Exercises in Marine Ecological Genetics

11. Phylogenetic inference

- Perform and examine sequence alignments
- Infer phylogenies based on genetic distances and Maximum Likelihood
- Visualize phylogenetic trees

Martin Helmkampf

https://github.com/mhelmkampf/meg25

Rays and sharks

- ~ 1200 species
- Crucial in many marine ecosystems e.g. as top predators
- High economic value
- Every third species threatened with extinction

Threats

- Overfishing key driver of drastic decline
- Exacerbated by slow reproduction
- Lack of knowledge:
 - > 25 % species discovered in last 20 years

What is needed

- Improved management of fisheries and protected areas
- Better understanding of species distribution and genetic diversity of populations can help with spatial prioritization

Source: IUCN

Diversity of wedgefishes in Malaysia

Amy Yee-Hui Then

- Wedgefishes are endangered but unprotected in Malaysia
- Limited knowledge of species distribution hinders effective management
- Objective: assess species diversity, distribution and genetic diversity across Malaysia

Kean Chong Lim

Amanda Jhu Xhin Leung

Sampling sites

- 85 specimens
- 15 landing sites and markets
- In situ identification, photographs
- Tissue samples
- Sequencing of COI and ND2

Morphological characters

Eye / spiracle markings

Pectoral fin spot pattern

Tree comparison

How do the Neighbor-Joining (right) and Maximum Likelihood tree (left) differ? How are they the same?

Comparison with morphological species identification

Are samples assigned to different species according to the molecular phylogeny?

Sample	Morphological id
R36	R. springeri
JB03	R. springeri
RJ04	R. australiae
KU18	R. springeri
RX9	R. australiae
KU25	R. palpebratus
RX6	R. australiae

Genetic validation

Maximum likelihood-based phylogenetic analysis ND2 gene

All specimens could be assigned to species with high confidence

Comparison of species identification methods

Species	Morphology	DNA barcoding
R. australiae	68	74
R. palpebratus	4	10
R. springeri	7	1
Unknown	6	0
Total		85

Underestimated by morphology

Overestimated by morphology

16 % of specimens were misidentified based on morphology alone

Species distribution

- Rhynchobatus australiae most common species
- First record of R. palpebratus in Malaysian waters

```
mafft input.fas > output.aln # Align sequences

raxml-ng --all --msa input.aln --model MODEL --bs-trees n # ML + bootstrap

# Visualize trees e.g. on https://itol.embl.de
```

- A good sequence alignment is your hypothesis of homology accurate alignments
 are critical for reliable phylogenetic inference
- Distance-based and Maximum Likelihood methods rely on different models and assumptions to infer phylogenetic relationships, and have different use cases
- Visualizing and rooting your trees correctly helps you interpret the topology and branch lengths, and compare trees