4. VECTOR SPACES AND SUBSPACE.

पीटी भगा के भिटार एके भग केन्य्रिका। पार्क डिरा

A **vector space** is a nonempty set V of objects, called **vectors**, on which are defined two operations, called **addition** and **multiplication** by **scalars** (real numbers), subject to the ten axioms (or rules) listed below. The axioms must hold for all vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} in V and for all scalars c and d.

- 1. The sum of \mathbf{u} and \mathbf{v} , denoted by $\mathbf{u} + \mathbf{v}$, is in V.
- 2. u + v = v + u.
- 3. (u + v) + w = u + (v + w).
- **4.** There is a **zero** vector **0** in V such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$.
- 5. For each \mathbf{u} in V, there is a vector $-\mathbf{u}$ in V such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.
- **6.** The scalar multiple of \mathbf{u} by c, denoted by $c\mathbf{u}$, is in V.
- 7. $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$.
- **8.** $(c + d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$.
- **9.** $c(d\mathbf{u}) = (cd)\mathbf{u}$.
- 10. 1u = u.

* Subspace.

Vector space V 의 Subspace는
OFORM 37FN 성자은 마트타니 Vector space V의 백자라 Hora

- 1 Zew Vector 7+ H Set of TENTON TENTO
- → Hobings U, v ≥ E-1 = 5 U+V7+ Hobing off off off.

If $\mathbf{v}_1, \dots, \mathbf{v}_p$ are in a vector space V, then Span $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is a subspace of V.

VI...Vp7+ Voto114/2107, spanq VI...Vp3/2 Vel Subspace

1.325011M Spang V,,..., Vp? 5 C,V, + CoV+ ... + CpVp 55313.
UFUN \$5046 95.4454501212 1582156.

4.1. EXERCISES

9. Let *H* be the set of all vectors of the form $\begin{bmatrix} s \\ 3s \\ 2s \end{bmatrix}$. Find a

vector \mathbf{v} in \mathbb{R}^3 such that $H = \operatorname{Span} \{\mathbf{v}\}$. Why does this show that H is a subspace of \mathbb{R}^3 ?

SOL)

$$\begin{bmatrix} S \\ 3S \\ 2S \end{bmatrix} = S \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$$

H = Span 9 [3] > H= B3 = ter Subspace.