Rappels sur les suites - Récurrence

Rappels sur les suites

Exercice 1 Déterminer la nature (arithmétique, géométrique ou ni l'un ni l'autre) des suites suivantes :

a.
$$u_n = 0.3n + 5$$

b.
$$u_n = \frac{5n+1}{2}$$

c.
$$u_n = \frac{2n+1}{n+3}$$

d.
$$u_n = \frac{5^n}{4}$$

e.
$$\begin{cases} u_{n+1} = u_n + \frac{4}{3}u_n \\ u_1 = 2 \end{cases}$$
 f.
$$\begin{cases} u_{n+1} - u_n = 9 \\ u_0 = 5 \end{cases}$$
 g.
$$u_n = \frac{7^n}{3^{n+1}}$$
 h.
$$\begin{cases} u_{n+1} = \frac{5}{7}u_n \\ u_0 = 5 \end{cases}$$

$$\mathbf{f.} \begin{cases} u_{n+1} - u_n = 5 \\ u_0 = 5 \end{cases}$$

g.
$$u_n = \frac{7^n}{3^{n+1}}$$

$$\mathbf{h.} \begin{cases} u_{n+1} = \frac{5}{7} u_n \\ u_0 = 5 \end{cases}$$

Exercice 2

On considère la suite
$$(u_n)_{n\geq 0}$$
 définie par
$$\begin{cases} u_0 = 1 \\ u_{n+1} = \frac{u_n}{1+u_n} \end{cases}$$

- 1. Calculer les 4 premiers termes de cette suite et conjecturer une expression pour son terme général;
- 2. Pour tout $n \in \mathbb{N}$, on suppose que $u_n \neq 0$ et on pose $v_n = \frac{1}{u_n}$. Montrer que la suite (v_n) est arithmétique et préciser sa raison.
- 3. Pour $n \in \mathbb{N}$, donner l'expression de v_n et en déduire celle de u_n .

On considère la suite
$$(u_n)_{n\geq 0}$$
 définie par
$$\begin{cases} u_0=4\\ u_{n+1}=4u_n-6 \end{cases}$$

- 1. Calculer les 4 premiers termes de cette suite et conjecturer une expression pour son terme général;
- **2**. Pour tout $n \in \mathbb{N}$, on pose $v_n = u_n 2$. Montrer que la suite (v_n) est géométrique et préciser sa raison.
- 3. Pour $n \in \mathbb{N}$, donner l'expression de v_n et en déduire celle de u_n .

Démonstration par récurrence

Exercice 4 On considère la même suite (u_n) qu'à l'exercice précédent. Montrer par récurrence que pour tout $n \in \mathbb{N}$, on a :

$$u_n = 2 \times 4^n + 2$$

Exercice 5 Soit (v_n) la suite définie pour tout entier naturel n par : $u_0 = 1$ et $u_{n+1} = 2u_n - 3$. Montrer par récurrence que pour tout entier naturel $n: u_n = 3 - 2^{n+1}$.

Exercice 6

- 1. Démontrer par récurrence que, pour tout entier naturel $n \ge 1$, $\sum_{k=1}^{n} k = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$.
- 2. Démontrer par récurrence que, pour tout entier naturel $n \ge 1$, $\sum_{k=1}^{n} (2k-1) = 1 + 3 + 5 + \dots + 2n 1 = n^2$.
- Exercice 7 On considère la suite (u_n) définie par $u_0 = 0$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = \sqrt{4 + u_n^2}$.
 - 1. Calculer les premiers termes et conjecturer une expression pour u_n .
 - 2. Démontrer la conjecture par récurrence.

Exercice 8 On considère la suite (u_n) définie par $u_0 = 1$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = \sqrt{1 + u_n}$. Montrer par récurrence que la suite (u_n) est croissante.

Exercice 9 Démontrer par récurrence pour tout entier naturel $n \ge 1$,

$$1 + (2 \times 2!) + (3 \times 3!) + \dots + (n \times n!) = (n+1)! - 1$$

Exercice 10 Démontrer par récurrence que pour tout entier naturel $n \ge 1$, $n! \ge 2^{n-1}$

Sommes

- **Exercice 11** Soit (u_n) une suite arithmétique de raison 3 et de premier terme $u_0 = -2$.
 - 1. Pour tout $n \ge 0$, on définit $S_n = \sum_{k=0}^n u_k = u_0 + u_1 + \dots + u_n$. Donner une expression de S_n pour tout entier naturel n.
 - 2. Calculer la somme $S = \sum_{k=5}^{12} u_k = u_5 + u_6 + \dots + u_{12}$.
- Exercice 12 Soit (u_n) une suite géométrique de raison $\frac{1}{2}$ et de premier terme $u_0 = 3$.
 - 1. Pour tout $n \ge 0$, on définit $S_n = \sum_{k=0}^n u_k = u_0 + u_1 + \dots + u_n$. Donner une expression de S_n pour tout entier naturel n.
 - 2. Calculer la somme $S = \sum_{k=3}^{9} u_k = u_3 + u_4 + \dots + u_9$.