Introduction to Algorithms 6.046J/18.401J/SMA5503

Lecture 10
Prof. Piotr Indyk

• A data structure for a new problem

Amortized analysis

2-3 Trees: Deletions

 Problem: there is an internal node that has only 1 child

• Solution: delete recursively

Example

Example, ctd.

Example, ctd.

Example, ctd.

Procedure for Delete(x)

- Let y=p(x)
- Remove x
- If y≠root then
 - Let z be the sibling of y.
 - Assume z is the right sibling of y, otherwise the code is symmetric.
 - If y has only 1 child w left

Case 1: z has 3 children

- Attach left[z] as the rightmost child of y
- Update y.max and z.max

Case 2: z has 2 children:

- Attach the child w of y as the leftmost child of z
- Update z.max
- Delete(y) (recursively*)
- Else
 - Update max of y, p(y), p(p(y)) and so on until root
- Else
 - If root has only one child u
 - Remove root
 - Make u the new root

^{*}Note that the input of Delete does not have to be a leaf

2-3 Trees

• The simplest balanced trees on the planet! (but, nevertheless, not completely trivial)

Dynamic Maintenance of Sets

- Assume, we have a collection of elements
- The elements are clustered
- Initially, each element forms its own cluster/set
- We want to enable two operations:
 - FIND-SET(x): report the cluster containing x
 - UNION(C_1 , C_2): merges the clusters C_1 , C_2

Disjoint-set data structure (Union-Find)

Problem:

- Maintain a collection of *pairwise-disjoint* sets $S = \{S_1, S_2, ..., S_r\}$.
- Each S_i has one representative element $x=rep[S_i]$.
- Must support three operations:
 - Make-Set(x): adds new set {x} to S with $rep[\{x\}] = x$ (for any $x \notin S_i$ for all i).
- WEAK• UNION(x, y): replaces sets S_x , S_y with $S_x \cup S_y$ in S for any rep. x, y in distinct sets S_x , S_y .
 - FIND-SET(x): returns representative $rep[\hat{S}_x]$ of set S_x containing element x.

- If we have a WeakUnion(x, y) that works only if x, y are representatives, how can we implement Union that works for any x, y?
- Union(x, y)
 - =WeakUnion(Find-Set(x), Find-Set(y))

Representation

Applications

- Data clustering
- Killer App: Minimum Spanning Tree (Lecture 13)
- Amortized analysis

Ideas?

- How can we implement this data structure efficiently?
 - Make-Set
 - Union
 - -FIND-SET

Bad case for UNION or FIND

Simple linked-list solution

Store set $S_i = \{x_1, x_2, ..., x_k\}$ as an (unordered) doubly linked list. Define representative element $rep[S_i]$ to be the front of the list, x_1 .

- Make Stety impranses \hat{x} as a lone node. $\Theta(1)$
- FIND-SET(x) walks left in the list containing x until it reaches the front of the list. $\Theta(n)$
- UNION(x, y) concatenates the lists containing x and y, leaving rep. as FIND-SET[x]. $\Theta(n)$

Augmented linked-list solution

Store set $S_i = \{x_1, x_2, ..., x_k\}$ as unordered doubly linked list. Each x_j also stores pointer $rep[x_j]$ to head.

- FIND-SET(x) returns rep[x].
- UNION(x, y) concatenates the lists containing x and y, and updates the rep pointers for all elements in the list containing y.

Example of augmented linked-list solution

Example of augmented linked-list solution

Example of augmented linked-list solution

Augmented linked-list solution

Store set $S_i = \{x_1, x_2, ..., x_k\}$ as unordered doubly linked list. Each x_j also stores pointer $rep[x_j]$ to head.

- FIND-SET(x) returns rep[x].
- UNION(x, y) concatenates the lists containing x and y, and updates the rep pointers for all elements in the list containing y.

Amortized analysis

- So far, we focused on worst-case time of *each* operation.
 - E.g., Union takes $\Theta(n)$ time for *some* operations
- Amortized analysis: count the *total* time spent by any sequence of operations
- Total time is always at most

worst-case-time-per-operation * #operations

but it can be much better!

- E.g., if times are 1,1,1,...,1,n,1,...,1
- Can we modify the linked-list data structure so that any sequence of m MAKE-SET, FIND-SET, UNION operations cost less than $m*\Theta(n)$ time?

Alternative

Union(x, y):

- concatenates the lists containing y and x, and
- update the *rep* pointers for all elements in the list containing y x

Alternative concatenation

$U_{NION}(x, y)$ could instead

- concatenate the lists containing y and x, and
- update the *rep* pointers for all elements in the list containing *x*.

Alternative concatenation

$U_{NION}(x, y)$ could instead

- concatenate the lists containing y and x, and
- update the *rep* pointers for all elements in the list containing *x*.

Smaller into larger

- Concatenate smaller list onto the end of the larger list (each list stores its *weight* = # elements)
- Cost = Θ (length of smaller list).

Let *n* denote the overall number of elements (equivalently, the number of MAKE-SET operations). Let *m* denote the total number of operations.

Theorem: Cost of all Union's is $O(n \lg n)$.

Corollary: Total cost is $O(m + n \lg n)$.

Total UNION cost is $O(n \lg n)$

Proof:

- Monitor an element x and set S_x containing it
- After initial MAKE-SET(x), weight[S_x] = 1
- Consider any time when S_x is merged with set S_y
 - If $weight[S_v] \ge weight[S_x]$
 - pay 1 to update rep[x]
 - $weight[S_x]$ at least doubles (increasing by $weight[S_v]$)
 - Otherwise
 - pay nothing
 - $weight[S_x]$ only increases
- Thus:
 - Each time we pay 1, the weight doubles
 - Maximum possible weight is n
 - Maximum pay $\leq \lg n$ for x, or $O(n \log n)$ overall

Final Result

- We have a data structure for dynamic sets which supports:
 - Make-Set: O(1) worst case
 - FIND-SET: O(1) worst case
 - Union:
 - Any sequence of any m operations* takes $O(m \log n)$ time, or
 - ... the *amortized complexity* of the operations* is $O(\log n)$
- * I.e., MAKE-SET, FIND-SET or UNION

Amortized vs Average

- What is the difference between average case complexity and amortized complexity?
 - -"Average case" assumes *random distribution* over the input (e.g., random sequence of operations)
 - "Amortized" means we count the *total* time taken by *any* sequence of m operations (and divide it by m)

Can we do better?

- One can do:
 - Make-Set: O(1) worst case
 - FIND-SET: $O(\lg n)$ worst case
 - WeakUnion: O(1) worst case
 - Thus, Union: $O(\lg n)$ worst case

Representing sets as trees

- Each set $S_i = \{x_1, x_2, ..., x_k\}$ stored as a tree
- $rep[S_i]$ is the tree root.

UNION($rep[S_1]$, $rep[S_1]$): rep

- Make-Set(x) initializes x as a lone node.
- FIND-SET(x) walks up the tree containing x until it reaches the root.
- UNION(x, y) concatenates
 the trees containing
 x and y

$$S_1 = \{x_1, x_2, x_3, x_4, x_5, x_6\}$$

 $S_2 = \{x_7\}$

Time Analysis

- Make-Set(x) initializes x as a lone node.
- FIND-SET(x) walks up the tree containing x until it reaches the root.
- WEAKUNION(x, y)
 concatenates
 the trees containing x and y

O(1)

O(depth) = ?

O(1)

"Smaller into Larger" in trees

Algorithm: Merge tree with smaller weight into tree with larger weight.

 Height of tree increases only when its size doubles

Height logarithmic in weight

"Smaller into Larger" in trees

Proof:

- Monitor the height of an element z
- Each time the height of z increases, the weight of its tree doubles
- Maximum weight is *n*
- Thus, height of z is $\leq \log n$

Tree implementation

- We have:
 - Make-Set: O(1) worst case
 - FIND-SET: O(depth) = O(lg n) worst case
 - WeakUnion: O(1) worst case
- Can amortized analysis buy us anything?
- Need another trick...

Trick 2: Path compression

When we execute a FIND-SET operation and walk up a path to the root, we *know* the representative for *all* the nodes on the path.

Path compression makes all of those nodes direct

children of the root.

Trick 2: Path compression

When we execute a FIND-SET operation and walk up a path to the root, we know the representative

for all the nodes on the path.

Path compression makes all of those nodes direct children of the root.

Trick 2: Path compression

When we execute a FIND-SET operation and walk up a path *p* to the root, we know the representative

for all the nodes on path p.

Path compression makes all of those nodes direct children of the root.

Cost of FIND-SET(x) is still $\Theta(depth[x])$.

FIND-SET (y_2)

The Theorem

Theorem: In general, amortized cost is $O(\alpha(n))$, where $\alpha(n)$ grows really, really, really slow.

Ackermann's function A

Define
$$A_k(j) = \begin{cases} j+1 & \text{if } k = 0 \\ A_{k-1}^{(j+1)}(j) & \text{if } k \ge 1 \end{cases}$$
 -iterate $A_{k-1}(j) = \begin{cases} j+1 & \text{if } k = 0 \\ A_{k-1}^{(j+1)}(j) & \text{if } k \ge 1 \end{cases}$ -iterate $A_{k-1}(j) = \begin{cases} j+1 & \text{if } k = 0 \\ A_{k-1}^{(j+1)}(j) & \text{if } k \ge 1 \end{cases}$

$$A_{0}(j) = j + 1
A_{1}(j) = A_{0}(...(A_{0}(j)...) \sim 2j
A_{2}(j) = A_{1}(...A_{1}(j)...) \sim 2j 2^{j}
A_{3}(j) > 2^{j}$$

$$A_{3}(1) = 20$$

$$A_{3}(1) = 20$$

$$A_0(1) - 2$$

 $A_1(1) = 3$

$$A_2(1) = 7$$

$$A_3(1) = 2047$$

$$A_{4}(1) > 2^{2^{2^{047}}}$$

 $A_{A}(j)$ is a lot bigger.

Define
$$\alpha(n) = \min \{k : A_k(1) \ge n\}.$$

The Theorem

Theorem: In general, amortized cost is $O(\alpha(n))$, where $\alpha(n)$ grows really, really, really slow.

Proof: Really, really long (CLRS, p. 509)

Application: Dynamic connectivity

Suppose a graph is given to us *incrementally* by

- ADD-VERTEX(v)
- ADD-EDGE(u, v)

and we want to support connectivity queries:

• Connected(u, v):

Are u and v in the same connected component?

For example, we want to maintain a spanning forest, so we check whether each new edge connects a previously disconnected pair of vertices.

Application: Dynamic connectivity

Sets of vertices represent connected components. Suppose a graph is given to us *incrementally* by

- ADD-VERTEX(v) MAKE-SET(v)
- ADD-EDGE(u, v) if not Connected(u, v) then Union(v, w)

and we want to support connectivity queries:

• Connected (u, v): — Find-Set(u) = Find-Set(v) Are u and v in the same connected component?

For example, we want to maintain a spanning forest, so we check whether each new edge connects a previously disconnected pair of vertices.

Simple balanced-tree solution

Store each set $S_i = \{x_1, x_2, ..., x_k\}$ as a balanced tree (ignoring keys). Define representative element $rep[S_i]$ to be the root of the tree.

- Make-Set(x) initializes x as a lone node. $-\Theta(1)$
- FIND-SET(x) walks up the tree containing x until it reaches the root. $-\Theta(\lg n)$
- UNION(x, y) concatenates the trees containing x and y, changing rep. $-\Theta(\lg n)$

 $S_i = \{x_1, x_2, x_3, x_4, x_5\}$ $rep[S_i] x_1$ x_4 x_3

Plan of attack

We will build a simple disjoint-union data structure that, in an amortized sense, performs significantly better than $\Theta(\lg n)$ per op., even better than $\Theta(\lg \lg n)$, $\Theta(\lg \lg \lg n)$, etc., but not quite $\Theta(1)$.

To reach this goal, we will introduce two key *tricks*. Each trick converts a trivial $\Theta(n)$ solution into a simple $\Theta(\lg n)$ amortized solution. Together, the two tricks yield a much better solution.

First trick arises in an augmented linked list. Second trick arises in a tree structure.

Each element x_j stores pointer $rep[x_j]$ to $rep[S_i]$.

Union(x, y)

- concatenates the lists containing x and y,
 and
- updates the *rep* pointers for all elements in the list containing *y*.

Analysis of Trick 2 alone

Theorem: Total cost of FIND-SET's is $O(m \lg n)$. **Proof:** Amortization by potential function. The *weight* of a node x is # nodes in its subtree. Define $\phi(x_1, ..., x_n) = \sum_i \lg weight[x_i]$. Union (x_i, x_i) increases potential of root Find-Set (x_i) by at most $\lg weight[\text{root Find-Set}(x_i)] \leq \lg n$. Each step down $p \rightarrow c$ made by FIND-SET (x_i) , except the first, moves c's subtree out of p's subtree. Thus if $weight[c] \ge \frac{1}{2} weight[p]$, ϕ decreases by ≥ 1 , paying for the step down. There can be at most $\lg n$ steps $p \to c$ for which weight[c] < $\frac{1}{2}$ weight[p].

Analysis of Trick 2 alone

Theorem: If all Union operations occur before all Find-Set operations, then total cost is O(m).

Proof: If a FIND-SET operation traverses a path with k nodes, costing O(k) time, then k-2 nodes are made new children of the root. This change can happen only once for each of the n elements, so the total cost of FIND-SET is O(f+n).

UNION(x, y)

- Every tree has a rank
- Rank is an upper bound for height
- When we take UNION(x, y):
 - If rank[x] > rank[y] then link y to x
 - If rank[x] <rank[y] then link x to y</p>
 - If rank[x]=rank[y] then
 - link x to y
 - rank[y]=rank[y]+1
- Can show that $2^{rank(x)} \le \#$ elements in x (Exercise 21.4-2)
- Therefore, height is O(log n)