

Università degli Studi di Trento Fisica Computazionale

Corso di Laurea Triennale in Fisica

Relazione di laboratorio

Progetto finale: Monte Carlo Variazionale per gocce di elio

July 23, 2024

Candidato:

Giorgio Micaglio, giorgio.micaglio@studenti.unitn.it Matricola 227051

Docente:

Prof. Alessandro Roggero

Anno Accademico 2023-2024

1 Introduzione

L'obiettivo di questo progetto è calcolare l'energia dello stato fondamentale di un sistema di ⁴He in un potenziale esterno armonico con il metodo di Monte Carlo Variazionale. L'operatore hamiltoniano che descrive il sistema è dunque

$$H = -\frac{\hbar^2}{2m} \sum_{i=1}^{N} \nabla_i^2 + \frac{1}{2} m \omega^2 \sum_{i=1}^{N} r_i^2 + \sum_{i < j} V(r_{ij}) \quad \text{con} \quad V(r) = 4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^6 \right],$$

che è il potenziale di Lennard-Jones classico. Si studiano 4 sistemi, composti da N=2,4,6,8 particelle. Per usare unità di \mathring{A} per le lunghezze e K per le energie, nel caso dell'elio si hanno

$$\varepsilon = 10.22 \text{ K}, \quad \sigma = 2.556 \text{ Å}, \quad \frac{\hbar^2}{2m} = 6.0596 \text{ Å}^2 \text{ K}, \quad a_0 = \sqrt{\frac{\hbar}{m\omega}} = 5 \text{ Å},$$

dove a_0 è la lunghezza caratteristica che definisce la trappola armonica. Sia $\Psi_{\alpha}(\mathbf{R}) = \langle \mathbf{R} | \Psi_{\alpha} \rangle$ una funzione d'onda parametrica per il sistema, in cui $\mathbf{R} = (\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_N)$ e α è il set di parametri liberi. Il metodo variazionale permette di affermare che

$$\min_{\alpha} E_{\alpha} = \min_{\alpha} \frac{\langle \Psi_{\alpha} | H | \Psi_{\alpha} \rangle}{\langle \Psi_{\alpha} | \Psi_{\alpha} \rangle} \ge E_0$$

ed E_{α} si può valutare con una simulazione Monte Carlo usando $P(\mathbf{R}) = |\Psi_{\alpha}(\mathbf{R})|^2$, mentre gli osservabili si calcoleranno con

$$O_{\alpha} = \frac{1}{M} \sum_{k=1}^{M} \frac{O\Psi_{\alpha}(\mathbf{R}_k)}{\Psi_{\alpha}(\mathbf{R}_k)}.$$

La scelta intrapresa per la funzione d'onda, con $\alpha = (\alpha, \beta_1, \beta_2)$, è

$$\Psi_{\alpha}(\mathbf{R}) = \exp\left(-\frac{1}{2\alpha} \sum_{i=1}^{N} r_i^2 - \frac{1}{2} \sum_{i < j} u_{\beta}(r_{ij})\right) \quad \text{con} \quad u_{\beta}(r) = \left(\frac{\beta_1}{r}\right)^{\beta_2}.$$

1.1 Energia cinetica

Per la forma della funzione d'onda usata, conviene calcolare il contributo della particella i-esima all'energia cinetica nel seguente modo:

$$T_i = -\frac{\hbar^2}{2m} \left(\nabla_i^2 \log \Psi + (\boldsymbol{\nabla}_i \log \Psi)^2 \right) ,$$

che in funzione di $u_{\beta}(r_{ij})$, dove $r_{ij} = |\mathbf{r}_i - \mathbf{r}_j|$, e delle sue derivate prima e seconda diventa

$$T_{i} = \frac{\hbar^{2}}{2m} \left[\frac{3}{\alpha} + \frac{1}{2} \sum_{j \neq i} u_{\beta}''(r_{ij}) + \sum_{j \neq i} \frac{u_{\beta}'(r_{ij})}{r_{ij}} - \frac{1}{\alpha^{2}} r_{i}^{2} - \frac{1}{\alpha} \sum_{j \neq i} u_{\beta}'(r_{ij}) \mathbf{r}_{i} \cdot \hat{\mathbf{r}}_{ij} - \frac{1}{4} \left(\sum_{j \neq i} u_{\beta}'(r_{ij}) \hat{\mathbf{r}}_{ij} \right)^{2} \right].$$

1.2 Energia totale per 2 particelle

Nel caso in cui N=2, i contributi all'energia cinetica sono esprimibili in modo semplice, e l'energia totale risulta

$$H = \frac{\hbar^2}{2m} \left[\frac{6}{\alpha} + u_{\beta}''(r_{12}) + 2 \frac{u_{\beta}'(r_{12})}{r_{12}} - \frac{1}{\alpha^2} (r_1^2 + r_2^2) - \frac{1}{\alpha} r_{12} u_{\beta}'(r_{12}) - \frac{1}{2} (u_{\beta}'(r_{12}))^2 \right] + \frac{1}{2} m \omega^2 (r_1^2 + r_2^2) + 4\varepsilon \left[\left(\frac{\sigma}{r_{12}} \right)^{12} - \left(\frac{\sigma}{r_{12}} \right)^6 \right].$$

$$(1)$$

Inoltre, si vuole che l'energia sia finita per $r_{12} \to 0$, e da questo si può fissare il parametro β_2 . Ciò è dovuto dal fatto che le derivate di $u_{\beta}(r)$ si comportano nel seguente modo:

$$u'_{\beta}(r) \propto \frac{1}{r^{1+\beta_2}}, \quad u''_{\beta}(r) \propto \frac{1}{r^{2+\beta_2}},$$

e quindi il termine dominante nell'hamiltoniano è quello che contiene $(u'_{\beta}(r))^2 \propto 1/r^{2+2\beta_2}$, che deve cancellare il termine dominante $1/r^{12}$ nel potenziale di Lennard-Jones. Si ha quindi che $\beta_2 = 5$.

2 Simulazione senza interazione e correlazione a due corpi

Per prima cosa, si considerano i 4 sistemi senza interazione $(V_{\rm LJ}=0)$ e senza correlazione a due corpi $(\beta_1=0)$. In questo caso, la funzione d'onda si riduce a $\Psi_{\alpha}(\mathbf{R})=\exp\left(-\frac{1}{2\alpha}\sum_{i=1}^{N}r_i^2\right)$ e gli stimatori dell'energia cinetica media sono

$$\begin{split} \langle T \rangle_{\rm lap} &= -\frac{\hbar^2}{4m} \sum_{i=1}^N \langle \nabla_i^2 \log \Psi \rangle = \frac{\hbar^2}{2m} \frac{3N}{\alpha} \,, \\ \langle T \rangle_{\rm grad} &= -\frac{\hbar^2}{2m} \sum_{i=1}^N \langle (\boldsymbol{\nabla}_i \log \Psi)^2 \rangle = \left(\frac{1}{2} m \omega^2 - \frac{\hbar^2}{2m} \frac{1}{\alpha^2} \right) \sum_{i=1}^N r_i^2 = \frac{\hbar^2}{2m} \left(\frac{1}{a_0^2} - \frac{1}{\alpha^2} \right) \sum_{i=1}^N r_i^2 \,. \end{split}$$