This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PAT-NO:

JP02000029880A

DOCUMENT-IDENTIFIER: JP 2000029880 A

TITLE:

METHOD AND DEVICE FOR EVALUATING ENVIRONMENTAL INFLUENCE

PUBN-DATE:

January 28, 2000

INVENTOR-INFORMATION:

NAME

COUNTRY

TAKIGUCHI, HITOSHI

N/A

ASSIGNEE-INFORMATION:

NAME

COUNTRY

TOSHIBA ENG CO LTD

N/A

APPL-NO:

JP10227493

APPL-DATE:

July 7, 1998

INT-CL (IPC): G06F017/30

ABSTRACT:

PROBLEM TO BE SOLVED: To accurately and quickly evaluate environmental influence by calculating the discharge of an environmental load substance generated at the time of producing a certain industrial product by properly using various data bases.

SOLUTION: A comparatively inaccurate but universal database and a comparatively accurate database for storing the discharge of an environmental load substance generated at the time of manufacturing materials or units constituting a certain industrial product are connected to a computer, and the contents of the comparatively accurate database are retrieved (S3) on the screen of the computer by item selection (S2). When data concerned are not included in the database, the comparatively inaccurate database is automatically retrieved (S4) and the discharge of the environmental load substance generated at the time of producing the industrial product is calculated (S5, S7).

COPYRIGHT: (C)2000,JP

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2000-29880

(P2000-29880A)

(43)公開日 平成12年1月28日(2000.1.28)

(51) Int.Cl.⁷
G 0 6 F 17/30

識別記号

FΙ

テーマコード(参考)

G06F 15/40

370Z 5B075

審査請求 未請求 請求項の数4 書面 (全 6 頁)

(21)出願番号

特願平10-227493

(22)出顧日

平成10年7月7日(1998.7.7)

(71)出願人 000221018

東芝エンジニアリング株式会社

神奈川県川崎市幸区堀川町66番2

(72)発明者 滝口 仁

神奈川県川崎市幸区堀川町66番2 東芝工

ンジニアリング株式会社内

Fターム(参考) 5B075 ND03 ND35 NR12 PQ02 PQ15

QP05

(54) 【発明の名称】 環境影響評価方法および装置

(57)【要約】

【課題】工業製品を製作する場合の環境負荷物質排出量の計算をいろいろなデータベースを適切に併用して行い、正確かつ迅速に環境影響評価を行うことができるようにする。

【解決手段】工業製品を構成する材料やユニットを製造したときの環境負荷物質の排出量に関して比較的不正確ではあるが汎用性のあるデータベースと比較的正確なデータベースをコンピュータに接続し、コンピュータ画面での項目選択によってまず前記比較的正確なデータベース内を検索し、そこに該当データがないときは自動的に前記比較的正確なデータベースに移行しその中を検索して、前記工業製品を製作した場合の環境負荷物質の排出量を計算するようにする。

1

【特許請求の範囲】

【請求項1】工業製品を構成する材料やユニットを製造 したときの環境負荷物質の排出量に関して比較的不正確 ではあるが汎用性のあるデータベースと比較的正確なデ ータベースをコンピュータに接続し、コンピュータ画面 での項目選択によってまず前記比較的正確なデータベー ス内を検索し、そこに該当データがないときは自動的に 前記比較的正確なデータベースに移行しその中を検索し て、前記工業製品を製作した場合の環境負荷物質の排出 量を計算することを特徴とする環境影響評価方法。

【請求項2】ユニットについてのデータベースの検索と 環境負荷物質排出量の計算を優先して行うにしたことを 特徴とする請求項1記載の環境影響評価方法。

【請求項3】コンピュータ画面に工業製品を構成する材 料やユニットと環境負荷物質を軸とする表を表示し、こ の表の枡目を指定することによってデータベースの検索 と環境負荷物質排出量の計算が行われるようにしたこと を特徴とする請求項1記載の環境影響評価方法。

【請求項4】工業製品を構成する材料やユニットを製造 ではあるが汎用性のあるデータベースおよび比較的正確 なデータベースと、これらのデータベース内を検索して 前記工業製品を製作した場合の環境負荷物質の排出量を 計算するサーチ・演算部と、このサーチ・演算部に指令 を与える入力部と、サーチ・演算の結果を表示する表示 部と、サーチ・演算の結果を出力する出力部と備えたこ とを特徴とする環境影響評価装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、いろいろな工業製 30 品の製作を計画するにあたり、その工業製品を製作した 場合の環境負荷物質の排出量を計算し、地球環境への影 響を予測するための環境影響評価方法および装置に関す る。

[0002]

【従来の技術】テレビジョン、コンピュータ、自動車、 住宅等の工業製品を製作するには、金属、プラスチッ ク、ゴム等の材料を使用する。これらの材料は、その製 造工程において加熱、冷却、切削等が行われてエネルギ ーを消費するため、上記の工業製品に使用しうる形態に 40 なるまでに、地球環境に対して二酸化炭素や硫黄酸化物 や窒素酸化物等の環境負荷物質を排出する。したがっ て、上記の工業製品を製作しようとすると、そこに使用 される諸材料が製造段階で排出する環境負荷物質の合計 量を排出し、地球環境に対して負の影響を与えることに

【0003】この環境影響はできるだけ小さいことが望 ましいが、これを評価する上で使用されるデータベース としては、公的情報に基づいて作成されたデータベース (公的データベース)と、個別情報に基づいて作成され 50 たデータベース (個別データベース) の2種類が存在す

【0004】公的データベースは全ての材料についてほ ば揃っており、日本全体等広範なエリアでの平均値とし て表現しているので、広い範囲で適用できるが、現場に 即した内容ではないので、適用製品によっては環境負荷 が実際よりも高く表現されたり逆に低く表現されたりす ることがある。

【0005】個別データベースは、環境負荷を一定の範 囲を定めた局所エリアでの実測値として表現するので、 その範囲内のエリアでは、現場に即した環境影響評価が 得られる。しかし範囲外のエリアに対して同じデータが 適用できるとは限らない。また、実測値を収集するため には長期間にわたる維続的な追跡調査が必要であり、デ ータを得るために何年もかかる場合もあって、全ての材 料については揃っていない。

[0006]

【発明が解決しようとする課題】従来は上記のいずれか 一方のデータベースを使用しているので、環境影響を評 したときの環境負荷物質の排出量に関して比較的不正確 20 価する上できわめて広範な数値の平均で表されるか局所 的な偏った数値で表される結果となってしまい、現場に 即した評価ができないという問題がある。そこで本発明 は、両データベースを適切に併用して正確かつ迅速な環 境影響評価を行うことのできる環境影響評価方法および 装置を提供することを目的とする。

[0007]

【課題を解決するための手段】上記目的を達成するため に本発明の環境影響評価方法は、工業製品を構成する材 料やユニットを製造したときの環境負荷物質の排出量に 関して比較的不正確ではあるが汎用性のあるデータベー スと比較的正確なデータベースをコンピュータに接続 し、コンピュータ画面での項目選択によってまず前記比 較的正確なデータベース内を検索し、そこに該当データ がないときは自動的に前記比較的正確なデータベースに 移行しその中を検索して、前記工業製品を製作した場合 の環境負荷物質の排出量を計算することを特徴とする。 【0008】好ましくは、ユニットについてのデータベ ースの検索と環境負荷物質排出量の計算を優先して行 う。また好ましくは、コンピュータ画面に工業製品を構 成する材料やユニットと環境負荷物質を両軸とする表を 表示し、この表の枡目を指定することによってデータベ ースの検索と環境負荷物質排出量の計算が行われるよう にする。

【0009】また、本発明の環境影響評価装置は、工業 製品を構成する材料やユニットを製造したときの環境負 荷物質の排出量に関して比較的不正確ではあるが汎用性 のあるデータベースおよび比較的正確なデータベース と、これらのデータベース内を検索して前記工業製品を 製作した場合の環境負荷物質の排出量を計算するサーチ ・演算部と、このサーチ・演算部に指令を与える入力部 と、サーチ・演算の結果を表示する表示部と、サーチ・ 演算の結果を出力する出力部と備えた構成とする。

[0010]

【発明の実施の形態】以下、添付の図を参照しながら本 発明の実施の形態を説明する。本発明の第1の実施の形 態の環境影響評価方法は、その要部フローチャートを図 1に示すように、コンピュータソフトウエアを起動させ るSTARTステップS1と、評価する材料や環境影響 排出物質を選択する項目の選択ステップS2と、個別デ ータベース内で該当する項目を探す個別データベース検 10 索ステップS3と、個別データベース内に該当する項目 がないとき公的データベース内を探す公的データベース 検索ステップS4と、計画中の製品での材料の使用量と データベース内の数値を掛けて計画中の製品での材料の 使用量に応じた環境影響物質排出量を求める積算ステッ プS5と、この排出量をコンピュータ画面に表示する排 出量表示ステップS6と、前記の排出量は材料ごとの数 値であるのでそれらを加算して製品としての排出量を求 める加算ステップS7と、コンピュータソフトウエアを 閉じるENDステップS8とからなる。

【0011】図1のフローを実行するためのハードウエ ア構成は図2に示すようになっている。すなわち、個別 データベース1および公的データベース2と、これら二 つのデータベースに接続され、その中を検索し積算と加 算を行うサーチ・演算部3と、このサーチ・演算部3に 接続され、いろいろなコマンドや計画製品での使用材料 とその量などを入力する入力部4と、この入力部4から 入力された事項やサーチ・演算の経過や結果を液晶やC RTの画面に表示する表示部5と、この表示部5に表示 された演算結果等をプリンタや記録媒体に出力する出力 30 部6とからなる。

【0012】個別データベース1は例えば図3のように なっている。この図の意味するところは、計画中の工業 製品に使用しうる形のめっき鋼材の単位量、例えば1ト ンを製造するには、二酸化炭素3756.4グラム、硫 黄酸化物1598.2ミリグラム、窒素酸化物728 7. 9ミリグラムを地球環境に排出するということであ る。公的データベース2は例えば図4のようになってい る。表現の仕方は図3の個別データベースと同じである が、フェノール樹脂、ABS樹脂および合成ゴムについ 40 てのデータも入っている。

【0013】これら二つのデータベースと図2に示した ハードウエアを用い、図1に示したフローチャートにし たがって、計画製品の環境影響物質排出量を求める例を 図5によって説明する。まず入力部4を操作してステッ プS1でハードウエアとソフトウエアを起動すると、図 5の表の第1行のみ、すなわち「材料」「使用量」「デ ータベース」「CO2(g)」「SOX(mg)」「N OX(mg)」が記入された表が表示部5に表示され

で使用する予定の材料の名称とその使用量を入力する。 すなわち、めっき鋼材YS(トン)、フェノール樹脂Y P(トン)等である。

【0014】これで準備が整ったので、ステップS2に おいて図5の表のCSYSの枡にカーソルを合わせマウ スをクリックすると、サーチ・演算部3はステップS3 において個別データベース1内を検索する。 めっき鋼材 のデータは個別データベース1内にあるので、図5の表 の「データベース」の列に「個別」と表示される。そし てステップS5に進み、図3のめっき鋼材-CO2枡の 3756. 4と図5の表のYSとを掛け算し、その結果 がステップS6でCSYS枡に表示される。ステップS 2に戻り、SSYS枡やNSYS枡をクリックすると、 上記と同様にステップS3とステップS5で排出値が得

【0015】 つぎにフェノール樹脂についての排出値を 得るために、ステップS2においてCPYP枡をクリッ クすると、フェノール樹脂のデータは個別データベース 1にないのでステップS4へ移行し、図4に示した公的 データベース2の中を検索する。公的データベース2に 20 はデータがありそれを使うので、図5の表のフェノール 樹脂とデータベースを結ぶ枡に「公的」と表示される。 そしてステップS5に進んでデータベースの数値61 0.6とYPを掛け算し、その結果をステップS6でC PYP枡に表示する。SPYP枡、NPYP枡およびA BS樹脂と合成ゴムについての検索、積算、表示もこれ と同様である。

【0016】こうして各材料の使用量に応じた排出量が 得られたので、次ぎに製品としての総排出量を求める。 それには、表示部5に表示された図5の表の例えばCY 枡をクリックする。そうするとステップ7において、そ の列の数値、すなわちCSYS枡、CPYP枡、CAY A枡およびCRYR枡の数値が加算されて、CY枡に表 示される。 こうして計画製品のCO2総排出量がわか る。SOXとNOXの総排出量も同様に求められ、SY 枡とNY枡に表示される。

【0017】このように本発明の第1の実施の形態にお いては個別データベースを優先的に利用し、個別データ ベースにないところは公的データベースを利用する。

すなわち、現場において明確になっている環境負荷項 目は現場の数値を利用し、現場において明確になってい ない環境負荷項目は広範囲データベースを利用する。そ していずれのデータベースを利用するかは、利用者が指 定した項目により自動的に判断する。したがって、双方 のデータベースの欠点を補完し、かつ迅速に、現実に近 い環境負荷を求めることができる。

【0018】つぎに、本発明の第2の実施の形態を、図 6,7,8,9を参照しつつ説明する。本実施の形態の 環境影響評価方法は、そのフローを図6に示すように、 る。つぎにこの表の材料の列と使用量の列に、計画製品 50 ユニットデータベース検索ステップS3をもつ。そのほ

表示もこれと同様である。

かは図1に示した第1の実施の形態と同じである。このフローを実行するためのハードウエア構成は図7のようになっており、図2に示した第1の実施の形態のものにユニットデータベース7を追加した構成である。

【0019】ユニットデータベースとは計画製品の中の 比較的まとまりがよく一括交換等のできる部分をユニットとし、このユニットの環境影響物質排出量を予め計算 しデータベースとしたものである。その計算の仕方は第 1の実施の形態で説明した計画製品についてと同じであ る。図8は機構部品1というユニットについて例示して 10 いるが、このように多種類の材料から成る部分について はユニットデータベースとして蓄積し、一括して扱うと 便利である。

【0020】図7に示したような、個別データベース1 と公的データベース2とユニットデータベース7とを備 えたハードウエアを用い、図6に示したフローチャート にしたがって、計画製品の環境影響物質排出量を求める 例を図9によって説明する。まず入力部4を操作してス テップS1でハードウエアとソフトウエアを起動する と、図9表の第1行のみ、すなわち「材料・ユニット」 20 「使用量」「データベース」「CO2(g)」「SOX (mg)」「NOX(mg)」が記入された表が表示部 5に表示される。つぎにこの表の材料の列と使用量の列 に、計画製品で使用する予定の材料の名称とその使用量 を入力する。すなわち、めっき鋼材YS(トン)、フェ ノール樹脂YP(トン)、機構部品1YM個等である。 【0021】これで準備が整ったので、ステップS2に おいて図9の表の例えばCRYRの枡にカーソルを合わ せマウスをクリックすると、サーチ・演算部3はステッ プS3においてユニットデータベース7内を検索する。 合成ゴムのデータはユニットデータベース7内にはない ので、個別データベース1に移行しステップS4で個別 データベース1(図3) 内を検索する。 合成ゴムのデー 夕は個別データベース1内にもないので、さらに公的デ ータベース2に移行しステップS5で公的データベース 2(図4)内を検索する。公的データベース2には合成 ゴムのデータがありそれを使うので、図9の表の合成ゴ ムとデータベースを結ぶ枡に「公的」と表示される。そ してステップS6に進んでデータベースの数値4.1と YRを掛け算し、その結果をステップS7でCRYR枡 40

【0022】つぎに機構部品1についての排出値を得るために、ステップS2においてCMYM枡をクリックすると、ステップS3においてユニットデータベース7内を検索する。ユニットデータベース7には機構部品1のデータがありそれを使うので、図9の表の機構部品1とデータベースを結ぶ枡に「ユニット」と表示される。そしてステップS6に進んでデータベースの数値9092.6とYMを掛け算し、その結果をステップS7でCMYM枡に表示する。他の項目についての検索、積算、

【0023】こうして各材料およびユニットの使用量に 応じた排出量が得られたので、次ぎに製品としての総排 出量を求める。それには、表示部5に表示された図9の 表の例えばCY枡をクリックする。そうするとステップ 8において、その列の数値、すなわちCSYS枡、CP YP枡、CAYA枡、CRYR枡およびCMYM枡の数 値が加算されて、CY枡に表示される。こうして計画製 品のCO2総排出量がわかる。SOXとNOXの総排出 量も同様に求められ、SY枡とNY枡に表示される。

【0024】多くの場合、工業製品は複数のユニットによって構成されており、それらのユニットは、さらに細かいユニット・部材によって構成されている。また、1つの部材が複数の素材の組合せで構成されていることもある。このような製品の環境負荷を評価する場合には、上記の第2の実施の形態のように、ある機能を担うユニット毎、複数の素材を用いて作製されている複合材毎に、部材の組合せ・ユニットの組立に必要なエネルギー量等の環境負荷を計算するうえで必要な情報や計算結果をデータベースに登録しておくことにより、それらユニット・複合材を組み込んだ製品の環境負荷の評価を迅速に実施することが出来る。

【0025】なお、計画製品に対して各種の材料やユニットの組合せから環境負荷を求めることは、環境影響評価者と材料・ユニットの製造元が同一ならば容易に可能であるが、いろいろな製造元によって製造された材料・ユニットを複数組み合わせる場合には、それぞれの環境負荷を製造元以外が把握することは非常に難しい。そこで、製品の環境負荷を計算する上で必要な情報や計算結30 果を外部記憶装置に電子ファイルとして出力し相互に流通させれば、そのファイルを取り込むことによって、他者により製造された材料・ユニットの環境負荷情報を製造元以外でも容易に利用することが出来るようになる。【0026】

【発明の効果】上記のように本発明は、工業製品を構成する材料やユニットを製造したときの環境負荷物質の排出量に関して比較的不正確ではあるが汎用性のあるデータベースと比較的正確なデータベースをコンピュータに接続し、コンピュータ画面での項目選択によってまず前記比較的正確なデータベース内を検索し、そこに該当データがないときは自動的に前記比較的正確なデータベースに移行しその中を検索して、前記工業製品を製作した場合の環境負荷物質の排出量を計算するようにしたので、複数のデータベースを適切に併用して正確かつ迅速な環境影響評価を行うことができる。

【図面の簡単な説明】

【図1】本発明の第1の実施の形態の環境影響評価方法の要部を示すフローチャート

【図2】本発明の第1の実施の形態の環境影響評価方法 50 を実行する環境影響評価装置のハードウエア構成図

- 【図3】個別データベースを例示する図
- 【図4】公的データベースを例示する図
- 【図5】環境影響評価結果の表示を例示する図
- 【図6】本発明の第2の実施の形態の環境影響評価方法の要部を示すフローチャート
- 【図7】本発明の第2の実施の形態の環境影響評価方法 を実行する環境影響評価装置のハードウエア構成図

【図8】ユニットデータベースを例示する図

【図9】本発明の第2の実施の形態による評価結果の表示を例示する図

【符号の説明】

1…個別データベース、2…公的データベース、3…サーチ・演算部、4…入力部、5…表示部、6…出力部、7…ユニットデータベース。

ľ	図	3	}
	図	3	1

材料	CO2(g)	SOx(mg)	NOx(mg)
めっき鋼材	3756.4	1598,2	7287.9

【図5】

(END)~S8

材料	使用量	データ ベース	CO2(g)	SOx(mg)	NOx(mg)
めっき飼材	YS	個別	CSYS	SSYS	NSYS
フェノール 樹脂	ΥP	2009	CPYP	SPYP	NPYP
ABS樹脂	YA	公的	CAYA	SAYA	NAYA
合成ゴム	YR	公的	CRYR	SRYR	NRYR
	維排出量		CY	SY	NY

【図8】

ユニット	材料	CO2(g)	SOx(mg)	NOx(mg)
機構部品1	めっき鋼材	7373.8	3338.8	15110.1
機器部品 1	電線・ゲーブト(長さ入力)	519.4	297.0	1042,5
機響部品 1	アルミ圧重製品	277,5	189.1	517.3
機器部品1	が 針・ナット・以 ット・スプ ワンダ (重量入力)	921.9	448,8	1875.4
	台計	9092.6	4273.7	18545,3

【図7】

【図9】

材料・コニット	使用量	データ ベース	CO2(g)	SOx(mg)	NOx(mg)
めっき開材	Y\$	1003	CSYS	SSYS	NSYS
フェノール 機能	ΥP	公的	CPYP	SPYP	NPYP
ABS樹脂	YA	公的	CAYA	SAYA	NAŸA
合成ゴム	YR	2290	CRYR	SRYR	NRYR
機構部品1	YM	ユニット	CMYM	SMYM	NMYM
	維排出圖		CY	SY	NY

【図6】

