STAT3032 SURVIVAL MODELS

SOLUTIONS TO TUTORIAL WEEK FIVE

Question One

t_j	d_j	r_j	$\frac{r_j - d_j}{r_j}$	$\hat{S}\left(t_{j}\right) = \prod_{l=1}^{j} \frac{r_{l} - d_{l}}{r_{l}}$
4	1	20	$\frac{19}{20}$	$\frac{19}{20}$
5	1	19	$\frac{18}{19}$	$\frac{19}{20} \frac{18}{19}$
10	2	15	$\frac{13}{15}$	$\frac{19}{20} \frac{18}{19} \frac{13}{15}$
11	1	13	$\frac{12}{13}$	$\frac{19}{20} \frac{18}{19} \frac{13}{15} \frac{12}{13}$
13	1	12	$\frac{11}{12}$	$\frac{19}{20} \frac{18}{19} \frac{13}{15} \frac{12}{13} \frac{11}{12}$
15	1	10	$\frac{9}{10}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
17	2	8	$\frac{6}{8}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
18	2	6	$\frac{4}{6}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
21	1	2	$\frac{1}{2}$	$ \begin{array}{c cccccccccccccccccccccccccccccccccc$
22	1	1	$\frac{0}{1}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Question Two

treatment < -c(23,47,69,70,71,100,101,148,181,198,208,212,224)

tstatus < -c(rep(1,13))

tstatus[c(4:7,10:12)]<-0

control<-

c(5,8,10,13,18,24,26,26,31,35,40,41,48,50,59,61,68,71,76,105,107,109,113,116,118,143,154,162,188,212,217,225)

cstatus<-rep(1,length(control))

cstatus[c(19:21,24,27:32)]<-0

group<-c(rep(1,length(treatment)),rep(2,length(control)))</pre>

library(survival)

#combining both groups

kmcombined<-survfit(Surv(c(treatment,control),c(tstatus,cstatus))~1,conf.type="plain")

Page 1 3032 TSW5

#individual curves kmindividual<-survfit(Surv(c(treatment,control),c(tstatus,cstatus))~group,conf.type="plain") plot(kmindividual)

Question Three

Page 2 3032 TSW5

(a)
$$g(y) = \log(1 + y^2)$$
 then $g'(y) = \frac{2y}{1 + y^2}$

$$g'(\mu) = g'(6) = \frac{2(6)}{1+6^2} = \frac{12}{37}$$

Let

$$\therefore E \left\lceil \log \left(1 + Y^2 \right) \right\rceil \approx \log \left(37 \right) \text{ and }$$

$$Var \left[\log \left(1 + Y^2 \right) \right] \approx 2 \left(\frac{12}{37} \right)^2$$

(b)

The estimated hazard is $\hat{q} = \frac{d}{r}$. We know that $Var(\hat{q}) = \frac{\frac{d}{r}(1 - \frac{d}{r})}{r} = \frac{d(r - d)}{r^3}$

Now we are given that $\hat{q} = 1 - \exp(-\hat{\lambda})$ and hence $\hat{\lambda} = -\log(1 - \hat{q})$.

We now apply the delta method to find the approximate variance of $\hat{\lambda}$ given that we know the variance of \hat{q} .

If
$$g(y) = -\log(1-y)$$
 then $g'(y) = \frac{1}{1-y}$.

Hence

$$E\lceil \hat{\lambda} \rceil = E\lceil -\log(1-q)\rceil \approx -\log(1-q)$$

$$Var(\hat{\lambda}) \approx \frac{d(r-d)}{r^3(1-q)^2}$$

Question Four

Treatment Group

Range of t	$\hat{F}(t)$	Approximate SE of $\hat{F}(t)$
<i>t</i> < 6	0.0000	0.0000
6 ≤ <i>t</i> < 7	0.1111	0.0741
$7 \le t < 10$	0.1704	0.0898
$10 \le t < 13$	0.2342	0.1031
13 ≤ <i>t</i> < 16	0.3108	0.1178

Page 3 3032 TSW5

16 ≤ <i>t</i> < 23	0.3874	0.1272
$23 \le t < 35$	0.4895	0.1412
35 ≤ <i>t</i>	1.0000	-

Control Group

Range of t	$\hat{F}(t)$	Approximate SE of $\hat{F}(t)$
t < 1	0.0000	0.0000
$1 \le t < 2$	0.1111	0.0741
$2 \le t < 3$	0.1667	0.0878
3 ≤ <i>t</i> < 5	0.2222	0.0980
5 ≤ <i>t</i> < 8	0.3519	0.1169
8 ≤ <i>t</i> < 9	0.4167	0.1219
9 ≤ <i>t</i> < 10	0.5463	0.1246
$10 \le t < 11$	0.6975	0.1205
$11 \le t < 12$	0.7731	0.1116
$12 \le t < 18$	0.8488	0.0967
18 ≤ <i>t</i> < 25	0.9244	0.0721
25 ≤ <i>t</i>	1.0000	-

Page 4 3032 TSW5