Algebraic Geometry

Hassium

1 Varieties 5 Surfaces

2 Schemes Exercises and Proofs

3 Cohomology Alphabetical Index

4 Curves

1 Varieties

Definition 1.1. Let K be an algebraic closed field. The affine n-space \mathbb{A}^n_K is a set $\{(a_1,\ldots,a_n)\mid a_i\in K\}$. An element $P\in\mathbb{A}^n_K$ is called a point, if $P=(a_1,\ldots,a_n)$, each a_i is called a coordinate of P.

Remark. We will write \mathbb{A}^n for \mathbb{A}^n_K .

Let $A = K[x_1, ..., x_n]$ be a polynomial ring, then A is a function such that for all $f \in A$ and $P = (a_1, ..., a_n) \in \mathbb{A}^n$, $f(P) = f(a_1, ..., a_n)$, which substitues x_i by a_i .

Definition 1.2. Let K be an algebraic closed field and $A = K[x_1, \ldots, x_n]$. Let $T \subset A$, the zero set of T is the set $Z(T) = \{P \in \mathbb{A}^n \mid f \in A \text{ and } f(P) = 0\}$.

Let $T \subset A$ and let I be the ideal generated by T.

- 2 Schemes
- 3 Cohomology
- 4 Curves
- 5 Surfaces

Alphabetical Index

affine n-space, 1 point, 1 coordinate, 1 zero set, 1