AD-A106 350

DAYID W TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CE--ETC F/8 20/4 LIFTING-SURFACE HYDRODYNAMICS FOR DESIGN OF ROTATING RLADES.(U)

OCT 81 T & BROCKETT

UNCLASSIFIED

TNSRDC-81/081

NL

END

Mill

AD A 1 0 6 3 5 0

-		_	• • • • • • •	PER MET METER THE ME
N K + (1		t .	- ·	disconnection of the second of
``	6	4	•	To Bosonian and accommissions
•				The control of the complete of
* *	*\$. \$. \$.			THE REAL PROPERTY OF
	•			in the second se
ė.	e en			e e esta esta esta esta esta esta esta e
				Company of the second
				film:
		• »	••	
• 🐧	• •		•	

NO LANS I LET

The second second

A supersystem of courses of personnels of courses and and conditioned velocities, one can expense the area of the course of the course of the continue of the

TABLE OF CONTENTS

		Page
HIST OF FIGURES		 i i :
TIST OF TABLES	• •	 ix
ABSTRACT	• •	 1
NOTATION		 i
AND RODE OF SECTION CONTRACTOR OF SECTION OF		
MANGEMAN AND MODER OF THICK PRETING BLADE		
The Committee of the Proception of the Committee of the C		 •
TO SEE SEE ONLERGENCE AND RUN TIME.		 i
FOR AMBLE COMPUTATIONS IN THE PROPERTY OF THE		 1.4
The Allerthan Company of the Company		. 1
$(\mathbf{x}, \mathbf{y}, \mathbf{w}, \mathbf{y}, \mathbf{y}, \mathbf{w}, \mathbf{w}, \mathbf{y}, \mathbf{y}, \mathbf{w}, \mathbf{y}, \mathbf{w}, \mathbf{y}, y$		
entre extension and the contract of the contra		1
s de la companya della companya della companya de la companya della companya dell		
jeto objeta ri s		
the complete		
the second of		•
and the first service of the branch of the service		
entre de la compartición de la compartición de la deservación de la definitación de la definitación de la deservación de la definitación de la def		
on the money temperate with Good context heat and matter and matte		ı
cressure a trabution at her can for Three Blades		

		Page
8 -	- Meanline Shape for Three Blades	18
4 -	- Pressure Distribution and Meanline Shape for Variation of Chordwise Load and Thickness	18
	LIST OF TABLES	
1 -	Strect of Parameters on Pitch, Camber and Computer Run lime	14
	- Definition of Design Example, Sample Data from - Computer Code	15
	Cors / Conding and Power Coefficient	19
	concrete Kadial Velocity Component on Pitch and concrete Genetry Similar to NSRDC Model 4498;	19

THE SOCIETY OF NAVAL ARCHITECTS AND MARINE ENGINEERS One World Trade Center, Suite 1300, New York, N.Y. 10048

Lifting-Surface Hydrodynamics for Design of Rotating Blades

No. 20

Terry Brockett, David Taylor Navai Ship Research and Development Center, Bethesda, MD.

CHSTR CO.		to except	Unit hase vectors in a sylindrical polar reference system
2 Sec. 24	The action of the property of the the Spitch to the took of the contact of the spitch of the contact of the c	0 j k -	Cost hase vectors in a Cartesian reference france
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	a specified to conset of the protesting of the paper particles of the paper of the	$I_{N} = N/6D$	Advance coefficient hased in interence speed
the state of the state of	Addition is so there is the addition to the first of the determined from that apply produces are bright on it.	No. Apr	Nector normal to blade surface printing into fluid
$(\mathbf{r}, \mathbf{r}) = (\mathbf{r}, \mathbf{r}) \cdot (\mathbf{r}, \mathbf{r}) = (\mathbf{r}, \mathbf{r})$	for the additional attention	Name of Spirit	Radial Omponent of N
and the second of the second of	6. There is string to those as in 6, tessors of a control of a continuous fermion. 6. The control of surface as defined.	A CALLERY	Normal to blade leterence surface (E. Osurface)
No. 10 Percentage (1997)	to some instantiant so the Flades passion of a singular integral	•	Unit vector normacto biade surface pointing into fluid
and process of parted	Figure 1 is the second of the prestications 1. The periodential data of the wolfers 2. A radical prise following congruent.	1	Propeller rotational speed revolu- tions per unit time
	ex teampertance of teams. Suf	V	Pressure
	espectuda tour is ettappert ber imm. Nitti i 1900 ein ett om the ∰estrougens	Prage	Pitch of blade section
* *		Q.	Torque absorbed hy blades
N. CALLS		to the * 5	Velocity vector
		l.	Velocity vector far upstream
\ H	 Positivations in other approximations of the forest of the property of the proper	R D'	Rotor tip radius
		r _{4:}	Radius of rotor hub
	His base toor draw on the lent	t	Position sector of field point
•	Pressure confficient	',	Position vector of field point on blade reference surface
وه داه کی ا	 6 feter is speed. I trust togging, settle ent based. 	Spiral AB	Position vector of point on hith blade surface
	in reference speed. Brode section that Length	S, Ck. SR	Position vector of point on blade reference surface $\theta_{\rm K} \approx 0$
* u	Rotal Carreter	1.00 m (12) m (14)	Position vector of point on shed vortex sheet
1)	Fro tion drag on blade section	1	Thrust produced by blades
and the same of the same	Profile shape familion	t	Thickness of blade section
,	Meanin day fun tion	V	Reference speed
er Thyse services	Diskness shape function	•	Velocity component due to presence of the blades
	Unit base so tors in a helical reference system	v = (u v w)	Average perturbation velocity along blade surface, due to presence of the blades
1	Induction (actor	'ν'' (7 μ ο)	Velocity difference across blade
*** * **	Non-dimensional circulation		surface
1 1 * P 1	Γ (tal take) axial displacement of Slade section mid-hord point from $x = 0$ plane	`1	Even perturbation velocity com- ponent due to blade loading and shed vortex sheet

*1	I ven perturbation velocity component due to thickness
w	Velocity induced by vortex filamont
w. cago	Local wake traction
** H * * H *	Radial free stream velocity component fraction of X
1 N N 12 1	Cartesian coordinates
•	Cortesian coordinate for field point on blade surface.
•	Fraction of hold measured from leading edge
•	Fraction of chord for field point on blade surface.
` ,	Hub radius, fraction of tip radius
, H	Fraction of radius, measured from axis of rotation
'н	Radia, coordinate for field point on blade surface.
Year	Nondimensional thickness offset maximum $Y_{T} = 0.5$
/	Number of blades
	Angular variable in thordwise firection
orex x _R (Component of defivative of sufface coordinate
y tan i περιπεία. Σεριπεία του που που του π	Advance angle of blade section
Lita	Circulation distribution
Alx' xB)	Chordwise component of disturb- ance velocity difference across blade section
7* (X,)	Chordwise velocity difference scaled to give unit magnitude when integrated across the chord
•	Firor bound. Increment to pitch angle when radial inflow exists.
7	Integration variable along vortex filament
# fan 1 -> /	Angular coordinate in cylindrical reference frame
$\theta_{\rm h} = 2\pi ({\rm h} + 1) Z$	Angular coordinate of blade reference line of btb blade
θ _γ (x _R)	Skew angle circumferential dis- placement of blade-section mid chord point from v = 0 plane
H. (x. xR)	Angular coordinate of point on blade-reference surface
A (0.7)	Vorticity vector

μ(x _c , x _H)	Normal component of disturbance velocity difference across blade section (source strength due to thickness)
$(\mathbf{E}_1,\mathbf{E}_2,\mathbf{r})$	Helical coordinates on pitch reference surface
μ	Fluid density
σ(x, x _R)	Component of disturbance velocity difference across blade section
u,	Surface area
¢	Potential function for perturbation velocity, polar coordinate for field point
$\phi_{\mathbf{p}}(\mathbf{x}_{\mathbf{R}}) = \tan^{-1} \frac{(\mathbf{P}'\mathbf{D})}{\pi \mathbf{x}_{\mathbf{R}} }$	Pitch angle of blade reference surface, measured on cylinder of radius r
φ _g (x _R)	Geometric pitch angle
ψ (x _)	Radius of streamline on blade surface

INTRODUCTION

The design of an open marine propulsor is a complex process, involving structural and hydrodynamic considerations (1, 2). For the hydrodynamic considerations during most of the preliminary design process, approximate models of the lifting surfaces are employed, e.g., the lifting-line model (3, 4) for powering considerations, and two-dimensional flow over equivalent blade sections for cavitation performance. More sophisticated models of the lifting surfaces are used for predicting fluctuating loads (5) and some cavitation predictions (6) These approximate models have been acceptable during the preliminary design process and provide a basis for choice of the maximum diameter, advance coefficient and radial variations of chord, skew-angle, rake, thickness, and circulation distribution. The chordwise variation in load has usually been selected during this preliminary stage and is often based on cavitation and propulsion considerations.

Angular variable in radial direction

For the final stage of the design, the meanline distribution and radial pitch variation are determined corresponding to the selections for load and geometry already available. To derive a geometry which accurately produces the specified load distributions, a lifting-surface model of the blades is required.

Several procedures already exist for performing lifting-surface calculations for wide-bladed open marine propulsors. In particular, two different approaches to the analysis for blades with arbitrary locations in space have been presented by Kerwin (7) and McMahon (8). Kerwin's numerical analysis procedure is based on three fundamental assumptions (1) that the continuous loading distribution on the nonplanar blade surface can be adequately approximated by a multitude of discrete straight lines of constant-vortex strength and that the source distribution arising from the thickness distribution can be similarly approximated, (2) that the minimum required spacing between lattice elements along the chordline is $\Delta\theta = 2$ degrees, and (3) that the resulting meanline shape for a given chordwise load is similar to the two-dimensional shape for the same chordwise load. The first two assumptions are not acceptable for very narrow blades for a blade with a 20 degree pitch angle at the 0.9

radius and a chord to diameter ratio of 0.05, the 2 degree spacing equals increments of about 1/3 chord length. The last assumption permits calculations to be performed using only a few points along the chord and the two-dimensional shape is fitted to the data at these points. The resulting computer code is relatively quick running and produces a geometry which, in practice, has an overall speed and powering performance generally within a few percent or so of the predicted values, with a general tendency to produce a greater thrust than predicted. The procedure of McMahon employs continuous distributions for the loading and thickness functions and calculates the meanline from the induced velocity. Consequently, data at more chordwise points are required to define the pitch and meanline distributions. The resulting computer code is lengthy to run but has shown remarkably different meanline shapes from the two-dimensional one at the hub and tip region of the blade where the meanlines can be s-shaped (8). Two models were constructed and experimentally evaluated to provide data on the relative cavitation and propulsion performance of designs having the same input specifications but final geometry according to the Kerwin and McMahon procedures. Some inconsistencies occurred in the experimental measurements but the thrust was closer to the predicted value and the operating point centered in the cavitation bucket for the model designed by the McMahon method. Hence, the determination of specific meanline and pitch distributions, instead of fitting the twodimensional meanline, is considered to be a superior procedure when the design is based on a narrow range of permissible operating conditions and the delay of cavitation is entical.

Because the numerical-analysis procedure employed by McMahon results in lengthy computer runs and Kerwin's procedure is not acceptable for narrow blades, alternative numerical-analysis schemes are investigated in this paper. In addition, a detailed description of the flow field across the blade surface was desired as input into boundary-layer calculations. Two different numerical analysis schemes are described, each involving an expansion of the singular kernel about the singular point. Both approaches employ integration of the specified thickness slope and load distribution over the reference blade in the radial direction first and the remaining chordwise integration then takes the form of the velocity component corresponding to two-dimensional flow modified by the presence of an induction factor in the integral. Regular integration techniques are employed for the other blades and the shed vortex sheet. The induced velocity components are appropriately combined and integrated to obtain meanline shapes

The present investigation describes the real-fluid flow about a rotating system of lifting surfaces having both loading and thickness. Several approximations are made The first of these is the mathematical model for which potential flow equations are employed and the solution to first-order in thickness-to-chord ratio, camber-to-chord ratio and difference in pitch and flow angles derived. Comparisons with experimental results for other lifting-surface configurations lead to confidence in this linearized approx imation. In addition to this mathematical model, further approximations occur in the numerical analysis. Confidence in the numerical analysis procedures is justified by compar ison with analytical solutions or experimental results. That is, results are sought from some discretized numericalanalysis procedures involving N by M approximations, which have converged to within some specified tolerance, ϵ , of the real or analytical value of the quantity investigated. Mathematically this may be stated

$$\exists f(x,y) = f_{x_i \in M}(x,y) < \epsilon$$

for
$$\begin{cases} (x, y) \text{ on the surface S} \\ N \ge N_0 \\ M \ge M_0 \end{cases}$$

where f_{N,M} = the approximate calculation of a particular quantity f

S = a region of the surface of interest

N_o, M_o = minimum numbers of the discrete approximations for which the computed results are within ε of the values for f

For rotating lifting surfaces, neither measured nor analytical solutions exist for details of the flow field on the blade. Hence, comparisons will be made with other procedures. It is assumed that numerical solutions which employ increasingly greater pointwise definition of the input variable without change in computed values have converged and that the solution has converged when a smooth curve can be drawn through point values in both the chordwise and radial directions. These assumptions are believed to be necessary but not sufficient for convergence.

In the following sections, the mathematical model of the flow field on the blade surface is first reviewed and numerical-analysis techniques for evaluating both regular and singular integrals are described. A FORTRAN computer code is discussed and sample calculations using this code are presented. From example calculations, it is found that greater accuracy in the integral evaluations is required for the determination of smooth pressure distribution curves than for the shape of the meanline and the pitch distributions. The choice of a particular chordwise loading distribution is shown to have an effect on the meanline shape and the pressure distribution. The effects of rake and skew are shown to be important on both pressure distribution and meanline shape. A particular thickness function has hardly any effect on pitch or meanline but a significant effect on pressure distribution.

MATHEMATICAL MODEL THICK LIFTING BLADE

The mathematical model of a system of rotating lifting surfaces advancing in an unbounded irrotational flow field with an inviscid fluid has been developed on a formal mathematical basis by Brockett (9). A reformulation of that analysis in terms of non-dimensional surface coordinates is presented herein for completeness. The propulsor is assumed to be adequately represented by the blades alone, i.e., neither the hub nor fillet from the blades to the hub is included in the blade specification. The onset flow is assumed to be directed along the axis of rotation but a new feature included herein is that it may have a small radial component. Overall geometry notation generally follows the definitions given in Reference 10.

Coordinate systems are constructed with the same orientation as in Reference 9, and in particular, the helical coordinate system (ξ_1 , ξ_2 , r) rotating with the blades is shown in Figure 1. Unit base vectors in a right-handed Cartesian reference frame are the customary (i, j, k) where i is along the x-axis and is positive pointing aft, i is along the y-axis and k-is along the z-axis which is generally along the reference blade. Unit vectors along the helical coordinates are

$$e_1 = \sin \phi_{\mathbf{p}} + \cos \phi_{\mathbf{p}} + e_{\mathbf{p}}$$

$$e_{\gamma} = \cos \phi_{\mathbf{p}} + \sin \phi_{\mathbf{p}} \cdot e_{\mathbf{d}}$$
 (2)

$$e_{\gamma} = \sin \theta + \cos \theta + k$$
 (3)

where

Fig. 1 Lifting-surface geometry

The blade surface is given by

$$\xi_1 = F(\xi_1, r) \tag{5}$$

$$= E_c(\xi_1, r) \pm E_T(\xi_1, r)$$
 (6)

where

F, is the meanline shape, and

FT is the thickness shape

In the analysis, it is convenient to change the variables of integration to (x_c,x_R) instead of (ξ_1,r) , where

$$\begin{cases}
\xi_1 = c (x_c - 0.5) \\
r = D x_R/2 \\
c = \text{chordlength at radius } r
\end{cases}$$
(7)

and

D = maximum rotor diameter

The position vector of a point on the blade surface described by Equation (5) is

$$s = D\left\{ \begin{bmatrix} \frac{i_T}{D} + \frac{c}{D} & (x_c - 0.5) \sin \phi_P - \frac{F}{D} \cos \phi_P \end{bmatrix} + \frac{x_R}{2} e_r(\theta) \right\}$$
(8)

and a normal, directed out from the blade surface, is (9, 11)

$$N = \pm \frac{\partial s}{\partial x_i} - \frac{\partial s}{\partial x_B}$$
 (9)

where the plus sign is used for the suction side of the blade and the negatile sign for the pressure side of the blade. After some effort it can be shown that

$$N_1 = + \frac{D^2}{2} \left\{ \frac{c}{D} \cdot e_2 + \frac{\partial FD}{\partial x_i} \cdot e_3 + N_{\mathbf{R}} \cdot e_4 \right\}$$
(10)

where

$$\begin{split} N_{\mathbf{R}} &= -2 \, \frac{c}{D} \, \frac{\partial \, F/D}{\partial \, x_{\mathbf{R}}} \, + 2 \, (x_{\mathbf{c}} - 0.5) \, \frac{\mathrm{d} \, c/D}{\mathrm{d} \, x_{\mathbf{R}}} \, \frac{\partial \, E/D}{\partial \, x_{\mathbf{c}}} \\ &+ 2 \, \frac{\mathrm{d} \, i_{\mathbf{T}}/D}{\mathrm{d} \, x_{\mathbf{R}}} \, \left[\frac{c}{D} \cos \phi_{\mathbf{P}} + \frac{\partial \, E/D}{\partial \, x_{\mathbf{c}}} \, \sin \phi_{\mathbf{P}} \, \right] \\ &+ 2 \left[\left(\frac{c}{D} \right)^2 \, \left(x_{\mathbf{c}} - 0.5 \right) + \frac{E}{D} \, \frac{\partial \, E/D}{\partial \, x_{\mathbf{c}}} \, \right] \\ &\cdot \left[\frac{\mathrm{d} \, P/D}{\mathrm{d} \, x_{\mathbf{R}}} \, \frac{\cos^2 \phi_{\mathbf{P}}}{\pi \, x_{\mathbf{R}}} - \frac{\sin \phi_{\mathbf{P}} \cos \phi_{\mathbf{P}}}{x_{\mathbf{R}}} \, \right] \\ &- \left[x_{\mathbf{R}} \, \frac{\mathrm{d} \, \theta_{\mathbf{S}}}{\mathrm{d} \, x_{\mathbf{R}}} - 2 \, \frac{\frac{c}{D} \, \left(x_{\mathbf{c}} - 0.5 \right) \cos \phi_{\mathbf{P}} + \frac{E}{D} \, \sin \phi_{\mathbf{P}}}{x_{\mathbf{R}}} \, \right] \\ &\cdot \left[\frac{c}{D} \, \sin \phi_{\mathbf{P}} - \frac{\partial \, E/D}{\partial \, x_{\mathbf{c}}} \, \cos \phi_{\mathbf{P}} \right] \end{split}$$

The normal to the blade reference surface, ξ_2 = 0, 0 \leq x $_c \leq$ 1, x $_h \leq$ x $_R \leq$ 1 is

$$N_o = \pm \frac{D^2}{2} \frac{c}{D} \left[e_2 + N_{\mathbf{R}_o} e_r (\theta_o) \right]$$
 (11)

where

$$N_{R_0} = 2 \frac{d r_T/D}{d x_R} \cos \phi_P + 2 \left(\frac{c}{D}\right) (x_c - 0.5)$$

$$- \frac{d P/D}{d x_R} \frac{\cos^2 \phi_P}{\pi x_R} - x_R \frac{d \theta_s}{d x_R} \sin \phi_P$$

 $N_{R_{\odot}}$, the radial component of the normal, is zero for a constant-pitch blade which is neither raked nor skewed in Equations (10) and (11)

1T = the total rake

P = the pitch of the blade

$$\phi_{\mathbf{p}} = \text{the pitch angle}, \phi_{\mathbf{p}} = \tan^{-1} \left(P'(\pi \times_{\mathbf{R}} \mathbf{D}) \right)$$

 θ = the angular position of a point on the blade surface, a function of both x_i and x_R

$$= 2 \frac{b-1}{Z} \pi + \theta_3 + 2 \left[\frac{c}{D} (x_c - 0.5) \cos \phi_p + \frac{F}{D} \sin \phi_p \right] / x_R$$

 θ_{\perp} = the skew angle, a function of x₁

and

$$\theta_{\alpha} = 2 \frac{b-1}{Z} \pi + \theta_{3} + 2 \frac{c}{D} (x_{c} = 0.5) \cos \phi_{\mathbf{p}} / x_{\mathbf{R}}$$

In the derivation of the expressions for numerical analysis the reference surface (F = 0) is often employed. Generally no specific mention will be made of differences between variables on the blade surface and on the reference surface.

In a coordinate system rotating with the blades, the fluid velocity may be taken to be the sum of the undisturbed velocity and a component due to the disturbance of the blades.

$$q_{\omega} + v$$
 (13)

where ... V ... the constant reference speed

1-w the wake traction multiple to obtain the local axisymmetric speed³

WR the radial component of inflow traction of the reference speed.

- the rotational speed, revolutions per anitime, and
- the velocity compound due to the preselve of the blades.

If 2μ is the pitch ingle and , is the advance angle.

resistant for Novel we will a south the second

$$\frac{\frac{1}{\sqrt{2}}}{\sqrt{2}} = \sqrt{\frac{1}{\sqrt{2}}} \frac{\mathbf{x}_{1} \cdot \mathbf{x}_{2} \cdot \mathbf{x}_{1} \cdot \mathbf{x}_{2} \cdot \mathbf{x}_{1}}{\left(\frac{1}{\sqrt{2}}\right)^{2}}$$

$$= \left(\frac{1}{\sqrt{2}} \frac{\mathbf{x}_{2} \cdot \mathbf{x}_{2}}{\mathbf{x}_{1} \cdot \mathbf{x}_{2}} + \frac{1}{\sqrt{2}} \frac{\mathbf{x}_{2} \cdot \mathbf{x}_{2}}{\mathbf{x}_{2} \cdot \mathbf{x}_{2}} + \frac{1}{\sqrt{2}} \frac{\mathbf{x}_{2} \cdot \mathbf{x}_{2}}{\mathbf{x}_{2}} + \frac{1}{\sqrt{2}} \frac{\mathbf{x}_{2} \cdot \mathbf{x}_{2}}{\mathbf{x}_{$$

where the lateau is self-perful as the

$$T_{\rm cons}(A) \approx 640$$

By the probability of the constitution and the property of the ω of the lagrence should

$$\sim$$
 \sim \sim \sim \sim \sim \sim \sim

And the second section of the second section is a second section of the second section in the second section is a second section of the second section in the second section is a second section of the second section in the second section is a second section of the second section in the second section is a second section of the second section in the second section is a second section of the section o

The second second

*. . **.**

and the second

•

.

The difference of Equations (1.7) and cDG gives

$$\begin{pmatrix}
\lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda$$

definition of the second of th

.

$$s_{\mathbf{h}} = s_{\alpha_{\mathbf{h}}} + D \left\{ \left[\frac{i_{\mathbf{T}}}{D} + \frac{s_{\mathbf{h}}}{D} \left(x_{s_{\mathbf{h}}} + 0.5 \right) \sin \phi_{\mathbf{p}} \right] \right\} + \frac{s_{\mathbf{R}}}{2} c_{s_{\mathbf{h}}} \left(\theta_{\alpha} \right) \right\}$$

$$(25)$$

Hence I quation (23) can be reduced to an integral over only one side of the blade surfaces and shed vortex sheets.

41.55

$$\frac{\sum_{i=1}^{n} \left(\sum_{j=1}^{n} + \tau_j \sin \phi_{\mathbf{p}}\right)}{\sum_{j=1}^{n} \sigma_{i,j} \cos \phi_{\mathbf{p}} \times \mathbf{g} + \theta_{\mathbf{k}}}$$

т — том — 1 ()); Дэ

As the field point in approaches a point $r_{\rm c} (x_{\rm c} - x_{\rm p})$ from soften of the blade. Equation (23) or (26) becomes or golder. It as small region about this point is excluded from the soften of a small the fimit of the integral taken for $r = r_{\rm c}$ and the fimit of the integral taken for $r = r_{\rm c}$. Writer $r_{\rm c} = r_{\rm c}$ index and the finite of the results

$$\sum_{k=1}^{\infty} \sum_{k=1}^{\infty} \int_{\mathbb{R}^{n}} dx \int_{\mathbb{R}^{n}} dx_{k}$$

$$+ \frac{1}{4\pi} \sum_{h=1}^{7} \int_{x_{h}}^{1} dx_{R} \int_{0}^{\infty} d\tau_{l} \frac{dx_{l}}{d\tau_{l}} d\tau_{l}$$

$$+ \frac{1}{4\pi} \sum_{h=1}^{7} \int_{x_{h}}^{1} dx_{R} \int_{0}^{\infty} d\tau_{l} \frac{dx_{l}}{d\tau_{l}} d\tau_{l} d$$

where the symbol x means symmetry restrictions on a $t \in A$ the limiting region which excludes the singularity. If a example (9), the region may be square virtular or $t \in A$ and a conferred at $t \in A$. In the present application, the restangular region $x_{C_0} = (t - x_C)^2 - x_{C_0} + (t - x_B)^2 - x_B = 1$ will $t \in A$ shape of the excluded region. Then this principal value integral is defined.

$$\begin{split} & \oint_{0}^{1} \mathrm{d}x_{c} - \int_{x_{h}}^{1} \mathrm{d}x_{R} \cdot K - \lim_{\varepsilon \to 0} \left[\int_{0}^{x_{c}^{-\varepsilon'}} \mathrm{d}x_{c} \int_{x_{h}}^{1} \mathrm{d}x_{R} \cdot K \right] \\ & + \int_{x_{c}^{-\varepsilon'}}^{1} \mathrm{d}x_{c} \int_{x_{h}}^{1} \mathrm{d}x_{R} \cdot K \end{split}$$

The assumption

$$\lim_{r \to r_0^{+-}} \frac{|\mathbf{v}(\mathbf{r})| = \mathbf{v}^+(\mathbf{r}_o)}{r^{-1} r_o^{-1}}$$

tile, that the velocity defined in the field does approach the value on the boundary) leads to the following expression to the average velocity component on the blade surface.

$$v\left(\mathbf{x}_{x_{0}}, \mathbf{x}_{\mathbf{R}_{0}}\right) = \frac{1}{2} \left[\mathbf{v}^{+} \left(\mathbf{x}_{x_{0}}, \mathbf{x}_{\mathbf{R}_{0}}\right) + \mathbf{v}^{-} \left(\mathbf{x}_{x_{0}}, \mathbf{x}_{\mathbf{R}_{0}}\right) \right]$$

$$= v_{1}^{+} + v_{1}$$

$$= ue_{1}^{+} + ve_{2}^{-} + we_{1}$$

$$= \sum_{k=1}^{2} \int_{0}^{1} d\mathbf{x}_{k} \int_{\mathbf{x}_{0}}^{1} d\mathbf{x}_{\mathbf{R}} \cdot \mathbf{K} \left(\mathbf{x}_{x_{0}}, \mathbf{x}_{\mathbf{R}_{0}}, \mathbf{x}_{x_{0}}, \mathbf{x}_{\mathbf{R}}\right) + v_{\mathbf{w}}$$
(31)

where the singular kernel is

$$K\left(\mathbf{x}_{s_0}, \mathbf{x}_{R_0}, \mathbf{x}_{s_0}, \mathbf{x}_{R}\right) = \frac{1}{4\pi} \left[(\mathbf{x}_{s_0}, \mathbf{x}_{s_0}, \mathbf{x}_{s_0}, \mathbf{x}_{s_0}) - \frac{1}{4\pi} \left[(\mathbf{x}_{s_0}, \mathbf{x}_{s_0}, \mathbf{x}_{s_0}, \mathbf{x}_{s_0}, \mathbf{x}_{s_0}) - \frac{1}{4\pi} \left[(\mathbf{x}_{s_0}, \mathbf{x}_{s_0}, \mathbf{x}_$$

and the velocity induced by the shed vortex sheet is

$$= \sum_{n=1}^{\infty} \int_{\mathbb{R}^n} dx_n \int_{\mathbb{R}^n} \frac{dx}{dx}$$

the strength of the would be strength of the would be seen as the frength of the words.

$$(\mathbf{N}_{i}, \mathbf{n}_{i}) = (\mathbf{N}_{i}, \mathbf{n}_{i}, \mathbf{n}_{i}) = (\mathbf{N}_{i}, \mathbf{n}_{i}, \mathbf{n}_{i$$

On de to or any do o lit, or dibe héaders and ab rightly
in or so bre. To find a value for that rent of a appro
not be on the original right header or bore develop
acres as a labore.

$$\mathcal{F}_{\mathbf{w}} = \oint \mathcal{F}_{\mathbf{w}} = \mathbf{S} \mathbf{w}$$

and the state of the state of

$$||f_{ij}|| = \frac{1}{D} \int_{\Omega_{ij}} |p_{ij} - p_{ij}|^{2} dx \qquad (44)$$

More the qualities and the constructed for a coordinate of the figure with the blade (M) and the pressure difference of the more than

$$P\left\{ \{ \mathbf{q}_{\mathbf{q}}(x, \mathbf{v}, \mathbf{v}, \mathbf{v}, \mathbf{v}, \mathbf{v}, \mathbf{v}, \frac{1}{2}, \mathbf{v}, \mathbf{v}$$

1.21

$$\frac{1}{2} \left\{ \mathbf{v}^* + \mathbf{v}^* \right\} = \frac{\mathbf{v}}{2} \, \mathbf{e}_1 + \frac{\mu}{2} \, \frac{\mathbf{v}_1^*}{\mathbf{v}_1^*} + \frac{\sigma}{2} \, \frac{\sigma}{2} \, \mathbf{v}^* + \frac{\sigma}{2} \, \frac{\mathbf{v}_1^*}{\mathbf{v}_1^*} + \frac{\sigma}{2} \, \frac{\sigma}{2} \, \mathbf{v}^* + \frac{\sigma}{2} \, \frac{\sigma}{2} \, \frac{\sigma}{2} \, \mathbf{v}^* + \frac{\sigma}{2} \, \frac{\sigma}{2} \,$$

Then to first order

$$\gamma = \frac{p^{-} - p^{+}}{\rho \sqrt{(1 - w_{x})^{2} + \left(\frac{\pi |x_{R}|}{J_{u}}\right)^{2} \cos(\phi_{P} - \beta)}}$$
(38)

$$= \frac{V}{2} \frac{\Delta C_p}{\sqrt{(1 - w_x)^2 + \left(\frac{\pi x_R}{J_v}\right)^2 - \cos\left(\phi_p - \beta\right)}}$$
(39)

and from Equation (20)

$$\mu = D^2 V \sqrt{(1 - w_X)^2 + \left(\frac{\pi x_R}{J_V}\right)^2} \cos(\phi_P - \beta) \frac{\partial F_T/D}{\partial x_C}$$
(40)

where

$$\Delta C_{p} = (p - p^{*}) \cdot (p \nabla^{2}/2) \qquad (4)$$

If remains to determine a Son in general

and the value of it and he determined to setting the livergen is differing the hand side equal to set of the december this results in a differential equalities to be solved to a set of lives the setting of a segment the perturbative set of section sectors as the gradient of a policy stage.

a heir

$$\frac{2}{\lambda} = \lim_{N \to \infty} \int_{\mathbb{R}^N} |x| = 1\lambda.$$

Lhin

art-1

$$\frac{N^{2}}{2\pi D^{2}N} = \frac{N^{2}}{4\pi D^{2}N} = \frac{2}{2} \int_{\mathbb{R}^{2}} e^{it} dt dt$$

For $dV = D \frac{1}{D} g - dx$

$$\frac{\langle N_D^2 \rangle \langle C_1 \rangle \langle C_2 \rangle}{2\pi D \langle N_1 \rangle} = \frac{\langle N_1^2 \rangle \langle N_1 \rangle \langle C_2 \rangle \langle C$$

It is convenient to define

$$\gamma(x - x_R) = \frac{\int f(x_R) \, \tau^*(x_R)}{D} = \frac{4\pi}{D}$$

where $\Gamma(x_R)$ is the bound circulation ($\phi^* = \phi$) at the fraining edge and points beyond), and ϕ^* has unit magnitude when integrated acrow the chord. Let the nondimensional circulation (ϕ) be

$$G = \frac{\Gamma}{\pi D V}$$
(49)

Then

$$y = \pi V \frac{G(x_R) y^*(x_L)}{cD}$$
 (80)

and

$$\Lambda \equiv \frac{N_o^4 \times c \, v^{\infty}}{2\pi D^2 \, V} = \frac{N_o^4}{4\pi D^2 \, V} \times \nabla \left[\pi V D G_r(x_R) \int_0^{x_{s_r}} dx_{s_r} \right]$$
(51)

10 throught of the vortex distribution is explicit.
 4 the object above to determine the average in the above of the blade surface, an be undertaken.

in the first old color to field on the blade is a post of the more dependent to determined and the one of the curve to be just to integrating the slope.

$$\frac{1}{10} = \frac{1}{10} = \frac{1}{10}$$

From Equation (1.1) the meanline offset for the term with the regar of low so locally component, an be directly computed to assists at an angle of attack term due to gradient. One take and skew terms and a parabolic arc meanline. Lee to gradients of the ptt-h.

An approximation for the non-linear speed in the Con-Cother address the condwise direction (8) (2)

$$\frac{1}{\sqrt{1 + \left(\frac{d \cdot (1 - x)}{d \cdot x}\right)^2}} = \frac{\sqrt{1 + \left(\frac{d \cdot (1 - x)}{d \cdot x}\right)^2}}{\sqrt{1 + \left(\frac{d \cdot (1 - x)}{d \cdot x}\right)^2}}$$

Hence

$$\left(\frac{\mathbf{q}}{\mathbf{V}}\right)^{2} = \left(\frac{\mathbf{q}_{S}}{\mathbf{V}}\right)^{2} + \left(\mathbf{w}_{\mathbf{R}}(\mathbf{c}_{T} + \hat{\mathbf{c}}) + \frac{\mathbf{v}_{T}}{\mathbf{V}} + \hat{\mathbf{c}}\right)^{2}$$
(68)

where $|\hat{e}|$ is the unit vector in the N_{o}^{*} $|x|e_{1}$ direction (nearly the radial direction over much of the blade)

$$e = \frac{N_{\alpha}^{*} \times e_{1}}{N_{\alpha}^{*} \times e_{1}!} = \frac{g_{1} \cdot N_{R_{\alpha}} g_{2}}{\sqrt{1 \cdot N_{R_{\alpha}}^{2}}}$$

$$(69)$$

 $\int_{\mathbb{R}^{n}} \left| \left(\frac{1}{n} - \mathbf{a}_{i} + \frac{1}{n} + \mathbf{a}_{i} \right) \right|$

 $\int_{0}^{\infty} \left| (u_{i} - u_{i}) \right| = \left| (u_{i} - u_{i}) \right| \left(\frac{1}{1}, \dots, \frac{1}{n}, \dots, \frac{1}{n} \right)$

NOMERICAL ANALYSIS FROM FALLER

The engineer of the engineer o

A consequence of grant consequence of a consequence of the consequence

$$\sum_{i=1}^{\infty} \left(\left(\left(\frac{1}{2} \right)^{i} \right) \right) \left(\left(\frac{1}{2} \right)^{i} \right) = 0$$

The second secon

 $\frac{1}{N} = \{ (1 + N) | (1 + N) \}$, where $\frac{1}{N} = \{ (1 + N) | (1 + N) \}$, where $\frac{1}{N} = \{ (1 + N) | (1 + N) \}$

The second of th

The second second project of the second seco

$$\mathbf{x} = \mathbf{x} \cdot \left(\frac{\mathbf{x}}{\mathbf{x}} \right) + \mathbf{x} \cdot \mathbf{x} \cdot \left(\frac{\mathbf{x}}{\mathbf{x}} \right) + \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \left(\frac{\mathbf{x}}{\mathbf{x}} \right) + \mathbf{x} \cdot \mathbf{x}$$

 $\frac{1}{2} \cdot \left(\frac{1}{2} \cdot \frac{1}{2} \right) \cdot \left(\frac{1}{2} \cdot \frac{1}{2} \right) \cdot \left(\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \right) \cdot \left(\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \right) \cdot \left(\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \right) \cdot \left(\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \right) \cdot \left(\frac{1}{2} \cdot \frac{1}$

The linearized integrand 1 for integration over the blade referon a surface, then becomes in the general form is here as 2 fand 6 repend on the particular line of loading or thickness.

$$\begin{split} F_{-}(\mathbf{x}_{i} - \mathbf{x}_{i}) &= \sum_{i=1}^{J} \int_{\mathbf{x}_{\mathbf{h}}} d\mathbf{x}_{\mathbf{R}} \\ &= \frac{\left[(\mathbf{x}_{\mathbf{R}} - \mathbf{x}_{\mathbf{R}_{i}})^{T} d_{i} + (\mathbf{x}_{i_{1}} - \mathbf{x}_{i})^{T} b_{i} \right] c_{i}}{\left[\mathbf{A} (\mathbf{x}_{\mathbf{R}} - \mathbf{x}_{\mathbf{R}_{i}})^{2} + \mathbf{B} (\mathbf{x}_{\mathbf{R}} - \mathbf{x}_{\mathbf{R}_{i}})^{T} (\mathbf{x}_{i_{1}} - \mathbf{x}_{i_{1}})^{2} \left(\frac{c_{i_{1}}}{D} \right)^{2} (\mathbf{x}_{c_{i_{1}}} - \mathbf{x}_{c_{i_{1}}})^{2} \right]^{3/2}} \\ &= \sum_{i=1}^{J} \left[(d_{i}D_{i} + b_{i}D_{i}) \cdot c_{i} \right] \end{split}$$

where $D_{l} = \int_{x_{h}}^{1} \frac{(x_{c_{0}} - x_{c})(x_{R} - x_{R_{0}}) dx_{R}}{\left[\rho(x_{R} - x_{R_{0}} - x_{c_{0}})^{3}\right]^{3}}$

$$= \frac{2}{\left[4A\left(\frac{c}{D}\right)^2 - B^2\right]}$$
 (101)

$$+ \left[\frac{B(1 - x_{R_0}) + 2\left(\frac{c}{D}\right)^2 (x_{c_0} - x_c)}{\sqrt{A(1 - x_{R_0})^2 + B(1 - x_{R_0})(x_{c_0} - x_c) + \left(\frac{c}{D}\right)^2 (x_{c_0} - x_c)^2}} \right]$$

$$\frac{B(x_{h}, x_{R_{0}}) + 2\left(\frac{c}{D}\right)^{2}(x_{c_{0}}, x_{c})}{\sqrt{A(x_{h}, x_{R_{0}})^{2} + B(x_{h}, x_{R_{0}})(x_{c_{0}}, x_{c}) + \left(\frac{c}{D}\right)^{2}(x_{c_{0}}, x_{c})^{2}}}$$

$$\int_{\mathbb{R}^{n}} ||\cdot||_{\mathbf{k} = 0, \mathbf{k}} = 0$$

$$\sqrt{A(x_h, x_R)} = B(x_h, x_R) (x_h, x_R) \left(\frac{1}{D}\right) (x_h, x_R)$$

At the singular point $|\mathbf{x}| = |\mathbf{x}|$

$$F(x_{c_0}, x_{R_0}, x_{c_0}) = 4 \frac{\sum_{i=1}^{3} ||x_iB| + |^{26}|A|| |c||}{\sqrt{A} \left[4A\left(\frac{c}{D}\right)^2 - B^2\right]}$$
(103)

This known value at the singular point allows a straightforward analysis procedure to be undertaken using the procedures previously described.

Some convergence problems near the leading and trailing edges and over much of the surface for narrow blades (maximum $c/D \approx 0.05$) have been resolved by computing the linearized form of F (Fquation 100) over the entire blade and adding a correction term which is the difference between the actual integrand and this linear approximation. This option has been included in the computer program and is defined as "linear approximation-plus-difference." When conventional integration techniques are used everywhere except at the singular point, where Equation (103) is required, the procedure is defined as "direct."

For the trailing-vortex sheet, a regular integration can be performed since no singular points occur on the sheet. The strength of the vorticity is given by Equation (59) and the induced velocity field is given by

$$\frac{v}{V} = \frac{1}{4} \int_{0}^{1} \left(-\frac{dG}{dx_{R}} \right) \sum_{b=1}^{7} W(r_{o}, x_{R}, \theta_{b}) dx_{R}$$
 (104)

where

$$W(r_o, x_R, \theta_b) = \int_0^\infty e_1 \times \frac{\frac{r_o}{D} \cdot \frac{v_b}{D}}{\left|\frac{r_o}{D} \cdot \frac{v_b}{D}\right|^3} d\eta \qquad (108)$$

$$+\left\{\begin{pmatrix} \mathbf{x} & \mathbf{x} \\ \mathbf{D} & \mathbf{D} \end{pmatrix}, \text{is } x_{\mathbf{p}} = (n+n_{p-1}), \\ +\sin x_{\mathbf{p}} & \frac{\mathbf{x}_{\mathbf{p}}}{2}, \text{sin} (n+n_{p-1}) \right\} = 0.5$$

$$= \frac{\cos \phi_{\mathbf{p}}}{2} \left[\mathbf{x}_{\mathbf{R}} - \mathbf{x}_{\mathbf{R}_{\mathrm{pl}}} \cos \left(\theta_{\mathrm{pp}} + \theta_{\mathbf{h}} - \mathbf{p} \right) \right]$$

$$+2\eta \frac{\cos \phi_{\mathbf{p}}}{|\mathbf{x}_{\mathbf{R}}|} \bigg) \bigg] + \bigg[\bigg(\frac{\mathbf{x}_{ii} - \mathbf{x}_{fe}}{|\mathbf{I}|} \bigg) \bigg]$$

$$\eta \sin \phi_{\mathbf{p}} = \cos \phi_{\mathbf{p}} \sin \left(\theta_{i\mathbf{r}} + \theta_{\mathbf{h}} - \phi_{i\mathbf{r}} \right)$$

$$+2\eta\frac{\cos\phi_p}{x_R}\bigg)+\frac{\sin\phi_p}{2}\bigg(x_{R_{ij}}$$

$$\frac{x_{\mathbf{R}} \cos(\theta_{1e} + \theta_{\mathbf{h}} - \phi + 2\eta \frac{\cos\phi_{\mathbf{p}}}{x_{\mathbf{R}}}) \Big] e_{+}$$

$$+ \left[\frac{x_{-}}{D} \frac{x_{1e}}{D} - \eta \sin\phi_{\mathbf{p}} \right) \cos\phi_{\mathbf{p}} \cos\left(\theta_{1e} - \eta \sin\phi_{\mathbf{p}}\right) \cos\phi_{\mathbf{p}} \cos\left(\theta_{1e} - \eta \sin\phi_{\mathbf{p}}\right) \cos\phi_{\mathbf{p}} \cos\left(\theta_{1e} - \eta \cos\phi_{\mathbf{p}}\right) \cos\phi_{\mathbf{p}} \cos$$

$$\rightarrow \theta_{\rm K} = \phi + 2\eta \frac{\cos \phi_{\rm P}}{\kappa_{\rm R}} + \frac{\sin \phi_{\rm P}}{2\pi} \kappa_{\rm R} \sin \left(\theta_{\rm Te}\right)$$

$$+ \theta_{\rm h} - \phi + 2\eta - \frac{\cos \phi_{\rm p}}{\kappa_{\rm R}} \Bigg] e_{\rm p}(\phi) \qquad (400)$$

No. of the second secon

. For express value of the local points from the contribution of the North North contribution of the second section (

to which the interest problems to tweether size is size points is

and the averement in angular variable # between sin cessive points is

$$\Delta \theta_1 = 2\Delta \pi_1 \cos 2\rho \exp \alpha_1$$

 $C(r, 10.7 \cos 2\rho \eta_1) \cos_{\mathbf{R}} 48.7 e^{-2\rho r}$ (111)

from which

$$\Delta H_1 = \frac{h_1}{\Delta N} = \frac{2 \cos 2\rho}{N\rho}$$

and

$$|\Delta\theta|_{\infty} = \frac{4N_0}{4N_0} \frac{1}{\eta_0} \left(\frac{\cos \delta \rho}{N_R} - (4N_0) \right) \Delta\theta_1$$

Generally $\eta_1 = \eta_1$ and the equal instements of $\chi(\eta)$ are used for integration with $N = 2 (\eta)$, double intervals. A value of $\eta_2 = 10$ has been satisfactory to date. When the distance between points becomes small, special time point spacing in η_1 is employed to insure convergence. Accuracy of calculations was determined by comparison with analytical results for the tangential velocity component due to a circular are vortex filament. The axial velocity component at the origin for a general helical filament, all velocity components for estraight line vortex, and induction factors (1.2) for general helical filaments. At individual points of this comparison for filaments ascuracy to the third decimal point was found with the selected parameters and an overall recursey of the non-dimensional induced velocity component of the sheet to one or two units in the fourth decimal point was found.

It is die Gopethorm alcolatoris the form of 5.9 and one dimensional the kness must also be specified. A general femily of loading time trons has been solested (200 with the property that they have conventional NACA loading functional seasons (200 the receivables at the ends are necessary for a conventional of the with a son series trigonometric interpolation polynomial. For loading distributions which approximate the NACA is closs the minute.

The second of the taken sufficiently large to make the aid fished atom in the leading edge region nearly rectangular. A previous investigation (18) of this loading function for K. S. and S. O. I demonstrated that it was an inceptable again somation of the NACA aid (18) meanline see Figure 2. Some effects the followise loading functions were selected to

Fig. () was find with distribution must be integrated across the (0,0) and (0,0) distribution in the integral (0,0)

Fig. Load distribution

The thickness offset is assumed in the form

$$\frac{L_1}{D} = \frac{(x_R)}{D} \cdot \frac{1}{x_R} (x_R) + Y_1(x_R) \qquad (314)$$

where the hordwise distribution Y_T(x) remains the same transport to tip and, the maximum value hanges with radius. This is true for airrent propulsor designs. Specific examples of the thickness function included in the computer rade are the NACA 4 and 5 digit sections (10) the NACA 3 is section (20) in elliptic noise quarts, tail section similar to that described in Reference 21, and an approximate NACA to (1Mod) (22) section. All have been inally trailly defined.

Computer Code - Convergence and Rur Tom-

The complexity of the numerical arms. errorestimates are little all to establish. A S. A. Smiting of a exist tot which inalyte integration character part to 1903 emparisons do not usually evaluate the general or e. The procedure selected to exaligate convergence was to yar, the number of intervals in the radial direction. SR and the number of intervals in the horstwise for two NX to old tion some right and hordwise point were interested trop the absolutions. Computed values of the pitch and and exat sole test radio are shown in Early Literature with a similar variation of data, all plated according to the procedure described in Reference. Ther the same proparage who has similar to NSRDC Model 4498. Computer a nitral processing time is for compidations at 13 ridii between the extreme radic listed, and is in seconds for the Burrough, 2000 High Speed Computer Carrent charges in Acad per CPL access resulting in a maximum charge of about \$46. All or codors presented product about equally satisfactors to sittle with about only one per entidifference to pit to a can be reader about the same as found for kerwise mainers at ar aresis The computed pitch however is a time per cut less than omputed by Kerwin's method. Since annothished expersucc at DINSRIM to date has been that Kirwin's procedure produces designs that are generally slightly overpit hid. perhaps some improvement in performance may be expected using the present method.

Predictions of the pit hand, and critis the two procedures developed for computing the instaced velocity field in the blade surface which contains the field point. direct, and approximate plus difference, are shown a Table I to be nearly the same. However, it has been to und that overall, the capproximate plus difference procedure is preferable when dense chordwise spacing is chosen to g NX 19) or narrow blades (maximum), D = 0.05 cate involved. In these situations, the "direct" procedure produces locally estatic values of the induced velocity because of the decreased spacing between adjacent lines of integration with a corresponding lack of accuracy in the numerical integrations tor the resulting near-singular integrals. This effect is illustrated in Figure 3 which shows values of one of the helical components of the average induced velocity at the 0.946 radius of the reference blade. This velocity component is disto only loading on the blade itself, the effects of thickness. the other blades and the shed vortex sheet account included All data shown in subsequent ligures have been computed by the "approximate plus-difference" procedure although only the pressure distribution near the leading edge in the tipregion of the blade was significantly different between the two procedures

Overall run time varies with number of points number of blades and blade width. Since computer usage charges are so low the 181 x 19 array size is recommended. For a narrow blade, the linear "approximation plus difference" procedure is recommended and the run time may increase by a few hundred seconds because of special care taken with the shed vortex sheet calculations. Computer execution time for Kerwin's program is unknown for the Burroughs. "700 high speed computer but is estimated to be about 150 seconds for data calculations at 4-chordwise points at 8 radial stations. For the results shown in Table 1, data are computed at 13 radial stations with either 8, 11 or 17 chordwise points depending on input data specification.

Lurther details of the geometry of this example are given in Table II. Radial variables are titled according to the symbols suggested in Reference 10.

Libbe L. Libbe Cod Porumeters on Pitch Camber, and Computer Run Lime

COMPUTATION AT PROCEIN RE

	49 2 711	381 + 10	181 4 13	91 x 19	181 - 19	91 4 19	181 - 19	l Kerwin Cor	oputation (')
'н	Day 1	Direct	Р ис. г	Duret	Ducet	Approx (Ditt	Approx + Diff	74 , A .	3# 3 M 70
	†				PHO	H DIAMETER			-
								1.580	1.603
- 1	1.445	1 400	1 5 1	1 > 4	1 5 3 %	1.539	1 540	1.876	
1	5 Arst	40.0	1.4	1.45	1.4×1	1.48	1 488	1511	1 6.2
	10.4	1 (4	L	1 , ,	1	1 , ,	1 '	1.292	1.296
	1.05	154	189	1 194	1 193	1.453	1.193	1.213	
•	1 (13%	. 048	1 ()4()	1.043	1.040	1.04	1.047	1.065	1.0.0
141	12 44 44 4	0.88	0.887	0.854	CERRI	UXK	D MM ?	1 (1844	
								0.890	OKK
	•				CÁ	ABÉR CHORD		‡	· · · · · · · · · · · · · · · · · · ·
								0.0266	0.025+
1	5 (1.81) 55	CONTR	0.0348	0.0370	$\alpha \alpha C$	0.0373	0.0324	0.0268	
•		1111315	11.1137	() (13r.×	4030	0.0369	0.0369	0.0356	0.0351
	(**)	111 197	0.0793	0.0795	1111502	0.0295	0.0295	0.0301	0.0294
	1	Outs	0.028	0.025	0.0,15x	0.0254	0.025	0.0257	
•	111 * 3	0.11, 474	0.0189	uulss	0.0189	0.0188	0.0188	0.0181	0.0180
. 4.	1.11.4	1111 14	aut :	0.0122	0.0173	0.0123	0.0122	0.0122	
								0.0120	0.0113
· # 1.0	• (**)	470	GENT	144	1085	· w. <	1135	N A	> A

Fig. 3. Helical velocity component, view V

DISCUSSION OF EXAMPLE COMPUTATIONS

In this section, the consequences of choices the designer might make both for overall geometry and for the herdwise variation of the thickness distribution and loading distribution are examined. Some common variations in the location of the blade mid-chord line are investigated to determine the effects of overall geometry on pitch, camber, pressure distribution, and second-order performance coefficients. The variations are unskewed skewed and warped (23) blades with other input specifications the same. Skewed blades have blade-sections displaced along the pitch helix and warped blades have blade sections displaced circumterentially in the plane at x > 0.

Input quantities and selected output are shown in Table II for a warped blade similar to NSRIX. Model 4498 tand one similar to the example of Reference 7). For an unskewed blade, the column labeled IFTS, the skew angle θ_s would be zero, and for a skewed blade the column labeled RAKT D, the total rake (1) D, would be equal to $P \cdot \theta_c (2\pi D)$. In Figure 4, the computed pitch and camber ratios are shown for these various overall geometries with all other input the same as in Table II. In Figure 5 His is of the chordwise load distribution and shortwise thickness function on pitch and camber are shown. The effect of rake and skew on pitch and camber follows known trends (* 24). The effect of thickness distribution on pitch. and camber is negligible and the effect of elliptic loading is to reduce the pitch and increase the camber, as would be the case in two dimensional flow at the ideal angle for a givenlift coefficient. In Figure 6, the pitch and camber change is shown for another modification of the warped blade. Since a large change occurs in the pitch from the input specification (Table II) to the computed values (Figure 4), computations, were, performed with the singularities distributed on the blade reference surface at a pitch taken from Figure 4. This change in pitch places the singularities nearer the final blade surface. To have uniformity in the calculations, the pitch angle of the shed vortex sheet was taken as \$\beta\$ the advance angle of the shed vortex sheet. (In Figure 4, the shed vortex sheet was taken to be at the input pitch, which is β_0 the pitch angle derived from the solution of a straight radial litting line representing each blade.) The change in offich angle of the shed vortex wake from \$\beta_i\$ to \$\beta\$ produces a slight increase of pitch near the hub (compare data in Figures 4 and 6). A change in the pitch of the blade reference surface to the values shown by the dashed curve in Figure 4. produces a significant reduction in computed pitch and a compensating increase in camber near the root, with negligible change in either pitch or camber from about [xg] = 0.5 to the tip. Hence the orientation of the free vortex sheet. and blade reference surface have significant effects on the pitch and camber values only near the hub

Table II
DEFINITION OF DESIGN EXAMPLE
Sample Data from Computer Code

	LUADING AND	THE CRINE as a	٠.	HĮ I	10 f S	•	5 F F T	•0
CIRCUL ATTON	COEFFICIENTS							
h	G(N)							
1	0.029028							
ł	0.007010							
3	-0.002810							
•	-0.660540							
	0 00000							

DIAMETER : DP C.3048 W ADVCV W/(ND) = 0.7870 NP6 + 2 = 5

1 8	e٠	•	o	Ŧ	

14	[H / DP	*P / D P	RAKI/OP	16.15	THAT/CH
3.200.0	0.16500	1.16//0	0.0000	0.01000	0.24000
0-256-0	0.17706	1.17510	0.30000	0-0/654	0.19800
0.10000	0.72906	1.20/90	0.03006	0.15/98	0.15610
C.40Cu0	0.77506	1. 15940	3.307 Cu	0-11-16	0.18600
C-50C-0	0. 11206	1.75570	0.000 10	0.47124	0.07640
0.63640	0.11766	1.71600	0.000 co	0.67632	3.05050
0./2000	0. 1-/6%	1.15960	0.000 30	0.78540	0.04210
C. 800.0	0. 11400	1. *****	3.000 30	0.94248	0.05140
6.90640	0.24606	1.135/4	0.000 00	1-09956	0.05460
0.05040	0.74606	1. 70.00	0.00000	1-17010	0.02510
1-00640	C. 00CCC	0.47350	0.03000	1.27064	0.07460

AADB ENAMPLE LUADING AND THICKNESS. 5 ML 4065 - SEPT 80

10	C 4/0P	(CH/DP)	PP/ OP	(PF/DF).	RAN T/OP	TE 15	(TETS)	THAT/CH	(THAT/DP)	**/*
0.20000	0.16566	0.62731	1.16270	0.41950	0.0000	0.00000	1.57080	0.24(00	-0.02610	10000
8.206.8	0.16882	0.42787	1 - 1 66 59	0-64613	0.00000	0.00955	1.57000	0.25498	-0.026/9	1.00000
84455.0	0.10050	0.434/5	1.170 70	0-04625	0.00000	0.037##	1.57080	0.71999	- C . 8 358 1	1.30003
0.25529	0.19936	0.65792	1 - 1 97 74	3-69124	0.00000	0.38418	1.5/080	0.19484	-0.67751	1.00605
0.291.0	0.22510	0. 40910	1 . 2 ? 4 16	0~60076	0.9000	0.14700	1.5/080	0.16697	-0.77784	1.20000
6.54200	0.23127	0.469-1	1.24/ 36	0-51607	0.00000	0.22644	1.57040	0.15002	-0.49779	1.00006
0.40646	0.27506	0.14203	1.25# 90	0.17305	0.00000	3.51416	1.57000	0.10683	-0.14814	1.00000
4.46317	0.29924	0. 16617	1.26143	-0.06 527	0.00000	0.41147	1.57000	0.08667	-0.24744	1.00000
0.53624	0. 32119	6.77019	1.24678	-0-34858	0.06700	0.51971	1.57000	0.049/0	-0.21755	1.30030
0.600.0	0.33700	0.17799	1 . 2 16 00	-0-51415	0.00000	0.62832	1.57083	0.05650	-0.14700	1.00000
0.66946	0.345/3	0.06+16	1 . 1 77 61	-3-50252	0.0000	0./3/41	1.57006	0.04604	-0.13522	1.30000
8.73641	0. 14594	-0.27546	1 . 1 37 51	.0.67499	0.00000	551 48.0	1.57980	0.03//5	-0.11109	1.00000
0.00000	8. 51465	-0. '1921	1.396 78	-0.62192	0.06000	0. ** ? **	1.57000	0.01140	-6.600/1	1.0000
9.03712	0.10705	-0. 49158	1.00213	-0.61250	0.0000	1.01270	1.57080	0.02499	-0.36521	1.00000
4.906.2	4.27597	-0.12309	1.031 09	-3.62442	0.0000	1.10964	1.57000	0.72494	-0.04244	1.10034
6.944-1	0.24451	-1.18469	1 . 0 36 43	-0.4/061	0.00000	1-17746	1.57000	0.07310	-0.0010+	1.30033
0. 27548	0.16388	-1.11103	0.94052	-0.62210	0.00000	1.21875	1.5/000	0.021/5	2.67965	1.1307
4.99192	0.10001	-7. 15651	4.917 20	.0.67/56	0.06000	1.24709	1.3/000	0.92417	0.01849	1.00000
1.0000		-99.19900	0. #/150	-0.62/50	0.00000	1.25664	1.57000	0.02460	\$. C 50 0 a	1.00030

SOOR EXAMPLE LOADING AND THECHMESS. S BLACKS - JPT FO

ECCLIPSE WITH APPORT THE AND CHEROMIST LEAD

14	11	07/0486	51 APR6	C 0 84 4 6	20 U/#		-44[41	
5. 00×000	0.660698	0.100600	5.10.990	1.000000	1.204224	0.00000	1.0.0000	
0.00/5%	0.686874	0.497404	0.17.444	C. 18 4804	1.003031	0.912001	3.00%101	
0.034154	0.1/1016	3.467846	0.14.020	0. 41 96 41	1-004567	0.99/665	0.027568	
4.00098/	0.250000	0 1 10 1 1	7.50.000	0.866627	1.005799	1.040099	0.066678	.341"/+
4.110970	0.321394	0.101077	1.664/98	C. / 6 6044	1.005781	1.074101	3.11796.	0. 16 90 16
0.170000	150606.0	0.141190	1.76.044	4.442740	1.00/070	1.09/910	0.184685	1.301114
4.23.004	0.415015	0.250000	2.060.073	6.104000	1.000/99	1.114007	0.261966	2.110774
0.124995	0.447844	0.1/1012	0.05+41	3. 14 7620	1.312850	1.12.5117	3.352310	2.1.6 91
0.411176	0.497494	0.006674		C. 17 5648	1-01/101	1.112910	3.00/014	2.110.07
0.30u000	0.540000	-0.904880	1.00.096	- 0. 00 0000	1.029601	1.115100	3.545944	2.14.114
0.300074	0.472792	.0.091111	0.10.000	-0.17 5048	1.255507	1.11510*	0.00007	3.4576 4
8.0/1010	0.447219	-0.1/0511	0.91+693	- 6. 14 2320	1.095197	1.11510*	1.740061	
	0.421900	-3.122500	2.444027	- 9. 52 0000	1.097664	1.103570	2.9/9166	2.11119*
0.75v00C	0.120074	-0.44/014	3.700000	6 6 7/88	0.097100	0.949240	3.981754	
0.021104		-9.5.1340	0.44.785	-0./66040	4.741550	0.712012	3.05.000	
150100.0	0.763637			-0.00000	3.229548	0.993578	3.94477	110.0
0.933013	0.176665	-0.57666	3.40.033					
0.76/806	0.411629	-0 - 4 100 4 5	0.14.074	- 6. 01 960 1	-0.610894	0.216/1/	2.006/6	1 * * *
4.992494	0.031655	-0.203760	0.173659	- (. 14 4401	-1.501501	0.056/55	3.9976	(* 1
1.06.000	0.010020	-0.1.1114).30,390	- 1. 00 000 u	-/.01.221	6.060000	1.000001	

10f 8t 886L* . 7.454 DEG

	,	
	~	
	-	
	r	
	ž	
	_	
	÷	
	•	
	=	
	_	
	~	
	Ξ	
	Σ	
•	Ξ.	
	-	
	3	
	•	

		•	
		•	
		•	
	•		: ::::::::::::::::::::::::::::::::::::
	:		

Eq. 4 Efficie Code wastig take on pit for any consistent values.

engan series di kacamatan di kac Kacamatan di kacama

In Figure — blade pressure coefficient distritishints on the warped skewed and unskewed blade, are booked for three radii, one near the bide one to resold partial occurrent the fig. The major difference in the fig. The major difference in the size distribution occurs to architectural where the warped Chade, have greater to index systems as the north sides of the flade, and here is greater to index systems as the first systems.

In Figure 8, the meanline shape, for these blade of the same three tadmate shows. The greatest bings of more maintains trape of our at the root but in some or the policy of the same (α,β)

In Engine 6 the non-linear errossor, before the inche Equations (rife) and obtain and ineurities chape are shown at a sign of north for the same variation of the twist coal of the arises distributions shown in Engine 100 or 100 or 100.

•

modifications. The performance wells sents imputed a conding to the lifting line model and first order linear. lifting surface moders by Our Equations (So and) No and ΔC_{p} from Equation ($^{3}4\pi$ are nearly identical. The non-inear performance, setticients of # O in Equations 5, 65 and, 80% and Cy from Equation (660) for a blade with only loading. of your arrow it aveil a few percent relative to the lifting use. values. The addition of thickness and skew or warp, hanges the attission, distribution and meanline stope, and in feates the values by another few per only a finisher bears producing value of the and the who have more than ten per entigreater then are do to the the letting line on the first the pressure distribution and him evaluations constitutes an area and states. The Contain Fermine bull for an entries alls for fortger. Once, the containment of the lap usate the oil with these we retail to the first suded are called every a happenmental evaluation is required by another the production. Precly transposition 1 at a 111 should be interpreted as possitive trends of tro a traligant firmanca. The present lifting one mode oup out to properly the feedback of Alaski, the properly of the securities at traight contain to with constant transferright to represent the loads of a a character to a per tool of the area imperatible is independent to be and the operation of speciality after with speciment in warpe troude of efficialists. The majority of approvations of the flavor And the process of the consequences, the gapper and the consequences of the consequenc de la Francisco de la composición del composición de la composición de la composición de la composición de la composición del composición de la composición del composició

•

M ...

 b i o potation on rotating blades

the configulation the computer

of our bidget the pressure distribu
of cortain the pressure distribu
of cortain unitric (see Appendix)

the care computations

S S HIMSEKS

- to the few oftent for the terroming of the few of sponding to a present of sponding to a present of the few often times are as great of INSRIE Barroughs. Total buttons are some interest of the few o
- The first temperature of the person of the first temperature of the fir
- is a simple strip the prosce of the None of these simple are sold of the transfer of the second

- A 51

- A second at the Arms of the Ar
- William M. Quille Proposer Designs

 William S. Symposium on
 Proposer S. Symposium on
 William S. Symposium on

 Many S. Symposium on American American on American on
- A Find the Common of the Commo
- Months of the State of the Stat
- $\label{eq:matrix} \begin{array}{ll} (x,y) = (x,y) \cdot (x,y$

- 6 P. van Oossanen. "Calculation of Performance and Cavitation Characteristics of Propellers Including Effects of Non-uniform Flow and Viscosity." Netherlands Ship Model Basin Publication No. 45, 1974.
- J. L. Kerwin, "Computer Techniques for Propeller Blade Section Design," International Shipbuilding Progress, Vol. 20. No. 227, July 1973, also MIT Dept. of Ocean Engineering, October, 1975.
- J. F. McMahon, "LFTSUR—A Computer Program for Determining Hydrodynamic Pitch, Meanline Shape, and Pressure Distribution for Marine Propellers," DTNSRDC/SPD-731-01, 1976 (unpublished)
- Terry Brockett, "Propeller Perturbation Problems," NSRDC Report 3880, October, 1972
- 10 H. Lackenby, editor, "International Towing Tank Conference Standard Symbols 1976," British Ship Research Association Technical Memorandum No. 500, May, 1976.
- 11 A. P. Wills, Vector Analysis with an Introduction to Tensor Analysis, Dover Publications, Inc., 1931
- 12 H. B. Phillips, Vector Analysis, Wiley, 1933.
- 13 J Weber, "The Calculation of the Pressure Distribution on the Surface of Cambered Wings and the Design of Wings with Given Pressure Distribution," Aeronautical Research Council R&M 3026, 1955
- 14 I S Sokolnikoff and R M Redheffer, Mathematics of Physics and Modern Engineering, McGraw-Hill. 1958
- 15 H. Glauert. The Flements of Aerofoil and Airscrew Theory, Cambridge, 1926.
- 16 Terry Brockett, "A Subroutine for Evaluation of One-Dimensional Singular Integrals (SINGINT)," Defence Research Establishment Atlantic, Technical Memorandum 79 F. December, 1979
- W. B. Morgan "Propeller Induction Factors," DTMB Report 1183. November, 1957.
- 18 Terry Brockett "The Design of Two-Dimensional Profiles from a Specified Surface Speed Distribution Part 1—Meanline at Ideal Angle of Attack." Detence Research Establishment Atlantic Techmical Memorandum 79 G. Desember, 1979.
- [49] J. H. Abbott, and A. E. von Doenhoft. Theory of Wing Sections. Dover, 1959.
- 6 W. F. Lindsey, et al. "Aerodynamic Characteristics of 74 NACA 16 Series Airfoils at Mach Numbers between 0.3 and 6.8." NACA TN 1546, September 1948.
- [4] P. Rader "Cuvitation of Propeller Blade Sections" Admiralty Experimental Works, Hasler, Report 22, 84, March, 1984.
- 17 Letts Brockett "Minimum Pressure Envelopes for Modified NACA 66 Sections with NACA a = 0.8 Camber and BuShips Type Land Type II Sections." DTMB Report 1/80 Tebruary 1966
- 23 J. F. Nelka, "Experimental Evaluations of a Series of Skewed Propellers with Forward Rake," NSRDC Report 4113, 16ty, 1924.

and the same of the same of the same of

- R. A. Cumming, et al, "Highly Skewed Propellers," Trans. SNAMF, Vol 80, 1972
- I. T. Huang, et al, "Stern Boundary-Layer Flow on Axisymmetric Bodies," Twelfth Symposium on Naval Hydrodynamics, National Academy of Sciences, Wash. D.C., 1978.
- Damon F. Cummings, "Numerical Prediction of Propeller Characteristics," Journal of Ship Research, Vol 17, No. 1, March, 1973
- Nancy Groves, "An Integral Prediction Method for Three-Dimensional Turbulent Boundary Layers on Rotating Blades," Paper presented at "Propellers '81 Symposium," SNAME, May, 1981

APPENDIX STREAMLINE COORDINATE SYSTEM

It is often convenient to have an orthogonal coordinate system on the surface of the blade. In particular, for performing boundary-layer computations, an orthogonal coordinate system with one variable along the streamlines reduces the number of terms in the governing equations. To determine the differential equation of the streamline path, lev

$$x_{\mathbf{R}} = \psi(x_{i}) \tag{120}$$

be the radius of the streamlines as a function of the chord wise coordinate (x_i) . Then

$$s^{\bullet}(x_{s}) = s(x_{s}, \psi(x_{s})) \tag{12}$$

is the position vector of the streamlines on the blade surface. Hence a tangent to the streamline is

$$t_{w} = \frac{ds^{\bullet}}{dx_{c}} = \left(\frac{\partial s}{\partial x_{c}}\right)_{x_{R} = w} + \left(\frac{\partial s}{\partial x_{R}}\right)_{x_{R} = w} + \frac{d\psi}{dx_{R}}$$

$$= D\left[\frac{c}{D}e_{1} + \left(\alpha e_{1} + \frac{N_{o}^{\bullet} \times e_{1}}{D^{2}\frac{c}{D}}\right)\frac{d\psi}{dx_{R}}\right] - (122)$$

$$= D\left[\left(\frac{c}{D} + \alpha \frac{d\psi}{dx}\right)e_{1} + \frac{1}{2}\sqrt{1 + N_{R_{o}}^{2}}\frac{d\psi}{dx_{R}}\right]$$

For this tangent vector to be parallel to the velocity vector on the surface, the vector cross product, $\mathbf{t}_{\psi} \times \mathbf{q}_{+}$ must be zero. Hence, for the velocity on the blade surface given by

$$\frac{\mathbf{q}}{\mathbf{V}} = \frac{\mathbf{q}_{\infty}}{\mathbf{V}} + \frac{\mathbf{v}}{\mathbf{V}}$$

$$= \frac{\mathbf{t}}{\mathbf{V}} \mathbf{e}_1 + \frac{\mathbf{W}}{\mathbf{V}} \hat{\mathbf{e}}$$
(123)

the cross product is

$$\frac{1}{D} \times \frac{q}{V} = \left\{ \left(\frac{c}{D} + \alpha \frac{d\psi}{dx_c} \right) e_1 + \frac{\sqrt{1 + N_R_o^2}}{2} \frac{d\psi}{dx_c} e_1 \right\}$$

$$\times \left\{ \frac{U}{V} e_1 + \frac{W}{V} e_2 \right\}$$

$$\left\{ \begin{array}{l} \frac{1}{2} \sqrt{1 + \kappa_{\mathbf{R}^2}} \frac{\mathrm{d}\psi}{\mathrm{d}x} - \frac{1}{\chi} \\ + \left(\frac{\epsilon}{D} + \alpha \frac{\mathrm{d}\psi}{\mathrm{d}x} \right) \frac{\mathbf{W}}{\chi} \right\}_{\ell} \end{aligned}$$

For this cross product to be zero, the slope of the stream line is

$$\frac{\mathrm{d} \mathbf{v}}{\mathrm{d} \mathbf{x}_{\perp}} = \frac{\frac{1}{10} \frac{\mathbf{W}}{\sqrt{1 + \mathbf{x}_{\mathbf{R}}^{2}}}}{\frac{1}{2} \sqrt{1 + \mathbf{x}_{\mathbf{R}}^{2}}} \frac{1}{\sqrt{1 + \mathbf{x}_{\mathbf{R}}^{2}}} \frac{\mathbf{w}}{\sqrt{1 + \mathbf{x}_{\mathbf{R}}^{2}}} = 0$$

For fines along the surface which are normal for the streamlines, let

be the chordwise position as a function of radius. There is sector on the blade surface tangent to this size is

$$t_{n} = \frac{dx(x_{R} + x_{R})}{dx_{R}}$$

$$= \left(\frac{\partial x}{\partial x_{x}}\right)_{x = x_{R}} \frac{dx}{dx_{R}} + \left(\frac{\partial x}{\partial x_{R}}\right)_{x = x_{R}}$$

$$= D\left[\frac{1}{D}e_{1}\frac{dx_{R}}{dx_{R}} + \alpha e_{1} + \frac{1}{2}\sqrt{1 + x_{R}}\right] = 0$$

The condition to be satisfied is that $|t_p|$ be perpendicular to the velocity vector, or

$$\frac{t_n}{D} \cdot \frac{q}{V} = 0$$

$$= \frac{U}{V} \left(\frac{c}{D} \frac{d\kappa}{dx_R} + \alpha \right) + \frac{c}{2} V + \frac{w}{N_R^2} \frac{w}{V}$$
(127)

Thus the slope of lines on the surface which are normal to the streamline is

$$\frac{d\kappa}{dx_{\mathbf{R}}} = -\frac{\frac{1}{2}\sqrt{1 + N_{\mathbf{R}_0}^2} \frac{\mathbf{w}}{\mathbf{v}} + \alpha \frac{\mathbf{U}}{\mathbf{v}}}{\frac{c}{D_0} \frac{\mathbf{U}}{\mathbf{v}}}$$
(429)

One now has differential equations to determine an orthogonal network over the blade surface. The differential arclength along the streamlines is

$$dx = \left\{ \left(\frac{\partial x}{\partial x_{k}} \right)_{x_{R}} = \psi + \left(\frac{\partial x}{\partial x_{R}} \right)_{x_{R}} - \psi - \frac{d\psi}{dx_{k}} \right\} dx_{k}$$
(130)

Since

$$ds = f ds 1 = h_1 dx_c \qquad (131)$$

then

$$h_1 = \left| \left(\frac{\partial x}{\partial x_n} \right)_{x_{\frac{n}{N}} = \psi} + \left(\frac{\partial x}{\partial x_{R}} \right)_{x_{\frac{n}{N}} = \psi} \frac{d\psi}{dx_n} \right|$$

or

$$\frac{h_1}{D} = \left\{ \left(\frac{\zeta}{D} + \alpha \frac{\mathrm{d} |\psi|}{\mathrm{d} x_\zeta} \right)^2 + \frac{1 + N_{\mathrm{R}_D}^2}{4} \left(\frac{\mathrm{d} |\psi|}{\mathrm{d} x_\zeta} \right)^2 \right\}^{h_1}$$
(13)

Similarly the differential arc length along the orthogonal surface coordinate is

$$ds = \left| \left(\frac{\partial x}{\partial x_n} \right)_{X_n = R} \frac{dR}{dx_R} + \left(\frac{\partial x}{\partial x_R} \right)_{X_n = R} \right| dx_R$$
(133)

$$h_1 dx_R \tag{134}$$

witte

$$\frac{h_2}{D} = \left\{ \left(\frac{c}{D} \cdot \frac{d \kappa}{d \kappa_R} + \alpha \right)^2 + \frac{1 + N_R^2}{4} \right\}^{\kappa_R}$$
(135)

INITIAL DISTRIBUTION

Copies		ropies	
1	ARMY CHIEF OF RES & DIV	1 PMS 378	
		1 PMS 180	
1	ARMY ENGR R&D LAB	1 PMS 381	
	CHONR	PMS 38:	
•	1 Code +38) PMS (H9) PMS (4)	
	1 1.1B	PMS (**)	
		1 PMS 19	
1	NR1	1 PMS (9)	
] PMS - 44	
•	ONE BOSTON	· PMS · /	
	ONR CHICAGO	LoshA fellowers was made	
•	OSK CHICAGO	John Market Commencer	•
•	ONE LONDON, ENGLAND	FAC 1	
<i>:</i>	# SNA	MELLIANY SEALES MMAN	
	1 11B		
	i Johnson	NAVSHIPY, PUSME	
1	NAVPOSCOL 4.1B	I NAVNRAPYLIPHI A	
Ĭ	SROIC & NAVADMING, MIT	SAVSHAPYD NORGA	
1	NADO	E SALSHIPYD HALN	
,	Nose 1 1311 Lib	1 SAVSHIPY: BEAGE	
	1 5005	1 NAVSHIPY, MARK	
	1 13111 118	THE STATE OF THE S	
	1 2501/Hoyt	1 SAVSHIPYE (Posts	
	1 Nelson		
i	Net	AAR HER GAR	
· 🗯	ALADIA NA	. F10	
ſ	NAVSEA Losea obc		
	1 /EA 0321	28 (2011) 3 K (A M)	
	1 SEA 93D	AND AND AND AND	
	1 SEA 052		
	1 5EA 752P	and the second of the second	
	5 EA −9521		
	• STA 52.	* MARA.	
	1 × (A + 05) +	1 (A) (H) (H)	
		A MAKE RE	
	tA → th	So to the # 1	
	HA OF	ki, . •ab ≃ tita x as	

Copies		Copies	
1	MISSISSIPPI, ME DEPT/Fox	i	ASNE
1	NOTRE DAME ENGR LIB	1	SNAME
5	PENN STATE U/ARL	1	AERO JET-GENERAL/LIB
	I Parkin L Parkin L denderson	1	ALLIS CHALEFRS, YORK, PA
	confiderson confider longson	1	AVCO TYCOMING
	. nompson	1	BAKER MANUFACTURING
	SENSON, AND MAIN DEPT		BATH IRON WORKS CORP 1 Hansen 1 FFG PROJECT OFFICE
	. 47 LeSON (4Ab) . 5	1	BETHLEHEM STEEL SPARROWS
	MEN - LA		BIRD-JOHNSON (1)
	Section 1997 And Control		: Ridles : Norton
	или на вости 15 15 година.		BOFING ADV AME SYCULLS
	100 K (100 M) (100 K) 100 K (100 K) 100 K (100 K)	-	BOLL BERANEN AND NEWMAR 1 Brown
	• 1 × 10		1 Tackson
	·• '•	•	BREWER EM R LAB
	nt 1800 - Ktolin		AMBRIDGE ACCESS Sanger
	tita sa ti di sa ti	ì	ALSPAN, INC. Pitter
	• "		To The Holling To Smith
	• • • • • • • • • • • • • • • • • • •		11 (A) (A) (B) (B) (B) (B) (B) (B) (B) (B) (B) (B
	, , , , , , , , , , , , , , , , , , ,		, fitzgetaid
	5 T	:	CRITITE CONTRACTOR
	A STATE OF S		FN AND CNARA ASW-MARINE - TENED

Copies		Copies		
3	GIBBS & COX	1	SCIENCE	APPLICATIONS, INC/Stern
	1 TECH LIB		CEORGE C	CUARR
	l Olson l CAPT Nelson	i	GEORGE O	. SHARP
	1 CAPI Netson	1	SPERRY S	SYS MGMT LIB/Shapiro
1	GRUMMAN AEROSPACE/Carl	•	JI LIKE S	ors Hom Erdy Shapiro
		2	SUN SHIP	PBLDG
•	HYDRONAUTICS		1 LIE	3
	1 Etter		l Nei	llson
	1 Scherer			
	1 I.IB	1	ROBERT I	AGGART
1	HYDRODYNAMICS RESEARCH ASSOCIATES,	1	TETRA TE	ECH PASADENA/Chapkis
	INC.			
	1 Cox	1	TRACOR	
	l Valentine l Nelka		***	mon consubabble
	1 Ne1ka	1	UA HAMIL	TON STANDARD/Cornel1
ï	INGALLS SHIPBLDG			
•	INS! FOR DEFENSE ANAL		CENTER DI	STRIBUTION
•	The Parameter Head	Copies	Code	Name
1	LITTLETON R & ENGR CORP/Reed			
		1	11	Ellsworth
ì	1.111ON INDUSTRIES	1	1102.1	Nakonechny
:	LOCKHEED/Waid			
-		1	15	Morgan
:	MARTIECH, INC/Vassilopoulis	1	1509	Powell
1	NATIONAL STEEL & SHIPBLDG	1	152	Lin
•	WITOWN STELL & SHITBLED	1	1521	Day
1	NEWPORT NEWS SHIPBLDG LIB			•
		1	1522	Wilson
1	NIELSEN ENGR/Spangler	1	1522	Dobay
•	ORI, INC	1	1528	Reed
•	1 Kim	1	154	McCarthy
	l Sch neider			
	l Williams	1	1543	Cumming
	l Kobayashi	40	1544	Brockett
		1	1544	Boswell
ì	HYDROMECHANICS, INC/Kaplin	1	1544	Jessup
1	NAR SPACE/Ujihara	1	1544	Larimer
•	The ornor of the te	1	1552	Lee
1	PROPULSION DYNAMICS, INC	1	1552	Libby
-		1	1556	Santore
1	PROPULSION SYSTEMS, INC	1	1556	Coder
		1	1556	Jeffers

CENTER DISTRIBUTION (Continued)

Copies	Code	Name
1	172	Krenzke
1	1720.6	Rockwell
1	19	Sevik
1	19	Strasberg
l	1903	Chertock
1	1962	Zaloumis
1	1962	Noonan
1	2814	Czyryca
10	5211.1	Reports Distribution
1	522.1	Library (C)
1	522.2	Library (A)

END

DTIC