(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 13 December 2001 (13.12.2001)

PCT

(10) International Publication Number WO 01/93926 A2

(51) International Patent Classification7:

A61M 5/20

(21) International Application Number: PCT/US01/18734

(22) International Filing Date:

8 June 2001 (08.06.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 09/589,962

8 June 2000 (08.06.2000) US

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier application:

US Filed on 09/589,962 (CON) 8 June 2000 (08.06.2000)

(71) Applicant (for all designated States except US): MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH [US/US]; 200 First Street S.W., Rochester, MN 55905 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): FARRUGIA, Gianrico [MT/US]; 814 5th Street S.W., Rochester, MN 55902 (US). ERETH, Mark, H. [US/US]; 1435 Woodview Lane S.W., Rochester, MN 55902 (US). BROOKS, William, W., Jr. [US/US]; 628 22nd Street N.W., Rochester, MN 55906 (US). NEUBAUER, Jerry [US/US]; 706 4th Avenue S.E., Stewartville, MN 55976 (US). RIGOTTI, Jim

[US/US]; 2605 Oslo Court N.E., Rochester, MN 55906 (US). SCHULLER, Peter [US/US]; 3535 Technology Drive, Rochester, MN 55901 (US).

- (74) Agent: ELLINGER, Mark, S.; Fish & Richardson P.C., P.A., 60 South Sixth Street, Minneapolis, MN 55402 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

A2

(54) Title: AUTOMATED INJECTION DEVICE FOR ADMINISTRATION OF LIQUID MEDICAMENT

(57) Abstract: An automated injection device for administration of one or more liquid medicaments that is particularly useful for self-administration of liquid medicaments such as those used to treat anaphylactic shock, heart attack, exposure to toxic agents, or other conditions may include a number of features designed to reduce both the size and complexity of the device. With reduced size, the device may provide greater convenience and portability. Importantly, the reduced size may encourage more users to carry the device, and thereby reduce the risks associated with the conditions mentioned above. With reduced complexity, the device can be constructed at a lower cost. Moreover, the device can be more reliable and simple to operate. In addition, the automated injection device may further include a wireless communication apparatus that may be activated to call for additional medical assistance when the automated injection device is deployed:

AUTOMATED INJECTION DEVICE FOR ADMINISTRATION OF LIQUID MEDICAMENT

TECHNICAL FIELD

This invention relates to automated injection devices for administration of liquid medicaments.

5

10

15

20

25

30

BACKGROUND

Automated injection devices enable patients to administer a dosage of liquid medicament for therapeutic purposes. An automated injection device may contain, for example, one or more liquid medicaments effective in treating anaphylactic shock caused by severe allergic reactions to foods, insect stings, and the like. An example of a liquid medicament suitable for treatment of anaphylactic shock is epinephrine. Automated injection devices that carry epinephrine are sometimes referred to as "EPI" injectors. Other types of injection devices may carry antiarrhythmic medicaments for administration during a heart attack, as well as antidotes to a variety of toxic agents, e.g., for military applications.

Most automated injection devices of this type are designed for single use in an emergency situation. For this reason, extended longevity usually is a requirement. In particular, such devices typically are constructed to contain a measured dosage of the liquid medicament in a sealed and sterile environment over an extended period of nonuse. The devices are designed for quick administration of the liquid medicament, often under the stress of shock. In many devices, a spring-loaded actuator facilitates automated injection without the need for significant manual intervention by the patient. The patient merely actuates a trigger that releases the spring-loaded actuator. The actuator drives a needle into the patient's skin and quickly releases the liquid medicament. In this manner, there is no need for the patient to manually pierce the skin or operate a syringe for delivery of the liquid medicament. Often, the needle is not even visible to the patient.

The unpredictability of anaphylactic shock, heart attack, and other emergency medical conditions requires that the patient carry the automated injection device at all times. Unfortunately, the size and weight of many automated injection devices makes them cumbersome and inconvenient to carry. A number of carrying cases, holsters, belts,

and the like have been devised to enhance the portability of automated injection devices. Still, the inconvenience associated with many devices causes users to disregard medical risks, and simply leave the automated injection devices at home. This is particularly the case for users engaged in active lifestyles involving high levels of physical activity.

SUMMARY

5

10

15

20

25

The present invention is directed to automated injection devices for administration of one or more liquid medicaments, and methods for their use. A device in accordance with the present invention may be particularly useful for self-administration of liquid medicaments such as those used to treat anaphylactic shock, heart attack, exposure to toxic agents, or other emergency medical conditions.

A device in accordance with the present invention may include a number of features designed to reduce both the size and complexity of the device. With reduced size, the device may provide greater convenience and portability. Importantly, the reduced size may encourage more users to carry the device, and thereby reduce the risks associated with the medical conditions mentioned above.

With reduced complexity, the device can be constructed at a lower cost.

Moreover, the device can be more reliable and simple to operate. In some embodiments, the device can be made from recycled and recyclable materials, reducing waste following use. The device preferably is made water-resistant to promote longevity and durability to environmental conditions. Also, in some embodiments, the device may be suitable for administration of liquid medicaments on a non-emergency basis, e.g., to administer insulin to diabetic patients.

In one embodiment, the present invention provides an automated injection device comprising a reservoir, a needle in fluid communication with the reservoir, a piston member with a piston face positioned within the reservoir, a spring adjacent the piston member, and a loading member that is movable to compress the spring, the loading member permitting the spring to expand following compression, whereby the expanding spring drives the piston member such that the piston face moves within the reservoir and expels the contents of the reservoir through the needle.

In another embodiment, the present invention provides an automated injection device comprising a housing having a first end and a second end, the housing defining an opening at the second end, a piston member slidably mounted within the housing, a reservoir slidably mounted within the piston member, a needle in fluid communication with the reservoir, a piston mounted within the piston member with a piston face positioned within the reservoir, a spring that bears against the piston member on a side of the piston member adjacent the first end of the housing, and a loading member oriented to drive the piston member toward the first end of the housing and thereby compress the spring, wherein the piston member and the loading member are configured to permit relative movement of the piston member and the loading member following compression of the spring, and the loading member defines a stop member that limits travel of the reservoir toward the second end of the chamber, whereby the spring drives the piston member relative to the loading member and toward the second end of the housing, and the piston member drives the reservoir against the stop member such that continued movement of the piston member relative to the reservoir drives the piston face through the reservoir and expels the contents of the reservoir through the needle.

5

10

15

20

25

30

In an added embodiment, the present invention provides a method for injection of a liquid medicament using a device having a reservoir, a needle in fluid communication with the reservoir, a piston member with a piston face positioned within the reservoir, a spring that bears against the piston member, and a loading member oriented to drive the piston member to compress the spring, the piston member and the loading member being configured to permit relative movement when the compressed spring reaches a sufficient level of spring force, wherein a portion of the loading member extends outward from the device, the method comprising pushing the loading member against a patient to drive the loading member into the device and toward the piston member, thereby compressing the spring, wherein the spring expands to drive the piston member relative to the loading member and extend the needle outward from the device and drive the piston face to expel the contents of the reservoir through the needle.

In a further embodiment, the present invention provides a method for injection of a liquid medicament using a device having a housing having a first end and a second end, the housing defining an opening at the second end, a piston member slidably mounted

within the housing, a reservoir slidably mounted within the piston member, a needle in fluid communication with the reservoir, a piston mounted within the piston member with a piston face positioned within the reservoir, a spring that bears against the piston member on a side of the piston member adjacent the first end of the housing, and a loading member oriented to drive the piston member toward the first end of the housing and thereby compress the spring, wherein the piston member and the loading member are configured to permit relative movement when the compressed spring reaches a sufficient level of spring force, the loading member defines a stop member that limits travel of the reservoir toward the second end of the chamber, and a portion of the loading member extends outward from the opening, the method comprising pushing the loading member against a patient to drive the loading member into the device and toward the piston member, thereby compressing the spring, wherein the spring expands to drive the piston member relative to the loading member and extend the needle outward from the opening and drive the piston face to expel the contents of the reservoir through the needle.

5

10.

15

20

25

30

In another embodiment, the present invention provides an automated injection device comprising a reservoir, a needle in fluid communication with the reservoir, a piston member with a piston face positioned within the reservoir, a spring adjacent the piston member, and a loading member that is movable to compress the spring and permit the spring to expand following compression, the expanding spring driving the piston member such that the piston face moves within the reservoir and expels the contents of the reservoir through the needle, wherein the piston member and the reservoir partially overlap along a longitudinal extent of the device and are sized such that the device has a length of less than or equal to approximately 3.0 inches and a width of less than or equal to approximately 2.0 inches.

In an added embodiment, the present invention provides a wireless-enabled injection device comprising an automated injection device having a housing, a reservoir positioned inside the housing, and a needle in fluid communication with the reservoir. The wireless-enabled injection device also comprises a wireless communication apparatus affixed to the housing, wherein the wireless communication apparatus is activated to call for additional medical assistance when the automated injection device is deployed.

In a further embodiment, the present invention provides a method for injection of a liquid medicament using a wireless-enabled injection device. The method comprises providing an automated injection device having a housing, a reservoir positioned inside the housing, a needle in fluid communication with the reservoir, and a wireless communication apparatus affixed to the housing. The method further includes deploying the automated injection device to expel the contents of the reservoir through the needle, and activating the wireless communication apparatus to transmit a signal when the automated injection device is deployed;

The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.

DESCRIPTION OF DRAWINGS

- FIG. 1 is a perspective exterior view of an automated injection device in accordance with an embodiment of the present invention;
 - FIG. 2 is a side view of the device of FIG. 1;

5

10

20

- FIG. 3 is an end view of the device of FIG. 1;
- FIG. 4 is another end view of the device of FIG. 1;
- FIG. 5 is a cross-sectional side view of the device of FIG. 1;
- FIG. 6 is a cross-sectional side view of the device of FIG. 1 at a first stage of operation;
- FIG. 7 is a cross-sectional side view of the device of FIG. 1 at a second stage of operation;
- FIG. 8 is a cross-sectional side view of the device of FIG. 1 at a third stage of operation;
 - FIG. 9 is a cross-sectional side view of the device of FIG. 1 at a fourth stage of operation;
 - FIG. 10 is a conceptual view of a housing for a device as shown in FIG. 1;
- FIG. 11 is another conceptual view of another housing for a device as shown in FIG. 1;

FIG. 12 is an additional conceptual view of another housing for a device as shown in FIG. 1; and

- FIG. 13 is another conceptual view of an added housing for a device as shown in FIG. 1.
- FIG. 14A shows an exploded view of an automated injection device of FIG. 1 having a wireless communication apparatus.
- FIG. 14B shows another perspective view of the wireless communication apparatus of FIG. 14A.

5

15

20

25

30

- FIG. 15 shows a perspective view of the wireless communication apparatus affixed to the automated injection device from FIG. 14A.
 - FIG. 16 shows the automated injection device of FIG. 14A with a protective film affixed over the wireless communication apparatus.
 - FIG. 17 shows a perspective view of the automated injection device from FIG. 14A with sections removed to better view the tail of the wireless communication apparatus inside the automated injection device.
 - FIG. 18 shows a process of events that enables the user to receive emergency medical care after the automated injection device of FIG. 14A is deployed.

Like reference symbols in the various drawings indicate like elements.

DETAILED DESCRIPTION

FIG. 1 is a perspective exterior view of an automated injection device 10 in accordance with an embodiment of the present invention. As shown in FIG. 1, device 10 may include a housing 12 having a proximal end 14, a distal end 16, and a cap 18 mounted at the distal end. Housing 12 contains appropriate components for containment and automated delivery of liquid medicaments for injection to a user. Cap 18 protects distal end 16, which forms the operative end of device 10, when the device is not in use.

The user removes cap 18 prior to use. In the example of FIG. 1, cap 18 may include a tear-away strip 20 that couples the cap to housing 12 at distal end 16. Strip 20 may be similar to the strips commonly used with caps for plastic milk cartons and the like, and provides a tab 21 for grasping by the user. Cap 18 and strip 20 may be integrally molded from plastic and coupled to the cap and housing 12 with a pair of

thinned, scribed, or perforated joints 22, 23 that extend circumferentially about distal end 16 and promote tearing of the strip from the cap. Upon removal of strip 20, cap 18 is easily removable to expose distal end 16.

5

10

15

20

25

30

With further reference to FIG. 1, housing 12 may be slightly elongated, providing a length 24 that exceeds a width 26 and depth 28 of device 10. In some embodiments, width 26 and depth 28 may be equivalent, particularly if device 10 has a substantially cylindrical shape and circular cross-section. Housing 12 is susceptible to a number of different shapes and sizes. In general, housing 12 is constructed such that device 10 assumes a shape and size appropriate for convenient portability, e.g., in the shirt or pants pocket of the user. In some embodiments, as will be described, housing 12 may be constructed as a keychain fob and provided with appropriate coupling hardware for mounting on a keyring or for receipt of keys.

In other embodiments, housing 12 can be constructed for convenient storage in a portable holster, belt, or case, or for attachment to other portable devices such as mobile telephones, personal digital assistants (PDA's), and the like. In each embodiment, however, housing 12 preferably is constructed with reduced size and portability as one of the primary design objectives, along with safety and efficacy. In this manner, device 10 may encourage more users to carry it, and thereby reduce the risks associated with anaphylactic shock, heart attack, exposure to toxic agents, and other conditions capable of treatment with one or more liquid medicaments carried by device 10.

FIGS. 2, 3, and 4 are side, first end, and second end views, respectively, of device 10 of FIG. 1. FIGS. 5-9 are various cross-sectional side views of device 10 during different stages of use. As shown in FIGS. 5-9, device 10 may include a reservoir 30, a needle 32, a piston member 34, a spring 36, a loading member 38, and a piston 44. Needle 32 is in fluid communication with reservoir 30, which contains a liquid medicament. In some embodiments, device 10 may include multiple reservoirs or subdivided reservoirs that enable containment and automated injection of multiple liquid medicaments, if desired.

For anaphylactic shock, examples of suitable liquid medicaments contained in reservoir 30 include epinephrine and atropine. For heart attacks, anti-arrhythmic medicaments may be contained within reservoir 30. For exposure to toxic agents, a

variety of liquid medicaments may be provided in reservoir 30. Conceivably, other liquid medicaments such as insulin could be provided for treatment of non-emergency conditions.

Needle 32 and spring 36 preferably are made of metal. The various components 30, 34, 38, 44 of device 10 can be constructed from durable plastics such as polyester. Piston member 34 and loading member 44 preferably are made from plastics that provide a moderate degree of flexibility and elasticity. Such materials may be selected in part on the basis of the suitability for recycling. Indeed, some of the components, such as housing 12, can be made from recycled materials. Reservoir 30 and needle 32, which contain and transport the liquid medicament, ordinarily will be manufactured from virgin materials due to sterility and biocompatibility concerns.

5

10

15

20

25

30

Reservoir 30 may be substantially cylindrical in shape, and may include a small needle aperture 40 at one end for receipt of needle 32. Needle 32 may be mounted in aperture 40 with a biocompatible sealant to prevent leakage of reservoir 30. Another end of reservoir 30 may define a larger aperture 42 for receipt of piston 44. A gasket 46 fills aperture 42, sealing it against leakage and contamination of the liquid medicament. Piston gasket 46 defines an aperture, however, for receipt of a shaft 48 forming part of piston 44. A first piston face 50 extends into reservoir 30, while a second piston face 52 resides outside of reservoir 30. Shaft 48 extends between piston faces 50, 52, and is translatable within the aperture defined by gasket 46. In this manner, first piston face 50 is movable to drive liquid medicament out of reservoir 30 and through needle 32 for injection into the user.

Piston 44 and reservoir 30 may be disposed within an inner chamber 54 defined by piston member 34. Piston member 34 acts as a carriage for travel of piston 44 and reservoir 30 within housing 12, as well as an actuator for the piston to expel liquid medicament from the reservoir. In some embodiments, piston member 34 and piston 44 may be integrally formed with one another, e.g., by molding. In the example illustrated in FIGS. 5-9, however, piston 44 and piston member 34 are separate components. Second piston face 52 bears against an inner wall of inner chamber 54 such that downward movement of piston member 34 urges piston 44 downward.

Housing 12 defines an outer chamber 56 sized to accommodate travel of piston member 34, spring 36 and loading member 38 along the length of device 10. Frictional engagement of the outer wall of reservoir 30 with the inner wall of inner chamber 54 serves to carry the reservoir along with piston member 34 as it travels upward and downward within outer chamber 56. Frictional engagement of shaft 48 of piston 44 serves to carry it along with reservoir 30, and hence piston member 34, when the piston member moves upward within outer chamber 56.

.5

.10

15

20

25

30

Housing 12 may have a unitary construction or, as shown in FIGS. 5-9, include two or more sub-sections 58, 60. Sub-sections 58, 60 can be coupled together by a number of techniques including adhesive bonds, ultrasonically welded bonds, threaded couplers, and frictional or snap-fit arrangements. Housing 12 can be sealed with epoxy or other adhesives to promote a substantially water-resistant seal, and ensure longevity and durability of the device. In the example of FIGS. 5-9, sub-section 60 includes a radial flange 62 that is snap-fit into a detent 64 in sub-section 58 to couple the sub-sections together. Sub-sections 58, 60 may have different cross-sectional dimensions, or different diameters in the embodiments in which they are circular in cross-section.

First sub-section 58 may include a substantially cylindrical retention ring 66 that extends downward from proximal end 14 and retains spring 36 against the inner wall of outer chamber 56. Retention ring 66 may be integrally molded with housing sub-section 58. One end of spring 36 bears against the interior of housing 12 at proximal end 14, while the other end bears against a flange 68 that extends radially outward from piston member. A portion of spring 36 may surround an upper portion 70 of piston member 34. In this manner, spring 36 is maintained in alignment relative to the inner wall of outer chamber 56 by retention ring 66 and upper portion 70 of piston member 34.

Loading member 38 can be constructed to include an outer wall that defines another inner chamber 72. A raised inner wall 74 may define both an aperture 76 for needle 32 and a stop surface 78 for reservoir 30. Needle 32 may reside within a protective sheath 79 prior to use. At least a portion of loading member 38 extends outward from distal end 16 of device 10 for engagement with an injection site, such as the user's thigh. Loading member 38 may have a flared lip 80 that flares radially outward. Flared lip 80 may engage a detent 82 defined by second sub-section 60 to retain loading

member 38 within outer chamber 56 of housing 12. Flared lip 80 bears against a ramped lip 84 defined by piston member 34.

As shown in FIG. 6, cap 18 can be removed from housing 12 by tearing away strip 20. In this manner, loading member 38 is exposed at distal end 16 of device 10. Loading member 38 is movable upward against the bias produced by spring 36 to thereby load the spring and compress it, as shown in FIG. 7. Specifically, loading member 38 moves upward when the user applies the loading member to an injection site with sufficient force to overcome the spring bias. In this manner, flared lip 80 bears against ramped lip 84 of piston member 34 during upward movement of loading member 38 into outer chamber 56 of housing 12. With further reference to FIG. 7, flange 68 of piston member 34, in turn, bears against spring 36, compressing it against its intrinsic bias as the piston member travels upward.

5

10

15

20

25

30

As shown in FIG. 8, flared lip 80 eventually extends upward above another detent 86 having a diameter that is greater than detent 82. Upon engagement with detent 86, flared lip 80 extends outward. Detent 86 prevents loading member 38 from moving downward and, in effect, locks the loading member into position. When flared lip 80 locks into detent 86 and spring 36 generates a sufficient level of spring force, loading member 38 permits the spring to expand downward toward the injection site. In particular, loading member 38 and piston member 34 are cooperatively arranged such that flared lip 80 defines an aperture that is initially sized smaller than piston member 34, but expands to permits downward movement of piston member 34, piston 44, reservoir 30, and needle 32 in response to expansion of spring 36.

Flared lip 80 is biased inward by the immer wall of second sub-section 60, which has a smaller diameter than first sub-section 58. Loading member 38 preferably is formed from a flexible and elastic material, however, and expands outward when it reaches detent 86, increasing the size of the aperture defined by the loading member. As mentioned above, loading member 38 can be constructed from a plastic material such as polyester that provides degrees of both flexibility and elasticity. The increased size permits piston member 34 to extend into inner chamber 72. When spring 36 reaches a sufficient level of spring force and flared lip 80 has reached detent 86, the spring exerts a bias back against piston member 34 that is sufficient to drive ramped lip 84 against the

flared lip, driving piston member 34 into loading member 38. Thus, as shown in FIG. 8, loading member 38 is radially enlarged to permit receipt of a portion of piston member 34 within chamber 72.

5

10

15

20

25

30

As spring 36 expands, it drives piston member 34, piston 44, and reservoir 30 downward together toward loading member 38. Following engagement with detent 86, loading member 38 may be substantially flush with the distal end 16 of device 10, as shown in FIGS. 8 and 9. As piston member 34 and reservoir 30 travel downward, as shown in FIG. 8, needle 32 is driven through protective sheath 79. Protective sheath 79 may be formed from a thin plastic or rubber material, such as polyester, polyurethane, silicone rubber, and the like. Needle 32 ruptures protective sheath 79 and is exposed for entry into the injection site, e.g., in the user's thigh. As shown in FIGS. 8 and 9, portions of piston member 34 and reservoir 30 enter chamber 72 of loading member 38 and continue to travel until the reservoir abuts the stop surface 78. At that point, the spring bias exerted by spring 36 on piston member 34 overcomes the frictional force exerted between reservoir 30 and the piston member.

As a result, as shown in FIG. 9, piston member 34 is able to continue travel downward into chamber 72 of loading member 38. Reservoir 30 stops traveling, however, and rests against stop surface 78. After reservoir 30 stops, piston 44 continues to travel with piston member 34, driving first piston face 50 through reservoir 30. First piston face 50 thereby expels the liquid contents of the reservoir through needle 32, which is lodged in the injection site. Needle 32 preferably is driven into the injection site under the initial spring force provided by spring 36, as shown in FIG. 8.

Insertion of needle 32 preferably requires no manual intervention by the user following the user's initial application of loading member 38 to the injection site. Rather, spring 36 expands with sufficient force to deploy needle 32 automatically following upward travel of loading member 38 to detent 86. Thus, the user simply drives loading member 38 against the injection site, forcing it into housing 12. This simple act by the user starts a chain reaction of events that causes compression and then expansion of spring 36 to drive needle into the injection site and expel the contents of reservoir 30. The relative simplicity of the interaction between loading member 38, piston member 34,

piston 44, and reservoir 30 promotes reliability, which is a paramount concern given the application of device 10 to emergency medical conditions.

5

10

15

20

25

30

An automated injection device constructed in a manner similar to device 10 shown in FIGS. 1-9 may provide quick, convenient, and automated injection of liquid medicaments. In particular, operation of such a device 10 merely requires application of loading member 38 to the injection with sufficient force to drive the loading member upward into housing 12. From that point forward, the operation of spring 36, piston member 34, piston 44, reservoir 30, and needle 32 is automatic, and results in effective injection of the liquid medicament contained within the reservoir. As alternatives, an electrical or pneumatic actuation mechanism could be provided in lieu of spring 36. The arrangement of the inner components of device 10, i.e., piston member 34, piston 44, reservoir 30, needle 32, spring 36, and loading member 38 permits the device to be constructed at a reduced size.

In particular, such components are arranged to at least partially overlap along the length of device 10, in periods of use and nonuse, to restrict the longitudinal length of device 10. As shown in FIG. 5, for example, before device 10 is used, reservoir 30, piston 44, piston member 34, and spring 36 substantially overlap with one another and are coaxially aligned along the longitudinal axis of housing 12. As a result, the length of device 10 is reduced relative to arrangements in which such components would be disposed end-to-end within device housing 12. An arrangement as shown in FIG. 5 provides substantial reductions in length, while still providing automated convenience to the user. With reduced size, a user is more likely to carry device 10 and thereby more likely to survive a medical emergency that is treatable with the device.

With reference to FIG. 1, with the reduced size afforded by device 10, housing 12 and cap 18 together may have a length 24 in the range of approximately 2 to 3 inches and a diameter (or width 26 and depth 28 in the case of a rectangular cross-section) in the range of approximately 1 to 2 inches. In one particular embodiment, device 10 has a length in the range of approximately 2.5 to 3.0 inches and a diameter of approximately 1.0 to 1.5 inches. More particularly, a device 10 is envisioned having a length of approximately 2.75 inches and a diameter of approximately 1.25 inches, providing exceptional convenience and portability.

FIGS. 10-13 are a conceptual view of housings for automated injection devices as shown in FIG. 1. Although device 10 is shown in FIGS. 1-9 as having a substantially cylindrical shape, it may be susceptible to a number of different configurations designed to maintain a reduced size and suit the needs of individual users. FIG. 10, for example, shows an automated injection device 88 that conforms substantially to device 10 of FIGS. 1-9, but is configured as a key fob device. In particular, device 88 includes an integrated ring 90 for receipt of keys or a keychain ring. Device 88 alternatively could be attached to a necklace or strap. As further alternatives, device 88 could be coupled to an ankle or wrist bracelet or a zipper fob. In this manner, the user may conveniently carry device 88 with his or her keys. Ring 90 may be integrally molded with housing 12, bonded to the housing via adhesives or ultrasonic welding, or snap-fit into holes in the housing. The size of device 88 may conform substantially to that of device 10 as described above with respect to FIG. 1.

5

10

15

20

25

30

FIG. 11 is another conceptual view of a housing for a device as shown in FIG. 1. Device 92 of FIG. 11 may having a housing 94 that is integrally molded with or attached to a platform 95. For example, housing 94 may taper upward and inward to merge with platform 95, as indicated by reference numeral 96. Platform 95 could be made substantially flat and planar and approximate the width of a credit card. In the embodiment of FIG. 11, platform 95 includes attachment wings 98, 100 that permit attachment of device 92 to another device carried by the user. For example, attachment wings 98, 100 can be formed from a flexible and somewhat elastic material, and configured to clip onto the sides of a PDA, e.g., a Palm or Windows CE device, or a mobile telephone, indicated by reference numeral 102 and drawn with dashed lines. In this manner, automated device 92 mounts onto the back of a device 102 that is already carried by the user, further promoting convenience and portability.

FIG. 12 is an additional conceptual view of a housing for an automated injection device as shown in FIG. 1. Automated injection device 104 of FIG. 12 conforms substantially to device 10 of FIGS. 1-9, but further includes an integrated clip 105 having an arm 106 and a spacer 108. Clip 105 operates like the clip on a pen, permitting device 104 to be clipped to and retained within a pocket or to another thin element that fits

between the major portion of housing 12 and the clip. Clip 105 can be integrally molded with housing 12.

FIG. 13 is another conceptual view of a housing for an automated injection device as shown in FIG. 1. Automated injection device 110 of FIG. 13 conforms substantially to device 92 of FIG. 11. Instead of attachment wings 98, 100 for attachment to a device, however, device 110 includes a substantially planar clip 114 that extends outward from and substantially parallel to platform 115. Clip 114 can be integrally molded with platform 114, and may include planar arm 116 that extends along the width of the platform and defines a slot 118 for receipt of the flap of a pocket or some other thin element. Platform 115 may conform to the width of a credit card, and thereby promote convenience and portability for the user.

10

15

20

25

30

In a further embodiment of the invention, FIG. 14A shows an exploded view of an automated injection device of FIG. 1 having a wireless communication apparatus 220. As shown in FIG. 14A, the automated injection device 200 is configured to have a rounded-rectangular shape, although the injection device 200 is susceptible to a number of different configurations. The wireless communication apparatus 220 is used to call for additional medical assistance when the automated injection device 200 is deployed. After a liquid medicament, such as epinephrine, is injected into the user, the user often requires additional medical care and transportation to a medical center. Users with life threatening allergies or other medical ailments may be physically unable to retrieve help, or an accompanying person may not be informed sufficiently to retrieve additional medical assistance. Furthermore, the user or accompanying person may not be able to provide accurate location information when calling for medical assistance.

Referring to FIGS. 14A-14B, the wireless communication apparatus 220 includes a flex circuit 222 having a first major surface 223 and a second major surface 226. A power source 232 (FIG. 14A), such as a battery, is mounted to a portion 224 of the first major surface 223. Additionally, electronic circuits 231 (FIG. 14B) are mounted to another portion 225 of the first major surface 223, wherein the circuits 231 may include a transmitter circuit, a GPS (global positioning system) circuit, and electrical components, such as resistors or capacitors. The first major surface 223 is affixed to an outer surface 205 of the housing 12 such that the electrical circuits 231 and the power source 232 are

positioned between the flex circuit 222 and the housing 12. An antenna 234 for the wireless transmitter may be formed from copper traces on the second major surface 226 of the flex circuit 222, and the flex circuit 222 may also include a slender tail 228 with a conductive pad 230 on each side of the tail 228. In preferred embodiments, the housing 12 of the automated injection device is formed with a cavity 202, which matches the shape of the flex circuit 222 when the flex circuit 222 is affixed to the housing 12. A second cavity 204 may be located within the first cavity 202 to provide a space for the electronic circuits 231 on the first major surface 223 when the flex circuit 222 is affixed. A small slit (not shown in FIGS. 14A-14B) in the housing 12 is provided so that the tail 228 of the flex circuit 222 may be inserted into the housing 12 of the automated injection device 200.

5

10

15

20

25

30

FIG. 15 shows a perspective view of the flex circuit 222 affixed to the automated injection device 200 from FIG. 14A, and FIG. 16 shows the automated injection device 200 with a protective film 236 affixed over the flex circuit 222. The first major surface 223 of the flex circuit may be affixed to the housing 12 using a pressure sensitive adhesive, and the tail 28 (not shown in FIG. 15) is inserted into the housing 12, as described later. The flex circuit 222 may have a protective film 236 (FIG. 16) affixed to the second major surface 226 of the flex circuit 222 and a portion 206 of the outer surface of the housing 12 to shelter the wireless communication apparatus 220 from any handling or environmental hazards. The protective film 236 may be affixed using a pressure sensitive adhesive and also covers the slit where the tail 228 is inserted into the housing 12.

The transmitter circuit of wireless communication apparatus 220 may include at least one transmitter or transceiver that is capable of sending signals that conform to a conventional standard known as Bluetooth. The Bluetooth transmitter is a short-range transmitter that is capable of communicating with a nearby cellular phone and attempting to call an emergency service, such as a 911-emergency call. For example, the Bluetooth transmitter may use the nearby cellular phone for E-911 service in the United States, which is a known federal mandate that allows emergency 911 calls from cellular phones to connect directly with an emergency service without the cellular service provider checking for available credit or validation. The transmitter circuit may also include a

conventional memory chip, such as a PROM, that can store identification information or a message requesting help, which would be transmitted to the emergency service. The identification information may be used by the emergency service to determine the type of emergency situation. The GPS circuit mounted to the flex circuit includes a conventional GPS chip, which may be activated to communicate with a global positioning satellite system to retrieve location information of the user. The location information is then transmitted to the emergency service using the transmitter circuit.

5

10

15

20

25

30

FIG. 17 shows a perspective view of the automated injection device 200 from FIG. 14A with sections removed to better view the tail 228 of the flex circuit 222 positioned inside the housing 12. The wireless communication apparatus 220 is activated when the user deploys the automated injection device 200. One example of how the wireless communication apparatus 220 may be activated is to provide power to the transmitter circuit when the needle 32 (FIGS. 5-9) is pushed through the aperture 76 (FIGS. 5-9) of the load member 38. As shown in FIG. 17, the tail 228 of the flex circuit 222 is routed into a small opening 238 in the load member 38 such that the conductive pads 230 (not shown in FIG. 17) of the tail 228 are in the path of the needle 32. When the injection device 200 is deployed, the needle 32 is pushed through the aperture 76 and also through the conductive pad 230 on each side of the tail 228. The needle 32 electrically connects the conductive pads 230 of the tail 228 to close the power circuit and activate the transmitter circuit and the GPS circuit. This is but one illustration of how to activate the wireless communication apparatus 220 when the injection device 200 is deployed, and other modes of activation are within the scope of the invention.

FIG. 18 shows a process of events that enables the user to receive emergency medical care after the automated injection device 200 of FIG. 14A is deployed. The user may be a hypersensitive individual that carries 250 the automated injection device 200 for emergency situations. If the individual is exposed 252 to a trigger, such as a bee sting, that causes an allergic reaction, the individual experiences acute anaphylaxis 254 and enters anaphylactic shock. The user deploys 256 the automated injection device 200 containing epinephrine to treat the anaphylactic shock by pushing the loading member 38 against the individual, thereby compressing the spring 36. When the injection device 200

is deployed, the epinephrine is injected 258 into the individual, and the individual waits 260 for the medicament to treat the anaphylactic shock.

5

10

15

20

The automated injection device 200 also activates 262 the Bluetooth transmitter and the GPS chip when the injection device is deployed. As previously described, the GPS chip communicates with a global positioning satellite system to retrieve the location of the individual, and the Bluetooth transmitter uses 266 the E-911 service of a cellular phone for communication 268 with a central server 911-command center. The central server 911-command center receives the location and identification information during the communication with the cellular phone, and the command center may access 270 a brief medical history of individual with the identification information. The command center may confirm 274 to the individual that an EMS (emergency medical service) will arrive to provide medical assistance, and the individual may cancel 276 the arrival of the EMS if the deployment of the injection device was accidental. The command center notifies 272 the local EMS of the medical emergency and the location information of the individual, and the EMS arrives at the location of the waiting individual. The individual receives 278 medical assistance from the EMS and is transported to a medical center. Medical care is provided 280 to the individual, and the individual is eventually released 282 from the medical center and carries 250 a new automated injection device 200.

A number of embodiments of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, other embodiments are within the scope of the following claims.

CLAIMS:

5

10

15

20

30

1. An automated injection device comprising:

a reservoir;

a needle in fluid communication with the reservoir;

a piston member with a piston face positioned within the reservoir;

a spring adjacent the piston member; and

a loading member that is movable to compress the spring, the loading member permitting the spring to expand following compression, whereby the expanding spring drives the piston member such that the piston face moves within the reservoir and expels the contents of the reservoir through the needle.

- 2. The device of claim 1, wherein the loading member is oriented to drive the piston member to compress the spring, the loading member permitting movement of the piston member away from the spring after the spring has been compressed to a predetermined degree.
- 3. The device of claim 2, wherein the loading member has a flared lip that flares radially outward and defines an aperture that is initially sized smaller than the piston member such that the flared lip of the loading member bears against the piston member during compression of the spring, the flared lip extending outward as the spring reaches the predetermined degree of compression to thereby expand the aperture and permit receipt within the aperture of a portion of the piston member.
- 4. The device of claim 3, wherein the piston member defines a ramped lip for engagement with the flared lip.
 - 5. The device of claim 2, wherein the piston member defines a channel and the reservoir is slidably mounted within the channel, the device further comprising a stop member that limits movement of the reservoir when the expanding spring drives the piston member such that continued movement of the piston member following abutment

of the reservoir with the stop member causes the piston face to move through the reservoir and expel the contents of the reservoir through the needle.

- 6. The device of claim 5, wherein the stop member is formed within the aperture defined by the loading member.
 - 7. The device of claim 6, wherein the aperture defines an annular recess that circumscribes a raised circular wall, the raised circular wall forming the stop member.
- 10 8. The device of claim 3, further comprising a housing defining a channel having a narrowed portion and a widened portion for movement of the loading member, wherein the loading member includes an outer wall with a flared lip that extends radially outward and is generally biased inward by interaction with the narrowed portion of the channel, the flared lip extending outward upon movement of the ramped lip into the widened portion of the channel, thereby locking the loading member against a return into the narrowed portion of the channel after the spring is compressed.
 - 9. The device of claim 1, wherein the piston member defines a channel and the reservoir is slidably mounted within the channel, the device further comprising a stop member that limits movement of the reservoir when the expanding spring drives the piston member such that continued movement of the piston member following abutment of the reservoir with the stop member causes the piston face to move through the reservoir and expel the contents of the reservoir through the needle.
 - 10. The device of claim 9, wherein the reservoir frictionally engages an inner surface of the channel and, upon abutment of the reservoir with the stop member, the spring force exerted on the piston member overcomes force generated by the frictional engagement of the reservoir and the inner surface of the channel to permit relative movement of the piston member and the reservoir.

20

25

- 11. The device of claim 1, wherein the injection needle is oriented to protrude through the loading member, the device further comprising a removable cap that covers a portion of the loading member.
- 5 12. The device of claim 1, wherein the loading member is oriented to compress the spring upon application of the loading member to a patient.
 - 13. The device of claim 1, wherein the spring is normally in a substantially non-compressed state prior to movement of the loading member.
 - 14. The device of claim 1, wherein a portion of the loading member extends outward from the device for engagement with the skin of a patient.
 - 15. The device of claim 1, wherein the reservoir contains epinephrine.
 - 16. The device of claim 1, wherein the reservoir and the needle are mounted to travel with the piston member to a limited extent.
 - 17. The device of claim 16, further comprising a protective sheath that covers a portion of the needle, the needle puncturing the protective sheath when the expanding spring drives the piston member.
 - 18. The device of claim 16, wherein the spring force generated by the spring is sufficient to drive the needle through the skin of a patient.
 - 19. The device of claim 1, further comprising a wireless communication apparatus affixed to the automated injection device, wherein the wireless communication apparatus is activated to call for additional medical assistance when the automated injection device is deployed.

10

15

20

20. The device of claim 19, wherein the wireless communication apparatus, upon activation, is capable of communicating with a nearby cellular phone and attempting to call an emergency service.

- The device of claim 1, wherein the loading member, the spring, the piston member, and the reservoir are aligned along a common longitudinal axis, and portions of the loading member, the piston member, and the reservoir longitudinally overlap with one another during expansion of the spring.
- The device of claim 1, wherein the device is less than approximately three inches in length, and less than approximately two inches in both width and in depth.
 - 23. The device of claim 1, wherein the loading member and the piston member are formed from plastic materials.

15

20

25

- 24. An automated injection device comprising:
- a housing having a first end and a second end, the housing defining an opening at the second end;
 - a piston member slidably mounted within the housing;
 - a reservoir slidably mounted within the piston member;
 - a needle in fluid communication with the reservoir;
- a piston mounted within the piston member with a piston face positioned within the reservoir;
- a spring that bears against the piston member on a side of the piston member adjacent the first end of the housing; and
- a loading member oriented to drive the piston member toward the first end of the housing and thereby compress the spring, wherein the piston member and the loading member are configured to permit relative movement of the piston member and the loading member following compression of the spring, and the loading member defines a stop member that limits travel of the reservoir toward the second end of the chamber,

whereby the spring drives the piston member relative to the loading member and toward the second end of the housing, and the piston member drives the reservoir against the stop member such that continued movement of the piston member relative to the reservoir drives the piston face through the reservoir and expels the contents of the reservoir through the needle.

5

10

20

25

- 25. The device of claim 24, wherein the loading member has a flared lip that flares radially outward and defines an aperture that is initially sized smaller than the piston member such that the flared lip of the loading member bears against the piston member during compression of the spring, the flared lip extending radially outward as the spring reaches a predetermined degree of compression to thereby expand the aperture and permit receipt within the aperture of a portion of the piston member.
- 26. The device of claim 25, wherein the piston member defines a ramped lip for engagement with the flared lip.
 - 27. The device of claim 25, wherein the aperture defines an annular recess that circumscribes a raised circular wall, the raised circular wall forming the stop member.
 - 28. The device of claim 24, wherein the housing defines a channel having a narrowed portion and a widened portion for movement of the loading member, wherein the loading member includes an outer wall with a flared lip that extends radially outward and is generally biased inward by interaction with the narrowed portion of the channel, the flared lip extending outward upon movement of the flared lip into the widened portion of the channel, thereby locking the loading member against a return into the narrowed portion of the channel after the spring is compressed.
 - 29. The device of claim 24, wherein the reservoir frictionally engages an inner surface of the channel within the piston member and, upon abutment of the reservoir with the stop member, the spring force exerted on the piston member overcomes force

generated by the frictional engagement of the reservoir and the inner surface of the channel to permit relative movement of the piston member and the reservoir.

- 30. The device of claim 24, wherein the injection needle is oriented to
 protrude through the loading member, the device further comprising a removable cap that covers a portion of the loading member.
 - 31. The device of claim 24, wherein the loading member is oriented to compress the spring upon application of the loading member to a patient.

32. The device of claim 24, wherein the spring is normally in a substantially non-compressed state prior to movement of the loading member.

- 33. The device of claim 24, wherein a portion of the loading member extends outward from the device for engagement with the skin of a patient.
 - 34. The device of claim 24, wherein the reservoir contains epinephrine.
- 35. The device of claim 24, further comprising a protective sheath that covers
 a portion of the needle, the needle puncturing the protective sheath when the expanding spring drives the piston member.
 - 36. The device of claim 24, wherein the spring force generated by the spring is sufficient to drive the needle through the skin of a patient.
 - 37. The device of claim 24, wherein the loading member, the spring, the piston member, and the reservoir are aligned along a common longitudinal axis, and portions of the loading member, the piston member, and the reservoir longitudinally overlap with one another during expansion of the spring.

30

25

10

38. The device of claim 24, wherein the device is less than approximately 3 inches in length, and less than approximately 2 inches in both width and in depth.

- 39. The device of claim 24, wherein the loading member and the piston member are formed from plastic materials.
 - 40. The device of claim 24, further comprising a wireless communication apparatus affixed to the housing, wherein the wireless communication apparatus is activated to call for additional medical assistance when the automated injection device is deployed.
 - 41. The device of claim 40, wherein the wireless communication apparatus, upon activation, is capable of communicating with a nearby cellular phone and attempting to call an emergency service.

15

20

25

30

10

5

42. A method for injection of a liquid medicament using a device having a reservoir, a needle in fluid communication with the reservoir, a piston member with a piston face positioned within the reservoir, a spring that bears against the piston member, and a loading member oriented to drive the piston member to compress the spring, the piston member and the loading member being configured to permit relative movement when the compressed spring reaches a sufficient level of spring force, wherein a portion of the loading member extends outward from the device, the method comprising:

pushing the loading member against a patient to drive the loading member into the device and toward the piston member, thereby compressing the spring,

wherein the spring expands to drive the piston member relative to the loading member and extend the needle outward from the device and drive the piston face to expel the contents of the reservoir through the needle.

43. A method for injection of a liquid medicament using a device having a housing having a first end and a second end, the housing defining an opening at the second end, a piston member slidably mounted within the housing, a reservoir slidably

mounted within the piston member, a needle in fluid communication with the reservoir, a piston mounted within the piston member with a piston face positioned within the reservoir, a spring that bears against the piston member on a side of the piston member adjacent the first end of the housing, and a loading member oriented to drive the piston member toward the first end of the housing and thereby compress the spring, wherein the piston member and the loading member are configured to permit relative movement when the compressed spring reaches a sufficient level of spring force, the loading member defines a stop member that limits travel of the reservoir toward the second end of the chamber, and a portion of the loading member extends outward from the opening, the method comprising:

pushing the loading member against a patient to drive the loading member into the device and toward the piston member, thereby compressing the spring.

wherein the spring expands to drive the piston member relative to the loading member and extend the needle outward from the opening and drive the piston face to expel the contents of the reservoir through the needle.

- 44. An automated injection device comprising:
- a reservoir;

5

:10

15

20

25

- a needle in fluid communication with the reservoir:
- a piston member with a piston face positioned within the reservoir;
 - a spring adjacent the piston member; and
- a loading member that is movable to compress the spring and permit the spring to expand following compression, the expanding spring driving the piston member such that the piston face moves within the reservoir and expels the contents of the reservoir through the needle.

wherein the piston member and the reservoir partially overlap along a longitudinal extent of the device and are sized such that the device has a length of less than or equal to approximately 3.0 inches and a width of less than or equal to approximately 2.0 inches.

45. The device of claim 44, wherein the device has a length in the range of approximately 2.5 inches to 3.0 inches, and a width in the range of approximately 1.0 to 1.5 inches.

46. The device of claim 44, wherein the device has a length of approximately 2.75 inches, and a width of approximately 1.25 inches.

5

10

20

47. The device of claim 44, wherein the device is substantially cylindrical and the width corresponds to a diameter of the device.

48. The device of claim 44, further comprising a ring extending from the device for receipt of at least one of a keyring, a key, a necklace, a chain, and a strap.

- 49. The device of claim 44, further comprising a substantially planar platform coupled to the device, the platform including attachment wings for clipping the platform to another device.
 - 50. The device of claim 49, wherein the other device is one of a PDA and a mobile telephone.
 - 51. The device of claim 49, further comprising a substantially planar platform coupled to the device, the platform including a clip-like member for attachment of the platform to a thin sheet-like member.
- 25 52. The device of claim 44, further comprising a wireless communication apparatus affixed to the automated injection device, wherein the wireless communication apparatus is activated to call for additional medical assistance when the automated injection device is deployed.

53. The device of claim 52, wherein the wireless communication apparatus, upon activation, is capable of communicating with a nearby cellular phone and attempting to call an emergency service.

54. A wireless-enabled injection device comprising:

5

20

25

30

an automated injection device having a housing, a reservoir positioned inside the housing, and a needle in fluid communication with the reservoir; and

a wireless communication apparatus affixed to the housing, wherein the wireless communication apparatus is activated to call for additional medical assistance when the automated injection device is deployed.

- 55. The device of claim 54, wherein the reservoir contains epinephrine.
- 56. The device of claim 54, wherein the device is less than approximately three inches in length, and less than approximately two inches in both width and in depth.
 - 57. The device of claim 54, wherein the automated injection device further comprises a piston member with a piston face positioned within the reservoir, a spring adjacent the piston member, and a loading member that is movable to compress the spring, the loading member permitting the spring to expand following compression, whereby the expanding spring drives the piston member such that the piston face moves within the reservoir and expels the contents of the reservoir through the needle.
 - 58. The device of claim 57, wherein the injection needle is oriented to protrude through the loading member, the device further comprising a removable cap that covers a portion of the loading member.
 - 59. The device of claim 57, wherein the loading member, the spring, the piston member, and the reservoir are aligned along a common longitudinal axis, and portions of the loading member, the piston member, and the reservoir longitudinally overlap with one another during expansion of the spring.

60. The device of claim 54, wherein the wireless communication apparatus further comprises a transmitter circuit mounted to a flex circuit.

- 5 61. The device of claim 60, further comprising a protective film affixed to the flex circuit to shelter the flex circuit from environmental and handling hazards.
 - 62. The device of claim 60, wherein the transmitter circuit is capable of sending a signal that conforms to Bluetooth standards.

10

20

25

30

- 63. The device of claim 60, wherein the transmitter circuit, upon activation, is capable of communicating with a nearby cellular phone and attempting to call an emergency service.
- 15 64. The device of claim 60, wherein the wireless communication apparatus further comprises a GPS circuit that, upon activation, retrieves location information of the device from a global positioning satellite system.
 - 65. The device of claim 60, wherein the flexible circuit comprises a tail that is routed inside the housing and in the path of the needle such that when automated injection device is deployed, the needle is passes through the tail and electrically connects conductive pads of the tail to activate the wireless communication apparatus.
 - 66. A method for injection of a liquid medicament using a wireless-enabled injection device, the method comprising:

providing an automated injection device having a housing, a reservoir positioned inside the housing, a needle in fluid communication with the reservoir, and a wireless communication apparatus affixed to the housing;

deploying the automated injection device to expel the contents of the reservoir through the needle; and

activating the wireless communication apparatus to transmit a signal when the automated injection device is deployed;

wherein the signal from the wireless communication apparatus is used to call for medical assistance.

5

20

- 67. The method of claim 66, wherein the wireless communication apparatus further comprises a transmitter circuit that transmits the signal to call for medical assistance.
- 10 68. The method of claim 67, wherein the transmitter circuit of the wireless communication apparatus is capable of transmitting a signal that conforms to Bluetooth standards.
- 69. The method of claim 66, wherein the wireless communication apparatus,
 upon activation, communicates with a nearby cellular phone and attempts to call an emergency service.
 - 70. The method of claim 66, wherein the wireless communication apparatus further comprises a GPS circuit that, upon activation, retrieves location information of the automated injection device from a global positioning satellite system.
 - 71. The method of claim 66, wherein the wireless communication apparatus further comprises a flexible circuit having a tail that is routed inside the housing and in the path of the needle such that when automated injection device is deployed, the needle is passes through the tail to activate the wireless communication apparatus.

FIG. 5

4/12

FIG. 8

FIG. 9

FIG. 14A

FIG. 14B

FIG. 15

FIG. 16

FIG. 17

WO 01/93926 PCT/US01/18734

FOR

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 17. Oktober 2002 (17.10.2002)

PCT

(10) Internationale Veröffentlichungsnummer WO 02/081012 A2

(51) Internationale Patentklassifikation7: 25/06, 39/02

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von

mattstrasse 6, CH-3401 Burgdorf (CH).

US): DISETRONIC LICENSING AG [CH/CH]; Brunn-

(21) Internationales Aktenzeichen:

PCT/CH02/00186

A61M 5/158,

(22) Internationales Anmeldedatum:

3. April 2002 (03.04.2002)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

6. April 2001 (06.04.2001)

101 17 285.0 201 10 059.2

DF 19. Juni 2001 (19.06.2001)

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): HUNN, Marcel [CH/CH]; Oberburgstrasse 24, CH-3400 Burgdorf (CH). LINIGER, Jürg [CH/CH]; Mitteldorfstrasse 7, CH-3072 Ostermundigen (CH). DENOTH, Patrik [CH/CH]; Dorfstrasse 10, CH-1797 Münchenwiler (CH). OESCH, Marc [CH/CH]: Aegerte 15, CH-3326 Krauchthal (CH). BÜTIKOFER, Markus [SY/SY]; Rainschulhaus, Grundbach, CH-3665 Wattenwil (CH). ZIHLMANN, Rudolf [CH/CH]; Schossrüti, CH-3550

[Fortsetzung auf der nächsten Seite]

(54) Title: INFUSION SET

(54) Bezeichnung: INFUSIONSSET

(57) Abstract: The invention relates to a device for inserting a cannula (3) into tissues. Said device comprises a cannula (3) provided with a protective element (6) which can receive said cannula (3), an actuating element (7) by which means the cannula (3) can be removed from the protective element (6), and a holding element (5) which is connected to the cannula (3) in a fixed manner. The invention also relates to a device for inserting a cannula (3) into tissues, said device comprising a cannula (3), a cannula displacement device (8, 27, 34) for removing the cannula (3), and a withdrawal element (22, 31) which is coupled to the cannula displacement device (8, 27, 34) in order to withdraw the same (8, 27, 34) once the cannula (3) has been removed. The invention further relates to a system for connecting a liquid supply line to a cannula (3).

(57) Zusammenfassung: Vorrichtung zum Einbringen einer Kanüle (3) in Gewebe mit einer Kanüle (3) mit einem Schutzelement (6), welches die Kanüle (3) aufnehmen kann, einem Betätigungselement (7), mit welchem die Kanüle (3) aus dem Schutzelement (6) herausbewegt werden kann

Langnau (CH). SCHEURER, Simon [CH/CH]; Amietstrasse 11, CH-3006 Bern (CH).

- (74) Gemeinsamer Vertreter: DISETRONIC LICENSING AG; Brunnmattstrasse 6, CH-3401 Burgdorf (CH).
- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

 ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

und einer Halterung (5), welche mit der Kanüle (3) fest verbunden ist sowie einer Vorrichtung zum Einbringen einer Kanüle (3) in Gewebe mit einer Kanüle (3), einer Kanülenbewegungsvorrichtung (8, 27, 34) zum Herausbewegen der Kanüle (3) und einem Rückzugelement (22, 31), welches mit der Kanülenausschubvorrichtung (8, 27, 34) gekoppelt ist, um die Kanülenausschubvorrichtung (8, 27, 34) nach Ausschieben der Kanüle (3) wieder zurückzuziehen sowie einem System zum Verbinden einer Flüssigkeitszufuhr mit einer Kanüle (3).

1

Infusionsset

Die vorliegende Erfindung bezieht sich auf ein Infusionsset, insbesondere auf eine Vorrichtung zum Einbringen einer Kanüle in Gewebe, wie z. B. Haut-, Fett- oder Muskelgewebe und weiterhin auf eine Vorrichtung zum Zuführen einer Flüssigkeit über die Kanüle in das Gewebe.

Aus der EP 0 451 040 A1 ist eine Vorrichtung zum Einbringen eines Katheters mit einer Nadel bekannt, wobei eine über der Nadel zusammenschiebbare Abdeckung vorgesehen ist. Dabei kann der Katheter schon durch kleinere Zugkräfte, welche auf den Katheter wirken, versehentlich wieder herausgezogen werden und liegt relativ ungeschützt an der Einstichstelle offen; siehe Fig. 1 der EP 0 451 040 A1.

Die EP 0 290 176 A1 offenbart eine Vorrichtung zum Einbringen einer Kanüle mit einer Nadel, wobei die Nadel beim Einbringen gegen eine Feder gedrückt werden muss und nach dem Einbringvorgang durch die Federkraft in ein Gehäuse zurückgezogen wird. Auch hier ist die Kanüle nach dem Einbringen relativ ungeschützt und kann leicht versehentlich herausgezogen werden.

Aus der EP 0 615 768 B1 ist eine Vorrichtung zur subkutanen Zufuhr eines Medikaments bekannt. Dabei wird eine Kanüle mit einer Nadel eingebracht, wobei beim Einbringen der Kanüle auch gleichzeitig eine fest mit der Kanüle verbundene Anordnung mit klebender Unterseite auf die Haut aufgebracht wird, was den für einen Anwender häufig unangenehmen Einstichvorgang zusätzlich erschwert.

Bei den bekannten Vorrichtungen ist die Kanüle entweder relativ ungeschützt gegen unbeabsichtigtes Herausziehen, wobei insbesondere schon beim Ausziehen der Nadel aus

2

der Kanüle eine Zugkraft auf die in das Gewebe eingebrachte Kanüle wirkt, oder es muss eine zusätzliche Vorrichtung während des Einstichvorgangs zusammen mit der Kanüle bewegt werden, was die genaue Positionierung erschwert.

Es ist eine Aufgabe der vorliegenden Erfindung eine Vorrichtung vorzuschlagen, welche das Einbringen einer Kanüle verbessert. Allgemein soll ein Infusionsset vorgeschlagen werden, welches Verbesserungen gegenüber dem Stand der Technik aufweist.

Diese Aufgabe wird gelöst durch die Gegenstände der unabhängigen Ansprüche. Vorteilhafte Ausführungsformen sind in den abhängigen Ansprüchen aufgeführt.

Die erfindungsgemäße Vorrichtung zum Einbringen einer Kanüle in ein Gewebe zum bevorzugt subkutanen oder transkutanen Verabreichen einer Flüssigkeit, weist eine Kanüle auf, welche entweder als Hartkanüle ausgebildet ist, so dass sie ohne zusätzliche Nadel oder ein anderes Einstichelement in das Gewebe z. B. durch Aufnahme von Flüssigkeit eingebracht werden kann, wobei die Kanüle bevorzugt nach dem Einbringen in das Gewebe elastisch bzw. flexibel wird. Es ist jedoch auch möglich eine bekannte Kanüle vorzusehen, welche auf bekannte Art mit z. B. einer Führungsnadel oder einem anderen Einstichelement in das Gewebe eingebracht wird. Weiterhin ist ein Schutzelement vorgesehen, welches die Kanüle vor dem Einbringen in das Gewebe aufnehmen kann, wobei das Schutzelement bevorzugt so ausgebildet ist, dass die in das Gewebe eindringende Spitze der Kanüle oder auch einer zum Einbringen der Kanüle geeigneten Nadel von dem Schutzelement abgedeckt wird, so dass ein Benutzer nicht versehentlich mit dieser Spitze in Kontakt kommen kann und z. B. durch diese Spitze verletzt wird. Das Schutzelement kann die Spitze der Kanüle zum Teil oder vollständig oder sogar die gesamte Kanüle, gegebenenfalls auch eine zum Einbringen der Kanüle vorgesehene Nadel die Schutzfunktion zu gewährleisten. Es umgeben. um ist weiterhin Betätigungselement vorgesehen, mit welchem die Kanüle bzw. die Nadel mit Kanüle aus dem Schutzelement herausbewegt werden kann, um z. B. die Kanüle in das Gewebe einzubringen, wobei es im Falle der Verwendung einer Nadel zum Einbringen der Kanüle bevorzugt wird, dass die Nadel nach dem Einbringen der Kanüle durch das Betätigungselement oder auch automatisch, z. B. unter Verwendung eines Federmechanismus, wieder in das Schutzelement zurückbewegt werden kann, um auch

3

nach dem Einbringen der Kanüle die Verletzungsgefahr zu minimieren bzw. auszuschließen. Erfindungsgemäß ist die Kanüle mit einer Halterung verbunden, welche z. B. am distalen, also dem der Kanülenspitze abgewandten Ende vorgesehen sein kann und welche mit der Kanüle bewegt werden kann und beim Einbringen der Kanüle die Kanüle in einer festen Position fixieren kann, indem z. B. diese Halterung mit einem über der Einstichstelle schon vor dem Einstich fest angeordnetem Grundkörper verrastet oder allgemein mit diesem Grundkörper verbunden wird. Wird z. B. eine Nadel nach dem Einbringen der Kanüle aus dieser herausgezogen, so kann aufgrund der mit der Kanüle verbundenen Halterung sichergestellt werden, dass wenn eine Haltekraft an der Halterung anliegt, z. B. durch Verbinden der Halterung mit einem Grundkörper, die Auszugskraft der Nadel nicht unmittelbar auf die Kanüle wirkt, d. h. dass die Kanüle beim Ausziehen nicht in Auszugsrichtung belastet wird. Erfindungsgemäß ist es möglich durch geeignetes Halten bzw. Befestigen der Halterung die Kanüle beim Ausziehen einer Nadel zu entlasten und die Kanüle gegen unbeabsichtigtes Herausziehen zu sichern. Wird eine Kanüle ohne Verwendung einer Nadel eingebracht, so weist die erfindungsgemäße Halterung den Vorteil auf, dass die eingebrachte Kanüle durch die Halterung und gegebenenfalls ein mit der Halterung verbundenes Element gegen unbeabsichtigtes Herausziehen gesichert werden kann. Mit der erfindungsgemäßen Vorrichtung ist der Einstichvorgang auch einfach und relativ gefahrlos durchzuführen.

Obwohl in dieser Beschreibung von "Ausschieben" einer Nadel oder Kanüle mit einem "Ausschiebeelement" gesprochen wird, wird angemerkt, dass hierunter auch ein Herausziehen mit einem Zugelement verstanden werden soll, d.h. eine Bewegung kann durch eine Zug- und/oder Druckkraft bzw. eine Zug und/oder Druckfeder bewirkt werden.

Vorteilhaft ist die mit der Kanüle verbundene Halterung so ausgebildet, dass sie eine Verbindung mit einem anderen Element eingehen kann, bevorzugt mit einem Basiskörper welcher z. B. auf die Haut über einer Einstichstelle aufgeklebt werden kann, wobei dieser Basiskörper vorteilhaft so angeordnet ist, dass die Verbindung mit der Halterung im vollständig oder fast vollständig ausgeschobenen Zustand der Kanüle erfolgt. Diese Verbindung kann eine Rastverbindung oder jede andere geeignete Verbindung sein, wobei z. B. eine oder mehrere Nuten bzw. Vertiefung und/oder Vorsprünge oder Rastlippen an

4

der Halterung vorgesehen sein können, welche eine lösbare oder auch nicht mehr lösbare feste Verbindung der Halterung mit einem geeigneten Element ermöglichen.

Bei einer bevorzugten Ausführungsform ist eine Nadel vorgesehen, mit welcher die Kanüle in ein Gewebe eingebracht werden kann, wobei vorteilhaft die Nadel von der Kanüle umgeben wird. Dabei ist es besonders vorteilhaft die Vorrichtung so auszugestalten, dass die Nadel nach Einbringen der Kanüle wieder bevorzugt vollständig zurück in das Schutzelement eingebracht werden kann, z. B. durch eine Bewegung des Betätigungselements und/oder eine Feder, welche z. B. beim Einbringen der Kanüle in das Gewebe und Ausfahren der Nadel aus dem Schutzelement komprimiert wird und eine Kraft erzeugt, welche die Nadel zurück in ihre Ausgangslage in das Schutzelement bringt.

Bevorzugt ist die Vorrichtung so ausgestaltet, dass sie fest oder lösbar mit einem Basiskörper verbunden werden kann und besonders vorteilhaft in einem Ausgangszustand schon mit dem Basiskörper verbunden ist, so dass die Applikation für den Benutzer vereinfacht wird. Der Basiskörper kann z. B. aus einem auf eine Hautstelle aufklebbarem Pflaster und einem darauf angeordneten Grundkörper bestehen, auf welchem die Vorrichtung zum Einbringen der Kanüle angeordnet ist. Bei einer solchen Konfiguration kann die Spitze der Kanüle bzw. der Nadel schon relativ nahe an einer Austrittsöffnung des Basiskörpers angeordnet sein, so dass z. B. nach Aufkleben des Pflasters auf einen Hautbereich die Kanüle bzw. Nadel sofort in die Haut eingebracht werden kann. Dabei kann die Spitze der Kanüle bzw. Nadel auch aus dem Schutzelement herausragen, ohne dass eine Verletzungsgefahr für eine Bedienperson besteht, da die Spitze durch den umgebenden Basiskörper abgeschirmt wird. Die in dem Basiskörper vorgesehene Durchtrittsöffnung für die Spitze der Kanüle bzw. Nadel ist vorteilhaft relativ klein, bevorzugt nur geringfügig größer als der Durchmesser der Kanüle, um ein unbeabsichtigtes Hindurchlangen der Bedienperson durch die Durchtrittsöffnung auszuschließen und somit die Verletzungsgefahr zu minimieren. Nach Einbringen der Kanüle und gegebenenfalls Zurückziehen der Nadel in das Schutzelement kann die Vorrichtung wieder von dem Basiskörper gelöst werden, so dass z. B. eine Flüssigkeitszufuhr mit der Kanüle verbunden werden kann.

5

Bevorzugt kann die Vorrichtung zum Einbringen der Kanüle mit dem Basiskörper, besonders vorteilhaft mit dem Grundkörper durch ein Verbindungselement, insbesondere eine Rastverbindung verbunden werden, welche bevorzugt auch wieder gelöst werden kann.

Bei einer bevorzugten Ausführungsform der Erfindung ist das Schutzelement ein Rahmen, welcher die Kanüle bzw. die Nadel im zurückgezogenen Zustand zumindest teilweise umgibt. Besonders bevorzugt ist das Schutzelement ein Mantel, welcher die Kanüle bzw. Nadel im zurückgezogenen Zustand vollständig umgibt, wobei bevorzugt eine Durchtrittsöffnung in dem Schutzelement vorgesehen ist, durch welches die Kanüle bzw. Nadel aus dem Schutzelement herausbewegt bzw. wieder in das Schutzelement eingebracht werden kann. Diese Durchtrittsöffnung kann offen sein und ist bevorzugt nur geringfügig größer als der Außendurchmesser der Kanüle. Es ist auch möglich die Durchtrittsöffnung durch ein geeignetes Abdeckelement zu verschließen, welches beim Ausfahren der Kanüle bzw. Nadel von der Durchtrittsöffnung wegbewegt werden kann oder auch elastisch ausgebildet ist, so dass z. B. die Kanüle oder Nadel hindurchstechen kann.

Vorteilhaft ist die Vorrichtung so ausgestaltet, dass das Betätigungselement oder auch ein zum Einbringen der Kanüle vorgesehenes Nadelelement im zurückgezogenen Zustand nach Einbringen der Kanüle mit dem Schutzelement verbunden, insbesondere verrastet werden kann, so dass ein versehentliches Wiederausschieben der Nadel aus dem Schutzelement verhindert wird und somit eine unbeabsichtigte Verletzung einer Bedienperson ausgeschlossen werden kann.

Besonders bevorzugt ist die Vorrichtung, insbesondere das Betätigungselement so ausgebildet, dass im ausgeschobenen Zustand der Kanüle ein Lösen der Vorrichtung zum Einbringen der Kanüle von einem mit der Vorrichtung verbundenen Basiskörper verhindert werden kann. Hierzu kann z. B. ein mit dem Betätigungselement verbundenes und verschiebbares Querelement vorgesehen sein, welches im ausgeschobenen Zustand der Kanüle z. B. ein Zusammendrücken von für die Verbindung mit dem Basiskörper vorgesehenen Halteelementen verhindert und somit eine z. B. nur durch Zusammendrücken dieser Halteelemente zu erreichende Loslösung der Vorrichtung von

6

dem Basiskörper ausgeschlossen werden kann. Allgemein kann jede Anordnung bzw. jedes Element verwendet werden, welches eine solche Sicherungsfunktion bieten kann. Hierdurch kann sichergestellt werden, dass nicht versehentlich die Kanülen-Einbringvorrichtung vom Basiskörper gelöst wird, wenn z. B. eine Nadel aus dem Schutzelement ausgefahren ist, was zu Verletzungen einer Bedienperson führen könnte.

Bevorzugt ist in der Halterung ein Dichtelement oder Septum zum Abschließen der Kanülenoberseite bzw. eines Flüssigkeitsraumes vorgesehen, welches z. B. von einer Nadel und/oder einer Flüssigkeitszufuhr durchdrungen werden kann und eine flüssigkeitsdichte Verbindung gewährleisten kann. Ist kein Element in das Septum eingebracht, so kann es den Zugang zur Kanüle oder einem über der Kanüle liegenden Flüssigkeitsraum vollständig verschließen. Geeignete Materialien hierzu sind im Stand der Technik bekannt.

Gemäß einem anderen Aspekt der Erfindung ist ein Basiskörper vorgesehen, welcher z. B. aus einem auf eine Hautstelle aufklebbarem Pflaster und einem darauf angeordneten Grundkörper besteht, wobei der Basiskörper bzw. der Grundkörper mindestens ein bevorzugt lösbares Verbindungselement aufweist, an welchem die oben beschriebenen Vorrichtung zum Einbringen einer Kanüle angebracht werden kann und an welchem eine Vorrichtung zum Zuführen eines Fluids bzw. einer Flüssigkeit angebracht werden kann, so dass wenn der Basiskörper über einer Einbringstelle der Kanüle angebracht ist, an dem Basiskörper sowohl die Vorrichtung zum Einbringen der Kanüle, als auch eine Vorrichtung zum Zuführen eines Fluids zusammen oder nacheinander an den gleichen oder verschiedenen Verbindungselementen angebracht werden können. Dabei kann bevorzugt im Ausgangszustand die Vorrichtung zum Einbringen der Kanüle schon fest und lösbar mit dem Basiskörper verbunden sein, so dass der Basiskörper mit der Einbringvorrichtung für die Kanüle zusammen über einer Einbringstelle der Kanüle angebracht werden kann, wobei die Einbringvorrichtung nach erfolgtem Einbringen der Kanüle von dem Basiskörper wieder abgelöst werden kann. Es ist auch möglich den Basiskörper erst vor dem Einbringen der Kanüle mit der Kanülen-Einbringvorrichtung zu verbinden.

Vorteilhaft dient das mindestens eine am Basiskörper vorgesehene Verbindungselement sowohl zur Verbindung mit der Einbringvorrichtung für die Kanüle, als auch zur

7

Verbindung mit der Vorrichtung zum Zuführen eines Fluids, so dass z. B. nach Ablösen der Einbringvorrichtung für die Kanüle die Vorrichtung zum Zuführen des Fluids an dem bzw. den gleichen Verbindungselementen angebracht werden kann, welches bzw. welche zuvor zum Befestigen der Einbringvorrichtung für die Kanüle gedient haben.

Bevorzugt ist das mindestens eine am Basiskörper vorgesehene Verbindungselement ein Element, welches eine Rastverbindung ermöglicht, also insbesondere eine Nut und/oder eine Rastlippe bzw. Rastnase mit welcher eine Rastverbindung mit der Einbringvorrichtung für die Kanüle und/oder der Fluidzuführvorrichtung hergestellt werden können.

Gemäß einem weiteren Aspekt der vorliegenden Erfindung wird ein System vorgeschlagen, mit welchem eine Flüssigkeitszufuhr mit einer Kanüle verbunden werden kann, wobei ein Grundkörper vorgesehen ist, welcher eine Kanüle aufweist, die bevorzugt schon in ein Gewebe eingebracht ist, z. B. unter Verwendung der oben beschriebenen Vorrichtung. Der Grundkörper hat mindestens eine Öffnung, welche mit der Kanüle bzw. dem Kanülenholraum in Verbindung steht. Zur Zufuhr der Flüssigkeit ist ein Stecker mit einem Zuführelement vorgesehen, welches in die Öffnung des Grundkörpers eingebracht werden kann, so dass die Flüssigkeit über das Zuführelement durch die Öffnung des Grundkörpers in den Kanülenholraum und somit in das Gewebe geleitet werden kann. Erfindungsgemäß kann der Stecker an einem Anlagepunkt des Grundkörpers angelegt und so um den Anlagepunkt geklappt werden, dass das Zuführelement des Steckers in die Öffnung des Grundkörpers geführt wird. Ein solches Verbinden bzw. Konnektieren des Steckers einer Flüssigkeitszufuhr mit der Kanüle ist vorteilhaft, da keine exakte Positionierung am Anfang des Verbindungsvorganges erforderlich ist, d. h. dass z. B. in ihrer körperlichen Leistungsfähigkeit eingeschränkte Benutzer den Stecker relativ einfach an einem Anlagepunkt des Grundkörpers anlegen können, wobei der Anlagepunkt kein Punkt im geometrischen Sinne sein muss, sondern auch als Anlagekante mit geradem oder auch gebogenem bzw. abgewinkeltem Verlauf oder als Anlagefläche ausgebildet sein kann. Wird ein solcher Stecker z. B. mit einer Anlagekante bzw. einem geeigneten Vorsprung des Steckers an einer Anlagekante des Grundkörpers angelegt, was noch nicht mit großer Genauigkeit bezüglich der Anlageposition erfolgen muss, so kann z. B. durch geeignete Führungen der Stecker beim Klappen um diese Anlagekante allmählich in die

8

exakte Position gebracht werden, so dass das Zuführelement bei vollständig niedergeklapptem Stecker exakt in die Öffnung des Grundkörpers eingebracht werden kann. Diese Art der Verbindung eines Steckers mit dem Grundkörper ist somit bezüglich des Ansatzes des Steckers am Grundkörper relativ fehlertolerant und ist insbesondere dann von großem Vorteil, wenn die mit dem Grundkörper verbundene Kanüle wie oben beschrieben durch eine bereits fest mit dem Grundkörper verbundene Einbringvorrichtung für die Kanüle eingeführt wurde. In diesem Fall muss die Einbringvorrichtung für die Kanüle vom Benutzer nach dem Einbringen der Kanüle lediglich von dem Grundkörper gelöst werden, was keinen genauen Positionierungsvorgang erfordert, so dass der einzige Positionierungsvorgang, welcher vom Benutzer ausgeführt werden muss, das fehlertolerante Anbringen des Steckers an dem Anlagepunkt des Grundkörpers ist, wobei bevorzugt über eine geeignete Führung beim Klappen des Steckers das Zuführelement positionsgenau in die Öffnung des Grundkörpers gebracht wird.

Bevorzugt ist mindestens ein Führungselement am Grundkörper und/oder am Stecker vorgesehen, um den Stecker während des Klappvorgangs nach dem Anlegen an dem Anlagepunkt bzw. einer Anlagekante zu führen. Als Führungselement kann z. B. eine sich in der Breite verjüngende Rille vorgesehen sein, in welche ein Vorsprung eingreift, so dass der Vorsprung bei dem Klappvorgang entlang der Rille in Richtung auf das schmalere Ende geführt wird, wodurch eine genaue Positionierung des Steckers relativ zum Grundkörper erfolgen kann. Sowohl die Rille, als auch der Stecker können dabei an dem Grundkörper und/oder dem Stecker vorgesehen sein. Weiterhin ist es auch denkbar, seitliche Führungen an den Stecker und/oder dem Grundkörper vorzusehen, welche trichterförmig ausgebildet sind, um so die gewünschte Positionierung des Steckers relativ zu dem Grundkörper zu erzielen. Allgemein ist jedoch jede Anordnung geeignet, welche es ermöglicht, dass der an mindestens einem Anlagepunkt anliegende Stecker bei einem Klappvorgang geführt und dabei im niedergeklappten Zustand genau positioniert werden kann.

Bevorzugt ist der Stecker so ausgebildet, dass er mit dem Anlagepunkt bzw. einer Anlagekante des Grundkörpers verhaken kann. Unter Verhaken wird im Sinne der Erfindung verstanden, dass der Stecker an einem Punkt oder mehreren Punkten, Kanten oder Flächen des Grundkörpers anliegt und so eine lose Verbindung zwischen Stecker und Grundkörper geschaffen wird, welche ein Klappen bzw. eine Drehbewegung um diese

9

Verbindung ermöglichen. Dabei soll bevorzugt mindestens ein Freiheitsgrad in der Bewegung des Steckers relativ zum Grundkörper eingeschränkt werden, so dass nach Einhaken des Steckers in den Grundkörper eine erste Grobpositionierung des Steckers in Bezug auf den Grundkörper erfolgt.

Besonders bevorzugt kann der Stecker mit dem Grundkörper verbunden werden, z. B. verrasten, wobei hierzu geeignete Nuten, Rastnasen oder Ähnliches vorgesehen sein können. Die Verbindung bzw. Rastverbindung kann lösbar oder unlösbar ausgestaltet sein.

Gemäß einem weiteren Aspekt der Erfindung weist ein Grundkörper ein drehbar gelagertes Drehteil auf, welches bevorzugt fest mit dem Grundkörper verbunden ist. Das Drehteil hat eine bevorzugt durch ein Dichtungselement abgeschlossene Öffnung, welche in einer ersten Position des Drehteils das Einführen einer Kanüle z. B. mit einer Nadel ermöglicht und in einer zweiten gedrehten Position das Einführen eines Zuführelements zum Zuführen von Flüssigkeit ermöglicht. Das Vorsehen eines Drehteils am Grundkörper bringt den Vorteil mit sich, dass z. B. bei Ausrichtung der Öffnung des Drehteiles nach oben, also in eine Richtung bei welcher die Öffnung auf einer Verlängerung der gewünschten Position der einzubringenden Kanüle liegt, die Kanüle durch die Öffnung des Drehteils und durch den Grundkörper hindurch direkt in das Gewebe eingebracht werden kann. Nach erfolgtem Einbringen der Kanüle und gegebenenfalls dem Loslösen der Einbringvorrichtung der Kanüle kann das Drehteil gedreht werden, so dass seitlich bzw. bei nicht nach oben weisender Öffnung des Drehteils ein Zuführelement zum Zuführen von Flüssigkeit angeschlossen werden kann. Somit kann auf einfache Weise eine Kanüle eingebracht werden und eine Flüssigkeitszufuhr seitlich angeschlossen werden, wodurch die Vorrichtung bei eingebrachter Kanüle und angeschlossener Gesamthöhe der Flüssigkeitszufuhr gering bleibt. Die Verbindung der Kanüle mit der Öffnung des Drehteils kann z. B. durch ein flexibles Schlauchelement oder eine andere geeignete Vorrichtung erfolgen, welche eine sichere Verbindung im gedrehten Zustand des Drehteils ermöglicht.

Gemäß einem weiteren Aspekt der Erfindung weist eine Vorrichtung zum Zuführen einer Flüssigkeit über eine Kanüle in ein Gewebe nur ein einziges Dichtungselement auf, welches zur Abdichtung eines Flüssigkeitsraumes dient und von einer Kanüle und/oder einer Nadel durchstochen werden kann, wenn die Kanüle in das Gewebe eingebracht

10

werden soll und von einem Zuführelement durchdrungen werden kann, wenn dem Flüssigkeitsraum eine Flüssigkeit zugeführt werden soll. Ergänzend können natürlich auch weitere Dichtungselemente vorgesehen sein.

Nach einem Aspekt der Erfindung kann eine Flüssigkeit über eine Kanüle einem Gewebe zugeführt werden, wobei eine Kanüle, gegebenenfalls mit Nadel, durch ein Dichtungselement gestochen wird, um die Kanüle in das Gewebe einzubringen. Ist die Kanüle eingebracht, so wird ein Zuführelement, gegebenenfalls nach Entfernen der Nadel, durch das Dichtungselement eingebracht, um über das Zuführelement durch das Dichtungselement und die Kanüle hindurch eine Flüssigkeit in das Gewebe einzubringen.

Gemäß einem weiteren Aspekt der Erfindung wird eine Vorrichtung zum Einbringen einer Kanüle in Gewebe vorgeschlagen, wobei eine Kanülenausschubvorrichtung zum Ausschieben der Kanüle und Einbringen der Kanüle in Gewebe vorgesehen ist. Erfindungsgemäß ist ein Rückzugelement mit der Kanülenausschubvorrichtung gekoppelt, um die Kanülenausschubvorrichtung nach dem Ausschieben der Kanüle wieder zurückzuziehen. Das Rückzugelement ist bevorzugt eine Feder, welche beispielsweise so vorgespannt sein kann, dass die in der Feder gespeicherte Energie bzw. Kraft ausreicht die Kanülenausschubvorrichtung aus dem ausgeschobenen Zustand wieder zurückzuziehen, wobei ein vollständiges Zurückziehen in den Ausgangszustand möglich aber nicht erforderlich ist. Somit kann erfindungsgemäß die Applikation einer Kanüle automatisiert und damit vereinfacht werden. Durch geeignete Wahl der Parameter des Rückzugelements, wie z.B. einer Federlänge und einer Federkonstante, kann der Rückzugsvorgang der Kanülenausschubvorrichtung sicher durchgeführt werden, d.h. es steht bei richtiger Wahl dieser Parameter immer eine ausreichende Kraft zur Verfügung, um das Rückzugelement sicher zurückzuziehen, ohne dass ein Benutzer manuell eine große Kraft aufwenden muss.

Bevorzugt ist die Kanülenausschubvorrichtung eine Führungsnadel oder ein anderes die Kanüle tragende Element. So kann z. B. eine Kanüle ohne Führungsnadel mittels einer geeigneten Kanülenhalterung eingebracht werden.

. 11

Als Rückzugelement ist bevorzugt eine Feder vorgesehen, wobei auch andere Energieoder Kraft speichernde Elemente erfindungsgemäß eingesetzt werden können, um das Rückzugelement nach Einbringen der Kanüle wieder zurückzuziehen.

Bevorzugt ist ein Auslöseelement für das Rückzugelement vorgesehen, welches z. B. kann oder bei bedient werden einem bestimmten Kanüleneinbringvorrichtung automatisch ausgelöst wird. Als manuelles Auslöseelement kann z. B. ein Druckknopf oder ein geeignetes anderes Schalt- oder Schiebeelement vorgesehen sein, mit welchem eine Sicherung des Rückzugelements entsichert werden kann. Als Sicherung kann z. B. ein das Rückzugelement in Rückzugrichtung blockierendes Halteelement vorgesehen sein, welches bei Auslösen der Sicherung, z. B. dem Drücken eines Druckknopfes, so verschoben wird, dass über das Rückzugelement eine Rückzugkraft an die Kanülenausschubvorrichtung angelegt wird, zurückzuziehen. Das Halteelement kann z. B. ein seitlich verschiebbares Element, wie z. B. ein Stift oder eine Kante sein und kann z. B. auch über einen Kipp- oder Klappmechanismus bewegt werden.

Vorteilhaft kann das Auslöseelement für das Rückzugelement automatisch bei einem bestimmten Zustand der Kanüleneinbringvorrichtung ausgelöst werden. Zum Beispiel kann ein Mechanismus vorgesehen sein, welcher den Rückzugsvorgang der B. Kanülenausschubvorrichtung automatisch einleitet, wenn z. die Kanüleneinbringvorrichtung von einem Grundkörper abgenommen wird. Hierzu kann z. B. eine Nocke am Grundkörper vorgesehen sein, welche beim Abnehmen der Kanüleneinbringvorrichtung vom Grundkörper automatisch einen Auslösemechanismus für das Rückzugelement betätigt.

Vorteilhaft kann auch ein Ausschubelement, z. B. eine Feder vorgesehen sein, welche eine ausreichende Kraft erzeugen kann, um die Kanüle in das Gewebe einzubringen. Das Ausschubelement kann wie oben für das Rückzugelement beschrieben gesichert sein und z. B. ebenfalls durch einen Druckknopf ausgelöst werden. Bei Vorsehen sowohl eines Rückzugelements, als auch eines Ausschubelements kann eine vollautomatische Kanüleneinbringvorrichtung geschaffen werden, da ein Benutzer weder zum Einbringen einer Kanüle, noch zum Zurückziehen einer Kanülenausschubvorrichtung aktiv Kraft

WO 02/081012

12

PCT/CH02/00186

aufwenden muss. Das Einbringen einer Kanüle z. B. mit einer Führungsnadel und das Zurückziehen der Führungsnadel wird somit voll automatisiert, so dass die Gefahr einer falschen Anwendung durch Benutzer verringert wird.

Die Vorrichtung zum Einbringen einer Kanüle in Gewebe kann vorteilhaft so ausgestaltet sein, dass ein einziges energiespeicherndes Element, wie z. B. eine Feder oder auch eine Mehrzahl von zusammenwirkenden energiespeichernden Elementen energiespeichernde Einheit eingesetzt werden, um eine Kanülenausschubvorrichtung oder Nadel, bevorzugt nach dem geeigneten Positionieren, automatisch, d.h. ohne Zuführen von externer Energie, so zu bewegen, dass die Kanüle in das Gewebe eingebracht wird und die Kanülenausschubvorrichtung anschließend ebenfalls ohne externe Kraft- oder Energiezufuhr automatisch wieder in das Gewebe eingebrachten Kanüle herausgezogen wird, so dass ein Benutzer, außer zum Auslösen der jeweiligen Ausschub- und Rückzieh-Vorgänge, im wesentlichen keine Kraft aufwenden muss. Dabei ist es vorteilhaft bei Verwendung einer einzigen energiespeichernden Vorrichtung, wie beispielsweise einer Druckfeder, die Feder im Ausgangszustand, d.h. vor Einbringen der Kanüle in Gewebe, in einem gespannten Zustand so anzuordnen, dass bei einer ersten Teilentspannung oder Teilausdehnung der Feder in eine erste Richtung, beispielsweise zum Ausschieben der Kanülenausschubvorrichtung oder Nadel aus der Kanüleneinbringvorrichtung nach unten, die Kanülenausschubvorrichtung oder Nadel soweit aus der Kanüleneinbringvorrichtung herausbewegt wird, dass die Kanüle oder eine Kanülenbaugruppe wie gewünscht in oder auf einem Gewebe plaziert werden können, wobei bei einer zweiten Teilausdehnung der Feder in eine zweite Richtung, bevorzugt entgegengesetzt zur ersten Richtung, die Kanülenausschubvorrichtung oder Nadel wieder zurückgezogen wird, so dass die Kanüle kann oder die Kanülenbaugruppe im Gewebe verbleiben und die vollständig eingezogener Kanüleneinbringvorrichtung mit bevorzugt Kanülenausschubvorrichtung oder Nadel abgenommen werden kann. Statt einer Feder, welche beispielsweise aus Metall oder Kunststoff gefertigt sein kann, können als Energiespeicher auch andere Elemente verwendet werden, welche beispielsweise Druckluft speichern, auf elektrischen, magnetischen oder anderen Prinzipien basieren.

Bevorzugt ist ein einziges Auslöseelement, wie beispielsweise ein Knopf, Schalter, Klappmechanismus, Schiebemechanismus, Rastmechanismus, Drehmechanismus,

13

Drehknopf oder Hebel vorgesehen, mit welchem je nach Stellung der Ausschub-Vorgang und der Rückzieh-Vorgang der Kanülenausschubvorrichtung oder Nadel ausgelöst werden können. Beispielsweise kann ein Knopf in Form eines einschiebbaren oder drückbaren Elements vorgesehen sein, welcher z. B. nach Durchführen eines Entsicherungs-Vorganges eine erste Teilstrecke gedrückt wird, um den Ausschub-Vorgang auszulösen und in der gleichen Richtung eine zweite Teilstrecke mit gleicher oder unterschiedlicher Länge gedrückt wird, um den Rückzugvorgang auszulösen. Alternativ ist es auch möglich, dass das eine Auslöseelement zum Auslösen des Ausschubvorgangs in eine erste Richtung betätigt wird und zum Auslösen des Rückzug-Vorgangs der Kanülenausschubvorrichtung oder Nadel in eine zweite Richtung bewegt wird, welche von der ersten Richtung verschieden ist, wie z. B. eine Bewegung in die entgegengesetzte Richtung. Somit kann mit einem einzigen Auslöseelement, wie beispielsweise einem Druckknopf, durch Drücken des Druckknopfes z. B. in eine einzige Richtung nacheinander zunächst das Einbringen der Kanüle in Gewebe durch die Kanülenausschubvorrichtung oder Nadel und anschließend das Rückziehen der Nadel aus der eingebrachten Kanüle oder Kanülenbaugruppe veranlasst werden, wodurch die Kanüleneinbringvorrichtung sehr einfach bedient werden kann.

Allgemein kann ein Auslöseelement auch als ein Drehmechanismus oder Drehknopf ausgebildet sein, wobei durch eine Drehung ein Ausschub-Vorgang ausgelöst werden kann und bei einem Weiterdrehen in die gleiche oder alternativ in die entgegengesetzte Richtung ein Rückzug-Vorgang ausgelöst wird. Es sind auch Kombinationen unterschiedlicher Auslöseelemente möglich, um z.B. mit einem Druckknopf oder Schalter einen Ausschub-Vorgang auszulösen und z.B. mit einem Drehknopf einen Rückzug-Vorgang auszulösen. Vorteilhaft wird ein Auslöseelement für das Rückziehen erst nach erfolgtem Ausschieben freigegeben.

Vorteilhaft kann mindestens ein Sicherungselement an der Kanüleneinbringvorrichtung vorgesehen sein, welches ein unbeabsichtigtes Betätigen eines Auslöseelements verhindert. Ein solches Sicherungselement ist beispielsweise so ausgestaltet, dass es von der Kanüleneinbringvorrichtung abgenommen oder an der Kanüleneinbringvorrichtung in einen entsicherten Zustand gebracht werden muss, um überhaupt das Auslöseelement betätigen zu können. Beispielsweise kann das Sicherungselement als eine Sicherungskappe

14

ausgestaltet sein, welche das Auslöseelement zumindest teilweise und bevorzugt in etwa vollständig umgibt und vor unbeabsichtigter Berührung und somit ungewünschter Auslösung schützt. Weiterhin kann das Sicherungselement auch als eine Vorrichtung zum Sperren oder Arretieren des Auslöseelements ausgestaltet sein, welche beispielsweise erst verschoben werden muss, um das Auslöseelement betätigen zu können. Dabei ist es vorteilhaft das Sicherungselement so auszugestalten, dass es nicht einfach z. B. durch eine unbeabsichtigte Berührung oder einen Stoß bewegt werden kann, sondern beispielsweise nur durch eine Druckbewegung zwischen zwei Fingern in einen Zustand gebracht werden kann, in welchem das Auslöseelement betätigt werden kann. Dabei kann das Sicherungselement so ausgestaltet sein, dass es entweder einen konstanten Druck oder Zug benötigt, um das Auslöseelement in den entsicherten Zustand zu versetzen, oder das es nach Durchführen eines Entsicherungsvorgangs in dem entsicherten Zustand bleibt und beispielsweise einrastet, so dass nach dem Entsichern das Auslöseelement betätigt werden kann.

Die Kanüleneinbringvorrichtung kann als Einwegvorrichtung ausgebildet sein, wobei das darin enthaltene Rückzugelement und/oder Ausschubelement schon vorgespannt sind, um ein automatisches Einbringen der Kanüle und/oder ein automatisches Rückziehen der Kanülenausschubvorrichtung zu bewirken. Die Kanüleneinbringvorrichtung kann jedoch auch als Mehrweg-Kanüleneinbringvorrichtung ausgebildet sein, wobei das Rückzugelement und/oder das Ausschubelement als ladbar bzw. spannbar ausgebildet sind. So kann z. B. ein Mechanismus vorgesehen sein, um eine Rückzugfeder und/oder eine Ausschubfeder nach erfolgtem Einbringen einer Kanüle und/oder Zurückziehen einer Kanülenausschubvorrichtung wieder zu spannen, so dass die Kanüleneinbringvorrichtung zum Einbringen einer weiteren Kanüle verwendet werden kann.

Allgemein kann erfindungsgemäß die Kanüleneinbringvorrichtung voll automatisch ausgestaltet werden, also sowohl ein Ausschubelement für die Kanüle, als auch ein Rückzugelement vorgesehen sein. Alternativ ist es auch möglich nur eines dieser beiden Elemente vorzusehen, um eine halbautomatische Kanüleneinbringvorrichtung zu schaffen, wobei dann der jeweils andere Vorgang manuell durchgeführt werden muss. Es ist z. B. möglich nur das Einbringen der Kanüle durch Vorsehen eines Ausschubelements zu

automatisieren, wobei das Zurückziehen der Kanülenausschubvorrichtung dann manuell durchgeführt werden muss.

Alle beschriebenen Ausführungsformen eines Infusionssets bzw. einer Kanüleneinbringvorrichtung und/oder einer Flüssigkeitszuführvorrichtung abweichend von den voranstehend beispielhaft beschriebenen Rastverbindungen zum Verbinden der jeweiligen Vorrichtungen mit einem Grundkörper auch eine Dreh- oder Schraubverbindung aufweisen, welche bevorzugt in einer oder mehreren Stellungen verrasten können, so dass die jeweiligen Vorrichtungen durch Drehen miteinander verbunden bzw. voneinander gelöst werden können und auf die beschriebenen Rastvorrichtungen verzichtet werden kann.

Die oben beschriebenen Vorrichtungen gemäß den einzelnen Aspekten der Erfindung können sowohl unabhängig voneinander, als auch in Kombination mit Elementen gemäß anderen Aspekten der Erfindung verwendet werden.

Die Erfindung wird nachfolgend anhand bevorzugter Ausführungsbeispiele unter Bezugnahme auf die Zeichnungen beschrieben werden. Es zeigen:

Figur 1 eine erste Ausführungsform eines erfindungsgemäßen Infusionssets einer an einem Basiskörper angebrachten Vorrichtung zum Einbringen der Kanüle; Figur 2 die Vorrichtung nach Figur 1, wobei die Kanüleneinbringvorrichtung vom Basiskörper losgelöst ist; Figur 3 eine Teilschnittansicht des Basiskörpers mit eingebrachter Kanüle; Figur 4 eine Querschnittsansicht einer Flüssigkeitszuführvorrichtung; eine Teilquerschnittsansicht der in den Basiskörper einzubringenden Figur 5 Flüssigkeitszuführvorrichtung; Figur 6 die Anordnung nach Figur 5 mit an dem Basiskörper angesetztem Stecker der Flüssigkeitszuführvorrichtung; Figur 7 die Anordnung von Figur 6 aus einem anderem Blickwinkel; Figur 8 eine alternative Ausführungsform der Erfindung mit Drehteil; Figur 9 eine Ausführungsform einer automatischen Kanüleneinbringvorrichtung im

Ausgangszustand;

Figur 10	die in Figur 9 gezeigte Kanüleneinbringvorrichtung nach Einbringen der
	Kanüle;
Figur 11	die in Figur 10 gezeigte Kanüleneinbringvorrichtung nach Rückziehen der
	Führungsnadel;
Figur 12	die in Figur 11 gezeigte Kanüleneinbringvorrichtung nach Abtrennung von
	dem Grundkörper;
Figur 13	eine erste Ausführungsform einer automatischen Kanüleneinbring- und
	Rückzugsvorrichtung im Ausgangszustand;
Figur 14	die Vorrichtung von Figur 13 nach Einbringen der Kanüle;
Figur 15	die in Figur 14 gezeigte Vorrichtung nach Rückziehen der Führungsnadel;
Figur 16	eine zweite Ausführungsform einer automatischen Kanüleneinbring- und
	Rückzugsvorrichtung im Ausgangszustand;
Figur 17	die in Figur 16 gezeigte Vorrichtung nach Einbringen der Kanüle; und
Figur 18	die in Figur 17 gezeigte Vorrichtung nach Rückziehen der Führungsnadel.

Figur 1 zeigt ein Infusionsset mit fest auf dem Basiskörper 1, 2 vormontierter Kanülen-Einbringvorrichtung 3 - 8. Der Basiskörper besteht aus einem Grundkörper 1 und einem Pflaster 2, welches eine untere klebende Oberfläche aufweist, um den Basiskörper über einer Injektionsstelle aufkleben zu können. Auf der Oberseite des Pflasters 2 ist der Grundkörper 1 angeordnet; z. B. aufgeklebt, welcher fest durch den Halter 6a mit der Kanülen-Einbringvorrichtung 3 - 8 verbunden ist. Die Kanülen-Einbringvorrichtung weist eine Führungsnadel 8 auf, welche durch die Kanüle 3 hindurch geführt ist und mit welcher die Kanüle 3 aus der Unterseite des Grundkörpers 1 heraus in ein Gewebe eingebracht werden kann. An der Oberseite der Kanüle 3, d. h. der der Spitze der Führungsnadel 8 abgewandten Seite der Kanüle 3 ist eine Halterung 5 fest mit der Kanüle 3 verbunden, wobei in der Halterung 5, wie in Figur 3 gezeigt, ein Dichtelement bzw. Septum 4 vorgesehen ist. Die Führungsnadel 8 und die Kanüle 3 sind von dem als Schutzelement dienenden Führungselement 6 umgeben, so dass einerseits keine Verletzungsgefahr einer Bedienperson besteht, da die Spitze der Führungsnadel 8 nicht aus der gezeigten Anordnung herausragt und noch innerhalb des Grundkörpers 1 bzw. des Führungselements 6 angeordnet ist. Andererseits wird durch die in Figur 1 gezeigte Anordnung eine Kontamination der Führungsnadel 8 und der Kanüle 3 vor Einbringen der Kanüle 3 in Gewebe weitgehend verhindert, da ein direkter Kontakt der Kanüle 3 und Führungsnadel 8

17

zur Umgebung durch das Führungselement 6 und den Grundkörper 1 verhindert wird. Die Führungsnadel 8 ist, wie in Figur 2 gezeigt, fest mit dem Betätigungselement 7 verbunden und kann durch Druck auf das Betätigungselement 7 nach unten aus dem Grundkörper 1 ausgeschoben werden, um die Kanüle 3 in ein Gewebe einzubringen.

Figur 2 zeigt die Anordnung von Figur 1 nach dem Einführen der Kanüle 3 und dem Lösen der Verbindung zwischen Kanülen-Einbringvorrichtung und Basiskörper. Durch Drücken des Betätigungselements 7 nach unten wurde die Führungsnadel 8 zusammen mit der Kanüle 3 nach unten verschoben und die Kanüle 3 in ein nicht dargestelltes unter dem Pflaster 2 liegendes Gewebe eingebracht. Die an der Oberseite der Kanüle 3 fest mit der Kanüle 3 verbundene Halterung 5 mit innenliegendem Dichtelement 4 wurde dabei so weit in den Grundkörper 1 eingeschoben, bis ein ringförmiger Vorsprung 1d des Grundkörpers 1 in eine um die Halterung 5 umlaufende Rille 5a eingreift und somit eine Verrastung der Halterung 5 in den Grundkörper 1 bewirkt. Nach erfolgter Verrastung der Halterung 5 im Grundkörper 1 kann durch eine Bewegung des Betätigungselements 7 nach oben die Führungsnadel 8 aus der Kanüle 3 herausgezogen werden, ohne dass bei diesem Ausziehvorgang der Führungsnadel 8 aus der Kanüle 3 eine allzu große Kraft auf die eingebrachte Kanüle 3 wirkt. Die Verrastung der Halterung 5 in den Grundkörper 1 bewirkt, dass bei einer relativ zum, beim Ausziehvorgang noch mit dem Grundkörper 1 verbundenen, Führungselement 6 nach oben wirkenden Kraft auf die Führungsnadel 8 die Halterung 5 fest in dem Grundkörper 1 verankert ist und somit eine Zugentlastung der Kanüle 3 beim Ausziehvorgang der Nadel 8 ermöglicht wird.

Die Halterung 5 kann z.B. an der Außenfläche, welche im Inneren des Führungselements 6 geführt wird eine Oberflächenstruktur oder ein oder mehrere nach außen abstehende Elemente, aufweisen, welche eine Bewegung der Halterung 5 in Ausschubrichtung ermöglichen, jedoch eine Bewegung in Rückzugrichtung verhindern oder erschweren, so dass eine Fehlbedienung verhindert werden kann. Entsprechend können an der Innenseite des Führungselements 6 korrespondierende Strukturen oder Elemente vorgesehen sein, um eine Bewegung nur in eine vorgegebene Richtung zu ermöglichen.

Werden die Halter 6a des Führungselements 6 durch Zusammendrücken der Betätigungselemente 6b so bewegt, dass die Rastnasen 6c des Führungselements 6 nicht

18

mehr in die Rastnasen 1a des Grundkörpers 1 eingreifen, so kann die Kanülen-Einbringvorrichtung von dem Grundkörper 1 abgelöst werden. Das Betätigungselement 7 ist in seiner äußersten oberen Stellung durch eine im unteren Bereicht des Betätigungselements 7 umlaufende Nut 7a fest mit einem umlaufende Vorsprung 6d des Führungselements 6 verrastet und stellt somit sicher, dass nach Diskonnektieren der Kanülen-Einbringvorrichtung die Führungsnadel 8 nicht mehr unbeabsichtigt aus dem Führungselement 6 ausgeschoben werden kann. Wie aus Figur 1 ersichtlich, ist im vormontierten Grundzustand der Kanülen-Einbringvorrichtung auf dem Grundkörper 1 das Betätigungselement 7 so weit in das Führungselement 6 eingefahren, dass die umlaufende Nut 7a des Betätigungselements 7 unterhalb des umlaufenden Vorsprunges 6d positioniert ist, so dass eine Verrastung des Betätigungselements 7 mit dem Führungselement 6 erst nach dem Einbringen der Kanüle 3 erfolgt.

Figur 3 zeigt im Teilschnitt die eingeführte Kanüle 3 mit der im Grundkörper 1 verrasteten Halterung 5, in welcher ein Dichtelement 4 angeordnet ist.

Figur 4 zeigt ein Schnittbild des in Figur 1 gezeigten Steckers 9 Flüssigkeitszuführvorrichtung. Das Kupplungsteil 13 des Schlauches 12 wird mit einer Flüssigkeitsfördereinrichtung (nicht gezeigt) verbunden. Anschließend wird der gesamte Flüssigkeitsraum des Kupplungsteils 13, des Schlauches 12, sowie des Steckers 9 geflutet. Der Stecker weist eine Steckerkanüle 10 auf, welche durch den im Stecker 9 verlaufenden Kanal 9a mit dem Schlauch 12 verbunden ist. Der Stecker 9 wird in eine Position über dem Grundkörper 1 gebracht, wie in Figur 5 gezeigt und mit der an der hinteren unteren Seite des Steckers 9 verlaufenden Kante 9b in Kontakt mit der Kante 1b des Grundkörpers 1 gebracht. Hierbei wird der Stecker 9 bevorzugt leicht nach oben gekippt, wie in Figur 6 gezeigt, so dass die vom Stecker 9 vorstehende Kante 9b in den durch die Oberseite des Grundkörpers 1 und die vorspringende Kante 1c des Grundkörpers 1 definierte Spalte eingebracht wird. Somit kann der Stecker 9 relativ einfach und bedienungsfreundlich in eine erste Anlageposition zu dem Grundkörper 1 gebracht werden. Greift die Kante 9b des Steckers 9 in dem durch die Kante 1c des Grundkörpers 1 definierten Spalt ein, so kann der Stecker 9 um die durch diesen Eingriff definierte Drehstelle nach unten geklappt werden, um die Steckerkanüle 10 in das Gehäuse 5 durch das Dichtelement 4 hindurch einzuführen und so einen Fluss einer Flüssigkeit von der Flüssigkeitsfördereinrichtung durch den

19

Kupplungsteil 13, den Schlauch 12, den Stecker 9 und die Steckerkanüle 10 in die Kanüle 3 und somit in das umliegende Gewebe zu ermöglichen.

Wird der Stecker 9 aus der in den Figuren 6 und 7 gezeigten Position nach unten geklappt, so erfolgt eine Führung des Steckers 9 über Führungsnocken 14, um die Steckerkanüle 10 positionsgenau in das Gehäuse 5 einzuführen. Durch die Führung mittels der Führungsnocken 14 kann ein möglicherweise beim Ansetzen des Steckers 9 an die Kante 1b des Grundkörpers 1 vorliegender seitlicher Versatz des Steckers 9 relativ zum Grundkörper 1 beim Klappen des Steckers 9 korrigiert werden, so dass die Steckerkanüle 10 immer sicher in das Gehäuse 5 eingeführt werden kann.

Im vollständig heruntergeklappten Zustand des Steckers 9, in welchem die Steckerkanüle 10 in das Gehäuse 5 eingeführt ist, verrasten die seitlich am Stecker 9 vorgesehenen Rastvorrichtungen 15 mit den in Figur 2 gezeigten Rastnasen 1b des Grundkörpers 1, wodurch der Stecker 9 sicher mit dem Grundkörper 1 verbunden ist.

Figur 8 zeigt eine alternative Ausführungsform der vorliegenden Erfindung. Ein in dem Grundkörper 1 drehbar gelagertes Drehteil 16 kann in eine Position gebracht werden, bei welcher die Öffnung 18 des Drehteiles 16 nach oben weist. In dieser Position kann mit Hilfe der durch einen als Schutzelement 6 dienenden Rahmen geschützten Führungsnadel 8 eine Kanüle in den Grundkörper 1 eingebracht werden, wie oben beschrieben. Nach einbringen der Kanüle kann die Führungsnadel 8 wieder entfernt werden. Das Drehteil 16 kann nun, wie in Figur 8 gezeigt, auf die Seite gedreht werden und verrastet bevorzugt mit einer auf der Grundebene des Grundkörpers 1 angebrachten nach oben weisenden Rastnase 17, wodurch das Drehteil 16 sicher in seiner heruntergeklappten Position gehalten wird. Ein Stecker 9 kann bei dieser alternativen Ausführungsform seitlich an dem vollständig heruntergeklappten Drehteil 16 so angebracht werden, dass die in gerader Verlängerung des Schlauches 12 verlaufende Steckerkanüle 10 in die auf die Seite weisende Öffnung 18 des Drehteiles 16 eingebracht werden kann. Dabei kann eine an dem Stecker 9 angebrachte Rastvorrichtung 15 mit geeigneten Gegenstücken des Drehteiles 16 verrasten.

Bei den oben beschriebenen Ausführungsformen kann der Stecker 9 jeweils wieder durch seitlichen Druck auf die oberhalb oder seitlich der Rastvorrichtungen 15 des Steckers 9

20

liegenden Bereiche wieder vom Grundkörper 1 diskonnektiert werden. Nach erfolgter Diskonnektion schließt das Dichtelement 4 den Zugang zur Kanüle 3 wieder vollständig.

Figur 9 zeigt eine automatische Kanüleneinbringvorrichtung gemäß der Erfindung. Bezüglich der Beschreibung des Grundkörpers 1 mit zugehörigen Rastverbindungen und dem Einbringen der Kanüle 3 mit Halterung 5 und Dichtelement 4 wird auf die voranstehende Beschreibung verwiesen. In dem Führungselement 6 ist ein in Längsrichtung des Führungselements 6 bewegbarer Nadelträger 27 vorgesehen, welcher fest mit der Führungsnadel 8 verbunden ist. Alternativ kann die Führungsnadel 8 auch mit dem Nadelträger 27 koppelbar ausgestaltet sein, um z. B. die Führungsnadel 8 wechseln zu können. Der Nadelträger 27 befindet sich in einem zurückgezogenen Zustand und wird durch eine an der Vorderseite des Nadelträgers 27 anliegende Einbringfeder 21 vorgespannt, welche sich gegen ein etwa im Mittelteil des Führungselements 6 vorgesehenes Stützelement 20 abstützt und den durch das Halteelement 28a gesicherten Nadelträger 27 in Ausschubrichtung der Kanüle 3 vorspannt. Das Halteelement 28a kann durch einen ersten Auslöseknopf 24 entsichert werden. Auf der entgegengesetzten Seite des Stützelements 20 ist eine Rückzugfeder 22 vorgesehen, welche gegen einen durch ein Halteelement 28b gesicherten Haltering 23 drückt, der durch einen zweiten Auslöseknopf 25 entsichert werden kann. Der Nadelträger 27 verläuft in Längsrichtung des Führungselements 6 durch die beiden Federn 21 und 22, sowie das Stützelement 20 und den Haltering 23 verschieblich hindurch und weist an seinem hinteren Ende ein Halteelement 27a auf, um zu verhindern, dass der Nadelträger 27 durch den Haltering 23 vollständig hindurchtreten kann. Wird der Auslöseknopf 24 gedrückt, so wird das schematisch gezeichnete Halteelement 28a in Pfeilrichtung radial nach außen geschoben bzw. geklappt, wobei der Klappmechanismus bevorzugt vollständig innerhalb des Führungselements 6 ausgebildet ist, wobei dann der Nadelträger 27 in Ausschubrichtung der Kanüle 3 nicht mehr gehalten wird und durch die Kraft der Einbringfeder 21 nach unten beschleunigt wird, um mit der Führungsnadel 8 die Kanüle 3 aus dem Führungselement 6 auszustoßen und durch das Pflaster 2 hindurch in ein Gewebe einzubringen. Dabei wird die Ausstoßbewegung fortgesetzt, bis das Halteelement 27a des Nadelträgers 27 an dem Haltering 23 anliegt.

21

Figur 10 zeigt die in Figur 9 gezeigte Kanüleneinbringvorrichtung nach erfolgtem Ausschubvorgang der Kanüle 3. Die Einbringfeder 21 hat die in ihr gespeicherte Energie auf den Nadelträger 27 übertragen und ist im entspannten Zustand. Die Halterung 5 kann z. B. wie oben beschrieben, mit dem Grundkörper 1 verrastet werden. Wird vom Benutzer nun der zweite Auslöseknopf 25 betätigt, so wird das radial verschiebbare Halteelement 28b (Fig. 9) aus dem Haltering 23 herausgeschoben und der Haltering 23, welcher bisher gegen axiale Bewegung im Führungselement 6 gesichert war, freigegeben, so dass die Rückzugfeder 22 gegen den Haltering 23 und das Halteelement 27a des Nadelträgers 27 drückt und somit eine Rückzugkraft auf den Nadelträger 27 wirkt. Bevorzugt ist die Rückzugfeder 22 in der gezeigten Ausführungsform so ausgestaltet, dass diese eine stärkere Kraft aufbringen kann, als die Einbringfeder 21, da diese beim Zurückziehen des Nadelträgers 27 wieder zusammengedrückt wird. Alternativ kann der Nadelträger 27 auch so ausgebildet sein, dass nach Einbringen der Kanüle 3 keine Kopplung zwischen unterer Seite des Nadelträgers 27 und Einbringfeder 21 mehr vorliegt, so dass beim Zurückziehen des Nadelträgers 27 die Einbringfeder 21 nicht mehr gespannt werden muss.

Allgemein kann das Halteelement 28a und/oder das Halteelement 28b als Kipp- oder Schiebemechanismus oder als ein beliebiger anderer Sicherungsmechanismus ausgebildet sein.

Figur 11 zeigt die in Figur 10 gezeigte Kanüleneinbringvorrichtung nach erfolgtem Rückziehen des Nadelträgers 27. Die Führungsnadel 8 wurde dabei aus der ausgeschobenen Kanüle 3 wieder zurückgezogen und in das Führungselement 6 eingebracht, um Verletzungen zu vermeiden.

Alternativ zu der gezeigten Ausführungsform kann z. B. das Zurückziehen des Nadelträgers 27 voll automatisch nach Einbringen der Kanüle 3 erfolgen, indem z. B. durch die Unterseite des Nadelträgers 27 ein Auslösemechanismus für die Rückzugfeder 22 betätigt wird, wodurch unmittelbar nach Einbringen der Kanüle 3 der Nadelträger 27 wieder zurückgezogen wird. In diesem Fall kann dann der zweite Auslöseknopf 25 entfallen.

22

Gemäß einer weiteren alternativen Ausführungsform kann die Auslösung der Rückzugfeder 22 durch Entsichern des Halterings 23 automatisch erfolgen, wenn die Kanüleneinbringvorrichtung von dem Grundkörper 1 abgenommen wird, z. B. indem durch das Eindrücken der Knöpfe 6b um die Verrastung der Rastnasen 6c des Führungselements 6 mit den Rastnasen 1a des Grundkörpers 1 zu lösen auch gleichzeitig der Haltering 23 entsichert wird.

Vorteilhaft ist die Kanüleneinbringvorrichtung so ausgestaltet, dass das Lösen der Verrastung zwischen Führungselement 6 und Grundkörper 1 nicht erfolgen kann, wenn die Führungsnadel 8 in der in Figur 9 gezeigten Positionen vor dem Ausschieben und/oder in der in Figur 10 gezeigten ausgeschobenen Position ist. Dies kann z. B. dadurch erfolgen, dass die Unterseite des Nadelträgers 27 so breit ist, dass ein Zusammendrücken der Unterseite des Führungselements 6 z. B. an den Knöpfen 6b verhindert wird und in der in Figur 10 gezeigten Stellung somit die Verrastung zwischen Führungselement 6 und Grundkörper 1 nicht gelöst werden kann.

Figur 12 zeigt die von dem Grundkörper I abgelöste Kanüleneinbringvorrichtung mit zurückgezogener Führungsnadel 8. Die Kanüleneinbringvorrichtung kann nun gefahrlos entsorgt werden, da die Führungsnadel 8 durch das umliegende Führungselement 6 abgedeckt ist und somit die Gefahr unbeabsichtigter Stichverletzungen minimiert ist. Alternativ kann durch nicht gezeigte Spannvorrichtungen die Kanüleneinbringvorrichtung wieder in den in Figur 9 gezeigten Zustand gebracht werden, indem z. B. der Haltering 23 aus der oberen Position wieder in eine untere Position geschoben wird, wobei die Rückzugfeder 22 wieder gespannt wird. Ebenso ist es möglich den Nadelträger 27 aus dem Führungselement 6 auszuschieben und dabei die Rückzugfeder 22 zu spannen, wobei anschließend in einem zweiten Schritt die Einbringfeder 21 wieder gespannt wird. Bevorzugt wird bei einer Mehrwegvorrichtung die benutzte Führungsnadel ausgewechselt und durch eine neue Führungsnadel, gegebenenfalls mit neuer Kanüle 3 und zugehöriger Halterung 5 mit Dichtelement 4 ersetzt.

Figur 13 zeigt eine erste Ausführungsform einer automatischen Kanüleneinbring- und Rückzugsvorrichtung im Ausgangszustand vor dem Einbringen einer Kanüle 3 an einer Kanülenbaugruppe 35 durch eine Führungsnadel 8. Die Kanüleneinbringvorrichtung weist

23

eine Konnektorhülse bzw. ein Führungselement 38 auf, welches an seinem unteren Ende Konnektorelemente 39 hat, um beispielsweise auf einem Grund- oder Basiskörper 1 befestigt zu werden, wie für eine der Ausführungsformen in den vorangehenden Figuren gezeigt. Diese Konnektorelemente 39 zum Verbinden der Konnektorhülse 38 mit einem vorgegebenen Basiskörper weisen beispielsweise Rastzungen 39a und weitere nicht gezeigte Verbindungselemente auf. Innerhalb der Konnektorhülse 38 ist die Führungshülse 33 mit davon nach innen vorstehenden Zungen 33a, 33b und 33c vorgesehen. Die Zungen 33a bis 33c sind an verschiedenen Positionen in axialer Richtung der Führungshülse 33 angeordnet und können als einzelne vorstehende Elemente oder auch über einen größeren Teil des Umfangs der Führungshülse 33 angeordnet sein. Die Zungen können beispielsweise auch einander gegenüberliegen und/oder symmetrisch zueinander als eine Mehrzahl von einzelnen Zungenelementen ausgebildet sein. Die drei beispielhaft gezeigten Zungen 33a bis 33c sind in axialer Richtung der Führungshülse 33 versetzt zueinander angeordnet, um verschiedene Funktionen beim Auslösen eines Ausschub- und Rückzug-Vorgangs zu erfüllen, wie nachfolgend erläutert werden wird. Innerhalb der Führungshülse 33 ist fest mit dem Auslöseknopf 37 verbunden eine Auslösehülse 37a vorgesehen, welche in axialer Richtung Ausnehmungen aufweist, die den Zungen 33b und 33c zugeordnet sind. Weiterhin sind an der Auslösehülse 37a spezielle Auslöseoberflächen, wie beispielsweise Abschrägungen vorgesehen, um die Zungen 33a bis 33c bei einem Verschieben der Auslösehülse 37a nach unten in der in Figur 13 gezeigten Ausführungsform in einer vorgegebenen Reihenfolge wegzudrücken, wodurch der Ausschub- und Rückzug-Vorgang der Kanülenbaugruppe 35 eingeleitet wird. Innerhalb der Konnektorhülse 38 ist weiterhin ein Nadelteil oder Nadelträger 34 verschiebbar angeordnet, welcher über eine fest verbundene Führungsnadel 8 und bevorzugt eine direkte Anlagefläche mit der Kanülenbaugruppe 35 gekoppelt oder über eine Rastvorrichtung (nicht gezeigt) mit dieser verrastet ist. Die vollständig vorgespannt Feder 31 drückt im gezeigten Ausgangszustand auf die Kanülenbaugruppe 35, wobei ein Paar von oberhalb der Feder 31 symmetrisch angeordneten Zungen 33b und ein Paar von unterhalb der Kanülenbaugruppe 35 angeordneten Zungen 33a der Führungshülse 33 die auf die Kanülenbaugruppe 35 drückende vorgespannte Feder 31 in Position halten. An der Oberseite der Konnektorhülse 38 ist ein Sicherungsbügel 38a mit einer darin vorgesehenen Bohrung 38b vorgesehen, wobei der Durchmesser der Bohrung 38b etwa dem Durchmesser des Auslöseknopfes 37 entspricht und bevorzugt ein wenig größer ist, um ein leichtes Hindurchtreten des

Auslöseknopfes 37 zu ermöglichen. Der in etwa L-förmig ausgebildete Sicherungsbügel 38a liegt einem Sicherungsbügel 38c mit einem elastischen Element an der Oberseite der Konnektorhülse 38 gegenüber, wobei eine an dem Sicherungsbügel 38a vorgesehene Zunge 38d mit dem Sicherungsbügel 38c verrasten kann, wenn der Sicherungsbügel 38a und das Sicherungsbügel 38c zusammengedrückt werden. Die in Figur 13 gezeigte zur Kanülenachse exzentrisch angeordnete Bohrung 38b verhindert, dass der Auslöseknopf 37 gedrückt werden kann. Werden der Sicherungsbügel 38a und das Sicherungsbügel 38c so zusammengedrückt, dass der Sicherungsbügel 38c z. B. mit der Zunge 38d einrastet, so wird die Bohrung 38b in eine Position konzentrisch zur Position des Auslöseknopfes 37 gebracht, so dass dieser gedrückt werden kann.

Figur 14 zeigt den Zustand der in Figur 13 gezeigten Vorrichtung, nachdem der Betätigungsknopf 37 um etwa eine halbe Länge eingedrückt wurde. Die unteren Zungen 33a, auf welche die Kanülenbaugruppe 35 durch die Feder 31 gedrückt wurde, werden durch die sich entlang der Innenseite der Konnektorhülse 38 erstreckende Auslösehülse 37a deformiert, wodurch die Kanülenbaugruppe 35 zusammen mit dem Nadelträger 34 freigegeben wird und von der Feder 31 an einen unteren Endanschlag, welcher in der Kanüleneinbringvorrichtung oder an einem Basiskörper 1 vorgesehen sein kann, gedrückt wird. Das obere Ende des Nadelträgers 34 führt dabei über die Zungen 33c. Die mit der Führungsnadel 8 verbundene Kanüle 3 der Kanülenbaugruppe 35 wird durch die Kraft der Feder 31 nach unten bevorzugt mit hoher Geschwindigkeit aus der Vorrichtung ausgeschoben und kann wie gewünscht in ein Gewebe eingebracht werden.

In der in Figur 14 gezeigten Position ist die Kanülenbaugruppe 35 mit einem (nicht gezeigten) Grundkörper oder Basiskörper eines Infusionssets verriegelt und der Nadelträger 34 wird durch Zungen im Grundkörper des Infusionssets entriegelt, so dass Nadelträger 34 und Kanülenbaugruppe nicht mehr verbunden sind (in Figur 14 nicht gezeigt). Dabei ist der Nadelträger 34 in dieser Position durch die zwei symmetrisch zueinander angeordneten Zungen 33c verriegelt, was ein Umplazieren des Sets möglich macht.

Die Feder 31 im halbentspannten Zustand drückt unten gegen die ausgeschobene Kanülenbaugruppe 35 und liegt an der gegenüberliegenden Seite an einem vorstehenden

25

Element des Nadelteiles 34 an, wobei das Nadelteil 34 gegen eine axiale Verschiebung durch die Zungen 33c gesichert ist. Die Feder 31 wird in der gezeigten Position durch die Zungen 33b gehalten. Allgemein kann die Feder auch in der gezeigten Position z.B. von dem oberen Ende des Nadelteiles 34 gehalten werden.

Figur 15 zeigt den Zustand der Vorrichtung von Figur 14, nachdem der Betätigungsknopf 37 ganz eingedrückt wurde. Hierdurch wird die Auslösehülse 37a über die Zungen 33b und 33c geschoben, welche nach außen weggedrückt werden und so das Nadelteil 34 freigeben, welches durch die Feder 31, welche sich nun voll entspannen kann, wieder zurück in die Konnektorhülse 38 geschoben wird. Hierdurch wird die mit dem Nadelteil 34 verbundene Führungsnadel 8 aus der Kanüle 3 und der Kanülenbaugruppe 35 in die Konnektorhülse 38 zurückgezogen, wobei die Kanüle 3 z. B. in einem Gewebe verbleiben kann. Das Nadelteil 34 wird durch die Feder 31 in der zurückgezogenen Position erhalten, so dass die Führungsnadel 8 nicht unbeabsichtigt aus der Konnektorhülse 38 austreten kann, wodurch das Verletzungsrisiko minimiert wird. Die Konnektorhülse 38 kann nun von einem Basiskörper durch Lösen der Konnektorelemente 39 abgenommen werden.

Figur 16 zeigt eine zweite Ausführungsform einer automatischen Kanüleneinbring- und Rückzugsvorrichtung im Ausgangszustand mit einer Konnektorhülse 38, welche mit einem Grundkörper 1 verbunden ist. Ein Auslöseknopf 37 geht in die Auslösehülse 37a über, welche innerhalb der Konnektorhülse 38 angeordnet ist. Die Auslösehülse 37a weist entlang ihrer axialen Richtung an der Innenseite Vertiefungen und untere und obere Abschrägungen auf, mit welchen bei axialer Verschiebung der Auslösehülse 37a innerhalb der Konnektorhülse 38 ein unterer und ein oberer Mitnehmerring 32a und 32b entkoppelt werden können, um die Führungsnadel 8 aus der Konnektorhülse 38 zusammen mit der um diese angeordneten Kanüle 3 mit zugehöriger Kanülenbaugruppe 35 auszuschieben und anschließend die Führungsnadel 8 aus der Kanüle 3 und der Kanülenbaugruppe 35 zurückzuziehen, wie nachfolgend beschrieben werden wird.

Der untere Mitnehmerring 32a liegt an einer Anschlaghülse 36 an und wird von dieser gegen den Druck der Feder 31 in Position gehalten. Die Feder 31 drückt an der Oberseite gegen den oberen Mitnehmerring 32b, welche durch die Führungshülse 33 z. B. in einer Rille oder Vertiefung gehalten wird. Der Nadelträger 34 ist so ausgestaltet, dass er in

26

axialer Richtung der Konnektorhülse 38 durch die Mitnehmerringe 32a und 32b hindurch bewegt werden kann bis zum Ende des Nadelträgers 34, welcher einen größeren Durchmesser aufweist als der Innendurchmesser der Mitnehmerringe, um so zu verhindern, dass der Nadelträger 34 beispielsweise herausfallen kann. Der Nadelträger 34 ist wiederum fest mit der Führungsnadel 8 verbunden.

Figur 17 zeigt die in Figur 16 gezeigte Vorrichtung, nachdem die über dem Auslöseknopf 37 angeordnete Sicherungskappe 38d abgenommen und der Auslöseknopf 37 um etwa eine halbe Länge eingedrückt worden ist. Der untere Mitnehmerring 32a wird durch eine untere schräge innere Oberfläche der Auslösehülse 37a seitlich weg von der Anschlaghülse 36 verschoben und damit von dieser entkoppelt. Dabei kann der untere Mitnehmerring 32a entweder schon mit dem Nadelträger 34 gekoppelt sein oder durch diesen Verschiebevorgang mit dem Nadelträger 34 gekoppelt werden. Die Feder 31 drückt nun gegen den noch fest durch die Führungshülse 33 gehaltenen oberen Mitnehmerring 32b und drückt den mit dem Nadelträger 34 gekoppelten unteren Mitnehmerring 32a nach unten und bringt so die Führungsnadel 8 zusammen mit der Kanüle 3 in ein unterhalb des Grundkörpers 1 liegendes Gewebe ein, wobei wiederum die Kanülenbaugruppe 35 bis zu einem unteren Endanschlag bewegt wird. In dieser Position bleibt der Nadelträger 34 mit dem Grundkörper 1 verriegelt, was ein Umplatzieren des gesamten Sets möglich macht.

Figur 18 zeigt den Zustand der in Figur 17 gezeigten Vorrichtung, nachdem der Auslöseknopf 37 weiter eingedrückt wurde. Dabei wird zuerst der Nadelträger 34 vollständig von der Kanülenbaugruppe 35 entriegelt. Der obere Mitnehmerring 32b wird durch eine obere schräge Fläche der Auslösehülse 37a seitlich verschoben und so von der Führungshülse 33 entkoppelt und koppelt in den Nadelträger 34, so dass die Feder 31 über den oberen Mitnehmerring 32b den Nadelträger 34 nach oben bis zu einem oberen Endanschlag drücken kann. Hierdurch wird die Führungsnadel 8 aus der Kanüle 3 und der Kanülenbaugruppe 35 zurückgezogen und wird durch die gegen den Nadelträger 34 drückende Feder 31 in der zurückgezogenen Position gehalten, wodurch das Verletzungsrisiko minimiert wird. Allgemein können zum Auslösen der Ausschub- und Rückzieh-Vorgänge ein oder mehrere Betätigungselemente, z. B. Knöpfe vorgesehen sein, welche direkt oder indirekt, z. B. über eine Verschiebung eines Elements in der

27

Kanüleneinbringvorrichtung, den entsprechenden Vorgang z. B. über das Freigeben einer Feder, auslösen.

Infusionsset

Ansprüche

- 1. Vorrichtung zum Einbringen einer Kanüle (3) in Gewebe mit:
 - a) einer Kanüle (3);
 - b) einem Schutzelement (6), welches die Kanüle (3) aufnehmen kann;
 - c) einem Betätigungselement (7), mit welchem die Kanüle (3) aus dem Schutzelement (6) herausbewegt werden kann; und
 - d) einer Halterung (5), welche mit der Kanüle (3) fest verbunden ist.
- 2. Vorrichtung nach Anspruch 1, wobei die Halterung (5) ein Verbindungselement, insbesondere eine Rastvorrichtung (5a) aufweist.
- 3. Vorrichtung nach Anspruch 1 oder 2, wobei eine Nadel (8) vorgesehen ist, welche von der Kanüle (3) umgeben wird.
- 4. Vorrichtung nach Anspruch 3, wobei die Nadel (8) vollständig in das Schutzelement (6) eingebracht werden kann.
- 5. Vorrichtung nach Anspruch 3 oder 4, wobei ein Feder- oder Betätigungselement vorgesehen ist, welches eine Kraft auf die Nadel (8) in Einschubrichtung in das Schutzelement (6) erzeugt.
- 6. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei die Vorrichtung mit einem Basiskörper (1, 2) verbunden ist, wobei die Verbindung bevorzugt lösbar ist.

- 7. Vorrichtung nach Anspruch 6, wobei der Basiskörper aus einem auf einem Pflaster (2) angeordneten Grundkörper (1) besteht.
- 8. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei die Vorrichtung mindestens ein Verbindungselement, insbesondere Rastelement (6c) zum Verrasten mit dem Basiskörper, insbesondere mit dem Grundkörper (1) aufweist.
- 9. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei das Schutzelement (6) ein fester nicht verformbarer Körper ist.
- 10. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei das Schutzelement (6) ein Rahmen ist, welcher die Kanüle (3) und/oder die Nadel (8) im zurückgezogenen Zustand zumindest teilweise umgibt.
- 11. Vorrichtung nach einem der Ansprüche 1 bis 9, wobei das Schutzelement (6) ein Mantel ist, welcher die Kanüle (3) und/oder die Nadel (8) im zurückgezogenen Zustand vollständig umgibt.
- 12. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei das Betätigungselement (7) und/oder die Nadel (8) im zurückgezogenen Zustand mit dem Schutzelement (6) verbunden werden kann, insbesondere verrasten kann.
- 13. Vorrichtung nach einem der Ansprüche 6 bis 12, wobei das Betätigungselement (7) so ausgebildet ist, dass es vor und/oder im ausgeschobenen Zustand der Kanüle (3) ein Lösen der Verbindung mit dem Grundkörper (1) verhindert.
- 14. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei ein Dichtelement (4) in der Halterung (5) vorgesehen ist.

- 15. Basiskörper (1, 2) mit einem Grundkörper (1) mit mindestens einem Verbindungselement (1a, 1b) zur Verbindung mit der Vorrichtung (3 8) zum Einbringen einer Kanüle nach einem der Ansprüche 1 bis 14 und/oder zur Verbindung mit einer Vorrichtung (9 13) zum Zuführen eines Fluids.
- 16. Basiskörper nach Anspruch 15, wobei der Basiskörper mit der Vorrichtung (3-8) zum Einbringen der Kanüle verbunden ist und das Betätigungselement (7) bevorzugt zumindest teilweise in das Schutzelement (6) eingeschoben ist.
- 17. Basiskörper nach Anspruch 15 oder 16, wobei das gleiche Verbindungselement zur Verbindung mit der Vorrichtung zum Einbringen einer Kanüle und mit der Vorrichtung zum Zuführen des Fluids verwendet werden kann.
- 18. Basiskörper nach einem der Ansprüche 15 bis 17, wobei das mindestens eine Verbindungselement (1a, 1b) ein Rast-Verbindungselement ist.
- 19. System zum Verbinden einer Flüssigkeitszufuhr mit einer Kanüle (3) mit: einem Grundkörper (1) mit einer Kanüle (3), welcher eine Öffnung aufweist, die mit der Kanüle (3) in Verbindung steht; und einer Flüssigkeitszufuhr mit einem Stecker (9) mit einem Zuführelement (10), welches in die Öffnung des Grundkörpers (1) eingebracht werden kann, wobei der Stecker (9) an einen Anlagepunkt (1c) des Grundkörpers (1) angelegt und so um den Anlagepunkt (1c) geklappt werden kann, dass das Zuführelement (10) des Steckers (9) in die Öffnung des Grundkörpers (1) geführt wird.
- 20. System nach Anspruch 19, wobei mindestens ein Führungselement (14) am Stecker (9) und/oder am Grundkörper (1) vorgesehen ist, um den Stecker (9) während des Klappens zu führen.
- 21. System nach Anspruch 19 oder 20, wobei der Stecker (9) so ausgebildet ist, dass er mit dem Anlagepunkt (1c) des Grundkörpers (1) verhaken kann.

31

- 22. System nach einem der Ansprüche 19 bis 21, wobei der Stecker (9) mit dem Grundkörper (1) verbunden werden, insbesondere verrasten kann.
- 23. Grundkörper (1) mit einem drehbar gelagerten Drehteil (16) mit einer Öffnung (18), welche in einer ersten Position das Einführen einer Kanüle mit einer Nadel ermöglicht und in einer zweiten gedrehten Position das Einführen eines Zuführelements (10) zum Zuführen von Flüssigkeit ermöglicht.
- 24. Vorrichtung zum Zuführen einer Flüssigkeit über eine Kanüle (3) in Gewebe mit einem Dichtungselement (4), welches zur Abdichtung eines Flüssigkeitsraumes dient und von einer Kanüle (3) und/oder einer Nadel (8) durchstochen werden kann, wenn die Kanüle (3) in das Gewebe eingebracht werden soll und von einem Zuführelement (10) durchdrungen werden kann, wenn dem Flüssigkeitsraum eine Flüssigkeit zugeführt werden soll.
- 25. Vorrichtung zum Einbringen einer Kanüle (3) in Gewebe mit:
 - a) einer Kanüle (3);
 - b) einer Kanülenbewegungsvorrichtung (8, 27, 34) zum Herausbewegen der Kanüle
 (3); und
 - c) einem Rückzugelement (22, 31), welches mit der Kanülenausschubvorrichtung (8, 27, 34) gekoppelt ist, um die Kanülenausschubvorrichtung (8, 27, 34) nach Ausschieben der Kanüle (3) wieder zurückzuziehen.
- Vorrichtung nach Anspruch 25, wobei die Kanülenausschubvorrichtung eine Nadel (8) ist.
- 27. Vorrichtung nach Anspruch 25 oder 26, wobei das Rückzugelement ein Federelement (22, 31) ist.

- 28. Vorrichtung nach Anspruch 28, wobei ein Auslöseelement für das Rückzugelement (22, 31) so vorgesehen ist, dass das Rückzugelement (22, 31) automatisch ausgelöst werden kann, insbesondere wenn die Kanüleneinbringvorrichtung von einem damit verbundenen Grundkörper (1) gelöst wird.
- 29. Vorrichtung nach einem der Ansprüche 25 bis 28, wobei ein Kanülenausschubelement, insbesondere eine Feder (21, 31) vorgesehen ist.
- 30. Vorrichtung nach Anspruch 29, wobei das Kanülenausschubelement und das Rückzugelement durch ein einziges Element, insbesondere eine Feder (31), gebildet werden.
- 31. Vorrichtung nach einem der Ansprüche 25 bis 30, wobei ein Auslöselement, insbesondere ein Auslöseknopf (25, 37) und/oder ein Klappmechanismus (28a) und/oder ein Schiebemechanismus und/oder ein Rastmechanismus (33a, 33b, 33b) und/oder ein Drehmechanismus zum Sichern und/oder Auslösen des Kanülenauschubelements (21, 31) und/oder des Rückzugselements (22, 31) vorgesehen ist.
- 32. Vorrichtung nach Anspruch 31, wobei ein Sicherungselement (38), insbesondere ein Sicherungsbügel (38a) zum Arretieren des Auslöseelements (25, 37), oder eine Sicherungskappe (38b) zum zumindest teilweise Abdecken des Auslöseelements (25, 37) vorgesehen ist.
- 33. Vorrichtung nach einem der Ansprüche 1 bis 14 oder 25 bis 32, wobei die Vorrichtung eine Einwegvorrichtung oder eine Mehrwegvorrichtung ist.
- 34. Vorrichtung nach einem der Ansprüche 1 bis 14 oder 25 bis 33, wobei eine Drehverbindung zum Verbinden der Kanüleneinbringvorrichtung mit einem Grundkörper (1) vorgesehen ist.

6/18

Fig.6

7/18

Fig.7

Fig.8

Fig. 9

Fig. 11

Fig. 13

Fig. 14

Fig. 15

Fig. 16

Fig. 17

WO 02/081012

Fig. 18

IDS REFERENCES

(19) World Intellectual Property Organization International Bureau

) (1991) 1000 (1991) 1000 (1991) 1000 (1991) 1000 (1991) 1000 (1991) 1000 (1991) 1000 (1991) 1000 (1991) 1000 (

(43) International Publication Date 24 October 2002 (24.10.2002)

PCT

(10) International Publication Number WO 02/083206 A2

(51) International Patent Classification7: 39/26, 25/02

A61M 5/14,

(21) International Application Number: PCT/US02/11702

(22) International Filing Date: 12 April 2002 (12.04.2002)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/283,575 60/285,371 13 April 2001 (13.04.2001) US 20 April 2001 (20.04.2001) US

(71) Applicant (for all designated States except US): NIPRO DIABETES SYSTEMS [US/US]; 3150 N.W. 107 Avenue, Miami, FL 33172 (US).

(71) Applicant and

(72) Inventor: RAMEY, Kirk [US/US]; 734 Blue Ridge Avenue, Bedford City, VA 24523 (US).

(74) Agent: SKERRY, Ann, M.; Fay, Sharpe, Fagan, Minnich & McKee, LLP, 1100 Superior Avenue, 7th Floor, Cleveland, OH 44114-2518 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

[Continued on next page]

(54) Title: INFUSION SET WITH TAPE

(57) Abstract: An infusion set (1, 100, 100') is attached to the skin of a wearer by a conformable tape or path (220, 220'). The tape is of a multilayer construction, comprising a breathable layer (226, 226'), preferably formed from a silicone elastomer or hydrocolloid, and optionally a support layer (222), such as a layer of polyester. An adhesive layer (240) is provided for attaching the tape to the wearer's skin. A second adhesive layer (234), or a mechanical means (252) attaches the tape to the infusion set.

02/083206 A2

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 02/083206 PCT/US02/11702

INFUSION SET WITH TAPE

Background of the Invention

[0001] The present invention relates to infusion systems for subcutaneous delivery of a medication or a therapeutic fluid into the body and more particularly to an infusion device for releasably coupling an infusion pump to a subcutaneous cannula for delivery of the medication or the therapeutic fluid.

[0002] Portable infusion devices are generally known in the art for delivering medications and other fluids, such as insulin, sugars, and painkillers, to a subcutaneous site in the body of a patient. Such devices commonly include a tubular cannula extending from a connector housing which receive the desired medication from an infusion delivery system, such as a syringe pump, or the like. The housing is typically in two parts, allowing the user to disconnect the cannula from the pump to facilitate activities, such as bathing, swimming, or the like, for which it is desirable to have the pump disconnected.

[0003] In use, the housing provides a fluid-tight connection between the housing and the tubular cannula that helps to prevent contamination of the injection site. For example, the housing may include a first portion, connected with the cannula, which includes a self-sealing penetrable septum, and a second, disconnectable portion, connected with the pump and having a hollow needle adapted to penetrate the septum. When the needle is withdrawn from the septum, a fluid-tight seal is created between

the interior of the first portion of the housing and the cannula. The septum and the needle further provide a fluid-tight seal between the cannula and a delivery tube when the medication is being delivered to the patient from the external infusion system.

[0004] Conventional infusion sets of this type tend to be unwieldy and difficult for the user to operate. There remains a need for an infusion set which is simple to operate without injury or discomfort to the user, yet which provides assurance against accidental disconnection during use.

[0005] U.S. Patent No. 5,522,803 shows an infusion set including a cannula housing, which interconnects with a needle holder. A feed line feeds a medicament to the needle holder. A connecting needle of the needle holder is introduced into a channel of the cannula housing via a septum. Guide pins, one on either side of the needle, are provided for correctly positioning the needle in the channel of the cannula housing. During advancement of the needle into the channel, the needle holder is anchored to the cannula housing by a pair of automatically engaging snap-fit tabs.

[0006] The present invention provides a new and improved infusion set and attachment system for adhering the set to a wearer's body which overcomes the above-referenced problems, and others.

Summary of the Invention

[0007] In accordance with one aspect of the present invention, an infusion set and attachment system combination is provided. The combination includes a conformable patch for attaching the infusion set to the skin of a wearer. The infusion set includes a first housing portion connected to a top layer of the patch. A second housing portion is selectively interconnectable with the first housing portion for forming a fluid passageway therebetween. The second housing portion is connected with a source of a liquid to be introduced to the wearer. A cannula is connected with the first housing portion for introducing the liquid to the wearer, the cannula passing through the patch when inserted into the wearer's skin.

WO 02/083206 PCT/US02/11702

[0008] In accordance with another aspect of the present invention, a method for supplying a liquid to a person is provided. The method includes attaching a patch to the skin of the user and attaching a first housing portion to the patch. A cannula of the first housing portion is inserted through the patch and into the person's skin. A second housing portion is selectively coupled with the first housing portion to form a fluid flowpath therebetween which is fluidly connected with the cannula. The liquid is fed to the first housing portion, the liquid flowing along the fluid flowpath and into the cannula.

[0009] One advantage of one embodiment of the present invention is that it is easily operated by a user.

[00010] Another advantage of one embodiment of the present invention resides in its low profile.

[00011] Another advantage of one embodiment of the present invention is that the multi-layer patch provides a support region underlying the infusion set while providing a breathable region adjacent the wearer's skin in the area of penetration of the cannula.

[00012] Another advantage of the present invention is that the infusion set is readily attached to or removed from the patch, when desired.

[00013] Still further advantages of the present invention will become apparent to those of ordinary skill in the art upon reading and understanding the following detailed description of the preferred embodiments.

Brief Description of the Drawings

- [00014] The invention may take form in various components and arrangements of components, and in various steps and arrangements of steps. The drawings are only for purposes of illustrating a preferred embodiment and are not to be construed as limiting the invention.
- [00015] FIGURE 1 is a top plan view of a two part infusion system according to the present invention;
- [00016] FIGURE 1A is an enlarged view of the stopper and tube of FIGURE 1;
- [00017] FIGURE 2 is a top plan view of the two part infusion system of FIGURE 1 with the two parts connected;
- [00018] FIGURE 3 is a side sectional view of the infusion system of FIGURE 1;
- [00019] FIGURE 3A is an enlarged view of the cannula housing showing an O-ring for attaching the cannula housing to a cavity of the patch;
- [00020] FIGURE 4 is a side sectional view of the infusion system of FIGURE 1 showing insertion of a cannula;
- [00021] FIGURE 5 is a side sectional view of the infusion system of FIGURE 1 after insertion of a cannula;
- [00022] FIGURE 6 is a top plan view of the two part infusion system of FIGURE 1 showing a feed tube and Luer connector;
- [00023] FIGURE 7 is an exploded perspective view of an alternative embodiment of an infusion system according to the present invention;
- [00024] FIGURE 8 is a side sectional view of the needle housing of FIGURE 7 with the needle removed;
- [00025] FIGURE 9 is a top sectional view of the needle housing of FIGURE 7;

[00026] FIGURE 10 is a cross sectional view of the needle housing of FIGURE 7;

[00027] FIGURE 11 is a side perspective view of the cannula housing of FIGURE 7;

[00028] FIGURE 12 is a side sectional view of the infusion set of FIGURE 7 after assembly;

[00029] FIGURE 13 is a side sectional view of an insertion set according to the present invention;

[00030] FIGURE 14 is an exploded perspective view of the insertion set of FIGURE 13;

[00031] FIGURE 15 is a perspective view of the tip of the needle and catheter of FIGURE 13;

[00032] FIGURE 16 is a top plan view of the adhesive patch of FIGURE 7;

[00033] FIGURE 17 is a side sectional view of the adhesive patch of FIGURE 16 through A-A;

[00034] FIGURE 18 is a side sectional view of the adhesive patch of FIGURE 16 through B-B;

[00035] FIGURE 19 is an exploded side sectional view of the adhesive patch of FIGURE 16 through A-A;

[00036] FIGURE 20 is an exploded top view of the adhesive patch of FIGURE 16;

[00037] FIGURE 21 is a top plan view of an alternative embodiment of the adhesive patch of FIGURE 7;

[00038] FIGURE 22 is a side sectional view of the adhesive patch of FIGURE 21 through A-A;

[00039] FIGURE 23 is a side sectional view of the adhesive patch of FIGURE 21 through B-B;

[00040] FIGURE 24 is an exploded top view of the adhesive patch of FIGURE 21;

[00041] FIGURE 25 is a partially exploded perspective view of an alternative embodiment of an infusion set according to the present invention;

[00042] FIGURE 26 is a side sectional view of the infusion set of FIGURE 25;

[00043] FIGURE 27 is a top view of one embodiment of the patch with an insertion set thereon; and

[00044] FIGURE 28 is a side sectional view of the embodiment of FIGURE 27.

Detailed Description of the Preferred Embodiments

[00045] With reference to FIGURES 1-6, a first embodiment of an infusion set 1 includes a two-part assembly or housing 10 with a generally planar configuration when assembled. An attachment system 11 attaches the housing to a wearer's skin S. A soft catheter or cannula 12 extends from a first portion or cannula housing 14 of the assembly and is received through the skin S of the wearer of the infusion set. The cannula is formed from a soft plastic material and has a central bore 15 through which a medicament, such as insulin, or other liquid to be infused is supplied from the assembly 10 into the user's body. A second portion or connector housing 16 of the assembly 10 is configured for releasable interlocking with the cannula housing 14. The first portion 14 of the housing 10 is designed to remain on the user's skin for extended periods, while the second portion 16 is removed at intervals for bathing or other purposes. The connector housing 16 acts as a needleless-connector and is of a thinner cross section d than the cannula housing.

[00046] The connector housing 16 is fluidly connected with a feed tube 20. The feed tube 20 supplies the medicament to be injected from an infusion pump (not shown), or other supply source, to the connector housing 16. The feed tube 20 is fluidly connected with the infusion pump via a Luer connection 22 or other suitable releasable connection (FIG. 6). Although the system 1 is described in terms of fluid flowing downstream from the feed tube 20 to the skin via the infusion set, it is also to be appreciated that fluid may be pumped from the skin into feed tube via the infusion set (i.e., in an opposite direction), for sampling of body fluids. The two housing portions 14, 16 may be formed from plastic, or other suitable material by molding or other fabrication process.

[00047] With particular reference to FIGURE 1, the connector housing 16 includes a central portion 26, which receives the feed tube 20 at least partially therethrough. Specifically, the central portion defines a bore 28 with a central axis x. FIGURE 1 shows the feed tube 20 extending the entire length of the bore 28, although it is to be appreciated that the feed tube may end closer to the upstream end of the bore or be connected therewith by a fitting (not shown). Two resiliently flexible arms 30, 32 extend laterally from and generally parallel with the central portion 26 and are connected at a rearward (upstream) end 29 with the central portion 26. (The terms rearward, forward, upper and lower, and the like are used herein with reference to the orientation of the infusion set components illustrated in FIGURE 1). The arms 30, 32 are thus positioned 180° apart, one on either side of the central portion 26 and are aligned generally parallel therewith.

[00048] Ends of the respective flexible arms 30, 32 define resilient, outwardly projecting hooks 34, 36 for releasably locking the connector housing 16 to the cannula housing 14. The hooks project forward of the central portion 26. When a user grips the arms 30, 32 and squeezes them between his fingers, the distal ends of the arms flex inwardly, bringing the hooks 34, 36 closer together. The hooks are received in corresponding internal slots 44, 46 of the cannula housing (see FIG. 2) and engage suitably shaped and positioned shoulders 48, 50, respectively. During

insertion, the hooks 40, 42 function as camming surfaces, causing the arms 30, 32 to flex inwardly and allowing the hooks 34, 36 to snap past the shoulders 48, 50, automatically locking the connector housing 16 to the cannula housing 14 as the parts 14, 16 are advanced towards each other. To release the connector housing 16 from the cannula housing 14, the arms 30, 32 are pressed inwards while the connector housing 16 is retracted from the cannula housing 14.

[00049] The connector housing **16** is axially symmetrical, allowing the connector housing to be connected with the cannula housing **14** in one of two orientations, either as shown in **FIGURE 1**, or flipped 180°.

[00050] A forward (downstream) end 62 of the central portion 26 is selectively received within a forward (upstream) end 63 of a corresponding projection 64 on the cannula housing 14. The projection 64 is shaped for guiding receipt of at least the downstream end of the central portion. Specifically, the projection defines a bore 65, which extends axially through the projection. An interior wall 66 of the bore may be slightly tapered and matches the taper of an exterior surface 68 of the central portion 26.

[00051] As can be seen from **FIGURE 1**, the hooks **34**, **36** on the arms project forwardly of the cylindrical central portion **26** of the body portion, although it is also contemplated that the hooks may extend no further than the cylindrical central portion or be set back therefrom.

[00052] With reference to **FIGURES 3-5** the cannula housing **14** receives a cannula insertion needle **70** in the form of a fine bored tube. The canula needle serves to introduce the cannula into the user's skin and is withdrawn after the catheter has been inserted. The cannula needle is selectively insertable into a seal or septum **78** in the cannula housing, such as a cylindrical, self-sealing silicone seal. The septum seals a hole formed in the catheter **15** by needle at an upper end **80** thereof. The self-sealing septum provides a liquid and air seal towards the environment when the needle **70** is retracted from the septum and further provides a liquid and air seal around the needle when inserted through the septum.

[00053] As shown in **FIGURE 1**, the bore **65** of the cannula housing **14** extends between the forward end **63** of the projection and the septum **78**.

[00054] An annular stopper 84 is received within the bore 65. The stopper encircles a tubular member, such as a tube 86, which extends axially along the bore 65 between the forward end 63 of the projection and the catheter entrance 80. The stopper defines an interior passage 87 (FIG 1A). The stopper is formed from a resiliently flexible material and sealingly engages an exterior surface of the tube while also sliding relative thereto. The stopper preferably defines a valve 88 at a forward end thereof, such as a flap valve.

[00055] The stopper 84 is biased to the position shown in FIGURE 1 by a biasing member 90, such as a spring. The spring encircles the tube 86 and is held under compression between the stopper and the septum 78. Optionally, a flange (not shown) at the forward end 63 of the bore 65 prevents the stopper 84 from exiting the bore 65. In the position shown in FIGURE 1, the flap valve 88 is in a closed position, sealing the tube 86 from the atmosphere.

[00056] When the central member 26 is inserted into the bore 65, the forward end 62 of the central member engages the stopper 84 and pushes it rearwardly into the projection, against the bias of the spring, to the position shown in FIGURE 2. The tube 86 opens the flap valve 88 in the process (for example, pushes apart four flexible flaps 92 which make up the valve) and enters the bore 28 of the connecting member and passes into the feed tube 20. Fluid can then flow from a first passage 93 defined by the feed tube 20 (and/ or by the bore 28 if the feed tube 20 does not extend entirely along the bore 28) into an interior passage 94 of the tube 86 and thence to the catheter 15. While the tube 86 is coupling with the bore 28 to form a connecting passageway, the hooks 34, 36 are entering the respective internal slots 44, 46 of the cannula housing and engaging the shoulders 48,50. With the two components 14, 16 thus locked together the stopper maintains a seal between the tube 86 and the forward end 62 of the central portion (and/or the feed tube if it extends forwardly

of the forward end 62) and prevents leakage of liquid from the housing 10. Alternatively, at least one of the tube 86 and the bore 28 is tapered such that the adjacent surfaces of the tube 86 and bore 28 (or feed tube 20) frictionally engage each other during coupling of the housing portions 14, 16 to provide a seal therebetween.

With reference to FIGURE 7, an alternative embodiment of an [00057] infusion set 100 includes a two-part assembly or housing 110 with a generally planar configuration when assembled. A soft cannula or catheter 112 extends from a first portion or cannula housing 114 of the assembly and is received through the skin (not shown) of a user of the infusion set. The cannula 112 is formed from a soft plastic material and has a central bore 115 through which a medicament, such as insulin, or other liquid to be infused is supplied from the assembly 110 into the user's body. A second, connector portion or needle housing 116 of the assembly 110 is configured for releasable interlocking with the cannula housing 114 in a similar manner to that described for the embodiment of FIGURES 1-6. The first portion 114 of the housing 110 is designed to remain on the user's skin for extended periods, while the second portion 116 is removed at intervals for bathing or other purposes. The needle housing 116 is of a thinner cross section d than the cannula housing.

[00058] The needle housing 116 carries a needle 118, which is fluidly connected with a feed tube 120 analogous to the feed tube 20. The feed tube 120 supplies the medicament to be injected from an infusion pump (not shown), or other supply source, to the needle 118. The feed tube 120 is fluidly connected with the infusion pump via a Luer connection 122 or other suitable releasable connection. The two housing portions 114, 116 may be formed from plastic, or other suitable material by molding or other fabrication process.

[00059] With reference also to **FIGURES 8-11**, the needle housing **116** includes a body portion **126**, which is shaped to provide a cover for the needle **118** and to receive the feed tube. Specifically, the body portion includes a central portion **128**, in the form of a generally cylindrical tube

with a central axis x, and two resiliently flexible arms 130, 132, which extend laterally from and generally parallel with the central portion 128. The arms 130, 132 are connected at a rearward (upstream) end 129 of the body portion with the central portion 128. (The terms rearward, forward, upper and lower, and the like are used herein with reference to the orientation of the infusion set components illustrated in FIGURE 7). The arms 130, 132 are thus positioned 180° apart, one on either side of the needle 118 and are aligned generally parallel therewith.

[00060] A pair of resilient, hook-shaped tabs 134, 136 extend from distal ends of the respective flexible arms 130, 132, on either side of the needle, for releasably locking the needle housing 116 to the cannula housing 114 and project forward of the central portion 128. The two arms 130, 132 include finger-gripping regions 138, respectively, defined by serrated edges of the arms 130, 132. When a user grips the fingergripping regions 138 and squeezes them between his fingers, the distal ends of the arms flex inwardly, bringing the tabs 134, 136 closer together. Distal ends of the tabs 134, 136 define hooks 140, 142 having outwardly extending ends. The hooks are received in corresponding internal slots 144, 146 of the cannula housing (see FIGS 10 and 11), and engage suitably shaped and positioned shoulders 148, 150, respectively. During insertion, the hooks 140, 142 function as camming surfaces, causing the arms 130, 132 to flex inwardly and allowing the hooks 140, 142 to snap past the shoulders 148, 150. To release the needle housing 116 from the cannula housing 114, the arms 130, 132 are pressed inwards while the needle housing 116 is retracted from the cannula housing 114.

[00061] Returning to **FIGURES 7-9**, the central portion **128** of the needle housing comprises an axial, generally cylindrical tube for protecting the needle **118**. The tube **128** protrudes above and below the rest of the body portion such that the profile of the body portion is substantially the same on both upper and lower surfaces **154**, **156** thereof. This allows the needle housing **116** to be connected with the cannula housing **114** in one of two orientations, either as shown in **FIGURE 7**, or flipped 180°.

[00062] An axial bore 158 is formed within the tube 128, in which the needle 118 is concentrically positioned. The bore 158 has an opening 160 at an end 162 of the tube 128 facing the cannula housing 114. The tube 128 is slidingly received on a mating projection 164 on the cannula housing when the tabs 134, 136 are engaged with the respective cannula housing shoulders 148, 150. The projection 164 is shaped for guiding receipt of the tubular portion 128. Specifically, an interior wall 166 of the tubular portion bore 128 may be slightly tapered and matches the taper of an exterior surface 168 of the projection 164.

[00063] As can be seen from FIGURE 7, the hooks 140, 142 on the tabs project forwardly of the cylindrical portion 128 of the body portion, although it is also contemplated that the tabs may extend no further than the cylindrical portion or be set back therefrom.

[00064] With reference to FIGURE 7 and also to FIGURE 12, the cannula housing projection 164 carries a needle guide 172, preferably formed from metal or alloy, such as stainless steel. The needle guide 172 includes an open funnel portion 174, which faces outwardly from the canula housing, and a tubular portion 176 connected therewith, which is fluidly connected with the cannula 112. A seal or septum 178, such as a cylindrical, self-sealing silicone seal, may be seated upstream of the funnel portion 174 of the needle guide 172, as shown in FIGURE 12, or downstream of the needle guide. The self-sealing septum provides a liquid and air seal towards the environment when the needle 118 is retracted from the septum and further provides a liquid and air seal around the needle when inserted through the septum.

[00065] As shown in **FIGURE 12**, the cannula housing **114** defines an interior bore **180** therethrough, which is shaped to house the cannula, needle guide **172** and seal **178**. The cannula housing bore **180** extends axially through the projection **164**. As can be seen, the bore **180** includes a series of interconnected sections of increasing internal diameters, a first narrow cylindrical section **182**, which houses an upstream end **183** of the cannula, a second, slightly wider cylindrical section **184**, which houses the

tubular portion 176 of the needle guide, a third, tapered conical section 186, which follows the shape of the funnel portion 174 of the needle guide, a fourth cylindrical section 188 of the same diameter as the widest end of the conical section 186, and a fifth, cylindrical section 190, which is of slightly larger diameter than the fourth section. The seal 178 is shaped such that it fits snugly in the fifth section 190. The fourth section 188, being of slightly smaller diameter than the fifth section, spaces the seal from the needle guide. This section may be eliminated, if desired.

[00066] To assemble the parts of the cannula housing 114 of this embodiment, the cannula 112 and needle guide 172 are joined together and inserted into the bore 180 from the widest end. Then the seal 178 is simply press fit into the fifth section 190 of the bore. An adhesive may be applied to the edges of the seal and/or to the sides of the fifth section to secure the seal in the bore 180.

[00067] With reference to FIGURES 7 and 11, the cannula housing 114 includes a shelf 200 which extends generally parallel with a spaced below the projection 64 and defines a longitudinal concave trough 202. The trough 202 is shaped to receive the cylindrical portion 128 of the needle housing body therein. Since the body portion has essentially the same profile on both its larger surfaces (top and bottom surfaces 154, 156 in FIGURE 12), the cylindrical portion enters the trough when the needle housing is connected in either of two orientations. The rest of the body portion and tabs rest on the adjacent flat upper surfaces 204, 206 of the shelf.

[00068] FIGURES 13 and 14 show an insertion set 210 which can be used with the cannula housing 114 to insert the cannula into the skin of the user. The insertion set has a longer needle 212 than is used with the needle housing 116, which extends to the end of or slightly beyond the distal tip 214 of the cannula when fully inserted (See FIG. 15). As can be seen from FIGURE 13, the cannula may be inserted in to the skin prior to placing the septum in the cannula housing bore. This avoids potential damage to the septum by the insertion needle 214. Once the cannula has

been positioned in the users body, the insertion set 210 is removed and the seal 178 inserted in the cannula housing. Or, the seal can be inserted and glued into the bore prior to insertion of the cannula into the skin for convenience. A cover 216 protects the tip of the needle 214 when not in use (FIG. 14).

[00069] With reference to FIGURES 1-7, and 16-20, the infusion set of either embodiment is held in position by the attachment system 11, which in the preferred embodiment, comprises an adhesive patch or tape 220. Preferably, the patch is of a multi-layer construction, and includes a structural support layer 222, for providing structural upport to the infusion set, such as a layer of a non-woven material, e.g., polyester. The support layer has a layer 224 of an adhesive on its lower surface (see FIG. 19), such as a pressure sensitive adhesive (PSA), e.g., an acrylic, for attaching the layer firmly to the wearer's skin. A suitable structural layer 222 is an embossed non-woven polyester fabric, about 1.5 mm in thickness, sold under the tradename Hypofix. Attached to, and extending at least partially beyond the periphery of the non-woven material layer 222 is a breathable layer 226 formed from a wicking material, such as a transparent polyurethane sheet. A suitable breathable layer 226 is a transparent polyurethane tape, about 1.0 mm in thickness, sold under the tradename IV 3000. In an alternative embodiment, a breathable layer is formed from a silicone elastomer or hydrocolloid. The polyurethane, or other breathable material, while not necessarily having as great a structural strength as the support layer, preferably has a greater capacity for absorbing moisture from the skin- i.e., wicking it away, keeping the skin relatively dry. The breathable layer may have pores 228 formed through the material, as shown in FIGURE 20, to aid or provide the wicking function. The pores are sufficiently small to allow air and moisture vapor to pass through but inhibit bacteria from getting in to the skin. Alternatively, the breathable layer is air and/or moisture permeable without requiring pores, such as a hydrocolloid which allows one-way transport of moisture through the layer.

[00070] The porous layer 226 thus provides a bacteria-impermeable, water and air permeable barrier. The breathable layer 226 has a layer 230 of adhesive on its lower surface (See FIG. 19) for adhering the layer 226 to the layer 222 and to the wearer's skin in those areas where the breathable layer extends beyond the support layer. The adhesive may be a PSA, as for the first adhesive layer 224. The breathable layer is thus attached to the skin in an area 230 surrounding the point of entry to the skin of the cannula (which is the area where bacterial infection is most likely) while the support layer, with lower vapor transmission but greater strength, is attached to the skin in an area away from the cannula entry, where infection is less likely, to support the infusion set.

[00071] The infusion set is attached to the breathable layer 226 by an adhesive layer, such as a layer of double sided transfer tape 234, or other suitable attachment material, which is positioned over the support layer, as can be seen from FIGURE 17. The patch thus has a multi-layer construction in use, with three, adhesively connected layers 222, 226, and 234 in a region below the infusion set 1, 100 and a single layer 226 in a region away from the infusion set, adjacent the cannula entry. The layers 226 and 222 may themselves be formed from more than one layer of material.

[00072] Release liners 236, 238, 240, such as silicone wax coated paper, are attached to the upper and lower surfaces of the patch to protect the surfaces until use. The lower release liner 240 has an aperture 242 therein which receives the cannula therethrough, and may be perforated to allow forward and rear portions 240A and 240B to be removed separately. The release liners are removed prior to use. As shown in FIGURE 18, the upper release liner may be in two portions 236, 238.

[00073] The structural layer 222 may be generally rectangular, as shown in FIGURES 16 and 20, with side edges 242, 244 extending to the periphery of the breathable layer. Or, in an alternative embodiment, shown in FIGURES 21-24, may be bounded on all sides by a portion of the breathable layer. FIGURE 21 shows the structural layer 222 as circular,

although other shapes which provide sufficient support to the infusion set are also contemplated. In this embodiment, the remaining layers are the same as for **FIGURE 16**.

[00074] In both embodiments, the support layer **222** is preferably as large, or slightly larger than the infusion set so that it provides support for the entire bottom surface of both parts of the housing.

[00075] Tabs **246** on the release liners provide for easy removal of the release liners.

[00076] With reference now to FIGURES 25 and 26, a small hole 247 is formed in the breathable layer 226 during penetration of the cannula into the skin 248. To inhibit ingress of infectious microorganisms or dirt through the hole 247 in the layer 226 where the cannula penetrates, a protective layer or antimicrobial film 249 may be placed over the cannula in the area of the insertion region, after insertion of the cannula into the skin. The protective layer 249 may be formed from the same material as the layer 226 - e.g., a polyurethane sheet about 1mm in thickness with an adhesive PSA layer for adherence on to the layer. A release liner (not shown) may be provided on the bottom and optionally the top of the layer 249 to protect the layer until use. The two layers 226, 249 when sandwiched together, provide for air and moisture vapor to pass through but inhibit bacteria from getting in to the skin. The porous combination layer 226, 249 thus provides a bacteria-impermeable, water and air permeable barrier in a similar manner to the layer 226 alone, but provides additional protection in the area of cannula entry.

[00077] As can be seen from **FIGURES 1-7**, and **12**, in particular, the infusion set, when assembled, has a bullet-shaped cross section, with relatively flat upper and lower surfaces, which keeps the device close to the user's skin. It can be manufactured to a small size (about 2-3cm in length and width, or less) while nevertheless being easy to manipulate by the wearer.

[00078] It is also contemplated that the structural layer 222 be omitted and that the breathable layer 226 be of sufficient strength to support the infusion set. For example, FIGURE 3 shows a tape 220' in which the top layer 226' is an elastomeric material, such as a silicone elastomer, which may be moisture permeable or non-moisture permeable or a hydrocolloid which is one-way permeable. In this embodiment, the layer 226' is mechanically rather than adhesively attached to the cannula housing 14, 114, although it is also contemplated that an adhesive layer may be employed, as discussed above, either alone, or in combination with a mechanical attachment means. Suitable mechanical means for attachment include O-rings, snaps, or the like.

[00079] As shown in detail in **FIGURE 3A**, for example, the top layer **226'** defines a cavity **250** shaped to receive a lower surface **260** of the infusion set **1**, **100**. The infusion set is held in the cavity by an O-ring **252** seated in a groove **254** in the cannula housing **14**, **114'** and/or a corresponding groove **256** in the cavity **14**. Alternatively, layer **226'** may be attached to the infusion set **1**, **100** by an adhesive layer **230'**, analogous to layer **230**, as discussed above. A layer of an adhesive, such as a PSA, attaches the layer **226'** to the skin and is protected, prior to use by a release liner (not shown).

[00080] Suitable silicone elastomers for the layer 226' are formed from (A) organopolysiloxane polymers having a siloxane backbone being end-blocked which may have at least two silicon-bonded groups R, wherein R denotes an olefinically unsaturated hydrocarbon substituent, an alkoxy group or a hydroxyl group, (B) a cross-linking organosilicon material preferably having at least 3 silicon-bonded reactive groups, (C) a catalyst capable of promoting the reaction between the silicon-bonded groups R of compound (A) and the silicon-bonded reactive group of compound B, although other silicone elastomers are also contemplated.

[00081] Suitable hydrocolloid adhesives are disclosed, for example, in U.S. Patent No. 4,551,490. For example, the hydrocolloid may be formed from a mixture of mineral oil, polyisobutylene, styrene-isoprene-styrene

(SIS) rubber, and antioxidant, to which a carboxymethylcellulose, crosslinked sodium carboxymethylcellulose, tackifier, and ethylene propylene rubber are added in stages.

[00082] While the adhesive patch 220 has been described with particular reference to an infusion set, it will be appreciated that other devices may be adhered to the skin with the patch. The patch may be made with appropriate dimensions for securing the desired device. It is also contemplated that the infusion set may be attached to the skin with an elastomeric rubber with adhesive applied as an alternative to the non-woven tape.

[00083] With reference now to FIGURES 27 and 28, a third alternative embodiment of an infusion set is shown, with similar parts indicated by a prime(') and new parts given new numbers. In this embodiment, a needle housing 116' is analogous to the needle housing of FIGURE 7. A cannula housing 114' is similar to the cannula housing 114, but differs in that a projection 164' has a bore 180' which is shaped to receive a seal cartridge 350 therein, in place of the needle guide and seal of FIGURE 1. The seal cartridge includes a cylindrical portion 352, which receives a seal 354, similar to the seal of FIGURE 7. The seal may be introduced to the cylindrical portion via a bore 356 formed in the cylindrical portion or may be inserted into the cylindrical portion during molding. A hollow tube 358 extends from one end of the cylindrical portion for connection with the catheter 112'. A conical needle guiding member 360 is defined in other end of the cylindrical portion. The seal cartridge defines a longitudinal central bore 362, generally perpendicular to the bore 356, for receiving the needle 118' of the needle housing therethrough. The needle is long enough to pass through the seal and into the tube 358 when the two parts of the housing are connected together.

[00084] The open end of the projection 164' defines a number of circumferentially spaced flexible tabs 366, with slits 368 therebetween. The flexible tabs 366 define inwardly projecting hooks 370. The hooks snap fit over the seal cartridge as it is inserted into the open end of the

WO 02/083206 PCT/US02/11702

projection and seat in a circumferential locking shoulder or grove 376 defined on the seal cartridge between the cylindrical portion 352 and the needle guiding member 360.

[00085] Alternatively, the tabs may be replaced by a smooth sided projection with the seal cartridge attached to the inner surface of the projection by adhesive, welding, or other suitable means.

Having thus described the preferred embodiment, the invention is now claimed to be:

- 1. An infusion set (1, 100, 100') and attachment system (11) combination characterized by:
- an infusion set (1, 100, 100') and a conformable patch (220, 220') for attaching the infusion set to the skin of a wearer, the infusion set including:
- a first housing portion (14, 114, 114') connected to a top layer (226, 226') of the patch;
- a second housing portion (16, 116, 116') selectively interconnectable with the first housing portion for forming a fluid passageway therebetween, the second housing portion being connected with a source of a liquid to be introduced to the wearer; and
- a cannula (15, 112, 112') connected with the first housing portion for introducing the liquid to the wearer, the cannula passing through the patch when inserted into the wearer's skin (S).
- 2. The combination of claim 1, further characterized by the patch including at least one of:
 - a first layer (222) formed from a structural material; and
- a second layer (226, 226') formed from a moisture permeable material, the cannula passing through at least one of the first and second layers.
- 3. The combination of either one of claims 1 and 2, further characterized by the patch further including at least one of:
- a layer (230, 230') of adhesive for attaching the patch to the wearer's skin; and
- a layer (234) of adhesive for attaching the patch to the cannula housing.
 - 4. The combination of claim 2, further characterized by:

the second layer (226') including a cavity (250), the cavity being shaped to receive a lower surface (260) of the cannula housing.

- 5. The combination of claim 4, further characterized by:
- an O-ring (252) for selectively attaching the cannula housing to the cavity, the O-ring being received in a groove (254, 256) formed in at least one of the cavity and the cannula housing.
 - 6. The combination of claim 2, further characterized by: the first layer being formed from a non-woven material.
 - 7. The combination of claim 6, further characterized by: the non-woven material including a polyester fabric.
- 8. The combination of any one of preceding claims 2-7, further characterized by:

the second layer being formed from a material selected from the group consisting of polyurethanes, hydrocolloids, and silicone elastomers.

- 9. The combination of claim 8, further characterized by: the second layer including a moisture permeable silicone elastomer.
- 10. The combination of any one of preceding claims 1-9, further characterized by:

the second housing portion defining a first passage (93) which is selectively fluidly connected with the source; and

the first housing portion defining a second passage (94) for selectively coupling with the first passage to form the fluid passageway, the first housing portion including a sealing member (84) which is biased to a sealing position in which it seals the second passage, the sealing member being moved to a non-sealing position in which fluid flows between the first and second passages on coupling of the first and second housing portions.

11. The combination of claim 10, further characterized by:

the sealing member including a valve (88), the combination further including a spring (90) which biases the sealing member to the sealing position.

- 12. The combination of either one of claims 10 and 11, further characterized by the first housing member including:
- a projection (64) which defines a bore (65), the sealing member (84) being movably mounted within the bore; and
- a tube (86) carried within the bore and fluidly connected with the cannula, the second passage being defined by the tube, the sealing member sealing an end of the tube in the sealing position.
- 13. The combination of claim 12, further characterized by the second housing member including:
- a generally cylindrical member (26) fluidly connected with the source of liquid which is received by the first housing portion bore, the generally cylindrical member defining the first passage.
- 14. The combination of claim 13, further characterized by the generally cylindrical member engaging the sealing member when the first and second housing members are coupled, and moving the sealing member to the non-sealing position.
 - 15. The combination of claim 2, further characterized by:

the moisture permeable layer being positioned between the support layer and the infusion set.

- 16. The combination of claim 15, further characterized by:
- a portion of the moisture permeable layer extending beyond the support layer and receiving the cannula therethrough.
- 17. The combination of any one of preceding claims 1-16, further characterized by:

connection means (30, 32, 34, 36, 44, 46, 48, 50, 130, 132, 140, 142, 144, 146, 148, 150) for selectively interconnecting the first and second housing portions.

18. The infusion set of claim 17, further characterized by: the connection means including:

flexible arms (30, 32, 130, 132,) on one of the first and second housing portions, the arms defining hooks (34, 36,140, 142); and

slots (44, 46, 144, 146) on the other of the first and second housing portions which receive the hooks.

19. A method for supplying a liquid to a person characterized by: attaching a patch to the skin of the person; attaching a first housing portion to the patch;

inserting a cannula of the first housing portion through the patch and into the person's skin;

selectively coupling a second housing portion with the first housing portion to form a fluid flowpath (93, 94) therebetween which is fluidly connected with the cannula; and

feeding the liquid to the first housing portion, the liquid flowing along the fluid flowpath and into the cannula. WO 02/083206 PCT/US02/11702

FIG. 6

FIG.19

MG.20

FIG. 25

FIG. 26

