Visualising Ant Colony Optimisation

Major Project Christopher Edwards

What is the Project?

- Provide a visual representation of an Ant Colony Optimisation algorithm
- To be used in an education environment
 - Teaching resource
- The algorithm's parameters can be changed by the user
 - Number of cities/ants
 - Alpha/beta values
 - Etc.

Ant Colony Optimisation

- Family of Swarm Intelligence methods
 - SI typically involves a population of simple agents
- Probabilistic path finding technique
 - Return the optimal path in a graph
- Based on real-world ant behaviors
 - Ants always find the shortest path between nest + food
 - Work together based on pheromone trails
- Currently this project focuses on the TSP
 - Travelling salesman problem

Probabilistic property

 An agents next location is calculated using the following probability:

$$p_{xy}^k = \frac{(\tau_{xy}^\alpha)(\eta_{xy}^\beta)}{\sum (\tau_{xy}^\alpha)(\eta_{xy}^\beta)}$$

- α
 - Meta heuristic value relating to the favoring of pheromone
- β
 - Meta heuristic value relating to the favoring of pheromone
- n
 - 1/distance from current to node xy

Pheromone deposit

- The pheromone trails are updated as the agents traverse the graph
- The equation to model this behavior is:

$$\tau_{xy}^k = (1 - \rho)\tau_{xy}^k + \Delta \tau_{xy}^k$$

$$\Delta \tau_{xy}^{k} = \begin{cases} Q/L_{k} & if \ Agent \ k \ uses \ curve \ xy \ in \ its \ tour \\ 0 & otherwise \end{cases}$$

 This correctly factors in decay and allows for any ant moving through node xy to add to the pheromone concentration at node xy

Technical issues

- Implemented in Java and its Swing packages
 - Cross-platform
 - JUnit tests
- Visualising the algorithm is difficult
 - Easy to implement, difficult to visualise
 - Showing pheromone levels to the user
 - Showing the agents moving
 - Show the best route
- Do all this in a reasonable time

Technical issues(2)

- Use of SwingWorker to execute the algorithm in its own thread
 - Allows updated to the view without it 'freezing up'
- Simulate ants moving on the 'paths'
 - Get the location the ant started and its destination
 - Use linear interpolation
 - Given the x /y of the start and finish
 - Linear interpolation can be used to get the value of any xy on the path between these two points
 - value1*(1-mu)+vlaue2*mu);
 - Value1/2 is the X or Y value (e.g value1 = start x, value2 = destination x)
 - Mu is how far on that path you want (e.g mu 0.5 = half way between the points)

Current algorithm

- To update the view to reflect the current state
- For every ant(agent)
 - Draw the ant at their current location
 - If they aren't finished, move them
 - During this move, get their current X and the destination
 - Linear interpolate these two locations to show the ant moving
 - Update pheromone
 - If the ant has the current best path, set its path as best
 - Loop through the cities visited in order and draw a line between them
 - paint the updated pheromone
 - Once all ants have finished
 - Remove all pheromone trails and only show the best path
- This is the general form there are other intricacies

Demos

- 3 demos (all 1 iteration):
- Demo 1: 10 cities 1 ant (slowed down)
- Demo 2: 10 cities 20 ants
- Demo 3: 20 cities 200 ants (sped up to show it solves)
- Iterations demo
- Demo 1: 10 cities, 5 ants, 1 iteration
- Demo 2: 10 cities, 5 ants, 10 iterations
- Demo 3: 10 cities, 5 ants, 25 iterations
- All of the iteration demos are sped up for demo purposes

Future work

- Incorporate the text boxes to allow user define values
- Display how many ants are at each city
- Allows loading/saving of cities configurations
 - Allows for the same problem to be demonstrated every time
- Display the best route and distance to the user in text form
- Experiment with correct limits to add to text fields
- Potentially add variations of the algorithm
 - Elitist ants, Min-Max system etc.
- Test the application thoroughly
- Potentially set up an nest-food style of problem
- Let the user define the speed which the algorithm runs

Questions?

Thank you for listening, if you have any questions I will gladly answer