

Bachelorarbeit

Winkelmessung durch magnetische Sensor-Arrays und Toleranzkompensation mittels Gauß-Prozess

Fakultät Technik und Informatik
Department Informations- und Elektrotechnik

Faculty of Computer Science and Engineering Department of Information and Electrical Engineering

Übersicht

- Applikation
- Kennfelder
- Datenadaption
- Gauß-Prozesse

Übersicht

- Applikation
- Kennfelder
- Datenadaption
- Gauß-Prozesse

- Software-Aufbau
- Simulation Sensor-Array
- Simulation Gauß-Prozesse
- Erprobungsexperimente
- Zusammenfassung

Kontaktlose Winkelmessung

- Kontaktlose Winkelmessung
- Winkel encodiert durch Magnetfeld

- Kontaktlose Winkelmessung
- Winkel encodiert durch Magnetfeld
- Feldstärkenmessung in X-/ Y-Richtung

• TMR-Sensor

- TMR-Sensor
- Wheatstone'sche

Messbrücken

- TMR-Sensor
- Wheatstone'scheMessbrücken
- 90° verdreht zueinander
- 360° Periodizität

100

-100

-150

20

100

-100

-150

100

-100

-150

Arrays als lange Vektoren

- Arrays als lange Vektoren
- Frobenius-Norm

Lernen über Trainingsdaten

- Lernen über Trainingsdaten
- Anpassung über Testdaten
- Optimieren über Parameter

- Lernen über Trainingsdaten
- Anpassung über Testdaten
- Optimieren über Parameter
- Vorhersage durch Stützwerte

- Lernen über Trainingsdaten
- Anpassung über Testdaten
- Optimieren über Parameter
- Vorhersage durch Stützwerte

Kovarianzfunktion (Kernel) ist Verhaltensmaßgebend!

Fractional Kernel

$$rac{\sigma_f^2}{1+rac{d_{_{\!X}}^2\langle\mathbf{A},\mathbf{B}
angle}{2\sigma_I^2}}$$

Kontrolle über Einflussnahme

- Kontrolle über Einflussnahme
- Datenfit über Plausibilitäten

- Kontrolle über Einflussnahme
- Datenfit über Plausibilitäten
- Modellgeneralisierung über Verluste

Analyze Data

Gaussian Process Regression

Pred. Angle

Mathematical Simulation

Sensor Array Generate Data

Dipole Simulation Sim. Angle

Physical Simulation

Modularer Aufbau

- Modularer Aufbau
- Wiederverwendbarkeit
- Erweiterbarkeit

- Modularer Aufbau
- Wiederverwendbarkeit
- Erweiterbarkeit
- Integration
- Dokumentation

Konfiguration von Abmaße,
 Position, Anordnung und
 Spannungsversorgung

- Konfiguration von Abmaße,
 Position, Anordnung und
 Spannungsversorgung
- Festlegen des Startpunktes bzw. Ruhelage

 Konfigurierung der Prägung bei 1 mm und 200 kA/m

- Konfigurierung der Prägung bei 1 mm und 200 kA/m
- Mindestabstand bei 4 mm und 25 kA/m

- Konfigurierung der Prägung bei 1 mm und 200 kA/m
- Mindestabstand bei 4 mm und 25 kA/m
- Linearer Bereich bei 7 mm und 7,4 kA/m

Legende

 Laden und initiieren der Simulationsparametern

Prozessstart Datensatz, Datenstruktur Prozessende Prozessschritt Alle Positionen 1 Schreibt in Data-Container **Alle Winkel 2 Schreibt in Info-Container

- Laden und initiieren der Simulationsparametern
- Durchführung in For-Schleifen

Prozessstart Datensatz, Datenstruktur Prozessende Prozessschritt Alle Positionen 1 Schreibt in Data-Container

2 Schreibt in Info-Container

** Alle Winkel

- Laden und initiieren der Simulationsparametern
- Durchführung in For-Schleifen
- Speichern der Datencontainer

Eingabe – Simulationswinkel

- Eingabe Simulationswinkel
- Meshgird Berechnungen an Sensor-Pixel

Simulation – Sensor-Array

- Eingabe Simulationswinkel
- Meshgird Berechnungen an Sensor-Pixel
- Mapping Entnahme von Referenzspannungen

Koniguration

- Koniguration
 - Kernel-Modul
 - Mittelwertbildung

MSLL – Mean-Standardized-Logarithmic-Loss

- Koniguration
 - Kernel-Modul
 - Mittelwertbildung
 - Verlustberechnung

MSLL – Mean-Standardized-Logarithmic-Loss

- Koniguration
 - Kernel-Modul
 - Mittelwertbildung
 - Verlustberechnung
 - Durchlaufanzahl

MSLL – Mean-Standardized-Logarithmic-Loss

- Koniguration
 - Kernel-Modul
 - Mittelwertbildung
 - Verlustberechnung
 - Durchlaufanzahl
 - Parametergrenzen

MSLL – Mean-Standardized-Logarithmic-Loss

Trainingsphase

GPR – Gaussian Processes for Regression

MSLL – Mean-Standardized-Logarithmic-Loss

MSLLA – Mean-Standardized-Logarithmic-Loss-Angle

- Trainingsphase
 - Laden und Initialisierung

GPR – Gaussian Processes for Regression

MSLL – Mean-Standardized-Logarithmic-Loss

MSLLA – Mean-Standardized-Logarithmic-Loss-Angle

- Trainingsphase
 - Laden und Initialisierung
 - Generalisierung mit eingebetteter Skalierung

GPR – Gaussian Processes for Regression

MSLL – Mean-Standardized-Logarithmic-Loss

MSLLA – Mean-Standardized-Logarithmic-Loss-Angle

- Trainingsphase
 - Laden und Initialisierung
 - Generalisierung mit eingebetteter Skalierung
 - Finale Skalierung und Bewertung

GPR – Gaussian Processes for Regression

MSLL-Mean-Standardized-Logarithmic-Loss

MSLLA – Mean-Standardized-Logarithmic-Loss-Angle

Simulation − Gauß-Prozesse = HAW BURG

Sequenzielle Initialisierung

GPR – Gaussian Processes for Regression DS – Dataset

Simulation − Gauß-Prozesse = HAW HAMBURG

- Sequenzielle Initialisierung
 - Struct-basiertes Modell

GPR – Gaussian Processes for Regression DS – Dataset

- Sequenzielle Initialisierung
 - Struct-basiertes Modell
 - Konfigurierung Framework

GPR – Gaussian Processes for Regression DS – Dataset

- Sequenzielle Initialisierung
 - Struct-basiertes Modell
 - Konfigurierung Framework
 - Anlegen von Referenzen

- Sequenzielle Initialisierung
 - Struct-basiertes Modell
 - Konfigurierung Framework
 - Anlegen von Referenzen
 - Laden der Funktionalität

GPR – Gaussian Processes for Regression DS – Dataset

Init Kernel

Parameters

Compute

K-Matrix

Add Noise

to K-Matrix

Decompose

K-Matrix

Compute Beta Coeff.

Set Mean Function

Compute Weights

Compute

Likelihoods

- Sequenzielle Initialisierung
 - Struct-basiertes Modell
 - Konfigurierung Framework
 - Anlegen von Referenzen
 - Laden der Funktionalität
 - Modellparametrierung

Legende

Prozessstart

Prozessende

Prozessschritt

Training Data

Set Basis
Function

Punction

Config

Init Train DS

Compute

Target Sinoids

GPR Model

Init Kernel

Set Kernel

Function

Set Input

Function

Adjust

Train DS

GPR – Gaussian Processes for Regression DS – Dataset

Start

Load

Init Confia

Return

Gernalisierung

Gernalisierung

Setzen der Noise-Varianz

Gernalisierung

Setzen der Noise-Varianz

Kernel-Skalierung

Gernalisierung

Setzen der Noise-Varianz

- Kernel-Skalierung
- Verlustberechnung

- Gernalisierung
 - Setzen der Noise-Varianz
 - Kernel-Skalierung
 - Verlustberechnung
 - Speichern

Kernel-Skalierung

- Kernel-Skalierung
 - Setzen der Parameter

- Kernel-Skalierung
 - Setzen der Parameter
 - Teilreinitialisierung

- Kernel-Skalierung
 - Setzen der Parameter
 - Teilreinitialisierung
 - Plausibilitätsberechnung

Arbeitsphase

- Arbeitsphase
 - Ausrichtung des Modells wird von Innen nach Außen umgelegt

Simulation − Gauß-Prozesse = HAW BURG

- Arbeitsphase
 - Ausrichtung des Modells wird von Innen nach Außen umgelegt
 - Minimale Parametrierung und funktionaler Aufbau der Vorhersage

- Arbeitsphase
 - Ausrichtung des Modells wird von Innen nach Außen umgelegt
 - Minimale Parametrierung und funktionaler Aufbau der Vorhersage
 - Vorhersage ausgeführt Frame für Frame oder blockweise

- Arbeitsphase
 - Ausrichtung des Modells wird von Innen nach Außen umgelegt
 - Minimale Parametrierung und funktionaler Aufbau der Vorhersage
 - Vorhersage ausgeführt Frame für Frame oder blockweise
 - Ergebnisse, Derivate und Qualitätskriterien als Vektoren ausgegeben

Skalierung der Kovarianzfunktion

SLLA – Standardized-Logarithmic-Loss-Angle

SLLR - Standardized-Logarithmic-Loss-Radius

MSLLA – Mean-Standardized-Logarithmic-Loss-Angle

- Skalierung der Kovarianzfunktion
 - Empirisch ohne Optimierung
 - Bewertung der Generalisierung

SLLA – Standardized-Logarithmic-Loss-Angle

SLLR - Standardized-Logarithmic-Loss-Radius

MSLLA – Mean-Standardized-Logarithmic-Loss-Angle

- Skalierung der Kovarianzfunktion
 - Empirisch ohne Optimierung
 - Bewertung der Generalisierung

Ausgeschaltet

SLLA – Standardized-Logarithmic-Loss-Angle

SLLR – Standardized-Logarithmic-Loss-Radius

MSLLA – Mean-Standardized-Logarithmic-Loss-Angle

- Skalierung der Kovarianzfunktion
 - Empirisch ohne Optimierung
 - Bewertung der Generalisierung

Ausgeschaltet

SLLA – Standardized-Logarithmic-Loss-Angle

SLLR – Standardized-Logarithmic-Loss-Radius

MSLLA – Mean-Standardized-Logarithmic-Loss-Angle

- Skalierung der Kovarianzfunktion
 - Empirisch ohne Optimierung
 - Bewertung der Generalisierung

Verschlechtert

SLLA – Standardized-Logarithmic-Loss-Angle

SLLR - Standardized-Logarithmic-Loss-Radius

MSLLA – Mean-Standardized-Logarithmic-Loss-Angle

- Skalierung der Kovarianzfunktion
 - Empirisch ohne Optimierung
 - Bewertung der Generalisierung

Verbessert

SLLA – Standardized-Logarithmic-Loss-Angle

SLLR - Standardized-Logarithmic-Loss-Radius

MSLLA – Mean-Standardized-Logarithmic-Loss-Angle

- Skalierung der Kovarianzfunktion
 - Empirisch ohne Optimierung
 - Bewertung der Generalisierung

Verbessert

SLLA – Standardized-Logarithmic-Loss-Angle

SLLR – Standardized-Logarithmic-Loss-Radius

MSLLA – Mean-Standardized-Logarithmic-Loss-Angle

- Skalierung der Kovarianzfunktion
 - Empirisch ohne Optimierung
 - Bewertung der Generalisierung

Optimierbar

SLLA – Standardized-Logarithmic-Loss-Angle

SLLR - Standardized-Logarithmic-Loss-Radius

MSLLA – Mean-Standardized-Logarithmic-Loss-Angle

- Skalierung der Kovarianzfunktion
 - Empirisch ohne Optimierung
 - Bewertung der Generalisierung

Optimierbar

SLLA – Standardized-Logarithmic-Loss-Angle

SLLR - Standardized-Logarithmic-Loss-Radius

MSLLA – Mean-Standardized-Logarithmic-Loss-Angle

Kompormissbildung

MSLL – Mean-Standardized-Logarithmic-Loss

- Kompormissbildung
 - Optimierung zusschalten ^{The state}

MSLL - Mean-Standardized-Logarithmic-Loss

- Kompormissbildung
 - Optimierung zusschalten
 - Ressourceneinsparung

MSLL – Mean-Standardized-Logarithmic-Loss

- Kompormissbildung
 - Optimierung zusschalten ^{TS}
 - Ressourceneinsparung
 - Aufwandabschätzung

MSLL - Mean-Standardized-Logarithmic-Loss

- Kompormissbildung
 - Optimierung zusschalten
 - Ressourceneinsparung
 - Aufwandabschätzung
 - Gleichgewicht zwischen
 Fehlern und Verlusten

MSLL – Mean-Standardized-Logarithmic-Loss

17 Referenzwinkel

- Kompormissbildung
 - Optimierung zusschalten

 Tagen

 Tagen
 - Ressourceneinsparung
 - Aufwandabschätzung
 - Gleichgewicht zwischen
 Fehlern und Verlusten

MSLL - Mean-Standardized-Logarithmic-Loss

- Verschoben in X-/ Y-Richtung
- Abstand verringert
- Magnet verkippt

- Verschoben in X-/ Y-Richtung
- Abstand verringert
- Magnet verkippt

- Verschoben in X-/ Y-Richtung
- Abstand verringert
- Magnet verkippt
- Ausgleich zwischen Referenzen

- Verschoben in X-/ Y-Richtung
- Abstand verringert
- Magnet verkippt
- Ausgleich zwischen Referenzen
- Skalierung ca. 1:10

Gute Voraussetzungen

Position: (0.5, 1.0, 4.5)^T mm, Tilt: 11.0°

Magnet in Randlag zum Array

Position: (0.5, 1.0, 4.5)^T mm, Tilt: 11.0°

Sättigung + Streuung

Magnet in Randlag zum Array

Position: (0.5, 1.0, 4.5)^T mm, Tilt: 11.0°

Sättigung + Streuung

Verfälschte Winkel

Magnet in Randlag zum Array

Position: (0.5, 1.0, 4.5)^T mm, Tilt: 11.0°

Rotation along Z-Axis in $^{\circ}$

Position: (0.5, 1.0, 4.5)^T mm, Tilt: 11.0°

Einfacher

Mittelwert

verschoben

Position: (0.5, 1.0, 4.5)^T mm, Tilt: 11.0°

- Einfacher

 Mittelwert

 verschoben
- Regression schafft den Ausgleich

Position: (0.5, 1.0, 4.5)^T mm, Tilt: 11.0°

Position: (0.5, 1.0, 4.5)^T mm, Tilt: 11.0°

Geringe Winkelfelhler über volle Rotation

Position: (0.5, 1.0, 4.5)^T mm, Tilt: 11.0°

Geringe Winkelfelhler über volle Rotation

Leichte Schwankungen

Position: (0.5, 1.0, 4.5)^T mm, Tilt: 11.0°

Leichte Anhebung, Lücke in Abdeckung

Geringe Winkelfelhler über volle Rotation

Leichte Schwankungen

Position: (0.5, 1.0, 4.5)^T mm, Tilt: 11.0°

Centered 95% GPR Confidence Interval $\times 10^{-3}$ 0.1 0.05 0.05 -0.1 0.100 200 300 $\alpha \text{ in } ^{\circ}$

Leichte Anhebung, Lücke in Abdeckung

Hohes Vertrauen, enge Intervalle

CIA – Confidence-Interval-Angle CIR – Confidence-Interval-Radius

Position: (0.5, 1.0, 4.5)^T mm, Tilt: 11.0°

Leichte Anhebung, Lücke in Abdeckung

Anzeige der Abdeckungslücke

Hohes Vertrauen, enge Intervalle

CIA – Confidence-Interval-Angle CIR – Confidence-Interval-Radius

Position: $(0.5, 1.0, 4.5)^T$ mm, Tilt: 11.0°

Leichte Anhebung, Lücke in Abdeckung

SLLA – Standardized-Logarithmic-Loss-Angle

SLLR – Standardized-Logarithmic-Loss-Radius

MSLLA – Mean-Standardized-Logarithmic-Loss-Angle

Position: $(0.5, 1.0, 4.5)^T$ mm, Tilt: 11.0°

Leichte Anhebung, Lücke in Abdeckung

Starke Generalisierung

SLLA – Standardized-Logarithmic-Loss-Angle SLLR – Standardized-Logarithmic-Loss-Radius

MSLLA – Mean-Standardized-Logarithmic-Loss-Angle

Position: $(0.5, 1.0, 4.5)^T$ mm, Tilt: 11.0°

Leichte Anhebung, Lücke in Abdeckung

Abdeckungslücke schwächt Generalisierung

Starke Generalisierung

SLLA - Standardized-Logarithmic-Loss-Angle

SLLR - Standardized-Logarithmic-Loss-Radius

MSLLA – Mean-Standardized-Logarithmic-Loss-Angle

Erreichtes

- Erreichtes
 - Simulations-Framework
 - Erweiterbarkeit

- Erreichtes
 - Simulations-Framework
 - Erweiterbarkeit
 - Skalierbarkeit
 - Generalisierung

- Erreichtes
 - Simulations-Framework
 - Erweiterbarkeit
 - Skalierbarkeit
 - Generalisierung
 - Toleranzkompensation

- Erreichtes
 - Simulations-Framework
 - Erweiterbarkeit
 - Skalierbarkeit
 - Generalisierung
 - Toleranzkompensation

- Verfahrensminimierung
- Hardwarenahe Bibliotheken

Erreichtes

- Simulations-Framework
- Erweiterbarkeit
- Skalierbarkeit
- Generalisierung
- Toleranzkompensation

- Verfahrensminimierung
- Hardwarenahe Bibliotheken
- Anbindung an Realdaten
- Große Charakterisierung

Erreichtes

- Simulations-Framework
- Erweiterbarkeit
- Skalierbarkeit
- Generalisierung
- Toleranzkompensation

- Verfahrensminimierung
- Hardwarenahe Bibliotheken
- Anbindung an Realdaten
- Große Charakterisierung
- Zirkuläre Statistik

Ende

Vielen Dank!