Metaheurística GRASP com refinamento por busca local para o Flowshop Permutacional

Alberto F. K. Neto¹

¹Instituto de Informática – Universidade Federal do Rio Grande do Sul (UFRGS) Caixa Postal 15.064 – 91.501-970 – Porto Alegre – RS – Brazil

afkneto@inf.ufrgs.br

1. Introdução

Este relatório refere-se ao trabalho de otimização da disciplina de Otimização Combinatória (INF05010), cursada no período de 2019/1. O texto apresenta o problema de otimização considerado e introduz um modelo de Programação Linear Inteira da literatura do problema. Detalhes sobre o desenvolvimento de um método de solução heurístico baseado em GRASP e Busca Local encontram-se disponíveis nas seções indicadas, e o desempenho do método proposto é comparado com os melhores valores de solução atualmente conhecidos para um pequeno conjunto de instâncias de teste.

2. Descrição do problema

O Problema de Flowshop Permutacional (PFSP) é um tema de pesquisa recorrente nos estudos da otimização combinatória. O problema considera um conjunto de M máquinas e N tarefas, em que todas as tarefas devem ser processadas exatamente uma vez em cada uma das máquinas consideradas. Cada tarefa $1 \le j \le N$ demora $T_{rj} \ge 0$ unidades de tempo para ser processada cada máquina $1 \le r \le M$. Busca-se uma ordem de execução das tarefas que minimize o tempo final de processamento da última máquina considerada. Essa ordem de execução é seguida por todas as máquinas.

[Tseng et al. 2004] propuseram um modelo de programação linear inteira mista para o problema. As variáveis binárias $D_{ik} \in \{0,1\}$ assumem o valor 1 para indicar se a tarefa i deve ser processada em algum momento anterior ao processamento da tarefa k, com $1 \leqslant i < k \leqslant N$. Já as variáveis contínuas $C_{ri} \geqslant 0$ indicam o horizonte de tempo de processamento que cada tarefa $1 \leqslant i \leqslant N$ em cada máquina $1 \leqslant r \leqslant M$. Adicionamente, a variável $C_{\max} \geqslant 0$ é utilizado no cálculo do tempo final de processamento da última máquina. De posse dessas definições, a seguinte formulação modela o Problema de Flowshop permutacional. Note a existência de um parâmetro P, que é um número suficientemente grande usado como "big-M" na modelagem das restrições lógicas do modelo.

$$Minimize C_{max}$$
 (1)

Sujeito a:

$$C_{1i} \geqslant T_{1i} \qquad 1 \leqslant i \leqslant N \qquad (2)$$

$$C_{ri} - C_{r-1,i} \geqslant T_{ri} \qquad 2 \leqslant r \leqslant M, 1 \leqslant i \leqslant N \qquad (3)$$

$$C_{ri} - C_{rk} + PD_{ik} \geqslant T_{ri} \qquad 1 \leqslant r \leqslant M, 1 \leqslant i < k \leqslant N \qquad (4)$$

$$C_{ri} - C_{rk} + PD_{ik} \leqslant P - T_{rk} \qquad 1 \leqslant r \leqslant M, 1 \leqslant i < k \leqslant N \qquad (5)$$

$$C_{\max} \geqslant C_{Mi} \qquad 1 \leqslant i \leqslant N \qquad (6)$$

$$C_{ri} \geqslant 0 \qquad 1 \leqslant r \leqslant M, 1 \leqslant i \leqslant N \qquad (7)$$

$$D_{ik} \in \{0, 1\} \qquad 1 \leqslant i < k \leqslant N \qquad (8)$$

A função objetivo (1) minimiza o tempo de processamento final da última máquina do problema. As restrições (2) e (3) modelam o tempo final de processamento das tarefas na primera e demais máquinas, respectivamente. As restrições (4–5) garantem uma única ordem de execução das tarefas em todas as máquinas. A restrição (6) calcula o tempo final de processamento da última máquina. Por fim, as restrições (7–8) modelam o domínio das variáveis de decisão do problema.

3. Método de solução com GRASP e Busca Local

Tendo em vista a questão da típica baixa eficiência de métodos exatos em resolver problemas de otimização combinatória discreta, propõe-se o seguinte método de solução heurístico para resolução do problema. O método de solução é implementa umaa heurística GRASP para construção de uma soluçãoa inicial [Feo et al. 1994], seguida de uma fase de intensificação com busca local. O pseudocódigo dos algoritmos de construção inicial e de busca local são listados em 1 e 2. Na notação a seguir, uma solução é definida como uma lista com a ordem de processamento das tarefas, e pode ser parcial ou completa. Uma visão geral do método de solução está disponível no algoritmo 3.

Algorithm 1: Construção de solução inicial com GRASP.

```
1 Procedure GRASP (N, M, T, \alpha)
         pend \leftarrow \text{lista com valores } 1, 2, \dots, N
         s \leftarrow lista vazia; z \leftarrow 0
         while pend não está vazia do
 4
               RCL \leftarrow lista vazia
 5
               for j \in pend do
                    \bar{z}_i \leftarrow custo da solução parcial s com adição da tarefa j
                    adicione a tupla (j, \bar{z}_j) em RCL
 8
               ordene RCL em ordem não crescente de \bar{z}
               tam \leftarrow tamanho da lista RCL
10
               tp \leftarrow \text{escolhe aleatoriamente um índice de } [1, \max\{1, \alpha \cdot tam\}]
11
               atualize a solução s e custo z com os dados da tupla RCL_{tp}
12
               remova a tarefa referente a tp de pend
13
14 return s
```

O algoritmo GRASP inicial com uma solução vazia, de custo 0, e incrementalmente adiciona tarefas na ordem de processamento das máquinas. Inicialmente, todas as tarefas são marcadas como pendentes (lista pend). A cada iteração do laço principal (linhas 4–13), calcula-se o custo de inserção de cada tarefa pendente na solução parcial s. Esses valores de custo são adicionados à lista RCL de tarefas candidatas a entrar na solução. Faz-se a ordenação dessa lista em ordem não crescente de custo de solução, e escolhe-se aleatoriamente uma das $\alpha\%$ tarefas iniciais da lista de candidatos. Essa tarefa entra na solução parcial s, e o custo s0 é atualizado de acordo. Finalmente, a tarefa é removida da lista de pendentes e a próxima iteração inicia. Essa implementação de GRASP faz a seleção com s0 pelos índices da lista de candidatos.

Algorithm 2: Algoritmo de Busca Local iterada com trocas aleatória.

```
1 Procedure Swap2LS (s^*, numVezes)

2   | z^* \leftarrow custo da solução atual

3   | for i \leftarrow 1 até numVezes do

4   | selecione tarefas j_1 \neq j_2 aleatoriamente, com distribuição uniforme

5   | \bar{s} \leftarrow troque a ordem de processamento de j_1 \leftrightarrow j_2 em s^*

6   | \bar{z} \leftarrow avalie o custo da solução \bar{s}

7   | if \bar{z} < z^* then

8   | s^* \leftarrow \bar{s}

9   | z^* \leftarrow \bar{z}
```

Após a construção de uma solução inicial com GRASP, inicia-se a fase de melhoramento da solução com o algoritmo de busca local iterado 2. A busca local faz diversas tentativas de troca da ordem de processamento de duas tarefas em posições distintas, e sempre aceita a troca na ordem das tarefas caso seja vantajosa (estratégia de "primeira melhora"). De posse de ambos os algoritmos, é possível definir o método de solução completo como em 3. A heurística começa com a construção de uma solução inicial utilizando-se o procedimento do algoritmo 1. Em seguida, o algoritmo de Busca Local é aplicado no laço das linhas (3–6) da heurística (3). A Busca Local iterada é aplicada usando-se três critérios distintos: até $\lceil N/100 \rceil$ tentativas de troca, depois $\lceil iter/1000 \rceil$ tentativas de troca, e então um número aleatório de trocas entre 1 e N.

Algorithm 3: Algoritmo completo da heurística GRASP com Busca Local.

```
1 Procedure GRASP_LS (N, M, T, \alpha)

2  s \leftarrow \text{GRASP}(N, M, T, \alpha)

3  for iter \leftarrow 1 até MAX\_ITER do

4  Swap2LS(s, \lceil N/100 \rceil)

5  Swap2LS(s, \lceil iter/1000 \rceil)

6  Swap2LS(s, randomInt(1,N))
```

Como consideração final, todas as seleções aleatórias se deram por distribuição uniforme.

4. Resultados computacionais

Os testes computacionais da heurística e da formulação matemática foram conduzidos nas instâncias de teste indicadas na definição do trabalho da disciplinas. Utilizou-se um

computador Intel 3612QM @ 2.10GHz, dispondo-se de 8 GB de memória principal. A heurística foi implementada em Python 3.7.4, e o modelo foi resolvido por meio do GLPK 4.65. O ambiente de testes foi o Arch Linux de 64 bits, com kernel linux-5.3.8.

A tabela 1 apresenta os resultados obtidos ao resolver-se a formulação matemática (1–8). Como critério de parada, utilizou-se um limite de tempo de 1 hora de execução, ou a prova da solução ótima pelo solver. O GLPK foi capaz de encontrar soluções inteiras apenas para as instâncias de menor porte, de até 60 tarefas e 5 máquinas. Para as demais instâncias, o resolvedor não foi capaz de encontrar nem o valor de relaxação ótima do modelo. Apenas a instância VFR10_15_1 teve sua solução ótima encontrada, após 1244,7 segundos de execução do resolvedor. As demais instâncias tiveram sua resolução interrompida por conta do limite de tempo estabelecido. Cabe-se ressaltar que foram habilitados os procedimentos de geração de cortes e procedimentos avançados para escolha da variável de *branching* do solver com as opções da linha de comando —presol—bestp —mir. Mais informações estão disponíveis na documentação do GNU GLPK.

Instância	BKS	Valor relaxação	Obj. solução inteira	GAP _{BKS} (%)
VFR10_15_1	1307	880,0	1307	0,0
VFR10_10_3	1592	687,0	1873	56,9
VFR_20_20_1	2270	1391,0	2573	42,6
VFR60_5_10	3663	382,0	3878	89,3
VFR100_60_1	9395	TL	_	∞
VFR500_40_1	28548	TL	_	∞
VFR500_60_3	31125	TL	_	∞
VFR600_20_1	31433	TL	_	∞
VFR700_20_10	36417	TL	_	∞

Tabela 1. Resultado obtido por meio do GLPK.

Os testes com a heurística GRASP e Busca Local foram conduzidos considerandose os valores de $\alpha \in \{0, 0.2, 0.4, 0.6, 0.8, 1.0\}$. Para cada valor de α e instância, executouse 10 replicações do experimento, utilizando-se sementes de aleatoriedades distintas. Considerando a melhor média de valor das soluções, constatou-se que os resultados mais promissores são obtidos com a configuração de $\alpha = 0.0$. Os resultados individuais para cada instância de teste estão listados na tabela 2. Por linha, apresenta-se a instância testada e o BKS reportado na literatura, seguidos do valor de função objetivo médio e desvio percentual (em relação ao BKS) da solução construtiva encontrada pelo GRASP. Nas colunas seguintes, são apresentados os valor médio e desvio percentual (também em relação ao BKS), da melhor solução encontrada pelo GRASP com Busca Local, bem como o tempo de processamento total da heurística. A fim de manter o tempo de execução da heurística em até 5 minutos, estabeleceu-se um limite de repetições $MAX_ITER = 2140$. Esse valor foi estabelecido ao testar quantas iterações a heurística conseguiu realizar na maior instância de testes dentro desse limite de tempo.

Observou-se um desvio médio percentual de 16,9% das soluções inicias com GRASP, em relação ao BKS da literatura, contra o desvio médio percentual de 4,9% da abordagem GRASP com Busca Local. Conclui-se que a Busca Local foi efetiva em melhorar as soluções encontradas pelo GRASP, estreitando a faixa de desvios médios de $5,08\sim27,29\%$ para $0,15\sim7,76\%$.

Instância	BKS -	Sol. GRASP		Sol. GRASP+BL			
	DVO	F.O.	Desvio (%)	F.O.	Desvio (%)	Tempo (seg.)	
VFR10_15_1	1307	1424 ± 0	8,95	$1339,6 \pm 18,319$	2,49	1,5	
VFR20_10_3	1592	2017 ± 0	26,70	$1687, 5 \pm 29, 304$	6	2, 1	
VFR20_20_1	2270	2715 ± 0	19,60	$2360, 1 \pm 33, 478$	3,97	3, 9	
VFR60_5_10	3663	3849 ± 0	5,08	$3668, 4 \pm 7, 291$	0,15	3, 2	
VFR60_10_3	3423	4357 ± 0	27,29	$3632, 6 \pm 62, 45$	6,12	6, 0	
VFR100_60_1	9395	11247 ± 0	19,71	$10008, 8 \pm 47, 123$	6,53	57, 7	
VFR500_40_1	28548	33119 ± 0	16,01	$30640, 6 \pm 67, 832$	7,33	200, 4	
VFR500_60_3	31125	36930 ± 0	18,65	$33539,6 \pm 106,966$	7,76	298, 5	
VFR600_20_1	31433	35473 ± 0	12,85	$32904, 4 \pm 69, 306$	4,68	118, 4	
VFR700_20_10	36417	40916 ± 0	12,35	$37857, 4 \pm 114, 996$	3,96	140, 6	

Tabela 2. Resultados médios da heurística para $\alpha=0$.

5. Conclusões

O Flowshop Permutacional é um problema de otimização combinatória relevante, e métodos eficientes para solução de problema são de interesse acadêmico e prático. Ao que se pode observar, métodos de resolução exata com programação matemática são eficazes para resolver o PFSP, mas demandam muito tempo para obtenção de soluções minimamente factíveis. Dessa forma, propôs-se uma abordagem heurística baseada em solução construtiva inicial com GRASP, seguida de um refinamento com busca local randomizada. Os experimentos computacionais demonstraram a eficiência da heurística em encontrar soluções de alta qualidade do problema, e foi possível verificar que tanto o GRASP quanto a Busca Local foram capazes de contribuir para melhoramento das soluções.

Referências

Feo, T. A., Resende, M. G., and Smith, S. H. (1994). A greedy randomized adaptive search procedure for maximum independent set. *Operations Research*, 42(5):860–878.

Tseng, F. T., Stafford Jr, E. F., and Gupta, J. N. (2004). An empirical analysis of integer programming formulations for the permutation flowshop. *Omega*, 32(4):285–293.

Apêndice A – Média dos resultados computacionais para diversos α

Instância BKS	BKS	Sol. GRASP			Sol. GRASP + Busca Local		
	α	Valor F.O.	GAP _{BKS} (%)	Valor F.O	GAP _{BKS} (%)	Tempo (seg.	
VFR10_15_1	1307.00	0.00	1424 ± 0	8.95	1339.6 ± 18.319	2.49	1.5 ± 0.04
VFR10_15_1	1307.00	0.20	1431.5 ± 24.024	9.53	1354.2 ± 23.011	3.61	1.4 ± 0.03
VFR10_15_1	1307.00	0.40	1459.6 ± 39.884	11.68	1364.2 ± 28.944	4.38	1.5 ± 0.04
VFR10_15_1	1307.00	0.60	1465.8 ± 43.827	12.15	1346.1 ± 42.331	2.99	1.4 ± 0.03
VFR10_15_1	1307.00	0.80	1470.6 ± 49.934	12.52	1362.9 ± 30.205	4.28	1.5 ± 0.04
VFR10_15_1	1307.00	1.00	1528.7 ± 75.588	16.96	1342.2 ± 28.867	2.69	1.5 ± 0.03
VFR100_60_1	9395.00	0.00	11247 ± 0	19.71	10008.8 ± 47.123	6.53	57.7 ± 0.59
VFR100_60_1	9395.00	0.20	11251.8 ± 118.302	19.76	10054.5 ± 70.099	7.02	57.7 ± 0.42
VFR100_60_1	9395.00	0.40	11243.3 ± 121.401	19.67	10039.1 ± 54.017	6.86	57.9 ± 0.52
VFR100_60_1	9395.00	0.60	11287.2 ± 131.908	20.14	10040.9 ± 73.843	6.87	58.5 ± 0.87
VFR100_60_1 VFR100_60_1	9395.00 9395.00	0.80 1.00	11409.9 ± 164.966 11312.1 ± 187.334	21.45 20.41	10048.8 ± 69.904 10057.8 ± 55.519	6.96 7.05	58 ± 3 58.2 ± 0.99
VFR20_10_3	1592.00	0.00	2017 ± 0	26.70	1687.5 ± 29.304	6.00	2.1 ± 0.05
VFR20_10_3	1592.00	0.20	2030.4 ± 44.443	27.54	1685.8 ± 23.223	5.89	2 ± 0.03
VFR20_10_3	1592.00	0.40	1954.6 ± 51.036	22.78	1682 ± 21.417	5.65	2 ± 0.03 2 ± 0.03
VFR20_10_3	1592.00	0.60	1931 ± 47.044	21.29	1690.8 ± 39.6	6.21	2 ± 0.04
VFR20_10_3	1592.00	0.80	1894.9 ± 65.665	19.03	1692.3 ± 32.094	6.30	2 ± 0.02
VFR20_10_3	1592.00	1.00	2007.5 ± 64.24	26.10	1682.7 ± 24.157	5.70	2 ± 0.04
VFR20_20_1	2270.00	0.00	2715 ± 0	19.60	2360.1 ± 33.478	3.97	3.9 ± 0.07
VFR20_20_1	2270.00	0.20	2759.4 ± 69.617	21.56	2355.8 ± 41.214	3.78	3.9 ± 0.08
VFR20_20_1	2270.00	0.40	2745.8 ± 80.5	20.96	2350 ± 25.573	3.52	3.9 ± 0.08
VFR20_20_1	2270.00	0.60	2706.7 ± 69.72	19.24	2376.6 ± 31.178	4.70	3.9 ± 0.06
VFR20_20_1	2270.00	0.80	2735.3 ± 44.475	20.50	2362.9 ± 26.236	4.09	3.8 ± 0.05
VFR20_20_1	2270.00	1.00	2787.7 ± 84.592	22.81	2366.9 ± 38.766	4.27	$3.9 \pm 0.0'$
VFR500_40_1	28548.00	0.00	33119 ± 0	16.01	30640.6 ± 67.832	7.33	200.4 ± 8.4
VFR500_40_1	28548.00	0.20	33572.6 ± 207.304	17.60	30753.7 ± 111.634	7.73	200 ± 4.5
VFR500_40_1	28548.00	0.40	33516.3 ± 217.696	17.40	30697.4 ± 107.934	7.53	197.2 ± 1.53
VFR500_40_1	28548.00	0.60	33720.7 ± 278.457	18.12	30681.7 ± 127.513	7.47	198.4 ± 1.59
VFR500_40_1 VFR500_40_1	28548.00 28548.00	0.80 1.00	33710.1 ± 176.109 33522.1 ± 494.424	18.08 17.42	30688.4 ± 101.606 30741.5 ± 113.56	7.50 7.68	199.6 ± 3.45 200.9 ± 7.53
	31125.00	0.00				7.76	
VFR500_60_3 VFR500_60_3	31125.00	0.00	36930 ± 0 36741.8 ± 257.954	18.65 18.05	33539.6 ± 106.966 33624.6 ± 167.947	8.03	298.5 ± 4.31 300.7 ± 3.79
VFR500_60_3 VFR500_60_3	31125.00	0.40	36508.5 ± 314.718	17.30	33535.1 ± 81.036	7.74	299.2 ± 3.89
VFR500_60_3 VFR500_60_3	31125.00	0.60	36596.7 ± 410.012	17.58	33576.6 ± 71.104	7.88	300.6 ± 3.38
VFR500_60_3	31125.00	0.80	36482.3 ± 288.909	17.21	33490.7 ± 96.158	7.60	298.3 ± 3.3
VFR500_60_3	31125.00	1.00	36327 ± 354.164	16.71	33530.5 ± 65.58	7.73	298.7 ± 2.61
VFR60_10_3	3423.00	0.00	4357 ± 0	27.29	3632.6 ± 62.45	6.12	6 ± 0.06
VFR60_10_3	3423.00	0.20	4367.2 ± 83.639	27.58	3637.4 ± 67.612	6.26	6 ± 0.14
VFR60_10_3	3423.00	0.40	4334.5 ± 93.77	26.63	3630.7 ± 55.041	6.07	6 ± 0.08
VFR60_10_3	3423.00	0.60	4305 ± 84.374	25.77	3608.3 ± 50.557	5.41	5.9 ± 0.11
VFR60_10_3	3423.00	0.80	4430.9 ± 112.114	29.44	3603.6 ± 72.537	5.28	6 ± 0.08
VFR60_10_3	3423.00	1.00	4390.9 ± 136.315	28.28	3626.3 ± 54.214	5.94	6 ± 0.09
VFR60_5_10	3663.00	0.00	3849 ± 0	5.08	3668.4 ± 7.291	0.15	3.2 ± 0.09
VFR60_5_10	3663.00	0.20	3833.2 ± 22.25	4.65	3667.9 ± 5.971	0.13	3.2 ± 0.13
VFR60_5_10	3663.00	0.40	3847.5 ± 24.699	5.04	3672.2 ± 8.574	0.25	3.1 ± 0.05
VFR60_5_10	3663.00	0.60	3887.3 ± 33.002	6.12	3674.4 ± 8.03	0.31	3.2 ± 0.06
VFR60_5_10 VFR60_5_10	3663.00 3663.00	0.80 1.00	3917.5 ± 60.99 3914 ± 87.271	6.95 6.85	3668.6 ± 7.152 3665.6 ± 1.897	0.15 0.07	3.2 ± 0.03 3.1 ± 0.03
VFR600_20_1 VFR600_20_1	31433.00 31433.00	0.00	35473 ± 0 35828.1 ± 208.495	12.85 13.98	32904.4 ± 69.306 32930 ± 65.09	4.68 4.76	118.4 ± 1.86 121.1 ± 5.56
VFR600_20_1	31433.00	0.40	35865.6 ± 235.46	14.10	32999.7 ± 123.094	4.98	119.3 ± 1.99
VFR600_20_1	31433.00	0.60	36042.2 ± 370.703	14.66	32982.4 ± 68.39	4.93	119.2 ± 1.82
VFR600_20_1	31433.00	0.80	36070.7 ± 419.604	14.75	32932.5 ± 134.142	4.77	123.1 ± 9.14
VFR600_20_1	31433.00	1.00	35964.1 ± 425.271	14.42	32990.1 ± 97.588	4.95	122.6 ± 7.68
VFR700_20_10	36417.00	0.00	40916 ± 0	12.35	37857.4 ± 114.996	3.96	140.6 ± 2.03
VFR700_20_10	36417.00	0.20	40858.5 ± 222.473	12.20	37792.3 ± 93.295	3.78	140 ± 3.16
VFR700_20_10	36417.00	0.40	41003.3 ± 407.564	12.59	37865.9 ± 79.689	3.98	139 ± 2.1
VFR700_20_10	36417.00	0.60	41196.8 ± 355.395	13.13	37798.9 ± 87.46	3.79	142.6 ± 9.19
VFR700_20_10	36417.00	0.80	41036.6 ± 281.03	12.69	37882.2 ± 110.235	4.02	140.3 ± 3.43
VFR700_20_10	36417.00	1.00	41214.5 ± 385.111	13.17	37807.6 ± 124.189	3.82	139.8 ± 2.5