ChibiOS

MIKROVEZÉRLŐS RENDSZERFEJLESZTÉS

Általános célú I/O-k (GPIO)

Zsupányi Krisztián

Digitális be és kimenetek kezelése

DIGITÁLIS LOGIKA

Miért van szükség a tiltott zónára, miért nem lehet pl.:1,65 V a határ?

STM32F407: GPIO FELÉPÍTÉSE

- Egy port (pl: GPIOA ... I): akár 16 I/O pin,
- Kimeneti állapotok: push-pull vagy open-drain + felhúzó/lehúzó ellenállás,
- Külön sebességállítás minden I/O-ra, hatással van a fogyasztásra és a zajra,
- Bemeneti állapotok: lebegő, felhúzó/lehúzó ellenállással, analóg
- Alternatív funkciók (legfeljebb 16 AF egy I/O-hoz) pl: SPI, USART, I2C,
- A digitális konfigurációban 5V toleránsak, analóg konfigurációnál nem!

STM32F407: PUSH-PULL KONFIGURÁCIÓ

Hogy jönnek létre a szintek?

- Leggyakoribb konfiguráció
- Földre húzza a kimenetet vagy tápfeszültségre tolja
- Egyszerre nem lehet mindkét FET zárt állapotban
- FET miatt akár egy LED-et tud kapcsolni ("nagy" áram)
- A logika ugyan fordítottnak tűnik, de az invertálás hardveresen be van építve

Mi van ha több eszköz van egy push-pull vonalon?

STM32F407: OPEN-DRAIN KONFIGURÁCIÓ

Hogy jönnek létre a szintek?

- Mi van ha több eszköz van egy push-pull vonalon?
- Az eszközök csak földre tudják húzni a vezetéket,
- Mi történik ha egyik eszköz sem aktív ?
- Magától lebegne ezért kell az R_{PU}
- Alapállapotban magas szint van a buszon így nem lebeg a bemenet

NYOMÓGOMBOS BEMENET

"A" verzió, alacsony szinten aktív bekötés:

Beolvasott érték 0, ha a gomb meg van nyomva Beolvasott érték 1, ha a gomb nincs megnyomva

"B" verzió, magas szinten aktív bekötés:

Beolvasott érték 1, ha a gomb meg van nyomva Beolvasott érték 0, ha a gomb nincs megnyomva

SCHMITT-TRIGGER MŰKÖDÉSE

STM32F407: ALTERNATÍV FUNKCIÓK

• Funkció elnevezései: AF1, AF2, AF3...

				Table 9. Alternate function mapping						
Port .	AF00	AF01	AF02	AF03	AF04	AF05	AF06	AF07	AF08	AF09
	SYS_ AF	TIM1/ TIM2	TIM3/ TIM4/ TIM5	TIM9/ TIM10/ TIM11	12C1/I2C2/ 12C3	SPI1/SPI2/ I2S2/SPI3/ I2S3/SPI4	SPI2/I2S2/ SPI3/ I2S3	SPI3/I2S3/ USART1/ USART2	USART6	12C2/ 12C3
PAO	-	TIM2_CH1/ TIM2_ETR	TIM5_CH1	-	-	-	-	USART2_CTS	-	-
PA1	-	TIM2_CH2	TIM5_CH2	-	-	-	•	USART2_RTS	-	-
PA2	-	TIM2_CH3	тім5_снз	тімэ_сн1	-	-	•	USART2_TX	-	-
PA3	-	TIM2_CH4	TIM5_CH4	TIM9_CH2	-		-	USART2_RX	-	-
PA4	-	-	-	-	-	SPI1_NSS	8PI3_NS8/ I283_W8	USART2_CK	-	-
PA5	-	TIM2_CH1/ TIM2_ETR	-	-	-	SPI1_SCK	-	-	-	-

https://www.st.com/resource/en/user manual/dm00039084-discovery-kit-with-stm32f407vg-mcu-stmicroelectronics.pdf

STM32F407: LED ÉS NYOMÓGOMB

https://www.st.com/resource/en/user manual/dm00039084-discovery-kit-with-stm32f407vg-mcu-stmicroelectronics.pdf

HAL: PORT ABSTRACTION LAYER (PAL)

Digitális kimenet:

- palSetPad(port, pad): Pin magas szintre állítása
- palClearPad(port, pad): Pin alacsony szintre állítása
- palTogglePad(port, pad): Pin szintjének invertálása

Pad mód beállítása: palSetPadMode(port, pad, mode)

Digitális bemenet:

palReadPad(port, pad): Pin szintjének beolvasása
Visszatérési érték: PAL_HIGH, PAL_LOW vagy 0, 1

STM32 **F4**

Martin Heidegger

KÖSZÖNÖM A FIGYELMET!

Zsupányi Krisztián