Chapter 7: Chi-square Test

1 Example

1. H_0 : The die is fair $\left(p = \frac{1}{6}\right)$

2. H_1 : The die is unfair $(p \neq \frac{1}{6})$

3. At $\alpha = 0.05$, critical value = $\chi^2_{\alpha;m-t-1}$.

4.

$$\chi^2_{0.05;6-0-1} = \chi^2_{0.05;5}$$
$$= 11.070$$

5. Rejection region: (remember Chi-square distribution does NOT have a negative region)

$$\chi^2 > 11.07$$

	Number	1	2	3	4	5	6	Total
c	O_i	89	113	98	104	117	79	600
	E_i	100	100	100	100	100	100	600
6.	$O_i - E_i$	-11	13	-2	-4	17	-21	
	$(O_i - E_i)^2$	121	169	4	16	289	441	
	$\frac{(O_i - E_i)^2}{E_i}$	1.21	1.69	0.04	0.16	2.89	4.41	10.40

7. Since $\chi^2 = 10.40 < 11.07$, we failed to reject H_0 at 5% significance level. Hence, we do not have enough evidence to conclude that the observed frequencies are significantly different from those expected of a fair die.

2 Example

Since every city have equal sales potential, therefore, each sale should be $\frac{\sum x}{n}$, which is the mean.

1. Hypothesis

(a) Claim: Each of the seven cities have equal sales potential. (H_0)

(b) Opposite: Each of the seven cities do not have equal sales potential. (H_1)

(c) $H_0: A = B = C = D = E = F = G$

(d) $H_1: A \neq B \neq C \neq D \neq E \neq F \neq G$

2. Find the critical value

(a) $\alpha = 0.05$

(b) $\chi^2_{0.05;7-1} = \chi^2_{0.05;6} = 12.592$

3. Find the rejection region

(a)
$$\chi^2 > 12.592$$

	City	A	В	C	D	E	F
4	O_i	120	185	260	190	210	175
4.	E_i	200	200	200	200	200	200
	$\frac{(O_i-E_i)^2}{E_i}$	$\frac{(120-200)^2}{200} = 32$	$\frac{(185-200)^2}{200} = 1.125$	$\frac{(260-200)^2}{200} = 18$	$\frac{(190-200)^2}{200} = 0.5$	$\frac{(210-200)^2}{200} = 0.5$	$\frac{(175-200)^2}{200} = 3.125$

5. Since $\chi^2 = 73.25 > 12.592$, we reject H_0 and do not have enough evidence to conclude that each of the seven cities have equal sales potential.

3 Example

1. Hypothesis

(a) Claim: The local hospital follows the national pattern. (H_0)

(b) Oppo: The local hospital do not follow the national pattern. (H_1)

2. Find the rejection region

(a) $\alpha = 0.05$

(b) $\chi^2_{0.05;7-1} = \chi^2_{0.05;6} = 12.592$

(c) Rejection region: $\chi^2 > 12.592$

3. Find the Chi-square score

	Number of times admitted	1	2	3	4	5	6	7	Total
4	O_i	165	79	50	44	32	20	10	400
4.	E_i	400*40%=160	80	56	40	32	24	8	
	$\frac{(O_i - E_i)^2}{E_i}$	$\frac{(165-160)^2}{160}$	$\frac{(79-80)^2}{80}$	$\frac{(50-56)^2}{56}$	$\frac{(44-40)^2}{40}$	$\frac{(32-32)^2}{32}$	$\frac{(20-24)^2}{24}$	$\frac{(10-8)^2}{8}$	2.378

5. Since $\chi^2 = 2.378 < 12.592$, we failed to reject H_0 . Hence, we conclude that the local hospital follows the national pattern.

4 Example

1. Hypothesis

(a) Claim: The results support the theory (H_0)

(b) Opposite: The results do not support the theory (H_1)

2. Find the rejection region

(a) $\chi^2_{0.05;3-1} = 5.991$

(b) $\chi^2 > 5.991$

3. Calculate the Chi-score

	Color	O_i	E_i	$rac{(O_i - E_i)^2}{E_i}$
, .	Red	84	83.25	0.00676
(a)	Blue	92	83.25	0.91967
	Purple	157	166.5	0.54204
		333		1.46847

4. $\chi^2 = 1.46847 < 5.991$. We failed to reject H_0 at $\alpha = 0.05$ and conclude that the result support the genetic theory.

5 Example

1. Hypothesis

(a) Claim: The random number generator is working incorrectly. H_1

(b) Hypo: The random number generator is working correctly. H_0

2. The critical value

(a) $\chi^2_{0.05;6-1} = 11.070$

(b) Rejection region: $\chi^2 > 11.070$

3. Find the test statistic

	Interval	O_i	Probability, P_i	$E_i = 500 * P_i$	$\frac{(O_i - E_i)^2}{E_i}$
(a)	s < 4	10	$P\left(Z < \frac{4-6}{1}\right) = P\left(Z < -2\right) = 0.02275$	11.375	0.16621
	$4 \le s < 5$	75	0.13595	67.975	0.74601
	$5 \le s < 6$	163	0.34130	170.65	0.34294
	$6 \le s < 7$	174	0.34130	170.65	0.06576
	$7 \le s < 8$	66	0.13595	67.975	0.05738
	$s \ge 8$	12	0.02285	11.375	0.3434
	Total		1.0000	500	1.39264

(b) Note: For the probability, use the Z-score

$$P\left(s > \bar{x}\right) = P\left(Z > \frac{\bar{x} - \mu}{\sigma}\right)$$

- (c) Use Normal Distribution Calculator from OnlineStatBook to quickly calculate without converting to normal.
- 4. Conclusion
 - (a) Since $\chi_2 = 1.39264 < 11.070$, we failed to reject H_0 , and hence conclude that the random number generator is working correctly.

6 Example

- 1. Hypothesis
 - (a) Claim: The distribution of X is B(3, 0.25) (H_0)
 - (b) Oppo: The distribution of X is not B(3,0.25) (H_1)
- 2. Find the critical value

$$\alpha = 0.01$$

(a) Critical value

$$\chi^{2}_{\alpha;m-t-1} = \chi^{2}_{0.01;3-0-1}$$
$$= \chi^{2}_{0.01;2}$$
$$= 9.210$$

3. Rejection region

$$\chi^2 > 9.210$$

(a) If this is true, the probability distribution of X is

$$P(X = x) = {}^{3}C_{x}(0.25)^{x}0.75^{3-x}$$

	X	O_i	Probability, p_i	$E_i = 64p_i$	$\frac{(O_i - E_i)^2}{E_i}$	Total
4.	0	21	$\frac{21}{21+31+12+0} = 0.4219$	27	1.333	
	1	31	0.4219	27	0.5926	
	2,3	12	0.1563	10	0.4	2.3259

(a)
$$p_0 = {}^3C_0 * (0.25)^0 * (0.75)^3 = 0.4219$$

(b)
$$p_1 = {}^3C_1 * (0.25)^1 * (0.75)^2 = 0.4219$$

(c)
$$p_{2+3} = {}^{3}C_{2} * (0.25)^{2} * (0.75)^{1} + {}^{3}C_{3} * (0.25)^{3} = 0.1563$$

5. Since $\chi^2 = 2.3259 < 9.210$. We failed to reject H_0 , and hence do not have enough evidence to show that the recorded data do not fit B(3, 0.25).

7 Example

Note: We should not round it from 2.02 to 2.00, oterhwise it will be inaccurate during exams.

8 Example

8.1 Extra Notes

By following the probability multiplication rule, if they are independent, the expected frequency for a field in a two-way table will be

- 1. Proportion probability of something happening in the row, multiple by the proportion probability of something happening in a column (to get row * column proportion) and then multipled by the sample size.
- 2. Eg:

$$1000 \left(sample\right) * \left(\frac{100}{1000} \left(row\right) * \frac{100}{1000} \left(column\right)\right) = 10 \left(expected\right)$$

8.2 Example

- 1. Hypothesis
 - (a) The number of accidents depend on the visits by the inspector. (H_0)
 - (b) The number of accidents do not depend on the visits by the inspector. (H_1)
- 2. Critical value

$$\chi^{2}_{0.05;(4-1)(2-1)} = \chi^{2}_{0.05;3}$$
$$= 7.815$$

(a) Note: D.O.F. = (Row - 1)(Column - 1)

		Number of accidents					
	0 1 2 3 To						
Visit	33	8	5	4	50		
Expected	27.77778	13.88889	5.55556	2.777778			
No visit	67	42	15	6	130		
Expected	72.22222	36.11111	14.44444	7.22222			
Total column	100	50	20	10			
				Total acc.	180		

3. Rejection region

(b)

$$\chi^2 > 7.815$$

4. Find the test-statistic

$$\chi^2 = \frac{\left(33 - 27.778\right)^2}{27.778} + \frac{\left(8 - 13.889\right)^2}{13.889} + \frac{\left(5 - 5.556\right)^2}{5.556} + \frac{\left(4 - 2.778\right)^2}{5.556} + \frac{\left(67 - 72.222\right)^2}{72.222} + \frac{\left(42 - 36.111\right)^2}{36.111} + \frac{\left(15 - 14.444\right)^2}{14.444} + \frac{\left(6 - 7.222\right)^2}{7.222} - 5.3692$$

- 5. Conclusion
 - (a) Since $\chi^2 = 5.3692 < 7.815$. We failed to reject H_0 , and hence do not have enough evidence to conclude that the number of accidents do not depend on the visits by the inspector.

9 Example

10 Example

1. Hypothesis

(a) Hypo: The coin is fair (H_1)

(b) Oppo: The coin is unfair (H_0)

2. Critical value at $\alpha = 0.05$

(a) Critical value: $\chi^2_{0.05;2-0-1} = \chi^2_{0.05;1} = 3.841$

3. Rejection range: $\chi^2 > 3.841$

4. Test-statistics

$$\chi^{2} = \sum_{i=1}^{m} \frac{(|O_{i} - E_{i}| - 0.5)^{2}}{E_{i}}$$

$$= \frac{(|115 - 100| - 0.5)^{2}}{100} + \frac{(|85 - 100| - 0.5)^{2}}{100}$$

$$= 4.205$$

11 Example

1. Hypothesis

(a) (H_0) There is no association between taking the new drug and attack by the disease

(b) (H_1) There is an association between taking the new drug and attack by the disease

2. Critical value

(a)
$$\chi^2_{0.05;(2-1)(2-1)} = \chi^2_{0.05;1} = 3.841$$

3. Rejection range

(a)
$$\chi^2 > 3.841$$

4. Test-statistic (apply Yate's correction because D.O.F. = 1)

[Drugged	_ Drugles
	Attacked	24	32
(a)	Expected	(35.47)	(20.53)
(a)	Not attacked	52	_ 12
	Expected	(40.53)	(23.47)
	Total column	76	_ 44

(b)
$$\chi^2 = \frac{(|24 - 35.47| - 0.5)^2}{35.47} + \frac{(|32 - 20.53| - 0.5)^2}{20.53} + \frac{(|52 - 40.53| - 0.5)^2}{40.53} + \frac{(|12 - 23.47| - 0.5)^2}{23.47} = 17.351$$

5. Conclusion

(a) Since $\chi^2 = 17.351 > 3.841$, we reject H_0 . Therefore we have enough evidence to conclude that there is an association between taking the new drug and attack by the disease.