1. Download meteorological data (put it in ./Meteorological Data/)

- WR_{High}
 - o 100-meter wind speed and direction from <u>WindToolkit</u> https://developer.nrel.gov/docs/wind/wind-toolkit/wtk-download/
 - o GHI, DHI, DNI, and near-surface wind speed, temperature, dew-point temperature, pressure from National Solar Radiation Database https://nsrdb.nrel.gov/data-viewer
- WR_{Low}
 - o 100-meter wind speed, direction, surface downwelling shortwave flux, direct solar radiation at surface from ERA5 https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
- 2. Generate capacity factors (run in ./preprocess_vRE/; data in ./CF_Data/)
- 3. minCost optimization (run ./minCost/):

python Main_multi.py WR_name if_wake if_landuse Opreswind Opressolar 0 maximumratio of natural gas num yr ensemble member id

4. maxAEP (run after minCost optimization in ./maxAEP/)

python step1_resources.py WR if_wake if_landuse $OpRes_{wind} OpRes_{solar} 0$ ratio_of_natural_gas num_yr member_id python step2_cost.py WR if_wake if_landuse $OpRes_{wind} OpRes_{solar} 0$ ratio_of_natural_gas num_yr member_id

5. Out-of-planning-period test (run after minCost/maxAEP in ./ testing_fixedstrg and/or ./testing_newstrg)

python Main.py WR if_wake if_landuse OpReswind OpRessolar 0 ratio_of_natural_gas num_yr member_id case name

Example (using the data of 2007 provided):

- Go to ./minCost/ and run "python Main_multi.py WRHigh 0 0 0.06 0.14 0 0 1 1", which run minCost optimization with OpRes_{wind}=0.06°, OpRes_{solar}=0.14° at vRE penetration level of 100% using WR_{High} data without consider wake or land-use restriction for single-year of 2007 (num_yr=1, ensemble_member_id=1) You will get:
 - locations and built capacity of solar:
 onshoresolar_sublyrs_ens1_ng_0_cc_0_wake_0_landr_0_wind-onshore0.06_solar-UPV0.14_WRHigh_solar-UPV_locations.csv
 - o locations and built capacity of wind:
 onshoresolar_sub1yrs_ens1_ng_0_cc_0_wake_0_landr_0_wind-onshore0.06_solarUPV0.14_WRHigh_wind-onshore_locations.csv
 - hourly data of electricity supply and demand:
 onshoresolar_sublyrs_ensl_ng_0_cc_0_wake_0_landr_0_wind-onshore0.06_solar-UPV0.1
 4_WRHigh_Load.csv
 - o statisics in onshoresolar WRHigh General Results.csv
- Go to ./maxAEP/ and run "python step1_resources.py WRHigh 0 0 0.06 0.14 0 0 1 1" and then "python step2_cost.py WRHigh 0 0 0.06 0.14 0 0 1 1" and then "