1 Problem Statement -

To create an innovative feature for the smart TV platform which aims to accurately identify and interpret five distinct gestures.

• Thumbs up: Increase the volume

• Thumbs down: Decrease the volume

• Left swipe: 'Jump' backwards 10 seconds

• **Right swipe**: 'Jump' forward 10 seconds

• **Stop**: Pause the movie

2. Dataset -

Here after the problem statement, we used a dataset which consists of 2 main folders i.e. training data folder and validation data folder.

- Training Data consists of few hundred videos categorized into one of the five classes. Each video is divided into a sequence of 30 frames (images).
- Few of them have the dimensions as 360x360 or 120x120.

3. Code Approach -

We've used the 3D CNN (Conv3D) approach for the given problem.

- Importing necessary libraries.
- Storing the image names in the lists, validation_doc and training_doc. Setting batch_size as 25 initially.
- Generator A function with parameters of number of frames, source_path, folder_list, batch size and image size plays an important role in the project as below
 - 1) Iterate over the number of images in the folder, read, resize and normalize the images.
 - 2) Yields the batch data and batch labels.
- History Plot A function with parameter names "history" basically have the trained model fit, consists of plot of loss and accuracy.
- Model Building.

4. Results –

Experiment	Model	Result	Decision + Explanation
Number			
1	Conv3D	Training accuracy:0.88	The model exhibited overfitting, as evidenced
		Validation accuracy:0.62	by a higher training accuracy compared to the
			validation accuracy.
		Parameters: 997,125	Decision: Added more Conv3D layers to
			reduce overfitting in the next experiment.
2	Conv3D	Training accuracy:0.75	No improvement from the previous model,
		Validation accuracy:0.27	model is clearly overfitting.
			Decision: Increased epochs to 25 and added
		Parameters: 1,922,661	Batch Normalization after Dense layers to
			reduce overfitting in the next experiment
3	Conv3D	Training accuracy:0.95	Significant improvement in both training and
		Validation accuracy:0.85	validation accuracies.
			Decision: Reduced number of frames to 10,
		Parameters: 3,996,517	batch size to 20, and reduced dropout to 0.25
			in the dense layers. Planning to check if
			performance is retained with fewer frames in
			the next model.
4	Conv3D	Training accuracy:0.99	Although the model achieved high accuracy,
		Validation accuracy:0.91	there remained a noticeable gap between
			training and validation performances,
		Parameters: 3,987,813	indicating potential overfitting.
			Decision: Increased image size to (160,160) in
			the next experiment to reduce the gap
			between training and validation accuracy
5	Conv3D	Training accuracy:0.99	No improvement in model by changing image
		Validation accuracy:0.89	size.
			Decision: so continuing with model in
		Parameters: 6,870,181	experiment-4 and reducing number of
			trainable parameters by reducing the filter
			size of conv3d in the next experiment to
			simplify the model complexity to some
			extent.
6	Conv3D	Training accuracy:0.97	The model achieved exceptional performance
		Validation accuracy:0.94	on both training and validation datasets.
			Decision: Selecting this model as the final one
		Parameters: 2,048,997	due to its excellent performance on both
			datasets with significantly less number of
			trainable parameters.