Module 12 - Second Order Time Response

ME3050 - Dynamics Modeling and Controls

Mechanical Engineering
Tennessee Technological University

Topic 4 - Specification of The Step Response

The Unit Step Response Rise, Peak, Time and Settling Time Maximum Overshoot and The Damping Ratio System Identification

Topic 4 - Specification of The Step Response

- The Unit Step Response
- Rise, Peak, and Settling Time
- Maximum Overshoot and The Damping Ratio
- System Identification

The Mass Spring Damper

Now, consider the mass-spring system with damping present subject to **step** input. This models instantly turning on the input force f(t).

Heavyside's Step Function

$$f(t) = \begin{cases} 0 & t < 0 \\ F & t \ge 0 \end{cases}$$

The EOM is:

$$m\ddot{x}+c\dot{x}+kx=f(t)$$
 with $x(t=0)=x_0$ and $v(t=0)=v_0$

Unit Step Response

The unit step response is a special case of the forced response in which f(t) is the step function of unit magnitude (F=1).

Overdamped	$x(t) = \frac{1}{k} \left(\frac{r_2}{r_1 - r_2} e^{-r_1 t} - \frac{r_1}{r_1 - r_2} e^{-r_2 t} + 1 \right)$
	$r_{1,2} = -s_{1,2}$
Critically Damped	$x(t) = \frac{1}{K}[(-1 - \omega_n t)e^{-\omega_n t} + 1]$
Underdamped	$x(t)=rac{1}{k}\left[rac{1}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_n t} ext{sin}(\omega_d t+\phi+1 ight]$
	$\phi = an^{-1}\left(rac{\sqrt{1-\zeta^2}}{\zeta} ight) + \pi$

Description and Specification of System Response

We are going to derive several quatities that describes the response of an underdamped system.

Rise Time

The **rise time** is the time at which the response first equals the steady state value.

$$\mathbf{x}(t) = rac{1}{k} \left[rac{1}{\sqrt{1-\zeta^2}} \mathrm{e}^{-\zeta \omega_n t} \mathit{sin}(\omega_d t + \phi) + 1
ight]$$

Set the transient term to zero and solve for t.

$$e^{-\zeta\omega_n t} sin(\omega_d t + \phi) = 0 \implies sin(\omega_d t + \phi) = 0 \implies \omega_d t + \phi = 2\pi$$
 $t_{rise} = t_r = \frac{2\pi - \phi}{\omega_d t}$

Peak Time

The **peak time** is the time at which the response equals the maximum value. Find the derivative of the response equation and set it equal to zero.

$$\begin{split} \dot{x}(t) = \\ \left(\frac{1}{K}\frac{1}{\sqrt{1-\zeta^2}}\right) \left[e^{-\zeta\omega_n t}(\omega_d cos(\omega_d t + \phi)) + sin(\omega_d t + \phi)(-\zeta\omega_n e^{-\zeta\omega_n t})\right] \end{split}$$

$$sin(\omega_d)t = 0 \implies \omega_d t = \pi \implies t_{peak} = t_p = \frac{\pi}{\omega_d}$$

Settling Time

The **settling time** is the time at which the response decays to a certain percentage of the steady state value.

It can be esitmated as:

$$t_{settling} = t_s = -\frac{In(tolerance)}{\zeta \omega_n}$$

$$2\% \implies tolerance = 0.02$$

$$5\% \implies tolerance = 0.05$$

Maximum Overshoot

The **maximum overshoot** is the response beyond the steady state value.

$$M_p = x(t_p) - x_{ss} \implies M_p = \frac{1}{k} e^{\frac{-\pi\zeta}{\sqrt{1-\zeta^2}}}$$

This is often expressed as a percentage.

$$M_{\%} = \frac{x(t_p) - x_{ss}}{x_{co}} 100 = 100e^{\frac{-\pi\zeta}{\sqrt{1-\zeta^2}}}$$

Damping Ratio from Maximum Overshoot

The *damping ratio* can be determined from the maximum overshoot!

$$M_{\%}=100e^{rac{-\pi\zeta}{\sqrt{1-\zeta^2}}}$$

Solve for ζ .

$$\zeta = \frac{R}{\sqrt{\pi^2 + R^2}}$$
 with $R = \ln\left(\frac{100}{M\%}\right)$

Damping Ratio from Log Decrement

The logarithmic decrement is the natural log of the ratio of the amplitudes of any two successive peaks:

$$\delta = \frac{1}{n} \ln \frac{x(t)}{x(t+nT)}$$

x(t) is the overshoot (amplitude - final value) at time t and x(t + nT) is the overshoot of the peak n periods away.

The damping ratio is then found from the logarithmic decrement by:

$$\zeta = \frac{1}{\sqrt{1 + \left(\frac{2\pi}{\delta}\right)^2}}$$

The Unit Step Response Rise, Peak, Time and Settling Time Maximum Overshoot and The Damping Ratio System Identification

Damping Ratio from Log Decrement

What is the significance of all of this?

Why do we care about all of these new parameters?