

PMEM1505PG

PNP transistor/Schottky rectifier module Rev. 01 — 26 May 2004

Product data sheet

Product profile

1.1 General description

Combination of an PNP transistor with low V_{CEsat} and high current capability and a planar Schottky barrier rectifier with an integrated guard ring for stress protection in a SOT353 (SC-88A) small plastic package. NPN complement: PMEM1505NG.

1.2 Features

- 300 mW total power dissipation
- Current capability up to 0.5 A
- Reduces printed-circuit board area required
- Reduces pick and place costs
- Small plastic SMD package
- Transistor
 - Low collector-emitter saturation voltage.
- - Ultra high-speed switching
 - Very low forward voltage
 - Guard ring protected.

1.3 Applications

- DC-to-DC converters
- Inductive load drivers
- General purpose load drivers
- Reverse polarity protection circuits
- MOSFET drivers.

1.4 Quick reference data

Table 1: Quick reference data

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
PNP transi	stor						
V_{CEO}	collector-emitter voltage	open base		-	-	–15	V
I _C	collector current (DC)	continuous	<u>[1]</u>	-	-	-0.5	Α
Schottky b	arrier rectifier						
V_R	continuous reverse voltage			-	-	20	V
l _F	continuous forward current			-	-	0.5	Α

^[1] Mounted on a FR4 printed-circuit board, single-sided copper, tin-plated, standard footprint for SOT353.

2. Pinning information

Table 2: Discrete pinning

	- 1001 010	
Pin	Description	Simplified outline Symbol
1	anode	
5	cathode	1 5 3 2 1
4	collector	2 🖂
2	base	3 🗍 📙 4
3	emitter	
		Top view 4 5
		sym024

3. Ordering information

Table 3: Ordering information

Type number	Package		
	Name	Description	Version
PMEM1505PG	-	plastic surface mounted package; 5 leads	SOT353

4. Marking

Table 4: Marking

Type number	Marking code [1]
PMEM1505PG	L6*

^{[1] * =} p: made in Hong Kong.

5. Limiting values

Table 5: Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions		Min	Max	Unit
PNP trans	istor					
V_{CBO}	collector-base voltage	open emitter		-	-15	V
V_{CEO}	collector-emitter voltage	open base		-	-15	V
V_{EBO}	emitter-base voltage	open collector		-	-6	V
I _C	collector current (DC)	continuous	[1]	-	-0.5	Α
		continuous	[2]	-	-0.6	Α
		continuous; $T_s \le 55$ °C	[3]	-	–1	Α
I _{CM}	peak collector current			-	-1	Α
I _{BM}	peak base current			-	-100	mA

9397 750 12751

© Koninklijke Philips Electronics N.V. 2004. All rights reserved.

^{* =} t: made in Malaysia.

^{* =} W: made in China.

 Table 5:
 Limiting values ...continued

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
P _{tot}	total power dissipation	T _{amb} ≤ 25 °C	<u>[1]</u> _	200	mW
		T _{amb} ≤ 25 °C	[2]	250	mW
		T _s ≤ 55 °C	[3]	800	mW
Tj	junction temperature		-	150	°C
Schottky I	barrier rectifier				
V_R	continuous reverse voltage		-	20	V
l _F	continuous forward current		-	0.5	Α
I _{FSM}	non-repetitive peak forward current	t = 8.3 ms square wave	-	5	А
P _{tot}	total power dissipation	T _{amb} ≤ 25 °C	<u>[1]</u> _	200	mW
		T _{amb} ≤ 25 °C	[2]	250	mW
		T _s ≤ 55 °C	[3]	800	mW
Tj	junction temperature		[2]	125	°C
Combined	I device				
P _{tot}	total power dissipation	T _{amb} ≤ 25 °C	[2]	300	mW
T _{stg}	storage temperature		-65	+150	°C
T _{amb}	operating ambient temperature		[<u>2</u>] –65	+150	°C

- [1] Mounted on a FR4 printed-circuit board, single-sided copper, tin-plated, standard footprint for SOT353.
- [2] Device mounted on a printed-circuit board, single-sided copper, tin-plated, 1 cm² mounting pad for both collector and cathode.
- [3] Solder point of collector or cathode tab.

6. Thermal characteristics

Table 6: Thermal characteristics [1]

Symbol	Parameter	Conditions		Тур	Unit
Single dev	vice				
R _{th(j-s)}	from junction to solder point	in free air	[2]	120	K/W
R _{th(j-a)}	from junction to ambient	in free air	[3]	395	K/W
			[4]	495	K/W
Combined	I device				
R _{th(j-a)}	from junction to ambient	in free air	<u>[5]</u>	410	K/W

- [1] For Schottky barrier rectifiers thermal run-away has to be considered, as in some applications the reverse power losses P_R are a significant part of the total power losses. Nomograms for determining the reverse power losses P_R and $I_{F(AV)}$ rating will be available on request.
- [2] Solder point of collector or cathode tab.
- [3] Device mounted on a printed-circuit board, single-sided copper, tin-plated, 1 cm² mounting pad for both collector and cathode.
- [4] Mounted on a FR4 printed-circuit board, single-sided copper, tin-plated, standard footprint for SOT353.
- [5] Mounted on a ceramic printed-circuit board, single-sided copper, tin-plated, standard footprint.

7. Characteristics

Table 7: Characteristics

 T_{amb} = 25 °C unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
PNP trans	istor						
I _{CBO}	collector-base cut-off	$V_{CB} = -15 \text{ V}; I_E = 0 \text{ A}$		-	-	-100	nA
current		$V_{CB} = -15 \text{ V}; I_E = 0 \text{ A};$ $T_j = 150 \text{ °C}$		-	-	-50	μΑ
I _{EBO}	emitter-base cut-off current	$V_{EB} = -5 \text{ V}; I_C = 0 \text{ A}$		-	-	-100	nA
h _{FE}	DC current gain	$V_{CE} = -2 \text{ V}; I_{C} = -10 \text{ mA}$		200	-	-	
		$V_{CE} = -2 \text{ V}; I_{C} = -100 \text{ mA}$		150	-	-	
		$V_{CE} = -2 \text{ V}; I_{C} = -500 \text{ mA}$		90	-	-	
V _{CEsat}	collector-emitter	$I_C = -10 \text{ mA}; I_B = -0.5 \text{ mA}$	<u>[1]</u>	-	-	-25	mV
	saturation voltage	$I_C = -200 \text{ mA}; I_B = -10 \text{ mA}$		-	-	-150	mV
		$I_C = -500 \text{ mA}; I_B = -50 \text{ mA}$		-	-	-250	mV
R _{CEsat}	equivalent on-resistance	$I_C = -500 \text{ mA}; I_B = -50 \text{ mA}$	<u>[1]</u>	-	300	< 500	mΩ
V _{BEsat}	base-emitter saturation voltage	$I_C = -500 \text{ mA}; I_B = -50 \text{ mA}$	<u>[1]</u>	-	-	-1.1	V
V_{BEon}	base-emitter turn-on voltage	$V_{CE} = -2 \text{ V}; I_{C} = -100 \text{ mA}$	<u>[1]</u>	-	-	-0.9	V
f _T	transition frequency	$V_{CE} = -10 \text{ V}; I_{C} = -50 \text{ mA};$ f = 100 MHz	<u>[1]</u>	100	280	-	MHz
C _c	collector capacitance	$V_{CB} = -10 \text{ V}; I_E = I_e = 0 \text{ A};$ f = 1 MHz		-	4.4	10	pF
Schottky	parrier rectifier						
V _F	continuous forward	see Figure 1					
	voltage	I _F = 10 mA	<u>[1]</u>	-	240	270	mV
		I _F = 100 mA	<u>[1]</u>	-	300	350	mV
		I _F = 500 mA	<u>[1]</u>	-	400	460	mV
		I _F = 1000 mA	<u>[1]</u>	-	480	550	mV
I _R	reverse current	see Figure 2					
		V _R = 5 V	<u>[1]</u>	-	5	10	μΑ
		V _R = 8 V	<u>[1]</u>	-	7	20	μΑ
		V _R = 15 V	<u>[1]</u>	-	10	50	μΑ
C _d	diode capacitance	V _R = 5 V; f = 1 MHz; see Figure 3		-	19	25	pF

^[1] Pulse test: $t_p \leq 300~\mu s;~\delta \leq 0.02.$

Schottky barrier rectifier.

- (1) $T_{amb} = 125 \, {}^{\circ}C$.
- (2) $T_{amb} = 85 \, ^{\circ}C$.
- (3) $T_{amb} = 25 \, ^{\circ}C$.

Fig 1. Forward current as a function of forward voltage; typical values.

Schottky barrier rectifier; f = 1 MHz; T_{amb} = 25 °C.

Fig 3. Diode capacitance as a function of reverse voltage; typical values.

Schottky barrier rectifier.

- (1) $T_{amb} = 125 \, ^{\circ}C$.
- (2) $T_{amb} = 85 \, ^{\circ}C$.
- (3) $T_{amb} = 25 \, ^{\circ}C$.

Fig 2. Reverse current as a function of reverse voltage; typical values.

PNP transistor; $V_{CE} = -2 V$.

- (1) $T_{amb} = 150 \, ^{\circ}C$.
- (2) $T_{amb} = 25 \, ^{\circ}C$.
- (3) $T_{amb} = -55 \, ^{\circ}C$.

Fig 4. DC current gain as a function of collector current; typical values.

PNP transistor/Schottky rectifier module

PNP transistor; $V_{CE} = -2 \text{ V}$.

- (1) $T_{amb} = -55 \, ^{\circ}C$.
- (2) $T_{amb} = 25 \, ^{\circ}C$.
- (3) $T_{amb} = 150 \, ^{\circ}C$.

Fig 5. Base-emitter voltage as a function of collector current; typical values.

PNP transistor; $I_C/I_B = 20$.

- (1) $T_{amb} = 150 \, ^{\circ}C$.
- (2) $T_{amb} = 25 \, ^{\circ}C$.
- (3) $T_{amb} = -55 \, ^{\circ}C$.

Fig 6. Collector-emitter saturation voltage as a function of collector current; typical values.

PNP transistor; $V_{CE} = -2 \text{ V}$.

- (1) $T_{amb} = 150 \, ^{\circ}C$.
- (2) $T_{amb} = 25 \, ^{\circ}C$.
- (3) $T_{amb} = -55 \, ^{\circ}C$.

Fig 7. Equivalent on-resistance as a function of collector current; typical values.

6 of 11

PNP transistor/Schottky rectifier module

8. Application information

7 of 11

9. Package outline

Plastic surface mounted package; 5 leads

SOT353

Fig 10. Package outline.

SOT353

97-02-28

SC-88A

PNP transistor/Schottky rectifier module

10. Revision history

Table 8: Revision history

Document ID	Release date	Data sheet status	Change notice	Order number	Supersedes
PMEM1505PG_1	20040526	Product data	-	9397 750 12751	-

Product data sheet

11. Data sheet status

Level	Data sheet status [1]	Product status [2] [3]	Definition
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

- [1] Please consult the most recently issued data sheet before initiating or completing a design.
- [2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
- [3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

12. Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

13. Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

14. Contact information

For additional information, please visit: http://www.semiconductors.philips.com
For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com

Product data sheet

Philips Semiconductors

PMEM1505PG

PNP transistor/Schottky rectifier module

15. Contents

1	Product profile
1.1	General description 1
1.2	Features
1.3	Applications
1.4	Quick reference data
2	Pinning information 2
3	Ordering information 2
4	Marking 2
5	Limiting values 2
6	Thermal characteristics 3
7	Characteristics 4
8	Application information 7
9	Package outline 8
10	Revision history 9
11	Data sheet status
12	Definitions 10
13	Disclaimers 10
14	Contact information 10

© Koninklijke Philips Electronics N.V. 2004

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

