

Algorithmes d'optimisation

Pr. Faouzia Benabbou (faouzia.benabbou@univh2c.ma)

Département de mathématiques et Informatique

Master Data Science & Big Data

2024-2025

Plan du Module: Algorithmes d'optimisation

Les algorithmes d'optimisation

Pr. F. BENABBOU - DSBD -2025

L'optimisation sans contrainte

- L'optimisation sans contrainte est un domaine de l'optimisation où l'on cherche à minimiser ou maximiser une fonction sans aucune restriction sur les valeurs que peuvent prendre les variables de décision.
- Le problème peut être formulé de la manière suivante : Soit une fonction f objective : $K \subset \mathbb{R}^n \to \mathbb{R}$ $n \ge 1$ $x = (x1, ..., xn) \to f(x)$

On cherche soit le minimum ou le maximum de la fonction f tel

que :
$$f(a^*)=\min f(x), f(a^*)=\max_{x \in K} f(x).$$

5

L'optimisation sans contrainte

- Il existe plusieurs approches pour résoudre un problème d'optimisation sans contrainte, on peut peut les classer en deux approches:
 - Les **méthodes analytiques** reposent sur le **calcul différentiel** pour identifier les points critiques de la fonction objectif et analyser leur nature.
 - Les **méthodes numériques** en optimisation sont des techniques algorithmiques utilisées pour approximer les solutions de problèmes d'optimisation lorsque les solutions analytiques sont difficiles, voire impossibles à obtenir.

Les méthodes analytiques

- On calcule les dérivées partielles de la fonction et on résout le système d'équations obtenu en étudiant l'équation $\nabla f(X_0) = 0$.
- On utilise ensuite $\nabla^2 f(x_0)$ (matrice hessienne) pour déterminer la nature des points critiques (minimum, maximum, point de selle).
- Cette approche est adaptée aux problèmes simples et aux fonctions régulières.
- Elles ont l'avantage de fournir des solutions exactes (si possible) et de permette une analyse théorique du problème.
- L'inconvénients des méthodes analytiques réside dans la difficulté à les appliquer aux fonctions complexes qui peuvent être non linéaire ou non différentiables.

- Résoudre l'équation $\nabla^2 f(x^*) = 0$, n'est pas toujours possible, dans les cas suivants :
 - Les équations sont **non linéaires** ou trop complexes pour être résolues à la main.
 - Les données sont discrètes ou bruitées.
 - Les problèmes impliquent un **grand nombre** de variables.
- C'est pourquoi on est amenée à chercher une valeur approchée de x*.
- Pour construire cette approximation, nous allons utiliser des algorithmes itératifs.
- Les méthodes d'optimisation itératives construisent une suite (x_n) n $\in \mathbb{N}$ qui converge vers x*.

■ **Définition.** Un algorithme itératif est défini par une application vectorielle $f: \mathbb{R}^n \to \mathbb{R}^n$ qui génère une suite de vecteurs $(x_n) \in \mathbb{N}$, à l'aide d'une construction de la forme:

```
Choisir x_0 \in \mathbb{R}^n (phase d'initialisation de l'algorithme)
Calculer x_{n+1} = f(x_n) (nième itération)
```

 Ce que l'on espère, c'est que la suite (x_n)n∈ N, converge vers l'optimum cherché.

- Convergence. La vitesse de convergence d'un algorithme itératif est la vitesse de convergence de la suite (x_n) vers x*.
- Cette vitesse peut-être très différente de la vitesse réelle de l'algorithme, qui prend aussi en compte le temps que met l'ordinateur à évaluer la fonction f par exemple.
- Cependant, le temps physique de l'algorithme est évidemment proportionnel au nombre d'itérations nécessaires pour obtenir une approximation à ϵ près (ϵ fixé à l'avance) de l'optimum x*.

- **Définiton convergence.** Supposons connue une suite $(x)_{n \in \mathbb{N}}$, obtenue à l'aide d'un algorithme itératif, et telle que $\lim_{n \to +\infty} x = x^*$. sachant que $\|.\|$ désigne une norme.
 - On dira que la vitesse de convergence de l'algorithme est linéaire si $\exists C \in [0, 1[$ tel que : $\forall n \in N ||x_n x^*|| \le C||x_n x^*||$; La constante C détermine la vitesse de convergence, plus C est proche de 0, plus la convergence est rapide.
 - Une suite (x_n)_{n∈N} converge superlinéairement vers une limite x* si :

$$\lim_{n \to \infty} \left(\frac{||x_{n+1} - x * ||}{||x_n - x * ||} \right) = 0$$

• Une suite $(\mathbf{x}_n)_{n\in\mathbb{N}}$ converge quadratiquement vers une limite x^* si:

$$\forall n \in \mathbb{N} ||x_{n+1} - x *|| \le C||x_n - x *||^2$$

- La convergence peut être aussi globale ou locale.
- Dans convergence globale l'algorithme converge quel que soit le point de départ x_0 , alors que dans la convergence locale l'algorithme ne converge que si on démarre suffisamment près de x*.

Type de convergence	vitesse	
convergence linéaire	Relativement lente.	
converge	Plus rapide que la convergence linéaire	
superlinéairement		
Convergence quadratique	Très rapide	

- Complexité. La complexité calculatoire, mesure le coût des opérations nécessaires pour obtenir une itération.
 - Le coût global est donné par le coût d'une itération multiplie par le nombre d'itérations nécessaires pour obtenir la solution escomptée avec une certaine précision ϵ .
- Critère d'arrêt. Le critère d'arrêt peut se baser aussi sur :
 - La précision ϵ est associée à un critère d'arrêt, permettant à l'algorithme de s'arrêter et de fournir une valeur approchée x_n de l'optimum, que l'on jugera acceptable.
 - Le nombre maximal d'itérations dans un algorithme d'optimisation dépend de plusieurs facteurs, notamment de la complexité du problème et de la vitesse de convergence.
 - La variation de la fonction objectif $||f(x_{k+1})-f(x_k)||$
 - La variation des points $||x_{k+1}-x_k||$
 - La norme du gradient $||\nabla f(x_k)|||$

Méthodes univariable: Méthode de dichotomie

- La méthode de dichotomie appelée aussi méthode de **bissection** est une méthode de résolution des équations non linéaires.
- Cette méthode est basée sur le théorème des valeurs intermédiaires. Soit $f : [a, b] \to \mathbb{R}$ une fonction **continue**, alors f prend toutes les valeurs intermédiaires entre f(a) et f(b); En particulier, si f est telle que f(a)f(b) < 0, alors il existe $\alpha \in]a$, b[tel que $f(\alpha) = 0$.
- Nous utilisons la méthode de dichotomie pour résoudre l'équation f(a)=0.

Méthodes univariable: Méthode de dichotomie

Algorithme 1 : Dichotomie

- 1.On pose n=0, $a_n = a$, $b_n = b$, $\epsilon = 1e-6$ (10^{-6}) ϵ est la tolérance, max_iter : nombre max d'iterations.
- 2. Répéter

a)
$$x_n = \frac{a + b}{2}$$
.

- b) si $f(x_n)=0$, alors x_n est la solution
- c) si $f(a_n)f(x_n) > 0$ on pose $a_{n+1} = x_n$, $b_{n+1} = b_n$
- d) sinon $(f(a_n)f(x_n) < 0)$, on pose $a_{n+1} = a_n$, $b_{n+1} = x_n$
- e) n++
- 3. jusqu'à ce que $|b_n a_n| < \epsilon$ et et n<max_iter.

Méthodes univariable: Méthode de dichotomie

- **Exemple.** Soit $f(x) = x^3 4x + 1$, continue sur l'intervalle [1,2].
 - Chercher un x^* tel que $f(x^*)=0$.
 - nombre d'itération = 100,
 - ∈=tolérence=1e-6,
 - Tracer la courbe de f.
- La méthode converge après 21 itérations et la solution approchée est $x \approx 1.8608059883117676$.
- On voit bien que l'équation a 3 solutions, en variant l'intervalle
 [a,b] on peut les approcher.

Méthodes univariable: Méthode de dichotomie

Limites

- Convergence lente par rapport à d'autres méthodes
- Nécessite un intervalle initial contenant une racine : Il faut connaître un intervalle [a,b] tel que f(a)·f(b)<0. Si cette information est indisponible, la méthode ne peut pas être appliquée.
- Ne fonctionne que pour les fonctions continues
- La méthode ne garanti pas un optimum global.

Méthodes univariable: Méthode du nombre d'or ou la section dorée

- Cette méthode est utile lorsque la fonction est complexe ou coûteuse à évaluer.
- On cherche une solution pour le problème $f(x^*)=0$.
- Elle se base sur le nombre d'or $\varphi = \frac{1+\sqrt{5}}{2} \approx 1.618$
- La méthode du nombre d'or repose sur le principe de la section dorée, qui divise un intervalle en deux parties dans un rapport spécifique lié au nombre d'or.
- Ce rapport permet de réduire l'intervalle de recherche de manière efficace à chaque itération, garantissant une convergence rapide vers le minimum de la fonction sur cet intervalle.

Méthodes univariable: Méthode du nombre d'or ou la section dorée

Algorithme 2: du nombre d'or

- 1. Soit f une fonction, [a,b] un intervalle.
- $\epsilon = 1e-6 (10^{-6}) \epsilon$ est la tolérance
- 2. Répéter
 - a) Calculer: $x_1 = b \frac{(b-a)}{\varphi^2}$, $x_2 = a + \frac{(b-a)}{\varphi^2}$,
 - b) Évaluer la fonction aux points de division : $f(x_1)$ et $f(x_2)$.
 - c) Si $f(x_1) < f(x_2)$, alors le minimum se trouve dans l'intervalle $[a, x_2]$. Mettre à jour l'intervalle : $b = x_2$
 - d) Sinon, le minimum se trouve dans l'intervalle $[x_n, b_n]$. Mettre à jour l'intervalle : $a = x_1$.
- 3. Jusqu'à $(b a < \epsilon)$.

Le minimum approximatif est le point médian de l'intervalle final : (a + b) / 2.

Méthodes univariable: Méthode du nombre d'or ou la section dorée

- Exemple. Soit $f(x) = x^3 4x 2$, $\epsilon = 1e-6$, intervalle [-3,0]. La méthode converge vers $x \approx 1.154700$.
- La courbe montre les points où la fonction et le point en rouge le minimum trouvé par cette méthode.

- Les algorithmes de descente constituent une famille de méthodes d'optimisation itératives, conçues pour minimiser des fonctions réelles différentiables.
- Vous êtes perdu dans la montagne !

- Considérons la fonction dérivable f(x) que l'on souhaite minimiser.
- L'algorithme de descente de gradient démarre à une coordonnée initiale arbitraire et converge vers le minimum de façon itérative.

- Soit $f: \mathbb{R} \to \mathbb{R}$, et x_0 le point de départ de l'algorithme.
- Pour déterminer le point suivant x_1 , la descente de gradient calcule la dérivée $f'(x_0)$.
- La dérivée étant la pente de la tangente en ce point, elle détermine une direction de descente, qui est une direction dans laquelle la fonction objective diminue.
- Un déplacement est effectué le long de cette direction du gradient selon la longueur du pas.
- Le point suivant est alors calculé grâce à la formule suivante : $x_{k+1} = x_k + \alpha \frac{df(x_k)}{dx}$
 - $\frac{df(x_k)}{dx}$ est la direction de descente
 - α est le pas

Généralisation

- Soit f: f: $\mathbb{R}^n \to \mathbb{R}$, et x_0 le point de départ de l'algorithme.
- La dérivée est alors remplacé par le gradient de la fonction.
- C'est la raison pour laquelle cet algorithme s'appelle la descente du gradient.
- La généralisation de l'algorithme de descente de gradient est donnée par l'équation suivante:

$$x_{k+1} = x_k + \alpha_k \nabla f(x_k)$$

Le choix de la **direction de descente** et la détermination du **pas** sont des éléments cruciaux pour l'efficacité et la rapidité de convergence des algorithmes de descente.

Exemple. Soit f: f: $(x, y) \rightarrow x^2 + 2y^2$,

 $\alpha=0.1$, Taux d'apprentissage itérations = 20 , Nombre d'itérations x0, y0 = -3.0, 3.0 , Point de départ

- Pas de l'algorithme. Le pas de l'algorithme α_k est un paramètre qui doit être choisi soigneusement.
- pour un pas élevé ce paramètre, il se peut que l'algorithme commence à osciller autour du minimum sans jamais l'atteindre.
- De petites valeurs assurent plus de stabilité à l'algorithme mais la méthode risque de prendre un temps important avant de converger.
- Sur l'illustration ci-dessous, un pas trop grand empêche l'algorithme de converger vers le minimum.

- Pas de formule magique pour trouver α_k , il faut tâtonner
- La majorité des réseaux de neurones artificiels s'appuie sur l'algorithme de descente de gradient.
- lacktriangle α est le facteur d'apprentissage (η), learning rate en anglais.
- La descente de gradient, peut converger vers des minimas locaux
- Il existe plusieurs variantes de cet méthode
 - Méthode de gradient à pas fixe, à pas optimal
 - Méthode de gradient conjugué
 - Méthode de Newton
 - Méthodes de gradient quasi-newton

Méthode de gradient à pas fixe

Dans le cas de l'algorithme de descente à pas constant , le pas est constant, c'est-à-dire $\alpha_k = \alpha \ \forall \ k \in N$

Algorithme 3 : descente de gradient à pas fixe

- 1. Initialisation : $x_0 \in Rn$, f une fonction objective de classe 1, $\alpha \in R+*$.
- ε : critère d'arrêt (tolérance sur le gradient), max_iter :nombre maximal d'itérations
- 2. Répéter
 - 1. Calculer la direction de la descente $d_k = -\nabla f(x_k)$.
 - 2.Mettre à jour la solution : $x_{k+1} = x_k + \alpha d_k$
 - 3.k++
- 3. Jusqu'à Vérifier la condition d'arrêt : $\|\nabla f(x_n)\| > \varepsilon$ et $k < \max_i$ ter

Méthode de gradient à pas fixe

 Les critères d'arrêt sont très important dans un algorithme de descente, voici des exemples :

Type de critère	Condition	Avantage	Inconvénient
Critère principal	$\ \nabla f(x_n)\ < \varepsilon$	Bonne indication de la convergence	Peut s'arrêter sur un poin <mark>t de</mark> selle
Critère secondaire	$ f(x_{n+1}) - f(x_n) < \eta$	Permet d'arrêter l'algorithme lorsque l'amélioration est négligeable.	Peut être trompeur si la fonction a un plateau où f(x) varie peu
Critère secondaire	$\parallel x_{n+1} - x_n \parallel < \alpha$	Évite les itérations inutiles quand le changement est négligeable	Peut poser problème si α est trop petit, car cela pourrait arrêter prématurément l'algorithme.
Sécurité	n ≥ max_iter	Toujours garanti de s'arrêter	Peut être trop strict
Critère mixte	$\ \nabla f(x_n)\ < \epsilon \text{ et}$ $\ f(x_{n+1}) - f(x_n)\ < \eta$	Plus robuste que l'un des critères seuls	Nécessite de régler deux seuils ε et η au lieu d'un.

Méthode de gradient (pas fixe, pas adaptatif)

- Exemple . Chercher le minimum de la fonction réelle $f : f(x) = 4 x^2 + e^x$.
 - calcul du gradient de f(x): $\nabla f(x) = 8x + e^{x}$.
 - Soit $\alpha = 0.01$, iterations = 20, $x_0, y_0 = -3, 3$.

Méthode de gradient (pas fixe, pas adaptatif)

- Exemple . Chercher le minimum de la fonction réelle $f : f(x) = 4 x^2 + e^x$.
 - calcul du gradient de f(x): $\nabla f(x) = 8x + e^{x}$.
 - Soit α = 0.4, iterations = 100, ϵ = 10⁻⁶, x_0, y_0 = 3, 3.

Méthode de gradient (pas fixe, pas adaptatif)

Exercice. Trouver le minimum de la fonction

$$f(x,y) = \cos(2 x) \sqrt{y^2 + 1},$$

Descente de gradient sur $f(x, y) = y^2 - cos(x)$