

MAESTRIA EN CIENCIAS DE LA COMPUTACION

Área: Tronco Común

Programa de Asignatura: Lenguajes Formales y Autómatas

Código: MCOM 20200

Tipo: Básica

Créditos: 9

Fecha: Noviembre 2012

1. DATOS GENERALES

Nombre del Programa Educativo:	Maestría en Ciencias de la Computación
Modalidad Académica:	Escolarizada
Nombre de la Asignatura:	Lenguajes Formales y Autómatas
Ubicación:	Primer semestre (Obligatoria)

2. REVISIONES Y ACTUALIZACIONES

Autores:	Dra. Claudia Zepeda Cortés Dr. Cesar Bautista Ramos	
	Dr. Coda Badiota Named	
Fecha de diseño:	Noviembre 2012	
Fecha de la última actualización:	Marzo 2017	
Revisores:	Dra. Mireya Tovar Vidal	
Sinopsis de la revisión y/o actualización:	Se revisó el contenido del curso y se agregó	
	bibliografía básica y complementaria.	

3. OBJETIVOS GENERALES:

El estudiante reconocerá y aplicará los conceptos fundamentales de la teoría de autómatas y lenguajes formales.

ESPECIFICOS

- 1.- El estudiante clasificará los lenguajes formales siguiendo la jerarquía de Chomsky.
- 2.- El estudiante relacionará los principales enfoques para representar lenguajes: gramáticas (métodos generativos) y autómatas (métodos por aceptación).
- 3.- El estudiante reconocerá y aplicará la teoría de autómatas y lenguajes formales para el diseño, modelado o representación de posibles problemas reales.

4. CONTENIDO

IENIDO	
Unidad	Contenido Temático
1. INTRODUCCIÓN	 1.1. Reconocer la importancia de estudiar los autómatas y lenguajes formales. 1.2. Símbolos, alfabetos y cadenas. 1.3. Operaciones sobre cadenas. 1.4. Definición de lenguaje y operaciones sobre lenguajes. 1.5. La jerarquía de Chomsky: Clasificación de gramáticas y lenguajes. 1.6. Morfismos los lenguajes. 1.7. Lema de Levy y los teoremas de Lyndon-Schutzenberger.
2. AUTÓMATAS FINITOS Y GRAMÁTICOS REGULARES	 2.1. Autómatas finitos deterministas. 2.2. Autómatas finitos no deterministas y autómatas finitos no deterministas con y sin transiciones-e. 2.3. La clase de los lenguajes aceptados por los autómatas finitos. 2.4. Equivalencia entre los diferentes tipos de Autómatas Finitos. 2.5. Simplificación de Autómatas Finitos. 2.6. Gramáticas regulares. 2.7. Derivación y lenguaje generado por una gramática regular. 2.8. Aplicaciones del concepto de Autómata Finito en diferentes contextos.
3. EXPRESIONES REGULARES	 3.1. Definición de una expresión regular. 3.2. Lenguaje representado por una expresión regular. 3.3. Propiedades algebraicas. 3.4. Equivalencia entre expresiones regulares, autómatas finitas y gramáticas regulares. 3.5. Lema del bombeo. 3.6. Propiedades de cerradura avanzadas de lenguajes regulares: Mitades y Cyc. 3.7. Transductores 3.8. Autómatas finitos de doble sentido

Unidad	Contenido Temático	
	3.9. Autómata, grafos y matrices booleanas	
	3.10. Minimización revisada	
	3.11. Aplicaciones	
4. AUTÓMATAS DE	4.1. Autómata de pila.	
PILA Y LENGUAJES	4.2. Lenguajes aceptados por autómatas de	
LIBRES DE	pilas.	
CONTEXTO	4.3. Autómatas de pilas deterministas y no	
	determinista.	
	4.4. Gramáticas libres de contexto.	
	4.5. Derivación y lenguaje generado por una	
	gramática libre de contexto.	
	4.6. Árbol sintáctico.	
	4.7. Ambigüedad.	
	4.8. Formas normales (Chomsky, Greybach).	
	4.9. Gramáticas dependientes de contexto.	
	4.10. Lema de bombeo.	
	4.11. Aplicaciones	
5. MAQUINAS DE	5.1. Máquina de Turing.	
TURING	5.2. Máquina de Turing determinista y no	
	determinista.	
	5.3 Lenguaje generado por una Máquina de	
	Turing	

plementaria
Révész, G. E. (2012). Introduction to Formal Languages. USA: Dover Publications. Sipser, M. (2012). Introduction to the Theory of Computation. Cengage Learning, 3rd Edition England: MIT Press.

5. CRITERIOS DE EVALUACIÓN

Criterios	Porcentaje
Exámenes	60%
Participación en clase	
Tareas	10%
Exposiciones	
Simulaciones	
Trabajo de investigación y/o de intervención	10%
Prácticas de laboratorio	20%
Visitas guiadas	
Reporte de actividades académicas y culturales	
Mapas conceptuales	
Portafolio	
Proyecto final	

Total 100%