Healthcare Dodaset (pumy)

Age	BP	1-les Dideay
25	120	0
45	[40	1
60	135	1 /2 100
30	1 115 97	RN JONES STOR - EN WALL
70	150 Hours	and burning more known

Question (a) Using the dataset simulate a backpropagation et a neural network, update wy we, bi b) Predict whether a patient with age=65, and BP = 137 has disease on not. Hint's You can use single Newon perception. (c) Validate whether backpropagation is optimizing weights and biases. to the thought in the

ANDRUM DE LANGE GOVERNO

Single Neuron perception

$$\frac{\text{TL}}{\text{(N1)}} \xrightarrow{\omega_1} \frac{\text{HL}}{\text{(N2)}} \xrightarrow{\omega_2} \frac{\text{D}}{\text{(N2)}} \frac{\text{D}}{\text{(N2)}} \frac{\text{D}}{\text{(N3)}} \frac{\text{D}}{\text{(N2)}} \frac{\text{D}}{\text{(N3)}} \frac{\text{D}}{\text{(N2)}} \frac{\text{D}}{\text{(N3)}} \frac{\text{D}}{\text{D}} \frac{\text{D}}{\text{(N3)}} \frac{\text{D}}{\text{(N3)}} \frac{\text{D}}{\text{D}} \frac{\text{D}}{\text{(N3)}} \frac{\text{D}}{\text{D}} \frac{\text{D}} \frac{\text{D}}{\text{D}} \frac{\text{D}}{\text{D}} \frac{\text{D}}{\text{D}} \frac{\text{D}} \frac{\text{D}}{\text{D}} \frac{\text{D}}{\text{D}} \frac{\text{D$$

How, no = Age and no = BP [Input teatures]

Binary crom entropy Loss Function,

Signaid Function,

$$\sigma = \frac{1}{1 + e^{-2}}$$

*IL = Input Layer

* HL = Hidden Later

* OL = Output Layor

* O (nous circle) are newcons.

Forward Propagation

For sample 1 (n=25, 2=120)

let, w1 = 0.025, w2 = 0.035, b = 0.015

Z1=0.025×25+0.035×120+0.015 = 4.84

 $\alpha = O(21) = \frac{1}{1 + e^{-4.84}} = 0.98$

L1=- 41 log(a1) - (1-81) log (1-a1)

 $=-0 \times 109(0.08) - (1-0) 109(1-0.98)$

= 1'69

For sample 2 (n=45, n=140)

72=0.025×45+0.035×140+0.015=6.04

 $a_2 = \sigma(2_2) = \frac{1}{1 + e^{-1.04}} = 0.99$

L2 = - J2 Log(a2) - (J-J2) Log (1-a2)

=-1× log(0.00) - (1-1) log(1-0.00)

= +0.004

Pack Proposodios

For sample 3 (
$$\lambda_1 = 60$$
, $\lambda_2 = 135$)

 $23 = 0.025 \times 60 + 0.035 \times 135 + 0.015 = 6.24$
 $0.3 = \frac{1}{1 + e^{-6.24}} = 0.99$
 $1.3 = -3.109(0.3) - (1-3.3) \cdot 1.09(1-0.3)$
 $1.3 = -3.109(0.3) - (1-3.3) \cdot 1.09(1-0.3)$
 $1.3 = -3.109(0.3) - (1-3.3) \cdot 1.09(1-0.3)$
 $1.3 = -3.109(0.35 \times 1.15 + 0.015 = 4.79)$
 $1.4 = -3.109(\frac{1}{1 + e^{-4.79}}) - (1-3.1) \cdot 1.09(1-\frac{1}{1 + e^{-4.79}})$
 $1.4 = -3.109(0.38) - (1-0.38)$
 1.69
 1.69
 1.69
 1.69
 1.69
 1.69
 1.69
 1.69
 1.69
 1.69
 1.69
 1.69

2 1000 at 2000 at 2000

was cold to subject to the subject of the

Back Propagation

we need to update we and b. We can use the bollowing tormula:

$$\frac{dL}{d\omega} = \frac{\sum_{i=1}^{n} \left(\frac{1}{1+e^{-2i}} - y_i\right) \times n_i}{n} = \frac{\sum_{i=1}^{n} (\alpha_i - y_i) \lambda_i}{n}$$

$$\frac{1}{dl} = \frac{1}{1+e^{-2i}} - \frac{1}{2i}$$

$$= \frac{1}{2} (ai - 3i)$$

* dL: Derivative of the lon L with respect to the neights.

+ dL. Derivative ob the lan L weith respect to bias.

* In backpropagation, we optimize weight, and biases using Gradient Descent.

$$\frac{dl}{dw} = \frac{(0.98-0)\times25 + (0.35-1)\times45 + (0.99-1)\times60 + (0.98-0)}{4} = 13.21$$

$$= 0.025 - 0.001\times13.21$$

$$= 0.025 - 0.001\times13.21$$

$$= 0.011$$

$$\frac{dl}{dw} = \frac{(0.98-0)|20 + (0.99-1)|40 + (0.99-1)|35 + (0.98-0)|115}{4}$$

$$= \frac{56.88}{2}$$

$$= 0.035 - 0.001\times56.88$$

$$= 0.035 - 0.001\times56.88$$

$$= 0.092-0) + (0.99-1) + (0.99-1) + (0.98-0)$$

$$\frac{dl}{dw} = \frac{(0.98-0)|20 + (0.99-1)|4(0.99-1)|4(0.98-0)|}{4} = 0.015\times0.001\times0.485$$

$$= 0.014$$
Updald 6 $0.91 = 0.011$, $0.92 = -0.021$, $0.91 = 0.014$

$$Z_{\pm} = 65 \times 0.011 + 137 \times (-0.021) + 0.014$$

= -2.148

$$a_{1} = \frac{1}{1+e^{2.148}} = 0.10$$

Since, at 20.5, so the model will predict 0 (no disease). (tus)

CONTROL DECEMBER 1 TO THE POST OF THE POST

अधिक व्यक्ति ()

Updated W1=0.011, W2=-0.021, b=0.019

Por sample 1 (2,=25, 2=120)

71=0.011×25+(-0.021)×120+0.014 = -2.231

a1 = 0.09

L1= -0. log(0.09) - (1-0) log(1-0.09) = 0.04

For sample 2 (2=45, 2= 140)

22=0.011 × 45 + (-0.021) × 140 + 0.019 = -2.431

 $L_2 = -3 \times \log(0.08) - (1-1) \log(1-0.08) = 1.09$

Similarly L3= 1.09, L4=0.04

0.04+1.09+1.09+0.04 = 0.565

Previous Loss = 0.847 > 0.565. Hence,

the backpropagation is working.