

FUNDAMENTALS OF DEEP LEARNING

How a Neural Network Trains

Muljono

UNIVERSITAS DIAN NUSWANTORO

TENTANG SAYA

Latar Belakang Pendidikan:

S1: Matematika Universitas Diponegoro Semarang

S2: Teknik Informatika STTIBI Jakarta

-S3: Teknik Elektro ITS Surabaya

Riwayat/Pengalaman Pekerjaan:

- Anggota APTI (Asosiasi Profesi Telematika Indonesia)
- Dosen Universitas Dian Nuswantoro Semarang (Associate Professor)
- Post-Doctoral di Universtas Gadjah Mada Yogyakarta
- Sandwich Program di Tokyo University of Technology, Tokyo, Japan
- Teaching Mobility Program Erasmus + di University of Split, Croatia
- Workshop Big Data Analaysis dan IOT, Big Data Alibaba, Fozhou Polythechnic, Fouzhou China

TOP 20 JOB ROLES IN INCREASING AND DECREASING DEMAND

Increasing	ng demand	⊻ Decreasin	☑ Decreasing demand		
1	Data Analysts and Scientists	1	Data Entry Clerks		
2	Al and Machine Learning Specialists	2	Administrative and Executive Secretaries		
3	Big Data Specialists	3	Accounting, Bookkeeping and Payroll Clerks		
4	Digital Marketing and Strategy Specialists	4	Accountants and Auditors		
5	Process Automation Specialists	5	Assembly and Factory Workers		
6	Business Development Professionals	6	Business Services and Administration Managers		
7	Digital Transformation Specialists	7	Client Information and Customer Service Workers		
8	Information Security Analysts	8	General and Operations Managers		
9	Software and Applications Developers	9	Mechanics and Machinery Repairers		
10	Internet of Things Specialists	10	Material-Recording and Stock-Keeping Clerks		
11	Project Managers	11	Financial Analysts		
12	Business Services and Administration Managers	12	Postal Service Clerks		
13	Database and Network Professionals	13	Sales Rep., Wholesale and Manuf., Tech. and Sci.Products		
14	Robotics Engineers	14	Relationship Managers		
15	Strategic Advisors	15	Bank Tellers and Related Clerks		
16	Management and Organization Analysts	16	Door-To-Door Sales, News and Street Vendors		
17	FinTech Engineers	17	Electronics and Telecoms Installers and Repairers		
18	Mechanics and Machinery Repairers	18	Human Resources Specialists		
19	Organizational Development Specialists	19	Training and Development Specialists		
20	Risk Management Specialists	20	Construction Laborers		

Source: Future of Jobs Survey 2020, World Economic Forum

TECHNOLOGY TREND:

- Technology 5G
- Cyber Security
- Al (Artificial Intelligence)

THE RISE OF TECHNOLOGY 5G

THE RISE OF CYBER SECURITY

Robot Al Siap Geser Posisi PNS, Jokowi Sudah Ancang-ancang!

NEWS - Lidya Julita Sembiring, CNBC Indonesia

26 November 2021 06:08

1. Robot Al Siap Geser Posisi PNS, Jokowi Sudah Ancang-ancang!

1 dari 3 Halaman

RELATIONSHIP BETWEEN AI, ML, DL

ARTIFICIAL INTELLIGENCE

Machines Machines that think that act like rationally. humans **Machines Machines** that think that act rationally like humans.

Turing (1950) "Computing machinery and intelligence"

MACHINE LEARNING

Ability of computers to "learn" from "data" or "past experience"

- data: Comes from various sources such as sensors, domain knowledge, experimental runs, etc.
- learn: Make intelligent predictions or decisions based on data by optimizing a model

AREA MACHINE LEARNING

PRE-REQUISITE TO MACHINE LEARNING

- Probability
 - distribution, random variable, expectation, conditional probability, variance, density
- Linear algebra
 - matrix multiplication
 - eigenvector
- Basic programming (in Python)

DEEP LEARNING

Deep learning is a subset of **machine learning** where artificial **neural networks**, algorithms inspired by the human brain, **learn** from large amounts of data.

Deep learning allows machines to solve complex problems even when using a data set that is very diverse, unstructured and inter-connected.

"DEEP" LEARNING?

Simple Neural Network **Deep Learning Neural Network** Output Layer Input Layer Hidden Layer 1 hidden layer many hidden layers

DEEP LEARNING EVERYWHERE

INTERNET & CLOUD

Image Classification
Speech Recognition
Language Translation
Language Processing
Sentiment Analysis
Recommendation

MEDICINE & BIOLOGY

Cancer Cell Detection Diabetic Grading Drug Discovery

MEDIA & ENTERTAINMENT

Video Captioning Video Search Real Time Translation

SECURITY & DEFENSE

Face Detection Video Surveillance Satellite Imagery

AUTONOMOUS MACHINES

Pedestrian Detection Lane Tracking Recognize Traffic Sign

Source: developer.nvidia.com/deep-leaning-course

UNSTRUCTURED DATA VS STRUCTURED DATA

ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
1	5.1	3.5	1.4	0.2	Iris-setosa
2	4.9	3.0	1.4	0.2	Iris-setosa
3	4.7	3.2	1.3	0.2	Iris-setosa
4	4.6	3.1	1.5	0.2	Iris-setosa
5	5.0	3.6	1.4	0.2	Iris-setosa
6	5.4	3.9	1.7	0.4	Iris-setosa
7	4.6	3.4	1.4	0.3	Iris-setosa
8	5.0	3.4	1.5	0.2	Iris-setosa
9	4.4	2.9	1.4	0.2	Iris-setosa
10	4.9	3.1	1.5	0.1	Iris-setosa
11	5.4	3.7	1.5	0.2	Iris-setosa

unstructured data

structured data

FUNDAMENTALS OF DEEP LEARNING

Artificial Neural Network

Arsitektur Single-layer Perceptron

Arsitektur single-layer ANN hanya terdiri dari input layer dan output layer

Unit pemrosesan informasi pada ANN sebagai berikut:

- Satu set link berupa neuron dan bobot w
- ullet Fungsi penambah (penggabung linear) untuk mengitung jumlah perkalian bobot terhadap input X

Fungsi aktivasi $a(\cdot)$

 $f = \sum_{i=1}^{m} w_i x_i + b$

Apa yang bisa dilakukan sebuah Neuron?

Sebuah neuron pada ANN dapat menyelesaikan permasalahan klasifikasi biner

- Sebagai fungsi pemisah (hyperspace separation)
- Sebagai binary threshold

$$f(x) = w_1 x_1 + w_2 x_2 - b$$
$$y = \begin{cases} 1 & f(x) \ge 0\\ 0 & otherwise \end{cases}$$

Permasalahan Linear dan Non-Linear

Permasalahan klasifikasi dapat dikategorikan sebagai:

- Permasalahan Linear, misalnya fungsi OR dan AND
- Permasalahan Non-Linear, misalnya fungsi XOR

Linear

Source: Microcredential Associate Data Science - Dikti 2021

ACTIVATION FUNCTIONS

Linear

$$\hat{y} = wx + b$$

```
1  # Multiply each input
2  # with a weight (w) and
3  # add intercept (b)
4  y hat = wx+b
```


ReLU

$$\hat{y} = \begin{cases} wx + b & \text{if } wx + b > 0 \\ 0 & \text{otherwise} \end{cases}$$

```
1 # Only return result
2 # if total is positive
3 linear = wx+b
4 y_hat = linear * (linear > 0)
```


Sigmoid

$$\hat{y} = \frac{1}{1 + e^{-(wx+b)}}$$

```
1  # Start with line
2  linear = wx + b
3  # Warp to - inf to 0
4  inf_to_zero = np.exp(-1 * linear)
5  # Squish to -1 to 1
```


Pada permasalahan non-linear dan permasalahan yang lebih kompleks,

Arsitektur Multi-layer ANN

- Terdiri dari tiga layer yaitu:
 - input layer
 - hidden layer
 - output layer
- Hubungan antar neuron pada ANN merupakan fully connected network (FCN)
- Jumlah hidden layer sebaiknya disesuaikan dengan kompleksitas permasalahan
- Jumlah neuron pada hidden layer umumnya lebih banyak daripada jumlah neuron di output layer

How a Neural Network Trains

Mekanisme Pembelajaran (Learning)

1. Training: learning pada saat pembentukan model.

Training

Strawberry labeled data!

Model weights

"Strawberry"

Bicycle

2. Inferensi: learning saat menggunakan model NN.

Inference

Error

Tahapan Pembelajaran Multi-layer Perceptron ANN

Langkah 0 – Inisialisasi bobot, learning rate, maksimum iterasi

Langkah 1 – Membaca vektor input X

Langkah 2 – Lakukan iterasi (*epoch*)

Langkah 3 – Hitung luaran neuron di hidden layer dan output layer

Langkah 4 – Hitung back propagate error (pada output layer dan hidden layer)

Langkah 5 – Perbarui semua bobot (pada output layer dan hidden layer)

Langkah 6 – Ulangi langkah 3 – 5 hingga bobot konvergen atau maksimum iterasi

Langkah 7 – Luaran berupa matrik bobot (pada output layer dan hidden layer)

https://machinelearningmastery.com/implement-backpropagation-algorithm-scratch-python/

THE MNIST DATASET

Here are 40 of the images included in the MNIST dataset:

DATA PREPARATION

Input as an array

DATA PREPARATION

Targets as categories

AN UNTRAINED MODEL

Desain arsitektur ANN

Penentuan jumlah *neuron* pada *input layer*

 Jumlah neuron sesuai dengan jumlah fitur pada data input

Penentuan jumlah neuron pada output layer

- Jumlah neuron sesuai dengan permasalahan
- Pada permasalahan klasifikasi biner dan regresi bisa menggunakan hanya satu neuron
- Pada permasalahan klasifikasi multiclass menggunakan jumlah neuron sesuai jumlah label kelasnya, misalnya: 10 neuron pada pengenalan angka

Contoh implementasi arsitektur fully connected layer pada pengenalan angka

Dataset MNIST Handwritten Digit dibagi menjadi 3:

- 55,000 training data
- 10,000 test data
- 5,000 validation data

Setiap citra berukuran 28 × 28 pixels dan label kelas diubah menjadi *one hot encoded*

label = 5	label = 0	label = 4	label = 1	label = 9	0	$[1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0]$
>	\mathcal{O}	7	1		1	$[0\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0]$
label = 2	label = 1	label = 3	label = 1	label = 4	2	$[0\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 0]$
0	'	3	7	3	$[0\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ 0]$	
label = 3	label = 5	label = 3	label = 6	label = 1	4	$[0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0]$
3	3	3	0	Į.	5	$[0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0]$
label = 7	label = 2	label = 8	label = 6	label = 9	6	$[0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0]$
7	4	8	0	9	7	[0000000100]

A SIMPLER MODEL

$$y = mx + b$$

x	у
1	3
2	5

$$y = mx + b$$

x	у
1	3
2	5

$$y = mx + b$$

x	у	ŷ
1	3	4
2	5	3

$$y = mx + b$$

X	у	ŷ	err ²
1	3	4	1
2	5	3	4
MSE =			2.5
RMSE =			1.6

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

$$y = mx + b$$

x	у	ŷ	err ²
1	3	4	1
2	5	3	4
MSE =			2.5
RMSE =			1.6


```
data = [(1, 3), (2, 5)]
    m = -1
    b = 5
    def get_rmse(data, m, b):
         """Calculates Mean Square Error"""
        n = len(data)
        squared error = 0
        for x, y in data:
11
            # Find predicted y
12
            y hat = m*x+b
13
            # Square difference between
14
             # prediction and true value
            squared_error += (
15
16
                 y - y hat)**2
        # Get average squared difference
        mse = squared error / n
        # Square root for original units
        return mse ** .5
20
```


16

MSE

BUILDING A NETWORK

Scales to more inputs

BUILDING A NETWORK

- Scales to more inputs
- Can chain neurons

BUILDING A NETWORK

- Scales to more inputs
- Can chain neurons
- If all regressions are linear, then output will also be a linear regression

ACTIVATION FUNCTIONS

Linear

$$\hat{y} = wx + b$$

```
1 # Multiply each input
2 # with a weight (w) and
3 # add intercept (b)
4 y hat = wx+b
```


ReLU

$$\hat{y} = \begin{cases} wx + b & \text{if } wx + b > 0 \\ 0 & \text{otherwise} \end{cases}$$

```
1 # Only return result
2 # if total is positive
3 linear = wx+b
4 y_hat = linear * (linear > 0)
```


Sigmoid

$$\hat{y} = \frac{1}{1 + e^{-(wx+b)}}$$

```
1  # Start with line
2  linear = wx + b
3  # Warp to - inf to 0
4  inf_to_zero = np.exp(-1 * linear)
5  # Squish to -1 to 1
```

y hat = 1 / (1 + inf to zero)

ACTIVATION FUNCTIONS

ACTIVATION FUNCTIONS

OVERFITTINGWhy not have a super large neural network?

OVERFITTINGWhich Trendline is Better?

OVERFITTINGWhich Trendline is Better?

TRAINING VS VALIDATION DATA

Avoid memorization

Training data

Core dataset for the model to learn on

Validation data

 New data for model to see if it truly understands (can generalize)

Overfitting

- When model performs well on the training data, but not the validation data (evidence of memorization)
- Ideally the accuracy and loss should be similar between both datasets

AN MNIST MODEL

AN MNIST MODEL

AN MNIST MODEL

Learning From Error

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y - \hat{y})^2 = \frac{1}{n} \sum_{i=1}^{n} (y - (mx + b))^2$$

$$MSE = \frac{1}{2}((3 - (m(1) + b))^2 + (5 - (m(2) + b))^2)$$

$$\frac{\partial MSE}{\partial m} = 5m + 3b - 13 \qquad \qquad \frac{\partial MSE}{\partial b} = 3m + 2b - 8$$

$$\frac{\partial MSE}{\partial m} = -3 \qquad \qquad \frac{\partial MSE}{\partial b} = -1$$

$$\frac{\partial MSE}{\partial m} = -7 \qquad \frac{\partial MSE}{\partial b} = -3$$

$$\frac{\partial MSE}{\partial m} = -7 \qquad \frac{\partial MSE}{\partial b} = -3$$

$$\mathbf{m} := \mathbf{m} - \lambda \frac{\partial MSE}{\partial m}$$

$$b \coloneqq b - \lambda \frac{\partial MSE}{\partial b}$$

$$\frac{\partial MSE}{\partial m} = -7 \qquad \frac{\partial MSE}{\partial b} = -3$$

$$\mathbf{m} := \mathbf{m} - \lambda \frac{\partial MSE}{\partial m}$$

$$b \coloneqq b - \lambda \frac{\partial MSE}{\partial b}$$

 $\lambda = .6$

$$\frac{\partial MSE}{\partial m} = -7 \qquad \frac{\partial MSE}{\partial b} = -3$$

$$\mathbf{m} := \mathbf{m} - \lambda \frac{\partial MSE}{\partial m}$$

$$b \coloneqq b - \lambda \frac{\partial MSE}{\partial b}$$

$$m := -1 + 7 \lambda = -0.3$$

$$b := 5 + 3 \lambda = 4.7$$

