Stable-Diffusion models

Голов В. А.

Конспекты по пройденному материалу

18 января 2023 г.

Содержание

Ι	Диффузиозная модель		1
	I.1	Что такое диффузионная модель?]
	I.2	Определение процесса обучения]
	I.3	Наблюдения и некоторые выводы.	4

І. Диффузиозная модель

І.1. Что такое диффузионная модель?

Положим существует $q(x_0)$ – распределение исходных данных. То есть распределение в котором выборка $x_0 \sim q(x_0)$. Прямой диффузиозный процесс $q(x_t|x_{t-1})$ зашумляет данные Гауссовым шумом на каждом шаге t.

$$q(x_t|x_{t-1}) = \mathcal{N}(x_t; \sqrt{1 - \beta_t}x_{t-1}, \beta_t I),$$
 (1)

где $\forall t,\ 0<\beta_t<1$ и $\beta_t>\beta_{t-1}$. В классической нотации нормальное распределение $\mathcal{N}(\mu,\sigma^2)$ или в общем виде $\mathcal{N}(\vec{\mu},\Sigma)$ зависит от параметров смещения μ и разброса σ (среднее и стандартное отклонение). В данном случае $\mu_t=\sqrt{1-\beta_t}x_{t-1}$ и $\sigma_t^2=\beta_t$. Преобразование зашумления можно определить при помощи добавления аддитивного шума $\varepsilon\sim\mathcal{N}(0,I)$ как

$$x_t = \mu_t + \sigma_t \cdot \varepsilon = \sqrt{1 - \beta_t} x_{t-1} + \sqrt{\beta_t} \varepsilon. \tag{2}$$

Это следует из того факта, что если $\xi \sim \mathcal{N}(0,1)$, то $\eta = \sigma \xi + \mu \sim \mathcal{N}(\mu, \sigma^2)$. Заметим, что каждое β_t не является постоянной от времени и называется запланированным разбросом и может задаваться по-разному (линейно, квадратически, синусом и тд.).

Таким образом, если бы мы знали условное распределение $p(x_{t-1}|x_t)$, мы бы могли запустить процесс в обратном порядке и получить x_0 выборку из зашумленной x_T , где $t=0,\cdots,T$.

Так как $p(x_{t-1}|x_t)$ мы не знаем, приблизим его при помощи параметризованной функции распределения $p_{\theta}(x_{t-1}|x_t)$, где θ – веса, обновляемые в

процессе обучения. Так как нормальное распределение зависит от двух параметров, введем параметризованные среднее и разброс (μ_{θ} и Σ_{θ}). Тогда наше параметризованное распределение имеет вид

$$p_{\theta}(x_{t-1}|x_t) = \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t)).$$
 (3)

Заметим, что авторы статьи [1] обучают модель только на среднем, а разброс фиксируют как $\Sigma_{\theta} = \sigma^2 I = \beta_t I$, что было улучшено в статье [2].

І.2. Определение процесса обучения

Если рассматривать q и p_{θ} как VAE, то можно воспользоваться $variational\ lower\ bound\ (ELBO)$ для максимизации правдоподобия. В данном случае ELBO преобразуется в сумму $L=L_0+L_1+\cdots+L_T$, где все L_t кроме L_0 имеют вид MSE (L_2 нормы).

Заметим, что для получения x_t из x_0 не нужно проделывать все шаги между ними. При известных β_t достаточно выполнить преобразование

$$q(x_t|x_0) = \mathcal{N}(x_t; \sqrt{\overline{\alpha}_t}x_0, (1 - \overline{\alpha}_t)I), \tag{4}$$

где $\alpha_t = 1 - \beta_t$ и $\overline{\alpha}_t = \prod_{s=1}^t \alpha_s$. Это хорошо, так как позволяет нам оптимизировать случайные члены функции потерь L (случайным образом семплировать выборку по t). Помимо этого, данное свойство позволяет нам использовать аппроксимацию аддитивного шума вместо аппроксимации среднего. То есть наше среднее принимает вид

$$\mu_{\theta}(x_t, t) = \frac{1}{\sqrt{\alpha_t}} \left(x_t - \frac{\beta_t}{\sqrt{1 - \overline{\alpha_t}}} \varepsilon_{\theta}(x_t, t) \right), \quad (5)$$

что позволяет ввести функцию потерь L_t вида

$$L_{t} = \|\varepsilon - \varepsilon_{\theta}(x_{t}, t)\|_{2}^{2} =$$

$$= \|\varepsilon - \varepsilon_{\theta}(\sqrt{\overline{\alpha}_{t}}x_{0} + \varepsilon\sqrt{1 - \overline{\alpha}_{t}}, t)\|_{2}^{2}. \quad (6)$$

Таким образом алгоритм обучения можно свести к виду Алгоритма 1.

Другими словами, речь идет о следующем:

Алгоритм 1: Обучение модели

повторять $\begin{vmatrix} x_0 \sim q(x_0); \\ t \sim \mathcal{U}[1,T]; \\ \varepsilon \sim \mathcal{N}(0,I); \\ \theta \leftarrow \theta - \\ \tau \nabla_\theta \left\| \varepsilon - \varepsilon_\theta(\sqrt{\overline{\alpha}_t}x_0 + \varepsilon\sqrt{1-\overline{\alpha}_t},t) \right\|_2^2 \\ /* \ \text{Градиентный спуск} \end{cases}$ \star /

- 1. Сэмплируем выборку x_0 из реального распределения $q(x_0)$;
- 2. Сэмплируем уровень шума из дискретного равномерного распределения $\mathcal{U}[1,T]$;
- 3. Генерируем шум из нормального распределения и зашумляем данные (как показано выше);
- 4. На основе зашумленных изображений обучаем сеть определять уровень аддитивного шума.

Далее рассмотрим другие алгоритмы, необходимые при обучении. Алгоритм 2. использется

Алгоритм 2: Сэмплирование

авторами статьи [1] для отслеживания прогресса. По-факту речь о том, чтобы сгенерировать шум x_T самостоятельно, а затем с использованием модели привести его к x_0 . То есть в идеале должно получиться изображение из исходного распределения $q(x_0)$.

І.3. Наблюдения и некоторые выводы

На выходе имеются смешанные ощущения от модели. С одной стороны прямой процесс зашумления данных кажется очень простым за счет сэмплирования по временному шагу и возможности зашумления $x_0 \to x_t$ без промежуточных шагов.

Обратный проход, который и представляет из себя результирующую нейронную сеть требует использовать пошаговое удаление шума, что приводит к циклу при генерации изображения (см алгоритм 2).

Напрашивается вопрос: "можно ли использовать другой инструментарий для получения такого же результата?".

Рассмотрим $q(x_t|x_{t-1})$ как некоторый дифференциальный закон. Тогда можно сформулировать задачу

$$\begin{cases} \frac{dx(t)}{dt} = f_{\theta}(x(t), t, \theta), \\ x(0) = x_0 \sim q(x_0), \\ x(T) = x_T \sim \mathcal{N}(0, I), \end{cases}$$
 (7)

где f_{θ} - некоторая параметризованная функция, которую необходимо обучить зашумлять исходные данные в рамках ОДУ. Тогда обратных проход дает нам x_0 из x_T

$$x_0 = \int_{T}^{0} f_{\theta}(x(t), t, \theta) dt. \tag{8}$$

Данный подход лишает нас возможности обучать сеть на случайных членах L_t . Однако можно обучать на выборочных отрезках равной длины с фиксированным шагом h. Таким образом мы получаем контролируемую непрерывную производную динамики диффузиозного процесса.

Этот процесс больше похож на решение задачи нормализации потока и может решаться как задача максимизации правдоподобия. Использование ОДУ гарантирует непрерывность и дифференцируемость результирующей функции, что делает трансформацию более устойчивой.

Список литературы

- [1] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. June 2020. arXiv:2006.11239.
- [2] A. Nichol and P. Dhariwal. Improved denoising diffusion probabilistic models. *CoRR*, abs/2102.09672, 2021. URL: https://arxiv.org/abs/2102.09672, arXiv:2102.09672.