

Design Calculation Sheet for asae

Designer:
Location:
City:
Country:
Date: 2020-06-22 02:47:28

Table of Contents

1-Secondary Beams

- Design For Flexural and shear
- Design For serviceability
- Connections Design

2-Main Beams

- Design For Flexural and shear
- Design For serviceability
- Connections Design

3-Columns

Design For Normal Stress

Secondary Beams

Beam ID	Start Point	End Point	Span (m)	Mmax (t.m)	Vmax (ton)
14	(12,4,3)	(12,8,3)	4	1.08	1.08
13	(12,0,3)	(12,4,3)	4	1.08	1.08
2	(0,4,3)	(0,8,3)	4	1.08	1.08
1	(0,0,3)	(0,4,3)	4	1.08	1.08

Design Limit state:

Combo: 1.4*D + 1*L

Md: 1.08 t.m

Vd: 1.08 ton

Service Limit State

Combo: LIVE

Span: 4 m

Load: -0.2 t/m'

Design Checks

1-Check Local Buckling

dw/tw= 23.92 < 81.98 => Compact Web

c/tf= 3.95 < 10.91 => Compact Flange

2-Check Lateral Torsional Buckling

Luact= 0 m < Lumax= 94.24 m => Supported (No LTB)

3-Check Bending Stress

Section: IPE270

fact= 1.39 t/cm^2 < Fb= 1.54 t/cm^2

4-Check Shear Stress

qact= 0.16 t/cm^2 < qall= 0.84 t/cm^2

5-Check Deflection

dact= 0.59 cm < dall= 1.33 cm

Group Connection Design (Simple Shear Plate Connection)

1-Bolts Design

Bolts: M20 of Grade 8.8

Vd= 1.08 ton

Rleast= 2.85 ton

N= 3 with Pitch= 63 mm & Full Layout: (31;63 63 31.5)

2-Stresses Induced in Fillet Weld Lines at Plane(1-1)

 $f = 0.08 \text{ t/cm}^2 \text{ eq} = 0.05 \text{ t/cm}^2 => feq = (f^2 + 3q^2)^0.5 = 0.11 \text{ t/cm}^2 < 1.1 * 0.2Fu = 0.79 \text{ t/cm}^2 => OK$

3-Stresses Induced in Fillet Weld Lines at Plane(2-2)

 $q = 0.05 \text{ t/cm}^2 \text{ a qmt} = 0.08 \text{ t/cm}^2 => qres = (q^2 + qmt^2)^0.5 = 0.09 \text{ t/cm}^2 < 0.2Fu = 0.72 \text{ t/cm}^2 => OK$

4-Check Thickness of Plate

 $f = (6*Vd*e)/(tp*L^2) = 0.09 t/cm^2 < 0.72*Fy = 1.73 t/cm^2 => OK$

Plate Layout \Rightarrow L = 189 mm & tp = 10 mm & Sw = 6 mm

Beam ID	Start Point	End Point	Span (m)	Mmax (t.m)	Vmax (ton)
12	(10,4,3)	(10,8,3)	4	2.14	2.14
11	(10,0,3)	(10,4,3)	4	2.14	2.14
10	(8,4,3)	(8,8,3)	4	2.14	2.14
9	(8,0,3)	(8,4,3)	4	2.14	2.14
8	(6,4,3)	(6,8,3)	4	2.14	2.14
7	(6,0,3)	(6,4,3)	4	2.14	2.14
6	(4,4,3)	(4,8,3)	4	2.14	2.14
5	(4,0,3)	(4,4,3)	4	2.14	2.14
4	(2,4,3)	(2,8,3)	4	2.14	2.14

3 (2,0,3) (2,4,3)	4	2.14	2.14
-------------------	---	------	------

Design Limit state:

Combo: 1.4*D + 1*L

Md: 2.14 t.m

Vd: 2.14 ton

Service Limit State

Combo: LIVE

Span: 4 m

Load: -0.4 t/m'

Design Checks

1-Check Local Buckling

dw/tw= 27.93 < 81.98 => Compact Web

c/tf= 4.36 < 10.91 => Compact Flange

2-Check Lateral Torsional Buckling

Luact= 0 m < Lumax= 117.48 m => Supported (No LTB)

3-Check Bending Stress

Section: IPE270

fact= 1.46 t/cm^2 < Fb= 1.54 t/cm^2

4-Check Shear Stress

qact= 0.22 t/cm^2 < qall= 0.84 t/cm^2

5-Check Deflection

dact= 0.48 cm < dall= 1.33 cm

Group Connection Design (Simple Shear Plate Connection)

1-Bolts Design

Bolts: M20 of Grade 8.8

Vd= 2.14 ton

Rleast= 2.85 ton

N= 3 with Pitch= 63 mm & Full Layout: (31;63 63 31.5)

2-Stresses Induced in Fillet Weld Lines at Plane(1-1)

 $f = 0.15 \text{ t/cm}^2 \text{ a} = 0.1 \text{ t/cm}^2 => feq = (f^2 + 3q^2)^0.5 = 0.23 \text{ t/cm}^2 < 1.1 * 0.2Fu = 0.79 \text{ t/cm}^2 => OK$

3-Stresses Induced in Fillet Weld Lines at Plane(2-2)

 $q = 0.1 \text{ t/cm}^2 \text{ a qmt} = 0.15 \text{ t/cm}^2 => qres = (q^2 + qmt^2)^0.5 = 0.18 \text{ t/cm}^2 < 0.2Fu = 0.72 \text{ t/cm}^2 => OK$

4-Check Thickness of Plate

 $f = (6*Vd*e)/(tp*L^2) = 0.18 t/cm^2 < 0.72*Fy = 1.73 t/cm^2 => OK$

Plate Layout \Rightarrow L = 189 mm & tp = 10 mm & Sw = 6 mm

Main Beams

Beam ID	Start Point	End Point	Span (m)	Mmax (t.m)	Vmax (ton)
6	(6,8,3)	(12,8,3)	6	4.31	2.16
5	(0,8,3)	(6,8,3)	6	4.31	2.16
2	(6,0,3)	(12,0,3)	6	4.31	2.16
1	(0,0,3)	(6,0,3)	6	4.31	2.16

Design Limit state:

Combo: 1.4*D + 1*L

Md: 4.31 t.m

Vd: 2.16 ton

Service Limit State

Combo: LIVE

Span: 6 m

Load: -0.27 t/m'

Design Checks

1-Check Local Buckling

dw/tw= 32.39 < 81.98 => Compact Web

c/tf= 4.81 < 10.91 => Compact Flange

2-Check Lateral Torsional Buckling

Luact= 0 m < Lumax= 154.92 m => Supported (No LTB)

3-Check Bending Stress

Section: IPE270

fact= 1.33 t/cm^2 < Fb= 1.54 t/cm^2

4-Check Shear Stress

qact= 0.15 t/cm^2 < qall= 0.84 t/cm^2

5-Check Deflection

dact= 0.55 cm < dall= 2 cm

Group Connection Design (Simple Shear Plate Connection)

1-Bolts Design

Bolts: M20 of Grade 8.8

Vd= 2.16 ton

Rleast= 2.85 ton

N= 3 with Pitch= 63 mm & Full Layout: (31;63 63 31.5)

2-Stresses Induced in Fillet Weld Lines at Plane(1-1)

 $f = 0.15 \text{ t/cm}^2 \text{ a} = 0.1 \text{ t/cm}^2 => feq = (f^2 + 3q^2)^0.5 = 0.23 \text{ t/cm}^2 < 1.1 * 0.2Fu = 0.79 \text{ t/cm}^2 => OK$

3-Stresses Induced in Fillet Weld Lines at Plane(2-2)

 $q = 0.1 \text{ t/cm}^2 \text{ a qmt} = 0.15 \text{ t/cm}^2 => qres = (q^2 + qmt^2)^0.5 = 0.18 \text{ t/cm}^2 < 0.2Fu = 0.72 \text{ t/cm}^2 => OK$

4-Check Thickness of Plate

 $f = (6*Vd*e)/(tp*L^2) = 0.18 t/cm^2 < 0.72*Fy = 1.73 t/cm^2 => OK$

Plate Layout \Rightarrow L = 189 mm & tp = 10 mm & Sw = 6 mm

Beam ID	Start Point	End Point	Span (m)	Mmax (t.m)	Vmax (ton)
4	(6,4,3)	(12,4,3)	6	8.59	4.3
3	(0,4,3)	(6,4,3)	6	8.59	4.3

Design Limit state:

Combo: 1.4*D + 1*L

Md: 8.59 t.m

Vd: 4.3 ton

Service Limit State

Combo: LIVE

Span: 6 m

Load: -0.53 t/m'

Design Checks

1-Check Local Buckling

dw/tw= 37.87 < 81.98 => Compact Web

c/tf= 5.64 < 10.91 => Compact Flange

2-Check Lateral Torsional Buckling

Luact= 0 m < Lumax= 206.56 m => Supported (No LTB)

3-Check Bending Stress

Section: IPE330

fact= 1.2 t/cm^2 < Fb= 1.54 t/cm^2

4-Check Shear Stress

qact= 0.17 t/cm^2 < qall= 0.84 t/cm^2

5-Check Deflection

dact= 0.36 cm < dall= 2 cm

Group Connection Design (Simple Shear Plate Connection)

1-Bolts Design

Bolts: M20 of Grade 8.8

Vd=4.3 ton

Rleast= 3.24 ton

N= 3 with Pitch= 77 mm & Full Layout: (38;77 77 38.5)

2-Stresses Induced in Fillet Weld Lines at Plane(1-1)

 $f = 0.2 \text{ t/cm}^2 \text{ a} = 0.16 \text{ t/cm}^2 => feq = (f^2 + 3q^2)^0.5 = 0.34 \text{ t/cm}^2 < 1.1 * 0.2Fu = 0.79 \text{ t/cm}^2 => OK$

3-Stresses Induced in Fillet Weld Lines at Plane(2-2)

 $q = 0.16 \text{ t/cm}^2 \text{ a} \text{ qmt} = 0.2 \text{ t/cm}^2 => \text{qres} = (q^2 + \text{qmt}^2)^0.5 = 0.26 \text{ t/cm}^2 < 0.2\text{Fu} = 0.72 \text{ t/cm}^2 => \text{OK}$

4-Check Thickness of Plate

 $f = (6*Vd*e)/(tp*L^2) = 0.24 t/cm^2 < 0.72*Fy = 1.73 t/cm^2 => OK$

Plate Layout \Rightarrow L = 231 mm & tp = 10 mm & Sw = 6 mm

Columns

Column ID	Start Point	End Point	Height (m)	Nmax (ton)
5	(6,4,0)	(6,4,3)	3	-12.9
2	(6,0,0)	(6,0,3)	3	-6.49
8	(6,8,0)	(6,8,3)	3	-6.49
6	(12,4,0)	(12,4,3)	3	-6.48

4	(0,4,0)	(0,4,3)	3	-6.48
3	(12,0,0)	(12,0,3)	3	-3.26
9	(12,8,0)	(12,8,3)	3	-3.26
1	(0,0,0)	(0,0,3)	3	-3.26
7	(0,8,0)	(0,8,3)	3	-3.26

Design Limit state:

Combo: 1.4*D + 1*L

Nd: -12.9 ton

1-Check Local Buckling

dw/tw= 15.58 < 37.44 => Compact Web

c/tf= 3.06 < 10.91 => Compact Flange

2-Check Normal Stress

Section: IPE80

lambda = 285.71 > 100

fc= 1.69 t/cm^2 < Fc= 0.09 t/cm^2