Curs 7, Analiză Matematică

Prof. dr. Gheorghe Moza

1 Diferențiabilitatea funcțiilor de mai multe variabile

Pentru o funcție $f: A \subset \mathbb{R}^p \to \mathbb{R}$, A deschisă, $x_0 = (a_1, a_2, ..., a_p) \in A$, dorim să evaluăm schimbarea lui f(x) în jurul punctului fix x_0 .

Definiție 1.1 O funcție $f: A \subset \mathbb{R}^p \to \mathbb{R}$, A deschisă, se numește **diferențiabilă** în punctul $x_0 \in A$, dacă există un operator liniar (o funcție) $\Phi: \mathbb{R}^p \to \mathbb{R}$ și o funcție $\omega_{x_0}: A \to \mathbb{R}$ continuă în x_0 și $\omega_{x_0}(x_0) = 0$, asfel încât $\forall x \in A$, are loc relația:

$$f(x) = f(x_0) + \Phi(x - x_0) + ||x - x_0|| \omega_{x_0}(x).$$
 (1)

Operatorul liniar Φ se numește **diferențiala** lui f în x_0 și este adesea notat prin $\Phi = d_{x_0}f$.

Remarca 1.1 Reamintim că operatorul $\Phi : \mathbb{R}^p \to \mathbb{R}$ este numit liniar dacă el satisface relația:

$$\Phi\left(ax + by\right) = a\Phi\left(x\right) + b\Phi\left(y\right),\,$$

pentru orice $a, b \in \mathbb{R}$ și $x, y \in \mathbb{R}^p$.

Propoziție 1.1 Operatorul liniar Φ dat de (1) pentru o funcție diferențiabilă f în x_0 este unic.

Propoziție 1.2 Dacă o funcție $f: A \subset \mathbb{R}^p \to \mathbb{R}$, A deschisă, este diferențiabilă într-un punct $x_0 \in A$, atunci f este continuă în x_0 .

Propoziție 1.3 Dacă o funcție $f: A \subset \mathbb{R}^p \to \mathbb{R}$, A deschisă, este diferențiabilă întrun punct $x_0 \in A$, atunci f este derivabilă după vectorul $v \in \mathbb{R}^p, v \neq \bar{0}$ în x_0 , și are loc

 $d_{x_0}f(v) = \frac{\partial f}{\partial v}(x_0). \tag{2}$

Remarca 1.2 Dacă $B = \{e_1, ..., e_p\}$ este baza ortonormată în \mathbb{R}^p , pentru $v = e_i$, i = 1, ..., p, din (2) obținem

$$d_{x_0}f(e_i) = \frac{\partial f}{\partial e_i}(x_0) = \frac{\partial f}{\partial x_i}(x_0), \qquad (3)$$

adică, dacă f este diferențiabilă în x_0 atunci f este diferențiabilă parțial în x_0 în raport cu variabila x_i , $\forall i = 1, ..., p$. Prin urmare, dacă o funcție nu este diferențiabilă parțial în x_0 , atunci ea nu este nici diferențiabilă în x_0 .

Teorema 1.1 (Expresia diferențialei) Dacă o funcție f definită pe o muțime deschisă $A, f: A \subset \mathbb{R}^p \to \mathbb{R}$ este diferențialilă în $x_0 \in A$, atunci diferențiala sa $d_{x_0}f$ în x_0 este definită pentru orice vector $v = (h_1, h_2, ..., h_p) \in \mathbb{R}^p, v \neq \bar{0}$, și are loc relația:

$$d_{x_0}f(v) = \frac{\partial f}{\partial x_1}(x_0)h_1 + \frac{\partial f}{\partial x_2}(x_0)h_2 + \dots + \frac{\partial f}{\partial x_p}(x_0)h_p.$$

$$(4)$$

Remarca 1.3 Există funcții continue, derivabile parțial într-un punct, dar care nu sunt diferențiabile în acel punct.

Propoziție 1.4 Orice operator liniar $\Phi : \mathbb{R}^p \to \mathbb{R}$ este diferențiabil în orice punct $x_0 \in \mathbb{R}^p$ și $d_{x_0}\Phi = \Phi$.

Teorema 1.2 (Condiții suficiente de diferențiabilitate). Dacă o funcție $f: A \subset \mathbb{R}^p \to \mathbb{R}$, A deschisă, este de clasă C^1 într-o vecinătate V_{x_0} a unui punct $x_0 \in A$, $f \in C^1(V_{x_0})$, atunci f este diferențiabilă în x_0 . Mai mult, pentru orice $x \in V_{x_0}$ are loc aproximarea:

$$f(x) \simeq f(x_0) + d_{x_0} f(x - x_0)$$
. (5)

Remarca 1.4 Dacă o funcție $f: A \subset \mathbb{R}^p \to \mathbb{R}$, A deschisă, este de clasă $C^1(A)$, atunci f este diferențiabilă pe A (adică în orice punct $x_0 \in A$). Într-adevăr, întrucât A este deschisă, A este o vecinătate pentru orice punct $x_0 \in A$. Din $f \in C^1(A)$, aplicând Teorema 1.2 rezultă că f este diferențiabilă în x_0 , pentru orice $x_0 \in A$, adică, f este diferențiabilă pe A.

Remarca 1.5 Aproximarea (5) este importantă în aplicații practice, fiind prima aproximare a unei funcții de mai multe variabile (aproximarea prin partea ei liniară).

Definiție 1.2 Fie $F: A \subset \mathbb{R}^p \to \mathbb{R}^q$, A deschisă, $F = (f_1, ..., f_q)$, $x_0 = (a_1, a_2, ..., a_p) \in A$, o funcție vectorială. Spunem că F este **diferențiabilă** în x_0 dacă există un operator liniar $\Psi: \mathbb{R}^p \to \mathbb{R}^q$ și o funcție $\omega_{x_0}: A \to \mathbb{R}^q$ continuă în x_0 cu $\omega_{x_0}(x_0) = \overline{0}$, astfel încât $\forall x \in A$, are loc relația:

$$F(x) = F(x_0) + \Psi(x - x_0) + ||x - x_0|| \omega_{x_0}(x).$$
 (6)

Operatorul Ψ în acest caz se numește diferențiala lui F în x_0 și se notează prin $\Psi = d_{x_0}F$.

Propoziție 1.5 Fie $F: A \subset \mathbb{R}^p \to \mathbb{R}^q$, A deschisă, $F = (f_1, ..., f_q)$, o funcție vectorială şi $x_0 = (a_1, a_2, ..., a_p) \in A$. Următoarele afirmații sunt echivalente:

- a) F este diferențiabilă în x_0 ;
- b) f_j este diferențiabilă în x_0 pentru orice j = 1, ..., q.

Remarca 1.6 a) Din această propoziție obținem că, dacă $F: A \subset \mathbb{R}^p \to \mathbb{R}^q$, A deschisă, $F = (f_1, ..., f_q)$, este o funcție vectorială diferențiabilă în $x_0 \in A$, atunci diferențiala sa este

$$d_{x_0}F = (d_{x_0}f_1, d_{x_0}f_2, ..., d_{x_0}f_q),$$

unde $d_{x_0}f_j: \mathbb{R}^p \to \mathbb{R}$ este diferențiala funcției f_j în $x_0 \in A$, $\forall j = 1, ..., q$. Deoarece $d_{x_0}f_j$ este unică, la fel este și $d_{x_0}F$.

b) Dacă $J_F(x_0)$ este matricea Jacobi a lui F în x_0 , atunci pentru orice vector $v = (h_1, h_2, ..., h_p) \in \mathbb{R}^p, v \neq \bar{0}$, avem

$$d_{x_0}F(v) = J_F(x_0) \cdot \begin{pmatrix} h_1 \\ h_2 \\ \dots \\ h_p \end{pmatrix}.$$

$$(7)$$

Teorema 1.3 Considerăm două funcții vectoriale $F: A \subset \mathbb{R}^p \to \mathbb{R}^r$ și $G: B \subset \mathbb{R}^r \to \mathbb{R}^q$, A, B deschise, $F(A) \subseteq B$. Dacă F este diferențiabilă în $x_0 \in A$ și G diferențiabilă în $y_0 = F(x_0) \in B$, atunci funcția compusă $G \circ F: A \subset \mathbb{R}^p \to \mathbb{R}^q$ este diferențiabilă în x_0 și

$$d_{x_0}(G \circ F) = d_{y_0}G \circ d_{x_0}F, \tag{8}$$

unde $d_{y_0}G \circ d_{x_0}F$ reprezintă compunere de funcții liniare. În termeni de matrici Jacobi avem relația

$$J_{G \circ F} = J_G \cdot J_F. \tag{9}$$

Regula de derivare a funcțiilor compuse.

În contextul teoremei de mai sus, notăm prin $H = G \circ F$, unde $H : A \subset \mathbb{R}^p \to \mathbb{R}^q$, $H = (h_1, h_2, ..., h_q)$, $F = (f_1, f_2, ..., f_r)$ şi $G = (g_1, g_2, ..., g_q)$, $x = (x_1, x_2, ..., x_p) \in A$, $y = (y_1, y_2, ..., y_r) \in B$. Atunci, pentru orice $x_0 \in A$ şi $y_0 = F(x_0) \in B$, din $J_{G \circ F} = J_G \cdot J_F$ obţinem

$$J_H(x_0) = J_G(y_0) \cdot J_F(x_0),$$

adică,

$$\begin{pmatrix}
\frac{\partial h_1}{\partial x_1}(x_0) & \cdots & \frac{\partial h_1}{\partial x_p}(x_0) \\
\frac{\partial h_2}{\partial x_1}(x_0) & \cdots & \frac{\partial h_2}{\partial x_p}(x_0) \\
\vdots & \vdots & \vdots \\
\frac{\partial h_q}{\partial x_1}(x_0) & \cdots & \frac{\partial h_q}{\partial x_p}(x_0)
\end{pmatrix} = \begin{pmatrix}
\frac{\partial g_1}{\partial y_1}(y_0) & \cdots & \frac{\partial g_1}{\partial y_r}(y_0) \\
\frac{\partial g_2}{\partial y_1}(y_0) & \cdots & \frac{\partial g_2}{\partial y_r}(y_0) \\
\vdots & \vdots & \vdots \\
\frac{\partial g_q}{\partial y_1}(y_0) & \cdots & \frac{\partial g_q}{\partial y_r}(y_0)
\end{pmatrix} \times \begin{pmatrix}
\frac{\partial g_q}{\partial y_1}(x_0) & \cdots & \frac{\partial g_q}{\partial y_r}(x_0) \\
\frac{\partial f_2}{\partial x_1}(x_0) & \cdots & \frac{\partial f_2}{\partial x_p}(x_0) \\
\vdots & \vdots & \vdots \\
\frac{\partial f_r}{\partial x_1}(x_0) & \cdots & \frac{\partial f_r}{\partial x_p}(x_0)
\end{pmatrix}$$

sau, pentru orice i = 1, ..., p și j = 1, ..., q, avem relația:

$$\frac{\partial h_j}{\partial x_i}(x_0) = \sum_{k=1}^r \frac{\partial g_j}{\partial y_k}(y_0) \frac{\partial f_k}{\partial x_i}(x_0), \qquad (11)$$

cunoscută ca regula de derivare a funcțiilor compuse.

Cazuri particulare.

1. Dacă $p=q=r=1,\,h=g\circ f,$ obținem regula de derivare a funcțiilor compuse de o singură variabilă:

$$h'(x_0) = g'(f(x_0)) f'(x_0).$$

2. Dacă p = r = 2 și q = 1,
putem scrie

$$h(x,y) = g(u(x,y),v(x,y)),$$

deoarece $h\left(x,y\right)=\left(g\circ f\right)\left(x,y\right),$ unde $f:A\subset\mathbb{R}^{2}\to\mathbb{R}^{2},$ $f\left(x,y\right)=\left(u,v\right),$ și $g:B\subset\mathbb{R}^{2}\to\mathbb{R},$ $g=g\left(u,v\right).$ Din (11) obținem două formule utile:

$$\frac{\partial h}{\partial x} = \frac{\partial g}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial g}{\partial v} \frac{\partial v}{\partial x},$$

$$\frac{\partial h}{\partial y} = \frac{\partial g}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial g}{\partial v} \frac{\partial v}{\partial y}.$$

3. Pentru p=2, r=q=1, putem scrie

$$h(x,y) = g(u(x,y)),$$

deoarece $h\left(x,y\right)=\left(g\circ f\right)\left(x,y\right)$, unde $f:A\subset\mathbb{R}^{2}\to\mathbb{R},\,u=f\left(x,y\right)$, și $g:B\subset\mathbb{R}\to\mathbb{R},\,g=g\left(u\right)$. Atunci, (11) conduce la

$$\frac{\partial h}{\partial x} = g'(u) \frac{\partial u}{\partial x}, \text{ si, } \frac{\partial h}{\partial y} = g'(u) \frac{\partial u}{\partial y}.$$

Teorema 1.4 (Diferențiala funcției inverse). Fie $F:A\subset\mathbb{R}^p\to\mathbb{R}^p$, A deschisă, o funcție vectorială, bijectivă și diferențiabilă în $x_0\in A$, având matricea Jacobi $J_F(x_0)$ nesingulară (i.e. $\det J_F(x_0)\neq 0$). Atunci funcția inversă $F^{-1}:B\subset\mathbb{R}^p\to\mathbb{R}^p$ este diferențiabilă în $y_0=F(x_0)$ și

$$d_{y_0}F^{-1} = (d_{x_0}F)^{-1}. (12)$$

Exerciții

1. Fie $f: \mathbb{R}^2 \to \mathbb{R}$,

$$f(x,y) = \begin{cases} \frac{2x^2y}{x^2+y^2}, (x,y) \neq (0,0) \\ 0, (x,y) = (0,0) \end{cases}.$$

Arătați că f este continuă în $x_0 = (0,0)$ dar nu este diferențiabilă în x_0 .

R. Pentru orice vector $v = (h_1, h_2)$, $v \neq (0, 0)$, avem

$$\frac{\partial f}{\partial v}(x_0) = \lim_{t \to 0} \frac{f(th_1, th_2) - f(0, 0)}{t} = \frac{2h_1^2 h_2}{h_1^2 + h_2^2},$$

adică, f are derivată după orice direcție (vector) $v = (h_1, h_2) \in \mathbb{R}^2$ în x_0 . În particular, pentru $v = e_1 = (1, 0)$ și $v = e_2 = (0, 1)$, rezultă că f are derivatele parțiale

$$\frac{\partial f}{\partial e_1}(x_0) = \frac{\partial f}{\partial x}(x_0) = 0 = \frac{\partial f}{\partial y}(x_0) = \frac{\partial f}{\partial e_2}(x_0).$$

Presupunem că f este diferențiabilă în x_0 . Din (4),

$$d_{x_0} f(v) = \frac{\partial f}{\partial x}(x_0) h_1 + \frac{\partial f}{\partial y}(x_0) h_2 = 0,$$

dar, din (2) $d_{x_0}f(v) = \frac{\partial f}{\partial v}(x_0)$, adică, $0 = \frac{2h_1^2h_2}{h_1^2+h_2^2}$, care este o contradicție deoarece $v = (h_1, h_2) \neq (0, 0)$. Deci f nu este diferențiabilă în x_0 .

Funcția f este continuă în (0,0) deoarece

$$\left| \frac{2x^2y}{x^2 + y^2} \right| \le |2y| \,,$$

adică

$$-|2y| \le \frac{2x^2y}{x^2 + y^2} \le |2y|,$$

de unde, prin trecere la limită cu $(x,y) \to (0,0)\,,$ se obține prin Teorema cleștelui că

$$\lim_{(x,y)\to(0,0)} f(x,y) = 0 = f(0,0).$$

Astfel, f nu este diferențiabilă în x_0 dar are derivată după orice vector $v \in \mathbb{R}^2$ și este continuă pe \mathbb{R}^2 .

2. Găsiți o primă aproximare pentru 1.01^{1.02}.

R. Fie funcția $f(x,y) = x^y$ și $x_0 = (1,1)$. Atunci, din (5),

$$f(x,y) \simeq f(1,1) + d_{x_0} f(v)$$
,

unde v=(x,y)-(1,1)=(x-1,y-1). Dar $\frac{\partial f}{\partial x}=x^{y-1}y$ şi $\frac{\partial f}{\partial y}=x^y\ln x$, respectiv, $\frac{\partial f}{\partial x}(1,1)=1$ şi $\frac{\partial f}{\partial y}(1,1)=0$. Rezultă

$$d_{x_0}f(v) = (x-1)\frac{\partial f}{\partial x}(1,1) + (y-1)\frac{\partial f}{\partial y}(1,1) = x-1.$$

Deci,

$$x^y \simeq 1 + (x - 1) = x.$$

Luând x=1.01, obținem $1.01^{1.02}\simeq 1.01$. Folosind un calculator de buzunar, găsim $1.01^{1.02}=1.0102$. Deci cele două aproximații coincid în primele două zecimale.

3. Găsiți $d_{x_0}f\left(v\right)$ unde $f=xy^2z-yz^2+xz$ și $x_0=\left(0,1,1\right)$.

 \mathbf{R} . Expresia lui df(v) este

$$d_{x_0}f(v) = f'_x(x_0) h_1 + f'_y(x_0) h_2 + f'_z(x_0) h_3,$$

unde $v = (h_1, h_2, h_3) \neq (0, 0, 0)$. Calculând derivatele parțiale ale funcției f, obținem

$$df(v) = (y^2z + z) h_1 + (2xyz - z^2) h_2 + (xy^2 - 2yz + x) h_3.$$

Deci $d_{x_0} f(v) = 2h_1 - h_2 - 2h_3$.

- 4. Găsiți derivatele parțiale de ordinul întâi ale următoarelor funcții compuse.
- a) $h(x,y) = xy^2g(x^2y^2)$; b) $h(x,y) = g(x^2 + y^2, x^2 y^2)$;
- c) $h(x,y) = xy^2g(xy, \sqrt{x+y^2})$; d) $h(x,y) = g(xy, x+y, x+y^2)$.

R. a) Notăm $u = x^2y^2$. Atunci

$$h_{x}^{\prime}=y^{2}g\left(u\right) +xy^{2}g^{\prime}\left(u\right) 2xy^{2}=y^{2}g\left(u\right) +2x^{2}y^{4}g^{\prime}\left(u\right) ,$$

şi

$$h'_{y} = 2xyg(u) + xy^{2}g'(u) 2x^{2}y = 2xyg(u) + 2x^{3}y^{3}g'(u)$$
.

b) Notăm $u = x^2 + y^2$ și $v = x^2 - y^2$. Atunci

$$h'_x = g'_u u'_x + g'_v v'_x = 2xg'_u + 2xg'_v,$$

şi

$$h'_{y} = g'_{y}u'_{y} + g'_{y}v'_{y} = 2yg'_{y} - 2yg'_{y}.$$

În particular, dacă funcția g este cunoscută, de exemplu, g(u, v) = uv, obținem

$$h'_x = 2xv + 2xu$$
, şi, $h'_y = 2yv - 2yu$.

c) Notăm u=xy și $v=\sqrt{x+y^2}.$ Atunci,

$$h'_{x} = y^{2}g\left(u,v\right) + xy^{2}\left(g'_{u}u'_{x} + g'_{v}v'_{x}\right) = y^{2}g\left(u,v\right) + xy^{2}\left(yg'_{u} + \frac{1}{2\sqrt{x+y^{2}}}g'_{v}\right),$$

şi

$$h'_{y} = 2xyg(u, v) + xy^{2} \left(g'_{u}u'_{y} + g'_{v}v'_{y}\right) = 2xyg(u, v) + xy^{2} \left(xg'_{u} + \frac{y}{\sqrt{x + y^{2}}}g'_{v}\right).$$

d) $h\left(x,y\right) =g\left(xy,x+y,x+y^{2}\right) .$ Notăm $u=xy,\,v=x+y$ și $w=x+y^{2}.$ Atunci,

$$h'_x = g'_u u'_x + g'_v v'_x + g'_w w'_x = yg'_u + g'_v + g'_w$$

şi

$$h'_{y} = g'_{u}u'_{y} + g'_{v}v'_{y} + g'_{w}w'_{y} = xg'_{u} + g'_{v} + 2yg'_{w}.$$