AI and the Arabidopsis thaliana

Technological solutions meet naturebased problems

Daria Elena Vlăduţu

Agenda

- Problem definition
- Solution Overview
- Results and Evaluation
- Error Analysis and Iteration
- Assumptions
- Limitations
- Next steps…

Arabidopsis thaliana (From A to D): Seeds germinate, revealing roots, hypocotyl, and leaves. Lateral roots sprout from the primary, and they begin to crisscross

Problem definition

The challenge

Analyses of plant root images and physical interaction are manual, time-consuming, and potential sources of human error.

Core tasks

- Image Analysis
- Robotic Action

Client objectives

Automated analysis of plant root systems and robotic inoculation of plants

Integrating computer vision and robotics into an end-to-end inoculation pipeline

How my solution creates client value

- Directly accelerating plant science research
- High-Throughput Analysis

Enhanced Experimental Precision

Results & Evaluation

Final model

Stats for nerds

- Custom U-net model
- Patch size: 256 x 256
- Step size: 128
- Batch size of 32
- Loss function: binary_crossentropy
- Early stopping triggered at epoch 18/30
- Val_f1: 0.8374
- sMAPE: 6.073

```
inputs = Input((IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS))
s = inputs
c1 = Conv2D(16, (3, 3), activation='relu', padding='same')(s)
c1 = Dropout(0.1)(c1)
c1 = Conv2D(16, (3, 3), activation='relu', padding='same')(c1)
p1 = MaxPooling2D((2, 2))(c1)
c2 = Conv2D(32, (3, 3), activation='relu', padding='same')(p1)
c2 = Dropout(0.1)(c2)
c2 = Conv2D(32, (3, 3), activation='relu', padding='same')(c2)
p2 = MaxPooling2D((2, 2))(c2)
c3 = Conv2D(64, (3, 3), activation='relu', padding='same')(p2)
c3 = Dropout(0.2)(c3)
c3 = Conv2D(64, (3, 3), activation='relu', padding='same')(c3)
p3 = MaxPooling2D((2, 2))(c3)
c4 = Conv2D(128, (3, 3), activation='relu', padding='same')(p3)
c4 = Conv2D(128, (3, 3), activation='relu', padding='same')(c4)
p4 = MaxPooling2D((2, 2))(c4)
c5 = Conv2D(256, (3, 3), activation='relu', padding='same')(p4)
c5 = Dropout(0.3)(c5)
c5 = Conv2D(256, (3, 3), activation='relu', padding='same')(c5)
u6 = Conv2DTranspose(128, (2, 2), strides=(2, 2), padding='same')(c5)
c6 = Conv2D(128, (3, 3), activation='relu', padding='same')(u6)
c6 = Dropout(0.2)(c6)
c6 = Conv2D(128, (3, 3), activation='relu', padding='same')(c6)
u7 = Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same')(c6)
u7 = concatenate([u7, c3])
c7 = Conv2D(64, (3, 3), activation='relu', padding='same')(u7)
c7 = Dropout(0.2)(c7)
c7 = Conv2D(64, (3, 3), activation='relu', padding='same')(c7)
u8 = Conv2DTranspose(32, (2, 2), strides=(2, 2), padding='same')(c7)
   = concatenate([u8, c2])
c8 = Conv2D(32, (3, 3), activation='relu', padding='same')(u8)
c8 = Conv2D(32, (3, 3), activation='relu', padding='same')(c8)
u9 = Conv2DTranspose(16, (2, 2), strides=(2, 2), padding='same')(c8)
u9 = concatenate([u9, c1])
c9 = Conv2D(16, (3, 3), activation='relu', padding='same')(u9)
c9 = Dropout(0.1)(c9)
c9 = Conv2D(16, (3, 3), activation='relu', padding='same')(c9)
outputs = Conv2D(1, (1, 1), activation='sigmoid')(c9)
model = Model(inputs=[inputs], outputs=[outputs])
model.compile(optimizer='adam',
         loss="binary_crossentropy",
```

metrics=['accuracy', f1])

Final model

Stats for nerds

Predictions (with overlay)

*

Predictions (raw)

Strategy for main pipeline

Scoring for each path

Data Pre-Images are padded, cropped, and patchified. processing & Model Prediction Inference Unpatch, unpad, uncrop to full mask Post-Thresholding at 0.10 to binarize masks processing Area filtering (min_area =150px) Top & Petri dish crop: removed 15% of top image and cropped to Petri dish size Main root Aspect ratio threshold; min 1.5 components Vertical start: max 30% Threshold of 200px for large components Skeltonize Main root components Function evaluates all possible paths between root tips

Iteration 1: Experimenting with datasets

Clean dataset

- Merged Y2B_23 & Y2B_24
- Removed non-root masks + unpaired images

Simple filtered dataset

- Kept root-rich patches (min 0.5% of patch must be root)
- Patch includes at least one connected root segment > 75px

Automated tuning dataset

- Tuner finds the best min_ratio and min_area, using optuna.
- Based on initial dataset

Augmented dataset

- Applied to the tuned dataset
- Horizontal + vertical flip
- Random rotate 90
- Shift scale rotate
- Random brightness contrast

Balanced dataset

- Used logic of tuning from automatic tuning dataset
- Added more background patches

Iteration 1: Experimenting with datasets

Best parameters: {'min_ratio': 0.008977007432371202, 'min_area': 108} Best score: 0.0							
	number	value	datetime_start	datetime_complete	duration	params_min_area	params_min_ratio
0	0	0.0	2025-08-14 01:09:10.101065	2025-08-14 01:09:10.104620	0 days 00:00:00.003555	108	0.008977
1	1	0.0	2025-08-14 01:09:10.104620	2025-08-14 01:09:10.105482	0 days 00:00:00.000862	93	0.017249
2	2	0.0	2025-08-14 01:09:10.105482	2025-08-14 01:09:10.105482	0 days 00:00:00	88	0.005064
3		0.0	2025-08-14 01:09:10.105482	2025-08-14 01:09:10.105482	0 days 00:00:00	72	0.001108
4	4	0.0	2025-08-14 01:09:10.105482	2025-08-14 01:09:10.105482	0 days 00:00:00	82	0.010496
5		0.0	2025-08-14 01:09:10.105482	2025-08-14 01:09:10.113200	0 days 00:00:00.007718	45	0.001232
6	6	0.0	2025-08-14 01:09:10.114232	2025-08-14 01:09:10.115239	0 days 00:00:00.001007	133	0.004415
7	7	0.0	2025-08-14 01:09:10.115239	2025-08-14 01:09:10.116243	0 days 00:00:00.001004	81	0.008460
8	8	0.0	2025-08-14 01:09:10.117246	2025-08-14 01:09:10.117246	0 days 00:00:00	25	0.002952
9	9	0.0	2025-08-14 01:09:10.118251	2025-08-14 01:09:10.118251	0 days 00:00:00	128	0.007016
10	10	0.0	2025-08-14 01:09:10.119253	2025-08-14 01:09:10.120633	0 days 00:00:00.001380	150	0.018274
11	11	0.0	2025-08-14 01:09:10.120633	2025-08-14 01:09:10.131915	0 days 00:00:00.011282	112	0.019896
12	12	0.0	2025-08-14 01:09:10.132920	2025-08-14 01:09:10.135651	0 days 00:00:00.002731	107	0.012281
13	13	0.0	2025-08-14 01:09:10.135651	2025-08-14 01:09:10.140962	0 days 00:00:00.005311	103	0.013945
14	14	0.0	2025-08-14 01:09:10.140962	2025-08-14 01:09:10.149595	0 days 00:00:00.008633	61	0.006711
15	15	0.0	2025-08-14 01:09:10.149595	2025-08-14 01:09:10.153547	0 days 00:00:00.003952	98	0.003105
16	16	0.0	2025-08-14 01:09:10.153547	2025-08-14 01:09:10.153547	0 days 00:00:00	123	0.013749
17	17	0.0	2025-08-14 01:09:10.153547	2025-08-14 01:09:10.166402	0 days 00:00:00.012855	58	0.009526
18	18	0.0	2025-08-14 01:09:10.167407	2025-08-14 01:09:10.170842	0 days 00:00:00.003435	146	0.001818
19	19	0.0	2025-08-14 01:09:10.170842	2025-08-14 01:09:10.177595	0 days 00:00:00.006753	117	0.016295
20	20	0.0	2025-08-14 01:09:10.177595	2025-08-14 01:09:10.185496	0 days 00:00:00.007901	95	0.005291
21	21	0.0	2025-08-14 01:09:10.185496	2025-08-14 01:09:10.190328	0 days 00:00:00.004832	88	0.004101
22	22	0.0	2025-08-14 01:09:10.191328	2025-08-14 01:09:10.197742	0 days 00:00:00.006414	72	0.006415
23	23	0.0	2025-08-14 01:09:10.197742	2025-08-14 01:09:10.202043	0 days 00:00:00.004301	92	0.003108
24	24	0.0	2025-08-14 01:09:10.202043	2025-08-14 01:09:10.202043	0 days 00:00:00	72	0.008529
25	25	0.0	2025-08-14 01:09:10.202043	2025-08-14 01:09:10.217728	0 days 00:00:00.015685	137	0.010964
26	26	0.0	2025-08-14 01:09:10.217728	2025-08-14 01:09:10.220631	0 days 00:00:00.002903	115	0.005015
27	27	0.0	2025-08-14 01:09:10.225341	2025-08-14 01:09:10.230319	0 days 00:00:00.004978	106	0.002173
28	28	0.0	2025-08-14 01:09:10.231330	2025-08-14 01:09:10.237126	0 days 00:00:00.005796	50	0.014634
29	29	0.0	2025-08-14 01:09:10.238129	2025-08-14 01:09:10.243970	0 days 00:00:00.005841	81	0.007712

Iteration 1: Experimenting with datasets

2023 dataset

Mean density (simple): 0.0198 Mean density (tuned): 0.0329

Iteration 2: Post-processing of masks

Issue: Salt-and-pepper noise

Initial solution: Morphological closing

Final solution: Filtering by area

Issue: First plant was being mistaken for a thin white line along the edge

Initial solution: Use a circular crop

Final solution: Have a 'tighter' crop

Issue: Newly germinated seeds were being missed entirely.

Solution: Lower filtering threshold from 250px to 50px

Iteration 2: Post-processing of masks Examples from another trial

Iteration 3: Root length estimation

- Issue: Find the primary root length
- Initial solution: Scoring system between top/bottom tip nodes length, verticality and centrality.
- Proposed solution: The A-star search

Robotics

PID controller:

- Best gains:
 - KP = 5.0
 - KI = 0.5
 - KD = 2.0
- Final error: 0.592mm

Reinforcement learning journey:

- 4 official iterations
- Continuous experimentation
- Final error of RL agent: 9.2mm

```
task.execute_remotely(queue_name="default"
                "policy_type": "MlpPolicy",
                 "total_timesteps": args.total_timesteps,
"env_name": "OT2Env-v0",
                 'learning_rate": args.learning_rate,
                 'n_steps": args.n_steps,
                 batch_size": args.batch_size,
                 gamma": args.gamma,
                 gae_lambda": args.gae_lambda,
                "clip_range": args.clip_range,
           run = wandb.init(
              project="ot2_rl_tuning",
           print("--- Starting RL Agent Training ---")
print(f"Algorithm: {config['algorithm']}, Timesteps: {config['total_timesteps']}")
           print(f"Hyperparameters: (config)")
           env = OT2Env(render_mode=None)
           checkpoint_callback = CheckpointCallback(
              save_freq=$88000,
save_path=f"./models/{run.id}",
name_prefix="rl_model",
           wandb callback = WandbCallback(
              gradient_save_freq=1000,
model_save_path=f"models/{run.id}",
           model = PPO(
              config["policy_type"],
PROBLEMS (III) OUTPUT DEBUG CONSOLE TERMINAL PORTS
Success: Met the highest accuracy requirement of 1 mm.
Results saved to: C:\Users\dari\Documents\GitHUb\2024-25b-fai2-adsai-dariavladutu236578\robotics\pid tuning log.csv
stopping threads
Thread with taskId 0 with handle 0000000000000524 exiting
                                                                                                                                          0
numActiveThreads = 0
           exampleBrowser stopping threads
Thread with taskId 0 with handle 0000000000000194 exiting
    ock_b) PS C:\Users\dari\Documents\GitHUb\2024-25b-fai2-adsai-dariavladutu236578\robotics> python test_pid.py
```


Assumptions

Assumptions made during the design of the pipeline

Top 15% of image height is not useful data

Components with an area < 150px are noise

Roots are objects that are tall and skinny (area ratio threshold > 1.5)

The primary root is the shortest path from the **topmost to bottommost** node

test_image_11.tif_plant_5 — Length: 1598.25 px

Dataset limitations

Model cannot properly detect smaller roots

Overlapping and dense roots make it hard for the model to identify the main root path accurately

Next steps

What can be done?

1

A faster, more computationally proficient computer to train a model, using a mega dataset.

2

A dataset containing more newly germinated seeds.

3

A dataset containing manually annotated main roots

Thank you

