Tutorial

WEEK 5

1. K-algebras

Definition 1.0.1. A vector space over a field K together with binary operation \cdot such that for any $\alpha \in K$ and $a, a', b, b' \in A$ we have the following

- $(1) (\alpha a) \cdot b = \alpha (a \cdot b)$
- (2) $(a + a') \cdot b = ab + a'b$
- (3) a(b+b') = ab + a'b

If the multiplication is associative or commutative we say that the algebra is associative or commutative. A unit in an algebra is a unit wrt the multiplication.

Remark 1.0.1. Let R be a commutative ring with unit, and let φ : $K \to R$ be a morphism of rings (with unit) - this gives us a structure of a associative commutative unital algebra in R.

Example 1.0.1. Ring of matrices - what will be the map from \mathbb{C} ? Ring of polynomials

Definition 1.0.2. A algebra A (over a field K) is called finitle generated if there exists a finite set of elements $a_1, ..., a_n$ of A such that every element of A can be expressed as a polynomial in $a_1, ..., a_n$ with coefficients in K.

Exercise 1.0.1. $\mathbb{C}(x)$ is not finitely generated \mathbb{C} algebra.

2. Modules

Definition 2.0.1. Let R be a ring, an abelian group M is a module over R if the ring "acts on M" in a respectful way.

i.e. there is a function $: R \times M \to M$ with

$$(r_1 + r_2) \cdot m = r_1 \cdot m + r_2 \cdot m$$
$$(r_1 r_2) \cdot m = r_1 \cdot (r_2 \cdot m)$$
$$r \cdot (m_1 + m_2) = r \cdot m_1 + r \cdot m_2$$
$$1 \cdot m = m$$

Example 2.0.1. A Module over a field is a vector space

2 WEEK 5

Example 2.0.2. Any abelian group is a A Module over the ring \mathbb{Z}

Example 2.0.3. For the ring $(R, \cdot, +)$ the additive group of the ring is a module over the ring.

Actually any Ideal $I \triangleleft R$ is a module over R.

Any quotient ring is a module... (Quotient of modules is is module)

Definition 2.0.2. A module M is said to be finitely generated, if there exist finite amount of elements $m_0, ..., m_n$ such that any $m \in M$ is a sum of these elements with coefficients in R

Example 2.0.4. A basis for a vector space is a (minimal) generating set.

Example 2.0.5. We saw HBT that the ideals in $\mathbb{C}[x_1,...,x_n]$ are finite generated as modules over $\mathbb{C}[x_1,...,x_n]$.

What about thinking at $\mathbb{C}[x]$ a \mathbb{C} module, is it finitely generated?

3. Notherian modules

Definition 3.0.1. M is Notherian R module iff any sub module has the ascending chain condition for submodules. (or equiv is f.g.)

Definition 3.0.2. A ring R is called Notherian if any asending chain of ideals in R stabilizes.

i.e. if $I_1 \leq I_2 \leq \leq I_i \leq$ then there is k s.t $I_k = I_{k+1}$

i.e. R is Notherian as a module over itself

Exercise 3.0.1 (trivial). Show that any filed in Notherian...

Lemma 3.0.1. Let $0 \to N \to M \to L \to 0$ be a exact chain of R modules then M is Nother iff L and N are

Proof. If M is then clearly any submodule of N is submodule of M and same for quotient...

In the other direction let P be a submodule then $P \cap N$ is finitly generated say by $n_1, ..., n_k$ we have that $P/P \cap N \cong P + N/N$ thus is a submodule of L so is finitly generated by $l_1 + N, ..., l_j + N$ See that l_i, n_j generate P.

Theorem 3.0.1 (HBT). Let R be a Notherian ring, then the ring of polynomials over R: R[x] is a Notherian ring.

Exercise 3.0.2 (for home). Prove HBT mutatis mutandis from proof in class.

4. Notherian in topology

Definition 4.0.1. A topological space is called Notherian if any descending chain of closed subsets stabilizes.

Exercise 4.0.1. Any Notherian space is compact...

WEEK 5

Lemma 4.0.1. Let X be a Notherian space- any closed subset of X can be presented a union of irreducible sets, and moreover if we assume the irreducible sets are disjoint this presentation is unique.

Proof. Assume by contradiction that there exist a minimal closed set Y such that Y can not be represented as above. In particular Y is reducible then $Y = Y_1 \cup Y_2$ by minimality of Y, Y_i can be decomposed $Y_1 = \bigcup_{j=0}^l Y_1^j$ and $Y_2 = \bigcup_{j=0}^k Y_1^j$

$$Y = \bigcup_{i=1,2, \quad j \leq k \wedge l} Y_i^j$$

For uniqueness assume $Y = \bigcup_{j=0}^l Y_j = \bigcup_{i=k}^l Z_i$ then $Z_i = \bigcup_j (Z_i \cap Y_j)$. But Z_i is irreducible! hence $Z_i \subset Y_j$ and similarly $Y_j \subset Z_k$ this means $Z_i \subset Z_k$ is contradiction...

So lets see what this gives us for algebraic varieties...

5. Irreducible topological spaces

Definition 5.0.1. Let X be a topological space. TFAE:

- If there exist Z_1, Z_2 closed in X such that $X = Z_1 \cup Z_2 \Rightarrow Z_1 = X$ or $Z_2 = X$
- For any $U \subset X$ open $\overline{U} = X$

Definition 5.0.2. An ideal $I \triangleleft R$ is called irreducible if it cannot be written as the intersection of two strictly larger ideals.

Lemma 5.0.1. Let X be a algebraic set with $I = \mathcal{I}(X)$, then X is irreducable in \mathbb{C}^n (Zariski) iff $\mathcal{I}(X)$ is prime in $\mathbb{C}[x_2,...,x_n]$.

Proof. Assume I not prime, then there is $f, g \notin I$ such that $fg \in I$ this means $X = \mathcal{Z}(I) \subset \mathcal{Z}fg = \mathcal{Z}g \cup \mathcal{Z}f$ but $X \nsubseteq \mathcal{Z}(f)$ or $\mathcal{Z}(g)$. If we assume X to be non irreducable $X = \mathcal{Z}(J_1) \cup \mathcal{Z}(J_2) = \mathcal{Z}(J_1 \cdot J_2)$ then there is a $f_i \in J_i$, $f_i \notin I$ with $f_1 f_2 \in I$

Lemma 5.0.2. Let $I \subset \mathbb{C}[x_1,...,x_n]$, if I is prime Ideal then it is irreducible.

Proof. In general Prime implies irreducible since if not irreducable then $I = J_1 \cap J_2$ then there is $a_i \in J_i$ not in I with $a_1 a_2 \in J_1 \cap J_2$ (since are ideals) hence $a_1 a_2 \in I$.