Recurrent Neural Networks 循环神经网络

示意图:

Recurrent Neural Networks have loops.

受到人类理解语言的启发,循环神经网络设计了一个循环的结构: 网络的每一个单元都可以向下 一个传递一些信息:

An unrolled recurrent neural network.

RNN 网络的运作方式决定了它擅长处理前后有关联的信息,比如语音识别、语言建模、翻译等。

RNN 网络的不足: Long-Term Dependencies

举个例子,假设我们要判断"天空中飘着__"的下一个字,显然这个词应该是云。但是如果我们的程序只着眼"飘着"这个动词,它得出的结论很可能是(水面上飘着)"垃圾袋"。因此,我们的程序应该能够利用过去的信息进行预测

理论上说, RNN 神经网络应该能够很好地学习这些规律, 但实际上并非如此。

LSTM Networks

Long Short Term Memory networks,即 LSTM 网络,因此被提出来。它被证实在很多问题上有出色的表现。

RNN 网络可以很简单(如下图,只有一个 tanh 层)

The repeating module in a standard RNN contains a single layer.

而 LSTM 网络有着不同的结构

The repeating module in an LSTM contains four interacting layers.

核心精神

LSTM 网络的核心在于由 Sigmoid 函数构成的Control Gate

Sigmoid 函数输出 0-1 的值, 0 代表不通过,1代表通过。这些门可以控制状态的传递,起到保护各个module的作用

详细分析

1. 确定需要舍弃的信息

$$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$$

2. 确定当前单元要保存的信息

1. 从输入值出发,决定候选值 $ilde{C}_t$

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

2. 从 C_{t-1} 出发, 更新 C_t

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

3. 确定要输出的信息

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

LSTM 的变体

by Gers & Schmidhuber (2000) 加入了"peephole connection"

$$f_{t} = \sigma \left(W_{f} \cdot [\boldsymbol{C_{t-1}}, h_{t-1}, x_{t}] + b_{f} \right)$$

$$i_{t} = \sigma \left(W_{i} \cdot [\boldsymbol{C_{t-1}}, h_{t-1}, x_{t}] + b_{i} \right)$$

$$o_{t} = \sigma \left(W_{o} \cdot [\boldsymbol{C_{t}}, h_{t-1}, x_{t}] + b_{o} \right)$$

加入遗忘单元

$$C_t = f_t * C_{t-1} + (1 - f_t) * \tilde{C}_t$$

by Cho, et al. (2014) 更加复杂的模型

$$z_{t} = \sigma (W_{z} \cdot [h_{t-1}, x_{t}])$$

$$r_{t} = \sigma (W_{r} \cdot [h_{t-1}, x_{t}])$$

$$\tilde{h}_{t} = \tanh (W \cdot [r_{t} * h_{t-1}, x_{t}])$$

$$h_{t} = (1 - z_{t}) * h_{t-1} + z_{t} * \tilde{h}_{t}$$

Pytorch 实现

torch.nn.LSTM(*args, **kwargs)

Applies a multi-layer long short-term memory (LSTM) RNN to an input sequence. For each element in the input sequence, each layer computes the following function:

$$\begin{split} i_t &= \sigma(W_{ii}x_t + b_{ii} + W_{hi}h_{(t-1)} + b_{hi}) \\ f_t &= \sigma(W_{if}x_t + b_{if} + W_{hf}h_{(t-1)} + b_{hf}) \\ g_t &= \tanh(W_{ig}x_t + b_{ig} + W_{hg}h_{(t-1)} + b_{hg}) \\ o_t &= \sigma(W_{io}x_t + b_{io} + W_{ho}h_{(t-1)} + b_{ho}) \\ c_t &= f_t * c_{(t-1)} + i_t * g_t \\ h_t &= o_t * \tanh(c_t) \end{split}$$

Parameters:

- input_size
- hidden_size
- num_layers
- bias
- batch_first
- dropout
- bidirectional

Inputs: (h_0,c_0)
Outputs:(h_n,c_n)

Variables:

- ~LSTM.weight)ih_l[k]
- ~LSTM.weight_hh_l[k]
- ~LSTM.bias_ih_l[k]
- ~LSTM.bias_hh_l[k]

Examples:

```
>>> rnn = nn.LSTM(10, 20, 2)
>>> input = torch.randn(5, 3, 10)
>>> h0 = torch.randn(2, 3, 20)
>>> c0 = torch.randn(2, 3, 20)
>>> output, (hn, cn) = rnn(input, (h0, c0))
```