

Software Diversification for WebAssembly

JAVIER CABRERA-ARTEAGA

Doctoral Thesis in Computer Science Supervised by Benoit Baudry and Martin Monperrus Stockholm, Sweden, 2023

KTH Royal Institute of Technology
School of Electrical Engineering and Computer Science
Division of Software and Computer Systems
TRITA-EECS-AVL-2020:4
SE-10044 Stockholm
ISBN 100-Sweden

Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framlägges till offentlig granskning för avläggande av Teknologie doktorexamen i elektroteknik i .

© Javier Cabrera-Arteaga , date

Tryck: Universitetsservice US AB

Abstract

Keywords: Lorem, Ipsum, Dolor, Sit, Amet

Sammanfattning

LIST OF PAPERS

WebAssembly Diversification for Malware Evasion Javier Cabrera-Arteaga, Tim Toady, Martin Monperrus, Benoit Baudry Computers & Security, Volume 131, 2023, 17 pages https://www.sciencedirect.com/science/article/pii/S01674048230

2. Wasm-mutate: Fast and Effective Binary Diversification for WebAssembly

Javier Cabrera-Arteaga, Nicholas Fitzgerald, Martin Monperrus, Benoit Baudry

Under review, 17 pages

02067

https://arxiv.org/pdf/2309.07638.pdf

3. Multi-Variant Execution at the Edge

Javier Cabrera-Arteaga, Pierre Laperdrix, Martin Monperrus, Benoit Baudry

Moving Target Defense (MTD 2022), 12 pages

https://dl.acm.org/doi/abs/10.1145/3560828.3564007

4. CROW: Code Diversification for WebAssembly

Javier Cabrera-Arteaga, Orestis Floros, Oscar Vera-Pérez, Benoit Baudry, Martin Monperrus

Measurements, Attacks, and Defenses for the Web (MADWeb 2021), 12 pages https://doi.org/10.14722/madweb.2021.23004

5. Superoptimization of WebAssembly Bytecode

Javier Cabrera-Arteaga, Shrinish Donde, Jian Gu, Orestis Floros, Lucas Satabin, Benoit Baudry, Martin Monperrus

Conference Companion of the 4th International Conference on Art, Science, and Engineering of Programming (Programming 2021), MoreVMs, 4 pages https://doi.org/10.1145/3397537.3397567

6. Scalable Comparison of JavaScript V8 Bytecode Traces
Javier Cabrera-Arteaga, Martin Monperrus, Benoit Baudry
11th ACM SIGPLAN International Workshop on Virtual Machines and
Intermediate Languages (SPLASH 2019), 10 pages

https://doi.org/10.1145/3358504.3361228

ACKNOWLEDGEMENT

Contents

\mathbf{List}	of Papei	rs	iii	
Ackr	$\mathbf{lowledge}$	ement	v	
Cont	ents		1	
ΙT	hesis		3	
1 Ir	troduct	ion	5	
1.1	Backgro	ound	5	
1.2	Problen	n statement	5	
1.3	Automa	atic Software diversification requirements	5	
1.4		contributions	6	
1.5				
2 B	ackgrou	nd and state of the art	9	
2.1	WebAss	sembly	9	
	2.1.1	From source code to WebAssembly	. 10	
	2.1.2	WebAssembly's binary format	. 12	
	2.1.3	WebAssembly's runtime	. 13	
	2.1.4	WebAssembly's control-flow	. 15	
	2.1.5	Security and Reliability for WebAssembly	. 16	
	2.1.6	Open challenges	. 18	
2.2	Softwar	e diversification	19	
	2.2.1	Generation of Software Variants	. 19	
	2.2.2	Variants deployment		
	2.2.3	Open challenges		
3 A	utomati	c Software Diversification for WebAssembly	27	

2 CONTENTS

3.1		Code Randomization of WebAssembly	28
	3.1.1	Enumerative synthesis	29
	$3.1.2 \\ 3.1.3$	Constant inferring	$\frac{30}{31}$
2.0			
3.2	MEWE: 3.2.1	Multi-variant Execution for WebAssembly	$\frac{33}{34}$
	$\frac{3.2.1}{3.2.2}$	Exemplifying a Multivariant binary	34
3.3		MUTATE: Fast and Effective Binary for WebAssembly	37
5.5	3.3.1	WebAssembly Rewriting Rules	38
	3.3.2	E-Graphs traversals	39
	3.3.3	Exemplifying WASM-MUTATE	40
3.4	Compar	ing CROW, MEWE, and WASM-MUTATE	42
3.1	3.4.1	Security applications	45
4 E		Software Diversification for WebAssembly	47
4.1		e Diversification: Malware evasion	47
	4.1.1	Threat model: cryptojacking defense evasion	48
	4.1.2 $4.1.3$	Methodology	49 51
4.0			
4.2	4.2.1	re Diversification: Speculative Side-channel protection	55 56
	4.2.1 $4.2.2$	Methodology	57
	4.2.2	Results	58
5 C	onclusio	ns and Future Work	65
5.1	Summar	y of technical contributions	65
5.2		y of empirical findings	65
5.3		Vork	65
0.0	ruture	VOIK	00
II In	cluded	papers	67
Super	coptimizat	tion of WebAssembly Bytecode	71
CRO	W: Code	Diversification for WebAssembly	73
Multi	-Variant	Execution at the Edge	7 5
WebA	Assembly	Diversification for Malware Evasion	77
Wasn	n-mutate:	Fast and Effective Binary Diversification for WebAssembly	7 9
Scala	ble Comp	arison of JavaScript V8 Bytecode Traces	81

Part I

Thesis