⑩日本国特許庁(JP)

@実用新案出願公告

⑫実用新案公報(Y2)

平2-47326

®Int. Cl. 5

識別記号

庁内整理番号

❷❸公告 平成2年(1990)12月12日

F 16 K 7/17 31/122

7718-3H 7031-3H Α

(全4頁)

日考案の名称 ダイヤフラム弁

> ②)実 顧 昭60-91627

69公 閉 昭62-867

220出 願 昭60(1985)6月19日 @昭62(1987) 1月7日

@考 案 者 大 村 昌三

東京都品川区広町1丁目3番22号 日本ダイヤバルブ株式

会社内

@出 顧人 日本ダイヤバルブ株式 東京都品川区広町1丁目3番22号

会社

四代 理 弁理士 川 上 人

杳 官 塚 樹 飯 佰

外1名 瑿

1

砂実用新案登録請求の範囲

弁体 1 0 の開口部 1 0 a に設けたダイヤフラム 11と、このダイヤフラムを駆動して弁体の流路 を開閉する駆動部26とを備え、この駆動部はシ

によりシリンダ内を移動してダイヤフラムを駆動 するピストン20と、加圧空気が流入しないとき にピストンを復帰させる戻しばね15a, 15b と、一端がダイヤフラムに連結されてポンネット と、ピストンで仕切られるシリンダのダイヤフラ ム側の第一室21及びダイヤフラムと反対側の第 二室22に加圧空気の選択的な流入口となる第一 ポート23及び第二ポート24とからなるダイヤ ルの同一位置に上下反転かつ脱着可能に固定し、 前記ピストンに前記戻しばねのはまる環状凹部を 形成し、前記戻しばねの長さをシリンダ内長の半

考案の詳細な説明

弁。

[産業上の利用分野]

本考案は、シリンダに加圧空気を流入してピス トンを駆動することによりダイヤフラムを作動さ は微生物産業等に用いられる流体制御に適するダ

分よりも長くしたことを特徴とするダイヤフラム

イヤフラム弁に関するものである。

[従来の技術]

微生物産業等では小型の反応器等の周りに反応 器等に至る多数の配管が布設され、この反応器等 リンダ18と、このシリンダに流入する加圧空気 5 に至近距離の各配管にはそれぞれダイヤフラム弁 が設けられる。このため、微生物産業等で用いら れるダイヤフラム弁は、小型であつて、弁の開閉 指令に対して迅速に応答することが要求されてい る。また反応器等に一時的に流体を注入するため 12に摺動自在に軸受けされたスピンドル 14 10 の常閉弁と一時的に流体を停止するための常開弁 とが混在して用いられる。

常閉弁としても常開弁としても使用可能な小型 のダイヤフラム弁は、実開昭59-101058号公報第 3 図に開示されている。その弁はシリンダ内部を フラム弁において、前記ピストンを前記スピンド 15 平円盤状のピストンで第1及び第2室に分け、加 圧空気を一方へ入れると常閉弁となり、他方へ入 れると常開弁となるものである。

[考案が解決しようとする問題点]

上記ダイヤフラム弁は戻しばねがないため、常 20 閉力又は常開力が弱かつた。これを解決するため にシリンダの長さの半分よりも長い強力な戻しば ねを入れると、常閉弁から常開弁に変更すると き、又はその逆のとき、加圧空気と戻しばねの入 る室を変えるだけでなくピストンのスピンドルに せる小型のダイヤフラム弁に関する。更に詳しく 25 対する固定位置も変えなくてはならないが、ビス トンのスピンドルに対する固定位置を変える組替

作業は容易ではないという問題が生ずる。

本考案は上記問題を解決するためになされたも のであり、その目的とするところは、シリンダの 長さの半分より長い強力な戻しばねを使用する小 部品の組替え作業だけで常閉弁としても常開弁と しても使用することができるものを提供すること にある。

[問題点を解決するための手段]

手段は、ピストンに戻しばねをはめる環状凹部を 形成し、そのピストンをスピンドルの同一位置に 上下反転かつ脱着可能に固定したことにある。そ の構成を実施例に対応する第1図及び第2図に基 づいて説明する。本考案は弁体 10の開口部 10 15 [実施例] aに設けたダイヤフラム11と、このダイヤフラ ム11を駆動して弁体10の流路10bを開閉す る駆動部26とを備え、この駆動部26はシリン ダ18と、このシリンダ18に流入する加圧空気 駆動するピストン20と、加圧空気が流入しない ときにピストン20を復帰させる戻しばね15 a, 15 bとからなるダイヤフラム弁である。

このダイヤフラム弁は、ピストン20の中心に スピンドル14を貫通して固着し、このスピンド 25 る。 ル14の一端をコンプレツサ16及びピス17を 介してダイヤフラム 11に連結し、その他端をシ リンダ18の底部18 aに貫通して設けたもので あつて、ピストン20で仕切られるシリンダ18 11と反対側の第二室22に、加圧空気の選択的 な流入口となる第一ポート23及び第二ポート2 4をそれぞれ設け、第一ポート23を加圧空気の 流入口とするとき戻しばね15a, 15bをダイ し、第二ポート24を加圧空気の流入口とすると き戻しばね15 a, 15 bをダイヤフラム11が 流路10bを開くように配置したものである。

[作用]

ンドル14の一端をダイヤフラム11に連結する ことにより、シリンダ18を小型化できかつ加圧 空気が流入したときのダイヤフラム作動の応答性 が良くなる。第一ポート23を空気の流入口とす

るときは、ピストン20の戻しばねをはめる環状 凹部は上向きであり、その内底面とシリンダの底 部18aの距離はシリンダ内長の半分よりも長 く、強力な戻しばね15bが装着されるから、加 型のダイヤフラム弁であつて、比較的簡単な同じ 5 圧空気が流入したときのみ「開」となる常閉力の 強いダイヤフラム常閉弁となる。第二ポート24 を加圧空気の流入口とするときは、ピストン20 を上下反転してスピンドル14に固定し、その環 状凹部を下向きにする。こんどは環状凹部の底面 上記目的を達成するために、本考案が採用した 10 とボンネット 12 の戻しばねを支える表面 12 b の間隔がシリンダ内長の半分よりも長くなり、そ こに強力な戻しばねがはまるから、加圧空気が流 入したときに「閉」となる常開力の強いダイヤフ

次に本考案の一実施例を詳しく説明する。

ラム常開弁15 bとなる。

第1図~第3図に示すように、ステンレス製の 弁体 10の開口部 10 a 周囲に四ふつ化エチレン 樹脂製のダイヤフラム11を載せ、その上にポン によりシリンダ内を移動してダイヤフラム11を 20 ネツト12を重ね、ポルト13で全体を締着す る。ボンネット12の中心にスピンドル14を摺 動自在に貫通する。このスピンドル14の下端に コンプレツサ18を掛止し、そのコンプレツサ1 8にピス17を介してダイヤフラム11を連結す

ボンネット12の外周にシリンダ18をポルト 19により締着する。12aは0リングであつ て、ポンネット12とシリンダ18との気密を保 持する。シリンダ18内に断面がほぼW字状のピ のダイヤフラム側の第一室21及びダイヤフラム 30 ストン20を摺動自在に設ける。シリンダ18の 内壁にピストンストッパ18bを備える。ピスト ン20の中心に上記スピンドル14を貫通して固 着する。このスピンドル14の他端はシリンダ1 8の底部 18 a を貫通して突出する。 15 a 及び ヤフラム11が流路10bを閉じるように配置 35 15bは戻しばねであつて後述する加圧空気で変 位したピストン20を復帰させる。シリンダ1 8、ピストン20及び戻しばね15a, 15bは ダイヤフラムの駆動部26を構成する。

ピストン20で仕切られるシリンダ18のダイ スピンドル14にピストン20を固着し、スピ 40 ヤフラム側の第一室21及びダイヤフラムと反対 側の第二室22に加圧空気の選択的な流入口とな る第一ポート23及び第二ポート24をそれぞれ 設ける。20aはOリングであつて、第一室21 と第二室22との間の気密を保持する。

このような構成であるから、第1図に示すよう にピストン20をW字の向きにスピンドル14に 固着し、第二室22のシリンダ18の底部18a とピストン20の間に戻しばね15a及び15b すれば、ピストン20は戻しばね15a及び15 bの作用力に抗してスピンドル14を移動させ、 ダイヤフラム11を弁座10cから離して弁を開 放する。シリンダ18内の圧力を解除すると、戻 鎖位置に向けて移動させ、ピストン20をシリン ダ18に沿つてダイヤフラム11に向つて駆動す

次に第2図に示すようにピストン20を逆W字 ボンネット12の表面12bとピストン20の間 に戻しばね15a及び15bを介装して、第二ポ ート24より加圧空気を導入すれば、ピストン2 0 は戻しばね 1 5 a 及び 1 5 b の作用力に抗して ヤフラム11を弁座10 cに着座させ弁を閉鎖す る。シリンダ18内の圧力を解除すると、戻しば ね15a及び15bはダイヤフラム11を開放位 置に向けて移動させ、ピストン20をシリンダ1 8の底部 1 8 a に向けて駆動する。

第1図及び第2図に示したピストン20は、ス ピンドル14に掛止したコンプレッサ16とこの コンプレッサ16に連結したビス17を介してダ イヤフラム11に直接作用するため、ダイヤフラ ム11の開放及び閉鎖状況はスピンドル14の他 端がシリンダ18の底部18 aから突出する長さ (第1図、第2図に破線により示す)の変化によ

り容易に視認することができる。 [考案の効果]

以上述べたように、本考案によれば、スピンド ルにピストンを固着し、スピンドルの一端をダイ を介装して、第一ポート23より加圧空気を導入 5 ヤフラムに連結することにより、シリンダを小型 化でき、しかもシリンダ内に加圧空気が流入した ときのダイヤフラム作動の応答性が良くなる。

加圧空気を入れるポートによつてピストンと戻 しばねを反転して組替えるが、ピストンはスピン しばね15a及び15bはダイヤフラム11を閉 10 ドルの同一位置に上下関係を反転して固定される ので、組替作業は比較的容易であり、戻しばねは シリンダ内長の半分よりも長い強力なものを使用 するから、弁の常閉力又は常開力は強力である。 また第一ポートを加圧空気の流入口にすれば、第 の向きにスピンドル14に固着し、第一室21の 15 一ポートに加圧空気が流入したときのみ「開」と なるダイヤフラム弁となり、第二ポートを加圧空 気の流入口にすれば、第二ポートに加圧空気が流 入したときのみ「閉」となるダイヤフラム弁が得 られる。この結果、同一の部品を組立方法を変え スピンドル14を移動させ、第1図と反対にダイ 20 るだけで常閉弁と常開弁のいずれにも組替え可能 となり、常閉弁と常開弁が混在する微生物産業等 向きに低コストで量産することができる。

図面の簡単な説明

第1図は本考案―実施例ダイヤフラム弁を半分 25 断面で示す正面図。第2図はそのピストンを逆向 きに取付け加圧空気の流入口を変更した第1図に 対応する正面図。第3図は第1図のAA線断面 図。

10:弁体、10a:開口部、11:ダイヤフ ム11の応答速度は極めて速い。またダイヤフラ 30 ラム、14:スピンドル、15a, 15b: 戻し ばね、18:シリンダ、20:ピストン、21: 第一室、22:第二室、23:第一ポート、2 4:第二ポート、26:ダイヤフラム駆動部。

