§1. Два определения предела функции в точке. Односторонние пределы. Предел функции на бесконечности

Понятие предела функции в точке — одно из основных понятий математического анализа. С его помощью исследуется поведение функции в проколотой окрестности данной точки, результаты такого исследования применяются, например, при построении графика функции.

Пусть функция f(x) определена на U(a) — некоторой проколотой окрестности точки a.

Определение 1.1 (по Гейне или на языке последовательностей, Гейне Г. (1821-1881) — немецкий математик). Число A называется пределом функции f(x) в точке a (или при $x \rightarrow a$), если для любой последовательности $\{x_n\} \subset \mathring{U}(a)$, сходящейся к a, соответствующая последовательность значений функции $\{f(x_n)\}$ сходится к A.

Обозначение: $A = \lim_{x \to a} f(x)$.

Определение 1.2 (по Коши или на языке $\varepsilon - \delta$, Коши О. (1789-1857) — французский математик). Число A называется пределом функции f(x) в точке a (или при $x \rightarrow a$), если для любого числа $\varepsilon > 0$ можно найти число $\delta > 0$, зависящее от ε , такое, что для x: $0 < |x - a| < \delta$ выполняется неравенство $|f(x) - A| < \varepsilon$.

Обозначение: $A = \lim_{x \to a} f(x)$.

Замечание 1.1. Неравенство $0 < |x-a| < \delta$ равносильно утверждению $x \in \mathring{U}_{\delta}(a)$, а неравенство $|f(x) - A| < \varepsilon$ – утверждению $f(x) \in U_{\varepsilon}(A)$. В символической форме определения 1.1 - 1.2 записываются так:

$$\begin{split} A &= \lim_{x \to a} f(x) \Leftrightarrow \forall \{x_n\} \subset \mathring{U}(a) \subset D(f) \colon x_n \to a \Rightarrow f(x_n) \to A, \\ A &= \lim_{x \to a} f(x) \Leftrightarrow \forall \varepsilon > 0 \; \exists \; \delta(\varepsilon) > 0 \colon \forall x \in \mathring{U}_{\delta}(a) \subset D(f) \Rightarrow f(x) \in U_{\varepsilon}(A). \end{split}$$

Замечание 1.2. Предел функции f(x) в точке a является характеристикой поведения функции в некоторой проколотой окрестности точки a. Значение функции f(a), если оно существует, не влияет ни на существование, ни на величину $\lim_{x\to a} f(x)$.

Теорема 1.1. Определения 1.1 и 1.2 эквивалентны, т.е. если число A – предел функции в точке в смысле определения 1.1, то оно же является и пределом этой функции в этой точке в смысле определения 1.2 и наоборот.

► Будем доказывать лишь одну часть теоремы. Доказательство другой части приведено, например, в [1]. Докажем, что «если число A — предел функции f(x) в точке a по Коши, то предел f(x) в точке a по Гейне также равен A». Для $\forall \varepsilon > 0$ ° существует $\delta(\varepsilon) > 0$: для $\forall x \in U_{\delta}(a) \subset D(f) \Rightarrow f(x) \in U_{\varepsilon}(A)$ (определение 1.2). Пусть $\{x_n\} \subset U(a)$ — любая последовательность, сходящаяся к a. По $\delta(\varepsilon)$ можно найти число

 $N(\delta(\epsilon))$: при $n > N(\delta(\epsilon))$ получим: $x_n \in U_\delta(a)$ (определение 2.1 глава 2). Тогда при $n > N(\delta(\epsilon)) = N_1(\epsilon)$ имеем: $f(x_n) \in U_\epsilon(A)$, поэтому число A — предел функции в точке a по Гейне (определение 1.1). \blacktriangleleft

Пример 1.1. Используя определение 1.1 показать, что $\lim_{x\to 2} (x^2-3x)/(x+2) = -1/2$.

▶ Возьмём $\forall \{x_n\}: x_n \to 2$ при $n \to \infty$. Пусть $f(x) = (x^2 - 3x)/(x + 2)$, тогда $\lim_{n \to +\infty} f(x_n) = \lim_{n \to +\infty} (x_n^2 - 3x_n)/(x_n + 2) = (2 \cdot 2 - 3 \cdot 2)/(2 + 2) = -1/2$ (теорема 3.5 главы 2). В силу определения 1.1 заключаем, что $\lim_{x \to 2} (x^2 - 3x)/(x + 2) = -1/2$. \blacktriangleleft

Пример 1.2. Используя определение 1.2, показать, что $\lim_{x\to 0} \cos x = 1$.

|f(x)-A|< ϵ здесь имеет ▶ Неравенство $|\cos x - 1| < \varepsilon$ вид: ИЛИ Возьмём $2\sin^2(x/2) < \varepsilon$. $0 < 3 \forall$ И найдём число $\delta(\epsilon) > 0$: ДЛЯ $\forall x: 0 < |x-0| = |x| < \delta(\varepsilon)$ $2\sin^2(x/2) < \varepsilon$. выполнялось бы неравенство Неравенство $|\sin x| < |x|$ верно для $\forall x \neq 0$ (см. независимое доказательство в §3, замечание 3.1), поэтому и неравенство $2\sin^2(x/2) < 2 \cdot (x/2)^2 = x^2/2$ верно для $\forall x \neq 0$. Пусть $x: x^2/2 < \varepsilon \Leftrightarrow x: |x| < \sqrt{2\varepsilon}$. Для таких x справедливо неравенство $2\sin^2(x/2) < \varepsilon \Leftrightarrow |\cos x - 1| < \varepsilon$, поэтому $\delta(\varepsilon) = \sqrt{2\varepsilon}$. Отсюда следует, что $\lim_{x\to 0} \cos x = 1$ (определение 1.2). ◀

Пример 1.3. Используя определение 1.1, показать, что $\exists \lim_{x\to 0} \sin(1/x)$.

▶Пусть $f(x) = \sin(1/x)$. Возьмём последовательности: $\{x_n^{(1)}\}$, $\{x_n^{(2)}\}$: $x_n^{(1)} = 1/(\pi n)$ и $x_n^{(2)} = 1/(\pi/2 + 2\pi n)$, обе они стремятся к нулю при $n \to \infty$. Имеем:

$$f(x_n^{(1)}) = \sin \frac{1}{1/(\pi n)} = \sin \pi n = 0 \to 0 \text{ при } n \to \infty,$$

$$f(x_n^{(2)}) = \sin \frac{1}{1/(\pi/2 + 2\pi n)} = \sin(\pi/2 + 2\pi n) = 1 \to 1 \text{ при } n \to \infty.$$

Так как $\lim_{n\to\infty} f(x_n^{(1)}) \neq \lim_{n\to\infty} f(x_n^{(2)})$, то $\exists \lim_{x\to 0} \sin(1/x)$ (определение 1.1).

Определение 1.3 (по Гейне). Число A называется левым пределом функции f(x) в точке a (или при $x \to a - 0$), если f(x) задана на некотором промежутке (a_1, a) и для любой последовательности $\{x_n\} \subset (a_1, a)$, сходящейся к a, соответствующая последовательность значений функции $\{f(x_n)\}$ сходится к A.

Обозначение: $A = \lim_{x \to a-0} f(x)$ или A = f(a-0).

Определение 1.4 (*no Kowu*). Число A называется левым пределом функции f(x) в точке a (или при $x \to a - 0$), если f(x) задана на некотором

промежутке (a_1,a) и для любого $\varepsilon>0$ можно найти число $\delta(\varepsilon)>0$ такое, что для x: $a_1 < a - \delta(\varepsilon) < x < a$ выполняется неравенство $|f(x) - A| < \varepsilon$.

Обозначение: $A = \lim_{x \to a-0} f(x)$ или A = f(a-0).

Аналогично определяется правый предел функции f(x) в точке a (или при $x \to a+0$), если f(x) задана на некотором промежутке (a,a_2) .

Обозначение: $A = \lim_{x \to a+0} f(x)$ или A = f(a+0).

Теорема 1.2. Для того чтобы $\exists \lim_{x \to a} f(x)$, необходимо и достаточно, чтобы были выполнены два условия: $1.\exists f(a-0)$ и $\exists f(a+0)$; 2. f(a-0) = f(a+0).

▶Пусть $\exists \lim_{x \to a} f(x) = A$, поэтому функция f(x) определена, по крайней мере, на U(a). Для $\forall \varepsilon > 0$ найдётся число $\delta(\varepsilon) > 0$: $\forall x \in \mathring{U}_{\delta}(a) \subset U(a)$ будет верно неравенство: $|f(x) - A| < \varepsilon$ (определение 1.2). Поскольку $U_{\delta}(a)$ есть объединение промежутков $(a - \delta, a)$ и $(a, a + \delta)$, то заключаем, что $\exists f(a - 0), f(a + 0)$ и выполняется равенство f(a - 0) = f(a + 0) = A (определение 1.4).

Пусть $\exists f(a-0), f(a+0)$, при этом f(a-0) = f(a+0) = A. Для $\forall \varepsilon > 0$ $\exists \delta_1 = \delta_1(\varepsilon) > 0$, $\delta_2 = \delta_2(\varepsilon) > 0$: $x \in (a-\delta_1,a)$, $x \in (a,a+\delta_2) \Rightarrow |f(x)-A| < \varepsilon$ (определение 1.4). Если $\delta = \min\{\delta_1,\delta_2\}$, то для $\forall x \in (a-\delta,a) \cup (a,a+\delta) \stackrel{\circ}{=} U(a)$ верно неравенство $|f(x)-A| < \varepsilon$, а это и значит, что $\exists \lim_{x \to a} f(x) = A$ (определение 1.2 и замечание 1.1). \blacktriangleleft

Следствие из теоремы 1.2. Если $f(a-0) \neq f(a+0)$, то функция f(x) не имеет предела в точке a. Доказательство от противного.

Пример 1.4. Показать, что $\lim_{x\to 1} f(x) = 0$, если f(x) = |x-1|.

▶Из определения модуля имеем $f(x) = \begin{cases} 1-x & \text{при } x < 1, \\ x-1 & \text{при } x \ge 1. \end{cases}$ Для $\forall \{x_n\} \subset (0, 1): x_n \to 1$ последовательность $f(x_n) = 1-x_n \to 0$ при $n \to \infty$ и f(1-0) = 1 (определение 1.3), а для $\forall \{x_n\} \subset (1, 2): x_n \to 1$ имеем $f(x_n) = x_n - 1 \to 0$ при $n \to \infty$, отсюда f(1+0) = 1. Так как f(1-0) = f(1+0) = 0, то $\lim_{x \to 1} f(x) = 0$ (теорема 1.2). \blacktriangleleft

Пример 1.5. Показать, что $\exists \lim_{x \to 1} f(x)$, если $f(x) = \begin{cases} 0 & \text{при } x < 1, \\ 2 - x & \text{при } x \ge 1. \end{cases}$

▶Для $\forall \{x_n\} \subset (0, 1)$: $x_n \to 1$ последовательность $f(x_n) = 0 \to 0$ при $n \to \infty$, поэтому f(1-0) = 0 (определение 1.3), а для $\forall \{x_n\} \subset (1, 2)$: $x_n \to 1$ последовательность $f(x_n) = 2 - x_n \to 1$ при $n \to \infty$, следовательно f(1+0) = 1. Так как $f(1-0) \neq f(1+0)$, то $\lim_{x \to 1} f(x)$ не существует (следствие из теоремы 1.2). \blacktriangleleft

Определение 1.5. Число A называется пределом функции f(x) при $x \to \infty$, если f(x) определена на множестве $X = (-\infty, -a) \cup (a, +\infty)$, где a – некоторое положительное число, и для любой бесконечно большой последовательности $\{x_n\} \subset X$ последовательность значений функции $\{f(x_n)\}$ сходится к A.

Обозначение: $A = \lim_{x \to \infty} f(x)$.

Пример 1.6. Показать, что $\lim_{x\to +\infty} 1/x^p = 0$ для $\forall p > 0$ и $\forall x > 0$.

▶ Возьмём $\forall \{x_n\}: x_n \to +\infty$ при $n \to \infty$ и $\forall \varepsilon > 0$. Положим $f(x) = 1/x^p$, тогда $f(x_n) = 1/x_n^p$. Так как $\lim_{n \to \infty} 1/x_n = 0$ (теорема 4.4 главы 2), то по определению предела числовой последовательности (определение 2.1 глава 2) для $\varepsilon_1 = \varepsilon^{1/p}$ можно найти номер $N(\varepsilon_1) = N(\varepsilon)$ такой, что для $n > N(\varepsilon)$ верно неравенство $|1/x_n| < \varepsilon_1 = \varepsilon^{1/p}$ или $|1/x_n^p| < \varepsilon$. Итак, $\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} 1/x_n^p = 0$ и $\lim_{n \to \infty} 1/x_n^p = 0$ (упомянутое определение и определение 1.4). \blacktriangleleft

Замечание 1.3. Определение 1.5 сформулировано "на языке последовательностей" (см. определение 1.1). Можно сформулировать его аналогично определению 1.2 (см. например, [1]).

Упражнение. Сформулировать определения, соответствующие следующим обозначениям: $A = \lim_{x \to -\infty} f(x)$, $A = \lim_{x \to +\infty} f(x)$.