December 2010 Comprehensive Exam in Graph Theory

Examiners: G. MacGillivray and K. Mynhardt

Time: 3 hours

This question paper has 10 questions on two pages. Each question is worth 10 marks. **Do any seven questions**. A minimum of 40 marks is required to pass.

- 1. State four equivalent characterizations of trees (one being the definition) and prove that they are equivalent.
- 2. (a) Let G be a graph with at least three vertices. Prove that if $\kappa(G) \geq \beta(G)$, where $\beta(G)$ denotes the independence number of G, then G is hamiltonian. State any theorem(s) you use.
 - (b) Construct an infinite class of nonhamiltonian graphs G such that $\kappa(G) = \beta(G) 1$.
 - (c) Let G be a graph with $V(G) = \{v_1, v_2, ..., v_n\}$ and $\deg v_i = d_i$. Construct H by replacing each vertex v_i by $H_i = K_{d_i}$ and each edge $v_i v_j$ by an edge joining one vertex of H_i to one vertex of H_j , in such a way that each vertex of H_i is joined to exactly one vertex of $H H_i$. Suppose G is connected and eulerian. Is H hamiltonian? Explain.
- 3. (a) State each of the following: Berge's Theorem that characterizes maximum matchings, Hall's Theorem about matchings in bipartite graphs, König's Theorem about (vertex) coverings of bipartite graphs, and Tutte's Theorem that characterizes the graphs having a perfect matching.
 - (b) Prove any one of the above theorems.
- 4. Write notes on edge colourings of graphs. Address the following points in your notes, including one substantial proof.
 - (a) bounds for $\chi_1(G)$;
 - (b) the Classification Problem, with examples of graphs of either class;
 - (c) a link between the Four Colour Theorem and edge colourings.

5. Prove:

- (a) In every network, the maximum value of a feasible flow equals the minimum capacity of a source/sink cut.
- (b) If all capacities in a network are integers, then there is a maximum flow assigning integral flow to each edge, and some maximum flow can be partitioned into flows of unit value along paths from source to sink.

- 6. The Turán graph $T_{n,r}$ is the complete r-partite graph of order n that has b parts of size a+1 and r-b parts of size a, where $a=\left\lfloor \frac{n}{r}\right\rfloor$ and b=n-ra. Prove that amongst the n-vertex (simple) K_{r+1} -free graphs, $T_{n,r}$ has the maximum number of edges.
- 7. (a) Define the (graph) Ramsey number $r(k, \ell)$.
 - (b) Prove that $r(k, \ell) \le r(k 1, \ell) + r(\ell 1, k)$.
 - (c) Show that r(3,4) = 9. State any results that you use in addition to the theorem in (b).
- 8. Recall that a sequence $\mathbf{d} = (d_1, d_2, \dots, d_n)$ of nonnegative integers is called *graphic* if there is a simple graph with degree sequence \mathbf{d} . Prove the theorem of Havel and Hakimi that a *non-increasing* sequence $\mathbf{d} = (d_1, d_2, \dots, d_n)$ of nonnegative integers is graphic if and only if the sequence $\mathbf{d}' = (d_2 1, d_3 1, \dots, d_{d_1+1} 1, d_{d_1+2}, \dots, d_n)$ is graphic.
- 9. Prove the theorem of Moon that every vertex of a strongly connected tournament with $n \geq 3$ vertices is contained in a directed cycle of each length $k, 3 \leq k \leq n$.
- 10. (a) Describe the graph reconstruction problem.
 - (b) Prove Kelly's Lemma: For any two graphs F and G such that F has fewer vertices than G, the parameter $\binom{G}{F}$, i.e. the number of copies of F in G, is reconstructible.
 - (c) Prove that the degree sequence of a graph is reconstructible.
 - (d) Is the number of components of a graph reconstructible? Why or why not?

---END---