building your first ML application

> whoami

David Dai

MSc (Biostatistics)

Senior Data Scientist, St. Michael's Hospital

10% statistician/10% data scientist/80% master at Googling

> data science is easy

Most applied modeling tasks are simple

- Which clients are most likely to churn next month?
- How can we catalog these unlabeled documents?
- What are the types of patients in our hospital?

> data science is easy

Most applied modeling tasks are simple

- Which clients are most likely to leave next month?
 - Logistic regression
- How can we catalog these unlabeled documents?
 - Topic modeling
- What are the types of patients in our hospital?
 - K-means clustering

> data science is easy

In fact, most of the time, you probably won't even need a model!

> data science is scary!

But what about learning BERT and all his cousins? Or using deep reinforcement learning to play Fortnite?

> data science is ???

> data science is ???

Data Scientist: The Sexiest Job of the 21st Century

by Thomas H. Davenport and D.J. Patil

From the October 2012 Issue

> data science can be hard

> data science <u>in practice</u>

An important skill for any data scientist to have is the ability to **deliver results**.

How?

- 1. Reports (written communication)
- 2. Presentations (oral communication)
- 3. Deploy your model

> today's objective

- 1. Through a case study, get exposure to various parts of a typical data science workflow
- 2. Learn about some ways to avoid the "model graveyard"
- 3. Deploy an ML application!

> case study: house pricing app

Suppose you want to build a model that predicts housing prices in Ontario

Of interest:

- What is the predicted house listing price for a 2 bedroom condo in Toronto?
- What about a 3 bedroom townhouse in Oakville?

> case study: steps

- 1. Data collection
- 2. Data processing
- 3. Model development
- 4. Model deployment

> data
collection

> data source

> data source

listing.ca contains real estate listings in Ontario

- Street address
- Number of bedrooms and bathrooms
- Listing price
- Listing type (condo, condo townhome, townhome, detached)
- Municipality

> data source

Prediction target of interest: listing price

Predictors of interest:

- Home type (eg. condo vs townhome)
- Number of bedrooms and bathrooms
- Location (eg. postal code, municipality, etc)

> scrape listings data

> scrape listings data

> scrape listings data

```
. .
scraper <- function(url) {</pre>
  require(rvest)
  require(magrittr)
  webpage <- read_html(url)</pre>
  data.frame(
    address = html nodes(webpage, ".slt address a") %>%
      html_text(),
    n_beds = html_nodes(webpage, ".slt_beds") %>%
      html text(),
    n_baths = html_nodes(webpage, ".slt_baths") %>%
      html_text(),
    prices = html_nodes(webpage, ".slt_price") %>%
      html_text()
```

> listings data

	address ‡	n_beds ‡	n_baths ‡	prices ‡	listing_type ‡
1	9973 Keele St 210	1+1 beds	1 baths	\$549,000 CAD	condo
2	3975 Grand Park Dr 1309	2+1 beds	2 baths	\$649,900 CAD	condo
3	3650 Kingston Rd 114	0 beds	1 baths	\$359,999 CAD	condo
4	38 Lee Centre Dr 803	1 beds	1 baths	\$395,000 CAD	condo
5	40 Homewood Ave 514	1 beds	1 baths	\$499,900 CAD	condo
6	665 Kennedy Rd 704	3 beds	2 baths	\$525,000 CAD	condo
7	880 Grandview Way 1001	3 beds	2 baths	\$869,000 CAD	condo

> obtaining geocoding data

Demographics

We can use public API's like geocoder.ca to obtain postal code, longitude, and latitude from the street address

- Supports HTTP request with JSON response
- Public API has a daily rate limiter

Geocoder.ca ⇒ Login Toronto, ON » 27 King's College Circle, Toronto, ON » M5S1A1 » 43.660945,-79.396090 27 King's College Circle, Toronto, ON M5S1A1 (M5S1A1 polygon) Confidence Score: 1 Laboratories The Jones XML Response | JSON Response | JSONp Response Dissemination Area 43,660945, -79,396090 Data for M5S1A1

https://geocoder.ca/

> Google's Geocoding API

https://developers.google.com/maps/documentation/geocoding/overview

```
https://maps.googleapis.com/maps/api/geocode/json?
address=1600+Amphitheatre+Parkway,+Mountain+View,+CA&key=YOUR_API_KEY
         "address components" : [
               "long_name" : "94043",
              "short name" : "94043",
         "formatted_address": "1600 Amphitheatre Pkwy, Mountain View, CA 94043, USA",
```

> get postal code, long/latitude

```
get geocode data <- function(address){</pre>
  address <- str_replace_all(address, " ", "+")</pre>
  API KEY <- Sys.getenv("GCLOUD API KEY")
  res <- httr::GET(url = glue::glue(
    "https://maps.googleapis.com/maps/api/geocode/json?address={address},+0N,+Canada&key=
{API_KEY}"
  ))
  content <- httr::content(res, as = "text") %>%
    jsonlite::fromJSON()
  return(content)
```

> data
processing

> data processing overview

- Numeric variables
 - Strip all non-digit characters (eg. \$ sign from price)
- Categorical variables
 - Collapse rare categories (eg. rural municipalities/postal codes)
 - o One-hot encoding

> data processing recipe

- Data processing steps need to be reproduced for all future data!
 - Eg. if you normalized a numeric variable, you need to retain the mean and SD to normalize future data
 - Eg. for categorical variables, you need to recreate all one-hot encoded columns to match training data
- Need to create a "recipe" that calculates this metadata from the training set, and store it for future use

> data processing recipe

• In R, you can use the recipes package

> model
development

> basic regression model

Regression outcome: listing price

Regression predictors:

- n beds, n baths (integer)
- listing_type (listing_type_condo, listing_type_townhome,...)
- locality (locality_Toronto, locality_Mississauga, locality Oakville, ...)
- postal_code (postal_code_M5S, postal_code_L4B, ...)
- latitude, longitude (numeric)

> model object

Class of xgb.Booster, with predict method:

- Expects an input vector/matrix containing feature values to predict on
- Input data should be similarly processed as training data (reuse data processing recipe)
- Returns model predictions

> model
deployment

> model deployment strategies

- 1. Generate batch predictions at regular intervals (eg. daily, weekly)
- 2. Build a graphical interface (eg. web app) that allows users to interact with the model
- 3. Build an application programming interface (ie. API) that allows users to use the model programmatically

> batch predictions

- Users to send batches of new data to generate predictions on
- Data elements must be similar to the scraped data from listing.ca (street address, n_beds, n_baths)
- Process data similarly to training pipeline (ie. use geocoding API to fetch postal code, longitude/latitude)
- Execute predict function in R

> batch predictions

Pros:

- 1. No additional code needs to be written
- 2. Simpler pipeline, less chance for software bugs

Cons:

- 1. Manual process
- 2. User is reliant on the data scientist to get results (ie. you will get lots of emails)

> batch predictions

In practice, this could look like:

- Manually re-running the prediction pipeline upon new requests
- Scheduling a prediction pipeline R script to run regularly, using CRON/Windows Task Scheduler

> graphical interface

- A graphical interface that allows users to interact directly with the model using familiar tools (eg. web browser)
- Web applications are a popular choice
- Model object can be bundled with application
- Users can enter data directly into input fields
- Application server can receive requests and generate real-time predictions

> graphical user interface

Pros:

- 1. Data scientist has control over the data format (eg. via use of dropdown menus)
- 2. Users have on-demand access to the model

Cons:

- 1. Requires more work to develop and maintain an application
- 2. Requires a way to share application to users
- 3. Not a flexible way of interacting with the model (eg. hard to scale up to thousands of predictions)

> graphical interface

In practice, this could look like:

- Use R + Shiny to build a web application
- Deploy the application to a server (eg. <u>shinyapps.io</u>)
- Share the application URL to user
- User accesses the application over the Internet/Intranet

> application programming interface

- An application programming interface (API) is a way to share your model for <u>programmatic usage</u>
- APIs allow developers to use your program (or model) in their programs
- An API accepts some input data (eg. an input vector of data) and returns some output data -> a model object is technically an API!
- Eg. <u>geocoder.ca</u> is supported by an API that allows users to enter a street address (ie. input data) and returns some geocoding data related to that address (ie. output data)

> application programming interface

Pros:

- 1. Users have on-demand access to the model
- 2. Users can flexibly interact with your model (eg. if they are Python users, they can still easily use your R model)

Cons:

- 1. Requires additional work to build an API
- 2. Users need more technical knowledge (eg. how to submit an API request) to use your model
- 3. Requires a way to deploy and expose your

> application programming interface

In practice, this could look like:

- Using R + Plumber to create a REST API that serves your model as an API endpoint
- Use Docker to wrap API into a containerized deployment
- Deploy Docker image to cloud service (eg. Google Cloud Run) or local server
- Provide users an API endpoint URL that they can use to send API requests, and documentation on how to format their queries

> deployment strategies showdown

	Batch predictions	Graphical interface	API
The Good	• Low entry barrier	• Good for non-technical end users	 Good for technical end users Flexible and scalable
The Bad	Dependent on data scientistPotential data quality issues	• Can't scale up for high volume predictions	• Requires technical knowledge

> post-deployment... what now?

If you have made it this far in your project, that's farther than the vast majority of data science projects!

Post-deployment tasks:

- 1. Monitoring
 - a. Input data distributions (eg. are there a lot of requests for non-Ontario homes?)
 - b. Model performance
- 2. Model retraining
 - a. Model performance has degraded
 - b. Additional data is available

> data science loop

> let's deploy an app!

> clone example app

- 1. Go to https://github.com/dwhdai/house_price_predictor.

 Create a fork of this repository □ Unwatch → 1 ☆ Star □ ♀ Fork □
- 2. Go to the forked repository (should be under https://github.com/your_username/house_price_predictor)
- 3. Copy the remote URL for the repository

> clone example app

- 4. Clone the repository and open the project in RStudio.
- 5. Run renv::restore() in the R console to install package dependencies. This may take a while.

> set up shinyapps.io

- 1. Go to shinyapps.io, and create an account (if you don't already have one)
- 2. Follow the "Get Started" steps (should look like below)

> set up shinyapps.io

If you already have a shinyapps.io account and have not configured it with RStudio:

- 1. Log in to your shinyapps.io account.
- 2. Click the user icon in the top-right; click "Tokens".
- 3. Create a new token, and copy the following command:

4. Execute the command in the RStudio R console.

> deploy the app!

- 1. Switch back to RStudio. Make sure you are on the housing prices project.
- 2. Install the rsconnect package
 (install.packages("rsconnect")), if not already
 installed.
- 3. Run rsconnect::deployApp(appDir = "03_app/", appName = "name of your app")
- 4.

Resources

	R	Python
Automation	• <u>taskscheduleR</u>	• <u>apscheduler</u>
Web application	• Shiny • shinyapps.io	StreamlitStreamlit Sharing (beta)
REST API	• <u>Plumber</u>	• <u>Flask</u>
HTTP requests	• <u>httr</u>	• <u>requests</u>
JSON parsing	• <u>jsonlite</u>	• <u>json</u>

> ?questions

David Dai

twitter: @dwhdai

davidwh.dai@gmail.com