

6) In batch- $TD(0)$, we treat all available experience as a batch, compute the sum of all the increments (TD-errors) for the batch, and update the values just once at the end using this sum. This forms one iteration of batch-TD. We do this repeatedly until the value function converges.	
If this trajectory is repeatedly used to update the values using batch- $TD(0)$ what does $V(B)$ converge to?	
3 2+1 3 remard ferre 1 estimati	
7) Which of the following conditions are necessary for ensuring the convergence of SARSA?	t -
Each state-action pair is visited at least once. O no times visited at least once. O no times visited at least once visited at least on	uis
All state-action pairs are visited an infinite number of times.	•
The policy converges in the limit to a greedy policy. (2) limit to the greedy policy.	Ley
The value of ϵ is fixed to some small value throughout the algorithm.	U
8) Choose the correct qualifiers for Q-learning from the options given below. 1 poin	,
Sof-policy, Shots & on-policy	<i>J</i>
T) - Control	4
TD-control	•
□ TD-prediction	
9) Consider this statement "The action value function corresponding to the optimal policy is learnt while the actions are sampled from an arbitrary policy." 1 point This is true for which of the following algorithms?	
\cap $TD(0)$	
SARSA	
Q-Learning	
Consider a grid world with deterministic transitions and a unit reward of —1 for all time-steps. SARSA is run on this setup. The current estimate for the action values for certain states are displayed in the figure.	
-1.2	
_1.2	
N N	
(s_2) (s_2) -0.7	
W ≥	
$\begin{array}{c c} $	
\$\ \frac{25}{3} \text{ meet.google.com}	
-1.2 s_1 s_2 Puneet (You, presenting, annotating)	
-1.4	
The agent is currently in state s_1 . The policy is ϵ -greedy ($\epsilon=0.1$) with respect to the current estimate of the action values. The action to be executed at this time step in the	
episode is north. The action that the agent has committed to take from the next state (in this episode) turns out to be the worst possible non-greedy action from that state. 10) Perform one update of the action value for the pair (s_1, north) . Use $\alpha = 0.1, \gamma = 1$. Enter the exact numerical answer.	
-1.19	
$q(s,a) = q(s,a) + \alpha(a+ Y \alpha(s,a) - 1)point \alpha$	(s,a)
ν · · · · · · · · · · · · · · · · · · ·	
9, (s, neuth) = -1 => 5 (S2, a') = -1.9	
=-1+0.1/-++(-1.9)-(-1)	
$= -1 \cdot 0.19 = -10.19$	

this episode? (it is clean from the guestion itself.

- The action west with a probability of 0.1
- The action east with a probability of 0.925 and any of the other three actions with a probability of 0.02
- The action east with a probability of 0.9 and any of the other three actions with a probability of $0.1\,$
- 12) Compute the importance sampling ratio for the trajectory shown in the figure if the behaviour policy μ is the equiprobable random policy and the target policy is π is

Trajectory

Target Policy

				0		
			0		1	
				0		
	0.1			0.9		
0		0.9	0		0.1	
	0			0		
l	0.9					
0		0.1				
	0					

Enter your answer correct to two decimal places

186.6

= 0.9x0.9x0.9x1=0.729

Gradel Assignment

- 1) Match the methods with their corresponding characteristics.
 - DP: bootstraps, full backups
- MC: does not bootstrap, full backups
 - TD: bootstraps, full backups
 - DP: bootstraps, full backups

MC: does not bootstrap, sample backups

TD: bootstraps, sample backups

1 point

It is a prediction of the expected return of state S_t at time t

- It is a prediction of the expected return of state S_{t+1} at time t
- It is a prediction of the expected return of state S_{t+1} at time t+1

3) Consider a grid world that permits all four actions to be taken from each state. Which of the following are ϵ -soft policies, with $\epsilon=0.1?$ $\mathcal{A}=0.1$ $\{north, south, east, west\}.$

$$\pi(a \mid s) = 1/4, \quad \forall a \in \mathcal{A}$$

$$\pi(a \mid s) = \begin{cases} 0.99, & a = \text{north} \\ 0.01/3, & \text{otherwise} \end{cases}$$

$$\pi(a \mid s) = egin{cases} 0.925, & a = ext{north} \ 0.025, & ext{otherwise} \end{cases}$$

4) Choose the correct qualifiers for SARSA from the options given below

On-policy

Off-policy

TD-control

TD-prediction

5) Consider the two expressions given below:

1 point

$$R_{t+1} + \gamma \cdot Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)$$

 $R_{t+1} + \gamma \cdot \underbrace{\max_{a} \ Q(S_{t+1}, a)}_{Q(S_t, A_t)}$

> man > Q learning

 E_1 is the TD error that is used to update the action value function in SARSA

- $_{\square}$ E_{1} is the TD error that is used to updated the action value function in Q-learning
- E_2 is the TD error that is used to update the action value function in SARSA

 E_2 is the TD error that is used to updated the action value function in Q-learning

Consider a grid world with deterministic transitions and a unit reward of -1 for all time-steps. Q-learning is run on this setup. The current estimate for the action values for certain states are displayed in the figure.

- 7) What will be the next action taken by the agent in this episode?
- The action east with a probability of $\boldsymbol{1}$
- The action east with a probability of 0.1

The action east with a probability of 0.9 and one of the other three actions with a probability of 0.1 each

Consider an undiscounted, episodic task that has two non-terminal states, A,B. The rewards are binary, either 1 or 0. The following are some episodes experienced by an agent following a fixed policy. The terminal state is not explicitly mentioned for any of the episodes.

$$A,1,B,0$$
 = [
 $A,0,B,1$ = [
 $A,1,B,0$ = [
 $A,1,B,0$ = [
 $B,1$ = [
 $B,0$ = [
 $B,1$ = [
 $B,0$ = [
 $B,1$ = [

8) What is the estimate of $V(\underline{A})$ returned by first-visit MC?

$$V(B) = \frac{4}{8} = 0.5$$
Ves the answer is correct

Accepted Answers:

(Type: Numeric) 0.5

10) What is the estimate of
$$V(A)$$
 returned by batch-TD(0)?

$$V(A) = E\left[9c + V(B)\right]$$

Yes, the answer is correct.

Score: 1

Accepted Answers:

(Type: Numeric) 1.25

11) What is the estimate of
$$V(B)$$
 returned by batch-TD(0)?

1+0.5 = 15