Derivadas

Maria Joana Torres

2021/22

Definição de derivada

Definição:

Uma função $f:X\longrightarrow \mathbb{R}$ diz-se **derivável em** $a\in X\cap X'$ se existe $d\in \mathbb{R}$ tal que

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = d.$$

Ao valor real d chama-se **derivada de f em a** e escreve-se f'(a)=d ou Df(a)=d.

Nota:

Observe-se que, considerando h tal que $a+h\in {\rm Dom}\, {\bf f}$, e fazendo a mudança de variável x=a+h, obtemos que

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$$

Função derivada

Uma função $f:X\longrightarrow \mathbb{R}$ diz-se **derivável** se f for derivável em todos os pontos de X.

A função
$$f'\colon X \longrightarrow \mathbb{R}$$
 diz-se a função derivada de f . $x \longmapsto f'(x)$

Dado $A\subseteq X$, dizemos que f é **derivável em** ${\bf A}$ quando f é derivável em todo $a\in A.$

Derivadas laterais

Definição:

Uma função $f:X\longrightarrow \mathbb{R}$ diz-se

• derivável à direita em $a \in X \cap X'_+$ se existe $d \in \mathbb{R}$ tal que

$$\lim_{x \to a^+} \frac{f(x) - f(a)}{x - a} = d.$$

Ao valor real d chama-se **derivada à direita de f em a** e escreve-se $f_+^\prime(a)=d;$

• derivável à esquerda em $a \in X \cap X'_-$ se existe $d \in \mathbb{R}$ tal que

$$\lim_{x \to a^{-}} \frac{f(x) - f(a)}{x - a} = d.$$

Ao valor real d chama-se **derivada à esquerda de f em a** e escreve-se $f_-'(a) = d$.

Derivadas laterais

Teorema:

Sejam $f:X\longrightarrow \mathbb{R}$ uma função e $a\in X\cap X'_+\cap X'_-$. Então f é derivável em a se e só se existem e são iguais as derivadas laterais $f'_-(a)$ e $f'_+(a)$.

Significado geométrico da derivada

$$m = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

Reta tangente e reta normal

Definição:

Dada uma função $f:X\longrightarrow \mathbb{R}$ derivável em $a\in X\cap X'$, a reta de equação

$$y - f(a) = f'(a)(x - a)$$

designa-se por reta tangente ao gráfico de f em (a, f(a)).

Definição:

Dada uma função $f:X\longrightarrow \mathbb{R}$ derivável em $a\in X\cap X'$, chama-se **reta normal ao gráfico de f** em (a,f(a)) à reta perpendicular à reta tangente ao gráfico de f nesse ponto.

Continuidade de funções deriváveis

<u>Teorema</u> [Continuidade de funções deriváveis]:

Sejam $f:X\longrightarrow \mathbb{R}$ uma função, $a\in X\cap X'.$ Se f é derivável em a então f é contínua em a.

Corolário:

Seja $f:X\longrightarrow \mathbb{R}$ uma função derivável. Então f é contínua.

Aritmética da derivação pontual

<u>Teorema</u> [Aritmética da derivação pontual]:

Sejam $f,g:X\longrightarrow \mathbb{R}$ funções deriváveis em $a\in X\cap X'$. Então:

• f + g é derivável em a e

$$(f+g)'(a) = f'(a) + g'(a);$$

• dado $\lambda \in \mathbb{R}$, λf é derivável em a e

$$(\lambda f)'(a) = \lambda f'(a);$$

• fg é derivável em a e

$$(fg)'(a) = f'(a)g(a) + f(a)g'(a);$$

- se $g(a) \neq 0$ então $\frac{f}{g}$ é derivável em a e

$$\left(\frac{f}{g}\right)'(a) = \frac{f'(a)g(a) - f(a)g'(a)}{g^2(a)}.$$

Derivada da função composta / Regra da Cadeia

Teorema [Derivada da função composta / Regra da Cadeia]:

Sejam X,Y subconjuntos de $\mathbb{R},\,f:X\longrightarrow Y,\,g:Y\longrightarrow \mathbb{R}$ funções, $a\in X\cap X',\,f(a)\in Y'.$ Suponhamos que f é derivável em a e que g é derivável em f(a). Então $g\circ f$ é derivável em a e

$$(g \circ f)'(a) = g'(f(a))f'(a).$$

Teorema [Derivada da função inversa]:

Sejam X e Y subconjuntos não vazios de $\mathbb{R},\ f:X\longrightarrow Y$ uma função bijetiva e suponhamos que:

- 1. f é derivável em $a \in X \cap X'$;
- 2. $f'(a) \neq 0$;
- 3. f^{-1} é contínua em b = f(a).

Então f^{-1} é derivável em b. Além disso,

$$(f^{-1})'(b) = \frac{1}{f'(a)} = \frac{1}{f'(f^{-1}(b))}.$$

Pontos extremos e derivadas

Teorema:

Seja $f:X\longrightarrow \mathbb{R}$ uma função derivável em $a\in X\cap X'_+\cap X'_-$. Se a é um ponto de extremo de f então f'(a)=0.

Teorema [de Rolle]:

Seja $f:[a,b]\longrightarrow \mathbb{R}$ uma função contínua, derivável em]a,b[e tal que f(a)=f(b). Então existe $c\in]a,b[$ tal que f'(c)=0.

Corolários [do teorema de Rolle]:

Seja $f:[a,b]\longrightarrow \mathbb{R}$ uma função contínua que é derivável em]a,b[.

- 1. Entre dois zeros de f existe, pelo menos, um zero de f'.
- 2. Entre dois zeros consecutivos de f' existe, quando muito, um zero de f.
- 3. Não há mais do que um zero de f inferior ao menor zero de f', nem mais do que um zero de f superior ao maior zero de f'.

Teorema [de Lagrange]:

Seja $f:[a,b]\longrightarrow \mathbb{R}$ uma função contínua, derivável em]a,b[. Então

$$\exists c \in]a, b[$$
 $f(b) - f(a) = f'(c)(b - a).$

Corolário [do teorema de Lagrange]:

Seja $f:[a,b]\longrightarrow \mathbb{R}$ uma função contínua, derivável em]a,b[. Se f'(x)=0 para todo o $x\in]a,b[$ então f é constante.

Corolário [do teorema de Lagrange]:

Seja $f:[a,b]\longrightarrow \mathbb{R}$ uma função contínua, derivável em]a,b[.

- 1. Se f'(x) > 0 para todo o $x \in]a,b[$ então f é estritamente crescente.
- 2. Se f'(x) < 0 para todo o $x \in]a,b[$ então f é estritamente decrescente.

Teorema [de Darboux]:

Seja $f:[a,b]\longrightarrow \mathbb{R}$ derivável e tal que $f'(a)\neq f'(b)$. Então, dado $k\in \mathbb{R}$ estritamente compreendido entre f'(a) e f'(b), existe $c\in]a,b[$ tal que f'(c)=k.

Aplicação da derivada ao cálculo de limites

Teorema [Regra de l'Hôpital]:

Sejam $f,g:I\longrightarrow \mathbb{R}$ funções deriváveis em $I\backslash\{a\}$, com a um ponto do intervalo I. Se $g'(x)\neq 0,\ \forall x\in I\backslash\{a\}$ e

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = \ell,$$

com $\ell=0$ ou $\ell=+\infty$ ou $\ell=-\infty$, então

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)},$$

desde que o segundo limite exista (finito ou infinito).

Nota:

O teorema estende-se aos casos $\lim_{x\to +\infty} \frac{f(x)}{g(x)}$ e $\lim_{x\to -\infty} \frac{f(x)}{g(x)}$, desde que as hipótese sejam formuladas em intervalos $]c,+\infty[$ e $]-\infty,c[$, respetivamente.

Derivadas de ordem superior

Definição:

Sejam $f:X\longrightarrow \mathbb{R}$ uma função e $a\in X'\cap X$. Diz-se que f é duas vezes derivável em a, ou que f tem derivada de $2^{\underline{\mathbf{a}}}$ ordem em a ou que f tem segunda derivada em a se

$$\exists\, \delta>0\,\, g=f'_{|_{X\,\cap\,]a-\delta,a+\delta[}}\,\, \text{\'e deriv\'avel em a}.$$

Representa-se a segunda derivada de f em a por $f^{''}(a)$ ou $f^{(2)}(a)$.

Diz-se que f tem derivada de $2^{\underline{a}}$ ordem se f é duas vezes derivável em qualquer ponto do seu domínio (note-se que, em particular, temos que $X\subseteq X'$).

À função $f^{''}: X \longrightarrow \mathbb{R}$ chama-se função segunda derivada de f. $x \longmapsto f^{''}(x)$

Derivadas de ordem superior

Nota:

Indutivamente define-se derivada de ordem n de f em a e a função derivada de ordem n de f.

Denota-se a derivada de f de ordem n por $f^{(n)}$ ou D^nf . Convenciona-se que $f^{(0)}=f$.

Teorema:

Seja $f:X\longrightarrow \mathbb{R}$ uma função que admite segunda derivada em $a\in X\cap X'.$ Suponhamos que f'(a)=0. Então, se f''(a)>0, a é um ponto de mínimo local de f e se f''(a)<0, a é um ponto de máximo local de f.

Derivadas das funções exponenciais e logaritmos

$$(e^x)' = e^x$$
$$\ln' x = \frac{1}{x}$$

Para $a \in \mathbb{R}^+ \setminus \{1\}$

$$(a^x)' = a^x \ln a$$
$$\log_a' x = \frac{1}{x \ln a}$$

Derivadas das funções trigonométricas e das funções hiperbólicas

$$\sinh' x = \cosh x$$
 $\cosh' x = \sinh x$
 $\tanh' x = \operatorname{sech}^2 x$ $\coth' x = -\operatorname{cosech}^2 x$
 $\operatorname{sech}' x = -\operatorname{sech} x \operatorname{th} x$ $\operatorname{cosech}' x = -\operatorname{cosech} x \operatorname{coth} x$

Derivadas das funções trigonométricas inversas e das funções hiperbólicas inversas

$$\operatorname{arcsen}' x = \frac{1}{\sqrt{1 - x^2}}$$
$$\operatorname{arctg}' x = \frac{1}{1 + x^2}$$
$$\operatorname{arcsec}' x = \frac{1}{x\sqrt{x^2 - 1}}$$

$$\arccos' x = \frac{-1}{\sqrt{1 - x^2}}$$
$$\operatorname{arccotg}' x = \frac{-1}{1 + x^2}$$
$$\operatorname{arccosec}' x = \frac{-1}{x\sqrt{x^2 - 1}}$$

$$\operatorname{argsh}' x = \frac{1}{\sqrt{1+x^2}}$$

$$\operatorname{argth}' x = \frac{1}{1-x^2}$$

$$\operatorname{argsech}' x = \frac{-1}{x\sqrt{1-x^2}}$$

$$\operatorname{argch}' x = \frac{1}{\sqrt{x^2 - 1}}$$
$$\operatorname{argcoth}' x = \frac{1}{1 - x^2}$$
$$\operatorname{argcosech}' x = \frac{-1}{x\sqrt{1 + x^2}}$$