

Control por Computador

Unidad Docente Automática. Departamento Automática, Ing. Electrónica e Informática Indust.

Sistemas Muestreados

José María Sebastián
Rafael Aracil
Manuel Ferre
Departamento de Automática, Ingeniería
Electrónica e Informática Industrial

Sistemas muestreados

- Introducción
- Definición de sistema muestreado
- Técnicas y problemas en el estudio de sistemas muestreados
- Representación discreta de un sistema continuo
- Sistemas realimentados

Introducción

Unidad Docente Automática. Departamento Automática, Ing. Electrónica e Informática Indust.

Elementos:

- Sistemas continuo
- Sistemas discreto

- Bloqueador
- Muestreador
- Sistema muestreado

Definición de sistema muestreado

INDUSTRIALES
ETCH LIDM

Unidad Docente Automática. Departamento Automática, Ing. Electrónica e Informática Indust.

ETSII | UPM

Un <u>sistema</u> se dice que es <u>muestreado</u> cuando alguna de las señales a él asociada sufre el proceso de muestreo. El proceso de muestreo está intimamente ligado a la toma de datos de un sistema físico por parte de un computador.

El muestreador es el único que no tiene función de transferencia

Sistemas muestreados

- Introducción
- Definición de sistema muestreado
- Técnicas y problemas en el estudio de sistemas muestreados
- Representación discreta de un sistema continuo
- Sistemas realimentados

Técnicas y problemas en el estudio de sistemas muestreados

Unidad Docente Automática, Departamento Automática, Ing. Electrónica e Informática Indust.

El estudio de los sistemas muestreados incluye técnicas continuas y discretas. Hay dos formas de abordarlo:

1) Todo como sistemas continuos. Hay que hallar el equivalente continuo del sistema discreto

Técnicas y problemas en el estudio de sistemas muestreados

Unidad Docente Automática. Departamento Automática, Ing. Electrónica e Informática Indust.

El estudio de los sistemas muestreados incluye técnicas continuas y discretas. Hay dos formas de abordarlo:

2) Todo como sistemas discretos. Hay que hallar el equivalente discreto del sistema continuo

Técnicas y problemas en el estudio de sistemas muestreados

Unidad Docente Automática. Departamento Automática, Ing. Electrónica e Informática Indust.

ETSII | UPM

- Decisión: Todo como sistema discreto.
- Motivo: No hay pérdida de información. Existe función de transferencia

<u>Inconveniente</u>: Sólo se posee información de la variable a controlar en los instantes de muestreo.

Sistemas muestreados

- Introducción
- Definición de sistema muestreado
- Técnicas y problemas en el estudio de sistemas muestreados
- Representación discreta de un sistema continuo
- Sistemas realimentados

INDUSTRIALES
ETSILLIDM

Unidad Docente Automática. Departamento Automática, Ing. Electrónica e Informática Indust.

ETSII | UPM

• Objetivo: Cálculo del sistema discreto equivalente

INDUSTRIALES

Unidad Docente Automática, Departamento Automática, Ing. Electrónica e Informática Indust.

ETSII | UPM

Se cumple:

$$Y(s) = B(s)F(s)\mathscr{X}(s) = G(s)\mathscr{X}(s)$$

$$\mathscr{Y}(s) = \frac{1}{T} \sum_{r=-\infty}^{\infty} G\left(s + j\frac{2\pi r}{T}\right) \mathscr{X}\left(s + j\frac{2\pi r}{T}\right)$$

Al ser periódica
$$\mathscr{X}\left(s+j\frac{2\pi r}{T}\right) = \mathscr{X}(s)$$

 $\{x_k\}$ es una secuencia temporizada de período T

$$\mathscr{Y}(s) = \left[\frac{1}{T} \sum_{r=-\infty}^{\infty} G\left(s + j\frac{2\pi r}{T}\right)\right] \mathscr{X}(s) = \mathscr{G}(s)\mathscr{X}(s)$$

 $\mathcal{G}(s)$ es la transformada de Laplace de la secuencia obtenida de muestrear la respuesta impulsional del sistema híbrido cuya función de transferencia es G(s)

Report Re

Representación discreta de un sistema continuo

Unidad Docente Automática. Departamento Automática, Ing. Electrónica e Informática Indust.

Si se trabaja con transformadas z:

$$Y(z) = G(z)X(z)$$

G(z) es la transformada z de la secuencia obtenida de muestrear la respuesta impulsional del sistema híbrido cuya función de transferencia es G(s). Esta relación se suele escribir como:

$$G(z) = \mathbf{Z}[G(s)]$$

INDUSTRIALES

Unidad Docente Automática, Departamento Automática, Ing. Electrónica e Informática Indust

ETSII | UPM

• Opciones de cálculo: $G(z) = \mathbb{Z}[G(s)]$

$$\Rightarrow \mathscr{G}(s) = \left[\frac{1}{T} \sum_{r=-\infty}^{\infty} G\left(s + j\frac{2\pi r}{T}\right)\right] \text{ Dificil de calcular}$$

$$\Rightarrow \mathcal{G}(s) = \sum_{polos \ G(p)} residuos \left[G(p) \frac{1}{1 - e^{(p-s)T}} \right]$$

 $\left(\text{V\'alido si } \lim_{p \to \infty} G(p) = 0 \quad ; \text{ Hay m\'as polos que ceros} \right)$

Fácil de calcular:

Como
$$(z = e^{sT}) \Rightarrow G(z) = \sum_{polos \ G(p)} residuos \left[G(p) \frac{1}{1 - e^{pT} z^{-1}} \right]$$

Unidad Docente Automática. Departamento Automática, Ing. Electrónica e Informática Indust.

Ejemplo 1: Si
$$G(s) = \frac{K}{s+a}$$

$$G(z) = \sum_{polos \ G(p)} res. \left[G(p) \frac{1}{1 - e^{pT} z^{-1}} \right]$$

Para calcular el residuo no se considera el polo (en –a) y se particulariza (-a)

$$G(z) = K \frac{I}{1 - e^{-aT} z^{-1}}$$

Ejemplo 2:
$$G(s) = \frac{K}{(s+a)(s+b)}$$
 (polo en -a, -b)

$$G(z) = \frac{K}{p+b} \left. \frac{1}{1 - e^{pT} z^{-1}} \right|_{p=-a} + \frac{K}{p+a} \left. \frac{1}{1 - e^{pT} z^{-1}} \right|_{p=-b} =$$

$$= \frac{K}{b-a} \frac{1}{1-e^{-aT}z^{-1}} + \frac{K}{a-b} \frac{1}{1-e^{-bT}z^{-1}}$$

$$G(z) = \frac{K}{a-b} \frac{\left(e^{-aT} - e^{-bT}\right)z^{-1}}{\left(1 - e^{-aT}z^{-1}\right)\left(1 - e^{-bT}z^{-1}\right)}$$

$$G(z) = \sum_{polos \ G(p)} res. \left[G(p) \frac{1}{1 - e^{pT} z^{-1}} \right]$$

Si
$$G(s) = \frac{K}{s^2}$$
 (polo en -0^2)

$$G(z) = K \frac{1}{(2-1)!} \left[\frac{d^{2-1}}{dp^{2-1}} \left(\frac{1}{1 - e^{pT} z^{-1}} \right) \right]_{p=0} =$$

$$= K \left[\frac{Te^{pT}z^{-1}}{\left(1 - e^{-pT}z^{-1}\right)^2} \right]_{p=0} = \frac{KTz^{-1}}{\left(1 - z^{-1}\right)^2} = \frac{KTz}{(z-1)^2}$$

INDUSTRIALES

Unidad Docente Automática, Departamento Automática, Ing. Electrónica e Informática Indust.

ETSII | UPM

• Considerando la acción de un bloqueador específico:

$$G(s) \Rightarrow B(s)G(s) \text{ con } \begin{cases} B(s) & Bloqueador \\ G(s) & Planta \end{cases}$$

Bloqueador de orden cero

$$B_0(s)G(s) = \frac{1 - e^{-sT}}{s}G(s) = \frac{G(s)}{s} - e^{-sT}\frac{G(s)}{s}$$

Como $e^{-sT} = z^{-1}$ (Retraso de un período)

$$B_0G(z) = \mathbb{Z}[B_0(s)G(s)] = \mathbb{Z}\left[\frac{G(s)}{s}\right] - z^{-1}\mathbb{Z}\left[\frac{G(s)}{s}\right] = (1 - z^{-1})\mathbb{Z}\left[\frac{G(s)}{s}\right]$$

INDUSTRIALES

Unidad Docente Automática, Departamento Automática, Ing. Electrónica e Informática Indust.

ETSII | UPM

• Considerando la acción de un bloqueador específico:

$$G(s) \Rightarrow B(s)G(s) \text{ con } \begin{cases} B(s) & Bloqueador \\ G(s) & Planta \end{cases}$$

Bloqueador de orden uno

$$B_{I}(s)G(s) = \frac{1+sT}{T} \left(\frac{1-e^{-sT}}{s}\right)^{2} G(s) = \left(1-e^{-sT}\right)^{2} \frac{1+sT}{Ts^{2}} G(s)$$

$$B_{I}G(z) = \mathbb{Z}[B_{I}(s)G(s)] = (1-z^{-1})^{2}\mathbb{Z}\left[\frac{1+sT}{Ts^{2}}G(s)\right]$$

INDUSTRIALES

Unidad Docente Automática. Departamento Automática, Ing. Electrónica e Informática Indust.

• Transformada z del muestreo de una señal continua

La expresión
$$Y(z) = \sum_{polos \ Y(p)} residuos \left[Y(p) \frac{1}{1 - e^{pT} z^{-1}} \right]$$
 permite

igualmente obtener la transformada en z de la secuencia obtenida al muestrear una señal continua, de forma más sencilla que la derivada del muestreo:

Así los dos esquemas de la siguiente figura son equivalentes: Una señal continua muestreada, o la salida de un sistema híbrido de función de transferencia Y(s) y cuya entrada es una secuencia impulso.

$$\mathscr{Y}(s) = \left[\frac{1}{T} \sum_{r=-\infty}^{\infty} Y\left(s + j\frac{2\pi r}{T}\right)\right]$$

$$Y(s) \xrightarrow{Y} \{y_k\}$$

$$Y(z), \mathcal{Y}(s)$$

$$\begin{array}{c|c}
\hline
 & Impulso \\
\hline
 & \mathcal{X}(s)=1 \\
\hline
 & Y(s) \\
\hline
 & Y(s) \\
\hline
 & Y(s) \\
\hline
 & Y(z), \mathcal{Y}(s)
\end{array}$$

Por lo que se puede aplicar los razonamientos expresados en el presente apartado.

INDUSTRIALES ETSII | UPM

Sistemas muestreados

- Introducción
- Definición de sistema muestreado
- Técnicas y problemas en el estudio de sistemas muestreados
- Representación discreta de un sistema continuo
- Sistemas realimentados

Sistemas realimentados

Unidad Docente Automática. Departamento Automática, Ing. Electrónica e Informática Indust

Hay que hallar $\{y_k\}$ en función de $\{u_k\}$ o lo $\frac{Y(z)}{U(z)} = M(z)$ que es equivalente la función de transferencia:

Del diagrama de bloques

$$\begin{cases} Y(z)=BG(z) X(z) \\ W(z)=BGH(z) X(z) \\ X(z)=R(z) [U(z)-W(z)] \\ Y(z)=BG(z) X(z) \end{cases}$$

Sistemas realimentados

Unidad Docente Automática. Departamento Automática, Ing. Electrónica e Informática Indust.

ETSII | UPM

Partiendo de :
$$Y(z) = BG(z) X(z) \qquad X(z) = R(z) [U(z) - W(z)]$$
$$W(z) = BGH(z) X(z) \qquad Y(z) = BG(z) X(z)$$

Sustituyendo y despejando:
$$X(z)=R(z)[U(z)-BGH(z)X(z)]$$

$$[1+R(z)BGH(z)]X(z)=R(z)U(z)$$

$$X(z) = \frac{R(z)}{1 + R(z)BGH(z)}U(z)$$

Y la salida será:
$$Y(z) = \frac{BG(z)R(z)}{1+R(z)BGH(z)}U(z)$$

Por lo que se obtendrá :
$$\frac{Y(z)}{U(z)} = M(z) = \frac{R(z)BG(z)}{1 + R(z)BGH(z)}$$