Department of Computer Science and Engineering (CSE) BRAC University

Summer 2022

CSE250 – Circuits and Electronics

Open circuit, Short circuit, Nodal analysis

Purbayan Das, C. Lecturer
Department of Computer Science and Engineering (CSE)
BRAC University

Ground

• Except for a few special cases, electrical and electronic systems are grounded for reference and safety purposes.

• In general, the placement of the ground connection will not affect the magnitude or polarity of the voltage across an element but it may have a significant impact on the voltage from any point in the network to ground.

For the series network shown below, determine

- i) The voltage V_a .
- ii) The voltage \ddot{V}_b .
- iii) The voltage V_{ab}

Ans: (i)
$$V_a = 16 \text{ V}$$

(ii) $V_b = 16 \text{ V}$
(iii) $V_{ab} = 0 \text{ V}$

For the series network shown below, determine

- i) The voltage V_a .
- ii) The voltages V_b and V_c .
- iii) The voltage V_{ab}

Ans: (i)
$$V_a = 24 \text{ V}$$

(ii) $V_b = -32 \text{ V}$; $V_c = -48 \text{ V}$
(iii) $V_{ab} = 56 \text{ V}$

Open circuit

- An **open circuit** is two isolated terminals not connected by an element of any kind
- An open circuit can have a potential difference (voltage) across its terminals, but the current is always zero amperes

Short circuit

- A **short circuit** is a very low resistance, direct connection between two terminals of a network
- A short circuit can carry a current of a level determined by the external circuit, but the potential difference (voltage) across its terminals is always zero volts.

I–V characteristics

Circuit laws, method of analysis, & theorems

Laws

- Ohm's Law
- Kirchhoff's current law
- Kirchhoff's voltage law

Method of analysis

- Nodal analysis
- Mesh analysis

Theorems

- Superposition theorem
- Source transformation
- Thevenin's theorem
- Norton's theorem
- Maximum power transfer theorem

Nodal analysis

• Nodal analysis provides a general procedure for analyzing circuits using node voltages as the circuit variables

Steps to Determine Node Voltages:

- Select a node as the reference node. Assign voltages v₁, v₂,..., v_{n-1} to the remaining n − 1 nodes. The voltages are referenced with respect to the reference node.
- Apply KCL to each of the n − 1 nonreference nodes. Use Ohm's law to express the branch currents in terms of node voltages.
- Solve the resulting simultaneous equations to obtain the unknown node voltages.

Find all the node voltages

Ans: - 2 V; - 14 V; 0 V

Find V_a using nodal analysis

Ans: $V_a = 50 V$

• Find **i**₀ using nodal analysis

<u>Ans</u>: $i_0 = 1.73 A$

• Find voltages across the current source and across the 8 Ω resistor using nodal analysis

Ans: 22.5 V; 2 V

Supernode

 A supernode is formed by enclosing a (dependent or independent) voltage source connected between two nonreference nodes and any elements connected in parallel with it.

Find i₀ using nodal analysis

<u>Ans</u>: $i_0 = 1.78 A$

Determine the node voltages using nodal analysis

Ans: 10 V; 20 V; 20 V; 0 V

• Find v₁, v₂, v₃

Ans: $v_1 = 2.61 \text{ V}$; $v_2 = 2.78 \text{ V}$; $v_3 = 0.17 \text{ V}$

Determine voltages through in the circuit using nodal analysis.

Ans: $v_1 = 6.23 \text{ V}$; $v_2 = 2.08 \text{ V}$; $v_3 = 13 \text{ V}$

• Determine the current through the source resistor R_s using nodal analysis

<u>Ans</u>: $i_s = 3.33 \text{ mA}$

• Determine the current through the source resistor R_s using nodal analysis

 $\underline{\text{Ans}}$: $\mathbf{i_s} = \mathbf{1.18} \, \mathbf{A}$

Thank you for your attention

