Find x.

18. The point K is the midpoint of \overline{JL} , JK = 3x + 15, and JL = 9x + 9. Find x.

