1. A non-relativistic particle with mass m moves in a three-dimensional potential, V(r), which is spherically-symmetric and vanishes as $r \to \infty$. At a certain time, this particle is found in the state

$$\psi(r, \theta, \phi) = Cr^{\sqrt{3}} \exp\left[-\alpha r\right] \cos\left[\theta\right],$$

where C and α are constants. We have ignored spin.

- (a) What is the orbital angular momentum of this state; that is, what are the quantum numbers l and m_l ?
- (b) What is the energy, E, of this state? The radial equation, u = rR, may be helpful here. Recall, $V(r) \to 0$ as $r \to \infty$.
- (c) Now that the energy, E, is known from part (b), what is the potential, V(r)?
- (a) Since the potential, V(r), is spherically-symmetric, the wavefunction, ψ , may be separated into a radial and angular function:

$$\psi(r,\theta,\phi) = R_{n,\ell}(r) Y_{\ell}^{m_{\ell}}(\theta,\phi).$$

Let $C = C_R C_Y$, where C_R is a constant associated with the radial equation and C_Y is a constant associated with the angular equation. The information about orbital angular momentum will come from the radial part of the equation, which will be a spherical harmonic of the form

$$Y_{\ell}^{m_{\ell}} = C_Y \cos\left(\theta\right).$$

Griffiths Table 4.3 lists normalized spherical harmonics for particular values of ℓ and m_{ℓ} . The only spherical harmonic of a this form is given by $\ell = 1$ and $m_{\ell} = 0$; that is,

$$Y_1^0 = \sqrt{\frac{3}{4\pi}}\cos\left(\theta\right).$$

Thus, $\ell = 1$ and $m_{\ell} = 0$.

(b) By Griffiths Eq. 4.37,

$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2 u}{\mathrm{d}r^2} + \left(V + \frac{\hbar^2}{2m}\frac{\ell(\ell+1)}{r^2}\right)u = Eu,$$

where u = rR. Substituting $\ell = 1$ from part (a) yields

$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2 u}{\mathrm{d}r^2} + \left(V + \frac{\hbar^2}{mr^2}\right)u = Eu.$$

See below for the evaluation of the second derivative of u with respect to r. The solution is given in terms of u. Then, multiplication of both sides by the inverse of u results in

$$E = -\frac{\hbar^2}{2m} \left(\alpha^2 - 2\alpha r^{-1} \left(1 + \sqrt{3} \right) + r^{-2} \left(3 + \sqrt{3} \right) \right) + V + \frac{\hbar^2}{mr^2}.$$

Since the energy, E, is constant we may take any r to evaluate E. Let $r \to \infty$. Then, $V \to 0$. Therefore,

$$E = -\frac{\hbar^2 \alpha^2}{2m}.$$

(c) To find the potential, we rearrange the expression from part (b) before letting $r \to \infty$:

$$V = E - \frac{\hbar^2}{mr^2} + \frac{\hbar^2}{2m} \left(\alpha^2 - 2\alpha r^{-1} \left(1 + \sqrt{3} \right) r^{-2} \left(3 + \sqrt{3} \right) \right).$$

Then, we substitute E from part (b):

$$V = \frac{\hbar^2}{2m} \left(-\alpha^2 - 2r^{-2} + r^{-2} \left(3 + \sqrt{3} \right) - 2\alpha r^{-1} \left(1 + \sqrt{3} \right) + \alpha^2 \right).$$

Simplifying yields the potential energy, V, as a function of r:

$$V = \frac{\hbar^2}{2m} \left(1 + \sqrt{3} \right) \left(r^{-2} - 2\alpha r^{-1} \right).$$

The aforementioned derivative, where u = rR, given in terms of u:

$$\frac{\mathrm{d}^{2}u}{\mathrm{d}r^{2}} = \frac{\mathrm{d}}{\mathrm{d}r} \frac{\mathrm{d}}{\mathrm{d}r} \left[rr^{\sqrt{3}} e^{-\alpha r} \right]
= \frac{\mathrm{d}}{\mathrm{d}r} \frac{\mathrm{d}}{\mathrm{d}r} \left[r^{\sqrt{3}+1} e^{-\alpha r} \right]
= \frac{\mathrm{d}}{\mathrm{d}r} \left[r^{\sqrt{3}+1} \frac{\mathrm{d}}{\mathrm{d}r} \left[e^{-\alpha r} \right] + e^{-\alpha r} \frac{\mathrm{d}}{\mathrm{d}r} \left[r^{\sqrt{3}+1} \right] \right]
= \frac{\mathrm{d}}{\mathrm{d}r} \left[rr^{\sqrt{3}(-\alpha)} e^{-\alpha r} + e^{-\alpha r} \left(\sqrt{3} + 1 \right) r^{\sqrt{3}} \right]
= \frac{\mathrm{d}}{\mathrm{d}r} \left[\left(\sqrt{3} + 1 - \alpha r \right) R \right]
= \left(\sqrt{3} + 1 - \alpha r \right) \frac{\mathrm{d}R}{\mathrm{d}r} + R \frac{\mathrm{d}}{\mathrm{d}r} \left[\sqrt{3} + 1 - \alpha r \right]
= \left(\sqrt{3} + 1 - \alpha r \right) \left(r^{\sqrt{3}} \frac{\mathrm{d}}{\mathrm{d}r} \left[e^{-\alpha r} \right] + e^{-\alpha r} \frac{\mathrm{d}}{\mathrm{d}r} \left[r^{\sqrt{3}} \right] \right) - \alpha R
= \left(\sqrt{3} + 1 - \alpha r \right) \left(r^{\sqrt{3}} (-\alpha) e^{-\alpha r} + e^{-\alpha r} \sqrt{3} r^{\sqrt{3}-1} \right) - \alpha R
= \left(\left(\sqrt{3} + 1 - \alpha r \right) \left(-\alpha + r^{-1} \sqrt{3} \right) - \alpha \right) R
= \left(r\alpha^{2} - 2\alpha \left(1 + \sqrt{3} \right) + r^{-1} \left(3 + \sqrt{3} \right) \right) u.$$