EXHIBIT J

Page 1 of 5

E-A-RCAL ATTENUATION TEST REPORT PER ANSI \$3.19-1974

GAJVN

NVLAP Lab

Code 100374-0

DEVICE:

Combat Arms Plug

ARC Plug

DEVICE TYPE:

Premoided, Level-dependent Plug

MANUFACTURER:

E-A-R/Aearo

TEST DATE:

January 25, 2000

TEST ID#: 213016

SUBJECTS/SAMPLES:

10/10

NRR (per EPA-1979): -2.0

BAND FORCE (N):

NA

FITTING PROCEDURE:

EPA/Experimenter Fit

POSITION: NA

Test Frequency	Mean Attenuation	Standard Deviation
(Hz)	(dB)	(dB)
125	4.7	4.0
250	4.2	4.3
500	6.0	5.0
1000	9.5	6.7
2000	16.7	4.9
3150	18.6	5.7
4000	16.3	5.8
6300	16.7	6.1
8000	17.2	6.8

Performed by:

Ronald W. Auger

leviewed by:

Ronald W. Kieper

Sr. Acoustic Technician

Elliott H. Berger

Manager, Acoustical Engineering

Comments: See report #213017 for results of UltraFit end of plug.

INDIVIDUAL SUBJECT DATA

Page 2 of 5

Test ID: 213016

Device: Combat Arms Plug

Date: 1/25/00

Samples: 10 Position: NA Comfort:

2.6

Comments:

			 	······································	1/3 Octa								Canal	
Subj.	Trial	125	250	500	1000	2000	3150	4000	6300	8000	125 (Comf.	Size	NRR*
KJC	1	5	6	7	16	21	24	24	18	14	1		S/S+	9.2
	2	5	6	9	16	21	22	22	14	13	3			
	2	1	4	11	19	20	25	23	16	16	3	2		
MKF	1	2	3	11	18	22	28 ′	26	16	17	3		XS-/XS-	10.4
	2	3	6	11	17	23	27	25	15	13	6			
		3	7	13	16	22	32	25	18_	12	1_	4		-
GWG	1	-2	3	8	18	24	21	21	21	23	2		M/M+	-8.3
	2 3	0	-1	-2	-1	9	12	7	14	10	1			
		4	-1	3	5	13	19	14	14	16	4	3		
BAK	1	3	6	4	11	17	18	21	25	26	4		XL/XL	2.6
	2 3	5	3	8	12	17	15	13	29	29	3			
		9	4	0	8	15	20	18	28	32	6	2		
RTM	1	2	-4	0	2	13	17	14	6	11	1		L/M+	-5.5
	2 3	3	2	6	5	14	13	14	12	10	3			
	3	2	-5	<u>-5</u>	-2	13	10	7	8	9	2	1		
DLP	1	4	5	9	10	21	22	19	15	17	5		L+/L+	8.3
	2	7	7	12	15	21	21	20	22	27	8			
	3	6	8	9	15_	27	23	18	25	22	3	1	5.0. 15.2	
TLS	1 1	3	3	2	1	11	12	12	11	12	1		M+/M	-0.6
	2	8	4	5	3	14	14	12	21	20	6			
	3	2	2	2	0	7	15	9	7	9	2	1	0.10	-7.9
TRS	1	4	11	8	17	15	14	17	17	22 5	-2		S/S	-7.9
	2	1	2	-1	0	9	8	5 8	8 9	10	-2 2	2		
D 03 6	1	<u>4</u> 13	0 11	<u>2</u> 9	<u>3</u> 14	10 17	14 19	16	21	23	15		M/M+	7.9
MV	1 1	13	9	7	11	17	24	20	22	23 18	12		דן עו זוען	1.5
	2	16	9 15	14	14	18	22	18	23	25	13	2		
JMW	1	8	6	13	11	18	17	17	17	21	6		M/M+	0.5
JULVA			2	4	6	17	16	13	13	15	1		190 (81 .	0.0
	2	2 5	1	2	6	17	13	12	15	20	3	8		
	1 21													1.7
Mean		4.7	4.2	6.0	9.5	16.7	18.6	16.3	16.7	17.2 6.8	4.0 3.8	2.6		1.7
sd(30)		4.0	4.3	5.0	6.7	4.9	5.7	5.8	6.1	5.7	3. 0	2.1		7.2
sd(10)		3.6	3.7	3.9	5.6	4.3	5.4	5.1 4.9	5.5	5.7 5.2		۷.۱		1.2
Q-Value		12.8	4.2	-0.7	-3.8	5.7		4.9		5.2				

NRR

(2sd) = -2.0 (1sd) = 3.8 (0sd) = 9.4 NRR* - Individual 2sd NRR

DIXON'S OUTLIER TEST: EXTREME RANGES

Page 3 of 5

Test ID: 213016

Device: Combat Arms Plug

Range in attenuation in dB across trials

<u></u>		Range in a			and Freque	ncv		 .	
Subj.	125	250	500	1000	2000	3150	4000	6300	8000
KJC	4	2	4	3	1	3	2	4	3
MKF	1	4	2	2	1	5	1	3	5
GWG	6	4	10	19	15	9	14	7	13
BAK	6	3	8	4	2	5	8	4	6
RTM	1	7	11	7	1	7	7	6	2
DLP	3	3	3	5	6	2	2	10	10
TLS	6	2	3	3	7	3	3	14	11
TRS	3	11	9	17	6	6	12	9	17
MV	3	6	7	3	3	5	4	2	7
JWW	6	5	11	. 5	1	4	5	4	6
Mean	3.9	4.7	6.8	6.8	4.3	4.9	5.8	6.3	8.0
Max.	6	11	11	19	15	9	14	14	17
г	0.000	0.444	0.000	0.125	0.571	0.333	0.167	0.364	0.286

Extreme value rejected if r > 0.477. One-sided test of significance at p<0.05. Rejected values are shaded.

DIXON'S OUTLIER TEST: EXTREME MEANS

Page 4 of 5

Test ID: 213016

Device: Combat Arms Plug

Mean attenuation in dB across trials

	1/3 Octave-Band Frequency								
Subj.	125	250	500	1000	2000	3150	4000	6300	8000
KJC	3.7	5.3	9.0	17.0	20.7	23.7	23.0	16.0	14.3
MKF	2.7	5.3	11.7	17.0	22.3	29.0	25.3	16.3	14.0
GWG	0.7	0.3	3.0	7.3	15.3	17.3	14.0	16.3	16.3
BAK	5.7	4.3	4.0	10.3	16.3	17.7	17.3	27.3	29.0
RTM	2.3	-2.3	0.3	1.7	13.3	13.3	11.7	8.7	10.0
DLP	5.7	6.7	10.0	13.3	23.0	22.0	19.0	20.7	22.0
TLS	4.3	3.0	3.0	1.3	10.7	13.7	11.0	13.0	13.7
TRS	3.0	4.3	3.0	6.7	11.3	12.0	10.0	11.3	12.3
MV	14.0	11.7	10.0	13.0	16.7	21.7	18.0	22.0	22.0
WML	5.0	3.0	6.3	7.7	17.3	15.3	14.0	15.0	18.7
Mean	4.7	4.2	6.0	9.5	16.7	18.6	16.3	16.7	17.2
Min.	0.7	-2.3	0.3	1.3	10.7	12.0	10.0	8.7	10.0
Мах.	14.0	11.7	11.7	17.0	23.0	29.0	25.3	27.3	29.0
Low r	0.333	0.296	0.276	0.021	0.057	0.114 0.340	0.077	0.200	0.194 0.420
High r	0.714	0.441	0.192	0.000	0.057	0.340	0.163	0.333	0.420

Extreme value rejected if r > 0.551. Two-sided test of significance at p<0.05. Rejected values are shaded.