CHAPTER 8

THE DISJOINT SET ADT

§1 Equivalence Relations

[Definition] A *relation R* is defined on a set S if for every pair of elements (a, b), $a, b \in S$, a R b is either true or false. If a R b is true, then we say that a is related to b.

[Definition] A relation, \sim , over a set, S, is said to be an *equivalence relation* over S iff it is symmetric, reflexive, and transitive over S.

[Definition] Two members x and y of a set S are said to be in the same *equivalence class* iff $x \sim y$.

§2 The Dynamic Equivalence Problem

Given an equivalence relation \sim , decide for any a and b if $a \sim b$.

```
Example Given S = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\} and 9 relations: 12=4, 3=1, 6=10, 8=9, 7=4, 6=8, 3=5, 2=11, 11=12.
```

The equivalence classes are {2, 4, 7, 11, 12}, {1, 3, 5}, {6, 8, 9, 10}

```
Algorithm: (Union / Find)
{ /* step 1: read the relations in */
  Initialize N disjoint sets;
  while (read in a ~ b) {
    if (!(Find(a) == Find(b)))
        Union the two sets;
                                                 Dynamic (on-
  } /* end-while */
  /* step 2: decide if a ~ b */
                                                      line)
  while (read in a and b)
    if ( Find(a) == Find(b) ) output( true );
    else output(false);
```

 \bowtie Elements of the sets: 1, 2, 3, ..., N

 \bowtie Sets: S_1, S_2, \dots and $S_i \cap S_j = \phi$ (if $i \neq j$) — disjoint

[Example]
$$S_1 = \{ 6, 7, 8, 10 \}, S_2 = \{ 1, 4, 9 \}, S_3 = \{ 2, 3, 5 \}$$

Note:
Pointers are
from children
to parents

A possible forest representation of these sets

∠ Operations:

- (1) Union(i, j) ::= Replace S_i and S_j by $S = S_i \cup S_j$
- (2) Find(i) ::= Find the set S_k which contains the element i.

§3 Basic Data Structure

\bullet Union (i, j)

Idea: Make S_i a subtree of S_j , or vice versa. That is, we can set the parent pointer of one of the roots to the other root.

Implementation 2: S [element] = the element's parent.

Note: S [root] = 0 and set name = root index.

Example The array representation of the three sets is

Implementation 1:

name[k] (S) • (i) find (i) = 'S'

Implementation 2:

§4 Smart Union Algorithms

❖ Union-by-Size -- Always change the smaller tree
S [Root] = - size; /* initialized to be -1 */

Lemma Let T be a tree created by union-by-size with N nodes, then $\frac{1}{height} |\nabla y| \leq |\nabla y| + 1$

for the worst case
Proof: By induction. (Each element can have its set
example I gave.
name changed at most logy N times.)

Time complexity of N Union and M Find operations is now $O(N + M \log_2 N)$.

Union-by-Height -- Always change the shallow tree

Please read Figure 8.13 on p.273 for detailed implementation.

§5 Path Compression

```
SetType Find (ElementType X, DisjSet S)
  if (S[X] <= 0) return X;
  else return S[X] = Find(S[X], S);
                                                     Slower for
                                                  a single find, but
SetType Find (ElementType X, DisjSet S)
                                               faster for a sequence of
  ElementType root, trail, lead;
  for ( root = X; S[ root ] > 0; root = S[
                                                   find operations.
    ; /* find the root */
  for ( trail = X; trail != root; trail = lead ) {
    lead = S[ trail ];
   S[ trail ] = root ;
                         Note: Not compatible with union-by-
  } /* collapsing */
                               height since it changes the
  return root;
                               heights. Just take "height" as
                               an estimated rank.
```

§6 Worst Case for

Union-by-Rank and Path Compression

Lemma (Tarjan) Let T(M, N) be the maximum time required to process an intermixed sequence of $M \ge N$ finds and N-1 unions. Then:

 $k_1 M \alpha (M, N) \leq T(M, N) \leq k_2 M \alpha (M, N)$

 $\log^* 2^{65536} = 5$

since

loglogloglog

 $(2^{65536})=1$

36

for some positive constants k_1 and k_2 .

 \Leftrightarrow Ackermann's Function and α (M, N)

$$A(i,j) = \begin{cases} 2^j & i=1 \text{ and } j \ge 1 \\ A(i-1,2) & i \ge 2 \text{ and } j=1 \\ A(i-1,A(i,j-1)) & i \ge 2 \text{ and } j \ge 2 \end{cases}$$

http://mathworld.wolfram.com/AckermannFunction.html

$$\alpha(M,N) = \min\{i \ge 1 \mid A(i,\lfloor M/N \rfloor) > \log N\} \le O(\log^* N) \le 4$$

log* N (inverse Ackermann function)

= # of times the logarithm is applied to N until the result ≤ 1 .