Algèbre 2 Racines des polynômes

s des poly minimaux

Question 1/8

Caractérisation de la séparabilité via $\operatorname{Hom}_{\sigma}(\mathbb{K}(\alpha), \mathbb{M}^{\operatorname{alg}})$

Réponse 1/8

$$\alpha$$
 est séparable si et seulement si $\left|\operatorname{Hom}_{\sigma}\left(\mathbb{K}(\alpha), \mathbb{M}^{\operatorname{alg}}\right)\right| = \left[\mathbb{K}(\alpha):\mathbb{K}\right]$ α est inséparable si et seulement si $\left|\operatorname{Hom}_{\sigma}\left(\mathbb{K}(\alpha), \mathbb{M}^{\operatorname{alg}}\right)\right| = \frac{\left[\mathbb{K}(\alpha):\mathbb{K}\right]}{p^n}, n \geqslant 1$ En particulier, si α est séparable sur \mathbb{K} et

 $\beta \in \mathbb{K}(\alpha)$ alors β est séparable sur \mathbb{K}

Question 2/8

 α est séparable sur $\mathbb K$

Réponse 2/8

 $P_{\alpha,\mathbb{K}}$ n'a que des racines simples

Question 3/8

$$\deg \operatorname{sep}_{\mathbb{K}}(\alpha)$$

Réponse 3/8

$$\deg(S_{\alpha})$$

Question 4/8

Séparabilité dans les tours d'extensions

Réponse 4/8

Si $\mathbb{L}/\mathbb{F}/\mathbb{K}$ sont des extensions algèbriques et $\alpha \in \mathbb{L}$ est séparable sur \mathbb{K} alors α est séparable sur \mathbb{F}

Question 5/8

$$\deg \operatorname{sep}_{\mathbb{K}}(\alpha)$$

Réponse 5/8

$$\left[\mathbb{K}(\alpha):\mathbb{K}\right]_{s} = \left|\operatorname{Hom}_{\sigma}\left(\mathbb{K}(\alpha), \mathbb{M}^{\operatorname{alg}}\right)\right| = \operatorname{deg}(S_{\alpha})$$
$$\left[\mathbb{K}(\alpha):\mathbb{K}\right] = p^{n}\left[\mathbb{K}(\alpha):\mathbb{K}\right]_{s}$$

Question 6/8

Multiplicativité des degrés de séparabilité

Réponse 6/8

Si α est algébrique sur \mathbb{K} et $\beta \in \mathbb{K}(\alpha)$ $[\mathbb{K}(\alpha):\mathbb{K}]_{s} = [\mathbb{K}(\alpha):\mathbb{K}(\beta)]_{s} \times [\mathbb{K}(\beta):\mathbb{K}]_{s}$ En particulier, si α est séparable sur $\mathbb K$ alors β est séparable sur \mathbb{K} et si α est pûrement inséparable sur K alors β est pûrement inséparable sur K

Question 7/8

Caractérisation de la séparabilité via $P_{\alpha,\mathbb{K}}$

Réponse 7/8

 α est séparable si et seulement si $P_{\alpha,\mathbb{K}}$ est séparable sur \mathbb{K} α est inséparable si et seulement si $P_{\alpha,\mathbb{K}}$ est inséparable sur K α est pûrement inséparable si et seulement si $P_{\alpha,\mathbb{K}}$ est pûrement inséparable sur \mathbb{K}

Question 8/8

 α est inséparable sur $\mathbb K$

Réponse 8/8

Il existe $Z_{\alpha} \in \mathbb{K}[X]$ irréductible tel que $P_{\alpha,\mathbb{K}} = S_{\alpha}(X^{p^n})$ rac $\mathbb{L}(P_{\alpha,\mathbb{K}}) \hookrightarrow \operatorname{rac}\mathbb{L}(S_{\alpha})$ et c'est une bijection si et seulement si $\mathbb{D}_{\mathbb{K}}(P) \subset \mathbb{I}$

et seulement si
$$D_{\mathbb{K}}(P) \subset \mathbb{L}$$

 α^{p^n} est séparable avec $P_{\alpha^{p^n},\mathbb{K}} = S_{\alpha}$
 $\operatorname{val}_{\alpha}(P_{\alpha,\mathbb{K}}) = p^n$