Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет информационных технологий, механики и оптики»

Факультет программной инженерии и компьютерной техники

Лабораторная работа 6 Основы профессиональной деятельности Вариант 1105

> Выполнила: Студент группы Р3111 Батомункуева Виктория Жаргаловна Преподаватель: Саржевский Иван Анатольевич

Санкт-Петербург, 2022

Текст задания:

По выданному преподавателем варианту разработать и исследовать работу комплекса программ обмена данными в режиме прерывания программы. Основная программа должна изменять содержимое заданной ячейки памяти (X), которое должно быть представлено как знаковое число. Область допустимых значений изменения X должна быть ограничена заданной функцией F(X) и конструктивными особенностями регистра данных ВУ (8-ми битное знаковое представление). Программа обработки прерывания должна выводить на ВУ модифицированное значение X в соответствии с вариантом задания, а также игнорировать все необрабатываемые прерывания.

- 1. Основная программа должна уменьшать на 3 содержимое X (ячейки памяти с адресом 038₁₆) в цикле.
- 2. Обработчик прерывания должен по нажатию кнопки готовности ВУ-3 осуществлять вывод результата вычисления функции F(X)=-5X+2 на данное ВУ, а по нажатию кнопки готовности ВУ-2 выполнить операцию побитового маскирования, оставив 3-х младших разряда содержимого РД данного ВУ и X, результат записать в X
- 3. Если X оказывается вне ОДЗ при выполнении любой операции по его изменению, то необходимо в X записать максимальное по ОДЗ число.

Описание программы:

	ORG	0x4;	инициализация векторов прерываний
V2:	WORD	\$INT2, 0x180	
	ORG	0x6	
V3:	WORD	\$INT3, 0x180	
	ORG	0x38	
X:	WORD	0;	значение X
MASK:	WORD	0;	промежуточное значение маскирования Х
MIN:	WORD	0xC5;	минимально возможное значение X
MAX:	WORD	0x42;	максимально возможное значение X
NEWX:	LD	MAX;	обновление значение X на MAX
	RET		
START:	DI;		загрузка векторов прерываний
	CLA		

	LD	#0xA	
	OUT	5	
	LD	#0xB	
	OUT	7	
CYCLE:	DI;		бесконечный цикл вычитания 3 из X
	LD	X	
	SUB	#0x3	
	СМР	MIN;	проверка, подходит ли X под ОДЗ
	BGE	NEWX	
	ST	X	
	EI		
	JUMP	CYCLE;	обновление цикла
INT3:	NOP		
	PUSH;		сохранение аккумулятора
	DI		
	LD	X;	нахождение функции F(X)=-5X+2
	ROL		
	ROL		
	NEG		
	ADD	#0x2	
	OUT	6;	вывод на ВУ-3
	EI		
	POP;		восстановление аккумулятора
	NOP		
	IRET		
INT2:	NOP		
	PUSH;		сохранение аккумулятора
	IN	4;	ввод с ВУ-2
	AND	0x7;	обнуление всех битов, кроме последних трёх
	ST	MASK;	сохранение последних трёх битов
	LD	X;	загрузка Х
		•	• •

	AND	0xF8;	обнуление последних трёх битов
значе	ADD ния из ВУ-2	MASK;	замена последних 3 битов X на биты введённого
	СМР	MIN;	проверка, подходит ли Х под ОДЗ
	BLT	NEWX	
	ST	X	
	POP;		восстановление аккумулятора
	NOP		
	IRET		

Нахождение значения функции:

- 1. Основная программа должна уменьшать на 3 содержимое X (ячейки памяти с адресом 038_{16}) в цикле.
- 2. Обработчик прерывания должен по нажатию кнопки готовности ВУ-3 осуществлять вывод результата вычисления функции F(X)=-5X+2 на данное ВУ, а по нажатию кнопки готовности ВУ-2 выполнить операцию побитового маскирования, оставив 3-х младших разряда содержимого РД данного ВУ и X, результат записать в X
- 3. Если X оказывается вне ОДЗ при выполнении любой операции по его изменению, то необходимо в X записать максимальное по ОДЗ число.

Расположение в памяти ЭВМ:

0х38-0х3В – исходные значения

0х3С-0х63 – программа

Область представления:

 $\mathsf{X}-8$ -разрядное знаковое число

MIN- 8-разрядное знаковое число

МАХ– 8-разрядное знаковое число

MASK— 8-разрядное знаковое число

Область допустимых значений:

Так как регистры в ВУ 8-разрядные, то значение F(X) должно лежать в диапазоне [-2 7 ; 2 7 -1]. Тогда получим такие неравенства:

$$\begin{cases} -2X + 5 \ge -128 \\ -2X + 5 \le 127 \end{cases}$$

Решив эти неравенства получим диапазон для $X: -61 \le X \le 66$

или $C5_{16} \le X \le 42_{16}$

Методика проверки:

Загрузить комплекс программ в память БЭВМ

Изменить значения точки останова по адресам 0x4C, 0x58, 0x5A, 0x66 на HLT

Запустить основную программу в автоматическом режиме с адреса 0х38

Установить «Готовность ВУ-3»

Дождаться останова

Записать содержимое аккумулятора в момент останова программы

Продолжить выполнение программы

Дождаться останова

Записать содержимое аккумулятора в момент останова программы

Продолжить выполнение программы

Установить «Готовность ВУ-2»

Дождаться останова

Продолжить выполнение программы

Дождаться останова

Записать содержимое аккумулятора в момент останова программы

Завершить выполнение программы