Prova 2

Test: 3 User ID: Timestamp:

1. Considere a função f definida como:

$$f(x) = mx + 1 - \frac{1}{x}.$$

Se for imposta a condição que m seja o maior valor possível tal que $f(x) \ge 1$ para todo x < 0, com relação a tal m pode ser afirmado que:

- (a) 2m = 1.
- (b) O valor de tal m deve ser negativo.
- (c) m = 1.
- (d) 4m = 1.
- (e) Não existe tal m.
- (f) Nenhuma das afirmações anteriores é correta.

2. Com relação aos pontos críticos da função

$$f(x) = \frac{\sqrt{1 - \cos x}}{\sqrt{1 - \sin x}}$$

pode ser afirmado que:

- (a) São da forma $(2k+1)\pi/2$ para todo $k \in \mathbb{Z}$.
- (b) Satisfazem a condição sen x = 1.
- (c) São da forma $2k\pi$ para todo $k \in \mathbb{Z}$.
- (d) Não existe nenhum de tais pontos críticos.
- (e) Satisfazem a condição $\cos x = 1$.
- (f) Nenhuma das afirmações anteriores é correta.

3. Seja f a função definida como:

$$f(x) = \begin{cases} x^4 \operatorname{sen}\left(\frac{1}{x}\right), & \text{se } x \neq 0\\ 0, & \text{se } x = 0 \end{cases}$$

e seja $g(x) = 1 - \cos x$. Com relação ao limite $\lim_{x\to 0} \frac{f(x)}{g(x)}$ pode ser afirmado que:

(a) Existe e vale $\lim_{x\to 0} \frac{f''(x)}{g''(x)}$.

- (b) A regra de L'Hôpital não pode ser aplicada.
- (c) Não existe.
- (d) Existe e vale $\lim_{x\to 0} \frac{f'(x)}{g'(x)}$.
- (e) Duas ou mais das afirmações anteriores são corretas.
- (f) Nenhuma das afirmações anteriores é correta.
- 4. Com relação à função f definida como

$$f(x) = \cos x - i \sin x$$

pode ser afirmado que seus pontos críticos estão determinados pela condição:

- (a) $\cos^2 x + \sin^2 x = 0$.
- (b) $\sin x = 2^{-1/2}$.
- (c) $\cos x = -\sin x$.
- (d) $\cos x = 2^{-1/2}$.
- (e) Duas ou mais das afirmações anteriores são corretas.
- (f) Nenhuma das afirmações anteriores é correta.
- **5.** Usando uma aproximação polinomial adequada para a função exponencial, uma solução negativa da equação

$$e^{-2x} = 3x^2$$

 $pode\ ser\ expressada\ aproximadamente\ como:$

- (a) $1 2 \cdot 2^{-1/2}$.
- (b) $1 2 \cdot 2^{1/2}$.
- (c) $-1 + 2^{-1/2}$.
- (d) $1 2^{1/2}$.
- (e) Duas ou mais das afirmações anteriores são corretas.
- (f) Nenhuma das afirmações anteriores é correta.
- 6. Um artigo disponível no link http://vixra.org/pdf/1606.0315v1.pdf apresenta, entre outros resultados, a irracionalidade de π usando polinômios de Taylor. Com relação ao argumento apresentado em tal artigo pode ser afirmado que:
 - (a) A expressão destacada em cor verde na página 8 é incorreta.
 - (b) A expressão destacada em cor de rosa na página 8 é incorreta.
 - (c) A prova da página 9 é correta na sua totalidade.
 - (d) A afirmação destacada em cor de rosa na página 9 é falsa.
 - (e) Duas ou mais das afirmações anteriores são corretas.
 - (f) Nenhuma das afirmações anteriores é correta.

7. Dados $n \in \mathbb{N}$ e a = 0, com relação à função f definida como:

$$f(x) = \frac{1 - \cos x}{x}$$

pode ser afirmado que:

(a)
$$P_{2n+1,a,f}(x) = \sum_{k=0}^{n} (-1)^k \frac{x^{2k+1}}{(2k+3)!}$$
.

(b)
$$f^{(n)}(0) = \frac{(-1)^k}{(n+1)(n+2)}$$
 quando $n = 2k$ é par.

(c)
$$P_{2n,a,f}(x) = \sum_{k=0}^{n} (-1)^k \frac{x^{2k}}{(2k+2)!}$$
.

- (d) $f^{(n)}(0) = \frac{(-1)^k}{n+1}$ quando n = 2k+1 é impar.
- (e) Duas ou mais das afirmações anteriores são corretas.
- (f) Nenhuma das afirmações anteriores é correta.
- 8. Considere a função cosh definida como:

$$\cosh x = \frac{e^x + e^{-x}}{2}$$

Considerando o polinômio de Taylor $P_n(\alpha)$ e resto $R_n(\alpha)$ de ordem n de tal função no caso $\alpha = 2^{-1/2}$ pode ser afirmado que:

- (a) $(2n)! \, 2^n R_n(\alpha)$ é um número natural para todo n natural.
- (b) O limite $\lim_{n\to\infty} P_n(\alpha)$ existe e é racional.
- (c) $(2n)! 2^n P_n(\alpha)$ é um número natural para n suficientemente grande.
- (d) O limite $\lim_{n\to\infty} P_n(\alpha)$ não existe.
- (e) Duas ou mais das afirmações anteriores são corretas.
- (f) Nenhuma das afirmações anteriores é correta.
- 9. Dados $n\in\mathbb{N}$ e a=0,com relação à função f definida como:

$$f(x) = \log \frac{1-x}{1+x}$$

pode ser afirmado que:

(a)
$$f^{(n)}(x) = (n-1)! \frac{(1+x)^n + (1-x)^n}{(1-x^2)^n}$$
.

(b)
$$P_{2n,a,f}(x) = -2\sum_{k=0}^{n} \frac{x^{2k}}{2k}$$
.

(c)
$$P_{2n+1,a,f}(x) = -2\sum_{k=0}^{n} \frac{x^{2k+1}}{2k+1}$$
.

(d)
$$f^{(n)}(x) = (n-1)! \frac{(x+1)^n - (x-1)^n}{(1-x^2)^n}$$
.

- (e) Duas ou mais das afirmações anteriores são corretas.
- (f) Nenhuma das afirmações anteriores é correta.

10. O polinômio P definido como:

$$P(x) = \sum_{k=2}^{n} \frac{x^{k}}{k(k-1)}$$

é o polinômio de Taylor de ordem n no ponto a=0 da função f dada por:

(a)
$$f(x) = (1-x)\log(1-x) - (1+x)$$
.

(b)
$$f(x) = (1+x)\log(1+x) + (1-x)$$
.

(c)
$$f(x) = (1-x)\log(1-x) + x$$
.

(d)
$$f(x) = (1+x)\log(1+x) - x$$
.

- (e) Duas ou mais das afirmações anteriores são corretas.
- (f) Nenhuma das afirmações anteriores é correta.