Stern-Gerlach Shutters

— The Problem —

1. The Stern-Gerlach Scientific Contraption Company makes a device called a Stern-Gerlach Shutter. One of these is depicted in Figure 1.

Figure 1 Stern-Gerlach Shutter

2. The settings gauge at the bottom of the device is set at a desired angle between zero and π . The shutter sheet slides horizontally, guided by a long bar that is connected to the rotating handle, and which can slide vertically through a tube at the left edge of the shutter sheet.

- 3. The shutter sheet is used to cover a rectangular opening that is centered over the settings gauge's pivot. The width of the opening is equal to the diameter of the semicircle swept out by the settings gauge.
- 4. We have two of these Stern-Gerlach Shutters, and for each one a corresponding Stern-Gerlach Shutter Shooter. A Stern-Gerlach Shutter Shooter fires a pellet at a random point inside the boundaries of the opening of a Stern-Gerlach Shutter. The pellet may either pass through the opening or bounce off the shutter sheet. The Shutter Shooter may fire either a black pellet or a white pellet, at the discretion of the experimenter.
- 5. Shutter 1 is set to ϕ_1 and Shutter 2 is set to ϕ_2 .
- 6. According to the flip of a fair coin, we shoot either a black pellet at Shutter 1 and a white pellet at Shutter 2, or the other way around.
- 7. Let +1 represent either a black pellet passing through an opening or a white pellet bouncing off a shutter sheet. Let -1 represent pellets doing it the other way around.
- 8. Compute, for the two Stern-Gerlach shutters, the correlation coefficient ρ as a function of $\phi_1 \phi_2$.

— The Solution —

Figure 2

Figure 2 Dimensions of a Stern-Gerlach Shutter