# CEG3155: DGD 6

## **Solution of Quiz**

**Question1:** For the circuit shown in Figure 1, write the expression of the output signal f.





## **Question 2:**

a) Convert this structural VHDL code into schematic (similar problem and its block diagram are shown in Figure 2 on page 3 for even-parity detector).

```
-- 2-to-4 Line Decoder; structural VHDL Description
      library ieee;
 3
      use ieee.std logic 1164.all
 5
    entity decoder_2_4_w_enable is
 6
          port(
               EN, A0, A1 : in std_logic;
 8
               DO, D1, D2, D3 : out std_logic
9
10
     end decoder_2_to_4_w_enable;
11
12
    architecture structural1_1 of decoder_2_to_4_w_enable is
13
          component NOT1
14
15
                  in1: in std_logic;
                   out1: out std_logic
16
17
               );
18
          end component;
19
20
           component AND2
21
              port(
                   in1, in2: in std_logic;
22
23
                   out1: out std_logic
24
25
           end component;
26
27
           signal A0_n, A1_n, N0, N1, N2, N3: std_logic;
28
           begin
29
              g0: NOT1 port map (in1 => A0, out1 => A0 n);
30
              g1: NOT1 port map (in1 => A1, out1 => A1_n);
              g2: AND2 port map (in1 => A0_n, in2 => A1_n, out1 => N0);
31
32
               g3: AND2 port map (in1 => A0, in2 => A1_n, out1 => N1);
              g4: AND2 port map (in1 => A0_n, in2 => A1, out1 => N2);
33
34
              g5: AND2 port map (in1 => A0, in2 => A1, out1 => N3);
               g6: AND2 port map (in1 =>EN, in2 => N0, out1 => D0);
35
               g7: AND2 port map (in1 => EN, in2 => N1, out1 => D1);
g8: AND2 port map (in1 => EN, in2 => N2, out1 => D2);
36
37
              g9: AND2 port map (in1 => EN, in2 => N3, out1 => D3);
38
39
     end structural 1;
40
```

b) Fill the truth table for the schematic from part a)

## **Solution**

The conceptual diagram can be using logic gates or blocks that indicate the type of gate. Both solutions are correct.



| EN | A1 | <b>A0</b> | <b>D</b> 0 | <b>D1</b> | <b>D2</b> | <b>D3</b> |
|----|----|-----------|------------|-----------|-----------|-----------|
| 0  | X  | X         | 0          | 0         | 0         | 0         |
| 1  | 0  | 0         | 1          | 0         | 0         | 0         |
| 1  | 0  | 1         | 0          | 1         | 0         | 0         |
| 1  | 1  | 0         | 0          | 0         | 1         | 0         |
| 1  | 1  | 1         | 0          | 0         | 0         | 1         |

### Chapter 6

### Question 1 (Chu 6.3)

One way to specify a combinational circuit is to describe its function by a truth table, in which we list all possible input combinations and their desired output values. Assume that the circuit has n inputs.

- a) What is the size (number of the rows) of the table?
- b) What is the problem with this approach?

#### Solution

- a) 2<sup>n</sup>
- b) The number of rows grows exponentially.

### Question 2 (Chu 6.4)

Assume that a and b are 3-bit inputs (let a be  $a_2a_1a_0$  and b be  $b_2b_1b_0$ ).

- a) Determine the Boolean expression for the relational operation a > b.
- b) Assume that b is a constant and that b = "101". Determine the Boolean expression again.
- c) Assume that a is a constant and that a = "101". Determine the Boolean expression again.

#### Solution

- a)  $a_2b_2' + (a_2 \oplus b_2)' a_1b_1' + (a_2 \oplus b_2)'(a_1 \oplus b_1)'a_0b_0'$
- b)  $a_2 a_1$
- c)  $b_2' + b_0' b_2 b_1'$