Email	Contains "buy"	Contains "cheap"	Contains "click"	Spam
1	Yes	Yes	No	Yes
2	Yes	No	Yes	Yes
3	No	Yes	No	No
4	No	Yes	Yes	No
5	Yes	No	Yes	Yes

Now, we want to classify a new email that contains "buy" and "click" but not "cheap". Let's denote:

- C_1 = Spam
- C_2 = Not Spam
- x_1 = Contains "buy" = Yes
- x_2 = Contains "cheap" = No
- x_3 = Contains "click" = Yes

We need to compute $P(C_1|x_1,x_2,x_3)$ and $P(C_2|x_1,x_2,x_3)$ and then classify the email based on which probability is higher.

Steps:

1. Calculate Priors:

$$P(C_1) = rac{ ext{Number of Spam emails}}{ ext{Total emails}} = rac{3}{5} = 0.6$$

$$P(C_2) = rac{ ext{Number of Not Spam emails}}{ ext{Total emails}} = rac{2}{5} = 0.4$$

2. Calculate Likelihoods:

For
$$P(x_1 = \mathrm{Yes}|C_1)$$
:

$$P(x_1 = \mathrm{Yes}|C_1) = rac{\mathrm{Number\ of\ Spam\ emails\ with\ "buy"}}{\mathrm{Total\ Spam\ emails}} = rac{2}{3} pprox 0.67$$

For
$$P(x_2 = \text{No}|C_1)$$
:

$$P(x_2 = ext{No}|C_1) = rac{ ext{Number of Spam emails without "cheap"}}{ ext{Total Spam emails}} = rac{1}{3} pprox 0.33$$

For
$$P(x_3 = \mathrm{Yes}|C_1)$$
:

$$P(x_3 = \mathrm{Yes}|C_1) = rac{\mathrm{Number\ of\ Spam\ emails\ with\ "click"}}{\mathrm{Total\ Spam\ emails}} = rac{2}{3} pprox 0.67$$

For
$$P(x_1 = \mathrm{Yes}|C_2)$$
:

$$P(x_1 = \mathrm{Yes}|C_2) = rac{\mathrm{Number\ of\ Not\ Spam\ emails\ with\ "buy"}}{\mathrm{Total\ Not\ Spam\ emails}} = rac{0}{2} = 0$$

For
$$P(x_2 = \text{No}|C_2)$$
:

$$P(x_2= ext{No}|C_2)=rac{ ext{Number of Not Spam emails without "cheap"}}{ ext{Total Not Spam emails}}=rac{1}{2}=0.5$$

For
$$P(x_3 = \mathrm{Yes}|C_2)$$
:

$$P(x_3 = \mathrm{Yes}|C_2) = rac{\mathrm{Number\ of\ Not\ Spam\ emails\ with\ "click"}}{\mathrm{Total\ Not\ Spam\ emails}} = rac{1}{2} = 0.5$$

Dataset

Let's use the same dataset as before:

Email	Contains "buy"	Contains "cheap"	Contains "click"	Spam
1	Yes	Yes	No	Yes
2	Yes	No	Yes	Yes
3	No	Yes	No	No
4	No	Yes	Yes	No
5	Yes	No	Yes	Yes

Step-by-Step Process

1. Feature Representation:

We'll represent the features as binary values (1 for Yes, 0 for No):

Contains "buy"	Contains "cheap"	Contains "click"	Spam
1	1	0	1
1	0	1	1
0	1	0	0
0	1	1	0
1	0	1	1

2. Separate Features and Labels:

$$m{X} = egin{bmatrix} 1 & 1 & 0 \ 1 & 0 & 1 \ 0 & 1 & 0 \ 0 & 1 & 1 \ 1 & 0 & 1 \end{bmatrix}$$

$$y = egin{bmatrix} 1 \ 1 \ 0 \ 0 \ 1 \end{bmatrix}$$

3. Train the SVM:

We use a linear SVM to train on this dataset. The objective is to find the hyperplane that best separates the spam (1) from the non-spam (0) emails.

The SVM will solve the optimization problem to find the weight vector \mathbf{w} and bias b that define the hyperplane.

3. Train the SVM:

We use a linear SVM to train on this dataset. The objective is to find the hyperplane that best separates the spam (1) from the non-spam (0) emails.

The SVM will solve the optimization problem to find the weight vector \mathbf{w} and bias b that define the hyperplane.

4. Mathematical Formulation:

The decision function for the SVM classifier is:

$$f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b$$

Where:

- w is the weight vector
- x is the feature vector
- b is the bias term

The predicted class is given by the sign of $f(\mathbf{x})$:

$$Class = sign(\mathbf{w} \cdot \mathbf{x} + b)$$

5. Example Classification:

Let's classify a new email with the following features:

- Contains "buy": Yes (1)
- Contains "cheap": No (0)
- Contains "click": Yes (1)

Feature vector:

$$\mathbf{x}_{new} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$$

Assuming after training we obtained $\mathbf{w} = [2, -1, 1]$ and b = -1, we compute:

$$f(\mathbf{x}_{ ext{new}}) = [2, -1, 1] \cdot [1, 0, 1] + (-1)$$

$$f(\mathbf{x}_{ ext{new}}) = (2 imes 1) + (-1 imes 0) + (1 imes 1) + (-1) = 2 + 0 + 1 - 1 = 2$$

The predicted class is:

$$Class = sign(2) = 1$$
 (spam)