

INFOMKDE Student Projects

Mel Chekol

Student Projects

Goals

- Develop practical experience with the Semantic Web technologies
- Become familiar with existing datasets
- Understand possibilities and limitations of Semantic Web technologies

Objective

- Design and implement solutions for real-world problems by leveraging the power of Semantic Web technologies
- Demonstrate the practical application of Semantic Web principles to enhance data integration, interoperability, and knowledge representation in diverse domains.

Interesting applications

- Automatically transforming structured, unstructured or semi-structured data into RDF, OWL
- Question answering systems
- Data integration
- A simple recommender system
- Geospatial search and retrieval
- Translating SPARQL into Gremlin, cypher

•

Use-case: Datasets

Wikidata DBpedia YAGO

The Linked Open Data Cloud from lod-cloud.net

Use-case: Applications

- Siri
- Google knowledge graph [1]
- Microsoft's satori [1]
- Facebook's entity graph [1]

• ...

Ehrlinger, L. and Wöß, W., 2016. Towards a Definition of Knowledge Graphs. *SEMANTICS (Posters, Demos, Success)*, 48(1-4), p.2.

Use-case: Applications

Bing Infobox

Rafael Bombelli

Mathematician

Rafael Bombelli was an Italian mathematician, Born in Bologna, he is the author of a treatise on algebra and is a central figure in the understanding of imaginary numbers.

W Wikipedia

Born: 20 jan. 1526 · Bologna, Province of Bologna

Died: 1572 · Rome, Italy

Education: University of Bologna

Field of study: Algebra

People also search for

Gerolamo Cardano

Niccolò Fontana Viète Tartaglia

Francois Hero of

Alexandria

See all (15+)

Leonhard Euler

Data from: Wikipedia - Freebase - Tumblr

Suggest an edit

Use-case: Applications

Buys Ballotgebouw - Vastgoed & Campus - Universiteit Utrecht https://www.uu.nl/buys-ballotgebouw -

Het **Buys** Ballotgebouw heeft zowel werkgroepruimten als enkele computerleerzalen. De onderwijsruimten bevinden zich hoofdzakelijk op de begane grond, de eerste verdieping en tweede verdieping. Het gebouw heeft geen vrij toegankelijke entree. Toegang zonder toegangspas is mogelijk via de eerste verdieping van het Koningsbergergebouw.

C. H. D. Buys Ballot Christophorus Henricus Diedericus Buys Ballot (['bœys 'balot]; October 10, 1817 - February 3, 1890) was a Dutch chemist and meteorologist after whom Buys Ballot's law and the Buys Ballot table are named. He was first chairman of the International Meteorological Organization, ... + W Wikipedia Born: October 10, 1817 · Kloetinge, Netherlands Died: February 3, 1890 (aged 72) · Utrecht, Netherlands Nationality: Dutch Alma mater: Utrecht University Known for: Buys-Ballot's law Fields: chemistry · meteorology Life Rank Religion Born Members of the Royal Netherlands Academy of Arts and Sciences See all (30+) Quetelet Waal Dalton Liebig Hooker

Use-case: query service

Rock bands that start with 'K'

Selected projects from previous years

• A geospatial search application, for flora and fauna at Uithof, that makes use of semantic web technologies [Francois, Hugo and Brent].

Procedure

- Teams of five students
 - realize a semantic web project
 - present the project results to the other students
 - provide a report
 - use Gitlab to track your progress

Upcoming deadlines

- Project report
 - max 5 pages, you need to include in the report the contributions of each member of your group.
 - January 19, 2024
- Project presentation (10 minutes)
 - January 24, 2024 from 09:00 12:45, Location: RUPPERT-ROOD
- Final exam
 - January 30, 2024, from 17:00 20:00, Location: EDUC-BETA

Modeling Motor Sports using Semantic Web Technologies

Motor sports

- "activities that involve the use of vehicles with a motor" [1].
- activities that involve the use of cars, motorcycles, power boats, etc.
- Categories based on racing
 - Circuit racing
 - Rallying
 - Trials
- Categories based on vehicle type
 - Single-seater
 - Formula 1/2/3/E
 - Stock-car racing
 - NASCAR
- Categories based on surface type
 - Road, off-road, dirt
- Categories based on propulsion method

Source: By Morio - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=14930940

[1] https://en.wikipedia.org/wiki/Motorsport

Motor sports – Formula 1

There are:

- Drivers
- Circuits
- Constructors
- Grands Prix
- Cars
- Teams
- Races ...

Source: Source: By Morio - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=14930940

By Morio - This file was derived from: Max Verstappen 2017 Malaysia 3.jpg by Saga City, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=66411705

Datasets and data sources

- F1 dataset from Kaggle https://www.kaggle.com/datasets/rohanrao/formula-1-world-championship-1950-2020
 - You're responsible for respecting others' rights, including copyright.
 - Please don't post the datasets in forums and other platforms without the proper license.
 - If possible, use the dataset only for the purpose of completing this project.
- F1 fandom Wiki https://f1.fandom.com/wiki/Formula_1_Wiki
- Wikipedia, DBpedia, Wikidata
- F1 official website https://www.formula1.com/en.html

• ...

Datasets and data sources

- F1 dataset from Kaggle https://www.kaggle.com/datasets/rohanrao/formula-1-world-championship-1950-2020
 - There are 14 datasets (csv files) containing info about:
 - Circuits, drivers, seasons, constructors, etc.

circ	circuitRef	name	location	country	lat	Ing	alt	url
1	albert_park	Albert Park Grand Prix Circuit	Melbourne	Australia	-37.8497	144.968	10	http://en.wikipedia.org/wiki/Melbourne_Grand_Prix_Circuit
2	sepang	Sepang International Circuit	Kuala Lumpur	Malaysia	2.76083	101.738	18	http://en.wikipedia.org/wiki/Sepang_International_Circuit
3	bahrain	Bahrain International Circuit	Sakhir	Bahrain	26.0325	50.5106	7	http://en.wikipedia.org/wiki/Bahrain_International_Circuit
4	catalunya	Circuit de Barcelona-Catalunya	Montmeló	Spain	41.57	2.26111	109	http://en.wikipedia.org/wiki/Circuit_de_Barcelona-Catalunya
5	istanbul	Istanbul Park	Istanbul	Turkey	40.9517	29.405	130	http://en.wikipedia.org/wiki/Istanbul_Park
6	monaco	Circuit de Monaco	Monte-Carlo	Monaco	43.7347	7.42056	7	http://en.wikipedia.org/wiki/Circuit_de_Monaco
7	villeneuve	Circuit Gilles Villeneuve	Montreal	Canada	45.5	-73.5228	13	http://en.wikipedia.org/wiki/Circuit_Gilles_Villeneuve
8	magny_cours	Circuit de Nevers Magny-Cours	Magny Cours	France	46.8642	3.16361	228	http://en.wikipedia.org/wiki/Circuit_de_Nevers_Magny-Cours
9	silverstone	Silverstone Circuit	Silverstone	UK	52.0786	-1.01694	153	http://en.wikipedia.org/wiki/Silverstone_Circuit

Datasets and data sources

- F1 Wiki https://f1.fandom.com/wiki/Formula_1_Wiki
 - Lots of semi-structured data including tables and infoboxes.

Circuit \$	Type ‡	Location ‡	Country \$	Race(s) ‡	Season(s) ‡	Races
A1-Ring	race	Zeltweg	AUT	Austrian GP	1997-2003	7
Adelaide Street Circuit	street	Adelaide	₩ AUS	Australian GP	1985-1995	11
Ain-Diab	road	Casablanca	MAR MAR	Moroccan GP	1958	1
Aintree	race	Aintree	≅IS GBR	British GP	1955, 1957, 1959, 1961-1962	5
Albert Park	street	Melbourne	AUS	Australian GP	1996-2019, 2022-present	23
Algarve International Circuit	race	Portomaio	S POR	Portuguese GP	2020-2021	2

- 1. Provide a motivation and argue why semantic web technologies are a suitable choice to model motor sports.
- 2. Transform the data (about motor sports) into RDF
 - i. If it's not possible to use web scrapping tools to extract data from F1 fandom wiki, then you can manually curate triples.
 - ii. When transforming the data into RDF, provide efficient/compact ways to represent it. For instance, how can you represent **temporal data** of the following form:

iii. Don't just represent everything, identify those that can be inferred from the data, for instance number of races held (last column in the above table).

- 1. Provide a motivation and argue why semantic web technologies are a suitable choice to model motor sports.
- 2. Transform the data (about motor sports) into RDF
 - i. If it's not possible to use web scrapping tools to extract data from F1 fandom wiki, then you can manually curate triples.
 - ii. When transforming the data into RDF, provide efficient/compact ways to represent it. For instance, how can you represent **temporal data** of the following form:

Hockenheimring	race	Hockenheim	GER	German GP	1970, 1977-1984, 1986-2006, 2008, 2010, 2012, 2014, 2016, 2018, 2019	37	
----------------	------	------------	-----	-----------	---	----	--

- iii. Don't just represent everything, identify those that can be inferred from the data, for instance number of races held (last column in the above table).
- iv. Provide a method to efficiently represent data that involves reification.
- v. Use a triple store (such as BlazeGraph, Apache Jena Fuseki, OpenLink Virtuoso, etc) to maintain your data

- 1. Provide a motivation and argue why semantic web technologies are an appropriate choice to model motor sports.
- 2. Transform the data (about motor sports) into RDF
- 3. Create ontological axioms using RDF schema and OWL
 - i. Axioms to represent different categories of motor sports, drivers, constructors, teams, etc.
 - ii. You need to provide at least 20 axioms (10 in RDFS and 10 in OWL)
- 4. Provide 10 interesting SPARQL queries (the queries need to use constructs such as property paths, negation, aggregates, etc)
 - i. Alternatively, provide a simple interactive interface through which the data can be accessed/searched.

- 5. Data integration: link your knowledge base with DBpedia and Wikidata
- 6. Provide remarks for: what are the challenges for the semantic web? Do you see a future for it in the era of generative AI?
- 7. Provide dataset statistics, i.e., number of triples, resources, properties, axioms, etc. In addition, show by how much you reduced the size of the data by efficiently modelling temporal facts.
- 8. Generate embeddings for the resources and properties of your dataset using TransE, RotatE or your preferred method.
 - Use the embeddings for a query answering task, for instance, (s, p, ?)
- 9. Submit a report (max. 5 pages) and the source codes of your system.
- 10. Present your work.