Mục lục

•	Chuan bi					
	1.1	Kiến thức giải tích	1			
	1.2	Sai số làm tròn và số học máy tính	3			
	1.3	Thuật toán và sự hội tụ	3			
	1.4	MATLAB: ngôn ngữ tính toán và lập trình	3			
	1.5	MATLAB: giải tích và đại số	5			
2	Giải	phương trình một biến	19			
	2.1	Phương pháp chia đôi	19			
	2.2	Phương pháp Newton và mở rộng	22			
	2.3	Lặp điểm bất động	27			
	2.4	Phân tích sai số của các phương pháp lặp	31			
	2.5	Tăng tốc độ hội tụ	31			
	2.6	Nghiệm của đa thức và phương pháp Müller	32			
3	Nội suy và xấp xỉ bằng đa thức					
	3.1	Nội suy tổng quát	33			
	3.2	Đa thức nội suy	34			
	3.3	Xấp xỉ số liệu và phương pháp Neville	38			
	3.4	Sai phân chia	39			
	3.5	Nội suy Hermite	42			
	3.6	Nội suy spline bậc ba	42			
	3.7	Đường cong tham số	42			
4	Nghiệm số của hệ phương trình phi tuyến					
	4.1	Điểm bất động của hàm nhiều biến	37			
	4.2	Phương pháp Newton	38			
	4.3	Phương pháp tựa Newton	38			
	4.4	Phương pháp độ dốc nhất	38			
	4.5	Đồng luân và các phương pháp mở rộng	38			

Chương 3

Nội suy và xấp xỉ bằng đa thức

3.1 Nội suy tổng quát

Cho không gian véctơ V. Ánh xạ tuyến tính $L:V o\mathbb{R}$ gọi là một phiếm hàm tuyến tính.

Ví dụ 3.1. Trên không gian hàm *V* thường xét một số phiếm hàm:

$$L(f) = f(x_0)$$

$$L(f) = f^{(k)}(x_0)$$

$$L(f) = \int_a^b f(x) f_0(x) dx.$$

Cho hệ n hàm độc lập tuyến tính $\{f_1, f_2, \dots, f_n\}$ trong V và n phiếm hàm độc lập tuyến tính L_1, L_2, \dots, L_n . Khi đó tồn tại duy nhất hàm P có dạng

$$P = \sum_{i=1}^{n} c_i f_i \tag{3.1}$$

sao cho

$$L_i(P) = b_i, \ \forall i = \overline{1, n} \tag{3.2}$$

Thật vậy,

$$(3.2) \Leftrightarrow L_{i}\left(\sum_{j=1}^{n} c_{j} f_{j}\right) = b_{i}, \ \forall i = \overline{1, n}$$

$$\Leftrightarrow \sum_{j=1}^{n} L_{i}\left(f_{j}\right) c_{j} = b_{i}, \ \forall i = \overline{1, n}$$

$$\Leftrightarrow \sum_{j=1}^{n} a_{ij} c_{j} = b_{i}, \ \forall i = \overline{1, n}$$

hay

$$Ac = b ag{3.3}$$

trong đó $A = (a_{ij})_n$, $b = (b_1, b_2, ..., b_n)$, $c = (c_1, c_2, ..., c_n)$. Với các giả thiết độc lập tuyến tính của hệ hàm và hệ phiếm hàm, ta có $|A| \neq 0$. Do đó, bài toán có nghiệm duy nhất.

3.2 Đa thức nội suy

Tìm

$$P(x) = \sum_{i=0}^{n} a_i x^i$$
 (3.4)

sao cho, tại mốc nội suy x_i :

$$P(x_i) = y_i, \ \forall i = \overline{0, n}. \tag{3.5}$$

Đây là trường hợp đặc biệt của bài toán nội suy tổng quát với hệ hàm

$$f_0 = 1$$
, $f_1 = x$, $f_2 = x^2$, ..., $f_n = x^n$

và phiếm hàm $L_i(f) = f(x_i)$. Ta có $L_i(x^j) = x_i^j$ với $i, j = \overline{0, n}$, trong đó quy ước $0^0 = 1$. Hoặc, ta biến đổi trực tiếp

$$(3.5) \Leftrightarrow \sum_{j=0}^{n} a_{j} x_{i}^{j} = b_{i}, \ i = \overline{0, n}$$

$$\Leftrightarrow \begin{bmatrix} 1 & x_{0} & x_{0}^{2} & \cdots & x_{0}^{n} \\ 1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n} \\ 1 & x_{2} & x_{2}^{2} & \cdots & x_{n}^{n} \end{bmatrix} \begin{bmatrix} a_{0} \\ a_{1} \\ a_{2} \\ \vdots \\ a_{n} \end{bmatrix} = \begin{bmatrix} y_{0} \\ y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{bmatrix}. \tag{3.6}$$

Ma trận của hệ $A = (x_i^l)_{i,j=\overline{0,n}}$ có định thức là định thức Vandermonde

$$|A| = \prod_{i < j} (x_j - x_i) \neq 0.$$

Ví dụ 3.2. Tìm đa thức nội suy của hàm số có giá trị cho trong bảng

 $Gi\mathring{a}i$. Đa thức nội suy có dạng $P(x) = a + bx + cx^2 + dx^3$.

Cách 1: Ta có

```
P(-1) = a - b + c - d = 4, P(0) = a = 3,

P(1) = a + b + c + d = 2, P(2) = a + 2b + 4c + 8d = 7
```

Giải hê được a = 3, b = -2, c = 0, d = 1, và kết luân $P(x) = 3 - 2x + x^3$.

```
syms a b c d
P = @(x) a + b * x + c * x^2 + d * x^3
P(-1)

sol = solve(P(-1) == 4, P(0) == 3, P(1) == 2, P(2) == 7)
sol.a, sol.b, sol.c, sol.d
```

hoặc tổng quát hơn

```
1 X = [-1, 0, 1, 2]
Y = [4, 3, 2, 7]
3 n = length(X)
4 a = sym('a', [1, 4])
5 \text{ solve}(P(X, a) == Y)
6 sol.a1, sol.a2, sol.a3, sol.a4
7 function p = P(x, a) % a là dãy các hệ số của P
8 p = 0;
9 i = 0;
10 for he_so = a
  p = p + he_so * x.^i; % x.^i để phép toán tác động
     được theo véctơ
12
  i = i + 1;
13 end
14 end
```

Cách 2: Giải hê

$$\begin{bmatrix} 1 & -1 & 1 & -1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} 4 \\ 3 \\ 2 \\ 7 \end{bmatrix}.$$

```
1  X = [-1, 0, 1, 2]
2  Y = [4, 3, 2, 7]
3  n = length(X)
4  A = ones(n, n)
```

```
for i = 1:n
    for j = 2:n
        A(i, j) = X(i)^(j-1);
end
end
linsolve(A, Y') % Y' là vécto côt
```

Mô tả các điểm nội suy và đa thức nội suy bằng đồ thị

Mô tả đa thức Nội suy


```
1  X = [-1, 0, 1, 2]
2  Y = [4, 3, 2, 7]
3  P = @(x) 3 - 2*x + x.^3

4  Xg = -1.5:0.1:2.5
5  Yg = P(Xg)

6  plot(X, Y, 'o', Xg, Yg)
7  title('Mô tả đa thức Nội suy')
8  xlabel('x')
9  ylabel('y')
10  legend('data', 'P(x)')
```

3.2.1 Da thức Lagrange

Tính

$$P(x) = \sum_{i=0}^{n} y_i L_i(x)$$
 (3.7)

trong đó
$$L_i\left(x_j\right) = \delta_{ij} = \begin{cases} 0 & \text{n\'eu } i \neq j \\ 1 & \text{n\'eu } i = j \end{cases}$$

$$\text{Ta có } L_i\left(x\right) = C \prod_{j \neq i} \left(x - x_j\right). \text{ Mặt khác } L_i\left(x_i\right) = 1 \text{ n\'en } C \prod_{j \neq i} \left(x_i - x_j\right) = 1. \text{ Vậy}$$

$$L_{i}(x) = \prod_{i \neq i} \frac{x - x_{i}}{x_{i} - x_{j}}$$
(3.8)

Ví du 3.3. Trong Ví du 3.2, tìm đa thức nôi suy bằng đa thức Lagrange.

Giải. Các đa thức Lagrange

$$L_{0}(x) = \frac{(x-0)(x-1)(x-2)}{(-1-0)(-1-1)(-1-2)} = -\frac{x^{3}}{6} + \frac{x^{2}}{2} - \frac{x}{3}$$

$$L_{1}(x) = \frac{(x+1)(x-1)(x-2)}{(0+1)(0-1)(0-2)} = \frac{x^{3}}{2} - x^{2} - \frac{x}{2} + 1$$

$$L_{2}(x) = \frac{(x+1)(x-0)(x-2)}{(1+1)(1-0)(1-2)} = -\frac{x^{3}}{2} + \frac{x^{2}}{2} + x$$

$$L_{3}(x) = \frac{(x+1)(x-0)(x-1)}{(2+1)(2-0)(2-1)} = \frac{x^{3}}{6} - \frac{x}{6}.$$

Vậy

$$P(x) = 4L_0(x) + 3L_1(x) + 2L_2(x) + 7L_3(x) = x^3 - 2x + 3$$

thinhnd@huce.edu.vn

[Drafting \Rightarrow Do not Print]

Nguyễn Đức Thinh

```
end
end
L, expand(L)
P = P + Y(i) * L;
end
end
end
```

Định lý 3.1. Cho hàm số $f \in C^{n+1}$ [a, b]. Giả sử P(x) là đa thức nội suy hàm f(x) tại các mốc nội suy $x_i \in [a, b]$, $i = \overline{0, n}$. Khi đó với mỗi $x \in [a, b]$, tồn tại $\xi(x)$ ở giữa $\min_{0 \le i \le n} x_i$ và $\max_{0 \le i \le n} x_i$, sao cho

$$f(x) = P(x) + \frac{f^{(n+1)}(\xi(x))}{(n+1)!} \prod_{i=0}^{n} (x - x_i).$$

Bài tập 3.2

3.1. Tính gần đúng độ nhớt của dầu tại nhiệt độ 140°C biết

3.2. Viết một mã khác bằng MATLAB để xác định đa thức nội suy trong Ví dụ 3.3, sử dụng phép nhân .* và phép chia . / véctơ theo vị trí tương ứng.

```
X = [-1, 0, 1, 2]
   Y = [4, 3, 2, 7]
   syms x
3
   n = length(X)
4
5
   for i = 1:n
6
       Xc = X;
                    %bản sao
       Xc(i) = []; %xóa phần tử thứ i
8
       L(i) = prod((x - Xc) ./ (X(i) - Xc));
9
       L(i), expand(L(i))
10
11 P = sum(Y .* L)
12 expand(P)
```

3.3 Xấp xỉ số liệu và phương pháp Neville

3.4 Sai phân chia

3.4.1 Nôi suy Newton

Định nghĩa 3.1 (Sai phân). Cho dãy y_i , $i = \overline{0, n}$. Sai phân cấp k của dãy tại phần tử y_i , $i = \overline{0, n - k}$ được định nghĩa đệ quy:

$$\Delta^{0} y_{i} = y_{i}, \ \forall i$$

$$\Delta^{k} y_{i} = \Delta^{k-1} y_{i+1} - \Delta^{k-1} y_{i}, \ k = \overline{1, n}.$$
(3.9)

Ba sai phân cấp đầu tiên:

$$\Delta y_i = \Delta^1 y_i = \Delta^0 y_{i+1} - \Delta^0 y_i = y_{i+1} - y_i$$

$$\Delta^2 y_i = \Delta^1 y_{i+1} - \Delta^1 y_i = (y_{i+2} - y_{i+1}) - (y_{i+1} - y_i) = y_{i+2} - 2y_{i+1} + y_i$$

$$\Delta^3 y_i = \Delta^2 y_{i+1} - \Delta^2 y_i = (y_{i+3} - 2y_{i+2} + y_{i+1}) - (y_{i+2} - 2y_{i+1} + y_i)$$

$$= y_{i+3} - 3y_{i+2} + 3y_{i+1} - y_i.$$

Tổng quát:

$$\Delta^{k} y_{i} = \sum_{j=0}^{k} (-1)^{k-j} C_{k}^{j} y_{i+j}.$$

Ta dùng lược đồ sai phân

để xây dựng bảng sai phân $\Delta^k y_i$ với $k = \overline{0, n}$, và $i = \overline{0, n - k}$.

k i	0	1	2	3	
0	y 0	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3	
1	Δy_0	Δy_1 $\Delta^2 y_1$	Δy_2		
2 3	$\Delta^2 y_0$	$\Delta^2 y_1$			
	y_0 Δy_0 $\Delta^2 y_0$ $\Delta^3 y_0$				
:					

Giả sử các mốc nội suy cách đều

$$x_i - x_{i-1} = h, \ \forall i = \overline{1, n}.$$

Công thức Newton tiến: tính $t = \frac{x - x_0}{h}$ và

$$P(x) = \sum_{k=0}^{n} \frac{\Delta^{k} y_{0}}{k!} \prod_{i=0}^{k-1} (t-i)$$

$$= y_{0} + \Delta y_{0} t + \frac{\Delta^{2} y_{0}}{2!} t(t-1) + \dots + \frac{\Delta^{n} y_{0}}{n!} t(t-1) \dots (t-n+1)$$
(3.10)

Công thức Newton lùi: tính $t = \frac{x - x_n}{h}$ và

$$P(x) = \sum_{k=0}^{n} \frac{\Delta^{k} y_{n-k}}{k!} \prod_{i=0}^{k-1} (t+i)$$

$$= y_{n} + \Delta y_{n-1} t + \frac{\Delta^{2} y_{n-2}}{2!} t(t+1) + \dots + \frac{\Delta^{n} y_{0}}{n!} t(t+1) \cdot \dots \cdot (t+n-1)$$
(3.11)

Ví dụ 3.4. Trong Ví dụ 3.2, tìm đa thức nội suy bằng đa thức nội suy Newton.

Giải. Các mốc nôi suy cách đều với h = 1. Ta có bảng sai phân

k i	0	1	2	3
0	4 -1 0 6	3	2	7
1	-1	-1	5	
2	0	6		
3	6			

Công thức Newton tiến: $t = \frac{x - (-1)}{1} = x + 1$ và

$$P(x) = 4 + (-1)t + \frac{0}{2!}t(t-1) + \frac{6}{3!}t(t-1)(t-2)$$
$$= 4 - (x+1) + (x+1)x(x-1) = x^3 - 2x + 3.$$

Công thức Newton lùi:
$$t = \frac{x-2}{1}$$
 và
$$P(x) = 7 + 5t + \frac{6}{2!}t(t+1) + \frac{6}{3!}t(t+1)(t+2)$$
$$= 7 + 5(x-2) + 3(x-2)(x-1) + (x-2)(x-1)x$$
$$= x^3 - 2x + 3.$$

Dưới đây là mã MATLAB cho công thức Newton tiến. Đối với công thức Newton lùi, ta chỉ sửa một chút tại các dòng có chú thích.

```
syms t
P = Y(1);
 for k = 1:3
     N = d(k+1, 1) / factorial(k); % d(k+1, 4-k)
4
     for i = 0:k-1
5
          N = N * (t - i);
                                     % t + i
6
      end
      P = P + N;
8
9
 end
10 P = subs(P, t, (x-X(1)) / 1) % X(4)
11 expand(P)
```

Bài tập 3.4

3.3. Viết mã MATLAB khác để xây dựng bảng sai phân cho dãy 4, 3, 2, 7 trong Ví dụ 3.4.

```
Cách 1: đệ quy
```

```
1 Y = [4, 3, 2, 7]

d(1, 3) %7-2=5

3 function res = d(k, i)

global Y

if k == 0

res = Y(i);

else

res = d(k-1, i+1) - d(k-1, i);

end

end
```

```
Cách 1: quy hoạch động
```

```
1 Y = [4, 3, 2, 7]

2 d = Y

3 for k = 1:3

for i = 1:4-k

d(i) = d(i+1) - d(i); %sai phân cấp k của phần tử thứ i
```

/n

[Drafting \Rightarrow Do not Print]

Nguyễn Đức Thinh

```
6 end
7 d(1:4-k)
8 end
```

- 3.5 Nội suy Hermite
- 3.6 Nội suy spline bậc ba
- 3.7 Đường cong tham số

Tài liệu tham khảo

- [1] Phạm Kỳ Anh. Giải tích số. Đại học Quốc gia Hà Nội, 2002. 284 trang.
- [2] Richard L. Burden, Douglas J. Faires **and** Annette M. Burden. *Numerical Analysis*. phiên bản 10. Cengage Learning, 2016. 918 trang.
- [3] Phan Văn Hạp **and** Lê Đình Thịnh. *Phương pháp tính và các thuật toán*. Nhà xuất bản Giáo dục, 2000. 400 trang.
- [4] Doãn Tam Hòe. Toán học tính toán. Đại học Quốc gia Hà Nội, 2009. 240 trang.

40 Tài liệu tham khảo