£	න ආයතනය Ape න ආයතනය Ape	එරෙ	පක්ස් අධන	හපන (ආයතන	o s atio	n Ce ntro	- එපෙක්ස් එකෙන්ස්		ආයතනය - ආයතනය
<u>ئ</u> ئ	න ආයතනය Ape න ආයතනය Ape	Ap	ex Educ	ation	Centr	e atio	n Ce n Ce	०७द्यार	9 2 0	යේ ් ්
<u>ئ</u> ئو	JOIN THE PIONEERS p ආයතනය A new මෙනත්ස් අධානයන ආයතනය ශි ර	ෂූූූූූූූූූූූූූූූූූූූූූූූූූූූූූූූූූූූූූ	යඵල ඇගයීම්	ි හා විභ	ාග සේවා) අංශය	n Ce ller n Centre		2021	ආයට ය නය
දි ද්	රසායන විදහව - I	ucation	Evaluati	on Test	+ - (3)	pex Educatio	n Centre	- එපෙක්ස්		ආයතනය
d	Chemistry - I		L 1 Centre - එපෙක්ස	s් අධාහපන	ආයතනය <i>A</i>		n Centre	<i>කාලය</i>		
ć	Circinistry - 1	ucatior	n Centre - එපෙක්ස සාර්වනු වායු ්ඵ			Apex Educatio 8.314 <i>J mol</i>				නය
			සාරපතු පාසු ප ඇවගාඩ්රෝ නි			6.022×10^{2}		1		
			ප්ලෑන්ක්ගේ නි							
			ආලෝකයේ පු							
– 01.	පහත මූලදුවා අතරින අවස්ථාව වන්නේ,	ත් අවසා	න ශක්ති මර්	ට්ටමේ (<u>උද්දි</u> ගාංශ	කවොන්ට) කුලඃ	කය එකි	නෙකට) අසමාන
	(1) <i>K</i> හා <i>Cr</i>	(2)	Sc හා Ga	(3)	Zn හා	Ca (4) <i>Ga</i>	හා <i>Br</i>	(5)	Cr හා Ca
)2.	පහත දී ඇති වායුවලි?	න් ඉහළ	;ම විසරණ ශී	සුතාවය	ක් ඇත්තෙ	ವೆ,				
	(0 = 16, C = 12)	N = 1	14 , H = 1)						
	(1) O_2	(2)	NH_3	(3)	N_2	(4) (CO_2	(5)	C_2H_2
)3.	SO_3^{2-} අයනයේ හැඩය δ	ට සමාන	ජාාමිතික හැ	ැඩයක් .	ඇත්තේ,					
	(1) NO_2^-	(2)	$XeOF_2$	(3)	BrO_3^-	(4) 5	50_{3}	(5)	$COCl_2$
4.	$10\ cm$ දිග $10.00\ g$ ස්	බ්කන්ධය <u>:</u>	ක් ඇති පිරිසිදු	<i>Mg</i> ප	ටියක් 15	5.65g බර	කෝවෘ	කදමා ර	රත් කළ	ළ විට කෝව
	සමඟ ඉතිරි අවශේෂගෙ	s් බර 30).65 <i>g</i> විනි න	ාම්, සෑම	දන ඔක්ස	යිඩයේ බර	විය හ	ැක්කේ,		
	(1) $15.48 g$	(2)	16.25 <i>g</i>	(3)	12.50	g (4) 3	32.00 <i>g</i>	(5)	20.13 <i>g</i>
)5.	BF_3 , NH_3 , H_2S , SiH_4	බන්ධන	ා කෝණ වෙන	nස් වන	අනුපිලිමේ	වළ වන්නේ	,			
	$(1) H_2S < SiH_4 <$							NH_3		
	$(3) H_2S < NH_3 <$	_	-		_	_	-	_		
	$(5) NH_3 < BF_3 <$	-			2	3	3	1		
)6.	භූමි අවස්ථාවේ පවති	-	•	ະລາ <i>M</i> ເ	මලදවාය	යන ප	ඉභ්ද	ලද <u>ුක</u> ේම	යගල:	නය නොදි
	ඉලෙක්ටෝන 5 ක් අඩ		_				-	- q	5 ° °	- 34030 ₀
	(1) Co	(2)			Mn	(4) ($^{\circ}r$	(5)	Fe
7.	4 වන ආවර්තයේ මූල								(3)	10
, •	(1) Ca	(2)	Cr	(3)		(4		, ₹e	(5)	K
18.	$0.05\ moldm^{-3}$ ජලීය				_		_			
	මිශු කළ විට, ලැබෙන	-			_			_		20.00.000
	(1) 0.32	(2)	0.20	(3)	0.50	, x & q&. (4).25	(5)	0.16
10	ස්කන්ධය 3.312 × 10									
)9.	කරණ ආයාමය වන්නෙ		<i>ා</i> වා අංශුවක	2 \ 1() IIIS	ටුමටගමයිදී) D(,ටාග මව	ఎ. లెఠు	ധരങ്കാര്യ
	ආලෝකයේ පුවේගය =		$0^8 m c^{-1}$	h —	6 624 ×	10 ⁻³⁸ 15				

(1)

0.26 *nm*

(5)

6.70 nm

1.34 *nm*

(4)

(3)

1.24 *nm*

0.67~nm

(2)

10.	A නම්	වායුවක වා	ෂ්පයෙන්	0.575g ස්	කින්ධයක අ	පරිමාව 175	cm^3 වේ.	කාමර උෂ්	ණත්වගේ	ය්දී වායුවක
	මෞලි	ක පරිමාව 3	5 dm³mol	l^{-1} නම් වා l	යුවේ පරමා	ණුක ස්කන්ධ)ය වන්නේ,			
	(1)	67 g	(2)	115 g	(3)	167 g	(4)	180~g	(5)	201g
11.	ගිෂාම	යකු විසින්	$Na_2C_2O_4$	0.3101 <i>g</i>	ජලය 30.	0 <i>cm</i> 3 ක දි	යකර H_2SC	\mathcal{O}_4 මගින් අ	ාම්ලික	කරන ලදී.
	<u>මෙම (</u>	දාවණය $H^{ extstyle -}$	$^+/KMnO_4$	මගින් අනු	මාපනය කැ	ළ විට බියු	රට්ටු පාඨාං	කය 24.90	cm^3 විශ	ವ. <i>KMnO</i> ₄
	දුාවණ	ගේ සාන්දු ∢	කය වන්නේ	, mol dm ⁻	-3					
		= 23 , <i>C</i> =								
	(1)	0.0023	(2)	•	(3)	0.0369	(4)	0.092	(5)	0.958
12.	ප්ලටෙ	ා්නියම් මලය				කාණ්ඩයට		තම් මල දව:	ායක් ම	
	•				•	නම් මූලදුවා	•			
	•	$u + X \longrightarrow$				න් ෙ		Oq.		
		v r A හැක්කේ,	, 311 1	11421	π —	වාසුපෙමුවෙය				
		Be	(2)	Ma	(2)	Ca	(4)	Cm	(5)	Da
12	(1)	<i>ве</i> ාරණය සම්බ	(2)	Mg	(3)	Ca	(4)	Sr	(5)	Ва
13.	මුහුමය (1)			_	_	ෑයනාය ද ! ාණුවකට අය	නේ තාක්ෂික	පුමණි		
	(2)		ාසම්ක අත(, G 10-20-0		33 0 3.		
			•			S. S				
	(3) (4)	_			_	මුහුම්කරණය) සමාන ගත				
	(5)		මෙයනා සෑමේ මික අතර) සමාන ශක ත් තැත	ාවාගක හැස	යක ඇත.		
14.					•	ා පැලා.) පිහිටන අ	අවස්ථාව වෘ	ත්තේ,		
	(1)	CH_3CH_2C				CH = CHC			$CHCH_2$	CH_3
						$=\overset{H}{C}-C\equiv$		L	2	3
15.		•	•		_			ක් ප්ලාස්කෘ	වක් තුළ	ද ඇත. <i>M g</i>
	කාමර උෂ්ණත්වයේදී $384\ Hgmm$ පීඩනයක් යටතේ වූ O_2 හා He මිශුණයක් ප්ලාස්කුවක් තුළ ඇත. Mg කැබැල්ලක් පිළිස්සීමෙන් ප්ලාස්කුව තුළ වූ O_2 මුලුමනින්ම ඉවත් කරනු ලැබේ. ප්ලාස්කුව සාමානා									
	උෂ්ණත්වයට නැවත පත්වූ විට ලද පීඩනය $128Hgmm$ විය. මිශුණයේ O_2 හා He ස්කන්ධ අනුපාතය									
	වන්නෙ		O.S.	of Ou	20,00 1201		0 5 0 0 0 0	0 2 00 110		45000
	(1)		(2)	3:1	(3)	4:1	(4)	8:1	(:	5) 16:1
16.										
	27° C දී N_2 හා O_2 වායු මිශුණයක් පරිමා පුතිශත පිළිවෙළින් 75% හා 25% වන වායු මිශුණයක මධානාය පුවේගය වන්නේ, $(O=16$, $N=14)$									
	(1)	48.1 ms ⁻		•) 157.	$9 \ ms^{-1}$	(3)	160.6 m	0.5^{-1}	
	(4)	499.4 ms		(5		$1.95 ms^{-1}$	(3)	100.0 77		
17.				`	,		සු ත ාදය ද ?			
17.	(1)	•			=	කියාවක් ඇ	•			
	(2)	_	•			ක්ෂේතුයකි:		ාළ හැකිය.		
	(3)	විද <u>ා</u> ුත් කෙ	` ෂ්තුයකදී ඉෙ	ලක්ටුෝන	 කදම්භයක්	- වෘත්තාකාර :	පථයක ගම	න් කරයි.		
	(4)	කැතෝඩ ර	අංශු වල පු	වේගය ආශ	ලෝකයේ පු	වේගයට වඩ	ා අඩුය.			
	(5)	5) ඉතාමත් ඉහළ වේගවලින් ගමන් කරන ඉලෙක්ටුෝන කදම්භයක් චුම්භක ක්ෂේතුයකට යොමු								
		කළ විට එය 🕀 ධුැවය දෙසට ආකර්ෂණය නොවේ.								

18.	වායු ස	ම්බන්දයෙන් පහත කවර පුකාශය සතා වේද?
	(1)	පරිපූර්ණ වායුවක පීඩනය හැම විටම සතා වායුවකට වඩා ඉහළ වේ.
	(2)	පරිපූර්ණ වායු එකිනෙවක සමඟ පුතිකිුයා කරයි.
	(3)	පරිපූර්ණ වායුවක් සම්පීඩනයෙන් දුව කළ නොහැක.
	(4)	එකම භාජනයක් තුළ සතා වායුවක් සඳහා වන පරිමාව පරිපූර්ණ වායුවක් වලනය වන පරිමාවම
		වෙයි.
	(5)	තාත්වික වායුවක සම්පී්ඩානා සාධකය හැම විටම $Z eq 1$
19.	පහත (මූලදුවා අතරින් පහත්ම දුවාංකය ඇති ලෝහ මූලදුවා වන්නේ,
	(1)	Na (2) Mn (3) Zn (4) Hg (5) Be
20.	පරිමාව	$1000\ cm^3$ වන බඳුනක $283\ K$ උෂණත්වයේ සහ $3.5\ atm$ පීඩනයක් සහිතව $ m A$ වායුව ඇත.
	පරිමාව	$2000\ cm^3$ වන බඳුනක උෂ්ණත්වය $283\ K$ හා $4.5\ atm$ පීඩනයක ${ m B}$ (g) ඇත. බඳුන් ඉදක
	එකට ස	සවිකර උෂ්ණත්වය $150K$ දක්වා ගෙන එනු ලැබේ. ${ m A}$ හා ${ m B}$ රසායනිකව පුතිකිුයා නොකරයි
	නම්, අ	වසාන වායු මිශුණයේ පීඩනය කොපමණ විය හැකිද?
	(1)	$1.9 \times 10^5 Pa$ (2) $2.2 \times 10^5 Pa$ (3) $0.61 \times 10^5 Pa$
	(4)	$1.59 \times 10^5 Pa$ (5) නිවැරදි පිළිතුර දී නැත.
21.	²³⁸ ₉₂ <i>U</i>	නාාෂ්ටියෙන් පළමුව $lpha$ අංශු එක්කද , දෙවනුව eta අංශු දෙකක් ද විමෝචනය වීමෙන් සෑටදෙන
		ය වන්නේ,
	(1)	$^{234}_{92}U$ (2) $^{234}_{92}AC$ (3) $^{234}_{92}Pa$ (4) $^{234}_{92}Th$ (5) $^{234}_{92}Pt$
22.	කිසියම්	ා උෂ්ණත්වයකදී දෘඪ බඳුනක ඇති H_2 වායු සාම්පලයක් $347^{\circ}\mathrm{C}$ දක්වා රත් කළ විට බඳුන තුළ
	පීඩනය	ෙ දෙගුණයක් විණි නම් ආරම්භක උෂ්ණත්වය විය හැක්කේ,
	(1)	25°C (2) 320°C (3) 300 <i>K</i> (4) 37°C (5) 27 <i>K</i>
23.	පහත ස	සංයෝගවල අයනික ස්වභාවය ආරෝහණය වන ආකාරයේ නිවැරදි අනුපිළිවෙල වන්නේ,
	(1)	$AlCl_3 < CsCl < NaCl$ (2) $NaCl < AlCl_3 < CsCl$
	(3)	$AlCl_3 < NaCl < CsCl$ (4) $CsCl < NaCl < AlCl_3$
	(5)	$NaCl < CsCl < AlCl_3$
24.	ජලීය	KI දාවණයකට $0.05moldm^{-3}$ XSO_4 $10.0cm^3$ දුාවණ එකතු කළ විට
	$2X^{2+}$ ($(aq)+2I^-(aq) \longrightarrow 2X^+(aq)+I_2(aq)$ සමීකරණයට අනුව I_2 සෑදේ. මේ I_2 පුමාණය
	සමඟ	සම්පූර්ණයෙන් පුතිකිුයා කිරීමට අවශා $0.025\ moldm^{-3}\ Na_2\ S_2O_3$ දාවණයේ අවම පරිමාව
	වන්ගෙ	\mathcal{S} ,
	(1)	$10 cm^3$ (2) $20.0 cm^3$ (3) $200 cm^3$ (4) $25 cm^3$ (5) $40 cm^3$
25		
25.		ණය $13.4\ moldm^{-3}$ වන ඇමෝනියා දුාවණයක ඝනත්වය $0.91\ g\ cm^{-3}$ වන අතර ඇමෝනියා
	වායුවේ) මෞලික ස්කන්ධය $17\ g\ mn^{-1}$. මේ දාවණයේ මෞලීයතාවය $mol\ kg^{-1}$ වන්නේ,

(1)

0.196

(2)

0.0196

(3)

19.6

(5) 0.0019

0.196

(4)

- $[\mathit{CrCl}_2\ (\mathit{H}_2\mathit{O})_4\]^x$ යන සංකීර්ණ අණුවේ Cr පරමාණුවේ ඔක්සිකරණ අංකය X හි අගය පිළිවෙළින් විය 26. හැක්කේ,
 - (1) -3 හා -1

- +3 හා −3 (2)
- 0 හා +2 (3)

+3 හා +1 (4)

- +3 മാ −1 (5)
- භූමි අවස්ථාවේ උත්තේජක අවස්ථාවේ හා ගිණුම්කරණය වූ අවස්ථාවේ පවත්නා කාබන් පරමාණු වල 27. සංයුජතා කවචයේ ඇති විවිධ කාක්ෂික ශක්ති මට්ටම සැසඳීම නිවැරදිව නිරූපණය කරන්නේ පහත කවර පතිචාරයෙන්ද?
 - උත්තේජක 2P < මුහුම් $Sp^2 <$ භූමි 2S(1)
- මුහුම් SP < භූමි 2P < භූමි 2S(2)
- (3)
 - මුහුම් $Sp^3 <$ භූමි 2S < උත්තේජිත 2S \qquad (4) මුහුම් 2P < මුහුම් $Sp^3 <$ උත්තේජිත 2P
- භූමි 2p< උත්තේජිත 2s< මුහුම් Sp^2 (5)
- කෂාරීය මාධායේදී $2.68~g~Na_2C_2O_4$ ජලීය දුාවණයක් සමඟ $NaMnO_4$ සම්පූර්ණයෙන්ම පුතිකියා කළ 28. විට, සැදෙන MnO_2 අවක්ෂේපයේ ස්කන්ධය වන්නේ ග්රෑම්,

(C = 12, Mn = 55, O = 16, Na = 23)

- (1) 1.00
- (2) 1.12
- 1.16 (3)
- (4) 2.61
- 1.74 (5)
- 27° C දී විවෘත නොකරන ලද පැණි බීම බෝතලයක ඇතුළත $\mathcal{C}O_2(g)$ වායුවේ පීඩනය 498840~Pa වේ. 29. මෙහි අයන $\mathcal{C}O_2$ වායුව් සාන්දුණය $mol\ dm^{-3}$ මගින්,
 - 400 (1)
- (2) 200
- (3) 0.42
- 0.20 (4)
- 0.10 (5)
- පහත රූපයේ ඇත්තේ වායු පිටවීමට ඉඩ නොදෙන ඝර්ෂණයද, බරද රහිත පිස්ටනයක් සවිකර ඇති දෘඪ 30. බදුනකි.

පිස්ටනයේ හරස්කඩ වර්ගඵලය $4.157 imes 10^{-2} m^2$. 27° C දී බදුනට X වායුවෙන් $0.10\ mol$ ඇතුළු කර ඇත. h අගය විය හැක්කේ,

- 0.80 m (1)
- 0.03 m (2)
- 0.06 m (3)
- (4)
 - 0.70 m (5) 1.00 cm^3

💠 පුශ්න අංක 31 සිට 40 දක්වා පුශ්න සඳහා උපදෙස්,

උපදෙස් සම්පිණ්ඩනය								
(1)	(2)	(3)	(4)	(5)				
(a) සහ (b)	(b) සහ (c)	(c) සහ (d)	(d) සහ (a)	වෙනත් පුතිචාර සංඛනවක් හෝ				
පමණක්	පමණක්	පමණක්	පමණක්	සංගයා්ජනයක් හෝ නිවැරදිය.				
නිවැරදියි.	නිවැරදියි.	නිවැ <i>ර</i> දියි.	නිවැරදියි					

- 31. පරිමා සමාන භාජන දෙකක වායු මෞල 2 බැගින් ඇත. A බඳුනේ He වායුව ද, B බඳුනේ O_2 වායුව ද පවතී. A හා B බඳුන් දෙකෙහිම වායුවල පීඩන සමාන වේ. වායු පරිපූර්ණ ලෙස හැසිරේ. පහත වගන්ති වලින් සතා වන්නේ, (He=4 , O=16)
 - (a) A බඳුනේ උෂ්ණත්වය B බඳුනේ උෂ්ණත්වයට වඩා අඩුය.
 - (b) A බඳුනේ අණුවල වර්ග මධානාය මූල පුවේගයයට වඩා වැඩියි.
 - (c) A බඳුනේ අණුවල වායු අණුවල උණුවල මධානාය චාලක ශක්තිය උෂ්ණත්වය සමඟ වැඩි වේ.
 - (d) දෙන ලද උෂ්ණත්වයක දී බඳුන් දෙකේම ඇති වායු වල ඝනත්ව සමාන වේ.
- 32. මූලදුවායක ඉලෙක්ටුෝන විනාහසය $1S^2$, $2S^2$, $2p^6$, $3p^6$, $3d^{10}$, $4S^2$, $4p^6$, $5S^2$ නම්, මේ මගින් කිව හැක්කේ,
 - (a) මේ මූල දවාය පුතිකිුයාශීලි මූල දවායකි.
 - (b) මේ මූලදුවායට අයනික සංයෝග සෑදිය හැකිය.
 - (c) මේ මූල දුවාගේ පවතින්නේ ශක්ති මට්ටම් 05 කි.
- $P=HT_2O^+$, $Q=OD^-$, $R=ND_2^-$ D හා T යනු හයිඩුජන් වල සමස්ථානික ආකාර දෙකකි. D= ඩියටීරියම් T= ටිටියම්

 $P,\,Q,\,R$ පුභේද වලින් සතා වන්නේ,

- (a) සියල්ලම සම ඉලෙක්ටෝනික වේ.
- (b) සියල්ලේම අණුක ස්කන්ධ සමාන වේ.
- (c) සමාන රසායනික හා භෞතික ගුණ පෙන්වයි.
- (d) පුභේද වල ඇති පෝටෝන ගණන P>Q=R වේ.
- 34. පහත දුක්වෙන වගන්ති වලින් කවර එක / ඒවා අසතා වේද?
 - (a) පීඩනය ඉතා ඉහළ නම්, ඕනෑම තාත්වික වායුවක් කාමර උෂ්ණත්වයේදී දුව කළ හැකිය.
 - (b) අඩු පීඩනයේදී සෑම තාත්වික වායුවක්ම සම්පීඩානාවය 1 ට ආසන්න වේ.
 - (c) පරිපූර්ණ වායුවක වර්ග මධානාය මූල පුවේගය වායු වර්ගය මත රඳා පවතී.
 - (d) නියත උෂ්ණත්වයකදී පරිපූර්ණ වායු අණුවක මධානාය චාලක ශක්තිය නියත උෂ්ණත්වයේදී පීඩනය වැඩි වීමත් සමඟ වැඩි වේ.

35.	$0.10\ moldm^{-3}\ H_2SO_4$ දාවණ $100\ cm^3$ ක,						
	(a)	H_2SO_4 $0.01\ mol\ $ ඇත.					
	(b)	ඔක්සිජන් අණු මෞල 0.02 ක් ඇත.					
	(c)	ඔක්සිජන් $0.04 imes 32~g$ ස්කන්ධයක් ඇත.					
	(d)	දාවණයේ වූ SO_4^{2-} සම්පූර්ණයෙන්ම Ag_2SO_4 බවට පත් කිරීමට $0.1\ moldm^{-3}AgNO_3\ 100\ cm^3$ ක් අවශා වේ.					
36.	I_2 (s);	, ජලීය KI දුාවණයක් තුල දිය කිරීමෙන් ලැබෙ z	න දුඹුර <u>ු</u>	පාට ජලීය දුාවණයේ පැවතිය හැකි අන්තර්			
	අණුක අම්ල බල වර්ගය / වර්ග වන්නේ ;						
	(a)	ද්විධුැව -					
	(b)	හයිඩුජන් බන්ධන					
	(c)	අයන - පුේරිත ද්විධුැව බන්ධන					
	(d)	අයන - ද්විධුැව බන්ධන					
37.	පහත කුමන පුකාශය / පුකාශන අසතා වේද?						
	(a)	H_2S හි තාපාංකය H_2O හි තාපාංකයට වඩා වැඩි වේ.					
	(b)	H_2S හි බන්ධන කෝණය, H_2O හි බන්ධන කෝණයට වඩා අඩුය.					
	(c)	$H_2 {\it O}$ හි තාපාංකය HF හි තාපාංකයට වඩා වැ	ඩිවේ.				
	(d)	H බන්ධන සෑදීම සඳහා H ට වඩා විදාුත් සාණ	ති පරමා ණ	නුවක් H පරමාණුවකට බැඳී තිබීම අතාාවශා			
		ම ව්.					
38.	NH ₃ අ	ණුවට සම ඉලෙක්ටෝනික වන පුභේද යුගලය	/ යුගල	වන්නේ,			
	(a)	CH_3 හා $\overset{\oplus}{N}H_4$	(b)	$\stackrel{\oplus}{N}H_4$ හා $\stackrel{\ominus}{N}H_2$			
	(c)	$\stackrel{\oplus}{NH_4}$ හා $\stackrel{\oplus}{H_3O}$	(d)	$\stackrel{\ominus}{N}H_2$ හා $\stackrel{\oplus}{C}H_3$			
39.	වායුවක	ා විසරණ ශීඝුතාවය කෙරෙහි බලපාන සාධක /	සාධකය	ක් වන්නේ,			
	(a)	වායුවේ සාපේඤ අණුක ස්කන්ධය	(b)	වායුවේ තාපාංකය			
	(c)	වායුවේ වර්ණය	(d)	උෂ්ණත්වය			
40.	ජලීය දුාවණයක $200~cm^3$ ක H_2SO_4 හා HNO_3 අම්ල මෞල 0.1 බැගින් අඩංගු වේ. අම්ල ජලයේදී පූර්ණ						
	අයනීකරණයක් සිදුවන්නේ නම්, පහත පුකාශන වලින් අසතා විය හැක්කේ,						

- (a) H_2SO_4 මෞල භාගය 0.5 කි.
- (b) දුාවණයේ අඩංගු කැටායන සාන්දුණය $1.0\ moldm^{-3}$ වේ.
- (c) දුාවණයේ අඩංගු ඇතායත සාත්දුණය $1.0 \ mold m^{-3}$ වේ.
- (d) $Bacl_2\left(aq
 ight)$ සමඟ සෑදෙන අවක්ෂේපයේ මෞල ගණන $0.10\,$ කි.

💠 අංක 41 සිට 50 තෙක් පුශ්නවලට උපදෙස්,

පිළිතුර	පළමු වගන්තිය	දෙවැනි වගන්තිය
1	සතායයි	සතා වන අතර, පළමුවැන්න නිවැරදිව පහදා දෙයි.
2	සතායයි	සතා වන අතර පළමුවැන්න නිවැරදිව පහදා නොදෙයි.
3	සතායයි	අසතායි
4	අසතායි	සතායයි
5	අසතායයි	අසතායි

	1 වගන්තිය	2 වගන්තිය
41.	Si, O, F යන මූල දුවා වල පළමු අයනීකරණ ශක්ති	Si, O, F යන මූල දුවා වල විදාුුත් සෘණතා
	වැඩි වන්නේ, $Si < 0 < F$ යන ආකාරයටය	අනුපිළිවෙළ Si $<$ 0 $<$ F යන ආකාරයට වේ.
42.	දියමන්ති වලට වඩා මිනිරන්වල දුවාංකය ඉහළය.	මිනිරන් වල බන්ධන සැකසුම නිසා $\mathcal{C}=\mathcal{C}$
		බන්ධන වඩාත් කෙටි, ශක්තිමත් තත්වයක පිහිටයි.
43.	පරිපුර්ණ වායුවක මධානා චාලක ශක්තිය වෙනස්	පරිපුර්ණ වායුවක මධානා චාලක ශක්තිය
	කර එම වායුවේ උෂ්ණත්වය වෙනස් කළ හැකිය.	උෂ්ණත්වයට අනුලෝමව සමානුපාතික වේ.
44.	සහසංයුජ සංයෝගවල දුවාංක තාපාංක හැමවිටම	සාමානෳයෙන් අයනික බන්ධනයක ශක්තිය,
	අයනික සංයෝග වලට වඩා අඩු අගයක් ගනී.	සහසංයුජ බන්ධනයක ශක්තියට වඩා ඉහළය.
45	^{14}N පරමාණුවකට X අංශුවක් මගින් පහර දීමෙන්	∝ අංශුවක ආරෝපණය ඒකක +2 සේ සලකන
	^{17}O හා Y නිදහස් වේ නම්, X හා Y පිළිවෙලින් $ imes$	අතර ස්කන්ධය ඒකක 4 සේ සලකයි.
	අංශුවක් හා හයිඩුජන් නාාෂ්ඨියක් විය හැකිය.	
46.	$S_2 O_3^{2-}$ අයනයේ ${f S}$ පරමාණුවක ඔක්සිකරණ අංකය	ඔක්සිජන් වලට වඩා සල්ෆර් විදහුත් ධන මූල
	⊕ 2 කි.	දුවායක් නිසා O ට සාපේක්ෂව S ධන ඔක්සිකරණ
		අංකයක් ගනී.
47.	වායුමය Cu (I) ; Cu (II) ට වඩා ස්ථායී වේ.	$ m Cu~(I)$ හි ඉලෙක්ටුෝන් විනාහසය $3d^94S^1$
		වන අතර Cu (II) හි ඉලෙක්ටුෝන විනාෲසය
		$\ldots 3d^94S^0$ වෙයි.
48.	හයිඩුජන්වල සමස්ථානික පරමාණුවල වර්ණාවලි	H පරමාණු හැම විටම එකම ශක්ති පුමාණයක්
	එකිනෙක මත සමපාත වෙයි.	අඩංගු ශක්ති පැකට් ලෙස ශක්තිය අවශෝෂණය
		හෝ විමෝචනය කරයි.
49.	X නම් විකිරණශීලි මූල දුවා¤යක ඎයවීමේ පුතිශතය	මූල දුවායක සාන්දුණය එහි හරියටම අඩක් වීමට
	87.5% ක් වීමට දින 30 ක් ගත වූයේ නම් ;	ගත වන කාලය ඒ මූල දුවායේ අර්ධ ජීව කාලය
	මූල දුවාගේ අර්ධජීව කාලය $(trac{1}{2})$ දිග 10 කි.	සේ හඳුන්වයි.
50	$Becl_2 < Cacl_2 < Bacl_2$ ලෙස ලෝහ	Be^{2+} , Ca^{2+} , Ba^{2+} අයනවල ධුැවීකාරක
	ක්ලෝරයිඩවල දුවාංකය ආරෝහණය වේ.	හැක්යාවේ අනුපිළිවෙල $Be^{2+} < Ca^{2+} < Ba^{2+}$
		ආකාරයට වෙයි.

