Cozmo est un petit robot étonnamment intelligent contrôlé via smartphone.

Il est muni d'une multitude de capteurs et d'actionneurs lui permettant d'interagir avec son environnement. Il est fourni avec 3 *Power Cubes* interactifs qu'il peut soulever et déplacer grâce à sa fourche. La fourche 4 est animée par l'intermédiaire de quatre bras disposés de part et d'autre du robot. Seul le bras 1 du côté droit du robot est motorisé.

Fig.1: robot Cozmo

Données et Hypothèses:

- L'ensemble des quatre bras et de la fourche possèdent un plan de symétrie dans lequel on peut représenter le mécanisme par le schéma cinématique plan (voir figure 3 sur le document réponse)
- Durant la phase de levage d'un cube on considère que le cube est solidaire de la fourche 4.
- On remarque que les centres A, B, C et D des quatre liaisons pivots forment un parallélogramme.
- On donne la longueur des bras 1 et 3: AC=BD=58mm

Données et Hypothèses:

- Pour l'étude suivante on travaille avec un modèle très simplifié du mécanisme, on ne considère qu'un seul bras $\mathbf{1}$ en liaison pivot d'axe $(A, \overline{z_0})$ par rapport au châssis (voir figure 2).
- On considère que le cube est solidaire du bras 1 et que sa masse m est concentrée au point G
- On note R la distance entre les points A et G et θ l'angle que fait le bras $\mathbf{1}$ avec l'horizontale $\overrightarrow{x_0}$
- Le bras 1 est motorisé par l'intermédiaire d'un moteur à courant continu et d'un réducteur de vitesse (voir figure 4).

Fig.4 : chaîne d'énergie

Données :

Les actions mécaniques extérieures agissant sur le bras 1 sont : (voir figure 2)

- L'action de $\mathbf{0}$ sur $\mathbf{1}$ dans la liaison pivot $(A, \overline{z_0})$ qui est modélisée par une force $\overline{A_{01}}$ non représentée sur la figure 2
- L'action du motoréducteur sur 1 qui est modélisée par un couple $\overrightarrow{C_1} = C_1 \overrightarrow{Z_0}$
- L'action de la pesanteur sur **1** modélisée par une force $\vec{P} = -mg \ \vec{y_0}$
- I-9- Déterminer le moment du poids \vec{P} par rapport au point A : $\mathbf{M}_{(A,\vec{P})}$ en fonction de m, g, R et θ .
- **I-10-** En considérant que le bras 1 est à l'équilibre, appliquer le PFS et écrire la relation entre le couple C_1 et le moment $\mathbf{M}_{(A,\vec{P})}$
- **I-11-** En considérant que l'angle θ varie entre 0° et 60°, déterminer la valeur de θ pour laquelle la valeur du couple C_1 est maximale