



# 提纲

- 8.1 流图
- 8.2 优化的分类
- 8.3 基本块的优化
- 8.4 数据流分析
- 8.5 流图中的循环
- 8.6 全局优化

#### 8.1 流图

- ▶ 基本块(Basic Block)是满足下列条件的最大的连续三地址 指令序列
  - 》控制流只能从基本块的第一条指令进入该块。也就是说,没有 跳转到基本块中间或末尾指令的转移指令
  - 除了基本块的最后一个指令,控制流在离开基本块之前不会跳转或者停机

### 基本块划分算法

- > 输入: 三地址指令序列
- ▶ 輸出: 輸入序列对应的基本块列表,其中每个指令恰好被分配给一个基本块

#### > 方法:

- ▶ 首先,确定指令序列中哪些指令是首指令(leaders),即某个基本块的第一个指令
  - 1. 指令序列的第一个三地址指令是一个首指令
  - 2. 任意一个条件或无条件转移指令的目标指令是一个首指令
  - 3. 紧跟在一个条件或无条件转移指令之后的指令是一个首指令
- 然后,每个首指令对应的基本块包括了从它自己开始,直到下一个 首指令(不含)或者指令序列结尾之间的所有指令

# 例

```
i = m - 1; j = n; v = a[n];
while (1) {
   do i = i + 1; while (a[i] < v);
   do j = j - 1; while (a[j] > v);
   if (i \ge j) break;
   x=a[i]; a[i]=a[j]; a[j]=x;
x=a[i]; a[i]=a[n]; a[n]=x;
```

```
(16) t_7 = 4 * i
      (1) i = m - 1
      (2) j = n
                                          (17) t_8 = 4 * j
      (3) t_1 = 4 * n
                                          (18) t_9 = a[t_8]
                                    B_5 (19) a[t_7] = t_9
     (4) \quad v = a[t_1]
     (5) i = i + 1
                                          (20) t_{10} = 4 * j
     (6) t_2 = 4 * i
                                          (21) \ a[t_{10}] = x
                                        (22) goto (5)
      (7) t_3 = a[t_2]
    (8) if t_3 < v goto(5)
                                          (23) t_{11} = 4 * i
      (9) j = j - 1
                                          (24) x = a[t_{11}]
      (10) t_4 = 4 * j
                                          (25) t_{12} = 4 * i
                                         (26) t_{13} = 4 * n
      (11) \ t_5 = a[t_4]
    (12) if t<sub>5</sub> > v goto(9)
                                          (27) t_{14} = a[t_{13}]
B_4 (13) if i \ge = j goto(23)
                                          (28) \ a[t_{12}] = t_{14}
      (14) t_6 = 4 * i
                                          (29) t_{15} = 4 * n
      (15) x = a[t_6]
                                          (30) \ a[t_{15}] = x
```

#### 流图(Flow Graphs)

- ▶流图的每个结点是一个基本块
- ►从基本块B到基本块C之间有一条边当且仅当基本块C 的第一个指令可能紧跟在B的最后一条指令之后执行

此时称B是C的前驱(predecessor), C是B的后继(successor)

# 流图(Flow Graphs)

- ▶流图的每个结点是一个基本块
- ►从基本块B到基本块C之间有一条边当且仅当基本块C 的第一个指令可能紧跟在B的最后一条指令之后执行
  - >有两种方式可以确认这样的边:
    - ▶ 存在一个从B的结尾跳转到C的开头的条件或无条件 跳转指令
    - 〉按照原来的三地址指令序列中的顺序,C紧跟在B之后,且B的结尾不存在无条件跳转指令

例 (1) i = m - 1 $(16) t_7 = 4 * i$ (2) j = n $(17) t_8 = 4 * j$ (3)  $t_1 = 4 * n$  $(18) \ t_9 = a[t_8]$  $\boldsymbol{B}_1$ (4)  $v = a[t_1]$  $B_5$  (19)  $a[t_7] = t_9$ (5) i = i + 1(20)  $t_{10} = 4 * j$ (6)  $t_2 = 4 * i$  $(21) \ a[t_{10}] = x$ (7)  $t_3 = a[t_2]$ (22) goto (5) $B_3$ (8) if  $t_3 \le v \ goto(5)$  $(23) t_{11} = 4 * i$ (9) j = j - 1 $(24) x = a[t_{11}]$  $B_4$  $(10) t_4 = 4 * j$  $(25) t_{12} = 4 * i$  $B_6$  (26)  $t_{13} = 4 * n$  $(11) t_5 = a[t_4]$  $(12) if t_5 > v goto(9)$  $(27) t_{14} = a[t_{13}]$  $\boldsymbol{B_6}$  $B_5$  $B_4$  (13) if  $i \ge j$  goto(23)  $(28) \ a[t_{12}] = t_{14}$  $(14) t_6 = 4 * i$  $(29) t_{15} = 4 * n$  $(15) x = a[t_6]$  $(30) \ a[t_{15}] = x$ 





# 提纲

- 8.1 流图
- 8.2 优化的分类
- 8.3 基本块的优化
- 8.4 数据流分析
- 8.5 流图中的循环
- 8.6 全局优化

# 8.2 优化的分类

- ▶机器无关优化
  - ▶针对中间代码
- > 机器相关优化
  - ▶针对目标代码
- ▶局部代码优化
  - >单个基本块范围内的优化
- ▶全局代码优化
  - ▶面向多个基本块的优化

#### 常用的优化方法

- ▶删除公共子表达式
- ▶删除无用代码
- ▶常量合并
- 一代码移动
- >强度削弱
- ▶删除归纳变量

循环优化

# ① 删除公共子表达式

- **>公共子表达式** 
  - 》如果表达式x op y先前已被计算过,并且从先前的计算到现在,x op y中变量的值没有改变,那么x op y 的这次出现就称为公共子表达式(common subexpression)
- 一个基本块范围内的公共子表达式,称为局部公共子表达式,跨基本块的公共子表达式,称为全局公共子表达式。

























### ② 删除无用代码

- ▶复制传播
  - 户常用的公共子表达式消除算法和其它一些优化算法会引入

一些复制语句(形如x=y的赋值语句)  $\begin{bmatrix} i=m-1 \\ j=n \\ t_1=4*n \end{bmatrix}$ 



### ② 删除无用代码

- ▶复制传播
  - ▶ 常用的公共子表达式消除算法和其它一些优化算法会引入 一些复制语句(形如x=y的赋值语句)
  - ▶ 复制传播:在复制语句x=y之后尽可能地用y代替x



# ② 删除无用代码

- ▶复制传播
  - ▶ 常用的公共子表达式消除算法和其它一些优化算法会引入 一些复制语句(形如x=y的赋值语句)
  - ▶ 复制传播: 在复制语句x=y之后尽可能地用y代替x▶ 复制传播给删除无用代码带来机会
- ▶ 无用代码(死代码Dead-Code): 其计算结果永远不会被使用的语句



例



# ③ 常量合并(Constant Folding)

》如果在编译时刻推导出一个表达式的值是常量,就可以 使用该常量来替代这个表达式。该技术被称为常量合并

 $\triangleright$ 例: l = 2\*3.14\*r

$$t_1 = 2 * 3.14$$
  
 $t_2 = t_1 * r$   
 $l = t_2$ 
 $t_1 = 2 * 3.14$ 
 $t_2 = 6.28 * r$   
 $l = t_2$ 

# 4 代码移动(Code Motion)

#### 一代码移动

▶这个转换处理的是那些不管循环执行多少次都得到相同 结果的表达式(即循环不变计算, loop-invariant computation), 在进入循环之前就对它们求值

# 例

> 原始程序

```
for(n = 10; n < 360; n++)
{S = \frac{1}{360} * pi * r * r * n;}
  printf("Area is \%f", S);
                        循环不变计算
(1) n = 1
                               (8) t_5 = t_4 * n
(2) if n > 360 got o(21)
                              (9) S = t_5
(3) goto (4)
(4) t_1 = 1 / 360
                               (18) t_0 = n + 1
(5) t_2 = t_1 * pi
                               (19) n = t_0
(6) t_3 = t_2 * r
                               (20) goto (4)
(7) t_4 = t_3 * r
                               (21)
```

如何自动识别循环不变计算?

#### 循环不变计算的相对性

▶对于多重嵌套的循环,循环不变计算是相对于某个循环 而言的。可能对于更加外层的循环,它就不是循环不变 计算

#### >例:

```
for(i = 1; i < 10; i++)

for(n = 1; n < 360 / (5*i); n++)

{ S = (5*i) / 360 * pi * r * r * n; ...}
```

# ⑤ 强度削弱(Strength Reduction)

#### ▶强度削弱

>用较快的操作代替较慢的操作,如用加代替乘

〉例

#### 循环中的强度削弱

- ▶归纳变量
  - $\triangleright$ 对于一个变量x,如果存在一个正的或负的常数c使得每次x被赋值时它的值总增加c,那么x就称为归纳变量(Induction Variable)



例



# ⑥ 删除归纳变量



在沿着循环运行时,如果有一组归纳变量的值的变化保持步调一致,常常可以将这组变量删除为只剩一

问题:如何删除 归纳变量?

# ⑥ 删除归纳变量





# 提纲

- 8.1 流图
- 8.2 优化的分类
- 8.3 基本块的优化
- 8.4 数据流分析
- 8.5 流图中的循环
- 8.6 全局优化

# 8.3 基本块的优化(局部优化)

- ►很多重要的局部优化技术首先把一个基本块转换成为一个 无环有向图(directed acyclic graph, DAG)
- ▶ 在转换成DAG过程中和转换后,都可以进行基本块的优化, 最后将新DAG重组为优化后的语句序列

语句s: a = b op c s是对变量a的定值,对变量b和c的引用。

# 基本块的 DAG 表示

 $\begin{array}{l}
 a = b + c \\
 b = a - d \\
 c = b + c \\
 d = a - d \\
 e = a
\end{array}$ 

对于形如x=y+z的三地址指令,如果已经有一个结点表示y+z,就不向DAG中增加新的结点,而是给已经存在的结点附加定值变量x



- ▶ 基本块中的每个语句s都对应一个内部结点N
  - ▶ 结点N的标号是s中的运算符;结点N同时关联一个定值变量表,表示s是在此基本块内最晚对表中变量进行定值的语句
  - ▶ N的子结点是基本块中在s之前、最后一个对s所使用的运算分量进行定值的语句对应的结点。如果s的某个运算分量在基本块内没有在s之前被定值,则这个运算分量的子结点就是叶结点(其定值变量表中的变量加上下脚标0)
  - $\triangleright$  在为语句x=y+z构造结点N的时候,如果x已经在某结点M的定值变量表中,则从M的定值变量表中删除变量x

#### 基于基本块的 DAG代数恒等式变换

- ▶DAG构造过程可以应用以下或更多的代数变换实现优化, 比如交换律和结合律。
  - (1) 代数恒等式的优化 —— 无需对x赋值

$$x+0 = 0+ x = x$$
  $x-0 = x$   
 $x * 1 = 1 * x = x$   $x/1 = x$ 

(2) 局部强度削弱,即用较快的运算符取代较慢的运算符,例如:

$$x **2 = x * x$$
  $2.0* x = x + x$   $x/2 = x*0.5$ 

(3) 常量合并。对常量表达式进行计算,取代常量表达式。 表达式2\*3.14可以替换为6.28。

### 基于基本块 DAG的无用代码删除

►从一个DAG上删除所有没有附加活跃变量(活跃变量是指其值可能会在以后被使用的变量)的根结点(即没有父结点的结点)。重复应用这样的处理过程就可以从DAG中消除所有对应于无用代码的结点



假设a和b是活跃变量,但c和e不是

### 数组元素赋值指令的表示

〉例

$$x=a[i]$$

$$a[j]=y$$

$$z=a[i]$$

在构造DAG时,如何 防止系统将a[i]误判 为公共子表达式?



- 》对于形如a[j] = y的三地址指令,创建 一个运算符为"[]="的结点,这个 结点有3个子结点,分别表示a、j和y
- > 该结点没有定值变量表
- 》该结点的创建将注销(杀死)所有已经 建立的、其值依赖于a的结点
- ▶ 一个被注销(杀死)的结点不能再获得任何新的定值变量,也就是说,它不可能成为一个公共子表达式

# 从 DAG 到基本块的重组

- ▶对每个具有若干定值变量的结点,构造一个三地址语句来计算其中某个定值变量的值
  - ►倾向于把计算得到的结果赋给一个在基本块出口处活跃的变量(如果没有全局活跃变量的信息作为依据,就要假设所有变量都在基本块出口处活跃,但是不包含编译器为处理表达式而生成的临时变量)
  - 》如果结点有多个附加的活跃变量,就必须引入复制语句, 以便给每一个变量都赋予正确的值
- ▶重组过程中能实现复制传播、局部公共子表达式删除等优化。

# 例

#### 〉给定一个基本块

- (1) B = 3
- (2) D = A + C
- (3) E = A \* C
- $\widehat{(4)} \; \boldsymbol{F} = \boldsymbol{E} + \boldsymbol{D}$
- $(5) \boldsymbol{G} = \boldsymbol{B} * \boldsymbol{F}$
- $\bigcirc 6 H = A + C$
- (7) I = A \* C
- (8) J = H + I
- 9 K = B \* 5
- 10 L = K + J
- $\widehat{11} M = L$



假设: 仅变量L在基本块出口之后活跃

# 例

#### 〉给定一个基本块

- (1) B = 3
- (2) D = A + C
- (3) E = A \* C
- (4) F = E + D
- (5) G = B \* F
- (6) H = A + C
- (7) I = A \* C
- (8) J = H + I
- (9) K = B \* 5
- (10) L = K + J
- $\widehat{11}$  M = L



假设: 仅变量L在基本块出口之后活跃

# 练习1

- ▶ 练习1: 为下面的基本块构造DAG, 假设只有b在出口处活跃, 重组基本块的代码。
- > d = b \* c
- $\triangleright$  e = a + b
- > b = b \* c
- > a = e d



# 提纲

- 8.1 流图
- 8.2 优化的分类
- 8.3 基本块的优化
- 8.4 数据流分析
- 8.5 流图中的循环
- 8.6 全局优化

# 8.4 数据流分析(data-flow analysis)

- > 数据流分析
  - >一组用来获取程序执行路径上的数据流信息的技术
- > 数据流分析应用
  - ▶到达-定值分析 (Reaching-Definition Analysis)
  - ▶活跃变量分析 (Live-Variable Analysis)
  - >可用表达式分析 (Available-Expression Analysis)
- ▶在每一种数据流分析应用中,都会把每个程序点和 一个数据流值关联起来

# 数据流分析

- >数据流分析的途径:建立和求解数据流方程
- > 数据流方程
  - 》用于描述流入和流出某个程序单元的数据流信息之间的 联系。程序单元可以是单条语句、基本块或循环等
- >数据流方程的构建:
  - 》语义约束:一个程序单元u之前和之后的数据流值的关系,由语句语义推导出来,被称为传递函数
  - ▶控制流约束:由控制流推导出的相邻程序单元之间的数据流值的关系

### 数据流分析模式

- > 语句的数据流模式
  - ► IN[s]: 语句s之前的数据流值
    - OUT[s]: 语句s之后的数据流值
  - ▶ 语义约束: f: 语句s的传递函数(transfer function)
    - >传递函数的两种风格
      - >信息沿执行路径前向传播(前向数据流问题)

$$OUT[s] = f_s(IN[s])$$

>信息沿执行路径逆向传播(逆向数据流问题)

$$IN[s] = f_s(OUT[s])$$



# 数据流分析模式

- > 语句的数据流模式
  - DIN[s]: 语句S之前的数据流值 OUT[s]: 语句S之后的数据流值
  - $\triangleright$  语义约束:  $f_s$ : 语句s的传递函数(transfer function)
  - ▶控制流约束:基本块内相邻两个语句之间的数据流值的 关系简单,而基本块之间相邻两个语句之间的数据流值 的关系复杂,先考虑基本块内的情况:
    - 设基本块B 由语句 $s_1, s_2, \ldots, s_n$  顺序组成,则

$$IN[s_{i+1}] = OUT[s_i]$$
  $i=1, 2, ..., n-1$ 

# 基本块上的数据流模式

- $\triangleright IN[B]$ : 紧靠基本块B之前的数据流值
- OUT[B]: 紧随基本块B之后的数据流值  $\triangleright$  设基本块B由语句 $s_1, s_2, ..., s_n$  顺序组成,则 =  $f_{sn}(IN[s_n])$ 
  - $\triangleright IN[B] = IN[s_1]$
  - $\triangleright OUT[B] = OUT[s_n]$
- $\rightarrow$  语义约束  $f_B$ : 基本块B的传递函数
  - $\triangleright$  前向数据流问题:  $OUT[B] = f_B(IN[B])$

$$f_B = f_{sn} \cdot \dots \cdot f_{s2} \cdot f_{s1}$$

 $\triangleright$  逆向数据流问题:  $IN[B] = f_B(OUT[B])$ 

$$f_B = f_{s1} \cdot f_{s2} \cdot \dots \cdot f_{sn}$$

OUT[B]

 $= OUT[s_n]$ 

 $=f_{sn}(OUT[s_{n-1}])$ 

 $=f_{sn}\cdot f_{s(n-1)}(IN[s_{n-1}])$ 

 $= f_{sn} \cdot f_{s(n-1)}(OUT[s_{n-2}])$ 

 $= f_{sn} \cdot f_{s(n-1)} \cdot \dots \cdot f_{s2}(OUT[s_1])$ 

 $= f_{sn} \cdot f_{s(n-1)} \cdot \dots \cdot f_{s2} \cdot f_{s1} (IN[s_1])$ 

 $= f_{sn} \cdot f_{s(n-1)} \cdot \dots \cdot f_{s2} \cdot f_{s1} (IN[B])$ 

# 基本块上的数据流模式

- ► IN[B]: 紧靠基本块B之前的数据流值 OUT[B]: 紧随基本块B之后的数据流值
- $\rightarrow$  语义约束 $f_B$ : 基本块B的传递函数
  - $\triangleright$  前向数据流问题:  $OUT[B] = f_B(IN[B])$
  - $\triangleright$  逆向数据流问题:  $IN[B] = f_B(OUT[B])$
- ▶控制流约束:相邻基本块之间的数据流值的关系,与具体的数据流分析目标有关。
  - $\triangleright$  前向流问题:如可用表达式分析: $IN[B] = \bigcap_{P \neq B \text{ b fin}} OUT[P]$
  - $\triangleright$  逆向流问题:如活跃变量分析:  $OUT[B] = \bigcup_{S \neq B \text{ of } s \neq I} N[S]$

### 8.4.1 到达定值分析(Reaching definitions)

- >定值 (Definition)
  - > 变量x的定值是(可能)将一个值赋给x的语句
- ▶到达定值(Reaching Definition)
  - >如果存在一条从紧跟在x的定值d后面的点到达某一程序点p的路径,而且在此路径上没有对x的其它定值,则称定值d到达程序点p
  - 》如果在此路径上有对变量x的其它定值d',则称定值d被定值 d' "注销(杀死)"了,即定值d不能到达程序点p
  - $\triangleright$  直观地讲,如果某个变量x的一个定值d到达点p,在点p处使用的x的值可能就是由d最后赋予的

#### 例:可以到达各基本块的入口处的定值



假设每个控制流图都有两个空基本块,分别是表示流图的开始点的ENTRY结点和结束点的EXIT结点(所有离开该图的控制流都流向它)

| IN[B] | $B_2$     | $B_3$ | $B_4$     |
|-------|-----------|-------|-----------|
| $d_1$ | $\sqrt{}$ | ×     | ×         |
| $d_2$ | $\sqrt{}$ | ×     | ×         |
| $d_3$ |           |       |           |
| $d_4$ | ×         |       | $\sqrt{}$ |
| $d_5$ |           |       | $\sqrt{}$ |
| $d_6$ | V         |       |           |
| $d_7$ | V         | ×     | ×         |

### 到达定值分析的主要用途

- >循环不变计算的检测
  - →如果循环中含有赋值x=y+z,而y和z所有可能的定值都在 循环外面(包括y或z是常数的特殊情况),那么y+z就是循 环不变计算

### 到达定值分析的主要用途

- >循环不变计算的检测
- >常量合并
  - ▶如果对变量x的某次使用只有一个定值可以到达,并且该定值把一个常量赋给x,那么可以简单地把x替换为该常量

# 到达定值分析的主要用途

- >循环不变计算的检测
- ▶常量合并
- ▶判定变量x在p点上是否有可能未经定值就被引用
  - ▶在流图的入口点对每个变量x引入一个哑定值。如果x的哑定值到达了一个可能使用x的程序点p,那么x,就可能在定值之前被引用

# "生成"与"注销"定值

这里, "+" 代表一个一般性的二元运算符

- ▶ 定值 d: u = v + w
  - ▶该语句"生成"了一个对变量u的定值d,并"注销 (杀死)"了程序中所有其它对u的定值
  - > 维持其它变量的定值没有变化

#### 到达定值的传递函数

 $> f_d : 定值 d: u = v + w的传递函数$ 

生成-注销(杀死)形式

- $\triangleright OUT[S] = f_d(IN[S]) = gen_d \cup (IN[S] kill_d)$ 
  - $\triangleright gen_d$ : 由语句d生成的定值的集合  $gen_d = \{d\}$

### 到达定值的传递函数

- $\triangleright f_d$ : 定值 d: u = v + w的传递函数
  - $\triangleright OUT[S] = f_d(IN[S]) = gen_d \cup (IN[S] kill_d)$
- $\triangleright f_B$ : 基本块B的传递函数,假设基本块B包含n条语句
  - $\gt OUT[B] = f_B(IN[B]) = gen_B \cup (IN[B] kill_B)$ 
    - $\succ kill_B = kill_1 \cup kill_2 \cup ... \cup kill_n$ 
      - ▶被基本块中各个语句"注销(杀死)"的所有定值的集合
    - - ▶基本块生成且未被其后的语句"注销(杀死)"的定值的集合

# 例: 各基本块B的 $gen_B$ 和 $kill_B$



### 到达定值的数据流方程

- $\triangleright IN[B]$ : 到达流图中基本块B的入口处的定值的集合
  - OUT[B]: 到达流图中基本块B的出口处的定值的集合
- >建立数据流方程
  - $> OUT[ENRTY] = \Phi$
  - $> OUT[B] = f_B(IN[B]) = gen_B \cup (IN[B] kill_B) \quad (B \neq ENTRY)$
  - $\triangleright IN[B] = \bigcup_{P \not\in B \leftrightarrow \land \text{fin}} OUT[P] \ (B \neq ENTRY)$

gen<sub>B</sub>和kill<sub>B</sub>的值可以根据流图预先计算出来,因此在方程中作为已知量



### 计算到达定值的迭代算法

- ▶输入:
  - $\triangleright$  流图G, 其中每个基本块B的 $gen_B$  和 $kill_B$  都已计算出来
- ▶输出:
  - ► IN[B]和OUT[B]
- >方法:

```
OUT[ENTRY] = \Phi; for (除ENTRY之外的每个基本块B) OUT[B] = \Phi; while (某个OUT值发生了改变) for (除ENTRY之外的每个基本块B) { IN[B] = \bigcup_{P \not\in B} \bigcup_{h \in h} OUT[P]; OUT[B] = gen_B \bigcup (IN[B] - kill_B) }
```

# 例



```
gen_{B1} = \{d_1, d_2, d_3\}
kill_{B1} = \{ d_4, d_5, d_6, d_7 \}
gen_{B2} = \{ d_4, d_5 \}
kill_{B2} = \{ d_1, d_2, d_7 \}
gen_{B3}=\{d_6\}
kill_{R3} = \{d_3\}
gen_{Rd} = \{ d_7 \}
kill_{B4} = \{ d_1, d_4 \}
```

```
OUT[ENTRY] = \Phi; for (除ENTRY之外的每个基本块B) OUT[B] = \Phi; while (某个OUT值发生了改变) for (除ENTRY之外的每个基本块B) { IN[B] = \bigcup_{P \not\in B} \bigcup_{h \to h} OUT[P]; OUT[B] = gen_B \bigcup (IN[B]-kill_B) }
```

|   | В     | $OUT[B]^0$ | $IN[B]^1$ | $OUT[B]^1$ | $IN[B]^2$ | $OUT[B]^2$ | $IN[B]^3$ | $OUT[B]^3$ |
|---|-------|------------|-----------|------------|-----------|------------|-----------|------------|
| 1 | $B_1$ | 000 0000   | 000 0000  | 111 0000   | 000 0000  | 111 0000   | 000 0000  | 111 0000   |
|   | $B_2$ | 000 0000   | 111 0000  | 001 1100   | 111 0111  | 001 1110   | 111 0111  | 001 1110   |
|   | $B_3$ | 000 0000   | 001 1100  | 000 1110   | 001 1110  | 000 1110   | 001 1110  | 000 1110   |
|   | $B_4$ | 000 0000   | 001 1110  | 001 0111   | 001 1110  | 001 0111   | 001 1110  | 001 0111   |
|   | EXIT  | 000 0000   | 001 0111  | 001 0111   | 001 0111  | 001 0111   | 001 0111  | 001 0111   |





| $gen_{B1} = \{ d_1, d_2, d_3 \}$       |
|----------------------------------------|
| $kill_{BI} = \{ d_4, d_5, d_6, d_7 \}$ |
| $gen_{B2}=\{d_4,d_5\}$                 |
| $kill_{B2} = \{ d_1, d_2, d_7 \}$      |
| $gen_{B3}=\{d_6\}$                     |
| $kill_{B3} = \{ d_3 \}$                |
| $gen_{B4}=\{d_7\}$                     |
| $kill_{B4}=\{d_1,d_4\}$                |

| IN[B] | $B_2$        | $B_3$ | $B_4$     |
|-------|--------------|-------|-----------|
| $d_1$ | $\checkmark$ | ×     | ×         |
| $d_2$ |              | ×     | X         |
| $d_3$ |              |       | $\sqrt{}$ |
| $d_4$ | ×            |       | $\sqrt{}$ |
| $d_5$ |              |       | $\sqrt{}$ |
| $d_6$ | V            | V     |           |
| $d_7$ |              | ×     | X         |

|   | В                  | $OUT[B]^0$ | $IN[B]^1$ | $OUT[B]^1$ | $IN[B]^2$ | $OUT[B]^2$ | $IN[B]^3$ | $OUT[B]^3$ |
|---|--------------------|------------|-----------|------------|-----------|------------|-----------|------------|
| 1 | $\boldsymbol{B}_1$ | 000 0000   | 000 0000  | 111 0000   | 000 0000  | 111 0000   | 000 0000  | 111 0000   |
|   | $B_2$              | 000 0000   | 111 0000  | 001 1100   | 111 0111  | 001 1110   | 111 0111  | 001 1110   |
|   | $B_3$              | 000 0000   | 001 1100  | 000 1110   | 001 1110  | 000 1110   | 001 1110  | 000 1110   |
|   | $B_4$              | 000 0000   | 001 1110  | 001 0111   | 001 1110  | 001 0111   | 001 1110  | 001 0111   |
|   | EXIT               | 000 0000   | 001 0111  | 001 0111   | 001 0111  | 001 0111   | 001 0111  | 001 0111   |

#### 引用-定值链 (Use-Definition Chains)

- ▶引用-定值链(简称ud链) 是一个列表,对于变量的每一次引用,到达该引用的所有定值都在该列表中
  - →如果块B中变量a的引用之前有a的定值, 那么只有a的最后一次定值会在该引用的 ud链中
  - ►如果块B中变量a的引用之前没有a的定值,那么a的这次引用的ud链就是IN[B]中a的定值的集合

$$d: a = \cdots$$

$$\cdots = \cdots a \cdots$$

```
...
...
```

引用-定值链 (Use-Definition Chains)

| IN[B]   | $B_2$        | $B_3$     | $B_4$     |
|---------|--------------|-----------|-----------|
| $d_{I}$ | $\checkmark$ | ×         | ×         |
| $d_2$   |              | ×         | ×         |
| $d_3$   |              | $\sqrt{}$ | $\sqrt{}$ |
| $d_4$   | ×            | $\sqrt{}$ | $\sqrt{}$ |
| $d_5$   | $\sqrt{}$    | $\sqrt{}$ | $\sqrt{}$ |
| $d_6$   |              |           |           |
| $d_7$   |              | ×         | ×         |



 $d_5$ : j = j - 1

 $d_7$ : i = 1

 $B_4$ 

 $B_3$ 

 $d_6$ : a = u2

- ▶i在引用点d3的 UD链:
  - ▶ 块内最近一次定值{ d₁}
  - ▶ 定值为1, 常量合并
- ▶ i在引用点d₄的 UD链:
  - $\triangleright$  IN[B<sub>2</sub>]中i的定值的集合即{d<sub>1</sub>,d<sub>7</sub>}
  - ▶ 都是定值为1, 常量合并
- $\rightarrow$  j在引用点 $d_5$ 的 UD链:
  - $\triangleright$  IN[B<sub>2</sub>]中j的定值的集合即{d<sub>2</sub>,d<sub>5</sub>}
- $\rightarrow u_2$ 在引用点 $d_6$ 的 UD链:
  - ► IN[B<sub>3</sub>]中u<sub>2</sub>的定值的集合
  - > 一定在循环之外,循环不变计算。

#### 8.4.2 活跃变量分析(Live-variable Analysis)

- >活跃变量
  - >对于变量x和程序点p,如果在流图中沿着从p开始的某条路径会引用变量x在p点的值,则称变量x在点p是活跃(live)的,否则称变量x在点p不活跃(dead)

# 例: 各基本块的出口处的活跃变量



| OUT[B]     | $B_1$     | $B_2$     | $B_3$     | $B_4$     |
|------------|-----------|-----------|-----------|-----------|
| а          | ×         | ×         | ×         | ×         |
| i          | $\sqrt{}$ | ×         | ×         | $\sqrt{}$ |
| j          | $\sqrt{}$ | $\sqrt{}$ | $\sqrt{}$ | <b>√</b>  |
| m          | ×         | ×         | ×         | ×         |
| n          | ×         | ×         | ×         | ×         |
| u1         | ×         | ×         | ×         | ×         |
| <i>u</i> 2 |           | V         | $\sqrt{}$ |           |
| и3         | V         | V         |           | V         |

# 活跃变量信息的主要用途

- ▶删除无用赋值
  - ▶ 无用赋值:如果x在点p的定值在基本块内所有后继点都不被引用,且x在基本块出口之后又是不活跃的,那么x在点p的定值就是无用的
- ▶ 为基本块分配寄存器
  - 如果所有寄存器都被占用,并且还需要申请一个寄存器,则应该考虑使用已经存放了不活跃变量(死亡)值的寄存器,因为这个值不需要保存到内存
  - 如果一个值在基本块结尾处是不活跃(死)的就不必在结尾处保存这个值

#### 活跃变量的传递函数

- > 逆向数据流问题
  - $\triangleright IN[B] = f_B(OUT[B])$
- $\triangleright IN[B] = f_B(OUT[B]) = use_B \cup (OUT[B] def_B)$ 
  - $\triangleright use_B$ : 在基本块B中引用,但是引用前在B中没有被定值的变量集合——引用的是B的入口处的变量值

# 例: 各基本块B的 $use_B$ 和 $def_B$



#### 活跃变量数据流方程

- ► IN[B]: 在基本块B的入口处的活跃变量集合 OUT[B]: 在基本块B的出口处的活跃变量集合
- > 建立逆向流方程
  - $>IN[EXIT] = \Phi$
  - $\triangleright IN[B] = f_B(OUT[B]) = use_B \cup (OUT[B] def_B) \quad (B \neq EXIT)$
  - $\triangleright OUT[B] = \bigcup_{S \not\in B} \inf_{N \in \mathcal{M}} IN[S] \quad (B \neq EXIT)$

 $use_B$ 和 $def_B$ 的值可以直接从流图计算出来,因此在方程中作为已知量



#### 计算活跃变量的迭代算法

 $\triangleright$ 输入:流图G,其中每个基本块B的 $use_B$ 和 $def_B$ 都已计算出来

▶输出: IN[B]和OUT[B]

▶方法:

```
IN[EXIT] = \Phi;
for (除EXIT之外的每个基本块B) IN[B] = \Phi;
while (某个IN值发生了改变)
 for(除EXIT之外的每个基本块B) {
     IN[B] = use_B \cup (OUT[B] - def_B);
```

# 例



```
use_{R1} = \{ m, n, u1 \}
def_{B1} = \{i, j, a\}
use_{R2} = \{i, j\}
def_{R2} = \Phi
use_{B3} = \{ u2 \}
def_{B3} = \{a\}
use_{B4} = \{ u3 \}
def_{B4} = \{i\}
```

```
IN[EXIT] = \Phi; for (除EXIT之外的每个基本块B) IN[B] = \Phi; while (某个IN值发生了改变) for (除EXIT之外的每个基本块B) { OUT[B] = \bigcup_{S \neq B} \bigcup_{h = h \leq B} \bigcup_{h = h \leq h} IN[S]; IN[B] = use_B \bigcup_{h = h \leq h} \bigcup_{h = h} \bigcup_{h = h \leq h} \bigcup_{h = h} \bigcup_{h = h \leq h} \bigcup_{h = h} \bigcup_{h = h \leq h} \bigcup_{h =
```

|                    | $OUT[B]^{1}$ | $IN[B]^{1}$  | $OUT[B]^2$       | $IN[B]^2$        | $OUT[B]^3$       | $IN[B]^3$       |
|--------------------|--------------|--------------|------------------|------------------|------------------|-----------------|
| $B_4$              | Ф            | и3           | <i>i,j,u2,u3</i> | <i>j</i> ,u2,u3  | <i>i,j,u2,u3</i> | <i>j</i> ,u2,u3 |
| $B_3$              | и3           | и2,и3        | <i>j</i> ,u2,u3  | j,u2,u3          | <i>j</i> ,u2,u3  | <i>j</i> ,u2,u3 |
| $B_2$              | и2,и3        | i,j,u2,u3    | <i>j</i> ,u2,u3  | <i>i,j,u2,u3</i> | <i>j</i> ,u2,u3  | i,j,u2,u3       |
| $\boldsymbol{B}_1$ | i,j,u2,u3    | m,n,u1,u2,u3 | <i>i,j,u2,u3</i> | m,n,u1,u2,u3     | <i>i,j,u2,u3</i> | m,n,u1,u2,u3    |





| $use_{B1} = \{ m, n, u1 \}$ |
|-----------------------------|
| $def_{B1} = \{i, j, a\}$    |
| $use_{B2} = \{i, j\}$       |
| $def_{B2} = \Phi$           |
| $use_{B3} = \{u2\}$         |
| $def_{B3} = \{a\}$          |
| $use_{B4} = \{u3\}$         |
| $def_{B4} = \{ i \}$        |

| OUT[B]             | $B_1$ | $B_2$ | $B_3$ | $B_4$     |
|--------------------|-------|-------|-------|-----------|
| а                  | ×     | ×     | ×     | ×         |
| i                  |       | ×     | ×     | $\sqrt{}$ |
| j                  |       |       |       | $\sqrt{}$ |
| m                  | ×     | ×     | ×     | ×         |
| n                  | ×     | ×     | ×     | ×         |
| $\boldsymbol{u}_1$ | ×     | ×     | ×     | ×         |
| $u_2$              |       |       |       |           |
| $u_3$              |       |       |       |           |

|                    | $OUT[B]^{1}$ | $IN[B]^{1}$  | $OUT[B]^2$       | $IN[B]^2$        | $OUT[B]^2$ | $IN[B]^2$       |
|--------------------|--------------|--------------|------------------|------------------|------------|-----------------|
| $B_4$              |              | и3           | <i>i,j,u2,u3</i> | <i>j</i> ,u2,u3  | i,j,u2,u3  | <i>j</i> ,u2,u3 |
| $B_3$              | и3           | и2,и3        | <i>j</i> ,u2,u3  | <i>j</i> ,u2,u3  | j,u2,u3    | ј,и2,и3         |
| $B_2$              | и2,и3        | i,j,u2,u3    | <i>j</i> ,u2,u3  | <i>i,j,u2,u3</i> | j,u2,u3    | i,j,u2,u3       |
| $\boldsymbol{B}_1$ | i,j,u2,u3    | m,n,u1,u2,u3 | i,j,u2,u3        | m,n,u1,u2,u3     | i,j,u2,u3  | m,n,u1,u2,u3    |

# 定值-引用链 (Definition-Use Chains)

- ▶ 定值-引用链:设变量x有一个定值d,该定值能够到达的所有引用u的集合称为x在d处的定值-引用链,简称du链
- ▶如果在求解活跃变量数据流方程中的OUT[B]时,将OUT[B]表示成从B的末尾处能够到达的引用的集合,那么,可以直接利用这些信息计算基本块B中每个变量x在其定值处的du链
  - →如果B中x的定值d之后有x的第一个定值d',则d和d'之间x的所有引用构成d的du链

```
d: x = \cdots
\cdots = \cdots \times \cdots
d': x = \cdots
\cdots
```

### 定值-引用链 (Definition-Use Chains)

- ► 定值-引用链:设变量x有一个定值d,该定值能够到达的所有引用u的集合称为x在d处的定值-引用链,简称du链
- ▶如果在求解活跃变量数据流方程中的OUT[B]时,将OUT[B]表示成从B的末尾处能够到达的引用的集合,那么,可以直接利用这些信息计算基本块B中每个变量x在其定值处的du链
  - ▶如果B中x的定值d之后有x的第一个定值d',则d和d'之间x的所有引用构成d的du链
  - ➤如果B中x的定值d之后没有x的新的定值,则B中d之后x的所有引用以及OUT[B]中x的所有引用构成d的du链



# 定值-引用链 (Definition-Use Chains)



# 8.4.3 可用表达式分析(Available Expressions)

- ▶可用表达式
  - →如果从流图的首结点到达程序点p的每条路径都对表达式x op y进行计算,并且从最后一个这样的计算到点p 之间没有再次对x或y定值,那么表达式x op y在点p是 可用的(available)
- ▶表达式可用的直观意义
  - ightharpoonup在点p上,x op y已经在之前被计算过,不需要重新计算

#### 可用表达式信息的主要用途

户消除全局公共子表达式



 $B_2$ 中的代码满足什么条件,4\*i在基本块 $B_3$ 的入口点才可用?

- > 未对i重新定值
- > 或对i重新定值了,又重新计算了4\*i

#### 可用表达式信息的主要用途

- 户消除全局公共子表达式
- > 进行复制传播



在x的引用点u可以用y代替x的条件: 复制语句x = y在引用点u处可用

从流图的首结点到达u的每条路径都存在复制语句x=y,并且从最后一条复制语句x=y到点u之间没有再次对x或y定值

#### 可用表达式的传递函数

- →如果基本块B对x op y进行计算,并且之后没有重新定值x或y,则称B生成表达式x op y;如果基本块B对x或者y进行了(或可能进行)定值,且以后没有重新计算x op y,则称B注销(杀死)表达式x op y
- $\triangleright OUT[B] = f_B(IN[B]) = e\_gen_B \cup (IN[B] e\_kill_B)$ 
  - $\rightarrow e_{gen_B}$ :基本块B所生成的可用表达式的集合
  - $\triangleright e_{kill_B}$ : 基本块B所注销(杀死)的U中的可用表达式的集合
    - ▶ U: 所有出现在程序中一个或多个语句的右部的表达式的全集

# e\_gen<sub>B</sub>的计算

- >初始化:  $e_gen_B = \Phi$
- $\triangleright$ 顺序扫描基本块的每个语句: z = x op y
  - > 把x op y加入e\_gen<sub>B</sub>
  - ►从e\_gen<sub>B</sub>中删除和z相关的表达式

| 块B语句                                    | $e\_gen_B$ | $\mathbf{U} = \{ \mathbf{b}$ | +c, a-d } |
|-----------------------------------------|------------|------------------------------|-----------|
| a:=b+c                                  | Ø          |                              |           |
| b:=a-d                                  | { b+c }    | — 加入 b+c,                    | 删除 a-b    |
| c := b+c                                | { a-d } —  | — 加入 a-d,                    | 删除 b+c    |
| $\mathbf{d} := \mathbf{a} - \mathbf{d}$ | { a-d } —  | — 加入 b+c,                    | 删除 b+c    |
| •••••                                   | <b>ø</b> — | — 加入 a-d,                    | 删除 a-d    |

顺序不能颠倒

# e\_kill<sub>B</sub>的计算

- >初始化:  $e \ kill_R = \Phi$
- $\blacktriangleright$ 顺序扫描基本块的每个语句: z = x op y
  - ► 从e\_kill<sub>B</sub> 中删除表达式x op y
  - ▶把所有和Z相关的表达式加入到e\_kill<sub>B</sub>中

| 块B语句                                    | $e_{kill_{B}} \qquad U = \{ b+c, a-d \}$ |
|-----------------------------------------|------------------------------------------|
| a := b + c                              | Ø                                        |
| b := a-d                                | {a-b} —— 删除 b+c, 加入 a-b                  |
| c := b+c                                | {b+c} ——删除 a-d, 加入 b+c                   |
| $\mathbf{d} := \mathbf{a} - \mathbf{d}$ | {b+c} — 删除b+c, 加入b+c                     |
| ••••                                    | { b+c, a-d } — 删除 a-d, 加入 a-d            |

#### 可用表达式的数据流方程

- $\triangleright IN[B]$ : 在B的入口处可用的U中的表达式集合 OUT[B]: 在B的出口处可用的U中的表达式集合
- 户方程
  - $\triangleright OUT[ENTRY] = \Phi$
  - $\triangleright OUT[B] = f_B(IN[B]) = e\_gen_B \cup (IN[B]-e\_kill_B) \quad (B \neq ENTRY)$
  - $\triangleright IN[B] = \bigcap_{P \not\in B \text{ to} \wedge \text{ fin}} OUT[P] (B \neq ENTRY)$

e\_gen<sub>B</sub>和e\_kill<sub>B</sub>的值可以直接从流图计算出来, 因此在方程中作为已知量



#### 计算可用表达式的迭代算法

 $\triangleright$ 输入: 流图G, 其中每个基本块B的 $e\_gen_B$ 和 $e\_kill_B$ 都已计算出来

➤ 输出: IN[B]和OUT[B]

> 方法:

```
OUT[ENTRY] = \Phi;
for (除ENTRY之外的每个基本块B) OUT[B] = U;
while (某个OUT值发生了改变)
  for(除ENTRY之外的每个基本块B) {
       IN[B] = \bigcap_{P \not\in B \text{ bis}} OUT[P]
       OUT[B] = e \ gen_B \cup (IN[B] - e \ kill_B);
```

#### 为什么将OUT[B]集合初始化为U?

▶将OUT集合初始化为Φ局限性太大





- ▶如果  $OUT[B_2]^{\theta} = \Phi$ 那么  $IN[B_2]^{l} = OUT[B_1]^{l} \cap OUT[B_2]^{\theta} = \Phi$
- 》如果 $OUT[B_2]^{\theta}=U$ 那么 $IN[B_2]^{l}=OUT[B_1]^{l}\cap OUT[B_2]^{\theta}=OUT[B_1]$

# 练习2

▶练习2: 给出如图所示的 流图, 计算活跃变量分 析中每个基本块的def、 use、IN和OUT集合。





# 提纲

- 8.1 流图
- 8.2 优化的分类
- 8.3 基本块的优化
- 8.4 数据流分析
- 8.5 流图中的循环
- 8.6 全局优化

#### 8.5 流图中的循环

- ▶支配结点 (Dominators)
  - 如果从流图的入口结点到结点n的每条路径都经过结点d,则称结点d支配(dominate)结点n,记为d dom n

每个结点都支配它自己

# 例



| 支配结点 | 支配对象 |
|------|------|
| 1    | 1~10 |
| 2    | 2    |
| 3    | 3~10 |
| 4    | 4~10 |
| 5    | 5    |
| 6    | 6    |
| 7    | 7~10 |
| 8    | 8~10 |
| 9    | 9    |
| 10   | 10   |

#### > 支配结点树 (Dominator Tree)



每个结点只支配它和它的后代结点

#### 寻找支配结点

- > 支配结点的数据流方程
  - $\triangleright IN[B]$ : 在基本块B入口处的支配结点集合

OUT[B]: 在基本块B出口处的支配结点集合

> 方程

$$\triangleright OUT[ENTRY] = \{ENTRY\}$$

$$\triangleright OUT[B] = f(IN[B]) = IN[B] \cup \{B\}$$
  $(B \neq ENTRY)$ 

$$\triangleright IN[B] = \bigcap_{P \not\in B} OUT[P] \quad (B \neq ENTRY)$$

根据支配结点的定义,OUT[B]是结点B的所有支配结点的集合



#### 计算支配结点的迭代算法

- $\triangleright$  输入: 流图G, G的结点集是N, 边集是E, 入口结点是ENTRY
- $\triangleright$  输出:对于N中的各个结点n,给出D(n),即支配n的所有结点的集合,D(n) = OUT[n]
- > 方法:

```
OUT[ENTRY] = \{ENTRY\}
for(除ENTRY之外的每个基本块B)
 OUT[B] = N
while(某个OUT值发生了改变)
 for(除ENTRY之外的每个基本块B)
   OUT[B] = IN[B] \cup \{B\}
```

例

# OUT[ENTRY]={ENTRY} for(除ENTRY之外的每个基本块B) OUT[B]=N while(某个OUT值发生了改变) for(除ENTRY之外的每个基本块B)

 $\{IN[B] = \bigcap_{P \not\in B \cap - \uparrow \cap W} OUT[P]$ 

 $OUT[B]=IN[B] \cup \{B\}$ 

| }     |
|-------|
| ENTRY |
|       |
| (2)   |
| 3     |
| 4     |
| 5     |
|       |
| 8     |
| 9     |

|     | $OUT^{\theta}[B]$ | $IN^{I}[B]$     | $OUT^{1}[B]$                   |
|-----|-------------------|-----------------|--------------------------------|
| E   | $\{E\}$           |                 |                                |
| 1   | N                 | { <b>E</b> }    | { <b>E</b> ① }                 |
| 2   | N                 | { E ① }         | { E (1) (2) }                  |
| 3   | N                 | { <b>E</b> ① }  | { <i>E</i> ① ③ }               |
| 4   | N                 | { E ① ③ }       | { <i>E</i> ① ③ ④ }             |
| (5) | N                 | { E ① ③ ④ }     | { E ① ③ ④ ⑤ }                  |
| 6   | N                 | { E ① ③ ④ }     | { E (1) (3) (4) (6) }          |
| 7   | N                 | { E ① ③ ④ }     | { E (1) (3) (4) (7) }          |
| 8   | N                 | { E ① ③ ④ ⑦ }   | { E ① ③ ④ ⑦ ⑧ }                |
| 9   | N                 | { E ① ③ ④ ⑦ ⑧ } | { E ① ③ ④ ⑦ ⑧ ⑨ }              |
| 10  | N                 | { E ① ③ ④ ⑦ ⑧ } | { E (1) (3) (4) (7) (8) (10) } |

#### 回边 (Back Edges)

》如果存在从结点n到d的有向边 $n \rightarrow d$ ,且d dom n,那么这条边称为回边



# 自然循环 (Natural Loops)

- ▶从程序分析的角度来看,循环在代码中以什么形式出现 并不重要,重要的是它是否具有易于优化的性质
- 户自然循环是一种适合于优化的循环,它满足以下性质
  - 户有唯一的入口结点, 称为首结点(循环头结点, header)
    - ▶首结点支配循环中的所有结点
  - 》循环中至少有一条返回首结点的回边,否则,控制就不可能 从"循环"中直接回到循环头,也就无法构成循环
- 》非自然循环的例子

  2

  3

#### 自然循环的识别

 $\triangleright$  给定一个回边 $n \rightarrow d$ ,该回边的自然循环为: d,以及所有可以

不经过d而到达n的结点。d为该循环的首结点。



| 回边   | 自然循环    |
|------|---------|
| 4→3  | 3456781 |
| 7→4  | 4567810 |
| 8→3  | 3456781 |
| 9→1  | ① ~ ⑩   |
| 10→7 | 7810    |



前提: 流图可约, 即去掉所有的回边后, 无环。

#### 算法: 构造一条回边的自然循环

 $\triangleright$ 输入: 流图 G和回边 $n \rightarrow d$ 

 $\triangleright$ 输出:由回边 $n \rightarrow d$ 的自然循环中的所有结点组成的集合

```
\triangleright 方法: stack=\Phi; loop=\{n,d\}; push(stack,n);
        while stack不空do
                                   结点d在初始时刻已经在
        { m = top(stack); pop(stack); loop中, 不会去考虑它的
                                   前驱。因此,找出的都是不
          for m的每个前驱 p
                                    经过d而能到达n的结点。
          { if p不在loop中 then
            { loop = loop \cup \{p\};
              push(stack, p); }
```

▶自然循环的一个重要性质

〉例

》如果两个自然循环的首结点不相同,则这两个循环要么互不相交,要么一个完全包含(嵌入)在另外一个里面



| 回边    | 自然循环     |  |
|-------|----------|--|
| 4->3  | 3456781  |  |
| 7->4  | 4567810  |  |
| 8->3  | 34567810 |  |
| 9->1  | ① ~ ⑩    |  |
| 10->7 | 780      |  |

最内循环 (Innermost Loops): 不包含其它循环的循环 》如果两个循环具有相同的首结点,那么很难说哪个是 最内循环。此时把两个循环合并





# 提纲

- 8.1 流图
- 8.2 优化的分类
- 8.3 基本块的优化
- 8.4 数据流分析
- 8.5 流图中的循环
- 8.6 全局优化

#### 8.6 全局优化

- > 删除全局公共子表达式
- > 删除复制语句
- 户代码移动
- >作用于递归变量的强度削弱
- > 删除递归变量

▶循环优化

## ① 删除全局公共子表达式

》可用表达式的数据流问题可以帮助确定位于流图中p点的 表达式是否为全局公共子表达式

#### 〉例



#### 全局公共子表达式删除算法

- ▶输入: 带有可用表达式信息的流图
- >输出:修正后的流图
- > 方法:
  - $\triangleright$  对于语句s: z = x op y, 如果x op y在s之前可用,那么执行如下步骤:
    - ① 从s开始逆向搜索,但不穿过任何计算了x op y的块,找到所有离s最近的计算了x op y的语句
    - ② 建立新的临时变量u
    - ③ 把步骤①中找到的语句w=x op y用下列语句代替:

$$u = x \text{ op } y$$
$$w = u$$

④ 用z=u替代s

## ② 删除复制语句

〉例

▶对于复制语句s: x=y,如果在x的所有引用点都可以用对y的引用代替对x的引用(复制传播),那么可以删除复制语句 x=y



- ► 在x的引用点u用y代替x(复制传播)的条件
  - ▶ 复制语句s: x=y在u点"可用"

#### ② 删除复制语句

ightharpoonup对于复制语句s: x=y,如果在x的所有引用点都可以用对y的引用代替对x的引用(复制传播),那么可以删除复制语句 x=y ightharpoonup例



# ② 删除复制语句

x=y定值能到达的每个引用点 **B1** IN(X):可用表达式 都能用y代替x, x=y才能删除  $du(x=y) = \{ t_1 = x * 2, t_2 = x * 3 \}$  $IN(B3) = \{ ..., x=y, ... \}$  $IN(B2) = \{..., x=y, ...\}$  $t_2 = x * 3$  y替换x **B**3 未对x或y定值 y替换x

#### 删除复制语句的算法

- $\triangleright$ 输入:流图G、du链、各基本块B入口处的可用复制语句集合
- ▶输出:修改后的流图
- >方法:
  - ▶对于每个复制语句x=y,执行下列步骤
    - ①根据du链找出该定值所能够到达的那些对x的引用
    - ②确定是否对于每个这样的引用, x=y都在 IN[B]中(B是包含这个引用的基本块),并且B中该引用的前面没有x或者y的定值(即对于每个引用点, x=y都是可用的)
    - ③如果x=y满足第②步的条件,删除x=y , 且把步骤①中找 到的对x的引用用y代替

# ③ 代码移动

- ▶循环不变计算的检测
- >代码外提

#### 循环不变计算检测算法

 $\triangleright$  输入: 循环L, 每个三地址指令的ud链

▶ 输出: L的循环不变计算语句

> 方法

- 1. 将下面这样的语句标记为"不变":语句的各运算分量或者是常数, 或者其所有定值点都在循环L外部
- 2. 重复执行步骤(3), 直到某次没有新的语句可标记为"不变"为止
- 3. 将下面这样的语句标记为"不变": 先前没有被标记过, 且各运算 分量或者是常数, 或者其所有定值点都在循环L外部, 或者只有一个 到达定值, 该定值是循环中已经被标记为"不变"的语句

#### 代码外提

- ▶前置首结点 (preheader)
  - ▶循环不变计算将被移至首结点之前,为此创建一个称为前置 首结点的新块。前置首结点的唯一后继是首结点,并且原来 从循环L外到达L首结点的边都改成进入前置首结点。 从循环 L里面到达首结点的边不变



# 循环不变计算语句 s: x = y + z 移动的条件

(1) s所在的基本块是循环所有出口结点(有后继结点在循环外的结点)的支配结点



## 循环不变计算语句 s: x = y + z 移动的条件

(2) 循环中没有其它语句对x赋值



- ▶如果循环中还存在i=2
- ▶外提前
  - 》j的值是否等于2取决于 循环最后一次迭代时, 是否执行了B<sub>3</sub>
- >外提后
  - ho只要 $B_3$ 执行过一次,j的 值就等于2

## 循环不变计算语句 s: x = y + z 移动的条件

(3) 循环中对x的引用仅由s到达





#### 代码移动算法

▶输入:循环L、ud链、支配结点信息

>输出:修改后的循环

>方法:

- 1. 寻找循环不变计算
- 2. 对于步骤(1)中找到的每个循环不变计算,检查是否满足上面的三个条件
- 3. 按照循环不变计算找出的次序,把所找到的满足上述条件的循环不变计算外提到前置首结点中。如果循环不变计算有分量在循环中定值,只有将定值点外提后,该循环不变计算才可以外提

# ④ 作用于归纳变量的强度削弱

- >如果循环L中的变量 i 只有形如i=i+n 的定值,n 是常量(或循环不变量),则称i 为循环L 的基本归纳变量
- 》如果循环L中的变量j只有形如 $j=c\times i+d$ 的定值,其中i是基本归纳变量,c和d是常量(或循环不变量),则j也是一个归纳变量,称j属于i族
  - > 基本归纳变量i属于它自己的族
- 净每个归纳变量都关联一个三元组。如果 $j=c\times i+d$ ,其中i是基本归纳变量,c和d是常量,则与j相关联的三元组是(i,c,d)

 $B_1$  $t_1 = 4 * n$  $v = a[t_1]$  $\boldsymbol{B_2}$  $t_3 = a[t_2]$ if  $t_3 < v$  goto  $B_2$  $B_3$ if  $t_5 > v$  goto  $B_3$ if i >= j goto  $B_6$   $B_4$  $B_6$ 

》若 i是基本归纳变量: i=i+n j是i族归纳变量,表示为(i,c,d)那么有, i增加n, j增加c\*n

i是基本归纳变量,i=i+1 $t_2$ 是i族归纳变量,可以表示为(i, 4,0) i增加1,  $t_2$ 增加4

j是基本归纳变量,j=j-1 $t_4$ 是j族归纳变量,可以表示为(j, 4, 0)j增加-1, $t_4$ 增加-4

》归纳变量强度削弱的目标是找到它与基本 归纳变量之间的函数关系,以期使用代价 低的运算(加法)代替代价高的运算(乘法)

#### 归纳变量检测算法

- ▶输入: 带有循环不变计算信息和到达定值信息的循环L
- ▶输出:一组归纳变量
- >方法:
  - 1. 扫描L的语句, 找出所有基本归纳变量。在此要用到循环不变计算信息。与每个基本归纳变量 i 相关联的三元组是(i,1,0)

# 归纳变量检测算法(续)

- 2: 寻找L中只有一次定值的变量k, 它具有下面的形式:  $k=c'\times j+d'$ 。其中 c'和d'是常量(或循环不变计算), j是基本的或非基本的归纳变量
  - 》如果j是基本归纳变量,那么k属于j族。k对应的三元组可以通过其定值语句确定,即(j,c',d')
  - 》如果j不是基本归纳变量,假设其属于i族,那么k也属于i族,且k的 三元组可以通过j的三元组(i, c, d)和k的定值语句(k=c'×j+d')来计算,即k的三元组为(i, c'×c, c'×d+d'),此时我们还要求:
    - ▶循环L中对j的唯一定值和对k的定值之间没有对i的定值
    - ▶循环L外没有j的定值可以到达k

这两个条件是为了保证对k进行赋值的时候,j当时的值一定等于c\*(i当时的值)+d

$$\frac{j=c\times i+d}{\downarrow}$$

$$k=c'\times j+d'$$

i = m - 1强度削弱 例 新归纳变量初始化 j = n $t_1 = 4 * n$ (根据三元组)  $B_1$ i = m - 1 $B_1$  $v = a[t_1]$ s=c\*i $t_1 = 4 * n$ s=s+d $s_4 = 4 *$  $v = a[t_1]$ i = i + 1 $\boldsymbol{B}_2$  $B_2$ i = i + 1 $s_2 = s_2 + 4$  $t_2 = 4 * i$ i 增加n(1),  $t_3 = a[t_2]$  $\begin{aligned}
t_3 &= a[t_2] \\
\text{if } t_3 &< v \text{ goto } B_2
\end{aligned}$ if  $t_3 < v$  goto  $B_2$ t<sup>2</sup>增加c(4)\*n(1) $t_2$ : (i, 4, 0) $B_3$  $B_3$  $S_4 = S_4 - 4$  $t_5 = a[t_4]$  $t_4$ : (j, 4, 0) $t_5 = a[t_4]$ if  $t_5 > v$  goto  $B_3$ if  $t_5 > v$  goto  $B_3$ j增加n(-1), if i >= j goto  $B_6$   $B_4$ if i >= j goto  $B_6$ t<sub>4</sub>增加c(4)\*n(-1)  $\mathbb{I}B_5$  ,  $B_5$  $B_6$  $B_6$ 

#### 作用于归纳变量的强度削弱算法

- ▶ 输入: 带有到达定值信息和已计算出的归纳变量族的循环L
- ▶输出:修改后的循环
- $\triangleright$  方法: 对于每个基本归纳变量i, 对其族中的每个归纳变量j: (i, c, d) 执行下列步骤
  - 1.建立新的临时变量t。如果变量 $j_1$ 和 $j_2$ 具有相同的三元组,则只为它们建立一个新变量
  - 2.在前置结点的末尾,添加语句 $t=c^*i$ 和 t=t+d,使得在循环开始的时候  $t=c^*i+d$
  - 3.在L中緊跟定值i=i+n之后,添加t=t+c\*n。将t放入i族,其三元组为 (i,c,d)
  - 4.用j=t代替对j的赋值

# ⑤ 归纳变量的删除

→对于在强度削弱算法中引入的复制语句j=t,如果在归 纳变量j的所有引用点都可以用对t的引用代替对j的引用, 并且j在循环的出口处不活跃,则可以删除复制语句j=t



#### 归纳变量的删除

- →对于在强度削弱算法中引入的复制语句j=t,如果在归 纳变量j的所有引用点都可以用对t的引用代替对j的引用, 并且j在循环的出口处不活跃,则可以删除复制语句j=t
- ▶强度削弱后,有些归纳变量的作用只是用于测试。如果可以用对其它归纳变量的测试代替对这种归纳变量的测试,那么可以删除这种归纳变量

例



#### 删除仅用于测试的归纳变量

- 》对于仅用于测试的基本归纳变量 i,取i族的某个归纳变量 j,设其三元组为(i,c,d)(尽量选择使得c、d简单,即c=1或 d=0的情况)。把每个对i的测试替换成为对j的测试
  - $\triangleright$  (relop i x B)替换为(relop j c\*x+d B), 其中x不是归纳变量, 并假设c>0
  - 》 (relop  $i_1 i_2 B$ ),如果能够找到三元组 $j_1(i_1, c, d)$ 和 $j_2(i_2, c, d)$ ,那么可以将其替换为(relop  $j_1 j_2 B$ )(假设c>0)。否则,测试的替换可能是没有价值的
- >如果归纳变量i不再被引用,那么可以删除和它相关的指令



# 练习3

- ▶练习3. 对于下图中的流图:
- (1)找出流图中的自然循环。
- (2)B<sub>1</sub>中的语句(1)和(2)都是复制语句且a和b都被赋予了常量值。我们可以对a和b的哪些引用进行复制传播,并把对它们的引用替换为对一个常量的引用?在所有可能的地方进行这种替换。
- (3) 找出所有的全局公共子表达式。



## 本章小结

- > 流图
- > 优化的分类
- >基本块的优化
- > 数据流分析
  - ▶ 到达-定值分析
  - > 活跃变量分析
  - > 可用表达式分析
- > 流图中的循环
- ▶全局优化

