Decomposição em Modos Dinâmicos (DMD)

Teoria Computacional e Conexões com Métodos de Álgebra Linear

Eduardo Hiroji Brandão Haraguchi

Instituto Tecnológico de Aeronáutica MAT-55

25 de junho de 2025

Roteiro da Apresentação

- Introdução e Motivação
- Teoria Computacional da DMD
- Algoritmos DMD
- 4 DMD vs PCA
- 5 Fundamentação Teórica
- 6 Conclusões

Introdução

- DMD (Dynamic Mode Decomposition): Extensão computacional de métodos de álgebra linear
- Desenvolvida por Schmid (2010)
- Aplicação sistemática de conceitos estudados em MAT-55:
 - Decomposição SVD
 - Métodos de quadrados mínimos
 - Técnicas de ortogonalização
- Objetivo: Extrair informações dinâmicas de dados temporais

Motivação

Por que DMD?

- Sistemas dinâmicos complexos geram dados temporais
- Necessidade de identificar padrões dinâmicos
- Métodos clássicos de álgebra linear são a base
- Robustez numérica herdada dos métodos fundamentais

Formulação Matricial do Problema

Dados dois conjuntos de observações temporais:

$$X = [x_1, x_2, \dots, x_{m-1}] \in \mathbb{R}^{n \times m}$$

$$Y = [x_2, x_3, \dots, x_m] \in \mathbb{R}^{n \times m}$$

Objetivo: Encontrar $A \in \mathbb{R}^{n \times n}$ tal que:

$$Y \approx AX$$

Exemplo

- (1)
- (2)

(3)

X: dados no tempo t

temporais

• Y: dados no tempo t+1

• x_1, x_2, \ldots, x_m : snapshots

• Relação linear: $Y \approx AX$

Conexão com MAT-55

Problema de quadrados mínimos: $Ax \approx b$

Decomposição SVD como Base

Aplicação da SVD

$$X = U\Sigma V^T$$

onde $U \in \mathbb{R}^{n \times n}$ e $V \in \mathbb{R}^{m \times m}$ são ortogonais

Truncagem SVD

$$X \approx U_r \Sigma_r V_r^T$$

(5)

(4)

Mantendo apenas os r primeiros valores singulares

Importância

- Redução de dimensionalidade
- Controle de condicionamento numérico.
- Base para estabilidade do algoritmo

Construção do Operador DMD Reduzido

Operador de Dimensão Completa

$$A = YX^{\dagger} = YV_r \Sigma_r^{-1} U_r^T \tag{6}$$

onde X^{\dagger} é a pseudoinversa de Moore-Penrose

Operador Reduzido

Para n grande, trabalhamos com:

onde
$$\tilde{A} \in \mathbb{R}^{r \times r}$$
 com $r \ll n$

 $\tilde{A} = U_r^T A U_r = U_r^T Y V_r \Sigma_r^{-1}$

(7)

- Dupla redução dimensional: espacial e temporal
- Preserva propriedades espectrais essenciais
- Eficiência computacional

Algoritmo DMD Clássico

Algorithm 1 DMD Clássico

Require: $X, Y \in \mathbb{R}^{n \times m}$, rank r

- 1: Aplicar SVD: $X = U\Sigma V^T$
- 2: Truncar: U_r, Σ_r, V_r
- 3: Construir: $\tilde{A} = U_r^T Y V_r \Sigma_r^{-1}$
- 4: Resolver: $\tilde{A}W = W\Lambda$
- 5: Modos: $\Phi = U_r W$
- 6: Amplitudes: $b = \Phi^{\dagger} x_1$
- 7: **return** Φ, Λ, b
 - ullet Modos residem no subespaço gerado por U_r
 - Eficiente computacionalmente
 - Base para variantes mais sofisticadas

Algoritmo DMD Exato

Diferença Principal

DMD Clássico: $\Phi = U_r W$ (projeção no subespaço de X)

DMD Exato: $\Phi_{\text{exact}} = \frac{1}{\lambda} Y V_r \Sigma_r^{-1} W$ (imagem de Y)

Relação Matemática

$$\Phi = \mathbb{P}_X \Phi_{\mathsf{exact}}$$

(8)

onde $\mathbb{P}_X = UU^T$ é a projeção ortogonal

- DMD Exato utiliza toda a informação disponível
- Maior precisão na representação dos modos
- Autovetores verdadeiros do operador $A = YX^+$

Comparação: DMD vs PCA

Aspecto	PCA	DMD
Ortogonalidade	Modos ortogonais	Não necessariamente
Ordenação	Por variância	Por relevância dinâmica
Info. temporal	Não captura	Frequências e crescimento
Interpretação	Estruturas energéticas	Dinâmicas coerentes
Reconstrução	$x_k = \Phi \alpha_k$	$x_k = \sum_j \phi_j \lambda_j^k b_j$

Base Comum

Ambos utilizam SVD, mas com objetivos distintos:

- PCA: Decomposição espacial ótima
- DMD: Decomposição temporal-espacial

Conexão com o Operador de Koopman

Operador de Koopman

Para sistema $x_{k+1} = F(x_k)$, o operador K atua sobre funções:

$$\mathcal{K}g(x) = g(F(x)) \tag{9}$$

Aproximação DMD

$$\tilde{A} \approx \mathcal{K}|_{\mathsf{span}\{x_1, x_2, \dots, x_m\}}$$
 (10)

- ullet Modos DMD pprox eigenfunctions de Koopman
- ullet Autovalores DMD pprox eigenvalues de Koopman
- Implicação: DMD funciona mesmo para sistemas não-lineares
- Fundamento teórico rigoroso

Resumo do Trabalho

Aspectos Teóricos

- Formulação rigorosa do problema DMD
- Conexão sistemática com métodos de MAT-55
- Análise detalhada dos aspectos algorítmicos

Aspectos Computacionais

- Algoritmos implementáveis com técnicas do curso
- Considerações de estabilidade numérica
- Variantes algorítmicas (Clássico vs Exato)

Fundamentação Matemática

- Conexão com operador de Koopman
- Justificativa teórica para aplicação a sistemas não-lineares

Reflexões Finais

Elegância dos Métodos de Álgebra Linear

DMD exemplifica como conceitos clássicos se estendem naturalmente para problemas contemporâneos de análise de dados dinâmicos

Importância da Base Sólida

- Compreensão de SVD, quadrados mínimos e ortogonalização é essencial
- Implementação eficiente requer domínio dos fundamentos
- Estabilidade numérica herdada dos métodos base

Obrigado!

Perguntas?

