

\cong PH 11164 US \cong P 21299

(19) BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

(12) Gebrauchsmusterschrift
(10) DE 201 00 509 U 1

(51) Int. Cl. 7:
D 21 F 3/02
D 21 F 3/00

DE 201 00 509 U 1

(21) Aktenzeichen: 201 00 509.3
(22) Anmeldetag: 12. 1. 2001
(47) Eintragungstag: 13. 6. 2001
(43) Bekanntmachung im Patentblatt: 19. 7. 2001

(66) Innere Priorität:
100 54 674. 9 03. 11. 2000

(73) Inhaber:
Voith Paper Patent GmbH, 89522 Heidenheim, DE

(54) Schuhpresse

(57) Schuhpresse (32) zur Behandlung einer Faserstoffbahn (30), insbesondere Papier- oder Kartonbahn, mit zwei Schuhpreseinheiten (34, 36), zwischen denen ein in Bahnlaufrichtung (L) verlängerter, zumindest im wesentlichen ebener beflizter Preßspalt (38) gebildet ist und die jeweils ein umlaufendes, im Bereich des Preßspaltes (38) über einen Preßschuh (40, 42) geführtes flexibles endloses Dichtband (44, 46) umfassen, dadurch gekennzeichnet, daß zusätzlich beiderseits der Faserstoffbahn (30) jeweils ein angetriebenes endloses Preßband (48, 50) mit durch den beflizten Preßspalt (38) geführt ist.

DE 201 00 509 U 1

DE 20100509 U1

Voith Paper Patent GmbH

S 7648 - Ku/ho

PH11164 DE G

5

Schuhpresse

Die Erfindung betrifft eine Schuhpresse zur Behandlung einer Faserstoffbahn, insbesondere Papier- oder Kartonbahn, mit zwei Schuhpreßeinheiten, zwischen denen ein in Bahnlaufrichtung verlängerter, zumindest im wesentlichen ebener befilzter Preßspalt gebildet ist und die jeweils ein umlaufendes, im Bereich des Preßspaltes über einen Preßschuh geführtes flexibles endloses Dichtband umfassen. Sie betrifft ferner eine Pressenpartie mit einer solchen Schuhpresse.

Bei den bisher bekannten doppelt befilzten sogenannten TandemNipcoFlex-Pressen oder den bisher bekannten doppelt befilzten sogenannten UltraNipcoFlex-Pressen ist jeweils nur eine Walze angetrieben. Diese bekannten Pressen besitzen u.a. den Nachteil, daß in Maschinenlaufrichtung relativ hohe Quer- und/oder Scherkräfte im Preßspalt auftreten. Diese sind um so größer, je länger der Preßspalt ist und um so stärker wenn sich die Filze durch die Beanspruchung im Preßnip in ihren Dimensionen ändern.

Bei speziellen Papiersorten und in Abhängigkeit von verschiedenen Betriebsparametern kann die Blattstruktur dabei negativ beeinflußt werden.

Die Figur 1 soll den Zusammenhang zwischen Nipbelastung und einseitigem Antrieb der Schuhpresse verdeutlichen.

DE 20100509 U1

Hierzu zeigt Figur 1 in schematischer Teildarstellung eine herkömmliche, einseitig angetriebene Doppelfilz-Schuhpresse mit einer einen konkaven Preßschuh 10 aufweisenden Schuhpreßwalze 12 und einer Gegenwalze 14. Der flexible Preßmantel der Schuhpreßwalze 12 ist mit "16" bezeichnet. Durch den Preßspalt 18 ist ein Oberfilz 20 und ein Unterfilz 22 geführt. Zwischen diesen beiden Filzen 20, 22 liegt die Papierbahn.

Die beiden Filze 20, 22 laufen mit der Dicke S1 bzw. S2 in den Preßspalt 18 ein. Mit zunehmendem Druckanstieg im Preßspalt 18 (vgl. den im oberen Teil der Figur 1 angedeuteten Druckverlauf in Bahnlaufrichtung L) nehmen zwangsläufig die jeweilige Filzdicke S1 bzw. S2 und die jeweilige Geschwindigkeit V1 bzw. V2 der neutralen Fasern 24 im jeweiligen Filz 20, 22 ab (vgl. die im unteren Teil der Figur 1 angedeuteten Geschwindigkeitsverläufe in Bahnlaufrichtung L), nachdem diese durch die Filzkomp-
15 rimierung auf einen kleineren Umlaufradius R' gedrückt werden und das durch die Filze und die Papierbahn gebildete, sich wie eine Feder verhal-
tende Sandwich 26 gestaucht wird. Es entstehen zwangsläufig Querkräfte in Bahn- oder Maschinenlaufrichtung L, denen zusätzlich noch die am feststehenden Preßschuh 10 entstehende Reibkraft überlagert wird. Trotz
20 der erforderlichen sehr hohen Antriebsleistung ist diese herkömmliche doppelt befilzte Schuhpresse mit konkavem Preßschuh nur einseitig an-
getrieben.

Bei einer solchen bekannten Schuhpresse ergeben sich somit beachtliche
25 Querkräfte zwischen den einzelnen Lagen Gegenwalze/Unterfilz, Unter-
filz/Papier, Papier/Oberfilz, Oberfilz/Preßmantel und Preßmantel/Schuh.
Die im gesamten Sandwichpaket auftretende hohe Querkraft und Walkar-
beit ist insbesondere auf die asymmetrische Formänderung und das un-

terschiedliche Setzverhalten der Lagen zurückzuführen. Der zwischen den Filzen unter hohem Druck in Maschinenlaufrichtung auftretende Schlupf wirkt sich negativ auf die Blattstruktur aus. Hinzu kommt, daß ein in Maschinenlaufrichtung beanspruchtes und gestauchtes Papier in der nachfolgenden Strecke wie beispielsweise der Trockenpartie mehr Zug erfordert.

Eine Schuhpresse der eingangs genannten Art mit einem zumindest im wesentlichen ebenen Preßspalt ist bereits aus der DE-A-196 38 689 bekannt.

Ziel der Erfindung ist es, eine verbesserte Schuhpresse sowie eine verbesserte Pressenpartie der eingangs genannten Art zu schaffen, bei denen die zuvor genannten Nachteile beseitigt sind und die eine technologisch optimale Produktqualität gewährleisten.

Diese Aufgabe wird hinsichtlich der Schuhpresse erfindungsgemäß dadurch gelöst, daß zusätzlich beiderseits der Faserstoffbahn jeweils ein angetriebenes endloses Preßband mit durch den befilzten Preßspalt geführt ist. Die beiden Preßbänder sind vorzugsweise jeweils durch ein Entwässerungsband gebildet. Der Preßspalt ist vorzugsweise doppelt befilzt, wobei die beiden Filze zusammen mit der dazwischen angeordneten Faserstoffbahn zwischen den beiden zusätzlichen Preßbändern liegend durch den Preßspalt geführt sind. Bevorzugt ist wenigstens eine der beiden Schuhpreseinheiten durch eine Schuhpreßwalze und das betreffende Dichtband durch den Mantel der Schuhpreßwalze gebildet.

Aufgrund dieser Ausbildung kann nunmehr das zu pressende Sandwich aus der Faserstoffbahn und dem oder den Filzen mittels den zusätzlich vorgesehenen Preßbänder gerade durch die Presse geführt werden, wobei jetzt insbesondere auch vor und nach dem Preßspalt über eine längere Strecke hinweg eine gerade Führung möglich ist. Entsprechend ergibt sich im verlängerten Preßspalt der Schuhpresse ein praktisch querkraftfreies Pressen. Man erhält eine gezielte Pressung in Z-Richtung, ähnlich wie bei beidseitig angetriebenen Walzenpressen. Unabhängig von der jeweiligen Preßspaltlänge werden Querkräfte in Maschinenlaufrichtung auf die Faserstoffbahn, die Filze und die Preßmäntel vermieden. Es ist auf optimale Weise eine gleichseitige Entwässerung und Bahnoberfläche, ein hohes Volumen und eine gute Festigkeit sichergestellt. Es ergibt sich eine Funktionstrennung hinsichtlich des Abdichtens der Schuhpreßeinheiten einerseits und der Nipentwässerung andererseits. Für die Preß- bzw. Entwässerungsbänder ergeben sich somit optimale Gestaltungsmöglichkeiten hinsichtlich der jeweiligen Anforderungen unabhängig von der Dichtfunktion. So ist beispielsweise ein glattes kerbfreies Dichtband einer jeweiligen Schuhpreßeinheit weniger rißempfindlich an der Oberfläche, und es kann somit auch dünner und entsprechend flexibler sein. Ein separat geführtes Preß- bzw. Entwässerungsband kann bei entsprechend größeren Umlenkradien hinsichtlich der jeweiligen Anforderungen (z.B. Pressenantrieb und offene Preßfläche) entsprechend optimaler gestaltet werden. So sind z.B. härtere Rillen und ein stabileres Zuggewebe möglich. Es sind insbesondere auch gleiche Härten der Preßflächen möglich (gleichseitige Filzmarkierungen). In den Dichtbändern bzw. Dichtmänteln ist bei glatten bzw. ebenen Schuhen die Stauch- und Biegewechselbeanspruchung entsprechend geringer. Durch die Dichtbänder wird in jedem Fall sichergestellt, daß austretendes Öl nicht direkt in die Filze und in die Faserstoffbahn gelangt.

12.01.01
5

Es ergibt sich insgesamt ein Pressenkonzept, das weniger Reservewalzen erfordert.

Bei einer zweckmäßigen praktischen Ausführungsform der erfindungsge-
5 mäßen Schuhpresse ist die durch den Preßspalt verlaufende Preßebene gegenüber der Vertikalen geneigt. Dabei kann die Preßebene insbesondere um einen Winkel im Bereich von etwa 10 bis etwa 45° gegenüber der Vertikalen geneigt sein.

10 Vorzugsweise besitzt zumindest eines der beiden Preßbänder eine offene Preßfläche. Diese kann insbesondere blindgebohrt und/oder gerillt sein. Es ist jedoch auch möglich, daß zumindest eines der beiden Preßbänder durch ein Siebgewebe gebildet ist.

15 Bei einer bevorzugten praktischen Ausführungsform ist zumindest eines der beiden Preßbänder im Anschluß an den Preßspalt um eine Umlenkwalze geführt, in deren Bereich eine Rinne angeordnet ist, um von dem Preßband abgeschleudertes Wasser aufzunehmen. Der betreffenden Umlenkwalze kann ein Schaber oder Abstreifer zugeordnet sein. Von Vorteil
20 ist auch, wenn die betreffende Umlenkwalze angetrieben ist. Grundsätzlich kann das jeweilige Preßband auch um wenigstens eine weitere ange- triebene Umlenkwalze geführt sein.

Um eventuelle Filzmarkierungen gleichzeitig zu halten, können die
25 Preßflächen der beiden Preßbänder eine gleiche Härte besitzen.
Von Vorteil ist auch, wenn zumindest eines der beiden Dichtbänder der beiden Schuhpreßeinheiten eine geschlossene glatte Oberfläche besitzt.

DE 20100509 UI

Ein glattes kerbfreies Dichtband zum Abdichten der Schuhpreßeinheit bzw. der Schuhpreßwalze ist weniger rißempfindlich an der Oberfläche und kann daher auch dünner und entsprechend flexibler sein.

5 Durch den doppelt befilzten Preßspalt sind zweckmäßigerweise markierungsarme, eine symmetrische Entwässerung bewirkende Filze geführt.

Außerhalb des Preßspaltes sind die Preßbänder vorzugsweise getrennt von den Dichtbändern geführt. Für die Preßbänder sind somit größere Um-
10 lenkradien möglich, die eine bessere Optimierung hinsichtlich der betref- fenden Anforderungen (Pressenantrieb, offene Preßfläche) erlauben. Diese Preßbänder können somit beispielsweise mit härteren Rillen versehen sein oder ein stabileres Zuggewebe aufweisen.

15 Weitere vorteilhafte Ausführungsformen der erfindungsgemäßen Schuh- presse sind in den Unteransprüchen angegeben.

Bezüglich der Pressenpartie wird die eingangs genannte Aufgabe dadurch gelöst, daß diese eine erfindungsgemäße Schuhpresse aufweist. Dabei ist
20 diese Schuhpresse vorzugsweise die einzige Presse in der Pressenpartie.

Vorteilhafterweise werden die beiden Filze der doppelt befilzten Schuh- presse bereits vor dem Preßspalt zusammengeführt und anschließend mit dazwischen liegender Faserstoffbahn dem Preßspalt zugeführt. Vorteil-
25 hafterweise wird die Faserstoffbahn auch ein Stück weit zusammen mit den beiden Filzen aus dem Preßspalt herausgeführt. Das zu pressende Sandwich aus der Faserstoffbahn und den beiden Filzen kann somit gerade durch die Presse geführt werden, wobei dieses Sandwich insbesondere

auch vor und nach dem Preßspalt über eine bestimmte Strecke hinweg gerade geführt sein kann.

Im Anschluß an den Preßspalt kann die Faserstoffbahn zusammen mit
5 einem der beiden Filze insbesondere um eine Saugleitwalze geführt sein,
in deren Bereich sie beispielsweise durch ein Trockensieb übernommen
wird.

Weitere vorteilhafte Ausführungsformen der erfindungsgemäßen Pressen-
10 partie sind in den Unteransprüchen angegeben.

Die Erfindung wird im folgenden anhand eines Ausführungsbeispiels un-
ter Bezugnahme auf die Zeichnung näher erläutert; in dieser zeigen:

15 Figur 1 eine schematische Teildarstellung einer herkömmlichen,
einseitig angetriebenen Doppelfilz-Schuhpresse mit ei-
nem konkaven Preßschuh,

Figur 2 eine schematische Darstellung einer Ausführungsform
20 einer erfindungsgemäßen Pressenpartie mit einer erfin-
dungsgemäßen Schuhpresse und

Figur 3 eine vergrößerte schematische Darstellung des Spaltbe-
reichs der in der Figur 2 gezeigten Ausführungsform ei-
ner erfindungsgemäßen Schuhpresse mit sich entlang
25 des Preßspalts ergebendem Druckverlauf.

Figur 2 zeigt in schematischer Darstellung eine beispielhafte Ausführungsform einer erfindungsgemäßen Pressenpartie 28 einer Maschine zur Herstellung einer Faserstoffbahn 30, bei der es sich insbesondere um einen Papier- oder Kartonbahn handeln kann. Die Pressenpartie 28 weist 5 eine einzige Presse, und zwar eine erfindungsgemäße Schuhpresse 32 auf. Die Figur 3 zeigt in vergrößerter schematischer Darstellung den Spaltbereich der in der Figur 2 gezeigten Ausführungsform einer erfindungsgemäßen Schuhpresse. Im oberen Teil dieser Figur 3 ist der sich entlang des Preßspalts der Schuhpresse 32 ergebende Druckverlauf angedeutet.

10

Gemäß den Figuren 2 und 3 umfaßt die Schuhpresse 32 zwei Schuhpreßeinheiten 34, 36, zwischen denen ein in Bahnlaufrichtung L verlängerter, zumindest im wesentlichen ebener Preßspalt 38 gebildet ist. Dieser Preßspalt 38 ist im vorliegenden Fall doppelt befilzt.

15

Die beiden Schuhpreßeinheiten 34, 36 besitzen jeweils ein umlaufendes, im Bereich des Preßspaltes 38 über einen Preßschuh 40 bzw. 42 geführtes flexibles endloses Dichtband 44, 46. Zusätzlich ist beiderseits der Faserstoffbahn 30 jeweils ein angetriebenes endloses Preßband 48 bzw. 50 mit 20 durch den doppelt befilzten Preßspalt 38 geführt. Die beiden Preßbänder 48, 50 sind jeweils durch ein Entwässerungsband gebildet.

Wie anhand der Figuren 2 und 3 zu erkennen ist, ist sowohl ein Oberfilz 52 als auch ein Unterfilz 54 vorgesehen. Die beiden Filze 52, 54 sind zu 25 zusammen mit der dazwischen angeordneten Faserstoffbahn 30 zwischen den beiden zusätzlichen Preßbändern 58, 50 liegend durch den Preßspalt 38 geführt.

DE 20100509 U1

Beim vorliegenden Ausführungsbeispiel sind die beiden Schuhpreßeinheiten 34, 36 jeweils durch eine Schuhpreßwalze und die Dichtbänder 44, 46 jeweils entsprechend durch den Mantel der betreffenden Schuhpreßwalze gebildet.

5

Zur Bildung des zumindest im wesentlichen ebenen Preßspaltes 38 besitzen die beiden Preßschuhe 40, 42 jeweils eine zumindest im wesentlichen ebene Stützfläche, über die das betreffende Dichtband 44 bzw. 46 geführt ist.

10

Beim vorliegenden Ausführungsbeispiel ist die durch den Preßspalt 38 verlaufende Preßebene 56 gegenüber der Vertikalen 58 geneigt. Der betreffende Neigungswinkel α kann beispielsweise in einem Bereich von etwa 10 bis etwa 45° liegen.

15

Die beiden Preßbänder 48, 50 besitzen jeweils eine offene Preßfläche, durch die eine entsprechende Entwässerung möglich ist. Dabei können diese beiden Preßbänder 48, 50 insbesondere jeweils blindgebohrt und/oder gerillt sein. Sie können jedoch auch jeweils durch ein Siebgewebe gebildet sein.

Im Anschluß an den Preßspalt 38 sind die beiden Preßbänder 48, 50 jeweils um eine Umlenkwalze 60 bzw. 62 geführt, in deren Bereich jeweils eine Rinne 64, 66 angeordnet ist, um von dem betreffenden Preßband 48 bzw. 50 abgeschleudertes Wasser aufzunehmen. Den Umlenkwalzen 60, 62 kann jeweils ein Schaber 68 bzw. 70 zugeordnet sein. Die beiden Umlenkwalzen 60, 62 sind jeweils angetrieben.

Wie anhand der Figur 2 zu erkennen ist, kann sowohl das obere Preßband 48 als auch das untere Preßband 50 jeweils um wenigstens eine weitere angetriebene Umlenkwalze 72 bzw. 74 geführt sein. Diese Umlenkwalze 72 bzw. 74 kann vorzugsweise die Funktion einer Bandlauf-Regulierwalze übernehmen.

Überdies sind die beiden Preßbänder 48, 50 vor dem Preßspalt 38 jeweils um eine Umlenkwalze 99 bzw. 100 geführt. Grundsätzlich können auch diese Umlenkwalzen 99, 100 jeweils die Funktion einer Bandlauf-Regulierwalze übernehmen.

Die Preßflächen der beiden Preßbänder 48, 50 können eine gleiche Härte besitzen. Sie sind im vorliegenden Fall, wie bereits erwähnt, offen, um für die entsprechende Entwässerung zu sorgen. Dabei können sie beispielsweise blindgebohrt und/oder gerillt sein.

Dagegen besitzen die beiden Dichtbänder bzw. Walzenmäntel 44, 46 der beiden Schuhpreßeinheiten 34, 36 vorzugsweise eine geschlossene, glatte Oberfläche.

Für den Oberfilz 52 und den Unterfilz 54 können insbesondere markierungsarme, eine symmetrische Entwässerung bewirkende Filze verwendet werden.

Wie insbesondere anhand der Figur 2 zu erkennen ist, sind die Preßbänder 48, 50 außerhalb des Preßspaltes 38 getrennt von den Dichtbändern 44, 46 geführt.

Wie insbesondere anhand der Figur 3 am Beispiel des unteren Preßschuhs 40 gezeigt ist, ist sowohl eine Anpressung 76 über eine Kolbenreihe als auch eine Anpressung 78 über zwei Kolbenreihen möglich.

- 5 Wie beispielsweise für den oberen Preßschuh 40 an der Stelle 80 ange deutet, ist zur Schmierung des Bereichs zwischen Schuh 40 und Dicht band 44 eine Öleinspeisung über die Kolben oder über den Schuh mög lich.
- 10 Im oberen Teil der Figur 3 ist der sich in Bahnlaufrichtung L über den verlängerten flachen oder ebenen Preßspalt 38 ergebende Druckverlauf P angedeutet.

Wie anhand der Figur 2 zu erkennen ist, wird die Faserstoffbahn 30 beim 15 vorliegenden Ausführungsbeispiel durch den Oberfilz 52 von einem Siebband 82 übernommen. Im Bereich der Übernahmestelle 84 ist der Oberfilz 52 um eine Saugleitwalze 84 geführt.

Die beiden Filze 52, 54 werden bereits vor dem Preßspalt 38 im Bereich 20 einer innerhalb der Schlaufe des Unterfilzes 54 angeordneten Umlenkwalze 86 zusammengeführt und anschließend mit dazwischenliegender Fa serstoffbahn 30 dem sich über eine Länge 1 erstreckenden Preßspalt 38 zugeführt. Anschließend wird die Faserstoffbahn 30 zusammen mit den beiden Filzen 52, 54 wieder aus dem Preßspalt 38 herausgeführt. Dabei 25 wird, wie sich aus den beiden Figuren 2 und 3 ergibt, das zu pressende Sandwich aus den beiden Filzen 52, 54 und der dazwischenliegenden Fa serstoffbahn 30 gerade durch die Presse geführt, wobei insbesondere auch

eine bestimmte Strecke vor dem Preßspalt 38 sowie eine bestimmte Strecke nach diesem Preßspalt eine gerade Führung vorliegen kann.

Hinter dem Preßspalt 38 und im Anschluß an den sich daran anschließenden Abschnitt gerader Führung des genannten Sandwiches wird die Faserstoffbahn 30 zusammen mit dem Unterfilz 54 um eine vorzugsweise angetriebene Saugleitwalze 88 geführt, in deren Bereich sie beispielsweise durch ein Trockensieb 90 übernommen wird, um beispielsweise dem ersten Trockenzyylinder 92 der Trockenpartie zugeführt zu werden.

10

Im vorliegenden Fall wird die Faserstoffbahn 30 im Bereich zwischen der Saugleitwalze 88 und einer weiteren dem Unterfilz 54 zugeordneten Leitwalze 94 durch das Trockensieb 90 übernommen.

15 Im Bereich der Übernahmestelle 96 ist das Trockensieb 90 um eine Saugleitwalze 98 geführt.

Wie anhand der beiden Figuren 2 und 3 zu erkennen ist, werden die beiden Preßbänder 48, 50 im vorliegenden Fall unmittelbar im Anschluß an 20 den Preßspalt 38 von den beiden Filzen 52, 54 und der zwischen diesen liegenden Faserstoffbahn 30 getrennt.

12.01.01
13

Voith Paper Patent GmbH

S 7648 - Ku/ho

Bezugszeichenliste

5

10	konkaver Preßschuh
12	Schuhpreßwalze
14	Gegenwalze
16	flexiber Preßmantel
10 18	Preßspalt
20	Oberfilz
22	Unterfilz
24	neutrale Faser
26	federndes Sandwich
15 28	Pressenpartie
30	Faserstoffbahn
32	Schuhpresse
34	Schuhpreßeinheit, Schuhpreßwalze
36	Schuhpreßeinheit, Schuhpreßwalze
20 38	verlängerter Preßspalt
40	Preßschuh
42	Preßschuh
44	Dichtband, Walzenmantel
46	Dichtband, Walzenmantel
25 48	Preßband
50	Preßband
52	Oberfilz
54	Unterfilz

DE 20100509 U1

12.01.01
14

56	Preßebene
58	Vertikale
60	Umlenkwalze
62	Umlenkwalze
5 64	Rinne
66	Rinne
68	Schaber
70	Schaber
72	Umlenkwalze
10 74	Umlenkwalze
76	Anpressung mit einer Kolbenreihe
78	Anpressung mit zwei Kolbenreihen
80	Stelle
82	Siebband
15 84	Saugleitwalze
86	Umlenkwalze
88	Saugleitwalze
90	Trockensieb
92	Trockenzylinder
20 94	Leitwalze
96	Übernahmestelle
98	Saugleitwalze
99	Umlenkwalze
100	Umlenkwalze
25	
L	Bahnlaufrichtung
l	Preßspaltlänge
α	Neigungswinkel

DE 20100509 U1

12.01.01

Voith Paper Patent GmbH

S 7648 - Ku/ho

PH11164 DE G

5

Patentsprüche

1. Schuhpresse (32) zur Behandlung einer Faserstoffbahn (30), insbesondere Papier- oder Kartonbahn, mit zwei Schuhpreßeinheiten (34, 36), zwischen denen ein in Bahnlaufrichtung (L) verlängerter, zumindest im wesentlichen ebener befilzter Preßspalt (38) gebildet ist und die jeweils ein umlaufendes, im Bereich des Preßspaltes (38) über einen Preßschuh (40, 42) geführtes flexibles endloses Dichtband (44, 46) umfassen,
dadurch gekennzeichnet,
daß zusätzlich beiderseits der Faserstoffbahn (30) jeweils ein angetriebenes endloses Preßband (48, 50) mit durch den befilzten Preßspalt (38) geführt ist.
- 20 2. Schuhpresse nach Anspruch 1,
dadurch gekennzeichnet,
daß die beiden Preßbänder (48, 50) jeweils durch ein Entwässerungsband gebildet sind.
- 25 3. Schuhpresse nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
daß der Preßspalt (38) doppelt befilzt ist und die beiden Filze (52, 54) zusammen mit der dazwischen angeordneten Faserstoffbahn

DE 20100509 U1

12.01.01
2

(30) zwischen den beiden zusätzlichen Preßbändern (48, 50) liegend durch den Preßspalt (38) geführt sind.

4. Schuhpresse nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß wenigstens eine der beiden Schuhpreßeinheiten (34, 36) durch eine Schuhpreßwalze und das betreffende Dichtband (44, 46) durch den Mantel der Schuhpreßwalze gebildet ist.
- 10 5. Schuhpresse nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß die durch den Preßspalt (38) verlaufende Preßebene (56) gegenüber der Vertikalen (58) geneigt ist.
- 15 6. Schuhpresse nach Anspruch 5,
dadurch gekennzeichnet,
daß die Preßebene (56) gegenüber der Vertikalen (58) um einen Winkel (α) im Bereich von etwa 10 bis etwa 45° geneigt ist.
- 20 7. Schuhpresse nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß zumindest eines der beiden Preßbänder (48, 50) eine offene Preßfläche besitzt.
- 25 8. Schuhpresse nach Anspruch 7,
dadurch gekennzeichnet,
daß die Preßfläche zumindest eines der beiden Preßbänder (48, 50) blindgebohrt und/oder gerillt ist.

DE 20100509 U1

12.01.01
3

9. Schuhpresse nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß zumindest eines der beiden Preßbänder (48, 50) durch ein Sieb-
gewebe gebildet ist.

5

10. Schuhpresse nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß zumindest eines der beiden Preßbänder (48, 50) im Anschluß
an den Preßspalt (38) um eine Umlenkwalze (60, 62) geführt ist, in
10 deren Bereich eine Rinne (64, 66) angeordnet ist, um von dem Preß-
band (48, 50) abgeschleudertes Wasser aufzunehmen.

11. Schuhpresse nach Anspruch 10,
dadurch gekennzeichnet,
15 daß der Umlenkwalze (60, 62) ein Schaber (68, 70) zugeordnet ist.

12. Schuhpresse nach Anspruch 10 oder 11,
dadurch gekennzeichnet,
daß die Umlenkwalze (60, 62) angetrieben ist.

20

13. Schuhpresse nach Anspruch 12,
dadurch gekennzeichnet,
daß das Preßband (48, 50) um wenigstens eine weitere angetriebene
Umlenkwalze (72, 74) geführt ist.

25

14. Schuhpresse nach Anspruch 13,
dadurch gekennzeichnet,

DE 20100509 U1

12.01.01

4

daß wenigstens eine Umlenkwalze (72, 74) die Funktion einer Bandlauf-Regulierwalze übernimmt.

15. Schuhpresse nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß die Preßflächen der beiden Preßbänder (48, 50) eine gleiche
Härte besitzen.
10
16. Schuhpresse nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß zumindest eines der beiden Dichtbänder (44, 46) der beiden
Schuhpreßeinheiten (34, 36) eine geschlossene glatte Oberfläche be-
sitzt.
15
17. Schuhpresse nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß durch den doppelt befilzten Preßspalt (38) markierungarme,
eine symmetrische Entwässerung bewirkende Filze (52, 54) geführt
sind.
20
18. Schuhpresse nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß die Preßbänder (48, 50) außerhalb des Preßspaltes (38) getrennt
von den Dichtbändern (44, 46) geführt sind.
25
19. Schuhpresse nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß wenigstens eine der beiden Preßbänder (48, 50) vor dem

DE 20100509 U1

12.01.01

5

Preßspalt (38) um eine Umlenkwalze (99, 100) geführt ist, die vorzugsweise die Funktion einer Bandlauf-Regulierwalze übernimmt.

20. Pressenpartie (28) einer Maschine zur Herstellung einer Faserstoffbahn (30), insbesondere Papier- oder Kartonbahn, mit einer Schuhpresse (32) nach einem der vorhergehenden Ansprüche.
5
21. Pressenpartie nach Anspruch 20,
dadurch gekennzeichnet,
10 daß die Schuhpresse (32) die einzige Presse ist.
22. Pressenpartie nach Anspruch 20 oder 21,
dadurch gekennzeichnet,
daß die Faserstoffbahn (30) durch einen der beiden Filze (52) von
15 einem Siebband (82) übernommen wird.
23. Pressenpartie nach Anspruch 22,
dadurch gekennzeichnet,
daß der betreffende Filz (52) im Bereich der Übernahmestelle (84)
20 um eine Saugleitwalze (88) geführt ist.
24. Pressenpartie nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß die Faserstoffbahn (30) durch den Oberfilz (52) von dem Siebband (82) übernommen wird.
25

DE 20100509 U1

12.01.01
6

25. Pressenpartie nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß die beiden Filze (52, 54) bereits vor dem Preßspalt (38) zusammengeführt und anschließend mit dazwischen liegender Faserstoffbahn (30) dem Preßspalt (38) zugeführt werden.
5
26. Pressenpartie nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß die Faserstoffbahn (30) zusammen mit den beiden Filzen (52,
10 54) aus dem Preßspalt (38) herausgeführt und anschließend zusammen mit einem (54) der beiden Filze (52, 54) um eine Saugleitwalze (88) geführt ist, in deren Bereich sie insbesondere durch ein Trockensieb (90) übernommen wird.
- 15 27. Pressenpartie nach Anspruch 26,
dadurch gekennzeichnet,
daß die Faserstoffbahn (30) im Bereich zwischen der Saugleitwalze (88) und einer weiteren dem betreffenden Filz (54) zugeordneten Leitwalze (94) durch das Trockensieb (90) übernommen wird.
20
28. Pressenpartie nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß die Faserstoffbahn (30) durch das Trockensieb (90) von dem Unterfilz (54) übernommen wird.
25

DE 20100509 U1

12.01.01
7

29. Pressenpartie nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß das Trockensieb (90) im Bereich der Übernahmestelle (96) um
eine Saugleitwalze (98) geführt ist.

5

30. Pressenpartie nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß die beiden Preßbänder (48, 50) unmittelbar im Anschluß an den
Preßspalt (30) von den beiden Filzen (52, 54) und der zwischen die-
sen liegenden Faserstoffbahn (30) getrennt werden.
10

DE 20100 509 U1

12.01.01

1/3

Fig.1

DE 20100509 U1

100101

2/3

DE 20100509U1

1201001

3/3

DE 20100509 U1