

XIII Olimpiada Iberoamericana de Matemática Universitaria

Noviembre de 2010

Problema 1 (4 puntos) Sea $f: S \to \mathbb{R}$ la función del conjunto de todos los triángulos rectángulos al conjunto de los números reales, definida como $f(\triangle ABC) = \frac{h}{r}$, donde h es la altura a la hipotenusa y r es el radio del círculo inscrito. Encontrar el rango, Im(f), de esta función.

Problema 2 (5 puntos) Calcule la suma de la serie

$$\sum_{\infty}^{\infty} \frac{sen^3 \ 3^k}{3^k}$$

Problema 3 (6 puntos) Un estudiante suma las fracciones racionales de forma incorrecta

$$(*) \qquad \frac{a}{b} + \frac{x}{y} = \frac{a+x}{b+y},$$

pero a veces obtiene resultados correctos. Para una fracción dada $\frac{a}{b}, a, b \in \mathbb{Z}, b > 0$, encontrar todas las fracciones $\frac{x}{y}, x, y \in \mathbb{Z}, y > 0$, tales que el resultado obtenido por (*) es correcto.

Problema 4 (6 puntos) Sea $p(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ un polinomio mónico de grado n > 2 con coeficientes reales y todas sus raíces reales y diferentes de cero. Demostrar que para todo k = 0, 1, 2, ..., n - 2, al menos uno de los coeficientes a_k , a_{k+1} es diferente de cero.

Problema 5 (6 puntos) Sean A,B matrices conmutantes de 2010×2010 con entradas reales, tales que $A^{2010} = B^{2010} = I$, donde I es la matriz identidad. Demostrar que si traza(AB) = 2010, entonces traza(A) = traza(B).

Problema 6 (7 puntos) Demostrar que para cada número entero a>1 los divisores primos del número $5a^4-5a^2+1$ son de la forma $20k\pm1, k\in\mathbb{Z}$.

Problema 7 (7 puntos)

a) (3 puntos) Demostrar que para cualesquiera números enteros positivos $m \leq l$ dados, existen un número entero positivo n y números enteros positivos $x_1, \ldots, x_n, y_1, \ldots, y_n$ tales que la igualdad

$$\sum_{k=1}^{n} x_k^i = \sum_{k=1}^{n} y_k^i$$

se cumple para cada $i=1,2,\ldots,m-1,m+1,\ldots,l$, pero no se cumple para i=m.

b) (4 puntos) Demostrar que existe una solución del problema, donde todos los números $x_1, \ldots, x_n, y_1, \ldots, y_n$ son distintos.