

Unidad 6. Gases Ideales. Ejercicios adicionales. Respuestas.

1.
$$V_f = \frac{P_i \cdot V_i \cdot T_f}{T_i \cdot P_f} = \frac{0.921 \, atm \cdot \, 60.0 \, dm^3 \cdot 313 \, K}{303 \, K \cdot 0.750 \, atm} = 76.1 \, dm^3$$

2.
$$T_f = \frac{P_f \cdot V_f \cdot T_i}{P_i \cdot V_i} = \frac{0,566 \text{ atm. } 20,0 \text{ dm}^3 \cdot 335 \text{ K}}{0,947 \text{ atm. } 5,00 \text{ dm}^3} = 800 \text{ K}$$

- 3. 0,0512 mol
- 4. 0,428 atm
- 5. $\rho = 1{,}16 \text{ g/dm}^3 \text{ y } M = 26{,}0 \text{ g/mol}$
- 6. M = 32,0 g/mol
- 7.
- a. la fracción molar de CO₂ (g) en la mezcla final = 0,446
- b. la presión parcial del SO₃ = 2,16 atm
- c. la densidad de la mezcla gaseosa = 10,4 g/dm³
- 8.
- a. Si se agrega más O_2 (g) a temperatura y presión constantes, la fracción molar del N_2 cambia, pues XN_2 es el cociente entre la cantidad de N_2 y la cantidad total de gas. Por lo tanto si se agrega O_2 , cambia la cantidad total de gas y cambia la fracción molar del N_2 .
- b. Al aumentar la temperatura del sistema a presión constante, el volumen aumenta. Esto es correcto pues al aumentar la temperatura, aumentará en forma proporcional la energía cinética media de las partículas y, por lo tanto, su velocidad, en consecuencia, para mantener constante la presión, aumentará el volumen del recipiente.
- 9.
- a. la presión total del sistema= 23,3 atm
- b. la fracción molar de CH₄ (g) en la mezcla final= 0,750
- c. la presión parcial del $CH_4 = 17,5$ atm
- 10.
- a. la masa molar del gas A = 40,4 g/mol
- b. la masa de gas argón que debe agregarse al sistema, a T constante, para que la presión final sea el doble de la inicial = 10.3 g