Complejidad computacional

Exploratorio Computación 1'2021

Profesor Denis Parra

Invitado: Juan Reutter

Leonard Euler

Definición

Decimos que un grafo tiene un camino euleriano si existe una camino que pasa por cada conección (i.e. arista) una sola vez.

Primera estrategia

Probar todos los caminos y verificar si es un camino euleriano.

¿cuántos caminos tendremos que verificar?

Primera estrategia

Probar todos los caminos y verificar si es un camino euleriano.

■ Para los 7 puentes de Köningsberg:

cantidad de caminos
$$\approx 2^7 = 128$$

■ Para los 420 puentes de Venecia nos tardaríamos:

cantidad de caminos
$$\approx 2^{420} \ge 10^{100}$$

¿cuántos nos demoraremos en revisar 10^{100} caminos en el último computador?

Primera estrategia

Probar todos los caminos y verificar si es un camino euleriano.

Para ver cuanto nos demoramos en revisar 10¹⁰⁰ caminos:

```
\# de átomos en el universo \approx 10^{80} átomos edad del universo \approx 10^{20} milisegundos
```

- Si colocamos un microcomputador en cada átomo,
- cada uno demora un milisegundo en verificar un camino, y
- los ejecutamos durante la edad del universo . . .

... no alcanzaremos a verificar todos los caminos!

...¿otra estrategia?

Segunda estrategia (por Euler)

Los puentes deben llegar de a pares a las islas.

Teorema

Un grafo (conexo) contiene un camino euleriano si, y solo si, a cada nodo llegan una cantidad par de aristas con la posible exclusión de dos nodos.

¿cuál grafo es euleriano?

Segunda estrategia (por Euler)

Los puentes deben llegar de a pares a las islas.

Teorema

Un grafo (conexo) contiene un camino euleriano si, y solo si, a cada nodo llegan una cantidad par de aristas con la posible exclusión de dos nodos.

Para verificar si un grafo contiene un camino euleriano:

- Recorremos cada nodo del grafo.
- Si todos los nodos tienen una cantidad par de aristas con la posible exclusión de dos nodos aceptamos.
- Si no se cumple la propiedad rechazamos.

Esto lo podemos hacer en tiempo lineal en la cantidad de aristas!

Juegos de Hamilton

Inventados por William Hamilton (1857)

Juegos de Hamilton

Definición

Decimos que un grafo tiene un camino hamiltoneano si existe una camino que pasa por cada nodo una sola vez.

¿cómo verificamos si nuestro grafo es hamiltoniano?

Primera estrategia

Probar todos los caminos y verificar si algun camino es hamiltoniano.

■ De nuevo: una cantidad **exponencial** de caminos que verificar!

¿podemos proponer una estrategia más eficiente?

... esta es la mejor estrategia que se conoce hasta el momento.

¿és el problema de camino hamiltoneano difícil?

¿cuál es un problema difícil?

- 1. ¿cuál es un problema fácil?
- 2. ¿cómo identificar un problema difícil?
- 3. ¿cómo comparar la dificultad entre problemas?
- 4. ¿cómo solucionar un problema difícil?

Outline

¿qué es un problema?

¿cuál es la complejidad de un problema?

¿cuáles son los problemas difíciles?

¿cuáles son los problemas más difíciles?

Outline

¿qué es un problema?

¿cuál es la complejidad de un problema?

¿cuáles son los problemas difíciles?

cuáles son los problemas más difíciles?

¿qué es un problema computacional?

Ejemplos

Camino Euleriano

Input: Un grafo $\mathcal G$

Pregunta: ¿tiene el grafo $\mathcal G$ un camino euleriano?

CAMINO HAMILTONIANO

Input: Un grafo \mathcal{G}

Pregunta: ¿tiene el grafo \mathcal{G} un camino hamiltoniano?

Dado un input a estos problemas la respuesta es SI o NO.

¿qué es un problema computacional?

Definición

Un problema de decisión esta compuesto por:

- 1. Un conjunto de inputs (llamados instancias).
 - Números, grafos, palabras, funciones, etc . . .
- 2. Una pregunta sobre los inputs que se responde con SI o NO

¿qué es un problema computacional?

Mas ejemplos

Números Primos

Input: Un número N

Pregunta: ¿és N primo?

Busqueda en documentos

Input: Un documento d y una palabra w

Pregunta: ¿aparece la palabra w en el documento d?

¿cuáles son las soluciones a nuestros problemas?

Definición

Una **solución** para un problema de decisión es un **algoritmo** tal que para todo input *I* responde **SI** si, y solo si, *I* satisface la pregunta.

El algoritmo puede ser:

- Una serie de instrucciones (pseudo-código).
- Un programa en Java, Python, etc.
- Una Máquina de Turing.
-

"An algorithm is a finite answer to an infinite number of questions."

Outline

¿qué es un problema?

¿cuál es la complejidad de un problema?

¿cuáles son los problemas difíciles?

cuáles son los problemas más difíciles?

¿cómo medimos la complejidad de nuestro problema?

Definición (complejidad de una instancia)

Para un problema de decisión (input + pregunta) se define |I| como el tamaño del input I.

Ejemplos

- Para un grafo \mathcal{G} , $|\mathcal{G}|$ es el número de nodos y aristas.
- Para un documento d, |d| es el largo del documento.
- Para un número N, |N| es el número de digitos en decimal.

¿cómo medimos la eficiencia de nuestras soluciones?

- 1. Tiempo.
- 2. Espacio.
- 3. Energía.
- 4. Accesos a disco duro.
- 5. Operaciones aritméticas.
- 6. Paralelización.
- 7. ...

¿cómo medimos estos factores?

¿cómo medimos la eficiencia de nuestras soluciones?

Definición

Para un algoritmo \mathcal{A} y una función $T: \mathbb{N} \to \mathbb{N}$ decimos que:

"el algoritmo \mathcal{A} toma tiempo $\mathcal{O}(T)$ "

si para cada instancia I, el número de pasos N_I de A sobre I cumple:

$$N_I \leq T(|I|).$$

Ejemplo

- $\mathcal{O}(n)$: tiempo lineal.
- $\mathcal{O}(n^2)$: tiempo quadratico.
- $\mathcal{O}(\log(n))$: tiempo logaritmico.
- $\mathcal{O}(p(n))$: tiempo polinomial donde p es un polinomio.
- $\mathcal{O}(2^n)$: tiempo exponencial.

Estamos suponiendo la eficiencia en el peor caso

Suponemos la existencia de un demonio que puede entregarnos la peor instancia posible!

¿cómo formalizamos AJEDREZ como un problema?

- ¿cuáles son los posibles inputs de AJEDREZ?
- ¿cuál es una posible pregunta de decisión para AJEDREZ?

¿cuál es el tamaño del problema AJEDREZ ?

¿cómo formalizamos AJEDREZ como un problema?

Ajedrez

Input: Un tablero de $N \times N$ y la posición de las fichas

Pregunta: ¿el jugador blanco puede ganar siempre desde esa posición?

¿cuáles son los problemas fáciles?

Definición

- Decimos que un problema se puede resolver eficientemente si existe un algoritmo que toma tiempo polinomial.
- Definimos la clase P de todos los problemas que se pueden resolver en tiempo polinomial.
- Definimos la clase EXP de todos los problemas que se pueden resolver en tiempo exponencial.

Es fácil ver que: $P \subseteq EXP$

¿cuáles son los problemas fáciles?

Ejemplo

- CAMINO EULERIANO esta en P.
- CAMINO HAMILTONIANO esta en **EXP**.
- AJEDREZ esta en EXP.
- ¿qué otros problemas conocen en la clase **P**?
- isi un problema esta en EXP quiere decir que es un problema difícil?

¿cómo sabemos si el problema es difícil?

Outline

¿qué es un problema?

¿cuál es la complejidad de un problema?

¿cuáles son los problemas difíciles?

cuáles son los problemas más difíciles?

¿tienen algún parecido estos problemas?

¿son los dos igual de difíciles?

CAMINO HAMILTONIANO es mas fácil en este sentido...

Usted

 ${\sf Un\ demonio}$

¿Tiene mi grafo G un camino hamiltoniano?

Si, tiene un camino hamiltoniano

Demuestrame que tiene un camino hamiltoniano

 $v_1, v_2, v_3, \ldots, v_N$ (camino de largo N)

Ustedes lo verifican en tiempo polinomial 🗸

CAMINO HAMILTONIANO es mas fácil en este sentido...

Usted

Un demonio

¿Tiene mi grafo G un camino hamiltoniano?

Si, si tiene (miente)

Demuestrame que tiene un camino hamiltoniano

 $v_1, v_2, v_3, \ldots, v_N$ (camino de largo N)

Ustedes lo verifican en tiempo polinomial y miente!!

CAMINO HAMILTONIANO es mas fácil en este sentido...

Usted

Un demonio

¿Tiene mi grafo G un camino hamiltoniano?

NO, no tiene un camino hamiltoniano

Demuestrame que NO tiene un camino hamiltoniano

.

¿cómo les demuestra el demonio que NO hay un camino hamiltoniano?

Veamos que pasa con AJEDREZ...

Usted

Un demonio

¿Tiene blanco una estrategia ganadora en el tablero?

Si, blanco tiene una estrategia

Demuestrame que tiene una estrategia ganadora

.

¿cómo les demuestra el demonio que hay una estrategia?

La clase de problemas NP

Definición

- Decimos que un problema es eficiente de verificar si existe un algoritmo que verifica en tiempo polinomial si una instancia y un certificado (de tamaño polinomial) satisfacen la pregunta.
- Se define la clase NP de todos los problemas que se pueden verificar en tiempo polinomial.

Ejemplo

- CAMINO HAMILTONIANO esta en **NP**.
- (Al parecer) AJEDREZ NO esta en NP.

¿cuál es la pregunta abierta mas importante en CS?

$$P \stackrel{?}{=} NP$$

"If the solution to a problem can be quickly verified by a computer, can the computer also solve that problem quickly?"

Wikipedia.

¿cuál es la pregunta abierta mas importante en CS?

Uno de los 8 "Millennium Prize Problems":

- 1. Yang-Mills and Mass Gap
- 2. Riemann Hypothesis
- 3. P vs NP Problem
- 4. Navier-Stokes Equation
- 5. Hodge Conjecture
- 6. Poincaré Conjecture
- 7. Birch and Swinnerton-Dyer Conjecture

propuestos por The Clay Mathematics Institute.

¿cuál es la pregunta abierta mas importante en CS?

$$P \stackrel{?}{=} NP$$

US\$ 1 millón a quien lo resuelva.

"Aside from being an important problem in computational theory, a proof either way would have profound implications for mathematics, cryptography, algorithm research, artificial intelligence, game theory, multimedia processing, philosophy, economics and many other fields."

Wikipedia.

Outline

¿qué es un problema?

¿cuál es la complejidad de un problema?

¿cuáles son los problemas difíciles?

¿cuáles son los problemas más difíciles?

¿cuál es el problema más dificil en NP?

Definiciones

- Decimos que un problema P* es difícil en NP (NP-hard) si para todo problema P ∈ NP, cada instancia del problema P se puede reducir a un instancia del problema en P*.
- Decimos que un problema P* es completo en NP (NP-completo) si P* esta en NP y es difícil en NP.

Los problemas NP-completo son los problemas más difíciles en NP.

Camino Hamiltoniano es uno de ellos.

¿es SAT el único problema NP-completo?

Muchos problemas son **NP**-completos como:

- CAMINO HAMILTONEANO.
- Problema del vendedor viajero.
- Optimización discreta.
- Problemas de planificación.
- Sudoku, busca minas, ...
- Problema en bases de datos.
- Problema en inteligencia artificial.
- Match entre secuencias de DNA.
- etc...

¿qué ocurre si alguien encuentra alguna solución eficiente a un problema NP-completo?

Demostraría que NP = P

En particular, todos estos problemas se podrían resolver eficientemente:

- CAMINO HAMILTONEANO.
- Problema del vendedor viajero.
- Optimización discreta.
- Problemas de planificación.
- Sudoku, busca minas, . . .
- Problema en bases de datos.
- Problema en inteligencia artificial.
- Match entre secuencias de DNA.
- etc...

¿es P vs. NP la única pregunta interesante?

¿es P vs. NP la única pregunta interesante?

¿es P vs. NP la única pregunta interesante?

- 1. Puedo multiplicar matrices en $O(n^2)$?
- 2. Cuanto me demoro en contar los triángulos de un grafo?
- 3. Puedo acortar tiempos usando más espacio?

Algunas conclusiones sobre complejidad computacional

- 1. La complejidad computacional es un fenómeno en la naturaleza.
- 2. Es posible comparar y medir la complejidad de los problemas.
- La complejidad computacional es uno de los desafios matemáticos y computacionales más importantes de este siglo.

... FIN!

Investigación: Laboratorio de datos

• • •

Temas de investigación

Manejo de datos:

- Bases de datos de Grafos.
- Datos streaming.
- Extracción de información.

Lógica / Lenguajes formales:

- Teoría de modelos finitos.
- Teoría de automatas.

Ciencia de datos:

- Centralidad de datos.
- Redes neuronales de grafos.
- Ciencia Social Computacional.

Teoría de la Computación:

- Complejidad computacional.
- Algoritmos y estructuras de datos.
- Criptografía.

¿dónde puedo saber más sobre estos temas?

Algunos cursos:

- Matemáticas discretas.
- 2. Lógica para ciencia de la computación.
- 3. Teoría de autómatas y lenguajes formales.
- 4. Complejidad computacional.
- 5. Teoría de modelos finitos.

Si están interesados en hacer investigación, solo deben preguntar!