DM 1: étude d'une suite récurrente (Extrait d'un problème de Centrale)

Dans tout le problème, n désigne un entier naturel et Q le premier quadrant du plan \mathbb{R}^2 , c'est-à-dire l'ensemble des couples de réels positifs au sens large.

On appelle S l'ensemble des suites réelles $(U_n)_{n\in\mathbb{N}}$ vérifiant la relation de récurrence (\mathcal{R}) suivante :

$$\forall n \geqslant 1$$
 $U_{n+1} = \frac{1}{2} (U_n^2 + U_{n-1}^2)$

et telles que, de plus, on ait $U_0 \ge 0$ et $U_1 \ge 0$.

On associe à tout élément (x,y) de Q la suite U(x,y) appartenant à S définie par $U_0 = x$ et $U_1 = y$. Le terme de rang n de U(x,y) sera noté $U_n(x,y)$ ou, si aucune ambiguïté n'existe, par U_n .

Enfin, λ désignant un élément de $\overline{\mathbb{R}} = \mathbb{R} \cup \{\pm \infty\}$, E_{λ} désignera l'ensemble des éléments (x, y) de Q tels que la suite U(x, y) ait pour limite λ .

Première partie

Généralités

- **I.1.a)** Déterminer les suites constantes appartenant à S.
 - b) Quelles sont les limites possibles, finies ou infinies, d'une suite appartenant à S?
 - c) Montrer que, si une suite appartenant à S a trois termes consécutifs égaux, c'est une suite constante.
 - d) Montrer que, si une suite appartenant à S a deux termes consécutifs égaux à 1, c'est une suite constante.
 - e) Que peut on dire d'une suite appartenant à S dont un terme autre que les deux premiers est nul?
 - **I.2.** Soit une suite $(U_n)_{n\in\mathbb{N}}$ appartenant à S et non constante.
 - a) Comparer les signes de $U_{n+1} U_n$ et de $U_n U_{n-2}$ pour $n \ge 2$.
 - b) Montrer que, s'il existe $N \ge 1$ tel que U_{N+1} soit supérieur ou égal à U_N et à U_{N-1} , la suite $(U_n)_{n \in \mathbb{N}}$ est strictement croissante à partir d'un certain rang.
 - On établirait de même que, s'il existe $N \ge 1$ tel que U_{N+1} soit inférieur ou égal à U_N et à U_{N-1} , la suite $(U_n)_{n\in\mathbb{N}}$ est strictement décroissante à partir d'un certain rang. La démonstration correspondante n'est pas demandée.
 - c) Déterminer les limites des suites U(x,y) pour $(x,y)=(\sqrt{2},0)$ et pour (x,y)=(2,0).
 - **I.3.** Soit une suite $(U_n)_{n\in\mathbb{N}}$ non constante, appartenant à S; on suppose de plus que, quel que soit N, la suite $(U_n)_{n\geqslant N}$ n'est ni strictement croissante, ni strictement décroissante. On ne cherchera pas, dans cette question, à démontrer l'existence de telles suites.
- **I.3.a)** Montrer que U_0 et U_1 sont distincts.
- **I.3.b)** On suppose que $U_0 < U_1$ (l'autre cas est similaire et conduit à la même conclusion).

Montrer par récurrence que pour tout n on a les inégalités $U_{2n} \leq U_{2n+2} \leq U_{2n+3} \leq U_{2n+1}$. En déduire que la suite $(U_n)_{n\in\mathbb{N}}$ converge vers 1.

- **I.4** Établir, pour une suite $(U_n)_{n\in\mathbb{N}}$ non constante appartenant à S, l'équivalence des propriétés suivantes :
 - a) Il existe un entier $N \in \mathbb{N}$ tel que $U_N \ge 1$ et $U_{N+1} \ge 1$.
 - b) La suite $(U_n)_{n\in\mathbb{N}}$ est strictement croissante à partir d'un certain rang.
 - c) La suite $(U_n)_{n\in\mathbb{N}}$ tend vers $+\infty$.

On pourra, pour cela, établir que, si une suite $(U_n)_{n\in\mathbb{N}}$ vérifie la propriété **a**), tous ses termes, sont, à partir d'un certain rang, strictement supérieurs à 1. il est demandé dans cette question de réfléchir soigneusement à la façon d'utiliser les questions précédentes pour éviter les longs calculs.

- **I.5.** (cette question est analogue à la précédente, il n'est pas demander de la traiter : le résultat est admis) Établir de même, pour une suite $(U_n)_{n\in\mathbb{N}}$ de S non constante, l'équivalence des propriétés suivantes :
 - a) Il existe un entier $N \in \mathbb{N}$ tel que $U_N \leq 1$ et $U_{N+1} \leq 1$.
 - b) La suite $(U_n)_{n\in\mathbb{N}}$ est strictement décroissante à partir d'un certain rang.
 - c) La suite $(U_n)_{n\in\mathbb{N}}$ tend vers 0.

I.6. Montrer que les ensembles $E_0, E_1, E_{+\infty}$ sont non vides. Quelle est leur réunion?

Deuxième partie

Dans cette partie, on montre que E_1 a plusieurs éléments. éléments.

Pour $x \in \mathbb{R}+$, on désigne par $\lambda(x)$ la limite dans $\overline{\mathbb{R}}$ de U(x,0).

II.1. Démontrer que $\lambda(x) \leq \lambda(x')$ dans l'hypothèse où $x \leq x'$.

II.2.

- **II.2.a)** Démontrer que la fonction qui à x associe $U_n(x,0)$ est continue.
- **II.2.b)** En déduire que si U(x,0) tend vers l'infini, alors il existe un réel $\varepsilon > 0$ et un entier n tel que $U_n(x-\varepsilon,0)$ et $U_{n+1}(x-\varepsilon,0)$ soient supérieurs ou égaux à 2.
- **II.2.c)** Etablir finalement que $U(x-\varepsilon,0)$ tend vers l'infini.
- **II.2.d)** De façon analogue, montrer que si $\lambda(x) = 0$ alors il existe $\varepsilon > 0$ tel que $\lambda(x + \varepsilon) = 0$.
- **II.3.a)** Montrer qu'il existe un réel a, borne supérieure de l'ensemble des $x \ge 0$ tels que $\lambda(x,0)$ soit nul (on utilisera la question **I.2.c**)
- **II.3.b)** Que dire de $\lambda(x)$ pour x < a?
- **II.3.c)** Démontrer que $\lambda(a) = 1$ On raisonnera par l'absurde en supposant successivement que $\lambda(a) = \infty$ et $\lambda(a) = 0$ et on utilisera la question **II.2.**.
- **II.3.d)** Ecrire un script python déterminant pour déterminer la valeur approchée de a à 10^{-2} près par défaut. On pourra utiliser une dichotomie et le résultat de la question **I.5**.

Troisième partie

Étude de la rapidité de la croissance des suites croissantes de S tendant vers l'infini.

1. Soit $(U_n)_{n\in\mathbb{N}}$ une suite quelconque appartenant à S. Démontrer pour tout $n\in\mathbb{N}$ les inégalités

$$\frac{1}{2}U_n^2 \leqslant U_{n+1} \leqslant U_n + \frac{1}{2}U_n^2$$

2. Soit $(U_n)_{n\in\mathbb{N}}$ une suite appartenant à S et tendant vers $+\infty$.

On pose $V_n = \frac{1}{2}U_n$ et $z_n = 2^{-n}\ln(V_n)$.

- a) Établir que la suite (z_n) tend vers une limite L (utiliser la série de terme général $z_{n+1} z_n$). Cette limite dépend de U_0 et de U_1 , on ne cherchera pas à la calculer.
- b) Sous les mêmes hypothèses, établir pour n assez grand la double inégalité

$$L - \frac{1}{2^n V_n} < z_n < L$$

En déduire un équivalent de U_n quand $n \to +\infty$ (on posera $e^L = M$).

Que peut-on dire de la différence entre U_n et cet équivalent?

3. On prend $U_0 = U_1 = 2$. Déduire de ce qui précède une valeur approchée de L à 10^{-6} près. Quel est le nombre de chiffres de l'écriture décimale de U_{20} ?