

Comparison between $D^0 v_2$ and NPE v_2 measurement

Long Zhou

Cooperate with: Xin Dong and Yifei Zhang

2016/12/21

Introduction

Non-Photonic Electron v_2 measurement

Parametrization of measured $D^0 v_2$

- Method 1: Use a function to fit $D^0 v_2$ (p_T <8 GeV)
 - Add a linear component to control high $p_T \ v_2$
 - For low pt, since there is not measurement results, the v2 was set to 0, but keep the error as the same as first data point

• Method 2 : Use TAMU p_T shape and fit to D^0 v_2 (p_T <6 GeV)

STAR HFT

Input D^0 p_T spectra

The D^0 spectra was obtained from Run14 data with HFT(SL15c)

More QA: https://drupal.star.bnl.gov/STAR /system/files/star_d0_v2_qa.pd

STAR HFT 2016/12/21

Bottom contribution

- B meson contribution
 - B meson p_T spectra
 - use FONLL calculation
 - B meson v_2
 - B v2 follows empirical scaling
 - B v2 = 0.5 * empirical scaling
 - $B \sqrt{2} = 0$
 - Bottom electron fractions
 - FONLL calculation
 - PHENIX measurement

B meson p_T spectra and electron fraction

 p_T spectra : From FONLL calculation PRL 95,122001(2005)

• not considered the R_{AA} modification

B->e fraction: From PHENIX and FONLL PRC 93,034904(2011)

Method 1: Function fit $D^0 v_2$

- c->e from D^0 Only
- b->e

Method 1: Input D^0 QA

Error estimation for D->e v2:

- Use D^0 v_2 upper limit \rightarrow Decay \rightarrow Upper limit for D->e v_2
- Use $D^0 v_2$ lower limit \rightarrow Decay \rightarrow Lower limit for D->e v_2

- For B meson v2 estimation(three scenario):
 - 1. B meson following the (mT-m0)/ng empirical scaling.
 - 2. B meson v2 = 0.5*(empirical scaling);
 - 3. B meson v2 = 0;
- Uncertainty band:propagated from the D0 v2 measurement

Long Zhou / USIC

- B meson v2 : following the (mT-m0)/nq empirical scaling.
- Error for c+b->e v2
 - 1. FONLL b fraction: no B fraction error.
 - 2. PHENIX b fraction: B fraction error included.

10

• B meson v2 : v2 = 0.5*(empirical scaling)

Long Zhou / USTC

• B meson v2 = 0

Long Zhou / USTC

Method 2: TAMU mode fit

- c->e from D^0 Only
- b->e

Method 2 : Input D^0 QA

- B meson v2 estimation(three scenario):
 - 1. B meson following the (mT-m0)/ng empirical scaling.
 - 2. B meson v2 = 0.5*(empirical scaling);
 - 3. B meson v2 = 0;
 - Uncertainty band: propagated from the D0 v2 measurement

- B meson v2 : following the (mT-m0)/ng empirical scaling.
- Error for c+b->e v2
 - 1. FONLL b fraction: no B fraction error.
 - 2. PHENIX b fraction: B fraction error included.

Long Zhou / USTC 15

• B meson v2 : 0.5 * (empirical scaling)

• B meson v2 = 0;

Compare with STAR results (Method 1)

2016/12/21 Long Zhou / USTC

Compare with STAR results(Method 2)

12/21 Long Zhou / USTC

Summary

- Two method to approach the NPE v_2 are achieved
- B meson decay to electron have very small contribution to NPE v_2 at low p_T range.
- B meson decay to electron v_2
 - When B meson have small v_2 or event $v_2=0$, our calculation will have better description for data.
- At low p_T , our calculation is consistent with data with in uncertainties.
 - We do not have data point at low pt, but two extremely estimation was achieved, and they are consistent with in 2σ .

Back up

Updates(compare with Yifei's work)

- Update charm quark to charm hadron fragmentation factor
- Update charm hadron decay channel in Pythia 6.4
 - Decay table for Pythia 6.4
- Update charm hadron semi-leptonic decay BR.
 - PDG book 2014
- Update D0 pt spectra
- Update D0 v2 spectra
 - D0v2 @Run14 AuAu 200 GeV
- Flat D0 pt
- Require D0 pt > 2 GeV
- Crosscheck
 - Yife's results
 - Use old pt spectra and old v0 function as input.

Charmed hadron measurement

23

B - > e/(B - > e + D - > e)

Charm hadron decay electron v_2

Charm hadron decay electron v_2

26