# Machine Learning for IoT

A.Y. 2021-2022

Course Info

Prof. Andrea Calimera

### About this course



### Course objectives

- Learn about "Internet of Things" (IoT) and its peculiarity
  - Hardware devices
  - Software technology
  - Applications and practical use-cases
- Know about the existence of other metrics (that go beyond those used in ML)
  - Extra-functional metrics, like energy, latency, scaling, implementation costs
- Explore the optimization side of the basic building blocks (SW)
  - Sensing: Data collection and communication (Machine-2-Machine communication)
  - Sensemaking: Model training and deployment (efficient processing of inference engines)
- Emphasis on Augmented Intelligence (AI) of things (AIoT)
  - Deep Learning and Deep Neural Networks
  - Resource-driven design/implementation flow: training & inference & deployment

## Why this course

sensor-data is the new oil





ML4IoT

Course Info

### This course in a nutshell



### Course Organization and Contents

- Welcome to IoT
  - Lectures
    - IoT definitions, architecture, challenges and use-cases
    - Data life-cycle in the IoT
    - Understand IoT data
  - Getting started:
    - OOP + data-analysis
- Part-I: IoT technologies
  - Lectures
    - HW components and their integration into smart devices
    - · Computer architectures, from cloud to edge
    - Performance metrics, beyond accuracy
  - LAB
    - · Embedded systems programming
    - Data-gathering and data pre-processing on an end-node

### Course Organization and Contents

- Part-II: ML and DL in the IoT
  - Lectures
    - · Tensor graph computing
    - An industrial framework: TF and TF-Lite
    - Optimization for ML at the edge
  - LAB
    - DL models and practical use-cases: CNN training and inference on common data-set
    - Deployment on remote servers and edge devices
    - Hardware-driven optimization

### Course Organization and Contents

- Part-III: Data Exchange
  - Lectures
    - Communication paradigms and protocols for IoT communications
    - Distributed software platforms: Monolithic vs Microservices design patterns
    - Server computing models
  - LAB
    - Send data and messages from/to edge/remote-servers using industrial protocols
      - MQTT
      - REST
    - Offloading policies for efficient processing of inference engines
      - · who, where, how
      - Edge vs remote computing

#### Instructors



Andrea Calimera – <a href="mailto:andrea.calimera@polito.it">andrea.calimera@polito.it</a>

Edoardo Patti — <u>edoardo.patti@polito.it</u>





Daniele Jahier Pagliari – <u>daniele.jahier@polito.it</u>

Valentino Peluso – <u>valentino.peluso@polito.it</u>



### Prerequisites

- Theory and basic concepts of machine-learning and deep-learning in particular
- Software programming theories and tools
- Object-oriented programming
- Basic concepts on computer networks and architectures

#### Course material

- Slides and notes
  - Available on the course page (portale didattica)
- Reference book
  - None



- Additional material
  - Internet 😧



### Timetable

#### • Lecture

- Monday 14:30 16:00 VR
- Thursday 14:30 17:30 3M

#### • Lab

- Tuesday, 13:00 16:00 2N
- Starting from 3<sup>rd</sup> (or 4<sup>th</sup>) week (hardware setup)
- Everybody attending the full 3h slot

# Extra (free) slots

| MON: | 8:30 | 10:00 | 11:30 | 13:00 | 14:30 | 16:00 | 17:30 |
|------|------|-------|-------|-------|-------|-------|-------|
| TUE: | 8:30 | 10:00 | 11:30 | 13:00 | 14:30 | 16:00 | 17:30 |
| WED: | 8:30 | 10:00 | 11:30 | 13:00 | 14:30 | 16:00 | 17:30 |
| THU: | 8:30 | 10:00 | 11:30 | 13:00 | 14:30 | 16:00 | 17:30 |
| FRI: | 8:30 | 10:00 | 11:30 | 13:00 | 14:30 | 16:00 | 17:30 |

## Lab Equipment: shopping list



#### Course material: Lab

- Lab sessions run remotely
- Equipment (to buy, unless you already have)
  - Edge-node: Raspberry PI 4 (model B)
    - https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
  - Power supply: external PSU 2.5 A
    - https://www.amazon.it/GeeekPi-Raspberry-Alimentatore-Adattatore-Caricabatterie/dp/B07X9GW6N7/ref=sr 1 6?dchild=1&keywords=alimentatore+Raspberry&qid=1 632157502&sr=8-6Storage
    - SD card 16GB
      - https://www.amazon.it/Kingston-SDCS2-16GB-microSD-Adattatore/dp/B07YGZHSJS/ref=sr 1 5? mk it IT=%C3%85M%C3%85%C5%BD%C3%95%C3%91&dchild=1&keywords=sd+16gb&qid=1598595327&s=electronics&sr=1-5
    - USB SD reader (if not available on your PC/Laptop)
      - <a href="https://www.amazon.it/Vanja-Adattatore-Computer-Smartphone-Tunzione/dp/B00W02VHM6/ref=sr">https://www.amazon.it/Vanja-Adattatore-Computer-Smartphone-Tunzione/dp/B00W02VHM6/ref=sr</a> 1 5? mk it IT=%C3%85M%C3%85%C5%BD%C3%95%C3%91&dchild=1&keywords=lettore+usb+sd&qid=1598596555&sr=8-5

#### Lab

- Equipment (to buy)
  - Cables
    - uHDMI
      - <a href="https://www.amazon.it/dp/B014I8TVLI/ref=twister">https://www.amazon.it/dp/B014I8TVLI/ref=twister</a> B01AM5SOUK? encoding=UTF8&psc=1
    - Eth
      - https://www.amazon.it/AmazonBasics-Ethernet-velocità-gigabitconnettori/dp/B07ZTR2TZZ/ref=sr 1 3? mk it IT=ÅMÅŽÕÑ&dchild=1&keywords=cavo%2Bethernet%2 Bamazonbasics&qid=1632157694&s=pc&sr=1-3&th=1

16

#### Lab

- Equipment (to buy)
  - Digital sensors:
    - Audio
      - USB mic:

https://www.amazon.it/GeekerChip-Condensatore-Omnidirezionale-Compatibile-Intervista/dp/B086PBZFJC/ref=sr\_1\_5?\_\_mk\_it\_IT=%C3%85M%C3%85%C5%BD%C3%95%C3%91&crid=1D9 GKUZE60JFC&dchild=1&keywords=microfono%2Busb&qid=1598969112&s=electronics&sprefix=microfono%2Busb%2Celectronics%2C163&sr=1-5&th=1

- Adapter (alternative): https://www.amazon.it/gp/product/B07YCKC1CF/ref=ppx yo dt b asin title o00 s00?ie=UTF8&psc=1
- Temperature + Humidity
  - https://www.dfrobot.com/product-174.html

#### Exam

- Homework mandatory
  - 3 main assignments (one for each of the 3 parts)
  - Given during the course
  - Group of 3 people
  - 18pts = 3 \* 6pts
- Written test mandatory
  - Multiple-choice & Open-ended questions + Numerical exercises
  - Score: 12pts
- Alternative to the written test mandatory (depending on the pandemic situation)
  - Final project (Part-I, -II, -III)
  - Score: 12pts