

(FILE 'HOME' ENTERED AT 13:20:48 ON 21 MAR 2001)

FILE 'CAPLUS, USPATFULL, WPIDS, DGENE, EUROPATFULL, JAPIO, MEDLINE'
ENTERED AT 13:21:31 ON 21 MAR 2001

L1 45 S MAE (W) II
L2 1 S L1 AND DPD
L3 2350 S DPD
L4 104 S L3 AND (MUTATION OR POLYMORPHISM)
L5 44 S L4 NOT PY>1996
L6 0 S 1-10 IBIB ABS

=> d his

(FILE 'HOME' ENTERED AT 14:07:01 ON 16 MAR 2001)

FILE 'CAPLUS, USPATFULL, WPIDS, DGENE, EUROPATFULL, JAPIO' ENTERED AT
14:07:34 ON 16 MAR 2001

L1 353 S DIHYDROPYRIMIDINE (W) DEHYDROGENASE
L2 288659 S MUTATION OR POLYMORPHISM
L3 71 S L2 AND L1
L4 1 S L3 AND MAEIII
L5 0 S L1 AND ALTERNATE (W) SPLIC?
L6 41 S L1 AND SCREEN?

=> s 16 not py>1996

3 FILES SEARCHED...
L7 9 L6 NOT PY>1996

=> d ibib abs 1-

YOU HAVE REQUESTED DATA FROM 9 ANSWERS - CONTINUE? Y/(N):y

L7 ANSWER 1 OF 9 CAPLUS COPYRIGHT 2001 ACS
ACCESSION NUMBER: 1996:690425 CAPLUS
DOCUMENT NUMBER: 125:325384
TITLE: A point mutation in an invariant splice donor site
 leads to exon skipping in two unrelated Dutch patients
 with **dihydropyrimidine dehydrogenase**
 deficiency
AUTHOR(S): Vreken, P.; Van Kuilenburg, B. P.; Meinsma, R.; Smit,
 G. P. A.; Bakker, H. D.; De Abreu, R. A.; van Gennip,
 A. H.
CORPORATE SOURCE: Acad. Med. Cent., Univ. Amsterdam, Amsterdam, 1100 DE,
 Neth.
SOURCE: J. Inherited Metab. Dis. (1996), 19(5), 645-654
CODEN: JIMDDP; ISSN: 0141-8955
DOCUMENT TYPE: Journal
LANGUAGE: English
AB **Dihydropyrimidine dehydrogenase** (DPD) deficiency is an
 autosomal recessive disease characterized by thymine-uraciluria and
 assocd. with a variable clin. phenotype. To identify the mol. defect
 underlying complete DPD deficiency in a Dutch patient previously shown to
 have a 165 base pair deletion in the mature DPD mRNA, the authors cloned
 the genomic region encompassing the skipped exon and its flanking intron
 sequences. Sequence anal. revealed that the patient was homozygous for a
 single G .fwdarw. A point mutation in the invariant GT dinucleotide splice
 donor site downstream of the skipped exon. The same mutation was
 identified in another, unrelated, Dutch patient. Because this mutation
 destroys a unique MaeII restriction site, rapid **screening** using
 restriction enzyme cleavage of the amplified genomic region encompassing
 this mutation is possible. Anal. of 50 controls revealed no individuals
 heterozygous for this mutation.

L7 ANSWER 2 OF 9 CAPLUS COPYRIGHT 2001 ACS
ACCESSION NUMBER: 1996:483095 CAPLUS
DOCUMENT NUMBER: 125:139772
TITLE: Molecular basis of the human **dihydropyrimidine**
 dehydrogenase deficiency and 5-fluorouracil
 toxicity
AUTHOR(S): Wei, Xiaoxiong; McLeod, Howard L.; McMurrrough,
 Julieann; Gonzalez, Frank J.; Fernandez-Salguero,
 Pedro
CORPORATE SOURCE: Laboratory of Molecular Carcinogenesis, National
 Institutes of Health, Bethesda, MD, 20892, USA
SOURCE: J. Clin. Invest. (1996), 98(3), 610-615
CODEN: JCINAO; ISSN: 0021-9738
DOCUMENT TYPE: Journal
LANGUAGE: English
AB **Dihydropyrimidine dehydrogenase** (DPD) deficiency
 constitutes an inborn error in pyrimidine metab. assocd. with
 thymine-uraciluria in pediatric patients and an increased risk of toxicity
 in cancer patients receiving 5-fluorouracil (5-FU) treatment. The mol.