16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez

Lecture 33: Performance to LEO

ΔV Calculations for Launches to Low Earth Orbit (LEO)

Ideal Earth-to-orbit launch

$$\Delta V_1 \cos \alpha R_F = \dot{V_2} R$$

$$\frac{\Delta V_1^2}{2} - \frac{\mu}{R_E} = \frac{V_2^2}{2} - \frac{\mu}{R}$$
$$= \frac{1}{2} \left(\Delta V_1 \cos \alpha \frac{R_E}{R} \right)^2 - \frac{\mu}{R}$$

$$\Delta V_1^2 = 2 \frac{\frac{\mu}{R_e} - \frac{\mu}{R}}{1 - \left(\frac{R_e}{R}\right)^2 \cos^2 \alpha}$$

$$\Delta V_1 = \sqrt{2 \frac{\mu}{R_E}} \frac{1 - \frac{R_E}{R}}{1 - \left(\frac{R_E}{R}\right)^2 \cos^2 \alpha}$$

$$V_c = \sqrt{\frac{\mu}{R}}$$

$$\Delta V_2 = V_c - V'_2 = \sqrt{\frac{\mu}{R}} - \frac{R_{\epsilon}}{R} \cos \alpha \sqrt{2 \frac{\mu}{R_{\epsilon}}} \frac{1 - \frac{R_E}{R}}{1 - \left(\frac{R_E}{R}\right)^2 \cos^2 \alpha} = \sqrt{\frac{\mu}{R_E}} \sqrt{\frac{R_E}{R}} - \frac{R_E}{R} \cos \alpha \sqrt{2 \frac{1 - \frac{R_E}{R}}{1 - \left(\frac{R_E}{R}\right)^2 \cos^2 \alpha}}$$

$$\Delta V = \Delta V_1 + \Delta V_2 \qquad \frac{\Delta V}{\sqrt{\mu / R_{\epsilon}}} = \sqrt{\frac{2 \left(1 - \eta\right)}{1 - \eta^2 \cos^2 \alpha}} + \sqrt{\eta} - \eta \cos \alpha \sqrt{2 \left(\frac{1 - \eta}{1 - \eta^2 \cos^2 \alpha}\right)}$$

$$\frac{R_{\rm e}}{R} = \eta \qquad \frac{\Delta V}{\sqrt{\mu / R_{\rm e}}} = \sqrt{2(1 - \eta)\frac{1 - \eta \cos \alpha}{1 + \eta \cos \alpha}} + \sqrt{\eta} \qquad \text{(increasing f. of } \alpha\text{)}$$

For
$$\alpha = 0$$

$$\frac{\Delta V_{MIN}}{\sqrt{\mu / R_E}} = \sqrt{2 \frac{(1 - \eta)^2}{1 + \eta}} + \sqrt{\eta}$$

Note: Max at $\eta = 0.064178 \rightarrow R = 99,260 \, km$ (worst altitude)

$$\left(\frac{\Delta V_{MIN}}{\sqrt{\mu / R_F}}\right)_{MAX} = 1.5363$$

$$\left(\sqrt{\frac{\mu}{R_{\epsilon}}} = 7910 \, m/s\right)$$

$$\frac{1}{\eta} - 1 = \varepsilon$$

$$\eta = \frac{1}{1 + \varepsilon}$$

$$1 - \eta = \frac{\varepsilon}{1 + \varepsilon}$$

$$1 + \eta = \frac{2 + \varepsilon}{1 + \varepsilon}$$

$$\simeq \sqrt{2\frac{\varepsilon^2}{\left(1+\varepsilon\right)^2}\frac{1+\varepsilon}{1+\varepsilon/2}} + \sqrt{\frac{1}{1+\varepsilon}} = 1 - \frac{\varepsilon}{2} + \frac{3}{8}\varepsilon^2 \dots + \varepsilon - \frac{3}{4}\varepsilon^2 = 1 + \frac{\varepsilon}{2} - \frac{3}{8}\varepsilon^2 \dots$$

$$\varepsilon \left(1 - \frac{3}{4}\varepsilon...\right) \qquad \qquad \alpha = 0 \qquad \qquad \eta = 0.9 \to 1.05128$$
 (approx. 1.05093)

$\Delta V / \sqrt{\mu / R_{\epsilon}}$	$\eta = 0.15095$	$\eta = 0.23951$	$\eta = 0.87620$	$\eta = 0.91392$	$\eta = 0.95502$
(ΔV)	(GEO, R=42,200Km)	$\left(\frac{1}{2}day, \eta = 26,580 Km\right)$	(Z = 900 Km)	(Z = 600 Km)	(Z = 300 Km)
$\alpha = 0^{\circ}$	1.50775	1.45534	1.06387	1.04399	1.02275
	(11,918 m/s)	(11,504 m/s)	(8,409 m/s)	(8252 m/s)	(8,084 m/s)
$\alpha = 15^{\circ}$	1.51366	1.46373	1.07960	1.05952	1.03748
	(11,965 m/s)	(11,570 m/s)	(8,534 m/s)	(8375 m/s)	(8201 m/s)
$\alpha = 30^{\circ}$	1.53109	1.48854	1.12032	1.09755	1.06953
	(12,102 m/s)	(11,766 m/s)	(8,856 m/s)	(8676 m/s)	(8454 m/s)

NOTE:
$$\frac{\Delta V_1}{\sqrt{\mu / R_E}} \simeq 1 + \frac{\varepsilon}{4} - \frac{5\varepsilon^2}{32} \qquad \frac{\Delta V_2}{\sqrt{\mu / R_E}} \simeq \frac{\varepsilon}{4} - \frac{7\varepsilon^2}{32}$$

So, for LEO, mainly ΔV_1 (apogee kick)

Sticking to $\alpha = 0$, variation with R

	$\frac{1}{\eta} = \frac{R}{R_{\epsilon}} = 1.05$	1.1	1.05	2	4	6	10	15.6
$\frac{\Delta V}{\sqrt{\mu / R_{\epsilon}}}$	1.02041	1.04651	1.18164	1.28446	1.44868	1.49934	1.52978	1.53626

Effects of Earth's Rotation

(a) ΔV reduction

$$\Omega R_{e} = 463 \, \text{m/sec}$$

 β is launch azimuth w.r.t East

 $(\alpha = 0, near-horizontal launch)$

 ΔV_1 = rocket-imparted ΔV

Starting velocity (abs.) is now

$$V_{1} = \sqrt{\left(\Delta V_{1}\right)^{2} + \left(\Omega R_{\epsilon} \cos L\right)^{2} + 2\Delta V_{1} \left(\Omega R_{\epsilon} \cos L\right) \cos \beta}$$

So, v_1 replaces ΔV_1 in previous formulation

$$V_{1} = \sqrt{2 \frac{\mu}{R_{E}}} \frac{1 - \frac{R_{E}}{R}}{1 - \left(\frac{R_{E}}{R}\right)^{2} \cos^{2} \alpha} \xrightarrow{\alpha=0} \sqrt{\frac{2 \frac{\mu}{R_{E}}}{1 + \frac{R_{E}}{R}}} = \sqrt{\frac{\mu R / R_{E}}{\left(\frac{R_{E} + R}{2}\right)}}$$

$$\frac{2\mu \frac{R}{R_{E}}}{R+R_{E}} = (\Delta V_{1})^{2} + (\Omega R_{E} \cos L)^{2} + 2\Delta V_{1} (\Omega R_{E} \cos L) \cos \beta$$

$$\Delta V_{1} = -\left(\Omega R_{E} \cos L\right) \cos \beta + \sqrt{\left(\Omega R_{E} \cos L \cos \beta\right)^{2} + \frac{2\mu \frac{R}{R_{E}}}{R + R_{E}} - \left(\Omega R_{E} \cos L\right)^{2}}$$

$$\Delta V_1 = -\Omega R_E \cos L \cos \beta + \sqrt{\frac{2\mu \frac{R}{R_{\epsilon}}}{R + R_{\epsilon}}} - (\Omega R_E \cos L \sin \beta)^2$$

Notice rotation reduces ΔV_1 even for $\beta = 90^{\circ}$. The benefit is low for some larger β (Westwards launch). For $V_1 = \Delta V_1$, need

$$\cos \beta = -\frac{\Omega R_{\epsilon} \cos L}{2\Delta V_{1}} \approx -0.056 \cos L \qquad \text{(for } \Delta V_{1} = 8200 \, \text{m/s)}$$

$$\text{(for } L = 28.5^{\circ}, \ \beta = 92.8^{\circ}\text{)}$$

Example: For
$$L = 28.5^{\circ}$$
, $R = 6370 + 500 = 6870 \text{ Km}$,

$$\Delta V_1 = -407 \cos \beta + \sqrt{6.48399 \times 10^7 - (407 \sin \beta)^2}$$

$$\sqrt{(8052.8)^2}$$

β(°)	0	±30°	±60°	±90°	±120°	±150°	±180°
$\Delta V_1 (\text{m/s})'$	7645 m/s	7694	7841	8042	8248	8402	8459
ΔV_1 reduction	407 m/s	355 m/s	211 m/s	10 m/s	-195 m/s	-350 m/s	-407 m/s

(b) Orbit inclination

For $\beta = 0$ (launch due East), <u>i = L</u>. For any other azimuth, <u>higher</u> inclination.

$$V_R = \Omega R_{\epsilon} \cos L$$

$$\frac{V_R}{\sin(\beta - \gamma)} = \frac{\Delta V_1}{\sin\gamma}$$

$$V_R \frac{\sin \gamma}{\cos \gamma} = \Delta V_1 \left(\sin \beta \cos \gamma - \cos \beta \frac{\sin \gamma}{\cos \gamma} \right)$$

$$\tan \gamma = \frac{\Delta V_1 \sin \beta}{\Delta V_1 \cos \beta + V_R}$$

$$\tan \gamma = \frac{\tan \beta}{1 + \left(\frac{V_R}{\Delta V_1 \cos \beta}\right)}$$

Given two angles and the side included, find opposite angle

$$\cos i = -\cos(90^{\circ} - \gamma)\cos 90^{\circ} + \sin(90 - \gamma)\sin 90\cos L = \cos\gamma\cos L$$

Example: Continuing from previous example,

$$L=28.5^{\circ} \rightarrow v_R=407~m/s$$
, ' $R=500~Km \rightarrow R_E$

$$\tan \gamma = \frac{\tan \beta}{1 + \frac{407}{\Delta V_1 \cos \beta}}, \qquad \cos i = 0.87882 \cos \gamma$$

β	0	30°	60°	90°	120°	150°	180°
α	0	28.54°	57.49°	87.10°	117.49°	148.55°	180°
i	28.5°	39.5°	61.8°	87.5°	113.9°	(41.4°)	(28.5°)
					(66.1°)		,

retro-orbits (westwards)

-30°	-60°	-90°
-28.50°	-57.39°	
39.4°	61.7°	

slightly different inclination

In reality, we probably require the orbit altitude, the orbit inclination and then launch azimuth β must be calculated

$$\cos \gamma = \frac{\cos i}{\cos L}$$
 $\gamma = \cos^{-1} \left(\frac{\cos i}{\cos L} \right)$ $1 + \tan^2 \gamma = \frac{1}{\cos^2 \gamma} = \frac{\cos^2 L}{\cos^2 i}$

$$1 + \tan^2 \gamma = \frac{1}{\cos^2 \gamma} = \frac{\cos^2 L}{\cos^2 i}$$

$$\tan \gamma = \sqrt{\frac{\cos^2 L}{\cos^2 i} - 1} = \frac{\Delta V_1 \sin \beta}{\Delta V \cos \beta + V_R}$$

$$\sin \gamma = \sqrt{1 - \frac{\cos^2 i}{\cos^2 L}}$$

with
$$\Delta V_1 = \sqrt{\frac{2\mu \frac{R}{R_{\epsilon}}}{R + R_{\epsilon}} - v_R^2 \sin^2 \beta} - v_R \cos \beta$$

 $\Delta V_1 \cos \beta \tan \gamma + v_R \tan \gamma = \Delta V_1 \sin \beta$

or
$$(\Delta V_1)^2 + V_R^2 + 2V_R \Delta V_1 \cos \beta = \frac{2\mu \frac{R}{R_E}}{R + R_E}$$

$$\Delta V_1 = \frac{v_R \tan \gamma}{\sin \beta - \cos \beta \tan \gamma} = \frac{v_R}{\frac{\sin \beta}{\tan \gamma} - \cos \beta}$$

$$\frac{v_R^2}{\left(\frac{\sin\beta}{\tan\gamma} - \cos\beta\right)^2} + v_R^2 + \frac{2v_R^2\cos\beta}{\frac{\sin\beta}{\tan\gamma} - \cos\beta} = \frac{2\mu\frac{R}{R_E}}{R + R_E}$$

$$V_R^2 \left[1 + \left(\frac{\sin \beta}{\tan \gamma} - \cos \beta \right)^2 + 2 \cos \beta \left(\frac{\sin \beta}{\tan \gamma} - \cos \beta \right) \right] = \frac{2\mu \frac{R}{R_E}}{R + R_E} \left(\frac{\sin \beta}{\tan \gamma} - \cos \beta \right)^2$$

$$1 + \frac{\sin^2\beta}{\tan^2\gamma} + \cos^2\beta - \frac{2\sin\beta\cos\beta}{\tan\gamma} + \frac{2\sin\beta\cos\beta}{\tan\gamma} - 2\cos^2\beta$$

$$sin^2\beta\left(1+\frac{1}{\tan^2\gamma}\right)$$

$$\frac{\sin^2 \beta}{\sin^2 \gamma} \qquad v_R^2 = \frac{2\mu \frac{R}{R_E}}{R + R_E} \sin^2 \gamma \left(\frac{1}{\tan \gamma} - \frac{1}{\tan \beta}\right)^2$$

$$\tan \beta = \frac{1}{\frac{1}{\tan \gamma} - \frac{V_R}{\sin \gamma} \sqrt{\frac{R + R_E}{2\mu \frac{R}{R_E}}}}$$

$$\tan \beta = \frac{\tan \gamma}{1 - \frac{V_R}{\cos \gamma} \sqrt{\frac{R + R_E}{2\mu \frac{R}{R_E}}}}$$

Check:
$$L = 28.5^{\circ}$$
 $j = 61.8^{\circ}$ $j = 7.47^{\circ}$ $j = 1.7308$ $j = 1.7308$ $j = 1.7308$

$$\beta=59.98^{0}\left(60^{0}\right)$$

$$\tan \beta = \frac{\sqrt{\frac{\cos^2 L}{\cos^2 i} - 1}}{1 - v_R \frac{\cos L}{\cos i} \sqrt{\frac{R + R_E}{2\mu \frac{R}{R_E}}}}$$

$$\tan \beta = \frac{\sqrt{\cos^2 L - \cos^2 i}}{\cos i - \frac{V_R \cos L}{\left(\sqrt{\frac{R + R_E}{2\mu \frac{R}{R_E}}}\right) - 1}}$$

Directly:
$$\frac{V_1}{\sin \beta} = \frac{V_R}{\sin(\beta - \alpha)}$$

$$\frac{V_R}{V_1} = \cos \gamma - \frac{\sin \gamma}{\tan \beta}$$

$$\tan \beta = \frac{\sin \gamma}{\cos \gamma - \frac{V_R}{V_1}} = \frac{\sqrt{1 - \cos^2 \gamma}}{\cos \gamma - \frac{V_R}{V_1}}$$

and
$$\cos \gamma = \frac{\cos i}{\cos L}$$

$$Cos^{2}\beta = \frac{1}{1 + \tan^{2}\beta} = \frac{1}{1 + \frac{Cos^{2}L - Cos^{2}i}{\left(\sqrt{\sqrt{L}}\right)^{2}}} = \frac{\frac{Cos i - \frac{v_{R} Cos L}{\left(\sqrt{\sqrt{L}}\right)}}{\left(\sqrt{\sqrt{L}}\right)^{2} - 2 cos i \frac{v_{R} cos L}{\left(\sqrt{\sqrt{L}}\right)} + cos^{2}L}$$

$$\tan \beta = \frac{\tan \alpha}{1 - \frac{v_R}{\cos \gamma} \sqrt{\frac{R + R_E}{2\mu R / R_E}}} \qquad \frac{1}{\cos \beta} = \sqrt{1 + \tan^2 \beta} = \sqrt{1 + \frac{\tan^2 \gamma}{\left(1 - \frac{v_R}{\cos \gamma} \sqrt{\frac{R + R_E}{2\mu R / R_E}}\right)^2}}$$

$$\Delta V_1 = \frac{V_R}{\cos \beta} \, \frac{1}{\frac{\tan \beta}{\tan \gamma} - 1}$$

$$\Delta V_1 = \frac{v_R \cos \gamma}{v_R \sqrt{\frac{R + R_{\epsilon}}{2\mu R / R_{\epsilon}}}} \sqrt{\left(1 - \frac{v_R}{\cos \gamma} \sqrt{\frac{R + R_{\epsilon}}{2\mu R / R_{\epsilon}}}\right)^2 + \tan^2 \gamma}$$

$$=\frac{v_R \cos \gamma}{v_R \sqrt{\frac{R+R_E}{2\mu}}} \sqrt{\frac{1}{\cos^2 \gamma} + \frac{v_R^2}{\cos^2 \gamma} \left(\frac{R+R_E}{2\mu R/R_E}\right) - 2\frac{v_R}{\cos \gamma} \sqrt{\frac{R+R_E}{2\mu R/R_E}}}$$