Route: Gavage, IV

Species/Strain: Rat/Fischer 344

Toxicokinetics Data Summary Test Compound: alpha-Thujone CAS Number: 546-80-5

Date Report Requested: 12/29/2016 Time Report Requested: 14:32:29

Lab: Battelle Columbus

		ı	Male	
			Treatment Groups (mg/kg)	
_	25 a	50 a	1.6 IV ^a	25 b
		Brain		Plasma
Comin(pred) (ng/mL)				
Cmax(pred) (ng/mL)				292 ± 39
T _{max(pred)} (minute)				22.4 ± 5.0
Cmax(obs) *	728 ± 38 ng/g	1720 ± 660 ng/g	1590 ± 520 ng/g	
Tmax(obs) (minute)	15.3	16.7	10.7	
1/2 (minute)	107	86.1	60.0	
1/2(Alpha) (minute)				
/2(Beta) (minute)				
minute^-1)				0.171 ± 0.053
_{2(k01)} (minute)				4.06 ± 1.27
(minute^-1)				$0.00407 \pm 4.4E-4$
_(k10) (minute)				170 ± 18
(minute^-1)				
(minute^-1)				
(mL/min/kg)				
₂ (mL/min/kg)				
_{1(F)} (mL/min/kg)				318 ± 33
(mL/kg)				
(mL/kg)				
_{F)} (mL/kg)				78100 ± 11900
RT (minute)				
JC _{0-t} (ng/g*min)	81400	249000	67900	83400
.UC _{inf} (ng/g*min)	91000	266000	68600	78700 ± 8200

Route: Gavage, IV

Species/Strain: Rat/Fischer 344

Toxicokinetics Data Summary Test Compound: alpha-Thujone CAS Number: 546-80-5

Date Report Requested: 12/29/2016 Time Report Requested: 14:32:29

Lab: Battelle Columbus

Male

	Treatment Groups (mg/kg)						
_		50 b	ı	1	.6 IV	' c	
			P	lasma			
C _{0min(pred)} (ng/mL)				684	±	80	
C _{max(pred)} (ng/mL)	955	±	215				
T _{max(pred)} (minute)	23.3	±	8.5				
Cmax(obs) *							
T _{max(obs)} (minute)							
t _{1/2} (minute)							
t _{1/2(Alpha)} (minute)				8.82	±	1.07	
t _{1/2(Beta)} (minute)				201	±	12	
k ₀₁ (minute^-1)	0.15	0 ±	0.078				
t _{1/2(k01)} (minute)	4.62	±	2.40				
k ₁₀ (minute^-1)	0.0051	7 ± 7	7.6E-4	0.027	8 ±	0.0029	
t _{1/2(k10)} (minute)	134	±	20	24.9	±	2.6	
k ₁₂ (minute^-1)				0.044	5 ±	0.0067	
k ₂₁ (minute^-1)				0.009	73 ±	0.00103	
Cl ₁ (mL/min/kg)				65.1	±	2.3	
Cl ₂ (mL/min/kg)				104	±	11	
CI _{1(F)} (mL/min/kg)	240	±	45				
V ₁ (mL/kg)				2340	±	270	
V ₂ (mL/kg)				10700	±	800	
V _{1(F)} (mL/kg)	46400	± 1	2300				
MRT (minute)				200	±	11	
AUC _{0-t} (ng/g*min)	159000						
AUC _{inf} (ng/g*min)	208000	± 3	39000	24600	±	900	

Route: Gavage, IV

Species/Strain: Rat/Fischer 344

Toxicokinetics Data Summary Test Compound: alpha-Thujone CAS Number: 546-80-5

Date Report Requested: 12/29/2016 Time Report Requested: 14:32:29

Lab: Battelle Columbus

Female
_

_	Treatment Groups (mg/kg)					
_	25 ^a	50 a	1.6 IV ^a		25 b	
		Brain				
Comin(pred) (ng/mL)						
C _{max(pred)} (ng/mL)				440	± 110	
T _{max(pred)} (minute)				8.31	± 8.37	
Cmax(obs) *	2330 ± 1450 ng/g	5820 ± 1100 ng/g	$1810 \pm 360 \text{ ng/g}$			
T _{max(obs)} (minute)	14.7	15.7	8.67			
t _{1/2} (minute)	206	149	43.7			
t _{1/2(Alpha)} (minute)						
t _{1/2(Beta)} (minute)						
k ₀₁ (minute^-1)				0.584	± 0.747	
t _{1/2(k01)} (minute)				1.19	± 1.51	
k ₁₀ (minute^-1)				0.0047	2 ± 0.00113	
t _{1/2(k10)} (minute)				147	± 35	
k ₁₂ (minute^-1)						
k ₂₁ (minute^-1)						
CI ₁ (mL/min/kg)						
Cl ₂ (mL/min/kg)						
CI _{1(F)} (mL/min/kg)				258	± 56	
V ₁ (mL/kg)						
V ₂ (mL/kg)						
V _{1(F)} (mL/kg)				54600	± 14900	
MRT (minute)						
AUC _{0-t} (ng/g*min)	224000	658000	45400	77300		
AUC _{inf} (ng/g*min)	306000	673000	46000	97100	± 21100	

Route: Gavage, IV

Species/Strain: Rat/Fischer 344

Toxicokinetics Data Summary
Test Compound: alpha-Thujone
CAS Number: 546-80-5

Date Report Requested: 12/29/2016 Time Report Requested: 14:32:29

Lab: Battelle Columbus

Female

	Treatment Groups (mg/kg)							
	50 b				1.6 IV °			
			F	Plasma				
$C_{0min(pred)}$ (ng/mL)					522	±	99	
C _{max(pred)} (ng/mL)	2270	±	450					
T _{max(pred)} (minute)	18.4	±	7.0					
Cmax(obs) *	263	0 ± 2	2180 ng/mL					
T _{max(obs)} (minute)	30.0	±	0.0					
t _{1/2} (minute)								
t _{1/2(Alpha)} (minute)					6.35	±	0.91	
t _{1/2(Beta)} (minute)					56.7	±	11.4	
k ₀₁ (minute^-1)	0.18	3 ±	0.098					
t _{1/2(k01)} (minute)	3.78	±	2.02					
k ₁₀ (minute^-1)	0.0072	3 ± 6	6.9E-4		0.080	7 ±	0.0109	
t _{1/2(k10)} (minute)	95.9	±	9.1		8.59	±	1.15	
k ₁₂ (minute^-1)					0.024	1 ±	0.0051	
k ₂₁ (minute^-1)					0.016	5 ±	0.0036	
Cl ₁ (mL/min/kg)					248	±	20	
Cl ₂ (mL/min/kg)					73.8	±	14.1	
Cl _{1(F)} (mL/min/kg)	140	±	25					
V ₁ (mL/kg)					3070	±	580	
V ₂ (mL/kg)					4470	±	1060	
V _{1(F)} (mL/kg)	19300	±	4500					
MRT (minute)					30.4	±	4.7	
AUC _{0-t} (ng/g*min)	307000							
AUC _{inf} (ng/g*min)	358000	± 6	34000		6460	±	250	

Route: Gavage, IV

Species/Strain: Rat/Fischer 344

Toxicokinetics Data Summary
Test Compound: alpha-Thujone
CAS Number: 546-80-5

Time Report Requested: 14:32:29

Date Report Requested: 12/29/2016

Lab: Battelle Columbus

LEGEND

Data are displayed as mean ± SEM

*Data are displayed as mean ± SD

MODELING METHOD & BEST FIT MODEL

^a WinNonlin, Version 5.0.1, Pharsight Corporation, Mountain View, CA; Noncompartmental Analysis (NCA).

^b WinNonlin, Version 5.0.1, Pharsight Corporation, Mountain View, CA; One compartment with first order absorption and elimination with 1/Yhat2 weighting (Model No. 3).

cWinNonlin, Version 5.0.1, Pharsight Corporation, Mountain View, CA; Two compartment with bolus input and first order output with 1/Yhat2 weighting (Model No. 8).

ANALYTE

alpha-Thujone

TK PARAMETERS

 $C_{0min(pred)}$ = Fitted plasma concentration at time zero (IV only)

C_{max} = Observed or Predicted Maximum plasma (or tissue) concentration

 T_{max} = Time at which C_{max} predicted or observed occurs

 $t_{1/2}$ = Lambda_z half-life, $t_{1/2}$, the terminal elimination half-life based on non-compartmental analysis

 $t_{\frac{1}{2}(alpha)}$ = Half-life for the alpha phase

 $t_{\frac{1}{2}(beta)}$ = Half-life for the beta phase

 k_{01} = Absorption rate constant, k_a

 $t_{1/2(k01)}$ = Half-life of the absorption process to the central compartment

 k_{10} = Elimination rate constant from the central compartment also k_e or k_{elim}

 $t_{1/2(k_10)}$ = Half-life for the elimination process from the central compartment

 k_{12} = Distribution rate constant from first to second compartment etc.

 k_{21} = Distribution rate constant from second to first compartment etc.

Cl₁ = Clearance of central compartment, Cl_{app} or apparent clearance for intravenous groups

Cl₂ = Clearance of the secondary compartment

Cl_{1(F)} = Apparent clearance of the central compartment, also Cl_(F) for gavage groups in non-compartmental

 V_1 = Volume of distribution of the central compartment, includes V_d and V_{volume} of distribution, V_z apparent volume of distribution NCA, V_{app} apparent volume of distribution for intravenous studies

 V_2 = Volume of distribution for the peripheral compartment

 $V_{1(F)}$ = Apparent volume of distribution for the central compartment includes $V_{d(F)}$, $V_{(F)}$ for oral groups, and $V_{c(F)}$

MRT = Mean residence time

AUC_{0-t} = Area under the plasma concentration versus time curve, AUC, from time t_i (initial) to t_f (final), AUC_{last}

AUCinf = Area under the plasma concentration versus time curve, AUC, extrapolated to time equals infinity

** END OF REPORT **