Massachusetts Institute of Technology Organic Chemistry 5.13

September 19, 2003 Prof. Timothy F. Jamison

Benzylic

Notes for Lecture #7

¹H NMR Spectroscopy – Chemical Shift

Regions of the ¹H NMR Spectrum

Diamagnetic Shielding

3.1 ppm

Can we rationalize the following trends?

5.3 ppm

Aromatic

7.3 ppm

α - O,N, Halogen

¹H NMR Spectra: Tables of Reference

Average Chemical Shifts (δ) of α -Hydrogens in Substituted Alkanes^{*}

X	<u>CH3X</u>	RCH ₂ X	R ₂ CHX	
н	0.233	0.9	1.25	
CH ₃ or CH ₂	0.9	1.25	1.5	
F	4.26	4.4		
Cl	3.05	3.4	4.0	
Br	2.68	3.3	4.1	
1	2.16	3.2	4.2	
OH	3.47	3.6	3.6	
OR	3.3	3.4		
OAr	3.7	3.9		
OCOR OCOAr	3.6 3.8	4.1 4.2	5.0 5.1	
SH	2.44	2.7	5.1	
SR	2.1	2.5		
SOR	2.5		2.8	
SO ₂ R	2.8	2.9	3.1	
NR ₂	2.2	2.6	2.9	
NR-Ar	2.9			
NCOR	2.8		3.2	
NO ₂	4.28	4.4	4.7	
CHŌ	2.20	2.3	2.4	
COR	2.1	2.4	2.5	
COAr	2.6	3.0	3.4	
COOH	2.07	2.3	2.6	
COOR	2.1	2.3	2.6	
CONH ₂	2.02	2.2		
CR=CRCR ¹	2.0-1.6	2.3	2.6	
Phenyi	2.3	2.7	2.9	
Aryl §	3.0-2.5		-	
C≡CR C≡CN	2.0 2.0	2.3	2.7	

^{*} The tabulated values are average values for compounds that do not contain another functional group within two carbon atoms from the indicated hydrogens.

Chemical Shifts of Hydrogens Bonded to Unsaturated Centers

Type	Unconjugated	Conjugated*
R ₂ C=CH ₂	4.6-5.0	5.4-7.0
R ₂ C=CHR	5.0-5.7	5.7-7.3
Aromatic	6.5-8.3	****
Nonbenzenoid aromatic	6.2-9.0	
Acetylenic	2.3-2.7	2.7-3.2
Aldehydic	9.5-9.8	9.5-10.1
R ₂ NCHO	7.9-8.1	
ROCHO	8.0-8.2	

^{*} The position depends on the type of functional group in conjugation with the unsaturated group.

Chemical Shifts of Hydrogen Bonded to Oxygen, Nitrogen, and Sulfur

Functional Group Chemical Shift, δ				
OH	Alcohols	0.5 0.5-5	(Monomeric) (Associated)	
	Phenois	4.5 4.5-8	(Monomeric) (Associated)	
•	Enols	15.5		
	RCO₂H	9-12	(Dimeric)	
	H-bonded to C=O	13-16	• .	
NH ₂	Alkylamine	0.6-1.6		
	Arylamine	2.7-4.0	• .	
	Amide	7.8		
NH	Alkylamine	0.3-0.5		
	Arylamine	2.7-2.8		
R ₃ NH+	Ammonium salts	7.1-7.7	(in CF ₃ COOH)	
SH	Aliphatic	1.3-1.7		
	Aromatic	2.5-4		

[§] Includes polycyclic and many heterocyclic aromatics.