

.

.....

.

 \bullet

ONE LOVE. ONE FUTURE.

BÁO CÁO ĐỒ ÁN TỐT NGHIỆP ĐẠI HỌC

Thiết kế thiết bị đóng cắt 4 kênh qua WiFi

Sinh viên thực hiện: Nguyễn Tuấn Anh

Mã số sinh viên: 20173616

Lóр: KTĐ 05 – K62

Giảng viên hướng dẫn: TS. Nguyễn Văn Ánh

ONE LOVE. ONE FUTURE.

Nội dung

- 1. Lý do chọn đề tài, mục đích và yêu cầu của đồ án
- 2. Phân tích và thiết kế
 - 2.1. Công cụ sử dụng
 - 2.2. Thiết kế phần cứng
 - 2.3. Thiết kế chương trình vi điều khiển
 - 2.4. Thiết kế chương trình ứng dụng điều khiển
- 3. Mô hình và kết quả đạt được
- 4. Tổng kết

ONE LOVE. ONE FUTURE.

1. Lý do chọn đề tài, mục đích và yêu cầu của đồ án

- Lý do chọn đề tài
 - Các thiết bị đóng cắt từ xa hiện nay đang sử dụng nhiều giao thức khác nhau
 - Sự phát triển mạnh của công nghệ Internet vạn vật (IoT)
- Mục đích xây dựng
 - o Thiết kế một thiết bị đóng cắt từ xa qua WiFi
 - Cung cấp khả năng điều khiển các thiết bị điện thuận tiện
 - Nâng cao mức độ tự động hóa
- Yêu cầu
 - Thiết kế thiết bị đóng cắt 4 kênh
 - Thiết kế giao diện điều khiển trên điện thoại thông minh và máy tính cá nhân

Mô hình hệ thống

Khối điều khiển trung tâm ESP8266

- 4MB bộ nhớ Flash, 64KB SRAM
- Hỗ trợ UART, SPI, I2C, ADC
- 12 chân GPIO khả dụng
- WiFi 2.4 GHz

Triac:

- Nguyên lý hoạt động
- Đặc điểm
- Cách điều khiển

BTA24-800BWRG

Fehler und Änderungen bei technischen Daten, Abmessungen und Preisen bleiben vorbehalten. Bild kann vom Original abweichen.

IC lái Triac (Triac Driver)

- Nguyên lý hoạt động
- Đặc điểm
- Cách điều khiển

Giao thức MQTT:

- Broker, Client
- Cơ chế Publish/Subscribe và Topic

- 2.1. Công cụ sử dụng
- Thiết kế phần cứng:
 - o Altium Designer 17
- Lập trình vi điều khiển:
 - o Arduino IDE
 - Visual Studio Code
- Lập trình ứng dụng điều khiển:
 - o Python IDE
 - Visual Studio Code

2.2. Thiết kế phần cứng

- Yêu cầu:
 - 4 kênh đóng cắt sử dụng Triac
 - Yêu cầu dòng đóng cắt mỗi kênh: 20 Ampe
 - 4 nút bấm nhận tín hiệu từ người dùng
 - Hiển thị trạng thái của thiết bị

- 2.2. Thiết kế phần cứng
- Khối đóng cắt:

2.2. Thiết kế phần cứng

• Khối nút nhấn:

2.3. Thiết kế chương trình vi điều khiển

- Yêu cầu:
 - Điều khiển đóng cắt các triac
 - Đọc tín hiệu điều khiển tại chỗ qua các nút nhấn
 - O Gửi dữ liệu trạng thái của các Triac và thực thi lệnh điều khiển
 - Tự động đóng cắt theo hẹn giờ
 - Cấu hình mạng WiFi mới

2.3. Thiết kế chương trình vi điều khiển

• Lưu đồ thuật toán:

2.3. Thiết kế chương trình vi điều khiển

• Lưu đồ thuật toán:

Hàm setup()

- 2.3. Thiết kế chương trình vi điều khiển
- Lưu đồ thuật toán:

Hàm ngắt nút nhấn:

- 2.3. Thiết kế chương trình vi điều khiển
- Lưu đồ thuật toán:

Hàm xử lý nhấn giữ:

- 2.3. Thiết kế chương trình vi điều khiển
- Lưu đồ thuật toán:

Hàm hàm truyền thông MQTT:

2.4. Thiết kế chương trình ứng dụng điều khiển

- Yêu cầu:
 - Nhận và hiển thị trạng thái đóng cắt của các triac
 - Nhận lệnh điều khiển từ người dùng và gửi lệnh điều khiển đến thiết bị đóng cắt theo cấu trúc bản tin
 - Cấu hình WiFi cho thiết bị

- 2.4. Thiết kế chương trình ứng dụng điều khiển
- Lưu đồ thuật toán:
- Các lớp của ứng dụng điều khiến:
- Lớp logic chính của ứng dụng
- Lớp giao diện dạng lưới
- Lớp giao diện cửa sổ thông báo

- 2.4. Thiết kế chương trình ứng dụng điều khiển
- Xây dựng giao diện cho chương trình:
 - Giao diện dạng lưới

Thông tin chương trình	
Nút nhấn 1	Nút nhấn 2
Nút nhấn 3	Nút nhấn 4
Nút cấu hình WiFi	

Cửa sổ thông báo

Thông tin thông báo
Nút nhấn
Nút nhấn
Nút nhấn

3. Mô hình và kết quả thu được

Hình ảnh thực tế thiết bị

- 1. Mạch phát triển nodeMCU
- 2. Khối nút nhấn
- 3. Khối cách ly và lái triac
- 4. Khối mạch lực đóng cắt
- 5. Khối chuyển nguồn AC/DC

3. Mô hình và kết quả thu được

Giao diện ứng dụng điều khiển

4. Tổng kết

Kết quả đồ án

- Hoàn thành
- Thiết kế hoàn thiện phần cứng
- Các kênh đầu ra có thể đóng cắt tải
- Điều khiển được thiết bị qua WiFi
- Úng dụng điều khiển trên điện thoại thông minh và máy tính xách tay
- Chưa hoàn thiện
- O Khung vỏ cho thiết bị đóng cắt
- Giao diện ứng dụng điều khiển chưa thân thiện
- Bảo mật cho thiết bị

- Định hướng phát triển
- Phát triển thêm các dạng thiết bị khác
- Xây dựng hệ sinh thái các thiết bị tương tác với nhau
- Cải thiện bảo mật cho hệ thống

Xin cảm ơn thầy cô và các bạn đã lắng nghe!