8 Преобразование Фурье функций из $L_1(\mathbb{R}^m), m \geqslant 2$

Опр. Преобразованием Фурье функции $f \in L_1(\mathbb{R}^m)$ называется функция

$$\widetilde{f}(\xi) \equiv \mathscr{F}[f](\xi) = \frac{1}{(2\pi)^{m/2}} \int_{\mathbb{R}^m} f(x)e^{-i(\xi,x)} dx, \quad \xi \in \mathbb{R}^m.$$

Здесь
$$x = (x_1, x_2, \dots, x_m), \ \xi = (\xi_1, \xi_2, \dots, \xi_m) \in \mathbb{R}^m, \ m \geqslant 2, \ (\xi, x) = \sum_{j=1}^m \xi_j x_j.$$

Оператор \mathscr{F} , ставящий в соответствие функции f ее преобразование Фурье (образ Фурье) $\widetilde{f}=\mathscr{F}[f]$, называется оператором Фурье.

Теорема 8.1. Пусть $f \in L_1(\mathbb{R}^m)$. Тогда $\widetilde{f} = \mathscr{F}[f] \in C(\mathbb{R}^m)$, причем верны неравенство

$$\sup_{\xi \in \mathbb{R}^m} |\mathscr{F}[f]| \leqslant \frac{1}{(2\pi)^{m/2}} ||f||_{L_1(\mathbb{R}^m)}$$

и свойство

$$|\mathscr{F}[f](\xi)| \to 0$$
 при $|\xi| \to \infty$.

Замечание. $\mathscr{F}[f]$ можно получить, применив последовательно преобразование Фурье по каждой из переменных x_1, x_2, \ldots, x_m :

$$\mathscr{F}[f](\xi) = \frac{1}{(2\pi)^{m/2}} \int_{-\infty}^{\infty} \dots \left\{ \int_{-\infty}^{\infty} \left\{ \int_{-\infty}^{\infty} f(x) e^{-i\xi_1 x_1} dx_1 \right\} e^{-i\xi_2 x_2} dx_2 \right\} \dots e^{-i\xi_m x_m} dx_m.$$

Пусть $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_m)$ – мультииндекс, где $0 \leqslant \alpha_i$ – целые числа. Введем длину мультииндекса $|\alpha| = \alpha_1 + \alpha_2 + \dots + \alpha_m$.

Положим

$$D^{\alpha} = D_1^{\alpha_1} D_2^{\alpha_2} \dots D_m^{\alpha_m}, \quad \text{где} \quad D_i^{\alpha_i} = \frac{\partial^{\alpha_i}}{\partial x_i^{\alpha_i}}$$

И

$$\xi^{\alpha}=\xi_1^{\alpha_1}\dots\xi_m^{\alpha_m}$$
 для $\xi=(\xi_1,\dots,\xi_m).$

Теорема 8.2. Пусть $f \in C^n(\mathbb{R}^m)$ и $D^{\alpha}f \in L_1(\mathbb{R}^m)$ для всех $\alpha : |\alpha| \leq n$. Тогда верна формула

$$\mathscr{F}[D^{\alpha}f](\xi) = (i\xi)^{\alpha}\mathscr{F}[f](\xi) \quad \forall \alpha : |\alpha| \leq n.$$

Теорема 8.3. Пусть $(1+|x|^n)f \in L_1(\mathbb{R}^m)$ для некоторого $n \geqslant 1$. Тогда $\mathscr{F}[f] \in C^n(\mathbb{R}^m)$ и верна формула

$$D^{\alpha} \mathscr{F}[f] = \mathscr{F}[(-ix)^{\alpha} f] \quad \forall \alpha : |\alpha| \leqslant n. \tag{8.1}$$

При определенных условиях на функцию f справедлива ϕ ормула обращения

$$\mathscr{F}^{-1}[\mathscr{F}[f]](x) = f(x),$$

в которой *обратное преобразование Фурье* \mathscr{F}^{-1} понимается следующим образом:

$$\mathscr{F}^{-1}[g](x) = \frac{1}{(2\pi)^{m/2}} V.p. \int_{-\infty}^{\infty} \left\{ V.p. \int_{-\infty}^{\infty} \left\{ V.p. \int_{-\infty}^{\infty} g(\xi) e^{i\xi_m x_m} d\xi_m \right\} e^{i\xi_{m-1} x_{m-1}} d\xi_{m-1} \right\} \dots e^{i\xi_1 x_1} d\xi_1.$$

Преобразование Фурье свертки

Опр. Сверткой функций $f \in L_1(\mathbb{R}^m)$ и $g \in L_1(\mathbb{R}^m)$ называется функция

$$h(x) = \frac{1}{(2\pi)^{m/2}} \int_{\mathbb{R}^m} f(y)g(x-y) \, dy.$$
 (8.2)

Для свертки используется обозначение h = f * g.

Предложение 8.1. Свертка (8.2) определена для почти всех $x \in \mathbb{R}^m$. Кроме того, $f * g \in L_1(\mathbb{R}^m)$ и справедлива оценка

$$||f * g||_{L_1(\mathbb{R})^m} \le \frac{1}{(2\pi)^{m/2}} ||f||_{L_1(\mathbb{R})^m} ||g||_{L_1(\mathbb{R}^m)}.$$

Замечание 8.1. Обратим внимание на то, что

$$f * g = g * f.$$

Теорема 8.4. Пусть $f \in L_1(\mathbb{R}^m)$ и $g \in L_1(\mathbb{R}^m)$. Тогда

$$\mathscr{F}[f*g] = \mathscr{F}[f]\mathscr{F}[g].$$

9 Преобразование Фурье функций из $L_2(\mathbb{R}^m), \ m \geqslant 2$

Пусть $S^{\infty}(\mathbb{R}^m)$ — класс быстро убывающих бесконечно дифференцируемых функций, состоящий из всех тех комплекснозначных функций $f \in C^{\infty}(\mathbb{R}^m)$, что

$$M_{\alpha,\beta} = \sup_{x \in \mathbb{R}^m} |x^{\alpha} D^{\beta} f(x)| < \infty$$
 для всех α, β .

Часто $S^{\infty}(\mathbb{R}^m)$ называют пространством Шварца.

Теорема 9.1. Оператор Фурье \mathscr{F} осуществляет взаимно однозначное отображение $S^{\infty}(\mathbb{R}^m)$ на $S^{\infty}(\mathbb{R}^m)$, причем для $f \in S^{\infty}(\mathbb{R}^m)$ верно равенство Парсеваля

$$\|\mathscr{F}[f]\|_{L_2(\mathbb{R}^m)} = \|f\|_{L_2(\mathbb{R}^m)}.$$
(9.1)

Теорема 9.2. Пусть $f \in L_1(\mathbb{R}^m) \cap L_2(\mathbb{R}^m)$. Тогда $\mathscr{F}[f] \in L_2(\mathbb{R}^m)$ и верно равенство Парсеваля (9.1).

Теорема 9.3. (Теорема Планшереля) Пусть $f \in L_2(\mathbb{R}^m)$. Тогда существует предел

$$\widetilde{f}(\xi) = \mathscr{F}[f](\xi) = \lim_{N \to \infty} \frac{1}{(2\pi)^{m/2}} \int_{|x| < N} f(x)e^{-i(\xi, x)} dx,$$
 (9.2)

Кроме того, верно равенство Парсеваля

$$\|\mathscr{F}[f]\|_{L_2(\mathbb{R}^m)} = \|f\|_{L_2(\mathbb{R}^m)} \quad \forall f \in L_2(\mathbb{R}^m).$$

Опр. Предел (9.2) называется преобразованием Фурье функции $f \in L_2(\mathbb{R}^m)$ (или преобразованием Фурье-Планшереля).

Введем обратное преобразование Фурье-Планшереля для $g \in L_2(\mathbb{R}^m)$ формулой

$$\mathscr{F}^{-1}[g](x) = \lim_{N \to \infty} \frac{L_2(\mathbb{R}^m)}{(2\pi)^{m/2}} \int_{|x| < N} g(\xi) e^{i(\xi, x)} d\xi.$$
 (9.3)

Теорема 9.4. Справедлива формула обращения

$$\mathscr{F}^{-1}[\mathscr{F}[f]] = f \qquad \forall f \in L_2(\mathbb{R}^m).$$

Следствие 9.1. Оператор Фурье-Планшереля \mathscr{F} является изометрическим изоморфизмом $L_2(\mathbb{R}^m)$ на $L_2(\mathbb{R}^m)$.