Autor: Hubert Kowalczyk 259550	Struktury Danych i złożoność obliczeniowa Semestr letni 2022/2023	Termin: Wtorek NP: 17:05
Prowadzący: Dr. Inż. Tomasz Kapłon	Ćwiczenie 4	Data wykonania ćwiczenia: 09.05.2023
	Cwiczenie 4	Data oddania sprawozdania 23.05.2023

1)Cel Ćwiczenia

Celem ćwiczenia było zaimplementowanie algorytmu ,który wyszukuje najkrótsze ścieżki w grafie skierowanym. Z proponowanych algorytmów wybrano algorytm Dijkstry.

2)Algorytm i implementacja

2.1)Algorytm

Algorytm Dijkstry to algorytm służący do znajdowania najkrótszych ścieżek w skierowanym lub nieskierowanym grafie ważonym z jednym wierzchołkiem początkowym. Algorytm przypisuje każdemu wierzchołkowi grafu odległość od wierzchołka początkowego i stopniowo aktualizuje te odległości w miarę odkrywania krótszych ścieżek.

2.2) Struktury danych

- 1. Struktura 'Vertex' reprezentuje wierzchołek w grafie. Zawiera ona pola:
- a) distance przechowuje obecną najkrótszą ścieżkę do danego wierzchołka.
- b) path typ std::vector<int> służący do zapamiętania kolejnych wierzchołków tworzących drogę od źródła do celu.
- 2. Tablica dynamiczna 'vertexs' typu Vertex przechowuje informacje o każdym wierzchołku w grafie.

2.3) Plik config.cfg

W pliku config.cfg można wybrać ścieżkę do pliku z danymi, Ścieżkę w której zostanie zapisany plik z wyliczonymi ścieżkami(pole wyliczona sciieżka) oraz wynikami czasowymi(pole wyniki czasowe). Istnieje także możliwość zmiany wielkości instancji(pole rozmiar danych). Wszystkie te parametry należy napisać po ":".

2.4) Metodologia badawcza

Algorytm badano na grafie o maksymalnej wielkości 1000 wierzchołków. Badano czas w jakim algorytm skończy swoje działanie dla różnych wielkości instancji. Dla każdej badanej wielkości instancji czas badano 10 razy a następnie wyciągano z niego średnią arytmetyczną. Algorytm badano na komputerze wyposażonej w procesor Intel Core i7-9750H.

3) Wyniki

Tabela 1 Tabela w której zgromadzono uzyskane wyniki pomiarów

	Czas Wykonywania		Czas Wykonywania
Wielkość instancji	[ms]	Wielkość instancji	[ms]
10	6,42	500	67,41
25	7,24	550	75,97
50	9,78	600	85,25
100	16,10	650	89,98
150	28,26	700	99,31
200	29,99	750	107,67
250	34,21	800	105,25
300	34,87	850	128,26
350	40,68	900	134,83
400	45,95	950	141,34
450	54,06	1000	152,63

Wykres 1 Wykres sporządzony na podstawie wyników z tabeli 1