Thales

1. Lucas tiene tres dados de seis caras; dos equilibrados y uno cargado de manera tal que la probabilidad de obtener un 1 es 1/3 y los restantes resultados son equiprobables. Lucas elige un dado al azar, lo arroja y obtiene un 4. ¿Cuál es la probabilidad de que haya elegido un dado equilibrado?

2. El tiempo (en horas) que Tomás pasa mirando su serie favorita y escuchando música durante el fin de semana son variables aleatorias X e Y respectivamente, con función de densidad conjunta:

$$f_{X,Y}(x,y) = 0.5e^{-0.5(x+y)}\mathbf{1}\{0 < x < y\}.$$

Sabiendo que un fin de semana Tomás pasó más de dos horas mirando su serie favorita, ¿cuál es la probabilidad de que haya pasado menos de seis horas en total mirando la serie y escuchando música?

$$X = \|C_{ont}\| de \text{ horas} \quad \text{mirado serie Favorita''}$$

$$Y = \|C_{ont}\| de \text{ horas} \quad \text{mirado escuchano musical}$$

$$\|P(x+y/6) \times y^2\| = \|P(x/2) \cdot n(x+y/6)\| = \|P(x/2) \cdot n(x+y/$$

blancas y 7 rojas. El experimento consiste en elegir una urna al azar, extraer una bola y reponerla en la misma urna. Si se realiza el experimento 200 veces, calcular aproximadamente la probabilidad de observar más de 90 bolas rojas. extrae al azar con con reposicion total 14 UB P(R>90)=1-1P(R < 90 N =200 1P(R) = 1P(R | UA) 1P(UA) + 1P(R | UB | 1P(UB) 200 $\leq \beta er(\frac{13}{28})$ X1~Ber 28) W = 2 × 2 > 90 reorena de limite como 0725 W tiene distribución esperman de X - px = P varianza -> $\sigma_{\times} = \rho(1-\rho)$ con media n px desuro Jn ox ofinalizo $\Rightarrow \mathbb{P}\left(\underbrace{\underbrace{z_{oo}}_{z=1}^{z_{oo}} \times_{L} \angle + \right) \simeq \phi\left(\underbrace{t_{-n}E(x_{i})}_{v_{our}(x_{i})}\right)$ $\left| \left(\frac{200}{5} \times L \right) \right| = \left| \left(\frac{200}{5} \times L \right| = \left| \left(\frac{200}{5} \times L \right| \right| = \left| \left(\frac{200}{5} \times L \right| \right| = \left|$

5. La urna a contiene 4 bolas blancas y 3 rojas. La urna b contiene 7 bolas

4. A una tienda de ropa entran clientes de acuerdo con un proceso de Poisson de intensidad 4 por hora. La cantidad de prendas que compra cada cliente es independiente, y puede ser 0, 1 ó más de 1 con probabilidades respectivas 0.4, 0.35, 0.25. Sabiendo que en las dos primeras horas entraron exactamente 2 clientes, calcular la probabilidad de que 1 cliente no compre nada y 1 cliente compre una sola prenda.

N(2)="c	art de arribos en las 2	horas
N _N (2)=" c	ent de arribas que capra	mprara"
N(2)~Por		
N(2)~Pa(N,(2)~Po(
IP (NG)	= 1 N(4=1 N=2) = 1P(N,(2)=	
X ₁ X ₂		IP(N(2) = 2)
7 7 2	· Plants	(2) = 1) P(N'(5) = 1) B(N'(5) = 0)
<u> </u>		P(N(2)=2)
2		
	- 32e	28 20,28
	TTPP(XM)	11 01 820
	21 0,4 0,3	3s = 2 0,4 0,3S = 0,28
	11 11 01	
₩ N	$M(2), N_1(2), N_1(2) N_{(2)} = 2$	~ / ((2,0,4,0,35,0,2s)
	$m(2) \mid V_{(1)} = 2 \sim \beta i \wedge (2,$	P_{M} \sim $N_{M} \sim P_{O}(\lambda_{M}=\lambda_{M})$

3. Mica y Carla estudian juntas para un examen y cada una de ellas tiene probabilidad 0.6 de aprobarlo. Sea X_1 la variable aleatoria que toma el valor 1 si Mica aprueba el examen ó 0 si no, y X_2 la variable aleatoria que toma el valor 1 si Carla aprueba el examen ó 0 si no. Si $\mathbf{cov}(X_1, X_2) = 0.14$, calcular la probabilidad de que ambas amigas aprueben el examen.

probabilidad de que ambas amigas aprueben el examen.

$$|P(A_n = 0.6 | P(A_n)) = 0.4$$

$$|P(A_n \cap A_n) = 0.4 | P(A_m \cap A_n) = 0.4$$

$$|P(A_n \cap A_n) = 0.4 | P(A_m \cap A_n) = 0.4$$

$$|P(A_n \cap A_n) = 0.4 | P(A_m \cap A_n) = 0.4$$

$$|P(A_n \cap A_n) = 0.4 | P(A_m \cap A_n) = 0.4$$

$$|P(A_n \cap A_n) = 0.4 | P(A_m \cap A_n) = 0.4$$

$$|P(A_n \cap A_n) = 0.4 | P(A_m \cap A_n) = 0.4$$

$$|P(A_n \cap A_n) = 0.4 | P(A_m \cap A_n) = 0.4$$

$$|P(A_n \cap A_n) = 0.4 | P(A_m \cap A_n) = 0.4$$

$$|P(A_n \cap A_n) = 0.4 | P(A_m \cap A_n) = 0.4$$

$$|P(A_n \cap A_n) = 0.4 | P(A_m \cap A_n) = 0.4$$

$$|P(A_n \cap A_n) = 0.4 | P(A_m \cap A_n) = 0.4$$

$$|P(A_n \cap A_n) = 0.4 | P(A_m \cap A_n) = 0.4$$

$$|P(A_n \cap A_n) = 0.4 | P(A_m \cap A_n) = 0.4$$

$$|P(A_n \cap A_n) = 0.4 | P(A_m \cap A_n) = 0.4$$

$$|P(A_n \cap A_n) = 0.4 | P(A_m \cap A_n) = 0.4$$

$$|P(A_n \cap A_n) = 0.4 | P(A_m \cap A_n) = 0.4$$

$$|P(A_n \cap A_n) = 0.4 | P(A_m \cap A_n) = 0.4$$

$$|P(A_n \cap A_n) = 0.4 | P(A_m \cap A_n) = 0.4$$

$$|P(A_n \cap A_n) = 0.4 | P(A_m \cap A_n) = 0.4$$

$$|P(A_n \cap A_n) = 0.4 | P(A_m \cap A_n) = 0.4$$

$$|P(A_n \cap A_n) = 0.4 | P(A_m \cap A_n) = 0.4$$

$$|P(A_n \cap A_n) = 0.4 | P(A_m \cap A_n) = 0.4$$

$$|P(A_n \cap A_n) = 0.4 | P(A_m \cap A_n) = 0.4$$

$$|P(A_n \cap A_n) = 0.4 | P(A_m \cap A_n) = 0.4$$

$$|P(A_n \cap A_n) = 0.4 | P(A_m \cap A_n) = 0.4$$

$$|P(A_n \cap A_n) = 0.4 | P(A_m \cap A_n) = 0.4$$

$$|P(A_n \cap A_n) = 0.4 | P(A_m \cap A_n) = 0.4$$

$$|P(A_n \cap A_n) = 0.4 | P(A_m \cap A_n) = 0.4$$

$$|P(A_n \cap A_n) = 0.4 | P(A_m \cap A_n) = 0.4$$

$$|P(A_n \cap A_n) = 0.4 | P(A_m \cap A_n) = 0.4$$

$$|P(A_n \cap A_n) = 0.4 | P(A_m \cap A_n) = 0.4$$

$$|P(A_n \cap A_n) = 0.4$$

	mate	mátic	a. Juan	resue	lve co	rrecta	nente	cada	ejercio	e lengua ; io en for	na inde	pendien	te
	_					_				n y resol ^a que Juan			
		.0/		1						0,6 1			
		IP(Aprolo	0 1	J≥ ()							
		\		•						> L			
										0,67	(,		
		n me	ios 1	→N.	31					->	9.		
										0.6 -4			
1] 11	H 1	0,0		000	1 ~ 3	11		•		2		
- 1) "Cai	l de	ele.	7	(VIA)	i (esu				7	2		
		ノル	Bin (3)	0,3)									
			-1)=1-										
	II.	(10 2	-1/-1-	11/10	1=01		3						
			-1 - = 1	$\begin{pmatrix} 3 \\ 0 \end{pmatrix}$	(0,3)	(1-0,3							
					63=	0,18	4						
	Λ												
	Apr	robe) =	L	U M	UMZ	, , L	JM,	UMZ	,LUM	1 UMZ		
					,								
				P	(K~	M/n) v (ı	۰٬۸٫۰	Mz)U	(۱ חא, חה)(N	۷ (ا ≥	
) v (< n r			
							\	(6			(12/2)		
									IP((N>1)			
					~ <	IPLL	UM, NI	4) +	P(Ln	M, n T2)			
						- " \							
							\		NZII		,		
				1,0	. ک	= 11(4) (rP(M,),P(Mz) + 1	P(M1)(P(M2	$\parallel \perp \alpha$,6 (20,0	6 0,3
								18(n	/21/			0,1	84

1. Sean P_1, P_2, P_3 , tres puntos aleatorios independientes, cada uno con distribución uniforme sobre el rectángulo de vértices $(0,0), (\pi,0), (\pi,9), (0,9)$. Calcular la probabilidad de que exactamente dos de esos tres puntos estén a distancia mayor que 3/2 de los vértices del rectángulo.

2. Sea X una variable aleatoria con función de distribución

$$M_1 \times t_2$$

$$F_X(x) = \frac{x}{5} \mathbf{1} \{ 1 \le x < 2 \} + \frac{3}{5} \mathbf{1} \{ 2 \le x < 3 \} + \frac{x+1}{5} \mathbf{1} \{ 3 \le x < 4 \} + \mathbf{1} \{ 4 \le x \}.$$

Calcular $\mathbf{E}[X|X>2]$.

Atoms,
$$P(X=x) = \frac{1}{5} \quad \forall x \in A +$$

$$E(X|X>2) = \int \frac{x f_{x}(x) dx}{P(A>2)} dx + \sum x P(X=x)$$

$$E(x/(xxx)) = \int_{3}^{4} \frac{1}{5} dx + 3 \frac{1}{5} = \frac{1}{5} \left(\frac{x^{2}}{2} \right)_{3}^{4} + 3 = \frac{1}{5} \left(8 - \frac{9}{2} + 3 \right) = \frac{13}{10}$$

$$E(x/x>2) = E(x7/3x>3) = \frac{13}{10} = \frac{13}{10}$$

$$R(x>2) = \frac{13}{5} = \frac{13}{4}$$

0,4 Pi	n=250 operentes
0,35	Xp. ="cont de pied obser"
	Xt, = "cont + yeros - "
	Xev=1' - Leupal - '
	COU(TIPI)
(250,0,4,0,35,025)	
	$\times \rho, \sim B_{in}(zso, o, 4)$
	$X_{t_1} \sim \beta_{10}(250, 0.35)$
	×pa~Bin(250,0,4)
$COU(\Lambda \rho_1, \Lambda + 1) = C$	$E(X_{t_1}X_{\rho_1})-E(X_{t_1})E(X_{\rho_1})$
	$\longrightarrow E(X_{P_1}) = 250 o,$
	$E(x_{t,l})=2500$
E/V V \ 250 250	
$C(^{+},^{\wedge}P_{i}) = \sum_{l=1}^{n} \sum_{l=1}^$	$x_{t_{1}}^{x_{p_{1}}} p(x_{t_{1}}=x_{t_{1}} \cap x_{p_{1}}=x_{p_{1}})$ $\frac{7}{2}$
	10 10 10 10 10 10 10 10 10 10 10 10 10 1
CoV(X	(p, X _L) = -0 0,4 0,35 = -35

5. El costo por transportar 100 barriles de whisky desde Canadá hasta EE.UU. es 100000 dólares. Los volúmenes de los barriles de whisky (en litros) son variables aleatorias independientes con distribución normal de media 160 y varianza 1. ¿Qué precio debe tener como

mínimo el litro de whisky transportado para que la probabilidad de que el transportista tenga una ganancia superior a 10000 dólares sea por lo menos 0.95?

tenga una ganancia superior a 10000 dólares sea por lo menos 0.95?
costo 100 barnles -> 100 000 usd
V="1.tros por barr.1" V& ~ N(160,1)
U _L ="Litros en el beur (" 1-nesimo
Costo por barril Gu=d Vi d=accio/Litro
Costo por looparnles $C_{1/1} = 5 U_{1} = 4 U_{2}$
$\frac{COS(0)}{C(0)} = \frac{2}{2} \frac{3}{3} \frac{1}{C(0)} = \frac{2}{2} \frac{1}{C$
garana dofe (U)-100000 = 150/2-100000 = 6(U)
$ (G(u)>10000) \leq 0.95$
() * () £ VL - b > (0000)
$\Rightarrow P(\angle Vi > 10000+b) = P(\angle Vi > 110000)$
$\frac{1}{10000} = \sqrt{10000} = \sqrt{100000} = \sqrt{10000} = \sqrt{100000} = \sqrt{10000} = \sqrt{100000} = \sqrt{10000} = \sqrt{100000} = \sqrt{10000} = $
0/31 -16 110000 16000
$\left(\frac{2V_{L}-160000}{10000}\right) = \frac{10000}{10000} = \frac{16000}{10000}$
$ P(Z>1000-1600d) \ge 0.95$
7 tylu
2 (ZV) 10000)
16000

.40 1 extracción	n bolas con reposición hasta observar idad de bolas rojas y lilas observadas
J4R > extracción has con repo has	ta 1º amerila No
N='cont extractiones hasta N~geo (5)	s onasile
	E(E(X/N))
$E(Y N=n) = \frac{n}{10}$ $E(X N) = \frac{n}{10}$	
	$= n) = \sum_{x} x R(x N=n)$ $= \sum_{x} x R(x N=n)$
$E(X N=n)=\Psi(n)$ $E(X N)=\Psi(N)$	$-\frac{2}{2} \times (2)(4)^{2}(6)^{-2}$ $-\frac{2}{2} \times (2)(4)^{2}(6)^{-2}$ $-\frac{2}{2} \times (2)(4)^{2}(6)^{2}$
$X _{N=n} = \underbrace{\sum_{i=1}^{N} X_{i} _{N=n}}_{\text{Bin}(n-1,P)} + \underbrace{\sum_{i=1}^{N} X_{i} _{N=n}}_{\text{Ber}(i)}$	(P)
$= E(\tilde{z}' X_i N^{i_0}) + E(X_i)$	

es la probabilidad de que haya elegido un dado equinorado.

$$E(X|N) = E(X|N) - E(Y|N)$$

$$= E(X|N) - E(Y|N)$$

$$E(X|N) = Y(N)$$

$$= \sum_{n=1}^{N-1} X_{n} \times \sum_{n=1}^{N-1} x_{n}$$

$$= \sum_{n=1}^{N-1} x_{n} \times \sum_{n=1}^{N-1} x_{n} \times \sum_{n=1}^{N-1} x_{n}$$

$$= \sum_{n=1}^{N-1} x_{n} \times \sum_{n=1}^{N-1} x_{n} \times \sum_{n=1}^{N-1} x_{n} \times \sum_{n=1}^{N-1} x_{n}$$

$$= \sum_{n=1}^{N-1} x_{n} \times \sum_{n=1}^{N-1} x_{n}$$

