CSM 146 Fall 2019

Problem Set 3

Name: Yongqian Li Student 1d #: 004997466

1. Kernals

(a).
$$K_{\beta}(\chi, z) = (1 + \beta \pi z)^{3}$$

= $(3 + 3\beta \chi^{T} z + 3\beta^{2} z^{T} \chi \chi^{T} z + \frac{1}{3} z^{T} \chi \chi^{T} z + \frac{1}{3} z^{T} \chi \chi^{T} z$

1 XTZ = 1/18/+ 1/2 Z2

 $= 1 + \frac{3\beta 7 (31 + \frac{3}{3})^{3} 7 (21 + \frac{3}{3})^{2} 2 (21 + \frac{3}{3})^$

$$= 1 + 3\beta \pi_{1}z_{1} + 3\beta \pi_{2}z_{1} + 3\beta^{2}z_{1}^{2}x_{1}^{2} + 6\beta^{2}z_{1}\pi_{2}z_{1} + 3\beta^{2}z_{2}^{2}x_{2}^{2} + \beta^{3}z_{1}^{3}x_{1}^{3} + 3\beta^{3}z_{1}^{2}z_{2} + 3\beta^{3}z_{1}^{2}z_{2} + \beta^{3}z_{1}^{3}x_{1}^{3} + \beta^{3}z_{1}^{2}z_{2}^{2}x_{2}^{2} + \beta^{3}z_{1}^{3}x_{1}^{3}$$

(b). From the expanded cubic, $f(x) = \langle \varphi_{\mu}(x) \rangle = \langle \varphi_{\mu}(x) \rangle$

$$\mathcal{L}(\mathcal{X})^{\mathsf{T}} \mathcal{O}_{\mathcal{B}}(\mathcal{Z}) = \mathcal{L}(\mathcal{X}, \mathcal{Z})$$

$$\mathcal{L}(\mathcal{X})^{\mathsf{T}} \mathcal{O}_{\mathcal{B}}(\mathcal{Z}) - \mathcal{L}(\mathcal{Z}, \mathcal{B}, \mathcal{X}, \mathcal{A}, \mathcal{A},$$

$$\int_{\mathcal{B}} \chi_{1}$$

$$\int_{\mathcal{B}} \chi_{1}^{2}$$

$$\int_{\mathcal{B}} \chi_{1}^{2}$$

$$\int_{\mathcal{B}} \chi_{1}^{2}$$

$$\int_{\mathcal{B}} \chi_{2}$$

13/3 × 12/2 13/3 × 12/2 13/3 × 12/3

(c). When
$$\beta \rightarrow 0$$
, $K_{\beta}(x,z) \rightarrow 1$
 $\beta \rightarrow \infty$, $K_{\beta}(x,z) \rightarrow \infty$
 $\beta = 1$, $K_{\beta}(x,z) = K(x,z)$

Similarities: The same number of entries and the same conputational complexity.

JA ZI

那么

13月2

那这

(3) Z13 哪么 加图

哪段

102 20

Such as

Such as

Such as

Such as

Such as

Such as

Such as B>1, KB(X, Z) has more neight on high-order terms

... Comparing with K(X, Z), KB(X, Z) has the parameter B which weights the terms differently with different choices of B's values. Different B lead to different weighting strategies, scales the entries.

2.5VM

(A)
$$\{y, \sqrt{1} \times 1 \geq 1\}$$
 $\Rightarrow \{-(w_1 + 1)\}$
 $\Rightarrow (w_1 + w_2 \geq 1)$
 $\Rightarrow (w_1 + w_2 \geq 1)$
 $\Rightarrow (w_1 + w_2 \geq 1)$
 $\Rightarrow (w_1 + w_2 \leq 1)$
 $\Rightarrow (w_1 + w_2 \leq 1)$
 $\Rightarrow (w_1 + w_2 \leq 1)$
 $\Rightarrow (w_1 = 1)$
 $\Rightarrow (w_1 = 1)$
 $\Rightarrow (w_1 \geq 1)$
 $\Rightarrow (w_1 = 1)$
 $\Rightarrow (w_2 \geq 1)$

3. Twitter analysis using SVMs

3.1. (a) Implemented

(b). Implemented

Cc) Implemented

(d). The feature matrix X has dimentionality: (630, 1811) (Dimentionality of training data is (560, 1811); of test data is (70, 1811))

3.2 (a). Implemented (b) It might he beneficial to maintain class proportions across the folds because in this way, each the split will have training data proportions resemble that original the training data: distribution more than the cases with various proportions. Maintaining class proportions will make the class proportion more similar to that of the training data, which is similar to their of the test data, so the results will be representive.

(1) Implemented If it is not maintained, there might be some classes in

some splits relatively too small, which read to strange results.

(c). Implemented

$\left(\begin{array}{c} 1 \\ 1 \end{array} \right)$	accuracy	Fl-score	AUROC
$\frac{10^{-7}}{10^{-7}}$	0.7089	0.8297	0.500
10-2	0.7107	0-8306	0.503/
10-1	0.8060	0_8757	0.7188
100	0.8146	0_8749	0.753
10 '	0.8182	0.8766	0.7592
102	0-8182	0-8766	0.7592
best CT	THE STATE OF THE S	F	展
:	# 101	10'	101

As C increase, scores of three metrics also increase. In each case, the score stays, the same when C > 10! roughly

Generally, accuracy score with the same C, accuracy score is larger than AUROC score, and FI-score is larger than accuracy score.

3.3 (a) Implemented
(b) Implemented
(c) Choice: C=#10

Fl-score AURO C

0.7429 0.4375 Scores: 0.6259