الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: جوان 2015

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: رياضيات وتقني رياضي

اختبار في مادة: العلوم الفيزيائية

المدة: 04 سا و30 د

على المترشح أن يختار أحد الموضوعين التاليين:

الموضوع الأول

التمرين الأول: (03.5 نقطة)

لدراسة حركية تطور التحول الكيميائي بين محلول ثيوكبريتات الصوديوم $(2Na^+_{(aq)} + S_2O_3^{2-}_{(aq)})$ ومحلول حمض كلور الماء $(H_3O^+_{(aq)} + Cl^-_{(aq)})$

في اللحظة $C_1=0.5mol/L$ من محلول ثيوكبريتات الصوديوم تركيزه $V_1=480mL$ مع حجم $V_1=480mL$ من محلول حجم اللحظة $V_2=20mL$ من محلول حمض كلور الماء تركيزه $V_2=5.0mol/L$ من محلول حمض كلور الماء تركيزه $V_2=20mL$ التالية: $S_2O_3^{2-}$ $(aq) + 2H_3O^+$ $(aq) = S_{(s)} + SO_{2(g)} + 3H_2O_{(l)}$

1- أنشئ جدولا لتقدم التفاعل.

2- حدّد المتفاعل المحد.

-3 إن متابعة التحول عن طريق قياس الناقلية النوعية للمزيج التفاعلي مكنت من رسم بيان الشكل -3 والممثل لتغيرات الناقلية النوعية بدلالة الزمن -3 . -3

علَل دون حساب سبب نتاقص الناقلية النوعية.

 $\sigma(t) = 20,6 - 170x$: بالعبارة: t مند لحظة t بالعبارة: النوعية للمزيج التفاعلي عند لحظة t

أ- عرّف السرعة الحجمية للتفاعل.

ب- بين أن السرعة الحجمية للتفاعل تكتب

 $v_{vol} = -\frac{1}{170V} \times \frac{d\sigma(t)}{dt}$: بالشكل

حيث ٧ حجم الوسط التفاعلي المعتبر ثابتا.

ج- احسب السرعة الحجمية للتفاعل عند اللحظة 0 =1.

د- عرّف زمن نصف التفاعل 1/2 ثم حدد

قيمته بيانيا.

التمرين الثاني: (03 نقاط)

تمتص جميع النباتات الكربون C الموجود في الجو $(C,^{14}C)$ خلال عملية النتفس، حيث تبقى النسبة $\frac{N(^{14}C)}{N(^{12}C)} = 1,2 \times 10^{-12}$

عند موت النبات تتتاقص هذه النسبة نتيجة تفكك الكربون (١٩٥٠).

-1 مصدرة جسيمات β^- و نواة الكربون 14 مصدرة جسيمات β^- و نواة ابن (2^4X)

- اكتب معادلة تفكك نواة الكربون 14، وحدد النواة الابن من بين الأنوية التالية: F , وC , وB ، وP ، وC , وB ، وحدد النواة الابن من بين الأنوية التالية:

-14 الحسب: أ- طاقة الربط E_i لنواة الكربون -2

ب- طاقة الربط لكل نوية لنواة الكربون 14.

m = 300mg عند لحظة m = 300mg عند لحظة m = 300mg عند لحظة ووجد m = 300mg تفككا في الثانية.

أخذت عينة لها نفس الكتلة السابقة من شجرة حية فوجد أن كتلة الكربون 12 فيها هي 150mg.

أ- احسب عدد أنوية الكربون C^{12} و استنتج عدد أنوية الكربون C^{14} في العينة التي أخذت من الشجرة الحية. C^{14} ب احسب النشاط الإشعاعي الابتدائي C^{14} ، ثم حدد عمر قطعة الخشب.

تعطى:

$$\begin{split} & t_{1/2}(^{14}_{6}C) = 5730 ans \quad , M(^{14}C) = 14g \ / \ mol \quad , N_{_{A}} = 6,02 \times 10^{23} \ mol^{-1} \quad , 1an = 31536 \times 10^{3} \ s \\ & m(p) = 1,00728 u \quad , m(n) = 1,00866 u \quad , m(^{14}_{_{6}}C) = 13,99995 u \quad , 1u = 931,5 MeV \ / \ c^{2} \end{split}$$

التمرين الثالث: (03 نقاط)

تترك كرية كتلتها m تسقط في الهواء من ارتفاع h عن سطح الأرض دون سرعة ابتدائية.

 $g = 10m/s^2$: تعطی

 $f = k \cdot v$ نهمل دافعة أرخميدس ونعتبر شدة قوة مقاومة الهواء -1

أ- مثل القوى الخارجية المؤثرة على الكرية.

بتطبيق القانون الثاني لنيوتن في معلم Oz موجه نحو الأسفل ومرتبط بمرجع سطحي أرضى نعتبره غاليليا، أوجد المعادلة التفاضلية لسرعة الكرية.

 \cdot g ، m ، k : استنتج عبارة السرعة الحدية v_{lim} بدلالة

2- إنّ دراسة تغيرات سرعة الكرية بدلالة الزمن مكنت من الحصول على بيان الشكل (2).

استنتج من البيان قيمة المرعة الحدية البيان .

 $\frac{m}{k}$ باستعمال التحليل البعدي ، واحسب النسبة

3- كيف يتطور تسارع الكرية خلال الحركة ؟

4- مثل كيفيا مخطط السرعة (v(t) لحركة السقوط الشاقولي لمركز عطالة الكرية في الفراغ.

التمرين الرابع: (03,5 نقطة)

بهدف معرفة ذاتية وشيعة L ومقاومتها r نحقق التركيب الموضح بالشكل (3) حيث R=15 والمولد ثابت التوتر قوته المحركة الكهربائية E.

التفاضلية التفاضلية - 1 بتطبيق قانون جمع التوترات، بيّن أن المعادلة التفاضلية - 1 ميث $\frac{di(t)}{dt} + \alpha i(t) = \beta$ ، حيث الشدة التيار تكتب بالشكل:

ير المقادير عبارتيهما مستعينا بالمقادير β , α التالية: E, r, R, L

مي حلا
$$i(t) = \frac{\beta}{\alpha}(1 - e^{-\alpha \cdot t})$$
 هي حلا المعادلة التفاضلية.

E بين أن عبارة التوبّر بين طرفي الوشيعة تعطى بالعلاقة: $E = \frac{(R+r)^{-1}}{2}$

$$u_b(t) = \frac{E}{R+r}(r+Re^{-\frac{(R+r)}{L}t})$$

4- باستعمال راسم اهتزازات ذي ذاكرة تحصلنا على بيان الشكل (4) الممثل لتغيرات التوتر بين طرفي الوشيعة بدلالة الزمن.

 أ- أعد رسم الدارة موضحا كيفية توصيل راسم الاهتزازات لمشاهدة بيان الشكل (4).

ب- بالاعتماد على البيان استنتج:

- القوة المحركة الكهربائية للمولد -

مقاومة الوشيعة r.

- ثابت الزمن ت للدارة.
 - ذاتية الوشيعة L.
- $E_{(L)}$ العبارة اللحظية للطاقة المخزنة في الوشيعة -5
 - ب- أوجد قيمة هذه الطاقة في النظام الدائم.

التمرين الخامس: (03,5 نقطة)

بمناسبة البطولة العالمية للتزلج على الجليد اختار المنظمون المسلك الموضيح بالشكل (5) والمتكون من:

مستوي مائل زاوية ميله $\alpha = 30^{\circ}$ وطوله AB = 50m : AB

BC : مستوي افقي.

CO: هوة ارتفاعها hعن سطح الأرض.

نفرض أن كتلة المتزلج ولوازمه هي: m=80kg، m=80kg، ينطلق المتبارون فرادى من قمة المستوي الماثل دون سرعة ابتدائية.

 f^- بتطبيق مبدأ إنحفاظ الطاقة على الجملة (المتزلج) بين الموضعين A و B ، استنتج شدة قوة الاحتكاك $V_B=20m/s$ التى نعتبرها ثابتة على طول المسار ABC علما أنه يبلغ الموضع B بالسرعة $V_B=20m/s$

ب- بتطبيق القانون الثاني لنيوتن حدد طبيعة الحركة على المسار AB واحسب تسارعها.

E عند الموضع C عند الموضع C في لحظة نعتبرها مبدأ الأزمنة ليسقط في الموضع C عند الموضع C تهمل مقاومة الهواء ودافعة أرخميدس. بتطبيق القانون الثاني لنيوتن على الجملة ، جد المعادلتين الزمنيتين للحركة لهمل مقاومة المعام C في المعلم C المرتبط بمرجع غاليلي، ثم استنتج معادلة المسار.

-3 بيان الشكل (6) يمثل تغيرات مربع سرعة المتزلج بدلالة مربع الزمن من لحظة مغادرة المستوي الأفقي حتى وصوله الموضع -1. أ- اكتب عبارة السرعة -1 بدلالة -1 و -1 ثم أوجد العلاقة النظرية بين -1 و -1 و -1 ثم أوجد العلاقة النظرية بين -1 و -1

 $\cdot E$ و C استنتج بيانيا قيمة السرعة عند كل من الموضعين

ج - احسب الارتفاع h.

التمرين التجريبي: (03.5 نقطة)

تتعرض أغلب الأجهزة الكهرومنزلية مثل المسخن المائي وآلة تقطير القهوة إلى ترسبات كلسية يمكن إزائتها باستعمال منظفات (détartrants) تجارية، يفضل استعمال المنظفات التي تحتوي على حمض اللاكتيك $C_3H_6O_3$ نظرا لفعاليته وعدم تفاعله مع مكونات الأجهزة وتحلله بسهولة في الطبيعة، إضافة إلى كونه غير ملوث للبيئة.

كُتب على الصقة قارورة المنظف التجاري المعلومات التالية:

- النسبة المثوية الكتلية لحمض اللاكتيك في المنظف 9 = 45%
 - يستعمل المنظف التجاري المركز مع التسخين.
- $M(C_3H_6O_3)=90$ و/mol الكتلة المولية الجزيئية لحمض اللكتيك
 - ho = 1,13 kg / L الكتلة الحجمية للمنظف التجاري –
- $C = 1.0 \times 10^{-1} \, mol/L$ نحضر حجما $V = 500 \, mL$ من محلول مائي لحمض اللاكتيك تركيزه $V = 500 \, mL$ مخال القيمة pH = 2.4 عند الدرجة pH = 2.4
 - أ- اكتب المعادلة الكيميائية المنمذجة لتفاعل حمض اللاكتيك مع الماء.
 - ب- أنشئ جدولا لتقدم التفاعل.
 - ج- احسب تراكيز الأفراد الكيميائية المتواجدة في المحلول عند التوازن عدا الماء.
 - $(C_2H_6O_3/C_2H_5O_3^-)$ للثنائية pKa المعوضة الحموضة المعروضة المعروض
- -2 بهدف التحقق من النسبة المئوية الكتلية لحمض اللاكتيك في المنظف التجاري المركز ، نمده 100 مرة فنحصل على محلول (S_a) لحمض اللاكتيك تركيزه المولي C_a نعاير حجما $V_a=10mL$ من المحلول (S_a) بواسطة محلول مائي لهيدروكسيد الصوديوم $(Na^+_{(aq)}+HO^-_{(aq)})$ تركيزه $(Na^+_{(aq)}+HO^-_{(aq)})$ نصل إلى نقطة التكافؤ عند إضافة الحجم $V_{bE}=28,3mL$.
 - أ- اكتب المعادلة الكيميائية المنمذجة لتفاعل المعايرة.
 - . بالمركز المولي للمنظف التجاري المركز C_0 التركيز المولي للمنظف التجاري المركز -
 - ج- احسب النسبة المئوية الكتلية لحمض اللاكتيك في المنظف التجاري. ماذا تستنتج ؟
 - $ho_0 = 1kg/L$ تعطى الكتلة الحجمية للماء

الموضوع الثاني

التمرين الأول: (03 نقاط)

يُعتبر الطب أحد المجالات الرئيسية التي عرفت تطبيقات الأشعة النووية. حيث تستعمل بعض الأنوية المشعة لتشخيص الأمراض ومعالجتها. يستعمل الرينيوم Re_{75}^{186} للتخفيف من ألام الروماتيزم عن طريق الحقن الموضعي بجرعات ذات حجم قدره $V_0 = 10 \, mL$.

- $^{186}_{76}Os$ نواة الأوسميوم $^{186}_{75}Re$ نواة الأوسميوم $^{186}_{76}Os$ نواة الأوسميوم
 - أ- اكتب معادلة التحول النووي الحادث.
 - ب- حدد نمط التحول الحادث وعرفه.
- A = f(t) البيان الموضح بالشكل (1) يمثل تغيرات النشاط الإشعاعي بدلالة الزمن -2
 - أ- استنتج من البيان النشاط الإشعاعي الابتدائي ٨٠٠

ب- عرّف زمن نصف العمر ، t,2 ، وحدد قيمته من البيان.

ج- احسب ثابت النشاط الإشعاعي ٨ للرينيوم Pe . 186 Re

3- باستعمال قانون تناقص النشاط الإشعاعي، احسب عدد أنوية

 $t_1 = 10 jours$ الرينيوم الموجودة في الجرعة عند اللحظة الموجودة في الجرعة عند اللحظة الموجودة في ال

√ اللحظة المنافذ من الجرعة بواسطة حقنة حجما
√ المنافذ من الجرعة بواسطة حقنة حجما
√ المنافذ اللحظة المنافذ المن

يحتوي على 1,2×10¹⁴ نواة من الرينيوم Re ونحقن بها

مريض في مفصل الركبة. أوجد الحجم ٧ المحقون.

التمرين الثاني: (03.5 نقطة)

تُستعمل المكثفات في عدة تراكيب كهربائية ذات فائدة علمية في الحياة اليومية.

بغرض حساب سعة مكثقة غير مشحونة مسبقا، نحقق التركيب الموضح بالشكل (2) حيث $R=100\Omega$ والمولد ثابت التوتر قوته المحركة الكهربائية E.

- 1- أعد رسم الدارة موضحا عليها التوترات بأسهم وجهة التيار الكهربائي.
- $u_c(t)$ بتطبيق قانون جمع التوترات، جد المعادلة التفاضلية التي يحققها التوتر $u_c(t)$ بين طرفي المكثفة.
- . $u_c(t) = A(1 e^{-\frac{t}{t}})$ المعادلة التفاضلية، حيث A و τ ثابتان يطلب كتابة عبارتيهما -3
 - $ln(E u_C) = -\frac{1}{\tau}t + ln E$: بین أن: -4
 - : بيان الشكل (3) يمثل تغيرات $In(E-u_c)$ تغيرات عبرات الشكل (3) بدلالة الزمن، استنتج من البيان
 - أ- قيمة E القوة المحركة الكهربائية للمولد.
 - ب- قيمة ثابت الزمن r، و قيمة سعة المكثفة C.
 - $E_c(t)$ المكثفة المخزنة في المكثفة المخزنة المكثفة $E_c(t)$
 - ... ب- نرمز بـ $E_c(\infty)$ للطاقة المخزنة في المكثفة عند اللحظة $t=\tau$ وبـ $E_c(\infty)$ للطاقة العظمى.

 $\frac{E_C(\tau)}{E_C(\infty)}$ احسب النسبة –

. C' عيف يتم ربط مكثفة سعتها C' مع المكثفة السابقة لكي يأخذ ثابت الزمن القيمة: $\frac{\tau}{4} = \frac{\tau}{4}$ ؟ واحسب قيمة -7

تُستعمل المنتوجات الصناعية الأزوبية في المجال الفلاحي لتوفرها على عنصر الأزوت الذي يعد من بين العناصر الضرورية لتخصيب التربة. يحتوي منتوج صناعي على نترات الأمونيوم $NH_4NO_{3(s)}$ كثير الذوبان في الماء . تشير لاصقة كيس المنتوج الصناعي الأزوتي إلى النسبة المئوية الكتلية لعنصر الأزوت (33%). القياسات تمت عند الدرجة 25%.

في اللحظة t=0 نمزج حجما $V_1=20mL$ من محلول شوارد الأمونيوم $NH_{4(aq)}^+$ تركيزه المولي $V_1=20mL$ مع حجم $V_2=10mL$ مع حجم $V_2=10mL$ من محلول هيدروكسيد الصوديوم $V_1=10mL$ مع حجم $V_2=10mL$ من محلول هيدروكسيد الصوديوم $V_1=10mL$ ننمذج التحول الحادث بالمعادلة الكيميائية التالية:

$$NH_{4(aq)}^{+} + HO_{(aq)}^{-} = NH_{3(aq)} + H_{2}O_{(l)}$$

1- أ- بين أن التفاعل السابق هو تفاعل حمض - أساس.

ب- أنشئ جدولا لتقدم التفاعل، حدد المتفاعل المحد واستنتج قيمة التقدم الأعظمي

 $x_{eq} = 1.5 \times 10^{-3} \, mol$:ج- بيّن أنه عند التوازن

د- احسب النسبة النهائية ، ت لتقدم التفاعل. ماذا تستنتج ؟

m=6g منه في m=6g المنافع المثوية الكتلية لعنصر الأزوت في المنتوج الصناعي، نذيب عينة كتلتها m=6g منه في حوجلة عيارية، فنحصل على محلول S_a حجمه S_a عجمه S_a المخلول S_a من المحلول S_a ونعايره عيارية، فنحصل على محلول على محلول S_a حجمه S_a حجمه S_a من المحلول S_a ونعايره بواسطة محلول هيدروكسيد الصوديوم تركيزه المولي S_a المحرم S_a نصل إلى نقطة التكافؤ عند إضافة الحجم S_a الحجم S_a المحجم S_a المحرم S_a المحرم المحرك المحرم الم

أ- احسب التركيز المولي C_o للمحلول (S_o) ، واستنتج كتلة الأزوت في العينة.

ب- تعرّف النسبة المئوية الكتلية لعنصر الأزوت بأنها: النسبة بين كتلة الأزوت في العينة وكتلة العينة.

- احسب النسبة المئوية الكتلية لعنصر الأزوت في العينة. ماذا تستتنج ؟

 $. pK_a(NH_4^+/NH_3) = 9,2$ و M(H) = 1g/mol و M(O) = 16g/mol و M(N) = 14g/mol و M(N) = 14g/mol

التمرين الرابع: (03 نقاط)

ملعب التنس عبارة عن مستطيل طوله 23,8 m وعرضه 8,23 m. وضعت في منتصفه شبكة ارتفاعها 0,92 m. عندما يرمل اللاعب الكرة يجب أن تسقط في منطقة محصورة بين الشبكة وخط يوجد على مسافة 6,4 m من الشبكة كما هو موضح بالشكل (4) .

في دورة رولان قاروس الدولية يريد اللاعب ندال إسقاط الكرة في النقطة B حيث OB = L = 18,7m . يرسل ندال الكرة نحو الأعلى ثم يضربها بمضربه من نقطة D توجد على ارتفاع h = 2,2m من النقطة O. تنطلق الكرة من النقطة D بسرعة أفقية $v_0 = 126 \, km/h$ كما هو موضح بالشكل (5).

نهمل تأثير الهواء ونأخذ $g = 9,8m/s^2$. نعتبر أن الحركة تتم في معلم سطحي أرضى يعتبر غاليليا.

-1 مثل القوة المؤثرة على الكرة خلال حركتها بين D و -1

y(t) , x(t) القانون الثاني لنيوتن أوجد المعادلتين الزمنيتين x(t) .

3- استنتج معادلة مسار الحركة.

OF = 12,2m : علما أن: OF = 12,2m

5- هل نجح ندال في الإرسال ؟

التمرين الخامس: (03,5 نقطة)

 $m_A = 300g$ من: عربتين (B) و (B) من: عربتين (B) من: عربتين (B) من عربتين كتلتيهما و $m_B = 150$ موصولتين بخيط مهمل الكتلة وعديم الامتطاط يمر على محز بكرة مهملة الكتلة ، والاحتكاك مهمل على المستوي المائل.

 $g = 10 m/s^2$ يعطى \vec{f} ثابتة. تعطى \vec{f} ثابتة من السكون وتخضع العربة \vec{f} خلال حركتها لقوة احتكاك \vec{f} ثابتة.

-1 بتطبیق القانون الثانی لنیوتن علی کل عربه أثبت أن المعادلة التفاضلیة لحرکة الجملة تعطی بالعلاقة: f , g , m ,

D عند بلوغ العربة (A) الموضع D ينقطع الخيط فجأة، باستعمال تجهيز مناسب مكن من تسجيل سرعتي العربتين (A) و (B) ابتداءً من لحظة انقطاع الخيط .

بياني الشكل (7) يمثلان تغيرات سرعتي العربتين بدلالة الزمن.

أ- حدّد المنحنى الموافق لسرعة كل عربة مع التعليل.

ب- اعتمادا على المنحنيين استنتج:

- تسارع حركة كل عربة .

- المسافة المقطوعة من طرف العربة (A) خلال هذه المرحلة.

 α استنتج شدة قوة الاحتكاك \overline{f} ، وقيمة الزاوية

التمرين التجريبي: (03,5 نقطة)

لمتابعة التطور الزمني للتحول الكيميائي الحادث بين محلول حمض كلور الماء $(H_3O^+_{(aq)} + Cl^-_{(aq)})$ ومعدن V=100mL . نضيف عند اللحظة t=0 كتلة من الزنك m(Zn)=0.654g إلى دورق به حجم $T_{(aq)}$ الزنك $T_{(aq)}$ بنعتبر أن حجم الوسط التفاعلي ثابت من محلول حمض كلور الماء تركيزه المولي $T_0=0.000$ المنطق مع مرور الزمن في الشروط التجريبية التالية: خلال مدة التحول. نقيس حجم غاز ثنائي الهيدروجين المنطلق مع مرور الزمن في الشروط التجريبية التالية: $T_0=0.000$ والضغط $T_0=0.000$

1- اكتب معادلة التفاعل المنمذج للتحول الكيميائي الحادث، علما أن الثنائيتين المشاركتين في التفاعل هما:

 $Zn^{2+}_{(aq)}/Zn_{(s)}$ $H_{3}O^{*}_{(aq)}/H_{2(g)}$

2- أنشئ جدولا لتقدم التفاعل، وحدد المتفاعل المحد.

3- الدراسة التجريبية لهذا التحول مكنت من الحصول على البيان الموضح بالشكل(8).

أ- عرف السرعة الحجمية للتفاعل.

 $v_{vol} = \frac{P}{VRT} \times \frac{dV_{H_2}}{dt}$: بين أنه يمكن كتابة عبارة السرعة الحجمية للتفاعل بالشكل و بين أنه يمكن كتابة عبارة السرعة الحجمية المجمعة ال

حيث V حجم المزيج التفاعلي.

t=0 عند اللحظة t=0

د- استنتج سرعة اختفاء شوارد $(H_3O^*_{(aq)})$ عند نفس اللحظة.

4- عرّف زمن نصف التفاعل، وحدد قيمته بيانيا.

M(Zn) = 65,4g/mol ، R = 8,314(SI) حيث PV = nRT : تعطى عبارة قانون الغاز المثالي بالعلاقة

الشكل (8)

امة	العلا	عناصر الإجابة على الموضوع الأول
مجموع	مجزأة	034, 63-3-1, 62-1, 9, 5
		التمرین الأول: ($03,5$) التمرین الأول: ($03,5$) 1- جدول تقدم التفاعل: 0.0
	0,25x3	$S_20_{3\ (aq)}^{2-} + 2H_30_{(aq)}^{+} = S_{(s)}^{} + SO_{2(g)}^{} + 3H_20_{(I)}^{}$ المعادلة كميات المادة بالمول $X=0$ N_{01} N_{02} N_{02} N_{02} N_{03} N_{01} N_{02} N_{03}
	0,25	: تحديد المتفاعل المحد : $n_{01} - x_{max} = 0 \Rightarrow x_{max} = n_{01} = c_1 v_1 = 0, 5 \times 0, 480 = 0, 24 mol$
	0,25	$n_{02} - 2x_{\text{max}} = 0 \Rightarrow x_{\text{max}} = \frac{n_{02}}{2} = \frac{c_2 v_2}{2} = \frac{5 \times 0,02}{2} = 0,05 \text{mol}$
3,5	0,25	$_{\rm X_{max}}=0.05{ m mol}$ ومنه المتفاعل المحد هو $_{\rm (aq)}^{+}$ و
	0,25	H_3O^+ ، $S_2O_3^{2-}$: سبب اختفاء شوارد $S_2O_3^{2-}$: $S_2O_3^{2-}$ ، $S_2O_3^{2-}$
	0,25	4- أ- تعريف السرعة الحجمية للتفاعل : هي مقدار تغير تقدم التفاعل بدلالة الزمن في وحدة الحجوم $v_{vol} = rac{1}{V} imes rac{dx}{dt}$: وتعطى بالعلاقة : $v_{vol} = rac{1}{V} imes rac{dx}{dt}$
	0,25x2	$v_{vol} = -\frac{1}{170V} \times \frac{d\sigma(t)}{dt} \Leftarrow \frac{dx}{dt} = -\frac{1}{170} \times \frac{d\sigma(t)}{dt} \Leftarrow x = \frac{20,6-\sigma(t)}{170}$ $v_{vol} = -\frac{1}{170V} \times \frac{d\sigma(t)}{dt} = -170 \frac{dx}{dt} \Rightarrow \sigma(t) = 20,6-170x \text{exist}$ $v_{vol} = -\frac{1}{170V} \times \frac{d\sigma(t)}{dt} \Leftarrow \frac{1}{V} \frac{d\sigma(t)}{dt} = -170 \frac{1}{V} \frac{dx}{dt} = -170v_{vol}$ $e_{vol} = -\frac{1}{170V} \times \frac{d\sigma(t)}{dt} = -170 \frac{1}{V} \frac{dx}{dt} = -170v_{vol}$ $e_{vol} = -\frac{1}{170V} \times \frac{d\sigma(t)}{dt} = -170 \frac{1}{V} \frac{dx}{dt} = -170v_{vol}$
	0,25	$v_{vol} = \frac{1}{170 \times 0.5 \times 10^{-3}} \times \frac{0 - 5 \times 4.12}{158.7 - 0} = 1,53 mol \cdot m^{-3} \cdot s^{-1} = 1,53 \times 10^{-3} mol \cdot L^{-1} \cdot s^{-1}$
	0,25	د- تعريف زمن نصف التفاعل: هو الزمن اللازم لبلوغ تقدم التفاعل نصف قيمته النهائية.
	0,25 0.25	$\sigma(t_{1/2}) = 20,6 - 170 \times 0,025 = 16,35 (S/m)$ قيمته: ($t_{1/2} = 48,3s = 0,5$ ومن البيان نجد: $t_{1/2} = 48,3s = 0$ ملاحظة: تقبل القيم القريبة من هذه القيمة

الإجابة النموذجية وسلم التنقيط مادة: العلوم الفيزيائية الشعبة: رياضيات وتقني رياضي دورة: جوان 2015

العلامة		عناصر الإجابة على الموضوع الأول
مجموع	مجزاة	
		التمرين الثاني: (30 نقاط) التمرين الثاني: (3 نقاط) التمرين الثاني: $C o {}^{14}_{6} C o {}^{4}_{7} X + {}^{0}_{1} e$ حيث:
	0,25×2	${}_{6}C \rightarrow {}_{2}X + {}_{-1}e \qquad (14)$
	0.05	$_{7}N \Leftarrow _{7}X \leftarrow Z = 0 - (-1) = 79 X - 14 - 0 - 14$ $_{6}^{14}C \rightarrow _{7}^{14}N + _{-1}^{0}e$
	0,25	
		2- أ- طاقة الربط:
	0,25×2	$E_{l}({}^{14}_{6}C) = (6m_{P} + 8m_{n} - m({}^{14}_{6}C)).c^{2}$
		$= (6 \times 1,00728 + 8 \times 1,00866 - 13,99995) \times 931,5 = 105,268815 MeV$
	0.05	$rac{E_{l({}_{0}^{14}C)}}{14}=rac{105,27}{14}=7,52 MeV/nuc:14$ ب- طاقة الربط لكل نوبة لنواة الكربون
3,0	0,25	14 14
		3- أ- عدد أنوية الكربون 12 و الكربون 14.
	0,25	$N(^{12}C) = \frac{0.15 \times 6.02 \times 10^{23}}{12} = 7.525 \times 10^{21} noyaux$
	0,23	12
	0,25	$N_0(^{14}C) = 7,525 \times 10^{21} \times 1,2 \times 10^{-12} = 9,03 \times 10^9 $ noyaux
		ب- النشاط الابتدائي A_0 : $In(2) \times N$ $= 0.03 \times 10^9 \times \ln 2$
		$A_0 = \lambda N_0 = \frac{\ln(2) \times N_0}{t_{1/2}} = \frac{9,03 \times 10^9 \times \ln 2}{5730 \times 31536 \times 10^3} = 0,0346Bq$
	0,25×2	1/2
		$t = \frac{t_{1/2} \times \ln \frac{A_0}{A(t)}}{\ln 2} = \frac{5730 \times \ln \frac{0,0346}{0,023}}{\ln 2} = \frac{3375,76ans}{3.75,76ans}$
	0,25×2	$t = \frac{A(t)}{1.00} = \frac{0,023}{1.000} = 3375,76$ عمر الخشبة:
		ln2 ln2 32es - 多4o-
		التمرين الثالث: (03 نقاط) 1-أ- تمثيل القوى الخارجية: ←
	المرسم	
	الرسم 0,25	$\sum \overline{F_{ext}} = m \overline{a} \Rightarrow \overline{P} + \overline{f} = m \overline{a}$ ب- بتطبيق القانون الثاني لنيوتن :
	0,25×2	$mg - Kv = ma = m \frac{dv}{dt} \Rightarrow \frac{dv}{dt} + \frac{k}{m}v = g : OZ$ وبالإسقاط على
	0.05.0	$\frac{dv}{dt} = 0 \Rightarrow \frac{k}{m} v_{\text{lim}} = g \Rightarrow v_{\text{lim}} = \frac{mg}{k}$: v_{lim} السرعة الحدية
2.0	0,25×2	u = m
3,0	0,25	$v_{lim}=2.0~m/s$ أ- برسم المستقيم المقارب الأفقي للمنحنى نجد:
	0,25×2	$k = \frac{mg}{v_{\text{lim}}} \Rightarrow [k] = \frac{[M][g]}{[v_{\text{lim}}]} = \frac{[M][L][T]^{-2}}{[L][T]^{-1}} = [M][T]^{-1} : k$ ب- وحدة
	0,23^2	$ v(m/s) $ $ v_{\lim} [v_{\lim}] [L][T]^{-1} $ ومنه وحدة k هي Kg/s
	0.2542	
	0,25×2	$rac{m}{k} = rac{v_{ m lim}}{g} = rac{2}{10} = 0, 2s$ حساب قيمة m/k من عبارة السرعة الحدية نجد
	0,25 0,25	t(s) التسارع يتناقص بمرور الزمن خلال النظام الانتقالي وينعدم عند بلوغ النظام الدائم. $t(s)$
	0,25	4- منحنى السرعة للسفوط الشافوني في الفراع:

الإجابة النموذجية وسلم التنقيط مادة: العلوم الفيزيائية الشعبة: رياضيات وتقني رياضي دورة: جوان 2015

العلامة		عناصر الإجابة على الموضوع الأول
مجموع	مجزأة	
	0,25×2	التمرين الرابع: (3,5 نقطة) 1- ايجاد المعادلة النفاضلية: بتطبيق قانون جمع التوترات نجد: $ \frac{di}{dt} + \frac{(R+r)}{L}i = \frac{E}{L} \Leftarrow L\frac{di}{dt} + (R+r)i = E \Leftarrow u_R + u_b = E $ وهي من الشكل: $\frac{di}{dt} + \alpha i = \beta$ (2) $\frac{di}{dt} + \alpha i = \beta$
	0,25×2	$eta=rac{E}{L}$ و $lpha=rac{R+r}{L}$ بالمطابقة نجد: $lpha=rac{R+r}{L}$ عن الحل: -2
	0,25×2	$\beta = \beta \Leftarrow \beta e^{-\alpha t} + \alpha \frac{\beta}{\alpha} - \alpha \frac{\beta}{\alpha} e^{-\alpha t} = \beta \Leftarrow \frac{di}{dt} = \beta e^{-\alpha t} \leftarrow i(t) = \frac{\beta}{\alpha} (1 - e^{-\alpha t})$ e_{α} e_{α} $\vdots u_{b}(t)$ $\vdots u_{b}(t)$ $\vdots u_{b}(t)$ $\vdots u_{b}(t)$
	0,25	$\begin{split} u_b(t) &= L\frac{di}{dt} + ri = L\frac{E}{L}e^{-\frac{R+r}{L}t} + r\frac{E}{R+r} - r\frac{E}{R+r}e^{-\frac{R+r}{L}t} \\ &= Ee^{-\frac{R+r}{L}t}(1 - \frac{r}{R+r}) + \frac{rE}{R+r} = \frac{R+r-r}{R+r}Ee^{-\frac{R+r}{L}t} + \frac{rE}{R+r} = \frac{E}{R+r}(r + \operatorname{Re}^{-\frac{R+r}{L}t}) \end{split}$
3,5	0,25	$u_{b}(t) = E - u_{R} = E - RI(1 - e^{\frac{R+r}{L}t}) = (R+r)I - RI + RIe^{\frac{R+r}{L}t} = rI + RIe^{\frac{R+r}{L}t} = \frac{E}{R+r}(r + Re^{\frac{R+r}{L}t})$ U_{B}
	0,25	E=6V : القوة المحركة الكهربانية للمولد:
	0,25	$r=rac{1,5R}{E-1,5}=rac{1,5 imes 15}{6-1,5}=5\Omega eq rac{Er}{R+r}=1,5$ مقاومة الوشيعة: $ au=25ms$ - ثابت الزمن: $ au=25ms$
	0,25 0,25	$L = \tau(R+r) = 0,025 \times 20 = 0,5H$ - الذاتية:
	0,25	$E_{(L)}=rac{1}{2}L\cdot i^2=rac{1}{2}L(rac{E}{R+r})^2(1-e^{-rac{R+r}{L}t})^2$: عبارة الطاقة اللحظية $E_l=Li^2/2$ عبارة الطاقة اللحظية : $E_l=Li^2/2$
	0,25	: قيمة الطاقة في النظام الدائم: $E_{(L)} = \frac{1}{2}L \cdot I_0^2 = \frac{1}{2}L \left(\frac{E}{R+r}\right)^2 = \frac{1}{2} \times 0.5 \left(\frac{6}{15+5}\right)^2 = 2.25 \times 10^{-2} J$

الإجابة النموذجية وسلم التنقيط مادة: العلوم الفيزيائية الشعبة: رياضيات وتقني رياضي دورة: جوان 2015

العلامة		عناصر الإجابة على الموضوع الأول					
مجموع	مجزأة						
		التمرين الخامس: (3,5 نقطة)					
	0,25	1- أ- نطبق م إ الطاقة على المتزلج بين A و B.					
	0,25	$Epp_A + Ec_A - W_{(AB)}(f) = Epp_B + Ec_B$					
		$h_A - h_B = AB \times \sin \alpha$ $mg(h_A - h_B) - \frac{1}{2} mv_B^2 = f \times AB$					
	0,25						
		$f = \frac{m(g \times AB \times \sin \alpha - 0, 5 \cdot v_B^2)}{AB} = \frac{80(10 \times 50 \times 0, 5 - 0, 5 \times 20^2)}{50} = 80N$ ومنه:					
	0,25	$X'X$ بالإسقاط على $\sum \overline{F_{ext}} = m a \Rightarrow \overline{P} + \overline{R} + \overline{f} = m a$					
	,	$mg \sin \alpha - f = ma \Rightarrow a = g \sin \alpha - \frac{f}{m} = C^{1e}$					
	0,25	m ومنه الحركة م م بانتظام معادلتها:					
		$a = \frac{v^2}{2x} = \frac{400}{100} = 4m/s^2$					
	0,25	2x 100 يمكن استعمال طرق أخرى					
		2- معادلة المسار : بتطبيق القانون الثاني لنيوتن :					
3,5		$\overrightarrow{Q} = \overrightarrow{Q} \leftarrow \sum \overrightarrow{F}_{ext} = \overrightarrow{P} = m\overrightarrow{a}$					
3,5	0.25	بالإسقاط على :'xx نجد $a_x = 0 \Rightarrow V_x = V_C \Rightarrow x(t) = V_C \cdot t$					
	0,25	بالإسقاط على 'yy' نجد:					
	0,25	$c = 0 \leftarrow t = 0 \text{ if } V_y = -gt + c = -gt \Leftarrow \frac{dV_y}{dt} = -g \Leftarrow a_y = -g$					
		$y = -\frac{1}{2}gt^2 + c' \Leftarrow V_y = \frac{dy}{dt} = -gt$					
	0,25	$c' = h \leftarrow t = 0 : \dot{\forall} y = -\frac{1}{2}gt^2 + h$					
	0,25	$y = -\frac{g}{2V_c^2}x^2 + h \leftarrow t = \frac{x}{V_c}$					
:		$V^2 = V_x^2 + V_y^2 = V_C^2 + (-gt)^2$ 3					
	0,25	$V^2 = g^2 t^2 + V_C^2$ - العلاقة النظرية: $V^2 = g^2 t^2 + V_C^2$					
	0,25	$V_C = 10m/s \iff V_C^2 = 100m^2/s^2$ -بیانیا:					
THE PARTY OF THE P	0,25	$V_E = 15m/s \leftarrow V_E^2 = 225m^2/s^2$					
	0,25	جـ- الإرتفاع h : بتطبيق م إ الطاقة بين C و E نجد: 225 - 100 - 225 - 200					
	0,23	$h = \frac{V_E^2 - V_c^2}{2 \cdot g} = \frac{225 - 100}{20} = 6,25m$					
		t_{E} تقبل طريقة استعمال المعادلة الزمنية بعد حساب					

العلامة		عناصر الإجابة على الموضوع الأول							
مجموع	مجزأة								
	0,25			$O_{3(aq)}^- + H_3 O^+_{(aq)}$	التمرين التجريبي: (5 1- معادلة التفاعل: (ر 5 ب- جدول التقدم:				
		المعادلة $C_3 H_6 O_{3(aq)} + H_2 O_{(I)} = C_3 H_5 O_{3(aq)}^- + H_3 O^+$ کمیات المادة بالمول کمیات المادة علمول							
	0,50	التقدم حالة الجملة 0 ابتدائية	عده بالمون بوفرة	حمیات اله	0				
		$egin{array}{ccccc} x & n_0 - x & & & & & \\ n_0 - x & & & & & & \\ x_{\acute{e}q} & & & & & & \\ & & & & & & \\ & & & & & $		X Xéq	X X _{éq}				
	0,25×3	$\left[H_3O^+\right]_{\acute{e}q} = 10^{-2.4} = 3.98 \times 10^{-2.4}$		·	جــ تراكيز الأفراد الكيمي				
	0,23^3	$\begin{bmatrix} C_3 H_5 O_3^- \end{bmatrix}_{\ell q} = \begin{bmatrix} H_3 O^+ \end{bmatrix}_{\ell q} = -$ $\begin{bmatrix} C_3 H_6 O_3 \end{bmatrix}_{\ell q} = C - \begin{bmatrix} H_3 O^+ \end{bmatrix}_{\ell q}$,						
	0,25	$pka = pH - \log \frac{\left[C_{3}H_{5}O_{3}^{-}\right]_{eq}}{\left[C_{3}H_{6}O_{3}\right]_{eq}} =$	2,4-log0,0)4145 = 3,78 : (3,4 -	د- ثابت الحموضة pka .				
3,5	0,50	$C_3H_6O_{3(aq)}+H_6$	$O^{-}_{(aq)} = C_3 H_3$	$_{5}O_{3(aq)}^{-} + H_{2}O_{(l)}$	2-أ- معادلة المعايرة:				
					$:C_a$ بب التركيز عند التكافو :				
	0,25×2	$C_a = \frac{C_b \cdot V_{bE}}{V_a} = \frac{2 \times 1}{V_a}$	$ \Leftarrow C_a \cdot V_a = C_b \cdot V_{bE} $						
	0,25	140	00 7 66		=5,66mol/L ومنه:				
	0,25	$p = \frac{MC_0}{10d} = \frac{MC_0}{10 \times \frac{\rho}{\rho}} =$	$\frac{90 \times 5,66}{10 \times \frac{1,13}{1}} =$	= 45,08 \approx 45	جـ النسبة المنوية: %				
A Commence of the Commence of	0.25	$p = \frac{m'}{m} = \frac{50}{1}$ وذلك بأخذ الحجم	$\frac{09,4}{130} = 0,43$						
	0,25			لاصقة صحيح.	نستنتج أن ما كتب على ال				

الإجابة النموذجية وسلم التنقيط مادة: العلوم الفيزيائية الشعبة: رياضيات وتقني رياضي دورة: جوان 2015

The second secon	العلامة	عناصر الإجابة على الموضوع الثاني
مجموع	مجزأة	
		التمرين الأول: (30 نقاط) $186 Re ightarrow 186 Re ightarrow 18$
	0,25×2	$75 Re \rightarrow 76 Os + 76 $
		$_{75} \text{ Re} \rightarrow _{76} \text{OS} + _{-1} \text{e} \xrightarrow{\text{cas}} Z = 73 = 70 = -1$, $A = 180 - 100 = 0$
	0,25	β^- : نمط التحول β^-
		تعريف $- \beta$: يحدث في الأنوية التي بها فائض في عدد النيترونات حيث يتحول نيترون إلى
	0,25	بروتون مع إصدار الكترون وفق المعادلة : $p+\stackrel{\circ}{_{0}}e$
	0,25	$A_0=4 imes10^9Bq$: من البيان نجد : A_0 استنتاج قيمة A_0
	0,25	ب- تعريف t _{1/2} : هو الزمن اللازم لتفكك نصف عدد أنويه العيّنة (أو تناقص نشاط العيّنة إلى
3,0	0,25	النصف) بيانيا نجد : t _{1/2} =3,5jours.
	0,23	.t _{1/2} - 3,5 jours . —
	0.25	$\lambda = \frac{\ln 2}{t_{1/2}} = \frac{\ln 2}{3.5} = 0.198 j^{-1} = 2.3 \times 10^{-6} s^{-1}$: $\lambda = \frac{\ln 2}{3.5} = 0.198 j^{-1} = 2.3 \times 10^{-6} s^{-1}$
	0,25	$\frac{\lambda - \frac{1}{t_{1/2}} - \frac{1}{3.5} - 0.198j - 2.5 \times 10^{-3}}{3.5} = \frac{1}{2} \times \frac{1}{2} = \frac{1}{2}$
		:t ₁ عند أنوية Re عند الوية عند :
		0 0 108-10
	0,25×2	$N(t_1) = \frac{A_0 \times e^{-\lambda t_1}}{\lambda} = \frac{4 \times 10^9 e^{-0.198 \times 10}}{2.3 \times 10^{-6}} = 2.4 \times 10^{14} noyaux$
		$\lambda = 2,3 \times 10^{-5}$
		·V حساب -4
	0,25×2	$1.2 \times 10^{14} \times 10$ $(2.4 \times 10^{14} \rightarrow 10mL)$
	0,23	$V = \frac{1,2 \times 10^{14} \times 10}{2,4 \times 10^{14}} = 5,0 ml \Leftarrow \begin{cases} 2,4 \times 10^{14} \to 10 mL \\ 1,2 \times 10^{14} \to V \end{cases}$

العلامة		عناصر الإجابة على الموضوع الثاني
مجموع	مجزأة	
	0,25	التمرين الثاني: (3.5 نقطة) - رسم الدارة: - رسم الدورة: - بتطبيق قانون جمع التوترات نجد: التعلق قانون جمع التوترات نجد :
	0,25×2	$RC\frac{du_{C}}{dt} + u_{C} = E \Leftarrow u_{C} + u_{R} = E$ $\frac{du_{C}}{dt} + \frac{u_{C}}{RC} = \frac{E}{RC} \Rightarrow 0$ $\frac{du_{C}}{dt} = \frac{A}{RC} e^{-\frac{1}{\tau}} \Leftarrow u_{C}(t) = A(1 - e^{-\frac{1}{\tau}}) : 0$
3,5	0,25×2	وبالتعويض في المعادلة التفاضلية: $Ae^{-\frac{t}{\tau}}(\frac{1}{\tau}-\frac{1}{RC}) + \frac{A}{RC} - \frac{E}{RC} = 0 \Leftarrow \frac{A}{\tau}e^{-\frac{t}{\tau}} + \frac{A}{RC} - \frac{A}{RC}e^{-\frac{t}{\tau}} = \frac{E}{RC}$ $\Rightarrow Ae^{-\frac{t}{\tau}}(\frac{1}{\tau}-\frac{1}{RC}) = 0$ $\Rightarrow Ae^{-\frac{t}{\tau}}(\frac{1}{\tau}-\frac{1}{RC}) = 0$ $\Rightarrow A = E \Leftarrow \frac{A}{RC} = \frac{E}{RC} \Leftarrow \frac{A}{RC} - \frac{E}{RC} = 0$ $\Rightarrow T = RC \Leftarrow \frac{1}{\tau} - \frac{1}{RC} = 0$ $\Rightarrow u_{C}(t) = E(1-e^{-\frac{t}{RC}})$ eais
3,3	0,25	$\ln(E-u_c) = -\frac{t}{\tau} + \ln E \iff E-u_C = Ee^{-\frac{t}{\tau}} \iff u_C = E-Ee^{-\frac{t}{\tau}}$: اثبات العلاقة: -5
	0,25	: العبارة البيانية : $ln(E-u_C)=at+b$ حيث: E حيث: $ln(E-u_C)=-1000t+1,5 \Leftarrow a=\frac{0-1,5}{(1,5-0)\times 10^{-3}}=-1000 \;\;; \;\; b=1,5$ وبالمطابقة نجد : $E=1,5$
	0,25	$C = \frac{\tau}{R} = \frac{0,001}{100} = 10,0 \mu F \Leftarrow \tau = \frac{1}{1000} = 0,001s$: C و من τ و کل من τ
	0,25×2	$E_C(t) = \frac{1}{2}Cu_C^2 = \frac{1}{2}CE^2(1-e^{-\frac{t}{RC}})^2$: delia il delia
	0,25	: $\frac{1}{CF^2(1-a^{-1})^2}$
	0,25	$\frac{E_C(\tau)}{E_C(\infty)} = \frac{\frac{1}{2}CE^2(1 - e^{-1})^2}{\frac{1}{2}CE^2} = (1 - e^{-1})^2 \approx 0.4$
	0,25	$C_{eq} = \frac{C}{4} \Leftarrow C_{eq} \times R = \frac{RC}{4} \Leftarrow \tau' = \frac{\tau}{4} : C' \text{ in a point } -7$
	0,25	ومنه المكثفة تربط على التسلسل مع المكثفة السابقة. $C' = \frac{C}{3} = \frac{10}{3} = 3,33 \mu F \iff \frac{1}{C} = \frac{1}{C} = \frac{1}{C} = \frac{4}{C} - \frac{1}{C} = \frac{3}{C} \iff \frac{1}{C_{eq}} = \frac{1}{C} + \frac{1}{C'}$

الإجابة النموذجية وسلم التنقيط مادة: العلوم الفيزيائية الشعبة: رياضيات وتقني رياضي دورة: جوان 2015

العلامة		عناصر الإجابة على الموضوع الثاني					
مجموع	مجزأة	• •					
		التمرين الثالث: (3.5 نقطة) 1-أ-					
	0,25	$IV II \ 4 \ (aq) = IV II \ 3 \ (aq) \ (aq)$					
	,	$H^{-+}_{(aq)} + HO^{-}_{(aq)} = H_{-2}O^{-}_{(l)}$					
		ومنه التفاعل حمض- أساس ب- جدول التقدم					
	0,25×2	$NH_{4(aq)}^{+} + HO_{(aq)}^{-} = NH_{3(aq)} + H_{2}O_{(l)}$					
	0,23 2	التقدم حالة الجملة المول التقدم حالة الجملة المول					
		بو فرة 0 n ₀ n ₀ الابتدانية					
		الانتقالية x n ₀ -x x x					
		النهانية x _{eq} n ₀ -x _{eq} n' ₀ -x _{eq} X _{eq}					
		التقدم الأعظمي:					
		$x_{max} = C_1 V_1 = n_0 = 0.15 \times 20 \times 10^{-3} = 3 \times 10^{-3} mol \iff C_1 V_1 - x_{max} = 0$					
;	0,25	$x_{max} = C_2 V_2 = n_0' = 0.15 \times 10 \times 10^{-3} = 1.5 \times 10^{-3} mol \iff C_2 V_2 - x_{max} = 0$					
	0,25×2	$x_{max} = 1.5 \times 10^{-3} mol$ وبالتالي: HO وبالتالي: $x_{max} = 1.5 \times 10^{-3} mol$					
3,5		max = 1,5 × 10 mov ig is 15 120 5					
3,0		جـ- البر هان:					
	0,25×2	$n_{\acute{e}q(HO^{-})} = n'_{0} - x_{\acute{e}q} \Rightarrow x_{\acute{e}q} = n'_{0} - n_{\acute{e}q(HO^{-})} = n'_{0} - \left[HO_{(aq)}^{-}\right]_{eq} \times V_{T} = n'_{0} - 10^{-14+pH} \times V_{T}$					
		$x_{eq}=1,5 imes10^{-3}-10^{-14+9.2} imes30 imes10^{-3}\simeq 1,5 imes10^{-3}$ سانسية النهائية لتقدم التفاعل:					
	0,25×2	التفاعل تام. $ au_f = \frac{x_{eq}}{x} = 1$					
		· max					
		2- أ- التركيز C _a :					
	0,25×2	$C_a = \frac{C_b \cdot V_{bE}}{V_a} = \frac{0.2 \times 14}{10} = 0.28 mol / L$					
		$^{ u}_{a}$ $^{ u}_{a}$ عساب كتلة الأزوت في العينة:					
		The state of the s					
	0.25	$m_{(N)} = 1,96g \iff \begin{cases} 1 m o l \to 28 g \\ 0,28 \times 250 \times 10^{-3} m o l \to m_N \end{cases}$					
	0,25	$(0,26\times230\times10^{-10})$					
		ب- حساب النسبة المئوية:					
		$\%N = \frac{m_N}{m} = \frac{1,96}{6} \approx 0,33 = 33\%$					
	0,25	$7017 = \frac{1}{m} = \frac{1}{6} = 0.33 = 3376$					
	0,23	المالة الصد في الجالم من					
		هذا يطابق ما كتب على اللاصقة.					

الإجابة النموذجية وسلم التنقيط مادة: العلوم الفيزيائية الشعبة: رياضيات وتقني رياضي دورة: جوان 2015

العلامة		عناصر الإجابة على الموضوع الثاني
مجموع	مجزأة	
	0,25	V ملاحظة: تبدو المنطقة التي تنتمي إليها النقطة B صغيرة نسبيا لأن الشبكة تخفي جزءا منها أمام اللاعب الموجود في النقطة O . V_0
	0,25	$\sum \overrightarrow{F_{ext}} = \overrightarrow{P} = m \overrightarrow{a}$: بتطبیق القانون الثانی لنیوتن
	0,25	$a_x = 0 \Leftarrow 0 = m a_x : (ox)$ - بالإسقاط على (ox) - بالإسقاط على ومنه الحركة وفق - بالإسقامة معادلتها - بالإسقاط على - بالإسقام على المتعلق ا
	0,25	: (oy) بالإسقاط على $v_y = -gt + c \Leftarrow a_y = \frac{dv_y}{dt} = -g \Leftarrow -mg = ma_y$
3,0	0,25	$v_{y} = -gt = \frac{dy}{dt} \leftarrow v_{0y} = c = 0 \leftarrow t = 0 9$
	0,25	$y = -\frac{1}{2}gt^2 + c' \Leftarrow \frac{dy}{dt} = -gt $ $y(t) = -\frac{1}{2}gt^2 + h \Leftarrow y = c' = h \leftarrow t = 0$
	0,25×2	$y = -\frac{g}{2v_0^2} \cdot x^2 + h = -4 \cdot 10^{-3} \cdot x^2 + 2, 2 \leftarrow t = \frac{x}{v_0}$
	0,25×2	$x=12,2m$: مل تمر الكرة فوق الشبكة : نعوض في معادلة المسار بـ: $y_F = -4 \cdot 10^{-3} \times (12,2)^2 + 2,2 = 1,6m > 0,92m$ ومنه الكرة تمر فوق الشبكة .
	0,25×2	$y_{B}=0$: عند الموضع B فابن : $y_{B}=0$ ومنه: $x_{B}=\sqrt{\frac{2,2}{0,004}}=23,45m>18,7m \Leftarrow -4\cdot10^{-3}\cdot x_{B}^{2}+2,2=0$
		ومنه الإرسال خاطئ.

الإجابة النموذجية وسلم التنقيط مادة: العلوم الفيزيائية الشعبة: رياضيات وتقني رياضي دورة: جوان 2015

العلامة		و المرابية والمالية و
مجموع	مجزأة	عناصر الإجابة على الموضوع الثاني
	0,25×2	X' f T_A Y' X T_B R_B R_B R_B R_B
	0,25	بتطبیق القانون الثانی لنیوتن : $\sum \overline{F_{ext}} = \overline{P_A} + \overline{R_A} + \overline{T_A} + \overline{f} = m_A \overline{a} : (A)$ العربة $T_A - f = m_A a$ (1) $(X'X)$ بالإسقاط علی $(X'X)$ العربة $\overline{F_{ext}} = \overline{P_A} + \overline{R_A} + \overline{T_A} = m_B \overline{a} : (B)$ العربة $(X'X)$
	0,25	$m_B g \sin \alpha - T_B = m_B a$ (2) (Y'Y) بالإسقاط على
3,5	0,25	$m_B g \sin \alpha - f = a(m_A + m_B)$ ومنه : $T_A = T_B$ ومنه $v(m/s)$ ومنه : $dv = f - m_B g \sin \alpha$
	0,25	(I) $\frac{dv}{dt} + \frac{f - m_B g \sin \alpha}{m_A + m_B} = 0$ ومنه: $\beta = \frac{f - m_B g \sin \alpha}{m_A + m_B} = \frac{dv}{dt} + \beta = 0$ فهي من الشكل: $\beta = \frac{f - m_B g \sin \alpha}{m_A + m_B}$
	0,25	$m_A + m_B \qquad dt$ $\frac{1}{0.5} \qquad t \text{ (s)}$ $0.5 \qquad 2$ $1 - 2$
	0,25 0,25	البيان (1) يوافق العربة (B) لأنه بعد انقطاع الخيط تزداد سرعتها البيان (2) يوافق العربة (A) لأنه بعد انقطاع الخيط تتناقص سرعتها بسبب قوة الاحتكاك حتى تتوقف البيان (2) عربة بيانيا : - بسارع كل عربة بيانيا :
	0,25×2	$a'_{B} = \frac{\Delta v}{\Delta t} = \frac{4,5-2}{0,5-0} = 5,0 m / s^{ 2} $ $a'_{A} = \frac{\Delta v}{\Delta t} = \frac{0-2}{2-0} = -1,0 m / s^{ 2}$
	0,25	$d=rac{1}{2} imes2 imes2=2,0$ س :A المسافة المقطوعة من طرف العربة
		جـ استنتاج شدة قوة الاحتكاك : العربة (A) : من المعادلة التفاضلية رقم (I) : f
	0,25	$f = -m_A a'_A = -0.3 \times (-1.0) = 0.3N \iff a'_A + \frac{f}{m_A} = 0$
	0,25	$\alpha=30^{\circ}\Leftarrow\sin\alpha=\frac{a_B}{g}=\frac{5}{10}=0,5\Leftarrow a_B-g\sin\alpha=0$: (B) العربة

العلامة					ى الموضوع الثاني	س الاحالة عا	alic	
مجموع	مجزأة			ڀ	ي ، ـــــــــــــــــــــــــــــــــــ			
	0,25×2			22.	$n = Zn^{2+} + 2\acute{e}$ $H_3O^+ + 2\acute{e} = H_2$	+2 <i>H</i> ₂ <i>O</i>	•	التمرين التجريبي 1- معادلة التفاعل
		$Zn_{(s)}+2H_3O_{(aq)}^+=H_{2(aq)}+Zn_{(aq)}^{2+}+2H_2O_{(l)}$ جدول التقدم: $Zn_{(s)}+2H_3O_{(aq)}^+=H_{2(g)}+Zn^{2+}_{(aq)}+2H_2O_{(l)}$ المعادلة						2- جدول التقدم: 2 H C
	0,25×2	حالة الجملة	التقدم	$2n_{(s)} +$		+ (ع) 2 H الموادة بالمو		
	,	ابتدائية	0	n ₀₁	n ₀₂	0	0	بوفرة ا
2.5		انتقالية	Х	n ₀₁ -x	n ₀₂ -2x	Х	Х	
3,5		نهائية	X _{max}	n ₀₁ -x _{max}	n ₀₂ -2x _{max}	X _{max}	X _{max}	1 1 2 11
			x_{max}	$= n_{01} = \frac{m}{M}$	$\frac{1}{65,4} = \frac{0,654}{65,4} = 1$	$0^{-2} mol \Leftarrow$	•	- تحدید المتفاعل 0
	0,25 0,25		X _{max}	$\frac{n_{02}}{2} = \frac{C}{2}$	$\frac{C \cdot V}{2} = \frac{10^{-2} \times C}{2}$ $x_{\text{max}} = 0$			i
	0,25	عجوم،	$x_{\rm max} = 5 \times 10^{-4} mol \; : \; H_3 {\rm O}^+$ و منه المتفاعل المحد هو $H_3 {\rm O}^+$ و . $H_3 {\rm O}^+$ و منه المتفاعل المحد هو $H_3 {\rm O}^+$ المتفاعل المت					
		$v_{vol} = rac{P}{VRT} imes rac{dV_{H_2}}{dt}$: باثبات أن t من جدول التقدم لدينا t						
	0,25×2	$v_{vol} = \frac{P}{VRT} \times \frac{dV_{H_2}}{dt} : \text{disc} \frac{dx}{dt} = \frac{P}{RT} \times \frac{dV_{H_2}}{dt} \Longleftrightarrow x = \frac{PV_{H_2}}{RT} \Longleftrightarrow PV_{H_2} = xRT \Longleftrightarrow n_{H_2} = x$ $: t = 0 \text{ are disciplinated in the proof of } v_{vol} = \frac{1,013 \times 10^5}{0,1 \times 8,314 \times 293} \times \frac{(12 - 0) \times 10^{-6}}{(6 - 0)} = 8,32 \times 10^{-4} \text{mol} \times L^{-1} \times \text{min}^{-1}$ $: \frac{\partial V_{vol}}{\partial t} = \frac{\partial V_{H_2}}{\partial t} = \frac{\partial V_{H_2}}{\partial t} = 2 \times \frac{\partial V_{H_2}}{\partial t} = 2 \times V \times V_{vol} : \text{limit}$ $ V_{H_3O^+} = -\frac{\partial V_{H_3O^+}}{\partial t} = -\frac{\partial V_{H_2}}{\partial t} = 2 \times V \times V_{vol} : \text{limit}$						
	0,25							
	0,25							
	0,25 0,25		اا: . ا:, تـ	ع م قرمة	,0			$10^{-5} mol / min$
	0,25				م لبلوغ تقدم التفاعل $T_{H_2}(t_{1/2}) = rac{8,31}{2}$			1