BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI

INSTRUCTION DIVISION SECOND SEMESTER 2018-2019 Course Handout (Part-II)

Date: 15/01/2021

In addition to part I (General handout for all courses appended to the timetable) this portion gives further details regarding the course.

Course Number : PHY F243

Course Title : Mathematical Methods of Physics

Instructor-in-Charge: R.R. Mishra

Scope & Objective of the Course:

This course covers some special mathematical techniques used in physics. It covers vectors and tensors, linear vector spaces, complex variables and contour integration, Sturm-Liouville problem of ordinary differential equations, partial differential equations of physics.

Text Book:

Mathematical Methods for Physicists, G.B. Arfken, H.J. Weber and F.E. Harris, 7th Ed.

Elsevier, 2013

Reference Books:

Mathematics for Physicists, Philippe Dennery and Andre Krzywicki, Dover Books, 1996

Course Plan

Lecture No.	Learning Objectives	Topics to be Covered	Learning Outcome	Reference to Text
				and Reference Book
1 - 4	Review of Vector	The Del operator, Gradient, Divergence	To give a quick	Ch 3 (3.1 – 3.6)
	Algebra and Vector	and Curl operations on scalars and	review of vector	
	Calculus	vectors, Use of Kronecker Delta, Levi-	algebra and calculus.	
		Civita symbol and Einstein summation		
		convention in proving vector identities.		
5 - 12		Scalar, vectors and tensors under	To learn	Ch. 4 (4.1 – 4.4)
		rotation of coordinate axes, Tensors in	transformation of	
	coordinates.	general curvilinear coordinates.	tensors and tensor	
			equations.	
13 - 17	Calculus of Variation.	Euler Equations, Constrained minima and	To learn	Ch. 22
		maxima, More general variations.	extremization of	
			function of	
			functions.	
18 - 21	-	Emear vector spaces, miner product and		Ch. 5
		Gram-Schmidt orthogonalization, Linear	concepts of vector	
		operators, Self adjoint and unitary	spaces and	
		operators, Matrix representation of	operators.	
		operators.		
22 - 25	Vector Spaces II	Eigenvalues and Eigenvectors of linear	To be able to find	Ch. 6
		operators, diagonalization of matrices.	eigenvalues and	
			eigenvectors of	
			matrices and	
			diagonalize	

			matrices.	
26 - 31	Complex variables	Singularities of a complex function,	To be able to	Ch. 11 (11.6 – 11.8)
	and contour	Calculus of residues, Evaluation of	calculate definite	
	integration	definite integrals, Branch points and	integrals by using	
		branch cuts.	contour integration	
			on complex plane.	
32 - 36	Partial differential	Separation of variables method of solving	To learn the	Ch. 9
	equations.	Laplace, Poisson, Wave and Heat	separation of	
		equation.	variable methods for	
			partial differential	
			equations.	
37 - 40	Green Functions	Green functions in one, two and three	To learn to solve	Ch. 10
		dimensions.	partial differential	
			equations by Green	
			function technique.	

Evaluation Scheme

Evaluation Component	Duration	Weightage	Date & Time	Nature of Test
Mid-Semester Test	90 Minutes	30%	To be announced	Closed Book
Comprehensive Examination	3 Hours	40%	To be announced	Partly closed and
				partly open
Tutorial Tests (3) and Home	Tutorial Tests 25	30% (15+15)	To be announced	Closed Book
Assignments (4)	minutes each			Tutorial Tests

Chamber Consultation Hour: To be announced in the class.

Notices: Notices and solutions will be displayed only on PHYSICS/FDIII notice board.

Make-up Policy [STRICT] No Make-ups for tutorial tests. Make up for regular tests will be given only to genuine cases, i.e.

(i) Sickness leading to hospitalization, (ii) out-of-station with prior intimation to / permission from the IC.

Instructor-in-Charge PHY F243