INTRODUCTION À LA COMPLEXITÉ

Mardi 23 Avril

Option Informatique Ecole Alsacienne

ABSENCE DU 9 AVRIL

Toutes mes excuses

• Séance de rattrapage : jeudi 23 mai de 14h à 16h

Piste 1: Sudoku

- Résolution manuelle
- Résolution automatique
- Génération automatique

Piste 2: Tic-Tac-Toe

- Joueur contre joueur
- Joueur contre aléatoire
- Joueur contre IA

Piste 3: Taquin

14	10	15	13
2	12	3	6
9	5	[11]	8
4	1	7	

- Résolution manuelle
- Génération automatique
- Résolution automatique

Piste 4

Quel projet préférez-vous ?

PLAN

- 1. Ordres de grandeur
- 2. Définitions et notations
- 3. Premiers exemples
- 4. Complexité et récursivité
- 5. Exercices

ORDRES DE GRANDEUR

Ordres de Grandeur

- A combien estimez-vous les quantités suivantes ?
 - Nombre de gênes de l'être humain : 30 000
 - Nombre de cheveux sur la tête : 125 000
 - Nombre de livres et d'imprimés à la BNF : 35 millions
 - Nombre d'être humains : 7 milliards
 - Nombre de neurones dans un cerveau humain : $10^{11}\,$
 - Nombre de cellules dans le corps humain : 10^{14}
 - Nombre d'insectes sur Terre : 10¹⁸
 - Nombre d'atomes dans le corps humain : 7×10^{27}
 - Nombre d'atomes constituant la Terre : 10⁵⁰
 - Nombre de particules dans l'Univers : 10⁸⁰
 - Nombre de parties possibles aux échecs : 10¹²⁰

ORDRES DE GRANDEUR

- Quel est l'âge de l'univers ?
 - Environ 15 milliards d'années
 - Soit environ 5×10^{17} secondes
- Combien d'opérations élémentaires un ordinateur peut-il faire par secondes ?
 - Les processeurs actuels font tous au moins 1 Ghz
 - Rappel : 1 Hz = "1 fois par seconde"
 - Donc quelques milliards d'opérations par seconde
- Combien de temps faut-il à un ordinateur pour compter de 1 en 1 jusqu'à 10^{27} ?
 - Deux fois l'âge de l'univers (10¹⁸ secondes)

COMPARAISONS ENTRE FONCTIONS

- Lequel de ces nombres est le plus grand ? (quand n des prend des valeurs très élevées)
 - $1000 \times n$ ou n^2
 - $n ou 2 \times n$
 - n ou n^2
 - n^{10} ou 2^n

L'ÉNIGME DU NÉNUPHAR

- Le premier janvier, un étang contient un unique nénuphar.
- Chaque nuit, chaque nénuphar donne naissance à un nouveau nénuphar.
- Chaque nénuphar recouvre une petite surface du lac (toujours la même)

• Question : Sachant que la moitié du lac est recouverte le 31 janvier, quand le lac entier sera-t-il entièrement recouvert ?

LA FONCTION EXPONENTIELLE

- Notation : l'exponentielle de n se note e^n ou $\exp(n)$
- Informellement :
 - "plus n est grand, plus e^n monte vite"
 - "plus n est grand, plus e^n est plus grand que e^{n-1}
- Propriétés mathématiques :
 - $exp(n+m) = exp(n) \times exp(m)$
 - $\exp(0) = 1$
 - La dérivée de l'exponentielle est l'exponentielle : $\exp'(x) = \exp(x)$

LA FONCTION 2^n

- Lien avec les nénuphars : 2^n se comporte comme e^n
- Informellement :
 - "plus n est grand, plus 2^n monte vite"
 - "plus n est grand, plus 2^n est plus grand que 2^{n-1}
- Propriétés mathématiques :
 - $2^{n+m} = 2^n \times 2^m$
 - $2^0 = 1$

• S'il s'est écoulé n jours depuis le premier janvier, l'étang contient $\mathbf{2}^n$ nénuphars

LA FONCTION LOGARITHME

• On peut voir la fonction **logarithme** comme l'inverse de la fonction exponentielle :

$$\log(\exp(x)) = x = \exp(\log(x))$$

- On parle souvent du **logarithme en base 2**, qui est tel que : $\log_2(2^n) = n$
- De façon analogue, le logarithme en base 10 vérifie : $\log_{10}(10^n) = n$
- « Le logarithme est aussi lent que l'exponentielle est rapide »

COMPARAISONS ENTRE FONCTIONS

n	n^2	n^3	n^{10}	2^n	$\log_{10}(n)$
1	1	1	1	2	0
2	4	8	1024	4	0,30103
3	9	27	59049	8	0,47712125
4	16	64	1048576	16	0,60205999
5	25	125	9765625	32	0,69897
10	100	1000	1E+10	1024	1
20	400	8000	1,024E+13	1048576	1,30103
50	2500	125000	9,7656E+16	1,1259E+15	1,69897
100	10000	1000000	1E+20	1,2677E+30	2
500	250000	125000000	9,7656E+26	3,273E+150	2,69897
1000	1000000	1000000000	1E+30	1,072E+301	3

Notation: $xE+k = x \times 10^k$

COMPARAISONS ENTRE FONCTIONS

Une simple feuille de papier

- On prend une feuille de papier très grande.
- Quelle épaisseur obtient-on si on la plie 42 fois ?

Plus que la distance Terre-Lune!

- Distance Terre-Lune : 384 467 km, soit environ 3.8×10^8 m
- Epaisseur d'une feuille de papier : un peu plus de 10^{-4} m
- $2^{42} \approx 4.4 \times 10^{12}$
- Et si on la plie 50 fois ?

Pratiquement la distance Terre-Soleil!

- Distance Terre-Soleil : 149 597 870 km, soit environ 1.5×10^{11} m
- $2^{50} \approx 1.1 \times 10^{15}$

DÉFINITIONS ET NOTATIONS

PETIT VOYAGE DANS LE TEMPS

• Qu'est-ce que c'est?

Replacing a bad tube meant checking among ENIAC's 19,000 possibilities.

• Que se passe-t-il?

Lois de Moore

- Gordon Earle Moore, un des trois fondateurs d'Intel
- Première loi de Moore (1965)

La complexité des semiconducteurs proposés en entrée de gamme double tous les ans à cout constant

Seconde loi de Moore (1975)

Le nombre de transistors des microprocesseurs double tous les deux ans

Lois de Moore

Microprocessor Transistor Counts 1971-2011 & Moore's Law

Conséquences

- Conséquence : Compter en combien de temps s'exécute un programme n'a pas vraiment de sens.
- Voici deux programmes :

```
let prog2() =
let proq1() =
    let total = ref 0 in
                                        let total = ref 0 in
    for i = 0 to 10000000
                                        for i = 0 to 10
    do
                                        do
         total :=
                                             total :=
                                                !total + 1000000;
            !total + 1;
    done;
                                        done;
    !total;
                                        !total;
```

 Quelque soit la machine utilisée, le second est un million de fois plus rapide que le premier.

DÉFINITION

- La complexité en temps d'un programme est
 - Une estimation du temps qu'il met à s'exécuter
 - En fonction de la taille des arguments passés en entrée
 - A une constante près
- La complexité en mémoire d'un algorithme est
 - Une estimation de l'espace dont il a besoin pour s'exécuter
 - En fonction de la taille des arguments passés en entrée
 - A une constante près
- Remarque : On se concentrera dans un premier temps sur la complexité en temps.

"EN FONCTION DE LA TAILLE DES ARGUMENTS"

Exemple

```
let programme idiot 1(n)=
    for i = 0 to (n - 1)
                               Linéaire
         do
         done;
let programme idiot 2(n)=
    for i = 0 to (n*n - 1)
                               Quadratique
         do
         done;
let programme idiot 3(n)=
    for i = 0 to 0
                               Constant
         do
```

done;

EXÉCUTION EN TEMPS CONSTANT

 On dit qu'une opération s'exécute en temps constante quand elle s'exécute toujours dans le même temps, quelque soit la taille de l'entrée :

Temps de calcul(n) \approx Constante

- Remarque : on considère que la plupart des opérations de base d'un langage de programmation sont en temps constant.
- Exemples :
 - Comparer deux nombres
 - Afficher un nombre
 - Récupérer la valeur d'une variable
- Notation : O(1)

COMPLEXITÉ LINÉAIRE

 On dit qu'un algorithme a une complexité linéaire quand il s'exécute dans un temps proportionnel à la taille de l'entrée :

Temps de calcul(n)
$$\approx$$
 Constante \times n

- Exemples :
 - n
 - $10000 \times n$
 - $\frac{n}{2}$
- Notation : O(n)

COMPLEXITÉ QUADRATIQUE

• On dit qu'un algorithme a une **complexité quadratique** quand il s'exécute dans un temps proportionnel au carré de la taille de l'entrée :

Temps de calcul(n)
$$\approx$$
 Constante \times n²

- Exemples :
 - n^2
 - $10 \times n^2$
 - $\frac{n^2}{1000000}$
- Notation : $O(n^2)$

COMPLEXITÉ POLYNOMIALE

• On dit qu'un algorithme a une complexité polynomiale quand il s'exécute dans un temps proportionnel à une puissance de la taille de l'entrée :

Temps de calcul(n)
$$\approx$$
 Constante \times n^k (k ne dépendant pas de n)

- Exemples :
 - n^5
 - n^2
 - n
- Notation : $O(n^k)$

COMPLEXITÉ EXPONENTIELLE

 On dit qu'un algorithme a une complexité exponentielle quand il s'exécute dans un temps qui augmente exponentiellement avec la taille de l'entrée, ce qui peut s'écrire :

Temps de calcul(n)
$$\approx$$
 Constante \times k^n (k ne dépendant pas de n)

- Exemple :
 - 2^n : le temps de calcul double chaque fois que n augmente de 1
- Notation : $O(2^n)$

COMPLEXITÉ LOGARITHMIQUE

• On dit qu'un algorithme a une complexité logarithmique quand il s'exécute dans un temps proportionnel au logarithme de la taille de l'entrée :

Temps de calcul(n) \approx Constante $\times \log(n)$

• Notation : $O(\log(n))$

RAPPEL: TABLEAU DES COMPARAISONS

n	n^2	n^3	n^{10}	2^n	$\log_{10}(n)$
1	1	1	1	2	0
2	4	8	1024	4	0,30103
3	9	27	59049	8	0,47712125
4	16	64	1048576	16	0,60205999
5	25	125	9765625	32	0,69897
10	100	1000	1E+10	1024	1
20	400	8000	1,024E+13	1048576	1,30103
50	2500	125000	9,7656E+16	1,1259E+15	1,69897
100	10000	1000000	1E+20	1,2677E+30	2
500	250000	125000000	9,7656E+26	3,273E+150	2,69897
1000	1000000	1000000000	1E+30	1,072E+301	3

 Meilleure sera la complexité, plus on pourra traiter des entrées de taille importante

EXEMPLES SIMPLES

Exemple 1: Afficher les nombre de 1 à n

• **But** : Ecrire un programme qui prend en entrée un entier n, qui affiche la liste des entiers entre 1 et n, et ne renvoie rien.

Exemple :

```
# exemple1 5;;
1
2
3
4
5
- : unit = ()
```

Exemple 1: Afficher les nombre de 1 à n

• Code:

• Complexité : O(n)

EXEMPLE 2: TABLE DE MULTIPLICATION

• **But** : Ecrire un programme qui prend en entrée un entier n, qui affiche une table de multiplication avec n lignes et n colonnes.

• Exemple :

EXEMPLE 2: TABLE DE MULTIPLICATION

• Code:

• Complexité : $O(n^2)$

done;;

done;

print newline();

EXEMPLE 3: TRI PAR INSERTION

Principe

- On trouve le plus grand élément du vecteur v[0...n-1]
- On le met dans la dernière case
- On trouve le plus grand élément du sous-vecteur v[0...n-2]
- On le met dans l'avant dernière case
- Etc.

Fonction auxiliaire à écrire

Trouver l'indice du maximum d'un sous-vecteur

EXEMPLE 3: TRI PAR INSERTION

Trouver l'indice du maximum :

```
let trouver indice du maximum v indice max =
  let indice max courant = ref 0 in
 let max courant = ref v.(0) in Constant
                                       Linéaire
  for i = 1 to indice max
 do
    if (v.(i) > !max courant)
                                     Constant
    then
      begin
         max courant := v.(i);
          indice max courant := i
      end;
  done;
  !indice max courant;;
                                     Constant
```

• Complexité : O(n)

EXEMPLE 3: TRI PAR INSERTION

Tri par insertion

• Complexité : $O(n^2)$

COMPLEXITÉ ET RÉCURSIVITÉ

RAPPEL: FONCTION RÉCURSIVE

 Définition : Une fonction récursive est une fonction qui s'appelle elle-même

Modèle classique :

EXEMPLE SIMPLE: LA FACTORIELLE

• **Définition** : La fonction factorielle est définie par

$$n! = factorielle(n) = \begin{cases} 1 & si \ n = 0 \\ 1 \times 2 \times \dots \times n & sinon \end{cases}$$

Définition récursive :

$$n! = factorielle(n) = \begin{cases} 1 & si \ n = 0 \\ factorielle(n-1) \times n & sinon \end{cases}$$

- Remarques :
 - n! est plus rapide que n^k
 - 2^n est plus rapide que n!

EXEMPLE SIMPLE: LA FACTORIELLE

• Définition récursive :

$$n! = factorielle(n) = \begin{cases} 1 & si \ n = 0 \\ factorielle(n-1) \times n & sinon \end{cases}$$

• En OCaml:

```
let rec fact n =
   if (n=0)
   then
          1
   else
          n*fact(n-1)
```

EXEMPLE SIMPLE : LA FACTORIELLE

• En OCaml:

```
let rec fact n =
   if (n=0)
   then
          1
   else
          n*fact(n-1)
```

• Complexité : O(n)

Rappelez-vous...

- Donnez moi un chiffre entre 1 et 1 000
- Je vous le retrouve en 10 questions binaires (oui non)

Principe :

A chaque étape, on divise par deux la taille de l'intervalle de recherche.

Questions posées	0	1	2	3	4	5	6	7	8	9	10
Intervalle	1024	512	256	128	64	32	16	8	4	2	1

• En pseudo-code :

```
TrouverNombreMystere(min, max) =
   Si (min = max)
   Alors
      La réponse est min
   Sinon
      milieu = (min+max)/2
      Si (nombreMystere ≤ milieu)
      Alors
         TrouverNombreMystere (min, milieu)
      Sinon
         TrouverNombreMystere (milieu+1, max)
   Fin Si
```

Question : Quelle est la complexité de ce programme ?

• Remarque : On peut supposer d'abord que n est une puissance de 2 : $n=2^k$

• Réponse : Le temps de calcul est proportionel à k, et donc à $\log_2(n)$

EXERCICES

RECHERCHE DANS UN VECTEUR

- **Question** : Quelle est la complexité d'un algorithme qui recherche si un élément x appartient à un vecteur v ?
- Algorithme :

```
let appartient x v =
  let n = Array.length v in
  let trouve = ref false in
  let indice_actuel = ref 0 in
  while ((!not trouve) && (!indice_actuel < n)
  do
      if (v.(!indice_actuel) = x)
      then trouve := true;
  done;
  !trouve;;</pre>
```

 Remarque : sauf indication contraire, on s'intéresse toujours à la complexité dans le pire des cas

SUPPRIMER LES DOUBLONS

- Question : Quelle est la complexité d'un algorithme :
 - Prenant en argument une liste d'entiers 1
 - Renvoyant une liste 12 correspondant à 1 sans doublons

Algorithme :

```
let rec supprimer_doublons l =
   if (l = [])
   then []
   else
     begin
       let t = List.hd l in
       let q = List.tl l in
       if (List.mem t q)
       then supprimer_doublons q
       else t :: (supprimer_doublons q)
   end;;
```

SUPPRIMER LES DOUBLONS

- Question : Quelle est la complexité d'un algorithme :
 - Prenant en argument une liste d'entiers 1 compris entre 0 et 99
 - Renvoyant une liste 12 correspondant à 1 sans doublons

Algorithme :

```
let supprimer doublons 0 100 1 =
  let trouve = Array.make 100 false in
  let 12 = ref l in
  while (!12 <> [])
   do
      let t = List.hd !12 in
      let q = List.hd !12 in
      trouve.(t) <- true;</pre>
      12 := q
   done;
  let 13 = ref [] in
   for i = 0 to 99
   do
      if (trouve.(i))
      then 13 := i :: !13;
   done;
   !13;;
```

LE PLUS LONG PALINDROME

 Définition : Un palindrome est une chaîne de caractères qu'on peut lire de gauche à droite ou de droite à gauche.

Exemples :

- "Bob"
- "Kayak"
- "La mariée ira mal"
- "Zeus a été à Suez"
- "Engage le jeu que je le gagne" (Alain Damasio, la Horde du Contrevent)
- But : Ecrire une fonction qui prend en argument une chaîne de caractère et qui renvoie le plus long palindrome qu'elle contient.

RECHERCHE DE MILIEUX

• En entrée : une série de points du plan définis par leurs coordonnées :

$$\{(x_i, y_i)\}_{1 \le i \le n}$$

 Question: Trouver la liste des points qui sont des milieux, c'est-à-dire situés exactement entre deux autres points

Exemples :

- (2,2) milieu de (2,1) et (2,3)
- (2,2) milieu de (0,0) et (4,4)
- (4,2) milieu de (4,0) et (4,4)
- (2,1) milieu de (0,0) et (4,2)

PROCHAINE SÉANCE

Mardi 23 Avril 2013
[TD] La COMPLEXITÉ EN PRATIQUE

