sigma 0,25

Vi har 100 *exp (3*sigma) = 211.70, dvs. sigma = LN(2.1170)/3 = 0,25 Hele gittert ser sådan ud: 211,70 128,40 164,87 128,40 100,00 77,88 100,00 77,88 60,65 47,24 3 2 0 1

1b

Vi har u= 1,284025417 d= 0,7788

Når sigma > 0 er modellen komplet.

Den er arbiragefri hvis q= (1+r - d)/(u -d) ligger i)0, 1(

Dvs.hvis <mark>BÅDE 1+r > d dvs r > -0,221</mark>

OG u> 1+r dvs r< 0,284

Såer skal omtrent ligge mellen -sigma og sigma -- hvilket med typiske sigma'er på 0.15 og opad er så

1c

Da renten er deterministisk er Fut (0;3) = Fwd(0;3)

De der ikke er dividender er Fwd $(0;3) = S(0)*(1+r)^3 = 106,1208$

På tid t betaler futures-kontrakten Fut(t;T) - Fut (t-1; T) (som er stiafhængigt).

Det ser sådan her ud

Tid 1 Tid 2

34,57957

27,4692 -31,59

-25,0944 20,97357

-19,1603

 1d
 r=
 0,02

 Vi har at q=
 0,477409851

Vi trævler baglæns foren call med K= 106,1208

105,58

60,83212707 22,28

33,81561 10,42894408 0,00

18,32824 4,881256 0 0,00

Da optionerne er forward-at-the-money,så ercall-pris = put-pris.

Replikation med a futures, b i banken

27,4692 1,02 a 33,81561 <=> a= 0,550464 -25,0944 1,02 b 4,881256 b= 18,32824 åre realistisk

D	120	120	60	90	100
	130	170	140	90	90
	102	102	102	102	102
p	0,28	0,14	0,21	0,3	0,07

2a	(Fælden er:	Tilstande er	ikke lige san	ıdsynlige, så brı	ug def., ikke	Excels AVI
Afkastrater	0,2	0,2	-0,4	-0,1	0	
	0,3	0,7	0,4	-0,1	-0,1	
(Afkastrater - middelværdi)^2	0,0529	0,0529	0,1369	0,0049	0,0009	
	0,005041	0,221841	0,029241	0,108241	0,108241	
Proddukt	0,01633	0,10833	-0,06327	0,02303	-0,00987	

2b	K=	100			
Payoff-vektor,x	24,89996	42,8285686	0	0	0
Øvre grænse: Løs min theta*pi	jf.afsnit 2.7	.2			
Vi bruger Solver					
theta	-1,9E-16		D^T theta	24,89995997 x	24,89996
	0,622499			49,79991994	42,82857
	-0,54926			31,12494996	0
				-7,10543E-15	0
Pris	7,323518			-1,42109E-14	0
Nedre grænse_ Løs max theta*	si ubb DAT	thota <- v	Gør det me	ad calvar	
Neure grænse_ Løs max meta	יים מטט דיי	illeta <= x	Opi det ille	eu soivei	
theta	0,478845		D^T theta	24,89995997 x	24,89996
	0,383076			40,22301226	42,82857
	-0,80746			0	0
				-4,78845384	0
Pris	5,445693			0	0

pi	100
	100
	100

ERAGE,STDEV funktioner)							
middelværdi	-0,03						
middelværdi	0,229						
spredning	0,229129						
spredning	0,280462						
kovarians	0,01267						
korrelation	0,197162						

0,216289

Rentegitteret							
Niveuer (rho(t)) Betingede Q-ssh.							
		0,07			0,2		
	0,03	0,02		•	0,4		
0,02	0	-0,01		0,6	0,55		
0	1	2		0->1	1->2		

2a	Vi regner b	Vi regner baglæns som i afsnit 8.1							
P(.,1)		P(.2)		P(.3)					
						0,9346			
			0,9709		0,9545	0,9804			
0,9804		0,9633	1,0000	0,9512	0,9938	1,0101			
Modellen er inkor	Modellen er inkomplet; i tid 1-op-knuden er 3 fremtidige tilstande og kun to aktiver (i live).								

2b Amortiseringsplaı	n for det ståe	nde lån (mellemr	mregninger)		
		Restgæld			
H, initial principal	100	100,00	67,46	34,13	0,00
Coupon rate, R	2,41%	H(0)	H(1)	H(2)	H(3)
Maturity, \tau	3	Ydelse			
Ydelse	34,95		34,95	34,95	34,95
			y(1)	y(2)	y(3)

2d									
Pris på konverterbar obl. (jf. afsnit 8.3) Optimal indfrielsesstrategi (call~k									
			0,0000		Tid-kursen e	er =100 fc	<mark>r kuponren</mark> t		
		32,6630	0,0000				Hold		
	66,7814	34,1286	0,0000			Hold	Call		
100,0000	67,4556	34,1286	0,0000		Call	Call	Call		
Tid (t) = 0	1	2	3		Tid (t) = 0	1	2		

Kurs 101,17
Par-rente 1,81%

converter)
te >= 2.405% (under for 2.404%)
(Varier celle B19)

Definition 29. (Replication) We say that we can replicate an adapted process X if the exists a trading strategy ϕ such that $\delta_t^{\phi} = X_t$ for all $t \geq 1$.

Forklar hvorfor vi ikke kræver, at ϕ skal være selv-finansierende. Forklar hvorfor kræver $\delta_t^{\phi} = X_t$ for $t \geq 1$, ikke for t = 0.

(Forklaring i detaljer ved 3. forelæsningstime onsdag 7/10.)

1. del:

X spiller rollen som betalingerne (cash-flows) for et eller andet aktiv.

Med ovenstående definition kan vi også taleom at replikere betaingerne for et aktiv, der har betalinger undervejs, fx en obligation. Kræver vi selvfinansiering (dvs. 0 cash-flows undervjes fra vores strategi), så ville dette ikke kunne lade sig gøre. Bæmerk også, at hvis vi fx ser på en call-option,

så har den kun betaling til sidst (dens payoff; (S(T)-K)^+), ikke noget undervejs (med undervejs har den jo en *pris* vi kan sælge den for), for til replikation af en call-option vil dette give os en selvfinansierinede strage 2- del

Hvis vi tog t=0 med i cash-flow-matchningen, så ville vi også kræve, at vi ville kunne replikere arbitrage-strate Sagt anderledes: Vi kan replikere fx en call-options payoff, men vi kan ikke selv bestemme, hvad det skal kost det (= - \delta^-0^\theta). ere

vi kun

egi.

gier!
e at gøre