Full Name: Lee Taylor, ST Number: 190211479

CSC3831 Predictive Analytics Machine Learning House Price Prediction

Introduction

A grid search is used for each model to evaluate an exhaustive set of reasonable hyperparameters to find the optimal model settings for the dataset provided. The results from each grid search are displayed and discussed briefly in this report.

First Model - Linear Regression (LR)

For LR the following hyper-parameters were grid-searched; fit_intercept, copy_x, and n_jobs. The results are as follows:

Fit Intercept	Copy X	N jobs	MSE	R^2
TRUE	TRUE	1	0.37206	0.621966
TRUE	TRUE	2	0.37206	0.621966
TRUE	TRUE	3	0.37206	0.621966
TRUE	TRUE	4	0.37206	0.621966
TRUE	FALSE	-1	0.37206	0.621966
TRUE	FALSE	1	0.372047	0.621979
TRUE	FALSE	2	0.372047	0.621979
TRUE	FALSE	3	0.372047	0.621979
TRUE	FALSE	4	0.372047	0.621979
FALSE	TRUE	-1	0.372046	0.621981
FALSE	TRUE	1	0.372046	0.621981
FALSE	TRUE	2	0.372046	0.621981
FALSE	TRUE	3	0.372046	0.621981
FALSE	TRUE	4	0.372046	0.621981
FALSE	FALSE	-1	0.372046	0.621981
FALSE	FALSE	1	0.372046	0.621981
FALSE	FALSE	2	0.372046	0.621981
FALSE	FALSE	3	0.372046	0.621981
FALSE	FALSE	4	0.372046	0.621981

These results suggest that the choice of hyperparameters has a minimal impact on the model's performance. The MSE scores are relatively close together and the R^2 scores are all above 0.6, indicating that the model is performing relatively well, but there is still room for improvement.

Second Model – Multi-Layer Perceptron (MLP)

For MLP the following hyper-parameters were explored; number of units, activation function, number of layers. 192 results were generated, 9 are shown below.

	The nine best MLP model hyper-parameters and results								
Units Per Layer	Activation Function	Layers	Optimizer	Epochs	Batch Size	MSE	MAE		
128	relu	3	adam	10	64	0.203492	0.30959		
512	relu	2	adam	10	64	0.204488	0.308437		
256	relu	5	adam	10	8	0.204824	0.306975		
512	relu	5	adam	10	32	0.205468	0.317355		
256	relu	2	adam	10	32	0.206546	0.311331		
128	relu	4	adam	10	16	0.206783	0.306865		
256	relu	5	adam	10	16	0.2072	0.312006		
512	relu	2	adam	10	32	0.207466	0.306897		
128	relu	3	adam	10	16	0.207523	0.308899		

The results show increasing units, and layers do not necessarily lead to better performance. A second grid-search to improve upon the above results explored; optimizers, and epochs.

Full Name: Lee Taylor, ST Number: 190211479

Units Per	Activation						
Layer	Function	Layers	Optimizer	Epochs	Batch Size	MSE	MAE
128	relu	3	adam	10	64	0.203516	0.30981
128	relu	3	adam	10	64	0.214913	0.326542
128	relu	3	adam	25	64	0.215211	0.305607
128	relu	3	adamax	25	64	0.215381	0.321018
128	relu	3	adam	50	64	0.218082	0.303142
128	relu	3	adamax	10	64	0.219988	0.327635
128	relu	3	rmsprop	50	64	0.220686	0.304911
128	relu	3	rmsprop	10	64	0.23416	0.334149
128	relu	3	rmsprop	25	64	0.253742	0.348849
128	relu	3	adagrad	50	64	0.257711	0.35942
128	relu	3	adagrad	25	64	0.283529	0.379947
128	relu	3	adagrad	10	64	0.305943	0.395837

Unexpectedly, increasing the epochs and changing the optimizer did not increase performance as shown the MSE increased with the different variations.

Third Model - Random Forest Regressor (RFR)

For RFR the following hyper-parameters were explored; n_estimators, max_depth, min_samples_split, and min_samples_leaf. 20 of the 600 results are shown below.

The ten best RFR model hyper-parameters and results									
N_Estimators	Max Depth	Min Samples Split	Min Samples Leaf	MSE	R^2				
300	None	2	2	0.192447	0.804463				
300	30	2	2	0.192721	0.804184				
100	None	2	2	0.193086	0.803814				
100	50	2	2	0.193178	0.80372				
300	30	5	2	0.19325	0.803647				
300	40	2	2	0.193306	0.803591				
200	50	2	2	0.193644	0.803246				
300	50	5	1	0.193743	0.803146				
300	None	5	2	0.193814	0.803074				
300	50	5	2	0.193816	0.803072				
	The ten	worst RFR model hype	r-parameters and resu	lts					
10	10	2	8	0.244633	0.751439				
10	10	15	4	0.244641	0.751431				
10	10	10	2	0.246019	0.750031				
10	10	5	1	0.24682	0.749217				
10	10	5	8	0.247924	0.748095				
10	10	20	4	0.248179	0.747836				
10	10	20	1	0.249479	0.746516				
10	10	15	2	0.250417	0.745562				
10	10	2	1	0.252138	0.743814				
10	10	10	1	0.252717	0.743225				

These results show that a relatively high number of n_estimators and low amount of min samples for both split and leaf are suitable hyper-parameters to fit an RFR to this dataset. A second grid-search to improve upon the above results explored; ccp_alpha, min_impurity_decrease, oob_score, and warm_start. From the 144 results the top 10 are shown:

Full Name: Lee Taylor, ST Number: 190211479

	Second grid-search: The ten best RFR model hyper-parameters and results									
		Min	Min				Min			
N	Max	Samples	Sample		OOB	Warm	Impurity	CCP		
estimators	Depth	split	Leaf	Bootstrap	Score	Start	decrease	alpha	MSE	R^2
300	None	2	2	TRUE	TRUE	FALSE	0	0	0.192787	0.804118
300	None	2	2	TRUE	FALSE	TRUE	0	0	0.193311	0.803585
300	None	2	2	TRUE	FALSE	FALSE	0	0	0.194445	0.802433
300	None	2	2	TRUE	TRUE	FALSE	0.1	0	0.657525	0.331917
300	None	2	2	TRUE	FALSE	FALSE	0	0.1	0.662386	0.326978
300	None	2	2	TRUE	TRUE	TRUE	0.1	0.1	0.663693	0.32565
300	None	2	2	TRUE	FALSE	TRUE	0	0.1	0.664503	0.324827
300	None	2	2	TRUE	TRUE	FALSE	0.1	0.1	0.664552	0.324777
300	None	2	2	TRUE	FALSE	TRUE	0.1	0.1	0.665614	0.323698
300	None	2	2	TRUE	TRUE	TRUE	0	0.1	0.666029	0.323276

The top three results show no improvement whereas a majority of the results show deterioration in the accuracy of the model as shown by the high MSE score jumping from ~0.19 to ~0.66.

Fourth Model – Decision Tree Regressor (DTR)

For DTR the following hyper-parameters were explored; fit_intercept, copy_x, and n_jobs. The results are as follows:

	The ten best RFR model hyper-parameters and results										
Max Depth	Min Samples Split	Min Samples Leaf	Min Weight Fraction Leaf	Max Leaf Nodes	MSE	R^2					
20	20	8	0	None	0.275792	0.719779					
50	20	8	0	None	0.275795	0.719777					
None	20	8	0	None	0.275797	0.719775					
40	20	8	0	None	0.275809	0.719762					
30	20	8	0	None	0.275891	0.719679					
20	15	8	0	None	0.277281	0.718267					
20	10	8	0	None	0.277293	0.718254					
20	5	8	0	None	0.2773	0.718247					
20	2	8	0	None	0.277375	0.718171					
50	2	8	0	None	0.277416	0.718129					
	The	ten worst RFR n	nodel hyper-paramet	ters and results							
50	20	4	0.3	10	0.634208	0.355609					
50	20	4	0.3	20	0.634208	0.355609					
50	20	4	0.3	30	0.634208	0.355609					
50	20	4	0.3	40	0.634208	0.355609					
50	20	4	0.3	50	0.634208	0.355609					
50	20	8	0.3	None	0.634208	0.355609					
50	20	8	0.3	10	0.634208	0.355609					
50	20	8	0.3	20	0.634208	0.355609					
50	20	8	0.3	30	0.634208	0.355609					
50	20	8	0.3	40	0.634208	0.355609					
50	20	8	0.3	50	0.634208	0.355609					

All of the best models used the highest number of 'min_samples_leaf' passed to the grid search, based on this I explored a higher number of