Podskupina skandia (skandium, ytrium, lantán, aktínium)

1		C converge															
1A -		conventi															
1	2											13	14	15	16	17	
Ĥ	2A 2A											3B 3A	4B 4A	5B 5A	6B 6A	7B 7A]
3	4]										5 SA	6	7	8 8	9	
Li	Be											B	C	Ń	ô	F]
		3	4	5	6	7	8	9	10	11	12						
11 Na	12 Mg	3A.	4A	5A	6A	7A		8A		1B	2B	13 Al	14 Si	15 P	16 S	17 Cl	
144	Mg	3B	4B	5B	6B	7B		—8B—		1B	2B	All	SI		3	CI	
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	1122
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	2
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	
55	56	57	72	73	74	75	7,6	77	78	79	80	81	82	83	84	85	
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	
87	88	89	104	105	106	107	108	109							-1		
Fr	Ra	Ac	Unq	Unp	Unh	Uns	Uno	Une									

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	D y	Ho	E r	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	C f	Es	Fm	Md	No	Lr

Sc, Y, La + lantanoidy - spoločný názov prvky vzácnych zemín

 $ns^2(n-1)d^1$ – elektróny sa pomerne ľahko sa odštepujú za tvorby trojmocných katiónov.

- M³+ – žiadne elektróny v *d* orbitáloch, sú bezfarebné a diamagnetické.

-neušľachtilé kovy reagujúce s kyslíkom, vodíkom a kyselinami. Pripravujú sa

elektrolýzou rozstavených chloridov.

-Chemicky sú podobné prvkom alkalických zemín.

Prvok	1	<i>r</i> ³⁺ (pm)	<i>b. t.</i> (K)	X
Sc	632	75	1810	1,3
Y	637	90	1800	1,2
La	542	103	1190	1,1

Sc, La – kubická a hexagonálna modifikácia

Y – hexagonálna štruktúra

Ac – kubická štruktúra

- pomerne nízka elektronegativita - zlúčeniny majú prevažne iónový charakter.

Sc³+ - podstatne menší polomer než katióny ostatných troch prvkov → hydroxid skanditý je najmenej zásaditý, soli skandité ľahšie hydrolyzujú a skanditý katión ľahšie tvorí koordinačné zlúčeniny ako ostatné tri ióny. Súvisí to s polarizačným účinkom iónov.

Halogenidy: MX₃ X=F, Cl, Br, I

Oxidy: M₂O₃ – priama reakcia kovu s kyslíkom, dehydratácia hydroxidov.

Hydroxidy: $M(OH)_3$ – biele gélovité zrazeniny. Hydroxid skanditý je amfotérny a má zloženie Sc_2O_3 •n H_2O . Hydroxid lantanitý je najsilnejšou zásadou spomedzi prvkov s oxidačným číslom III (uvoľňuje napr. amoniak z amónnych solí).

Soli: $Sc_2(SO_4)_3$ •6 H_2O , $Sc(NO_3)_3$ •4 H_2O , $La_2(CO_3)_3$ •8 H_2O – minerál lantanit, thorthosit $ScSi_2O_7$

Skandium je ťažké získať v čistej forme. Získava sa zvyčajne elektrolýzou taveniny chloridu skanditého. Je striebrolesklý a stáva a na vzduch sa mení na žltkastý. Skandium a a jeho zlúčeniny nemajú veľký praktický význam.

$\underline{\mathbf{Y}}$ - \mathbf{YPO}_4

Lantanoidy

1A-	U.S. c		nvention ion														
l H	2 2A 2A	Shvener	on									13 3B 3A	14 4B 4A	15 5B 5A	16 6B 6A	17 7B 7A	
3 Li	4 Be	2	4	5	6	7	8	0	10	1.1	12	5 B	6 C	7 N	8 O	9 F	
11 Na	12 Mg	3 3A 3B	4 4A 4B	5 5A 5B	6A 6B	7A 7B	8	9 8A —8B—	10	11 1B 1B	12 2B 2B	13 Al	14 Si	15 P	16 S	17 Cl	
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Z n	31 Ga	32 Ge	33 As	34 Se	35 Br	la:
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	
55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	7.6 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 A t	
87 F r	88 Ra	89 A c	104 Unq	105 Unp	106 Unh	107 Uns	108 Uno	109 Une									14

58	59	60	61	62	63	64	65	66	67	68	69	70	Ĺ
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	D y	Ho	E r	Tm	Yb	
90	91	92	93	94	95	96	97	98	99	100	101	102	10
Th	Pa	U	Np	Pu	Am	Cm	Bk	C f	Es	Fm	Md	No	L

Lantanoidy

Prvok	e-	elektronová konfigurácia	+11	+111	+1V	r³+
h. La	3	4f ⁰ 5d ¹ 6s ²		La ³⁺		106
Се	4	4f ¹ 5d ¹ 6s ²	CeCl ₂		Ce ⁴⁺	
Pr	5	4 f ³ 6 s ²			Pr ⁴⁺	
Nd	6	4 f ⁴ 6 s ²	Ndl ₂		Cs ₃ NdF ₇	
Pm	7	4 f ⁵ 6 s ²				
Sm	8	4 f ⁶ 6 s ²				
Eu	9	4 f ⁷ 6 s ²	Eu ²⁺	stabilita konfiş	urácie f ⁰ , f ⁷ , f ¹⁴	
Gd	10	4f ⁷ 5d ¹ 6s ²		Gd ³⁺		
Tb	11	4 f ⁹ 6 s ²			TbF ₄	
Dy	12	4 f ¹⁰ 6 s ²			Cs ₃ DyF ₇	
Но	13	4 f ¹¹ 6 s ²				
Er	14	4 f ¹² 6 s ²				
Tm	15	4 f ¹³ 6 s ²	Tml ₂			
Yb	16	4 f ¹⁴ 6 s ²	Yb ²⁺			
h. Lu	17	4 f ¹⁴ 5 d ¹ 6 s ²		Lu ³⁺		85

podobné chemické a fyzikálne vlastnosti

vlastnosti sú určované predovšetkým elektrónmi v orbitáloch 6s a 5d.

nízke elektronegativity s objemné ióny – prevažne iónové väzby s výnimkou Lu – paramagnetické

sfarbené: La ³⁺ - bezfarebný	0
Ce³+ - bezfarebný	1
Pr ³⁺ - zelený	2
Nd ³⁺ - červenofialový	3
Pm³+ - ružový, žltý	4
Sm³+ - žltý	5
Eu ³⁺ - ružový	6
Gd ³⁺ - bezfarebný	7
Tb ³⁺ - ružový	6
Dy ³⁺ - žltý	5
Ho ³⁺ - ružový, žltý	4
Er ³⁺ - červený	3
Tm ³⁺ - zelený	2
Yb ³⁺ - bezfarebný	1
Lu ³⁺ - bezfarebný	0

striebrolesklé neušľachtilé kovy

s vodou reagujú za uvoľňovania vodíka

ľahko sa oxidujú vzdušným kyslíkom na oxidy M_2O_3 s výnimkou CeO_2 .

lantanoidová kontrakcia

chemické vlastnosti jednotvárne, výraznejšie rozdiely u koordinačných zlúčenín - vysoké koordinačné čísla (6, 7, 8, 9...) $(NH_4)_2[Ce(NO_3)_6]$ k.č. 12

Chemické vlastnosti: veľká podobnosť k Mg²⁺ a Ca²⁺

+II SmF_2 , YbF_2 ; SmCl_2 . +III $\operatorname{Ln}_2\operatorname{O}_3 \longrightarrow \operatorname{Ln}(\operatorname{OH})_3$; Yb , Lu , $\operatorname{Na}_3\operatorname{Ln}(\operatorname{OH})_6$ $\operatorname{LnCl}_3 \cdot 7\operatorname{H}_2\operatorname{O}$, $\operatorname{NdCl}_3 \cdot 6\operatorname{H}_2\operatorname{O}$, LnF_3 SO_4^{2-} – kamence

+ IV Ce 4+

Výskyt v prírode – Monazitový piesok

Ce ~ $5 \cdot 10^{-4}$, La ~ $2 \cdot 10^{-4}$, Nd ~ $2 \cdot 10^{-4}$, Tm ~ $2 \cdot 10^{-5}$

Využitie – malé

- pridávanie do ocelí na zlepšenie vlastností
- katalyzátory
- kontrastné látky pre NMR diagnostiku

Aktinoidy

1A -	∕U.S. c	onventi	on														8
ı	2 2A											13 3B	14	15	16	17 7D	
Н	2A 2A											3A	4B 4A	5B 5A	6B 6A	7B 7A	1
3 Li	4 Be	2		-	2	7	0	2	10	4.4	12	5 B	6 C	7 N	8 O	9 F	
11 Na	12 Mg	3 3A 3B	4 4A 4B	5 5A 5B	6 6A 6B	7 7A 7B	8	9 8A —8B—	10	11 1B 1B	12 2B 2B	13 Al	14 Si	15 P	16 S	17 Cl	
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Z n	31 Ga	32 Ge	33 A s	34 Se	35 Br	line P
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 R u	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	176
55 Cs	56 Ba	57 La	72 H f	73 Ta	74 W	75 Re	7,6 O s	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	
87 F r	88 R a	89 A c	104 Unq	105 Unp	106 Unh	107 Uns	108 Uno	109 Une							•		

90

Th

91

Pa

92

U

93

Np

94

Pu

96

Cm

95

Am

97

Bk

99

Es

100

Fm

98

Cf

102

No

103

Lr

101

Md

Aktinoidy

v prírode 3 prvky: Th, Pa, U zvyšné objavené po 1940 - transurány striebrobiele elektropozitívne kovy

mnohé neboli izolované vo väčších množstvách pre ich krátku dobu života

Chemické vlastnosti:

ox. \dot{c} . 2-6

1) Stálosť M³⁺ vzrastá

 $od Ac \longrightarrow Lr$

2) Aktinoidová kontrakcia 4) Podobnosť spektrálnych a magnetických vlastností

89

Ac Th

Pa

U

Np

Pu

Am

Cm

Bk

Cf

Es

Fm

Md

No

Lr

103

Prvok

4 5 6

7

8

9

10

11

12

13

14

15

16

17

e-

3

 $5f^2 6d^1 7s^2$

 $5f^3 6d^1 7s^2$ $5f^4$ $6d^1$ $7s^2$ 5 f 6

5 f ⁹

 $5 f^{10}$

5 f¹¹

 $5 f^{12}$

 $5 f^{13}$

 $5 f^{14}$

 $5f^7 6d^1 7s^2$

 $7 s^2$

 $7 s^2$

 $7 s^2$

5 f 6

elektronová

konfigurácia

 $5f^0$ $6d^1$ $7s^2$

 $5f^0 6d^2 7s^2$

$$\underline{\text{Th}}$$
 - 1,5 · 10⁻³% monazit ~ až 10% ThO₂; ThI₂; sírany

 \underline{U} - smolinec U_3O_8 - 2 kg / 1 t $[UO_2(NO_3)_2(H_2O)_2]$ - dusičnan uranylu

$$UO_2(NO_3)_2 \longrightarrow UO_2 \longrightarrow UF_4 \xrightarrow{T, HF} U + MgF_2 \xrightarrow{Mg}$$

²³⁵U ---- v prírode 0,72 %

238 U

UF₆ - l'ahko sa vyparuje – delenie ²³⁵U a ²³⁸U pre potreby jadrovej energetiky

²²⁷<u>Ac</u> - 21,8 rokov, oxidačné číslo 3 (2, 4)

Podskupina titánu (titán, zirkonium, hafnium)

1.7%	700 2000	C conver pean con convention	nvention														
l H	2 2A 2A											13 3B 3A	14 4B 4A	15 5B 5A	16 6B 6A	17 7B 7A	
3 Li	4 Be	3	**	5	6	7	8	9	10	11	12	5 B	6 C	7 N	8 O	9 F	
11 Na	12 Mg	3A 3B	4 4A 4B	5 A 5 B	6A 6B	7A 7B	0	8A —8B—	10 —	1B 1B	2B 2B	13 Al	14 Si	15 P	16 S	17 Cl	
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 M n	26 Fe	27 Co	28 Ni	29 Cu	30 Z n	31 Ga	32 Ge	33 A s	34 Se	35 Br	
37 Rb	38 Sr	39 Y	40 Z r	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	
55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	7.6 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 A t	
87 Fr	88 Ra	89 Ac	104 Unq	105 Unp	106 Unh	107 Uns	108 Uno	109 Une									

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	E r	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	C f	Es	Fm	Md	No	Lr

Podskupina titánu (Ti, Zr, Hf)

- $-(n-1)d^2ns^2$
- najvyšší oxidačný stupeň +4
- veľmi veľká ionizačná energia, neexistuje ión Ti⁴⁺, ale len atóm Ti^{IV} viazaný polárnou kovalentnou väzbou.
- Zr a Hf sú objemnejšie, väzby Zr^{IV}, Hf^{IV} sú polárnejšie než u titánu.
- -rozdiel vo vlastnostiach Ti a Zr, Hf na druhej strane v dôsledku lantanoidovej kontrakcie.

Prvok	1	<i>r</i> ⁴⁺ (pm)	<i>b. t.</i> (K)	Oxio	dačné č	isla 🎺
Ti	658	68	1950	+2	+3	+4
Zr	670	80	2130	+2		+4
Hf	530	81	2470			+4

 striebrobiele elektropozitívne kovy, v kompaktnej forme veľmi odolné voči korózii, v práškovej forme. Sú pyroforické.

Zr

zlúčeniny M^{IV} diamagnetické, ostatné paramagnetické a výrazne sfarbené (Ti³⁺...)

Kovy – reagujú za vysokých teplôt s O₂, N₂, H₂, C, S

izbová t. Ti + HCl \longrightarrow nereaguje $t > 100 \,^{\circ}\text{C}$ TiCl₃ + H₂

Zr a Hf sa rozpúšťajú v kyselinách za súčasnej hydrolýzy za vzniku ZrO²⁺, HfO²⁺ ZrOCl₂

Titán – po železe najviac sa vyskytujúci prechodný prvok (0,63 hmotnostných percent zemskej kôry).

- -vyskytuje sa v oxidačných stupňoch +4, +3, +2, 0, -1, -2. Najdôležitejšie oxidačné stupne titánu sú +3 a +4.
- -v zlúčeninách titaničitých tetraedrická koordinácia (napr. TiCl₄).

Ti⁴⁺ - Titaničité zlúčeniny sú bezfarebné a diamagnetické. Zriedkavejšie oktaedrické. Podobajú sa ciničitým.

Ti³⁺ zlúčeniny - farebné a paramagnetické Komplexy – ox. č. IV, III.

Nižšie ox. stupne (0, -I, -II) stabilizované π-akceptorovými ligandami (titanocén

 $Ti(cp)_2(CO)_2$

výskyt - minerál rutil TiO₂ a ilmenit FeTiO₃.

Čistý kov sa pripravuje zahrievaním oxidu titaničitého s uhlím a plynným chlórom pri 900 °C: $TiO_2(s) + 2C(s) + 2Cl_2(g) \longrightarrow TiCl_4(l) + 2CO_2(g)$

Redukciou chloridu titaničitého magnéziom medzi 950 – 1150 °C dáva čistý kov $TiCl_4(I) + 2Mg(I) \longrightarrow Ti(s) + 2MgCl_2(I)$

Ti - pevný, ľahký, korózii odolný kov → konštrukcia rakiet, lietadiel a leteckých motorov.

- nekoroduje a je odolný voči kyselinám a chlóru → v chemickom priemysle
- rozpúšťa v koncentrovanej kyseline sírovej

$$2\text{Ti(s)} + 6\text{H}_2\text{SO}_4(\text{aq}) \longrightarrow \text{Ti}_2(\text{SO}_4)_3 \text{ (aq)} + 6\text{H}_2\text{O(I)} + 3\text{SO}_2(\text{g})$$

Boridy, karbidy, nitridy – nestechiometrické, intersticiálne, tvrdé (Ti₂N, TiN, TiB, TiC, Ti₂B...)

Hydridy – kryštály kovového charakteru, elektricky vodivé, TiH₂

Oxidy - oxid titaničitý je veľmi stabilný, netoxický a žiarivo biely. Používa sa ako titánová beloba ale aj na prípravu samočistiacich a samosterilizujúcich sa materiálov. Modifikácie rutil, anatas, brookit.

Štruktúrne modifikácie TiO₂

Rutil

Kryštál

antimikrobakteriálne nátery

samočistiaca schopnosť

Zrkadlo so superhydrofilným efektom

Zmiešané oxidy – M₂^{II}TiO₄, M^{II}TiO₃ – štruktúra ilmenitu, perovskitu.

kubický

hexagonálny

perovskit, CaTiO₃

Chlorid titaničitý na vzduchu hydrolyzuje podľa rovnice $TiCl_4(I) + 2H_2O(I) \longrightarrow TiO_2(s) + 4HCl(g)$

Chlorid titaničitý je dôležitým katalyzátorom v priemysle polymérov.

ďalšie dôležité reakcie: TiO_2 •n $H_2O + H_2SO_4 \longrightarrow TiOSO_4 + (n+1) H_2O$ $TiO_2 + 2NaOH \longrightarrow Na_2TiO_4 + H_2O$ $Ti(OR)_4 + 2H_2O \longrightarrow TiO_2 + 4ROH$

Zirkonium, Hafnium

```
Zr – 0,025% ZrSiO<sub>4</sub> zirkon

Hf – sprevádza Zr

koordinačné čísla 6, 7, 8

ox. č. –I; 0, karbonyly, cp

ox. č. II ZrCl<sub>2</sub>, Zrl<sub>2</sub>
```

hydrolýza
$$ZrCl_4 + H_2O \longrightarrow ZrOCl_2 + 2HCl ZrOCl_2 \cdot 8H_2O$$

Príprava a použitie

- Kovové Zr a Hf sa pripravujú podobne ako Ti
- oxidy zirkoničitý a hafničitý sa vďaka svojej tepelnej odolnosti používajú na zhotovovanie taviacich téglikov a výmurovky pecí.
- katalýza

Podskupina vanádu (vanád, niob, tantal)

1		C conve	vention														
1A -	—U.S. c																
1	2 2A											13 3B	14 4B	15 5B	16 6B	17 7B	
Н	2A											3A	4A	5A	6A	7A	
3 Li	4 Be			\bigcap							1 4 5 2 7 5	5 B	6 C	7 N	8 O	9 F	
11 Na	12 Mg	3 3A 3B	4 4A 4B	5 5A 5B	6 6A 6B	7 7A 7B	8	9 8A —8B—	10	11 1B 1B	12 2B 2B	13 Al	14 Si	15 P	16 S	17 Cl	
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 A s	34 Se	35 Br	10
37 Rb	38 Sr	39 Y	40 Z r	41 Nb	42 Mo	43 Tc	44 R u	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	
55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 O s	77 I r	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 A t	
87 Fr	88 Ra	89 A c	104 Unq	105 Unp	106 Unh	107 Uns	108 Uno	109 Une									

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	D y	Ho	E r	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	C f	Es	Fm	Md	No	L r

Podskupina vanádu(V,Nb, Ta)

V, Ta (n-1)d³ns² Nb (n-1)d⁴ns¹

- vlastnosti V sa líšia od vlastností Nb a Ta v dôsledku lantanoidovej kontrakcie.
- typické prechodné kovy v zlúčeninách sa vyskytujú v rozmanitých oxidačných stupňoch.
- najstálejší oxidačný stupeň je +5, najmä u Nb a Ta. Kým vanadičnany sa v kyslom roztoku zinkom redukujú na vanádnaté soli, Nb a ta sa za týchto podmienok vôbec neredukujú.
- vysoké teploty topenia.
- ľahko sa pasivujú a stávajú odolnými voči kyselinám.
- v kyslíku zhoria za vzniku oxidov M₂O₅.

$$4 \text{ M} + 5 \text{ O}_2 \longrightarrow 2 \text{ M}_2 \text{O}_5$$

Prvok	1	<i>r</i> ⁵⁺ (pm)	<i>b. t.</i> (K)	ρ
V	651	56	2190	6,11
Nb	654	70	2770	8,57
Та	675	73	3270	16,60

Niob, tantal – striebrolesklé kovy, na vzduchu stále

- odolné voči kyselinám, lúčavke kráľovskej
- rozpúšťajú sa v HF.

najstálejší ox. stav +V

Halogenidy zloženia MX₅, oxid-trihalogenidy zloženia MOX₃

Komplexné anióny [M₆Cl₁₂] ⁿ⁺
(M=Nb, Ta)
väzba kov-kov

Oxid niobičný a tantaličný sú stálejšie ako vanadičný, ťažšie sa redukujú.

Výskyt a využitie Nb, Ta

Vanád

- zlúčeniny v oxidačných stavoch -1, 0, +1, +2, +3, +4 a +5, z ktorých +4 a +5 sú najdôležitejšie.
- -vysoké oxidačné stavy sú stabilizované ligandami s vysokou elektronegativitou, nízke oxidačné stavy sú stabilizované ligandami schopnými vytvárať π väzby.

$$[V(CO)_6]^- [V(CO)_6] [V(bpy)_3]^+ [V(CN)_6]^{4-} [V(NH_3)_6]^{3+} K_2[VCl_6] VOCl_3 \\ -I 0 +I +II +III +III +IV +V$$

V - lesklý kov, mäkký, odolný voči korózii. Používa sa v oceľových zliatinách - V_4C_3 – na prípravu jemnozrnnej ocele odolnej voči opotrebovaniu a vyšším teplotám.

V- 0,014 percent zemskej kôry 60 minerálov
$$K(UO_2)VO_4$$
 karnotit Nb ; $Ta-10^{-4}$, 10^{-5} mol % $Pb_5(VO_4)_3CI$ vanadinit VS_4

Pri získavaní vanádu sa najprv získava oxid V_2O_5 , ktorý sa ďalej redukuje roztaveným vápnikom

$$Pb_5(VO_4)_3Cl + NaCl \longrightarrow NaVO_3 \xrightarrow{NH_4Cl} NH_4VO_3 \longrightarrow V_2O_5$$

 $V_2O_5(s) + 5Ca(l) \longrightarrow 5CaO(s) + 2V(l)$

zlúč. V⁵⁺ sú diamagnetické, zlúčeniny vanadičité, vanadité a vanádnaté sú v dôsledku nespárených delektrónov paramagnetické a rozmanito sfarbené.

$$\begin{array}{c} + V \\ VO_{3}^{-} \xrightarrow{\text{Fe}^{3+}} & + IV \\ 1,0 \text{ V} & \text{VOCl}_{2} \xrightarrow{0,3 \text{ V}} & \text{VCl}_{3} & \xrightarrow{\text{Cr}^{2+}} & + II \\ modrá & \text{vCl}_{2} & \text{vCl}_{2} & \text{volená} \\ \hline kovalentné & \text{VCl}_{4} & iónové \\ \text{hnedá kvapalina} & & iónové \end{array}$$

Halogenidy – fluór stabilizuje vysoké oxidačné stavy a teda existuje fluorid vanadičný aj vanadičitý, vanaditý aj vanádnatý. Naproti tomu s jódom, ktorý má nižšiu elektronegativitu, existuje len jodid vanaditý a vanadnatý.

Oxidy: VO – sivočierny, V_2O_3 – čierny, VO_2 - tmavomodrý, V_2O_5 – žltočervený. Oxid vanadičitý, VO_2 , je tmavomodrá pevná látka. Má amfotérny charakter. Oxid vanadičný, V_2O_5 , je žltočervená tuhá látka, ktorá sa pripravuje najčastejšie termickým rozkladom vanadičnanu amónneho

 $2NH_4 VO_3 \longrightarrow V_2O_5(s) + 2NH_3(g) + H_2O(g)$

Oxid vanadičný sa používa ako katalyzátor pri výrobe kyseliny sírovej.

V roztokoch hydroxidov sa oxid vanadičný rozpúšťa na vanadičnany, VO₄³⁻.

Kondenzačnými reakciami môže vznikať veľké množstvo *polyvanadičnanových* aniónov (napr. $V_2O_7^{-4}$, $V_{10}O_{28}^{6-}$).

$$V_2O_5 \longrightarrow VO_3^- \longrightarrow NH_4V_3O_8 \longrightarrow V_{10}O_{28}^{6-}$$

Čím vyšší kondenzačný stupeň, tým sú tmavšie sfarbené.

Polyvanadičnany sú príkladom izopolyzlúčenín, t.j. kondenzačných polymérov, v ktorých sú viaceré atómy toho istého prvku pospájané kyslíkovými mostíkmi.

$$[VO_{4}]^{3-} \xrightarrow{pH \ 12} [VO_{3} \cdot OH]^{2-} \xrightarrow{pH \ 10} [V_{2}O_{6} \cdot OH]^{3-} \xrightarrow{pH \ 9} [V_{3}O_{9}]^{3-} \longrightarrow$$

$$\xrightarrow{pH \ 7} [V_{5}O_{14}]^{3-} \xrightarrow{pH \ 6,5} V_{2}O_{5} \cdot n \ H_{2}O \xrightarrow{pH \ 2,2} [V_{10}O_{28}]^{6-} \xrightarrow{pH \ <1} [VO_{2}]^{+}$$

$$Oktaédre \ VO_{6}$$