Title goes here

Invisibility cloaking by coordinate transformation

Min Yan, Wei Yan and Min Qiu

Department of Microelectronics and Applied Physics,
Royal Institute of Technology (KTH), Electrum 229, 164 40 Kista, Sweden
e-mail: min@kth.se (M. Qiu)

1 Введение

Появившиеся в последнее время искусственные электромагнитные (EM) материалы, называемыме метаматериалами (Smith, Pendry and Wiltshire, 2004; Shalaev, 2006), открыли для нас много способов взаимодействовать или управлять ЕМ волнами. Были эксперементально продемонстрированы ЕМ явления, не существующие в природе. Отрицательный индекс преломления(Shelby, Smith and Schultz, 2001) и отрицательный показатель пластины суперлинзы (Pendry, 2000) являются типичными примерами такого класса спроектированных материалов. С помощью метаматериалов мы сповобны не только не только приспосабливать диалектрическую проницаемость и ее значения по желанию, на также точный контроль анизотропии метаматериалами и как зависят параметры от пространственного расположения. Хотя построение каждого отдельного блока метаматериала не является проблемой, помещение блоков в подходящем порядке, для достижения желаемого макроскопического оптического феномена остается загадкой. Говоря простым языком, как с помощью деревьев различных цветов и размеров, имеющихся в нашем распоряжении, построить великолепный лес? Недавно предложенный

способ преобразования координат представляет собой идеальный рецепт для решения такой задачи проектирования.

Данная статья посвящено разработке осбого типа ЕМ устройства, мантии невидимки, полученной с помощью техники преобразования координат. Структура нашей работы следущая: сначала, в разделе 2 обощается теория преобразования координат для уравнения Максвелла. Принципы и построение скрывающих оболочек, основанные на технике преобразования координат, представлены в разделе 3. В разделе 4 будет доказана идеальная маскировка оболочек произвольной формы, используя доказаналитический анализ двухпериодной волны. Будут внимательно рассмотрены физические параметры оболочек произвольной формы. После освещения оболочек произвольной формы, мы будем детально изучать цилиндрические и сферические оболочки (секции 5 и 6). Специальное внимание будет уделено цилиндрической маскирующей оболочке, так как эта структура, возможно, является самой простой с точки зрения реализации. Некоторые практические вопросы, касающиеся маскирующих оболочек, а также другие связанные исследования будут обсуждаться в разделе 7. Наконец, в разделе 8 будут подведены итоги.

2 Преобразование координат в электромагнетизме

Теория трансформационной оптики уходит корнями в ковариционные свойства уравнений Максвелла. Лучшее математическое описание такого ковариционного свойства может быть дано с помощью диффиренциальной геометрии (Post, 1962), аппарата, в общем используемого для разработки теории общей относительности (Leonhardt and Philbin, 2006). Строгий вывод теории трансформационной оптики в четырехмерной пространстве Минков-

ского можно найти в Leonhardt and Philbin (2008). В этой работе мы напрямую используем наиболее важные выводы в математически более доступной форме. Так как большинство приложений трансформационной оптики являются статическими или медленнодвижущимися по сравению с скоростью света, мы всегда можем выбрать должным образом нашу рабочую область, и поэтому можно рассматривать только пространственное преобразование координат. В этой статье время не будет участвовать в преобразовании координат.

В плоском трехмерной евклидовом пространстве макроскопические уравнения Максвелла могут быть записаны как:

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}, \quad \nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{j}, \quad \nabla \cdot \mathbf{D} = \rho, \quad \nabla \cdot \mathbf{B} = 0.$$
 (1)

 ${f E}$ и ${f H}$ — электрические и магнитные поля, соответственно. ${f D}$ и ${f B}$ — поток электрических и магнитных плотностей, соответственно. ${f j}$ плотность электрического тока, и ρ плотность заряда. Уравнения Максвелла дополняются двумя соотношениями:

$$\mathbf{D} = \epsilon_0 \bar{\bar{\varepsilon}} \cdot \mathbf{B}. \qquad \mathbf{B} = \mu_0 \bar{\bar{\mu}} \cdot \mathbf{H}, \tag{2}$$

где $\bar{\varepsilon}$ и $\bar{\mu}$ тензоры 3×3 диэлектрической и магнитной проницаемости соответсвенно. Рассмотрим преобразование координат из Декартового пространства (x,y,z) в произвольное искривленное пространство, описываемое координатами (q_1,q_2,q_3) с

$$x = f_1(q_1, q_2, q_3)$$
 $y = f_2(q_1, q_2, q_3)$ $z = f_3(q_1, q_2, q_3).$ (3)

Матрица Якоби Л преобразования записывается как

$$\Lambda = \begin{bmatrix}
\frac{\partial x}{\partial q_1} & \frac{\partial x}{\partial q_2} & \frac{\partial x}{\partial q_3} \\
\frac{\partial y}{\partial q_1} & \frac{\partial y}{\partial q_2} & \frac{\partial y}{\partial q_3} \\
\frac{\partial z}{\partial q_1} & \frac{\partial z}{\partial q_2} & \frac{\partial z}{\partial q_3}
\end{bmatrix}$$
(4)

Длина линии элементра в преобразованном пространстве задается как $dl^2 = [dq_1, dq_2, dq_3] \mathbf{g} [dq_1, dq_2, dq_3]^T$, где $g = \Lambda^T \Lambda$ метрический тензор пространства. Объем элемента пространства выражается как $dv = \det(\Lambda) dq_1 dq_2 dq_3$.

Тогда уравнения Максвелла у искривленном пространстве принимают их инвариантный вид (Ward and Pendry, 1996)

$$\nabla_q \times \hat{\mathbf{E}} = -\frac{\partial \hat{\mathbf{B}}}{\partial t}, \quad \nabla_q \times \hat{\mathbf{H}} = \frac{\partial \hat{\mathbf{D}}}{\partial t} + \hat{\mathbf{j}}, \quad \nabla_q \cdot \hat{\mathbf{D}} = \hat{\rho}, \quad \nabla_q \cdot \hat{\mathbf{B}} = 0 \quad (5)$$

с новыми дополняющими уравнениями

$$\hat{\mathbf{D}} = \epsilon_0 \hat{\bar{\varepsilon}} \cdot \hat{\mathbf{E}}, \quad \hat{\mathbf{B}} = \mu_0 \hat{\bar{\mu}} \cdot \hat{\mathbf{H}}, \tag{6}$$

где все переменный в новой системе координат были обозначены с крышкой. Для того, чтобы сохранить такую инвариантность уравнений Максвелла новые тензоры деэлектрической и магнитной проницаемости должны удовлетворять

$$\hat{\bar{\varepsilon}} = \det(\Lambda)(\Lambda)^{-1}\bar{\varepsilon}\Lambda^{-T}, \quad \hat{\bar{\mu}} = \det(\Lambda)(\Lambda)^{-1}\bar{\bar{\mu}}\Lambda^{-T}, \tag{7}$$

здесь -Т обозначает транспонирование и обращение. Поля и источники в новой системе координат могут быть непосредственно выведены из соответствующих распределений в исходной системе координат как

$$\hat{\mathbf{E}} = \Lambda^T \mathbf{E}, \quad \hat{\mathbf{H}} = \Lambda^T \mathbf{H}, \tag{8}$$

$$\hat{\mathbf{j}} = \det(\Lambda)(\Lambda)^{-1}\mathbf{j}, \quad \hat{\rho} = \det(\Lambda)\rho.$$
 (9)

Как видно из приведенных выше уравнений замена системы координат не спасает нас от решения в точности тех же уравнений, при условии, что диэлектрическая и магнитная проницаемости определены по разному.

Когда диэлектрическая и магнитная проницаемость среды в декартовой системе координат изотпропны, недавно полученные диэлектрические и магнитные проницаемости, полученные в ур. 7 могут быть переписаны как

$$\hat{\bar{\varepsilon}} = \det(\Lambda) g^{-1} \varepsilon, \quad \hat{\bar{\mu}} = \det(\Lambda) g^{-1} \mu.$$
 (10)