带间断系数的弹性问题的有限元法

答辩人: 唐小康, 指导老师: 王华

2023年5月19日

- ① 研究内容和研究方法
- ② 实验结果
- ③ 总结
- 4 致谢

考虑各项同性弹性材料,令 u(x,y), f(x,y) 是其位移和体力,对纯位移边值问题, u, f 满足以下方程

$$-div\,\sigma(u) = f \in \Omega,$$

$$u|_{\partial\Omega} = g.$$
(1)

其中 $\Omega \in \mathbb{R}^2$ 。 Ω_1 , Ω_2 是 Ω 的两个子集,使得 $\Omega_1 \cup \Omega_2 = \Omega$ 并且 $\Omega_1 \cap \Omega_2 = \emptyset$,Lamé 常数 λ , μ 在 Ω_1 , Ω_2 上取不同值,即 $(x,y) \in \Omega_1$ 时 $\lambda = \lambda_1$, $\mu = \mu_1$, $(x,y) \in \Omega_2$ 时 $\lambda = \lambda_2$, $\mu = \mu_2$, $\lambda_1 \neq \lambda_2$, $\mu_1 \neq \mu_2$ 。

对齐次的纯位移边值问题,其变分形式为,求 $u \in H^1(\Omega)$ 使得 $u|_{\Gamma_1} = 0$,并且

$$a(u,\nu) = \int_{\Omega} f \cdot \nu \, dx dy, \quad \forall \nu \in V,$$
 (2)

其中

$$\begin{split} \textit{a}(\textit{u}, \nu) &= \mu_1 \int_{\Omega_1} \textit{grad}\, \textit{u} : \, \textit{grad}\, \nu \, \textit{dxdy} + (\mu_1 + \lambda_1) \int_{\Omega_1} \textit{div}\, \textit{u} \, \textit{div}\, \nu \, \textit{dxdy} \\ &+ \mu_2 \int_{\Omega_2} \textit{grad}\, \textit{u} : \, \textit{grad}\, \nu \, \textit{dxdy} + (\mu_2 + \lambda_2) \int_{\Omega_2} \textit{div}\, \textit{u} \, \textit{div}\, \nu \, \textit{dxdy}, \\ \textit{V} :&= \{ \nu \in \textit{H}^1(\Omega) \mid \nu|_{\Gamma} = 0 \}. \end{split}$$

考察以下边值问题

$$-div\,\sigma(u)=f\quad\in\Omega$$
$$u|_{\Gamma}=0.$$

其中 $u = (u_1, u_2)^t$ 为求解向量, $f = (f_1, f_2)^t$ 为右端向量。

如图, 当 $(x,y) \in \Omega_1$ 时, $\mu = \lambda = \lambda_1$, 当 $(x,y) \in \Omega_2$ 时, $\mu = \lambda = \lambda_2$, 当 $(x,y) \in \Omega_3$ 时, $\mu = \lambda = \lambda_3$, 当 $(x,y) \in \Omega_4$ 时, $\mu = \lambda = \lambda_4$ 。

$$v = x(x - 0.5)(x - 1)y(y - 0.5)(y - 1)$$

$$u_1 = u_2 = v/\lambda$$

① 当 Lamé 常数 $\lambda = \mu = [5E8, -2E5, -8E4, 1E6]$ 时误差如下

h	0.5	0.25	0.125	0.0625
$ u-u_h _{H^1(\Omega)}$	1.599642E-2	7.130159E-3	3.516517E-3	1.900384E-3
H1 误差阶	1.165743	1.019786	0.8878559	0.9186291
$ u-u_h _{L^2(\Omega)}$	3.999106E-3	8.912698E-4	2.197823E-4	5.938701E-5
L2 误差阶	2.165743	2.019786	1.887855	1.918629

图: 数值解和精确解图像

② 当 Lamé 常数 $\lambda = \mu = [7, 3E2, 2E3, 10]$ 时误差如下

h	0.5	0.25	0.125	0.0625
$ u-u_h _{H^1(\Omega)}$	1.599735E-2	7.130099E-3	3.516522E-3	1.900428E-3
H1 误差阶	1.165839	1.019772	0.8878243	0.918610
$ u-u_h _{L^2(\Omega)}$	3.999338E-3	8.912623E-4	2.197826E-4	5.938839E-5
L2 误差阶	2.165839	2.019772	1.887824	1.91861

图: 数值解和精确解图像

③ 当 Lamé 常数 $\lambda = \mu = [7E8, 5, 1E4, 3E6]$ 时误差如下

h	0.5	0.25	0.125	0.0625
$ u-u_h _{H^1(\Omega)}$	3.015333E-3	1.139928E-3	6.718610E-4	3.793589E-4
H1 误差阶	1.403373	0.7627090	0.8245995	0.9054011
$ u-u_h _{L^2(\Omega)}$	7.538332E-4	1.424911E-5	4.199131E-5	1.185496E-5
H1 误差阶	2.403373	1.7627090	1.824599	1.905401

图: 数值解和精确解图像

研究内容和研究方法 实验结果 总结

数值结果表明,当 Lamé 常数间断且相等时,C-R 元可以有效地解除闭锁现象,并且具有预期的收敛阶。

谢谢!