(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-336659

(43)公開日 平成7年(1995)12月22日

技術表示箇	FΙ	庁内整理番号	識別記号			(51) Int.Cl. ⁶	
						7/15	H04N
			Α	370		3/14	G06F
		7368-5E	D	354		13/00	
		9364-5L	R	310		15/00	
未請求 請求項の数17 OL (全 22 頁	審査請求						
000001007	(71)出顧人		05	₽ 6−1255	特願		(21)出願番号
キヤノン株式会社							
東京都大田区下丸子3丁目30番2号		17日) 6 月	6年(1994	平成		(22)出願日
	(72)発明者						
東京都大田区下丸子3丁目30番2号 キーノン株式会社内							
弁理士 國分 孝悦	(74)代理人						
·							
	1						

(54) 【発明の名称】 通信装置

(57)【要約】

【目的】 ファイル内の情報を共有ウィンドウに書き込む操作を簡便かつ迅速に行えるようにする。

【構成】 種々のファイルに対応して表示されているファイルアイコン13~15をドラッグし、これを共有ウィンドウ12内の所望の位置にドロップすることにより、上記ファイル内の情報(例えばテキストや画像)を共有ウィンドウ12内に展開するとともに、回線を介して接続された相手側の通信装置に対して上記ファイル内の情報を送信してファイル内の情報を共有するようにすることにより、エディタを一々起動しなくても、上記アイコンに対してドラッグ操作およびドロップ操作を記アイコンに対してドラッグ操作およびドロップ操作をするだけで、上記アイコンに対応する情報を共有ウィンドウ12にファイル内の情報を取り込む操作を簡便かつ迅速に行うことができるようにする。

【特許請求の範囲】

. .

【請求項1】 回線を介して相手側の装置と接続して用いられ、上記相手側装置と共有画面を相互に有するように成された通信装置において、

上記通信装置に格納されているファイルに対応して表示されているアイコンに対して行われる操作に応じて上記ファイル内の情報を上記共有画面に展開して上記相手側装置と共有するようにする手段を設けたことを特徴とする通信装置。

【請求項2】 上記操作は、アイコンに対するドラッグ 10 操作およびドロップ操作であることを特徴とする請求項 1に記載の通信装置。

【請求項3】 回線を介して相手側の装置と接続して用いられ、上記相手側装置と共有画面を相互に有するように成された通信装置において、

上記通信装置の共有ウィンドウ内において所望の位置を クリック操作により指定するクリック手段と、

上記共有ウィンドウの外に表示されているファイルアイ コンを上記共有ウィンドウの外から内にドラッグするド ラッグ手段と、

上記ドラッグ手段によりドラッグされたファイルアイコンを、上記クリック手段により指定された共有ウィンドウ内の位置にドロップするドロップ手段と、

上記ドロップ手段によるドロップ操作の後に、上記ドラッグ手段によりドラッグされたファイルアイコンに対応 するファイル内の情報を、上記クリック手段により指定 された位置に挿入する挿入手段と、

上記クリック手段により指定された位置の情報および上記ドラッグ手段によりドラッグされたファイルアイコンに対応するファイル内の情報を相手側装置に送信する送 30 信手段とを設けたことを特徴とする通信装置。

【請求項4】 請求項3に記載の通信装置において、 上記相手側装置の共有ウィンドウ内における指定位置の 情報および相手側装置のファイル内の情報を受信する受 信手段と、

上記受信手段で受信した自装置側の共有ウィンドウ内の 受信した指定位置に、上記受信したファイル内の情報を 挿入する挿入手段とを設けたことを特徴とする通信装 置。

【請求項 5.】 上記相手側装置と共有されるファイル内 40 の情報は、テキストデータであることを特徴とする請求 項1、3または4記載の通信装置。

【請求項6】 上記相手側装置と共有されるファイル内の情報は、画像データであることを特徴とする請求項1、3または4記載の通信装置。

【請求項7】 回線を介して相手側の装置と接続して用いられ、上記相手側装置と共有画面を相互に有するように成された通信装置において、

上記通信装置の共有ウィンドウ内において所望の範囲を ドラッグ操作により指定する第1のドラッグ手段と、 上記共有ウィンドウの外に表示されているファイルアイ コンを上記共有ウィンドウの外から内にドラッグする第 2のドラッグ手段と、

上記第2のドラッグ手段によりドラッグされたファイル アイコンを、上記第1のドラッグ手段により指定された 共有ウィンドウ内の範囲にドロップするドロップ手段

上記ドロップ手段によるドロップ操作の後に、上記第2 のドラッグ手段によりドラッグされたファイルアイコン のに対応するファイル内のテキストでもって上記第1のド ラッグ手段により指定された範囲のテキストを置換する 置換手段と、

上記第1のドラッグ手段により指定された範囲の情報および上記第2のドラッグ手段によりドラッグされたファイルアイコンに対応するファイル内のテキストを相手側装置に送信する送信手段とを設けたことを特徴とする通信装置。

【請求項8】 請求項7に記載の通信装置において、

上記相手側装置の共有ウィンドウ内における指定範囲の 20 情報および相手側装置のファイル内のテキストを受信す る受信手段と、

上記受信手段で受信した指定範囲の情報が示す自装置側の共有ウィンドウ内の範囲のテキストを、上記受信手段で受信したファイル内のテキストでもって置換する置換手段とを設けたことを特徴とする通信装置。

【請求項9】 回線を介して相手側の装置と接続して用いられ、上記相手側装置と共有画面を相互に有するように成された通信装置において、

上記通信装置の共有ウィンドウ内において所望の範囲を ドラッグ操作により指定する第1のドラッグ手段と、

上記共有ウィンドウの外に表示されているファイルアイ コンを上記共有ウィンドウの外から内にドラッグする第 2のドラッグ手段と、

上記第2のドラッグ手段によりドラッグされたファイル アイコンを、上記第1のドラッグ手段により指定された 共有ウィンドウ内の範囲にドロップするドロップ手段 と

上記ドロップ手段によるドロップ操作の後に、上記第2 のドラッグ手段によりドラッグされたファイルアイコン 7 に対応するファイル内の画像を、上記第1のドラッグ手 段により指定された範囲に表示する表示手段と、

上記第1のドラッグ手段により指定された範囲の情報および上記第2のドラッグ手段によりドラッグされたファイルアイコンに対応するファイル内の画像を相手側装置に送信する送信手段とを設けたことを特徴とする通信装置。

【請求項10】 請求項9に記載の通信装置において、 上記相手側装置の共有ウィンドウ内における指定範囲の 情報および相手側装置のファイル内の画像を受信する受 50 信手段と、 上記受信手段で受信した指定範囲の情報が示す自装置側 の共有ウィンドウ内の範囲に、上記受信手段で受信した ファイル内の画像を表示する表示手段とを設けたことを 特徴とする通信装置。

【請求項11】 請求項6または9に記載の通信装置において、

上記ドラッグされたファイルファイコンに対応するファイル内の画像を共有ウィンドウ内の指定範囲に表示するとき、その画像が上記指定範囲からはみ出さないように 縦横同じ、または別々の倍率で拡大または縮小する手段 を設けたことを特徴とする通信装置。

【請求項12】 上記ファイルアイコンのドラッグ操作中に、上記ファイルアイコンをドラッグアイコンに変更して表示する表示制御手段を設けたことを特徴とする請求項5、6、7または9に記載の通信装置。

【請求項13】 回線を介して相手側の装置と接続して 用いられ、上記相手側装置と共有画面を相互に有するよ うに成された通信装置において、

上記送信手段によるファイル送信中に、共有ウィンドウ 内に上記ファイルアイコンを表示する表示手段と、

上記送信手段により送信されるファイルの受信を完了したときに、上記共有ウィンドウ内に表示されているファイルアイコンを消去する表示消去手段とを設けたことを 特徴とする通信装置。

【請求項14】 回線を介して相手側の装置と接続して 30 る。 用いられ、上記相手側装置と共有画面を相互に有するよ 【で うに成された通信装置において、 【 (

上記共有ウィンドウの外に表示されているファイルアイ コンを上記共有ウィンドウの外から内にドラッグするド ラッグ手段と、

上記ドラッグ手段によりドラッグされたファイルアイコンを共有ウィンドウ内にドロップするドロップ手段と、上記ドロップ手段によるドロップ操作の後に、上記ドラッグ手段によりドラッグされたファイルアイコンを共有ウィンドウ内に表示する表示手段と、

上記共有ウィンドウ内に表示されたファイルアイコンに 対応するファイルを相手側装置に送信する送信手段と、 上記送信手段により送信されるファイルの受信を完了し たときに、上記共有ウィンドウ内に表示されているファ イルアイコンを消去する表示消去手段とを設けたことを 特徴とする通信装置。

【請求項15】 請求項13または14に記載の通信装置において、

上記送信されてきたファイルを受信したときに、上記受 である。また、ドラッグ操作とは、マウ 信ファイルに対応するファイルアイコンを上記共有ウィ *50* したままマウスを移動する操作である。

ンドウ内に表示する表示手段と、

上記表示されたファイルアイコンを上記共有ウィンドウ の外にドラッグするドラッグ手段と、

上記ドラッグ手段によりドラッグされたファイルアイコンを上記共有ウィンドウの外でドロップするドロップ手段と、

上記ドロップ手段によるドロップ操作の後に、上記ファイルアイコンに対応するファイルを所定の記憶手段に保存する保存手段と、

縦横同じ、または別々の倍率で拡大または縮小する手段 10 上記ファイル受信が完了したことを相手側装置に通知すを設けたことを特徴とする通信装置。 る通知手段とを設けたことを特徴とする通信装置。

【請求項16】 請求項15に記載の通信装置において.

上記表示手段は、上記共有ウィンドウ内において相手側 装置の共有ウィンドウ内に表示されているファイルアイ コンと同じ位置に、上記受信ファイルに対応するファイルアイコンを表示するようになされていることを特徴と する通信装置。

【請求項17】 請求項15に記載の通信装置において、

上記表示手段は、上記共有ウィンドウ内の固定された位置に、上記受信ファイルに対応するファイルアイコンを表示するようになされていることを特徴とする通信装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、共有ウィンドウ上に表示されたテキストや画像等からなる会議情報を通信回線を介して相手と共有するようになされた通信装置に関する。

[0002]

【従来の技術】従来、通信装置は、通信回線を介して通信相手の装置に接続されて用いられる。そして、この通信装置の表示部には、共有ウィンドウが表示される。この共有ウィンドウ上には、テキストや画像等からなる会議情報が通信相手の装置と同じようにに表示される。

【0003】また、共有ウィンドウ内にテキストや画像 等を書き込むこともでき、この変更結果は相手の共有ウィンドウに即時に反映されるようになっている。通信装 40 置の使用中に、あるファイル内のテキストや画像を共有ウィンドウに書き込むときは、一旦エディタ等を起動してファイルを開き、そのファイル中のテキストや画像の全体を選択してコピー・アンド・ペーストするようにしている。

【0004】ここで、コピー・アンド・ペーストとは、ドラッグ操作等により選択したテキストや画像をクリップ・ボードと呼ばれる一時的な記憶領域にコピーし、クリップ・ボードから別のウィンドウ内に貼りつける操作である。また、ドラッグ操作とは、マウスのボタンを押したままフロスを移動する操作である。

5

[0005]

【発明が解決しようとする課題】しかしながら、上記従 来例では、通信装置の使用中にあるファイル内のテキス トや画像を共有ウィンドウに書き込むときは、一旦エデ ィタ等を起動してファイルを開き、そのファイル中のテ キストや画像の全体を選択してコピー・アンド・ペース トしなければならないので、操作が煩雑であるという欠 点があった。

【0006】本発明は上述の問題点にかんがみ、ファイ ル内の情報を共有ウィンドウに書き込む操作を簡便に、 かつ迅速に行えるようにすることを目的とする。

[0007]

【課題を解決するための手段】本発明の通信装置は、回 線を介して相手側の装置と接続して用いられ、上記相手 側装置と共有画面を相互に有するように成された通信装 置において、上記通信装置に格納されているファイルに 対応して表示されているアイコンに対して行われる操作 に応じて上記ファイル内の情報を上記共有画面に展開し て上記相手側装置と共有するようにする手段を設けてい

【0008】本発明の他の特徴とするところは、回線を 介して相手側の装置と接続して用いられ、上記相手側装 置と共有画面を相互に有するように成された通信装置に おいて、上記通信装置に格納されているファイルに対応 して表示されているファイルアイコンに対してドラッグ 操作およびドロップ操作をすることにより、上記ファイ ルアイコンに対応するファイルを相手側装置に送信する 送信手段と、上記送信手段によるファイル送信中に、共 有ウィンドウ内に上記ファイルアイコンを表示する表示 を完了したときに、上記共有ウィンドウ内に表示されて いるファイルアイコンを消去する表示消去手段とを設け たものである。

[0009]

【作用】本発明は上記技術手段より成るので、同じ画面 上に表示されたファイルアイコンに対して簡単な所定の 操作をするだけで、上記ファイルアイコンに対応するフ ァイル内の情報を共有画面(共有ウィンドウ)に展開す ることが可能となり、共有ウィンドウにテキストを書き 込んだり画像を挿入したりする際に、エディタを一々起 40 動しなくても済むようになる。

【0010】また、本発明の他の特徴によれば、送信側 装置から受信側装置にファイルを送信すると、その送信 ファイルに対応するファイルアイコンが送信側装置で表 示され、その後、受信側装置でファイル受信が完了する と、上記ファイルアイコンの表示が消されるようになる ので、ファイルの受信が完了したかどうかを送信側にお いて確認することが可能となる。

[0011]

参照して説明する。まず、第1の実施例として、ファイ ル内のテキストを共有ウィンドウに展開する場合につい て説明する。

【0012】図1は、本実施例の通信装置の構成を示す ブロック図である。図1において、1は本装置全体を制 御するCPU、2は上記CPU1で実行されるプログラ ムを格納するROM、3は上記CPU1で使用される種 々のデータを格納するRAMである。

【0013】次いで、4は上記CPU1で使用される種 10 々のファイル (テキストや画像などのファイル) を格納 する磁気ディスク等からなる外部記憶装置、5は本装置 の操作を行うためのキーポードやマウス等からなる操作 部、6はCRT(ブラウン管)やLCD(液晶表示ディ スプレイ)等からなる表示部7を制御する表示制御部で ある。

【0014】次いで、8はLAN (Local Area Networ k) 等のインタフェースを制御する回線制御部、9は本 装置が通信相手の装置と接続されるLAN等の回線、1 0は上記の各構成プロック1~6、および8を接続する 20 バスである。以上のような構成の通信装置が、同様にし て構成されている他の通信装置に回線9を介して接続さ わる.

【0015】図2は、テキストファイルの展開前におけ る表示部7の画面の表示例を示す図である。図2におい て、11は表示部7の画面全体、12は相手装置との間 で表示されたテキストを共有する共有ウィンドウ(共有 画面)である。

【0016】次いで、13~15はファイルアイコンで あり、図1の外部記憶装置4に格納されている種々のテ 手段と、上記送信手段により送信されるファイルの受信 30 キストファイルに対応するものである。16はドラッグ アイコンであり、ドラッグ操作(マウスボタンを押した ままマウスを移動すること)が行われている間、表示さ わる.

> 【0017】次いで、17はポインタであり、マウスや キーボード等の操作部5の操作に連動して表示画面11 上を任意に移動する。このポインタ17は、操作部5を 用いて種々の操作をするときに、その操作位置を指し示 すものである。18はクリック操作(マウスボタンを短 い時間押すこと)により表示されたカーソル、19はド ラッグ操作により共有ウィンドウ12内に表示されたハ ッチングである。

> 【0018】図2(a)に示すように、外部記憶装置4 に格納されているファイル中のテキストを共有ウィンド ウ12内に展開したいときは、まず、共有ウィンドウ1 2内でテキストを展開したい位置にポインタ17を移動 し、そこでクリック操作をすることによりカーソル18 を表示させる。

【0019】次に、例えばファイルアイコン13に対応 するファイルを共有ウィンドウ12内に展開したい場合 【実施例】以下、本発明の通信装置の一実施例を図面を 50 には、ファイルアイコン13上にポインタ17を移動し

てドラッグ操作を開始する。ドラッグ操作を開始する と、このドラッグ中は、移動するポインタ17がある位 置にドラッグアイコン16が表示される。

【0020】そして、ポインタ17をカーソル18の位 置に移動してドロップ操作(ドラッグ操作の後でマウス ボタンを離すこと)をすると、上記ドラッグ操作により 選択されたファイルアイコン13に対応するファイルの 内容が、カーソル18の位置の前に挿入される。

【0021】また、ドロップ操作をすると、ドラッグ元 のファイルアイコン13の表示およびこのファイルアイ コン13に対応するファイルの内容は残るが、共有ウィ ンドウ12上のドラッグアイコン16の表示は消える。 【0022】テキストの展開位置を指定するには、図2 (b) に示すように、ハッチング19を表示させること によっても行うことができる。この場合には、共有ウィ ンドウ12内でテキストを展開したい範囲にポインタ1

【0023】そして、上述と同様にしてファイルアイコ ロップすると、ハッチング19の範囲内のテキストが、 上記ドラッグ操作により選択されたファイルアイコン1 3に対応するファイルの内容で置換される。

7を移動し、そこでドラッグ操作をすることによりハッ

チング19を表示させる。

【0024】図3は、上述のようなファイル展開後にお ける表示部7の画面の表示例を示す図である。図2を用 いて説明したように、ファイルアイコン13をカーソル 18上でドロップすると、カーソル18の位置の前に上 ・ 記ファイルアイコン13に対応するファイルの内容が挿 入される。また、ファイルアイコン13をハッチング1 9上でドロップすると、ハッチング19の範囲内のテキ ストが上記ファイルアイコン13に対応するファイルの 内容で置換される。

【0025】この結果、共有ウィンドウ12に展開され たテキストは、図3に示すようになる。なお、図3にお いて、展開前の元のテキストは「XXX・・・XXX」 で示され、展開によって挿入または置換されたファイル は「AAA・・・AAA」で示される。

【0026】上述のように操作部5により指定されたテ キストを展開する位置または範囲(カーソル18の位置 またはハッチング19の範囲)の情報、および指定され 40 たファイルアイコン13に対応するファイル中のテキス トは、回線制御部8により回線9を介して相手装置に送 信される。

【0027】一方、上述のような送信側装置に回線9を 介して接続されている受信側装置においても、表示画面 11上には、相手側装置と同様の共有ウィンドウ12が 表示されている。ただし、ファイルアイコン13~15 は、必ずしも表示されているとは限らない。

【0028】これにより、受信側装置の回線制御部8に よってテキストの展開位置または範囲の情報とファイル・50 示のときに表示制御部6に渡される。

中のテキストとが受信されると、送信側装置の共有ウィ ンドウ12内に展開された位置と同じ位置に、同じテキ スト「AAA・・・AAA」が表示される。

【0029】図4は、本実施例におけるRAM3上のメ モリマップを示す図である。図4において、Mdはドラ ッグの動作モード(「範囲指定」または「テキスト展 開」)を格納する変数、Txは共有ウィンドウ12の左 端からポインタ17までの距離を文字単位で格納する変 数、Tyは共有ウィンドウ12の上端からポインタ17 10 までの距離を文字単位で格納する変数である。

【0030】次いで、Sx(1) は共有ウィンドウ12の 左端からカーソル18またはハッチング19の先頭まで の距離を文字単位で格納する配列、Sx(2) は共有ウィ ンドウ12の左端からハッチング19の終端までの距離 を文字単位で格納する配列(カーソル18が表示されて いるときは、ゼロに設定される)である。

【0031】次いで、Sy(I) は共有ウィンドウ12の 上端からカーソル18、またはハッチング19の先頭ま での距離を文字単位で格納する配列、Sy(2) は共有ウ ン13をドラッグしてこれをハッチング19の位置にド 20 ィンドウ12の上端からハッチング19の終端までの距 離を文字単位で格納する配列(カーソル18が表示され ているときは、ゼロに設定される)である。

> 【0032】次いで、Rx(1) は受信した配列Sx(1) の格納フィールドCx(1)の値を格納する変数、Rx (2) は受信した配列 S x (2) の格納フィールド C x (2) の値を格納する変数、Ry(1) は受信した配列Sy(1) の格納フィールドCy(1) の値を格納する変数、Ry (2) は受信した配列Sy(2) の格納フィールドCy(2) の値を格納する変数である。なお、上記各格納フィール 30 ドCx(1)、Cx(2)、Cy(1)、Cy(2) については 後述する。

【0033】次いで、Pxは表示画面11の左端からポ インタ17までの距離を画素単位で格納する変数、Py は表示画面11の上端からポインタ17までの距離を画 素単位で格納する変数、Dxは表示画面11の左端から ドラッグアイコン16までの距離を画素単位で格納する 変数、Dyは表示画面11の上端からドラッグアイコン 16までの距離を画素単位で格納する変数である。

【0034】次いで、Fn(i) は展開するファイルのフ ァイル名を格納する配列、Tx(i,j) は共有ウィンドウ 12内に表示されるテキストを格納する配列 (i は列番 号、j は行番号)、Bf(i) はファイルアイコン13~ 15のピットマップを格納する配列、Bd(i) はドラッ グアイコン16のビットマップを格納する配列である。 【0035】なお、本装置の起動時には、配列Bf(i) はファイルアイコン13~15のビットマップで初期化 され、配列Bd(i) はドラッグアイコン16のピットマ ップで初期化されるものとする。そして、これらの初期 化されたビットマップ情報は、各アイコン13~16表 【0036】図5は、回線制御部8から送信されるテキストファイルのパケットのフォーマットを示す図である。図5において、Lpはパケットの長さを格納するフィールド、Cmはコマンドの種別を格納するフィールド、Cx(1) は配列Sx(1) の値を格納するフィールド、Cx(2) は配列Sx(2) の値を格納するフィールド、Cy(1) は配列Sy(1) の値を格納するフィールド、Cy(2) は配列Sy(2) の値を格納するフィールド、Cy(2) は配列Sy(2) の値を格納するフィールド、T(i) はファイルFn(i) 内のテキストを格納するフィールドである。

【0037】次に、図6~図10に、図1に示したROM2に格納されているプログラムのうち、テキスト展開をする場合における各イベントの発生時にCPU1によって起動される処理のフローチャートを示す。

【0038】図6は、マウスのクリック時に起動される 処理のフローチャートである。すなわち、このフローチャートは、図2(a)のカーソル18を表示させる際の 処理を示している。

【0039】図6において、まずステップP1で、表示制御部6から読み込んだ現在選択中のオブジェクトの種 20別が「テキスト」か否かを判定し、「テキスト」であるならステップP2に進む。そうでないなら処理を終了する。

【0040】ステップP2では、CPU1は、配列Sx(1)、Sx(2)、Sy(1)、Sy(2)が示す位置のカーソル18またはハッチング19の表示を消去するように表示制御部6に指示する。これは、カーソル18やハッチング19がすでに表示されているときに、それを消去するためである。

【0041】次に、ステップP3で、表示制御部6からポインタ17の位置情報を文字単位で変数 $T \times E T y$ に読み込む。そして、ステップP4で、上記変数 $T \times E T y$ の値をそれぞれ配列 $S \times (I) E S y (I)$ に設定し、ステップP5で、配列 $S \times (I) E S y (I)$ に値ゼロをそれぞれ設定する。続いて、ステップP6で、変数 $T \times E T y$ が示す位置、すなわちクリック操作で指定した位置にカーソル18を表示するように表示制御部6に指示して、処理を終了する。

【0042】図7は、マウスのドラッグ操作の開始時に 起動される処理のフローチャートである。すなわち、図 40 7中のステップP1~P7の処理は、図2(b)のハッ チング19の先頭位置を指定する際の処理を示し、ステップP8~P13の処理は、図2(a)および(b)に 示したファイルアイコン13~15の中から所望のファイルアイコンを選択する際の処理を示している。

【0043】図7において、まずステップP1で、表示制御部6から読み込んだ現在選択中のオブジェクトの種別が「テキスト」か否かを判定し、「テキスト」であるならステップP2に進む。そうでないならステップP8に進む。

【0044】ステップP2では、変数Mdの値を「範囲 指定」を表す値に設定する。続いてCPU1は、ステッ プP3で、配列Sx(1),Sx(2),Sy(1),Sy(2) が示

す位置のカーソル18またはハッチング19の表示を消去するように表示制御部6に指示する。

【0045】次に、ステップP4で、表示制御部6からポインタ17の位置情報を文字単位で変数TxとTyに読み込む。そして、ステップP5で、変数TxとTyの値をそれぞれ配列Sx(1)とSy(1)に設定し、ステップP6で、変数TxとTyの値をそれぞれ配列Sx(2)とSy(2)に設定する。

【0046】その後、ステップP7で、配列Sx(1), Sx(2), Sy(1), Sy(2) が示す範囲に、すなわちドラッグ操作により指定した範囲にハッチング19を表示するように表示制御部6に指示し、処理を終了する。なお、この場合、Sx(1)=Sx(2), Sy(1)=Sy(2) であるから、ハッチング19はこの段階では点のように表示される。

【0047】一方、ステップP8では、表示制御部6から読み込んだ現在選択中のオブジェクトの種別が「ファイルアイコン」か否かを判定し、「ファイルアイコン」であるならステップP9に進む。そうでないならステップP14に進む。

【0048】ステップP9では、変数Mdの値を「テキスト展開」を表す値に設定する。続いて、ステップP10で、表示制御部6からポインタ17の位置情報を画素単位で変数PxとPyに読み込む。そして、ステップP11で、変数PxとPyの値をそれぞれ変数DxとDyに設定する。

30 【0049】次に、ステップP12で、表示制御部6から展開するファイルのファイル名を配列Fn(i)に読み込む。そして、ステップP13で、変数PxとPyが示す位置、すなわちポインタ17が存在している位置にドラッグアイコン16を表示するように表示制御部6に指示して、処理を終了する。

【0050】また、上記ステップP8からステップP14に進んだときは、「範囲指定」も「テキスト展開」も行わない状態を表す「アイドル」に対応する値に変数Mdの値を設定して、処理を終了する。

【0051】図8は、マウスをドラッグしながら移動している時に起動される処理のフローチャートである。すなわち、図8中のステップP1~P5の処理は、図2

(b) のハッチング19の範囲を指定している際中の処理を示し、ステップ $P6\sim P10$ の処理は、図2(a) および(b) に示したドラッグアイコン16の移動中における処理を示している。

【0052】図8において、まずステップP1で、変数 Mdの値が「範囲指定」を表す値であるかどうかを判定し、「範囲指定」の値であるならステップP2に進む。

50 そうでないならステップP6に進む。

【0053】ステップP2では、配列Sx(1), Sx(2), Sy(1), Sy(2) の現在の値が示している範囲のハッチ ング19の表示を消去するように表示制御部6に指示す る。続いて、ステップP3で、表示制御部6からポイン タ17の位置情報を文字単位で変数TxとTyに読み込

【0054】次に、ステップP4で、変数TxとTyの 値をそれぞれ配列Sx(2)とSy(2)に設定する。そし て、ステップP5で、以上のようにして設定した配列S x(1), Sx(2), Sy(1), Sy(2) の新たな値(ただし、 ハッチング19の始点を表す配列Sx(1), Sy(1) の値 は変わっていない)が示す範囲にハッチング19を表示 するように表示制御部6に指示して、処理を終了する。

【0055】一方、ステップP1からステップP6に進 んだときは、変数Mdの値が「テキスト展開」を表す値 であるかどうかを判定し、「テキスト展開」の値である ならステップP7に進む。そうでないなら処理を終了す

【0056】ステップP7では、変数DxとDyの現在 の値が示している位置にあるドラッグアイコン16の表 20 示を消去するように表示制御部6に指示する。続いて、 ステップP8で、表示制御部6からポインタ17の位置 情報を画素単位で変数PxとPyに読み込む。

【0057】次に、ステップP9で、変数PxとPyの 値をそれぞれ変数DxとDyに設定する。そして、ステ ップP10で、以上のようにして設定した変数DxとD yの新たな値が示す位置にドラッグアイコン16を表示 ・ するように表示制御部6に指示して、処理を終了する。

【0058】図9は、マウスのドロップ時に起動される ップP1で、変数Mdの値が「テキスト展開」を表す値 であるかどうかを判定し、「テキスト展開」の値である ならステップP2に進む。そうでないなら処理を終了す

【0059】ステップP2では、変数DxとDyが示す 位置にあるドラッグアイコン16の表示を消去するよう に表示制御部6に指示する。続いて、ステップP3で、 変数DxとDyが示す位置が、共有ウィンドウ12内で あるか否かを判定する。そして、共有ウィンドウ12内 にあるならステップP4に進む。そうでないなら処理を 40終了する。

【0060】なお、ここでは、表示制御部6から共有ウ ィンドウ12の位置情報を画素単位で読み込み、この読 み込んだ位置情報が以下の条件を満たすときは「共有ウ ィンドウ12内」であるとみなす。

共有ウィンドウの左端≦Dx≦共有ウィンドウの右端 共有ウィンドウの下端≦Dy≦共有ウィンドウの上端 【0061】次に、ステップP4で、表示制御部6から ポインタ17の位置情報を文字単位で変数TxとTyに 示す位置が、配列Sx(1), Sx(2), Sy(1), Sy(2) が 示す位置か範囲内、すなわちカーソル18の位置または ハッチング19の範囲内であるかどうかを判定する。そ して、これらの位置または範囲内にあるならステップP 6に進む。そうでないなら処理を終了する。

【0062】なお、ここでは、表示制御部6から共有ウ ィンドウ12の位置情報を文字単位で読み込み、この読 み込んだ位置情報が以下の条件を満たすときは「カーソ ル18の位置またはハッチング19の範囲内」であると 10 みなす。

【0063】Sx(2) = 0、Sy(2) = 0のとき Tx = Sx(1) $h \supset Ty = Sy(1)$ $S \times (2) \neq 0$, $S \times (2) \neq 0$ $\forall 0$.Ty=Sy(1) のとき、 Sx(1) ≦Tx≦共有ウィンドウの右端

Sy(1) <Ty<Sy(2) のとき、

共有ウィンドウの左端≤Tx≤共有ウィンドウの右端 Ty = Sy(2) のとき、

共有ウィンドウの左端≤Tx≤Sx(2)

【0064】次に、ステップP6で、配列Sx(1),Sx (2) S v (1) S v (2) が示す位置または範囲にあるカー ソル18またはハッチング19の表示を消去するように 表示制御部6に指示する。続いて、ステップP7で、配 列Sx(1),Sx(2),Sy(1),Sy(2) が示す位置または 範囲にファイルFn(i)内のテキストを展開する。

 $[0\ 0\ 6\ 5]$ $[0\ 0\ 6\ 5]$ $[0\ 0\ 6\ 5]$ $[0\ 0\ 0\ 0\ 0]$ $[0\ 0\ 0\ 0\ 0]$ きは、変数TxとTyが示す位置にファイルFn(i)内 のテキストを挿入する。また、Sx(2) ≠ 0、Sy(2) ≠0のときは、配列Sx(1), Sx(2), Sy(1), Sy(2) 処理のフローチャートである。図9において、まずステ 30 が示す範囲のテキストをファイルF n (i) 内のテキスト で置き換える。

> 【0066】そして、ステップP8で、テキスト展開コ マンドをフィールドCmに格納し、配列Sx(I),Sx (2), Sy(1), Sy(2) の値をそれぞれフィールドCx (1), Cx(2), Cy(1), Cy(2) に格納し、ファイルFn (i) 内のテキストをフィールドT(i) に格納する。そし て、これらの各フィールド情報を回線制御部8を介して 相手装置に送信して、処理を終了する。

> 【0067】図10は、回線制御部8がフィールドCm 中にテキスト展開コマンドを含むパケットを受信した時 に起動される処理のフローチャートである。まずステッ プP1で、回線制御部8から受信したフィールドCx (1), Cx(2), Cy(1), Cy(2) の情報をそれぞれ配列R x(1), Rx(2), Ry(1), Ry(2) に設定する。次に、ス テップP2で、回線制御部8から受信したフィールドT (j) の情報を配列Rx(1), Rx(2), Ry(1), Ry(2) が 示す位置または範囲に展開して、処理を終了する。

【0068】このように、本実施例では、同じ表示画面 11上に表示されたファイルアイコン13に対してドラ 読み込む。そして、ステップP5で、変数TxとTyが 50 ッグ操作およびドロップ操作をするだけで、上記ファイ

ルアイコン13に対応するファイル内のテキストを共有 ウィンドウ12に展開するとともに、相手装置に送信す ることができ、共有ウィンドウ12にテキストを書き込 む操作を簡便に行うことができる。

【0069】なお、前述した第1の実施例では、テキス トの指定範囲をハッチング19で表示するようにしてい たが、アンダーライン、太字または斜体等で表示するよ うにしてもよい。

【0070】次に、第2の実施例として、ファイル内の 画像を共有ウィンドウに展開する場合について説明す る。なお、本実施例の通信装置の構成は、図1に示した ものと同じである。

【0071】図11は、画像のファイルを展開する前に おける表示部7の画面の表示例を示す図であり、図2に 示したものと同じものには同じ符号を付している。図1 1において、21~23はファイルアイコンであり、図 1の外部記憶装置4に格納されている種々の画像のファ イルに対応するものである。

【0072】次いで、24はクリック操作により表示さ れたカーソルであり、上記テキスト展開時に表示される 20 11上には、相手側装置と同様の共有ウィンドウ12が カーソル18 (図2 (a) 参照) とは異なる形状をして いる。また、25はドラッグ操作により共有ウィンドウ ** 12内に表示されたフレームである。

【0073】図11(a)に示すように、外部記憶装置 4に格納されているファイル中の画像を共有ウィンドウ 12内に表示したいときは、まず、共有ウィンドウ12 内で画像を表示したい位置にポインタ17を移動し、そ こでクリック操作をすることによりカーソル24を表示 させる。

するファイル中の画像を共有ウィンドウ12内に表示し たい場合には、ファイルアイコン21上にポインタ17 を移動してドラッグ操作を開始する。ドラッグ操作を開 始すると、このドラッグ中は、移動するポインタ17が ある位置にドラッグアイコン16が表示される。

【0075】その後、ポインタ17をカーソル24の位 置に移動してドロップ操作をすると、上記ドラッグ操作 により選択されたファイルアイコン21に対応するファ イル中の画像が、カーソル24の位置に表示される。

【0076】また、ドロップ操作をすると、ドラッグ元 40 のファイルアイコン21の表示およびこのファイルアイ コン21に対応するファイルの内容は残るが、共有ウィ ンドウ12上のドラッグアイコン16の表示は消える。

【0077】画像の表示位置を指定するには、図11

(b) に示すように、フレーム25を表示させることに よっても行うことができる。すなわち、共有ウィンドウ 12内の画像を表示したい範囲にポインタ17を移動 し、そこでドラッグ操作をすることによりフレーム25 を表示させる。この場合のドラッグ操作は、フレーム2 5の対角線方向に行われる。

【0078】そして、上述と同様にしてファイルアイコ ン21をドラッグしてこれをフレーム25の位置にドロ ップすると、上記ドラッグ操作により選択されたファイ ルアイコン21に対応する画像がフレーム25の範囲内 に表示される。

14

【0079】図12は、上述のようなファイル展開後に おける表示部7の画面の表示例を示す図である。図12 に示すように、ファイルアイコン21をカーソル24上 またはフレーム25上でドロップすると、カーソル18 10 の位置またはフレーム25の範囲内に上記ファイルアイ コン21に対応する画像26が表示される。

【0080】上述のように操作部5により指定された画 像を表示する位置または範囲(カーソル24の位置また はフレーム25の範囲)の情報、および指定されたファ イルアイコン13に対応するファイル中の画像データ は、回線制御部8により回線9を介して相手装置に送信 される。

【0081】一方、上述のような送信側装置に回線9を 介して接続されている受信側装置においても、表示画面 表示されている。ただし、ファイルアイコン21~23 は、必ずしも表示されているとは限らない。

【0082】これにより、受信側装置の回線制御部8に よって画像の表示位置または範囲の情報とファイル中の 画像データとが受信されると、送信側装置の共有ウィン ドウ12内に表示された位置または範囲と同じ位置また は範囲に、同じ画像26が表示される。

【0083】図13は、本実施例におけるRAM3上の メモリマップを示す図である。なお、図13において、 【0074】次に、例えばファイルアイコン21に対応 30 図4に示したメモリマップ中に示したものと同じ符号を 付したものは、同様の内容を有する変数または配列であ る。まず、Md'はドラッグの動作モード(「範囲指 定」または「画像展開」)を格納する変数である。

> 【0084】次いで、Wx(1) は表示画面11の左端か ら共有ウィンドウ12の左端までの距離を画素単位で格 納する配列、Wx(2) は表示画面11の左端から共有ウ ィンドウ12の右端までの距離を画素単位で格納する配 列、Wy(1) は表示画面11の上端から共有ウィンドウ 12の上端までの距離を画素単位で格納する配列、Wy (2) は表示画面11の上端から共有ウィンドウ12の下 端までの距離を画素単位で格納する配列である。

【0085】次いで、Sx(1) は共有ウィンドウ12の 左端からカーソル24またはフレーム25の左端までの 距離を画素単位で格納する配列、Sx(2)′は共有ウィン ドウ12の左端からフレーム25の右端までの距離を画 素単位で格納する配列 (カーソル24が表示されている ときは、ゼロに設定される)である。

【0086】次いで、Sy(I) は共有ウィンドウ12の 上端からカーソル24またはフレーム25の左端までの 50 距離を画素単位で格納する配列、Sy(2)'は共有ウィン

ドウ12の上端からフレーム25の右端までの距離を画素単位で格納する配列(カーソル24が表示されているときは、ゼロに設定される)である。

【0087】次いで、Rx(1)'は受信した配列Sx(1)'の格納フィールドFx(1)の値を格納する変数、Rx(2)'は受信した配列Sx(2)'の格納フィールドFx(2)の値を格納する変数、Ry(1)'は受信した配列Sy(1)'の格納フィールドFy(1)の値を格納する変数、Ry(2)'は受信した配列Sy(2)'の格納フィールドFy(2)の値を格納する変数である。なお、上記各格納フィール 10ドFx(1)、Fx(2)、Fy(1)、Fy(2)については後述する。

【0088】次いで、Bxは共有ウィンドウ12内に表示されるファイル中の画像26の横方向に対する画素数を格納する変数、Byは共有ウィンドウ12内に表示されるファイル中の画像26の縦方向に対する画素数を格納する変数、B(i,j)は共有ウィンドウ12内に表示されるファイル中の画像26のピットマップを格納する配列(iは横方向の画素の番号、jは縦方向の画素の番号)である。

【0089】次いで、Bfxはファイルアイコン21~23の画像の横方向に対する画素数を格納する変数、Bfyはファイルアイコン21~23の画像の縦方向に対する画素数を格納する変数、Bf(i,j)はファイルアイコン21~23の画像のピットマップを格納する配列(iは横方向の画素の番号、jは縦方向の画素の番号)である。

・【0090】次いで、Bdxはドラッグアイコン16の 画像の横方向に対する画素数を格納する変数、Bdyは ドラッグアイコン16の画像の縦方向に対する画素数を 30 格納する変数、Bd(i,j) はドラッグアイコン16の画 像のビットマップを格納する配列(i は横方向の画素の 番号、j は縦方向の画素の番号)である。

【0091】なお、本装置の起動時には、変数 B f xはファイルアイコン21~23の画像の横方向に対する画素数で初期化され、変数 B f yはファイルアイコン21~23の画像の縦方向に対する画素数で初期化され、配列 B f (i, j) はファイルアイコン21~23の画像のピットマップで初期化されるものとする。

【0092】また、変数Bdxはドラッグアイコン16 40 の画像の横方向に対する画素数で初期化され、変数Bdyはドラッグアイコン16の画像の縦方向に対する画素数で初期化され、配列Bd(i,j)はドラッグアイコン16の画像のピットマップで初期化されるものとする。

【0093】そして、これらの初期化された変数および配列は、各アイコンを表示するときに表示制御部6に渡される。また、共有ウィンドウ12が表示されるとき、配列WxとWyは、表示画面11内の共有ウィンドウ12の位置で初期化されるものとする。

【0094】図14は、回線制御部8から送信される画 50 例では、ドラッグの動作モードを格納する変数としてM

像ファイルのパケットのフォーマットを示す図である。図14において、Lpはパケットの長さを格納するフィールド、Cmはコマンドの種別を格納するフィールド、Fx(1)は配列Sx(1)の値を格納するフィールド、Fx(2)は配列Sx(2)の値を格納するフィールド、Sy(1)は配列Sy(1)の値を格納するフィールド、Sy(2)は配列Sy(2)の値を格納するフィールド、Sy(2)は配列Sy(2)の値を格納するフィールド、Sy(2)は配列Sy(2)の値を格納するフィールド、Sy(2)は配列Sy(2)の値を格納するフィールド、Sy(2)は配列Sy(3)がの値を格納するフィールド、Sy(3)は配列Sy(3)がの値を格納するフィールド、Sy(3)は配列Sy(3)がの値を格納するフィールド、Sy(3)は配列Sy(3)がの値を格納するフィールド(Sy(3)はの画素の番号)である。

16

【0095】次に、図15~図19に、ROM2に格納されているプログラムのうち、画像展開をする場合における各イベントの発生時にCPU1によって起動される処理のフローチャートを示す。

【0096】図15は、マウスのクリック時に起動される処理のフローチャートである。すなわち、このフローチャートは、図11(a)のカーソル24を表示させる際の処理を示している。

【0097】図15において、まずステップP1で、表 20 示制御部6から読み込んだ現在選択中のオブジェクトの 種別が「共有ウィンドウ」か否かを判定し、「共有ウィンドウ」であるならステップP2に進む。そうでないな ら処理を終了する。

【0098】次に、ステップP2~P6の処理は、図6に示したステップP2~P6の処理とほぼ同じである。 異なるところは、図6のフローチャートでは、テキストを扱っていたために文字単位の変数Tx, Tyと文字単位の配列Sx(1), Sx(2), Sy(1), Sy(2) とを用いていたが、本実施例では、画像を扱っているために画素単位の変数Px, Pyと画素単位の配列Sx(1), Sx(2), Sy(1), Sy(2), Sy(1), Sx(2), Sy(1), Sx(2), Sy(1), Sy(2), Sy(1), Sx(2), Sy(1), Sy(2), Sy(1), Sy(2), Sy(1), Sy(2), Sy(1), Sy(2), Sy(2), Sy(3), Sy(3),

【0099】図16は、マウスのドラッグ操作の開始時に起動される処理のフローチャートである。すなわち、図16中のステップP1~P7の処理は、図11(b)に示したフレーム25の先頭位置を指定する際の処理を示し、ステップP8~P13の処理は、図11(a)および(b)に示したファイルアイコン21~23の中から所望のファイルアイコンを選択する際の処理を示している。

【0100】図16において、まずステップP1で、表示制御部6から読み込んだ現在選択中のオブジェクトの種別が「共有ウィンドウ」か否かを判定し、「共有ウィンドウ」であるならステップP2に進む。そうでないならステップP8に進む。

【0101】この図16も上記した図15と同様に、ステップP2~P14の処理は、図7に示したステップP2~P14の処理とほぼ同じである。すなわち、本実施例では、ドラッグの動作モードを検練する変数としてM

d'を用いるとともに、画素単位の変数Px、Pyと画 素単位の配列Sx(1)', Sx(2)', Sy(1)', Sy(2)' とを用いていることのみが、図7のフローチャートと相 違する。よって、ここでも処理内容の詳細な説明は省略 することとする。

【0102】図17は、マウスをドラッグしながら移動 している時に起動される処理のフローチャートである。 すなわち、図17中のステップP1~P6の処理は、図 11(b)に示したフレーム25の範囲を指定している 11(a) および(b) に示したドラッグアイコン16 の移動中における処理を示している。

【0103】図17において、まずステップP1で、変 数Md'の値が「範囲指定」を表す値であるかどうかを 判定し、「範囲指定」の値であるならステップP2に進 む。そうでないならステップP7に進む。

【0104】ステップP2では、表示制御部6からポイ ンタ17の位置情報を画素単位で変数PxとPyに読み 込む。そして、ステップP3で、この読み込んだ変数P xとPyが示す位置が、配列Sx(1)', Sx(2)', Sy 20 (1)′, Sy(2)′が示す位置または範囲内にあるかどうか を判定し、範囲内にあるならステップP4に進む。そう でないなら処理を終了する。

【0105】なお、ここでは、以下の条件を満たすとき に、「配列Sx(1)', Sx(2)', Sy(1)', Sy(2)'が 示す位置または範囲内」であるとみなす。

[0106] Sx(1)'≤Sx(2)', かつ, Sy(1)'≤S y(2)'のとき、Wx(1) +Sx(1)'≦Px≦Wx(1) + $S \times (2)'$, $h \supset W y (1) + S y (1)' \le P y \le W y (1)$ + Sy(2)'

Sx(1)'>Sx(2)'、かつ、Sy(1)'<Sy(2)'のと δ , Wx(1) + Sx(2)' ≤ Px≤Wx(1) + Sx(1)', かつ、 $Wy(1) + Sy(1)' \le Py \le Wy(1) + Sy(2)'$ [0107] Sx(1)' < Sx(2)', ho, Sy(1)' > Sy(2)'のとき、 $Wx(1) + Sx(1)' \le Px \le Wx(1) +$ $S \times (2)'$, $h \supset W y (1) + S y (2)' \le P y \le W y (1)$ + Sy(1)'

 $S \times (1)' > S \times (2)'$, $h \supset S \times (1)' > S \times (2)'$ $o \succeq S \times (2)' = S \times (2)' =$ き、 $Wx(1) + Sx(2)' \le Px \le Wx(1) + Sx(1)'$ 、 かつ、 $Wy(1) + Sy(2)' \le Py \le Wy(1) + Sy(1)'$ 【0108】次に、ステップP4で、配列Sx(1)'、S x(2)', Sy(1)', Sy(2)'の現在の値が示している範 囲のフレーム25の表示を消去するように表示制御部6 に指示する。続いて、ステップP5で、変数PxとPy の値をそれぞれ配列Sx(2)', Sy(2)'に設定する。

【0109】そして、ステップP5で、以上のようにし て設定した配列Sx(1)', Sx(2)', Sy(1)', Sy (2) の新たな値が示す範囲にフレーム25を表示するよ うに表示制御部6に指示して、処理を終了する。ここ で、配列Sx(1)′, Sx(2)′, Sy(1)′, Sy(2)′が作 *50* からはみ出さないようにするためである。

る線分が対角線となるようにフレーム25を表示する。 【0110】一方、ステップP1からステップP7に進 んだときは、変数Md'の値が「画像展開」を表す値で あるかどうかを判定し、「画像展開」の値であるならス テップP8に進む。そうでないなら処理を終了する。な お、ステップP8~P11の処理は、図8に示したフロ ーチャートのステップP7~P10の処理の同様である ので、説明を省略する。

18

【0111】図18は、マウスのドロップ時に起動され 際中の処理を示し、ステップP 7 \sim P 1 1 の処理は、図 IO る処理のフローチャートである。図 1 8 において、まず ステップP1で、変数Md'の値が「画像展開」を表す 値であるかどうかを判定し、「画像展開」の値であるな らステップP2に進む。そうでないなら処理を終了す

> 【0112】ステップP2では、変数DxとDyが示す 位置のドラッグアイコン16の表示を消去するように表 示制御部6に指示する。続いて、ステップP3で、表示 制御部6からポインタ17の位置情報を画素単位で変数 PxとPyに読み込む。

【0113】そして、ステップP4で、この取り込んだ 変数PxとPyが示すポインタ17の位置が、配列Sx (1)', Sx(2)', Sy(1)', Sy(2)'が示す位置または 範囲内、すなわちカーソル24の位置またはフレーム2 5の範囲内であるかどうかを判定する。そして、これら の位置または範囲内にあるならステップP5に進む。そ うでないなら処理を終了する。

【0114】なお、ここでは、以下の条件を満たすとき に、「カーソル24の位置またはフレーム25の範囲 内」であるとみなす。

 $30 \, Sx(2) = 0 \, Sy(2) = 0$ のとき

Px = Wx(1) + Sx(1)', ho, Py = Wy(1) + S

 $Sx(2) \neq 0$ 、 $Sy(2) \neq 0$ であって、図170ステッ プP3と同じ条件を満たすとき

【0115】次に、ステップP5で、配列Sx(l)', S x(2)', Sy(1)', Sy(2)'が示す範囲のフレーム25 の表示を消去するように表示制御部6に指示する。続い て、ステップP6で、ファイル名Fn(i) に対応する画 像26の横方向および縦方向の画素数をそれぞれ変数B *40* xとByに読み込む。

【0116】そして、ステップP7で、配列Sx(1)', Sx(2)', Sy(1)', Sy(2)'が示す位置または範囲に ファイル名Fn(i) に対応する画像26を表示する。こ こで、 $S \times (2)' = 0$ 、 $S \times (2)' = 0$ のときは、変数 $S \times (2)' = 0$ (2)'に (Wx(1) +Bx)とWx(2) との小さい方の値· を設定するとともに、変数Sy(2)'に(Wy(1)+B y) とWy(2) との小さい方の値を設定する。これは、 配列Sx(1)', Sx(2)', Sy(1)', Sy(2)'により表 される画像を表示する範囲26が、共有ウィンドウ12

【0117】また、ファイルFn(i)から読み込んだ配列B(i, j)で示される画像26は、横方向に|Sx(l)'-Sx(2)'|/Bx倍されるとともに、縦方向に|Sy(l)'-Sy(2)'|/By倍される。ここで、 $|\alpha|$ は α 式の絶対値を表す。

【0118】次に、ステップP8で、画像展開コマンド の使用中にファイルを相手装置にをフィールドCmに格納し、配列Sx(1)'、Sx(2)'、 イル転送アプリケーションを別に イル転送アプリケーションを別に イル名等を指定して転送を行うか アメ(2)、Fy(1)、Fy(2) に格納し、配列B(i, j) で示 される画像の値をフィールドBb(i, j) に格納する。そ 10 ドロップして転送を行っていた。して、これらの各フィールド情報を回線制御部8を介し て相手装置に送信して、処理を終了する。 信装置の使用中にファイルを転送

[0119] 図19は、回線制御部8がフィールドCm中に画像展開コマンドを含むパケットを受信した時に起動される処理のフローチャートである。まずステップP1で、回線制御部8から受信したフィールドCx(1), Cx(2), Cy(1), Cy(2) の情報をそれぞれ配列Rx(1)', Rx(2)', Ry(1)', Ry(2)'に格納する。次に、ステップP2で、回線制御部8から受信したフィールドT(i) の情報を、配列Rx(1)', Rx(2)', Ry(1)', Ry(2)'が示す位置または範囲に展開して、処理を終了する。

【0120】このように、本実施例では、同じ表示画面 11上に表示されたファイルアイコン21に対してドラッグ操作およびドロップ操作をするだけで、上記ファイルアイコン21に対応するファイル内の画像を共有ウィンドウ12に表示するとともに、これを相手装置に送信することができ、共有ウィンドウ12に画像を表示する操作を簡便に行うことができる。

【0121】なお、前述した第2の実施例では、画像の表示範囲をフレーム25で表示するようにしていたが、ハッチングを付けたり表示の色を変えることによって表示するようにしてもよい。

【0122】また、前述した第2の実施例では、クリックした位置が画像26の左上端になるようにしているが、クリックした位置が画像26の中央や右下端などになるようにしてもよい。

【0123】また、図180ステップP7において、配列B(i,j)で示される画像26をフレーム25に合わせて拡大縮小するときの縦横の比率が異なるときがあるが、以下のようにすることによって対応することができる。このようにすれば、縦横の比率が保たれる。

【0 1 2 4】 (|Sx(1)'-Sx(2)'|/Bx) \leq (|Sy(1)'-Sy(2)'|/By) のとき、縦横方向にそれぞれ|Sx(1)'-Sx(2)'|/Bx倍する。

(| S x (1)' - S x (2)' | / B x) > (| S y (1)' - S y (2)' | / B y) のとき、縦横方向にそれぞれ | S y (1)' - S y (2)' | / B y 倍する。

【0 1 2 5】以上、第1の実施例および第2の実施例で ンドウ12内に表示されるファイルアイコンである。ま述べたように、回線9を介して接続された送信側装置と *50* た、36はドロップ操作後に表示されるファイルアイコ

受信側装置との間で、共有ウィンドウ12内に展開また は表示されるテキストや画像などのファイルを相互に転 送することにより、これらのファイルを共有することが できるようになされている。

【0126】ところが、従来の通信装置では、通信装置の使用中にファイルを相手装置に転送するときは、ファイル転送アプリケーションを別に起動し、相手先のファイル名等を指定して転送を行うか、または送信したいファイルのアイコンを共有ウィンドウ内にドラッグおよびドロップして転送を行っていた。

【0127】しかしながら、このような従来例では、通信装置の使用中にファイルを転送するときは、受信側装置でファイル受信が完了したかどうかを送信側装置において確認することができないという欠点があった。次に述べる第3の実施例による通信装置は、このような欠点を解決するためになされたものである。

【0128】図20は、ファイル送信時における表示部7の画面の表示例を示す図である。図20において、31~33はファイルアイコンであり、送信側装置の外部20記憶装置4に保存されているテキストや画像等のファイルに対応するものである。また、34はドロップ操作後共有ウィンドウ12内にに表示されるファイルアイコンである。

【0129】ファイルを相手装置に送信したいときは、 送信したいファイルに対応するファイルアイコン31を ドラッグし、その後、共有ウィンドウ12上でドロップ することによって行う。

【0130】すなわち、まず、送信したいファイルに対応するファイルアイコン31上にポインタ17を移動し 30 てドラッグ操作を開始する。このドラッグ中は、移動するポインタ17の位置にドラッグアイコン16が表示される。

【0131】その後、ポインタ17を共有ウィンドウ12内に移動してドロップ操作をすると、ドロップ操作をした位置にファイルアイコン34が表示されるとともに、ドラッグアイコン16の表示は消える。そして、ファイルアイコン34に対応するファイルが相手装置に送信される。

【0132】このとき、ドラッグ元のファイルアイコン 40 31の表示されたままであり、これに対応するファイル の内容は保持される。その後、相手装置においてファイ ルの受信が完了すると、ファイルアイコン34の表示が 消える。これにより、相手装置がファイルの受信を完了 したかどうかを送信側で確認することができるようにな ス

【0133】図21は、ファイル受信時における表示部7の画面の表示例を示す図である。図21において、35は送信側装置からファイルを受信したときに共有ウィンドウ12内に表示されるファイルアイコンである。また36はドロップ操作後に表示されるファイルアイコ

ンである。

【0134】ファイルの受信があると、共有ウィンドウ 12上にファイルアイコン35が表示される。このと き、受信したファイルは一時ファイルに記憶される。こ の一時ファイルに記憶されたファイルを保存したいとき は、ファイルアイコン35をドラッグし、共有ウィンド ウ12の外でドロップすることによって行う。

【0135】すなわち、ファイルアイコン35上にポイ ンタ17を移動してドラッグ操作を開始すると、ポイン タ17の位置にドラッグアイコン16が表示される。そ 10 の後、ポインタ17を共有ウィンドウ12の外に移動し てドロップ操作をすると、ドロップ操作をした位置にフ ァイルアイコン36が表示されるとともに、ファイルア イコン35およびドラッグアイコン16の表示は消え る。これでファイルの受信が完了する。

【0136】図22は、本実施例におけるRAM3上の メモリマップを示す図である。なお、図22において、 図4に示したメモリマップ中に示したものと同じ符号を 付したものは、同様の内容を有する変数または配列であ る。まず、Md''はファイル転送の動作モード(「送 信」または「受信」)を格納する変数である。

【0137】次いで、Сsはファイル送信要求コマンド を格納する変数、Crはファイル受信確認コマンドを格 納する変数、Sxは変数Dxの値を格納する変数、Sy は変数Dyの値を格納する変数である。

【0138】次いで、Rxは受信したフィールドSxの 値を格納する変数、Ryは受信したフィールドSyの値 ・を格納する変数、Fsは送信するファイルのファイル名 を格納する配列、Frは受信したファイル名(フィール イルアイコン31~36のビットマップを格納する配 列、Bdはドラッグアイコン16のピットマップを格納 する配列である。

【0139】なお、本装置の起動時には、変数Сsはフ ァイル送信要求コマンドで初期化され、変数Crはファ イル受信確認コマンドで初期化されるものとする。ま た、配列Bfはファイルアイコン31~36のピットマ ップで初期化され、配列Bdはドラッグアイコン16の ビットマップで初期化されるものとする。そして、これ は、各アイコン表示時に表示制御部6に渡される。

【0140】図23は、送信側装置の回線制御部8から 送信されるパケットのフォーマットを示す図である。図 23において、Lpはパケットの長さを格納するフィー ルド、Csはファイル送信要求コマンド(変数Cs)を 格納するフィールド、Sxは変数Sxを格納するフィー ルド、Syは変数Syを格納するフィールド、Fsは送 信するファイルのファイル名(配列Fs)を格納するフ ィールド、Fcは送信するファイルの内容を格納するフ ィールドである。

【0141】また、図24は、受信側装置の回線制御部 8から送信されるパケットのフォーマットを示す図であ る。図24において、Lpはパケットの長さを格納する フィールド、Crはファイル受信確認コマンド(変数C

r) を格納するフィールドである。

【0142】次に、図25~図29に、ROM2に格納 されているプログラムのうち、本実施例における各イベ ントの発生時に CPU1によって起動される処理のフロ ーチャートを示す。

【0143】図25は、マウスのドラッグ操作の開始時 に起動される処理のフローチャートである。すなわち、 このフローチャートは、図20のファイルアイコン31 または図21のファイルアイコン35を指定する際の処 理を示している。

【0144】図25において、まずステップP1で、表 示制御部6から読み込んだ現在選択中のオブジェクトの 種別が「ファイルアイコン」か否かを判定し、「ファイ ルアイコン」であるならステップP2に進む。そうでな いなら処理を終了する。

20 【0145】ステップP2では、表示制御部6からポイ ンタ17の位置情報を変数PxとPyに読み込む。そし て、ステップP3で、この読み込んだ変数PxとPyが 示す位置にドラッグアイコン16を表示するように表示 制御部6に指示する。

【0146】次に、ステップP4で、変数PxとPyの 値をそれぞれ変数DxとDyに格納し、ステップP5 で、上記変数 Pxと Pyが示すポインタ17の位置が共 有ウィンドウ12内にあるかどうかを判定する。ここ で、ポインタ17の位置が共有ウィンドウ12内にない ドFsの値) を格納する配列である。また、Bfはファ 30 ときは、図20のファイルアイコン31を指定した場合 に相当するので、ステップP6に進む。一方、ポインタ 17の位置が共有ウィンドウ12内にあるときは、図2 1のファイルアイコン35を指定した場合に相当するの で、ステップР8に進む。

> 【0147】なお、ここでは、表示制御部6から共有ウ ィンドウ12の位置情報を読み込み、この読み込んだ位 置情報が以下の条件を満たすときに「共有ウィンドウ 内」であるとみなす。

共有ウィンドウの左端<Px<共有ウィンドウの右端 らの初期化された配列Bf, Bd中のピットマップ情報 40 共有ウィンドウの下端<Py<共有ウィンドウの上端 【0148】そして、上記ステップP5からステップP 6に進んだときは、変数Md"の値を「送信」を表す値 に設定する。そして、ステップP7で、表示制御部6か らファイルアイコン31に対応するファイル名(ここで は「File1」) を配列Fsに読み込んで、処理を終了す る。一方、上記ステップP5からステップP8に進んだ ときは、変数Md''の値を「受信」を表す値に設定し て、処理を終了する。

> 【0149】図26は、マウスをドラッグしながら移動 50 している時に起動される処理のフローチャートである。

図26において、まずステップP1で、変数Dx EDy が示す位置にあるドラッグアイコンEDy るように表示制御部EDy 6に指示する。

【0150】次に、ステップP2で、表示制御部6から現在のポインタ17の位置情報を変数PxとPyに読み込む。そして、ステップP3で、この読み込んだ変数PxとPyが示す位置にドラッグアイコン16を表示するように表示制御部6に指示する。続いて、ステップP4で、変数PxとPyの値をそれぞれ変数DxとDyに格納して、処理を終了する。

【0151】図27は、マウスのドロップ時に起動される処理のフローチャートである。すなわち、図27中のステップP1~P6の処理は、図20のファイルアイコン31を共有ウィンドウ12内にドロップしてファイルアイコン34を表示する場合の処理を示している。また、ステップP7~P11の処理は、図21のファイルアイコン35を共有ウィンドウ12の外にドロップしてファイルアイコン36を表示する場合の処理を示している。

【0152】図27において、まずステップP1で、変数DxとDyが示す位置のドラッグアイコン16の表示を消去するように表示制御部6に指示する。次に、ステップP2で、変数Md''の値が「送信」を表す値であるかどうかを判定し、「送信」の値であるならステップP3に進む。そうでないならステップP7に進む。

【0153】ステップP3では、変数DxとDyが示す 位置が共有ウィンドウ12内にあるかどうかを判定し、 共有ウィンドウ12内にあるならステップP4に進む。 そうでないなら処理を終了する。ここで、共有ウィンド ウ12内にあるかどうかの判定は、図25のステップP5における判定と同じ条件で行われる。

【0154】上記ステップP3からステップP4に進んだときは、変数DxとDyが示す位置に、配列Fs中に読み込んだファイル名に対応するファイルアイコン34を表示するように表示制御部6に指示する。また、ステップP5で、変数DxとDyの値をそれぞれ変数SxとSyに格納する。

【0155】そして、ステップP6で、変数Cs,変数Sx,変数Sx,変数Sy,配列Fsの値および配列Fs中に読み込んだファイル名に対応するファイルの内容を、それぞ 40 れフィールドCs,Sx,Sy,Fs,Fcに設定し、これを回線制御部8に送信して処理を終了する。

【0156】一方、上記ステップ P2からステップ P7に進んだときは、変数 Dxと Dyが示す位置が共有ウィンドウ12内にあるかどうかを判定し、共有ウィンドウ12内にあるならステップ P8に進む。そうでないなら処理を終了する。このステップ P7における共有ウィンドウ12内にあるかどうかの判定も、図25のステップ P5における判定と同じ条件で行われる。

【0157】ステップP8では、変数RxとRyが示す 50 納することもない。

位置にあるファイルアイコン35の表示を消去するように表示制御部6に指示し、ステップP9では、変数DxとDyが示す位置に、配列Fs中に読み込んだファイル名に対応するファイルアイコン36を表示するように表示制御部6に指示する。

【0158】次に、ステップP10で、一時ファイルの 名前を配列Fsの値で示される名前に変更する。そし て、ステップP11で、変数Crの値をフィールドCr に設定し、これを回線制御部8に送信して処理を終了す 10 る。

【0159】図28は、回線制御部8が図23のようなフィールドCsを含むパケットを受信した時に起動される処理のフローチャートである。まずステップP1で、回線制御部8から受信したフィールドSx、Sy、Fsの値をそれぞれ変数Rx、変数Ryおよび配列Fr に格納する。

マイコン35を共有ウィンドウ12の外にドロップして 【0160】次に、ステップP2で、回線制御部8からファイルアイコン36を表示する場合の処理を示してい 受信したフィールドFcの値を一時ファイルに格納するとともに、ステップP3で、変数RxとRyが示す位置 に、配列Fs中に読み込んだファイル名に対応するファ はDxとDyが示す位置のドラッグアイコン16の表示 イルアイコン35を表示するように表示制御部6に指示を消去するように表示制御部6に指示 して、処理を終了する。

【0161】図29は、回線制御部8が図24のようなフィールドCrを含むパケットを受信した時に起動される処理のフローチャートである。この場合は、ステップP1で、変数SxとSyが示す位置のファイルアイコン34の表示を消去するように表示制御部6に指示して、処理を終了する。

【0162】なお、前述した第3の実施例では、送信側のと受信側の共有ウィンドウ12は、画面11中の同じ位置にある場合について説明している。これに対し、送信側の共有ウィンドウ12内のファイルアイコン34の相対的な位置情報を受信側に送信するようにしてもよい。このようにすれば、共有ウィンドウ12の位置は、送信側と受信側とで必ずしも同じ位置にある必要はなくなる。

【0163】また、前述した第3の実施例では、図20のファイルアイコン34と図21のファイルアイコン35は、送信側と受信側とで共有ウィンドウ12中の同じ位置に表示されているが、ファイルアイコン35は、受信側の共有ウィンドウ12の固定された位置(例えば、左上端や中央など)に表示するようにしてもよい。

【0164】このとき、変数RxとRyは、ファイルアイコン35を表示する固定した位置を示す値で予め初期化される。また、フィールドSxとSyは必要でない。したがって、図27のステップP6においては、フィールドSxとSyの値は受信側装置に送信しない。また、図28のステップP1においては、フィールドSxとSyの値は受信せず、それぞれの値を変数RxとRyに格

【0165】また、前述した第3の実施例では、受信し たファイルの名前は送信側と同じになるが、ファイルア イコン35を共有ウィンドウ12の外にドラッグする前 に、受信ファイルの新しい名前を受け付けるようにする ことも可能である。

【0166】さらに、前述した第1~第3の実施例で は、端末に接続される回線9としてLANを使用してい るが、ISDNの基本インタフェース、ISDNの一次 群インタフェース、広帯域ISDN、回線交換網、パケ ット交換網、公衆電話網、専用線、構内交換機(PB X) などでも実施することができる。

【0167】また、前述した第1~第3の実施例では、 プログラムやデータを格納する記憶装置としてROM2 やRAM3を使用しているが、フロッピーディスク、ハ ードディスク、ICカードなどでも実施することができ る。

【0168】また、前述した第1~第3の実施例では、 ファイルアイコン13~15をドラッグしてテキストの 展開や画像の表示またはファイルの送信などを行うよう にしていたが、フォルダアイコンをドラッグしてフォル 20 【図11】画像ファイル展開前における表示画面の表示 ダ内のテキストの展開したり、画像を表示したり、ファ イルを送信したりするようにしてもよい。なお、フォル ダとは複数のファイルをまとめて一つの名前を付けたも のである。

【0169】また、前述した第1~第3の実施例では、 テキストや画像は一つのパケットで送信していたが、テ キストや画像のデータ量が大きいときに複数のパケット に分割して送信するようにしてもよい。

[0170]

【発明の効果】本発明は上述したように、種々のファイ ルに対応して表示されているアイコンに対して所定の操 作、例えばドラッグ操作およびドロップ操作をすること により、上記ファイル内の情報(例えばテキストや画 像) を共有画面に展開して、上記ファイル内の情報を相 手側装置と共有する手段を設けたので、エディタを一々 起動せずに、上記アイコンに対してドラッグ操作および - ドロップ操作をするだけで、上記アイコンに対応する情 報を共有画面に取り込むことができ、ファイル内の情報 を共有画面に取り込む操作を簡便に、かつ迅速に行うこ とができる。

【0171】本発明の他の特徴によれば、送信側装置か ら受信側装置にファイルを送信したときに、その送信フ ァイルに対応するファイルアイコンを送信側装置で表示 し、受信側装置でファイル受信が完了したときに、上記 ファイルアイコンの表示を消す手段を設けたので、通信 装置の使用中にファイルを相手側装置に送信するとき に、受信側装置でファイル受信を完了したかどうかを送 信側において確認することができ、円滑な情報交換を行 うことができるようになる。

【図面の簡単な説明】

【図1】本発明の通信装置の一実施例を示すプロック図 である。

【図2】テキストファイル展開前における表示画面の表 示例を示す図である。

【図3】テキストファイル展開後における表示画面の表 示例を示す図である。

【図4】RAM上のメモリマップを示す図である。

【図5】回線制御部から送信されるパケットのフォーマ ットを示す図である。

10 【図6】マウスのクリック時に起動される処理のフロー チャートである。

【図7】マウスのドラッグ操作の開始時に起動される処 理のフローチャートである。

【図8】マウスをドラッグしながら移動している時に起 動される処理のフローチャートである。

【図9】マウスのドロップ操作時に起動される処理のフ ローチャートである。

【図10】テキスト展開コマンドを含むパケットを受信 した時に起動される処理のフローチャートである。

例を示す図である。

【図12】画像ファイル展開後における表示画面の表示 例を示す図である。

【図13】RAM上のメモリマップを示す図である。

【図14】回線制御部から送信されるパケットのフォー マットを示す図である。

【図15】マウスのクリック時に起動される処理のフロ ーチャートである。

【図16】マウスのドラッグ操作の開始時に起動される 30 処理のフローチャートである。

【図17】マウスをドラッグしながら移動している時に 起動される処理のフローチャートである。

【図18】マウスのドロップ操作時に起動される処理の フローチャートである。

【図19】画像展開コマンドを含むパケットを受信した 時に起動される処理のフローチャートである。

【図20】ファイル送信時における表示画面の表示例を 示す図である。

【図21】ファイル受信時における表示画面の表示例を *40* 示す図である。

【図22】RAM上のメモリマップを示す図である。

【図23】回線制御部から送信されるパケットのフォー マットを示す図である。

【図24】回線制御部から送信されるパケットの他のフ ォーマットを示す図である。

【図25】マウスのドラッグ操作の開始時に起動される 処理のフローチャートである。

【図26】マウスをドラッグしながら移動している時に 起動される処理のフローチャートである。

50 【図27】マウスのドロップ操作時に起動される処理の

(15)

28

フローチャートである。

【図28】図23のパケットを受信した時に起動される 処理のフローチャートである。

27 "

【図29】図24のパケットを受信した時に起動される 処理のフローチャートである。

【符号の説明】

- 1 CPU
- 2 ROM

- 3 RAM
- 4 外部記憶装置
- 5 操作部
- 6 表示制御部
- 7 表示部
- 8 回線制御部
- 9 回線
- 10 バス

【図3】

(16)

【図26】 [図16] 開始 開始 DxとDyが示す位置のド ラッグアイコンを消去 選択オブジェクトは 選択オブジェクトは No No 【共有ウィンドウ」? 「ファイルアイコン」シ ポインダ位置をPxと _PP9 P2 Pyに挟み込む Yes Yes Mdの値を「範囲指 Mdの値を「アイド Mdの値を「画像展 定」に設定 関」に設定 ル」に設定 PxとPyが示す位置にド P 3 ラッグアイコンを表示 P10 ポインタ位置をPxと SxとSyが示すカーソルか Pyに読み込む フレームを消去 PxとPyの値をそれぞれ DxとDyに格納 ポインタ位置をPxと PxとPyの値をそれぞれ DxとDyに設定 Pyに既み込む 終了 P12 PxとPyの値をそれぞれ Sx(1)とSy(1)に設定 ファイル名をFnに 既み込む P13 ,P 6 PxとPyが示す位置にド PxとPyの値をそれぞれ Sx(2)とSy(2)に設定 ラッグアイコンを表示 P 7 SxとSyが示す範囲に フレームを表示 終了

【図17】

-

【図25】

4.7

•

【図27】

