Exercise 7: Strain 06.12.2021 - 10.12.2021

Question 1

Consider the following displacement field,

$$\mathbf{u}(x,y,z) = k \begin{bmatrix} 2x + y^2 \\ x^2 - 3y^2 \\ 0 \end{bmatrix},$$

where k is a nonzero constant. Calculate the strain tensor ε !

Question 2

A solid bar with dimensions $l \times w \times w$ (see below) is stretched along its length to a final length al. The volume of the bar does not change during deformation. Calculate the displacement vector \mathbf{u} and the strain tensor ε !

Question 3

(Saint-Venant's compatibility conditions)

The strain tensor ε has six distinct components. However, these six components are computed from only three components of the displacement vector \mathbf{u} . Thus, if we want to solve for the components of \mathbf{u} given the component of ε , we have six equations for three unknowns. For this system of equations to have a solution, some of the strain components must be related. Show that they are by considering their second derivatives! For example, differentiate ε_{xx} twice with respect to y, ε_{yy} twice with respect to x and x with respect to x and x and x and x with respect to x and x and x and x with respect to x and x are x and x are x and x an

Question 4

In the first question, you computed the strain tensor ε for displacement field

$$\mathbf{u}(x,y,z) = k \begin{bmatrix} 2x + y^2 \\ x^2 - 3y^2 \\ 0 \end{bmatrix}.$$

Now show that ε fulfills the compatibility conditions!