Introduction to Lambda Calculus

Maciek Makowski (@mmakowski)

12th October 2014

The Plan

Basic Lambda Calculus


```
\begin{array}{ll} \langle \textit{term} \rangle ::= x & \text{(variable)} \\ & | & (\lambda x. \langle \textit{term} \rangle) & \text{(abstraction)} \\ & | & (\langle \textit{term} \rangle \ \langle \textit{term} \rangle) & \text{(application)} \end{array}
```

where $x \in \mathbb{X}$ – the set of variables

 v_1

 v_1

var *v*₁

x y

 $\lambda a.b$

 $\lambda a.b$ abs a var b

 $(\lambda a.\lambda b.a)~c~(\lambda b.b)$

```
\begin{array}{ll} \langle \textit{term} \rangle ::= x & \text{(variable)} \\ & | & (\lambda x. \langle \textit{term} \rangle) & \text{(abstraction)} \\ & | & (\langle \textit{term} \rangle \ \langle \textit{term} \rangle) & \text{(application)} \end{array}
```


- ► terms: trees consisting of
 - variables
 - ▶ abstractions
 - ▶ applications
- ▶ variables are *bound* by abstraction; otherwise *free*

Rewriting α -conversion

$$(\lambda x.xy) (\lambda x.x) \longleftrightarrow_{\alpha} (\lambda a.ay) (\lambda b.b)$$

Rewriting β -reduction

$$(\lambda x.M) N \longrightarrow_{\beta} M[x/N]$$

Rewriting β -reduction

$$(\lambda x.M) N \longrightarrow_{\beta} M[x/N]$$

$$(\lambda x.xy) (\lambda z.z) \longrightarrow_{\beta} (\lambda z.z) y \longrightarrow_{\beta} y$$

Rewriting β-reduction

- call-by-value: start with innermost redex, do not reduce under abstraction
- ► *call-by-name*: start with outermost redex, do not reduce under abstraction

Rewriting Church-Rosser

Semantics

$$f(x) = a * x + b$$

Semantics

$$f(x) = a * x + b$$
$$\lambda x. + (* a x) b$$

Programming in Lambda Calculus

Simple Types

Curry-Howard Correspondence

More Types

The Lambda Cube

The Lambda Cube

Subtyping

Subtyping

