COMPACITÉ PAR RECOUVREMENTS

Rappelons que toute fonction continue $[a,b] \to \mathbb{R}$ est bornée.

Question

Pour quels espaces topologiques X les fonctions continues $f: X \to \mathbb{R}$ sont-elles toutes bornées?

Observation : Toute fonction <u>continue</u> $f: X \to \mathbb{R}$ est *localement bornée*, càd pour tout $x \in X \exists$ un voisinage V_X de x tq f est bornée sur V_X .

Donc, nous avons un "recouvrement" de X par des ouverts

$$X = \bigcup_{X \in X} V_X$$

sur lesquels f est bornée. Si on pouvait trouver un « sous-recouvrement » fini tq

$$X=V_{X_1}\cup\cdots\cup V_{X_k},$$

alors on pourrait conclure que f est bornée sur X.

Ceci motive les définitions suivantes.

1/16

Définition

Soit $A \subset (X, \mathcal{T})$ un sous-espace d'un espace topologique. Un *recouvrement* ouvert de A est une collection

$$\mathcal{U} = \left\{ U_i \in \mathcal{T} : i \in I \right\}$$

d'ouverts tel que $A \subset \bigcup_{i \in I} U_i$.

Un sous-recouvrement du recouvrement \mathcal{U} de A est une sous-collection $\mathcal{V} \subset \mathcal{U}$ qui est encore un recouvrement de A.

Un recouvrement est dit fini s'il contient un nombre fini d'éléments.

Définition

Un espace topologique (X, T) est dit *compact* si tout recouvrement ouvert de X admet un sous-recouvrement fini.

Attention

- Parfois, dans la définition de la compacité, on exige aussi que X est Hausdorff.
- La définition ne dit pas seulement qu'il existe un recouvrement fini. Il doit être possible de trouver un <u>sous</u>-recouvrement fini quel que soit le recouvrement donné.

Exemple

- Un sous-ensemble fini est toujours compact.
- Chaque ensemble X muni de la topologie cofinie est compact (ici, A = X): Soit $\mathcal{U} = \{U_i \mid i \in I\}$ un recouvrement ouvert quelconque. Choisissons un $U_{i_0} \in \mathcal{U}$. Alors,

$$X \setminus U_{i_0} = \{x_1, \ldots, x_k\}.$$

 \mathcal{U} est un recouvrement $\implies \forall x_j \in X \setminus U_{i_0} \ \exists U_j \in \mathcal{U} \ \mathsf{tq} \ x_j \in U_j$. Alors, $X = U_{i_0} \cup U_1 \cup \cdots \cup U_k$.

• (0,1) n'est pas compact : Posons

$$\mathcal{U} = \{(1/n, 1) \mid n \in \mathbb{N}\}.$$

C'est un recouvrement parce que $\forall x \in (0,1) \ \exists N > 1/x$, donc $x \in (1/N,1)$. Si $\{(1/n_1,1), ..., (1/n_k,1)\}$ est une sous-collection finie, soit $n = \max\{n_j : 1 \le j \le k\}$. Alors, $(1/n_j,1) \subset (1/n,1) \Longrightarrow (1/n_1,1) \cup \cdots \cup (1/n_k,1) = (1/n,1) \ne (0,1)$.

3/16

Lemme

Soit A ⊂ X un sous-espace d'un espace topologique. Les assertions suivantes sont équivalentes :

- 1. A est compact par rapport a la topologie induite;
- 2. De tout recouvrement de A par des ouverts de X on peut extraire un sous-recouvrement fini.

Démonstration.

1. \Longrightarrow 2. Soit $\mathcal{U} = \{U_i \in \mathcal{T}_X \mid i \in I\}$ un recouvrement ouvert de A quelconque. Alors, $\{U_i \cap A \mid i \in I\}$ est un recouvrement ouvert (par rapport à la topologie induite). Donc, la compacité de A implique que

$$A = (U_1 \cap A) \cup \cdots \cup (U_k \cap A) = (U_1 \cup \cdots \cup U_k) \cap A.$$

Donc, $A \subset U_1 \cup \cdots \cup U_k$.

2. \Longrightarrow 1. Soit $\mathcal{V} := \{V_i \in \mathcal{T}_A \mid i \in I\}$ un recouvrement ouvert quelconque. Par définition de la top. induite, $\forall i \in I \ \exists U_i \in \mathcal{T}_X \text{ tq } V_i = U_i \cap A$. Donc,

$$A = \bigcup_{i \in I} V_i \quad \Longrightarrow \quad A = \bigcup_{i \in I} \left(U_i \cap A \right) = A \cap \left(\bigcup_{i \in I} U_i \right) \quad \Longrightarrow \quad A \subset \bigcup_{i \in I} U_i.$$

Alors,
$$A \subset U_1 \cup \cdots \cup U_k \implies A = A \cap (U_1 \cup \cdots \cup U_k) = V_1 \cup \cdots \cup V_k$$
.

Théorème (Heine-Borel)

[0,1] est compact.

Démonstration.

Soit $\mathcal U$ un recouvrement de [0,1] par des ouverts de $\mathbb R$. Désignons $\tau := \sup \big\{ t \in [0,1] \mid \exists \text{ un sous-recouvrement fini qui recouvre } [0,t] \big\}.$ Évidemment, $\tau > 0$.

On veut démontrer que $\tau=1$. Supposons que $\tau<1$. Puisque $\mathcal U$ est un recouvrement de [0,1], $\exists U_0 \in \mathcal U$ tq $\tau \in U_0$. Puisque U_0 est ouvert, $\exists \delta>0$ tq $(\tau-\delta,\ \tau+\delta) \subset U_0$. Par définition de $\tau,\ \exists t_0 \in (\tau-\delta,\ \tau]$ tq l'intervalle $[0,t_0]$ admet un sous-recouvrement fini : $\{U_1,\ldots,U_k\mid U_i\in\mathcal U\}$. Alors,

$$\{U_0, U_1, \ldots, U_k\}$$

est un sous-recouvrement fini de $[0, \tau + \delta]$, ce qui est impossible. Ainsi, $\tau = 1$.

Enfin, le même argument montre en fait que [0,1] admet un sous-recouvrement fini.

5/16

Théorème

Soit $f: X \to Y$ continue. Si X est compact, alors $f(X) \subset Y$ est compact (par rapport à la topologie induite du Y).

Démonstration.

Soit $\{U_i \in \mathcal{T}_Y \mid i \in I\}$ un recouvrement de f(X), càd

$$f(X) \subset \bigcup_{i \in I} U_i \implies X \subset \bigcup_{i \in I} f^{-1}(U_i).$$

Puisque f est continue, $\{f^{-1}(U_i) \mid i \in I\}$ est un recouvrement ouvert de X. Par la compacité de X,

$$X = f^{-1}(U_1) \cup \dots \cup f^{-1}(U_k) = f^{-1}(U_1 \cup \dots \cup U_k)$$
$$\Longrightarrow f(X) \subset U_1 \cup \dots \cup U_k.$$

Ainsi, f(X) est compact.

En tant qu'illustration, considérons \mathbb{R}/\mathbb{Z} muni de la topologie quotient. Soit $\pi\colon\mathbb{R}\to\mathbb{R}/\mathbb{Z}$ la projection canonique. Donc, π est continue et

$$\mathbb{R}/\mathbb{Z} = \pi(\mathbb{R}) = \pi([0,1]).$$

Puisque [0, 1] est compact, alors \mathbb{R}/\mathbb{Z} est compact aussi.

Corollaire

Compacité est une propriété topologique.

Corollaire

Tout intervalle fermé et borné [a, b] est compact.

Corollaire

Chaque fonction continue $f: X \to \mathbb{R}$ sur un espace X compact est bornée.

Démonstration.

Considérons le recouvrement ouvert de \mathbb{R} :

$$\mathcal{U} := \{ U_n := (-n, n) \mid n \in \mathbb{N} \}.$$

Puisque $f(X) \subset \mathbb{R}$ est compact, il existe un sous-recouvrement fini, disons $\{U_{n_1}, \ldots, U_{n_k}\}$. Posons $n = \max\{n_1, \ldots, n_k\}$. Alors,

$$f(X) \subset U_{n_1} \cup \cdots \cup U_{n_k} = (-n, n).$$

Ainsi, *f* est bornée.

7/16

Proposition

Un fermé d'un espace compact est lui-même compact.

Démonstration.

Soit F un fermé dans un espace compact X. Soit \mathcal{U} un recouvrement ouvert de F quelconque. Alors, $\mathcal{U} \cup \{X \setminus F\}$ est un recouvrement ouvert de X. Puisque X est compact, il existe un sous-recouvrement fini :

$$U_1, U_2, \ldots, U_k$$
.

Si $U_i \in \mathcal{U}$ pour tout $i \in \{1, ..., k\}$, on a trouvé un sous-recouvrement fini de X (et, donc, de F). Si l'un de ces ensembles, disons U_k , est $X \setminus F$, on considère

$$U_1, U_2, \dots, U_{k-1}.$$
 (*)

Puisque $\bigcup_{i=1}^k U_i = X$, on a que $\bigcup_{i=1}^{k-1} U_i$ contient tous les points de $X \setminus U_k = X \setminus (X \setminus F) = F$. Ainsi, (*) est un sous-recouvrement de F fini. \square

L'inverse n'est généralement pas vrai, càd un compact n'est pas nécessairement fermé (Considérez (X, \mathcal{T}^{cofin})). Cependant, c'est vrai si X est Hausdorff.

Proposition

Si X est un espace Hausdorff et A ⊂ X est un sous-espace compact, alors A est fermé.

Démonstration.

Choisissons $x \in X \setminus A$. $\forall a \in A \ \exists U_a \in \mathcal{T}_X$ et $\exists V_a \in \mathcal{T}_X$ tq $a \in U_a, x \in V_a$ et $U_a \cap V_a = \emptyset$. Évidemment, $\mathcal{U} := \{U_a \mid a \in A\}$ est un recouvrement ouvert de A. Alors, il existe un sous-recouvrement fini :

$$A \subset U_{a_1} \cup \cdots \cup U_{a_k}$$
.

Soient V_{a_1}, \ldots, V_{a_k} les voisinages de x correspondants et $V_X := V_{a_1} \cap \cdots \cap V_{a_k}$.

L'ouvert V_X est un voisinage de X qui est disjoint de $U_{a_1} \cup \cdots \cup U_{a_k}$ et donc de A. Ainsi, $V_X \subset X \setminus A$ et alors $X \setminus A$ est ouvert.

9/16

Théorème (Théorème des valeurs extrêmes)

Une fonction continue $f: X \to \mathbb{R}$ sur un espace X compact est bornée et atteint son maximum et son minimum.

Démonstration.

On a déjà montré que f est bornée. Puisque $f(X) \subset \mathbb{R}$ est compact dans un espace Hausdorff, f(X) est fermé.

Si $A \subset \mathbb{R}$ est un sous-ensemble fermé et borné, alors sup $A \in A$ et inf $A \in A$ (les point limites de A sont contenus dans A). Ainsi, f atteint son maximum et son minimum.

FORMULATION ÉQUIVALENTE EN TERMES DE FERMÉS

Proposition

Un espace topologique X est compact ssi pour toute collection $\mathcal{F} = \{F_i \text{ ferm\'e de } X; i \in I\}$ de ferm\'es de X tq $\bigcap_{i \in I} F_i = \emptyset$, il existe un sous-ensemble $\{F_{i_1}, \dots, F_{i_k}\}$ fini tq $\bigcap_{i=1}^k F_{i_i} = \emptyset$.

Démonstration.

Supposons que X est compact et \mathcal{F} est une collection de fermés comme ci-dessus. Alors, $\mathcal{U} := \{ U_i := X \setminus F_i \mid i \in I \}$ est une collection des ouverts. De plus,

$$\bigcup_{i\in I}U_i=\bigcup_{i\in I}\left(X\smallsetminus F_i\right)=X\smallsetminus\left(\bigcap_{i\in I}F_i\right)=X\smallsetminus\varnothing=X.$$

Donc, $\mathcal U$ est un recouvrement ouvert $\Longrightarrow \exists$ un sous-recouvrement fini : $\{U_{i_1},\ldots,U_{i_k}\}$. Mais cela implique que

$$\varnothing = X \setminus \left(\bigcup_{j=1}^k U_{i_j}\right) = X \setminus \left(\bigcup_{j=1}^k (X \setminus F_{i_j})\right) = \bigcap_{j=1}^k F_{i_j}.$$

La direction inverse: Exercice.

11/16

Corollaire

Soit X un espace compact et $(F_n)_{n\in\mathbb{N}}$ une famille de fermés tq $F_n\neq\emptyset$ pour tout $n\in\mathbb{N}$. Alors,

$$F_1 \supset F_2 \supset F_3 \supset \dots \Longrightarrow \bigcap_{n \in \mathbb{N}} F_n \neq \emptyset.$$

Démonstration.

Supposons que $\bigcap_{n\in\mathbb{N}} F_n = \emptyset$. Comme X est compact, il existe F_{n_1}, \ldots, F_{n_k} tq $\bigcap_{i=1}^k F_{n_i} = \emptyset$. Quitte à renommer les fermés, on peut supposer que $n_1 \le n_2 \le \cdots \le n_k$. Alors, $\bigcap_{i=1}^k F_{n_i} = F_{n_k} \ne \emptyset$. Contradiction.

Merge this with the preceeding proposition?

LA COMPACITÉ DE PRODUITES

Théorème

Soit X, Y deux espaces topologiques. Alors le produit X × Y est compact ssi X et Y sont tous les deux compacts.

Démonstration.

Supposons que $X \times Y$ est compact. Puisque p_1 est continue, $X = p_1(X \times Y)$ est compact en tant que l'image d'un espace compact.

Supposons que X et Y sont compacts. Soit W un recouvrement ouvert de $X \times Y$. Soit $x \in X$ fixé. Puisque W est un recouvrement de $X \times Y$, $\forall y \in Y$ $\exists W(y) \in W$ tq $(x,y) \in W(y)$. Par définition de la topologie produit, $\exists U(y) \subset X$ et $\exists V(y) \subset Y$ tq

$$(x, y) \in U(y) \times V(y) \subset W(y)$$
.

La collection $\{V(y): y \in Y\}$ est un recouvrement ouvert de Y. La compacité de Y implique qu'il existe un sous-recouvrement fini, disons $V(y_1), \ldots, V(y_r)$. Posons

$$U(x) = U(y_1) \cap \cdots \cap U(y_r).$$

13/16

Démonstration (suit).

Alors pour tout i = 1, ..., r,

$$U(x) \times V(y_i) \subset U(y_i) \times V(y_i) \subset W(y_i)$$

Donc

$$U(x) \times Y \subset U(x) \times \bigcup_{i=1}^{r} V(y_i) \subset \bigcup_{i=1}^{r} W(y_i)$$

Maintenant la collection $\{U(x): x \in X\}$ est un recouvrement ouvert de X. Il existe donc un sous-recouvrement fini $\{U(x_1), ..., U(x_s)\}$. Chaque sous-espace $U(x_i) \times Y$ est recouvert par un nombre fini d'ouvert du recouvrement \mathcal{W} . Donc $X \times Y$, étant la réunion (finie) des $U(x_i) \times Y$ pour $1 \le i \le s$, est aussi recouvert par un nombre fini d'éléments du recouvrement \mathcal{W} .

CRITÈRE AUTOMATIQUE D'HOMÉOMORPHISME

Nous avons déjà vu qu'en général

 $f:X \to Y$ est continue et bijective f^{-1} est continue.

Cependant, si on a le résultat suivant :

Proposition

Soit $f: X \to Y$ une bijection continue. Si X est compact et Y est Hausdorff alors f^{-1} est continue. En particulier, f est un homéomorphisme et Y est compact.

Démonstration.

Soit F un fermé de X. Puisque F est fermé dans X qui est compact, alors F est compact. Comme f est continue, f(F) est aussi compact. Puisque Y est Hausdorff, f(G) est un fermé de Y. Ainsi, $(f^{-1})^{-1}(F) = f(F)$ est un fermé de Y, càd que f^{-1} est continue.

15/16

En tant qu'application, on a le résultat suivant.

Proposition

L'espace quotient \mathbb{R}/\mathbb{Z} est homéomorphe à l'ensemble $S^1 = \{z \in \mathbb{C}, |z| = 1\}$ muni de la topologie induite par celle de \mathbb{R}^2 .

Démonstration.

On définit l'application

$$\varphi: \mathbb{R}/\mathbb{Z} \to \mathbb{T}, \qquad [x] \mapsto e^{2i\pi x}.$$

 φ est bien définie, car si [x] = [y], alors $x - y \in \mathbb{Z}$ et, donc, $e^{2i\pi x} = e^{2i\pi y}$. Le même genre d'argument montre que φ est injective, et elle est surjective par surjectivité de l'exponentielle complexe.

Puisque S^1 est muni de la top. induite, $\varphi\colon \mathbb{R}/\sim \to S^1$ est continue ssi φ est continue comme l'application $\mathbb{R}/\sim \to \mathbb{C}\cong \mathbb{R}^2$. Par la caractérisation des applications continues sur un espace quotient, φ est continue ssi $\operatorname{Re} \varphi$ et $\operatorname{Im} \varphi$ sont continues, ce qui est évident (vérifiez-le!). Ainsi, φ est bijective et continue.

Comme \mathbb{R}/\mathbb{Z} est compact, φ est alors un homéomorphisme.

16/16