Lista Extensiones Normales AM III

Cristo Daniel Alvarado

Diciembre de 2023

Capítulo 3

Ejercicios

3.1. Extensiones Normales

Ejercicio 3.1.1

Sea E/F una extensión de campos. Denotamos por Aut(E) (resp. $Aut_F(E)$) al conjunto de todos los automorfismos (resp. F-automorfismos) de E. Demuestre que Aut(E) es un grupo con la compsición de funciones, y que $Aut_F(E)$ es un subgrupo de Aut(E).

Demostración:

Claramente el resultado se tiene de que $\operatorname{Aut}(E)$ es un grupo con la composición de funciones. Veamos que $\operatorname{Aut}_F(E)$ es un subgrupo. En efecto, el conjunto $\operatorname{Aut}_F(E)$ es no vacío pues $\operatorname{id}_E \in \operatorname{Aut}_F(E)$. Ahora, sean $f, g \in \operatorname{Aut}(E)$, se tiene que

$$f(\alpha) = \alpha = g(\alpha), \quad \forall \alpha \in F.$$
 (3.1)

donde $f,g \in \operatorname{Aut}(E)$. En particular, se tiene que $f \circ g^{-1}$ es un elemento de $\operatorname{Aut}(E)$. Y además:

$$g^{-1}(\alpha) = g^{-1}(g(\alpha))$$

$$= \alpha, \quad \forall \alpha \in F$$
(3.2)

es decir, g^{-1} es un F-automorfismo de E. Por tanto

$$f \circ g^{-1}(\alpha) = f(g^{-1}(\alpha))$$

$$= f(\alpha)$$

$$= \alpha, \quad \forall \alpha \in F$$

$$(3.3)$$

entonces, $f \circ g^{-1} \in \operatorname{Aut}_F(E)$. Luego, $\operatorname{Aut}_F(E) < \operatorname{Aut}(E)$.

Ejercicio 3.1.2

Calcule $\operatorname{Aut}_{\mathbb{R}}(\mathbb{Q})$ y $\operatorname{Aut}_{K}(K(X))$ donde K(X) es el campo de funciones racionales en la variable X sobre K.

Demostración:

Ejercicio 3.1.3

Sea E el campo de descomposición de un polinomio $f(X) \in F[X]$ con $\deg(f) = n \ge 1$. Pruebe que [E:F] divide a n!. Más aún, el grupo $\operatorname{Aut}_F(E)$ está encajado en el grupo simétrico S_n de grado n.

Demostración:

Como E es el campo de descomposición de f(X), entonces expresamos a $E = F(u_1, \ldots, u_n)$, donde $u_1, \ldots, u_n \in E$ son las raíces del polinomio f(X).

Ejercicio 3.1.4

Sean α, β algebraicos sobre F, y sean $f(X) = \operatorname{irr}(\alpha, F, X)$ y $g(X) = \operatorname{irr}(\beta, F, X)$ tales que $\deg(f)$ y $\deg(g)$ son primos relativos. Demuestre que g es irreducible sobre $F(\alpha)[X]$.

Demostración:

Ejercicio 3.1.5

Sea α una raíz del polinomio $X^6 + X^3 + 1$ sobre \mathbb{Q} . Encunetre todos los homomorfismos de $\mathbb{Q}(\alpha)$ en \mathbb{C} .(Sugerencia: El polinomio es el facto del polinomio $X^9 - 1$).

Demostración:

Ejercicio 3.1.6

Encunetre el campo de descomposición de los siguientes polinmoios sobre \mathbb{Q} , y el grado de tales campos de descomposición sobre \mathbb{Q} .

- 1. $X^3 2$.
- 2. $X^2 + X + 1$.
- 3. $X^5 7$.
- 4. $(X^3-2)(X^2-2)$.
- 5. $X^6 + X^3 + 1$.

Demostración:

Ejercicio 3.1.7

Sea α un número real tal que es raíz del polinomio $X^4 - 5 = 0$. Demuestre lo siguiente

- 1. $\mathbb{Q}(i\alpha)$ es una extensión normal sobre \mathbb{Q} .
- 2. $\mathbb{Q}(\alpha + i\alpha)$ es una extensión normal sobre $\mathbb{Q}(i\alpha)$, pero no sobre \mathbb{Q} .

Demostración:

Ejercicio 3.1.8

Encuentre el campo de descomposición del polinomio $X^{p^s}-1$ sobre el campo finito $\mathbb{Z}/p\mathbb{Z}$ de p elementos, con p número primo.

Demostración:

Ejercicio 3.1.9

Sea E/F una extensión algebraica. Demuestre que E/F es extensión normal si, y sólo si cada F-homomorfismo $\sigma: E \to N$, donde N es cualquier extensión normal de F que contiene a E, se tiene que $\sigma(E) = E$.

Demostración: