

Computer Networks - Xarxes de Computadors

Outline

- Course Syllabus
- Unit 1: Introduction
- Unit 2. Network applications
- Unit 3. IP Networks
- Unit 4. TCP
- Unit 5. LANs

Outline

- Client-Server Paradigm
- DNS
- Email
- Web
- HTML & XML

Client Server Paradigm: Processes, messages, sockets segments and IP datagrams

Client Server Paradigm: The Internet Transport Layer

- Two protocols are used at the TCP/IP transport layer: User Datagram Protocol (UDP) and Transmission Control Protocol (TCP).
- UDP offers a *datagram service* (non reliable). It is connectionless.
- TCP offers a reliable service (correct segments are acknowledged, ack, lost segments are retransmitted). It is connection oriented (covered in detail in Unit 4).
- TCP connection:

Client Server Paradigm

- How connection is established among processes?
- The client always initiates the connection towards a known IP address, in the IP header, and a *well known* port (< 1024), in the TCP/UDP header.
- Well known ports are standardized by IANA in RFC-1700 (Assigned Numbers). In a unix machine can be found in /etc/services.
- The server is a daemon waiting for client requests.

Client Server Paradigm – UNIX /etc/services File

 Enables server and client programs to convert service names to well known ports.

```
linux> cat /etc/services
# Network services, Internet style
# Note that it is presently the policy of IANA to assign a single well-known
# port number for both TCP and UDP; hence, most entries here have two entries
# even if the protocol doesn't support UDP operations.
# This list could be found on:
            http://www.iana.org/assignments/port-numbers
# WELL KNOWN PORT NUMBERS
# The Well Known Ports are assigned by the IANA and on most systems can
# only be used by system (or root) processes or by programs executed by
# privileged users.
# Keyword Decimal Description
echo
           7/tcp Echo
echo
            7/udp Echo
discard
           9/tcp # Discard
discard
          9/udp # Discard
davtime
           13/tcp # Daytime (RFC 867)
daytime
          13/udp # Daytime (RFC 867)
chargen
           19/tcp # Character Generator
chargen
           19/udp # Character Generator
ftp-data
           20/tcp # File Transfer [Default Data]
ftp-data
           20/udp # File Transfer [Default Data]
ftp
           21/tcp # File Transfer [Control]
ssh
           22/tcp # SSH Remote Login Protocol
           22/udp # SSH Remote Login Protocol
ssh
telnet
           23/tcp # Telnet
           23/udp # Telnet
telnet
```


Client Server Paradigm – Network applications

- Remote commands
 - telnet
 - ssh
- Exchange of documents
 - ftp, sftp
 - peer-to-peer
- Web based applications
- Email
- Domain name system, DNS
- Network management
- Real time
 - Voice over IP
 - Video streaming
- ...

Outline

- Client-Server Paradigm
- DNS
- Email
- Web
- HTML & XML

Domain Name System DNS (RFC 1034, 1035)

- Allows users to use names instead of IP addresses: e.g. rogent.ac.upc.edu instead of 147.83.31.7, www.upc.edu instead of 147.83.194.21, etc.
- Names consists of a node-name and a domain-mane: rogent.ac.upc.edu, www.upc.edu
- DNS consists of a worldwide distributed data base.
- DNS data base entries are referred to as Resource Records (RR).
- The information associated with a name is composed of 1 or more RRs.
- Names are case insensitive (e.g. www.upc.edu and WWW.UPC.EDU are equivalent).

DNS – Domain Hierarchy

• DNS data base is organized in a tree:

DNS – Domain Hierarchy

- The *Internet Corporation for Assigned Names and Numbers* (ICANN) is responsible for managing and coordinating the DNS.
- ICANN delegates Top Level Domains (TLD) administration to registrars: http://www.internic.net
- Domains delegate the administration of subdomains.

InterNIC—Public Information Regarding Internet Domain Name Registration Services

Do you have a complaint or dispute?

Your Registrar or Domain Name:

- Domain Name Transfer Dispute
- Unsolicited Renewal or Transfer Solicitation
- Your Registrar is Not on the Accredited List
- Unauthorized Transfer of Your Domain Name
- Trademark Infringement
- Registrar Services Dispute
 - Failure to answer phones or respond to email messages
 - Financial Transaction Issues
- Uniform Domain Name Dispute Resolution (UDRP) Intake Report System

Information about Registrars

- Search Accredited Registrar Directory
 - Alphabetical List
 - List by Location
 - List by Language Supported
- Have a Problem with a Registrar?
 - Complaint Form
 - Helpful Hints

Information about Whois

- Search Whois
- Report Inaccurate Whois Listing

Unit 2. Network applications DNS – Data Base Organization

- Access to DNS data base is done using *Name Servers* (NS).
- NSs may hold permanent and cached RRs. Cached RRs are removed after a timeout.
- Each subdomain has an *authority* which consists of a primary and backup NSs.
- In this context, subdomains are referred to as *zones*, and delegated subdomains *subzones*.
- An authority has the complete information of a zone:
 - Names and addresses of all nodes within the zone.
 - Names and addresses of all subzone authorities.

Unit 2. Network applications DNS – Data Base Organization

- Root Servers are the entry point to the domain hierarchy.
- Root Servers are distributed around the world and have the TLD addresses: http://www.root-servers.org
- Root server addresses are needed in a NS configuration.

Source: http://www.root-servers.org

DNS - Unix example: The resolver

• The applications use the calls (resolver library):

```
struct hostent *gethostbyname(const char *name);
struct hostent *gethostbyaddr(const void *addr, int len, int type);
```

• The resolver first looks the /etc/hosts file:

• Otherwise a *name server* is contacted using /etc/resolv.conf file:

```
search ac.upc.edu
nameserver 147.83.32.3
nameserver 147.83.33.4
```


DNS - Protocol

- Client-server paradigm
- UDP/TCP. Short messages uses UDP.
- well-known port: 53

- 1 18:36:00.322370 IP (proto: UDP) 147.83.34.125.1333 > 147.83.32.3.53: 53040+ A? www.foo.org. (31)
- 2 18:36:00.323080 IP (proto: UDP) 147.83.32.3.53 > 147.83.34.125.1333: 53040 1/2/2 www.foo.org. A 198.133.219.10 (115)

DNS – Unix example: Basic NS configuration

- Unix NS implementation is BIND (Berkeley Internet Name Domain), http://www.isc.org.
- named is the BIND NS daemon.
- BIND basic configuration files:
 - /etc/named.conf
 global configuration
 - /var/lib/named/root.hint root servers addresses
 - /var/lib/named/*.db zone files

DNS – Unix example: zone file

DNS – Unix example: root servers addresses

```
linux # cat /var/lib/named/root.hint
           This file holds the information on root name servers needed to
           initialize cache of Internet domain name servers
           (e.g. reference this file in the "cache". <file>"
           configuration file of BIND domain name servers).
                                                                                comments
           This file is made available by InterNIC
           under anonymous FTP as
                                   /domain/named.root
               file
               on server
                                    FTP.INTERNIC.NET
           -0R-
                                    RS.INTERNIC.NET
                             3600000
                                     IN NS
                                                A.ROOT-SERVERS.NET.
   A.ROOT-SERVERS.NET.
                             3600000
                                     IN A
                                                198.41.0.4
                                     IN NS
                             3600000
                                                B.ROOT-SERVERS.NET.
   B.ROOT-SERVERS.NET.
                             3600000
                                                192,228,79,201
                                      IN
                                                                          Resource Records (RR)
                             3600000
                                     IN NS
                                                C.ROOT-SERVERS.NET.
                                                                          pointing to root-servers
   C.ROOT-SERVERS.NET.
                                                192.33.4.12
                             3600000
                                     IN A
                                                M.ROOT-SERVERS.NET.
                             3600000
                                      IN NS
   M.ROOT-SERVERS.NET.
                             3600000
                                     IN A
                                                202.12.27.33
NS name
```


DNS – Resolution

- NSs cache name resolutions.
- A cached RR is returned without looking for in the NS authority.
- The same name may be associated with several IP addresses (e.g. load balancing).
- The addresses of a common domain may not belong to the same IP network (e.g. Content Distribution Networks).

DNS – Load balancing, example

• Example using dig:

```
linux ~> dig www.microsoft.com
; <>>> DiG 9.3.2 <<>> www.microsoft.com
;; global options: printcmd
;; ->>HEADER<<- opcode: OUERY, status: NOERROR, id: 31808
;; flags: qr rd ra; QUERY: 1, ANSWER: 9, AUTHORITY: 0, ADDITIONAL: 0
;; OUESTION SECTION:
;www.microsoft.com.
                                IN
                                        Α
;; ANSWER SECTION:
www.microsoft.com.
                                        CNAME
                                                toggle.www.ms.akadns.net.
toggle.www.ms.akadns.net. 181
                                        CNAME
                                                g.www.ms.akadns.net.
q.www.ms.akadns.net.
                                TN
                                        CNAME
                                                lbl.www.ms.akadns.net.
lb1.www.ms.akadns.net. 181
                                                207.46.19.60
lb1.www.ms.akadns.net. 181
                                                207.46.18.30
lb1.www.ms.akadns.net. 181
                                                207.46.20.60
lb1.www.ms.akadns.net. 181
                                                207.46.19.30
lb1.www.ms.akadns.net. 181
                                                207.46.198.30
lb1.www.ms.akadns.net. 181
                                                207.46.225.60
;; Ouery time: 42 msec
;; SERVER: 192.168.1.1#53(192.168.1.1)
;; WHEN: Sun Mar 11 10:48:11 2007
;; MSG SIZE rcvd: 203
```

```
linux ~> dig www.microsoft.com
; <>>> DiG 9.3.2 <<>> www.microsoft.com
;; global options: printcmd
;; ->>HEADER<<- opcode: OUERY, status: NOERROR, id: 17923
;; flags: qr rd ra; QUERY: 1, ANSWER: 9, AUTHORITY: 0, ADDITIONAL: 0
;; OUESTION SECTION:
;www.microsoft.com.
                                        Α
                                TN
;; ANSWER SECTION:
www.microsoft.com.
                                        CNAME
                                                toggle.www.ms.akadns.net.
toggle.www.ms.akadns.net. 215
                                IN
                                        CNAME
                                                g.www.ms.akadns.net.
q.www.ms.akadns.net.
                                TN
                                        CNAME
                                                lb1.www.ms.akadns.net.
lb1.www.ms.akadns.net. 215
                                                 207.46.198.30
lb1.www.ms.akadns.net. 215
                                                207.46.199.30
lb1.www.ms.akadns.net.
                                                 207.46.18.30
lb1.www.ms.akadns.net. 215
                                                207.46.19.60
lb1.www.ms.akadns.net.
                                IN
                                                207.46.198.60
lb1.www.ms.akadns.net. 215
                                                 207.46.20.60
;; Ouery time: 43 msec
;; SERVER: 192.168.1.1#53(192.168.1.1)
;; WHEN: Sun Mar 11 10:42:38 2007
;; MSG SIZE rcvd: 203
```


Unit 2. Network applications DNS - Content Distribution Networks, example

DNS – Messages: Message Format

- All DNS messages have the same format:
 - Header: type of message.
 - Question: What is to be resolved.
 - Answer: Answer to question.
 - Authority: Domain authority names.
 - Additional: Typically, the authority name's addresses.

		_
	Header (12 bytes)	Ī
/	Question (variable)	/
/	Answer (variable)	/
/	Authority (variable)	/
/	Additional (variable)	/
		_

DNS – Messages: Header

- Identification: 16 random bits used to match query/response
- Flags. Some of them:
 - Query-Response, QR: 0 for query, 1 for response.
 - Authoritative Answer, AA: When set, indicates an authoritative answer.
 - Recursion Desired, RD: When set, indicates that recursion is desired.
- The other fields indicate the number of Questions, Answer, Authority and Additional fields of the message.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5	6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 b	oits
Identification	+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-	
#Questions	#Answers	
#Authorities	#Additional	

DNS – Messages: Question

- QName: Indicates the name to be resolved.
- QType: Indicates the question type:
 - Address, A.
 - Name Server, NS.
 - Pointer, PTR: For an inverse resolution.
 - Mail Exchange, MX: Domain Mail Server address.
- Qclass: For Internet addresses is 1.

Codification example of rogent.ac.upc.edu

DNS – Messages: Resource Records (RRs)

- The fields Answer, Authority and Additional are composed of RRs:
 - Name, Type, Class: The same as in the Question field.
 - TTL (Time To Live): Number of seconds the RR can be cached.
 - RDLenth: RR size in bytes.
 - Rdata: E.g. An IP address if the Type is 'A', or a name if the Type is 'NS', 'MX' or 'CNAME'.

DNS – **Messages:** Example

Query message:

- 36388: Identifier.
- +: Recursion-Desired is set.
- A?: Qtype = A.
- ns.uu.net.: Name to resolve.

Response message:

- 36388: Identifier.
- q: A? ns.uu.net.: Repeat the Question field.
- 1/2/2: 1 Answers, 2 Authorities, 2 Additional follows.
- ns.uu.net. A 137.39.1.3: The answer (RR of type A, address: 137.39.1.3).
- ns: ns.uu.net. NS auth00.ns.uu.net., ns.uu.net. NS auth60.ns.uu.net.: 2 Authorities (RRs of type NS: the domain ns.uu.net. authorities are auth00.ns.uu.net. and auth60.ns.uu.net).
- ar: auth00.ns.uu.net. A 198.6.1.65, auth60.ns.uu.net. A 198.6.1.181: 2 Additional (RRs of type A: authorities IP addresses).

Outline

- Client-Server Paradigm
- DNS
- Email
- Web
- HTML & XML

Email

- Electronic mail (email): One of the first applications used in the Internet to electronic messaging.
- Components:
 - Transport layer: TCP, well-known port: 25.
 - Application layer protocol: Simple Mail Transfer Protocol (SMTP). First defined by RFC-821 and last updated by RFC-5321.
 - Retrieval protocols (IMAP, POP, HTTP).

Email - SMTP processing model

Email - SMTP protocol

- Designed as a simple (few commands) and text-based protocol (ASCII).
 - Client basic commands: HELO (identify SMTP client), MAIL FROM: (identify sender) mailbox), RCPT TO: (identify recipient mailbox), DATA (mail message), QUIT (close transaction).
 - Server replies: Three digit number (identify what state the client to enter next), and a human understandable message.
- Example: Manually send an email using telnet to port 25.

```
CLIENT pcmassanella ~> telnet relay.upc.edu 25
          Trying 147.83.2.12...
          Connected to relay.upc.edu.
                                                                             SMTP transaction
          Escape character is '^]'
  SERVER
          220 dash.upc.es ESMTP Sendmail 8.14.1/8.13.1; Fri, 4 Feb 2011 14:57:15 +0100
COMMANDS
          HELO pcmassanella.ac.upc.edu
          250 dash.upc.es Hello pcmassanella.ac.upc.edu [147.83.34.125], pleased to meet you
          MAIL FROM: 
          250 2.1.0 c@ac.upc.edu>... Sender ok
          RCPT TO: <llorenc@ac.upc.edu>
          250 2.1.5 cedu>... Recipient ok
          DATA
          354 Enter mail, end with "." on a line by itself
          Hello world
          250 2.0.0 p14DvF0Q008320 Message accepted for delivery
          QUIT
          221 2.0.0 dash.upc.es closing connection
          Connection closed by foreign host.
          pcmassanella ~>
```


Email – message formats

- Format described in RFC-5322 Internet Message Format (originally RFC-822)
- Example (extracted from the RFC):

```
From: John Doe <jdoe@machine.example>
To: Mary Smith <mary@example.net>
Subject: Saying Hello
Date: Fri, 21 Nov 1997 09:55:06 -0600
Message-ID: <1234@local.machine.example>
This is a message just to say hello.
So, "Hello".

Header: gives information about the message. Fields defined in RFC-5322

Empty line
Body
```


Unit 2. Network applications Email – Extended message formats

- Multipurpose Internet Mail Extensions (MIME), RFC-2045, 2046, 2049
 - Inclussion of non-ASCI data (e.g. files, images, audio, video)
 - Multipart messages (extracted from the RFC-2049):

```
MIME-Version: 1.0
From: Nathaniel Borenstein <nsb@nsb.fv.com>
To: Ned Freed <ned@innosoft.com>
Date: Fri, 07 Oct 1994 16:15:05 -0700 (PDT)
Subject: A multipart example
Content-Type: multipart/mixed; boundary=unique-boundary-1
--unique-boundary-1
Content-type: text/plain; charset=US-ASCII
  ... Some text appears here ...
--unique-boundary-1
Content-Type: audio/basic
Content-Transfer-Encoding: base64
  ... base64-encoded 8000 Hz single-channel audio data goes here ...
--unique-boundary-1
Content-Type: image/jpeg
Content-Transfer-Encoding: base64
  ... base64-encoded image data goes here ...
--unique-boundary-1
Content-type: text/enriched
This is <bold><italic>enriched.</italic></bold> <smaller>as defined in RFC 1896</smaller>
--unique-boundary-1--
```


Email - retrieval protocols

- Post Office Protocol (POP), RFC-1939:
 - POP server listens on well-known port 110
 - User normally deletes messages upon retrieval.
- Internet Message Access Protocol (IMAP) RFC-3501:
 - IMAP server listens on well-known port 143
 - Messages remain on the server until the user explicitly deletes them.
 - Provide commands to create folders, move messages, download only parts of the messages (e.g. only the headers)
- Web based Email (HTTP)
 - A web server handles users mailboxes. User agent is a web browser, thus, using HTTP to send and retrieve email messages.

Outline

- Client-Server Paradigm
- DNS
- Email
- Web
- HTML & XML

Web

- World Wide Web, www: was started by Tim John Berners-Lee in 1989 and developed in the 90s to provide an easy access to information in the Internet.
- Components:
 - Transport layer: TCP, well-known port: 80.
 - Application layer protocol: HyperText Transfer Protocol (HTTP). RFC1945 (HTTP-1.0), RFC2616 (HTTP-1.1).
 - HyperText Markup Language (HTML): Language used to format web documents.

Source: wikipedia

Web – links

- URI URL
- Uniform Resource Identifier (URI) RFC3986
 - Generic syntax to identify a resource.
- Uniform Resource Locator (URL) RFC1738
 - Subset of URIs identifying the locating a resource in the Internet.
- The URL general syntax is

scheme://username:password@domain:port/path?query_string#fragment_id

- scheme: Purpose, and the syntax of the remaining part. http, gopher, file, ftp...
- domain name or IP address gives the destination location. The port is optional.
- query_string: contains data to be passed to the server.
- fragment_id: specifies a position in the html page.
- Examples:
 - http://tools.ietf.org/html/rfc1738
 - http://147.83.2.135
 - http://studies.ac.upc.edu/FIB/grau/XC/#Practs
 - file:///home/llorenc/gestio/2010/cd/autors.html
 - http://www.amazon.com/product/03879/refs9?pf_ra=ATVPD&pf_rd=07HR2

Web – HTTP Messages, RFC2616

Client (HTTP request):

- Methods:
 - GET: Typical command. Requests an object.
 - POST: Request an object qualified by the data in the body. This data is the contents of the HTML form fields, provided by the client.
 - ...
- Header: Allows the client to give additional information about the request and the client itself.

Web – HTTP Messages, RFC2616

 POST uses MIME types: application/octet-stream, to send raw binary data, and application/x-www-form-urlencoded, to send name-value pairs. Example:

```
request line { POST /login.jsp HTTP/1.1

Host: www.mysite.com

User-Agent: Mozilla/4.0

Content-Length: 27

Content-Type: application/x-www-form-urlencoded

blank line {
body { userid=llorenc&password=mypassword}
```


Web – HTTP Messages, RFC2616

Web – Persistent/non Persistent connections

- Non persistent: The server close the TCP connection after every object. E.g, for an html page with 10 jpeg images, 11 TCP connections are sequentially opened.
- Persistent: The server maintains the TCP connection opened until an inactivity time. All 11 objects would be sent over the same TCP connection.
- Persistent connections with pipelining: The client issues new requests has soon as it encounter new references, even if the objects have been not completely downloaded.

Web – Caching and Proxies

• Caching: The client stores downloaded pages in a local cache. Conditional GET requests are used to download pages if necessary. It can use the Date and/or Etag:

GET /index.html HTTP/1.1

Host: www.example.com

If-Modified-Since: October 21, 2002 4:57 PM

If-None-Match: "686897696a7c876b7e"

- Proxy server: Acts as an intermediary for requests from clients.
 - Advantages:
 - Security (the proxy may reject the access to unauthorized servers)
 - Logs
 - Caching
 - Save public IP addresses (only the proxy may have access to the Internet)
 - ...

Web – web based applications

- Components:
 - Presentation: A web browser (client side).
 - Engine generating "on the fly" HTML pages (server side).
 - Languages:
 - Java.
 - Hypertext Preprocessor (PHP): Embedded program language and HTML code (http://www.php.net).
 - Other: ASP, CGI, ColdFusion, Perl, Python...
 - Storage: a database (e.g. mysql).
- Benefits:
 - Fast to deploy and upgrade (only server side).
 - Only a compatible browser is required at the client side.
 - Provide cross-platform compatibility (i.e., Windows, Mac, Linux, etc.)

Outline

- Client-Server Paradigm
- DNS
- Email
- Web
- HTML & XML

HTML & XML – Hyper-Text Markup Language, HTML

- In 1986 ISO standardized the Standard Generalized Markup Language (SGML). SGML introduced the <> syntax, and has been used in large documentation projects.
- Tim Berners-Lee defined HTML in 1989 inspired in SGML. HTML design mail goal was displaying formated text documents with hyperlinks (including links to other documents) in web browsers.
- Based on tags e.g. <head> data </head>
- Example:

```
<html>
<head>
<title>Basic html document</title>
</head>
<body>
<hl><font color="red">First Heading</font></hl>
first paragraph.
</body>
</html>
```

First Heading

first paragraph.

Terminology:

- •element
- attribute
- •text

Unit 2. Network applications HTML & XML – Hyper-Text Markup Language, HTML

- HTML features (1):
 - Forms: The document accept user inputs that are sent to the server
 - Scripting: Allow adding programs. The program executes on the client's machine when the document loads, or at some other time such as when a link is activated.

• javascript example:

```
<html>
<head>
<script type="text/javascript">
function displaymessage() {
   alert("Hello World!");
}
</script>
</head>
<body>
<form>
   <input type="button"
   value="Click me!" onclick="displaymessage()" />
</form>
</body>
</html>
```


Unit 2. Network applications HTML & XML – Hyper-Text Markup Language, HTML

- HTML features (2):
 - Cascading Style Sheets, CSS: Allows describing the *physical layout* in a separate document. E.g. thousand of HTML pages can use the same CSS. If the style must be changed, only the CSS need to be updated.
 - Selector Declaration Declaration

 h1 {color:blue; font-size:12px;}

 Property Value Property Value

 Source: http://www.w3schools.com/xml/
 - CSS example
 - Content of the file "mystyle.css":

```
h1 {color:red; font-size:20px;}
p {margin-left:20px; color:blue; font-size:18px;}
```

```
<html>
<head>
<link rel="stylesheet" type="text/css" href="mystyle.css" />
</head>
<body>
<hl>First Heading</hl>
first paragraph.
</body>
</html>
```

First Heading

first paragraph.

- History and Motivation
 - Due to tremendous success of web, World Wide Web Consortium (W3C) was created in 1994 to produce web standards.
 - Web evolution has increasingly involved towards the exchange of structured information, making HTML inadequate for many web projects.
 - XML is being developed in W3C to cope with transport and store of structured information. In 1998 XML 1.0 was the first W3C recommendation.
 - XML is not a replacement of HTML, but a framework for defining markup languages.
 - XML does not do anything: Someone must write an application (possibly a web application) to send, receive or display it.

- Limitations of HTML
 - Consider a web site publishing recipes. A recipe could be as:

Rhubarb Cobbler

Maggie.Herrick@bbs.mhv.net

Wed, 14 Jun 95

Rhubarb Cobbler made with bananas as the main sweetener. It was delicious. Basicly it was 2 1/2 cups diced rhubarb

2 tablespoons sugar

2 fairly ripe bananas

1/4 teaspoon cinnamon dash of nutmed

Combine all and use as cobbler, pie, or crisp.

Related recipes: Garden Quiche

 $Source: http://www.brics.dk/{\sim} amoeller/XML/xml/htmlvsxml.html$

- Problems:
 - How to check that a recipe is introduced correctly? (ingredients amounts...)
 - How to identify the fields of the recipe? (author, ingredients...)
 - What if we want to display the fields in a different order?
 - ...
- We need to define the semantics (meaning) of tags, and the syntax (what tags, and how can they be used).

HTML & XML – Extensible Markup Language, XML

Solution: XMLization

```
<recipe id="117" category="dessert">
  <title>Rhubarb Cobbler</title>
  <author><email>Maggie.Herrick@bbs.mhv.net</email></author>
  <date>Wed, 14 Jun 95</date>
  <description>
    Rhubarb Cobbler made with bananas as the main sweetener.
    It was delicious.
  </description>
  <ingredients>
    <item><amount>2 1/2 cups</amount><type>diced rhubarb</type></item>
    <item><amount>2 tablespoons</amount><type>sugar</type></item>
    <item><amount>2</amount><type>fairly ripe bananas</type></item>
    <item><amount>1/4 teaspoon</amount><type>cinnamon</type></item>
    <item><amount>dash of</amount><type>nutmeg</type></item>
  </ingredients>
  preparation>
    Combine all and use as cobbler, pie, or crisp.
  </preparation>
  <related url="#GardenQuiche">Garden Quiche</related>
</recipe>
```

Terminology:

- •element
- attribute
- •text

Source: http://www.brics.dk/~amoeller/XML/xml/htmlvsxml.html

- XML is designed to tailor-made markup languages.
- Examples:
 - Community Network Markup Language (CNML) to describe guifi.net: http://guifi.net/es/guifi/cnml/3671
 - gnome GConf configuration system: http://projects.gnome.org/gconf

• ...

- A well-formed XML document satisfies a list of syntax rules provided in the specification. It is more rigid than HTML (e.g. all tags must be closed: <tag> </tag> or <tag attribute1=.. />).
- XML namespaces
 - Allow differentiating elements names defined by different developers.
 - The namespace is defined by the xmlns attribute in the start tag of an element.
 - URL are often used as an easy way to define "unique" namespaces.

default namespace.

namespace with prefix xhtml. The prefix acts as a shortname for the namespace.

Source: http://www.brics.dk/~amoeller/XML/xml/htmlvsxml.html

XML documents have a tree structure

```
<bookstore>
  <bookstore>
  <book category="COOKING">
        <title lang="en">Everyday Italian</title>
        <author>Giada De Laurentiis</author>
        <year>2005</year>
        <pri>ce>30.00</price>
        </book>
        <book category="CHILDREN">
              <title lang="en">Harry Potter</title>
              <author>J K. Rowling</author>
              <year>2005</year>
              <pri>cprice>29.99</price>
        </bookstore>
```

Terminology:

- •element
- attribute
- •text

Source: http://www.w3schools.com/xml/

- XPath: Navigating XML documents
 - Syntax for selecting parts of an XML document.
 - Used e.g. by the XML transformation language XSLT (explained later).

Example

/bookstore/book[1]/title

book of the bookstore:

Example of a XPath

expression: title of the first

Source: http://www.w3schools.com/xml/

- Validation of XML documents
- A "Valid" XML document conforms to the syntax of an XML schema.
- The syntax defines what tags and how can be used.
- Most used schema languages:
 - Document Type Definition, DTD:
 - First XML schema language.
 - Do not follows XML syntax.
 - XML Schema Definition, XSD:
 - Follows XML syntax (allows namespaces).
 - Can express more complex rules than DTD.

- Document Type Definition, DTD
 Content of the file "note.dtd":

 <!ELEMENT note (to,from,heading,body)> ✓

 <!ATTLIST note date CDATA #IMPLIED> ✓

 <!ELEMENT to (#PCDATA)>

 <!ELEMENT from (#PCDATA)>

 <!ELEMENT heading (#PCDATA)>

 <!ELEMENT body (#PCDATA)>

 <!ELEMENT body (#PCDATA)>

 <!ELEMENT body (#PCDATA)>

 (#IMPLIED means "not required").

 element "to" contains character data (#PCDATA).
 - Reference to the DTD defined in "note.dtd":

```
<pre
```

Validation example with xmllint (http://xmlsoft.org/):

```
linux ~/> xmllint --dtdvalid note.dtd exemple-dtd.xml
exemple-dtd.xml validates
```


- XML Schema Definition, XSD
 - Content of the file "note.xsd":

namespace where the schema is defined, the namespace should be prefixed xs.

root element

complexType: contains other elements

sequence: child elements must appear in the same order

• Reference to the XSD defined in "note.xsd":

• An XML file using XSD can also be validated with xmllint.

- Extensible Stylesheet Language, XSL
 - Extend the CSS idea of HTML.
 - The main component is the XSL Transformations, XSLT.
 - XSLT is a programming language for specifying transformations between XML and a particular target language (e.g. HTML).
 - All major browsers support XML/XSLT: mozilla, explorer, google chrome...
 - An XSL style sheet consists of one or more rules called templates.
 - Templates are applied when a specified node is matched.

HTML & XML – Extensible Markup Language, XML

XSL Transformations, XSLT

Content of the file "cdcatalog.xsl":

```
<?xml version="1.0" encoding="ISO-8859-1"?>
<xsl:stylesheet version="1.0"</pre>
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="/">
 <html><body>
 <h2>My CD Collection</h2>
 Title
    Artist
   <xsl:for-each select="catalog/cd">
   <xsl:value-of select="title"/>
    <xsl:value-of select="artist"/>
   </xsl:for-each>
 </body></html>
</xsl:template>
</xsl:stylesheet>
```

reference an XSLT "cdcatalog.xsl" in an XML document

defines a template. Attibute match specifies the nodes using XPath

select every element of a node-set

extract the value of an XML element

My CD Collection

Title	Artist
Empire Burlesque	Bob Dylan
Hide your heart	Bonnie Tyler
Greatest Hits	Dolly Parton
Still got the blues	Gary Moore

Source: http://www.w3schools.com/xml/