

IO – Introducció als Ordinadors

GRUP A – Sessió 2

Tema 1 - Sistemes de representació numèrica

Semestre 1

Tema 1. Sistemes de representació numèrica

Tema 2. Portes lògiques i àlgebra booleana

Tema 3. Circuits lògics combinacionals

Tema 4. Blocs funcionals combinacionals

Tema 5. Aritmètica binària

Sistemes numèrics i conversions

HUMANS: treballem amb un sistema numèric (SN) **decimal** (base 10) en la nostra realitat quotidiana.

MÀQUINES (Sistemes digitals): treballen amb diferents sistemes numèrics. El més elemental d'ells és el sistema binari (base 2).

La "base" indica el número de símbols per dígit que es poden utilitzar en el sistema numèric.

- Decimal → base 10 → { 0 al 9 }
- Binari \rightarrow base 2 \rightarrow { 0,1 }

Hi ha altres sistemes com **l'hexadecimal** (base 16) o **l'octal** (base 8) A continuació aprendrem a canviar valors numèrics d'una base a una altra de diferent.

Maneres de representar valors numèrics:

→ A través d'una forma ponderada

$$N = a_n b^n + a_{n-1} b^{n-1} + a_{n-2} b^{n-2} + \dots + a_i b^i + \dots + a_0 b^0 + a_{-1} b^{-1} + \dots + a_{-p} b^{-p}$$

on " a_i " són els valors decimals dels dígits o símbols del sistema de numeració de base 'b' on $0 \le a_i < b$.

Maneres de representar valors numèrics:

→ A través d'una forma ponderada

$$N = a_n b^n + a_{n-1} b^{n-1} + a_{n-2} b^{n-2} + \dots + a_i b^i + \dots + a_0 b^0 + a_{-1} b^{-1} + \dots + a_{-p} b^{-p}$$

on " a_i " són els valors decimals dels dígits o símbols del sistema de numeració de base 'b' on $0 \le a_i < b$.

Exemple: Sistema decimal.

El número 87,54 es representa de forma ponderada com:

$$87,54 = 8 \cdot 10^{1} + 7 \cdot 10^{0} + 5 \cdot 10^{-1} + 4 \cdot 10^{-2}$$

Nomenclatura

- **Decimal** \rightarrow base $10 \rightarrow 2019_{10}$
- **Binari** \rightarrow base 2 \rightarrow 111 1110 0011₂

La base d'un nombre s'indica amb el número de base al final com a subíndex, o a vegades amb una lletra

Maneres de representar valors numèrics:

→ A través d'una forma ponderada

$$N = a_n b^n + a_{n-1} b^{n-1} + a_{n-2} b^{n-2} + \dots + a_i b^i + \dots + a_0 b^0 + a_{-1} b^{-1} + \dots + a_{-p} b^{-p}$$

on " a_i " són els valors decimals dels dígits o símbols del sistema de numeració de base 'b' on $0 \le a_i < b$.

Exemple: Sistema decimal.

Decimal → base
$$10 \to 2019_{10}$$
 → 2019
Binari → base $2 \to 11111100011_{2} \to 11111100011_{b}$

• **Binari** \rightarrow base 2 \rightarrow 111 1110 0011₂

final com a subíndex, o a vegades amb una lletra

Conversions de base

a) De binari a decimal

Binari:
$$110\ 0101_2 = 1 \cdot 2^6 + 1 \cdot 2^5 + 0 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 64 + 32 + 4 + 1 = 101_{10}$$

$$\frac{2^6}{1} \quad \frac{2^5}{1} \quad \frac{2^4}{1} \quad \frac{2^3}{1} \quad \frac{2^2}{1} \quad \frac{2^1}{1} \quad \frac{2^0}{1}$$

$$1 \quad 1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 1$$

$$1 \cdot 64 + 1 \cdot 32 + 0 \cdot 16 + 0 \cdot 8 + 1 \cdot 4 + 0 \cdot 2 + 1 \cdot 1 = 101$$

Conversions de base

a) De binari a decimal

Binari:
$$\mathbf{110\ 0101}_2 = 1 \cdot 2^6 + 1 \cdot 2^5 + 0 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 64 + 32 + 4 + 1 = \mathbf{101}_{10}$$

$$\frac{2^6}{1} \quad \frac{2^5}{1} \quad \frac{2^4}{1} \quad \frac{2^3}{1} \quad \frac{2^2}{1} \quad \frac{2^1}{1} \quad \frac{2^0}{1}$$

$$\mathbf{1} \quad \mathbf{0} \quad \mathbf{0} \quad \mathbf{1} \quad \mathbf{0} \quad \mathbf{1}$$

1.64 + 1.32 + 0.16 + 0.8 + 1.4 + 0.2 + 1.1 = 101

b) De decimal a binari???

Conversions de base

Conversions de base

- a) De **binari** a **decimal**
- b) De decimal a binari

Exemple: 13 (decimal)

18 (decimal)

EXERCICI 1: Conversió de binari \rightarrow decimal / decimal \rightarrow binari

	2 ⁶	2 ⁵	24	2 ³	2 ²	21	2 ⁰ .	
110 0101 ₂ =	1.(64)	1·(32)	0·(16)	0·(8)	1·(4)	0·(2)	1.(1)	= 101 ₁₀
001 0101 ₂ =								= ?
100 1110 ₂ =								= ?
101 0000 ₂ =								= ?
001 1010 ₂ =								= ?
111 1101 ₂ =								= ?

