

## Congratulations! You passed!

Grade Latest Submission received 100% Grade 100%

**To pass** 70% or higher

Go to next item

1/1 point

1. If the present value of \$280 paid one year from now is \$250, what is the one-year discount factor?

\*Make sure to input all currency answers without any currency symbols or commas, and use two decimal places

0.89

✓ Correct

of precision.

The present value formula is  $PV = \frac{$280}{(1+r)}$ 

PV = \$250, then the discount factor,  $\frac{1}{(1+r)}$  must be:

$$DF = \frac{1}{7}(1 + r) = \frac{$250}{$280} = 0.8929$$

2. If the present value of \$400 paid one year from now is \$320, what is the one-year interest rate? (Note: this number is also known as the discount rate.)

1/1 point

\*Make sure to input all percentage answers as numeric values without symbols, and use two decimal places of precision. For example, if the answer is 6%, then enter 0.06.

0.25

✓ Correct

Similarly, if  $\$320 = \frac{\$400}{(1+r)}$ ,

then 
$$r = \frac{\$400}{\$320} - 1 = 0.25$$

so the discount rate is 0.25 (25%).

3. Lara Beal allocates wealth between two periods: youth and old age. Currently (in her youth) she has \$8,000 in cash. She can lend and borrow at the bank at 15% (that is, lending \$1 in youth will give her \$1.15 in old age). Her only investment opportunity other than the bank is a project that costs \$5,000 now in her youth and has a payoff of \$6,000 in her old age. What is the most she can consume in her old age?

1/1 point

\*Make sure to input all currency answers without any currency symbols or commas, and use two decimal places of precision.

9450.00

**⊘** Correct

We first need to determine if the project is worth doing. Note that r=15%,  $C_0=-5,000$ ,  $C_1=6,000$ . Then  $NPV=-5,000+\frac{6,000}{1.15}=217>0$ , so the project is worth doing. Lara starts with initial wealth of \$8000. The remaining part of her wealth = 8,000-5,000=3,000 should be invested in the bank at 15%. Hence the most Lara can consume in old age equals 6,000+3,000(1.15)=\$9,450

4. James Bennett also allocates wealth between youth and old age. He has no cash currently (in his youth), but will inherit \$3000 in his old age. He can lend and borrow at the bank at 18% (that is, lending \$1 in youth will give him \$1.18 in old age). He has an investment opportunity that costs \$12,000 now in his youth and has a payoff of \$15,000 in his old age. This is the only investment opportunity available to him. What is the most he can consume in his youth?

1/1 point

\*Make sure to input all currency answers without any currency symbols or commas, and use two decimal places of precision.

3254.24

| 0   |      |     |
|-----|------|-----|
| ( < | ) Co | rre |

Again, the first step is to determine the NPV of the project. Using the same reasoning as in the above question,  $NPV=-12,000+\frac{15,000}{1.18}=712>0$ . So James should undertake the project. Given that James will inherit \$3000 in his old age, the most he can consume now is \$712 +  $\frac{83000}{1.18}$  = \$3254.37

.

Note that to obtain this level of consumption, he borrows the full amount, plus \$12,000 from the bank. In old age, he then pays this back with interest: (\$12,000+\$3254.37)(1.18)=\$18,000. He can pay back \$18000 because of the \$15000 from the project, plus the \$3000 he inherits.

5. Which of the following investments do you prefer?

1/1 point

- (a) Purchase a bond with a single payment of \$1000 in ten years, for a price of \$550.
- (b) Invest \$550 for ten years in PNC Bank at a guaranteed annual interest rate of 4.5%.
- (a) Purchase a Bond
- (b) Invest with PNC Bank
- ✓ Correct

The annual return on the bond is:

$$r = (1000/550)^{1/10} - 1 = .0616$$

The interest on the PNC deposit is only 4.5%. Therefore, the bond is a better investment. After 10 years, the PNC bank deposit will have grown to:  $FV=550(1.045)^{10}=854.13$ , which is lower than the face value (of \$1000) of the bond.

6. You have just applied for a 30-year \$100,000 mortgage at a rate of 10%. What must the annual payment be?

1/1 point

\*Make sure to input all currency answers without any currency symbols or commas, and use two decimal places of precision.

10607.92

Correc

From the annuity formula:  $100,000=C\times AF^{30}_{.10}$  where  $AF^{30}_{.10}$  is the annuity factor:  $AF^{30}_{.10}=[\frac{1}{.10}-\frac{1}{.10(1+.10)^{30}}]=9.4269$ 

Therefore C = \$100,000/9.4269 = \$10,607.92

7. Suppose you are given a choice of the following two securities:

1/1 point

- (a) an annuity that pays \$10,000 at the end of each of the next 6 years;
- or (b) a perpetuity that pays \$10,000 forever, but the first cash payment is 11 years from today.

Which security do you choose if the annual interest rate is 5%?

- (a) an annuity that pays \$10,000 at the end of each of the next 6 years
- (b) a perpetuity that pays \$10,000 forever, but the first cash payment is 11 years from today
- ✓ Correct

To determine whether (a) is better than (b) we must calculate the present value of each annuity.

Cash flow (a) is a straightforward annuity whose present value is given by:

$$PV = C[\frac{1}{r} - \frac{1}{r(1+r)^t}]$$

Given the values of C= \$10,000 and t= 6, when the interest rate, r, is equal to 5%, the present value is \$50,757. When an interest rate of 10% is used with the same cashflows, the present value is \$43,552.

Cash flow (b) is a perpetuity that begins 10 years from now. We can value it in two parts. We know that ten years from now, the perpetuity has a present value given by the formula:

PV in 10 yrs 
$$= \frac{C}{R}$$

Thus, with C= \$10,000 and r=.05 the perpetuity is worth \$200,000 10 years from now. We can solve for the present value of \$200,000 received with a 10 year delay as

$$PV = \frac{\$200,000}{(1+r)^{10}}$$

When we substitute r=.05 in the formula above we find that the present value of the perpetuity beginning 10 years from now is \$122,782. Hence we prefer the perpetuity because its present value of \$122,782 is larger than the \$50,757 present value of the annuity in (a).

8. Assume the annual interest rate is 6%. Calculate the value of an investment that pays \$100 every two years, starting two years from now and continuing forever.

1/1 point

\*Make sure to input all currency answers without any currency symbols or commas, and use two decimal places of precision.

833.33

## ✓ Correct

An alternative solution: The formula can be written as

$$PV = \sum_{t=1}^{\infty} \frac{100}{(1+r)^{2t}}$$

$$=\sum_{t=1}^{\infty} \frac{100}{(1.06)^{2t}}$$

$$=\sum_{t=1}^{\infty} rac{100}{(1.1236)^t}$$

We can therefore use the perpetuity formula with  $r=.1236.\,$ 

Note that if you (incorrectly) solved this problem by assuming that you received \$50 per year rather than \$100 every two years, you would have found

$$PV = 50/.06 = 833.33$$

This is slightly more because of the effect of having cash flows slightly earlier.

9. Suppose money invested in a hedge fund earns 1% per trading day. There are 250 trading days per year. What will be your annual return on \$100 invested in the fund if the manager allows you to reinvest in the fund the 1% you earn each day?

1/1 point

\*Make sure to input all currency answers without any currency symbols or commas, and use two decimal places of precision.

1203.22

## **⊘** Correct

Allowing you to reinvest at 1% per day means that you are earning compound interest on your initial \$100 investment. The formula for the future value of P in one year is

$$FV = P(1 + \frac{r_a}{m})^m$$

where m is the number of compounding periods per year and hence  $r_a/m$  is the period rate. Given,  $r_a/m=1\%$  per day, the EAR is

$$EAR = (1 + .01)^{250} - 1 = 11.0321.$$

Multiplying by 100 puts this into percentage terms: 1103.21% per annum. Looked at another way, investing \$100 in the hedge fund produces

$$100(1 + .01)^{250} = 1203.22$$

at the end of one year.

10. Suppose money invested in a hedge fund earns 1% per trading day. There are 250 trading days per year. With an initial investment of \$100, what will be your annual return assuming the manager puts all of your daily earnings into a zero-interest-bearing checking account and pays you everything earned at the end of the year?

1/1 point

\*Make sure to input all currency answers without any currency symbols or commas, and use two decimal places of precision.

350.0

## Corre

If the hedge fund manager insists on putting your daily 1% earnings into a zero-interest-bearing checking account, then you will earn only the daily rate (1%) multiplied by the number of days, or,

$$1\% \times 250 = 250\%$$

Notice that this is equivalent to the annual percentage rate (APR) calculation:

$$APR = periodrate \times m = 1\% \times 250$$

The value at the end of the year includes interest earnings plus original investment, that is, 100+250=350.