Example solution

According to the information given,

X	$P(X=X \Theta=\Theta_1)$	P(X=2 0=0z)
0	0.7	0.5
*	0.2	0.3
2	0.1	0.2

the prior probability: $\begin{cases} P(\theta = \theta_1) = 0.75 \\ P(\theta = \theta_2) = 0.25 \end{cases}$

the likelihood:

$$P(X_1=0, X_2=1 \mid \theta=\theta_1) = (0.7)(0.2) = 0.14$$

 $P(X_1=0, X_2=1 \mid \theta=\theta_2) = (0.5)(0.3) = 0.15$

the marginal likelihood:

$$P(X_{1}=0, X_{2}=1) = P(X_{1}=0, X_{2}=1 | \theta=\theta_{1}) P(\theta=\theta_{1}) + P(X_{1}=0, X_{2}=1 | \theta=\theta_{2}) P(\theta=\theta_{2})$$

$$= (0.7) (0.2) (0.75) + (0.5) (0.3) (0.25)$$

$$= 0.1425$$

Therefore, the posterior probability of 0:

$$\mathbb{P}(\theta=\theta_{1} \mid X_{1}=0, X_{2}=1) = \frac{\mathbb{P}(X_{1}=0, X_{2}=1 \mid \theta=\theta_{1}) \mathbb{P}(\theta=\theta_{1})}{\mathbb{P}(X_{1}=0, X_{2}=1)}$$

$$= \frac{(0.7)(0.2)(0.75)}{0.1425}$$

$$= 0.7368$$

$$\mathbb{P}(\theta=\theta_{2} \mid X_{1}=0, X_{2}=1) = \frac{\mathbb{P}(X_{1}=0, X_{2}=1 \mid \theta=\theta_{2}) \mathbb{P}(\theta=\theta_{2})}{\mathbb{P}(X_{1}=0, X_{2}=1)}$$

$$= \frac{(0.5)(0.3)(0.25)}{0.1425}$$

$$= 0.2632$$

Not much change on Hani's belief on the proportion of the students being lost on her tutorial.