Hw7: Converting multiclass to binary classification task Due: 11:45pm on Feb 25, 2010

The example files are under dropbox/09-10/572/hw7/examples/.

Q1 (35 points): Build a tool q1.sh that calls MaxEnt trainer/decoder in Mallet to handle multiple classes using one-vs-all, pretending that the trainer/decoder could handle only two classes.

- The command line is: q1.sh training_data test_data output_dir > acc_file
- training_data and test_data are in standard Mallet format: "instanceName goldClass f1 v1 f2 v2 ..." (e.g., train.txt and test.txt).
- acc_file is the accuracy file, and it has the same format as in Hw2-Hw5.
- output_dir is the output directory, which includes the following:
 - class_map (e.g., ex1/class_map): the file has the format "class-name class-index": class-name is the class name in the training_data, and class index is a number that starts from 1. For instance, the first class name in the training_data will have index 1, the second will have index 2, and so on. This file is used to determine what class name the class index "m" in m-vs-all (see below) refers to.
 - For each classifier (say m-vs-all, m is a class index), there should be a subdirectory called m-vs-all. For instance, if the training_data has three classes, there should be three subdirectories: 1-vs-all, 2-vs-all, and 3-vs-all. Each subdirectory should include the following files:
 - * A training data file called "train", which has the same format as training_data, and the goldClass in "train" is 1 or -1. This is the training file for the classifier m-vs-all.
 - * Similarly, a test file called "test".
 - * A file called "sys_output" that contains the classification results when running the classifier m-vs-all on test_data. The format is the same as sys_output files in Hw2-Hw5; that is, the format is "instanceName goldClass c1 p1 c2 p2", where goldClass and c_i are "1" or "-1", and p_i is the probability $P(c_i \mid x)$ based on the classifier.
 - Under output_dir, there should be a file called "final_sys_output" (e.g., ex1/final_sys_output). This file has the format "InstanceName goldClassName [cn1 p1 cn2 p2 ...]", where cn_i is a class name, and p_i is the probability $P(class = 1 \mid x)$ when running the classifier for i-vs-all. The brackets "[...]" indicate that the (cn_i, p_i) pairs in each line are sorted according to p_i in descending order. Note that since p_i comes from different classifiers, $\sum_i p_i$ is not necessarily equal to one.

Q2 (35 points): Build a tool q2.sh that calls MaxEnt trainer/decoder in Mallet to handle multiple classes using all-pair, pretending the trainer/decoder could handle only two classes.

• The command line is: q2.sh training_data test_data output_dir > acc_file

- The format of the files are the same as in Q1 except the following:
 - The subdirectory **m-vs-all** in Q1 becomes **m-vs-n** in Q2, where m and n are class indices (e.g., 1-vs-2, 1-vs-3).
 - The file "final_sys_output" has the format "InstanceName goldClassName sysClassName $1:2 \ p_{1,2} \ 1:3 \ p_{1,3} \dots \ i:j \ p_{i,j} \dots \ [c1=n1 \ c2=n2 \dots]$ ", where $p_{i,j}$ is the probability that x belongs to class 1 (instead of -1) according to the classifier for the class pair (i,j). n_i is the number of times class c_i wins, and "[...]" indicates that the list of $c_i=n_i$ is sorted by the value of n_i in descending order. An example file is in $ex2/final_sys_output$.
 - When there is a tie w.r.t. the number of games a class wins, choose the class with the smallest class index.

Q3 (25 points) Use train.txt and test.txt as the training and test data. Run Mallet and commands in Q1 and Q2 to fill out Table 1.

- Row 1 is the training and test accuracy when using Mallet commands to handle the data directly; that is, do not pretend that Mallet could handle only two classes.
- Row 2 is the accuracy when running q1.sh
- Row 3 is the accuracy when running q2.sh

Table 1: Training and test accuracy

rabie ii riaming and toot accuracy		
	training acc	test acc
Run Mallet directly		
Run q1.sh (one-vs-all)		
Run q2.sh (all-pairs)		

Q4 (5 points) What conclusions can you draw from Table 1?

Submission: Submit a tar file via CollectIt. The tar file should include the following.

- If your team has two people, please submit only one copy. In your note file, please list the names of team members.
- In your note file hw7.*, include your answers to Q3 and Q4, and any notes that you want the TA to read.
- The source code for Q1 and Q2.
- The output_dir created for Q3: q1_res/ is the output_dir when running q1.sh and q2_res/ is the one when running q2.sh.
- The acc_file should be put under q*_res/: e.g., q1_res/acc_file is the acc_file when running q1.sh.