

Sequence-based predictor for the impact of mutation on protein stability

Introduction

Proteins are the building blocks of life itself.

 They are constituted of multiple chains of amino acids.

The latter are molecules that, when aligned,

represent a **peptide chain**.

Folding free energy Landscape

- Proteins are made up of different types of atoms, including carbon (C), hydrogen (H), oxygen (O), nitrogen (N), and sometimes sulfur (S).
- These atoms contribute significantly to protein folding and stability

Protein Mutation

- **Mutations** are changes in genetic material
- Point mutation are chemical changes in just one base pair of a gene
- The change of a single nucleotide in a DNA strand can lead to the production of mutant protein
- The normal gene/proteins are called Wild Type

DNA seq: AATGCATATGCA mRNA seq: UUACGUAUACGU
Wt seq: leu Arg lle Arg

DNA seq: AATTCATATGCA
mRNA seq: UUAAGUAUACGU
Mut seq: leu Ser lle Arg

A deeper look at DDG for proteins

- Delta Delta G (**DDG**) is a metric for predicting how a single point mutation will affect protein stability.
- DDG (change in Gibbs free energy) is a measure of the change in energy between the folded and unfolded states (DGfolding) and the change in DGfolding when a point mutation is present.
- An excellent predictor of whether a point mutation will be favorable in terms of protein stability.

$$\Delta\Delta G = \Delta G^{\text{mutant}} - \Delta G^{\text{wt}}$$

$$\Delta G = \Delta G_{\text{folded}} - \Delta G_{\text{unfolded}}$$

Wild type

Mutant

N.B: As a reminder, Gibbs free energy (G) = Enthalpy (H) – Temperature (T) x Entropy (S).

Reaction co-ordinate

Sequence-based predictor for the impact of mutation on protein stability

Predict the thermodynamic folding stability of a protein (DDG) in response to a single amino acid mutation

The data

• ≈340K high-quality sequences with annotated labels

Variable definitions

- **ID:** Indicated the column index.
- **pdb_id:** It contains the 4 characters that represents the PDB structure or otherwise, something like "HHH-rd1-0142" if the structure was generated by Rosetta.
- **mutation:** Mutation applied to the wt_sequence in this pattern; XnY given X is the wild type amino acid(wt_aa), n is the position number of the amino acid that will be replaced(mutation_pos) and Y is the new amino acid(mut_aa).
- **wt_seq:** Wild Type sequence. The natural form, appearance or strain existing in the wild protein sequence.
- mut_seq: Mutant sequence. A protein sequence that has undergone a change or mutation from the natural form, appearance, or strain existing in the wild protein sequence.
- **ddg:** Delta Delta G is a metric for predicting how a single point mutation will affect protein stability.

The proposed solution: a Language model

Embeddings for the protein sequences

We will provide you with this embedding data!

Starter notebook

Link: https://bit.ly/indabax

Thanks and Good Luck!

