Application No.: not yet known

Preliminary Amendment - First Action Not Yet Received

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

Claim 1 (original) A process for synthesizing a compound of formula I

comprising contacting a compound of formula i

with a compound of formula xx

 R^0 is C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, $(CH_2)_r(C_{3-6}$ cycloalkyl), $(CH_2)_r(aryl)$

or (CH₂)_r(heterocycle), wherein r is 0, 1, 2, 3, or 4;

 R^1 , R^2 , R^3 , R^6 , R^7 , and R^8 are, independently, H or C_1 - C_{10} alkyl;

R⁴ and R⁹ are, independently, H or an acid labile hydroxyl protecting group;

Application No.: not yet known

Preliminary Amendment - First Action Not Yet Received

R¹⁰ is hydrogen or C₁-C₆ alkyl;

R²⁵ is hydrogen or an oxidation labile hydroxyl protecting group;

 X^1 and X^2 is, independently, a halogen, triflate, tosylate, or mesylate; and

J is

$$R^{15}O \xrightarrow{\stackrel{\stackrel{\scriptstyle R^{13}}{\stackrel{\scriptstyle 13}{\stackrel{\scriptstyle 13}}{\stackrel{\scriptstyle 13}{\stackrel{\scriptstyle 13}}{\stackrel{\scriptstyle 13}{\stackrel{\scriptstyle 13}{\stackrel{\scriptstyle 13}{\stackrel{\scriptstyle 13}{\stackrel{\scriptstyle 13}}{\stackrel{\scriptstyle 13}{\stackrel{\scriptstyle 13}}{\stackrel{\scriptstyle 13}}{\stackrel{\scriptstyle 13}}{\stackrel{\scriptstyle 13}}{\stackrel{\scriptstyle 13}{\stackrel{\scriptstyle 13}}{\stackrel{\scriptstyle 13}{\stackrel{\scriptstyle 13}}{\stackrel{\scriptstyle 13}{\stackrel{\scriptstyle 13}}{\stackrel{\scriptstyle 13}}{\stackrel{\scriptstyle 13}}{\stackrel{\scriptstyle 13}}{\stackrel{\scriptstyle 13}}{\stackrel{\scriptstyle 13}}{\stackrel{\scriptstyle 13}}{\stackrel{\scriptstyle 13}}{\stackrel{\scriptstyle 13}}\stackrel{\scriptstyle 13}{\stackrel{\scriptstyle 13}}\stackrel{\scriptstyle 13}{\stackrel{\scriptstyle 13}}\stackrel{\scriptstyle 13}{\stackrel{\scriptstyle 13}}}\stackrel{\scriptstyle 13}{\stackrel{\scriptstyle 13}}\stackrel{\scriptstyle 13}}{\stackrel{\scriptstyle 13}}\stackrel{\scriptstyle 13}}\stackrel{\scriptstyle 13}}\stackrel{\scriptstyle 13}}\stackrel{\scriptstyle 13}\stackrel{\scriptstyle 13}}\stackrel{\scriptstyle 13}}\stackrel{\scriptstyle 13}}\stackrel{\scriptstyle 13}\stackrel{\scriptstyle 13}}\stackrel{\scriptstyle 13}}\stackrel{\scriptstyle 13}\stackrel{\scriptstyle 13}}\stackrel{\scriptstyle 13}}\stackrel{\scriptstyle 13}}\stackrel{\scriptstyle 13}\stackrel{\scriptstyle 13}}\stackrel{\scriptstyle 13}}\stackrel{\scriptstyle 13}}\stackrel{\scriptstyle 13}\stackrel{\scriptstyle 13}}\stackrel{\scriptstyle 13}}\stackrel{\scriptstyle 13}\stackrel{\scriptstyle 13}}\stackrel{\scriptstyle 13}}\stackrel{\scriptstyle 13}\stackrel{\scriptstyle 13}}\stackrel{\scriptstyle 13}\stackrel{\scriptstyle 13}}\stackrel{\scriptstyle 13}\stackrel{\scriptstyle 13}}\stackrel{\scriptstyle 13}}\stackrel{\scriptstyle 13}\stackrel{\scriptstyle 13}}\stackrel{\scriptstyle 13}}\stackrel{\scriptstyle 13}\stackrel{\scriptstyle 13}}\stackrel{\scriptstyle 13}\stackrel{\scriptstyle 13}}\stackrel{\scriptstyle 13}\stackrel{\scriptstyle 13}}\stackrel{\scriptstyle 13}\stackrel{\scriptstyle 13}\stackrel{\scriptstyle 13}}\stackrel{\scriptstyle 13}\stackrel{\scriptstyle 13}}\stackrel{\scriptstyle 13}\stackrel{\scriptstyle 13}\stackrel{\scriptstyle 13}}\stackrel{\scriptstyle 13}\stackrel{\scriptstyle 13}\stackrel{\scriptstyle 13}}\stackrel{\scriptstyle 13}\stackrel{\scriptstyle 13}}\stackrel{\scriptstyle 13}\stackrel{\scriptstyle 13}\stackrel{\scriptstyle 13}\stackrel{\scriptstyle 13}}\stackrel{\scriptstyle 13}\stackrel{\scriptstyle 13}\stackrel{\scriptstyle 13}}\stackrel{\scriptstyle 13}\stackrel{\scriptstyle 13}\stackrel{\scriptstyle 13}}\stackrel{\scriptstyle 13}\stackrel{\scriptstyle 13}\stackrel{\scriptstyle 13}\stackrel{\scriptstyle 13}\stackrel{\scriptstyle 13}}\stackrel{\scriptstyle 13}\stackrel{\scriptstyle 13}\stackrel{\scriptstyle 13}}\stackrel{\scriptstyle 13}}\stackrel{\scriptstyle 13}\stackrel{\scriptstyle 1}\stackrel{\scriptstyle 13}\stackrel{\scriptstyle 13}\stackrel{\scriptstyle 13}\stackrel{\scriptstyle 13}\stackrel{\scriptstyle 13}}\stackrel{\scriptstyle 13}\stackrel{\scriptstyle 13}}\stackrel{\scriptstyle 13}\stackrel{\scriptstyle 1}\stackrel{\scriptstyle 1}\stackrel{\scriptstyle 13}\stackrel{\scriptstyle 13}\stackrel{\scriptstyle 13}}\stackrel{\scriptstyle 13}\stackrel{\scriptstyle 13}\stackrel{\scriptstyle 1}\stackrel{\scriptstyle 1}\stackrel{\scriptstyle 1}\stackrel{\scriptstyle 13}}\stackrel{\scriptstyle 13}\stackrel{\scriptstyle 13}\stackrel{\scriptstyle 1}\stackrel{\scriptstyle 1}$$

, or
$$\mathbb{R}^{12}$$
 \mathbb{O}

or

DOCKET NO.: UPN-4808 **Application No.:** not yet known

Preliminary Amendment - First Action Not Yet Received

 R^{11} , R^{12} and R^{13} are each independently H or C_1 - C_{10} alkyl; and R^{14} and R^{15} are, independently, H or an acid labile hydroxyl protecting group.

Claim 2 (original) The process of claim 1, further comprising subjecting the process to a catalytically effective amount of a cross-coupling metal catalyst.

Claim 3 (original) The process of claim 2, wherein the cross-coupling metal catalyst comprises nickel or palladium.

Claim 4 (original) The process of claim 2, wherein the cross-coupling metal catalyst is Pd(0).

Claim 5 (original) The process of claim 2, further comprising contacting the compound of formula i with a metallating agent, wherein the metallating agent is a compound containing boron, zinc, tin, magnesium, or aluminum, or a combination thereof.

Claim 6 (original) The process of claim 5, wherein the metallating agent is a compound containing boron.

Claim 7 (original) The process of claim 5, wherein the metallating agent is MeO-9-BBN.

Claim 8 (original) The process of claim 5, wherein the metallating agent is a compound containing zinc.

Claim 9 (original) The process of claim 5, wherein the metallating agent is ZnCl₂.

Application No.: not yet known

allyl.

Preliminary Amendment - First Action Not Yet Received

Claim 10 (original) The process of claim 1, wherein at least one of X^1 and X^2 are iodo.

Claim 11 (original) The process of claim 1, wherein R⁰ is ethylenyl.

Claim 12 (original) The process of claim 1, wherein R^1 , R^2 , R^3 , R^6 , R^7 , and R^8 are, independently, H or C_1 - C_3 alkyl.

Claim 13 (original) The process of claim 1, wherein R^1 , R^2 , R^3 , R^6 , R^7 , and R^8 are CH_3 .

Claim 14 (original) The process of claim 1, wherein R⁴ and R⁹, independently, are *tert*-butyldimethylsilyl, triethylsilyl, methoxymethyl, methylthiomethyl, 2-methoxymethyl, acetyl, benzyloxymethyl, 2-(trimethylsilyl)ethoxymethyl or allyl.

Claim 15 (original) The process of claim 1, wherein R⁴ is tert-butyldimethylsilyl.

Claim 16 (original) The process of claim 1, wherein R⁹ is methoxymethyl.

Claim 17 (original) The process of claim 1, wherein R¹⁰ is CH₃.

Claim 18 (original) The process of claim 1, wherein R¹¹, R¹² and R¹³ are CH₃.

Claim 19 (original) The process of claim 1, wherein R¹⁴ and R¹⁵ are, independently, *tert*-butyldimethylsilyl, triethylsilyl, methoxymethyl, methylthiomethyl, 2-methoxyethoxymethyl, acetyl, benzyloxymethyl, 2-(trimethylsilyl)ethoxymethyl or

Claim 20 (original) The process of claim 1, wherein R¹⁴ and R¹⁵ are, independently, *tert*-butyldimethylsilyl or methoxymethyl.

Claim 21(original) The process of claim 1, wherein R²⁵ is para-methoxybenzyl.

Application No.: not yet known
Preliminary Amendment - First Action Not Yet Received

Claim 22 (original) The process of claim 1, wherein J is

$$R^{15}O = R^{11} \xrightarrow{1}^{13} \xrightarrow{7_{2}} R^{14}O \xrightarrow{7_{2}} R^$$

, or

DOCKET NO.: UPN-4808

Application No.: not yet known

Preliminary Amendment - First Action Not Yet Received

Claim 23 (original) The process of claim 1, wherein J is

$$R^{14}O$$
 $R^{14}O$
 R^{11}
 $R^{14}O$
 R^{11}
 R^{11}
 R^{11}
 R^{11}
 R^{11}
 R^{12}
 R^{12}
 R^{12}
 R^{12}
 R^{12}
 R^{12}
 R^{13}
 R^{13}
 $R^{14}O$
 R^{11}
 R^{13}
 $R^{14}O$
 R^{11}
 R^{13}
 $R^{14}O$
 R^{11}
 R^{11}
 R^{11}
 R^{11}
 R^{12}
 O

PATENT

Claim 24 (original) The process of claim 1, wherein J is

Claim 25 (original) The process of claim 1, wherein J is

Claim 26 (original) The process of claim 1, further comprising a step of synthesizing a compound of formula II

DOCKET NO.: UPN-4808 **Application No.:** not yet known

Preliminary Amendment - First Action Not Yet Received

$$R^0$$
 R^1 R^2 R^3 R^6 R^7 R^{10} from compound I, which

comprises

contacting the compound of formula I with an oxidizing agent to form a deprotected compound, and

contacting the deprotected compound with Cl₃CCONCO in the presence of a hydrolyzing agent.

Claim 27 (original) The process of claim 26, wherein the oxidizing agent is 2,3-dichloro-5,6-dicyano-1,4-benzoquinone.

Claim 28 (original) The process of claim 26, wherein the hydrolyzing agent is Al₂O₃.

Claim 29 (original) A process for synthesizing a compound of formula III

III

comprising contacting a diene of formula xi

DOCKET NO.: UPN-4808 **Application No.:** not yet known

Preliminary Amendment - First Action Not Yet Received

$$xi \qquad QR^{25} \qquad QR^{4} \qquad X^{1}$$

with a lactone of formula xxi

$$R^{15}O$$
 R^{12}
 R^{10}
 R^{12}
 R^{10}
 R^{10}

wherein R^1 , R^2 , R^3 , R^6 , R^7 , R^8 , R^{11} , and R^{12} are, independently, H or C_1 - C_{10} alkyl; R^4 , R^9 , R^{14} , and R^{15} are, independently, an acid labile hydroxyl protecting group;

R¹⁰ is hydrogen or C₁-C₆ alkyl;

R²⁵ is hydrogen or an oxidation stable hydroxyl protecting group; and

 X^1 and X^2 are, independently, a halogen, triflate, tosylate, or mesylate.

Claim 30 (original) The process of claim 29, further comprising subjecting the process to the presence of a catalytically effective amount of a cross-coupling metal catalyst.

Claim 31 (original) The process of claim 29, wherein the cross-coupling metal catalyst comprises nickel or palladium.

Claim 32 (original) The process of claim 29, wherein the cross-coupling metal catalyst is Pd(0).

Application No.: not yet known

Preliminary Amendment - First Action Not Yet Received

Claim 33 (original) The process of claim 29, further comprising contacting the compound of formula xi with a metallating agent, wherein the metallating agent is a compound containing boron, zinc, tin or magnesium or aluminum.

Claim 34 (original) The process of claim 33, wherein the metallating agent is a compound containing boron.

Claim 35 (original) The process of claim 33, wherein the metallating agent is MeO-9-BBN.

Claim 36 (currently amended) The process of claim [36] <u>33</u>, wherein the metallating agent is a compound containing zinc.

Claim 37 (original) The process of claim 33, wherein the metallating agent is ZnCl₂.

Claim 38 (original) The process of claim 29, wherein at least one of X^1 and X^2 are iodine.

Claim 39 (original) The process of claim 29, wherein R^1 , R^2 , R^3 , R^6 , R^7 , R^8 , R^{11} , and R^{12} are methyl.

Claim 40 (original) The process of claim 29, wherein R⁴, R⁹, R¹⁴, and R¹⁵ are, independently, *tert*-butyldimethylsilyl or methoxymethyl.

Claim 41 (original) The process of claim 29, wherein R¹⁰ is hydrogen.

Claim 42 (original) The process of claim 29, wherein R²⁵ is *para*-methoxy benzyl.

Claim 43 (original) A process for synthesizing a halogenated alkylene of formula i

comprising:

contacting an alkenyl of formula ii

DOCKET NO.: UPN-4808

Application No.: not yet known

Preliminary Amendment - First Action Not Yet Received

$$R^0$$
 R^1 R^2 R^3 OR^{10a} ii OR^{25} OR^4 with a mild acid; and

adding to the process $(X^1)_2$ in the presence of $P(R^{18})_3$; wherein:

 R^0 is C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, $(CH_2)_r(C_{3-6}$ cycloalkyl), $(CH_2)_r(aryl)$ or $(CH_2)_r(heterocycle)$, wherein r is 0, 1, 2, 3, or 4;

PATENT

 R^1 , R^2 , and R^3 are, independently, H or C_1 - C_{10} alkyl;

R⁴ is H or an acid labile hydroxyl protecting group;

R^{10a} is a hydroxyl protecting group;

 R^{18} is C_6 - C_{14} aryl;

 R^{25} is hydrogen or an oxidatively labile hydroxyl protecting group; and

X¹ is a halogen, triflate, tosylate, or mesylate.

Claim 44 (original) The process of claim 43 wherein R⁰ is ethylene.

Claim 45 (original) The process of claim 43 wherein R^1 , R^2 and R^3 are each methyl.

Claim 46 (original) The process of claim 43 wherein R⁴ is para-methoxybenzyl.

Claim 47 (original) The process of claim 43 wherein R^{18} is phenyl.

Claim 48 (original) The process of claim 43 wherein R²⁵ is tert-butyldimethylsilyl.

Claim 49 (original) The process of claim 43 wherein X¹ is iodo.

Claim 50 (original) The process of claim 43, wherein R^{10a} is trityl.

Claim 51 (original) A process of synthesizing a compound of formula ii

$$R^{0} \qquad R^{1} \qquad R^{2} \qquad R^{3} \qquad OR^{10a}$$
ii
$$OR^{25} \qquad OR^{4}$$

comprising:

Application No.: not yet known

Preliminary Amendment - First Action Not Yet Received

contacting an aldehyde of formula iii

$$OR^{\frac{1}{2}} OR^{\frac{10a}{10a}} OR^{10a}$$
iii $OR^{25} OR^4 OR^4$ with $R^0CH = P(R^{18})_3$;

wherein

 R^0 is C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, $(CH_2)_r(C_{3-6}$ cycloalkyl), $(CH_2)_r(aryl)$ or $(CH_2)_r(heterocycle)$, wherein r is 0, 1, 2, 3, or 4;

 R^1 , R^2 , and R^3 are, independently, H or C_1 - C_{10} alkyl;

R⁴ is H or an acid labile hydroxyl protecting group;

R^{10a} is a hydroxyl protecting group;

 R^{18} is R^{18} is C_6 - C_{14} aryl; and

R²⁵ is hydrogen or an oxidatively labile hydroxyl protecting group.

Claim 52 (original) The process of claim 51 wherein R⁰ is ethylene.

Claim 53 (original) The process of claim 51 wherein R¹, R² and R³ are each methyl.

Claim 54 (original) The process of claim 51 wherein R⁴ is para-methoxybenzyl.

Claim 55 (original) The process of claim 51 wherein R¹⁸ is phenyl.

Claim 56 (original) The process of claim 51 wherein R²⁵ is tert-butyldimethylsilyl.

Claim 57 (original) The process of claim 51, wherein R^{10a} is trityl.

Claim 58 (original) The process of claim 52, wherein the compound of formula iii is contacted with allyldiphenylphosphine instead of $R^0CH = P(R^{18})_3$.

DOCKET NO.: UPN-4808 **Application No.:** not yet known

Preliminary Amendment - First Action Not Yet Received

Claim 59 (original) A process of synthesizing a compound of formula iv

$$R^1$$
 R^2 R^3 OR^{10a} iv OR^{25} OR^4 , comprising

contacting a compound of formula vi

compound of

formula v

reacting a compound of formula v with R²⁵ O CCI₅; wherein

 R^1 , R^2 , and R^3 are, independently, H or C_1 - C_{10} alkyl;

R⁴ is H or an acid labile hydroxyl protecting group;

R^{10a} is a hydroxyl protecting group; and

R²⁵ is hydrogen or an oxidatively labile hydroxyl protecting group.

Claim 60 (original) The process of claim 59 wherein R¹, R² and R³ are each methyl.

Claim 61 (original) The process of claim 59 wherein R⁴ is *para*-methoxybenzyl.

Claim 62 (original) The process of claim 59 wherein R²⁵ is tert-butyldimethylsilyl.

Claim 63 (original) The process of claim 59, wherein R^{10a} is trityl.

Claim 64 (original) A process of forming a compound of formula viii

DOCKET NO.: UPN-4808 **Application No.:** not yet known

Preliminary Amendment - First Action Not Yet Received

contacting a compound of formula x

$$R^3$$
 OR^{10a} V^1 N V^2 O to form a compound of R^3 R^4 R^4

formula

converting the compound of formula ix to a compound of formula vi

$$R^2$$
 R^3 OR^{10a} ; wherein

 R^0 is $C_{1\text{-}6}$ alkyl, $C_{2\text{-}6}$ alkenyl, $C_{2\text{-}6}$ alkynyl, (CH2), (C3-6 cycloalkyl),

 $(CH_2)_r(aryl)$ or $(CH_2)_r(heterocycle)$, wherein r is 0, 1, 2, 3, or 4;

R² and R³ are, independently, H or C₁-C₁₀ alkyl;

R⁴ is H or an acid labile hydroxyl protecting group;

R^{10a} is a hydroxyl protecting group; and

 Y^1 and Y^2 are, independently, O or S.

Claim 65 (original) The process of claim 64 wherein R⁰ is benzyl.

Claim 66 (original) The process of claim 64 wherein R² and R³ are each methyl.

Claim 67 (original) The process of claim 64 wherein R⁴ is para-methoxybenzyl.

DOCKET NO.: UPN-4808

Application No.: not yet known

Preliminary Amendment - First Action Not Yet Received

Claim 68 (original) The process of claim 64 wherein R^{10a} is trityl.

Claim 69 (original) A process for synthesizing a halogenated alkylene of formula i

comprising,

contacting an alcohol of formula iia

iia
$$QR^{25}$$
 QR^4 with $(X^1)_2$ in the presence of $P(R^{18})_3$;

yielding the compound of formula iia by contacting an alkylene of formula ii

$$R^0$$
 R^1 R^2 R^3 OR^{10a} ii OR^{25} OR^4 with a mild acid;

forming the compound of formula ii by contacting an aldehyde of formula iii

$$OR^{\frac{R^{1}}{5}} OR^{\frac{R^{2}}{5}} OR^{\frac{R^{3}}{5}} OR^{\frac{10a}{5}} OR^{\frac{10a}{5}$$

producing the compound of formula iii by subjecting a compound of formula iv

Application No.: not yet known

Preliminary Amendment - First Action Not Yet Received

resulting in the compound of formula iv by contacting a compound of formula v

synthesizing the compound of formula v by contacting a compound of formula vi

$$R^2$$
 R^3 OR^{10a} Vi O OR^4 $With R^1$;

producing the compound of formula vi by contacting a compound of formula vii

$$R^2$$
 R^3 OR^{10a} with an oxidizing agent;

forming the compound of formula vii by contacting a compound of formula viii

viii
$$V^2$$
 O OR⁴ with a reducing agent;

synthesizing the compounds of formula viii and by protecting a hydroxyl moiety of a compound of formula ix

$$R^0$$
 R^2
 R^3
 R^{10a}
 R^2
 R^3
 R^3

yielding the compounds of formula ix and ix' by contacting a compound of formula x

$$R^3$$
 OR^{10a} Y^1 N R^2 R^2 R^3 R^4 R

Application No.: not yet known

Preliminary Amendment - First Action Not Yet Received

 R^0 is C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, $(CH_2)_r(C_{3-6}$ cycloalkyl), $(CH_2)_r(aryl)$

or (CH₂)_r(heterocycle), wherein r is 0, 1, 2, 3, or 4;

 R^1 , R^2 , and R^3 are, independently, H or C_1 - C_{10} alkyl;

R⁴ is H or an acid labile hydroxyl protecting group;

R^{10a} is a hydroxyl protecting group;

 R^{18} is C_6 - C_{14} aryl;

R²⁵ is hydrogen or an oxidatively labile hydroxyl protecting group;

X¹ is a halogen, triflate, tosylate, or mesylate; and

Y¹ and Y² are, independently, S or O.

Claim 70 (original) The process of claim 69 wherein R⁰ is benzyl.

Claim 71 (original) The process of claim 69 wherein R¹, R² and R³ are each methyl.

Claim 72 (original) The process of claim 69 wherein R⁴ is para-methoxybenzyl.

Claim 73 (original) The process of claim 69 wherein R¹⁸ is phenyl.

Claim 74 (original) The process of claim 69 wherein R²⁵ is tert-butyldimethylsilyl.

Claim 75 (original) The process of claim 69 wherein X¹ is iodo.

Claim 76 (original) The process of claim 69, wherein R^{10a} is trityl.

Claim 77 (original) A compound of formula viii

$$viii \qquad V^{1} \qquad V^{1} \qquad OR^{10a}$$

wherein

 R^0 is C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, $(CH_2)_r(C_{3-6}$ cycloalkyl), $(CH_2)_r(aryl)$

or $(CH_2)_r$ (heterocycle), wherein r is 0, 1, 2, 3, or 4;

R² and R³ are, independently, H or C₁-C₁₀ alkyl;

DOCKET NO.: UPN-4808

Application No.: not yet known

Preliminary Amendment - First Action Not Yet Received

R⁴ is H or an acid labile hydroxyl protecting group;

R^{10a} is a hydroxyl protecting group; and

Y¹ and Y² are, independently, S or O.

Claim 78 (original) The compound of claim 77 wherein R⁰ is benzyl.

Claim 79 (original) The compound of claim 77 wherein R² and R³ are each methyl.

Claim 80 (original) The compound of claim 77 wherein R⁴ is para-methoxybenzyl.

Claim 81 (original) The compound of claim 77 wherein R^{10a} is trityl.

Claim 82 (original) The compound of claim 77 wherein at least one of Y¹ and Y² is S.

Claim 83 (original) The compound of claim 77 wherein at least one of Y^1 and Y^2 is O.