Turing's Thesis

Computability

- Mathematician David Hilbert listed 23 problems in 1900.
 - These problems are challenges for mathematicians in 20th century.
- His 10th problem is to devise "a process according to which it can be determined by a finite number of operations," that tests whether a polynomial has an integral root.
 - In other words, Hilbert wants to find an algorithm to test whether a polynomial has an integral root.
- If such an algorithm exists, we just need to invent it.
- What if there is no such algorithm?
 - How can we argue Hilbert's 10th problem has no solution?
- We need a precise definition of algorithms!

Computability

In the 1930s, several independent attempts were made to formalize the notion of computability:

In 1933, Kurt Gödel formalized the definition of the class of general recursive functions: the smallest class of functions (with arbitrarily many arguments) that is closed under composition, recursion, and minimization, and includes zero, successor, and all projections.

In 1936, Alonzo Church created a method for defining functions called the λ -calculus: A function on the natural numbers is called λ -computable if the corresponding function on the Church numerals can be represented by a term of the λ -calculus.

Also in 1936, before learning of Church's work, Alan Turing created a theoretical model for machines, now called Turing machines, that could carry out calculations from inputs by manipulating symbols on a tape. A function on the natural numbers is called Turing computable if some Turing machine computes the corresponding function on encoded natural numbers.

Turing's thesis (1930):

Any computation carried out by mechanical means can be performed by a Turing Machine

Algorithm:

An algorithm for a problem is a Turing Machine which solves the problem

The algorithm describes the steps of the mechanical means

This is easily translated to computation steps of a Turing machine

When we say: There exists an algorithm

We mean: There exists a Turing Machine that executes the algorithm

Church-Turing Thesis

The Church-Turing thesis states that the above three formally-defined classes of computable functions coincide with the *informal* notion of an effectively calculable function.

Intuitive notion equals Turing machine algorithms

FIGURE

The Church-Turing Thesis

Computability

- In 1970, Yuri Matijasevič showed that Hilbert's 10th problem is not solvable.
 - That is, there is no algorithm for testing whether a polynomial has an integral root.
- Define $D = \{p : p \text{ is a polynomial with an integral root}\}.$
- Consider the following TM: M = "The input is a polynomial p over variables x_1, x_2, \ldots, x_k
 - ① Evaluate p on an enumeration of k-tuple of integers.
 - If p ever evaluates to 0, accept."
- M recognizes D but does not decide D.

Variations of the Turing Machine

The Standard Model

Infinite Tape

Read-Write Head (Left or Right)

Control Unit

Deterministic

Variations of the Standard Model

Turing machines with:

- Stay-Option
- · Semi-Infinite Tape
- · Off-Line
- Multitape
- Multidimensional
- Nondeterministic

Different Turing Machine Classes

Same Power of two machine classes: both classes accept the same set of languages

We will prove:

each new class has the same power with Standard Turing Machine

(accept Turing-Recognizable Languages)

Same Power of two classes means:

for any machine $\,M_{1}\,$ of first class there is a machine $\,M_{2}\,$ of second class

such that: $L(M_1) = L(M_2)$

and vice-versa

Simulation: A technique to prove same power.

Simulate the machine of one class with a machine of the other class

First Class
Original Machine

 M_1

Second Class
Simulation Machine

simulates M_1

Configurations in the Original Machine M_1 have corresponding configurations in the Simulation Machine M_2

 M_1 Original Machine: $d_0 \succ d_1 \succ \cdots \succ d_n$ Simulation Machine: $d_0' \succ d_1' \succ \cdots \succ d_n'$

Accepting Configuration

Original Machine:
$$d_f$$

Simulation Machine: d_f'

the Simulation Machine and the Original Machine accept the same strings

$$L(M_1) = L(M_2)$$

Turing Machines with Stay-Option

The head can stay in the same position

Left, Right, Stay

L,R,S: possible head moves

Example:

Time 1

Time 2

$$q_1 \xrightarrow{a \to b, S} q_2$$

Theorem: Stay-Option machines have the same power with Standard Turing machines

Proof: 1. Stay-Option Machines simulate Standard Turing machines

2. Standard Turing machines simulate Stay-Option machines

1. Stay-Option Machines simulate Standard Turing machines

Trivial: any standard Turing machine is also a Stay-Option machine

2. Standard Turing machines simulate Stay-Option machines

We need to simulate the stay head option with two head moves, one left and one right

Stay-Option Machine

Simulation in Standard Machine

For every possible tape symbol χ

For other transitions nothing changes

Stay-Option Machine

Simulation in Standard Machine

$$\underbrace{q_1} \xrightarrow{a \to b, L} \underbrace{q_2}$$

Similar for Right moves

example of simulation

Simulation in Standard Machine:

END OF PROOF

Multiple Track Tape

A useful trick to perform more complicated simulations

track 1 track 2

$$\begin{vmatrix} \Diamond & \Diamond & a & c & a & b & \Diamond \\ \Diamond & \Diamond & b & d & c & d & \Diamond \\ q_2 & & & & & \end{vmatrix}$$

track 1 track 2

$$\underbrace{q_1} \xrightarrow{(b,a) \to (c,d),L} \underbrace{q_2}$$

Semi-Infinite Tape

The head extends infinitely only to the right

- Initial position is the leftmost cell
- When the head moves left from the border, it returns to the same position

Theorem: Semi-Infinite machines
have the same power with
Standard Turing machines

Proof: 1. Standard Turing machines simulate Semi-Infinite machines

2. Semi-Infinite Machines simulate Standard Turing machines

1. Standard Turing machines simulate Semi-Infinite machines:

Standard Turing Machine

a. insert special symbol # at left of input string

b. Add a self-loop
to every state
(except states with no
outgoing transitions)

2. Semi-Infinite tape machines simulate Standard Turing machines:

Squeeze infinity of both directions in one direction

Semi-Infinite tape machine with two tracks

Standard machine

Semi-Infinite tape machine

Standard machine

$$\underbrace{q_1} \xrightarrow{a \to g, R} \underbrace{q_2}$$

Semi-Infinite tape machine

Right part
$$q_1^R$$
 $(a,x) \rightarrow (g,x), R$ q_2^R

Left part

$$\underbrace{q_1^L} \xrightarrow{(x,a) \to (x,g),L} \underbrace{q_2^L}$$

For all tape symbols X

Time 1

Semi-Infinite tape machine

Time 2

Semi-Infinite tape machine

At the border:

Semi-Infinite tape machine

Right part
$$q_1^R$$
 $(\#,\#) \rightarrow (\#,\#), R$ q_1^L

Left part

$$\underbrace{q_1^L} \xrightarrow{(\#,\#) \to (\#,\#), R} \underbrace{q_1^R}$$

Semi-Infinite tape machine

Right part Left part

#	d	e	\Diamond	\Diamond	\Diamond				
#	C	b	g	\Diamond	\Diamond				
q_1^R									

END OF PROOF

The Off-Line Machine

Theorem: Off-Line machines
have the same power with
Standard Turing machines

Proof: 1. Off-Line machines simulate Standard Turing machines

2. Standard Turing machines simulate Off-Line machines

1. Off-line machines simulate Standard Turing Machines

Off-line machine:

1. Copy input file to tape

2. Continue computation as in Standard Turing machine

Standard machine

Off-line machine

1. Copy input file to tape

Standard machine \$\langle\$ a | b | c | \$\langle\$ |

Off-line machine

2. Do computations as in Turing machine

2. Standard Turing machines simulate Off-Line machines:

Use a Standard machine with a four-track tape to keep track of the Off-line input file and tape contents

Off-line Machine

Tape

Standard Machine -- Four track tape

#	а	b	C	d		
#	0	0	1	0		
	e	f	g			
	0	1	0			
ı			ı	I	L	

Input File

head position

Tape

head position

Reference point (uses special symbol #)

Input File
head position
Tape
head position

Repeat for each state transition:

- 1. Return to reference point
- 2. Find current input file symbol
- 3. Find current tape symbol
- 4. Make transition

Multi-tape Turing Machines

Input string appears on Tape 1

$$\underbrace{q_1}^{(b,f) \to (g,d), L, R} \underbrace{q_2}$$

Theorem: Multi-tape machines
have the same power with
Standard Turing machines

Proof: 1. Multi-tape machines simulate Standard Turing machines

2. Standard Turing machines simulate Multi-tape machines

1. Multi-tape machines simulate Standard Turing Machines:

Trivial: Use just one tape

2. Standard Turing machines simulate Multi-tape machines:

Standard machine:

- Uses a multi-track tape to simulate the multiple tapes
- A tape of the Multi-tape machine corresponds to a pair of tracks

Multi-tape Machine

Standard machine with four track tape

a	b	C		Tape 1
0	1	0		head position
e	f	g	h	Tape 2
0	0	1	0	head position
 <u></u>	I	I		 •

Reference point

		•			T 1	
#	\boldsymbol{a}	b	$\boldsymbol{\mathcal{C}}$		Tape 1	
#	0	1	0		head position	on
#	e	f	g	h	Tape 2	
#	0	0	1	0	head position	on
					• • • • • • • • • • • • • • • • • • •	

Repeat for each state transition:

- 1. Return to reference point
- 2. Find current symbol in Tape 1
- 3. Find current symbol in Tape 2
- 4. Make transition

END OF PROOF

Same power doesn't imply same speed:

$$L = \{a^n b^n\}$$

Standard Turing machine: $O(n^2)$ time

Go back and forth $O(n^2)$ times

to match the a's with the b's

2-tape machine: O(n) time

- 1. Copy b^n to tape 2 (O(n) steps)
- 2. Compare a^n on tape 1 and b^n tape 2 (O(n) steps)

Multidimensional Turing Machines

MOVES: L,R,U,D

U: up D: down

HEAD

Position: +2, -1

Theorem: Multidimensional machines have the same power with Standard Turing machines

Proof: 1. Multidimensional machines simulate Standard Turing machines

2. Standard Turing machines simulate Multi-Dimensional machines

1. Multidimensional machines simulate Standard Turing machines

Trivial: Use one dimension

2. Standard Turing machines simulate Multidimensional machines

Standard machine:

- Use a two track tape
- Store symbols in track 1
- Store coordinates in track 2

2-dimensional machine

Standard machine:

Repeat for each transition followed in the 2-dimensional machine:

- 1. Update current symbol
- 2. Compute coordinates of next position
- 3. Go to new position

END OF PROOF

Nondeterministic Turing Machines

Allows Non Deterministic Choices

Time 0

Time 1

Choice 1

Choice 2

Input string w is accepted if there is a computation:

There is a computation:

Theorem: Nondeterministic machines have the same power with Standard Turing machines

Proof: 1. Nondeterministic machines simulate Standard Turing machines

2. Standard Turing machines simulate Nondeterministic machines

1. Nondeterministic Machines simulate Standard (deterministic) Turing Machines

Trivial: every deterministic machine is also nondeterministic

2. Standard (deterministic) Turing machines simulate Nondeterministic machines:

Deterministic machine:

Uses a 2-dimensional tape
 (which is equivalent to 1-dimensional tape)

 Stores all possible computations of the non-deterministic machine on the 2-dimensional tape

All possible computation paths

The Deterministic Turing machine simulates all possible computation paths:

·simultaneously

·step-by-step

·in a breadth-first search fashion

NonDeterministic machine

Deterministic machine

#	#	#	#	#	#	
#	a	b	$\boldsymbol{\mathcal{C}}$	#		
#	q_1			#		
#	#	#	#	#		
						,

current configuration

NonDeterministic machine

Deterministic machine

	#	#	#	#	#	#	_
#		b	b	$\boldsymbol{\mathcal{C}}$	#		Computation 1
#	q_2				#		- comparation 1
#		\mathcal{C}	b	С	#		Computation 2
#			93		#		Computation 2

Deterministic Turing machine

Repeat

For each configuration in current step of non-deterministic machine, if there are two or more choices:

- 1. Replicate configuration
- 2. Change the state in the replicas
 Until either the input string is accepted
 or rejected in all configurations

END OF PROOF

Remark:

The simulation takes in the worst case exponential time compared to the shortest accepting path length of the nondeterministic machine