9.1.19 Folosind strategia saturării pe nivele verificați dacă are loc relația:

$p \rightarrow (q V r \Lambda s), p, \neg r \models q V r$

(din teorema de completitudine: validitatea semantică implică validitatea sintactică)

$$p \rightarrow (q \ V \ r \ \Lambda \ s), p, \neg r \vdash q \ V \ r \Leftrightarrow \cdot$$

{
$$p \rightarrow (q \ V \ r \ \Lambda \ s), p, \neg r, \neg (q \ V \ r)}$$
 inconsistenta?

Vom nota clauzele:

$$U_1 = p \Rightarrow (q \lor r \land s) = \neg p \lor q \lor (r \land s) = (\neg p \lor q \lor r) \land (\neg p \lor q \lor s) = C_1 \land C_2$$

$$U_2 = p$$

$$U_3 = \neg r$$

$$\neg V = \neg (q V r) = \neg q \land \neg r = C_5 \land C_4$$

•
$$C_1 = \neg p V q V r$$

•
$$C_3 = p$$

•
$$C_4 = \neg r$$

•
$$C_5 = \neg q$$

Acum putem aplica strategia saturării pe nivele

$$\Rightarrow$$
 S⁰ = {C₁, C₂, C₃, C₄, C₅}

Primul nivel → vom forma S¹

Clauzele ce vor apărea în S¹ sunt de forma Res(Ci, Ci), unde Ci este din

 S^{o} , și C_{i} este din S^{o}

$$C_6 = Res_p(C_1, C_3) = q V r$$

$$C_7 = Res_r(C_1, C_4) = \neg p V q$$

$$C_8 = Res_q(C_1, C_5) = \neg p V r$$

$$C_9 = Res_p(C_2, C_3) = q V s$$

$$C_{10} = Res_q(C_2, C_5) = \neg p \ V \ s$$

$$\rightarrow$$
 S¹ = {C₆, C₇, C₈, C₉, C₁₀}

Al doilea nivel → vom forma S²

Clauzele ce vor apărea în S² sunt de forma Res(Ci, Ci), unde Ci este din

S¹, și C_i este din S⁰, S¹

Res_?(C₆, C₁) NU

Res_?(C₆, C₂) NU

Res_?(C₆, C₃) NU

 $C_{11} = Res_r(C_6, C_4) = q$

 $C_{12} = Res_q(C_6, C_5) = r$

Res_?(C₆, C₇) NU

Res_?(C₆, C₈) NU

Res_?(C₆, C₉) NU

Res_?(C₆, C₁₀) NU

Res_?(C₇, C₁) NU

Res_?(C₇, C₂) NU

 $Res_p(C_7, C_3) = q = C_{11}$

Res_?(C₇, C₄) NU

 $C_{13} = Res_q(C_7, C_5) = \neg p$

Res_?(C₇, C₈) NU

Res_?(C₇, C₉) NU

Res_?(C₇, C₁₀) NU

Res_?(C₈, C₁) NU

Res_?(C₈, C₂) NU

 $Res_p(C_8, C_3) = r = C_{12}$

 $Res_r(C_8, C_4) = \neg p = C_{13}$

Res_?(C₈, C₅) NU

Res_?(C₈, C₉) NU

Res_?(C₈, C₁₀) NU

Res_?(C₉, C₁) NU

Res_?(C₉, C₂) NU

Res_?(C₉, C₃) NU

Res_?(C₉, C₄) NU

 $C_{14} = Res_q(C_9, C_5) = s$

Res_?(C₉, C₁₀) NU

Res_?(C₁₀, C₁) NU

Res_?(C₁₀, C₂) NU

 $Res_p(C_{10}, C_3) = s = C_{14}$

Res_?(C₁₀, C₄) NU

Res_?(C₁₀, C₅) NU

```
⇒ S^2 = \{C_{11}, C_{12}, C_{13}, C_{14}\}

Trecem la nivelul 3 și putem observa deja că vom avea o rezoluție: Res<sub>?</sub>(C<sub>11</sub>, C<sub>1</sub>) NU
Res<sub>?</sub>(C<sub>11</sub>, C<sub>2</sub>) NU
Res<sub>?</sub>(C<sub>11</sub>, C<sub>3</sub>) NU
Res<sub>?</sub>(C<sub>11</sub>, C<sub>4</sub>) NU
Res<sub>q</sub>(C<sub>11</sub>, C<sub>5</sub>) = \Box
⇒ \{p \Rightarrow (q \lor r \land s), p, \neg r, \neg (q \lor r)\} inconsistenta
⇒ p \Rightarrow (q \lor r \land s), p, \neg r \models q \lor r are loc
```