Problem 1

	Mode	X		у		x*y, w = 10		Truncated $x*y$, $w = 5$	
a	Unsigned	16	10000	21	10101	336	0101010000	16	10000
	Two's	-16	10000	-11	10101	176	0010110000	-16	10000
	complement								
b	Unsigned	21	10101	8	01000	168	0010101000	8	01000
	Two's	-11	10101	8	01000	-88	1110101000	8	01000
	complement								
c	Unsigned	12	01100	25	11001	300	0100101100	12	01100
	Two's	12	01100	-7	11001	-84	1110101100	12	01100
	complement								
d	Unsigned	10	01010	5	00101	50	0000110010	18	10010
	Two's	10	01010	5	00101	50	0000110010	-14	10010
	complement								

Problem 2

```
a. K = 17x = 16x + x = x2^4 + x = (x << 4) + x
b. K = -7x = x - 8x = x - x2^3 = x - (x << 3)
c. K = 60x = 64x - 4x = x2^6 - x2^2 = (x << 6) - (x << 2)
d. K = -112x = 16x - 128x = x2^4 - x2^7 = (x << 4) - (x << 7)
```

Problem 3

```
Code -
```

```
/* Print a float in binary: ftob.c */
#include <stdio.h>
#include <stdlib.h>

//void float_to_string(float f, char *s, int n);
void float_to_string(float,char *,int);
void print_float();

#define LEN 32
#define EXP_32 8  /* ending index of s for exponent */
#define MAN_32 9  /* starting index of s for significand */

int main(int argc, char **argv) {
   int n=LEN;
   float f;
   char s[LEN];
```

```
f = atof(argv[1]);
 printf("f=%f\n",f);
 float to string(f,s,n);
 print float(s,n);
 return 0;
/* convert float to binary and store in s, a string of 32 chars */
void float to string(float f, char *s, int n){
 unsigned int u int;
        /* for loop index */
 int i;
 /* fill here */
 unsigned int *ptr = (unsigned int *)&f;
 u_int = *ptr;
 int bit;
 int char index = 0;
 for(i = n - 1; i \ge 0; i - 1)
  bit = (u \text{ int} >> i) \& 1;
  s[char index++] = (bit == 1) ? '1' : '0';
/* print space in between sign bit, exponent, and significand */
void print float(char *s, int n) {
 int i=0;
 /* fill here */
 printf("%c ", s[i++]);
 for(i = 1; i \le EXP 32; i++) printf("%c", s[i]);
 printf(" ");
 for(i = MAN 32; i < n; i++) printf("%c", s[i]);
 printf("\n");
/* End of ftob.c */
```

Example –

- adirathodd@adi:~/Desktop/NJIT/6 2024 Spring/CS350/HW3 % ./ftob 0.75 f=0.750000
- adirathodd@adi:~/Desktop/NJIT/6 2024 Spring/CS350/HW3 % ./ftob 0.5 f=0.500000
- adirathodd@adi:~/Desktop/NJIT/6 2024 Spring/CS350/HW3 % ./ftob 0.3
 f=0.300000
 - 0 01111101 00110011001100110011010
- o adirathodd@adi:~/Desktop/NJIT/6 2024 Spring/CS350/HW3 %

Problem 4

Value	Binary	Rounded	Action	Rounded Value
1 1/16	1.0001	1.00	< ½ , down	1
1 3/16	1.0011	1.01	> ½ , up	1 1/4
2 5/16	10.0101	10.01	< ½, down	2 1/4
2 5/8	10.101	10.10	= ½, even (down)	2 ½
3 5/8	11.101	11.10	= ½, even (down)	3 ½
3 7/8	11.111	100.00	= ½, even (up)	4

Problem 5

Value	Rounded	Exp	Adjusted	Result
256	1.0000	8		Infinity
31	1.1111	4		31
33	1.0000	5		32
35	1.0010	5		36
276	1.0001	8		NaN
127	10.0000	6	1.0000/7	128

Problem 6

```
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
// Usage -> $ ./p6 0 01111110 100000000000000000000000
int main(int argc, char *argv[]){
  // v = (-1)^s * M * 2^E n: E = Exp - Bias(127)
  int sign, exponent = 0;
  float mantissa;
  int bias = 127;
  // sign var 0 or 1
  sign = atoi(argv[1]);
  int val = pow(2, 7);
  // calculate exponent value E = \exp - bias
  for(int i = 0; i < strlen(argv[2]) - 1; i++){
     if (argv[2][i] == '1'){
       exponent += val;
     val = val / 2;
  if (exponent == 0)
     mantissa = 0.0;
     exponent = -126;
  } else {
     mantissa = 1.0;
     exponent = exponent - bias;
  }
  // calculate mantissa
  float val 1 = 0.5;
  for(int i = 0; i < 23; i++){
     if (argv[3][i] == '1'){
       mantissa += val1;
     val1 = val1 / 2;
```