Math 132 Homework 7

Jiaping Zeng

11/16/2020

$$4.4.2 \ \frac{\sin z}{e^z}, z_0 = 1 + 7i.$$

Answer: $\frac{\sin z}{e^z}$ is analytic everywhere, so $R = \infty$.

4.4.3
$$\frac{z}{z-3i}$$
, $z_0=0$.

Answer: $\frac{z}{z-3i}$ is analytic for $z \neq 3i$, so $R = |z_0 - 3i| = |0 - 3i| = 3$.

4.4.5
$$\frac{z+1}{z-i}$$
, $z_0 = 2+i$.

Answer: $\frac{z+1}{z-i}$ is analytic for $z \neq i$, so $R = |z_0 - i| = |2 + i - i| = 2$.

$$4.4.6 \ \frac{\sin z}{z^2 + 4}, z_0 = 3.$$

Answer: $\frac{\sin z}{z^2 + 4}$ is analytic for $z \neq \pm 2i$, so $R = \min\{|z_0 - 2i|, |z_0 + 2i|\} = \min\{|3 - 2i|, |3 + 2i|\} = \min\{\sqrt{13}, \sqrt{13}\} = \sqrt{13}$.

$$4.5.1 \ \frac{1}{1+z^2}, 1 < |z|.$$

Answer: We have $1 < |z| \implies \left| \frac{1}{z^2} \right| < 1$. Then we can use the geometric formula as follows: $\frac{1}{1+z^2} = \frac{1}{z^2} \cdot \frac{1}{1+\frac{1}{z^2}} = \frac{1}{z^2} \sum_{n=0}^{\infty} \frac{1}{z^{2n}} = \sum_{n=0}^{\infty} \frac{1}{z^{2n+2}}.$

$$4.5.2 \ \frac{3+z}{2-z}, 2<|z|.$$

Answer: We have $2 < |z| \implies \left| \frac{2}{z} \right| < 1$, so $\frac{3+z}{2-z} = \frac{3+z}{z} \cdot \frac{1}{1+\frac{2}{z}} = -\frac{3+z}{z} \sum_{n=0}^{\infty} \frac{2^n}{z^n} = \sum_{n=0}^{\infty} \frac{-(3+z)2^n}{z^{n+1}}$.

4.5.4
$$z + \frac{1}{z}$$
, $1 < |z - 1|$.

Answer: We have $1 < |z-1| \implies \left| \frac{1}{z-1} \right| < 1$, then $z + \frac{1}{z} = \frac{z^2 + 1}{z} = \frac{z^2 + 1}{1 + (z-1)} = \frac{z^2 + 1}{z-1} \cdot \frac{1}{1 + \frac{1}{(z-1)}} = \frac{z^2 + 1}{z-1} \sum_{n=0}^{\infty} \frac{1}{(z-1)^n} = \sum_{n=0}^{\infty} \frac{(-1)^n (z^2 + 1)}{(z-1)^{n+1}}.$

4.5.13
$$\frac{z}{(z+2)(z+3)}$$
, $2 < |z| < 3$.

Answer: By partial fractions we have $\frac{1}{(z+2)(z+3)} = \frac{A}{z+2} + \frac{B}{z+3} \implies 1 = A(z+3) + B(z+2) \implies A = 1, B = -1 \implies \frac{z}{(z+2)(z+3)} = \frac{z}{z+2} + \frac{-z}{z+3}$. Then using our bounds $2 < |z| \implies \left|\frac{2}{z}\right| < 1$, we

$$\text{have } \frac{z}{z+2} = \frac{1}{1+\frac{z}{z}} = \sum_{n=0}^{\infty} \frac{(-2)^n}{z^n}. \text{ Similarly, using } |z| < 3 \implies \left|\frac{z}{3}\right| < 1, \text{ we have } \frac{-z}{z+3} = \frac{-z}{3} \cdot \frac{1}{1+\frac{z}{3}} = \frac{-z}{3} \cdot \sum_{n=0}^{\infty} \frac{(-z)^n}{3^n} = \sum_{n=0}^{\infty} \frac{(-z)^{n+1}}{3^{n+1}}. \text{ Therefore } \frac{z}{(z+2)(z+3)} = \frac{z}{z+2} + \frac{-z}{z+3} = \sum_{n=0}^{\infty} \frac{(-2)^n}{z^n} + \sum_{n=0}^{\infty} \frac{(-z)^{n+1}}{3^{n+1}}.$$

P1 Use the geometric series formula to derive the power series expansion for the given function f centered at the given point z_0 :

(a)
$$f(z) = \frac{z}{1-z}$$
, centered at $z_0 = 0$.

Answer: By geometric series formula, we have $f(z) = -\frac{1}{1 - \frac{1}{z}} = -\sum_{n=0}^{\infty} \frac{1}{z^n}$.

(b)
$$f(z) = \frac{z^2 + 1}{z - 1}$$
, centered at $z_0 = 0$.

Answer: By geometric series formula, we have $f(z) = \frac{z^2 + 1}{z - 1} = (z^2 + 1) \cdot \frac{-1}{1 - z} = -(z^2 + 1) \cdot \sum_{n=0}^{\infty} z^n = -\sum_{n=0}^{\infty} z^{n+2} - \sum_{n=0}^{\infty} z^n = -1 - z - 2\sum_{n=0}^{\infty} z^{n+2}.$

(c)
$$f(z) = \frac{1}{(1-z)^3}$$
, centered at $z_0 = 0$.

Answer: By differentiating the geometric series formula twice, we have $\sum_{n=0}^{\infty} a^n = \frac{1}{1-a} \implies \sum_{n=0}^{\infty} na^{n-1} = \frac{1}{(a-1)^2} \implies \sum_{n=0}^{\infty} n(n-1)a^{n-2} = \frac{2}{(1-a)^3}$. Therefore by substitution we have

$$\frac{\sum_{n=0}^{\infty} (a-1)^2}{\frac{1}{(1-z)^3}} = \frac{1}{2} \sum_{n=0}^{\infty} n(n-1)z^{n-2}.$$

(d)
$$f(z) = \frac{1}{1 - 2z^3}$$
, centered at $z_0 = 0$.

Answer: By geometric series formula, we have $\frac{1}{1-2z^3} = \sum_{n=0}^{\infty} (2z^3)^n = \sum_{n=0}^{\infty} 2^n z^{3n}$.

P2 Find the Laurent series for $\frac{1}{(z-i)(z+2i)}$ in the given domain:

(a)
$$A_{1,2}(0)$$

Answer: $\frac{1}{(z-i)(z+2i)} = \frac{1}{3i} \left[\frac{1}{z-i} - \frac{1}{z+2i} \right] = \frac{1}{3i} \left[\frac{-1}{i} \cdot \frac{1}{1-\frac{z}{i}} + \frac{-1}{2i} \cdot \frac{1}{1+\frac{z}{2i}} \right]$ by partial

fractions, then we have $\left|\frac{z}{i}\right| = \frac{|z|}{1} < 1$ for $z \in A_{1,2}(0)$, so $\frac{1}{1-\frac{z}{i}} = \sum_{n=0}^{\infty} \frac{z^n}{i^n}$. Similarly, we

have $\left|\frac{z}{2i}\right| = \frac{|z|}{2} > 1$ for $z \in A_{1,2}(0)$, so $\frac{1}{1+\frac{z}{2i}} = \sum_{n=0}^{\infty} \frac{(-1)^n z^n}{(2i)^n}$. Therefore $\frac{1}{(z-i)(z+2i)} = \frac{1}{(z-i)(z+2i)}$

$$\frac{1}{3i} \left[\frac{-1}{i} \cdot \sum_{n=0}^{\infty} \frac{z^n}{i^n} + \frac{-1}{2i} \sum_{n=0}^{\infty} \frac{(-1)^n z^n}{(2i)^n} \right] = \frac{1}{3i} \left[-\sum_{n=0}^{\infty} \frac{z^n}{i^{n+1}} + \sum_{n=0}^{\infty} \frac{(-1)^{n+1} z^n}{(2i)^{n+1}} \right].$$

(b) $A_{0,3}(i)$

Answer:
$$\frac{1}{(z-i)(z+2i)} = \frac{1}{(z-i)(3i+(z-i))} = \frac{1}{z-i} \cdot \frac{1}{3i} \cdot \frac{1}{1+\frac{z-i}{2i}} = \sum_{n=0}^{\infty} \frac{(-1)^n (z-i)^{n-1}}{(3i)^{n+1}}.$$

(c)
$$A_{3,\infty}(i)$$

(c)
$$A_{3,\infty}(i)$$

Answer: $3 < |z-i| < \infty \implies \frac{1}{3} > \left| \frac{1}{z-i} \right| > 0$, then $\frac{1}{(z-i)(z+2i)} = \frac{1}{(z-i)(3i+(z-i))} = \frac{1}{(z-i)^2} \cdot \frac{1}{1+\frac{3i}{z-i}} = \frac{1}{(z-i)^2} \sum_{n=0}^{\infty} \frac{(-3i)^n}{(z-i)^n}$.