Finding immune receptors in RNA-seq data

Li Song

Department of Biomedical Data Science

Geisel School of Medicine at Dartmouth

T cell, B cell and NK cell play central roles in immune system

Outline

- Immune repertoire assembly: TRUST4
- HLA and KIR genotyping: T1K

T-cell receptors and B-cell receptors have diverse sequences to recognize various antigens

TCR and BCR sequences are presented in RNAseq data

TRUST4: TCR and BCR assembly from RNA-seq data

Step 1: Download TRUST4

https://github.com/liulab-dfci/TRUST4

Command line/terminal:

git clone https://github.com/liulab-dfci/TRUST4.git

Through "Release" page:

Step 2: Compile TRUST4

After cloning github repository or decompressing the package, we need to compile the program

Make

cd trust4_path make

Conda (downloand+install)
 conda install -c bioconda trust4

Step 3: Run TRUST4

- Suppose TRUST4 is compiled in the folder trust4_path
- Run

```
trust4_path/run-trust4 \
-1 read1.fq.gz -2 read2.fq.gz \
-f hg38_bcrtcr.fa \
--ref human_IMGT+C.fa \
-t 8 \
-od output_directory \
-o output_prefix
```

or "-b alignment.sorted.bam"

Reference sequences

Number of threads

Output path

Checking TRUST4's output

• TRUST4's format (VDJTools format): trust4_report.tsv

#count	frequency	CDR3nt	CDR3aa	V	D	J	С	cid	cid_full_length
34	3.11E-02	GGTCGGCCT.	CASSLSPGRPNTGELFF	TRBV28*01	TRBD2*01	TRBJ2-2*01	TRBC	assemble353	1

- AIRR format (https://www.antibodysociety.org/the-airr-community/)
 - prefix_airr.tsv
 - Many data fields, including germline sequence alignment information
 - Ideal for advanced BCR analysis

Application: repertoire diversity analysis

Entropy= $-2/3\log(2/3)-1/6\log(1/6)-1/6\log(1/6)=0.867$

Clonality = $1 - 0.867/\log 3 = 0.210$

Clonality = 1 - normalized Shannon entropy = 1 - ShannonEntropy/log(N) $H(X) = -\sum_{i} P(x_i) \log P(x_i)$ Sample II

CDR3 A

CDR3 A

CDR3 A

CDR3 A

CDR3 B

CDR3 B

CDR3 B

CDR3 B

CDR3 B

Entropy= $-2/5\log(2/5)-3/5\log(3/5)=0.673$

Clonality = $1 - 0.673/\log 2 = 0.029$

Application: repertoire diversity analysis on a classic Hodgekin Lymphoma study

Based on Cader et. al. Nat. Med. 2020

CD8 T cell is not the effector cell in the MHC-I deficient classic Hodgkin's Lymphoma anti-PD1 treatment

Other down analysis related to TCRs

- Antigen-specific TCR clustering
 - GIANA
 - GLIPH2
 - TCRDist
- In silico TCR specificity annotation
 - Database: VDJdb, IEDB, McPAS-TCR
 - Method: TcrMatch, ...
- TCR-epitope binding prediction
 - pMTnet, ...

TRUST4 reconstructs thousands of CDR3s from 5' 10x single-cell RNA-seq data

TRUST4 identifies the gdT population

10X Genomics V(D)J does not have the kit to amplify gdT cells

Summary – TRUST4

- An efficient and accurate method to assemble TCRs and BCRs form bulk and single-cell RNA-seq data
- How to run TRUST4?
 - git clone
 - make
 - /path/run-trust4 [-b alignment.sorted.bam] or [-1 r1.fq.z -2 r2.fq.gz] + reference sequences + other options

Outline

- Immune repertoire assembly: TRUST4
- HLA and KIR genotyping: T1K

Introduction: Major Histocompatibility Complex (MHC) class I

KIR is a set of polymorphic genes regulating Natural Killer cell activity

HLA genotypers are not applicable to KIRs

HLA genotypers:

HISAT-genotype, arcasHLA,
 OptiType, polysolver, seq2HLA, ...

- 1. Each HLA gene show up in both chromosomes, but a KIR gene can be missing.
- 2. Many KIR genes are highly similar.

T1K: HLA and KIR genotyping with massive parallel sequencing data

Step 1: Download T1K

https://github.com/mourisl/T1K

Command line/terminal:

git clone https://github.com/mourisl/T1K.git

Through "Release" page:

Step 2: Compile T1K

After cloning github repository or decompressing the package, we need to compile the program

Make

```
cd t1k_path make
```

Conda (downloand+install)
 conda install -c bioconda t1k

Step 3: Build HLA and KIR reference sequences

Assume you are in T1K's source code folder

perl t1k-build.pl -o hlaidx --download IPD-IMGT/HLA perl t1k-build.pl -o kiridx --download IPD-KIR

Output: Hlaidx/hlaidx_rna_seq.fa

TAAAGTCCGCACGCACCCACCGGGACTCAGATTCTCCCCAGACGCCGAGGATGGCCGTCATGGCGCCCCGAACCCTCCTCCTGCTACTCTCGGGG GCCCTGGCCCTGACCCAGACCTGGGCGGGCTCCCACTCCATGAGGTATTTCTTCACATCCGTGTCCCGGCCCGGCCGCGGGGAGCCCCGCTTCAT CGCCGTGGGCTACGTGGACGACGCAGTTCGTGCGGTTCGACAGCGACGCCGCGGGCCAGAAGATGGAGCCGCGGGCGCCGTGGATAGAGCAGG AGGGGCCGGAGTATTGGGACCAGGAGACACGGAATATGAAGGCCCACTCACAGACTGACCGAGCGAACCTGGGGACCCTGCGCGGCTACT CAGAGCGAGGACGGTTCTCACACCATCCAGATAATGTATGGCTGCGACGTGGGGCCGGACGGGCGCTTCCTCCGCGGGTACCGGCAGGA CGACGGCAAGGATTACATCGCCCTGAACGAGGACCTGCGCTCTTGGACCGCGGCGGACATGGCAGCTCAGATCACCAAGCGCAAGTGGGAGGCGG TCCATGCGGCGGAGCAGCGGAGAGTCTACCTGGAGGGCCGGTGCGTGGACGGGCTCCGCAGATACCTGGAGAACGGGAAGGAGACGCTG ACGGACCCCCCAAGACACATATGACCCACCACCCCATCTCTGACCATGAGGCCACCCTGAGGTGCTGGGCCCTGGGCTTCTACCCTGC CGGCTGTGGTGGTGCCTTCTGGAGAGGAGCAGAGATACACCTGCCATGTGCAGCATGAGGGTCTGCCCAAGCCCCTCACCCTGAGATGGGAGCTG AAGTGTGAGACAGCTGCCTTGTGTGGGACTGAGAGGCAAGAGTTGTTCCTGCCCTTCC >HLA-A*01:01:01:02N 8 50 122 123 392 393 668 669 944 945 1061 1062 1094 1095 1142 1143 1147 TAAAGTCCGCACGCACCCACCGGGACTCAGATTCTCCCCAGACGCCCGAGGATGGCCGTCATGGCGCCCCGAACCCTCCTCCTGCTACTCTCGGGG CGCCGTGGGCTACGTGGACGCAGTTCGTGCGGTTCGACAGCGACGCCGCGAGCCAGAAGATGGAGCCGCGGGCGCCGTGGATAGAGCAGG AGGGGCCGGAGTATTGGGACCAGGAGACACGGAATATGAAGGCCCACTCACAGACTGACCGAGCGAACCTGGGGGACCCTGCGGGCTACTACAAC CGACGGCAAGGATTACATCGCCCTGAACGAGGACCTGCGCTCTTGGACCGCGGCGGACATGGCAGCTCAGATCACCAAGCGCAAGTGGGAGGCGG TCCATGCGGCGGAGCAGCGGAGAGTCTACCTGGAGGGCCGGTGCGTGGACGGGCTCCGCAGATACCTGGAGAACGGGAAGGAGACGCTGCAGCGC ACGGACCCCCCAAGACACATATGACCCACCCCCATCTCTGACCATGAGGCCACCCTGAGGTGCTGGGCCCTGGGCTTCTACCCTGCGGAGAT CACACTGACCTGGCAGCGGGATGGGAGGACCAGACCCAGGACACGGAGCTCGTGGAGACCAGGCCTGCAGGGGATGGAACCTTCCAGA CGGCTGTGGTGGTGCCTTCTGGAGAGGAGCAGAGATACACCTGCCATGTGCAGCATGAGGGTCTGCCCAAGCCCCTCACCCTGAGATG TCTTCCCAGCCCACCATCCCCATCGTGGGCATCATTGCTGGCCTGGTTCTCCTTGGAGCTGTGATCACTGGAGCTGTGGTCGCTGCCGTGATGTG GAGGAGGAGGAGGCTCAGATAGAAAAGGAGGGAGTTACACTCAGGCTGCAAGCAGTGCCCAGGGCTCTGATGTCTCTCACAGCTTGTA AAGTGTGAGACAGCTGCCTTGTGTGGGACTGAGAGGCAAGAGTTGTTCCTGCCCTTCC

>HLA-A*01:01:01:01 8 50 122 123 392 393 668 669 944 945 1061 1062 1094 1095 1142 1143 1147

Step 4: Run T1K on RNA-seq data

- Suppose T1k is compiled in the folder t1k_path/
- Run

```
t1k path/run-t1k \
    -1 read1.fq.gz -2 read2.fq.gz \
    -f t1k path/hlaidx/hlaidx rna seq.fa \
    -t 8 \
    --preset hla \
    -od output_directory \
    -o output prefix
```

Reference sequences
Number of threads

Output path

Checking T1K's output: HLA Main output file:

Main output file: prefix_genotype.tsv

8 Columns
Gene #_of_alleles [allele_id abundance quality]*2

HLA-A 2	HLA-A*24:02:01	24258.153833	60	HLA-A*03	3:01:01	23426.8	34583	60
HLA-B 1	HLA-B*07:02:01		60	•	0	-1		
HLA-C 1	HLA-C*07:02:01		60		0	-1		
HLA-DMA 1	HLA-DMA*01:01:0			60		0	-1	
HLA-DMB 1	HLA-DMB*01:01:0			60		0	-1	
HLA-DOA 2	HLA-DOA*01:01:0			60	. ΗΙ Δ-ΠΠΔ	*01:01:0		226.582
924 60	TILA DON OI. 01.0	300.73.	5075	00	IILA DOA		•	220.302
HLA-DOB 1	HLA-D0B*01:01:0	1 535.412	2144	60		0	-1	
HLA-DOD 1		1*01:03:01		.632110	60	· ·	0	-1
HLA-DPA2	0 .	0 -1	1/344	0	-1	•	U	-1
HLA-DPB1		1*03:01:01	4631.2		60	HI A_DDR	1*02:01:	02 3
928.267347	60	1.03.01.01	4031.2	233700	00	IILA-DED	1.02.01.	02 3
HLA-DPB2		2*01:01:01,HLA-	1DB2*01	. M1 · M2 LI A_	บบยว∗ผว	• @1 • @1	2.28310	5 _
1	I IILA-DED	2^01.01.01, HLA-1	JEDZ^UI	.01.02, HLA-	-0102403	.01.01	2.20310	-
HLA-DQA1	2 HLA-DQA	1*05:05:01	0022	103454	60	HI V DOV	1*01:02:	01 6
	60 HLA-DQA	1,403:00:01	9023.2	+03434	00	пса-руа	1,01:02:	01 0
934.813451 HLA-DQA2		2*01:07 2.34787	72	0		0	-1	
		2*01:07 2.3478/ 1*06:02:01		0				01 5
HLA-DQB1	•	1,00:07:01	5966.2	232823	60	HLA-DUB	1*03:01:	01 5
786.512421	60	24025	105076	60	III A DDA	+04 - 02 - 0	_	40420 0
HLA-DRA 2	HLA-DRA*01:02:0	3 21035.	1050/6	60	HLA-DKA	*01:02:0	2	18428.8
26171 60	2	4-1-4-2 - 0.2 - 0.4	45040	055043	CO	III A DDD	4.645.04.	04
HLA-DRB1		1*13:03:01	15019	.855943	60	HLA-DRB	1*15:01:	01 8
446.712266	60			•				
HLA-DRB2	0 .	0 -1		0	-1		•	
HLA-DRB3		3*01:01:02	6419.1		60	. •	0	-1
HLA-DRB4		4*01:01:01,HLA-	JKB4*02	:01N	3.21910	1	0	HLA-DRB
4*03:01N	1.197303	0					•	
HLA-DRB5		5*01:01:01	5752.2	246530	60	•	0	-1
HLA-DRB7	0 .	0 -1	:.	0	-1			
HLA-E 2	HLA-E*01:01:01		60			6341.42		60
HLA-F 2	HLA-F*01:03:01		60	HLA-F*01		2566.85		60
HLA-G 2	HLA-G*01:01:08		0	HLA-G*01		4.25317	9	0
HLA-H 1	HLA-H*02:04:01		0	• .	0	-1		
HLA-HFE 1	HLA-HFE*001:01:			28	:	0	-1	
HLA-J 1	HLA-J*01:01:01		0	•	0	-1		
HLA-K 1	HLA-K*01:01:01		0	•	0	-1		
HLA-L 1	HLA-L*01:01:01		0	•	0	-1		
MICA 1	MICA*008:04:01		60	•	0	-1		
MICB 1	MICB*004:01:01	286.102237	60	•	0	-1		
HLA-N 0	. 0	-1 .	0	-1				
HLA-S 1	HLA-S*01:03	2.997275	3	•	0	-1		
HLA-T 0	. 0	-1 .	0	-1				
TAP1 1	TAP1*01:01:01	3747.529168	60		0	-1		
TAP2 2	TAP2*01:02	664.701344	60			651.295		60
HLA-U 2	HLA-U*01:03	23.648649	18	HLA-U*01	L:01:01	15.8783	78	11
HLA-V 0	. 0	-1 .	0	-1				
HLA-W 0	. 0	-1 .	0	-1				
HLA-Y 1	HLA-Y*02:01	8.629081	0		0	-1		

Checking T1K's output: KIR

Main output file: prefix_genotype.tsv

8 Columns
Gene #_of_alleles [allele_id abundance quality]*2

			_						
KIR2DL1 0		0	-1	•	0	-1			
KIR2DL2 0		0	-1		0	-1			
KIR2DL3 0		0	-1		0	-1		RNA-	sea
KIR2DL4 0		0	-1		0	-1		111.67	559
KIR2DL5A	0		0	-1		0	-1		
KIR2DL5B	0		0	-1		0	-1		
KIR2DS1 0		0	-1		0	-1			
KIR2DS2 0		0	-1		0	-1			
KIR2DS3 0		0	-1		0	-1			
KIR2DS4 1	KIR2	DS4*001,K	(IR2DS4*0	03,KIR2D	S4*006,	<pre><ir2ds4*0< pre=""></ir2ds4*0<></pre>	10,KIR2D	S4*011,KIR2DS4*	016,KIR2DS4
*017,KIR2D								1.007049	1 -
1				·					
KIR2DS5 0		0	-1		0	-1			
KIR3DL1 0		0	-1		0	-1			
KIR3DL2 0		0	-1		0	-1			
KIR3DL3 0		0	-1		0	-1			
KIR3DS1 0		0	-1		0	-1			
KIR2DP1 0		0	-1		0	-1			
KIR3DP1 0		0	-1		0	-1			
_		_							

KIR gene may not have enough expression levels in bulk RNA-seq, but can be found in certain cell types in scRNA-seq data

KIR2DL1	2	KIR2DL1*	¢002	95.17381	.6	45	KIR2DL1*	k008	63.40757	9	25	
KIR2DL2	1	KIR2DL2*	£003	0.543287		0		0	-1			
KIR2DL3	1	KIR2DL3*	<002	141.5408	22	60		0	-1			
KIR2DL4	1	KIR2DL4*	<001	262.7398	67	60		0	-1			
KIR2DL5A		2	KIR2DL5A	*029	1.344724	l .	0	KIR2DL5A	*001	0.231960		0
KIR2DL5B	}	2	KIR2DL5B	3*004	1.178725	,	0	KIR2DL5E	3 * 007	0.416216		0
KIR2DS1	0		0	-1		0	-1					
KIR2DS2	0		0	-1		0	-1			WES		
KIR2DS3	1	KIR2DS3*	<020	0.563666		0		0	-1			
KIR2DS4	1	KIR2DS4*	<001	170.8979	86	60		0	-1			
KIR2DS5	1	KIR2DS5*	<037	0.990741		0		0	-1			
KIR3DL1	2	KIR3DL1*	<015	99.05849	8	46	KIR3DL1*	k002	95.56966	4	44	
KIR3DL2	1	KIR3DL2*	<002	297.0997	75	60		0	-1			
KIR3DL3	2	KIR3DL3*	<001	92.73499	1	49	KIR3DL3*	k019	79.55337	9	40	
KIR3DS1	0		0	-1		0	-1					
KIR2DP1	1	KIR2DP1*	<003	118.9872	.19	55		0	-1			
KIR3DP1	2	KIR3DP1*	*015	87.56409	9	50	KIR3DP1*	k006	79.97154	6	45	
_												

Other highly polymorphic genes, e.g. pharmacogenes

https://github.com/mourisl/T1K/tree/master/vcf_database

Using CYP2D6 as the example

step 0: prerequisite files

You will need hg38 human reference genome (hg38.fa) and the gene annotation file such as from gencode (gencode.gtf).

step 1: download and process the VCF files

1.1 Click the "Download Complete Database" button at https://www.pharmvar.org/download.

1.2 Uncompress the pharmvar-XXX.zip file to the {T1K_PATH}/vcf_database/, and make {T1K_PATH}/vcf_database/ your current folder. You shall see the folder ./pharmvar-XXX/CYP2D6/ there. Put the hq38 VCF file names to the file by

ls ./pharmvar-XXX/CY2D6/GRCh38/*.vcf > vcflist.out

C

1.3 Generate the combined VCF file

perl ./CombinedVcf.pl "CYP2D6*1" vcflist.out > cyp2d6_combined.vcf

We need the first parameter "CYP2D6*1" because that the VCF files does not contain the primary allele "CYP2D6.1", and we need a place holder for it in the combined VCF file.

step 2: create the reference files

2.1 Generate the EMBL-ENA format dat file by running:

perl ./CombinedVcfToDat.pl genome.fa gencode.gtf cyp2d6_combined.vcf > cyp2d6.dat

The dat file should look similar to the dat file from IPD-IMGT/HLA and IPD-KIR.

2.2 Generate the reference files

perl {T1K_PATH}/t1k-build.pl -d cyp2d6.dat -g gencode.gtf -o cyp2d6_idx --prefix cyp2d6

Overall summary – using RNA-seq to find immune-related information

- TRUST4: TCR and BCR reconstruction from RNA-seq
- T1K: genotyping HLA, KIR (depends) and other highly polymorphic genes from common sequencing data