Improving serial performance

Prabhu Ramachandran

Department of Aerospace Engineering

IIT Bombay

High performance computing (HPC)

- Serial
- Parallel

Measuring performance

```
• FLOPS
```

• Megaflops: 10^6

• Gigaflops: 10^9

• Teraflops: 10^{12}

• Petaflops: 10^{15}

• Exaflops: 10¹⁸

Count the flops

FLOPS and benchmarks

- Count the basic arithmetic operations
- Also count the LOAD and STORE operations
- · Low-level benchmark
- · Application benchmarks

Improving serial performance

• Important to understand architecture

Cache-based microprocessor

Image source: Introduction to HPC ..., Hager and Wellein 2010

Architecture basics

- · Instructions and Data: both are cached
- Steps (Machine code):
 - 1. Fetch instruction
 - 2. Decode
 - 3. Operands
 - 4. Execute operation
 - 5. Store results
 - 6. Next instruction

Memory hierarchy

- 1. Limited CPU registers
- 2. Cache L1 < L2 < L3
- 3. RAM
- 4. Storage

Instruction Set Architecture (ISA)

- An abstraction in terms of programming instructions (at the machine level)
- · Different implementations may exist for a given ISA
- x86-64 is an ISA
- Intel Core i7, AMD XXYY is an implementation

Virtual memory vs physical memory

- OS provides virtual memory
- · Virtual memory mapped to physical memory
- Memory stored in "pages"
- This is also managed and costs

More architectural considerations

- Pipelining: multiple functional units, assembly line
- Superscalar: multiple assembly lines
- · Out of order execution
- Branch prediction and speculative execution
- SIMD: SSE, AVX etc.: Vector operations
- Caches
- Instruction set differences: CISC vs. RISC

Illustrations

Beans

Assembly

Superscalar or Pipelining or SIMD?

Caches

- Faster memory but limited amount
- L1, L2, L3
- Cache lines: **64 bytes** typically (512 bits)
- Memory fetched per cache line
 - Takes time to get data from memory
- Writing to memory will also flush a cache line
- Prefetching (hardware and software)
- Memory access patterns are important

Unexpected effects

```
In [ ]: for i in range(N):
    a[i] = b[i] + c[i]*d[i]
```

```
In []: # Compare with
for i in range(1, N, 3):
    a[i] = b[i] + c[i]*d[i]
```

Memory latency and bandwidth

Slightly dated.

Image source: Introduction to HPC ..., Hager and Wellein 2010

Another resource (2012)

L1 cache reference	0.5	ns	
Branch mispredict	5	ns	
L2 cache reference	7	ns	
14x L1 cache			
Mutex lock/unlock	25	ns	
Main memory reference	100	ns	
20x L2 cache, 200x L1 cache			
Compress 1K bytes with Zippy	3,000	ns	
Send 1K bytes over 1 Gbps network	10,000	ns	
Read 4K randomly from SSD*	150,000	ns	~1GB/
sec SSD			
Read 1 MB sequentially from memory	250,000	ns	
Round trip within same datacenter	500,000	ns	
Read 1 MB sequentially from SSD*	1,000,000	ns	~1GB/
sec SSD, 4X memory			
Disk seek	10,000,000	ns	20x d
atacenter roundtrip			
Read 1 MB sequentially from disk	20,000,000	ns	80x m
emory, 20X SSD			
Send packet CA->Netherlands->CA	150,000,000	ns	

Source: https://stackoverflow.com/questions/4087280/approximate-cost-to-access-various-caches-and-main-memory

More recent (2020)

```
L1 CACHE hit, ~4 cycles(2.1 - 1.2 ns)
L2 CACHE hit, ~10 cycles(5.3 - 3.0 ns)
L3 CACHE hit, line unshared ~40 cycles(21.4 - 12.0 ns)
L3 CACHE hit, shared line in another core ~65 cycles(34.8 - 19.5 ns)
L3 CACHE hit, modified in another core ~75 cycles(40.2 - 22.5 ns)
local RAM
~60 ns
```

Source: https://www.forrestthewoods.com/blog/memory-bandwidth-napkin-math/

Simple steps for better performance

- 1. Profile your code! Focus on the *hot spots*:
 - · Function and line profiling
 - Low-level tools (PAPI, OProfile, VTune)
- 2. Common sense:
 - A. Do less work
 - B. Avoid expensive operations
 - C. Shrink the working set
- 3. Some simple measures
 - A. Eliminate common subexpressions
 - B. Avoid branches
 - C. Avoid creating too many temporaries
- 4. Compiler:
 - A. Use proper optimization flags on your compiler (-O2, -O3)
 - B. Use inlining
 - C. Avoid pointer aliasing

Other Profilers

- · Scalene is Python specific
- PAPI: Linux only, Python wrappers exist
- OProfile: Linux only
- LIKWID: also pylikwid (Linux only)
- · valgrind/cachegrind
- Non-Open Source:
 - Intel VTune: non-Open Source
 - AMD μProf: AMD specific

Example: less work

```
In [ ]: flag = False
    for i in range(N):
        if expensive_call(A[i]) < value:
            flag = True</pre>

Versus:
```

```
In [ ]: flag = False
    for i in range(N):
        if expensive_call(A[i]) < value:
            flag = True
            break</pre>
```

Example: avoid expensive ops, simplify expressions

- Avoid useless expressions
- Simplify code -- do you really need a square root?
- Precompute values

```
In [ ]: for i in range(N):
    a[i] = sin(i%5)
    b[i] = pow(x, float(i))

In [ ]: for i in range(N):
    a[i] = (s + r*sin(x))*i

    versus

In [ ]: tmp = s + r*sin(x)
    for i in range(N):
        a[i] = tmp*i
```

Example: avoid branches

```
In [ ]: for i in range(N):
    for j in range(N):
        if i >= j:
            sign = 1.0
        elif i < j:
                 sign = -1.0
        else:
                  sign = 0.0
                  c[j] += sign*a[i, j]*b[i]</pre>
```

```
In [ ]: for i in range(N):
    for j in range(i+1):
        c[j] = c[j] + a[i,j]*b[i]

for i in range(N):
    for j in range(i+1, N):
        c[j] = c[j] - a[i,j]*b[i]
```

More involved approaches

- Use SIMD (involves work and hardware specific)
 - Compilers can use SIMD automatically
 - Do not use conditionals
 - Don't introduce loop-dependencies
- · Think about:
 - "Compute bound"
 - "Memory bound"
- Data access optimization
- · Memory access patterns

Memory hierarchies/Cache

- Makes a significant difference
- · Cache is important
- How is cache used?

Memory latency and bandwidth

Slightly dated.

Image source: Introduction to HPC ..., Hager and Wellein 2010

Structured approach

- Load/Store vs Compute
- Measuring code balance
- Counting approxima

Balance analysis

- Machine balance: B_m = Memory bandwidth/Peak performance
- $B_m = \frac{b_{max}}{P_{max}}$ = GWords/sec / GFlops/sec
- b_{max} = 30 GBps, and 3 GHz with 4 flops per cycle
- i7-7820HQ: 4 DP FLOPS per cycles = 0.055 W/F
- Assuming a 16 DP FLOPS per cycle = 0.01375 W/F

Code Balance

- B_c = data traffic [DP Words] / FLOPS
- Keep this small!
- Computational intensity = $1/B_c$
- Lightspeed = $\min(1, \frac{B_m}{B_c})$
- $P = lP_{max}$

Example

```
In [ ]: s = 3.0 # ignore this!
for i in range(N):
    a[i] = b[i] + c[i]*d[i]
```

- 2 FLOPS
- 3 LOADs, 1 STORE
- $B_c = 4/2 = 2.0$
- Usually stores count for 2
- $B_c = 5/2 = 2.5$
- If $B_m = 0.1$
- Lightspeed = 0.04

A simple benchmark

```
In []: import numpy as np
    from numba import njit

In []: def make_data(n):
        x = np.linspace(0, 2*np.pi, n)
        a, b = np.random.random((2, n))
        y = np.zeros_like(x)
        return y, x, a, b
```

```
In [ ]: @njit
def axpb(y, x, a, b):
    for i in range(y.shape[0]):
        y[i] = a[i]*x[i] + b[i]
```

Measuring time accurately

- Can use the timeit module but a bit tricky
- Can use time.perf_counter
- Invoke once to warm the jit
- · Measure the time for a single loop
- Run as many loops to run for some small time, say 0.1
- Do this a few times, say 5 or 7
- Find the minimum of these and report that
- Repeat this as N changes, plot it.

Some results: Memory bandwidth for axpb

Some results: Memory bandwidth for axpb

FLOPS vs N

Time taken vs N

Time taken vs N with a stride

Memory bandwidth for axpb but random access

Matrix storage/access order

- C-style storage: Row-major
- FORTRAN-style storage: Column-major

```
N = 256
A = np.zeros((N, N))
```

• Beware of doing this right

```
In [ ]: for i in range(N):
    for j in range(N):
        a[i, j] = i*j
```

Matrix-vector multiplication

• Simple example

```
In []: @njit
        def matvec_col(A, x):
                N = A.shape[0]
                res = np.zeros_like(x)
                for i in range(N):
                         for j in range(N):
                                 res[i] += A[i, j]*x[j]
                return res
In []: @njit
        def matvec row(A, x):
                N = A.shape[0]
                res = np.zeros_like(x)
                for j in range(N):
                         for i in range(N):
                                 res[i] += A[i, j]*x[j]
                return res
In [ ]: def make data(n):
            A = np.random.random((n, n))
            x = np.random.random(n)
            return A, x
In [ ]: | n = 1000 
        A, x = make data(n)
In [ ]: %timeit matvec_row(A, x)
In [ ]: %timeit matvec col(A, x)
```

Loop fusion, unroll, jam

- Fusing loops helps, instead of two loops, fuse them into one.
- Consider matrix vector multiplication
- Nested loops
 - Unroll loops
 - Fusing operations (jam)

Roofline model

- Model to visualize/analyze performance
- Memory bandwidth limitation vs computation limitation
- Modern hardware tends to be throughput limited
- Latency is hidden due to prefetching, parallelism etc.
- What do you need to focus on for optimization?
- Compare different architectures?

Roofline definition

- T = max((FP ops/Peak GFLOPS), Bytes/GBps)
- FP ops/T = min(Peak GFLOPS, FP ops * Peak GBps/Bytes)

Roofline example

Some rough data

- Simple hand written benchmarks
- Very hardware specific
- These are for: Intel i3-6100 CPU
- Instrumented code using PAPI (Linux only)

Rough FLOPS for math operations

- Int add sub mul < Float add sub mul
- Integer division is generally very slow
- Float division is 3x slower than multiplication
- sqrt: O(5) flops!?
- sine: 28
- cosine: 28
- tan: 28
- asin: 22
- exp: 31
- log: 34
- tanh: 35
- pow: ≈ 85 flops!!

Summary

- Follow the simple steps first
- Be aware of how you access data
- Optimize based on this
- Beware of math operations
- Compute bound vs. memory bound

References

- 1. Introduction to High Performance Computing for Scientists and Engineers, Georg Hager and Gerhard Wellein, CRC Press, 2010.
- 2. Multicore and GPU Programming An Integrated Approach, Gerassimos Barlas, Morgan Kaufmann, 2015.
- 3. Roofline: an insightful visual performance model for multicore architectures, Samuel Williams and Andrew Waterman and David Patterson, Communications of the ACM, 4, pp 65--76 2009. https://doi.org/10.1145/1498765.1498785 (https://doi.org/10.1145/1498765.1498785)