Exercise 6.1

Let A be the following DFA. Answer the following questions (with short-justification). Hint: not necessary to compute all equivalent states using the algo from lesson 11.

a) Are states 2 and 4 equivalent?

No, they are not equivalent as they do not reach an accept state with the same strings.

-ie: If we use an empty string, we end up in an accept state from 4, but from 2 we end up in an non-accept state.

b) Are states 2 and 3 distinguishable?

Yes, String 'b' will take us to final state from 2; but not from 3:

c) Are states 3 and 6 distinguishable?

No, both states are error states and cannot reach an accept state:

d) Is A a minimal automaton?

No, there can be 4/5 states, depending on there error state {5}. $S \rightarrow bb(b)^* \mid a(b)^*$

	9	6
[3,67	{3,6}	13,63
(13	13 63	(23
{ 2 }	13,63	143
(143)	13,63	523
(153)	243	363
, ,	•	

Exercise 6.2

19,,905 - 0 (1,0) = 90	d (9,6)= 9c
· d (a, a) = 4,	F(9, 6)= 90
(12, 90) = 5 (92, 9)= 93	
5(90,9): 9,	o (90, 6) = 90
(92, 9,) = 8 (92, 1) = 93	J (92, 6) = 90
$=$ $\delta(q, q) = q$	8 (9 1) = 9.

Exercise 6.3 – obligatory (10 points)

Let A be the following DFA:

a) Compute all equivalent states of the DFA. Show the intermediate steps of the computation.

.5

6

b) Build an equivalent minimal automaton.

Exercise 6.4 - obligatory (4 points)

Let the following e-NFA A be given:

- a) Which of the following strings are accepted by A?
- (1) e = not accepted.
- (2) a = accepted
- (3) aa = accepted
- (4) bb = not accepted
- (5) bbaa = accepted
- (6) aabb =not accepted
- b) Which language is accepted by A?

 $LA = \{a^n b^k a \mid n \ge 0, k \ge 0 \}$

 $S \rightarrow A \mid B$

 $A \rightarrow a*b*ba$

 $B \rightarrow a*b*a+$

Exercise 6.5 - obligatory (4 points)

Let S = {a, b, c, d}. Define an ε-NFA that accepts all strings that end with cddc, cdab or abab.

 $\delta: Q \; x \; E \; \upsilon \; \epsilon \to 2^{\hspace{-0.5mm} \hspace{-0.5mm} \hspace{-0.5mm} Q}$

