

B. Bouquet

Nome del problema	Bouquet
Limite di tempo	3 secondi
Limite di memoria	1 gigaottetto

Dopo aver visitato Keukenhof, uno dei giardini fioriti più grandi del mondo, Lieke si è appassionata molto di fiori, così ha deciso di raccogliere alcuni tulipani che crescono vicino alla strada per creare un bellissimo bouquet. Tuttavia, quando raccoglie i fiori, deve rispettare alcune regole dovute alle rigide leggi sulla protezione dei tulipani nei Paesi Bassi.

Ci sono N tulipani indicizzati da 0 a N-1 che crescono in fila lungo la strada, in ordine da sinistra a destra. La legge sulla protezione dei tulipani assegna due numeri interi, l_i e r_i , al tulipano i. Nel caso in cui il tulipano i sia incluso nel bouquet, i tulipani l_i immediatamente a sinistra del tulipano i e i tulipani r_i immediatamente a destra del tulipano i non possono essere presenti nel bouquet. Tieni presente che se ci sono meno di l_i tulipani a sinistra o meno di r_i tulipani a destra del tulipano i, tutti i tulipani da quel lato sono comunque esclusi dal bouquet (possono verifericarsi overflow).

Lieke si chiede quale sarà il numero massimo di tulipani che potrà raccogliere se raccoglierà i suoi fiori in modo ottimale. Aiutala a costruire un bellissimo bouquet trovando la risposta alla sua domanda!

Input

La prima riga di input contiene un singolo numero intero N, il numero di tulipani che crescono lungo la strada.

Le seguenti N righe descrivono le informazioni della legge sulla protezione dei tulipani: la iesima riga contiene due numeri interi l_i e r_i , che rappresentano i vincoli di protezione dei tulipani per il tulipano i.

Output

Restituire in output un singolo numero intero, il numero massimo di tulipani che Lieke può raccogliere rispettando la legge sulla protezione.

Limiti e punteggio

- $1 \le N \le 2 \cdot 10^5$.
- $0 \le l_i, r_i \le N$ per i = 0, 1, ..., N 1.

La tua soluzione verrà testata su una serie di subtask, ciascuno dei quali vale un numero di punti. Ciascun subtask contiene una serie di testcase. Per ottenere i punti per un subtask, è necessario risolvere tutti i testcase del subtask.

Group	Punteggio	Limiti
1	8	$l_i = r_i = l_j = r_j$ per tutte le coppie (i,j)
2	16	$r_i=0$ per tutti i
3	28	$N \leq 1000$
4	18	$l_i, r_i \leq 2$ per ogni i
5	30	Nessun limite aggiuntivo

Esempi

Si noti che alcuni esempi non costituiscono input validi per tutti i subtask.

Nel primo esempio, se Lieke sceglie il tulipano 0, non potrà raccogliere i due tulipani a destra. Raccogliere il tulipano 1 non le impedisce di raccogliere il tulipano 2, ma il tulipano 2 le impedisce di raccogliere il tulipano 1, quindi non può raccoglierli entrambi. Quindi, il numero massimo di fiori che Lieke può raccogliere è 1.

Nel secondo esempio, il numero massimo possibile di tulipani che Lieke può raccogliere è 3 e il modo in cui può essere ottenuto è mostrato nell'immagine. Altri modi di raccogliere i tulipani danno una risposta più piccola.

Nel terzo esempio, il numero massimo di tulipani da 4 può essere ottenuto raccogliendo tulipani 0, 1, 3 e 6.

Input	Output
3	1
0 3	
1 0	
1 0	
5	3
0 3	3
1 0	
0 1	
2 0	
1 0	
7	4
0 0	
0 0	
1 0	
1 0	
2 0	
3 0	
2 0	
6	2
2 2	
2 2	
2 2	
2 2	
2 2	
2 2	

Input	Output
7	3
0 2	
2 0	
1 1	
2 2	
0 0	
0 1	
0 1	