

® BUNDESREPUBLIK DEUTSCHLAND

① Offenlegungsschrift① DE 199 59 358 A 1

(a) Int. Cl.⁷: F 41 B 15/00 H 02 M 3/07 H 03 K 3/53

DEUTSCHES
PATENT- UND
MARKENAMT

(1) Aktenzeichen:(2) Anmeldetag:

199 59 358.2 9. 12. 1999

(3) Offenlegungstag:

13. 6.2001

① Anmelder:

TZN Forschungs- und Entwicklungszentrum Unterlüß GmbH, 29345 Unterlüß, DE

(74) Vertreter:

Behrend, R., Rechtsanw., 40476 Düsseldorf

(12) Erfinder:

Jung, Markus, Dr., 29358 Eicklingen, DE; Weise, Thomas, Dr., 29345 Unterlüß, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- (4) Autonome RF-Strahlungsquelle
- Im Bereich der nicht letalen Zerstörung von Zielen werden neben Hochleistungsmikrowellen-Quellen auch explosivstoffgetriebene RF-Generatoren verwendet. Dabei wird durch zielgerichtetes Senden von RF-Strahlen die Elektronik eines Ziels zerstört oder die Funktion durch Blenden oder Stören beeinträchtigt, ohne das Ziel selbst zu zerstören.

Der Nachteil der bekannten autonomen Hochleistungsmikrowellen-Quellen liegt darin, daß diese einen verhältnismäßig schlechten Wirkungsgrad bezüglich der elektrisch eingekoppelten zu einer in Mikrowellenstrahlung umgesetzten Leistung aufweisen, während explosivstoffgetriebene RF-Generatoren eine Abstrahlfrequenz erheblich unterhalb des gewünschten bzw. für die Aufgabe notwendigen Frequenzbereiches besitzen.

Demgegenüber wird nun vorgeschlägen, eine autonom arbeitende Hochenergiequelle (2) zur Lieferung einer autonomen Primärenergie und einen UWB-Pulser (4), der nach dem Prinzip der Erzeugung von UWB-Pulsen durch Kabelentladung arbeitet, über ein Spannungserhöhungsmodul (3) zu verbinden, so daß eine damit aufgebaute RF-Strahlenquelle (1) eine deutlich höhere Pulsleistung in den für das Ziel interessanten Frequenzbereichen oberhalb 100 MHz liefert und über eine RF-Abstrahlquelle (5) auf das Ziel abstrahlt. Bei Einsatz dieser autonomen RF-Strahlenquelle (1) als indirekt richtendes System kann somit eine deutlich höhere Pulsleistung in der RF-Strahlenquelle (1) deponiert werden. Dies geschieht hauptsächlich über den deutlich höheren ...

Beschreibung

Die Erfindung betrifft eine autonome RF-Strahlungsquelle nach dem Oberbegriff des Patentanspruchs 1.

Im Bereich der nicht letalen Zerstörung von Zielen werden neben Hochleistungsmikrowellen-Quellen (HPM = high-power-microwave) auch explosivstoffgetriebene RF-Generatoren (RF = radio frequency) verwendet. Dabei wird durch zielgerichtetes Senden von RF-Strahlen die Elektrooder Stören beeinträchtigt, ohne das Ziel selbst zu zerstören. Diese Systeme werden bei sogenannten indirekt richtenden Systemen mit Hilfe eines Trägersystems, beispielsweise einer Drohne oder Artillerierakete, in die Nähe des Zieles verbracht.

Der Nachteil der bekannten autonomen HPM-Quellen liegt darin, daß diese einen verhältnismäßig schlechten Wirkungsgrad bezüglich der elektrisch eingekoppelten zu einer in Mikrowellenstrahlung umgesetzten Leistung aufweisen.

liegt die Abstrählfrequenz erheblich unterhalb des gewünschten bzw. für die Aufgabe notwendigen Frequenzbereiches, so daß es hierbei nicht zur Zerstörung der Elektronik im Ziel, sondern nur zu Unregelmäßigkeiten in ihrer Funktion kommt. Die unzureichende Abstrahlfrequenz ist 25 unter anderem dadurch begründet, daß durch das Trägersystem die bauliche Größe des RF-Generators vorbestimmt ist. Die notwendige Energie zur Erzeugung des Frequenzbereiches oberhalb von 100 MHz kann dabei nicht bereit gestellt werden.

Ein Hochenergie-Pulser als Hochenergiequelle wird in der DE 41 00 942 C 2 offenbart. Hierbei wird mit Hilfe von schneller detonativer Magnetfeldkompression ein Speicher auf eine weiter verwendbaren Ausgangsspannung aufgela-

In einem Beitrag "High-power ultrawideband electromagnetic radiation generator", der auf der Konferenz der IEEE im Juni 1997 in Baltimore gehalten und in der verbandseigenen Veröffentlichung, ISB-Nr 0780342135, Seite 730 bis 735 abgedruckt wurde, sind Aufbau und Wirkungsweise 40 von ultrawideband-pulser (UWB-Pulser), insbesondere nach Vvendenski, offenbart.

Die Aufgabe der Erfindung besteht darin, eine autonome RF-Strahlenquelle (Generator) aufzuzeigen, die neben einer sicheren Blendung oder Störung auch eine sichere nicht le- 45 tale Zerstörung eines Zieles gewährleistet.

Gelöst wird die Aufgabe durch die Merkmale des Patent-

Der Erfindung liegt die Idee zugrunde, eine autonom arbeitende Hochenergiequelle zur Lieferung einer autonomen 50 Primärenergie und einen UWB-Pulser, der nach dem Prinzip der Erzeugung von UWB-Pulsen durch Kabelentladung arbeitet, derart zu verbinden, daß eine damit aufgebaute RF-Strahlenquelle eine deutlich höhere Pulsleistung in dem für das Ziel interessanten Frequenzbereichen oberhalb 55 100 MHz liefert und über eine RF-Abstrahlquelle auf das Ziel abstrahlt.

Dazu besteht die RF-Strahlenquelle aus einer autonomen Primärenergieversorgung, einer nachgeschalteten Spannungsverstärkerschaltung, die auf den UWB-Pulser geführt 60 ist, sowie einer auf den UWB-Pulser abgestimmten RF-Abstrahlquelle. Bei Einsatz dieser autonomen RF-Strahlenquelle als indirekt richtendes System kann somit eine deutlich höhere Pulsleistung in der RF-Strahlenquelle deponiert werden. Dies geschieht hauptsächlich über den deutlich hö- 65 heren Wirkungsgrad des UWB-Pulsers.

Vorteilhafte Ausführungen sind in den Unteransprüchen angegeben.

Die autonome Primärenergieversorgung besteht dabei aus einer Batterie, einem Kapazitätskondensator, sprengstoffbeaufschlagten Piezogeneratoren undl oder einem magnetischen Flußkompressor.

Die Spannungsverstärkerschaltung als Spannungserhöhungsmodul besteht beispielsweise aus einem Step-Up-Transformator mit einer nachgeschalteten Zwischenkapazität und einer Hochdruck-Funkenstrecke.

In einer weiteren Ausführung kann die Spannungserhönik eines Ziels zerstört oder die Funktion durch Blenden 10 hungsschaltung statt eines Step-Up-Transformators einen Öffnungsschalter aufweisen, der auf die nachgeschaltete Zwischenkapazität geführt ist.

In einer bevorzugten Ausführung ist als Spannungserhöhungsmodul ein Marx-Generator zwischen der Primärenergiequelle und dem UWB-Pulser geschaltet. Der Marx-Generator ist dabei aus nacheinander geschalteten Zwischenkapazitäten und Hochdruck-Funkenstrecken aufgebaut.

Der UWB-Pulsers ist vorzugsweise als koaxiale Leitung mit Schalter ausgeführt, wodurch monopolare und bipblare Bei explosivstoffgetriebenen RF-Generatoren dagegen 20 Pulse erzeugt werden, die an die RF-Abstrahlquelle, vorzugsweise eine Breitbandantenne, abgegeben werden.

Anhand von Ausführungsbeispielen mit Zeichnungen soll die Erfindung näher erläutert werden.

Es zeigt:

Fig. 1 in schematischer Darstellung einen prinzipiellen Aufbau einer erfindungsgemäßen RF-Strahlenquelle,

Fig. 2 eine Aufbauskizze aus Fig. 1,

Fig. 3 eine Aufbauskizze für eine Spannungsverstärkung

Fig. 3a eine Variante zur Aufbauskizze aus Fig. 3,

Fig. 4 eine Aufbauskizze für eine weitere Spannungsverstärkung aus Fig. 1,

Fig. 5 eine schematische Darstellung eines UWB-Pulsers nach Vvedenski,

Fig. 5a eine einfache Variante eines weiteren UWB-Pulsers

Fig. 6 eine Schaltungsanordnung eines Marx-Generators. In Fig. 1 ist der prinzipielle Aufbau einer autonomen, d. h., autonom arbeitenden RF-Strahlenquelle 1 schematisch dargestellt. Die RF-Strahlenquelle 1 besteht dabei aus einer die Autonomie begründenden Primärenergieversorgung 2, einem Spannungserhöhungsmodul 3, einem UWB-Pulser 4 sowie einer RF-Abstrahlquelle 5. Diese kann vorzugsweise eine Breitbandantenne sein, die ihr Maximum der Abstrahlcharakteristik vorzugsweise im Frequenzbereich zwischen 0,9 und 2 GHz, jedoch über 100 MHz besitzt.

Die autonome Primärenergieversorgung 2 kann aus einer Batterie, einem Kapazitätskondensator, sprengstoffbeaufschlagten Piezogeneratoren und/oder einem magnetischen Feldkompressor aufgebaut sein. Möglich sind auch ein Dauermagnet oder anders erzeugte Magnetfelder.

In Fig. 2 ist in einer ersten Aufbauskizze die RF-Strahlenquelle 1 dargestellt. Hierbei besteht die Primärenergieversorgung 2 aus einer Batterie 2.1 und einem magnetischen Flußkompressor 2.2.

In die Fig. 3 ist in einer ersten Aufbauskizze das Spannungserhöhungsmoduls 3 dargestellt. Hierbei besteht das Modul 3 aus einem Step-Up-Transformator Tr 1, einer Zwischenkapazität Cz sowie einer Hochdruck-Funkenstrecke GH. Über den Step-Up-Transformator Tr 1 erfolgt dabei eine Impedanzanpassung zwischen der explosivstoffgetriebenen Primärenergieversorgung 2 aus Fig. 2 und dem UWB-Pulser 4 aus Fig. 5. Dieser UWB-Pulser 4 kann, wie in Fig. 5 schematisch dargestellt, nach Vvedenski als Kabelpulser aufgebaut sein. Hierbei besteht der Hochspannungs- bzw. UWB-Pulser 4 aus einem Kabel 7 mit einer Impedanz p, dessen Abschirmung 8 an den Kabelenden und Leiterenden 9 jeweils miteinander verbunden werden. Zwischen den Leiterenden 9 sind einen Widerstand R_1 als Lastwiderstand und einen Widerstand R_m als Anpassungswiderstand eingebunden. Ein Stromwender K, beispielsweise ein Schalter, ist zwischen dem gemeinsamen Anschlußpunkt 10 der Abschirmung und der Masse schaltbar. Diese Anordnung ermöglicht die Erzeugung von monopolaren Rechteckpulsen (Spannung) bei unangepaßter Last $R_1 \neq p$ bis $R_m = p$ sowie bipolare Pulse bei $R_m = 0$ und $R_1 = p$, wobei sich die Spannungsamplitude UA des bipolaren Pulses aus

 $U_a = +/-U_o/2$ bei einer gemeinsamen Länge $\tau = 2*1/v$ ergibt. 10 Hierbei sind I die Kabellänge und v die Wellengeschwin-

digkeit im Kabel.

Im Zusammenschau der Fig. 1 bis 3, sowie Fig. 5 läuft

das Verfahren wie folgt ab.

Mit einem hier nicht näher dargestellten Trägersystem 15. wird die autonome RF-Strahlenquelle 1 zum Ziel vor Ort gebracht. Dort erfolgt die Zuschaltung der Batterie 2.1, beispielsweise zeit- oder aufschlaggesteuert. Durch die Batterie 2.1 wird ein Ringzünder 2.21 des magnetischen Flußkompressors 2.2 gezündet; wodurch in herkömmlicher Art und 20 Weise ein im Spulenkern 2.22 befindlicher Hochexplosivstoff den Spulenkörper aufreißt und die einzelnen Windungen 2.23 nacheinander kurzgeschlossen werden. Bei einer anfänglich kleinen Anfangsinduktivität und einem konstanten magnetischen Fluß wird bei nur noch einer Windung 25 2.23 auf dem Spulenkörper eine 100-fache Verstärkung erzeugt, die in der nicht näher dargestellten Ausgangskapazität des Flußkompressors 2.2 gespeichert wird. Dabei wird chemische Energie in eine elektrische Energie umgewandelt, wobei die Endenergie W abhängig von der

Anfangsinduktivität L/Endinduktivität L*Anfangsenergie

Wo ist.

Der Ausgangsstrom des Flußkompressors **2.2** wird auf die Primärseite des Step-Up-Transformator Tr **1** gegeben. Die an der Primärseite anliegende Ausgangsspannung von 35 einigen kV (20 bis 50 kV) wird durch den Step-Up-Transformator Tr **1** auf mehrere 100 kV Ausgangsspannung U_{Tr} angehoben. Diese Spannung U_{Tr} wird in der Zwischenkapazität C_z gespeichert und über die Hochdruck-Funkenstrecke

G_H auf den UWB-Pulser 4 gegeben.

Bekanntlich hängt die Zündspannung UGH der Hochdruck-Funkenstrecke GH vom Elektrodenabstand und vom Gasdruck innerhalb der Hochdruck-Funkenstrecke GH ab (Paschen-Gesetz). Diese Abhängigkeit ausnutzend, wird die Hochdruck-Funkenstrecke GH so eingestellt, daß sie einen 45 hohen, steilen Spannungsanstieg U_{GH} aufweist. Durch den UWB-Pulser 4 werden danach je nach Beschaltung monopolare oder bipolare Rechteckspannungspulse Usp erzeugt. Die Pulslänge der Rechteckspannungspulse Usp wird über die Kabellänge 1 des Hochspannungskabels 7 eingestellt. Wichtig dabei ist, daß USP-Pulse mit sehr niedrigen Anstiegsgeschwindigkeiten (< 1 ns) erzeugt werden. Die am Ausgang des UWB-Pulsers 4 anliegenden Spannungspulse USP gelangen danach auf die dem Kabelwiderstand des UWB-Pulsers 4 angepaßte Breitbandantenne 5, welche dann 55 auf das Ziel zielgerichtet abgestrahlt werden.

Die durch den kurzzeitig hohen Spannungsanstieg Usp erzeugte hohe elektrische Feldstärke an der Breitbandantenne 5 verursacht einen nichtthermischen Defekt der elektronischen Baugruppen und Komponenten innerhalb des Zieles 60 und damit eine Zerstörung, Blendung oder Störung der

Elektronik ohne das Ziel selbst zu zerstören.

In einer weiteren Ausführung kann anstelle des Step-Up-Transformators $Tr\,1$ auch ein Öffnungsschalter auf Basis explodierender Drähte eingesetzt werden, wie in Fig. 3a veranschaulicht, der die nachfolgende Zwischenkapazität C_Z auf einen hohen Anfangswert bringt.

Dabei stellt Rs eine Folie mit einer inneren Schaltindukti-

vität L_S und Schaltkapazität C_S dar, die mindestens einen explodierenden Draht in sich trägt. Der Ausgangsstrom des Flußkompressors 2.2 wird durch die Folie R_S geleitet. Auf Grund des sehr schnellen und starken Stromanstieges kommt es zur Erhitzung des Drahtes in der Folie R_S , der dann explodiert. Durch die schnelle Unterbrechung des Stromflusses entsteht nach $U_{CS} \approx L \cdot \text{di/dt}$ am Kondensator C_S die Spannung U_{CS} von bis zu mehreren 100 kV. Das Schaltverhalten des explodierenden Drahtes kann durch eine mechanische Reduzierung des Querschnittes verbessert werden (siehe dazu Vortrag "Analysis of hektical generator driven exploding foil opening switsch experiments", der 1995 auf der Konferenz der IEEE in Albuquerque gehalten und in der verbandseigenen Veröffentlichung, ISB-Nr 0-7803-2790-X, Seite 1126 bis 1131 abgedruckt ist).

In einem bevorzugten Ausführungsbeispiel kann anstelle des Step-Up-Transformators Tr 1, der Zwischenkapazität C_Z und der Hochdruck-Funkenstrecke G_H ein Marx-Generator

6 verwendet werden.

Die RF-Strahlenquelle 1 setzt sich hierbei aus der Primärenergiequelle 2, dem Marx-Generator 6, dem UWB-Pulser 4 und der Breitbandantenne 5 zusammen (Fig. 4), wobei der Marx-Generator 6 als Spannungserhöhungsmodul 3 fungiert.

Der Marx-Generator 6 ist in Fig. 6 dargestellt. Unter Ausnutzung der Spannungserhöhung durch das serielle Entladen der sich aufladenden Kondensatoren bzw. Kapazitäten Cs

wird die notwendige hohe Spannung U_{MG} erzeugt.

Die in jeder Stufe I, II, III vorhandenen Stoßkapazitäten C_S werden über Ladewiderstände R_L sowie Entladewiderstände RE und Dämpfungswiderstände RD (der Übersichtlichkeit halber sind Entladewiderstände R_E und Dämpfungswiderstände R_D zu einem Widerstand R_{ED} zusammengefaßt) von der aus der Primärenergieversorgung 2 erzeugten Spannung UFA zunächst langsam aufgeladen. Auch bei einem konstanten Wert wird unter bestimmten Widerstandsbedingungen ($R_{L1} > R_L \gg R_E > R_D$) die Spannung U_S an allen Stoßkapazitäten Cs etwa gleich groß, wobei die Funkenstrecken Fs so eingestellt sein müssen, daß diese während des langsamen Anstiegs der Spannung Us durchschlagen. Die Funkenstrecken Fs zünden alle gleichzeitig durch, wodurch sich alle auf die Spannung Us geladenen Kondensatoren Cs in Serie schalten und an der Belastungskapazität CA, d. h., am Ausgang des Marx-Generators 6, eine entsprechend vervielfachte Spannung UMG einstellt. Der gewünschte zeitliche Verlauf dieser Spannung UMG an der Belastungskapazität CA wird in bekannter Art und Weise durch die impulsformenden Elemente RED erzwungen. Dadurch können Stoßspannungen U_{GM} von über 300 kV erzeugt werden. Diese gelangen, wie bereits beschrieben, über den UWB-Pulser 4 an die Breitbandantenne 5 und werden dort im Frequenzbereich der Breitbandantenne 5 zielgerichtet abgestrahlt.

Der Vorteil der Verwendung des Marx-Generators 6 für dieser RF-Strahlenquelle 1 liegt darin, daß durch die Wirkungsweise des Marx-Generators 6 nacheinander mehrere, repetierte Stoßspannungen U_{GM} am Ausgang des Marx-Generators 6 erzeugt werden, die an den UWB-Pulser 4 gegeben und danach über die Breitbandantenne 5 nacheinander

auf das Ziel gestrahlt werden.

Ist diese repetierende Stoßspannungserzeugung prinzipiell erwünscht, kann dieses durch den Einsatz eines zusätzlichen Ladewiderstandes zwischen dem Zwischenkreiskondensator C_Z und dem Pulser 4 erzielt werden. Es ist aber auch möglich, selbstlöschende Funkenstrecken (Heliumfunkenstrecken) anstelle des Ladewiderstandes einzusetzen. Hierbei werden die durchgeschalteten Funkenstrecken wieder spannungsfest und schalten beim erneuten Erreichen der

Durchschaltspannung durch (Zerhackerbetrieb).

Mit Hilfe der repetierenden Stoßspannungserzeugung wird eine effektivere Blendung, Störung oder nicht letale Zerstörung des Zieles erreicht.

Eine weitere, einfachere Variante des UWB-Pulsers 4 ist 5 in zusätzlich in Fig. 5a aufgezeigt. Hierbei sind beispielsweise dem Marx-Generator $\bar{\mathbf{6}}$ weitere Funkenstrecken \bar{F}_1, F_2 und wenn erwünscht F₃₋₁₁ nachgeschaltet, durch die die nadelpulsartigen Stoßspannungen USP erzeugt und an die Breitbandantenne 5 zur Abstrahlung abgegeben werden.

Patentansprüche

1. Autonome RF-Strahlungsquelle, aufweisend eine autonome Primärenergieversorgung sowie eine RF- 15 Abstrahlquelle, dadurch gekennzeichnet, daß ein Spannungserhöhungsmodul (3) sowie ein UWB-Pulser (4) zwischen der Primärenergieversorgung (2) und der RF-Abstrahlquelle (5) eingebunden sind, wodurch die von der Primärenergieversorgung (2) gelieferte Primär- 20 energie (UFA) verstärkt und als Hochspannungspulse der RF-Abstrahlquelle (5) zugeführt wird.

2. Autonome RF-Strahlenquelle nach Anspruch 1, dadurch gekennzeichnet, daß die Primärenergieversorgung (2) aus einer Batterie (2.1), einem Kapazitätskon- 25 densator, sprengstoffgetriebenen Piezogeneratoren und/oder einem magnetischen Flußkompressor (2.2)

besteht.

3. Autonome RF-Strahlenquelle nach Anspruch 1, dadurch gekennzeichnet, daß das Spannungserhöhungs- 30 modul (3) aus einem Step-Up-Transformator (Tr 1), einer Zwischenkapazität (Cz) und einer Hochdruck-Funkenstrecke (G_H) besteht.

4. Autonome RF-Strahlenquelle nach Anspruch 1, dadurch gekennzeichnet, daß das Spannungserhöhungs- 35 modul (3) aus einem Öffnungsschalter auf der Basis explodierender Drähte, einer Zwischenkapazität (Cz) und einer Hochdruck-Funkenstrecke (G_H) besteht.

5. Autonome RF-Strahlenquelle nach Anspruch 1, dadurch gekennzeichnet, daß das Spannungserhöhungs- 40 modul (3) ein Marx-Generator (6) ist, wodurch an der RF-Abstrahlquelle (5) eine repetierende Stoßspannung (U_{SP}) anliegt.

Autonome RF-Strahlenquelle nach Anspruch 1, dadurch gekennzeichnet, daß die RF-Abstrahlquelle (5) 45 eine Breitbandantenne ist, die eine Abstrahlcharakteristik von 0,9 bis 2 GHz besitzt.

7. Autonome RF-Strahlenguelle nach Anspruch 1, dadurch gekennzeichnet, daß der UWB-Pulser (4) ein

8. Autonome RF-Strahlungsquelle nach Anspruch 1, dadurch gekennzeichnet, daß der UWB-Pulser (4) durch Funkenstrecken (E₁, F₂, F₃) gebildet wird.

9. Autonome RF-Strahlungsquelle nach einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeich- 55 net, daß zwischen dem Spannungserhöhungsmodul (3) und dem UWB-Pulser (4) ein Ladewiderstand oder eine selbstlöschende Funkenstrecke eingebunden ist, wodurch an der RF-Abstrahlquelle (5) eine repetierende Stoßspannung (U_{SP}) anliegt.

Hierzu 3 Seite(n) Zeichnungen

1

- Leerseite -

Nummer: Int. Cl.⁷: Offenlegungstag: **DE 199 59 358 A1 F 41 B 15/00** 13. Juni 2001

Nummer: Int. Cl.⁷: Offenlegungstag: DE 199 59 358 A1. F 41 B 15/00 # 13. Juni 2001

Fig. 5

Fig. 5a

Fig. 6