Symulacja i analiza wydajności sieci bezprzewodowych w programie COMNET III

Zadania projektowe:

1.4.4 c) - Performance analysis of CSMA/CA network for different fragmentation threshold values for 5 stations and 80 stations

1.4.7 c) IV - Performance analysis of CSMA/CA networks of IEEE 802.11a and IEEE 802.11g standard for 5 stations and 80 and 6 Mbit/s and 24 Mbit/s transmission modes

1.4.4 c) - Performance analysis of CSMA/CA network for different fragmentation threshold values for 5 stations and 80 stations

Łącze 20Mbps pracujące w standardzie IEEE 802.11g:

- Slot time = 20 μs
- Short IFS = 10 μ s
- CWmin = 31
- CWmax = 1023

Parametry dobrane w celu saturacji łącza:

Oferowane obciążenie	20 Megabitów/s	
Rozmiar wiadomości	16000 bitów	
Ilość pakietów na stację (5 stacji)	250	
Ilość pakietów na stację (80 stacji)	15.625	
Czas między pakietami (5 stacji)	0.004 s	
Czas między pakietami (80 stacji)	0.064 s	

Wyniki symulacji:

Parametr progu fragmentacji	50	200	500	1000	2304
Przepustowość dla 5 stacji [Mbps]	3,8752	7,0864	8,4224	8,7664	8,7088
Przepustowość dla 80 stacji [Mbps]	5,2896	7,8016	8,2144	7,6592	6,2624
Ilość zdarzeń kolizyjnych dla 5 stacji	250	478	532	608	587
Ilość zdarzeń kolizyjnych dla 80 stacji	2655	3687	3937	3687	3119

Wykresy pokazują nam proporcjonalną zależność między przepustowością a ilością kolizji. Dla niskiej wartości FT overhead generowany przez dzielenie ramek na mniejsze powoduje, że mamy do czynienia z bardzo niską przepustowością. Dla 5 stacji kolizje występują relatywnie rzadko, więc przepustowość oraz zdarzenia kolizyjne zmieniają się minimalnie dla większych wartości. Natomiast w większych sieciach, taka jak z 80 stacjami, im większa wartość FT, tym dłużej kanał będzie zajmowany przez każdą ramkę, co zmniejszy przepustowość.

1.4.7 c) IV - Performance analysis of CSMA/CA networks of IEEE 802.11a and IEEE 802.11g standard for 5 stations and 80 and 6 Mbit/s and 24 Mbit/s transmission modes

Parametry łącza CSMA/CA ustawione zgodnie z tabelką z instrukcji:

Table 1.8: CSMA/CA parameters differences for 802.11a and 802.11g network.

IEEE standard:	802.11a	802.11g
Slot time	9 μs	20 μs
Short IFS	16 μs	10 μs
CWmin	15	31
CWmax	511	1023

Dla każdego trybu transmisji obliczamy wymagany Frame Overhead:

Frame Overhead	$8 * \left(\frac{predkość}{6000000}\right) + 34$
Tryb 6 Mbit/s	42 bajty
Tryb 24 Mbit/s	66 bajtów

Parametry dobrane w celu saturacji łącza:

Oferowane obciążenie	100 Megabitów/s	
Rozmiar wiadomości	16000 bitów	
Ilość pakietów na stację (5 stacji)	1250	
Ilość pakietów na stację (80 stacji)	78.125	
Czas między pakietami (5 stacji)	0.0008 s	
Czas między pakietami (80 stacji)	0.0128s	

Wyniki symulacji:

Standard IEEE	802.11a		802.11g	
Tryb transmisji	6 Mbps	24 Mbps	6 Mbps	24 Mbps
Przepustowość dla 5 stacji [Mbps]	4,7472	17,1984	4,9216	16,8304
Przepustowość dla 80 stacji [Mbps]	3,6848	10,7328	3,9968	11,9584

Zgodnie z oczekiwaniami, na wykresach obserwujemy niemalże czterokrotny wzrost prędkości transmisji przy zmianie trybu transmisji z 6 do 24 Mbit/s. Dodatkowa przepustowość oznacza również większą ilość kolizji, więc wzrost nie jest dokładnie czterokrotny.

Tryb transmisji

24 Mbit/s

6 Mbit/s

Porównując przepustowość w zależności od ilości stacji w sieci widzimy, że większa ilość stacji jest ponownie równoważna większej ilości występujących kolizji, obniżając całkowitą przepustowość. Zmiana standardu z 802.11a na 802.11g oferuje nam minimalne wzrosty dla trybu transmisji 6 Mbit/s, lecz w przypadku 80 stacji oraz trybu transmisji 24 Mbit/s krótsze czasy między ramkami pozwalają na zwiększenie przepustowości ponad o megabit.