Σπύρος Φρονιμός - Μαθηματικός

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ - ΑΣΚΗΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ 29 Ιανουαρίου 2016

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ

Διανύσματα

ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ

ΟΡΙΣΜΟΙ

ΟΡΙΣΜΟΣ 1: ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ

Εσωτερικό γινόμενο δύο διανυσμάτων \vec{a} και $\vec{\beta}$ ονομάζεται ο πραγματικός αριθμός $\vec{a} \cdot \vec{\beta}$ ο οποίος ισούται με το γινόμενο των μέτρων των διανυσμάτων \vec{a} και $\vec{\beta}$ επί το συνημίτονο της γωνίας που σχηματίζουν.

$$\vec{a} \cdot \vec{\beta} = |\vec{a}||\vec{\beta}|$$
συν φ

- Η γωνία φ που σχηματίζουν τα διανύσματα \vec{a} και $\vec{\beta}$ συμβολίζεται $(\vec{a},\vec{\beta})$.
- Αν $\vec{a} = \vec{0}$ ή $\vec{\beta} = \vec{0}$ τότε $\vec{a} \cdot \vec{\beta} = 0$

ΟΡΙΣΜΟΣ 2: ΠΡΟΒΟΛΗ ΔΙΑΝΥΣΜΑΤΟΣ ΣΕ ΔΙΑΝΥΣΜΑ

Προβολή ενός διανύσματος \vec{v} πάνω σε ένα διάνυσμα \vec{a} ονομάζεται το διάνυσμα το οποίο είναι ομόρροπο με το \vec{a} και έχει μέτρο ίσο με την προβολή του ευθύγραμμου τμήματος $|\vec{v}|$ πάνω στο φορέα του \vec{a} . Συμβολίζεται με προβ \vec{a} \vec{v} .

ΘΕΩΡΗΜΑΤΑ

ΘΕΩΡΗΜΑ 1: ΙΔΙΟΤΗΤΕΣ ΕΣΩΤΕΡΙΚΟΥ ΓΙΝΟΜΕΝΟΥ

Για οποιαδήποτε διανύσματα \vec{a} , $\vec{\beta}$ και $\vec{\gamma}$ και πραγματικό αριθμό $\mu \in \mathbb{R}$ ισχύουν οι ακόλουθες ιδιότητες για την πράξη του εσωτερικού γινομένου.

Ιδιότητα	Συνθήκη
Κάθετα διανύσματα	Aν $\vec{a} \perp \vec{\beta} \Leftrightarrow \vec{a} \cdot \vec{\beta} = 0$ και $\lambda_{\vec{a}} \cdot \lambda_{\vec{\beta}} = -1$

Ομόρροπα διανύσματα $\text{Av } \vec{a} \, \uparrow \uparrow \, \vec{\beta} \, \Leftrightarrow \vec{a} \cdot \vec{\beta} = |\vec{a}| \cdot |\vec{\beta}|$ $\text{Aντίρροπα διανύσματα} \qquad \text{Aν } \vec{a} \, \uparrow \downarrow \, \vec{\beta} \, \Leftrightarrow \vec{a} \cdot \vec{\beta} = -|\vec{a}| \cdot |\vec{\beta}|$ $\text{Τετράγωνο διανύσματος} \qquad \vec{a}^2 = |\vec{a}|^2$ $\text{Αντιμεταθετική} \qquad \vec{a} \cdot \vec{\beta} = \vec{\beta} \cdot \vec{a}$ $\text{Προσεταιριστική} \qquad \mu(\vec{a} \cdot \vec{\beta}) = (\mu \vec{\beta}) \cdot \vec{a}$ $\text{Επιμεριστική} \qquad \vec{a} \cdot \left(\vec{\beta} + \vec{\gamma}\right) = \vec{a} \cdot \vec{\beta} + \vec{a} \cdot \vec{\gamma}$

ΘΕΩΡΗΜΑ 2: ΑΝΑΛΥΤΙΚΗ ΕΚΦΡΑΣΗ ΕΣΩΤΕΡΙΚΟΥ ΓΙΝΟΜΕΝΟΥ ΔΙΑΝΥΣΜΑΤΩΝ

Το εσωτερικό γινόμενο δύο διανυσμάτων $\vec{a}=(x_1,y_1)$ και $\vec{\beta}=(x_2,y_2)$ ισούται με το άθροισμα του γινομένου των τετμημένων με το γινόμενο των τεταγμένων των διανυσμάτων.

$$\vec{a} \cdot \vec{\beta} = x_1 x_2 + y_1 y_2$$

ΘΕΩΡΗΜΑ 3: ΣΥΝΗΜΙΤΟΝΟ ΓΩΝΙΑΣ ΔΙΑΝΥΣΜΑΤΩΝ

Το συνημίτονο της γωνίας που σχηματίζουν δύο διανύσματα $\vec{a}=(x_1,y_1)$ και $\vec{\beta}=(x_2,y_2)$ ισούται με το πηλίκο του εσωτερικού γινομένου των διανυσμάτων προς το γινόμενο των μέτρων τους.

$$\widehat{\text{dun}(\vec{a}, \vec{\beta})} = \frac{\vec{a} \cdot \vec{\beta}}{|\vec{a}| \cdot |\vec{\beta}|} = \frac{x_1 x_2 + y_1 y_2}{\sqrt{x_1^2 + y_1^2} \cdot \sqrt{x_2^2 + y_2^2}}$$

ΘΕΩΡΗΜΑ 4: ΠΡΟΒΟΛΗ ΔΙΑΝΥΣΜΑΤΟΣ

Το εσωτερικό γινόμενο δύο διανυσμάτων \vec{a} και $\vec{\beta}$ ισούται με το εσωτερικό γινόμενο του ενός διανύσματος επί την προβολή του δεύτερου διανύσματος πάνω στο πρώτο.

$$\vec{a}\cdot\vec{\beta}=\vec{a}\cdot\pi\text{rob}_{\vec{a}}\vec{\beta}\quad \acute{\eta}\quad \vec{a}\cdot\vec{\beta}=\vec{\beta}\cdot\pi\text{rob}_{\vec{\beta}}\vec{a}$$