Московский Физико-Технический Институт

Кафедра общей физики Лабораторная работа №2.4.1

Определение теплоты испарения жидкости

Автор: Алексей Домрачев 615 группа

Цель работы: исследование зависимости P(T) давления насыщенного пара от температуры и определение молярной теплоты парообразования L с использованием уравнения Клапейрона – Клаузиуса.

В работе используются: термостат; герметический сосуд, заполненный исследуемой жидкостью; отсчетный микроскоп.

Устройство установки

Рис. 1: Экспериментальная установка

Заполненная водой ёмкость подключена к термостату. В неё погружена запаянная ёмкость с исследуемой жидкостью (вода); над жидкостью находится только её насыщенный пар, давление которого определяется по манометру при помощи отсчётного микроскопа. Таким образом можно исследовать зависимость давления насыщенного пара исследуемой жидкости от температуры P(T), а затем определить L.

Необходимо выдерживать скорость изменения температуры не слишком большой, поскольку в противном случае не будет успевать устанавливаться равновесие между теплообменной и исследуемой жидкостью, а также между исследуемой жидкостью и её парами. В целях контроля данные измерения производятся как при нагревании, так и при охлаждении жидкости.

Теория. Формула Клапейрона – Клаузиуса: $\frac{dP}{dT} = \frac{L}{T(V_2 - V_1)}$, где L — теплота испарения жидкости, V_2 — молярный объем паров жидкости, V_1 — молярный объем жидкости.

Таблица 1: Данные из лабника

Вещество	$T_{\text{кип}}$, К	$V_1, 10^{-6} \text{M}^3/$	$V_2, 10^{-3} \text{м}^3/\text{моль}$	$b, 10^{-6} \text{м}^3/\text{моль}$	$a, \frac{\Pi a \cdot M^6}{MOJIb^2}$	a/V_2^2 , к Π а
Вода	373	18	31	26	0,4	0,42

Из таблицы видно, что молярный объём газовой фазы существенно (на несколько порядков) больше объёма жидкой фазы, последним пренебрежём. Кроме того, будем считать, что насыщенный пар удовлетворяет уравнению состояния идеального газа,

а L зависит от T слабо:

$$\Delta V \cong \frac{RT}{P} \quad \Rightarrow \quad \frac{dP}{dT} \cong \frac{LP}{RT^2} \quad \Rightarrow \quad L \cong R \frac{dP}{P} \frac{T^2}{dT} \quad \Rightarrow \quad \boxed{L \cong -R \frac{d(\ln P)}{d(1/T)}}$$

Ход работы Измерим разность уровней в ртутном U-образном манометре с помощью микроскопа и температуру по термометру: $h_0 = 26.1$ мм рт.ст., $T_0 = 299$ К. Включим термостат. Плавно повысим температуру до 41 в течение 90 минут, при этом через каждый градус необходимо измерять давление и температуру.

Таблица 2: Данные при повышении температуры

T, K	$P_{\text{верх}}$, торр	$P_{\text{низ}}$, торр	P, Topp	P, КПа	t, C°	$10^3 \cdot 1/T$	$\ln P$			
данные при повышении температуры										
301	57,6	29,5	28,1	3,75	28	3,32	1,32			
302	57,3	28	29,3	3,91	29	3,31	1,36			
303	58,7	27,2	31,5	4,20	30	3,30	1,43			
304	59,9	26,9	33	4,40	31	3,29	1,48			
305	60,3	21,7	38,6	5,15	32	3,28	1,64			
306	61,9	24,4	37,5	5,00	33	3,27	1,61			
307	67,2	28,2	39	5,20	34	3,26	1,65			
308	64,5	22,7	41,8	5,57	35	3,25	1,72			
309	64,3	20	44,3	5,91	36	3,24	1,78			
310	66,1	20,8	45,3	6,04	37	3,23	1,80			
311	68,4	18	50,4	6,72	38	3,22	1,90			
312	63,6	12,2	51,4	6,85	39	3,21	1,92			
данные при понижении температуры										
311	69,6	17,9	51,7	6,89	40	3,22	1,93			
310	61,5	18,5	43	5,73	37	3,23	1,75			
309	65,3	19,5	45,8	6,11	35	3,24	1,81			
307	64,6	21,8	42,8	5,71	33	3,26	1,74			
306	61,7	22,3	39,4	5,25	31	3,27	1,66			
305	61,1	24	37,1	4,95	29	3,28	1,60			
304	60,3	24,8	35,5	4,73	27	3,29	1,55			
303	59,9	25,3	34,6	4,61	25	3,30	1,53			
302	58,1	26,9	31,2	4,16	23	3,31	1,43			
301	57,3	27,3	30	4,00	21	3,32	1,39			
300	57,8	27,6	30,2	4,03	22	3,33	1,39			
299	56	28,5	27,5	3,67	23	3,34	1,30			
298	55,8	30,8	25	3,33	24	3,36	1,20			
297	54	30	24	3,20	25	3,37	1,16			
296	54,4	29,5	24,9	3,32	26	3,38	1,20			
295	53	32,8	20,2	2,69	27	3,39	0,99			
294	53	31	22	2,93	28	3,40	1,08			

Построим графики в координатах 1/T, $\ln \Delta P$. Посчитав с помощью МНК коэффициент наклона получим k при повышении температуры: $k = -5.2 \pm 0.2 \cdot 10^3$, 1/K.

Рис. 2: При повышении температуры

Аналогично для понижения : $k = -5.0 \pm 0.1 \cdot 10^3$, 1/K.

Рис. 3: При понижении температуры

Итак $L = -R \cdot k$

 $L_1 = 43.2 \; \text{кДж/моль}, \; \sigma_{L_1} = 1.7 \; \text{кДж/моль}.$

 $L_2 = 41.6 \; \mathrm{кДж/моль}, \; \sigma_{L_2} = 1.3 \; \mathrm{кДж/моль}.$

Значения L, вычисленные по данным, полученным при нагревании и охлаждении, совпадают в пределах погрешности , поэтому применим МНК на всей выборке.

В итоге получим
$$L = 40.0 \pm 1.4$$
, кДж/моль

Вывод Значения L_1 и L_2 близки друг к другу в пределах погрешности. Табличное значение среднего L — 41 кДж/моль [himikatus.ru/art/ch-act/0220.php], что так же верно в пределах погрешности. График на понижении температур позволяет вычислить L с наи-большей точностью.