Chapter 18 – Mechanical Waves

UM-SJTU Joint Institute Physics I (Summer 2021) Mateusz Krzyzosiak

Agenda

- Introduction
 - What is a Mechanical Wave?
 - Longitudinal vs Transverse Waves
- 2 Sinusoidal (Harmonic) Waves
- 3 The Classical Wave Equation in 1D*
 - Derivation
 - Comments
- 4 Interference of Waves. Standing Waves

Introduction

What is a Mechanical Wave?

Wave — "disturbance" of a medium propagating through space. Consequently, mechanical waves need a medium to propagate.

 Transverse waves — the direction of displacement of medium particles is perpendicular to the direction of wave propagation. Example: wave on a rope [animation].

 Longitudinal waves — the direction of displacement is parallel to the direction of propagation. Example: sound.

Sinusoidal (Harmonic) Waves

Harmonic Waves

A propagating mechanical wave in the shape of a cosine (or sine) function is called a *harmonic* wave. The disturbance of the medium, denoted by \mathcal{E} , is

$$\boxed{\xi(x,t) = \xi_0 \cos\left(\frac{2\pi}{\lambda}x - \frac{2\pi}{T}t\right)}$$

where

- ullet λ is the wavelength,
- and T is the period.

Or, equivalently,

$$\xi(x,t) = \xi_0 \cos(kx - \omega t),$$

with

- $k = \frac{2\pi}{\lambda}$ wave number,
- $\omega = \frac{2\pi}{T}$ angular frequency.

$$\xi(x,t) = \xi_0 \cos(kx - \omega t)$$

Interpretation of Period T and Wavelength λ

Particles of the medium move in simple harmonic motion about the equilibrium position $\xi=0$.

Phase Speed

Consider a propagating harmonic wave

$$\xi(x,t) = \xi_0 \cos(kx - \omega t).$$

Question: How fast does the wave propagate?

Look at a point with a fixed phase (the wave front)

$$kx - \omega t = \theta_0,$$

where θ_0 is a constant. Differentiating both sides with respect to time yields

$$k\dot{x} - \omega = 0 \implies \dot{x} = \frac{\omega}{k}$$

Hence the speed the wave propagates with (the *phase speed*) is

$$v_{ph}=rac{\omega}{k}.$$

The Classical Wave Equation in 1D*

The Classical Wave Equation in 1D*

Consider a wave on a string with linear density of mass ϱ . The equation of motion in the vertical direction for the element of mass $\varrho \, \Delta x$ is

$$\varrho\,\Delta x\,\frac{\partial^2\xi}{\partial t^2}=\,T_0\tan\vartheta_{x+\Delta x}-\,T_0\tan\vartheta_x.$$

Note that $\tan \vartheta = \frac{\partial \xi}{\partial x}$.

Hence

 $\varrho \, \Delta x \, \frac{\partial^2 \xi}{\partial t^2} = T_0 \left(\frac{\partial \xi}{\partial x} \Big|_{x + \Delta x} - \frac{\partial \xi}{\partial x} \Big|_{x} \right) = T_0 \, \frac{\partial^2 \xi}{\partial x^2} \, \Delta x,$

and, eventually,
$$\boxed{\frac{\partial^2 \xi}{\partial x^2} - \frac{\varrho}{T_0} \frac{\partial^2 \xi}{\partial t^2} = 0}$$

where $\frac{\varrho}{T_0} = \frac{1}{v_{ph}^2}$. This is the classical wave equation (in 1D).

Comments

• Harmonic waves $\xi(x, t) = \xi_0 \cos(kx - \omega t)$ satisfy the wave equation.

$$\frac{\partial \xi}{\partial x} = -k\xi_0 \sin(kx - \omega t); \quad \frac{\partial^2 \xi}{\partial x^2} = -k^2 \xi_0 \cos(kx - \omega t) = -k^2 \xi$$

$$\frac{\partial \xi}{\partial t} = \omega \xi_0 \sin(kx - \omega t); \quad \frac{\partial^2 \xi}{\partial t^2} = -k^2 \xi_0 \cos(kx - \omega t) = -\omega^2 \xi$$

Check:
$$\frac{\partial^2 \xi}{\partial x^2} - \frac{1}{v_{ph}^2} \frac{\partial^2 \xi}{\partial t^2} = -k^2 \xi - \frac{1}{(\omega/k)^2} (-\omega) \xi \equiv 0$$

The wave equation is linear

 the superposition principle holds:

If ξ_1 and ξ_2 are solutions of the same wave equation, then any linear combination $\alpha \xi_1 + \beta \xi_2$ is also a solution.

Note that linearity of the derivatives implies:

$$\frac{\partial x^2}{\partial x^2} - \frac{\partial^2 \xi_1}{\partial t^2} \frac{\partial^2 \xi_1}{\partial t^2}$$

The shape of the wave impulse needs not to be sinusoidal.

Suppose that $\xi(x,t) = f(x-vt)$, where f(u) is any

 $\frac{\partial^2 \xi}{\partial x^2} - \frac{1}{x^2} \frac{\partial^2 \xi}{\partial x^2} = 0.$

$$\frac{\partial \xi}{\partial x} = f'; \qquad \frac{\partial^2 \xi}{\partial x^2} = f''$$

$$\frac{\partial \xi}{\partial t} = -vf'; \qquad \frac{\partial^2 \xi}{\partial t^2} = v^2 f''$$

twice-differentiable function. We have
$$\frac{\partial \xi}{\partial x} = f';$$

$$\frac{\partial \xi}{\partial \xi} = f'.$$

And

twice-differentiable function. We have
$$rac{\partial \xi}{\partial x} = f';$$

twice-differentiable function. We have

 $\frac{\partial^2(\alpha\xi_1+\beta\xi_2)}{\partial x^2} - \frac{1}{v^2} \frac{\partial^2(\alpha\xi_1+\beta\xi_2)}{\partial t^2} =$ $= \alpha \left(\frac{\partial^2 \xi_1}{\partial x^2} - \frac{1}{v^2} \frac{\partial^2 \xi_1}{\partial t^2} \right) + \beta \left(\frac{\partial^2 \xi_2}{\partial x^2} - \frac{1}{v^2} \frac{\partial^2 \xi_2}{\partial t^2} \right)$

Interference of Waves. Standing Waves

Interference

Idea: Two wave impulses propagate in space. The resultant wave $\xi(x,t) = \xi_1(x,t) + \xi_2(x,t)$ The interference may be *constructive* or *destructive*

Digression: Reflection of a pulse wave on a rope.

Different boundary conditions! Animation (click)

Example: Standing Waves

Suppose: two sinusoidal waves with the same wavelength propagating in opposite directions with the same speed.

$$\xi_1(x,t) = -\xi_0 \cos(kx + \omega t), \qquad \xi_2(x,t) = \xi_0 \cos(kx - \omega t).$$

Superposition

$$\xi(x,t) = \xi_1(x,t) + \xi_2(x,t) = \xi_0[-\cos(kx+\omega t) + \cos(kx-\omega t)]$$

$$= -2\xi_0 \sin\frac{kx - \omega t + kx + \omega t}{2} \sin\frac{kx - \omega t - kx - \omega t}{2}$$

$$= 2\xi_0 \sin(kx) \sin(\omega t)$$

$$\xi(x,t) = 2\xi_0 \sin(kx) \sin(\omega t)$$

Positions of the nodes are fixed at $x_{node} = \frac{n\pi}{k} = \lambda \frac{n}{2}$, with n = 0, 1, 2, ...

Example. Standing wave on a string of length L clamped at both ends. What are the possible wavelengths?

Boundary conditions (for all t): $\xi(0,t) = \xi(L,t) = 0$

Possible wavelengths: $L = n \frac{\lambda}{2}$ (length of the string accommodates multiples of $\lambda/2$).

$$\lambda = \frac{2L}{n} = \lambda_n$$

- 1st harmonic: $\lambda_1 = 2L$
- 2nd harmonic: $\lambda_2 = L$
- 3rd harmonic: $\lambda_3 = \frac{2}{3}L$
 -

