SELECT THE CORRECT ALTERNATIVE (ONLY ONE CORRECT ANSWER)

1.	The molarity of a glucose	solution containing 36 g of	f glucose per 400 mL of th	e solution is:						
	(A) 1.0	(B) 0.5	(C) 2.0	(4) 0.05						
2.	1 kg of NaOH solution o	ontains 4g of NaOH. The a	approximate concentration o	of the solution is:						
	(A) 0.1 molar	(B) 0.1 molal	(C) Decinormal	(D) About 0.1 N						
3.	To prepare 0.1 M KMnC	o ₄ solution in 250 mL flask	, the weight of KMnO ₄ req	uired is:						
	(A) 4.80g	(B) 3.95g	(C) 39.5g	(D) 0.48 g						
4.	The number of moles pro	esent in 2 litre of 0.5 M Na	OH is:							
	(A) 2	(B) 1	(C) 0.1	(D) 0.5						
5.	The weight of solute pres	sent in 200 mL of 0.1 M H	I ₂ SO ₄ :							
	(A) 2.45g	(B) 4.9g	(C) 1.96g	(D) 3.92 g						
6.	The nature of mixture ob	tained by mixing 50 mL of	$0.1~\mathrm{M~H_2SO_4}$ and $50~\mathrm{mL}$	of 0.1 M NaOH is:						
	(A) Acidic	(B) Basic	(C) Neutral	(D) Amphoteric						
7.	If 250 mL of a solution	contains 24.5g H ₂ SO ₄ the	molarity and normality resp	pectively are:						
	(A) 1M, 2N	(B) 1M,0.5M	(C) 0.5M, 1N	(D) 2M,1N						
8.	The volume strength of H	H_2O_2 solution is 10. What d	oes it mean :							
	(A) at S.T.P. 10 g solution of $\rm H_2O_2$ gives 10 mL of $\rm O_2$									
	(B) at S.T.P. 1 g equivale	nt of H_2O_2 gives $10~\mathrm{mL}$ of	O_2							
		on of $\rm H_2O_2$ gives $10~\rm mL$ o								
	(D) at S.T.P. 1 mL solution	on of $\mathrm{H_2O_2}$ gives 10 mL of	O_2							
9.	The normality of 0.3 M	phosphorus acid (H ₃ PO ₃) is:								
	(A) 0.1	(B) 0.9	(C) 0.3	(D) 0.6						
10.	The normality of 4% (wt.	/vol.) NaOH is:								
	(A) 0.1	(B)1.0	(C) 0.05	(D) 0.01						
11.	The density of NH_4OH s of the solution :	olution is 0.6 g/mL. It con	tains 34% by weight of NH	₄ OH. Calculate the normality						
	(A) 4.8 N	(B) 10 N	(C) 0.5 N	(D) 5.8 N						
12 .	A molal solution is one th	nat contains one mole of a	solute in :							
	(A) 1000 g of the solutio	n	(B) 1000 c.c. of the solut	ion						
	(C) 1000 c.c of the solve	nt(D) 1000 g of the solvent	:							
13.	Out of molarity (M), mo	plality (m), formality (F) an	d mole fraction (x) those	independent of temperature						
	are:									
	(A) M,m	(B) F, x	(C) m,x	(D) M,x						
14.	3.0 molal NaOH solution	has a density of 1.110 g/s	mL. The molarity of the so	lution is:						
	(A) 2.9732	(B) 3.05	(C) 3.64	(D) 3.0504						
15.	1000 gram aqueous solu	tion of $CaCO_3$ contains 10	gram of carbonate. Conce	entration of solution is:						
	(A) 10ppm	(B) 100ppm	(C) 1000ppm	(D) 10,000 ppm						
16.	When 5.0 gram of $BaCl_2$:	is dissolved in water to have	$ve~10^6$ gram of solution. Th	e concentration of solution is						
	(A) 2.5 ppm	(B) 5 ppm	(C) 5M	(D) 5 g L^{-1}						
17.	How many grams of glud	cose be dissolved to make o	one litre solution of 10% glu	ucose :						
	(A) 10g	(B) 180g	(C) 100g	(D) 1.8g						

18.	Vapour pressure of a	a solvent containing nonvolatile	e solute is :					
	(A) more than the va	apour pressure of a solvent	(B) less than the v	vapour pressure of solvent				
	(C) equal to the vapo	our pressure of solvent	(D) none					
19.	The relative lowering	g in vapour pressure is:						
	(A) $\propto X_{\text{solute}}$	(B) $\propto \frac{1}{X_{\text{solute}}}$	$(C) = X_{solute}$	(D) ∞ m				
20.	The vapour pressure	of a dilute solution of a solute	e is not influenced by	:				
	(A) temperature of s	olution	(B) melting point	of solute				
	(C) mole fraction of	solute	(D) degree of diss	ociation of solute				
21.	An aqueous solution	of methanol in water has vap	our pressure :					
	(A) equal to that of v	water	(B) equal to that of	of methanol				
	(C) more than that o	f water	(D) less than that	of water				
22.	When a substance is	dissolved in a solvent, the var	pour pressure of solv	ar pressure of solvent decreases. This brings:				
	(A) an increase in b.1	pt. of the solution	(B) a decrease in	b.pt of a solution				
	(C) an increase in f.p	ot of the solvent	(D) none					
23.	Solute when dissolve	ed in water:						
	(A) increases the vap	oour pressure of water	(B) decreases the	boiling point of water				
	(C) decreases the fre	ezing point of water	(D) all of the above	ve .				
24.	If the vapour pressure to have :	e of solutions of two liquids are	e less than those expe	ected from ideal solution they are said				
	(A) negative deviatio	n from ideal behaviour						
	(B) positive deviation	s from ideal behaviour						
	(C) ideal behaviour							
	(D) positive deviation	for lower concentration and	negative deviations fo	or higher concentration				
25.		NaCl has vapour pressure close	est to :					
	(A) 5.8 % solution of		(B) 2 m solution of	_				
	(C) 1 m solution of u		(D) 5.8 % solution	_				
26.		of C_6H_6 , CH_3OH , $C_6H_5NH_2$ will show highest vapour pres		e 80 C, 65 C, 184 C and 212 C ature:				
	(A) C_6H_6	(B) CH ₃ OH	(C) C6H5NH2	(D) $C_6H_5NO_2$				
27.		er is defined as the temperatur						
		of water equal to that of atmo	ospheric pressure					
	(B) bubbles are form							
	(C) steam comes out							
0.0	(D) none of the above							
28.		how maximum elevation in b.p		(D) 0.1 M F (CO.)				
20	(A) 0.1 M KCl	(B) 0.1 M BaCl ₂	9	(D) $0.1 \text{ M Fe}_2(SO_4)_3$				
29.	the same molar cond		of very allute solution	ons of $AICI_3$ (t_1) and $CaCI_2$ (t_2) having				
	(A) $t_1 = t_2$	(B) $t_1 > t_2$	(C) $t_2 > t_1$	(D) $t_{2} \ge t_{1}$				
30.	Cryoscopic constant	1 L	(-7-2 -1	(-, -21				
-		ing point when 1 gram of solu	te is dissolved per ko	g of the solvent				
		reezing point when 1 mole of						
	(C) the elevation for		•					
		calculation of elevation in boil	ling point					

31.	At certain Hill-station pure water boils at 99.725 C. If K_b for water is 0.513 C kg mol ⁻¹ , the boiling point of 0.69 m solution of urea will be :								
	(A) 100.079 C	(B) 103 C	(C) 100. 359 C	(D) un predictable					
32.	The freezing point of $1\mathrm{m}$	nolal NaCl solution assumin	ng NaCI to be 100% dissoci	iated in water is :					
	(A) -1.86 C	(B) -3.72 C	(C) +1.86 C	(D) +3.72 C					
33.	=	molecular mass 100 gram The value of molal ebullio		gram solvent to show 0.3 C					
	(A) 10	(B) 3	(C) 0.3	(D) un predictable					
34.	Depression in freezing point of solution of electrolytes are generally: (A) lower (B) higher than what should be normally (C) low or high depending upon nature of electrolyte (D) what it should be normally								
35.	A liquid is in equilibrium have equal:	with its vapour at its boiling	g point. On the average the	e molecules in the two phase					
	(A) inter-molecular forces	s (B) potential energy	(C) total energy	(D) kinetic energy					
36.	Which salt may show the state :	e same value of vant Hoff	factor (i) as that of K_4 Fe	(CN) ₆ in very dilute solution					
	(A) $Al_2(SO_4)_3$	(B) NaCl	(C) $Al(NO_3)_3$	(D) Na ₂ SO ₄					
37.	Which compound corresp	onds vant Hoff factor (i) to	be equal to 2 in dilute sol	ution:					
	(A) K_2SO_4	(B) NaHSO ₄	(C) Sugar	(D) MgSO ₄					
38.	In which of the following,	the vant Hoff factor (i) is e	equal to one:						
	(A) NaCl	(B) KNO ₃	(C) Urea	(D) all					
39.	If the observed and theoredissociation of NaCl is:	retical molecular mass of Na	aCl is found to be 31.80 ar	nd 58.50, then the degree of					
	(A) 83.96%	(B) 8.39%	(C) 90%	(D) 100%					
40.	The substance A when difactor will be:	ssolved in solvent B shows	the molecular mass corresp	onding to A_3 . The vant Hoffs					
	(A) 1	(B) 2	(C) 3	(D) 1/3					
41.	Which of the following co	onditions is not correct for i	deal solution :						
	(A) no change in volume	on mixing	(B) no change in enthalpy	on mixing					
	(C) it obey's Raoult's law								
	(D) lonisation of solute sh	ould occurs to a small exte	ent						
42.		t change in composition at							
	(A) Amorphous		(B) Azeotropic mixture						
	(C) Ideal solution		(D) Super saturated solut	ion					
43.		lvent in a solution decrease							
	(A) vapour pressure of so		(B) b.pt decreases						
	(C) osmotic pressure incr		(D) all are correct						
44.		two liquids has boiling point							
	(A) shows a negative dev		(B) shows no deviation from	om Raoult's law					
4 =	(C) shows positive deviati		(D) is saturated						
45.	The passing of particles (A) osmosis	through semipermeable me (B) electrodialysis	embrane is called : (C) electrophrosis	(D) electroplating					
	(1) O3111O313	(D) electionalysis	(S) electrophilosis	(D) electropiating					

46. From the colligative properties of solution which one is the best method for the determination of mol. wt of proteins & polymers: (A) osmotic pressure (B) lowering in vapour pressure (C) lowering in freezing point (D) elevation in B.Pt 47. As a result of osmosis, the volume of the concentrated solution : (A) gradually decreases (B) gradually increases (C) suddenly increases (D) none 48. The osmotic pressure of a solution of benzoic acid dissolved in benzene is less than expected because: (A) benzoic acid is an organic solute (B) benzene is a non-polar solvent (C) benzoic acid dissociates in benzene (D) benzoic acid gets associated in benzene 49. Two solutions have different osmotic pressures. The solution of higher osmotic pressure is called: (A) isotonic solution (B) hypotonic solution (C) isotopic solution (D) hypertonic solution 50. Blood is isotonic with: (C) 30% NaCl (A) 0.16 M NaCl (B) Conc.NaCl (D) 50% NaCl 51. Which one of the following pairs of solution can we expect to be isotonic at the same temperature: (A) 0.1 M urea and 0.1 M NaCl (B) 0.1 M urea and 0.2 M MgCl₂ (C) 0.1 M NaCl and 0.1 M Na₂SO₄ (D) 0.1 M Ca(NO₃)₂ and 0.1 M Na₂SO₄ A 5% solution of cane sugar is isotonic with 0.877~% of X. The molecular weight of substance X is: 52. (A) 58.98 (B) 119.96 (C) 95.58 (D) 126.98 Which statement is incorrect about osmotic pressure (π) , volume (V) and temperature (T): 53. (A) $\pi \propto \frac{1}{V}$ if T is constant (B) $\pi \propto T$ if V is constant (C) $\pi \propto V$ if T is constant (D) π V is constant if T is constant 54. The osmotic pressure of equimolar solutions of urea, BaCI₂ and AlCI₃ will be in the order: (A) AlCl₃ > BaCl₉ > Urea (B) BaCl₂ > AlCl₃ > Urea (C) Urea > BaCl₂ > AlCl₃ (D) BaCl₂ > Urea > AlCl₃

CHEC	K YOU	R GRA	SP			A	.NSWI	ER I	KEY				E	XERCIS	E -1
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	В	В	В	В	С	Α	Α	D	D	В	D	D	С	А	D
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	В	С	В	С	В	С	А	С	Α	В	В	Α	D	В	В
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	Α	В	С	С	D	Α	D	С	Α	D	D	В	С	С	Α
Que.	46	47	48	49	50	51	52	53	54						
Ans.	Α	В	D	D	Α	D	Α	С	Α						

(B) forms complexes in solution

(C) associates in the benzene solution

(D) dissociates in the aqueous solution and not in the benzene solution

SELECT THE CORRECT ALTERNATIVES (ONE OR MORE THEN ONE CORRECT ANSWERS)

1.	When 0.6 g of urea dissolved in 100 g of water, the water will boil at $(K_b \text{ for water} = 0.52 \text{ kJ. mol}^{-1} \text{ and normal boiling point of water} = 100 \text{ C})$:											
	(A) 373.052 K	(B) 273.52 K	(C) 372.48 K	(D) 273.052 K								
2.	Solutions having the same osmotic pressure are called :											
	(A) isotonic solution	(B) molar solutions	(C) hypotonic solutions	(D) ideal solutions								
3.	Consider 1 M solutions	s of the following salts. St	ate which solution will have	the lowest freezing point.								
	(A) Na ₂ SO ₄	(B) BaCl ₂	(C) NaCl	(D) $Al_2(SO_4)_3$								
4.		A solution prepared by dissolving a 2.50 g sample of an unknown compound dissolved in 34.0 g of benzene, C_6H_6 boils at 1.38 C higher than pure benzene. Which expression gives the molar mass of the unknown compound ?										
	Compound	K _b										
	C_6H_6	2.53 C.m ⁻¹										
	(A) 2.53 $\frac{2.50}{1.38}$		(B) $1.38 \frac{34.0}{2.53} \times 2.50$									
	(C) $2.50 10^3 \frac{2.53}{34.0}$	$\times \frac{1}{1.38}$	(D) $2.50 10^3 \frac{1.38}{34.0}$	2.53								
5.		ur is melted with 15.00 g s from of sulphur. Data fo		n freezes at 77.2 C. What is								
	Melting point, m.p	80 C										
	Freezing point depress	sion constant, $k_f = 6.80 C$	m^{-1}									
	(A) 180 g mol^{-1}	(B) 194 g mol^{-1}	(C) 260 g mol^{-1}	(D) 450 g mol^{-1}								
6.		12.2 gm benzoic acid (M = 122) in 100 g $\rm H_2O$ has elevation of boiling point of 0.27 C, $\rm K_b$ = 0.54 K kg/mole. If there is 100% dimerization, the no. of molecules of benzoic acid in associated state is :										
	(A) 1	(B) 2	(C) 3	(D) 4								
7.	The Van't Hoff factor 0.1 M La $(NO_3)_3$ solution is found to be 2.74 the percentage dissociation of the salt is :											
	(A) 85 %	(B) 58 %	(C) 65.8%	(D) 56.8%								
8.	Maximum freezing poi	nt will be for 1 molal solu	tion of (assuming equal ior	nisation in each case) :								
	(A) $[Fe(H_2O)_6 Cl_3]$	(B) $[Fe(H_2O)_5Cl] Cl_2.H_2$	$_{2}O$ (C) [Fe(H $_{2}O$) $_{4}Cl_{2}$]Cl.2H $_{2}O$	O (D) $[Fe(H_2O)_3Cl_3].3H_2O$								
9.	1.0 molal aqueous solu $H_2O = 0.52 \text{ K kg} / \text{m}$		is 25% ionized. The boiling	point of the solution is $(K_{_{\! b}}$ for								
	(A) 375.5 K	(B) 374.04 K	(C) 377.12 K	(D) 373.25 K								
10.	Which one of the follo	wing aqueous solution has	the highest freezing point	at 1 atm :								
	(A) 0.1 M urea	(B) 0.1 M acetic acid	(C) 0.1 M NaCl	(D) 0.1 M BaCl_2								
11.		e molecules of solute co loff's factor 'i' is equal to	:	ed molecule, X is degree of								
	(A) $\frac{1}{1 - nx}$	(B) $\frac{1-x+nx}{1}$	$(C) \frac{1-x+\frac{x}{n}}{1}$	$(D) \frac{\frac{x}{n} - 1 + x}{1}$								
12.		= -		395 K and that in the freezing erence in ΔT . The substance:								
	(A) dissociates in the a	queous solution as well as	in the benzene solution									

13.		t constant of water is 0.573 solution boils under atmosp	=	mole of glucose is dissolved in
	(A) 100.513 C	(B) 100.0573 C	(C) 100.256 C	(D) 101.025 C
14.	A 0.2 molal aqueous s = $1.86 \text{ K kg mole}^{-1} \text{ for}$		s 20% ionized. The free	ezing point of the solutions is $(k_{_{\rm f}}$
	(A) -0.45 C	(B) -0.9 C	(C) -0.31 C	(D) -0.53 C
15.	= -	n azeotropic mixture of wate nixture. Hence the mixture		ess than that of theoretical value
	(A) that solution is high	nly saturated	(B) positive deviation	from Raoult's law
	(C) negative deviation	from Raoult's law	(D) none of these	
16.	an aqueous solution of	ptained by diluting the above 0.512 and 1.86 C mol ⁻¹ :	e solution with an equal	C. What is the freezing point of volume of water. The values of
	(A) -0.544 C	(B) -0.512 C	(C) -0.272 C	(D) -1.86 C
17.		of NaCl freezes at -0.1 ol ⁻¹ , the elevation in boiling		$b(H_2O) = 0.512 \text{K} \text{ kg mol}^{-1} \text{ and } $ s :
	(A) 0.0585 K	(B) 0.0512 K	(C) 1.864 K	(D) 0.0265 K
18.	The Van't Hoff factors i	for an electrolyte which under	goes dissociation and asso	ociation in solvents are respectively
	:			
	(A) greater than one a		(B) less than one and	_
	(C) less than one and			and greater than one
19.	A solution of 0.450 g of the molal elevation co		g of water showed 0.17	70 C of elevation in boiling point,
	(A) 0.51	(B) 0.95	(C) 0.25	(D) 2.25
20.		of the solution depend on :		
	(A) Nature of solute		(B) Nature of solvent	
	- · · ·	s present in the solution	(D) Number of moles	of solvent only
21.	_	solutions will have highest		
		er (B) 1% sucrose in water		
22.		lene glycol is added to wate		s during winters. It results in :
	(A) reducing viscosity		(B) reducing specific	
	(C) reducing freezing p		(D) reducing boiling p	
23.	An azeotropic solution	of two liquids has a boiling	point lower than either	of them when it :
	(A) 1 (* 1	· · · · · D 1/1 1		(D 1// 1
		viation from Raoult's law	(B) shows no deviatio	n from Raoult's law
24	(C) shows positive devi	ation from Raoult's law	(B) shows no deviatio(D) is saturated	
24.	(C) shows positive devi	ation from Raoult's law is added to an aqueous sol	(B) shows no deviatio(D) is saturatedution of potassium iodid	
24.	(C) shows positive devi When mercuric iodide (A) freezing point is ra	ation from Raoult's law is added to an aqueous solution ised(B) freezing point is low	(B) shows no deviatio (D) is saturated ution of potassium iodid ered	le the :
	(C) shows positive device. When mercuric iodide (A) freezing point is ratio. (C) freezing point does	ation from Raoult's law is added to an aqueous solu ised(B) freezing point is low is not change	(B) shows no deviation (D) is saturated suition of potassium iodid sered (D) boiling point does	le the : s not change
24.25.	(C) shows positive devi When mercuric iodide (A) freezing point is ra (C) freezing point does For an ideal solution co	ation from Raoult's law is added to an aqueous solu ised(B) freezing point is low is not change	(B) shows no deviation (D) is saturated action of potassium iodid tered (D) boiling point does which of the following expressions are set to be se	le the :
	(C) shows positive devi When mercuric iodide (A) freezing point is ra (C) freezing point does For an ideal solution co	ation from Raoult's law is added to an aqueous solution ised(B) freezing point is low is not change ontaining a nonvolatile solute,	(B) shows no deviation (D) is saturated attion of potassium iodidered (D) boiling point does which of the following explicitly	le the : s not change expressions represents the vapour
	(C) shows positive device. When mercuric iodide (A) freezing point is rational (C) freezing point does for an ideal solution compressure of the solution (A) $p = x_2 p_2$	ation from Raoult's law is added to an aqueous solving sed(B) freezing point is low a not change ontaining a nonvolatile solute, in? $(x_1 \rightarrow \text{mole fraction of so}_1, p_2)$ ontaining a nonvolatile solute solute.	(B) shows no deviation (D) is saturated attion of potassium iodiditered (D) boiling point does which of the following explorent) (C) p = x ₁ p ₁	le the : s not change expressions represents the vapour

27.	For a dilute solution containing a nonvolatile solute, the molar mass of solute evaluated from the osmotic pressure measurement is given as :										
	$(A) M_2 = \frac{m_2}{V} \frac{RT}{\pi}$	(B) $M_2 = \frac{m_2}{V} \frac{\pi}{RT}$	(C) $M_2 = m_2 \frac{RT}{\pi}$	(D) $M_2 = m_2 \frac{\pi}{RT}$							
28.	An aqueous solution of of acetone in this soluti		10.00% acetone by weigh	nt. What is the mole percentage							
	(A) 3.332 %	(B) 5.000 %	(C) 10.00 %	(D) 11.11 %							
29.	The freezing point of an aqueous solution of a non-electrolyte is -0.14 C. The molarity of this solution is $[K_f(H_2O) = 1.86 \text{ K kg mol}^{-1}]$:										
	(A) 1.86 m	(B) 1.00 m	(C) 0.15 m	(D) 0.075 m							
30.	The boiling point of a	0.1 M solution of CaCl_2	should be elevated by :								
	(A) exactly 0.51		(B) somewhat less that	an 1.02							
	(C) exactly 1.02		(D) some what less tl	nan 1.53							
31.	Of the following measurements the one most suitable for the determination of the molecular weight of oxyhaemoglobin, a molecule with a molecular weight of many thousand, is:										
	(A) the vapour pressure	e lowering	(B) the elevation of the	ne boiling point							
	(C) the depression of the	ne freezing point	(D) the osmotic press	sure							
32.	The vapour pressure of pure benzene at 50 C is 268 torr. How many mol of non-volatile solute per mol of benzene is required to prepare a solution of benzene having a vapour pressure of 167 torr at 50 C:										
	(A) 0.377	(B) 0.605	(C) 0.623	(D) 0.395							
33.			is the vapour pressure of the solvent $\boldsymbol{X}_{\!\scriptscriptstyle A}$ is given by	ne solution prepared by dissolving :							
	$(A) \frac{P^{\circ} - P}{P^{\circ}} = X_{A}$	$(B) \frac{P^{\circ} - P}{P} = X_A$	(C) $\frac{P}{P^{\circ}} = X_A$	(D) $P - P = X_A$							
34.				80 g of water and then through nt 0.04 g. The molecular weight							
	(A) 31.25	(B) 3.125	(C) 312.5	(D) None of these							
35.	The relative lowering o	of the vapour pressure is	equal to the ratio between	en the number :							
	(A) solute molecules to	the solvent molecules									
	(B) solute molecules to	(B) solute molecules to the total molecules in the solution									
	(C) solvent molecules to the total molecules in the solution										
	(D) solvent molecules to	the total number of ion	s of the solute								
36.	The vapour pressure o	f pure liquid solvent A is	0.80 atm when a non	1							
	volatile solute B is added	I to the solvent its vapours olute B in the solution is (B) 0.25	s pressure falls to 0.60^{-1}	B							
	(C) 0.75	(D) given data is not s	sufficient	Temperature							
37.	Which of the following	plots represents an ideal	l binary mixture ?								
	(A) plot of P_{total} v/s $1/2$	X_{B} is linear (X_{B} = mole fra	action of 'B' in liquid phas	se)							
	(B) plot of P_{total} v/s Y_A	is linear $(Y_B = mole fract)$	ion of 'A' in vapour phase	2)							
	(C) plot of $\frac{1}{P_{\text{total}}} \text{ v/s } \text{ Y}_{\text{A}}$	is linear									
	(D) plot of $\frac{1}{P_{total}}$ v/s Y_{B}	is non linear									

38. The lowering of vapour pressure in a saturated aq. solution of salt AB is found to be 0.108 torr. If vapour pressure of pure solvent at the same temperatuare is 300 torr, find the solubility product of salt AB:

(A) 10^{-8}

- (B) 10^{-6}
- (C) 10^{-4}
- (D) 10^{-5}
- Which of the following represents correctly the changes in thermodynamic properties during the formation of 1 mol of an ideal binary solution:

40. FeCl $_3$ on reaction with $K_4[Fe(CN)_6]$ in aqueous solution gives blue colour. These are separated by a semipermeable membrane AB as shown. Due to osmosis there is :

- (A) blue colour formation in side X.
- (B) blue colour formation in side Y.
- (C) blue colour formation in both of the sides X and Y.
- (D) no blue colour formation.
- **41.** $P_A = (235 \text{ y} 125 \text{ xy}) \text{ mm}$ of Hg. P_A is partial pressure of A, x is mole fraction of B in liquid phase in the mixture of two liquids A and B and y is the mole fraction of A in vapour phase, then P_B in mm of Hg is :
 - (A) 235
- (B) 0

- (C) 110
- (D) 125

BRAIN	N TEAS	ERS				A A	ANSWER KEY				EXERCISE -2				SE -2
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	Α	Α	D	С	В	В	В	D	В	Α	С	D	В	А	В
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	С	В	Α	Α	С	С	С	С	Α	С	С	Α	Α	D	D
Que.	31	32	33	34	35	36	37	38	39	40	41				
Ans.	D	В	С	Α	В	В	С	С	С	D	С				

TRUE / FALSE

- 1. Relative lowering of vapour pressure is a colligative property.
- 2. The components of an azeotropic solution can be separated by simple distillation.
- 3. Addition of non-volatile solute to water always lowers its vapour pressure.
- 4. Reverse osmosis is generally used to make saline water fit for domestic use.
- **5.** A 6% solution of NaCl should be isotonic with 6% solution of sucrose.
- **6.** On diluting solution, its normality and molarity changes but molality remains constant.
- 7. The unit of k_h is kg $K^{-1} \text{ mol}^{-1}$.
- 8. The value of K_k or K_k depends only on the type of solvent & not solute dissolved in it.
- 9. Limiting value of van't Hoff factor of [K₄Fe(CN)₆] is 11.
- 10. The increasing order of osmotic pressure of 0.1 M aqueous solution containing different electrolyte is as follows 0.1 M Glucose < 0.1 M sodium chloride < 0.1 M magnesium chloride.

FILL IN THE BLANKS

- 1. Lowering of vapour pressure is to the mole fraction of the solute.
- 3. Semipermeable membrane allows the passage of through it.
- 5. The number of urea molecules in 1 litre of 0.5 M solution
- 6. 0.1 M solution of urea would be with 0.1 M solution of NaCl. (hypotonic / hypertonic / isotonic)
- 7. The value of k_i depends on nature of
- 9. For a non-ideal solution exhibiting positive deviation from Raoult's law, Δ_{mix} H has a (nonzero) value.
- 10. If in a binary solution, forces of attraction between like molecules are weaker than those prevailing between unlike molecules, the solution is expected to exhibit deviations from Raoult's law.
- 12. The density of a solution expressed in g cm⁻³ and kg dm⁻³ have values.

MATCH THE COLUMN

1.		Column-I	Column-II				
		(Properties)	(Affecting factors)				
	(A)	Relative lowering of vapour pressure	(p)	Directly proportional to van't Hoff factor, i			
	(B) Elevation in boiling point		(q)	Directly proportional to molality			
	(C)	Freezing point	(r)	Directly proportional to molarity			
	(D)	Osmotic pressure	(s)	Indirectly proportional to lowering of vapour			
				pressure			

ASSERTION & REASON

These questions contains, Statement I (assertion) and Statement II (reason).

- (A) Statement-I is true, Statement-II is true; Statement-II is correct explanation for Statement-I.
- (B) Statement-I is true, Statement-II is true; Statement-II is NOT a correct explanation for statement-I
- (C) Statement-I is true, Statement-II is false
- (D) Statement-I is false, Statement-II is true
- 1. Statement-I: 0.1 M solution of NaCl has greater osmotic pressure than 0.1 M solution of glucose at same temperature.

Because

Statement-II: In solution, NaCl dissociates to produce more number of particles.

2. Statement-I: Relative lowering of vapour pressure is equal to mole fraction of the solvent.

Because

Statement-II: Relative lowering of vapour pressure is a colligative property.

3. Statement-I: Molal elevation constant depends on the nature of solvent.

Statement-II: Molal elevation constant is the elevation in boiling point when 1 mole of the solute is dissolved in 1 kg of solvent.

4. Statement-I: 0.02 m solutions of urea and sucrose will freeze at same temperature.

Because

Statement-II: Freezing point of a solution is inversely proportional to the conc. of solution.

5. Statement-I: When mercuric iodide is added to the aqueous solution of KI, the freezing point is raised.

Because

Statement-II: HgI_2 reacts with KI forming complex ion $[HgI_4]^{2-}$.

6. Statement-I: 1 M solution of Glauber's salt is isotonic with 1 M solution of KNO₂.

Because

Statement-II: Solutions having same molar concentration of solute may or may not have same osmotic pressure.

7. Statement-I: If decimolal solution of sodium chloride boils at 101.2 C, then decimolal solution of calcium chloride will also boil at the same temperature.

Because

Statement-II: For same molal concentration of aqueous solutions of electrolytes, the elevation of boiling point may not be same.

COMPREHENSION BASED QUESTIONS

Comprehension # 1

The phase diagram for a pure substance is shown above. Use this diagram and your knowledge about changes of phase to answer the following questions.

- 1. What does point V represent :
 - (A) point of equilibrium (B) point of fusion
- (C) point of vaporisation (D) Triple point
- 2. What characteristics are specific to the system only at point V?
 - (A) Liquid Solid

(B) Solid ← Vapour

(C) Liquid \topour Vapour

(D) Solid \top Liquid \top Vapour

- **3.** What happens if temperature is increased from X to Y at 1.0 atm?
 - (A) solid is competely vaporised

- (B) solid and vapour are in equilibrium
- (C) solid and liquid are in equilibrium
- (D) liquid and vapour are in equilibrium

- **4.** Select correct statement (s) :
 - (A) curve VU is solid-liquid equilibrium curve
 - (B) curve VU has a positive slope
 - (C) curve VW is vapour pressure curve for liquid substance
 - (D) In the solid liquid mixture of the substance, solid will float
- **5.** If the given substance is water then :
 - (A) curve VU would have negative slope
 - (B) in ice water liquid mixture, ice will float
 - (C) as the temperature increases, pressure at which solid and liquid are in equilibrium, decreases
 - (D) increase in pressure at constant temperature causes ice to be converted to liquid water
- **6.** If the triple point pressure of a substance is greater than 1 atm, we expect :
 - (A) the solid to sublime without melting
 - (B) the boiling point temperature to be lower than the triple point temperature
 - (C) the melting point of the solid to come at a lower temperature than the triple point
 - (D) that the substance cannot exist as a liquid
- 7. In a phase change (say solid to liquid or liquid to solid) $\Delta G = \Delta H T\Delta S$ where :
 - (A) ΔH is the enthalpy change associated with making or breaking the intermolecular attractions that hold solid and liquid together and ΔS is associated with change in disorder between the various phases.
 - (B) ΔH is associated with change in disorder while ΔS is associated with energy change
 - (C) both are associated with change in disorder
 - (D) both are associated with change in energy

Comprehension # 2

Following passage explains effect of temperature on the vapour pressure of liquid. Answer the questions given at the end.

Effect of temperature on Vapour pressure

The quantity of heat required to evaporate a given liquid at constant temperature is defined as the heat of vaporisation. Variation of vapour pressure with temperature is given by

Clausius-Clapeyron equation.

$$\log_e P = -\frac{\Delta H_{\text{vap}}}{RT} + \log_e A$$

A liquid is said to be at its boiling temperature if its vapour pressure is equal to external pressure. Therefore, the boiling point of water in particular and of liquids in general decreases as altitude of a place increases where the external pressure is less than 1 atmosphere (normal b.p. of water is 373.15 K at 1 atmosphere)

On top of Mount Everest, for example, where the atmospheric pressure is only about 260 mm Hg, water boils at approximately 71 C. Conversely, if the external pressure on a liquid is greater than 1 atm., the vapour pressure necessary for boiling than normal boiling is reached later, and the liquid boils at a temperature greater than normal boiling point.

1. Clausius-Clapeyron equation can be written in the following form

(A)
$$P = Ae^{-\Delta H_{vap}/RT}$$

(B)
$$\frac{d \log_{10} P}{dT} = \frac{\Delta H_{vap}}{2.303 R T^2}$$

(C)
$$\frac{d\log_e P}{dT} = -\frac{\Delta H_{\text{vap}}}{RT^2}$$

(D)
$$P = Ae^{\Delta H_{vap}/RT}$$

2. For a given liquid at a given temperature vapour pressure is given by :

$$\log_{10} P \text{ (mm)} = -\frac{400(K)}{T} + 10$$

Comprehension Based Questions

Comprehension #1:1. (D)

Comprehension #2:1. (A,B)

Vapour pressure of the liquid at 400 K is :

- (A) 9 mm
- (B) -9 mm
- (C) 10^9 mm
- (D) 10^{-9} mm
- 3. Latent heat of vaporisation of the above case in the given temperature range is :
 - (A) -400 R

(B) 400 R

(C) -400 2.303 R

(D) 400 2.303 R

MIS	SCELLANEOUS TYPE	QUESTION		ANSWER KE	Y			EXERCISE -3
•	True / False							
	1 . T	2. F	3. T	4 . T	5.	F 6. F	7	. F
	8. T	9 . F	10 .T					
•	Fill in the Blank	<u>s</u>						
	1. proportional	2. 2 : 1	3.	solvent molecule	4.	azeotropic mixtur	e 5	$3.01 10^{23}$
	6. hypotonic	7. solvent	8.	0.1 M NaCl	9.	positive	1	0. negative
	11. 0.1	12. same						
•	Match the Colum	<u>nn</u>						
	1. (A) \rightarrow p; (B) \rightarrow p,	$q : (C) \rightarrow s : (I)$	O) \rightarrow p	, r				
•	Assertion - Reas	on Question	<u>s</u>					
	1. A 2. D	3 . I	3	4 . B		5 . A	6 . D	7 . D

3. (B)

3. (D)

4. (A,B,C) **5**. (A,B,C,D) **6**. (A)

7.(A)

2. (D)

2. (C)

- 1. The vapour pressure of ethanol and methanol are 44.5 mm Hg and 88.7 mm Hg, respectively. An ideal solution is formed at the same temperature by mixing 60 g of ethanol and 40 g of methanol. Calculate the total vapour pressure of the solution and the mole fraction of methanol in the vapour.
- 2. The vapour pressure of pure benzene at a certain temperature is 640 mm Hg. A non-volatile solid weighing 2.175 g is added to 39.0 g of benzene. The vapour pressure of the solution is 600 mm Hg. What is the molar mass of the solid substance?
- 3. Addition of 0.643 g of a compound to 50 mL of benzene (density : 0.879 g mL $^{-1}$) lower the freezing point from 5.51 C to 5.03 C. If $K_{\rm f}$ for benzene is 5.12 K kg mol $^{-1}$, calculate the molar mass of the compound.
- 4. (a) The vapour pressure of n-hexane and n-heptane at 273 K are 45.5 mm Hg and 11.4 mm Hg, respectively. What is the composition of a solution of these two liquids if its vapour pressure at 273 K is 37.3 mm Hg.
 - (b) The mole fraction of n-hexane in the vapour above a solution of n-hexane and n-heptane is 0.75 at 273 K. What is the composition of the liquid solution.
- 5. A solution containing 30 g of a nonvolatile solute in exactly 90 g water has a vapour pressure of 21.85 mm Hg at 25 C. Further 18 g of water is then added to the solution. The resulting solution has vapour pressure of 22.18 mm Hg at 25 C. Calculate (a) molar mass of the solute, and (b) vapour pressure of water at 25 C.
- 6. The freezing point of ether was lowered by $0.60 \, \text{C}$ on dissolving $2.0 \, \text{g}$ of phenol in $100 \, \text{g}$ of ether. Calculate the molar mass of phenol and comment on the result. Given : K_{f} (ether) = $5.12 \, \text{K}$ kg mol⁻¹.
- 7. A solution contains 3.22 g of $HClO_2$ in 47.0 g of water. The freezing point of the solution is 271.10 K. Calculate the fraction of $HClO_2$ that undergoes dissociation to H^+ and ClO_2^- . Given : K_t (water) = 1.86 K kg mol⁻¹.
- 8. A 0.1 molar solution of NaCl is found to be isotonic with 1% urea solution. Calculate (a) Van't Hoff factor, and (b) degree of dissociation of sodium chloride. Assume density of 1% urea equal to 1 g cm^{-3} .
- The addition of 3 g of a substance to 100 g CCl_4 (M = 154 g mol^{-1}) raises the boiling point of CCl_4 by 0.60 C. If K_b (CCl_4) is 5 K mol^{-1} kg, calculate (a) the freezing point depression (b) the relative lowering of vapour pressure (c) the osmotic pressure at 298 K and (d) the molar mass of the substance. Given : K_f (CCl_4) = 31.8 K kg mol^{-1} and ρ (solution) = 1.64 g cm⁻³.
- 10. To 500 cm 3 of water 3.0 10^{-3} kg of acetic acid is added. If 23% of acetic acid is dissociated, what will be the depression of freezing point? K_f and density of water are 1.86 K kg mol $^{-1}$ and 0.997 g cm $^{-3}$, respectively.
- 11. A 0.01 m aqueous solution of $K_3[Fe(CN)_6]$ freezes at -0.062 C. What is the apparent percentage of dissociation? [K, for water = 1.86]
- 12. The degree of dissociation of Ca $(NO_3)_2$ in a dilute aqueous solution containing 7 g of the salt per 100 g of water at 100 C is 70%. If the vapour pressure of water at 100 C is 760 mm, calculate the vapour pressure of the solution.
- 13. A solution containing 0.122 kg of benzoic acid in 1 kg of benzene (b. pt. 353 K) boils at 354.5 K. Determine the apparent molar mass of benzoic acid (which dimerizes) in the solution and the degree of dimerization. Given: $\Delta_{van}H_{1m}$ (benzene) = 394.57 J g⁻¹.
- 14. A solution containing 0.011 kg of barium nitrate in 0.1 kg of water boils at 100.46 C. Calculate the degree of ionization of the salt. K_b (water) = 0.52 K kg mol⁻¹.

- When 3.24 g of mercuric nitrate Hg $(NO_3)_2$ dissolved in 1 kg of water, the freezing point of the solution is found to be -0.0558 C. When 10.84 g of mercuric chloride $HgCl_2$ is dissolved in 1 kg of water, the freezing point of the solution is -0.0744 C. $K_f = 1.86$ mol⁻¹ K kg. Will either of these dissociate into ions in an aqueous solution?
- 16. The vapour pressure of solution containing 6.69 g of $Mg(NO_3)_2$ dissolved in 100 g of water is 747 Torr at 373 K. Calculate the degree of dissociation of the salt in the solution.
- 17. At 353 K, the vapour pressure of pure ethylene bromide and propylene bromide are 22.93 and 16.93 k $\rm Nm^{-2}$, respectively, and these compounds form a nearly ideal solution. 3 mol of ethylene bromide and 2 mole of propylene bromide are equilibrated at 553 K and a total pressure of 20.4 k $\rm Nm^{-2}$.
 - (a) What is the composition of the liquid phase?
 - (b) What amount of each compound is present in the vapour phase?
- 18. The vapour pressure of two pure liquids, A and B, that form an ideal solution are 300 and 800 torr, respectively, at temperature T. A mixture of the vapour of A and B for which the amount fraction of A is 0.25 is slowly compressed at temperature T. Calculate:
 - (a) The composition of the first drop of the condensate,
 - (b) The total pressure when this drop is formed,
 - (c) The composition of the solution whose normal boiling point is T.
 - (d) The pressure when only the last bubble of vapour remains.
 - (e) The composition of the last bubble.
- 19. Sea water is found to contain 5.85% NaCl and 9.50% $MgCl_2$ by weight of solution. Calculate its normal boiling point assuming 80% ionisation for NaCl and 50% ionisation of $MgCl_2$ [K_b (H₂O) = 0.51 kg mol⁻¹ K].
- **20.** Find the freezing point of a glucose solution whose osmotic pressure at 25 C is found to be 30 atm. K_{ϵ} (water) = 1.86 kg.mol⁻¹. K.
- 21. The latent heat of fusion of ice is 80 calories per gram at 0 C. What is the freezing point of a solution of $KC\ell$ in water containing 7.45 grams of solute 500 grams of water, assuming that the salt is dissociated to the extent of 95%?
- A certain mass of a substance, when dissolved in 100 g C_6H_6 , lowers the freezing point by 1.28 C. The same mass of solute dissolved in 100 g water lowers the freezing point by 1.40 C. If the substance has normal molecular weight in benzene and is completely ionised in water, into how many ions does it dissociate in water? K_f for H_2O and C_6H_6 are 1.86 and 5.12 K kg mol⁻¹.
- 23. The cryoscopic constant for acetic acid is 3.6 K kg/mol. A solution of 1 g of a hydrocarbon in 100 g of acetic acid freezes at 16.14 C instead of the usual 16.60 C. The hydrocarbon contains 92.3% carbon. What is the molecular formula?
- A radiator was filled with 10 L of water to which 2.5 L of methanol (density = 0.8 g.mL^{-1}) were added. At 9 : 00 pm, the vehicle is parked outdoors where the temperature is 0 C. The temperature is decreasing at a uniform rate of 0.5 C / min. Upto what time will there be no danger to the radiator of the car. K_{ϵ} (water) = $1.86 \text{ kg.mol}^{-1} \text{ K}$. Assume methanol to be non-volatile.
- 25. At 300 K, two solutions of glucose in water of concentration 0.01 M and 0.001 M are separated by semipermeable membrane. Pressure needs to be applied on which solution, to prevent osmosis? Calculate the magnitude of this applied pressure?
- 26. At 10 C, the osmotic pressure of urea solution is 500 mm. The solution is diluted and the temperature is raised to 25 C, when the osmotic pressure is found to be 105.3 mm. Determine extent of dilution.

- When cells of the skeletal vacuole of a frog were placed in a series of NaCl solutions of different concentration at 25 C, it was observed microscopically that they remained unchanged in 0.7% NaCl solution, shrank in more cocentrated solutions, and swelled in more dilute solutions. Water freezes from the 0.7% salt solution at -0.406 C. What is the osmotic pressure of the cell cytoplasm at 25 C? $K_f = 1.86 \text{ kg mol}^{-1} \text{ K}.$
- **28.** A 0.1 M solution of potassium ferrocyanide is 46% dissociated at 18 C. What will be its osmotic pressure?
- 29. At 100 C, benzene & toluene have vapour pressure of 1375 & 558 Torr respectively. Assuming these two form an ideal binary solution that boils at 1 atm & 100 C. What is the composition of vapour issuing at these conditions?
- 30. An ideal solution of two volatile liquid A and B has a vapour pressure of 402.5 mmHg, the mole fraction of A in vapour & liquid state being 0.35 & 0.65 respectively. What are the vapour pressure of the two liquid at this temperature.
- 31. Dry air was drawn through bulbs containing a solution of 40 grams of urea in 300 grams of water, then through bulbs containing pure water at the same temperature and finally through a tube in which pumice moistened with strong $\rm H_2SO_4$ was kept. The water bulbs lost 0.0870 grams and the sulphuric acid tube gained 2.036 grams. Calculate the molecular weight of urea.

PTUAL SUBJECTIVE EXERG	CISE	ANSWER	KE	Y		EXERCISE-4(A)
66.11mmHg, 0.656	2.	69.6 g/mole	3.	156.06 g/mol		
(a) 0.76, 0.34, (b) 0.61	5.	(a) 61.21 g mol^{-1} ,	(b) 23.	.99 mmHg	6.	$170.7~\mathrm{g~mol^{-1}}$
$\alpha = 0.102$	8.	(a) 1.667, (b) 0.66	57			
(a) 3.816 k (b) .01814	(c) 4.	669 atm (d) 250 g	mol ⁻¹		10.	0.23 k
0.78 %	12.	746.10 mm	13.	0.214 kg mol ⁻¹ , 0.86	6	
0.55	16.	0.56	17.	(a) 0.578, 0.422, ((b) 0.99	967 mol, 0.5374 mol
(a) 0.4706 (b) 564.7 To	orr	(c) 0.08, 0.92	(d) 67	75 Torr (e) .111, .88	89	
$T_{b} = 102.3 \text{ C}$	20.	$T_{f} = -2.28 \text{ C}$	21.	$T_{f} = -0.73 \text{ C}$	22.	3 ions
C_6H_6	24.	23.25 min	25.	P = 0.2217 atm s	hould	be applied
$(V_{final} = 5 V_{original})$	27.	5.34 atm	28.	p = 6.785 atm		
$x_b = 0.2472, \ y_b = 0.4473$	30.	$p_A = 216.7 \text{ mm H}_2$	g, p _B =	= 747.5 mm Hg	31.	M = 53.8
	66.11mmHg, 0.656 (a) 0.76, 0.34, (b) 0.61 $\alpha = 0.102$ (a) 3.816 k (b) .01814 0.78 % 0.55 (a) 0.4706 (b) 564.7 To T _b = 102.3 C C_6H_6 $(V_{final} = 5 V_{original})$	(a) 0.76 , 0.34 , (b) 0.61 5. $\alpha = 0.102$ 8. (a) 3.816 k (b) $.01814$ (c) 4. 0.78 % 12. 0.55 16. (a) 0.4706 (b) 564.7 Torr $T_b = 102.3$ C 20. C_6H_6 24. $(V_{final} = 5 \ V_{original})$ 27.	$\begin{array}{llllllllllllllllllllllllllllllllllll$	66.11mmHg, 0.656 2. 69.6 g/mole 3. (a) 0.76, 0.34, (b) 0.61 5. (a) 61.21 g mol ⁻¹ , (b) 23 α = 0.102 8. (a) 1.667, (b) 0.667 (a) 3.816 k (b) .01814 (c) 4.669 atm (d) 250 g mol ⁻¹ 0.78 % 12. 746.10 mm 13. 0.55 16. 0.56 17. (a) 0.4706 (b) 564.7 Torr (c) 0.08, 0.92 (d) 67 T_b = 102.3 C 20. T_f = - 2.28 C 21. C_6H_6 24. 23.25 min 25. $(V_{final}$ = 5 $V_{original}$) 27. 5.34 atm 28.	66.11mmHg, 0.656	66.11mmHg, 0.656

- A one litre solution is prepared by dissolving some solid lead-nitrate in water. The solution was found to boil at 100.15 C. To the resulting solution 0.2 mole NaCl was added. The resulting solution was found to freeze at -0.83 C. Determine solubility product of $PbCl_2$. Given $K_b = 0.5$ and $K_f = 1.86$. Assume molality to be equal to molarity in all case.
- A protein has been isolated as sodium salt with their molecular formula Na_xP (this notation means that xNa^+ ions are associated with a negatively charged protein P^{-x}). A solution of this salt was prepared by dissolving 0.25 g of this sodium salt of protein in 10 g of water and ebulliscopic analysis revealed that solution boils at temperature 5.93 10^{-3} C higher than the normal boiling point of pure water. K_b of water 0.52 kg mol⁻¹. Also elemental analysis revealed that the salt contain 1% sodium metal by weight. Deduce molecular formula and determine molecular weight of acidic form of protein H_xP .
- 3. The vapour pressure of two miscible liquids (A) and (B) are 300 and 500 mm of Hg respectively. In a flask 10 mole of (A) is mixed with 12 mole of (B). However, as soon as (B) is added, (A) starts polymerising into a completely insoluble solid. The polymerisation follows first-order kinetics. After 100 minute, 0.525 mole of a solute is dissolved which arrests the polymerisation completely. The final vapour pressure of the solution is 400 mm of Hg. Estimate the rate constant of the polymerisation reaction. Assume negligible volume change on mixing and polymerisation, and ideal behaviour for the final solution.
- 4. Two beaker A and B present in a closed vessel. Beaker A contains 152.4 g aqueous solution of urea, containing 12 g of urea. Beaker B contains 196.2 g glucose solution, containing 18 g of glucose. Both solutions allowed to attain the equilibrium. Determine wt. % of glucose in it's solution at equilibrium:
- 5. The vapour pressure of two pure liquids A and B, that form an ideal solution are 100 and 900 mm Hg respectively at temperature T. This liquid solution of A and B is composed of 1 mole of A and 1 mole of B. What will be the pressure, when 1 mole of mixture has been vaporized?
- 6. The addition of 3 g of substance to 100 g CCl_4 (M = 154 g mol^{-1}) raises the boiling point of CCl_4 by 0.60 C of K_b (CCl₄) is 5.03 kg mol^{-1} K. Calculate :
 - (a) the freezing point depression
 - (b) the relative lowering of vapour pressure
 - (c) the osmotic pressure at 298 K
 - (d) the molar mass of the substance Given $K_n(CCl_n) = 31.8 \text{ kg mol}^{-1} \text{ K}$ and ρ (density) of solution = 1.64 g/cm³.
- 7. If 20 mL of ethanol (density = 0.7893 g/mL) is mixed with 40 mL water (density = 0.9971 g/mL) at 25 C, the final solution has density of 0.9571 g/mL. Calculate the percentage change in total volume of mixing. Also calculate the molality of alcohol in the final solution.
- 8. Mixture of two liquids A and B is placed in cylinder containing piston. Piston is pulled out isothermally so that volume of liquid decreases but that of vapour increases. When negligibly small amount of liquid was remaining, the mole fraction of A in vapour is 0.4. Given $P_A = 0.4$ atm and $P_B = 1.2$ atm at the experimental temperature. Calculate the total pressure at which the liquid has almost evaporated. (Assume ideal behaviour)
- 9. 1.5 g of monobasic acid when dissolved in 150 g of water lowers the freezing point by 0.165 C. 0.5 g of the same acid when titrated, after dissolution in water, requires 37.5 mL of N/10 alkali. Calculate the degree of dissociation of the acid ($K_{\rm f}$ for water = 1.86 C mol⁻¹).

- The molar volume of liquid benzene (density = 0.877 g mL^{-1}) increase by a factor of 2750 as it vaporizes at 20 C and that of liquid toluene (density = 0.867 g mL^{-1}) increases by a factor of 7720 at 20 C solution has a vapour pressure of 46.0 torr. Find the mole fraction of benzene in the vapour above the solution.
- 11. Calculate the boiling point of a solution containing 0.61~g of benzoic acid in 50~g of carbon disulphide assuming 84% dimerization of the acid. The boiling point and K_b of CS_2 are 46.2~C and $2.3~K~kg~mol^{-1}$, respectively.
- 12. At 25 C, 1 mol of A having a vapour pressure of 100 torr and 1 mol of B having a vapour pressure of 300 torr were mixed. The vapour at equilibrium is removed, condensed and the condensate is heated back to 25 C. The vapour now formed are again removed, recondensed and analyzed. What is the mole fraction of A in this condensate?
- 13. 30 mL of CH₃OH (d = 0.7980 g cm⁻³) and 70 mL of H₂O (d = 0.9984 g cm⁻³) are mixed at 25 C to form a solution of density 0.9575 g cm⁻³. Calculate the freezing point of the solution. $K_f(H_2O)$ is 1.86 kg mol⁻¹ K. Also calculate its molarity.
- Vapour pressure of C_6H_6 and C_7H_8 mixture at 50 C is given by P (mm Hg) = 179 X_B + 92, where X_B is the mole fraction of C_6H_6 . A solution is prepared by mixing 936 g benzene and 736 g toluene and if the vapours over this solution are removed and condensed into liquid and again brought to the temperature of 50 C, what would be mole fraction of C_6H_6 in the vapour state?
- 15. When the mixture of two immiscible liquids (water and nitrobenzene) boils at 372 K and the vapour pressure at this temperature are 97.7 kPa ($\rm H_2O$) and 3.6 kPa ($\rm C_6H_5NO_2$). Calculate the weight % of nitrobenzene in the vapour.
- 16. The vapour pressure of a certain liquid is given by the equation :
 - $Log_{10}P = 3.54595 \frac{313.7}{T} + 1.40655 log_{10} T$ where P is the vapour pressure in mm and T = Kelvin Temperature. Determine the molar latent heat of vaporisation as a function of temperature. Calculate the its value at 80 K.
- 17. A very dilute saturated solution of a sparingly soluble salt A_3B_4 has a vapour pressure of 20 mm of Hg at temperature T, while pure water exerts a pressure of 20.0126 mm Hg at the same temperature. Calculate the solubility product constant of A_3B_4 at the same temperature.
- The molar volume of liquid benzene (density = 0.877 g mL^{-1}) increases by a factor of 2750 as it vaporises at 20 C while in equilibrium with liquid benzene. At 27 C when a non volatile solute (that does not dissociate) is dissolved in 54.6 cm^3 of benzene vapour pressure of this solution, is found to be 98.88 mm Hg. Calculate the freezing point of the solution.

Given: Enthalpy of vaporization of benzene (I) = 394.57 J/g

Molal depression constant for benzene = 5.12 K kg. mol⁻¹

Freezing point of benzene = 278.5 K.

- 19. An ideal solution was prepared by dissolving some amount of cane sugar (non-volatile) in 0.9 moles of water. The solution was then cooled just below its freezing temperature (271 K), where some ice get separated out. The remaining aqueous solution registered a vapour pressure of 700 torr at 373 K. Calculate the mass of ice separated out, if the molar heat of fusion of water is 96 kJ.
- 20. The freezing point depression of a 0.109~M aq. solution of formic acid is -0.21~C. Calculate the equilibrium constant for the reaction,

$$HCOOH$$
 (aq) \rightleftharpoons H^+ (aq) $+$ $HCOO^{\Theta}$ (aq)

 K_{f} for water = 1.86 kg mol⁻¹ K

- 21. 10 g of NH_4Cl (mol. weight = 53.5) when dissolved in 1000 g of water lowered the freezing point by 0.637 C. Calculate the degree of hydrolysis of the salt if its degree of dissociation of 0.75. The molal depression constant of water is 1.86 kg mol⁻¹ K.
- 22. The freezing point of 0.02 mol fraction solution of acetic acid (A) in benzene (B) is 277.4 K. Acetic acid exists partly as a dimer $2A = A_2$. Calculate equilibrium constant for the dimerisation. Freezing point of benzene is 278.4 K and its heat of fusion ΔH_f is $10.042 \text{ kJ mol}^{-1}$.
- 23. Tritium, T (an isotope of H) combines with fluorine to form weak acid TF, which ionizes to give T^{\dagger} . Tritium is radioactive and is a β -emitter. A freshly prepared aqueous solution of TF has pT (equivalent of pH) of 1.5 and freezes at -0.372 C. If 600 mL of freshly prepared solution were allowed to stand for 24.8 years, calculate (i) ionization constant of TF. (ii) Number of β -particles emitted.

(Given K_f for water = 1.86 kg mol K^{-1} , $t_{1/2}$ for tritium = 12.4 years.)

BRAIN STORMING SUBJECTIVE EXE	RCISE	ANSWER KEY			EXERCISE-4(B)
1. 1.46 10 ⁻⁵	2.	$H_{20}P$, 45563 amu	3.	1.0 10 ⁻⁴ 4.	14.49 %
5 . 300 mm Hg	6.	(a) 3.793 C, (b) 0.018, (c)) 4.65	atm , (d) 251.5	
7. 3.1 %, 8.6	8.	0.66 atm	9.	18.27% 10	. 0.732
11 . 46.31 C	12.	0.1	13.	-19.91 C, 7.63	М
14. 0.9286	15.	20.11%			
16 . ΔH = 1659.9 Cal. at 80 K,	$\Delta H = 1$	R[313.7 2.303 + 1.406	55 T]	17	. 5.4 10 ⁻¹³
18 . T _f = 277.51 C	19.	12.54 g	20.	1.44 10 ⁻⁴ 21	h = 0.109
22 . 3.225	23.	(i) $k_a = 7.3 10^{-3}$ (ii) 3.7	7 10 ²²	2	

1.

JEE-[MAINS] : PREVIOUS YEAR QUESTIONS

[AIEEE-2002]

	(A) Molarity	(B) Molality	(C) Mol fraction	(D) Weight fr	action
2.	For an aqueous solution, mol^{-1} kg) and $(K_b=0.512)$ (A) 0.186	freezing point is - 0.186 C 2 mol ^{- 1} kg) (B) 100.0512	C. The boiling point of the (C) 1.86	same solution (D) 5.12	is $(K_f = 1.86)$
3.	In a mixture of A and E (A) A - B interaction is	3, components show negar stronger than A – A and weaker than A – A and 1 0	tive deviation when - B – B interaction	(5) 5.12	[AIEEE-2003]
4.	(A) The higher pressure(B) Cooking involves che(C) Heat is more evenly	tes cooking time for food inside the cooker crushes emical changes helped by distributed in the cooking er involved in cooking is i	the food material a rise in temperature space		[AIEEE-2003]
5.	If liquids A and B form (A) The free energy of r (B) The free energy as v (C) The enthalpy of mixing (D) The entropy of mixing	nixing is zero well as the entropy of mix ng is zero	xing are each zero		[AIEEE-2003]
6.		solution of a weak acid Hi int of the solution will be (B) + 0.480 C	nearest to -	is 0.3. Taking (D) - 0.360	[AIEEE-2003]
7.		ing aqueous solutions will (B) $0.01\mathrm{M}$ KNO_3	exhibit highest boiling poi (C) 0.015M urea	int? (D) 0.015M	[AIEEE-2004] glucose
8.	Which of the following li (A) Water-hydrochloric ac (C) Water-nitric acid	quid pairs shows a positiv	ve deviation from Raoult's (B) Benzene-methanol (D) Acetone-chloroform	law ?	[AIEEE-2004]
9.	fraction (B) The osmotic pressure the solution (C) The correct order of > CH ₃ COOH > Sucrose	at the vapour pressure of a (π) of a solution is given osmotic pressure for 0.011	by the equation π = MRT Maqueous solution of each	where M is the	ne molarity of BaCl ₂ > KCl
10.	If α is the degree of dissemass is - (A) 1 - α	ociation of Na_2SO_4 , the va $ (B) \ 1 + \alpha $	nt of Hoff's factor (i) used (C) $1-2\alpha$	for calculating (D) 1 + 2α	the molecular [AIEEE-2005]

Which of the following concentration factor is affected by change in temperature?

11.	ture of benzene is 75 torr and C for a solution containing 78 [AIEEE-2005]				
	(A) 25	(B) 50	(C) 53.5	(D) 37.5	
12.			=	nanner. 480 ml of 1.5 M first e final mixture? [AIEEE-2005] (D) 1.344 M	
13.	(A) Same freezing point(B) Same boiling point	the same solvent have - t but different boiling poi but different freezing poi d different freezing point ame freezing points		[AIEEE-2006]	
14.	18 g of glucose (C_6H_{12} solution at 100 C is -	O_6) is added to 178.2g of	f water. The vapour press	sure of water for this aqueous [AIEEE-2006]	
	(A) 7.60 Torr	(B) 76.00 Torr	(C) 752.40 Torr	(D) 759.00 Torr	
15.	Density of a 2.05 M so	olution of acetic acid in w	vater is 1.02 g/mL. The	molality of the solution is - [AIEEE-2006]	
	(A) 3.28 mol kg^{-1}	(B) 2.28 mol kg^{-1}	(C) $0.44~\mathrm{mol~kg^{-}}^{1}$	(D) 1.14 mol kg^{-1}	
16.		hol is 200 mm. If the mo		90 mm at 300 K. The vapour ol is 0.6, its vapour pressure [AIEEE-2007] (D) 360	
17.	same solvent. If the der	nsities of both the solution	s are assumed to be equal	molar mass=60g mol ⁻¹) in the to 1.0 gcm ⁻³ , molar mass of [AIEEE-2007]	
	(A) 90.0 g mol ⁻¹	(B) 115.0 g mol ⁻¹	(C) 105.0 g mol ⁻¹	(D) 210.0 g mol^{-1}	
18.	The density (in g mL $^{-1}$) of mass will be -	of a 3.60 M sulphuric acid	solution that is 29% $\rm H_2SC$	O_4 (Molar mass = 98g mol ⁻¹) by [AIEEE-2007]	
	(A) 1.64	(B) 1.88	(C) 1.22	(D) 1.45	
19.		of 'A' and 'B' boils at 80	-	of pure liquid 'B' is 1000 mm e amount of 'A' in the mixture [AIEEE-2008]	
	(A) 52 mol %	(B) 34 mol %	(D) 48 mol %	(D) 50 mol %	
20.		of water at 20 C is 17.5 OC, the vapour pressure (B) 15.750 mm Hg		ucose $(C_6H_{12}O_6)$ is added to will be [AIEEE-2008] (D) 17.325 mm Hg	
21.	X and 3 mol of Y is 550 mi	m Hg. At the same temperature	e, if 1 mol of Y is further adde	ne solution containing 1 mol of ed to this solution, vapour pressure neir pure states will be, respectively [AIEEE-2009]	
	(A) 400 and 600	(B) 500 and 600	(C) 200 and 300	(D) 300 and 400	

22. A binary liquid solution is prepared by mixing n-heptane and ethanol. Which one of the folloowing statements is correct regarding the behaviour of the solution? [AIEEE-2009] (A) The solution is non-ideal, showing -ve deviation from Raoult's law (B) n-heptane shows +ve deviation while ethanol shows -ve deviation from Raoult's law (C) The solution formed is an ideal solution. (D) The solution is non-ideal, showing +ve deviation from Raoult's law 23. If sodium sulphate is considered to be completely dissociated into cations and anions in aqueous solution, the change in freezing point of water (ΔT_t), when 0.01 mol of sodium sulphate is dissolved in 1 kg of water, is $(K_f = 1.86 \text{ K kg mol}^{-1})$: [AIEEE-2010] (A) 0.0186 K (B) 0.0372 K (C) 0.0558 K (D) 0.0744 K 24. On mixing, heptane and octane form an ideal solution. At 373 K, the vapour pressures of the two liquid components (heptane and octane) are 105 kPa and 45 kPa respectively. Vapour pressure of the solution obtained by mixing 25.0 of heptane and 35 g of octane will be (molar mass of heptane = 100 g mol⁻¹ and of octane = 114 g mol^{-1}) :-[AIEEE-2010] (C) 36.1 kPa (A) 144.5 kPa (B) 72.0 kPa (D) 96.2 kPa 25. The degree of dissociation (α) of a weak electrolyte, A_xB_y is related to van't Hoff factor (i) by the expression (A) $\alpha = \frac{x+y-1}{i-1}$ (B) $\alpha = \frac{x+y+1}{i-1}$ (C) $\alpha = \frac{i-1}{(x+y-1)}$ (D) $\alpha = \frac{i-1}{x+y+1}$ 26. Ethylene glycol is used as an antifreeze in a cold climate. Mass of ethylene glycol which should be added to 4 kg of water to prevent it from freezing at - 6 C will be: (K_f for water = 1.86 K kgmol⁻¹, and molar mass of ethylene glycol = 62 gmol⁻¹) [AIEEE-2011] (A) 400.00 g (B) 304.60 g (C) 804.32 g (D) 204.30 g 27. A 5% solution of cane sugar (molar mass 342) is isotonic with 1% of a solution of an unknown solute. The molar mass of unknown solute in g/mol is :-[AIEEE-2011] (C) 68.4 (D) 34.2 (A) 136.2 (B) 171.2 28. The molality of a urea solution in which 0.0100g of urea, [(NH₂)₂CO] is added to 0.3000 dm^3 of water at STP is :-[AIEEE-2011] (B) 5.55 10⁻⁴ m (C) 33.3 m (A) 0.555 m (D) 3.33 10⁻² m 29. K_f for water is 1.86 K kg mol⁻¹. If your automobile radiator holds 1.0 kg of water, how many grams of ethylene glycol $(C_2H_6O_2)$ must you add to get the freezing point of the solution lowered to -2.8 C? [AIEEE-2012] (A) 27 g(B) 72 g (C) 93 g (D) 39 g

JEE-[MAIN] : PREVIOUS YEAR QUESTIONS ANSWER KEY									1	EXERCIS	SE -5[A	.]			
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans	Α	В	Α	D	С	С	Α	В	D	D	В	D	D	С	В
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	
Ans	Α	D	С	D	D	Α	D	С	В	С	С	С	В	С	

EXERCISE - 05 [B] JEE-[ADVANCED] : PREVIOUS YEAR QUESTIONS

1.		lution of two liquids has boiling e deviation from Raoult's law	point lower than either (B) shows no deviation					
		e deviation from Raoult's law	(D) is saturated					
2.		ion, Raoult's law state that :	(=)	[JEE 1985]				
		of vapour pressure is equal to n	nole fraction of solute	(022 2300)				
		wering of vapour pressure is ed		o of solute				
		wering of vapour pressure is pr	-					
		ressure of the solution is equal t						
3.		owing 0.1 M aqueous solutions						
Ο.	(A) Potassium sul		(C) Urea	(D) Glucose				
4.		at of equimolal aqueous solution	•	(D) Glacose				
т.		aniline hydrochloride)	(B) $Ca(NO_3)_2$					
	0 0 0	annine riyarocinoriae)	(D) $C_6H_{12}O_6$ (glucose	2)				
5.	(C) La(NO ₃) ₃	of a colution is 0.0821 atm at	- -					
ο.	will be :	of a solution is 0.0021 and at	a temperature of 500 K	The concentration in mole/litre [REE 1990]				
	(A) 0.33	(B) 0.066	(C) $0.3 10^{-2}$	(D) 3				
6.	Increasing the ter	mperature of an aqueous solution	on will cause :	[JEE 1983]				
	(A) decrease in molality (B) decrease in molarity							
	(C) decrease in the	ne mole fraction	(D) decrease in % (w	v/w)				
7.	=	of Fe^{2+} ions are formed when e^{2+} ? Assume no change in volume		ith 500 mL of 0.4 M HCl under [JEE 1993]				
	(A) 0.4	(B) 0.1	(C) 0.2	(D) 0.8				
8.	-	ous solution of a weak acid (HX) 6 C kg mol^{-1} for water) :	is 20 percent ionised.	The freezing point of this solution [JEE 1995]				
	(A) -0.45 C	(B) -0.90 C	(C) -0.31 C	(D) -0.53 C				
9.	The molecular we	ght of benzoic acid in benzene as	s determined by depression	on in freezing point of the solution [JEE 1996]				
	(A) ionization of b	penzoic acid	(B) dimerization of b	enzoic acid				
	(C) trimerization of	of benzoic acid	(D) solvation of benz	oic acid				
10.	The van't Hoff fa	ctor for 0.1 M Ba(NO ₃) ₂ solution	n is 2.74. The degree of	f dissociation is: [JEE 1996]				
	(A) 91.3%	(B) 87%	(C) 100%	(D) 74%				
11.	In the depression	of freezing point experiment, is	t is found that :	[JEE 1999]				
	(i) The vapour p	ressure of the solution is less th	an that of pure solvent.					
	(ii) The vapour p	ressure of the solution is more	than that of pure solven	ıt.				
	(iii) Only solute m	olecules solidify at the freezing	point.					
	(iv) Only solvent r	nolecules solidify at the freezing	point.					
	(A) (i), (ii)	(B) (ii), (iii)	(C) (i), (iv)	(D) (i), (ii), (iii)				
12.	To 500 cm ³ of w	vater, $3.0 ext{ } 10^{-3} \text{kg of acetic ac}$	cid is added. If 23% of	acetic acid is dissociated, what				
	will be the depre respectively :	ssion in freezing point? $k_{_{\mathrm{f}}}$ and ϵ	density of water are 1.8	36 K kg mol ⁻¹ and 0.997 g cm ⁻³ [JEE 2000				
	(A) 0.186 K	(B) 0.228 K	(C) 0.372 K	(D) 0.556 K				
13.	=	ion of 6.3 g oxalic acid dihydra letely neutralise 10 mL of this s	-	nL. The volume of 0.1 N NaOH [JEE 2001]				
	(A) 40 mL	(B) 20 mL	(C) 10 mL	(D) 4 mL				

- 14. During depression of freezing point in a solution, the following are in equilibrium: [JEE 2003]
 - (A) Liquid solvent solid solvent

(B) Liquid solvent - solid solute

(C) Liquid solute - solid solute

- (D) Liquid solute solid solvent
- The elevation in boiling point of a solution of 13.44 g of CuCl_2 in 1 kg of water using the following information will be (Molecular weight of $\text{CuCl}_2 = 134.4$ and $\text{K}_b = 0.52 \text{ K molal}^{-1}$): [JEE 2005]
 - (A) 0.16
- (B) 0.05
- (C) 0.1

(D) 0.2

SUBJECTIVE QUESTIONS:

- A very small amount of a nonvolatile solute (that does not dissociate) is dissolved in 56.8 cm³ of benzene (density 0.889 g cm⁻³), At room temperature, vapour pressure of this solution is 98.88 mm Hg while that of benzene is 100 mm Hg. Find the molality of this solution If the freezing point depression constant of benzene?

 [JEE 1997]
- 17. A solution of a nonvolatile solute in water freezes at -0.30 C. The vapour pressure of pure water at 298 K is 23.51 mm Hg and K_i for water is 1.86 degree/molal. Calculate the vapour pressure of this solution at 298 K.

 [JEE 1998]
- 18. The vapour pressure of two miscible liquids (A) and (B) are 300 and 500 mm of Hg respectively. In a flask 10 mole of (A) is mixed with 12 mole of (B). However, as soon as (B) is added, (A) starts polymerising into a completely insoluble solid. The polymerisation follows first-order kinetics. After 100 minute, 0.525 mole of a solute is dissolved which arrests the polymerisation complete. The final vapour pressure of the solution is 400 mm of Hg. Estimate the rate constant of the polymerisation reaction. Assume negligible volume change on mixing and polymerisation and ideal behaviour for the final solution.

 [JEE 2001]
- 19. Match the boiling point with K_b for x, y and z, if molecular weight of x, y are same : [JEE 2003]

	b.pt	$K_{_{b}}$
X	100	0.68
у	27	0.53
Z	253	0.98

- 20. 1.22 g of benzoic acid is dissolved in (i) 100 g acetone (K_b for acetone = 1.7) and (ii) 100 g benzene (K_b for benzene = 2.6). The elevation in boiling points T_b is 0.17 C and 0.13 C respectively: [**JEE 2004**]
 - (a) What are the molecular weight of benzoic acid in both the solutions?
 - (b) What do you deduce out of it in terms of structure of benzoic acid?
- 21. 72.5 g of phenol is dissolved in 1 kg of a solvent ($k_f = 14$) which leads to dimerisation of phenol and freezing point is lowered by 7 kelvin. What percent of total phenol is present in dimeric form:

 [JEE 2006]
- When 20 g of naphtholic acid ($C_{11}H_8O_2$) is dissolved in 50 g of benzene ($K_f = 1.72$ K kg mol⁻¹), a freezing point depression of 2 K is observed. The van't Hoff factor (I) is [JEE 2007]

 (A) 0.5

 (B) 1

 (C) 2

 (D) 3

Paragraph for Question No. Q.23 to Q.24

Properties such as boiling point, freezing point and vapour pressure of a pure solvent change when solute molecules are added to get homogeneous solution. These are called colligative properties. Applications of colligative properties are very useful in day-to-day life. One of its examples is the use of ethylene glycol and water mixture as anti-freezing liquid in the radiator of automobiles.

A solution M is prepared by mixing ethanol and water. The mole fraction of ethanol in the mixture is 0.9.

Given: Freezing point depression constant of water $\left(K_f^{\text{water}}\right)$ = 1.86 K kg mol⁻¹

Freezing point depression constant of ethanol $\left(K_{\rm f}^{\rm ethanol}\right)$ = 2.0 K kg mol⁻¹

Boiling point elevation constant of water $\left(K_{b}^{\text{water}}\right)$ = 0.52 K kg mol⁻¹

Boiling point elevation constant of ethanol (K_h^{ethanol}) = 1.2 K kg mol⁻¹

Standard freezing point of water = 273 K

Standard freezing point of ethanol = 155.7 K

Standard boiling point of water = 373 K

Standard boiling point of ethanol = 351.5 K

Vapour pressure of pure water = 32.8 mm Hg

Vapour pressure of pure ethanol = 40 mm Hg

Molecular weight of water = 18 g mol-1

Molecular weight of ethanol = 46 g mol⁻¹

In answering the following questions, consider the solutions to be ideal dilute solutions and solutes to be nonvolatile and non-dissociative.

23. The freezing point of the solution \boldsymbol{M} is [JEE 2008]

- (A) 268.7 K
- (B) 268.5 K
- (C) 234.2 K
- (D) 150.9 K

24. The vapour pressure of the solution \mathbf{M} is [JEE 2008]

- (A) 39.3 mm Hg
- (B) 36.0 mm Hg
- (C) 29.5 mm Hg
- (D) 28.8 mm Hg
- 25. Water is added to the solution M such that the mole fraction of water in the solution becomes 0.9. The boiling point of this solution is [JEE 2008]
 - (A) 380.4 K
- (B) 376.2 K
- (C) 375.5 K
- (D) 354.7 K
- 26. The Henry's law constant for the solubility of $\rm N_2$ gas in water at 298 K is 1.0 $\rm ~10^5$ atm. The mole fraction of N_2 in air is 0.8. The number of moles of N_2 from air dissolved in 10 moles of water at 298 K and 5 atm pressure is [JEE 2009]
 - (A) $4.0 10^{-4}$
- (B) $4.0 10^{-5}$
- (C) $5.0 10^{-4}$
- 10^{-5} (D) 4.0
- The freezing point (in C) of a solution containing 0.1~g of $K_a[Fe(CN)_a]$ (Mol. Wt. 329) in 100 g of water 27. $(K_f = 1.86 \text{ K kg mol}^{-1}) \text{ is}$ [JEE 2011]
 - (A) 2.3 10^{-2}
- (B) $-5.7 10^{-2}$ (C) $-5.7 10^{-3}$
- (D) 1.2

JEE-[ADVANCED] : PREVIOUS YEAR QUESTIC ANSWER KEY										1	EXERCIS	SE -5[B]		
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	С	В	Α	D	С	В	В	Α	В	В	С	В	Α	Α	Α

- **16.** 0.1452, 5.025Km⁻¹
- 17. 23.44 mm Hg
- 18. 1.0 10^{-4}

- **19.** $K_b(x) = 0.68$, $K_b(y) = 0.53$, $K_b(z) = 0.98$
- 20. (a) 122, 244
 - (b) It means that benzoic acid remains as it is in acetone while it dimerises in benzeneas

- **21.** 35% phenol is present in dimeric form.
- 22. A23.
- 24.
- 25.

В

- 26.
- 27.