Energia d'un sistema de corrents elèctrics. Energia d'un camp magnètic.

En un altre document vam veure que l'energía elèctrica per a constituir un sistema de N càrregues puntuals era:

$$U_e = \frac{1}{2} \sum_{i=1}^{N} q_i V(\vec{r}_i)$$
 (1)

I en el cas que les càrregues formin una distribució contínua, llavors, símplement es considera que: $dq = \rho(\vec{r}') dv$, i per tant, canviant la suma per una integral a tot l'espai:

$$U_e = \frac{1}{2} \int_{\mathbb{R}^3} \rho(\vec{r}') V(\vec{r}') dv \qquad (2)$$

A partir de (2) i una sèrie de transformacions vam veure que finalment:

$$U_e = \frac{\varepsilon_0}{2} \int_{\mathbb{R}^3} \vec{E}(\vec{r}') \cdot \vec{E}(\vec{r}') \cdot dv = \frac{\varepsilon_0}{2} \int_{\mathbb{R}^3} \left| \vec{E}(\vec{r}') \right|^2 \cdot dv \qquad (3)$$

La qual cosa permetia identificar l'integrand com la densitat d'energia associada al camp elèctric:

$$u_e = \frac{\varepsilon_0}{2} \left| \vec{E}(\vec{r}') \right|^2 \tag{4}$$

Doncs bé, ara pretenem fer el un procés similar pel camp magnètic. Per a fer això començarem demostrant que l'energia per a constituir un conjunt de N circuits de corrents generalitzats, l'_j , tancats cadascun d'ells¹ : és:

$$U_m = \frac{1}{2} \sum_{j=1}^{N} I'_j \, \phi_j \tag{5}$$

Essent, ϕ_j el flux magnètic total que travessa el circuit tancat format per I'_j

Seguidament demostrarem que pel cas de distribucions contínues de corrent generalitzat, $\vec{j'}(\vec{r'})$, aquesta expressió s'ha de canviar per:

$$U_m = \frac{1}{2} \int_V \vec{j'}(\vec{r'}) \cdot \vec{A}(\vec{r'}) \ dv \tag{6}$$

Transformant aquesta arribarem a:

$$U_m = \frac{1}{2} \int_V \vec{H}(\vec{r}') \cdot \vec{B}(\vec{r}') \ dv = \frac{1}{2} \mu_0 \int_V \left| \vec{H}(\vec{r}') \right|^2 dv \tag{7}$$

On de nou identificarem l'integrand com a densitat d'energia magnètica en el punt \vec{r}'

$$u_m = \frac{1}{2}\mu_0 \left| \overrightarrow{H}(\overrightarrow{r}') \right|^2 \tag{8}$$

Les línies de Corrent Lliure (les de \vec{j}) no són sempre tancades ja que es poden originar i finalitzar en punts d'acumulació de càrrega. Però si al Corrent Lliure, \vec{j} , li afegim el Corrent de Desplaçament, $\frac{\partial \vec{D}}{\partial t}$, obtenint l'anomenat Corrent Generalitzat: $\vec{j}' \equiv \vec{j} + \frac{\partial \vec{D}}{\partial t}$. Aquest sí que te sempre les línies tancades $(\vec{\nabla} \cdot \vec{j}' = 0)$. En efecte, a partir de l'Equació d'Ampère-Maxwell: $\vec{\nabla} \times \vec{H} = \vec{j} + \frac{\partial \vec{D}}{\partial t} = \vec{j}'$, si prenem la divergència d'aquesta Equació, el membre de l'esquerra dona zero, per tant també: $\vec{\nabla} \cdot (\vec{j} + \frac{\partial \vec{D}}{\partial t}) = 0$ la qual cosa es pot interpretar com que $\vec{j}' = (\vec{j} + \frac{\partial \vec{D}}{\partial t})$, és un camp amb línies tancades sempre. En el cas que aquests corrents estiguin confinats en un canal conductor (per exemple un fil o similar), la integral al llarg de la secció del canal serà el corrent l'_j generalitzat: $l'_j = \int_{S_i} \frac{\partial \vec{D}}{\partial t} \cdot d\vec{S}$, que s'ilustraran com a fils tancats (espires) , com els que considerarem a la figura següent

Demostració de (5). Energia per a constituir un conjunt de N circuits tancats generalitzats: l'1, l'2, ..., l'1, ..., l'N

$$U_m = \frac{1}{2} \sum_{j=1}^{N} I'_j \, \phi_j \tag{5}$$

A la figura veiem 2 d'aquests circuits el j-èssim, C_j , i el k-èssim, C_k , ens podem imaginar que en total n'hi ha N.

Cada circuit te una font real $v_j(t)$, com es veu a la figura, la missió de la qual serà anar mantenint el corrent circulant i augmentar-lo en el temps des de 0 fins al corrent generalitzat final de cada circuit: $l'_1, ... l'_k, ...$

I'_N. Per tant aquest corrent serà variable i l'anomenem: $i_k'(t)$ en cada instant de temps. El corrent $i_k'(t)$ generarà un camp magnètic variable, $\vec{B}_k(\vec{r},t)$. La superposició dels camps de cadascun del N circuits és el camp total: $\vec{B}(\vec{r},t) = \sum_{k=1}^N \vec{B}_k(\vec{r},t)$, algunes línies d'aquest camp travessarà la superfície, S_j , del circuit j-èssim, tot produïnt-li un flux a variable, $\phi_i(t)$, a través d'ell:

$$\phi_{j}(t) = \int_{S_{j}} \vec{B}(t) \cdot d\vec{S}_{j} = \sum_{k=1}^{N} \underbrace{\int_{S_{j}} \vec{B}_{k}(\vec{r}, t) \cdot d\vec{S}_{j}}_{\phi_{j,k}(t)}$$

Essent $\phi_{j,k}(t)$ el flux a través del circuit j produït només pel camp generat pel circuit k, que com sabem es relaciona amb el corrent i'k(t) per mitjà del coeficient d'inducció mútua , $M_{j,k}$, resultant la següent equació:

$$\phi_{j}(t) = \sum_{k=1}^{N} \phi_{j,k}(t) = \sum_{k=1}^{N} M_{j,k} i'_{k}(t)$$
 (9)

A la equació (9) també hi apareix el flux que j es fa sobre si mateix, que seria el del terme k=j del sumatori, coeficient que comunament anomenem autoindució del circuit j: $M_{j,j} = L_j$

Ja sabem per la Llei de Faraday-Lenz que la força electromotriu (fem) que genera un flux variable és:

$$\varepsilon_{j}(t) = -\frac{d\phi_{j}(t)}{dt} = |usant(9)| = -\sum_{k=1}^{N} M_{j,k} \frac{di'_{k}}{dt} \quad (10)$$

Cada circuit està constituit per dos generadors, el generador real $v_i(t)$ i el generador induït, que prové de l'efecte Faraday-Lenz $\varepsilon_i(t)$, al donar la volta a la malla de cada circuit la suma ha de donar zero, per tant:

$$\varepsilon_j(t)+v_j(t)=0$$

Per tant

$$v_j(t) = -\varepsilon_j(t) \qquad (11)$$

Aquesta v_j és la que en definitiva, com a causa exterior al sistema de camps, impulsarà a les càrregues portadores a moure's al voltant del circuit, i per tant la que injectarà l'energia al sistema de corrents i de camps, per a constituir-se.

Suposem que durant l'intèrval diferencial de temps dt, hi passa una càrrega dq_j pel circuit j-èssim, essent el seu corrent, $i'_j = \frac{dq_j}{dt}$. Com s'ha dit, aquesta càrrega circula gràcies a l'energia que li subministra la font v_j externa al sistema de camps. Per tant podem dir, que l'increment d'energia magnètica dU_{m,j} del circuit j-èssim, durant el pas d'una càrrega dq_i durant un interval de temps dt, és:

$$dU_{m,j} = dq_{j} \cdot v_{j}(t) = -dq_{j} \cdot \varepsilon_{j}(t) = -dq_{j} \cdot \left(-\sum_{k=1}^{N} M_{j,k} \frac{di'_{k}}{dt}\right) = \begin{vmatrix} passant \ a \ dividir \ el \ dt \ de \ i'_{k} \ a \ q_{j} \end{vmatrix} = \frac{dq_{j}}{dt} \sum_{k=1}^{N} M_{j,k} \ di'_{k}$$

$$= i'_{j} \sum_{k=1}^{N} M_{j,k} \ di'_{k} \quad (12)$$

Finalment, l'increment d'energia total del sistema de N circuits és sumar (12) per a tots els circuits de j=1 fins a j=N.

$$dU_{m} = \sum_{i=1}^{N} dU_{m,j} = \sum_{i=1}^{N} i'_{j} \cdot \sum_{k=1}^{N} M_{j,k} di'_{k} = \sum_{i=1}^{N} \sum_{k=1}^{N} M_{j,k} i'_{j} \cdot di'_{k} = \frac{1}{2} \sum_{i=1}^{N} \sum_{k=1}^{N} M_{j,k} d(i'_{j} \cdot i'_{k})$$
(13)

On al darrer pas s'ha usat l'expressió del diferencial d'un producte: $d(i'_j \cdot i'_k) = i'_j \cdot di'_k + di'_j \cdot i'_k$

I el factor ½ apareix per a evitar la doble suma de termes idèntics.

Finalment, per a trobar l'energia toatal del sistema, un cop els circuits ja han assolit els seus corrents finals: l'_j ..., l'_k només hem d'integrar (13) des de t=0 fins a t=T, essent T el temps que tarda el sistema a arribar a la configurció final.

$$U_{m} = \int_{t=0}^{T} dU_{m} = \int_{t=0}^{T} \frac{1}{2} \sum_{j=1}^{N} \sum_{k=1}^{N} M_{j,k} d(i'_{j} \cdot i'_{k}) = \frac{1}{2} \sum_{j=1}^{N} \sum_{k=1}^{N} M_{j,k} \int_{t=0}^{T} d(i'_{j} \cdot i'_{k}) = \frac{1}{2} \sum_{j=1}^{N} \sum_{k=1}^{N} M_{j,k} I'_{j} \cdot I'_{k}$$
 (14)

Però de (9) sabem:

$$\phi_{j} = \sum_{k=1}^{N} \phi_{j,k} = \sum_{k=1}^{N} M_{j,k} I'_{k}$$

De manera que també podem escriure l'energia magnètica total com:

$$U_m = \frac{1}{2} \sum_{i=1}^{N} I'_{j} \, \phi_{j} \qquad (5)$$

Que és justament l'expressió (5) que voliem demostrar.

Demostració de (6). Energia d'un sistema de densitats de corrent generalitzades en un camp magnètic.

Seguidament demostrarem que pel cas de distribucions contínues de corrent generalitzat, $\vec{j'}(\vec{r'})$, aquesta expressió s'ha de canviar per:

$$U_m = \frac{1}{2} \int_{\mathbb{R}^3} \vec{j}'(\vec{r}') \cdot \vec{A}(\vec{r}') \ dv \qquad (6)$$

Anem transformant la darrera expressió de Um:

$$\begin{aligned} U_m &= \frac{1}{2} \sum_{j=1}^N i'_j \, \phi_j = \begin{vmatrix} U sant \ la \ definició \\ del \ flux \ \phi_j \end{vmatrix} = \frac{1}{2} \sum_{j=1}^N i'_j \int_{S_j} \vec{B} \cdot d\vec{S}_j = \frac{1}{2} \sum_{j=1}^N i'_j \int_{S_j} \vec{\nabla}_{\vec{M}} \cdot d\vec{S}_j = \\ &= \begin{vmatrix} aplicant \ el \\ teorema \ del \ rotacional \end{vmatrix} = \frac{1}{2} \sum_{j=1}^N i'_j \oint_{C_j} \vec{A} \cdot d\vec{l}_j = \begin{vmatrix} descomposant \ l'_j \\ com \ integral \ dej \ j'_j \\ al \ llarg \ de \ la \ secció \\ del \ fil, \ usant \ d\vec{a} \ com \\ dif \ erencials \ de \ secció \\ del \ fili \end{vmatrix} = \frac{1}{2} \sum_{j=1}^N \int_{S_j} \vec{v}_j \cdot d\vec{a} \oint_{C_j} \vec{A} \cdot d\vec{l}_j \\ &= \frac{1}{2} \sum_{j=1}^N \oint_{S_j} \int_{S_j} \vec{v}_j \cdot d\vec{a} \oint_{C_j} \vec{A} \cdot d\vec{l}_j \\ &= \frac{1}{2} \sum_{j=1}^N \oint_{S_j} \int_{S_j} \vec{v}_j \cdot d\vec{a} \oint_{C_j} \vec{A} \cdot d\vec{l}_j \\ &= \frac{1}{2} \sum_{j=1}^N \oint_{C_j} \int_{S_j} \vec{v}_j \cdot d\vec{a} \oint_{C_j} \vec{A} \cdot d\vec{l}_j \\ &= \frac{1}{2} \sum_{j=1}^N \oint_{C_j} \int_{S_j} \vec{v}_j \cdot d\vec{a} \cdot d\vec{l}_j \\ &= \frac{1}{2} \sum_{j=1}^N \oint_{C_j} \int_{S_j} \vec{v}_j \cdot d\vec{a} \cdot d\vec{l}_j \\ &= \frac{1}{2} \sum_{j=1}^N \oint_{C_j} \int_{S_j} \vec{v}_j \cdot d\vec{a} \cdot d\vec{l}_j \\ &= \frac{1}{2} \sum_{j=1}^N \oint_{C_j} \int_{S_j} \vec{v}_j \cdot d\vec{a} \cdot d\vec{l}_j \\ &= \frac{1}{2} \sum_{j=1}^N \oint_{C_j} \int_{S_j} \vec{v}_j \cdot d\vec{a} \cdot d\vec{l}_j \\ &= \frac{1}{2} \sum_{j=1}^N \oint_{C_j} \int_{S_j} \vec{v}_j \cdot d\vec{a} \cdot d\vec{l}_j \\ &= \frac{1}{2} \sum_{j=1}^N \oint_{C_j} \int_{S_j} \vec{v}_j \cdot d\vec{a} \cdot d\vec{l}_j \\ &= \frac{1}{2} \sum_{j=1}^N \oint_{C_j} \int_{S_j} \vec{v}_j \cdot d\vec{a} \cdot d\vec{l}_j \\ &= \frac{1}{2} \sum_{j=1}^N \oint_{C_j} \int_{S_j} \vec{v}_j \cdot d\vec{a} \cdot d\vec{l}_j \\ &= \frac{1}{2} \sum_{j=1}^N \oint_{C_j} \int_{S_j} \vec{v}_j \cdot d\vec{a} \cdot d\vec{l}_j \\ &= \frac{1}{2} \sum_{j=1}^N \oint_{C_j} \int_{S_j} \vec{v}_j \cdot d\vec{a} \cdot d\vec{l}_j \\ &= \frac{1}{2} \sum_{j=1}^N \oint_{C_j} \int_{S_j} \vec{v}_j \cdot d\vec{a} \cdot d\vec{l}_j \\ &= \frac{1}{2} \sum_{j=1}^N \oint_{C_j} \int_{S_j} \vec{v}_j \cdot d\vec{a} \cdot d\vec{l}_j \\ &= \frac{1}{2} \sum_{j=1}^N \oint_{S_j} \int_{S_j} \vec{v}_j \cdot d\vec{a} \cdot d\vec{l}_j \\ &= \frac{1}{2} \sum_{j=1}^N \oint_{S_j} \int_{S_j} \vec{v}_j \cdot d\vec{a} \cdot d\vec{l}_j \\ &= \frac{1}{2} \sum_{j=1}^N \oint_{S_j} \int_{S_j} \vec{v}_j \cdot d\vec{a} \cdot d\vec{l}_j \\ &= \frac{1}{2} \sum_{j=1}^N \oint_{S_j} \int_{S_j} \vec{v}_j \cdot d\vec{a} \cdot d\vec{l}_j \\ &= \frac{1}{2} \sum_{j=1}^N \oint_{S_j} \int_{S_j} \vec{v}_j \cdot d\vec{a} \cdot d\vec{l}_j \\ &= \frac{1}{2} \sum_{j=1}^N \oint_{S_j} \int_{S_j} \vec{v}_j \cdot d\vec{a} \cdot d\vec{l}_j \\ &= \frac{1}{2} \sum_{j=1}^N \oint_{S_j} \int_{S_j} \vec{v}_j \cdot d\vec{a} \cdot d\vec{l}_j \\ &= \frac{$$

$$=\frac{1}{2}\sum_{j=1}^{N}\oint\limits_{C_{j}}\int\limits_{\substack{secció\\ del\ fil\ j}}dv_{fil}\ \overrightarrow{A}\cdot\overrightarrow{j'}_{j} = \begin{vmatrix}la\ integral\oint\limits_{C_{j}}\int\limits_{\substack{secció\\ del\ fil\ j}}dv_{fil}\ \overrightarrow{A}\cdot\overrightarrow{j'}_{j}\ \text{\'es\ al\ llarg\ del\ volum\ del\ fil\ }j\\ j\ \text{\`essim, per\`o\ podem\ estendre} - la\ a\ tot\ el\ volum\ de\ l'espai\\ \mathbb{R}^{3}\ ja\ que\ igualment\ a\ fora\ dels\ fils\ j'=0 \end{vmatrix} =$$

$$= \frac{1}{2} \int_{\mathbb{R}^3} \vec{J}'(\vec{r}') \cdot \vec{A}(\vec{r}') dv$$

Que és el que voliem demostrar.

Demostració de (7). Energia d'un sistema de densitats de corrent generalitzades en un camp magnètic.

Seguidament demostrarem que l'anterior integral es transforma en:

$$U_{m} = \frac{1}{2} \int_{\mathbb{R}^{3}} \overrightarrow{H}(\overrightarrow{r}') \cdot \overrightarrow{B}(\overrightarrow{r}') dv = \frac{1}{2} \mu_{0} \int_{\mathbb{R}^{3}} \left| \overrightarrow{H}(\overrightarrow{r}') \right|^{2} dv \qquad (7)$$

Anem transformant la darrera integral de Um:

$$\begin{aligned} U_{m} &= \frac{1}{2} \int_{\mathbb{R}^{3}} \overrightarrow{j'}(\overrightarrow{\boldsymbol{r}'}) \cdot \overrightarrow{\boldsymbol{A}}(\overrightarrow{\boldsymbol{r}'}) \ dv = \begin{vmatrix} usant\ el\ teorema \\ d'\ Ampere\ - \ Maxwell \end{vmatrix} = \frac{1}{2} \int_{\mathbb{R}^{3}} \overrightarrow{\nabla} \overrightarrow{x} \overrightarrow{\boldsymbol{H}}(\overrightarrow{\boldsymbol{r}'}) \cdot \overrightarrow{\boldsymbol{A}}(\overrightarrow{\boldsymbol{r}'}) \ dv = \begin{vmatrix} usant\ : \overrightarrow{\nabla} \cdot \left(\overrightarrow{\boldsymbol{H}} \times \overrightarrow{\boldsymbol{A}}\right) = \\ = -\overrightarrow{\nabla} \times \overrightarrow{\boldsymbol{H}} \cdot \overrightarrow{\boldsymbol{A}} + \overrightarrow{\nabla} \cdot \left(\overrightarrow{\boldsymbol{H}} \times \overrightarrow{\boldsymbol{A}}\right) \end{vmatrix} \\ &= \frac{1}{2} \left[-\int_{\mathbb{R}^{3}} \overrightarrow{\nabla} \cdot \left(\overrightarrow{\boldsymbol{H}}(\overrightarrow{\boldsymbol{r}'}) \times \overrightarrow{\boldsymbol{A}}(\overrightarrow{\boldsymbol{r}'})\right) dv + \int_{\mathbb{R}^{3}} \overrightarrow{\boldsymbol{H}}(\overrightarrow{\boldsymbol{r}'}) \cdot \overrightarrow{\nabla} \times \overrightarrow{\boldsymbol{A}}(\overrightarrow{\boldsymbol{r}'}) \ dv \right] \end{aligned}$$

$$= \begin{vmatrix} aplicant \ el \ teorema \ de \ la \\ divergència \ a \ la \ 1a. \ integral \\ i \ que \ \overrightarrow{\vec{B}} = \overrightarrow{\nabla} \times \overrightarrow{\vec{A}} \ a \ la \ 2a. \end{vmatrix} = \frac{1}{2} \left[- \int\limits_{contorn \ de \ \mathbb{R}^3} \overrightarrow{H}(\overrightarrow{r}') \times \overrightarrow{\vec{A}}(\overrightarrow{r}') d\vec{S} + \int_{\mathbb{R}^3} \overrightarrow{H}(\overrightarrow{r}') \cdot \overrightarrow{\vec{B}}(\overrightarrow{r}') \ dv \right] = 0$$

$$= \begin{vmatrix} el \ contorn \ de \ \mathbb{R}^3 \ \acute{e}s \ una \ superfície \ amb \ una \ \grave{a}rea \ que \ creix \\ com \ r^2 \ quan \ r \to \infty, mentre \ que \ \overrightarrow{H}(\overrightarrow{r}') \ ho \ fa \ com \frac{1}{r^2} i \ \overrightarrow{A}(\overrightarrow{r}') \ com \frac{1}{r} \\ Per \ tant \ la \ 1a \ integral \ acabar \grave{a} \ tendint \ a \ zero \ i \ la \ podem \ treure \end{vmatrix} = \frac{1}{2} \int_{\mathbb{R}^3} \overrightarrow{H}(\overrightarrow{r}') \cdot \overrightarrow{B}(\overrightarrow{r}') \ dv =$$

$$= \frac{1}{2}\mu_0 \int_{\mathbb{R}^3} \left| \overrightarrow{H}(\overrightarrow{r}') \right|^2 dv$$

Que és la expressió (7) que voliem demostrar. Finalment aquesta expressió ens permet dir que la energia del camp H es distribueix per l'espai amb una densitat igual al seu integrand:

$$u_m(\vec{r}') = \frac{1}{2}\mu_0 \left| \vec{H}(\vec{r}') \right|^2 \tag{8}$$