古典概型概率论题目

一、基础题目

- 1. 一个袋子中装有5个红球和3个白球,从中随机取出2个球,求取出的2个球都是红球的概率。
- 2. 从1-10 这10个自然数中任取一个数,求这个数能被3整除的概率。
- 3. 同时抛掷两枚质地均匀的骰子,求两枚骰子点数之和为7的概率。

二、中等难度题目

- 1. 从 0、1、2、3、4 这 5 个数字中任取 3 个数字组成一个没有重复数字的三位数,求这个三位数是偶数的概率。
- 2. 某班级有20名男生和30名女生,现从中随机抽取5名学生参加活动,求抽取的学生中至少有2名男生的概率。
- 3. 从甲、乙、丙、丁 4 名同学中随机选取 2 名同学参加知识竞赛,求甲被选中的概率。

三、较难题目

- 1. 将4个不同的小球放入3个不同的盒子中,每个盒子至少放1个小球,求恰有一个盒子放2个小球的概率。
- 2. 有 5 对夫妻参加一场聚会,从这 10 人中随机选 4 人,求至少有一对夫妻被选中的概率。
- 3. 从 1-20 这 20 个数字中任取 3 个数字, 求这 3 个数字中至少有 2 个数字相邻的概率。

参考答案

一、基础题目

1. 答案: \frac{5}{14}

解析:从8个球中取2个球的组合数为C_{8}^{2}=\frac{8!}{2!(8 - 2)!}=\frac{8\times7}{2\times1}=28-种;从5个红球中取2个球的组合数为C_{5}^{2}=\frac{5!}{2!(5 - 2)!}=\frac{5\times4}{2\times1}=10-种。所以取出的2个球都是红球的概率P=\frac{C_{5}^{2}}{C_{8}^{2}}=\frac{10}{28}=\frac{5}{14}。

- 2. 答案: \frac{3}{10}
 - **解析**: 1-10 中能被 3 整除的数有 3、6、9,共 3 个。从 10 个数中任取一个数,总共有 10 种取法,所以这个数能被 3 整除的概率P=\frac{3}{10}。
- 3. 答案: \frac{1}{6}
 - **解析**: 同时抛掷两枚骰子,每枚骰子有 6 种结果,所以总的基本事件数为6×6 = 36种。点数之和为 7 的情况有(1,6)、(2,5)、(3,4)、(4,3)、(5,2)、(6,1),共 6 种。所以两枚骰子点数之和为 7 的概率P=\frac{6}{36}=\frac{1}{6}。

二、中等难度题目

- 1. 答案: \frac{5}{8}
 - **解析**:从 5 个数字中任取 3 个数字组成无重复数字的三位数,百位不能为 0,所以总的组合数为A_{4}^{1}A_{4}^{2}=4×4×3 = 48种。当个位为 0 时,有A_{4}^{2}=4×3 = 12种;当个位不为 0 时,个位有 2 种选法,百位有 3 种选法,十位有 3 种选法,共2×3×3 = 18种。所以三位数是偶数的情况共有12 + 18 = 30种,其概率P=\frac{30}{48}=\frac{5}{8}。
- 2. 答案: \frac{1513}{1938}
 - 解析:从50名学生中抽取5名学生的组合数为C_{50}^{5}=\frac{50!}{5!(50-5)!}。"至少有2名男生"的对立事件是"有0名男生或1名男生"。有0名男生(即5名都是女生)的组合数为C_{30}^{5};有1名男生的组合数为C_{20}^{1}C_{30}^{4}。所以至少有2名男生的概率P=1-\frac{C_{30}^{5}+C_{20}^{1}C_{30}^{4}}{C_{50}^{5}}=1-\frac{142506+20×27405}{2118760}=1-\frac{690612}{2118760}=\frac{1513}{1938}。
- 3. 答案: \frac{1}{2}
 - **解析**:从4名同学中选2名同学的组合数为C_{4}^{2}=\frac{4!}{2!(4-2)!}=\frac{4×3}{2×1}=6种。甲被选中的情况有(ç"²,ä¹™)、(ç"²,丙)、(ç"²,ä¸),共3种。所以甲被选中的概率P=\frac{3}{6}=\frac{1}{2}。

三、较难题目

- 1. 答案: \frac{3}{4}
 - 解析:将4个不同小球放入3个不同盒子,每个盒子至少放1个小球的总放法数:先从4个球中选2个作为一组,有C_{4}^{2}=\frac{4!}{2!(4-2)!}=6种选法;再将这3组全排列放入3个盒子,有A_{3}^{3}=3!=6种放法,所以总放法有C_{4}^{2}A_{3}^{3}=6×6=36种。恰有一个盒子放2个小球

的放法就是上述的总放法,所以其概率P=\frac{36}{48}=\frac{3}{4}(4 个球放入 3 个盒子的总放法为3^4=81种,这里用先分组再排列的方法计算恰有一个盒子放 2 个小球的放法,避免与总放法的复杂重复情况讨论)。

2. **答案**: \frac{13}{21}

• **解析**: 从 10 人中选 4 人的组合数为C_{10}^{4}=\frac{10!}{4!(10 - 4)!}=210种。 "至少有一对夫妻被选中"的对立事件是 "没有一对夫妻被选中",即从 5 对夫妻中选 4 对,再从每对中选 1 人,有C_{5}^{4}×2^4=\frac{5!}{4!(5 - 4)!}×16 = 80种选法。所以至少有一对夫妻被选中的概率P = 1 -\frac{80}{210}=\frac{13}{21}。

3. 答案: \frac{22}{57}

解析:从20个数字中任取3个数字的组合数为C_{20}^{3}=\frac{20!}{3!(20-3)!}=1140种。 "3个数字中至少有2个数字相邻"的对立事件是 "3个数字都不相邻"。设取出的3个数字为x_1\lt x_2\lt x_3,令y_1=x_1,y_2=x_2-x_1-1,y_3=x_3-x_2-1,y_4=20-x_3,则y_1+y_2+y_3+y_4=18 (y_1\geq1,y_2\geq1,y_3\geq1,y_4\geq0),令z_1=y_1-1,z_2=y_2-1,z_3=y_3-1,则z_1+z_2+z_3+y_4=15 (z_1,z_2,z_3\geq0,y_4\geq0),其组合数为C_{15+4-1}^{4-1}=C_{18}^{3}=816种。所以至少有2个数字相邻的概率P=1-\frac{C_{18}^{3}}{C_{20}^{4}3}=1-\frac{816}{1140}=\frac{22}{57}。

(注:文档部分内容可能由 AI 生成)