HOMEWORK 8: HOMOLOGY DUE: MONDAY, NOVEMBER 27

- 1) Compute the simplicial homology groups of the Δ -complex of the space X obtained by identifying all faces of the same dimension of an n-simplex Δ^n via the identity map. The resulting space has one k-simplex in each dimension $k = 0, 1, \ldots, n$.
- 2) Analyze the simplicial structure of a 3-dimensional space L_n obtained by n-many Δ^3 , say $\Delta^3_1, \ldots, \Delta^3_n$, with Δ^3_i and Δ^3_{i+1} sharing a face for $i=1,\ldots,n$. Then identify the bottom 2-simplex of Δ^3_i with the top 2-simplex of Δ^3_{i+1} . Note that i=n yields $\Delta_{i+1} = \Delta_i$. Compute the homology group $H_3^{\Delta}(X)$.

You should find $H_3^{\Delta}(L_n) = \mathbb{Z}$. One can also find with some clever book keeping that $H_0^{\Delta}(L_n) = \mathbb{Z}$, $H_1^{\Delta}(L_n) = \mathbb{Z}/n\mathbb{Z}$, and $H_2^{\Delta}(L_n) = 0$.

3) Determine whether there exists a short exact sequence

$$0 \to \mathbb{Z}/4\mathbb{Z} \to \mathbb{Z}/8\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \to \mathbb{Z}/4\mathbb{Z} \to 0$$

More generally (and optionally), conjecture which Abelian groups A fit into short exact sequences

$$0 \to \mathbb{Z}/p^m \mathbb{Z} \to A \to \mathbb{Z}/p^n \mathbb{Z} \to 0$$
$$0 \to \mathbb{Z} \to A \to \mathbb{Z}/n \mathbb{Z} \to 0$$

4) Show that $H_0(X, A) = 0$ if and only if for every path connected component $X_{\alpha} \subset X$, $X_{\alpha} \cap A \neq \emptyset$.

In addition, show that $H_1(X, A) = 0$ if and only if $H_1(A)$ surjects onto $H_1(X)$ and $A \cap X_{\alpha}$ is either empty or path-connected.

5) Compute the homology groups $H_n^{\Delta}(X)$ of the subspace

$$X = \{(x, y) \in I^2 : x \in \mathbb{Q}\} \cup [0, 1] \times \{0, 1\} \subset I^2 = [0, 1]^2$$

That is to say, the boundary of the square union all vertical lines at rational values.

6) Compute $H_i(\mathbb{R}^n, \mathbb{R}^n \setminus x)$. You may assume excision and homotopy invariance. Use this to show that

$$\mathbb{R}^n \cong \mathbb{R}^m \iff n = m$$