Lab1: Warm Up - Familiarity with Data types and Visualization

Step 1: Download the dataset files that belong to the following data formats from internet. The files may belong to any dataset available online.

Step 2: Read these files inside the python code. Some of the file formats cannot be read using default python packages. In this case, explore the python packages suitable for reading the files.

Step 3: Print the properties of the data files such as size, shape, dimensions, etc.

```
In [2]: import csv
import pandas as pd
```

In [3]: cars=pd.read_csv("cars.csv",sep=";")

In [4]: cars.head()

Out[4]:

	Car	MPG	Cylinders	Displacement	Horsepower	Weight	Acceleration	Model	Origin
0	STRING	DOUBLE	INT	DOUBLE	DOUBLE	DOUBLE	DOUBLE	INT	CAT
1	Chevrolet Chevelle Malibu	18.0	8	307.0	130.0	3504.	12.0	70	US
2	Buick Skylark 320	15.0	8	350.0	165.0	3693.	11.5	70	US
3	Plymouth Satellite	18.0	8	318.0	150.0	3436.	11.0	70	US
4	AMC Rebel SST	16.0	8	304.0	150.0	3433.	12.0	70	US

In [5]: cars.shape

Out[5]: (407, 9)

In [6]: cars.size

Out[6]: 3663

```
In [7]: | cars.ndim
 Out[7]: 2
 In [8]: cars.shape[0]
 Out[8]: 407
 In [9]: cars.shape[1]
 Out[9]: 9
In [10]: type(cars)
Out[10]: pandas.core.frame.DataFrame
In [13]: import json
           import pandas as pd
In [14]: | sample=pd.read_json('employee.json')
           sample.head()
Out[14]:
                                      Employees
               {'userld': 'krish', 'jobTitle': 'Developer', '...
               {'userld': 'devid', 'jobTitle': 'Developer', '...
           2 {'userld': 'tin', 'jobTitle': 'Program Directo...
In [15]: sample.shape
Out[15]: (3, 1)
In [16]: | sample.size
Out[16]: 3
```

```
In [17]: sample.ndim
Out[17]: 2
In [18]: import csv
          import pandas as pd
In [19]: data=pd.read csv("forestfires.csv")
In [20]: |data.head()
Out[20]:
             X Y month day FFMC DMC
                                             DC ISI temp RH wind rain area
           0 7 5
                                86.2
                                      26.2
                            fri
                                            94.3 5.1
                                                       8.2 51
                                                                 6.7
                                                                     0.0
                                                                           0.0
                      mar
           1 7 4
                          tue
                                90.6
                                      35.4
                                           669.1 6.7
                                                      18.0
                                                           33
                                                                 0.9
                                                                      0.0
                                                                           0.0
                      oct
           2 7
                                90.6
                                     43.7 686.9 6.7
                                                     14.6
                                                           33
                                                                 1.3
                                                                     0.0
                                                                           0.0
                           sat
                      oct
             8
                                      33.3
                                            77.5 9.0
                                                       8.3
                                                                     0.2
                                                                           0.0
                            fri
                                91.7
                                                           97
                                                                 4.0
                      mar
                                     51.3 102.2 9.6
             8 6
                      mar sun
                                89.3
                                                      11.4 99
                                                                 1.8
                                                                     0.0
                                                                           0.0
In [47]: data.tail()
Out[47]:
               X Y month day FFMC
                                        DMC
                                                     ISI temp RH wind rain
                                                DC
                                                                              area
           512 4 3
                        aug
                            sun
                                  81.6
                                         56.7
                                             665.6
                                                    1.9
                                                         27.8
                                                               32
                                                                    2.7
                                                                         0.0
                                                                              6.44
           513 2 4
                                  81.6
                                        56.7
                                             665.6
                                                    1.9
                                                         21.9
                                                              71
                                                                    5.8
                                                                         0.0 54.29
                        aug
                            sun
           514 7 4
                        aug
                            sun
                                  81.6
                                         56.7
                                             665.6
                                                    1.9
                                                         21.2
                                                              70
                                                                    6.7
                                                                         0.0
                                                                             11.16
                                             614.7 11.3
                                                         25.6
                                                                              0.00
           515 1 4
                                  94.4
                                        146.0
                                                                    4.0
                             sat
           516 6 3
                                  79.5
                                             106.7
                                                                              0.00
                        nov
                             tue
                                         3.0
                                                    1.1
                                                         11.8
                                                               31
                                                                    4.5
In [21]: data.shape
```

Out[21]: (517, 13)

```
In [22]: data.size
Out[22]: 6721
In [23]: data.ndim
Out[23]: 2
In [24]: data.shape[0]
Out[24]: 517
In [25]: data.shape[1]
Out[25]: 13
In [26]: type(data)
Out[26]: pandas.core.frame.DataFrame
```

Step 4: Visualize each of these data files using graphs, diagrams, etc.

Table data visualization: line graph, bar graph, histogram chart, pie chart, scatter plot

```
In [27]: import matplotlib.pyplot as plt
```

```
In [28]: data.plot(kind="line",x="temp",y="rain")
plt.show()
```



```
In [29]: data.plot(kind="bar",x="temp",y="rain")
plt.show()
```



```
In [30]: data.plot(kind="hist",x="temp",y="rain")
plt.show()
```



```
In [31]: data.plot(kind="scatter",x="temp",y="rain")
  plt.show()
```


In [38]: data.plot(kind="pie",x="temp",y="rain")
plt.show()

In [43]: !pip3 install seaborn

```
Requirement already satisfied: seaborn in c:\programdata\anaconda3\lib\site-packages (0.11.0)
Requirement already satisfied: matplotlib>=2.2 in c:\programdata\anaconda3\lib\site-packages (from seaborn) (3.3.2)
Requirement already satisfied: numpy>=1.15 in c:\programdata\anaconda3\lib\site-packages (from seaborn) (1.19.2)
Requirement already satisfied: pandas>=0.23 in c:\programdata\anaconda3\lib\site-packages (from seaborn) (1.1.3)
Requirement already satisfied: scipy>=1.0 in c:\programdata\anaconda3\lib\site-packages (from seaborn) (1.5.2)
Requirement already satisfied: certifi>=2020.06.20 in c:\programdata\anaconda3\lib\site-packages (from matplotlib>=2.2-
>seaborn) (2020.6.20)
Requirement already satisfied: kiwisolver>=1.0.1 in c:\programdata\anaconda3\lib\site-packages (from matplotlib>=2.2->s
eaborn) (1.3.0)
Requirement already satisfied: python-dateutil>=2.1 in c:\programdata\anaconda3\lib\site-packages (from matplotlib>=2.2
->seaborn) (2.8.1)
Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.3 in c:\programdata\anaconda3\lib\site-packages
(from matplotlib>=2.2->seaborn) (2.4.7)
Requirement already satisfied: pillow>=6.2.0 in c:\programdata\anaconda3\lib\site-packages (from matplotlib>=2.2->seabo
rn) (8.0.1)
Requirement already satisfied: cycler>=0.10 in c:\programdata\anaconda3\lib\site-packages (from matplotlib>=2.2->seabor
n) (0.10.0)
Requirement already satisfied: pytz>=2017.2 in c:\programdata\anaconda3\lib\site-packages (from pandas>=0.23->seaborn)
(2020.1)
Requirement already satisfied: six>=1.5 in c:\programdata\anaconda3\lib\site-packages (from python-dateutil>=2.1->matpl
otlib>=2.2->seaborn) (1.15.0)
```

In [44]: import matplotlib.pyplot as plt import seaborn as sns

```
In [49]: plt.figure(figsize=(16,6))
   plt.title("Forest Fire Report ")
   sns.lineplot(data=data)
```

Out[49]: <AxesSubplot:title={'center':'Forest Fire Report '}>


```
In [50]: plt.figure(figsize=(16,6))
sns.barplot(data=data)
```

Out[50]: <AxesSubplot:>


```
In [51]: plt.figure(figsize=(16,6))
sns.scatterplot(x=data['X'] , y=data['Y'])
```

Out[51]: <AxesSubplot:xlabel='X', ylabel='Y'>


```
In [54]: sns.distplot(a=data['area'],kde=False)
```

Out[54]: <AxesSubplot:xlabel='area'>


```
In [72]: data.plot(kind="pie",x="area",y="rain")
plt.show()
```


In [73]: !pip install ijson

Requirement already satisfied: ijson in c:\programdata\anaconda3\lib\site-packages (3.1.4)

In [74]: import ijson
from pandas.io.json import json_normalize

```
In [75]: iri = pd.read_json("iris.json")
    iri.head()
```

Out[75]:

	sepalLength	sepalWidth	petalLength	petalWidth	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa

In [77]: iri.tail()

Out[77]:

	sepalLength	sepalWidth	petalLength	petalWidth	species
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

In [78]: iri.shape

Out[78]: (150, 5)

In [79]: iri.size

Out[79]: 750

In [80]: iri.ndim

Out[80]: 2

```
In [81]: plt.figure(figsize=(16,6))
    plt.title("IRIS DATASET")
    sns.lineplot(data=iri)
```

Out[81]: <AxesSubplot:title={'center':'IRIS DATASET'}>


```
In [82]: iri.set_index('petalWidth')
```

Out[82]:

	sepalLength	sepalWidth	petalLength	species
petalWidth				
0.2	5.1	3.5	1.4	setosa
0.2	4.9	3.0	1.4	setosa
0.2	4.7	3.2	1.3	setosa
0.2	4.6	3.1	1.5	setosa
0.2	5.0	3.6	1.4	setosa
2.3	6.7	3.0	5.2	virginica
1.9	6.3	2.5	5.0	virginica
2.0	6.5	3.0	5.2	virginica
2.3	6.2	3.4	5.4	virginica
1.8	5.9	3.0	5.1	virginica

150 rows × 4 columns

In [87]: iri['species']=1

In [88]: sns.heatmap(data=iri,annot=True)

Out[88]: <AxesSubplot:>

In [89]: |sns.barplot(data=iri)

Out[89]: <AxesSubplot:>

In [91]: sns.lineplot(data=iri)

Out[91]: <AxesSubplot:>

In [92]: | sns.histplot(data=iri)

Out[92]: <AxesSubplot:ylabel='Count'>

In [93]: sns.scatterplot(data=iri)

Out[93]: <AxesSubplot:>


```
In [97]: iri.plot(kind="pie",x="sepalLength",y="sepalWidth")
plt.show()
```



```
In [120]: import pandas as pd
dat= pd.read_csv('iris.tsv', sep='\t')
```

In [121]: dat

Out[121]:

	id	sepal_length	sepal_width	petal_length	petal_width	species
0	1	5.1	3.5	1.4	0.2	setosa
1	2	4.9	3.0	1.4	0.2	setosa
2	3	4.7	3.2	1.3	0.2	setosa
3	4	4.6	3.1	1.5	0.2	setosa
4	5	5.0	3.6	1.4	0.2	setosa
145	146	6.7	3.0	5.2	2.3	virginica
146	147	6.3	2.5	5.0	1.9	virginica
147	148	6.5	3.0	5.2	2.0	virginica
148	149	6.2	3.4	5.4	2.3	virginica
149	150	5.9	3.0	5.1	1.8	virginica

150 rows × 6 columns

```
In [126]: dat.set_index('id')
```

Out[126]:

	sepal_length	sepal_width	petal_length	petal_width	species
id					
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
4	4.6	3.1	1.5	0.2	setosa
5	5.0	3.6	1.4	0.2	setosa
146	6.7	3.0	5.2	2.3	virginica
147	6.3	2.5	5.0	1.9	virginica
148	6.5	3.0	5.2	2.0	virginica
149	6.2	3.4	5.4	2.3	virginica
150	5.9	3.0	5.1	1.8	virginica

150 rows × 5 columns

```
In [127]: plt.figure(figsize=(16,6))
    plt.title("iris records ")
    sns.lineplot(data=dat)
```



```
Out[127]: <AxesSubplot:title={'center':'iris records '}>
In [128]: plt.figure(figsize=(16,6))
           plt.title("iris Records")
           sns.barplot(data=dat)
                                                                                       Figure 6
                                                                                          iris Records
                             80
                             70
                             60
                             50 -
                             40
                             30 -
                             20
                             10 -
                                                                  sepal_length
                                                                                           sepal_width
                                                                                                                    petal_length
```

Out[128]: <AxesSubplot:title={'center':'iris Records'}>

```
In [139]: plt.figure(figsize=(16,6))
        plt.title("iris records ")
        sns.scatterplot(data=dat)
                                                                   Figure 7
                                                                      iris records
                             id
                                        sepal_length
                             sepal_width
                            petal length
                             petal width
                      120
                             species
                      100
                      80
                      60
                       40
                      20
                                        20
                                                                                        100
                                                    40
                                                                60
                                                                             80
                                                                                                    120
                                                                                                     Zoom to rectar
                                 Out[139]: <AxesSubplot:title={'center':'iris records '}>
In [140]: from scipy.io import arff
```

```
In [141]: daf = arff.loadarff('EPL.arff')
df = pd.DataFrame(daf[0])
```

In [142]: df

Out[142]:

	FIELD1	season	home_team_id	away_team_id	home_team_name	away_team_name	date_string	half_time_score	full_time_score	full_time_r	
0	0.0	b'14-15'	13.0	162.0	b'Arsenal'	b'Crystal Palace'	b'16/08/2014 17:30:00'	b'1 : 1'	b'2 : 1'		
1	1.0	b'14-15'	184.0	15.0	b'Burnley'	b'Chelsea'	b'18/08/2014 20:00:00'	b'1 : 3'	b'1 : 3'		
2	2.0	b'14-15'	14.0	31.0	b'Leicester'	b'Everton'	b'16/08/2014 15:00:00'	b'1 : 2'	b'2 : 2'		
3	3.0	b'14-15'	26.0	18.0	b'Liverpool'	b'Southampton'	b'17/08/2014 13:30:00'	b'1:0'	b'2 : 1'		
4	4.0	b'14-15'	32.0	259.0	b'Manchester United'	b'Swansea'	b'16/08/2014 12:45:00'	b'0 : 1'	b'1 : 2'		
1305	1305.0	b'17-18'	30.0	183.0	b'Tottenham'	b'Bournemouth'	b'14/10/2017 15:00:00'	b'0 : 0'	b'1 : 0'		
1306	1306.0	b'17-18'	26.0	175.0	b'Liverpool'	b'West Bromwich Albion'	b'13/12/2017 20:00:00'	b'0 : 0'	b'0 : 0'		
1307	1307.0	b'17-18'	27.0	13.0	b'Watford'	b'Arsenal'	b'14/10/2017 17:30:00'	b'0 : 1'	b'2 : 1'		
1308	1308.0	b'17-18'	30.0	211.0	b'Tottenham'	b'Brighton'	b'13/12/2017 20:00:00'	b'1 : 0'	b'2:0'		
1309	1309.0	b'17-18'	15.0	27.0	b'Chelsea'	b'Watford'	b'21/10/2017 12:30:00'	b'1 : 1'	b'4 : 2'		
1210 rows v E9 columns											

1310 rows × 58 columns

4

```
In [143]: plt.figure(figsize=(16,6))
    plt.title("EPL dataset")
    sns.lineplot(data=df)
```


Out[143]: <AxesSubplot:title={'center':'EPL dataset'}>

```
In [144]: plt.figure(figsize=(16,6))
    plt.title("EPL dataset")
    sns.barplot(data=df)
```


Out[144]: <AxesSubplot:title={'center':'EPL dataset'}>

```
In [145]: plt.figure(figsize=(16,6))
   plt.title("EPL dataset")
   sns.scatterplot(data=df)
```


Out[145]: <AxesSubplot:title={'center':'EPL dataset'}>

In [151]: dfxx

Out[151]:

	Unnamed: 0	ID	PRODUTO	CATEGORIA PRODUTO	QTDE	VALOR	DESCONTO	TOTAL	LOJA	VENDEDOR	CLIENTE	SEXO	ESTADO CIVIL	DATA	PERIC
0	0	1	1	ВА	1	198	0.01	196.02	GGFF	DDEEE	WNMJUZ LDGWSXCV	-	d	2019- 12-26	201
1	1	2	J	AC	9	244	0.01	2174.04	GGFG	EEEDE	WXFRMV YIDLUDFU	m	d	2019- 01-28	201
2	2	3	D	ВВ	6	177	0.03	1030.14	GFGF	DEEEE	VOTGLV PGKAMASM	f	-	2019- 04-08	201
3	3	4	0	AC	8	256	0.01	2027.52	GGFG	DEDED	HYTRVB LNLUCDLI	m	-	2019- 12-29	201
4	4	5	F	CA	6	286	0.02	1681.68	GGGF	EEDDD	YTIIIO GNEOHMQT	f	С	2019- 04-04	201
95	95	96	E	AC	3	296	0.04	852.48	GFFF	DEEDD	BJPWAO SDOQEACC	m	d	2019- 05-05	201
96	96	97	Н	ВВ	2	269	0.01	532.62	FGGG	EDDEE	QFFEVB POHRVWLA	f	-	2019- 03-19	201
97	97	98	Р	AA	5	186	0.03	902.10	FGGG	DEDEE	TDYDKL WAWNHEEA	f	d	2019- 02-08	201
98	98	99	1	СВ	1	164	0.01	162.36	GFGG	EEDDD	VMWTHS XMLLCBTE	а	s	2019- 10-23	201
99	99	100	С	ВА	5	157	0.04	753.60	FFGF	EEDDD	EVADZF YPCZFMAM	m	-	2019- 09-13	201

100 rows × 16 columns

```
In [152]: plt.figure(figsize=(16,6))
    plt.title("EPL dataset")
    sns.scatterplot(data=dfxx)
```


Out[152]: <AxesSubplot:title={'center':'EPL dataset'}>

```
In [153]: plt.figure(figsize=(16,6))
    plt.title("EPL dataset")
    sns.lineplot(data=dfxx)
```


Out[153]: <AxesSubplot:title={'center':'EPL dataset'}>

```
In [154]: plt.figure(figsize=(16,6))
   plt.title("EPL dataset")
   sns.barplot(data=dfxx)
```



```
Out[154]: <AxesSubplot:title={'center':'EPL dataset'}>
```

```
In [155]: df = pd.read_excel ('US Super.xls')
dfss = pd.DataFrame(df)
```

In [156]: dfss

Out[156]:

	Row ID	Order ID	Order Date	Ship Date	Ship Mode	Customer ID	Customer Name	Segment	Country	City	 Postal Code	Region	Product ID	Category	
0	1	CA- 2016- 152156	2016- 11-08	2016- 11-11	Second Class	CG-12520	Claire Gute	Consumer	United States	Henderson	 42420	South	FUR-BO- 10001798	Furniture	В
1	2	CA- 2016- 152156	2010-	2016- 11-11	Second Class	CG-12520	Claire Gute	Consumer	United States	Henderson	 42420	South	FUR-CH- 10000454	Furniture	
2	3	CA- 2016- 138688	2010-	2016- 06-16	Second Class	DV-13045	Darrin Van Huff	Corporate	United States	Los Angeles	 90036	West	OFF-LA- 10000240	Office Supplies	
3	4	US- 2015- 108966	2015- 10-11	2015- 10-18	Standard Class	SO-20335	Sean O'Donnell	Consumer	United States	Fort Lauderdale	 33311	South	FUR-TA- 10000577	Furniture	
4	5	US- 2015- 108966	2015- 10-11	2015- 10-18	Standard Class	SO-20335	Sean O'Donnell	Consumer	United States	Fort Lauderdale	 33311	South	OFF-ST- 10000760	Office Supplies	
9989	9990	CA- 2014- 110422	2014- 01-21	2014- 01-23	Second Class	TB-21400	Tom Boeckenhauer	Consumer	United States	Miami	 33180	South	FUR-FU- 10001889	Furniture	Fι
9990	9991	CA- 2017- 121258	2017-	2017- 03-03	Standard Class	DB-13060	Dave Brooks	Consumer	United States	Costa Mesa	 92627	West	FUR-FU- 10000747	Furniture	Fι
9991	9992	CA- 2017- 121258	2017-	2017- 03-03	Standard Class	DB-13060	Dave Brooks	Consumer	United States	Costa Mesa	 92627	West	TEC-PH- 10003645	Technology	

	Row ID	Order ID	Order Date	Ship Date	Ship Mode	Customer ID	Customer Name	Segment	Country	City	 Postal Code	Region	Product ID	Category	
9992	9993	CA- 2017- 121258	2017- 02-26	2017- 03-03	Standard Class	DB-13060	Dave Brooks	Consumer	United States	Costa Mesa	 92627	West	OFF-PA- 10004041	Office Supplies	
9993	9994	CA- 2017- 119914	2017- 05-04	2017- 05-09	Second Class	CC-12220	Chris Cortes	Consumer	United States	Westminster	 92683	West	OFF-AP- 10002684	Office Supplies	Α

9994 rows × 21 columns

4

```
In [157]: plt.figure(figsize=(16,6))
    plt.title("US Store dataset")
    sns.barplot(data=dfss)
```


Out[157]: <AxesSubplot:title={'center':'US Store dataset'}>

```
In [158]: plt.figure(figsize=(16,6))
    plt.title("US Store dataset")
    sns.lineplot(data=dfss)
```


Out[158]: <AxesSubplot:title={'center':'US Store dataset'}>

```
In [159]: plt.figure(figsize=(16,6))
   plt.title("US Store dataset")
   sns.scatterplot(data=dfss)
```



```
Out[159]: <AxesSubplot:title={'center':'US Store dataset'}>

In [160]: !pip install lxml

Requirement already satisfied: lxml in c:\programdata\anaconda3\lib\site-packages (4.6.1)

In [161]: from lxml import objectify import pandas as pd
```

```
In [162]: xml_data = objectify.parse('API.xml') # Parse XML data
          root = xml_data.getroot() # Root element
          data = []
          cols = []
          for i in range(len(root.getchildren())):
              child = root.getchildren()[i]
              data.append([subchild.text for subchild in child.getchildren()])
              cols.append(child.tag)
          dfl = pd.DataFrame(data).T
          dfl.columns = cols
          print(dfl)
                 data
          0
                 None
                 None
                 None
                 None
                 None
          . . .
          15835 None
          15836 None
          15837
                 None
          15838
                 None
          15839 None
          [15840 rows x 1 columns]
```

Image visualization: image plot, 3d plot

```
In [99]: %matplotlib inline
import imageio
import matplotlib.pyplot as plt
import matplotlib.cbook

pic=imageio.imread('bhc.jpg')
plt.figure(figsize=(6,6))
plt.imshow(pic)
plt.axis('off')
```

Out[99]: (-0.5, 473.5, 646.5, -0.5)


```
In [39]: import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
```



```
In [100]: %matplotlib notebook
          import matplotlib.pyplot as plt
          from mpl_toolkits.mplot3d import Axes3D
          import numpy as np
          from scipy.stats import multivariate normal
          X = np.linspace(-5,5,50)
          Y = np.linspace(-5,5,50)
          X, Y = np.meshgrid(X,Y)
          X mean = 0; Y mean = 0
          X \text{ var} = 5; Y \text{ var} = 8
          pos = np.empty(X.shape+(2,))
          pos[:,:,0]=X
          pos[:,:,1]=Y
          rv = multivariate_normal([X_mean, Y_mean],[[X_var, 0], [0, Y_var]])
          fig = plt.figure()
          ax = fig.add_subplot(111, projection='3d')
          ax.plot surface(X, Y, rv.pdf(pos), cmap="plasma")
          plt.show()
```


Video visualization: video player

Audio visualization: audio player, spectrogram

```
Requirement already satisfied: librosa in c:\programdata\anaconda3\lib\site-packages (0.8.0)
Requirement already satisfied: numba>=0.43.0 in c:\programdata\anaconda3\lib\site-packages (from librosa) (0.51.2)
Requirement already satisfied: soundfile>=0.9.0 in c:\programdata\anaconda3\lib\site-packages (from librosa) (0.10.
3.post1)
Requirement already satisfied: scipy>=1.0.0 in c:\programdata\anaconda3\lib\site-packages (from librosa) (1.5.2)
Requirement already satisfied: decorator>=3.0.0 in c:\programdata\anaconda3\lib\site-packages (from librosa) (4.4.2)
Requirement already satisfied: audioread>=2.0.0 in c:\programdata\anaconda3\lib\site-packages (from librosa) (2.1.9)
Requirement already satisfied: numpy>=1.15.0 in c:\programdata\anaconda3\lib\site-packages (from librosa) (1.19.2)
Requirement already satisfied: joblib>=0.14 in c:\programdata\anaconda3\lib\site-packages (from librosa) (0.17.0)
Requirement already satisfied: scikit-learn!=0.19.0,>=0.14.0 in c:\programdata\anaconda3\lib\site-packages (from lib
rosa) (0.23.2)
Requirement already satisfied: resampy>=0.2.2 in c:\programdata\anaconda3\lib\site-packages (from librosa) (0.2.2)
Requirement already satisfied: pooch>=1.0 in c:\programdata\anaconda3\lib\site-packages (from librosa) (1.3.0)
Requirement already satisfied: llvmlite<0.35,>=0.34.0.dev0 in c:\programdata\anaconda3\lib\site-packages (from numba
>=0.43.0->librosa) (0.34.0)
Requirement already satisfied: setuptools in c:\programdata\anaconda3\lib\site-packages (from numba>=0.43.0->libros
a) (50.3.1.post20201107)
Requirement already satisfied: cffi>=1.0 in c:\programdata\anaconda3\lib\site-packages (from soundfile>=0.9.0->libro
sa) (1.14.3)
Requirement already satisfied: threadpoolctl>=2.0.0 in c:\programdata\anaconda3\lib\site-packages (from scikit-lear
n!=0.19.0,>=0.14.0->librosa) (2.1.0)
Requirement already satisfied: six>=1.3 in c:\programdata\anaconda3\lib\site-packages (from resampy>=0.2.2->librosa)
(1.15.0)
Requirement already satisfied: packaging in c:\programdata\anaconda3\lib\site-packages (from pooch>=1.0->librosa) (2
Requirement already satisfied: requests in c:\programdata\anaconda3\lib\site-packages (from pooch>=1.0->librosa) (2.
24.0)
Requirement already satisfied: appdirs in c:\programdata\anaconda3\lib\site-packages (from pooch>=1.0->librosa) (1.
4.4)
Requirement already satisfied: pycparser in c:\programdata\anaconda3\lib\site-packages (from cffi>=1.0->soundfile>=
0.9.0->librosa) (2.20)
Requirement already satisfied: pyparsing>=2.0.2 in c:\programdata\anaconda3\lib\site-packages (from packaging->pooch
>=1.0->librosa) (2.4.7)
Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in c:\programdata\anaconda3\lib\site-packages
(from requests->pooch>=1.0->librosa) (1.25.11)
Requirement already satisfied: chardet<4,>=3.0.2 in c:\programdata\anaconda3\lib\site-packages (from requests->pooch
>=1.0->librosa) (3.0.4)
Requirement already satisfied: certifi>=2017.4.17 in c:\programdata\anaconda3\lib\site-packages (from requests->pooc
h>=1.0->librosa) (2020.6.20)
```

Text visualization: Word cloud, bubble cloud (some more in http://vallandingham.me/textvis@talk/ (http://vallandingham.me/textvis@02talk/)

```
In [113]: !pip install wordcloud
```

Collecting wordcloud

Downloading wordcloud-1.8.1-cp38-cp38-win_amd64.whl (155 kB)

Requirement already satisfied: matplotlib in c:\programdata\anaconda3\lib\site-packages (from wordcloud) (3.3.2)

Requirement already satisfied: numpy>=1.6.1 in c:\programdata\anaconda3\lib\site-packages (from wordcloud) (1.19.2)

Requirement already satisfied: pillow in c:\programdata\anaconda3\lib\site-packages (from wordcloud) (8.0.1)

Requirement already satisfied: certifi>=2020.06.20 in c:\programdata\anaconda3\lib\site-packages (from matplotlib->word cloud) (2020.6.20)

Requirement already satisfied: cycler>=0.10 in c:\programdata\anaconda3\lib\site-packages (from matplotlib->wordcloud) (0.10.0)

Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.3 in c:\programdata\anaconda3\lib\site-packages (from matplotlib->wordcloud) (2.4.7)

Requirement already satisfied: python-dateutil>=2.1 in c:\programdata\anaconda3\lib\site-packages (from matplotlib->wor dcloud) (2.8.1)

Requirement already satisfied: kiwisolver>=1.0.1 in c:\programdata\anaconda3\lib\site-packages (from matplotlib->wordcl oud) (1.3.0)

Requirement already satisfied: six in c:\programdata\anaconda3\lib\site-packages (from cycler>=0.10->matplotlib->wordcl oud) (1.15.0)

Installing collected packages: wordcloud
Successfully installed wordcloud-1.8.1

```
In [124]: # Python program to generate WordCloud
          # importing all necessery modules
          from wordcloud import WordCloud, STOPWORDS
          import matplotlib.pyplot as plt
          import pandas as pd
          # Reads 'Youtube04-Eminem.csv' file
          df = pd.read csv(r"Youtube04-Eminem.csv", encoding ="latin-1")
          comment words = ''
          stopwords = set(STOPWORDS)
          # iterate through the csv file
          for val in df.CONTENT:
              val = str(val)
              tokens = val.split()
          # Converts each token into lowercase
          for i in range(len(tokens)):
              tokens[i] = tokens[i].lower()
              comment words += " ".join(tokens)+" "
          wordcloud = WordCloud(width = 800, height = 800,
          background color ='white',
          stopwords = stopwords,
          min_font_size = 10).generate(comment_words)
          # plot the WordCloud image
          plt.figure(figsize = (8, 8), facecolor = None)
          plt.imshow(wordcloud)
          plt.axis("off")
          plt.tight layout(pad = 0)
          plt.show()
```

Views AVESOME

