MOBILE COMPUTING (2H, KV) WS 2019/20

INTRODUCTION & ORGANIZATION

Karin Anna Hummel (karin_anna.hummel@jku.at)

KARIN ANNA HUMMEL ... MOBILE SYSTEMS RESEARCH

1993-2011

Diploma, Ph.D. in computer science, TU Vienna SW developer, Siemens

Svv developer, Siemens Austria, PSE

Researcher/teacher at University of Vienna

2011-2015

Senior researcher and teacher at ETH Zurich

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Since 10/2015

at JKU Linz

Assoc. Prof. since 2017

EXAMPLE MOBILE SYSTEM

Bachelor thesis: bookshelf inventory

Drone

Drone status, video

Smartphone

"MOBILE COMPUTING"

 is,	in general, "computing exposed to mobility" such as
	Mobile device: e.g., apps running on a smart phone, smart watch, smart display (smart eye-wear), etc. Mobile robots and vehicles (e.g., drones, autonomous driving)
	Executed on-the-move – changing context due to mobility such as the location → location-based service
	Communicating on-the-move – communication with mobility support: wireless communication technologies, roaming and handover procedures in infrastructure networks such as the mobile network, Wi-Fi hot-spot areas

... but also mobile code, i.e., code that is moved from one

computer to another such as applets, mobile agents

OBJECTIVES / GOALS

To get the skills to develop mobile applications.

Thus, students will gain

- □ Technical and theoretical background to create mobile applications using the state-of-the-art mobile technologies for different mobile platforms, OS, and applications frameworks
- □ Technical knowledge about important mobile technologies: wireless communications and positioning technologies
- ☐ Hands-on experience to develop a user-centered mobile application, make use of sensors

TOPICS

■ Wireless systems and technologies

- ☐ Wireless communication technologies: Principles and selected topics on WLAN, Bluetooth, RFID (Radio Frequency Identification) / NFC (Near Field Communication), 3G/LTE/5G mobile communication and trends such as visible light, car-to-car communication
- ☐ **Positioning**: GPS, indoor positioning, positioning for Io(mobile)T

■ Mobile (Web and native) application development

- ☐ Mark-up languages, CSS, JavaScript, HTML5
- ☐ Android, iOS mobile market place

■ Android development

- ☐ Hands-on: Developing Android apps in Android Studio
- **■** Project work
 - ☐ Hands-on: Your project idea and implementation

ORGANIZATION

Course combines

- □ Lecture part (blocked), where active participation is ensured by one small exam (15 Minutes), two small exercises (break-out sessions)
- ☐ **Project work** in teams of 1-3 students
 - Defined and elaborated by students during the course
 - Presented and discussed during the proposal presentations and with lecturer on-demand
 - Delivery of the implementation and documents
- □ We use Moodle to organize the lecture

GRADING

Grading based on

- ☐ Active participation during the course
 - All team members have to be present during student presentations, tests
 - Hand-in of two small exercises, short exam
 - In principle, all (mandatory) lectures have to be attended
 - Optional: Android introduction and exercises
- ☐ The **grade is calculated** based on
 - Lecture part (30%) min. of 15% required
 - Short exam (10%), Break-out session practical exercises (20%)
 - Project work (70%) min of 35 % required
 - Final project and documentation (50%), presentations (20%)

OVERVIEW OF LECTURE

Date	Lecture
October 09	Introduction and Course Organization
13:45-14:30 (1)	On your own: discussion of project ideas, formation of teams
October 16	Wireless Technologies and Systems
13:45-17:00 (4)	Practical: Measuring & discussing network performance
October 30	Developing Mobile Web and Native Apps
13:45-17:00 (4)	Practical: Designing an App
	Test: Wireless Technologies and Systems (15 min)
November 06	Student Presentations of Project Ideas (incl. basic
13:45-17:00 (4)	interfaces/technologies, system design, project plan)
November 13	(Optional) Android App Development (1): Introduction
13:45-17:00 (4)	Practical: First Android app
November 20	(Optional) Android App Development (2): Location, Interface, Multi-threading
13:45-17:00 (4)	Practical: Location-based Android app
December 11	Student Presentations of Mock-ups (minimum: sketches, parts of UI)
13:45-17:00 (4)	
January 8 13:45	Student Progress Discussion (individual meetings with lecturer; short presentations of status)
January 29 13:45-17:00 (4)	Final Student Projects Presentations (and upload of material) – depending on number of student presentations, we may need a second date

EXPECTATIONS

You a	re expected to work in a self-managed way on your project Follow the project plan defined in the first weeks
	Attend the lecture to get necessary input (e.g., Android basics)
	Contact lecturer in case of troubles
-	
Freed	lom of choosing the technology of your interest
	Mobile Web development
	 You are expected to have knowledge in HTML, JavaScript, and CSS
	Native app development (Android, iOS)
	 You are expected to have knowledge of Java (and/or C-code / Swift)
	Possible: Python development
And (as this is an advanced course):
	You need to familiarise yourself with Android Studio (or Xcode)

COURSE PROJECT BASICS

IN THE END: WHY LEARNING ABOUT "MOBILE COMPUTING"?

To conduct an appealing **course project** and to leverage **available technologies**:

- □ With some novelty: you should find something new
- ☐ **Fitting your interest**: you should like to work on it (and maybe go on to develop the app beyond the course objective)

Suggested FOCUS 2019: Sustainability and environment apps

PROJECT EVALUATION CRITERIA

□ Why a mobile solution? (In contrast to a desktop application)
 □ Does the app pass the grandmother test*) for usability?
 □ Which particular technologies are exploited in your app?
 □ Did you overcome challenges during development?
 □ Student evaluation of project (last lecture) based on
 ○ Attractiveness: "I like the app!"
 ○ Efficiency and usability: "The app is well structured and easy to understand!"
 ○ Expectation: "The app confirms to my expectations (and does not confuse)!"
 ○ Novelty: "The app surprises me and shows me something new!"
 ○ Stimulation: "I would use the app in future!"

*) Credits to Prof. Ismail Khalil

PROJECT PROPOSAL EXAMPLE

Personal Strength Exercise Trainer

- □ **Story:** While being in the gym, at home, or outdoors, the user wishes to train specific muscle groups and to keep track of the number of exercises done; finally the user wishes to share this information in his/her social network.
- ☐ **Design of functionality** the app should provide
 - An easy/basic UI on the smartphone starting scanning and showing the personal progress and history; providing exercise challenges for the user
 - A smart exercise detection algorithm that detects and counts exercises based on on-board sensors → native app development
- ☐ **Technology** hardware, software
 - Frontend: Android smartphone (logic, UI) & Android smart watch sensor
 - Backend: Web server, collecting and storing history information, interface the social network of choice

TRENDS IN MOBILE SYSTEMS

- Machine learning integrated in algorithms incorporate machine learning (maybe "deep learning") into mobile systems based on data collected on the device
- Internet of Things (IoT), smart homes, smart cities: things/objects communicate shift from "broadband" to "low-latency" communication, connecting robots and vehicles (e.g., industry, autonomously driving connected cars, UAVs); mobile devices as an interface to the smart home, smart city
- ☐ Using **network technologies as a sensor** (e.g., positioning indoors, seeing-through-walls, gesture recognition, mobile phone data)
- □ Using the mobile device as a tool for medical self- and long-term diagnosis, persuade towards a healthier/sustainable life-style

COURSE PROJECT SUGGESTIONS

For the undecided and students who would like to work closer together with lecturers ...

APPS FOR SUSTAINABILITY

Area: Apps for good – suggestions for a more climate friendly life-style; options are:

- Calculate energy-footprint of movement/transportation
- ☐ Calculate energy-footprint of eating
- Calculate energy-footprint / waste of products during shopping ...
- □ Aim: To build a portfolio of apps in the Mobile Computing lecture centred around sustainable living

ENERGY-AWARE APPLICATIONS

Area: Apps that prepare for zero-external charge

- Create apps that are aware of their energy footprint; measure and estimate the battery use
- □ In a second step (e.g., master project), one can try to harvest energy for the app / smartphone, smartwatch
- □ Aim: To evaluate how much energy mobile devices need to do their job.

https://www.zhaw.ch/en/engineering/institutes-centres/ines/low-power-wireless-embedded-systems/led-as-energy-harvester/

(DEEP) LEARNING MOBILE DEVICES

Source: http://www.iamwire.com/2018/04 /use-of-machine-learning-technology-in-mobile-apps/171948

Area: (Learning as A Means of) Future Software Development

- ☐ Use and investigate **machine learning** on mobile devices in a selected field (e.g., road situation detection and alarming for people staring at phones on streets; environmental friendliness)
- ☐ Aim: To evaluate the **feasibility of machine learning** in a concrete scenario such as image recognition, learning of context, prediction of network quality, learning with small data, etc.

Image recognition applied to pill identification

Source: X. Zeng, K. Cao, M. Zhang: MobileDeepPill: A Small-Footprint Mobile Deep Learning System for Recognizing Unconstrained Pill Images

(b) Nvidia Jetson TX1

(c) Samsung Galaxy S7 edge

COURSE PROJECT DELIVERABLES

WHAT SHOULD YOU DELIVER? (1)

Presentation of project idea

Cover slide with title, all project members, lecture and lecturer name
 Description from user's perspective (functions, why important) – aim of the project; be as specific as possible
 Related apps (and why your app is different)
 Technical system overview: involved components (app, server, sensors) and interfaces used (Wi-Fi, BT/BLE, etc.)
 Hardware and software basics (Android, Web browser in case of mobile Web application, etc.)
 Project plan (deadlines, 1 slide)

Upload presentation slides and present your idea in class

☐ About 10 minutes — additional 2 minutes Q&A

WHAT SHOULD YOU DELIVER? (2)

App mock-up presentation

- ☐ UI of the app as **sketches or mock-up UI elements**: be prepared to be asked about how you plan to realize the functions as well
- ☐ About 5 minutes additional 5 minutes discussion

App progress discussion

☐ Discuss status of project with lecturer during individual meetings (upload a status summary with adapted timeplan in Moodle, 1 page)

Final project submission and presentation

- □ Present idea, UI, technical overview, and results (if measurements have been performed) include a demo or show a video
- □ Evaluate other student teams

LEARNING PLATFORM & CONTACT

We use **Moodle** as our lecture platform

- ☐ Watch out for announcements / ask general questions using the forum
- □ Watch out for course material on Moodle
- ☐ Upload your slides and progress report through Moodle (one day before presentation/discussion)

Contact lecturer through email for individual questions

- ☐ Use subject "MC-2019" <your topic>
- □ karin_anna.hummel@jku.at

WELCOME TO THIS COURSE!

□ Be prepared for a lot of hard work
 □ Be prepared for a lot of self-study
 □ You should write code that works
 □ Don't leave things to the last minute
 □ The bigger the size of the team, the more is expected
 □ A team stands together or falls together (no-excuses)

We will work together throughout this course

Questions and suggestions are most welcome

Gearing up for a fun semester about mobile computing

