Computer Networks

BCST -502 BCSP- 502

B.Tech (CSE) 5th Semester

Course Instructor: Dr Bishwajeet Pandey

New 2020 Syllabus

Unit -I

Computer Network: Definitions, goals, components, Architecture, Classifications & Types.Layered Architecture: Protocol hierarchy, Design Issues, Interfaces and Services, ConnectionOriented & Connectionless Services, Service primitives, Design issues & its functionality. ISOOSI Reference Model: Principle, Model, Descriptions of various layers and its comparison with TCP/IP. Principals of physical layer: Media, Bandwidth, Data rate and Modulations

Unit-II

Data Link Layer: Need, Services Provided, Framing, Flow Control, Error control. Data Link Layer Protocol: Elementary & Sliding Window protocol: 1-bit, Go-Back-N, Selective Repeat, Hybrid ARQ. Protocol verification: Finite State Machine Models & Petri net models. ARP/RARP/GARP

Unit-III

MAC Sub layer: MAC Addressing, Binary Exponential Back-off (BEB) Algorithm, Distributed Random Access Schemes/Contention Schemes: for Data Services (ALOHA and Slotted-ALOHA), for Local-Area Networks (CSMA, CSMA/CD, CSMA/CA), CollisionFree Protocols: Basic Bit Map, BRAP, Binary Count Down, MLMA Limited Contention Protocols: Adaptive Tree Walk, Performance Measuring Metrics. IEEE Standards 802 series & their variant.

New 2020 Syllabus

Unit-IV

Network Layer: Need, Services Provided, Design issues, Routing algorithms: Least CostRouting algorithm, Dijkstra's algorithm, Bellman-ford algorithm, Hierarchical Routing, Broadcast Routing, Multicast Routing. IP Addresses, Header format, Packet forwarding, Fragmentation and reassembly, ICMP, Comparative study of IPv4 & IPv6

Unit-V

Transport Layer: Design Issues, UDP: Header Format, Per-Segment Checksum, CarryingUnicast/Multicast Real-Time Traffic, TCP: Connection Management, Reliability of DataTransfers, TCP Flow Control, TCP Congestion Control, TCP Header Format, TCP TimerManagement. Application Layer: WWW and HTTP, FTP, SSH, Email (SMTP, MIME, IMAP), DNS, Network Management (SNMP).

About Course Instructor

- PhD from Gran Sasso Science Institute, Italy
- PhD Supervisor Prof Paolo Prinetto from Politecnico Di Torino, World Rank 13 in Electrical Engineering
- MTech from Indian Institute of Information Technology, Gwalior
- Scopus Profile: https://www.scopus.com/authid/detail.uri?authorId=57203239026
- Google Scholar: https://scholar.google.com/citations?user=UZ_8yAMAAAAJ&hl=hi
- Contact: gyancity@gyancity.com, +91-7428640820 (For help in this Subject @ BIAS and Guidance for future MS from Europe and USA after BIAS)

About Course Outline

- UNIT 1:
 - Theory Lecture No 1-4, Lecture 29
 - Lab on Vivado: Lecture 9-11
- UNIT 2: Theory Lecture No 5-8
- UNIT 3: Theory Lecture No 14-18
- UNIT 4:
 - Theory Lecture No 12-13, 19-21, 36
 - Lab on Packet Tracer and C: Lecture 24-28
- UNIT 5: Theory Lecture No 30-35
- Student Assignment Presentation: 22-23
- Lecture No 37-42: Discuss Previous Year Question of UTU

OUTLINE OF LECTURE 31

- Transport Layer:
 - Design Issues
- UDP:
 - Header Format,
 - Per-Segment Checksum,
 - Carrying Unicast/Multicast Real-Time Traffic,

Design Issues with Transport Layer

- Accepting data from Session layer, split it into segments and send to the network layer.
- Ensure correct delivery of data with efficiency.
- Isolate upper layers from the technological changes.
- Error control and flow control.

What are the responsibilities of transport layer?

 The main role of the transport layer is to provide the communication services directly to the application processes running on different hosts.

 The transport layer provides a logical communication between application processes running on different hosts.

What are the two main transport layer protocols?

- The two most important protocols in the Transport Layer are Transmission Control Protocol (TCP) and User Datagram Protocol (UDP).
- TCP provides reliable data delivery service with end-to-end error detection and correction.
- UDP provides low-overhead, connectionless datagram delivery service.

ТСР	UDP
Reliable	Unreliable
Connection-oriented	Connectionless
Segment retransmission and flow control through windowing	No windowing or retransmission
Segment sequencing	No sequencing
Acknowledge segments	No acknowledgement

Item	ТСР	UDP
Stands For	Transmission Control Protocol	User Datagram Protocol
Protocol	Connection Oriented	Connectionless
Security	Makes Checks For Errors And	Makes Error Checking But
	Reporting	No Reporting
Data Sending	Slower	Faster
Header Size	20 Bytes	8 Bytes
Segments	Acknowledgement	No Acknowledgement
Typical Applications	- Email	- VoIP

TCP Vs UDP Communication

TCP & UDP: Header Format

		** =	TCP Segr	nent	Heade	er Forma	it	-
Bit #	0	7	8	15	16	23	24	31
0		Sour	ce Port			Destinat	tion Port	
32			3	Sequence	Number			
64			Ack	nowledgn	nent Numb	er		
96	Data Offset	Res	Flags			Windo	w Size	
128	Не	eader and D	ata Checksum			Urgent	Pointer	
160				Opti	ons			

	U	DP Dat	agram l	Heade	er Forma	ıt	
Bit #	0 7	8	15	16	23	24	31
0	Sour	ce Port			Destinat	tion Port	
32	Le	ngth			Header and D	ata Checksu	m

User Datagram **Protocol** (UDP)

- In computer networking, the User Datagram Protocol (UDP) is one of the core members of the Internet protocol suite.
- The protocol was designed by David P. Reed in 1980 and formally defined in RFC 768.
- With UDP, computer applications can send messages, in this case referred to as datagrams, to other hosts on an Internet Protocol (IP) network.
- Prior communications are not required in order to set communication channels or data paths.

	U	DP Data	gram l	Heade	r Forma	ıt	
Bit #	0 7	8	15	16	23	24	31
0	Sour	ce Port			Destinat	tion Port	
32	Le	ngth			Header and D	ata Checksum	

- The header added to messages by the Transport layer includes more than just the source and destination port numbers.
- UDP header requires less information and overhead in comparison to TCP header.

	U	DP Data	agram l	Heade	er Forma	ıt	
Bit #	0 7	8	15	16	23	24	31
0	Sour	ce Port			Destinat	tion Port	
32	Le	ngth			Header and D	ata Checksum	

- A UDP datagram consists of a datagram header and a data section. The UDP datagram header consists of 4 fields, each of which is 2 bytes (16 bits). The data section follows the header and is the payload data carried for the application.
- The use of the checksum and source port fields is optional in IPv4. In IPv6 only the source port field is optional.

-		U	DP Dat	agram l	Head	er Forma	ıt	
Bit #	0	7	8	15	16	23	24	31
0		Source	e Port			Destinat	ion Port	
32		Lei	ngth			Header and D	ata Checksum	

Source port number

This field identifies the sender's port, when used, and should be assumed to be the port to reply to if needed. If not used, it should be zero. If the source host is the client, the port number is likely to be an ephemeral port number. If the source host is the server, the port number is likely to be a well-known port number.

Which ports are ephemeral ports?

- Random port numbers (sometimes called ephemeral port numbers)
 have values greater than 1024
- Ephemeral ports, which are usually dynamic ports, are the set of ports that every machine by default will have them to make an outbound connection. Well-known ports are the defined port for a particular application or service. For example, file server service is on port 445, HTTPS is 443, HTTP is 80, and RPC is 135.

	U	DP Data	gram l	Heade	r Forma	ıt	
Bit #	0 7	8	15	16	23	24	31
0	Sour	ce Port			Destinat	tion Port	
32	Le	ngth			Header and D	ata Checksum	

Destination port number

• This field identifies the receiver's port and is required. Similar to source port number, if the client is the destination host then the port number will likely be an ephemeral port number and if the destination host is the server then the port number will likely be a well-known port number.

		U	DP Dat	agram l	Heade	er Forma	nt	
Bit #	0	7	8	15	16	23	24	31
0		Source	e Port			Destinat	tion Port	
32		Lei	ngth			Header and D	ata Checksun	n

- Length field specifies the length in bytes of the UDP header and UDP data. The minimum length is 8 bytes, the length of the header. The field size sets a theoretical limit of 65,535 bytes (8 byte header + 65,527 bytes of data) for a UDP datagram. However the actual limit for the data length, which is imposed by the underlying IPv4 protocol, is 65,507 bytes (65,535 8 byte UDP header 20 byte IP header).
- Using IPv6 jumbograms it is possible to have UDP datagrams of size greater than 65,535 bytes.RFC 2675 specifies that the length field is set to zero if the length of the UDP header plus UDP data is greater than 65,535.

		U	DP Dat	agram	Heade	r Forma	nt	
Bit #	0	7	8	15	16	23	24	31
0		Source	e Port			Destina	tion Port	
32		Lei	ngth			Header and D	ata Checksun	ı

- The checksum field may be used for error-checking of the header and data.
- This field is optional in IPv4, and mandatory in IPv6.
- The field carries all-zeros if unused.

- Checksum computation
 - Checksum is the 16-bit one's complement of the one's complement sum of a pseudo header of information from the IP header, the UDP header, and the data, padded with zero octets at the end (if necessary) to make a multiple of two octets.
 - In other words, all 16-bit words are summed using one's complement arithmetic. Add the 16-bit values up. On each addition, if a carry-out (17th bit) is produced, swing that 17th carry bit around and add it to the least significant bit of the running total. Finally, the sum is then one's complement to yield the value of the UDP checksum field.
 - If the checksum calculation results in the value zero (all 16 bits 0) it should be sent as the one's complement (all 1s) as a zero-value checksum indicates no checksum has been calculated.

 The difference between IPv4 and IPv6 is in the pseudo header used to compute the checksum and the checksum is not optional in IPv6.

- IPv4 pseudo header
- IPv6 pseudo header

IPv4 pseudo header

 UDP checksum computation is optional for IPv4. If a checksum is not used it should be set to the value zero.

											111	7V4	oseu	ao n	ead	er to	rma	ı .															
Offsets	Octet				-	0								1								2								3			
Octet	Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
0	0			46 - 6				20				ė.			S	ourc	e IP	v4 A	ddre	SS						40 0							
4	32														Des	stina	tion I	Pv4	Add	ress													
8	64				Zer	roes							Pro	tocol										ι	JDP	Leng	jth						
12	96							5	Sourc	e Po	ort													De	stina	tion	Port						
16	128								Ler	ngth														- 1	Che	cksur	n						
20	160+																Da	ata														OF.	100

IPv6 pseudo header

When UDP runs over IPv6, the checksum is mandatory.

		75										II.	PV6	pseu	do	head	er fo	rma	t								G)							
Offsets	Octet					0	1								1								2								3			
Octet	Bit	0	1	1	2	3	4	5	6	7	8	9	10	11	12	2 13	14	15	16	17	18	19	20	21	22	23	24	1 25	26	27	28	29	30	3
0	0																																	
4	32																	- 15	^	-1-1														
8	64																Sourc	eir	VO A	aare	55													
12	96																																	
16	128																																	
20	160				Destination IPv6 Address																													
24	192																																	
28	224																																	
32	256		UDP Length																															
36	288		Zeroes Next Header = Protocol ^[10]																															
40	320	Source Port Destination Port																																
44	352	Length Checksum																																
48	384+																	D	ata															

User Datagram **Protocol** (UDP): Carrying Unicast/Multicast Real-Time Traffic

Is multicast TCP or UDP?

 Since TCP supports only the unicast mode, multicast applications must use the UDP transport protocol.

 Unlike broadcast transmission (which is used on some local area networks), multicast clients receive a stream of packets only if they have previously elect to do so (by joining the specific multicast group address).