Matemáticas Actuariales del Seguro de Personas II

Jorge Luis Reyes García

Universidad Nacional Autónoma de México Facultad de Ciencias

jorgeluis.reyes@ciencias.unam.mx

Noviembre 2021

Prólogo

Este trabajo ha sido el resultado de un esfuerzo constante por más 10 años en mi labor como docente impartiendo las materias de Matemáticas Actuariales del Seguro de Personas I y II.

El objetivo de las notas es facilitar la comprensión y entendimiento de las matemáticas actuariales aplicadas los seguros de vida bajo tres enfoques:

- Clásico: a partir de tablas de mortalidad y valores conmutados.
- Probabilístico: Considerando variables aleatorias discretas y continuas.
- Estocástico: a partir de cadenas de Markov en tiempo discreto y tiempo continúo.

En cada capítulo encontrarán explicaciones, demostraciones y aplicaciones.

Contenido

Vidas Múltiples

Ejemplo: Sean T_x y T_y dos vidas independientes. Además, se sabe:

k	q_{x+k}	q_{y+k}
0	0.08	0.10
1	0.09	0.15
2	0.10	0.20

Calcular: $_{2|1}q_{xy}$

Solución:

$$\begin{array}{rcl}
2|1 q_{xy} & = & 2p_{xy} - 3p_{xy} \\
 & = & 2p_{x} \ 2p_{y} - 3p_{x} \ 3p_{y} \\
 & = & (p_{x} \ p_{x+1})(p_{y} \ p_{y+1}) - (p_{x} \ p_{x+1} \ p_{x+2})(p_{y} \ p_{y+1} \ p_{y+2}) \\
 & = & 0.1793 \quad \blacksquare
\end{array}$$

Ejemplo: Se tienen dos maquinas de café de modelos Tipo I y Tipo II. Los modelos son independientes y tiene la siguiente fuerza de fallo:

$$\mu_x' = \ln(\frac{10}{8}), x > 0$$
 $\mu_x'' = \frac{1}{9-x}, 0 < x < 9$

Calcular la probabilidad que si ambos modelos estan funcionando a tiempo 2, la primera falla ocurra entre los años 3 y 6, es decir, $_{1|3}q_{2:2}$

Solución:

Primero calculamos la función de sobreviviencia a tiempo 2.

$$tp_{x}^{I} = tp_{2}^{I} = e^{-\int_{0}^{t} \mu_{x+s}^{I} \cdot ds} = e^{-\int_{0}^{t} \ln(\frac{10}{8}) \cdot ds} = e^{-t \cdot \ln(\frac{10}{8})} = (\frac{10}{8})^{-t} = (\frac{8}{10})^{t}$$

$$tp_{x}^{II} = tp_{2}^{II} = e^{-\int_{0}^{t} \mu_{x+s}^{II} \cdot ds} = e^{-\int_{0}^{t} \frac{1}{9-2-s} \cdot ds} = e^{\ln(7-t) - \ln(7)} = e^{\ln(\frac{7-t}{7})} = (\frac{7-t}{7})$$

Por lo tanto,

$$1|3q_{2:2} = 1p_{2:2} - 4p_{2:2} = 1p_2' \cdot 1p_2'' - 4p_2' \cdot 4p_2''$$

$$= \left(\frac{8}{10}\right) \left(\frac{6}{7}\right) - \left(\frac{8}{10}\right)^4 \left(\frac{3}{7}\right)$$

$$= 0.5102 \quad \blacksquare$$

Ejemplo: Se tienen dos vidas, con tiempos de vida T_x y T_y y función de densidad conjunta

$$f_{T \times T y}(s,t) = rac{3t^2}{10^8} \ para 0 < s < 100 \ y \ 0 < t < 100$$

Calcular $_{60}p_{00} = _{60}p_{xy}$

Solución:

$$\begin{aligned} s_{00} & = S_{TxTy}(60) = S_{TxTy}(60, 60) \\ & = P(T_x > 60, T_y > 60) \\ & = \int_{60}^{100} \int_{60}^{100} f_{TxTy}(s, t) ds dt \\ & = \int_{60}^{100} \int_{60}^{100} \frac{3t^2}{10^8} ds dt \\ & = (\frac{3^2}{10^8}) \int_{60}^{100} t^2(s)|_{60}^{100} dt = (\frac{3^2}{10^8}) \int_{60}^{100} 40t^2 dt \\ & = (\frac{120}{10^8})(\frac{t^3}{3})|_{60}^{100} = (\frac{40}{10^8})(100^3 - 60^3) \\ & = 0.31360 \quad \blacksquare \end{aligned}$$

Contenido

Vidas Múltiples

Bibliografia

- Título: Models for Quantifying Risk. Autor: Stephen Camilli
- Título: Actuarial Mathematics for Life Contingent Risks. Autor: David Dickson
- Título: Actuarial Mathematics. Autor: Newton Bowers
- Título: Basic Life Insurance Mathematics Autor: Ragnar Norberg
- Título: Actuarial Mathematics and Life-Table Statistics Autor: Eric Slud
- Título: Life Contingencies Autor: Chester Wallace Jordan
- Título: Matemáticas Actuariales y Operaciones de Seguros Autor: Sandoya

Matemáticas Actuariales del Seguro de Personas II

Jorge Luis Reyes García

Universidad Nacional Autónoma de México Facultad de Ciencias

jorgeluis.reyes@ciencias.unam.mx

Noviembre 2021