Sistema de Monitoramento de Consumo de Energia v1.0

Generated by Doxygen 1.8.13

Contents

1	Mod	lule Index	1
	1.1	Modules	1
2	Data	a Structure Index	2
	2.1	Data Structures	2
3	File	Index	2
	3.1	File List	2
4	Mod	lule Documentation	3
	4.1	CMSIS	3
		4.1.1 Detailed Description	3
	4.2	Stm32f4xx_system	4
		4.2.1 Detailed Description	4
	4.3	STM32F4xx_System_Private_Includes	5
		4.3.1 Detailed Description	5
		4.3.2 Macro Definition Documentation	5
	4.4	STM32F4xx_System_Private_TypesDefinitions	6
	4.5	STM32F4xx_System_Private_Defines	7
		4.5.1 Detailed Description	7
		4.5.2 Macro Definition Documentation	7
	4.6	STM32F4xx_System_Private_Macros	8
	4.7	STM32F4xx_System_Private_Variables	9
		4.7.1 Detailed Description	9
		4.7.2 Variable Documentation	9
	4.8	STM32F4xx_System_Private_FunctionPrototypes	10
	4.9	STM32F4xx_System_Private_Functions	11
		4.9.1 Detailed Description	11
		4.9.2 Function Documentation	11

ii CONTENTS

5	Data	Struct	ure Documentation	13
	5.1	Equipa	amento Struct Reference	13
		5.1.1	Detailed Description	13
		5.1.2	Field Documentation	13
	5.2	Medica	ao Struct Reference	14
		5.2.1	Detailed Description	14
		5.2.2	Field Documentation	14
	5.3	Param	etros Struct Reference	15
		5.3.1	Detailed Description	15
		5.3.2	Field Documentation	15
6	File	Docum	entation	16
	6.1	Inc/ad	c.h File Reference	16
		6.1.1	Detailed Description	17
		6.1.2	Function Documentation	17
		6.1.3	Variable Documentation	18
	6.2	Inc/ad	c_util.h File Reference	18
		6.2.1	Detailed Description	19
		6.2.2	Function Documentation	19
	6.3	Inc/cal	culos_eletricos.h File Reference	19
		6.3.1	Detailed Description	20
		6.3.2	Function Documentation	20
	6.4	Inc/de	fines.h File Reference	24
		6.4.1	Detailed Description	25
		6.4.2	Macro Definition Documentation	25
	6.5	Inc/diz	imacao.h File Reference	29
		6.5.1	Detailed Description	29
		6.5.2	Function Documentation	29
		6.5.3	Variable Documentation	30
	6.6	Inc/dm	na.h File Reference	30
		6.6.1	Detailed Description	31

	6.6.2	Function Documentation	. 3
	6.6.3	Variable Documentation	. 32
6.7	Inc/equ	uipamentos.h File Reference	. 32
	6.7.1	Detailed Description	. 33
	6.7.2	Typedef Documentation	. 30
	6.7.3	Function Documentation	. 33
6.8	Inc/gpi	o.h File Reference	. 36
	6.8.1	Detailed Description	. 36
	6.8.2	Function Documentation	. 36
6.9	Inc/mai	in.h File Reference	. 3
	6.9.1	Detailed Description	. 37
6.10	Inc/stm	n32f4xx_hal_conf.h File Reference	. 3
	6.10.1	Detailed Description	. 39
	6.10.2	Macro Definition Documentation	. 39
6.11	Inc/stm	n32f4xx_it.h File Reference	. 46
	6.11.1	Detailed Description	. 47
	6.11.2	Function Documentation	. 47
6.12	Inc/tim.	.h File Reference	. 49
	6.12.1	Detailed Description	. 49
	6.12.2	Function Documentation	. 49
	6.12.3	Variable Documentation	. 50
6.13	Inc/usa	art.h File Reference	. 50
	6.13.1	Detailed Description	. 5 ⁻
	6.13.2	Function Documentation	. 5 ⁻
	6.13.3	Variable Documentation	. 5 ⁻
6.14	Inc/usa	art_util.h File Reference	. 52
	6.14.1	Detailed Description	. 52
	6.14.2	Function Documentation	. 52
6.15	Src/add	c.c File Reference	. 5
	6.15.1	Detailed Description	. 5

iv CONTENTS

	6.15.2 Function Documentation	55
	6.15.3 Variable Documentation	57
6.16	Src/adc_util.c File Reference	58
	6.16.1 Detailed Description	58
	6.16.2 Function Documentation	58
6.17	Src/calculos_eletricos.c File Reference	59
	6.17.1 Detailed Description	59
	6.17.2 Macro Definition Documentation	59
	6.17.3 Function Documentation	60
6.18	Src/dma.c File Reference	64
	6.18.1 Detailed Description	64
	6.18.2 Function Documentation	64
	6.18.3 Variable Documentation	65
6.19	Src/equipamentos.c File Reference	65
	6.19.1 Detailed Description	66
	6.19.2 Function Documentation	66
6.20	Src/gpio.c File Reference	68
	6.20.1 Detailed Description	68
	6.20.2 Function Documentation	69
6.21	Src/main.c File Reference	69
	6.21.1 Detailed Description	70
	6.21.2 Enumeration Type Documentation	70
	6.21.3 Function Documentation	71
	6.21.4 Variable Documentation	73
6.22	Src/stm32f4xx_hal_msp.c File Reference	76
	6.22.1 Detailed Description	76
	6.22.2 Function Documentation	76
6.23	Src/stm32f4xx_it.c File Reference	77
	6.23.1 Detailed Description	78
	6.23.2 Function Documentation	78

1 Module Index

	6.23.3	Variable Documentation	80
6.24	Src/sys	tem_stm32f4xx.c File Reference	81
	6.24.1	Detailed Description	82
6.25	Src/tim	.c File Reference	83
	6.25.1	Detailed Description	83
	6.25.2	Function Documentation	83
	6.25.3	Variable Documentation	84
6.26	Src/usa	art.c File Reference	84
	6.26.1	Detailed Description	84
	6.26.2	Function Documentation	84
	6.26.3	Variable Documentation	85
6.27	Src/usa	art_util.c File Reference	85
	6.27.1	Detailed Description	86
	6.27.2	Function Documentation	86
Index			89
Index			89
	dule Ir	ıdex	89
1 Mo		ıdex	89
1 Mo	dule Ir	ndex	89
1 Mo	dules	Il modules:	89
1 Mo	dules list of a		89
1 Mo 1.1 Mo Here is a	dules list of a		
1 Mo 1.1 Mo Here is a	dules I list of a	Il modules:	3
1 Mo 1.1 Mo Here is a	dules Ilist of a IS tm32f4x	II modules:	3 4
1 Mo 1.1 Mo Here is a	odules Ilist of a IS STM3	ll modules: tx_system 2F4xx_System_Private_Includes	3 4 5
1 Mo 1.1 Mo Here is a	odules Ilist of a IS STM3 STM3 STM3	Il modules: tx_system 2F4xx_System_Private_Includes 2F4xx_System_Private_TypesDefinitions	3 4 5
1 Mo 1.1 Mo Here is a	dules Ist of a IS STM3 STM3 STM3 STM3	Il modules: tx_system 2F4xx_System_Private_Includes 2F4xx_System_Private_TypesDefinitions 2F4xx_System_Private_Defines	3 4 5 6 7
1 Mo 1.1 Mo Here is a	dules list of a list of a STM3 STM3 STM3 STM3 STM3	Il modules: Ex_system 2F4xx_System_Private_Includes 2F4xx_System_Private_TypesDefinitions 2F4xx_System_Private_Defines 2F4xx_System_Private_Macros	3 4 5 6 7 8

2 Data Structure Index

2	1	Date	a Sti	ruct	IIPAS

Here are the data structures with brief descriptions:

	Equipamento Estrutura da base de dados de equipamentos	13
	Medicao Estrutura armazenada na memória com histórico de medições e equipamentos	14
	Parametros Estrutura com parametros elétricos	15
3	File Index	
3.1	File List	
Нe	re is a list of all files with brief descriptions:	
	Inc/adc.h Header com funções de configuração dos ADCs	16
	Inc/adc_util.h Implementação das funções de auxílio no uso dos ADCs	18
	Inc/calculos_eletricos.h Implementação das funções que realizam os cálculos dos parâmetros elétricos	19
	Inc/defines.h Definições dos parâmetros do projeto	24
	Inc/dizimacao.h Código para dizimação: Filtro FIR e downsampling usando biblioteca CMSIS	29
	Inc/dma.h Header das funções de configuração das DMAs	30
	Inc/equipamentos.h Header com as estruturas do projeto e funções que manipulam essas estruturas	32
	Inc/gpio.h Header das funções de configuração do GPIO	36
	Inc/main.h Header do main. Não utilizado	37
	Inc/stm32f4xx_hal_conf.h HAL configuration file	37
	Inc/stm32f4xx_it.h This file contains the headers of the interrupt handlers	46
	Inc/tim.h Header das funções de configuração do temporizador	49

4 Module Documentation 3

Inc/usart.h Header das funções de configuração da uart	50
	30
Inc/usart_util.h Biblioteca com funções úteis para utilizar com a USART2	52
Src/adc.c Implementação das funções de configuração dos ADCs	55
Src/adc_util.c Implementação das funções de auxílio no uso dos ADCs	58
Src/calculos_eletricos.c Implementação das funções que realizam os cálculos dos parâmetros elétricos	59
Src/dma.c Header das funções de configuração das DMAs	64
Src/equipamentos.c Implementação das funções que manipulam as estruturas do projeto	65
Src/gpio.c Implementação das funções de configuração do GPIO	68
Src/main.c Aplicação: Sistema de Monitoramento de Consumo de Energia	69
Src/stm32f4xx_hal_msp.c Inicializa NVIC	76
Src/stm32f4xx_it.c Interrupt Service Routines	77
Src/system_stm32f4xx.c CMSIS Cortex-M4 Device Peripheral Access Layer System Source File	81
Src/tim.c Implementação das funções de configuração do temporizador	83
Src/usart.c Implementação das funções de configuração da uart	84
Src/usart_util.c Biblioteca com funções úteis para utilizar com a USART2	85

4 Module Documentation

4.1 CMSIS

Modules

• Stm32f4xx_system

4.1.1 Detailed Description

4.2 Stm32f4xx_system

Modules

- STM32F4xx_System_Private_Includes
- STM32F4xx_System_Private_TypesDefinitions
- STM32F4xx_System_Private_Defines
- STM32F4xx_System_Private_Macros
- STM32F4xx_System_Private_Variables
- STM32F4xx_System_Private_FunctionPrototypes
- STM32F4xx_System_Private_Functions

4.2.1 Detailed Description

4.3 STM32F4xx_System_Private_Includes

Macros

- #define HSE_VALUE ((uint32_t)25000000)
- #define HSI_VALUE ((uint32_t)16000000)
- 4.3.1 Detailed Description
- 4.3.2 Macro Definition Documentation

```
4.3.2.1 HSE_VALUE
```

```
#define HSE_VALUE ((uint32_t)25000000)
```

Default value of the External oscillator in Hz

4.3.2.2 HSI_VALUE

```
#define HSI_VALUE ((uint32_t)16000000)
```

Value of the Internal oscillator in Hz

4.4 STM32F4xx_System_Private_TypesDefinitions

4.5 STM32F4xx_System_Private_Defines

Macros

- #define VECT_TAB_OFFSET 0x00
- 4.5.1 Detailed Description
- 4.5.2 Macro Definition Documentation
- 4.5.2.1 VECT_TAB_OFFSET

#define VECT_TAB_OFFSET 0x00

- < Uncomment the following line if you need to use external SRAM or SDRAM as data memory
- < Uncomment the following line if you need to relocate your vector Table in Internal SRAM. Vector Table base offset field. This value must be a multiple of 0x200.

4.6 STM32F4xx_System_Private_Macros

4.7 STM32F4xx_System_Private_Variables

Variables

- uint32_t SystemCoreClock = 16000000
- const uint8_t AHBPrescTable [16] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9}
- const uint8_t APBPrescTable [8] = {0, 0, 0, 0, 1, 2, 3, 4}

4.7.1 Detailed Description

4.7.2 Variable Documentation

4.7.2.1 AHBPrescTable

```
const uint8_t AHBPrescTable[16] = {0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9}
```

4.7.2.2 APBPrescTable

```
const uint8_t APBPrescTable[8] = {0, 0, 0, 0, 1, 2, 3, 4}
```

4.7.2.3 SystemCoreClock

 $uint32_t$ SystemCoreClock = 16000000

4.8 STM32F4xx_System_Private_FunctionPrototypes

4.9 STM32F4xx_System_Private_Functions

Functions

void SystemInit (void)

Setup the microcontroller system Initialize the FPU setting, vector table location and External memory configuration.

void SystemCoreClockUpdate (void)

Update SystemCoreClock variable according to Clock Register Values. The SystemCoreClock variable contains the core clock (HCLK), it can be used by the user application to setup the SysTick timer or configure other parameters.

- 4.9.1 Detailed Description
- 4.9.2 Function Documentation

4.9.2.1 SystemCoreClockUpdate()

```
\begin{tabular}{ll} \beg
```

Update SystemCoreClock variable according to Clock Register Values. The SystemCoreClock variable contains the core clock (HCLK), it can be used by the user application to setup the SysTick timer or configure other parameters.

Note

Each time the core clock (HCLK) changes, this function must be called to update SystemCoreClock variable value. Otherwise, any configuration based on this variable will be incorrect.

- The system frequency computed by this function is not the real frequency in the chip. It is calculated based on the predefined constant and the selected clock source:
- If SYSCLK source is HSI, SystemCoreClock will contain the HSI VALUE(*)
- If SYSCLK source is HSE, SystemCoreClock will contain the HSE_VALUE(**)
- If SYSCLK source is PLL, SystemCoreClock will contain the HSE_VALUE(**) or HSI_VALUE(*) multiplied/divided by the PLL factors.
- (*) HSI_VALUE is a constant defined in stm32f4xx_hal_conf.h file (default value 16 MHz) but the real value may vary depending on the variations in voltage and temperature.
- (**) HSE_VALUE is a constant defined in stm32f4xx_hal_conf.h file (its value depends on the application requirements), user has to ensure that HSE_VALUE is same as the real frequency of the crystal used. Otherwise, this function may have wrong result.
 - The result of this function could be not correct when using fractional value for HSE crystal.

Parameters

None

Reti		110	
Reti	ırn	va	IIIPS

None

4.9.2.2 SystemInit()

```
void SystemInit (
    void )
```

Setup the microcontroller system Initialize the FPU setting, vector table location and External memory configuration.

Parameters

None

Return values

None

5 Data Structure Documentation

5.1 Equipamento Struct Reference

Estrutura da base de dados de equipamentos.

```
#include <equipamentos.h>
```

Data Fields

- uint16_t ID
- char name [32]
- · Parametros med

5.1.1 Detailed Description

Estrutura da base de dados de equipamentos.

Essa estrutura é uma entrada da base de dados de equipamentos. Armazena informações referentes a cada equipamento que pode ser identificado.

5.1.2 Field Documentation

5.1.2.1 ID

uint16_t ID

ID para o equipamento

5.1.2.2 med

Parametros med

Entrada para estrutura Parametros que armazena parâmetros elétricos de interesse.

5.1.2.3 name

char name[32]

String com o nome do equipamento.

The documentation for this struct was generated from the following file:

Inc/equipamentos.h

5.2 Medicao Struct Reference

Estrutura armazenada na memória com histórico de medições e equipamentos.

```
#include <equipamentos.h>
```

Data Fields

- · uint32_t timestamp
- uint16_t equipamentos [EQUIP_ARRAY_MAX]
- · Parametros med

5.2.1 Detailed Description

Estrutura armazenada na memória com histórico de medições e equipamentos.

Essa estrutura usa uma entrada da estrutura Parametros para armazenar os dados elétricos lidos em associação a um timestamp e um vetor de equipamentos elétricos ligados na rede.

5.2.2 Field Documentation

5.2.2.1 equipamentos

```
uint16_t equipamentos[EQUIP_ARRAY_MAX]
```

Vetor que indica os equipamentos ligados na rede. O índice do vetor indica uma ID de equipamento e o conteúdo indica quantos equipamentos deste tipo estão ligados na rede no momento.

5.2.2.2 med

Parametros med

Entrada para estrutura Parametros que armazena parâmetros elétricos de interesse.

5.2.2.3 timestamp

```
uint32_t timestamp
```

Marcação de tempo (timestamp) associado a uma medição da rede.

The documentation for this struct was generated from the following file:

· Inc/equipamentos.h

5.3 Parametros Struct Reference

Estrutura com parametros elétricos.

```
#include <equipamentos.h>
```

Data Fields

- float32_t pot_ap
- float32_t pot_at
- float32_t pot_re
- float32_t harmonicos_RMS [MAX_HARMONICA]
- float32_t thd
- float32_t pf
- float32 t i rms
- float32_t v_rms

5.3.1 Detailed Description

Estrutura com parametros elétricos.

Esta estrutura é usada para armazenar os parâmetros elétricos de interesse no projeto. Uma entrada desse tipo é usada nas outras estruturas.

5.3.2 Field Documentation

5.3.2.1 harmonicos_RMS

```
float32_t harmonicos_RMS[MAX_HARMONICA]
```

Vetor com a potência das harmônicas.

```
5.3.2.2 i_rms
```

```
float32_t i_rms
```

Corrente RMS em Ampères.

5.3.2.3 pf

float32_t pf

Fator de potência.

5.3.2.4 pot_ap

float32_t pot_ap

Potencia aparente em Watts.

```
5.3.2.5 pot_at
```

```
float32_t pot_at
```

Potencia ativa em Watts.

```
5.3.2.6 pot_re
```

```
float32_t pot_re
```

Potencia reativa em Watts.

5.3.2.7 thd

```
float32_t thd
```

Distorção harmônica total.

5.3.2.8 v_rms

```
float32_t v_rms
```

Tensão RMS em Volts.

The documentation for this struct was generated from the following file:

· Inc/equipamentos.h

6 File Documentation

6.1 Inc/adc.h File Reference

Header com funções de configuração dos ADCs.

```
#include "stm32f4xx_hal.h"
#include "main.h"
```

Functions

• void Error_Handler (void)

This function is executed in case of error occurrence.

void MX_ADC1_Init (void)

Inicialização do ADC 1.

• void MX_ADC2_Init (void)

Inicialização do ADC 2.

Variables

```
    ADC_HandleTypeDef hadc1
        Handler para estrutura do ADC 1.
```

• ADC_HandleTypeDef hadc2

Handler para estrutura do ADC 2.

6.1.1 Detailed Description

Header com funções de configuração dos ADCs.

Author

ST

6.1.2 Function Documentation

6.1.2.1 Error_Handler()

This function is executed in case of error occurrence.

Parameters

None

Return values

None

6.1.2.2 MX_ADC1_Init()

Inicialização do ADC 1.

Return values

None

Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)

Configure the ADC multi-mode

Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.

6.1.2.3 MX_ADC2_Init()

Inicialização do ADC 2.

Return values

```
None
```

Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)

Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.

6.1.3 Variable Documentation

6.1.3.1 hadc1

```
ADC_HandleTypeDef hadc1
```

Handler para estrutura do ADC 1.

6.1.3.2 hadc2

```
ADC_HandleTypeDef hadc2
```

Handler para estrutura do ADC 2.

6.2 Inc/adc_util.h File Reference

Implementação das funções de auxílio no uso dos ADCs.

```
#include "main.h"
#include "adc.h"
#include "arm_math.h"
```

Functions

• void ADCConvertBuffer (uint32_t *entrada, float32_t *saida, uint32_t n, float32_t a, float32_t b)

Converte um buffer de entrada uint32_t em float32_t usando a transformação linear y = a*x + b.

6.2.1 Detailed Description

Implementação das funções de auxílio no uso dos ADCs.

Author

Gustavo

6.2.2 Function Documentation

6.2.2.1 ADCConvertBuffer()

Converte um buffer de entrada uint32_t em float32_t usando a transformação linear y = a*x + b.

Parameters

entrada	buffer de inteiros com valores entre 0 e 4095 (leitura do ADC)
saida	buffer de saída float
а	termo linear da equação y = ax + b
b	termo constante da equação y = ax + b

Return values

None

6.3 Inc/calculos_eletricos.h File Reference

Implementação das funções que realizam os cálculos dos parâmetros elétricos.

Functions

- void * retornaSIN (float32_t *array, uint32_t f, float32_t fs, uint32_t n, float32_t phase)

 **DEPRECATED Cria um vetor com sinal senoidal para testes.
- float32_t retornaRMS (float32_t g, float32_t *array, uint32_t size, uint32_t start)

 Retorna o valor RMS de um vetor.
- float32_t retornaPOTATIVA (float32_t gv, float32_t gi, float32_t *array_tensao, float32_t *array_corrente, uint32_t size, uint32_t start)

Retorna a potência ativa resultante entre um vetor de tensão e um vetor de corrente.

float32_t retornaPOTAPARENTE (float32_t gv, float32_t gi, float32_t vrms, float32_t irms)

Retorna a potência aparente resultante a partir dos valores RMS de tensão e corrente já calculados.

• float32_t retornaPOTREATIVA (float32_t potaparente, float32_t potativa)

Retorna a potência reativa resultante a partir dos valores de potência ativa e aparente já calculados.

float32_t retornaFP (float32_t potaparente, float32_t potativa)

Retorna o fator de potência a partir dos valores de potência ativa e aparente já calculados.

• void retornaRMSHARMONICOS (float32_t *i_rms_harmonicos, float32_t *array_corrente, uint32_t size, uint32_t h, float32_t g, uint32_t n, uint32_t start)

Retorna a potência das harmônicas de um vetor com dados de corrente.

• void retornaMEDIACICLOS (float32_t *array_in, float32_t *array_out, uint32_t size, uint32_t n, uint32_t start)

Tira a média de n ciclos para cálculo de harmônicas.

float32_t retornaTHD (float32_t *array_in)

Retorna o THD a partir de um vetor de harmônicas.

6.3.1 Detailed Description

Implementação das funções que realizam os cálculos dos parâmetros elétricos.

Author

André e Gustavo

6.3.2 Function Documentation

6.3.2.1 retornaFP()

Retorna o fator de potência a partir dos valores de potência ativa e aparente já calculados.

Parameters

potaparente	potência aparente.
potativa	potência ativa.

Return values

```
fp fator de reativa calculada.
```

6.3.2.2 retornaMEDIACICLOS()

```
float32_t * array_out,
uint32_t size,
uint32_t n,
uint32_t start )
```

Tira a média de n ciclos para cálculo de harmônicas.

Parameters

array_in	ponteiro com dados de entrada. Tamanho size.	
array_out	ponteiro com dados de saída. Tamanho (size-start)/n.	
size	número de elementos no vetor de dados.	
n	número de ciclos de 60 Hz no vetor de entrada.	
start	posição inicial do vetor de dados. Usado para que cálculo ocorra sobre um número inteiro de períodos de 60 Hz.	

Return values

```
None
```

6.3.2.3 retornaPOTAPARENTE()

Retorna a potência aparente resultante a partir dos valores RMS de tensão e corrente já calculados.

Parameters

gi	ganho para ajuste do valor de corrente (não utilizado).
gv	ganho para ajuste do valor de tensão (não utilizado).
vrms	tensão RMS.
irms	corrente RMS.

Return values

```
potaparente potência aparente calculada.
```

6.3.2.4 retornaPOTATIVA()

```
float32_t retornaPOTATIVA ( \label{float32_t} float32\_t \ gv, \\ float32\_t \ gi, \\ \end{cases}
```

```
float32_t * array_tensao,
float32_t * array_corrente,
uint32_t size,
uint32_t start )
```

Retorna a potência ativa resultante entre um vetor de tensão e um vetor de corrente.

Parameters

gi	ganho para ajuste do valor de corrente (não utilizado).	
gv	ganho para ajuste do valor de tensão (não utilizado).	
array_tensao	ponteiro para o vetor de dados de tensão.	
array_corrente	ponteiro para o vetor de dados de corrente.	
size	número de elementos no vetor de dados.	
start	posição inicial do vetor de dados. Usado para que cálculo ocorra sobre um número inteiro de períodos de 60 Hz.	

Return values

6.3.2.5 retornaPOTREATIVA()

Retorna a potência reativa resultante a partir dos valores de potência ativa e aparente já calculados.

Parameters

potaparente	potência aparente.
potativa	potência ativa.

Return values

potreativa potência reativa calculada	a.
---------------------------------------	----

6.3.2.6 retornaRMS()

Retorna o valor RMS de um vetor.

Parameters

g	ganho para ajuste do valor (não utilizado).
array	ponteiro para o vetor de dados.
size	número de elementos no vetor de dados.
start	posição inicial do vetor de dados. Usado para que cálculo ocorra sobre um número inteiro de períodos de 60 Hz.

Return values

arrayrms	valor RMS do vetor.
----------	---------------------

6.3.2.7 retornaRMSHARMONICOS()

Retorna a potência das harmônicas de um vetor com dados de corrente.

Parameters

i_rms_harmonicos	ponteiro para vetor de saída com potência das harmônicas.
array_corrente	ponteiro de entrada com valores dos dados de corrente.
g	ganho para ajuste do valor (não utilizado).
size	número de elementos no vetor de dados.
h	número de elementos no vetor de harmônicas.
n	número de ciclos de 60 Hz no vetor de entrada.
start	posição inicial do vetor de dados. Usado para que cálculo ocorra sobre um número inteiro de períodos de 60 Hz.

Return values

```
None
```

6.3.2.8 retornaSIN()

```
uint32_t n,
float32_t phase )
```

DEPRECATED Cria um vetor com sinal senoidal para testes.

Parameters

array	vetor seno
f	frequencia
fs	frequencia de amostragem
n	numero de pontos por periodo
phase	fase do seno

Return values

None

6.3.2.9 retornaTHD()

```
float32_t retornaTHD ( {\tt float32\_t * \textit{array\_in} })
```

Retorna o THD a partir de um vetor de harmônicas.

Parameters

array←	ponteiro para vetor de harmônicas.
_in	

Return values

thd	Distorção Harmônica Total calculadas.
-----	---------------------------------------

6.4 Inc/defines.h File Reference

Definições dos parâmetros do projeto.

Macros

• #define MEM_SIZE (uint32_t) 4

Tamanho da memória de histórico de medições.

• #define BUFFER_SIZE (uint32_t) 2048

Tamanho do buffer de aquisição do ADC.

• #define DIZIMACAO (uint32_t) 4

Fator de dizimação.

• #define FILTER_TAP_NUM (uint32_t) 29

Número de taps do filtro FIR.

• #define BUFFER DIZ (uint32 t) (BUFFER SIZE/DIZIMACAO)

Tamanho do buffer dizimado.

• #define MS2H (float32_t) 1/3600000

Fator de conversão de milisegundo para hora.

#define F SAMP (uint32 t) 12000

Frequência de amostragem do sistema.

#define F_SAMP_DIZ (uint32_t) (F_SAMP/DIZIMACAO)

Frequência de amostragem após dizimação.

#define PPP (uint32_t) (F_SAMP_DIZ / 60)

Pontos por período.

#define N_START (uint32_t) (BUFFER_DIZ-(BUFFER_DIZ/PPP)*PPP)

Número de pontos no buffer dizimado que não preenchem um período de 60 Hz.

#define N_PERIODOS (uint32_t) ((BUFFER_DIZ-N_START)/PPP)

Número inteiro de períodos de 60 Hz no buffer dizimado.

• #define TENSAO A (float32 t) -0.0992

Fator de conversão A da calibração de tensão.

#define TENSAO_B (float32_t) 200.8922

Fator de conversão B da calibração de tensão.

#define CORRENTE_A (float32_t) 3.3/4095*10

Fator de conversão A da calibração de corrente.

• #define CORRENTE B (float32 t) -2048*CORRENTE A

Fator de conversão B da calibração de corrente.

#define RMS TOLERANCIA (float32 t) 7

Tolerância do evento de corrente, em %.

#define RMS_UPPERBOUND (float32_t) (100+RMS_TOLERANCIA)/100

Limite superior da tolerância do evento de corrente.

• #define RMS_LOWERBOUND (float32_t) (100-RMS_TOLERANCIA)/100

Limite inferior da tolerância do evento de corrente.

• #define GV 1

DEPRECATED Ganho de corrente para ajuste.

#define GI 1

DEPRECATED Ganho de tensão para ajuste.

• #define MAX HARMONICA 10

Número de harmônicas consideradas.

#define EQUIP_ARRAY_MAX 16

Número máximo de equipamentos na base de dados.

6.4.1 Detailed Description

Definições dos parâmetros do projeto.

Author

Gustavo

6.4.2 Macro Definition Documentation

6.4.2.1 BUFFER_DIZ

```
#define BUFFER_DIZ (uint32_t) (BUFFER_SIZE/DIZIMACAO)
```

Tamanho do buffer dizimado.

6.4.2.2 BUFFER_SIZE

```
#define BUFFER_SIZE (uint32_t) 2048
```

Tamanho do buffer de aquisição do ADC.

6.4.2.3 CORRENTE_A

```
#define CORRENTE_A (float32_t) 3.3/4095*10
```

Fator de conversão A da calibração de corrente.

6.4.2.4 CORRENTE_B

```
#define CORRENTE_B (float32_t) -2048*CORRENTE_A
```

Fator de conversão B da calibração de corrente.

6.4.2.5 DIZIMACAO

```
#define DIZIMACAO (uint32_t) 4
```

Fator de dizimação.

6.4.2.6 EQUIP_ARRAY_MAX

```
#define EQUIP_ARRAY_MAX 16
```

Número máximo de equipamentos na base de dados.

6.4.2.7 F_SAMP

```
#define F_SAMP (uint32_t) 12000
```

Frequência de amostragem do sistema.

6.4.2.8 F_SAMP_DIZ

```
#define F_SAMP_DIZ (uint32_t) (F_SAMP/DIZIMACAO)
```

Frequência de amostragem após dizimação.

6.4.2.9 FILTER_TAP_NUM

```
#define FILTER_TAP_NUM (uint32_t) 29
```

Número de taps do filtro FIR.

6.4.2.10 GI

#define GI 1

DEPRECATED Ganho de tensão para ajuste.

6.4.2.11 GV

#define GV 1

DEPRECATED Ganho de corrente para ajuste.

6.4.2.12 MAX_HARMONICA

```
#define MAX_HARMONICA 10
```

Número de harmônicas consideradas.

6.4.2.13 MEM_SIZE

```
#define MEM_SIZE (uint32_t) 4
```

Tamanho da memória de histórico de medições.

6.4.2.14 MS2H

```
#define MS2H (float32_t) 1/3600000
```

Fator de conversão de milisegundo para hora.

6.4.2.15 N_PERIODOS

```
#define N_PERIODOS (uint32_t) ((BUFFER_DIZ-N_START)/PPP)
```

Número inteiro de períodos de 60 Hz no buffer dizimado.

6.4.2.16 N_START

```
#define N_START (uint32_t) (BUFFER_DIZ-(BUFFER_DIZ/PPP)*PPP)
```

Número de pontos no buffer dizimado que não preenchem um período de 60 Hz.

6.4.2.17 PPP

```
#define PPP (uint32_t) (F_SAMP_DIZ / 60)
```

Pontos por período.

6.4.2.18 RMS_LOWERBOUND

```
#define RMS_LOWERBOUND (float32_t) (100-RMS_TOLERANCIA)/100
```

Limite inferior da tolerância do evento de corrente.

6.4.2.19 RMS_TOLERANCIA

```
#define RMS_TOLERANCIA (float32_t) 7
```

Tolerância do evento de corrente, em %.

6.4.2.20 RMS_UPPERBOUND

```
#define RMS_UPPERBOUND (float32_t) (100+RMS_TOLERANCIA)/100
```

Limite superior da tolerância do evento de corrente.

6.4.2.21 TENSAO_A

```
#define TENSAO_A (float32_t) -0.0992
```

Fator de conversão A da calibração de tensão.

6.4.2.22 TENSAO_B

```
#define TENSAO_B (float32_t) 200.8922
```

Fator de conversão B da calibração de tensão.

6.5 Inc/dizimacao.h File Reference

Código para dizimação: Filtro FIR e downsampling usando biblioteca CMSIS.

```
#include "defines.h"
#include "arm_math.h"
```

Functions

void initializeFIR (arm_fir_decimate_instance_f32 *S)
 Inicializa estrutura da biblioteca CMSIS usada para dizimação.

Variables

- static float pCoeffs [FILTER_TAP_NUM]
 - Coeficientes do filtro FIR.
- float32_t pState [FILTER_TAP_NUM+BUFFER_SIZE-1]

Buffer auxiliar para estrutura da biblioteca CMSIS.

• arm_fir_decimate_instance_f32 S = {DIZIMACAO, FILTER_TAP_NUM, pCoeffs, pState} Estrutura da biblioteca CMSIS usada para dizimação.

6.5.1 Detailed Description

Código para dizimação: Filtro FIR e downsampling usando biblioteca CMSIS.

Author

Bruno e Gustavo

6.5.2 Function Documentation

6.5.2.1 initializeFIR()

Inicializa estrutura da biblioteca CMSIS usada para dizimação.

Parameters

S estrutura da biblioteca CMSIS usada para dizimação.

Return values

```
None
```

6.5.3 Variable Documentation

6.5.3.1 pCoeffs

```
float pCoeffs[FILTER_TAP_NUM] [static]
```

Coeficientes do filtro FIR.

6.5.3.2 pState

```
float32_t pState[FILTER_TAP_NUM+BUFFER_SIZE-1]
```

Buffer auxiliar para estrutura da biblioteca CMSIS.

6.5.3.3 S

```
arm_fir_decimate_instance_f32 S = {DIZIMACAO, FILTER_TAP_NUM, pCoeffs, pState}
```

Estrutura da biblioteca CMSIS usada para dizimação.

6.6 Inc/dma.h File Reference

Header das funções de configuração das DMAs.

```
#include "stm32f4xx_hal.h"
#include "main.h"
```

Functions

• void Error_Handler (void)

This function is executed in case of error occurrence.

void MX_DMA_Init (void)

Inicialização dos canais do DMA 2.

Variables

DMA_HandleTypeDef hdma_memtomem_dma2_stream1

Handler para estrutura do stream 1 do DMA 2 para transferência MemToMem.

• DMA_HandleTypeDef hdma_memtomem_dma2_stream3

Handler para estrutura do stream 3 do DMA 2 para transferência MemToMem.

6.6.1 Detailed Description

Header das funções de configuração das DMAs.

Author

ST

6.6.2 Function Documentation

6.6.2.1 Error_Handler()

This function is executed in case of error occurrence.

Parameters

None

Return values

None

6.6.2.2 MX_DMA_Init()

```
void MX_DMA_Init (
     void )
```

Inicialização dos canais do DMA 2.

Return values

None Inicialização dos canais do DMA 2.

Enable DMA controller clock Configure DMA for memory to memory transfers hdma_memtomem_dma2_stream1 hdma_memtomem_dma2_stream3

Return values

None

6.6.3 Variable Documentation

6.6.3.1 hdma_memtomem_dma2_stream1

```
DMA_HandleTypeDef hdma_memtomem_dma2_stream1
```

Handler para estrutura do stream 1 do DMA 2 para transferência MemToMem.

6.6.3.2 hdma_memtomem_dma2_stream3

```
{\tt DMA\_HandleTypeDef\ hdma\_memtomem\_dma2\_stream3}
```

Handler para estrutura do stream 3 do DMA 2 para transferência MemToMem.

6.7 Inc/equipamentos.h File Reference

Header com as estruturas do projeto e funções que manipulam essas estruturas.

```
#include "arm_math.h"
#include "defines.h"
#include "calculos_eletricos.h"
#include <math.h>
```

Data Structures

struct Parametros

Estrutura com parametros elétricos.

• struct Medicao

Estrutura armazenada na memória com histórico de medições e equipamentos.

struct Equipamento

Estrutura da base de dados de equipamentos.

Typedefs

typedef struct Parametros Parametros

Estrutura com parametros elétricos.

• typedef struct Medicao Medicao

Estrutura armazenada na memória com histórico de medições e equipamentos.

Functions

void CadastroDeEquipamento (Equipamento *, uint16_t, char nome[40], float32_t, float32_t, float32_t, float32_t *)

Cria estrutura com informações de um novo equipamento.

void DeltaParam (Parametros *, Parametros *, Parametros *, char *)

Calcula delta entre duas estruturas Parametros .

• float ComparacaoDeEquipamentos (Equipamento *, Parametros *)

DEPRECATED Calcula delta entre duas estruturas Parametros .

void InitMedicao (Medicao *)

Inicializa uma estrutura Medicao .

void InitBaseDeDados (Equipamento *)

Inicializa uma vetor (base de dados) de estruturas Equipamento .

int IdentificarEquipamento (Equipamento *, Parametros *)

Função com implementação básica de um algoritmo de identificação de equipamento na rede.

6.7.1 Detailed Description

Header com as estruturas do projeto e funções que manipulam essas estruturas.

Author

Bruno e Gustavo

6.7.2 Typedef Documentation

6.7.2.1 Medicao

```
typedef struct Medicao Medicao
```

Estrutura armazenada na memória com histórico de medições e equipamentos.

Essa estrutura usa uma entrada da estrutura Parametros para armazenar os dados elétricos lidos em associação a um timestamp e um vetor de equipamentos elétricos ligados na rede.

6.7.2.2 Parametros

```
typedef struct Parametros Parametros
```

Estrutura com parametros elétricos.

Esta estrutura é usada para armazenar os parâmetros elétricos de interesse no projeto. Uma entrada desse tipo é usada nas outras estruturas.

6.7.3 Function Documentation

6.7.3.1 CadastroDeEquipamento()

Cria estrutura com informações de um novo equipamento.

Parameters

equip	ponteiro para estrutura Equipamento .
nome	char* com nome do equipamento.
pot_at	potencia ativa.
pot_re	potencia reativa.
thd	taxa de distorção harmonica.
pf	fator de potencia.
harmonicos	vetor de harmonicas.

Return values

None

6.7.3.2 ComparacaoDeEquipamentos()

DEPRECATED Calcula delta entre duas estruturas Parametros .

Return values

None

6.7.3.3 DeltaParam()

Calcula delta entre duas estruturas Parametros .

Parameters

medida_nova	ponteiro para uma estrutura Parametros que contém os parâmetros da medição mais recente.
medida_velha	ponteiro para uma estrutura Parametros que contém os parâmetros da medição anterior.
delta	ponteiro para uma estrutura Parametros que armazana o delta entre as duas entradas.
new	ponteiro para um char que indicará se um equipamento foi adicionado ou retirado da rede.

Return values

None

6.7.3.4 IdentificarEquipamento()

Função com implementação básica de um algoritmo de identificação de equipamento na rede.

Parameters

BaseDados	ponteiro para um vetor de Equipamento sobre o qual é feita a busca da Medicao.
Medicao	ponteiro para Parametros que contém a medição do delta na rede. Representa um equipamento
	acrescido ou retirado da rede.

Return values

min Índice da base de dados que contém o equipamento identificado.

6.7.3.5 InitBaseDeDados()

Inicializa uma vetor (base de dados) de estruturas Equipamento .

Parameters

BaseDados ponteiro para um vetor de Equipamento que será inicializada com zeros.

Return values

None

6.7.3.6 InitMedicao()

Inicializa uma estrutura Medicao .

Parameters

medicao

ponteiro para uma estrutura Medicao que será inicializada com zeros.

Return values

None

6.8 Inc/gpio.h File Reference

Header das funções de configuração do GPIO.

```
#include "stm32f4xx_hal.h"
#include "main.h"
```

Functions

```
    void MX_GPIO_Init (void)
    Inicialização do GPIO.
```

6.8.1 Detailed Description

Header das funções de configuração do GPIO.

Author

ST

6.8.2 Function Documentation

6.8.2.1 MX_GPIO_Init()

```
void MX_GPIO_Init (
     void )
```

Inicialização do GPIO.

Return values

None

6.9 Inc/main.h File Reference

Header do main. Não utilizado.

6.9.1 Detailed Description

Header do main. Não utilizado.

Author

ST

6.10 Inc/stm32f4xx hal conf.h File Reference

HAL configuration file.

```
#include "main.h"
#include "stm32f4xx_hal_rcc.h"
#include "stm32f4xx_hal_gpio.h"
#include "stm32f4xx_hal_dma.h"
#include "stm32f4xx_hal_cortex.h"
#include "stm32f4xx_hal_adc.h"
#include "stm32f4xx_hal_flash.h"
#include "stm32f4xx_hal_pwr.h"
#include "stm32f4xx_hal_tim.h"
#include "stm32f4xx_hal_tim.h"
```

Macros

• #define HAL MODULE ENABLED

This is the list of modules to be used in the HAL driver.

- #define HAL_ADC_MODULE_ENABLED
- #define HAL_TIM_MODULE_ENABLED
- #define HAL_UART_MODULE_ENABLED
- #define HAL_GPIO_MODULE_ENABLED
- #define HAL DMA MODULE ENABLED
- #define HAL_RCC_MODULE_ENABLED
- #define HAL_FLASH_MODULE_ENABLED
- #define HAL_PWR_MODULE_ENABLED
- #define HAL_CORTEX_MODULE_ENABLED
- #define HSE_VALUE ((uint32_t)8000000U)

Adjust the value of External High Speed oscillator (HSE) used in your application. This value is used by the RCC HAL module to compute the system frequency (when HSE is used as system clock source, directly or through the PLL).

#define HSE_STARTUP_TIMEOUT ((uint32_t)100U)

#define HSI_VALUE ((uint32_t)16000000U)

Internal High Speed oscillator (HSI) value. This value is used by the RCC HAL module to compute the system frequency (when HSI is used as system clock source, directly or through the PLL).

#define LSI_VALUE ((uint32_t)32000U)

Internal Low Speed oscillator (LSI) value.

#define LSE VALUE ((uint32 t)32768U)

External Low Speed oscillator (LSE) value.

- #define LSE_STARTUP_TIMEOUT ((uint32_t)5000U)
- #define EXTERNAL_CLOCK_VALUE ((uint32_t)12288000U)

External clock source for I2S peripheral This value is used by the I2S HAL module to compute the I2S clock source frequency, this source is inserted directly through I2S_CKIN pad.

#define VDD VALUE ((uint32 t)3300U)

This is the HAL system configuration section.

- #define TICK INT PRIORITY ((uint32 t)0U)
- #define USE RTOS 0U
- #define PREFETCH ENABLE 1U
- #define INSTRUCTION CACHE ENABLE 1U
- #define DATA_CACHE_ENABLE 1U
- #define MAC ADDR0 2U

Uncomment the line below to expanse the "assert param" macro in the HAL drivers code.

- #define MAC_ADDR1 0U
- #define MAC ADDR2 0U
- #define MAC ADDR3 0U
- #define MAC ADDR4 0U
- #define MAC_ADDR5 0U
- #define ETH RX BUF SIZE ETH MAX PACKET SIZE /* buffer size for receive */
- #define ETH_TX_BUF_SIZE ETH_MAX_PACKET_SIZE /* buffer size for transmit */
- #define ETH RXBUFNB ((uint32 t)4U) /* 4 Rx buffers of size ETH RX BUF SIZE */
- #define ETH TXBUFNB ((uint32 t)4U) /* 4 Tx buffers of size ETH TX BUF SIZE */
- #define DP83848_PHY_ADDRESS 0x01U
- #define PHY_RESET_DELAY ((uint32_t)0x000000FFU)
- #define PHY_CONFIG_DELAY ((uint32_t)0x00000FFFU)
- #define PHY READ TO ((uint32 t)0x0000FFFFU)
- #define PHY WRITE TO ((uint32 t)0x0000FFFFU)
- #define PHY_BCR ((uint16_t)0x0000U)
- #define PHY_BSR ((uint16_t)0x0001U)
- #define PHY RESET ((uint16 t)0x8000U)
- #define PHY_LOOPBACK ((uint16_t)0x4000U)
- #define PHY FULLDUPLEX 100M ((uint16 t)0x2100U)
- #define PHY HALFDUPLEX 100M ((uint16 t)0x2000U)
- #define PHY FULLDUPLEX 10M ((uint16 t)0x0100U)
- #define PHY HALFDUPLEX 10M ((uint16 t)0x0000U)
- #define PHY AUTONEGOTIATION ((uint16 t)0x1000U)
- #define PHY_RESTART_AUTONEGOTIATION ((uint16_t)0x0200U)
- #define PHY POWERDOWN ((uint16 t)0x0800U)
- #define PHY ISOLATE ((uint16 t)0x0400U)
- #define PHY AUTONEGO COMPLETE ((uint16 t)0x0020U)
- #define PHY LINKED STATUS ((uint16 t)0x0004U)
- #define PHY_JABBER_DETECTION ((uint16_t)0x0002U)
- #define PHY_SR ((uint16_t)0x10U)
- #define PHY_SPEED_STATUS ((uint16_t)0x0002U)
- #define PHY DUPLEX STATUS ((uint16 t)0x0004U)
- #define USE SPI CRC 0U
- #define assert_param(expr) ((void)0U)

Include module's header file.

6.10.1 Detailed Description

HAL configuration file.

Attention

© COPYRIGHT(c) 2017 STMicroelectronics

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. Neither the name of STMicroelectronics nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

6.10.2 Macro Definition Documentation

6.10.2.1 assert_param

Include module's header file.

6.10.2.2 DATA_CACHE_ENABLE

#define DATA_CACHE_ENABLE 1U

6.10.2.3 DP83848_PHY_ADDRESS

#define DP83848_PHY_ADDRESS 0x01U

6.10.2.4 ETH_RX_BUF_SIZE

#define ETH_RX_BUF_SIZE ETH_MAX_PACKET_SIZE /* buffer size for receive */

6.10.2.5 ETH_RXBUFNB

#define ETH_RXBUFNB ((uint32_t)4U) /* 4 Rx buffers of size ETH_RX_BUF_SIZE */

6.10.2.6 ETH_TX_BUF_SIZE

#define ETH_TX_BUF_SIZE ETH_MAX_PACKET_SIZE /* buffer size for transmit */

6.10.2.7 ETH_TXBUFNB

6.10.2.8 EXTERNAL_CLOCK_VALUE

#define EXTERNAL_CLOCK_VALUE ((uint32_t)12288000U)

External clock source for I2S peripheral This value is used by the I2S HAL module to compute the I2S clock source frequency, this source is inserted directly through I2S_CKIN pad.

Value of the External audio frequency in Hz

6.10.2.9 HAL_ADC_MODULE_ENABLED

#define HAL_ADC_MODULE_ENABLED

6.10.2.10 HAL_CORTEX_MODULE_ENABLED

#define HAL_CORTEX_MODULE_ENABLED

6.10.2.11 HAL_DMA_MODULE_ENABLED

#define HAL_DMA_MODULE_ENABLED

6.10.2.12 HAL_FLASH_MODULE_ENABLED

#define HAL_FLASH_MODULE_ENABLED

6.10.2.13 HAL_GPIO_MODULE_ENABLED

#define HAL_GPIO_MODULE_ENABLED

6.10.2.14 HAL_MODULE_ENABLED

#define HAL_MODULE_ENABLED

This is the list of modules to be used in the HAL driver.

6.10.2.15 HAL_PWR_MODULE_ENABLED

#define HAL_PWR_MODULE_ENABLED

6.10.2.16 HAL_RCC_MODULE_ENABLED

#define HAL_RCC_MODULE_ENABLED

6.10.2.17 HAL_TIM_MODULE_ENABLED

#define HAL_TIM_MODULE_ENABLED

6.10.2.18 HAL_UART_MODULE_ENABLED

#define HAL_UART_MODULE_ENABLED

6.10.2.19 HSE_STARTUP_TIMEOUT

```
#define HSE_STARTUP_TIMEOUT ((uint32_t)100U)
```

Time out for HSE start up, in ms

6.10.2.20 HSE VALUE

```
#define HSE_VALUE ((uint32_t)8000000U)
```

Adjust the value of External High Speed oscillator (HSE) used in your application. This value is used by the RCC HAL module to compute the system frequency (when HSE is used as system clock source, directly or through the PLL).

Value of the External oscillator in Hz

6.10.2.21 HSI_VALUE

```
#define HSI_VALUE ((uint32_t)16000000U)
```

Internal High Speed oscillator (HSI) value. This value is used by the RCC HAL module to compute the system frequency (when HSI is used as system clock source, directly or through the PLL).

Value of the Internal oscillator in Hz

6.10.2.22 INSTRUCTION_CACHE_ENABLE

```
#define INSTRUCTION_CACHE_ENABLE 1U
```

6.10.2.23 LSE_STARTUP_TIMEOUT

```
#define LSE_STARTUP_TIMEOUT ((uint32_t)5000U)
```

Time out for LSE start up, in ms

6.10.2.24 LSE_VALUE

```
#define LSE_VALUE ((uint32_t)32768U)
```

External Low Speed oscillator (LSE) value.

< Value of the Internal Low Speed oscillator in Hz The real value may vary depending on the variations in voltage and temperature. Value of the External Low Speed oscillator in Hz

6.10.2.25 LSI_VALUE

```
#define LSI_VALUE ((uint32_t)32000U)
```

Internal Low Speed oscillator (LSI) value.

LSI Typical Value in Hz

6.10.2.26 MAC_ADDR0

#define MAC_ADDR0 2U

Uncomment the line below to expanse the "assert_param" macro in the HAL drivers code.

6.10.2.27 MAC_ADDR1

#define MAC_ADDR1 0U

6.10.2.28 MAC_ADDR2

#define MAC_ADDR2 OU

6.10.2.29 MAC_ADDR3

#define MAC_ADDR3 OU

6.10.2.30 MAC_ADDR4

#define MAC_ADDR4 OU

6.10.2.31 MAC_ADDR5

#define MAC_ADDR5 OU

6.10.2.32 PHY_AUTONEGO_COMPLETE

#define PHY_AUTONEGO_COMPLETE ((uint16_t)0x0020U)

Auto-Negotiation process completed

6.10.2.33 PHY_AUTONEGOTIATION

#define PHY_AUTONEGOTIATION ((uint16_t)0x1000U)

Enable auto-negotiation function

```
6.10.2.34 PHY_BCR
#define PHY_BCR ((uint16_t)0x0000U)
Transceiver Basic Control Register
6.10.2.35 PHY_BSR
#define PHY_BSR ((uint16_t)0x0001U)
Transceiver Basic Status Register
6.10.2.36 PHY_CONFIG_DELAY
#define PHY_CONFIG_DELAY ((uint32_t)0x00000FFFU)
6.10.2.37 PHY_DUPLEX_STATUS
#define PHY_DUPLEX_STATUS ((uint16_t)0x0004U)
PHY Duplex mask
6.10.2.38 PHY_FULLDUPLEX_100M
#define PHY_FULLDUPLEX_100M ((uint16_t)0x2100U)
Set the full-duplex mode at 100 Mb/s
6.10.2.39 PHY_FULLDUPLEX_10M
#define PHY_FULLDUPLEX_10M ((uint16_t)0x0100U)
Set the full-duplex mode at 10 Mb/s
6.10.2.40 PHY_HALFDUPLEX_100M
#define PHY_HALFDUPLEX_100M ((uint16_t)0x2000U)
Set the half-duplex mode at 100 Mb/s
6.10.2.41 PHY_HALFDUPLEX_10M
#define PHY_HALFDUPLEX_10M ((uint16_t)0x0000U)
Set the half-duplex mode at 10 Mb/s
6.10.2.42 PHY_ISOLATE
#define PHY_ISOLATE ((uint16_t)0x0400U)
Isolate PHY from MII
```

```
6.10.2.43 PHY_JABBER_DETECTION
#define PHY_JABBER_DETECTION ((uint16_t)0x0002U)
Jabber condition detected
6.10.2.44 PHY_LINKED_STATUS
#define PHY_LINKED_STATUS ((uint16_t)0x0004U)
Valid link established
6.10.2.45 PHY_LOOPBACK
#define PHY_LOOPBACK ((uint16_t)0x4000U)
Select loop-back mode
6.10.2.46 PHY_POWERDOWN
#define PHY_POWERDOWN ((uint16_t)0x0800U)
Select the power down mode
6.10.2.47 PHY_READ_TO
#define PHY_READ_TO ((uint32_t)0x0000FFFFU)
6.10.2.48 PHY_RESET
#define PHY_RESET ((uint16_t)0x8000U)
PHY Reset
6.10.2.49 PHY_RESET_DELAY
#define PHY_RESET_DELAY ((uint32_t)0x000000FFU)
6.10.2.50 PHY_RESTART_AUTONEGOTIATION
#define PHY_RESTART_AUTONEGOTIATION ((uint16_t)0x0200U)
Restart auto-negotiation function
```

Generated by Doxygen

PHY Speed mask

6.10.2.51 PHY_SPEED_STATUS

#define PHY_SPEED_STATUS ((uint16_t)0x0002U)

6.10.2.52 PHY_SR #define PHY_SR ((uint16_t)0x10U) PHY status register Offset 6.10.2.53 PHY_WRITE_TO #define PHY_WRITE_TO ((uint32_t)0x0000FFFFU) 6.10.2.54 PREFETCH_ENABLE #define PREFETCH_ENABLE 1U 6.10.2.55 TICK_INT_PRIORITY #define TICK_INT_PRIORITY ((uint32_t)0U) tick interrupt priority 6.10.2.56 USE_RTOS #define USE_RTOS OU 6.10.2.57 USE_SPI_CRC #define USE_SPI_CRC 0U 6.10.2.58 VDD_VALUE #define VDD_VALUE ((uint32_t)3300U) This is the HAL system configuration section. Value of VDD in mv

6.11 Inc/stm32f4xx_it.h File Reference

This file contains the headers of the interrupt handlers.

Functions

• void SVC Handler (void)

This function handles System service call via SWI instruction.

· void PendSV Handler (void)

This function handles Pendable request for system service.

void SysTick_Handler (void)

This function handles System tick timer.

void ADC IRQHandler (void)

This function handles ADC1, ADC2 and ADC3 interrupts.

void USART2_IRQHandler (void)

This function handles USART2 global interrupt.

void DMA2_Stream0_IRQHandler (void)

This function handles DMA2 stream0 global interrupt.

void DMA2_Stream1_IRQHandler (void)

This function handles DMA2 stream1 global interrupt.

void DMA2 Stream2 IRQHandler (void)

This function handles DMA2 stream2 global interrupt.

void DMA2_Stream3_IRQHandler (void)

This function handles DMA2 stream3 global interrupt.

6.11.1 Detailed Description

This file contains the headers of the interrupt handlers.

COPYRIGHT(c) 2017 STMicroelectronics

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. Neither the name of STMicroelectronics nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

6.11.2 Function Documentation

6.11.2.1 ADC_IRQHandler()

```
void ADC_IRQHandler (
     void )
```

This function handles ADC1, ADC2 and ADC3 interrupts.

6.11.2.2 DMA2_Stream0_IRQHandler()

This function handles DMA2 stream0 global interrupt.

6.11.2.3 DMA2_Stream1_IRQHandler()

This function handles DMA2 stream1 global interrupt.

6.11.2.4 DMA2_Stream2_IRQHandler()

This function handles DMA2 stream2 global interrupt.

6.11.2.5 DMA2_Stream3_IRQHandler()

This function handles DMA2 stream3 global interrupt.

6.11.2.6 PendSV_Handler()

```
void PendSV_Handler ( void \ \ )
```

This function handles Pendable request for system service.

6.11.2.7 SVC_Handler()

```
void SVC_Handler (
     void )
```

This function handles System service call via SWI instruction.

6.11.2.8 SysTick_Handler()

```
void SysTick_Handler (
     void )
```

This function handles System tick timer.

6.11.2.9 USART2_IRQHandler()

This function handles USART2 global interrupt.

6.12 Inc/tim.h File Reference

Header das funções de configuração do temporizador.

```
#include "stm32f4xx_hal.h"
#include "main.h"
```

Functions

• void Error_Handler (void)

This function is executed in case of error occurrence.

void MX_TIM8_Init (void)

Inicialização dos canais do Timer 8.

Variables

• TIM_HandleTypeDef htim8

Handler para estrutura do Timer 8.

6.12.1 Detailed Description

Header das funções de configuração do temporizador.

Author

ST

6.12.2 Function Documentation

6.12.2.1 Error_Handler()

This function is executed in case of error occurrence.

Pa	ra	m	ρi	þ	re

None

Return values

None

6.12.2.2 MX_TIM8_Init()

```
void MX_TIM8_Init (
     void )
```

Inicialização dos canais do Timer 8.

Return values

None

6.12.3 Variable Documentation

6.12.3.1 htim8

TIM_HandleTypeDef htim8

Handler para estrutura do Timer 8.

6.13 Inc/usart.h File Reference

Header das funções de configuração da uart.

```
#include "stm32f4xx_hal.h"
#include "main.h"
```

Functions

void Error_Handler (void)

This function is executed in case of error occurrence.

void MX_USART2_UART_Init (void)

Inicialização dos canais da UART 2.

Variables

UART_HandleTypeDef huart2
 Handler para estrutura do UART 2.

6.13.1 Detailed Description

Header das funções de configuração da uart.

Author

ST

6.13.2 Function Documentation

6.13.2.1 Error_Handler()

```
void Error_Handler (
     void )
```

This function is executed in case of error occurrence.

Parameters

None

Return values

None

6.13.2.2 MX_USART2_UART_Init()

Inicialização dos canais da UART 2.

Return values

None

6.13.3 Variable Documentation

6.13.3.1 huart2

```
UART_HandleTypeDef huart2
```

Handler para estrutura do UART 2.

6.14 Inc/usart_util.h File Reference

Biblioteca com funções úteis para utilizar com a USART2.

Functions

```
    void USART2_Transmit_Char (char)
```

Transmite caractere ASCII pela USART 2.

void USART2_Transmit_String (char *)

Transmite string pela USART 2.

void USART2_Transmit_UInt (uint32_t)

Transmite inteiro unsigned pela USART 2.

void USART2_Transmit_Int (int)

Transmite inteiro signed pela USART 2.

char USART2_Receive_Command (int)

Recebe caracter de comando pela USART2.

• void USAR2_Receive_Interrupt_Enable (void)

Habilita interrupção.

void print (const char *,...)

Função semelhante à printf usando USART 2. Funciona apenas para d e c.

6.14.1 Detailed Description

Biblioteca com funções úteis para utilizar com a USART2.

Author

Gustavo

6.14.2 Function Documentation

6.14.2.1 print()

Função semelhante à printf usando USART 2. Funciona apenas para d e c.

Da			_ 1		
Pа	ra	m	eı	re	rs

send string formatada a ser transferida pela USART 2

Return values

None

6.14.2.2 USAR2_Receive_Interrupt_Enable()

Habilita interrupção.

Return values

None

6.14.2.3 USART2_Receive_Command()

Recebe caracter de comando pela USART2.

Parameters

timeout Timeout em ms.

Return values

None

6.14.2.4 USART2_Transmit_Char()

Transmite caractere ASCII pela USART 2.

Parameters

send caracter a ser transferido pela USART 2

Reti	ırn	va	LIES

None

6.14.2.5 USART2_Transmit_Int()

Transmite inteiro signed pela USART 2.

Parameters

send inteiro a ser transferido pela USART 2

Return values

None

6.14.2.6 USART2_Transmit_String()

Transmite string pela USART 2.

Parameters

send string a ser transferida pela USART 2

Return values

None

6.14.2.7 USART2_Transmit_UInt()

Transmite inteiro unsigned pela USART 2.

Parameters

send inteiro a ser transferido pela USART 2

Return values

None

6.15 Src/adc.c File Reference

Implementação das funções de configuração dos ADCs.

```
#include "adc.h"
#include "gpio.h"
#include "dma.h"
```

Functions

• void MX_ADC1_Init (void)

Inicialização do ADC 1.

• void MX_ADC2_Init (void)

Inicialização do ADC 2.

• void HAL_ADC_MspInit (ADC_HandleTypeDef *adcHandle)

Inicialização da DMA de um ADC.

void HAL_ADC_MspDeInit (ADC_HandleTypeDef *adcHandle)

Desativaçãos da DMA de um ADC.

Variables

ADC_HandleTypeDef hadc1

Handler para estrutura do ADC 1.

ADC_HandleTypeDef hadc2

Handler para estrutura do ADC 2.

• DMA_HandleTypeDef hdma_adc1

Handler para estrutura do DMA do ADC 1.

DMA_HandleTypeDef hdma_adc2

Handler para estrutura do DMA do ADC 2.

6.15.1 Detailed Description

Implementação das funções de configuração dos ADCs.

Author

ST

6.15.2 Function Documentation

6.15.2.1 HAL_ADC_MspDeInit()

Desativaçãos da DMA de um ADC.

Parameters

adcHandle I	Handle do ADC a ter sua DMA desativada.
-------------	---

Return values

None

ADC1 GPIO Configuration PA6 ----> ADC1_IN6

Uncomment the line below to disable the "ADC_IRQn" interrupt Be aware, disabling shared interrupt may affect other IPs

ADC2 GPIO Configuration PA7 ——> ADC2_IN7

Uncomment the line below to disable the "ADC_IRQn" interrupt Be aware, disabling shared interrupt may affect other IPs

6.15.2.2 HAL_ADC_MspInit()

Inicialização da DMA de um ADC.

Parameters

adcHandle	Handle do ADC a ter sua DMA configurada.
-----------	--

Return values

None

ADC1 GPIO Configuration PA6 ——> ADC1_IN6

ADC2 GPIO Configuration PA7 ----> ADC2_IN7

6.15.2.3 MX_ADC1_Init()

```
void MX_ADC1_Init (
     void )
```

Inicialização do ADC 1.

Return values

None

Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)

Configure the ADC multi-mode

Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.

```
6.15.2.4 MX_ADC2_Init()
```

Inicialização do ADC 2.

Return values

None

Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)

Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.

6.15.3 Variable Documentation

6.15.3.1 hadc1

ADC_HandleTypeDef hadc1

Handler para estrutura do ADC 1.

6.15.3.2 hadc2

ADC_HandleTypeDef hadc2

Handler para estrutura do ADC 2.

6.15.3.3 hdma_adc1

DMA_HandleTypeDef hdma_adc1

Handler para estrutura do DMA do ADC 1.

6.15.3.4 hdma_adc2

DMA_HandleTypeDef hdma_adc2

Handler para estrutura do DMA do ADC 2.

6.16 Src/adc_util.c File Reference

Implementação das funções de auxílio no uso dos ADCs.

```
#include "adc_util.h"
```

Functions

```
• void ADCConvertBuffer (uint32_t *entrada, float32_t *saida, uint32_t n, float32_t a, float32_t b)

Converte um buffer de entrada uint32_t em float32_t usando a transformação linear y = a*x + b.
```

6.16.1 Detailed Description

Implementação das funções de auxílio no uso dos ADCs.

Author

Gustavo

6.16.2 Function Documentation

6.16.2.1 ADCConvertBuffer()

Converte um buffer de entrada uint 32_t em float 32_t usando a transformação linear y = a*x + b.

Parameters

entrada	buffer de inteiros com valores entre 0 e 4095 (leitura do ADC)
saida	buffer de saída float
а	termo linear da equação y = ax + b
b	termo constante da equação y = ax + b

Return values

None	
------	--

6.17 Src/calculos_eletricos.c File Reference

Implementação das funções que realizam os cálculos dos parâmetros elétricos.

```
#include "stdio.h"
#include "stdlib.h"
#include "math.h"
#include "arm_math.h"
#include "defines.h"
```

Macros

- #define PI_VALUE (float32_t) 3.14159265358
- #define SQRT2 (float32_t) 1.414213562373095

Functions

• void * retornaSIN (float32_t *array, uint32_t f, float32_t fs, uint32_t n, float32_t phase)

**DEPRECATED Cria um vetor com sinal senoidal para testes.

• float32_t retornaRMS (float32_t g, float32_t *array, uint32_t size, uint32_t start)

Retorna o valor RMS de um vetor.

 float32_t retornaPOTATIVA (float32_t gv, float32_t gi, float32_t *array_tensao, float32_t *array_corrente, uint32_t size, uint32_t start)

Retorna a potência ativa resultante entre um vetor de tensão e um vetor de corrente.

• float32_t retornaPOTAPARENTE (float32_t gv, float32_t gi, float32_t vrms, float32_t irms)

Retorna a potência aparente resultante a partir dos valores RMS de tensão e corrente já calculados.

float32_t retornaPOTREATIVA (float32_t potaparente, float32_t potativa)

Retorna a potência reativa resultante a partir dos valores de potência ativa e aparente já calculados.

• float32_t retornaFP (float32_t potaparente, float32_t potativa)

Retorna o fator de potência a partir dos valores de potência ativa e aparente já calculados.

- void retornaMEDIACICLOS (float32_t *array_in, float32_t *array_out, uint32_t size, uint32_t n, uint32_t start)

 Tira a média de n ciclos para cálculo de harmônicas.
- void retornaRMSHARMONICOS (float32_t *i_rms_harmonicos, float32_t *array_corrente, uint32_t size, uint32_t h, float32_t g, uint32_t n, uint32_t start)

Retorna a potência das harmônicas de um vetor com dados de corrente.

float32 t retornaTHD (float32 t *array in)

Retorna o THD a partir de um vetor de harmônicas.

6.17.1 Detailed Description

Implementação das funções que realizam os cálculos dos parâmetros elétricos.

Author

André e Gustavo

6.17.2 Macro Definition Documentation

6.17.2.1 PI_VALUE

```
#define PI_VALUE (float32_t) 3.14159265358
```

6.17.2.2 SQRT2

```
#define SQRT2 (float32_t) 1.414213562373095
```

6.17.3 Function Documentation

6.17.3.1 retornaFP()

Retorna o fator de potência a partir dos valores de potência ativa e aparente já calculados.

Parameters

potaparente	potência aparente.
potativa	potência ativa.

Return values

```
fp fator de reativa calculada.
```

6.17.3.2 retornaMEDIACICLOS()

Tira a média de n ciclos para cálculo de harmônicas.

Parameters

array_in	ponteiro com dados de entrada. Tamanho size.
array_out	ponteiro com dados de saída. Tamanho (size-start)/n.
size	número de elementos no vetor de dados.
n	número de ciclos de 60 Hz no vetor de entrada.
start	posição inicial do vetor de dados. Usado para que cálculo ocorra sobre um número inteiro de períodos de 60 Hz.

Generated by Doxygen

Return values

None

6.17.3.3 retornaPOTAPARENTE()

Retorna a potência aparente resultante a partir dos valores RMS de tensão e corrente já calculados.

Parameters

gi	ganho para ajuste do valor de corrente (não utilizado).	
gv	ganho para ajuste do valor de tensão (não utilizado).	
vrms	tensão RMS.	
irms	corrente RMS.	

Return values

potaparente	potência aparente calculada.
-------------	------------------------------

6.17.3.4 retornaPOTATIVA()

Retorna a potência ativa resultante entre um vetor de tensão e um vetor de corrente.

Parameters

gi	ganho para ajuste do valor de corrente (não utilizado).
gv	ganho para ajuste do valor de tensão (não utilizado).
array_tensao	ponteiro para o vetor de dados de tensão.
array_corrente	ponteiro para o vetor de dados de corrente.
size	número de elementos no vetor de dados.
start	posição inicial do vetor de dados. Usado para que cálculo ocorra sobre um número inteiro de períodos de 60 Hz.

Return values

potativa	potência ativa calculada.

6.17.3.5 retornaPOTREATIVA()

Retorna a potência reativa resultante a partir dos valores de potência ativa e aparente já calculados.

Parameters

potaparente	potência aparente.
potativa	potência ativa.

Return values

potreativa	potência reativa calculada.
------------	-----------------------------

6.17.3.6 retornaRMS()

Retorna o valor RMS de um vetor.

Parameters

g	ganho para ajuste do valor (não utilizado).
array	ponteiro para o vetor de dados.
size	número de elementos no vetor de dados.
start	posição inicial do vetor de dados. Usado para que cálculo ocorra sobre um número inteiro de períodos de 60 Hz.

Return values

arrayrms	valor RMS do vetor.
----------	---------------------

6.17.3.7 retornaRMSHARMONICOS()

Retorna a potência das harmônicas de um vetor com dados de corrente.

Parameters

i_rms_harmonicos	ponteiro para vetor de saída com potência das harmônicas.
array_corrente	ponteiro de entrada com valores dos dados de corrente.
g	ganho para ajuste do valor (não utilizado).
size	número de elementos no vetor de dados.
h	número de elementos no vetor de harmônicas.
n	número de ciclos de 60 Hz no vetor de entrada.
start	posição inicial do vetor de dados. Usado para que cálculo ocorra sobre um número inteiro de períodos de 60 Hz.

Return values

```
None
```

6.17.3.8 retornaSIN()

DEPRECATED Cria um vetor com sinal senoidal para testes.

Parameters

array	vetor seno
f	frequencia
fs	frequencia de amostragem
n	numero de pontos por periodo
phase	fase do seno

Return values

6.17.3.9 retornaTHD()

Retorna o THD a partir de um vetor de harmônicas.

Parameters 4 8 1

array←	ponteiro para vetor de harmônicas.
_in	

Return values

thd	Distorção Harmônica Total calculadas.
-----	---------------------------------------

6.18 Src/dma.c File Reference

Header das funções de configuração das DMAs.

```
#include "dma.h"
```

Functions

void MX_DMA_Init (void)
 Inicialização do canais do DMA 2.

Variables

- DMA_HandleTypeDef hdma_memtomem_dma2_stream1
 Handler para estrutura do stream 1 do DMA 2 para transferência MemToMem.
- DMA_HandleTypeDef hdma_memtomem_dma2_stream3

Handler para estrutura do stream 3 do DMA 2 para transferência MemToMem.

6.18.1 Detailed Description

Header das funções de configuração das DMAs.

Author

ST

6.18.2 Function Documentation

6.18.2.1 MX_DMA_Init()

```
void MX_DMA_Init (
     void )
```

Inicialização do canais do DMA 2.

Inicialização dos canais do DMA 2.

Enable DMA controller clock Configure DMA for memory to memory transfers hdma_memtomem_dma2_stream1 hdma_memtomem_dma2_stream3

Return values

None

6.18.3 Variable Documentation

6.18.3.1 hdma_memtomem_dma2_stream1

```
DMA_HandleTypeDef hdma_memtomem_dma2_stream1
```

Handler para estrutura do stream 1 do DMA 2 para transferência MemToMem.

6.18.3.2 hdma_memtomem_dma2_stream3

```
DMA_HandleTypeDef hdma_memtomem_dma2_stream3
```

Handler para estrutura do stream 3 do DMA 2 para transferência MemToMem.

6.19 Src/equipamentos.c File Reference

Implementação das funções que manipulam as estruturas do projeto.

```
#include "equipamentos.h"
#include "string.h"
```

Functions

• void CadastroDeEquipamento (Equipamento *equip, uint16_t ID, char nome[40], float32_t pot_at, float32_t pot_re, float32_t thd, float32_t pf, float32_t *harmonicos)

Cria estrutura com informações de um novo equipamento.

- void DeltaParam (Parametros *medida_nova, Parametros *medida_velha, Parametros *delta, char *new)

 **Calcula delta entre duas estruturas Parametros .
- float ComparacaoDeEquipamentos (Equipamento *equip1, Parametros *medida)

DEPRECATED Calcula delta entre duas estruturas Parametros .

• void InitMedicao (Medicao *medicao)

Inicializa uma estrutura Medicao .

void InitBaseDeDados (Equipamento *BaseDados)

Inicializa uma vetor (base de dados) de estruturas Equipamento .

int IdentificarEquipamento (Equipamento *BaseDados, Parametros *Medicao)

Função com implementação básica de um algoritmo de identificação de equipamento na rede.

6.19.1 Detailed Description

Implementação das funções que manipulam as estruturas do projeto.

Author

Bruno e Gustavo

6.19.2 Function Documentation

6.19.2.1 CadastroDeEquipamento()

Cria estrutura com informações de um novo equipamento.

Parameters

equip	ponteiro para estrutura Equipamento .
nome	char* com nome do equipamento.
pot_at	potencia ativa.
pot_re	potencia reativa.
thd	taxa de distorção harmonica.
pf	fator de potencia.
harmonicos	vetor de harmonicas.

Return values

```
None
```

6.19.2.2 ComparacaoDeEquipamentos()

DEPRECATED Calcula delta entre duas estruturas Parametros .

Return values

6.19.2.3 DeltaParam()

Calcula delta entre duas estruturas Parametros .

Parameters

medida_nova	ponteiro para uma estrutura Parametros que contém os parâmetros da medição mais recente.
medida_velha	ponteiro para uma estrutura Parametros que contém os parâmetros da medição anterior.
delta	ponteiro para uma estrutura Parametros que armazana o delta entre as duas entradas.
new	ponteiro para um char que indicará se um equipamento foi adicionado ou retirado da rede.

Return values

None

6.19.2.4 IdentificarEquipamento()

Função com implementação básica de um algoritmo de identificação de equipamento na rede.

Parameters

BaseDados	ponteiro para um vetor de Equipamento sobre o qual é feita a busca da Medicao.
Medicao	ponteiro para Parametros que contém a medição do delta na rede. Representa um equipamento acrescido ou retirado da rede.
	acrescido da retirado da rede.

Return values

min Índice da base de dados que contém o equipamento identificado.

6.19.2.5 InitBaseDeDados()

Inicializa uma vetor (base de dados) de estruturas Equipamento .

Parameters

BaseDados ponteiro para um vetor de Equipamento que será inicializada com zeros.

Return values

None

6.19.2.6 InitMedicao()

Inicializa uma estrutura Medicao.

Parameters

medicao ponteiro para uma estrutura Medicao que será inicializada com zeros.

Return values

None

6.20 Src/gpio.c File Reference

Implementação das funções de configuração do GPIO.

```
#include "gpio.h"
```

Functions

```
    void MX_GPIO_Init (void)
    Inicialização do GPIO.
```

6.20.1 Detailed Description

Implementação das funções de configuração do GPIO.

Author

ST

6.20.2 Function Documentation

Inicialização do GPIO.

Return values

None

6.21 Src/main.c File Reference

Aplicação: Sistema de Monitoramento de Consumo de Energia.

```
#include "main.h"
#include "stm32f4xx_hal.h"
#include "adc.h"
#include "dma.h"
#include "tim.h"
#include "usart.h"
#include "gpio.h"
#include "defines.h"
#include "arm_math.h"
#include "adc_util.h"
#include "equipamentos.h"
#include "calculos_eletricos.h"
#include "usart_util.h"
```

Enumerations

enum FSM {
 START, AQUISICAO, PROCESSAMENTO, RMS_CORRENTE,
 CALCULOS, DELTA, ID, ENVIAR }

Estados da máquina de estados da aplicação.

Functions

void SystemClock_Config (void)

Configuração de clock.

• void Error_Handler (void)

This function is executed in case of error occurrence.

void HAL_ADC_ConvCpltCallback (ADC_HandleTypeDef *)

Callback da interrupção de transferência completa da DMA.

void HAL_ADC_ConvHalfCpltCallback (ADC_HandleTypeDef *)

Callback da interrupção de transferência na metade da DMA.

• int main (void)

Main da aplicação.

Variables

- enum FSM estado = START
- Medicao memoria [MEM SIZE]

Vetor de Medicao . Contém histórico de medições.

• uint32_t memoria_index = 0

Índice do histórico de medições.

Equipamento BaseDados [EQUIP_ARRAY_MAX]

Base de dados de Equipamento .

uint32 t buffer tensao DMA [2 *BUFFER SIZE]

Buffer circular de leitura de tensão. Interrupções ocorrem quando está na metade ou cheio.

uint32_t buffer_corrente_DMA [2 *BUFFER_SIZE]

Buffer circular de leitura de corrente. Interrupções ocorrem quando está na metade ou cheio.

uint32_t buffer_tensao_leitura [BUFFER_SIZE]

Buffer auxiliar de leitura de tensão.

uint32_t buffer_corrente_leitura [BUFFER_SIZE]

Buffer auxiliar de leitura de corrente.

• float32_t buffer_corrente_float [BUFFER_SIZE]

Buffer auxiliar de leitura de tensão em ponto flutuante.

float32_t buffer_tensao_float [BUFFER_SIZE]

Buffer auxiliar de leitura de corrente em ponto flutuante.

float32_t buffer_tensao_diz [BUFFER_DIZ]

Buffer auxiliar de leitura de tensão em ponto flutuante dizimado.

float32 t buffer corrente diz [BUFFER DIZ]

Buffer auxiliar de leitura de corrente em ponto flutuante dizimado.

• uint32 t count = 0

Variável de testes.

• uint32_t tic

Variável de testes.

- uint32 t toc
- uint8 t flag buffercheio = 0

Flag de controle. Ativada quando ocorre interrupção de buffer cheio.

uint8_t flag_buffermetade = 0

Flag de controle. Ativada quando ocorre interrupção de buffer na metade.

• uint8_t flag_aquisicao = 0

Flag de testes.

arm_fir_decimate_instance_f32 S

Estrutura da biblioteca CMSIS para realização da dizimação.

6.21.1 Detailed Description

Aplicação: Sistema de Monitoramento de Consumo de Energia.

Author

André, Bruno, Gustado e Leonador

6.21.2 Enumeration Type Documentation

6.21.2.1 FSM

enum FSM

Estados da máquina de estados da aplicação.

Enumerator

START	
AQUISICAO	
PROCESSAMENTO	
RMS_CORRENTE	
CALCULOS	
DELTA	
ID	
ENVIAR	

6.21.3 Function Documentation

6.21.3.1 Error_Handler()

This function is executed in case of error occurrence.

Parameters

None

Return values

None

6.21.3.2 HAL_ADC_ConvCpltCallback()

```
void HAL_ADC_ConvCpltCallback ( {\tt ADC\_HandleTypeDef} \ * \ hadc \ )
```

Callback da interrupção de transferência completa da DMA.

Parameters

hadc Handler para ADC.

6.21.3.3 HAL_ADC_ConvHalfCpltCallback()

```
void HAL_ADC_ConvHalfCpltCallback ( {\tt ADC\_HandleTypeDef} \ * \ hadc \ )
```

72 **CONTENTS** Callback da interrupção de transferência na metade da DMA.

Parameters

hadc Handler para ADC.

6.21.3.4 main()

```
int main ( void )
```

Main da aplicação.

Implementa a máquina de estados descrita no relatório 3.

6.21.3.5 SystemClock_Config()

```
void SystemClock_Config (
     void )
```

Configuração de clock.

System Clock Configuration Configure the main internal regulator output voltage

Initializes the CPU, AHB and APB busses clocks

Initializes the CPU, AHB and APB busses clocks

Configure the Systick interrupt time

Configure the Systick

6.21.4 Variable Documentation

6.21.4.1 BaseDados

```
Equipamento BaseDados[EQUIP_ARRAY_MAX]
```

Base de dados de Equipamento .

6.21.4.2 buffer_corrente_diz

```
float32_t buffer_corrente_diz[BUFFER_DIZ]
```

Buffer auxiliar de leitura de corrente em ponto flutuante dizimado.

6.21.4.3 buffer_corrente_DMA

```
uint32_t buffer_corrente_DMA[2 *BUFFER_SIZE]
```

Buffer circular de leitura de corrente. Interrupções ocorrem quando está na metade ou cheio.

6.21.4.4 buffer_corrente_float

```
float32_t buffer_corrente_float[BUFFER_SIZE]
```

Buffer auxiliar de leitura de tensão em ponto flutuante.

6.21.4.5 buffer_corrente_leitura

```
uint32_t buffer_corrente_leitura[BUFFER_SIZE]
```

Buffer auxiliar de leitura de corrente.

6.21.4.6 buffer_tensao_diz

```
float32_t buffer_tensao_diz[BUFFER_DIZ]
```

Buffer auxiliar de leitura de tensão em ponto flutuante dizimado.

6.21.4.7 buffer tensao DMA

```
uint32_t buffer_tensao_DMA[2 *BUFFER_SIZE]
```

Buffer circular de leitura de tensão. Interrupções ocorrem quando está na metade ou cheio.

6.21.4.8 buffer_tensao_float

```
float32_t buffer_tensao_float[BUFFER_SIZE]
```

Buffer auxiliar de leitura de corrente em ponto flutuante.

6.21.4.9 buffer_tensao_leitura

```
uint32_t buffer_tensao_leitura[BUFFER_SIZE]
```

Buffer auxiliar de leitura de tensão.

6.21.4.10 count

```
uint32_t count = 0
```

Variável de testes.

6.21.4.11 estado

```
enum FSM estado = START
```

6.21.4.12 flag_aquisicao

```
uint8_t flag_aquisicao = 0
```

Flag de testes.

6.21.4.13 flag_buffercheio

```
uint8_t flag_buffercheio = 0
```

Flag de controle. Ativada quando ocorre interrupção de buffer cheio.

6.21.4.14 flag_buffermetade

```
uint8_t flag_buffermetade = 0
```

Flag de controle. Ativada quando ocorre interrupção de buffer na metade.

6.21.4.15 memoria

```
Medicao memoria[MEM_SIZE]
```

Vetor de Medicao . Contém histórico de medições.

6.21.4.16 memoria_index

```
uint32\_t memoria\_index = 0
```

Índice do histórico de medições.

```
6.21.4.17 S
arm_fir_decimate_instance_f32 S
Estrutura da biblioteca CMSIS para realização da dizimação.
6.21.4.18 tic
uint32_t tic
Variável de testes.
6.21.4.19 toc
uint32_t toc
6.22 Src/stm32f4xx_hal_msp.c File Reference
Inicializa NVIC.
#include "stm32f4xx_hal.h"
Functions
    • void Error_Handler (void)
          This function is executed in case of error occurrence.

    void HAL_MspInit (void)

6.22.1 Detailed Description
Inicializa NVIC.
Author
     ST
6.22.2 Function Documentation
6.22.2.1 Error_Handler()
```

This function is executed in case of error occurrence.

void Error_Handler (

Parameters

None

Return values

None

6.22.2.2 HAL_MspInit()

```
void HAL_MspInit (
     void )
```

Initializes the Global MSP.

6.23 Src/stm32f4xx_it.c File Reference

Interrupt Service Routines.

```
#include "stm32f4xx_hal.h"
#include "stm32f4xx.h"
#include "stm32f4xx_it.h"
```

Functions

void SVC Handler (void)

This function handles System service call via SWI instruction.

void PendSV_Handler (void)

This function handles Pendable request for system service.

void SysTick_Handler (void)

This function handles System tick timer.

void ADC_IRQHandler (void)

This function handles ADC1, ADC2 and ADC3 interrupts.

void USART2_IRQHandler (void)

This function handles USART2 global interrupt.

• void DMA2_Stream0_IRQHandler (void)

This function handles DMA2 stream0 global interrupt.

void DMA2_Stream1_IRQHandler (void)

This function handles DMA2 stream1 global interrupt.

void DMA2_Stream2_IRQHandler (void)

This function handles DMA2 stream2 global interrupt.

• void DMA2_Stream3_IRQHandler (void)

This function handles DMA2 stream3 global interrupt.

Variables

• DMA_HandleTypeDef hdma_adc1

Handler para estrutura do DMA do ADC 1.

DMA HandleTypeDef hdma adc2

Handler para estrutura do DMA do ADC 2.

ADC HandleTypeDef hadc1

Handler para estrutura do ADC 1.

ADC HandleTypeDef hadc2

Handler para estrutura do ADC 2.

DMA HandleTypeDef hdma memtomem dma2 stream1

Handler para estrutura do stream 1 do DMA 2 para transferência MemToMem.

DMA_HandleTypeDef hdma_memtomem_dma2_stream3

Handler para estrutura do stream 3 do DMA 2 para transferência MemToMem.

UART HandleTypeDef huart2

Handler para estrutura do UART 2.

6.23.1 Detailed Description

Interrupt Service Routines.

COPYRIGHT(c) 2017 STMicroelectronics

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. Neither the name of STMicroelectronics nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

6.23.2 Function Documentation

6.23.2.1 ADC_IRQHandler()

```
void ADC_IRQHandler (
     void )
```

This function handles ADC1, ADC2 and ADC3 interrupts.

6.23.2.2 DMA2_Stream0_IRQHandler()

This function handles DMA2 stream0 global interrupt.

6.23.2.3 DMA2_Stream1_IRQHandler()

This function handles DMA2 stream1 global interrupt.

6.23.2.4 DMA2_Stream2_IRQHandler()

This function handles DMA2 stream2 global interrupt.

6.23.2.5 DMA2_Stream3_IRQHandler()

This function handles DMA2 stream3 global interrupt.

6.23.2.6 PendSV_Handler()

```
void PendSV_Handler ( void )
```

This function handles Pendable request for system service.

6.23.2.7 SVC_Handler()

```
void SVC_Handler (
     void )
```

This function handles System service call via SWI instruction.

6.23.2.8 SysTick_Handler()

This function handles System tick timer.

6.23.2.9 USART2_IRQHandler()

```
void USART2_IRQHandler ( \label{eq:poid} \mbox{void} \ \ \mbox{)}
```

This function handles USART2 global interrupt.

6.23.3 Variable Documentation

6.23.3.1 hadc1

ADC_HandleTypeDef hadc1

Handler para estrutura do ADC 1.

6.23.3.2 hadc2

ADC_HandleTypeDef hadc2

Handler para estrutura do ADC 2.

6.23.3.3 hdma_adc1

DMA_HandleTypeDef hdma_adc1

Handler para estrutura do DMA do ADC 1.

6.23.3.4 hdma_adc2

DMA_HandleTypeDef hdma_adc2

Handler para estrutura do DMA do ADC 2.

6.23.3.5 hdma_memtomem_dma2_stream1

DMA_HandleTypeDef hdma_memtomem_dma2_stream1

Handler para estrutura do stream 1 do DMA 2 para transferência MemToMem.

6.23.3.6 hdma_memtomem_dma2_stream3

 ${\tt DMA_HandleTypeDef\ hdma_memtomem_dma2_stream3}$

Handler para estrutura do stream 3 do DMA 2 para transferência MemToMem.

6.23.3.7 huart2

UART_HandleTypeDef huart2

Handler para estrutura do UART 2.

6.24 Src/system_stm32f4xx.c File Reference

CMSIS Cortex-M4 Device Peripheral Access Layer System Source File.

```
#include "stm32f4xx.h"
```

Macros

- #define HSE_VALUE ((uint32_t)25000000)
- #define HSI_VALUE ((uint32_t)16000000)
- #define VECT_TAB_OFFSET 0x00

Functions

void SystemInit (void)

Setup the microcontroller system Initialize the FPU setting, vector table location and External memory configuration.

void SystemCoreClockUpdate (void)

Update SystemCoreClock variable according to Clock Register Values. The SystemCoreClock variable contains the core clock (HCLK), it can be used by the user application to setup the SysTick timer or configure other parameters.

Variables

- uint32 t SystemCoreClock = 16000000
- const uint8_t AHBPrescTable [16] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9}
- const uint8_t APBPrescTable [8] = {0, 0, 0, 0, 0, 1, 2, 3, 4}

6.24.1 Detailed Description

CMSIS Cortex-M4 Device Peripheral Access Layer System Source File.

Author

MCD Application Team

Version

V2.6.1

Date

14-February-2017 This file provides two functions and one global variable to be called from user application:

- SystemInit(): This function is called at startup just after reset and before branch to main program. This call is made inside the "startup_stm32f4xx.s" file.
- SystemCoreClock variable: Contains the core clock (HCLK), it can be used by the user application to setup the SysTick timer or configure other parameters.
- SystemCoreClockUpdate(): Updates the variable SystemCoreClock and must be called whenever the core clock is changed during program execution.

Attention

© COPYRIGHT 2017 STMicroelectronics

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. Neither the name of STMicroelectronics nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

6.25 Src/tim.c File Reference

Implementação das funções de configuração do temporizador.

```
#include "tim.h"
```

Functions

- void MX_TIM8_Init (void)
 Inicialização dos canais do Timer 8.
- void HAL_TIM_Base_MspInit (TIM_HandleTypeDef *tim_baseHandle)
- void HAL_TIM_Base_MspDeInit (TIM_HandleTypeDef *tim_baseHandle)

Variables

TIM_HandleTypeDef htim8
 Handler para estrutura do Timer 8.

6.25.1 Detailed Description

Implementação das funções de configuração do temporizador.

Author

ST

6.25.2 Function Documentation

6.25.2.1 HAL_TIM_Base_MspDeInit()

6.25.2.2 HAL_TIM_Base_MspInit()

6.25.2.3 MX_TIM8_Init()

```
void MX_TIM8_Init (
     void )
```

Inicialização dos canais do Timer 8.

D .				
Reti	ırn	va	ш	മട

6.25.3 Variable Documentation

6.25.3.1 htim8

```
TIM_HandleTypeDef htim8
```

Handler para estrutura do Timer 8.

6.26 Src/usart.c File Reference

Implementação das funções de configuração da uart.

```
#include "usart.h"
#include "gpio.h"
```

Functions

- void MX_USART2_UART_Init (void)
 Inicialização dos canais da UART 2.
- void HAL_UART_MspInit (UART_HandleTypeDef *uartHandle)
- void HAL_UART_MspDeInit (UART_HandleTypeDef *uartHandle)

Variables

UART_HandleTypeDef huart2
 Handler para estrutura do UART 2.

6.26.1 Detailed Description

Implementação das funções de configuração da uart.

Author

ST

6.26.2 Function Documentation

Return values

None

6.26.3 Variable Documentation

6.26.3.1 huart2

UART_HandleTypeDef huart2

Handler para estrutura do UART 2.

6.27 Src/usart_util.c File Reference

Biblioteca com funções úteis para utilizar com a USART2.

```
#include "usart.h"
#include "usart_util.h"
#include "string.h"
#include <stdarg.h>
```

Functions

void USART2_Transmit_Char (char send)

Transmite caractere ASCII pela USART 2.

• void USART2_Transmit_String (char *send)

Transmite string pela USART 2.

• void USART2_Transmit_UInt (uint32_t send)

Transmite inteiro unsigned pela USART 2.

void USART2_Transmit_Int (int send)

Transmite inteiro signed pela USART 2.

void print (const char *send,...)

Função semelhante à printf usando USART 2. Funciona apenas para d e c.

char USART2_Receive_Command (int timeout)

Recebe caracter de comando pela USART2.

• void USAR2_Receive_Interrupt_Enable (void)

Habilita interrupção.

6.27.1 Detailed Description

Biblioteca com funções úteis para utilizar com a USART2.

Author

Gustavo

6.27.2 Function Documentation

```
6.27.2.1 print()
```

Função semelhante à printf usando USART 2. Funciona apenas para d e c. $\,$

Parameters

send string formatada a ser transferida pela USART 2

Return values

None

6.27.2.2 USAR2_Receive_Interrupt_Enable()

```
void USAR2_Receive_Interrupt_Enable (
```

void)

Habilita interrupção.

Return values

None

6.27.2.3 USART2_Receive_Command()

Recebe caracter de comando pela USART2.

Parameters

Return values

None

6.27.2.4 USART2_Transmit_Char()

Transmite caractere ASCII pela USART 2.

Parameters

send caracter a ser transferido pela USART 2

Return values

None

6.27.2.5 USART2_Transmit_Int()

Transmite inteiro signed pela USART 2.

_					
D	2 14 6	2 100	~1	0	40
		am		Ю	

send inteiro a ser transferido pela USART 2

Return values

None

6.27.2.6 USART2_Transmit_String()

Transmite string pela USART 2.

Parameters

send string a ser transferida pela USART 2

Return values

None

6.27.2.7 USART2_Transmit_UInt()

Transmite inteiro unsigned pela USART 2.

Parameters

send inteiro a ser transferido pela USART 2

Return values

None

Index

400 1001 H	
ADC_IRQHandler	CORRENTE_A
stm32f4xx_it.c, 78	defines.h, 26
stm32f4xx_it.h, 47	CORRENTE_B
ADCConvertBuffer	defines.h, 26
adc_util.c, 58	CadastroDeEquipamento
adc_util.h, 19	equipamentos.c, 66
AHBPrescTable	equipamentos.h, 33
STM32F4xx_System_Private_Variables, 9	calculos_eletricos.c
APBPrescTable	PI VALUE, 59
STM32F4xx_System_Private_Variables, 9	retornaFP, 60
adc.c	retornaMEDIACICLOS, 60
HAL_ADC_MspDeInit, 55	retornaPOTAPARENTE, 61
HAL_ADC_Msplnit, 56	•
_ ·	retornaPOTATIVA, 61
hadc1, 57	retornaPOTREATIVA, 62
hadc2, 57	retornaRMSHARMONICOS, 62
hdma_adc1, 57	retornaRMS, 62
hdma_adc2, 57	retornaSIN, 63
MX_ADC1_Init, 56	retornaTHD, 64
MX_ADC2_Init, 57	SQRT2, 60
adc.h	calculos_eletricos.h
Error_Handler, 17	retornaFP, 20
hadc1, 18	retornaMEDIACICLOS, 20
hadc2, 18	retornaPOTAPARENTE, 21
MX_ADC1_Init, 17	retornaPOTATIVA, 21
MX_ADC2_Init, 18	retornaPOTREATIVA, 22
adc_util.c	retornaRMSHARMONICOS, 23
ADCConvertBuffer, 58	retornaRMS, 22
adc_util.h	retornaSIN, 23
ADCConvertBuffer, 19	retornaTHD, 24
assert_param	ComparacaoDeEquipamentos
stm32f4xx_hal_conf.h, 39	equipamentos.c, 66
	equipamentos.h, 34
BUFFER_DIZ	• •
defines.h, 25	count
BUFFER_SIZE	main.c, 74
defines.h, 26	DATA CACUE ENABLE
BaseDados	DATA_CACHE_ENABLE
main.c, 73	stm32f4xx_hal_conf.h, 39
buffer_corrente_DMA	DIZIMACAO
main.c, 73	defines.h, 26
buffer_corrente_diz	DMA2_Stream0_IRQHandler
main.c, 73	stm32f4xx_it.c, 79
buffer_corrente_float	stm32f4xx_it.h, 48
main.c, 74	DMA2_Stream1_IRQHandler
buffer_corrente_leitura	stm32f4xx_it.c, 79
main.c, 74	stm32f4xx_it.h, 48
buffer tensao DMA	DMA2_Stream2_IRQHandler
main.c, 74	stm32f4xx_it.c, 79
buffer_tensao_diz	stm32f4xx it.h, 48
main.c, 74	DMA2_Stream3_IRQHandler
buffer tensao float	stm32f4xx it.c, 79
main.c, 74	stm32f4xx it.h, 48
buffer_tensao_leitura	DP83848 PHY ADDRESS
main.c, 74	stm32f4xx hal conf.h, 39
main.o, / ¬	defines.h
CMSIS, 3	BUFFER DIZ, 25
- ; -	· - · <u>-</u> - · - · -

BUFFER_SIZE, 26 CORRENTE A, 26	ComparacaoDeEquipamentos, 66 DeltaParam, 67
CORRENTE_A, 20 CORRENTE_B, 26	
- ·	IdentificarEquipamento, 67
DIZIMACAO, 26	InitBaseDeDados, 67
EQUIP_ARRAY_MAX, 26	InitMedicao, 68
F_SAMP_DIZ, 26	equipamentos.h
F_SAMP, 26	CadastroDeEquipamento, 33
FILTER_TAP_NUM, 27	ComparacaoDeEquipamentos, 34
GI, 27	DeltaParam, 34
GV, 27	IdentificarEquipamento, 35
MAX_HARMONICA, 27	InitBaseDeDados, 35
MEM_SIZE, 27	InitMedicao, 35
MS2H, 27	Medicao, 33
N_PERIODOS, 27	Parametros, 33
N_START, 28	Error_Handler
PPP, 28	adc.h, 17
RMS_LOWERBOUND, 28	dma.h, 31
RMS_TOLERANCIA, 28	main.c, 71
RMS_UPPERBOUND, 28	stm32f4xx_hal_msp.c, 76
TENSAO_A, 28	tim.h, 49
TENSAO B, 28	usart.h, 51
DeltaParam	estado
equipamentos.c, 67	
• •	main.c, 75
equipamentos.h, 34	E CAMP DIZ
dizimacao.h	F_SAMP_DIZ
initializeFIR, 29	defines.h, 26
pCoeffs, 30	F_SAMP
pState, 30	defines.h, 26
S, 30	FILTER_TAP_NUM
dma.c	defines.h, 27
hdma_memtomem_dma2_stream1, 65	FSM
hdma_memtomem_dma2_stream3, 65	main.c, 70
MX_DMA_Init, 64	flag_aquisicao
dma.h	main.c, 75
Error_Handler, 31	flag_buffercheio
hdma_memtomem_dma2_stream1, 32	main.c, 75
hdma memtomem dma2 stream3, 32	flag_buffermetade
MX_DMA_Init, 31	main.c, 75
EQUIP_ARRAY_MAX	Gl
defines.h, 26	defines.h, 27
ETH_RX_BUF_SIZE	gpio.c
stm32f4xx_hal_conf.h, 40	MX_GPIO_Init, 69
ETH_RXBUFNB	gpio.h
stm32f4xx_hal_conf.h, 40	MX_GPIO_Init, 36
ETH_TX_BUF_SIZE	GV
stm32f4xx_hal_conf.h, 40	defines.h, 27
ETH_TXBUFNB	
stm32f4xx_hal_conf.h, 40	HAL_ADC_ConvCpltCallback
EXTERNAL_CLOCK_VALUE	main.c, 71
stm32f4xx_hal_conf.h, 40	HAL_ADC_ConvHalfCpltCallback
Equipamento, 13	main.c, 71
ID, 13	HAL_ADC_MODULE_ENABLED
med, 13	stm32f4xx_hal_conf.h, 40
name, 13	HAL_ADC_MspDeInit
equipamentos	adc.c, 55
Medicao, 14	HAL_ADC_MspInit
equipamentos.c	adc.c, 56
• •	HAL_CORTEX_MODULE_ENABLED
CadastroDeEquipamento, 66	TIAL COLLEA MODULE ENABLED

stm32f4xx_hal_conf.h, 40	stm32f4xx it.c, 81
HAL_DMA_MODULE_ENABLED	htim8
stm32f4xx_hal_conf.h, 40	tim.c, 84
HAL FLASH MODULE ENABLED	tim.h, 50
stm32f4xx_hal_conf.h, 41	huart2
HAL_GPIO_MODULE_ENABLED	stm32f4xx_it.c, 81
stm32f4xx_hal_conf.h, 41	usart.c, 85
HAL MODULE ENABLED	usart.h, 51
stm32f4xx hal conf.h, 41	dodi i.ii, o i
HAL MspInit	i rms
stm32f4xx_hal_msp.c, 77	Parametros, 15
HAL PWR MODULE ENABLED	INSTRUCTION CACHE ENABLE
stm32f4xx_hal_conf.h, 41	stm32f4xx_hal_conf.h, 42
HAL RCC MODULE ENABLED	ID,
	Equipamento, 13
stm32f4xx_hal_conf.h, 41 HAL_TIM_Base_MspDeInit	IdentificarEquipamento
tim.c, 83	equipamentos.c, 67
	equipamentos.h, 35
HAL_TIM_Base_MspInit	Inc/adc.h, 16
tim.c, 83	Inc/adc_util.h, 18
HAL_TIM_MODULE_ENABLED	Inc/calculos_eletricos.h, 19
stm32f4xx_hal_conf.h, 41	Inc/defines.h, 24
HAL_UART_MODULE_ENABLED	Inc/dizimacao.h, 29
stm32f4xx_hal_conf.h, 41	Inc/dma.h, 30
HAL_UART_MspDeInit	Inc/equipamentos.h, 32
usart.c, 84	Inc/gpio.h, 36
HAL_UART_MspInit	Inc/main.h, 37
usart.c, 85	Inc/stm32f4xx_hal_conf.h, 37
HSE_STARTUP_TIMEOUT	Inc/stm32f4xx_it.h, 46
stm32f4xx_hal_conf.h, 41	Inc/tim.h, 49
HSE_VALUE	Inc/usart.h, 50
STM32F4xx_System_Private_Includes, 5	Inc/usart_util.h, 52
stm32f4xx_hal_conf.h, 42	InitBaseDeDados
HSI_VALUE	equipamentos.c, 67
STM32F4xx_System_Private_Includes, 5	equipamentos.h, 35
stm32f4xx_hal_conf.h, 42	InitMedicao
hadc1	equipamentos.c, 68
adc.c, 57	equipamentos.h, 35
adc.h, 18	initializeFIR
stm32f4xx_it.c, 80	dizimacao.h, 29
hadc2	dizimadad.n, 20
adc.c, 57	LSE STARTUP TIMEOUT
adc.h, 18	stm32f4xx_hal_conf.h, 42
stm32f4xx_it.c, 80	LSE_VALUE
harmonicos_RMS	stm32f4xx_hal_conf.h, 42
Parametros, 15	LSI_VALUE
hdma_adc1	stm32f4xx_hal_conf.h, 42
adc.c, 57	
stm32f4xx_it.c, 80	MAC_ADDR0
hdma_adc2	stm32f4xx_hal_conf.h, 42
adc.c, 57	MAC ADDR1
stm32f4xx_it.c, 80	stm32f4xx_hal_conf.h, 43
hdma_memtomem_dma2_stream1	MAC ADDR2
dma.c, 65	stm32f4xx_hal_conf.h, 43
dma.h, 32	MAC_ADDR3
stm32f4xx_it.c, 81	stm32f4xx_hal_conf.h, 43
hdma_memtomem_dma2_stream3	MAC_ADDR4
dma.c, 65	stm32f4xx_hal_conf.h, 43
dma.h, 32	MAC_ADDR5

stm32f4xx_hal_conf.h, 43	equipamentos.h, 33
MAX_HARMONICA	med, 14
defines.h, 27	timestamp, 14
MEM_SIZE	memoria
defines.h, 27	main.c, 75
MS2H	memoria_index
defines.h, 27	main.c, 75
MX_ADC1_Init	
adc.c, 56	N_PERIODOS
adc.h, 17	defines.h, 27
MX_ADC2_Init	N START
	defines.h, 28
adc.c, 57	name
adc.h, 18	Equipamento, 13
MX_DMA_Init	Equipamento, 10
dma.c, 64	pCoeffs
dma.h, 31	dizimacao.h, 30
MX_GPIO_Init	PHY AUTONEGO COMPLETE
gpio.c, 69	stm32f4xx_hal_conf.h, 43
gpio.h, 36	PHY AUTONEGOTIATION
MX_TIM8_Init	stm32f4xx_hal_conf.h, 43
tim.c, 83	
tim.h, 50	PHY_BCR
MX USART2 UART Init	stm32f4xx_hal_conf.h, 43
usart.c, 85	PHY_BSR
usart.h, 51	stm32f4xx_hal_conf.h, 44
main	PHY_CONFIG_DELAY
main.c, 73	stm32f4xx_hal_conf.h, 44
main.c	PHY_DUPLEX_STATUS
	stm32f4xx_hal_conf.h, 44
BaseDados, 73	PHY_FULLDUPLEX_100M
buffer_corrente_DMA, 73	stm32f4xx_hal_conf.h, 44
buffer_corrente_diz, 73	PHY_FULLDUPLEX_10M
buffer_corrente_float, 74	stm32f4xx_hal_conf.h, 44
buffer_corrente_leitura, 74	PHY_HALFDUPLEX_100M
buffer_tensao_DMA, 74	stm32f4xx_hal_conf.h, 44
buffer_tensao_diz, 74	PHY_HALFDUPLEX_10M
buffer_tensao_float, 74	stm32f4xx_hal_conf.h, 44
buffer_tensao_leitura, 74	PHY_ISOLATE
count, 74	stm32f4xx hal conf.h, 44
Error_Handler, 71	PHY JABBER DETECTION
estado, 75	stm32f4xx_hal_conf.h, 44
FSM, 70	PHY_LINKED_STATUS
flag_aquisicao, 75	stm32f4xx_hal_conf.h, 45
flag_buffercheio, 75	PHY LOOPBACK
flag buffermetade, 75	stm32f4xx_hal_conf.h, 45
HAL_ADC_ConvCpltCallback, 71	
HAL_ADC_ConvHalfCpltCallback, 71	PHY_POWERDOWN
·	stm32f4xx_hal_conf.h, 45
main, 73	PHY_READ_TO
memoria, 75	stm32f4xx_hal_conf.h, 45
memoria_index, 75	PHY_RESET_DELAY
S, 75	stm32f4xx_hal_conf.h, 45
SystemClock_Config, 73	PHY_RESET
tic, 76	stm32f4xx_hal_conf.h, 45
toc, 76	PHY_RESTART_AUTONEGOTIATION
med	stm32f4xx_hal_conf.h, 45
Equipamento, 13	PHY_SPEED_STATUS
Medicao, 14	stm32f4xx_hal_conf.h, 45
Medicao, 14	PHY_SR
equipamentos, 14	stm32f4xx_hal_conf.h, 45
• •	, -

PHY_WRITE_TO	retornaRMS
stm32f4xx_hal_conf.h, 46	calculos_eletricos.c, 62
PI VALUE	calculos_eletricos.h, 22
calculos_eletricos.c, 59	retornaSIN
PPP	calculos_eletricos.c, 63
defines.h, 28	calculos eletricos.h, 23
PREFETCH_ENABLE	retornaTHD
stm32f4xx_hal_conf.h, 46	calculos_eletricos.c, 64
pState	calculos_eletricos.h, 24
dizimacao.h, 30	, , , , , , , , , , , , , , , , , , ,
Parametros, 15	S
equipamentos.h, 33	dizimacao.h, 30
harmonicos_RMS, 15	main.c, 75
i_rms, 15	SQRT2
pf, 15	calculos_eletricos.c, 60
pot_ap, 15	STM32F4xx_System_Private_Defines, 7
pot_at, 15	VECT_TAB_OFFSET, 7
pot re, 16	STM32F4xx_System_Private_FunctionPrototypes, 10
thd, 16	STM32F4xx_System_Private_Functions, 11
v_rms, 16	SystemCoreClockUpdate, 11
PendSV_Handler	SystemInit, 12
stm32f4xx_it.c, 79	STM32F4xx_System_Private_Includes, 5
stm32f4xx_it.h, 48	HSE_VALUE, 5
pf	HSI_VALUE, 5
Parametros, 15	STM32F4xx_System_Private_Macros, 8
pot_ap	STM32F4xx_System_Private_TypesDefinitions, 6
Parametros, 15	STM32F4xx_System_Private_Variables, 9
pot_at	AHBPrescTable, 9
Parametros, 15	APBPrescTable, 9
pot re	SystemCoreClock, 9
Parametros, 16	SVC_Handler
print	stm32f4xx_it.c, 79
usart util.c, 86	stm32f4xx_it.h, 48
usart util.h, 52	Src/adc.c, 55
usur_um.n, sz	Src/adc_util.c, 58
RMS_LOWERBOUND	Src/calculos_eletricos.c, 59
defines.h, 28	Src/dma.c, 64
RMS TOLERANCIA	Src/equipamentos.c, 65
defines.h, 28	Src/gpio.c, 68
RMS UPPERBOUND	Src/main.c, 69
defines.h, 28	Src/stm32f4xx hal msp.c, 76
retornaFP	Src/stm32f4xx it.c, 77
calculos_eletricos.c, 60	Src/system_stm32f4xx.c, 81
calculos eletricos.h, 20	Src/tim.c, 83
retornaMEDIACICLOS	Src/usart.c, 84
calculos_eletricos.c, 60	Src/usart util.c, 85
calculos eletricos.h, 20	stm32f4xx hal conf.h
retornaPOTAPARENTE	assert_param, 39
calculos eletricos.c, 61	DATA CACHE ENABLE, 39
calculos eletricos.h, 21	DP83848 PHY ADDRESS, 39
retornaPOTATIVA	ETH RX BUF SIZE, 40
calculos eletricos.c, 61	ETH RXBUFNB, 40
calculos eletricos.h, 21	ETH TX BUF SIZE, 40
retornaPOTREATIVA	ETH_TXBUFNB, 40
calculos_eletricos.c, 62	EXTERNAL_CLOCK_VALUE, 40
calculos eletricos.h, 22	HAL ADC MODULE ENABLED, 40
retornaRMSHARMONICOS	HAL CORTEX MODULE ENABLED, 40
calculos_eletricos.c, 62	HAL_DMA_MODULE_ENABLED, 40
calculos_eletricos.t, 62 calculos_eletricos.h, 23	HAL_FLASH_MODULE_ENABLED, 41
GalGulO3_GlGulOO3.11, 23	HAL_I LASH_WIODULE_EINADLED, 41

HAL_GPIO_MODULE_ENABLED, 41	hdma adc2, 80
HAL_MODULE_ENABLED, 41	- · · ·
	hdma_memtomem_dma2_stream1, 81
HAL_PWR_MODULE_ENABLED, 41	hdma_memtomem_dma2_stream3, 81
HAL_RCC_MODULE_ENABLED, 41	huart2, 81
HAL_TIM_MODULE_ENABLED, 41	PendSV_Handler, 79
HAL_UART_MODULE_ENABLED, 41	SVC_Handler, 79
HSE_STARTUP_TIMEOUT, 41	SysTick_Handler, 80
HSE_VALUE, 42	USART2_IRQHandler, 80
HSI_VALUE, 42	stm32f4xx_it.h
INSTRUCTION_CACHE_ENABLE, 42	ADC_IRQHandler, 47
LSE_STARTUP_TIMEOUT, 42	DMA2_Stream0_IRQHandler, 48
LSE VALUE, 42	DMA2_Stream1_IRQHandler, 48
LSI_VALUE, 42	DMA2_Stream2_IRQHandler, 48
MAC ADDRO, 42	DMA2_Stream3_IRQHandler, 48
MAC ADDR1, 43	PendSV_Handler, 48
MAC ADDR2, 43	SVC_Handler, 48
MAC_ADDR3, 43	SysTick_Handler, 49
MAC ADDR4, 43	USART2_IRQHandler, 49
-	Stm32f4xx_system, 4
MAC_ADDR5, 43	SysTick_Handler
PHY_AUTONEGO_COMPLETE, 43	stm32f4xx_it.c, 80
PHY_AUTONEGOTIATION, 43	
PHY_BCR, 43	stm32f4xx_it.h, 49
PHY_BSR, 44	SystemClock_Config
PHY_CONFIG_DELAY, 44	main.c, 73
PHY_DUPLEX_STATUS, 44	SystemCoreClock
PHY_FULLDUPLEX_100M, 44	STM32F4xx_System_Private_Variables, 9
PHY_FULLDUPLEX_10M, 44	SystemCoreClockUpdate
PHY_HALFDUPLEX_100M, 44	STM32F4xx_System_Private_Functions, 11
PHY_HALFDUPLEX_10M, 44	SystemInit
PHY_ISOLATE, 44	STM32F4xx_System_Private_Functions, 12
PHY_JABBER_DETECTION, 44	
PHY_LINKED_STATUS, 45	TENSAO_A
PHY_LOOPBACK, 45	defines.h, 28
PHY POWERDOWN, 45	TENSAO_B
PHY_READ_TO, 45	defines.h, 28
PHY_RESET_DELAY, 45	TICK_INT_PRIORITY
PHY RESET, 45	stm32f4xx_hal_conf.h, 46
_ ,	thd
PHY_RESTART_AUTONEGOTIATION, 45	Parametros, 16
PHY_SPEED_STATUS, 45	tic
PHY_SR, 45	main.c, 76
PHY_WRITE_TO, 46	tim.c
PREFETCH_ENABLE, 46	HAL_TIM_Base_MspDeInit, 83
TICK_INT_PRIORITY, 46	HAL_TIM_Base_MspInit, 83
USE_RTOS, 46	htim8, 84
USE_SPI_CRC, 46	MX_TIM8_Init, 83
VDD_VALUE, 46	tim.h
stm32f4xx_hal_msp.c	Error_Handler, 49
Error_Handler, 76	htim8, 50
HAL_MspInit, 77	MX_TIM8_Init, 50
stm32f4xx_it.c	timestamp
ADC IRQHandler, 78	Medicao, 14
DMA2_Stream0_IRQHandler, 79	toc
DMA2_Stream1_IRQHandler, 79	main.c, 76
DMA2 Stream2 IRQHandler, 79	main.c, 70
DMA2 Stream3 IRQHandler, 79	USAR2_Receive_Interrupt_Enable
hadc1, 80	usart_util.c, 86
hadc2, 80	usart_util.h, 53
hdma_adc1, 80	USART2_IRQHandler
numa_auci, ou	

```
stm32f4xx_it.c, 80
    stm32f4xx it.h, 49
USART2_Receive_Command
    usart_util.c, 87
    usart_util.h, 53
USART2 Transmit Char
    usart_util.c, 87
    usart_util.h, 53
USART2_Transmit_Int
    usart util.c, 87
    usart_util.h, 54
USART2_Transmit_String
    usart_util.c, 88
    usart_util.h, 54
USART2_Transmit_UInt
    usart_util.c, 88
    usart util.h, 54
USE RTOS
    stm32f4xx_hal_conf.h, 46
USE_SPI_CRC
    stm32f4xx_hal_conf.h, 46
usart.c
    HAL_UART_MspDeInit, 84
    HAL_UART_MspInit, 85
    huart2, 85
    MX_USART2_UART_Init, 85
usart.h
    Error Handler, 51
    huart2, 51
    MX_USART2_UART_Init, 51
usart_util.c
    print, 86
    USAR2_Receive_Interrupt_Enable, 86
    USART2_Receive_Command, 87
    USART2_Transmit_Char, 87
    USART2_Transmit_Int, 87
    USART2_Transmit_String, 88
    USART2_Transmit_UInt, 88
usart_util.h
    print, 52
    USAR2 Receive Interrupt Enable, 53
    USART2_Receive_Command, 53
    USART2_Transmit_Char, 53
    USART2 Transmit Int, 54
    USART2 Transmit String, 54
    USART2_Transmit_UInt, 54
v_rms
    Parametros, 16
VDD_VALUE
    stm32f4xx hal conf.h, 46
VECT TAB OFFSET
    STM32F4xx_System_Private_Defines, 7
```