### FBX4025 – Sistemas Digitais I

### **Objetivos**

- Apresentar o conceito de Multiplexidadores/Demultiplexadores.
- Apresentar circuitos integrados que desempenham essas funcionalidades.

### **Multiplexadores**

O multiplexador digital, ou seletor de dados, é um circuito lógico que recebe diversos dados digitais de entrada e seleciona um, em determinado instante, para transferi-lo para a saída.

Pode-se exemplificar o uso dos multiplexadores em sistemas de som modernos onde uma chave seleciona a música a partir de uma das quatro fontes: MP3 player, receptor de TV, sintonizador de rádio ou DVD.



### **Multiplexadores**

O número de entradas de DADOS está logicamente relacionado com o número de entradas de SELEÇÃO

n= número de entradas de DADOS

m = número de entradas de SELEÇÃO

#### <u> Aplicações</u>:

- Seleção/roteamento de dados
- Conversão paralelo-série
- Sequenciamento de operações
- Geração de formas de onda e de funções lógicas

### <u>Multiplexadores</u>

Exemplo 01: Multiplexador de 2 entradas



### <u>Multiplexadores</u>

Exemplo 02: Projete um multiplexador de 4 entradas



| S <sub>1</sub> S | S <sub>0</sub> Saída |
|------------------|----------------------|
| 0                | $0 \mid Z = I_0$     |
| 0                | $1 \mid Z = I_1$     |
| 1                | $0 \mid Z = I_2$     |
| 1                | $1  Z = I_3$         |



### **Multiplexadores**

Exemplo 03: Considere o seguinte multiplexador de 4 entradas e defina a forma de onda obtida na saída Y a partir dos sinais apresentados:



### **Multiplexadores**



### <u>Multiplexadores</u>

Circuito integrado comercial 74LS151 (74HC151)

Combinação de 2 MUX de 8 entradas para a geração de 1 MUX de 16 entradas





### **Multiplexadores**

Circuito integrado comercial <u>74LS157</u> MUX quádruplo de 2 entradas.







### <u>Multiplexadores</u>

Exemplo de aplicação: Multiplexador para display de 7 segmentos.

Circuitos integrados utilizados: <u>74LS157</u> (Multiplexador), <u>74LS47</u> (Decodificador BCD/7 segmentos) e <u>74LS139</u> (Decodificador).



### <u>Multiplexadores</u>

Exemplo de aplicação: Geração de funções lógicas.



| С                | В | А | Z     |  |
|------------------|---|---|-------|--|
| 0                | 0 | 0 | 0     |  |
| 0<br>0<br>0<br>0 | 0 | 1 | 1     |  |
| 0                | 1 | 0 | 1     |  |
| 0                | 1 | 1 | 0     |  |
| 1                | 0 | 0 | 0 0 0 |  |
| 1                | 0 | 1 | 0     |  |
| 1                | 1 | 0 | 0     |  |
| 1                | 1 | 1 | 1     |  |

### **Demultiplexadores**

Um demultiplexador (distribuidor de dados) recebe uma única entrada e a distribui para várias saídas.

O código de entrada de seleção determina para qual saída o DADO de entrada

será transmitido.



#### **Demultiplexadores**

Exemplo 04: Demultiplexador de 1 Entrada X 4 Saídas



| $S_1$ | $S_0$ | $E \to X$ |
|-------|-------|-----------|
| 0     | 0     | $D_0$     |
| 0     | 1     | $D_1$     |
| 1     | 0     | $D_2$     |
| 1     | 1     | $D_3$     |

### **Demultiplexadores**

Exemplo 05: A forma de onda de entrada de dados em série e as entradas de seleção de dados (S0 e S1) são mostradas na Figura abaixo. Determine as formas de onda da saída de dados D0 a D3 para o demultiplexador visto no Exemplo 04.



| $S_1$ | $S_0$ | $E \to X$ |
|-------|-------|-----------|
| 0     | 0     | $D_0$     |
| 0     | 1     | $D_1$     |
| 1     | 0     | $D_2$     |
| 1     | 1     | $D_2$     |



#### **Demultiplexadores**

Exemplo 06: Projete um demultiplexador de 1 para 8 linhas.

| Código de seleção |                |                | Saídas |    |    |    |                |       |    |    |
|-------------------|----------------|----------------|--------|----|----|----|----------------|-------|----|----|
| S <sub>2</sub>    | S <sub>1</sub> | S <sub>0</sub> | 07     | 06 | 05 | 04 | O <sub>3</sub> | $O_2$ | 01 | 00 |
| 0                 | 0              | 0              | 0      | 0  | 0  | 0  | 0              | 0     | 0  | 1  |
| 0                 | 0              | 1              | 0      | 0  | 0  | 0  | 0              | 0     | 1  | 0  |
| 0                 | 1              | 0              | 0      | 0  | 0  | 0  | 0              | 1     | 0  | 0  |
| 0                 | 1              | 1              | 0      | 0  | 0  | 0  | 1              | 0     | 0  | 0  |
| 1                 | 0              | 0              | 0      | 0  | 0  | 1  | 0              | 0     | 0  | 0  |
| 1                 | 0              | 1              | 0      | 0  | 1  | 0  | 0              | 0     | 0  | 0  |
| 1                 | 1              | 0              | 0      | 1  | 0  | 0  | 0              | 0     | 0  | 0  |
| 1                 | 1              | 1              | 1      | 0  | 0  | 0  | 0              | 0     | 0  | 0  |

Obs.: I é a entrada de dados.

### **Demultiplexadores**

Exemplo 06: Projete um demultiplexador de 1 para 8 linhas.

| Códig          | o de se        | Saídas         |    |    |    |    |    |    |    |    |
|----------------|----------------|----------------|----|----|----|----|----|----|----|----|
| S <sub>2</sub> | S <sub>1</sub> | S <sub>0</sub> | 07 | 06 | 05 | 04 | 03 | 02 | 01 | 00 |
| 0              | 0              | 0              | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  |
| 0              | 0              | 1              | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  |
| 0              | 1              | 0              | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  |
| 0              | 1              | 1              | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0  |
| 1              | 0              | 0              | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  |
| 1              | 0              | 1              | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  |
| 1              | 1              | 0              | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  |
| 1              | 1              | 1              | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |

Obs.: I é a entrada de dados.



#### **Demultiplexadores X Decodificador**

Decodificador



Demultiplexador



#### **Demultiplexadores**

Circuito integrado comercial 74LS138





#### **Referências**

- TOCCI, Ronald J.; Widmer, Neal S.; Moss, Gregory L. **Sistemas digitais: princípios e aplicações**, 12ª ed. Editora Pearson, 2018. 1056 p. ISBN 9788543025018. Capítulo 9 Circuitos lógicos MSI
- FLOYD, Thomas. Sistemas Digitais. Grupo A, 2011. E-book. 9788577801077.
- Disponível em: https://integrada.minhabiblioteca.com.br/#/books/9788577801077/.
- Acesso em: 28 ago. 2022. Capítulo 6 Funções de lógica combinacional