NLA 2021-2022 Eigenproblems

Martin Sombra

17 November 2021

Eigenvalues

Let A be an $n \times n$ matrix with complex coefficients

An element $\lambda \in \mathbb{C}$ is an *eigenvalue* of A if there is $x \in \mathbb{C}^n \setminus \{0\}$ such that

$$Ax = \lambda x$$

that is, if A is a homothecy in the direction of this n-vector

We set

$$\lambda(A) = \{ \text{eigenvalues of } A \}$$
 the *spectrum* of A

The roots of the characteristic polynomial

The *characteristic polynomial* of the $n \times n$ -matrix A is

$$\chi_A = \det(A - z \, \mathbb{1}_n) \in \mathbb{C}[z]_n,$$

where $\mathbb{C}[z]_n$ denotes the space of degree n polynomials with complex coefficients

Let $\lambda \in \mathbb{C}$. TFAE:

- $\lambda \in \lambda(A)$
- $A \lambda \mathbb{1}_n$ is singular
- $det(A \lambda \mathbb{1}_n) = 0$
- λ is a root of χ_A

Hence

$$\lambda(A) = {\lambda \in \mathbb{C} \mid \chi_A(\lambda) = 0}.$$

Eigenvalues can be complex even if A is real!

For instance, if

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

then
$$\lambda(A) = \{\pm i\}$$

Eigenspaces and multiplicities

For $\lambda \in \lambda(A)$, the associate *eigenspace* is

$$V_{\lambda}(A) = \{ x \in \mathbb{C}^n \mid Ax = \lambda x \}$$

It is an invariant subsapce:

$$A V_{\lambda}(A) \subset V_{\lambda}(A)$$

- The geometric multiplicity of λ is the dimension dim $(V_{\lambda}(A))$
- The algebraic multiplicity of λ , denoted by $e_{\lambda}(A)$, is the exponent of the factor $\lambda-z$ in the irreducible factorization of χ_A

These quantities are related by

$$1 \leqslant \dim(V_{\lambda}(A)) \leqslant e_{\lambda}(A)$$

Similarities

An $n \times n$ matrix B is similar to A if there is a nonsingular $n \times n$ matrix S such that

$$A = SBS^{-1}$$

The matrices A and B have the same eigenvalues, and the eigenvectors of A can be read from those of B:

$$\lambda(A) = \lambda(B),$$

and y is an eigenvector of B for λ if and only if S y is an eigenvector of A for λ

Similarities (cont.)

If $B = diag(\lambda_1, \dots, \lambda_n)$ is a diagonal matrix, then

$$e_{i} = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

is an eigenvector of B for λ_i and so the i-th column in the matrix S

$$s_i = S e_i$$

is an eigenvector of A for λ_i

Decoupling

Many eigenvalue computations involve breaking down the problem into smaller ones (decoupling): if

$$A = \begin{bmatrix} A_{1,1} & A_{1,2} \\ 0 & A_{2,2} \end{bmatrix}$$

then
$$\lambda(A) = \lambda(A_{1,1}) \cup \lambda(A_{2,2})$$

In particular, if A is upper triangular then its eigenvalues coincide with its diagonal entries.

The Schur decomposition

An $n \times n$ matrix Q is unitary if

$$Q^* = Q^{-1}$$

For reasons of numerical stability, we prefer to consider similarities given by unitary matrices

→ the Schur decomposition:

$$A = Q T Q^*$$

with Q unitary and T upper triangular

The Schur decomposition (cont.)

The existence of this factorization can be verified by induction:

$$n = 1$$
:

$$Q = \begin{bmatrix} 1 \end{bmatrix}$$
 and $T = A$

n > 1:

Take an eigenvalue $\lambda \in \lambda(A)$ and a unit eigenvector $u \in \mathbb{C}^n$ of it, and choose an $n \times (n-1)$ matrix \widetilde{U} such that $U = \begin{bmatrix} u \ \widetilde{U} \end{bmatrix}$ is unitary. Then

$$U^*AU = {}^{1}\begin{bmatrix} u^* \\ \widetilde{U}^* \end{bmatrix} A \begin{bmatrix} {}^{1} & {}^{n-1} \\ u & \widetilde{U} \end{bmatrix} = {}^{1}\begin{bmatrix} u^*Au & u^*A\widetilde{U} \\ \widetilde{U}^*Au & \widetilde{U}^*A\widetilde{U} \end{bmatrix}$$

We have that $u^*Au = u^*\lambda u = \lambda$ and $\widetilde{U}^*Au = \widetilde{U}^*\lambda u = 0$, and so

$$U^*A\ U = \begin{bmatrix} \lambda & \widetilde{a}_{1,2} \\ 0 & \widetilde{A}_{2,2} \end{bmatrix}$$

The Schur decomposition (cont.)

By induction, there is an $(n-1)\times (n-1)$ -unitary matrix P and an $(n-1)\times (n-1)$ -upper triangular matrix \widetilde{T} such that

$$\widetilde{A}_{2,2} = P \ \widetilde{T} P^*$$

Hence

$$A = U \begin{bmatrix} \lambda & \widetilde{a}_{1,2} \\ 0 & \widetilde{A}_{2,2} \end{bmatrix} U^* = Q T Q^*$$

with

$$Q = U \begin{bmatrix} 1 & 0 \\ 0 & P \end{bmatrix}$$
 and $T = \begin{bmatrix} \lambda & \widetilde{a}_{1,2} P \\ 0 & \widetilde{T} \end{bmatrix}$

Some remarks

- The Schur decomposition is not unique, e.g. the eigenvalues can appear in the diagonal of T in any possible order
- The columns

$$Q=[q_1\cdots q_n]$$

are called the *Schur vectors* of *A*. Writing $T = [t_{i,j}]_{i,j}$, for k = 1, ..., n we have that

$$A q_k = \sum_{i=1}^k t_{i,k} q_i$$

and so the linear subspace span (q_1, \ldots, q_k) is invariant

• When A is real symmetric, it admits a Schur decomposition $A = Q T Q^*$ with Q orthogonal and T diagonal

Diagonalization

A is diagonalizable if there exists a nonsingular matrix S and a diagonal matrix $\Lambda = \mathrm{diag}(\lambda_1,\dots,\lambda_n)$ such that

$$A = S \Lambda S^{-1}$$
.

This is equivalent to the fact that the geometric and the algebraic multiplicities of the eigenvalues of A coincide, that is,

$$\dim V_{\lambda}(A) = e_{\lambda}(A) \quad \text{ for all } \lambda \in \lambda(A)$$

The Jordan decomposition

It is the factorization

$$A = SJS^{-1}$$

with J a block diagonal matrix $J = [J_1 \cdots J_q]$ where each block is of the form

$$J_{i} = \begin{bmatrix} \lambda_{i} & 1 & \cdots & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 1 \\ \vdots & \ddots & \ddots & \ddots & 1 \\ 0 & \cdots & \cdots & 0 & \lambda_{i} \end{bmatrix} \in \mathbb{C}^{n_{i} \times n_{i}}$$

and
$$n_1 + \cdots + n_q = n$$

The Jordan decomposition (cont.)

This decomposition gives full information about the eigenvalues and the eigenvectors of *A*:

- for each i, the eigenvalue of J_i is λ_i with eigenvector e_i
- the eigenvalues of A are the λ_i 's
- for each λ_i the basis of the eigenspace $V_{\lambda}(A)$ is given by the columns of S corresponding to the first columns of the Jordan blocks with eigenvalue λ_i

Drawbacks

- The Jordan decomposition is *not* continuous
- It is difficult to compute numerically for a non diagonalizable matrix
- ullet It cannot be computed stably: after computing S and J, we cannot guarantee that

$$A + \delta A = S J S^{-1}$$

with δA small, because S might have a large condition number

Example 1

The Jordan form of
$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
 is $J = A$

For $\varepsilon_1 \neq \varepsilon_2$ small, the perturbed matrix

$$\widetilde{A} = \begin{bmatrix} \varepsilon_1 & 1 \\ 0 & \varepsilon_2 \end{bmatrix}$$

has two different eigenvalues ε_1 and ε_2 , and so its Jordan form is

$$\widetilde{J} = \begin{bmatrix} \varepsilon_1 & 0 \\ 0 & \varepsilon_2 \end{bmatrix}$$

Example 2

Let

$$A = \begin{bmatrix} 1 + \varepsilon & 1 \\ 0 & 1 - \varepsilon \end{bmatrix}$$

with ε small. Up to a scalar, the eigenvectors of A are

$$s_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 and $s_2 = \begin{bmatrix} 1 \\ -2 \varepsilon \end{bmatrix}$

The Jordan decomposition of A is

$$A = \begin{bmatrix} 1 & 1 \\ 0 & -2 \varepsilon \end{bmatrix} \begin{bmatrix} 1 + \varepsilon & 0 \\ 0 & 1 - \varepsilon \end{bmatrix} \begin{bmatrix} 1 & \frac{1}{2\varepsilon} \\ 0 & \frac{-1}{2\varepsilon} \end{bmatrix}$$

and so $\kappa_{\infty}(S) \approx \varepsilon^{-1}$

Computing the eigenvectors from the Schur decomposition

Consider the Schur decomposition

$$A = Q T Q^*$$

and y an eigenvector of T for an scalar λ . Then

$$AQy = QTy = \lambda Qy$$

and so Qy is an eigenvector of A with eigenvalue λ

 \rightsquigarrow to find the eigenvalues of A it is enough to find those of T

Computing the eigenvectors (cont.)

Suppose that $\lambda = t_{i,i}$ is *simple*, that is $e_{\lambda}(A) = 1$

Write the equation $(T - \lambda \mathbb{1}_n) y = 0$ as

$$0 = \int_{n-i}^{i-1} \begin{bmatrix} T_{1,1} - \lambda \mathbb{1}_{i-1} & T_{1,2} & T_{1,3} \\ 0 & 0 & T_{2,3} \\ 0 & 0 & T_{3,3} - \lambda \mathbb{1}_{n-i} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$$

$$= \begin{bmatrix} (T_{1,1} - \lambda \mathbb{1}_{i-1}) y_1 + T_{1,2} y_2 + T_{1,3} y_3 \\ T_{2,3} y_3 \\ (T_{3,3} - \lambda \mathbb{1}_{n-i}) y_3 \end{bmatrix}$$

Computing the eigenvectors (cont.)

Since λ is simple, both $T_{1,1}-\lambda\mathbb{1}_{i-1}$ and $T_{3,3}-\lambda\mathbb{1}_{n-i}$ are nonsingular, and so

$$y_3 = 0 \in \mathbb{R}^{i-1}$$

Set $y_2 = 1$ and compute

$$y_1 = -(T_{1,1} - \lambda \mathbb{1}_{i-1})^{-1} T_{1,2} \in \mathbb{R}^{n-i}$$

solving an upper triangular system

The resulting eigenvector is

$$y = \begin{bmatrix} -(T_{1,1} - \lambda \mathbb{1}_{i-1})^{-1} T_{1,2} \\ 1 \\ 0 \end{bmatrix}$$

Example

For
$$T = \begin{bmatrix} 3 & -3 \\ 0 & 2 \end{bmatrix}$$
 the eigenvector for $\lambda = 2$ is computed as

$$(T - \lambda \mathbb{1}_2) \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 1 & -3 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} y_1 - 3y_2 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

which gives

$$y = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

Hence for a Schur decomposition $A = Q T Q^*$, the eigenvector for $\lambda = 2$ is

$$Q\begin{bmatrix}3\\1\end{bmatrix}=3q_1+q_2$$

Perturbation theory

Eigenvalues are continuous with respect to perturbations of the matrix, but they might have an *infinite* condition number, because in general their variation is not bounded by a linear function

Let

$$A_{\varepsilon} = \begin{bmatrix} 0 & 1 \\ \varepsilon & 0 \end{bmatrix}$$

with ε small

$$ightsquigarrow \lambda(A_{\varepsilon})=\{\pm \varepsilon^{1/2}\}$$
, and $\varepsilon^{1/2}$ grows faster than $|\varepsilon|$ for $\varepsilon \to 0$

For $\varepsilon = 0$, the condition number of the eigenvalue of $\lambda = 0$ is $+\infty$

Example (cont.)

More formally, set

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \quad \text{and} \quad A + \delta A = \begin{bmatrix} 0 & 0 \\ \varepsilon & 0 \end{bmatrix}$$

and let $\lambda = 0$ and $\lambda + \delta \lambda$ be the respective eigenvalues. Hence

$$|\delta\lambda| > c \, \frac{\|\delta A\|}{\|A\|} \approx \varepsilon$$

for any fixed c>0 and ε sufficiently small

The condition number

Let A be an $n \times n$ matrix and λ a simple eigenvalue of it. The condition number of λ is defined as

$$\kappa(A,\lambda) = \frac{1}{y^*x}$$

where x and y are unit eigenvalues of A for λ and of A^* for $\overline{\lambda}$, respectively:

$$Ax = \lambda x$$
 and $y^* A = \lambda y^*$

The condition number (cont.)

For a small perturbation δA we have that

$$-\frac{(A+\delta A)\cdot(x+\delta x)}{Ax} = \frac{(\lambda+\delta\lambda)\cdot(x+\delta x)}{\lambda x}$$
$$-\frac{Ax}{A\cdot\delta x+\delta A\cdot x+\delta A\cdot\delta x} = \frac{\lambda x}{\lambda x}$$

If we ignore the second order terms and multiply by y^* we obtain

$$y^* \cdot A \cdot \delta x + y^* \cdot \delta A \cdot x = y^* \cdot \lambda \cdot \delta x + y^* \cdot \delta \lambda \cdot x$$

Hence up to second order

$$\delta\lambda = \frac{y^* \cdot \delta A \cdot x}{y^* \cdot x}$$

and so $|\delta\lambda| = \kappa(A,\lambda) \|\delta A\|$

Example (cont.)

Let

$$A_{\varepsilon} = \begin{bmatrix} 0 & 1 \\ \varepsilon & 0 \end{bmatrix}$$

with ε small

The eigenvalues of A and A* for $\lambda_{\varepsilon} = \varepsilon^{1/2}$ are

$$x_{arepsilon} = rac{1}{(1+arepsilon)^{1/2}} egin{bmatrix} 1 \ arepsilon^{1/2} \end{bmatrix} \quad ext{and} \quad y_{arepsilon} = rac{1}{(1+arepsilon)^{1/2}} egin{bmatrix} arepsilon^{1/2} \ 1 \end{bmatrix}$$

Hence

$$\kappa(A_{\varepsilon}, \lambda_{\varepsilon}) = \frac{1}{y_{\varepsilon}^* \cdot x_{\varepsilon}} = \frac{1 + \varepsilon}{2 \, \varepsilon^{1/2}} \approx \frac{1}{2 \, \varepsilon^{1/2}} \longrightarrow_{\varepsilon \to 0} + \infty$$

The symmetric case

When A is symmetric the condition number of a simple eigenvalue is 1: in this case x = y and so

$$\kappa(A, \lambda) = \frac{1}{y^* \cdot x} = \frac{1}{\|x\|_2^2} = 1$$

Computing eigenvalues and eigenvectors

Let A be an $n \times n$ matrix and consider the QR iteration:

$$H_0 \leftarrow Q_0^* A Q_0$$

for $k = 1, 2, ...$
 $H_{k-1} = Q_k R_k \ (QR \ factorization)$
 $H_k \leftarrow R_k Q_k$

Since
$$H_k = R_k Q_k = Q_k^* Q_k R_k Q_k = Q_k^* H_{k-1} Q_k$$
 we have that

$$A = (Q_0 \cdots Q_k) H_k (Q_0 \cdots Q_k)^*$$

and so H_k unitarily similar to A

In most situations

$$H_k \longrightarrow_{k \to \infty} H$$
 upper triangular (Schur form)

but this is less obvious!

The power method

Fix a norm $\|\cdot\|$. The *power method* is the iteration

Choose
$$x_0 \in \mathbb{C}^n$$
 with $||x_0|| = 1$
for $k = 0, 1, 2, \dots$
 $y_{k+1} \leftarrow A x_k$
 $x_{k+1} \leftarrow \frac{y_{k+1}}{||y_{k+1}||}$

When stopping at an integer I we set

$$\widetilde{x} \leftarrow x_{l+1}$$
 approximate eigenvector $\widetilde{\lambda} \leftarrow \widetilde{x}^* A \widetilde{x}$ approximate eigenvalue

Error analysis

Suppose A diagonalizable, that is

$$A = S \Lambda S^{-1}$$

with

$$S = [s_1 \, \cdots \, s_n] \quad \text{and} \quad \Lambda = \mathsf{diag}(\lambda_1, \dots, \lambda_n)$$

and suppose that

$$|\lambda_1| > |\lambda_2| \geqslant \cdots \geqslant |\lambda_n|$$

Error analysis (cont.)

Write

$$x_0 = a_1 s_1 + \cdots + a_n s_n$$

and suppose furthemore that $a_1 \neq 0$. Then

$$A^k x_0 = a_1 \lambda_1^k s_1 + \cdots + a_n \lambda_n^k s_n = a_1 \lambda_1^k \left(s_1 + \sum_{j=2}^n \frac{a_j}{a_1} \left(\frac{\lambda_j}{\lambda_1} \right)^k s_j \right)$$

and so for $x_k = \frac{A^k x_0}{\|A^k x_0\|}$ and $\widetilde{\lambda}_k = x_k^* A x_k$ we have that

$$\|x_k - s_1\|, \|\widetilde{\lambda}_k - \lambda_1\| \leqslant O(\left|\frac{\lambda_2}{\lambda_1}\right|^k)$$

The number of correct digits in base b of these approximations is

$$-\log_b \|x_k - s_1\|_2, -\log_b \|\widetilde{\lambda}_k - \lambda_1\|_2 \geqslant k \log_b \left(\left|\frac{\lambda_1}{\lambda_2}\right|\right) + \text{constant}$$

Pros and cons

- It is based on matrix-vector multiplications
- ullet Its speed of convergence depends on the ratio $|\lambda_1|/|\lambda_2|$
- It assumes $a_1 \neq 0$

In PageRank:

- Matrix-vector multiplications reduce to multiplications by the link matrix of the web, which is sparse
- The ratio $|\lambda_1|/|\lambda_2|$ is uniformly bounded below:

$$\frac{|\lambda_1|}{|\lambda_2|} \geqslant 0.85^{-1} \approx 1.18$$

• x_0 is chosen as the score vector of the previous web

Pros and cons (cont.)

- It only converges to a pair eigenvalue/eigenvector only if there is a dominant one
- the convergence is only *linear*

The power method does not converge in many situations, including:

- orthogonal matrices (all eigenvalues have absolute value 1)
- real matrices with complex eigenvalues (the eigenvalues come in pairs of conjugate complex numbers)