Le théorème des zéros de Hilbert

Jules Besson, Eloan Rapion, sous la tutelle de Mercedes Haiech

8 décembre 2020

École Normale Supérieure de Rennes

Introduction au problème

Introduction à la géométrie algébrique

Topologie de Zariski

Le Nullstellensatz

Application à la géométrie algébrique

Pour aller plus loin : vers la géométrie algébrique moderne

Introduction au problème

David Hilbert (1862-1943)

Oscar Zariski (1899-1986)

Un théorème pilier de la géométrie algébrique

Le Nulstellensatz de Hilbert est un théorème fondamental en géométrie algébrique.

But de la géométrie algébrique : Étudier des ensembles de \mathbb{K}^n décrits par une équation polynômiale.

Un théorème pilier de la géométrie algébrique

Le Nulstellensatz de Hilbert est un théorème fondamental en géométrie algébrique.

But de la géométrie algébrique : Étudier des ensembles de \mathbb{K}^n décrits par une équation polynômiale.

$$X^3 + Y^3 - XY = 0$$

$$(X^2 + Y^2)^3 - 4X^2Y^2 = 0$$

Motivation

Soit *S* un ensemble de polynômes.

 \Longrightarrow Une question naturelle :

Quels sont les polynômes s'annulant sur les mêmes points que les polynômes de S ?

Motivation

Soit *S* un ensemble de polynômes.

 \Longrightarrow Une question naturelle :

Quels sont les polynômes s'annulant sur les mêmes points que les polynômes de S ?

Dans $\mathbb{C}[X]$ la réponse est évidente : il faut que le polynôme soit multiple des composantes irréductibles communes à nos polynômes de base.

Que se passe-t-il avec plusieurs variables?

Introduction à la géométrie

algébrique

Pour introduire proprement le théorème, on se fixe un corps $\ensuremath{\mathbb{K}}$ algébriquement clos.

On posera \mathcal{K}_n l'anneau des polynômes à n indéterminées $\mathbb{K}[X_1,\dots X_n]$.

Pour introduire proprement le théorème, on se fixe un corps $\ensuremath{\mathbb{K}}$ algébriquement clos.

On posera \mathcal{K}_n l'anneau des polynômes à n indéterminées $\mathbb{K}[X_1,\ldots X_n]$.

Définition (Radical):

Soit A un anneau et I un idéal de A, on appelle radical de I l'ensemble

$$\sqrt{I} := \{ a \in A \mid \exists n \in \mathbb{N}^*, \ a^n \in I \}$$

Remarque: Comme un corps est nécessairement intègre, on remarque que S, $\langle S \rangle$ et $\sqrt{\langle S \rangle}$ ont les même points d'annulation.

Ensemble algébrique, Idéal d'ensemble

Définition (Ensemble algébrique affine):

Soit S une partie de \mathcal{K}_n , on appelle ensemble algébrique affine de S, l'ensemble

$$V(S) := \{ \alpha \in \mathbb{K}^n \mid \forall p \in S, \ p(\alpha) = 0 \}$$

C'est l'ensemble des points d'annulation de tous les polynômes de S.

Définition-Proposition (Idéal d'ensemble):

Soit T une partie de \mathbb{K}^n , on appel $id\acute{e}al$ de T l'ensemble

$$\mathcal{I}(T) \coloneqq \{ p \in \mathcal{K}_n \mid \forall \alpha \in T, \, p(\alpha) = 0 \}$$

C'est un idéal radiciel.

Avec ces deux définitions, on formule plus simplement l'ensemble recherché : $\mathscr{I}(V(S))$

7

Algèbre affine

Définition-Proposition (Algèbre affine):

Pour W un ensemble algébrique affine de \mathbb{K}^n , l'algèbre affine de W est l'ensemble de fonctions

$$\Gamma(W) \coloneqq \left\{ \hspace{0.1cm} p: W
ightarrow \mathbb{K} \hspace{0.1cm}, \hspace{0.1cm} p \hspace{0.1cm} ext{polynômiale}
ight\}$$

C'est une \mathbb{K} -algèbre de type fini isomorphe à $\mathcal{K}_{n/\mathscr{J}(W)}$.

Les algèbres affines sont une sorte de dual des ensembles algébriques affines. Autrement dit, travailler sur $\Gamma(W)$ revient à travailler sur W.

8

Topologie de Zariski

Définition

Les ensembles algébriques affines induisent une topologie sur \mathbb{K}^n .

Propriété (Stabilité par intersection quelconque):

$$\bigcap_{x\in X}V(I_x)=V\left(\sum_{x\in X}I_x\right)$$

Propriété (Stabilité par union finie):

$$\bigcup_{x\in X}V(I_x)=V\left(\prod_{x\in X}I_x\right)$$

9

Irréductiblité

Irréductiblité

Les fermés de la topologie de Zariski sont "petits".

Irréductiblité

Définition-Proposition (Espace topologique irréductible):

Soit (X, \mathcal{T}) un espace topologique non vide, il est dit *irréductible* s'il vérifie l'une des trois assertions équivalentes suivantes :

- (i) Soit F, G deux fermés de X tels que $X = F \cup G$, alors X = F ou X = G.
- (ii) Soit U, V deux ouverts de X tels que $U \cap V = \emptyset$, alors $U = \emptyset$ ou $V = \emptyset$.
- (iii) Tout ouvert non vide de X est dense.

On peut écrire un ensemble algébrique affine de manière unique comme union de fermés irréductibles sans inclusion de l'un dans un autre.

Caractérisation algébrique de l'irréductibilité

Théorème:

Soit W un ensemble algébrique affine muni de sa topologie de Zariski, alors

W est irréductible $\iff \mathscr{I}(W)$ est premier $\iff \Gamma(W)$ est intègre

On en déduit que \mathbb{K}^n est irréductible.

Prolongement des identités algébriques

Propriété:

Soit W un ensemble algébrique affine différent de \mathbb{K}^n et $p \in \mathcal{K}_n$, alors si p est nul en dehors de W, c'est le polynôme nul.

Ce résultat est une généralisation des raisonnements par densité sur $\mathbb R$ ou $\mathbb C$ avec les matrices par exemple :

Toute identité polynômiale vraie sur les matrices inversibles est vraie sur toutes les matrices.

Le Nullstellensatz

Le Nullstellensatz

Le Nullstellensatz de Hilbert:

 \mathscr{H}_1 : Soit I est un idéal de \mathscr{K}_n , alors $\mathscr{I}(V(I)) = \sqrt{I}$.

En d'autres termes, les polynômes qui s'annulent sur les mêmes points que les zéros commun de l'idéal sont ceux qui à une certaine puissance appartiennent à cet idéal.

Le Nullstellensatz

Le Nullstellensatz de Hilbert:

 \mathscr{H}_1 : Soit I est un idéal de \mathscr{K}_n , alors $\mathscr{I}(V(I)) = \sqrt{I}$.

En d'autres termes, les polynômes qui s'annulent sur les mêmes points que les zéros commun de l'idéal sont ceux qui à une certaine puissance appartiennent à cet idéal.

Le Nullstellensatz faible:

 \mathscr{H}_2 : Soit I un idéal de \mathscr{K}_n tel que V(I) soit vide, alors $I=\mathscr{K}_n$.

Remarque: Il est évident que la version de Hilbert implique la version faible (d'où son nom) mais les deux sont équivalentes.

On remarque également l'importance de la clôture algébrique pour \mathcal{H}_2 : par ex pour $\mathbb{R}[X]$ avec $\langle X^2+1\rangle$.

Équivalence des deux versions

Preuve: \mathbb{K} est intègre donc $\sqrt{I} \subset \mathscr{I}(V(I))$.

Équivalence des deux versions

Preuve: \mathbb{K} est intègre donc $\sqrt{I} \subset \mathscr{I}(V(I))$.

$$p \in \mathscr{I}(V(I))$$

Dans
$$\mathscr{K}_{n+1}: q := 1 + X_{n+1}p, \quad J := \langle I, q \rangle.$$

$$V(J)\subset V(I)$$
 et si $t\in V(I)$: $p(t)=0$, alors $q(t)=1\neq 0$ donc $V(J)=\varnothing$

Équivalence des deux versions

Preuve: \mathbb{K} est intègre donc $\sqrt{I} \subset \mathscr{I}(V(I))$.

$$p \in \mathscr{I}(V(I))$$

Dans
$$\mathscr{K}_{n+1}: q := 1 + X_{n+1}p, \quad J := \langle I, q \rangle.$$

$$V(J)\subset V(I)$$
 et si $t\in V(I): p(t)=0$, alors $q(t)=1\neq 0$ donc $V(J)=\varnothing$

$$\mathscr{H}_2:\exists\sum_{i=1}^k a_it_i+bq\in J \ (\text{avec }a_i,b\in\mathscr{K}_{n+1} \ \text{et }t_i\in I) \ \text{tel que}$$

$$\sum_{i=1}^k a_i t_i + bq = 1.$$

On évalue
$$X_{n+1}$$
 en $-\frac{1}{n}$: $q = 1 - \frac{1}{n}p = 0$

$$\sum_{i=1}^{I} rac{c_i h_i}{p^{lpha_i}} = 1$$
 avec $c_i \in \mathscr{K}_n, \ h_i \in I$

$$m = \max\{\alpha_i, 1 \leqslant i \leqslant l\}$$

$$p^m = \sum_{i=1}^{I} c_i p^{m-\alpha_i} h_i \in I$$
, donc $\mathscr{I}(V(I)) \subset \sqrt{I}$.

Lemme de Zariski

Pour montrer \mathcal{H}_2 , on utilise un lemme :

Lemme de Zariski version finie:

Si une algèbre de type fini sur $\mathbb K$ est un corps, alors c'est une extension algébrique de $\mathbb K.$

Preuve du lemme de Zariski

dans L.

Lemme de Zariski version non dénombrable:

Supposons $\mathbb K$ non dénombrable et algébriquement clos, soit L une extension de corps de $\mathbb K$, de type fini, alors $L=\mathbb K$.

Preuve: Supposons L non algébrique \Longrightarrow élément transcendant e Donc on peut construire un sous corps isomorphe à $\mathbb{K}(X)$ $(X \leftrightarrow e)$ inclus

Preuve du lemme de Zariski

Lemme de Zariski version non dénombrable:

Supposons $\mathbb K$ non dénombrable et algébriquement clos, soit L une extension de corps de $\mathbb K$, de type fini, alors $L=\mathbb K$.

Preuve: Supposons L non algébrique \Longrightarrow élément transcendant e

Donc on peut construire un sous corps isomorphe à $\mathbb{K}(X)$ $(X \leftrightarrow e)$ inclus dans L.

 $(\frac{1}{X-c})_{c\in\mathbb{K}}$, famille non dénombrable et libre car pour

$$\lambda_1,\ldots,\lambda_n,c_1,\ldots,c_n\in\mathbb{K}$$
, si $\sum\limits_{i=1}^n\frac{\lambda_i}{X-c_i}=0$, alors pour tout entier i tel que $1\leqslant i\leqslant n$, on multiplie par $X-c_i$, et on évalue en c_i , alors on trouve $\lambda_i=0$.

Preuve du lemme de Zariski

Lemme de Zariski version non dénombrable:

Supposons $\mathbb K$ non dénombrable et algébriquement clos, soit L une extension de corps de $\mathbb K$, de type fini, alors $L=\mathbb K$.

Preuve: Supposons L non algébrique \Longrightarrow élément transcendant e

Donc on peut construire un sous corps isomorphe à $\mathbb{K}(X)$ $(X \leftrightarrow e)$ inclus dans L.

 $(\frac{1}{X-c})_{c\in\mathbb{K}}$, famille non dénombrable et libre car pour

 $\lambda_1,\ldots,\lambda_n,c_1,\ldots,c_n\in\mathbb{K}$, si $\sum\limits_{i=1}^n\frac{\lambda_i}{X-c_i}=0$, alors pour tout entier i tel que $1\leqslant i\leqslant n$, on multiplie par $X-c_i$, et on évalue en c_i , alors on trouve $\lambda_i=0$.

C'est exclu car sinon on pourrait constituer une base non dénombrable de L, alors par égalité des cardinaux des bases, c'est absurde.

Preuve de \mathcal{H}_2

Le Nullstellensatz faible:

 \mathscr{H}_2 : Soit I un idéal de \mathscr{K}_n tel que V(I) soit vide, alors $I=\mathscr{K}_n$.

Preuve: $I \neq \langle 1 \rangle$ un idéal de \mathscr{K}_n

Idéal maximal le contenant M, $R := \mathcal{K}_{n/M} = \mathbb{K}[\alpha_1, \dots, \alpha_n]$

Lemme de Zariski : les α_i sont algébriques sur $\mathbb K$

 \mathbb{K} est algébriquement clos : α_i est dans \mathbb{K} .

 $(\alpha_1,\ldots,\alpha_n)$ est un zéro de M, donc de I.

Par contraposée, \mathscr{H}_2 est vraie car $V(I) \neq \varnothing$.

Application à la géométrie

algébrique

On a un lien entre l'espace topologique \mathbb{K}^n et l'anneau \mathscr{K}_n .

On a un lien entre l'espace topologique \mathbb{K}^n et l'anneau \mathscr{K}_n .

• Les fermés de \mathbb{K}^n sont en bijections avec les idéaux radiciels de \mathcal{K}_n , via les bijections décroissantes \mathscr{I} et V.

On a un lien entre l'espace topologique \mathbb{K}^n et l'anneau \mathscr{K}_n .

- Les fermés de \mathbb{K}^n sont en bijections avec les idéaux radiciels de \mathcal{K}_n , via les bijections décroissantes \mathscr{I} et V.
- Pour $S \subset \mathbb{K}^n$, $V \circ \mathscr{I}(S) = \overline{S}$.
- Pour $S \subset \mathcal{K}_n$, $\mathscr{I} \circ V(S) = \sqrt{\langle S \rangle}$.

On a un lien entre l'espace topologique \mathbb{K}^n et l'anneau \mathscr{K}_n .

- Les fermés de \mathbb{K}^n sont en bijections avec les idéaux radiciels de \mathcal{K}_n , via les bijections décroissantes \mathscr{I} et V.
- Pour $S \subset \mathbb{K}^n$, $V \circ \mathscr{I}(S) = \overline{S}$.
- Pour $S \subset \mathcal{K}_n$, $\mathscr{I} \circ V(S) = \sqrt{\langle S \rangle}$.
- Enfin les points de \mathbb{K}^n sont en bijection avec les idéaux maximaux de \mathcal{K}_n .

On a un lien entre l'espace topologique \mathbb{K}^n et l'anneau \mathscr{K}_n .

- Les fermés de \mathbb{K}^n sont en bijections avec les idéaux radiciels de \mathcal{K}_n , via les bijections décroissantes \mathscr{I} et V.
- Pour $S \subset \mathbb{K}^n$, $V \circ \mathscr{I}(S) = \overline{S}$.
- Pour $S \subset \mathcal{K}_n$, $\mathscr{I} \circ V(S) = \sqrt{\langle S \rangle}$.
- Enfin les points de \mathbb{K}^n sont en bijection avec les idéaux maximaux de \mathcal{K}_n .

Nullstellensatz faible version 2:

Un idéal I de \mathcal{K}_n est maximal si et seulement s'il existe un point $(a_1,\ldots,a_n)\in\mathbb{K}^n$ tel que $I=\langle X_1-a_1,\ldots,X_n-a_n\rangle$. Alors \mathcal{K}_n/I est alors isomorphe à \mathbb{K} .

Les points de W sont en bijection avec les idéaux maximaux de $\Gamma(W)$

Pour aller plus loin : vers la

\mathscr{K}_{n}	$\mathbb{K}^n \simeq Spm(\mathscr{K}_n)$	\mathbb{K}
$\Gamma(W)$	$W \simeq Spm(\Gamma(W))$	\mathbb{K}

\mathscr{K}_n	$\mathbb{K}^n \simeq Spm(\mathscr{K}_n)$	K
$\Gamma(W)$	$W \simeq Spm(\Gamma(W))$	\mathbb{K}
A		

\mathcal{K}_{n}	$\mathbb{K}^n \simeq Spm(\mathscr{K}_n)$	K
$\Gamma(W)$	$W \simeq Spm(\Gamma(W))$	\mathbb{K}
Α	Spec(A)	

\mathscr{K}_{n}	$\mathbb{K}^n \simeq Spm(\mathscr{K}_n)$	K
$\Gamma(W)$	$W \simeq Spm(\Gamma(W))$	\mathbb{K}
Α	Spec(A)	$\kappa(x) = \operatorname{Frac}\left(\frac{A}{X}\right)$

Bilbiographie

Daniel Perrin.

Géométrie algébrique : Une introduction.

InterÉditions - CNRS Éditions, 1995.

Oscar Zariski.

A new proof of hilbert's nullstellensatz.

Bulletin of the American Mathematical Society, 53(4):362–368, 1947.

Daniel Perrin.

Cours d'algèbre, 1981.

Antoine Ducros.

Introduction à la théorie des schémas, 2014.