

The Team

Data Cleaning, EDA, Relevant Features

Lei

Baseline Model 1 & Fine Tuning

Linda

Feature Engineering/ Baseline Model 2

Audrey

Linear Regression

Elsie

Logistic Regression

Naima

Decision Tree

Diana

Random Forest

Maya

OUTLINE

- 1. Project Introduction
- 2. The Dataset
- 3. Our Methods
- 4. Results

Introduction

Research Questions

How can we predict flight arrival delays accurately using available flight and operational data?

Motivation

- Improving Airline Operations
- Enhancing the passenger experience

Stakeholders

- Airlines
- Passengers
- Airport Employees

The Dataset

Flight Status Prediction

Can you predict which flights will be delayed or cancelled in 5 years of data?

- Dataset: Combined_Flights_2021.csv
- **Original Shape:** 6,311,871 instances, 61 columns
- Class Imbalance: ~82.7% of instances belong to the negative class

PRE-PROCESSING

Relevant Feature Selection

From the 61 columns, we chose 21 columns as relevant or potentially important features for our modeling objectives, categorized into 7 groups.

We plan to choose at most 1 feature from each group to avoid redundancy and multicollinearity.

The 7 feature groups include:

- 1. **Flight Date:** When is the <u>scheduled</u> flight date?
- 2. **Flight Time:** When is the <u>scheduled</u> departure time or arrival time?
- 3. **Airline:** Which airline will operate the flight?
- 4. Flight Number & Aircraft Number: What's the flight number & which aircraft was used?
- 5. **Origin Location:** Where is the flight planned to take off from?
- 6. **Destination Location:** Where is the flight planned to land?
- 7. **Distance:** What's the distance between planned origin and destination airports?

Target Variable Selection

Target variables for each type of prediction:

- Continuous Prediction: ArrDelayMinutes
- Binary Prediction: ArrDel15
- Categorical Prediction: ArrivalDelayGroups

Feature Engineering

- Started with 21 columns after initial selection.
- Expanded to 57 columns after tuning and feature engineering.

Engineered variables to capture relationships:

Weekend & Holiday Indicators: Flagged travel patterns for non-working days.

Seasonal Labels: Highlighted weather impacts on delays.

Airport Capacity: Quantified origin/destination operational load.

Delay Trends by Aircraft: Captured per-aircraft delay histories.

Balanced dimensionality using one-hot encoding and scaled numeric features to improve model performance.

*** Observed Potential Data leakages

Methods

Methods Overview

Model 1

Predict whether or not a flight arrival will be delayed

Target Variable: ArrDelay15

Approach:

- Logistic Regression
- Decision Trees
- Random Forests

Metrics: Recall, Precision, Accuracy, F-1, AUC

Evaluation & Tuning: Threshold optimization, hyperparameter tuning, class adjustments, cross-validation, confusion matrix, classification report

Model 2

Predict how much (in minutes) the flight will be delayed

Target Variable: ArrDelayMinutes

Approach:

Built a regression model to predict how long in minutes will a flight be delayed to arrival at destination.

Metrics: RMSE, MAE, R-squared

Evaluation & Tuning: Feature selection, hyperparameter tuning, ridge/lasso regression, cross-validation

Model 1 Performance and Metrics

Model	Accuracy	Recall*	Precision	F-1
Logistic Regression	62.54	62.67	25.86	0.3662
Decision Tree	64.43	63.50	27.22	0.3811
Random Forest	69.58	79.10	33.75	0.4731

Model 2 Performance and Metrics

Metric	Ridge Regression	Lasso Regression	Polynomial Ridge
RMSE	17.03	17.02	16.87
MAE	11.27	11.35	11.1
R ²	0.06	0.06	0.07

- The Polynomial Ridge model performed best among the evaluated approaches, demonstrating slight improvements in predictive accuracy.
- The models explained only 6%–7% of the variance in arrival delays, indicating that a linear model does not capture

Model 2 Feature Importance

Real-World Implications

- Average of over 100,000 commercial flights operating per day globally
- Average of 30,000 delayed flights per day globally
- Benefit of accurate predictions:
 - True positives/True negatives
- Cost of inaccurate predictions:
 - False positives/False negatives
- Ready for the real-world?
 - Real-time/live data: weather, maintenance issues, air traffic, global events, etc.
 - Adaptive modeling: responsive to real-time changes

Lessons Learned

- High correlation between features
- Leakages
- Very large dataset