Formale Sprachen und Automaten Prof. Dr. Uwe Nestmann - 22. Februar 2018

Schriftlicher Test

Studierendenidentifikation:

NACHNAME	
VORNAME	
Matrikelnummer	
STUDIENGANG	□ Informatik Bachelor, □

Aufgabenübersicht:

AUFGABE	SEITE	Punkte	THEMENBEREICH
1	2	19	MODELLE REGULÄRER SPRACHEN
2	3	16	Untermengen-Konstruktion
3	4	22	MINIMIERUNG EINES DFA
4	5	17	Grenzen Regulärer Sprachen
5	6	11	Modelle Kontextfreier Sprachen I
6	7	15	Modelle Kontextfreier Sprachen II

Zwei Punkte in diesem Test entsprechen einem Portfoliopunkt.

Korrektur:

AUFGABE	1	2	3	4	5	6	\sum
PUNKTE	19	16	22	17	11	15	100
ERREICHT							
Korrektor							
EINSICHT							

Aufgabe 1: Modelle Regulärer Sprachen

(19 Punkte)

Gegeben seien das Alphabet $\Sigma \triangleq \{a, b\},\$ die reguläre Sprache $A_1 \triangleq \{b^n x b a^m \mid n \in \mathbb{N} \land m \in \mathbb{N}^+ \land x \in \{\lambda, a\}\},\$ die reguläre Grammatik $G_2 \triangleq (\{S, T, U\}, \Sigma, P_2, S)$ und der DFA $M_3 \triangleq (\{q_0, q_1, q_2, q_3\}, \Sigma, \delta_3, q_0, \{q_1\})$ mit: a

a. (**, 4 Punkte) Gib einen NFA M_1 mit $L(M_1) = A_1$ an.

b. (**, 4 Punkte) Gib eine Typ-3 Grammatik G_1 mit $L(G_1) = A_1$ an.

c. (*, 3 Punkte) Gib die Ableitung des Wortes ababa in G_2 an.

d. (**, 3 Punkte) $Gib L(G_2)$ an, ohne auf Automaten oder Grammatiken zu verweisen.

e. (**, 3 Punkte) Gib die Ableitung des Wortes bbaba in M_3 an.

f. (***, 2 Punkte) $Gib L(M_3)$ an, ohne auf Automaten oder Grammatiken zu verweisen.

Aufgabe 2: Untermengen-Konstruktion

(16 Punkte)

Gegeben sei der NFA $M \triangleq (\{\ q_0,\ q_1,\ q_2,\ q_3,\ q_4,\ q_5\ \},\ \Sigma,\ \Delta,\ \{\ q_0,\ q_3\ \},\ \{\ q_2\ \})$ mit $\Sigma \stackrel{\triangle}{=} \{ a, b \} \text{ und } \Delta$:

a. (**, 13 Punkte) Konstruiere nur mit Hilfe der Untermengen-Konstruktion den DFA M^\prime zum NFA M. Gib die bei der Untermengen-Konstruktion entstehende Tabelle sowie das Tupel des entstehenden Automaten M' an.

Hinweis: Es ist nicht nötig die Übergangsfunktion δ' von M' (graphisch) anzugeben.

b. (***, 3 Punkte) Gib L(M) an, ohne auf Automaten oder Grammatiken zu verweisen.

Aufgabe 3: Minimierung eines DFA

(22 Punkte)

Gegeben sei der DFA $M \triangleq (\{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7\}, \Sigma, \delta, q_0, \{q_5\})$ mit $\Sigma \triangleq \{a, b\}$ und δ :

- a. (*, 1 Punkt) Gib an: Welche Zustände sind nicht erreichbar?
- b. (**, 9 Punkte) *Gib an:* Fülle die folgende Tabelle entsprechend des Table-Filling-Algorithmus zum Minimieren von DFAs mit Kreuzen (x) und Kreisen (o) aus. *Hinweis: Bitte streiche zunächst alle Zeilen und Spalten für nicht erreichbare Zustände, falls es solche Zustände in M gibt. Die zweite Tabelle ist ein Ersatz für Verschreiber.*

c. (**, 4 Punkte) Die Minimierung unterteilt Q in Äquivalenzklassen. Gib alle Äquivalenzklassen an, die sich aus der Tabelle ergeben.

Hinweis: Die Namen der Klassen in der Form $[q_0]$ genügen hier nicht. Es müssen auch die zugehörigen Mengen, also so etwas wie $[q_0] = \{ \dots \}$, angegeben werden.

- d. (**, 5 Punkte) *Gib* den minimierten DFA *M'* an.
- e. (***, 3 Punkte) Gib L(M) an, ohne auf Automaten oder Grammatiken zu verweisen.

Aufgabe 4: Grenzen Regulärer Sprachen

(17 Punkte)

a. **(***, 11 Punkte)** Beweise nur mit Hilfe des Pumping Lemma, dass die Sprache $A_1 \triangleq \left\{ \ awc^l d^m \mid l \in \mathbb{N} \land m \in \mathbb{N}^+ \land w \in \left\{ \ a, \ b \ \right\}^* \land |w|_a = l + m \ \right\} \ \text{mit } \Sigma \triangleq \left\{ \ a, \ b, \ c, \ d \ \right\}$ nicht regulär ist.

b. **(***, 6 Punkte)** Gib alle Myhill-Nerode Äquivalenzklassen für die Sprache $A_2 \triangleq \{ xcy \mid x \in \{ a, b \}^* \land y \in \{ b, c \}^* \land |x|_a > |y|_c \}$ über $\Sigma \triangleq \{ a, b, c \}$ an. Hinweis: Die Namen der Klassen in der Form [0] genügen hier nicht. Es müssen auch die zugehörigen Mengen, also so etwas wie $[0] = \{ \dots \}$ oder $[0] = L(\dots)$, angegeben werden.

Matrikelnummer:	Name:

Aufgabe 5: Modelle Kontextfreier Sprachen I

(11 Punkte)

Gegeben seien das Alphabet $\Sigma \triangleq \{\ a,\ b,\ c\ \}$ und die kontextfreie Sprache:

$$A \triangleq \{ wc^n \mid n \in \mathbb{N} \land w \in \{ a, b \}^* \land |w|_b = n \land |w|_a = 1 \}$$

a. (**, 5 Punkte) Gib eine Typ-2 Grammatik G mit L(G)=A an.

b. (**, 6 Punkte) Gib einen PDA M mit $\mathcal{L}_{\mathrm{End}}(M) = \mathcal{L}_{\mathrm{Kel}}(M) = A$ an.

Aufgabe 6: Modelle Kontextfreier Sprachen II

(15 Punkte)

Gegeben seien das Alphabet $\Sigma \triangleq \{a, b\}$ und der PDA $M \triangleq (\{q_0, q_1, q_2\}, \Sigma, \{\Box, 0, 1, *\}, \Box, \Delta, q_0, \{q_2\})$ mit Δ :

- a. (*, 3.5 Punkte) Gib eine Ableitung von ccaa in M an, die zeigt, dass $ccaa \in L_{Kel}(M)$.
- b. (***, 3 Punkte) $Gib \ L_{Kel}(M)$ an, ohne auf Automaten oder Grammatiken zu verweisen.
- c. (*, 2.5 Punkte) Gib eine Ableitung von cab in M an, die zeigt, dass $cab \in L_{End}(M)$.
- d. (***, 2 Punkte) $\mathit{Gib}\ \mathrm{L}_{\mathrm{End}}(M)$ an, ohne auf Automaten oder Grammatiken zu verweisen.
- e. **(**, 4 Punkte)** Beweise nur mit Hilfe von Abschlusseigenschaften, dass die Sprache $A \triangleq \{ a^m b^n, b^n a^m \mid n, m \in \mathbb{N} \land n+1=m \}$ nicht regulär ist. Hinweis: Es darf ohne Beweis benutzt werden, dass L(e) für einen regulären Ausdruck e regulär und $B \triangleq \{ b^n a^m \mid n, m \in \mathbb{N} \land n < m \}$ nicht regulär aber kontextfrei ist. Sprachen L(e) für reguläre Ausdrücke e sowie Operationen auf Mengen müssen nicht berechnet oder umgeformt werden.

Matrikelnummer:	Name:
Auf dieser Seite löse ich einen T	eil der Aufgabe <u> </u> :
Teilaufgabe:	_