Replication study -

Coalition mood in European parliamentary democracies

Imre, Michael; Ecker, Alejandro; Meyer, Thomas M.; Müller, Wolfgang C.

2022

https://doi.org/10.7910/DVN/FEQSC7, Harvard Dataverse, V1

Abstract (extract)

"The success and longevity of coalition governments depends on the ability to keep conflicts between coalition members at bay. ... This article presents a new approach to measuring the atmosphere between government parties. The 'coalition mood' is a time-varying measure that draws on applause patterns between coalition partners during legislative debates." (Imre et al., 2022)

Details of the original study

- Define 'coalition mood' as level of conflict, both policy and non-policy based
- Identification of the gap in the literature: how changes in mood over time relate to the success of coalition governments
- Fundamental assumption: more applause is associated with better atmosphere
- 350,000 party-to-party interactions during 105,000 plenary debates (all members of all parties are to attend)
- Germany, 1998–2017; Austria, 2003–18

Example of outputs of the study

One of the graphs presented in the original study shows that 'Coalition Mood', as measured by their definition of mood, follows electoral cycles.

Data

Data	
🗘 applause_austria	302 obs. of 4 variables
<pre>applause_germany</pre>	414 obs. of 4 variables

applause_austria ×							
$\langle \neg \Box \rangle$	↓□ ▼ Filter						
 ^	party_from_to	date	applause by 10 kwords	\$	role		
1	BZÖ for ÖVP	2006-05-01	25	5	Junior Party for PM Party		
 2	BZÖ for ÖVP	2006-06-01	2:	3	Junior Party for PM Party		
 3	BZÖ for ÖVP	2006-07-01	26	6	Junior Party for PM Party		
4	BZÖ for ÖVP	2006-09-01	33	3	Junior Party for PM Party		
 5	BZÖ for ÖVP	2006-10-01	24	4	Junior Party for PM Party		
6	BZÖ for ÖVP	2006-11-01	1!	5	Junior Party for PM Party		
7	BZÖ for ÖVP	2006-12-01	9	9	Junior Party for PM Party		
 8	FPÖ for ÖVP	2003-06-01	40	0	Junior Party for PM Party		
9	FPÖ for ÖVP	2003-07-01	3(n	lunior Party for PM Party		

MY CONTRIBUTION

"To measure the coalition mood, we model applause for government parties in the legislature as a negative binomial process [...] the negative binomial model is based on the log-transformed applause patterns (rather than raw frequencies) to account for the fact that additional applause should have a higher impact on the mood if the overall frequency of applause is rather low."

My contribution: Confirm that a negative binomial model is more appropriate than a Poisson model, i.e. over-dispersion is present (variance > mean).

Distribution of applause

Conclusion: Clearly a Poisson/negative binomial model will be appropriate here

Poisson and negative binomial models

Likelihood ratio test using Chi-squared

```
p_value <- pchisq(2 * (logLik(nb_model) - logLik(p_model)), df = 1, lower.tail = FALSE)</pre>
```

Conclusion: negative binomial is better, but can I get a p-value?

Likelihood Ratio test using Irtest

```
library("lmtest")
lrtest(p_model, nb_model)
      Likelihood ratio test
      Model 1: applause ~ date * dyad2 * country + words_party_to
      Model 2: applause ~ date * dyad2 * country + words_party_to
         #Df LogLik Df Chisq Pr(>Chisq)
      1 1066 -22241
      2 1067 -14399 1 15683
                             < 2.2e-16 ***
      Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Dispersion test

```
library(AER)

dispersiontest(p_model)
```

Overdispersion test

```
data: p_model
z = 25.65, p-value < 2.2e-16
alternative hypothesis: true dispersion is greater than 1
sample estimates:
dispersion
7.50158</pre>
```

Conclusion: Overdispersion, response variance is greater than the mean, so don't use Poisson.

Plot residuals for both models

Conclusion: residuals are smaller for Negative Binomial model, therefore it is a better model than Poisson for this data.

The non-random nature of the residuals reflects the heteroskedasticity predicted by the author of the original paper.

DISCOUNTED EXPLORATION

Square root of Applause

Conclusion: Under-dispersion – variance is now less

than the mean. But this is just a result of the transformation.

DISCOUNTED EXPLORATION

Log of Applause

data: logp_model

z = -87.088, p-value = 1

alternative hypothesis: true dispersion is greater than 1

sample estimates:

dispersion 0.1935945

Histogram of log(applausebymonth\$applause)

Again this merely reflects the transformation.