EE301 Homework-3

İsmail Enes Bülbül, Eren Meydanlı, Ahmet Caner Akar December 13, 2022

Question 1

a)

The magnitude and phase responses of $H(j\omega)$ can be seen below:

b)

x(t) can be plotted as:

x(t) is a periodic signal with fundamental period $T_0 = 4$. Also, x(t) can be written in CTFS representation: $x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$, where $\omega_0 = \frac{2\pi}{T_0} = \frac{\pi}{2}$.

Let's first calculate the FS cofficients:
$$a_k = \frac{1}{T_0} \int_{t_0}^{t_0 + T_0} x(t) e^{-jk\omega_0 t} dt = \frac{1}{4} \int_{0^-}^{4^-} x(t) e^{-jk\frac{\pi}{2}t}$$

$$\Rightarrow a_0 = \frac{5}{4}, \ a_1 = \frac{1}{4}, \ a_{-1} = \frac{1}{4}, \ a_2 = \frac{3}{4}, \ a_{-2} = \frac{3}{4}$$

Also, recall that:

$$e^{jk\omega_0t} \longrightarrow \boxed{\text{LTI system}} \longrightarrow H(jk\omega_0)e^{jk\omega_0t}$$

By linearity:

$$\underbrace{\sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}}_{x(t)} \longrightarrow \underbrace{\text{LTI system}}_{} \longrightarrow \underbrace{\sum_{k=-\infty}^{\infty} a_k H(jk\omega_0) e^{jk\omega_0 t}}_{y(t)}$$

Therefore,
$$y(t) = \sum_{k=-2}^{2} a_k H(jk\omega_0) e^{jk\omega_0 t} = -\frac{3}{4}\pi j e^{-j\pi t} - \frac{3}{8}\pi j e^{-j\frac{\pi}{2}t} + 0 + \frac{3}{8}\pi j e^{j\frac{\pi}{2}t} + \frac{3}{4}\pi j e^{j\pi t}$$

$$y(t) = -\frac{3\pi}{2} \left(\frac{1}{2j} e^{j\pi t} - \frac{1}{2j} e^{-j\pi t} \right) - \frac{3\pi}{4} \left(\frac{1}{2j} e^{j\frac{\pi}{2}t} - \frac{1}{2j} e^{-j\frac{\pi}{2}t} \right) = -\frac{3\pi}{2} sin(\pi t) - \frac{3\pi}{4} sin(\frac{\pi}{2}t)$$

Question 2

a)

We know that
$$X(j\omega)=\int_{\infty}^{-\infty}x(t)e^{-j\omega t}\,dt$$
. Then
$$\frac{d}{d\omega}X(j\omega)=\frac{d}{d\omega}\int_{\infty}^{-\infty}x(t)e^{-j\omega t}\,dt=\int_{\infty}^{-\infty}\frac{d}{d\omega}(x(t)e^{-j\omega t})\,dt=\int_{\infty}^{-\infty}x(t)(-jt)e^{-j\omega t}\,dt=\mathcal{F}\{x(t)(-jt)\}$$
 Therefore, $\mathcal{F}^{-1}\{\frac{d}{d\omega}X(j\omega)\}=x(t)(-jt)$

b)

Let
$$g_1(t) = \frac{\sin(\pi t)}{\pi t}$$
. Then we know that $\mathscr{F}\{g_1(t)\} = \begin{cases} 1, & |\omega| < \pi \\ 0, & else \end{cases}$
Since $g(t) = g_1(t)g_1(t)$, by multiplication property, we know that $G(j\omega) = \frac{1}{2\pi}G_1(j\omega)*G_1(j\omega)$
 $G(j\omega) = \frac{1}{2\pi}\int_{-\infty}^{\infty}G(j\theta)G(j(\omega-\theta))\,d\theta = \frac{1}{2\pi}\int_{-\pi}^{\pi}G(j(\omega-\theta))\,d\theta$
Let $\theta' = \omega - \theta$. Then $d\theta' = -d\theta$ and $G(j\omega) = \frac{1}{2\pi}\int_{\omega+\pi}^{\omega-\pi}G_1(j\theta')\,d\theta'$
For $\omega < -2\pi$ or $\omega > 2\pi$, $G(j\omega) = 0$. For $\omega < 0$
 $G(j\omega) = \frac{1}{2\pi}\int_{-\pi}^{\omega+\pi}d\theta' = \frac{\omega+\pi}{2\pi}$
For $\omega > 0$
 $G(j\omega) = \frac{1}{2\pi}\int_{\omega-\pi}^{\pi}d\theta' = \frac{2\pi-\omega}{2\pi}$
Therefore, $G(j\omega) = \begin{cases} \frac{\omega+\pi}{2\pi}, & -2\pi < \omega < 0 \\ \frac{2\pi-\omega}{2\pi}, & 0 < \omega < 2\pi \end{cases}$, and $G(j\omega)$ is plotted below $0, \quad else$

c)

i)

$$\begin{array}{ll} H(j\omega) = \int_{-\infty}^{\infty} f^*(-t) e^{-j\omega t} \, dt = \int_{-\infty}^{\infty} (f(-t) e^{j\omega t})^* \, dt \\ \text{Let } t' = -t. \text{ Then } dt' = -dt \text{ and} \\ H(j\omega) = \int_{\infty}^{-\infty} (f(t') e^{-j\omega t'})^* \, d(-t') = \int_{-\infty}^{\infty} (f(t') e^{-j\omega t'})^* \, d(t') = (\int_{-\infty}^{\infty} f(t') e^{-j\omega t'} \, d(t'))^* = F^*(j\omega) \end{array}$$

ii)

Let
$$\mathscr{F}{y(t)} = Y(j\omega)$$
. Then $Y(j\omega) = F^*(j\omega)F(j\omega) = |F(j\omega)|^2$
 $y(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} Y(j\omega)e^{j\omega t} d\omega =$

Question 3

a)

i)

$$x(t) = \frac{\sin(4\pi t)}{\pi t}\cos(2\pi t) = \frac{4\sin(4\pi t)}{4\pi t}\cos(2\pi t) = x_1(t)x_2(t)$$
 (where $x_1(t) = \frac{4\sin(4\pi t)}{4\pi t}$, $x_2(t) = \cos(2\pi t)$)

Recall that: $\mathscr{F}\{rect(\theta)\} = \frac{sin(\omega/2)}{\omega/2}$ By duality property of CTFT: $\frac{sin(t/2)}{t/2} \longleftrightarrow 2\pi rect(-\omega) = 2\pi rect(\omega)$

By scaling property of CTFT: $\frac{sin(4\pi t)}{4\pi t} \longleftrightarrow \frac{rect(\frac{\omega}{8\pi})}{4}$

By linearity: $\frac{4sin(4\pi t)}{4\pi t} \longleftrightarrow rect(\frac{3\pi}{8\pi}) = X_1(j\omega)$

$$\begin{split} x_2(t) &= \cos(2\pi t) = \frac{1}{2}e^{j2\pi t} + \frac{1}{2}e^{-j2\pi t} \\ \mathscr{F}\{\frac{1}{2}e^{j2\pi t} + \frac{1}{2}e^{-j2\pi t}\} &\longleftrightarrow \pi[\delta(\omega + 2\pi) + \delta(\omega - 2\pi)] = X_2(j\omega) \end{split}$$

By modulation property of CTFT:

$$x(t) = x_1(t)x_2(t) \longleftrightarrow X(j\omega) = \frac{1}{2\pi}X_1(j\omega) * X_2(j\omega)$$

$$X(j\omega) = \frac{1}{2\pi}rect(\frac{\omega}{8\pi}) * \pi[\delta(\omega + 2\pi) + \delta(\omega - 2\pi)] = \frac{1}{2}[rect(\frac{\omega}{8\pi}) * \delta(\omega + 2\pi) + rect(\frac{\omega}{8\pi}) * \delta(\omega - 2\pi)]$$

$$X(j\omega) = \frac{1}{2}rect(\frac{\omega + 2\pi}{8\pi}) + \frac{1}{2}rect(\frac{\omega - 2\pi}{8\pi})$$

ii)

$$y(t) = h(t) * x(t)$$

By convolution property of CTFT: $y(t) = h(t) * x(t) \longleftrightarrow Y(j\omega) = H(j\omega)X(j\omega)$

$$Y(j\omega) = \left(1 - rect\left(\frac{\omega}{4\pi}\right)\right) \left(\frac{1}{2}rect\left(\frac{\omega - 2\pi}{8\pi}\right) + \frac{1}{2}rect\left(\frac{\omega + 2\pi}{8\pi}\right)\right)$$

$$Y(j\omega) = \left(1 - rect\left(\frac{\omega}{4\pi}\right)\right) \left(\frac{1}{2}rect\left(\frac{\omega - 2\pi}{8\pi}\right) + \frac{1}{2}rect\left(\frac{\omega + 2\pi}{8\pi}\right)\right)$$

$$Y(j\omega) = \frac{1}{2}rect\left(\frac{\omega - 2\pi}{8\pi}\right) + \frac{1}{2}rect\left(\frac{\omega + 2\pi}{8\pi}\right) - \frac{1}{2}\left(rect\left(\frac{\omega}{4\pi}\right)rect\left(\frac{\omega - 2\pi}{8\pi}\right) + rect\left(\frac{\omega}{4\pi}\right)rect\left(\frac{\omega + 2\pi}{8\pi}\right)\right)$$

$$Y(j\omega) = \frac{1}{2}\left(rect\left(\frac{\omega + 4\pi}{4\pi}\right) + rect\left(\frac{\omega - 4\pi}{4\pi}\right)\right)$$

$$Y(j\omega) = \frac{1}{2} \left(rect(\frac{\omega + 4\pi}{4\pi}) + rect(\frac{\omega - 4\pi}{4\pi}) \right)$$

b)

i)

By modulation property of CTFT:

$$\begin{split} z(t) &\longleftrightarrow Z(j\omega) = \tfrac{1}{2\pi} Y(j\omega) * \mathscr{F}\{\tfrac{\sin(2\pi t)}{\pi t}\} = \tfrac{1}{2\pi} Y(j\omega) * rect(\tfrac{\omega}{4\pi}) \\ &\Rightarrow Z(j\omega) = \tfrac{1}{2\pi} \left(rect(\tfrac{\omega+4\pi}{4\pi}) + rect(\tfrac{\omega-4\pi}{4\pi}) \right) * rect(\tfrac{\omega}{4\pi}) \end{split}$$

$$\Rightarrow Z(j\omega) = \begin{cases} \frac{8\pi - \omega}{2\pi}, & 4\pi < \omega < 8\pi \\ \frac{\omega}{2\pi}, & 0 < \omega \le 4\pi \\ \frac{-\omega}{2\pi}, & -4\pi < \omega < 0 \\ \frac{8\pi + \omega}{2\pi}, & -8\pi < \omega \le -4\pi \end{cases}$$

ii)

$$y(t) \longleftrightarrow Y(j\omega) = rect(\frac{\omega + 4\pi}{4\pi}) + rect(\frac{\omega - 4\pi}{4\pi})$$
$$Y(j\omega) = \frac{1}{\pi} rect(\frac{\omega}{4\pi}) * \pi[\delta(\omega - 4\pi) + \delta(\omega + 4\pi)]$$

By modulation property of CTFT:

$$\mathscr{F}^{-1}{Y(j\omega)} = y(t) = \frac{2\sin(2\pi t)}{\pi t}\cos(4\pi t)$$

Question 4

a)

i)

$$X(e^{j\Omega}) = \sum_{n=-\infty}^{\infty} \underbrace{\delta[n] e^{-j\Omega n}}_{\delta[n] e^{-j\Omega 0}} = \sum_{n=-\infty}^{\infty} \delta[n] = 1$$

ii)

$$X(e^{j\Omega}) = \sum_{n=-\infty}^{\infty} (2\delta[n-3] - \delta[n-10])e^{-j\Omega n} \overset{\text{(by linearity)}}{=} 2\sum_{n=-\infty}^{\infty} \delta[n-3]e^{-j\Omega n} - \sum_{n=-\infty}^{\infty} \delta[n-10]e^{-j\Omega n}$$

By time-shift property of DTFT:

$$X(e^{j\Omega}) = 2e^{-j3\Omega} - e^{-j10\Omega}$$

iii)

$$X(e^{j\Omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n} = \sum_{n=1}^{4} \frac{1}{n^2}e^{-j\Omega n} = e^{-j\Omega} + \frac{1}{4}e^{-j2\Omega} + \frac{1}{9}e^{-j3\Omega} + \frac{1}{16}e^{-j4\Omega}$$

iv)

$$\begin{split} X(e^{j\Omega}) &= \sum_{n=-\infty}^{\infty} \left(\left(\frac{1}{2}\right)^n u[n] - 3^n u[-n-1] \right) e^{-j\Omega n} \\ &\stackrel{\text{(by linearity)}}{=} \sum_{n=-\infty}^{\infty} \left(\frac{1}{2}\right)^n u[n] e^{-j\Omega n} - \sum_{n=-\infty}^{\infty} 3^n u[-n-1] e^{-j\Omega n} = \sum_{n=0}^{\infty} \left(\frac{1}{2}e^{-j\Omega}\right)^n - \sum_{n=-\infty}^{-1} 3^n e^{-j\Omega n} \\ &\sum_{n=0}^{\infty} \left(\frac{1}{2}e^{-j\Omega}\right)^n = \frac{1}{1-\frac{1}{2}e^{-j\Omega}} \quad \left(\text{since } \left|\frac{1}{2}e^{-j\Omega}\right| = \frac{1}{2} < 1, \text{ so the expression is convergent} \right) \\ \text{Let } m &= -n : \sum_{n=-\infty}^{-1} 3^n e^{-j\Omega n} = \sum_{m=1}^{\infty} 3^{-m} e^{j\Omega m} = \sum_{m=1}^{\infty} \left(\frac{1}{3}e^{j\Omega}\right)^m = \underbrace{\left[\sum_{m=0}^{\infty} \left(\frac{1}{3}e^{j\Omega}\right)^m\right]}_{\frac{1}{1-\frac{1}{3}e^{j\Omega}}} - 1 \\ \Rightarrow X(e^{j\Omega}) &= \frac{1}{1-\frac{1}{2}e^{-j\Omega}} - \left(\frac{1}{1-\frac{1}{2}e^{j\Omega}} - 1\right) \end{split}$$

 $\mathbf{v})$

Say that,
$$\hat{x}[n] = \left(\frac{1}{2}\right)^n u[n] - 3^n u[-n-1]$$
 and $\mathscr{F}\{\hat{x}[n]\} = \hat{X}(e^{j\Omega}) = \frac{1}{1 - \frac{1}{2}e^{-j\Omega}} - \left(\frac{1}{1 - \frac{1}{3}e^{j\Omega}} - 1\right)$ By time-shift property of DTFT:

$$x[n] = \hat{x}[n-7] \longleftrightarrow X(e^{j\Omega}) = \hat{X}(e^{j\Omega})e^{-j7\Omega}$$

$$\Rightarrow X(e^{j\Omega}) = \frac{e^{-j7\Omega}}{1 - \frac{1}{2}e^{-j\Omega}} - \left(\frac{e^{-j7\Omega}}{1 - \frac{1}{3}e^{j\Omega}} - e^{-j7\Omega}\right)$$

vi)

Let x[n] be a periodic signal with fundamental period N. Then,

$$\mathscr{F}\{x[n]\} = X(e^{j\Omega}) = \sum_{m=-\infty}^{\infty} \sum_{k=k_0}^{k_0+N-1} a_k 2\pi \delta(\Omega - k\frac{2\pi}{N} - 2\pi m)$$

Note that for this signal if we consider the interval $0 \le \Omega < 2\pi$, DTFT of the signal will be written as:

$$\mathscr{F}\lbrace x[n]\rbrace = X(e^{j\Omega}) = \sum_{k=0}^{2} a_k 2\pi \delta(\Omega - k\frac{2\pi}{3})$$

First, find the DTFS coefficients of x[n]: $a_k = \frac{1}{3} \sum_{n=0}^{2} x[n] e^{-jk\frac{2\pi}{3}n}$

$$\Rightarrow a_0 = \frac{1}{3} \sum_{n=0}^{2} x[n] = \frac{1}{3} + \frac{1}{3} = \frac{2}{3}$$

$$\Rightarrow a_1 = \frac{1}{3} \sum_{n=0}^{2} x[n] e^{-j\frac{2\pi}{3}n} = \frac{1}{3} e^{-j\frac{2\pi}{3}} + \frac{1}{3} e^{-j\frac{4\pi}{3}} = \frac{-1}{3}$$

$$\Rightarrow a_2 = \frac{1}{3} \sum_{n=0}^{2} x[n] e^{-j\frac{4\pi}{3}n} = \frac{1}{3} e^{-j\frac{4\pi}{3}} + \frac{1}{3} e^{-j\frac{8\pi}{3}} = \frac{-1}{3}$$

$$X(e^{j\Omega}) = \sum_{k=0}^{2} a_k 2\pi \delta(\Omega - k\frac{2\pi}{3}) = a_0 2\pi \delta(\Omega) + a_1 2\pi \delta(\Omega - \frac{2\pi}{3}) + a_2 2\pi \delta(\Omega - \frac{4\pi}{3})$$

$$X(e^{j\Omega}) = \frac{2\pi}{3} \left(2\delta(\Omega) - \delta(\Omega - \frac{2\pi}{3}) - \delta(\Omega - \frac{4\pi}{3}) \right)$$

b)

i)

$$x[n] = \frac{1}{2\pi} \int_{\Omega_0}^{\Omega_0 + 2\pi} \underbrace{X(e^{j\Omega})}_{=1} e^{j\Omega n} d\Omega = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j\Omega n} d\Omega = \frac{1}{2\pi j n} \left(e^{j\pi n} - e^{-j\pi n} \right)$$

$$x[n] = \frac{1}{\pi n} \frac{1}{2j} \left(e^{j\pi n} - e^{-j\pi n} \right) = \frac{\sin(\pi n)}{\pi n} \qquad \text{Recall that, } sinc(t) = \begin{cases} \frac{\sin(\pi t)}{\pi t}, & t \neq 0 \\ 1, & t = 0 \end{cases}$$
Here, n is an integer. So,
$$\frac{\sin(\pi n)}{\pi n} = \begin{cases} 1, & n = 0 \\ 0, & otherwise \end{cases} \Rightarrow x[n] = \delta[n]$$

ii)

We know that,
$$\mathscr{F}\{1\} = 2\pi \sum_{m=-\infty}^{\infty} \delta(\Omega - 2\pi m)$$

By frequency-shift property of DTFT:
 $\mathscr{F}\{e^{j\Omega_0 n}\} = 2\pi \sum_{m=-\infty}^{\infty} \delta(\Omega - \Omega_0 - 2\pi m)$

$$\mathscr{F}\lbrace e^{j\Omega_0 n}\rbrace = 2\pi \sum_{m=-\infty}^{\infty} \delta(\Omega - \Omega_0 - 2\pi m)$$

$$\Rightarrow \mathscr{F}\lbrace e^{j\frac{\pi}{3}n}\rbrace = 2\pi \sum_{m=-\infty}^{\infty} \delta(\Omega - \frac{\pi}{3} - 2\pi m) = 2\pi X(e^{j\Omega})$$

$$\Rightarrow \mathscr{F}^{-1}\lbrace \sum_{m=-\infty}^{\infty} \delta(\Omega - \frac{\pi}{3} - 2\pi m)\rbrace = \frac{e^{j\frac{\pi}{3}n}}{2\pi} = x[n]$$

iii)

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\Omega}) e^{j\Omega n} d\Omega = \frac{1}{2\pi} \underbrace{\int_{-\pi}^{-\frac{\pi}{2}} e^{j\Omega n} d\Omega}_{-\pi} + \frac{1}{2\pi} \int_{\frac{\pi}{2}}^{\pi} e^{j\Omega n} d\Omega = \frac{1}{2\pi} \int_{\frac{\pi}{2}}^{\pi} e^{j\Omega n} + e^{-j\Omega n} d\Omega$$

$$= \int_{\frac{\pi}{2}}^{\pi} e^{-j\Omega n} d\Omega$$

$$x[n] = \frac{1}{\pi} \int_{\frac{\pi}{2}}^{\pi} \cos(\Omega n) = \frac{1}{\pi n} \sin(\Omega n) \Big|_{\frac{\pi}{2}}^{\pi} = \frac{\sin(\pi n)}{\pi n} - \frac{\sin(\frac{\pi}{2}n)}{\pi n} = \frac{\sin(\pi n)}{\pi n} - \frac{1}{2} \frac{\sin(\frac{\pi}{2}n)}{\frac{\pi}{2}n}$$

$$x[n] = \operatorname{sinc}(n) - \frac{1}{2} \operatorname{sinc}(\frac{n}{2})$$

iv)

By frequency-shift property of DTFT:

$$x[n] \longleftrightarrow X(e^{j\Omega})$$

 $x[n]e^{j\frac{\pi}{4}n} \longleftrightarrow X(e^{j(\Omega - \frac{\pi}{4})}) = Y(e^{j\Omega})$

Therefore, $y[n] = x[n]e^{j\frac{\pi}{4}n} = sinc(n)e^{j\frac{\pi}{4}n} - \frac{1}{2}sinc(\frac{n}{2})e^{j\frac{\pi}{4}n}$

Question 5

a)

Recall that, $Y(e^{j\Omega})=X(e^{j\Omega})H(e^{j\Omega})\Rightarrow H(e^{j\Omega})=\frac{Y(e^{j\Omega})}{X(e^{j\Omega})}$

- b)
- **c**)
- d)

Question 6