

Mestrado em Computação Aplicada Instituto Nacional de Pesquisas Espaciais Ministério da Ciência, Tecnologia, Inovações e Comunicações São José dos Campos

Espaço de parâmetros de Cullen & Frey com **GEV**

Gabriel Augusto Lins Leal Pinheiro Igor Kolesnikov Wii Chiin An

11 de junho de 2018

Sumário

- Introdução
- Método
 - Cullen & Frey
 - GEV
- Resultados
 - Região de cobertura da GEV
 - Aplicação dos dados

Introdução

Introdução

Na estatística é interessante ter uma ideia de como se comporta a distribuição dos seus dados.

Uma forma mais simples de encontrar a distribuição que mais se aproxima dos seus dados é através do espaço de Cullen & Frey.

Objetivo

Consiste em fazer uma série de experimentos para descobrir a possibilidade de incorporar a função GEV dentro de espaço de comparações de Cullen & Frey.

Cullen & Frey

Analisar e posicionar os dados.

O gráfico de Cullen e Frey é útil para escolha de distribuições de probabilidade, mas outras informações precisam ser levadas em consideração para tal escolha. (Verossimilhança, AIC (Critério de Informação de Akaike) e BIC (Critério de Informação Bayesiano).)

Valores Extremos Generalizados (GEV)

- Trata de estudar, explicar e prevenir os eventos extremos (desvios extremos de mediana de distribuição)(ex.inundação, efeitos colaterais de remédios)
- Geralmente usada para modelar menores ou maiores valores dentro de grandes volumes de dados
- Distribuição limitadora

GEV

•A distribuição GEV é uma família de probabilidade contínua

$$GEV = egin{cases} Gumbel & (Tipo I) \\ Fr\'echet & (Tipo II) \\ Weibull & (Tipo III) \end{cases}$$

FDP da GEV

$$f(x;\mu,\sigma,\xi) = \frac{1}{\sigma} \left[1 + \xi \left(\frac{x - \mu}{\sigma} \right) \right]^{\frac{-1}{\xi} - 1} \exp \left\{ - \left[1 + \xi \left(\frac{x - \mu}{\sigma} \right) \right]^{\frac{-1}{\xi}} \right\} , \quad \xi \neq 0$$

$$f(x;\mu,\sigma) = \frac{1}{\sigma} e^{-\frac{x - \mu}{\sigma}} \exp \left\{ e^{-\frac{x - \mu}{\sigma}} \right\} , \quad \xi = 0$$

Onde $\mu\in\mathbb{R}$ é o parâmetro de localização, $\sigma>0$ é parâmetro escala e $\mathcal{E}\in\mathbb{R}$ é o parâmetro forma.

Resultados - Região de cobertura da GEV

Mapeando com 37 mil pontos.

Resultados - Região de cobertura da GEV

Mapeando com 200 mil pontos.

Resultados - Região de cobertura da GEV

Mapeando com mais de 1 milhão de pontos.

Dado:out.i.dat - coluna 9 "velocidade_x_1"

Dado:out.i.dat - coluna 10 "velocidade_y_1"

Dado:out.i.dat - coluna 17 "velocidade_y_2"

Dado:out.i.dat - coluna 23 "velocidade_x_3"

Dado:out.i.dat - coluna 24 "velocidade_y_3"

Dado:out.i.dat - coluna 58 "velocidade_x_8"

Fim

Obrigado!

Dúvidas

Dúvidas?

