Sistema de CEP e Rastreamento de Objetos dos Correios Exercício Computacional I - Sistemas Distribuídos

Rafael Gonçalves de Oliveira Viana¹

¹Sistemas de Informação – Universidade Federal do Mato Grosso do Sul (UFMS) Caixa Postal 79400-000 – Coxim – MS – Brazil

rafael.viana@aluno.ufms.br

Resumo. Este relatório descreve como funciona um WebService assim como sua arquitetura, e relata como foi implementado um sistema cliente e um sistema servidor com interface gráfica para busca de CEP e rastreamento de encomendas dos Correios, utilizando Angular 2 e Nodejs.

1. Introdução

2. Arquitetura de um WebServece

Para poder identificar qual arquitetura que um *WebService* deve possuir devemos examinar os pepéis individuais de cada ator no *WebService* e examinar a pilha emergente de protocolo que o *WebService* pretende utiliza. O mesmo pode ser publicado na intranet ou na Internet, provendo três possiveis formatos de serviços: Provedor de Serviço, Solicitante de Serviço e o Registro de Serviço.

2.0.1. Provedor de serviço

Este é o fornecedor do serviço web. O provedor de serviços implementa o serviço e disponibiliza-o na Internet ou intranet.

2.0.2. Solicitante de Serviço

Este é um consumidor do serviço web. O solicitante utiliza um serviço da Web existente abrindo uma conexão de rede e enviando uma solicitação XML.

2.0.3. Registro de serviço

Este é um diretório de serviços logicamente centralizado. O registro fornece um lugar central onde os desenvolvedores podem publicar novos serviços ou encontrar os existentes. Ele serve como centro de compensação centralizado para empresas e seus serviços.

2.1. Pilha de protocolo de serviço da Web

Uma segunda opção para identificar qual arquitetura o *WebService* deve utiliza é examinar a pilha emergente de protocolo que pretende utilizar. Cada dia existe mais tipos de protocolos porém existem 4 tipo que se destacam: Serviço de Transporte - "FTP", Mensagens "XML", Descrição de Serviço "WSDL"e Descoberta de Serviço "UDDI"

2.1.1. Serviço de transporte

Esta camada é responsável pelo transporte de mensagens entre aplicativos. Atualmente, esta camada inclui o protocolo de transporte de hipertexto (HTTP), protocolo de transferência de correio simples (SMTP), protocolo de transferência de arquivos (FTP) e protocolos mais recentes, como o protocolo de intercâmbio extensível de blocos (BEEP).

2.1.2. Mensagens XML

Esta camada é responsável por codificar mensagens em um formato XML comum para que as mensagens possam ser entendidas em cada uma das extremidades. Atualmente, esta camada inclui XML-RPC e SOAP.

2.1.3. Descrição do Serviço

Esta camada é responsável por descrever a interface pública para um serviço web específico. Atualmente, a descrição do serviço é tratada através do Web Service Description Language (WSDL).

2.1.4. Descoberta do serviço

Esta camada é responsável por centralizar os serviços em um registro comum e fornecer funcionalidades fáceis de publicação / pesquisa. Atualmente, a descoberta do serviço é tratada através de Descrição Universal, Descoberta e Integração (UDDI).

2.2. Serviço de Transporte

A parte inferior da pilha de protocolos do serviço web é o transporte de serviços. Essa camada é responsável por transportar mensagens XML entre dois computadores.

2.2.1. Hyper Text Transfer Protocol (HTTP)

Atualmente, o HTTP é a opção mais popular para o transporte de serviços. O HTTP é simples, estável e amplamente implantado. Além disso, a maioria dos firewalls permitem o tráfego HTTP. Isso permite que mensagens XML-RPC ou SOAP se mostrem como mensagens HTTP. Isso é bom se você quiser integrar aplicativos remotos, mas eleva uma série de preocupações de segurança.

2.2.2. Bloqueia o protocolo de troca extensível (BEEP)

Esta é uma alternativa promissora para o HTTP. O BEEP é uma nova estrutura da Task Force de Engenharia da Internet (IETF) para a construção de novos protocolos. O BEEP está em camadas diretamente no TCP e inclui uma série de recursos internos, incluindo um protocolo inicial de handshake, autenticação, segurança e tratamento de erros. Usando

BEEP, pode-se criar novos protocolos para uma variedade de aplicações, incluindo mensagens instantâneas, transferência de arquivos, distribuição de conteúdo e gerenciamento de rede.

O SOAP não está vinculado a nenhum protocolo de transporte específico. Na verdade, você pode usar SOAP via HTTP, SMTP ou FTP. Uma idéia promissora é, portanto, usar SOAP sobre BEEP.

3. Componentes de um WebServece

Ao longo dos últimos anos, três tecnologias primárias emergiram como padrões mundiais que constituem o núcleo da tecnologia de serviços da Web de hoje. Essas tecnologias são demostradas abaixo.

3.1. XML-RPC

Este é o protocolo XML mais simples para trocar informações entre computadores.

- 1. XML-RPC é um protocolo simples que usa mensagens XML para executar RPCs.
- 2. Os pedidos são codificados em XML e enviados via HTTP POST.
- 3. As respostas XML são incorporadas no corpo da resposta HTTP.
- 4. O XML-RPC é independente da plataforma.
- 5. O XML-RPC permite que diversas aplicações se comuniquem.
- 6. Um cliente Java pode falar XML-RPC para um servidor Perl.
- 7. XML-RPC é a maneira mais fácil de começar com os serviços da Web.

3.2. WSDL

O WSDL é um idioma baseado em XML para descrever os serviços da Web e como acessá-los.

- 1. WSDL significa Web Services Description Language.
- 2. O WSDL foi desenvolvido conjuntamente pela Microsoft e pela IBM.
- 3. WSDL é um protocolo baseado em XML para troca de informações em ambientes descentralizados e distribuídos.
- 4. WSDL é o formato padrão para descrever um serviço web.
- 5. A definição WSDL descreve como acessar um serviço da Web e quais as operações que ele executará.
- 6. O WSDL é um idioma para descrever como se relacionar com serviços baseados em XML.
- 7. WSDL é parte integrante do UDDI, um registro de negócios mundial baseado em XML.
- 8. WSDL é o idioma que UDDI usa.
- 9. WSDL é pronunciado como "Wiz-Dull" e explicado como 'WSD-L

3.3. SOAP

O SOAP é um protocolo baseado em XML para trocar informações entre computadores.

- 1. O SOAP é um protocolo de comunicação.
- 2. O SOAP é para comunicação entre aplicativos.
- 3. O SOAP é um formato para enviar mensagens.

- 4. O SOAP é projetado para se comunicar via Internet.
- 5. O SOAP é independente da plataforma.
- 6. O SOAP é independente da linguagem.
- 7. O SOAP é simples e extensível.
- 8. O SOAP permite que você percorra os firewalls.
- 9. O SOAP será desenvolvido como um padrão W3C.

3.4. Exemplo Ilustrativo

Figura 1. Legenda

- 4. Metodologia
- 4.1. Tecnologias utilizadas
- 4.2. Front-End
- 4.3. Back-end
- 4.4. Hospedagem
- 5. Conclusão