Introduction of Deep Learning

Sanzhen Liu

PLPTH813 4/29/2021

Goals

To learn:

- What is machine learning or deep learning?
- How does neural network work?
- What do we need to know for applying machine learning in our studies?
- How to run a simple machine learning using R? (lab)

Machine learning

Translational Vision Science & Technology, 2020, 9:14.

Supervised and unsupervised (major methods)

- Unsupervised (to learn inherent patterns within data)
 e.g., Clustering, principal component analysis
- Supervised: to predict response (regression) or classification of each data point by using a provided set of labeled training examples

Supervised: regression and classification

A regression model predicts continuous values.

- What is the value of a house in California?
- What is the probability that a user will click on this ad?

A classification model predicts discrete values.

- Is a given email message spam or not spam?
- Is this an image of a dog, a cat, or a hamster?

Why machine learning

- Advance of algorithms and theories
- Increasing computational power
- Large data

AlphaFold

Classical programming vs. machine learning paradigm

Translational Vision Science & Technology, 2020, 9:14.

General procedure

location, room, area, ...

house price

edu, org, spam_words, ...

spam (0 or 1)

Components

Common components of nearly all machine learning algorithms:

- Dataset (training data)
- cost function
- optimization procedure
- model

Training data

Labels

A **label** is the thing we're predicting—the y variable in simple linear regression.

e.g., the price of wheat, the kind of animal shown in a picture

Features

A **feature** is an input variable—the x variable in simple linear regression. A machine learning project could use millions of features, specified as:

$$x_1, x_2, \dots x_N$$

Examples

An example is a particular entry of data (x, y)

Training data - example

Table 2: Class names and example images in Fashion-MNIST dataset.

Label	Description	Examples
0	T-Shirt/Top	
1	Trouser	
2	Pullover	
3	Dress	
4	Coat	
5	Sandals	JAJA JAJA JAJA JAJA
6	Shirt	
7	Sneaker	
8	Bag	
9	Ankle boots	A LLEAN LANGE AND

Features of image 1

 28×28 grayscale

Label = 9

	[,1]	[,2]	[,3]	[,4]	[,5]	[,6]	[,7]	[8,]	[,9]	[,10]	[,11]	[,12]	[,13]	[,14]	••
[1,]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
[2,]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
[3,]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
[4,]	0	0	0	0	0	0	0	0	0	0	0	0	1	0	
[5,]	0	0	0	0	0	0	0	0	0	0	0	0	3	0	
[6,]	0	0	0	0	0	0	0	0	0	0	0	0	6	0	
[7,]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
[8,]	0	0	0	0	0	0	0	0	0	0	0	1	0	69	
[9,]	0	0	0	0	0	0	0	0	0	1	1	1	0	200	
[10,]	0	0	0	0	0	0	0	0	0	0	0	0	0	183	
[11,]	0	0	0	0	0	0	0	0	0	0	0	0	0	193	
[12,]	0	0	0	0	0	0	0	0	0	1	3	0	12	219	
[13,]	0	0	0	0	0	0	0	0	0	0	6	0	99	244	
[14,]	0	0	0	0	0	0	0	0	0	4	0	0	55	236	
[15,]	0	0	1	4	6	7	2	0	0	0	0	0	237	226	
[16,]	0	3	0	0	0	0	0	0	0	62	145	204	228	207	
[17,]	0	0	0	0	18	44	82	107	189	228	220	222	217	226	
[18,]	0	57	187	208	224	221	224	208	204	214	208	209	200	159	
[19,]	3	202	228	224	221	211	211	214	205	205	205	220	240	80	
[20,]	98	233	198	210	222	229	229	234	249	220	194	215	217	241	
[21,]	75	204	212	204	193	205	211	225	216	185	197	206	198	213	
[22,]	48	203	183	194	213	197	185	190	194	192	202	214	219	221	
[23,]	0	122	219	193	179	171	183	196	204	210	213	207	211	210	
[24,]	0	0	74	189	212	191	175	172	175	181	185	188	189	188	
[25,]	2	0	0	0	66	200	222	237	239	242	246	243	244	221	
[26,]	0	0	0	0	0	0	0	40	61	44	72	41	35	0	
[27,]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
[28,]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Cost function for a simple linear regression

Loss is the penalty for a prediction.

Loss function:
$$\frac{1}{N} \sum_{i=1}^{N} (y - \text{prediction}(x))^2$$

Training a model is to find a set of weights (parameters) that have a *low* loss, on average, across all examples.

Neural networks: a main form of deep learning

- Deep learning refers to the recent advances in neural networks and the corresponding training platform
- Algorithms trying to mimic the brain
- Widely used in 80s and early 90s; popularity diminished in late 90s but resurged recently

Neuron model

Features (input)

 θ : parameters or weights

step 1:
$$z_1 = \theta^T x = \theta_1^1 x_1 + \theta_2^1 x_2 + \theta_3^1 x_3$$

Layer 1 Layer 2 Input layer Output layer

Step 2: activation

Activation function: Sigmoid (logistic)

$$a_1^{(2)} = h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

Activation function: ReLU (rectified linear activation function)

Activation function: softmax

$$\sigma(\mathbf{z})_i = rac{e^{z_i}}{\sum_{j=1}^K e^{z_j}} \quad ext{ for } i=1,\ldots,K ext{ and } \mathbf{z} = (z_1,\ldots,z_K) \in \mathbb{R}^K.$$

Prior to applying softmax, some vector components could be negative, or greater than one; and might not sum to 1

After applying softmax, each component will be in (0,1), and all values will add up to 1, so that they can be interpreted as probabilities.

```
softmax <- function(x) { exp(x) / sum(exp(x)) } input <- c(0.02, 0.16, 0.10, 0.13, 0.99) softmax(input)
```

[1] 0.1431069 0.1646121 0.1550259 0.1597471 <mark>0.3775080</mark>

Neural Network

Layer 1 Layer 2 Layer 3 hidden layer

Neural network architecture

3 layers 2 units in 2nd layer

4 layers 5 units in 2nd layer

. . .

Activation function: softmax

$$\sigma(\mathbf{z})_i = rac{e^{z_i}}{\sum_{j=1}^K e^{z_j}} \quad ext{for } i=1,\ldots,K ext{ and } \mathbf{z} = (z_1,\ldots,z_K) \in \mathbb{R}^K.$$

Prior to applying softmax, some vector components could be negative, or greater than one; and might not sum to 1

After applying softmax, each component will be in (0,1), and all values will add up to 1, so that they can be interpreted as probabilities.

```
softmax <- function(x) { exp(x) / sum(exp(x)) } input <- c(0.02, 0.16, 0.10, 0.13, 0.99) softmax(input)
```

[1] 0.1431069 0.1646121 0.1550259 0.1597471 <mark>0.3775080</mark>

training process

- dataset
- cost function $\frac{1}{N}\sum (y \text{prediction}(x, \theta))^2$
- optimization procedure To know: $\frac{\Delta loss(\theta)}{\Delta \theta}$, partial derivative
- model (parameters)?

Forward propagation and backpropagation

Forward propagation:

To determine $h_{\theta}(x)$ with the input data x and parameters θ for each example (entry)

Backpropagation:

To compute "error" of each node (e.g., $a_1^{(3)}$) and then determine partial derivatives of loss function (loss slope for each θ or $\frac{\Delta loss(\theta)}{\Delta \theta^{-23}}$)

Gradient decent to optimize parameters (θ)

Andrew Ng

To find an optimized model is to identify θ that can minimize the prediction loss;

Therefore, the key is to understand how the loss changes with the change of each θ (partial derivative)

Procedure of neural network (one typical method)

- Randomly initialization of parameters (θ , weights)
- For any input from training data (e.g., (x_i, y_i))
 - 1. Forward propagation to determine \hat{y}_i (prediction(x, θ))
 - 2. Backpropagation to compute the function of partial derivatives of loss function
- Gradient descent (or other optimization methods) to optimize θ to minimize the loss

25

 $^{^*}$ my understanding: backpropagation determines how the change of each heta changes the loss

How can we know if a model trained is a good predictor?

- Training set
- to learn the model parameters

- Validation set
- to select the best model

- Test set
- to estimate the generalization

underfitting and overfitting

- Underfitting occurs when the model obtains an insufficiently low error value on the training set.
- Overfitting occurs when the gap between the training error and test/validation error is too large.

underfitting and overfitting

Make the training error small.

Make the gap between training and validation error small.

regularization

Regularization refers to a set of different techniques that lower the complexity of a neural network model during training, and thus prevent the overfitting.

Large weights (θ) in a neural network are a sign of a complex model that possibly overfits the training data.

Original loss function + regularization term

$$\frac{1}{N}\sum (y - \text{prediction}(x, \theta))^2 + \lambda \|\theta\|^2$$

 L_2 regularization term = $\lambda ||\theta||^2$

 λ : weight of regulation $\|\theta\|^2$: sum of square

Dropout: a simple and effective regularization method

A model is adjusted by dropping out nodes during training. The node is temporarily removed from the network, along with all its incoming and outgoing connections.

Dropout is a computationally cheap and remarkably effective regularization method to reduce overfitting and improve generalization in deep neural networks of all kinds.

K-fold cross validation

the k-fold cross-validation partitions a dataset into K nonoverlapping subsets. The model performance may then be estimated by taking the average performance across K trials.

software

• Tensorflow: a platform developed by the Google Brain team for machine learning.

 Keras: a deep learning software written in Python, running on top of the machine learning platform TensorFlow.

Deep learning in genomics

- 1. <u>Large training datasets</u> (e.g., thousands of examples), curated to remove confounders, are typically required.
- 2. Most genomic data do not require very deep networks.
- 3. Researchers must be wary of <u>high accuracy due to data</u> <u>imbalance or bias</u> that makes classification too easy.
- 4. A good practice is to <u>compare against simpler machine</u> <u>learning models</u> on the same dataset.
- 5. Deep learning can achieve high accuracy, but the <u>interpretation of results is more challenging</u> than for standard statistical models.

References

- Zou et al., A primer on deep learning in genomics, 2019, Nature Genetics: doi.org/10.1038/s41588-018-0295-5
- Choi et al., Introduction to Machine Learning, Neural Networks, and Deep Learning, Translational Vision Science & Technology, 2020, 9:14. doi:https://doi.org/10.1167/tvst.9.2.14
- Machine learning, Coursera, taught by Andrew Ng
- Youtube: StatQuest
- Google course: https://developers.google.com/machine-learning/crash-course/ml-intro