Processus de Galton-Watson:

I Le développement

Le but de ce développement est d'étudier le processus de Galton-Watson afin d'obtenir des résultats asymptotiques avec des calculs de probabilité.

Dans tout ce développement, on considère X une variable aléatoire réelle à valeurs dans \mathbb{N} de loi notée μ admettant une espérance notée m et de carré intégrable et pour tout $k \in \mathbb{N}$ on note $p_k = \mathbb{P}(X = k)$ et on suppose que $p_0 \in]0;1[$.

Lemme 1 : [Gourdon, p.345]

- * G est bien définie, de classe C^2 et convexe sur [0;1].
- * G est strictement croissante sur [0; 1].
- * G est strictement convexe sur [0; 1] si, et seulement si $p_0 + p_1 < 1$.

Preuve:

- * Pour tout $n \in \mathbb{N}$, on pose f_n définie sur [0;1] pat $f_n(t) = p_n t^n$.
- Comme la série $\sum p_n$ converge, la série $\sum \|f_n\|_{\infty,[0;1]}$ converge. Ainsi, la série $\sum f_n$ converge normalement sur [0;1] (donc simplement) et ainsi G est bien définie.
- Pour $n \in \mathbb{N} \setminus \{0; 1\}$, $f_n \in \mathcal{C}^2([0; 1], \mathbb{R})$ et:

$$\forall t \in [0;1], \begin{cases} |f'_n(t)| = |np_n t^{n-1}| \le np_n \\ |f''_n(t)| = |n(n-1)p_n t^{n-2}| \le n(n-1)p_n \le n^2 p_n \end{cases}$$

avec $\sum np_n$ et $\sum n^2p_n$ convergentes (car X admet un moment d'ordre 1 et 2). Donc, par le théorème de dérivation sous le signe somme, on obtient que G est de classe C^2 et pour tout $t \in [0;1]$, $G''(t) = \sum_{n=2}^{+\infty} n(n-1)p_nt^{n-2}$.

- En tant que limite de fonctions convexes, G est convexe sur [0;1].
- * Comme $p_0 \in]0; 1[$, il existe k > 0 tel que $p_k > 0$. Ainsi, on a :

$$\forall t \in [0; 1], \ G'(t) \ge kp_k t^k \begin{cases} > 0 & \text{si } t > 0 \\ = 0 & \text{sinon.} \end{cases}$$

Ainsi, G est strictement croissante sur [0;1].

- * On raisonne par double implication :
- Si $p_0 + p_1 = 1$, alors pour tout $t \in [0; 1]$, $G(t) = p_0 + p_1 t$. Donc G est affine et donc non strictement convexe.

- Si $p_0 + p_1 < 1$, alors il existe k > 1 tel que $p_k > 0$ et donc :

$$\forall t \in [0; 1], \ G''(t) \ge k(k-1)p_k t^{k-2} \begin{cases} > 0 & \text{si } t > 0 \\ = 0 & \text{sinon.} \end{cases}$$

Ainsi, G est strictement convexe sur]0;1].

Finalement, on a donc démontré tous les résultats du lemme.

Proposition 2: [Gourdon, p.376]

- * Pour tout $n \in \mathbb{N}^*$, $G_n = G \circ G \circ ... \circ G$ (n fois), avec G la série génératrice de X.
- * Pour tout $n \in \mathbb{N}^*$, Z_n admet une espérance et $\mathbb{E}(Z_n) = m^n$.
- * De plus, on a : $\pi_{n+1} = G(\pi_n)$.

Preuve:

- * Montrons les deux premiers points de la proposition par récurrence sur $n \in \mathbb{N}^*$:
- Initialisation pour n = 1:

On a les égalités $G_1 = G_{X_{1,1}} = G$ et $\mathbb{E}(Z_1) = \mathbb{E}(X_{1,1}) = \mathbb{E}(X) = m = m^1$ (car $X_{1,1}$ et X ont la même loi).

La propriété est donc vraie pour n = 1, elle est donc bien initialisée.

- Hérédité :

On suppose la propriété vraie au rang n. Qu'en est-il au rang n+1? Pour $s \in [0;1]$, on a :

$$G_{n+1}(s) = \mathbb{E}\left(s^{Z_{n+1}}\right) = \mathbb{E}\left(s^{\sum_{i=1}^{Z_n} X_{n,i}}\right) = \mathbb{E}\left(\sum_{k=0}^{+\infty} \mathbb{1}_{\{Z_n = k\}} s^{\sum_{i=1}^k X_{n,i}}\right)$$

$$= \sum_{\text{Beppo-Levi}} \sum_{k=0}^{+\infty} \mathbb{E}\left(\mathbb{1}_{\{Z_n = k\}} s^{\sum_{i=1}^k X_{n,i}}\right) = \sum_{k=0}^{+\infty} \mathbb{P}(Z_n = k) \prod_{i=1}^k \mathbb{E}\left(s^{X_{n,i}}\right)$$

$$= \sum_{k=0}^{+\infty} \mathbb{P}(Z_n = k) G_n(s)^k = G_n(G(s)) = (G \circ \dots \circ G)(s) \ (n+1 \text{ fois})$$

On a également :

$$\mathbb{E}(Z_{n+1}) = G'_{n+1}(1) = G'(1)G'_n(G(1)) = mG'_n(1) = m \times m^n = m^{n+1}$$

La propriété est donc vraie au rang n+1, elle est donc héréditaire.

On a donc démontré les deux premiers points de la proposition par récurrence.

* Enfin, on a $\pi_n = G_n(0)$, donc $\pi_{n+1} = G_{n+1}(0) = G(G_n(0)) = G(\pi_n)$.

Théorème 3 : [Gourdon, p.376]

* P_{ext} est la plus petite solution de l'équation G(s) = s sur [0;1].

* Si $m \leq 1$ (cas sous-critique et critique), alors $P_{ext} = 1$.

* Si m > 1 (cas super-critique), alors P_{ext} est l'unique point fixe de G sur [0;1].

Preuve:

* On a $P_{ext} = \lim_{n \to +\infty} \mathbb{P}(Z_n = 0) = \lim_{n \to +\infty} G_n(0)$ et pour tout $n \in \mathbb{N}$, on a la relation $G_{n+1}(0) = G(G_n(0))$.

Donc par continuité de G, on a $P_{ext} = G(P_{ext})$. De plus, comme $G(0) = p_0 > 0$ et que G est strictement croissante sur [0;1] (par le lemme), on a $P_{ext} > 0$.

Raisonnons désormais par disjonction de cas:

- Si $p_0 + p_1 = 1$, alors G est une fonction affine et donc admet un unique point fixe.

- Si $p_0 + p_1 < 1$, alors G est strictement convexe (par le lemme), donc la fonction $f: x \longmapsto G(x) - x$ s'annule au plus deux fois sur [0; 1].

En effet, supposons qu'il existe x_1, x_2 et x_3 tels que $0 < x_1 < x_2 < x_3 \le 1$ et que $f(x_i) = 0$ pour tout $i \in \{1; 2; 3\}$.

Alors par le théorème de Rolle, il existe $\alpha_1 \in]x_1; x_2[$ et $\alpha_2 \in]x_2; x_3[$ tels que $f'(\alpha_1) = f'(\alpha_2) = 0$. Or f est strictement convexe (donc f' strictement croissante), donc on aboutit à une contradiction.

On pose donc x un autre point fixe de G sur [0;1].

On a donc $G(0) \leq G(x) = x$ (car G croissante sur [0;1]) et par récurrence on a $G_n(0) \leq x$, c'est-à-dire $P_{ext} \leq x$ (par passage à la limite).

Donc P_{ext} est le plus petit point fixe de G sur]0;1].

* Supposons que $m \leq 1$.

On a alors f' = G' - 1, ainsi f' est croissante sur [0;1] (car G convexe sur [0;1]) et avec $f'(1) = G'(1) - 1 = m - 1 \le 0$. Ainsi $f' \le 0$ sur [0;1] et donc f est décroissante sur [0;1] de p_0 vers 0 et donc $P_{ext} = 1$.

* Supposons que m > 1.

On a alors f' strictement croissante sur [0;1] (car G strictement convexe) avec $f'(0) = p_1 - 1 < 0$ et f'(1) = m - 1 > 0. Il existe donc un unique $\alpha \in]0;1[$ tel que $f'(\alpha) = 0$ et ainsi f est strictement décroissante sur $[0;\alpha]$ et strictement croissante sur $[\alpha;1]$.

Or, on a $f(0) = G(0) = p_0 > 0$, f(1) = G(1) - 1 = 0 et ainsi $f(\alpha) < 0$, donc f admet une unique racine sur]0;1[(qui est dans $]0;\alpha]$) et ainsi P_{ext} est l'unique point fixe de G sur]0;1[.

On a donc démontré le théorème.

II Remarques sur le développement

II.1 Contexte

Soit $(X_{n,i})_{(n,i)\in\mathbb{N}\times\mathbb{N}^*}$ une famille de variables aléatoires indépendantes, suivant toutes la loi de X. On définit la suite $(Z_n)_{n\in\mathbb{N}}$ de la manière suivante :

$$Z_0 = 1 \text{ et } \forall n \in \mathbb{N}, \ Z_{n+1} = \sum_{i=1}^{Z_n} X_{n,i}$$

La variable aléatoire Z_n représente le nombre d'individus à la génération n. On note $\pi_n = \mathbb{P}(Z_n = 0)$ la probabilité d'extinction à l'instant n, $P_{\text{ext}} = \mathbb{P}(\exists n \in \mathbb{N} \text{ tq } Z_n = 0)$ la probabilité d'extinction de la population et G_n la fonction génératrice de Z_n .

On donne ci-dessous une représentation graphique de G et de ses points fixes :

II.2 Résultat(s) utilisé(s)

Dans ce développement, on a utilisé la notion de série génératrice dont on rappelle la définition et quelques résultats :

Définition 4 : Série génératrice [Deschamps, p.949] :

On appelle série génératrice de X la fonction G_X définie par $G_X(t) = \mathbb{E}(t^X)$.

Remarque 5 : [Deschamps, p.949]

* Par le théorème du transfert, $G_X(t)$ est défini si, et seulement si, $\sum \mathbb{P}(X=n)t^n$ converge absoluement et on a alors $G_X(t) = \sum_{n=0}^{+\infty} \mathbb{P}(X=x)t^n$.

* La série entière $\sum \mathbb{P}(X=n)t^n$ a un rayon de convergence supérieur ou égal à 1, elle est définie, converge normalement sur $\mathcal{D}_f(0,1)$ et est continue sur [-1;1].

Proposition 6: [Deschamps, p.949]

La loi de X est entièrement déterminée par G_X .

Plus précisément, on a : $\forall n \in \mathbb{N}, \ \mathbb{P}(X=n) = n!G_X^{(n)}(0)$.

Théorème 7: [Deschamps, p.950]

X est d'espérance finie si, et seulement si, G_X est dérivable en 1 et on a alors $\mathbb{E}(X) = G_X'(1)$.

Théorème 8 : [Deschamps, p.950]

X possède un moment d'ordre 2 si, et seulement si, G_X est deux fois dérivable en 1 et on a alors $G_X''(1) = \mathbb{E}(X(X-1))$.

Corollaire 9: [Deschamps, p.950]

Si G_X est deux fois dérivable en 1, alors X possède un moment d'ordre 2 et on a alors $\mathbb{E}(X^2) = G_X''(1) + G_X'(1)$.

Exemple 10: [Deschamps, p.950]

Si X est une variable aléatoire réelle de loi de Poisson de paramètre $\lambda > 0$, alors on a pour tout $t \in \mathbb{R}$, $G_X(t) = e^{\lambda(t-1)}$. On retrouve bien le fait que $\mathbb{E}(X) = \lambda$ et $\mathrm{Var}(X) = \lambda$.

II.3 Pour aller plus loin...

Soient $a, b \in]0; 1[$.

On se place ici dans le cas linéaire fractionnaire où X suit la loi :

$$\mathbb{P}(X=0) = a \text{ et } \forall k \in \mathbb{N}^*, \ \mathbb{P}(X=k) = (1-a)b(1-b)^{k-1}$$

On calcule d'abord série génératrice G de X :

$$\forall x \in [0, 1], \ G(x) = a + \sum_{k=1}^{+\infty} (1 - a)b(1 - b)^{k-1}x^k = a + (1 - a)bx + \frac{1}{1 - (1 - b)x}$$

En particulier, on trouve $m=G'(1)=(1-a)+\frac{(1-a)(1-b)}{b}=\frac{1-a}{b}.$ De plus :

Si
$$m \neq 1$$
, $\frac{G(x) - \alpha}{G(x) - 1} = \frac{x - \alpha}{m(x - 1)}$ (avec $\alpha = \frac{a}{1 - b}$)

Si
$$m = 1$$
, $\frac{1}{G(x) - 1} = \frac{1}{x - 1} + \beta$ (avec $\beta = \frac{b - 1}{b}$)

On a donc avec ces expressions que $\pi_n = \alpha \frac{m^n - 1}{m^n - \alpha}$ pour $m \neq 1$ et $\pi_n = \frac{n(1-b)}{n(1-b)+b}$ pour m = 1. En faisant tendre n vers $+\infty$, on obtient $P_{ext} = 1$ si $m \leq 1$ et $P_{ext} = \frac{a}{1-b}$ si m > 1 (et on retrouve en particulier le résultat à la fin du développement).

II.4 Recasages

Recasages: 226 - 228 - 229 - 253 - 264 - 266.

III Bibliographie

- Xavier Gourdon, Les maths en tête, Algèbre et Probabilités.
- Claude Deschamps, Maths MP/MP* Tout-en-un.