

### DMET 1002 – Advanced Media Lab Lab 1 Preparation

# Image Pre-processing Review

### 1. Objective

This experiment aims at reviewing simple image pre-processing steps previously taught in the Computer Vision class that are needed to extract an object from an image.

### 2. Pre-requisites

- Basics of Geometric Transformation and Median Filtering.
- MATLAB programming knowledge.

#### 3. References

- Computer Vision lectures of Winter 2018.

### 4. Theoretical Background

In this experiment, you will be implementing some of the simple algorithms that were given in the Computer Vision class last semester using MATLAB. The following pre-processing steps will be applied to the given image:

- 1 Geometric Transformation
- 2 Median Filtering
- 3 Converting Colored Image to Gray-scale

We review in the following sections each of these algorithms.



## DMET 1002 – Advanced Media Lab Lab 1 Preparation

# Image Pre-processing Review

### 4.1 Geometric Transformation

- Changes in scale, shifts and rotations of images are done by geometric transformation which consists of two stages:
  - Pixel Coordinate Transformation
  - Brightness Interpolation
- Pixel coordinate transformation takes the form

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = T \times \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} a_0 \\ b_0 \end{bmatrix}$$

where (x, y) is the original position before transformation while (x', y') is the position after transformation, T is the transformation matrix while  $(a_0, b_0)$  represents translation.

• One example of a transformation that you will apply in this experiment is flipping to convert, for example, the left image given below to the right image.



Original Image



Flipped Image

• The following transformation can flip an image both horizontally and vertically:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \times \begin{bmatrix} x \\ y \end{bmatrix}$$



## DMET 1002 – Advanced Media Lab Lab 1 Preparation

# Image Pre-processing Review

### 4.2 Median Filtering

- In a set of ordered values, the median is the central value
- When applied to a noisy image, the color of the central pixel of a square neighborhood is replaced with the median color of the neighborhood
- It works very well with salt and pepper noise as shown below



Noisy Image



Filtered Image

### 4.3 Converting Colored Image to Gray-scale Image

• To convert an RGB image to a gray-scale image, the following transformation could be used  $I_{gray}(p) = 0.3I_R(p) + 0.59I_G(p) + 0.11I_B(p)$ 

where  $I_R$ ,  $I_G$  and  $I_B$  are the red, green and blue components of pixel p, respectively.



Colored Image



Gray-scale Image