UBA-CBC	Física(03)		1er Parcial				20/Mayo/16					Tema 1	
Apellido:		Reservado para					corrección. Co			orrector:			
Nombre:			Dla	D1b	D2a	D2b	D3a	D3b	E4	E5	E6	E7	Nota
D.N.I.:													
email(optativo):		CU-Av-Dr-MoC					Ma-Vi		Comisión:		Aula:		Hoja 1 de:

Lea por favor todo antes de comenzar. Resuelva los 3 problemas en otras hojas que debe entregar. Incluya los desarrollos que le permitieron llegar a la solución. Las 4 preguntas tienen SOLO UNA respuesta correcta. Indique la opción elegida con una X en el casillero correspondiente. Los desarrollos y respuestas deben estar en tinta (no lápiz). En los casos en los que sea necesario utilice $|g| = 10 \text{ m/s}^2 \text{ y} \text{ p}_{atm} = atm = 101300 \text{ Pa}$. Si encuentra algún tipo de ambigüedad en los enunciados, aclare en las hojas cuál fue la interpretación que adoptó. Algunos resultados pueden estar aproximados. Dispone de 2 horas Autores: CC - AR

D1. Una escalera homogénea de 10 kgf y 2 m de longitud se encuentra fija al piso mediante una articulación en el punto A. Su otro extremo está apovado sobre una pared vertical sin rozamiento (punto B en la figura). El ángulo que forma la escalera con la vertical es $\theta = 30^{\circ}$. Un hombre, cuyo peso es de 70 kgf, sube por la escalera y se detiene a una distancia d = 0.5m de la base. Calcular, en el equilibrio, los vectores:

- a) Fuerza que ejerce el apoyo A.
- b) Fuerza que ejerce la pared en el punto B.

Rta: x hacia la derecha e y hacia arriba $= (-13;80) \text{ kgf}; F_B = (13;0) \text{ kgf}.$

D2. El tubo en forma de U mostrado en la figura, se encuentra ubicado sobre una mesa. Contiene cuatro líquidos inmiscibles A, B, C y D. Datos: $\delta_A = 500 \text{ kg/m}^3$; $\delta_D = 625 \text{ kg/m}^3$; $h_A=15 \text{ cm}$; $h_B=10 \text{ cm}$; $h_D = 20 \text{ cm}.$

- a) ¿Cuánto vale la presión absoluta en el punto (2)?
- b) ¿Cuál es la densidad del líquido B, δ_B?

Rta: a) $P_2 = 102550 \text{ Pa}$, b) $\delta_B = 500 \text{ kg/m}^3$

- D3. Durante un partido entre el Real Madrid y el Barcelona, Messi patea un tiro libre. En la barrera, colocada a d = 9.15 m de distancia, entre otros jugadores se encuentra Ronaldo. Messi patea la pelota, con una velocidad de salida cuyo módulo es v₀ y forma un ángulo con el suelo de 20 °, de forma tal que pasa justo por encima de la cabeza de Ronaldo.
- a) Si Ronaldo se queda quieto en su posición y la pelota rebota en su frente que se encuentra a 1,80 m del piso, ¿con qué velocidad v_0 fue pateada la pelota? $v_0 = 17.6$ m/s
- b) ¿Cuál es el vector velocidad de la pelota en el momento que impacta la frente de Ronaldo? v = (16.5; 0.48) m/s

E4. Un objeto cuelga de un hilo. Cuando está sumergido en un líquido de densidad $\delta_L = 0.9 \text{ gr/cm}^3$, la tensión en el hilo es de 30 N. Cuando está totalmente sumergido en agua, $\delta_{\text{agua}} = 1 \text{ gr/cm}^3$, la tensión es de 28 N. Entonces el volumen del objeto es:

- \Box 4 x 10⁻³ m³
- \square 2,8 x 10⁻³ m³ \square 2 x 10⁻² m³ \square 1,5 x 10⁻² m³

E5. El gráfico muestra la velocidad en función del tiempo que adquiere un móvil que se mueve en una dimensión. Suponga que $x_0 = 0$ para t = 0. Entonces la velocidad media entre t = 0 s y t = 25 s es:

- \Box 1 m/s □ 10 m/s
- □ 15 m/s
- \Box 5 m/s □ -10 m/s

E6. Un objeto cuyo peso 30 kgf se es suspendido encuentra por sogas ideales sin masa, como muestra la figura. Entonces módulo de la tensión de la soga A es:

- ☐ 30 kgf □ 46,6 kgf
- □ 19,3 kgf □ 15 kgf

E7. Un móvil, que parte del reposo en t = 0 s, viaja en línea recta y su ecuación horaria que describe la posición en función del tiempo es la siguiente:

$$x(t) = 2 m + 12 \frac{m}{s^2} t^2 - 4 \frac{m}{s^3} t^3$$

¿en qué instante se detendrá nuevamente?

- \Box 6 s □ 5 s
- \Box 4 s □ 3 s