Diplomverteidigung

Neue Verfahren zu intrinsischen Plagiatanalyse

Franz Coriand

Bauhaus-Universität Weimar · Fakultät Medien Content Management & Web Technologien

7. März 2008

Übersicht

- 1. Einführung
- 2. Methoden zur Plagiaterkennung
- 3. Verbesserung der intrinsischen Plagiatanalyse
- 4. Plagiatanalyse als One-Class-Klassifikation
- 5. Zusammenfassung

Neue Verfahren zur intrinsischen Plagiatanalyse

EINFÜHRUNG

Einführung

- Was ist ein Plagiat?
 - "[…] teilweise oder vollständige Übernahme eines […]
 Werkes unter Vorgabe eigener Urheberschaft." [1]
 - Allgemeine Definition nicht auf das Gebiet der Literatur beschränkt

- Plagiat in Literatur?
 - Übernahme von Idee/Gedanken mit unzureichende bzw. fehlende Referenz/Quellenangabe
 - Problem u.a. im wissenschaftlichen Umfeld (Studienarbeiten, Dissertationen, ...)

Einführung

Arten des Plagiarismus [2]:

Neue Verfahren zur intrinsischen Plagiatanalyse

METHODEN ZUR PLAGIATERKENNUNG

- Analyseverfahren teilen sich in zwei wesentliche Teilgebiete
 - 1. Verfahren mit externen Informationen
 - 2. Verfahren ohne externen Informationen

- Verfahren mit externen Informationen
 - Ausgangspunkt:
 - Zu untersuchendes Dokument
 - Dokumentkollektion (Referenzkorpus) vorhanden
 - Ziel:
 - Suche nach Textstellen im Dokument, die sich im Korpus wiederfinden lassen
 - Verfahren:
 - Hashing-Verfahren → Finden von identischen Textabschnitten
 - Fuzzy-Fingerprinting → Finden von veränderten Textabschnitten

- Verfahren ohne externe Informationen = "Intrinsische Plagiatanalyse"
 - Ausgangspunkt:
 - Zu untersuchendes Dokument KEIN Vergleichskorpus!
 - Grundidee:
 - Analyse der Abweichungen des Schreibstil von Textabschnitten zum Gesamtdokument
 - Ziel:
 - Beantwortung der Frage, ob ein Dokument plagiierte Textabschnitte enthält sowie ggf. Finden der Stellen
 - Primär nicht entscheidend, ob plagiierter Textabschnitt identisch kopiert oder verändert ist

- Strukturelle oder mathematische Erfassung eines Dokuments
- Datenstruktur: n-dimensionaler Vektor (Dokumentmodell)
- Instanz nennt man Feature-Vektor

$$\mathbf{d} = \begin{pmatrix} \text{W\"{o}rter je Satz} \\ \text{Silben je Wort} \end{pmatrix} \longrightarrow \mathbf{d}_1 = \begin{pmatrix} 7.8 \\ 2.1 \end{pmatrix} \qquad \frac{\mathbf{d}_2}{3.2}$$

 Finden einer Hypothese für eine möglichst genaue Vorhersage:

$$f: \mathbf{s}_{\wedge} \mapsto \{0,1\}$$

Lernverfahren des Maschinellen Lernens bestimmt

- Vorhandenes Dokumentmodell im "PicaPica"-Projekt
 - 29-dimensionaler Vektor:
 - Durchschnittliche Wortanzahl je Satz
 - Durchschnittliche Stoppworthäufigkeiten
 - Durchschnittliche Silbenanzahl je Wort
 - Honoré-Reichhaltigkeitsmaß
 - Wiener Sachtextformel
 - ...

"PicaPica"-Klassifizierungsergebisse:

Klassifikator	Recall	Precision	F-Measure
BayesNet	70,85%	76,51%	73,57%

- Recall:

Anteil der gefundenen relevanten Dokumente ->
Vollständigkeit eines Suchergebnisses

– Precision:

 Anteil der relevanten Dokumente in der Ergebnismenge → Genauigkeit eines Suchergebnisses

– F-Measure:

Harmonisches Mittel aus Recall und Precision

Neue Verfahren zur intrinsischen Plagiatanalyse

VERBESSERUNG DER INTRINSISCHEN ANALYSE

Grundidee:

 Verwendung von Objekt-*n*-Grammen zur Analyse des Plagiatverdachts

– Definition *n*-Gramm:

Sei Σ ein endliches Alphabet und sei n eine positive ganze Zahl. Dann ist ein n-Gramm ein Wort ω über dem Alphabet Σ , d.h. $\omega = (\omega_1, \ldots, \omega_n) \in \Sigma^n$.

 Verständnisbeispiel mit Buchstaben:

 Adaption auf Wörter und Wortklassen

Buchstaben-3- Gramm	Abs. Häufigkeit	Rel. Häufigkeit	
das	2	12%	
as_	2	12%	
s_h	1	6%	
_hu	1	6%	
huh	1	6%	
uhn	1	6%	
hn_	1	6%	
n_d	1	6%	
_da	1	6%	
s_r	1	6%	
_re	1	6%	
ren	1	6%	
enn	1	6%	
nnt	1	6%	
nt.	1	6%	

- Verarbeitungsalgorithmus:
 - n-Gramm-Tabelle von d erstellen → Feature-Vektor d
 - 2. Zerlegung von d in gleich große Textabschnitte s
 - 3. n-Gramm-Tabellen für
 Textabschnitte s_i erstellen →
 Feature-Vektoren s_i
 - 4. Differenzbildung von d und s_i
 → Differenzvektor s_{Δi}

$$\mathbf{s}_{\Delta i} = \begin{pmatrix} g(x_{d0}, x_{s0}) \\ g(x_{d1}, x_{s1}) \\ g(x_{d2}, x_{s2}) \\ \vdots \\ g(x_{dn}, x_{sn}) \end{pmatrix} \text{ mit } g(a, b) = \frac{a - b}{a} (a \neq 0)$$

- Evaluation von Anwendungsparametern:
 - Gesuchte Parameter:
 - Größe von Textabschnitten
 - n-Grammgröße der Merkmale
 - Sinnvolle Anzahl von Features
 - Laufzeitverhalten von n-Grammen und Klassifikationen
 - Grundlage:
 - Trainingskorpus (aus 70 Dissertationen wurden 690 Plagiate und 70 Originale erzeugt)

- Parameterergebnisse:
 - Größe von Textabschnitten:
 - 500 Wörter
 - N-Grammgröße:
 - Buchstaben-3-Gramme
 - Wort-2-Gramme
 - Wortklassen-2-Gramme
 - Feature-Anzahl:
 - 250 häufigsten Objekt-*n*-Gramme
 - Laufzeitverhalten:
 - Buchstaben- bzw. Wort-*n*-Gramme um Faktor 30 bzw. 60 schneller als Wortklassen-*n*-Gramme

Klassifizierungsergebnisse für BayesNet:

Modell	Recall	Precision	F-Measure	Δ-Recall	Δ-Precision
PicaPica	70,85%	76,51%	76,57%		
Buchstaben	84,10%	88,95%	86,46%	13,25%	12,44%
Wörter	81,45%	83,07%	82,25%	10,60%	6,56%
Wortklassen	78,25%	81,89%	80,03%	7,40%	5,38%
Buchstaben + Wörter	88,50%	90,54%	89,51%	17,65%	14,03%
Buchstaben + Wortklassen	85,85%	89,29%	87,54%	15,00%	12,78%
Wörter + Wortklassen	87,25%	86,69%	86,97%	16,40%	10,17%
Buchstaben + Wörter +Wortklassen	89,30%	90,61%	89,95%	18,45%	14,10%
Pica + Buchstaben	85,15%	88,28%	86,69%	14,30%	11,77%
Pica + Wörter	86,30%	85,11%	85,70%	15,45%	8,60%
Pica + Wortklassen	80,35%	84,27%	82,26%	9,50%	7,76%
Pica + Buchstaben + Wörter	89,20%	90,19%	89,69%	18,35%	13,68%
Pica + Buchstaben + Wortklassen	86,60%	89,79%	88,16%	15,75%	13,28%
Pica + Wörter + Wortklassen	86,70%	86,70%	86,70%	15,85%	10,19%
Pica + Buchstaben + Wörter + Wortklassen	88,90%	90,76%	89,82%	18,05%	14,25%

- Grundproblematik:
 - Intrinsische Analyse klassifiziert spezielle Textabschnitte
 - Verallgemeinerung der Fragestellung:
 - Enthält ein Dokument ein Plagiat?
 - Trotz hohe Precision für Textabschnitte → "falsch positiv"-Klassifizierung möglich → niedrige Precision für Dokumentklassifikation

Modell	Recall	Precision	F-Measure
Pica + Buchstaben + Wörter	96,7%	51,8%	67,4%
Pica + Buchstaben + Wörter + Wortklassen	96,7%	58,0%	72,5%

Idealer Fall:

Dokument enthält plagiierte
 Abschnitte → diese werden erkannt

Problematischer Fall:

 Dokument enthält keine plagiierte Abschnitte → Verfahren klassifiziert jedoch Textabschnitt als Plagiat

Neue Verfahren zur intrinsischen Plagiatanalyse

PLAGIATANALYSE ALS ONE-CLASS-KLASSIFIKATION

- Ausgangspunkt:
 - Zwei Textmengen, erzeugt durch intrinsischen Analyse → Textstellen vom Typ Plagiat und Original
- Ziel:
 - Klärung der Frage, ob beide Textmengen (eventuell doch) vom selben Autor stammen
- Umsetzung:
 - Klärung durch Algorithmus vorgestellt von Moshe Koppel
 [3] → Anwendung als Post-Prozess

- Verfahren nach Koppel:
 - Erstellen eines Feature-Vektors mit häufig verwendeten Wörter der beiden Textmengen
 - Iteratives Entfernen der individuellen Wörter aus Vektor

d₁: Pir pi und Herr Nielson spielen mit den anderen Kindern in der Villa.

d₂: Karleson fliegt zu seinem Haus, wo die anderen Kinder auf ihn warten.

- Offenlegung von unbewussten Satz- und Wortkonstruktionen → Lernen
- Klassifizierungsergebnisse nach jedem
 Entfernungsschritt? → Lernkurve entsteht

 Klassifizierungsergebnisse einer Trainingsmenge [4]:

 Anwendung des Verfahrens auf Ergebnisse der intrinsischen Analyse

- Verfahren kann keine neuen Plagiatsfälle entdecken
- Verfahren bekräftigt oder verwirft die Annahme, dass beide Textmengen von verschiedenen Autoren stammen
- → Anzahl der als Plagiat klassifizierten Dokumente wird geringer, aber präziser (Precision steigt)

Anwendungsergebnisse mit BayesNet:

Modell	Recall	Precision	F-Measure	Δ-Recall	Δ-Precision
Pica + Buchstaben + Wörter	26,7%	72,7%	39,0%	-70,0%	20,9%
Pica + Buchstabe + Wörter + Wortklassen	20,0%	75,0%	31,6%	-76,7%	17,0%

- Recall (Vollständigkeit des Suchergebnisses) sinkt
- Precision (Genauigkeit des Suchergebnisses) steigt

Neue Verfahren zur intrinsischen Plagiatanalyse

ZUSAMMENFASSUNG

Zusammenfassung

- Entwicklung neuer Dokumentmodelle zur intrinsischen Plagiatanalyse:
 - Buchstaben-n-Gramm
 - Wort-*n*-Gramm
 - Wortklassen-n-Gramm
- Evaluation der Modelle sowie deren Kombinationen
 - Verbesserung der Klassifizierungsergebnisse im Vergleich zum "PicaPica"-Dokumentmodell bei Verwendung von BayesNet-Klassifikator

Zusammenfassung

- Evaluation der Modelle sowie deren Kombinationen
 - Wortklassen-n-Gramme sind nicht als Modell geeignet, da Laufzeitverhalten zu schlecht bei gleichen Klassifizierungsergebnissen
- Anwendung und Evaluierung einer One-Class-Klassifizierung als Post-Prozess
 - Wesentliche Verbesserung der Precision der Klassifikationsergebnisse bei sinkendem Recall-Wert

Neue Verfahren zur intrinsischen Plagiatanalyse

Quellen

- [1] Zeitverlag (Hrsg.): Die Zeit, Das Lexikon in 20 Bänden. Zeitverlag Gerd Bucerius GmbH & Co. KG, 2005. ISBN 3-422-17571-0
- [2] Meyer zu Eissen, Sven; Stein, Benno; Kulig, Marion: Plagiarism Detection without Reference Collections. In: Decker, Reinhold (Hrsg.); Lenz, Hans J. (Hrsg.): Advances in Data Analysis, Springer, 2007. – ISBN 978-33540-70980-0. S. 359-366
- [3] Koppel, Moshe; Schler, Jonathan: Authorship verification as a one-class classification problem. In ICML `04: Proceedings of the twenty-first international conference on Machine learning. New York, NY, USA: ACM Press, 2004. ISBN 1-58113-828-5, S. 62
- [4] Stein, Benno; Meyer zu Eisen, Sven: Intrinsic Plagiarism Analysis with Meta-Learning. In: Stein, Benno (Hrsg.); Koppel, Moshe (Hrsg.); Stamatatos, Efstathios (Hrsg.): SIGIR Workshop Workshop on Plagiarism Analysis, Authorship Identification, and Near-Duplicate Detection (PAN 07), CEUR-WS.org, Juli 2007