Application No. 10/575,776 Reply to Office Action of June 12, 2008

AMENDMENTS TO THE CLAIMS

1. (Currently Amended) A black composition comprising as indispensable components a titanium nitride oxide, a resin and a solvent; wherein X-ray intensity ratios R₁ and R₂ represented by the Equations (1) and (2) below, respectively, satisfying satisfy the relationships represented by Formulae (3) and (4) below:

$$R_1=I_3/\{I_3+1.8(I_1+1.8I_2)\}$$
 (1)

$$R_2 = I_2/I_1 \tag{2}$$

$$R_1 > 0.70$$
 (3)

$$0.85 < R_2 < 1.80 \tag{4}$$

wherein I_1 represents the maximum diffraction intensity of the titanium nitride oxide when the angle of diffraction 20, determined by using CuK α line as the X-ray source, is 25° to 26°, I_2 represents the maximum diffraction intensity of the titanium nitride oxide when the angle of diffraction 20 is 27° to 28°, and I_3 represents the maximum diffraction intensity of the titanium nitride oxide when the angle of diffraction 20 is 36° to 38°.

- 2. (Original) The black composition according to claim 1, wherein said X-ray intensity ratio R_1 is not less than 0.80.
- 3. (Previously Presented) The black composition according to claim 1, wherein said solvent has a boiling point of 120°C to 180°C, and a viscosity of 3 mPa·s to 10 mPa·s.

- 4. (Previously Presented) The black composition according to claim 1, wherein said resin is at least one selected from the group consisting of an acrylic resin and a polyimide resin.
- 5. (Previously Presented) The black composition according to claim 1, further comprising an organosilane hydrolysis condensate.
- 6. (Previously Presented) The black composition according to claim 1, further comprising a compound having a siloxane bond and a carbon-carbon double bond in a single molecule and having no silanol group.
- 7. (Currently Amended) The black composition according to claim 6, wherein said compound having a siloxane bond and a carbon-carbon double bond in a single molecule and having no silanol group has the structure represented by the following Formula (7):

$$CH_{2} = C \setminus \begin{pmatrix} R^{3} \\ R^{3} \\ Si - O \end{pmatrix} \begin{pmatrix} R^{5} \\ Si - R^{2} \\ R^{4} \end{pmatrix} \begin{pmatrix} C = CH_{2} \\ C = CH_{2} \\ C = CH_{2} \end{pmatrix}$$

$$CH_{2} = C \setminus \begin{pmatrix} R^{3} \\ Si - O \\ R^{4} \\ R^{6} \end{pmatrix} \begin{pmatrix} C = CH_{2} \\ R^{1} \\ R^{1} \end{pmatrix}$$

$$(7)$$

(wherein wherein each R¹ independently represents hydrogen or alkyl group; each R² independently represents an organic group containing amide bond, imide bond, ester bond or

urethane bond; R^3 to R^6 independently represent alkyl group; and n represents an integer of 1 to 3.3.

- 8. (Previously Presented) The black composition according to claim 1, wherein the weight ratio of said titanium nitride oxide to said resin is within the range between 75/25 and 60/40.
- 9. (Previously Presented) The black composition according to claim 1, further comprising carbon black.
- 10. (Previously Presented) A black composition according to claim 1, wherein the black coating film obtained from said black composition has an optical density (OD value) of not less than 4.4 per 1 μ m of film thickness, and wherein the minimum exposure energy required for photo-curing is not more than 60 mJ/cm².
- 11. (Currently Amended) A black coating composition comprising as indispensable components a titanium nitride oxide and a resin; wherein X-ray intensity ratios R₁ and R₂ represented by the Equations (1) and (2) below, respectively, satisfying satisfy the relationships represented by Formulae (3) and (4) below:

4

$$R_1=I_3/\{I_3+1.8(I_1+1.8I_2)\}$$
 (1)

$$R_2 = I_2/I_1$$
 (2)

$$R_1 > 0.70$$
 (3)

$$0.85 < R_2 < 1.80 \tag{4}$$

wherein I_1 represents the maximum diffraction intensity of the titanium nitride oxide when the angle of diffraction 2θ , determined by using CuK α line as the X-ray source, is 25° to 26° , I_2 represents the maximum diffraction intensity of the titanium nitride oxide when the angle of diffraction 2θ is 27° to 28° , and I_3 represents the maximum diffraction intensity of the titanium nitride oxide when the angle of diffraction 2θ is 36° to 38° .

- 12. (Original) The black coating composition according to claim 11, wherein said X-ray intensity ratio R_1 is not less than 0.80.
- 13. (Previously Presented) The black coating composition according to claim 11, wherein said resin is at least one selected from the group consisting of an acrylic resin and a polyimide resin.
- 14. (Previously Presented) The black coating composition according to claim 11, wherein the weight ratio of said titanium nitride oxide to said resin is within the range between 75/25 and 60/40.
- 15. (Previously Presented) The black coating composition according to claim 11, which has an optical density (OD value) of not less than 4.4 per 1 μm of film thickness.

- 16. (Previously Presented) The black coating composition according to claim 11, wherein the transmittance of i-ray when the optical density (OD value) is 2.0 is more than 0.2%.
- 17. (Previously Presented) The black coating composition according to claim 11, further comprising a compound having a siloxane bond and a carbon-carbon double bond in a single molecule and having no silanol group.
- 18. (Currently Amended) The black coating composition according to claim 17, wherein said compound having a siloxane bond and a carbon-carbon double bond in a single molecule and having no silanol group has the structure represented by the following Formula (7):

$$\begin{array}{c}
R^{1} \\
CH_{2} = C \\
R^{2} + R^{3} \\
S_{i} = O \\
CH_{2} = C \\
CH_{2} = C \\
R^{4} + R^{6} \\
R^{6} + C = CH_{2} \\
R^{1} + C = CH_{2} \\
R^{2} + C = CH_{2} \\
R^{2} + C = CH_{2} \\
R^{2} + C = CH_{2} \\
R^{3} + C = CH_{2} \\
R^{4} + C = CH_$$

(wherein wherein each R^1 independently represents hydrogen or alkyl group; each R^2 independently represents an organic group containing amide bond, imide bond, ester bond or urethane bond; R^3 to R^6 independently represent alkyl group; and n represents an integer of 1 to 3.)3.

Reply to Office Action of June 12, 2008

19. (Previously Presented) The black coating composition according to claim 11, further comprising carbon black.

- 20. (Previously Presented) A resin black matrix obtained from said black coating composition according to claim 11.
- 21. (Original) A color filter for liquid crystal displays, which color filter comprises said resin black matrix according to claim 20.
- 22. (Original) A liquid crystal display comprising said color filter for liquid crystal displays, according to claim 21.