Algorithms: Design and Analysis - CS 412

Problem Set 01: Asymptotic Analysis

1. Let

$$p(n) = \sum_{i=0}^{d} a_i n^i$$

where $a_d > 0$, be a degree-d polynomial in n and let k be a constant. Use the definition of the asymptotic notations to prove the following properties:

(a) If k > d, then $p(n) = O(n^k)$.

Definition of Big-Oh: f(n) = O(g(n)) if there exists positive constants c and n_0 such that $0 \le f(n) \le c.g(n) \ \forall n \ge n_0$

Proof. Choose $c = \sum_{i=0}^{d} |a_i|$ and $n_0 = 1$. Then $\forall n \geq n_0$:

$$p(n) = \sum_{i=0}^{d} a_i n^i \le \sum_{i=0}^{d} |a_i| n^d \le \left(\sum_{i=0}^{d} |a_i|\right) n^k = cn^k$$

Since $k \ge d, n^i \le n^d \le n^k \ \forall i \le d$, thus $p(n) = O(n^k)$

(b) If $k \leq d$, then $p(n) = \Omega(n^k)$.

Definition of Big-Omega: $f(n) = \Omega(g(n))$ if there exists positive constants c and n_0 such that $0 \le c \cdot g(n) \le f(n) \ \forall n \ge n_0$

Proof. Choose $c = a_d$ and $n_0 = 1$. Then $\forall n \geq n_0$:

$$p(n) = \sum_{i=0}^{d} a_i n^i \ge a^d n^d \ge a_d n^k = c n^k$$

Since $a_d > 0$ and $k \leq d, n^d \geq n^k \quad \forall n$, thus cn^k is a lower bound for p(n), and $p(n) = \Omega(n^k)$.

(c) If k = d, then $p(n) = \Theta(n^k)$.

Definition of Big-Theta: $f(n) = \Theta(g(n))$ if there exists positive constants c_1, c_2 and n_0 such that $0 \le c_1.g(n) \le f(n) \le c_2.g(n) \ \forall n \ge n_0$. Or in other words, $f(n) = \Theta(g(n))$ if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.

Proof. From parts (a) and (b), we have shown that if $k \geq d$, then $p(n) = O(n^k)$ and if $k \leq d$, then $p(n) = \Omega(n^k)$. When k = d, both conditions are satisfied, which means p(n) is both upper and lower bounded by n^k , hence is both $O(n^k)$ and $\Omega(n^k)$, and therefore $p(n) = \Theta(n^k)$.

(d) If k > d, then $p(n) = o(n^k)$.

Definition of Little-Oh: f(n) = o(g(n)) if for every positive constant c, there exists a constant n_0 such that $0 \le f(n) < c \cdot g(n) \ \forall n \ge n_0$

Proof. Given any c > 0, choose n_0 such that $n_0^k > \sum_{i=0}^d |a_i| n_0^i$. This is possible since k > d, and n^k grows faster than any n^i for i < d as n approaches infinity. Then $\forall n \geq n_0$:

$$p(n) = \sum_{i=0}^{d} a_i n^i < \sum_{i=0}^{d} |a_i| n^i < \left(\sum_{i=0}^{d} |a_i|\right) n^k < cn^k$$

The above inequality holds because we can always find an n_0 such that the polynomial sum is less than cn^k for any c, thus $p(n) = o(n^k)$.

(e) If k < d, then $p(n) = \omega(n^k)$.

Definition of Little-Omega: $f(n) = \omega(g(n))$ if for all constants c > 0, there exists some constant n_0 such that $0 \le c.g(n) < f(n) \ \forall n \ge n_0$, or $p(n) > cn^k$.

Proof. Let $p(n) = a_d n^d + a_{d-1} n^{d-1} + ... + a_1 n + a_0$, with $a_d > 0$ and k < d. Consider the leading term $a_d n^d$, which dominates p(n) as n grows large. For any c > 0, we can choose n_0 such that for all $n > n_0$, $a_d n^d > c n^k$. This is because the degree of n^d is higher than n^k , and $a_d > 0$.

Thus, as n approaches infinity, the ratio $p(n)/n^k$ approaches infinity which implies that p(n) grows strictly faster than cn^k for any constant c, proving that $p(n) = \omega(n^k)$. \square

2. Indicate for each pair of expressions (A, B) in the table below, whether A is O, o, Ω, ω , or Θ of B. Assume that $k \geq 1$, $\epsilon > 0$, and c > 1 are constants. Write your answer in the form of the table with "yes" or "no" written in each box.

	A	B	O	0	Ω	ω	Θ
a.	$\lg^k n$	n^{ϵ}	yes	yes	no	no	no
b.	n^k	c^n	yes	yes	no	no	no
c.	\sqrt{n}	$n^{\sin n}$	no	no	no	no	no
d.	2^n	$2^{n/2}$	no	no	yes	yes	no
е.	$n^{\lg c}$	$c^{\lg n}$	yes	no	yes	no	yes
f.	$\lg(n!)$	$\lg(n^n)$	yes	no	yes	no	yes

3. Let f(n) and g(n) be asymptotically positive functions. Prove or disprove each of the following conjectures.

(a) f(n) = O(g(n)) implies g(n) = O(f(n)).

False. Consider f(n) = n and $g(n) = n^2$. Then f(n) = O(g(n)) but $g(n) \neq O(f(n))$.

(b) $f(n) + g(n) = \Theta(\min\{f(n), g(n)\}).$

False. Consider f(n) = n and $g(n) = n^2$. Then $f(n) + g(n) = n + n^2 = O(n^2)$ but $\min\{f(n), g(n)\} = n$, and $n^2 \neq O(n)$.

(c) f(n) = O(g(n)) implies $\lg f(n) = O(\lg g(n))$, where $\lg g(n) \ge 1$ and $f(n) \ge 1$ for all sufficiently large n.

True. Suppose that f(n) = O(g(n)). Let c and n_0 be positive constants such that $1 \le f(n) \le cg(n)$ and $\lg g(n) \ge 1$ for all $n \ge n_0$. Then,

$$\lg f(n) \le \lg c + \lg g(n)$$

$$\le \lg c \cdot \lg g(n) + \lg g(n)$$

$$= (\lg c + 1) \lg g(n)$$

$$= O(\lg g(n)).$$

(d) f(n) = O(g(n)) implies $2^{f(n)} = O(2^{g(n)})$

False. Consider f(n) = 2n = O(n), and g(n) = n = O(n). It holds that f(n) = O(g(n)), but $2^{2n} \neq O(2^n)$. If it were, there would exist n_0 and c such that $n \geq n_0$ implies $2^n \cdot 2^n = 2^{2n} \leq c \cdot 2^n$, so $2^n \leq c$ for $n \geq n_0$ which is clearly impossible since c is a constant.

(e) $f(n) = O((f(n))^2)$.

False. If f(n) = 1/n, then $f^2(n) = 1/n^2$. Since there doesn't exist any positive constant c such that $1/n \le c/n^2$ for arbitrarily large n, then $f(n) \ne O(f^2(n))$.

(f) f(n) = O(g(n)) implies $g(n) = \Omega(f(n))$.

True. Suppose that f(n) = O(g(n)). Let c and n_0 be positive constants such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$. Dividing all parts of the inequality by c yields $0 \le f(n)/c \le g(n)$, and since 1/c > 0, then $g(n) = \Omega(f(n))$.

(g) $f(n) = \Theta(f(\frac{n}{2}))$

False. Let $f(n) = 2^n$, then $f(n/2) = 2^{n/2} = \sqrt{2^n}$. Suppose that f(n) = O(f(n/2)). Then for a positive constant c and for sufficiently large n, it holds $2^n \le c\sqrt{2^n}$. But then $c \ge \sqrt{2^n}$ and c cannot be a constant. Therefore, $f(n) \ne O(f(n/2))$, which implies $f(n) \ne O(f(n/2))$.

(h) $f(n) + o(f(n)) = \Theta(f(n))$

True. Let h(n) = o(f(n)) Then, for any positive constant c there exists a positive constant n_0 such that $0 \le h(n) < cf(n)$ for all $n \ge n_0$. This implies that

$$f(n) \le f(n) + o(f(n))$$

$$= f(n) + h(n)$$

$$< (c+1)f(n)$$

$$< 2f(n),$$

so
$$f(n) + o(f(n)) = \Theta(f(n))$$

- **4.** Let f(n) and g(n) be asymptotically positive functions. Prove the following identities.
- (a) $\Theta(\Theta(f(n))) = \Theta(f(n))$
- (b) $\Theta(f(n)) + O(f(n)) = \Theta(f(n))$
- (c) $\Theta(f(n)) + \Theta(g(n)) = \Theta(f(n) + g(n))$
- (d) $\Theta(f(n)).\Theta(g(n)) = \Theta(f(n).g(n))$