Вопросы на понимание

Упражнение 1. Ответьте на следующие вопросы:

- 1. Могут ли две разные дискретные случайные величины иметь одинаковые таблицы распределения?
- 2. Всегда ли математическое ожидание суммы равно сумме математических ожиданий?
- 3. Всегда ли дисперсия суммы равна сумме дисперсий?
- 4. Какой физический смысл имеет дисперсия?
- 5. Что такое плотность распределения?
- 6. Чему равен интеграл от плотности распределения по всей прямой?
- 7. Может ли плотность распределения принимать отрицательные значения?
- 8. Может ли плотность распределения равняться нулю при всех значениях аргумента? Единице?
- 9. Чему для любого x равна $\mathbb{P}(X=x)$, если X- случайная величина, обладающая плотностью?

ЗАДАЧИ

Упражнение 2. Пусть X и Y две независимые дискретные случайные величины. Докажите, что

(E3)
$$\mathbb{E}(X+Y) = \mathbb{E}X + \mathbb{E}Y;$$

(E4)
$$\mathbb{E}(X \cdot Y) = \mathbb{E}X \cdot \mathbb{E}Y$$
;

(V4)
$$\operatorname{Var}(X+Y) = \operatorname{Var}(X) + \operatorname{Var}(Y)$$
.

Упражнение 3. Если случайная величина X имеет распределение Бернулли, $X \sim \mathbf{B}_p$, каким будет распределение случайной величины $\cos(X) + 2$? Найдите ее математическое ожидание.

Упражнение 4. Тестируются 100 электрических лампочек. Если вероятность того, что лампочка не загорится, равна p, то чему равны среднее и дисперсия числа незагоревшихся лампочек? (Предполагается, что лампочки стохастически независимы.)

Упражнение 5. Только один из шести внешне похожих ключей открывает определенную дверь. Если пробовать ключи один за другим, то сколько в среднем ключей понадобится испытать, прежде чем дверь будет открыта?

Упражнение 6. Автоматический механизм производит дефектную деталь с вероятностью 2%. Когда это происходит, выполняется регулировка механизма. Найдите среднее число качественных деталей, производимых между регулировками.

Упражнение 7. Случайная величина X равномерно распределена на отрезке [2,4]. Найти вероятность $\mathbb{P}(2.5 < X < 3.5)$.

Упражнение 8. Плотность распределения случайной величины X имеет следующий вид: $f(u) = C/u^4$ при $x \ge 1$ и f(u) = 0 при x < 1, где C — некоторая константа. Найти: а) постоянную C; б) $\mathbb{P}(X < 3)$; в) $\mathbb{P}(X > 7)$.