Hardness Amplification for Weakly Verifiable Cryptographic Primitives

Grzegorz Mąkosa

Advisors: Prof. Dr. Thomas Holenstein, Dr. Robin Künzler Department of Computer Science, ETH Zürich

Hardness Amplification

Is solving parallel repetition of problems substantially harder than a single instance?

Hardness Amplification

■ Weak one-way function ⇒ strong one-way function

Hardness Amplification

- Weak one-way function ⇒ strong one-way function
- What about MAC, signature schemes, CAPTCHAs?

Agenda

- Setting and Type of Problems
 - Threshold and Monotone Functions
 - Weakly Verifiable Puzzles
 - Dynamic Weakly Verifiable Puzzles
 - Interactive Weakly Verifiable Puzzles
- Previous Works
- My Results
- Discussion and Questions

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Threshold and Monotone Functions

Threshold and Monotone Functions

Threshold function

$$f_{\mathcal{K}}(b_1,\ldots,b_n) = egin{cases} 1 & ext{if } \sum_{i=1}^n b_i \geq \mathcal{K} \\ 0 & ext{otherwise.} \end{cases}$$

Threshold and Monotone Functions

Threshold function

$$f_K(b_1,\ldots,b_n) = egin{cases} 1 & ext{if } \sum_{i=1}^n b_i \geq K \ 0 & ext{otherwise}. \end{cases}$$

Monotone function

$$f(b_0,\ldots,b_n):\{0,1\}^n\to\{0,1\}$$

Weakly Verifiable Puzzles - CAPTCHA

Weakly Verifiable Puzzles - CAPTCHA

Small solutions space.

Weakly Verifiable Puzzles - CAPTCHA

- Small solutions space.
- Solver cannot efficiently verify correctness of solutions.

Dynamic Weakly Verifiable Puzzles

Game-based security definition of MAC.

- Set of messages Q
- Hint solution for $q \in \mathcal{Q}$
- Set of hint indices $\mathcal{H} \subseteq \mathcal{Q}$
- Verification query solution for $q \in \mathcal{Q} \setminus \mathcal{H}$.
- Number of hint and verification queries limited.

Interactive puzzle - commitment protocols

Hardness amplification results

Weakly verifiable puzzles e.g. CAPTCHA, [CHS05]

Hardness amplification results

- Weakly verifiable puzzles e.g. CAPTCHA, [CHS05]
- Dynamic weakly verifiable puzzles + threshold functions e.g. MAC,[DIJK09]

Hardness amplification results

- Weakly verifiable puzzles e.g. CAPTCHA, [CHS05]
- Dynamic weakly verifiable puzzles + threshold functions e.g. MAC,[DIJK09]
- Interactive weakly verifiable puzzles + monotone function e.g. commitment protocols, [HS11]

Goal

- Define puzzle that generalize MAC, CAPTCHA, bit commitments.
- Amplify hardness by parallel repetition.

Monotone functions + Dynamic weakly verifiable puzzles + Interactive weakly verifiable puzzles

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Reduction

Reduction

Given a good solver C for parallel repetition

Reduction

- Given a good solver C for parallel repetition
- Reduce C to a solver for single puzzle

Reduction

- Given a good solver C for parallel repetition
- Reduce C to a solver for single puzzle
- A solving a single puzzle is hard
- B solving parallel repetition is hard

$$\neg B \implies \neg A$$

$$A \Longrightarrow B$$

1

The solver C can be run multiple times.

- The solver C can be run multiple times.
- Hint queries prevent verification queries from succeeding.

- The solver C can be run multiple times.
- Hint queries prevent verification queries from succeeding.
- Use hash function to partition query domain [DIJK09].

$$hash \leftarrow \mathcal{H}$$

hash :
$$Q \to \{0, 1, \dots, 2(h+v) - 1\}$$

$$Q_{\textit{verification}} := \{q \in \mathcal{Q} : \textit{hash}(q) = 0\}$$

- The solver C can be run multiple times.
- Hint queries prevent verification queries from succeeding.
- Use hash function to partition query domain [DIJK09].
- Substantial success probability for partitioned domain.

$$hash \leftarrow \mathcal{H}$$

hash :
$$Q \to \{0, 1, \dots, 2(h+v) - 1\}$$

$$Q_{\textit{verification}} := \{q \in \mathcal{Q} : \textit{hash}(q) = 0\}$$

Approach overview

 Cannot verify correctness of a solution for input puzzle.

- Cannot verify correctness of a solution for input puzzle.
- Possible for generated puzzles.

- Cannot verify correctness of a solution for input puzzle.
- Possible for generated puzzles.

- Cannot verify correctness of a solution for input puzzle.
- Possible for generated puzzles.

 Possible to generalize for monotone functions [HS11].

Result

Given a solver for parallel repetition of puzzles that satisfies

$$\geq \delta^k + \varepsilon$$
,

Result

Given a solver for parallel repetition of puzzles that satisfies

$$\geq \delta^{k} + \varepsilon$$
,

More generally using a monotone function

$$\geq \Pr[g(u_1,\ldots,u_k)=1]+\varepsilon$$

where $\Pr[u_i = 1] = \delta$.

Result

Given a solver for parallel repetition of puzzles that satisfies

$$\geq \delta^k + \varepsilon$$
,

More generally using a monotone function

$$\geq \Pr[g(u_1,\ldots,u_k)=1]+\varepsilon$$

where $Pr[u_i = 1] = \delta$.

We devise a solver for a single puzzle that satisfies (with high probability)

$$\geq \frac{1}{16(h+v)}\Big(\delta+\frac{\varepsilon}{6k}\Big).$$

Not clear whether it is possible to improve the result

$$\geq \frac{1}{16(h+v)} \Big(\delta + \frac{\varepsilon}{6k} \Big).$$

Not clear whether it is possible to improve the result

$$\geq \frac{1}{16(h+v)} \Big(\delta + \frac{\varepsilon}{6k}\Big).$$

Improve it?

Not clear whether it is possible to improve the result

$$\geq \frac{1}{16(h+v)} \Big(\delta + \frac{\varepsilon}{6k}\Big).$$

- Improve it? X
- Is it optimal?

Not clear whether it is possible to improve the result

$$\geq \frac{1}{16(h+v)} \Big(\delta + \frac{\varepsilon}{6k}\Big).$$

- Improve it? X
- Is it optimal? X

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Questions

Bibliography

Yevgeniy Dodis, Russell Impagliazzo, Ragesh Jaiswal, and Valentine Kabanets.

Security amplification for interactive cryptographic primitives.

In *Theory of cryptography*, pages 128–145. Springer, 2009.

Thomas Holenstein and Grant Schoenebeck.

General hardness amplification of predicates and puzzles.

In *Theory of Cryptography*, pages 19–36. Springer, 2011.