```
#Name:ajit waman.Rollno:B54.Prac01
In [1]:
         import pandas as pd
         from matplotlib import pyplot as plt
         %matplotlib inline
In [2]:
         df = pd.read csv("/home/kj-comp/iris.csv")
         df.head(10)
            sepal_length sepal_width petal_length petal_width species
Out[2]:
         0
                     5.1
                                 3.5
                                              1.4
                                                          0.2
                                                               setosa
         1
                     4.9
                                 3.0
                                              1.4
                                                          0.2
                                                               setosa
         2
                     4.7
                                 3.2
                                              1.3
                                                          0.2
                                                               setosa
         3
                     4.6
                                 3.1
                                              1.5
                                                          0.2
                                                               setosa
         4
                     5.0
                                 3.6
                                                          0.2
                                              1.4
                                                               setosa
         5
                     5.4
                                 3.9
                                                          0.4
                                              1.7
                                                               setosa
         6
                     4.6
                                 3.4
                                              1.4
                                                          0.3
                                                               setosa
         7
                     5.0
                                 3.4
                                                          0.2
                                              1.5
                                                               setosa
         8
                     4.4
                                 2.9
                                              1.4
                                                          0.2
                                                               setosa
         9
                     4.9
                                 3.1
                                              1.5
                                                          0.1
                                                               setosa
In [3]: X=df.iloc[:,0:4]
         y=df.iloc[:,-1]
                    setosa
Out[3]:
         1
                    setosa
         2
                    setosa
         3
                    setosa
         4
                    setosa
         145
                 virginica
         146
                 virginica
         147
                 virginica
         148
                 virginica
         149
                 virginica
         Name: species, Length: 150, dtype: object
In [4]:
         from sklearn.model_selection import train_test_split
         X_train, X_test, y_train, y_test = train_test_split(X,y,train_size=0.8,random_state=1)
```

X_test

Out[4]:		sepal_length	sepal_width	petal_length	petal_width
	14	5.8	4.0	1.2	0.2
	98	5.1	2.5	3.0	1.1
	75	6.6	3.0	4.4	1.4
	16	5.4	3.9	1.3	0.4
	131	7.9	3.8	6.4	2.0
	56	6.3	3.3	4.7	1.6
	141	6.9	3.1	5.1	2.3
	44	5.1	3.8	1.9	0.4
	29	4.7	3.2	1.6	0.2
	120	6.9	3.2	5.7	2.3
	94	5.6	2.7	4.2	1.3
	5	5.4	3.9	1.7	0.4
	102	7.1	3.0	5.9	2.1
	51	6.4	3.2	4.5	1.5
	78	6.0	2.9	4.5	1.5
	42	4.4	3.2	1.3	0.2
	92	5.8	2.6	4.0	1.2
	66	5.6	3.0	4.5	1.5
	31	5.4	3.4	1.5	0.4
	35	5.0	3.2	1.2	0.2
	90	5.5	2.6	4.4	1.2
	84	5.4	3.0	4.5	1.5
	77	6.7	3.0	5.0	1.7
	40	5.0	3.5	1.3	0.3
	125	7.2	3.2	6.0	1.8
	99	5.7	2.8	4.1	1.3
	33	5.5	4.2	1.4	0.2
	19	5.1	3.8	1.5	0.3
	73	6.1	2.8	4.7	1.2
	146	6.3	2.5	5.0	1.9

```
In [5]: from sklearn.preprocessing import LabelEncoder
la_object = LabelEncoder()
y = la_object.fit_transform(y)
y
```

```
Out[5]:
             1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
             In [6]: from sklearn.naive_bayes import GaussianNB
        model = GaussianNB()
        model.fit(X train, y train)
       GaussianNB()
Out[6]:
        y predicted = model.predict(X test)
In [7]:
In [8]:
       y predicted
       array(['setosa', 'versicolor', 'versicolor', 'setosa', 'virginica',
Out[8]:
              'versicolor', 'virginica', 'setosa', 'setosa', 'virginica',
             'versicolor', 'setosa', 'virginica', 'versicolor', 'versicolor', 'setosa', 'versicolor', 'setosa', 'setosa',
              'versicolor', 'versicolor', 'virginica', 'setosa', 'virginica',
             'versicolor', 'setosa', 'setosa', 'versicolor', 'virginica'],
            dtype='<U10')</pre>
        model.score(X_test,y_test)
In [9]:
        0.966666666666666
Out[9]:
In [10]:
       from sklearn.metrics import confusion_matrix,classification_report
        cm = confusion matrix(y test, y predicted)
In [11]:
        cm
       array([[11, 0, 0],
Out[11]:
             [ 0, 12, 1],
             [0, 0, 6]])
        # classification report for precision, recall f1-score and accuracy
In [12]:
        cl_report=classification_report(y_test,y_predicted)
In [13]:
        cl report
                    precision
                               recall f1-score
                                              support\n\n
                                                            setosa
                                                                       1.00
Out[13]:
                                                                       13\n
        1.00
                1.00
                                                             0.96
                          11∖n versicolor
                                             1.00
                                                     0.92
                    0.86
        irginica
                            1.00
                                    0.92
                                               6\n\n
                                                       accuracy
        0.97
                 30\n
                       macro avg
                                    0.95
                                             0.97
                                                     0.96
                                                               30\nweighted avg
       0.97
                0.97
                        0.97
                                  30\n'
In [14]: # precision recall f1-score support\n\n
        #Setosa 1.00 1.00 1.00 11\n
        #Versicolor 1.00 0.92 0.96 13\n
        #Virginica 0.86 1.00 0.92 6\n\n
        #accuracy 0.97 30\n
        #macro avg 0.95 0.97 0.96 30\n
        #weighted avg 0.97 0.97 0.97 30\n
```

```
In [15]: cm_df = pd.DataFrame(cm,index = ['SETOSA','VERSICOLR','VIRGINICA'],
    columns = ['SETOSA','VERSICOLR','VIRGINICA'])
```

```
In [16]: #Plotting the confusion matrix
import seaborn as sns
plt.figure(figsize=(5,4))
sns.heatmap(cm_df, annot=True)
plt.title('Confusion Matrix')
plt.ylabel('Actal Values')
plt.xlabel('Predicted Values')
plt.show()
```



```
In [17]:
    def accuracy_cm(tp,fn,fp,tn):
        return (tp+tn)/(tp+fp+tn+fn)
    def precision_cm(tp,fn,fp,tn):
        return tp/(tp+fp)
    def recall_cm(tp,fn,fp,tn):
        return tp/(tp+fn)
    def f1_score(tp,fn,fp,tn):
        return (2/((1/recall_cm(tp,fn,fp,tn))+precision_cm(tp,fn,fp,tn)))
    def error_rate_cm(tp,fn,fp,tn):
        return 1-accuracy_cm(tp,fn,fp,tn)
```

```
In [18]: #For Virginica
    tp = cm[2][2]
    fn = cm[2][0]+cm[2][1]
    fp = cm[0][2]+cm[1][2]
    tn = cm[0][0]+cm[0][1]+cm[1][0]+cm[1][1]
    print("For Virginica \n")
    print("Accuracy : ",accuracy_cm(tp,fn,fp,tn))
    print("Precision : ",precision_cm(tp,fn,fp,tn))
    print("Recall : ",recall_cm(tp,fn,fp,tn))
    print("F1-Score : ",f1_score(tp,fn,fp,tn))
    print("Error rate : ",error_rate_cm(tp,fn,fp,tn))
```

For Virginica

Accuracy: 0.96666666666667 Precision: 0.8571428571428571

Recall: 1.0

F1-Score : 1.0769230769230769 Error rate : 0.033333333333333333

In []: