MA557 Problem Set 3

Carlos Salinas

October 6, 2015

Problem 3.1

Find an example of a finitely generated ring extension $R \subset S$ where S is a Noetherian ring, but R is not

Proof. Let k be a field and consider its polynomial ring k[X,Y] in two variables. Then we claim that the subring $k[XY,XY^2,...]$ is non-Noetherian but its extension to k[X,Y] (by adjoining the indeterminants X and Y) is Noetherian by Hilbert's basis theorem. Consider the increasing chain of ideals

$$(XY) \subsetneq (XY, XY^2) \subsetneq (XY, XY^2, XY^3) \subsetneq \cdots$$

This chain does not stabilize for suppose that it did, then for some positive integer n, we have $(XY, XY^2, ..., XY^n) = (XY, XY^2, ..., XY^n, XY^{n+1})$ so $XY^{n+1} \in (XY, XY^2, ..., XY^n)$. But this implies that $XY^{n+1} = p(XY, XY^2, ...)q(XY, ..., XY^n)$ for some polynomials $q \in k[XY, XY^2, ...]$, $q \in (XY, ..., XY^n)$. Thus, we have that

$$\begin{split} \deg_Y(XY^{n+1}) &= n+1 & \deg_X(XY^{n+1}) = 1 \\ &= \deg_Y p + \deg_Y q & = \deg_X p + \deg_X q. \end{split}$$

Since $\deg_Y q \le n$, $\deg_Y p \ge 1$. Thus, $\deg_X p = 1$ so $q \in k$, i.e., q is a unit. This is a contradiction since $(XY, ..., XY^n)$ is a proper ideal.

Problem 3.2

Consider the homomorphism of rings

$$R \xrightarrow{\varphi} T.$$

The fiber product of R and S over T is the subring $R \times_T S = \{ (r, s) \mid \varphi(t) = \psi(s) \}$ of $R \times S$. Assume φ and ψ are surjective. Show that if R and S are Noetherian rings then so is $R \times_T S$.

Proof. We first prove the following result:

Lemma (Matsumura, Ex. 3.1). Let $\mathfrak{a}_1, ..., \mathfrak{a}_n$ be ideals of a ring A such that $\mathfrak{a}_1 \cap \cdots \cap \mathfrak{a}_n = 0$. If each A/\mathfrak{a}_i is a Noetherian ring then so is A.

$$0 \longrightarrow R \times_T S \stackrel{\iota}{\longleftarrow} R \times_S \stackrel{\Phi^*}{\longrightarrow} \frac{T \times T}{\Delta_T} \longrightarrow 0.$$

Problem 3.3

Let M be an R-module. Show that M is a flat R-module if and only if $M_{\mathfrak{m}}$ is a flat $R_{\mathfrak{m}}$ -module for every maximal ideal \mathfrak{m} of R.

 $Proof. \implies$

PROBLEM 3.4

Let M be an R-module and ${\mathfrak a}$ an R-ideal.

(a) Show that if $M_{\mathfrak{m}}=0$ for every maximal ideal \mathfrak{m} containing \mathfrak{a} , then $M=\mathfrak{a}M.$

(b) Show that the converse holds in case M is finite.

Proof. (a) Suppose that $M_{\mathfrak{m}}$ for every maximal ideal \mathfrak{m} containing \mathfrak{a} .

PROBLEM 3.5

Prove that every power of a maximal ideal is primary.

Proof.

Problem 3.6

- (a) Show that the radical of a primary ideal is prime.
- (b) Find an example of a power of a prime ideal that is not primary.
 (c) Let p be a prime ideal of a ring R and n∈ N. The R-ideal p⁽ⁿ⁾ = R ∩ pⁿR_p s called the nth symbolic power of p. Show that p⁽ⁿ⁾ is primary.

Proof.