Single-cell RNA-sequencing: variance stabilizing transformations

Koen Van den Berge

Last compiled on 08 November, 2021

Contents

1	Approximating the variance stabilizing transformation of a Poisson random variable	1
2	VST for scRNA-seq data based on a negative binomial distribution	3
	2.1 Pearson residuals	3

Approximating the variance stabilizing transformation of a Poisson random variable

- A random variable $Y \sim Poi(\mu)$ has $Var(Y) = E(Y) = \mu$.
- We are looking for a variance stabilizing transformation (VST) f(Y) such that Var(f(Y)) = c, with cany constant. In particular, we need Var(f(Y)) to be independent of μ .
- A first-order Taylor series gives us $f(Y) \approx f(\mu) + (Y \mu)f'(\mu)$.
- Rearranging gives us {f(Y) f(μ)}² = (Y μ)²f'(μ)².
 Which may be written as Var(f(Y)) = Var(Y)f'(μ)².
- This shows us that we want a transformation such that $f'(\mu)^2 = 1/\mu$ because then $\forall \mu$: Var(f(Y)) = 1! Let's find out.
- The last bullet point can be written as $f'(\mu) = \frac{1}{\sqrt{\mu}}$ and therefore $f(\mu) = \int \frac{1}{\sqrt{\mu}} d\mu = 2\mu^{1/2}$.
- Finally, this shows us that the transformation $f(Y) = 2Y^{1/2}$ ensures Var(f(Y)) = 1. Similar, as is often written in the scientific literature, the transformation $f(Y) = Y^{1/2}$ ensures Var(f(Y)) = 1/4.
- Note that these derivations all rely on the first-order Taylor expansion to be a good ap**proximation.** The VST will therefore work better for random variables with a high mean μ as the distribution will be more discrete for random variables with a low mean. We show this using simulation below.

```
set.seed(871)
N <- 1e3
df <- data.frame(mean=rep(NA, N),</pre>
                  var=rep(NA, N),
                  transVar=rep(NA, N))
for(kk in 1:N){
  sampledMu <- runif(n=1, min=1, max=500)</pre>
  y <- rpois(n=500, lambda=sampledMu)
  df[kk,] <- c(mean(y), var(y), var(sqrt(y)))</pre>
}
```



```
plot(x=df$mean, y=df$transVar,
     xlab = "Mean of RV", ylab="Variance of transformed RV")
```


Question. Why is the first plot heteroscedastic?

Answer.

Remember that $Var(\hat{\mu}) = \frac{\hat{\mu}}{n}$. Since for all random variables in our simulation n is equal, in our case we have that $Var(\hat{\mu}) = c\hat{\mu}$. The variance on estimating the mean thus increases with the mean.

2 VST for scRNA-seq data based on a negative binomial distribution

2.1 Pearson residuals

As