PROJECT REPORT

CS 6375.501 – DengAl Predicting Disease Spread Machine Learning – Project Report

Kassap, Christopher (cxk112830)

Vutukuru, Ram Anand (rxv162130)

Kataria, Jaiminee (jxk172330)

Kaneria, Dhwaniben Rameshbhai (drk170130)

Introduction:

DengAI is a machine learning project with the goal of predicting the spread of Dengue fever across the globe. Specifically, the aim of the project is to predict the next pandemic of the disease before it occurs in San Juan, Puerto Rico or Iquitos, Peru. Dengue fever is primarily transmitted through mosquitos carrying the disease, and it is therefore highly dependent on climate and vegetation factors.

The learner takes input environmental and climate data provided by the National Oceanic and Atmospheric Administration (NOAA) and Centers for Disease Control and Prevention, and outputs the total number of dengue fever cases reported each week for a given year in either San Juan or Iquitos.

Dataset Description:

Name: DengAl database Number of Instances: 1456

Class Components:

o city: city abbreviations. Two types: sj for San Juan, and ig for Iquitos

year : the year. yyyy format

weekofyear: the week of the year. mm/dd/yyyy format.

o week start date: the week of year's start date. Mm/dd/yyyy format.

o total cases: the total number of cases. Integer.

Number of Attributes: 20 Attribute Types: Real

Attributes:

NOAA's CDR Normalized Difference Vegetation Index (NVDI) measurements

ndvi_ne : pixel southeast of city centroid

o ndvi nw: pixel southwest of city centroid

ndvi se: pixel northeast of city centroid

o ndvi sw: pixel northwest of city centroid

PERSIANN satellite precipitation measurements (0.25x0.25 degree scale)

precipitation_amt_mm : total precipitation
 NOAA's NCEP climate forecast system reanalysis

- o reanalysis air temp k: mean air temperature
- o reanalysis avg temp k: average air temperature
- reanalysis_dew_point_temp_k : Mean dew point temperature
- o reanalysis max air temp k: maximum air temperature
- o reanalysis min air temp k: minimum air temprature
- o reanalysis precip amt kg per m2: total precipitation
- o reanalysis relative humidity percent : mean relative humidity
- reanalysis sat precip amt mm: total precipitation
- reanalysis_specific_humidity_g_per_kg : mean specific humidity
- reanalysis tdtr k: diurnal temperature range

NOAA's GHCN daily climate data weather station measurements

- station_avg_temp_c : average temperature
- o station diur temp rng c: diurnal temperature range
- o station_max_temp_c : maximum temperature
- o station min temp c: minimum temperature
- o station precip mm: total precipitation

Preprocessing:

Missing Values:

We have removed NaN values and filled them with previous value in every column feature.

ProcessedData = result.apply(lambda x: x.fillna(method='ffill'))

Conversion from Kelvin to Celsius:

All temperatures were converted to Celsius in order to maintain consistency among different measures:

```
c=["reanalysis_air_temp_k", "reanalysis_avg_temp_k", "reanalysis_dew_point_temp_k", "reanalysis_max_air_temp_k", "reanalysis_min_air_temp_k"] for i in c:
```

ProcessedData[i] = ProcessedData[i] - 273.15

Removal of Redundant Attributes Based on Correlation:

Here we can see that none of the variables are correlated with total cases, but some are correlated with each other. Therefore we have deleted those features based on the following plot.

```
reanalysis_specific_humidity_g_per_kg
reanalysis_dew_point_temp_k
reanalysis_sat_precip_amt_m
precipitation_amt_mm
```


Removal of High Variance Features:

The features with the highest variance will affect the prediction of total cases, and therefore tarnish the results. To determine which features had the highest variance, we plotted histogram and various graphs to observe which features spiked. After determining the features with high variance, we removed them from the data.


```
dtvpe: float64
ndvi ne --> 0.019189678045667725
ndvi nw --> 0.014294789737666872
ndvi se --> 0.005536768213180817
ndvi_sw --> 0.006987651634564899
precipitation_amt_mm --> 1916.6287044248636
reanalysis_air_temp_k --> 1.8549088683244301
reanalysis avg temp k --> 1.5943513892124044
reanalysis_dew_point_temp_k --> 2.333338523633496
reanalysis max air temp k --> 10.452485253578029
reanalysis_min_air_temp_k --> 6.5505184047052785
reanalysis_precip_amt_kg_per_m2 --> 1877.4173028932078
reanalysis_relative_humidity_percent --> 51.2801537887176
reanalysis_sat_precip_amt_mm --> 1916.6287044248636
reanalysis_specific_humidity_g_per_kg --> 2.378616121931116
reanalysis_tdtr_k --> 12.54816917163751
station_avg_temp_c --> 1.6406037993486386
station_diur_temp_rng_c --> 4.5064341978139515
station_max_temp_c --> 3.8446153798950236
station min temp c --> 2.4621168196065084
station_precip_mm --> 2243.2826944176977
city --> Series([], dtype: float64)
year --> year
                 29.24986
year
       29.24986
dtype: float64
weekofyear --> weekofyear
                             225.583493
weekofyear
              225.583493
```

Feature Engineering:

It is the process to make Algorithms of Machine Learning efficient by introducing new features to the dataset or transforming our features.

From observing the dataset, we found that cases recorded for a given week are not the result of that week but of the previous week. The most likely reason for this is that the incubation period is 4-7 days. Therefore the infection in the given week is directly related to previous week.

To apply this on the dataset, we shifted data by one week. We experimented with shifting data by 1 week, 2 weeks, and 3 weeks to get an idea regarding how the data pattern is effected by time period.

reanalysis_tdtr_k	station_avg_temp_c	station_diur_temp_rng_c	station_max_temp_c	station_min_temp_c	station_precip_mm	total_cases	Lag_by_1_Week	Lag_by_2_Weeks
2.628571	25.442857	6.900000	29.4	20.0	16.0	4	5	4
2.371429	26.714286	6.371429	31.7	22.2	8.6	5	4	3
2.300000	26.714286	6.485714	32.2	22.8	41.4	4	3	6
2.428571	27.471429	6.771429	33.3	23.3	4.0	3	6	2
3.014286	28.942857	9.371429	35.0	23.9	5.8	6	2	4
2.100000	28.114286	6.942857	34.4	23.9	39.1	2	4	5
2.042857	27.414286	6.771429	32.2	23.3	29.7	4	5	10
1.571429	28.371429	7.685714	33.9	22.8	21.1	5	10	6
1.885714	28.328571	7.385714	33.9	22.8	21.1	10	6	8
2.014286	28.328571	6.514286	33.9	24.4	1.1	6	8	2
2.157143	27.557143	7.157143	31.7	21.7	63.7	8	2	6

Proposed Solution:

Model Training and Validation:

We are using below Performance metrics.

Mean Absolute Error:

MAE measures the average magnitude of the errors in a set of predictions, without considering their direction.

$$MAE = \frac{1}{n} \sum_{j=1}^{n} |y_j - \hat{y}_j|$$

Root Mean Square Error:

RMSE is a quadratic scoring rule that also measures the average magnitude of the error.

$$RMSE = \sqrt{\frac{1}{n} \sum_{j=1}^{n} (y_j - \hat{y}_j)^2}$$

Experimental Results:

Classifiers:

Neural Network (Lag by 1 week):

Classifier	Parameters	MAE	RMSE
Neural	mlp = MLPRegressor(solver='lbfgs',	IQ: 9.75997853981	IQ: 13.92249974226695
Network	hidden_layer_sizes=50,	SJ:27.068202278731	SJ:43.10857507232615497
	max_iter=200,random_state=1)		
	#'lbfgs' is an optimizer in the family of quasi-		
	Newton method		
Neural	mlp = MLPRegressor(solver='sgd',	IQ:7.27837992821267127	IQ:15.38784521322963417
Network	hidden_layer_sizes=50,	SJ: 23.277988834165	SJ:37.38982155913268046
Network	max iter=200,random state=1)	31. 23.277900034103	31.37.36362133313206040
	max_iter=200,random_state=1)		
	#'sgd' refers to stochastic gradient descent		
Neural	mlp = MLPRegressor(solver='lbfgs',	IQ:10.108910380901	IQ:15.15395349818083812
Network	hidden_layer_sizes=100,	SJ: 27.111943343208	SJ:41.17011204148125025
	max_iter=200,random_state=1)		
	#hidden layers = 100		
Neural	mlp = MLPRegressor(solver='lbfgs',	IQ:9.212904378769	IQ:12.6496006068542544
Network	hidden_layer_sizes=100,	SJ: 39.631886079487	SJ: 53.5583495404022034
	max_iter=200,random_state=1,activation='logistic')		
	# activation ='logistic', the logistic sigmoid		
	function, returns $f(x) = 1 / (1 + \exp(-x))$		
Neural	mlp = MLPRegressor(solver='lbfgs',	IQ:10.128493350741	IQ:14.17595035469161588
Network	hidden_layer_sizes=50,	SJ: 25.172760708502	SJ: 41.2645672997759061
	max_iter=100,random_state=1)		
	<u> </u>		

	#max iteration=100	

San Ivan

Iquitos

Neural Network (Lag by 2 weeks):

Classifier Parameters	MAE	RMSE	
-----------------------	-----	------	--

Neural	mlp = MLPRegressor(solver='lbfgs',	IQ:10.9747584293	IQ: 14.62640424443986
Network	hidden_layer_sizes=50,	SJ:27.3830359996	SJ: 43.47100427667421
	max_iter=200,random_state=1)		
	#'lbfgs' is an optimizer in the family of quasi-		
	Newton method		
Neural	mlp = MLPRegressor(solver='sgd',	IQ:7.38500030016	IQ:12.504420563797925
Network	hidden_layer_sizes=50,	SJ:21.1046204624	SJ: 32.33389546553753
	max_iter=200,random_state=1)		
	#'sgd' refers to stochastic gradient descent		
	# sgu Telers to stochastic gradient descent		
Neural	mlp = MLPRegressor(solver='lbfgs',	IQ: 10.570712085	IQ: 14.18484769874857
Network	hidden layer sizes=100,	SJ:32.6859740247	SJ: 57.14716823623551
	max_iter=200,random_state=1)		
	#hidden layers = 100		
Neural	mlp = MLPRegressor(solver='lbfgs',	IQ:13.1256304839	IQ: 18.84256435788437
Network	hidden_layer_sizes=100,	SJ:30.5763356839	SJ: 43.24548565132035
	max_iter=200,random_state=1,activation='logistic')		
	# activation ='logistic', the logistic sigmoid		
	function, returns $f(x) = 1 / (1 + \exp(-x))$		
Neural	mlp = MLPRegressor(solver='lbfgs',	IQ:9.2529503918	IQ:14.463560069904457
Network	hidden layer sizes=50,	SJ:30.7310484535	SJ: 50.78768510108033
	max iter=100,random state=1)		
	, _ ,		
	#max iteration=100		

San Ivan

Iquitos

K- NN (Lag By 1 Week):

Trials:

Classifie	Model	MAE	RMSE
r			
K-NN	neighbors.KNeighborsRegressor(5,	IQ=7.888	IQ=13.71091
	weights='uniform')	SJ=18.52553	SJ=35.94289
K-NN	neighbors.KNeighborsRegressor(10,	IQ=7.47211	IQ=12.28658
	weights='uniform',leaf_size=10)	SJ=18.35106	SJ=36.3672
K-NN	neighbors.KNeighborsRegressor(5,	IQ=7.204552	IQ=13.64428
	weights='distance',leaf_size=10)	SJ=18.36947	SJ=33.79175
K-NN	neighbors.KNeighborsRegressor(3,	IQ=8.11858	IQ=15.64428
	weights='uniform',algorithm='kd_tree')	SJ= 18.9609	SJ=36.28426

K-NN	neighbors.KNeighborsRegressor(10,	IQ=7.40422	IQ=12.16155
	weights='distance',algorithm='ball_tree',leaf_	SJ=19.1083	SJ=34.96233
	size=10)		

San Juan

Iquitos

Neural Network (Lag by 2 Weeks):

Trials:

Classifier	Model	MAE	RMSE
K-NN	neighbors.KNeighborsRegressor(5,	IQ=6.311538	IQ= 9.6197
	weights='uniform')	SJ=20.81170	SJ=37.82495
K-NN	neighbors.KNeighborsRegressor(10,	IQ= 6.03461	IQ= 9.04612
	weights='uniform',leaf_size=10)	SJ=23.76569	SJ=41.87223
K-NN	neighbors.KNeighborsRegressor(5,	IQ= 6.28579	IQ= 9.52173
	weights='distance',leaf_size=10)	SJ=20.74901	SJ=37.42315
K-NN	neighbors.KNeighborsRegressor(3,	IQ= 6.85256	IQ=4.64428
	weights='uniform',algorithm='kd_tree')	SJ= 21.5607	SJ=38.55126
K-NN	neighbors.KNeighborsRegressor(10,	IQ= 6.02845	IQ= 9.01131
		SJ=33.46444	SJ=63.42415

weights='distance',algorithm='ball_tree',lea	
f_size=10)	

Iquitos

San Juan

SVM (Lag by 1 Week):

Trials:

Classifie r	Model	MAE	RMSE
SVM	SVR(C=1.0, epsilon=0.2)	IQ=6.960261	IQ=12.66123

		SJ=27.67210	SJ=51.27532
SVM	SVR(C=1.5, epsilon=0.1,kernel='poly')	IQ= 13.1334	IQ=15.9210
		SJ=26.6358	SJ=45.51520
SVM	SVR(C=1.0,kernel='poly',max iter=10)	IQ= 6.53188	IQ=12.63827
		SJ=30.01672	SJ= 49.8904
SVM	SVR(C=1.0, verbose=True)	IQ= 6.95372	IQ=12.6612
		SJ=27.6675	SJ=51.26502
SVM	SVR(C=0.5, kernel='sigmoid')	IQ=6.89750	IQ=12.27729
		SJ=26.9660	SJ=48.34541

San Juan

Iquitos

SVM (Lag by 2 Weeks):

Classifie	Model	MAE	RMSE
r			
SVM	SVR(C=1.0, epsilon=0.2)	IQ=4.841994	IQ=8.94209
	, , ,	SJ=33.4644	SJ=63.42416

SVM	SVR(C=1.5, epsilon=0.1,kernel='poly')	IQ= 5.10118	IQ=8.962202
		SJ=33.3466	SJ=63.35114
SVM	SVR(C=1.0,kernel='poly',max iter=10)	IQ=12.63103	IQ=13.42901
		SJ=27.46658	SJ= 58.2205
SVM	SVR(C=1.0, verbose=True)	IQ=4.843900	IQ=8.94709
		SJ=33.45845	SJ=63.42054
SVM	SVR(C=0.5, kernel='sigmoid')	IQ=5.087049	IQ=8.96769
	(1 1 1, 1 1 1, 1 1, 1 1, 1 1, 1 1, 1 1,	SJ=33.31485	SJ=63.52483

San Juan

Iquitos

Gradient Boosting (Lag by 1 week):

Classifier	Model	MAE	RMSE
Gradient Boosting	params = {'n_estimators': 500,	IQ:4.8968295205631	IQ: 7.667712237338
	'max_depth': 4, 'min_samples_split': 2, 'learning_rate': 0.01, 'loss': 'ls'}	sJ: 16.52790252061	SJ: 28.85327068511

Gradient Boosting	<pre>params = {'n_estimators': 500, 'max_depth': 5, 'min_samples_split': 3, 'learning_rate': 0.01, 'loss': 'ls'}</pre>	IQ:4.5360060217123 SJ:14.762399812583	IQ: 7.4560619784048 SJ: 26.054642260933
Gradient Boosting	<pre>params = {'n_estimators': 500, 'max_depth': 4, 'min_samples_split': 2,</pre>	IQ:4.3231161692191 SJ: 15.82525871163 8	IQ: 8.01272526993 SJ: 36.84445526090
Gradient Boosting	<pre>params = {'n_estimators': 500, 'max_depth': 5, 'min_samples_split': 2,</pre>	IQ:4.2687605543857 SJ:15.740664091309	IQ:7.845558261444 SJ: 36.66558846963

Gradient Boosting (Lag by 2 weeks):

Trials:

Classifier	Model	MAE	RMSE
Gradient Boosting	params = {'n_estimators': 500,	IQ: 4.757203849766	IQ: 7.2294360285830
	'max_depth': 4, 'min_samples_split': 2,	9	
	'learning_rate': 0.01, 'loss': 'ls'}		
		SJ:13.169780296629	SJ: 20.95923831758
Gradient Boosting	params = {'n_estimators': 500,	IQ:5.0260450797526	IQ:7.463905022157
	'max_depth': 5, 'min_samples_split': 3,		
	'learning_rate': 0.01, 'loss': 'ls'}	SJ:11.408086364235	SJ:19.328958358616
Gradient Boosting	params = {'n_estimators': 500,	IQ:4.8486085606504	IQ:8.181314306829
	'max_depth': 4, 'min_samples_split': 2,		
	'learning_rate': 0.01, 'loss': 'lad'}	SJ:13.528954584406	SJ:28.620713870435
Gradient Boosting	params = {'n_estimators': 500,	IQ: 4.825438011805	IQ:8.044076893817
	'max_depth': 5, 'min_samples_split': 2,		
	'learning_rate': 0.01, 'loss': 'lad',		
	'criterion':'friedman_mse'}	SJ:13.067857224752	sj: 27.073608236187

Predicted vs Actual plots:

1. Plot for SJ City

2. Plot for IQ City

Random Forest (Lag by 1 week):

Trials:

Classifier	Model	MAE	RMSE
Random Forest	<pre>regr = RandomForestRegressor(max_d</pre>	IQ:5.424144929876	IQ: 7.604797919619
	epth=2, random_state=0)	6	
			SJ: 44.95453056896
		SJ:25.01227122901	
		0	
Random Forest	regr =	IQ:5.235411128368	IQ: 8.416833419060
	<pre>RandomForestRegressor(max_depth=3, random_state=0)</pre>	SJ:19.72014768472	SJ: 33.24496148916
Random Forest	regr =	IQ:5.496021867884	IQ: 8.484419118123
	RandomForestRegressor(max_depth=3,	8	
	random_state=0, max_features='log2')		
	Tandoni_state=0, max_leatures= log2		sj: 49.44246328686

		SJ: 26.6420477234 06	
Random Forest	<pre>p regr = RandomForestRegressor(max_depth=10, random_state=1, max_features='log2',min_samples_split=3)</pre>	IQ:5.400884972229 2 SJ: 23.9122358438	IQ: 8.738930557529 SJ:46.230081560587

Random Forest (Lag by 2 weeks):

Trials:

Classifier	Model	MAE	RMSE
Random Forest	<pre>regr = RandomForestRegressor(max_d epth=2, random_state=0)</pre>	IQ:6.100055808380	IQ: 8.806959599483
		SJ:23.11754419286 9	SJ:36.35417094833
Random Forest	<pre>regr = RandomForestRegressor(max_depth=3, random state=0)</pre>	IQ:5.815906583559	IQ: 8.425190810639
		SJ:18.50039516485	sJ:31.107331513269
Random Forest	regr = RandomForestRegressor(max_depth=3,	IQ:6.126982632018	IQ:8.689771924678
	random_state=0, max_features='log2')	SJ:22.97877972265	SJ:37.402646854778
Random Forest	<pre>p regr = RandomForestRegressor(max_depth=10, random_state=1,</pre>	IQ:6.212865103418	IQ: 8.959740137273
	max_features='log2',min_samples_split=3)	sJ:19.68870702445	sJ:32.70381714878

Predicted vs Actual Cases Plot:

1. Plot for SJ City

2. Plot for IQ City

3. Variable Importance

Conclusion:

From our approach where we considered the two cities Iquitos, located in Peru, South America and San Juan, the capital of Puerto Rico. Based on the domain knowledge we identified that these two cities are located on mildly different geographical locations. Therefore, our approach was also designed such that we consider these two cities independently. Also, our very vital assumption for this domain that we identified was that it takes 5-7 days for a human to get affected by the dengue fever. Hence, we have shifted the total affected cases by 1 week and 2 weeks in order to observe the trend.

We have applied various classifiers after scaling the dataset and careful omission of highly co-related attributes and other attributes that do not enhance the data conversion to information.

From our observations, we were able to achieve best results by using Gradient boosting, an ensemble technique. Our competition required us to calculate the results in terms of Mean Absolute Error(MAE) and we were able to achieve a value of 4.2687605543857 for the city of Iquitos and 11.408086364235 for the city of San Juan.

Gradient boosting, a class of Ensemble technique turned out to help us build a strong predictive model as it uses multiple weak learners by the concept of additive model and tries to reduce the loss function. In this case the square error value as this is a regression problem. Therefore, even though we have used multiple classifiers such as Random Forests, K-NN, SVM and Deep Learning along with Gradient Boosting. We identified Gradient boosting to be the ideal classifier.

Contributions:

Christopher Kassap: Assisted with model evaluation, and wrote the report based on test results.

Vutukuru, Ram Anand: Assisted with model evaluation, and tested the model against gradient boosting and random forest classifiers.

Kataria, Jaminee: Assisted with model evaluation, and tested the model against K-NN and SVM classifiers.

Kaneria, Dwaniben Rameshbhai: Assisted with model evaluation, pre-processing, and tested the model against Neural Network classifiers.