Exercise 2.1.3.

Let $f: X \to X$ be a topological dynamical system.	(1)
Show that $\mathcal{R}(f) \subseteq \mathrm{NW}(f)$.	(2)
Proof + reasoning:	
Let $x \in \mathcal{R}(f)$.	(3)
Let U be a neighborhood of $x,$ and V an open set such that $V\subseteq U$ and	
$x \in V$.	(4)
We need to show that there exists an $n \geq 1$ such that $f^n(U) \cap U \neq \emptyset$.	(5)
By (3) and (4) , there exists a recurrent point y in U .	(6)
By (6), there exists an increasing sequence (n_k) such that	
$f^{n_k}(y) o y ext{and} n_k o \infty.$	(7)
Intuitively, the sequence of sets $f^{n_k}(U)$ should eventually intersect with	
U, giving our required result.	(8)
A possible problem in the proof so far is that y may not be in the interior of U , so x is not necessarily in a neighborhood of y , so it is possible that $f^{n_k}(U)$ comes arbitrarily close to y but never intersects with U .	(9)
I think we can avoid this problem by making a stronger statement than	, ,
(6), using V instead of U :	(10)
By (3) and (4), there exists a recurrent point z in V .	(11)
By (11), there exists an increasing sequence (m_k) such that	
$f^{m_k}(z) \to z$ and $m_k \to \infty$.	(12)
Since V is a neighborhood of z, by (12) there exists an $M \ge 1$ such that	
$\forall i \geq M, f^{m_i}(z) \in V, \text{ so } f^{m_M}(z) \in U, \text{ hence } f^{m_M}(U) \cap U \neq \emptyset.$	(13)
By (13), $\mathcal{R}(f) \subseteq \text{NW}(f)$.	(14)