光电成像器件 CAD 实验 报告

2012/6/24

目录

摘要	Ęl
Abs	tractII
一、	前言1-
_,	理论基础
1.	求解电场的有限差分法
2.	超张弛迭代法
3.	边界封闭处理
4.	等位线与鞍点的计算
5.	拉格朗日插值法
6.	静电场三大基本定理7-
三、	整体思想8-
1.	输入模块
2.	初始化模块
3.	超松弛连续迭代模块
4.	轴上等间距插值模块
5.	叠加定理验证模块8-
6.	输出与绘图模块
四、	程序主要变量与数组名表9-
五、	程序框架与流程图10 -
六、	使用说明 11 -
七、	数据处理与误差分析
八、	结果讨论与心得体会
参考	⋚文献
	· · · · · · · · · · · · · · · · · · ·
附身	·

摘要

本课程设计以 C++语言为编程工具,综合运用电场三大定理、超张弛连续迭代算法、拉格朗日插值算法等有关原理知识,将由以上理论知识所推导得到的物理模型与数学模型转化为可以实际进行数值计算的 CAD 程序软件系统。本程序可以确定具有多个电极的圆柱形轴对称像增强器的电子光学成像系统空间电场分布,从而确定电子的运动轨迹,以进一步确定电子光学系统的成像参量并进行像质评定,并论证了使用超张弛迭代算法计算像管参数的优越性。

关键字: 电子光学系统、连续超松弛迭代算法、 拉格朗日插值算法、 电位叠加定理

Abstract

This course is designed by C++ language programming tools, use of electric field of three big theorem, super relaxation continuous iterative algorithm, Lagrange interpolation algorithm and relevant principle knowledge comprehensively. The physical model and mathematical model, which derived from those theories, can be transformed into the actual numerical value calculation of CAD software system. This procedure can be identified with a plurality of electrode cylindrical symmetric image intensifier for electron optical imaging systems of distribution of space electric field, thereby determining the trajectories of electrons, to further determine the electron optical system in imaging parameters and image quality assessment and demonstrates using over-relaxation iterative algorithm for computing the image tube parameter superiority.

Key Words: electron optical system, SOR, Lagrange interpolation algorithm

一、前言

我们知道,要确定电子光学系统的成像质量并进行像质评定,必须先确定电子的运动轨迹。而为此,又必须先确定器件中场的分布。

通常确定场分布与电子轨迹有3种方法:解析法、实验测量法、数值计算法。解析法求解虽然精确且解的形式十分完美,但实际的电磁场系统中,边界条件的复杂性是解很难甚至根本无法求出,只有极少数特殊情况才能求解。实验法虽然直观简便,但精度不高。而由于大容量、高速度计算机的广泛应用以及计算方法的和计算技术的迅速发展,使数值计算方法成为精度高、速度快的方法。从上个世界六十年代后期开始,特别是进入八十年代以来,计算机辅助设计方法一致广泛应用于电子光学系统的最主要的计算与设计手段。

上世纪八十年代中后期,伴随着个人计算机的广泛使用,更极大地推动了计算机辅助设计方法的推广普及,并使得其进一步向优化设计与自动设计方向发展,取得了长足的进展,开拓了一个崭新的学术领域。

通常,电子光学系统的计算机辅助设计方法可以用来解决以下问题:

- 1. 计算系统的电场和磁场分布,包括旋转对称聚焦场、偏转场等:
- 2. 计算电子在电磁场中运动的轨迹:
- 3. 计算成像器件电子光学系统的成像参量(成像系统的像面位置、放大率等)和偏转系统的偏转灵敏度等:
- 4. 计算系统的像差,包括各级几何像差(球差、彗差、场曲、像散、畸变等)和色差,阴极透镜的近轴像差,偏转系统的偏转像差等;
 - 5. 计算电子光学系统的像质评定指标——电子光学鉴别力和传递函数等。

在光电成像器件 CAD 这门课中,课程设计的具体任务是计算某种电子光学系统的空间电场分布及其它有关内容。

要求每个学生在规定的时间内,独立完成 CAD 设计各项任务,独立完成符合要求的设计技术报告,提交设计计算程序文本,提交计算结果(打印文件)。

为加强全面素质教育,课程采用开放式教学方法,鼓励学生在进行设计理论 学习、编程、上机调试、撰写设计报告等过程中,充分讨论、相互启发,提高学 习质量,真正学有所获。

同时要求学生要独立完成课题任务,坚决杜绝不劳而获、抄袭程序与报告文本的学术腐败作风与不端行为。

二、理论基础

1. 求解电场的有限差分法

在真空中, 当无空间电荷时, 静电场的电位φ满足拉普拉斯方程:

$$\nabla^2 \varphi = 0 \tag{1-1}$$

即在圆柱坐标系(z, r, θ)中,有

$$\frac{\partial^2 \varphi}{\partial z^2} + \frac{\partial^2 \varphi}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2 \varphi}{\partial \theta^2} + \frac{1}{r} \frac{\partial \varphi}{\partial r} = 0$$
 (1-2)

对旋转对称场,这时电位与方位角0无关,则上式成为:

$$\frac{\partial^2 \varphi}{\partial z^2} + \frac{\partial^2 \varphi}{\partial r^2} + \frac{1}{r} \frac{\partial \varphi}{\partial r} = 0 \tag{1-3}$$

该方程是椭圆型偏微分方程,求解时必须用到电位所满足的不同类型(一般分为3类)的封闭边界条件。通常都是给定区域G的边界Γ上的电位,即给定每一电极的电位及其他非电极的边界上的电位。这类问题称为第一类边界值问题,或称狄里赫莱(Dirichilet)问题。由微分方程理论可知,这时方程有唯一确定的解。

求解这类问题的数值计算方法有很多,有一种被称为有限差分法。其基本思想是:在旋转对称场的半子午面(z,r)上用离散的点列来代替区域内的连续平面点集,这称为离散化过程。这样处理后,拉普拉斯方程中的偏微分便可以用相邻点的差分代替,相应的偏微分方程也就由对应的差分方程代替。而对后者可用数值计算方法求解,其解可作为边值偏微分方程的数值形式的近似解。

要建立有限差分方程,首先要在区域内划分足够密集的网格,以选取最经济的网格数,又能满足给定的精度要求。不妨假设某一任意网格点 0 的坐标为 (z_0,r_0) ,其电位为 φ_0 ;相邻的四点 1,2,3,4 与它的间距分别为 h_1,h_2,h_3,h_4 (均取绝对值),各点的电位分别为 $\varphi_1,\varphi_2,\varphi_3,\varphi_4$ 。将其带入到(1–3)式中,并做在该点(z_0,r_0)的泰勒(Taylor)展开,忽略二次以上的高阶小量,可以得到旋转对称场"十"字形不等距五点差分公式:

$$\varphi_0 = (c_1 \varphi_1 + c_2 \varphi_2 + c_3 \varphi_3 + c_4 \varphi_4)/c_0 \tag{1-4}$$

其中 c_0 到 c_4 的公式如下

$$c_1 = \frac{2}{h_1(h_1 + h_2)}$$
 , $c_2 = \frac{2}{h_2(h_1 + h_2)}$ (1-5)

$$c_3 = \frac{2r_0 - h_4}{r_0 h_3 (h_3 + h_4)}$$
 , $c_4 = \frac{2r_0 + h_3}{r_0 h_4 (h_3 + h_4)}$ (1-6)

$$c_0 = c_1 + c_2 + c_3 + c_4 \tag{1-7}$$

对于轴上点而言,由于 r_0 =0,其差分公式的形式与(1-3)式相同,且其系数 c_1,c_2 也与(1-4)式相同,但 c_3,c_4 不同。由洛必达(Hospetal)法则可以得到轴上点的 c_3,c_4 公式为

$$c_3 = 0$$
 , $c_4 = \frac{4}{h_4^2}$ (1-8)

因而,当一个电极的网格点划分确定后, c_1,c_2 与 c_3,c_4 也就确定下来。同时可以看出,上述差分公式就是将区域内任何点的电位与其周围相邻点的电位联系起来的线性代数方程。该线性代数方程的系数矩阵为一个稀疏举证,故可以由迭代法近似求出该线性代数方程的解。

按照已知边界条件所给定的边界上的电位分布,在区域内任意假定一个尝试性的零次近似分布

$$\varphi_1^{[0]}, \varphi_2^{[0]}, \dots, \varphi_n^{[0]}, \dots, \varphi_N^{[0]}$$
 (1-9)

其中用带方括号的上标表示迭代次数,其一般表达符号为[k],k=0,1,2,…。将(1-9)式所表示的场分布代入(1-4)式,并进行 k 次迭代,可得到第 k+1 次 迭代结果的近似分布:

$$\begin{cases} \varphi_0^{[k+1]} = \left(c_1 \varphi_1^{[k]} + c_2 \varphi_2^{[k]} + c_3 \varphi_3^{[k]} + c_4 \varphi_4^{[k]}\right) / c_0 \\ \varphi_{\underline{\mathcal{W}}}^{[k+1]} = \varphi_{\underline{\mathcal{W}}}^{[0]} \end{cases}$$
(1-10)

可以证明,在这类像管电场的计算问题中,上述迭代过程是收敛的,即一般 说来,每次迭代结果比前一次的结果更好地逼近线性方程组的真解。

2. 超张驰迭代法

前面提到的方法虽然可以正确计算出结果,但要求计算机有大量的内存,因 为它需要存储所有网格点前后两次迭代值,而且收敛较慢。因此,杨氏(Young) 和富兰开尔(Frankel)等人对该算法进行了改进,在差分方程(1-10)式右端尽 量采用最新选代得到的电位(即第 k+1 次近似值)去代替上次(第 k 次)的近似 值,同时将残差 $E_0^{[k+1]} = \varphi_0^{[k+1]} - \varphi_0^{[k]}$ 乘以一个加速因子 ω (1 $\leqslant \omega <$ 2)再叠加到 $\varphi_0^{[k]}$ 上作为正式的 0 点电位的第 k+1 次近似值,而把先前赛德尔-里伯曼迭代法求得 的 $\varphi_0^{[k+1]}$ 作为第 k+1 次的"历史"近似值 $\overline{\varphi_0}^{[k+1]}$,即非边界点的迭代公式为

$$\varphi_0^{[k+1]} = (1-\omega)\varphi_0^{[k]} + \omega(c_1\varphi_1^{[k+1]} + c_2\varphi_2^{[k]} + c_3\varphi_3^{[k+1]} + c_4\varphi_4^{[k]})/c_0 \tag{1-11}$$

对于狄里赫莱问题,从理论上可以证明,当 $0 < \omega < 2$ 时,SOR 迭代过程是 收敛的。当 $\omega > 2$ 时,SOR 迭代将发散: 若 $1 < \omega < 2$ 时,收敛过程加速,即为 上述的超张弛迭代过程,并在此范围内存在ω的最佳值ωm,使收敛过程显著加 快。因而在超张弛迭代法中一个很重要的问题便是最佳因子的选取问题。对此卡 瑞(Carre)提出了一个在迭代过程中能不断获得并不断加以改进修正的加速因 子的估值方法, 其步骤如下。

- (1) 首先,第一轮取 $\omega_0 = 1$,迭代一次;
- (2) 再根据卡瑞建议取 ω 为另一值 $\omega_1 = 1.375$ 作第二轮的 12 次迭代,再 引用其最后 3 次的迭代结果由公式:

$$\overline{E}^{[k]} = \sum_{n=1}^{N} \left| \varphi_n^{[k]} - \varphi_n^{[k-1]} \right| / N$$

$$\overline{E}^{[k+1]} = \sum_{n=1}^{N} \left| \varphi_n^{[k+1]} - \varphi_n^{[k]} \right| / N$$
(1-13)

$$\overline{E}^{[k+1]} = \sum_{n=1}^{N} \left| \varphi_n^{[k+1]} - \varphi_n^{[k]} \right| / N$$
 (1-13)

$$\lambda = \overline{E}^{[k+1]} / \overline{E}^{[k]} \tag{1-14}$$

计算出 λ 的值:

(3) 用 ω_1 和 λ ,由公式:

$$\omega_{\lambda} = \frac{2}{1 + \sqrt{1 - \mu_{\lambda}^2}} \tag{1-15}$$

其中
$$\mu_{\lambda} = \frac{\lambda + \omega^{[k]} - 1}{\sqrt{\lambda}\omega^{[k]}}$$
, $\omega^{[k]}$ 为在 k 次迭代时的迭代因子。

初步估算加速因子 ω_{λ} ,式中 $\omega^{[k]} = \omega_{1}$;

(4) 用公式

$$\omega_m = \omega_{\lambda} - (2 - \omega_{\lambda})/4 = 1.25\omega_{\lambda} - 0.5$$
 (1-16)

修正 ω_m ;

- (5) 用 ω_m 代替原来的 ω_1 ,做第三轮 12 次迭代,并继续用上述(2) ~ (4)。三个步骤求改进的 ω_m 。
- (6) 反复这个过程,直到连续两个轮次求得的 σ_m 和 ω_m 之值满足如下不等式

$$\left| \frac{\overline{\omega}_m - \omega_m}{2 - \omega_m} \right| < 0.05 \tag{1-16}$$

时为止。这时,估计值 σ_m 与理论上的最佳迭代因子值相差约为 $0.01^{\circ}0.02$,从而可把 σ_m 固定,继续迭代;

(7) 判断所有域内网格节点前、后两次迭代所得到的电位值是否满足以下收敛判别准则:

$$\left| \varphi_n^{[k+1]} - \varphi_n^{[k]} \right| \langle \varepsilon_1 \tag{1-17}$$

其中 ε_1 是预先给定的允许精度误差。满足,则认为迭代已达到预定的精度指标退出迭代,并把第 k+1 次迭代结果作为场分布的近似解。否则,继续按上述步骤迭代。

实际计算时,一般经过几个轮次迭代计算,即可求得ω的最佳值的估计值。 上述过程中ω初值的选取,每轮迭代次数以及(1-31)式的精度控制常数,均可 灵活掌握。

3. 边界封闭处理

求解狄里赫莱问题时,要求所计算区域的边界是封闭的。但在在实际的系统中,电极并不封闭,这样在电极之间的边界线上的电位分布是未知的。这种缺口

称为非封闭边界。非封闭边界的存在使邻接的域内节点的差分公式中有不确定因素,迭代计算就无法进行。为此须在适当的位置上补加上边界,使之封闭,即必须给需要封闭的非封闭边界节点赋电位值,作"补充边界线"。

实际的像增强器中,边界上的电位对轴上电位的影响很小,因而可以直接使用线性插值法对边界电极进行赋值。线性插值公式如下

$$\varphi(z) = \varphi_1 + (\varphi_2 - \varphi_1) \frac{z - z_1}{z_2 - z_1}$$
 (1-18)

其中 z 为插值点的 Z 坐标, z_1 , z_2 , ϕ_1 , ϕ_2 插值点相邻两个电极的 Z 坐标与电势大小。

4. 等位线与鞍点的计算

在经过足够多次迭代后,当域内各网格点电位的残差都已小于给定的控制精度误差(相对的或绝对的),即已达到预期的精度,便可停止迭代。这样便得到了各个网格上的电位值,并可据此描绘出等位线。描绘等位线主要是为了能形象直观地了解系统的场分布,以帮助分析、评判系统的性质。

当需要描绘电位为常数 φ_d 的等位线时,可沿着每一横行网格点作"行扫描",去检查各个网格点的电位值。比如,当沿着第 i 行扫描时,发现 $\varphi_{i,j} < \varphi_d$ 且 $\varphi_{i,j+1} > \varphi_d$,则在 $\varphi_{i,j}$ 和 $\varphi_{i,j+1}$ 之间作线性插值,便可求得 φ_d 所对应的点的轴向坐标 z_d 与 径向坐标 z_d :

$$\begin{cases}
z_d = z_j + \frac{z_{j+1} - z_j}{\varphi_{i,j+1} - \varphi_{i,j}} (\varphi_d - \varphi_{i,j}) \\
r_d = r_i
\end{cases}$$
(1-19)

该式的条件是 $^{\varphi_{i,j}}$ < $^{\varphi_d}$ < $^{\varphi_{i,j+1}}$ 。同理,也可作"列扫描"或者"行列扫描"。 再得到各个等位线点后,再用线将其连接起来。

另外,当旋转对称电场中的电位分布随 z 轴方向变化出现较明显的"高-低-高"或"低-高-低"的情况时,会呈现一种比较特殊的空间电位的鞍形等位面形状。此时搜索等位线上的点依旧可以使用行扫描或是列扫描的方法,但连线必须注意所连的点是否正确,否则会画出错误的等位线。

5. 拉格朗日插值法

为了确定电子轨迹,除了要知道各网格点上的电位值,更重要的是必须求知电子轨迹行进中所经过的任意流动点的电位及其偏导数,而电子行进点一般都不

恰在网格点上。任意流动点的电位是通过利用该点的邻近知若干网格点电位值进行插值计算求得的,而各偏导数是对电位的插值多项式进行微分获得的。在实际中,如果是有轴上所有点来进行插值,那么插值函数的次方将会过高,形式复杂,计算耗时繁琐,因而可以使用较为简单的拉格朗日三项二次插值公式:

$$L_n(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} y_0 + \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} y_1 + \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} y_2$$
(1-20)

6. 静电场三大基本定理

1) 唯一性定理

若已经给定系统中所有电极的形状和排列,并给定每一电极的电位,那么由这些电极所产生的静电场将由拉普拉斯方程唯一地确定。该定理在实际中的用处为:不论用什么方法找到一个函数 $\varphi(z,r)$,若它既能满足拉普拉斯方程,又能在区域的边界上符合给定的电位值,那么,它就一定是真正的解,而且也是唯一的解。

2) 相似性定理

若电极系统中各电极的电位都增大为 K 倍,当电位零点不变时,则空间各点的电位也都增大为 K 倍,从而系统中等位面的形状不变。

当系统各电极的电位保持不变,而电极尺寸按比例相似增大为 K 倍,则原系统中任一点上的电位 $\varphi(z,r)$ 和放大了的系统中对应点 (Kz,Kr) 上的电位 $\varphi(Kz,Kr)$ 完全相同,只要系统坐标零点不变即可。因之,新系统中的等位面可以看作是原系统中的等位面保持几何相对形状和电位数值不变,只是尺寸放大为 K 倍似的。

相似性定理只对拉普拉斯方程成立。

3) 多电极系统的电位叠加定理

当各电极的形状、相对位置确定后, 电场分布满足下述叠加定理:

$$\varphi(z,r) = \sum_{i=1}^{n} V_i \varphi_i(z,r)$$
(1-21)

其中 V_i 为第 i 个电极上所加的电位值, $\varphi_i(z,r)$ 为 $V_{i=1}$ 、其它 $V_{j=0}$ ($j \neq i$)时的系统内的电位分布函数,称为相应电极的单位电位分布函数。

对一个各电极形状、相对位置确定的系统,当需要不断通过改变一个或部分电极的电位值而获得系统新的电位分布时,可依据该定理由已先行计算、存储的

单位电位分布函数的简单叠加来获得,而不必每次都重新进行电位分布的迭代计算。

三、 整体思想

1. 输入模块

输入模块负责读入和输出像管的一些基本信息,如电极个数、电极厚度、各电极电势、电极之间划分步长、计算精度、输出格式要求等。

2. 初始化模块

初始化模块负责对程序中需要使用的变量进行初始化,以及对像管的边界使用线性插值法进行封闭,像管中除电极与边界外各点赋为 0。

3. 超松弛连续迭代模块

超松弛连续迭代模块负责对像管中电势分布进行计算。其中,迭代因子 $\omega=1$ 时进行一次, $\omega=1.375$ 进行十二次。在迭代因子到达一定精度后停止更新迭代因子,而电场中电势精度达到给定精度后跳出该模块。

4. 轴上等间距插值模块

该模块使用三次二项拉格朗日插值法计算轴上的等间距点的坐标以及电势。 计算完毕后计算出轴上点电势与位置之间的关系。

5. 叠加定理验证模块

叠加定理验证模块将所有电极置为 0,每次仅保留其中一个电极为原来的数值。之后调用超松弛连续迭代模块作为子函数,对只有一个电极有值的情况进行计算,并将每次结果叠加保存在自身的一个数组内。最后与直接利用超松弛连续迭代模块计算出的结果进行比较,得到两者之间的最大绝对残差、平均残差与均方根残差。

6. 输出与绘图模块

输出模块负责将超松弛连续迭代、轴上等间距插值模块、叠加定理验证模块 这三个模块得到的结果输出到一个文本文件中。绘图模块则利用了 EasyX 这一插 件进行绘图,并将图像额外保存在一个 BMP 文件中。

四、 程序主要变量与数组名表

```
double e[101][51];
                   //电场中电势分布存储数组
int n;
                   //电极个数
                   //电极厚度
double thick;
                   //迭代控制精度
double esp;
                //相邻电极之间距离
double z[9];
                //相邻电极之间划分的步长数
int N[9];
                      //电极之间划分总的步长数
int NS=0;
                //电极电位
double V[9];
double r1;
                   //电极内孔径半径
                   //电极内孔边沿到封闭边界处径向距离
double r2;
                   //r1 与 r2 范围内等步长划分的网格数
int M1,M2;
int NST;
                //NST=1 时全部打印,NST=2 时隔行隔列打印,等等
                //轴上电位做等距插值时的步长数
int INS;
                   //要求扫描搜索等电位线值的个数
int m;
double EV[20];
                   //要求扫描搜索等电位线的电位值
                   //要求扫描搜索等电位线的电位间隔值
double deltaV;
                   //是否为认证叠加定理,为1是
bool superB=0;
                   //网格中某一点左、右、上、下的距离
double h1,h2,h3,h4;
struct Equipotential
{
  double r;
  double z:
                   //用以表示等位线上点 r、z 坐标的结构
};
vector<vector<Equipotential>> equipotential;
                                //等电位线存放矢量
vector<vector<Equipotential>> equipotential1;
                                 //轴上点等电位线存放矢量
其他辅助变量略
```

五、 程序框架与流程图

六、 使用说明

输入数据文件名为 data.dat。输入文件中包含以下几个信息:

n: 电极(包括中间电极与荧光屏,但不包括电位为 0V 的阴极)总数;

 δ : 电极厚度 (mm), 占1个步长, 所有电极厚度相同;

 Δz_1 , Δz_2 , ..., Δz_n : 相邻电极之间的距离 (mm):

N1, N2, …, Nn: 相邻电极之间要划分的步长数。在每一个 $^{\Delta z_i}$ 范围内作等步长划分网格,N1+N2+……+Nn+n-1 \leq 100;

V1, V2, …, Vn: 电极电位 (V)。

 Δr_1 : 电极内孔径半径 (mm), 所有电极内孔径半径相同;

M1: Δr_i 范围内等步长划分的网格数;

 Δr_2 : 从电极内孔边沿到封闭边界处的径向距离 (mm);

M2: Δr_2 范围内等步长划分的网格数,M1+M2 \leq 50;

 ε : 迭代控制精度;

NST:输出打印空间电位时网格点间隔数,当 NST=1,全部打印; NST=2,隔 行隔列打印,依次类推;

INS: 轴上电位作等距插值时的步长数;

 ΔV : 要求扫描搜索等电位线的电位间隔值,例 Vac=100V 时, ΔV =12V,则应扫描电位为 12、24、36、48、60、72、84、96V 的等位线;

EV1, EV2, …, EVm: 要求扫描搜索等电位线的电位值, 共 m 个。 例如输入数据为:

 $\delta = 0.5 \text{mm}; n=7; \Delta z_i = 5.2, 8.6, 8.6, 8.6, 8.6, 8.6, 5.2 \text{mm}; N_i = 6, 10, 10, 10, 10, 4; V_i = 24, 40, 62, 74, 85, 96, 100V; <math>\Delta r_1 = 20 \text{mm}, M_1 = 23; \Delta r_2 = 12 \text{mm}; M_2 = 15; \mathcal{E} = 0.0005 \text{V}; NST = 2; INS = 60; \Delta V = 10 \text{V}_{\odot}$

则数据文件应为下图所示

输出文件命名为 data.res。程序运行完毕后存放于和 data.dat 同一文件夹下。 输出文件内包含像管内电极与计算参数的基本信息,迭代轮次与迭代次数,轴上 网格点坐标,连续超松弛迭代完成后的空间电势分布,等位线各点坐标,轴上点 拉格朗日插值点坐标与电势,运用叠加定理得到的电势分布。

七、 数据处理与误差分析

使用超松弛连续迭代方法得到的结果在附一中。由结果可以看出所得到的结果具有一定的可信度与精度。

使用数值计算方法得到像管中电势分布存在以下几种误差。

首先是计算机本身的截断误差。由于计算机 CPU 的位数是一定的,故在小数点某几位后的数值将是无效的数值,这一部分造成了最后计算结果的误差。

其次是给定精度所造成的误差。由于结束迭代的条件是前后两次的残差小于 给定精度,因而比给定精度更高的小数位数将被忽略。

最后是划分网格点导致的误差。由于网格点永远都只能是离散而非连续的, 因而结果必然存在误差,与理论计算的数值将有一定的差距。

八、 结果讨论与心得体会

本程序实现了一下几项功能:记录迭代过程中的迭代因子与迭代次数、得到像管内电势分布、得到等位线坐标、算出轴上点拉格朗日等距插值点、验证叠加定理、画出等位线、画出拉格朗日插值点坐标与电势的关系。

- a) 超松弛迭代算法能够大大减少运算次数。如果令迭代因子 ω=1 并且始终不更新,则得到最后结果需要运算 85 轮,总计 1023 次。而如果采用最佳迭代因子,则运算轮次为 20 轮,总计 221 次。
- b) 初始电位将会影响运算次数。初始电位的赋值方法可以为全部 0 赋值, 也可以为线性插值。全部为 0 值时运算 20 轮,总计 221 次。若使用线性 插值,则运算 17 轮,总计 189 次。
- c) 最佳因子计算过程中,某个最佳迭代因子需要计算一定的次数,如卡瑞提出的 12 次。如果次数太低,将会造成迭代因子无法收敛,最终运算错误。
- d) 计算电势分布时,从像管上方向下扫描,从阴极向阳极扫描,将会较快

得到结果。

参考文献

[1] 倪国强.光电成像器件计算机辅助设计(CAD)基础知识及课程设计指导书[M]. 北京:北京理工大学出版社,2003

[2] 白廷柱,金伟其.光电成像原理与技术[M].北京:北京理工大学出版社,2009.

附录一:输入输出结果

输入 data.dat:

0.48

5.2 8.2 8.2 8.2 8.2 8.2 8.2 5.2

8 11 11 11 11 11 18

21 54 76 34 77 87 95 100

17.5 24 11 14

0.00001 2 80

10

13.1 20.2 27.3 35.5 45.6 56 66.2 75 85 95

输出 data.res:

电极个数:8

电极厚度: 0.4

电极位置: 5.2 8.2 8.2 8.2 8.2 8.2 8.2 5.2

相邻电极之间划分的步长数: 8 11 11 11 11 11 18

电极电位: 21 54 76 34 77 87 95 100

电极内孔径半径: 17.5

r1 范围内等步长划分网格数: 24

电极内孔边沿到封闭边界径向距离:11

r2 范围内等步长划分的网格数: 14

要求扫描的等电位线电位值: 13.120.227.335.545.65666.2758595

Z 轴上网格点坐标:

0.00000.65001.30001.95002.60003.25003.90004.55005.20005.60006.34557.09097.83648.58189.327310.072710.818211.563612.309113.054513.800014.200014.945515.690916.436417.181817.927318.672719.418220.163620.909121.654522.400022.800023.545524.290925.036425.781826.527327.272728.018228.763629.509130.254531.000031.400032.145532.890933.636434.381835.127335.872736.618237.363638.109138.854539.600040.000040.745541.490942.236442.981843.727344.472745.218245.963646.709147.454548.200048.600049.345550.090950.836451.581852.327353.072753.818254.563655.309156.054556.800057.200057.850058.500059.150059.800060.450061.100061.750062.4000R 轴上网格点坐标:

0.0000 0.7292 1.4583 2.1875 2.9167 3.6458 4.3750 5.1042 5.8333 6.5625 7.2917 8.0208 8.7500 9.4792 10.2083 10.9375 11.6667 12.3958 13.1250 13.8542 14.5833 15.3125 16.0417 16.7708 17.5000 18.2857 19.0714 19.8571 20.6429 21.4286 22.2143 23.0000 23.7857 24.5714 25.3571 26.1429 26.9286 27.7143 28.5000

像管内电势分布情况:

迭代轮次: 2 迭代次数: 11

迭代轮次: 1 迭代次数: 1 迭代因子: 1.00000000 最大残差: 66.24494393 迭代轮次: 2 迭代次数: 1 迭代因子: 1.37500000 最大残差: 49.55146078 迭代轮次: 2 迭代次数: 2 迭代因子: 1.37500000 最大残差: 37.52849138 迭代轮次: 2 迭代次数: 3 迭代因子: 1.37500000 最大残差: 25.07406950 迭代轮次: 2 迭代次数: 4 迭代因子: 1.37500000 最大残差: 17.73193062 迭代轮次: 2 迭代次数: 5 迭代因子: 1.37500000 最大残差: 13.55113515 迭代轮次: 2 迭代次数: 6 迭代因子: 1.37500000 最大残差: 10.91424875 迭代轮次: 2 迭代次数: 7 迭代因子: 1.37500000 最大残差: 8.94721253 迭代轮次: 2 迭代次数: 8 迭代因子: 1.37500000 最大残差: 7.82434590 迭代轮次: 2 迭代次数: 9 迭代因子: 1.37500000 最大残差: 6.71609400 迭代轮次: 2 迭代次数: 10 迭代因子: 1.37500000 最大残差: 5.77556664

迭代因子: 1.37500000

最大残差: 5.04822739

迭代轮次: 2 迭代次数: 12 迭代因子: 1.37500000 最大残差: 4.40903036 前后两次平均残差: 0.86183876 和 0.79910580 最大残差: 4.40903036 迭代轮次: 3 迭代次数: 1 迭代因子: 1.61734486 最大残差: 6.27647955 迭代轮次: 3 迭代次数: 2 迭代因子: 1.61734486 最大残差: 5.41055754 迭代轮次: 3 迭代次数: 3 迭代因子: 1.61734486 最大残差: 4.99217477 迭代轮次: 3 迭代次数: 4 迭代因子: 1.61734486 最大残差: 4.65674748 迭代轮次: 3 迭代次数: 5 迭代因子: 1.61734486 最大残差: 4.39746551 迭代轮次: 3 迭代次数: 6 迭代因子: 1.61734486 最大残差: 4.16266972 迭代轮次: 3 迭代次数: 7 迭代因子: 1.61734486 最大残差: 3.93324021 迭代轮次: 3 迭代次数: 8 迭代因子: 1.61734486 最大残差: 3.69074088 迭代轮次: 3 迭代次数: 9 迭代因子: 1.61734486 最大残差: 3.48502905 迭代轮次: 3 迭代次数: 10 迭代因子: 1.61734486 最大残差: 3.28830881 迭代轮次: 3 迭代次数: 11 迭代因子: 1.61734486 最大残差: 3.10993589 迭代轮次: 3 迭代次数: 12 迭代因子: 1.61734486 最大残差: 2.95825822 前后两次平均残差: 0.57048147 和 0.54640229 最大残差: 2.95825822 迭代轮次: 4 迭代次数: 1 迭代因子: 1.77569342 最大残差: 4.36515415 迭代轮次: 4 迭代次数: 2 迭代因子: 1.77569342 最大残差: 4.17923879 迭代轮次: 4 迭代次数: 3 迭代因子: 1.77569342 最大残差: 4.00655760 迭代轮次: 4 迭代次数: 4 迭代因子: 1.77569342 最大残差: 3.83719120 迭代轮次: 4 迭代次数: 5 迭代因子: 1.77569342 最大残差: 3.66786192 迭代轮次: 4 迭代次数: 6 迭代因子: 1.77569342 最大残差: 3.53678103 迭代轮次: 4 迭代次数: 7 迭代因子: 1.77569342 最大残差: 3.40704076 迭代轮次: 4 迭代次数: 8 迭代因子: 1.77569342 最大残差: 3.28876919 迭代轮次: 4 迭代次数: 9 迭代因子: 1.77569342 最大残差: 3.18220805 迭代轮次: 4 迭代次数: 10 迭代因子: 1.77569342 最大残差: 3.08003886 迭代轮次: 4 迭代次数: 11 迭代因子: 1.77569342 最大残差: 2.99411941 迭代轮次: 4 迭代次数: 12 迭代因子: 1.77569342 最大残差: 2.91857439 前后两次平均残差: 0.67591736 和 0.66947695 最大残差: 2.91857439 迭代轮次: 5 迭代次数: 1 迭代因子: 1.91676565 最大残差: 4.88235436 迭代轮次: 5 迭代次数: 2 迭代因子: 1.91676565 最大残差: 4.87441101 迭代轮次: 5 迭代次数: 3 迭代因子: 1.91676565 最大残差: 4.84755049

迭代轮次: 5 迭代次数: 4 迭代因子: 1.91676565 最大残差: 4.83580987 迭代轮次: 5 迭代次数: 5 迭代因子: 1.91676565 最大残差: 4.83092667 迭代轮次: 5 迭代次数: 6 迭代因子: 1.91676565 最大残差: 4.84486255 迭代轮次: 5 迭代次数: 7 迭代因子: 1.91676565 最大残差: 4.86677103 迭代轮次: 5 迭代次数: 8 迭代因子: 1.91676565 最大残差: 4.89316713 迭代轮次: 5 迭代次数: 9 迭代因子: 1.91676565 最大残差: 4.91067385 迭代轮次:5迭代次数:10 迭代因子: 1.91676565 最大残差: 4.93356927 迭代轮次:5迭代次数:11 迭代因子: 1.91676565 最大残差: 4.94994937 迭代轮次:5迭代次数:12 迭代因子: 1.91676565 最大残差: 4.93012253 前后两次平均残差: 1.01256391 和 0.96130831 最大残差: 4.93012253 迭代轮次: 6 迭代次数: 1 迭代因子: 1.90440525 最大残差: 4.80386811 迭代轮次: 6 迭代次数: 2 迭代因子: 1.90440525 最大残差: 4.65998504 迭代轮次: 6 迭代次数: 3 迭代因子: 1.90440525 最大残差: 4.42629655 迭代轮次: 6 迭代次数: 4 迭代因子: 1.90440525 最大残差: 4.20371693 迭代轮次: 6 迭代次数: 5 迭代因子: 1.90440525 最大残差: 3.96583989 迭代轮次: 6 迭代次数: 6 迭代因子: 1.90440525 最大残差: 3.71808291 迭代轮次: 6 迭代次数: 7 迭代因子: 1.90440525 最大残差: 3.46660790 迭代轮次: 6 迭代次数: 8 迭代因子: 1.90440525 最大残差: 3.21647334 迭代轮次: 6 迭代次数: 9 迭代因子: 1.90440525 最大残差: 2.96998661 迭代轮次:6迭代次数:10 迭代因子: 1.90440525 最大残差: 2.73234453 迭代轮次:6迭代次数:11 迭代因子: 1.90440525 最大残差: 2.50932802 迭代轮次:6迭代次数:12 迭代因子: 1.90440525 最大残差: 2.31905104 前后两次平均残差: 0.34920562 和 0.31618422 最大残差: 2.31905104 迭代轮次: 7 迭代次数: 1 迭代因子: 1.88051391 最大残差: 2.03561759 迭代轮次: 7 迭代次数: 2 迭代因子: 1.88051391 最大残差: 1.76882922 迭代轮次: 7 迭代次数: 3 迭代因子: 1.88051391 最大残差: 1.49876256 迭代轮次: 7 迭代次数: 4 迭代因子: 1.88051391 最大残差: 1.35083572 迭代轮次: 7 迭代次数: 5 迭代因子: 1.88051391 最大残差: 1.26571777 迭代轮次: 7 迭代次数: 6 迭代因子: 1.88051391 最大残差: 1.16029392 迭代轮次: 7 迭代次数: 7 迭代因子: 1.88051391 最大残差: 1.05783100

最大残差: 0.96232660

迭代轮次: 7 迭代次数: 8 迭代因子: 1.88051391

迭代轮次: 7 迭代次数: 9 迭代因子: 1.88051391 最大残差: 0.87654821 迭代轮次:7迭代次数:10 迭代因子: 1.88051391 最大残差: 0.77944185 迭代轮次:7迭代次数:11 迭代因子: 1.88051391 最大残差: 0.70858429 迭代轮次:7迭代次数:12 迭代因子: 1.88051391 最大残差: 0.62223116 前后两次平均残差: 0.09890254 和 0.09017413 最大残差: 0.62223116 迭代轮次: 8 迭代次数: 1 迭代因子: 1.85601941 最大残差: 0.57625681 迭代轮次: 8 迭代次数: 2 迭代因子: 1.85601941 最大残差: 0.56453769 迭代轮次: 8 迭代次数: 3 迭代因子: 1.85601941 最大残差: 0.59741647 迭代轮次: 8 迭代次数: 4 迭代因子: 1.85601941 最大残差: 0.53189692 迭代轮次: 8 迭代次数: 5 迭代因子: 1.85601941 最大残差: 0.47593521 迭代轮次: 8 迭代次数: 6 迭代因子: 1.85601941 最大残差: 0.42661513 迭代轮次: 8 迭代次数: 7 迭代因子: 1.85601941 最大残差: 0.39173442 迭代轮次: 8 迭代次数: 8 迭代因子: 1.85601941 最大残差: 0.35874124 迭代轮次: 8 迭代次数: 9 迭代因子: 1.85601941 最大残差: 0.32872125 迭代轮次: 8 迭代次数: 10 迭代因子: 1.85601941 最大残差: 0.30140773 迭代轮次: 8 迭代次数: 11 迭代因子: 1.85601941 最大残差: 0.27300928 迭代轮次: 8 迭代次数: 12 迭代因子: 1.85601941 最大残差: 0.23100432 前后两次平均残差: 0.03121270 和 0.02861362 最大残差: 0.23100432 迭代轮次: 9 迭代次数: 1 迭代因子: 1.83721919 最大残差: 0.21486859 迭代轮次: 9 迭代次数: 2 迭代因子: 1.83721919 最大残差: 0.19469097 迭代轮次: 9 迭代次数: 3 迭代因子: 1.83721919 最大残差: 0.18580999

迭代轮次:9迭代次数:2迭代因子:1.83721919 最大残差:0.19469097 迭代轮次:9迭代次数:3迭代因子:1.83721919 最大残差:0.18580999 迭代轮次:9迭代次数:4迭代因子:1.83721919 最大残差:0.18580999 迭代轮次:9迭代次数:5迭代因子:1.83721919 最大残差:0.18412199 迭代轮次:9迭代次数:6迭代因子:1.83721919 最大残差:0.16803072 迭代轮次:9迭代次数:6迭代因子:1.83721919 最大残差:0.14942995 迭代轮次:9迭代次数:7迭代因子:1.83721919 最大残差:0.13067580 迭代轮次:9迭代次数:8迭代因子:1.83721919 最大残差:0.12487690 迭代轮次:9迭代次数:9迭代因子:1.83721919 最大残差:0.11479580

迭代轮次: 9 迭代次数: 10 迭代因子: 1.83721919 最大残差: 0.10280798 迭代轮次: 9 迭代次数: 11 迭代因子: 1.83721919 最大残差: 0.09745011 迭代轮次: 9 迭代次数: 12 迭代因子: 1.83721919 最大残差: 0.09417986

前后两次平均残差: 0.01109524 和 0.01019557 最大残差: 0.09417986

迭代轮次:10 迭代次数: 1 迭代因子: 1.82452496 最大残差: 0.09292038 迭代轮次:10 迭代次数: 2 迭代因子: 1.82452496 最大残差: 0.07421526 迭代轮次:10 迭代次数: 3 迭代因子: 1.82452496 最大残差: 0.06902202 迭代轮次:10 迭代次数: 4 迭代因子: 1.82452496 最大残差: 0.06229565 迭代轮次:10 迭代次数: 5 迭代因子: 1.82452496 最大残差: 0.05548163 迭代轮次: 10 迭代次数:6 迭代因子: 1.82452496 最大残差: 0.05196287 迭代轮次:10 迭代次数: 7 迭代因子: 1.82452496 最大残差: 0.04795953 迭代轮次: 10 迭代次数: 8 迭代因子: 1.82452496 最大残差: 0.04523787 迭代轮次:10 迭代次数:9 迭代因子: 1.82452496 最大残差: 0.04368310 迭代轮次:10 迭代因子: 1.82452496 最 大 残 差 : 迭代次数: 10 0.04191441 迭代轮次:10 迭代因子: 1.82452496 最 大 残 迭代次数:11 差 : 0.03986636 迭代轮次:10 迭代次数: 12 迭代因子: 1.82452496 最 大 残 差 : 0.03716187 前后两次平均残差: 0.00409278 和 0.00378147 最大残差: 0.03716187 迭代轮次:11 迭代次数: 1 迭代因子: 1.81976612 最大残差: 0.03355279 迭代轮次:11 迭代次数: 2 迭代因子: 1.81976612 最大残差: 0.03344606

迭代轮次:11 迭代次数: 3 迭代因子: 1.81976612 最大残差: 0.03053370 迭代轮次:11 迭代次数: 4 迭代因子: 1.81976612 最大残差: 0.02856157 迭代轮次:11 迭代次数: 5 迭代因子: 1.81976612 最大残差: 0.02606427 迭代轮次:11 迭代次数: 6 迭代因子: 1.81976612 最大残差: 0.02387344 迭代轮次:11 迭代次数: 7 迭代因子: 1.81976612 最大残差: 0.02172477 迭代轮次:11 迭代次数: 8 迭代因子: 1.81976612 最大残差: 0.01960970 迭代次数: 9 迭代因子: 1.81976612 迭代轮次:11 最大残差: 0.01751101

0.01542632

迭代轮次:11

迭代轮次: 11 迭代次数: 11 迭代因子: 1.81976612 最 大 残 差 : 0.01354093

迭代因子: 1.81976612

最大残差:

迭代次数: 10

迭代轮次: 11 迭代次数: 12 迭代因子: 1.81976612 最 大 残 差 : 0.01212495

前后两次平均残差: 0.00147784 和 0.00134774 最大残差: 0.01212495 迭代轮次:12 迭代次数: 1 迭代因子: 1.80705324 最大残差: 0.01053759 迭代轮次:12 迭代次数: 2 迭代因子: 1.80705324 最大残差: 0.00966339 迭代轮次:12 迭代次数: 3 迭代因子: 1.80705324 最大残差: 0.00864405 迭代轮次:12 迭代次数: 4 迭代因子: 1.80705324 最大残差: 0.00779939 迭代轮次:12 迭代次数: 5 迭代因子: 1.80705324 最大残差: 0.00712484 迭代轮次:12 迭代次数: 6 迭代因子: 1.80705324 最大残差: 0.00630950 迭代轮次:12 迭代次数: 7 迭代因子: 1.80705324 最大残差: 0.00570095 迭代轮次:12 迭代次数: 8 迭代因子: 1.80705324 最大残差: 0.00509061 迭代轮次:12 迭代次数:9 迭代因子: 1.80705324 最大残差: 0.00463891 迭代轮次:12 迭代次数: 10 迭代因子: 1.80705324 最大残差: 0.00426053 迭代轮次:12 迭代次数:11 迭代因子: 1.80705324 最 大 残 差 0.00382662 迭代轮次:12 迭代次数: 12 迭代因子: 1.80705324 最大残差: 0.00339321 前后两次平均残差: 0.00046189 和 0.00042321 最大残差: 0.00339321 迭代轮次:13 迭代次数: 1 迭代因子: 1.80179588 最大残差: 0.00297423 迭代轮次: 13 迭代次数: 2 迭代因子: 1.80179588 最大残差: 0.00256185 迭代轮次: 13 迭代次数: 3 迭代因子: 1.80179588 最大残差: 0.00225784 迭代轮次:13 迭代次数: 4 迭代因子: 1.80179588 最大残差: 0.00204025 迭代轮次: 13 迭代次数: 5 迭代因子: 1.80179588 最大残差: 0.00177433 迭代轮次: 13 迭代次数: 6 迭代因子: 1.80179588 最大残差: 0.00155708 迭代轮次:13 迭代次数: 7 迭代因子: 1.80179588 最大残差: 0.00132083 迭代次数: 8 迭代因子: 1.80179588 迭代轮次:13 最大残差: 0.00118319 迭代轮次:13 迭代次数:9迭代因子:1.80179588 最大残差: 0.00111831 迭代轮次: 13 迭代次数: 10 迭代因子: 1.80179588 最大残差: 0.00106043 迭代轮次:13 迭代次数:11 迭代因子: 1.80179588 最大残 差 :

迭代因子: 1.80179588 最 大 残 差 :

迭代次数: 12

0.00100708

迭代轮次: 13

0.00095707

前后两次平均残差: 0.00018891 和 0.00017883 最大残差: 0.00095707

迭代轮次: 14 迭代次数: 1 迭代因子: 1.83074126 最大残差: 0.00092379

迭代轮次: 14 迭代次数: 2 迭代因子: 1.83074126 最大残差: 0.00089974

迭代轮次: 14 迭代次数: 3 迭代因子: 1.83074126 最大残差: 0.00086784

迭代轮次: 14 迭代次数: 4 迭代因子: 1.83074126 最大残差: 0.00083043

迭代轮次: 14 迭代次数: 5 迭代因子: 1.83074126 最大残差: 0.00079092

迭代轮次: 14 迭代次数: 6 迭代因子: 1.83074126 最大残差: 0.00075308

迭代轮次: 14 迭代次数: 7 迭代因子: 1.83074126 最大残差: 0.00071829

迭代轮次: 14 迭代次数: 8 迭代因子: 1.83074126 最大残差: 0.00068142

迭代轮次: 14 迭代次数: 9 迭代因子: 1.83074126 最大残差: 0.00064637

迭代轮次: 14 迭代次数: 10 迭代因子: 1.83074126 最 大 残 差 :

0.00061372

迭代轮次: 14 迭代次数: 11 迭代因子: 1.83074126 最 大 残 差

0.00058312

迭代轮次: 14 迭代次数: 12 迭代因子: 1.83074126 最 大 残 差 :

0.00055336

前后两次平均残差: 0.00012216 和 0.00011646 最大残差: 0.00055336

迭代轮次: 15 迭代次数: 1 迭代因子: 1.85402178 最大残差: 0.00053567

迭代轮次: 15 迭代次数: 2 迭代因子: 1.85402178 最大残差: 0.00052169

迭代轮次: 15 迭代次数: 3 迭代因子: 1.85402178 最大残差: 0.00050323

迭代轮次: 15 迭代次数: 4 迭代因子: 1.85402178 最大残差: 0.00048245

迭代轮次: 15 迭代次数: 5 迭代因子: 1.85402178 最大残差: 0.00046307

迭代轮次: 15 迭代次数: 6 迭代因子: 1.85402178 最大残差: 0.00044072

迭代轮次: 15 迭代次数: 7 迭代因子: 1.85402178 最大残差: 0.00042006

迭代轮次: 15 迭代次数: 8 迭代因子: 1.85402178 最大残差: 0.00039978

迭代轮次: 15 迭代次数: 9 迭代因子: 1.85402178 最大残差: 0.00037942

迭代轮次: 15 迭代次数: 10 迭代因子: 1.85402178 最 大 残 差 :

0.00035926

迭代轮次: 15 迭代次数: 11 迭代因子: 1.85402178 最 大 残 差 :

0.00033999

迭代轮次: 15 迭代次数: 12 迭代因子: 1.85402178 最 大 残 差 : 0.00032198

前后两次平均残差: 0.00007079 和 0.00006662 最大残差: 0.00032198

迭代轮次: 16 迭代次数: 1 迭代因子: 1.85383861 最大残差: 0.00030420

迭代轮次: 16 迭代次数: 2 迭代因子: 1.85383861 最大残差: 0.00028747

迭代轮次: 16 迭代次数: 3 迭代因子: 1.85383861 最大残差: 0.00027144

迭代轮次: 16 迭代次数: 4 迭代因子: 1.85383861 最大残差: 0.00025603

迭代轮次: 16 迭代次数: 5 迭代因子: 1.85383861 最大残差: 0.00024084

迭代轮次: 16 迭代次数: 6 迭代因子: 1.85383861 最大残差: 0.00022658

迭代轮次: 16 迭代次数: 7 迭代因子: 1.85383861 最大残差: 0.00021208

迭代轮次: 16 迭代次数: 8 迭代因子: 1.85383861 最大残差: 0.00019819

迭代轮次: 16 迭代次数: 9 迭代因子: 1.85383861 最大残差: 0.00018592

迭代轮次: 16 迭代次数: 10 迭代因子: 1.85383861 最 大 残 差 :

0.00017574

迭代轮次: 16 迭代次数: 11 迭代因子: 1.85383861 最 大 残 差

0.00016513

迭代轮次: 16 迭代次数: 12 迭代因子: 1.85383861 最 大 残 差 :

0.00015449

前后两次平均残差: 0.00003196 和 0.00002980 最大残差: 0.00015449

迭代轮次: 17 迭代次数: 1 迭代因子: 1.84617585 最大残差: 0.00014398

迭代轮次: 17 迭代次数: 2 迭代因子: 1.84617585 最大残差: 0.00013381

迭代轮次: 17 迭代次数: 3 迭代因子: 1.84617585 最大残差: 0.00012410

迭代轮次: 17 迭代次数: 4 迭代因子: 1.84617585 最大残差: 0.00011526

迭代轮次: 17 迭代次数: 5 迭代因子: 1.84617585 最大残差: 0.00010723

迭代轮次: 17 迭代次数: 6 迭代因子: 1.84617585 最大残差: 0.00009984

迭代轮次: 17 迭代次数: 7迭代因子: 1.84617585 最大残差: 0.00009294

迭代轮次: 17 迭代次数: 8 迭代因子: 1.84617585 最大残差: 0.00008661

迭代轮次: 17 迭代次数: 9 迭代因子: 1.84617585 最大残差: 0.00008055

迭代轮次: 17 迭代次数: 10 迭代因子: 1.84617585 最 大 残 差 :

0.00007482

迭代轮次: 17 迭代次数: 11 迭代因子: 1.84617585 最 大 残 差 :

0.00007027

迭代轮次: 17 迭代次数: 12 迭代因子: 1.84617585 最 大 残 差 : 0.00006581

前后两次平均残差: 0.00001304 和 0.00001214 最大残差: 0.00006581

迭代轮次: 18 迭代次数: 1 迭代因子: 1.84014711 最大残差: 0.00006123

迭代轮次: 18 迭代次数: 2 迭代因子: 1.84014711 最大残差: 0.00005669

迭代轮次: 18 迭代次数: 3 迭代因子: 1.84014711 最大残差: 0.00005271

迭代轮次: 18 迭代次数: 4 迭代因子: 1.84014711 最大残差: 0.00004915

迭代轮次: 18 迭代次数: 5 迭代因子: 1.84014711 最大残差: 0.00004579

迭代轮次: 18 迭代次数: 6 迭代因子: 1.84014711 最大残差: 0.00004269

迭代轮次: 18 迭代次数: 7 迭代因子: 1.84014711 最大残差: 0.00003977

迭代轮次: 18 迭代次数: 8 迭代因子: 1.84014711 最大残差: 0.00003702

迭代轮次: 18 迭代次数: 9 迭代因子: 1.84014711 最大残差: 0.00003443

迭代轮次: 18 迭代次数: 10 迭代因子: 1.84014711 最 大 残 差 :

0.00003201

迭代轮次: 18 迭代次数: 11 迭代因子: 1.84014711 最 大 残 差

0.00002993

迭代轮次: 18 迭代次数: 12 迭代因子: 1.84014711 最 大 残 差 :

0.00002799

前后两次平均残差: 0.00000545 和 0.00000508 最大残差: 0.00002799

迭代轮次: 19 迭代次数: 1 迭代因子: 1.83790228 最大残差: 0.00002602

迭代轮次: 19 迭代次数: 2 迭代因子: 1.83790228 最大残差: 0.00002429

迭代轮次: 19 迭代次数: 3 迭代因子: 1.83790228 最大残差: 0.00002264

迭代轮次: 19 迭代次数: 4 迭代因子: 1.83790228 最大残差: 0.00002115

迭代轮次: 19 迭代次数: 5 迭代因子: 1.83790228 最大残差: 0.00001979

迭代轮次: 19 迭代次数: 6 迭代因子: 1.83790228 最大残差: 0.00001851

迭代轮次: 19 迭代次数: 7 迭代因子: 1.83790228 最大残差: 0.00001727

迭代轮次: 19 迭代次数: 8 迭代因子: 1.83790228 最大残差: 0.00001611

迭代轮次: 19 迭代次数: 9 迭代因子: 1.83790228 最大残差: 0.00001504

迭代轮次: 19 迭代次数: 10 迭代因子: 1.83790228 最 大 残 差 :

0.00001401

迭代轮次: 19 迭代次数: 11 迭代因子: 1.83790228 最 大 残 差 :

0.00001312

迭代轮次: 19 迭代次数: 12 迭代因子: 1.83790228 最 大 残 差 :

0.00001228

迭代轮次: 20 迭代次数: 1 迭代因子: 1.83790228 最大残差: 0.00001148 迭代轮次: 20 迭代次数: 2 迭代因子: 1.83790228 最大残差: 0.00001076 迭代轮次: 20 迭代次数: 3 迭代因子: 1.83790228 最大残差: 0.00001004 迭代轮次: 20 迭代次数: 4 迭代因子: 1.83790228 最大残差: 0.00000939

Line 38:

0.00000000 5.2	5000000 10.5000	00000 15.750	00000 21.00000000
24.00000000	30.00000000	36.00000000	42.00000000
48.00000000	54.00000000	56.00000000	60.00000000
64.00000000	68.00000000	72.00000000	76.00000000
72.18181818	64.54545455	56.90909091	49.27272727
41.63636364	34.00000000	37.90909091	45.72727273
53.54545455	61.36363636	69.18181818	77.00000000
77.90909091	79.72727273	81.54545455	83.36363636
85.18181818	87.00000000	87.72727273	89.18181818
90.63636364	92.09090909	93.54545455	95.00000000
95.62500000	96.87500000	98.12500000	99.37500000
Line 36:			
0.00000000 5.2	4931100 10.4990	02272 15.749	30688 21.00000000
23.99298162	29.98104658	35.97488701	41.97661750
47.98595784	54.00000000	55.98202173	59.95161635
63.93625534	67.94100339	71.96472859	76.00000000
72.18390221	64.55171403	56.91876267	49.28309441
41.64320163	34.00000000	37.92066642	45.75780634
53.58432841	61.39827087	69.20191757	77.00000000
77.90328102	79.71175358	81.52526294	83.34520089

85.17091008	87.00000000	87.72546997	89.17699718
90.63007933	92.08516000	93.54204787	95.00000000
95.62498506	96.87496395	98.12496397	99.37498508
Line 34:			
0.00000000 5.2	24792052 10.497	04102 15.747	789442 21.00000000
23.98305540	29.95410467	35.93886058	41.94270006
47.96539725	54.00000000	55.95635716	59.88241489
63.84469472	67.85574092	71.91345623	76.00000000
72.18595630	64.55899729	56.93218417	49.29933093
41.65465472	34.00000000	37.93806652	45.80306333
53.64061083	61.44713433	69.22970023	77.00000000
77.89482207	79.68925883	81.49617768	83.31878158
85.15532196	87.00000000	87.72285321	89.17002302
90.62103010	92.07691064	93.53716778	95.00000000
95.62495474	96.87489081	98.12489093	99.37495485
Line 32:			
LITTE 32.			
	24446716 10.492	06510 15.744	130567 21.00000000
	24446716 10.492 29.90920921	06510 15.744 35.87778058	41.88391124
0.00000000 5.2			
0.00000000 5.2 23.96666488	29.90920921	35.87778058	41.88391124
0.00000000 5.2 23.96666488 47.92904383	29.90920921 54.00000000	35.87778058 55.91314552	41.88391124 59.76564108
0.00000000 5.2 23.96666488 47.92904383 63.68908639	29.90920921 54.00000000 67.70900796	35.87778058 55.91314552 71.82403464	41.88391124 59.76564108 76.00000000
0.00000000 5.2 23.96666488 47.92904383 63.68908639 72.18624537	29.90920921 54.00000000 67.70900796 64.56561732 34.00000000	35.87778058 55.91314552 71.82403464 56.95341409 37.97038036	41.88391124 59.76564108 76.00000000 49.33146424 45.88481968
0.00000000 5.2 23.96666488 47.92904383 63.68908639 72.18624537 41.67972115	29.90920921 54.00000000 67.70900796 64.56561732 34.00000000	35.87778058 55.91314552 71.82403464 56.95341409 37.97038036 69.27332897	41.88391124 59.76564108 76.00000000 49.33146424 45.88481968
0.00000000 5.2 23.96666488 47.92904383 63.68908639 72.18624537 41.67972115 53.73775472	29.90920921 54.00000000 67.70900796 64.56561732 34.00000000 61.52724580 79.65028577	35.87778058 55.91314552 71.82403464 56.95341409 37.97038036 69.27332897	41.88391124 59.76564108 76.00000000 49.33146424 45.88481968 77.00000000
0.00000000 5.2 23.96666488 47.92904383 63.68908639 72.18624537 41.67972115 53.73775472 77.88000899	29.90920921 54.00000000 67.70900796 64.56561732 34.00000000 61.52724580 79.65028577 87.00000000	35.87778058 55.91314552 71.82403464 56.95341409 37.97038036 69.27332897 81.44647177	41.88391124 59.76564108 76.00000000 49.33146424 45.88481968 77.00000000 83.27406399 89.15798713
0.00000000 5.2 23.96666488 47.92904383 63.68908639 72.18624537 41.67972115 53.73775472 77.88000899 85.12903625 90.60557380	29.90920921 54.00000000 67.70900796 64.56561732 34.00000000 61.52724580 79.65028577 87.00000000	35.87778058 55.91314552 71.82403464 56.95341409 37.97038036 69.27332897 81.44647177 87.71829926 93.52889990	41.88391124 59.76564108 76.00000000 49.33146424 45.88481968 77.00000000 83.27406399 89.15798713 95.00000000
0.00000000 5.2 23.96666488 47.92904383 63.68908639 72.18624537 41.67972115 53.73775472 77.88000899 85.12903625 90.60557380	29.90920921 54.00000000 67.70900796 64.56561732 34.00000000 61.52724580 79.65028577 87.00000000 92.06291189	35.87778058 55.91314552 71.82403464 56.95341409 37.97038036 69.27332897 81.44647177 87.71829926 93.52889990	41.88391124 59.76564108 76.00000000 49.33146424 45.88481968 77.00000000 83.27406399 89.15798713 95.00000000
0.00000000 5.2 23.96666488 47.92904383 63.68908639 72.18624537 41.67972115 53.73775472 77.88000899 85.12903625 90.60557380 95.62487843 Line 30:	29.90920921 54.00000000 67.70900796 64.56561732 34.00000000 61.52724580 79.65028577 87.00000000 92.06291189	35.87778058 55.91314552 71.82403464 56.95341409 37.97038036 69.27332897 81.44647177 87.71829926 93.52889990 98.12470764	41.88391124 59.76564108 76.00000000 49.33146424 45.88481968 77.00000000 83.27406399 89.15798713 95.00000000
0.00000000 5.2 23.96666488 47.92904383 63.68908639 72.18624537 41.67972115 53.73775472 77.88000899 85.12903625 90.60557380 95.62487843 Line 30:	29.90920921 54.00000000 67.70900796 64.56561732 34.00000000 61.52724580 79.65028577 87.00000000 92.06291189 96.87470694	35.87778058 55.91314552 71.82403464 56.95341409 37.97038036 69.27332897 81.44647177 87.71829926 93.52889990 98.12470764	41.88391124 59.76564108 76.00000000 49.33146424 45.88481968 77.00000000 83.27406399 89.15798713 95.00000000 99.37487912

63.40790881	67.43776975	71.65387410	76.00000000
72.17632534	64.55945791	56.98689238	49.40372959
41.74338552	34.00000000	38.03834293	46.04848363
53.91787606	61.66311205	69.34123576	77.00000000
77.85152610	79.57720351	81.35582039	83.19370601
85.08182618	87.00000000	87.70964312	89.13556766
90.57740139	92.03764244	93.51393396	95.00000000
95.62467782	96.87422451	98.12422885	99.37468202
Line 28:			
0.00000000 5.2	1372692 10.4449	93712 15.707	21.00000000
23.88969909	29.69344909	35.56859345	41.56102527
47.70981772	54.00000000	55.69164193	59.17571669
62.89522108	66.92232833	71.30791934	76.00000000
72.12084260	64.48989721	57.03306082	49.57996058
41.92400557	34.00000000	38.20000636	46.40163613
54.26014160	61.88435593	69.43092116	77.00000000
77.79184884	79.43379483	81.18807397	83.04798798
84.99476776	87.00000000	87.69190639	89.09205480
90.52525931	91.99145842	93.48598683	95.00000000
95.62414443	96.87294266	98.12297072	99.37416923
Line 26:			
0.00000000 5.10	6291129 10.3572	20461 15.624	21.00000000
23.80867868	29.46285919	35.21778759	41.14388106
47.36218829	54.00000000	55.40232064	58.48373677
61.98575148	65.93965852	70.53198334	76.00000000
71.86069354	64.18066866	57.07377137	50.02287444
42.49173438	34.00000000	38.66873859	47.21730835
54.90483570	62.20468857	69.47872124	77.00000000
77.64391270	79.14017541	80.88419921	82.78955525
84.82746728	87.00000000	87.64986109	89.00433934
90.43043287	91.90846543	93.43128164	95.00000000

95.62273990	96.86947930	98.11967701	99.37286240
Line 24:			
0.00000000 5.0	06258778 10.152	94331 15.337	21.00000000
23.67546101	29.09626498	34.64663976	40.36255418
46.42478829	54.00000000	54.60969082	57.24412151
60.50038880	64.15967889	68.52476261	76.00000000
70.41757810	63.15831453	57.05464976	51.04395030
44.41486087	34.00000000	40.67172433	49.11909984
56.03119658	62.57811915	69.17579247	77.00000000
77.09589340	78.53124485	80.37764922	82.36229832
84.47150115	87.00000000	87.50614798	88.82412041
90.26963239	91.76853101	93.31260361	95.00000000
95.61982445	96.85960495	98.11125480	99.36973343
Line 22:			
0.00000000 4.9	2774122 9.8499	7365 14.737926	73 19.45086732
23.37172708	28.59398488	33.90996005	39.27596200
44.62829027	49.56810508	52.34059910	55.48908220
58.62110246	61.76286494	64.76329727	66.67969799
65.26951116	61.33683661	56.96208249	52.56452734
48.39692183	45.68826841	47.31932297	52.11493696
57.49522935	62.94600954	68.28824871	73.00427810
75.33456589	77.62237857	79.74104712	81.82104391
83.87503733	85.80552874	87.03021551	88.53943338
90.05692164	91.58678845	93.11706037	94.60129897
95.58684871	96.83130351	98.09383556	99.36391334
Line 20:			
0.00000000 4.7	78419701 9.5466	0847 14.253867	49 18.85957131
22.83135252	27.95659875	33.05243053	38.07300097
42.90125812	47.29172966	50.20600054	53.53710206
56.54040636	59.21693388	61.32444810	62.25056220
61.68298270	59.61396171	56.87085408	54.07761308

51.81368436	50.99059671	51.98867554	55.02681538
59.05378777	63.42909813	67.75781418	71.63567769
74.08682598	76.73934325	79.07345587	81.24528847
83.29924328	85.20984676	86.55802451	88.21055623
89.81062827	91.38441481	92.93385836	94.44763414
95.49226494	96.77837790	98.06567526	99.35497618
Line 18:			
0.00000000 4.69	5218664 9.28058	3874 13.8596735	6 18.36689512
22.27313365	27.27422183	32.17276984	36.91996925
41.42073758	45.54304157	48.38845865	51.68095632
54.54261527	56.92905095	58.66710836	59.47762919
59.34567029	58.34024304	56.81420803	55.26174046
54.19080578	54.13996041	55.03506603	57.31835833
60.45454954	64.00544732	67.61956980	71.01097691
73.35138393	76.06033042	78.48624534	80.71912529
82.80324878	84.74940382	86.15558854	87.89404680
89.56218480	91.18344912	92.76799349	94.31938712
95.39569710	96.71674614	98.03162984	99.34408579
Line 16:			
0.00000000 4.53	3586417 9.04922	2840 13.5182345	3 17.92391198
21.74233399	26.61012945	31.33713343	35.87523210
40.15285188	44.08758223	46.83595312	50.03139332
52.77469936	55.01294059	56.64530441	57.55879695
57.75055788	57.44549883	56.77850089	56.10486758
55.79670684	56.18782743	57.08959987	59.02052117
61.61209825	64.59221986	67.70369002	70.73884427
72.93479449	75.58473443	78.01939788	80.27736689
82.38826915	84.36990237	85.81438151	87.60960808
89.33027997	90.99514406	92.61669503	94.20356932
95.30497877	96.65537499	97.99645949	99.33265531
Line 14:			

0.00000000 4.4	3430710 8.8470	8053 13.2174276	17.52584018
21.25633312	25.99825059	30.57971898	34.95531938
39.06833286	42.85849852	45.51780745	48.61892917
51.27983000	53.45709803	55.09856612	56.16886589
56.61794111	56.80977102	56.74671175	56.68366185
56.88454193	57.57107357	58.51004752	60.26770371
62.53005650	65.12925030	67.88716551	70.65136417
72.71146824	75.26741438	77.66918047	79.92516250
82.04968949	84.05661916	85.52761327	87.36270153
89.12355864	90.82542484	92.48063750	94.09922966
95.22219119	96.59804816	97.96295358	99.32165145
Line 12:			
0.00000000 4.3	4642281 8.6716	0514 12.9546023	17.17489946
20.82526030	25.45597452	29.91634056	34.16390711
38.15084231	41.82831178	44.41513805	47.44154525
50.05185655	52.21581861	53.91079873	55.13796729
55.79126004	56.34611118	56.71117949	57.07429854
57.62607432	58.52314736	59.50620463	61.17850323
63.24109395	65.58874903	68.09882499	70.65848628
72.60341105	75.06305326	77.41592341	79.65409143
81.78026772	83.80197911	85.29072310	87.15407461
88.94541830	90.67736145	92.36127032	94.00721263
95.14870145	96.54661291	97.93259483	99.31162458
Line 10:			
0.00000000 4.2	7177566 8.5222	2859 12.7300944	8 16.87409139
20.45530871	24.99203627	29.35370486	33.50049241
37.39021632	40.98104295	43.51236512	46.48473318
49.06737018	51.24141213	53.00162938	54.36647770
55.17907325	56.00104362	56.67161094	57.33454887
58.13285020	59.18355013	60.20851395	61.84076934
63.78164463	65.96363786	68.30095519	70.70881832

72.56150149	74.93569133	77.23769476	79.45123149
81.57126586	83.59965622	85.09959064	86.98263225
88.79671857	90.55234081	92.25971416	93.92845520
95.08551608	96.50212342	97.90619730	99.30287929
Line 8:			
0.00000000 4.2	21036472 8.3992	0182 12.5449310	16.62579184
20.15011187	24.61062817	28.89413693	32.96298022
36.77883799	40.30470640	42.79532198	45.73071621
48.30027927	50.49359881	52.31556080	53.79265739
54.72638557	55.74331581	56.63127154	57.50516387
58.47737685	59.64017283	60.70109795	62.31673469
64.18351915	66.25689790	68.47507006	70.77275357
72.55476314	74.85905225	77.11541637	79.30361387
81.41382505	83.44365604	84.95013014	86.84647044
88.67708863	90.45074943	92.17657987	93.86361586
95.03331123	96.46521777	97.88422945	99.29558840
Line 6:			
	16235424 8.3029	8156 12.4000660	08 16.43158022
	16235424 8.3029 24.31355017	8156 12.4000660 28.53788694	08 16.43158022 32.54870545
0.00000000 4.3			
0.00000000 4.3 19.91166386	24.31355017	28.53788694	32.54870545
0.00000000 4.3 19.91166386 36.31040901	24.31355017 39.78944841	28.53788694 42.25150596 51.81445580	32.54870545 45.16276732 53.37728733
0.00000000 4.1 19.91166386 36.31040901 47.72755649	24.31355017 39.78944841 49.94122965	28.53788694 42.25150596 51.81445580	32.54870545 45.16276732 53.37728733 57.61414666
0.00000000 4.1 19.91166386 36.31040901 47.72755649 54.39954819	24.31355017 39.78944841 49.94122965 55.55497352	28.53788694 42.25150596 51.81445580 56.59443845	32.54870545 45.16276732 53.37728733 57.61414666
0.00000000 4.1 19.91166386 36.31040901 47.72755649 54.39954819 58.70700983	24.31355017 39.78944841 49.94122965 55.55497352 59.94971316	28.53788694 42.25150596 51.81445580 56.59443845 61.03912037	32.54870545 45.16276732 53.37728733 57.61414666 62.64967189
0.00000000 4.1 19.91166386 36.31040901 47.72755649 54.39954819 58.70700983 64.47188206	24.31355017 39.78944841 49.94122965 55.55497352 59.94971316 66.47515926	28.53788694 42.25150596 51.81445580 56.59443845 61.03912037 68.61304639	32.54870545 45.16276732 53.37728733 57.61414666 62.64967189 70.83342645
0.00000000 4.1 19.91166386 36.31040901 47.72755649 54.39954819 58.70700983 64.47188206 72.56386032	24.31355017 39.78944841 49.94122965 55.55497352 59.94971316 66.47515926 74.81480988	28.53788694 42.25150596 51.81445580 56.59443845 61.03912037 68.61304639 77.03420100	32.54870545 45.16276732 53.37728733 57.61414666 62.64967189 70.83342645 79.20013228
0.00000000 4.3 19.91166386 36.31040901 47.72755649 54.39954819 58.70700983 64.47188206 72.56386032 81.30000372	24.31355017 39.78944841 49.94122965 55.55497352 59.94971316 66.47515926 74.81480988 83.32852610	28.53788694 42.25150596 51.81445580 56.59443845 61.03912037 68.61304639 77.03420100 84.83847860	32.54870545 45.16276732 53.37728733 57.61414666 62.64967189 70.83342645 79.20013228 86.74343245
0.00000000 4.1 19.91166386 36.31040901 47.72755649 54.39954819 58.70700983 64.47188206 72.56386032 81.30000372 88.58560970	24.31355017 39.78944841 49.94122965 55.55497352 59.94971316 66.47515926 74.81480988 83.32852610 90.37241935	28.53788694 42.25150596 51.81445580 56.59443845 61.03912037 68.61304639 77.03420100 84.83847860 92.11207308	32.54870545 45.16276732 53.37728733 57.61414666 62.64967189 70.83342645 79.20013228 86.74343245 93.81305830
0.00000000 4.3 19.91166386 36.31040901 47.72755649 54.39954819 58.70700983 64.47188206 72.56386032 81.30000372 88.58560970 94.99248933 Line 4:	24.31355017 39.78944841 49.94122965 55.55497352 59.94971316 66.47515926 74.81480988 83.32852610 90.37241935 96.43627486	28.53788694 42.25150596 51.81445580 56.59443845 61.03912037 68.61304639 77.03420100 84.83847860 92.11207308	32.54870545 45.16276732 53.37728733 57.61414666 62.64967189 70.83342645 79.20013228 86.74343245 93.81305830 99.28985163

35.97975932	39.42732143	41.87066503	44.76712946
47.33113535	49.56167763	51.47261376	53.09544064
54.17793751	55.42581049	56.56507027	57.68028485
58.85243896	60.14872468	61.25858170	62.86896273
64.66533378	66.62535277	68.71196458	70.88145769
72.57697941	74.79070879	76.98326309	79.13218648
81.22336776	83.24971046	84.76130343	86.67149180
88.52122554	90.31693762	92.06615549	93.77693237
94.96325699	96.41550508	97.85455611	99.28572552
Line 2:			
0.00000000 4.1	10721324 8.1924	6661 12.2337135	16.20873399
19.63844171	23.97416871	28.13262444	32.07978628
35.78299384	39.21245360	41.64524040	44.53377890
47.09828705	49.33974512	51.27359105	52.93182779
54.04928269	55.35018099	56.54620299	57.71555379
58.93276520	60.25990430	61.38203386	62.99351683
64.77653364	66.71309124	68.77121274	70.91185270
72.58721861	74.77904433	76.95541677	79.09376669
81.17925539	83.20381265	84.71605920	86.62902434
88.48301099	90.28386428	92.03869058	93.75526767
94.94570081	96.40301382	97.84708651	99.28324041
Line 0:			
0.00000000 4.1	10030191 8.1786	1593 12.2128704	16.18082961
19.60426098	23.93178818	28.08214015	32.02153939
35.71768364	39.14123828	41.57061633	44.45666712
47.02149543	49.26671065	51.20822662	52.87816211
54.00707596	55.32525943	56.53971103	57.72661052
58.95844661	60.29566511	61.42188227	63.03391513
64.81281254	66.74193977	68.79092539	70.92221922
72.59099840	74.77559999	76.94657332	79.08134455
81.16486091	83.18874622	84.70115668	86.61498756

88.47034525 90.27287869 92.02955230 93.74804979 94.93984747 96.39884627 97.84459319 99.28241069

等势线坐标

等电位线 13.1V 坐标(Z,R):

(4.189233357,0.000000000) (4.187407657,0.729166667)

(4.181939794,1.458333333) (4.172862743,2.187500000)

(4.160231291,2.916666667) (4.144121864,3.645833333)

(4.124632164,4.375000000) (4.101880552,5.104166667)

(4.076005037,5.833333333) (4.047161686,6.562500000)

(4.015522169,7.291666667) (3.981270040,8.020833333)

(3.944595133,8.750000000) (3.905685224,9.479166667)

(3.864964842,10.208333333) (3.822374244,10.937500000)

(3.777965377,11.666666667) (3.731746249,12.395833333)

(3.683594042,13.125000000) (3.633198653,13.854166667)

(3.580018702,14.583333333)

(3.523351269,15.312500000) (3.462853263,16.041666667)

(3.400325744,16.770833333) (3.343350333,17.500000000)

(3.303742496,18.285714286) (3.279809847,19.071428571)

(3.265505650,19.857142857) (3.256949624,20.642857143)

(3.251805110,21.428571429) (3.248691333,22.214285714)

(3.246797251,23.000000000) (3.245640072,23.785714286)

(3.244929218,24.571428571) (3.244489207,25.357142857)

(3.244212857, 26.142857143) (3.244033625, 26.928571429)

(3.243908896,27.714285714) (3.243809524,28.500000000)

等电位线 20.2V 坐标(Z,R):

(6.548816503,0.000000000) (6.545805925,0.729166667)

(6.536789220,1.458333333) (6.521818531,2.187500000)

(6.500981165,2.916666667) (6.474400241,3.645833333)

- $(6.442235508, 4.375000000) \quad (6.404684292, 5.104166667)$
- (6.361982467,5.8333333333) (6.314876766,6.562500000)
- (6.263507761,7.291666667) (6.207957651,8.020833333)
- (6.148598579,8.750000000) (6.085834570,9.479166667)
- (6.020095155, 10.208333333) (5.951823767, 10.937500000)
- (5.881457157,11.666666667) (5.809389037,12.395833333)
- (5.735904713,13.125000000) (5.661058896,13.854166667)
- (5.584562054,14.583333333)
- (5.505479845,15.312500000) (5.419180701,16.041666667)
- (5.301738177,16.770833333) (5.024218430,17.500000000)
- (5.012512712,18.285714286) (5.007433379,19.071428571)
- (5.004977171,19.857142857) (5.003681165,20.642857143)
- (5.002956734,21.428571429) (5.002536886,22.214285714)
- (5.002287960,23.000000000) (5.002138150,23.785714286)
- (5.002046983,24.571428571) (5.001990889,25.357142857)
- (5.001955795,26.142857143) (5.001933092,26.928571429)
- (5.001917318,27.714285714) (5.001904762,28.500000000)

等电位线 27.3V 坐标(Z,R):

- (9.042982625,0.000000000) (9.038538661,0.729166667)
- (9.025225857,1.458333333) (9.003108982,2.187500000)
- (8.972297620,2.916666667) (8.932948337,3.645833333)
- (8.885267775,4.375000000) (8.829516597,5.104166667)
- (8.766014323,5.833333333) (8.695145180,6.562500000)
- (8.617365227,7.291666667) (8.534262817,8.020833333)
- (8.446236115,8.750000000) (8.353171984,9.479166667)
- (8.255844189,10.208333333) (8.155147881,10.937500000)
- (8.052122815,11.666666667) (7.947983865,12.395833333)
- (7.844162167,13.125000000) (7.742999454,13.854166667)
- (7.645138264,14.5833333333)
- (7.552809401,15.312500000) (7.469191645,16.041666667)

```
(7.398658178, 16.770833333) (7.345209086, 17.500000000)
(7.301327788,18.285714286) (7.267854263,19.071428571)
(7.242276884,19.857142857) (7.222795602,20.642857143)
(7.208031517,21.428571429) (7.196896949,22.214285714)
(7.188529247,23.000000000) (7.182247842,23.785714286)
(7.177520045,24.571428571) (7.173931357,25.357142857)
(7.171159438, 26.142857143) (7.168951630, 26.928571429)
(7.167105866, 27.714285714) (7.165454545, 28.500000000)
等电位线 35.5V 坐标(Z,R):
(12.219720679,0.000000000) (12.213068119,0.729166667)
(12.193125789,1.458333333) (12.159944885,2.187500000)
(12.113615545,2.916666667) (12.054272606,3.645833333)
(11.982103832,4.375000000) (11.897360039,5.104166667)
(11.800366713,5.833333333) (11.691536675,6.562500000)
(11.571383372,7.291666667) (11.444865144,8.020833333)
(11.309027308,8.750000000) (11.164453000,9.479166667)
(11.012164101,10.208333333)
                              (10.853394424,10.937500000)
(10.693388475,11.666666667)
                              (10.531117282,12.395833333)
(10.367722321,13.125000000)
                              (10.206034588,13.854166667)
(10.049934193,14.5833333333)
(9.903843561,15.312500000) (9.769740319,16.041666667)
(9.651551594,16.770833333) (9.551923213,17.500000000)
(30.820584082,17.500000000)
                              (31.567600123,17.500000000)
(9.465663996,18.285714286) (30.772451829,18.285714286)
(31.612013739,18.285714286)
                              (9.398933766,19.071428571)
(30.744089433,19.071428571)
                              (31.639504054,19.071428571)
(9.348218998,19.857142857) (30.728317993,19.857142857)
(31.656056483,19.857142857)
                              (9.309935647,20.642857143)
(30.719544359,20.642857143)
                              (31.666233363,20.642857143)
(9.281325031,21.428571429) (30.714575895,21.428571429)
```

```
(31.672683832,21.428571429)
(9.260179534,22.214285714) (30.711699841,22.214285714)
(31.676891249,22.214285714)
                              (9.244573012,23.000000000)
(30.709995913,23.000000000)
                              (31.679705505,23.0000000000)
(9.233036651,23.785714286) (30.708961253,23.785714286)
(31.681630906,23.785714286)
                              (9.224463730,24.571428571)
(30.708315680,24.571428571)
                              (31.682977362,24.571428571)
(9.218023481,25.357142857) (30.707899855,25.357142857)
(31.683941831,25.357142857)
                              (9.213089844,26.142857143)
(30.707621014,26.142857143)
                              (31.684653847,26.142857143)
(9.209184780,26.928571429) (30.707423449,26.928571429)
(31.685201978,26.928571429)
(9.205933719,27.714285714) (30.707272060,27.714285714)
(31.685649866,27.714285714)
                              (9.203030303,28.500000000)
(30.707142857,28.500000000)
                              (31.686046512,28.500000000)
等电位线 45.6V 坐标(Z,R):
(17.080693900,0.000000000) (17.069820642,0.729166667)
(17.037131946,1.458333333) (16.982412890,2.187500000)
(16.905319728,2.916666667) (16.805397911,3.645833333)
(16.682111938,4.375000000) (16.534888817,5.104166667)
(16.367890082,5.833333333) (16.184357009,6.562500000)
(15.978040024,7.291666667) (15.749130795,8.020833333)
(15.510480393,8.750000000) (15.256200873,9.479166667)
(14.983668978,10.208333333)
                              (14.709146980,10.937500000)
(14.422103523,11.666666667)
                              (14.124087514,12.395833333)
(13.822198314,13.125000000)
                              (13.519871791,13.854166667)
(13.205123055,14.583333333)
(12.890479587,15.312500000)
                              (12.589404778,16.041666667)
(12.319622082,16.770833333)
                              (29.712558031,16.770833333)
```

(12.110717698,17.500000000)

(32.483613681,16.770833333)

(29.254118147,17.500000000)	(32.956053667,17.500000000)
(11.976430485,18.285714286)	(29.028990967,18.285714286)
(33.204388009,18.285714286)	(11.892850412,19.071428571)
(28.909192598,19.071428571)	(33.344885140,19.071428571)
(11.838048892,19.857142857)	(28.840381136,19.857142857)
(33.432301770,19.857142857)	(11.800973120,20.642857143)
(28.799816062,20.642857143)	(33.489099059,20.642857143)
(11.775368694,21.428571429)	
(28.775570977,21.428571429)	(33.526918049,21.428571429)
(11.757416186,22.214285714)	(28.760857790,22.214285714)
(33.552566249,22.214285714)	(11.744671495,23.000000000)
(28.751767889,23.000000000)	(33.570245307,23.000000000)
(11.735519128,23.785714286)	(28.746065277,23.785714286)
(33.582624877,23.785714286)	(11.728863499,24.571428571)
(28.742390733,24.571428571)	(33.591439995,24.571428571)
(11.723944372,25.357142857)	(28.739948277,25.357142857)
(33.597844200,25.357142857)	(11.720221702,26.142857143)
(28.738260569,26.142857143)	(33.602624489,26.142857143)
(11.717300977,26.928571429)	
(28.737031854,26.928571429)	(33.606335358,26.928571429)
(11.714882818,27.714285714)	(28.736069602,27.714285714)
(33.609384956,27.714285714)	(11.712727273,28.500000000)
(28.735238095,28.500000000)	(33.612093023,28.500000000)

等电位线 56V 坐标(Z,R):

(25.855609023,0.000000000) (25.850985458,0.729166667) (25.836883896,1.458333333) (25.812599908,2.187500000) (25.776954290,2.916666667) (25.728943306,3.645833333) (25.664324420,4.375000000) (25.577483629,5.104166667) (25.458699842,5.833333333) (25.289937156,6.562500000) (25.034336129,7.291666667) (24.659813982,8.020833333)

(24.044462421,8.750000000) (23	3.156737252,9.479166667)
(22.128378507,10.208333333)	(21.140672648,10.937500000)
(20.252632652,11.666666667)	(28.369541044,11.666666667)
(30.532806102,11.666666667)	(19.479762870,12.395833333)
(27.612395698,12.395833333)	
(31.964428711,12.395833333)	(18.803233234,13.125000000)
(27.283174716,13.125000000)	(32.861311146,13.125000000)
(18.199825562,13.854166667)	(27.100920526,13.854166667)
(33.506310291,13.854166667)	(17.652442724,14.5833333333)
(26.983493351,14.583333333)	(34.010408525,14.5833333333)
(17.149026193,15.312500000)	(26.905163151,15.312500000)
(34.412217344,15.312500000)	(16.680141469,16.041666667)
(26.852248186,16.041666667)	(34.716446438,16.041666667)
(16.226953170,16.770833333)	(26.816165819,16.770833333)
(34.949713398,16.770833333)	(15.792234961,17.500000000)
(26.790936972,17.500000000)	
(35.120383551,17.500000000)	(15.436299909,18.285714286)
(26.771078598,18.285714286)	(35.254545529,18.285714286)
(15.244956121,19.071428571)	(26.755935664,19.071428571)
(35.349493443,19.071428571)	(15.141387938,19.857142857)
(26.744046753,19.857142857)	(35.417133268,19.857142857)
(15.079204104,20.642857143)	(26.734665382,20.642857143)
(35.465800026,20.642857143)	(15.039003950,21.428571429)
(26.727314387,21.428571429)	(35.501085780,21.428571429)
(15.011765462,22.214285714)	(26.721615221,22.214285714)
(35.526807757,22.214285714)	(14.992744571,23.000000000)
(26.717239481,23.000000000)	
(35.545639545,23.000000000)	(14.979179464,23.785714286)
(26.713901550,23.785714286)	(35.559493749,23.785714286)
(14.969334456,24.571428571)	(26.711359293,24.571428571)
(35.569759422,24.571428571)	(14.962055473,25.357142857)

```
(26.709412749,25.357142857)
                              (35.577457506,25.357142857)
(14.956540831,26.142857143)
                              (26.707899614,26.142857143)
(35.583348077,26.142857143)
                              (14.952211501,26.928571429)
(26.706688734,26.928571429)
                              (35.588007423,26.928571429)
(14.948631381,27.714285714)
                              (26.705672919,27.714285714)
(35.591885294,27.714285714)
                              (14.945454545,28.500000000)
(26.704761905,28.500000000)
(35.595348837,28.500000000)
等电位线 66.2V 坐标(Z,R):
(36.206655492,0.000000000) (36.212533055,0.729166667)
(36.230154760,1.458333333) (36.259517825,2.187500000)
(36.300592397,2.916666667) (36.353287975,3.645833333)
(36.417403430,4.375000000) (36.492561153,5.104166667)
(36.578125727,5.833333333) (36.671270623,6.562500000)
(36.770765280,7.291666667) (36.876118130,8.020833333)
(36.984976387,8.750000000) (37.094421442,9.479166667)
(37.200989390,10.208333333)
                              (37.300762067,10.937500000)
(37.389480488,11.666666667)
                              (37.463619571,12.395833333)
                              (37.554375331,13.854166667)
(37.519738216,13.125000000)
(37.565251936,14.583333333)
(37.552401761,15.312500000)
                              (21.870968925,16.041666667)
(22.994728010,16.041666667)
                              (37.519974150,16.041666667)
(20.708741995,16.770833333)
                              (23.962739403,16.770833333)
(37.478286996,16.770833333)
                              (20.162130407,17.500000000)
                              (37.443885690,17.500000000)
(24.357465262,17.500000000)
(19.772354614,18.285714286)
                              (24.544393971,18.285714286)
(37.433476331,18.285714286)
                              (19.506500281,19.071428571)
(24.633661440,19.071428571)
                              (37.440195372,19.071428571)
(19.306306450,19.857142857)
                              (24.678063334,19.857142857)
(37.454505206,19.857142857)
                              (19.156265566,20.642857143)
```

(24.699921677,20.642857143)	
(37.470600446,20.642857143)	(19.046407506,21.428571429)
(24.710230963,21.428571429)	(37.485596277,21.428571429)
(18.965617605,22.214285714)	(24.714688214,22.214285714)
(37.498381249,22.214285714)	(18.906063219,23.000000000)
(24.716263296,23.000000000)	(37.508765082,23.000000000)
(18.862032326,23.785714286)	(24.716486647,23.785714286)
(37.516971004,23.785714286)	(18.829292521,24.571428571)
(24.716129042,24.571428571)	(37.523368451,24.571428571)
(18.804681488,25.357142857)	(24.715563835,25.357142857)
(37.528346030,25.357142857)	(18.785815813,26.142857143)
(24.714959386,26.142857143)	
(37.532259184,26.142857143)	(18.770871992,26.928571429)
(24.714380491,26.928571429)	(37.535415165,26.928571429)
(18.758416837,27.714285714)	(24.713841390,27.714285714)
(37.538075401,27.714285714)	(18.747272727,28.500000000)
(24.713333333,28.500000000)	(37.540465116,28.500000000)
等电位线 75V 坐标(Z,R):	
(42.390003138,0.000000000) (42	.389323598,0.729166667)
(42.387238357,1.458333333) (42	.383592911,2.187500000)
(42.378128400,2.916666667) (42	.370475725,3.645833333)
(42.360148411,4.375000000) (42	.346533188,5.104166667)
(42.328877781,5.833333333) (42	.306275027,6.562500000)
(42.277641800,7.291666667) (42	.241690096,8.020833333)
(42.197761664,8.750000000) (42	.143883119,9.479166667)
(42.078003854,10.208333333)	(41.997725879,10.937500000)
(41.899987475,11.666666667)	(41.780673439,12.395833333)
(41.633889189,13.125000000)	(41.453429053,13.854166667)
(41.237922527,14.583333333)	
(40.952860804,15.312500000)	(40.566026377,16.041666667)

(39.915766147,16.770833333)	(22.236456904,17.500000000)
(22.933536045,17.500000000)	(39.250560232,17.500000000)
(22.179527885,18.285714286)	(22.963873246,18.285714286)
(39.218219869,18.285714286)	(22.137416230,19.071428571)
(22.980091654,19.071428571)	(39.207501198,19.071428571)
(22.107315185,19.857142857)	(22.988199844,19.857142857)
(39.205433725,19.857142857)	(22.085678636,20.642857143)
(22.992169193,20.642857143)	(39.206507018,20.642857143)
(22.069956821,21.428571429)	(22.994075848,21.428571429)
(39.208516532,21.428571429)	
(22.058442837,22.214285714)	(22.994957629,22.214285714)
(39.210599644,22.214285714)	(22.049966448,23.000000000)
(22.995333604,23.000000000)	(39.212446207,23.000000000)
(22.043696941,23.785714286)	(22.995464737,23.785714286)
(39.213976655,23.785714286)	(22.039029171,24.571428571)
(22.995481939,24.571428571)	(39.215205036,24.571428571)
(22.035514515,25.357142857)	(22.995449922,25.357142857)
(39.216179249,25.357142857)	(22.032815349,26.142857143)
(22.995399598,26.142857143)	(39.216955265,26.142857143)
(22.030672689,26.928571429)	(22.995344717,26.928571429)
(39.217586835,26.928571429)	
(22.028881786,27.714285714)	(22.995290490,27.714285714)
(39.218122312,27.714285714)	(22.027272727,28.500000000)
(22.995238095,28.500000000)	(39.218604651,28.500000000)

等电位线 85V 坐标(Z,R):

(49.576426928,0.000000000) (49.573574232,0.729166667) (49.564989813,1.458333333) (49.550588999,2.187500000) (49.530230587,2.916666667) (49.503715029,3.645833333) (49.470782310,4.375000000) (49.431109062,5.104166667) (49.384304708,5.833333333) (49.330210556,6.562500000)

(49.268961245,7.291666667) (49.199236005,8.020833333)

```
(49.120348050,8.750000000) (49.031493990,9.479166667)
(48.931725249,10.208333333)
                              (48.819901467,10.937500000)
(48.694607953,11.666666667)
                              (48.555075937,12.395833333)
(48.400712899,13.125000000)
                              (48.226149086,13.854166667)
(48.032498683,14.583333333)
(47.811460448,15.312500000)
                              (47.556674140,16.041666667)
(47.288992012,16.770833333)
                              (47.049945803,17.500000000)
(46.918409743,18.285714286)
                              (46.829139632,19.071428571)
(46.763140474,19.857142857)
                              (46.712998494,20.642857143)
(46.674265508,21.428571429)
                              (46.644838347,22.214285714)
(46.622551413,23.0000000000)
                              (46.605698366,23.785714286)
(46.592935594,24.571428571)
                              (46.583199979,25.357142857)
(46.575649912,26.142857143)
                              (46.569614990,26.928571429)
(46.564551087,27.714285714)
                              (46.560000000,28.500000000)
等电位线 95V 坐标(Z,R):
(57.903451373,0.000000000) (57.902166145,0.729166667)
(57.898305851,1.458333333) (57.891857826,2.187500000)
(57.882801367,2.916666667) (57.871108375,3.645833333)
(57.856744267,4.375000000) (57.839734713,5.104166667)
(57.820030387,5.833333333) (57.797542218,6.562500000)
(57.772223436,7.291666667) (57.744028840,8.020833333)
(57.712916932,8.750000000) (57.678851739,9.479166667)
                              (57.601748519,10.937500000)
(57.641803721,10.208333333)
(57.558661294,11.666666667)
                              (57.512502276,12.395833333)
(57.463184911,13.125000000)
                              (57.410508614,13.854166667)
(57.354018507,14.583333333)
(57.292746115,15.312500000)
                              (57.225279347,16.041666667)
(57.152895184,16.770833333)
                              (56.800000000,17.500000000)
(57.200000000,17.500000000)
                              (56.800000000,18.285714286)
```

北京理工大学光电学院光电成像器件 CAD

(57.200000000,18.285714286)	(56.800000000,19.071428571)
(57.200000000,19.071428571)	(56.800000000,19.857142857)
(57.200000000,19.857142857)	(56.800000000,20.642857143)
(57.200000000,20.642857143)	(56.800000000,21.428571429)
(57.200000000,21.428571429)	(56.800000000,22.214285714)
(57.200000000,22.214285714)	(56.800000000,23.000000000)
(57.200000000,23.000000000)	(56.800000000,23.785714286)
(57.200000000,23.785714286)	
(56.800000000,24.571428571)	(57.200000000,24.571428571)
(56.800000000,25.357142857)	(57.200000000,25.357142857)
(56.800000000,26.142857143)	(57.200000000,26.142857143)
(56.800000000,26.928571429)	(57.200000000,26.928571429)
(56.800000000,27.714285714)	(57.200000000,27.714285714)
(56.800000000,28.500000000)	(57.200000000,28.500000000)

轴上点坐标: (0.78000000,0) 对应电位: 2.46149964V

轴上点坐标: (1.56000000,0) 对应电位: 4.91827416V

轴上点坐标: (2.34000000,0) 对应电位: 7.36592457V

轴上点坐标: (3.12000000,0) 对应电位: 9.79893459V

轴上点坐标: (3.90000000,0) 对应电位: 12.21287043V

轴上点坐标: (4.68000000,0) 对应电位: 14.60327915V

轴上点坐标: (5.46000000,0) 对应电位: 16.96512413V

轴上点坐标: (6.24000000,0) 对应电位: 19.29355698V

轴上点坐标: (7.02000000,0) 对应电位: 21.58553275V

轴上点坐标: (7.80000000,0) 对应电位: 23.83211937V

轴上点坐标: (8.58000000,0) 对应电位: 26.03044104V

轴上点坐标: (9.36000000,0) 对应电位: 28.17106690V

轴上点坐标: (10.14000000,0)对应电位: 30.25800184V

轴上点坐标: (10.92000000,0)对应电位: 32.28227262V

轴上点坐标: (11.70000000,0)对应电位: 34.23933330V

轴上点坐标: (12.48000000,0)对应电位: 36.12486392V

轴上点坐标: (13.26000000,0)对应电位: 37.93484314V

轴上点坐标: (14.04000000,0)对应电位: 39.66562832V

轴上点坐标: (14.82000000,0)对应电位: 41.31403384V

轴上点坐标: (15.60000000,0)对应电位: 42.87854644V

轴上点坐标: (16.38000000,0)对应电位: 44.35477871V

轴上点坐标: (17.16000000,0)对应电位: 45.74278883V

轴上点坐标: (17.94000000,0)对应电位: 47.04200043V

轴上点坐标: (18.72000000,0)对应电位: 48.25440415V

轴上点坐标: (19.50000000,0)对应电位: 49.38081888V

轴上点坐标: (20.28000000,0)对应电位: 50.42415062V

轴上点坐标: (21.06000000,0)对应电位: 51.38853936V

轴上点坐标: (21.84000000,0)对应电位: 52.27939492V

轴上点坐标: (22.62000000,0)对应电位: 53.10339078V

轴上点坐标: (23.4000000,0)对应电位: 53.86839885V

轴上点坐标: (24.18000000,0)对应电位: 54.57960143V

轴上点坐标: (24.96000000,0)对应电位: 55.25373385V

轴上点坐标: (25.74000000,0)对应电位: 55.89836896V

轴上点坐标: (26.52000000,0)对应电位: 56.52451889V

轴上点坐标: (27.30000000,0)对应电位: 57.15342110V

轴上点坐标: (28.08000000,0)对应电位: 57.77604367V

轴上点坐标: (28.86000000,0)对应电位: 58.41195116V

轴上点坐标: (29.6400000,0)对应电位: 59.07033955V

轴上点坐标: (30.42000000,0)对应电位: 59.75917413V

轴上点坐标: (31.20000000,0)对应电位: 60.48495557V

轴上点坐标: (31.98000000,0)对应电位: 61.25255023V

轴上点坐标: (32.76000000,0)对应电位: 62.06408314V

轴上点坐标: (33.54000000,0)对应电位: 62.92380145V

轴上点坐标: (34.32000000,0)对应电位: 63.82979462V

轴上点坐标: (35.10000000,0)对应电位: 64.78032747V

轴上点坐标: (35.88000000,0)对应电位: 65.76967866V

轴上点坐标: (36.66000000,0)对应电位: 66.79802489V

轴上点坐标: (37.44000000,0)对应电位: 67.85904867V

轴上点坐标: (38.22000000,0)对应电位: 68.94741856V

轴上点坐标: (39.00000000,0)对应电位: 70.05753756V

轴上点坐标: (39.78000000,0)对应电位: 71.18377579V

轴上点坐标: (40.56000000,0)对应电位: 72.32066683V

轴上点坐标: (41.34000000,0)对应电位: 73.46498771V

轴上点坐标: (42.12000000,0)对应电位: 74.60819810V

轴上点坐标: (42.9000000,0)对应电位: 75.74803609V

轴上点坐标: (43.68000000,0)对应电位: 76.88092190V

轴上点坐标: (44.46000000,0)对应电位: 78.00386379V

轴上点坐标: (45.24000000,0)对应电位: 79.11225040V

轴上点坐标: (46.02000000,0)对应电位: 80.20895253V

轴上点坐标: (46.80000000,0)对应电位: 81.29007422V

轴上点坐标: (47.58000000,0)对应电位: 82.35468598V

轴上点坐标: (48.36000000,0)对应电位: 83.40226001V

轴上点坐标: (49.14000000,0)对应电位: 84.43261569V

轴上点坐标: (49.92000000,0)对应电位: 85.44579061V

轴上点坐标: (50.70000000,0)对应电位: 86.44219325V

轴上点坐标: (51.48000000,0)对应电位: 87.42243757V

轴上点坐标: (52.26000000,0)对应电位: 88.38725980V

轴上点坐标: (53.04000000,0)对应电位: 89.33752549V

轴上点坐标: (53.82000000,0)对应电位: 90.27504667V

轴上点坐标: (54.60000000,0)对应电位: 91.19928796V

北京理工大学光电学院光电成像器件 CAD

轴上点坐标: (55.38000000,0)对应电位: 92.11205243V

轴上点坐标: (56.16000000,0)对应电位: 93.01446298V

轴上点坐标: (56.94000000,0)对应电位: 93.90766407V

轴上点坐标: (57.72000000,0)对应电位: 94.79281119V

轴上点坐标: (58.50000000,0)对应电位: 95.67066640V

轴上点坐标: (59.28000000,0)对应电位: 96.54387028V

轴上点坐标: (60.06000000,0)对应电位: 97.41179378V

轴上点坐标: (60.84000000,0)对应电位: 98.27625346V

轴上点坐标: (61.62000000,0)对应电位: 99.13838992V

叠加定理验证

最大绝对误差: 0.00070110 平均绝对误差: 0.00013092 均方根绝对误差: 0.00032874

Line 38:

0.00000000 5.2	5000000 10.5000	00000	15.7500	00000	21.00000000
24.00000000	30.00000000	36.0000	00000	42.0000	00000
48.00000000	54.00000000	56.0000	00000	60.0000	00000
64.00000000	68.00000000	72.0000	00000	76.0000	00000
72 18181818	64 54545455	56 9090	9091	49 2727	72727

41.63636364	34.00000000	37.90909091	45.72727273
53.54545455	61.36363636	69.18181818	77.00000000
77.90909091	79.72727273	81.54545455	83.36363636
85.18181818	87.00000000	87.72727273	89.18181818
90.63636364	92.09090909	93.54545455	95.00000000
95.62500000	96.87500000	98.12500000	99.37500000
Line 36:			
0.00000000 5.2	4931108 10.499	02193 15.749	30652 21.00000000
23.99298148	29.98104666	35.97488743	41.97661857
47.98595766	54.00000000	55.98202139	59.95161574
63.93625443	67.94100230	71.96472768	76.00000000
72.18390194	64.55171353	56.91876192	49.28309380
41.64320135	34.00000000	37.92066607	45.75780575
53.58432807	61.39827035	69.20191783	77.00000000
77.90328089	79.71175329	81.52526270	83.34520113
85.17091049	87.00000000	87.72547006	89.17699727
90.63007926	92.08516017	93.54204807	95.00000000
95.62498495	96.87496391	98.12496399	99.37498517
Line 34:			
0.00000000 5.2	4792058 10.497	03997 15.747	89392 21.00000000
23.98305522	29.95410432	35.93886036	41.94270091
47.96539751	54.00000000	55.95635679	59.88241387
63.84469299	67.85573919	71.91345513	76.00000000
72.18595586	64.55899636	56.93218287	49.29932962
41.65465374	34.00000000	37.93806603	45.80306219
53.64060952	61.44713340	69.22970009	77.00000000
77.89482172	79.68925803	81.49617715	83.31878149
85.15532223	87.00000000	87.72285313	89.17002308
90.62103006	92.07691066	93.53716790	95.00000000
95.62495467	96.87489057	98.12489083	99.37495494
Line 32:			

0.00000000 5.2	24446778 10.492	06546 15.744	130483	21.00000000	
23.96666444	29.90920849	35.87777918	41.883	91040	
47.92904334	54.00000000	55.91314463	59.765	63915	
63.68908375	67.70900467	71.82403269	76.000	00000	
72.18624470	64.56561532	56.95341136	49.331	46166	
41.67971949	34.00000000	37.97037946	45.884	81757	
53.73775201	61.52724370	69.27332846	77.000	00000	
77.88000832	79.65028415	81.44647013	83.274	06299	
85.12903606	87.00000000	87.71829895	89.157	98655	
90.60557336	92.06291169	93.52889980	95.000	00000	
95.62487836	96.87470674	98.12470745	99.374	87919	
Line 30:					
0.00000000 5.2	23565692 10.479	05847 15.734	165608	21.00000000	
23.93832460	29.83055752	35.76784274	41.773	94447	
47.85833708	54.00000000	55.83558091	59.556	34575	
63.40790339	67.43776456	71.65387093	76.000	00000	
72.17632373	64.55945378	56.98688709	49.403	72463	
41.74338274	34.00000000	38.03834165	46.048	48002	
53.91787167	61.66310813	69.34123413	77.000	00000	
77.85152508	79.57720100	81.35581743	83.193	70376	
85.08182523	87.00000000	87.70964262	89.135	56643	
90.57740003	92.03764160	93.51393377	95.000	00000	
95.62467776	96.87422436	98.12422865	99.374	68199	
Line 28:					
0.00000000 5.2	21372581 10.444	93600 15.707	51921	21.00000000	
23.88969567	29.69344229	35.56858670	41.561	01888	
47.70981319	54.00000000	55.69163788	59.175	70698	
62.89520966	66.92231858	71.30791298	76.000	00000	
72.12083896	64.48988861	57.03305007	49.579	95061	
41.92399970	34.00000000	38.20000352	46.401	62926	
54.26013349	61.88434871	69.43091753	77.000	00000	

77.79184703	79.43379054	81.18806876	83.04798382
84.99476597	87.00000000	87.69190552	89.09205264
90.52525671	91.99145633	93.48598606	95.00000000
95.62414439	96.87294262	98.12297062	99.37416919
Line 26:			
0.00000000 5.1	16290967 10.357	20074 15.624	54886 21.00000000
23.80867132	29.46284330	35.21777051	41.14386647
47.36217855	54.00000000	55.40231208	58.48371697
61.98572851	65.93963875	70.53197061	76.00000000
71.86068557	64.18065084	57.07375069	50.02285577
42.49172303	34.00000000	38.66873289	47.21729520
54.90482083	62.20467528	69.47871338	77.00000000
77.64390909	79.14016756	80.88418977	82.78954730
84.82746300	87.00000000	87.64985936	89.00433560
90.43042830	91.90846152	93.43127961	95.00000000
95.62273972	96.86947919	98.11967687	99.37286224
Line 24:			
	06258251 10.152	93414 15.337	21.00000000
	06258251 10.152 29.09623322	93414 15.337 34.64660381	
0.00000000 5.0			
0.00000000 5.0 23.67544434	29.09623322	34.64660381	40.36252086
0.00000000 5.0 23.67544434 46.42476291	29.09623322 54.00000000	34.64660381 54.60966889	40.36252086 57.24408184
0.00000000 5.0 23.67544434 46.42476291 60.50034398	29.09623322 54.00000000 64.15963815	34.64660381 54.60966889 68.52473289	40.36252086 57.24408184 76.00000000
0.00000000 5.0 23.67544434 46.42476291 60.50034398 70.41755798	29.09623322 54.00000000 64.15963815 63.15827881	34.64660381 54.60966889 68.52473289 57.05461045	40.36252086 57.24408184 76.00000000 51.04391462
0.00000000 5.0 23.67544434 46.42476291 60.50034398 70.41755798 44.41483534	29.09623322 54.00000000 64.15963815 63.15827881 34.00000000	34.64660381 54.60966889 68.52473289 57.05461045 40.67170952	40.36252086 57.24408184 76.00000000 51.04391462 49.11907409
0.00000000 5.0 23.67544434 46.42476291 60.50034398 70.41755798 44.41483534 56.03116922	29.09623322 54.00000000 64.15963815 63.15827881 34.00000000 62.57809439	34.64660381 54.60966889 68.52473289 57.05461045 40.67170952 69.17577481	40.36252086 57.24408184 76.00000000 51.04391462 49.11907409 77.00000000
0.00000000 5.0 23.67544434 46.42476291 60.50034398 70.41755798 44.41483534 56.03116922 77.09588399	29.09623322 54.00000000 64.15963815 63.15827881 34.00000000 62.57809439 78.53122906	34.64660381 54.60966889 68.52473289 57.05461045 40.67170952 69.17577481 80.37763244	40.36252086 57.24408184 76.00000000 51.04391462 49.11907409 77.00000000 82.36228337
0.00000000 5.0 23.67544434 46.42476291 60.50034398 70.41755798 44.41483534 56.03116922 77.09588399 84.47149125	29.09623322 54.00000000 64.15963815 63.15827881 34.00000000 62.57809439 78.53122906 87.00000000	34.64660381 54.60966889 68.52473289 57.05461045 40.67170952 69.17577481 80.37763244 87.50614342	40.36252086 57.24408184 76.00000000 51.04391462 49.11907409 77.00000000 82.36228337 88.82411292
0.00000000 5.0 23.67544434 46.42476291 60.50034398 70.41755798 44.41483534 56.03116922 77.09588399 84.47149125 90.26962464	29.09623322 54.00000000 64.15963815 63.15827881 34.00000000 62.57809439 78.53122906 87.00000000 91.76852400	34.64660381 54.60966889 68.52473289 57.05461045 40.67170952 69.17577481 80.37763244 87.50614342 93.31259910	40.36252086 57.24408184 76.00000000 51.04391462 49.11907409 77.00000000 82.36228337 88.82411292 95.00000000
0.00000000 5.0 23.67544434 46.42476291 60.50034398 70.41755798 44.41483534 56.03116922 77.09588399 84.47149125 90.26962464 95.61982377 Line 22:	29.09623322 54.00000000 64.15963815 63.15827881 34.00000000 62.57809439 78.53122906 87.00000000 91.76852400	34.64660381 54.60966889 68.52473289 57.05461045 40.67170952 69.17577481 80.37763244 87.50614342 93.31259910 98.11125436	40.36252086 57.24408184 76.00000000 51.04391462 49.11907409 77.00000000 82.36228337 88.82411292 95.00000000 99.36973313

44.62823099	49.56804988	52.34053889	55.48901155
58.62102744	61.76279240	64.76323244	66.67964137
65.26945334	61.33677285	56.96201742	52.56446606
48.39686847	45.68822362	47.31927945	52.11489078
57.49518417	62.94596796	68.28821246	73.00424862
75.33453816	77.62234988	79.74101965	81.82101906
83.87501676	85.80551349	87.03020175	88.53941971
90.05690879	91.58677730	93.11705175	94.60129365
95.58684527	96.83130143	98.09383434	99.36391287
Line 20:			
0.00000000 4.7	78417460 9.5465	6840 14.2538135	18.85950612
22.83127753	27.95650981	33.05233221	38.07289888
42.90115512	47.29162624	50.20589583	53.53699195
56.54029284	59.21682152	61.32433973	62.25045830
61.68288261	59.61386266	56.87075627	54.07751966
51.81359729	50.99051634	51.98860049	55.02674332
59.05371961	63.42903525	67.75775622	71.63562475
74.08677763	76.73929846	79.07341456	81.24525115
83.29921087	85.20981910	86.55800031	88.21053483
89.81060929	91.38439841	92.93384501	94.44762431
95.49225803	96.77837356	98.06567274	99.35497545
Line 18:			
0.00000000 4.6	55215407 9.2805	2805 13.8595907	71 18.36679549
22.27302225	27.27409519	32.17263000	36.91982175
41.42058536	45.54288581	48.38830368	51.68079898
54.54245612	56.92889204	58.66695219	59.47747574
59.34552334	58.34010177	56.81407215	55.26161026
54.19068208	54.13984435	55.03495844	57.31825756
60.45445517	64.00536034	67.61948908	71.01090168
73.35131508	76.06026804	78.48618903	80.71907452
82.80320384	84.74936469	86.15555413	87.89401680

89.56215904	91.18342734	92.76797553	94.31937335
95.39568710	96.71673961	98.03162598	99.34408458
Line 16:			
0.00000000 4.5	3582111 9.04914	1836 13.5181223	8 17.92377560
21.74218317	26.60995911	31.33694778	35.87503465
40.15264659	44.08737209	46.83574401	50.03118325
52.77448897	55.01273036	56.64509624	57.55859235
57.75036148	57.44531054	56.77832096	56.10469569
55.79654290	56.18767260	57.08945626	59.02038842
61.61197426	64.59210494	67.70358388	70.73874554
72.93470402	75.58465295	78.01932478	80.27730156
82.38821077	84.36985131	85.81433675	87.60956929
89.33024685	90.99511665	92.61667274	94.20355221
95.30496591	96.65536629	97.99645436	99.33265352
Line 14:			
0.00000000 4.4	3424930 8.84697	7666 13.2172843	3 17.52566484
21.25613865	25.99803167	30.57948012	34.95506655
39.06806965	42.85822795	45.51753986	48.61866157
51.27956242	53.45683158	55.09830286	56.16860697
56.61769244	56.80953232	56.74648362	56.68344424
56.88433505	57.57087803	58.50986565	60.26753653
62.52990205	65.12910618	67.88703211	70.65124110
72.71135536	75.26731338	77.66908974	79.92508171
82.04961769	84.05655616	85.52755796	87.36265458
89.12351847	90.82539192	92.48061111	94.09920981
95.22217610	96.59803817	97.96294774	99.32164937
Line 12:			
0.00000000 4.3	4635533 8.67147	7656 12.9544260	1 17.17468411
20.82502110	25.45570530	29.91604694	34.16359572
38.15051874	41.82797702	44.41480703	47.44121558
50.05152746	52.21549129	53.91047455	55.13764970

55.79095556	56.34581912	56.71090037	57.07403257
57.62582165	58.52290919	59.50598293	61.17829937
63.24090629	65.58857485	68.09866290	70.65833697
72.60327463	75.06293151	77.41581433	79.65399409
81.78018178	83.80190369	85.29065675	87.15401895
88.94537157	90.67732311	92.36124013	94.00718964
95.14868414	96.54660145	97.93258831	99.31162223
Line 10:			
0.00000000 4.	27169577 8.5220	8014 12.729885	35 16.87383551
20.45502366	24.99171563	29.35335579	33.50012174
37.38983022	40.98064564	43.51197188	46.48433908
49.06697842	51.24102251	53.00124378	54.36609929
55.17871115	56.00069634	56.67127982	57.33423361
58.13255059	59.18326731	60.20825151	61.84052776
63.78142299	65.96343327	68.30076503	70.70864233
72.56134097	74.93554840	77.23756737	79.45111773
81.57116549	83.59956811	85.09951309	86.98256743
88.79666485	90.55229677	92.25967964	93.92842960
95.08549698	96.50211085	97.90619001	99.30287652
Line 8:			
0.00000000 4.	21026917 8.3990	2791 12.544691	00 16.62549242
20.14977889	24.61025279	28.89372979	32.96254828
36.77838833	40.30424518	42.79486668	45.73025971
48.29982433	50.49314812	52.31511530	53.79221818
54.72596487	55.74291297	56.63088772	57.50479901
58.47703057	59.63984548	60.70079471	62.31645567
64.18326266	66.25666184	68.47485143	70.77255142
72.55457856	74.85888844	77.11527102	79.30348495
81.41371165	83.44355636	84.95004192	86.84639627
88.67702780	90.45070008	92.17654089	93.86358722
95.03329047	96.46520510	97.88422233	99.29558598

Line 6:				
0.00000000 4.3	16224580 8.3027	8108 12.399791	78 16.43124456	
19.91128732	24.31312411	28.53742251	32.54821177	
36.30989492	39.78892197	42.25098711	45.16224806	
47.72704035	49.94071885	51.81395195	53.37679247	
54.39907339	55.55451762	56.59400312	57.61373433	
58.70661914	59.94934467	61.03877783	62.64935725	
64.47159348	66.47489464	68.61280204	70.83320074	
72.56365326	74.81462571	77.03403785	79.19998875	
81.29987788	83.32841638	84.83838079	86.74334893	
88.58554093	90.37236432	92.11202961	93.81302537	
94.99246573	96.43626056	97.86695730	99.28984942	
Line 4:				
0.00000000 4.12780082 8.23374813 12.29587143 16.29201234				
19.74054068	24.10090884	28.28380974	32.25448278	
35.97918664	39.42673503	41.87008720	44.76655292	
47.33056283	49.56111092	51.47205468	53.09489238	
54.17741195	55.42530541	56.56458737	57.67982769	
58.85200713	60.14831768	61.25820245	62.86861238	
64.66501357	66.62506012	68.71169566	70.88120996	
72.57675127	74.79050449	76.98308314	79.13202784	
81.22322881	83.24958996	84.76119723	86.67139997	
88.52114846	90.31687538	92.06610667	93.77689489	
94.96322972	96.41548879	97.85454851	99.28572357	
Line 2:				
0.00000000 4.10707808 8.19221719 12.23336825 16.20830470				
19.63796854	23.97364159	28.13205218	32.07918057	
35.78236357	39.21180703	41.64460507	44.53314529	
47.09765853	49.33912365	51.27297763	52.93122461	
54.04870688	55.34962820	56.54567473	57.71505192	
58.93229199	60.25945988	61.38162046	62.99313319	

64.77618155	66.71277068	68.77091925	70.91158409
72.58697134	74.77882142	76.95522027	79.09359367
81.17910295	83.20368007	84.71594316	86.62892506
88.48292616	90.28379468	92.03863538	93.75522461
94.94566842	96.40299416	97.84707733	99.28323842
Line 0:			
0.00000000 4.1	0015949 8.17834	1468 12.2124956	8 16.18036843
19.60374363	23.93121174	28.08151751	32.02087758
35.71700078	39.14053717	41.56993086	44.45598031
47.02081334	49.26603519	51.20756641	52.87750825
54.00645689	55.32466541	56.53913823	57.72606665
58.95793079	60.29518614	61.42143789	63.03350444
64.81243216	66.74159562	68.79061193	70.92193247
72.59073683	74.77536453	76.94636236	79.08115923
81.16469864	83.18860335	84.70103237	86.61488212
88.47025346	90.27280311	92.02949340	93.74800373
94.93981067	96.39882169	97.84458102	99.28240800

附录二:程序源代码

#include "stdio.h"

#include <fstream>

#include <math.h>

#include <string.h>

#include <iomanip>

#include <graphics.h>

#include <conio.h>

#include <windows.h>

#include <vector>

#define factor 10

#define th 50

#define xFactor1 5

#define xFactor2 685

using namespace std;

vector<eq> equipotential;

double e[101][51]; //电场中电势分布 //电极个数 int n; double thick; //电极厚度 double esp; //迭代控制精度 double z[9]; //相邻电极之间距离 int N[9]; //相邻电极之间划分的步长数 //电极之间划分总的步长数 int NS=0; //电极电位 double V[9]; //电极内孔径半径 double r1; //电极内孔边沿到封闭边界处径向距离 double r2; int M1,M2; //r1 与 r2 范围内等步长划分的网格数 //NST=1 时全部打印,NST=2 时隔行隔离打印,以此类推 int NST; //轴上电位做等距插值时的步长数 int INS; //要求扫描搜索等电位线值的个数 int m; //要求扫描搜索等电位线的电位值 double EV[20]; //要求扫描搜索等电位线的电位间隔值 double deltaV; //是否为认证叠加定理 bool superB=0; struct Equipotential { double r; double z; **}**; typedef vector<Equipotential> eq; //等电位线存放矢量

vector<eq> equipotential1; //轴上点等电位线存放矢量

```
/************系数 C 计算*************/
inline void Cal_H12(int i,double& h1,double& h2)
{
    int ii;
    int sumN=0;
    if (i==0)
    {
         h1=0;
         h2=z[0]/N[0];
         return;
    }
    for (ii=0;ii<n;ii++)
    {
         if (i==N[ii]+sumN)
         {
             h1=z[ii]/N[ii];
             h2=thick;
              break;
         }
         if (i==N[ii]+1+sumN)
         {
             h1=thick;
             h2=z[ii+1]/N[ii+1];
              break;
         }
```

```
if (i>sumN&&i<sumN+N[ii])
         {
              h1=z[ii]/N[ii];
              h2=h1;
              break;
         }
         sumN+=N[ii]+1;
    }
}
inline void Cal_H34(int j,double& h3,double& h4)
{
    if (j==0)
    {
         h3=0;
         h4=r1/M1;
         return;
    }
    if (j<M1)
    {
         h3=r1/M1;
         h4=h3;
    }
    else
    {
         if(j==M1)
         {
              h3=r1/M1;
              h4=r2/M2;
```

```
}
         else
         {
             h3=r2/M2;
             h4=h3;
         }
    }
}
/*************线性插值函数************/
void Linear_Interpolation(int a ,int b,double* e)
{
    int i;
    double k=(e[b*51+M1+M2]-e[a*51+M1+M2])/(b-a);
    double t=e[b*51+M1+M2]-b*k;
    for (i=a+1;i<b;i++)
    {
         e[i*51+M1+M2]=i*k+t;
    }
}
void Linear_Interpolation(int a,int b,double vot,double& zd,double& rd)
{
    int i;
    double h1,h2,h3,h4;
    double zj=0,zj1=0;
    for (i=0;i<=a;i++)
    {
         Cal_H12(i,h1,h2);
         zj+=h1;
```

```
}
    zj1=zj+h2;
    zd=(vot==e[a][b])?zj:zj+(zj1-zj)*(vot-e[a][b])/(e[a+1][b]-e[a][b]);
    rd=0;
    for (i=0;i<=b;i++)
        Cal_H34(i,h3,h4);
        rd+=h3;
    }
}
void Equipotential_Print(double Vot,vector<eq>& equipotential)
{
    int i,j;
    ofstream FOut;
    double rd,zd;
    vector<Equipotential> tep;
    int number=0;
    FOut.open("data.res",ios::app);
    FOut<<"等电位线"<<Vot<<"V 坐标(Z,R): "<<endl;
    tep.clear();
    FOut<<setiosflags(ios::fixed)<<setprecision(9);
    for (i=0;i<=M1+M2;i++)
    {
        for (j=0;j<NS+n-1;j++)
        {
```

```
if ((Vot-e[j][i])*(e[j+1][i]-Vot)>0)
{
     Linear_Interpolation(j,i,Vot,zd,rd);
     FOut<<"("<<zd<<","<<rd<<")"<<"\t";
     number++;
     if (number>20)
          number=0;
          FOut<<endl;
    }
     Equipotential t;
    t.r=rd;
     t.z=zd;
     tep.push_back(t);
}
if (Vot==e[j][i])
{
     Linear_Interpolation(j,i,Vot,zd,rd);
     FOut<<"("<<zd<<","<<rd<<")"<<"\t";
     number++;
     if (number>20)
     {
          number=0;
          FOut<<endl;
    }
     Equipotential t;
    t.r=rd;
    t.z=zd;
    tep.push_back(t);
}
```

}

```
}
    equipotential.push_back(tep);
    FOut<<endl<<endl;
    FOut.close();
}
/***********************************/
void File_ReadPrint()
{
                                  //文件变量
    ifstream FIn;
    ofstream FOut;
    int i;
    FIn.open("data2.dat",ios::in);
    FOut.open("data.res",ios::out);
    FIn>>thick>>n;
    FOut<<"电极个数: "<<n<<endl<<"电极厚度: "<<thick<<endl<<"电极位置: ";
    for (i=0;i<n;i++)
    {
        Fln>>z[i];
        FOut<<z[i]<<" ";
    }
    FOut<<endl<<"相邻电极之间划分的步长数:";
    for (i=0;i<n;i++)
    {
        FIn>>N[i];
        FOut<<N[i]<<" ";
```

```
NS+=N[i];
}
FOut<<endl<<"电极电位:";
for (i=0;i<n;i++)
   FIn>>V[i];
    FOut<<V[i]<<" ";
}
FOut<<endl;
FIn>>r1>>M1>>r2>>M2>>esp>>NST>>INS>>m;
FOut<<"电极内孔径半径: "<<r1<<endl;
FOut<<"r1 范围内等步长划分网格数: "<<M1<<endl;
FOut<<"电极内孔边沿到封闭边界径向距离: "<<r2<<endl;
FOut<<"r2 范围内等步长划分的网格数: "<<M2<<endl;
if (m)
{
    FOut<<"要求扫描的等电位线电位值:";
   for (i=0;i<m;i++)
   {
       FIn>>EV[i];
       FOut<<EV[i];
   }
    FOut<<endl;
}
else
{
    FIn>>deltaV;
   FOut<<"要求扫描的等电位线的电位值间隔: "<<deltaV<<endl<<endl;
```

```
}
    FIn.close();
    FOut.close();
}
void File_Print(double* e)
{
    ofstream FOut;
    int i,j;
    FOut.open("data.res",ios::app);
    FOut<<endl;
    FOut<<endl;
    for (i=M1+M2;i>=0;i-=NST)
    {
        FOut<<setprecision(0);
        FOut<<"Line "<<i<<":"<<endl;
        FOut<<setiosflags(ios::fixed)<<setprecision(8);
        for (j=0;j<=NS+n-1;j+=NST)
        {
             FOut<<e[j*51+i]<<"\t";
        }
        FOut<<endl;
    }
    FOut<<endl<<endl;
    FOut.close();
}
void File_Print(double vot,double x,vector<eq>& equipotential)
{
```

```
ofstream FOut;
    FOut.open("data.res",ios::app);
    FOut<<endl;
    FOut<<setiosflags(ios::fixed)<<setprecision(8);
    FOut<<"轴上点坐标: ("<<x<<","<<0<<")\t"<<"对应电位: "<<vot<<"V"<<endl;
    FOut.close();
    Equipotential_Print(vot,equipotential);
}
inline void Initialization(double* e,double* V)
{
    int i,j;
    int sumN=0;
    void Linear_Interpolation(int a,int b,double* e);
    for (i=0;i<n-1;i++)
    {
        sumN+=N[i];
        for (j=M1;j<=M1+M2;j++)
        {
             e[sumN*51+j]=V[i];
            e[(sumN+1)*51+j]=V[i];
        }
        Linear_Interpolation(sumN-N[i],sumN,e);
        sumN++;
    }
    sumN+=N[n-1];
    for (j=0;j<=M1+M2;j++)
    {
```

```
e[sumN*51+j]=V[n-1];
   }
    Linear_Interpolation(sumN-N[i],sumN,e);
}
/*************超松弛迭代算法************/
void SOR(double* e,double *V)
{
                                             //电势场的 C 参数
    double c1[101],c2[101],c3[51],c4[51];
                                                      //左右下上的间距
    double h1,h2,h3,h4;
   int i,j,k;
    double w=1,wn=0,un=0,times=1,circles=1,nmd=0,wlast=0;
                                                                 //最佳迭代
加速因子相关变量
                                                  //是否找到最佳迭代因子,0 为
    bool wb=0;
没有
    bool wbb=0;
                                                  //残差最大值
    double EMax=0;
    double ESum1=0,ESum2=0;
                                                          //电势总值
   double E1=0,E2=0;
                                                  //前后两次残差均值
    double Num=(NS+n-2)*M1+M2*(NS-n);
                                                                         //
电势点数
                                                  //上一次电势
    double elast=0;
   int sumN=0;
   ofstream FOut;
    FOut.open("data.res",ios::app);
```

```
memset(c1,0,sizeof(c1));
memset(c2,0,sizeof(c2));
memset(c3,0,sizeof(c3));
memset(c4,0,sizeof(c4));
double step[101]={0};
                                                              //循环 z 轴
for (i=1;i<NS+n-1;i++)
{
    Cal_H12(i,h1,h2);
    c1[i]=2/h1/(h1+h2);
     c2[i]=2/h2/(h1+h2);
    step[i]=h1+step[i-1];
}
if(!superB)
{
     FOut<<setiosflags(ios::fixed)<<setprecision(4);
     step[i]=step[i-1]+h2;
     FOut<<endl;
     FOut<<"Z 轴上网格点坐标: "<<endl;
    for (j=0;j<=NS+n-1;j++)
    {
         FOut<<step[j]<<"\t";
    }
     FOut<<endl;
}
memset(step,0,sizeof(step));
                                                         //循环 r 轴
for (j=0;j<M1+M2;j++)
{
    Cal_H34(j,h3,h4);
     if (j==0)
```

```
{
         c3[j]=0;
         c4[j]=4/h4/h4;
    }
    else
    {
         if (j<=M1)
         {
              c3[j]=(2*j*r1/M1-h4)/(j*r1/M1)/h3/(h3+h4);
              c4[j]=(2*j*r1/M1+h3)/(j*r1/M1)/h4/(h3+h4);
         }
         else
         {
              c3[j]=(2*((j-M1)*r2/M2+r1)-h4)/((j-M1)*r2/M2+r1)/h3/(h3+h4);
              c4[j]=(2*((j-M1)*r2/M2+r1)+h3)/((j-M1)*r2/M2+r1)/h4/(h3+h4);
         }
    }
    step[j+1]=step[j]+h4;
}
if(!superB)
{
     FOut<<setiosflags(ios::fixed)<<setprecision(4);
     FOut<<"R 轴上网格点坐标: "<<endl;
    for (j=0;j<=M1+M2;j++)
    {
         FOut<<step[j]<<"\t";
    }
     FOut<<endl<<endl;
}
```

```
for (;;)
                      {
                                            if (circles==1&&times==1)
                                           {
                                                                  w=1;
                                           }
                                           if (circles==2&&times==1)
                                                                  w=1.375;
                                           }
                                           /*if(superB)
                                           {
                                                                  w=1;
                                           }*/
                                                                                                                                                                                                                            //循环 z 轴
                                           for (i=1;i<NS+n-1;i++)
                                           {
                                                                                                                                                                                                                                                                         //循环 r 轴下半部分
                                                                 for (j=0;j<M1;j++)
                                                                                       elast=e[i*51+j];
                     e[i*51+j] = (1-w)*elast + w*(c1[i]*e[(i-1)*51+j] + c2[i]*e[(i+1)*51+j] + c3[j]*e[i*51+j-1] + c4[j]*e[i*51+j-1] + c4[j]*e[i*5
51+j+1])/(c1[i]+c2[i]+c3[j]+c4[j]);
                                                                                       ESum2+=fabs(e[i*51+j]-elast);
                                                                                       EMax=(fabs(e[i*51+j]-elast)>EMax)?(fabs(e[i*51+j]-elast)):EMax;
                                                                 }
                                                                                                                                                                                                                                                                      //循环 r 轴上半部分
                                                                 for (j=M1;j<M1+M2;j++)
                                                                 {
                                                                                       for (k=0;k<n;k++)
                                                                                       {
                                                                                                              if ((i==N[k]+sumN||i==sumN+N[k]+1)/*&&(V[k]!=0)*/)
```

```
{
                                                                                                                             sumN=0;
                                                                                                                             goto JumpLoop;
                                                                                                         }
                                                                                                         sumN+=N[k]+1;
                                                                                  }
                                                                                   elast=e[i*51+j];
                     e[i*51+j] = (1-w)*elast + w*(c1[i]*e[(i-1)*51+j] + c2[i]*e[(i+1)*51+j] + c3[j]*e[i*51+j-1] + c4[j]*e[i*51+j-1] + c4[j]*e[i*5
51+j+1)/(c1[i]+c2[i]+c3[j]+c4[j]);
                                                                                    ESum2+=fabs(e[i*51+j]-elast);
                                                                                    EMax=(fabs(e[i*51+j]-elast)>EMax)?(fabs(e[i*51+j]-elast)):EMax;
                                                                                   sumN=0;
                                                              }
JumpLoop:
                                                               __asm
                                                              {
                                                                                   nop;
                                                               }
                                         }
                                         if(!superB)
                                         {
                                                               FOut<<setiosflags(ios::fixed)<<setprecision(0);
                                                               FOut<<"迭代轮次: "<<circles<<"\t"<"迭代次数: "<<times<<"\t";
                                                               FOut<<setprecision(8);
                                                               FOut<<"迭代因子: "<<w<<"\t"<<"最大残差: "<<EMax<<endl;
                                         }
                                         if (circles==1&&times==1)
                                         {
                                                               circles++;
                                                               ESum2=0;
```

```
E1=0;
    E2=0;
    ESum1=0;
    times=0;
}
if (!wb)
{
    if (times==11)
    {
        E1=ESum2/Num;
        ESum2=0;
    }
    if (times==12)
    {
        E2=ESum2/Num;
    }
    if (times>=12)
    {
        if(!superB)
        {
             FOut<<setiosflags(ios::fixed)<<setprecision(8);
             FOut<<"前后两次平均残差: "<<E1<<"和"<<E2<<"\t";
             FOut<<"最大残差: "<<EMax<<"\t"<<endl;
        }
        wlast=w;
        nmd=E2/E1;
        un=(nmd+wlast-1)/(sqrt(nmd)*wlast);
        if(un<=1)
             wn=2/(1+sqrt(1-un*un));
```

```
w=1.25*wn-0.5;
         wb=((fabs((w-wlast)/(2-wlast))<0.05)&&wbb)?1:0;
         wbb=(fabs((w-wlast)/(2-wlast))<0.05)?1:0;
         circles++;
         times=0;
         ESum1=0;
         ESum2=0;
         E1=0;
         E2=0;
    }
}
if (EMax<esp)
{
    break;
}
else
{
    if(wb)
    {
         if(times>=12)
         {
              times=0;
              circles++;
         }
    }
    EMax=0;
    ESum2=0;
    /*if(superB)
    {
```

```
File_Print(e);
             }*/
        }
        times++;
    }
    FOut.close();
}
void Vot_inline(vector<eq>& equipotential)
{
    double dis=0,xFactor=1;
                              //阴极到荧光屏总距离
    double deltaDis=0; //每个步长距离
    int i,j,k;
    double L;
    double xx[101],h1,h2;
    memset(xx,0,sizeof(xx));
    initgraph(700, 350);
                       // 这里和 TC 略有区别
    for (i=0;i<n;i++)
    {
        dis+=z[i];
    }
    dis+=(n-1)*thick;
    line(1+xFactor,1,1+xFactor,V[n-1]);
    line(dis*factor+xFactor,1,dis*factor+xFactor,V[n-1]*factor);
    setlinestyle(1,0,1);
    line(1+xFactor,1,dis*factor+xFactor,1);
    line (1 + x Factor, V[n-1] * factor, dis * factor + x Factor, V[n-1] * factor); \\
    for (i=0;i<NS+n-1;i++)
```

```
{
     dis+=z[i];
     Cal_H12(i,h1,h2);
     xx[i]=(i==0)?0:h1+xx[i-1];
}
xx[NS+n-1]=xx[NS+n-2]+h2;
deltaDis=xx[NS+n-1]/INS;
for (i=1;i<INS;i++)
{
     double x=i*deltaDis;
     double X[3]={0},XV[3]={0};
     for (j=1;xx[j]< x;j++);
     if(xx[j]==x)
     {
          L=e[j][0];
          break;
     }
     for (k=0;k<3;k++)
     {
          if(j-1-k<0)
          {
               X[k]=xx[j];
               XV[k]=e[j][0];
               j++;
               continue;
          }
          if(j>=n)
          {
               X[k]=xx[j-1-k];
               XV[k]=e[j-1-k][0];
```

```
continue;
                                                        }
                                                         if(fabs(xx[j]-x)>fabs(xx[j-1-k]-x))
                                                        {
                                                                           X[k]=xx[j-1-k];
                                                                          XV[k]=e[j-1-k][0];
                                                        }
                                                         else
                                                         {
                                                                           X[k]=xx[j];
                                                                           XV[k]=e[j][0];
                                                                          j++;
                                                        }
                                     }
                   L = (x - X[1]) * (x - X[2]) * XV[0] / (X[0] - X[1]) / (X[0] - X[2]) + (x - X[0]) * (x - X[2]) * XV[1] / (X[1] - X[0]) / (X[1] - X[2]) + (x - X[2]) * XV[1] / (X[1] - X[0]) / (X[1] - X[2]) + (x - X[2]) * XV[1] / (X[1] - X[2]) / (X[1] - X[2]) + (x - X[2]) * XV[1] / (X[1] - X[2]) / (X[1]
)+(x-X[0])*(x-X[1])*XV[2]/(X[2]-X[0])/(X[2]-X[1]);
                                      File_Print(L,x,equipotential);
                                      if(i==1) {moveto(0,V[n-1]);lineto(x*factor,V[n-1]-L);}
                                      else lineto(x*factor,V[n-1]-L);
                  }
                  system("pause");
}
 void Superposition_theorem()
{
                                                                                                                                                                                           //当前电极电位
                  double ee[101][51];
                  double esum[101][51];
                                                                                                                                                                       //各个电极叠加结果
                   double VV[9];
                                                                                                                                                                        //电极强度,不用计算的置 0
                  int i,j,k;
                   double maxAbr=0,aveAbr=0,satAbr=0;
```

```
memset(esum,0,sizeof(esum));
superB=1;
for(i=0;i<n;i++)
{
     memset(ee,0,sizeof(ee));
     for(j=0;j<n;j++)
     {
          VV[j]=(j==i)?V[j]:0;
     }
     Initialization(ee[0],VV);
     SOR(ee[0],VV);
     //File_Print(ee[0]);
     for(j=0;j<101;j++)
     {
          for(k=0;k<51;k++)
          {
               esum[j][k]+=ee[j][k];
          }
     }
}
memset(ee,0,sizeof(ee));
Initialization(ee[0],V);
for(j=0;j<101;j++)
{
     for(k=0;k<51;k++)
```

```
{
             esum[j][k]=(ee[j][k]==0)?esum[j][k]:ee[j][k];
             maxAbr=(fabs(esum[j][k]-e[j][k])>maxAbr)?fabs(esum[j][k]-e[j][k]):maxAbr;
             aveAbr+=fabs(esum[j][k]-e[j][k]);
         }
    }
    aveAbr/=(NS+n-2)*M1+M2*(NS-n);
    for(j=0;j<101;j++)
    {
         for(k=0;k<51;k++)
         {
             satAbr+=((esum[j][k]-e[j][k])-aveAbr)*((esum[j][k]-e[j][k])-aveAbr);
         }
    }
    satAbr/=(NS+n-2)*M1+M2*(NS-n);
    satAbr=sqrt(satAbr);
    ofstream FOut;
    FOut.open("data.res",ios::app);
    FOut<<setiosflags(ios::fixed)<<setprecision(8);
    FOut<<endl;
    FOut<<"最大绝对误差: "<<maxAbr<<"\t 平均绝对误差: "<<aveAbr<<"\t 均方根绝对误差:
"<<satAbr<<endl;
    FOut.close();
    File_Print(esum[0]);
```

}

```
void drawBG(int xFactor)
{
     int i;
     double dis=0;
     for (i=0;i<n;i++)
     {
          dis+=z[i];
     }
     dis+=(n-1)*thick;
     line(1+xFactor,1,1+xFactor,(r1+r2)*factor);
     line(dis*factor+xFactor,1,dis*factor+xFactor,(r1+r2)*factor);
     setlinestyle(1,0,1);
     line(1+xFactor,1,dis*factor+xFactor,1);
     line(1+xFactor,(r1+r2)*factor,dis*factor+xFactor,(r1+r2)*factor);
     double sumZ=0;
     setlinestyle(0,0,2);
     for (i=0;i<n-1;i++)
     {
          sumZ+=z[i];
          moveto(sumZ*factor+xFactor,1);
          lineto(sumZ*factor+xFactor,r2*factor);
          lineto((sumZ+thick)*factor+xFactor,r2*factor);
          lineto((sumZ+thick)*factor+xFactor,0);
          sumZ+=thick;
     }
}
```

```
void draw_EquipotentialLine(vector<eq> equipotential,int xFactor)
{
    vector<eq>::iterator iter1;
    vector<Equipotential>::iterator iter2,temp,t;
     double lastZ,lastR;
     for (iter1=equipotential.begin();iter1!=equipotential.end();iter1++)
     {
         lastR=-1;
         lastZ=-1;
         for (iter2=iter1->begin();iter2!=iter1->end()-1;iter2++)
         {
              double d;
              double dMin=10000000;
              bool check=0;
              for (temp=iter2+1;temp!=iter1->end();temp++)
              {
     d=(iter2->r-temp->r)*(iter2->r-temp->r)+(temp->z-iter2->z)*(temp->z-iter2->z);
                   if (temp==iter2+1)
                   {
                        dMin=d;
                        continue;
                   }
                   if (d<dMin)
                   {
                        dMin=d;
                        t=temp;
                        check=1;
                   }
              }
```

```
if (check)
               {
                    Equipotential change=*t;
                    iter1->erase(t);
                    iter2++;
                    iter2=iter1->insert(iter2,change);
                    iter2--;
               }
          }
    }
     for (iter1=equipotential.begin();iter1!=equipotential.end();iter1++)
     {
          temp=iter1->begin();
          moveto(temp->z*factor+xFactor,((r1+r2)-temp->r)*factor);
          for (iter2=iter1->begin()+1;iter2!=iter1->end();iter2++)
          {
               double
d=(iter2->r-temp->r)*(iter2->r-temp->r)+(temp->z-iter2->z)*(temp->z-iter2->z);\\
               temp=iter2;
               if (d>th)
               {
                    moveto(iter2->z*factor+xFactor,(r1+r2)*factor-iter2->r*factor);
               }
               else
               {
                    lineto(iter2->z*factor+xFactor,(r1+r2)*factor-iter2->r*factor);
               }
          }
```

```
}
}
/************主程序************/
int main(void)
{
    File_ReadPrint();
    Initialization(e[0],V);
    SOR(e[0],V);
    File_Print(e[0]);
    if (!m)
    {
         double findV=deltaV;
         while (findV<V[n-1])
         {
              Equipotential_Print(findV,equipotential);
              findV+=deltaV;
         }
    }
    else
    {
         int i;
         for (i=0;i<m;i++)
         {
              Equipotential_Print(EV[i],equipotential);
         }
    }
    Vot_inline(equipotential1);
```

```
Superposition_theorem();

initgraph(600, 350);  // 这里和 TC 略有区别
drawBG(1);
//drawBG(700);
setlinestyle(0,0,1);
draw_EquipotentialLine(equipotential,1);
//draw_EquipotentialLine(equipotential1,700);
system("pause");
saveimage("image.bmp");
closegraph();  // 关闭图形界面

return 0;
}
```