Partie B - Exemple avec projecteur

Notons $E = \mathbb{R}[X]$ l'ensemble des polynômes réels, \mathscr{P} et \mathscr{I} les sous-espaces vectoriels des polynômes pairs et impairs respectivement.

- 1. Montrer que \mathscr{I} est un supplémentaire de \mathscr{P} dans E.
- 2. Soit l'application linéaire

$$\varphi: \left\{ \begin{array}{ccc} E & \to & E \\ P & \mapsto & \frac{P(X)+P(-X)}{2} + X\frac{P(X)-P(-X)}{2} \end{array} \right.$$

a. Déterminer $\operatorname{Im} \varphi$ puis établir que

$$\operatorname{Ker} \varphi = \{(1 - X)P(X), P \in \mathscr{I}\}.$$

- b. Montrer que φ est un projecteur de E.
- c. En déduire que Ker φ est un supplémentaire de \mathscr{P} .

Partie C - Condition suffisante

Soit E un espace vectoriel, F_1 et F_2 deux sous-espaces vectoriels de E

- 1. Supposons, dans cette question, que F_1 et F_2 sont supplémentaires dans E et qu'il existe un isomorphisme $u: F_1 \to F_2$.
 - Montrer que $G = \{x u(x), x \in F_1\}$ est un espace vectoriel puis qu'il est un supplémentaire commun à F_1 et F_2 .
- 2. Réciproquement supposons dans cette question que F_1 et F_2 admettent un supplémentaire commun G.
 - a. Montrer que F_1 et F_2 sont isomorphes.
 - b. Exhiber des contre-exemples pour chacune des deux propriétés suivantes
 - $F_1 \cap F_2 = \{0\},\$
 - $F_1 + F_2 = E$.