IMU2Music: Learning to Generate Music from IMU Sensor Readings

Julian de Gortari Briseno

Overall Project Goals

Main goal: design a neural network that translates IMU readings of a person playing an instrument into actual soundwaves

Motivation

- Neural networks can perform cross-modality sequence translation tasks
- Previous attempts at mapping human motion to sound, disregarding IMU
- Can IMU replace microphones for music recording?

Specific Aims and Deliverables

- 1. Collect a dataset that captures both IMU readings and the audio recording of people playing an instrument.
- 2. Design a set of neural networks that translate these IMU readings into an audio representation.
- 3. Test and compare the performance of these neural networks.

upf. Universitat
Pompeu Fabra
Barcelona

Dataset of violin recordings with IMU readings (~47 minutes)

TELMI

Technology Enhanced Learning of Musical Instrument Performance.

Music consists of recurrent elements and there is reference to elements way too in the past => <u>use transformer</u>

Figure 1: The Transformer - model architecture.

- For decoder we use Musical Instrument Digital
 Interface (MIDI) representation.
- Includes timing, pitch and velocity (hardness of played note).
- Easier to learn.

What to use for the encoder part?

- Normal transformer encoder with relative positional representation
- Use a ConvTransformer encoder.

Play with feature embedding

Related Work

Chuang Gan and Deng Huang and Peihao Chen and Joshua B. Tenenbaum and Antonio Torralba (2020). Foley Music: Learning to Generate Music from Videos.

https://arxiv.org/abs/2007.10984

Related Work

Eli Shlizerman, Lucio Dery, Hayden Schoen, Ira Kemelmacher-Shlizerman (2018). **Audio to Body Dynamics**. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 7574-7583. https://openaccess.thecvf.com/content_cvpr_2018/html/Shlizerman_Audio_to_Body_CVPR_2018_paper.html

Current Status

- Dataset collected and processed
- Transformer code adapted to process IMU data
- Original transformer model trained, ready to be used for transfer learning

Next Steps

- Include ConvTransformer encoder code
- Test different network architectures
- Do some feature engineering