Modello di Costo per un Messaggio in Chat

Di seguito è presentato il modello di calcolo del costo per singolo messaggio (domanda+risposta), includendo tutti i parametri necessari a determinare la dimensione dell'input al modello GPT (storia della chat, risultati di ricerca, ecc.) e dell'output generato, oltre ai costi di retrieval e salvataggio. Questo focalizza la stima esclusivamente sul costo di un messaggio e non ripete il resto dei calcoli mensili o dell'ingestion dei contenuti.

1. Componenti di Costo

Per ciascun **messaggio** (inteso come "turno utente + risposta AI"), il costo totale C_{msg} è dato dalla somma di:

$$C_{\text{msg}} = C_{\text{LLM}} + C_{\text{retrieval}} + C_{\text{store}}.$$

- C_{LLM} : costo di inferenza del modello GPT-4o/Mini, calcolato in base ai **token di input** (prompt) e **token di output** (risposta).
- $C_{\text{retrieval}}$: costo relativo alla **ricerca vettoriale** (embedding della query, query su KBox, lettura chunk).
- C_{store} : costo di **scrivere** nel database il testo del messaggio e la risposta (o eventuali embedding aggiuntivi se indicizziamo la conversazione).

2. Calcolo dei Token di Input

- 2.1 Storia della Chat Si assume che la chat mantenga un numero massimo di coppie di messaggi (utente+AI) in contesto ad esempio, 25 coppie. Se ciascuna coppia di messaggi ha una lunghezza media di $T_{\rm history}$ token per messaggio (sommando utente e AI, o separandoli a seconda del design), allora la parte di "storia" inclusa nel prompt vale:
 - Numero di messaggi di "storia" effettivamente inclusi: fino a $25 \times 2 = 50$ messaggi, ma in molti casi si condensano i precedenti o si limita a 25 scambi totali.
 - Token totali di storia $T_{\text{history_total}} = (\# \text{ messaggi di contesto}) \times T_{\text{history}}$.

Se semplifichiamo assumendo 25 coppie complete e lunghezza media $\bar{t}_{\rm hist}$ per messaggio, i token "storia" sono:

$$T_{\text{history_total}} = 25 \times 2 \times \bar{t}_{\text{hist}} = 50 \bar{t}_{\text{hist}}.$$

(Se la chat è più breve, si userà un numero minore; se superasse 25 coppie, si taglia la parte più vecchia.)

- **2.2 Input Utente Corrente** Al di là della storia passata, l'utente invia il **nuovo messaggio** (la "domanda"):
 - Se ha lunghezza media \bar{t}_{user} token, questa si somma direttamente al prompt.
- **2.3 Risultati di Retrieval dalle KBox** Se l'app fa **RAG** (Retrieval Augmented Generation), si calcolano i chunk di testo provenienti da una o più KBox. Supponiamo:
 - N_{kbox} = numero medio di KBox interrogate (es. 1,5).
 - $R_{\text{per_kbox}} = \text{numero di chunk ("risultati") recuperati per ogni KBox (es. 3)}$.
 - $\bar{t}_{\rm chunk}$ = lunghezza media di ciascun chunk (es. 300 token).

Il totale di token "di contesto" aggiunti dal retrieval è:

$$T_{\text{retrieval}} = N_{\text{kbox}} \times R_{\text{per_kbox}} \times \bar{t}_{\text{chunk}}.$$

(Esempio: 1,5 KBox \times 3 chunk \times 300 token = 1350 token di contesto da documenti.)

2.4 Totale Token di Input Sommando storia + messaggio utente + chunk di retrieval:

$$T_{\rm in} = T_{\rm history_total} + \bar{t}_{\rm user} + T_{\rm retrieval}$$
.

3. Calcolo dei Token di Output

La risposta generata dal modello ha una lunghezza media $\bar{t}_{\rm out}$ (ad esempio ~ 300 token). In caso di risposte più lunghe, ovviamente il costo cresce linearmente.

4. Costo di Inferenza LLM (C_{LLM})

Avendo $T_{\rm in}$ token in input e $T_{\rm out}$ token in output, e definendo:

- $p_{\rm in} = {\rm costo} \ {\rm per} \ {\rm token} \ {\rm di} \ {\rm input} \ ({\rm es.:} \ {\rm GPT-4o} \ 0.005 \ \$/1k, \ {\rm GPT-4o} \ {\rm Mini} \ 0.00015 \ \$/1k),$
- $p_{\text{out}} = \text{costo}$ per token di output (es.: GPT-4
o0.015\$/1k, GPT-4
o Mini0.00060\$/1k),

allora:

$$C_{\text{LLM}} = \frac{T_{\text{in}}}{1000} p_{\text{in}} + \frac{T_{\text{out}}}{1000} p_{\text{out}}.$$

(Se usiamo un modello **misto** con frazione f di messaggi su GPT-40 full e (1-f) su Mini, si fa la media pesata dei costi. Ma per **il singolo messaggio** in quell'istante useremo i parametri del modello selezionato.)

5. Costo di Retrieval (C_{retrieval})

- Embedding della query utente ($\sim \bar{t}_{user}$ token, costo $\sim \bar{t}_{user} \times C_{embed}$). Spesso ; 10⁻⁵ \$.
- Query vettoriale su Atlas (v3): $\sim 10^{-6}$ – 10^{-5} \$.
- Lettura chunk (d4): qualche microcentesimo su base di dimensioni ridotte.

In genere si approssima $C_{\rm retrieval} \approx 10^{-5}$ \$ (trascurabile rispetto a $C_{\rm LLM}$).

6. Costo di Salvataggio (C_{store})

- Scrittura del nuovo messaggio utente + della risposta AI (2 doc), ciascuno $\sim \bar{t}_{user}$ e \bar{t}_{out} token. In Atlas, 1–2 WPU totali $\sim 10^{-6}$ \$.
- Eventuale **embedding** della conversazione se la si indicizza \rightarrow qualche token in embedding. Spesso è anch'esso dell'ordine di 10^{-5} \$.

7. Formula Riassuntiva per il Costo del Messaggio

$$C_{\text{msg}} = \underbrace{\frac{T_{\text{in}}}{1000} p_{\text{in}} + \frac{T_{\text{out}}}{1000} p_{\text{out}}}_{C_{\text{LLM}}} + C_{\text{retrieval}} + C_{\text{store}}.$$

Dove:

- $T_{\rm in} = 50 \, \bar{t}_{\rm hist} + \bar{t}_{\rm user} + \left(N_{\rm kbox} \times R_{\rm per_kbox} \times \bar{t}_{\rm chunk} \right)$ (nell'esempio con 25 coppie massime),
- $T_{\rm out} \approx \bar{t}_{\rm out}$,
- $C_{\text{retrieval}}$ e C_{store} sono piccoli (embedding query + ricerche + scritture DB), di solito ~ 10^{-5} \$ complessivi.

Esempio Numerico

- 25 coppie di messaggi in storia, ciascuno $\bar{t}_{hist} = 100$ token $\rightarrow 50 \times 100 = 5000$ token.
- Input utente $\bar{t}_{user} = 50$ token.
- KBox: $N_{\text{kbox}} = 1, 5, R_{\text{per_kbox}} = 3, \bar{t}_{\text{chunk}} = 300 \rightarrow 1, 5 \times 3 \times 300 = 1350$ token di contesto.
- Totale input = 5000 + 50 + 1350 = 6400 token.
- Output: $\bar{t}_{\text{out}} = 300 \text{ token (esempio)}.$

Caso GPT-40 Full Con $p_{in} = 0,005 \text{ e } p_{out} = 0,015$:

$$C_{\text{LLM}} = \frac{6400 \times 0,005}{1000} + \frac{300 \times 0,015}{1000} = 0,032 + 0,0045 = 0,0365$$
 \$.

(3,65 centesimi). A cui si aggiunge retrieval/store $\sim 10^{-5}$ \$ \rightarrow totale ~ 0.03651 \$.

Caso GPT-40 Mini Con $p_{\text{in}} = 0,00015$ e $p_{\text{out}} = 0,00060$:

$$C_{\rm LLM} = \frac{6400 \times 0,00015}{1000} + \frac{300 \times 0,00060}{1000} = 0,00096 + 0,00018 = 0,00114 \,\$.$$

(0.114 centesimi). Sommando retrieval/store $\approx 0.00115 \text{ }\$$ per messaggio.

In sintesi, questo è il *modello dettagliato* per calcolare il costo di un singolo messaggio in chat, tenendo conto di:

- 1. Storia massima (ad es. 25 coppie) $\rightarrow T_{\text{history_total}}$.
- 2. Input utente $\rightarrow \bar{t}_{user}$.
- 3. Contenuto di retrieval (numero KBox \times chunk) $\rightarrow T_{\text{retrieval}}$.
- 4. Output generato \bar{t}_{out} .
- 5. **Costi** di embedding query, database, salvataggio $(C_{\text{retrieval}} + C_{\text{store}})$.

Il risultato finale è la formula (riportata nel riquadro) che, sostituendo i vari parametri, produce **il costo unitario** (in dollari) per la singola interazione (turno di domanda-risposta).

Descrizione della Formula Totale Generale

Vogliamo ora descrivere tutti i parametri coinvolti e presentare la formula generale con una versione sintetica e una versione estesa che mostra ogni sotto-parametro nel dettaglio.

Versione Sintetica

Indichiamo con:

- $T_{\rm in}$: token totali di input (storia chat + messaggio utente + chunk retrieval),
- T_{out}: token di output (risposta generata),
- $p_{\rm in}$, $p_{\rm out}$: costi per token di input/output (dipendono dal modello GPT-40 vs GPT-40 Mini),
- $C_{\text{retrieval}}$: costo retrieval (embedding query + query store + letture),
- C_{store} : costo salvataggio (scritture DB).

Allora la formula generica è:

$$C_{\text{msg}} = \underbrace{\frac{T_{\text{in}}}{1000} p_{\text{in}} + \frac{T_{\text{out}}}{1000} p_{\text{out}}}_{\text{Costo LLM}} + C_{\text{retrieval}} + C_{\text{store}}.$$

Versione Estesa (con sotto-parametri)

Approfondiamo i dettagli di ciascun termine:

- 1. $T_{\rm in} = T_{\rm history_total} + \bar{t}_{\rm user} + (N_{\rm kbox} \times R_{\rm per_kbox} \times \bar{t}_{\rm chunk})$
 - $T_{\text{history-total}} = (\# \text{ coppie di storia} \times 2) \times \bar{t}_{\text{hist}}, \text{ tipicamente } \leq 25 \text{ coppie},$
 - \bar{t}_{user} : lunghezza media del messaggio utente in token,
 - $N_{\rm kbox}$: numero di KBox coinvolte in media (es. 1,5),
 - $R_{\text{per_kbox}}$: chunk restituiti da ciascuna KBox (es. 3),
 - $\bar{t}_{\rm chunk}$: token medi per chunk (es. 300).
- 2. $T_{\text{out}} = \bar{t}_{\text{out}}$, lunghezza media della risposta LLM in token (es. 300).
- 3. $p_{\rm in}, p_{\rm out}$: costi per token in e out (dipende dal modello). Ad esempio:

$$\begin{split} \text{GPT-4o:} \ \ p_{\text{in}} \approx 0,005 \ \$/1\text{k}, \quad p_{\text{out}} \approx 0,015 \ \$/1\text{k}, \\ \text{GPT-4o Mini:} \ \ p_{\text{in}} \approx 0,00015 \ \$/1\text{k}, \quad p_{\text{out}} \approx 0,00060 \ \$/1\text{k}. \end{split}$$

- 4. $C_{\text{retrieval}}$ copre:
 - l'embedding della query (costo $\approx \bar{t}_{user} \times C_{embed}$),
 - la query vettoriale (pochi *RPU* su Atlas),
 - la lettura dei chunk dal DB (pochi RPU).

Spesso stimato come costante di $\sim 10^{-5}$ \$.

- 5. C_{store} copre:
 - la scrittura di messaggio utente + risposta nel DB (1-2 WPU),
 - $\bullet\,$ eventuale embedding della conversazione.

Anch'esso $\sim 10^{-5}$ \$.

Formula Estesa Finale:

$$C_{\rm msg} = \left[\left(T_{\rm history_total} + \bar{t}_{\rm user} + N_{\rm kbox} \times R_{\rm per_kbox} \times \bar{t}_{\rm chunk} \right) \frac{p_{\rm in}}{1000} \right] + \left[\bar{t}_{\rm out} \times \frac{p_{\rm out}}{1000} \right] + C_{\rm retrieval} + C_{\rm store}.$$

Significato dei Parametri (riassunto):

- \bar{t}_{hist} : n. token medi per messaggio nella *storia* (p.es. 100).
- \bar{t}_{user} : n. token medi di un messaggio utente (p.es. 50).
- \bar{t}_{out} : n. token medi della risposta LLM (p.es. 300).
- N_{kbox} : media di KBox coinvolte per query (p.es. 1,5).
- $R_{\text{per_kbox}}$: chunk per KBox (p.es. 3).
- $\bar{t}_{\rm chunk}$: n. token in un chunk (p.es. 300).
- $p_{\rm in}, p_{\rm out}$: costi per 1k token in input/output.
- $C_{\text{retrieval}}$: stima fissa per embedding della query e RPU (p.es. 10^{-5} \$).
- C_{store} : stima fissa per scritture DB e embedding conversazione (p.es. 10^{-5} \$).