Homework 4 – Coding

Due: Thursday, February 17 – 10:00 am EST

Problem 1C: Rank-nullity theorem [20 Points]

- 1. Write a Python function lin_independent and justify why it operates correctly:
 - Input: k vectors in \mathbb{R}^n .
 - Output: True if the vectors are linearly independent and false otherwise.
- 2. Write a Python function basis_check and justify why it operates correctly:
 - Input: k vectors in \mathbb{R}^n .
 - Output: True if the vectors are a basis of \mathbb{R}^n and false otherwise.
- 3. Write a Python function CA_dimension and justify why it operates correctly:
 - Input: k vectors $\vec{a}_1, \ldots, \vec{a}_k \in \mathbb{R}^n$.
 - Output: $\dim_{\mathbb{R}} S$ where $S = \operatorname{Span}_{\mathbb{R}} (\vec{a}_1, \dots, \vec{a}_k)$.
- 4. Generate a family \mathcal{A} of 1000 random matrices in $\mathbb{M}(5 \times 5, \mathbb{R})$ with integer entries 0, 1. Compute $\dim_{\mathbb{R}}(C(A))$ of all matrices in \mathcal{A} . What dimensions occur?
- 5. The rank-nullity theorem states that for any $A \in \mathbb{M}(m \times n, \mathbb{R})$ it holds

$$\dim_{\mathbb{R}}(N(A)) + \dim_{\mathbb{R}}(C(A)) = n. \tag{1}$$

Write a Python function:

Input:
$$A \in \mathbb{M}(m \times n, \mathbb{R})$$
. Output: $\dim_{\mathbb{R}}(N(A)) + \dim_{\mathbb{R}}(C(A)) - n$.

Use this function to test the rank-nullity theorem for all matrices in A.

6. For $A \in \mathbb{M}(m \times n, \mathbb{R})$, formulate a hypothesis how $\dim_{\mathbb{R}}(N(A^T))$ and $\dim_{\mathbb{R}}(C(A^T))$ are related. Verify your hypothesis for all matrices in \mathcal{A} .