

Universidade do Estado do Rio de Janeiro

Departamento de Física Teórica

Medidas de tempo de queda de um objeto e Estimativa para gravidade no local

> Aluno: José Gonçalves Chaves Junior M:202020477411

Curso: Física

Prof: Antonio Vilela

Sumário

1	Introdução	3
2	Objetivo	3
3	Procedimento Experimental	3
4	Análise dos Dados Coletados 4.1 Estimativas finais para o tempo de queda	4
5	Estimativas para gravidade	7
6	Compatibilidade	7
7	Conclusão 7.1 Respostas	8 9
8	Bibliografia	10

Lista de Tabelas

1	Dados coletados nas 30 primeiras medições do tempo de queda	4
2	Dados coletados nas últimas 30 medições do tempo de queda	4
3	Valor máximo e intervalo do valor máximo do Histograma (b)	5
4	Valor mínimo e intervalo do valor máximo do Histograma (b)	5
5	Média e Desvio Padrão das medições.	6
6	Incertezas das medições	6
7	Dados para a compatibilidade com o valor referência	7

1 Introdução

Desde os tempos mais remotos, o homem estuda os movimentos que ocorrem na natureza. Aristóteles, filósofo grego, acreditava que, se abandonássemos dois corpos de massas diferentes, de uma mesma altura, o corpo mais pesado tocaria o solo primeiro, ou seja, o tempo de queda desses corpos seriam diferentes.

Essa crença perdurou por muito tempo, até a chegada do século XVII. Ao introduzir o método experimental, Galileu Galilei chegou à conclusão de que dois corpos de massas diferentes, quando desprezada a resistencia do ar e abandonados da mesma altura, alcançam o solo no mesmo instante, e podemos perceber isso através da função horária:

$$H(t) = H_0 + v_0 t + \frac{1}{2}gt^2$$

Dessa equação, podemos isolar g:

$$g = \frac{2(H - H_0 - v_0 t)}{t^2}$$

Como sabemos H, Ho,t, e como o objeto parte do repouso, finalmente teremos:

$$g = \frac{2H}{t^2}$$

Dessa forma, vemos que o tempo de queda contribui para a aceleração do corpo, não a massa (nesse caso). Desprezando a resistência do ar, dois objetos de massas diferentes quando abandonados do repouso chegam ao mesmo tempo ao solo pois estão sob influência da mesma aceleração (g).

2 Objetivo

Neste Experimento, o objetivo é estimar o tempo de queda de um objeto e após o procedimento, estimar o módulo da gravidade no local do experimento e verificar se o resultado é compatível ou não com o valor de referência $g = 9,787899 \text{ m.s}^{-2}$.

3 Procedimento Experimental

Para realizar o experimento, foi usado:

- 1. Uma trena ($3 \pm 0.01 \text{ m}$);
- 2. Uma borracha de látex (6 cm x 2 cm) :
- 3. Caneta Esferográfica de cor Azul (15cm x 0,5cm x 0,5 cm);
- 4. Cronômetro do celular com marcação na ordem dos ms;

De início, a trena foi usada para medir 1,80 m a partir do solo e marcar um ponto na parede, para ser o ponto inicial da queda. Logo após a marcação, a borracha foi solta da altura, mediu-se 60 vezes seu tempo de queda, e, após a coleta, os dados foram analisados para estimar o tempo de queda.

4 Análise dos Dados Coletados

-	t(s)	-	t(s)
1	0,50	16	0,61
2	0,61	17	0,56
3	0,58	18	0,51
4	0,60	19	0,57
5	0,59	20	0,65
6	0,62	21	0,63
7	0,57	22	0,62
8	0,58	23	0,60
9	0,62	24	0,65
10	0,60	25	0,57
11	0,64	26	0,63
12	0,60	27	0,55
13	0,60	28	0,68
14	0,54	29	0,63
15	0,57	30	0,55

Tabela 1: Dados coletados nas 30 primeiras medições do tempo de queda

-	t(s)	-	t(s)
31	$0,\!55$	46	0,65
32	0,63	47	0,66
33	0,63	48	0,63
34	0,67	49	0,67
35	0,67	50	0,68
36	0,66	51	0,66
37	0,65	52	0,61
38	0,63	53	0,62
39	0,62	54	0,61
40	0,57	55	0,60
41	0,51	56	0,66
42	0,58	57	0,65
43	0,65	58	0,62
44	0,67	59	0,60
45	0,58	60	0,62

Tabela 2: Dados coletados nas últimas 30 medições do tempo de queda.

Figura 1: Histogramas das medições.

 $\mbox{*}$ - Largura a meia altura: 0.075

* - Valor a meia altura: 13.0

Valor Máximo	Intervalo
26.0	(0.6, 0.638)

Tabela 3: Valor máximo e intervalo do valor máximo do Histograma (b).

Valor Mínimo	Intervalo
0.0	(0.45, 0.75)

Tabela 4: Valor mínimo e intervalo do valor máximo do Histograma (b).

-	t(s)
Média	0,612
Desvio Padrão	0,043

Tabela 5: Média e Desvio Padrão das medições.

Incerteza Estatística (s)	Erro da Média* (s)
0.005	0.011

Tabela 6: Incertezas das medições.

* - O erro da média foi calculado através do erro instrumental de 0,01 m recomendado pela $Prof.^a$ Maria de Fátima no roteiro, e calculado a partir da soma em quadratura dos erros.

4.1 Estimativas finais para o tempo de queda

Figura 2: Distribuição Gaussiana do valor do tempo de queda encontrado.

5 Estimativas para gravidade

Para estimarmos o valor da gravidade, utilizaremos as equações:

$$g = \frac{2H}{m\acute{e}dia_t^2} \pm \sigma_g \tag{1}$$

onde,

$$\sigma_g = \sqrt{(\frac{\sigma_g}{\sigma t})^2 \cdot \sigma_t} = 0,36m.s^{-2}.$$

Além de considerármos H constante e igual à 1,80m e o valor de ${\bf t}$ ser igual à $m\acute{e}dia_t$, temos que

$$\frac{\sigma_g}{\sigma_t} = \frac{-4H}{m\acute{e}dia_t^3}$$

teremos como valor final:

$$g = (9, 61 \pm 0, 36)m.s^{-2}. (2)$$

6 Compatibilidade

Com os nossos resultados, podemos verificar a compatibilidade destes, com o valor referência $g=9.787899~\mathrm{m.s^{-2}}$.

Discrepância	0.176 m.s^2
Erro Relativo	0,037
Erro Percentual	3,73 %

Tabela 7: Dados para a compatibilidade com o valor referência.

Figura 3: Intervalo de confiança do valor de g encontrado.

7 Conclusão

Para sabermos se o resultado é compatível ou não, basta calcularmos a razão

$$r = \frac{|g_{ref} - g_{exp}|}{\sigma_g} = 0,4911 \tag{3}$$

Portanto, por $r \leq 2$, podemos afirmar que o valor é compatível com o referente, o que pode ser evidenciado pela Figura 3.

7.1 Respostas

- 1- A última medição que fiz foi para medir a mesa do meu quarto. Os experimentos realizados no laboratório contribuiram bastante para que eu tivesse sucesso na medição, como queria movê-la de lugar no meu escritório, e por este ser pequeno, foi necessário medir com bastante atenção (não só para não ser um esforço em vão, mas para que funcionasse), e funcionou!
- 2- Através das incertezas, podemos ter uma base melhor para analisar, ou seja, podemos antes de realizar algum trabalho, analisar se é válido ou não.
- **3-** Por mais que os **Histogramas (a) e (b)** apresentem intervalos com uma alta amplitude, quando olhamos a **Figura 2** podemos ver que a função ficou bem distribuída, e o valor médio se encontra realmente numa região de maior "frequência".
- 4- Não foi o que eu esperava. Talvez por não ter uma bolinha ou uma esfera maçica em casa, o formato do objeto pode ter contribuído pela discrepância. Entretanto, o valor encontrado satisfaz, mesmo assim, quando comparadado com o tempo previsto; inclusive, com o mesmo erro da média.

8 Bibliografia

- $Ref.\ 1:\ https://brasilescola.uol.com.br/fisica/queda-livre.htm\ ;$
- Ref. 2: https://querobolsa.com.br/enem/fisica/queda-livre-e-lancamento-vertical;
- Ref. 3: "Estimativas e erros em experimentos de Física", coleção Comenius, 3a Edição. Ed UERJ.