## PRACTICA 2: "Operaciones con señales discretas"

# **MATERIAL**

- Matlab
- Proteus
- Arduino IDE y tarjeta arduino
- Scripts de Matlab "senales\_elem.m" y archivos de textos que tienen valores de señales "registro\_ECG.txt", "registro PPG.txt", "registro Coiflets2.txt", "registro\_Daubechies2.txt" y "registro\_GaussWindow.txt"

#### **EXPERIMENTO 1**

Sean las siguientes señales elementales

Impulso unitario ó delta de Dirac  $\delta(t)$ 

Impulso unitario ó delta de Kronecker  $\delta(n)$ 





Escalón unitario u(t)

Escalón unitario u(n)





Rampa unitaria  $\mathbf{r}(t)$   $r(t) = \begin{cases} t & t \ge 0 \\ 0 & t < 0 \end{cases}$ 

$$r(t) = \begin{cases} t & t \ge 0 \\ 0 & t < 0 \end{cases}$$

Rampa unitaria  $\mathbf{r}(n)$   $u(n) = \begin{cases} n & n \ge 0 \\ 0 & n < 0 \end{cases}$ 





#### Señales adicionales

### Pulso unitario p(t)

$$p(t) = \begin{cases} 1 & -1 < t < 1 \\ 0 & otherwise \end{cases}$$



## Pulso triangular unitario tri(t)

$$tri(t) = \begin{cases} t+1; & -1 < t < 0 \\ -t+1; & 0 < t < 1 \\ 0 & otherwise \end{cases}$$



Con ayuda de las llamadas funciones anónimas (ver ejemplo "señales\_elem.m"), calcular las siguientes operaciones con señales y mostrar sus gráficas correspondientes. Graficar con *plot* las señales continuas y con *stem* las discretas

- a) tri(t)
- b) p(2t + 3)
- c) 3tri(0.5(t+1))
- d) p(0.5t + 2) + p(2t 4)
- e) r(-2t+3)
- f) p(0.1n + 0.2) + p(0.4n 2)
- g) 5 tri(0.2(n+3))
- h) La expresión analítica de la siguiente figura (llamarla h(n))



i) 
$$(-1)^n h(n)$$

#### **EXPERIMENTO 2**

Programar en Matlab dos funciones capaces de calcular las siguientes operaciones, ante cualquier pareja de vectores de entrada

- a) Convolución discreta
- b) Correlación discreta

Posteriormente, generar un script donde se prueben ambas funciones y se compare su desempeño en comparación con las instrucciones *conv* y *xcorr*. Cabe destacar que las funciones creadas no deben hacer uso de las mencionadas instrucciones.

#### **EXPERIMENTO 3**

Empleando su tarjeta Arduino (o algún otro microcontrolador), generar un programa capaz de calcular

- a) Convolución discreta
- b) Correlación discreta

Se debe considerar que ambas secuencias de entrada tendrán valores y longitud constates y definidas como dos arreglos fijos al inicio del programa. La forma de cambiar sus valores numéricos implicará la reprogramación del dispositivo. El resultado se deberá desplegar en el monitor serial, o algún display alfanumérico (LCD 2x16 u OLED) y debe compararse con la salida que ofrece las instrucciones conv y xcorr de Matlab

### **EXPERIMENTO 4**

A partir de los registros digitales de bioseñales contenidos en los archivos "registro\_ECG.txt" y "registro\_PPG.txt", que representan respectivamente un segmento de señal de electrocardiograma y de fotopletismografía, calcular la correlación normalizada de estas contra las señales de referencia "registro\_Coiflets2.txt", "registro\_Daubechies2.txt" y "registro\_GaussWindow.txt" Presentar las gráficas y ordenar cada señal de referencia en orden de parecido con cada una de las bioseñales.