SHRI MATA VAISHNO DEVI UNIVERSITY, KATRA School of Electronics and Communication Engineering B. Tech. (ECE) Minor II Examination (ODD) 2018-19

Entry No:

Date:

13

Total Number of Pages: [01]

Total Number of Questions: [01]

Course Title: Antenna & Wave Propagation

Course Code: ECL 2041

Time Allowed: 1.5 Hours

Max Marks: [20]

Instructions / NOTE

Attempt All Questions.

Support your answer with neat freehand sketches/diagrams, wherever appropriate. ii. iii.

Assume an appropriate data / information, wherever necessary /

	Gastin American Michael Missing.		
OY	Section - A		
7	(a) The characteristic impedance of the free-space is	[01]	COI
	(b) Directivity of the isotropic radiator is	[01]	CO2
22.	What do you mean by the following terms?		
	(a) Radiation Intensity	[03]	CO3
	(b) Directivity		
	(e) Polarization		
	Section - B		
93.	In a medium characterized by $\sigma=0, \mu=\mu_0, \varepsilon=4\varepsilon_0$ and $E=20\sin(10^8t-\beta z)a_y$ V/m,	[03]	COI
	calculate β and H .		
_Q4.	For an infinitesimally small radiator of length dl , operating at wavelength λ_0 in the free space, Surface current density Js , find the expression for the electric and magnetic field intensities in the far-field region.	[04]	CO4
25.	A magnetic field strength of 5μA/m is required at a point θ=90 ⁰ , 2km from an antenna	[03]	CO2
	in air. Neglecting ohmic loss, how much power the antenna must transmit if it is a Hertzian dipole of length $\lambda/25$?		
Q6.	(a) For a small antenna of length dl= $\lambda_0/20$ where λ_0 is the free space wavelength, find	[03]	CO5
	the radiation resistance Rr.		
	(b) If loss resistance $R = 2\Omega$, find the efficiency of the antenna.	[02]	
1			

Course Outcomes

Able to understand the basic operation of E.M. wave based application.

To design and analyze various types of antenna. 2.

Understand the different propagation modes of EM wave. 3.

Able to find suitability of antennas for different applications. 4.

To understand the different types of antennas and their applications

Questions Mapping	Total Marks	Total Number of Students (to be appeared in Exam)
1(a).3	04	62
	04	62
2	03	62
4	04	62
6	05	62
	Questions Mapping 1(a),3 1(b),5 2 4 6	1(a),3 04 1(b),5 04 2 03 4 04