CLASS QUIZ: OCTOBER 3: LIMITS AND CONTINUITY

MATH 153, SECTION 59 (VIPUL NAIK)

Your name (print clearly in capital letters):
You can access more limit-related quiz questions online at:
http://calculus.subwiki.org/wiki/Quiz:Limit
Starred and double starred questions are questions you should feel free to discuss with your colleagues both before and during class.
(1) (**) We call a function f left continuous on an open interval I if, for all $a \in I$, $\lim_{x \to a^-} f(x) = f(a)$ Which of the following is an example of a function that is left continuous but not continuous or $(0,1)$? Previous year's performance: $6/13$ correct (A) $f(x) := \begin{cases} x, & 0 < x \le 1/2 \\ 2x, & 1/2 < x < 1 \end{cases}$ (B) $f(x) := \begin{cases} x, & 0 < x < 1/2 \\ 2x, & 1/2 \le x < 1 \end{cases}$ (C) $f(x) := \begin{cases} x, & 0 < x \le 1/2 \\ 2x - (1/2), & 1/2 < x < 1 \end{cases}$ (D) $f(x) := \begin{cases} x, & 0 < x < 1/2 \\ 2x - (1/2), & 1/2 < x < 1 \end{cases}$ (E) All of the above
Your answer:
 (2) (**) Suppose f and g are functions (0,1) to (0,1) that are both left continuous on (0,1). Which of the following is not guaranteed to be left continuous on (0,1)? Previous year's performance: 4/15 correct (A) f + g, i.e., the function x → f(x) + g(x) (B) f - g, i.e., the function x → f(x) - g(x) (C) f ⋅ g, i.e., the function x → f(x)g(x) (D) f ∘ g, i.e., the function x → f(g(x)) (E) None of the above, i.e., they are all guaranteed to be left continuous functions
Your answer:

- (3) Which of these is the correct interpretation of $\lim_{x\to c} f(x) = L$ in terms of the definition of limit? Previous year's performance: 9/12 correct
 - (A) For every $\alpha > 0$, there exists $\beta > 0$ such that if $0 < |x c| < \alpha$, then $|f(x) L| < \beta$.
 - (B) There exists $\alpha > 0$ such that for every $\beta > 0$, and $0 < |x c| < \alpha$, we have $|f(x) L| < \beta$.
 - (C) For every $\alpha > 0$, there exists $\beta > 0$ such that if $0 < |x c| < \beta$, then $|f(x) L| < \alpha$.
 - (D) There exists $\alpha > 0$ such that for every $\beta > 0$ and $0 < |x c| < \beta$, we have $|f(x) L| < \alpha$.
 - (E) None of the above

Your answer:		

- (4) Suppose $f: \mathbb{R} \to \mathbb{R}$ is a function. Which of the following says that f does not have a limit at any point in \mathbb{R} (i.e., there is no point $c \in \mathbb{R}$ for which $\lim_{x \to c} f(x)$ exists)? Previous year's performance: 10/12 correct
 - (A) For every $c \in \mathbb{R}$, there exists $L \in \mathbb{R}$ such that for every $\varepsilon > 0$, there exists $\delta > 0$ such that for all x satisfying $0 < |x c| < \delta$, we have $|f(x) L| \ge \varepsilon$.
 - (B) There exists $c \in \mathbb{R}$ such that for every $L \in \mathbb{R}$, there exists $\varepsilon > 0$ such that for every $\delta > 0$, there exists x satisfying $0 < |x c| < \delta$ and $|f(x) L| \ge \varepsilon$.
 - (C) For every $c \in \mathbb{R}$ and every $L \in \mathbb{R}$, there exists $\varepsilon > 0$ such that for every $\delta > 0$, there exists x satisfying $0 < |x c| < \delta$ and $|f(x) L| \ge \varepsilon$.
 - (D) There exists $c \in \mathbb{R}$ and $L \in \mathbb{R}$ such that for every $\varepsilon > 0$, there exists $\delta > 0$ such that for all x satisfying $0 < |x c| < \delta$, we have $|f(x) L| \ge \varepsilon$.
 - (E) All of the above.

Your answer:
Your answer:

- (5) In the usual $\varepsilon \delta$ definition of limit for a given limit $\lim_{x \to c} f(x) = L$, if a given value $\delta > 0$ works for a given value $\varepsilon > 0$, then which of the following is true? Previous year's performance: 17/26 correct
 - (A) Every smaller positive value of δ works for the same ε . Also, the given value of δ works for every smaller positive value of ε .
 - (B) Every smaller positive value of δ works for the same ε . Also, the given value of δ works for every larger value of ε .
 - (C) Every larger value of δ works for the same ε . Also, the given value of δ works for every smaller positive value of ε .
 - (D) Every larger value of δ works for the same ε . Also, the given value of δ works for every larger value of ε .
 - (E) None of the above statements need always be true.

Your answer:

- (6) Which of the following is a correct formulation of the statement $\lim_{x\to c} f(x) = L$, in a manner that avoids the use of ε s and δ s?
 - (A) For every open interval centered at c, there is an open interval centered at L such that the image under f of the open interval centered at c (excluding the point c itself) is contained in the open interval centered at L.
 - (B) For every open interval centered at c, there is an open interval centered at L such that the image under f of the open interval centered at c (excluding the point c itself) contains the open interval centered at L.

- (C) For every open interval centered at L, there is an open interval centered at c such that the image under f of the open interval centered at c (excluding the point c itself) is contained in the open interval centered at L.
- (D) For every open interval centered at L, there is an open interval centered at c such that the image under f of the open interval centered at c (excluding the point c itself) contains the open interval centered at L.
- (E) None of the above.

37			
rour	answer:		

(7) (*) Consider the function:

$$f(x) := \left\{ \begin{array}{cc} x, & x \text{ rational} \\ 1/x, & x \text{ irrational} \end{array} \right.$$

What is the set of all points at which f is continuous? Previous year's performance: 5/13 correct

- $(A) \{0,1\}$
- (B) $\{-1,1\}$
- (C) $\{-1,0\}$
- (D) $\{-1,0,1\}$
- (E) f is continuous everywhere

Your answer:		