Recorrências

André Gustavo dos Santos¹

¹ Departamento de Informática Universidade Federal de Viçosa

INF230 - 2021/1

André Gustavo UFV Recorrências INF230 - 2021/1 1 / 13

Conteúdo

- 1 Sequência
- 2 Recorrências
- 3 Métodos de resolução
- 4 Aplicações

André Gustavo UFV Recorrências INF230 - 2021/1 2 / 13

Os slides seguintes são baseados nas seções 2.4.3 e 8.1 do livro texto da disciplina:

Introdução

ROSEN, Kenneth H. Discrete mathematics and its applications. McGraw-Hill Education, 8th edition, 2018

André Gustavo UFV Recorrências INF230 - 2021/1 3 / 13

Introdução

- Seguências são listas ordenadas de elementos
- São usadas em matemática discreta de muitas formas, por exemplo, para representar soluções de certos problemas de contagem
- Também são uma importante estrutura de dados
- Muitas vezes precisamos trabalhar com a soma dos elementos de uma seguência
- Os termos de muitas sequências podem ser definidos por uma fórmula
- Em alguns casos podem ser representados por uma relação de recorrência, que expressa cada elemento em termos de elementos anteriores

André Gustavo UFV Recorrências INF230 - 2021/1 4 / 13

Sequências

- Uma sequência é uma estrutura discreta que representa uma lista ordenada
- Por exemplo, 1, 2, 3, 5, 8 é uma sequência de 5 termos
- Já 1, 3, 9, 27, 81, ..., 3^n , ... é uma sequência infinita

André Gustavo UFV Recorrências INF230 - 2021/1 5 / 13

Sequências - notação

Introdução

Usamos an para representar o n=ésimo elemento de uma sequência

Recorrências

■ Usamos {a_n} para representar a sequência

- A lista de termos, começando com a_1 , é dada por a_1 , a_2 , a_3 , a_4 , ...
- Ou seja, $\frac{1}{4}$, $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$, ...

Sequência $\{b_n\}$ com $b_n = 2 \cdot 5^n$

- \blacksquare A lista de termos, começando com b_0 , é dada por b_0 , b_1 , b_2 , b_3 , ...
- Ou seja, 2, 10, 50, 250, . . .

Sequência $\{c_n\}$ com $c_n = -1 + 4n$

- A lista de termos, começando com c_0 , é dada por c_0 , c_1 , c_2 , c_3 , ...
- Ou seja, -1, 3, 7, 11, . . .

André Gustavo UFV Recorrências INF230 - 2021/1

Recorrências

- Nos exemplos anteriores foram dadas fórmulas explícitas para os termos
- Outra forma de especificar uma sequência é informar um ou mais termos iniciais e uma regra para determinar os termos subsequentes a partir dos que os precedem
- Regras deste tipo são chamadas relações de recorrência

Relação de recorrência

Uma relação de recorrência para a sequência $\{a_n\}$ é uma equação que expressa a_n em termos de um ou mais termos anteriores da sequência (ou seja, $a_1, a_2, \ldots, a_{n-1}$) para todo inteiro $n \ge n_0$, sendo n_0 um inteiros não negativo.

Uma sequência é chamada solução de uma relação de recorrência se seus termos satisfazem a relação.

Sequência $\{a_n\}$ com $a_n = a_{n-1} + 3$ e $a_0 = 2$. Quanto valem a_1, a_2, a_3 ?

$$a_1 = a_0 + 3 = 2 + 3 = 5$$

$$a_2 = a_1 + 3 = 5 + 3 = 8$$

$$a_3 = a_2 + 3 = 8 + 3 = 11$$

7/13

André Gustavo UFV Recorrências INF230 - 2021/1

Recorrências - exemplos

Sequência $\{b_n\}$ com $b_n=5\cdot b_{n-1}$ e $b_0=2$. Quanto valem b_1,b_2,b_3 ?

$$b_1 = 5 \cdot a_0 = 5 \cdot 2 = 10$$

$$b_2 = 5 \cdot a_1 = 5 \cdot 10 = 50$$

$$b_3 = 5 \cdot a_2 = 5 \cdot 50 = 250$$

Sequência $\{c_n\}$ com $c_n = 4 + c_{n-1}$ e $c_0 = -1$. Quanto valem c_1, c_2, c_3 ?

$$c_1 = 4 + c_0 = 4 + (-1) = 3$$

$$c_2 = 4 + c_1 = 4 + 3 = 7$$

$$c_2 = 4 + c_2 = 4 + 7 = 11$$

Note que estas relações de recorrência definem $\{b_n\}$.e $\{c_n\}$ dadas como exemplos de sequência anteriormente.

8 / 13

André Gustavo UFV Recorrências INF230 - 2021/1

Recorrências - exemplos

Sequência $\{f_n\}$ com $f_n=f_{n-1}+f_{n-2}$ e $f_1=1$ e $f_2=2$. Quanto valem f_3,f_4,f_5 ?

$$f_3 = f_2 + f_1 = 2 + 1 = 3$$

$$I_4 = f_3 + f_2 = 3 + 2 = 5$$

$$f_5 = f_4 + f_3 = 5 + 3 = 8$$

Note que os 5 primeiros termos desta sequência são os termos da primeira sequência dada como exemplo nestes slides

André Gustavo UFV Recorrências INF230 - 2021/1 9 / 13

Recorrências

- Nos exemplos anteriores vimos que uma relação de recorrência define recursivamente uma sequência
- As condições iniciais de uma sequência definida recursivamente especificam os termos que precedem o primeiro termo em que a recorrência surte efeito
- Por exemplo, $f_1 = 1$ e $f_2 = 2$, $c_3 = -1$, $b_3 = 2$, $a_0 = 2$ nos exemplos anteriores

- Quando resolvemos uma relação de recorrência com as condições iniciais, achamos uma fórmula fechada para os termos da sequência
- Ou seja, uma fórmula explícita para os termos, que não usa termos anteriores
- Técnicas de solução de relações de recorrência serão vistas na próxima aula

André Gustavo UFV Recorrências INF230 - 2021/1 10 / 13

odução Sequência Recorrências **Métodos de resolução** Aplicações

Métodos de resolução

Na próxima aula

 André Gustavo
 UFV
 Recorrências
 INF230 - 2021/1
 11 / 13

Sequência Recorrências Métodos de resolução **Aplicações**OO OOO O O ●

Aplicações de recorrência

Introdução

- Relações de recorrência são muito importantes no estudo de algoritmos
- Programação dinâmica
 - Importante paradigma de desenvolvimento de algoritmos
 - Algoritmos que usam esta técnica dividem um problema em subproblemas sobrepostos
 - A solução do problema é obtida das soluções dos subproblemas por uma relação de recorrência
- Divisão-e-Conquista
 - Outro importante paradigma de desenvolvimento de algoritmos
 - Algoritmos com esta técnica dividem um problema em subproblemas não sobrepostos
 - Os subproblemas são divididos até que possam ser resolvidos diretamente
 - A análise de complexidade desses algoritmos é feita por relações de recorrência
- Relações de recorrência são úteis também na solução de problemas de contagem
 - Alguns podem ser resolvidos utilizando séries de potências, as funções geradoras
 - Os coeficientes das potências de x representam os termos da sequência
 - Funções geradoras podem ser usados também para resolver relações de recorrência

André Gustavo UFV Recorrências INF230 - 2021/1 12 / 13

Exemplos de aplicação

Na próxima aula

André Gustavo UFV Recorrências INF230 - 2021/1 13 / 13