Clase 8:

Reconstrucción de ODEs

Reconstrucción de ODEs

- Motivación en el marco de la materia
- Regresión + Regularización
- Reconstrucción de ODEs
 - Regresión LASSO
 - SINDy
- Vamos a hacer en el Colab
- Bibliografía

Motivación en el marco de la materia

Sistemas dinámicos = ODEs

Agrego a la **función costo** un **término de penalización**. Si un parámetro toma un valor muy alto, este término también. Minimizar la función costo penalizando ese parámetro es restringir para que no sea alto

Estoy incorporando un **hiperparámetro (lambda)** que regula la **magnitud de penalización**, asignando más importancia a ciertos parámetros por sobre otros

Permitirá regular la **flexibilidad del modelo**, haciendo que sea **menos sensible al ruido** y, por lo tanto, **reduciendo su varianza** (aunque no necesariamente siempre reduciendo la complejidad del modelo)

Regularización LASSO (p=1)

$$J(\hat{\beta}) = \frac{1}{n} \sum_{i=1}^{n} \left(\underbrace{y^{(i)} - \hat{y}^{(i)}} \right)^{2} + \lambda \sum_{j=1}^{M} \left\| \hat{\beta}_{j} \right\|_{p}$$

Agregamos un término de **penalización** en la función costo

Cuando penalizo, es posible que parámetros se hagan cero (se cancelan términos)

La función costo en la mayoría de los casos puede no ser convexa

- El descenso por el gradiente puede no encontrar el mínimo global
- Pero la función costo se calcula de los datos de entrenamiento
- Entonces, el **mínimo global** puede dar un modelo con **sobreajuste**
- Notar que regularizar es buscar el mínimo de una nueva función costo, que incluye un término de penalización, por lo que me aleja del mínimo global original

SINDy

Sparse Identification of Nonlinear Dynamical systems

Sistema dinámico
$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}, t; \mu)$$

Puedo plantear el campo vector como un desarrollo de variables en una base de transformaciones

Si tengo las variables y sus derivadas, puedo hacer una regresión lineal

En particular, regresión de tipo LASSO, agrego penalización que selecciona parámetros y los hace 0

Puedo obtener una representación esparsa de las relaciones y reconstruir las ecuaciones del sistema

SINDy

Brunton, Proctor, & Kutz (2016). *Discovering governing equations from data by sparse identification of nonlinear dynamical systems*. PNAS, *113*(15), 3932-3937.

Funciona también

- para datos ruidosos
- cuando no tengo la derivada pero la puedo calcular numéricamente con cierta confianza

Qué limitaciones tiene esto?

Brunton, Proctor, & Kutz (2016). *Discovering governing equations from data by sparse identification of nonlinear dynamical systems*. PNAS, *113*(15), 3932-3937.

Vamos a hacer en el Colab

- Reconstrucción de ODEs
 - Atractor de Lorenz
 - LASSO
 - SINDy
 - Oscilador de relajación de Van der Pol
 - Dificultades del método?
 - Oscilador amortiguado (video)

Bibliografía recomendada

Kutz 2013

Brunton & Kutz 2019

James et al 2017

