Probability Refresher

ÉCOLE POLYTECHNIQUE-HEC 2017-18

Lectures: Lucas Gerin lucas.gerin@polytechnique.edu

Tutorials: Raphaël Forien raphael.forien@polytechnique.edu / Thibaut Mastrolia thibaut.mastrolia@polytechnique.edu

1. Probability spaces

 ${\bf Sample\ spaces\ and\ probability\ measures\ definitions}, first\ examples\ Independence\ and\ conditioning$

2. Random variables and expectation

RV and their laws examples of usual laws, cdf, densities of r.v. Abstract expectation $\mathbb{E}[X]$, $\mathbb{E}[\phi(X)]$ Inequalities Jensen, Markov and Bienaymé-Tchebychev L^2 spaces, definitions, orthogonal projection.

3. Random vectors

Random vectors joint laws/densities/cdf. Fubini's theorems Transformations applications of Jacobian formula (In)dependence covariance/correlation Sums of independent random variables

4. Gaussian vectors

 $Definitions.\ Covariance,\ Linear\ transformations\ of\ gaussian\ vectors.$

5. Conditioning

conditional expectation discrete/continuous case. Conditioning = orthogonal projections conditional distributions

6. More on random variables

Concentration inequalities Order statistics Mixtures

7. Convergences of random variables

Convergences of r.v. \neq types of convergences. Law(s) of Large Numbers.

8. Convergences of distributions

Definitions and criteria Characteristic functions, cdf. The discrete case (Binomial \rightarrow Poisson).

The Central Limit Theorem Confidence intervals : asymptotic vs non-asymptotic

References:

- G.Grimmett, D.Stirzaker. Probability and Random Processes, Oxford Univ. Press.
 - A very nice and easy-to-read introduction to Theoretical Probability, with many examples.
- A.DasGupta. Probability for Statistics and Machine Learning, Springer.
 - A modern and very comprehensive book, with a special emphasis on what is needed for Machine learning.

Usual distributions

1 Discrete distributions

- Uniform distribution in $\{1, 2, ..., n\}$, $\mathbb{P}(X = i) = 1/n$ for each n.

$$\mathbb{E}[X] = \frac{n+1}{2}, \quad \text{Var}(X) = \frac{n^2 - 1}{12}.$$

- Bernoulli law X with parameter $p \in [0,1]$,

$$\mathbb{P}(X = 1) = p, \, \mathbb{P}(X = 0) = 1 - p.$$

$$\mathbb{E}[X] = p, \quad \text{Var}(X) = p(1-p).$$

- **Binomial** law Bin(n, p) with parameters $n \ge 1, p \in [0, 1]$ (= number of successes in n Bernoulli trials) $Bin(n, p) \in \{0, 1, ..., n\}$ and

$$\mathbb{P}(\operatorname{Bin}(n,p) = k) = \binom{n}{k} p^k (1-p)^{n-k}.$$

$$\mathbb{E}[X] = np$$
, $\operatorname{Var}(X) = np(1-p)$.

- **Geometric** law \mathcal{G} with parameter $p \in [0, 1]$ (= first success in Bernoulli trials) $\mathcal{G} \in \{1, 2, ...\}$ and

$$\mathbb{P}(\mathcal{G} = k) = p(1-p)^{k-1}.$$

$$\mathbb{E}[X] = 1/p$$
, $Var(X) = (1-p)/p^2$.

- **Poisson** law \mathcal{P} with parameter $\lambda > 0$. $\mathcal{P} \in \{0, 1, 2, \dots\}$ and

$$\mathbb{P}(\mathcal{P} = k) = e^{-\lambda} \frac{\lambda^k}{k!}.$$

$$\mathbb{E}[X] = \lambda, \quad Var(X) = \lambda.$$

2 Continuous distributions

- **Uniform** distribution in [a, b]:

$$f(x) = \frac{1}{b-a}$$
 for $a \le x \le b$.

$$\mathbb{E}[X] = (a+b)/2, \quad Var(X) = (b-a)^2/12.$$

- **Exponential** distribution with parameter $\lambda > 0$:

$$f(x) = \lambda \exp(-\lambda x)$$
 for $x \ge 0$.

$$\mathbb{E}[X] = 1/\lambda, \quad Var(X) = 1/\lambda^2.$$

- **Normal** (or **gaussian**) distribution $\mathcal{N}(\mu, \sigma^2)$ with parameters μ, σ^2 :

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$
 for all x .

$$\mathbb{E}[X] = \mu, \quad Var(X) = \sigma^2.$$

- χ^2 (Khi-square) distribution with d degrees of freedom:

$$X = X_1^2 + \dots + X_d^2,$$

where X_i 's are i.i.d. $\mathcal{N}(0,1)$

$$\mathbb{E}[X] = d, \quad Var(X) = 2d.$$