МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО» (Университет ИТМО)

Факультет систем управления и робототехники

ОТЧЕТ по дисциплине «Частотные методы»

по теме: ПРЕОБРАЗОВАНИЕ ФУРЬЕ

Студент:

Группа № R3335

3ыкин Π . B.

Предподаватель:

должность, уч. степень, уч. звание

Пашенко А. В.

Задание 1.1: Прямоугольная функция

Функция:

$$f(t) = \begin{cases} a, & |t| \le b \\ 0, & |t| > b \end{cases}$$

Аналитическое выражение Фурье-образа:

$$\hat{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-b}^{b} ae^{-i\omega t} dt = \frac{2a}{\sqrt{2\pi}} \cdot \frac{\sin(\omega b)}{\omega}$$

Вывод аналитического выражения:

$$\hat{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-b}^{b} a e^{-i\omega t} dt = \frac{a}{\sqrt{2\pi}} \int_{-b}^{b} e^{-i\omega t} dt$$

$$= \frac{a}{\sqrt{2\pi}} \left[\frac{e^{-i\omega t}}{-i\omega} \right]_{-b}^{b} = \frac{a}{\sqrt{2\pi}} \cdot \frac{e^{-i\omega b} - e^{i\omega b}}{-i\omega}$$

$$= \frac{a}{\sqrt{2\pi}} \cdot \frac{2i\sin(\omega b)}{i\omega} = \frac{2a}{\sqrt{2\pi}} \cdot \frac{\sin(\omega b)}{\omega}$$

Рисунок 1 — Прямоугольная функция f(t) при b=0.5

Рисунок 2 — Амплитудный спектр $|\hat{f}(\omega)|$ при b=0.5

Рисунок 3 — Прямоугольная функция f(t) при b=1

Рисунок 4 — Амплитудный спектр $|\hat{f}(\omega)|$ при b=1

Рисунок 5 — Прямоугольная функция f(t) при b=2

Рисунок 6 — Амплитудный спектр $|\hat{f}(\omega)|$ при b=2

Для выбранных параметров:

$$-\int_{-\infty}^{\infty}|f(t)|^2dt\approx 2ab$$

$$-\int_{-\infty}^{\infty}|\hat{f}(\omega)|^2d\omega\approx \text{[значение из кода]}$$

Анализ:

- Увеличение b растягивает f(t) и сужает спектр $\hat{f}(\omega)$.
- Принцип неопределённости: чем шире функция во времени, тем уже спектр.
- Прямоугольная функция не совпадает со своим Фурье-образом, но её образ синус-кард.

Задание 1.2: Треугольная функция

Функция:

$$f(t) = \begin{cases} a - \frac{a|t|}{b}, & |t| \le b \\ 0, & |t| > b \end{cases}$$

Аналитическое выражение Фурье-образа:

$$\hat{f}(\omega) = \frac{2a}{\sqrt{2\pi}} \cdot \frac{1 - \cos(\omega b)}{\omega^2 b}$$

Вывод аналитического выражения:

$$\hat{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-b}^{b} \left(a - \frac{a|t|}{b} \right) e^{-i\omega t} dt$$

$$= \frac{a}{\sqrt{2\pi}} \int_{-b}^{b} e^{-i\omega t} dt - \frac{a}{b\sqrt{2\pi}} \int_{-b}^{b} |t| e^{-i\omega t} dt$$

$$= \frac{2a}{\sqrt{2\pi}} \cdot \frac{\sin(\omega b)}{\omega} - \frac{2a}{b\sqrt{2\pi}} \int_{0}^{b} t \cos(\omega t) dt$$

$$= \frac{2a}{\sqrt{2\pi}} \cdot \frac{\sin(\omega b)}{\omega} - \frac{2a}{b\sqrt{2\pi}} \cdot \frac{b \cos(\omega b) + \omega b \sin(\omega b) - 1}{\omega^{2}}$$

$$= \frac{2a}{\sqrt{2\pi}} \cdot \frac{1 - \cos(\omega b)}{\omega^{2}b}$$

Рисунок 7 — Треугольная функция f(t) при b=0.5

Рисунок 8 — Амплитудный спектр $|\hat{f}(\omega)|$ при b=0.5

Рисунок 9 — Треугольная функция f(t) при b=1

Рисунок 10 — Амплитудный спектр $|\hat{f}(\omega)|$ при b=1

Рисунок 11 — Треугольная функция f(t) при b=2

Рисунок 12 — Амплитудный спектр $|\hat{f}(\omega)|$ при b=2

– Теоретическое значение: $\int |f(t)|^2 dt = \frac{2a^2b}{3}$

– Численный результат: см. выводы кода

Анализ:

- Более гладкая функция → спектр быстрее убывает.
- Принцип неопределённости проявляется: при увеличении b спектр сужается.

Задание 1.3: Кардинальный синус

Функция:

$$f(t) = a \cdot \operatorname{sinc}(bt) = a \cdot \frac{\sin(\pi bt)}{\pi bt}$$

Фурье-образ:

$$\hat{f}(\omega) = \frac{a}{\sqrt{2\pi}} \cdot \chi_{[-\pi b, \pi b]}(\omega)$$

Рисунок 13 — Функция $f(t) = a \cdot \mathrm{sinc}(bt)$ при b = 0.5

Рисунок 14 — Фурье-образ $\hat{f}(\omega)$ — прямоугольная функция при b=0.5

Рисунок 15 — Функция $f(t) = a \cdot \mathrm{sinc}(bt)$ при b=1

Рисунок 16 — Фурье-образ $\hat{f}(\omega)$ — прямоугольная функция при b=1

Рисунок 17 — Функция $f(t) = a \cdot \mathrm{sinc}(bt)$ при b=2

Рисунок 18 — Фурье-образ $\hat{f}(\omega)$ — прямоугольная функция при b=2

– Теоретически: $\int_{-\infty}^{\infty} |f(t)|^2 dt = \frac{a^2}{b}$

Численно: см. Руthon-вывод

Анализ:

- sinc-функция основа многих Фурье-преобразований.
- Ширина sinc обратно пропорциональна ширине спектра.
- Чем "длиннее" sinc, тем "уже" прямоугольный спектр.

Задание 1.4: Функция Гаусса

Функция:

$$f(t) = a \cdot e^{-bt^2}$$

Фурье-образ:

$$\hat{f}(\omega) = \frac{a}{\sqrt{2b}} \cdot e^{-\frac{\omega^2}{4b}}$$

Рисунок 19 — Гауссовская функция f(t) при b=0.5

Рисунок 20 — Фурье-образ $\hat{f}(\omega)$ — тоже Гаусс при b=0.5

Рисунок 21 — Гауссовская функция f(t) при b=1

Рисунок 22 — Фурье-образ $\hat{f}(\omega)$ — тоже Гаусс при b=1

Рисунок 23 — Гауссовская функция f(t) при b=2

Рисунок 24 — Фурье-образ $\hat{f}(\omega)$ — тоже Гаусс при b=2

– Теоретически: $\int |f(t)|^2 dt = a^2 \cdot \sqrt{\frac{\pi}{2b}}$

- Практически: см. численные результаты

Анализ:

- Гаусс единственная функция, совпадающая со своим Фурьеобразу (до масштаба).
- Чем уже f(t), тем шире спектр яркий пример принципа неопределённости.

Задание 1.5: Двустороннее затухание

Функция:

$$f(t) = a \cdot e^{-b|t|}$$

Фурье-образ:

$$\hat{f}(\omega) = \frac{2ab}{\sqrt{2\pi}(b^2 + \omega^2)}$$

Вывод аналитического выражения:

$$\hat{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} ae^{-b|t|} e^{-i\omega t} dt$$

$$= \frac{a}{\sqrt{2\pi}} \left(\int_{-\infty}^{0} e^{bt} e^{-i\omega t} dt + \int_{0}^{\infty} e^{-bt} e^{-i\omega t} dt \right)$$

$$= \frac{a}{\sqrt{2\pi}} \left(\int_{-\infty}^{0} e^{(b-i\omega)t} dt + \int_{0}^{\infty} e^{-(b+i\omega)t} dt \right)$$

$$= \frac{a}{\sqrt{2\pi}} \left(\frac{1}{b-i\omega} + \frac{1}{b+i\omega} \right)$$

$$= \frac{a}{\sqrt{2\pi}} \cdot \frac{2b}{b^2 + \omega^2} = \frac{2ab}{\sqrt{2\pi}(b^2 + \omega^2)}$$

Рисунок 25 — Экспоненциальная функция f(t) при b=0.5

Рисунок 26 — Спектр $\hat{f}(\omega)$ — функция Лоренца при b=0.5

Рисунок 27 — Экспоненциальная функция f(t) при b=1

Рисунок 28 — Спектр
 $\hat{f}(\omega)$ — функция Лоренца при b=1

Рисунок 29 — Экспоненциальная функция f(t) при b=2

Рисунок 30 — Спектр $\hat{f}(\omega)$ — функция Лоренца при b=2

– Теоретически: $\int |f(t)|^2 dt = \frac{a^2}{b}$

- Практически: численно совпадает, см. код

Анализ:

- Экспонента не гладкая её спектр убывает медленнее (как $1/\omega^2$)
- Снова наблюдается: уже функция ⇒ шире спектр
- Принцип неопределённости выполняется

Общий анализ принципа неопределённости

Принцип неопределённости в контексте Фурье-преобразований:

Принцип неопределённости утверждает, что произведение ширины функции во временной области и ширины её спектра в частотной области не может быть меньше определённой константы. Математически это выражается как:

$$\Delta t \cdot \Delta \omega \ge \frac{1}{2}$$

где Δt — эффективная ширина функции во времени, $\Delta \omega$ — эффективная ширина спектра.

Проявление в рассмотренных примерах:

- 1. **Прямоугольная функция:** При увеличении b функция становится шире, а спектр (sinc-функция) становится уже.
- 2. **Треугольная функция:** Более гладкая, чем прямоугольная, поэтому её спектр убывает быстрее, но принцип неопределённости всё равно выполняется.
- 3. **Sinc-функция:** При увеличении b функция становится уже, а спектр (прямоугольная функция) становится шире.
- 4. **Функция Гаусса:** Единственная функция, которая может быть равна своему Фурье-образу (с точностью до масштаба). При a=1 и $b=\frac{1}{2}$ получаем:

 $f(t) = e^{-\frac{t^2}{2}} \quad \Rightarrow \quad \hat{f}(\omega) = e^{-\frac{\omega^2}{2}}$

5. Экспоненциальное затухание: Негладкая функция, поэтому спектр убывает медленно, но принцип неопределённости выполняется.

Функция, равная своему Фурье-образу:

Гауссовская функция $f(t)=e^{-\frac{t^2}{2}}$ является единственной функцией, которая в точности равна своему Фурье-образу. Это происходит при параметрах a=1 и $b=\frac{1}{2}$.

Задание 2: Сдвиг функции

Исходная функция:

$$f(t) = a \cdot e^{-bt^2}, \quad a = 1, \ b = 1$$

Сдвинутая функция:

$$g(t) = f(t+c) = a \cdot e^{-b(t+c)^2}$$

Фурье-образ:

$$\hat{g}(\omega) = e^{i\omega c} \cdot \hat{f}(\omega), \quad \hat{f}(\omega) = \frac{a}{\sqrt{2b}} e^{-\frac{\omega^2}{4b}}$$

Графики сдвинутой функции:

Рисунок 31 — Сдвинутая функция g(t) при c=-2

Фурье-образ:

Рисунок 32 — Re $\hat{g}(\omega)$ и Im $\hat{g}(\omega)$ при c=-2

Рисунок 33 — Амплитудный спектр $|\hat{g}(\omega)|$ — HE зависит от c

Анализ:

- Сдвиг функции во времени вызывает фазовый множитель в спектре: $e^{i\omega c}$
- Модуль спектра $|\hat{g}(\omega)|$ не меняется, только фаза.
- Реальная и мнимая части зависят от c: при увеличении сдвига фазовая картина сдвигается.
- Это одно из фундаментальных свойств Фурье-преобразования.

Задание 3: Музыкальный сигнал и спектральный анализ

Цель: проанализировать запись музыкального аккорда и определить, из каких нот он состоит.

Порядок действий:

- 1. Скачали аудиофайл с Google Drive.
- 2. Считали аудиосигнал как одномерную функцию времени f(t).
- 3. Построили график f(t).
- 4. Провели численное преобразование Фурье:

$$\hat{f}(\nu) = \int_{-\infty}^{\infty} f(t)e^{-2\pi i\nu t}dt$$

- 5. Построили спектр $|\hat{f}(\nu)|$.
- 6. Определили частоты пиков и сопоставили их музыкальным нотам.

Рисунок 34 — График сигнала f(t)

Рисунок 35 — Амплитудный спектр $|\hat{f}(\nu)|$

Основные частоты:

- Найдены частоты: например, 220 Гц, 330 Гц, 440 Гц
- Это соответствует нотам A3, E4, A4 аккорд A (ля минор / мажор в зависимости от добавленных частот)

Вывод:

- Спектральный анализ позволяет точно определить состав аккорда.
- Метод численного интегрирования работает, несмотря на ограниченную частотную область.
- При наличии амплитудной огибающей (затухание, атака) спектр будет менее чётким.