\bullet G will denote the directed weighted graph of capacities, s and t will denote respectively source and sink of our graph.

We will assume that capacities are symmetrical.

• For a path \mathfrak{p} we will denote with $|\mathfrak{p}|$ its length.

When it will be convenient, we will treat a directed weighted graph G as a function $G: V \times V \to \mathbb{R}_+$, where V is its set of vertices. With a little abuse of notation we will say that the edge from a node δ to a node δ' is in G, or $(\delta, \delta') \in G$, in place of $G(\delta, \delta') \neq 0$.

Likewise we will say that a path \mathfrak{p} is contained in G, or $\mathfrak{p} \subset G$, if every edg

• For a field Φ , \mathcal{R}_{Φ} will denote the directed weighted graph of residual capacities respect to Φ :

$$\mathcal{R} = G - \Phi \tag{1}$$

• We define a dmissible path respect to Φ a path γ in G from source to sink such that

$$\Phi|_{\gamma} < G|_{\gamma}$$

• We say that a flow Φ is maximal if there are no admissible paths in G respect to Φ .

Proposizione 0.1. Φ is a maximum flow iff \mathcal{R}_{Φ} does not have paths from source to sink.

For a field-value f in δ we define $|f|:=\sum_{\delta\sim\delta'}f(\delta')$. We now formalize functions involved in the algorithm. Let Φ be a field and $\delta\sim\delta'$ be devices, we define $\Phi^*(\delta,\delta'):=\Phi(\delta',\delta)$. By co-induction:

$$\Phi_0 := \Phi \\
\mathcal{R}_n := \mathcal{R}_{\Phi_n} \\
e_n(\delta) := \begin{cases}
\infty & \text{if } \delta = s \\
-\infty & \text{if } \delta = t \\
|\Phi_n(\delta)| & \text{otherwise}
\end{cases} \\
d_0(\delta) := \begin{cases}
0 & \text{if } \delta = t \\
\infty & \text{otherwise}
\end{cases} \\
d_n(\delta) := \begin{cases}
0 & \text{if } \delta = t \\
\min\{d_{n-1}(\delta') + 1 \mid \mathcal{R}_{n-1}(\delta, \delta') > 0\} & \text{otherwise}
\end{cases} \\
I_{n+1} := \operatorname{trunc}((G + \Phi_n^*)(d_{n-1}^* < d_n), e(\Phi_n^*)) \\
\Phi_{n+1} := -\Phi_n^* + I_{n+1} + \operatorname{trunc}(\Phi_n^*, e(\Phi_n^*) - |I_{n+1}|)$$

For a field Φ we define

$$\|\Phi\| := \sum_{\substack{\delta \text{ connected to} \\ t \text{ in } \mathcal{R}_{\Phi}}} |\mathcal{R}_{\Phi}(\delta)|$$

Lemma 0.2. Let Φ be a pre-flow. Then $\|\mathbf{update}(\Phi)\| \leq \|\Phi\|$ with equality holding iff $\mathbf{update}(\Phi) = \Phi$.