Problema 1 - Echipe de lucru

100p

Elevii unei clase urmează să formeze echipe de lucru în vederea pregătirii pentru olimpiada de informatică. Pentru a se forma echipele fiecare elev extrage dintr-o urnă un număr între 50 și 1000 (nu există doi elevi cu același număr). Pentru a forma echipele fiecare elev are nevoie de o valoare de identificare. Aceasta se va determina numărând câți divizori ai numărului extras pot fi scriși ca produs de cifre 2 și 3, respectiv puteri ale lui 2 și 3.

Echipele trebuie să aibă minim 2 membri și trebuie să existe minim două echipe. Se grupează în echipă elevii care au aceeași valoare de identificare, iar elevii care au valori de identificare unice vor forma o echipă separat.

Se dă fișierul date.in care conține pe fiecare linie numele elevului (format din nume și prenume – lungime maximă 10 fiecare) și numărul extras.

Se cere fișierul date out care să conțină numărul echipei și numele elevilor din fiecare echipă, pe câte un rând, separate prin spații, sau textul *Echipele nu se pot forma cu numerele alese!* urmat de motivul pentru care nu se pot forma echipele, în cazul în care acestea nu se pot forma.

Explicații:

Numerele care pot fi divizori numărați în calculul identificatorului sunt 6, 12, 18, 24, 36, ... deoarece toate se pot scrie ca produs de cifre 2 și 3.

Valoarea 8 nu se ia in calcul deoarece nu se divide cu 3.

Exemple:

Date.in	Date.out
Alb Mihai 240 Pop Diana 120 Popescu Marius 672 Ardelean Diana 720 Bala Ciprian 144	Echipa numarul 1: Pop Diana, Alb Mihai, Popescu Marius Echipa numarul 2: Bala Ciprian, Ardelean Diana
Alb Mihai 120 Pop Diana 121 Popescu Marius 122 Ardelean Diana 123 Bala Ciprian 125 Popus Carmen 127	Echipele nu se pot forma cu numerele alese! Exista un elev care nu poate fi incadrat in nicio echipa.
Alb Mihai 71 Pop Diana 142 Popescu Marius 63 Ardelean Diana 55 Bala Ciprian 51 Popus Carmen 99 Bala Adriana 80	Echipele nu se pot forma cu numerele alese! Toti elevii au acelasi identificator.

Clasa a 8-a Sursa: ID2.cpp, ID2.c, ID2.pas

Problema 2 - Triunghi magic

100p

Se dau în sistemul cartezian xOy un număr de n puncte, 3<=n<=7. Fiecare punct este identificat prin nume, abscisa și ordonata sa. (considerăm că ambele coordonate sunt numere întregi). Să se precizeze ce fel de triunghiuri se pot forma cu punctele indicate.

Se dă fișierul date.in care conține pe fiecare linie numele unui triunghi și cele două coordonate separate prin spații. Se cere fișierul date.out în care se precizează pe fiecare linie numele punctelor ce formează triunghiul și ce fel de triunghi este. Nu se ia în calcul cazul în care punctele sunt coliniare.

Recomandări: pentru a deduce formula de calcul a distanței dintre două puncte folosiți teorema lui Pitagora în triunghiul dreptunghic ce se formează ducând proiecțiile punctelor pe ambele axe de coordonate.

Date.in	Date.out
A 2 3	ABC este triunghi oarecare
B 2 0	ABD este triunghi dreptunghic isoscel
C 2 -4	ABE este triunghi oarecare
D 5 3	ABF este triunghi dreptunghic isoscel
E -1 -1	ABG este triunghi oarecare
F-10	ACD este triunghi dreptunghic
G 4 -2	ACE este triunghi oarecare
	ACF este triunghi oarecare
	ACG este triunghi oarecare
	ADE este triunghi oarecare
	ADF este triunghi oarecare
	ADG este triunghi oarecare
	AEF este triunghi oarecare
	AEG este triunghi oarecare
	AFG este triunghi isoscel
	BCD este triunghi oarecare
	BCE este triunghi oarecare
	BCF este triunghi dreptunghic
	BCG este triunghi dreptunghic isoscel
	BDE este triunghi oarecare
	BDF este triunghi oarecare
	BDG este triunghi dreptunghic
	BEF este triunghi dreptunghic
	BEG este triunghi oarecare
	BFG este triunghi oarecare
	CDE este triunghi oarecare
	CDF este triunghi oarecare
	CDG este triunghi oarecare
	CEF este triunghi oarecare
	CEG este triunghi dreptunghic
	CFG este triunghi oarecare
	DEF este triunghi oarecare
	DEG este triunghi dreptunghic isoscel
	DFG este triunghi oarecare
	EFG este triunghi oarecare