

LARGE-SCALE COLLABORATIVE RANKING IN NEAR-LINEAR TIME

LIWEI WU, CHO-JUI HSIEH, AND JAMES SHARPNACK { LIWU, CHOHSIEH AND JSHARPNA}@UCDAVIS.EDU

PROBLEM

- Collaborative Ranking can be applied to classical recommender system
- Given d_1 users, d_2 movies
- Each user has a subset of observed movie comparisons
- Goal: predict movie rankings for each user
- For classical data (e.g., Netflix), we can transform original ratings to pairwise comparisons
- With the same data size, ranking loss outperforms point-wise loss

	Movie A	Movie B	Movie C	Movie D
User 1	3<		· 5	?
User 2		1 <	2 <	3

Model

Collaborative Ranking:

$$\min_{U,V} \sum_{(i,j,k)\in\Omega} \ell \left(Y_{i,j,k} \cdot \left[(UV^T)_{ij} - (UV^T)_{ik} \right] \right) + \lambda (\|U\|_F^2 + \|V\|_F^2)$$

- The loss function ℓ we used is \mathcal{L}_2 hinge loss $\ell(a) = \max(0, 1 a)^2$
- The set $(i, j, k) \in \Omega$:
- User i rates item $j > \text{item } k \Leftrightarrow Y_{i,j,k} = 1$
- If user i rates \bar{d}_2 movies, there will be $O(\bar{d}_2^2)$ pairs per user.
- Time Complexity Comparison
 - Classical matrix factorization: $O(d_1\bar{d_2}r)$ time, $O(d_1\bar{d_2})$ memory
 - Previous collaborative ranking: $O(d_1\bar{d_2}^2r)$ time, $O(d_1\bar{d_2}^2)$ memory
 - Our Primal-CR: $O(d_1\bar{d_2}^2+d_1\bar{d_2}r)$ time, $O(d_1\bar{d_2})$ memory
 - Our Primal-CR++: $O(d_1\bar{d_2}(\underline{r} + \log(\bar{d_2})))$ time, $O(d_1\bar{d_2})$ memory
 - where d_1 is number of users, $\overline{d_2}$ is averaged ratings per user, r is the target rank.

PARALLELIZATION

- Our algorithm scales up well (see comparisons for 1 core, 4 cores and 8 cores) in the multi-core shared memory setting
- Primal-CR still much faster than Collrank (Park et al., ICML 2015) when 8 cores are used
- In all the plots in the poster, we were comparing our Julia codes with others' C++ codes back then (Despite Julia is slower than C++, our proposed algorithms still won by a lot)

METHOD

$$\nabla_V f(V) = \sum_{i=1}^{d_1} \sum_{(j,k) \in \Omega_i} 2 \max \left(0, 1 - (\boldsymbol{u}_i^T \boldsymbol{v}_j - \boldsymbol{u}_i^T \boldsymbol{v}_k) \right) (\boldsymbol{u}_i \boldsymbol{e}_k^T - \boldsymbol{u}_i \boldsymbol{e}_j^T) + \lambda V$$

- **Primal-CR**: Pre-compute $u_i^T v_j$ for all j; Initial $c_j = 0$ for all j; Update c_j for each $(j, k) \in \Omega_i$; Finally compute $\nabla f(V) = \nabla f(V) + \sum_j c_j u_i e_j^T$
- **Primal-CR++**: *Fix k, do a linear scan of j after sorting; Initially* $P_{\ell} = \sum_{j:R_j=\ell} s_j$; *For* $j = \pi(1), \pi(2), \cdots$: $Add\left(\sum_{\ell < R_j} P_{\ell}\right) \cdot u$ to g_j ; *Update* $P_{R_j} \leftarrow P_{R_j} s_j$ (Can be done in $O(\log(T))$ time per query for T levels of ratings using **Segment tree or Fenwick tree!**)

RESULTS

- Single Core Subsampled Data (Plots Leftmost and Center):
 - We subsampled each user to have exactly 200 ratings in training set and used the rest of ratings as test set, since previous approaches cannot scale up
 - Users with fewer than 200 + 10 ratings not included
- Single Core Full Data (Plot Rightmost):
- Due to the $O(|\Omega|r)$ complexity, existing algorithms always sub-sample a limited number of pairs per user
- Our algorithm is the **first** ranking-based algorithm that can scale to full Netflix data set using a single core, and without sub-sampling
- A natural question:

Does using more training data help us predict and recommend better?

The answer is yes!

CONCLUSION

- We show that CR can be used to replace matrix factorization in recommender systems
- We show that CR can be solved efficiently (same time complexity with matrix completion)
- We show that it is always best to use all available pairwise comparisons if possible (subsampling gives suboptimal recommender results for top k items)

SOURCE CODE

- Julia codes: https://github.com/wuliwei9278/ml-1m
- C++ codes (2x faster than Julia codes): https://github.com/wuliwei9278/primalCR