

CS2080: Applied Privacy for Data Science Introduction to Differential Privacy (cont.)

School of Engineering & Applied Sciences Harvard University

February 12, 2025

DP for one query/release

[Dwork-McSherry-Nissim-Smith '06]

Def: M is ε -DP if for all x, x' differing on one row, and all q

 $\forall \text{ sets } T, \qquad \Pr[M(x,q) \in T] \leq e^{\varepsilon} \cdot \Pr[M(x',q) \in T]$

(Probabilities are (only) over the randomness of M.)

The Laplace Mechanism

[Dwork-McSherry-Nissim-Smith '06]

- Let \mathcal{X} be a data universe, and \mathcal{X}^n a space of datasets.
 - This is the Bounded DP setting: n known and public.
- For $x, x' \in \mathcal{X}^n$, write $x \sim x'$ if x and x' differ on ≤ 1 row.
- For a query $q: \mathcal{X}^n \to \mathbb{R}$, the global sensitivity is $\Delta q = \mathrm{GS}_q = \max_{x \sim x'} |q(x) q(x')|$.
- The Laplace distribution with scale b, Lap(b): $_{0.4}^{0.5}$
 - Has density function $f(y) = e^{-|y|/b}/2b$.
 - Mean 0, standard deviation $\sqrt{2} \cdot b$.

Theorem: $M(x,q) = q(x) + \text{Lap}(\Delta q/\varepsilon)$ is ε -DP.

Two Laplace distributions, for two adjacent datasets x and x'. The definition of ϵ -differential privacy requires the ratio of M(x)/M(x') is not greater than e^{ϵ} for all points along the x-axis. Thus for any realized output z (for example here, z=1.3) we can not determine that x or x' were more likely to have produced z.

Calculating Global Sensitivity

1.
$$\mathcal{X} = \{0,1\}, q(x) = \sum_{i=1}^{n} x_i, \Delta q = 1$$

2.
$$\mathcal{X} = \mathbb{R}, \ q(x) = \sum_{i=1}^{n} x_i, \Delta q = \infty$$

3.
$$X = [0,1], q(x) = \text{mean}(x_1, x_2, ..., x_n), \Delta q = 1/n$$

4.
$$\mathcal{X} = [0,1], \ q(x) = \text{median}(x_1, x_2, \dots, x_n), \Delta q = \begin{cases} 1 \text{ if } n \text{ odd} \\ 1/2 \text{ if } n \text{ even} \end{cases}$$

5.
$$\mathcal{X} = [0,1], \ q(x) = \text{variance}(x_1, x_2, ..., x_n), \Delta q = 1/n - 1/n^2$$

Q: for which of these queries is the Laplace Mechanism "useful"?

A: 1, 3, 5

Properties of the Definition

- Suffices to check pointwise: M is ε -DP if and only if $\forall x \sim x' \ \forall q \ \forall y \ \Pr[M(x,q) = y] \le e^{\varepsilon} \cdot \Pr[M(x',q) = y]$.
- Preserved under post-processing: If M is ε -DP and f is any function, then M'(x,q)=f(M(x,q)) is ε -DP.
- (Basic) composition: If M_i is ε_i -DP for $i=1,\ldots,k$, then $M'\big(x,(q_1,\ldots,q_k)\big)=(M_1(x,q_1),\ldots,M_k(x,q_k))$ is $(\varepsilon_1+\cdots+\varepsilon_k)$ -DP
 - Use independent randomness for the k queries
 - Holds even if q_i 's are chosen adaptively

Interpreting the Definition

- Whatever an adversary learns about me, it could have learned from everyone else's data.
- Mechanism cannot leak "individual-specific" information.
- Above interpretations hold regardless of adversary's auxiliary information or computational power.
- Protection against MIAs: let $X = (X_1, ..., X_n)$ be a r.v. distributed on \mathcal{X}^n and $X_{-i} = (X_1, ..., X_{i-1}, \bot, X_{i+1}, ..., X_n)$ be X with Alice's data removed. Then for every MIA A,

$$\Pr[A(M(X)) = \text{"In"}] \le e^{\varepsilon} \cdot \Pr[A(M(X_{-i})) = \text{"In"}]$$

$$\text{TPR on } X$$

$$\text{FPR on } X_{-i}$$

Varying the Data Domain and Privacy Unit

- Unbounded DP (n not publicly known):
 - Datasets: multisets x from a data universe \mathcal{X}
 - Can represent as histogram $h_x: \mathcal{X} \to \mathbb{N}$, $h_x(i) = \#$ copies of i
 - Adjacency: $x \sim x'$ if $|x\Delta x'| \leq 1$ (add/remove 1 record)
 - Equivalently $\sum_{i \in \mathcal{X}} |h_{\mathcal{X}}(i) h_{\mathcal{X}'}(i)| \le 1$

Social Networks:

- Datasets: graphs G
- Adjacency: $G \sim G'$ if
 - differ by ≤ 1 edge (edge privacy), OR
 - differ by ≤ 1 node and incident edges (node privacy)

Q: which is better for privacy?

Real Numbers Aren't

[Mironov `12]

- Digital computers don't manipulate actual real-numbers
 - Floating-point implementations of the Laplace Mechanism can have M(x,q) and M(x',q) disjoint \rightarrow privacy violation!

Solutions:

- Round outputs of M to a discrete number (with care).
- Or use the Geometric Mechanism:
 - Ensure that q(x) is always an integer multiple of γ .
 - Define $M(x,q)=q(x)+\gamma\cdot \mathrm{Geo}(\Delta q/\gamma\varepsilon)$, where $\Pr[\mathrm{Geo}(b)=k]\propto \exp(-|k|/b)$ for $k\in\mathbb{Z}$.