Deepfake Detection Using Deep Learning Techniques

Authors: Sayantan Bhattacharyya, Milind Chakraborty, Nitin Sharma

Guide: Prof. Dharmendra Singh Rajput

Introduction

Research Topic: Deepfake Detection Using Deep Learning Techniques **Problem:**

- Deepfake videos threaten individual and national security.
- They manipulate public opinion, spread misinformation, and endanger individuals.
- Current detection methods are limited in accuracy and effectiveness.

Objective:

- Investigate and develop robust techniques for detecting deepfake videos.
- Utilize advancements in vision transformers and inception net technology for accurate detection.

Importance:

- Critical need for innovative solutions in combating deepfake threats.
- Developing a reliable detection method is crucial for safeguarding individuals and strengthening national security.

Literature Review

Overview:

Summarizes key findings from relevant research papers.

Methods and Results:

- Various approaches for deepfake detection explored by researchers.
- CNN, LSTM, VGG network, optical flow, and dense units utilized for frame feature extraction, image augmentation, and residual conversion.

Accuracy and Performance:

- Different models achieved varying levels of accuracy.
- Ranging from 75.46% to 97.1% depending on the methodology and dataset used.

Significance:

- Literature highlights the ongoing efforts to develop effective deepfake detection methods.
- Provides valuable insights for informing our own research approach and methodology.

References:

Citations of relevant research papers for further reading and validation of findings.

Authors: D. Güera and E. J. Delp Methodology:

- Used CNN and LSTM for frame feature extraction and temporal sequence analysis.
- Shallow network with two fully-connected layers and one dropout layer.

Dataset:

Contains 600 deepfake videos from multiple sources and the HOHA dataset.

Accuracy:

Achieved 97.1% accuracy with 80 frames.

- Demonstrates effectiveness of CNN and LSTM in deepfake detection.
- Provides a strong baseline for comparison with other methods.

Authors: X. Chang et al.

Methodology:

- Proposed a VGG network based on noise and image augmentation.
- Utilized an SRM filter layer and image augmentation layer.

Dataset:

Trained and evaluated on the Celeb-DF dataset.

Accuracy:

Achieved an accuracy of 85.7%.

- Introduces innovative approach using noise and augmentation for detection.
- Shows promising results on a widely used dataset.

Authors: Huaxiao Mo et al.

Methodology:

- Converted RGB images into residuals and passed through convolutional layers.
- Used three-layer groups with convolutional layers, LReLu activation, and max pooling.

Dataset:

Prepared from the CELEBA HQ dataset.

Accuracy:

Actual accuracy not mentioned in provided information.

- Highlights a unique approach of converting images into residuals for detection.
- Provides insights into leveraging architectural designs for deepfake detection.

Authors: Irene Amerini, Leonardo Galteri, Roberto Caldelli, Alberto Del Bimbo Methodology:

- Used optical flow and CNN pre-trained with VGG-16/ResNet50.
- Utilized sigmoid activation to determine frame authenticity.

Dataset:

Utilized the FaceForensics++ dataset.

Accuracy:

Achieved 81.61% accuracy with VGG16 and 75.46% with ResNet50.

- Demonstrates the use of optical flow for deepfake detection.
- Provides insights into the effectiveness of different CNN architectures.

Authors: Hsu, Chih-Chung, Yi-Xiu Zhuang, Chia-Yen Lee Methodology:

- Proposed a CFFN consisting of dense units with transition layers and a growth rate.
- Utilized a convolution layer with 128 channels and 3x3 kernel size.

Dataset:

Utilized a dataset extracted from CelebA.

Accuracy:

Achieved a recall value of 0.900.

- Introduces a novel architecture for deepfake detection.
- Shows promising recall values for identifying manipulated images.

Authors: Hasin Shahed Shad et al.

Methodology:

- Employed basic CNN architecture and pre-trained models using DenseNet and ResNet iterations.
- Dataset consisted of 70,000 genuine faces and one million fake faces.

Accuracy:

Achieved an accuracy of 81.6% with ResNet50.

- Demonstrates the effectiveness of pre-trained models for deepfake detection.
- Provides insights into handling large-scale datasets for training.

Authors: Theerthagiri P, Basha Nagaladinne Methodology:

- Utilized the InceptionNet Convolutional Neural Network (CNN) algorithm for deepfake detection.
- Different types of transitions in real images were used for testing.

Dataset:

Utilized the DFDC dataset.

Accuracy:

Achieved an overall accuracy of 93%.

- Highlights the effectiveness of InceptionNet for deepfake detection.
- Provides insights into performance metrics on real-world datasets.

Framework

- Image: Input images are fed into the model for processing.
- 2. Data Preprocessing:
 - a. Augmentation techniques applied to enrich and diversify the training dataset:
 - b. Aim: Enhance dataset diversity, improve model generalization, and enable robust deepfake detection.
- 3. Model Architecture:

The model architecture extends InceptionV3 with a **flattening layer** followed by **dense layers**. It consists of **two dense layers** with 512 units and ReLU activation, each followed by a **dropout layer** (rate: 0.5). Subsequently, a **dense layer** with 64 units and ReLU activation is added, leading to a **final dense layer** with 1 unit and sigmoid activation for binary classification. The model is compiled with Adam optimizer (learning rate: 0.0001) and binary cross-entropy loss.

4. Training:

Model is trained on the augmented dataset with Adam optimizer (learning rate: 0.0001) and binary cross-entropy loss function.

- Hyperparameter Tuning/Testing:
 Iterative process of adjusting hyperparameters and evaluating model performance on validation and test datasets.
- Deploy Model:Once trained and evaluated, the model is ready for deployment.
- 7. [Fake, Real]:

Model output: Probability scores indicating the likelihood of an image being categorized as fake or real.

Dataset

- Meticulously Curated Dataset:
 - a. Total images: 190,341
 - b. Source: Kaggle
- Balanced Distribution:
 - a. Real images: 70,000
 - b. Fake images: 70,000
- Data Split:
 - a. Training: 40,000 images
 - b. Validation: 20,000 images
 - c. Testing: 2,000 images
- Randomized Sampling Strategy:
 - a. Ensured diverse representation.
- Prioritized Diversity:
 - Balanced representation for nuanced understanding.
- Facilitated Precise Classification:
 - a. Robustness ensured through meticulous curation.

Preprocessing

- Augmentation techniques applied to enrich and diversify the training dataset:
 - Normalization: Pixel values are normalized to a range of 0 to 1.
 - Rotation: Images are rotated within -10 to +10 degrees.
 - Shifts: Up to 10% of image width and height.
 - Shearing: Up to 20% of image width.
 - Random zooming: Within a 10% range.
 - Horizontal flipping: 50% probability.
 - Fill mode: "Nearest" used for handling new pixel introductions.
- Aim: Enhance dataset diversity, improve model generalization, and enable robust deepfake detection.

Model Architecture

Layer (type)	Output Shape	Param #
inception_v3 (Functional)	(None, 2, 2, 2048)	21802784
flatten (Flatten)	(None, 8192)	0
dense (Dense)	(None, 512)	4194816
dropout (Dropout)	(None, 512)	0
dense_1 (Dense)	(None, 512)	262656
dropout_1 (Dropout)	(None, 512)	0
dense_2 (Dense)	(None, 64)	32832
dense_3 (Dense)	(None, 1)	65

Total params: 26293153 (100.30 MB) Trainable params: 26258721 (100.17 MB) Non-trainable params: 34432 (134.50 KB)

InceptionV3 Model

Training

- Defining Callbacks:
 - EarlyStopping and ModelCheckpoint callbacks are defined.
 - EarlyStopping monitors validation loss and halts training if it doesn't improve for a certain number of epochs (patience=3).
 - ModelCheckpoint saves the best model based on validation loss.
- Model Training:
 - The model is trained for 10 epochs using the fit method.
 - Training data is fed into the model using train_generator, and validation data using val_generator.
- Training Progress:
 - Training progress is shown with epoch-wise results.
 - Each epoch displays training accuracy, training loss, validation accuracy, and validation loss.
 - Example output illustrates the progression of accuracy and loss metrics throughout the training process.

Evaluation Metrics

	precision	recall	f1-score	support
real fake	0.95 0.89	0.89 0.95	0.92 0.92	1000 1000
accuracy macro avg weighted avg	0.92 0.92	0.92 0.92	0.92 0.92 0.92	2000 2000 2000

Comparative Analysis

- 1. Comparison with Existing Approaches:
 - a. Our model exhibits competitive performance compared to existing deepfake detection methods.
 - b. Despite some approaches achieving higher accuracies, our model demonstrates robustness and reliability, especially in scenarios with imbalanced class distributions.
 - c. The simplicity and interpretability of our model make it suitable for practical deployment in real-world applications, contributing to the advancement of deepfake detection technology.
- 2. Discussion on Model Architecture:
 - a. The proposed architecture is built upon the InceptionV3 base model, utilizing its advanced feature extraction capabilities.
 - b. Dropout layers are incorporated into the model to mitigate overfitting, thereby enhancing generalization performance.
 - c. The sequential arrangement of dense layers enables the extraction of hierarchical features, leading to accurate classification outcomes.

Results

- Model Performance:
 - The proposed architecture demonstrated promising performance in distinguishing between authentic and deepfake images.
 - Overall Accuracy: 92% on the test set.
 - Precision, Recall, and F1-score metrics indicate balanced performance across both classes.
 - High Precision and Recall: The model effectively discerns manipulated content, showing high precision and recall for both real and fake images.

Conclusion

- This study introduces a novel CNN architecture for deepfake detection, leveraging advancements in convolutional neural networks and transfer learning.
- Through meticulous dataset curation and augmentation, along with a comprehensive model architecture, we have developed a reliable solution for identifying manipulated imagery.
- The model's performance underscores its potential utility in safeguarding individuals and mitigating the adverse impacts of deepfake proliferation.

Limitations

- Applicability solely to image data. While deepfake detection often extends to video content, our model's scope is confined to static images.
- Addressing this limitation would require the development of temporal analysis techniques tailored to video-based deepfake detection.
- Additionally, ongoing advancements in deepfake generation techniques may challenge the model's efficacy over time, highlighting the need for continuous research and adaptation in this rapidly evolving field.