D OR DGN PACKAGE (TOP VIEW)

V₀1□

IN1−□□

IN1+□

GND

3

SLOS212C - AUGUST 1998 - REVISED MARCH 2000

 \square \lor_{DD}

□ V_O2

- 150-mW Stereo Output
- Wide Range of Supply Voltages
 - Fully Specified for 3.3 V and 5 V Operation
 - Operational From 2.5 V to 5.5 V
- Thermal and Short-Circuit Protection
- Surface Mount Packaging
 - PowerPAD™ MSOP
 - SOIC
- Standard Operational Amplifier Pinout

description

The TPA112 is a stereo audio power amplifier packaged in an 8-pin PowerPADTM MSOP package capable of delivering 150 mW of continuous RMS power per channel into 8-Ω loads. Amplifier gain is externally configured by means of two resistors per input channel and does not require external compensation for settings of 1 to 10.

THD+N when driving an $8-\Omega$ load from 5 V is 0.1% at 1 kHz, and less than 2% across the audio band of 20 Hz to 20 kHz. For $32-\Omega$ loads, the THD+N is reduced to less than 0.06% at 1 kHz, and is less than 1% across the audio band of 20 Hz to 20 kHz. For $10-k\Omega$ loads, the THD+N performance is 0.01% at 1 kHz, and less than 0.02% across the audio band of 20 Hz to 20 kHz.

functional block diagram

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PowerPAD is a trademark of Texas Instruments.

AVAILABLE OPTIONS

Γ		PACKAGEI	MSOP	
	T_A	SMALL OUTLINE [†] (D)	MSOP† (DGN)	Symbolization
Γ	-40°C to 85°C	TPA112D	TPA112DGN	TI AAD

[†]The D and DGN package is available in left-ended tape and reel only (e.g., TPA112DR, TPA112DGNR).

Terminal Functions

TERMINAL		1/0	DESCRIPTION	
NAME	NO.	"0	DESCRIPTION	
GND	4	I	GND is the ground connection.	
IN1-	2	I	IN1– is the inverting input for channel 1.	
IN1+	3	I	IN1+ is the noninverting input for channel 1.	
IN2-	6	I	IN2– is the inverting input for channel 2.	
IN2+	5	I	IN2+ is the noninverting input for channel 2.	
V_{DD}	8	I	V _{DD} is the supply voltage terminal.	
V _O 1	1	0	V _O 1 is the audio output for channel 1.	
V _O 2	7	0	V _O 2 is the audio output for channel 2.	

absolute maximum ratings over operating free-air temperature (unless otherwise noted)†

Supply voltage, V _{DD}	6 V
Differential input voltage, V _I	0.3 V to V _{DD} + 0.3 V
Input current, I ₁	±2.5 μA
Output current, IO	±250 mA
Continuous total power dissipation	internally limited
Operating junction temperature range, T _J	–40°C to 150°C
Storage temperature range, T _{stq}	65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING
D	725 mW	5.8 mW/°C	464 mW	377 mW
DGN	2.14 W ‡	17.1 mW/°C	1.37 W	1.11 W

[‡] Please see the Texas Instruments document, PowerPAD Thermally Enhanced Package Application Report (literature number SLMA002), for more information on the PowerPAD package. The thermal data was measured on a PCB layout based on the information in the section entitled Texas Instruments Recommended Board for PowerPAD on page 33 of the before mentioned document.

recommended operating conditions

	MIN	MAX	UNIT
Supply voltage, V _{DD}	2.5	5.5	V
Operating free-air temperature, T _A	-40	85	°C

dc electrical characteristics at T_A = 25°C, V_{DD} = 3.3 V

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
VIO	Input offset voltage				5	mV
PSRR	Power supply rejection ratio	$V_{DD} = 3.2 \text{ V to } 3.4 \text{ V}$		83		dB
I _{DD(q)}	Supply current			1.5	3	mA
IDD(SD)	Supply current in SHUTDOWN mode			10	50	μΑ
Z _I	Input impedance			>1		MΩ

ac operating characteristics, V_DD = 3.3 V, T_A = 25°C, R_L = 8 Ω

	PARAMETER	TEST CONDITIONS	MIN TYP MAX	UNIT
PO	Output power (each channel)	THD ≤ 0.1%	70 †	mW
THD+N	Total harmonic distortion + noise	$P_0 = 70 \text{ mW}, 20-20 \text{ kHz}$	2%	
ВОМ	Maximum output power BW	G = 10, THD <5%	>20	kHz
	Phase margin	Open loop	58°	
S _{VRR}	Supply ripple rejection	f = 1 kHz	68	dB
	Channel/channel output separation	f = 1 kHz	86	dB
SNR	Signal-to-noise ratio	P _O = 100 mW	100	dB
Vn	Noise output voltage		9.5	μV(rms)

[†] Measured at 1 kHz

dc electrical characteristics at T_A = 25°C, V_{DD} = 5 V

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
VIO	Input offset voltage				5	mV
PSRR	Power supply rejection ratio	$V_{DD} = 4.9 \text{ V to } 5.1 \text{ V}$		76		dB
I _{DD(q)}	Supply current			1.5	3	mA
IDD(SD)	Supply current in SHUTDOWN mode			60	100	μΑ
Z _I	Input impedance			>1		MΩ

ac operating characteristics, V_{DD} = 5 V, T_A = 25°C, R_L = 8 Ω

	PARAMETER	TEST CONDITIONS	MIN TYP MAX	UNIT
PO	Output power (each channel)	THD ≤ 0.1%	70†	mW
THD+N	Total harmonic distortion + noise	$P_0 = 150 \text{ mW}, 20-20 \text{ kHz}$	2%	
ВОМ	Maximum output power BW	G = 10, THD <5%	>20	kHz
	Phase margin	Open loop	56°	
S _{VRR}	Supply ripple rejection	f = 1 kHz	68	dB
	Channel/channel output separation	f = 1 kHz	86	dB
SNR	Signal-to-noise ratio	P _O = 150 mW	100	dB
Vn	Noise output voltage		9.5	μV(rms)

[†] Measured at 1 kHz

TPA112 150-mW STEREO AUDIO POWER AMPLIFIER

SLOS212C - AUGUST 1998 - REVISED MARCH 2000

ac operating characteristics, $\rm V_{DD}$ = 3.3 V, $\rm T_A$ = 25°C, $\rm R_L$ = 32 Ω

	PARAMETER	TEST CONDITIONS	MIN TYP MAX	UNIT
PO	Output power (each channel)	THD ≤ 0.1%	40†	mW
THD+N	Total harmonic distortion + noise	$P_0 = 30 \text{ mW}, 20-20 \text{ kHz}$	0.5%	
Вом	Maximum output power BW	G = 10, THD <2%	>20	kHz
	Phase margin	Open loop	58°	
S _{VRR}	Supply ripple rejection	f = 1 kHz	68	dB
	Channel/channel output separation	f = 1 kHz	86	dB
SNR	Signal-to-noise ratio	P _O = 100 mW	100	dB
V _n	Noise output voltage		9.5	μV(rms)

[†]Measured at 1 kHz

ac operating characteristics, $\rm V_{DD}$ = 5 V, $\rm T_A$ = 25°C, $\rm R_L$ = 32 $\rm \Omega$

	PARAMETER	TEST CONDITIONS	MIN TYP MAX	UNIT
PO	Output power (each channel)	THD ≤ 0.1%	40†	mW
THD+N	Total harmonic distortion + noise	$P_O = 60 \text{ mW}, 20-20 \text{ kHz}$	0.4%	
ВОМ	Maximum output power BW	G = 10, THD <2%	>20	kHz
	Phase margin	Open loop	56°	
S _{VRR}	Supply ripple rejection	f = 1 kHz	68	dB
	Channel/channel output separation	f = 1 kHz	86	dB
SNR	Signal-to-noise ratio	P _O = 150 mW	100	dB
V _n	Noise output voltage		9.5	μV(rms)

[†] Measured at 1 kHz

SLOS212C - AUGUST 1998 - REVISED MARCH 2000

TYPICAL CHARACTERISTICS

Table of Graphs

			FIGURE
THD+N	Total harmonic distortion plus noise	vs Frequency	1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 34, 36
		vs Power output	3, 6, 9, 12, 15, 18
PSSR	Power supply rejection ratio	vs Frequency	19, 20
V _n	Output noise voltage	vs Frequency	21, 22
	Crosstalk	vs Frequency	23 – 26, 37, 38
	Mute attenuation	vs Frequency	27, 28
	Open-loop gain	vs Frequency	29, 30
	Phase margin	vs Frequency	29, 30
	Phase	vs Frequency	39 – 44
	Output power	vs Load resistance	31, 32
Icc	Supply current	vs Supply voltage	33
SNR	Signal-to-noise ratio	vs Voltage gain	35
	Closed-loop gain	vs Frequency	39 – 44
	Power dissipation/amplifier	vs Output power	45, 46