Confidence Intervals - 1 Mean 1 Proportion

David Armstrong

UCI

Confidence Intervals

- Provides the interval of likely values for the population parameter
- ullet We are ____% confident that the **population parameter** is captured within the interval.
- If we took m random samples from a population and created ____% confidence intervals for each of those m samples, then if m is large, ____% of those confidence intervals would contain the **population parameter**.
- In order to create a confidence interval for a population parameter, we use two things

We use the <u>sample statistic</u> as the best estimate of the population parameter. We also need a <u>measure of spread</u>.

• The sample statistic **ESTIMATES** the **population parameter**.

Population Population estimate estimate sample x P

General Formula for a Confidence Interval

for a Parameter of Interest

rest | Point Estimate margin error | lawer bound (week bund) upper bound

Point Estimate \pm Margin of Error

$$(PE - ME, PE + ME)$$

• Point Estimate

a single point that estimates the parameter sample statistic the midpoint of your confidence interval determines the location of the interval

• Margin of Error

an estimate of the variability of the population parameter distance from the midpoint of the interval to the edge critical value * spread determines the precision of the interval increasing the ME decreases precision of the interval

• critical value

accounts for the level of confidence $\leftarrow -94\%$ increasing confidence increases the width of the interval (decreases precision)

spread

accounts for the variability

increasing the sample size decreases the width of the interval (increases precision)

Specific Formulas for Confidence Intervals

Parameter Description	Confidence Interval	Parameter Estimated	poin estimate	±	margin of
1 population proportion 1 population mean $(\sigma \text{ unknown})$	$\hat{p} \pm Z \sqrt{\frac{\hat{p}\hat{q}}{n}}$ $\bar{X} \pm t_{n-1} \frac{s}{\sqrt{n}}$	μ	$\hat{P} \pm Z^* SE$ $\hat{\chi} \pm t^*_{n-1} (SE)$		error

Assumptions for Confidence Intervals

1 population proportion

- $n\hat{p} \ge 10$ and $n\hat{q} \ge 10$
- \bullet Sample size is less than 10% of the population size; if we are sampling is w/out replacement
- The sample can be regarded as a <u>simple random sample</u> from the population of interest.
- The data values are assumed to be <u>independent</u> of each other.

1 population mean

CLT Bell shaped

- We need to have a large enough sample size $(n \ge 30)$. For n < 30 with extreme skewness or outliers, you cannot use this method.
- Sample size is less than 10% of the population size; if we are sampling is w/out replacement
- The sample can be regarded as a simple random sample from the population of interest.
- The data values are assumed to be independent of each other.

$$P = ?$$
 $\Lambda = 875 \times = 33 \quad \hat{\rho} = \frac{x}{n} = 0.0606$

Ex: The drug Lipitor is meant to lower cholesterol levels. In a clinical trial of 875 randomly selected patients who received 12 mg doses of Lipitor daily, 53 reported a headache as a side effect.

a. What is the <u>point estimate</u> for the true population proportion of Lipitor users who will experience a headache as a side effect?

b. Verify that the requirements for constructing a confidence interval are satisfied.

Random
$$\vee$$
 $n\hat{p} = 875(0.0606) = 53$ $n\hat{q} = 875(0.9394) = 822$
Independent \vee $53 > 10 \vee$ $822 > 10 \vee$

c. Construct a 90% confidence interval for the population proportion of Lipitor users who will report a headache as a side effect.

$$PE \pm ME = \hat{p} \pm 2^* \sqrt{\frac{\hat{p}\hat{q}}{n}} = 0.0606 \pm (1.6449) \sqrt{\frac{0.0606(0.9394)}{875}}$$
$$= (0.0473, 0.0739)$$

d. Interpret your confidence interval.

who will report a headache as side effect is captured within the interval (D.0473, 0.0739).

$$\theta = \qquad \qquad \Omega = 0$$

$$M = ? \qquad \overline{\chi} = 3.2 \qquad S = 0.78 \rightarrow t$$

Ex: Suppose that a random survey of 10 teenagers found that the average amount of time they spend on the Internet each day is 3.2 hours with a sample standard deviation of 0.78 hours.

a. What assumptions must be made in order for a confidence interval to be valid?

b. What are the point estimate and the standard error of the population average amount of time teenagers spend on the Internet each day?

PE_{$$\bar{\chi}$$} = $\bar{\chi}$ = 3.2 SE _{$\bar{\chi}$} = $\frac{S}{\sqrt{n}}$ = $\frac{0.78}{\sqrt{10}}$ = 0.2467

c. Assuming the necessary conditions are met, calculate a 98% confidence interval for the average amount of time a teenager spends on the Internet each day.

d. Interpret your confidence interval in the context of the problem using a complete sentence.

we are 93% confident the true population mean of the average amount of time a teenager spends on the internet each day is captured within the interval. EX: A study of 10,485 randomly selected 30-39 year old Americans conducted by the Center for Disease Control in 2000 found with 95% confidence that the true proportion $\longrightarrow \rho$ of 30-39 Americans that are overweight is between 0.179 and 0.193.

a. Find the point estimate for the true proportion.

$$PE = \frac{UB + LB}{2} = \frac{0.193 + 0.179}{2} = 0.186$$

b. Find the margin of error.

$$ME = \begin{array}{c} UB - PE = 0.143 - 0.186 \\ PE - LB = 0.186 - 0.176 \\ \hline UB - LB \\ \hline z = 0.143 - 0.174 \\ \hline \end{array}$$

$$M = \sqrt{x} = 11.20$$
 $S = 1.798$ $N = 30$

a. The margin of error for the confidence interval is:

$$ME = t^* \frac{s}{\sqrt{n}} = UB - PE = 11.6304 - 11.20$$

= 0.4304

b. Based on the above confidence interval, determine the critical value used and the confidence level.

7

$$t^* = \frac{ME}{(\frac{s}{\sqrt{n}})} = \frac{0.4304}{(\frac{1.748}{\sqrt{30}})} = 1.3111$$