$$f(x) = (x^3 - 10) = (x - \sqrt[3]{10})(x - \sqrt[3]{10}w)(x - \sqrt[3]{10}w * w)$$

in $\mathbb{C}[x]$.

where ω is $e^{\frac{i2\pi}{3}}$ so splitting field over $K = Q(\sqrt{2})$ is $K(\omega, \sqrt[3]{10})$.

 $K(\omega, \sqrt[3]{10})$ has all the roots of $(x^3 - 10)$ also this is the smallest field which contains all the roots of f(x)

 ω is complex so w does not belong to $Q(\sqrt[3]{10}, \sqrt{2})$ so $Q(\omega, \sqrt[3]{10}, \sqrt{2}) \neq Q(\sqrt[3]{10}, \sqrt{2})$ also $x^2 + x + 1$ is the min polynomial of w over Q[x] so if m(x) is minimum polynomial over $Q(\sqrt[3]{10}, \sqrt{2})$ is in $\deg(m(x)) \leq 2$ also $\deg(m(x)) \neq 1$ otherwise ω is in $Q(\sqrt[3]{10}, \sqrt{2})$ So $m(x) = x^2 + x + 1$ also we can prove $[Q(\sqrt[3]{10}, \sqrt{2}): Q] = 6$.

So $[Q(\sqrt{2}, \sqrt[3]{10}, \omega): Q] = 12$.

11) p be a prime. Degree of splitting field of x^p-2 There nay be two cases over $\mathbb{Q}\cdot\mathbb{Q}$ say if P=2, $x^2-2=(x-\sqrt{2})(x+\sqrt{2})$ over R[x]

thus $Q(\sqrt{2})/Q$ is a field where x^2-2 splits alto it is the smallest such field (Containing Q and $\sqrt{2}$ which has degree 2.

p > 2 and prime

let ω be ρ^{th} primitive root of unity of 1 in \mathbb{C} sad $e^{2\pi i/p}$ if p > 2. $e^{2\pi i/p}$ is not in Q.

 $\left[\because \sin\left(\frac{2Mi}{n}\right) \neq 0\right]$ thus it is complex].

also $\omega^q \neq 1$; $\forall q$ such that $0 < q < p \in \mathbb{Z}$

So ω , ω^2 , ... ω^{p-1} , 1 are distinct element

So $2^{1/p}\omega$, $2^{1/p}\omega^2\cdots 2^{\frac{1}{p}}\omega^{p-1}$, $2^{1/p}$ also distinct set of elements also x^p-2 has p roots at most [equal if separable] these are precisely all the roots so $Q(\omega,2^{1/p})/Q$ is the splitting field extension

 $x^P - 2$ is in irreducible by eisenstein condition . Field extension.

$$\left[Q(2^{1/P}):Q\right]=p.$$

Now $(x^p - 1) = (x - 1)(x^{p-1} + x^{p-2} \cdots x + 1)$

We claim = $x^{p-1} + x^{p-2} + \cdots + x^{p-1}$ is irreducible.

let's say q(x) is reducible

So q(x + 1) also should be reducible

$$q(x+1) = \frac{(x+1)^p - 1}{x} = px + \frac{p(p-1)x^2}{2} + \dots + x^{p-1}$$

now

$$p \mid (P_{c_r}) \forall r < p, r \in \mathbb{Z}^+$$
.

by Eisenstein on P

q(x + 1) is not reducble so q(x) can not be reduced

also we know
$$\gcd(p, p - 1) = 1$$

$$p\left|\left[Q\left(\omega, 2^{1/\rho}\right): Q\right] \text{ and } (p - 1)|\left[Q\left(\omega, 2^{\frac{1}{\rho}}\right): Q\right] \right| \Rightarrow p(p - 1)\left|\left[Q\left(\omega, 2^{\frac{1}{\rho}}\right): Q\right] \right|$$

Thus.

and
$$[Q(\omega, 2^{1/P}): Q] \le P(P - \mathbb{P})$$

So $[Q(\omega, 2^{1/l}): Q] = \rho(\rho - 1)$

12. *K* in *C* be be a splitting field of $f(x) = x^3 - 2$ over Q. So as we have previously seen

$$K = Q(\omega, 2^{1/3})$$

Consider

$$\alpha = \sqrt[3]{2} + \exp(2\pi i/3)$$

$$3 = (\sqrt[3]{2})^3 + \exp(2\pi i/3)^3$$

$$= (\sqrt[3]{2} + \exp(\frac{2\pi i}{3}))[(\sqrt[3]{2} + e^{2\pi i/3})^2 - 3\sqrt[3]{2}e^{2\pi i/3}]$$

$$= \alpha(\alpha^2 - 3\sqrt[3]{2}e^{2\pi i/3}).$$

So
$$3\sqrt[3]{2}e^{2\pi i/3} = \alpha^2 - \frac{3}{\alpha}$$
.
say $x = \sqrt[3]{2}e^{2\pi i/3} \in Q[\alpha]$.
 $1 = (\sqrt[3]{2})^3 - (e^{2\pi i/3})^3 = (\sqrt[3]{2} - e^{2\pi i/3})(\alpha^2 - z)$.

now $\alpha \in Q[\alpha], z \in \mathbb{Q}[\alpha]$

So
$$(\sqrt[3]{2} - e^{2\pi i/3}) \in Q[\alpha]$$

so $\sqrt[3]{2} \in Q[\alpha]$ and $e^{2\pi i/3} \in Q[\alpha]$
 $(\because \frac{\alpha + \gamma}{2}, \frac{\alpha - \gamma}{2}]$ So.
 $Q(\omega, \sqrt[3]{2}) \subseteq Q[\alpha]$ also $Q[\alpha] \subseteq Q(\omega, \sqrt[3]{2})$

13

$$f(x) = x^p - x - c \in F[x]$$
 , p is characteristic of F
$$p.1 = (1+1...+1) = 0$$

Let K be a splitting field of F

If f(x) is reducible in F[x] and $q(x) \mid f(x), q(x) \in F$ and q(x) is irreducible then $0 < \deg q(x) < \deg f(x)$ and say α is a root of q(x)

if
$$\alpha^p - \alpha - C = 0$$
 then $(\alpha + 1)^p - (\alpha + 1) - C$

$$= \alpha^p + 1 - (\alpha + 1) - c \begin{bmatrix} \because \text{ the characteristics is p so } (\alpha + b)^p \\ = \alpha^p + b^p \end{bmatrix}$$

$$= \alpha^p - \alpha - c = 0$$

First of all by derivative test it is separable

so α , $\alpha + 1$, ..., $\alpha + p - 1$ are unique roots of f(x) in $F(\alpha)$.

 $F(\alpha)$ is a field where f(x) splits and it is the smallest such field over F so $[F(\alpha):F] = \deg(q(x)) =$

degree of any splitting field of f(x) we know all splitting fields are isomorphic thus all irreducible

divisor of f(x) has same degree $.k^*(deg(q(x))) = deg f(x)$ where k is the number of irreducible divisors.

as p in prime deg(q(x)) = 1 or p.

So either $q(x) = f(x) \cdot u$ where u is some unit in F or deq(q(x)) = 1 for all such divisors. So either f(x) is irreducible or has all roots.

14. Let F be a field of characteristic zero p be an odd prime $a \in F^x$ such that a is not p^{th} power of any element in F. p > 2 is prime $f(x) = x^p$ -a .Let K be the spitting field of f(x) over F thus.

$$f(x) = (x - z_1)(a - z_2) \cdots (x - z_p)$$
and $z_i^p = a \ \forall i \in \{1, \dots, P\}.$

now.

say
$$f(x) = p(x)q(x)$$
 where neither

$$p(x) = 1$$
 or $q(x) = 1$ so

in
$$K$$
 $p(x) = (x - z_1)(x - z_2) \cdots (x - z_n)$
now

$$z_1 \dots z_n = z$$
 say

$$z^p=z_1^pz_2^p\cdots z_n^p=c\cdot c\dots c=c^n.$$

p is a prime arid $n \le p$ thus. There exists a, b such that

$$ap + bn = 1$$
$$\left((c^a) * (z^b) \right)^p = c^{ap+bn} = c^1 = c.$$

Now $c^a z^b \in F$

but \exists no clement in F whose pth power = a. thus we got a contradicton

15.
$$a \in \mathbb{C}$$

 $\sigma_a : \mathbb{C}(x) \to \mathbb{C}(x)$ which subs x by $x + a$.
 $G = \{\sigma_a, a \in \mathbb{C}\}$. To find fixed field of
G any element in $C(x)$

$$= \frac{f(x)}{g(x)} f, g \in C(x) g \neq 0$$
It fixes $\frac{f(x)}{g(x)}$ if $\frac{f(x)}{g(x)} = \frac{f(x+a)}{g(x+a)}$

$$\frac{f(x)}{g(x)} = \frac{f(x+a)}{g(x+a)} \forall a \in \mathbb{C}$$

thus
$$f(x)g(x+a) - g(x)f(x+a) = 0$$

 $\forall a \in \mathbb{C}$. now consider \forall fo put x = b for any $b \in x$ such that $g(x) \neq 0$.

$$\forall a \in \mathbb{C}$$
. now consider \forall to put x then $\frac{f(b)}{g(b)} = \frac{f(b+a)}{g(b+a)} \forall a \in \mathbb{C}$ or $\frac{f(y)}{g(y)} - \frac{f(b)}{g(b)} \forall y \in \mathbb{C}$ thus $\frac{f(y)}{g(y)} = \text{constant} = \frac{f(b)}{g(b)} \in \mathbb{C}$ So $\frac{f(y)}{g(y)} \in \mathbb{C}$ also any element in \mathbb{C} is fixed by

also any element in $\mathbb C$ is fixed by this all the automorphism.

Thus we can say $\mathbb{C} \subseteq G'$ and $G' \subseteq C$ so $G' = \mathbb{C}$

16.
$$\omega = e^{2\pi i/3}$$

$$\sigma: C(x) \mapsto C(x)$$

$$\sigma(x) = wx.$$

$$\sigma|_{\mathfrak{E}=id}$$

$$\tau: C(x) -> C(x).$$

$$\tau(x) = \frac{1}{x}$$

$$\Phi r|_{\mathfrak{C}} = id$$

ary dement $e \in C(x)$ be $e = \frac{f(x)}{g(x)} f^{(1)'(x)} \in C[x]$ $q(a) \neq 0$

$$\tau \left(\tau \left(\frac{a_0 + a_1 x_1 + a_n x^n}{b_0 + b_1 x + \cdots} \right) \right) = \tau \left(\frac{a_0 + \frac{a_1}{x} + \frac{a_2}{x^2} + \cdots + \frac{a_n}{x^n}}{b_0 + \frac{b_1}{x} + \frac{b_2}{x^2} + \cdots + \frac{b_m}{x^m}} \right)$$

$$= \frac{a_0 + a_1 x + \cdots + a_n x^n}{b_0 + b_1 x + \cdots + b_m x^m} = \frac{f(x)}{g(x)}$$

$$\begin{split} &\tau\sigma\left(\frac{f(x)}{g(x)}\right) = \tau\left(\sigma\left(\frac{f(x)}{g(x)}\right)\right) \\ &= \tau\left(\sigma\left(\frac{a_0 + a_1x + \cdots + a_nx^n}{b_0 + b_1x + \cdots + b_mx^m}\right) \\ &= \tau\left(\frac{a_0 + a_1\omega x + a_2\omega^2x^2 + \cdots + a_n\omega^nx^n}{b_0 + b_1\omega x + b_2\omega^2x^2 + \cdots + b_mx^m\omega^m}\right) \\ &= \frac{\left(a_0 + \frac{a_1\omega}{b_0} + \frac{a_2\omega^2}{b_0} + \frac{a_n\omega^n}{x^2 + \cdots + b_mx^m}\right)}{\left(b_0 + \frac{b_1\omega}{x} + \frac{b_2\omega^2}{x^2} + \cdots + \frac{b^m\omega^m}{x^m}\right)}. \\ &= \sigma^{-1}\tau\left(\frac{f(a)}{g(x)}\right) \\ &= \sigma^{-1}\left(\frac{a_0 + \frac{a_1}{x} + \frac{a_2}{x^2} + \cdots + \frac{a_n}{x^2}}{b_0 + \frac{b_1}{x} + \frac{b_0}{x^2} + \cdots + \frac{b_{nn}}{x_n}}\right). \\ &= \frac{\left(a_0 + \frac{a_1\omega}{x} + \frac{a_2\omega^2}{x^2} + \frac{a_n\omega^m}{xn}\right)}{\left(b_0 + \frac{b_1\omega}{x} + \frac{b_2\omega^2}{x^2} + \cdots + \frac{b^m\omega^m}{x^m}\right)}. \end{split}$$

they are same

 $\sigma^3=1$ so $1,\sigma,\sigma^2$ are distinct power of σ $\sigma^{-1}=v^2$ $\tau^2=1$ So $1,\tau$ $\tau^{-1}=\tau$ any staring $\sigma^{P_1}\tau^{P_2}\sigma^{P_3}\tau^{P_4}\dots\tau^{P_{2k}}$ wa be

 $p_1, p_{2k} \ge 0 \text{ others } > 0$

can be converted to $\sigma^{k_1}\tau^{k_2}$. for some k_1k_2 . for some k_1k_2 . σ^{k_1} is ether 1, σ , σ^2 or. τ^{k_2} is either 1, τ . $\{1, \tau, \sigma, \sigma\tau, \sigma^2, \sigma^2, \tau\}$ are the elements we can prove no two element in the list are same by applying them on a simple function like p(x) = x

so there are 6 elements.