Question Number	Scheme	Marks
10(a)	Circumference of base = $2\pi r$	B1
	$l\theta = 2\pi r \Rightarrow \theta = \frac{2\pi r}{l}$	B1
	$A = \frac{1}{2}l^2\theta = \frac{1}{2}l^2\frac{2\pi r}{l} = \pi rl$	M1A1 (4)
(b)	$A = \pi r l$	
	$l = r\sqrt{10} \Rightarrow A = \pi r^2 \sqrt{10}$	B1
	$\frac{\mathrm{d}A}{\mathrm{d}r} = 2\pi r \sqrt{10} \Longrightarrow k = 2\sqrt{10}$	M1A1 (3)
(c)	$\frac{\mathrm{d}V}{\mathrm{d}t} = 1.5 \left(\mathrm{cm}^3/\mathrm{s}\right)$	B1
	$\frac{\mathrm{d}A}{\mathrm{d}t} = \frac{\mathrm{d}A}{\mathrm{d}r} \times \frac{\mathrm{d}r}{\mathrm{d}V} \times \frac{\mathrm{d}V}{\mathrm{d}t}$	M1
	$V = \frac{1}{3}\pi r^2 h = \frac{1}{3}\pi r^2 \times 3r = \pi r^3$	B1
	$\frac{\mathrm{d}V}{\mathrm{d}r} = 3\pi r^2$	B1ft
	$\therefore \frac{dA}{dt} = 2\pi \times 8\sqrt{10} \times 1.5 \times \frac{1}{3 \times 64\pi} = 0.3952 = 0.395 \text{ cm}^2/\text{s}$	A1 (5) [12]

Part	Mark	No	otes
(a)	B1	For the circ of the base $L = 2\pi r$	
	B1	$R = l$ and $l = r\theta$	R = l
		Therefore $l\theta = 2\pi r \Rightarrow \theta = \frac{2\pi r}{l}$	
	M1	$A = \frac{1}{2}l^2\theta$ and substituting their expression	Uses the formula $A = \frac{1}{2}RL$
		for θ to give $A = \frac{1}{2}l^2\theta = \frac{1}{2}l^2\frac{2\pi r}{l}$	$A = \frac{1}{2} \times l \times 2\pi r \Longrightarrow (A = \pi r l)$
	A1	For the required expression for A, $A = \pi r l$ w	vith no errors.

(b)	B1	For finding that the slant height is $\sqrt{10}$ times the radius of the cone		
		$h = 3$ $l = \sqrt{9+1} = \sqrt{10}$		
		So $l = r\sqrt{10}$		
	M1	Substitutes $l = r\sqrt{10}$ into the given expression $A = \pi r l$ and differentiates their resulting		
		expression to find $\frac{dA}{dr}$		
		$A = \pi r^2 \sqrt{10} \text{ so } \frac{dA}{dr} = 2\pi r \sqrt{10}$ Therefore $k = 2\sqrt{10}$		
	A1			
(c)	B1	States $\frac{dV}{dt} = 1.5 \text{ (cm}^3/\text{s)}$ Award if it seen explicitly in (b) and used in (c)		
	M1	States (or uses) a correct chain rule $\frac{dA}{dt} = \frac{dA}{dr} \times \frac{dr}{dV} \times \frac{dV}{dt}$		
	B1	For finding the volume of a cone in terms of r only		
		$V = \frac{1}{3}\pi r^2 h = \frac{1}{3}\pi r^2 \times 3r = \pi r^3$		
	B1ft	Differentiates their expression for the volume of a cone provided it is in terms of V and r only. $\frac{dV}{dr} = 3\pi r^2$		
	A1	For combining all required terms into their chain rule and evaluating to 3 significant figures, $\frac{dA}{dt} = 2\pi \times 8\sqrt{10} \times 1.5 \times \frac{1}{3 \times 64\pi} = 0.3952 = 0.395 \text{ cm}^2/\text{s}$		
		in terms of h		
	B1	States $\frac{dV}{dt} = 1.5 \text{ (cm}^3/\text{s)}$ Award if it seen explicitly in (b) and used in (c)		
	M1	States (or uses) a correct chain rule $\frac{dA}{dt} = \frac{dA}{dh} \times \frac{dh}{dt}$ and $\frac{dV}{dt} = \frac{dV}{dh} \times \frac{dh}{dt}$ For finding the area and volume of a cone in terms of h		
	D1			
	B1	$r = \frac{h}{3}$, $A = \pi r^2 \sqrt{10} \Rightarrow A = \frac{\sqrt{10}}{9} \pi h^2$ and $V = \frac{1}{3} \pi r^2 h \Rightarrow V = \frac{1}{27} \pi h^3$		
	B1ft	Differentiates their expressions for the area and volume of a cone provided they are both in $dA = 2\sqrt{10}$, $dV = 3$		
		terms of h only. $\frac{dA}{dh} = \frac{2\sqrt{10}}{9}\pi h$ and $\frac{dV}{dh} = \frac{3}{27}\pi h^2$		
	A1	Combines the required terms into their chain rules and evaluating to 3 significant figures $\frac{dA}{dt} = 0.395 102$		