Section 2.8 – Derivatives of Logarithmic & Exponential Functions

Derivative of $y = \ln x$

$$\left| \frac{d}{dx} \ln |x| = \frac{1}{x} \right| \quad x \neq 0$$

The chain rule extends: $\frac{d}{dx} \ln u = \frac{1}{u} \cdot \frac{du}{dx} = \frac{u'}{u} \quad u > 0$

Example

Find $\frac{d}{dx} \ln 2x$

Solution

$$\frac{d}{dx}\ln 2x = \frac{(2x)'}{2x}$$
$$= \frac{2}{2x}$$
$$= \frac{1}{x}$$

Example

Find the derivative of $\ln(x^2 + 3)$

Solution

$$\frac{d}{dx}\ln\left(x^2+3\right) = \frac{2x}{x^2+3}$$

Properties of the Natural logarithm

Product Rule $\ln bx = \ln b + \ln x$

Quotient Rule $\ln \frac{b}{x} = \ln b - \ln x$

Reciprocal Rule $\ln \frac{1}{x} = -\ln x$

Power Rule $\ln x^r = r \ln x$

Example

a) $\ln(4\sin x) = \ln 4 + \ln \sin x$

b)
$$\ln \frac{x+1}{2x-3} = \ln(x+1) - \ln(2x-3)$$

c)
$$\ln \frac{1}{8} = -\ln 8 = -\ln 2^3 = -3\ln 2$$

Example

Find
$$\frac{dy}{dx}$$
 if $y = \frac{(x^2 + 1)(x + 3)^{1/2}}{x - 1}$, $x > 1$

Solution

$$\ln y = \ln \frac{\left(x^2 + 1\right)(x+3)^{1/2}}{x-1}$$

$$= \ln \left(x^2 + 1\right)(x+3)^{1/2} - \ln(x-1)$$

$$= \ln \left(x^2 + 1\right) + \ln(x+3)^{1/2} - \ln(x-1)$$

$$= \ln \left(x^2 + 1\right) + \frac{1}{2}\ln(x+3) - \ln(x-1)$$
Product Rule
$$= \ln \left(x^2 + 1\right) + \frac{1}{2}\ln(x+3) - \ln(x-1)$$
Power Rule
$$\frac{1}{y} \frac{dy}{dx} = \frac{2x}{x^2 + 1} + \frac{1}{2} \frac{1}{x+3} - \frac{1}{x-1}$$

$$\frac{dy}{dx} = y \left(\frac{2x}{x^2 + 1} + \frac{1}{2x+6} - \frac{1}{x-1}\right)$$

$$\frac{dy}{dx} = \frac{\left(x^2 + 1\right)(x+3)^{1/2}}{x-1} \left(\frac{2x}{x^2 + 1} + \frac{1}{2x+6} - \frac{1}{x-1}\right)$$

The Derivative and Integral of e^{x}

The natural exponential function is differentiable because it is the inverse of a differentiable function whose derivative is never zero.

$$\ln\left(e^{x}\right) = x$$
 Inverse relationship
$$\frac{d}{dx}\ln\left(e^{x}\right) = 1$$
 Differentiate both sides.
$$\frac{1}{e^{x}}\frac{d}{dx}\left(e^{x}\right) = 1$$

$$\frac{d}{dx}\ln u = \frac{1}{u}\cdot\frac{du}{dx}$$

$$\frac{d}{dx}e^{x} = e^{x}$$

If u is any differentiable function of x, then

$$\boxed{\frac{d}{dx}e^{u} = e^{u}\frac{du}{dx}} \qquad \left(e^{u}\right)' = u'e^{u}$$

Example

Find the derivative of $\frac{d}{dx}(5e^x)$

Solution

$$\frac{d}{dx}\left(5e^{x}\right) = 5\frac{d}{dx}e^{x}$$
$$= 5e^{x}$$

Example

Find the derivative of $\frac{d}{dx} \left(e^{\sin x} \right)$

Solution

$$\frac{d}{dx}\left(e^{\sin x}\right) = e^{\sin x} \frac{d}{dx}(\sin x)$$
$$= e^{\sin x} \cdot \cos x$$

Example

Find the derivative of $\frac{d}{dx} \left(e^{\sqrt{3x+1}} \right)$

Solution

$$\frac{d}{dx}\left(e^{\sqrt{3x+1}}\right) = e^{\sqrt{3x+1}} \frac{d}{dx}\left(\sqrt{3x+1}\right)$$

$$= e^{\sqrt{3x+1}} \cdot \frac{1}{2}(3x+1)^{-1/2} \cdot 3$$

$$= \frac{3}{2\sqrt{3x+1}} e^{\sqrt{3x+1}}$$

Definition

For any numbers a > 0 and x, the **exponential function with base a** is

$$a^x = e^{x \ln a}$$

When a = e, the function gives $a^x = e^{x \ln a} = e^{x \ln e} = e^x$

Power Rule - Definition

For any x > 0 and for any real number n, $x^n = e^{n \ln x}$

General Power Rule for Derivatives

For any x > 0 and for any real number n, $\frac{d}{dx}x^n = nx^{n-1}$

Proof

$$\frac{d}{dx}x^n = \frac{d}{dx}e^{n\ln x}$$

$$= e^{n\ln x}\frac{d}{dx}(n\ln x)$$

$$= x^n \cdot \frac{n}{x}$$

$$= nx^{n-1}$$

Example

Differentiate $f(x) = x^x$, x > 0

Solution

$$f'(x) = \frac{d}{dx} \left(e^{x \ln x} \right)$$
$$= e^{x \ln x} \frac{d}{dx} (x \ln x)$$

$$= e^{x \ln x} \frac{d}{dx} (x \ln x)$$

$$= e^{x \ln x} \left(\ln x + x \cdot \frac{1}{x} \right)$$

$$= x^{x} (\ln x + 1) \quad x > 0$$

Theorem – The Number e as a Limit

The number e can be calculated as the limit

$$e = \lim_{x \to 0} (1+x)^{1/x}$$

Proof

If
$$f(x) = \ln x \rightarrow f'(x) = \frac{1}{x}$$
 so $f'(1) = 1$

$$f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$$

$$= \lim_{x \to 0} \frac{f(1+x) - f(1)}{x}$$

$$= \lim_{x \to 0} \frac{\ln(1+x) - \ln(1)}{x}$$

$$= \lim_{x \to 0} \left\lfloor \frac{1}{x} \ln(1+x) \right\rfloor$$

$$= \lim_{x \to 0} \ln(1+x)^{1/x}$$

$$= \ln \left\lfloor \lim_{x \to 0} (1+x)^{1/x} \right\rfloor \qquad f'(1) = 1$$

$$= 1$$

$$\lim_{x \to 0} (1+x)^{1/x} = e$$

Definition

If a > 0 and u is a differentiable of x, then a^{u} is a differentiable function of x and

$$\frac{d}{dx}a^{u} = a^{u} \ln a \frac{du}{dx}$$

Example

$$\frac{d}{dx} 3^x = 3^x \ln 3$$

$$\Rightarrow \frac{d}{dx}3^{-x} = 3^{-x}\ln 3\frac{d}{dx}(-x) = -3^{-x}\ln 3$$

$$\frac{d}{dx}3^{\sin x} = 3^{\sin x}\ln 3\frac{d}{dx}(\sin x) = 3^{\sin x}\ln 3(\cos x)$$

Logarithms with base a

For any positive number $a \ne 1$, $\log_a x$ is the inverse function of a^x

Inverse Equations for $\log_a x$ and a^x

$$a^{\log_a x} = x \quad (\forall x > 0)$$

$$\log_a \left(a^x \right) = x \quad (all \ x)$$

$$\log_a x = \frac{\ln x}{\ln a}$$

Derivative

$$\boxed{\frac{d}{dx} \left(\log_a u \right) = \frac{1}{u} \cdot \frac{1}{\ln a} \frac{du}{dx}}$$

Example

$$\frac{d}{dx}\log_{10}(3x+1) = \frac{1}{(3x+1)\cdot\ln 10}\frac{d}{dx}(3x+1) = \frac{3}{(3x+1)\cdot\ln 10}$$

Exercises Se

Section 2.8 – Derivatives of Logarithmic & Exponential Functions

Find the derivative

$$1. y = \ln \sqrt{x+5}$$

2.
$$y = (3x+7)\ln(2x-1)$$

3.
$$f(x) = \ln \sqrt[3]{x+1}$$

4.
$$f(x) = \ln \left[x^2 \sqrt{x^2 + 1} \right]$$

5.
$$y = \ln \frac{x^2}{x^2 + 1}$$

6.
$$y = \ln \left[\frac{x^2(x+1)^3}{(x+3)^{1/2}} \right]$$

7.
$$y = \ln(x^2 + 1)$$

8.
$$f(x) = \ln(x^2 - 4)$$

9.
$$f(x) = 2\ln(x^2 - 3x + 4)$$

10.
$$f(x) = 3\ln(1+x^2)$$

11.
$$f(x) = (1 + \ln x)^3$$

12.
$$f(x) = (x - 2 \ln x)^4$$

$$13. \quad f(x) = x^2 \ln x$$

$$14. \quad f(x) = -\frac{\ln x}{x^2}$$

$$15. \quad y = \ln(t^2)$$

$$16. \quad y = \ln(2\theta + 2)$$

17.
$$y = (\ln x)^3$$

$$18. \quad y = x(\ln x)^2$$

19.
$$y = \frac{x^4}{4} \ln x - \frac{x^4}{16}$$

20.
$$y = \frac{1 + \ln t}{t}$$

$$21. \quad f(x) = \frac{\ln x}{1+x}$$

22.
$$f(x) = \frac{2x}{1 + \ln x}$$

$$23. \quad f(x) = x^3 \ln x$$

24.
$$f(x) = 6x^4 \ln x$$

25.
$$f(x) = \ln x^8$$

26.
$$f(x) = 5x - \ln x^5$$

27.
$$f(x) = \ln x^{10} + 2\ln x$$

$$28. \qquad f(x) = \frac{\ln x}{2x+5}$$

29.
$$f(x) = -2\ln x + x^2 - 4$$

$$30. \quad y = \ln\left(\frac{1}{x\sqrt{x+1}}\right)$$

$$31. \quad y = \ln(\ln(\ln x))$$

$$32. \quad y = \ln(\sec(\ln x))$$

$$33. \quad y = \ln\left(\frac{\left(x^2 + 1\right)^5}{\sqrt{1 - x}}\right)$$

34.
$$y = \ln \sqrt{\frac{(x+1)^5}{(x+2)^{20}}}$$

35.
$$f(x) = e^{3x}$$

36.
$$f(x) = e^{-2x^3}$$

37.
$$f(x) = 4e^{x^2}$$

38.
$$f(x) = 2x^3 e^x$$

39.
$$f(x) = \frac{3e^x}{1+e^x}$$

40.
$$f(x) = 5e^x + 3x + 1$$

41.
$$f(x) = x^2 e^x$$

42.
$$f(x) = \frac{e^x + e^{-x}}{2}$$

$$43. \quad f(x) = \frac{e^x}{x^2}$$

44.
$$f(x) = x^2 e^x - e^x$$

45.
$$f(x) = (1+2x)e^{4x}$$

46.
$$y = x^2 e^{5x}$$

47.
$$y = x^2 e^{-2x}$$

48.
$$f(x) = \frac{e^x}{x^2 + 1}$$

49.
$$f(x) = \frac{1 - e^x}{1 + e^x}$$

50.
$$y = \frac{e^x + e^{-x}}{x}$$

51.
$$y = \sqrt{e^{2x^2} + e^{-2x^2}}$$

52.
$$y = \frac{x}{e^{2x}}$$

53.
$$y = 3e^{5x^3+1}$$

54.
$$f(x) = (x^2 - 2x + 2)e^x$$

61.
$$y = e^{x^2} \ln x$$

67.
$$f(x) = e^{2x} \ln(xe^x + 1)$$

55.
$$f(\theta) = e^{\theta} (\sin \theta + \cos \theta)$$

62.
$$f(x) = e^x + x - \ln x$$

$$68. \quad f(x) = \frac{xe^x}{\ln(x^2 + 1)}$$

56.
$$f(\theta) = \ln(3\theta e^{-\theta})$$

63.
$$f(x) = \ln x + 2e^x - 3x^2$$

$$57. \quad f(\theta) = \theta^3 e^{-2\theta} \cos 5\theta$$

64.
$$f(x) = \ln x^2 + 4e^x$$

$$69. \quad f(x) = xe^{-10x}$$

58.
$$f(\theta) = \ln\left(\frac{\sqrt{\theta}}{1+\sqrt{\theta}}\right)$$

65.
$$y = \ln \frac{1 + e^x}{1 - e^x}$$

$$70. \quad f(x) = x \ln^2 x$$

 $71. \quad f(x) = e^{-x} \ln x$

$$\mathbf{59.} \quad f(t) = e^{\left(\cos t + \ln t\right)}$$

$$66. \quad y = \frac{\ln x}{e^{2x}}$$

72.
$$f(x) = 2^{x^2 - x}$$

$$60. \quad y = e^{\sin t} \left(\ln t^2 + 1 \right)$$

Use logarithmic differentiation to find the derivative of

73.
$$y = \sqrt{x(x+1)}$$

76.
$$y = \frac{\theta + 5}{\theta \cos \theta}$$

74.
$$y = \sqrt{(x^2 + 1)(x - 1)^2}$$

77.
$$y = \sqrt[3]{\frac{x(x+1)(x-2)}{(x^2+1)(2x+3)}}$$

$$75. \quad y = \sqrt{\frac{1}{t(t+1)}}$$

Find the derivative of

78.
$$y = t^{1-e}$$

79.
$$y = 2^{\sin 3t}$$

80.
$$y = \log_3 (1 + \theta \ln 3)$$

81.
$$y = \log_{25} e^x - \log_5 \sqrt{x}$$

82.
$$y = \log_3 r \cdot \log_9 r$$

83.
$$y = \log_7 \left(\frac{\sin \theta \cos \theta}{e^\theta 2^\theta} \right)$$

84.
$$y = 3\log_8 \left(\log_2 t\right)$$

85.
$$y = t \log_3 \left(e^{\left(\sin t\right)\left(\ln 3\right)} \right)$$

86.
$$f(x) = 2^{x^2 - x}$$

87.
$$f(x) = \log_3(x+8)$$

Use logarithmic differentiation to find the derivative of

88.
$$y = (x+1)^x$$

$$90. \quad y = (\sin x)^x$$

$$92. \quad y = (\ln x)^{\ln x}$$

89.
$$y = x^2 + x^{2x}$$

91.
$$y = x^{\sin x}$$

- 93. Find the second derivative of $y = 3e^{5x^3 + 1}$
- **94.** Find the equation of the tangent line to $f(x) = e^x$ at the point (0, 1)
- **95.** Find the equation of the tangent line to $f(x) = e^x$ at the point (1, e)
- **96.** Find the equation of the tangent lines to $f(x) = 4e^{-8x}$ at the points (0, 4)
- **97.** Find the equation of the tangent line to $y = 4xe^{-x} + 5$ at x = 1
- **98.** The following formula accurately models the relationship between the size of a certain type of tumor and the amount of time that it has been growing:

$$V(t) = 450(1 - e - 0.0022t)^3$$

where t is in months and V(t) is measured in cubic centimeters. Calculate the rate of change of tumor volume at 80 months.

99. A yeast culture at room temperature (68° F) is placed in a refrigerator set at a constant temperature of 38° F. After t hours, the temperature T of the culture is given approximately by

$$T = 30e^{-0.58t} + 38 \quad t \ge 0$$

What is the rate of change of temperature of the culture at the end of 1 hour? At the end of 4 hours?

100. A mathematical model for the average age of a group of people learning to type is given by

$$N(t) = 10 + 6\ln t \quad t \ge 1$$

Where N(t) is the number of words per minute typed after t hours of instruction and practice (2 hours per day, 5 days per week). What is the rate of learning after 10 hours of instruction and practice? After 100 hours?

101. The population of coyotes in the northwestern portion of Alabama is given by the formula $P(t) = (t^2 + 100) \ln(t + 2)$, where t represents the time in years since 2000 (the year 2000 corresponds to (t = 0)) Find the rate of change of the coyote population in 2013 (t = 13).