Lecture 21: Difference of two proportions

Chapter 6.2

Question for today

How do we infer about a difference in proportions $p_1 - p_2$?

The way a question is phrased in survey can influence a person's response. Ex on p.269: the Pew Research Center conducted a survey with the following question:

The way a question is phrased in survey can influence a person's response. Ex on p.269: the Pew Research Center conducted a survey with the following question:

By 2014 all Americans will be required to have health insurance. X while Y. Do you approve of disapprove of this policy?

The way a question is phrased in survey can influence a person's response. Ex on p.269: the Pew Research Center conducted a survey with the following question:

By 2014 all Americans will be required to have health insurance. X while Y. Do you approve of disapprove of this policy?

where X and Y were randomly ordered between

- People who do not buy insurance will pay a penalty
- People who cannot afford it will receive financial help from the government

The way a question is phrased in survey can influence a person's response. Ex on p.269: the Pew Research Center conducted a survey with the following question:

By 2014 all Americans will be required to have health insurance. X while Y. Do you approve of disapprove of this policy?

where X and Y were randomly ordered between

- People who do not buy insurance will pay a penalty
- People who cannot afford it will receive financial help from the government

Let's infer about the difference in proportion of people who approve. Any guesses which is higher?

Example from Text

	Sample size n_i	Approve (%)	Disapprove (%)	Other (%)
people who do not buy it will pay a penalty	771	47	49	3
given first				
people who cannot afford it will receive financial help from the gov't given first	732	34	63	3

Example from Text

	Sample size n_i	Approve (%)	Don't Approve (%)
people who do not buy it	771	47	53
will pay a penalty			
given first			
people who cannot afford	732	34	66
it will receive financial			
help from the gov't			
given first			

Example from Text

	Sample size n_i	Approve (%)	Don't Approve (%)
people who do not buy it	771	47	53
will pay a penalty			
given first			
people who cannot afford	732	34	66
it will receive financial			
help from the gov't			
given first			

So $\hat{p}_1 - \hat{p}_2 = 0.47 - 0.34 > 0$: people are more likely to support Obamacare in the first scenario.

Conditions...

When

▶ Both sample proportions \hat{p}_1 and \hat{p}_2 are approximately normal:

Conditions...

When

- ▶ Both sample proportions \hat{p}_1 and \hat{p}_2 are approximately normal:
 - independence
 - success/failure condition: at least 10 successes and failures

Conditions...

When

- ▶ Both sample proportions \hat{p}_1 and \hat{p}_2 are approximately normal:
 - independence
 - success/failure condition: at least 10 successes and failures
- ▶ the two samples are independent from each other

... for Sampling Dist'n of $\widehat{p}_1 - \widehat{p}_2$ Being Normal

The sampling distribution of $\widehat{p}_1 - \widehat{p}_2$ is approximately Normal with

- ightharpoonup mean $p_1 p_2$
- standard error

$$SE_{\widehat{p}_1-\widehat{p}_2} = \sqrt{SE_{\widehat{p}_1}^2 + SE_{\widehat{p}_2}^2} = \sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$$

Standard Error

Recall we showed that the SE for $\overline{x}_1 - \overline{x}_2$ was

$$SE_{\bar{x}_1 - \bar{x}_2} = \sqrt{SE_{\bar{x}_1}^2 + SE_{\bar{x}_2}^2} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

Standard Error

Recall we showed that the SE for $\overline{x}_1 - \overline{x}_2$ was

$$SE_{\overline{x}_1 - \overline{x}_2} = \sqrt{SE_{\overline{x}_1}^2 + SE_{\overline{x}_2}^2} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

Compare this to

$$SE_{\widehat{p}_1-\widehat{p}_2} = \sqrt{SE_{\widehat{p}_1}^2 + SE_{\widehat{p}_2}^2} = \sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$$

What $p_1 \& p_2$?

What $p_1 \& p_2$ do we

- Use to check success/failure condition?
- ▶ Use in $SE_{\widehat{p}_1-\widehat{p}_2}$?

For

- ▶ Confidence intervals: plug in \widehat{p}_1 and \widehat{p}_2
- ▶ Hypothesis tests: plug in pooled estimate \hat{p}

What is a 90% confidence interval for the difference in proportions?

What is a 90% confidence interval for the difference in proportions?

Check the conditions:

Normality for each group

What is a 90% confidence interval for the difference in proportions?

Check the conditions:

- Normality for each group
 - ▶ Independence: both groups $\leq 10\%$ of respective populations

What is a 90% confidence interval for the difference in proportions?

Check the conditions:

- ► Normality for each group
 - ▶ Independence: both groups ≤ 10% of respective populations
 - ► The success/failure condition for both groups:
 - ▶ Group 1: 362 successes and 771 362 = 409 failures
 - Group 2: 249 successes and 483 failures

What is a 90% confidence interval for the difference in proportions?

Check the conditions:

- ► Normality for each group
 - ▶ Independence: both groups $\leq 10\%$ of respective populations
 - ► The success/failure condition for both groups:
 - ▶ Group 1: 362 successes and 771 362 = 409 failures
 - ▶ Group 2: 249 successes and 483 failures
- We assume both groups were sampled independently.

▶ Point estimate is $\hat{p}_1 - \hat{p}_2 = 0.47 - 0.34 = 0.13$

- Point estimate is $\hat{p}_1 \hat{p}_2 = 0.47 0.34 = 0.13$
- ▶ Plug in \hat{p}_1 and \hat{p}_2 into SE:

$$SE_{\widehat{p}_1-\widehat{p}_2} = \sqrt{\frac{\widehat{p}_1(1-\widehat{p}_1)}{n_1} + \frac{\widehat{p}_2(1-\widehat{p}_2)}{n_2}} = \dots = 0.025$$

- Point estimate is $\hat{p}_1 \hat{p}_2 = 0.47 0.34 = 0.13$
- ▶ Plug in \hat{p}_1 and \hat{p}_2 into SE:

$$SE_{\widehat{p}_1-\widehat{p}_2} = \sqrt{\frac{\widehat{p}_1(1-\widehat{p}_1)}{n_1} + \frac{\widehat{p}_2(1-\widehat{p}_2)}{n_2}} = \dots = 0.025$$

▶ A 90% confidence interval for $p_1 - p_2$ is:

- Point estimate is $\hat{p}_1 \hat{p}_2 = 0.47 0.34 = 0.13$
- ▶ Plug in \hat{p}_1 and \hat{p}_2 into SE:

$$SE_{\widehat{p}_1-\widehat{p}_2} = \sqrt{\frac{\widehat{p}_1(1-\widehat{p}_1)}{n_1} + \frac{\widehat{p}_2(1-\widehat{p}_2)}{n_2}} = \dots = 0.025$$

▶ A 90% confidence interval for $p_1 - p_2$ is:

point estimate
$$\pm$$
 z^* \times SE = $0.13 \pm 1.65 \times 0.025 = (0.09, 0.17)$

Interpretation

Two key observations:

- \triangleright (9%, 17%) does not contain 0, suggestive of a true difference.
- ▶ The sign of the difference: $\hat{p}_1 \hat{p}_2 = 0.13 > 0$

Interpretation

Two key observations:

- \triangleright (9%, 17%) does not contain 0, suggestive of a true difference.
- ▶ The sign of the difference: $\hat{p}_1 \hat{p}_2 = 0.13 > 0$

More support Obamacare if stated as follows:

People who do not buy it will pay a penalty while people who cannot afford it will receive financial help from the government.

Now we are interested in testing the difference of two proportions:

$$H_0: p_1-p_2=0$$

vs
$$H_1: p_1 - p_2 \neq 0$$

Now we are interested in testing the difference of two proportions:

$$H_0: p_1 - p_2 = 0$$
 vs $H_1: p_1 - p_2 \neq 0$

Note this can be re-expressed as:

$$H_0: p_1=p_2$$
 vs $H_1: p_1
eq p_2$

Now we are interested in testing the difference of two proportions:

$$H_0: p_1 - p_2 = 0$$
 vs $H_1: p_1 - p_2 \neq 0$

Note this can be re-expressed as:

$$H_0: p_1=p_2$$
 vs $H_1: p_1
eq p_2$

i.e. under H_0 the two proportions are both equal to some value p:

$$p_1 = p_2 = p$$

So to

- Verify the success-failure condition
- Compute the standard SE

So to

- Verify the success-failure condition
- Compute the standard SE

we use a pooled estimate \hat{p} of the proportion p. i.e. as if there were no difference between them, so we can combine them:

$$\hat{p} = \frac{\text{total } \# \text{ of successes}}{\text{total } \# \text{ of cases}}$$

So to

- Verify the success-failure condition
- Compute the standard SE

we use a pooled estimate \hat{p} of the proportion p. i.e. as if there were no difference between them, so we can combine them:

$$\hat{p} = \frac{\text{total } \# \text{ of successes}}{\text{total } \# \text{ of cases}}$$

The SE to use is:

$$SE_{\widehat{\rho}_1-\widehat{\rho}_2} = \sqrt{\frac{\widehat{p}(1-\widehat{p})}{n_1} + \frac{\widehat{p}(1-\widehat{p})}{n_2}} = \sqrt{\widehat{p}(1-\widehat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$$

Exercise 6.31 on Page 305

A 2010 survey asked 827 randomly sample voters in California "How do you feel about drilling for oil and natural gas off the coast of California?"

	College Grad	
	Yes	No
Support	154	132
Oppose	180	126
Don't Know	104	131
Total	438	389

Exercise 6.31 on Page 305

A 2010 survey asked 827 randomly sample voters in California "How do you feel about drilling for oil and natural gas off the coast of California?"

	College Grad	
	Yes	No
Support	154	132
Oppose	180	126
Don't Know	104	131
Total	438	389

Test at the $\alpha=0.10$ significance level if the proportion of college graduates who support off-shore drilling is different than that of non-college graduates.

Exercise 6.31 on Page 305

The pooled estimate is $\hat{p} = \frac{154+132}{438+389} = 0.346$. Check the conditions:

The pooled estimate is $\hat{p} = \frac{154+132}{438+389} = 0.346$. Check the conditions:

1. Normality of both point estimates

The pooled estimate is $\hat{p} = \frac{154+132}{438+389} = 0.346$. Check the conditions:

- 1. Normality of both point estimates
 - Independence
 - ▶ $n_1 = 438 \le 10\%$ of pop. of CA college grads
 - ▶ $n_2 = 389 \le 10\%$ of pop. of CA non college grads

The pooled estimate is $\hat{p} = \frac{154+132}{438+389} = 0.346$. Check the conditions:

- 1. Normality of both point estimates
 - Independence
 - ▶ $n_1 = 438 \le 10\%$ of pop. of CA college grads
 - ▶ $n_2 = 389 \le 10\%$ of pop. of CA non college grads
 - Success/failure: both groups have at least 10 successes and 10 failures.

The pooled estimate is $\hat{p} = \frac{154+132}{438+389} = 0.346$. Check the conditions:

- 1. Normality of both point estimates
 - Independence
 - ▶ $n_1 = 438 \le 10\%$ of pop. of CA college grads
 - ▶ $n_2 = 389 \le 10\%$ of pop. of CA non college grads
 - Success/failure: both groups have at least 10 successes and 10 failures.
- 2. We assume that both groups are sampled independently.

▶ Point estimate $\hat{p}_1 - \hat{p}_2 = 0.352 - 0.339 = 0.013$

Point estimate $\hat{p}_1 - \hat{p}_2 = 0.352 - 0.339 = 0.013$

- Point estimate $\hat{p}_1 \hat{p}_2 = 0.352 0.339 = 0.013$
- ▶ Test statistic: z-score of $\hat{p}_1 \hat{p}_2$ under $H_0: p_1 p_2 = 0$

$$z = \frac{\text{point estimate} - \text{null value}}{SE} = \frac{0.013 - 0}{0.033} = 0.392$$

- Point estimate $\hat{p}_1 \hat{p}_2 = 0.352 0.339 = 0.013$
- ▶ Test statistic: z-score of $\hat{p}_1 \hat{p}_2$ under $H_0: p_1 p_2 = 0$

$$z = \frac{\text{point estimate} - \text{null value}}{SE} = \frac{0.013 - 0}{0.033} = 0.392$$

▶ p-value: 0.6922. i.e. we fail to reject H_0 . We don't have strong evidence of a difference in support.

Preview of next lecture: In many trials a big issue is the racial makeup of the jury.

Preview of next lecture: In many trials a big issue is the racial makeup of the jury.

Question: is there a way to figure out if there is a racial bias in jury selection?

Say we have a juror pool (registered voters) where the racial breakdown is:

Race	White	Black	Hispanic	Other	Total
Registered Voters	72%	7%	12%	9%	100%

If we pick n = 100 jurors at random (i.e. unbiasedly), we expect the breakdown of counts to be:

Race	White	Black	Hispanic	Other	Total
Registered Voters	72%	7%	12%	9%	100%
Representation	72	7	12	9	n = 100

Say we observe the following counts:

Race	White	Black	Hispanic	Other	Total
Registered Voters	72%	7%	12%	9%	100%
Representation	0	0	100	0	n = 100

Say we observe the following counts:

Race	White	Black	Hispanic	Other	Total
Registered Voters	72%	7%	12%	9%	100%
Representation	0	0	100	0	n = 100

Fairly obvious bias in juror selection!

But what about the following? Is there a bias? i.e. a non-random mechanism at play?

Race	White	Black	Hispanic	Other	Total
Registered Voters	72%	7%	12%	9%	100%
Representation	75	6	11	8	n = 100

Next Two Lectures

Chi-square tests are used to compare expected counts with observed counts.

Next Two Lectures

Chi-square tests are used to compare expected counts with observed counts.

Two tests we'll see:

- Goodness-of-fit tests: for frequency tables
- ► Tests for independence: for contingency/two-way tables