Sucessões em \mathbb{R}^n

Definição

Uma sucessão em \mathbb{R}^n é uma função

$$u: \mathbb{N} \to \mathbb{R}^n$$

$$m \hookrightarrow u_m = (u_1^m, \dots, u_n^m)$$

Exemplo: $u_m = \left(m^2, \frac{1}{m}\right)$

Definição

Diz-se que uma sucessão (u_m) de pontos em \mathbb{R}^n converge para $a \in \mathbb{R}^n$ e escreve-se $\lim_{n \to \infty} u_m = a$ se:

$$\forall \epsilon > 0, \exists p \in \mathbb{N}, \forall m \in \mathbb{N}, m \ge p \Rightarrow d(u_m, a) < \epsilon$$

$$\forall \epsilon > 0, \exists p \in \mathbb{N}, \forall m \in \mathbb{N}, m > p \Rightarrow ||u_m - a|| < \epsilon$$

Sucessões em \mathbb{R}^n

Teorema

É condição necessária e suficiente para que a sucessão (u_m) de pontos de \mathbb{R}^n convirja para $a \in \mathbb{R}^n$ que cada uma das suas sucessões coordenadas convirja para a correspondente coordenada de a.

Exemplo e Demonstração

Definição

Seja $A \subseteq \mathbb{R}^n$. Se $\forall m \in \mathbb{N}, u_m \in A$, então (u_m) diz-se uma sucessão de elementos de A.

Funções de Várias Variáveis

$$f: \mathbb{R}^n \to \mathbb{R}$$

$$x = (x_1, \dots, x_n) \hookrightarrow f(x) = f(x_1, \dots, x_n)$$

Domínio (D): maior subconjunto de \mathbb{R}^n onde a expressão $f(x_1,\ldots,x_n)$ tem significado Cuidados:

- denominadores não nulos
- argumentos de raízes de índice par não negativos
- argumentos de logaritmos positivos
- argumentos de \arcsin e \arccos em [-1,1]

Funções de Várias Variáveis

Contra-domínio (f(D)):

$$f(D) = \{ z \in \mathbb{R} : z = f(x) \land x \in D \}$$

Gráfico (G):

$$G = \{(x_1, \dots, x_n, z) \in \mathbb{R}^{n+1} : z = f(x_1, \dots, x_n) \land (x_1, \dots, x_n) \in D\}$$

Exemplos