الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية

مديرية التعليم المتخصص والتعليم الخاص لجنة الأولمبياد الجزائرية للمواد التعليمية

المسابقة النهائية للأولمبياد الجزائرية للرياضيات لسنة 2025 الطبعة الثانية

الفئة: أواسط 3 جويلية 2025

المسألة 1 :

: بحيث $f:\mathbb{R} o \mathbb{R}$ بحيث

f(f(2x + y)) + f(x) = 2x + f(x + y)

x,y من أجل كل عددين حقيقيين

: 2 عالساً

مثلث حيث $ABC = 3 \angle ACB$. لتكن E، D نقطا على الدائرة المحيطة بالمثلث $ABC = 3 \angle ACB$ بحيث: $(EF) \parallel (AB) \parallel (CA) \parallel (BC)$

D الأائرة التي تشمل D و D أو D أو D أو D أو D الأائرة التي تشمل D وتمس المستقيم D في D الأائرة التي تشمل D وتمس المستقيم D

ABC لتكن L نقطة التقاطع الثانية بين ω و الدائرة المحيطة بالمثلث

أثبت أن النقط E وL في إستقامية.

المسألة 3 :

لتكن a_0, a_1, \dots, a_n قواسم طبيعية للعدد a_0, a_1, \dots, a_n لتكن

- $a_0 < a_1 < \ldots < a_n \cdot$
- $a_0 \mid a_1 , a_1 \mid a_2 , \ldots , a_{n-1} \mid a_n \cdot$

n جد أكبر قيمة ممكنة للعدد الطبيعي