Test-Ergebnisse

1. Unterschiedliche Fehlertypen

Bild 2: 4 Unterschiedliche Fehlertypen(Drehzahl: 1730)

Die aus der Gruppe(1797 rpm) festgelegte Kriterien sind nicht geeignet für andere Situationen und sollen reguliert werden.

Die neue Kriterien:

Fehler	NO	IR	ВА	OR
Amplitude(ma x)	0.2-0.3	1.3-3.5	0.4-0.7	4.5-6.5
Mean	0.01-0.015	0.015-0.02	0.015-0.02	0.010-0.02
Std.	0.062-0.06 7	0.26-0.30	0.14-0.16	0.9-1.1

Tabelle 1: Kriterien aus 1750rpm Gruppe

Bild 4: Testergebnisse in neuen Kriterien (Drehzahl: 1750 rpm)

2. Unterschiedliche Drehzahlen

Bild 5: Die Testergebnisse von unterschiedlichen Drehzahlen (gleiche Fehler-Abmessung 0.07 inch)

Die überarbeitete Kriterien funktioniert gut bei Testgruppen mit unterschiedlichen Drehzahlen.

3. Unterschiedliche Fehler-Ausmaße

Bild 6: Die Testergebnisse von unterschiedlichen Fehler-Ausmaßen (gleiche Drehzahl 1797 rpm)

Wie die theoretische Analyse hat das Fehler-Ausmaß deutlichen Einfluss auf die Fehler-Erkennung.

Schlussfolgerung: Die Methode der Zeitbereichsanalyse ist einfach verständlich und funktioniert teilweise bei der Fehlerdiagnose. Aber die Leistung ist empfindlich gegen äußeren Faktoren. Und die Einstellung der Bewertungskriterien ist auch schwierig.