سلسلة الأعمال الموجهة رقم 2 – الجبر 1 المجموعات، العلاقات و التطبيقات

التمرين 1:

A انكن $\mathcal{P}(A)$ هي مجموعة أجزاء $\mathcal{P}(A)$ ديث $\mathcal{P}(A)$ هي مجموعة أجزاء (1 كنكن $A=\{0,1\}$

 $A\subset B\Leftrightarrow C_E G\subset C_E A$ - : برهن أن E من A برهن أن , A لتكن A

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

.D = $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ نكن المجموعة (3

D العناصر (1,0) ، (1,0) و (1,1) تنتمي للمجموعة أ

 \dot{P} استخدم البرهان بالنفي في إثبات أن المجموعة D لا يمكن كتابتها على شكل جذاء ديكارتي لمجموعتين جزئيتين من \mathbb{R} .

التسمرين 2:

 $A-B=\{x|x\in A\land x\notin B\}$ نعرف الفرق التناظري بـ: B,A

$$A\Delta B = (A \cup B) - (B \cap A)$$

 $A\Delta A$, $A\Delta C_E A$, $A\Delta E$, A-A, $A-C_E A$: عين المجموعات التالية (1

. $A\Delta B = B \Leftrightarrow A = \emptyset$: برهن الخاصية (2

التمرين 3:

ينعرف العلاقة $\mathcal R$ على $\mathcal M$ على $\mathcal M$ = $\{A=\{1,3\}, B=\{2,3,4\}, C=\{3,5,7\}, D=\{5,7\}, E=\{0,8,9\}\}$

 $\forall (X,Y) \in \mathcal{M}^2 : X\mathcal{R}Y \Leftrightarrow X \cap Y \neq \phi .$

. $\Gamma = \{(X,Y) \in \mathcal{M}^2 : X\mathcal{R}Y\}$ عين بيان العلاقة -1

2- هل العلاقة انعكاسيه ؟ تناظرية ؟ضد تناظرية ؟متعدية ؟

التمرين 4:

نعرف العلاقة الثنائية $\mathcal R$ على $\mathbb Z$ بــ:

 $\forall (x,y) \in \mathbb{Z}^2 : x\mathcal{R} \ y \Longleftrightarrow \exists k \in \mathbb{Z}; \ x-y=3.k$

 \mathbb{Z} بر هن أن \mathcal{R} علاقة تكافؤ على \mathbb{Z} .

 $\mathbb{Z}/n\mathbb{Z} = \mathbb{Z}/\mathcal{R}$ احسب $\dot{0}$, $\dot{1}$, $\dot{0}$ و $\dot{6}$ ثم استنتج

التمرين 5:

: ينعرف العلاقة الثنائية \mathcal{R} على على يلي باتكن $E=\mathbb{N}^*$

 $\forall x,y \in \mathbb{N}^* : x\mathcal{R}y \Leftrightarrow \exists n \in \mathbb{N}^*; \ y = x^n$

E برهن أن $\mathcal R$ علاقة ترتيب على E

 \mathcal{R} علاقة ترتيب كلى \mathcal{R}

التمرين 6:

 $\Gamma = \{(a,3),(b,4),(c,4),(d,1)\}$ و $F = \{1,2,3,4,5,6\}$ ، $E = \{a,b,c,d\}$ لدينا ثلاثة مجموعات

. عنصر کل عنصر F هو تطبیق من $f=(E,F,\Gamma)$ عنصر $f=(E,F,\Gamma)$

$$f^{-1}(\{2,6\}), f^{-1}(\{4,5,6\}), f^{-1}(\{1,2,3\}), f^{-1}(\{4\})$$
 = 2

. $f(d), f(\{a, b, c\}), f(E)$ عين المجموعات -3

التمرين 7:

لتكن التطبيقات التالية:

$$f: \mathbb{N} \to \mathbb{N} \qquad g: \mathbb{N} \to \mathbb{N} \qquad h: \left[\frac{1}{2}, +\infty\right[\to [-1, +\infty[$$

$$n \mapsto f(n) = 2n \qquad , \quad n \mapsto g(n) = \begin{cases} \frac{n}{2} \sin n \text{ pair} \\ \frac{n-1}{2} \sin n \text{ impair} \end{cases}, \quad x \mapsto h(x) = \sqrt{2x-1} - 1$$

1- عين التطبيقات gof و fog عين التطبيقات gof

2- برهن أن التطبيق f متباين و غير غامر و أن g غامر و غير متباين.

 h^{-1} ي التطبيق العكسي h تقابلي و عين التطبيق العكسي -3

التمرين 8:

$$f \colon \mathbb{R} o \mathbb{R}$$
 ليكن التطبيق

$$x \mapsto f(x) = x^2 - 2x + 2$$

بناين؛ f متباين؛ -1 مناين؛ احسب $f(\{0,1,2\})$

fامر $f^{-1}(\{0\})$ غامر -2

 $f^{-1}(\mathbb{R})$ عين قيم y من y من التي لها سوابق. و استنتج

 $(^2-2x+2$ احسب ($f([1,+\infty[)$ استخدام تغیرات $f([1,+\infty[)$ استخدام عنیرات و استخدام تغیرات و استخدام اس

 $g: [1, +\infty[\longrightarrow [1, +\infty[$ المعرف بـ: $g: [1, +\infty[\longrightarrow [1, +\infty[: g(x) = f(x)$

. g^{-1} برهن أن التطبيق g تقابلي وعين تطبيقه العكسي -

التمرين 9: واجب

التطبيق $F:E\longrightarrow F$ برهن الخواص التالية :

$$\forall A, A' \in \mathcal{P}(E): f(A) - f(A') \subset f(A - A')$$
 -1

(يترك للطالب كواجب) متباين.
$$f \Leftrightarrow \forall A, A' \in \mathcal{P}(E): f(A) - f(A') = f(A - A')$$
 -2