What is the task?

Task: Classify new articles into various categories based on their content.

What ML solution did you choose and, most importantly, why was this an appropriate choice?

I tried two classifiers- Support Vector Classifier, and Naive Bayesian Classifier. The Support Vector Classifier worked the best.

Steps - Load data > Preprocess the data > Split train/dev/test > vectorize the feature and the target variables using TF-IDF vectorizer converting category to numbers > use test data in the inference process.

How did you choose to evaluate success?

I used the F1 score, accuracy score, Confusion matrix, and classification report to evaluate the models.

What software did you use and why did you choose it?

Language: Python as all the libraries.

Software: *scikit-learn* has all the machine learning algorithms prewritten, *NumPy, pandas, matplotlib, NLTK* and others that are written in python.

what are the results?

Predicting test data using Multinomial Naive Bayesian

	precision	recall	f1-score	support
0	0.938596	0.922414	0.930435	116.000000
1	0.832370	0.808989	0.820513	178.000000
2	0.834783	0.860987	0.847682	223.000000
accuracy	0.856867	0.856867	0.856867	0.856867
macro avg	0.868583	0.864130	0.866210	517.000000
weighted avg	0.857245	0.856867	0.856895	517.000000

0.8513513513513513

Predicting test data using Support Vector Machines

	precision	recall	f1-score	support
0	0.886792	0.903846	0.895238	52.000000
1	0.934211	0.788889	0.855422	90.000000
2	0.811966	0.913462	0.859729	104.000000
accuracy	0.865854	0.865854	0.865854	0.865854
macro avg	0.877656	0.868732	0.870129	246.000000
weighted avg	0.872507	0.865854	0.865659	246.000000

0.8744939271255061

The Support vector machine achieves a better result on the data. Hence it could be used in the production server.