

3rd Generation thinQ![™] SiC Schottky Diode

Features

- Revolutionary semiconductor material Silicon Carbide
- Switching behavior benchmark
- No reverse recovery / No forward recovery
- Temperature independent switching behavior
- High surge current capability
- Pb-free lead plating; RoHS compliant
- Qualified according to JEDEC¹⁾ for target applications
- Breakdown voltage tested at 20mA²⁾
- · Optimized for high temperature operation
- Lowest Figure of Merit Q_C/I_F

Product Summary

V_{DC}	600	>
Q_C	8	nC
<i>I</i> _F ; <i>T</i> _C < 130 °C	6	Α

PG-T0220-2

thinQ! 3G Diode designed for fast switching applications like:

• SMPS e.g.; CCM PFC

· Motor Drives; Solar Applications; UPS

Туре	Package	Marking	Pin 1	Pin 2
IDH06SG60C	PG-TO220-2	D06G60C	С	А

Maximum ratings

Parameter	Symbol	Conditions	Value	Unit
Continuous forward current	I _F	T _C <130 °C	6	Α
Surge non-repetitive forward current, sine halfwave	I _{F,SM}	$T_{\rm C}$ =25 °C, $t_{\rm p}$ =10 ms	32	
		$T_{\rm C}$ =150 °C, $t_{\rm p}$ =10 ms	23	
Non-repetitive peak forward current	I _{F,max}	T _C =25 °C, t _p =10 μs	190	
i²t value	∫ <i>i</i> ²d <i>t</i>	$T_{\rm C}$ =25 °C, $t_{\rm p}$ =10 ms	5.1	A ² s
		$T_{\rm C}$ =150 °C, $t_{\rm p}$ =10 ms	2.5	
Repetitive peak reverse voltage	V_{RRM}	<i>T</i> _j =25 °C	600	V
Diode dv/dt ruggedness	d <i>v</i> ∕d <i>t</i>	V _R = 0480 V	50	V/ns
Power dissipation	P_{tot}	T _C =25 °C	71	W
Operating and storage temperature	$T_{\rm j}$, $T_{\rm stg}$		-55 175	°C
Soldering temperature, wavesoldering only allowed at leads	T_{sold}	1.6mm (0.063 in.) from case for 10s	260	
Mounting torque		M3 and M3.5 screws	60	Ncm

Parameter	Symbol Conditions	Values			Unit	
			min.	typ.	max.	
Thermal characteristics						
Thermal resistance, junction - case	R_{thJC}		-	-	2.1	K/W
Thermal resistance, junction - ambient	$R_{ m thJA}$	Thermal resistance, junction- ambient, leaded	-	-	62	
Electrical characteristics, at $T_{\rm j}$ =25	°C, unless	otherwise specified				
Static characteristics						
DC blocking voltage	V _{DC}	I _R =0.05 mA, T _j =25 °C	600	-	-	V
Diode forward voltage	V _F	I _F =6 A, T _j =25 °C	-	2.1	2.3	
		I _F =6 A, T _j =150 °C	-	2.8	-	
Reverse current	I _R	V _R =600 V, T _j =25 °C	-	0.5	50	μΑ
		V _R =600 V, T _j =150 °C	-	2	500	
AC characteristics	-					
Total capacitive charge	Q _c	V_R =400 V, $I_F \le I_{F,max}$, d i_F /d t =200 A/ μ s, T_i =150 °C	-	8	-	nC
Switching time ³⁾	t_c		-	-	<10	ns
Total capacitance	С	V _R =1 V, <i>f</i> =1 MHz	-	130	-	pF
		V _R =300 V, f=1 MHz	-	20	-	
				1		-1

 V_R =600 V, f=1 MHz

20

¹⁾ J-STD20 and JESD22

²⁾ All devices tested under avalanche conditions, for a time periode of 10ms, at 20mA.

 $^{^{3)}}$ t_c is the time constant for the capacitive displacement current waveform (independent from T_j , I_{LOAD} and di/dt), different from t_{rr} which is dependent on T_j , I_{LOAD} and di/dt. No reverse recovery time constant t_{rr} due to absence of minority carrier injection.

 $^{^{4)}}$ Under worst case Z_{th} conditions.

⁵⁾ Only capacitive charge occuring, guaranteed by design.

1 Power dissipation

 P_{tot} =f(T_C); parameter: $R_{thJC(max)}$

2 Diode forward current

 $I_F = f(T_C)^{4}$; $T_i \le 175$ °C; parameter: $D = t_p/T$

3 Typ. forward characteristic

 $I_F = f(V_F)$; $t_p = 400 \mu s$; parameter: T_i

4 Typ. forward characteristic in surge current mode

 $I_F = f(V_F)$; $t_p = 400 \mu s$; parameter: T_j

5 Typ. capacitance charge vs. current slope

$Q_C = f(di_F/dt)^{5}$; $I_F \le I_{F,max}$

6 Typ. reverse current vs. reverse voltage

$I_R=f(V_R)$; parameter: T_i

7 Typ. transient thermal impedance

 Z_{thJC} =f(t_p); parameter: $D = t_P/T$

8 Typ. capacitance vs. reverse voltage

$$C=f(V_R)$$
; $T_C=25$ °C, $f=1$ MHz

9 Typ. C stored energy

 $E_{C}=f(V_{R})$

PG-TO220-2: Outline

Dimensions in mm/inches

Published by Infineon Technologies AG 81726 Munich, Germany © 2012 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support systems are intended to be implanted in the human body and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.