ДОМАШНЕЕ ЗАДАНИЕ (ЛИСТОК) 4 Анализ, 2 курс, весенний семестр 2021 Дедлайн: 25.06.2021

Пусть $f \in L^1(\mathbb{R})$. Преобразованием Фурье от функции f называется функция

$$\mathcal{F}(f)(\lambda) = \hat{f}(\lambda) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(t)e^{-i\lambda t}dt, \quad \lambda \in \mathbb{R}.$$

Обратным преобразованием Фурье функции $\hat{f}(\lambda)$ называется

$$\mathcal{F}^{-1}(\hat{f})(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \hat{f}(\lambda) e^{i\lambda x} d\lambda, \quad x \in \mathbb{R},$$

где последний интеграл понимается в смысле главного значения: $\int_{-\infty}^{\infty} d\lambda = \lim_{N \to \infty} \int_{-N}^{N} d\lambda$ (даже в смысле главного значения этот интеграл может расходиться).

Напомним, что если функция f в точке x удовлетворяет условию Дини, то верна формула обращения:

$$\mathcal{F}^{-1}(\mathcal{F}(f))(x) = f(x).$$

Задача 1. Лемма Римана на \mathbb{R} . Пусть $f \in L^1(\mathbb{R})$. Докажите, что

$$\lim_{\lambda \to \pm \infty} \int_{-\infty}^{\infty} f(t)e^{-i\lambda t} dt = 0.$$

Другими словами, преобразование Фурье $\hat{f}(\lambda) \to 0$ при $\lambda \to \pm \infty$.

Задача 2. Принцип локализации для интеграла Фурье. Пусть $f, g \in L^1(\mathbb{R})$. Если функции f и g совпадают в сколь угодно малой окрестности $\mathcal{O}(x_0)$ некоторой точки $x_0 \in \mathbb{R}$, то в выражениях $\mathcal{F}^{-1}(\mathcal{F}(f))(x_0)$ и $\mathcal{F}^{-1}(\mathcal{F}(g))(x_0)$ внешние интегралы, задающие оператор \mathcal{F}^{-1} , сходятся или расходятся одновременно (внутренние сходятся, так как $f, g \in L^1(\mathbb{R})$). Если эти интегралы сходятся, то рассматриваемые выражения принимают одно и то же значение.

Задача 3. Найти преобразования Фурье следующих функций:

$$f(x) = x\chi_{[a,b]}(x);$$
 $f(x) = \frac{d^2}{dx^2}(x^3e^{-|x|}).$

Задача 4. Какой функцией будет преобразование Фурье функции f(x), если известно, что функция f(x) четная, 2) нечетная, 3) вещественная, 4) удовлетворяет условию $f(x) = \overline{f(-x)}$?

Аналогичный вопрос про функцию f, если этими свойствами обладает ее преобразование Фурье $\mathcal{F}(f)(\lambda)$ по переменной λ .

Задача 5. Пусть $f(x) \in L^1(\mathbb{R}) \cap C^2(\mathbb{R})$, причем $f'(x), f''(x) \in L^1(\mathbb{R})$. Доказать, что преобразование Фурье $\mathcal{F}(f)(\lambda) \in L^1(\mathbb{R})$.

Задача 6. Доказать, что функция $f(x) = e^{-x^2}$ принадлежит пространству Шварца $\mathcal{S}(\mathbb{R})$. Принадлежит ли функция $f(x) = e^{-x^2} \cos(e^{x^2})$ пространству Шварца $\mathcal{S}(\mathbb{R})$?

Задача 7. Регуляризация с помощью свертки. а) Докажите, что если $f, \phi \in L^1(\mathbb{R}), \phi \in C^n(\mathbb{R})$ и $\phi', \phi'', \dots, \phi^{(n)} \in L^1(\mathbb{R})$, то $f * \phi \in C^n(\mathbb{R})$ и $(f * \phi)^{(n)} = f * \phi^{(n)}$.

b) Пусть функция f равномерно непрерывна на \mathbb{R} . Придумайте последовательность функций ϕ_n , такую что $f * \phi_n \in C^{\infty}(\mathbb{R})$ и $\sup_{x \in \mathbb{R}} |(f * \phi_n)(x) - f(x)| \to 0$ при $n \to \infty$.

Указание: выберите ϕ_n в виде δ - образной последовательности: в виде "узких и высоких" бесконечно гладких "шапочек". Их можно построить стартуя с одной такой шапочки ϕ , supp $\phi \in [-1, 1]$, правильно ее нормировав. Эту шапочку явно можно не предъявлять (хотя было бы хорошо).

Замечание. Можно доказать, что если потребовать только чтобы функция f лежала в $L^1(\mathbb{R})$, то бесконечно гладкие функции $f * \phi_n$ будут приближать функцию f в смысле $L^1(\mathbb{R})$. Такая свертка — классический способ регуляризации функций.

Задача 8. Найти преобразование Фурье следующих обобщенных функций из $\mathcal{S}'(\mathbb{R})$:

a)
$$\arctan x$$
 b) $V.p.\frac{\cos x}{x}$

Задача 9. (*) Формула Пуассона. Пусть функция f(x) принадлежит пространству Шварца. Докажите равенство

$$\sum_{n\in\mathbb{Z}} f(x+2\pi n) = \frac{1}{\sqrt{2\pi}} \sum_{n\in\mathbb{Z}} \hat{f}(n)e^{inx}.$$

Указание: левая часть является периодической функцией. Найдите для нее коэффициенты Фурье по ортогональной системе $\{e^{inx}\}$ и убедитесь в равномерной сходимости соответствующего ряда Фурье.

Задача 10. (*) Пусть функция $u = u(x,y), x \in \mathbb{R}, y \in \mathbb{R}_+$ принадлежит пространству Шварца по переменной x равномерно по y (т.е., константы в оценках производных u(x,y) по по переменной x не зависят от y) и является решением следующей задачи в верхней полуплоскости:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, \ x \in \mathbb{R}, \ y > 0 \quad \text{(уравнение Лапласа)},$$

$$u(x,0) = \varphi(x), \ x \in \mathbb{R} \quad \text{(граничное условие)}.$$

причем $u(x,y) \to 0$ при $y \to +\infty$ для любого $x \in \mathbb{R}$ и $\varphi \in L^1(\mathbb{R})$.

Проверьте, что преобразование Фурье функции u(x,y) по переменной x имеет следующий вид

$$\mathcal{F}(u)(\lambda) = \mathcal{F}(\varphi)(\lambda)e^{-y|\lambda|}, \ \forall y \geqslant 0.$$

С помощью формулы обращения получите формулу для решения рассматриваемой задачи в виде интеграла Пуассона

$$u(x,y) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{y}{(x-\xi)^2 + y^2} \varphi(\xi) d\xi.$$