Name - Samandin Section - F Rall Mo. - 24 University Roll no --2016985 $\hat{c} = 0, 1, 3, 6, 10, 5, 21 -- n$ let the sum of about k tems is Sx SK = 1+3+6+10+ --+TK -SK-1= 1+3+6+10----+ TK-1 -Subtract B from D TR = SK-SK-1 = 1+2+3 +4-- + K We have. Tr = n : 1 + 2 + 3 + 4 - - - + K = n $K(K+1) = n = k^2 + k - 2n = 0$ $K = -1 \pm \sqrt{8m+1}$ taking the values we get total no. of times the loop suns for i= le+1 = V8n-1 Te, T(m) = 0 (N2m+1) = 0 (Nn). T(m) = T(m-1) + T(m-2) + CT(m+1) ~ T(n-2) Mohan

	T(n) = 2T(n-2) + C
	T(n-2) = 2 * (2T(n-2-2) + C) + C
	= 4T (n-2)+3C.
	T.(n-4) = 2 * (4T (n-2) + 3C)+C
	= 8T(m-3)+7C
	Generalizing.
	O J
	$= 2^{k}T(n-k)+(2^{k}-1)c$
	put n-k=0
	N = K
	put n= k
	$T(m) = 2^m * T(0) + (2^m-1) C$
	$= 2^{m} \times 1 + 2^{m} C - C$
	$= 2^{m} (1+c) - c$
	= 2 ~
	time complexity = O(2n)
	to space complicity is proportional to the
	Space complicity is proportional to the -
	Hence space complicitly of fibbonasis
	Hence space complicidy of fibbonacci
2	
3.	$1. \qquad m(\log n)$
	for (i'=1; i<=n;i+1)?
	for (i=j j <= n', j=j*2) 3
	2 = sum + j
Mohan	2
	9.

Mohan

 $T(m) = O(f(n)) = O(n^2)$

\$	
	for i=2, j is 1,3,5 upto n/5 lines for i=3, j is 1,4,7 upto n/5 lines
	T(n) = n + n + n + n + n + n + n + n + n + n
	$= M \left(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots \right)$
	$= n \int_{1}^{\infty} dn x$
	= [LogiJ]
	Time complexity = nlogn.
6.	for first interaction $i=2$. Second " $i=2^k$ third " $i=(2^k)^k = 2^{k^2}$
	third " $i = 2^k$
	nu iteration i=2k loop und at
	apply log n = log2 ki
	KE = Logn
	· ·
	i = logellogn).
Ŧ.	99-tol in quick nort.
Mohan	· constants

where point is where from from to or end aways.

So,

$$T(m) = T\left(\frac{99m}{100}\right) + T\left(\frac{m}{100}\right) + O(m)$$
 $T(m) = T\left(\frac{99m}{100}\right) + T\left(\frac{m}{100}\right) + O(m)$

$$\frac{(99)^{2} \times m}{(00)^{2}} T\left(\frac{99n}{100}\right) T\left(\frac{99n}{100^{2}}\right) T\left(\frac{100}{100^{2}}\right)$$

T(m)

$$N = \left(\frac{99}{100}\right)^{K}$$

$$K = \log \frac{100}{99}$$
 $TC = m* \log \frac{100}{99}$