Introduction to Machine Learning

Your Trainer

Who am I?

- Study of Aeronautics, and Economics
- Data Scientist at SiemensGamesa
- Author at Medium: https://medium.com/@bert.gollnick
- Udemy Instructor:

PyTorch Ultimate: From Basics to Cutting-Edge

Become an expert applying the most popular Deep Learning framework PyTorch Bert Gollnick

4.8 **** (19)

9 total hours - 95 lectures - All Levels

R Ultimate: Learn R for Data Science and Machine Learning

R Basics, Data Science, Statistical Machine Learning models, Deep Learning, Shiny and much more (All R code included)

Bert Gollnick

4.8 **** (37)

22.5 total hours · 199 lectures · All Levels

Agenda

What we will learn today

General Intro Types of Machine Learning Models

Confusion Matrix **ROC Curve**

Analysis Steps Logistic Regression

Machine Learning Types

Classical Programming and Machine Learning

Inspired by: Francois Chollet and J.J. Allaire "Deep Learning with R and Keras"

Data Transformation

Example: School Class

Supervised Learning

Task: Use Label / Target Variable for Learning/Prediction

Name	Age	Learning Method	Class	Grade
Anton	14	Α	Sport	2
Bert	15	В	Sport	2
Clare	13	А	Sport	3
Dave	16	В	Math	1
Emilia	15	А	Math	2

Example: School Class

Example: School Class

Reinforcement Learning

- -Assign Learning Method to each student one by one.
- -Task: Find which learning method should be chosen in future
- -RL Methods find faster solution than A/B tests.

Name	Age	Learning Method	Class	Grade
Anton	14	А	Sport	2
Bert	15	В	Sport	2
Clare	13	А	Sport	3
Dave	16	В	Math	1
Emilia	15	А	Math	2

Example: Student Test Prediction

Example: Classification and Regression Plot

High-Level Analogy

Recipe

Result

Ingredients + technical equipment

(Requirements)

High-Level Analogy

Independent Variables

Model

Prediction

Model Development and -application

Detailed Model Development

Data Preparation Modeling

Example '

- Task: Target variable (dependent variable) should be predicted.
- Predictors (independent variables) are used to create a model based on an existing relationship between independent and dependent variable.
- Model "learns" relationship
- Learned model can then be applied to new data.

Our Focus in Today's Class

Classification

Classification

Confusion Matrix

Example

True Outcome

Errors

Confusion Matrix

Example: Tsunami

Confusion Matrix

Performance Measures: Accuracy

Numerator		Effect Exists?		
			Yes	No
	Effect Observed?	Yes	True Pos	False Pos
	Ef Obse	No	False Neg	True Neg

Denominator		Effect Exists?	
		Yes	No
ect :rved?	Yes	True Pos	False Pos
Effec	No	False Neg	True Neg

Accuracy =
$$\frac{TP+TN}{TP+TN+FP+FN}$$

Usually compared to baseline result or to compare models

ROC Curve

Introduction

Receiver Operating Characteristics (**ROC**) Curve

- First developed and used during WWII for detecting enemy objects in battlefields
- Later used in psychology, medicine, forecasting of natural hazards, ...
- ... and finally model performance assessment

Source: https://commons.wikimedia.org/wiki/File: Chain_Home_radar_installation_at_Poling,_Sussex,_1945._CH15173.jpg

Actuals	PredNeg	PredPos
ActNeg	3117	1842
ActPos	84	1469

Actuals	PredNeg	PredPos
ActNeg	4948	11
ActPos	1305	248

		Predicte		
		Yes	No	
Class	Yes	True Pos (Hit)	False Neg (Type I Error)	$TPR = \frac{TP}{TP + FN}$ \(\rightarrow \text{Y Axis on ROC Curve}\)
Actual Class	No	False Pos (Type II Error)	True Neg (Correct Rejection)	

		Predicte		
		Yes	No	
Class	Yes	True Pos (Hit)	False Neg (Type I Error)	
Actual Class	No	False Pos (Type II Error)	True Neg (Correct Rejection)	$FPR = \frac{FP}{FP + TN}$ \(\rightarrow X \) Axis on ROC Curve

From Confusion Matrix to ROC Curve

Example

Threshold	TN	FP	FN	ТР	FPR	TPR
0.01	1318	3641	3	1550	0.73	1
0.02	1776	3183	10	1543	0.64	0.99
•••						
0.98	4958	1	1431	122	0	0.08
0.99	4958	1	1448	105	0	0.07

ROC Curve

Purpose

Different methods can be compared

Source: own graph

Analysis Steps

Analysis Steps

Sample Steps

Introduction

- Suitable for classification tasks (don't get confused by "regression")
- Only works for binary classifier
- Independent variables can be continous or discrete
- Related to classical regression

From Linear Regression to Logistic Regression

From Linear Regression to Logistic Regression

Logistic Regression

$$Y = mX + n$$

Transform Target Variable with Sigmoid Function

$$p = \frac{1}{1 + e^{-Y}}$$

Rewrite Formula:

$$Y = ln\left(\frac{p}{1-p}\right)$$

Logit-Transformation of Target Variable:

$$Y = \ln\left(\frac{p}{1-p}\right)$$

$$\ln\left(\frac{p}{1-p}\right) = mX + n$$

Sigmoid function maps results to 0 to 1 range.

$$S(x) = \frac{1}{1 + e^{-x}}$$

From Linear Regression to Logistic Regression

From Probabilities to Classes

From Probabilities to Classes

