Tâche 3 - analyse de l'impact environnemental Conclusion des tâches 3 et 8 Bilan de groupe Conclusion du projet

Projet P3

Introduction au génie chimique : analyse du procédé de production d'ammoniac

Groupe 124.3

Frenyo Péter (6266-12-00)

GILLAIN Nathan (7879-12-00)

LAMINE Guillaume (7109-13-00)

PIRAUX Pauline (2520-13-00)

Paris Antoine (3158-13-00)

QUIRINY Simon (4235-13-00)

SCHRURS Sébastien (7978-13-00)

- Introduction

- Conclusion du projet

- Introduction
- 2 Tâche 3 analyse de l'impact environnemental
- 3 Tâche 8 amélioration du procédé
- 4 Conclusion des tâches 3 et 8
- Bilan de groupe
- 6 Conclusion du projet

Analyse de l'impact environnemental Démarche

- Recherche des valeurs à quantifier grâce à un brainstorming;
- Recherche des différentes températures des réacteurs;
- Quantification des flux de produits secondaires grâce à l'outil de gestion;
- Calcul de l'énergie dégagée/absorbée par les différentes réactions:
- Pistes d'amélioration.

Analyse de l'impact environnemental Résultats

Pour une production de 1500~t/d avec une température de 1000~K dans le reformage primaire, nous produisons pour tout le procédé :

- 1945.8 t/d de *CO*₂;
- Entre 0.9 et 1.95 t/d de NO_x ;
- -53.75 kJ/d;
- 22.6 t/d de *Ar*.

Analyse de l'impact environnemental Pistes pour améliorer le procédé

- Utiliser un autre procédé de production des réactifs moins polluant(électrolyse, oxydation partielle, ...)
- Chauffer le reformage primaire avec une source d'énergie verte:
- Récupérer l'énergie dégagée par les diverses réactions exothermiques;
- Reconvertir le CO₂ et les autres déchets produits ou les vendre:
- Utiliser d'autres matières premières pour la production de réactifs afin éviter les poisons catalytiques à traiter.

- Introduction
- 2 Tâche 3 analyse de l'impact environnemental
- 3 Tâche 8 amélioration du procédé
- 4 Conclusion des tâches 3 et 8
- Bilan de groupe
- 6 Conclusion du projet

Introduction
Tâche 3 - analyse de l'impact environnemental **Tâche 8 - amélioration du procéd**Conclusion des tâches 3 et 8
Bilan de groupe

Démarche

Analyse des enjeux environnementaux

Démarche

Choix d'une source d'impact et pistes d'amélioration

Notre choix : le CO_2 .

Deux possibilités : soit réduire les émissions, soit recycler.

Pour reduire les émissions :

- Changer le procédé de combustion;
- Changer le procédé de création de dihydrogène.

Pour recycler:

- Produire du carburant à partir d'algues;
- Recycler en matière première;
- Revendre le CO_2 à d'autres usines en ayant besoin.

Démarche

Choix d'une source d'impact et pistes d'amélioration

Notre choix : le CO_2 .

Deux possibilités : soit **réduire les émissions**, soit **recycler**.

Pour reduire les émissions :

- Changer le procédé de combustion;
- Changer le procédé de création de dihydrogène.

Pour recycler:

- Produire du carburant à partir d'algues;
- Recycler en matière première;
- Revendre le CO_2 à d'autres usines en ayant besoin.

Notre proposition : l'algocarburant Fonctionnement

Notre proposition : l'algocarburant Facteurs importants pour le développement des micro-algues

- Luminosité (rayons UV);
- Température ;
- Régulation des nutriments;
- Qualité du CO₂;
- Espèce d'algue.

Nos arguments Avantages...

Micro-algues

- + Croissance;
- + Pas de compétition avec les cultures alimentaires;
- + Rendement:
- + Faible emprunte environnementale;
- + Facilité à cultiver.

Algocarburants

- Directement consommable par nos moteurs;
- + Rejets de ${\it CO}_2$ moins élevés.

Nos arguments

... mais aussi quelques inconvénients

- Faute de production en masse : prix élevés ;
- Extraction de l'huile coûteuse et dévoreuse d'énergie;
- Nécessité de rendre le CO₂ propre à la consommation des algues;
- Quantité élevé d'azote et de phosphore élevé dans la biomasse.

Nos arguments Etude quantitative

Notre production de CO_2 :

• Séparation : 625774.25 t/;

 \bullet Combustion : 83220 t/;

• **Total** : 710217 t/.

 $187748~\mathrm{kg/ha}$ de biomasse par an

 $\xrightarrow{\text{rendement}: 70\%}$ 131424 kg/ha d'huile par an

 $\rightarrow 121104 \text{ kg/ha}$ de biodiesel par an.

Avec $246~{\rm ha}$ d'algues, on produit $35084754~{\rm L}$ de carburant par an et on recycle $338~{\rm t}$ de CO_2 par an. C'est à dire 11.7% de nos émissions.

Introduction
Tâche 3 - analyse de l'impact environnemental **Tâche 8 - amélioration du procédé**Conclusion des tâches 3 et 8

Bilan de groupe

Nos arguments D'un point de vue économique

- Introduction
- Tâche 3 analyse de l'impact environnemental
- 3 Tâche 8 amélioration du procédé
- 4 Conclusion des tâches 3 et 8
- Bilan de groupe
- 6 Conclusion du projet

- Introduction
- 2 Tâche 3 analyse de l'impact environnemental
- 3 Tâche 8 amélioration du procédé
- 4 Conclusion des tâches 3 et 8
- Bilan de groupe
- 6 Conclusion du projet

Introduction
Tâche 3 - analyse de l'impact environnemental
Tâche 8 - amélioration du procédé
Conclusion des tâches 3 et 8
Bilan de groupe
Conclusion du projet

- 6 Conclusion du projet

Introduction
Tâche 3 - analyse de l'impact environnemental
Tâche 8 - amélioration du procédé
Conclusion des tâches 3 et 8
Bilan de groupe
Conclusion du projet

Références I

Centre canadien d'hygiène et de sécurité au travail.

Les gaz comprimés et leurs dangers.

http://www.cchst.com/.../chem.../compressed/compress.html..., juillet 2008.