MA Kick-off

Differentiable projection operations for X-ray computed tomography

David Frank, on the 8th February, 2022

Tomographic Reconstruction

Object Measurement Reconstruction

Attenuation

Phase Contrast CT

Dark-field

- Images of the first and second row taken form: P. Modregger et al., "Artifacts in X-Ray Dark-Field Tomography" (2011)
- Images of the third row taken form: L. Felsner et al., "Phase-Sensitive Region-of-Interest Computed Tomography" (2018)

Model

$$f:\Omega o\mathbb{R}$$

$$\Omega\subset\mathbb{R}^n$$

$$m_j=\mathcal{M}_j(f)$$

$$\mathcal{M}_j:(\Omega o\mathbb{R}) o\mathbb{R}$$

$$\hat{f}pprox f$$

$$\hat{f}(\cdot) = \sum_{i=1}^I c_i b_i (\cdot - x_i)$$

Pixel Basis Functions

$$b_i(x) = egin{cases} 1, & \|x\| < h/2 \ 0, & ext{otherwise} \end{cases}$$

B-Spline Basis Functions

$$eta^0(x) = egin{cases} 1, & \|x\| < h/2 \ 0, & ext{otherwise} \end{cases}, \quad eta^d(x) = eta^0 * \cdots * eta^0(x)$$

Spherically Symmetric Basis Functions

$$b_i(\|x\|) = egin{cases} \left(\sqrt{1-(rac{\|x\|}{a})^2}
ight)^m I_m \left(lpha \sqrt{1-(rac{\|x\|}{a})^2}
ight), & 0 \leq \|x\| \leq 0, \end{cases} \quad ext{otherwise}$$

Motivation for (differentiable) basis functions

- Support for Phase Contrast CT
- Increased accuracy
- Continuous representation of the volume domain

Questions?

Thanks for listening!

