Problem Statement or Requirement:

A client's requirement is, he wants to predict the insurance charges based on the several parameters. The Client has provided the dataset of the same. As a data scientist, you must develop a model which will predict the insurance charges.

- 1. Identify your problem statement.
 - a. We need to predict the insurance charges (i.e., Numeric value) based on the several parameters. So, need to predict a **Regression** value.
 - b. Input and output labels are available. So, it's a Supervised learning.
 - c. Domain: Machine Learning.
- 2. Tell basic info about the dataset (Total number of rows, columns)

a. Total no. of rows: 1338b. Total no. of columns: 6

i. Inputs: age, sex, bmi, children, smoker

ii. Output: charges

- c. Also, I feel there is no need for standardisation since inputs values are closer.
- 3. Mention the pre-processing method if you're doing any (like converting string to number nominal data)
 - a. Sex, Smoker inputs are categorical data of type nominal. Hence, we need to apply One Hot Encoding to the Sex and Smoker columns.
- 4. <u>Develop a good model with r2_score. You can use any machine learning algorithm; you can create many models.</u> Finally, you have to come up with final model.
 - a. Algorithms used to create models and R2Score listed below

i. Multiple Linear Regression [Max R2Score: 0.7894790349867]

ii. Support Vector Machine [Max R2Score: 0.595089]

iii. Decision Tree [*Max R2Score: 0.708199*]iv. Random Forest [*Max R2Score: 0.870614*]

5. All the research values (r2_score of the models) should be documented. (You can make tabulation or screenshot of the results.)

Algorithm	Hyper Tuning parameter's		R2Score 0.789479035	Algorithm	Hyper Tuning parameter's		R2Score
Multiple Linear Regression					Criterion	Splitter	
					squared_error	best	0.685666
Algorithm	Hyper Tuning parameter's		R2Score		squared_error	random	0.693411
Support Vector Machine	Kernel	С		Decision Tree	friedman_mse	best	0.696137
	linear	0.1	-0.120664		friedman_mse	random	0.708199
	linear	1	-0.100139		absolute_error	best	0.704703
	linear	10	0.113603		absolute_error	random	0.699584
	linear	100	0.595089				
	poly	0.1	-0.087137	Algorithm	Hyper Tuning p	arameter's	R2Score
	poly	1	-0.072459	Random Forest	Criterion	max_feature	R2Score
	poly	10	-0.084252		squared_error	sqrt	0.870614
	poly	100	-0.097206		squared_error	log2	0.866356
	rbf	0.1	-0.089586		squared_error	None	0.857086
	rbf	1	-0.088513		friedman_mse	sqrt	0.86782
	rbf	10	-0.082344		friedman_mse	log2	0.869767
	rbf	100	-0.123247		friedman_mse	None	0.853416
	sigmoid	0.1	-0.089743		absolute_error	sqrt	0.869547
	sigmoid	1	-0.089925		absolute_error	log2	0.868601
	sigmoid	10	-0.090634		absolute_error	None	0.853761
	sigmoid	100	-0.113871		poisson	sqrt	0.866979
					poisson	log2	0.868611
					poisson	None	0.854629

6. Mention your final model, justify why u have chosen the same.

Hence Random Forest has the highest R2 Score. So, Random Forest is the Final Model.

Algorithm	R2Score		
Multiple Linear Regression	0.789479035		
Support Vector Machine	0.595089		
Decision Tree	0.708199		
Random Forest	0.870614		