Package 'proclhmm'

June 5, 2024

The Latent Huden Markov Models for Response Frocess Data
Version 1.0.0
Maintainer Xueying Tang <xueyingtang1989@gmail.com></xueyingtang1989@gmail.com>
Description Provides functions for simulating from and fitting the latent hidden Markov models for response process data (Tang, 2024) <doi:10.1007 s11336-023-09938-1="">. It also includes functions for simulating from and fitting ordinary hidden Markov models.</doi:10.1007>
<pre>BugReports https://github.com/xytangtang/proclhmm/issues</pre>
License GPL (>= 3)
Encoding UTF-8
RoxygenNote 7.3.1
LinkingTo Rcpp
Imports Rcpp (>= 1.0.8.3), statmod (>= 1.4.36)
NeedsCompilation yes
Author Xueying Tang [aut, cre, cph]
Repository CRAN
Date/Publication 2024-06-05 19:50:02 UTC
Contents
compute_P1_lhmm
compute_paras_hmm
compute_theta
find_state_seq
hmm
lhmmproclhmm
sim hmm
sim_hmm_paras
sim_lhmm
sim_lhmm_paras
Index 1

2 compute_paras_hmm

compute_P1_lhmm

Compute LHMM probabilities from parameters

Description

Compute initial state probability from LHMM parameters; currently, the initial state probability does not depend on latent traits

Usage

```
compute_P1_lhmm(para_P1)
```

Arguments

para_P1

a vector of length K-1. parameters of initial state probability vector

Value

initial state probability vector of length K

See Also

 ${\tt compute_PQ_1hmm}\ for\ state-transition\ and\ state-action\ probabilities\ of\ LHMM,\ compute_paras_hmm\ for\ computing\ probabilities\ in\ HMM.$

Examples

```
paras <- sim_lhmm_paras(5, 2)
P1 <- compute_P1_lhmm(paras$para_P1)</pre>
```

compute_paras_hmm

Compute probabilities from logit scale parameters in HMM

Description

Compute probabilities from logit scale parameters in HMM

Usage

```
compute_paras_hmm(para_P, para_Q, para_P1)
```

Arguments

para_P	K by K-1 matrix. parameters of state-transition probability matrix
para_Q	K by N-1 matrix. parameters of state-action (emission) probability matrix
para_P1	K-1 vector. parameters of initial state probability distribution

compute_PQ_lhmm 3

Value

a list of three elements:

- P K by K state-transition probability matrix
- Q K by N state-action (emission) probability matrix
- P1 initial state probability vector of length K

See Also

```
compute_PQ_1hmm, compute_P1_1hmm for computing probabilities in LHMM
```

Examples

```
paras <- sim_hmm_paras(5, 2, return_prob=FALSE)
prob_paras <- compute_paras_hmm(paras$para_P, paras$para_Q, paras$para_P1)</pre>
```

compute_PQ_1hmm

Compute LHMM probabilities from parameters

Description

Compute state-transition and state-action (emission) probability matrices from LHMM parameters

Usage

```
compute_PQ_lhmm(theta, para_a, para_b, para_alpha, para_beta)
```

Arguments

theta	latent trait
para_a	K by K-1 matrix. discrimination parameters of state transition probability matrix
para_b	K by K-1 matrix. location parameters of state transition probability matrix
para_alpha	K by N-1 matrix. discrimination parameters of state-action (emission) probability matrix
para_beta	K by N-1 matrix. location parameters of state-action (emission) probability matrix

Value

A list of two elements

4 compute_theta

- P K by K state-transition probability matrix
- Q K by N state-action probability matrix

See Also

compute_P1_lhmm for initial state probabilities of LHMM, compute_paras_hmm for computing probabilities in HMM.

Examples

```
paras <- sim_lhmm_paras(5, 2)
prob_paras <- compute_PQ_lhmm(1.5, paras$para_a, paras$para_b, paras$para_alpha, paras$para_beta)</pre>
```

compute_theta	Estimate latent traits in LHMM
a	Estimate latent traits in LHMM

Description

Compute MAP estimates of latent traits given LHMM parameters

Usage

```
compute_theta(int_seqs, para_a, para_b, para_alpha, para_beta, para_P1, n_pts)
```

Arguments

int_seqs	a list of n action sequences where actions are coded as integers 0,, N-1
para_a	K by K-1 matrix. discrimination parameters of state transition probability matrix
para_b	K by K-1 matrix. location parameters of state transition probability matrix
para_alpha	K by N-1 matrix. discrimination parameters of state-action (emission) probability matrix
para_beta	$\ensuremath{\mathrm{K}}$ by N-1 matrix. location parameters of state-action (emission) probability matrix
para_P1	a vector of length K-1. parameters of initial state probability vector
n_pts	number of quadrature points

Value

a vector of length n. Estimated latent traits.

find_state_seq 5

Description

Find the most likely hidden state sequence of an observed sequence under HMM

Usage

```
find_state_seq(seq, P1, P, Q)
```

Arguments

seq	An action sequence coded in integers
P1	initial state probability vector of length K
Р	K by K state transition probability matrix
Q	K by N state-action (emission) probability matrix

Value

a hidden state sequence coded in integers

hmm	MMLE of HMM

Description

Maximum marginalized likelihood estimation of HMM. Optimization is performed through optim.

Usage

```
hmm(action_seqs, K, paras, verbose = TRUE, ...)
```

Arguments

action_seqs	a list of n action sequences
K	number of hidden states
paras	a list of elements named para_P1, para_P, and para_Q, providing initial values of model parameters
verbose	logical. If TRUE, progress messages are printed.
	additional arguments passed to optim

6 Ihmm

Value

a list containing the following elements

seqs	action sequences coded in integers
K	number of hidden states
N	number of distinct actions
paras_init	a list containing initial values of parameters
paras_est	a list containing parameter estimates
init_mllh	initial value of the marginalized likelihood function
opt_mllh	maximized marginalized likelihood function
opt_res	object returned by optim

Examples

```
# generate data
paras_true <- sim_hmm_paras(5, 2)
sim_data <- sim_hmm(20, paras_true, 4, 10)
# randomly generate initial values of parameters
paras_init <- sim_hmm_paras(5, 2, return_prob=FALSE)
# fit hmm
hmm_res <- hmm(sim_data$seqs, 2, paras_init)</pre>
```

1hmm *MMLE of LHMM*

Description

Maximum marginalized likelihood estimation of LHMM. Marginalization over latent trait is computed numerically using Guassian-Hermite quadratures from statmod. Optimization is performed through optim.

Usage

```
lhmm(action_seqs, K, paras, n_pts = 100, verbose = TRUE, ...)
```

Ihmm 7

Arguments

action_seqs a list of n action sequences

K number of hidden states

paras a list of elements named para_a, para_b, para_alpha, para_beta, and para_P1, providing initial values of model parameters

n_pts number of quadrature points

verbose logical. If TRUE, progress messages are printed.

... additional arguments passed to optim

Value

A list containing the following elements

seqs action sequences coded in integers number of hidden states Κ number of distinct actions a list containing initial values of parameters paras_init paras_est a list containing parameter estimates theta_est a vector of length n. estimated latent traits init_mllh initial value of the marginalized likelihood function opt_mllh maximized marginalized likelihood function opt_res object returned by optim

Examples

```
# generate data
paras_true <- sim_lhmm_paras(5, 2)
sim_data <- sim_lhmm(10, paras_true, 3, 5)
# randomly initialize parameters
paras_init <- sim_lhmm_paras(5, 2)
# fit model
lhmm_res <- lhmm(sim_data$seqs, 2, paras_init)</pre>
```

8 sim_hmm

proclhmm

proclhmm: Latent Hidden Markov Models for Response Process Data

Description

This package provides functions for simulating from and fitting the latent hidden Markov models for response process data (Tang, 2024). It also includes functions for simulating from and fitting ordinary hidden Markov models.

Data Simulation Functions

- sim_hmm_paras generates parameters of HMM
- sim_hmm generates actions sequences from HMM.
- sim_lhmm_paras generates parameters of LHMM
- sim_lhmm generates actions sequences from LHMM.

Model Fitting Functions

- hmm fits HMM models. Parameters are estimated through marginalized maximum likelihood estimation.
- 1hmm fits LHMM models. Parameters are estimated through marginalized maximum likelihood estimation.
- compute_theta compute MAP estimates of latent traits in LHMM.
- find_state_seq compute the most likely hidden state sequence.

Acknowledgment

The development of this package is supported by National Science Foundation grant DMS-2310664.

References

Tang, X. (2024) Latent Hidden Markov Models for Response Process Data. Psychometrika 89, 205-240. doi: 10.1007/s11336023099381

sim_hmm

Simulating action sequences using HMM

Description

sim_hmm generate n action sequences from HMM based on given parameters. The lengths of the generated sequences are simulated from a Poission distribution with mean mean_len and at least min_len.

sim_hmm_paras 9

Usage

```
sim_hmm(n, paras, min_len, mean_len, return_state = TRUE)
```

Arguments

n number of action sequences to be generated

paras a list containing specified HMM parameters: state-transition probability matrix

(P), state-action probability matrix (Q), and initial state probability (P1).

min_len minimum length of generated sequences
mean_len mean length of generated sequences

return_state logical. Whether generated hidden state sequences should be returned or not.

Value

sim_hmm returns a list of n generated action sequences if return_state = FALSE. If return_state = TRUE, it returns a list of two lists, seqs and state_seqs. seqs gives the generated action sequences. state_seqs gives the corresponding hidden state sequences.

Examples

```
paras <- sim_hmm_paras(5,2)
sim_data <- sim_hmm(20, paras, 3, 10)</pre>
```

sim_hmm_paras

generate HMM parameters

Description

sim_hmm_paras generates logit scale parameters of HMM with K hidden states and N distinct actions from Uniform(-0.5, 0.5).

Usage

```
sim_hmm_paras(N, K, return_prob = TRUE)
```

Arguments

N number of distinct actions
K number of hidden states

return_prob logical. indicates to return parameters in probability scale (TRUE, default) or

logit scale.

Value

a list of three elements. If return_prob = TRUE, the element names are P1, P, and Q. If return_prob = FALSE, the element names are para_P1, para_P, and oara_Q.

10 sim_lhmm

Examples

```
# generate probability parameters
set.seed(12345)
paras1 <- sim_hmm_paras(5, 2)
names(paras1)

# generate parameters in the logit scale
set.seed(12345)
paras2 <- sim_hmm_paras(5, 2, return_prob = FALSE)
names(paras2)

paras1$P1
paras2$para_P1

# logit scale parameters can be transformed to probability parameters
all.equal(compute_paras_hmm(paras2$para_P, paras2$para_Q, paras2$para_P1), paras1)</pre>
```

sim_lhmm

Simulating action sequences using LHMM

Description

sim_lhmm generate n action sequences from LHMM based on given parameters. The lengths of the generated sequences are simulated from a Poission distribution with mean mean_len and at least min_len. The latent trait is generated from standard normal.

Usage

```
sim_lhmm(n, paras, min_len, mean_len, return_state = TRUE)
```

Arguments

n number of action sequences to be generated

paras a list containing specified LHMM parameters: para_a, para_b, para_alpha,

para_beta, and para_P1.

min_len minimum length of generated sequences
mean_len mean length of generated sequences

return_state logical. Whether generated hidden state sequences should be returned or not.

Value

If return_state = TRUE, sim_hmm returns a list of three elements

seqs a list of n generated action sequences

theta latent traits as a vector of length n

sim_lhmm_paras 11

```
state_seqs a list of n hidden state sequences
```

If return_state = FALSE, the returned list only contains seqs and theta.

Examples

```
paras <- sim_lhmm_paras(5,2)
sim_data <- sim_lhmm(20, paras, 4, 10)</pre>
```

sim_lhmm_paras

generate LHMM parameters

Description

 sim_hmm_paras generates the parameters of LHMM with K hidden states and N distinct actions from Uniform(-0.5, 0.5).

Usage

```
sim_lhmm_paras(N, K)
```

Arguments

N number of distinct actions
K number of hidden states

Value

a list of five elements, para_a, para_b, para_alpha, para_beta, and para_P1.

Examples

```
paras <- sim_lhmm_paras(5, 2)
paras</pre>
```

Index

```
compute_P1_1hmm, 2, 3, 4
compute_paras_hmm, 2, 2, 4
compute_PQ_1hmm, 2, 3, 3
compute_theta, 4, 8

find_state_seq, 5, 8

hmm, 5, 8

1hmm, 6, 8

optim, 5-7

proclhmm, 8

sim_hmm, 8, 8

sim_hmm_paras, 8, 9

sim_1hmm_paras, 8, 10

sim_1hmm_paras, 8, 11

statmod, 6
```