Planche nº 22. Fonctions de plusieurs variables

* très facile ** facile *** difficulté moyenne **** difficile **** très difficile I : Incontournable

 $\mathbf{n^o} \; \mathbf{1} \; (\mathbf{^{**}} \; \mathbf{I})$: Etudier l'existence et la valeur éventuelle des limites suivantes :

1)
$$\frac{xy}{x^2 + y^2}$$
 en $(0,0)$ 2) $\frac{x^2y^2}{x^2 + y^2}$ en $(0,0)$ 3) $\frac{x^3 + y^3}{x^2 + y^4}$ en $(0,0)$ 4) $\frac{\sqrt{x^2 + y^2}}{|x|\sqrt{|y|} + |y|\sqrt{|x|}}$ en $(0,0)$

5)
$$\frac{(x^2-y)(y^2-x)}{x+y}$$
 en $(0,0)$ 6) $\frac{1-\cos\sqrt{|xy|}}{|y|}$ en $(0,0)$ 7) $\frac{x+y}{x^2-y^2+z^2}$ en $(0,0,0)$ 8) $\frac{x+y}{x^2-y^2+z^2}$ en $(2,-2,0)$

$$\mathbf{n^o~2~(^{***}~I):}\quad \mathrm{Pour}~(x,y) \in \mathbb{R}^2, \, \mathrm{on~pose}~f(x,y) = \left\{ \begin{array}{l} \frac{xy(x^2-y^2)}{x^2+y^2} \, \mathrm{si}~(x,y) \neq (0,0) \\ 0 \, \mathrm{si}~(x,y) = (0,0) \end{array} \right. \, . \, \, \mathrm{Montrer~que~f~est~de~classe}~C^1~(\mathrm{au~moins}) \, \mathrm{sur}~\mathbb{R}^2.$$

$$\mathbf{n}^{\mathbf{o}} \mathbf{3} \ (*** \mathbf{I}) : \quad \mathrm{Soit} \ f(x,y) = \left\{ \begin{array}{l} y^2 \sin \left(\frac{x}{y}\right) \ \mathrm{si} \ y \neq 0 \\ 0 \ \mathrm{si} \ y = 0 \end{array} \right..$$

Déterminer le plus grand sous-ensemble de \mathbb{R}^2 sur lequel f est de classe C^1 . Vérifier que $\frac{\partial^2 f}{\partial x \partial u}(0,0)$ et $\frac{\partial^2 f}{\partial u \partial x}(0,0)$ existent et sont différents.

 $\mathbf{n^o}$ 5 (***): Soit $n \in \mathbb{N}$. Montrer que l'équation $y^{2n+1} + y - x = 0$ définit implicitement une fonction ϕ sur \mathbb{R} telle que : $(\forall (x,y) \in \mathbb{R}^2)$, $[y^{2n+1} + y - x = 0 \Leftrightarrow y = \phi(x)]$.

Montrer que φ est de classe C^{∞} sur \mathbb{R} et calculer $\int_{\Lambda}^{2} \varphi(t) dt$.

 n^{o} 6 (***): Donner un développement limité à l'ordre 3 en 0 de la fonction implicitement définie sur un voisinage de 0 par l'égalité $e^{x+y} + y - 1 = 0$.

n° 7 (*): Soit f une application de \mathbb{R}^n dans \mathbb{R} de classe C¹. On dit que f est positivement homogène de degré r (r réel donné) si et seulement si $\forall \lambda \in]0, +\infty[, \forall x \in \mathbb{R}^n, f(\lambda x) = \lambda^r f(x).$ Montrer pour une telle fonction l'identité d'EULER:

$$\forall x=(x_1,...,x_n)\in \mathbb{R}^n \ \sum_{i=1}^n x_i \frac{\partial f}{\partial x_i}(x)=rf(x).$$

nº 8 (** I): Extrema des fonctions suivantes:

1)
$$f(x,y) = x^3 + 3x^2y - 15x - 12y$$

2) $f(x,y) = -2(x-y)^2 + x^4 + y^4$.

2)
$$f(x, y) = -2(x - y)^2 + x^4 + y^4$$
.

déterminer sa différentielle.

 $\mathbf{n}^{\mathbf{o}}$ 10 (*): Déterminer Max{ $|\sin z|, z \in \mathbb{C}, |z| \leq 1$ }.

n° 11 (**): Les formes différentielles suivantes sont elles exactes? Si oui, intégrer et si non chercher un facteur intégrant.

1)
$$\omega = (2x + 2y + e^{x+y})(dx + dy) \text{ sur } \mathbb{R}^2$$
.

2)
$$\omega = \frac{x dy - y dx}{(x - y)^2} \operatorname{sur} \Omega = \{(x, y) \in \mathbb{R}^2 / y > x\}$$

3)
$$\omega = \frac{x dx + y dy}{x^2 + y^2} - y dy$$

4)
$$\omega = \frac{1}{x^2y} dx - \frac{1}{xy^2} dy$$
 sur $(]0, +\infty[)^2$ (trouver un facteur intégrant non nul ne dépendant que de $x^2 + y^2$).

 $\mathbf{n^o}$ 12 (*** I) : Résoudre les équations aux dérivées partielles suivantes :

1)
$$2\frac{\partial f}{\partial x} - \frac{\partial f}{\partial y} = 0$$
 en posant $u = x + y$ et $v = x + 2y$.

1)
$$2\frac{\partial f}{\partial x} - \frac{\partial f}{\partial y} = 0$$
 en posant $u = x + y$ et $v = x + 2y$.
2) $x\frac{\partial f}{\partial y} - y\frac{\partial f}{\partial x} = 0$ sur $\mathbb{R}^2 \setminus \{(0,0)\}$ en passant en polaires.

3)
$$x^2 \frac{\partial^2 f}{\partial x^2} + 2xy \frac{\partial^2 f}{\partial x \partial u} + y^2 \frac{\partial^2 f}{\partial u^2} = 0$$
 sur $]0, +\infty[\times \mathbb{R} \text{ en posant } x = u \text{ et } y = uv.$

$$\mathbf{n^o}$$
 14 (**): Soit (E, || ||) un espace vectoriel normé et $\mathbf{B} = \{ \mathbf{x} \in \mathbf{E} / \|\mathbf{x}\| < 1 \}$. Montrer que $\mathbf{f} : \mathbf{E} \to \mathbf{B} \times \mathbf{X} \mapsto \frac{\mathbf{x}}{1 + \|\mathbf{x}\|}$ est

un homéomorphisme.

 ${f n^o}$ 15 (**) : ${f E}={\Bbb R}^n$ est muni de sa structure euclidienne usuelle. Montrer que ${f f}: {f E}
ightarrow {\Bbb R}$ est différentiable sur $E\setminus\{0\}$ et préciser df. Montrer que f n'est pas différentiable en 0.

 n^o 16 (***): Maximum du produit des distances d'un point M intérieur à un triangle ABC aux cotés de ce triangle.

n° 17 (*) : Minimum de
$$f(x,y) = \sqrt{x^2 + (y-a)^2} + \sqrt{(x-a)^2 + y^2}$$
, a réel donné.

 n^o 18 (***): Trouver une application non constante $f:]-1,1[\to \mathbb{R}$ de classe C^2 telle que l'application g définie sur \mathbb{R}^2 par $g(x,y) = f\left(\frac{\cos(2x)}{\cosh(2y)}\right)$ ait un laplacien nul sur un ensemble à préciser. (On rappelle que le laplacien de g est $\Delta g = \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial u^2}.$ Une fonction de laplacien nul est dite harmonique.)

 $\mathbf{n^o}$ 19 (*** I) : Soit $\mathbf{f}:\mathbb{R}^2 \to \mathbb{R}^2$ de classe C^2 dont la différentielle en tout point est une rotation. Montrer que \mathbf{f} est une rotation affine.