WHAT IS CLAIMED IS:

1	1. A ser	nsing apparatus, comprising:	
2	(a) a sub	stantially planar occlusive backing; and	
3	(b) a rep	orter system that absorbs or emits a detectable radiation, said	
4	reporter system attached, ac	thered, or otherwise connected to a first planar surface of the	
5	occlusive backing, wherein	said reporter system binds an analyte of interest and the ability	
6	of said reporter system to absorb or emit radiation is detectably altered in a concentration		
7	dependent manner when the analyte is bound to said reporter system.		
1	2. The	apparatus of claim 1 wherein said occlusive backing has	
2	sufficient drape characteris	tics to allow positioning of said apparatus over a skin or	
3	mucosal surface.		
1		apparatus of claim 1 wherein the reporter system comprises a	
2	specific binding pair having a first component that is an analyte-specific binding ligand		
3	comprising a first light-absorbing material, and a second component that binds to the		
4	binding ligand of said first	component and comprises a second light-absorbing material,	
5	wherein:		
6	(a) bind	ling of said second component to the first component is	
7	reversible;		
8	(b) the	analyte binds to the first component in a competitive manner,	
9	thereby displacing said second component; and		
10	(c) disp	placement of the second component produces a detectable	
11	alteration in the energy transfer between the first component and the second component,		
12	wherein said alteration is proportional to the concentration or amount of said analyte that		
13	binds to the first component.		
1	4. The	e apparatus of claim 3 wherein the binding ligand is a glucose	
2	binding ligand and the ana	alyte of interest is glucose.	
1	5. The	e apparatus of claim 4 wherein said ligand is concanavalin-A.	
1	6. The	e apparatus of claim 4 wherein the second component comprises	
2	a dextran glycoconjugate.		

1	7. The apparatus of claim 3 wherein the first and second		
2	light-absorbing materials are fluorophores.		
1	8. The apparatus of claim 3 wherein the detectable alteration in the		
2	energy transfer between the first component and the second component comprises a		
3	non-radiative fluorescence resonance energy transfer between said first and second		
4	light-absorbing materials.		
1	9. The apparatus of claim 3 wherein the first component of the specific		
2	binding pair is tetramethylrhodamine isothiocyanate-concanavalin A ("TRITC-ConA")		
3	and the second component of the specific binding pair is fluorescein isothiocyanate-		
4	dextran ("FITC-dextran").		
1	10. The apparatus of claim 1 wherein the reporter system is disposed		
2	within a polymer matrix having a pore size that allows for ingress and egress of a fluid		
3	containing or suspected of containing said analyte of interest.		
1	11. The apparatus of claim 10 wherein said polymer matrix is in		
2	particulate form.		
1	12. The apparatus of claim 11 wherein the polymer matrix is in the form		
2	of porous particles having a size predominantly in the range of 0.1 to 250 μm.		
1	13. A method for detecting the presence or amount of an analyte present		
2	beneath a target skin or mucosal surface of an individual, said method comprising:		
3	(a) disrupting the target surface to create one or more passages in that		
4	surface sufficient to allow said analyte to flow, exude, diffuse or otherwise pass from		
5	beneath the target surface to the target surface;		
6	(b) placing the sensing apparatus of claim 1 in contact with the target		
7	surface and allowing the reporter system to contact analyte that has passed to the target		
8	surface; and		
9	(c) detecting an alteration in the ability of the reporter system to absorb		
10	or emit radiation, thereby obtaining a signal indicative of the presence and/or amount of		
11	analyte present beneath the target surface.		

a calibration step.

21

	1	14.	The method of claim 13 wherein the target surface is disrupted by
	2	accelerating particles i	nto said target surface.
	1	15.	The method of claim 14 wherein the particles have a size ranging
	2	from 0.1-250 μm .	
	1	16.	The method of claim 15 wherein the particles have a size ranging
	2	from 10-70 μm.	
	1	17.	The method of claim 13 wherein the analyte is glucose.
	1	18.	A method for quantifying glucose present in a body fluid beneath a
	2	target surface, said me	ethod comprising:
	3	(a)	accelerating particles into the target surface, wherein acceleration of
an an	4	said particles into the	target surface is effective to allow passage of glucose from beneath
eže V 7	5	the target surface to th	e target surface;
the thank attending to the first	6	(b)	contacting the glucose present at the target surface with a specific
4	7	binding pair comprisi	ng a first component which is a glucose binding ligand containing a
er Č	8	first light-absorbing m	naterial, and a second component which is a glycoconjugate
	9	containing a second li	ght-absorbing material, the excited state energy level of the first
	10	light-absorbing mater	ial overlapping with the excited state energy level of the second
	11	light-absorbing mater	ial, said ligand and said glycoconjugate being chosen such that they
	12	reversibly bind to each	n other thereby allowing glucose present at the target surface to
	13	displace said glycocor	njugate and competitively bind to said ligand;
	14	(c)	determining the extent to which non-radiative fluorescence
	15	resonance energy tran	sfer occurs between the first light-absorbing and the second light-
	16	absorbing material in	the presence of the glycoconjugate displaced by glucose and the
	17	ligand reversibly bour	nd to glucose; and
	18	(d)	comparing the result of step (c) with the relationship between the
	19	extent of non-radiativ	e energy transfer between the first light-absorbing material and the
	20	second light-absorbin	g material and glucose concentration in the body fluid determined in

2

1	19. The	method of claim 18, wherein acceleration of said particles into	
2	the target surface serves to increase the permeability of the target surface.		
1	20 TIL.	and a falsing 10 miles in the mentioles are considered	
1		e method of claim 18, wherein the particles are accelerated	
2	toward the target surface using a needleless syringe device.		
1	21. The	e method of claim 18, wherein the particles are accelerated	
2	toward the target surface at a velocity of about 100 to 2,500 m/sec.		
1	22. The	e method of claim 18, wherein the particles have a size	
		<u>-</u>	
2	predominantly in the range of 0.1 to 250 μm.		
1	23. The	e method of claim 18, wherein the particles penetrate the skin to a	
2	depth in the range of 1 to 50 μm .		
1	24. A 1	nethod for detecting the presence or amount of an analyte present	
2		ace of an individual, said method comprising:	
3	· ·	viding a particulate reporter system, wherein said reporter system	
4	•	est and the ability of said reporter system to absorb or emit	
5		encentration-dependent manner when said analyte is bound to said	
6		particulate reporter system is comprised of particles having a size	
7	ranging from 0.1-250 μm		
8	(b) adı	ministering said reporter system into the target skin surface such	
9	that said particulate reporter system is delivered to a substantially uniform and		
10	homogenous depth within said skin;		
11	(c) all	owing the reporter system to contact the analyte; and	
12	(d) det	ecting an alteration in the ability of said reporter system to absorb	
13	or emit radiation thereby obtaining a signal indicative of the presence or amount of analyte		
14	present beneath said targe	et skin surface.	
1	25. Th	e method of claim 24 wherein said particulate reporter system is	
2	delivered using a needlele		
1	26. Th	e method of claim 25 wherein said particulate reporter system is	

accelerated toward the target skin surface at a velocity of about 100 to 2,500 m/s.

	1		27.	The method of claim 25 wherein said particulate reporter system is
2		delivered at a d	lepth of	about 1-50 μm beneath said target skin surface.
	1		28.	The method of claim 24 wherein the particles have a size ranging
	2	from 10-70 µm	1 .	
	1		29.	The method of claim 24 wherein said reporter system comprises a
	2	specific bindin	g pair h	naving a first component that is an analyte-specific binding ligand
	3	comprising a fi	irst ligh	t-absorbing material, and a second component that binds to the
ź	4	binding ligand	of said	first component and comprises a second light-absorbing material,
	5	wherein:		
1	6		(a)	binding of said second component to the first component is
ii.	7	reversible;		
į.	8		(b)	the analyte binds to the first component in a competitive manner,
	9	thereby displac	cing sai	d second component; and
: ! 1	.0		(c)	displacement of the second component produces a detectable
1	.1	alteration in th	e displa	acement of the second component and produces a detectable
1	2	alteration in the energy transfer between the first component and the second component,		
1	3	wherein said alteration is proportional to the concentration or amount of said analyte that		
1	4	binds to the fir	st com	ponent.
	1		30.	The method of claim 29 wherein the binding ligand is a glucose
	2	binding ligand	and the	e analyte of interest is glucose.
	1		31.	The method of claim 29 wherein said ligand is concanavalin-A.
	1		32.	The method of claim 29 wherein the second component comprises a
	2	dextran glycoc	onjuga	-
	1		33.	The method of claim 29 wherein the first and second light-absorbing
	2	materials are f	luoroph	nores.
	1		34.	The method of claim 29 wherein the detectable alteration in the
	2	displacement of	of the se	econd component produces a detectable alteration in the energy
	3	transfer between the first component and the second component comprising a		

- 4 non-radiative fluorescence resonance energy transfer between said first and second
- 5 light-absorbing materials.