Prove the following Gordon decomposition by direct calculation. Momentum vectors p_1 and p_2 have the same rest mass m. Each of the spins s_1 and s_2 can be either up or down.

$$\bar{u}(p_2, s_2) \gamma^{\mu} u(p_1, s_1) = \bar{u}(p_2, s_2) \left[\frac{(p_2 + p_1)^{\mu}}{2m} + i \sigma^{\mu\nu} \frac{(p_2 - p_1)_{\nu}}{2m} \right] u(p_1, s_1)$$

The following vectors and spinors are used. Spinors u_{11} and u_{21} are spin up, u_{12} and u_{22} are spin down.

$$p_{1} = \begin{pmatrix} E_{1} \\ p_{1x} \\ p_{1y} \\ p_{1z} \end{pmatrix} \quad u_{11} = \begin{pmatrix} E_{1} + m \\ 0 \\ p_{1z} \\ p_{1x} + ip_{1y} \end{pmatrix} \quad u_{12} = \begin{pmatrix} 0 \\ E_{1} + m \\ p_{1x} - ip_{1y} \\ -p_{1z} \end{pmatrix} \quad E_{1} = \sqrt{p_{1x}^{2} + p_{1y}^{2} + p_{1z}^{2} + m^{2}}$$

$$p_{2} = \begin{pmatrix} E_{2} \\ p_{2x} \\ p_{2y} \\ p_{2z} \end{pmatrix} \quad u_{21} = \begin{pmatrix} E_{2} + m \\ 0 \\ p_{2z} \\ p_{2x} + ip_{2y} \end{pmatrix} \quad u_{22} = \begin{pmatrix} 0 \\ E_{2} + m \\ p_{2x} - ip_{2y} \\ -p_{2z} \end{pmatrix} \quad E_{2} = \sqrt{p_{2x}^{2} + p_{2y}^{2} + p_{2z}^{2} + m^{2}}$$

Tensor $\sigma^{\mu\nu}$ is defined as

$$\sigma^{\mu\nu} = \frac{i}{2} \left[\gamma^{\mu}, \gamma^{\nu} \right] = \frac{i}{2} \left(\gamma^{\mu} \gamma^{\nu} - \gamma^{\nu} \gamma^{\mu} \right)$$

In component notation we have

$$\sigma^{\mu\nu\alpha}{}_{\beta} = \frac{i}{2} \left(\gamma^{\mu\alpha}{}_{\rho} \gamma^{\nu\rho}{}_{\beta} - \gamma^{\nu\alpha}{}_{\rho} \gamma^{\mu\rho}{}_{\beta} \right)$$

Let $T^{\mu\nu} = \gamma^{\mu}\gamma^{\nu}$. Transpose the first two indices of $\gamma^{\nu\rho}{}_{\beta}$ to form a dot product.

$$T^{\mu\nu\alpha}{}_{\beta} = \gamma^{\mu\alpha}{}_{\rho}\gamma^{\rho\nu}{}_{\beta}$$

Convert to code. The transpose on the second and third indices interchanges α and ν .

$$T^{\mu
ulpha}{}_{eta}={
m transpose(dot(gamma,transpose(gamma)),2,3)}$$

Hence

$$\sigma^{\mu \nu} = \text{i/2 (T - transpose(T))}$$

where $T = T^{\mu\nu\alpha}{}_{\beta}$. Now convert $\sigma^{\mu\nu}(p_2 - p_1)_{\nu}$ to code.

$$\sigma^{\mu\nu}(p_2-p_1)_\nu=\sigma^{\mu\alpha}{}_\beta{}^\nu g_{\nu\rho}(p_2-p_1)^\rho=\text{dot(S,gmunu,p2 - p1)}$$

where $S = \sigma^{\mu\alpha}{}_{\beta}{}^{\nu} = \text{transpose(transpose(sigmamunu,2,3),3,4)}$.