

Changes in caecal microbiota and mucosal morphology of weaned pigs

Marisol Castillo, Susana M. Martín-Orúe, Miquel Nofrarías, Edgar G. Manzanilla, Josep Gasa

▶ To cite this version:

Marisol Castillo, Susana M. Martín-Orúe, Miquel Nofrarías, Edgar G. Manzanilla, Josep Gasa. Changes in caecal microbiota and mucosal morphology of weaned pigs. Veterinary Microbiology, Elsevier, 2007, 124 (3-4), pp.239. <10.1016/j.vetmic.2007.04.026>. <hal-00532251>

HAL Id: hal-00532251 https://hal.archives-ouvertes.fr/hal-00532251

Submitted on 4 Nov 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Accepted Manuscript

Title: Changes in caecal microbiota and mucosal morphology of weaned pigs

Authors: Marisol Castillo, Susana M. Martín-Orúe, Miquel Nofrarías, Edgar G. Manzanilla, Josep Gasa

PII: \$0378-1135(07)00208-8

DOI: doi:10.1016/j.vetmic.2007.04.026

Reference: VETMIC 3668

To appear in: *VETMIC*

Received date: 15-12-2006 Revised date: 4-4-2007 Accepted date: 17-4-2007

Please cite this article as: Castillo, M., Martín-Orúe, S.M., Nofrarías, M., Manzanilla, E.G., Gasa, J., Changes in caecal microbiota and mucosal morphology of weaned pigs, *Veterinary Microbiology* (2007), doi:10.1016/j.vetmic.2007.04.026

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Changes in caecal microbiota and mucosal morphology of weaned pigs
2	
3	Marisol Castillo ^a , Susana M. Martín-Orúe ^{a*} , Miquel Nofrarías ^b , Edgar G. Manzanilla ^a
4	and Josep Gasa ^a
5	
6	^a Animal Nutrition, Management and Welfare Research Group, Departament de Ciència
7	Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193 Bellaterra,
8	Barcelona, Spain
9	^b Centre de Recerca en Sanitat Animal (CReSA)-Departament de Sanitat i Anatomia
10	Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.

^{*} Corresponding author. Present address: Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain. Tel.: +34 93 5811504; fax: +34 93 5811494. E-mail address: susana.martin@uab.es (S.M. Matín-Orúe).

Abstract

11

12	An experiment was designed to monitor the changes in caecal microbiota associated
13	with early-weaning. Twelve piglets (20 ± 2 days) from six different litters were selected
14	from a commercial source. For the two experimental groups, one animal from each litter
15	was weaned onto a post-weaning diet (W) and the other remained with the sow (S).
16	After 1 week, animals were sacrificed and caecal samples taken. Microbial counts for
17	total bacteria, enterobacteria and lactobacilli populations were determined by
18	quantitative PCR using SYBR Green® dye. Microbial profiles were assessed by
19	terminal restriction fragment length polymorphism (t-RFLP). Weaning promoted an
20	increase in the enterobacteria:lactobacilli ratio (0.27 vs. 1.67 log/log 16S rRNA gene
21	copy number, $P = 0.05$). Total bacteria and richness of the caecal microbial ecosystem
22	(number of peaks) were similar in both experimental groups (49.3 for S and 53.4 for W,
23	respectively, $P = 0.22$), although the band patterns were clearly grouped in two different
24	clusters by dendogram analysis. Weaning was also associated with a decrease in crypt
25	density, an increase in mytotic index and a decrease in the number of goblet cells. A
26	reduced immunological response was also observed and was manifested by an increase
27	in intraepithelial lymphocytes and lymphocyte density in the lamina propria. Weaning
28	appears to be critical in the establishment of the caecal microbiota in pigs with
29	important changes, particularly in microbial groups and in caecal mucosal architecture.

30

31 **Keywords:** caecal histology, microbiota, pig, real-time PCR, t-RFLP, weaning.

32

33

1. Introduction

34	At early-weaning, the pig is affected by a high number of stressors that increase its
35	susceptibility to disease. As a result, lower growth rates and post-weaning diarrhoea are
36	significant problems in pig production after early-weaning.
37	During natural weaning, the piglet is progressively introduced to several external feed
38	sources and its fermentative capacity is progressively developed for approximately 10
39	weeks, at which time the animal is completely weaned. In commercial weaning, this
40	process happens in a couple of days and post-weaning diarrhoea is mainly related to
41	intestinal disbiosis during this rapid adaptation to the new diet. It is generally
42	recognised that the establishment of a diverse bacterial microbiota, characteristic and
43	dynamic for each individual (Simpson et al., 2000), plays a key role in the maintenance
44	of the gastrointestinal health by preventing colonization by pathogens (Van Kessel et
45	al., 2004). This beneficial microbiota is especially important at periods such as weaning,
46	when the animal still has an immature immune system and depends on certain
47	compounds in the sow's milk to prevent the growth of opportunistic bacteria (Edwards
48	and Parret, 2002). There are several studies suggesting that early weaning causes
49	substantial changes in the intestinal bacterial community (Franklin et al., 2002,
50	Konstantinov et al., 2006), but more research is needed regarding the specific changes
51	of the microbial ecosystem during this critical phase.
52	The gastrointestinal tract also needs to adapt to this new situation along with the
53	microbial population. It is known that adaptation of the small intestine epithelium at
54	weaning is greatly conditioned by bacterial colonization (Pluske, 1997). However,
55	information on changes in caecal epithelium at weaning is scarce.

56	The objective of this study was to assess microbial shifts in the caecum of
57	commercially weaned pigs using t-RFLP and real-time PCR, and to monitor changes in
58	caecal mucosa after weaning.
59	
60	2. Material and methods
61	2.1. Animals and housing
62	The experiment was performed at the Experimental Unit of the Universitat Autònoma
63	de Barcelona and received prior approval from the Animal Protocol Review Committee
64	of the institution. Management, housing and slaughtering conditions conformed to the
65	European Union Guidelines. A total of 12 piglets $(4.4 \pm 0.36 \text{ kg}; 20 \pm 2 \text{ days}, \text{mixed})$
66	males and females) were selected from six commercial litters, taking initial body weight
67	into account. One piglet from each litter was weaned and fed a commercial post-
68	weaning diet (weaned group, W) for 1 week (Table 1); the other piglet remained on the
69	original commercial farm with the sow and littermates (control group, S).
70	2.2. Sacrifice and sampling
71	On day 28, the animals were weighed and sacrificed with an intravenous injection of
72	sodium pentobarbitone (Dolethal, Vetoquinol, S.A., Madrid, Spain; 200 mg/kg BW).
73	Animals were bled and the abdomen immediately opened from sternum to pubis. The
74	whole gastrointestinal tract was removed, weighed and sampled. pH in four segments of
75	the gastrointestinal tract was measured by insertion of a unipolar electrode through a
76	small incision made in the wall (penetration pH meter CRISON 507, electrode Crison
77	52-32, Net Interlab S.A.L., Madrid, Spain). The pH measurements were performed in
78	the middle of the caudal portion of the stomach, 15 cm proximal to the ileocecal valve,
79	in the lowest part of the caecum and in the colon, 20 cm distal to the caecum. Samples

80 (1 g) of the caecal contents were taken and kept in tubes with 3 ml of ethanol (96%) as a 81 preservative. Stomach, small intestine and large intestine were emptied and weighted. 82 For histological study, samples from the middle caecum were opened longitudinally and 83 fixed by immersion in 10% (v/v) buffered formalin immediately after slaughter. 84 2.3. DNA extraction 85 Samples of equivalent volume to 400 mg of digesta were preserved in ethanol and 86 precipitated by centrifugation (13 000 g for 5 min). DNA in the precipitate was 87 extracted and purified using the commercial QIAamp DNA Stool Mini Kit (Qiagen, 88 West Sussex, UK). The recommended lysis temperature was increased to 90 °C and an 89 incubation step with lysozyme was added afterwards (10 mg/ml, 37 °C, 30 min) to 90 improve bacterial cell rupture. The DNA was stored at -80 °C until analysis. 91 2.4. Real-time PCR (qPCR) 92 Total bacteria, lactobacilli and enterobacteria were quantified using real-time PCR 93 following procedures and using primers described by Castillo et al. (2006). The 94 oligonucleotides used were based on regions of identity within the 16S rRNA gene and 95 were adapted from published specific primers or probes using the Primer Express Software (Applied Biosystems, CA, USA). Primers used for total bacteria were: F-tot 96 97 5'GCAGGCCTAACACATGCAAGTC3' (forward) and R-tot (reverse) 98 5'CTGCTGCCTCCCGTAGGAGT3'. For lactobacilli: F-lac 99 5'GCAGCAGTAGGGAATCTTCCA3' and R-lac 100 5'GCATTYCACCGCTACACATG3', enterobacteria and for F-ent 101 5'ATGGCTGTCGTCAGCTCGT3' R-ent and 5'CCTACTTCTTTTGCAACCCACTC3'. Amplification and detection of DNA by 102 103 quantitative real-time PCR was performed with the ABI 7900 HT Sequence Detection

104	System using optical-grade 96-well plates and SYBR Green dye (PE Biosystems,
105	Warrington, UK). For absolute quantification, PCR products obtained from the
106	amplification of the whole 16S rRNA gene of Escherichia coli (CECT 515NT) and
107	Lactobacillus acidophilus (CECT 903NT) were used to construct the standard curves.
108	The PCR conditions corresponded to those published by Leser et al. (2002). The
109	amplified gene from E. coli was used for absolute quantification of the total bacteria and
110	enterobacteria and the amplified gene from L. acidophilus for quantification of the
111	lactobacilli. Quantitative values were expressed as log of 16S rRNA gene copies/g fresh
112	matter (FM). Enterobacteria:lactobacilli ratio were expressed as the difference of
113	logarithms.
114	2.5. Terminal-Restriction Fragment Length Polymorphism (t-RFLP)
115	t-RFLP analysis of bacterial community was performed following the procedure
116	described by Höjberg et al. (2005). Briefly, a 1497-bp fragment of the 16S rRNA gene
117	was amplified using a 6-carboxy-fluorescein-labeled forward primer: S-D-Bact-0008-a-
118	S-20 (5'-6-FAM-AGAGTTTGATCMTGGCTCAG-3') and reverse primer PH1552 (5'-
119	AAGGAGGTGATCCAGCCGCA-3'). Duplicate PCR analyses were perform for each
120	sample. Fluorescent-labeled PCR products were purified on QIAquick PCR purification
121	kit columns (Qiagen, West Sussex, UK,) and eluted in a final volume of 30 μ l of Milli-
122	Q water. Then, the resultant PCR product was subjected to a restriction with HhaI (20
123	000 U/μl) (Biolabs Inc. New England, USA). Fluorescent-labeled terminal restriction
124	fragments (TRF) were analyzed by capillary electrophoresis on an automatic sequence
125	analyzer (ABI 3100 Genetic Analyzer, PE Biosystems, Warrington, UK) in Gene-Scan
126	mode with a 25-U detection threshold. Determination of the TRFs sizes in the range 50-

127	700 base pairs (bp) were performed with the size standard GS-1000-ROX (PE
128	Biosystems).
129	2.5.1. Analysis of t-RFLP data
130	Sample data consisted of size (base pairs) and peak area for each TRF. To standardize
131	the DNA loaded on the capillary, the sum of all TRF peak areas in the pattern was used
132	to normalize the peak detection threshold in each sample. Following the method of Kitts
133	(2001), a new threshold value was obtained by multiplying a pattern's relative DNA
134	ratio (the ratio of total peak area in the pattern to the total area in the sample with the
135	smallest total peak area) by 323 area units (the area of the smallest peak at the 25
136	detection threshold in the sample with the smallest total peak area). For each sample,
137	peaks with a lower area were deleted from the data set. New total area was obtained by
138	the sum of all the remaining peak areas in each pattern.
139	Richness was considered as the number of peaks in each sample after standardization.
140	For pair-wise comparisons of the profiles, a Dice coefficient was calculated and
141	dendograms were constructed using Fingerprinting II (Informatix, Bio-Rad, CA, USA)
142	software and an unweighted pair-group method with averaging algorithm (UPGMA).
143	To deduce the potential bacterial composition of the samples, in silico restrictions for
144	the major pig gut bacteria with the primers and the enzyme used were obtained using
145	the analysis function TAP-tRFLP from the Ribosomal Database Project II software
146	(Table 2).
147	2.6. Morphometric analysis
148	Tissue samples for histological study were dehydrated and embedded in paraffin wax,
149	sectioned at 4 μm and stained with haematoxylin and eosin. Morphometric
150	measurements were performed with a light microscope (BHS, Olympus, Spain). Crypt

depth (CD), intraepithelial lymphocytes (IEL), the index of mitosis, lamina propria cell
density and goblet cell numbers in crypts were measured (Nofrarías et al., 2006).
Measurements were performed in 10 well-oriented crypts from each animal. CD was
measured using a linear ocular micrometer (Olympus, REF.209-35040, Microplanet,
Barcelona, Spain). The same crypt columns were used to determine the number of IEL,
goblet cells and index of mitosis (meta- and anaphases); these variables were expressed
per 100 enterocytes. On the basis of the cellular morphology, differences between the
nuclei of enterocytes, mitotic figures, goblet cells and lymphocytes were clearly
distinguishable at 400× magnification. Lamina propria cell density was determined by
counting total visibly stained nuclei and total lymphocytes in 10 fields (total area of
$4000~\mu\text{m}^2)$ from each section using an ocular grid (Olympus, REF. 209-35046,
Microplanet, Barcelona, Spain). Cell density was expressed as the number of total
stained cells and the number of lymphocyte-like cells per $1000 \ \mu m^2$ area. The number of
lymphocytes in relation to the number of total cells was also calculated. Crypt density
was also determined (Brunsgaard, 1997). All morphometric analyses were done by the
same person, who was blind to treatment modality.
2.7. Statistical Analysis
The effect of weaning on body weights, pH, total bacteria, lactobacilli, enterobacteria,
richness and histological measurements was tested with ANOVA using the GLM

3. Results and discussion

procedure of SAS statistic package (SAS Inst., Inc. 8.1, Cary, NC, USA). The pig was

used as the experimental unit. Statistical significance was accepted at $P \le 0.05$.

174 Diarrhoea was not detected in the pigs and there was only one case of liquid faeces 175 (W group). Initial body weight (BW) was similar for both groups, at 4.4 ± 0.16 kg for S 176 and 4.4 ± 0.15 kg for W. As expected, at the end of the experimental period, BW was 177 higher for piglets that remained with the sow than for weaned pigs $(6.1 \pm 0.25 \text{ versus})$ 178 5.05 ± 0.27 kg for S and W, respectively, P < 0.001). Growth rate, expressed as average 179 daily gain (ADG), was higher for S than for W pigs $(0.25 \pm 0.02 \text{ versus } 0.10 \pm 0.02 \text{ kg})$ 180 for S and W, respectively, P < 0.001). 181 3.1. Bacterial quantitative change measured by real-time PCR 182 The total microbial population, lactobacilli and enterobacteria were quantified in 183 caecum digesta using qPCR (Figure 1). 184 The total bacteria counts, expressed as log 16S rRNA gene copies/g fresh matter 185 (FM), did not differ between groups (12.84 and 12.81 log gene copy number/g FM for S 186 and W, respectively, P > 0.05). Similar total faecal anaerobic counts after weaning were 187 found by Franklin et al. (2002) in piglets weaned at 24 days. 188 Lactobacilli and enterobacteria have been traditionally selected as microbial groups 189 with a particular significance for gut health. The ratio between these two bacterial 190 groups has been routinely used as a gut-health indicator and it is desirable that 191 lactobacilli outnumber enterobacteria to improve robustness against opportunistic 192 pathogens. In our case, this ratio was higher in W than in S pigs, reflecting the negative 193 effect of weaning on lactobacilli and enterobacteria populations (0.27 versus 1.76 for S 194 and W group, respectively, P = 0.05). An inverse correlation between lactobacilli and 195 enterobacteria during the first week post-weaning has been reported previously (Risley 196 et al., 1992; Jensen, 1998; Franklin et al., 2002).

3.2. Ecological bacterial changes, t-RFLP results.

198	To evaluate global changes in the microbial ecosystem, the t-RFLP method was
199	employed; a technique recently used to characterize the effect of different dietary
200	treatments on pig gut microbiota (Höjberg et al. 2005).
201	The similarity indexes of the t-RFLP profiles illustrated in the form of a dendogram
202	are shown in Figure 2. It only shows the microbial profiles of 11 pigs due to the fact that
203	one pig had no digesta present in the caecum at the time of sacrifice. The effect of
204	weaning on the ecological composition of microbiota is clear, compared to other
205	possible factors, such as litter or individual effects. This was reflected in two clearly
206	separate clusters, one for each experimental group. There was one exception: a weaned
207	piglet was grouped in the suckling branch of the dendogram and, interestingly, was the
208	animal that showed liquid faeces. Separation of this piglet in the dendogram might
209	reflect the beginning of some kind of enteric disbiosis in this animal and the failure of
210	its microbial ecosystem to adapt to solid, dry food.
211	Microbial profiles of S pigs showed a higher similarity to one another (54–78%) than
212	those of W pigs, which showed more heterogeneous microbial profiles (25-76%). The
213	higher variability in microbial profiles in the W group suggests that the pigs suffered
214	stress at weaning and that each individual responded differently to that stress.
215	Microbiota richness was measured as the number of similar bands between both
216	experimental groups (49.34 for S and 53.40 for W, $P = 0.22$). Various studies have
217	described a marked decrease in biodiversity just after piglet weaning (Katouli et al.,
218	1997; Jensen-Waern et al., 1998), showing that early weaning involves a obvious
219	disruption in normal pig microbiota evolution. Thereafter, there is a re-establishment
220	process which can vary with time depending on a number of factors. In this study, the

221	weaned pigs were probably in the process of re-establishing a new microbial
222	equilibrium.
223	In silico restriction, using Ribosomal Database Project II, was used to deduce
224	potential ecological changes in the samples. However, it should be noted that dispersed
225	phylogenetic groups of bacteria may produce terminal restriction fragments (TRFs) of
226	identical size and that a single TRF in a profile may represent more than one organism
227	in the sample. Results are, therefore, presented as potential compatible bacterial species.
228	Note also that direct attribution of species to individual peaks is not unequivocally
229	possible unless fingerprinting is complemented with sequence analysis of clone
230	libraries.
231	In this study, compatible bacteria species were assigned to recently described, major
232	pig-gut bacterial groups (Leser et al., 2002). Table 2 shows the frequency of detection
233	of compatible bacteria that were represented in at least three animals.
234	Analysis of electropherograms revealed compatible TRFs with different lactic acid
235	bacteria including L. acidophilus, L. bifermentum, L. brevis, L. casei, L. rhamnosum, L.
236	vaginalis, Lactococcus lactis, L. delbruekii sp. lactis, L. delbruekii sp. delbruekii, and
237	L. fructivorans. Interestingly, the fragment of 62 base pairs, compatible with both $L.$
238	lactis and L. vaginalis, was present in all the animals, with a mean contribution of 15-
239	20% of total area. Although mean area for total lactobacilli was similar in both groups
240	(23.1 and 21.5 % for S and W pigs, respectively), S pigs showed higher diversity in
241	compatible TRFs with different lactobacilli species than W pigs. In particular, L .
242	delbruekii sp. lactis was present in five animals from this group, representing nearly 5%
243	of total area, whereas no animal of the W group showed any fragment with compatible

245	pig. The presence of a higher diversity of lactobacilli in S pigs has been reported
246	previously (Krause et al., 1995; Konstantinov et al., 2006).
247	In the case of <i>Enterococcus</i> sp., five of six pigs in the S group showed a peak
248	compatible with this group (2.18%), but only appeared in two pigs from the W group
249	(1.35%). This is in agreement with Jensen (1998), who found a decrease in enterococci
250	in weaned piglets.
251	Different species from the Bacteroidetes phylum can be compatible with a series of
252	TRFs of similar size, ranging 89-104 bp (Table 2). Summed areas of these peaks
253	represent 4.0 and 5.2% of total peak area for suckling and weaned pigs, respectively,
254	and are, therefore, the second most importance group after lactobacilli. Adami and
255	Cavazzoni (1999) have also described the importance of this group of bacteria in young
256	piglets.
257	In our study, a peak compatible with Clostridium coccoides only appeared in three
258	suckling pigs, representing 1.67% of total peak area. Similarly, a peak compatible with
259	C. butyricum (0.86 %) was only found in the S group. Other studies have described
260	Clostridium as one of the main anaerobic bacteria during the suckling period, declining
261	progressively in abundance with the age (Swords et al., 1993). The presence of C .
262	coccoides may be considered beneficial for the piglets due to its production of short-
263	chain fatty acids. In fact, it has been used as a probiotic both in animals and humans
264	(Han et al., 1984: Seki et al., 2003). Other peaks, compatible with different species from
265	the Clostridium clusters I, IV and XIVa and XVIII, were found in both groups of
266	animals, representing a mean of 2.49 and 1.99% of total area for S and W pigs,
267	respectively.

268	Peaks compatible with Fibrobacter succinogenes and Fibrobacter intestinalis were
269	found in both groups (5.3% of total peak area for suckling and 3.4% for weaned pigs).
270	Bacteria belonging to this genus, which show high cellulolytic and hemicellulolytic
271	enzyme activities, have been reported previously from the porcine gastrointestinal tract
272	(Varel and Yen, 1997). Although fibre was absent in the milk diet and at a very low
273	level in the dry feed, the presence this genus could indicate the ability of the pigs to
274	select a particular indigenous microbiota, allowing effective digestion of fibre with
275	growth and change in diet.
276	Potential compatible peaks with species from the Enterobacteriaceae family, such as
277	E. coli, were found in only four pigs, even though enterobacteria counts were
278	determined by qPCR in all animals. A bias in the amplification of particular sequences
279	caused by preferential annealing of particular primer pairs to certain templates and the
280	difficulty of amplifying bacteria in lower proportions in complex samples, such as
281	digesta, might explain the absence of compatible TRFs.
282	3.3. Intestinal morphology
283	Results of empty weight, pH in different gastrointestinal compartments and
284	histological measurements in caecal samples are shown in Table 3.
285	Weight of stomach and small intestine did not differ between groups; however, the
286	empty weight of the large intestine was significantly higher in the W than in the S
287	group. This increase in large intestine weight could correspond to the beginning of
288	fermentative activity in this compartment due to an increase in the amount of dietary
289	fermentable material arriving in the caecum. Moreover, pH values confirm this increase
290	in fermentation, with significant decreases in caecum and colon pH. The relationship
291	between the beginning of fermentative activity and the development of the large

292	intestine has been described previously and could be mediated by a trophic effect of an
293	increasing amount of fermentation products, such as SCFA (Frankel et al., 1994).
294	Regarding caecal histology, differences in crypt depth were not detected, but the
295	crypts were further apart and showed a significant increase in mitotic index in W
296	animals. Brunsgaard (1997) also found increases in the proliferative activity of crypts
297	in the hindgut of pigs at weaning, with a corresponding increase in crypt size. In the
298	current study, increased mitotic activity was observed without crypt depth variation,
299	suggesting both increased renewal and apical epithelial loss in the crypt.
300	Concerning the intestinal barrier, both cells producing the mucous layer and immune
301	cells were studied. A decrease in the number of goblet cells was found in the W group
302	compared to the S group. Mucus production and breakdown, as well as the number of
303	goblet cells, are regulated by both microbial and host-related factors (Deplancke and
304	Gaskins, 2001). However, little information is available on the effect of weaning and
305	diet on mucin secretion. Pestova et al. (2000) found increased concentrations of
306	intestinal mucins in ileal digesta after weaning, but no measurements were taken in the
307	hind gut.
308	Immune cells, another important component of the intestinal barrier, also showed
309	differences between groups. Both intraepithelial and lamina propria lymphocytes were
310	higher in weaned pigs, suggesting an increase in activity of the immune system.
311	An increase in intraepithelial lymphocytes, the first cell line of immune defence,
312	(Cheroutre 2004) is related to changes in intestinal microbiota rather than changes in
313	nutrition (Rothkötter et al., 1999). The changes in intestinal microbiota could also be
314	responsible for the variations observed in the caecum, but the effect of fresh nutrients
315	coming from the solid feed cannot be ruled out.

weaning to develop fermentative activity. Commercial weaning prod changes in pig caecum microbiota, with an increase in the enterobacter ratio. t-RFLP showed differences in bacterial profiles between groups. assumptions can be made, suckling pigs showed a higher diversity in lactic species than the weaned group and showed peaks, compatible with <i>C. coc</i> butyricum species, that were absent in weaned pigs. These changes in ra accompanied by significant changes in caecal histology, with increased activity in crypts and increased activity of the mucosal immune system. Acknowledgements This work was financial supported by a Ministerio de Ciencia y Tecnolog (AGL2005-0738-C02-01) and a Generalitat de Catanunya FPI grant. The a I. Cornax and L. Flatow from UCDavis (CA) for the assistance with langua manuscript corrections. References Adami, A., Cavazzoni, V., 1999. Occurrence of selected bacterial group	316	
weaning to develop fermentative activity. Commercial weaning prod changes in pig caecum microbiota, with an increase in the enterobacter ratio. t-RFLP showed differences in bacterial profiles between groups. assumptions can be made, suckling pigs showed a higher diversity in lactic species than the weaned group and showed peaks, compatible with <i>C. coc</i> butyricum species, that were absent in weaned pigs. These changes in ra accompanied by significant changes in caecal histology, with increased activity in crypts and increased activity of the mucosal immune system. Acknowledgements This work was financial supported by a Ministerio de Ciencia y Tecnolog (AGL2005-0738-C02-01) and a Generalitat de Catanunya FPI grant. The a I. Cornax and L. Flatow from UCDavis (CA) for the assistance with langua manuscript corrections. References Adami, A., Cavazzoni, V., 1999. Occurrence of selected bacterial group	317	4. Conclusions
changes in pig caecum microbiota, with an increase in the enterobacter ratio. t-RFLP showed differences in bacterial profiles between groups. assumptions can be made, suckling pigs showed a higher diversity in lactic species than the weaned group and showed peaks, compatible with <i>C. coc butyricum</i> species, that were absent in weaned pigs. These changes in accompanied by significant changes in caecal histology, with increased activity in crypts and increased activity of the mucosal immune system. Acknowledgements This work was financial supported by a Ministerio de Ciencia y Tecnolog (AGL2005-0738-C02-01) and a Generalitat de Catanunya FPI grant. The all. Cornax and L. Flatow from UCDavis (CA) for the assistance with langual manuscript corrections. References Adami, A., Cavazzoni, V., 1999. Occurrence of selected bacterial group	318	The caecum undergoes significant microbiological and morphological changes at
ratio. t-RFLP showed differences in bacterial profiles between groups. assumptions can be made, suckling pigs showed a higher diversity in lactic species than the weaned group and showed peaks, compatible with <i>C. coc</i> butyricum species, that were absent in weaned pigs. These changes in n accompanied by significant changes in caecal histology, with increased activity in crypts and increased activity of the mucosal immune system. Acknowledgements This work was financial supported by a Ministerio de Ciencia y Tecnolog (AGL2005-0738-C02-01) and a Generalitat de Catanunya FPI grant. The a 1. Cornax and L. Flatow from UCDavis (CA) for the assistance with langua manuscript corrections. References Adami, A., Cavazzoni, V., 1999. Occurrence of selected bacterial group	319	weaning to develop fermentative activity. Commercial weaning produced marked
assumptions can be made, suck ling pigs showed a higher diversity in lactic species than the weaned group and showed peaks, compatible with <i>C. coc butyricum</i> species, that were absent in weaned pigs. These changes in accompanied by significant changes in caecal histology, with increased activity in crypts and increased activity of the mucosal immune system. Acknowledgements This work was financial supported by a Ministerio de Ciencia y Tecnological (AGL2005-0738-C02-01) and a Generalitat de Catanunya FPI grant. The accompanied in the companies of the compani	320	changes in pig caecum microbiota, with an increase in the enterobacteria:lactobacilli
species than the weaned group and showed peaks, compatible with <i>C. coc</i> butyricum species, that were absent in weaned pigs. These changes in n accompanied by significant changes in caecal histology, with increased activity in crypts and increased activity of the mucosal immune system. Acknowledgements Acknowledgements This work was financial supported by a Ministerio de Ciencia y Tecnolog (AGL2005-0738-C02-01) and a Generalitat de Catanunya FPI grant. The a I. Cornax and L. Flatow from UCDavis (CA) for the assistance with langua manuscript corrections. References Adami, A., Cavazzoni, V., 1999. Occurrence of selected bacterial group	321	ratio. t-RFLP showed differences in bacterial profiles between groups. Though only
butyricum species, that were absent in weaned pigs. These changes in reaccal histology, with increased activity in crypts and increased activity of the mucosal immune system. Acknowledgements This work was financial supported by a Ministerio de Ciencia y Tecnological (AGL2005-0738-C02-01) and a Generalitat de Catanunya FPI grant. The a I. Cornax and L. Flatow from UCDavis (CA) for the assistance with langual manuscript corrections. References Adami, A., Cavazzoni, V., 1999. Occurrence of selected bacterial group	322	assumptions can be made, suckling pigs showed a higher diversity in lactic acid bacteria
accompanied by significant changes in caecal histology, with increased activity in crypts and increased activity of the mucosal immune system. Acknowledgements This work was financial supported by a Ministerio de Ciencia y Tecnological (AGL2005-0738-C02-01) and a Generalitat de Catanunya FPI grant. The a I. Cornax and L. Flatow from UCDavis (CA) for the assistance with langual manuscript corrections. References Adami, A., Cavazzoni, V., 1999. Occurrence of selected bacterial group	323	species than the weaned group and showed peaks, compatible with C. coccoides and C.
activity in crypts and increased activity of the mucosal immune system. Acknowledgements This work was financial supported by a Ministerio de Ciencia y Tecnolog (AGL2005-0738-C02-01) and a Generalitat de Catanunya FPI grant. The a I. Cornax and L. Flatow from UCDavis (CA) for the assistance with languary manuscript corrections. References Adami, A., Cavazzoni, V., 1999. Occurrence of selected bacterial group	324	butyricum species, that were absent in weaned pigs. These changes in microbiota are
328 Acknowledgements 329 330 This work was financial supported by a Ministerio de Ciencia y Tecnolog 331 (AGL2005-0738-C02-01) and a Generalitat de Catanunya FPI grant. The a 332 I. Cornax and L. Flatow from UCDavis (CA) for the assistance with langua 333 manuscript corrections. 334 335 References 336 Adami, A., Cavazzoni, V., 1999. Occurrence of selected bacterial group	325	accompanied by significant changes in caecal histology, with increased proliferative
328 Acknowledgements 329 330 This work was financial supported by a Ministerio de Ciencia y Tecnolog 331 (AGL2005-0738-C02-01) and a Generalitat de Catanunya FPI grant. The a 332 I. Cornax and L. Flatow from UCDavis (CA) for the assistance with langua 333 manuscript corrections. 334 335 References 336 Adami, A., Cavazzoni, V., 1999. Occurrence of selected bacterial group	326	activity in crypts and increased activity of the mucosal immune system.
This work was financial supported by a Ministerio de Ciencia y Tecnological (AGL2005-0738-C02-01) and a Generalitat de Catanunya FPI grant. The a I. Cornax and L. Flatow from UCDavis (CA) for the assistance with languate manuscript corrections. References Adami, A., Cavazzoni, V., 1999. Occurrence of selected bacterial group	327	
This work was financial supported by a Ministerio de Ciencia y Tecnolog (AGL2005-0738-C02-01) and a Generalitat de Catanunya FPI grant. The a I. Cornax and L. Flatow from UCDavis (CA) for the assistance with langua manuscript corrections. References Adami, A., Cavazzoni, V., 1999. Occurrence of selected bacterial group	328	Acknowledgements
331 (AGL2005-0738-C02-01) and a Generalitat de Catanunya FPI grant. The a 332 I. Cornax and L. Flatow from UCDavis (CA) for the assistance with langua 333 manuscript corrections. 334 335 References 336 Adami, A., Cavazzoni, V., 1999. Occurrence of selected bacterial group	329	
I. Cornax and L. Flatow from UCDavis (CA) for the assistance with langua manuscript corrections. References Adami, A., Cavazzoni, V., 1999. Occurrence of selected bacterial group	330	This work was financial supported by a Ministerio de Ciencia y Tecnología project
 manuscript corrections. References Adami, A., Cavazzoni, V., 1999. Occurrence of selected bacterial group 	331	(AGL2005-0738-C02-01) and a Generalitat de Catanunya FPI grant. The authors thank
334 335 References 336 Adami, A., Cavazzoni, V., 1999. Occurrence of selected bacterial group	332	I. Cornax and L. Flatow from UCDavis (CA) for the assistance with language
References Adami, A., Cavazzoni, V., 1999. Occurrence of selected bacterial group	333	manuscript corrections.
336 Adami, A., Cavazzoni, V., 1999. Occurrence of selected bacterial group	334	
	335	References
piglets fed with <i>Bacillus coagulans</i> as probiotic. J. Basic Microbiol	336	Adami, A., Cavazzoni, V., 1999. Occurrence of selected bacterial groups in faeces of
	337	piglets fed with Bacillus coagulans as probiotic. J. Basic Microbiol. 39, 3-9.

338	Amann, R.I., Krumholz, L., Stahl, D.A., 1990. Fluorescent-oligonucleotide probing of
339	whole cells for determinative, phylogenetic and environmental studies in
340	microbiology. J. Bacteriol. 172, 767-770.
341	Brunsgaard, G., 1997. Morphological characteristics, epithelial cell proliferation, and
342	crypt fission in cecum and colon of growing pigs. Digest. Dis. Sci. 42, 2384-
343	2393.
344	Castillo, M., Martín-Orúe, S.M., Manzanilla, E.G., Badiola, I., Martín, M., Gasa J.,
345	2006. Quantification of total bacteria, enterobacteria and lactobacilli populations
346	in pig digesta by real-time PCR. Vet. Microbiol. 114, 165-170.
347	Cheroutre, H., 2004. Starting at the beginning: new perspectives on the biology of
348	mucosal T cells. Annu. Rev. Immunol. 22, 217–246.
349	Deplancke, B., Gaskins, H.R., 2001. Microbial modulation of innate defence: goblet
350	cells and the intestinal mucus layer. Am. J. Clin. Nutr. 73, 1131S-1141S.
351	Edwards C.A., Parret, A.M., 2002. Intestinal flora during the first months of life: new
352	prospective. Br. J. Nutr. 88 Suppl. 1, S11-S18.
353	Frankel, W.L., Zhang, W., Singh, A., Klurfeld, D.M., Don, S., Sakata, T., Modlin, I.,
354	Rombeau, J.L. 1994. Mediation on the trophic effects of short-chain fatty acids
355	on the rat jejunum and colon. Gastroenterology. 106, 375-380.
356	Franklin, M.A., Mathew, A.G., Vickers, J.R., Clift, R.A., 2002. Characterization of
357	microbial populations and volatile fatty acid concentrations in the jejunum,
358	ileum, and cecum of pigs weaned at 17 vs. 24 days of age. J. Anim. Sci. 80,
359	2904-2910.
360	Han, I.K., Lee, S.C., Lee, J.H., Kim, J.D., Jung, P.K., Lee, J.C. 1984. Studies on the
361	growth promoting effects of probiotics II. The effect of Clostridium butyricum

362	ID on the performance and changes in the microbial flora of the faeces and
363	intestinal contents of the broiler chicks. Korean J. Anim. Sci. 26, 159-165.
364	Hojberg O., Canibe, N., Poulsen, H.D., Hedemann, M.S., Jensen, B.B., 2005. Influence
365	of dietary zinc oxide and copper sulfate on the gastrointestinal ecosystem in
366	newly weaned piglets. Appl. Environ. Microbiol. 71, 2267-77.
367	Jensen-Waern, M., Melin, L., Lindberg, R., Johannisson, A., Petersson, L., Wallgren,
368	P., 1998. Dietary zinc oxide in weaned pigs-effects on performance, tissue
369	concentrations, morphology, neutrophil functions and faecal microflora. Res.
370	Vet. Sci. 64, 225-231.
371	Katouli, M., Lund, A., Wallgren, A.P., Kuhn, I., Soderlind, O., Mollby. R., 1995.
372	Phenotypic characterization of intestinal Escherichia coli of pigs during
373	suckling, postweaning, and fattening periods. Appl. Environ. Microbiol. 61,
374	778-783.
375	Katouli, M., Lund, A., Wallgren, P., Kuhn, I., Soderlind, O., Mollby, R., 1997.
376	Metabolic fingerprinting and fermentative capacity of the intestinal flora of pigs
377	during pre- and post-weaning periods. J. Appl. Microbiol. 83, 147-154.
378	Katouli, M., Melin, L., Jensen-Waern, M., Wallgren, P., and Möllby, R., 1999. The
379	effect of zinc oxide suppplementation on the stability of the intestinal flora with
380	special reference to composition in coliforms in weaned pigs. J. Appl.
381	Microbiol. 87, 564-573.
382	Kitts, C.L., 2001. Terminal Restriction Fragment Patterns: a tool for comparing
383	microbial commun ities and assessing community dynamics. Curr. Issues Intest.
384	Microbiol. 2, 17-25.

385	Konstantinov, S. R., Awati, A. A., B. A. Williams, B. G. Miller, P. Jones, C. R. Stojes,
386	A. D. L. Akkermans, H. Smidt, and W. M. de Vos., 2006. Post-natal
387	development of the porcine microbiota composition and activities. Environ.
388	Microbiol. 8, 1191-1199.
389	Krause, D.O., Easter, R.A., White, B.A., Mackie, R.I., 1995. Effect of weaning diet on
390	the ecology of adherent lactobacilli in the gastrointestinal tract of the pig. J.
391	Anim. Sci. 73, 2347-2354.
392	Leser, T.D., Amenuvor, J.Z., Jensen, T.K., Lindecrona, R.H., Boye, M., Moller, K.,
393	2002. Culture-independent analysis of gut bacteria: the pig gastrointestinal tract
394	microbiota revisited. Appl. Environ. Microbiol. 68, 673-690.
395	National Research Council, 1998. Nutrient requirements of swine. National Academy
396	Press, Washington, DC.
397	Nofrarias, M., Manzanilla, E. G., Pujols, J., Gibert, X., Majó, N. Segales, J., and Gasa,
398	J. 2006. Effects of spray dried porcine plasma and plant extracts on intestinal
399	morphology and on leukocyte cell subsets of weaned pigs. J. Anim. Sci. 84,
400	2735-2742.
401	Pestova, M.I., Clift, R.E., Vickers, R.J., Franklin M.A., Mathew, A.G., 2000. Effect of
402	weaning and dietary galactose supplementation on digesta glycoproteins in pigs.
403	J. Sci. Food Agri. 80, 1918-1924.
404	Pluske, J.R., Hampson, D.J., Williams, I.H., 1997. Factors influencing the structure and
405	function of the small intestine in the weaned pig: a review. Livest. Prod. Sci. 51,
406	215-236.

407	Pluske, J.R., Pethick, D.W., Hopwood, D.E., Hampson, D.J., 2002. Nutritional
408	influences on some major enteric bacterial diseases of pigs. Nutr. Res. Rev. 15,
409	333-371.
410	Risley, C.R., Kornegay, E.T., Lindemann, M.D., Wood, C.M., Eigel, W.N., 1992.
411	Effect of feeding organic acids on selected intestinal content measurements at
412	various times postweaning in pigs. J. Anim.Sci. 70, 196-206.
413	Rothkotter, H.J., Mollhoff, S., Pabst, R., 1999. The influence of age and breeding
414	conditions on the number and proliferation of intraepithelial lymphocytes in
415	pigs. Scand. J. Immunol. 50, 31-38.
416	Seki, H., Shiohara, M., Matsumura, T., Miyagawa, N., Tanaka, M., Komiyama, A.,
417	Kurata, S. 2003. Prevention of antibiotic-associated diarrhea in children by
418	Clostridium butyricum MIYAIRI. Pediatr. Int. 45, 86-90.
419	Simpson, J.M., McCrcken, V.J., Gaskins, H.R., Mackie, R.I., 2000. Denaturing gradient
420	gel electrophoresis analysis of 16S Ribosomal DNA amplicons to monitor
421	changes in fecal bacterial populations of weaning pigs after introduction of
422	Lactobacillus reuteri strain MM53. Appl. Environ. Microbiol. 66, 4705-4714.
423	Stewart, C.S. 1999. Microorganisms in hindgut fermentors. In: Mackie R.I., White,
424	B.A. (Eds), Gastrointestinal Microbiology, Chapman and Hall Microbiology
425	Series. New York.
426	Swords, W.E., Wu, C., Champlin, F.R., Buddington, R.K., 1993. Postnatal changes in
427	selected bacterial groups of the pig colonic microflora. Biol. Neonate. 63, 191-
428	200.
429	Van Kessel, A., Shirkey, T.W., Siggers, R.H., Drew, M.D., Laarveld, B., 2004.
430	Commensal bacteria and intestinal development. Studies using gnotobiotic pigs.

431	In: Tucker L.A., Taylor-Pickard, J.A. (Eds), Interfacing immunity, gut health
132	and performance. Nottingham University Press, Nottingham, UK.
433	Varel, V.H., Yen, J.T., 1997. Microbial perspective on fiber utilization by swine. J.
134	Anim. Sci. 75, 2715-2722.

435 Tables

Table 1. Control diet composition (as fed basis).

Ingredient	g/kg
Corn	46.7
Full fat extruded soybeans	17.0
Lactose	15.0
Soybean meal	10.0
Potato protein	3.77
Whey powder	1.52
L-Lysine HCl	0.17
DL-Methionine	0.098
L-Threonine	0.009
Bicalcium phosphate	3.04
Salt	0.79
Calcium carbonate	0.44
Vit-Mineral premix	0.25
Sepiolite	1.26

437

Table 2. Theoretical restriction 5'-fragment length predicted for the major pig gut bacteria. Results were obtained from the TAP-RFLP tool of the Ribosomal Database II Project software.

Bacteria groups	Compatible bacteria ^a	<i>In silico</i> restriction b	Real restriction ^c	Frequency d	
Buoto m Brompo			1100/1100 010/10/10	Suckling	Weaned
	L. acidophillus, L. brevis, L. bifermentum,				
	rhamnosum, casei	597, 598, 599	597, 599	1 (1.45)	2 (0.54)
	L. delbruekii sp. delbruekii	254	254	4 (1.96)	1(0.98)
Lactic Acid Bacteria	L. delbruekii sp. lactis	223	221-223	5 (4.59)	0
	L. fructivorans	68	68	3 (0.88)	3 (0.59)
	Lactococcus lactis, Lactobacillus vaginalis	61	62	6 (14.22)	5 (19.42)
	Enterococcus sp.	216, 218, 220	214	5 (2.18)	2(1.35)
	Cytophaga	92, 94, 96, 100			_
Bacteroides and relatives	Flexibacter	82, 84, 90, 94, 96, 97	89-104	6 (4.06)	5 (5.17)
	Bacteroides	95, 96, 98, 101, 102, 104			
Fibrob acter	Fibrobacter succino genes	139, 141, 145	138, 140, 142-145	6 (1.80)	4 (2.70)
1 ioroo acter	Fibrobacter intestinales	148, 152	148-152	6 (3.46)	5 (0.69)
	Clostridium coccoides	66	66	3 (1.67)	0
	C. butyricum	544	544	5 (0.86)	0
	Eubacterium	188, 190, 192, 194, 203			
Clostridium and relatives	Ruminococcus	189			
Closula lam and le atives	Clostridium clostridiforme, C. symbiosum	190	188-193	2 (1.19)	4(0.63)
	Roseburia	192		,	,
	Butyrivibrio	193			
	Clostridium spp.	229, 231, 233, 237	229-232, 237	6 (1.30)	5(1.36)
	Escherichia sp	371, 372, 373, 374	376-377	3 (0.51)	1(0.55)
Proteobacteria	Other enteric bacteria (Salmonella,				
	Citrobacter, Klebsiella)	(367, 370, 372), 373, 371			

^a Major pig gut bacteria, based on the work of Leser et al., 2002, with a potential compatible fragment found in at least three animals. Other peaks with 58, 59, 69, 111-120, 123, 133, 162, 211, 278 and 279 did not correspond with any 16S rRNA sequences in the database from the Ribosomal Database Project 8.1 software.

b In silico restriction was performed using the tap-tRFLP tool from the Ribosomal Database project II.

c Terminal fragment length obtained after PCR product restriction with Hha I.

d Number of an imals that showed the peak in each experimental group. The mean peak area (%) value in these animals with the peak is shown in brackets.

Table 3. Weights and pH of the stomach, small and large intestine, and caecal morphology of the early-weaned pigs receiving sow milk or dry feed¹.

4	4	/
4	4	8

446

	Suckling	Weaned	<i>P</i> -value
Empty weight, g			
Stomach	37.4 ± 7.54	38.7 ± 4.88	0.737
Small intestine	330 ± 56.4	370 ± 98.1	0.393
Large intestine	120 ± 31.2	195 ± 98.1	0.027
рН			
Stomach	3.2 ± 0.84	4.4 ± 0.67	0.019
Ileum	7.0 ± 0.44	6.7 ± 0.37	0.371
Cecum	6.3 ± 0.13	5.8 ± 0.12	< 0.0001
Colon	6.9 ± 0.29	6.03 ± 0.18	< 0.0001
Caecum histological study			
Crypt depth, µm	373 ± 48.6	359 ± 30.6	0.566
Crypt density ²	12.4 ± 0.36	10.5 ± 0.25	< 0.001
Mitoses / 100 cells	1.0 ± 0.47	1.8 ± 0.47	0.021
Goblet cells / 100 cells	25.5 ± 3.48	19.4 ± 3.30	0.011
Intraepithelial lymphocytes / 100 cells	1.4 ± 0.67	2.6 ± 0.91	0.024
Lymphocyte density ³	1.7 ± 0.45	2.3 ± 0.40	0.045
Total cell density ³	8.7 ± 0.90	8.9 ± 0.47	0.665
Lymphocyte / Total cells	0.2 ± 0.04	0.3 ± 0.07	0.109
Mucosal thickness, μm	470 ± 74.8	528 ± 70.8	0.243
Muscular layer thickness, µm	370 ± 49.5	328 ± 37.0	0.111
Total intestinal wall thickness, µm	848 ± 98.1	856 ± 95.1	0.899

¹ Values are means, n=6. 449

⁴⁵⁰

² Number of crypts appearing over a 1mm distance across the basal part of the mucosa.

³ Number of lymphocytes like cells or total cells per 1000 μm² area in the lamina 451

⁴⁵² propria.

454	Figure captions
455	
456	Figure 1. Bacterial loads in caecum measured by quantitative PCR (log 16S rRNA gene
457	copies/g FM) in early-weaned pigs receiving sow milk or dry feed
458	
459	Figure 2. Dendogram illustrating the correlation between experimental diets in t-RFLP
460	banding patterns. The dendogram represents results from 11 piglets sacrificed on day
461	28. There was no digesta content in one of the weaned piglet's caecum. The dendogram
462	distances are in percentage of similarity

