1 Quotient Groups and Homomorphisms

1.1 Definitions and Examples

Definition. If ϕ is a homomorphism $\phi: G \to H$, the kernel of ϕ is the set

$$\{g \in G \mid \phi(g) = 1\}$$

and will be denoted by $\ker \phi$ (here 1 is the identity of H).

Proposition 1. Let G and H be groups and let $\phi: H \to H$ be a homomorphism.

- 1. $\phi(1_G) = 1_H$, where 1_G and 1_H are the identities of G and H, respectively.
- 2. $\phi(g^{-1}) = \phi(g)^{-1}$ for all $g \in G$.
- 3. $\phi(q^n) = \phi(q)^n$ for all $n \in \mathbb{Z}$.
- 4. $\ker \phi$ is a subgroup of G.
- 5. $\operatorname{im} \phi$, the image of G under ϕ , is a subgroup of H.

Definition. Let $\phi: G \to H$ be a homomorphism with kernel K. The quotient group or factor group, G/K (read G modulo K or simply G mod K), is the group whose elements are the fibers of ϕ with the following group operation: If X is the fiber above a and Y is the fiber above b then the product XY in G/K is defined to be the fiber above the product ab in G.

Proposition 2. Let $\phi: G \to H$ be a homomorphism with kernel K. Let $X \in G/K$ be the fiber above a, i.e., $X = \phi^{-1}(a)$. Then

- 1. For any $u \in X$, $X = \{uk \mid k \in K\}$
- 2. For any $u \in X$, $X = \{ku \mid k \in K\}$

Definition. For any $N \leq G$ and any $g \in G$ let

$$gN = \{gn \mid n \in N\} \text{ and } Ng = \{ng \mid n \in N\}$$

called respectively a *left coset* and a *right coset* of N in G. Any element of a coset is called a *representative* for the coset.

Theorem 3. Let G be a group and let K be the kernel of some homomorphism from G to another group. Then the set of whose elements are left cosets of K in G with operation defined by

$$uK \circ vK = (uv)K$$

forms a group, G/K. This operation is well defined and does not depend on the choice of representatives.

Proposition 4. Let N be any subgroup of the group G. The set of left cosets of N in G form a partition of G. Furthermore, for all $u, v \in G, uN = vN$ if and only if $v^{-1}u \in N$ and in particular, uN = vN if and only if u and v are representatives of the same coset.

Proposition 5. Let G be a group and let N be a subgroup of G.

1. The operation on the set of left cosets of N in G described by

$$uN \cdot vN = (uv)N$$

is well defined if and only if gng^{-1} for all $g \in G$ and all $n \in N$.

2. If the above operation is well defined, then it makes the set of left cosets of N in G into a group. In particular the identity of this group is the coset 1N and the inverse of gN is the coset g^{-1} , i.e, $(gN)^{-1} = g^{-1}N$.

Definition. The element gng^{-1} is called the *conjugate* of $n \in N$ by g. The set $gNg^{-1} = \{gng^{-1} \mid n \in N\}$ is called the *conjugate* of N by g. The element g is said to *normalize* N if $gNg^{-1} = N$. A subgroup N of a group G is called *normal* if every element of G normalizes N, i.e., if $gNg^{-1} = N$ for all $g \in G$. If N is a normal subgroup of G we shall write $N \subseteq G$.

Theorem 6. Let N be a subgroup of the group G. The following are equivalent:

- 1. $N \leq G$
- 2. $N_G(N) = G$ (recall $N_G(N)$ is the normalizer in G of N)
- 3. qN = Nq for all $q \in G$
- 4. the operation on left cosets of N in G described in Proposition 5 makes the set of left cosets into a group
- 5. $gNg^{-1} \subseteq N$ for all $g \in G$.

Proposition 7. A subgroup N of the group G is normal if and only if it is the kernel of some homomorphism.

Definition. Let $N \subseteq G$. The homomorphism $\pi: G \to G/N$ defined by $\pi(g) = gN$ is called the *natural projection (homomorphism)* of G onto G/N. If $\overline{H} \subseteq G/N$, then complete preimage of \overline{H} in G is the preimage of \overline{H} under the natural projection homomorphism.

1.2 More on Cosets and Lagrange's Theorem

Theorem 8. (Lagrange's Theorem) If G is a finite group and H is a subgroup of G, then the order of H divides the order of G and the number of left cosets of H in G equals $\frac{|G|}{|H|}$.

Definition. If G is a group and $H \leq G$, the number of left cosets of H in G is called the *index* of H in G and is denoted by |G:H|.

Corollary 9. If G is a finite group and $x \in G$, then the order of x divides the order of G. In particular, $x^{|G|} = 1$ for all x in G.

Corollary 10. If G is a group of prime order p, then G is cyclic, hence $G \cong \mathbb{Z}_p$ (note that this text uses \mathbb{Z}_n to denote the cyclic group of order n written in multiplicative notation and that given any $n \in \mathbb{Z}$, $\mathbb{Z}_n \cong \mathbb{Z}/n\mathbb{Z}$).

Note. For finite abelian groups the full converse of Lagrange's theorem holds, that is the group has a subgroup of order n for each n that divides the order of the group.

Theorem 11. (Cauchy's Theorem) If G is a finite group and p is a prime dividing |G|, then G has an element of order p.

Theorem 12. (Sylow) If G is a finite group of order $p^{\alpha}m$, where p is a prime not dividing m, then G has a subgroup of order p^{α} .

Definition. Let H and K be subgroups of a group and define

$$HK = \{hk \mid h \in H, k \in K\}.$$

Proposition 13. If H and K are finite subgroups of a group then

$$|HK| = \frac{|H||K|}{|H \cap K|}.$$

Proposition 14. If H and K are subgroups of a group, HK is a subgroup if and only if HK = KH.

Note. HK = KH does not imply that the elements of H commute with the elements of K

Corollary 15. If H and K are subgroups of G and $H \leq N_G(K)$, then Hk is a subgroup of G. In particular, if $K \leq G$, Then $HK \leq G$ for any $H \leq G$ (Since if $K \leq G$, $N_G(k) = G$).

Definition. If A is any subset of $N_G(K)$ (or $C_G(K)$), we shall say A normalizes K (centralizes K, respectively).

1.3 The Isomorphism Theorems

Theorem 16. (The First Isomorphism Theorem) If $\phi: G \to H$ is a homomorphism, then $\ker \phi \subseteq G$ and $G/\ker \phi \cong \phi(G)$.

Corollary 17. Let $\phi \colon G \to H$ be a homomorphism.

- 1. ϕ is injective if and only if $\ker \phi = 1$.
- 2. $|G : \ker \phi = |\phi(G)|$.

Theorem 18. (The Second or Diamond Isomorphism Theorem) Let G be a group, let A and B be subgroups of G and assume $A \leq N_G(B)$. Then AB is a subgroup of G, $B \subseteq AB$, $A \cap B \subseteq A$, and $AB/B \cong A/A \cap B$.

Theorem 19. (The Third Isomorphism Theorem) Let G be a group and let H and K be normal subgroups of G with $H \leq K$. Then $K/H \subseteq G/H$ and

$$(G/H)/(K/H) \cong G/K$$
.

If we denote the quotient by H with a bar, this can be written

$$\overline{G}/\overline{K} \cong G/K$$
.

Theorem 20. (The Fourth or Lattice Isomorphism Theorem) Let G be a group and let N be a normal subgroup of G. Then there is a bijection from the set of subgroups A of G which contains N onto the set of subgroups $\overline{A} = A/N$ of G/N. In particular, every subgroup of \overline{G} is of the form A/N for some subgroup A of G containing N (namely, its preimage in G under the natural projection homomorphism from G to G/N). This bijection has the following properties: for all $A, B \leq G$ with $N \leq A$ and $N \leq B$,

- 1. $A \leq B$ if and only if $\overline{A} \leq \overline{B}$,
- 2. if $A \leq B$, then $|B:A| = |\overline{B}:\overline{A}|$,
- 3. $\overline{\langle A, B \rangle} = \langle \overline{A}, \overline{B} \rangle$,
- 4. $\overline{A \cap B} = \overline{A} \cap \overline{B}$, and
- 5. $A \subseteq G$ if and only if $\overline{A} \subseteq \overline{G}$.

1.4 Composition Series and the Hölder Program

Proposition 21. If G is a finite abelian group and p is a prime dividing |G|, then G contains an element of order p.

Definition. A group G is called *simple* if |G| > 1 and the only normal subgroups of G are 1 and G.

Definition. In a group G a sequence of subgroups

$$1 = N_0 \le N_1 \le N_2 \le \ldots \le N_{k-1} \le N_k = G$$

is called a composition series if $N_i \leq N_{i+1}$ and N_{i+1}/N_i is a simple group, $0 \leq i \leq k-1$. If the above sequence is a composition series, the quotient groups N_{i+1}/N_i are called composition factors of G.

Theorem 22. (Jordan-Hölder) Let G be a finite group with $G \neq 1$. Then

- 1. G has a composition series and
- 2. The composition factors in a composition series are unique, namely, id $1 = N_0 \le N_1 \le \ldots \le N_r = G$ and $1 = M_0 \le M_1 \le \ldots \le M_s = G$ are two composition series for G, then r = s and there is some permutation, π , of $\{1, 2, \ldots, r\}$ such that

$$M_{\pi(i)}/M_{\pi(i)-1} \cong N_i/N_{i-1}, \qquad 1 \le i \le r.$$

Theorem. There is a list consisting of 18 (infinite) families of simple groups and 26 simple groups not belonging to these families (the *sporadic* simple groups) such that every finite simple group is isomorphic to one of the groups in this list.

Theorem. (Feit-Thompson) If G is a simple group of odd order, then $G \cong \mathbb{Z}_p$ for some prime p.

Definition. A group G is solvable if there is a chain of subgroups

$$1 = G_0 \triangleleft G_1 \triangleleft \ldots \triangleleft G_s = G$$

such that G_{i+1}/G_i is abelian for $i=0,1,\ldots,s-1$.

Theorem. The finite group G is solvable if and only if for every divisor n of |G| such that $(n, \frac{|G|}{n}) = 1$, G has a subgroup of order n.

Note. If N and G/N are solvable, then so is G.

1.5 Transpositions and the Alternating Group

Definition. A 2-cycle is called a *transposition*.

Note. Every element of S_n may be written as a product of transpositions.

Definition. Let x_1, \ldots, x_n be independent variables and let Δ be the polynomial

$$\Delta = \prod_{1 \le i < j \le n} (x_i - x_j),$$

and for $\sigma \in S_n$ let σ act on Δ by

$$\sigma(\Delta) = \prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)}).$$

One can show that for all $\sigma \in S_n$ that $\sigma(\Delta) = \pm \Delta$. Now define,

$$\epsilon(\sigma) = \begin{cases} +1 & \text{if } \sigma(\Delta) = \Delta \\ -1 & \text{if } \sigma(\Delta) = -\Delta. \end{cases}$$

Now,

- 1. $\epsilon(\sigma)$ is called the sign of σ and
- 2. σ is call an even permutation if $\epsilon(\sigma) = 1$ and an odd permutation if $\epsilon(\sigma) = -1$.

Proposition 23. The map $\epsilon: S_n \to \{\pm 1\}$ is a homomorphism (where $\{\pm 1\}$ is a multiplicative version of the cyclic group of order 2).

Proposition 24. Transpositions are all odd permutations and ϵ is a surjective homomorphism.

Definition. The alternating group of degree n, denoted A_n , is the kernel of te homomorphism ϵ (i.e., the set of even permutations).

Note.

- 1. $|A_n| = \frac{1}{2}|S_n| = \frac{1}{2}(n!)$.
- 2. Due to ϵ being a homomorphism we get the rules

$$(even)(even) = (odd)(odd) = even$$

 $(even)(odd) = (odd)(even) = odd.$

3. An m-cycle is an odd permutation if and if only m is even

Proposition 25. The permutation σ is odd if and only if the number of cycles of even length in its cycle decomposition is odd.

Note. A_n is a non-abelian simple group for all $n \geq 5$.