ECON 459 — Game Theory

Lecture Notes

Nash Bargaining

Luca Anderlini — Spring 2014

These notes have been used before. If you can still spot any errors or have any suggestions for improvement, please let me know.

1 Bargaining Theory – Preamble

- Economic transactions generate **surplus**.
- Bargaining Theory addresses the question of how the surplus will be **divided** among the participants.
- In virtually all cases it is restricted to the case of **two** agents.
- Suppose one agent has an object to sell, and another h as the opportunity to buy it.
- Suppose the seller values the object less than the potential buyer. The difference between the valuation of the seller and that of the buyer is the potential surplus.
- Since there are mutual gains from trade, it is reasonable to suppose that the transaction will take place.
- The objective of Bargaining Theory is to say something (if possible to pin down completely) about the price at which the transaction will take place.
- Another way to put it is that Bargaining Theory addresses the question: **How will the surplus be split** between the two?
- Once we frame the question in terms of surplus, we have a framework that applies much more generally than

the single-object transaction. The two agents could, for instance, be bargaining over the terms of a complex contractual arrangement.

- Lastly, notice that price-taking models are no use whatsoever in answering the question at hand.
- Bargaining Theory studies situation in which no-one can reasonably be assumed to be taking the price as given.
- The question in Bargaining Theory is precisely: Where do the prices come from in a situation of bilateral monopoly?
- Two types of Bargaining Theory have been developed.
- The first one we look at is also the first one to have been developed historically. It is known as "Nash Bargaining."
- This way of proceeding amounts to stating a number of "desirable properties" that the "solution" to a bargaining problem should have, and then showing that the properties in fact do pin down the solution uniquely.
- Nash Bargaining belongs to a body of work called "Cooperative Game Theory."
- The second approach to Bargaining Theory belongs firmly to Non-Cooperative Game Theory (the stuff we have been concerned with so far).

- In this approach, we write down an extensive form game that we think captures the essence of how the bargaining will in fact proceed. We then apply the tools of Non-Cooperative Game Theory to solve the extensive form game and hopefully find a unique prediction about the outcome.
- One of the surprises we find along the way is that the *solutions* to the bargaining problem we find using these two seemingly unrelated approaches are in fact closely related. Under appropriate circumstances the answer is the same.

2 Nash Bargaining

2.1 Ingredients: The Set-Up

- There are two participants, i = 1, 2.
- A bargaining problem is a pair $\mathcal{B} = (\mathcal{U}, d)$.
- In (\mathcal{U}, d) , \mathcal{U} is a **set** of possible **agreements** in terms of **utilities** that they yield to 1 and 2. An element of \mathcal{U} is a $pair u = (u_1, u_2) \in \mathcal{U}$.
- The interpretation is that if agreement $u = (u_1, u_2) \in \mathcal{U}$ is reached, then 1 gets utility u_1 and 2 gets utility u_2 .

- Throughout, we are going to take \mathcal{U} to be a *convex* set. (More on this later.)
- In (\mathcal{U}, d) , d is a $pair(d_1, d_2)$ called the **disagreement** point.
- The interpretation is that if no agreement is reached then 1 gets utility d_1 and 2 gets utility d_2 .

2.2 Ingredients: The Solution Function

- What sort of "solution" are we after?
- We seek a "solution function" f of the following kind.
- The function f takes as input any bargaining problem (\mathcal{U}, d) , and returns a pair of utilities $u = (u_1, u_2) \in \mathcal{U}$.
- So, we write $u = f(\mathcal{B})$ or alternatively $u = f(\mathcal{U}, d)$. When we need to refer to the "components" of f we write $u_1 = f_1(\mathcal{B})$ and $u_2 = f_2(\mathcal{B})$ or alternatively $u_1 = f_1(\mathcal{U}, d)$ and $u_2 = f_2(\mathcal{U}, d)$.
- The **interpretation** is that, given any bargaining problem $\mathcal{B} = (\mathcal{U}, d)$, the solution function tells us that the agreement $u = f(\mathcal{U}, d)$ will be reached.

Figure 1: Bargaining Problem and Solution Function

2.3 A Canonical Interpretation

- There are a buyer and a seller.
- ullet The seller has an object potentially for sale that costs him c.
- \bullet The buyer places a value of v on the object.
- To make this interesting we take it to be the case that v > c.
- \bullet At what price p will the object be sold?
- If it is sold at p, then the seller's utility is $U_S(p-c)$ and the buyer's utility is $U_B(v-p)$.
- If no transaction takes place, then both buyer and seller get a utility of 0.
- This situation gives rise to a bargaining problem of the type we described in the abstract before.
- Take \mathcal{U} to be the set of utility pairs that can be obtained as p varies between c and v. (So, notice if both U_B and U_S are concave, we get a convex \mathcal{U} .)
- Take d to be (0,0).
- A Solution function would tell us what utility the buyer and the seller get, and hence the *price* at which the object is traded.

2.4 Question

- \bullet Suppose we list a bunch of "appealing" properties that f should satisfy.
- \bullet Can we "pin down" f completely?
- Answer: YES.

2.5 The Axioms

2.5.1 Pareto (PAR)

- ullet This axiom imposes that the point that f picks out must be Pareto-efficient.
- Formally, $f(\mathcal{U}, d)$ has the property that there does not exist a point $(u_1, u_2) \in \mathcal{U}$ such that

$$u_1 \ge f_1(\mathcal{U}, d), \ u_2 \ge f_2(\mathcal{U}, d), \ (u_1, u_2) \ne f(\mathcal{U}, d) \ (2.1)$$

• In other words there are no points in \mathcal{U} that are "North-East" of $f(\mathcal{U}, d)$. (See Figure 2.)

2.5.2 Symmetry (SYM)

• This axiom imposes that if everything is symmetric in $\mathcal{B} = (\mathcal{U}, d)$, then the solution function should pick out a symmetric solution.

Figure 2: Pareto

Figure 3: Symmetry

• Formally, suppose that (\mathcal{U}, d) is such that \mathcal{U} is symmetric around the 45° line and $d_1 = d_2$, then

$$f_1(\mathcal{U}, d) = f_2(\mathcal{U}, d) \tag{2.2}$$

• In other words, when everything in \mathcal{B} is symmetric, the point $f(\mathcal{U}, d)$ is itself on the 45° line. (See Figure 3.)

2.5.3 Independence of Utility Origins (IUO)

- As always, the origin of any utility function can be changed arbitrarily.
- This axiom imposes that if we add or subtract a constant from the utility of either 1 or 2 or both, the solution should not be affected.
- Suppose we have two bargaining problems $\mathcal{B} = (\mathcal{U}, d)$ and $\mathcal{B}' = (\mathcal{U}', d')$ with the following property.
- For some **vector** $b = (b_1, b_2)$

$$d' = d + b \tag{2.3}$$

and

$$\mathcal{U}' = \mathcal{U} + b \tag{2.4}$$

where (2.3) means that a point (u'_1, u'_2) is in \mathcal{U}' if and only if for some $(u_1, u_2) \in \mathcal{U}$ we have that

$$(u_1', u_2') = (u_1, u_2) + (b_1, b_2)$$
 (2.5)

• Then the IUO axiom imposes that (See Figure 4.)

$$f(\mathcal{U}', d') = f(\mathcal{U}, d) + b \tag{2.6}$$

• Notice, using IUO there is **no loss of generality** in considering **only** bargaining problems with d = (0, 0).

Figure 4: IUO

- ullet To see this just set b=-d and use IUO.
- From here on, whenever it is convenient we will assume d=(0,0).

2.5.4 Independence of Utility Units (IUU)

- As always, the units of any utility function can be changed arbitrarily.
- This axiom imposes that if we multiply by a positive constant the utility of either 1 or 2 or both, the solution should not be affected.
- This axiom is stated more conveniently for problems with d = (0, 0). This is how we proceed (but see IUO).
- Suppose we have two bargaining problems $\mathcal{B} = (\mathcal{U}, d)$ and $\mathcal{B}' = (\mathcal{U}', d)$ with d = (0, 0) and the following property.

$$U_1' = k_1 U_1 \text{ and } U_2' = k_2 U_2$$
 (2.7)

where (2.7) means that a point (u'_1, u'_2) is in \mathcal{U}' if and only if for some $(u_1, u_2) \in \mathcal{U}$ we have that

$$u_1' = k_1 u_1 \text{ and } u_2' = k_2 u_2$$
 (2.8)

• Then the IUU axiom imposes that

$$f_1(\mathcal{U}',d) = k_1 f_1(\mathcal{U},d) \tag{2.9}$$

and

$$f_2(\mathcal{U}',d) = k_2 f_2(\mathcal{U},d) \tag{2.10}$$

• In Figure 5 we depict a change for U_2 only with $k_2 = 2$.

Figure 5: IUU

2.5.5 Independence of Irrelevant Alternatives (IIA)

- The last axiom has the same flavor of a property widely used in "social choice" problems.
- Intuitively, the property embodied by IIA is simple to state.
- Suppose that we render infeasible some agreements. Suppose also that none the agreements we render infeasible is the chosen one. Then the chosen agreement should not change.
- Eliminating some "Irrelevant Alternatives" should not change the point picked out by the solution function.
- Formally, suppose we have two bargaining problems $\mathcal{B} = (\mathcal{U}, d)$ and $\mathcal{B}' = (\mathcal{U}', d')$ with d = d' and $\mathcal{U}' \subset \mathcal{U}$. Suppose also that $f(\mathcal{U}, d) \in \mathcal{U}'$.
- Then the IIA axiom imposes that (See Figure 6.)

$$f(\mathcal{U}, d) = f(\mathcal{U}', d') \tag{2.11}$$

Figure 6: IIA

2.6 Pinning Down f

2.6.1 Symmetric Problems

- Our first observation is that because of PAR and SYM, we know everything about $f(\mathcal{B}) = f(\mathcal{U}, d)$ if \mathcal{B} ia symmetric problem $(d_1 = d_2 \text{ and } \mathcal{U} \text{ symmetric around the } 45^{\circ} \text{ line}).$
- In this case $f(\mathcal{U}, d)$ must be on the upper boundary of \mathcal{U} on the 45° line.
- These two requirements together pin down f uniquely, just as in Figure 3.

2.6.2 Linear Frontier Problems

- ullet Our second observation concerns any ${\cal B}$ with a linear frontier.
- We say that a bargaining problem \mathcal{B} has a linear frontier if and only if the upper boundary of \mathcal{U} is a (downward sloping) straight line.
- ullet To argue what f has to be like in the case of a linear frontier ${\mathcal B}$ we proceed in two steps.
- We do this setting $d_1 = d_2 = 0$ for simplicity. (We know this can always be done.)

 \bullet From our observation about symmetric problems above, we know that if \mathcal{B} has a linear frontier and is also symmetric, then

$$f_1(\mathcal{U}, d) = f_2(\mathcal{U}, d) \tag{2.12}$$

- Now consider a symmetric \mathcal{B} with a linear frontier and notice that in this case the slope of the upper boundary of \mathcal{U} must be -1.
- It follows that the segment (up) on the left of $f(\mathcal{U}, d)$ on the frontier of \mathcal{U} must be of the **same length** as the segment (down) on the right of $f(\mathcal{U}, d)$ on the frontier of \mathcal{U} . (See Figure 7 the two segments A and B have the same length.)
- Now consider a *new* linear frontier bargaining problem $\mathcal{B}' = (\mathcal{U}', d')$ with d' = d, and \mathcal{U}' with a boundary that cuts the horizontal axis in the same place as \mathcal{U} , but cuts the *vertical* axis twice as high as \mathcal{U} . (See Figure 7.)
- Notice \mathcal{B}' is **not** a **symmetric** problem.
- However, IUU tells us what the solution $f(\mathcal{U}', d')$ should be.
- Since we have kept U_1 the same and we have multiplied U_2 by 2 (see Figure 7), we should have

$$f_1(\mathcal{U}', d') = f_1(\mathcal{U}, d) \tag{2.13}$$

and

$$f_2(\mathcal{U}', d') = 2 f_2(\mathcal{U}, d)$$
 (2.14)

- But this (see Figure 7) tells us something **general** about bargaining problems with a linear frontier symmetric or not.
- Geometrically, in Figure 7, it is clear that the triangle above the dotted line has the same shape and dimensions as the triangle to the right of the dotted line.
- Hence, it follows that in Figure 7 the segment (up) on the left of $f(\mathcal{U}', d')$ on the frontier of \mathcal{U}' must be of the **same length** as the segment (down) on the right of $f(\mathcal{U}', d')$ on the frontier of \mathcal{U}' the two segments C and D have the same length.
- We have done this diagrammatically scaling U_2 by a factor of 2. But clearly the geometric argument generalizes to any re-scaling of a symmetric problem with a linear frontier.
- Hence, we have reached the following key conclusion.
- In any bargaining problem $\mathcal{B} = (\mathcal{U}, d)$ with d = (0, 0) and with a **linear frontier** (whether symmetric or not), $f(\mathcal{U}, d)$ picks out the point on the frontier of \mathcal{U} that divides the frontier into two **segments of equal length**.

Figure 7: Linear Frontiers

2.6.3 Using IIA

- We now know everything there is to know about bargaining problems with a *linear frontier*.
- Using IIA, this will be enough to pin down f in the general case.
- Start with any bargaining problem $\mathcal{B} = (\mathcal{U}, d)$, not necessarily with a linear frontier and not necessarily symmetric.
- For the time being assume that $d_1 = d_2 = 0$. We will come back to this shortly.
- Now find the **tangent** to the frontier that also has the property that the segment (up) on the left of the tangency point is of the **same length** as the segment (down) on the right of the tangency point. (See figure 8 the two segments A and B have the same length.)
- Doing this we have constructed a **new** bargaining problem $\mathcal{B}' = (\mathcal{U}', d')$ with d' = d, and with \mathcal{U}' the area below the tangent. (See figure 8.)
- Clearly, the bargaining problem $\mathcal{B}' = (\mathcal{U}', d')$ has a linear frontier. We *constructed* it this way! We also have d' = 0.
- Hence, we know everything about $f(\mathcal{U}', d')$.

- In particular, the solution $f(\mathcal{U}', d')$ must be as in Figure 8.
- Now we are ready to use IIA.
- Going from $\mathcal{B}' = (\mathcal{U}', d')$ to $\mathcal{B} = (\mathcal{U}, d)$ we shrink the feasible set from U' to \mathcal{U} , we do not change the disagreement point, and we do not take out the solution to \mathcal{B}' .
- Hence IIA tells us that, as in Figure 8, we must have that

$$f(\mathcal{U}, d) = f(\mathcal{U}', d') \tag{2.15}$$

- To summarize, so far we know the following.
- Consider any $\mathcal{B} = (\mathcal{U}, d)$ with d = (0, 0).
- Then to find $f(\mathcal{U}, d)$ we can proceed as follows.
- ullet Find the point on the frontier of ${\cal U}$ that has the following property.
- When we draw the **tangent** to \mathcal{U} at this point, the **length** of the **two segments** on the tangent, from the tangency point to the vertical axis, and from the tangency point to the horizontal axis **is the same**. (See figure 8 the length of A and B is the same.)

2.6.4 Using IUO (Again)

• We know how to find $f(\mathcal{U}, d)$, provided that d = (0, 0).

Figure 8: Using IIA

- How do we proceed to find $f(\mathcal{U}, d)$ in the general case in which d may be different from (0, 0)?
- Using IUO this is not a hard step to make.
- From IUO, we know that if we subtract d from \mathcal{U} (we move the entire set \mathcal{U} by the vector -d), then the solution must also move by the vector -d.
- In effect this says that we can consider the vertical line through d as our vertical axis, and the horizontal line through d as our horizontal axis and then apply what we know already about $f(\mathcal{U}, d)$ when d = 0 (See Figure 9.)
- So, to find $f(\mathcal{U}, d)$ in the **general case** we can proceed as follows.
- ullet Find the point on the frontier of ${\cal U}$ that has the following property.
- When we draw the **tangent** to \mathcal{U} at this point, the **length** of the **two segments** on the tangent, from the tangency point to the vertical line through d, and from the tangency point to the horizontal line through d is the same. (See figure 9 the length of A and B is the same.)

Figure 9: Using IUO Again

2.7 Finding f in Practice

- Our analysis so far shows that for any $\mathcal{B} = (\mathcal{U}, d)$, $f(\mathcal{U}, d)$ is pinned down **uniquely** by PAR, SYM, IUO, IUU and IIA.
- Geometrically, we also now know how to find $f(\mathcal{U}, d)$ in the general case.
- This is exemplified in Figure 9.
- ullet We seek a way to find the solution using a mathematical method.
- To do this, begin with some facts concerning hyperbolae.
- Recall that the equation of a hyperbola in a " U_1, U_2 plane" is given by (in implicit form)

$$u_1 u_2 = k (2.16)$$

with k > 0 a constant.

• In explicit form (2.16) reads

$$u_2 = \frac{k}{u_1} \tag{2.17}$$

• The hyperbola in (2.16) has asymptotes on the " U_1 " and " U_2 " axes in the positive orthant. (It also has a "lower branch" in the negative orthant — but we will ignore lower branches throughout.)

- If we want to write the (implicit) equation of a hyperbola with a vertical asymptote at v and a horizontal asymptote at h we need to subtract these as constants from u_1 and u_2 respectively.
- So we get

$$(u_1 - v)(u_2 - h) = k (2.18)$$

with k > 0 a constant.

- Notice that as we increase k in (2.18) we describe a family of hyperbolae which move in the "North-East" direction as k increases. (With given asymptotes if we keep v and h constant.)
- An important **fact** about these hyperbolae is the following.
- If we draw the **tangent** to the hyperbola in (2.18) at **any point**, the **length** of the **two segments** on the tangent, from the tangency point to the vertical asymptote, and from the tangency point to the horizontal asymptote **is the same**. (See figure 10 the length of A and B is the same.)
- This fact suggests the following method for finding $f(\mathcal{U}, d)$ for a general bargaining problem.
- We should find the furthest hyperbola from the origin (going "North-East") with asymptotes d_1 and d_2 that touches \mathcal{U} .

- This will give us a hyperbola that is **tangent** to \mathcal{U} .
- \bullet So, if we look at the straight line that is tangent to the hyperbola, it will also be tangent to \mathcal{U} , at the same point.
- ullet From what we have just worked out about tangents to hyperbolae, the tangent to ${\cal U}$ will have just the right property.
- The tangent to both \mathcal{U} and the hyperbola will have the property that the **length** of the **two segments** on the tangent, from the tangency point to the vertical line through d, and from the tangency point to the horizontal line through d is the same. (See Figure 11.)
- It follows that $f(\mathcal{U}, d)$ must be the point of tangency between \mathcal{U} and the hyperbola. (See Figure 11.)
- Finding the furthest hyperbola from the origin with asymptotes d_1 and d_2 that touches \mathcal{U} is the geometric equivalent of a **constrained maximization problem**.
- As k in (2.18) increases the hyperbola moves away from the origin. Therefore we need to solve

$$\max_{u_1, u_2} (u_1 - d_1) (u_2 - d_2)$$
s.t. $(u_1, u_2) \in \mathcal{U}$ (2.19)

- The objective function in (2.19) is often called the "Nash product."
- To sum up, we have reached the following conclusion.
- Let a bargaining problem $\mathcal{B} = (\mathcal{U}, d)$ be given.
- \bullet Assume that the solution function f satisfies PAR, SYM, IUO, IUU and IIA.
- Denote by (u_1^*, u_2^*) the values of u_1 and u_2 that solve the maximization problem (2.19).
- Then

$$f_1(\mathcal{U}, d) = u_1^* \text{ and } f_2(\mathcal{U}, d) = u_2^*$$
 (2.20)

2.8 Canonical Example

- \bullet Consider again the canonical interpretation of 2.3 above.
- We pick specific utility functions for the buyer and the seller.

Figure 10: Tangents to Hyperbola

Figure 11: Finding $f(\mathcal{U}, d)$

• If the object is sold at price p, then

$$U_S(p-c) = (p-c)^{\alpha} \tag{2.21}$$

and

$$U_B(v-p) = (v-p)^{\beta}$$
 (2.22)

- Remember that we are assuming that $d_1 = d_2 = 0$. If there is no transaction the utility of both is zero.
- Remember that we are assuming that v > c. The problem is not interesting otherwise.
- The "Nash product" therefore is

$$(p-c)^{\alpha} (v-p)^{\beta} \tag{2.23}$$

- \bullet So, we are looking for a p that maximizes (2.23), subject to the agreement being feasible.
- So far we have written the constraint the the agreement must be feasible as $(u_1, u_2) \in \mathcal{U}$.
- In this case, there is an easy way to do this in terms of price.
- The feasible utilities are the pairs

$$[(p-c)^{\alpha}, (v-p)^{\beta}] \tag{2.24}$$

as p varies in the interval [c, v].

• So, we should be maximizing (2.23) by choice of p, subject to the constraint

$$c \le p \le v \tag{2.25}$$

- We are going to try just maximizing (2.23) without constraints.
- \bullet If we find a solution that satisfies (2.25), then this will also be the solution to the *constrained maximization* problem.
- Differentiating (2.23) wrt p and setting equal to 0 gives $\alpha(p-c)^{\alpha-1}(v-p)^{\beta} = \beta(p-c)^{\alpha}(v-p)^{\beta-1} \quad (2.26)$
- Dividing both sides of (2.26) by $(p-c)^{\alpha-1}(v-p)^{\beta-1}$ gives

$$\alpha(v-p) = \beta(p-c) \tag{2.27}$$

• Solving (2.27) for p gives

$$p = v \frac{\alpha}{\alpha + \beta} + c \frac{\beta}{\alpha + \beta} \tag{2.28}$$

- Since both α and β are positive, the p in (2.28) clearly satisfies (2.25).
- So, we are done. The price in (2.28) is the one at which the exchange will take place.

- The price at which the exchange will take place is somewhere between c and v. Where in this interval depends on the parameters of the buyer's and seller's utility functions as specified in (2.28).
- As α becomes smaller (keeping β constant) the price will get closer and closer to c.
- As β becomes smaller (keeping α constant) the price will get closer and closer to v.