$$\sum_{n=1}^{\infty}a_n$$

部分和。

 $S_n \equiv a_1 + a_2 + \ldots + a_n$ $\lim_{n \to \infty} S_n = \sum_{n=1}^{\infty} a_n$ $\lim_{n \to \infty} S_n = egin{cases} = S, \sum_{n=1}^{\infty} a_n = S \ ag{7.7} & A_n = S \end{cases}$ 不存在, $\sum_{n=1}^{\infty} a_n$ 发散

zenojbaccheno)

判断级数
$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)}$$
的敛散性.
$$S_n = \frac{1}{1 \times 3} + \frac{1}{3 \times 5} + \ldots + \frac{1}{(2n-1)(2n+1)}$$
$$= \frac{1}{2} (1 - \frac{1}{2n+1})$$
$$\therefore \lim_{n \to \infty} S_n = \frac{1}{2}, \ldots \sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)} = \frac{1}{2}$$

0

Note: 对 $\sum_{n=1}^{\infty} (b_{n+1} - b_n)$ 敛散性判断一般用定义.

常数项级数的性质

1.

$$\sum_{n=1}^{\infty}a_n=A,\sum_{n=1}^{\infty}b_n=B\Rightarrow\sum_{n=1}^{\infty}(a_n\pm b_n)=\sum_{n=1}^{\infty}a_n\pm\sum_{n=1}^{\infty}b_n=a\pm b$$

2.

$$\sum_{n=1}^{\infty}a_n=S\Rightarrow\sum_{n=1}^{\infty}ka_n=k\sum_{n=1}^{\infty}a_n=kS$$

- 3. 级数前面添加、减少改变有限项, 敛散性不变 (若收敛, 和会改变)
- 4. 添加括号不降收敛性

zendbäckhend

tengbaocheng

lendbackens

$$\begin{split} &-1+1-1+1-1+\overline{1-\dots}\\ &S_{2n}=0,S_{2n+1}=-1\\ &\lim_{n\to\infty}S_{2n}\neq\lim_{n\to\infty}S_{2n+1},\therefore\lim_{n\to\infty}S_n$$
不存在,即
$$&-1+1-1+1-1+1-1+1-\dots$$
发散
$$&\mathbb{U}(-1+1)+(-1+1)+(-1+1)+\dots=0+0+\dots$$
收敛
$$&a_1+a_2+\dots\\ &(a_1+a_2)+a_3+(a_4+a_5+a_6)+\dots\\ &\mathbb{U}:\mathbb{V}\sum_{n=1}^\infty a_n$$
收敛,问 $\sum_{n=1}^\infty (a_{2n-1}+a_{2n})?$
$$&\sum_{n=1}^\infty (a_{2n-1}+a_{2n})=(a_1+a_2)+(a_3+a_4)+(a_5+a_6)+\dots \end{split}$$

5. 若级数收敛,则

$$egin{aligned} &\lim_{n o\infty}S_n=S\ &a_n=S_n-S_{n-1}\ &\lim_{n o\infty}a_n=\lim_{n o\infty}S_n-\lim_{n o\infty}S_{n-1}=S-S=0 \end{aligned}$$

若
$$\sum_{n=1}^{\infty}a_n$$
收敛 $\Rightarrow egin{cases} \Im \lim_{n o\infty}a_n=0 \ 2\lim_{n o\infty}S_n \end{bmatrix}$

两个重要的级数

p-级数

$$\sum_{n=1}^{\infty} rac{1}{n^p}$$
 $p=1,\sum_{n=1}^{\infty} rac{1}{n}$,调和级数 $egin{cases} p>1,$ 收敛 $p\leq 1$,发散

几何级数

$$\sum_{n=1}^{\infty}aq^n(a
eq0)$$
 $\left\{egin{aligned} |q|\geq 1, ar{\Sigma} ar{b}\ |q|< 1, 收敛于 $\sum_{n=1}^{\infty}aq^n=rac{ar{\mathfrak{A}}-ar{\eta}}{1-q} \end{aligned}
ight.$$

正项级数及敛散性

$$\sum_{n=1}^{\infty}a_n(a_n\geq 0, n=1,2,\dots)$$
称为正项级数

Notes:

①
$$S_1 \leq S_2 \leq S_3 \leq \ldots$$
,即 $\{S_n\}$ ↑

②
$$\{S_n\}$$
无界 $\Rightarrow \lim_{n \to \infty} S_n = +\infty$,即 $\sum_{n=1}^{\infty} a_n = +\infty$

③
$$\exists M>0,$$
使 $S_n\leq M\Rightarrow\lim_{n o\infty}S_n$ $\exists\Rightarrow\sum_{n=1}^\infty a_n$ 收敛

比较审敛法

基本形式

$$a_n \geq 0, b_n \geq 0 (n=1,2,\dots)$$
 $a_n \leq b_n$ 且 $\sum_{n=1}^\infty b_n$ 收敛 $\Rightarrow \sum_{n=1}^\infty a_n$ 收敛 $a_n \geq b_n$ 且 $\sum_{n=1}^\infty b_n$ 发散 $\Rightarrow \sum_{n=1}^\infty a_n$ 发散

判断级数
$$\sum_{n=1}^{\infty} \sin \frac{\pi}{2^n}$$
的敛散性.

$$\sin \frac{\pi}{2^n} > 0 (n=1,2,\dots)$$
 $\therefore x \geq 0$ 时, $\sin x \leq x$, $\therefore 0 < \sin \frac{\pi}{2^n} \leq \frac{\pi}{2^n}$
 $\therefore \sum_{n=1}^{\infty} \frac{\pi}{2^n}$ 收敛, $\therefore \sum_{n=1}^{\infty} \sin \frac{\pi}{2^n}$ 收敛

设 $a_n \leq b_n \leq c_n$ 且级数 $\sum_{n=0}^{\infty} a_n$ 与 $\sum_{n=0}^{\infty} c_n$ 收敛, 证明级数 $\sum_{n=0}^{\infty} b_n$ 收敛.

$$a_n \leq b_n \leq c_n \Rightarrow 0 \leq b_n - a_n \leq c_n - a_n$$
 $\sum_{n=1}^\infty a_n, \sum_{n=1}^\infty c_n$ 收敛 $\Rightarrow \sum_{n=1}^\infty (c_n - a_n)$ 收敛

$$\Rightarrow \sum_{n=1}^{\infty} (b_n - a_n)$$
收敛

$$\cdots \sum_{n=1}^{\infty} a_n$$
收敛

$$\therefore \sum_{n=1}^{\infty}[(b_n-a_n)+a_n]=\sum_{n=1}^{\infty}b_n$$
收敛

极限形式

$$a_n>0, b_n>0 (n=1,2,\dots)$$

$$\lim_{n o \infty} rac{b_n}{a_n} = l(0 < l < +\infty) \Rightarrow \sum_{n=1}^\infty a_n, \sum_{n=1}^\infty b_n$$
敛散性同

比值法

$$a_n>0(n=1,2,\dots)$$

①
$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}<1\Rightarrow$$
收敛

①
$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} < 1 \Rightarrow$$
 收敛
② $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} > 1 \Rightarrow$ 发散

判断级数
$$\sum_{n=1}^{\infty} \frac{2^n n!}{n^n}$$
的敛散性.

$$egin{aligned} &\because \lim_{n o \infty} rac{a_{n+1}}{a_n} = \lim_{n o \infty} rac{2^{n+1}(n+1)!}{(n+1)^{n+1}} \cdot rac{n^n}{2^n n!} = 2\lim_{n o \infty} (rac{n}{n+1})^n = \ &2\lim_{n o \infty} rac{1}{(1+rac{1}{n})^n} = rac{2}{e} =
ho < 1 \end{aligned}$$

根值法

$$a_n>0(n=1,2,\dots)$$
 $\lim_{n o\infty}\sqrt[n]{a_n}=
ho$ ① $ho<1$,收敛 ② $ho>1$,发散 ③ $ho=1$,?

判断级数 $\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^{n^2}$ 的敛散性. ्राह्म n+1 ं माउध्यहाय दि. $\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} (\frac{n}{n+1})^n = \lim_{n \to \infty} \frac{1}{(1+\frac{1}{n})^n} = \frac{1}{e} = \rho < 1$. . 收敛

$$\because \lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} (\frac{n}{n+1})^n = \lim_{n \to \infty} \frac{1}{(1+\frac{1}{n})^n} = \frac{1}{e} = \rho < 1$$

交错级数及敛散性

$$egin{align} a_1-a_2+a_3-a_4+\ldots &=\sum_{n=1}^{\infty}(-1)^{n-1}a_n\ \ -a_1+a_2-a_3+a_4-\ldots &=\sum_{n=1}^{\infty}(-1)^na_n\ \ (a_n>0,n=1,2,\ldots) \ \end{pmatrix}$$

莱布尼茨法

$$\sum_{n=1}^{\infty}(-1)^{n-1}a_n(a_n>0,n=1,2,\dots)$$
 ① $\{a_n\}\downarrow$ ② $\lim_{n o\infty}a_n=0$ $\Rightarrow \sum_{n=1}^{\infty}(-1)^{n-1}a_n$ 收敛, $S\leq a_1$

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}}$$

$$a_n=rac{1}{\sqrt{n}}$$
 $dots$ $\{rac{1}{\sqrt{n}}\}\downarrow oxtlesh \lim_{n o\infty}rac{1}{\sqrt{n}}=0, \therefore \sum_{n=1}^{\infty}rac{(-1)^{n-1}}{\sqrt{n}}$ 收敛.

$$\sum_{n=1}^{\infty} a_n$$
收敛, $\sum_{n=1}^{\infty} a_n^2$ 不一定收敛.

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}}, \overline{n} \sum_{n=1}^{\infty} \frac{1}{n}$$
发散.

endpager

$$\sum_{n=1}^{\infty}a_n(a_n\geq 0)$$
收敛 $\Rightarrow \sum_{n=1}^{\infty}a_n^2$ 收敛

$$\sum_{n=1}^{\infty}a_n$$
收敛 $\Rightarrow \lim_{n o\infty}a_n=0$

取
$$\epsilon = 1, \exists N > 0,$$
 当 $n > N$ 时,

$$|a_n - 0| < 1$$

$$\Rightarrow 0 \le a_n < 1 \Rightarrow 0 \le a_n^2 \le a_n$$

$$\because \sum_{n=1}^{\infty} a_n$$
收敛 $, \therefore \sum_{n=1}^{\infty} a_n^2$ 收敛

Telidipaoci,

任意级数

若
$$\sum_{n=1}^{\infty} |a_n|$$
收敛,称 $\sum_{n=1}^{\infty} a_n$ 绝对收敛

若
$$\sum_{n=1}^{\infty} a_n$$
收敛, 而 $\sum_{n=1}^{\infty} |a_n|$ 发散, 称 $\sum_{n=1}^{\infty} a_n$ 条件收敛

关系

若
$$\sum_{n=1}^{\infty}a_n$$
绝对收敛 $\Rightarrow \sum_{n=1}^{\infty}a_n$ 收敛

证:已知
$$\sum_{n=1}^{\infty} |a_n|$$
 收敛
$$a_n = \frac{|a_n| + a_n}{2} - \frac{|a_n| - a_n}{2}$$

$$0 \le \frac{|a_n| + a_n}{2} \le |a_n|, 0 \le \frac{|a_n| - a_n}{2} \le |a_n|$$
 $\therefore \sum_{n=1}^{\infty} |a_n|$ 收敛 $\therefore \sum_{n=1}^{\infty} \frac{|a_n| + a_n}{2}, \therefore \sum_{n=1}^{\infty} \frac{|a_n| - a_n}{2}$ 皆收敛 $\Rightarrow \sum_{n=1}^{\infty} a_n$ 收敛

设f(x)二阶连续可导,f(0)=1且 $\lim_{x o 0}rac{f'(x)}{x}=2$,证明:级数 $\sum_{n=1}^{\infty}[f(rac{1}{n})-1]$ 绝对收敛.

$$\lim_{x \to 0} \frac{f'(x)}{x} = 2 \Rightarrow f'(0) = 0, f''(0) = 2$$

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + o(x^2)$$

$$f(\frac{1}{n}) - 1 = \frac{1}{n^2} + o(\frac{1}{n^2})$$

$$|f(\frac{1}{n}) - 1| = |\frac{1}{n^2} + o(\frac{1}{n^2})| \sim \frac{1}{n^2}$$

$$\therefore \sum_{n=1}^{\infty} \frac{1}{n^2} \psi \mathring{\omega}, \therefore \sum_{n=1}^{\infty} |f(\frac{1}{n}) - 1| \psi \mathring{\omega}$$

$$\Rightarrow \sum_{n=1}^{\infty} [f(\frac{1}{n}) - 1] \mathring{\omega} \forall \psi \mathring{\omega}.$$

判断 $\sum_{n=0}^{\infty} (-1)^n (1-\cos\frac{a}{n})(a>0)$ 的敛散性. 若收敛, 该级数绝对收敛还是条件收敛?

$$0 \le |(-1)^n (1 - \cos \frac{a}{n})| = |2\sin^2 \frac{a}{2n}| \le 2(\frac{a}{2n})^2 = \frac{a^2}{2} \cdot \frac{1}{n^2}$$
$$\therefore \sum_{n=1}^{\infty} \frac{a^2}{2} \cdot \frac{1}{n^2}$$
收敛,
$$\therefore \sum_{n=1}^{\infty} |(-1)^n (1 - \cos \frac{a}{n})|$$
收敛

判断级数 $\sum_{n=1}^{\infty} \sin \sqrt{n^2 + 1\pi}$ 的敛散性, 若收敛, 该级数绝对收敛还是条件收敛?

$$a_n = \sin \sqrt{n^2 + 1} \pi = \sin[n\pi + (\sqrt{n^2 + 1} - n)\pi] = (-1)^n \sin rac{\pi}{\sqrt{n^2 + 1} + n}$$

$$0 < \frac{\pi}{\sqrt{n^2 + 1} + n} < \frac{\pi}{2}, : \sin \frac{\pi}{\sqrt{n^2 + 1} + n} > 0$$

$$\therefore \{\sin \frac{\pi}{\sqrt{n^2+1}+n}\} \downarrow, \ldots$$
 原级数收敛

$$|\sin \sqrt{n^2+1}\pi| \sim rac{\pi}{\sqrt{n^2+1}+n} \sim rac{\pi}{2n},$$
而 $\sum_{n=1}^{\infty} rac{\pi}{2n}$ 发散

 $\therefore \sum_{n=1}^{\infty} \sin \sqrt{n^2 + 1} \pi$ 发散 $, \therefore$ 原级数条件收敛.

$$\sum_{n=1}^{\infty} a_n$$
收敛,问 $\sum_{n=1}^{\infty} (a_n + a_{n+1})$?

$$S_n = a_1 + \ldots + a_n$$

$$egin{aligned} \sum_{n=1}^\infty a_n$$
收敛 $\Rightarrow \sum_{n=1}^\infty a_n = 0$ 且 $\sum_{n=1}^\infty S_n$ ∃ $\Leftrightarrow \lim_{n o\infty} S_n = S \ S_n' = (a_1+a_2) + (a_2+a_3) + \ldots + (a_n+a_{n+1}) \end{aligned}$

$$\diamondsuit \lim_{n o \infty} S_n = S$$

$$S_n' = (a_1 + a_2) + (a_2 + a_3) + \ldots + (a_n + a_{n+1})$$

$$= 2S_n - a_1 + a_{n+1}$$

$$\therefore \lim S'_n = 2S - a_1$$

$$\because \lim_{n o\infty} S_n' = 2S - a_1$$

$$\therefore \sum_{n=1}^{\infty} (a_n + a_{n+1})$$
收敛

$$\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^3+n+1}}$$

$$\because \frac{n}{\sqrt{n^3+n+1}} \sim \frac{1}{\sqrt{n}} \mathbb{E} \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$
发散,∴原级数发散

$$\sum_{n=1}^{\infty} rac{1}{\int_0^n \sqrt[4]{1+x^4}dx}$$
 $\int_0^n \sqrt[4]{1+x^4}dx \geq \int_0^n xdx = rac{n^2}{2}$
 $\Rightarrow 0 < rac{1}{\int_0^n \sqrt[4]{1+x^4}dx} \leq rac{2}{n^2}$
而 $\sum_{n=1}^{\infty} rac{2}{n^2}$ 收敛, ∴ 原级数收敛

设
$$a_1=2, a_{n+1}=rac{1}{2}(a_n+rac{1}{a_n}),$$
证明:

$$(1) \lim_{n o \infty} a_n$$
存在 $(2) \sum_{n=1}^{\infty} (rac{a_n}{a_{n+1}} - 1)$ 收敛

$$\sum_{n=1}^{\infty} a_{n+1}$$
 $(1)a_n > 0$
 $\therefore a_n + \frac{1}{a_n} \ge 2, \therefore a_{n+1} \ge 1$
 $a_{n+1} - a_n = \frac{1}{2}(a_n + \frac{1}{a_n}) - a_n = \frac{1 - a_n^2}{2a_n} \le 0$
 $\Rightarrow \{a_n\} \downarrow$
 $\therefore \lim_{n \to \infty} a_n \exists$
 $(2) \because \{a_n\} \downarrow \exists a_n > 0, \therefore \frac{a_n}{a_{n+1}} - 1 \ge 0$
 $0 \le \frac{a_n}{a_{n+1}} - 1 = \frac{a_n - a_{n+1}}{a_{n+1}} \le a_n - a_{n+1}$
 $\forall \sum_{n=1}^{\infty} (a_n - a_{n+1})$

$$S_n = (a_1 - a_2) + \ldots + (a_n - a_{n+1}) = 2 - a_{n+1}$$
 $\therefore \lim_{n \to \infty} S_n \exists, \therefore \sum_{n=1}^{\infty} (a_n - a_{n+1})$ 收敛

$$\therefore \sum_{n=1}^{\infty} (\frac{a_n}{a_{n+1}} - 1)$$
收敛