Câu	Ý	Nội dung	Thang điểm
1		$3(\sin^{-1} x)^2 - 2\sin^{-1} x - 1 = 0 \Leftrightarrow \begin{bmatrix} \sin^{-1} x = 1\\ \sin^{-1} x = \frac{-1}{3} \end{bmatrix}$	0,5
		$\sin^{-1} x = 1 \Leftrightarrow x = \sin 1$	0,5
		$\sin^{-1} x = \frac{-1}{3} \Leftrightarrow x = \sin\left(\frac{-1}{3}\right)$	0,5
2		$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{\tan\left(\frac{\pi x}{4}\right) - 1}{x - 1}$	0.25
		$f(1) = m$ $x \to 1$ $x \to 1$ $x \to 1$	0.25
		$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{\pi}{4} \cdot \frac{1}{\cos^2\left(\frac{\pi x}{4}\right)} = \frac{\pi}{2}$	0.5
		$\lim_{x \to 1} f(x) = f(1) \iff m = \frac{\pi}{2}$	0.25
		Vậy với $m = \frac{\pi}{2}$ hàm số $f(x)$ liên tục tại $x = 1$	0,25
3		$x^{2/3} + y^{2/3} = 2$ (1) Lấy đạo hàm 2 vế pt (1) ta có $\frac{2}{3}x^{-1/3} + \frac{2}{3}y^{-1/3}.y' = 0$ Tại $M(1,-1)$ ta có $y'(1) = 1$	0.5
		Phương trình tiếp tuyến của đồ thị hàm số tại M là $y = x - 2$	0.5
4		Xét hàm $f(x) = e^{2x} + x - 2$ là hàm số sơ cấp nên liên tục trên R	0,25
		ta có $f(0) = -1 < 0$, $f(1) = e^2 - 1 > 0$ Vậy tồn tại c thuộc $(0,1)$: $f(c) = 0$	0.5
		γ μ το π τωρο (0,1). <i>J</i> (0) – 0	0,25
		Công thức nhập vào máy $A = A - \frac{e^{2A} + A - 2}{2e^{2A} + 1}$ $x \approx 0.2731$	0.5
5		$g'(2) = \lim_{x \to 2} \frac{g(x) - g(2)}{x - 2} = \lim_{x \to 2} \frac{(2 - x)(x^2 + 2x - 5)}{\left(\sqrt{x} + 1\right)(x - 2)}$	0,5

	$(n^2 + 2n + 5)$ 2	0.5
	$g'(2) = \lim_{x \to 2} \frac{-(x^2 + 2x - 5)}{\left(\sqrt{x} + 1\right)} = \frac{-3}{1 + \sqrt{2}} = 3 - 3\sqrt{2}$	0.5
	$x \to 2$ $(\sqrt{x+1})$ $1+\sqrt{2}$	
6	$y^2 = x^2 + 6^2$	0.25
	$2y\frac{dy}{dt} = 2x\frac{dx}{dt}$	0,5
	$2y\frac{dt}{dt} = 2x\frac{dt}{dt}$	
	Tại $x = 8$ ta có $\frac{dx}{dt} = \frac{\sqrt{8^2 + 6^2}}{8} . 3 = \frac{15}{4} m / phut$	
	$1 \text{ at } x = 8 \text{ ta co } \frac{1}{dt} = \frac{1}{8} \text{ at } 3 = \frac{1}{4} \text{ m/ phut}$	0.25
		0.28
7	$TXD: D = (-1, \infty)$	
	$f'(x) = 2(x+1)\ln(x+1) + (x+1)$	0.5
		0.3
	$f'(x) = 0 \Leftrightarrow x = e^{-1/2} - 1$	0,5
	BBT	
	Hàm số đạt cực tiều tại $x = e^{-\frac{1}{2}} - 1$, $f_{\min}(e^{-\frac{1}{2}} - 1) = \frac{-1}{2e}$	0,5
8	Th1 : $y = 0$ là nghiệm của pt Th2: $y \neq 0$	0,5
	$\int \frac{\left(y^2 + 1\right)}{y^3} dy = 3xe^{3x} dx$	
	J y ³	
		0,5
	$\ln y - \frac{1}{2v^2} = xe^{3x} - \frac{e^{3x}}{3} + C$	
	$y^2 + 2y^2 = 3$	