

PMW3901MB-TXQT: Optical Motion Tracking Chip

Product Datasheet

General Description

The PMW3901MB-TXQT is PixArt Imaging's latest optical navigation chip designed with far field optics technology that enables navigation in the air. It is housed in a 28-pin chip-on-board (COB) package that provides X-Y motion information with a wide working range of 80 mm to infinity. It is most suitable for far field application for motion detection.

Key Features

- Wide working range from 80 mm to infinity
- No lens focusing required during lens mounting process
- Power consumption of 9 mA @ run mode
- 16-bits motion data registers
- Motion detect pin output
- Internal oscillator no clock input needed

Applications

- Devices that require far field motion detection, e.g Drone
- Indoor and outdoor X-Y positioning especially in GPS denied environment

Key Parameters

Parameter	Value
Supply Voltage (V)	V _{DD} : 1.8 – 2.1
	V _{DDIO} : 1.8 – 3.6
Working Range (mm)	80 to infinity
Interface	4-Wire SPI @ 2 MHz
Package Type	28-pin COB Package with
	Lens Assembly:
	6 x 6 x 2.28 mm

Ordering Information

Part Number	Package Type
PMW3901MB-TXQT	28-pin COB Package
LN03-ZSZ	Lens Assembly

For any additional inquiries, please contact us at http://www.pixart.com/contact.asp

1.3 Signal Description

Figure 2. Pin Configuration

Table 1. Signal Pins Description

Pin No.	Signal Name	Туре	Description
Functiona	al Group:	Power Supplies	
2	VDD	Power	Input power supply
3	VDDIO	Power	I/O reference voltage
4	VREG	Power	Internal voltage output
1	GND	Ground	Ground
21	GND	Ground	Ground
Function	al Group:	Control Interface	
16	MOSI	Input	Serial data input
17	SCLK	Input	Serial data clock
18	MISO	Output	Serial data output
19	NCS	Input	Chip select
Function	al Group:	Functional I/O	
7	NRESET	Input	Hardware reset (Active low)
15	MOTION	Output	Motion interrupt (Active low)
Function	al Group:	Special Function P	'in
5 - 6	NC	NC	No connection (float)
8 - 14	NC	NC	No connection (float)
20	NC	NC	No connection (float)
22 - 28	NC	NC	No connection (float)
29*	GND PAD	Ground Pad	Bottom of COB package must be connected to circuit ground

Version 1.00 | 20 Mar 2017

2.0 Operating Specifications

2.1 Absolute Maximum Ratings

Table 2. Absolute Maximum Ratings

Parameters	Symbol	Min.	Max.	Unit	Notes
Storage Temperature	Ts	-40	85	°C	
Lead-Free Solder Temperature	T _{SOLDER}		260	°C	
Supply Voltage	V_{DD}	-0.5	2.1	V	
	V_{DDIO}	-0.5	3.6	V	
Input Voltage	V _{IN}	-0.5	3.6	V	All I/O pins
ESD	ESD _{HBM}		2	kV	All pins (Human Body Model)

Notes:

- 1. Maximum Ratings are those values beyond which damage to the device may occur.
- 2. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum-rated conditions is not implied.
- 3. Functional operation should be restricted to the Recommended Operating Conditions.

2.2 Recommended Operating Conditions

Table 3. Recommended Operating Conditions

Description	Symbol	Min.	Тур.	Max.	Unit	Notes
Operating Temperature	T _A	0		40	°C	
Dower Supply Voltage	V_{DD}	1.8	2.0	2.1	V	Including supply noise
Power Supply Voltage	V_{DDIO}	1.8	2.0	3.6	V	$V_{DDIO} \ge V_{DD}$
Power Supply Rise Time	t _{RT}	0.15		20	ms	0 to V _{DD} min
Supply Noise (Sinusoidal)	V_{NA}			100	mV_{p-p}	10 kHz – 75 MHz
Serial Port Clock Frequency	f_{SCLK}			2	MHz	50% duty cycle
Working Range	Z	80			mm	
Effective Viewing Angle	V_A		42		0	
Illuminance	Lx	110			lux	Tested under florescent light on crimson carpet, light grey vinyl & light grey cement surfaces.
Speed	S			7.4	rad/s	

Note: PixArt does not guarantee the performance of the system beyond the recommended operating condition limits.

Optical Motion Tracking Chip

2.3 DC Characteristics

Table 4. DC Electrical Specifications

Parameters	Symbol	Min.	Тур.	Max.	Unit	Conditions
Supply Current			9		mA	Average current.
Supply Current	I _{DD_RUN}		9		IIIA	No load on MISO, MOTION.
Power Down Current	I _{PD}		12		uA	
Input Low Voltage	V _{IL}			0.3*V _{DDIO}	V	SCLK, MOSI, NCS
Input High Voltage	V _{IH}	0.7*V _{DDIO}			V	SCLK, MOSI, NCS
Input Hysteresis	V_{I_HYS}		100		mV	SCLK, MOSI, NCS
Input Leakage Current			. 1	± 10 uA	^	$V_{in} = V_{DDIO}$ or $0V$,
	I _{LEAK}		± 1		uA	SCLK, MOSI, NCS
Output Low Voltage	V _{OL}			0.45	V	I _{OUT} = 1mA, MISO, MOTION
Output High Voltage	V _{OH}	V _{DDIO} - 0.45			V	I _{OUT} = -1mA, MISO, MOTION

Note: All the parameters are tested under operating conditions: $V_{DD} = 2.0V$, $V_{DDIO} = 2.0V$, $T_A = 25$ °C.

2.4 AC Characteristics

Table 5. AC Electrical Specifications

Parameters	Symbol	Min.	Тур.	Max.	Unit	Conditions
Motion Delay After Reset	t _{MOT-RST}	50			ms	From reset to valid motion, assuming motion is present
Shutdown	t _{STDWN}			500	us	From Shutdown mode active to low current
Wake from Shutdown	t _{wakeup}	50			ms	From Shutdown mode inactive to valid motion. Notes: A RESET must be asserted after a shutdown. Refer to section "Notes on Shutdown", also note t _{MOT-RST.}
MISO Rise Time	t _{r-MISO}		50		ns	C _L = 100pF
MISO Fall Time	t _{f-MISO}		50		ns	C _L = 100pF
MISO Delay After SCLK	t _{DLY-MISO}			120	ns	From SCLK falling edge to MISO data valid, no load conditions
MISO Hold Time	t _{hold-MISO}	200			ns	Data held until next falling SCLK edge
MOSI Hold Time	t _{hold-MOSI}	200			ns	Amount of time data is valid after SCLK rising edge
MOSI Setup Time	t _{setup-MOSI}	120			ns	From data valid to SCLK rising edge
SPI Time Between Write Commands	t _{sww}	45			μs	From rising SCLK for last bit of the first data byte, to rising SCLK for last bit of the second data byte.
SPI Time Between Write And Read Commands	t _{SWR}	45			μs	From rising SCLK for last bit of the first data byte, to rising SCLK for last bit of the second address byte.
SPI Time Between Read And Subsequent Commands	t _{srw} t _{srr}	20			μs	From rising SCLK for last bit of the first data byte, to falling SCLK for the first bit of the address byte of the next command.
SPI Read Address-Data Delay	t _{SRAD}	35			μs	From rising SCLK for last bit of the address byte, to falling SCLK for first bit of data being read.

Version 1.00 | 20 Mar 2017

Optical Motion Tracking Chip

NCS Inactive After Motion Burst	t _{BEXIT}	500			ns	Minimum NCS inactive time after motion burst before next SPI usage	
NCS To SCLK Active	t _{NCS-SCLK}	as as well 1700 I I I I I I I I I I I I I I I I I I		From last NCS falling edge to first SCLK rising edge			
SCLK To NCS Inactive (For Read Operation)	t _{sclk-NCs}	120			ns	From last SCLK rising edge to NCS rising edge, for valid MISC data transfer	
SCLK To NCS Inactive (For Write Operation)	t _{sclk-NCs}	35			μs	From last SCLK rising edge to NCS rising edge, for valid MOSI data transfer	
NCS To MISO High-Z	t _{NCS-MISO}			500	ns	From NCS rising edge to MISO high-Z state	
MOTION Rise Time	t _{r-MOTION}		50		ns	C _L = 100pF	
MOTION Fall Time	t _{f-MOTION}		50		ns	C _L = 100pF	
Input Capacitance	C _{in}		50		pF	SCLK, MOSI, NCS	
Load Capacitance	C_L			100	pF	MISO, MOTION	
Transiant Supply Current	I _{DDT}			70	mA	Max supply current during the supply ramp from 0V to V _{DD} with min 150 us and max 20 ms rise time (does not include charging currents for bypass capacitors).	
Transient Supply Current	Ірртіо			70	mA	Max supply current during the supply ramp from 0V to V _{DDIO} with min 150 us and max 20 ms rise time (does not include charging currents for bypass capacitors).	

Note: All the parameters are tested under operating conditions: $V_{DD} = 2.0V$, $V_{DDIO} = 2.0V$, $T_A = 25$ °C.

3.0 Mechanical Specifications

3.1 Package Marking

Refer Figure 2. Pin Configuration for the code marking location on the device package.

Table 6. Code Identification

Code	Marking	Description
Product Number	P3901	Part number label
		Y: Year
Lot Code	YWX	W: Week
		X: Reserved as PixArt reference

3.2 Package Outline Drawing

Notes:

- 1. Dimensions in milimeters
 - [Inches]
- 2. Coplanarity of pads: 0.08 mm
- 3. Non-cumulative pad pitch tolerance: ±0.10 mm
- 4. Maximum flash: ±0.20 mm
- 5. Dimensional tolerance: ±0.10 mm unless otherwise stated
- 6. Document number: PMW3901MB-TXQT-G8_004

CAUTION: It is advised that normal static discharge precautions be taken in handling and assembling of this component to prevent damage and/or degradation which may be induced by ESD.

Figure 3. Package Outline Drawing

3.3 Assembly Drawings

Figure 4. System Assembly View

Figure 5. Exploded View of System Assembly

Note: Bottom center pad of COB package must be connected to circuit ground.

Figure 6. Recommended PCB Layout

Figure 7. Lens Outline Drawing

4.0 System Level Description

4.1 Reference Schematic

Note:

- 1. All capacitors must be placed as close as possible to VDD, VDDIO & VREG pins.
- 2. Ceramic non-polarity capacitors are recommended.

Figure 8. PMW3901MB Reference Schematics

Optical Motion Tracking Chip

8.0 Registers

8.1 Registers List

PMW3901MB registers are accessible via the serial port. The registers are used to read motion data and status as well as to set the device configuration.

Table 9. Register List

Address	Register Name	Access	Reset	Address	Register Name	Access	Reset
0x00	Product_ID	RO	0x49	0x0A	Minimum_RawData	RO	0x00
0x01	Revision_ID	RO	0x00	0x0B	Shutter_Lower	RO	0x00
0x02	Motion	R/W	0x00	0x0C	Shutter_Upper	RO	0x00
0x03	Delta_X_L	RO	0x00	0x15	Observation	R/W	0x00
0x04	Delta_X_H	RO	0x00	0x16	Motion_Burst	RO	0x00
0x05	Delta_Y_L	RO	0x00	0x3A	Power_Up_Reset	WO	N/A
0x06	Delta_Y_H	RO	0x00	0x3B	Shutdown	WO	N/A
0x07	Squal	RO	0x00	0x58	RawData_Grab	R/W	0x00
0x08	RawData_Sum	RO	0x00	0x59	RawData_Grab_Status	RO	0x00
0x09	Maximum_RawData	RO	0x00	0x5F	Inverse_Product_ID	RO	0xB6

8.2 Performance Optimization Registers

Upon power-up of PMW3901MB, there are a number of registers to configure in order to achieve optimum performance of the chip. These registers are PixArt proprietary information, thus no additional information is provided in this datasheet with regards to these register's descriptions. These registers should be written in sequence as outlined below:

Table 10. Performance Optimization Registers

Address	Value
0x7F	0x00
0x61	0xAD
0x7F	0x03
0x40	0x00
0x7F	0x05
0x41	0xB3
0x43	0xF1
0x45	0x14
0x5B	0x32
0x5F	0x34
0x7B	0x08
0x7F	0x06
0x44	0x1B
0x40	0xBF
0x4E	0x3F

Version 1.00 | 20 Mar 2017