

המחלקה למדעי המחשב

תשפ"ג 29/11/2312:00-26/11/2312:00

אלגברה 2

מועד ב'

מרצים: ד"ר ירמיהו מילר, ד'ר שי סרוסי.

תשפ"ג סמסטר ק'

השאלון מכיל 12 עמודים (כולל עמוד זה וכולל דף נוסחאות).

בהצלחה!

אחר / הערות

- יש לפתור את כל השאלות.
- המשקל של כל שאלה מפורט להלן:
 - **.** שאלה 1: 30 נקודות *
 - **.** שאלה 2: 20 נקודות *
 - * שאלה 3: 20 נקודות.
 - * שאלה 4: 30 נקודות.
- סדר התשובות אינו משנה, אך יש לרשום ליד כל תשובה את מספרה.
- הסבירו היטב את מהלך הפתרון. תשובה ללא הסבר (גם נכונה) לא תתקבל.
 - אסור לחלוטין לקבל עזרה מסטודנט אחר או מאף אחד.
- עליכם להעלות את הפתרונות שלכם דרך אתר המודל של הקורס אלגברה 2 למדמ"ח לא יאוחר משעה עליכם להעלות את ביום ד' 20-11-23. פתרונות שהוגשו אחרי המועד הזה לא יתקבלו.
- מותר להשתמש בחומר של הקורס, התרגילים של הקורס והספרים של הקורס בלבד, אבל אסור להשתמש בשום מקורות אחרים.
- אחרי הגשת פתרונות אתם תקבלו הזמנה למבחן קצר בעל פה על הפתרונות שלכם. ייתכן שלא תעבור את המבחן או יורידו נקודות במקרה שאתם לא יכולים להסביר הפתרונות שלכם היטב.
 - סטודנט יהיה זכאי להגיש ערעור / בקשות שונות לגבי הבוחן במשך 5 ימים בלבד מיום קבלת הציון.

$$A=\left(egin{array}{cccc}1&0&0&1\\10&-2&0&0\\1&-5&3&1\\1&0&0&1\end{array}
ight)$$
 המטירצה $A\in\mathbb{R}^{4 imes4}$ תהי

- $A=PDP^{-1}$ -ש כך אלכסונית פיכה ו- D הפיכה כן מצאו אם לכסינה? האם א
 - ב) הוכיחו כי A לא הפיכה.
 - ג) הוכיחו כי

$$A = \frac{1}{3}A^2 + \frac{1}{4}A^3 - \frac{1}{12}A^4 \ .$$

שאלה 2 תהי $A\in\mathbb{C}^{4 imes 4}$ מטריצה נורמלית. נניח כי הערכים עצמיים של

$$\lambda_1 = 3$$
, $\lambda_2 = 5 + 5i$, $\lambda_3 = -5 + 5i$,

והמרחבים עצמיים הם

$$V_3 = \operatorname{span} \left\{ \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \right\} \ , \quad V_{5+5i} = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\} \ .$$

שימו $a\in\mathbb{C}^4$ יהי בכוונה. יהי איז לא לא נתון עצמי לערך עצמי ששייך לערך עצמי א $\lambda_3=-5+5i$ עצמי ששייך לערך איז

$$.a = \begin{pmatrix} 1\\9\\7\\10 \end{pmatrix}$$

- $A\cdot a$ מצאו את (א
- $A^4 \cdot a$ מצאו את מ
- A מצאו את המטריצה (ג)

שאלה 3 תהי $A\in\mathbb{F}^{3 imes 3}$ תהי ביטוי אם כן, מצאו ביטוי של הפיכה. אם לא, הסבירו מדוע. אם כן, מצאו ביטוי של A בכל המקרים הבאים, קבעו אם A כצירוף לינארי של חזקות של המטריצה A

- $\lambda=0$ -ו $\lambda=-i$ הערכים עצמיים של A הם אור הערכים עצמיים של
 - $.\lambda=-1$ د $.\lambda=-i$ را د $.\lambda=i$

שאלה 4

- - . עכשיו נניח כי A אוניטרית. הוכיחו כי u_1,u_2,u_3 אורתוגונלית.
 - . אם A אוניטרית, האם ייתכן ש- $\lambda_1, \lambda_2, \lambda_3$ יהיו פולם ממשיים? נמקו את אוניטרית, האם ייתכן ש-

פתרונות

שאלה 1

א) נחשב את הפולינום האופייני:

$$p_{A}(x) = |xI - A|$$

$$= \begin{vmatrix} x - 1 & 0 & 0 & -1 \\ -10 & x + 2 & 0 & 0 \\ -1 & 5 & x - 3 & -1 \\ -1 & 0 & 0 & x - 1 \end{vmatrix}$$

$$= (x - 1) \begin{vmatrix} x + 2 & 0 & 0 \\ 5 & x - 3 & -1 \\ 0 & 0 & x - 1 \end{vmatrix} + \begin{vmatrix} -10 & x + 2 & 0 \\ -1 & 5 & x - 3 \\ -1 & 0 & 0 \end{vmatrix}$$

$$= (x - 1)(x + 2) \begin{vmatrix} x - 3 & -1 \\ 0 & x - 1 \end{vmatrix} - \begin{vmatrix} x + 2 & 0 \\ 5 & x - 3 \end{vmatrix}$$

$$= (x - 1)(x + 2)(x - 3)(x - 1) - (x + 2)(x - 3)$$

$$= (x + 2)(x - 3) [(x - 1)^{2} - 1]$$

$$= (x + 2)(x - 3)x(x - 2)$$

ערכים עצמיים:

 $\lambda = -2$ מריבוי אלגברי

 $\lambda=0$ מריבוי אלגברי

 $\lambda=2$ מריבוי אלגברי

 $\lambda=3$ מריבוי אלגברי

כל הערכים עצמיים שונים לכן A לכסינה.

 $\lambda = -2$ מרחב עצמי ששייך לערך עצמי

$$(A+2I) = \begin{pmatrix} 3 & 0 & 0 & 1 \\ 10 & 0 & 0 & 0 \\ 1 & -5 & 5 & 1 \\ 1 & 0 & 0 & 3 \end{pmatrix} \xrightarrow{3R_2-10R_1} \begin{pmatrix} 3 & 0 & 0 & 1 \\ 0 & 0 & 0 & -10 \\ 0 & -15 & 15 & 2 \\ 0 & 0 & 0 & 8 \end{pmatrix}$$

$$\xrightarrow{R_2 \leftarrow R_3} \begin{pmatrix} 3 & 0 & 0 & 1 \\ 0 & -15 & 15 & 2 \\ 0 & 0 & 0 & -10 \\ 0 & 0 & 0 & 8 \end{pmatrix} \xrightarrow{10R_4+8R_3} \begin{pmatrix} 3 & 0 & 0 & 1 \\ 0 & -15 & 15 & 2 \\ 0 & 0 & 0 & -10 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\xrightarrow{R_3 \rightarrow -\frac{1}{10} \cdot R_3} \begin{pmatrix} 3 & 0 & 0 & 1 \\ 0 & -15 & 15 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\xrightarrow{R_3 \rightarrow -\frac{1}{15} \cdot R_3} \begin{pmatrix} 3 & 0 & 0 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\xrightarrow{R_3 \rightarrow -\frac{1}{15} \cdot R_3} \begin{pmatrix} 3 & 0 & 0 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

 $(x,y,z,w)=(-rac{1}{3}w,z,z,0)=(0,z,z,0)=(0,1,1,0)z,\;z\in\mathbb{R}$ פתרון:

$$V_{-2} = \operatorname{span} \left\{ \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} \right\}$$

 $\lambda=0$ מרחב עצמי ששייך לערך עצמי

$$(A - 0 \cdot I) = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 10 & -2 & 0 & 0 \\ 1 & -5 & 3 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_2 - 10R_1 \atop R_3 - R_1} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & -2 & 0 & -10 \\ 0 & -5 & 3 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\xrightarrow{R_3 \to 2R_3 - 5R_2} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & -2 & 0 & -10 \\ 0 & 0 & 6 & 50 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_2 \to -\frac{1}{2} \cdot R_2} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 5 \\ 0 & 0 & 1 & \frac{25}{3} \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$(x,y,z,w)=(-w,-5w,-rac{25}{3}w,w)=(-1,-5,-rac{25}{3},1)w,\ w\in\mathbb{R}$$
 פתרון: $V_0=\mathrm{span}\left\{egin{pmatrix}3\\15\\25\\-3\end{pmatrix}
ight\}$

 $\lambda=2$ מרחב עצמי ששייך לערך עצמי

$$(A-2I) \qquad = \qquad \begin{pmatrix} -1 & 0 & 0 & 1 \\ 10 & -4 & 0 & 0 \\ 1 & -5 & 1 & 1 \\ 1 & 0 & 0 & -1 \end{pmatrix} \xrightarrow{\substack{R_2+10R_1 \\ R_3+R_1 \\ R_4+R_1}} \begin{pmatrix} -1 & 0 & 0 & 1 \\ 0 & -4 & 0 & 10 \\ 0 & -5 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\xrightarrow{\substack{R_3\rightarrow 4R_3-5R_2 \\ 0 & 0 & 0 & 0}} \begin{pmatrix} -1 & 0 & 0 & 1 \\ 0 & -4 & 0 & 10 \\ 0 & 0 & 4 & -42 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{\substack{R_2\rightarrow -\frac{1}{4}\cdot R_2 \\ R_3\rightarrow \frac{-1}{4}\cdot R_3 \\ 0 & 0 & 0 & 0}} \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -\frac{5}{2} \\ 0 & 0 & 1 & -\frac{21}{2} \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$(x,y,z,w) = (w,\frac{5}{2}w,\frac{21}{2}w,w) = (1,\frac{5}{2},\frac{21}{2},1)w,\ w\in\mathbb{R}\ :$$

 $\lambda=2$ מרחב עצמי ששייך לערך עצמי

המכללה האקדמית להנדסה סמי שמעון

קמפוס באר שבע ביאליק פינת בזל 84100 | **קמפוס אשדוד** ז'בוטינסקי 84, 77245 | www.sce.ac.il | חיי**ג: ≋⊠הפוםס**

$$(x,y,z,w)=(rac{1}{2}w,w,z,0)=(0,0,1,0)z,\,\,z\in\mathbb{R}$$
 פתרון:

$$V_3 = \operatorname{span} \left\{ \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \right\}$$

$$D = \begin{pmatrix} -2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix} , \qquad P = \begin{pmatrix} | & | & | & | \\ u_{-2} & u_0 & u_2 & u_3 \\ | & | & | & | \end{pmatrix} = \begin{pmatrix} 0 & -3 & 2 & 0 \\ 1 & -15 & 5 & 0 \\ 1 & -25 & 21 & 1 \\ 0 & 3 & 2 & 0 \end{pmatrix} .$$

- ב) למטריצה A יש ערך עצמי 0 לפיכך A לא הפיכה.
 - גו הפולינום האופייני של A הוא

$$p_A(x) = (x-3)(x-2)x(x+2) = x^4 - 3x^3 - 4x^2 + 12x$$
.

לכן $p_A(A)=0$ לכן המילטון קיילי ליילי

$$A^{4} - 3A^{3} - 4A^{2} + 12A = 0 \quad \Rightarrow \quad A = \frac{1}{12} \left(-A^{4} + 3A^{3} + 4A^{2} \right) = -\frac{1}{12} A^{4} + \frac{1}{4} A^{3} + \frac{1}{3} A^{2} .$$

שאלה 2

א) משפט הפירוק הספקטרלי:

$$A \cdot a = 3P_{V_3}(a) + (5+5i)P_{V_{5+5i}}(a) + (-5+5i)P_{V_{-5+5i}}(a) .$$

$$P_{V_{-5+5i}}(a) = a - P_{V_3}(a) - P_{V_{-5+5i}}(a)$$

לכן

$$P_{V_3}(a) = \frac{\langle a, u_3 \rangle}{\|u_3\|^2} u_3 + \frac{\langle a, u_3' \rangle}{\|u_3'\|^2} u_3' = \frac{\left\langle \begin{pmatrix} 1 \\ 9 \\ 7 \\ 10 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \right\rangle}{\left\| \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \right\|^2} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} + \frac{\left\langle \begin{pmatrix} 1 \\ 9 \\ 7 \\ 10 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \right\rangle}{\left\| \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \right\|^2} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 9 \\ 7 \\ 0 \end{pmatrix}.$$

המכללה האקדמית להנדסה סמי שמעון

קמפוס באר שבע ביאליק פינת בזל 84100 | **קמפוס אשדוד** ז'בוטינסקי 84, 77245 | www.sce.ac.il | ח**ייג: ≋סמפוס**

$$P_{V_{5+5i}}(a) = \frac{\langle a, u_{5+5i} \rangle}{\|u_{5+5i}\|^2} u_{5+5i} = \frac{\left\langle \begin{pmatrix} 1\\9\\7\\10 \end{pmatrix}, \begin{pmatrix} 1\\0\\1 \end{pmatrix} \right\rangle}{\left\| \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix} \right\|^2} \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 11\\0\\0\\11 \end{pmatrix}.$$

$$P_{V_{-5+5i}}(a) = a - P_{V_3}(a) - P_{V_{5+5i}}(a) = \begin{pmatrix} 1\\9\\7\\10 \end{pmatrix} - \begin{pmatrix} 0\\9\\7\\0 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 11\\0\\0\\11 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} -9\\0\\0\\9 \end{pmatrix}.$$

$$A \cdot a = 3 \begin{pmatrix} 0 \\ 9 \\ 7 \\ 0 \end{pmatrix} + (5+5i)\frac{1}{2} \begin{pmatrix} 11 \\ 0 \\ 0 \\ 11 \end{pmatrix} + \frac{1}{2}(-5+5i) \begin{pmatrix} -9 \\ 0 \\ 0 \\ 9 \end{pmatrix} = \begin{pmatrix} 50+5i \\ 27 \\ 21 \\ 5+50i \end{pmatrix}$$

$$A^4 \cdot a = 3^4 \begin{pmatrix} 0 \\ 9 \\ 7 \\ 0 \end{pmatrix} + (5+5i)^4 \frac{1}{2} \begin{pmatrix} 11 \\ 0 \\ 0 \\ 11 \end{pmatrix} + (-5+5i)^4 \frac{1}{2} \begin{pmatrix} -9 \\ 0 \\ 0 \\ 9 \end{pmatrix} = \begin{pmatrix} -2500 \\ 729 \\ 567 \\ -25000 \end{pmatrix}$$

$$.e_4 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}, e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$A \cdot e_1 = 3P_{V_3}(e_1) + (5+5i)P_{V_{5+5i}}(e_1) + (-5+5i)P_{V_{-5+5i}}(e_1)$$

$$P_{V_3}(e_1) = \frac{\langle e_1, u_3 \rangle}{\|u_3\|^2} u_3 + \frac{\langle e_1, u_3' \rangle}{\|u_3'\|^2} u_3' = \frac{\left\langle \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \right\rangle}{\left\| \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \right\|^2} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} + \frac{\left\langle \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \right\rangle}{\left\| \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \right\|^2} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

$$P_{V_{5+5i}}(e_1) = \frac{\langle e_1, u_{5+5i} \rangle}{\|u_{5+5i}\|^2} u_{5+5i} = \frac{\left\langle \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix} \right\rangle}{\left\| \begin{pmatrix} 1\\0\\0\\0\\1 \end{pmatrix} \right\|^2} \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix} = \begin{pmatrix} 1/2\\0\\0\\1/2 \end{pmatrix}.$$

$$P_{V_{-5+5i}}(e_1) = e_1 - P_{V_3}(e_1) - P_{V_{5+5i}}(e_1) = \begin{pmatrix} 1/2 \\ 0 \\ 0 \\ -1/2 \end{pmatrix} .$$

$$A \cdot e_1 = (5+5i) \begin{pmatrix} 1/2 \\ 0 \\ 0 \\ 1/2 \end{pmatrix} + (-5+5i) \begin{pmatrix} 1/2 \\ 0 \\ 0 \\ -1/2 \end{pmatrix} = \begin{pmatrix} 5i \\ 0 \\ 0 \\ 5 \end{pmatrix}$$

$$A \cdot e_2 = 3P_{V_3}(e_2) + (5+5i)P_{V_{5+5i}}(e_2) + (-5+5i)P_{V_{-5+5i}}(e_2)$$

$$P_{V_3}(e_2) = \frac{\langle e_2, u_3 \rangle}{\|u_3\|^2} u_3 + \frac{\langle e_2, u_3' \rangle}{\|u_3'\|^2} u_3' = \frac{\left\langle \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \right\rangle}{\left\| \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \right\|^2} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} + \frac{\left\langle \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \right\rangle}{\left\| \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \right\|^2} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

$$P_{V_{5+5i}}(e_2) = \frac{\langle e_2, u_{5+5i} \rangle}{\|u_{5+5i}\|^2} u_{5+5i} = \frac{\left\langle \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix} \right\rangle}{\left\| \begin{pmatrix} 1\\0\\0\\0\\1 \end{pmatrix} \right\|^2} \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix} = \begin{pmatrix} 0\\0\\0\\0 \end{pmatrix}.$$

$$P_{V_{-5+5i}}(e_2) = e_2 - P_{V_3}(e_2) - P_{V_{5+5i}}(e_2) = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} .$$

$$A \cdot e_2 = 3 \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 3 \\ 0 \\ 0 \end{pmatrix}$$

$$A \cdot e_3 = 3P_{V_3}(e_3) + (5+5i)P_{V_{5+5i}}(e_3) + (-5+5i)P_{V_{-5+5i}}(e_3)$$

$$P_{V_3}(e_3) = \frac{\langle e_3, u_3 \rangle}{\|u_3\|^2} u_3 + \frac{\langle e_3, u_3' \rangle}{\|u_3'\|^2} u_3' = \frac{\left\langle \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\rangle}{\left\| \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \right\|^2} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} + \frac{\left\langle \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \right\rangle}{\left\| \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \right\|^2} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}.$$

$$P_{V_{5+5i}}(e_1) = \frac{\langle e_1, u_{5+5i} \rangle}{\|u_{5+5i}\|^2} u_{5+5i} = \frac{\left\langle \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \right\rangle}{\left\| \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\|^2} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

$$P_{V_{-5+5i}}(e_3) = e_3 - P_{V_3}(e_3) - P_{V_{5+5i}}(e_3) = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} .$$

$$A \cdot e_3 = 3 \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 3 \\ 0 \end{pmatrix}$$

$$A \cdot e_4 = 3P_{V_3}(e_4) + (5+5i)P_{V_{5+5i}}(e_4) + (-5+5i)P_{V_{-5+5i}}(e_4)$$

קמפוס באר שבע ביאליק פינת בזל 84100 | קמפוס אשדוד ז'בוטינסקי 84, 77245 | www.sce.ac.il | קמפוס באר שבע ביאליק פינת בזל 84100 |

$$P_{V_3}(e_4) = \frac{\langle e_4, u_3 \rangle}{\|u_3\|^2} u_3 + \frac{\langle e_4, u_3' \rangle}{\|u_3'\|^2} u_3' = \frac{\left\langle \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \right\rangle}{\left\| \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \right\|^2} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} + \frac{\left\langle \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \right\rangle}{\left\| \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \right\|^2} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

$$P_{V_{5+5i}}(e_4) = \frac{\langle e_4, u_{5+5i} \rangle}{\|u_{5+5i}\|^2} u_{5+5i} = \frac{\left\langle \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\rangle}{\left\| \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\|^2} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1/2 \\ 0 \\ 0 \\ 1/2 \end{pmatrix}.$$

$$P_{V_{-5+5i}}(e_4) = e_1 - P_{V_3}(e_4) - P_{V_{5+5i}}(e_4) = \begin{pmatrix} -1/2 \\ 0 \\ 0 \\ 1/2 \end{pmatrix}$$
.

$$A \cdot e_4 = (5+5i) \begin{pmatrix} 1/2 \\ 0 \\ 0 \\ 1/2 \end{pmatrix} + (-5+5i) \begin{pmatrix} -1/2 \\ 0 \\ 0 \\ 1/2 \end{pmatrix} = \begin{pmatrix} 5 \\ 0 \\ 0 \\ 5i \end{pmatrix}$$

$$A = \begin{pmatrix} | & | & | & | \\ Ae_1 & Ae_2 & Ae_3 & Ae_4 \\ | & | & | & | \end{pmatrix} = \begin{pmatrix} 5i & 0 & 0 & 5 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 5 & 0 & 0 & 5i \end{pmatrix}$$

שאלה 3

א) A לא הפיכה. הסבר:

$$|A| = i \cdot (-i) \cdot 0 = 0$$

לכן A לא הפיכה.

בר: הסברA הפיכה.

$$|A| = i \cdot (-i) \cdot (-1) = 1$$
.

פולינום אופייני:

$$p_A(x) = (x+i)(x-i)(x+1) = x^3 + x^2 + x + 1$$
.

לפי משפט קיילי-המילטון:

$$p_A(A)=0$$
 \Rightarrow $A^3+A^2+A+I=0$ \Rightarrow $I=-\left(A^3+A^2+A\right)=A\cdot\left(-A^2-A-I\right)$. לפיכך

$$A^{-1} = -A^2 - A - I \ .$$

שאלה 4

א) נוכיח כי u_1, u_2 בת"ל. נרשום

$$\alpha_1 u_1 + \alpha_2 u_2 = 0 \tag{*1}$$

A -כאשר α_1, α_2 סקלרים. נכפיל ב

$$A\alpha_1 u_1 + A\alpha_2 u_2 = 0 \qquad \Rightarrow \qquad \alpha_1 \lambda_1 u_1 + \alpha_2 \lambda_2 u_2 = 0 . \tag{*2}$$

 $:\lambda_1$ -ב (*1) נכפיל

$$\lambda_1 \alpha_1 u_1 + \lambda_1 \alpha_2 u_2 = 0 \tag{*3}$$

נקח את החיסור (3*)-(2*):

$$\lambda_1 \alpha_2 u_2 - \lambda_2 \alpha_2 u_2 = 0 \quad \Rightarrow \quad (\lambda_1 - \lambda_2) \alpha_2 u_2 = 0$$
.

 $u_2 \neq 0 \Leftarrow u_2$ ווקטור עצמי ווקטור עצמי

לכן , $\lambda_1 - \tilde{\lambda_2}
eq 0 \Leftarrow$ (נתון) $\lambda_1
eq \lambda_2$

 $\alpha_2 = 0$.

נציב זה ב- (1*) ונקבל

 $\alpha_1 u_1 = 0$.

לפיכך $u_1 \neq 0 \Leftarrow u_1$ לפיכך ווקטור עצמי

 $\alpha_1 = 0$.

לכן (*1) מתקיים רק אם $a_1=lpha_2=0$ לפיכך מתקיים (*1)

נוכיח כי u_1, u_2, u_3 בת"ל. נרשום

$$\beta_1 u_1 + \beta_2 u_2 + \beta_3 u_3 = 0 \tag{#1}$$

A -ביל נכפיל ב- $\beta_1, \beta_2, \beta_3$ כאשר

$$A\beta_1 u_1 + A\beta_2 u_2 + A\beta_3 u_3 = 0$$
 \Rightarrow $\lambda_1 \beta_1 u_1 + \lambda_2 \beta_2 u_2 + \lambda_3 \beta_3 u_3 = 0$. (#2)

 $:\lambda_3$ -ב (#1) נכפיל

$$\lambda_3 \beta_1 u_1 + \lambda_3 \beta_2 u_2 + \lambda_3 \beta_3 u_3 = 0 \tag{#3}$$

נקח את החיסור (3#)-(4%):

$$(\lambda_3 - \lambda_1)\beta_1 u_1 + (\lambda_3 - \lambda_2)\beta_2 u_2 = 0.$$

ו- בת"ל אז זה מתקיים רק אם u_2 ו- u_1

$$(\lambda_3 - \lambda_1)\beta_1 = 0 , \qquad (\lambda_3 - \lambda_2)\beta_2 = 0 .$$

 $u_2 \neq 0$, $u_1 \neq 0$ ווקטורים עצמיים לכן u_1,u_2 . $\lambda_3 - \lambda_2 \neq 0$ ו- $\lambda_3 - \lambda_1 \neq 0 \Leftarrow \lambda_1 \neq \lambda_2 \neq \lambda_3$ לכן $\beta_1 = 0$ ו- $\beta_1 = 0$ נציב זה ב- (1#):

$$\beta_3 u_3 = 0$$
.

לכן $u_3 \neq 0 \Leftarrow u_3$ לכן ווקטור עצמי

$$\beta_3 = 0$$
.

. בת"ל. u_1,u_2,u_3 לכן $\beta_1,\beta_2,\beta_3=0$ בת"ל. מצאנו כי (#3) מתקיים רק אם

- ב) ווקטורים עצמיים של המטריצה אוניטרית מהווים בסיס אורתוגונלי. לפי זה, אם A אוניטרית אז הקבוצה $\{u_1,u_2,u_3\}$ מהווה בסיס אורתוגונלי.
 - **ג)** לא.

אם A אוניטרית אז הערך מוחלט של על ערך עצמי יהיה 1. יש לנו 3 ערכים עצמיים שונים, אז כדי שהערך מוחלט של כל אחד ייה שווה ל- 1. אז בהכרך לפחות אחד יהיה מספר מרוכב.