Łukasz Stępień 25.05.2023r. Laboratorium 10

Równania różniczkowe cząstkowe

1. Temat zadania:

Zadanie 1. Cząsteczka w dwuwymiarowej studni potencjału. Cząsteczka odbija się od ścian dwuwymiarowej nieskończonej studni potencjału o szerokości L. Zachowanie cząsteczki opisane jest bezczasowym równaniem Schrödingera

$$\frac{1}{2}\Big(\frac{\partial^2 \psi(x,y)}{\partial x^2} + \frac{\partial^2 \psi(x,y)}{\partial y^2}\Big) + \frac{(n_1^2 + n_2^2)\pi^2}{2L^2}\psi(x,y) = 0 \text{ dla każdego } x \in \Omega\,, \ \ (1)$$

gdzie:

 $(x,y) \in \mathbb{R}^2$ to położenie cząstki,

 Ω to dziedzina równania, $\Omega = \{(x,y) \mid -\frac{L}{2} \le x \le \frac{L}{2} \text{ oraz } -\frac{L}{2} \le y \le \frac{L}{2}\},$

 $\psi(x,y)$ to funkcja falowa, której postaci szukamy,

L to szerokość studni potencjału,

 n_1, n_2 to liczby kwantowe.

Jednostki dobrano w ten sposób, że iloraz $\frac{\hbar}{m}$ jest równy 1. Przyjmij L=2. Warunków brzegowe zdefiniowane są następująco:

$$\psi(x,y) = 0 \text{ dla } |x| = \frac{L}{2} \text{ lub } |y| = \frac{L}{2}.$$
 (2)

Analityczna postać rozwiązania równania (1) z warunkami brzegowymi (2) jest następująca:

$$\psi(x,y) = \begin{cases} \frac{2}{L} \sin\left(\frac{n_1 \pi (x + \frac{L}{2})}{L}\right) \sin\left(\frac{n_2 \pi (y + \frac{L}{2})}{L}\right) & \text{dla } x \in \Omega \\ 0 \text{ w przeciwnym wypadku} \end{cases}$$
 (3)

Rozwiąż powyższe zagadnienie brzegowe (1),(2) dla $(n_1,n_2) \in \{1,2\} \times \{1,2\} = \{(1,1),(1,2),(2,1),(2,2)\}$. Do rozwiązania użyj sieci neuronowych PINN (ang. Physics-informed Neural Network), wykorzystując bibliotekę DeepXDE. Warstwa wejściowa sieci powinna posiadać 4 neurony, $L_0 = (x,y,n_1,n_2)$, kodujące odpowiednio położenie cząstki (x,y) oraz liczby kwantowe n_1,n_2 . Jako funkcję aktywacji przyjmij tangens hiperboliczny, tanh. Przykładowe wartości hiperparametrów można znaleźć w [2, str. 221].

Stwórz następujące wykresy:

- Wykres funkcji kosztu w zależności od liczby epok
- Wykres konturowy funkcji $\psi(x)$, tj. dokładnego rozwiązania
- Wykres konturowy funkcji $\hat{\psi}(x),$ t
j. rozwiązania znalezionego przez sieć neuronowa
- Wykres konturowy funkcji błędu względnego L_2 : $|\psi(x) \hat{\psi}(x)|^2$.

Uwaga. W przypadku wykorzystania backendu tensorflow należy użyć wersji tensorflow v1.

2. Implementacja:

- Funkcja psi(x, y, L, n1, n2) oblicza wartość funkcji falowej psi dla podanych argumentów.
- Funkcja show_exact(n1, n2) generuje wykres funkcji falowej psi dla konkretnych wartości parametrów n1 i n2. Wykorzystuje ona funkcję psi do obliczenia wartości funkcji psi dla różnych punktów w dziedzinie. Następnie rysuje wykres z użyciem biblioteki matplotlib.
- Następnie zdefiniowane są funkcje pde, pde11, pde12, pde21, pde22, które opisują równania różniczkowe cząstkowe (PDE) dla konkretnych wartości parametrów n1 i n2. Funkcja pde oblicza wartość równania PDE dla danej funkcji psi i jej pochodnych. Funkcje pde11, pde12, pde21, pde22 są specjalizacjami funkcji pde dla konkretnych wartości parametrów n1 i n2.
- Funkcja solve rozwiązuje równanie PDE dla podanej funkcji pde oraz punktów i wartości brzegowych. Tworzona jest geometria w postaci prostokąta, a następnie definiowane są warunki brzegowe w postaci brzegów Dirichleta oraz punkty, które są wyliczane z oryginalnej funkcji. Wykorzystuje ona klasę PDE z biblioteki deepxde.data do zdefiniowania danych wejściowych. Tworzony jest również model sieci neuronowej, który jest kompilowany i trenowany z użyciem danych wejściowych. Funkcja zwraca model oraz stan treningu.
- Funkcja draw_model generuje wykres rozwiązania równania PDE uzyskanego z modelu. Oblicza wartości psi na siatce, a następnie rysuje wykres z użyciem biblioteki matplotlib.
- Następnie dla każdej kombinacji wartości parametrów n1 i n2, wywoływana jest funkcja solve i draw_model dla odpowiedniego równania PDE. Wyniki są przedstawiane na wykresach.
- Funkcja draw_error oblicza błąd między rozwiązaniem dokładnym (funkcją psi) a rozwiązaniem uzyskanym z modelu.
 Następnie generuje wykres błędu na podstawie obliczonych wartości.

3. Wyniki:

• Wykresy dla $(n_1,n_2)=(1,1)$:

Wykresy dla (n₁,n₂)=(1,2):

• Wykresy dla $(n_1,n_2)=(2,1)$:

Wykresy dla (n₁,n₂)=(2,2):

4. Wnioski:

- Z przedstawionych wykresów można wnioskować, że dzięki bibliotece DeepXDE udało się uzyskąc wiarygodne wyniki w każdym przypadku obliczanej funkcji falowej. Z wykresów błędu można zauważyć, że jest on niewielki.
- Bez dodania początkowych punktów otrzymywano rozwiązanie trywialne w postaci funkcji tożsamościowo równej 0. Dzięki dodaniu zadanych punktów na początku obliczeń wyniki stały się już zbliżone do nietrywialnego rozwiązania tego równania.

5. Bibliografia:

• https://deepxde.readthedocs.io/en/latest/