#### Clasificación

#### Mathieu Kessler

Departamento de Matemática Aplicada y Estadística Universidad Politécnica de Cartagena

Cartagena

#### El problema de la clasificación

- Basándonose en el valor de características, queremos clasificar cada individuo en una determinada categoría.
- Empezaremos con la clasificación en dos categorías posibles.
- Las características:  $x_0, x_1, \dots, x_k$ ; consideraremos la variable "respuesta" y dicotómica: toma valores 0 ó 1.
- Ejemplos:
  - Queremos clasificar los emails en SPAM o NO SPAM.
  - Queremos clasificar operaciones de compra online en FRAUDULENTA o NO FRAUDULENTA.
  - 3 Queremos clasificar tumores en BENIGNO o MALIGNO.
  - 4 Queremos clasificar alumnos de nuevo ingreso en "EGRESARÁ" o "ABANDONARÁ".

Queremos predecir el abandono de un alumno en función de su nota de PAU al ingresar.

Kessler UPCT

Codificamos:  $y = 1 \leftrightarrow$  "Egresará",  $y = 0 \leftrightarrow$  "Abandonará".



Nota PAU al ingresar

Si usamos regresión lineal, la recta ajustada  $y=h_{\theta}(x)$  es



Nota PAU al ingresar

Si usamos regresión lineal, la recta ajustada  $y = h_{\theta}(x)$  es



Si usamos regresión lineal, la recta ajustada  $y = h_{\theta}(x)$  es



- $\xi$  Podemos usar esta recta ajustada y=0.3x-1.6 para hacer predicción ante un nuevo alumno que ingresa?
- ¡Sí! Podemos aprovecharla para definir una regla de decisión:
  - II Sustituimos la nota PAU de ingreso del nuevo alumno en la ecuación ajustada. Obtenemos  $\Rightarrow \hat{y}$ .
  - **2** Si  $\hat{y} > 0.5$ , predecimos que egresará.
  - **3** Si  $\hat{y} < 0.5$ , predecimos que abandonará.

Gráficamente, nuestro criterio de decisión sobre  $\hat{y}$ :



Gráficamente, nuestro criterio de decisión sobre  $\hat{y}$ :



Gráficamente, nuestro criterio de decisión sobre  $\hat{y}$ :



Lo traducimos en términos de x, :



Decir  $\hat{y} = 0.3x - 1.6 > 0.5$  es equivalente a x > 7.39,



Pero nuestro criterio de decisión es sensible a datos atípicos:

Kessler UPCT

#### Supongamos que tenemos estos puntos adicionales



Nota PAU al ingresar

#### El ajuste cambia bastante



Y nuestro criterio de decisión es inadecuado



Y nuestro criterio de decisión es inadecuado



### Regresión logística

Además al ajustar una recta a nuestros datos binarios, el modelo  $h_{\theta}(x)$  puede tomar valores superiores a 1, o negativos...

#### Pasamos a una función no lineal para ajustar estos datos binarios:

Usaremos como base la función logística:

$$g(z)=\frac{1}{1+e^{-z}}.$$



# Regresión logística

Ajustaremos a los datos binarios la hipótesis:

$$h_{\theta}(x) = g(x^{T}\theta)$$

1 Si tenemos una única característica  $x_1$ :

$$h_{\theta}(x) = g(x^{T}\theta) = \frac{1}{1 + e^{-(\theta_{0} + \theta_{1}x_{1})}},$$

2 si tenemos k características  $x_1, x_2, \ldots, x_k$ .

$$h_{\theta}(x) = g(x^{T}\theta) = \frac{1}{1 + e^{-(\theta_{0} + \theta_{1}x_{1} + ... + \theta_{k}x_{k})}},$$











Kessler

# Interpretación de $h_{\theta}(x)$ .

#### Interpretación

El valor de  $h_{\theta}(x)$  es la probabilidad de que y tome el valor 1, para ese vector de características x, si los parámetros del ajuste son  $\theta$ . Es

$$h_{\theta}(x) = \mathbb{P}(y = 1|x; \theta),$$

es decir la probabilidad de que y = 1 condicionado a x y  $\theta$ .

Si, dado una nota media PAU, encontramos  $h_{\theta}(x) = 0.7$ , le diremos al alumno que tiene 70% de probabilidad de acabar egresando...

### Regla de decisión, fronteras

- Una vez entrenada nuestra regresión logística, tendremos el modelo ajustado  $h_{\hat{\theta}}(x)$ .
- Recordad que hemos decidido usar para clasificar la regla de decisión:
  - Si  $h_{\theta}(x) \ge 0.5$ , clasificamos  $\hat{y}$  como 1.
  - Si  $h_{\theta}(x) < 0.5$ , clasificamos  $\hat{y}$  como 0.
- Pero  $h_{\theta}(x) = g(x^T \theta)$ , por lo que
  - $h_{\theta}(x) \geq 0.5 \Leftrightarrow x^T \theta \geq 0$  y
  - $\bullet h_{\theta}(x) < 0.5 \Leftrightarrow x^T \theta < 0.$
- Así que, en realidad, hemos especificado así una región de decisión cuya frontera es

$$x^T \theta = 0.$$



Dos características, x1 y x2  $azul \leftrightarrow y = 1$ ; rojo  $\leftrightarrow y = 0$ 



Dos características, x1 y x2 azul  $\leftrightarrow y = 1$ ; rojo  $\leftrightarrow y = 0$  Tenemos:

$$\theta = (\theta_0, \theta_1, \theta_2),$$

$$x = (1, x_1, x_2),$$

por lo que la frontera de la región es

$$\theta_0 + \theta_1 x_1 + \theta_2 x_2 = 0.$$



Dos características, x1 y x2 azul  $\leftrightarrow y = 1$ ; rojo  $\leftrightarrow y = 0$  Tenemos:

$$\theta = (\theta_0, \theta_1, \theta_2),$$

$$x = (1, x_1, x_2),$$

por lo que la frontera de la región es

$$\theta_0 + \theta_1 x_1 + \theta_2 x_2 = 0.$$

Es una recta.



Si introducimos potencias de grado superior de x1 y x2, podemos obtener fronteras no lineales...

$$\bullet = (\theta_0, \theta_1, \theta_2, \theta_3, \theta_4, \theta_5),$$

$$= (1, x_1, x_2, x_1^2, x_1x_2, x_2^2),$$



Si introducimos potencias de grado superior de  $x_1$  y  $x_2$ , podemos obtener fronteras no lineales...

$$\bullet \theta = (\theta_0, \theta_1, \theta_2, \theta_3, \theta_4, \theta_5),$$

por lo que la frontera de la región es

$$\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \ldots = 0.$$



Si introducimos potencias de grado superior de  $x_1$  y  $x_2$ , podemos obtener fronteras no lineales...

$$\bullet \theta = (\theta_0, \theta_1, \theta_2, \theta_3, \theta_4, \theta_5),$$

$$= (1, x_1, x_2, x_1^2, x_1x_2, x_2^2),$$

por lo que la frontera de la región es

$$\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \ldots = 0.$$

Por ejemplo un círculo...



Y si introducimos potencias de grado aun superior  $x_1^3$  y  $x_2^3$ ...,  $x_1^5$  etc.. podemos obtener fronteras más complejas...

Conjunto de entrenamiento: los datos que tendremos se presentarán en la forma siguiente:

$$Y$$
  $X_1$   $X_2$   $\cdots$   $X_k$ 

$$y_1$$
  $x_{11}$   $x_{12}$   $\cdots$   $x_{1k}$ 

$$\vdots$$
 
$$\vdots$$
 
$$\vdots$$
 
$$\vdots$$
 
$$y_n$$
  $x_{n1}$   $x_{n2}$   $\cdots$   $x_{nk}$ 

Cada fila representa un individuo, cada columna una variable o característica para ese individuo.

Los valores  $y_1$ ,  $y_2$ , etc... son valores binarios (0 ó 1). Usaremos la notación

$$x_{i\bullet} = (x_{i0}, x_{i1}, \dots, x_{ik})^T$$

para denotar el vector de características del individuo número i (hemos incluido  $x_{i0} = 1$ .)

#### La función de coste

- Buscamos entrenar un algoritmo de regresión logística, es decir encontrar el "mejor" vector de parámetros  $\theta$ , aprendiendo de nuestro conjunto de entrenamiento.
- Necesitamos una función de coste que mida la calidad del ajuste al conjunto de entrenamiento, pero que posea también buenas propiedades para la minimización (convexidad).
- Por ello, introducimos la función de coste siguiente

$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} coste(h_{\theta}(x_{i\bullet}), y_{i})$$

donde

$$coste(h_{ heta}(x),y) = \left\{ egin{array}{ll} -\log(h_{ heta}(x)) & ext{si } y=1, \ -\log(1-h_{ heta}(x)) & ext{si } y=0, \end{array} 
ight.$$

#### La función de coste



Este es el perfil de la función de coste. Por lo tanto:

- Si y = 1, cuando  $h_{\theta}(x) \to 0$ ,  $coste(h_{\theta}(x), y) \to \infty$ .
- Si y = 1, cuando  $h_{\theta}(x) = 1$ ,  $coste(h_{\theta}(x), y) = 0$ .
- Si y = 0, cuando  $h_{\theta}(x) \rightarrow 1$ ,  $coste(h_{\theta}(x), y) \rightarrow \infty$ .
- Si y = 0, cuando  $h_{\theta}(x) = 0$ ,  $coste(h_{\theta}(x), y) = 0$ .

#### La función de coste

Nuestra función de coste será por lo tanto:

$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} coste(h_{\theta}(x_{i\bullet}), y_{i})$$

donde

$$coste(h_{ heta}(x),y) = \left\{ egin{array}{ll} -\log(h_{ heta}(x)) & ext{si } y=1, \ -\log(1-h_{ heta}(x)) & ext{si } y=0, \end{array} 
ight. ,$$

lo que podemos escribir de manera más rápida como

$$J(\theta) = -\frac{1}{n}\sum_{i=1}^{n} \left\{ y_i \log(h_{\theta}(x_{i\bullet})) + (1-y_i) \log(1-h_{\theta}(x_{i\bullet})) \right\}$$

### Calculo del gradiente

**Deducimos** 

$$\nabla_{\theta} J(\theta) = -\frac{1}{n} \sum_{i=1}^{n} \left\{ y_{i} \nabla_{\theta} \log(h_{\theta}(x_{i\bullet})) + (1 - y_{i}) \nabla_{\theta} \log(1 - h_{\theta}(x_{i\bullet})) \right\}$$
$$= \frac{1}{n} \sum_{i=1}^{n} \left\{ x_{i\bullet} \cdot (h_{\theta}(x_{i\bullet}) - y_{i}) \right\}.$$

Si usamos la matriz de diseño X, obtenemos en forma compacta:

$$abla_{ heta} J( heta) = rac{1}{n} \mathbf{X}^T \cdot (\mathbf{H}_{ heta} - \mathbf{y}),$$

donde H denota el vector columna:

$$\mathbf{H}_{ heta} = \left(egin{array}{c} h_{ heta}(\mathbf{x}_{1ullet}) \\ h_{ heta}(\mathbf{x}_{2ullet}) \\ dots \\ h_{ heta}(\mathbf{x}_{nullet}) \end{array}
ight)$$

# Nota: comparación con la implementación para regresión múltiple

Recordad que, para la regresión múltiple, el gradiente era:

$$\nabla_{\theta} J(\theta) = \frac{1}{n} \mathbf{X}^T \cdot (\mathbf{X}\theta - y).$$

mientras que para la regresión logística, acabamos de establecer que el gradiente es:

$$\nabla_{\theta} J(\theta) = \frac{1}{n} \mathbf{X}^{T} \cdot (\mathbf{H}_{\theta} - y),$$

Es muy similar, si queremos programar el algoritmo del gradiente, sólo requiere una pequeña modificación de nuestro código...

### Regresión logística en scikit-learn

Podemos aprovechar la clase LogisticRegression del submódulo linear model si no queremos usar algoritmo del gradiente.

- Las ventajas:
  - lacktriangle No es necesario especificar lpha
  - Puede ser más rápido.
- Sin embargo, en el caso en que haya muchas características, puede ser más eficiente usar algoritmo del gradiente (scikit-learn también dispone de procedimientos para ello.)

## Si queremos clasificar en más de dos categorías...

Si queremos clasificar cada individuo en más de dos categorias, usaremos la técnica del "One versus all".

#### Ejemplo con tres categorías A, B y C.

Supongamos que queremos clasificar cada individuo en A, B o C.

- Entrenamos una regresión logística para clasificar en "A" o "no A".  $\Rightarrow$  obtenemos modelo ajustado  $h_{\hat{\theta}_{A}}(x)$ .
- Entrenamos una regresión logística para clasificar en "B" o "no B".  $\Rightarrow$  obtenemos modelo ajustado  $h_{\hat{\theta}_R}(x)$ .
- Entrenamos una regresión logística para clasificar en "C" o "no C".  $\Rightarrow$  obtenemos modelo ajustado  $h_{\hat{\theta}_C}(x)$ .
- Dado un nuevo individuo, calculamos las tres probabilidades predichas  $h_{\hat{\theta}_A}(x)$ ,  $h_{\hat{\theta}_B}(x)$  y  $h_{\hat{\theta}_C}(x)$ .
- Clasificamos el individuo en la categoría que tiene la probabilidad predicha más alta...

# Medir la calidad de la predicción para una clasificación binaria

El primer indicador que podemos usar es la tasa de acierto, es decir el porcentaje de individuos clasificados correctamente.

#### Ejemplo

Consideremos el problema de predecir si un tumor es benigno o maligno basándonos en unas imágenes medicales.

De un total de 100 tumores, de los cuáles 5 son malignos y 95 benignos, mi algoritmo se ha equivocado en 1 maligno y 5 benignos.

Tasa de acierto = 
$$\frac{94}{100}$$
 = 94%.

Sin embargo, tiene sus limitaciones: si mi decisión hubiera sido sencillamente declarar todos como benignos, cuál habría sido mi tasa de acierto?

Tasa de acierto 
$$=\frac{95}{100}=95\%$$
.

# Precisión y sensibilidad ("recall")

Por ello, introducimos dos indicadores que debemos considerar conjuntamente:

#### Precisión

Es la proporción de aciertos (y=1) entre los que he clasificado como "positivos"  $(\hat{y}=1)$ .

#### Sensibilidad "Recall"

Es la proporción de aciertos  $(\hat{y} = 1)$  entre todos los que son positivos "positivos" (y = 1).

Para el problema anterior: De un total de 100 tumores, de los cuáles 5 son malignos y 95 benignos, mi algoritmo se ha equivocado en 1 maligno y 5 benignos.

$$precision = 4/9, recall = 4/5$$

Si los declaro todos como benignos:

$$precision = no existe, recall = 0/5 = 0$$

#### Matriz de confusión

Se suele presentar los resultados del algoritmo en forma de matriz, llamada matriz de confusión.

Para el problema anterior: De un total de 100 tumores, de los cuáles 5 son malignos y 95 benignos, mi algoritmo se ha equivocado en 1 maligno y 5 benignos.

$$\begin{array}{c|cccc}
y \setminus \hat{y} & 0 & 1 \\
\hline
0 & 90 & 5 \\
1 & 1 & 4
\end{array}$$

Matriz de confusión:

$$\left(\begin{array}{cc}
90 & 5 \\
1 & 4
\end{array}\right)$$

La precisión y la sensibilidad van en sentido contrario: si aumenta la precisión, baja la sensibilidad y al revés.

Se busca un equilibrio. Dos características y una frontera de decisión lineal:



Tenemos una precisión de 80% y una sensibilidad de 8/9, (89%).

La precisión y la sensibilidad van en sentido contrario: si aumenta la precisión, baja la sensibilidad y al revés.

Se busca un equilibrio. Dos características y una frontera de decisión lineal. Si aumento la ordenada al origen de la frontera:



Tenemos una precisión de 100% y una sensibilidad de 2/9 (22%)

La precisión y la sensibilidad van en sentido contrario: si aumenta la precisión, baja la sensibilidad y al revés.

Se busca un equilibrio. Dos características y una frontera de decisión lineal. Si disminuyo la ordenada al origen de la frontera:



Tenemos una precisión de 64% y una sensibilidad de 100%

#### Una tipica situación:



 $Fuente:\ https://jaehyeongan.github.io/2020/02/29/LSTM-Autoencoder-for-Anomaly-Detection/Particles (Control of the Control o$