Guide d'onda per le onde e.m. luminose

· fibre ottiche

Spettro Elettromagnetico

Guidaggio delle onde e.m

Guide metalliche

UN PO' DI STORIA

■ 1870 - J. Tyndall: esperimenti per dimostrare la capacità della luce di propagarsi all'interno di getti d'acqua

Esperimento di Tyndall oggi

Ottica geometrica

 n_1 (sen Θ_i) = n_2 (sen Θ_r) legge di Snell

se: n2 > n1 si ha sen $\Theta_i > sen \Theta_r$

quando un raggio passa da un mezzo "meno denso" ad un mezzo "più denso" si avvicina alla normale

se: n2 < n1 si ha sen $\Theta_i < sen \Theta_r$

quando un raggio passa da un mezzo "più denso" ad un mezzo "meno denso" si allontana dalla normale

Consideriamo che:

n2 < n1

cioè

 $sen \Theta_i < sen \Theta_r$

Poiché la legge di Snell può essere espressa come:

$$\sin \theta_r = \frac{(\sin \theta_i)}{(\frac{n_2}{n_1})}$$

Possono aversi 3 casi:

$$\sin \Theta_{\iota} <=> (n_2/n_1)$$

dalla legge di Snell (
$$\underline{\text{con } n_2 \leq \underline{n_1}}$$
) :

$$\sin \theta_r = \frac{(\sin \theta_i)}{(\frac{n_2}{n_1})}$$

1° caso:

$$\sin \theta_i < \frac{n_2}{n_1} \implies \sin \theta_r < 1$$
 il raggio è rifratto

2° caso:

sen
$$\theta_i > (n_2/n_1)$$

$$\sin \theta_r = \frac{(\sin \theta_i)}{(\frac{n_2}{n_1})}$$

sen $\theta_r > 1$

il raggio è riflesso

$$\sin \theta_i = \frac{n_2}{n_I}$$

$$\sin \theta_r = \frac{(\sin \theta_i)}{(\frac{n_2}{n_1})}$$

sen
$$\Theta_r = 1$$
 $\Theta_r = 90^\circ$: Θ_i è detto angolo critico (Θ_c)

$$\theta_c = \arcsin \frac{n_2}{n_1}$$

Rifrazione e riflessione dei raggi luminosi (legge di Snell)

Figure 2-9.—Basic structure of an optical fiber.

$$N.A. = n_0 \sin \theta_M = n_1 \sin \theta_M = \sqrt{(n_1^2 - n_2^2)}$$

 $N.A. \approx \theta_M$

N.A. = apertura numerica

 Θ_{M} = angolo di accettazione

Figure 2-18.—Low-order and high-order modes.

Apertura Numerica

valori tipici di:

- \cdot indici di rifrazione del nucleo (n_1) e del mantello (n_2) di una fibra ottica
- apertura numerica (NA)
- angolo di accettazione (Θ_{M})

Θn (gradi)	NA	n2	n1
	500	4 40	4 5
32.6	.538	1.40	1.5
30.8	.512	1.41	1.5
28.9	.483	1.42	1.5
26.9	.453	1.43	1.5
24.8	.420	1.44	1.5
22.6	.384	1.45	1.5
20.1	.344	1.46	1.5
17.4	.298	1.47	1.5
14.1	.244	1.48	1.5
9.9	.173	1.49	1.5

Tipi di fibre ottiche (propagazione):

- monomodo
- multimodo (step-index; graded index)

Tipi di fibre ottiche (materiale):

- plastica (trasporto luce, TLC su brevissime distanze))
- vetri multicomponenti (fibroscopi)
- vetro di silice (TLC su lunghe distanze)

Fibra ottica step-index

Diametri tipici (a=raggio nucleo):

Nucleo: 2a = 50 micron; Mantello D = 125 micron (fibra S. I. 50-125)

Nucleo: 2a = 100 micron; Mantello D = 140 micron (fibra S. I.100-140)

Fibra ottica Graded Index

Diametri tipici (a=raggio nucleo):

Nucleo: 2a = 50 micron; Mantello D = 125 micron (fibra G.I. 50-125)

Nucleo: 2a = 62,5 micron ; Mantello D = 125 micron (fibra G.I. 62,5-125)

Fibra ottica monomodo (Single mode)

Diametri tipici:

Nucleo: 2a = 5-9 micron; Mantello D = 125 micron

Il diametro del nucleo è legato alla lunghezza d'onda di cut-off (λ_c) e all' Apertura Numerica da:

$$\lambda_{c} = \pi \frac{2a}{V_{c}} NA$$

2a = diametro nucleo

NA = apertura numerica della fibra ottica

Vc = 2,405

Per $\lambda < \lambda_c$ la fibra non è più monomodo

Esempio:

Se: 2a = 9,2 micron; NA = 0,11

La fibra è monomodo per λ_c = 1322 nm

$$\lambda_c = \pi \frac{2 a}{V_c} NA = \pi \frac{9.2}{2.405} \cdot 0.11 \approx 1322 \text{ [nm]}$$

Tipi di fibre ottiche

Tipica applicazione delle fibre ottiche: telecomunicazioni

Cenni sull' Ottica Integrata

TIPICHE STRUTTURE OTTICHE INTEGRATE

Propagazione della luce in una guida ottica integrata (vista in sezione)

 $\mathbf{n_g}$ = indice dello strato guidante (equivalente al core di una fibra ottica) $\mathbf{n_s}$ = indice del substrato

n₀ = indice dell'aria (se sulla parte superiore c'è aria)

Materiale comunemente utilizzati come substrato:

- vetri
- ·materiali elettroottici (es. niobato di litio)
- semiconduttori (germanio, arseniuro di gallio)

Comuni configurazioni delle guide

Figure 7.3-4 Different configurations for waveguides: (a) straight; (b) S bend; (c) Y branch; (d) Mach-Zehnder; (e) directional coupler; (f) intersection.

Vantaggi dell'ottica integrata

Possibilità di realizzare numerosi componenti attivi e passivi su di uno stesso chip avente dimensioni molto contenute

esempio:

- sorgenti laser
- divisori di fascio e mux-demux
- amplificatori ottici

Integrabilità con i sistemi a fibra ottica

Difetto dell'ottica integrata

Tecnologia non ancora sufficientemente sviluppata