$$a) \quad max
ightarrow -x_1 \ + \ 2x_2 \ + \ 4x_3 \ x_1 \ - \ x_2 \ - \ x_3 \ = \ 1; \ x_1 \ + \ x_2 \ + \ x_3 \ = \ 3; \ x_j \geq 0, \ \ j = 1, 2, 3. \ B = \{1, 2\}.$$

Заполним симплексную таблицу исходными данными

			-1	2	4
$A_{_{B}}$	C_{B}	X_{B}	1	2	3
1	-1	1	1	-1	-1
2	2	3	1	1	1

Вычислим коэффициенты разложения столбцов:

Прибавим ко второй первую строку

			-1	2	4
$A_{_{B}}$	C_{B}	X_{B}	1	2	3
1	-1	4	2	0	0
2	2	3	1	1	1

Сократим на двойку первую строку:

			-1	2	4
A_{B}	C_{B}	X_{B}	1	2	3
1	-1	2	1	0	0
2	2	3	1	1	1

Прибавим ко второй первую о знаком (-1)

			-1	2	4
A_{B}	C_{B}	X_{B}	1	2	3
1	-1	2	1	0	0
2	2	1	0	1	1

Найдём оценки

			-1	2	4
A_{B}	C_{B}	X_{B}	1	2	3
1	-1	2	1	0	0
2	2	1	0	1	1
			0	0	-2

Вычислим значение целевой функции

			-1	2	4
A_{B}	C_{B}	X_{B}	1	2	3
1	-1	2	1	0	0
2	2	1	0	1	1
		0	0	0	-2

Как наблюдали ранее, критерий оптимальности выносит отвергающий оптимальность опорного плана итог, поскольку третья оценка отрицательна.

Задача не решена.

Выберем $k \notin B$. Положим k: $\overset{\cdot}{\Delta}_k = min\{\Delta_j\}, j \notin B \Rightarrow k = 3$

Построим множество $B_3^+ = \{i: i \in B, \ g_{i,3} > 0\} \Rightarrow B_3^+ = \{2\}.$

			-1	2	4	
A_{B}	C_{B}	X_{B}	1	2	3	
1	-1	2	1	0	0	
2	2	1	0	1	1	
		0	0	0	-2	

Поскольку множество не пусто, метод продолжает свою работу.

Выберем
$$l \in B: \frac{x_l}{g_{lk}} = min\{\frac{x_i}{g_{lk}}\}, i \in B_3^+:$$

Так как во множестве всего один индек, он и будет принят за выводимый.

Итак, новый базис
$$\widehat{B} = (B \setminus \{l\}) \cup \{k\} = \{1,2\} \setminus \{2\} \cup \{3\} = \{1,3\}.$$

			-1	2	4	
A_{B}	C_{B}	X_{B}	1	2	3	
1	-1	2	1	0	0	
3	4	1	0	1	1	
		0	0	0	-2	

Найдем оценки и значение целевой функции

			-1	2	4	
A_{B}	C_{B}	X_{B}	1	2	3	
1	-1	2	1	0	0	
3	4	1	0	1	1	
		2	0	2	0	

Все оценки неотрицательны-текущий план оптимален.

Решение: $x^* = (2, 0, 1), f^* = 2.$