Übungsblatt 4 zur Algebra I

Abgabe bis 13. Mai 2013, 17:00 Uhr

Aufgabe 1. Lage der Lösungen von Polynomengleichungen

Sei $X^n + a_{n-1}X^{n-1} + \cdots + a_1X + a_0 = 0$ eine normierte Polynomgleichung mit komplexen Koeffizienten. Zeige, dass jede komplexe Lösung z höchstens die Entfernung $1 + \max\{|a_0|, \ldots, |a_{n-1}|\}$ zum Ursprung hat.

Lösung. Sei $R := |a_{n-1}| + \cdots + |a_0|$. Dann gilt für alle $z \in \mathbb{C}$ mit $|z| \geq R + 1$ folgende Hilfsüberlegung (wieso?):

$$\left| a_{n-1} \frac{1}{z} + \dots + a_1 \frac{1}{z^{n-1}} + a_0 \frac{1}{z^n} \right| \stackrel{\triangle}{\leq} |a_{n-1}| \frac{1}{|z|} + \dots + |a_1| \frac{1}{|z|^{n-1}} + |a_0| \frac{1}{|z|^n}$$

$$\leq R \cdot \frac{1}{|z|} \leq \underbrace{\frac{R}{R+1}}_{=:a} < 1$$

Somit gilt (wieso?) für alle $z \ge R + 1$

$$|f(z)| = |z|^n \left| 1 + a_{n-1} \frac{1}{z} + \dots + a_0 \frac{1}{z^n} \right| \ge |z|^n (1 - q) > 0,$$

insbesondere also $f(z) \neq 0$.

Aufgabe 2. Stetigkeit von Polynomfunktionen

Sei $f: \mathbb{C} \to \mathbb{C}, z \mapsto a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0$ eine Polynomfunktion mit Koeffizienten $a_0, \ldots, a_n \in \mathbb{C}$. Zeige, dass f in folgendem starken Sinn stetig ist:

$$\forall C>0 \ \forall \epsilon>0 \ \exists \delta>0 \ \forall z,z'\in \mathbb{C} \ \mathrm{mit} \ |z|,|z'|\leq C \colon \ |z-z'|<\delta \Longrightarrow |f(z)-f(z')|<\epsilon$$

Lösung. Sei R > 0 beliebig. Sei $\epsilon > 0$ beliebig. Wir setzen

$$\delta := \epsilon \cdot \left[nR^{n-1} \cdot \left(\sum_{i=0}^{n} |a_i| + 1 \right) \right]^{-1},$$

dann gilt für alle $z,w\in\mathbb{C}$ mit $|z|,|w|\leq C$ und $|z-w|<\delta$ zunächst die Abschätzung

$$|z^{i} - w^{i}| = |z - w| \cdot |z^{i-1} + z^{i-2}w + z^{i-3}w^{2} + \dots + zw^{i-2} + w^{i-1}|$$

$$\leq |z - w| \cdot (R^{i-1} + \dots + R^{i-1})$$

$$\leq nR^{n-1}|z - w|$$

und daher folgt

$$|f(z) - f(w)| = \left| \sum_{i=0}^{n-1} a_i (z^i - w^i) \right| \le \sum_{i=0}^{n-1} |a_i| |z^i - w^i|$$

$$\le \sum_{i=0}^{n-1} |a_i| \cdot nR^{n-1} |z - w| = nR^{n-1} \left(\sum_{i=0}^{n-1} |a_i| \right) \cdot |z - w| < \epsilon.$$

Aufgabe 3. Rechenregeln

- a) Seien f und g Polynome mit $\deg f \leq n$ und $\deg g \leq m$. Zeige, dass $\deg(f+g) \leq \max\{n,m\}$ und $\deg(fg) \leq n+m$.
- b) Beweise oder widerlege: Für alle Polynome f und Zahlen x, y gilt f(xy) = f(x)f(y).
- c) Sei q eine komplexe Zahl ungleich Eins. Zeige: $\sum_{k=0}^{n} q^k = (q^{n+1} 1) / (q 1)$.

Lösung.

a) Da deg $f \leq n$, gibt es Koeffizienten $a_0, \ldots, a_n \in \mathbb{C}$ sodass $f = \sum_{i=0}^n a_i X^i$. Analog gibt es Koeffizienten $b_0, \ldots, b_m \in \mathbb{C}$ mit $g = \sum_{j=0}^m b_j X^j$. Dann sehen wir: In der Summe f + g sind die Koeffizienten aller Monomome vom Grad $> \max\{n, m\}$ und im Produkt fg die aller Monome vom Grad > nm null. Das zeigt die Behauptung.

Bemerkung: Wenn man von den Koeffizienten nicht entscheiden kann, ob sie null oder nicht null sind (wie bei allgemeinen reellen oder komplexen Zahlen der Fall), ist der Grad eines Polynoms keine wohldefinierte natürliche Zahl (wieso?). Dem zusammengesetzten Ausdruck "deg $f \leq n$ " kann man aber trotzdem einen Sinn verleihen, nämlich dass alle Koeffizienten von f zu Monomen mit Grad echt größer als n null sind. In diesem Sinn ist die Aufgabe zu verstehen.

b) Die Behauptung gilt fast nie. Ein einfaches Gegenbeispiel ist

$$f(X) := X + 1, \quad x := 0, \quad y := 1,$$

denn dann ist

$$f(xy) = f(0) = 1 \neq 2 = 1 \cdot 2 = f(0)f(1).$$

c) Wir rechnen:

$$(q-1) \cdot (1+q+q^2+\cdots+q^n) = q+q^2+q^3+\cdots+q^n+q^{n+1}$$

 $-1-q-q^2-q^3-\cdots-q^n$
 $=q^{n+1}-1.$

Nach Division durch q-1 steht die zu zeigende Identität da.

Aufgabe 4. Teiler von Polynomen

- a) Ist $X + \sqrt{2}$ ein Teiler von $X^3 2X$?
- b) Besitzt $X^7 + 11X^3 33X + 22$ einen Teiler der Form (X a)(X b) mit $a, b \in \mathbb{Q}$?

- c) Sei $f = 3X^4 X^3 + X^2 X + 1$ und $g = X^3 2X + 1$. Finde Polynome q und r mit f = qg + r und $\deg r < \deg g$.
- d) Sei d ein gemeinsamer Teiler zweier Polynome f und g und seien p und q weitere Polynome. Zeige, dass d dann auch ein Teiler von pf + qg ist.
- e) Seien f, g und h Polynome mit ganzzahligen Koeffizienten und f = gh. Zeige, dass für jede ganze Zahl g(n) ein Teiler von f(n) ist.

Lösung.

- a) Variante 1: Ja, denn $-\sqrt{2}$ ist eine Nullstelle von X^3-2X (wieso?). Variante 2: Ja, denn es gilt: $X^3-2X=X(X^2-2)=X(X-\sqrt{2})(X+\sqrt{2})$.
- b) Nach Blatt 0, Aufgabe 3b) und Blatt 1, Aufgabe 1 können rationale Nullstellen des gegebenen Polynoms nur Teiler von 22 sein. Einsetzen zeigt aber, dass keine der Zahlen

$$\pm 1$$
, ± 2 , ± 11 , ± 22

Nullstellen sind. Also besitzt das Polynom keinerlei rationale Nullstellen und daher auch keine Teiler der Form (X - a)(X - b) mit $a, b \in \mathbb{Q}$.

c) Polynomdivision liefert

$$q = 3X - 1,$$

 $r = 7X^2 - 6X + 2.$

d) Nach Voraussetzung gibt es Polynome \tilde{f} und \tilde{g} mit $f=d\tilde{f}$ und $g=d\tilde{g}.$ Damit folgt

$$pf + qg = pf\tilde{f} + qd\tilde{g} = d \cdot (p\tilde{f} + q\tilde{g}),$$

also ist d tatsächlich ein Teiler von pf + qg.

e) Für jede ganze Zahl n folgt $f(n) = g(n) \cdot h(n)$ (wieso?). Da h(n) eine ganze Zahl ist (wieso?), zeigt das schon die Behauptung.

Aufgabe 5. Polynomielle Ausdrücke

- a) Schreibe $\frac{1}{\sqrt{2}+5\sqrt{3}}$ als polynomiellen Ausdruck in $\sqrt{2}$ und $\sqrt{3}$ mit rat. Koeffizienten.
- b) Sei z eine komplexe Zahl mit $\mathbb{Q}(z) = \mathbb{Q}[z]$. Zeige, dass z algebraisch ist.
- c) Inwiefern kann man ein Polynom in zwei Unbestimmten X und Y als Polynom in einer einzigen Unbestimmten Y, dessen Koeffizienten Polynome in X sind, auffassen?

Lösung.

a) Wir bedienen uns desselben Tricks, den man auch beim Dividieren durch komplexe Zahlen verwendet:

$$\frac{1}{\sqrt{2}+5\sqrt{3}} = \frac{\sqrt{2}-5\sqrt{3}}{(\sqrt{2}+5\sqrt{3})(\sqrt{2}-5\sqrt{3})} = \frac{\sqrt{2}-5\sqrt{3}}{2-25\cdot 3} = \frac{-1}{73}\sqrt{2} + \frac{5}{73}\sqrt{3}.$$

b) Wir beweisen die Behauptung zunächst für den Fall, dass $z \neq 0$. Dann ist nämlich 1/z ein Element von $\mathbb{Q}(z)$ und daher auch von $\mathbb{Q}[z]$; also gibt es ein Polynom f(X) mit

3

rationalen Koeffizienten und $\frac{1}{z} = f(z)$. Dieses Polynom kann nicht das Nullpolynom sein (wieso?) und hat daher mindestens Grad 0. Die Zahl z ist also Lösung der Polynomgleichung

$$f(X) \cdot X - 1 = 0$$

mit rationalen Koeffizienten. Diese ist nichttrivial (wegen der Multiplikation mit X ist ihr Grad mindestens 1) und enttarnt daher nach Normierung z als algebraisch.

Nun wollen wir den allgemeinen Fall behandeln. In klassischer Logik ist das einfach, denn da ist z null oder nicht null; im ersten Fall ist z sowieso algebraisch, im zweiten Fall haben wir das gerade gesehen. Intuitionistisch ist diese Fallunterscheidung nicht zulässig, trotzdem können wir den Beweis retten: Denn auch konstruktiv gilt

$$|z| > 0$$
 oder $|z| < 1$.

Im ersten Fall folgt $z \neq 0$ und daher die Algebraizität nach obigem Argument. Im zweiten Fall ist z' := z + 1 nicht null; wegen $\mathbb{Q}(z) = \mathbb{Q}(z')$ und $\mathbb{Q}[z] = \mathbb{Q}[z']$ (wieso?) zeigt obige Argumentation, dass z' algebraisch ist. Also ist auch z = z' - 1 algebraisch.

Aufgabe 6. Beweis des Fundamentalsatzes

Im Beweis des Fundamentalsatzes der Algebra tritt die Zahl 3 immer wieder auf. Kann sie durch eine kleinere Zahl $3-\epsilon$ ersetzt werden?