STAT PHYS SCIENCE Midterm Cheat Sheet

Noppakorn Jiravaranun

September 29, 2021

Measurement of Variation 1 Measure of Central Ten- 3 or Dispersion dency

(1)

Mean 1.1

$$\mu = \frac{\sum_{i=1}^{N} x_i}{N}$$

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

$$(2)$$
 3.2 Average Deviation

$$A.D. = \frac{\sum_{i=1}^{n} |x_i - \mu|}{n}$$
 (8)

(7)

1.2 Median

$$M = x_{(\frac{N+1}{2})}$$

- $\mathbf{2}$ Quantiles
- Quartiles 2.1

$$Q_i = x_{(i(\frac{N-1}{4}))}$$

2.2 **Deciles**

$$D_i = x_{(i(\frac{N-1}{10}))}$$

2.3 Percentiles

$$P_i = x_{(i(\frac{N-1}{100}))}$$

3.1 Range $R = x_{max} - x_{min}$

$$A.D. = \frac{\sum_{i=1}^{n} |x_i - \mu|}{n}$$
 (8)

- Standard Deviation (S.D.)
 - Standard Deviation (Population)

$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}} = \sqrt{\frac{\sum_{i=1}^{N} x_i - N\mu^2}{N}}$$
 (9)

3.3.2 Standard Deviation (Sample)

(5)
$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{n-1}} = \sqrt{\frac{\sum_{i=1}^{n} x_i - N\mu^2}{n-1}}$$

3.4 Quatile Deviation

$$Q.D. = \frac{Q_3 - Q_1}{2} \tag{11}$$

3.5 Skewness

3.5.1 Skewness (Population)

$$S_k = \sum_{i=1}^{N} \frac{[x_i - \mu]^3}{\sigma^3 N}$$
 (12)

if $S_k = 0$ the data is normal else if $S_k > 0$ the data is skwed right else if $S_k < 0$ the data is skwed left

3.5.2 Skewness (Sample)

$$s_k = \sum_{i=1}^n \frac{[x_i - \bar{x}]^3}{s^3 n}$$

if $-1 \le s_k \le 1$ the data is normal else if $s_k > 1$ the data is skwed right else if $s_k < -1$ the data is skwed left

3.6 Relative Kurtosis

A measure of the peakedness of a distribution

3.6.1 Relative Kurtosis (Population)

$$K = \sum_{i=1}^{N} \frac{[x_i - \mu]^4}{\sigma^4 N} - 3 \tag{14}$$

if K = 0 the data is normal else if K > 0 the data is higher than normal else if K < 0 the data is lower than normal

3.6.2 Relative Kurtosis (Sample)

$$k = \frac{n^2(n+1)}{(n-1)(n-2)(n-3)} \sum_{i=1}^{n} \frac{[x_i - x]^4}{s^4 n} - \frac{3(n-1)^2}{(n-2)(n-3)}$$
(15)

if $-1 \le k \le 1$ the data is normal else if k > 1 the data is higher than normal else if k < -1 the data is lower than normal

4 Coefficient of Variation

$$C.V. = \frac{\sigma}{\mu} \times 100 \tag{16}$$

$$C.V. = \frac{s}{\bar{x}} \times 100 \tag{17}$$

5 Outlier by Box Plot

5.1 Inter Quartile Range

$$IQR = Q_3 - Q_1 \tag{18}$$

5.2 Whisker

Whisker is the highest or lowest value not reaching the Inner Fence.

5.3 Fence

(13) Outlier is the value lower or higher than the Outer Fence

Suspected Outlier is the value between the Inner Fence and the Outer Fence.

$$Outer\ Fence = Q_1 - 3(IQR) \tag{19}$$

$$Inner\ Fence = Q_1 - 1.5(IQR) \tag{20}$$

$$Inner\ Fence = Q_3 + 1.5(IQR) \qquad (21)$$

Outer
$$Fence = Q_3 + 3(IQR)$$
 (22)