ML Algorithms & Outliers: A Complete Guide

Why Outliers Matter

Outliers can:

- Skew statistical measures (mean, variance)
- Distort model performance (e.g., regression coefficients, cluster centroids)
- Reduce generalization by fitting noise instead of true patterns

Algorithms Highly Sensitive to Outliers

Worst choices for noisy or uncleaned data

Algorithm	Vulnerability	Mitigation Strategy
Linear Regression	Squared error amplifies outliers	Use Huber loss or RANSAC
Logistic Regression	Extreme features shift probabilities	Apply L1 regularization (Lasso)
KNN	Distance metrics misclassify outliers	Use Mahalanobis distance
K-Means	Centroids drift toward outliers	Try K-Medoids or DBSCAN
PCA	Outliers dominate variance directions	Use Robust PCA

Robust Algorithms

Better choices when outliers exist

Algorithm	Why It Works	Pro Tip
Decision Trees	Splits ignore magnitude, only rank	Limit max_depth to prevent overfit
Random Forest	Bootstrap aggregation dilutes outliers	Use for anomaly detection
XGBoost/LightGBM	Focuses on residuals	Tune min_child_weight
SVM (RBF Kernel)	Maximizes margin; isolates outliers	Increase gamma

Advanced Techniques

1. Preprocessing

• Winsorization: Cap values at 5th/95th percentiles

Quantile Transformation: Non-linear mapping

• Robust Scaling: (X - median) / IQR

2. Anomaly Detection

• Isolation Forest: Effective for high-dimensional data

• **DBSCAN**: Density-based clustering with noise exclusion

3. Modeling Adjustments

• **Huber Regression**: Hybrid MSE/MAE loss function

• Quantile Regression: Predicts conditional median or quantile

Outlier Handling Flowchart

Outlier Handling in Data Analysis

Practical Checklist

- Visualize first: Boxplots, scatterplots
- Scale robustly: Avoid StandardScaler
- Test models: Compare Random Forest vs. Linear Regression
- Iterate: Remove → Train → Validate

Real-World Example

Problem: Predicting house prices with luxury home outliers **Solution**:

- Log-transform prices
- Detect outliers with Isolation Forest
- Train XGBoost with quantile loss

Further Reading

- Scikit-learn's Robust Scaling Guide
- XGBoost documentation on regularization and loss functions
- Research papers on Robust PCA and Isolation Forest