$xy|x^m,y^n$ implies that $x|y^{n-1}$ and $y|x^{m-1}i.e.$ every non zero non unit of H is a quantum and hence a prime quantum because of the HCF property and hence R is a rank one valuation domain. To proceed further we need some more definitions.

An integral domain R in which every finitely generated ideal is principal(invertable) is called a $\underline{\text{Bezout}(\text{Prufer})}$ domain. It is well known that a Prufer domain which is also an HCF domain is a Bezout domain R is Prufer iff R_p is a the fact that an integral domain R is Prufer iff R_p is a valuation domain for each prime ideal P (cf e.g. [5]). A genevaluation domain for each prime ideal P (cf e.g. [5]). A genevaluation domain for each prime ideal P (cf e.g. [5]). A genevaluation domain for each prime ideal P (cf e.g. [5]). A genevaluation domain R_p is a genevaluation domain for each prime ideal P (cf e.g. [5]). A genevaluation domain R_p is a genevaluation domain R_p is a second R_p in R_p in R_p is a second R_p in R_p in R_p is a second R_p in R_p

As no convenient and to the point reference is available we include

Lemma 18. A GKD R is a Prufer GKD iff every non zero prime ideal of R is maximal.

Proof. Let R be a Prüfer GKD and let P be a non zero prime ideal in R, then R_p is a GKD (19] p. 513). But the Prüfer condition implies that R_p is a valuation domain of rank greater than 1, which implies that there exist non units in R_p which are contained in no minimal prime ideals, a contradiction to the tained in no minimal prime ideals, a contradiction to the prime ideal of R is minimal. The converse is obvious.

Now a GUID is an HCF-GAD and so for a GUID to be dezout

Corollary 8. A GUFD R is a Bezout GUFD(Dezout GKD) iff every non zero prime ideal of R is maximal.

Gilmer and Ohm in [18] prove that a UFD is a PID iff