```
In [1]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   %matplotlib inline
   import seaborn as sns
```

In [2]: df = pd.read_csv("AirPassengers - AirPassengers.csv")

In [3]: df.head(10)

Out[3]:

	Month	#Passengers
0	1949-01	112
1	1949-02	118
2	1949-03	132
3	1949-04	129
4	1949-05	121
5	1949-06	135
6	1949-07	148
7	1949-08	148
8	1949-09	136
9	1949-10	119

In [4]: df

Out[4]:

	Month	#Passengers
0	1949-01	112
1	1949-02	118
2	1949-03	132
3	1949-04	129
4	1949-05	121
139	1960-08	606
140	1960-09	508
141	1960-10	461
142	1960-11	390
143	1960-12	432

144 rows × 2 columns

In [5]: df.tail(10)

Out[5]:

	Month	#Passengers
134	1960-03	419
135	1960-04	461
136	1960-05	472
137	1960-06	535
138	1960-07	622
139	1960-08	606
140	1960-09	508
141	1960-10	461
142	1960-11	390
143	1960-12	432

```
In [6]: plt.rcParams.update({"figure.figsize" : (12,6)})
        df["#Passengers"].plot()
```

Out[6]: <AxesSubplot:>

Moving Average 1 . Simple Moving Average(SMA)

- 2 . Cumulative Moving Average(CMA)
- 3 . Exponential Moving Average(EMA/EWMA)

In []:

SMA

$$SMA_t = \frac{x_t + x_{t-1} + x_{t-2} + \dots + x_{t-n}}{n}$$

```
In [17]: df["#Passengers"].plot()
df["SMA_30"].dropna().plot()
```

Out[17]: <AxesSubplot:>

Conclusion:

Passengers columns has Uptreand/Incresing Trend(Pattern)

CMA

$$CMA_t = \frac{x_1 + x_2 + \dots + x_n}{n}$$

```
df["CMA"] = df["#Passengers"].expanding().mean()
In [18]:
In [20]: df["CMA"]
Out[20]: 0
                 112.000000
          1
                 115.000000
          2
                 120.666667
          3
                 122.750000
          4
                 122.400000
                    . . .
         139
                 275.514286
          140
                 277.163121
          141
                 278.457746
          142
                 279.237762
          143
                 280.298611
          Name: CMA, Length: 144, dtype: float64
```

```
In [22]: df["#Passengers"].plot()
df["CMA"].plot()
```

Out[22]: <AxesSubplot:>

EMA/EWMA

$$EMA_t = \alpha * x_t + (1 - \alpha) * EMA_(t - 1)$$

alpha is smoothing factors

Range of alpha is between 0 to 1

```
In [23]: df["EMA_0.1"] = df["#Passengers"].ewm(alpha = 0.1).mean()
In [24]: df["EMA_0.1"]
Out[24]: 0
                 112.000000
         1
                 115.157895
         2
                 121.372694
         3
                 123.590579
         4
                 122.957974
         139
                 468.874660
         140
                 472.787195
         141
                 471.608475
         142
                 463.447626
         143
                 460.302862
         Name: EMA 0.1, Length: 144, dtype: float64
```

```
In [27]: df["#Passengers"].plot()
          df["EMA_0.1"].plot(color = "orange")
Out[27]: <AxesSubplot:>
            600
            500
            400
            300
            200
           100
                            20
                                                                              120
                                      40
                                                60
                                                          80
                                                                    100
                                                                                        140
In [30]: df["EMA_0.3"] = df["#Passengers"].ewm(alpha = 0.3).mean()
In [33]: df["#Passengers"].plot()
          df["EMA_0.1"].plot(color = "orange")
          df["EMA 0.3"].plot(color = "black")
Out[33]: <AxesSubplot:>
            600
            500
            400
            300
            200
           100
                            20
                                       40
                                                 60
                                                           80
                                                                     100
                                                                                120
                                                                                          140
```

Conclusion

	•	4 8	•		4 8	4 1			
IT WALC	increase	tha Valua	At 1	alnha	than	tha	noico	NA/III 2	אפונ
II VV C	IIICI EASE	uic vaiuc	: VI (aiviia.			HUISE	VVIII C	1150

T	
In I I •	
TII •	