Работа с роботом Mitsubishi RV-3SDB

При возникновении любой чрезвычайной ситуации в работе робота необходимо прекратить его работу путем нажатия красной аварийной кнопки. Установлено три аварийные кнопки: одна на пульте управления, одна на панели ячейки робота, одна на панели контроллера.

Работа в режиме ручного управления

- 1. Перевести контроллер в режим ручного управления путем поворота ключа на панели контроллера в положение «Manual».
- 2. Активировать пульт управления путем нажатия кнопки «ТВ ENABLE» на торце пульта управления. Кнопка должна загореться.
- 3. Активировать двигатели робота. Для это зажать и далее удерживать желтый переключатель на задней стороне пульта в первом положении. Нажать кнопку «Servo» на пульте; раздастся характерный щелчок запуска двигателей. При отпускании или нажатии во второе положение желтого переключателя на задней стороне двигатели экстренно остановятся.
- 4. Для управления положением робота в декартовых координатах необходимо нажать кнопку «Jog», откроется меню с координатами. На экране отобразится кнопка «XYZ» нажать под экраном физическую кнопку «F1»; убедиться, что вверху экрана появился режим «<CURRENT> XYZ». Робот приводится в движение кнопками «X, Y, Z, A, B, C». Скорость регулируется кнопками «OVRD».
- 5. Для управления захватом необходимо нажать кнопку «Hand». Закрытие и открытие осуществляется кнопками «-C, +C». При возвращении в режим «Jog» запоминается последний режим кнопка «XYZ» будет недоступна, т.к. режим будет уже активен.

Работа в автоматическом режиме

- 1. Деактивировать пульт управления путем нажатия кнопки «ТВ ENABLE» на торце пульта управления. Кнопка должна погаснуть.
- 2. Закрыть двери ячейки робота на ключ.
- 3. Перевести контроллер в режим автоматического управления путем поворота ключа на панели контроллера в положение «Automatic».
- 4. Произвести запуск программы из интерфейса программирования на компьютере.

Работа с интерфейсом программирования на компьютере

Окно интерфейса разделено на пять областей:

- 1. Симуляция робота
- 2. Список файлов
- 3. Код программы (файл MOVEPRTS.MB5)
- 4. Таблица с сохраненными точками (файл MOVEPRTS.POS)
- 5. Системные сообщения

Порядок написания программы следующий. Устанавливается связь с роботом нажатием кнопки «Init Connection» на панели инструментов. Должно появиться окно с названием робота, соглашаемся нажатием кнопки «ОК». Определяем и сохраняем

важные точки в таблице. Для этого в ручном режиме подводим робота к желаемой точке. В интерфейсе на панели инструментов нажимаем кнопку «Robot position -> PC» - симуляция робота должна переместиться в такую же конфигурацию. В таблице точек нажимаем правой кнопкой мыши в пустом месте, выбираем «Insert position». Для сохранения новых значений необходимо выбрать пункт таблицы (он должен подсветиться), нажать по нему правой кнопкой мыши и выбрать «Accept position». Так сохраняются все важные для программы точки.

Затем пишется код программы в соответствующем файле. Код проверяется на ошибки нажатием кнопки «Compile+Link» на панели инструментов. В окне системных сообщений проверяется количество ошибок компиляции «error» . Запускается симулятор робота нажатием кнопки «Start». Если симуляция прошла успешно, файлы можно загружать на робота.

В окне файлов есть два основных раздела: «RV-3SDB» - файлы робота, «Workplace» - локальные файлы на компьютере. Для загрузки файлов на робота необходимо перейти «Workplace/Programs», выделить сразу два файла программы «MOVEPRTS.MB5, MOVEPRTS.POS», нажать правой кнопкой мыши, выбрать пункт «Download», согласиться с системными сообщениями. Для запуска программы на роботе необходимо перевести робота в автоматический режим, перейти в окне файлов в раздел «RV-3SDB/Programs», выбрать программу «MOVEPRTS», нажать правой кнопкой мыши, выбрать пункт «Start (CYC)». Для остановки программы можно нажать правой кнопкой мыши, выбрать пункт «Stop», либо нажать кнопку «STOP» на пульте управления.

Основные команды программирования

END — завершение программы, обязательно размещается в конце файла.

SERVO ON — включение двигателей, размещается в начале программы

JOVRD 100 — скорость движения в процентах от максимальной, обычно

размещается в начале программы

SERVO OFF — выключение двигателей, размещается в конце программы

DLY 0.1 — пауза выполнения программы в секундах

 HOPEN 1
 – открытие захватного устройства

 HCLOSE 1
 – закрытие захватного устройства

MOV P1 — движение в точку P1 из таблицы сохраненных точек

MOV P1, -50 — движение в точку P1 со смещение 50мм вверх по оси Z

FOR I1=0 TO 2 — начало выполнения цикла, I1 — переменная итерации цикла

NEXT I1 — окончание цикла

Для создания настроиваемого смещения координат можно в коде программы создавать вспомогательные переменные координат:

PHELPX=(+75.0,+0.0,+0.0,+0.0,+0.0,+0.0)

где в скобках записываются декартовые координаты смещения X, Y, Z, A, B, C соответственно.

В команде MOV кроме явного указания точек (например, P1) можно проводить математические операции над точками, например сумма переменных для смещения: MOV P1+PHELPX, -50

или умножение на переменные для выполнения операций в цикле: MOV P1+PHELPX*I1, -50

Задание на лабораторную работу №1

Переставить кластер деталей (4 или 9 деталей) с одного стола на другой в цикле, используя только 2 точки в таблице сохраненных точек: одна точка — захват первой детали на первом столе, вторая точка — отпускание детали на втором столе. В коде программы можно использовать вспомогательные переменные со смещение по осям X и Y 75мм.

Порядок выполнения:

- 1. В ручном режиме управления робот определить две точки, сохранить в таблицу. Написать программу, которая открывает захват, зависает над первой точкой, опускается к первой точке, закрывает захват, поднимает деталь, зависает над второй точкой, опускает деталь, открывает захват, поднимает робота над деталью.
- 2. Дополнить программу, чтобы робот перенес вторую деталь, используя смещение.
- 3. Дополнить программу, чтобы робот в цикле мог переносить пару деталей со смещение по одной координате.
- 4. Дополнить программу, чтобы робот в цикле мог переносить кластер деталей со смещение по двум координатам.

Содержание отчета:

- 1. Цели выполнения работы
- 2. Код конечной программы
- 3. Описание команд
- 4. Таблица сохраненных точек
- 5. Выводы