Some numerical results relating to the spectral decomposition of a linearized Vlasov equation in a uniform magnetic field

A. Rege¹, F. Charles¹, B. Despres¹, R. Weder²

¹Laboratoire Jacques-Louis Lions Sorbonne Université

²Universita Nacional Autonoma de Mexico

08 October 2019

Outline

Motivation : the Landau-Bernstein paradox

- Spectral decomposition of a linearized Vlasov-Ampère system
- 3 Numerical study with a Semi-Lagrangian scheme : construction of reference solutions

Outline

1 Motivation : the Landau-Bernstein paradox

- Spectral decomposition of a linearized Vlasov-Ampère system
- 3 Numerical study with a Semi-Lagrangian scheme : construction of reference solutions

The paradox

The Landau-Bernstein paradox

"In unmagnetized plasmas, waves exhibit Landau Damping, while in magnetized plasmas, waves perpendicular to the magnetic field are exactly undamped".

- Several older physical papers ^{1 2} and more recent mathematical papers ³ have studied the behaviour of magnetized plasmas.
- We want to better understand the transition between magnetized and unmagnetized frameworks.

^{1.} I. Bernstein, Waves in a Plasma in a Magnetic Field, Phy. Review, 1958.

^{2.} A. I. Sukhorukov and P. Stubbe, On the Landau-Bernstein paradox, Phy. of Plasmas, 1997.

^{3.} J. Bedrossian and F. Wang, The linearized Vlasov and Vlasov-Fokker-Planck equations in a uniform magnetic field, preprint, 2018.

Numerical illustration: the model

1d-2v Vlasov-Poisson system with magnetic field

$$\begin{cases}
\partial_t f + v_1 \partial_x f - E \partial_{v_1} f + \omega_c \left(-v_2 \partial_{v_1} + v_1 \partial_{v_2} \right) f = 0, \\
\partial_x E = 2\pi - \int f dv_1 dv_2.
\end{cases}$$
(1)

Here $\omega_c>0$ is the constant cyclotron frequency for electrons. The unknowns are the density of electrons $f(t,x,v_1,v_2)\geq 0$ and the electric field E(t,x). The domain is $\Omega=\mathbb{T}\times\mathbb{R}^2,\quad \mathbb{T}=[0,2\pi]_{\mathrm{per}}$ is the 1D-torus.

lons are considered as a motionless background of neutralizing positive charge.

Numerical illustration: magnetic recurrence

Initialization : $f_0(x, v_1, v_2) = (1 + \varepsilon \cos kx) \exp(-\frac{v_1^2 + v_2^2}{2})$ with $\varepsilon = 0.001$.

Figure - Damped and undamped electric field

Outline

Motivation: the Landau-Bernstein paradox

- Spectral decomposition of a linearized Vlasov-Ampère system
- 3 Numerical study with a Semi-Lagrangian scheme : construction of reference solutions

Linearized system

We linearize (1) by writing

$$f = f_0 + \varepsilon \sqrt{f_0} u + O(\varepsilon^2)$$
 and $E = \varepsilon F + O(\varepsilon^2)$.

where $(f_0, E_0) = (\exp(-\frac{v_1^2 + v_2^2}{2}), 0)$ is a stationary solution of (1).

Linearized Vlasov-Poisson

$$\begin{cases} \partial_{t}u + v_{1}\partial_{x}u + Fv_{1}e^{-\frac{v_{1}^{2}+v_{2}^{2}}{4}} + \omega_{c}\left(-v_{2}\partial_{v_{1}} + v_{1}\partial_{v_{2}}\right)u = 0, \\ \partial_{x}F = -\int ue^{-\frac{v_{1}^{2}+v_{2}^{2}}{4}}dv_{1}dv_{2}. \end{cases}$$
(2)

- $\int ue^{-\frac{v_1^2+v_2^2}{4}} dx dv_1 dv_2 = 0.$ (total mass equal zero)
- $\int Fdx = 0$. (To solve the Poisson equation)

Scattering theory

Scattering theory: consider two self-adjoint operators H_0 and H on a Hilbert space \mathcal{H} that are "close" in some sense, then we expect the spectral properties of H to also be close to those of $H_0 \Rightarrow$ the dynamics of U'(t) = iHU similar to the dynamics of $U'(t) = iH_0U$.

- Several papers ⁴⁵ show that linear Vlasov equations show promising scattering structures.
- For the self-adjoint operator H, we have the following decomposition of the Hilbert space $\mathcal{H}=\mathcal{H}^{ac}\oplus\mathcal{H}^{sc}\oplus\mathcal{H}^{pp}$. 67
- We can show that for Vlasov-Poisson without magnetic field, there is only the absolutely continuous part $\mathcal{H}^{ac} \Rightarrow \text{Linear Landau damping}$.

^{4.} B. Despres, Scattering structure and Landau damping for linearized Vlasov eq. with inhomogeneous Boltzmannian states, Ann. IHP, 2019.

^{5.} B. Despres, Trace class properties of the linear Vlasov-Poisson equation, preprint.

^{6.} T. Kato, Perturbation theory for linear operators, 1966.

^{7.} D.R. Yafaev, Scattering theory: Some old and new problems, 2000.

No self-adjointness

We write the linearized system in the framework of scattering theory :

$$\partial_t u = i\mathcal{H}u$$

with
$$\mathcal{H}u = i(v_1\partial_x + \omega_c(-v_2\partial_{v_1} + v_1\partial_{v_2}))u + iFv_1e^{-\frac{v_1^2+v_2^2}{4}}$$

and $\partial_x F = -\int ue^{-\frac{v_1^2+v_2^2}{4}} dv_1 dv_2$.

Unfortunately,

$$\mathcal{H}^* \neq \mathcal{H}$$
.

• Solution : rewrite the system with the Ampère equation (both systems are equivalent).

Linearized Vlasov-Ampère system

$$\begin{cases} \partial_{t}u + v_{1}\partial_{x}u + Fv_{1}e^{-\frac{v_{1}^{2}+v_{2}^{2}}{4}} + \omega_{c}(-v_{2}\partial_{v_{1}} + v_{1}\partial_{v_{2}})u = 0, \\ \partial_{t}F = 1^{*} \int ue^{-\frac{v_{1}^{2}+v_{2}^{2}}{4}} v_{1}dv_{1}dv_{2}. \end{cases}$$
with
$$1^{*}g(x) = g(x) - \frac{1}{2\pi} \int_{\mathbb{T}} g(x)dx.$$
 (3)

Final formulation

$$\partial_t \begin{pmatrix} u \\ F \end{pmatrix} = iH \begin{pmatrix} u \\ F \end{pmatrix}, H = \begin{pmatrix} v_1 \partial_x + \omega_c (v_2 \partial_{v_1} - v_1 \partial_{v_2}) & iv_1 e^{-\frac{v_1^2 + v_2^2}{4}} \\ -i1^* \int v_1 e^{-\frac{v_1^2 + v_2^2}{4}} \cdot dv_1 dv_2 & 0 \end{pmatrix}$$

$$V = \underbrace{\left(L^2(\mathbb{T} \times \mathbb{R}^2) \cap \left\{ \int u \sqrt{f_0} dx dv_1 dv_2 = 0 \right\} \right)}_{=L_0^2(\mathbb{T} \times \mathbb{R}^2)} \times \underbrace{\left(L^2(\mathbb{T}) \cap \left\{ \int F dx = 0 \right\} \right)}_{=L_0^2(\mathbb{T})}$$

Spectral study: eigenvalues and eigenvectors

- To conduct our study, we consider functions proportional to e^{nix} .
- For a non-zero Fourier mode $n \neq 0$, the spaces are as follows :

Space	λ	m
$W_n^1 := \oplus_{m \in \mathbb{Z}^*} \left[e^{mi\varphi - inrac{v_2}{\omega_c}} V_{n,m} imes \{0\} ight]$	$-m\omega_c$	$m \neq 0$
$W_n^2 := \oplus_{m \in \mathbb{Z}^*} \left\{ \left(e^{-inrac{v_2}{\omega_c}} w_{n,m}, -ni ight) ight\}$	λ_m	$m \neq 0$
$W_n^3 := \operatorname{Span}_{ au} \left\{ \left(e^{-inrac{v_2}{\omega_c}} au(r), 0 ight) ight\} + \left\{ \left(e^{-rac{r^2}{4}}, -in ight) ight\}$	0	

• The spaces corresponding to n = 0 are :

Space	λ	m
$W_0^1 := \oplus_{m \in \mathbb{Z}^*} \left[e^{mi\varphi} L^2(\mathbb{R}^+) \times \{0\} \right]$	$-m\omega_c$	$m \neq 0$
$W_0^3 := \oplus_{p \in \mathbb{N}^*} \left[\left\{ au_p ight\} imes \left\{ 0 ight\} ight]$	0	<i>p</i> > 0

Spectral study: discrete spectrum

Theorem

We have completeness of the eigenspaces $(n \neq 0)$.

$$L_0^2(\mathbb{T}\times\mathbb{R}^2)\times L_0^2(\mathbb{T})=\oplus_{n\neq 0}\left[e^{inx}\left(W_n^1\oplus W_n^2\oplus W_n^3\right)\right]\oplus\left[L_0^2(\mathbb{R}^2)\times 0\right]$$

and so the eigenvalues of H are 0, $-m\lambda_c$ and λ_m , $m \neq 0$.

- This shows that H can be fully diagonalized \Rightarrow their is only discrete spectrum $V = \mathcal{H}^{pp}$.
- New result for this kind of system 8.

^{8.} J. Bedrossian and F. Wang, The linearized Vlasov and Vlasov-Fokker-Planck equations in a uniform magnetic field, preprint, 2018.

Back to the Landau-Bernstein paradox

Spectral explanation for the Landau-Bernstein paradox

- The Vlasov-Ampère operator H is self-adjoint and it has a complete set of eigenfunctions \Rightarrow electric field is undamped.
- ② The Vlasov system without magnetic field has only absolutely continuous spectrum ⇒ electric field is damped.

Outline

Motivation : the Landau-Bernstein paradox

- Spectral decomposition of a linearized Vlasov-Ampère system
- 3 Numerical study with a Semi-Lagrangian scheme : construction of reference solutions

Initialization: back to the spectral study

Objective: compare the numerical and theoretical solutions of Vlasov-Ampère when initializing with an eigenvector.

- We consider an eigenvector $\begin{pmatrix} w_{n,m} \\ F_n \end{pmatrix}$ associated to the Fourier mode $n \neq 0$ and the eigenvalue λ_m .
- $w_{n,m}$ and F_n are given by

$$w_{n,m} = e^{in(x - \frac{v_2}{\omega_c})} e^{-\frac{r^2}{4}} \sum_{p \in \mathbb{Z}^*} \frac{p\omega_c}{p\omega_c + \lambda_m} e^{pi\varphi} J_p\left(\frac{nr}{\omega_c}\right) \text{ and } F_n = -ine^{inx}$$

ullet λ_m is one of the roots of a secular equation given by :

$$g(\lambda) = -1 - \frac{2\pi}{n^2} \sum_{m \in \mathbb{Z}^*} \frac{m\omega_c}{m\omega_c + \lambda} \int_0^\infty e^{-\frac{r^2}{2}} J_m \left(\frac{nr}{\omega_c}\right)^2 r dr = 0. \quad (4)$$

Secular equation

g has a unique root in]m ω_c ; $(m+1)\omega_c$ [for $m\geq 1$ and] $(m-1)\omega_c$; $m\omega_c$ [for $m\leq -1$.

Here for example, $\lambda_2 \approx 1.19928$.

Semi-Lagrangian scheme with splitting

Principle of the classical (backward) semi-lagrangian method (Cheng and Knorr JCP76)

The aim is to find an approximation f_n of the solution of $\partial_t f + E(x,t)\partial_x f = 0$ at all discrete time t_n .

- For every point x_i of the grid in x, we compute the value of the characteristic which is equal to x_i at time t_{n+1} .
- We compute f_{n+1} by interpolation using these values and f_n .

Semi-Lagrangian scheme with splitting

Principle of the classical (backward) semi-lagrangian method (Cheng and Knorr JCP76)

The aim is to find an approximation f_n of the solution of $\partial_t f + E(x,t)\partial_x f = 0$ at all discrete time t_n .

- For every point x_i of the grid in x, we compute the value of the characteristic which is equal to x_i at time t_{n+1} .
- We compute f_{n+1} by interpolation using these values and f_n .

Splitting

We approximate the solution of $\partial_t f + (\mathcal{A} + \mathcal{B})f = 0$ by solving $\partial_t f + \mathcal{A}f = 0$ and $\partial_t f + \mathcal{B}f = 0$ one after the other.

Splitting for Vlasov-Ampère

We split the Vlasov-Ampère so as to only solve transport equations with constant advection terms

$$\partial_t \left(egin{array}{c} u \\ F \end{array}
ight) + \left(\mathcal{A} + \mathcal{B} + \mathcal{C} + \mathcal{D}
ight) \left(egin{array}{c} u \\ F \end{array}
ight) = 0$$

with

$$\mathcal{A} = \begin{pmatrix} v_1 \partial_x \\ 0 \end{pmatrix}, \mathcal{B} = \begin{pmatrix} Fv_1 e^{-\frac{v_1^2 + v_2^2}{4}} \\ 1^* \int u e^{-\frac{v_1^2 + v_2^2}{4}} v_1 dv_1 dv_2 \end{pmatrix}$$
$$\mathcal{C} = \begin{pmatrix} -\omega_c v_2 \partial_{v_1} \\ 0 \end{pmatrix}, \mathcal{D} = \begin{pmatrix} -\omega_c v_1 \partial_{v_2} \\ 0 \end{pmatrix}$$

Algorithm to solve linearized Vlasov-Ampère

- **1** Initialization $U_0 = \begin{pmatrix} w_{n,m} \\ F_n \end{pmatrix}$ given.
- **3** Going from t_n to t_{n+1} Assume we know U_n , the approximation of U at time t_n .
 - We compute U^* by solving $\partial_t U + \mathcal{A}U = 0$ with a SL scheme during one time step Δt with initial condition U^n .
 - We compute \hat{U} by solving $\partial_t U + \mathcal{B}U = 0$ with a Runge-Kutta 2 scheme during one time step Δt with initial condition U^* .
 - We compute U^{**} by solving $\partial_t U + \mathcal{C} U = 0$ with a SL scheme during one time step Δt with initial condition \hat{U} .
 - We compute U^{n+1} by solving $\partial_t U + \mathcal{D} U = 0$ with a SL scheme during one time step Δt with initial condition U^{**} .

Numerical results for u with $T_{end}=rac{\pi}{2\lambda_m}$

For all of the simulations, we have taken $\omega_c = 0.5$ and n = 1.

Figure – Real and imaginary densities in V1-V2 plane for x = 0.

Numerical results for u and F for $\overline{T_{end}} = \frac{\pi}{2\lambda_m}$

Figure – Module of density in V1-V2 plane for x = 0 and electric fields.

Algorithm to solve linearized Vlasov-Poisson

 $U_0 = (w_{n,m}, F_n)$ is also a solution of the linearized Vlasov-Poisson system.

- **1** Initialization $u_0 = w_{n,m}$ and $F_0 = F_n$ given.
- ② Going from t_n to t_{n+1} Assume we know u_n and F_n , the approximations of u and F at time t_n .
 - We compute u^* by solving $\partial_t u + v_1 \partial_x u = 0$ with a SL scheme during one time step Δt with initial condition u^n .
 - We compute F_{n+1} by solving the Poisson equation with u^* .
 - We compute u^{**} by solving $\partial_t u + Fv_1 e^{-\frac{v_1^2+v_2^2}{4}} = 0$ with an Euler explicit scheme during one time step Δt with initial condition u^* .
 - We compute \hat{u} by solving $\partial_t u \omega_c v_2 \partial_{v_1} u = 0$ with a SL scheme during one time step Δt with initial condition u^{**} .
 - We compute u^{n+1} by solving $\partial_t u + \omega_c v_1 \partial_{v_2} u = 0$ with a SL scheme during one time step Δt with initial condition \hat{u} .

Numerical results for u with $T_{end}=rac{\pi}{2\lambda_m}$

For all of the simulations, we have taken $\omega_c = 0.5$ and n = 1.

Figure – Real and imaginary densities in V1-V2 plane for x = 0.

Numerical results for u and F for $T_{end}=\frac{\pi}{2\lambda_m}$

Figure – Module of density in V1-V2 plane for x = 0 and electric fields.

Algorithm for Vlasov-Poisson (non linear code)

We can also test the eigenvectors in the non-linear code for Vlasov-Poisson.

- **1** Initialization $f_{ini} = f_0 + \varepsilon \sqrt{f_0} \operatorname{Re}(w_{n,m})$ and $E_{ini} = \varepsilon \operatorname{Re}(F_n)$ given.
- **Q** Going from t_n to t_{n+1} Assume we know f_n and E_n , the approximations of u and F at time t_n .
 - We compute f^* by solving $\partial_t f + v_1 \partial_x f = 0$ with a SL scheme during one time step Δt with initial condition f^n .
 - We compute E_{n+1} by solving the Poisson equation with f^* .
 - We compute \hat{f} by solving $\partial_t f (E_{n+1} + \omega_c v_2) \partial_{v_1} f = 0$ with a SL scheme during one time step Δt with initial condition f^* .
 - We compute f^{n+1} by solving $\partial_t f + \omega_c v_1 \partial_{v_2} f = 0$ with a SL scheme during one time step Δt with initial condition \hat{f} .

Numerical results for u and F with $T_{end}=rac{\pi}{2\lambda_m}$

For all of the simulations, we have taken $\omega_c = 0.5$ and n = 1.

Figure $-\frac{f-f_0}{\varepsilon\sqrt{f_0}}\approx u$ in V1-V2 plane for x=0 and $\frac{E}{\varepsilon}\approx F$.

Summary and perspectives

- Spectral decomposition of the Vlasov-Ampère system
- Reinterpretation of the Landau-Bernstein paradox as a AC spectrum versus PP spectrum.
- Constructed new reference solutions that can be tested on linear and non-linear schemes.

Summary and perspectives

- Spectral decomposition of the Vlasov-Ampère system
- Reinterpretation of the Landau-Bernstein paradox as a AC spectrum versus PP spectrum.
- Constructed new reference solutions that can be tested on linear and non-linear schemes.

Perspective

Limit $\omega_c \to 0$.

Difficulty:

$$w_{n,m} = e^{in(x - \frac{v_2}{\omega_c})} e^{-\frac{r^2}{4}} \sum_{p \in \mathbb{Z}^*} \frac{p\omega_c}{p\omega_c + \lambda_m} e^{pi\varphi} J_p\left(\frac{nr}{\omega_c}\right)$$

There is a singularity at $\omega_c = 0$.

