Homework 6.

(Due May. 30)

Problem 26 (Exercise 7.2). If $\{f_n\}$ and $\{g_n\}$ converge uniformly on a set E, prove that $\{f_n+g_n\}$ converges uniformly on E. If, in addition, $\{f_n\}$ and $\{g_n\}$ are sequences of bounded functions, prove that $\{f_ng_n\}$ converges uniformly on E.

Problem 27 (Exercise 7.3). Construct sequences $\{f_n\}$, $\{g_n\}$ which converge uniformly on some set E, but such that $\{f_ng_n\}$ does not converge uniformly on E (of course, $\{f_ng_n\}$ must converge on E).

Problem 28 (Exercise 7.6). Prove that the series

$$\sum_{n=1}^{\infty} (-1)^n \frac{x^2 + n}{n^2}$$

converges uniformly in every bounded interval, but does not converge absolutely for any value of x.

Problem 29 (Exercise 7.11). Suppose $\{f_n\}, \{g_n\}$ are defined on E, and

- (a) $\sum f_n$ has uniformly bounded partial sums;
- (b) $g_n \to 0$ uniformly on E;
- (c) $g_1(x) \ge g_2(x) \ge g_3(x) \ge \dots$ for every $x \in E$.

Prove that $\sum f_n g_n$ converges uniformly on E.

Problem 30 (Exercise 7.16). Suppose $\{f_n\}$ is an equicontinuous sequence of functions on a compact set K, and $\{f_n\}$ converges pointwise on K. Prove that $\{f_n\}$ converges uniformly on K.