Эргодический метод компенсации пропусков в дисперсионном анализе повторных наблюдений с приложением в фармакологии

Уфлянд Анна Григорьевна, гр. 522

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: к.ф.-м.н., доц. Алексеева Н.П. Рецензент: мл. научн. сотр. Ананьевская П.В.

Санкт-Петербург 2013г.

Лонгитюдные данные. Пример из фармакологии

- Эксперимент программа отказа от употребления наркотиков
- Признак: индекс депрессии Бека
- Индивиды больные героиновой наркоманией (I=4)
- Временные точки (T=8) из наблюдений с 2-х недельным интервалом в течение б месяцев
- Пропусков 33%, полные данные в начале исследования

Рис. : Изменение индекса депрессии Бека во времени

Дисперсионный анализ для повторных наблюдений

$$x_{ijt} = \mu + \alpha_i + \varepsilon_{ij}^1 + \beta_t + \gamma_{it} + \varepsilon_{ijt}$$
, где

```
\mu генеральное среднее, \alpha_i фиксированный эффект группы, \beta_t фиксированный эффект времени, \gamma_{it} эффект взаимодействия группы и времени, i=1,\dots,I; \quad j=1,\dots,\nu_i; \quad \sum\limits_{i=1}^I \nu_i=N; \quad t=1,\dots,T; \varepsilon_{ij}^1 \sim N(0,\sigma_1^2), \quad \varepsilon_{ijt} \sim N(0,\sigma^2) — независимые ошибки . [Афифи А., Эйзен С., 1982]
```

Методы для анализа данных с пропусками

Метод

Исключение индивидов с пропусками в данных

LOCF (метод протягивания последнего имеющегося наблюдения)
[R.M.Hamer, 2009]

Эргодический метод

Особенности

Мало данных Потеря информации

Ложное увеличение количества степеней свободы для статистик критериев Смещения в оценках эффектов

Без заполнения пропусков Не привносится искусственная информация

Модель эргодического метода

Напомним, что модель имеет вид $x_{ijt}=\mu+\alpha_i+\varepsilon_{ij}^1+\beta_t+\gamma_{it}+\varepsilon_{ijt}$. Для оценки параметров её разделяют: $x_{ijt}=x_{ij.}+(x_{ijt}-x_{ij.}),$

$$\mathbb{E}x_{ij.} = \mu + \alpha_i, \quad \mathbb{E}(x_{ijt} - x_{ij.}) = \beta_t + \gamma_{it}.$$

Пусть N_{ij} и $M_{it}-$ множества полных наблюдений в группе i для индивида j и в временной точке t соответственно, $n_{ij}=\#N_{ij},\ m_{it}=\#M_{it}$

- ullet Смещённость модели $\mathbb{E} x_{ij}$. $eq \mu + \alpha_i$, где x_{ij} . $= rac{1}{n_{ij}} \sum_{t \in \mathbf{N}_{ij}} x_{ijt}$
- ullet Решение проблемы введение индивидуальных смещений H_{ij}

Модель эргодического метода

Определение

Следующее равенство задаёт ${\it cmeщehue}$ для индивида j из группы i,

$$H_{ij} = \sum_{k=1}^{\infty} A_{ij}(k),$$

$$A_{ij}(1) = \frac{1}{n_{ij}} \sum_{t \in N_{ij}} \frac{1}{m_{it}} \sum_{l \in M_{it}} (x_{ilt} - x_{il.}),$$

$$A_{ij}(k+1) = \frac{1}{n_{ij}} \sum_{t \in N_{ij}} \frac{1}{m_{it}} \sum_{l \in M_{it}} A_{il}(k).$$

Тогда введение поправок в $x_{ijt} = x_{ij.} + (x_{ijt} - x_{ij.})$ в виде:

$$x_{ij\cdot} - H_{ij} = \mu + \alpha_i + \Theta_{ij}^1$$

$$x_{ijt} - x_{ij\cdot} + H_{ij} = \beta_t + \gamma_{it} + \Theta_{ijt}$$

приводит к тому, что ошибки $\Theta_{ij}^1, \Theta_{ijt}$ — коррелированные с нулевыми мат.ожиданиями. [Н.П.Алексеева, 2012]

Постановка задачи

- Сравнение с наиболее распостранёнными методами на конкретных примерах.
- Исследование свойств метода: несмещённости оценок, инвариантности выборочных характеристик, эргодичности.
- Получение условий, при которых улучшается эргодичность матрицы наблюдений.

Сравнение методов на модельных данных

Несмещённость эффектов взаимодействия

- Две группы по 75 индивидов, 4 временные точки.
- ullet Пропуски во временных точках $\sim Bin(p), \; p=0.3, 0.5, 0.7.$

Среднее в первой группе

Сравнение методов на реальных данных с модельными пропусками

Эффект фактора группы

Рис. : Ящики с усами для p-value. Признак bdi

Рис. : Ящики с усами для p-value. Признак tlfba

Сравнение методов на реальных данных с модельными пропусками

Эффект взаимодействия факторов группы и времени

Рис. : Ящики с усами для p-value. Признак sstati

Рис. : Ящики с усами для p-value. Признак gaf

Сравнение методов на реальных данных с модельными пропусками

Таблица : Доли ложно не выявленных (ЛН) и ложно обнаруженных (ЛО) значимостей для эффектов α_i, γ_{it}

	эффект	эргодический	LOCF	исключение
ЛН	α_i	0.289	0.351	0.701
	γ_{it}	0.536	0.818	0.736
ло	α_i	0.018	0.009	0.061
	γ_{it}	0.000	0.255	0.182

Векторное представление для смещения

Лемма

Пусть вектор
$$H=(H_1,\ldots,H_N), \ \ ar{H}=rac{1}{N}\sum\limits_{j=1}^N H_j$$

матрица $P = \Lambda_N J \Lambda_T J^{\mathbf{T}}$,

 Λ_N- диагональная матрица N imes N с элементами $\frac{1}{n_j}$ на главной диагонали,

 $\Lambda_T - T imes T$ с элементами $rac{1}{m_t},\, J-$ матрица инцидентности. Тогда

$$H = \sum_{k=0}^{\infty} P^k A(1),$$

P – стохастическая, $\lim_{k \to \infty} P^k = P^\infty,$ P^∞ состоит из строк $\pi = \left(\frac{n_1}{m}, \cdots, \frac{n_N}{m} \right).$

[Н.П.Алексеева, 2012]

Свойства баланса и инвариантности

Лемма

Свойство баланса для перекрёстных усреднений:

$$\forall k : \frac{1}{N} \sum_{j=1}^{N} n_j A_j(k) = \frac{1}{N} \sum_{j=1}^{N} n_j A_j(1) = 0.$$

Лемма

Свойство баланса для смещения: $rac{1}{N}\sum\limits_{j=1}^{N}n_{j}H_{j}=0.$

Теорема

Пусть общее среднее в одной группе $x_{..}=\frac{1}{m_{.}}\sum_{j=1}^{N}\sum_{t\in N_{j}}x_{jt},$ тогда оно инвариантно относительно вычитания смещения

$$x'_{..} = \frac{1}{m_{.}} \sum_{j=1}^{N} \sum_{t \in N_{j}} (x_{jt} - H_{j}) = x_{..}.$$

Эргодическое свойство в одной группе (I=1)

У эргодических систем среднее по пространству совпадает со средним по времени

• Средние по пространству и по времени

$$x_* = \frac{1}{N} \sum_{j=1}^{N} \frac{1}{n_j} \sum_{t \in N_j} x_{jt}, \qquad x^* = \frac{1}{T} \sum_{t=1}^{T} \frac{1}{m_t} \sum_{j \in M_t} x_{jt}.$$

ullet Общее среднее $x_{\cdot \cdot} = rac{1}{m_{\cdot}} \sum\limits_{j=1}^{N} \sum\limits_{t \in N_{j}} x_{jt}.$

Зададим эргодическое свойство как $x_* = x_{\cdot \cdot} = x^*$.

Определение

Будем говорить, что эргодичность улучшилась, если

$$|x_*-x_{..}|>| ilde{x}_*-x_{..}|$$
, где $ilde{x}_*=x_*-ar{H}$ и $ar{H}=rac{1}{N}\sum_{j=1}^N H_j.$

Влияние тренда на улучшение эргодичности

Теорема

Пусть модель имеет вид: $x_{jt} = \mu + \beta_t + \delta_j + \varepsilon_{jt}$,

$$Q = \{q_{jk}\}_{j=1,k=1}^{N} = (I - P + P^{\infty})^{-1}, \quad \bar{\beta} = \frac{1}{N} \sum_{j=1}^{N} \frac{1}{n_j} \sum_{t \in N_j} \beta_t.$$

Имеет место разделение $\bar{H}=\xi-\eta$ на зависящую и не зависяющую от времени компоненты, где

$$\xi = x_* - x_{\cdot \cdot} = \bar{\beta} + \delta_{\cdot} + \varepsilon_{\cdot \cdot} - \frac{1}{m_{\cdot}} \sum_{j=1}^{N} n_j \delta_j - \frac{1}{m_{\cdot}} \sum_{j=1}^{N} n_j \varepsilon_{j,\cdot},$$

$$\eta = \tilde{x}_* - x_{..} = \frac{1}{N} \sum_{j=1}^{N} \sum_{k=1}^{N} q_{jk} (\delta_k - \delta_{.}(k) + \varepsilon_{k.} - \varepsilon_{..}(k)).$$

Моменты компонент среднего смещения

Лемма

Математические ожидания $ar{H}$ и его составляющих равны

$$\mathbb{E}\bar{H} = \bar{\beta}, \quad \mathbb{E}\xi = \bar{\beta}, \quad \mathbb{E}\eta = 0.$$

Лемма

Пусть
$$Q_k = \sum\limits_{j=1}^N q_{jk}; \; \sigma^2$$
 и σ_1^2- дисперсии ошибок $arepsilon_{jt}, \delta_j$, тогда

$$\mathbb{D}\xi = \sum_{j=1}^{N} \left(\frac{\sigma^{2}}{n_{j}} + \sigma_{1}^{2}\right) \left(\frac{1}{N} - \frac{n_{j}}{m_{\cdot}}\right)^{2}$$

$$\mathbb{D}\eta = \frac{\sigma_{1}^{2}}{N^{2}} \sum_{k=1}^{N} Q_{k}^{2} \left(\sum_{t \in N_{k}} \sum_{l \in M_{t}} \frac{1}{m_{t} n_{l}} - 1\right)^{2} + \frac{\sigma^{2}}{N^{2}} \sum_{k=1}^{N} \sum_{t \in N_{t}} \left(\frac{1}{m_{t}} \sum_{l \in M_{t}} \frac{Q_{l}}{n_{l}} - \frac{Q_{k}}{n_{k}}\right)^{2}.$$

Влияние тренда на улучшение эргодичности

Теорема

Пусть
$$\tilde{\sigma}_1^2 = \mathbb{D}\xi, \ \ \tilde{\sigma}_2^2 = \mathbb{D}\eta.$$

Тогда
$$\mathbb{P}\{|\xi|\leq |\eta|\}\leq rac{2}{k^2}$$
 при $k\in \left(\sqrt{2};rac{|ar{eta}|}{ ilde{\sigma}_1+ ilde{\sigma}_2}
ight)$.

Таблица :
$$n=100,\ T=4,\ \sigma=0.1,\ \sigma_1=0.2,\ N=1000.$$

$(\beta_2,\beta_3,\beta_4)$	$\hat{\mathbb{P}}\{ \xi \le \eta \}$
(0.01, 0.02, 0.03)	0.433
(0.05, 0.06, 0.07)	0.251
(0.07, 0.08, 0.09)	0.195
(0.10, 0.15, 0.20)	0.044
(0.15, 0.20, 0.25)	0.024
(0.10, 0.20, 0.30)	0.006
(0.20, 0.30, 0.40)	0.001
(0.30, 0.40, 0.50)	0.000

Основные результаты

- Получены и доказаны свойства метода: свойства баланса для перекрёстных усреднений и смещения, инвариантность общего среднего, а также ряд вспомогательных утверждений.
- Получены условия, при которых улучшается эргодичность матрицы наблюдений.
- Обнаружен более короткий способ вычисления дисперсий компонент смещения.
- Алгоритм метода реализован в виде программного кода на языке R.

Спасибо за внимание!