6

Química del carbono

PARA COMENZAR (página 153)

¿Qué diferencia unos compuestos del carbono de otros?

El tamaño, es decir, el número de átomos de carbonos que se combinan en un mismo elemento; y la estructura, el modo en el que están combinados.

¿A qué se debe la versatilidad de la química del carbono?

El átomo central es el átomo de carbono capaz de formar cuatro enlaces covalentes.

Nombra distintos materiales que existen gracias a la química del carbono.

Teflón, kevlar, neopreno, grafeno...

PRACTICA (página 154)

1. Escribe la fórmula desarrollada de compuestos de carbono e hidrógeno, con enlaces simples, que contengan:

- a) 2 átomos de carbono.
- b) 4 átomos de carbono.

¿Cómo se llama cada compuesto?

etano

butano

2. Escribe la fórmula desarrollada, la semidesarrollada y la molecular de un compuesto de carbono e hidrógeno con cuatro átomos de carbono, con un doble enlace entre los carbonos centrales.

desarrollada	semidesarrollada	molecular
H H H H H H H H H H H H H H	H_3C — CH = CH - CH_3	C4H8
but-2-eno		

ACTIVIDAD (página 156)

3. Escribe la fórmula molecular, semidesarrollada y supersimplificada de cada uno de los compuestos que aparecen en la tabla inicial.

nombre	molecular	semidesarrollada	supersimplificada
propano	C₃H ₈	CH ₃ / H ₃ C—CH ₂	
eteno	C ₂ H ₄	H ₂ C=CH ₂	=
etino	C ₂ H ₂	нс≡сн	

nombre	molecular	semidesarrollada	supersimplificada
ácido 2-hidroxipropanoico	C₃H ₆ O₃	соон / н ₃ с-нс он	СООН
etanol	C₂H ₆ O	H ₃ C—СН ₂ ОН	ОН
butan-1-ol	C ₄ H ₁₀ O	H ₃ C CH ₂ CH ₂ OH	ОН
ácido etanoico	$C_2H_4O_2$	H ₃ С—соон	—соон
metilamina	CH ₅ N	H ₃ C—NH ₂	NH ₂
ciclopentano	C₅H ₁₀	CH ₂	
ciclopentanol	C₅H ₁₀ O	CH ₂ CH-OH CH ₂ -CH ₂	ОН
benceno	C_6H_6	HC CH CH	

ACTIVIDADES (página 157)

4. Al quemar 7,63 g de un hidrocarburo gaseoso con un exceso de oxígeno se obtienen 9,80 g de agua. Su densidad en condiciones estándar es 1,85 g/L. Determina la fórmula del compuesto.

La reacción química sin ajustar es:

$$C_xH_y$$
 + O_2 \rightarrow CO_2 + H_2O
7,63 g + m_{o_2} \rightarrow m_{co_2} + 9,80 g

Masa molar del agua:

$$M(H_2O) = 1,008 \cdot 2 + 16,00 = 18,016 \text{ g/mol}$$

La cantidad de hidrógeno presente en el agua:

9,80 g de agua
$$\cdot \frac{(1,008 \text{ g de H}) \cdot 2}{18,016 \text{ g de agua}} = 1,10 \text{ g de H}$$

La misma cantidad de hidrógeno expresada en mol:

$$1,10 \text{ g de H} \cdot \frac{1 \text{ mol de H}}{1,008 \text{ g de H}} = 1,088 \text{ mol de H}$$

Esta cantidad de hidrógeno procede del hidrocarburo así que la cantidad de carbono en la reacción es:

$$7,63 \text{ g de } C_xH_y - 1,10 \text{ g de } H = 6,53 \text{ g de } C$$

La cantidad de carbono presente en el hidrocarburo expresado en mol:

6,53 g de C
$$\cdot \frac{1 \text{ mol de C}}{12,00 \text{ g de C}} = 0,544 \text{ mol de C}$$

La fórmula del hidrocarburo debe ser proporcional a $C_{0.544}H_{1.088}$:

$$C_{\frac{0,544}{0,544}}H_{\frac{1,088}{0,544}} \implies C_{1}H_{1,998} \implies CH_{2}$$

La densidad del gas me permite calcular la masa molar del gas (Tema 2, página 60):

$$d = \frac{p \cdot M}{R \cdot T} \implies M = \frac{d \cdot R \cdot T}{p}$$

Las condiciones estándar son: $p = 10^5$ Pa = 0,987 atm; y, T = 0 °C = 273 K. Recordando que R = 0,082 (atm · L)/(mol · K).

$$M = \frac{d \cdot R \cdot T}{p} = \frac{1,85 \frac{g}{k} \cdot 0,082 \frac{\text{atm} \cdot k}{\text{mol} \cdot k} \cdot 273 \text{ k}}{0,987 \text{ atm}} = 41,96 \frac{g}{\text{mol}}$$

Con la masa molar y la fómula empírica es posible conseguir la fórmula molecular:

$$n = \frac{M(C_x H_y)}{M(CH_2)} = \frac{41,96 \frac{g}{mol}}{(12,00+1,008 \cdot 2) \frac{g}{mol}} = 2,99 \approx 3$$

Así, la fórmula molecular es: C₃H₆.

5. Se ha aislado un compuesto orgánico formado por C, H y O. Se ha introducido una muestra de 4,6 g del compuesto en el analizador y, tras su combustión, se han obtenido 6,6 g de CO₂ y 3,6 g de H₂O. Para obtener su masa molar se disolvió 90 g del compuesto en un cuarto litro de agua y la mezcla hirvió a 102 °C. Determina su fórmula empírica y su fórmula molecular.

Dato: $K_{\text{ebulloscópica del agua}} = 0.51 \, ^{\circ}\text{C} \cdot \text{kg/mol}.$

La reacción química sin ajustar es:

$$C_x H_y O_z$$
 + O_2 \rightarrow CO_2 + $H_2 O_3$
4,6 g + m_{O_2} \rightarrow 6,6 g + 3,6 g

Masa molar del agua:

$$M(H_2O) = 1,008 \cdot 2 + 16,00 = 18,016 \text{ g/mol}$$

La cantidad de hidrógeno presente en el agua procede todo del compuesto:

3,6 g.de agua
$$\cdot \frac{(1,008 \text{ g de H}) \cdot 2}{18,016 \text{ g de agua}} = 0,403 \text{ g de H}$$

La misma cantidad de hidrógeno expresada en mol:

$$0,403 \text{ g.de H} \cdot \frac{1 \text{ mol de H}}{1,008 \text{ g.de H}} = 0,3996 \text{ mol de H} \approx 0,40 \text{ mol de H}$$

Masa molar del dióxido de carbono:

$$M(CO_2) = 12,00 + 16,00 \cdot 2 = 44,00 \text{ g/mol}$$

La cantidad de carbono presente en el dióxido de carbono procede todo del compuesto:

$$6,6 \text{ g de CO}_2 \cdot \frac{12,00 \text{ g de C}}{44,00 \text{ g de CO}_2} = 1,80 \text{ g de C}$$

La misma cantidad de dióxido de carbono expresada en mol:

1,40 g de C
$$\cdot \frac{1 \text{ mol de C}}{12,00 \text{ g de C}} = 0,150 \text{ mol de C}$$

Esta cantidad de oxígeno procedente del compuesto es:

4,6 g de
$$C_xH_yO_z-0$$
,403 g de $H-1$,80 g de $C=2$,397 g de $O\approx 2$,40 g de $O\approx$

La cantidad de oxígeno presente en el compuesto expresado en mol:

2,40 g de
$$0 \cdot \frac{1 \text{ mol de O}}{16,00 \text{ g de O}} = 0,1498 \text{ mol de O} \approx 0,15 \text{ mol de O}$$

La fórmula empírica del compuesto debe ser proporcional a $\,{\rm C_{0,15}H_{0,40}O_{0,15}}$:

$$C_{0,15} H_{0,40} O_{0,15} \Rightarrow C_1 H_{8/3} O_1 \Rightarrow C_3 H_8 O_3$$

La constante ebulloscópica permite calcular la masa molar del gas (Tema 3, página 85):

$$\Delta T = K_e \cdot m \implies m = \frac{\Delta T}{K_e} = \frac{2 \%}{0.51 \% \cdot \frac{\text{kg}}{\text{mol}}} = 3.92 \frac{\text{mol de soluto}}{\text{kg de disolvente}}$$

Son 90 g de compuesto, el soluto, disueltos en un cuarto de litro de agua, el disolvente. Haciendo uso de la densidad del agua (d = 1 kg/L) calculamos la masa del disolvente, m_d . Así, podemos calcular el número de moles del soluto, n_s , y la masa molar, M.

$$d = \frac{m_d}{V}$$
 \Rightarrow $m_d = d \cdot V = 1 \frac{\text{kg}}{V} \cdot 0,25 \text{ K} = 0,25 \text{ kg de disolvente}$

 $n_s = m \cdot m_d = 3,92 \frac{\text{mol de soluto}}{\text{kg de disolvente}} \cdot 0,25 \text{ kg de disolvente} = 0,98 \text{ mol de soluto}$

$$M = \frac{m_s}{n_s} = \frac{90 \text{ g de soluto}}{0.98 \text{ mol de soluto}} = 91.8 \frac{\text{g}}{\text{mol}}$$

Con la masa molar y la fórmula empírica es posible conseguir la fórmula molecular:

$$n = \frac{M(C_x H_y O_z)}{M(C_3 H_8 O_3)} = \frac{91.8 \frac{g}{mol}}{(12,00 \cdot 3 + 1,008 \cdot 8 + 16,00 \cdot 3) \frac{g}{mol}} = 0,997 \approx 1$$

Así, la fórmula molecular es: C₃H₈O₃. Coincide con la fórmula empírica.

ACTIVIDADES (página 160)

6. Escribe la fórmula molecular del metano, etano, butano y pentano. Obsérvalas y escribe la fórmula molecular general para un hidrocarburo lineal de *n* átomos de carbono: C₁Hm.

Nombre	Fórmula molecular	
metano	CH ₄	El número de átomos de hidrógeno es siempre el
etano	C₂H ₆	
butano	C ₄ H ₁₀	doble que el de carbono +2:
pentano	C ₅ H ₁₂	C _n H _{2n+2}

7. Escribe la fórmula molecular del ciclobutano, ciclopentano y ciclohexano. Obsérvalas y escribe la fórmula molecular general para un hidrocarburo cíclico de n átomos de carbono: C_nH_m.

Nombre	Fórmula molecular	
ciclobutano	C ₄ H ₈	El número de átomos de hidrógeno es siempre el
ciclopentano	C ₅ H ₁₀	doble que el de carbono:
ciclohexano	C ₆ H ₁₂	C _n H₂ _n

8. Escribe la fórmula molecular del eteno, but-2-eno y pent-1-eno. Obsérvalas y escribe la fórmula molecular general para un hidrocarburo lineal de *n* átomos de carbono que presente un doble enlace: C_nH_m. ¿Cuál sería la fórmula molecular general si tuviesen dos dobles enlaces?

Nombre	Fórmula molecular	
eteno	C ₂ H ₄	El número de átomos de hidrógeno es siempre el
but-2-eno	C ₄ H ₈	doble que el de carbono:
pent-1-eno	C ₅ H ₁₀	C _n H _{2n}

Si hay dos dobles enlaces, se pierde una pareja de hidrógeno para el nuevo doble enlace:

 C_nH_{2n-2}

9. Escribe la fórmula molecular del etino, but-2-ino y pent-1-ino. Obsérvalas y escribe la fórmula molecular general para un hidrocarburo lineal de *n* átomos de carbono que presente un triple enlace: C_nH_m. ¿Cuál sería la fórmula molecular general si tuviesen dos triples enlaces?

Nombre	Fórmula molecular	
etino	C_2H_2	El número de átomos de hidrógeno es siempre el
but-2-ino	C ₄ H ₆	doble que el de carbono –2:
pent-1-ino	C₅H ₈	C_nH_{2n-2}

Si hay dos triples enlaces, se pierde una pareja de hidrógeno para el nuevo triple enlace:

 C_nH_{2n-4}

10. Nombra los siguientes hidrocarburos:

- a) ciclohexa-1,3-dieno
- b) prop-1-eno
- c) octa-2,4,6-triino

11. Formula los siguientes compuestos.

- a) isopropilbenceno
- c) 2-metilciclopenta-1,3-dieno
- b) 2-metilnaftaleno
- d) 5-terc-butilciclohexa-1,3-dieno

12. La fórmula del benceno es C₆H₆. Escribe y nombra un hidrocarburo de cadena lineal que sea compatible con la fórmula molecular del benceno.

Las respuestas válidas pueden ser muy variadas. Ofrecemos dos posibles.

hexa-1,3-diino

$$H_2C$$
 $CH-C$ CH_2 CH_2

hex-1,5-dien-3-ino

13. Nombra los siguientes compuestos:

- a) 5-metilciclopenta-1,3-dieno
- b) 3,4-dimetilpent-1-eno
- c) ciclobutilbenceno

ACTIVIDADES (página 162)

14. Formula.

- a) 3-clorobutan-1-ol
- b) acetato de isopropilo
- c) propanodial
- d) para-difenol

- e) isobutil fenil éter
- f) ácido 3-metilbenzoico
- g) acetato de calcio

f)

- H₃C OH
- g) $Ca(CH_3-COO)_2$

15. Formula.

b)

c)

OHC

- a) ciclopentanona
- b) fenol

НО

- a) _____o
 - ОН
- c) ácido propanodioico
- d) butanodiona
- c) COOH-CH2-COOH
- d) CH₃-CO-CO-CH₃

- e) 1,2,3-propanotriol
- f) propanoato de metilo
- e) CH₂OH-CHOH-CH₂OH
- f) CH₃-CH₂-COO-CH₃

16. Nombra.

- a) CH₃-COO-CH₃
- c) CH₃-CBrOH-CH₃
- b) CH₃-CH(CH₃)-O-C₆H₅
- d) o=
- a) etanoato de metilo
- c) 2-bromoproan-2-ol

COOH-COOH

- b) isopropil fenil éter
- d) ciclobutana-1,3-diona

17. Nombra.

- a) HCOO-C₆H₅
- c) CH₃-CHO

d)

- b) H₃C CH₂-CH₃
- a) metanoato de fenilo
- c) etanal
- b) isopropil etil éter
- d) ácido etanodioico

18. Nombra.

- a) CH₃-CH₂-CO-CH₃
- d) CH₂=CH-CH₂-COOH
- b) OH
- e) O CH₃
 CH₂-HC
 CH₂
 CH₂-CH₂
 CH₃
- c) H₃C CH-CHO H₃C—CH₂
- a) butan-2-ona
- d) ácido but-3-enoico
- b) ciclohex-3-enol
- e) propanoato de isobutilo
- c) 2-metilbutanal
- 19. En cada una de las fórmulas siguientes hay algún error. Corrígelo.
 - a) etanona
- c) propanoato de metanol
- b) ácido ciclopropanoico
- d) etano metano éter
- a) En una cadena de dos carbonos ambos son extremo de cadena. El grupo carbonilo en el extremo de la cadena es aldehído. El nombre correcto es **etanal**.
 - Las cetonas tienen el grupo carbonilo en posición intermedia de la cadena. La más pequeña es la de tres carbonos. Un nombre correcto es **propanona**.
- b) El grupo ácido está sobre un carbono extremo de cadena en un hidrocarburo abierto. El nombre correcto es **ácido propanoico**.
- c) Error en el nombre del radical. El nombre correcto es propanoato de metilo.
- d) Error en el nombre de los radicales. El nombre correcto es etil metil éter.

ACTIVIDADES (página 163)

20. Formula los siguientes compuestos.

- a) N-terc-butilbutanoamida
- c) N-metilpropilamina
- e) 2,4,6-trinitrotolueno

- b) butanonitrilo
- d) N-metilformamida

a)
$$H_3C$$
 CH_2
 C
 CH_3
 CH_3
 CH_3

 CH_3 - CH_2 - CH_2 -NH- CH_3

 O_2N NO_2 H_3C O_2N

- b) $CH_3-CH_2-CH_2-C\equiv N$
- H-CO-NH-CH₃

Nombra lossiguientes compuestos.

- NC-CH₂-CH₃
- d) CH₃-NH-CO-CH₂-CH₃
- b) NH_2
- **NO**₂ O_2N

- c) $C_6H_5-NH_2$
- a) propanonitrilo
- d) N-metilpropanoamida
- ciclobutilamina
- e) 1,3-nitrobenceno
- fenilamina

ACTIVIDADES (página 165)

Nombra los siguientes compuestos:

a)

 H_2N

d)

c)

e)

- 5-cloro-2-aminociclohex-2-enona
- 5-cloro-2-aminociclohex-4-enona d)
- 5-cloro-4-aminociclohex-2-enona
- e) ácido fenoxietanoico

Formula los siguientes compuestos.

- 4-aminobutanona
- ácido 3-ciano-2-metoxibutanoico b)
- c) 1-hidroxi-3-nitropropanona
- d) 3-aminopropanoato de etilo

d) O
$$|I|$$
 CH_2 C CH_2 CH_3 CH_4

ACTIVIDADES (página 166)

24. Escribe y nombra tres isómeros estructurales del 3-hidroxibutanal.

Primero construye la fórmula del 3-hidroxibutanal:

Isómero de cadena al reducir el número de carbonos en la cadena principal y llevar carbonos a ramificaciones. Por ejemplo 3-hidroxi-2-metilpropanal.

Isómero de posición al cambiar de posición el grupo funcional alcohol. Por ejemplo 2-hidroxibutanal.

Isómero de función al cambiar el grupo funcional, reuniendo alcohol con carbonilo en el mismo carbono nos encontramos con el grupo carboxilo. Por ejemplo ácido butanoico.

- 25. Indica cuáles de estos pueden presentar actividad óptica.
 - a) ácido metanoico
 - b) 2-cloropropanal
 - c) 3-metilbutanonitrilo
 - d) 3-metilpent-2-eno

No puede tener actividad óptica. No hay 4 sustituyentes distintos en el único carbono de la molécula.

Sí puede tener actividad óptica. Hay 4 sustituyentes distintos en el carbono central.

c)
$$CH_3 H$$

 $H_3C - C - C - C = N$
 $H H H$

No puede tener actividad óptica. No hay 4 sustituyentes distintos en ningún carbono de la molécula.

No puede tener actividad óptica. No hay 4 sustituyentes distintos en ningún carbono de la molécula.

ACTIVIDADES (página 167)

26. Escribe y nombra tres isómeros de cadena del hex-2-eno.

La fórmula semidesarrollada del hex-2-eno es: CH₃–CH=CH₂–CH₂–CH₂–CH₃. Los isómeros de cadena se diferencian en la estructura del esqueleto de la cadena. Tres isómeros pueden ser:

•
$$H_3C$$
 CH_2-CH_3 3-metilpent-2-eno $CH=C$ CH_2

•
$$H_3C$$
 CH_3 2,3-dimetilbut-2-eno $C = C$ CH_3

27. Escribe y nombra todas las cetonas de cinco átomos de carbono con un solo grupo carbonilo.

• CH₃-CO-CH₂-CH₂-CH₃ pentan-2-ona

• CH₃-CH₂-CO-CH₂-CH₃ pentan-3-ona

•

2-etilciclopropanona

•

1-ciclopropiletanona

28. Identifica los grupos funcionales que están presentes en este compuesto.
Escribe la fórmula de otro que sea isómero de función con un único grupo funcional.

CH₃-O-CH₂-CH=CH-CH₂-OH

El nombre del compuesto es 4-metoxibut-2-en-1-ol. Los grupos funcionales son:

Un isómero con un único grupo funcional es el ácido pentanoico:

- 29. Indica cuáles de estos pueden presentar isomería óptica.
 - a) 3-hidroxipentan-2-ona
 - b) pentan-2-ol
 - c) 3-aminobutanona
 - d) ciclopentanol
 - e) 2-clorociclopentanol

No puede tener actividad óptica. No hay 4 sustituyentes distintos en ninguno de los átomos de carbono.

Sí puede tener actividad óptica. Hay 4 sustituyentes distintos en el átomo de carbono número 2 de la cadena principal.

Sí puede tener actividad óptica. Hay 4 sustituyentes distintos en el átomo carbono número 3 de la cadena principal.

No puede tener actividad óptica. No hay 4 sustituyentes distintos en ningún átomo de carbono del ciclo.

Sí puede tener actividad óptica. Hay 4 sustituyentes distintos en dos átomos de carbono del ciclo.

ACTIVIDAD (página 169)

- 30. Completa en tu cuaderno las siguientes reacciones de hidrólisis y nombra las sustancias que intervienen.
 - a) $CH_3-COO-CH_2-CH_3$ + H_2O \rightarrow

- c) $CH_3-O-CH(CH_3)_2$ + H_2O \rightarrow
- d) NH_2 -CO-C H_3 + H_2O \rightarrow
- a) $CH_3-COO-CH_2-CH_3$ + H_2O \rightarrow CH_3-COOH + $HO-CH_2-CH_3$ etanoato de etilo + agua ácido etanoico + etanol

- ciclobutil ciclopentil éter + agua ciclopentanol + ciclobutanol
- c) $CH_3-O-CH(CH_3)_2$ + H_2O \rightarrow CH_3-OH + $HO-CH(CH_3)_2$ isopropil metil éter + agua metanol + propan-2-ol
- d) NH_2 –CO– CH_3 + H_2O \rightarrow NH_3 + HOOC– CH_3 etanoamida + agua amoniaco + ácido etanoico

ACTIVIDADES FINALES (página 177)

La fórmula de los compuestos orgánicos

- 31. Escribe los átomos de hidrógeno que faltan para que las siguientes cadenas carbonadas representen la fórmula de un hidrocarburo.
 - a)

b)

b)

- a) H₂C CH CH₂ CH₃

 | | | C CH₂ CH₃

 | | | C CH₂ CH₃
- CH-CH₂

 HC CH-CH₂

 CH-CH₂

 CH-CH₂

 CH-CH₂

 CH-C
- 32. A continuación se muestra la fórmula semidesarrollada de dos compuestos. Para cada uno, escribe sus fórmulas desarrollada, supersimplificada y molecular:
 - a) CH₃-CHOH-CH₂-CH=CH-COH
- b) $NH_2-CH_2-C\equiv C-COOH$

	desarrollada	supersimplificada	molecular
a)	H	D O	C ₆ H ₁₀ O ₂

	desarrollada	supersimplificada	molecular
b)	H H O O O O O O O O O O O O O O O O O O	-H 0 ОН	C ₄ H ₅ NO ₂

33. Las siguientes son las fórmulas supersimplificadas de dos compuestos. Para cada uno de ellos escribe la fórmula desarrollada, semidesarrollada y molecular:

a)

b

	desarrollada	semidesarrollada	molecular
a)	H	H ₃ C CH CH CH ₃	C ₁₁ H ₁₂
b)	H C H C H H H H H H H H H H H H H H H H	CH_3 $CH-CH_2$ H_3C	C5H11NO2

34. Se queman 12,75 g de un dialcohol en presencia de un exceso de oxígeno. Como resultado de la reacción se obtienen 27,5 g de dióxido de carbono y 11,25 g de agua. Determina la fórmula del compuesto.

La reacción química sin ajustar es:

$$C_xH_yO_z$$
 + O_2 \rightarrow CO_2 + H_2O
12,75 g + m_{O_2} \rightarrow 27,5 g + 11,25 g

Masa molar del agua:

$$M(H_2O) = 1,008 \cdot 2 + 16,00 = 18,016 \text{ g/mol}$$

La cantidad de hidrógeno presente en el agua:

11,25 g-de
$$H_2O \cdot \frac{(1,008 \text{ g de H}) \cdot 2}{18,016 \text{ g-de } H_2O} = 1,259 \text{ g de H}$$

La misma cantidad de hidrógeno expresada en mol:

1,259 g de H
$$\cdot$$
 $\frac{1 \text{ mol de H}}{1,008 \text{ g de H}} = 1,249 \text{ mol de H}$

Masa molar del dióxido de carbono:

$$M(CO_2) = 12,00 + 16,00 \cdot 2 = 44,00 \text{ g/mol}$$

La cantidad de carbono presente en el dióxido de carbono:

$$27.5 \text{ g-de-CO}_2 \cdot \frac{12,00 \text{ g de C}}{44,00 \text{ g-de-CO}_2} = 7.5 \text{ g de C}$$

La misma cantidad de carbono expresada en mol:

7,5 g de
$$C \cdot \frac{1 \text{ mol de C}}{12,00 \text{ g de C}} = 0,625 \text{ mol de C}$$

Estas cantidades de hidrógeno y oxígeno proceden del bialcohol, así que la cantidad de oxígeno en la reacción es:

12,75 g de
$$C_xH_yO_z - 1,259$$
 g de $H - 7,5$ g de $C = 3,99$ g de O

La cantidad de oxígeno presente en el dialcohol expresado en mol:

3,99 g de
$$0 \cdot \frac{1 \text{ mol de O}}{16,00 \text{ g de O}} = 0,249 \text{ mol de O}$$

La fórmula del dialcohol debe ser proporcional a $C_{0,625}H_{1,249}O_{0,249}$:

$$C_{\substack{0,625\\0,249}}H_{\substack{1,249\\0,249}}O_{\substack{0,249\\0,249}} \implies C_{2,51}H_{5,02}O_1 \implies C_5H_{10}O_2$$

Al tratarse de un dialcohol la fórmula molecular es: C₅H₁₀O₂.

La putrescina es un compuesto de C, H y N que se origina en los procesos de putrefacción de la carne. Al quemar una muestra de 2,125 g de putrescina con exceso de oxígeno se forman 4,25 g de dióxido de carbono y 2,608 g de agua. Obtén la fórmula de la putrescina sabiendo que su masa molar es 88 g/mol.

La reacción química sin ajustar es:

$$C_x H_y N_z$$
 + O_2 \rightarrow CO_2 + $H_2 O$ + NO_n
2,125 g + m_{O_2} \rightarrow 4,25 g + 2,608 g + m_{NO_n}

Masa molar del agua:

$$M(H_2O) = 1,008 \cdot 2 + 16,00 = 18,016 \text{ g/mol}$$

La cantidad de hidrógeno presente en el agua:

2,608 g-de H₂O ·
$$\frac{(1,008 \text{ g de H}) \cdot 2}{18,016 \text{ g de H}_2O} = 0,292 \text{ g de H}$$

La misma cantidad de hidrógeno expresada en mol:

0,292 g de H
$$\cdot \frac{1 \text{ mol de H}}{1,008 \text{ g de H}} = 0,290 \text{ mol de H}$$

Masa molar del dióxido de carbono:

$$M(CO_2) = 12,00 + 16,00 \cdot 2 = 44,00 \text{ g/mol}$$

La cantidad de carbono presente en el dióxido de carbono:

$$4,25 \text{ g de CO}_2 \cdot \frac{12,00 \text{ g de C}}{44,00 \text{ g de CO}_3} = 1,159 \text{ g de C}$$

La misma cantidad de carbono expresada en mol:

1,159 g de
$$C \cdot \frac{1 \text{ mol de C}}{12,00 \text{ g de C}} = 0,0966 \text{ mol de C}$$

Estas cantidades de hidrógeno y oxígeno proceden de la putrescina, así que la cantidad de nitrógeno en la reacción es:

$$2,125 \text{ g de } C_xH_yN_z - 0,292 \text{ g de } H - 1,159 \text{ g de } C = 0,674 \text{ g de } N$$

La cantidad de nitrógeno presente en la putrescina expresado en mol:

$$0,674 \text{ g-de-N} \cdot \frac{1 \text{ mol de N}}{14,01 \text{ g-de-N}} = 0,0481 \text{ mol de N}$$

La fórmula de la putrescina debe ser proporcional a $\,C_{0,0966}H_{0,290}N_{0,0481}$:

$$C_{\underbrace{0,0966}_{0,0481}} H_{\underbrace{0,290}_{0,0481}} N_{\underbrace{0,0481}_{0,0481}} \ \Rightarrow \ C_{2,01} H_{6,03} N_{1} \ \Rightarrow \ C_{2} H_{6} N$$

Comprobamos si esta es la fórmula molecular del compuesto. Para ello, obtenemos su masa molar:

$$M(C_2H_6N) = 12,00 \cdot 2 + 1,008 \cdot 6 + 14,01 = 44,06 \text{ g/mol}$$

Como NO coincide con el dato, hay que pensar que esa es la fórmula empírica del compuesto. En la molécula del compuesto habrá *n* veces esta proporción de átomos:

$$n = \frac{88 \text{ g/mol}}{44,06 \text{ g/mol}} = 1,997 \approx 2$$

Fórmula molecular de la putrescina: C₄H₁₂N₂.

36. Determina la fórmula molecular de la urea sabiendo que al quemar 15 g de urea en presencia de exceso de O₂ se consiguen 11 g de CO₂, 9 g de H₂O y 19 g de N₂O₃. La masa molar de la urea es de 60 g/mol.

La reacción química sin ajustar es:

$$C_xH_yN_zO_n$$
 + O_2 \rightarrow CO_2 + H_2O + N_2O_3
15 g + m_{O_2} \rightarrow 11 g + 9 g + 19 g

Masa molar del agua:

$$M(H_2O) = 1,008 \cdot 2 + 16,00 = 18,016 \text{ g/mol}$$

La cantidad de hidrógeno presente en el agua:

9 g de H₂O ·
$$\frac{(1,008 \text{ g de H}) \cdot 2}{18,016 \text{ g de H}_{2}O} = 1,007 \text{ g de H}$$

La misma cantidad de hidrógeno expresada en mol:

1,007 g de H
$$\cdot \frac{1 \text{ mol de H}}{1,008 \text{ g de H}} = 0,999 \text{ mol de H}$$

Masa molar del dióxido de carbono:

$$M(CO_2) = 12,00 + 16,00 \cdot 2 = 44,00 \text{ g/mol}$$

La cantidad de carbono presente en el dióxido de carbono:

11 g de
$$CO_2$$
 · $\frac{12,00 \text{ g de C}}{44,00 \text{ g de } CO_2}$ = 3,000 g de C

La misma cantidad de carbono expresada en mol:

3,000 g de C
$$\cdot \frac{1 \text{ mol de C}}{12,00 \text{ g de C}} = 0,250 \text{ mol de C}$$

Masa molar del trióxido de dinitrógeno:

$$M(N_2O_3) = 14,01 \cdot 2 + 16,00 \cdot 3 = 76,02 \text{ g/mol}$$

La cantidad de nitrógeno presente en el trióxido de dinitrógeno:

19 g de
$$N_2O_3 \cdot \frac{(14,01 \text{ g de N}) \cdot 2}{76,02 \text{ g de N} \cdot 0} = 7,003 \text{ g de N}$$

La misma cantidad de nitrógeno expresada en mol:

7,003 g de N
$$\cdot \frac{1 \text{ mol de N}}{14,01 \text{ g de N}} = 0,500 \text{ mol de N}$$

Estas cantidades de hidrógeno, carbono y nitrógeno proceden de la urea, así que la cantidad de oxígeno en la reacción es:

15 g de
$$C_xH_yN_zO_n - 0,999$$
 g de $H - 3,000$ g de $C - 7,003$ g de $N = 3,998$ g de O

La cantidad de oxígeno presente en la urea expresado en mol:

3,998 g de
$$\Theta \cdot \frac{1 \text{ mol de O}}{16,00 \text{ g de } \Theta} = 0,250 \text{ mol de O}$$

La fórmula de la urea debe ser proporcional a $C_{0.250}H_{0.999}N_{0.500}O_{0.250}$:

$$C_{\underbrace{0,250}_{0,250}}H_{\underbrace{0,999}_{0,250}}N_{\underbrace{0,500}_{0,250}}O_{\underbrace{0,250}_{0,250}} \ \Rightarrow \ C_{1}H_{3,996}N_{2}O_{1} \ \Rightarrow \ CH_{4}N_{2}O$$

Comprobamos si esta es la fórmula molecular del compuesto. Para ello, obtenemos su masa molar:

$$M(CH_4N_2O) = 12,00 + 1,008 \cdot 4 + 14,01 \cdot 2 + 16,00 = 60,05 \text{ g/mol}$$

Se aproxima al dato bastante bien, hay que pensar que la fórmula empírica del compuesto es la misma que la fórmula molecular. Fórmula molecular de la urea: CH₄N₂O.

ACTIVIDADES FINALES (página 178)

Formulación y nomenclatura de compuestos orgánicos

37. Formula los siguientes compuestos.

- a) 1,3-dietilbenceno
- c) 3-etilpent-3-en-1-ino
- b) 3,4-dimetilpent-1-eno
- d) 6-etil-1-metilnaftaleno

c)
$$HC \equiv C - C \ CH_2 - CH_3$$

b)
$$H_2C = CH$$

 $CH - CH_3$
 $H_3C - HC$
 CH_2

38. Nombra los siguientes compuestos.

a)
$$H_2C$$

 C — C \equiv C — CH_3

a) 2-metilpent-1-en-3-ino

b) 1-etil-4-metilbenceno

39. Nombra los siguientes compuestos.

- a) ciclopropilciclobutano
- b) 1,7-dimetilnaftaleno
- 40. Escribe en tu cuaderno los grupos funcionales de los compuestos orgánicos oxigenados.

Éter:

Aldehído:

Cetona:

$$R_1 - C_R^{\prime\prime}$$

Ácido carboxílico:

Éster:

$$R_1 - C \downarrow 0$$
 $O - R_2$

41. Formula el pentan-2-ol. Formula un compuesto diferente de su misma serie homóloga. Formula un compuesto de la misma familia que él pero que no pertenezca a su serie homóloga.

Pentan-2-ol	Misma serie homóloga	Misma familia, distinta serie homóloga
OH CH CH ₂ CH ₃	OH CH CH ₃ propan-2-ol	OH CH CH CH but-3-en-2-ol

42. Escribe la fórmula molecular de los siguientes alcoholes: metanol, etanol, propan-2-ol, pentan-3-ol. Deduce la fórmula general de los compuestos que tienen un grupo alcohol en su molécula: C₁HxO.

Nombre	Fórmula molecular	
metanol	CH ₄ O	El número de átemas de hidrágene es siempre el
etanol	C ₂ H ₆ O	El número de átomos de hidrógeno es siempre el doble que el de carbono más dos:
propan-2-ol	C₃H ₈ O	C _n H _{2n+2} O
pentan-2-ol	C ₅ H ₁₂ O	CnH2n+2O

43. Escribe la fórmula molecular de los siguientes aldehídos: metanal, etanal, propanal, pentanal. Deduce la fórmula general de los compuestos que tienen un grupo aldehído en su molécula C₁HxO.

Nombre	Fórmula molecular	
metanal	CH₂O	El número de étemes de hidrágene es siemero el
etanal	C ₂ H ₄ O	El número de átomos de hidrógeno es siempre el
propanal	C₃H ₆ O	doble que el de carbono: CnH2nO
pentanal	$C_5H_{10}O$	CnH2nO

44. Escribe la fórmula molecular de las siguientes cetonas: propanona, butanona, pentan-3-ona. Deduce la fórmula general de los compuestos que tienen un grupo cetona en su molécula C_nH_xO.

Nombre	Fórmula molecular	
propanona	C₃H ₆ O	El número de átomos de hidrógeno es siempre el
butanona	C ₄ H ₈ O	doble que el de carbono:
pentan-3-ona	C ₅ H ₁₀ O	C _n H _{2n} O

45. Nombra los siguientes compuestos.

c)

b) 0

c)

d)

d)

a) feniletanal

- c) 3-hidroxiciclopentan-1-ona
- b) 4-bromo-3-hidroxibutan-2-ona
- d) 3-amino-2-terc-butilpropanal

46. Formula los siguientes compuestos.

- a) N-terc-butilbutanamida
- N-metilpropan-1-amina
- b) butanonitrilo
- N-metilformamida

47. Nombra los siguientes compuestos.

- a) CN-CH₂-CH₃
- c) CH₃-NH-CO-CH₂-CH₃
- b) C₆H₅-NH₂

- NH₂
- a) propanonitrilo
- c) N-metilpropanamida

b) fenilamina

d) ciclobut-2-en-1-amina

ACTIVIDADES FINALES (página 179)

48. Identifica los grupos funcionales de los siguientes compuestos y nómbralos.

- b) CH₂OH-CH₂-NH₂
- e) CH₃-O-CO-CH₂-CH₃
- c) CH₂Br-CH₂-NH₂
- f) CH₃-COO-CH₂-CH₃

a) doble enlace

d) NH₂ amino oxo

5-aminociclohex-2-en-1-ona

b) $HO \rightarrow CH_2$ alcohol $CH_2 \rightarrow NH_2$ amino

2-aminociclohex-3-en-1-ona

2-aminoetanol

propanoato de metilo

2-bromoetanoamina

- 49. Formula los siguientes compuestos.
 - a) ácido 3-fenilpropanoico
 - b) 3-amino-5-metoxiciclohexan-1-ona
 - c) 4-aminociclopent-2-en-1-ona

a)
$$CH_2$$
 CH_2 CH_3 CH_3 CH_3 CH_3 CH_4 CH_5 CH_5

- 50. Formula los siguientes compuestos.
 - a) ácido 2-cianobutanoico
 - b) etoxipropanona
 - c) 3-oxopropanonitrilo

a)
$$H_3C$$
 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2 CH_3 CH_2 CH_3

- 51. Formula los siguientes compuestos.
 - a) ácido 3-oxobutanoico
 - b) metoximetanol
 - c) 3-yodo-4-hidroxibut-2-ona

52. Nombra los siguientes compuestos.

a) Br

b) O O | C CH₂ CH₂ CH₂

- a) 4-bromociclobut-2-en-1-amino
- b) 1-metoxibutan-2-ona
- 53. Nombra los siguientes compuestos.

a) $\begin{array}{c|c} NH_2 & OH \\ & | & | \\ O & CH & C\\ CH_2 & C \\ \end{array}$

- b) HO—CH₂ CH−C≡N H₂N
- a) ácido 3-amino-4-oxobutanoico
- b) 2-amino-3-hidroxipropanonitrilo

Isomería

54. Escribe y nombra tres isómeros estructurales del 3-hidroxibutanal.

3-hidroxibutanal

Isómero estructural de cadena

 $\begin{array}{c} \mathsf{CH_3} & \mathsf{O} \\ \mathsf{I} & /\!/ \\ \mathsf{HO} -\!\!\!\!\!- \mathsf{C} -\!\!\!\!\!- \mathsf{CH} \\ \mathsf{I} \\ \mathsf{CH_3} \end{array}$

Isómero estructural de función

$$H_3C$$
— CH_2 O CH_2 - C

Isómero estructural de función

- 2-hidroxi-2-metilpropanal
- ácido butanoico
- ciclobutan-1,2-diol
- 55. Para el ciclopentanol, escribe la fórmula de un compuesto de su misma serie homóloga, otro que pertenezca a su familia pero no a su serie homóloga y otro que sea su isómero estructural.

ciclopentanol	Misma serie homóloga	Misma familia, distinta serie homóloga	Isómero estructural	
ОН	OH ciclobutanol	$HO \longrightarrow CH_2$ $CH = CH_2$ $prop-2-en-1-ol$	HO—CH ₂ CH ₂ —CH CH—CH ₃	

56. Identifica los grupos funcionales de los siguientes compuestos y relaciona los que son isómeros de función.

- a) CH₃-O-CH₂-CH₃
- b) CH₃-CH₂-COOH
- c) CH₃-CH₂-CH₂-CHO
- d) CH₃-O-CO-CH₃
- e) CH₃-CH₂-CH₂OH

- g) CH₃-CO-CH₂-CH₃
- h) CH₃-CH=CH-CH₂OH
- a) Grupo éter
- b) Grupo ácido carboxílico
- c) Grupo aldehído
- d) Grupo éster
- e) Grupo alcohol
- f) Grupo alcohol
- g) Grupo cetona
- h) Grupo alcohol y un doble enlace

- Son isómeros de función el a) y el e). Con la misma fórmula molecular, C₃H₈O, hay un éter y un alcohol.
- Son isómeros de función el c), f), g) y h). Con la misma fórmula molecular, C₄H₈O, hay un aldehído, una cetona y dos alcoholes, uno en un ciclo y otro en cadena abierta con doble enlace.
- Son isómeros de función el b) y el d). Con la misma fórmula molecular, C₃H₆O₂, hay un ácido y un éster.

57. Formula los siguientes compuestos e indica cuáles de ellos pueden presentar isomería geométrica.

- a) pent-2-eno
- d) 2-metilbut-2-eno
- b) hex-3-eno
- e) 3-metilpent-2-eno
- c) but-2-ino
- f) ácido but-2-enoico

trans-pent-2-eno cis-pent-2-eno

b) H CH_2 CH_3 $C-CH_2$ H CH_3 $C-CH_2$ CH_3 $C-CH_3$ CH_3 $C-CH_3$ CH_3 CH_3 CH

$$C = C$$
 $C = C$
 $H_3C - CH_2 - CH_2 - CH_3$
 $C = CH_2 - CH_3$

Presenta isomería geométrica.

Presenta isomería geométrica.

c) H_3C —C \equiv C— CH_3 but-2-ino

d) H CH_3 C = C H_3C CH_3 $C = CH_3$ $C = CH_3$

No puede presentar isomería geométrica por el triple enlace.

No puede presentar isomería geométrica porque uno de los átomos de carbono del doble enlace tiene los dos sustituyentes iguales.

e) H_3C CH_3 H_3C H C=C C=C C=C C=C CH_3 C=C CH_4 CH_3 CH_5 CH_5

Presenta isomería geométrica.

f) H_3C COOH C = C H H ácido cis-but-2-enoico

ácido trans-but-2-enoico

Presenta isomería geométrica.

- 58. Identifica los grupos funcionales de los siguientes compuestos y relaciona los que son isómeros estructurales:
 - a) CH₃-NH-CH₂-CH₃
 - b) CH₃-NH-CO-CH₂-CH₃
 - c) HOCH₂-CH=CH-CH₂-NH₂
 - d) CH₃-CH=CH-CHOH-NH₂

N-metiletanamina

N-metilpropanamida

4-aminobut-2-en-1-ol

1-aminobut-2-en-1-ol

2-aminociclobutan-1-ol

f)
$$H_3C$$
 amino $N - CH_3$ H_3C

N,N-dimetilfenilamina

- Son isómeros estructurales el a) y el f). Con la misma fórmula molecular, C₃H₃N, en las dos moléculas se conserva la función amina, así que son isómeros estructurales de cadena.
- Son isómeros estructurales el b), c), d) y e). Las cuatro moléculas tienen la misma fórmula molecular, C₄H₉NO. Las modificaciones de una a otra son según la tabla de doble entrada.

	H ₃ C O CH ₂ CH ₃	HO-CH ₂ CH ₂ -(NH ₂)	H ₃ C CH-(NH ₂)	OH OH
H ₃ C O CH ₃ CH ₃		función	función	función
HO-CH ₂ CH ₂ -NH ₂	función		posición	cadena
H ₃ C CH-NH ₂	función	posición		cadena
(H ₂ N)	función	cadena	cadena	

agua

Reacciones de los compuestos orgánicos

59. Completa en tu cuaderno las siguientes reacciones y nombra las sustancias que intervienen.

acetato de metilo

60. Escribe una reacción química que te permita obtener las siguientes sustancias.

metanol

a) CH₃-NH-CO-CH₃

ácido acético

- b) HCOO-CH₂-CH₃
- c) ciclopentil fenil éter

a)
$$H_3C$$
 CH_3
 H_2O
 CH_3
 CH_3
 N -metilmetanoamida agua metanamina ácido acético

b) H
 $C-O$
 CH_2
 CH_3
 CH

ACTIVIDADES FINALES (página 180)

- 61. Se hacen reaccionar 50 mL de un ácido acético comercial, del 96 % de riqueza en masa y densidad 1,06 g/mL con un exceso de etanol. Calcula que cantidad, en gramos, de acetato de etilo se habrá obtenido suponiendo que el proceso va con un 85 % de rendimiento.
 - 1. Escribimos la ecuación química de la reacción y la ajustamos.

1 mol de etanol con 1 mol de ácido acético dan 1 mol de acetato de etilo y 1 mol de agua

y energía

2. Debajo de cada sustancia escribimos los datos que conocemos.

1 mol de ácido acético con 1 mol de etanol dan 1 mol de acetato de etilo y 1 mol de agua 50 mL

96 % en masa

85 % de rendimiento

d = 1,06 g/mL

3. Expresamos en mol la cantidad de las sustancias que reaccionan. La densidad del etanol permite calcular su equivalente en masa, y la rigueza, la cantidad exacta de ácido que puede reaccionar:

50 mL de
$$C_2H_4O_2$$
 comercial $\cdot \frac{1,06 \text{ g}}{1 \text{ mL}} = 53 \text{ g de } C_2H_4O_2$ comercial

$$53 \text{ g de C}_2\text{H}_4\text{O}_2 \text{ comercial} \cdot \frac{96 \text{ g de C}_2\text{H}_4\text{O}_2 \text{ puro}}{100 \text{ g de C}_2\text{H}_4\text{O}_2 \text{ comercial}} = 50,88 \text{ g de C}_2\text{H}_4\text{O}_2 \text{ puro}$$

$$M(C_2H_4O_2) = 12,00 \cdot 2 + 1,008 \cdot 4 + 16,00 \cdot 2 = 60,032 \text{ g/mol}$$

50,88 g de
$$C_2H_4O_2$$
 puro $\cdot \frac{1 \text{ mol de } C_2H_4O_2}{60,032 \text{ g de } C_3H_4O_2 \text{ puro}} = 0,848 \text{ mol de } C_2H_4O_2$

4. La estequiometría de la reacción permite calcular los moles de acetato de etilo que se obtienen:

1 mol de ácido acético, C₂H₄O₂, producen 1 mol de acetato de etilo, C₄H₈O₂.

En este caso, se obtendrían 0,848 mol de acetato de etilo si la reacción fuese con un 100 % de rendimiento. De acuerdo con los datos, solo se obtiene el 85 % de lo que se obtendría en teoría:

$$0,848 \text{ mol de } C_4H_8O_2 \text{ teórico} \cdot \frac{85 \text{ mol de } C_4H_8O_2 \text{ real}}{100 \text{ mol de } C_4H_8O_2 \text{ teórico}} = 0,720 \text{ mol de } C_4H_8O_2 \text{ real}$$

$$M(C_4H_8O_2) = 12,00 \cdot 4 + 1,008 \cdot 8 + 16,00 \cdot 2 = 88,064 \text{ g/mol}$$

$$0,720 \text{ mol de } C_4H_8O_2 \cdot \frac{88,064 \text{ g de } C_4H_8O_2}{1 \text{ mol de } C_4H_8O_2} = 63,44 \text{ g de } C_4H_8O_2$$

62. En la combustión de cada mol de CH₄ se liberan 890 kJ. Calcula la cantidad de energía que se produce por la combustión de 1 kg de CH₄ y la cantidad de CO₂ que se vierte a la atmósfera en el proceso. Determina el volumen de aire, medido a 0 °C y 1 atm, que será necesario para que se produzca esa combustión.

1 mol de metano con 2 mol de oxígeno dan 1 mol de dióxido de carbono 2 mol de agua

Dato: el aire tiene un 21 % de oxígeno.

1. Escribimos la ecuación química de la reacción y la ajustamos.

CH₄ + 2 O₂
$$\rightarrow$$
 CO₂ + 2 H₂O $\Delta H = -890$ kJ/mol

2. Debajo de cada sustancia escribimos los datos que conocemos.

CH₄ + 2 O₂
$$\rightarrow$$
 CO₂ + 2 H₂O $\Delta H = -890$ kJ/mol 1 mol de metano con 2 mol de oxígeno dan 1 mol de dióxido de carbono 2 mol de agua y energía 1000 g 0 °C 0 °C 1 atm 1 atm

21 % en volumen

3. Expresamos en mol la cantidad de las sustancias que reaccionan. La masa molar del metano permite calcular el número de moles de este compuesto que participan en la reacción:

$$M(CH_4) = 12,00 + 1,008 \cdot 4 = 16,032 \text{ g/mol}$$

 $1000 \text{ g de CH}_4 \cdot \frac{1 \text{ mol de CH}_4}{16,032 \text{ g de CH}_4} = 62,375 \text{ mol de CH}_4$

- 4. La estequiometría de la reacción permite calcular:
 - La cantidad de energía:

62,375 mol de
$$CH_4 \cdot -890 \frac{kJ}{mol} = -55514 \, kJ \approx -55500 \, kJ$$

El signo negativo indica que el metano pierde esa cantidad de energía. La cantidad de energía que se produce es **55 500 kJ**.

• La cantidad de dióxido de carbono:

62,375 mol de
$$CH_4$$
 · $\frac{1 \text{ mol de CO}_2}{1 \text{ mol de CH}_4}$ = 32,375 mol de CO_2

$$M(CO_2) = 12,00 + 16,00 \cdot 2 = 44,00 \text{ g/mol}$$

32,375 mol de
$$CO_2$$
 · $\frac{44,00 \text{ g de } CO_2}{1 \text{ mol de } CO_2}$ = **2744,5 g de CO_2**

La cantidad de aire:

62,375 mol de
$$CH_4$$
 · $\frac{2 \text{ mol de O}_2}{1 \text{ mol de CH}_4} = 124,75 \text{ mol de O}_2$

De la ecuación de estado de los gases perfectos, $p \cdot V = n \cdot R \cdot T$, despejando y sustituyendo:

$$V = \frac{n \cdot R \cdot T}{p} = \frac{124,75 \text{ mol de O}_2 \cdot 0,082 \frac{\text{atm} \cdot L}{\text{mol} \cdot K} \cdot 273 \text{ K}}{1 \text{ atm}} = 2792,7 \text{ L de O}_2$$

Considerando la cantidad de oxígeno en el aire:

$$V_{\text{aire}} = 2792,7 \text{ L de } O_2 \cdot \frac{100 \text{ L de aire}}{21 \text{ L de } O_2} = 13298 \text{ L de aire} \approx 13300 \text{ L de aire}$$

La industria del petróleo y sus derivados

- 63. Analiza el cuadro de las reservas mundiales de los combustibles fósiles y responde:
 - a) Cuál es la región que posee las mayores reservas y en qué porcentaje de:

	Carbón	Petróleo	Gas natural
Región			
Cantidad			
Porcentaje			

- b) Avanzando desde la región que posee la mayor reserva, qué regiones acumulan el 50 % de cada combustible.
- Busca información que te permita valorar las reservas de España en cada uno de los tres tipos de combustibles fócilas
- a) Completamos la tabla con la información del apartado 6:

Carbón	Petróleo	Gas natural

	Carbón	Petróleo	Gas natural	
Región	Eurasia	Oriente Medio	Oriente Medio	
Cantidad	310,54 · 10 ¹² t	808,5 · 10 ⁹ barriles	80,29 · 10 ¹² m ³	
Porcentaje	34,83 %	47,90 %	43,24 %	

Para calcular el porcentaje se ha de sumar el total de las reservas mundiales en cada caso:

Porcentaje reservas de carbón de Eurasia =
$$\frac{310,54}{310,54 + 288,33 + 245,09 + 31,81 + 14,64 + 1,12} = 34,83 \%$$

Porcentaje reservas de petróleo de Oriente Medio =
$$\frac{808,5}{808,5+329,6+229,6+147,8+130,3+42,2} = 47,90\%$$

Porcentaje reservas de gas natural de Oriente Medio = $\frac{80,29}{80,29+56,62+15,20+14,21+11,71+7,67}$ = 43,24 %

b) Incorporamos regiones hasta que la suma de porcentajes supere el 50 %:

Carbón		Petróleo		Gas natural	
Eurasia	34,83 %	Oriente Medio	47,90 %	Oriente Medio 43,24 %	
Asia-Pacíf	Asia-Pacífico 32,34 % Sudamérica-Caribe 19,53 %		19,53 %	Asia-Pacífico	30,49 %
Suma	67,17 %	Suma	67,43 %	Suma	73,73 %

Calculamos igualmente el porcentaje de la segunda región en importancia:

Porcentaje reservas de carbón de Asia-Pacífico =
$$\frac{288,33}{310,54 + 288,33 + 245,09 + 31,81 + 14,64 + 1,12} = 32,34\%$$

Porcentaje reservas de petróleo de Sudamérica-Caribe =
$$\frac{329,6}{808,5+329,6+229,6+147,8+130,3+42,2}$$
 = 19,53 %

Porcentaje reservas de gas natural de Asia-Pacífico =
$$\frac{56,62}{80,29+56,62+15,20+14,21+11,71+7,67} = 30,49 \%$$

c) En esta búsqueda de información se puede echar mano de la información que ofrecen las compañías petrolíferas o el Ministerio de Industria a través de sus portales en la Internet. Algunos datos encontrados para esta publicación que no excluyen otras búsquedas que actualicen los datos:

Fuente: British Petroleum (reservas en 2014)

Carbón $53 \cdot 10^6 \, \mathrm{t}$ Petróleo no consta Gas natural no consta

Fuente: Ministerio de Industria, Energía y Turismo (datos de producción en 2011).

Carbón $6,62 \cdot 10^3 \text{ t}$ Petróleo 100 t

Gas natural 58 m³ (en condiciones normales)

64. Razona por qué hay refinerías de petróleo y no hay instalaciones semejantes para tratar el gas natural.

El petróleo es una mezcla de diferentes hidrocarburos de muy diferente peso molecular. El gas natural es también una mezcla en la que el componente principal es el metano y hay otros gases también todos de bajo peso molecular.

- Además, en el petróleo se necesita destilar la mezcla para poder separar en diferentes fracciones. Cada una con poca variación en el peso molecular de sus componentes. Así es posible aprovechar cada fracción en el contexto que es útil: combustibles, lubricantes, asfaltos...
- En el gas natural, el peso molecular de sus componentes no es muy variado. Todos los componentes son de bajo peso molecular y se emplean para la combustión y así obtener energía. Por eso no es necesario el tratamiento en las refinerías.
- 65. En las refinerías se separa el petróleo crudo en distintas fracciones según su punto de ebullición. Desde el punto de vista químico, podemos decir que el proceso es una destilación fraccionada. ¿Por qué se llama refinerías a estas instalaciones y no destilerías?

En la mezcla del petróleo crudo llegan algunas sustancias químicas, que contienen nitrógeno y azufre, se consideran impurezas. Si se dejan en la mezcla al quemar la gasolina, por ejemplo, los gases producto de la combustión contendrían estas sustancias que pueden llegar a ser perjudiciales. Por eso es necesario el refinado.

66. En qué consiste el cracking y para qué se utiliza.

Cracking es separar moléculas de alto peso molecular dejando sustancias de menor peso molecular. Se consiguen así gasolinas a partir de querosenos y gasóleos, por ejemplo.

67. Explica la expresión: @«La mayor parte de los plásticos son materiales de diseño químico para aplicaciones especificas, que se obtienen del petróleo».

Los plásticos son polímeros. Se consiguen enlazando un número indeterminado de monómeros. Estos monómeros se consiguen desde la destilación del petróleo o como subproducto en los procesos de *cracking*.

- 68. Busca información y elabora un informe utilizando las TIC que comprenda lo siguiente:
 - Productos naturales del carbono.
 - Presencia en:
 - Materiales fósiles.
 - Seres vivos.
 - Aprovechamiento de los compuestos naturales del carbono.
 - Energético.
 - Alimenticio.
 - Médico.
 - Mejora de la calidad de vida.
 - Impacto medioambiental derivado de la obtención y aprovechamiento de los compuestos naturales del carbono.

Al tratarse de un trabajo de investigación, la respuesta es necesariamente abierta. El objetivo es repasar dónde es posible encontrar átomos de carbono en la naturaleza, clasificando según el origen como material fósil o materia viva. Y qué utilidad tiene para las personas. Para terminar con una reflexión alrededor del impacto de nuestra intervención en la naturaleza.

- 69. Busca informacion y elabora un informe utilizando las TIC que comprenda lo siguiente:
 - Productos del carbono obtenidos de forma sintética.
 - Aprovechamiento de los compuestos sintéticos del carbono.
 - Alimenticio.
 - Médico.
 - Industrial (obtención de materiales).
 - Mejora de la calidad de vida.
 - Impacto medioambiental derivado de la obtención y aprovechamiento de los compuestos sintéticos del carbono.

Al tratarse de un trabajo de investigación, la respuesta es necesariamente abierta. El objetivo es repasar en dónde es posible encontrar átomos de carbono en las sustancias no naturales y qué utilidad tiene para las personas. Para terminar con una reflexión alrededor del impacto en la naturaleza de nuestra intervención.

AMPLIACIÓN (página 180)

- 70. Detecta y corrige el error de los siguientes nombres.
 - a) 2-cianopropan-1-ol
 - b) ácido 2-etilpropanoico
 - c) 3,3-dibromobut-3-en-2-ona

El nitrilo es la función principal:

3-hidroxi-2-metilpropanonitrilo

b) H₃C O CH-C H₂C—CH₂ OH

La cadena de carbonos de mayor longitud es de 4 átomos de carbono:

ácido 2-metilbutanoico

c)
$$H_3C$$
 Br $C \longrightarrow CH_2$ CH_2 Br

El átomo de carbono número 3 no puede formar 5 enlaces. **El compuesto no es posible**.

- 71. Indica cuáles de estos compuestos pueden presentar isomería óptica.
 - a) ácido metanoico
 - b) 2-cloropropanal
 - c) 3-metilbutanonitrilo
 - d) 3-metilpent-2-eno

CHO | H—C—Br | CH₃

d) CH_3 H CH_3 H CH_3 H CH_3

El único átomo de carbono en el compuesto forma 3 enlaces.

No es posible la simetría especular.

En el átomo de carbono central cada uno de los enlaces es a un sustituyente diferente. **Sí es posible la isomería especular**.

Los átomos que tienen cuatro enlaces simples repiten algún sustituyente.

No es posible la simetría especular.

Los átomos que tienen cuatro enlaces simples repiten algún sustituyente.

No es posible la simetría especular.

72. Los nombres siguientes contienen un error; detéctalo y corrígelo:

a) O CH

b) OH

ácido benzoico

2-aminociclopent-4-en-1-ol

a) O CH

El aldehído es la función principal: **Fenoximetanal.**

ОН

b) OH

En la numeración de los átomos de carbono del ciclo se mira primero el enlace doble que el sustituyente amino:

5-aminociclopent-2-en-1-ol.

73. Escribe la fórmula de un compuesto de cinco átomos de carbono que tenga un grupo ciano y un doble enlace y sea ópticamente activo.

Sí puede tener actividad óptica. Hay 4 sustituyentes distintos en el átomo de carbono número 2 de la cadena principal.

Su nombre: 2-metilbut-3-enonitrilo.

QUÍMICA EN TU VIDA (página 182)

INTERPRETA

- Describe el camino del gas natural desde que se extrae de un yacimiento hasta que lo aprovechamos en una vivienda.
 - 1. Extracción del yacimiento.
 - 2. Almacenamiento próximo a la extracción.
 - 1. Transporte. Por gaseoductos o con barcos metaneros.
 - 1. Almacenamiento previo a la distribución.
 - 1. Distribución a viviendas e industrias.
- 2. ¿Por qué se dice que el gas natural es un combustible más «limpio» que otros?

Como puede verse en la gráfica, las emisiones de dióxido de carbono son menores para una misma cantidad de energía generada.

REFLEXIONA

3. Observa el gráfico que muestra la evolución en el consumo de gas natural en España (GWh total junto con el gráfico que muestra el consumo per cápita MWh/cápita) y contesta.

- a) ¿Qué condicionantes estacionales, sociales y económicos inciden en el consuno de gas natural?
- b) ¿A qué crees que se debió el incremento observado en el consumo total de gas natural hasta el invierno de 2008?
- c) Explica el periodo 2008-2012 de la gráfica verde.
- a) Se puede observar en la gráfica que el consumo se intensifica cíclicamente según los ciclos estacionales.
 - En la primera parte de la gráfica se observa que los ciclos van llevando a picos cada vez más altos, esto es consecuencia de un crecimiento sostenido del consumo.
 - Quedó estancado, incluso se redujo a partir de 2008.
 - A partir de 2008 se separa la gráfica de consumo total de la de consumo per cápita.
- b) Son los años previos a la crisis económica de 2007. En este periodo se construyeron muchas casas nuevas que había que calentar. La economía española crecía y con ella el consumo de energía.
- c) En el periodo a partir de 2008 hasta 2012 el consumo global (línea roja) de energía se estancó, cada invierno repite la altura del pico, cada verano se consume menos. El motivo puede ser que cada vez más la energía eléctrica se genera con eólica y solar, así no es necesario consumir más gas. En la línea verde se ve que se separa de la roja. Esto es porque al ser consumo per cápita se divide entre el número de habitantes, que cada vez son más.