LAB REPORT 3

Kartik Sethi

All workspaces saved in folder Workspace

Q1.

q1.m to execute the code and worspace saved as q1.mat

In our experiment we observe that there is a linear relationship between n and log(cond(H)) till $cond(H) = 10^{18}$ after that floating point errors lead to the curve no longer being linear.

Q2. $\underline{q2.m} \text{ to execute the code and worspace saved as } \underline{q2.mat}$ Output

n = 8

x	x_1	x_2	x_3
0.706046088019609	0.706046088012541	0.706046088012162	0.706046088011975
0.031832846377421	0.031832846761154	0.031832846580759	0.031832846784067
0.276922984960890	0.276922979901710	0.276922986134943	0.276922979679189
0.046171390631154	0.046171418218357	0.046171415182965	0.046171419088235
0.097131781235848	0.097131706506352	0.097131807564899	0.097131704902439
0.823457828327293	0.823457934606389	0.823457962571329	0.823457936005740
0.694828622975817	0.694828547017259	0.694828591860903	0.694828546544806
0.317099480060861	0.317099501570728	0.317099491508923	0.317099501577638
cond(H)	$\frac{ x-x_2 }{ x }$	$\frac{ x-x_2 }{ x }$	$\frac{ x-x_3 }{ x }$
1.0e+10 *			

n = 10

x	x_1	x_2	x_3
0.950222048838355	0.950222048705845	0.950222048803993	0.950222048867865
0.034446080502909	0.034446092750798	0.034446109641809	0.034446078785707
0.438744359656398	0.438744084419080	0.438743959066460	0.438744380799567
0.381558457093008	0.381561068536921	0.381557528998687	0.381558384913616
0.765516788149002	0.765503893996335	0.765497966579702	0.765516642632803
0.795199901137063	0.795236367978524	0.795240947483085	0.795201459289516

cond(H)
$$\frac{||x-x_2||}{||x||} \qquad \frac{||x-x_2||}{||x||} \qquad \frac{||x-x_3||}{||x||}$$

1.0e+13 *

n = 12

$$x$$
 x_1 x_2 x_3 0.709364830858073 0.709364821910038 0.709364837698075 0.709364831791799 0.754686681982361 0.754687706567284 0.754684796646133 0.754686426929440 0.276025076998578 0.275995584964463 0.276076437797058 0.276036492987236 0.679702676853675 0.680074201348015 0.679348205802127 0.679509598028731 0.655098003973841 0.652559241943245 0.654400175234051 0.656741504541920 0.162611735194631 0.173079365738261 0.157349714951451 0.154545877826427 0.118997681558377 0.091474514292029 0.151832057637556 0.143482848503947 0.498364051982143 0.545604608727642 0.446252343114693 0.450893912748202 0.959743958516081 0.907011186962890 1.042340967551302 1.018621050731120 0.340385726666133 0.377290189799310 0.299654838850888 0.295184857477381 0.585267750979777 0.570559242138038 0.5722894967682627 0.604828823808057 0.223811939491137 0.226359451456255 0.223784721784977 0.220163882671529

1.0e+16 *

in some cases x_1, x_2, x_3 are not even accurate upto 1 significant digit. So all s=16 digits are lost. Results do match the rule-of-thumb mentioned in the assignment as we have cond(A) = 10^t , for t = 16 and s = 16 so the number of significant digits = s-t.

All x_1, x_2, x_3 give pretty much the same results so there is no difference between the methods used to generate them.

Q3.

Use q3.m to execute the code and q3,mat for workspace

$$\frac{||r||}{||b||} = 9.518115e-17$$

$$||x - \hat{x}|| = 1.012015e$$

$$\frac{||x - \hat{x}||}{||x||} = 1.013915e-04$$

This shows that $\frac{||r||}{||b||}$ being small does not imply the perturbation in the solution($\frac{||x-\hat{x}||}{||x||}$) will be small

Q4.

Method	n	cond(A)	$\frac{ r }{ r }$	$\frac{ x-\hat{x} _{\infty}}{ x-\hat{x} _{\infty}}$
GEPP	32	1.421555e+01	b 9.007462e-10	$ x _{\infty}$ 1.637298e-09
	64	2.860298e+01	1.543653e+00	2.809000e+00
QR	32	1.421555e+01	3.909811e-16	8.364506e-16
	64	2.860298e+01	4.753311e-16	8.580680e-16

- a) For both n, QR seems to give lower forward error.
- b) The rule of thumb is predicting well for QR method as s = 16, t = 1 and we have s t = 15. and the our \hat{x} is correct upto 15 significant digits as seen in forward error.

c)for both n, QR has lower
$$\frac{||r||}{||b||}$$

d) Given that QR method has lower forward error and $\frac{||r||}{||b||}$ compared to GEPP. It is more stable algorithm.

Q5

The code file is $\underline{q5.m}$ and workspace is stored as $\underline{q5.mat}$

N	GENP Error	LU error
20	1.584245e-01	2.581129e-15
40	1.466903e-01	3.989207e-15
60	1.440104e+00	9.474908e-15
80	9.169778e-02	1.035070e-14
100	1.801790e+00	2.272122e-14

for all n, GENP produces larger norm