0.1 映射与基数

定义 0.1 (映射的像集)

对于 $f: X \to Y$ 以及 $A \subset X$, 我们记

$$f(A) = \{ y \in Y : x \in A, y = f(x) \},\$$

并称 f(A) 为集合 A 在映射 f 下的 (映) **像集** ($f(\emptyset) = \emptyset$).

命题 0.1 (映射的像集的基本性质)

对于 $f: X \to Y$. 我们有

(i)
$$f\left(\bigcup_{\alpha\in I}A_{\alpha}\right)=\bigcup_{\alpha\in I}f(A_{\alpha})(A_{\alpha}\in X,\alpha\in I)$$

(i)
$$f\left(\bigcup_{\alpha\in I}A_{\alpha}\right)=\bigcup_{\alpha\in I}f(A_{\alpha})\,(A_{\alpha}\in X,\alpha\in I);$$

(ii) $f\left(\bigcap_{\alpha\in I}A_{\alpha}\right)\subset\bigcap_{\alpha\in I}f(A_{\alpha})\,(A_{\alpha}\in X,\alpha\in I).$

定义 0.2 (映射的原像集)

对于 $f: X \to Y$ 以及 $B \subset Y$, 我们记

$$f^{-1}(B) = \{ x \in X : f(x) \in B \},\$$

并称 $f^{-1}(B)$ 为 B 关于 f 的**原像集**.

命题 0.2 (映射的原像集的基本性质)

对于 $f: X \to Y$, 我们有

(i)
$$\stackrel{.}{\approx} B_1 \subset B_2$$
, $\bowtie f^{-1}(B_1) \subset f^{-1}(B_2)$ ($A \subset Y$);

(ii)
$$f^{-1}\left(\bigcup_{\alpha\in I}B_{\alpha}\right) = \bigcup_{\alpha\in I}f^{-1}(B_{\alpha}) \ (B_{\alpha}\subset Y, \alpha\in I) \ ;$$

(iii) $f^{-1}\left(\bigcap_{\alpha\in I}B_{\alpha}\right) = \bigcap_{\alpha\in I}f^{-1}(B_{\alpha}) \ (B_{\alpha}\subset Y, \alpha\in I) \ ;$

(iii)
$$f^{-1}\left(\bigcap_{\alpha\in I}B_{\alpha}\right)=\bigcap_{\alpha\in I}f^{-1}(B_{\alpha})\ (B_{\alpha}\subset Y,\alpha\in I)\ ;$$

(iv)
$$f^{-1}(B^c) = (f^{-1}(B))^c (B \subset Y)$$
.

定义 0.3 (示性函数)

一般地,对于X中的子集A,我们作

$$\chi_A(x) = \begin{cases} 1, & x \in A, \\ 0, & x \in X \setminus A, \end{cases}$$

且称 $\chi_A: X \to \mathbb{R}$ 是定义在 X 上的 A 的**特征函数**或**示性函数**.

命题 0.3 (示性函数的基本性质)

对于X中的子集A,B, 我们有

- (i) $A \neq B$ 等价于 $\chi_A \neq \chi_B$.
- (ii) $A \subset B$ 等价于 $\chi_A(x) \leq \chi_B(x)$.
- (iii) $\chi_{A \cup B}(x) = \chi_A(x) + \chi_B(x) \chi_{A \cap B}(x)$.
- (iv) $\chi_{A \cap B}(x) = \chi_A(x) \cdot \chi_B(x)$.
- (v) $\chi_{A \setminus B}(x) = \chi_A(x)(1 \chi_B(x)).$
- (vi) $\chi_{A \triangle B}(x) = |\chi_A(x) \chi_B(x)|$.

定义 0.4 (幂集)

设X是一个非空集合,由X的一切子集(包括 \emptyset,X 自身)为元素形成的集合称为X的**幂集**,记为 $\mathcal{P}(X)$.

\$

笔记 例如, 由 n 个元素形成的集合 E 之幂集 $\mathcal{P}(E)$ 共有 2^n 个元素.

例题 0.1 单调映射的不动点 设 X 是一个非空集合, 且有 $f: \mathcal{P}(X) \to \mathcal{P}(X)$. 若对 $\mathcal{P}(X)$ 中满足 $A \subset B$ 的任意 A, B, 必有 $f(A) \subset f(B)$, 则存在 $T \subset \mathcal{P}(X)$, 使得 f(T) = T.

证明 作集合 S,T:

$$S = \{A : A \in \mathcal{P}(X) \ \mathbb{L}A \subset f(A)\},\$$

$$T = \bigcup_{A \in S} A(\in \mathcal{P}(X)),\$$

则有 f(T) = T.

事实上, 因为由 $A \in S$ 可知 $A \subset f(A)$, 从而由 $A \subset T$ 可得 $f(A) \subset f(T)$. 根据 $A \in S$ 推出 $A \subset f(T)$, 这就导致

$$\bigcup_{A \in S} A \subset f(T), \quad T \subset f(T).$$

另一方面, 又从 $T \subset f(T)$ 可知 $f(T) \subset f(f(T))$. 这说明 $f(T) \in S$, 我们又有 $f(T) \subset T$.

定义 0.5 (集合之间的对等关系)

设有集合 A 与 B. 若存在一个从 A 到 B 上的一一映射, 则称集合 A 与 B 对等, 记为 $A \sim B$.

命题 0.4 (对等关系的基本性质)

设有集合A与B,则

- (i) $A \sim A$;
- (ii) 若 $A \sim B$, 则 $B \sim A$;
- (iii) 若 $A \sim B, B \sim C$, 则 $A \sim C$.

引理 0.1 (映射分解定理)

若有 $f: X \to Y, g: Y \to X$, 则存在分解

$$X = A \cup A^{\sim}, \quad Y = B \cup B^{\sim},$$

其中 $f(A) = B, g(B^{\sim}) = A^{\sim}, A \cap A^{\sim} = \emptyset$ 以及 $B \cap B^{\sim} = \emptyset$.

证明 对于 X 中的子集 E (不妨假定 $Y \setminus f(E) \neq \emptyset$), 若满足

$$E \cap g(Y \setminus f(E)) = \emptyset$$
,

则称 E 为 X 中的分离集. 现将 X 中的分离集的全体记为 Γ , 且作其并集

$$A = \bigcup_{E \in \Gamma} E$$

我们有 $A \in \Gamma$. 事实上, 对于任意的 $E \in \Gamma$, 由于 $A \supset E$, 故从

$$E \cap g(Y \setminus f(E)) = \emptyset$$

可知 $E \cap g(Y \setminus f(A)) = \emptyset$, 从而有 $A \cap g(Y \setminus f(A)) = \emptyset$. 这说明 $A \in X$ 中的分离集且是 Γ 中最大元.

现在令 $f(A) = B,Y \setminus B = B^{\sim}$ 以及 $g(B^{\sim}) = A^{\sim}$. 首先知道

$$Y = B \cup B^{\sim}$$
.

其次, 由于 $A \cap A^{\sim} = \emptyset$, 故又易得 $A \cup A^{\sim} = X$. 事实上, 若不然, 那么存在 $x_0 \in X$, 使得 $x_0 \notin A \cup A^{\sim}$. 现在作 $A_0 = A \cup \{x_0\}$, 我们有

$$B = f(A) \subset f(A_0), \quad B^{\sim} \supset Y \setminus f(A_0),$$

从而知 $A^{\sim} \supset g(Y \setminus f(A_0))$. 这就是说, $A \supset g(Y \setminus f(A_0))$ 不相交. 由此可得

$$A_0 \cap g(Y \setminus f(A_0)) = \emptyset$$
.

这与A是 Γ 的最大元相矛盾.

定理 0.1 (Cantor - Bernstein 定理)

若集合 X 与 Y 的某个真子集对等, Y 与 X 的某个真子集对等, 则 $X \sim Y$.

Ŷ **笔记** 特例: 设集合 A, B, C 满足下述关系:

 $C \subset A \subset B$.

若 $B \sim C$, 则 $B \sim A$.

证明 由题设知存在单射 $f: X \to Y$ 与单射 $g: Y \to X$, 根据映射分解定理知

$$X = A \cup A^{\sim}$$
, $Y = B \cup B^{\sim}$, $f(A) = B$, $g(B^{\sim}) = A^{\sim}$.

注意到这里的 $f:A\to B$ 以及 $g^{-1}:A^{\sim}\to B^{\sim}$ 是一一映射, 因而可作 X 到 Y 上的一一映射 F:

$$F(x) = \begin{cases} f(x), & x \in A, \\ g^{-1}(x), & x \in A^{\sim}. \end{cases}$$

这说明 $X \sim Y$.

定义 0.6 (集合的基数 (或势))

设 A, B 是两个集合, 如果 $A \sim B$, 那么我们就说 $A \subseteq B$ 的**基数** (cardinal number) 或**势**是相同的, 记为 A = B. 可见, 凡是互相对等的集合均具有相同的基数.

如果用 α 表示这一相同的基数, 那么 $\overline{A} = \alpha$ 就表示 A 属于这一对等集合族. 对于两个集合 A 与 B, 记 $\overline{A} = \alpha$, $\overline{B} = \beta$. 若 A 与 B 的一个子集对等, 则称 α 不大于 β , 记为

$$\alpha \leq \beta$$
.

$$\alpha < \beta \quad (\check{\mathfrak{A}}\beta > \alpha).$$

显然, 若 $\alpha \leq \beta$ 且 $\beta \leq \alpha$, 则由Cantor - Bernstein 定理可知 $\alpha = \beta$.

定义 0.7 (有限集与无限集)

设 A 是一个集合. 如果存在自然数 n, 使得 $A \sim \{1, 2, \cdots, n\}$, 则称 A 为**有限集**, 且用同一符号 n 记 A 的基数. 由此可见, 对于有限集来说, 其基数可以看作集合中元素的数 B . 若一个集合不是有限集, 则称为**无限集**. 下面我们着重介绍无限集中若干重要且常见的基数.

定义 0.8 (自然数集 № 的基数・可列集)

记自然数集 \mathbb{N} 的基数为 \aleph_0 (读作阿列夫 (Aleph, 希伯来文) 零). 若集合 A 的基数为 \aleph_0 , 则 A 叫作**可列 集**. 这是由于 $\mathbb{N} = \{1, 2, \cdots, n, \cdots\}$, 而 $A \sim \mathbb{N}$, 故可将 A 中元素按一一对应关系以自然数次序排列起来, 附以下标, 就有

$$A = \{a_1, a_2, \cdots, a_n, \cdots\}.$$

定理 0.2

任一无限集 E 必包含一个可列子集.

全 笔记 这个定理说明,在众多的无限集中,最小的基数是 №

证明 任取 E 中一元, 记为 a_1 ; 再从 $E\setminus\{a_1\}$ 中取一元, 记为 a_2,\cdots . 设已选出 a_1,a_2,\cdots,a_n . 因为 E 是无限集, 所以

$$E \setminus \{a_1, a_2, \cdots, a_n\} \neq \emptyset$$
.

于是又从 $E \setminus \{a_1, a_2, \cdots, a_n\}$ 中可再选一元,记为 a_{n+1} .这样,我们就得到一个集合

$$\{a_1, a_2, \cdots, a_n, a_{n+1}, \cdots\}.$$

这是一个可列集且是 E 的子集.

定理 0.3

设 A 是无限集且其基数为 α . 若 B 是至多可列集, 则 $A \cup B$ 的基数仍为 α .

证明 不妨设 $B = \{b_1, b_2, \dots\}, A \cap B = \emptyset, 且$

$$A = A_1 \cup A_2$$
, $A_1 = \{a_1, a_2, \dots\}$.

我们作映射 f 如下:

$$f(a_i) = a_{2i}, \quad a_i \in A_1;$$

 $f(b_i) = a_{2i-1}, \quad b_i \in B;$
 $f(x) = x, \quad x \in A_2.$

显然, $f \in A \cup B$ 到 $A \perp$ 的一一映射.

定理 0.4

集合 A 为无限集的充要条件是 A 与其某真子集对等.

证明 因为有限集是不与其真子集对等的,所以充分性是成立的.现在取A中一个非空有限子集B,则由定理0.3立 即可知

$$\overline{\overline{A}} = \overline{((A \setminus B) \cup B)} = \overline{(A \setminus B)}.$$

故 $A \sim (A \setminus B)$.

定理 0.5

 $[0,1] = \{x: 0 \le x \le 1\}$ 不是可数集.

证明 只需讨论 (0,1]. 为此,采用二进位制小数表示法:

$$x = \sum_{n=1}^{\infty} \frac{a_n}{2^n},$$

其中 a_n 等于 0 或 1, 且在表示式中有无穷多个 a_n 等于 1. 显然,(0,1] 与全体二进位制小数一一对应. 若在上述表示式中把 $a_n=0$ 的项舍去,则得到 $x=\sum_{i=1}^\infty 2^{-n_i}$,这里的 $\{n_i\}$ 是严格上升的自然数数列. 再令

$$k_1 = n_1$$
, $k_i = n_i - n_{i-1}$, $i = 2, 3, \cdots$,

则 $\{k_i\}$ 是自然数子列. 把由自然数构成的数列的全体记为 \mathcal{H} ,则 $\{0,1\}$ 与 \mathcal{H} 一一对应.

现在假定(0,1)是可数的,则 光是可数的,不妨将其全体排列如下:

但这是不可能的, 因为 $(k_1^{(1)}+1,k_2^{(2)}+1,\cdots,k_i^{(i)}+1,\cdots)$ 属于 \mathcal{H} , 而它并没有被排列出来. 这说明 \mathcal{H} 是不可数的, 也就是说 (0,1] 是不可数集.

定义 0.9 (ℝ 的基数 · 不可数集)

我们称 (0,1] 的基数为**连续基数**, 记为 c(或 $⊗_1)$.

笔记 易知 $\mathbb{R} = c = \aleph_1$.

定理 0.6

设有集合列 $\{A_k\}$. 若每个 A_k 的基数都是连续基数,则其并集 $\bigcup_{k=1}^{\infty} A_k$ 的基数是连续基数.

证明 不妨假定 $A_i \cap A_i = \emptyset (i \neq j)$, 且 $A_k \sim [k, k+1)$, 我们有

$$\bigcup_{k=1}^{\infty} A_k \sim [1, +\infty) \sim \mathbb{R}.$$

定理 0.7 (无最大基数定理)

若 A 是非空集合,则 A 与其幂集 $\mathcal{P}(A)$ (由 A 的一切子集所构成的集合族) 不对等.

 $\widehat{\mathbf{y}}$ 笔记 易知集合 A 的基数小于其幂集 $\mathcal{P}(A)$ 的基数.

证明 假定 A 与其幂集 $\mathcal{P}(A)$ 对等, 即存在一一映射 $f:A\to\mathcal{P}(A)$. 我们作集合

$$B = \{x \in A : x \notin f(x)\},\$$

于是有 $y \in A$, 使得 $f(y) = B \in \mathcal{P}(A)$. 现在分析一下 $y \in B$ 的关系:

- (i) 若 $y \in B$, 则由 B 的定义可知 $y \notin f(y) = B$;
- (ii) 若 $y \notin B$, 则由 B 的定义可知 $y \in f(y) = B$.

这些矛盾说明 $A 与 \mathcal{P}(A)$ 之间并不存在一一映射, 即 $A 与 \mathcal{P}(A)$ 并不是对等的.