EN2110 - Electronics III Lecture 5 - Semiconductor Devices

Dr. Dulika Nayanasiri

dulika@ent.mrt.ac.lk

November 14, 2017

Power Semiconductor Devices

Challenges

- Challenges in power semiconductor device design are,
 - Obtaining a high breakdown voltage
 - 2 Low forward voltage drop
 - 3 Low on-resistance
- Challenge is longer switching times of high-voltage, low-on-resistance devices
- The breakdown voltage of a reverse-biased p-n junction is a function of doping level
 - High breakdown voltage is obtained by low doping concentration and lengthy drift region
 - 2 Hence, higher on-resistance
- In majority carrier devices (MOSFET and Schottky diode) first-order relationship between ON-resistance and rated voltage
- In minority carrier devices (p-n diode, BJT, IGBT, and thyristor family) conductivity modulation

Conductivity Modulation

- When a minority-carrier device is at ON-state
 - Minority carriers are injected into the lightly doped drift region by the forward-biased p-n junction
 - 4 High minority carrier concentration effectively reduces apparent resistivity of the region
- Minority-carrier devices exhibit lower ON-resistances than comparable majority-carrier devices
- But carrier injection gives rise reduced switching speed
 - Conducting state of semiconductor device is controlled by the presence or absence of key charge quantities within the device
 - Turn-ON and turn-OFF switching times are equal to the times required to insert or remove this controlling charge
 - Minority-carrier devices exhibit significantly longer switching times
- Majority-carrier devices low voltage + high switching frequency applications
- Minority-carrier devices high voltage + low switching frequency applications

Power Diode - Introduction

- Power diode consists of three layers instead of two layers in low power diodes
 - Heavily doped *n*-type substrate Cathode
 - ② Lightly doped n^- epitaxial layer Drift region (cannot be found in low power diodes)
- \odot Heavily doped p-type layer Anode
- Drift region thickness depends on breakdown voltage
- Cross-sectional area depends on the total device current

Figure: Cross section of a power diode

Power Diode - Basic Operation

Figure: Power diode under reverse and forward biased states

- Applied voltage appears across the depletion region inside the n⁻ region under reverse-biased conditions
- Holes are injected across the forward-biased junction, and become minority carriers in the n^- region
- Effectively reduce the apparent resistivity of the n^- region via conductivity modulation
- Forward current i(t) is comprised of,
 - Holes that diffuse across the p-n region and then recombine with electrons from the n region

Power Diode Symbol, Characteristics and Packages

Figure: Power diode symbol, characteristics and packages

- Current grows linearly rather than exponentially
- Large current create ohmic drop that mask diode exponential characteristics
- This voltage drop across lightly doped drift region
- There is small leakage current until reverse biased voltage reach breakdown voltage (BV_{BD})
- After BV_{BD}, current increase dramatically and it is limited by external circuit
- Excessive power dissipation may quickly destroy diode

Power Diode - Switching Characteristics

Figure: Voltage and current waveforms of a power diode

- During transients, significant deviations from the exponential characteristic are observed
- These deviations are associated with changes in the stored minority charge
- Interval 1
 - Zero current and negative voltage (Maximum will be diode PIV)

Switching Characteristics

Figure: Voltage and current waveforms of a power diode

- Interval 2
 - Increasing current charges the effective capacitance of the reverse-biased diode
 - ② Supplying charge to the depletion region and increasing the voltage v(t)
 - The voltage becomes positive, and the diode junction becomes forward-biased
 - Voltage may rise to a peak value of several volts reflecting the somewhat large resistance of the lightly doped n^- region

Switching Characteristics - Turn-OFF transient

Figure: Voltage and current waveforms of a power diode

- Interval 2
 - Forward-biased pn^- junction continues to inject minority charge into the n^- region
 - ② Conductivity modulation of the n^- region causes its effective resistance to decrease, and hence the forward voltage drop v(t) also decreases
- Diode become equilibrium minority carrier injection rate and recombination rate are equal
- Interval 3
 - ① Diode operates in the ON state and forward voltage drop is given by the diode static I-V characteristics

Switching Characteristics

Figure: Voltage and current waveforms of a power diode

• Interval-4

- Diode remains forward-biased while minority charge is present in the vicinity of the diode pn^- junction
- Stored minority charge is reduced by negative terminal current and by recombination
- At the end, stored minority charge has been removed and diode junction becomes reverse-biased

Switching Characteristics

Figure: Voltage and current waveforms of a power diode

- Interval-5
 - Oppletion region effective capacitance is then charged
 - 2 At the end of this period diode is able to block the entire applied reverse voltage
- Interval 6
 - Diode operates in the off state

Switching Characteristics - Reverse Recovery

Figure: Voltage and current waveforms of a power diode

- Charge Q_r is called the recovered charge
- Portion of Q_r occurring during interval-4 is actively removed minority charge
- Portion of Q_r occurring during interval-5 is charge supplied to the depletion region
- Length of intervals 4 and 5 is called the reverse recovery time (t_{rr})

Diode Types - Based on t_{rr}

- Standard recovery
 - Reverse recovery time usually not specified
 - 2 Use in 50Hz and 60Hz applications
- Fast recovery and ultra fast recovery
 - Reverse recovery time t_{rr} and recovered charge Q_r are specified by manufacturers
 - 2 Fast recovery nS to μS
 - \odot Ultra fast recovery Few nS

Power Diode - Parallel Operation

- Temperature coefficient of on-resistance and forward voltage drop of power semiconductor device play key role
- Diodes cannot be easily connected in parallel, because of their negative temperature coefficients
- Imbalance in device characteristics may cause one diode to conduct more current than the others
- Then that diode becomes hotter, which causes it to conduct even more of the total current
- Current does not divide evenly between the paralleled devices
- Current rating of one of the devices may be exceeded

MOSFET

Power Semiconductor Devices - MOSFET

- The power MOSFET is comprised of many small parallel-connected enhancement-mode MOSFET cells
- A cross-section of one cell is illustrated in figure

Figure: Cross section of power MOSFET

- Current flows vertically through the silicon wafer:
- The metallized drain connection is made on the bottom of the chip
- The metallized source connection and polysilicon gate are on the top surface

MOSFET - OFF state Operation

Figure: MOSFET operation when $V_{DS} \geq 0$

- Both the pn and pn^- junctions are reverse-biased
- The applied drain-to-source voltage then appears across the depletion region of the pn^- junction
- \bullet The n^- region is lightly doped, such that the desired breakdown voltage rating is attained
- As the breakdown voltage is increased, the on-resistance becomes dominated by the resistance of the n^- region
- ON-resistance increases rapidly as there are no minority carriers to cause conductivity modulation

MOSFET - ON state Operation

Figure: MOSFET operation when at ON state

- Sufficiently large positive gate-to-source voltage need to be applied
- \bullet A channel then forms at the surface of the p region, underneath the gate
- The drain current flows through the n^- region, channel, n region, and out through the source contact
- \bullet The on-resistance of the device is the sum of the resistances of the n region, the channel, the source and drain contacts

MOSFET - Body Diode

Figure: Formation of body diode

- The pn^- forms an effective diode in parallel with the MOSFET channel
- The body diode can become forward-biased when the drain-to-source voltage $v_{DS}(t)$ is negative
- MOSFETs are not optimized with respect to the speed of their body diodes although they are capable to conduct total MOSFET current
- The large peak currents that flow during the reverse recovery transition of the body diode can cause device failure

MOSFET - Static Characteristics

Figure: Static output characteristics of MOSFET

- The device operates in the OFF state when the gate-to-source voltage is less than the threshold voltage V_{th} (around 3V)
- When the gate-to-source voltage greater than 6 or 7 V, the device operates in the ON state
- The gate is driven to 12 or 15 V to ensure minimization of the forward voltage drop
- In the on state, V_{DS} roughly proportional to the I_D

MOSFET - Capacitances

Figure: Equivalent MOSFET with body diode and capacitances

- The major capacitances of the MOSFET are illustrated
- Switching times of the MOSFET are determined by the times required for the gate driver to charge and discharge these capacitances
- The rate at which the drain current changes is dependent on the rate at which the gate-to-source capacitance is charged by the gate drive circuit
- The rate at which the drain voltage changes is a function of the rate at which the gate-to-drain capacitance is charged
- The drain-to-source capacitance leads directly to switching loss in PWM converters
- energy stored in this capacitance is lost during the transistor turn-on transition

MOSFET - Characteristics of Capacitances

- The gate-to-source capacitance is essentially linear
- The drain-to-source and gate-to-drain capacitances are strongly nonlinear
- The incremental drain-to-source capacitance can be written as

$$C_{DS}(V_{DS}) = \frac{C_o}{\sqrt{1 + \frac{V_{DS}}{V_o}}}$$

- Where C_o and V_o are constants that depend on the construction of the device
- These capacitances can easily vary by several orders of magnitude as V_{DS} varies over its normal operating range
- For $V_{DS} >> V_O$

$$C_{DS}(V_{DS}) \approx C_o \sqrt{\frac{V_o}{V_{DS}}} = \frac{C'_o}{\sqrt{v_{DS}}}$$

MOSFET - Selection

- The gate charge (Q_g)
 - The gate charge (Q_g) is the charge that the gate drive circuit must supply to the MOSFET to raise the gate voltage from zero to some specified value
 - $\ \, \textbf{3}$ At a specified value of off state drain-to-source voltage typically 80% of the rated V_{DS}
 - The total gate charge is the sum of the charges on the gate-to-drain and the gate-to-source capacitances
 - ♠ The total gate charge is a measure of switching speed of the MOSFET
- ON-resistance
 - Onduction loss are the limiting factors
 - MOSFETs may be operated at average currents somewhat less than the rated value
- \bullet MOSFETs are usually the device of choice at voltages less than or equal to approximately 400 to 500 V
- Used for high switching speed applications
- But with high ON-state losses compared to minority carrier devices

Bipolar Junction Transistor (BJT)

BJT - Internal Structure

Figure: Cross section of NPN power BJT

- Current flows vertically through the silicon wafer
- A lightly doped n^- region to obtain the desired voltage breakdown rating
- OFF-state operation
 - **9** Both pn BE junction and the pn^- BC junctions are reverse-biased
 - ② The applied collector-emitter voltage then appears essentially across the depletion region of the pn^- junction

BJT - Operation

- ON-state operation
 - Both junctions are forward-biased
 - \circ substantial minority charge is then present in the p and n^- regions
 - ullet This minority charge causes the n^- region to exhibit a low on-resistance via the conductivity modulation effect
- Active region
 - $lackbox{0}$ pn BE junction is forward-biased and the pn^- BC junction is reverse-biased
 - ② The I_C is proportional to the base region minority charge, which in turn is proportional (in equilibrium) to the I_B
- Quasi-saturation
 - Quasi-saturation occurs when the I_B is insufficient to fully saturate the device
 - ② The minority charge present in the n^- region is insufficient to fully reduce the on-resistance

 V_{CC} R_L $i_{B}(t) \quad R_B$ $v_{BE}(t)$ $v_{S}(t)$

Figure: Power BJT in circuit

• Turn-ON and OFF waveforms of power BJT are shown in figure

Figure: Switching waveforms

Interval 1

- 1 The transistor operates in the off state
- ② The BE junction is reverse biased by the $v_s(t) = -V_{s1}$
- Interval 2
 - Turn-ON transition is initiated at the beginning of this interval
 - 2 Positive current is supplied by source v_s
 - This current charges the capacitances of the depletion regions of the reverse biased BE and BC junctions
 - BE voltage exceeds zero sufficiently for the BE junction to become forward biased

Figure: Switching waveforms

Figure: Switching waveforms

• Interval 3

- Minority charge is injected across the base-emitter junction from the emitter into the base region
- Ocllector current is proportional to this minority base charge
 - Decrease in collector voltage, reduce voltage across the reverse-biased BC depletion region (Miller) capacitance
- Turn-ON time can be reduced by reducing R_B or increasing $v_s(t)$ due to increase of I_B

• Interval 4

- BC pn⁻ junction becomes forward biased and minority carriers are then injected into the n⁻ region
- ② Apparent resistance of the n^- region decreases via conductivity modulation

Figure: Switching waveforms

Interval 5

- Reaches on state equilibrium at the beginning of this interval
- Interval 6
 - 1 Turn-OFF process is initiated when the source voltage changes to $v_s(t) = -V_{s1}$
 - 2 The BE junction remains forward biased as long as minority carriers are present in its vicinity
 - **3** I_C continues to be $i_c(t) = I_{C,on}$ as long as the minority charge exceeds the amount necessary to support the active region conduction of $I_{C,on}$
 - Negative base current actively removes the total stored minority charge
 - 6 Recombination further reduces the stored minority charge
 - **6** Length of this period is called as *storage* time

Interval 7

- **1** The collector current $i_c(t)$ is now proportional to the stored minority charge
- The collector current decreases due to recombination and the negative base current
- \bullet I_B must charge the Miller capacitance and increase collector voltage

• Interval 8

• Reverse-biased base-emitter junction capacitance is discharged to voltage $-V_{s1}$,

Figure: Switching waveforms

Base Drive Current

Figure: Base drive current

- It is possible to turn-OFF the transistor using $I_{B2} = 0$
- This leads to very long storage and turn-off switching times (stored minority charge must be removed passively, via recombination)
- Initial I_{B1} is large in magnitude charge is inserted quickly into the base, and the turn-ON switching times are short
- ON state current I_{Bon} is chosen, to yield a reasonably low CE forward voltage drop
- Turn-OFF switching times are minimized by large $-I_{B2}$ that charge is removed quickly from the base

Second Break Down

Figure: Second break down

- The lateral base current through the *p* region leads to a voltage drop in *p* material
- Turn-OFF instance
 - Base-emitter junction voltage to be greater in the center of the base region
 - 2 Collector current to focus near the center of the base region

- Turn-ON instance
 - Occident to Country of the Countr
- Hot spots are induced at the center or edge of the base region due to
 - lacktriangledown CE voltage and I_C are simultaneously large during the switching transitions

IGBT

Introduction

Figure: IGBT cross section

- Crosshatched regions are metallized contact and shaded regions are insulating silicon dioxide layers
- IGBT is a four-layer power semiconductor device having a MOS gate
- The function of the added p region is to inject minority charges into the n^- region while the device operates in the ON state
- The pn^- junction is forward-biased, and the minority charges injected into the n^- region cause conductivity modulation when IGBT conducts
- The forward voltage drops of these devices are typically 2 to 4V

Equivalent Circuit

Figure: IGBT equivalent circuit

- The IGBT functions effectively as cascaded,
 - n-channel power MOSFET
 - 2 PNP emitter-follower BJT
- Hence, there are two effective currents
- The price paid for the reduced voltage drop of the IGBT is its increased switching times

Current Tailing

Figure: IGBT current tailing

- The effective MOSFET can be turned off quickly by removing the gate charge
- \bullet This causes the channel current i_1 to quickly become zero
- The PNP collector current i_2 continues to flow as long as minority charge is present in the n^- region
- No way to actively remove the stored minority charge other than recombination
- The switching frequencies of PWM converters containing IGBTs are typically in the range 1 to 30kHz.

IGBT - More Info

- \bullet pn^- junction of the IGBT is not normally designed to block significant voltage
- Hence, IGBT has negligible reverse voltage-blocking capability
- IGBT ON resistance has positive temperature coefficient
- IGBTs can be easily connected in parallel, with a modest current derating
- Large modules are commercially available, containing multiple parallel-connected chips

Silicon Controlled Rectifier (SCR)

Introduction

Figure: SCR cross section, symbol and equivalent circuit

- Silicon-controlled rectifier (SCR) is the oldest among conventional semiconductor power devices
- \bullet Devices having voltage ratings of 5000 to 7000 V and current ratings of several thousand amperes are available
- Four layer device
- Effective transistor Q_1 is composed of the n, p, and n^- regions, while effective transistor Q_2 is composed of the p, n^- , and p regions

SCR Operation

- SCR can enter the on state when the applied v_{AK} is positive
- Positive gate current i_G causes Q_1 to turn-ON
- This in turn supplies base current to Q_2 , and causes it to turn-ON
- Effective connections of the base and collector regions of transistors Q_1 and Q_2 constitute a positive feedback loop
- Currents of the transistors will increase regeneratively
- Minority carriers are injected into all four regions, and the resulting conductivity modulation leads to very low forward voltage drop
- SCR cannot be turned off except by application of negative anode current or negative anode-to-cathode voltage
- During the turn-OFF transition, the rate at which forward anode to cathode voltage is reapplied must be limited, to avoid re triggering the SCR
- During turn-OFF time minority stored charge is
 - Actively removed via negative anode current
 - 2 Recombination

SCR Characteristics

Figure: Characteristics curve

- SCR is a voltage-bidirectional two quadrant switch
- The turn-ON transition is controlled actively via the gate current
- The turn-OFF transition is passive

- The device is capable of blocking both positive and negative anode to cathode voltages
- One of the pn⁻ junctions is reverse-biased depending on applied voltage
- Depletion region extends into the lightly doped n^- region