SC1015 MINI PROJECT: DIABETES

Chan Yu Yan U2322215K Daryl Poh Wei Xuan U2322272C Eldon Lim Kai Jie U2320323F

TABLE OF CONTENTS

- Problem Statement
- Exploratory Data Analysis and Data Preparation
- Analytic Visualisation
- Machine Learning
- Neural Network Model
- Conclusion and Insights

PROBLEM STATEMENT

PRACTICAL MOTIVATION

Approx. 537mil adults (aged 20-79) worldwide are diabetic, as of 2021

Expected to rise to 643mil by 2030

Long term implications for individuals and healthcare systems

Importance of early intervention

PROBLEM FORMULATION

SAMPLE COLLECTION

	Unnamed: 0	Age	Gender	вмі	High_BP	FBS	HbA1c_level	Smoking	Diagnosis
0	0	80	Female	25	0	140	6.6	0	0
1	1	54	Female	27	0	80	6.6	0	0
2	2	28	Male	27	0	158	5.7	0	0
3	3	36	Female	23	0	155	5.0	1	0
4	4	76	Male	20	1	155	4.8	1	0

EXPLORATORY DATA ANALYSIS

PRELIMINARY EXPLORATION & DATA CLEANING

```
variable_to_remove = 'Unnamed: 0'
diabetes = diabetes.drop(columns=[variable_to_remove])
diabetes.head()
```

	Age	Gender	ВМІ	High_BP	FBS	HbA1c_level	Smoking	Diagnosis
0	80	Female	25	0	140	6.6	0	0
1	54	Female	27	0	80	6.6	0	0
2	28	Male	27	0	158	5.7		0
3	36	Female	23	0	155	5.0		
4	76	Male	20	1	155	4.8),	

PRELIMINARY EXPLORATION & DATA CLEANING

Numeric predictors:

count 50000.00000 50000.00000 50000.00000 50000.00000 mean 42.219060 27.066500 138.679640 5.552	000 418
maan 40 040060 07 066500 400 670640 5 550	418
mean 42.219060 27.066500 138.679640 5.552	
std 22.290526 6.945309 41.414576 1.083	083
min 0.000000 10.000000 80.000000 3.500	000
25 % 24.000000 23.000000 100.000000 4.800	000
50 % 43.000000 27.000000 140.000000 5.800	000
75 % 60.000000 30.000000 159.000000 6.200	000
max 80.000000 95.000000 300.000000 12.000	000

Categorical predictors:

	Gender	High_BP	Smoking
count	50000	50000	50000
unique	3	2	2
top	Female	0	0
freq	29167	45780	34189

	Gender
60927	Other
12424	Other
64744	Other
22491	Other
30557	Other
68188	Other
18188	Other
33234	Other
14517	Other
68545	Other

ANALYTIC VISUALISATION

VISUALISATION

VISUALISATION

10

HbA1c_level

12

10

HbA1c_level

12

10

HbA1c_level

HbA1c_level:

FBS:

VISUALISATION

- Those with high blood pressure have higher probability to get diabetes.
- Diabetes percentage in male is higher than female.
- Those who smoke have higher probability to get diabetes.

After removing outliers for each of the numerical variables...

MACHINE LEARNING

UNI-VARIATE CLASSIFICATION

MULTI-VARIATE CLASSIFICATION

DEPTH 3

Goodness of Fit of Model Train Dataset Classification Accuracy:

0.9678864824495892

Goodness of Fit of Model Test Dataset Classification Accuracy:

0.969995199231877

True Positive Rate for both train and test: 0.6802

MULTI-VARIATE CLASSIFICATION

DEPTH 4

Goodness of Fit of Model Train Dataset Classification Accuracy:

0.9680998613037448

Goodness of Fit of Model Test Dataset Classification Accuracy:

0.9693550968154905

True Positive Rate for both train and test: 0.6714

MULTI-VARIATE CLASSIFICATION

DEPTH 3

nt of Model Train Dataset Classification Accuracy : 0.9678864824495892

Joodness of Fit of Model Test Dataset Classification Accuracy: 0.969995199231877

True Positive Rate for both train and test: 0.6802

NEURAL NETWORK NODEL

NEURAL NETWORK MODEL

- Excel at earning complex patterns from data
- Ability to capture non-linear relationships
- Allows for **comprehensive** evaluation of predictive performance

NEURAL NETWORK MODEL

CONCLUSION

Complexitites inherent in diabetes prediction Importance of adopting a multivariate approach

Limitations of uni-variate classification

Diabetes diagnosis is influenced by multiple factors -> multi-variate approach

Neural network model enhanced the predictive performance

Moving forward, by embracing a multidisciplinary approach, we can continue to advance our understanding of diabetes and develop innovative solutions to improve prevention, diagnosis, and management strategies.

THANK YOU!

REFERENCES

Simpe feature to detect diabetes. (n.d.). Www.kaggle.com. Retrieved April 20, 2024, from https://www.kaggle.com/datasets/simaanjali/diabetes-simple-diagnosis/data

Mesquita, D. (n.d.). Python Al: How to Build a Neural Network & Make Predictions – Real Python. Realpython.com. https://realpython.com/python-ai-neural-network/

A, A. (2019, January 13). First neural network for beginners explained (with code). Medium; Towards Data Science. https://towardsdatascience.com/first-neural-network-for-beginners-explained-with-code-4cfd37e06eaf