Evoluční návrh ultrazvukových operačních plánů

Diplomová práce

Jakub Chlebík

Vysoké učení technické v Brně xchleb07@fit.vutbr.cz

19. října 2020

Cíl práce

Analyzovat několik vybraných evolučních optimalizačních metod a na základě výsledků se pokusit vybrat ten s největším potenciálem pro možné použití při návrhu HIFU operačních plánů.

Návrh řešení

- Implementovat za pomoci externích knihoven zvolené optimalizační algoritmy.
- Validovat metody nad běžnými optimalizačními problémy.
- Zvolit vhodná kritéria pro vyhodnocení schopnosti metody řešit zadaný problém optimalizace trajektorie.
- Nastudovat a propojit model šíření tepla ve tkáních s vytvořeným optimalizačním rozhraním.
- Na základě získaných znalostí o problematice a modelu vytvořit testovací sadu úloh pro ověření návrhu.
- Provést experimenty a statisticky porovnat zvolené evoluční algoritmy.

Pro porovnání efektivity algoritmů byla zvolena následující kritéria :

- Včasnost výsledku. Zhoubná tkáň se rozšiřuje, mění a i malá změna může znehodnotit nalezené výsledky.
- Přesnost řešení. Důležité do jisté hranice.

Tyto kritéria jsou reprezentována omezením na maximální počet evaluací účelové funkce. Každému algoritmu je dovoleno spustit simulaci ultrazvukové operace 2000 krát.

Operace

Operační plán se skládá ze sekvence sonikací, které akumulovaným teplem zničí cílenou tkáň.

Provedení jedné sonikace.

Účelová funkce

Fitness funkce je poté vypočtena vztahem:

$$f = \sum_{i=0}^{X} \sum_{j=0}^{Y} ((D_{ij} * \overline{C_{ij}}) + (D_{ij} * C_{ij}))$$

Kde D je matice reprezentující cíl a C je matice reprezentující výsledek operace:

$$C_{ij} = \begin{cases} 1 & \text{pokud byl bod } (i,j) \text{ zničen} \\ 0 & \text{jinak} \end{cases}$$

Testovací sada

Problém typu skvrna.

Problém typu květina.

Výsledky

Pro optimalizaci byly zkoumány následující algoritmy:

- Genetický algoritmus (dále GA).
- Diferenciální evoluce (dále DE).
- Optimalizace rojem částic (dále PSO).
- Evoluční strategie založená na adaptaci kovarianční matice (dále CMAES).
- Simulované žíhání (dále SA).
- Tabu prohledávání (dále TABU).

Výsledky - skvrna

Boxplot nalezených řešení za 20 běhů každého algoritmu. Osa y ukazuje fitness hodnotu (0 je optimem). DE a PSO vyřazeny z důvodu řádově horších výsledků.

Detail na úspěšné algoritmy.

Výsledky - květina

Boxplot nalezených řešení za 20 běhů každého algoritmu. Osa y ukazuje fitness hodnotu (0 je optimem). Tabu a PSO byly vyřazeny z důvodu řádově horších výsledků.

Detail na úspěšné algoritmy.

Vizualizace nejlepších řešení - skvrna

Vizualizace nejlepších řešení - květina

Byly provedeny stovky experimentů nad testovací sadou vyplývající z klinické praxe. Výsledkem těchto experimentů jsou statisticky zhodnoceny a bylo ukázáno, že optimalizační algoritmy SA a CMAES jsou schopny navrhnout efektivní operační plán v rámci zvolených kritérií.

Děkuji za pozornost.

Otázky oponenta

- O přesně v kontextu této práce znamená, že "populace degeneruje" (z jakého pohledu jste degeneraci prokázal)?
- Na základě čeho byla zvolena uvedená šestice optimalizačních technik, s nimiž byly prováděny experimenty?
- 3 Kolik (přibližně, příp. procentuálně k celkovému počtu) jádrohodin spotřebovaly experimenty s benchmarkovými funkcemi?
- V čem vidíte největší příspěvek provedení testů s benchmarky problematice optimalizace ultrazvukových operací?

Výsledky běhů genetického algoritmu. Vlevo souhrn nalezených řešení. Vpravo posledních pět generací vybraného "degenerovaného" běhu.