Postsches Korrespondenzproblem

Simon Schrodi DHBW Karlsruhe

12.04.2019

Motivation

Gegeben zwei kontextfreie Grammatiken G_1 , G_2 , so sind folgende Probleme unentscheidbar:

- Ist $L(G_1) \cap L(G_2) = \emptyset$? (Schnittproblem)
- Ist $|L(G_1) \cap L(G_2)| = \infty$? (Endlichkeitsproblem)
- Ist $L(G_1) \subseteq L(G_2)$? (Inklusionsproblem)
- Ist $L(G_1) = L(G_2)$? (Äquivalenzproblem)
- Ist G_1 mehrdeutig? (Mehrdeutigkeitsproblem)
- ...

Wiederholung: Reduktion

Seien $A \subseteq \Sigma^*$ und $B \subseteq \Gamma^*$ Sprachen. $A \leq B$ gdw. es gibt eine berechenbare Funktion $f: \Sigma^* \to \Gamma^*$, so dass $\forall x \in \Sigma^*$ gilt:

$$x \in A \Leftrightarrow f(x) \in B.$$
 (0)

Falls $A \leq B$ und A unentscheidbar, so ist auch B unentscheidbar.

Definition: Postsches Korrespondenzproblem (PKP)

Eine Instanz des PKP besteht aus einer endlichen Folge

$$K = [(x_1, y_1), ..., (x_k, y_k)], (1.1)$$

wobei $x_i, y_i \neq \epsilon$ über einem endlichen Alphabet Σ sind. Es soll entschieden werden, ob es eine **korrespondierende Folge**

$$i_1, ..., i_n \in [1, ..., k], n \ge 1$$
 (1.2)

von Indizes, genannt **Lösung**, gibt, so dass gilt

$$x_{i_1} x_{i_2} \dots x_{i_n} = y_{i_1} y_{i_2} \dots y_{i_n}. (1.3)$$

Bildquelle:

https://www.researchgate.net/profile/Klaus_Jantke/public ation/297212574/figure/fig2/AS:337034053996545@1457 366588223/Abbildung-23-Unloesbare-Problemstellung-Dass-es-fuer-den-Pool-von-Wortpaaren-in-der-Abb Q320.jpg

Definition: Modifiziertes PKP (MPKP)

• Wie PKP, außer dass Indexfolge mit $m{i_1}=m{1}$ beginnen muss

Beispiel PKP 1

Gegeben: K = [(10111, 10), (1, 111), (10, 0)]

Gesucht: Korrespondierende Indexfolge

Lösung: Die Indexfolge ist (1, 2, 2, 3):

$$\underbrace{10111}_{x_1} \underbrace{1}_{x_2} \underbrace{1}_{x_2} \underbrace{10}_{x_3} = 101111110 = \underbrace{10}_{y_1} \underbrace{111}_{y_2} \underbrace{111}_{y_2} \underbrace{0}_{y_3}$$

Beispiel PKP 2

Gegeben: K = [(10, 101), (011, 11), (101, 011)]

Lösung: Es gibt keine passende Indexfolge (Zugzwangargument)

- Jede potentielle Lösung muss mit $i_1 = 1$ beginnen
- Immer wenn y-Sequenz eine 1 Vorsprung hat, ist die einzig mögliche Fortsetzung:

$$x - Sequenz : \dots \underbrace{101}_{x_3}$$

 $y - Sequenz : \dots 1\underbrace{011}_{y_3}$

Die y-Sequenz hat eine 1 Vorsprung

Beispiel PKP 3

Gegeben: K = [(001, 0), (01, 011), (01, 101), (10, 001)]

Lösung: (2,4,3,4,4,2,1,2,4,3,4,3,...) mit 66 Indizes

Satz: MPKP ist semi-entscheidbar

- Kombinatorische Entscheidungssuche
- Tiefensuche oder Breitensuche?

Lemma: MPKP ist unentscheidbar

Zeige:

$$H \le MPKP, \tag{2.1}$$

indem eine Reduktionsabbildung f gegeben wird, die die Eingaben vom allgemeinen Halteproblem $H = \{(p, w) | \text{Turingprogramm p angesetzt auf w hält} \}$, so auf Eingaben von MPKP abbildet, dass:

$$(p, w) \in H(M_p) \Leftrightarrow f(p, w) \in MPKP$$
 (2.2)

Konfiguration einer Turingmaschine M_w

- Konfiguration einer Turingmaschine ist ein Wort $k = \alpha z b \beta \in \Gamma^* Z \Gamma^*$
- Momentaufnahme der Turingmaschine:

Beweisidee

- ullet Stelle x- und y-Sequenzen als Konfigurationsfolgen von TM dar
- Die y-Sequenz hat immer eine Konfiguration Vorsprung
- Die x-Sequenz holt nach dem Stoppen von TM den Vorsprung ein

Beispiel der Simulation

Sei eine Turingmaschine M mit Eingabe w=01 gegeben:

$$M = (\underbrace{\{z_1, z_2, z_f\}}_{Z}, \underbrace{\{0, 1\}}_{\Sigma}, \underbrace{\{0, 1, \square\}}_{\Gamma}, \delta, \underbrace{z_1}_{z_1 \in Z}, \square, \underbrace{\{z_f\}}_{E})$$

δ	0	1	
$\boxed{z_1}$	$(z_2, 1, R)$	$(z_2, 0, L)$	$(z_2,1,L)$
z_2	$(z_f,0,L)$	$(z_1,0,R)$	$(z_2,0,R)$
$\mid z_f \mid$	_	_	_

Regelfolge: A(nfangsregel)

x- und y-Sequenz als Konfigurationsfolge

• x-Sequenz: #

• y-Sequenz: #**z**₁**01**#

y-Sequenz hat immer eine Konfiguration Vorsprung

• M_w : **Z**₁**01**

δ	0	1	
$\boxed{z_1}$	$(z_2, 1, R)$	$(z_2, 0, L)$	
$ z_2 $	$(z_f, 0, L)$	$(z_1, 0, R)$	$(z_2, 0, R)$
$\mid z_f \mid$	_	_	_

• Regelfolge: A, (R)echts-Überführungsregel

• x-Sequenz: #**z**₁**0**

• y-Sequenz: $#z_101#1z_2$

y-Sequenz hat immer eine Konfiguration Vorsprung

• M_w : $z_101 \vdash 1z_21$

δ	0	1	
$ z_1 $	$(z_2, 1, R)$	$(z_2, 0, L)$	$(z_2,1,L)$
$ z_2 $	$(z_f,0,L)$	$(z_1, 0, R)$	$(z_2,0,R)$
$\mid z_f \mid$	_	_	_

Regelfolge: A, R,(K)opierregel

• x-Sequenz: $\#z_101$

• y-Sequenz: $\#z_101\#1z_2$ 1

y-Sequenz hat immer eine Konfiguration Vorsprung

• M_w : $z_101 \vdash 1z_21$

δ	0	1	
$ z_1 $	$(z_2, 1, R)$	$(z_2, 0, L)$	$(z_2,1,L)$
$ z_2 $	$(z_f,0,L)$	$(z_1, 0, R)$	$(z_2,0,R)$
$\mid z_f \mid$	_	_	_

Regelfolge: A, R, K, K

• x-Sequenz: $\#z_101\#$

• y-Sequenz: $\#z_101\#1z_21\#$

y-Sequenz hat immer eine Konfiguration Vorsprung

• M_w : $z_1 01 \vdash 1z_2 1$

δ	0	1	
$ z_1 $	$(z_2, 1, R)$	$(z_2, 0, L)$	$(z_2,1,L)$
$ z_2 $	$(z_f,0,L)$	$(z_1,0,R)$	$(z_2, 0, R)$
$\mid z_f \mid$	_	_	_

• Regelfolge: A, R, K, K, K

• x-Sequenz: $#z_101#1$

• y-Sequenz: $\#z_101\#1z_21\#1$

y-Sequenz hat immer eine Konfiguration Vorsprung

• M_w : $z_101 \vdash 1z_21 \vdash 10z_1$

δ	0	1	
$ z_1 $	$(z_2,1,R)$	$(z_2, 0, L)$	$(z_2, 1, L)$
$ z_2 $	$(z_f,0,L)$		$(z_2,0,R)$
$\mid z_f \mid$	_	_	_

• Regelfolge: A, R, K, K, K, R

• x-Sequenz: $\#z_101\#1z_21$

• y-Sequenz: $\#z_101\#1z_21\#10z_1$

y-Sequenz hat immer eine Konfiguration Vorsprung

• M_w : $z_101 \vdash 1z_21 \vdash \mathbf{10z_1}$

δ	0	1	
$ z_1 $	$(z_2, 1, R)$	$(z_2, 0, L)$	$(z_2, 1, L)$
z_2	$(z_f,0,L)$	$(z_1,0,R)$	$(z_2,0,R)$
$ z_f $	_	_	_

Regelfolge: A, R, K, K, K, K, K, K, K, (S1)-Sonderregel

- x-Sequenz: $\#z_101\#1z_21\#10z_1\#$
- y-Sequenz: $\#z_101\#1z_21\#10z_1\#1z_201\#1z_1$

y-Sequenz hat immer eine Konfiguration Vorsprung

• M_w : $z_101 \vdash \cdots \vdash 10z_1 \vdash 1z_201$

δ	0	1	
$ z_1 $	$(z_2, 1, R)$	$(z_2,0,L)$	$(z_2,1,L)$
$ z_2 $	$(z_f,0,L)$	$(z_1,0,R)$	$(z_2,0,R)$
$ z_f $	_	_	_

• Regelfolge: A, R, K, K, K, R, K, K, S1, (L) inks-Überführungsregel, K, K

- x-Sequenz: $\#z_101\#1z_21\#10z_1\#1z_201\#1z_2$
- y-Sequenz: $\#z_101\#1z_21\#10z_1\#1z_201\#z_f\mathbf{101}\#$
- M_w : $z_101 \vdash \cdots \vdash 1z_201 \vdash z_f101$

-	δ	0	1	
	$ z_1 $		$(z_2,0,L)$	$(z_2,1,L)$
	z_2	$(z_f, 0, L)$	$(z_1,0,R)$	$(z_2, 0, R)$
	z_f	_	_	_

• Regelfolge: A, R, K, K, K, R, K, K, S1, L, K, K, (Lö)sch-Regeln

- x-Sequenz: $||z_1||^2 ||z_2||^2 ||z_3||^2 ||z_4||^2 ||z_3||^2 ||z_4||^2 |$
- y-Sequenz: $||z_1||^2 ||z_2||^2 ||z_3||^2 ||z_4||^2 ||z_3||^2 ||z_4||^2 |$

x-Sequenz holt nach Stopp Vorsprung auf

- Regelfolge: A, R, K, K, K, R, K, K, S1, L, K, K, L, K, K, Lö, K, Lö, K, (Ab)schlussregel
- x-Sequenz: $\#z_101\#1z_21\#10z_1\#1z_201\#z_f101\#z_f01\#z_f1\#z_f\#\#$
- y-Sequenz: $\#z_101\#1z_21\#10z_1\#1z_201\#z_f101\#z_f\mathbf{01}\#z_f\mathbf{1}\#z_f\#\#$

Simulation der TM

- (i) Anfangsregel: $(\#, \#z_1w\#)$
- (ii) **Kopierregeln:** $\forall a \in \Gamma \cup \{\#\} : (a, a)$
- (iii) Überführungsregeln: $\forall z \in Z \setminus E; \forall z' \in Z; \forall a, c \in \Gamma \setminus \{\Box\}:$

$$(za, cz'), \ falls \ \delta(z, a) = (z', c, R)$$

 $(bza, z'bc), \ falls \ \delta(z, a) = (z', c, L), \ \forall b \in \Gamma$
 $(z\#, cz'\#), \ falls \ \delta(z, \Box) = (z', c, R)$
 $(bz\#, z'bc\#), \ falls \ \delta(z, \Box) = (z', c, L), \ \forall b \in \Gamma \setminus \{\Box\}$

- (iv) **Löschregeln:** $\forall z_f \in E; \forall a \in \Gamma \setminus \{\Box\}: (az_f, z_f), (z_f a, z_f)$
- (v) **Abschlussregeln:** $\forall z_f \in E : (z_f \# \#, \#)$

Nachweis der Reduktion: "=>"

- $(p, w) \in H \Rightarrow f(p, w) \in MPKP$
 - Falls $(p, w) \in H$, erhalten wir irgendwann eine Lösung der Form $(k, k\alpha z_f \beta \#)$ mit $z_f \in E, \alpha, \beta \in \Gamma^*$
 - Mittels Kopierpaare und Löschpaare kann der Vorsprung $\alpha z_f \beta \#$ vermindert werden,
 - bis das Abschlusspaar angewendet werden kann, so dass $(k'z_f##, k'z_f##)$

Nachweis der Reduktion: "<="

- $f(p, w) \in MPKP \Rightarrow (p, w) \in H$
 - Es sei angenommen: $(p, w) \notin H \Rightarrow f(p, w) \notin MPKP$
 - Da kein Zustand $z_f \in E$ erreicht wird, werden keine Löschpaare angewendet, und
 - somit hat die y-Sequenz stets eine Konfiguration Vorsprung

Satz: Ist G mehrdeutig, ist unentscheidbar

- Gegeben eine Instanz des MPKP mit $K=[(x_1,y_1),...,(x_k,y_k)]$ über einem endlichen Alphabet Σ und $I=\{i_1,...,i_k\} \notin \Sigma$
- Konstruiere kontextfreie Grammatik $G_x = (V_x, T, P_x, S_x)$ mit

$$-T = \Sigma \cup I$$

$$- P_x = \{S_x \to i_1 S_x x_1 | ... | i_k S_x x_k | i_1 x_1 \}$$

und eine Grammatik G_y analog mit y_i statt x_i

• Sei $L(G_z) = L(G_x) \cup L(G_y)$ mit $P_z = \{S \to S_x | S_y\} \cup P_x \cup P_y$

Satz: Ist G mehrdeutig, ist unentscheidbar

- K hat eine Lösung \Rightarrow G ist mehrdeutig
 - MPKP aus Beispiel 1: K = [(10111, 10), (1, 111), (10, 0)] hat Lösung (1, 2, 2, 3)

Satz: Ist G mehrdeutig, ist unentscheidbar

- G ist mehrdeutig \Rightarrow K hat eine Lösung
 - $-G_z$ hat zwei **verschiedene** Ableitungsbäume mit **gleichem** Wort w
 - Fall 1: $S \to S_x \to w$ für beide Ableitungsbäume
 - D.h. S_x ist mehrdeutig
 - Aber G_x ist LL(2) ?
 - Fall 2: $S \to S_x \to w$ bzw. $S \to S_y \to w$
 - Erster Teil der Worte ist gleich (Indexfolge)
 - Zweiter Teil der Worte ist gleich \rightarrow Lösung für K

Satz: $L(G_1) \cap L(G_2) \stackrel{?}{=} \emptyset$ ist unentscheidbar

- Gegeben eine Instanz des MPKP mit $\{(x_1, y_1), ..., (x_k, y_k)\}$ über einem endlichen Alphabet Σ und $I = \{i_1, ..., i_k\} \notin \Sigma$
- Konstruiere kontextfreie Grammatik $G_x = (V_x, T, P_x, S_x)$ und eine Grammatik G_y analog mit y_i statt x_i
- $L(G_x) \cap L(G_y) \neq \emptyset \iff \exists w \in \Sigma : w \in L(G_x) \land w \in L(G_y)$

Satz: $|L(G_1) \cap L(G_2)| \stackrel{?}{=} \infty$ ist unentscheidbar

- ullet Ordne MPKP zwei Grammatiken G_x und G_y zu
- Lösungen von K entsprechen $w \in (L(G_x) \cap L(G_y))$
- Wenn MPKP (mindestens) eine Lösung hat, so hat MPKP unendlich vie Lösungen, indem die Lösungsfolge beliebig oft wiederholt wird
 - MPKP aus Beispiel 1: K = [(10111, 10), (1, 111), (10, 0)] hat Lösun (1, 2, 2, 3)
 - Dann ist auch (1,2,2,3,1,2,2,3) eine Lösung
- Also gilt: K hat Lösung $\iff |L(G_x) \cap L(G_y)| = \infty$

Anhang

Satz: PKP ist unentscheidbar

Zeige:

$$MPKP \le PKP.$$
 (2.0)

- Eingabeinstanz von MPKP über Alphabet Σ sei $K = [(x_1, y_1), ..., (x_k, y_k)]$
- Es sei #, $\$ \notin \Sigma$ ein neues Symbol, so dass gilt:

$$f(K) = [(x'_0, y'_0), (x'_1, y'_1), ..., (x'_k, y'_k), (x'_{k+1}, y'_{k+1})]$$

mit

$$-x'_0 = \#x'_1, x_{k+1} = \$, y'_0 = y'_1, y'_{k+1} = \#\$$$
$$-\forall i \in \{1, ..., k\} \ gilt \ x'_i = x_i \# \ bzw. \ y'_i = \#y_i$$

• Aus der Konstruktion von f(K) ergibt sich leicht $MPKP \leq PKP$

Beispiel $(M)PKP \leq PKP$

Indexfolge für (M)PKP ist (1, 2, 2, 3):

$$\underbrace{10111}_{x_1} \underbrace{1}_{x_2} \underbrace{1}_{x_2} \underbrace{10}_{x_3} = 101111110 = \underbrace{10}_{y_1} \underbrace{111}_{y_2} \underbrace{111}_{y_2} \underbrace{0}_{y_3}$$

Indexfolge für PKP ist (0, 2, 2, 3, 4):

$$\underbrace{\#1\#0\#1\#1\#1\#}_{x'_0}\underbrace{1\#}_{x'_2}\underbrace{1\#}_{x'_2}\underbrace{1\#0\#}_{x'_3}\underbrace{\$}_{x'_4} = \underbrace{\#1\#0}_{y'_0}\underbrace{\#1\#1\#1}_{y'_2}\underbrace{\#1\#1\#1}_{y'_2}\underbrace{\#0}_{y'_2}\underbrace{\#\$}_{y'_3}\underbrace{\#\$}_{y'_4}$$

Beispiel $(M)PKP \leq PKP$

Gegeben:
$$K = [\underbrace{(10111, 10)}_{x_1}, \underbrace{(1, 111)}_{y_1}, \underbrace{(1, 111)}_{x_2}, \underbrace{(10, 111)}_{y_2}, \underbrace{(10, 111)}_{y_3}, \underbrace{(10, 111$$

So ist

$$f(K) = [\underbrace{(1\#0\#1\#1\#1\#\#1\#1\#0)}_{x'_1}, \underbrace{(1\#, \#1\#1)}_{x'_2}, \underbrace{\#1\#1}_{y'_2}, \underbrace{\#1\#0}_{y'_2}, \underbrace{(1\#0\#, \#0)}_{x'_3}, \underbrace{\#0}_{y'_3})$$

$$\cup [\underbrace{(\#1\#0\#1\#1\#1\#, \#1\#0)}_{x'_0}, \underbrace{(\#, \#1\#1)}_{y'_0}, \underbrace{(\#, \#1\#1)}_{y'_4}, \underbrace{\#1\#0}_{y'_4}, \underbrace{\#\#1}_{y'_4})$$

Beispiel der Simulation: Konstruktion 1

Regeltyp	Regel.Index	x-Sequenz	y-Sequenz	Quelle
Anfangsregel	(i).0	#	$\#z_001\#$	
	(ii).O	0	0	
Kopierregeln	(ii).1	1	1	
	(ii).2	#	#	
	(iii).O	z_10	$1z_2$	$\delta(z_1,0) = (z_2,1,R)$
	(iii).1	$0z_{1}1$	$z_{2}00$	$\delta(z_1,1)=(z_2,0,L)$
	(iii).2	$1z_{1}1$	$z_{2}10$	$\delta(z_1,1)=(z_2,0,L)$
	(iii).3	$0z_1$ #	$z_{2}01#$	$\delta(z_1, \square) = (z_2, 1, L)$
Überführungsregeln	(iii).4	$1z_1$ #	$z_211#$	$\delta(z_1, \square) = (z_2, 1, L)$
	(iii).5	$0z_{2}0$	$z_f 00$	$\delta(z_2,0)=(z_f,0,L)$
	(iii).6	$1z_{2}0$	$z_f 10$	$\delta(z_2,0) = (z_f,0,L)$
	(iii).7	z_21	$0z_1$	$\delta(z_2, 1) = (z_1, 0, R)$
	(iii).8	z_2 #	$0z_2$ #	$\delta(z_2, \square) = (z_2, 0, R)$

Beispiel der Simulation: Konstruktion 2

Regeltyp	Regel.Index	x-Sequenz	y-Sequenz	Quelle
	(iv).0	$0z_f0$	Z_f	
	(iv).1	$0z_f1$	Z_f	
	(iv).2	$1z_f0$	Z_f	
1 # o aloue era lu	(iv).3	$1z_f1$	Z_f	
Löschregeln	(iv).4	$0z_f$	Z_f	
	(iv).5	$1z_f$	Z_f	
	(iv).6	$z_f 0$	Z_f	
	(iv).7	$z_f 1$	Z_f	
Abschlussregeln	(v).0	z_f ##	#	

Satz: $L(G_1) \subseteq L(G_2)$ und $L(G_1) = L(G_2)$, sind unentscheidbar

- Ordne PKP zwei Grammatiken $G_x = (V_x, \Sigma, P_x, S_x)$ und $G_y(V_y, \Sigma, P_y, S_y)$ zu
- L_x und L_y sind deterministisch kontextfrei
- Es gibt \bar{G}_x sowie \bar{L}_x und es gilt $L(G_{\bar{x}y}) = L(\bar{G}_x) \cup L(G_y)$
- Behauptung: $L(G_x) \cup L(G_y) \stackrel{?}{=} \emptyset \mapsto L(G_{\bar{x}y}) = L(\bar{G}_x)$

$$L(G_x) \cap L(G_y) = \emptyset \Leftrightarrow L(G_y) \subseteq L(\bar{G}_x)$$
$$\Leftrightarrow L(G_y) \cup L(\bar{G}_x) = L(\bar{G}_x)$$
$$\Leftrightarrow L(G_{\bar{x}y}) = L_{\bar{G}_x}$$

- Daraus folgt Inklusionsproblem und Äquivalenzproblem sind unentscheidbar
- Aber: Äquivalenzproblem für deterministisch kontextfreie Sprachen ist entscheidbar!