PSEUDO-RANDOM FUNCTIONS CONCEPTS

Overview

Pseudo-Random Functions (PRFs) generalize the notion of pseudo-random generators, a pseudo-random function is like random-looking functions as opposed to random-looking strings generated in pseudo-random generators.

Here we consider the pseudorandomness of distribution on functions and this type of distribution is introduced through keyed functions.

$$F: \{0,1\}^* \times \{0,1\}^* \to \{0,1\}^*$$

Prf is of the form F given above where the first input is called the key and is mostly represented by k.

A Pseudorandom function is said to be efficient if there is a polynomial-time algorithm that computes F(k, x)

More formally it is defined as below

DEFINITION 3.24 An efficient, length preserving, keyed function $F: \{0,1\}^* \times \{0,1\}^* \to \{0,1\}^*$ is a pseudorandom function if for all probabilistic polynomial-time distinguishers D, there is a negligible function negl such that:

$$\left| \Pr[D^{F_k(\cdot)}(1^n) = 1] - \Pr[D^{f(\cdot)}(1^n) = 1] \right| \le \mathsf{negl}(n),$$

where the first probability is taken over uniform choice of $k \in \{0,1\}^n$ and the randomness of D, and the second probability is taken over uniform choice of $f \in \mathsf{Func}_n$ and the randomness of D.

Proof:

We stress that D is not given the key k (in the same way that D is not given the seed when defining a pseudorandom generator). It is meaningless to require that F_k "look random" if k is known, since given k it is trivial to distinguish an oracle for F_k from an oracle for f. (All the distinguisher has to do is query the oracle at any point x to obtain the answer y, and compare this to the result $y' := F_k(x)$ that it computes itself using the known value k. An oracle for F_k will return y = y', while an oracle for a random function will return y = y' only with probability 2^{-n} .) This means that if k is revealed, any claims about pseudorandomness no longer hold.

Code construction:

In the main program, a length preserving pseudorandom function has been implemented.

In a length preserving function for some key $k \in \{0,1\}^n$ the function F_K maps n bit input to n bit output.

The construction of the given Pseudo-Random function from a pseudo-random function is formally defined as follows.

CONSTRUCTION 8.20

Let G be a pseudorandom generator with expansion factor $\ell(n) = 2n$, and define G_0, G_1 as in the text. For $k \in \{0,1\}^n$, define the function $F_k : \{0,1\}^n \to \{0,1\}^n$ as:

$$F_k(x_1x_2\cdots x_n)=G_{x_n}\left(\cdots\left(G_{x_2}(G_{x_1}(k))\right)\cdots\right).$$

Here G_0 and G_1 are two invocations of pseudo-random functions on any input. G_0 outputs the value after taking first n bits out of a 2n bit binary string whereas G_1 takes the later n bits.

The function can be viewed as a binary tree of depth n where each node contains an n bit value and key k is the root node and for all non-leaf node

with value v there are two child the left child has value $G_0(v)$ and right child has a value $G_1(v)$

The result $F_k(x)$ for $x = x_1 \cdot \cdot \cdot x_n$ is defined to be the value on the leaf node

reached by traversing the tree according to the bits of x, where x = 0 means

"go left" and $x_i = 1$ means "go right."

The sample construction is shown below.

Proof:

THEOREM 8.21 If G is a pseudorandom generator with expansion factor $\ell(n) = 2n$, then Construction 8.20 is a pseudorandom function.

PROOF We first show that for any polynomial t it is infeasible to distinguish t(n) uniform 2n-bit strings from t(n) pseudorandom strings; i.e., for any polynomial t and any PPT algorithm A, the following is negligible:

$$|\Pr[A(r_1||\cdots||r_{t(n)})=1] - \Pr[A(G(s_1)||\cdots||G(s_{t(n)}))=1]|,$$

where the first probability is over uniform choice of $r_1, \ldots, r_{t(n)} \in \{0, 1\}^{2n}$, and the second probability is over uniform choice of $s_1, \ldots, s_{t(n)} \in \{0, 1\}^n$.

The proof is by a hybrid argument. Fix a polynomial t and a PPT algorithm A, and consider the following algorithm A':

Distinguisher A':

A' is given as input a string $w \in \{0,1\}^{2n}$.

- 1. Choose uniform $j \in \{1, \dots, t(n)\}.$
- 2. Choose uniform, independent values $r_1, \ldots, r_{j-1} \in \{0, 1\}^{2n}$ and $s_{j+1}, \ldots, s_{t(n)} \in \{0, 1\}^n$.
- 3. Output $A(r_1 \| \cdots \| r_{j-1} \| w \| G(s_{j+1}) \| \cdots \| G(s_{t(n)}))$.

For any n and $0 \le i \le t(n)$, let G_n^i denote the distribution on strings of length $2n \cdot t(n)$ in which the first i "blocks" of length 2n are uniform and the remaining t(n) - i blocks are pseudorandom. Note that $G_n^{t(n)}$ corresponds to the distribution in which all t(n) blocks are uniform, while G_n^0 corresponds to the distribution in which all t(n) blocks are pseudorandom. That is,

$$\begin{vmatrix}
\Pr_{y \leftarrow G_n^{t(n)}}[A(y) = 1] - \Pr_{y \leftarrow G_n^0}[A(y) = 1] \\
= \left| \Pr\left[A\left(r_1 \| \cdots \| r_{t(n)} \right) = 1 \right] - \Pr\left[A\left(G(s_1) \| \cdots \| G(s_{t(n)}) \right) = 1 \right] \right|$$
(8.11)

,

Say A' chooses $j = j^*$. If its input w is a uniform 2n-bit string, then A is run on an input distributed according to $G_n^{j^*}$. If, on the other hand, w = G(s) for uniform s, then A is run on an input distributed according to $G_n^{j^*-1}$. This means that

$$\Pr_{r \leftarrow \{0,1\}^{2n}}[A'(r) = 1] = \frac{1}{t(n)} \cdot \sum_{j=1}^{t(n)} \Pr_{y \leftarrow G_n^j}[A(y) = 1]$$

and

$$\Pr_{s \leftarrow \{0,1\}^n} [A'(G(s)) = 1] = \frac{1}{t(n)} \cdot \sum_{j=0}^{t(n)-1} \Pr_{y \leftarrow G_n^j} [A(y) = 1].$$

Therefore,

$$\begin{vmatrix} \Pr_{r \leftarrow \{0,1\}^{2n}}[A'(r) = 1] - \Pr_{s \leftarrow \{0,1\}^n}[A'(G(s)) = 1] \\ = \frac{1}{t(n)} \cdot \begin{vmatrix} \Pr_{y \leftarrow G_n^{t(n)}}[A(y) = 1] - \Pr_{y \leftarrow G_n^0}[A(y) = 1] \end{vmatrix}.$$
 (8.12)

Since G is a pseudorandom generator and A' runs in polynomial time, we know that the left-hand side of Equation (8.12) must be negligible; because

t(n) is polynomial, this implies that the left-hand side of Equation (8.11) is negligible as well.

Turning to the crux of the proof, we now show that F as in Construction 8.20 is a pseudorandom function. Let D be an arbitrary PPT distinguisher that is given 1^n as input. We show that D cannot distinguish between the case when it is given oracle access to a function that is equal to F_k for a uniform k, or a function chosen uniformly from $Func_n$. (See Section 3.5.1.) To do so, we use another hybrid argument. Here, we define distributions over n-bit values at the leaves of a complete binary tree of depth n. By associating each leaf of these binary trees with an n-bit input as in Construction 8.20, we can equivalently view these as distributions over functions mapping n-bit inputs to n-bit outputs. For any n and $0 \le i \le n$, let H_n^i be the following distribution over the values at the leaves of a binary tree of depth n: first choose values for the nodes at level i independently and uniformly from $\{0,1\}^n$. Then for every node at level i or below with value k, its left child is given value $G_0(k)$ and its right child is given value $G_1(k)$. Note that H_n^n corresponds to the distribution in which all values at the leaves are chosen uniformly and independently, and thus corresponds to choosing a uniform function from $\operatorname{\mathsf{Func}}_n$, whereas H_n^0 corresponds to choosing a uniform key k in Construction 8.20 since in that case only the value at the root (at level 0) is chosen uniformly. That is,

$$\left| \Pr_{k \leftarrow \{0,1\}^n} [D^{F_k(\cdot)}(1^n) = 1] - \Pr_{f \leftarrow \mathsf{Func}_n} [D^{f(\cdot)}(1^n) = 1] \right|
= \left| \Pr_{f \leftarrow H_n^0} [D^{f(\cdot)}(1^n) = 1] - \Pr_{f \leftarrow H_n^n} [D^{f(\cdot)}(1^n) = 1] \right|.$$
(8.13)

We show that Equation (8.13) is negligible, completing the proof.

Let t = t(n) be a polynomial upper bound on the number of queries D makes to its oracle on input 1^n . Define a distinguisher A that tries to distinguish t(n) uniform 2n-bit strings from t(n) pseudorandom strings, as follows:

Distinguisher A:

A is given as input a $2n \cdot t(n)$ -bit string $w_1 \| \cdots \| w_{t(n)}$.

- 1. Choose uniform $j \in \{0, ..., n-1\}$. In what follows, A (implicitly) maintains a binary tree of depth n with n-bit values at (a subset of) the internal nodes at depth j + 1 and below.
- 2. Run $D(1^n)$. When D makes oracle query $x = x_1 \cdots x_n$, look at the prefix $x_1 \cdots x_j$. There are two cases:
 - If D has never made a query with this prefix before, then use $x_1 \cdots x_j$ to reach a node v on the jth level of the tree. Take the next unused 2n-bit string w and set the value of the left child of node v to the first half of w, and the value of the right child of v to the second half of w.

• If D has made a query with prefix $x_1 \cdots x_j$ before, then node $x_1 \cdots x_{j+1}$ has already been assigned a value.

Using the value at node $x_1 \cdots x_{j+1}$, compute the value at the leaf corresponding to $x_1 \cdots x_n$ as in Construction 8.20, and return this value to D.

3. When execution of D is done, output the bit returned by D.

A runs in polynomial time. It is important here that A does not need to store the entire binary tree of exponential size. Instead, it "fills in" the values of at most 2t(n) nodes in the tree.

Say A chooses $j = j^*$. Observe that:

- 1. If A's input is a uniform $2n \cdot t(n)$ -bit string, then the answers it gives to D are distributed exactly as if D were interacting with a function chosen from distribution $H_n^{j^*+1}$. This holds because the values of the nodes at level $j^* + 1$ of the tree are uniform and independent.
- 2. If A's input consists of t(n) pseudorandom strings—i.e., $w_i = G(s_i)$ for uniform seed s_i —then the answers it gives to D are distributed exactly as if D were interacting with a function chosen from distribution $H_n^{j^*}$. This holds because the values of the nodes at level j^* of the tree (namely, the $\{s_i\}$) are uniform and independent. (The $\{s_i\}$ are unknown to A, but that makes no difference.)

Proceeding as before, one can show that

$$\left| \Pr \left[A \left(r_1 \| \cdots \| r_{t(n)} \right) = 1 \right] - \Pr \left[A \left(G(s_1) \| \cdots \| G(s_{t(n)}) \right) = 1 \right] \right|$$

$$= \frac{1}{n} \cdot \left| \Pr_{f \leftarrow H_n^0} [D^{f(\cdot)}(1^n) = 1] - \Pr_{f \leftarrow H_n^n} [D^{f(\cdot)}(1^n) = 1] \right|.$$
(8.14)

We have shown earlier that Equation (8.14) must be negligible. The above thus implies that Equation (8.13) must be negligible as well.