

matrix representation of a bilinear form

Canonical name MatrixRepresentationOfABilinearForm

Date of creation 2013-03-22 14:56:22 Last modified on 2013-03-22 14:56:22

Owner vitriol (148) Last modified by vitriol (148)

Numerical id 5

Author vitriol (148)
Entry type Definition
Classification msc 15A63
Classification msc 11E39
Classification msc 47A07

Given a bilinear form, $B: U \times V \to K$, we show how we can represent it with a matrix, with respect to a particular pair of bases for U and V

Suppose U and V are finite-dimensional and we have chosen bases, $\mathcal{B}_1 = \{e_1, \ldots\}$ and $\mathcal{B}_2 = \{f_1, \ldots\}$. Now we define the matrix C with entries $C_{ij} = B(e_i, f_j)$. This will be the matrix associated to B with respect to this basis as follows; If we write $x, y \in V$ as column vectors in terms of the chosen bases, then check $B(x, y) = x^T C y$. Further if we choose the corresponding dual bases for U^* and V^* then C and C^T are the corresponding matrices for B_R and B_L , respectively (in the sense of linear maps). Thus we see that a symmetric bilinear form is represented by a symmetric matrix, and similarly for skew-symmetric forms.

Let \mathcal{B}'_1 and \mathcal{B}'_2 be new bases, and P and Q the corresponding change of basis matrices. Then the new matrix is $C' = P^T C Q$.