```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.datasets import load_digits
data1=load_digits()
data1
[ 0., 0., 0., ..., 16., 9., 0.],
             [ 0., 0., 1., \ldots, 6., 0., 0.],
      [ 0., 0., 2., ..., 12., 0., 0.],
 [ 0., 0., 10., ..., 12., 1., 0.]]),
 'target': array([0, 1, 2, ..., 8, 9, 8]),
      'frame': None,
      'feature_names': ['pixel_0_0',
       'pixel_0_1',
       'pixel_0_2',
       'pixel_0_3',
       'pixel_0_4',
       'pixel_0_5',
       'pixel_0_6',
       'pixel_0_7',
       'pixel_1_0',
       'pixel_1_1',
       'pixel_1_2',
       'pixel_1_3',
       'pixel_1_4',
       'pixel_1_5',
       'pixel_1_6',
       'pixel_1_7',
       'pixel_2_0',
       'pixel_2_1',
       'pixel_2_2',
       'pixel_2_3',
       'pixel_2_4',
       'pixel_2_5',
       'pixel_2_6',
       'pixel_2_7',
       'pixel_3_0',
       'pixel_3_1',
       'pixel_3_2',
       'pixel_3_3',
       'pixel_3_4',
       'pixel_3_5',
       'pixel_3_6',
       'pixel_3_7',
       'pixel_4_0',
       'pixel_4_1',
       'pixel_4_2',
       'pixel_4_3',
       'pixel_4_4',
       'pixel_4_5',
       'pixel_4_6',
       'pixel_4_7',
       'pixel_5_0',
       'pixel_5_1',
       'pixel_5_2',
       'pixel_5_3',
       'pixel_5_4',
       'pixel_5_5',
       'pixel_5_6',
       'pixel_5_7',
       'pixel_6_0',
data1.data
McAfee | WebAdvisor
                                                                                                          Your download's being scanned.
            [0., 0., 1., ..., 6., 0., 0.],
[0., 0., 2., ..., 12., 0., 0.],
                                                                                                          We'll let you know if there's an issue.
```

[0., 0., 10., ..., 12., 1., 0.]])

```
data1.target
```

 \Rightarrow array([0, 1, 2, ..., 8, 9, 8])

plt.imshow(data1.images[1],cmap='gray')

<matplotlib.image.AxesImage at 0x7c71a1af4c70>

data2=pd.DataFrame(data1.data)
data2

_

	0	1	2	3	4	5	6	7	8	9	 54	55	56	57	58	59	60	61	62	63
0	0.0	0.0	5.0	13.0	9.0	1.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	6.0	13.0	10.0	0.0	0.0	0.0
1	0.0	0.0	0.0	12.0	13.0	5.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	11.0	16.0	10.0	0.0	0.0
2	0.0	0.0	0.0	4.0	15.0	12.0	0.0	0.0	0.0	0.0	 5.0	0.0	0.0	0.0	0.0	3.0	11.0	16.0	9.0	0.0
3	0.0	0.0	7.0	15.0	13.0	1.0	0.0	0.0	0.0	8.0	 9.0	0.0	0.0	0.0	7.0	13.0	13.0	9.0	0.0	0.0
4	0.0	0.0	0.0	1.0	11.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	2.0	16.0	4.0	0.0	0.0
1792	0.0	0.0	4.0	10.0	13.0	6.0	0.0	0.0	0.0	1.0	 4.0	0.0	0.0	0.0	2.0	14.0	15.0	9.0	0.0	0.0
1793	0.0	0.0	6.0	16.0	13.0	11.0	1.0	0.0	0.0	0.0	 1.0	0.0	0.0	0.0	6.0	16.0	14.0	6.0	0.0	0.0
1794	0.0	0.0	1.0	11.0	15.0	1.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	2.0	9.0	13.0	6.0	0.0	0.0
1795	0.0	0.0	2.0	10.0	7.0	0.0	0.0	0.0	0.0	0.0	 2.0	0.0	0.0	0.0	5.0	12.0	16.0	12.0	0.0	0.0
1796	0.0	0.0	10.0	14.0	8.0	1.0	0.0	0.0	0.0	2.0	 8.0	0.0	0.0	1.0	8.0	12.0	14.0	12.0	1.0	0.0
1797 rd	ows ×	64 cc	lumns																	

y= pd.DataFrame(data1.target,columns=['target'])
y

_		target
	0	0
	1	1
	2	2
	3	3
	4	4
	1792	9
	1793	0
	1794	8
	1795	9
	1796	8

1797 rows × 1 columns

df=pd.concat([data2,y],axis=1)
df

	0	1	2	3	4	5	6	7	8	9	•••	55	56	57	58	59	60	61	62	63	target
0	0.0	0.0	5.0	13.0	9.0	1.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	6.0	13.0	10.0	0.0	0.0	0.0	0
1	0.0	0.0	0.0	12.0	13.0	5.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	11.0	16.0	10.0	0.0	0.0	1
2	0.0	0.0	0.0	4.0	15.0	12.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	3.0	11.0	16.0	9.0	0.0	2
3	0.0	0.0	7.0	15.0	13.0	1.0	0.0	0.0	0.0	8.0		0.0	0.0	0.0	7.0	13.0	13.0	9.0	0.0	0.0	3
4	0.0	0.0	0.0	1.0	11.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	2.0	16.0	4.0	0.0	0.0	4
																					•••
1792	0.0	0.0	4.0	10.0	13.0	6.0	0.0	0.0	0.0	1.0		0.0	0.0	0.0	2.0	14.0	15.0	9.0	0.0	0.0	9
1793	0.0	0.0	6.0	16.0	13.0	11.0	1.0	0.0	0.0	0.0		0.0	0.0	0.0	6.0	16.0	14.0	6.0	0.0	0.0	0
1794	0.0	0.0	1.0	11.0	15.0	1.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	2.0	9.0	13.0	6.0	0.0	0.0	8
1795	0.0	0.0	2.0	10.0	7.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	5.0	12.0	16.0	12.0	0.0	0.0	9
1796	0.0	0.0	10.0	14.0	8.0	1.0	0.0	0.0	0.0	2.0		0.0	0.0	1.0	8.0	12.0	14.0	12.0	1.0	0.0	8
1797 rd	ows ×	65 cc	lumns																		

plt.imshow(data1.images[1796],cmap='gray')

ó

i

2

<matplotlib.image.AxesImage at 0x7c719fa90f70>

0 1 2 3 4 5 6 -

6

5

```
LDA revision ipynb - Colab
x=data1.data
y=data1.target
from sklearn.preprocessing import StandardScaler
sc=StandardScaler()
x_scaled=sc.fit_transform(x)
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
lda=LinearDiscriminantAnalysis()
x_lda=lda.fit_transform(x_scaled,y)
x_lda.shape

→ (1797, 9)
```

```
plt.figure(figsize=(8,6))
plt.subplot(1,2,1)
plt.scatter(x_scaled[:,0],x_scaled[:,-1],c=y,cmap='viridis')
plt.colorbar(label='data1')
plt.xlabel('feature 1 (original)')
plt.ylabel('feature 2 (original)')
plt.title('original digit data')
plt.subplot(1,2,2)
colors=['red','green','yellow','cyan','blue','black','orange','pink','gray']
for target_value,color in zip(np.unique(y),colors):
 plt.scatter(x_lda[y==target_value,0],x_lda[y==target_value,1],color=color,label=str(target_value))
plt.xlabel('LDA component 1')
plt.ylabel('LDA component 2')
plt.title('LDA visualisation')
plt.legend(title='digit',bbox_to_anchor=(1,1),loc='upper left')
```



```
xtrain,xtest,ytrain,ytest=train_test_split(x_lda,y,test_size=0.20,random_state=999)
from \ sklearn.ensemble \ import \ Random Forest Classifier
rfc=RandomForestClassifier(n_estimators=100)
rfc.fit(xtrain,ytrain)
    ▼ RandomForestClassifier
     RandomForestClassifier()
y_pred=rfc.predict(xtest)
from sklearn.metrics import *
accuracy_score(ytest,y_pred)
→ 0.95
confusion_matrix(ytest,y_pred)
→ array([[39, 0, 0, 0, 1,
                               0,
                                  0,
                                      0,
                                          0,
                                             0],
           [ 0, 34, 0, 0, 0, 0, 1,
                                     0,
                                          0,
                                             0],
           [ 0, 1, 44, 0, 0, 0,
                                  0,
                                      0, 0, 0],
           [0, 0, 1, 30, 0, 0, 0, 0, 2, 2],
           [0, 0, 0, 0, 45, 0, 0, 0, 0],
           [0, 0, 0, 1, 0, 25, 0, 0, 0, 1],
           [ 0,
                0, 1, 0, 0, 0, 34, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 27, 0, 1],
           [0, 2, 0, 0, 0, 0, 0, 0, 25, 0],
           [0, 0, 0, 2, 0, 1, 0, 0, 1, 39]])
from sklearn import datasets
digit=datasets.load_digits
Start coding or generate with AI.
```

