Ausgabe: 30. Juni 2022 _______ Besprechung: 7. Juli 2022

Einführung in die angewandte Stochastik

6. Globalübung

Aufgabe 28

Die Zufallsvariablen X_1, \ldots, X_n seien stochastisch unabhängig und jeweils Pareto-verteilt mit (unbekanntem) Parameter $\alpha > 0$. Die zugehörige Dichtefunktion f_{α} und die zugehörige Verteilungsfunktion F_{α} der Zufallsvariablen X_i für $i \in \{1, \ldots, n\}$ in Abhängigkeit vom Parameter α sind dann gemäß B 3.12 gegeben durch

$$f_{\alpha}(x) = \begin{cases} \frac{\alpha}{x^{\alpha+1}}, & x \ge 1, \\ 0, & x < 1, \end{cases}$$
 bzw. $F_{\alpha}(x) = \begin{cases} 1 - \frac{1}{x^{\alpha}}, & x \ge 1, \\ 0, & x < 1. \end{cases}$

- (a) Bestimmen Sie zu gegebenen Realisationen $x_1, \ldots, x_n \in (1, \infty)$ von X_1, \ldots, X_n eine Maximum-Likelihood-Schätzung $\widehat{\alpha}$ für den Parameter α .
- (b) Berechnen Sie den aus (a) resultierenden Schätzwert zu folgenden Daten:

$$1,65, 2,97, 3,52, 3,07, 2,06, 2,41, 3,84, 5,48, 1,86, 4,90, 7,36, 1,58.$$

(c) Berechnen Sie die Wahrscheinlichkeit dafür, dass X_1 den Wert x=2 übersteigt, indem Sie den unbekannten Parameter α durch den in (b) berechneten Schätzwert ersetzen.

Aufgabe 29

Eine Fluggesellschaft möchte wissen, wie hoch der Anteil p der Passagiere ist, die ihren Flug nicht antreten. Hierzu soll ein Konfidenzintervall für p bestimmt werden.

Die Überprüfung von 1000 zufällig ausgewählten Passagieren ergibt, dass 74 von ihnen den Flug nicht angetreten haben. Bestimmen Sie anhand dieses Ergebnisses ein approximatives zweiseitiges Konfidenzintervall für p zum Konfidenzinteau 90%.

Aufgabe 30

Auf 12 Versuchsflächen wurde eine neue Weizensorte angebaut. Die einzelnen Flächen erbrachten die folgenden Hektarerträge (in t):

$$3,56, 3,37, 3,78, 3,12, 3,72, 3,41, 3,56, 3,66, 3,71, 3,49, 3,56, 3,40.$$

Aus Erfahrung ist bekannt, dass diese Hektarerträge als Realisationen stochastisch unabhängiger, jeweils $N(\mu, \sigma^2)$ -verteilter Zufallsvariablen mit $\mu \in \mathbb{R}$ und $\sigma > 0$ angesehen werden können.

- (a) Ermitteln Sie ein zweiseitiges Konfidenzintervall für den (unbekannten) Erwartungswert μ zum Konfidenzniveau 0,9 bei unbekannter Varianz σ^2 .
- (b) Ermitteln Sie ein zweiseitiges Konfidenzintervall für den (unbekannten) Erwartungswert μ zum Konfidenzniveau 0,9 bei bekannter Varianz $\sigma^2 = 0.0324$.
- (c) Wie groß müsste die Anzahl der Versuchsflächen mindestens sein, um bei bekannter Varianz $\sigma^2=0.0324$ ein zweiseitiges 90%–Konfidenzintervall für den (unbekannten) Erwartungswert μ angeben zu können, dessen Länge höchstens 0,1 (t) beträgt?

Aufgabe 31

Für Geschwindigkeitsmessungen im Straßenverkehr stehen ein mobiles Radarsystem S_1 und eine fest installierte (geeichte) Messanlage S_2 zur Verfügung. Durch Vergleich der Messergebnisse soll die Tauglichkeit der mobilen Anlage S_1 für den alltäglichen Einsatz überprüft werden.

Hierzu wurde mit beiden Systemen jeweils mehrfach die Geschwindigkeit eines Fahrzeugs gemessen, das mit konstanter Geschwindigkeit von 50 km/h den Messpunkt passierte. Es wurden 12 Messungen mit dem mobilen System S_1 und 8 Messungen mit dem System S_2 durchgeführt. Die zugehörigen gemessenen Geschwindigkeiten (in km/h) sind in der folgenden Tabelle angegeben:

Nr. der Messung	1	2	3	4	5	6	7	8	9	10	11	12
Messanlage S_1	52,3	53,9	51,0	49,3	49,9	47,6	49,2	50,9	48,1	50,3	53,9	48,4
Messanlage S_2	48,1	50,8	53,3	52,0	49,9	48,4	52,1	50,2	_	_	_	_

Nehmen Sie an, dass die mit System S_1 bzw. S_2 gemessenen Geschwindigkeiten x_1, \ldots, x_{12} und y_1, \ldots, y_8 als Realisationen stochastisch unabhängiger Zufallsvariablen $X_1, \ldots, X_{12}, Y_1, \ldots, Y_8$ mit $X_i \sim \mathrm{N}(\mu_1, \sigma^2)$ und $Y_j \sim \mathrm{N}(\mu_2, \sigma^2)$ für $i \in \{1, \ldots, 12\}, j \in \{1, \ldots, 8\}$ aufgefasst werden können, wobei $\mu_1, \mu_2 \in \mathbb{R}$ und $\sigma > 0$ jeweils unbekannt seien.

Geben Sie ein zweiseitiges Konfidenzintervall für die Differenz $d = \mu_1 - \mu_2$ der erwarteten Geschwindigkeitsmessungen μ_1 und μ_2 zum Konfidenzniveau 0,95 an.