Deriving the Euler-Bernoulli Simple Beam Theory

Guillaume de Cannart, Zeke Morton, Jose Rodriguez MATH-080 - Differential Equations

December 5, 2018

Problem 1: Symmetric/simple bending. $\frac{1}{\rho} = \frac{M(x)}{EI} = \frac{d^2y}{dx^2}$ where ρ is the radius of curvature, M(x) is the internal bending moment, I the moment of inertia, and E is Young's modulus.

1. Deriving the differential equation:

From the above diagram, we can approximate the angle θ with dv and dx. We approximate (applying the small-angle approximation):

$$\frac{dv}{dx} = \sin\theta \approx \theta$$

(where ρ is the radius of curvature)

Furthermore from the diagram, we can derive that:

$$dx = \rho d\theta$$

We can rewrite the previous as:

$$\frac{1}{\rho} = \frac{d\theta}{dx}$$

And substituting for θ results in the differential equation:

$$\frac{1}{\rho} = \frac{d^2y}{dx^2}$$

We know from the moment-curvature relationship that:

$$\frac{1}{\rho} = \frac{M(x)}{EI}$$

thus:

$$\frac{M(x)}{EI} = \frac{d^2y}{dx^2}$$

This is the differential equation of the elastic curve for a beam undergoing bending in the plane of symmetry. Its solution y(x) represents the shape of the deflection curve for a given beam.

2. Solving the differential equation:

We can solve this (separable) differential equation through double integration. Considering EI as a constant throughout the beam (EI is the "flexural rigidity", and varies per material), integration returns:

$$\int EI \frac{d^2y}{dx^2} dx = \int M(x) dx$$

$$EI \frac{dy}{dx} = \int M(x) dx + C1$$

$$y = \frac{\int [\int M(x) dx] dx}{EI} + C1x + C2$$

Solving the differential equation shows the appearance of two constant of integration C1 and C2. We can use boundary conditions relative to the deflection at length x = 0 and x = L to solve this.

NOTE: If the flexural rigidity EI is not constant over the beam, new differential equations must be calculated for each segment of the beam.

A worked-out examples of this equation can be found in appendix A.

Problem 2: Static beam bending under applied load. $\frac{d}{dx^2}[EI\frac{d^2w}{dx^2}] = p$ The previous derivation is valid for beams undergoing bending in the plane of symmetry. Beams undergoing distributed loading (here represented by p) require the derivation of another differential equation.

1. Deriving the differential equation:

- a) Assumption:
- The product EI (flexural rigidity) does not vary along the length of the beam.

The