

MSBA 6330 Prof Liu

- In this chapter, you will learn
 - How to explore databases and tables in Hive
 - How HiveQL syntax compares to SQL
 - Which data types Hive supports
 - Which types of join operations Hive supports and how to use them

HIVE DATABASES AND TABLES

Hive Tables

- By default, Hive stores data for <u>managed tables</u> in the HDFS directory /user/hive/warehouse
 - Each table's data is stored in a subdirectory named after the table
 - A table's directory may contain multiple files
 - External tables can be stored else where (including in the cloud).

Hive Databases

- Each Hive table belongs to a specific database
 - If you don't specify a database, the table belongs to Hive's default database (not recommended, especially for large organizations)
- Please note that many small tables or lots of small partitions lead to small files in HDFS, which is not optimal.

Exploring Hive Databases And Tables (1 Of 2)

See which databases are available with the SHOW DATABASES command

```
SHOW DATABASES; accounting default
```

Switch between databases with the USE command

```
SELECT * FROM customers; -- customers in the default database

USE dualcore; -- Switch databases.

SELECT * FROM customers; -- customers in dualcore

SELECt * FROM sales.customers; -- customers in dualcore
```

All Hive keywords

are case-insensitive,
including the names
of Hive operators
and functions.

See which tables the current database contains with the SHOW TABLES command

```
USE dualcore;
SHOW TABLES;
customers
Employees ...
```

Exploring Hive Databases And Tables (2 Of 2)

See the basic structure for a table with the DESCRIBE command

```
> DESCRIBE orders; -- Provide the fully qualified name
order_id
int cust_id
int order_date
timestamp
```

 DESCRIBE FORMATTED provides even more detailed information for those with advanced requirements

HIVEQL SYNTAX

An Introduction To HiveQL

- HiveQL is Hive's query language
 - Based on a subset of SQL-92, plus Hive-specific extensions
- Some limitations compared to 'standard' SQL
 - Some features are not supported
 - e.g. Updating or deleting individual records (not available before Hive v0.14)
 - Others are only partially implemented
 - Include joins on non-equality conditions

SQL support

- Semantics: Similar to MySQL
 - Select
 - Group by: Hive requires the group-by field to be among the selected fields.
 - Limit
 - Order by: Hive requires the order-by field to be among the selected fields
 - Where
 - UNION [ALL]
- Windowing /analytics functions (0.11+):
 - lead/lag/first_value/last_value
 - over/window/partition by/cube/rollup
 - rank(),row_number(),dense_rank(),cume_dist(), percent_rank(),ntile()

Hive functions

- Many functions are similar to MySQL (complete list)
 - keyword/function/identifier names are not case sensitive.

```
cast(<expr> as <type>):cast('1' as int)
                                              rlike (regex) - regular expression like.
length(s)
                                              to_date(s)
concat(s1, s2, s3, ...)
                                              year (d)
concat ws (separator, s1, s2, s3, ...)
                                              month (d)
substr(s, start, length)
                                              day(d)
upper(s)/ucase(s),
                                              from unixtime(i)
trim(s), ltrim(s)
                                              size (Map or Array)
regexp replace(s, regex, replacement)
                                              rand()
repeat(s,n)
                                              round(d)
split(s, pattern)
                                              floor(d)
instr(str, substr)
                                              ceil(d)
```

But, string comparisons are case-sensitive

```
SELECT * FROM customers WHERE state
IN ('CA', 'OR', 'WA', 'NV', 'AZ');
```

Subqueries In Hive

It supports subqueries in the FROM and WHERE clauses

- Support for correlated subqueries is limited.
 - E.g. cannot be used in aggregations or conditional statements.

DATA TYPES

Hive Data Types

- Hive supports more than a dozen types
 - Most are similar to ones found in relational databases
 - Hive also supports three complex types
- Use the DESCRIBE command to see a table's column types

Hive Integer Types

- Integer types are appropriate for whole (signed) numbers
 - Both positive and negative values allowed

Name	Size	Range	Example
TINYINT	1 Byte	-128 - 127	17
SMALLINT	2 Bytes	-32,768 - 32,767	5842
INT	4 Bytes	-2,147,483,648 - 2,147,483,647	84127213
BIGINT	8 Bytes	~-9.2 quintillion - ~ 9.2 quintillion	632197432180964

- The default type for literal values is INT
- Best Practice:
 - Use the smallest type capable of doing the job

Hive Decimal Types

- Float/double for floating point numbers
 - Caution: Avoid using when exact values are required!
 - So a float value entered as 3.1 might actually be stored as 3.10000000000012
- Decimal for precise decimal numbers (e.g. money)

Name	Description	Example
FLOAT	Decimals	3.14159
DOUBLE	Very precise decimals	3.14159265358979323846
DECIMAL(p,s)	Controls scale/precision of a number	100.45 (p=5, s=2)

Other Simple (Scalar) Types In Hive

Hive can also store several other types of information

Name	Description	Example
STRING	Character sequence	Betty F. Smith
CHAR(n)	Fixed-length character sequence	Hive (n=6)
VARCHAR(n)	Variable length character sequence	Hive (n=10)
BOOLEAN	True or False	TRUE
TIMESTAMP	Instant in time (UTC)	2013-06-14 16:51:05
BINARY	Raw bytes (Like VARBINARY in SQL)	N/A

Complex column types in Hive

- Hive also has a few complex data types
 - These are capable of holding multiple values

Name	Description & how to Define	Stored Data (suppose \$ is the collection item delimitator)	Access members
ARRAY	Ordered list of values, all of the same type, e.g. departments array <string></string>	finance\$marketing\$hr	departments[0]
MAP	<pre>Key/value pairs, each of the same type e.g. prices map<string, int=""></string,></pre>	shoe#50\$shirt#75	prices['shirt']
STRUCT	Named fields, of possibly mixed types e.g. addr struct <city:string, state:string,="" zip:int=""></city:string,>	Minneapolis\$MN\$55455	addr.city

- Complex data types violate the "normal form", but offer fast data access
 - They are often desirable in Hadoop/Hive because they eliminate the need for big joins

JOINING DATASETS

Joins In Hive

- Hive supports several types of joins
 - Inner joins
 - Outer joins (Left, Right, and Full)
 - CROSS joins (supported in Hive 0.10 and later)
 - Left semi joins
- Only equality conditions are allowed in joins (equi-joins)
 - Valid: customers.cust id = orders.cust id
 - Invalid: customers.cust_id <> orders.cust_id
- For best performance, <u>list the largest table last in your query</u>
 - Small table JOIN big table

Join Syntax

Hive requires the following syntax for joins

```
SELECT c.cust_id, name, total
   FROM customers c
   JOIN orders o ON (c.cust_id = o.cust_id);
```

- The above example is an inner join (the word "inner" is not required) which emits records only when the join key is found in both tables
- Implicit inner join syntax is not supported in Hive

```
SELECT c.cust_id, name, total
   FROM customers c, orders o
   WHERE (c.cust_id = o.cust_id);
```

Left Outer Join Example

- "OUTER" is required for outer joins in Hive
 - Customers Table

Orders Table

order_id	cust_id	total
1	a	1539
2	С	1871
3	a	6532
4	b	1456
5	Z	2137

cust_id	name	total
a	Alice	1539
a	Alice	6352
b	Bob	1456
С	Carlos	1871
d	Dieter	NULL

Full Outer Join Example

Customers Table

cust_id	name	country
a	Alice	us
b	Bob	ca
С	Carlos	mx
d	Dieter	dw

Orders Table

order_id	cust_id	total
1	a	1539
2	С	1871
3	a	6532
4	b	1456
5	z	2137

Code

```
SELECT c.cust_id, name, total
FROM customers c
FULL OUTER JOIN orders o
ON (c.cust_id = o.cust_id);
```

Result

cust_id	name	total
a	Alice	1539
а	Alice	6352
b	Bob	1456
С	Carlos	1871
d	Dieter	NULL
NULL	NULL	2137

Essential Points

- Every Hive table belongs to exactly one database
 - The SHOW DATABASES command lists databases
 - The USE command switches the active database
 - The SHOW TABLES command lists all tables in a database
- Every column in a Hive table has an associated data type
 - Most simple column types are similar to SQL
 - Hive also supports a few complex types
- HiveQL syntax is familiar to those who know SQL
 - A subset of SQL-92, plus Hive-specific extensions
 - Supports inner, outer, and Left semi joins
 - Many SQL functions are built into Hive