

Федеральное государственное бюджетное образовательное учреждение высшего образования «НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра прикладной математики
Практическое задание № 5
по дисциплине «Методы принятия оптимальных решений»

Оптимальные L-оценки параметров сдвига и масштаба по выборочным квантилям

Бригада ПМ-13 БУДАНЦЕВ ДМИТРИЙ

ПМ-13 ФОРКИН КИРИЛЛ

Преподаватели ЛЕМЕШКО БОРИС ЮРЬЕВИЧ

Новосибирск, 2024

Цель занятия – освоить вычисление оптимальных *L*-оценок по выборочным квантилям, проследить, как влияет на точность оценок выбор числа интервалов.

Этапы исследования

- 1. Смоделировать выборку в соответствии с нормальным законом объемом n=1000. Внести её в таблицу **Excel**, отсортировать по возрастанию. Далее опираться на рекомендации
- 2. Предполагая, что выборка принадлежит нормальному закону, найти оптимальные L-оценки (обоих) параметров закона. Для этого выбрать из соответствующей таблицы **AOF** оптимальные вероятности при необходимом числе интервалов k. В соответствии с этими вероятностями найти оценки выборочных квантилей, разбивающие выборку на части, пропорциональные данным вероятностям. Выбрать из соответствующей таблицы коэффициенты, необходимые для вычисления оптимальных L-оценок. Вычислить оптимальные L-оценки как соответствующие линейные комбинации.
 - 1. Найти оценки при k = 4, 5, 8, 10.
 - 2. Сравнить полученные оценки с ОМП (при вычислении в ISW).
 - 3. Предполагая, что Вы нашли оценки по некоторой другой выборке, проверьте простую гипотезу о согласии с нормальным законом со значениями параметров, полученными при k=10.
- 3. Предполагая, что выборка принадлежит логистическому закону^[1], выполнить ту же последовательность действий при вычислении оптимальных L-оценок параметров этого закона, ограничившись k=10.
- 4. Смоделировать выборку в соответствии с распределением Коши объемом n=1000. Вычислить оптимальные L -оценки параметров этого закона при k=10. Сравнить с ОМП. Проверить "**простую**" гипотезу о согласии с данным распределением *Коши*.
- 5. Предполагая, что выборка принадлежит нормальному закону, выполнить ту же последовательность действий при вычислении оптимальных L-оценок параметров нормального закона, так же ограничившись k=10.
- 6. Кратко сформулируйте для себя выводы, вытекающие из ваших результатов.

Выполненные исследования

Моделирование выборки нормального распределения

Эмпирическая функция распределения *(см. график 1)* выборки $model_1$, смоделированная в соответствии $N(\sigma=4,\mu=0)$ со с объёмом n=1000

Функция плотности распределения *(см. график 2)* выборки $model_1$, смоделированная в соответствии $N(\sigma=4,\mu=0)$ со с объёмом n=1000

График 2 Функция плотности распределения выборки model_1

Получение оптимальных оценок параметров нормального распределения по выборке нормального закона

Получение оптимальных вероятностей для k = 4, 5, 8, 10

Для получения оптимальных интервалов, получим оптимальные вероятности при необходимом числе интервалов k при оценивании двух параметров. Необходимые вероятности можно получить из таблицы A.29.

k	P_1	P_2	P_3	P_4	P_5	P_6	P_7	P_8	P_9	P_{10}
4	0.0833	0.4167	0.4167	0.0833	-	-	-	-	-	-
5	0.0449	0.2004	0.5094	0.2004	0.0449	-	-	-	-	-
8	0.0141	0.0587	0.1431	0.2841	0.2841	0.1431	0.0587	0.0141	-	-
10	0.0077	0.0317	0.0748	0.1438	0.2420	0.2420	0.1438	0.0748	0.0317	0.0077

Необходимые параметры сдвига можно получить из таблицы П.3.

k	γ_1	γ_2	γ_3	γ_4	γ_5	γ_6	γ_7	γ_8	γ_9
4	0.224	0.551	0.224	-	-	-	-	-	-
5	0.109	0.391	0.391	0.109	-	-	-	-	-
8	0.030	0.097	0.217	0.313	0.217	0.097	0.030	-	-
10	0.016	0.050	0.108	0.197	0.258	0.197	0.108	0.050	0.016

Необходимые параметры масштаба можно получить из таблицы П.4.

k	$ u_1$	$ u_2$	$ u_3$	$ u_4$	$ u_5$	$ u_6$	$ u_7$	$ u_8$	ν_9
4	-0.3614	0.0000	0.3614						
5	-0.2014	-0.2299	0.2299	0.2014					

k	$ u_1$	$ u_2$	$ u_3$	$ u_4$	$ u_5$	$ u_6$	$ u_7$	$ u_8$	$ u_9$
8	-0.0704	-0.1471	-0.1670	0.0000	0.1670	0.1471	0.0704		
10	-0.0410	-0.0915	-0.1324	-0.1238	0.0000	0.1238	0.1324	0.0915	0.0410

Получим выборочные квантили выборки **model_1**, сформированного в прошлом пункте по оптимальным вероятностям. Сформируем таблицу значений границ интервалов.

k	I_1	I_2	I_3	I_4	I_5	I_6	I_7	I_8	I_9	I_{10}	I_{11}
4	-11.3023	-5.3176	0.0005	5.6716	12.9968	-	-	-	-	-	-
5	-11.3023	-6.2126	-2.7955	2.5971	6.7996	12.9968	-	-	-	-	-
8	-11.3023	-8.0621	-5.4886	-3.2206	0.0005	2.9323	5.9502	8.4333	12.9968	-	-
10	-11.3023	-8.7633	-6.5387	-4.5537	-2.6720	0.0005	2.4607	4.8169	6.9421	9.2255	12.9968

Получаем оценённые параметры на основании коэффициентов и квантилей, которые были представлены ранее, используя формулы:

$$\mu = \sum\limits_{i=1}^k \gamma_i I_{i+1} \; \sigma = \sum\limits_{i=1}^k
u_i I_{i+1}$$

Таким образом оценённые параметры равны:

Параметр сдвига μ	Параметр масштаба σ
0.0146827	3.8464956

Сравнение полученных результатов с ОМП

Оценим параметры используя метод **ОМП** по выборке *model_1* используя **ISW**. Полученные параметры:

Параметр сдвига μ	Параметр масштаба σ	$\mu_{OM\Pi} - \mu_L$	$\sigma_{OM\Pi} - \sigma_L$
0.0036542	3.93105	-0.01103	0.08455

Как видно из таблицы разница между двумя оценка заметна после 2 знаков после запятой, что достаточно близко.

Проверка простой гипотезы

Результаты проверки **простой гипотезы** о согласии, используя критерий χ^2 *Пирсона* используя параметрические параметры полученные ранее, на группированной выборке *АОГ* при k=10.

Метод оценивания	$\mathbf 3$ начение S	Значение Р
ОМП	4.5347	0.8728
L-оценки	4.6161	0.8664

Таким образом, оба метода оценивания показали близки результаты. И при данных параметрах критерий согласия χ^2 *Пирсона* принимает **истинную** гипотезу H_0

Получение оптимальных оценок параметров логистического распределения по выборке нормального закона

Получим оценки для Логистического распределения. Для этого воспользуемся соответствующей $\underline{\text{таблицей A.45}}$ для получение оптимальных вероятностей при k=10.

k	P_1	P_2	P_3	P_4	P_5	P_6	P_7	P_8	P_9	P_{10}
10	0.0153	0.0510	0.0946	0.1441	0.1950	0.1950	0.1441	0.0946	0.0510	0.0153

Необходимые параметры сдвига можно получить из таблицы П.7.

k	γ_1	γ_2	γ_3	γ_4	γ_5	γ_6	γ_7	γ_8	γ_9
10	0.0029	0.0280	0.0990	0.2206	0.2992	0.2206	0.0990	0.0280	0.0029

Необходимые параметры масштаба можно получить из таблицы П.8.

k	$ u_1$	$ u_2$	ν_3	$ u_4$	$ u_5$	ν_6	ν_7	ν_8	ν_9
10	-0.0432	-0.1144	-0.1766	-0.1613	0.0000	0.1613	0.1766	0.1144	0.0432

Получим выборочные квантили выборки **model_1**, сформированного в пункте №1 по оптимальным вероятностям. Сформируем таблицу значений границ интервалов.

k	I_1	I_2	I_3	I_4	I_5	I_6	I_7	I_8	I_9	I_{10}	I_{11}
10	-11.3023	-8.0327	-5.7182	-3.8195	-2.0748	0.0005	1.8819	3.9081	6.1066	8.3184	12.9967

Получаем оценённые параметры на основании коэффициентов и квантилей, которые были представлены ранее, используя формулы:

$$\mu = \sum\limits_{i=1}^k \gamma_i I_{i+1} \; \sigma = \sum\limits_{i=1}^k
u_i I_{i+1}$$

Таким образом, оценённые параметры равны:

Параметр сдвига μ	Параметр масштаба σ
-0.02191688	2.3451815

Сравнение полученных результатов с ОМП

Оценим параметры используя метод **ОМП** по выборке *model_1* используя **ISW**. Полученные параметры:

Параметр сдвига μ	Параметр масштаба σ	$\mu_{OM\Pi} - \mu_L$	$\sigma_{OM\Pi} - \sigma_L$
-0.02803	2.29687	-0.00611	-0.04831

Как видно из таблицы разница между оценками сдвига заметна после 3 знака после запятой и разница между оценками масштаба после 2 знака. Аналогично, наблюдаем довольно близкие значения.

Проверка простой гипотезы

Результаты проверки **простой гипотезы** о согласии, используя критерий χ^2 *Пирсона* используя параметрические параметры полученные ранее, на группированной выборке *АОГ* при k=10.

Метод оценивания	$\mathbf 3$ начение S	Значение Р
ОМП	20.4701	0.01522
L-оценки	21.5139	0.01055

Таким образом, оба метода оценивания показали близки результаты. И при данных параметрах критерий согласия χ^2 *Пирсона* отвергает **ложную** гипотезу H_1 .

Моделирование выборки распределения Коши

Эмпирическая функция распределения *(см. график 2)* выборки _model_2, смоделированная в соответствии $C(x_0=0,\gamma=3)$ со с объёмом n=1000

График 3 Эмпирическая функция распределения выборки *model_2*

Функция плотности распределения *(см. график 4)* выборки _model_2, смоделированная в соответствии $C(x_0=0,\gamma=3)$ со с объёмом n=1000

График 4 Функция плотности распределения выборки *model_2*

Получение оптимальных оценок параметров распределения Коши по выборке Коши

Получим оценки для распределения Коши с параметрами $x_0=0.0, \gamma=3$. Исходя из <u>источника</u> для получения L-оценки требуется использовать равновероятный способ группирования. Для этого воспользуемся ISW. Необходимые параметры сдвига можно получить из <u>таблицы П.11</u>.

k	γ_1	γ_2	γ_3	γ_4	γ_5	γ_6	γ_7	γ_8	γ_9
10	-0.0309	-0.0427	0.0808	0.2928	0.4000	0.2928	0.0808	-0.0427	-0.0309

Необходимые параметры масштаба можно получить из таблицы П.12.

k	$ u_1$	$ u_2$	ν_3	$ u_4$	$ u_5$	$ u_6$	$ u_7$	ν_8	$ u_9$
10	-0.0224	-0.1314	-0.2490	-0.2126	0.0000	0.2126	0.2490	0.1314	0.0224

Получим выборочные квантили выборки **model_2**, сформированного в прошлом пункте по оптимальным вероятностям. Сформируем таблицу значений границ интервалов.

k	I_1	I_2	I_3	I_4	I_5	I_6	I_7	I_8	I_9	I_{10}	I_{11}
10	-404.6613	-9.2331	-4.1291	-2.1796	-0.9747	0.0000	0.9747	2.1796	4.1291	9.2331	1650.2344

Получаем оценённые параметры на основании коэффициентов и квантилей, которые были представлены ранее, используя формулы:

$$\mu = \sum\limits_{i=1}^k \gamma_i I_{i+1} \; \sigma = \sum\limits_{i=1}^k
u_i I_{i+1}$$

Таким образом, оценённые параметры равны:

Параметр сдвига x_0	Параметр масштаба γ
-0.0534837	2.9166901

Сравнение полученных результатов с ОМП

Оценим параметры используя метод **ОМП** по выборке *model_1* используя **ISW**. Полученные параметры:

Параметр сдвига x_0	Параметр масштаба γ	$x_{0,\mathit{OM\Pi}} - x_{0,\mathit{L}}$	$\gamma_{OM\Pi} - \gamma_L$
-0.03727	3.0506	0.01622	0.13391

Как видно из таблицы разница между оценками сдвига заметна после 2 знака после запятой и разница между оценками масштаба после 1 знака. В сравнении с прошлыми пунктами, получаем большую разницу между оценками масштаба.

Проверка простой гипотезы

Результаты проверки **простой гипотезы** о согласии, используя критерий χ^2 *Пирсона* используя параметрические параметры полученные ранее, на группированной выборке *АОГ* при k=10.

Метод оценивания	$\mathbf 3$ начение S	$\mathbf 3$ начение P
ОМП	6.59684	0.67901
L-оценки	5.24549	0.81240

Таким образом, оба метода оценивания показали разные результаты. При данных параметрах критерий согласия χ^2 *Пирсона* принимает **истинную** гипотезу H_0 , но заметна разница между **p-value**. Заметно, что в данном случае оценённые параметры полученные путём оценивания с помощью L-оценки, более удачны.

Получение оптимальных оценок параметров нормального распределения по выборке Коши

Получим оценки для нормального закона распределения с параметрами $\mu=0.0, \sigma=5.53445$. Используем уже ранее показанную таблицу для получение оптимальных вероятностей при k=10

k	P_1	P_2	P_3	P_4	P_5	P_6	P_7	P_8	P_9	P_{10}
10	0.0077	0.0317	0.0748	0.1438	0.2420	0.2420	0.1438	0.0748	0.0317	0.0077

Получим выборочные квантили выборки **model_2**, сформированного в прошлом пункте по оптимальным вероятностям. Сформируем таблицу значений границ интервалов.

k	I_1	I_2	I_3	I_4	I_5	I_6	I_7	I_8	I_9	I_{10}	I_{11}
10	-404.6613	-67.1396	-18.5429	-7.0866	-2.9612	0.0005	2.6579	7.9962	22.9789	94.0040	1650.2345

Получаем оценённые параметры на основании коэффициентов и квантилей, которые были представлены ранее, используя формулы:

$$\mu = \sum\limits_{i=1}^k \gamma_i I_{i+1} \; \sigma = \sum\limits_{i=1}^k
u_i I_{i+1}$$

Таким образом, оценённые параметры равны:

Пара	метр сдвига μ	Параметр масштаба σ
	0.6960835	13.096296

Сравнение полученных результатов с ОМП

Оценим параметры используя метод **ОМП** по выборке *model_2* используя **ISW**. Полученные параметры:

Параметр сдвига μ	Параметр масштаба σ	$\mu_{OM\Pi} - \mu_L$	$\sigma_{OM\Pi} - \sigma_L$
-0.051628	6.38835	-0.74771	-6.70795

Как видно из таблицы разница между двумя оценками существенно большая. Полученные оценки существенно отличаются.

Проверка простой гипотезы

Результаты проверки **простой гипотезы** о согласии, используя критерий χ^2 *Пирсона* используя параметрические параметры полученные ранее, на группированной выборке *АОГ* при k=10.

Метод оценивания	$\mathbf 3$ начение S	$\mathbf 3$ начение P
ОМП	189.7890	0
L-оценки	565.4089	0

Таким образом, оба метода оценивания показали разные результаты. При данных параметрах критерий согласия χ^2 *Пирсона* отвергают **ложную** гипотезу H_1 , но заметна разница между **s-value**. Заметно, что в данном случае оценённые параметры полученные путём оценивания с помощью **ОМП**-оценки, более удачны.

Вывод

По итогу работы удалось освоить вычисление оптимальных L-оценок по выборочным квантилям. По итогу работы удалось показать, что при данном способе, критерий χ^2 Пирсона способен отличать близкие конкурирующие гипотезы. Удалось показать, отличие L-оценок и **ОМП**.

^{1.} Указание: Логистический закон в **ISW** представлен несколько в другом виде, чем рассматриваемый при построении L-оценок этого закона. Поэтому полученную L-оценку параметра масштаба необходимо разделить на $\sqrt{3} \leftarrow$