4: Spektralanalyse

Tidsrækkeanalyse

Kasper Rosenkrands

Tidsdomænet og frekvensdomænet

Når vi prøver at analysere en tidsrække i **tidsdomænet**, betyder at vi prøver at forklare den nuværende værdi som funktion af værdier tilbage i tiden på en eller anden vis.

Frekvensdomænet adskiller sig fra denne tilfgang og prøver i stedet at beskrive en (oscillerende) tidsrække ved hjælp af sinus (og/eller cosinus) funktionen.

Periodisk proces

Vi kalder en proces for periodisk hvis den opfylder

$$x_t = A\cos(2\pi\omega t + \phi)$$
 for $t = 0, \pm 1, \pm 2, \dots$

hvor ω angiver frekvensen (svingninger per tid), A er bestemmer "højden" eller amplituden and ϕ , der kaldes fasen, bestemmer forskydningen af kurven.

Det stokatiske element fremkommer idet vi tillader A og ϕ at være stokastiske.

Omskriving med trigonometrisk identitet

Ved at bruge den trigonometriske identitet

$$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta),$$

kan vi lave følgende omskrivning

$$x_t = A\cos(2\pi\omega t + \phi)$$

= $U_1\cos(2\pi\omega t) + U_2\sin(2\pi\omega t)$,

hvor $U_1 = A\cos(\phi)$ og $U_2 = -A\sin(\phi)$.

Under visse antagelser er U_1 og U_2 uafhængige standard normalt fordelte, hvilket vi vil antage i det følgende.

Autokovarians funktion

For at udlede autokovarians funktionen for en periodisk proces, starter vi med at introducere

$$c_t = \cos(2\pi\omega t)$$
 og $s_t = \sin(2\pi\omega t)$,

ved brug at denne notation har vi autokovariansen givet ved

$$\gamma(h) = \operatorname{cov}(x_{t+h}, x_t) = \operatorname{cov}()$$