预习报告 实验记录		公 记录	分析讨论		总成绩	
25	30	25			80	

专业:	物理学类	年级:	2023 级
姓名:	姚昊廷	学号:	22322091
日期:	2024.11.7	教师签名:	

转动惯量测量和角动量守恒验证

【实验报告注意事项】

- 1. 实验报告由三部分组成:
 - (a) 预习报告:(提前一周)认真研读<u>实验讲义</u>,弄清实验原理;实验所需的仪器设备、用具及其使用(强烈建议到实验室预习),完成课前预习思考题;了解实验需要测量的物理量,并根据要求提前准备实验记录表格(第一循环实验已由教师提供模板,可以打印)。预习成绩低于 10 分(共 20 分)者不能做实验。
 - (b) 实验记录:认真、客观记录实验条件、实验过程中的现象以及数据。实验记录请用珠笔或者钢笔书写并签名(用铅笔记录的被认为无效)。保持原始记录,包括写错删除部分,如因误记需要修改记录,必须按规范修改。(不得输入电脑打印,但可扫描手记后打印扫描件);离开前请实验教师检查记录并签名。
 - (c) 分析讨论: 处理实验原始数据(学习仪器使用类型的实验除外),结合误差理论的课程内容,对 所有测量数据进行误差分析,转动惯量理论值、实验值、转动惯量变化前后的角动量测量值均用 A±δA 的形式表示,分析转动惯量理论值和实验值是否在误差范围内吻合,转动惯量变化前后 的角动量测量值是否在误差范围内吻合;按规范呈现数据和结果(图、表),包括数据、图表按顺 序编号及其引用;分析物理现象(含回答实验思考题,写出问题思考过程,必要时按规范引用数 据);最后得出结论。

实验报告就是将预习报告、实验记录、和数据处理与分析合起来,加上本页封面。

- 2. 每次完成实验后的一周内交实验报告(特殊情况不能超过两周)。
- 3. 除实验记录外,实验报告其他部分建议双面打印。

【实验安全与实验室注意事项】

- 1. 实验前: 要预习, 明确实验目的和达成的目标;
- 2. 实验中: 取、放和安装待测物体时要轻拿轻放,不得摔碰;

- 3. 不得随意拿取其它实验台的部件,如有缺失,请及时举手告知老师;
- 4. 平台转动前,应注意保持转轴在垂直方向,即注意调节 A 型基座水平;
- 5. 实验后: 仔细分析处理数据, 认真撰写实验报告。

目录

1	转动惯量测量和角动量守恒验证 预习报告	4
	1.1 实验目的	4
	1.2 仪器用具	4
2	转动惯量测量和角动量守恒验证 实验记录 2.1 实验过程中遇到的问题记录	6 8
3	转动惯量测量和角动量守恒验证分析与讨论	9
A	ppendices	12

转动惯量测量和角动量守恒验证 预习报告

1.1 实验目的

本实验的目的是通过实验测量出圆环和圆盘的转动惯量,并验证这些值与理论值计算值是否一致。

1.2 仪器用具

编号	仪器用具名称	数量	主要参数(型号,测量范围,测量精度等)
1	DataStudio 程序	1	
2	PASCO 接口	1	
3	转动惯量组件	1	ME 8953
4	摄影 /滑轮系统	1	
5	天平	1	最小分度值 0.01g
6	卡钳	1	最小分度值 0.02mm
7	回形针	1	
7	质量块和悬挂装置	1	

【原理概述】

理论上,围绕其质量中心转动的圆环的转动惯量 I 为:

$$I = \frac{1}{2}M(R_1^2 + R_2^2)$$

其中 M 为圆环的质量, R_1 为圆环的内径, R_2 为圆环的外径。圆盘绕其质心的转动惯量为

$$I = \frac{1}{2}MR^2$$

其中 M 为圆盘的质量,R 为圆盘的半径。绕直径的转动惯量为

$$I = \frac{1}{4}MR^2$$

要通过实验找出转动惯量,需要对物体施加一个已知的扭矩,并测量由此产生的角加速度。由于 $\tau = I\alpha$

$$I = \tau \alpha$$

其中, α 是角加速度,等于 $\frac{a}{r}$ 。 τ 是重物悬挂在缠绕在仪器底座上的线上所产生的扭矩。

$$\tau = Tr$$

其中,r 是缠绕线的圆柱体半径,T 是设备旋转时线的张力。对悬挂质量 m 应用牛顿第二定律,得出

$$\Sigma F = mg - T = ma$$

根据线的张力求解:T = m(g - a)

一旦确定了质量 (m) 的线加速度,就可以得到扭矩和角加速度,从而计算出转动惯量。【实验前思考题】

思考题 1.1: 写出你认为实验中需要重点考虑的内容或注意事项

- 1. 实验装置中的绕线柱应该尽可能调平。
- 2. 实验三中待稳定后应迅速加上圆盘。
- 3. 计算绕线半径时应考虑绳粗。
- 4. 摩擦力平衡需准确。

专业:	物理学类	年级:	2023 级
姓名:	姚昊廷	学号:	22322091
室温:	25.0°C	实验地点:	A507 F2
学生签名:		评分:	
实验时间:	2024.11.7	教师签名:	

转动惯量测量和角动量守恒验证 实验记录

【实验内容、步骤、结果】(按照实验内容和步骤依次简要记录每项实验的"内容、步骤、结果",注意包含实验数据、现象照片或现象描述等)

表 1: 实验 1 测量结果

测量次序测量对象	1	2	3	4	5	结果 (取置信概率 99%)
圆环质量 (g)	1433.43	1433.46	1433.47	1433.47	1433.47	1433.46±0.03
圆盘质量 (g)	1463.56	1463.59	1463.59	1463.59	1463.6	1463.59±0.03
圆环内径 (mm)	107.4	107.36	107.4	107.38	107.40	107.38±0.04
圆环外径 (mm)	127.42	127.46	127.48	127.48	127.46	127.46±0.05
圆盘直径 (cm)	22.85	22.85	22.90	22.90	22.90	22.88±0.06

表 2: 转动惯量数据

	圆环与圆盘组合	单独圆盘
摩擦质量	12.5g	9.5g
悬挂质量	50g	50g
斜率	0.281293rad/s	0.49071rad/s
半径	8.77mm	8.77mm

表 3: 结果

环盘整体的转动惯量	0.12912kg·m² (实验值),0.014488kg·m² (理论值)
圆盘的转动惯量(实验值)	$0.8611 \mathrm{kg}\cdot\mathrm{m}^2$
圆环的转动惯量(实验值)	$0.0053 \mathrm{kg}\cdot\mathrm{m}^2$
圆盘的转动惯量(理论值)	$0.009119 \mathrm{kg}\cdot\mathrm{m}^2$
圆环的转动惯量(理论值)	$0.005369 \mathrm{kg}\cdot\mathrm{m}^2$
圆盘竖直的转动惯量(实验值)	$0.00488 \mathrm{kg}\cdot\mathrm{m}^2$
圆盘竖直的转动惯量(理论值)	$0.004559 \mathrm{kg}\cdot\mathrm{m}^2$
圆盘转动惯量的百分比差异	-0.025%
圆环转动惯量的百分比差异	-0.0034%
圆盘竖直转动惯量的百分比差异	-0.0161%

验证角动量守恒:

圆盘的转动惯量(理论值): $0.009119 kg \cdot m^2$ 环盘整体的转动惯量(理论值): $0.014488 kg \cdot m^2$

表 4: 验证角动量守恒结果

角速度 rad/s	圆盘	3.749	5.686	6.377
	 环盘	2.394	3.581	3.906
角动量 kg·m²/s	圆盘	0.034186	0.051849	0.05815
	环盘	0.34684	.051881	0.056589
	百分比差异	1.4558%	0.611%	2.684%

误差允许范围内可认为角动量守恒

2.1 实验过程中遇到的问题记录

专业:	物理学	年级:	2023 级
姓名:	姚昊廷	学号:	22322091
日期:	2024.11.7	评分:	

转动惯量测量和角动量守恒验证分析与讨论

【分析与讨论】(按照实验过程依次完成每项实验的"分析和讨论")以圆盘绕中心轴的转动惯量误差计算为例。分别给出圆盘绕中心轴的转动惯量、圆盘绕直径轴的转动惯量、圆筒的转动惯量、转动惯量变化前后的角动量结果的误差计算过程和分析结果。

* 随机误差合成方法:

$$\sigma = \sqrt{\frac{\displaystyle\sum_{i=1}^{n}(l_i - \bar{l})^2}{n-1}}$$

n 为测量测量次数, l_i 为单次测量值, \bar{l} 为测量平均值 多次测量取平均值的随机误差计算方法:

$$\sigma_y = \sqrt{\left(\frac{\partial f}{\partial x_1}\right)^2 \sigma_{x_1}^2 + \left(\frac{\partial f}{\partial x_2}\right)^2 \sigma_{x_2}^2 + \dots + \left(\frac{\partial f}{\partial x_n}\right)^2 \sigma_{x_n}^2}$$

一、理论值

$$I_t = \frac{1}{2}MR^2$$

测量给出圆盘质量 M,B 类不确定度即天平精度取 $0.1\mathrm{g}$; 测量给出圆盘半径 R,B 类不确定度若为游标卡尺测量精度取 $0.02\mathrm{mm}$,若为钢尺测量精度取 $0.2\mathrm{mm}$ 。通过误差传递计算,给出 $I_t\pm\delta I_t$ 。

二、实验值

$$I_e = (m_c - m_f)r^2(\frac{g}{g} - 1)$$

分别测量给出摩擦质量 m_f 和悬挂质量 m_t ,B 类不确定度即天平精度取 0.1g; 测量给出圆柱半径 r,B 类不确定度即游标卡尺测量精度取 0.02mm; 重物下落加速度至少测量 5 次,分别给出各 a_i 的测量结果,统计给出其 A 类不确定度。通过误差传递计算,给出 $I_e \pm \delta I_e$ 。

三、结果比较

利用计算数据比较法,判断测量结果是否存在系统误差。如满足下式,则两组结果间不存在系统误差。

$$|\overline{x}_i - \overline{x}_j| < 2\sqrt{\sigma_i^2 + \sigma_j^2}$$

一、(1) 计算理论值

$$I_1 = \frac{1}{2}MR^2 = 9.12 \times 10^{-3} \text{kg} \cdot \text{m}^2($$
水平圆盘)

$$I_2 = \frac{1}{4}MR^2 = 4.56 \times 10^{-3} \text{kg} \cdot \text{m}^2($$
竖直圆盘)

$$I_3 = \frac{1}{2}M(R_1^2 + R_2^2) = 5.36 \times 10^{-3} \text{kg} \cdot \text{m}^2($$
水平圆环)

(2)B 类不确度分析:游标卡尺: 0.02mm,钢尺: 0.2mm,天平 0.1g。

$$U_{r_1} = \frac{0.02 \text{mm}}{\sqrt{3}} = 0.0115 \text{mm}$$

$$U_{r_2} = \frac{0.2 \text{mm}}{\sqrt{3}} = 0.115 \text{mm}$$

$$U_M = \frac{0.1 \text{g}}{\sqrt{3}} = 0.058 \text{g}$$

水平圆盘:

$$\delta I_1 = \pm \sqrt{\left(\frac{\partial I_1}{\partial R}U_{r_2}\right)^2 + \left(\frac{\partial I_1}{\partial M}U_M\right)^2} = \pm 2.4 \times 10^{-6} \text{kg} \cdot \text{m}^2$$

竖直圆盘:

$$\delta I_2 = \pm \sqrt{\left(\frac{\partial I_2}{\partial R} U_{r_2}\right)^2 + \left(\frac{\partial I_2}{\partial M} U_M\right)^2} = \pm 1.2 \times 10^{-6} \text{kg} \cdot \text{m}^2$$

圆环:

$$\delta I_3 = \pm \sqrt{(\frac{\partial I_3}{\partial R_1} U_{r_1})^2 + (\frac{\partial I_3}{\partial R_2} U_{r_2})^2 + (\frac{\partial I_3}{\partial M} U_M)^2} = \pm 1.4 \times 10^{-6} \text{kg} \cdot \text{m}^2$$

(3) 水平圆盘: $(9120 \pm 2.4) \times 10^{-6} \text{kg} \cdot \text{m}^2$

竖直圆盘: $(4560 \pm 1.2) \times 10^{-6} \text{kg} \cdot \text{m}^2$

圆环: $(5360 \pm 1.4) \times 10^{-6} \text{kg} \cdot \text{m}^2$

二、实验值(1)

$$I_1 = 8.61 \times 10^{-3} \text{kg} \cdot \text{m}^2$$

 $I_2 = 4.88 \times 10^{-3} \text{kg} \cdot \text{m}^2$
 $I_3 = 5.3 \times 10^{-3} \text{kg} \cdot \text{m}^2$

(2)A 类不确定度:

$$U_{a_1} = \sqrt{\frac{\sum_{i=1}^{3} (I_1 - \overline{I})^2}{3 \times 2}} = 2.7 \times 10^{-4} \text{kg} \cdot \text{m}^2$$

$$U_{a_2} = \sqrt{\frac{\sum_{i=1}^{3} (I_2 - \overline{I})^2}{3 \times 2}} = 7.5 \times 10^{-4} \text{kg} \cdot \text{m}^2$$

$$U_{a_3} = \sqrt{\frac{\sum_{i=1}^{3} (I_3 - \overline{I})^2}{3 \times 2}} = 2.5 \times 10^{-5} \text{kg} \cdot \text{m}^2$$

B 类不确定度:

$$U_{B_1} = \sqrt{\left(\frac{\partial I_1}{\partial R}U_{r_2}\right)^2 + \left(\frac{\partial I_1}{\partial M}U_M\right)^2} = 4.2 \times 10^{-5} \text{kg} \cdot \text{m}^2$$

$$U_{B_2} = \sqrt{\left(\frac{\partial I_2}{\partial R}U_{r_2}\right)^2 + \left(\frac{\partial I_2}{\partial M}U_M\right)^2} = 2.6 \times 10^{-5} \text{kg} \cdot \text{m}^2$$

$$U_{B_3} = \sqrt{\left(\frac{\partial I_3}{\partial R}U_{r_2}\right)^2 + \left(\frac{\partial I_3}{\partial M}U_M\right)^2} = 2.0 \times 10^{-5} \text{kg} \cdot \text{m}^2$$

合成不确定度:

$$U_{C_1} = \sqrt{U_{a_1}^2 + U_{B_1}^2} = 2.8 \times 10^{-5} \text{kg} \cdot \text{m}^2$$

$$U_{C_2} = \sqrt{U_{a_2}^2 + U_{B_2}^2} = 7.9 \times 10^{-5} \text{kg} \cdot \text{m}^2$$

$$U_{C_3} = \sqrt{U_{a_3}^2 + U_{B_3}^2} = 2. \times 10^{-5} \text{kg} \cdot \text{m}^2$$

水平圆盘: $I_1 = (861 \pm 2.8) \times 10^{-5} \text{kg} \cdot \text{m}^2$ 竖直圆盘: $I_2 = (488 \pm 7.9) \times 10^{-5} \text{kg} \cdot \text{m}^2$ 圆环: $I_3 = (530 \pm 2.5) \times 10^{-5} \text{kg} \cdot \text{m}^2$ 三、结果比较

表 5: 比较

	水平圆盘	竖直圆盘	圆环
$ \overline{x}_i - \overline{x}_j $	5.08×10^{-4}	3.2×10^{-4}	6.9×10^{-4}
$2\sqrt{\sigma_i^2 + \sigma_j^2}$	1.01×10^{-4}	1.58×10^{-4}	5.09×10^{-4}

- 三组均认为存在系统误差,可能原因有:
- 1. 摩擦力平衡不准确;
- 2. 测量工具存在系统误差。

对于角动量守恒实验,则在误差允许范围内认为角动量守恒。

Appendices

原件扫描

	DATE.	A PAGE	
图场中 143.49 143.469	1433, 479 1433.47		. FTAG
医皮质 (46)、56) (46)、599	1463.599 1463-9	9 1933,479	
12 70 15 1V7 40mm 107.36mm		9 1463,609	
250 127,42mm 127.46mm		Imm 1v7,40mm	1
DD的位 22xt(m >2 x51m	11	timm \$127.46	nm
KADA12 1.13mm 1.20mm	1, comm 1, comm		
16万英和安公		1,20mm	-
11816-112112	30.66mm 30.60mm 37.52mm 37.50mm	30.62mm	
4 VI 17 11	1.10mm 17.14mm	11300	
<u>************************************</u>	盘	17.14mm	
序章 /2.59	9,59		
37.59	40.59		
·	+ 2011-4 0001201	-4 0 1/2/ NAT 11	
	13.9×10 4 0.289 ±3.9×1	0 1 0.48 6 ITE 6X6-4	0.500£7.1X109
	1,752		0.4825cX13
			-
1858年 1.00 3.081 1.0	070		
是接着一个一个			
区位至有时针4 0/8/21/10	0.3871 2.2X10-5	0.385\$ 2.0×1	67
海边 至 小三			
ELEW 3,749 5.68		,	
展生水 Pad/> 2.394 7.5	3 3,906	8	
	, '		

桌面

