HERA Diffractive Structure Function data and Parton Distributions

Paul Newman (Birmingham)

Frank-Peter Schilling (CERN)

HERA-LHC Workshop Final Meeting DESY, March 2005

- Comparison of H1 and ZEUS diffractive DIS data
- NLO QCD fit to ZEUS-Mx data

Diffractive Cross section and Structure Functions

$$x_{I\!P} = \xi = \frac{Q^2 + M_X^2}{Q^2 + W^2} = x_{I\!P/p}$$
 (momentum fraction of colour singlet exchange)

$$\beta = \frac{Q^2}{Q^2 + M_X^2} = x_{q/I\!\!P}$$
 (fraction of exchange momentum of q coupling to γ^* , $x = x_{I\!\!P}\beta$)

$$t = (p - p')^2$$

(4-momentum transfer squared)

Diffractive reduced cross section σ_r^D :

$$\frac{d^4\sigma}{dx_{I\!\!P}\ dt\ d\beta\ dQ^2} = \frac{4\pi\alpha^2}{\beta Q^4} \left(1 - y + \frac{y^2}{2}\right) \sigma_r^{D(4)}(x_{I\!\!P}, t, \beta, Q^2)$$

Structure functions F_2^D and F_L^D :

$$\sigma_r^{D(4)} = F_2^{D(4)} - \frac{y^2}{2(1-y+y^2/2)} F_L^{D(4)}$$

Integrated over t: $F_2^{D(3)} = \int dt \, F_2^{D(4)}$

– Longitudinal
$$F_L^D$$
: affects σ_r^D at high y – If $F_L^D=0$: $\sigma_r^D=F_2^D$

$$[\gamma \text{ inelasticity } y = Q^2/sx]$$

Recent Diffractive DIS Data

ZEUS Data:

• "Study of Deep Inelastic Inclusive and Diffractive Scattering with the ZEUS Forward Plug Calorimeter" (Mx method)

DESY-05-011, accepted by Nucl. Phys. B

$$2.4 < Q^2 < 39 \,\text{GeV}^2$$
 (98-99)

• "Dissociation of virtual photons in events with a leading proton at HERA" (Leading Proton) Eur. Phys. J C38 (2004) 43 $2.7 < Q^2 < 55 \text{ GeV}^2$ (97)

H1 Data:

• "Measurement of semi-inclusive diffractive deep-inelastic scattering with a leading proton at HERA" (Leading Proton)

Paper 6-984 subm. to ICHEP 2002, H1prelim-01-112

$$2.6 < Q^2 < 20 \,\text{GeV}^2$$
 (99-00)

- "Measurement of the Diffractive DIS Cross Section at low Q^2 " (LRG method) Paper 981 subm. to ICHEP 2002, H1prelim-02-112 $1.5 < Q^2 < 12~{\rm GeV}^2 \ (99)$
- "Measurement and NLO DGLAP QCD Interpretation of Diffractive Deep-Inelastic Scattering at HERA" (LRG method)

Paper 980 subm. to ICHEP 2002, H1prelim-02-012

$$6.5 < Q^2 < 120 \,\mathrm{GeV}^2$$
 (97)

• "Measurement of the Inclusive Diffractive Cross Section $\sigma_r^D(3)$ at high Q^2 " (LRG method) Paper 5-090 subm. to EPS 2003, H1prelim-03-011 $200 < Q^2 < 1600 \text{ GeV}^2$ (99-00)

H1 Diffractive DIS Data: Kinematic plane

H1 Data: control plots at low Q^2

 M_X dependence in different Q^2 intervals ...

Data well under control, also at low Q^2

Comparisons H1 vs ZEUS Data: Prerequisites

(1) Datasets correspond to different requirements on outgoing proton system (p or Y):

- H1 rapidity gap: $M_Y < 1.6 \text{ GeV}$; ZEUS Mx: $M_Y < 2.3 \text{ GeV}$
- H1/ZEUS Leading proton data: $M_Y = m_p$
- All data correspond to $|t| < 1.0 \text{ GeV}^2$
- \Rightarrow For the purpose of direct comparisons, leading proton and ZEUS-Mx data have been scaled to $M_Y < 1.6~{\rm GeV}$

Scaling factors:

ZEUS LPS and H1 FPS: 1.1 ZEUS Mx: 1.1 * 0.7 = 0.77

(2) Data points are measured at different values of Q^2 , β , $x_{I\!\!P}$:

- ⇒ H1-FPS and ZEUS data have been transported to the central values of the H1 LRG measurements
- Both the H1 2002 fit and the old 'fit 2' have been used
- Points are only shown if the correction applied is
 - (a) less than 25% different between the two fits
 - (b) less than 50% in total

Corrections applied to ZEUS Mx data

Points in red have been excluded!

Comparison of ZEUS Mx with H1 LRG Data

Comparison of Leading Proton Data (here for $M_Y = m_p$)

Comparison of Leading Proton with H1 LRG data (now for $M_Y < 1.6$)

HERA Diffractive Structure Function • H1 (LRG, prel.) ZEUS (Mx) H1 (FPS, prel.) Q^2 [GeV²] ▼ ZEÙS (LPS) $\mathbf{X_{IP}} \ \sigma_{\mathbf{r}}^{\mathrm{D(3)}}$ β**=0.9** β**=0.1** β**=0.2** β**=0.4** $\beta = 0.01$ $\beta = 0.04$ β **=0.65** 2.5 0.05 1 3.5 0.05 5 0.05 6.5 0.05 8.5 0.05 **12** 0.05 15 0.05 20 0.05 **25** 0.05 35 0.05 **60** 0.05 \mathbf{X}_{IP}

Comparison of all data $(M_Y < 1.6)$

(only Q^2 bins with at least two datasets shown)

H1 and ZEUS Pomeron Intercepts

H1 Diffractive Effective $\alpha_{IP}(0)$

Reminder of H1 2002 NLO DGLAP QCD Fit

QCD Fit Technique:

- factorize $f(x_{I\!\!P})f(z,Q^2)$
- Singlet Σ and gluon g parameterized at $Q_0^2=3~{\rm GeV^2}$
- NLO DGLAP evolution
- Fit data for $Q^2 > 6.5 \,\mathrm{GeV}^2, M_X > 2 \,\mathrm{GeV}$

PDF's of diffractive exchange:

- Extending to large fractional momenta z
- Gluon dominated
- \bullet Σ well constrained

$$\chi^2/ndf = 308/306$$

 $\alpha_{I\!P}(0) = 1.173 \text{ (Reggefit)}$

NB: $\lambda_{QCD} = 200 \pm 30 \text{ MeV}$ variation included in outer error band

NLO QCD fit to ZEUS Mx data

Strategy:

- Make QCD fit in a very similar way as for H1 fit 2002, so that pdf's can be directly compared
- Use ZEUS Mx data in original binning, scaled to $M_Y < 1.6~{
 m GeV}$

The 'NLO fit to ZEUS data':

- Fit Mx data for $Q^2 > 4 \text{ GeV}^2$ (H1: 6.5)
- The total (stat.+syst. added) error of the data is considered
- No meson component (includung one does not improve the fit)
- Pomeron intercept fitted at the same time as pdf's
- everything else the same as for H1 2002 fit

$$\chi^2/ndf = 90/131$$

 $\alpha_{IP}(0) = 1.132 \pm 0.006(\text{exp.})$

A very good fit is obtained with a common Intercept!

NLO QCD fit to ZEUS Mx data ZEUS (Mx) M_v<2 GeV Q^2 NLO fit to ZEUS (Mx) σ_rD(3) [GeV²] β**=0.6522** β**=0.2308** β**=0.0218** β=0.0698 β =0.003 $\beta = 0.0067$ 0.05 2.7 8000 β**=0.7353** β**=0.3077** β **=0.0044** β =0.0099 β**=0.1** β **=0.032** 0.05 β**=0.0472** β**=0.1429 β=0.8065** β =0.0066 β **=0.0148** $\beta = 0.4$ 6 β =0.4706 β**=0.8475** β =0.0088 β =0.0196 β =0.062 β **=0.1818** 0.05 8 β=0.9067 β =0.0153 β **=0.0338** β **=0.1037 β=0.28** β **=0.6087** 0.05 14 β **=0.0291** β **=0.0632** β**=0.1824** β**=0.4286** β**=0.75** β **=0.9494 27** β**=0.8593** β**=0.3125** β=0.6044 β**=0.9745** β =0.1209 0.05 **55** X_{IP}

NLO QCD fit to ZEUS Mx data

Data for $M_X < 2 \text{ GeV}$ not fitted (as for H1 fit)

Fit describes data well

NLO fit to ZEUS Mx data

NLO QCD fits to H1 and ZEUS data

- Singlet similar at low Q^2 , evolving differently to higher Q^2 due to coupling to gluon
- Gluon factor ~ 2 smaller than H1 gluon

H1 and ZEUS data and fits

- Differences in data in high β region not included in fits
- Smaller positive scaling violations in ZEUS data, leading to smaller gluon

H1 and ZEUS data and fits: looking closer

H1 and ZEUS data and fits: looking closer

H1 data vs ZEUS fit: Q^2 , β dependences

Conclusions

Comparisons between recent diffractive DIS data

- ullet Reasonable agreement between all F_2^D data sets
- From detailed comparison between H1-LRG and ZEUS-MX, differences observed at:
 - (a) low M_X (high β)
 - (b) Q^2 dependences

NLO QCD fit to ZEUS-Mx data:

- Good fit, $\alpha_{I\!\!P}(0) \sim 1.13$
- Significant difference between diffractive gluon densities from H1 and ZEUS