

Math for Machine Learning

Linear algebra - Week 4

Bases Span

Orthogonal and orthonormal bases
Orthogonal and orthonormal matrices

Dimensionality Reduction Algorithm > (PCA)

(Principal Component

Analysia) Rank > Dimension of image of an Linear transformation

(Non Singular) <u>Determinant</u> as an area

eleterminant of a matrix is area of the linear transformation

(singular) Determinant as an area

$$\begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$$

$$\Delta = 2 - 2 = 0$$

$$\nabla = 0$$

if one matrix de singular, det() = 0

(non-singular matrix). (singular matrix) = (oungular matrix)

$$\begin{bmatrix} 0.4 & -0.2 \\ -0.2 & 0.6 \end{bmatrix} \rightarrow 0.24 - 0.04 = 0.2$$

$$\begin{bmatrix} 0.25 & -0.25 \\ -0.125 & 0.625 \end{bmatrix} \rightarrow 0.25 \begin{cases} 0.625 - 0.125 \end{pmatrix} \rightarrow \frac{625}{560}$$

$$\begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix}^{-1} = \begin{bmatrix} 0.4 & -0.2 \\ -0.2 & 0.6 \end{bmatrix}$$

$$dot = 5^{-1} = 0.2$$

$$\begin{bmatrix} 5 & 2 \\ 1 & 2 \end{bmatrix}^{-1} = \begin{bmatrix} 0.25 & -0.25 \\ -0.125 & 0.625 \end{bmatrix}$$

$$det = 8 \qquad det = 0.125$$

$$8^{-1} = 0.125$$

$$\det\left(A^{-1}\right) = \frac{1}{\det\left(A\right)}$$

$$\Rightarrow \det(AB) = \det(A) \det(B)$$

$$\Rightarrow \det(AA^{-1}) = \det(A) \det(A^{-1})$$

$$\Rightarrow \det(I) = \det(A) \det(A^{-1})$$

$$\Rightarrow 1 = \det(A) \det(A^{-1})$$

Basel

any 2 vectors on a plane

but not in the same direction

So that we can reach any

point am plane wainy those

Turo vectors

Span

al the Set of points which can be covered by travelling in direction of vectors.

Span of Bases = "plame"

Finding Eigen Value

If
$$\lambda$$
 is an eigenvalue:
$$\begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

for 00 (x,y)

$$\begin{bmatrix} \lambda \chi \\ \lambda \psi \end{bmatrix} = \lambda \begin{bmatrix} \chi \\ \psi \end{bmatrix} \Rightarrow$$

$$\begin{bmatrix} 2-\lambda & 1 \\ 0 & 3-\lambda \end{bmatrix} \begin{bmatrix} \chi \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Co solutions

$$\det \begin{bmatrix} 2-\lambda & 1 \\ 0 & 3-\lambda \end{bmatrix} = 0$$

characteratic polynomial: $(2-\lambda)(3-\lambda) - 1.0 = 0$

Finding Eigen vectors

Eigen Value :
$$\lambda = 2$$

Solve iquations

$$\lambda = 2$$

$$\lambda = 3$$

$$\begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} \chi \\ \psi \end{bmatrix} = 2 \begin{bmatrix} \chi \\ \psi \end{bmatrix}$$

$$\begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 3 \begin{bmatrix} x \\ y \end{bmatrix}$$

$$2x+y=2x$$
 $x=1$ $y=0$ $y=0$

$$2x + y = 3x$$
 $x = 1$ $y = 1$ $y = 1$ $y = 1$

$$\begin{bmatrix} 2 & 1 \\ -3 & 6 \end{bmatrix} \Rightarrow \begin{bmatrix} 2-\lambda & 1 \\ -3 & 6-\lambda \end{bmatrix}$$

$$(2-\lambda)(6-\lambda) + 3 = \delta$$

$$12 - 2\lambda - 6\lambda + \lambda^2 + 3 = 0$$

$$\lambda^2 - 3\lambda - 5\lambda + |5| = 0$$

$$\lambda(\lambda - 3) - 5(\lambda - 3) = 0$$

$$\lambda = 3, 5 \rightarrow \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

$$2x + 1y = 3x + 4 = x$$

 $-3x + 6y = 3y$
 $2x + 4 = 5x + 4 = 3x$
 $-3x + 6y = 5y$
 $-3x + 18x = 16x$
 $x = 1$

$$\left(1-\lambda\right)^{3}$$

$$\begin{bmatrix} 1 & 2 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 4 \end{bmatrix} \Rightarrow \begin{bmatrix} 1-\lambda & 2 \\ 0 & 4-\lambda \end{bmatrix} \begin{bmatrix} \chi \\ y \end{bmatrix} = 0$$

$$x+2y=x$$

$$4y=y$$

$$2+2y=4x$$

$$4y=4y$$

$$(1-\lambda)(4-\lambda) = 0$$

$$4 - \lambda - 4\lambda + \lambda^{2}$$

$$\lambda^{2} - \lambda - 4\lambda + 4 = 0$$

$$\lambda(\lambda - 1) - 4(\lambda - 1) = 0$$

$$\lambda = 1, 4$$

$$(2-\lambda)(1-\lambda) - \alpha = 0$$
$$2 + \lambda^2 - 3\lambda - \alpha = 0$$

$$9 - 4(2-a) > 0$$
 $9 - 8 + 4a > 0$
 $0 > -1/4$