Deng Pan

1-C-1001, Zhonglongyuxi, Guqu South Road, Yuhua District, Changsha City, Hunan Province, CHINA

□ (+44) 07521689003 | ■ deng.1.pan@outlook.com | ★ deng-1-pan.github.io | 🗖 deng-1-pan

Education

MSc in Integrated Machine Learning Systems

London, UK

ELECTRONIC AND ELECTRICAL ENGINEERING DEPARTMENT, UNIVERSITY COLLEGE LONDON

09/2022 - Present

Relevant modules: Applied Machine Learning Systems (I & II) | Data Acquisition and Processing Systems | Cloud, Data Centres and Edge-Computing | Security and Privacy | Deep Learning for Natural Language Processing | Internet of Things | Emerging Topics in Integrated Machine Learning Systems

BEng in Electronic Engineering(First Class Honours)

London, UK

ENGINEERING DEPARTMENT, KING'S COLLEGE LONDON

09/2019 - 06/2022

- Overall GPA: 89/100 Final Project: 85/100
- Relevant modules: Machine Learning for Engineers | Computer Vision | Brain-Inspired Computing and Hardware Design | Foundation of Computing (I & II) | Computational and Mathematical Thinking for Engineers (I & II) | Logic Design | Real Time Systems and Control | Hardware Design | Computer System | Electronics Application Project and Engineering Lab (I & II)

Recent Publications

Decentralised federated learning methods for reducing communication cost and energy consumption in UAV networks

Accepted

13TH EAI INTERNATIONAL CONFERENCE ON MOBILE COMPUTING, APPLICATIONS AND SERVICES

10/2021 - 08/2022

• Authors: Deng Pan, Mohammad Ali Khoshkholghi, and Toktam Mahmoodi

Research & Project Experience

Decentralised federated learning methods for reducing communication cost and energy consumption in UAV networks

London, UK

FURTHER RESEARCH BASED ON UNDERGRADUATE GRADUATION PROJECT

4/2022 - 07/2022

- Conducted further research on communication cost and energy consumption based on my undergraduate graduation project.
- Optimised the code for reading the file transfer size to aid communication consumption.
- Regarding energy consumption, the flight power consumption calculation of the drone was optimised, alongside developing communication and computing comparison.
- Based on my graduation project report, a paper was written according to the conference party's requirements.

A Study of Decentralised Federated Learning for UAV Networks

London, UK

UNDERGRADUATE GRADUATION PROJECT

10/2021 - 04/2022

- Designed a UAV network architecture, applying decentralised federated learning for future smart cities.
- Proposed two novel aggregation methods to adapt to the complex operating environment of UAVs.
- · Efficacy was demonstrated through numerical simulations and comparison with two benchmark methods.
- Entire project code was designed and tested based on Python implementation.

Hardware-Software Co-design of Neuromorphic Networks

London, UK

Undergraduate Group Course Project

10/2021 - 12/2021

- Designed a spiking neural network for the MNIST handwritten digit benchmark problem, based on pertinent literature and code provided by the lecturer
- Responsible for the group's parameter tuning and experiment in learning rate of Fix Decay and Cyclic Decay, and for assembling and visualizing
 everyone's data.

Honors & Awards

2022	The Jelf Medal, Highest achiever during the UG course	King's College London
2022	John Oriel Prize, Highest grade in the final examination of the UG Informatics programme	King's College London
2022	KCLEA Medal Highest achiever in their individual final year project	Kina's College London

Skills

Programming C (3 months), Python (2 years), Matlab (3 years), VHDL (3 months), Latex (2 years), Markdown (3 months), HTML (< 1 month)

Software Visual Code Studio, Quartus, Jupiter Notebook, Anaconda, Microsoft office software, Adobe Premiere Pro

Languages English, Chinese