第二次作业 2017 年 10 月 12 日

- 注:本次作业必须在2017年10月19日上课前交。
- 1. 设依次从如下四个独立的正态分布的总体 $N(a-b+c,\sigma^2)$, $N(b-c,\sigma^2)$, $N(a+b-c,\sigma^2)$, $N(c-b,\sigma^2)$ 中抽出样本 y_1,y_2,y_3,y_4 :
 - 1) 请给出以 y_1, y_2, y_3, y_4 为观测值的等价线性模型及设计矩阵X。
 - 2) 试判断a+b, 2a-b+3c是否可估。
- 2. 为了估计参数 θ 和 φ ,可能得到三种类型的观测数据:
- I. 第一种类型具有期望 θ ; II. 第二种类型具有期望 $\theta+\varphi$; III. 第三种类型具有期望 $\theta-2\varphi$ 。所有观测值的误差都不相关,均值为零,方差相同。现得到2个类型 II 的观测值 y_{11},y_{12} ,2个类型 II 的观测值 y_{21},y_{22} ,1个类型 III 的观测值 y_3 。
- 1). 写出等价的线性模型;
- 2). 求 θ 和 φ 的 LS 估计 $\hat{\theta}$ 和 $\hat{\varphi}$;
- 3). 证明: $\hat{\theta}$ 和 $\hat{\phi}$ 不相关。
- 3. 设 $y_i = \beta x_i + \varepsilon_i$, i = 1,2。 其中 ε_1 与 ε_2 为零均值不相关的随机误差, $E\varepsilon_1^2 = \sigma^2$, $E\varepsilon_2^2 = 2\sigma^2$ 。求 β 的 GLS 估计以及 σ^2 的估计。