الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: جوان 2009

إلرة التربية الوطنية

حان بكالوريا التعليم الثانوي

معة: آداب و فلسلفة + لغات أجنبية

المدة: ساعتان ونصف

حبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين التاليين:

الموضوع الأول

مرين الأول: (06 نقاط)

 $u_2-2u_5=19$ متتالية حسابية معرفة على \mathbb{N}^* بحدها الأول $u_1=2$ و بالعلاقة (u_n)

 (u_n) أحسب الأساس r للمتتالية الم

ب- أحسب الحد العاشر

n اکتب عبارهٔ u_n بدلالهٔ (2

(3) بيّن أن العدد (2008) هو حدا من حدود (u_n) . محدّدا رتبته.

$$S = u_1 + u_2 + \dots + u_{671}$$
 (4)

تمرين الثاتي: (05 نقاط)

a=25 ليكن العدد الطبيعي

a = 1[3] : نحقق ان . 1

على 3 على $2a^2 + 4$ على 3 القسمة الإقليدية للعدد

$$a^{360} - 5 \equiv 2[3]$$
 : ج – بین أن

2. أ) ادرس ، حسب قيم العدد الطبيعي n، بواقي قسمة العدد "5 على 3

 $5^n + a^2 \equiv 0$ [3] : بعين قيم العدد الطبيعي n بحيث (ب

التمرين الثالث: (09 نقاط)

$$f(x) = \frac{x-3}{x+1}$$
 :ب $\mathbb{R} - \{-1\}$ معرفة على f

 $(o,ec{i}\,,ec{j}\,)$ تمثیلها البیانی فی مستوی منسوب إلی معلم متعامد و متجانس (c_f)

بیّن أن الدالة f تکتب علی الشکل: $f(x) = 1 + \frac{a}{x+1}$ عدد حقیقی یطلب تعیینه. (1

2) أحسب نهاية الدالة f عند f عند f عند f و f أحسب نهاية الدالة عند f عند النتائج المحصل عليها بيانيا.

f'(x) أحسب f'(x) ثم شكّل جدول تغيرات

.3 اكتب معادلة للمماس (Δ) للمنحنى (C_f) عند النقطة التي فاصلتها (4

5) عيّن إحداثيي نقط تقاطع المنحنى (c_f) مع حاملي محور الإحداثيات

 (c_f) أرسم كلا من (Δ) و (δ)

الموضوع الثاني

التمرين الأول: (08 نقاط)

 $f(x) = -2 + \frac{3}{2}$ نتكن f دالة عديية معرفة على المجال $f(x) = -2 + \frac{3}{2}$ بينة معرفة على المجال

- كل سؤال من الأسئلة الخمسة التالية يتضمن إجابة واحدة صحيحة، تعرف عليها، مع التبرير.

m1) يمكن كتابة الدالة f على الشكل:

3)
$$f(x) = \frac{-2x-7}{x-2}$$
 2) $f(x) = \frac{-2x+7}{x-2}$ 1) $f(x) = \frac{7+2x}{x-2}$

2)
$$f(x) = \frac{-2x+7}{x-2}$$

1)
$$f(x) = \frac{7+2x}{x-2}$$

f'(x) المشتقة الدالة f على المجال ∞ , $+\infty$ وعبارتها (x) هي:

3)
$$f'(x) = \frac{-3}{(x-2)^2}$$
 2) $f'(x) = \frac{-2}{(x-2)^2}$ 1) $f'(x) = \frac{3}{(x-2)^2}$

2)
$$f'(x) = \frac{-2}{(x-2)^2}$$

1)
$$f'(x) = \frac{3}{(x-2)^2}$$

 $(+\infty)$ عند $(+\infty)$ هي:

$$-2$$

$$3) -2$$
 $2) +3$

$$1) + \infty$$

س 4) المنحنى (c_r) يقبل مستقيما مقاربا معادلته هي:

3)
$$y = 2$$
 2) $x = 3$ 1) $x = 2$

1)
$$x = 2$$

 $x_0=3$ المنحنى (c_f) يقبل مماسا عند النقطة ذات الفاصلة المنحنى المنحنى المنحنى

3)
$$y = 3x - 10$$

3)
$$y = 3x - 10$$
 2) $y + 3x - 10 = 0$ 1) $y = -\frac{1}{3}x + 10$

$$1) y = -\frac{1}{3}x + 10$$

التمرين الثاني: (07 نقاط)

متتالیة هندسیة معرفة علی \mathbb{N} و أساسها موجب.

 $u_5 = 576$ و $u_3 = 144$ أن: u_0 إذا علمت أن: $u_3 = 576$ و $u_3 = 144$

 $u_n = 18 \times 2^n$: محقق أنه من أجل كل عدد طبيعي -2

 $S_n = 1134$: ميث: n المجموع: $n = u_0 + u_1 + \dots + u_n$ ، ثم استنتج قيمة العدد الطبيعي n حيث: -3

التمرين الثالث: (05) نقاط)

1°) أدرس تبعا لقيم العدد الطبيعي n بواقى القسمة الإقليدية للعدد 7^n على 9.

2°) عين باقى القسمة الإقليدية للعدد:

$$9$$
 على $\left(1429^{2009} + 2008^{1430}\right)$

3) بيّن أن العدد A حيث:

n يقبل القسمة على 9 من أجل كل عدد طبيعي $A = 7^{3n} + 7^{3n+1} + 7^{3n+2} + 6$

العلامة		عناصر الاجابة	
المجموع	مجزأة	الموضوع الأول	وضوع
		التمرين الأول:	
	1	$(2+5)-2(2+45)=19$ معناه $u_2-2u_5=19$ (*) (1	
	0.75	$u_{10} = -25$ و منه: $u_{10} = u_1 + 9.r$ (ب $u_{10} = u_1 + 9.r$ (عبارة u_n بدلالة u_n	
	1.25	$u_n = 5 - 3n$ ومنه: $u_n = u_1 + (n-1)r$ ومنه: $u_n = u_1 + (n-1)r$ (3) إثبات أن العدد (2008-) هو حدا من حدود	
	1.25	(u_n) بيت بن العقد (2008-) هو كذا من كدود (3 $n = 2018$ و منه: $2013 = 3n = 2018$	
06	0.5	$u_{671} = -2008$ $S = u_1 + u_2 + \dots + u_{671} : (4)$	
	1.25	$S = \frac{671}{2}(u_1 + u_{671}) = 671 \times (-1003)$ = - 673013	
	0.5	التمرين الثاني: 1. أ) [3] a≡1[3] ب) باقي قسمة العدد 4 + 2a² على 3 هو 0	وافقات
05	1 1.5 1	$a^{360} - 5 = 2[3]$ (ج) $a^{360} - 5 = 2[3]$ (ج) 2. أ) بواقي قسمة 5^{2k+1} ، 5^{2k} على 3 هي 1 ، 2 على الترتيب $n = 2k + 1$ (ب)	

العلامة		عناصر الإجابة	
المجمو	مجزأة	الموضوع الأول	محاور لموضوع
09	0.5 4×0.5	$a = -4 \cdot f(x) = \frac{x-3}{x+1} $ $\lim_{x \to +\infty} f(x) = 1 , \lim_{x \to -\infty} f(x) = 1$ $\lim_{x \to +\infty} f(x) = +\infty, \lim_{x \to -1} f(x) = -\infty $ $\lim_{x \to -1} f(x) = +\infty, \lim_{x \to -1} f(x) = -\infty $ (2)	
	2×0.5	التفسير البياني: المنحنى (c_f) يقبل مستقيمين مقاربين معادلتهما: $ x = -1 , y = 1 $ $ f'(x) = \frac{4}{(x+1)^2} : f'(x) $ حساب (3<)	
	2×0.5	$x - \infty$ -1 $3 + \infty$ $f(x)$ $+$ $+$ $f(x)$ 1 $+ \infty$ $-\infty$ 1 $+ \infty$ $+$	
	1	$y=\frac{1}{4}(x-3)$ هي: $y=\frac{1}{4}(x-3)$ هي: (4) هي:	
	2×0.5	B(0,-3), A(3,0) (5	
	1+0.5	(c_f) و (c_f) یسم (Δ) رسم (Δ)	
08		الموضوع الثاني	
	1+0.5	التمرين الأول: $f(x) = \frac{-2x+7}{x-2} \qquad (1)$	
	1+0.5	$f'(x) = \frac{-3}{(x-2)^2}$ (2	
	1+0.5	$\lim_{x \to +\infty} f(x) = -2 (3)$	
	1+0.5	x=2 المستقيم المقارب معادلته: $x=2$	
	2	y + 3x - 10 = 0 Mandim Material (5)	
	1	التمرين الثاني: $(q>0)$ $u_5=u_3q^2$ (1) $q>0$ و منه $q=2$	
		$ u_0 = 18 $	

العلامة		الإجابه و سلم التتقيط مادة: الرياضيات الشعبه: اداب وقلسفه + لغاد عناصر الإجابة	
المجموع	مجزأة	الموضوع الثاني	محاور لموض وع
	1+0.75	$u_n = u_1 \times q^n = 18 \times 2^n : n$ عبارة u_n بدلالة $u_n = u_1 \times q^n = 18 \times 2^n : n$ عبارة (2	···········
		: n حساب المجموع بدلالة $S_n = u_0 + u_1 + \dots + u_n$	
	1+0.75	$= u_0 \times \frac{2^{n+1} - 1}{2 - 1} = 18(2^{n+1} - 1)$	
07	0.5	$S_n = 1134$ استتناج قیمه n بحیث $S_n = 1134$	
	01	$2^{n+1} = 64$ معناه $S_n = 1134$ $n = 5$	
		التمرين الثالث:	
		 دراسة بواقي "7 على 9 	
	4×0.25		
		k من أجل كل عدد طبيعي k	
	0.5+0.5	$7^{3k+2} \equiv 4[9]$, $7^{3k+1} \equiv 7[9]$, $7^{3k} \equiv 1[9]$	
		9 تعيين باقي قسمة العدد : $\left(1429^{2009} + 2008^{1430} ight)$ على و	
05	0.75	$ \lim_{k \to \infty} \begin{cases} 1429^{2009} \equiv 7^{3k+2} [9] \\ 1429^{2009} \equiv 4[9] \end{cases} $	
	0.5	2008 ≡ 1[9] و منه 1[9] ≡ 2008 ≡ 1[9]	
	0.5	$1429^{2009} + 2008^{1430} \equiv 5[9]$ ينن	
		$A = 7^{3n} + 7^{3n+1} + 7^{3n+2} + 6$: $A = 7^{3n} + 7^{3n+1} + 7^{3n+2} + 6$ (3)	
		. $\mathbb N$ من القسم على 9 من أجل كل عدد n من	
	0.5	$A = 18[9]$ $\theta = (1+4+7+6)[9]$	
	0.5	$A \equiv 0[9]$	
	0.25	الآن A يقبل القسمة على 9	