Corso di Laurea in Informatica - A.A. 2018 - 2019 Esame di Fisica - 21/06/2019

Esercizio 1

In un sistema di assi cartesiano (x, y) siano dati i punti A=(-1,-8) e B=(7,7). Scrivere il vettore \vec{r}_{AB} che va dal punto A al punto B e determinarne il modulo. Determinare quale tra i seguenti vettori $\vec{v}_1 = 15\vec{i} - 8\vec{j}$ e $\vec{v}_2 = 8\vec{i} - 15\vec{j}$ forma un angolo di $\frac{\pi}{2}$ con \vec{r}_{AB} .

Esercizio 2

Consideriamo il piano xy. Nell'origine c'è una carica $q_A = Q$, nel punto $B = (\ell, 0)$ ($\ell > 0$) c'è una carica $q_B = Q/\sqrt{2}$ e nel punto $L = (0, -\ell)$ c'è un filo che si estende infinitamente nella direzione dell'asse z. Calcolare:

- a) Il potenziale elettrico nel punto L sapendo che il potenziale all'infinito è nullo
- b) Il campo elettrico \vec{E} nel punto L
- c) Nel caso in cui il filo sia percorso da una corrente I nella direzione $-\vec{k}$, il campo magnetico nell'origine
- d) Nel caso in cui il filo sia percorso da una corrente I nella direzione \vec{k} , la forza totale sulla carica q_A se essa si muove con velocità $\vec{v}_A = u\vec{i}$
- e) Nel caso in cui il filo fosse uniformemente carico con densità di carica λ , il campo elettrico \vec{E} generato dal filo nell'origine

Esercizio 3

Il circuito in figura si trova inizialmente in condizioni stazionarie con l'interruttore T aperto. All'istante t=0 s l'interruttore T viene chiuso. Determinare:

- a) la corrente i_0 immediatamente prima di chiudere T
- b) la differenza di potenziale $V_A V_B$ subito dopo la chiusura di T
- c) la corrente i_0 alla stazionarietà
- d) la differenza di potenziale $V_A V_B$ che comparirebbe ai capi di L se alla stazionarietà venisse nuovamente aperto T

