

DEPARTAMENTO DE INGENIERÍA INDUSTRIAL

IIND 2401 - Análisis de Decisiones de Inversión - 2015-10

TALLER 3 -Depreciación y construcción del Flujo de Caja Libre

FECHA DE ENTREGA:27 de Marzo de 2015 a las 2:00pm **LUGAR:**Casillero ML Séptimo Piso

Taller 3

Integrante 1: Sebastián Valencia Calderón Código: 201111578
Integrante 2: Claudia Daniela Bedoya Motta Código: 201211241

Sección Magistral: _

Numeral	Puntaje Total	Inciso	Puntaje máximo	Puntos Alcanzados
		Α	5	
		В	1	
		С	3	
1	20	D	3	
		E	3	
		F	5	
2	20	Α	20	
		Α	6	
		В	6	
		С	8	
3	40	D	6	
		E	6	
		F	4	
		G	4	
		Α	1	
		В	1	
		С	1	
		D	1	
4	10	E	1	
-	10	F	1	
		G	1	
		Н	1	
		1	1	
		J	1	
		Α	2	
		В	2	
5	10	С	3	
		D	2	
		E	1	

PUNTO 1 (20 Puntos)

a) (5 puntos) Calcule las tablas de depreciación para las licencias de telefonía móvil. Para esto haga una tabla para el método de Línea Recta, una para Reducción de Saldos y otra para la Suma de los Dígitos de los Años Crecientes (SDAC). Muestre en cada una de las tablas: El año, la depreciación del periodo, la depreciación acumulada y el valor en libros.

Para el cálculo de las tablas de depreciación, son necesarios el valor del activo, el valor de salvamento, el periodo de evaluación, y dependiendo del contexto, el valor de tiempo actual, es decir, el que se referencia para la actualidad. A continuación, se incluye una tabla con los valores más generales que sirven de referencia para obtener las tablas de depreciación por cada método. En cada una de las tablas, se muestra el año, la depreciación del periodo (mostrada simplemente como depreciación), la depreciación acumulada, y el valor en libros (marcado como valor final).

Concepto	Valor (millones USD)
Valor activo (Va)	100
Valor salvamento (Vs)	10
Número de periodos (N)	10

Tabla 1.1. Muestra los valores de referencia a utilizar en el cálculo de las tablas de depreciación.

Método: Línea recta.

$$D_j = \frac{(V_A - V_S)}{N} = \frac{100 - 10}{10} = 9; \ DA_j = DA_{j-1} - D_j; VL_j = V_A - DA_j$$

N	Valor inicial	Depreciación	Acumulada	Valor final
0	0	*	*	100
1	100	9	9	91
2	91	9	18	82
3	82	9	27	73
4	73	9	36	64
5	64	9	45	55
6	55	9	54	46
7	46	9	63	37
8	37	9	72	28
9	28	9	81	19
10	19	9	90	10

Tabla 1.2. Muestra la tabla de depreciación del activo (licencia), con el método de línea recta. Se observa que el valor final del último periodo, es igual al valor de salvamento. Además, la depreciación es constante.

Método: Reducción de saldos.

$$D_{j} = VL_{j-1}\left(1 - \sqrt[N]{\frac{V_{S}}{V_{A}}}\right) \rightarrow Reducción = \left(1 - \sqrt[N]{\frac{V_{S}}{V_{A}}}\right) = \left(1 - \sqrt[10]{\frac{10}{100}}\right) = 20.56\%$$

$$DA_{j} = DA_{j-1} - D_{j}; \ VL_{j} = V_{A} - DA_{j}$$

N	Valor inicial	Redux	Depreciación	Acumulada	Valor final
0	0	0	0	0	100
1	100	0.205671765	20.56717653	20.56717653	79.43282347
2	79.43282347	0.205671765	16.33708902	36.90426555	63.09573445
3	63.09573445	0.205671765	12.97701109	49.88127664	50.11872336
4	50.11872336	0.205671765	10.30800631	60.18928294	39.81071706
5	39.81071706	0.205671765	8.187940454	68.3772234	31.6227766
6	31.6227766	0.205671765	6.503912287	74.88113568	25.11886432
7	25.11886432	0.205671765	5.166241165	80.04737685	19.95262315
8	19.95262315	0.205671765	4.103691225	84.15106808	15.84893192
9	15.84893192	0.205671765	3.259677807	87.41074588	12.58925412
10	12.58925412	0.205671765	2.589254118	90	10

Tabla 1.3. Muestra la tabla de depreciación del activo (licencia), con el método de reducción de saldos. El valor final del último periodo, está influenciado por los decimales usados para hallar cada valor.

Método: SDAC.

$$D_{j} = V_{A} - V_{S} * \left(\frac{j}{S}\right) = V_{A} - V_{S} * \left(\frac{j}{\sum_{i=1}^{N} i}\right) = 100 - 10 * \left(\frac{j}{55}\right) = \frac{18j}{11}$$

$$DA_{j} = DA_{j-1} - D_{j}$$

$$VL_{j} = V_{A} - DA_{j}$$

N	Inicial	SDAC	Depreciación	Acumulada	Final
0	0	0	0	0	100
1	100	0.018181818	1.636363636	1.636363636	98.36363636
2	98.36363636	0.036363636	3.272727273	4.909090909	95.09090909
3	95.09090909	0.054545455	4.909090909	9.818181818	90.18181818
4	90.18181818	0.072727273	6.545454545	16.36363636	83.63636364
5	83.63636364	0.090909091	8.181818182	24.54545455	75.45454545
6	75.45454545	0.109090909	9.818181818	34.36363636	65.63636364
7	65.63636364	0.127272727	11.45454545	45.81818182	54.18181818
8	54.18181818	0.145454545	13.09090909	58.90909091	41.09090909
9	41.09090909	0.163636364	14.72727273	73.63636364	26.36363636
10	26.36363636	0.181818182	16.36363636	90	10

Tabla 1.3. Muestra la tabla de depreciación del activo (licencia), con el método SDAC.

b) (1 punto) Realizar una gráfica comparativa en la que se ilustren los tres métodos calculados en la pregunta anterior.

Gráfico 1.1. Muestra una gráfica de dispersión entre los distintos métodos de depreciación contra el tiempo. El eje horizontal representa el periodo, mientras el vertical, la depreciación

c) (3 puntos) Estimar cada uno de los flujos de caja correspondientes a la duración de la licencia, utilizando como método de depreciación la metodología de Línea Recta.

Primero, es debido sacar la tabla de operaciones por periodo, es decir el estado financiero sobre la liquidez de cada proyecto sobre cada periodo en particular. Esto sirve para cada uno de los flujos de caja libre con cada método de depreciación, por lo que ésta deducción, sirve para los dos siguientes literales. Sobre el EBIT, en cada periodo, se sabe el del primer periodo, y la tasa de crecimiento anual de éste. Las inversiones sobre activos fijos (CAPEX), se calculan como el tres porciento de la utilidad operacional. El capital de trabajo, es nulo para todos los periodos de tiempo. Además, la tasa impositiva (impuestos), son del 33% sobre los ingresos operacionales por periodo. A continuación, se explica el procedimiento analítico utilizado para la deducción de cada concepto contable para el FCL.

Ingresos operacionales: los ingresos de operación que generará el desarrollo del proyecto para cada una de las tres compañías, en cada porción temporal de la implementación del mismo.

Egresos operacionales: no existen, puesto que no se especifican en el enunciado. Es decir, no se especifica nada sobre los gastos recurrentes sobre la operación. Es sólo la renovación de las licencias.

Depreciación: la depreciación sobre la licencia que viene de cada método usado en particular. Éste será el factor variable fundamental de los tres análisis subsiguientes.

EBIT: ingresos operacionales – egresos operacionales – depreciación. De aquí, se despejan los ingresos operacionales, dado que los egresos son nulos. Para cada periodo, el ingresos operacional, se saca con la siguiente fórmula. EBIT + depreciación. El EBIT se especifica para e primer periodo, y se especifica su crecimiento anual.

Variación WK: se especifica nula.

Variación CAPEX: cada año se realizan inversiones sobre una tasa de los ingresos operacionales. Es necesario, calcular la variación de éstos en el tiempo.

Tasa impositiva operacional: Se calcula sobre los ingresos operacionales, es decir, es la tasa por los ingresos operacionales de cada periodo.

A continuación, se muestra el esquema general de solución para cada método de depreciación, para un periodo.

Tenga en cuenta que los valores de las celdas están en millones.

N	0	1
Ingresos operacionales	0	EBIT + Depreciación
Egresos operacionales	0	0
Depreciación	0	DEPENDE
EBIT	0	10
Var CAPEX	100	0.03(EBIT)
Var WK	0	0

Para el cálculo del FCL con el método de depreciación de línea recta, se debe considerar que el CAPEX para los periodos mayores a cero, debe hallarse como la inversión actual (el tres porciento del EBIT), menos la inversión del periodo inmediatamente anterior sobre activos fijos. Luego, el CAPEX será siempre el tres porciento del EBIT. A continuación, se muestra el FCL para la depreciación con línea recta.

N	I	Ε	D	EBIT	CAPEX	WK	TAX	FCL
0	0	0	0	0	100	0	0	-100
1	19	0	9	10	0.3	0	3.3	15.4
2	19.5	0	9	10.5	0.315	0	3.465	15.72
3	20.025	0	9	11.025	0.33075	0	3.63825	16.056
4	20.57625	0	9	11.57625	0.3472875	0	3.8201625	16.4088
5	21.1550625	0	9	12.1550625	0.364651875	0	4.011170625	16.77924
6	21.76281563	0	9	12.76281563	0.382884469	0	4.211729156	17.168202
7	22.40095641	0	9	13.40095641	0.402028692	0	4.422315614	17.5766121
8	23.07100423	0	9	14.07100423	0.422130127	0	4.643431395	18.00544271
9	23.77455444	0	9	14.77455444	0.443236633	0	4.875602965	18.45571484
10	24.51328216	0	9	15.51328216	0.465398465	0	5.119383113	18.92850058

VPN = COP 7.04 millones.

d) (3 puntos) Estimar cada uno de los flujos de caja correspondientes a la duración de la licencia, utilizando como método de depreciación la metodología de Reducción de Saldos.

N	I	Ε	D	EBIT	CAPEX	wĸ	TAX	FCL
0	0	0	0	0	100	0	0	-100
1	30.56717653	0	20.56717653	10	0.3	0	3.3	26.96717653
2	26.83708902	0	16.33708902	10.5	0.315	0	3.465	23.05708902
3	24.00201109	0	12.97701109	11.025	0.33075	0	3.63825	20.03301109
4	21.88425631	0	10.30800631	11.57625	0.3472875	0	3.8201625	17.71680631
5	20.34300295	0	8.187940454	12.1550625	0.364651875	0	4.011170625	15.96718045
6	19.26672791	0	6.503912287	12.76281563	0.382884469	0	4.211729156	14.67211429
7	18.56719757	0	5.166241165	13.40095641	0.402028692	0	4.422315614	13.74285327
8	18.17469545	0	4.103691225	14.07100423	0.422130127	0	4.643431395	13.10913393
9	18.03423224	0	3.259677807	14.77455444	0.443236633	0	4.875602965	12.71539265
10	18.10253628	0	2.589254118	15.51328216	0.465398465	0	5.119383113	12.5177547

VPN = COP 15.17 millones.

e) (3 puntos) Estimar cada uno de los flujos de caja correspondientes a la duración de la licencia, utilizando como método de depreciación la metodología SDAC.

N	I	Ε	D	EBIT	CAPEX	WK	TAX	FCL
0	0	0	0	0	100	0	0	-100
1	11.63636364	0	1.636363636	10	0.3	0	3.3	8.036363636
2	13.77272727	0	3.272727273	10.5	0.315	0	3.465	9.992727273
3	15.93409091	0	4.909090909	11.025	0.33075	0	3.63825	11.96509091
4	18.12170455	0	6.545454545	11.57625	0.3472875	0	3.8201625	13.95425455
5	20.33688068	0	8.181818182	12.1550625	0.364651875	0	4.011170625	15.96105818
6	22.58099744	0	9.818181818	12.76281563	0.382884469	0	4.211729156	17.98638382
7	24.85550186	0	11.45454545	13.40095641	0.402028692	0	4.422315614	20.03115755
8	27.16191332	0	13.09090909	14.07100423	0.422130127	0	4.643431395	22.0963518
9	29.50182717	0	14.72727273	14.77455444	0.443236633	0	4.875602965	24.18298757
10	31.87691852	0	16.36363636	15.51328216	0.465398465	0	5.119383113	26.29213695

VPN = COP 0.27 millones.

f) (3 puntos) Si usted tuviera la opción de elegir, ¿qué método emplearía para realizar la depreciación de los activos? Justifique de manera numérica (VPN) y conceptual. Suponga una tasa del 9% E.A.

Dado que el VPN es más alto con el método de reducción de saldos, ésta es la mejor alternativa de depreciación para la evaluación del proyecto, además, se genera valor a una tasa más constante que las demás alternativas, pues la depreciación más alta, se da cuando el dinero vale mas, mientras que cuando se pierde valor, se deprecia menos.

PUNTO 2 (20 Puntos)

A continuación, se listan los datos necesarios para la construcción de los flujos de caja libre. Primero, los generales, y luego los de cada una de las opciones.

Cantidad sedes	2
Periodos	10
Ingresos periódico	200
Tasa impositiva	33%
Costo de oportunidad (MV)	1.20%

Tabla 2.1. Muestra los conceptos de valor o cantidad asociados a los parámetros generales del desarrollo del problema.

Evaluación remodelación de casas:

Costo remodelación	120
Valor cada sede	250
Equipos médicos	10
Nuevos animales	110
Valor comida por periodo	18
Nuevos empleados	6
Salario empleados por periodo	115.2

Tabla 2.2. Muestra los conceptos de valor o cantidad asociados a los parámetros generales del desarrollo de la evaluación de la primera alternativa.

Evaluación construcción nueva sede:

Valor terreno	84
Valor edificio	110
Equipos médicos	5
Nuevos animales	130
Valor comida por periodo	20.4
Nuevos empleados	4
Salario empleados por periodo	74.4
Segunda fase:	
Valor comida por periodo	22.8
Nuevos empleados	2
Salario empleados por periodo	38.4

Tabla 2.3. Muestra los conceptos de valor o cantidad asociados a los parámetros generales del desarrollo de la evaluación de la segunda alternativa.

Además, es necesario considerar algunos aspectos generales asociados a la depreciación de cada activo relacionado con ambas alternativas, así como algunos aspectos relacionados la venta de algunos activos en el último periodo.

Depreciación	Años
Equipos	10
Remodelación	12
Inmueble	20

Tabla 2.4. Muestra algunos conceptos relevantes relacionados con la depreciación.

Venta	Valor
-------	-------

alt2. Terreno y edificación	Libros
alt1. Todo menos inmuebles	Libros
Equipos médicos	15% Valor compra

Tabla 2.5. Muestra algunos conceptos relevantes relacionados con la venta final de los activos.

A continuación, se deducen los conceptos de depreciación para cada activo, se asume que el valor de salvamento es cero. Cada activo se deprecia hasta 10, teniendo en cuenta los años de depreciación como N, sólo no se incluyen los valores innecesarios. Las depreciaciones en el caso de los equipos, se realiza para una y dos sedes.

Ν	Valor activo	Valor salvamento	Valor inicial	Depreciación	Acumulada	Valor final
0	5	0	0	0	0	5
1	5	0	5	0.5	0.5	4.5
2	5	0	4.5	0.5	1	4
3	5	0	4	0.5	1.5	3.5
4	5	0	3.5	0.5	2	3
5	5	0	3	0.5	2.5	2.5
6	5	0	2.5	0.5	3	2
7	5	0	2	0.5	3.5	1.5
8	5	0	1.5	0.5	4	1
9	5	0	1	0.5	4.5	0.5
10	5	0	0.5	0.5	5	0

Tabla 2.6. Depreciación en línea recta de un conjunto de equipos médicos para una sede.

N	Valor activo	Valor salvamento	Valor inicial	Depreciación	Acumulada	Valor final
0	10	0	0	0	0	10
1	10	0	10	1	1	9
2	10	0	9	1	2	8
3	10	0	8	1	3	7
4	10	0	7	1	4	6
5	10	0	6	1	5	5
6	10	0	5	1	6	4
7	10	0	4	1	7	3
8	10	0	3	1	8	2
9	10	0	2	1	9	1
10	10	0	1	1	10	0

Tabla 2.7. Depreciación en línea recta de un conjunto de equipos médicos para dos sedes.

N	Valor activo	Valor salvamento	Valor inicial	Depreciación	Acumulada	Valor final
0	120	0	0	0	0	120
1	120	0	120	10	10	110
2	120	0	110	10	20	100
3	120	0	100	10	30	90
4	120	0	90	10	40	80
5	120	0	80	10	50	70
6	120	0	70	10	60	60
7	120	0	60	10	70	50
8	120	0	50	10	80	40
9	120	0	40	10	90	30
10	120	0	30	10	100	20

Tabla 2.8. Depreciación en línea recta de un conjunto de equipos médicos para dos sedes.

N	Valor activo	Valor salvamento	Valor inicial	Depreciación	Acumulada	Valor final
0	110	0	0	0	0	110
1	110	0	110	5.5	5.5	104.5
2	110	0	104.5	5.5	11	99
3	110	0	99	5.5	16.5	93.5
4	110	0	93.5	5.5	22	88
5	110	0	88	5.5	27.5	82.5
6	110	0	82.5	5.5	33	77
7	110	0	77	5.5	38.5	71.5
8	110	0	71.5	5.5	44	66
9	110	0	66	5.5	49.5	60.5
10	110	0	60.5	5.5	55	55

Tabla 2.9. Depreciación en línea recta de un conjunto de equipos médicos para dos sedes.

FCL alternativa 1.

Se consideran los ingresos asociados al ingreso operacional (200), los egresos operacionales (salarios, y costos de comida), la depreciación, es decir la suma de cada una de las depreciaciones de los activos. A partir de esto, se saca el EBIT, y a partir de éste último, el valor de los impuestos. Para el CAPEX y el cambio del capital de trabajo, e considera la inversión inicial de cada alternativa, la disrupción del periodo seis para la segunda alternativa y la venta final de los activos por los valores en libros de acuerdo a la depreciación. A continuación, se muestra el FCL para cada alternativa.

N		Е	D	EBIT	CAPEX	WK	TAX	FCL
0	0	0	0	0	130	0	0	-130
1	200	133.2	11	55.8	0	0	18.414	48.386
2	200	133.2	11	55.8	0	0	18.414	48.386
3	200	133.2	11	55.8	0	0	18.414	48.386
4	200	133.2	11	55.8	0	0	18.414	48.386
5	200	133.2	11	55.8	0	0	18.414	48.386
6	200	133.2	11	55.8	0	0	18.414	48.386
7	200	133.2	11	55.8	0	0	18.414	48.386
8	200	133.2	11	55.8	0	0	18.414	48.386
9	200	133.2	11	55.8	0	0	18.414	48.386
10	200	133.2	11	55.8	-1.5	0	18.414	49.886

VPN COP1.94

FCL alternativa 2.

N	1	Е	D	EBIT	CAPEX	WK	TAX	FCL
0	0	0	0	0	199	0	0	-130
1	200	79.4	6	114.6	0	0	37.818	82.782
2	200	79.4	6	114.6	0	0	37.818	82.782
3	200	79.4	6	114.6	0	0	37.818	82.782
4	200	79.4	6	114.6	0	0	37.818	82.782
5	200	79.4	6	114.6	0	0	37.818	82.782
6	200	140.6	6	53.4	0	0	17.622	41.778
7	200	140.6	6	53.4	0	0	17.622	41.778
8	200	140.6	6	53.4	0	0	17.622	41.778
9	200	140.6	6	53.4	0	0	17.622	41.778
10	200	140.6	6	53.4	-84.75	0	17.622	126.528

VPN (COP7.60)

Se recomienda la ejecución de la segunda alternativa pues el VPN es mayor. Para el VPN, la tasa equivalente a 1.2%MV es 15.39% EA.

PUNTO 3 (40 Puntos)

a) (6 Puntos) Muestre la depreciación de cada periodo de las máquinas y los camiones.

Para este punto, como en el enunciado nos dicen que el valor de salvamento TOTAL de las máquinas es 200000000 pesos, al ser 3 máquinas, el valor de salvamento de cada una se calculó de la siguiente forma:

$$\frac{200000000}{3} = 66666666666667 \ pesos$$

Para las depreciaciones, como son de línea recta, se calculó usando la siguiente fórmula:

Valor del activo – valor de salvamento
$$\frac{Valor del activo - valor de salvamento}{10 \ a\~nos} = valor puesto en "Depreciación"$$

El "SaldoFinal" es el "saldo inicial" – la depreciación en un periodo t.

El "Saldo inicial" es el "saldo final" del periodo anterior.

	Depreciaciones										
	0	1	2	3	4	5	6	7	8	9	10
	Depreciación Maq trituradora										
Saldo Inicial		380000000	348666667	317333333	286000000	254666667	223333333	192000000	160666667	129333333	98000000
Depreciación		-31333333,3	-31333333	-31333333	-31333333	-31333333	-31333333	-31333333	-31333333	-31333333	-31333333
Saldo Final	380000000	348666666,7	317333333	286000000	254666667	223333333	192000000	160666667	129333333	98000000	66666666,7
	-			Depred	iación Molino)					
Saldo Inicial		550000000	501666667	453333333	405000000	356666667	308333333	260000000	211666667	163333333	115000000
Depreciación		-48333333,3	-48333333	-48333333	-48333333	-48333333	-48333333	-48333333	-48333333	-48333333	-48333333
Saldo Final	550000000	501666666,7	453333333	405000000	356666667	308333333	260000000	211666667	163333333	115000000	66666666,7
				Depred	iación Horno	5					
Saldo Inicial		480000000	438666667	397333333	356000000	314666667	273333333	232000000	190666667	149333333	108000000
Depreciación		-41333333,3	-41333333	-41333333	-41333333	-41333333	-41333333	-41333333	-41333333	-41333333	-41333333
Saldo Final	480000000	438666666,7	397333333	356000000	314666667	273333333	232000000	190666667	149333333	108000000	66666666,7
				Deprecia	ación Camion	es					
Saldo Inicial			1200000000	1080000000	960000000	840000000	720000000	600000000	480000000	360000000	240000000
Depreciación			-120000000	-120000000	-120000000	-120000000	-120000000	-120000000	-120000000	-120000000	-120000000
Saldo Final		1200000000	1080000000	960000000	840000000	720000000	600000000	480000000	360000000	240000000	120000000
TOTAL DEPRECIACIÓN		-121000000	-241000000	-241000000	-241000000	-241000000	-241000000	-241000000	-241000000	-241000000	-241000000

Tabla 3.1 Depreciaciones de máquinas y camiones

b) (6 Puntos) Calcule el EBIT de cada año de la vida útil del proyecto.

Teniendo en cuenta los resultados obtenidos anteriormente, se muestra el siguiente cálculo del EBIT. Tenga encuenta que en las celdas de la tabla, los valores ya tienen el signo. Al EBITDA se le suman los valores de las celdas que están abajo (con su respectivo signo -).

	Calculo del EBIT												
	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025		
	0	1	2	3	4	5	6	7	8	9	10		
Ingresos	1	1750000000	1750000000	1750000000	1750000000	1750000000	1750000000	1750000000	1750000000	1750000000	1750000000		
Costos m. prima	1	-40000000	-400000000	-40000000	-400000000	-40000000	-40000000	-400000000	-40000000	-400000000	-400000000		
Costos admin	1	-250000000	-250000000	-250000000	-250000000	-250000000	-250000000	-250000000	-250000000	-250000000	-250000000		
EBITDA		1100000000	1100000000	1100000000	1100000000	1100000000	1100000000	1100000000	1100000000	1100000000	1100000000		
Depreciación Mag triturado	ra	-31333333,3	-31333333	-31333333	-31333333	-31333333	-31333333	-31333333	-31333333	-31333333	-31333333		
Depreciación Molino		-48333333,3	-48333333	-48333333	-48333333	-48333333	-48333333	-48333333	-48333333	-48333333	-48333333		
Depreciación Hornos		-41333333,3	-41333333	-41333333	-41333333	-41333333	-41333333	-41333333	-41333333	-41333333	-41333333		
Depreciación Camiones			-120000000	-120000000	-120000000	-120000000	-120000000	-120000000	-120000000	-120000000	-120000000		
EBIT		979000000	859000000	859000000	859000000	859000000	859000000	859000000	859000000	859000000	859000000		

Tabla 3.2 Tabla que muestra el cálculo del EBIT

c) (8 Puntos) Calcule el Capital de Trabajo de cada periodo.

Teniendo en cuenta que para calcular estas cuentas, teniendo en cuenta la rotación, se utilizaron las siguientes fórmulas:

$$Inventario = \frac{(Cosoto\ de\ ventas)*(Rotación\ de\ inventario\ en\ el\ periodo\ t)}{365\ días}$$

Los costos de ventas son los mismos costos de materia prima, es decir, en este caso el de todos los periodos es 400000000.

Capital de Trabajo (WC)											
	0	1	2	3	4	5	6	7	8	9	10
Rotación inventario	-	7	9	8	12	7	9	7	11	10	7
Rotación cuentas por pagai	-	20	25	18	25	24	26	20	24	17	23
inventario		7671232,877	9863013,7	8767123,29	13150684,9	7671232,88	9863013,7	7671232,88	12054794,5	10958904,1	7671232,88
CXP		21917808,22	27397260,3	19726027,4	27397260,3	26301369,9	28493150,7	21917808,2	26301369,9	18630137	25205479,5
WC		-14246575,3	-17534247	-10958904	-14246575	-18630137	-18630137	-14246575	-14246575	-7671232,9	-17534247
delta WC		-14246575,3	-3287671,2	6575342,47	-3287671,2	-4383561,6	0	4383561,64	0	6575342,47	-9863013,7

Tabla 3.3 Tabla que muestra el cálculo del Capital de trabajo y el delta del capital de trabajo

d) (6 Puntos) Muestre el CAPEX del proyecto.

El resultado que se muestra en el CAPEX es la diferencia entre el valor de los activos fijos en el periodo t+1, menos el valor de los activos fijos en el periodo t.

CAPEX											
	0	1	2	3	4	5	6	7	8	9	10
Activos Fijos	4910000000	6110000000	6110000000	6110000000	6110000000	6110000000	6110000000	6110000000	6110000000	6110000000	604000000
CAPEX	4910000000	1200000000	0	0	0	0	0	0	0	0	-70000000

Tabla 3.4 Tabla que muestra el CAPEX de cada periodo

e) (6 Puntos) Construya el flujo de caja libre.

Para este punto se debe tener en cuenta la siguiente consideración. En clase, se determinó que cuando yo vendo mis activos, y mi valor de salvamento, como en este caso, es mayor al precio al que vendí el activo, entonces el gobierno en lugar de cobrarme un impuesto por ganancia ocasional, me da un dinero como ayuda, ya que yo esperaba obtener por esos activos al menos un dinero igual al valor de salvamento. Este dinero que me da como ayuda, para este ejercicio se calcula cogiendo el valor de salvamento total de las máquinas (200000000) y se le resta el valor al que vendí las máquinas (70000000), luego a esto se le

multiplica el valor de los impuestos (en este caso se preguntó al profesor Nicolas que valor tomar y nos dijo que tomáramos el mismo de los impuestos por ganancias ocasionales, es decir 0,33), y el resultado de estas operaciones entra a sumar el FCL. A continuación se presentan las operaciones descritas:

$$200000000 - 70000000 = 130000000$$

 $130000000 * 0.33 = 42900000$

Tenga también en cuenta que el valor del delta WC entra a restar, y el valor del Capex también entra a restar.

La ayuda por venta de activos suma, y el impuesto operacional resta.

Flujo de Caja Libre											
	0	1	2	3	4	5	6	7	8	9	10
EBIT	0	979000000	859000000	859000000	859000000	859000000	859000000	859000000	859000000	859000000	859000000
Depreciación	0	-121000000	-241000000	-241000000	-241000000	-241000000	-241000000	-241000000	-241000000	-241000000	-241000000
EBITDA	0	1100000000	1100000000	1100000000	1100000000	1100000000	1100000000	1100000000	1100000000	1100000000	1100000000
delta WC	0	-14246575,3	-3287671,2	6575342,47	-3287671,2	-4383561,6	0	4383561,64	0	6575342,47	-9863013,7
Capex	4910000000	1200000000	0	0	0	0	0	0	0	0	-70000000
Ayuda por venta de activos	0	0	0	0	0	0	0	0	0	0	42900000
Impuesto operacional	0	323070000	283470000	283470000	283470000	283470000	283470000	283470000	283470000	283470000	283470000
FCL	-4910000000	-408823425	819817671	809954658	819817671	820913562	816530000	812146438	816530000	809954658	939293014

Tabla 3.5 Tabla que muestra el flujo de caja libre y sus respectivas cuentas.

f) (4 Puntos) ¿Cuál es la rentabilidad generada por este proyecto? ¿Cuál es el VPN?

En las siguientes tablas se muestra el VPN (al final de la tabla) y la TIR (rentabilidad) del proyecto.

Para calcular el VPN se trajo cada valor que se obtuvo en el FCL a presente usando la fórmula:

$$\frac{valor \ del \ FCL \ en \ periodo \ t}{(1+0,12)^t}$$

y luego se sumaron estos valores ya en presente para hallar el VPN.

La tir se calculó con la fórmula de Excel

A continuación se presentan estos resultados:

VPN								
0	-4910000000							
1	-365020915							
2	653553628,2							
3	576509726,9							
4	521008951,1							
5	465808401,1							
6	413679509,4							
7	367373804,1							
8	329782772,1							
9	292077769,3							
10	302427211,7							
VPN	-1352799141							

TIR	
6,0314%	

Tablas 3.6 y 3.7 VPN y TIR del proyecto

g) (4 Puntos) ¿Usted recomendaría realizar el proyecto? ¿Por qué?

No recomendaríamos realizar el proyecto ya que el VPN es negativo, y la TIR es menor al costo de oportunidad, lo cual indica que el proyecto no es conveniente.

PUNTO 4 (10 Puntos)

a) (1 punto) ¿Qué información le proporciona el Flujo de Caja Libre (FCL)?

El FCL permite determinar los excedentes y requerimientos de dinero en cada periodo y también permite visualizar de manera adecuada la situación de liquidez real y de exigencia de recursos financieros de un proyecto o empresa [1].

b) (1 punto) ¿Qué información le proporciona la utilidad neta? ¿Qué diferencia tiene con el FCL?

La utilidad neta es la ganancia contable (o pérdida) que genera la compañía en un periodo de tiempo determinado derivado de la diferencia entre ingresos, costos y gastos. Proviene del estado de pérdidas y ganancias y no necesariamente refleja la liquidez de la compañía. La utilidad se rige por el principio de causación a diferencia del FCL, el cual se rige por el principio de caja. La utilidad no refleja necesariamente todos los flujos de efectivo pertinentes mientras el FCL si lo hace [1].

c) (1 punto) ¿Qué información le proporciona el Flujo de Caja Disponible? ¿Qué diferencia tiene con el FCL y la utilidad neta? ¿Cuál preferiría usted para evaluar el rendimiento de un proyecto y por qué?

El Flujo de caja disponible tiene como propósito calcular el efectivo disponible para los accionistas después de atender obligaciones financieras relacionadas a la deuda de largo plazo, a diferencia del FCL, el cual busca analizar una inversión en si misma [2], y a diferencia de la utilidad neta que es la

ganancia contable (o pérdida) que genera la compañía en un periodo de tiempo determinado. Preferiría usar el FCL ya que refleja la situación de liquidez real de un proyecto.

d) (1 punto) Si usted está dispuesto a adquirir un terreno por 3.000 MCOP, ¿qué efecto esperaría sobre el FCL y por qué?

El efecto que esperaría es que al comprarlo, en ese periodo, al FCL se le resta 3.000 MCOP por CAPEX, por lo tanto hay menos liquidez.

e) (1 punto) Si sus cuentas por cobrar disminuyeron 550 MCOP respecto al año anterior, ¿qué efecto esperaría sobre el FCL y por qué?

Si mis cuentas por cobrar disminuyeron 550 MCOP, esto me dice que ya me pagaron algo de ese dinero, por lo cual esto entra a restar al delta del capital de trabajo, y dado que el delta del capital de trabajo entra a restar (- * - = +) al FCL, el FCL es más grande. Esto se debe a que si me pagan, tengo más liquidez.

f) (1 punto) Si sus cuentas por pagar aumentaron en 800 MCOP respecto al año anterior, ¿qué efecto esperaría sobre el FCL y por qué?

Si mis cuentas por pagar aumentaron en 800 MCOP respecto al año anterior, me dice que entró más dinero a mi bolsillo (dinero prestado), por lo tanto esto entra a restar a la variación del capital de trabajo, y dado que la variación de capital de trabajo entra a restar al FCL (- * - = +), el FCL aumenta. Esto se debe a que si tengo más dinero en mi bolsillo soy más líquido.

g) (1 punto) ¿Por qué se debe incluir los movimientos en el CAPEX y capital de trabajo? ¿Qué signo debería tener y por qué?

Se debe incluir ya que éste es un ajuste adicional a la Utilidad Operacional (EBIT) para incorporar movimientos de caja que no se evidencian en el PyG. Refleja la compra y venta de activos fijos de una firma o un proyecto de inversión. Debe entrar con signo negativo (a restar) ya que este fue dinero que salió de nuestros bolsillos y esto nos hace tener menos liquidez. Cuando entra a sumar (es decir el capex es negativo, y con el negativo con el que entra, queda sumando al FCL) es porque se vendieron activos fijos de un periodo a otro.

h) (1 punto) Teniendo presente las transacciones realizadas en los literales d. e. y f., asumiendo que su EBIT es de 5.000 MCOP y las depreciaciones y amortizaciones son 0. Calcule el FCL del periodo. Asuma que la tasa impositiva es del 33%

La siguiente tabla muestra el FCL. Los valores están en MCOP.

FCL	
EBIT	5000
Depreciaciones	0
EBITDA	5000
delta WC	-1350
CAPEX	3000
Impuesto operacional	1650
FCL	1700

Tabla 4.1 Flujo de Caja Libre

i) (1 punto) En un escenario con impuestos, ¿Qué impacto tiene el método de depreciación utilizado? ¿Cuál método preferiría usted?

En un escenario con impuestos dependiendo del método de depreciación, nos pueden cobrar más o menos impuestos, lo cual disminuye o aumenta nuestra liquidez. Preferiríamos un método que haga que el valor de la depreciación sea mayor (con el fin de que reste más nuestros ingresos operacionales sobre los cuales se calculan los impuestos a pagar). Esto sería con un método de depreciación acelerada, el método de la doble tasa.

j) (1 punto) ¿Qué pasaría si fuese un escenario libre de impuestos?

En un escenario libre de impuestos, no importa que método de depreciación se utilice, al final del horizonte de tiempo se va a obtener el mismo resultado en nuestra liquidez.

REFERENCIAS

- {1} Diapositivas de clase
- {2} Libro del curso. Ingeniería Económica de Julio Villareal.