

Series temp[1:53]

Series temp[activ == 1]

$cbind(y, n - y) \sim P * A + V$

Calcium Chloride concentration (mM)

help("oats")

demand~SSasympOrig(Time, A, Irc)

$y\sim Const + A * exp(B * x)$

Sat~Infl + Type + Cont

SF~sex * Idose

