

Tutorial on non-convex optimization with gradient methods (II):

A subjective survey of global convergence guarantees

Lénaïc Chizat*

Nov. 28nd 2019 - SMILE - Paris

*CNRS and Université Paris-Sud

Content

The noisy way

Overdamped Langevin for optimization

Some structured problems

Geodesically convex problems

Oja's iterations for PCA

Global convergence for neural networks

Quadratic models

Over-parameterized models with homogeneity

Lazy training

The noisy way

Gradient Langevin Dynamics

Let $f: \mathbb{R}^p \to \mathbb{R}$ smooth and satisfying $\langle \nabla f(x), x \rangle \gtrsim \|x\|^2$. Solve $\min_{x \in \mathbb{R}^p} f(x)$

Discrete Overdamped Langevin Dynamics

Chose stepsize η , inverse temperature $\beta > 0$, initialisation $x_0 \in \mathbb{R}^p$.

For $k \geq 1$,

- 1. draw $\epsilon_k \sim \mathcal{N}(0, \mathrm{Id})$
- 2. $x_{t+1} = x_t \eta \nabla f(x_t) + \sqrt{2\eta/\beta} \epsilon_k$

Guarantee

Proposition (Langevin for optimization)

There exists C > 0, such that with $x_0 = 0$, it holds for $k \ge 1$

$$\mathbb{E}[f(x_k)] - \inf f \lesssim_{\beta,\eta,t} \underbrace{\beta^2 \exp((C - \lambda k)\eta)}_{ergodicity} + \underbrace{\frac{\eta \log(\beta)}{\beta}}_{temperature \ effect}$$

where $\lambda = O(e^{-p}/\log \beta)$ is \approx the Poincaré constant of the Gibbs distribution $\propto \exp(-\beta f(x)) dx$.

- ullet very slow to escape stable local minima for $eta\gg 1$
- ullet amounts to random sampling for $eta\ll 1$
- is noise the only hope for global continuous optimization?

[Refs]

Raginsky, Rakhlin, Telgarsky (2017). Non-convex learning via stochastic gradient Langevin dynamics: a nonasymptotic analysis.

Xu, Chen, Zou, Du (2018). Global Convergence of Langevin Dynamics Based Algorithms for Nonconvex Optimization.

Some structured problems

Geodesic convexity

- the notion of convexity depends on the notion of straight line
- the notion of straight line depends on the metric
- some non-convex problems are convex in a different geometry

Geodesic convexity

- the notion of convexity depends on the notion of straight line
- the notion of straight line depends on the metric
- some non-convex problems are convex in a different geometry

Definition (Geodesic convexity)

Let M a smooth, connected, p-dimensional Riemannian manifold.

- A closed set $\mathcal{X} \subset M$ is called *g-convex* if any two points of M are joined by a unique minimizing geodesic lying in \mathcal{X} .
- A real-valued function f on such a \mathcal{X} is called *g-convex* if it is convex along constant speed minimizing geodesics.

NB: Weaker definitions exist

Optimization problem:

$$\min_{x \in \mathcal{X}} f(x)$$

First order algorithms

Algorithm: Riemannian gradient descent

Initialize $x_0 \in \mathcal{X}$, then for k > 1 (potentially add a projection step):

$$x_{k+1} = \mathsf{Exp}_{x_k}(-\eta_k \nabla f(x_k))$$

- enjoys similar guarantees than in the "classically convex" case
- curvature appears in the bounds (the closer to 0 the better)
- more generally: replace exponential map with first order approximations (retractions)

[Refs]

Examples

Geometric programming

Consider posynomial functions $f_i(x) = \sum_{k=1}^K c_k x_1^{a_{1k}} \dots x_p^{a_{pk}}$ where $a_{ik} \in \mathbb{R}$ and $c_k > 0$. Geometric programs are of the form

$$\min_{x \in \mathbb{R}^p_+} f_0(x)$$
 s.t. $f_i(x) \le 1$ (or = 1), $i \in \{1, \dots, m\}$

- $(u_1, \ldots, u_p) \mapsto \log f_i(e^{u_1}, \ldots, e^{u_p})$ is convex
- i.e. $\log f_i$ is g-convex in the geometry induced by $x \mapsto \log(x)$
- beyond change of variable: optimization over the cone of positive semi-definite matrices with its Riemannian structure

See also: g-convex functions in Wasserstein space for sampling

[Refs]

optimization problem.

Boyd, Kim, Vandenberghe, Hassibi (2007). A tutorial on geometric programming. Optimization and Engineering. Sra, Hosseini (2014). Conic geometric optimisation on the manifold of positive definite matrices.

Wibisono (2018). Sampling as optimization in the space of measures: The Langevin dynamics as a composite

- in these problems, convexity is hidden but present
- what can be said about really non-convex problems?

1-PCA

Goal: 1-PCA. Given a psd matrix $A \in \mathbb{R}^{p \times p}$, find x^* solving

$$\max_{\|x\| \le 1} \frac{1}{2} x^\mathsf{T} A x$$

1-PCA

Goal: 1-**PCA.** Given a psd matrix $A \in \mathbb{R}^{p \times p}$, find x^* solving

$$\max_{\|x\| \le 1} \frac{1}{2} x^{\mathsf{T}} A x$$

Projected gradient ascent. Let $x_0 \sim \mathcal{U}(\mathbb{S}^{p-1})$. For $k \geq 1$,

$$\begin{cases} y_{k+1} = x_k + \eta_k A x_k = (I + \eta_k A) x_k \\ x_{k+1} = y_{k+1} / \|y_{k+1}\| \end{cases}$$

- batch version of Oja's iterations
- update of y is linear: projections can be postponed

Iterates in \mathbb{R}^2

Iterates in \mathbb{S}^1

Guarantees for the online case

Goal: online 1-**PCA.** Same, but given $(A_k)_{k\geq 1}$ i.i.d. $\mathbb{E}[A_k] = A$.

Algorithm: Oja's iterations. $x_0 \sim \mathcal{U}(\mathbb{S}^{p-1})$ and

$$\begin{cases} y_{k+1} = x_k + \eta_k A_k x_k \\ x_{k+1} = y_{k+1} / \|y_{k+1}\| \end{cases}$$

Guarantees for the online case

Goal: online 1-**PCA.** Same, but given $(A_k)_{k\geq 1}$ i.i.d. $\mathbb{E}[A_k] = A$.

Algorithm: Oja's iterations. $x_0 \sim \mathcal{U}(\mathbb{S}^{p-1})$ and

$$\begin{cases} y_{k+1} = x_k + \eta_k A_k x_k \\ x_{k+1} = y_{k+1} / \|y_{k+1}\| \end{cases}$$

Proposition (Jain et al. 2016)

Assume A_k and its moments are bounded. For a specific $(\eta_k)_k$ decaying in O(1/k), it holds with probability $\geq 3/4$,

$$\sin(x_k, x^{\star})^2 \lesssim \frac{\log d}{k \cdot (\lambda_1(A) - \lambda_2(A))^2} + o\left(\frac{1}{k}\right).$$

- matches the best known statistical estimation rate
- extends to k-PCA (with orthonormalization at each iteration)

[Refs]

Jain et al. (2016). Streaming PCA: [...] Near-Optimal Finite Sample Guarantees for Oja's Algorithm. Shamir (2015). Fast Stochastic Algorithms for SVD and PCA: Convergence Properties and Convexity. Allen-Zhu, Li (2017). First Efficient Convergence for Streaming k-PCA [...].

Global convergence for neural

networks

Supervised machine learning

Supervised machine learning

- given input/output training data $(x^{(1)},y^{(1)}),\ldots,(x^{(n)},y^{(n)})$
- build a function f such that $f(x) \approx y$ for unseen data (x, y)

Gradient-based learning

- choose a parametric class of functions $f(w, \cdot) : x \mapsto f(w, x)$
- ullet a loss ℓ to compare outputs: squared, logistic, cross-entropy...
- starting from some w_0 , update parameters using gradients

Example: Stochastic Gradient Descent with step-sizes $(\eta^{(k)})_{k\geq 1}$

$$w^{(k)} = w^{(k-1)} - \eta^{(k)} \nabla_w [\ell(f(w^{(k-1)}, x^{(k)}), y^{(k)})]$$

[Refs]:

Robbins, Monroe (1951). A Stochastic Approximation Method.

LeCun, Bottou, Bengio, Haffner (1998). Gradient-Based Learning Applied to Document Recognition.

Corresponding optimization problems

We assume that $(x_i, y_i) \stackrel{\text{i.i.d}}{\sim} (X, Y)$.

Population risk. Let $h(w) = f(w, \cdot) \in L^2(X)$ and solve

$$\min_{w} R(h(w))$$

where $R(f) = \mathbb{E}_{(X,Y)}[\ell(f(X),Y)]$ for $f \in L^2(X)$.

Corresponding optimization problems

We assume that $(x_i, y_i) \stackrel{\text{i.i.d}}{\sim} (X, Y)$.

Population risk. Let $h(w) = f(w, \cdot) \in L^2(X)$ and solve

$$\min_{w} R(h(w))$$

where $R(f) = \mathbb{E}_{(X,Y)}[\ell(f(X),Y)]$ for $f \in L^2(X)$.

Regularized empirical risk. Let $h(w) = f(w, x_i)_{i \in [n]}$ and solve

$$\min_{w} R(h(w)) + G(w)$$

where $R(\hat{y}) = \frac{1}{n} \sum_{i \in [n]} \ell(\hat{y}_i, y_i)$ and G is a (convex) regularizer.

 \rightsquigarrow in the following, we write R for any convex loss on a Hilbert space

Models

Linear in the parameters

Linear regression, prior/random features, kernel methods:

$$f(w,x) = w \cdot \phi(x)$$

- convex optimization
- generalization : upsides and downsides

Models

Linear in the parameters

Linear regression, prior/random features, kernel methods:

$$f(w,x) = w \cdot \phi(x)$$

- convex optimization
- generalization: upsides and downsides

Neural networks

Vanilla NN with activation σ & parameters $(W_1, b_1), \ldots, (W_L, b_L)$:

$$f(w,x) = W_{L}^{T} \sigma(W_{L-1}^{T} \sigma(\dots \sigma(W_{1}^{T} x + b_{1}) \dots) + b_{L-1}) + b_{L}$$

- interacting & interchangeable units/filters
- compositional

Quadratic neural network

Consider a 2-layer neural network:

- input $x \in \mathbb{R}^d$, output $y \in \mathbb{R}$
- hidden weights $W = (w_1, \dots, w_m) \in \mathbb{R}^{d \times m}$
- fixed output layer with weights 1
- quadratic activation function/non-linearity

$$f(W,x) = \sum_{i=1}^{m} (w_i^{\mathsf{T}} x)^2$$
$$= x^{\mathsf{T}} W W^{\mathsf{T}} x$$

Non-convex & convex formulations

With (optionally) a regularization, we obtain a problem of the form

$$\min_{W \in \mathbb{R}^{d \times m}} R(WW^{\mathsf{T}}) + \lambda \|W\|_F^2 \tag{1}$$

where R is a convex function and $\lambda \geq 0$.

If $m \ge d$, posing $M = WW^{T}$, equivalent to the convex problem

$$\min_{M \in S_+^{d \times d}} R(M) + \lambda ||M||_* \tag{2}$$

Landscape properties

Lemma

Any rank deficient 2^{nd} -order stationary point of (1) is a minimizer.

Theorem (Nice landscape)

If $m \ge d$, 2^{nd} -order stationary points of (1) are minimizers.

Proof.

If rk(W) < d then the lemma applies. If rk(W) = d, then 1st order optimality for (1) implies first order optimality for (2).

[Refs]

Bach, Mairal, Ponce (2008). Convex Sparse Matrix Factorizations.

Haeffele, Young, Vidal (2014). Structured Low-Rank Matrix Factorization [...]

Du, Lee (2018). On the Power of Over-parametrization in Neural Networks with Quadratic Activation.

Remarks

- related to the guarantees on Burer-Monteiro factorization for low-rank semi-definite programming
- instance of a landscape analysis approach
- next step: analysis of optimization paths

[Refs]

Burer, Monteiro (2005). Local minima and convergence in low-rank semidefinite programming.

Boumal, Voroninski, Bandeira, (2016). The non-convex Burer-Monteiro approach works on smooth semidefinite programs.

Two-layer neural network

With activation σ , define $\phi(w_i, x) = c_i \sigma(a_i \cdot x + b_i)$ and

$$f(w,x) = \frac{1}{m} \sum_{i=1}^{m} \phi(w_i,x)$$

Difficulty: existence of spurious minima, e.g. for the population loss even with slight over-parameterization

[Refs]:

Livni, Shalev-Shwartz, Shamir (2014). On the Computational Efficiency of Training Neural Networks. Safran, Shamir (2018). Spurious Local Minima are Common in Two-layer ReLU Neural Networks.

Infinitely wide hidden layer

- let $\mathcal{P}_2(\mathbb{R}^p)$ be the space of probability measures endowed with the 2-Wasserstein metric.
- consider the model

$$f(\mu, x) = \int \phi(w, x) \, \mathrm{d}\mu(w).$$

• as before, let $h(\mu) = f(\mu, \cdot)$ and solve

$$\min_{\mu \in \mathcal{P}_2(\mathbb{R}^p)} F(\mu)$$
 where $F(\mu) = R(\mathit{h}(\mu))$

regularization possible but skipped for simplicity

[Refs]:

Bengio, Roux, Vincent, Delalleau, Marcotte (2006). Convex neural networks.

Many-particle / mean-field limit

Measure representation

The gradient flow $(w(t))_{t\geq 0}$ on the objective defines a dynamics in the space $\mathcal{P}_2(\mathbb{R}^p)$ of probabilities endowed with the Wasserstein metric:

$$\mu_{t,m} = \frac{1}{m} \sum_{i=1}^{m} \delta_{w_i(t)}$$

Theorem (Many particle limit)

Assume that $w_1(0), w_2(0), \ldots$ are such that $\mu_{0,m} \to \mu_0$ and technical assumptions. Then $\mu_{t,m} \to \mu_t$, uniformly on [0,T], where μ_t is the unique Wasserstein gradient flow of F starting from μ_0 .

[Refs]:

Nitanda, Suzuki (2017). Stochastic particle gradient descent for infinite ensembles.

Mei, Montanari, Nguyen (2018). A Mean Field View of the Landscape of Two-Layers Neural Networks. Rotskoff, Vanden-Eijndem (2018). Parameters as Interacting Particles [...].

Sirignano, Spiliopoulos (2018). Mean Field Analysis of Neural Networks.

Chizat, Bach (2018). On the Global Convergence of Gradient Descent for Over-parameterized Models [...]

Global convergence

Theorem (2-homogeneous case)

Assume that ϕ is positively 2-homogeneous and technical assumptions. If the support of μ_0 covers all directions (e.g. Gaussian) and if $\mu_t \to \mu_\infty$, then μ_∞ is a global minimizer of F.

 \rightsquigarrow Non-convex landscape : initialization matters

Global convergence

Theorem (2-homogeneous case)

Assume that ϕ is positively 2-homogeneous and technical assumptions. If the support of μ_0 covers all directions (e.g. Gaussian) and if $\mu_t \to \mu_\infty$, then μ_∞ is a global minimizer of F.

→ Non-convex landscape : initialization matters

Corollary

Under the same assumptions, if at initialization $\mu_{0,m} o \mu_0$ then

$$\lim_{t\to\infty}\lim_{m\to\infty}F(\mu_{m,t})=\lim_{m\to\infty}\lim_{t\to\infty}F(\mu_{m,t})=\inf F.$$

[Refs]:

Chizat, Bach (2018). On the Global Convergence of Gradient Descent for Over-parameterized Models [...].

Numerical Illustrations

ReLU, d = 2, optimal predictor has 5 neurons (population risk)

Neural Tangent Kernel (Jacot et al. 2018)

Infinite width limit of standard neural networks

For infinitely wide fully connected neural networks of any depth with "standard" initialization and no regularization: the gradient flow implicitly performs kernel ridge(less) regression with the neural tangent kernel

$$K(x,x') = \lim_{m \to \infty} \langle \nabla_w \tilde{f}_m(w_0,x), \nabla_w \tilde{f}_m(w_0,x') \rangle.$$

Neural Tangent Kernel (Jacot et al. 2018)

Infinite width limit of standard neural networks

For infinitely wide fully connected neural networks of any depth with "standard" initialization and no regularization: the gradient flow implicitly performs kernel ridge(less) regression with the neural tangent kernel

$$K(x,x') = \lim_{m \to \infty} \langle \nabla_w \tilde{f}_m(w_0,x), \nabla_w \tilde{f}_m(w_0,x') \rangle.$$

Reconciling the two views:

$$\tilde{f}_m(w,x) = \frac{1}{\sqrt{m}} \sum_{i=1}^m \phi(w_i,x)$$
 vs. $f_m(w,x) = \frac{1}{m} \sum_{i=1}^m \phi(w_i,x)$

This behavior is not intrinsically due to over-parameterization but to an exploding scale

Linearized model and scale

- let $h(w) = f(w, \cdot)$ be a differentiable model
- let $\bar{h}(w) = h(w_0) + Dh_{w_0}(w w_0)$ be its linearization at w_0

Compare 2 training trajectories starting from w_0 , with scale $\alpha > 0$:

- $\mathbf{w}_{\alpha}(t)$ gradient flow of $F_{\alpha}(w) = R(\alpha h(w))/\alpha^2$
- $\bar{\mathbf{w}}_{\alpha}(t)$ gradient flow of $\bar{F}_{\alpha}(w) = R(\alpha \bar{h}(w))/\alpha^2$

 \rightsquigarrow if $h(w_0) \approx 0$ and α large, then $w_{\alpha}(t) \approx \overline{w}_{\alpha}(t)$

Lazy training theorems

Theorem (Non-asymptotic)

If $h(w_0) = 0$, and R potentially non-convex, for any T > 0, it holds

$$\lim_{\alpha \to \infty} \sup_{t \in [0,T]} \|\alpha h(w_{\alpha}(t)) - \alpha \bar{h}(\bar{w}_{\alpha}(t))\| = 0$$

Theorem (Strongly convex)

If $h(w_0) = 0$, and R strongly convex, it holds

$$\lim_{\alpha \to \infty} \sup_{t \ge 0} \|\alpha h(w_{\alpha}(t)) - \alpha \bar{h}(\overline{w}_{\alpha}(t))\| = 0$$

- instance of implicit bias: lazy because parameters hardly move
- may replace the model by its linearization
- commonly used neural networks are not in this regime

Conclusion

Conclusion

Not covered

- restricted convexity/isometry property for sparse regression
- other methods: alternating minimization, relaxations,...

Opening remarks

- in the non-convex world, no unifying theory but a variety of structures coming with a variety of guarantees
- renewed theoretical interest due to good practical behavior and good scalability (compared e.g. to convex relaxations)

[Refs]

Jain, Car (2017). Non-convex Optimization for Machine Learning.