SECTION A

Answer ALL questions in this section (40 marks in total)

A1. Let C be the linear code over the field $\mathbb{F}_5 = \{0, 1, 2, 3, 4\}$ generated by the matrix

$$G = \begin{bmatrix} 1 & 0 & 2 & 3 & 0 & 1 \\ 0 & 1 & 3 & 1 & 0 & 2 \\ 2 & 0 & 4 & 0 & 0 & 4 \end{bmatrix}.$$

For each of the statements about the code C, given below, determine if the statement is true and briefly justify your answer. Marks will not be given for true/false answers without any justification.

- (a) $\dim C = 6$.
- (b) C is a code of weight 4.
- (c) $d(C^{\perp}) = 2$.
- (d) C is a cyclic code.
- (e) $\sum_{\underline{\mathbf{c}} \in C} w(\underline{\mathbf{c}}) = 600.$

[10 marks]

- **A2.** Let C be the binary linear code with parity check matrix $H = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}$. (a) Construct a table of syndromes for C.
 - (b) Use your table of syndromes to decode the received vectors 11110 and 10011.

From now on assume that a codevector \underline{c} of C is sent via $\mathsf{BSC}(p)$, the binary symmetric channel with bit error rate p.

- (c) Use your table of syndromes to determine, as a function of p, the probability $P_{\text{corr}}(C)$ that the received vector is decoded back to \underline{c} .
- (d) Let $P_{\mathsf{undetect}}(C)$ be the probability of an undetected error occurring when \underline{c} is transmitted. Without working out $P_{\mathsf{undetect}}(C)$, give a reason why $P_{\mathsf{undetect}}(C) \leq 1 P_{\mathsf{corr}}(C)$ for all p.

[15 marks]

- **A3.** This question is about the code $C = \{(c_1, c_2, \dots, c_{12}) \in \mathbb{F}_{13}^{12} : \sum_{i=1}^{12} ic_i = 0 \text{ in } \mathbb{F}_{13}\}$. You may assume that C is a subspace of the vector space \mathbb{F}_{13}^{12} , hence a linear code over the field $\mathbb{F}_{13} = \{0, 1, 2, \dots, 12\}$.
 - (a) What is the dimension of C? Justify your answer briefly.
 - (b) Prove that the code ${\cal C}$ detects a single symbol error.

Given a vector $\underline{\mathbf{v}} = (v_1, v_2, \dots, v_{12})$, denote by $\underline{\mathbf{v}}_{\mathsf{backwards}}$ the vector $(v_{12}, \dots, v_2, v_1)$.

- (c) Show that if $\underline{\mathbf{v}} \in C$, then $\underline{\mathbf{v}}_{\mathsf{backwards}} \in C$.
- (d) Find the number of codevectors $\underline{\mathrm{v}}$ of C such that $\underline{\mathrm{v}} \neq \underline{\mathrm{v}}_{\mathsf{backwards}}$.

[15 marks]