数学-数论

 ${\bf Zeit Haum}$

2023 年 4 月 26 日

目录

1	互质勾股数的生成方法															1								
	1.1	证明																						1
	1.2	启示																		 				2
2	奇数	平方	ill																					2

1 互质勾股数的生成方法

问题描述: 构造以下集合: $S = \{(x^2 - y^2, 2xy, x^2 + y^2) | x > y \perp x, y \in \mathbb{N}^+\}$, $S' = \{(a, b, c) | a^2 + b^2 = c^2 \perp a, b, c \in \mathbb{N}^+\}$, 求证以下两个命题:

- 子命题 1. 在不考虑元组内元素顺序的情况下, 对于 S 中的任意元素 S_i , 都 有 $S_i \in S'$.
- 子命题 2. 在不考虑元组内元素顺序的情况下, 对于 S' 中的任意元素 S'_i , 都存在 $k \in \mathbb{N}^+$ 使得 $kS'_i \in S$ 注: 对于 3 元组 (a,b,c), 定义 k(a,b,c) = (ka,kb,kc)。

1.1 证明

对于命题 1, 有

$$(x^{2} - y^{2})^{2} + (2xy)^{2} = (x^{4} + y^{4} - 2x^{2}y^{2}) + 4x^{2}y^{2}$$
$$= x^{4} + y^{4} + 2x^{2}y^{2}$$
$$= (x^{2} + y^{2})^{2}$$

且显然 $x^2-y^2,2xy,x^2+y^2\in\mathbb{N}^+,$ 于是子命题 1 得证。 对于命题 2, 令 x=b,y=c-a,k=2y=2(c-a),根据三角形性质,显然有 $b>c-a,k\mathbb{N}^+,$ 所以 $(x^2-y^2,2xy,x^2+y^2)\in S.$ 又

$$x^{2} - y^{2} = b^{2} - (c - a)^{2}$$

$$= (c^{2} - a^{2}) - c^{2} - a^{2} + 2ac$$

$$= 2ac - 2a^{2}$$

$$= ka.$$

$$2xy = kb$$
,

1.2 启示 2 奇数平方和

$$x^{2} + y^{2} = b^{2} + (c - a)^{2}$$

$$= c^{2} - a^{2} + c^{2} + a^{2} - 2ac$$

$$= 2c^{2} - 2ac$$

$$= kc.$$

所以 $(x^2 - y^2, 2xy, x^2 + y^2) = (ka, kb, kc) \in S'$, 证毕。

1.2 启示

以上两个定理说明通过 S 的构造方法可以显示的求出所有互质的勾股数,只需枚举 x,y 求得 $(x^2-y^2,2xy,x^2+y^2)$ 再让每个数除以三个数的最大公因数即可。

2 奇数平方和

求证:两个奇数的平方和不可能为完全平方数。

证明:

可以通过反证法证明:

假设 a,b 都为奇数, 所以 c^2 为偶数。

不妨设 $a = 2p + 1, b = 2q + 1, (p, q \in \mathbb{N})$, 所以

$$a^2 = (2p+1)^2 = 4p^2 + 4p + 1$$

所以 $a^2 \mod 4 = 1, b^2 \mod 4 = 1$.

所以 $a^2 + b^2 \mod 4 = 2$.

又 $a^2 + b^2 = c^2$ 是完全平方数,所以 $a^2 + b^2 \mod 4 = 0$.

 $a^2 + b^2 \mod 4 = 2$ 和 $a^2 + b^2 \mod 4 = 0$ 矛盾,因此得证。