Generative modeling in one dimension

Topics we'll cover

- Generative modeling at work
- 2 The Gaussian in one dimension

A classification problem

You have a bottle of wine whose label is missing.

Which winery is it from, 1, 2, or 3?

Solve this problem using visual and chemical features of the wine.

The data set

Training set obtained from 130 bottles

Winery 1: 43 bottles

Winery 2: 51 bottles

Winery 3: 36 bottles

For each bottle, 13 features:
 'Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Magnesium',
 'Total phenols', 'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyanins',
 'Color intensity', 'Hue', 'OD280/OD315 of diluted wines', 'Proline'

Also, a separate test set of 48 labeled points.

Recall: the generative approach

For any data point $x \in \mathcal{X}$ and any candidate label j, $\Pr(y = j | x) \Rightarrow \frac{\Pr(y = j) \Pr(x | y = j)}{\Pr(x)} = \frac{\pi_j P_j(x)}{\Pr(x)}$ Optimal prediction: the class j with largest $\pi_j P_j(x)$.

Probably that the label is j or j = j given feature x.

Fitting a generative model

Training set of 130 bottles:

- Winery 1: 43 bottles, winery 2: 51 bottles, winery 3: 36 bottles
- For each bottle, 13 features: 'Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Magnesium', 'Total phenols', 'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyanins', 'Color intensity', 'Hue', 'OD280/OD315 of diluted wines', 'Proline'

Class weights:
$$\pi_1 = 43/130 = 0.33, \quad \pi_2 = 51/130 = 0.39, \quad \pi_3 = 36/130 = 0.28$$
Need distributions P_1, P_2, P_3 , one per class. Base these on a single feature: 'Alcohol'.
$$43$$
To simply fixed of 13 factor, let's just
$$43$$
We 1 > add y N 1.00

The univariate Gaussian

centered at mean u Synnatri abet the new

The Gaussian $N(\mu, \sigma^2)$ has mean μ , variance σ^2 , and density function

$$p(x)=rac{1}{(2\pi\sigma^2)^{1/2}}\exp\left(-rac{(x-\mu)^2}{2\sigma^2}
ight).$$

The distribution for winery 1

Mean $\mu = 13.72$, Standard deviation $\sigma = 0.44$ (variance 0.20)

All three wineries distribts are overlyng so clamp; might at be accurate one not neighbor produce error

- $\pi_1 = 0.33, P_1 = N(13.7, 0.20)$
- $\pi_2 = 0.39$, $P_2 = N(12.3, 0.28)$
- $\pi_3 = 0.28$, $P_3 = N(13.2, 0.27)$

To classify x: Pick the j with highest $\pi_i P_i(x)$

14

1 2.7 13 Alcohol

Test error: 14/48 = 29%

12

Im 12-7, we will pile

Peiks black or gen