

Green and Sustainable Remediation in the Navy's Environmental Restoration Program

Tanwir Chaudhry, Karla Harre, Issis Rivadineyra Naval Facilities Engineering Service Center Russell Sirabian Battelle Memorial Institute

Environment, Energy Security, & Sustainability Symposium Denver, CO June 14-17, 2010

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to completing and reviewing the collection this burden, to Washington Headquuld be aware that notwithstanding and DMB control number.	ion of information. Send comments arters Services, Directorate for Info	s regarding this burden estimate or formation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE JUN 2010		2. REPORT TYPE		3. DATES COVERED 00-00-2010 to 00-00-2010		
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER		
Green and Sustainable Remediation in the Navy's Environmental				5b. GRANT NUMBER		
Restoration Program			5c. PROGRAM ELEMENT NUMBER			
6. AUTHOR(S)			5d. PROJECT NUMBER			
				5e. TASK NUMBER		
			5f. WORK UNIT NUMBER			
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Facilities Engineering Service Center,1100 23rd Street,Port Hueneme,CA,93043				8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSOR/MONITOR'S ACRONYM(S)			
				11. SPONSOR/M NUMBER(S)	ONITOR'S REPORT	
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release; distributi	on unlimited				
13. SUPPLEMENTARY NO Presented at the Ni held 14-17 June 20	DIA Environment, I	Energy Security &	Sustainability (E2	S2) Symposi	um & Exhibition	
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF			18. NUMBER	19a. NAME OF		
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	OF PAGES 24	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

New Executive Order and DoD Guidance

- EO 13514 October 5, 2009 Federal Leadership in Environmental, Energy, and Economic Performance
 - GSR related major elements: Improve energy efficiency; reduce GHG emissions, water consumption, & waste generation; promote renewable energy, recycling, & community enhancements
- DoD Memorandum August 10, 2009 Consideration of Green and Sustainable Remediation (GSR) practices in the Defense Environmental Restoration Program
 - Evaluate opportunities for GSR during all phases of remediation
 - Implement these opportunities when and where these make sense
 - Track and report progress

What is GSR?

- GSR employs strategies for cleanups that:
 - Use natural resources and energy efficiently
 - Reduce negative impacts on the environment
 - Minimize or eliminate pollution at its source
 - Protect and benefit the community at large
 - Reduce waste to the greatest extent possible
- GSR minimizes the environmental "footprint" of cleanup actions
- Environmental footprint refers to the impacts on environmental media and society

Green and Sustainable Remediation DON Programmatic Approach

- •DON remains focused on conducting cleanups in accordance with CERCLA and the NCP
 - –GSR considerations bring a more holistic approach to site cleanup while remaining endpoint focused
 - Environmental, social, and economic impacts considered during remedy selection are rolled into existing NCP criteria
- Implementing GSR as part of the DON's existing optimization program
 - Optimization reviews (required by DON policy) are opportune times to evaluate green/sustainable methods
 - -Consider GSR throughout the cleanup process: Key points include Remedy Selection, Remedial Design, and System Operation
 - Consider sustainability when developing performance objectives and exit strategies

Green and Sustainable Remediation DON Programmatic Approach

- DON Optimization Workgroup tasked to develop and promote GSR approach, implementation, and information
- Emphasized in NAVFAC Technology Transfer Plan for Environmental Restoration 2010 – 2014
 - -"Incorporating Optimization and Sustainable Environmental Remediation Practices" is one of the top 8 technical challenges
- Communicating efforts with other Federal partners, state regulators, and industry through FRTR, ITRC, SuRF, & ASTM

Where does a Sustainability Evaluation Fit in the CERCLA Process?

- Nine criteria for detailed analysis of remedial alternatives
 - Overall protection of human health and the environment
 - Compliance with ARARs
 - Long-term effectiveness and permanence
 - Reduction of toxicity, mobility or volume through treatment
 - Short-term effectiveness
 - Implementability
 - Cost
 - State acceptance
 - Community acceptance

- Adverse impacts that may be posed to workers, the community, and the environment during construction and operation of the remedy
- Time for remedy implementation

Incorporating GSR into the Cleanup Process

- Minimize environmental footprint of site cleanups
- Most effective stages to apply GSR is during <u>remedy selection</u> and implementation of <u>exit strategies</u>
- Avoid operating remedial systems beyond point of diminishing returns as this increases environmental footprint with little remedial benefit

GSR Evaluation Metrics

- DON Optimization Workgroup decided on the following metrics:
 - -Energy Consumption
 - -GHG Emissions
 - -Criteria Pollutant Emissions
 - -Water Usage
 - –Worker Safety
 - Resource Consumption
 - Waste Generation
 - –Ecological Impacts
 - -Community Impacts
- For operating remedies, include Kwh used and GHG emission per lb contaminant removed
 - Could also include other relevant metrics

Navy GSR Evaluation Case Studies

- Case studies for lessons learned 6 completed, 1 in progress
 - -Former Naval Air Station (NAS) Alameda, CA (two OUs)
 - -NAS Meridian, MS
 - -Marine Corps (MC) Recruit Training Center, Parris Island, SC
 - -MC Logistics Base, Albany, GA
 - -Naval Aviation Depot, Norfolk, VA
 - -Yorktown Fuel Depot, Yorktown, VA (in progress)
- Two case studies in remedial action operation phase
- Five case studies in remedy selection phase

Project Approach

- Determine which sustainability metrics should be considered for the site;
- Establish and apply a methodology to quantify or characterize each metric;
- 3. Obtain consensus regarding how metrics are weighed against each other and against traditional criteria in selecting the remedial approach;
- Identify methods to reduce environmental footprint of remedy components; and
- 5. Prioritize, select, and document what footprint reduction methods should be implemented with consideration of the overall net environmental benefit and available funding.

Observations from Case Studies - GHG Emissions

- All case studies included GHG emissions - CO₂, CH₄, and N₂0
- Reported as CO₂e
- Mostly related to energy consumption
- For commonly used in situ remedies (active), In situ bio tends to have low GHG emissions

ISCO - GHG Emissions from Various Activities

- ➤ Production of chemicals / supplies used at remediation sites could have significant contribution for GHG footprint
- Two case studies did not include GHG emissions from production of chemicals / supplies

What is Included in GHG Calculation for each Activity?

■ Well Installation
 ■ Chem. Production
 □ Construction & Ops
 ■ Monitoring
 ■ LTM

- Consumables
- Transportation Personnel
- Transportation Equipment / Materials
- Equipment Use earthwork, pumps, compressors
- Residual Handling soil, water, sludge

Water Usage

Injury

Typical High Footprint Activities

Activity	Metrics Most Impacted
Transportation for materials and waste as well as personnel during RA-O & LTMgt	Emissions of GHGs, criteria pollutants, consumption of energy, accident risk (particularly death)
Operation of mechanical equipment (e.g. pumps, blowers, compressors)	Emissions of GHGs, criteria pollutants, consumption of energy
Drilling/Well installation	Emissions of GHGs, criteria pollutants, consumption of energy, accident risk (particularly injury)
Consumption of chemicals or other materials (e.g. oxidants, ZVI, biostimulants, GAC)	Emissions of GHGs, consumption of energy

- SiteWise[™] Tool released May 2010
- Collaborative effort between Army, Navy, and Battelle
- Calculates the environmental footprint of remedial alternatives
- MS Excel-based
- Metrics evaluated:
 - -Greenhouse gases
 - -Air quality parameters
 - -Energy consumption
 - -Water consumption
 - -Worker accident risk
- No cost for use
- Available to the public at

http://www.ert2.org/t2gsrportal

GHG Footprint of the Remedial Alternatives
Considered at NAS Meridian

SiteWise™ Data Input Sheet

Yellow cells require the user to choose an input from a drop down ment. White cells require the user to type in a value	on, ogopini		adi Harianing Tariabia
MATERIAL PRODUCTION For inputting data for other options in Material Production, please check this box.			
WELL MATERIALS		Well Type 1	Well Type 2
Input number of wells			
lance to decide the control of (40)			

WELL MATERIALS	Well Type 1	Well Type 2
Input number of wells		
Input depth of wells (ft)		
Choose well diameter (in) from drop down menu	1/2	1/2
Choose material type from drop down menu	Steel	Steel
Choose specific material schedule from drop down menu	Schedule 40 Steel	Schedule 40 Steel

TREATMENT CHEMICALS	Treatment 1	Treatment 2

SiteWiseTM Calculation

PUMP OPERATION - For each pump, select only one of the three methods to calculate energy and GHG emissions Enter "0" for all user input values for unused pumps or unused methods					
USER INPUT	23 for unused pumps of unused methods	Pump 1	Pump 2	Pump 3	Pump 4
	PECIFICATIONS ARE KNOWN	T dilip T	Tump 2	r unip o	T dilip T
	Input Pump horsepower (hp)	0	0	1	5
	Input Number of pumps operating	1	0	2	6
	Input Operating Time for each pump (hrs)	10	0	3	7
	Input Pump Load	0.8	0.8	0.8	0.8
	Input Pump Motor Efficiency	0.9	0.9	0.9	0.9
Method 2 - IF PUMP HEAD IS	KNOWN				
USER INPUT	Input flow rate (gpm)	0	0	0	0
	Input total head (ft)	0	25	0	0
USER INPUT	Input Number of pumps operating	0	1	0	0
USER INPUT	Input Operating Time for each pump (hrs)	0	4	0	0
	Input pump Efficiency	0.6	0.6	0.6	0.6
	Input specific gravity	1	1	1	1
	Pump horsepower (hp)	0.00	0.00	0.00	0.00
Method 3 - IF ELECTRICAL US					
	Input Pump Electrical Usage (KWh)	1000	0	0	0
Select Region					
USER INPUT	Choose Region from Figure 1	AKGD	AKMS	AZNM	CAMX
	CO ₂ emission factor (lb/MWH)	1232	499	1311	724
	CH₄ emission factor (lb/MWH)	0.0256	0.02075	0.01745	0.03024
	N ₂ O emission factor (lb/MWH)	0.00651	0.00408	0.01794	0.00808
	NOx emission factor (lb/MWH)	2.480	6.791	2.111	0.618
	SOx emission factor (lb/MWH)	1.214	0.526	1.081	0.531
	ENERGY OUTPUT				
	Energy Usage (KWh)	1.0E+03	0.0E+00	4.0E+00	1.4E+02
	Energy Usage (MWH)	1.0E+00	0.0E+00	4.0E-03	1.4E-01
	Energy Usage (BTU)	8.5E+06	0.0E+00	3.4E+04	1.2E+06
	CO ₂ OUTPUT				
	CO ₂ emission (metric ton)	5.6E-01	0.0E+00	2.4E-03	4.6E-02
	N ₂ O emission (metric ton CO ₂ e)	9.2E-04	0.0E+00	1.0E-05	1.6E-04
	CH ₄ emission (metric ton CO ₂ e)	2.4E-04	0.0E+00	6.6E-07	4.0E-05
	NOx and SOx OUTPUT				
	NOx emission (metric ton)	1.1E-03	0.0E+00	3.8E-06	3.9E-05
	SOx emission (metric ton)	5.5E-04	0.0E+00	2.0E-06	3.4E-05
TOTAL FROM PUMP OPERATION					
CO ₂ Emission (metric ton)	6.1E-01				
Energy Used (MWh)	1.1E+00				
Energy Used (MMBTU)	9.8E+00				
Water Usage (gal)	5.8E+02				
NOx Emission (metric ton)	1.2E-03				
SOx Emission (metric ton)	5.9E-04				
,					

Major Information Sources

- EPA climate leaders GHG inventory protocol core module guidance
- World Resources Institute
- World Business Council for Sustainable Development
- EPA Mobile 6
- EPA non-road model
- EPA eGRID
- GaBi LCA software
- Eco Profiles from various European industry sources
 - Various groups are developing additional information
 - Need to frequently update emission factors used in GSR evaluations

HOME · WEB TOOL · FACT SHEET · CASE STUDIES · DRIVERS · RESOURCES · TOOLS · CONTACT

Welcome to the Navy's Web site on green and sustainable remediation. This Web site provides useful links on available information, case studies, and Web tools on sustainable practices for remediation.

Web Tool: A Web-based multi-media tool on green and sustainable remediation that discusses sustainability, sustainable remediation, and regulatory drivers for considering green and sustainable remediation. The Web tool available at this location also discusses sustainable remediation metrics, tools, and environmental footprint reduction methodologies.

Fact Sheet: In August 2009, the NAVFAC Optimization Workgroup issued a fact sheet on sustainable environmental remediation. The fact sheet summarizes the need for considering sustainable practices by Nawy Remedial Project Managers (RPMs) and lays out the metrics of green and sustainable remediation as per the Workgroup. The fact sheet also discusses methodologies to conduct baseline environmental footprint of remedial technologies and ways to reduce the footprint.

<u>Case Studies:</u> NAVFAC has applied sustainability concepts on several existing and planned remedial systems. The case studies on this Web page provide a few examples.

<u>Drivers:</u> There are several regulations and incentives that are driving the industry towards green and sustainable remediation. This Web page discusses some of the regulations and executive orders that mandate federal agencies to conserve energy and to be more sustainable.

Resources: There are guidance documents, case studies, and standards available on green and sustainable remediation on several federal, state, and other organizations. This Web page contains links to many of these informational sites.

Tools: There are several tools available in the public domain for conducting a baseline environmental footprint of a remedial technology. SiteWise™ being developed jointly by the Navy, Army Corps, and Battelle is one of such tools and will be available on this site soon.

HOME · WEB TOOL · FACT SHEET · CASE STUDIES · DRIVERS · RESOURCES · TOOLS · CONTACT

Green and Sustainable Remediation Fact Sheet and Web Training Tool

- Issued August 2009 by the DON Optimization Workgroup
- Sustainability metrics
- Footprint assessment methods
- Incorporating GSR into the Environmental Restoration Process
- Footprint reduction methods

Fact sheet available from:

http://www.ert2.org/t2gsrportal

Green and Sustainable Remediation Additional DON Products

Training

- Spring 2010 RITS (7 locations)
 - -GSR Overview and SiteWise™ Tool
- CECOS Remedy Optimization and Site Closeout Course (2 per yr)
 - Being updated to include GSR considerations

Guidance

- Guidance for Optimizing Remedy Evaluation, Selection, and Design (updated March 2010)
- Guidance for Optimizing Remedial Action Operations (planned update to include GSR in 2011)
- New guidance for GSR
 - -Underway with planned completion by EOY 2010

Case Studies

- Completed six case studies and one underway
- Lessoned learned to be included in guidance, training, and other resources

Summary

- DON aggressively taking actions to integrate green and sustainable practices within all phases of remediation
- DON Optimization workgroup developing resources
- •SiteWiseTM is a valuable tool for quantifying the environmental footprint of remedial alternatives
- DON metrics include GHG emissions, energy usage, criteria air pollutants, ecological impacts, water usage, resource consumption, worker safety, and community impacts
- DON working with other agencies for sharing lessons learned and developing consistent approaches
- DON developing a guidance for evaluating and implementing GSR

