

Lecture 3.3 - Supervised Learning Stochastic Gradient Descent

Erik Bekkers

(Bishop 3.1.3)

Stochastic gradient descent

- for N >> 1 $\mathbf{w}_{\mathrm{ML}} = \left(\mathbf{\Phi}^T \mathbf{\Phi}\right)^{-1} \mathbf{\Phi}^T \mathbf{t}$ is very costly to compute!
 - Needs to process all data $(\mathbf{x}_1,...,\mathbf{x}_N)$ at once.
 - Matrix inversion of M x M matrix: $O(M^3)$

Loss is a sum of error terms for each datapoint:

$$E_D(\mathbf{w}) = \sum_{i=1}^N E(\mathbf{x}_i, t_i, \mathbf{w})$$

$$E(\mathbf{x}_i, t_i, \mathbf{w}) = \frac{1}{2} \left(t_i - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_i) \right)^2$$

Approach for large dataset: stochastic gradient descent

approximating the total error with less data points

> a way for minimizing

Change herror along direction of the Recap: The Gradient

The gradient encodes all directional derivatives via scalar product

The gradient is always perpendicular to the contours of a function

The gradient always points in the direction of steepest ascent

Stochastic gradient descent

$$E_D(\mathbf{w}) = \sum_{i=1}^N E(\mathbf{x}_i, t_i, \mathbf{w})$$

$$E(\mathbf{x}_i, t_i, \mathbf{w}) = \frac{1}{2} \left(t_i - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_i) \right)^2$$

- Stochastic gradient descent:
 - Initialize $\mathbf{w}^{(0)}$, choose learning rate $\,\eta\,$.

Iterate over data points, and update
$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta (\nabla_{\mathbf{w}} E(\mathbf{x}_i, t_i, \mathbf{w}^{(\tau)}))^T$$
$$= \mathbf{w}^{(\tau)} + \gamma (\mathcal{L}_i - \mathbf{w}^{(\tau)}) \phi(\mathbf{x}_i) \phi(\mathbf{x}_i)$$

If $E_D(\mathbf{w})$ is convex in \mathbf{w} and η is small enough: convergence

Machine Learning 1