PRÁCTICA 0

Introducción al laboratorio

Ley de Ohm

Ley de Ohm

Triangulo Ley de Ohm

Señal Alterna Vs Continua

Corriente Continua

Corriente Alterna

- Componentes electrónicos montados sobre un soporte en el que se insertan sus patillas
- Conexiones internas:

Indicaciones de color o de espacios

Medida de resistencias

- Resistencias recubiertas por barras de colores
- Indican valor óhmico aproximado
- Utilizar código de colores mediante procedimiento:
 - Banda de tolerancias (en general oro o plata)
 - $R(\Omega) = [xy]x10^Z \pm tolerancia$

COLOR	X	У	Z	Tolerancia
Plata			-2	10%
Oro			-1	5%
Negro		0	0	
Marrón	1	1	1	1%
Rojo	2	2	2	2%
Naranja	3	3	3	
Amarillo	4	4	4	
Verde	5	5	5	
Azul	6	6	6	
Violeta	7	7		·
Gris	8	8		·
Blanco	9	9		

Figura 1.2. Esquema de bandas de colores de las resistencias

Tabla 1-1. Código de colores de las resistencias

Ejercicio: Valor resistencia

¿Cuál es el valor de una resistencia cuvos colores son

marrón, negro y naranja?

$$R(\Omega) = [xy]x10^Z \pm tolerancia$$

COLOR	X	У	Z	Tolerancia
Plata			-2	10%
Oro			-1	5%
Negro		0	0	
Marrón	1	1	1	1%
Rojo	2	2	2	2%
Naranja	3	3	3	
Amarillo	4	4	4	
Verde	5	5	5	
Azul	6	6	6	
Violeta	7	7		
Gris	8	8		
Blanco	9	9		

Cuidado con el color rojo y naranja!.

Polímetro digital

Tensión Eficaz

$$V_{{\scriptscriptstyle DC\,equivalent}} = V_{{\scriptscriptstyle e\!f\!f}} = V_{{\scriptscriptstyle r\!m\!s}} = \frac{1}{\sqrt{2}} V_{\rm max}$$

Polímetro digital

TENSIÓN EN PARALELO

RESISTENCIA EN PARALELO

CORRIENTE EN <u>SERIE</u>

DURANTE LAS PRÁCTICAS **NUNCA** SE ABRIRÁ UN CIRCUITO PARA MEDIR LA CORRIENTE

MASTER

Fuente de Corriente Continua (CC)

- Misión: suministrar tensión continua a su salida
- Tres salidas:
 - \bullet dos de ellas regulables de 0 a 30 V_{CC} (MASTER y SLAVE).

fija de 5 V_{CC}
 Paneles de medida
 Conmutador modos de operación

SLAVE

POLARIDÃD

INIVERSIDAD

Terminales de salida

Mandos de ajuste de tensión y corriente

Fuente CC

Fuente CC

Fuente CC: Limitación de corriente

Fuente CC: Configuraciones

- Modos funcionamiento:
 - Independiente
 - Serie:
 - MASTER controla MASTER y SLAVE (ambas igual tensión).
 - Interconectar (-)MASTER con (+) SLAVE → MEJOR
 - Paralelo
 - MASTER controla MASTER y SLAVE (ambas igual tensión)
 - Interconectar MASTER(+) y SLAVE(+) por un lado y MASTER(-) y SLAVE(-)

Fuente CC: Cortocircuito

Corriente Alterna

- Corriente Alterna (CA) cambia su sentido de circulación un determinado número de veces por segundo.
- Parámetros:

$$v(\omega t) = V_{MAX} sen(\omega t + \Phi)$$

Parámetro	Símbolo	Unidad
Frecuencia	F	Hz
Periodo	Т	Seg
Frecuencia Angular (2·pi·f)	W	rad/seg
Tensión Pico	Vp	V
Tensión Pico Pico	Vpp	V
Componente continua	Vmed	V
Tensión Eficaz	Vrms	V

Corriente Alterna

Ejercicio

- Para la siguiente señal V(t) = 100 · Sen(50t + 30°) calcula los siguientes parámetros:
 - Tensión pico o amplitud (Vp)
 - Tensión pico a pico (Vpp)
 - Frecuencia angular (w)
 - Frecuencia (f)
 - Periodo (T)
 - Desfase en grados
 - Desfase en radianes
 - Tensión eficaz (Vrms)

Ejercicio

- Para la siguiente señal V(t) = 100 · Sen(50t + 30°) calcula los siguientes parámetros:
 - Tensión pico o amplitud (Vp) = 100V
 - Tensión pico a pico (Vpp) = 200V
 - Frecuencia angular (w) = 50 rad/s
 - Frecuencia (f) = 7,95 Hz
 - Periodo (T) = 0,125 s
 - Desfase en grados = 30°
 - Desfase en radianes = PI/6
 - Tensión eficaz (Vrms) = 70,71V

Generador de funciones

erminales de salida (alterna: no polaridad) pero uno de ellos conectado a masa

Generador de funciones

Forma de onda	Frecuencia	Amplitud
Senoide	1 mHz a 25 MHz	
Cuadrada		
Pulso	1 mHz a 12,5 MHz	10 mVpp
Arbitraria		a
Triangular		10 Vpp
Otras: sen(x)/x, ruido, de CC, gaussiana, de Lorentz,	1 mHz a 250 kHz	
semiverseno y crecimiento o decrecimiento exponencial		

EJERCICIO 2

Situar los controles del generador de funciones como se indica a continuación:

- a) Onda sinusoidal (Botón Sine)
- b) Alta impedancia(Output Menu/Load impedance/High Z)
- Frecuencia de 1Hz
 (Pulsar el botón Frequency/Period; teclado numérico y Hz)
- d) Nivel de continua u offset igual a cero
 (Pulsar el botón Offset/Low y comprobar que está a cero)
- e) Amplitud (V_P) de 5V
 (Pulsar el botón Amplitude/High y ajustar ... V_{PP})

Una vez ajustado todo→ output On

EJERCICIO 2

Situar los controles del generador de funciones como se indica a continuación:

- a) Onda sinusoidal (Botón Sine)
- b) Alta impedancia(Output Menu/Load impedance/High Z)
- Frecuencia de 1kHz
 (Pulsar el botón Frequency/Period; teclado numérico y kHz)
- d) Nivel de continua u offset igual a cero
 (Pulsar el botón Offset/Low y comprobar que está a cero)
- e) Amplitud (V_P) de 4V
 (Pulsar el botón Amplitude/High y ajustar ... V_{PP})

Una vez ajustado todo→ output On

Recoger vuestra estación de trabajo

Recoger vuestra estación de trabajo

PARTE II: El Osciloscopio

El osciloscopio (OSD)

- Instrumento universal para la medida de señales electrónicas, y permite:
 - realización de medidas sobre señales
 - estudio de su naturaleza y forma de onda
 - Visualización
- Visualiza la forma de onda que capta la sonda respecto de la referencia que ofrece la masa de la misma
- Sólo mide señales de tensión → <u>siempre</u> conectado en paralelo con el circuito

Sondas (I)

Sondas (II)

¿Cómo habría que colocar las sondas si queremos medir la caída de tensión de la resistencia y del diodo?

Sondas (II)

¿Cómo habría que colocar las sondas si queremos medir la caída de tensión de la resistencia y del diodo?

Sondas (III)

- Descripción y funcionamiento:
 - Canal 1 y canal 2 (entradas)
 - Atenuación 10X: "lo que quiere decir es que la señal que se aplica al osciloscopio es 1/10 de la amplitud de la señal de entrada". Importante: El OSD debe conocer esta atenuación.
 - Nosotros vamos a trabajar con atenuación 1X
 - CH1/MENU y CH2/MENU. Cambio de parámetros (botones de opción), visualización o no de la señal.

Punto de Referencia (I)

Punto de Referencia (II)

Punto de Referencia (II)

Punto de Referencia (III)

Medidas con Rejilla (8x10)

 $M = d \cdot E$

Ejercicio: Vpp = ?, Vp = ?, Vmed = ?

Ejercicio: Vpp = ?, Vp = ?, Vmed = ?

Ejercicio: Visualizar Señal

- Visualizar en el OSD una señal senoidal con las siguientes características:
 - High-Z, Vp=4V, f=1kHz, Offset = 0V.
- Medir con las dos sondas del OSD la señal del generador.
- Una vez conectadas las sondas pulsar el botón AUTORANGE

Posición Vertical y Horizontal

Trigger

 El disparo o trigger permite capturar la señal en el tiempo, de esta manera obtener una imagen fija en la pantalla

Escala Vertical y Horizontal

Acoplamientos: CC vs CA

- Modo de acoplamiento de entrada:
 - Acoplamiento CC, representa la señal en su totalidad, tal y como se digitaliza.
 - Acoplamiento CA, bloquea la componente de CC (continua) de la señal para que ésta se pueda centrar sobre el nivel de GND.
 - Acoplamiento GND, desconecta la señal por lo que muestra dónde se encuentra el nivel de 0 V

$$f(t) = f(t + k \cdot T) = A_0 + \sum_{i=1}^{\infty} v_i \cdot \text{sen}(i \cdot \frac{2\pi}{T} t + \Phi_i)$$
Acoplamiento CC
Acoplamiento CC

Ejercicio: Acoplamiento CC y CA

 Introducirle a la señal con la que estáis trabajando un offset de 2V

Ejercicio: Acoplamiento CC y CA

Introducirle a la señal con la que estáis trabajando un

Modo Y(T) y Modo XY (I)

- Vf = Señal alterna Vp = 5V y f = 10Hz
- R = 1K
- Medir intensidad vs voltaje. Y = f(x)

Modo Y(T) y Modo XY (II)

CÓRDOBA

Canal Matemático

- Sonda 1 → Medir fuente
- Sonda 2 → Medir c.d en el diodo.
- ¿Cómo visualizo la caída de tensión en la resistencia?

Canal Matemático

- Sonda 1 → Medir fuente
- Sonda 2 → Medir c.d en el diodo.
- ¿Cómo visualizo la caída de tensión en la resistencia?
- Activa el menú matemático
 - Tipo de operación: Resta
 - Canal 1 Canal 2

Modo XY: Figuras Lissajous

Medidas

MENU MEDIDAS:

frecuencia, periodo, promedio, $V_{PICO-PICO}$, RMS, min, max, ...

OJO CON LAS MEDIDAS CON INTERROGACIÓN!!!

Ejercicio: Comprobación Sondas

- Conectar la sonda del osciloscopio a la señal de calibración (PROBE COMP 5V@1 kHz) del mismo.
- Ubicar la referencia del canal empleado en el centro de la pantalla.
- Pulsar AUTORANGO.

El osciloscopio

Precauciones:

- Señales a visualizar periódicas y estables; en caso contrario es imposible obtener una imagen estable en pantalla.
- Conexión a tierra para evitar señales parásitas que alteren la medida o perjudiquen los circuitos internos.
- Al realizar la medida de cualquier señal es imprescindible conectar el terminal de masa de la sonda a la masa correspondiente de la señal. De no ser así, la señal en pantalla quedará totalmente deformada por efecto del ruido.
- Al trabajar con señales que tengan relación directa con la red eléctrica especial cuidado en evitar cortocircuitos fase-tierra del osciloscopio. Uso transformadores de aislamiento o bien aislar el terminal de tierra del osciloscopio.
- IMPORTANTE: las masas de las dos sondas están conectadas internamente, por tanto son el mismo punto eléctrico y no deben conectarse simultáneamente en puntos distintos del circuito ya que provocaríamos un cortocircuito. Ambas masas deben ir conectadas SIEMPRE al mismo punto eléctrico.

Normas de seguridad

- Las tensiones manipuladas en el laboratorio son de seguridad y el transformador de aislamiento previene de contactos eléctricos involuntarios.
- Los cables que dispongan de clavija se conectan y desconectan de los borneros.
- Cualquier material que se observe defectuoso o con mal funcionamiento se comunicará al responsable de la práctica, que será el único autorizado para reemplazarlo.
- Es recomendación general mantener el orden y la limpieza en todas las instalaciones.

