

Walter Bennette September 06, 2016

About me

- · 2014 Present: Air Force Research Laboratory Information Directorate
- · 2009 2014: Iowa State University, Industrial Engineering MS and PhD
- · 2005 2009: Lake Superior State University, Mathematics BS

Instance selection

What

- · A pre-processing technique for instance-based classification
- · Only "necessary" instances are maintained

Why

- Memory
- · Prediction time

How

- Filters
- Wrappers
 - An evolutionary algorithm with an arbitrary stopping criterion

Given this data...

•

•

What would we label a new point?

- Load forecasting assistant for power company
 - Hourly load forecast
 - Utilize weather and seasonal variables
 - Growing number of data sources and observations
 - Increased control

What if there is a large amount of data?

What if there is a huge amount of data?

What if there is a serious amount of data?

Instance selection

Retain only the instances "necessary" to achieve adequate classification rates

- · Reduce storage requirements
- · Reduce prediction time

Edited Nearest Neighbors (ENN)

Formulation:

 \cdot An instance is removed from the training data if its does not agree with the majority of its k nearest neighbors

Effect:

- · Makes decision boundaries smoother
- · Doesn't remove much data

Edited Neares Neighbors (ENN)

DROP3

Formulation:

 Iterative procedure that compares accuracy of neighborhoods with and without members

Effect:

- · Removes much more data than ENN
- · Maintains acceptable accuracy

DROP3

Evolutionary Instance Selection

- \cdot Search for best subset of training data
- $Fitness = \alpha * classAccuracy + (1 \alpha) * percReduction$
- · Each instance is a gene
 - One, keep instance
 - Zero, discard instance

Evolutionary Instance Selection

- · Cano, Herrera, and Lozano (2003), tested families of evolutionary algorithms
- Determined "cross generational elitist selection, heterogeneous recombination and cataclysmic mutation" (CHC) was most effective
- · Widely adapted in instance selection literature
- Some of the best results for data reduction and classification accuracy (García, Luengo, and Herrera 2015)

CHC

- 1. Create a parent population of size N and set threshold to $\frac{|training\ data|}{4}$
- 2. Generate a child population from parents
 - · Select two previously unconsidered parents
 - If Hamming distance is greater than threshold perform half uniform crossover (HUX) to generate two children
- 3. Hold a competition to determine new parent population
 - · If no children enter parent population reduce threshold by one
 - · If threshold falls below zero perform cataclysmic re-population
 - Reset threshold and discard all chromosomes except most fit
 - Use mutation to generate N-1 new chromosomes
- 4. Return to Step 2 until stopping criterion is met

Current CHC stopping critierion

Reference	Date	Generations	Population
[4]	2003	10,000	50
[11]	2006	10,000	50
[5]	2006	10,000	50
[3]	2007	10,000	50
[7]	2009	100	100
[13]	2009	10,000	50
[8]	2012	1,000	100
[12]	2012	10,000	50
[16]	2013	Unknown	Unknown
[19]	2013	1,000 & 100	50
[14]	2015	10,000	50

Data driven CHC stopping critierion

•	At a cataclysmic re-population, compare the best individual to the best
	individual from the last cataclysmic re-population

· If the improvement in fitness is less than or equal to some G, stop

Data driven example

Data driven example

- · CHC has difficulty converging when there are many instances
- Most recommend a stratified scaling approach

Data driven example

Experiment

Using 3-NN:

- Compare CHC_10K and CHC_0 (10k generations versus data driven for G=0)
- 10-fold cross validation applied three times
- · Record accuracy, reduction, and computation time
- 30 "small" datasets (100 1,000 instances)
- · 21 "medium" datasets, using stratification (1,001 12,960 instances)
- · Wilcoxin Signed Ranked test for differences in accuracy, reduction, and time

Results

Size	Method	Accuracy	Reduction	Time
Small	CHC_10K	77.3	91.1	119
Small	CHC_0	77.3	90.6	64
Medium	CHC_10K	75.4	90.9	1631
Medium	CHC_0	75.6	90.8	1415

- · No significant difference in accuracy
- · Significant (but small) difference in reduction
- · Significant difference in time

Unexpected results

Take away one

- $\cdot\,$ A set number of generations is not the correct way to terminate CHC
- · CHC_0 is a criterion
- · Additional criterion can be created

A word on the competittion

Size	Method	Accuracy	Reduction	Time
Small	3-NN	78.6	NA	NA
Small	DROP3	76.1	90.7	1
Small	CHC_0	77.3	90.6	64
Medium	3-NN	78.7	NA	NA
Medium	DROP3	73.7	92.8	17
Medium	CHC_0	75.6	90.8	1415

- · On average, DROP3 achieves greater reduction
- · On average, CHC_0 achieves better accuracy
- DROP3 is very fast

Take away two

- \cdot Practitioners need to keep their application in mind
- \cdot Use DROP3 when instance selection needs to be applied quickly
- · Use CHC when accuracy is a priority

Questions

Walter Bennette walter.bennette.1@us.af.mil wdbennette@gmail.com

References

Cano, J.R., F. Herrera, and M. Lozano. 2003. "Using evolutionary algorithms as instance selection for data reduction in KDD: an experimental study." 7 (6): 561–75.

García, Salvador, Julian Luengo, and Francisco Herrera. 2015. . Vol. 72. Intelligent Systems Reference Library. Cham: Springer International Publishing. http://link.springer.com/10.1007/978-3-319-10247-4 http://www.scopus.com/inward/record.url?eid=2-s2.0-84906871736{\&}partnerID=tZOtx3y1.