

R Tutorial for Statistical Learning

Qidi Peng

1: Read, create and save data

Code	Comments	Results
a<-4;	Generate a value. Define "a" by 4.	
a=4;	The same.	
a	Output the value of a (by pressing "enter" key)	a
		[1] 4
c(1,2,3)	Generate a vector manually	[1] 1 2 3
1:5	Generate an increasing sequence of integers.	[1] 1 2 3 4 5
seq(from = 4.5, to = 2.5, by = -0.5)	Generate a decreasing sequence, starting from 4.5,	[1] 4.5 4.0 3.5 3.0 2.5
	ending at 2.5, with mesh -0.5 (by default, by=1).	
rep(3,4)	Generate a constant sequence with length 4	[1] 3 3 3 3

matrix(1:8,nrow=2,ncol=4,byrow=TRUE)	Generate a 2*4 matrix with data 1 to 8, by putting	[,1] [,2] [,3] [,4]
	the digits one by one in row (by default).	[1,] 1 2 3 4
		[2,] 5 6 7 8
x=matrix(1:8,nrow=2,ncol=4,byrow=FALSE);	Generate a 2*4 matrix with data 1 to 8, by putting	x
x	the digits one by one in column.	[,1] [,2] [,3] [,4]
		[1,] 1 3 5 7
		[2,] 2 4 6 8
y=matrix(c("a", "b", 1, 2), nrow = 2);	Generate matrix where the coefficients are not	у
у	values.	[,1] [,2]
	Notice that here R regards "1" and "2" as symbols,	[1,] "a" "1"
	not values.	[2,] "b" "2"
colnames(y) = c("char", "num");		у
у	One assigns the column's names.	char num
		[1,] "a" "1"
		[2,] "b" "2"
rownames(y) = c("Sept.15", "Sept.16");		у
у	One assigns the row's names.	char num
		Sept.15 "a" "1"
		Sept.16 "b" "2"
Age=c(23,21,22);	data.frame() functions are used to construct data	Name Age Gender
Name=c("Jin","Kelly","Choi");	set by typing in the values of each	1 Jin 23 M
Gender=c("M","F","F");	variable and assigning each vector its corresponding	2 Kelly 21 F
Data=data.frame(Name,Age,Gender);	variable name.	3 Choi 22 M
Data=edit(Data)	Manually import and change data in the data set	
	"Data".	

M454_Grades	Import data from a text file using	Names Grades
=read.table("C:/Users/pengq/Desktop/M454.txt");	read.table(directory/filename.txt). One has to create	1 1 100
colnames(M454_Grades)=c("Name","Grades");	this .tex fle first.	2 2 100
M454_Grades		3 3 100
		4 4 99
		5 5 99
		6 6 100
		7 7 98
		8 8 99
		9 9 Absent
		10 10 89
M454_Grades[1,]	Print the first row.	Name Grades
		1 1 100
		1 100
M454_Grades[,2]	Print the second column.	[1] 100 100 100
M454_Grades[,2]	Trine the second column.	99 99 100 98
		99 99 100 98
		99
M44 C 1 [0.2]	District to the O.C.I. 2	
M454_Grades[9,2]	Print the element in Row 9, Column 2.	
		Absent 89
		[1] Absent
read.table("website")	You can also read table from website.	
fpe =	Examples: read data from website	
read.table("http://data.princeton.edu/wws509/data		> fpe
sets/effort.dat");	Read the table.	setting effort
fpe;	A workable excel.	change
fpe=edit(fpe);		Bolivia 46
		0 1
		Brazil 74
		0 10
		Chile 89
		16 29
		Colombia 77
		16 25
		CostaRica 84
		21 29
		Cuba 89
		15 40
		DominicanRep 68
		14 21
		17 21

		Ecuador	70
		6 0	
		ElSalvador	60
		13 13	
		Guatemala	55
		9 4	
		Haiti	35
		3 0	
save(), sink(), write.table()	Save data and variables		
save(fpe,file="data.Rda");	Example: save the data frame fpe.		
load("data.Rda")	Load saved data.frame fpe.		
q()	Quit and save workspace (useful when too time		
	consuming)		
help(write.table)	Use help to get the tutorial of functions		
na.p(ne.ao.e)	and market of functions		

2. Create functions

Codes	Comments	Results
Summation=function(x,y){x+y};	Create a function Summation(x,y)=x+y.	[1] 8

Summation(3,5)		
Product=function(a,b,c){z=a*b+c;z};	Create a function Product(a,b,c)=ab+c.	[1] 17
Product(2,5,7)		
fix(arrangement);	Create a function arrangement(n,k)=n!/(n-k)!	[1] 6
$function(n,k)\{factorial(n)/factorial(n-k)\};$		
arrangement(3,3)		
arrangement=edit(arrangement);	Edit the existing function.	
fix(arrangement);	The same.	
fix(Taylor_expansion);	Use "for loops" to create Taylor expansion of	
function(n,x)	exponential of x, of order n: 1+x+x ² /2!++x ⁿ /n!	
{a=1;for (i in 1:n){a=a+x^i/factorial(i)};a};	Approximate e^3 with n=100	[1] 20.08554
Taylor_expansion(100,3)	True value of e^3	
exp(3)		[1] 20.08554
fix(parity);	Use "if else" to create function, which tells the parity	[1] 1
function(x){for(i in 1:length(x)){if	of any real valued vector.	[1] "is odd"
$(x[i]/2==floor(x[i]/2))\{print(x[i]); print(" is even")\} else$		[1] 2
{print(x[i]);print("is odd")};};};		[1] " is even"
parity(1:8)		[1] 3
		[1] "is odd"
		[1] 4
		[1] " is even"
		[1] 5
		[1] "is odd"
		[1] 6
		[1] " is even"
		[1] 7
		[1] "is odd"
		[1] 8
		[1] " is even"
fix(sum_square);	Use "while loop" to generate the sum of squares:	
function(N){i=1;y=0;	1+2 ² +3 ² ++n ² .	
while(i<=N){		
y=i*i+y;		
i=i+1		
}};		
sum_square(5)	Determine 1+2 ² +3 ² ++5 ²	[1] 55
3+5, 4*8, 5*pi, exp(5), sin(pi), cos(pi), (c(1,2))^2, abs(-3),	Some useful functions.	
c(4,5)/3, complex(real=3,imaginary=5), c(1,2)%*%c(1,2)	ascial inflorions.	
(-,-),		
		1

3. Plot functions

Codes	Comments	Results
fix(linear);	Illustrate the trajectory of linear function $f(x)=ax+b$.	
$function(x,a,b)\{a*x+b\};$	Create function.	
x=seq(0,1,0.01);	Input values of x.	
plot(x, linear(x,2,-2),	Plot the corresponding values of $f(x)$	
col="blue",typ="p",xlab="x",ylab="f(x)");	Color =(blue, red, green), line charts type=	
	(l,p,o,b,s,h,), xlab(name of xline), ylab(name of yline)	
	Add lines without erasing ex plots.	
abline(h=-0.5,v=0.3,col="red");		
	Add legend (these are underlines commands helping to	
legend("bottomright",title="Linear function",	make footnotes of the plot).	
c("f","line"),col=c(26,33),lty=c(3,1))		
	Open new windows for graphics.	
windows()	For windows system.	
quartz()	For Mac system.	
split.screen(c(2,2))	Split screen into 2*2 small windows.	[1] 1 2 3 4
screen(1)	Plot in the first window (topleft)	
plot(1:5,1:5)		
screen(2)	Plot in the second window (topright)	
plot(1:5,-(1:5))		
screen(3)	Plot in the third window (bottomleft)	
plot(1:5,2:6)		
screen(4)	Plot in the fourth window (bottomright)	
plot(1:5,-(2:6))		
pdf("name of your plot");	You can use "save" button to directly save your	
png();	pictures or use these commands to save them.	
jpeg();		

4: Generating random variables

Code	Comments	Results
runif(1);	Generate a uniform random variable over [0,1].	[1] 0.6197008
runif(4);	Generate a sequence of 4 independent uniform random	[1] 0.23239163 0.87730174
	variables over [0,1].	0.06837577 0.54853920
runif(1,3,4)	Generate a uniform random variable over [3,4].	[1] 3.892476

	I	I
dunif(0.5)	The density function of the uniform distribution over	[1] 1
	[0,1], at 0.5.	
punif(0.5)	The probability distribution function of the uniform	[1] 0.5
	distribution over [0,1], at 0.5.	
floor(runif(1,1,7))	Generate a uniform random number over {1,2,3,4,5,6}	[1] 2
	(consider a die of 6 faces).	
sample(0:1, 10, replace=T)	Toss a coin independently 10 times.	[1] 1 1 0 1 0 0 0 1 0 1
sample(1:6, 10, replace=T)	Roll a die independently 10 times.	[1] 3 1 3 5 4 1 4 5 2 4
sample(1:9, 3, replace=FALSE)	Randomly and equally likely pick 3 numbers from	[1] 7 4 6
	numbers 1 to 9, without replacement.	
sample(1:3,1,replace=T,c(1/4,1/2,1/4))	Generate a non-uniform random number over {1,2,3},	[1] 2
	with probability distribution (1/4,1/2,1/4).	
sample(10)	Permute randomly and equally likely numbers 1 to 10.	[1] 5 3 4 6 7 1 2
		9 8 10
rbinom(1,1,0.5)	Sample of Bernoulli(0.5).	[1] 1
16.16.11(1.7,1,00)	Sample of Borneam (vic)	[-]-
rbinom(1,3,0.5)	Sample of Binomial distribution Binomial(3,0.5).	[1] 1
10110111(1,3,0.3)	Sample of Billomar distribution Billomat(3,0.3).	[1]1
rexp(1,0.5)	Sample of exponential distribution Exponential(0.5).	[1] 2.365289
16Ap(1,0.3)	Sample of exponential distribution Exponential (0.3).	[1] 2.303267
rnorm(1)	Sample of standard normal $N(0,1)$.	[1] 0.9059011
morm(1)	Sample of standard normal N(0,1).	[1] 0.9039011
qnorm(0.975)	Quantile of standard normal at level 0.975.	[1] 1.959964
quotin(0.973)	Quantile of standard normal at fever 0.975.	[1] 1.939904
qt(0.975,18)	Quantile of 18 degrees of freedom student	[1] 2 100022
4η(0.773,10)	Quantile of 18 degrees of freedom student t-distribution at level 0.975.	[1] 2.100922
af(0.05.10.9)		[1] 2 247162
qf(0.95,10,8)	Quantile of (10,8) degrees of freedom F-distribution at	[1] 3.347163
	level 0.95.	
mean();	Average of vector;	
var();	Sample variance of a vector (unbiased)	
median();	Median of vector;	
sum();	Summation of all elements of a vector	
cumsum();	All partial sums of a sequence (this gives a vector of	
	the same size as the sequence)	
length();	Cardinal (number of elements, dimension) of vector	
		[1] 1 2 3
•		•

X=1:6;	Extract all elements of X (in order) which are less or	
X[X<=3];	equal to 3.	
var(), sd(), sort(), sort(1:5,decreasing=TRUE), quantile(),	Help yourself to find the meaning of these operators	
sqrt(),median()	for vectors.	

5: Linear regression

Code	Comments	Results
install.packages("ISLR");	Install the data set package ISLR, which includes the	
	data we use in this class	
library(ISLR);	Load ISLR.	
library(MASS);	Load MASS, which contains some exotic statistical	
	functions which are not contained in the base functions	
	of R For more information on this package, search it	
	on website.	
fix(Boston);	Open data.frame "Boston" in MASS.	
names(Boston);	Check variable names of the columns.	
?Boston;	Check all information about the data set Boston.	
lm.fit=lm(medv~lstat,data=Boston);	Simple linear regression with Y=medv, X=lstat.	
lm.fit;	Watch the estimates!	Call:
		lm(formula = medv
		~ lstat, data =
		Boston)
		Coefficients:
		(Intercept)
names(lm.fit);	Statistical properties contained in the linear regression.	lstat
coef(lm.fit);	Least squares coefficient estimates.	34.55
confint(lm.fit,level=0.95);	0.95 confidence interval of the real parameters beta0	-0.95
	and beta1.	
summary(lm.fit);	More detailed information on this linear regression.	
predict(lm.fit,data.frame(lstat=c(5,10,15)),interval="prediction",level=0.95);	0.95 prediction interval of the response variable Y=fit,	
	with predictor X=5,10,15.	
plot(Boston\$lstat,Boston\$medv,pch="+",col="blue");	Plot (X,Y)=(lstat,medv);	
abline(lm.fit,lwd=3,col="red");	Add the regression line without erasing the ex-plots.	

lm.fit2=lm(medv~lstat+age,data=Boston);	Multiple linear regression (here are 2 predictors
	X=(lstat,age)).
summary(lm.fit2);	Statistical information on the regression.
lm.fit3=lm(medv~.,data=Boston);	Linear regression, Y=medv, X contains all other
	variables contained in the data set Boston.
summary(lm.fit3).	
lm.fit4=lm(medv~lstat+l(lstat^2),data=Boston);	Non linear regression (here one assumes
iii.iii4-iiii(iiiedv~istat+i(istat 2),data-Dostoii),	
	$Y=beta_0+beta_1X+beta_2X^2+epsilon).$
summary(lm.fit4);	

6: Classification

Code	Comments	Results
# Logistic regression		
summary(Smarket);	Consider data set Smarket (stock market data) in the	
	package ISLR.	Error in
cor(Smarket);	Produce correlation matrix of all variables contained in	cor(Smarket): 'x'
	Smarket. Error detected when meeting qualitative data.	must be numeric.
cor(Smarket[,-9]);	Decline the last 9 columns (variables) of Smarket.	
Smarket\$Direction;	The variable "Direction" in Smarket is qualitative.	
glm.fit=glm(Direction~Lag1+Lag2+Lag3+Lag4+Lag5	Multiple logistic regression with response "Direction"	
+Volume,data=Smarket,family=binomial);	and predictors Lag1 to Volume. Observe that here the	
	p-values are relatively large, so there is no clear	
	evidence of a real association between Direction and	
	those variables.	
coef(glm.fit);	Estimates of the coefficients.	
glm.probs=predict(glm.fit,type="response");	Predict the probability P(Y=1 X) for each training data	
	X. To see the meaning of event Y=1, use contrasts().	
contrasts(Smarket\$Direction);	Convert numbers to dummy variable.	
plot(glm.fit);	The glm function also provides figure representations.	
	It's slow. Please wait and watch.	
glm.pred=rep("down",1250);	Create a vector of class prediction based on whether	

glm.pred[glm.probas>0.5]=("up");	the predicted probability of a market increase is greater
table(glm.pred,Smarket\$Direction);	than 0.5.
	Produce a confusion matrix in order to determine how
	many observations were correctly or incorrectly
	classified. The diagonal elements of the confusion
	matrix indicate correct predictions, while the
mean(glm==Smarket\$Direction)	off-diagonals represent incorrect predictions.
	Compute the fraction of correct predictions.
# Discriminant analysis	Linear discriminant analysis function from package
lda.fit=lda(Direction~Lag1+Lag2,data=Smarket,subset=Smarket\$train);	MASS.
	The result shows 49.2% of the training observations
lda.fit;	correspond to days during which the market went
	down.
plot(lda.fit);	Illustration It produces the linear discriminant,
	obtained by computing beta1*Lag1+beta2*Lag2 for
	each of the training observations.
lda.pred=predict(lda.fit,Smarket);	The prediction function returns 3 variables: class,
	probability of predictor belonging to this class; and
	linear discriminant.
lda.class=lda.pred\$class;	Check the classes for each training observation.
qda.fit=qda(Direction~Lag1+Lag2,data=Smarket,subset=Smarket\$train);	Quadratic discriminant analysis by using the same
	training data set.
# KNN	The K-nearest neighbors function is contained in the
library(class);	package "Class".
train=(Smarket\$Year<2005);	Consider the historical data before 2005.
train.X=cbind(Smarket\$Lag1,Smarket\$Lag2)[train,];	Input 1: a matrix of predictors X associated with the
	training data;
test.X=cbind(Smarket\$Lag1,Smarket\$Lag2)[!train,];	Input 2: a matrix of predictors X associated with the
	data we want to make predictions;
train.Direction=Smarket\$Direction[train];	Input 3: a vector of class labels Y.
	Input 4: the value of K (here K=3).
set.seed(1);	The result is random, we fix it by using set.seed.
knn.pred=knn(train.X,test.X,train.Direction,k=3);	
L	