

January 2010

AR8031 Integrated 10/100/1000 Gigabit Ethernet Transceiver

General Description

The AR8031 is part of the Arctic family of devices — which includes the AR8031, AR8033, and AR8035. The AR8031 is Atheros' 4th generation, single port, 10/100/1000 Mbps, Trispeed Ethernet PHY. It supports both RGMII and SGMII interfaces to the MAC

The AR8031 provides a low power, low BOM (Bill of Materials) cost solution for comprehensive applications including enterprise, carrier and home networks such as CPE, home gateway, enterprise switch, carrier switch/router, mobile base station and base station controller, optical module and media converter, industry automation and measurement, etc.

The AR8031 integrates Atheros Green Ethostm power saving technologies and significantly saves power not only during the work time, but also overtime. Atheros Green Ethostm power savings include ultra-low power in cable unplugged mode or port power down mode, and automatic optimized power saving based on cable length. The AR8031 also supports IEEE 802.3az EEE standard (Energy Efficient Ethernet) and Atheros proprietary SmartEEE, which allows legacy MAC/SoC devices without 802.3az support to functions as the complete 802.3az system. Further, the AR8031 supports Wake-on-LAN (WoL) feature to be able to help manage and regulate total system power requirements.

The AR8031 embeds CDT (Cable Diagnostics Test) technology on-chip which allows customers to measure cable length, detect the cable status, and identify remote and local PHY malfunctions, bad or marginal patch cord segments or connectors. Some of the possible problems that can be detected include opens, shorts, cable impedance mismatch, bad connectors, termination mismatch, and a bad transformer.

The AR8031 requires only a single, 3.3V power supply. On-chip regulators provide all the other required voltages. It integrates the termination R/C circuitry on both the MAC interfaces (RGMII/SGMII) and the serial resistors for the line side.

The AR8031 device also incorporates an optional 1.25 GHz SERDES. This serial interface may be connected directly to a fiber-optic transceiver for 1000Base-X/100Base-FX mode.

The AR8031 supports both IEEE 1588 v2 and synchronous Ethernet to offer a complete time synchronization solution to meet the next generation network requirements. The key new features supported by the device are:

- clock synchronization between slave and grandmaster by the exchange of PTP packets. Supports IEEE 1588 v2 by offering a 1588 packet parser, accurate time-stamping and insertion to support both one-step and two-step clock modes.
- Supports Synchronous Ethernet by offering configurable recovered clock output from data on the network-line side.

The AR8031 supports IEEE 802.3az Energy Efficient Ethernet (EEE) 2010 standard. The key features supported by the device are:

- 10Base-Te PHY uses reduced transmit amplitude.
- 100Base-Tx and 1000Base-T use Low Power Idle (LPI) mode to turn off unused analog and digital blocks to save power while data traffic is in idle.

Features

- 10/100/1000 Base-T IEEE 802.3 compliant
- Supports 1000 Base-T PCS and auto-negotiation with next page support
- Supports RGMII and/or SGMII interfaces to MAC devices
- Supports Fiber and Copper combo mode when MAC interface works in RGMII mode
- Supports additional IEEE 1000Base-X and 100Base-FX with Integrated Serdes
- RGMII timing modes support internal delay and external delay on both Rx and Tx paths
- Supports Atheros Green Ethostm power saving modes with internal automatic DSP power saving scheme
- Supports 802.3az (Energy Efficient Ethernet)

© 2010 by Atheros Communications, Inc. All rights reserved. Atheros®, Atheros Driven®, Align®, Atheros XR®, Driving the Wireless Future®, Intellon®, No New Wires®, Orion®, PLC4Trucks®, Powerpacke®, Spread Spectrum Carrier®, SSC®, ROCm®, Super AG®, Super O®, Super N®, The Air is Cleaner at 5-GHz®, Total 802.11®, U-Nav®, Wake on Wireless®, Wireless Future. Unleashed Now.®, and XSPAN®, are registered by Atheros Communications, Inc. Atheros SST™, Signal-Sustain Technology™, Ethos™, Install N Go™, IQUE™, ROCm™, ampr™, Simpli-Fi™, There is Here™, U-Mapr™, U-1apr™, and 5-UPr™ are trademarks of Atheros Communications, Inc. The Atheros logo is a registered trademark of Atheros Communications, Inc. The Atheros logo is a registered trademark of Atheros Communications, Inc. The Atheros logo is a registered trademark of Atheros Communications, Inc. The Atheros logo is a registered trademark of Atheros Communications, Inc. The Atheros Logo is a registered trademark of Atheros Communications, Inc. The Atheros Logo is a registered trademark of Atheros Communications, Inc. The Atheros Logo is a registered trademark of Atheros Communications, Inc. The Atheros Logo is a registered trademark of Atheros Communications, Inc. The Atheros Logo is a registered trademark of Atheros Communications, Inc. The Atheros Logo is a registered trademark of Atheros Communications, Inc. The Atheros Logo is a registered trademark of Atheros Communications, Inc. The Atheros Logo is a registered trademark of Atheros Communications, Inc. The Atheros Logo is a registered trademark of Atheros Communications, Inc. The Atheros Logo is a registered trademark of Atheros Communications, Inc. The Atheros Logo is a registered trademark of Atheros Communications, Inc. The Atheros Logo is a registered trademark of Atheros Communications, Inc. The Atheros Logo is a registered trademark of Atheros Communications, Inc. The Atheros Logo is a registered trademark of Atheros Communications, Inc. The Atheros Logo is a registered trademark of Atheros Communications, Inc

COMPANY CONFIDENTIAL • 1

- Supports Atheros proprietary SmartEEE, which allows legacy MAC/SoC devices without 802.3az support to functions as the complete 802.3az system
- Supports Wake-on-LAN (WoL) to detect magic packet and notify the sleeping system to wake up
- Fully integrated digital adaptive equalizers, echo cancellers, and near end crosstalk (NEXT) cancellers
- Complete 1588v2 support for both one step and two step clock modes.
- Pulse Per Second (PPS) output for local synchronization reference
- Supports Synchronous Ethernet with selectable recovered clock output
- Robust Cable Discharge Event (CDE) protection of ±6KV

- Error-free operation over up to 140 meters of CAT5 cable
- Automatic channel swap (ACS)
- Automatic MDI/MDIX crossover
- Automatic polarity correction
- IEEE 802.3u compliant Auto-Negotiation
- Jumbo Frame support up to 10KB (full duplex)
- Software programmable LED modes
- Multiple loopback modes for diagnostics
- Robust Surge Protection with ±750V/differential mode and ±2KV/common mode
- Cable Diagnostic Test (CDT) with cable length detection of ±1.0 meter accuracy
- Single power supply: 3.3V, optional for external regulator for core voltage
- 6mm x 6mm, 48-pin QFN package

AR8031 Functional Block Diagram

Table of Contents

Ge	neral D	escription1		3.11.2	2 Shorter Cable Power Mode	23
Fea	atures	1		3.11.3	B Hibernation Mode	23
AF	:8031 F	unctional Block Diagram2	3.1	2 IEEE 23	E 802.3az and Energy Efficient Ethe	rnet
1	Pin D	escriptions7		3.12.1	I IEEE 802.3az LPI Mode	23
			3.1	3 Wak	e On LAN (WoL)	24
2	_	l to Pin Relationships and		3.13.1	Control — Fiber Page	25
	Descr	iptions 9		3.13.1	Status Register — Copper Page	26
2.1	Power	r-on Strapping Pins11				
•	.	. 15			rical Characteristics	
		tional Description13			lute Maximum Ratings	
3.2	Modes	s of Operation14			mmended Operating Conditions	
3.3	Transı	mit Functions15	4.3	RGM	II Characteristics	30
3.4	Receiv	ve Functions15	4.4	SERI	DES and SGMII Characteristics	33
	3.4.1	Decoder Modes	4.5	MDIO	O Timing table	36
		Analog to Digital Converter 15	4.6	MDIC	DC characteristic table	36
		Echo Canceller	4.7	XTAI	L/OSC characteristic table	36
		NEXT Canceller	4.8	Powe	r Pin Current Consumption	37
					al Power Consumption Parameters	
		Digital Adaptive Equalizer		1)110	ar rower consumption rulameters	. 50
		Auto-Negotiation	5	Regis	ster Descriptions	41
		Smartspeed Function	5.1	Regis	ter Summary	41
		Polarity Correction16		5.1.1	Control Register — Copper Page	42
2 5				5.1.1	Control — Fiber Page	
د.د	_	Digital Loopback		5.1.1	Status Register — Copper Page	
		External Cable Loopback		5.1.1	Status Register — Fiber Page	
		Remote PHY Loopback		5.1.1	PHY Identifier	
26		-		5.1.1	PHY Identifier2	50
		Diagnostic Test		5.1.1	Auto-Negotiation Advertisement	<i>E</i> 1
3./		Mode Support		5 1 1	Register — Copper Page Auto-Negotiation Advertisement	31
	3./.1	IEEE 802.3 Remote Fault Indication Support17		3.1.1	Register — Fiber Page	53
	372	Fault Propagation		5.1.1	Link Partner Ability Register —	
3 8		interface			Copper Page	54
				5.1.1	Link Partner Ability Register — F	iber
		Supplies			Page	
3.1		ng Sychronization		5.1.1	Auto-Negotiation Expansion Regi	
	5.10.1	Synchronization Protocol		511	— Copper Page	
	3 10 2	Synchronous Ethernet — Physical		5.1.1	Auto-Negotiation Expansion Regi — Fiber Page	
	5.10.2	Layer Timing Synchronization 22		5.1.1	Next Page Transmit Register — Co	
3.1	1 Ather	ros Green EthosTM23		J.1.1	Page	
		Low Power Modes23		5.1.1	Next Page Transmit Register — F	

		Page for 1000Base-X, SGMII 60	5.2.22	. 1000BT external loopback confi	gure
	5.1.1	Link Partner Next Page Register —		105	
		Copper Page61	5.2.23	rgmii rx clock delay control	105
	5.1.1	Link Partner Next Page Register — Fiber Page for 1000Base-X, SGMII 62	5.2.24	Rgmii_mode; Test configuration 10BT	
	5.1.1	1000Base-T Control Register 63	5.2.25	gpio 1588 control register	
		1000Base-T Status Register 65		gpio 1588 control register	
		MMD Access Control Register 66		MMD3 (MDIO Manageable Dev	
		MMD Access Access Address Data		Address 3 for PCS)	
		Register67	5.2.28	MMD7 (MDIO Manageable Dev	rice
	5.1.1	Extended Status Register68		Address 7 for Auto-Negotiation)	. 111
	5.1.1	Extended Status Register69			
		PHY-Specific Status Register —		Interface Register	
		Copper Page70		3 - PCS Register	
	5.1.1	PHY-Specific Status Register — Fiber	6.1.1	PCS Control 1	113
		Page72		PCS Status 1	
	5.1.1	Interrupt Enable Register74		PCS Package	
	5.1.1	Interrupt Status Register76	6.1.4	EEE Capability	116
	5.1.1	Smart Speed Register78	6.1.5	EEE Wake Error Counter	117
	5.1.1	Virtual Cable Tester Control Register	6.1.6	P1588 Control Register	118
		79	6.1.7	P1588 RX_seqid	119
	5.1.2	LED Control80	6.1.8	P1588 rx_sourcePort_identity	120
	5.1.3	Manual LED override register 82	6.1.9	P1588 rx_sourcePort_identity	121
	5.1.4	Copper/Fiber Status Register84	6.1.10	P1588 rx_sourcePort_identity	122
	5.1.5	Virtual Cable Tester Status register 86	6.1.11	P1588 rx_sourcePort_identity	123
	5.1.6	Debug port (Address offset set) 87	6.1.12	P1588 rx_sourcePort_identity	124
	5.1.7	Debug port2 (R/W port)88	6.1.13	P1588 rx_time_stamp	125
	5.1.8	Debug port2 (R/W port)89	6.1.14	P1588 rx_time_stamp	126
	5.1.9	Chip Configure Register90	6.1.15	P1588 rx_time_stamp	127
5.2	Debug	Register Descriptions92	6.1.16	P1588 rx_time_stamp	128
	_	Analog Test Control93	6.1.17	P1588 rx_time_stamp	129
		SERDES Test and System Mode	6.1.18	P1588 Rx_frac_nano	130
		Control94	6.1.19	P1588 Rx_frac_nano	131
	5.2.12	Hib ctrl and Auto-Negotiation Test		P1588 Tx_seqid	
		Register95	6.1.21	P1588 tx sourcePort Identity	133
	5.2.13	100BASE-TX Test Mode Select 96	6.1.22	P1588 tx_sourcePort_Identity	134
	5.2.14	hib timer selection97		P1588 tx sourcePort Identity	
	5.2.15	Test Configuration for 10BT98	6.1.24	P1588 tx_sourcePort_Identity	136
	5.2.16	Power-Saving Control99		P1588 tx_sourcePort_Identity	
	5.2.17	PHY_Control Debug Register0 100		P1588 tx_sourcePort_Identity	
	5.2.18	PHY_Control Debug Register0 101		P1588 tx timestamp	
	5.2.19	PHY_Control Debug Register0 102		P1588 tx timestamp	
	5.2.20	Hib ctrl and Auto-Negotiation Test		P1588 tx_time_stamp	
		Register 103		P1588 tx_time_stamp	
	5.2.21	Hib ctrl and rgmii gtx clock delay		P1588 tx_time_stamp	
		register		<u>-</u> r	

	6.1.32	P1588 Tx_frac_nano144	8	Ordering Information
	6.1.33	P1588 tx_frac_nano 145		
	6.1.34	P1588 Orgin_Correction_o 146	9	Ordering Information
	6.1.35	P1588 Orgin_Correction_o 147		
	6.1.36	P1588 Orgin_Correction_o 148		
	6.1.37	P1588 Orgin_Correction_o 149		
	6.1.38	P1588 Ingress_trig_time_o 150		
	6.1.39	P1588 Ingress_trig_time_o 151		
	6.1.40	P1588 Ingress_trig_time_o 152		
	6.1.41	P1588 Ingress_trig_time_o 153		
	6.1.42	P1588 Tx_latency_o 154		
	6.1.43	P1588 Inc_value_o155		
	6.1.44	P1588 Inc_value_o156		
	6.1.45	P1588 Nano_offset_o 157		
	6.1.46	P1588 Nano_offset_o 158		
	6.1.47	P1588 Sec_offset_o159		
	6.1.48	P1588 Sec_offset_o160		
	6.1.49	P1588 Sec_offset_o161		
	6.1.50	P1588 Real_time_i162		
	6.1.51	P1588 Real_time_i163		
	6.1.52	P1588 Real_time_i164		
		P1588 Real_time_i165		
		P1588 Real_time_i166		
		P1588 Rtc_frac_nano_i167		
		P1588 Rtc_frac_nano_i168	,	
		P1588 Offset_valid_r169		
		Wake-on-Lan loc_mac_addr_o 170		
		Wake-on-Lan loc_mac_addr_o 171		
	6.1.60	Wake-on-Lan loc_mac_addr_o 172		
6.2	MMD	7 - auto-negotiation register 173		
	6.2.1	AN control1		
	6.2.1	AN package173		
	6.2.1	AN package174		
	6.2.1	AN status		
	6.2.1	AN XNP transmit175		
	6.2.1	AN XNP transmit1175		
	6.2.1	AN XNP transmit2176		
	6.2.1	AN LP XNP ability176		
	6.2.1	AN LP XNP ability1176		
	6.2.1	AN LP XNP ability2177		
	6.2.2	EEE advertisement		
	6.2.3	EEE advertisement		
	6.2.4	EEE LP advertisement 180		

8	Ordering Information	183
9	Ordering Information	183

7 Package Dimensions 181

1. Pin Descriptions

This section contains a package pinout for the AR8031 QFN 48 pin and a listing of the signal descriptions (see Figure 1-1).

The following nomenclature is used for signal names:

NC	No connection to the internal die is made from this pin
n	At the end of the signal name, indicates active low signals
P	At the end of the signal name, indicates the positive side of a differential signal
N	At the end of the signal name indicates he negative side of a differential signal

The following nomenclature is used for signal types described in Table 1-1:

D	Open drain
IA	Analog input signal
I	Digital input signal
IH	Input signals with weak internal pull- up, to prevent signals from floating when left open
IL	Input signals with weak internal pull- down, to prevent signals from float- ing when left open
I/O	A digital bidirectional signal
OA	An analog output signal
0	A digital output signal
P	A power or ground signal
PD	Internal pull-down for input
PU	Internal pull-up for input

Figure 1-1 shows the pinout diagram for the AR8031.

Figure 1-1. AR8031 48-pin QFN Pinout Diagram (Top View)

NOTE: There is an exposed ground pad on the back side of the package.

2. Signal to Pin Relationships and Descriptions

Table 2-1. Signal to Pin Relationships and Descriptions

Symbol	Pin	Туре	Description	
MDI				
TRXP0, TRXN0	11, 12	IA, OA, D	Media-dependent interface 0, differential 100Ω transmission line	
TRXP1, TRXN1	14, 15	IA, OA, D	Media-dependent interface 1, differential 100Ω transmission line	
TRXP2, TRXN2	17, 18	IA, OA, D	Media-dependent interface 2, differential 100Ω transmission line	
TRXP3, TRXN3	20, 21	IA, OA, D	Media-dependent interface 3, differential 100Ω transmission line	
RGMII		1		
GTX_CLK	35	I, PD	RGMII transmit clock, 125 MHz digital	
RX_CLK	33	I/O, PD	RGMII receive clock, 125 MHz digital, adding a 22 Ω damping resistor is recommended	
RX_DV	32	I/O, PD	RGMII receive data valid, adding a 22 Ω damping resistor is recommended	
RXD0	31	I/O, PD	RGMII receive data 0, adding a 22 Ω damping resistor is recommended	
RXD1	30	I/O, PD	RGMII receive data 1, adding a 22 Ω damping resistor is recommended	
RXD2	28	I/O, PD	RGMII receive data 2, adding a 22 Ω damping resistor is recommended	
RXD3	27	I/O, PD	RGMII receive data 3, adding a 22 Ω damping resistor is recommended	
TX_EN	34	I, PD	RGMII transmit enable	
TXD0	36	I, PD	RGMH transmit data 0	
TXD1	37	I, PD	RGMII transmit data 1	
TXD2	38	I, PD	RGMII transmit data 2	
TXD3	39	I, PD	RGMII transmit data 3	
SGMII/1000FX				
SIP/SIN	46, 45	IA	1.25 Gbps transmit differential inputs When this interface is used as a MAC interface, the MAC transmitter's positive output connects to SIP and the MAC transmitter's negative output connects to the SIN. When this interface is used as a fiber interface, the fiber-optic transceiver's positive output connects to the SIP and the fiberoptic transceiver's negative output connects to the SIN	
SOP/SON	43, 42	OA	1.25 Gbps receive differential outputs When this interface is used as a MAC interface, the MAC receiver's positive input connects to SOP and the MAC receiver's negative input connects to the SON. When this interface is used as a fiber interface, the fiber-optic transceiver's positive input connects to the SOP and the fiberoptic transceiver's negative input connects to the SON	
SD	41	IA	Signal Detect input, External 1.2V	

Table 2-1. Signal to Pin Relationships and Descriptions (continued)

Symbol	Pin	Туре	Description
Management Interface	and Inte	rrupt	
MDC	1	I, PU	Management data clock reference
MDIO	48	I/O, D	Management data, 1.5K Ω pull-up to 3.3V
LED	I.		
LED_ACT	23	I/O, PD	Parallel LED output for 10/100/1000 BASE-T activity; active blinking LED active based upon power-on strapping. If pulled up, active low; If pulled-down, active high
LED_LINK_1000	24	I/O, PD	Parallel LED output for 1000 Base-T link; LED active based upon power- on strapping. If pulled up, active low; If pulled-down, active high
LED_LINK10_100	26	I/O, PD	Parallel LED output for 10/100 Base-T link LED active based upon power-on strapping. If pulled up, active low; If pulled-down, active high
System Signal Group/I	Reference		
CLK_25M	25	I/O	Synchronous Ethernet recovered clock — (25MHz, 50MHz, 62.5MHz or 125MHz) output, or IEEE 1588 reference 50MHz ~ 125MHz clock input, register configurable
PPS	22	O	IEEE 1588 Pulse Per Second output
RSTn	2	IH	System reset, active low
XTLI	7	IA	Crystal oscillator input; 27pF to GND. External 1.2V.
XTLO	6	OA	Crystal oscillator output; 27pF to GND
RBIAS	9	OA	External 2.37K Ω 1% to GND to set bias current
INT	5	I/O, PD	System Interrupt Output; Active high
WOL_INT	40	I/O, PD	Wake-on-LAN interrupt output; Active high
Power			
LX	3	OA	Power, 1.1V requlator output
VDDH_REG	10	OA	2.5V regulator output. A 1uF cap connected between this pin and GND
VDDIO_REG	29	OA	Regulator output for the RGMII I/O voltage. It can be either 1.5V (default) or 1.8V. If 2.5V is intended for the RGMII I/O, simply connect this pin with the 2.5V regulator output at pin 10.
AVDDL	8, 13, 19, 44	P	1.1V analog input. Connect to Pin 47 through a bead
DVDDL	47	P	1.1V digital core input. Connect to power inductor directly and 10uF+0.1uF ceramic caps to GND
VDD33	4	P	3.3V input for switching regulator
AVDD33	16	P	3.3V input for PHY, from VDD33 through a bead
-	-		Exposed ground pad on back of the chip, tie to ground

2.1 Power-on Strapping Pins

Table 2-2 shows the pin-to-PHY core Power-on strapping relationship

Table 2-2. Power-on Strapping Pins

PHY Pin	PHY Core Config Signal	Description	Default
RXD0	PHYADDRESS0	RXD1-0 set the lower two bits of the physical	0
RXD1	PHYADDRESS1	address. The upper three bits of the physical address are set to the default, "000"	0
RX_DV	MODE[0]	Mode select bit 0	0
RXD2	MODE[1]	Mode select bit 1	0
RX_CLK	MODE[2]	Mode select bit 2	0
RX_D3	MODE[3]	Mode select bit 3	0
LED_LINK1000	SEL_GPIO_INT	Select pin5 work mode: 0:INT, 1:GPIO	0
LED_ACT	ANA_MOD	Select the core voltage level: 0:1.1V, 1:1.2V	0

NOTE: 0 = Pull-down, 1 = Pull-up with 10K resistor

For AR8031-1L1E, suggest configuring the core to 1.1V.

Mode Definition

Table 2-3 shows the Mode and its Description

Table 2-3. Mode Definition

Mode	Description
0000	1000Base-T, RGMII
0001	1000Base-T, SGMII
0010	1000Base-X, RGMII, 50Ω
0011	1000Base-X, SGMII, 75Ω
0100	1000M converter mode, 50Ω
0101	1000M converter mode, 75Ω
0110	100Base-FX, RGMII, 50Ω
0111	100M converter, 50Ω
1000	Reserved
1001	Reserved
1010	Reserved

Table 2-3. Mode Definition

	Description
Mode	
1011	Reserved
1100	100Base-Tx, RMII1 mode
1101	100Base-Tx, RMII2 mode
1110	100Base-FX, RGMII mode, 75Ω
1111	100M converter mode, 75Ω

NOTE: RMII1 is normal RMII mode — which requires an external 50MHz clock input

NOTE: RMII2 uses a 25MHz crystal or 25MHz clock input and generates a 50MHz clock output

NOTE: 50Ω or 75Ω is the fiber serdes interface output impedance

3. Functional Description

The AR8031 is Atheros's low cost GbE PHY. It is a highly integrated analog front end (AFE) and digital signal transceiver, providing high performance combined with substantial cost reduction. The AR8031 provides physical layer functions for half/ full -duplex 10 BASE-Te, 100 BASE-TX and 1000 BASE-T Ethernet to transmit and receive highspeed data over standard category 5 (CAT5) unshielded twisted pair cable.

The AR8031 10/100/1000 PHY is fully 802.3ab compliant, and supports the reduced Gigabit mediaindependent interface (RGMII) to connect to a Gigabit-capable MAC.

The AR8031 transceiver combines echo canceller, near end cross talk (NEXT) canceller, feed-forward equalizer, joint Viterbi, feedback equalizer, and timing recovery, to enhance signal performance in noisy environments.

See the "AR8031 Functional Block Diagram" on page 2.

Table 3-1 shows a feature comparison across the AR8031, AR8033, and AR8035 family.

Table 3-1. AR8031, AR8033, and AR8035 Comparison

Feature	AR8031	AR8033	AR8035
RGMII	yes	yes	yes
SGMII	yes	yes	
Cu Ethernet**	yes	yes	yes
EEE (802.3az)	yes	yes	yes
Wake-on-LAN	yes	yes	yes
SERDES/Fiber	yes***	yes***	
1588v2	yes		
Sync-E	yes	yes	
Packaging	48-pin	48-pin	40-pin

NOTE: AR8031, AR8033 is pin-to-pin compatable

The AR8031 is part of the Arctic family of devices — including the AR8031, the AR8033, and the AR8035. The major differences can be seen in the table above.

^{** 10}Base-TE, 100Base-TX, 1000Base-T is supported

^{*** 100}Base-FX, and 1000Base-X is supported

3.2 Modes of Operation

The AR8031 operates in the following modes, as illustrated below:

Figure 3-1 shows the operating mode Copper for the AR8031.

Figure 3-1. Operating Modes — Copper

Figure 3-2 shows the operating mode fiber for the AR8031...

Figure 3-2. Operating Modes — Fiber

Figure 3-3 shows the operating mode Media Converter for the AR8031.

Figure 3-3. Operating Modes — Media Converter

14

3.3 Transmit Functions

Table 3-2 describes the transmit function encoder modes.

Table 3-2. Transmit Function Encoder Modes

Encoder Mode	Description
1000BASE-T	In 1000 BASE-T mode, the AR8031 scrambles transmit data bytes from the MAC interfaces to 9-bit symbols and encodes them into 4D five-level PAM signals over the four pairs of CAT5 cable.
100BASE-TX	In 100 BASE-TX mode, 4-bit data from the MII is 4B/5B serialized, scrambled, and encoded to a three-level MLT3 sequence transmitted by the PMA.
10BASE-Te	In 10 BASE-Te mode, the AR8031 transmits and receives Manchester-encoded data.

3.4 Receive Functions

3.4.1 Decoder Modes

Table 3-3 describes the receive function decoder modes.

Table 3-3. Receive Function Decoder Modes

Decoder Mode	Description
1000 BASE-T	In 1000 BASE-T mode, the PMA recovers the 4D PAM signals after accounting for the cabling conditions such as skew among the four pairs, the pair swap order, and the polarity of the pairs. The resulting code group is decoded into 8-bit data values. Data stream delimiters are translated appropriately and data is output to the MAC interfaces.
100 BASE-TX	In 100 BASE-TX mode, the receive data stream is recovered and descrambled to align to the symbol boundaries. The aligned data is then parallelized and 5B/4B decoded to 4-bit data. This output runs to the MII receive data pins after data stream delimiters have been translated.
10 BASE-T	In 10 BASE-T mode, the recovered 10 BASE-T signal is decoded from Manchester then aligned.

3.4.7 Auto-Negotiation

3.4.2 Analog to Digital Converter

The AR8031 device employs an advanced high speed ADC on each receive channel with high resolution, which results in better SNR and lower error rates.

3.4.3 Fcho Canceller

A hybrid circuit is used to transmit and receive simultaneously on each pair. A signal reflects back as an echo if the transmitter is not perfectly matched to the line. Other connector or cable imperfections, such as patch panel discontinuity and variations in cable impedance along the twisted pair cable, also result in drastic SNR degradation on the receive signal. The AR8031 device implements a digital echo canceller to adjust for echo and is adaptive to compensate for the varied channel conditions.

3.4.4 NEXT Canceller

The 1000 BASE-T physical layer uses all four pairs of wires to transmit data. Because the four twisted pairs are bundled together, significant high frequency crosstalk occurs between adjacent pairs in the bundle. The AR8031 device uses three parallel NEXT cancellers on each receive channel to cancel high frequency crosstalk. The AR8031 cancels NEXT by subtracting an estimate of these signals from the equalizer output.

3.4.5 Baseline Wander Canceller

Baseline wander results from Ethernet links that AC-couple to the transceivers and from AC coupling that cannot maintain voltage levels for longer than a short time. As a result, transmitted pulses are distorted, resulting in erroneous sampled values for affected pulses. Baseline wander is more problematic in the 1000 BASE-T environment than in 100 BASE-TX due to the DC baseline shift in the transmit and receive signals. The AR8031 device uses an advanced baseline wander cancellation circuit that continuously monitors and compensates for this effect, minimizing the impact of DC baseline shift on the overall error rate.

3.4.6 Digital Adaptive Equalizer

The digital adaptive equalizer removes inter-symbol interference at the receiver. The digital adaptive equalizer takes unequalized signals from ADC output and uses a combination of feedforward equalizer (FFE) and decision feedback equalizer (DFE) for the best-optimized signal-to-noise (SNR) ratio.

The AR8031 device supports 10/100/1000 BASE-T Copper auto-negotiation in accordance with IEEE

802.3 clauses 28 and 40. Auto-negotiation provides a mechanism for transferring information between a pair of link partners to choose the best possible mode of operation in terms of speed, duplex modes, and master/slave preference. Auto-negotiation is initiated upon any of the following scenarios:

- Power-up reset
- Hardware reset
- Software reset
- Auto-negotiation restart
- Transition from power-down to power-up
- The link goes down

If auto-negotiation is disabled, a 10 BASE-T or 100 BASE-TX can be manually selected using the IEEE MII registers.

3.4.8 Smartspeed Function

The Atheros Smartspeed function is an enhanced feature of auto-negotiation that allows the AR8031 device to fall back in speed based on cabling conditions as well as operate over CAT3 cabling (in 10 BASE-Te mode) or two-pair CAT5 cabling (in 100 BASE-TX mode).

By default, the Smartspeed feature is enabled. Refer to the register "Extended PHY-Specific Control" on page 48, which describes how to set the parameters. Set these register bits to control the Smartspeed feature:

- Bit [5]: 1 = Enables Smartspeed (default)
- Bits [4:2]: Sets the number of link attempts before adjusting
- Bit [1]: Timer to determine the stable link condition

3.4.9 Automatic MDI/MDIX Crossover

During auto-negotiation, the AR8031 device automatically determines and sets the required MDI configuration, eliminating the need for external crossover cable. If the remote device also implements automatic MDI crossover, the crossover algorithm as described in IEEE 802.3 clause 40.4.4 ensures that only one device performs the required crossover.

3.4.10 Polarity Correction

If cabling has been incorrectly wired, the AR8031 automatically corrects polarity errors on the receive pairs in 1000 BASE-T, 1000BASE-TX and 10 BASE-T modes.

3.5 Loopback Modes

3.5.1 Digital Loopback

Digital loopback provides the ability to loop transmitted data back to the receiver using digital circuitry in the AR8031 device. The registers are used to determine at which point the signal loops back (for different modes, 10, 100, and 1000, respectively). Figure 3-4 shows a block diagram of digital loopback.

Figure 3-4. Digital Loopback

3.5.2 External Cable Loopback

External cable loopback loops RGMII/SGMII Tx to RGMII/SGMII Rx through a complete digital and analog path and an external cable, thus testing all the digital data paths and all the analog circuits. Figure 3-5 shows a block diagram of external cable loopback.

Figure 3-5. External Cable Loopback

3.5.3 Remote PHY Loopback

The Remote loopback connects the MDI receive path to the MDI transmit path, thus the remote link partner can detect the connectivity in the resulting loop. The figure below shows the path of the remote loopback.

Figure 3-6 shows a block diagram of external remote PHY loopback.

Figure 3-6. Remote PHY Loopback

NOTE: AR8031-1L1E does not support.

AR8031-1L1A supports Remote PHY Loopback.

3.6 Cable Diagnostic Test

The Cable Diagnostic Test (CDT) feature in the AR8031 device uses Time Domain Reflectometry (TDR) to identify remote and local PHY malfunctions, bad/marginal cable or patch cord segments, or connectors. Some of the possible problems that can be diagnosed include opens, shorts, cable impedance mismatch, bad connectors, termination mismatch, and bad magnetics. The CDT can be performed when there is no link partner or when the link partner is auto-negotiating.

3.7 Fiber Mode Support

Besides standard 10/100/1000Base-T copper port support, Both AR8031 and AR8033 provide additional IEEE 1000Base-X and 100Base-FX support in fiber applications through integrated SERDES. Both the AR8031 and the AR8033 can work in RGMII mode to fiber or 10/100/1000Base-T to fiber.

Besides 1000Base-X and 100Base-FX support, Both devices will support IEEE 802.3 remote Fault Indication and fault propagation in fiber application.

3.7.1 IEEE 802.3 Remote Fault Indication Support

Remote Fault allows stations on a fiber optic link to know when there is a problem on the link. Without Remote Fault, a station can not detect a problem that affects only one fiber (Transmit, for example).

With Remote Fault, the loss of a Receive signal (Link) causes the Transmitter to send a special pattern of data indicating that a fault has occurred. 84 '1's followed by a single '0' is sent three times, inband, and is readily detectable by the remote station,

but is constructed so as to not satisfy the 100BASE-X carrier sense criterion, so the message will not be interpreted as normal traffic. If the remote station has Remote Fault, the link is dropped. If the remote station does not have Remote Fault, the special data pattern is ignored.

The AR8031 indicates whether or not a Remote Fault pattern has been received from the remote station using the "Remote Fault Status Bit". This "Remote Fault Status Bit" can be "Propagated" (see below) to the copper links on both ends of a fiber link. In the event of a detected fault, both ends of the link can be notified of the failure in this way. This is particularly useful given the distances fiber links are generally used over.

3.7.2 Fault Propagation

The AR8031 supports Fault Propagation - this allows the fiber link fault to be propagated to the Twisted-pair copper connections where the "link down" status can be easily and quickly detected.

The following steps describe Fault Propagation (for both 100Base-FX and 1000Base-X):

The AR8031 supports Fault Propagation - this allows the fiber link fault to be propagated to the Twisted-pair copper connections where the "link down" status can be easily and quickly detected.

The following steps describe Fault Propagation (for both 100Base-FX and 1000Base-X):

- The Twisted-pair transmit path will be OFF when the Receive path of the Fiber link has no signal detected or is link down. The two Fiber media types are then handled as described below:
- The Media Converter (in 100Base-FX mode) will transmit Far-End Fault message, on the TX pair, when the Receive path of Fiber has no signal detected or is link down. This alerts the Media Converter on the remote end of the link.
- The Transmit Twisted-pair will then be switched OFF on the remote end of the link.
- The Media Converter (in 1000Base-X mode) will restart auto-negotiation when the Receive path of the Fiber detects no signal or is link down.
- Auto-negotiation will carry remote fault indications from the Transmit fiber and the local station will restart auto-negotiation when its' Receive path has no detected signal or is link down.

■ The Twisted-pair transmit path will be OFF when the Receive path of a 1000Base-X learns of the fault from an AN message.

Figure 3-7 shows the Fiber Fault mechanism.

Figure 3-7. Fiber Fault Propagation or Re-Auto-negotiation

3.8 LED Interface

The LED interface can either be controlled by the PHY or controlled manually, independent of the state of the PHY. Three status LEDs are available. These can be used to indicate operation speed, duplex mode, and link status. The LEDs can be programmed to different status functions from their default value. They can also be controlled directly from the MII register interface.

3.9 Power Supplies

The AR8031 device requires only one external power supply: 3.3 V.

3.10 Timing Sychronization

3.10.1 IEEE 1588 — Precision Clock Synchronization Protocol

IEEE 1588 provides a mechanism to synchronize the clocks across an Ethernet network by exchanging the IEEE 1588 packets. The slave node can adjust the local clock based on the the timing information calculated from timestamps exchanged. Figure 3-8 shows the top-level use of the AR8031 to build a typical 1588 system.

The AR8031 provides all the key componets to support an IEEE 1588v2 operation. The IEEE 1588 Real Time Clock (RTC) generates and provides time information to other mofules and software, timing information includes Time of Day and PPS.

IEEE 1588 Control accepts control information fom software via MDC/MDIO, generates control signals to other modules, and provides status information to software.

IEEE 1588 Timestamp Unit, packet detction and processing, generates timestamps for IEEE 1588v2 event messages and interrupt signals when receiving or transmitting IEEE 1588 messages.

The AR8031 supports ordinary, boundary and transparent clock modes as defined in IEEE 1588v2

Figure 3-9 shows the top level diagram of AR8031's IEEE 1588v2 module. Also the AR8031 supports time-stamps to be encapsulated into the 1588 packet as explained in the following figure 3-10.

Figure 3-8 shows the Top Level Use of AR8031 in an IEEE 1588v2 system.

Figure 3-8. Top Level Use of AR8031 in an IEEE 1588v2 System

Figure 3-9 shows the Top Level Diagram of the AR8031's IEEE 1588v2 module.

Figure 3-9. Top Level Diagram of the AR8031's IEEE 1588v2 Module

On the transmit side, the PHY will monitor and parse the incoming packet from the top layer, upon the request of sending IEEE 1588 packet, it will calculate the accurate time of transmission onto the media and a timestamp accordingly.

The AR8031 supports both one-step and two-step clock modes, as defined in IEEE 1588. No matter

where accurate time information is carried — in the follow-up message (two-step clock mode) or in the single event message (one-step clock mode), the AR8031 will support correction filed update and CRC recalculation on the fly.

On the receive side, the PHY will monitor and parse the incoming packet from media, and will generate a timestamp upon the reception of IEEE 1588 packets. The built-in parser is capable of detecting IEEE 1588 on ethernet layer 2 (including untagged, one VLAN tagged and two VLAN tagged), or layer 3 IPv4/UDP, and IPv6/UDP (including PPPoE and SNAP).

The following IEEE 1588 packets are used to exchange the timing message for the delay request-response mechanism:

- Sync
- Follow Up
- Delay Req

Figure 3-10 shows the PTP Timestamp.

Delay_Resp

Messages for the Peer Delay are also supported:

- Pdelay_Req
- Pdelay Resp
- Pdelay_Resp_Follow_Up

The received IEEE 1588 packet along with the timestamp will be forwarded to an external CPU/MAC for further processing via accelerated MDC/MDIO interfaces (running up to 25MHz).

The AR8031 also supports time-stamp encapsultion into the 1588 packet as explained in the following figure 3-10.

- 1. Event PTP message attach timestamp of itself.
- 2. General PTP message attach timestamp of associated event PTP message if existed.

Figure 3-10. PTP Timestamp

AR8031 provides a Pulse Per Second output, which locks onto the 1588 clock time of the device.

The AR8031 1588 logic allows multiple reference clock sources, including:

- Local 25MHz crystal (default)
- Recovered clock from Sychronous Ethernet
- Dedicated, external 50MHz ~ 125MHz 1588 reference clock

The AR8031 IEEE 1588v2 module is under Tx FIFO, so the FIFO does not affect time stamping giving improved accuracy. Refer to Figure 3-11

Also, the IEEE 1588v2 module can be bypassed by register settings.

Figure 3-11 shows the Block Diagram of the AR8031 1588v2 module.

Figure 3-11. Block Diagram of the AR8031's IEEE 1588v2 Module

3.10.2 Synchronous Ethernet — Physical Layer Timing Synchronization

The AR8031 supports Synchronous Ethernet for 100Base-T, 1000Base-T, and 1000Base-X applications by offering one recovered clock from the network line-side. This recovered clock output is register configurable to 25MHz (default), 50MHz, 62.5MHz or 125MHz, to meet the ITU-T recommendations G.8261/Y.1361. The network

node can use this recovered clock to replace local clock sources and drive the local system. Therefore all distributed nodes the network will use the same network clock to support synchronus and timing sensitive services like T1/E1 service over Ethernet.

3.11 Atheros Green Ethos™

3.11.1 Low Power Modes

The AR8031 device supports the software power-down low power mode. The standard IEEE power-down mode is entered by setting the POWER_DOWN bit (bit [11]) of the register "Control" on page 18 equal to one. In this mode, the AR8031 ignores all MAC interface signals except the MDC/MDIO. It does not respond to any activity on the CAT 5 cable. The AR8031 cannot wake up on its own. It can only wake up by setting the POWER_DOWN bit of the "Control" register to 0. See Table 5.1.1 on page 36.

3.11.2 Shorter Cable Power Mode

The AR8031 can attain an additional 25% power savings when a cable length is detected that is <30M vs. standard power consumption for a 100M Cat5 cable.

3.11.3 Hibernation Mode

The AR8031 device supports hibernation mode. When the cable is unplugged, the AR8031 will enter hibernation mode after about 10 seconds. The power consumption in this mode is very low when compared to the normal mode of operation. When the cable is re-connected, the AR8031 wakes up and normal functioning is restored.

3.12 IEEE 802.3az and Energy Efficient Ethernet

IEEE 802.3az provides a mechanism to greatly save the power consumption between data packets burst. The link partners enter Low Power Idle state by sending short refresh signals to maintain the link.

There are two operating states, Active state for normal data transfer, and Low-power state between the data packet bursts.

In the low-power state, PHY shuts off most of the analog and digital blocks to reserve energy. Due to the bursty traffic nature of Ethernet, system will stay in low-power mode in the most of time, thus the power saving can be more than 90%.

At the link start up, both link partners exchange information via auto neg to determine if both parties are capable of entering LPI mode.

Legacy Ethernet products are supported, and this is made transparent to the user.

3.12.1 IEEE 802.3az LPI Mode

AR8031 works in the following modes when 802.3 az feature is turned on:

- Active: the regular mode to transfer data
- Sleep: send special signal to inform remote link of entry into low-power state
- Quiet: No signal transmitted on media, most of the analog and digital blocks are turned off to reduce energy.
- Refresh: send periodically special training signal to maintain timing recovery and equalizer coefficients
- Wake: send special wakup signal to remote link to inform of the entry back into Active.

The AR8031 supports both 100Base-Tx EEE and 1000Base-T EEE.

100Base-Tx EEE allows asymmetrical operation, which allows each link partner to enter the LPI mode independent of the other partner.

1000Base-T EEE requires symmetrical operation, which means that both link partners must enter the LPI mode simultaneously.

Figure 2-3 shows the 802.3az operating states for the AR8031.

Figure 3-12. Operating States — 802.3az LPI Mode

Figure 2-4 shows the 802.3az operating power modes — 802.3az for the AR8036.

Figure 3-13. Operating Power Modes — 802.3az LPI Mode

3.13 Wake On LAN (WoL)

Originally Wake-on-LAN (WoL) was an Ethernet networking standard that allowed a computer to be turned on (or woken up) by a network message for Administrator attention, etc. However as part of the latest industry trend towards energy savings, and lower power consumption, WoL gets wide interest to be adopted across networking systems as a mechanism to help to manage and regulate the total power consumed by the network. The AR8031 supports Wake On LAN (WoL):

- Able to enter the sleep/isolate state (PHY's all TX bus (including clock) are in High-Z state, but PHY can still receive packets) by ISOLATE bit in MII register configuration
- Consumes less than 50mW when in sleep/isolate mode.

- Supports automatic detection of magic packets (a specific broadcast frame containing anywhere within its payload: 6 bytes of ones (resulting in hexadecimal FF FF FF FF FF), followed by sixteen repetitions of the target computer's MAC address) and notification via dedicated hardware interrupt with pulse width of 32 125MHz clock cycles
- Supports exit from the sleep state by registeer configuration

3.13.1 Control — Fiber Page

Offset: 0x00, or 0d00 Mode: Read/Write Hardware Reset: 0

Software Reset: See field descriptions

Bit	Name	Тур	e	Description
		Mode	R/W	
		HW Rst.	1	
		SW Rst.	Retain	
		Mode	RO	
		HW Rst.	0	
		SW Rst.	0	
		Mode	R/W	
		HW Rst.	1	
		SW Rst.	Retain	
		Mode	RO	
		HW Rst.	0	
		SW Rst.	0	
		Mode	R/W	
		HW Rst.	2'b10	
		SW Rst.	Retain	
		Mode	RO	
		HW Rst.	0	
		SW Rst.	0	
	0,			

3.13.1 Status Register — Copper Page

Offset: 0x00, or 0d00 Mode: Read/Write Hardware Reset: 0

Software Reset: See field descriptions

15	Mode HW Rst.	R/W	
	HW Rst.		
		1	
	SW Rst.	Retain	
14	Mode	RO	
	HW Rst.	0	
	SW Rst.	0	
13	Mode	R/W	
	HW Rst.	1	
	SW Rst.	Retain	
12	Mode	RO	
	HW Rst.	0	
	SW Rst.	0	
11	Mode	R/W	_
	HW Rst.	2'b10	
10	SW Rst.	Retain	
10	Mode	RO	
	HW Rst.	0	
9	SW Rst.	0	
9			
8			
0			
7			
,			

Bit	Name	Туре	Description
6			
5			
4			
3			
			1
2			
1			
0			
			

4. Electrical Characteristics

4.1 Absolute Maximum Ratings

Table 4-1 summarizes the absolute maximum ratings and Table 4-2 lists the recommended operating conditions for the AR8031. Absolute maximum ratings are those values beyond which damage to the device can occur. Functional operation under these conditions, or at any other condition beyond those indicated in the operational sections of this document, is not recommended.

Table 4-1. Absolute Maximum Ratings

Symbol	Parameter	Max Rating	Unit		
V_{DD33}	3.3V analog supply voltage	3.8	V		
AVDDL	1.1V analog supply voltage	1.1V analog supply voltage 1.6			
DVDDL	1.1V digital core supply voltage	1.6			
T _{store}	Storage temperature	-65 to 150	°C		
НВМ	Electrostatic discharge tolerance - Human Body Model	TBD	V		
MM	Machine Model	TBD	V		
CDM	Charge Device Model	TBD	V		

4.2 Recommended Operating Conditions

Table 4-2. Recommended Operating Conditions

Symbol	Parameter	Min	Тур	Max	Unit
V_{DD33}	3.3V supply voltage	3.0	3.3	3.6	V
DVDDL/AVDDL	1.1V digital core supply voltage	1.04	1.1	1.17	V
$T_{ m ambient}$	Ambient temperature for normal operation — Commercial chip version AR8031-AL1A	0	_	70	°C
T _{ambient}	Ambient temperature for normal operation — Industrial chip version AR8031-AL1B	-40	_	85	°C
T_J	Junction temperature	-40	_	120	°C
$\Psi_{ m JA}$	Junction to ambient temperature	_	24.8	_	°C/W

4.3 RGMII Characteristics

Table 4-3 shows the RGMII DC characteristics with 2.5/3.3V I/O supply.

Table 4-3. RGMII DC Characteristics — 2.5/3.3V I/O Supply

Symbol	Parameter	Min	Max	Unit
I _{IH}	Input high current	_	15	μА
I _{IL}	Input low current	-15	_	μА
V _{IH}	Input high voltage	1.7	3.5	V
V _{IL}	Input low voltage	_	0.7	V
V _{OH}	Output high voltage	2.0	2.8	V
V _{OL}	Output low voltage	GND - 0.3	0.4	V

Table 4-4 shows the RGMII DC characteristics with 1.8V I/O supply.

Table 4-4. RGMII DC Characteristics — 1.8V I/O Supply

Symbol	Parameter	Min	Max	Unit
V _{IH}	Input high voltage	1.4	_	V
V _{IL}	Input low voltage	/ –	0.4	V
V _{OH}	Output high voltage	1.5	_	V
V _{OL}	Output low voltage	_	0.3	V

Table 4-5 shows the RGMII DC characteristics with 1.5V I/O supply.

Table 4-5. RGMII DC Characteristics — 1.5 I/O Supply

Symbol	Parameter	Min	Max	Unit
V _{IH}	Input high voltage	1.2	_	V
V _{IL}	Input low voltage	_	0.3	V
V _{OH}	Output high voltage	1.3	_	V
V _{OL}	Output low voltage	_	0.2	V

Figure 4-2 shows the RGMII AC timing diagram — no internal delay.

Figure 4-1. RGMII AC Timing Diagram — no Internal Delay

Table 4-6 shows the RGMII AC characteristics.

Table 4-6. RGMII AC Characteristics — no Internal Delay

Symbol	Parameter	Min	Тур	Max	Unit
T_{skewT}	Data to clock output skew (at Transmitter)	-500	0	500	ns
T _{skewR}	Data to clock output skew (at Receiver)	1	_	_	ns
T _{cyc}	Clock cycle duration	7.2	8.0	8.8	ns
Duty_G	Duty cycle for Gigabit	45	50	55	%
Duty_T	Duty cycle for 10/100T	40	50	60	%
T_r/T_f	Rise/Fall time (20 - 80%)	_	_	0.75	ns

Figure 4-2 shows the RGMII AC timing diagram with internal delay added (default RGMII timing).

Figure 4-2. RGMII AC Timing Diagram — With Internal Delay Added (Default)

Table 4-7 shows the RGMII AC characteristics with delay added.

Table 4-7. RGMII AC Characteristics — with internal delay added (Default)

Symbol	Parameter	Min	Тур	Max	Unit
TsetupT	Data to Clock output Setup (at Transmitter — integrated delay)	1.65	2.0	2.2	ns
TholdT	Clock to Data output Hold (at Transmitter — integrated delay)	1.65	2.0	2.2	ns
TsetupR	Data to Clock input setup time (at Receiver — integrated delay)	1.0	2.0		ns
TholdR	Data to Clock output hold time (at Reciever — integrated delay)	1.0	2.0		ns

4.4 SERDES and SGMII Characteristics

Table 4-8 shows the Driver DC characteristics: LVDS.

Table 4-8. Driver DC Characteristics: LVDS

Symbol	Parameter	Min	Typical	Max	Unit
Voh	Output voltage high		950	1050	mV
Vol	Output voltage low	500	650		mV
Vring	Output ringing			10	%
Vod	Output differential voltage	Programmabl 300 (default)	Programmable #note 1 300 (default)		
Vos	Output offset voltage	750	800	850	mV
Ro	Output impedance (single ended) 50ohm termination	40	50	60	ohm
	Output impedance (single ended) 75ohm termination	60	75	90	ohm
Delta Ro	Mismatch in a pair			10	%
Delta Vod	Change in Vod between "0" and "1"			25	mV
Delta Vos	Change in Vos between "0" and "1"			25	mV
Isa,Isb	Output current on short to GND			40	mA
Isab	Output current when a, b are shorted			12	mA
Ixa,Ixb	Power off leakage current			10	mA

NOTE: output differential voltage can be configured by register MMD7 0x8011 [15:13]

Table 4-9 shows the Receiver DC Characteristics

Table 4-9. Receiver DC Characteristics

Symbol	Parameter	Min	Typical	Max	Unit
Vio	Internal Offset Voltage	730	825	930	mV
Vih	Input Single Voltage High		1050	1150	mV
Vil	Input Single Voltage Low	500	600		mV
Vidth	Input differential threshold	-50		+50	mV
Vhyst	Input differential hysteresis	25			mV
Rin	Receiver differential input impedance 50ohm termination	80	100	120	ohm
	Receiver differential input impedance 75ohm termination	120	150	180	ohm

Table 4-10 shows the Driver AC characteristics.

Table 4-10. Driver AC Characteristics

Symbol	Parameter	Min	Max	Unit
tfall	Vod fall time (20%-80%)	100	200	pSec
trise	Vod rise time (20%-80%)	100	200	pSec
Tskew1	Skew between two members of a differential pair		20	pSec

NOTE: Skew measured at 50% of the transition.

Figure 4-3 shows the MDIO AC timing diagram.

Figure 4-3. MDIO AC Timing Diagram

4.5 MDIO Timing table

Table 4-11. MDIO AC Characteristic

Symbol	Parameter	Min	Тур	Max	Unit
tmdc	MDC Period	40			ns
tmdcl	MDC Low Period	16			ns
tmdch	MDC High Period	16			ns
tmdsu	MDIO to MDC rising setup time	10			ns
tmdhold	MDIO to MDC rising hold time	10			ns

4.6 MDIO DC characteristic table

Table 4-12. MDIO DC Characteristic

Symbol	Parameter	Min	Max	Unit
V _{OH}	Output high voltage	2.4		V
V _{OL}	Output low voltage	-	0.4	V
V _{IH}	Input high voltage	2.0) –	V
$\overline{ m V_{IL}}$	Input low voltage	7	0.8	V
I _{IH}	Input high current	_	0.4	mA
I _{IL}	Input low current	-0.4	_	mA

4.7 XTAL/OSC characteristic table

Table 4-13. XTAL/OSC Characteristic

Symbol	Parameter	Min	Тур	Max	Unit
T_XI_PER	XI/OSCI Clock Period	40.0 - 50ppm	40.0	40.0 + 50ppm	ns
T_XI_HI	XI/OSCI Clock High	14	20.0		ns
T_XI_LO	XI/OSCI Clock Low	14	20.0		ns
T_XI_RISE	XI/OSCI Clock Rise Time, VIL (max) to VIH (min)			4	ns
T_XI_FALL	XI/OSCI Clock Fall time, VIL (max) TO VIH (min)			4	ns
V_IH_XI	The XCTLI input high level	0.8	1.2	1.5	V
V_IL_XI	The XCTLI input low level voltage	- 0.3	0	0.15	V

4.8 Power Pin Current Consumption

Table 4-14 shows the current consumption for the power pins.

Table 4-14. Power Pin Consumption

Symbol	Voltage Range	Current (Max)
AVDDL	1.1V ±5%	50.8 mA
DVDDL	1.1V ±5%	113.7 mA
AVDD33	3.3V ±10%	63.8 mA
VDDIO_REG	Connect VDDH_REG 2.5V	20.9 mA

4.9 Typical Power Consumption Parameters

The following conditions apply to the typical characteristics unless otherwise specified: VCC = 3.3V (1.1V switching regulator integrated. 50mW RGMII power included).

Table 4-15. **Total System Power**

Symbol	Condition	Total Current (mA)	LED Consumption (mA)	Total Power Consumption w/o LED (mW)
P_{LDPS}	Link Down, Power Saving Mode	10.57	0	34.9
P_{PWD}	Power Down Mode	13	0	42.9
RGMII + Copper	mode	1		
P _{1000F}	1000Base Full Duplex	126	2.7	415.8
P _{1000idle}	1000Base Idle	116.1	4	383.1
P _{100F}	100Base Full Duplex	35.5	3.5	117.2
P _{100idle}	100Base Idle	34.9	4	115.2
P_{10F}	10Base-Te Full Duplex	34.5	1	113.9
P _{10idle}	10Base-Te Idle	17.8	1.5	58.7
802.az Enabled				<u>I</u>
P_{LDPS}	1000M Idle	36.3	4	119.8
P_{LDPS}	100M Idle	16.2	4	53.5
Atheros Proprieto	ry Green Ethos TM Power Savigns	Per Cable Length		
P _{1000F} 20m	1000Base Full Duplex 20m cable	121.5	2.7	401
P _{1000F} 1000Base Idle 20m 20m cable		103.8	4	342.5
P _{1000F} 100m	P _{1000F} 1000Base Full Duplex		2.7	415.8
P _{1000F} 100m	1000Base Idle 100m cable	116.1	4	383.1
P _{1000F} 140m	P _{1000F} 1000Base Full Duplex		2.7	475.9
P _{1000F} 140m	1000Base Idle 140m cable	133.8	4	441.5
RGMII + Fiber mo	ode	1	1	I
P _{1000F}	1000Base-X Full Duplex	45.7	2.7	150.8
P _{1000idle}	1000Base-X Idle	38.6	4	127.4
P _{100F}	100Base-X Full Duplex	30.3	3.5	100
P _{100idle} 100Base-X Idle		29.5	4	97.4

Table 4-15. Total System Power

Symbol	Condition	Total Current (mA)	LED Consumption (mA)	Total Power Consumption w/o LED (mW)
P _{1000F}	1000Base Full Duplex	145.6	2.7	480.5
P _{1000Idle}	1000Base Idle	142.8	4	471.2
P _{100F}	100Base Full Duplex	57.6	3.5	190.1
P _{100Idle}	100Base Full Duplex	57.4	4	189.4
SGMII + Copper m	ode			
P _{1000F}	1000Base Full Duplex	145.6	2.7	480.5
P _{1000Idle}	1000Base Idle	143.6	4	178.2
P _{100F}	100Base Full Duplex	54	4	178.2
P _{100Idle}	100Base Full Duplex	52.6	4	173.6
802.3az Enabled	1	-1		
P _{1000Idle}	1000Base Idle	44.6	4	147.2
P _{100Idle}	100Base Full Duplex	32.9	4	108.6

NOTE: Please note power consumption test results are based on demo board.

5. Register Descriptions

NOTE: the registers for advanced features such as 1588, 802.3az are not described in this document yet. These registers will be added in the next version of this document.

Table 5-1 shows the reset types used in this document.

Table 5-1. Reset Types

Туре	Description
LH	Register field with latching high function. If status is high, then the register is set to one and remains set until a read operation is performed through the management interface or a reset occurs.
LL	Register field with latching low function. If status is low, then the register is cleared to a zero and remains cleared until a read operation is performed through the management interface or a reset occurs.

Table 5-1. Reset Types (continued)

Туре	Description
Retain	Value written to a register field takes effect without a software reset.
SC	Self-Clear. Writing a one to this register causes the desired function to execute immediately, and the register field clears to zero when the function is complete.
Update	The value written to the register field does not take effect until a software reset is executed. The value can still be read after it is written.

5.1 Register Summary

Table 5-2 summarizes the registers for the AR8031.

Table 5-2. **Register Summary**

Offeet (IIeu)	Desistan
Offset (Hex)	Register
0x00	Control (Copper or Fiber Pages)
0x01	Status
0x02	PHY identifier 1
0x03	PHY identifier 2
0x04	Auto-negotiation advertisement
0x05	Link partner ability (base page)
0x06	Auto-negotiation expansion
0x07	Next page transmit
0x08	Link partner next page
0x09	1000 Base-T control
0x0A	1000 Base-T status
0x0B	Reserved
0x0C	Reserved
0x0D	MMD access control
0x0E	MMD access address data
0x0F	Extended status
0x10	Function control
0x11	PHY-specific status
0x12	Interrupt enable
0x13	Interrupt status
0x14	Smart Speed
0x15	
0x16	Cable defect tester control

Table 5-2. Register Summary (continued)

Offset (Hex)	Register
0x017	
0x18	LED control
0x19	Manual LED override
0x1A	
0x1B	
0x1C	Cable defect tester status
0x1D	Debug port address offset
0x1E	Debug port data
0x1F	Chip Configure

5.1.1 Control Register — Copper Page

Offset: 0x00 Mode: Read/Write Hardware Reset: 0

Bit	Name	Turn		Determination
ВІТ	Name	Тур	2	Description
15	RESET	Mode	R/W	PHY Software Reset. Writing a "1" to this bit causes the PHY
		HW Rst.	0	the reset operation is done, this bit is cleared to "0" automatically. The reset occurs immediately.
		SW Rst.	SC	1= PHY reset
				0 =Normal operation
14	LOOPBACK	Mode	R/W	When loopback is activated, the transmitter data presented on
		HW Rst.	0	TXD is looped back to RXD internally. Link is broken when loopback is enabled.
		SW Rst.	0	1 = Enable Loopback
				0 = Disable Loopback
13	or and or	Mode	R/W	Upon hardware reset, this bit and 0.6 bit depend on
		anen(bit0.12) and SPEED_PAD(PAD in signal):		
			Desc.	anon = (0.6, 0.12)
		SW Rst.		anen = $\{0.6, 0.13\}$ 0 = SPEED PAD[1:0]
				1 = 2'b01
				(00:10Mbps,01:100Mbps,10:1000Mbps,11:Reserved)
				When giga_dis_qual (register20.8) is high, this bit is forced to be low.
12		Mode	RO	Upon hardware reset ,this bit depends on ANEN_PAD.
HW KSL U	1 = Enable Auto-Negotiation Process			
		SW Rst.	0	0 = Disable Auto-Negotiation Process

Bit	Name	Тур	e	Description
11	POWER_DOWN	Mode	R/W	When the port is switched from power down to normal
HW Rst. 0 operation, software reset and reset	operation, software reset and restart Auto-Negotiation are performed even when bits Reset (0.15) and Restart Auto-			
		SW Rst.	0	Negotiation (0.9) are not set by the user.
				IEEE power down shuts down the chip except for the MAC interface if 16.3 is set to 1. If 16.3 is set to 0, then the MAC interface also shuts down. Power down also has no effect on the 125CLK output if
				16.4 is set to 0.
				1 = Power down 0 = Normal operation
10	ISOLATE	Mode	R/W	The GMII/MII/TBI output pins are tristated when this bit is set
10	ISOLATE	HW Rst.	0	to 1. The GMII/MII/TBI inputs are ignored.
		SW Rst.	0	1 = Isolate 0 = Normal operation Not implemented.
9	RESTART_AUTO_ NEGOTIATION	Mode	R/W, SC	Auto-Negotiation automatically restarts after hardware or software reset regardless of whether or not the restart bit (0.9) is
		HW Rst.	0	set.
		SW Rst.	0	1 = Restart Auto-Negotiation Process 0 = Normal operation
8	DUPLEX MODE	Mode	R/W, SC	Upon hardware reset, this bit bit depend on DUPLEX_MODE_PAD and anen bit(0.12):
		HW Rst.	See Desc	0.12 0.8
		SW Rst.		1 DUPLEX_MODE_PAD
				1:Full Duplex 0:Half Duplex
7	COLLISION TEST	Mode	R/W	Setting this bit to 1 will cause the COL pin to assert whenever
		HW Rst	0	the TX_EN pin is asserted. 1 = Enable COL signal test
		SW Rst	0	0 = Disable COL signal test
6	SPEED SELECTION	Mode	R/W	See bit 0.13.
	(MSB)	(MSB) HW Rst See Desc. If giga_dis_qual bit (20.10) is 1, then this	If giga_dis_qual bit (20.10) is 1, then this bit is fixed to 0.	
		SW Rst	0	
5:0	RES	Mode	R/O	Will always be 00000.
		HW Rst	00000	
-		SW Rst	00000	

5.1.1 Control — Fiber Page

Offset: 0x00, or 0d00 Mode: Read/Write Hardware Reset: 0

Bit	Name	Тур	e	Description
15	Reset	Mode HW Rst. SW Rst.	R/W 0 SC	PHY Software Reset. Writing a "1" to this bit causes the PHY the reset operation is done, this bit is cleared to "0" automatically. The reset occurs immediately. 1= PHY reset 0=Normal operation
14	Loopback	Mode HW Rst. SW Rst.	R/W 0 0	100fx, 1000bx, sgmii loopback.When loopback is activated, 10bit txd to serdes is looped back to 10bit rxd; 1 = Enable Loopback 0 = Disable Loopback
13	Speed Selection (LSB)	Mode HW Rst. SW Rst.	R/W 1 Retain	Only for sgmii; Force speed {bit 0.6, this bit} equals: 00 means 10Mbps; 01-means 100Mbps, 10-means1000Mbps 11-means Reserved; These force speed is only valid when 0.12 is 0.
12	Auto-negotiation	Mode HW Rst. SW Rst.	RO 0 0	For 1000bx, sgmii: 1 = Enable Auto-Negotiation Process 0 = Disable Auto-Negotiation Process No auto-negotiation in 100fx.
11	Power Down	Mode HW Rst. SW Rst.	R/W 2'b10 Retain	For 100fx, 1000bx, sgmii mode; When the port is switched from power down to normal operation, software reset and restart Auto-Negotiation are performed even when bits Reset (0.15) and Restart Auto-Negotiation (0.9) are not set by the user. 1 = Power down, shut off serdes 0 = Normal operation

Bit	Name	Тур	e	Description
10	Isolate	Mode	R/W	Not implement.
		HW Rst.	0	
		SW Rst.	0	
9	9 Restart Auto- negotiation	Mode	R/W, SC	For 1000bx, sgmii Auto-Negotiation automatically restarts after hardware or
		HW Rst.	0	software reset regardless of whether or not the restart bit (0.9) is set.
		SW Rst.	SC	1 = Restart Auto-Negotiation Process 0 = Normal operation
8	Duplex Mode	Mode	R/W, SC	SC bit12 is 0) mode, or 100fx mode,
		HW Rst.	1	1:Full Duplex 0:Half Duplex
		SW Rst.		
7	Collision Test	Mode	R/W	N/A
		HW Rst.	0	
		SW Rst.	0	
6	Speed Selection	Mode	R/W	See bit 0.13.
(MSI	(MSB)	HW Rst.	See Desc.	
		SW Rst.		_
5:0	Reserved	Mode	R/W	Will always be 00000.
		HW Rst.	0	
		SW Rst.	0	1

5.1.1 Status Register — Copper Page

Offset: 0x01, or 0d01 Mode: Read/Write Hardware Reset: 0

Bit	Name	Тур	e	Description
15	100BASE-T4	Mode	RO	100BASE-T4.
		HW Rst.	Always 0	This protocol is not available. 0 = PHY not able to perform 100BASE-T4
		SW Rst.	Always 0	
14	100BASE-X	Mode	RO	Capable of 100-Tx Full Duplex operation
	Full-Duplex	HW Rst.	Always 1	
		SW Rst.	Always 1	087
13	100BASE-X	Mode	RO	Capable of 100-Tx Half Duplex operation
	Half-Duplex	HW Rst.	Always 1	
		SW Rst.	Always 1	
12	10 Mbps Full-Duplex	Mode	RO	Capable of 10Base-T full duplex operation
		HW Rst.	Always 1	
		SW Rst.	Always 1	
11	10 Mbs	Mode	RO	Capable of 10Base-T half duplex operation
	Half-Duplex	HW Rst.	Always 1	
		SW Rst.	Always 1	
10	100BASE-T2	Mode	RO	Not able to perform 100BASE-T2
	Full-Duplex	HW Rst.	Always 0	
		SW Rst.	Always 0	

Bit	Name	Тур	е	Description
9	100BASE-T2	Mode	RO	Not able to perform 100BASE-T2
	Half-Duplex	HW Rst.	Always 0	
		SW Rst.	Always 0	
8	Extended Status	Mode	RO	Extended status information in register15
		HW Rst.	Always 0	
		SW Rst.	Always 0	
7	Reserved	Mode	RO	Always be 0.
		HW Rst.	Always 0	
		SW Rst.	Always 0	
6	MF	Mode	RO	PHY accepts management frames with preamble suppressed
	Preamble Suppression	HW Rst.	Always 1	
		SW Rst.	Always 1	
5	Auto-Negotiation	Mode	RO	1: Auto negotiation process complete
	Complete	HW Rst.	0	0:Auto negotiation process not complete
		SW Rst.	0	
4	Remote Fault	Mode	RO, LH	
		HW Rst.	0	0:Remote fault condition not detected
		SW Rst.	0	
3	Auto-Negotiation	Mode	RO	1 : PHY able to perform auto negotiation
	Ability	HW Rst.	0	
		SW Rst.	0	
2	Link Status	Mode	RO, LL	This register bit indicates whether the link was lost since the last
		HW Rst.	0	read. For the current link status, read register bit 17.10 Link Real Time.
		SW Rst.	0	1 = Link is up 0 = Link is down

Bit	Name	Type		Description
1	Jabber Detect	Mode	RO, LH	1: Jabber condition detected
		HW Rst.	0	0: Jabber condition not detected
		SW Rst.	0	
-				
0	Extended Capbility	Mode	RO	1: Extended register capabilities
		HW Rst.	Always 1	
		SW Rst.	Always 1	

5.1.1 Status Register — Fiber Page

Offset: 0x01, or 0d01 Mode: Read/Write Hardware Reset: 0

Bit	Name	Тур	e	Description
15	100BASE-T4	Mode	RO	100BASE-T4.
		HW Rst.	Always 0	This protocol is not available. 0 = PHY not able to perform 100BASE-T4
		SW Rst.	Always 0	
14	100BASE-X	Mode	RO	Capable of 100-Tx Full Duplex operation
	Full-Duplex	HW Rst.	Always 1	
		SW Rst.	Always 1	
13	100BASE-X	Mode	RO	Capable of 100-Tx Half Duplex operation
	Half-Duplex	HW Rst.	Always 1	
		SW Rst.	Always 1	
12	10 Mbps Full-Duplex	Mode	RO	Capable of 10Base-T full duplex operation
		HW Rst.	Always 1	
		SW Rst.	Always 1	
11	10 Mbs	Mode	RO	Capable of 10Base-T half duplex operation
	Half-Duplex	HW Rst.	Always 1	
		SW Rst.	Always 1	

Bit	Name	Тур	e	Description
10	100BASE-T2	Mode	RO	Not able to perform 100BASE-T2
	Full-Duplex	HW Rst.	Always	
		SW Rst.	0 Always	
		SW KSt.	0	
9	100BASE-T2	Mode	RO	Not able to perform 100BASE-T2
	Half-Duplex	HW Rst.	Always 1	
		SW Rst.	Always 1	
8	Extended Status	Mode	RO	Extended status information in register15
		HW Rst.	Always	
		SW Rst.	l Always	. 1
		SW KSt.	1	
7	Reserved	Mode	RO	Always be 0.
		HW Rst.	Always 1	
		SW Rst.	Always	
			1	
6	6 MF Preamble	Mode	RO	PHY accepts management frames with preamble suppressed
	Suppression	HW Rst.	Always 0	
		SW Rst.	Always 0	
5	Auto-Negotiation	Mode	RO	1: Auto negotiation process complete
	Complete	HW Rst.	0	0:Auto negotiation process not complete
	D.	SW Rst.	0	
4	Remote Fault	Mode	RO, LH	
		HW Rst.	0	0:Remote fault condition not detected
		SW Rst.	0	
3	Auto-Negotiation	Mode	RO	1 : PHY able to perform auto negotiation
	Ability	HW Rst.	Always 1	
		SW Rst.	Always 1	
2	Link Status	Mode	RO, LL	This register bit indicates whether the link was lost since the last
		HW Rst.	0	read. For the current link status, read register bit 17.10 Link Real Time.
		SW Rst.	0	1 = Link is up
				0 = Link is down

Bit	Name	Туре		Description
1	Jabber Detect	Mode	RO, LH	1: Jabber condition detected
		HW Rst.	0	0: Jabber condition not detected
		SW Rst.	0	
0	Extended Capbility	Mode	RO	1: Extended register capabilities
		HW Rst.	Always 1	
		SW Rst.	Always 1	

5.1.1 PHY Identifier

Offset: 0x02, or 0d02 Mode: Read/Write Hardware Reset: 0

Software Reset: See field descriptions

Bit	Name	Тур	е	Description
15:0	Organizationally	Mode	RO	Organizationally Unique Identifier bits 3:18
	Unique Identifier Bit 3:18	HW Rst.	Always 16'h004 d	
		SW Rst.	Always 16'h004 d	

5.1.1 PHY Identifier2

Offset: 0x03, or 0d03 Mode: Read/Write Hardware Reset: 0

Bit	Name	Туре		Description
15:0	Organizationally	Mode	RO	Organizationally Unique Identifier bits 3:18
	Unique Identifier Bit 3:18	HW Rst.	Always 16'hd 0XX	
		SW Rst.	Always 16'hd 0XX	

5.1.1 Auto-Negotiation Advertisement Register — Copper Page

Offset: 0x04, or 0d04 Mode: Read/Write Hardware Reset: 0

Bit	Name	Тур	е	Description
15	Next page	Mode	R/W	The value of this bit will be updated immediately after writin this register. But the value written to this bit does not takes eff
		HW Rst.	0	this register. But the value written to this bit does not takes effect until any one of the following occurs:
		SW Rst.	Update	o Software reset is asserted (register 0.15) o Restart Auto-Negotiation is asserted (register 0.9) o Power down (register 0.11) transitions from power down to normal operation o Link goes down If 1000BASE-T is advertised then the required next pages are automatically transmitted. Register 4.15 should be set to 0 if no additional next pages are needed. 1 = Advertise 0 = Not advertised
14	Ack	Mode	RO	Must be 0
	HW Rst. Always 0			
		SW Rst.	Always 0	
13	13 Remote Fault	Mode	R/W	1 = Set Remote Fault bit
		HW Rst.	0	0 = Do not set Remote Fault bit
		SW Rst.	Update	
12	xnp_able	Mode	RO	Extended next page enable control bi:
		HW Rst.	Always 1	1 = Local device supports transmission of extended next pages; 0 = Local device does not support transmission of extended next pages.
		SW Rst.	Always 1	- pages.
11	Asymmetric Pause	Mode	R/w	Upon hardware reset , this bit depends on ASYM_PAUSE_PAD.
		HW Rst.	See Desc.	The value of this bit will be updated immediately after writing this register. But the value written to this bit does not takes effect until any one of the following occurs:
		SW Rst.	Update	o Software reset is asserted (register 0.15) o Restart Auto-Negotiation is asserted (register 0.9) o Power down (register 0.11) transitions from power down to normal operation o Link goes down 1 = Asymmetric Pause 0 = No asymmetric Pause

Bit	Name	Тур	е	Description
10	PAUSE	Mode HW Rst. SW Rst.	R/W See Desc. Update	Upon hardware reset, this bit depends on PAUSE_PAD. The value of this bit will be updated immediately after writing this register. But the value written to this bit does not takes effect until any one of the following occurs: o Software reset is asserted (register 0.15) o Restart Auto-Negotiation is asserted (register 0.9) o Power down (register 0.11) transitions from power down to normal operation o Link goes down 1 = MAC PAUSE implemented 0 = MAC PAUSE not implemented
9	100BASE-T4	Mode HW Rst. SW Rst.	RO Always 0 Always 0	Not able to perform 100BASE-T4
8	100BASE-TX Full Duplex	Mode HW Rst. SW Rst.	R/W 1 Update	The value of this bit will be updated immediately after writing this register. But the value written to this bit does not takes effect until any one of the following occurs: o Software reset is asserted (register 0.15) o Restart Auto-Negotiation is asserted (register 0.9) o Power down (register 0.11) transitions from power down to normal operation o Link goes down 1 = Advertise 0 = Not advertised
7	100BASE-TX Half Duplex	Mode HW Rst. SW Rst.	R/W 1 Update	The value of this bit will be updated immediately after writing this register. But the value written to this bit does not takes effect until any one of the following occurs: o Software reset is asserted (register 0.15) o Restart Auto-Negotiation is asserted (register 0.9) o Power down (register 0.11) transitions from power down to normal operation o Link goes down 1 = Advertise 0 = Not advertised
6	10BASE-TX Full Duplex	Mode HW Rst. SW Rst.	R/W 1 Update	The value of this bit will be updated immediately after writing this register. But the value written to this bit does not takes effect until any one of the following occurs: o Software reset is asserted (register 0.15) o Restart Auto-Negotiation is asserted (register 0.9) o Power down (register 0.11) transitions from power down to normal operation o Link goes down 1 = Advertise 0 = Not advertised

Bit	Name	Тур	е	Description
5	10BASE-TX	Mode	R/W	The value of this bit will be updated immediately after writing
	Half Duplex	HW Rst.	1	this register. But the value written to this bit does not takes effect until any one of the following occurs:
		SW Rst.	Update	o Software reset is asserted (register 0.15)
			o Restart Auto-Negotiation is asserted (register	o Restart Auto-Negotiation is asserted (register 0.9)
				o Power down (register 0.11) transitions from power down to normal operation
				o Link goes down
				1 = Advertise
				0 = Not advertised
4:0	Selector field	Mode	RO	Selector Field mode
	HW Rst. Always 00001 = 802.3	00001 = 802.3		
		SW Rst.	Always 00001	

5.1.1 Auto-Negotiation Advertisement Register — Fiber Page

Offset: 0x04, or 0d04 Mode: Read/Write Hardware Reset: 0

Bit	Name	Тур	e	Description
15	Next page	Mode HW Rst. SW Rst.	R/W 0 Update	This bit index if additional next pages are needed. 1 = Advertise 0 = Not advertised
14	Ack	Mode HW Rst. SW Rst.	RO Always 0 Always 0	Must be 0
13:12	Remote Fault	Mode HW Rst. SW Rst.	R/W 0 Update	00 = LINK_OK 01=OFFLINE 10=LINK_FAILURE 11=AUTO_ERROR
11:9	Reserved	Mode HW Rst. SW Rst.	R/W 0 0	
8	Asymmetric Pause	Mode HW Rst. SW Rst.	R/W 1 Update	Upon hardware reset, this bit depends on ASYM_PAUSE_PAD. 1 = Asymmetric Pause 0 = No asymmetric Pause

Bit	Name	Тур	e	Description
7	PAUSE	Mode	R/W	Upon hardware reset , this bit depends on PAUSE_PAD.
		HW Rst.	1	1 = MAC PAUSE implemented 0 = MAC PAUSE not implemented
		SW Rst.	Update	0 - MAC FAOSE not implemented
6	1000BASE-X	Mode	R/W	1000BASEX half duplex ability.
	half duplex	HW Rst.	See Desc.	
		SW Rst.	Update	
5	1000BASE-X	Mode	R/W	1000BASEX full duplex ability.
	full duplex	HW Rst.	1	
		SW Rst.	Update	
4:0	Reserved	Mode	RO	
		HW Rst.	Always 00001	
		SW Rst.	Always 00001	

5.1.1 Link Partner Ability Register — Copper Page

Offset: 0x05, or 0d05 Mode: Read/Write Hardware Reset: 0

Bit	Name	Туре	2	Description
15	Next page	Mode HW Rst. SW Rst.	RO 0 0	Received Code Word Bit 15 1 = Link partner capable of next page 0 = Link partner not capable of next page
14	Ack	Mode HW Rst. SW Rst.	RO 0 0	Acknowledge Received Code Word Bit 14 1 = Link partner received link code word 0 = Link partner does not have Next Page ability
13	Remote Fault	Mode HW Rst. SW Rst.	RO 0	Remote Fault Received Code Word Bit 13 1 = Link partner detected remote fault 0 = Link partner has not detected remote fault
12	Reserved	Mode HW Rst. SW Rst.	RO 0	Technology Ability Field Received Code Word Bit 12

Bit	Name	Тур	е	Description
11	Asymmetric Pause	Mode	RO	Technology Ability Field
		HW Rst.	0	Received Code Word Bit 11
		SW Rst.	0	1 = Link partner requests asymmetric pause 0 = Link partner does not request asymmetric pause
10	PAUSE	Mode	RO	Technology Ability Field
		HW Rst.	0	Received Code Word Bit 10
		SW Rst.	0	1 = Link partner is capable of pause operation 0 = Link partner is not capable of pause operation
9	100BASE-T4	Mode	RO	Technology Ability Field
	HW Rst. 0 Received Code Word Bit 9			
		SW Rst.	0	1 = Link partner is 100BASE-T4 capable 0 = Link partner is not 100BASE-T4 capable
8	100BASE-TX	Mode	RO	Technology Ability Field
	Full Duplex	HW Rst.	0	Received Code Word Bit 8
1 = Link partner is 100 BASE	1 = Link partner is 100BASE-TX full-duplex capable 0 = Link partner is not 100BASE-TX full-duplex capable			
7	100BASE-TX	Mode	RO	Technology Ability Field
	Half Duplex	HW Rst.	0	Received Code Word Bit 7
		SW Rst.	0	- 1 = Link partner is 100BASE-TX half-duplex capable 0 = Link partner is not 100BASE-TX half-duplex capable
6	10BASE-TX	Mode	RO	Fechnology Ability Field
	Full Duplex	HW Rst.	0	Received Code Word Bit 6 1 = Link partner is 10BASE-T full-duplex capable
		SW Rst.	0	0 = Link partner is not 10BASE-T full-duplex capable
5	10BASE-TX	Mode	RO	Technology Ability Field
	Half Duplex	HW Rst.	0	Received Code Word Bit 5
CWD	1 = Link partner is 10BASE-T half-duplex capable 0 = Link partner is not 10BASE-T half-duplex capable			
4:0	Selector field	Mode	RO	Selector Field
		HW Rst.	00000	Received Code Word Bit 4:0
		SW Rst.	00000	

5.1.1 Link Partner Ability Register — Fiber Page

Offset: 0x05, or 0d05 Mode: Read/Write Hardware Reset: 0

Bit	Name	Тур	e	Description
15	Next page	Mode	RO	Received Code Word Bit 15
		HW Rst.	0	1 = Link partner capable of next page
		SW Rst.	0	0 = Link partner not capable of next page
14	Ack	Mode	RO	Acknowledge
		HW Rst.	0	Received Code Word Bit 14
		SW Rst.	0	1 = Link partner received link code word 0 = Link partner does not have Next Page ability
13:12	Remote Fault	Mode	RO	Remote Fault
		HW Rst.	0	Received Code Word Bit 13,12
		SW Rst.	0	
11:9 Reserved	Reserved	Mode	RO	
		HW Rst.	0	
		SW Rst.	0	
8	Asymmetric Pause	Mode	RO	Technology Ability Field
		HW Rst.	0	Received Code Word Bit 8
		SW Rst.	0	1 = Link partner requests asymmetric pause 0 = Link partner does not request asymmetric pause
7	PAUSE	Mode	RO	Technology Ability Field
		HW Rst.	0	Received Code Word Bit 7
		SW Rst.	0	- 1 = Link partner is capable of pause operation 0 = Link partner is not capable of pause operation
6	1000BASEX	Mode	RO	Technology Ability Field
	Half duplex	HW Rst.	0	Received Code Word Bit 6
		SW Rst.		1 = Link partner is 1000BASEX half dupelx capable 0 = Link partner is not 1000BASEX half duplex capable
5	1000BASEX	Mode	RO	Technology Ability Field
	full duplex	HW Rst.	0	Received Code Word Bit 6
		SW Rst.	0	1 = Link partner is 1000BASEX full dupelx capable 0 = Link partner is not 1000BASEX full duplex capable
4:0	Reserved	Mode	RO	
		HW Rst.	0	
		SW Rst.	0	

5.1.1 Auto-Negotiation Expansion Register — Copper Page

Offset: 0x06, or 0d06 Mode: Read/Write Hardware Reset: 0

Bit	Name	Тур	е	Description
15:5	Reserved	Mode	RO	Reserved. Must be 0.
		HW Rst.	0x000	
		SW Rst.	0x000	
4	Parallel Detection	Mode	RO	1: a fault has been detect
	fault	HW Rst.	0	0: no fault has been detected
		SW Rst.	0	
3	Link partner next page	Mode	RO	1: Link partner is Next page able
	able	HW Rst.	0	0: Link partner is not next page able
		SW Rst.	0	
2	Local Next Page able	Mode	RO	1 = Local Device is Next Page able
		HW Rst.	1	
		SW Rst.	1	
1	Page received	Mode	RO, LH	
		HW Rst.	0	0: No new page has been received
		SW Rst.	0	
0	Link Partner Auto - negotiation able	Mode	RO	1: Link partner is auto negotiation able
	negotiation able	HW Rst.	0	0: Link partner is not auto negotiation able
		SW Rst.	0	

5.1.1 Auto-Negotiation Expansion Register — Fiber Page

Offset: 0x06, or 0d06 Mode: Read/Write Hardware Reset: 0

Bit	Name	Тур	е	Description
15:4	Reserved	Mode	RO	Reserved. Must be 0.
		HW Rst.	0x000	
		SW Rst.	0x000	
3	Link partner next page	Mode	RO	For 1000bx, sgmii;
	able	HW Rst.	0	1: Link partner is Next page able 0: Link partner is not next page able
		SW Rst.	0	U. Link partner is not next page able
2	Local Next Page able	Mode	RO	For 1000bx, sgmii;
		HW Rst.	0	1 = Local Device is Next Page able
		SW Rst.	0	
1	Page received	Mode	RO	For 1000bx, sgmii;
		HW Rst.	1	1: A new page has been received
		SW Rst.	1	0: No new page has been received
0	Link Partner Auto	Mode	RO, LH	For 1000bx, sgmii;
	negotiation able	HW Rst.	0	1: Link partner is auto negotiation able
		SW Rst.	0	0: Link partner is not auto negotiation able

5.1.1 Next Page Transmit Register — Copper Page

Offset: 0x07, or 0d07

Bit	Name	Тур	e	Description
15	Next Page	Mode	R/W	Transmit Code Word Bit 15
		HW Rst.	0	
		SW Rst.	0	
14	Reserved	Mode	R/W	Transmit Code Word Bit 14
		HW Rst.	0	
		SW Rst.	0	
13	Message page mode	Mode	R/W	Transmit Code Word Bit 13
		HW Rst.	0	
		SW Rst.	0	
12	Ack2	Mode	R/W	Transmit Code Word Bit 12
		HW Rst.	1	
		SW Rst.	1	
11	Toggle	Mode	RO	Transmit Code Word Bit 11
		HW Rst.	1	
		SW Rst.	1	
10:0	Message/Unformatted	Mode	R/W	Transmit Code Word Bit 10:0
	Field	HW Rst.	0x001	
		SW Rst.	0x001	

5.1.1 Next Page Transmit Register — Fiber Page for 1000Base-X, SGMII

Offset: 0x07, or 0d07

Bit	Name	Тур	е	Description
15	Next Page	Mode	R/W	Transmit Code Word Bit 15
		HW Rst.	0	
		SW Rst.	0	
14	Reserved	Mode	R/W	Transmit Code Word Bit 14
		HW Rst.	0	
		SW Rst.	0	
13	Message page mode	Mode	R/W	Transmit Code Word Bit 13
		HW Rst.	0	
		SW Rst.	0	
12	Ack2	Mode	R/W	Transmit Code Word Bit 12
		HW Rst.	1	
		SW Rst.	1	
11	Toggle	Mode	RO	Transmit Code Word Bit 11
		HW Rst.	1	
		SW Rst.	1	
10:0	Message/Unformatted	Mode	R/W	Transmit Code Word Bit 10:0
	Field	HW Rst.	0x001	
		SW Rst.	0x001	

5.1.1 Link Partner Next Page Register — Copper Page

Offset: 0x08, or 0d08

Bit	Name	Тур	e	Description
15	Next Page	Mode	R/W	Received Code Word Bit 15
		HW Rst.	0	
		SW Rst.	0	
14	Reserved	Mode	R/W	Received Code Word Bit 14
		HW Rst.	0	
		SW Rst.	0	
13	Message page mode	Mode	R/W	Received Code Word Bit 13
		HW Rst.	0	
		SW Rst.	0	
12	Ack2	Mode	R/W	Received Code Word Bit 12
		HW Rst.	1	
		SW Rst.	1	
11	Toggle	Mode	RO	Received Code Word Bit 11
		HW Rst.	1	
		SW Rst.	1	
10:0	Message/Unformatted	Mode	R/W	Received Code Word Bit 10:0
	Field	HW Rst.	0x001	V
		SW Rst.	0x001	

5.1.1 Link Partner Next Page Register — Fiber Page for 1000Base-X, SGMII

Offset: 0x08, or 0d08

Bit	Name	Тур	е	Description
15	Next Page	Mode	R/W	Received Code Word Bit 15
		HW Rst.	0	
		SW Rst.	0	
14	Reserved	Mode	R/W	Received Code Word Bit 14
		HW Rst.	0	
		SW Rst.	0	
13	Message page mode	Mode	R/W	Received Code Word Bit 13
		HW Rst.	0	
		SW Rst.	0	
12	Ack2	Mode	R/W	Received Code Word Bit 12
		HW Rst.	1	
		SW Rst.	1	
11	Toggle	Mode	RO	Received Code Word Bit 11
		HW Rst.	1	
		SW Rst.	1	
10:0	Message/Unformatted	Mode	R/W	Received Code Word Bit 10:0
	Field	HW Rst.	0x001	7
		SW Rst.	0x001	

5.1.1 1000Base-T Control Register

Offset: 0x09, or 0d09

Bit	Name	Тур	e	Description
15:13	Test mode	Mode	R/W	TX_TCLK comes from the RX_CLK pin for jitter testing in test
		HW Rst.	000	modes 2 and 3. After exiting the test mode, hardware reset or software
000 = Normal Mode 001 = Test Mode 1 - Transmi 010 = Test Mode 2 - Transmi 011 = Test Mode 3 - Transmi	001 = Test Mode 1 - Transmit Waveform Test 010 = Test Mode 2 - Transmit Jitter Test (MASTER mode) 011 = Test Mode 3 - Transmit Jitter Test (SLAVE mode) 100 = Test Mode 4 - Transmit Distortion Test			
12	Master/Slave	Mode	R/W	The value of this bit will be updated immediately after writing
	Manual configuration	HW Rst.	0	this register. But the value written to this bit does not takes effect until any one of the following occurs:
	Enable	SW Rst.	Update	o Software reset is asserted (register 0.15) o Restart Auto-Negotiation is asserted (register 0.9) o Power down (register 0.11) transitions from power down to normal operation o Link goes down 1 = Manual MASTER/SLAVE configuration 0 = Automatic MASTER/SLAVE configuration
11	Master/Slave	Mode	R/W	The value of this bit will be updated immediately after writing
	configuration	HW Rst.	0	this register. But the value written to this bit does not takes effect until any one of the following occurs:
	00	SW Rst.	Update	o Software reset is asserted (register 0.15) o Restart Auto-Negotiation is asserted (register 0.9) o Power down (register 0.11) transitions from power down to normal operation o Link goes down Register 9.11 is ignored if register 9.12 is equal to 0. 1 = Manual configure as MASTER 0 = Manual configure as SLAVE
10	Port Type	Mode	R/W	The value of this bit will be updated immediately after writing
		HW Rst.	0	this register. But the value written to this bit does not takes effect until any one of the following occurs:
		SW Rst.	Update	o Software reset is asserted (register 0.15) o Restart Auto-Negotiation is asserted (register 0.9) o Power down (register 0.11) transitions from power down to normal operation o Link goes down Register 9.10 is ignored if register 9.12 is equal to 1. 1 = Prefer multi-port device (MASTER) 0 = Prefer single port device (SLAVE)

Bit	Name	Туре	2	Description
9	1000BASE-T	Mode	RO	The value of this bit will be updated immediately after writing
	Full Duplex	HW Rst.	1	this register. But the value written to this bit does not takes effect until any one of the following occurs:
		SW Rst.	Update	o Software reset is asserted (register 0.15)
			•	o Restart Auto-Negotiation is asserted (register 0.9)
				o Power down (register 0.11) transitions from power down to normal operation
				o Link goes down
				1 = Advertise
				0 = Not advertised
				William size the moderning 20 00 introduction from the transfer
				When giga_dis_qual(register20.8) is high, this bit is forced to be low.
8	1000BASE-T	Mode	R/W	The value of this bit will be updated immediately after writing
	Half-Duplex	HW Rst.	0	this register. But the value written to this bit does not takes effect until any one of the following occurs:
		SW Rst.	Update	o Software reset is asserted (register 0.15)
				o Restart Auto-Negotiation is asserted (register 0.9)
				o Power down (register 0.11) transitions from power down to normal operation
				o Link goes down
				1 = Advertise
				0 = Not advertised
				Note: the default setting is no 1000 baset/half duplex advertised
				When giga_dis_qual(register20.8) is high, this bit is forced to be
				low.
7:0	Reserved	Mode	R/W	V .
		HW Rst.	0	
		SW Rst.	0	

5.1.1 1000Base-T Status Register

Offset: 0x0A, or 0d10

Bit	Name	Тур	е	Description
15	Master/Slave Configuration Fault	Mode HW Rst. SW Rst.	RO, LH 0 0	This register bit will clear on read 1: Master/Slave configuration fault detected 0: No fault detected
14	Master/Slave Configuration Resolution	Mode HW Rst. SW Rst.	RO 0	This register bit is not valid until register 6.1 is 1. 1: Local PHY cnfiguration resolved to Master 0: Local PHY cnfiguration resolved to Slave
13	Local Receiver Status	Mode HW Rst. SW Rst.	RO 0	1:Local Receiver OK 0:Local Receiver Not OK
12	Remote Receiver Status	Mode HW Rst. SW Rst.	R/W 0 0	1:Remote Receiver OK 0:Remote Receiver Not OK
11	Link Partner 1000Base-T Full Duplex Capability	Mode HW Rst. SW Rst.	RO 0	This register bit is not valid until register 6.1 is 1. 1: Link Partner is capable of 1000Base-T half duplex 0: Link Partner is not capable of 1000Base-T half duplex
10	Link Partner 1000Base-T Half Duplex Capability	Mode HW Rst. SW Rst.	R/W Always 0	This register bit is not valid until register 6.1 is 1. 1: Link Partner is capable of 1000Base-T full duplex 0: Link Partner is not capable of 1000Base-T full duplex
9:8	Reserved	Mode HW Rst. SW Rst.	RO Always 0 Always 0	Reserved.
7:0	Idle Error Count	Mode HW Rst. SW Rst.	RO, SC 0 0	MSB of Idle Error Counter These register bits report the idle error count since the last time this register was read. The counter pegs at 11111111 and will not roll over.

5.1.1 MMD Access Control Register

Offset: 0x0D, or 0d13

Bit	Name	Туре		Description
15:14	Function	Mode	RO, LH	00=address
		HW Rst.	0	01=data,no post increment
		SW Rst.	0	10=data,post increment on reads and writes 11=data,post increment on writes only;
13:5	Reserved	Mode	RO	
		HW Rst.	0	
		SW Rst.	0	
4:0	DEVAD	Mode	R/W	Device address
		HW Rst.	0	
		SW Rst.	Update	

5.1.1 MMD Access Access Address Data Register

Offset: 0x0E, or 0d14

Bit	Name	Туре		Description
15:14	Address data	Mode	R/W	If register13.15:14=00, MMD DEVAD's address register.
		HW Rst.	00	Otherwise, MMD DEVAD's data register as indicated by the contents of its address register
		SW Rst.	Retain	

5.1.1 Extended Status Register

Offset: 0x0F, or 0d15

Bit	Name	Тур	e	Description
15	1000BASE-X Full Duplex	Mode	RO	PHY not able to perform 1000BASE-X Full Duplex
		HW Rst.	Always 1	
		SW Rst.	Always 0	
14	1000BASE-X	Mode	RO	PHY not able to perform 1000BASE-X Half Duplex
	Half Duplex	HW Rst.	Always 0	
		SW Rst.	Always 0	
13	1000BASE-T Full-Duplex	Mode	RO	PHY able to perform 1000BASE-T Full Duplex
		HW Rst.	Always 1	
		SW Rst.	Always 1	
12	1000BASE-T Half-Duplex	Mode	R/W	PHY not able to perform 1000BASE-T Half Duplex
		HW Rst.	Always 0	
		SW Rst.	Always 0	
11:0	Reserved	Mode	RO	Reserved.
		HW Rst.	Always 0	
		SW Rst.	Always 0	

5.1.1 Extended Status Register

Offset: 0x10, or 0d16

Bit	Name	Туре	9	Description
15:12	Reserved	Mode	R/W	
		HW Rst.	0	
		SW Rst.	Retain	
11	Assert CRS on	Mode	RO	This bit has effect only in 10BT half-duplex mode:
	Transmit	HW Rst.	1	1 = assert on Transmitting or receving;
		SW Rst.	Retain	0 = Never assert on Transmitting, only assert on receiving.
10	Force_link	Mode	R/W	1 = when an_en bit (0.12) is 1, force 10BT link up;
		HW Rst.	0	0 = Normal mode;
		SW Rst.	Retain	
9:7	Reserved	Mode	R/W	
		HW Rst.	0	
		SW Rst.	Retain	
6:5	MDI Crossover Mode	Mode	R/W	Changes to these bits are disruptive to the normal operation; therefore any changes to these registers must be followed by a software reset to take effect.
		HW Rst.	11	
		SW Rst.	Update	-
				01 = Manual MDIX configuration
				10 = Reserved 11 = Enable automatic crossover for all modes
4:3	Reserved	Mode	RO	
		HW Rst.	0	
		SW Rst.	0	
2	SQE Test	Mode	R/W	SQE Test is automatically disabled in full-duplex mode
		HW Rst.	0	regardless of the state of register 16.2
		SW Rst.	Retain	1 = SQE test enabled
				0 = SQE test disabled
1	Polarity Reversal	Mode	R/W	If polarity is disabled, then the polarity is forced to be normal in
		HW Rst.	1	10BASE-T. 1 = Polarity Reversal Disabled
		SW Rst.	Retain	0 = Polarity Reversal Enabled
0	Disable Jabber	Mode	RO	Jabber has effect only in 10BASE-T half-duplex mode. 1 = Disable jabber function 0 = Enable jabber function
		HW Rst.	0	
		SW Rst.	Retain	

5.1.1 PHY-Specific Status Register — Copper Page

Offset: 0x10, or 0d16

Bit	Name	Type		Description
15:14	Speed	Mode	R/W	These status bits are valid only after resolved bit 17.11 = 1. The resolved bit is set when Auto-Negotiation is completed or Auto-
		HW Rst.	0	Negotiation is disabled.
		SW Rst.	Retain	11 = Reserved
				10 = 1000 Mbps
				01 = 100 Mbps 00 = 10 Mbps
13	Duploy	Mode	RO	This status bit is valid only after resolved bit 17.11 = 1. The
13	Duplex	HW Rst.	1	resolved bit is set when Auto-Negotiation is completed or Auto-
				Negotiation is disabled.
		SW Rst.	Retain	1 = Full-duplex 0 = Half-duplex
12	Page Received	Mode	R/W	1 = Page received
	(real-time)	HW Rst.	0	0 = Page not received
		SW Rst.	Retain	
11	Speed and Duplex Resolved	Mode	R/W	When Auto-Negotiation is not enabled ,17.11 = 1 for force speed
		HW Rst.	0	mode. 1 = Resolved
		SW Rst.	0	0 = Not resolved
10	Link (real-time)	Mode	R/W	1 = Link up
		HW Rst.	0	0 = Link down
		SW Rst.	0	
9:7	Reserved	Mode	RO	Always 0
		HW Rst.	0	
		SW Rst.	0	
6	MDI Crossover Status	Mode	R/W	This status bit is valid only after resolved bit 17.11 = 1. The resolved bit is set when Auto-Negotiation is completed or Auto
		HW Rst.	0	Negotiation is disabled. This bit is 0 or 1 depending on what is
		SW Rst.	Retain	written to 16.6:5 in manual configuration mode. Register 16.6:5 are updated with software reset.
				1 = MDIX
				0 = MDI
5	Wirespeed downgrade	Mode	R/W	1 = Downgrade
		HW Rst.	1	0 = No Downgrade
		SW Rst.	Retain	
4	Reserved	Mode	RO	
		HW Rst.	0	
		SW Rst.	Retain	1

Bit	Name	Тур	e	Description
3	Transmit Pause Enabled	Mode	RO	This is a reflection of the MAC pause resolution. This bit is for
		HW Rst.	0	information purposes and is not used by the device. This status bit is valid only after resolved bit 17.11 = 1. The
		SW Rst.	Retain	resolved bit is set when Auto-Negotiation is completed; While in force mode, this bit is set to be 0.
				1 = Transmit pause enabled
0 = Transmit pause dis	0 = Transmit pause disabled			
2	Receive	Mode	RO	This is a reflection of the MAC pause resolution. This bit is for
	Pause Enabled	HW Rst.	0	information purposes and is not used by the device. This status bit is valid only after resolved bit 17.11 = 1. The
		SW Rst.	Retain	resolved bit is set when Auto-Negotiation is completed; While in force mode, this bit is set to be 0.
				1 = Receive pause enabled
				0 = Receive pause disabled
1	Polarity (real time)	Mode	RO	1 = Reverted.
		HW Rst.	0	0 = Normal
		SW Rst.	Retain	
0	Jabber (real time)	Mode	RO	1 = Jabber
		HW Rst.	0	0 = No jabber
		SW Rst.	Retain	

5.1.1 PHY-Specific Status Register — Fiber Page

Offset: 0x11, or 0d17

Bit	Name	Туре	e	Description
15:14	Speed	Mode HW Rst. SW Rst.	R/W 0 Retain	11 = Reserved 10 = 1000 Mbps 01 = 100 Mbps 00 = 10 Mbps
13	Duplex	Mode HW Rst. SW Rst.	RO 1 Retain	1 = Full-duplex 0 = Half-duplex
12	Page Received (real-time)	Mode HW Rst. SW Rst.	R/W 0 Retain	1 = Page received 0 = Page not received
11	Speed and Duplex Resolved	Mode HW Rst. SW Rst.	R/W 0 0	When Auto-Negotiation is not enabled ,17.11 = 1 for force speed mode. 1 = Resolved 0 = Not resolved
10	Link (real-time)	Mode HW Rst. SW Rst.	R/W 0 0	For 1000bx, 100fx; 1 = Link up 0 = Link down
9	mr_an_complete	Mode HW Rst. SW Rst.	RO 0 0	For 1000bx,sgmii: 1=autoneg complete 0=autoneg not complete
8	Sync_status	Mode HW Rst. SW Rst.	RO 0 0	Only for 1000BX 1=sgmii_basex is sync 0=sgmii_basex is not sync
7:4	Reserved	Mode HW Rst. SW Rst.	R/W 0 0	
3	Transmit Pause Enabled	Mode HW Rst. SW Rst.	RO 0 Retain	This is a reflection of the MAC pause resolution. This bit is for information purposes and is not used by the device. This status bit is valid only after resolved bit 17.11 = 1. The resolved bit is set when Auto-Negotiation is completed; While in force mode, this bit is set to be 0. 1 = Transmit pause enabled 0 = Transmit pause disabled

Bit	Name	Тур	е	Description
2	Receive	Mode	RO	This is a reflection of the MAC pause resolution. This bit is for
	Pause Enabled	HW Rst.	0	information purposes and is not used by the device. This status bit is valid only after resolved bit $17.11 = 1$. The resolved bit is set when Auto-Negotiation is completed; While in force mode, this bit is set to be 0. $1 = \text{Receive pause enabled}$ $0 = \text{Receive pause disabled}$
		SW Rst.	Retain	
1:0	Reserved	Mode	RO	
		HW Rst.	0	
		SW Rst.	0	

5.1.1 Interrupt Enable Register

Offset: 0x12, or 0d18

Bit	Name	Тур	e	Description
15	Auto-Negotiation	Mode	R/W	1 = Interrupt enable
	Error	HW Rst.	0	0 = Interrupt disable
		SW Rst.	Retain	
14	Speed Changed	Mode	RO	1 = Interrupt enable
		HW Rst.	0	0 = Interrupt disable
		SW Rst.	Retain	
13	Reserved	Mode	R/W	
		HW Rst.	0	
		SW Rst.	Retain	
12	Page Received	Mode	R/W	1 = Interrupt enable
		HW Rst.	0	0 = Interrupt disable
		SW Rst.	Retain	
11	Link Fail Interrupt	Mode	R/W	1 = Interrupt enable
		HW Rst.	0	0 = Interrupt disable
		SW Rst.	0	
10	Link Success Interrupt	Mode	RO	1 = Interrupt enable
		HW Rst.	0	0 = Interrupt disable
		SW Rst.	0	
9	Reserved	Mode	RO	
		HW Rst.	0	
		SW Rst.	0	
8	Link_fail_bx	Mode	R/W	1 = Interrupt enable
		HW Rst.	0	0 = Interrupt disable
		SW Rst.	0	
7	Link_success_bx	Mode	R/W	1 = Interrupt enable
		HW Rst.	0	0 = Interrupt disable
		SW Rst.	Retain	
6	MDI Crossover	Mode	RO	1 = Interrupt enable
	Changed	HW Rst.	0	0 = Interrupt disable
		SW Rst.	Retain	
5	Wirespeed-	Mode	RO, LH	P1588
	downgrade Interrupt	HW Rst.	0	
	merrupt	SW Rst.	Retain	

Bit	Name	Тур	е	Description
4	int_10ms_ptx	Mode	RO	P1588
		HW Rst.	0	
		SW Rst.	0	
3	Int_rx_ptp	Mode	RO, LH	
	HW Rst. $0 = Polarity not changed$	0 = Polarity not changed		
		SW Rst.	Retain	
2	Int_tx_ptp	Mode	RO, LH	P1588
		HW Rst.	0	
		SW Rst.	Retain	
1	Polarity	Mode	R/W	1 = Polarity Changed
	Changed	HW Rst.	0	0 = Polarity not changed
		SW Rst.	Retain	
0	int_wol_ptp	Mode	R/W	P1588
		HW Rst.	0	
		SW Rst.	Retain	

5.1.1 Interrupt Status Register

Offset: 0x13, or 0d19

Bit	Name	Тур	e	Description
15	Auto-Negotiation	Mode	R0, LH	1 = Interrupt enable
	Error	HW Rst.	0	0 = Interrupt disable
		SW Rst.	Retain	
14	Speed Changed	Mode	RO, LH	
		HW Rst.	0	0 = Interrupt disable
		SW Rst.	Retain	
13	Reserved	Mode	RO, LH	
		HW Rst.	0	
		SW Rst.	0	
12	Page Received	Mode	RO, LH	1 = Interrupt enable
		HW Rst.	0	0 = Interrupt disable
		SW Rst.	Retain	
11	Link Fail Interrupt	Mode	RO, LH	1 = Interrupt enable
		HW Rst.	0	0 = Interrupt disable
		SW Rst.	Retain	
10	Link Success Interrupt	Mode	RO	1 = Interrupt enable
		HW Rst.	0	0 = Interrupt disable
		SW Rst.	0	
9	Reserved	Mode	RO	
		HW Rst.	0	
		SW Rst.	0	
8	Link_fail_bx	Mode	R/W	1 = Interrupt enable
		HW Rst.	0	0 = Interrupt disable
		SW Rst.	0	
7	Link_success_bx	Mode	R/W	1 = Interrupt enable
		HW Rst.	0	0 = Interrupt disable
		SW Rst.	Retain	
6	MDI Crossover	Mode	RO	1 = Interrupt enable
	Changed	HW Rst.	0	0 = Interrupt disable
		SW Rst.	Retain	
5	Wirespeed-	Mode	RO, LH	P1588
	downgrade Interrupt	HW Rst.	0	
	тистирі	SW Rst.	Retain	

Bit	Name	Тур	е	Description
4	int_10ms_ptx	Mode	RO	P1588
		HW Rst.	0	
		SW Rst.	0	
3	Int_rx_ptp	Mode	RO, LH	
	HW Rst. $0 = Polarity not changed$	0 = Polarity not changed		
		SW Rst.	Retain	
2	Int_tx_ptp	Mode	RO, LH	P1588
		HW Rst.	0	
		SW Rst.	Retain	
1	Polarity	Mode	R/W	1 = Polarity Changed
	Changed	HW Rst.	0	0 = Polarity not changed
		SW Rst.	Retain	
0	int_wol_ptp	Mode	R/W	P1588
		HW Rst.	0	
		SW Rst.	Retain	

5.1.1 Smart Speed Register

Offset: 0x14, or 0d20

Bit	Name	Тур	e	Description
15:11	Rreserved	Mode	R0	Reserved. Must be 00000000.
		HW Rst.	0	
		SW Rst.	0	
10	aneg_now_qual	Mode	R/W	A rise of input pin "aneg_now" will set this bit to 1'b1, and cau
		HW Rst.	1'b0	PHY to restart auto-negotiation. Self-clear.
		SW Rst.	Update	Seri clear.
9	Rev_aneg_qual	Mode	R/W	Make PHY to auto-negotiate in reversed mode. This bit takes in
		HW Rst.	1'b0	value from the input pin "rev_aneg" upon following: 1 HW reset(fall of rst dsp i);
		SW Rst.	Update	2 PHY SW reset; 3 Rise of input pin aneg_now.
8		Make PHY to disable GIGA mode. This bit takes its value from		
		HW Rst.	1'b0	the input pin "giga_dis" upon following: 1 HW reset(fall of rst dsp i);
		SW Rst.	Update	2 PHY SW reset;
				3 Rise of input pin aneg_now.
7	Cfg_pad_en	Mode	R/W	The default value is zero; if this bit is set to one, then the auto
		HW Rst.	0	negotiation Arbitration FSM will bypass the LINK_STATUS_CHECK state when the 10 baset/100 baset
		SW Rst.	Update	ready signal is asserted.
6	Mr_ltdis	Mode	R/W	The default value is zero; if this bit is set to one, then the NLP
		HW Rst.	0	Receive Link Integrity Test FSM will stays at the NLP_TEST_PASS state.
		SW Rst.	Update	
5	Smartspeed_en	Mode	R/W	The default value is one; if this bit is set to one and cable inhibit
		HW Rst.	1	completion of the training phase, then After a few failed attempts, the Attansic card automatically
		SW Rst.	Update	downgrades the highest ability to the next lower speed: from 1000 to 100 to 10.
4:2	Smartspeed_retry_limi	Mode	R/W	The default value is three; if these bits are set to three, then the
	t	HW Rst.	011	Attansic card will attempt five times before downgrading; The number of attempts can be changed through setting these bits.
		SW Rst.	Update	
1	Bypass_smartspeed_ti	Mode	R/W	The default value is zero; if this bit is set to one, the Smartspee
	mer	HW Rst.	0	FSM will bypass the timer used for stablility.
		SW Rst.	Update	
0	reserved	Mode	RO	Reserved. Must be 0.
		HW Rst.	0	
		SW Rst.	0	

5.1.1 Virtual Cable Tester Control Register

Offset: 0x16, or 0d22

Bit	Name	Тур	е	Description
15:10	Reserved	Mode	R0	Reserved.
		HW Rst.	Always 0	
		SW Rst.	Always 0	
9:8	MDI Pair	Mode	R/W	Virtual Cable Tester™ Control registers. Use the Virtual Cable
	Select	HW Rst.	00	Tester Control Registers to select which MDI pair is shown in the Virtual Cable Tester Status register.
		SW Rst.	Retain	00 = MDI[0] pair
				01 = MDI[1] pair
				10 = MDI[2] pair 11 = MDI[3] pair
7:1	Reserved	Mode	R/W	Always 0
		HW Rst.	0	
		SW Rst.	0	
0	Enable Test	Mode	R/W	When set, hardware automatically disable this bit when VCT is
		HW Rst.	0	done. 1 = Enable VCT Test
		SW Rst.	Retain	0 = Disable VCT Test

5.1.2 LED Control

Offset: 0x018, or 0d24

HW Rst. 0 0	0ms 1 ms 2ms 4 ms 68ms 11 = 42ms 0
SW Rst Retain 1	Disable ms 0ms 1 ms 2ms 4 ms 68ms 11 = 42ms 0
Mode R/W 000 = 5	ms 0ms 1 ms 2ms 4 ms 68ms 11 = 42ms 0
HW Rst. 011 010 = 2 011 = 4 100 = 8 101 = 1 110 to 1	0ms 1 ms 2ms 4 ms 68ms 11 = 42ms 0
SW Rst Retain 010 = 2 011 = 4 100 = 8 101 = 1 110 to	1 ms 2ms 4 ms 68ms 11 = 42ms 0
SW Rst Retain 011 = 4 100 = 8 101 = 1 110 to 1 110 t	2ms 4 ms 68ms 11 = 42ms 0 1 ms 2 ms
100 = 8 101 = 1 110 to 1 11 Force Interrupt Mode RO HW Rst. 0 SW Rst 0 10:8 Led off time Mode R/W 000 = 2 HW Rst. 010 001 = 4 010 = 8	4 ms 68ms 11 = 42ms 0 1 ms 2 ms
110 to 1 11 Force Interrupt	11 = 42ms 0 1 ms 2 ms
11 Force Interrupt Mode RO Always HW Rst. 0 SW Rst 0 10:8 Led off time Mode R/W 000 = 2 HW Rst. 010 GW Rst. 010 GW Rst. Rst. 010 10:8	1 ms 2 ms
HW Rst. 0 SW Rst 0 10:8 Led off time Mode R/W 000 = 2 HW Rst. 010 001 = 4 010 = 8	1 ms 2 ms
SW Rst 0 10:8 Led off time Mode R/W 000 = 2 HW Rst. 010 001 = 4 010 = 8	2 ms
10:8 Led off time Mode R/W 000 = 2 HW Rst. 010 010 = 8	2 ms
HW Rst. 010 001 = 4 010 = 8	2 ms
$\frac{\text{TW Rst.}}{\text{OHO}} = 8$	
SW Rsf Refain According to the second se	4 ms
1011-10	58 ms
$ \begin{array}{c} 100 = 33 \\ 101 = 6 \end{array} $	
	11 = 168ms
7:5 Reserved Mode RO Reserve	d
HW Rst. 0	
SW Rst Always	
0	
11 – 11	rect LED mode aster/Slave LED mode
ΠW KSL. U	Combined LED modes
SW Rst Retain	
2 LED_DUPLEX Mode R/W 0 = Dup	
control $\frac{1}{1} = Dup$	olex/Collision
SW Rst Retain	
1 Mode R/W 0 = Rec	eive activity/Link
- I II W IXSL. U	eive activity
control SW Rst Retain	
	ivity/Link
Control $\frac{1}{1} = \text{Tran}$	nsmit activity
SW Rst Retain	

5.1.3 Manual LED override register

Offset: 0x19, or 0d25

Bit	Name	Тур	e	Description
15:14	Conv_led_sel	Mode HW Rst. SW Rst.	R/W 00 Retain	Not used in BASET_RGMII, BASET_RMII, BASET_SGMII mode, in these mode, LED pins controlled by copper. Not used in BX1000_RGMII, FX100_RGMII mode, in these mode, LED pins are controlled by fiber; The two bits control LED behavior In BX1000_CONV, FX100_CONV, convertor mode: 2'b00: LED pins controlled by fiber 2'b11: LED pins controlled by copper; because of convertor's FEF, if fiber is not link up, then copper would also be link down. So there's no probability that only copper is link up. So when both fiber and copper link up, link led is on. 2'b01: When both fiber and copper link up, link led is on 2'b10: either fiber or copper link is up, link led is on
13:12	Reserved	Mode HW Rst. SW Rst.	R/W 00 Retain	Reserved.
11:10	LED_ DUPLEX	Mode HW Rst. SW Rst.	R/W 00 Retain	LED "Off" means LED pin output equals high. LED "On" means LED pin output equals low. 00 = Normal 01 = Blink 10 = LED Off 11 = LED On
9:8	LED_LINK10	Mode HW Rst. SW Rst.	R/W 00 Retain	LED "Off" means LED pin output equals high. LED "On" means LED pin output equals low. 00 = Normal 01 = Blink 10 = LED Off 11 = LED On
7:6	LED_LINK100	Mode HW Rst. SW Rst.	R/W 00 Retain	LED "Off" means LED pin output equals high. LED "On" means LED pin output equals low. 00 = Normal 01 = Blink 10 = LED Off 11 = LED On
5:4	LED_LINK1000	Mode HW Rst. SW Rst.	R/W 00 Retain	LED "Off" means LED pin output equals high. LED "On" means LED pin output equals low. 00 = Normal 01 = Blink 10 = LED Off 11 = LED On

Bit	Name	Тур	e	Description
3:2	LED_RX	Mode	R/W	LED "Off" means LED pin output equals high.
		HW Rst.	00	LED "On" means LED pin output equals low. 00 = Normal
		SW Rst.	Retain	01 = Blink 10 = LED Off 11 = LED On
1:0	LED_TX	Mode	R/W	LED "Off" means LED pin output equals high.
		HW Rst.	00	LED "On" means LED pin output equals low. 00 = Normal
		SW Rst.	Retain	01 = Blink 10 = LED Off
				11 = LED On

5.1.4 Copper/Fiber Status Register

Offset: 0x01B, or 0d27

Bit	Name	Тур	е	Description
15:14	Reserved	Mode	R/W	
		HW Rst.	0	
		SW Rst	0	
13	Transmit_pause	Mode	R/W	
	_en_bx	HW Rst.	0	
		SW Rst	0	
12	Receive_pause	Mode	RO	
	_en_bx	HW Rst.	0	
		SW Rst	0	
11	Link established	Mode	R/W	link status of fiber
	_bx	HW Rst.	0	
		SW Rst	0	
10	fd_mode_bx	Mode	RO	duplex mode of fiber
		HW Rst.	0	
		SW Rst	Always	
			0	
9:8	speed_mode_bx	Mode	R/W	Speed_mode of fiber, only 2 cases:
		HW Rst.	2'b10	2b'10 : 1000Bx -2'b01: 100FX
		SW Rst	2'b10	
7:6	Reserved	Mode	R/W	
		HW Rst.	0	
		SW Rst	0	
5	Transmit_pause	Mode	R/W	
	_en_bt	HW Rst.	0	
		SW Rst	0	

Bit	Name	Тур	е	Description
4	Receive_pause	Mode	R/W	
	_en_bt	HW Rst.	0	_
		SW Rst	0	
3	Link_established	Mode	R/W	Link status of copper
	_bt	HW Rst.	0	
		SW Rst	0	_
2	fd_mode_bt	Mode	R/W	Duplex mode of copper
		HW Rst.	0	
		SW Rst	0	
1:0	speed_mode_bt	Mode	R/W	Speed_mode of copper:
		HW Rst.	0	2'b00:10BT, -2'b01:100BT,
		SW Rst	0	2'b10:1000BT,
				2'b11:reserved;

5.1.5 Virtual Cable Tester Status register

Offset: 0x1C, or 0d28

Bit	Name	Тур	е	Description
15:10	Reserved	Mode	RO	Reserved.
		HW Rst.	Always 0	
		SW Rst.	Always 0	
9:8	Status	Mode	RO	The content of the Virtual Cable Tester Status Registers applies
		HW Rst.	to the cable pair selected in the Virtual Cable Tester™ Control Regis	
		SW Rst.	00	11 = Test Fail
				00 = Valid test, normal cable (no short or open in cable)
				10 = Valid test, open in cable (Impedance > 333 ohms)
				01 = Valid test, short in cable (Impedance < 33 ohms)
7:0	Delta_Time	Mode	R/W	Delta time to indicate distance.
		HW Rst.	0	
		SW Rst.	0	

5.1.6 Debug port (Address offset set)

Offset: 0x1D, or 0d29

Bit	Name	Тур	е	Description
15:6	Reserved	Mode	RO	The address index of the register will be write or
		HW Rst.	0	Read.
		SW Rst.	0	
5:0	Address Offset	Mode	R/W	The address index of the register will be write or Read.
		HW Rst.	0	
		SW Rst.	0	

5.1.7 Debug port2 (R/W port)

Offset: 0x1E, or 0d30

Bit	Name	Туре		Description
15:0	Debug data port	Mode	R/W	The data port of debug register.
		HW Rst.	0	Before access this register, must set the address offset first.
		SW Rst.	0	

5.1.8 Debug port2 (R/W port)

Offset: 0x1E, or 0d30

Bit	Name	Туре		Description
15:0	Debug data port	Mode	R/W	The data port of debug register.
		HW Rst.	0	Before access this register, must set the address offset first.
		SW Rst.	0	

5.1.9 Chip Configure Register

Offset: 0x1F, or 0d31

Bit	Name	Тур	е	Description
15	Bt_bx_reg_sel	Mode	R/W	POS pin.
		HW Rst.	See	Copper_pgae , fiber page select bit:
			Desc.	1'b1, select copper page registers; 1'b0, select fiber page registers;
		SW Rst.	Retain	
14	Reserved	Mode	RO	Reserved.
		HW Rst.	0	
		SW Rst.	0	
13	Sgmii_rximp_	Mode	R/W	POS pin.
	50_75	HW Rst.	0	Rx impedance of serdes 1'b1: 75Ω
		SW Rst.	0	1'b0: 50Ω
12	Sgmii_tximp_	Mode	R/W	POS pin.
	50_75	HW Rst.	0	Tx impedance of serdes -1 'b1: 75Ω
		SW Rst.	0	1'b0: 50Ω
11	Prbs_en	Mode	R/W	Control prbs test in sgmii
		HW Rst.	0	
		SW Rst.	Retain	
10:4	Reserved	Mode	RO	0
		HW Rst.	0	
		SW Rst.	0	
3:0	Mode_cfg	Mode	R/W	POS pin.
		HW Rst.	See	Chip mode configure bits; 4'b1000: ECNC TEST;
		SW Rst.	Desc.	4'b1001:SCAN_TEST;
		SW KSt.	Retain	4'b1010:IDDQ_TEST;
				4'b0000:BASET_RGMII 4'b0001:BASET_SGMII;
				4'b1110:FX100 RGMII 75;
				4'b0110:FX100 RGMII 50;
				4'b1111:FX100_CONV_75;
				4'b0111:FX100_CONV_50;
				4'b0011:BX1000_RGMII_75; 4'b0010:BX1000_RGMII_50;
				4'b0101:BX1000_CONV_75;
				4'b0100:BX1000_CONV_50;
				4'b1011:CFG_RESV1;
				4'b1100:BASET_RMII1;
				4'b1101:BASET_RMII2.

5.2 Debug Register Descriptions

Table 5-3 summarizes the debug registers for the AR8031.

Table 5-3. Debug Register Summary

Offset	Register
0x00	Analog test control
0x05	SERDES test and system mode control
0x10	100 BASE-Tx test mode select
0x11	hib timer selection
0x12	Test configuration for 10 BASE-T
0x1F	PHY_Control debug Register0
0x29	Power saving control

5.2.10 Analog Test Control

Offset: 0x00 (Hex), or 0 (Decimal)

Bit	Name	Тур	е	Description
15	Sel_clk125m_dsp	Mode	R/W	Control bit for rgmii interface rx clock delay:
		HW Rst.	1	1 = rgmii rx clock delay enable 0 = rgmii rx clock delay disable
		SW Rst.	0	0 – Igilili IX clock delay disable
14:0	Reserved	Mode	RO	Reserved
		HW Rst.	15'h2E E	
		SW Rst.	Retain	

5.2.11 SERDES Test and System Mode Control

Offset: 0x05 (Hex) or 05 (Decimal)

Bit	Name	Тур	e	Description
15	Reserved	Mode	R/W	Always 0.
		HW Rst.	See Desc.	
		SW Rst.	Retain	
14:9	Reserved	Mode	RO	Reserved
		HW Rst.	0	
		SW Rst.	0	
8	Serdes_beacon	Mode	R/W	Rgmii tx clock delay control bit:
		HW Rst.	0	1 = rgmii tx clock delay enable
		SW Rst.	0	0 = rgmii tx clock delay disable. (TX send beacon when high)
7:0	Reserved	Mode	R/W	Reserved
		HW Rst.	0	
		SW Rst.	0	

5.2.12 Hib ctrl and Auto-Negotiation Test Register

Offset: 0x0B (Hex) or 11 (Decimal)

Bit	Name	Тур	e	Description
15	Ps_hib_en	Mode	R/W	Power hibernate control bit;
		HW Rst.	1	1: hibernate enable 0: hibernate disable
		SW Rst.	Retain	o: nibernate disable
14:13	Reserved	Mode	RO	Reserved
		HW Rst.	2'h01	
		SW Rst.	Retain	
12	Hib_pulse_sw	Mode	R/W	1: when hibernate, PHY sends NLP pulse and detects signal
		HW Rst.	1	from cables. 0: when hibernate, PHY doesn't send NLP pulse ,just detects
		SW Rst.	Retain	signal from cables.
11:7	Reserved	Mode	R/W	Reserved
		HW Rst.	5'h18	
		SW Rst.	Retain	
6:5	Gtx_dly_val	Mode	RO	Select the delay of gtx_clk.
		HW Rst.	2'b10	
		SW Rst.	Retain	
4:0	Reserved	Mode	R/W	Reserved
		HW Rst.	5'h0	
		SW Rst.	Retain	

5.2.13 100BASE-TX Test Mode Select

Offset: 0x10

Bit	Name	Тур	e	Description
15:8	Reserved	Mode	RO	Reserved
		HW Rst.	0	
		SW Rst.	Retain	
7	Jitter_test	Mode	R/W	100BT jitter test
		HW Rst.	0	
		SW Rst.	Retain	
6	Os_test	Mode	R/W	100BT over shoot test
		HW Rst.	0	
		SW Rst.	Retain	
5	Dcd_test	Mode	R/W	100BT DCD test
		HW Rst.	0	
		SW Rst.	Retain	
4:0	Reserved	Mode	RO	Reserved
		HW Rst.	0	
		SW Rst.	0	

5.2.14 hib timer selection

Offset: 0x11 (Hex) or 17 (Decimal)

Bit	Name	Туре		Description
15:1	Reserved	Mode	R/W	Reserved
		HW Rst.	15'h 3AA9	
		SW Rst.	Retain	
0	Ext_lpbk	Mode	RO	1: enable the PHY's external loopback, namely channel 0<->
		HW Rst.	2'h01	channel 1, channel 2 <-> channel 3.
		SW Rst.	Retain	

5.2.15 Test Configuration for 10BT

Offset: 0x12 (Hex) or 18 (Decimal)

Bit	Name	Тур	е	Description
15:6	Reserved	Mode	RO	Reserved
		HW Rst.	010011 0000	
		SW Rst.	Retain	
5	Test_mode[2]	Mode	RO	The bit2 of test_mode
		HW Rst.	2'h01	
		SW Rst.	Retain	
4	Reserved	Mode	RO	Reserved
		HW Rst.	2'h01	
		SW Rst.	Retain	
3	Rgmii_mode	Mode	RO	Upon hardware reset, this bit depends on chip_sel and
		HW Rst.	2'h01	mode_cfg;
		SW Rst.	Retain	1: select RGMII interface with MAC;
				0: select GMII/MII interface with MAC.
2	Reserved	Mode	R/W	Reserved
		HW Rst.	1	
		SW Rst.	1	
1:0	Test_mode[1:0]	Mode	R/W	[001]: packet with all ones, 10MHz sine wave, For harmonic
		HW Rst.	0	test. [010]: pseudo random, for TP IDLE/Jitter/Differential Voltage
		SW Rst.	0	test.
				[011]: normal link pulse only,
	1110			[100]: 5MHz sin wave. Others: normal mode.

5.2.16 Power-Saving Control

Offset: 0x29 (Hex) or 41 (Decimal)

Bit	Name	Тур	е	Description
15:2	Top_ps_en	Mode	R/W	1: top level power saving enable
		HW Rst.	1	0: top level power saving disable
		SW Rst.	Retain	
1	Reserved	Mode	RO	
		HW Rst.	13'h	
			DB7	
		SW Rst.	Retain	
0	ecnc_ps_en	Mode	R/W	
		HW Rst.	2'bo1	
		SW Rst.	Retain	

5.2.17 PHY_Control Debug Register0

Offset: 0x1F (Hex) or 31 (Decimal)

Bit	Name	Тур	e	Description
15:2	Reserved	Mode	RO	Reserved
		HW Rst.	010011 0000	
		SW Rst.	Retain	
1	en_1588_p2	Mode	R/W	1=enable 1588
		HW Rst.		0=disable 1588
		SW Rst.	Retain	
0	Reserved	Mode	RO	Reserved
		HW Rst.	0	
		SW Rst.	Retain	

5.2.18 PHY_Control Debug Register0

Offset: 0x1F (Hex) or 31 (Decimal)

Bit	Name	Тур	е	Description
15:2	Reserved	Mode	RO	Reserved
		HW Rst.	010011 0000	
		SW Rst.	Retain	
1	en_1588_p2	Mode	R/W	1=enable 1588
		HW Rst.		0=disable 1588
		SW Rst.	Retain	
0	Reserved	Mode	RO	Reserved
		HW Rst.	0	
		SW Rst.	Retain	

5.2.19 PHY_Control Debug Register0

Offset: 0x1F (Hex) or 31 (Decimal)

Bit	Name	Тур	e	Description
15:2	Reserved	Mode	RO	Reserved
		HW Rst.	010011 0000	
		SW Rst.	Retain	
1	en_1588_p2	Mode	R/W	1=enable 1588
		HW Rst.		0=disable 1588
		SW Rst.	Retain	
0	Reserved	Mode	RO	Reserved
		HW Rst.	0	4
		SW Rst.	Retain	

5.2.20 Hib ctrl and Auto-Negotiation Test Register

Offset: 0x0B (Hex) or 11 (Decimal)

Bit	Name	Тур	e	Description
15	Ps_hib_en	Mode	R/W	Power hibernate control bit;
		HW Rst.	1	1: hibernate enable 0: hibernate disable
		SW Rst.	Retain	o. internate disable
14:13	Reseved	Mode	RO	
		HW Rst.	2'h01	
		SW Rst.	Retain	
12	Hib_pulse_sw	Mode	R/W	1: when hibernate, PHY sends NLP pulse and detects signal
		HW Rst.	1	from cables. 0: when hibernate, PHY doesn't send NLP pulse ,just detects
		SW Rst.	Retain	signal from cables.
11:7	Reseved	Mode	RO	
		HW Rst.		
		SW Rst.		(,0)
6:5	Gtx_dly_val	Mode	RO	Select the delay of gtx_clk.
		HW Rst.	2'b10	
		SW Rst.	Retain	
4:0	Reseved	Mode	RO	
		HW Rst.		
		SW Rst.		

5.2.21 Hib ctrl and rgmii gtx clock delay register

Offset: 0x0B (Hex), or 11 (Decimal)

Bit	Name	Тур	e	Description
15	Ps_hib_en	Mode	R/W	Power hibernate control bit;
		HW Rst.	1	1: hibernate enable
		SW Rst.	Retain	0: hibernate disable
14:13	Reseved	Mode	RO	
		HW Rst.	0	
		SW Rst.	0	
12	12 Hib_pulse_sw	Mode	R/W	1: when hibernate, PHY sends NLP pulse and detects signal
		HW Rst.	1	from cables. 0: when hibernate, PHY doesn't send NLP pulse ,just detects
		SW Rst.	Retain	signal from cables.
11:7	Reseved	Mode	RO	
		HW Rst.	0	
		SW Rst.	0	
6:5	Gtx_dly_val	Mode	R/W	Select the delay of gtx_clk.
		HW Rst.	2'b10	
		SW Rst.	Retain	
4:0	Reseved	Mode	RO	
		HW Rst.	0	
		SW Rst.	0	

5.2.22 1000BT external loopback configure

Offset: 0x11

Bit	Name	Туре	е	Description
15:1	Reserved	Mode	RO	
		HW Rst.	0	
		SW Rst.	0	
0	Ext_lpbk	Mode	RO	1: enable the PHY's external loopback, namely channel 0<->
		HW Rst.	0	channel 1, channel 2 <-> channel 3.
		SW Rst.	0	

5.2.23 rgmii rx clock delay control

Offset: 0x00 (Hex), or 0 (Decimal)

Bit	Name	Туре	•	Description
15	Sel_clk125m_dsp	Mode	R/W	Control bit for rgmii interface rx clock delay:
		HW Rst.	1	1 = rgmii rx clock delay enable 0 = rgmii rx clock delay disable
	Reseved	SW Rst.	0	o Igiiii la clock delay disable
14:0	Reserved	Mode	RO	
		HW Rst.	0	
		SW Rst.	0	

5.2.24 Rgmii_mode; Test configuration for 10RT

Offset: 0x12

Bit	Name	Туре	e	Description
15:6	Reserved	Mode	RO	
		HW Rst.	0	
		SW Rst.	0	
5	Test_mode[2]	Mode	RO	The bit2 of test_mode
		HW Rst.	0	
		SW Rst.	0	
4	Reserved	Mode	RO	
		HW Rst.	0	
		SW Rst.	0	
3	Rgmii_mode	Mode	RO	Upon hardware reset, this bit depends on chip_sel and
		HW Rst.	0	mode_cfg;
		SW Rst.	0	1: select RGMII interface with MAC;
				0: select GMII/MII interface with MAC.
2	Reserved	Mode	RO	
		HW Rst.	0	
		SW Rst.	0	
1:0	Test_mode[1:0]	Mode	RO	[001]: packet with all ones, 10MHz sine wave, For harmonic test.
		HW Rst.	0	[010]: pseudo random, for TP_IDLE/Jitter/Differential Voltage
		SW Rst.	0	test.
				[011]: normal link pulse only, [100]: 5MHz sin wave.
				Others: normal mode.

5.2.25 gpio 1588 control register

Offset: 0x1F

Bit	Name	Тур	e	Description
15:9	Reserved	Mode	RO	
		HW Rst.	0	
		SW Rst.	0	
8	Sel_1p1_lp2	Mode	RO	
	_pos_reg	HW Rst.	0	
		SW Rst.	0	
7	Sel_gpio_int_	Mode	RO	
	_pos_reg	HW Rst.	0	
		SW Rst.	0	
6:4	Reserved	Mode	RO	
		HW Rst.	0	
		SW Rst.	0	
3	sel_1p5_lp8	Mode	RO	
	_pos_reg	HW Rst.	0	
		SW Rst.	0	
2	phy_pll_on	Mode	RO	POS.
	_pos_reg	HW Rst.	0	1- why smales and DLL absence on
		SW Rst.	0	1= phy analog end PLL always on; 0=phy analog end PLL is controlled by digital
				Inner state
1	en_1588_p2	Mode	RO	1=enable 1588
		HW Rst.	0	0=disable 1588
		SW Rst.	0	
0	Reserved	Mode	RO	
		HW Rst.	0	
		SW Rst.	0	

5.2.26 gpio 1588 control register

Offset: 0x1F

Bit	Name	Тур	е	Description
15	Pre_code	Mode	R/W	
		HW Rst.	0	
		SW Rst.	Retain	
14	Sel_crs_dv	Mode	RO	
		HW Rst.	1	
		SW Rst.	Retain	
13	Sg_mode	Mode	R/W	
		HW Rst.	0	
		SW Rst.	Retain	
12:0	Reserved	Mode	RO	
		HW Rst.	0	
		SW Rst.	0	

5.2.27 MMD3 (MDIO Manageable Device Address 3 for PCS)

Bit	Name	Description
0	PCS Control Register	
1	PCS Status Register	
5	PCS package Register	
20	EEE capability	
22	EEE wake error counter	
32786	P1588 control	
32787	P1588 rx_seqid	
32788	P1588 rx_sourcePort_identity	

Bit	Name	Description
32789	P1588 rx_sourcePort_identity	
32790	P1588 rx_sourcePort_identity	
32791	P1588 rx_sourcePort_identity	
32792	P1588 rx_sourcePort_identity	
32793	P1588 rx_time_stamp	
32794	P1588 rx_time_stamp	
32795	P1588 rx_time_stamp	
32796	P1588 rx_time_stamp	
32797	P1588 rx_time_stamp	
32798	P1588 rx_frac_nano	
32799	P1588 rx_frac_nano	
32800	P1588 tx_seqid	
32801	P1588 tx_sourcePort_identity	
32802	P1588 tx_sourcePort_identity	
32803	P1588 tx_sourcePort_identity	
32804	P1588 tx_sourcePort_identity	
32805	P1588 tx_sourcePort_identity	
32806	P1588 tx_time_stamp	

Bit	Name	Description
32807	P1588 tx_time_stamp	
32808	P1588 tx_time_stamp	
32809	P1588 tx_time_stamp	
32810	P1588 tx_time_stamp	
32811	P1588 tx_frac_nano	
32812	P1588 tx_frac_nano	
32813	P1588 origin_correction	
32814	P1588 origin_correction	
32815	P1588 origin_correction	
32816	P1588 origin_correction	
32817	P1588 ingress_trig_time	
32818	P1588 ingress_trig_time	
32819	P1588 ingress_trig_time	
32820	P1588 ingress_trig_time	
32821	P1588 tx_latency	
32822	P1588 inc_vaule	
32823	P1588 inc_value	
32824	P1588 nano_offset	
32825	P1588 nano_offset	
32826	P1588 sec_offset	
32827	P1588 sec_offset	
32828	P1588 sec_offset	

Bit	Name	Description
32829	P1588 real_time	
32830	P1588 real_time	
32831	P1588 real_time	
32832	P1588 real_time	
32833	P1588 real_time	
32834	P1588 rtc_frac_nano	
32835	P1588 rtc_frac_nano	
32842	P1588 loc_mac_addr	
32843	P1588 loc_mac_addr	
32844	P1588 loc_mac_addr	

5.2.28 MMD7 (MDIO Manageable Device Address 7 for Auto-Negotiation)

Bit	Name	Description
0	AN control	
1	AN status	
5	AN package Register	
22	AN XNP transmit	
23	AN XNP transmit1	
24	AN XNP transmit2	
25	AN XNP ability	
26	AN XNP ability1	

Bit	Name	Description
27	AN XNP ability2	
60	EEE advertisement	
61	EEE LP advertisement	
32768	EEE ability auto- negotiation result	

6. MDIO Interface Register

6.1 MMD3 - PCS Register

6.1.1 PCS Control 1

Device Address = 3

Offset: 0x0 (Hex)

Bit	Name			Description
15	Pcs_rst	Mode	R/W	Reset bit, self clear.
		HW Rst.	0	When write this bit 1:
		SW Rst.	0	1, reset the registers(not vender specific) in MMD3/MMD7. 2, cause software reset in mii register0 bit15.
14:11	Reserved	Mode	RO	Always 0.
		HW Rst.	0	
		SW Rst.	0	-01
10	Clock_stoppable	Mode	R/W	Not implement.
		HW Rst.	0	
		SW Rst.	Retain	
9.0	Reserved	Mode	RO	Always 0.
		HW Rst.	0) ×
		SW Rst.	0	

6.1.2 PCS Status 1

Device Address = 3 Offset: 0x1 (Hex)

Bit	Name			Description
15:12	Reserved	Mode	RO	Always 0.
		HW Rst.	0	
		SW Rst.	0	
11	Tx lp idle received	Mode	R/W	When read as 1, it indicates that the transmit PCS has received
		HW Rst.	0	low power idle signaling one or more times since the register was last read. Latch High.
		SW Rst.	0	
10	Rx lp idle received	Mode		When read as 1, it indicates that the receive PCS has received low
HW Rst. 0 power idle signaling one or more last read. Lach High.	power idle signaling one or more times since the register was last read. Lach High.			
		SW Rst.	0	
9	Tx lp idle indication	Mode	R/W	When read as 1, it indicates that the transmit PCS is currently
		HW Rst.	0	receiving low power idle signals.
		SW Rst.	0	
8	Rx lp idle indication	Mode	R/W	When read as 1, it indicates that the receive PCS is currently
		HW Rst.	0	receiving low power idle signals.
		SW Rst.	0	
7:0	Reserved	Mode	RO	Always 0.
		HW Rst.	0	
		SW Rst.	0	

6.1.3 PCS Package

Device Address = 3 Offset: 0x5 (Hex)

Bit	Name			Description
15:8	Reserved	Mode	RO	Always 0.
		HW Rst.	0	
		SW Rst.	0	
7	auto_neg_	Mode	RO	Always 1.
	present	HW Rst.	0	
		SW Rst.	0	
6:4	Reserved	Mode	RO	Always 0
		HW Rst.	0	
		SW Rst.	0	
3	PCS present	Mode	RO	Always 1.
		HW Rst.	0	
		SW Rst.	0	
2:1	Reserved	Mode	R/W	Always 0.
		HW Rst.	0	
		SW Rst.	0	
0	mii_reg_present	Mode	RO	Always 1
		HW Rst.	0	
		SW Rst.	0	

6.1.4 EEE Capability

Device Address = 3Offset: 0x14 (Hex)

Bit	Name			Description
15:3	Reserved	Mode	RO	Always 0.
		HW Rst.	0	_
		SW Rst.	0	_
2	1000BT EEE	Mode	RO	EEE is supported for 1000Base-T.
		HW Rst.	0	
		SW Rst.	0	
1	100BT EEE	Mode	RO	EEE is supported for 100Base-T.
		HW Rst.	0	
		SW Rst.	0	
0	Reserved	Mode	RO	Always 0.
		HW Rst.	0	
		SW Rst.	0	

6.1.5 EEE Wake Error Counter

Device Address = 3 Offset: 0x16 (Hex)

Bit	Name			Description
15:	EEE wake error	Mode	RO	Count wake time faults where the PHY fails to complete its
	counter	HW Rst.	0	normal wake sequence within the time required for the specific PHY type.
		SW Rst.	0	This counter is clear after read, and hold at all ones in the case of overflow.

6.1.6 P1588 Control Register

Device Address = 3 Offset: 0x8012 (Hex)

Bit	Name			Description
15:5	Reserved	Mode	RO	
		HW Rst.	0	
		SW Rst.	0	
4	Eth_mode_en	Mode	R/W	Ethernet mode
		HW Rst.	1'b0	0=Gigabit Ethernet mode. 1=10/100M Ethernet mode.
		SW Rst.	Retain	1=10/100M Ethernet mode.
3	Bypass	Mode	R/W	0=IEEE1588v2 normal operation.
		HW Rst.	1'b1 1=Bypass IEEE1588v2 functions.	1=Bypass IEEE1588v2 functions.
		SW Rst.	Retain	
2:1	Clock_mode	Mode	R/W	00=ordinary/boundary two-step clock.
		HW Rst.	2'b00	01=ordinary/boundary one-step clock.
		SW Rst.	Retian	10= transparent two-step clock. 11=transparent one-step clock.
0	Eth_mode_sw	Mode	R/W	
		HW Rst.	1'b0	
		SW Rst.	Retain	

6.1.7 P1588 RX_seqid

Device Address = 3 Offset: 0x8013 (Hex)

Bit	Name			Description
15:0	Rx_seqid	Mode	RO	sequenceId of the mose recently received IEEE1588v2 event
		HW Rst.	0	message.
		SW Rst.	0	

6.1.8 P1588 rx_sourcePort_identity

Device Address = 3Offset: 0x8014 (Hex)

Bit	Name			Description
15:0	Rx_sourcePort	Mode	RO	The most significant 16 bits ([79:64]) of sourcePortIdentity of
	Identity[79:64]	HW Rst.	0	the most recently received IEEE1588v2 event message.
		SW Rst.	0	

6.1.9 P1588 rx_sourcePort_identity

Device Address = 3 Offset: 0x8015 (Hex)

Bit	Name			Description
15:0	Rx_sourcePort	Mode	RO	Bits [63:48] of sourcePortIdentity of the most recently received
	Identity[63:48]	HW Rst.	0	IEEE1588v2 event message.
		SW Rst.	0	

6.1.10 P1588 rx_sourcePort_identity

Device Address = 3Offset: 0x8016 (Hex)

Bit	Name			Description
15:0	Rx_sourcePort	Mode	RO	Bits [47:32] of sourcePortIdentity of the most recently received
	Identity[47:32]	HW Rst.	0	IEEE1588v2 event message.
		SW Rst.	0	

6.1.11 P1588 rx_sourcePort_identity

Device Address = 3 Offset: 0x8017 (Hex)

Bit	Name			Description
15:0	Rx_sourcePort	Mode	RO	Bits [31:16] of sourcePortIdentity of the most recently received
	Identity[31:16]	HW Rst.	0	IEEE1588v2 event message.
		SW Rst.	0	

6.1.12 P1588 rx_sourcePort_identity

Device Address = 3 Offset: 0x8018 (Hex)

Bit	Name			Description
15:0	Rx_sourcePort	Mode	RO	Bits [15:0] of sourcePortIdentity of the most recently received
	Identity[15:0]	HW Rst.	0	IEEE1588v2 event message.
		SW Rst.	0	

6.1.13 P1588 rx_time_stamp

Device Address = 3 Offset: 0x8019 (Hex)

Bit	Name			Description
15:0	Rx_time_	Mode	RO	The most significant 16 [79:64] bits of RX timestamp for the
	stamp[79:64] HW	HW Rst.	0	most recently received IEEE1588v2 event message.
		SW Rst.	0	

6.1.14 P1588 rx_time_stamp

Device Address = 3Offset: 0x801A (Hex)

Bit	Name			Description
15:0	Rx_time_	Mode	RO	Bits [63:48] of RX timestamp for the most recently received
	stamp[63:48]	HW Rst.	0	IEEE1588v2 event message.
		SW Rst.	0	

6.1.15 P1588 rx_time_stamp

Device Address = 3 Offset: 0x801B (Hex)

Bit	Name			Description
15:0	Rx_time_	Mode	RO	Bits [47:32] of RX timestamp for the most recently received
	stamp[47:32]	HW Rst.	0	IEEE1588v2 event message.
		SW Rst.	0	

6.1.16 P1588 rx_time_stamp

Device Address = 3Offset: 0x801C (Hex)

Bit	Name			Description
15:0	Rx_time_	Mode	RO	Bits [31:16] of RX timestamp for the most recently received
	stamp[31:16]	HW Rst.	0	IEEE1588v2 event message.
		SW Rst.	0	

6.1.17 P1588 rx_time_stamp

Device Address = 3 Offset: 0x801D (Hex)

Bit	Name			Description
15:0	Rx_time_	Mode	RO	Bits [15:0] of RX timestamp for the most recently received
	stamp[15:0]	HW Rst.	0	IEEE1588v2 event message.
		SW Rst.	0	

6.1.18 P1588 Rx_frac_nano

Device Address = 3Offset: 0x801E (Hex)

Bit	Name			Description
15:12	Rx_messageType	Mode	RO	messageType of the most recently received IEEE1588v2 event
		HW Rst.	0	message.
		SW Rst.	0	
11:0	Rx_frac_nano[19:8]	Mode	RO	Bits [19:8] of fractional nanoseconds field of RX timestamp for
		HW Rst.	the most recently received IEEE1588v2 event message	the most recently received IEEE1588v2 event message.
		SW Rst.	0	

6.1.19 P1588 Rx_frac_nano

Device Address = 3 Offset: 0x801F (Hex)

Bit	Name			Description
15:8	Reserved	Mode	RO	
		HW Rst.	0	
		SW Rst.	0	
7:0	Rx_frac_nano[7:0]	Mode	RO	Bits [7:0] of fractional nanoseconds field of RX timestamp for
		HW Rst.	0	the most recently received IEEE1588v2 event message.
		SW Rst.	0	

6.1.20 P1588 Tx_seqid

Device Address = 3Offset: 0x8020 (Hex)

Bit	Name			Description
15:0	Tx_seqid	Mode	RO	sequenceId of the mose recently transmitted IEEE1588v2 event
		HW Rst.	0	message.
		SW Rst.	0	

6.1.21 P1588 tx_sourcePort_Identity

Device Address = 3 Offset: 0x8021 (Hex)

Bit	Name			Description
15:0	tx_sourcePort	Mode	RO	The most significant 16 bits ([79:64]) of sourcePortIdentity of
	Identity[79:64]	HW Rst.	0	the most recently transmitted IEEE1588v2 event message.
		SW Rst.	0	

6.1.22 P1588 tx_sourcePort_Identity

Device Address = 3Offset: 0x8021 (Hex)

Bit	Name			Description
15:0	tx_sourcePort	Mode	RO	The most significant 16 bits ([79:64]) of sourcePortIdentity of
	Identity[79:64]	HW Rst.	0	the most recently transmitted IEEE1588v2 event message.
		SW Rst.	0	

6.1.23 P1588 tx_sourcePort_Identity

Device Address = 3 Offset: 0x8022 (Hex)

Bit	Name			Description
15:0	tx_sourcePort	Mode	RO	Bits [63:48] of sourcePortIdentity of the most recently
	Identity[63:48]	HW Rst.	0	transmitted IEEE1588v2 event message.
		SW Rst.	0	

6.1.24 P1588 tx_sourcePort_Identity

Device Address = 3Offset: 0x8023 (Hex)

Bit	Name			Description
15:0	tx_sourcePort	Mode	RO	Bits [47:32] of sourcePortIdentity of the most recently
Identity[47:32]	HW Rst.	0	transmitted IEEE1588v2 event message.	
		SW Rst.	0	

6.1.25 P1588 tx_sourcePort_Identity

Device Address = 3 Offset: 0x8024 (Hex)

Bit	Name			Description
15:0	tx_sourcePort	Mode	RO	Bits [31:16] of sourcePortIdentity of the most recently
	Identity[31:16]	HW Rst.	0	transmitted IEEE1588v2 event message.
		SW Rst.	0	

6.1.26 P1588 tx_sourcePort_Identity

Device Address = 3Offset: 0x8025 (Hex)

Bit	Name			Description
15:0	tx_sourcePort	Mode	RO	Bits [15:0] of sourcePortIdentity of the most recently transmitted
	Identity[15:0]	HW Rst.	0	IEEE1588v2 event message.
		SW Rst.	0	

6.1.27 P1588 tx_timestamp

Device Address = 3 Offset: 0x8026 (Hex)

Bit	Name			Description
15:0	tx_time_	Mode	RO	The most significant 16 [79:64] bits of TX timestamp for the
	stamp[79:64]	HW Rst.	0	most recently transmitted IEEE1588v2 event message.
		SW Rst.	0	

6.1.28 P1588 tx_timestamp

Device Address = 3 Offset: 0x8027 (Hex)

Bit	Name			Description
15:0	tx_time_	Mode	RO	Bits [63:48] of TX timestamp for the most recently transmitted
	stamp[63:48]	HW Rst.	0	IEEE1588v2 event message.
		SW Rst.	0	

6.1.29 P1588 tx_time_stamp

Device Address = 3 Offset: 0x 8028(Hex)

Bit	Name			Description
15:0	tx_time_	Mode	RO	Bits [47:32] of TX timestamp for the most recently transmitted
	stamp[47:32]	HW Rst.	0	IEEE1588v2 event message.
		SW Rst.	0	

6.1.30 P1588 tx_time_stamp

Device Address = 3Offset: 0x8029 (Hex)

Bit	Name			Description
15:0	tx_time_	Mode	RO	Bits [31:16] of TX timestamp for the most recently
	stamp[31:16]	HW Rst.	0	transmitted IEEE1588v2 event message.
		SW Rst.	0	

6.1.31 P1588 tx_time_stamp

Device Address = 3 Offset: 0x802A(Hex)

Bit	Name			Description
15:0	tx_time_	Mode	RO	Bits [15:0] of TX timestamp for the most recently transmitted
	stamp[15:0]	HW Rst.	0	IEEE1588v2 event message.
		SW Rst.	0	

6.1.32 P1588 Tx_frac_nano

Device Address = 3Offset: 0x802B (Hex)

Bit	Name			Description
15:12	tx_messageType	Mode	RO	messageType of the most recently transmitted IEEE1588v2 event message.
		HW Rst.	0	
		SW Rst.	0	
11:0	tx_frac_nano[19:8]	Mode	RO	Bits [19:8] of fractional nanoseconds field of TX timestamp for the most recently transmitted IEEE1588v2 event message
		HW Rst.	0	
		SW Rst.	0	

6.1.33 P1588 tx_frac_nano

Device Address = 3 Offset: 0x802B (Hex)

Bit	Name			Description
15:12	tx_messageType	Mode	RO	messageType of the most recently transmitted IEEE1588v2
		HW Rst.	0	event message.
		SW Rst.	0	
11:0	tx_frac_nano[19:8]	Mode	RO	Bits [19:8] of fractional nanoseconds field of TX timestamp for
		HW Rst.	0	the most recently transmitted IEEE1588v2 event message
		SW Rst.	0	

6.1.34 P1588 Orgin_Correction_o

Device Address = 3Offset: 0x802D(Hex)

Bit	Name			Description
15:0	Origin_	Mode	RO	Bits [63:48] of original correctionField of the IEEE1588v2 event
	Correction_o[63:48]	HW Rst.	0	message to be transmitted. This is used in one-step clock mode, provide information for hardware operation.
		SW Rst.	0	

6.1.35 P1588 Orgin_Correction_o

Device Address = 3 Offset: 0x802E (Hex)

Bit	Name			Description
15:0	Origin_	Mode	RO	Bits [47:32] of original correctionField of the IEEE1588v2 event
	Correction_o[47:32]		message to be transmitted. This is used in one-step clock mode, provide information for hardware operation.	
		SW Rst.	0	

6.1.36 P1588 Orgin_Correction_o

Device Address = 3Offset: 0x802F (Hex)

Bit	Name			Description
15:0	Origin_	Mode	RO	Bits [31:16] of original correctionField of the IEEE1588v2 event
	Correction_o[31:16]	HW Rst.	0	message to be transmitted. This is used in one-step clock mode, provide information for hardware operation.
		SW Rst.	0	

6.1.37 P1588 Orgin_Correction_o

Device Address = 3 Offset: 0x8030 (Hex)

Bit	Name			Description
15:0	Origin_	Mode	RO	Bits [15:0] of original correctionField of the IEEE1588v2 event
	Correction_o[15:0]	HW Rst.		message to be transmitted. This is used in one-step clock mode, provide information for hardware operation.
		SW Rst.	0	

6.1.38 P1588 Ingress_trig_time_o

Device Address = 3Offset: 0x8031 (Hex)

Bit	Name			Description
15:0	Ingress_trig_	Mode	RO	Bits [31:16] of nanoseconds field of RX timestamp of associate
	Time_o[51:36]	HW Rst.	0	received event message for the IEEE1588v2 event message to be transmitted.
		SW Rst.	0	This is used in one-step clock mode, provide information for hardware calculation.

6.1.39 P1588 Ingress_trig_time_o

Device Address = 3 Offset: 0x8032 (Hex)

Bit	Name			Description
15:0	Ingress_trig_	Mode	RO	Bits [31:16] of nanoseconds field of RX timestamp of associate
	Time_o[51:36]	HW Rst.	0	received event message for the IEEE1588v2 event message to be transmitted.
		SW Rst.	0	This is used in one-step clock mode, provide information for hardware calculation.

6.1.40 P1588 Ingress_trig_time_o

Device Address = 3Offset: 0x8033 (Hex)

Bit	Name			Description
15:0	Ingress_trig_	Mode	RO	Bits [19:4] of fractional nanoseconds field of RX timestamp of
	Time_o[19:4]	ime_o[19:4] HW Rst. 0 associate received event mess message to be transmitted.	associate received event message for the IEEE1588v2 event message to be transmitted.	
		SW Rst.	0	This is used in one-step clock mode, provide information for hardware calculation.

6.1.41 P1588 Ingress_trig_time_o

Device Address = 3 Offset: 0x8034 (Hex)

Bit	Name			Description
15:12	Reserved	Mode	RO	
		HW Rst.	0	
		SW Rst.	0	
11:0	Ingress_trig	Mode	associate received event message for the IEEE158	Bits [3:0] of fractional nanoseconds field of RX timestamp of
	_time_o[3:0]	HW Rst.		associate received event message for the IEEE1588v2 event message to be transmitted.
		SW Rst.	Retain	This is used in one-step clock mode, provide information for hardware calculation.

6.1.42 P1588 Tx_latency_o

Device Address = 3Offset: 0x8035(Hex)

Bit	Name			Description
15:0	Tx_latency_o	Mode	RO	Transmission latency from Tx timestamp reference plan to the
		HW Rst.	0	physical media, unit in nanoseconds. This is used in one-step clock mode, provide information for
		SW Rst.	Retain	hardware calculation.

6.1.43 P1588 Inc_value_o

Device Address = 3 Offset: 0x8036 (Hex)

Bit	Name			Description
15:0	Inc_value_o[25:10]	Mode	RO	Bit [25:10] of increment value for the IEEE1588v2 RTC counter.
		HW Rst.	0	Software can adjust this value, thus adjust tick rate. Bits [25:20] is nanosecond part, [19:0] is fractional
		SW Rst.	Retain	nanoseconds.

6.1.44 P1588 Inc_value_o

Device Address = 3Offset: 0x8037 (Hex)

Bit	Name			Description
15:10	Reserved	Mode	RO	
		HW Rst.	0	
		SW Rst.	0	
9:0	Inc_vaule_o[9:0]	Mode	RO	Bit [9:0] of increment value for the IEEE1588v2 RTC counter.
		HW Rst.	0	Software can adjust this value, thus adjust tick rate. Bits [25:20] is nanosecond part, [19:0] is fractional
		SW Rst.	0	nanoseconds.

6.1.45 P1588 Nano_offset_o

Device Address = 3 Offset: 0x8038 (Hex)

Bit	Name			Description
15:0	Nano_offset_o[31:16]	Mode	RO	Bits [31:16] of nanoseconds field of time difference between
		HW Rst.	0	master and slave.
		SW Rst.	Retain	

6.1.46 P1588 Nano_offset_o

Device Address = 3Offset: 0x8039 (Hex)

Bit	Name			Description
15:0	Nano_offset_o[15:0]	Mode	RO	Bits [15:0] of nanoseconds field of time difference between
		HW Rst.	0	master and slave.
		SW Rst.	Retain	

6.1.47 P1588 Sec_offset_o

Device Address = 3 Offset: 0x803A (Hex)

Bit	Name			Description
15:0	Sec_offset_o[47:32]	Mode	RO	Bits [47:32] of seconds field of time difference between master
		HW Rst.	0	and slave.
		SW Rst.	Retain	

6.1.48 P1588 Sec_offset_o

Device Address = 3 Offset: 0x803B (Hex)

Bit	Name			Description
15:0	Sec_offset_o[31:16]	Mode	RO	Bits [31:16] of seconds field of time difference between master
		HW Rst.	0	and slave.
		SW Rst.	Retain	

6.1.49 P1588 Sec_offset_o

Device Address = 3 Offset: 0x803C (Hex)

Bit	Name			Description
15:0	Sec_offset_o[15:0]	Mode	RO	Bits [15:0] of seconds field of time difference between master
		HW Rst.	0	and slave.
		SW Rst.	Retain	

6.1.50 P1588 Real_time_i

Device Address = 3Offset: 0x803D (Hex)

Bit	Name			Description
15:0	Real_time_i[79:64]	Mode	RO	Bits [79:64] of current RTC counter implemented for
		HW Rst.	0	IEEE1588v2. Bits [79: 32] corresponding to seconds field, bits [31:0]
		SW Rst.	Retain	corresponding to nanoseconds field.

6.1.51 P1588 Real_time_i

Device Address = 3 Offset: 0x803E (Hex)

Bit	Name			Description
15:0	Real_time_i[63:48]	Mode	RO	Bits [63:48] of current RTC counter implemented for
		HW Rst.	0	IEEE1588v2. Bits [79: 32] corresponding to seconds field, bits [31:0]
		SW Rst.	Retain	corresponding to nanoseconds field.

6.1.52 P1588 Real_time_i

Device Address = 3Offset: 0x803F (Hex)

Bit	Name			Description
15:0	Real_time_i[47:32]	Mode	RO	Bits [47:32] of current RTC counter implemented for
		HW Rst.	0	IEEE1588v2. Bits [79: 32] corresponding to seconds field. Bits [31:0]
		SW Rst.	0	corresponding to nanoseconds field.

6.1.53 P1588 Real_time_i

Device Address = 3 Offset: 0x8040 (Hex)

Bit	Name			Description
15:0	Real_time_i[31:16]	Mode	RO	Bits [31:16] of current RTC counter implemented for
		HW Rst.	0	IEEE1588v2. Bits [79: 32] corresponding to seconds field. Bits [31:0]
		SW Rst.	0	corresponding to nanoseconds field.

6.1.54 P1588 Real_time_i

Device Address = 3 Offset: 0x8041 (Hex)

Bit	Name			Description
15:0	Real_time_i[15:0]	Mode	RO	Bits [15:0] of current RTC counter implemented for
		HW Rst.	0 IEEE1588v2. Bits [79: 32] corresponding to seconds field. Bits [31:0]	Bits [79: 32] corresponding to seconds field. Bits [31:0]
		SW Rst.	0	corresponding to nanoseconds field.

6.1.55 P1588 Rtc_frac_nano_i

Device Address = 3 Offset: 0x8042 (Hex)

Bit	Name			Description
15:0	Rtc_frac_nano_i[19:4]	Mode	RO	Bits [19:4] of fractional nanoseconds field of current RTC
		HW Rst.	0	counter implemented for IEEE1588v2.
		SW Rst.	0	

6.1.56 P1588 Rtc_frac_nano_i

Device Address = 3Offset: 0x8043 (Hex)

Bit	Name			Description
15:12	Reserved	Mode	RO	
		HW Rst.	0	
		SW Rst.	0	
11:0	Rtc_frac_nano_i[3:0]	Mode	RO	Bits [3:0] of fractional nanoseconds field of current RTC counter
		HW Rst.	0	implemented for IEEE1588v2
		SW Rst.	0	

6.1.57 P1588 Offset_valid_r

Device Address = 3 Offset: 0x8044 (Hex)

Bit	Name			Description
15:12	Reserved	Mode	RO	
		HW Rst.	0	
		SW Rst.	0	
11:0	Offset_valid_r	Mode	WO	Write only.
		HW Rst.	0	Write to this register to adjust local IEEE1588v2 RTC counter abruptly.
		SW Rst.	Retain	uorupuj.

6.1.58 Wake-on-Lan loc_mac_addr_o

Device Address = 3Offset: 0x804A (Hex)

Bit	Name			Description
15:0	Loc_mac_	Mode	R/W	Bits [47:32] of local MAC address, used in Wake-on-Lan.
	Addr_o[47:32]	HW Rst.	0	
		SW Rst.	Retain	

6.1.59 Wake-on-Lan loc_mac_addr_o

Device Address = 3 Offset: 0x804B (Hex)

Bit	Name			Description
15:0	Loc_mac_	Mode	R/W	Bits [31:16] of local MAC address, used in Wake-on-Lan.
	Addr_o[31:16]	HW Rst.	0	
		SW Rst.	Retain	

6.1.60 Wake-on-Lan loc_mac_addr_o

Device Address = 3Offset: 0x804C (Hex)

Bit	Name			Description
15:0	Loc_mac_	Mode	R/W	Bits [15:0] of local MAC address, used in Wake-on-Lan.
	Addr_o[15:0]	HW Rst.	0	
		SW Rst.	Retain	

6.2 MMD7 - auto-negotiation register

6.2.1 AN control1

Device Address = 7 Offset: 0x0 (Hex)

Bit	Name			Description
15	an_rst	Mode	R/W	Reset bit, self clear.
		HW Rst.	0	When write this bit 1:
		SW Rst.	0	1, reset the registers(not vender specific) in MMD3/MMD7. 2, cause software reset in mii register0 bit15.
14	Reserved	Mode	RO	Always 0.
11	Reserved	HW Rst.		Allways o.
			0	
		SW Rst.	0	
13	Xnp_ctrl	Mode	R/W	If mii register4 bit12 is set to 0, setting of this bit shall have no
		HW Rst.	1'b1	effect. 1 = Local device intends to enable the exchange of extended
		SW Rst.	Retain	next page;
				0 = Local device does not intend to enable the exchange of extended next page;
12:0	Reserved	Mode	RO	Always 0.
		HW Rst.	0	7
		SW Rst.	0	

6.2.1 AN package

Device Address = 7 Offset: 0x5 (Hex)

Bit	Name			Description
15:8	Reserved	Mode	R/W	Always 0.
		HW Rst.	0	
		SW Rst.	0	

Bit	Name			Description
7	auto_neg_	Mode	RO	Always 1.
	present	HW Rst.	0	
		SW Rst.	0	
6:4	Reserved	Mode	RO	Always 0
		HW Rst.	0	
		SW Rst.	0	
3	PCS present	Mode	RO	Always 1.
		HW Rst.	1	
		SW Rst.	1	

6.2.1 AN package

Device Address = 7 Offset: 0x5 (Hex)

		T		
Bit	Name			Description
15:8	Reserved	Mode	R/W	Always 0.
		HW Rst.	0	
		SW Rst.	0	
7	auto_neg_	Mode	RO	Always 1.
	present	HW Rst.	0	
		SW Rst.	0	
6:4	Reserved	Mode	RO	Always 0
		HW Rst.	0	
		SW Rst.	0	
3	PCS present	Mode	RO	Always 1.
		HW Rst.	1	
		SW Rst.	1	_
2:1	Reserved	Mode	RO	Always 0
		HW Rst.	0	
		SW Rst.	0	

Bit	Name			Description
0	mii_reg_present	Mode	RO	Always 1.
		HW Rst.	1	
		SW Rst.	1	

6.2.1 AN status

Device Address = 7 Offset: 0x1 (Hex)

Bit	Name			Description
15:8	Reserved	Mode	RO	
		HW Rst.	0	
		SW Rst.	0	
7	Xnp_status	Mode	RO	1 = both Local device and link partner have indicated support for
		HW Rst.	0	extended next page; 0 = extended next page shall not be used.
		SW Rst.	0	o – extended next page shall not be used.
6:0	Reserved	Mode	RO	
		HW Rst.	0	
		SW Rst.	0	

6.2.1 AN XNP transmit

Device Address = 7 Offset: 0x16 (Hex)

Bit	Name			Description
15:0	Xnp_22	Mode	R/W	A write to this register set mr_next_page_loaded.
		HW Rst.	15'h0	
		SW Rst.	Retain	

6.2.1 AN XNP transmit1

Device Address = 7 Offset: 0x17 (Hex)

Bit	Name			Description
15:0	Xnp_23	Mode	R/W	
		HW Rst.	15'h0	
		SW Rst.	Retain	

6.2.1 AN XNP transmit2

Device Address = 7 Offset: 0x18 (Hex)

Bit	Name			Description
15:0	Xnp_24	Mode	R/W	
		HW Rst.	15'h0	
		SW Rst.	Retain	

6.2.1 AN LP XNP ability

Device Address = 7 Offset: 0x19 (Hex)

Bit	Name			Description
15:0	Lp_xnp_1	Mode	R/W	
		HW Rst.	15'h0	
		SW Rst.	15'h0	

6.2.1 AN LP XNP ability1

Device Address = 7 Offset: 0x1A (Hex)

Bit	Name			Description
15:0	Lp_xnp_2	Mode	R/W	Latched when lp_xnp_1 is read
		HW Rst.	15'h0	
		SW Rst.	15'h0	

6.2.1 AN LP XNP ability2

Device Address = 7 Offset: 0x1B (Hex)

Bit	Name			Description
15:0	Lp_xnp_3	Mode	R/W	Latched when lp_xnp_1 is read
		HW Rst.	15'h0	
		SW Rst.	15'h0	

6.2.2 EEE advertisement

Device Address = 7 Offset: 0x3C (Hex)

Bit	Name			Description
15:3	Reserved	Mode	RO	Always 0.
		HW Rst.	0	
		SW Rst.	0	
2	EEE_1000BT	Mode	RO	If Local device supports EEE operation for 1000BT, and EEE
		HW Rst.	0	operation is desired, this bit shall be set to 1.
		SW Rst.	0	
1	EEE_100BT	Mode	RO	If Local device supports EEE operation for 100BT, and EEE
		HW Rst.	0	operation is desired, this bit shall be set to 1.
		SW Rst. 0		
0	Reserved	Mode	RO	Always 0.
	HW Rst. 0			
		SW Rst.	0	

6.2.3 EEE advertisement

Device Address = 7 Offset: 0x3C (Hex)

Bit	Name			Description
15:3	Reserved	Mode	RO	Always 0.
		HW Rst.	0	
		SW Rst.	0	
2	EEE_1000BT	Mode	R/W	If Local device supports EEE operation for 1000BT, and EEE
		HW Rst.	1'b1	operation is desired, this bit shall be set to 1.
		SW Rst.	Retain	
1	EEE_100BT	Mode	R/W	If Local device supports EEE operation for 100BT, and EEE
		HW Rst. 1'b1 operation is desired, this bit sh		operation is desired, this bit shall be set to 1.
		SW Rst.	Retain	
0	Reserved	Mode	RO	Always 0.
		HW Rst.	0	
		SW Rst.	0	

6.2.4 EEE LP advertisement

Device Address = 7 Offset: 0x3D (Hex)

Bit	Name			Description
15:3	Reserved	Mode	RO	Always 0.
		HW Rst.	0	_
		SW Rst.	0	
2	EEE_1000BT	Mode	RO	1 = link partner supports EEE operation for 1000BT, and EEE
		HW Rst.	0	operation is desired; 0 = link partner does not support EEE operation for 1000BT, or
		SW Rst.	0	EEE operation is not desired.
1	EEE_100BT	Mode	RO	1 = link partner supports EEE operation for 100BT, and EEE
		HW Rst.	0	operation is desired; 0 = link partner does not support EEE operation for 100BT, or
		SW Rst.	0	EEE operation is not desired.
0	Reserved	Mode	RO	Always 0.
		HW Rst.	0	
		SW Rst.	0	

7. Package Dimensions

The AR8031 is packaged in a 48-pin 6 x 6 mm QFN package. The package drawings and dimensions are provided in Figure 7-1 and Table 7-1.

Figure 7-1. Package Views

Table 7-1. Package Dimensions

Dimension Label	Min	Nom	Max	Unit
A	0.70	0.75	0.80	mm
A1	_	0.01	0.05	mm
b	0.15	0.20	0.25	mm
С	0.18	0.20	0.23	mm
D	5.90	6.00	6.10	mm
D2	3.70	3.80	3.90	mm
e	0.35	0.40	0.45	mm
Ne	4.35	4.40	4.45	mm
Nd	4.35	4.40	4.45	mm
Е	5.90	6.00	6.10	mm
E2	3.70	3.80	3.90	mm
K	0.20	_	_	mm
L	0.35	0.40	0.45	mm
h	0.30	0.35	0.40	mm

8. Ordering Information

The order number *AR8031-AL1A* specifies a current, Commercial version of the AR8031. The order number *AR8031-AL1B* specifies a current, **Industrial** version of the AR8031.

9. Ordering Information

The top-side marking of the *AR8031* will be *the order number*, as shown in section 7 above.

The information in this document has been carefully reviewed and is believed to be accurate. Nonetheless, this document is subject to change without notice. Atheros assumes no responsibility for any inaccuracies that may be contained in this document, and makes no commitment to update or to keep current the contained information, or to notify a person or organization of any updates. Atheros reserves the right to make changes, at any time, to improve reliability, function or design and to attempt to supply the best product possible.

Document Number: 981-00064-001 MKG-1247 Rev. 1

Atheros Communications, Incorporated

5480 Great America Parkway Santa Clara, CA 95054 t: 408/773-5200 f: 408/773-9940 www.atheros.com

