Chapter 7; # 1, 2, 3 (pg. 175)

Problem 1. Prove that every uniformly convergent sequence of bounded functions is uniformly bounded.

Proof. Suppose $f_n \to f$ uniformly on some set E such that each $|f_n(x)| \le M_n$ is bounded. Then there is some N such that $|f_n(x) - f(x)| < 1$ for all $n \ge N$ and $x \in E$. Thus we have $|f_n(x)| \le |f_n(x) - f(x)| + |f(x) - f_N(x)| + |f_N(x)| \le 2 + M_N$ for all $x \in E$.

Set $M = \max(M_1, M_2, \dots, M_{N-1}, 2 + M_N)$. Then f_n is uniformly bounded by M, as desired.

Problem 2. If $\{f_n\}$ and $\{g_n\}$ converge uniformly on a set E, prove that $\{f_n+g_n\}$ converges uniformly on E. If, in addition, $\{f_n\}$ and $\{g_n\}$ are sequences of bounded functions, prove that $\{f_ng_n\}$ converges uniformly on E.

Proof. Let $\varepsilon > 0$. Since $f_n \to f$ and $g_n \to g$ uniformly, we have N_f and N_g such that $n \ge N_f$ implies $|f_n - f| < \varepsilon/2$ and $n \ge N_g$ implies $|g_n - g| < \varepsilon/2$. Then set $N = \max(N_f, N_g)$, so that for $n \ge N$ we have

$$|(f_n + g_n) - (f + g)| < |f_n - f| + |g_n - g| = \varepsilon.$$

Thus $f_n + g_n \to f + g$ uniformly.

Now let $\varepsilon > 0$ again, but assume that f_n and g_n are bounded. Suppose $|f| \leq M$ and $|g| \leq M'$. There are integers N_f and N_g such that $n \geq N_f$, N_g implies $|f_n - f| < 1$ and $|g_n - g| < 1$. Thus for all $n \geq N = \max(N_f, N_g, we have |f_n| < 1 + M and |g_n| < 1 + M'$.

Now choose L_f and L_g such that $n \ge L_f$, L_g implies $|f_n - f| < \varepsilon/2(1 + M')$ and $|g_n - g| < \varepsilon/2(1 + M)$. For any $n \ge \max(L_f, L_g, N)$, we have

$$|f_n g_n - fg| \le |f_n g_n - f_n g| + |f_n g - fg|$$

$$\le |f_n||g_n - g| + |f_n - f||g|$$

$$\le \frac{(1+M)\varepsilon}{2(1+M)} + \frac{\varepsilon M'}{2(1+M')}$$

$$< \varepsilon.$$

Hence $f_n g_n \to fg$ uniformly, and we're done.

Problem 3. Construct sequences $\{f_n\}$ and $\{g_n\}$ which converge uniformly on some set E, but such that $\{f_ng_n\}$ does not converge uniformly on E.

1

Page 1

Proof. Let $f_n(x) = 1 - 1/n$ and $g_n(x) = 1/x$ on E = (0,1). The intuition is that although 1/x is not uniformly continuous on (0,1), the constant sequence $g_n(x) = 1/x$ is trivially a uniformly convergent sequence. Thus we have $f_n \to 1$ and $g_n \to 1/x$.

However, $f_n g_n = (1 - \frac{1}{n}) \frac{1}{x}$ does not converge uniformly to 1/x since the pointwise sequences blow up as $x \to 0$.

Page 2