

The many faces of reliability of visual perception for autonomous driving

Trends and perspectives

Andrei Bursuc

valeo.ai

Growing number of complex datasets

- Several datasets to assess specific use-cases:
 - Weather: ACDC, Cityscapes Rainy / Foggy,
 Dark Zurich, Raincouver
 - Distribution shift: Cityscapes-C/OC, SHIFT (S), WildDash, WildDash2, RoboBEV
 - OOD: Fishyscapes, SegmentMelfYouCan, StreetHazards (S), BDD-Anomaly
- Datasets with different sources of error in the same conditions: MUAD (S)
- BRAVO challenge: unified reliability bench
- Neural closed-loop simulators from real-data:
 Vista, Vista 2, UniSim
- New datasets for classification: ImageNet-C, ImageNet-R, ImageNet-A, ImageNet-O, ImageNetV2
- Similar trend of other sensors, e.g., Lidar

Out-of-Context Cityscapes

Cityscapes-C

ACDC

SegmentMeIfYouCan

Reluctance to focus on multiple KPIs

- The academic peer-review systems seems to reward bold numbers
- Potential solution: aggregate scores across conditions and metrics, e.g., nuScenes
 Detection Score (NDS)

Opportunity to adapt foundation generative models for testing

Editing to get edge cases (for Robustness evaluation or validation)

Original image

"People and kids are crossing the street"

"Trash is littering the street"

Spatially localized edits

Original image

"A baby crossing the street"

"An old lady fell in the middle of the road"

Opportunity to adapt foundation generative models for testing

Create training or validation data for domain generalization

Original image "In Paris"

"In India"

Annotations in the original domain are still valid

Original image

"Heavy fog, zero visibility"

"Heavy snow"

Opportunity to adapt foundation generative model for training data

Create training data for OOD and corner-cases

Dream-OOD: generate useful images for OOD skills

Robusta: generate segmentation data with unseen layouts, corruptions and OOD

DREAM-OOD, which deviate from the ID data.

Figure 4. Perturbed label maps. Different label maps from Corrupted-Cityscapes (top) and Outlier-Cityscapes (bottom).

Opportunity to adapt foundation generative model for perception

Repurpose foundation models for improved generalization with computational efficiency

Different model soups variants

Reliability of vision-language models

Figure 1. Construction of a zero-shot classifier with zero-shot prompt ensembling (ZPE) for text-image models. Logits () are calculated by combining text () and image () representations. The final text representation is a weighted ensemble of representations corresponding to different prompts (). Crucially, the ZPE scores () for weighting each prompt are calculated without access to any labeled training data, as described in Section 3 and Algorithm 2.

Zero-shot prompt ensembling

Swiss Cheese model

- Use multiple layers of robustness and safety barriers
- Pursuing multiple avenues creates multiple layers of protection that mitigate hazards and make ML systems safer

Swiss Cheese model

- Use multiple layers of robustness and safety barriers
- Pursuing multiple avenues creates multiple layers of protection that mitigate hazards and make ML systems safer

The end.