Tautologikus következmény

Step 1: alakítsuk egyszerűbb alakra a formulá(ka)t

Step 2.1: HA kijött hogy mindig igaz akkor all g

Step 2.2: HA nem jön ki hogy mindig igaz ellenőrizzük le ítélettáblával is

x	y	$\neg x$	$x \wedge y$	$x \lor y$	$x \rightarrow y$
i	i	h	i	i	i
i	h	h	h	i	h
h	i	i	h	i	i
h	h	i	h	h	i

Step 3: a megoldásnál |=0

DNF = diszjunktív normál forma ÉS KNF = konjunktív normál forma

!! DNF VAGY (v)

!! KNF ÉS (^)

Step 1: alakítsuk egyszerűbb alakra a formulát

Step 2: hozzuk ki az egyszerűbb alakból hogy v VAGY ^ legyen az elemek között

 $(A \lor B) \land C \sim_0 (A \land C) \lor (B \land C)$ valamint $(A \land B) \lor C \sim_0 (A \lor C) \land (B \lor C)$,

Rezolució

Step 1: nevezzük el K1..n a klózokat

Step 2: párostsuk össze a klózoka: Kn+1 = res(Kx, Ky)

Step 3: addig párosítgatunk amíg minden kiüti egymást

!! lehet újra felhasználni

!! lehet 2 tagadásos klózt is össze párosítani

!! nem lehet olyan klózokat összepárosítani ahol 2 is kiesik

Elsődrendű logika

Step 1: ha nincsenek megadva az igazság halmazok, írjuk fel őket

Step 2: helyettesítsük be a megadott értékeket

Step 3: vonjunk le következtetést

Step 4: repeat if needed

!! LÉTEZIK = elég egy igaz

!! MINDEN = mindennek igaznak kell lennie

Állítás IGAZ/NEM IGAZ

Step 0: keressünk ellenállítást

Step 1: legyen $U = \{0,1\}$, $R = \{P\}$, ar(P) = 1, $PI = \{(0)\}$ és legyen minden elem = P(x)

Step 2: itélettáblás levezetés a formuláknak

Step 3: keresni egy esetet amikor a két formulának különböző az eredménye

Step 4: írjuk fel: ererdeti formulát IK val és mellé az átalakítottat mind 2-re