Simulation à événements discrets

4A STI

Simulation

- Un programme qui crée un environnement virtuel afin d'étudier un problème réel
- Situations d'utilisation
 - Expérimentation réel est difficile à réaliser
 - Guerre, système de banque
 - Moins cher
 - RTL simulation pour IC design
 - Planning d'autoroute

•

Etapes de simulation

Rappel : Modèle statistique dans la simulation

Un monde : aléatoire vs statique

Modélisation:

- Choisir une distribution paramétrique
- Estimer le(s) paramètre(s)
- Tester la distribution obtenue

Rappel:

• Quelques distributions importantes

Variables aléatoires discrètes

Une variable aléatoire X est une variable aléatoire si le nombre de valeurs possibles de X est finis ou dénombrable.

Exemples: considérons des clients dans une boutique

- X: le nombre de clients arrivés chaque jour dans la boutique
- R_X : les valeurs possibles de X (espèce de X)

$$\{0,1,2,...\}$$

- $P(X = x_i) = p(x_i)$: la probabilité de $X = x_i$
- $p(x_i)$, i = 0,1,2 ... doivent satisfaire :
 - $p(x_i) \ge 0 \ \forall i$
 - $\sum_{i=0}^{\infty} p_i = 1$
- La collection des paires $[x_i, p(x_i)]$ pour , i = 0,1,2 ... est appelée la probabilité de distribution de X et $p(x_i)$ est appelé la fonction de masse de X.

Variables aléatoires continues

Une variable aléatoire X est une variable aléatoire si son espèce R_X est un intervalle ou une collection des intervalles La probabilité de $X \in [a,b]$ est donnée par:

$$P(a \le X \le b) = \int_{a}^{b} f(x)dx$$

f(x) est la fonction de densité de X et doit satisfaire

- $f(x) \ge 0 \quad \forall x \in R_X$
- $\int_{R_X} f(x) dx = 1$
- f(x) = 0 si $x \notin R_x$

Propriétés :

- $P(X = x_0) = 0$ parce que $\int_{x_0}^{x_0} f(x) dx = 0$
- $P(a \le X \le b) = P(a < X \le b) = P(a \le X < b) = P(a < X < b)$

Variables aléatoires continues

Exemple: la durée de vie d'une machine X est une variable aléatoire continue avec la densité

$$f(x) = \begin{cases} \frac{e^{-\frac{x}{2}}}{2} & x \ge 0\\ 0 & sinon \end{cases}$$

- X suit une loi exponentielle avec une moyenne de 2 ans
- La probabilité de la durée de vie de cette machine est entre 2 et 3 ans est donnée par

$$P(2 < X < 3) = \frac{1}{2} \int_{2}^{3} e^{-x/2} dx = 0,14$$

Fonction de distribution

- Une fonction F(x) est appelé une fonction de distribution si $F(x) = P(X \le x)$
 - Si X est discrète, alors $F(x) = \sum_{x_i \le x} p(x_i)$
 - Si X est continue, alors $F(x) = \int_{-\infty}^{x} f(t)dt$
- Propriétés
 - F est une fonction non-décroissante: si a < b, alors $F(a) \le F(b)$
 - $\lim_{x \to \infty} F(x) = 1$
 - $\lim_{x \to -\infty} F(x) = 0$
- La fonction de distribution porte toutes les informations sur la distribution de *X*.

Fonction de distribution

Exemple : la durée de vie d'une machine a une fonction de distribution

$$F(x) = \frac{1}{2} \int_{0}^{x} e^{-t/2} dt = 1 - e^{-\frac{x}{2}}$$

- La probabilité que la machine fonctionne moins de 2 ans $P(0 \le X < 2) = F(2) F(0) = F(2) = 1 e^{-1} = 0,632$
- La probabilité que la machine fonctionne entre 2 et 3 ans $P(2 < X < 3) = F(3) F(2) = \left(1 e^{-\frac{3}{2}}\right) (1 e^{-1}) = 0,145$

Espérance

L'espérance de X: E[X]

- Si X est discrète, $E[X] = \sum_i x_i p(x_i)$
- Si X est continue, $E[X] = \int_{-\infty}^{\infty} x f(x) dx$
- La moyenne ou le moment de degré 1 de X
- Une mesure de la tendance centrale et la gravité centrale

Variance

La variance de X: Var(X)

- $Var(X) = E(X E(X))^2$
- $Var(X) = E(X^2) E(X)^2$
- Une mesure de la dispersion ou la variation des valeurs possibles de *X* autour de l'espérance

Espérance & Variance

Exemple: la durée de vie de la machine X

Espérance

$$E(X) = \frac{1}{2} \int_{0}^{\infty} xe^{-x/2} dx = 2$$

Variance

$$E(X^{2}) = \frac{1}{2} \int_{0}^{\infty} x^{2} e^{-x/2} dx = 8$$

$$Var(X) = E(X^{2}) - E(X)^{2} = 4$$

$$\sigma = \sqrt{Var(X)} = 2$$

Distributions discrètes

Si X est une variable aléatoire discrète, on donne la loi de probabilité de X en donnant une suite (pk) où $p_k = P(X = k)$.

- Exemples
 - Loi de Bernoulli
 - Loi binomiale
 - Loi binomiale négative
 - Loi géométrique
 - Loi de Poisson

Expériences de Bernoulli

 $\, \cdot \,$ Considérons une expérience de n essais, chaque essai peut être un succès ou une défaillance

peut être un succès ou une défaillance
$$X_i = \begin{cases} 1 & \text{si le } i - \text{ème essai est un succès} \\ 0 & \text{si le } i - \text{ème essai est une déaillance} \end{cases}$$

La distribution de Bernoulli d'un essai X_i , i = 1,2,... est

$$p_i(x_i) = p(x_i) = \begin{cases} p, & x_i = 1\\ 1 - p = q, & x_i = 0 \end{cases}$$

• Processus de Bernoulli

L'ensemble de n expériences de Bernoulli indépendantes $p(x_1, x_2, ..., x_n) = p_1(x_1)p_2(x_2)...p_n(x_n)$

Loi de Bernoulli

On dit que X suit la loi de Bernoulli de paramètre p si

$$P(X = 1) = p$$
$$P(X = 0) = 1 - p$$

On a alors $\forall x \in \{0,1\}$

$$P(X = x) = p^{x}(1-p)^{1-x}$$

• Espérance

$$E(X) = p$$

Variance

$$Var(X) = p(1-p)$$

• Exemple: pour un événement A, $1_A \sim B(P(A))$

Loi binomiale

Considérons $X_1, ..., X_n$ n variables suivant la loi de Bernoulli de paramètre p indépendantes.

La somme de X_1, \dots, X_n ou le nombre de succès $S = X_1 + \dots + X_n$

suit une loi binomiale de paramètres $n \in \mathbb{N}^*$ et $p \in [0,1]$.

Pour
$$k \in \{0, \dots, n\}$$
, on a
$$p(k) = P(S = k) = \binom{n}{k} p^k (1-p)^{n-k}$$

Loi binomiale

Considérons X_1, \dots, X_n n variables suivant la loi de Bernoulli de paramètre p indépendantes.

La somme de X_1, \dots, X_n ou le nombre de succès

$$S = X_1 + \cdots + X_n$$

suit une loi binomiale de paramètres $n \in \mathbb{N}^*$ et $p \in [0,1]$.

• Espérance

$$E(S) = E(X_1) + \dots + E(X_n) = np$$

Variance

$$Var(S) = Var(X_1) + \dots + Var(X_n) = np(1-p)$$

Loi géométrique

X : le nombre d'essais pour arriver le premier succès Distribution

$$p(x) = q^{x-1}p,$$
 $x = 1,2,...$

• Espérance

$$E(X) = \frac{1}{p}$$

Variance

$$Var(X) = \frac{1-p}{p^2}$$

Loi binomiale négative

X: Le nombre d'essais de Bernoulli jusqu'au kème succès

• Distribution

$$p(x) = {x-1 \choose k-1} q^{x-k} p^k, \qquad x = k, k+1, ...$$

Espérance

$$E(X) = \frac{k}{p}$$

Variance

$$Var(X) = \frac{k(1-p)}{p^2}$$

Loi de Poisson

On dit que X suit la loi de Poisson de paramètre λ si

$$p(x) = \frac{e^{-\lambda} \lambda^x}{x!}$$

$$x = 0,1,$$

$$F(x) = \sum_{i=0}^{\infty} \frac{e^{-\lambda} \lambda^i}{i!}$$

$$x = 0,1,$$

• Espérance

$$E(X) = \lambda$$

Variance

$$Var(X) = \lambda$$

Loi de Poisson

Exemple : les tâches arrivées dans une machine avec un taux constant

Distributions continues

- Exemples
 - Loi uniforme
 - Loi normale
 - Loi exponentielle
 - Loi de Weibull
 - Loi lognormale

Loi uniforme

• Une variable aléatoire X suit une loi uniforme en intervalle (a,b), U(a,b) si sa densité et sa fonction de distribution s'écrivent

$$f(x) = \frac{1}{b - a}, \quad si \ a \le x \le b$$

$$F(x) = \begin{cases} \frac{1}{b - a}, & a \le x \le b \\ \frac{x - a}{b - a}, & a \le x < b \\ 1, & x \ge b \end{cases}$$

• $P(x_1 < X < x_2)$ est proportionnelle par rapport la longueur de l'intervalle dans (a, b).

$$F(x_2) - F(x_1) = \frac{x_2 - x_1}{b - a} \quad \text{si } x_1, x_2 \in (a, b)$$

Loi uniforme

• Espérance

$$E(X) = \frac{a+b}{2}$$

Variance

$$Var(X) = \frac{(b-a)^2}{12}$$

• U(0,1): nombre aléatoire => un outil important pour générer les variables aléatoires des autres lois de distribution

Loi normale

• Une variable aléatoire X suit une loi normale $N(\mu, \sigma^2)$ si sa densité s'écrit

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}$$

• Espérance

$$E(X) = \mu$$

Variance

$$Var(X) = \sigma^2$$

Loi normale

- $\lim_{x \to -\infty} f(x) = 0, \lim_{x \to +\infty} f(x) = 0$
- Symétrique en μ : $f(\mu x) = f(\mu + x)$
- Médiane = moyenne = μ
- Si $Z \sim N(\mu, \sigma^2)$ et $X \sim N(0,1)$ alors $X = \frac{Z \mu}{\sigma_x}$ $F(x) = \Phi(x) = \int_{-\infty}^{\infty} \frac{e^{-t^2/2}}{\sqrt{2\pi}} dt$

Loi exponentielle

• Une variable aléatoire X suit une loi exponentielle de paramètre $\lambda>0$ si sa densité et sa fonction de distribution s'écrivent

$$f(x) = \lambda e^{-\lambda x}, \qquad x \ge 0$$
$$F(x) = \int_{0}^{\pi} \lambda e^{-\lambda t} dt = 1 - e^{-\lambda x}$$

Espérance

$$E(X) = \frac{1}{\lambda}$$

Variance

$$Var(X) = \frac{1}{\lambda^2}$$

 Temps d'arrivée complètement aléatoire ou Temps de service très variable

Loi exponentielle

• Absence de mémoire

Proposition Une variable aléatoire X à valeurs dans \mathbb{R}^+ , de fonction de répartition continue suit une loi exponentielle si et seulement si pour tout $t, h \geq 0$,

$$P(X + t + h|X > t) = P(X > h)$$

Proposition Une variable aléatoire X à valeurs dans \mathbb{R}^+ suit la loi $Exp(\lambda)$ si et seulement si pour tout t > 0:

$$P(X \le t + h|X > t) = \lambda h + o(h)$$

Loi exponentielle

Stabilité

Considérons n variables aléatoires indépendantes, X_1, \ldots, X_n de lois respectives $Exp(\lambda_1), \ldots, Exp(\lambda_n)$. Alors

$$Y = \min\{X_1, \dots, X_n\}$$

suit une lois exponentielles $Exp(\lambda_1 + \cdots + \lambda_n)$ et pour tout i = 1, ..., n:

$$P(Y = X_i) = \frac{\lambda_i}{\lambda_1 + \dots + \lambda_n}$$

Loi de Weibull

Densité

$$f(x) = \frac{\beta}{\alpha} \left(\frac{x - \nu}{\alpha} \right)^{\beta - 1} e^{\left(\frac{x - \nu}{\alpha} \right)^{\beta}}, \qquad x \ge \nu$$

- Trois paramètres
 - Location $-\infty < \nu < +\infty$
 - Largueur $\alpha > 0$
 - Forme $\beta > 0$
- Si X décrit la durée de vie d'un équipement
 - pour β < 1, le taux de défaillance est décroissant avec le temps (rodage, pannes de jeunesse)
 - pour β = 1, le taux de défaillance est constant et indépendant du temps (défauts aléatoires, loi exponentielle)
 - pour β > 1, le taux de défaillance est croissant avec le temps (phénomène d'usure, par exemple pour des roulements, moteurs...)
- Si $\beta = 1$, $X \sim Exp(\frac{1}{\alpha})$

Loi lognormale

Densité

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma x} e^{-\frac{(\log(x) - \mu)^2}{2\sigma^2}}, \qquad x \ge 0$$

• Espérance

$$E(X) = e^{\mu + \sigma^2/2}$$

Variance

$$Var(X) = e^{2\mu + \frac{\sigma^2}{2}} \left(e^{\sigma^2} - 1 \right)$$

• Si $Y \sim N(\mu, \sigma^2)$ alors $X = e^Y \sim log N(\mu, \sigma^2)$

Distribution empirique

- Échantillon : $X_1, X_2, ..., X_n$ indépendants et identiquement distribués
- Cas impossible (ou non nécessaire) d'établir une variable aléatoire d'une loi paramétrique spécifique
- Avantage: sans hypothèse sauf les valeurs observées
- Désavantage: les observations ne couvent pas le support entier des valeurs possibles

Processus de comptage

• Processus de comptage

Soit $(N_t)_{t\geq 0}$ un processus stochastique à temps continu. On dit que N_t est un processus de comptage si pour la trajectoire de N_t est croissante par sauts d'amplitude 1.

Exemple Le nombre de clients arrivé dans l'intervalle de temps [0, t].

Processus de sauts

- Soit $(X_t)_{t\geq 0}$ un processus à temps continu à valeur s dans E, qui décrit l'état d'un système à l'instant t.
- La chaîne $(S_n)_{n\in\mathbb{N}}$ à valeurs dans \mathbb{N} , décrit les instants de sauts successifs de X_t avec

$$0 = S_0 < S_1 < \dots < S_n < S_{n+1} < \dots$$

• Le processus $(T_n)_{n\in\mathbb{N}}$ est la durée de temps entre chaque saut

$$T_n = S_n - S_{n-1}$$

- Soit $(J_n)_{n\in\mathbb{N}}$ la chaîne d'espace d'état E et J_n est l'état du système au n-ième saut au temps S_n .
- Soit $(N_t)_{t\geq 0}$ un processus décrit le nombre de sauts de X_t dans l'intervalle de temps [0,t]=>processus de comptage

Processus de sauts

En supposant $S_0 = 0$, on a

- $X_t = J_{N_t}$
- $S_n = \sum_{i=1}^n T_i$
- $N_t = \sum_{n \geq 1} 1_{\{S_n \leq t\}}$
- Pour tout $t \ge 0$, $N_t = n \iff S_n \le t < S_{n+1}$

Processus de sauts

Processus de Poisson

• Un processus de comptage N_t est appelé un processus de Poisson d'intensité λ si $(T_n)_{n\in\mathbb{N}}$ est une suite de variables aléatoires indépendantes et de même loi, exponentielle $Exp(\lambda)$.

Processus de Poisson

• Pour $k \in \mathbb{N}$, $0 \le s \le t$, $\lambda > 0$, on a

$$P(N_t - N_s = k) = e^{\lambda(t-s)} \frac{\left(\lambda(t-s)\right)^k}{k!}$$

Alors $N_t - N_s$ suit une distribution de Poisson de paramètre $\lambda(t-s)$

$$N_t - N_s \sim Pois(\lambda(t-s))$$

En particulier,

$$E(N_t - N_s) = \lambda(t - s)$$

Version infinitésimale:

$$P(N_{t+h} - N_t \ge 2) = o(h)$$

 $P(N_{t+h} - N_t = 1) = \lambda h + o(h)$

Pour tous $t \ge 0$, N_t suit la loi de Poisson $Pois(\lambda t)$.

Simulation de Monte Carlo

Soient Z_1, Z_2, \ldots, Z_n sont des variables aléatoires indépendantes et identiquement distribuées (i.i.d.) avec espérance $z=E(Z_1)$ et variance finie. La probabilité que la moyenne des échantillons soit proche de z est grande.

Quelque soit $\varepsilon > 0$,

$$\lim_{n \to \infty} P\left(\left| \frac{Z_1 + Z_2 + \dots + Z_n}{n} - z \right| < \varepsilon \right) = 1$$

Estimateur de

$$E(Z) = \overline{Z_n} = \frac{Z_1 + Z_2 + \dots + Z_n}{n}$$

Estimateur de $P(Z_i > t)$

$$E(1_{\{Z_i > t\}}) = \frac{1_{\{Z_1 > t\}} + 1_{\{Z_2 > t\}} + \dots + 1_{\{Z_n > t\}}}{n}$$

Simulation en Python

- Probabilité et statistiques
 - Module statistics
 - mean, median, mode, stdev, variance
 - Module random
 - random(), uniform(), randrage(),expovariate(),choice()
 - Module scipy.stats
 - rvs: générateur
 - pdf: densité
 - cdf : fonction de distribution
 - sff;: fonction de survie : 1-cdf
 - Ppf: fonction de fractile
 - Isf: fonction inverse de sff
 - stats: espérance, variance ,....
 - moment: moment non-central de la distribution