MSAI 451 – Programming Assignment 1

Author: Divyanka Thakur

1. The Challenge: Building a Predictive Edge

The core objective of this project was to determine if an active-management style classifier could reliably predict the next-day price direction (up or down) for a high-growth asset, NVIDIA Corporation (NVDA), using only historical price and volume data.

In the spirit of financial forecasting (Information \rightarrow Forecast \rightarrow Action), we tested whether carefully engineered technical features—lags, spreads, and exponential moving averages (EMAs)—contain exploitable, forward-looking information.

Asset & Target

- Asset Chosen: NVIDIA Corporation (NVDA) daily OHLCV data.
- **Target (Targett):** A binary variable indicating a positive log-return (i.e., the price closed higher than the previous day).

Success Standard

Success was primarily defined by achieving **out-of-sample classification accuracy materially above 50%** (a coin-flip baseline) and demonstrating this stability across cross-validation folds. Secondary metrics included **F1 Score** and **ROC-AUC**.

2. Data Strategy & Feature Engineering

The modeling pipeline was built on a foundation of clean data and mathematically sound feature engineering, leveraging the speed of the **Polars** DataFrame library.

Data Source & Preparation

- **Source:** Local CSV file (msds_getdata_yfinance_nvdl.csv).
- Cleaning: Dates were parsed and sorted, and non-essential columns (Dividends, Stock Splits) were dropped. Initial rows with nulls, created during the lag and EMA calculations, were removed to maintain data integrity.

Creating the Features

To prevent **information leakage**, all features were based on data available *before* the prediction date.

Feature Category	Description	Examples
Lags	Previous day's prices and volume.	CloseLag13, VolumeLag13
Candlestick Spreads	Measures of volatility and range within a day.	HML (High - Low), OMC (Open - Close)
Momentum/Smoothing	Exponentially weighted moving averages (EMAs) to capture short-term trends.	CloseEMA2, CloseEMA4, CloseEMA8 (computed off lagged close)

The final modeling table deliberately **excluded contemporaneous prices** (Close, Open, High, Low, Volume) to ensure a true time-series prediction setup.

Initial Diagnostics

- Class Balance: The up-day class (Target=1) was slightly dominant at **55.2%** (383/694), indicating a modest inherent bullish drift in the sample period.
- Feature Correlation: A heatmap (Figure 3) confirmed high, expected correlations among closely related features, such as adjacent price lags and EMAs. The choice of XGBoost as a model family handles this multicollinearity implicitly.

3. Research Design & Model Selection

To rigorously test for a genuine predictive edge, we employed **time-aware cross-validation** and a systematic hyperparameter search.

Cross-Validation (CV) Methodology

• **Technique: TimeSeriesSplit** (5 folds, with a gap of 10 days) was used to ensure that the model was only trained on data chronologically *before* the test data, mimicking a real-world deployment.

Baseline CV Results:

Average CV Accuracy: 0.503Std of CV Accuracy: 0.035

This baseline result is critically important: the average signal on daily direction is extremely weak, lending support to the Efficient Market Hypothesis (EMH) which suggests that daily price movements are essentially random and unpredictable.

Model & Hyperparameter Tuning

- Model Family: XGBoost Classifier (objective=binary:logistic) was selected for its robust performance in classification tasks and its ability to capture non-linear relationships.
- **Tuning: RandomizedSearchCV** optimized the model based on CV accuracy, searching over common hyperparameters (max_depth, learning_rate, n_estimators, etc.).

Best CV Model Parameters	Result
max_depth	5
n_estimators	788
learning_rate	≈0.0573
Best CV Accuracy (in a single fold)	0.541

The best-performing fold achieved a **modest 54.1% accuracy**, suggesting an **occasional**, **small edge**. However, the overall fold-average remained near 50%, highlighting the challenge.

4. Final Results & Interpretation

4.1 Out-of-Sample Performance: The True Indicator

The CV metrics are the **reliable measure of generalization** to unseen data.

- Mean Out-of-Sample Accuracy: 0.503
- Best-Case Out-of-Sample Accuracy (single fold): 0.541

Takeaway: The evidence for a stable, exploitable trading edge at the daily frequency using only these features is **not conclusive**. The model struggles to consistently beat chance, aligning with the expected difficulty of short-term market forecasting.

4.2 Final Fit Diagnostics: The Caveat

After tuning, the model was fit on the *entire* historical dataset to provide a comprehensive look at its predictive capacity. These metrics are **in-sample** and therefore **optimistic**.

- Resubstitution (In-Sample) Accuracy: 0.818
- **ROC-AUC**: **≈0.81** (Figure 1)
- Confusion Matrix (Figure 2):
 - True Positives (TP)=336
 - True Negatives (TN)=232

These highly favorable in-sample results confirm the model can **fit complex patterns** within the full data, but the stark difference between the 81.8% in-sample accuracy and the 50.3% out-of-sample accuracy underscores the severity of **overfitting** when modeling daily stock direction.

5. Conclusions & Future Direction

Conclusion

Classification of daily price direction for NVDA using only price/volume-derived technical features is **extremely challenging**. The average out-of-sample accuracy of 0.503 suggests that the daily movements are dominated by noise, consistent with established financial theory.

Next Steps: Seeking a Stable Edge

To move from a weak signal toward a potentially profitable trading system, future work should focus on reducing noise and incorporating external market context:

- 1. **Adjust the Time Horizon:** Shift the target to a **longer-term label** (e.g., predicting direction at t+5 days) to potentially capture more signal and less day-to-day noise.
- 2. **Incorporate Market Context:** Introduce **exogenous features** like the S&P 500 return (SPY) or VIX volatility levels. Asset-specific features may only capture α, but market-wide features capture β (systematic risk).

3. Enhance Robustness: Implement walk-forward evaluation with a rolling window to better simulate a real trading deployment, and use metrics like Balanced Accuracy or MCC which are less susceptible to mild class imbalance.

6. Deliverables

The complete project, including code and data, is available in the designated public GitHub repository.

- 451_pa1_jump_start_v001.py (End-to-end pipeline)
- getdata_yfinance.py (Extracting csv file)
- msds_getdata_yfinance_nvdl.csv (Input data)
- Figure_1.png (ROC Curve)
- Figure_2.png (Confusion Matrix)
- Figure_3.png (Correlation Heatmap)