Известная проблема эффективности операционной семантики Рефала

И

её связь со скоростью передачи информации

Андрей П. Немытых Институт программных систем РАН г. Переславль-Залесский

Совместное рабочее совещание ИПС РАН и МГТУ имени Н.Э. Баумана по функциональному языку программирования Рефал

1 июля 2024 г., Переславль-Залесский

Множество данных языка программирования Рефал

Данными языка программирования Рефал являются конечные последовательности термов.

```
Определение
```

Элементарные инструменты для конструирования данных:

Множество данных языка программирования Рефал

Данными языка программирования Рефал являются конечные последовательности термов.

Определение

```
data ::= term_data || \varepsilon \varepsilon ::= -- пустая последовательность; term ::= symbol || (data) symbol ::= CHARACTER || IDENTIFIER || MACRO-DIGIT
```

Элементарные инструменты для конструирования данных:

• Приписывание одной данной последовательности термов к другой последовательности термов.

Множество данных языка программирования Рефал

Данными языка программирования Рефал являются конечные последовательности термов.

```
Определение
```

```
data ::= term_data || \varepsilon

\varepsilon ::= -- пустая последовательность;

term ::= symbol || (data)

symbol ::= CHARACTER || IDENTIFIER || MACRO-DIGIT
```

Элементарные инструменты для конструирования данных:

- Приписывание одной данной последовательности термов к другой последовательности термов.
- Построение узла (вершины) дерева.

Рефал-машина (интерпретатор)

Данными языка программирования Рефал являются конечные последовательности термов.

Элементарные инструменты для конструирования данных:

• Копирование последовательности термов.

Пример / Рабочая лента до и после преобразования

Москва пленяет пестротой "..." (Пушкин ', 1819)

Пушкин ','1819 Москва пленяет пестротой "..." (Пушкин ','1819)

Рефал-машина (интерпретатор)

Данными языка программирования Рефал являются конечные последовательности термов.

Элементарные инструменты для конструирования данных:

 Перенос (под)последовательности термов из одного места в другое.

```
Пример / Рабочая лента до и после преобразования

Москва пленяет пестротой "..." (Пушкин ','1819)

Пушкин ','1819 Москва пленяет пестротой "..." ()
```

Рефал-машина (интерпретатор)

Примеры:

 Приписывание одной данной последовательности термов к другой последовательности термов.

Concat {
$$e.X (e.Y) = e.X e.Y;$$
 }

• Копирование последовательности термов.

$$\operatorname{Copy} \left\{ \text{ e.X } = \operatorname{e.X} '\#' \text{ e.X}; \right\}$$

Ранее все проблемы программирования в терминах языка Рефал были решены на УРА!

- Включая алгоритмически неразрешимые проблемы.
- Используя сокровенное знание.

Много голов было разбито об стенку, в попытках обойти законы Природы.

- Рефал++.
- Адептами Рефала++ не было предъявлено ни одного примера реального множества программ, которые бы выигрывали (в среднем) по скорости исполнения у классической простейшей реализации Рефала-5.

Модель вычислений: одноленточная машина Тьюринга.

ullet На ленте дано слово W длины n.

Рис.: Задача копирования.

С середины 1960-х годов известно, что решение этой задачи требует времени пропорционального n^2 .

• Т.е. для любой машины Тьюринга \mathcal{M} , решающей эту задачу для всех слов, $\exists \epsilon, 0 < \epsilon \in \mathbb{R}$ т.ч. $\forall n \in \mathbb{N} \ \exists W$ — слово длины n, копирование которого (посредством \mathcal{M}) длится дольше $\epsilon \times n^2$.

Модель вычислений: одноленточная машина Тьюринга.

С середины 1960-х годов известно, что решение задачи требует времени пропорционального n^2 , где n- длина входного слова.

- Т.е. для любой машины Тьюринга \mathcal{M} , решающей эту задачу для всех слов, $\exists \epsilon, 0 < \epsilon \in \mathbb{R}$, т.ч. $\forall n \in \mathbb{N} \exists W$ — слово длины n, копирование которого (посредством \mathcal{M}) длится дольше $\epsilon \times n^2$. Точная оценка:
 - $\Omega(n^2) \ni \text{Time}(\mathcal{M}, W) \in \mathcal{O}(n^2), n = |W|;$
 - $\exists C, \epsilon > 0$, t.y. $\epsilon n^2 < \text{Time}(\mathcal{M}, W) < Cn^2, n = |W|$.

Модель вычислений: одноленточная машина Тьюринга.

С середины 1960-х годов известно, что решение задачи требует времени пропорционального n^2 , где n — длина входного слова.

- Это один из первых результатов теории сложности вычислений.
 - Я.М. Барздинь. Сложность распознавания симметрии на машинах Тьюринга. Проблемы кибернетики. 1965. Т. 15. С. 245-248.

Пусть фиксирована некоторая модель вычислений \mathcal{T} .

Дан алгоритм (или программа) P(X) и значение его входного аргумента X_0 .

- Чему равна сложность вычисления $P(X_0)$?
 - Т.е. можно ли указать оценку сверху сложности этого вычисления?

Пусть фиксирована некоторая модель вычислений \mathcal{T} .

Дан алгоритм (или программа) P(X) и конечная последовательность значений его входного аргумента $X_1, X_2, \ldots, X_{100}$.

- Чему равна сложность вычисления P(X) на этой последовательности его входных значений?
 - Т.е. можно ли указать оценку сверху сложности этого вычисления?

Пусть фиксирована некоторая модель вычислений \mathcal{T} .

Дан алгоритм (или программа) P(X) и бесконечная последовательность $\{K_n \mid n \in \mathbb{N}\}$ значений его входного аргумента.

- Чему равна сложность вычисления $P(X), X \in \{K_n\}$, на этой последовательности его входных значений?
 - Что означает этот вопрос?

Верхняя оценка временной сложности вычислений в худшем случае

Пусть фиксирована некоторая модель вычислений \mathcal{T} .

Дана задача $\mathcal{F}(X)$ и бесконечная последовательность $\{K_m \mid m \in \mathbb{N}\}$ значений её входного аргумента.

- Чему равна верхняя оценка временной сложности вычисления $\mathcal{F}(X), X \in \{K_m\}$? Пусть n = SizeOf(X).
- Верхняя оценка временной сложности решения задачи $\mathcal{F}(X)$ в худшем случае:
 - $\operatorname{Time}_{\mathcal{T}}(P_0, X) \in \mathcal{O}(f(n))$, где $P_0(X)$ есть \mathcal{T} -программа, решающая задачу $\mathcal{F}(X)$, а $f - \phi$ ункция из \mathbb{N} в \mathbb{N} ;
 - $\exists P_0 \mathcal{T}$ -программа, $\exists C \in \mathbb{R}, \exists n_0 \in \mathbb{N}$ такие, что $\forall X \in \{K_m\}, \text{ pasmepa } n > n_0$
 - Time $_{\mathcal{T}}(P_0, X) < C \times f(n)$

Верхняя оценка временной сложности вычислений в худшем случае

Пусть \mathcal{T} — модель вычислений, $X \in \{K_m\}, n = \mathrm{SizeOf}(X)$. Оценка сложности решения задачи $\mathcal{F}(X)$ в худшем случае:

• $\exists P_0 - \mathcal{T}$ -программа, $\exists C \in \mathbb{R}, \exists n_0 \in \mathbb{N}$ такие, что $\forall X \in \{K_m\}$ размера $n > n_0$. Time $_{\mathcal{T}}(P_0, X) < C \times f(n)$, где f— \mathbf{d} vнкция из \mathbb{N} в \mathbb{N}

Таким образом:

- \bullet если существует «плохой» $X_0 \in \{K_m\}$ размера $n > n_0$, на котором
 - $-C_0 f(n) < \text{Time}_{\mathcal{T}}(P_0, X_0), \text{ To } C_0 < C;$
- Квантор всеобщности по множеству данных (множеству «первого порядка»), программа P_0 фиксирована.

Верхняя оценка временной сложности вычислений в худшем случае

Пусть \mathcal{T} — модель вычислений, $X \in \{K_m\}, n = \mathrm{SizeOf}(X)$. Оценка сложности решения задачи $\mathcal{F}(X)$ в худшем случае:

• $\exists P_0 - \mathcal{T}$ -программа, $\exists C \in \mathbb{R}, \exists n_0 \in \mathbb{N}$ такие, что $\forall X \in \{K_m\}$ размера $n > n_0$. Time $_{\mathcal{T}}(P_0, X) < C \times f(n)$, где f— функция из \mathbb{N} в \mathbb{N}

Пусть $f(n) = n^2$. Таким образом:

- если существует бесконечная подпоследовательность $X_{m_k} \in \{K_m\}$ такая, что $- \forall k \ (n_{m_{k+1}} = \operatorname{SizeOf}(X_{m_{k+1}})) > (n_{m_k} = \operatorname{SizeOf}(X_{m_k}))$ & $(C_0 n_{m_k}^{(2+\delta)} \leq \text{Time}_{\mathcal{T}}(P_0, X_{m_k}))$, где $\delta > 0$.
 - тогда верхняя оценка не может быть меньше $C_0 n^{(2+\delta)}$.

• Квантор всеобщности по множеству данных (множеству «первого порядка»), программа P_0 фиксирована.

Нижняя оценка временной сложности вычислений в худшем случае

Пусть фиксирована некоторая модель вычислений \mathcal{T} .

Дана задача $\mathcal{F}(X)$ и последовательность $\{K_m \mid m \in \mathbb{N}\}$ значений её входного аргумента.

- Чему равна нижняя оценка временной сложности вычисления $\mathcal{F}(X)$ на $X \in \{K_m\}$? Пусть n = SizeOf(X).
- Нижняя оценка временной сложности решения задачи $\mathcal{F}(X)$ в худшем случае:
 - $\Omega(q(n)) \ni \operatorname{Time}_{\mathcal{T}}(P, X)$ для всех $P(X) \mathcal{T}$ -программ, решающих задачу $\mathcal{F}(X)$, где g — функция из \mathbb{N} в \mathbb{N} ;
 - $\forall P \mathcal{T}$ -программы, решающей задачу $\mathcal{F}(X)$, $\exists \epsilon \in \mathbb{R}_{>0}$, $\exists n_0 \in \mathbb{N}$ такие, что $\forall n > n_0 \ \exists X_0 \in \{K_m\}$, SizeOf $(X_0) = n$, • $\epsilon \times q(n) < \mathrm{Time}_{\mathcal{T}}(P, X_0)$;

Нижняя оценка временной сложности вычислений в худшем случае

Пусть \mathcal{T} — модель вычислений, $X \in \{K_m\}$, n = SizeOf(X).

- Оценка сложности решения задачи $\mathcal{F}(X)$ в худшем случае:
 - $\forall P \mathcal{T}$ -программы, решающей задачу $\mathcal{F}(X)$, $\exists \epsilon \in \mathbb{R}_{>0}$, $\exists n_0 \in \mathbb{N}$ такие, что $\forall n > n_0 \ \exists X_0 \in \{K_m\}$, SizeOf $(X_0) = n$, • $\epsilon \times g(n) < \mathrm{Time}_{\mathcal{T}}(P, X_0)$, где g — функция из \mathbb{N} в \mathbb{N} ; Таким образом:
 - \bullet если существует «хорошая» программа P_0 , решающая задачу $\mathcal{F}(X)$, такая, что для всех $X \in \{K_m\}$ размера $n > n_0$
 - $-C \times q(n) > \mathrm{Time}_{\mathcal{T}}(P_0, X)$, to $C > \epsilon$;
 - Пусть $g(n) = n^2$ и $Cn^{(2+\delta)} \ge \text{Time}_{\mathcal{T}}(P_0, X)$, где $\delta > 0$, тогда нижняя оценка не может быть больше $Cn^{(2+\delta)}$.
- Квантор всеобщности по множеству программ (множеству «высшего порядка»), множеству всех алгоритмов-программ, решающих данную задачу $\mathcal{F}(X)$.

Пусть фиксированы некоторая модель вычислений $\mathcal T$ и задача $\mathcal F(X).$

• Почему получение нижних оценок сложности вычисления задачи $\mathcal{F}(X)$ существенно сложнее получения верхних оценок сложности вычисления этой задачи?

Сложность

вычислений определяется с точностью

ДО

«мультипликативной» константы

Пусть фиксирована некоторая модель вычислений \mathcal{T} .

Дана задача $\mathcal{F}(X)$ и последовательность $\{K_m \mid m \in \mathbb{N}\}$ значений её входного аргумента.

- $\Omega(g(n)) \ni \mathrm{Time}_{\mathcal{T}}(X) \in \mathcal{O}(f(n))$, где $X \in \{K_m\}$, $n = \mathrm{SizeOf}(X)$ и f, g — функции из \mathbb{N} в \mathbb{N} ;
- $\exists \epsilon, C \in \mathbb{R}_+$ такие, что $\forall X \in \{K_m\}$ размера n• $\epsilon \times q(n) < \mathrm{Time}_{\mathcal{T}}(X) < C \times f(n)$

Понятие «мультипликативности» зависит лишь от шкалы, которую мы привыкли использовать.

Понятие «мультипликативности» зависит лишь от шкалы, которую мы привыкли использовать

Пусть фиксирована некоторая модель вычислений \mathcal{T} . Дана задача $\mathcal{F}(X)$ и последовательность $\{K_m \mid m \in \mathbb{N}\}$ значений её входного аргумента.

Переходя к логарифмической шкале, получаем определение с точностью до аддитивной константы:

- $\exists \epsilon, C \in \mathbb{R}_+$ такие, что $\forall X \in \{K_m\}$ размера n
 - $\epsilon \times g(n) \le \text{Time}_{\mathcal{T}}(X) \le C \times f(n)$
 - $\log(\epsilon) + \log(g(n)) \le \log(\text{Time}_{\mathcal{T}}(X)) \le \log(C) + \log(f(n))$

В этой шкале константные множители перед (формальным) порядком становятся значимыми (частью порядка):

- $\log(\epsilon) + 3\log(n^2) \le \log(\text{Time}_{\mathcal{T}}(X)) \le \log(C) + 5\log(n^3)$
- $\log(\epsilon) + \log(n^6) \le \log(\text{Time}_{\mathcal{T}}(X)) \le \log(C) + \log(n^{15})$

Сложность вычислений и скорость передачи информации

Пусть фиксирована некоторая модель вычислений \mathcal{T} .

Дана программа P(X) и последовательность $\{K_m \mid m \in \mathbb{N}\}$ значений её входного аргумента.

Пример

 $X=(m,j), P(m,j)=m\times j,$ где $m,j\in\mathbb{N}$ и заданы в десятичной системе счисления.

- $(m_0, j_0) = X_0 \in \mathbb{N} \times \mathbb{N}$ содержит некоторую информацию,
 - часть которой может быть несущественной для вычисления результата $P(X_0)$;
 - Мы интересуемся значением $P(m_0, 10^{i_0}) = ?$.
 - информация о значении цифр числа m_0 несущественна;
 - без другой части результат вычисления $P(X_0)$ построить невозможно.
 - значимая информация: length (m_0) и значение i_0 .

Сложность вычислений и скорость передачи информации

Важное замечание.

- Чем медленнее алгоритм (программа) передает (от «оператора к оператору») информацию, значимую для вычисления результата, тем медленнее этот алгоритм вычисляет результат.
- Чем больше скорость передачи информации, тем больше у алгоритма шансов быстрее вычислить результат.

Наивно интересуемся информацией, заключенной в некотором описании конечного объекта.

- В какой из двух последовательностей слов содержится больше информации:
- Сколько информации содержится в натуральном числе $n \in \mathbb{N}$?

Список использованной литературы

- Н. К. Верещагин, В. А. Успенский, А. Х. Шень.
 Колмогоровская сложность и алгоритмическая случайность.
 МИНМО, 2013.
- A. Shen. Kolmogorov complexity as a language // International Computer Science Symposium in Russia. 2011. pp: 105-119.

Наивно интересуемся информацией, заключенной в некотором описании конечного объекта.

- Информация это фундаментальное свойство строки (длинного слова) W, которое практически не меняется, т.е. слабо меняется, при простых преобразованиях W.
 - Например, число вхождений подстроки '0101' в W не может быть мерой информации, поскольку, в общем случае оно может быть сильно изменено простым преобразованием rev(W) — реверсирования этой строки. (Такой шифр можно быстро расшифровать.)
 - Простые преобразования не способны менять фундаментальные свойства строки.

Наивно интересуемся информацией, заключенной в некотором описании конечного объекта.

- Информация это фундаментальное свойство строки (длинного слова) W, которое практически не меняется, т.е. слабо меняется, при простых преобразованиях W.
- Следовательно, наивное понятие меры информации, в общем случае, зависит от модели вычислений, как и сложность вычислений.
 - Интересные вопросы:
 - Насколько существенно она зависит от этой модели?
 - Можно ли как-то построить теорию информации, разумно абстрагируясь от модели вычислений?
 - Может ли какое-нибудь преобразование строки W существенно увеличить информацию, содержащуюся в W?

Наивно интересуемся информацией, заключенной в некотором описании конечного объекта.

- В какой из двух последовательностей слов содержится больше информации:
 - В какой из двух последовательностей слов содержится больше информации:

ПОЛЕ ПОЛЕ ПОЛЕ ПОЛЕ ПОЛЕ ПОЛЕ ПОЛЕ

— ПОЛЕ 8 раз

ПЛЛЕ ЛПЛП ОЛЕП ЛЛПЕ

- Как более кратко описать информацию в этой строке?
- Сколько информации содержится в натуральном числе $n \in \mathbb{N}$?
 - $[\log_2(n)] \leq \inf(n) \leq [\log_2(n)] + 1$, если n дано в двоичной системе счисления;
 - $[\log_{10}(n)] \le \inf(n) \le [\log_{10}(n)] + 1$, если n дано в десятичной системе счисления.

Наивно интересуемся информацией, заключенной в некотором описании конечного объекта.

- Информация это фундаментальное свойство строки (длинного слова) W, которое практически не меняется, т.е. слабо меняется, при простых преобразованиях W.
 - Следовательно, чем менее слово W структурировано, тем больше оно содержит информации. (Такой шифр трудно расшифровать.)
 - Больше всего информации содержится в случайно сгенерированном слове.

Информация и упаковщики/распаковщики

- Цель упаковщика (архиватора-шифровальщика): выявить во входной строке W (файле) всю существенную информацию, по которой можно восстановить W, и попытаться удалить как можно больше ту часть W, которая не является необходимой для восстановления W; построить всю существенную информацию, т.е. зашифровать W.
- Цель распаковщика (разархиватора-дешифровщика): восстановить/дешифровать исходный файл.

Информация и упаковщики/распаковщики

Пусть дано слово W. Чем меньше длина архива, построенного из W, тем лучше для данного слова W использованный архиватор. В общем случае, понятие «лучшего архиватора» не является равномерным: почти для каждого слова — свой лучший архиватор.

Теорема

Идеальной, т.е. лучшей сразу для всех входных слов (файлов), программы-архиватора не существует. Модель вычислений: одноленточная машина Тьюринга

Пусть рабочий алфавит машина Тьюринга — бинарный (битовый) алфавит.

Какая максимальная скорость переноса информации конкретной машиной Тьюринга МТ по ленте за один такт (шаг) работы?

Мгновенная скорость переноса информации по рабочей ленте за один сдвиг головки _____

зависит от состояния S, в котором находится МТ и равна информации, содержащейся в S.

Модель вычислений: одноленточная машина Тьюринга

Пусть рабочий алфавит машина Тьюринга — бинарный (битовый) алфавит.

Мгновенная скорость переноса информации по рабочей ленте за один сдвиг головки

зависит от состояния S, в котором находится МТ и равна информации, содержащейся в S.

Следовательно, скорость переноса информации конкретной машиной Тьюринга МТ с m состояниями по ленте за один шаг работы не больше чем $[\log_2(m)]+1$ бит.

Нижняя оценка временно ${}^{\prime}$ й сложности задачи копирования в худшем случае

Модель вычислений: одноленточная машина Тьюринга

• На ленте дано слово W длины n.

Рис.: Задача копирования *Q*.

Теорема

 $\operatorname{Time}_{\mathcal{T}}(\mathcal{Q}, W) \in \Omega(n^2).$

Модель вычислений: одноленточная машина Тьюринга

Теорема

 $\operatorname{Time}_{\mathcal{T}}(\mathcal{Q}, W) \in \Omega(n^2).$

Доказательство (Версия А):

• Рассмотрим частный случай – слово |W| = n/2:

 ${
m Puc.:}$ Частный случай: первая половина слова W является пустой.

Доказательство (Версия А)

• Рассмотрим частный случай — слово |W| = n/2: $\rightarrow n/2 \leftarrow n/2 \leftarrow$

 ${
m Puc.:}\ {
m Частный}\ {
m случай:}\ {
m первая}\ {
m половина}\ {
m слова}\ W$ является пустой.

Чтобы скопировать слово W, машина МТ должна перенести n/2 бит информации правее дырки длины n/2. Для этого требуется не менее $\epsilon \times (n/2)^2$ шагов МТ, где константа ϵ не меньше скорости переноса информации за один шаг машины МТ.

Следовательно, $Time_{\mathcal{T}}(\mathcal{Q}, W) \in \Omega(n^2)$.

Рис.: Частный случай: первая половина слова *W* является пустой. Установим таможенный пост внутри дырки.

Таможенники записывают состояния машины, в которых она пересекает границу слева направо. Содержание журнала записей достаточно для восстановления слова W за территорией государства; так как поведение TM за границей полностью определяется содержанием журнала.

Следовательно, длина записи в журнале должна быть $\Omega(n)$. Это рассуждение верно для каждой клетки в дырке, где можно установить таможенный пост. И сумма длин записей по всем таким таможням есть нижняя оценка для числа шагов машины MT.

Следовательно, $Time_{\mathcal{T}}(\mathcal{Q}, W) \in \Omega(n^2)$.

Рефал-машина vs. машина Тьюринга

- В контексте задачи копирования модель вычислений машины Тьюринга почти совпадает с моделью вычислений Рефал-машины, операционной семантикой интерпретатора.
- В случае Рефал-машины:
 - элементарные ячейки поля памяти, представляющие термы, соответствуют клеткам машины Тьюринга.
 - по ленте движутся две головки, которые могут передавать друг другу информацию о собственных состояниях.