DYNAMIC PROGRAMMING SEQUENCE ALIGNMENT

CS340

Sequence Alignment

- Problem: Given two strings S and T, what is the optimal "alignment" between them?
 - Minimum number of changes made to transform S into T, respecting order of characters
- Motivation and Applications:
 - Spell checker
 - Genetic similarity computation: DNA seq. align.
 - "changes" from S to T model mutation events
- Simplest form: Longest Common Subsequence
 - Match or insert a gap (no substitutions)

Sequence Alignment

- O_CURRANCE
- OCCURRENCE
- How do the 2 words align?
 - A gap must be added to ocurrance
 - An A must be replaced by an E

Sequence Alignment

- How about this?
- O_CURR_ANCE
- OCCURRE_NCE
- Which is better?
 - One gap and one mismatch
 - Three gaps and no mismatches

How do we get there?

- Need to compute the measure we are trying to optimize
 - Two general and equivalent formulations:
 - MINIMIZE the "changes" (insertions and mismatches)
 - Later the changes will also involve substitutions
 - MAXIMIZE the "matches"
- Many problems presented in "optimization" frameworks
- To speak more generally:
 - MINIMIZE PENALTIES (COSTS)
 - MAXIMIZE REWARDS

General Sequence Alignment

- Some mismatches are far likelier than others!
 - In English: (c,k), (a,e), (e,i), (i,y), (q,k),(u,a),(s,c)
 - Unlikely substitutions: (a,t), (k,r),(p,x)
 - The commonality between SELECT and SALEKT is not restricted to SLET
 - That would make them as similar with each other as they are with "SLEET"!
 - For DNA and protein sequences the relative likelihoods are of critical importance!

Gap and Mismatch Penalties

- δ is a gap penalty.
 - Each gap we insert incurs δ cost
 - $\delta > 0$
- α is a mismatch cost
 - For each pair of letters p,q, there is a cost $\alpha_{p,q}$ for lining up letters that do not match.
 - In general, $\alpha_{p,p} = 0$. No cost to exact matches.
- δ and α are external parameters that must be determined.

Which Alignment is Preferred?

- O_CURRANCE
- OCCURRENCE

VS

- O_CURR_ANCE
- OCCURRE NCE

- Which is better?
- The first is better if $\delta + \alpha_{ae} < 3\delta$

Optimal Alignment Truth

- In an optimal alignment M of 2 strings X and Y, at least one of the following is true:
 - (m, n) ∈ M
 - the mth position of X is not matched
 - the nth position of Y is not matched

```
• opt(i, j) = min[

\alpha_{xi yj} + opt(i - 1, j - 1)
\delta + opt(i - 1, j) \longrightarrow
\delta + opt(i, j - 1)
1
```

An example

N	8 ^				
Α	6				
Е	4				
M	2				
-	0 1	2>	4	6	8
	_	N	Α	M	Е

 α vowel/vowel = 1 α consonant/consonant = 1 α vowel/consonant = 3 δ = 2

MATCH
MEAN and
NAME

MEAN_ N_AME

An example

N	8 ^	<u>۾</u>	5 _∧ ,	4 -	6
Α	6	5,	31/	,5	5
Ε	4	3 /	2 /	4	[4
M	2	1/	3	4 _	6
_	0 1 /	$\stackrel{7}{2}$	4 _	6	8
	-	N	Α	М	Е

 α vowel/vowel = 1 α consonant/consonant = 1 α vowel/consonant = 3 δ = 2

MATCH
MEAN and
NAME

MEAN_ N_AME