Ant Colony Optimization

Exemplo de aplicações

Paraboloide

ACOR - $f(x,y)=x^2 + y^2$

Paraboloide

ACOR: m=2 k=50 q=0.2 eps=0.95

Paraboloide

É fácil!

Dá para calcular com métodos gradientes

ACOR: Test function $f(x,y)=100\sin(x)\cos(y)+(x-5)^2+y^2$

ACOR: m=2 k=50 q=0.2 eps=0.95

Sismologia

Dispersão de ondas Love

- Frequencias diferentes tem velocidades diferentes
- Isso depende do meio (espessura, Vp e Vs das camadas)
- Para cada período Ti, mede-se uma velocidade de fase ci
- Dados: Tec
- Parâmetros: h, β, e ρ

Modelo de 2 camadas

$$T = \frac{\frac{2\pi h}{c} \sqrt{c^2/\beta_1^2 - 1}}{\arctan\left(\frac{\rho_2}{\rho_1} \frac{\sqrt{\beta_2^4 - c^2\beta_2^2}}{\sqrt{c^2\beta_1^2 - \beta_1^4}}\right)}$$

- Parâmetros: h, β1, β2
- Assume ρ1 e ρ2 conhecidos

 Sismo de São Vicente, São Paulo, no dia 28 de Abril de 2008

- Hipótese 1:
 - Camada = Crosta-Manto
 - $P1 = 2.7 e \rho 2 = 3.3$

$$\begin{cases} 1.0 < \beta_1 < 3.5 & km/s \\ 3.8 < \beta_2 < 5.0 & km/s \\ 20 < h < 40 & km \end{cases}$$

Ajuste	1	2	3	4	5	6	7	8
Beta1	3.35	3.35	3.37	3.37	3.37	3.36	3.36	3.37
Beta2	3.97	3.97	3.95	3.96	3.96	3.96	3.96	3.95
h	20.02	20.01	20.14	20.09	20.06	20.00	20.08	20.15
Erro	2.45	2.46	2.45	2.44	2.44	2.43	2.44	2.46

- Hipótese 1:
 - Camada = Crosta-Manto
 - $P1 = 2.7 e \rho 2 = 3.3$
 - 1 km < h < 40 km

- Hipótese 1:
 - Camada = Crosta-Manto
 - $P1 = 2.7 e \rho 2 = 3.3$
 - 1 km < h < 40 km

Crosta - Manto										
Ajuste:	1	2	3	4	5	6	7	8	9	10
Beta1:	2.07	2.60	2.09	2.02	1.33	2.60	2.33	1.73	2.25	2.55
Beta2:	3.85	3.87	3.85	3.85	3.84	3.87	3.86	3.85	3.85	3.86
h:	4.38	6.36	4.44	4.19	3.00	6.33	5.24	3.63	4.86	6.01
Erro:	0.98	1.08	0.98	1.07	0.97	1.07	1.03	0.97	1.01	1.06

- Hipótese 2:
 - Camada = Bacia-Embasamento
 - $P1 = 1.9 e \rho 2 = 2.7$
 - 1 km < h < 40 km

- Hipótese 2:
 - Camada = Bacia-Embasamento
 - $P1 = 1.9 e \rho 2 = 2.7$
 - 1 km < h < 40 km

Sedimento - Embasamento										
Ajuste:	1	2	3	4	5	6	7	8	9	10
Beta1:	2.15	2.75	2.02	2.36	1.79	2.08	2.38	2.71	1.83	2.36
Beta2:	3.85	3.86	3.85	3.86	3.84	3.85	3.85	3.86	3.84	3.85
h:	5.03	7.71	4.68	5.87	4.05	4.90	5.89	7.52	4.25	5.79
Erro:	0.97	1.06	0.96	1.00	0.98	0.98	0.99	1.04	0.96	0.98

Referências

- Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system:
 optimization by a colony of cooperating agents. IEEE transactions on
 systems, man, and cybernetics. Part B, Cybernetics: a publication of
 the IEEE Systems, Man, and Cybernetics Society, 26(1), 29-41.
 doi:10.1109/3477.484436
- SOCHA, K., & DORIGO, M. (2008). Ant colony optimization for continuous domains. European Journal of Operational Research, 185(3), 1155-1173. doi:10.1016/j.ejor.2006.06.046