Week 13 Lecture: Applied Machine Learning

L. Jason Anastasopoulos ljanastas@princeton.edu

April 2, 2018

- All of the models discussed used the original predictors in some form.
- Dimensionality reduction methods transform the predictors into variable clusters and then use these transformed variables to fit a model.

Consider a linear combination Z_1, \cdots, Z_M of the features X_1, \cdots, X_1 such that M < p where:

$$Z_m = \sum_{j=1}^p \phi_{jm} X_j$$

For some constants ϕ_1, \dots, ϕ_M ; $m \in [1, M]$. We can then fit the linear regression model:

$$y_i = \Theta_0 + \sum_{m=1}^M \Theta_m z_{im}$$

The model

$$y_i = \Theta_0 + \sum_{m=1}^M \Theta_m z_{im}$$

now has M+1 < p+1 predictors and, if chosen well, can result in a better fit through estimating fewer parameters than the original regression model.

To be clear take a simple linear regression model with three features:

$$Y = \theta_0 + \theta_1 X_1 + \theta_2 X_2 + \theta_3 X_3 + \epsilon$$

Define $z_1 = \phi_1 X_1 + \phi_3 X_3$ and $z_2 = \phi_2 X_2$. We can now estimate the reduced model:

$$Y = \Theta_0 + \Theta_1 z_1 + \Theta_2 z_2 + \epsilon$$

= $\Theta_0 + \Theta_1 (\phi_1 X_1 + \phi_3 X_3) + \Theta_2 (\phi_2 X_2) + \epsilon$

- Again the key here is that we are estimating a model with fewer predictors, thus reducing the *dimensionality* of the model.
- ► This is especially useful in problems where p is large relative to n. Variance will be significantly reduced in this case and this is not uncommon in machine learning problems (ie text analysis)

All dimensionality reduction methods involves two steps

1. Transformed predictors Z_1, \dots, Z_M are first obtained.

All dimensionality reduction methods involves two steps

- 1. Transformed predictors Z_1, \dots, Z_M are first obtained.
- 2. A model is fit using the *M* predictors.

All dimensionality reduction methods involves two steps

- 1. Transformed predictors Z_1, \dots, Z_M are first obtained.
- 2. A model is fit using the *M* predictors.
- There are several methods for accomplishing this but we will focus on principal components analysis.

Principal Components Analysis (PCA)

$$f: \mathcal{X} o \mathcal{F}$$
 $\mathcal{X} \in \mathbb{R}^{n \times p}, \mathcal{F} \in \mathbb{R}^{n \times m}; p << m$

- ▶ PCA is often discussed in the context of *unsupervised learning* and we'll discuss it in that context later on in the semester.
- It's a popular means of transforming a high dimensional feature space $\mathcal X$ into a very low-dimensional space $\mathcal F$

Principal Components Analysis (PCA)

3

4

5

n

У

▶ First principal component is the dimension along which the data vary the most and would be the most useful for a regression approach.

```
# Predicting political party with votes
library(mlbench)
data(HouseVotes84)
head(HouseVotes84)
```

```
##
           Class
                    V1 V2 V3
                                V4
                                      V5 V6 V7 V8 V9 V10
                                                            V11
                                                                  V12 V13 V14
  1 republican
                                                           < NA >
                            n
                                              n
                                                 n
                                                    n
                                                         V
                                                                         у
                                                                             У
## 2 republican
                     n
                        V
                            n
                                 ٧
                                       У
                                          У
                                              n
                                                 n
                                                    n
                                                         n
                                                               n
                                                                    ٧
                                                                             y
## 3
       democrat <NA>
                            y <NA>
                                       У
                                          У
                                              n
                                                 n
                                                               У
                                                                    n
                                                                             у
                                                     n
                                                         n
## 4
       democrat
                                 n < NA >
                                          v
                     n
                        V
                            V
                                              n
                                                 n
                                                    n
                                                         n
                                                               у
                                                                    n
                                                                             n
## 5
       democrat
                                                                 <NA>
                     y
                        У
                                       У
                                          у
                                              n
                                                 n
                                                               У
                                                                             у
                            У
                                 n
                                                    n
                                                         n
## 6
       democrat
                     n
                            У
                                       У
                                                                             У
                                 n
                                          У
                                              n
                                                 n
                                                     n
                                                         n
                                                               n
                                                                    n
##
      V16
## 1
        У
## 2 <NA>
```

```
##
## Call:
## lm(formula = Party ~ ., data = data.frame(Votes))
##
## Residuals:
##
      Min
          1Q Median 3Q
                                    Max
## -0.82054 -0.04439 0.01879 0.08784 0.70224
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.7671523 0.1423941 5.388 1.20e-07 ***
## V1
          -0.0264965 0.0213872 -1.239 0.216080
## V2
            -0.0282866 0.0200216 -1.413 0.158459
## V3
            -0.1988778 0.0296838 -6.700 6.76e-11 ***
## V4
           0.6314606  0.0322082  19.606  < 2e-16 ***
## V5 0.0768241 0.0379082 2.027 0.043339 *
## V6
            -0.0481934 0.0272663 -1.768 0.077872 .
## V7
           0.0642615 0.0288318 2.229 0.026355 *
## V8
          0.0559900 0.0352681 1.588 0.113144
            ## V9
## V10
          0.0478126 0.0187176 2.554 0.010990 *
## V11
            -0.1240756 0.0199903 -6.207 1.30e-09 ***
```

Can the votes be explained with a single dimension?

Votes.pca

Can the votes be explained with a single dimension?

```
summary(Votes.pca)
```

```
## Importance of components:
                             PC1
                                     PC2
                                             PC3
                                                     PC4
                                                              PC5
                                                                      PC
##
## Standard deviation
                          2.6901 1.16470 1.06151 0.93320 0.90006 0.8638
## Proportion of Variance 0.4523 0.08478 0.07043 0.05443 0.05063 0.0466
## Cumulative Proportion 0.4523 0.53706 0.60749 0.66192 0.71255 0.7591
                                                     PC10
                                                              PC11
##
                              PC7
                                      PC8
                                              PC9
                                                                      PC
## Standard deviation
                          0.77631 0.74664 0.71935 0.66043 0.64191 0.576
## Proportion of Variance 0.03767 0.03484 0.03234 0.02726 0.02575 0.020
## Cumulative Proportion
                          0.79686 0.83170 0.86404 0.89130 0.91705 0.937
##
                             PC13
                                     PC14
                                             PC15
                                                     PC16
## Standard deviation
                          0.56507 0.52220 0.48542 0.40914
## Proportion of Variance 0.01996 0.01704 0.01473 0.01046
## Cumulative Proportion 0.95777 0.97481 0.98954 1.00000
```


- ▶ Took 16 dimensions, reduced to 1 or 2 that still explain about 50% of the variance.
- ► Can use these dimensions in regression for comparison.
- Let's just use dimensions one and two

Party =
$$\Theta_0 + \Theta \pi_1 + \Theta_2 \pi_2$$

- ► Took 16 dimensions, reduced to 1 or 2 that still explain about 50% of the variance.
- Can use these dimensions in regression for comparison.
- Let's just use dimensions one and two.

$$Party = \Theta_0 + \Theta \pi_1 + \Theta_2 \pi_2$$

```
pi1<-Votes.pca$x[,1]
pi2<-Votes.pca$x[,2]
summary(lm(Party~pi1 + pi2))
##
## Call:
## lm(formula = Party ~ pi1 + pi2)
##
## Residuals:
     Min 10 Median 30
                                Max
##
## -0.9021 -0.1181 0.0211 0.1560 0.9177
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 1.386207 0.012918 107.312 <2e-16 ***
## pi1
     -0.144037 0.004807 -29.961 <2e-16 ***
## pi2
           ## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Problems with PCA

- Very sensitive to scaling
- ▶ Is a good idea to standardize the predictors.