

FONDEMENTS DES GRANDS MODÈLES DE LANGUE ET DES AGENTS CONVERSATIONNELS

Adrien Guille, Maître de conférences Université Lumière Lyon 2

GRAND MODÈLE DE LANGUE : EN RÉSUMÉ

- Réseau de neurones profond qui reçoit un texte
- Modélise la loi conditionnelle du prochain mot de ce texte
- Opère sur des représentations vectorielles de (morceaux de) mots et des représentations vectorielles de position
- Basé sur le bloc Transformer
 - Mécanisme d'attention multi-têtes
 - Réseau à propagation avant

AGENT CONVERSATIONNEL : EN RÉSUMÉ

- Un grand modèle de langue pré-entraîné sur un vaste corpus tiré du Web
- Ajusté sur un petit corpus pour maintenir la discussion
- Ajusté de nouveau pour respecter certaines préférences
- Compléments possibles:
 - Filtrage des prompts
 - Augmentation du contexte (RAG)

3

TYPES D'USAGES D'UN AGENT CONVERSATIONNEL

AUGMENTER LES CAPACITÉS HUMAINES

- But : offrir un support à la prise de décision
 - L'agent peut aider le décisionnaire en lui apportant une information supplémentaire, par exemple en lui proposant une synthèse à partir de documents liés à la prise de décision
 - L'agent peut proposer des scénarios alternatifs
- Bénéfices potentiels:
 - Gain de temps / gain informationnel
 - Créativité accrue

AUTOMATISER DES TÂCHES

- But: remplacer l'humain
 - L'agent peut générer une argumentation
 - L'agent peut analyser un tableau de données
 - L'agent peut écrire un programme informatique / créer un site web
 - L'agent peut enseigner une notion
 - L'agent peut évaluer une demande

UN GRAND MODÈLE DE LANGUE : GPT-3

MODÈLE DE LANGUE

• On modélise la loi conditionnelle du prochain token sachant les tokens précédents

$$P(T_{n+1} = t_{n+1} | t_1, t_2, ..., t_n)$$

- On voit le texte comme un processus stochastique auto-régressif
 - Pour générer du texte, on échantillonne les mots un à un
 - Échantillonnage top k
 - Recherche en faisceau (plus coûteux et déterministe)
 - Plus pertinent dans certains cas, e.g. en traduction

REPRESENTATION VECTORIELLE DES TOKENS / POSITIONS

- Les réseaux de neurones opèrent sur des vecteurs
 - Alors on apprend un espace vectoriel dans lequel représenter les tokens
 - De sorte notamment que les distances mesurées dans cet espace reflètent la proximité sémantique entre les tokens
 - Mais capturent aussi d'autres régularités de la langue, au niveau syntaxique, sémantique, conceptuel, etc.
 - On apprend également des représentations vectorielles des positions de sorte que le modèle puisse estimer:
 - La position absolue des tokens dans la séquences
 - Les positions relatives des tokens les uns par rapport aux autres

REPRÉSENTATION VECTORIELLE DES TOKENS / POSITIONS

CONTEXTUALISATION DES REPRÉSENTATIONS

• Architecture du décodeur du Transformer

Source: An Overview of Large Language Models for Statisticians, Wi et al. 2025

CONTEXTUALISATION DES REPRÉSENTATIONS

- Tête d'auto-attention (masquée)
 - Entrée : $H \in \mathbb{R}^{d \times n}$, représentations des tokens/positions
 - Paramètres : $Q, K, V \in \mathbb{R}^{d' \times d}$
 - ullet Projections en requêtes QH, clés KH et valeurs VH
 - Calcul de l'attention $A = \operatorname{softmax} ((QH)^{\mathsf{T}}KH)$
 - Le triangle supérieur droit de cette matrice est « masquée » dans le cas du décodeur
 - Calcul des représentations contextualisées H' = (VH)A

ESTIMATION DES PARAMÈTRES

- 175 milliards de paramètres à estimer pour GPT-3
 - Représentations des tokens en entrée (environ 30 000 tokens)
 - Représentations des positions en entrée
 - Pour chaque bloc encodeur
 - Les matrices Q_m, K_m, V_m, O_m pour chaque tête d'auto-attention
 - Les matrices W_1, W_2 du réseau à propagation avant
 - Le classifieur linéaire en sortie

ESTIMATION DES PARAMÈTRES

- Apprentissage auto-supervisé
 - Jeu de données (300 milliards de tokens)
 - Textes tirés du Web, filtrés et dédoublés + Wikipedia (en)
 - Objectif
 - Prédiction des mots un à un en démasquant les textes au fur et à mesure
 - Maximisation de la log-probabilité des mots employés par les auteurs des textes

$$\pi^* = \operatorname*{argmax}_{\pi} \sum_{k=1}^{N_{pages}} \sum_{i=1}^{N_{tokens_k}} \log P_{\pi}(T_i = t_i \mid t_0, \dots, t_{i-1}), \text{ avec } t_0 \text{ un token spécial } \text{``start>"}$$

UTILISATION DU MODÈLE DE LANGUE PRÉ-ENTRAÎNÉ

- Complétion du texte reçu en entrée
 - Zero-shot: on exprime un besoin par une instruction
 - One-shot : on donne un exemple d'instruction et un exemple de réponse, puis l'instruction qui exprime le besoin
 - Few-shot: même principe avec plusieurs exemples
- Très mauvaise performance en zero-shot
 - Performance bien supérieure en few-shot

UN AGENT CONVERSATIONNEL: CHATGPT

APPRENDRE À RÉPONDRE AUX INSTRUCTIONS

- Démarche en plusieurs étapes
 - Étape 1 : Pré-entraînement auto-supervisé du modèle de langue
 - Étape 2 : Ajustement supervisé du modèle de langue sur un corpus instructions/réponses
 - Étape 3 : Apprentissage d'un modèle de récompense
 - Étape 4 : Réajustement du modèle de langue par apprentissage par renforcement

17

AJUSTEMENT SUPERVISÉ DES PARAMÈTRES

- Apprentissage supervisé classique
 - Petit jeu de données rédigé en interne
 - Paires prompt + exemple de réponse
 - Objectif
 - Prédiction des mots de la réponse un à un
 - Maximiser la log-probabilité des mots employés par les auteurs

AJUSTEMENT SUPERVISÉ DES PARAMÈTRES

- Limitation de l'apprentissage supervisé
 - Mesure d'erreur au niveau du token
 - Pénalise le modèle pour toute réponse différente de l'exemple
- Passage à l'apprentissage par renforcement
 - Mesure d'une récompense au niveau de la réponse
 - Permet au modèle d'explorer les réponses possibles

- Apprentissage d'un modèle de récompense
 - Créer un corpus de prompts
 - ullet Générer K réponses à chaque prompt
 - Annoter les paires réponses
 - Comparer les $\binom{K}{2}$ paires de réponses à un prompt ; désigner la meilleure réponse de chaque paire

- Apprendre un modèle de récompense
 - Modèle Bradley-Terry
 - Prompt x, réponse préférée y_+ et autre réponse y_-

$$P(y_{+} > y_{-}) = \frac{e^{r(x,y_{+})}}{e^{r(x,y_{+})} + e^{r(x,y_{-})}} = \sigma \left(r(x,y_{+}) - r(x,y_{-}) \right)$$

• Ajuster un fork du modèle de langue par maximisation de la vraisemblance, en remplaçant la couche de classification par une couche de régression

- Apprentissage par renforcement pour réajuster le modèle
 - Réajuster les paramètres par maximisation de l'espérance de la récompense
 - Inclure une pénalisation pour s'aligner sur les préférences sans trop s'éloigner du modèle de départ (π_{ref})

$$\bullet \quad \pi^* = \underset{\pi}{\operatorname{argmax}} \mathbb{E}_{x \sim D, y \sim \pi(y|x)} \left[r(x, y) - \beta \frac{\pi(y|x)}{\pi_{ref}(y|x)} \right]$$

PERSONNALISER UN AGENT CONVERSATIONNEL : RAG

COMMENT PERSONNALISER UN ASSISTANT?

- On pourrait ajuster le modèle, e.g. sur une base de connaissance privée
 - Nécessite des ressources matérielles importantes pour mettre en œuvre la descente de gradient stochastique
- On pourrait recourir à une procédure efficace, comme l'adaptation de rang faible (a.k.a LoRA)
 - Pour toute matrice $W \in \mathbb{R}^{d' \times d}$ parametrant le modèle et $\Delta W \in \mathbb{R}^{d' \times d}$ l'ajustement à y apporter, avec la matrice résultant de l'ajustement $W' = W + \Delta W$
 - On approche ΔW par un produit de matrices de rang faible, $\Delta W \approx A \times B$ avec $A \in \mathbb{R}^{d' \times r}, B \in \mathbb{R}^{r \times d}$ et $r \ll d$

COMMENT PERSONNALISER UN ASSISTANT?

- Approche qui reste coûteuse
 - Si on a plusieurs cas d'usage on doit calculer plusieurs ajustements
 - À l'usage, on doit recharger l'assistant quand on change de cas
- Les modèles de langue peuvent traiter de (très) longues séquences
 - Initialement autour de 32 000 tokens, aujourd'hui plus d'1 million
- Pourrait-on remplacer l'apprentissage classique par un apprentissage en contexte?
 - C'est l'idée du RAG, Retrieval Augmented Generation

RAG: PRINCIPE

- On personnalise l'assistant « à la volée » en augmentant l'entrée
 - Un unique grand modèle sert d'assistant
 - Un petit modèle auxiliaire recherche les passages pertinents vis-à-vis du prompt de l'utilisateur dans la base de connaissances
 - On passe à l'assistant un prompt augmenté, qui combine le prompt de l'utilisateur avec les passages identifiés par le modèle auxiliaire
- Le coût additionnel est minime par rapport à un ajustement
 - Le modèle auxiliaire est typiquement d'une taille très modeste et la base de données est pré-indexée

RAG: MODÈLE AUXILIAIRE

- Petit modèle de langue (encodeur) siamois
 - Architecture proche d'un grand modèle de langue décodeur
 - Mais attention bidirectionnelle (donc non masquée), sémantiquement plus pertinente
 - Moins de couches / têtes et représentations en plus faible dimension
 - Siamois:
 - Le même réseau traite indépendamment deux textes et calcule deux représentations vectorielles
 - Compare les deux représentations pour mesurer leur similarité

RAG: DÉMO RUDIMENTAIRE

