TÖL104G Stærðfræðimynstur í tölvunarfræði Verkefnablað 7 — Lausn

11. október 2015

1. (25%) Þáttið eftirfarandi tölur í prímþætti. Fyrir hverja tölu n skuluð þið skrifa jöfnu á sniðinu $n=p_1^{v_1}\cdot\ldots\cdot p_k^{v_k}$ þar sem p_1,\ldots,p_k eru mismunandi prímtölur í vaxandi röð.

Til dæmis, ef talan væri 54 þá ættuð þið að skrifa $54 = 2^1 \cdot 3^3$.

a) n = 6 **Svar:** $6 = 2^1 \cdot 3^1$

b) n = 256 **Svar:** $256 = 2^8$

c) n = 257 **Svar:** $257 = 257^1$

d) n = 81 **Svar:** $81 = 3^4$

e) n = 1000 **Svar:** $1000 = 2^3 \cdot 5^3$

f) n = 1000000 **Svar:** $1000000 = 2^6 \cdot 5^6$

g) n = 15360 **Svar:** $15360 = 2^{10} \cdot 3^1 \cdot 5^1$

h) n = 697 **Svar:** $697 = 17^1 \cdot 41^1$

i) n = 512 **Svar:** $512 = 2^9$

j) n = 2310 **Svar:** $2310 = 2^1 \cdot 3^1 \cdot 5^1 \cdot 7^1 \cdot 11^1$

2. (25%) Reiknið 123^{33} (mod 257) með algríminu fyrir mátaða veldishafningu sem finna má á einni glæru viku 6. Sýnið gildin á p, q og r fyrir hverja umferð lykkjunnar.

Svar: Svarið er 134. Tafla 1 á næstu síðu sýnir gildin þegar búið er að fara n umferðir frá því fyrir fyrstu umferð (n=0) þar til eftir síðustu umferð (n=7, þegar r=0).

n	p	q	r
0	1	123	33
1	123	123	32
2	123	223	16
3	123	128	8
4	123	193	4
5	123	241	2
6	123	256	1
7	134	256	0

Tafla 1: Útreikningur á 123³³ (mod 257)

- 3. (25%) Fyrir eftirfarandi köll á fallið "mátaðveldi" fyrir mátaða veldishafningu, sem finna má á glærum viku 6, hve oft er framkvæmd margföldun? Með öðrum orðum hve oft samanlagt í hverju kalli eru gildisveitingarnar $p := p \cdot q \mod m$ og $q := q^2 \mod m$ framkvæmdar?
 - a) mátaðveldi(11,111,1111); **Svar:** 12
 - b) mátaðveldi(7,11,111); **Svar:** 6
 - c) mátaðveldi(7,32,65537); **Svar:** 6
 - d) mátaðveldi(7,33,65537); **Svar:** 7
 - e) mátaðveldi(7,31,65537); **Svar:** 9
 - f) mátaðveldi(7,1024,65537); **Svar:** 11
 - g) mátaðveldi(7,1024·1024,65537); **Svar:** 21
 - h) mátaðveldi(7,512,65537); Svar: 10
 - i) mátaðveldi(7,513,65537); **Svar:** 11
 - j) mátaðveldi(7,511,65537); **Svar:** 17
- 4. (25%) Sannið setningarnar tvær á glærunni um eiginleika deilanleika sem ekki eru sannaðar þar, þ.e. eftirfarandi setningar:
 - a) Setning: Látum a, b og c vera heiltölur, $a \neq 0$. Ef $a \mid b$ þá $a \mid bc$.
 - **Sönnun:** Þar eð $a \mid b$ er, samkvæmt skilgreiningu á deilanleika, til heiltala k þannig að ka = b. Þarmeð gildir kac = bc (með því að margfalda með c báðu megin). Þess vegna er bc margfeldi af a, sem er skilgreiningin á að $a \mid bc$.
 - b) Setning: Látum a, b og c vera heiltölur, $a \neq 0$. Ef $a \mid b$ og $b \mid c$ þá $a \mid c$. Sönnun: Þar eð $a \mid b$ er, samkvæmt skilgreiningu á deilanleika, til heiltala k_1 þannig að $k_1a = b$. Þar eð $b \mid c$ er, samkvæmt skilgreiningu á deilanleika, til heiltala k_2 þannig að $k_2b = c$. Setjum því k_1a í stað

b í seinni jöfnunni og fáum $k_2k_1a=c.$ Þarmeð er c margfeldi af a og því gildir $a\mid c.$