TP0 - 3) Hello World para Jupyter+SageMath

Criação de Corpos Finitos Primos

Neste exercício 3-a) vamos criar corpos finitos distintos Fp para quatro valores diferente de **p*.** Estes valores de *p são todos valores primos e são da forma $2^k - 1$, onde cada k^* é um valor primo também. Para tal criaremos os corpos finitos primos com os seguintes valores de p: *31,127,8191,131071 através da função do SageMath GF(p).

```
In [3]: p1 = 31
        corpoFinito1 = GF(p1)
        print(corpoFinito1)
        p2 = 127
        corpoFinito2 = GF(p2)
        print(corpoFinito2)
        p3 = 8191
        corpoFinito3 = GF(p3)
        print(corpoFinito3)
        p4 = 131071
        corpoFinito4 = GF(p4)
        print(corpoFinito4)
        Finite Field of size 31
        Finite Field of size 127
```

Finite Field of size 8191 Finite Field of size 131071

Plot da função x -> x^2 em cada Corpo Finito

Iremos agora executar um plot da função x -> x^2 para cada corpo finito criado em cima. Com este plot, ferramenta do SageMath, irá ser criado um gráfico. Para o gráfico ser desenhado no nosso notebook será necessário a execução da função plot.show().

Para este exercício a função plot terá de receber uma lista de argumentos(que serão os valores do corpo finito) tendo por isso o seguinte formato: plot([FUNCTION for x in LISTA]) . Também de realçar que a função pedida é uma função quadrática e como tal é necessário indicar ao SageMath que o x é elevado a 2. Para isso a expressão correta no SageMath é: x**n, onde n é o expoente. No nosso caso teremos x**2.

```
In [17]: import matplotlib.pyplot as plt
```

```
In [18]: graficol = plt.plot([x**2 for x in corpoFinitol])
   plt.show(graficol)
```


In [6]: grafico2 = plt.plot([x**2 for x in corpoFinito2])
 plt.show(grafico2)

In [8]: grafico3 = plt.plot([x**2 for x in corpoFinito3])
 plt.show(grafico3)


```
In [9]: grafico4 = plt.plot([x**2 for x in corpoFinito4])
    plt.show(grafico4)
```


Determinar elementos primitivos de Corpos Finitos

Neste exercício c) teremos de determinar elementos primitivos dos corpos finitos primos anteriormente definidos e verificar a seguinte preposição:

```
*Para todo g primitivo de Fp e para todo exponente n, verfica-
se que q^n = 1 se e só se n = 0 \mod(p-1)*
```

Para tal iremos usufruir das funções do SageMath que nos fornece a função $primitive_element()$ para encontrar um elemento primitivo de um corpo finito. Após isso iremos calcular o n através da função mod(0,p-1) e por fim iremos verificar se o primitivo g eleavado a n é igual a 1 ($g^n = 1$).

```
In [32]: g1 = corpoFinito1.primitive_element()
    print(g1)
    n1 = mod(0,p1-1)
    print(n1)
    result1 = g1^n1 == 1
    print(result1)
```

3 0 True

```
In [28]: | g2 = corpoFinito2.primitive_element()
         print(g2)
         n2 = mod(0, p2-1)
         print(n2)
         result2 = g2^n == 1
         print(result2)
         Corpo Finito 2:
         3
         0
         True
In [29]: g3 = corpoFinito3.primitive element()
         print(g3)
         n3 = mod(0,p3-1)
         print(n3)
         result3 = g3^n3 == 1
         print(result3)
         Corpo Finito 3:
         17
         0
         True
In [31]: g4 = corpoFinito4.primitive_element()
         print(g4)
         n4 = mod(0, p4-1)
         print(n4)
         result4 = g4^n == 1
         print(result4)
         3
         0
         True
```