DÃY CON CHUNG

Cho hai dãy số nguyên $A=(a_1,a_2,\ldots,a_m)$ và $B=(b_1,b_2,\ldots,b_n)$. Với một số nguyên dương k, người ta muốn tìm một dãy $C=(c_1,c_2,\ldots,c_n)$ thỏa mãn 3 điều kiện:

- Dãy C có thể thành lập bằng cách chọn từ dãy A một số phần tử sao cho chỉ số hai phần tử liên tiếp được chọn hơn kém nhau không quá k.
- Dãy *C* cũng có thể thành lập bằng cách chọn từ dãy *B* một số phần tử sao cho chỉ số hai phần tử liên tiếp được chọn hơn kém nhau không quá *k*.
- Dộ dài dãy C là lớn nhất có thể

Dữ liêu: Vào từ file văn bản LCSK.INP

- Dòng 1 chứa ba số nguyên dương $m, n, k \le 1000$
- Dòng 2 chứa m số nguyên dương $a_1, a_2, ..., a_m$ ($\forall i: a_i \leq 1000$)
- Dòng 3 chứa n số nguyên dương $b_1, b_2, ..., b_n$ ($\forall i: b_i \leq 1000$)

Kết quả: Ghi ra file văn bản LCSK.OUT

- Dòng 1 ghi độ dài dãy C
- Dòng 2 ghi chỉ số các phần tử được chọn trong dãy A theo thứ tự tăng dần
- Dòng 3 ghi chỉ số các phần tử được chọn trong dãy B theo thứ tự tăng dần

Các số trên một dòng của input/output file được/phải ghi cách nhau ít nhất một dấu cách

Ví dụ

LCSK.INP	LCSK.OUT
12 12 2	9
1 2 3 4 5 6 7 8 9 1 2 3 1 2 3 1 4 5 6 2 7 8 9 3	123456789
1 2 3 1 4 5 6 2 7 8 9 3	1 2 3 5 6 7 9 10 11

TÌM VÀNG

Giáo sư X chế tạo một robot tìm vàng. Robot hoạt động trên một vùng đất có bản đồ là hình chữ nhật kích thước $m \times n$ được chia làm lưới ô vuông đơn vị. Các hàng của bảng được đánh số từ 1 tới m từ trên xuống và các cột của bảng được đánh số từ 1 tới n từ trái qua phải, ô nằm trên hàng i và cột j của bảng gọi là ô (i,j) và có trữ lượng vàng là a_{ij} .

Robot có một chỉ số năng lượng cố định bằng k. Khi đặt robot tại một ô (i,j) nào đó làm vị trí xuất phát, robot có thể thực hiện không quá k bước di chuyển từ một ô sang ô kề cạnh và không được đi ra ngoài bản đồ. Gọi trữ lượng vàng lớn nhất của một ô mà robot có thể đến được nếu xuất phát từ ô (i,j) là $b_{i,j}$

Yêu cầu: Xác định các giá trị b_{ij} ($\forall i, j: 1 \le i \le m; 1 \le j \le n$)

Dữ liệu: Vào từ file văn bản MINER.INP

Dòng 1 chứa ba số nguyên m, n, k ($1 \le m, n \le 500$; $0 \le k \le 500$)

m dòng tiếp theo, dòng thứ i chứa n số nguyên dương, số thứ j là a_{ij} ($\forall i,j:0\leq a_{ij}\leq 10^6$)

Kết quả: Ghi ra file văn bản MINER. OUT m dòng, dòng thứ i ghi n số nguyên, số thứ j là b_{ij}

Các số trên một dòng của input/output files được/phải ghi cách nhau bởi ít nhất một dấu cách

Ví dụ

MINER.INP	MINER.OUT
6 6 2	666777
600007	663377
020030	6 5 2 3 4 7
000000	955448
000000	9 9 5 5 8 8
050040	9 9 9 8 8 8
900008	
6 4 3	24 24 24 24
24 23 22 21	24 24 24 23
9 8 7 20	24 24 23 22
10 1 6 19	24 23 22 21
11 2 5 18	17 18 19 20
12 3 4 17	16 17 18 19
13 14 15 16	