An Overview of STRUCTURAL EQUATION MODELS WITH LATENT VARIABLES

Kenneth A. Bollen
Odum Institute for Research in Social Science
Department of Sociology
University of North Carolina
at Chapel Hill

Presented at the Miami University Symposium on Computational Research - March 1-2, 2007, Miami University, Oxford, OH.

- I.What are <u>Structural Equation Models?</u> (SEM)
- II. Fundamental Hypothesis $[\Sigma = \Sigma(\theta)]$
- III. Illustrations
- IV. Three Common Types of SEM
- V. Overview of Modeling Steps
- VI. SEM with Means and Intercepts
- VII. Software
- VIII. Empirical Example

I. What are SEM? General Statistical Model

Special Cases:

ANOVA & ANCOVA
Multiple Regression
Econometric Models
Path Analysis
Factor Analysis
Etc.

SEM Allow:

- 1. Latent & Observed Variables
- 2. Random & Nonrandom Errors
- 3. Errors-in-Variables Regressions
- 4. Multiple Indicators
- 5. Restrictions on Parameters
- 6. Test of Model Fit
- 7. Nonnormal Variables

II. Fundamental Hypothesis

$$H_o$$
: $\Sigma = \Sigma(\theta)$

 Σ = Population Covariance Matrix

 θ = Vector of Parameters

 $\Sigma(\theta)$ = Model Implied Covariance Matrix

III. Illustrations

A. Simple Regression as a SEM

$$y = \gamma x + \varsigma$$

III.A.

$$\Sigma = \begin{bmatrix} VAR(y) \\ COV(x,y) & VAR(x) \end{bmatrix}$$

$$\theta' = [\gamma \quad VAR(x) \quad VAR(\zeta)]$$

$$\sum (\theta) = \begin{bmatrix} \gamma^2 VAR(x) + VAR(\zeta) & \\ \gamma VAR(x) & VAR(x) \end{bmatrix}$$

III.A.

$$\Sigma = \Sigma(\theta)$$

$$\begin{bmatrix} VAR(y) \\ COV(x,y) & VAR(x) \end{bmatrix} =$$

$$\begin{bmatrix} \gamma^2 & VAR(x) + VAR(\zeta) \\ & \gamma & VAR(x) \end{bmatrix} VAR(x)$$

e.g.,
$$COV(x,y) = COV(x, \gamma x + \zeta)$$

= $\gamma COV(x,x) + COV(x,\zeta)$
= $\gamma VAR(x)$

III.B. Simple Factor Analysis

$$y_1 = \eta + \varepsilon_1$$

 $y_2 = \eta + \varepsilon_2$

III.B.

$$\Sigma = \Sigma(\theta)$$

$$\begin{bmatrix} VAR(y_1) \\ COV(y_1, y_2) & VAR(y_2) \end{bmatrix} = \begin{bmatrix} VAR(\eta) + VAR(\varepsilon_1) \\ VAR(\eta) & VAR(\eta) + VAR(\varepsilon_2) \end{bmatrix}$$

e.g.,
$$COV(y1,y2)=COV(\eta + \epsilon_{1}, \eta + \epsilon_{2})$$

= $COV(\eta,\eta)$
= $VAR(\eta)$

Confirmatory Factor Analysis: Air Quality Example

$$y_1 = \eta_1 + \epsilon_1$$

 $y_2 = \lambda_{21}\eta_1 + \epsilon_2$
 $y_3 = \lambda_{31}\eta_1 + \epsilon_3$
 $y_4 = \lambda_{41}\eta_1 + \epsilon_4$

Latent Variables

Variables of Interest <u>But</u> Not Directly Measured

Common in Sciences:

Intelligence, Worker Productivity,

Diseases, Happiness,

Value of House, Carrying Capacity,

"Free" Market, Disturbance Variables

III.C. Simple General Model

$$y = \gamma \xi + \zeta$$

$$x_1 = \xi + \delta_1$$

$$x_2 = \xi + \delta_2$$

III.C.

$$\sum = \begin{bmatrix} VAR(y) \\ COV(x_1,y) & VAR(x_1) \\ COV(x_2,y) & COV(x_2,x_1) & VAR(x_2) \end{bmatrix}$$

$$\Sigma(\theta) =$$

$$\begin{bmatrix} \gamma^2 VAR(\xi) + VAR(\zeta) \\ \gamma VAR(\xi) VAR(\xi) + VAR(\delta_1) \\ \gamma VAR(\xi) VAR(\xi) VAR(\xi) \end{bmatrix}$$

IV. Three Types of SEM

- A. Classical Econometric
- 1. Multiequation System

$$y=\beta y + \Gamma x + \zeta$$

2. No Measurement Error

$$x=\xi$$

Felson and Bohrnstedt (1979) Model of Perceived Attractiveness and Perceived Academic Performance (N = 209)

 $x_1 = Grade Point Average$

 x_2 = Deviation of height from mean by grade and sex

 x_3 = Weight adjusted for height

 x_4 = Physical attractiveness rated by children outside class

 y_1 = Perceived academic ability, based on class-mates' ratings

 y_2 = Perceived attractiveness, classmates' ratings

$$y_1 = \beta_{12}y_2 + \gamma_{11}x_1 + \zeta_1$$

$$y_2 = \beta_{21}y_1 + \gamma_{22}x_2 + \gamma_{23}x_3 + \gamma_{24}x_4 + \zeta_2$$

$$E(\zeta_i) = 0 \quad COV(\zeta_1, \zeta_2) \neq 0$$

$$COV(\zeta_i, x_i) = 0 \text{ for } i=1,2; j=1,2,3,4$$

IV.B. Confirmatory Factor Analysis

- 1. Latent Variables
- 2. Measurement Errors

```
y = \Lambda_y \eta + \epsilon

y = \text{vector of observed indicators}

\eta = \text{vector of latent variables (or "factors")}

\epsilon = \text{vector of "measurement errors"}

E(\epsilon) = 0 COV(\eta, \epsilon) = 0
```


 η_1 = Perceived overall air quality

 y_1 = Rating of overall quality

 y_2 = Rating of clarity

 y_3 = Rating of color

 y_4 = Rating of odor

IV.B. Confirmatory Factor Analysis

1. Latent Variable Model

$$\eta = B\eta + \Gamma\xi + \zeta$$

η= latent endogenous variables

 ξ = latent exogenous variables

 ζ = disturbance vector

 $B = coefficient matrix for <math>\eta$ or η effects

 Γ = coefficient matrix for ξ or η effects

$$E(\zeta) = 0$$
, $COV(\xi, \zeta) = 0$

IV.C. General SEM

2. Measurement Model

$$y = \Lambda_y \eta + \varepsilon \qquad E(\varepsilon)=0$$

$$x = \Lambda_x \xi + \delta$$
 $E(\delta)=0$

y = indicators of η Λ_y =factor loadings of η or y ϵ = errors of measurement for y x= indicators of ξ Λ_x = factor loadings of ξ or x δ = errors of measurement for x δ , ϵ , ζ , ξ are uncorrelated

IV.C. General SEM

Figure 2.6 Path Diagram of Industrialization and Political Democracy Model

IV.C.

 ξ_1 = Industrialization 1960

 x_i = Indicators of industrialization

 η_1 = Democratic political structure 1960

 η_2 = Democratic political structure 1965

y_i = Indicators of political democracy

V. Overview of Steps in Modeling

- A. Specification
- B. Implied Covariance Matrix
- C. Identification
- D. Estimation
- E. Testing and Diagnostics
- F. Respecification

V.A. Specification

- 1. What latent variables?
- 2. Relation between latent variables?
- 3. What measures?
- 4. Relation between measures and latent variables?

V.B. Implied Covariance Matrix

$$H_o: \Sigma = \Sigma(\theta)$$

Each Model =>
$$\Sigma(\theta)$$

e.g.,

$\sum(\theta)=$

$$\begin{bmatrix} \lambda_{11}^2 \Psi + VAR(\varepsilon_1) \\ \lambda_{21}\lambda_{11}\Psi & \lambda_{21}^2 \Psi + VAR(\varepsilon_2) \\ \lambda_{31}\lambda_{11}\Psi & \lambda_{31}\lambda_{21}\Psi & \lambda_{31}^2 \Psi + VAR(\varepsilon_3) \\ \lambda_{41}\lambda_{11}\Psi & \lambda_{41}\lambda_{21}\Psi & \lambda_{41}\lambda_{31}\Psi & \lambda_{41}^2 \Psi + VAR(\varepsilon_4) \end{bmatrix}$$

V.C. Identification

Unique values for parameters?

If
$$\Sigma(\theta_1) = \Sigma(\theta_2)$$
, then $\theta_1 = \theta_2$

Identification

$$VAR(y) = \theta_1 + \theta_2$$

θ_1	$ heta_2$	VAR(y)
 5	5	10
7	3	10
9	1	10

Establishing Identification

1. Algebraic Means

 $\Sigma = \Sigma(\theta)$ solve for θ

- 2. Identification Rules
- 3. Empirical Tests

e.g.,

Identified? Yes, Three Indicator Rule

V.D. Estimation

$$\mathbf{H}_{o}$$
: $\Sigma = \Sigma(\theta)$

S sample estimator of Σ

 $\Sigma(\hat{\theta})$ sample estimator of $\Sigma(\theta)$

Choose $\hat{\theta}$ so $\Sigma(\hat{\theta})$ close to S

Bollen

e.g.,
$$y_1 = x_1 + \zeta_1$$

$$\Sigma = \Sigma(\theta)$$

$$\begin{bmatrix} VAR(y_1) \\ COV(x_1y_2) & VAR(x_2) \end{bmatrix} = \begin{bmatrix} \phi_{11} + \psi_{11} \\ \phi_{11} & \phi_{11} \end{bmatrix}$$

Goal to find θ

$$S = \begin{bmatrix} 10 & 6 \\ 6 & 4 \end{bmatrix}$$

$$S = \begin{bmatrix} 10 & 6 \\ 6 & 4 \end{bmatrix} \qquad \Sigma(\hat{\theta}) = \begin{bmatrix} \hat{\phi}_{11} + \hat{\psi}_{11} & \hat{\phi}_{11} \\ \hat{\phi}_{11} & \hat{\phi}_{11} \end{bmatrix}$$

Find $\hat{\phi}_{11}$ and $\hat{\psi}_{11}$

Make $\Sigma(\hat{\theta})$ close to S

Say
$$\hat{\phi}_{11} = 7$$
, $\hat{\psi}_{11} = 3$

$$\Sigma(\hat{\theta}) = \begin{bmatrix} 10 & 7 \\ 7 & 7 \end{bmatrix}$$

$$\Sigma(\hat{\theta}) = \begin{bmatrix} 10 & 7 \\ 7 & 7 \end{bmatrix} \qquad S - \Sigma(\hat{\theta}) = \begin{bmatrix} 0 & -1 \\ -1 & -3 \end{bmatrix}$$

ESTIMATORS

- A. Full Information
 - 1. Maximum Likelihood (ML)
 - 2. Generalized Least Squares (GLS)
 - 3. Unweighted Least Squares (ULS)
 - 4. Weighted Least Squares (WLS)

[Arbitrary Distribution Function (ADF)]

- **B.** Limited Information
 - 1. Two-Stage Least Squares (2SLS)

V.E. Testing and Diagnostics

$$H_o: \Sigma = \Sigma(\theta)$$

$$\chi^2$$
 Test

 $T_m = (N-1)^*$ Fit Function Min.

$$df = \frac{1}{2}(p+q)(p+q+1) - \# of parameters$$

2. Overall Model Fit

$T_b = Chi$ -square test statistic for baseline model

T_m= Chi-square test statistic for hypothesized model

dfb= degrees of freedom of baseline model

dfm= degrees of freedom of hypothesized model

$$IFI = \frac{T_b - T_m}{T_b - df_m}$$

$$TLI = \frac{T_b/df_b - T_m/df_m}{T_b/df_b - 1}$$

$$RMSEA = \sqrt{\frac{T_m - df_m}{(N-1)df_m}}$$

$$BIC = T_m - df ln(N)$$

Bollen

V.E. Testing and Diagnostics

- 3. Residuals (S- $\Sigma(\hat{\theta})$)
- 4. Component Fit
- 5. Statistical Power

e.g.,

$$\chi^2 = 16.0$$
 $df = 2$ $p = .0003$

VI.E. Respecification

- 1. Substantive-Based Revisions
- 2. Lagrangian Multiplier
- 3. WALD
- 4. Residuals (5 $\Sigma(\theta)$)

e.g.,

$$\chi^2 = 4.2$$
 $df = 1$ $p = .04$

Steps in Modeling

- 1. Specification
- 2. Implied Covariance Matrix
- 3. Identification
- 4. Estimation
- 5. Testing
- 6. Respecification

VI. SEM with Means and Intercepts

- A. Specification
- 1. Latent Variable Model

$$η = α_η + Bη + Γξ + ζ$$
intercept

e.g,
$$\mathbf{n}_1 = \alpha_{\eta 1} + \mathbf{B}_{12}\mathbf{n}_2 + \gamma_{11}\xi_1 + \zeta_1$$

 $\mathbf{n}_2 = \alpha_{\eta 2} + \mathbf{B}_{23}\mathbf{n}_3 + \gamma_{22}\xi_2 + \zeta_2$

VI. SEM with Means and Intercepts

A. Specification

2. Measurement Model

$$y = \alpha_y + \Lambda_y \eta + \epsilon$$

$$x = \alpha_x + \Lambda_x \xi + \delta$$
intercept

e.g.,
$$y_1 = \alpha_{y1} + \lambda_{y11} \eta_1 + \epsilon_1$$

 $y_2 = \alpha_{y2} + \lambda_{y21} \eta_1 + \epsilon_2$
 $x_1 = \alpha_{x1} + \lambda_{x11} \xi_1 + \delta_1$

VI. SEM with Means and Intercepts

- B. Implied Moments
 - 1. Implied Covariance Matrix

$$\Sigma = \Sigma(\theta)$$

2. Implied Mean Vextor

$$\mu = \mu(\theta)$$

Mean of observed variables=
Model implied means

VI. C. Identification

Still have Σ , covariance matrix of observed variables.

New parameters:

intercepts (a_n, a_y, a_x) &

means of latent ξ (k)

New observed variable information:

Means of observed variables ($\mu_y \mu_x$)

Can we use Σ , μ_y , and μ_x to find unique values of all model parameters? Yes \longrightarrow identified

VI. D. Estimation

Same as before (e.g., ML, WLS, 2SLS)

E. Testing

Same as before (e.g., chi-square, IFI, etc.)

F. Respecification

Same as before

VII. Software

```
LISREL [ PRELIS, SIMPLIS]

AMOS

EQS

Mplus

Proc Calis in SAS

Mx

EzPath

AUFIT

LINCS
```

VIII. Empirical Example

Robins, P. K. and R. W. West. 1977. Measurement Errors in the Estimation of Home Value. *Journal of the American Statistical Association 72*, 290-94.

Figure Robins and West (1977, JASA) Value of Home (η_1) with Causal Indicators of lot size (x_1) , square footage (x_2) , number of rooms (x_3) , etc. (x_q) , and Effect Indicators of Appraised Value (y_1) , Owner Estimate (y_2) , & Assessed Value (y_3) , and Disturbances $(\zeta_1, \, \varepsilon_1 \, \text{to} \, \varepsilon_3)$

Journal of the American Statistical Association, June 1977

2. Maximum Likelihood Estimates (N = 138)

•					
a. Hon	ne value me	asurement e	quations ^a		
Source		Ŷ		R^2_I	
Appraised value	0	1.000 (—)	2.415 (.158)	.553	
Owner-estimate	1.257	.973 (.119)	2.771 (.177)	.470	
Assessed value	-5.909	1.339 (.120)	1.612 (.169)	.832	
	b. Casua	al equation ^b			
Variable		â	Estimated asymptotic standard error of $\hat{\alpha}$		
Construction grade		1.077	.201		
1 if attached garage		.134	.555		
1 if detached garag		.693	.248		
1 if basement garag		1.537	.433		
Finished area (hund	•				
sq. ft.)		.223	.045		
1 if substandard sto space1 if quality is below		-1.391	.679		
hood standards	neignbor-	-1.144	.646		
Number of stories		.493	.366		
Number of built-ins	.	.461	.172		
Effective age	-	073	.010		
Number of rooms		.287	.129		
Lot size (hundreds	of sq. ft.)	.014	.006		
Constant term $(\hat{\alpha}_0)$. ,	5.704	()		

c. Derived statistics

Statistic	Estimate
R^2_{C}	.907
R^2_{CI}	.982
$oldsymbol{lpha}'oldsymbol{\phi}oldsymbol{lpha}$	6.530
$oldsymbol{\gamma}' oldsymbol{\Omega}^{-1} oldsymbol{\gamma}$.544
Ŷ(y*)	7.201

^a Estimated asymptotic standard errors in parentheses.

 $^{^{\}mathrm{b}}$ $\hat{\sigma}$ = .819, and standard error of $\hat{\sigma}$ = .163.

VIII. Empirical Example

Bollen, K.A. 1993. Liberal Democracy: Validity and Method Factors in Cross-National Measures. *American Journal of Political Science*, 37:1207-1230.

VALIDITY IN CROSS-NATIONAL MEASURES

1217

Figure 2. Path Diagram of Model for Eight Indicators of Political Liberties and Democratic Rule

VALIDITY IN CROSS-NATIONAL MEASURES

1219

Table 1. Overall Fit of Confirmatory Factor Analysis Models for 1980 (N = 153)

Model	χ^2	df	p-value	Δ_1	Δ_2	GFI	AGFI
Initial							
model M_1	9.2	8	.33	.99	1.00	.99	.93
Trimmed							.,,
model M_2	14.2	13	.36	.99	1.00	.98	.94
$M_2 - M_1$	5.0	5	>.25	.00	.00	01	+.01
No method							
factors M_3	217	19	<.001	.86	.88	.73	.48

Kenneth Bollen 1220

Table 2. Variance in Indicators Due to Validity, Method Factor, and Random Measurement Error (1980 Data)

Variable	Percent of Total Variance of Indicator Due to:				
	Validity %	Method Factor Error %	Random Measurement Error %		
X_1	68	14	18		
	71	22	7		
X_2 X_3 X_4	78	16	6		
X_4	92	0	8		
X_5	93	7	0		
X_5 X_6	62	38	0		
X_7	14	22	64		
X_8	79	9	12		

Where:

 X_1 = freedom of broadcast media (Sussman)

 X_2 = freedom of print media (Sussman)

 X_3 = civil liberties (Gastil)

 X_4 = freedom of group opposition (Banks)

 X_5 = political rights (Gastil)

 X_6 = competitiveness of nomination process (Banks) X_7 = chief executive elected (Banks)

 X_8 = effectiveness of legislative body (Banks)