EARIN project Final report

Krzysztof Rudnicki Jakub Kliszko

June 11, 2023

1 Introduction

The goal of our project was to create a model for anime reccomender After entering anime name from the database model should output recommended animes

2 Used data and algorithms

2.1 Data

We used different dataset from originally specified in the project description We decided to use Anime Recommendation Database from Kaggle: LINK Main reasons why we decided to use this database was that it was bigger than original one, was more recent, it was described as being 100% usable by Kaggle and still had decent amount of code examples.

We are mostly interested in rating_complete.csv file which contains information about anime ratings from users who completed the anime

2.2 Algorithms

We decided to use collaborative filtering to develop our model, It makes personalized recommandations based on preferences of similar users

We represent anime data-set as embedding vector

We use K-nearest neighbors model and decided to test it out with different

metrics, neighbors and algorithms

2.2.1 Algorithms

We decided to test our model with 2 algorithms:

- 1. Brute
- 2. Auto

Ball Tree and KD Tree do not work on sparse input (as is the case with our input) so we decided to omit them

2.2.2 Neighbor number

We decided to test our model with 5 different neighbor amount:

- 1. 5 Popular starting point for small-medium datasets
- 2. square root of available data Usually helps to balance between underfitting and overfitting
- 3. half of available data Usually usefull for checking overall trend than specific nuances
- 4. logarithm of available data Used for very large datasets
- 5. n-1 neighbors Usually leads to overgeneralization as we use all instances except one for prediciton

2.2.3 Metrics

For brute algorithm we tested it will all possible metrics:

- 1. Cityblock
- 2. Cosine
- 3. Euclidean
- 4. l1
- 5. 12
- 6. Manhattan

- 3 Intermediate results
- 3.1 Results
- 3.2 Insights
- 4 Using program
- 4.1 Arguments
- 4.1.1 Default arguments
- 4.1.2 Reproducing
- 5 Final experimental results
- 5.1 Experiments
- 5.2 Results
- 5.3 Disussion
- 5.4 Comparison
- 6 Challenges
- 6.1 Challenges themselfes
- 6.2 Tackling challenges
- 7 Conclusions

 $Best\ algorithm$

- 7.1 Solution satisfaction
- 7.2 Potential improvements