

GENERADOR DE BOSQUES

TAREA 2: OPENGL 3D

Alumno: Alexander Cuevas Profesor: Daniel Calderón Auxiliares: Alonso Utreras

Nelson Marambio Q.

 ${\bf Ayudantes:} \quad \ \, {\bf Beatriz} \,\, {\bf Graboloza} \,\, {\bf M}.$

Heinich Porro Sufan

Nadia Decar

Tomás Calderón R.

Fecha de realización: 10 de mayo de 2020 Fecha de entrega: 19 de mayo de 2020

Santiago, Chile

Solución propuesta

1. Solución propuesta

1.1. Arquitectura

La solución propuesta utiliza 2 archivos principales, tree.py y forest.py, para crear modelos de árboles y bosques. El primero crea árboles mediante una estrategia fractal, que hace uso de una regla, que indica como crear el árbol, y un orden, que indica cuantas veces se aplica tal regla, lo que resulta en árboles similares pero no iguales.

La regla puede ser construida por el usuario usando los siguientes componentes:

- F: Crea un tronco encima del tronco anterior, su dirección depende de los ángulos en uso (pertenecientes a un sistema esférico) e inicialmente es hacia arriba (z positivo).
- R / L: Aumenta y reduce el ángulo cenital, respectivamente.
- U / D: Aumenta y reduce el ángulo azimutal, respectivamente.
- [: Inicia una nueva rama, desde la cima del tronco anterior, copiando los ángulos anteriores.
-] : Finaliza una rama, por lo que el siguiente tronco se ubicará desde la base de la rama, usando los ángulos previos a la creación de esta.

Un ejemplo es F[RF]F[LF]F, un árbol con una rama hacia la derecha y otra hacia la izquierda.

El segundo archivo crea un bosque usando tree.py y reglas creadas a partir de 10 grupos de componentes, estos árboles son plantados sobre una superficie creada a partir de la suma y resta de funciones gaussianas. Todo este proceso es afectado por factores aleatorios.

Ambos archivos permiten visualizar el modelo creado y cuentan con una cámara manipulable por el usuario, además de un sistema de iluminación Phong.

1.2. Diagrama

2. Instrucciones de ejecución

El generador de árboles puede ser ejecutado con la siguiente llamada:

python tree.py model.obj rule order skip size

- 1. model.obj: Nombre del archivo donde se guardará el modelo, debe incluir la extensión .obj.
- 2. rule: Regla usada para crear el árbol, explicado con anterioridad.
- 3. order: Entero positivo que representa la cantidad de veces que se aplica la regla.
- 4. skip: Entero positivo que representa cuantas hojas se omiten del árbol, partiendo de la raíz.
- 5. size: Real positivo que representa el tamaño del árbol, no su complejidad, por defecto es 1.0

El generador de bosques puede ser ejecutado con la siguiente llamada:

python forest.py model.obj gaussian average random order density

- 1. model.obj: Nombre del archivo donde se guardará el modelo, debe incluir la extensión .obj.
- 2. **gaussian**: Entero positivo que representa la cantidad de funciones gaussianas usadas para generar la superficie del bosque.
- 3. average: Entero positivo que representa el valor esperado de las gaussianas, se traduce en montes y valles más pronunciados para valores altos.
- 4. **random**: Entero que representa el número semilla para funciones que crean el terreno y ubican los árboles, la forma de cada árbol sigue siendo aleatoria.
- 5. **order**: Entero positivo que representa el mayor número usado para el parámetro **order** de la creación de árboles.
- 6. **density**: Real estrictamente positivo que representa la cantidad de árboles promedio en una cuadragésima parte del mapa, no considera la eliminación de árboles por cercanía a otros.

Una vez que se ha iniciado cualquier programa, las siguientes teclas del teclado causan diferentes efectos:

- W / S: Acerca y aleja la cámara al modelo, respectivamente.
- Flecha Abajo / Arriba: Aumenta y reduce el ángulo cenital usado por la cámara.
- Flecha Derecha / Izquierda: Aumenta y reduce el ángulo azimutal usado por la cámara.
- Control izquierdo: Altera entre mostrar u ocultar el eje de coordenadas, ubicado en (0, 0, 0).
- Espacio: Altera entre mostrar las líneas o caras del modelo.
- Escape: Cierra el programa.

Resultados 3

3. Resultados

Figura 1: Árbol generado con la llamada python tree.py model.obj F[RF]F[LF]F 1 0 1.0

Figura 3: Mismo árbol que la Figura 1, pero visto desde otro ángulo, con visibilidad de líneas y del eje.

Figura 2: Bosque generado con la llamada python forest.py model.obj 7 3 0 2 1.0

Figura 4: Mismo bosque que la Figura 2, pero visto desde otro ángulo y con líneas.