EG3029 Chemical Thermodynamics

Vapour/Liquid Equilibrium of Mixtures

General Remarks Introduction

- In most technical processes there are no pure substances but mixtures of various species
 - Chemical reactors
 - Separation units (distillation, absorption, extraction)
- Phase equilibrium necessary for quantitative treatment
- Here: only non-reacting systems will be considered

General Remarks Introduction

- Equilibrium is a static condition: balance of all potentials
- Measures of composition
 - Mass or mole fraction

$$x_i = \frac{m_i}{m} = \frac{\dot{m}_i}{\dot{m}}$$

$$x_i = \frac{n_i}{n} = \frac{\dot{n}_i}{\dot{n}}$$

Molar concentration

$$C_i = \frac{x_i}{V}$$

Molar concentration in flow processes

$$C_i = \frac{\dot{n}_i}{q}$$

Molar mass of mixtures

$$M = \sum_{i} x_{i} M_{i}$$

General Remarks Phase Rule and Duhem's Theorem

Phase Rule for multi-phase systems at equilibrium

$$F = 2 - \pi + N$$

F degrees of freedom

 π number of phases

N number of chem. species

Duhem's Theorem:

For any closed system formed initially from given masses of prescribed chemical species, the equilibrium state is completely determined when any two independent variables are fixed.

 Systems comprised of 2 chemical species

PTxy diagram for VLE

P xy and T xy diagrams

(a) P xy diagram for three temperatures.(b) T xy diagram for three pressures.

Solid line: saturated liquid (bubble line); dashed line: saturated vapour (dew line)

P T diagrams at fixed composition

Solid line: saturated liquid (bubble line); dashed line: saturated vapour (dew line)

P xy diagrams at constant T

- (a) Tetrahydrofuran (1) and carbon tetrachloride (2) at 30°C
- (b) Chloroform (1) and tetrahydrofuran (2) at 30°C

Dashed line: P x relation for Raoult's law

P xy diagrams at constant T

- (c) Furan (1) and carbon tetrachloride (2) at 30°C
- (d) Ethanol (1) and toluene (2) at 65°C

Dashed line: P x relation for Raoult's law

T xy diagrams at constant P

- (a) Tetrahydrofuran (1) and carbon tetrachloride (2) at 1 atm
- (b) Chloroform (1) and tetrahydrofuran (2) at 1 atm

T xy diagrams at constant P

- (c) Furan (1) and carbon tetrachloride (2) at 1 atm
- (d) Ethanol (1) and toluene (2) at 1 atm

yx diagrams at constant P

yx diagrams at 1 atm

- (a) Tetrahydrofuran and carbon tetrachloride
- (b) Chloroform and tetrahydrofuran
- (c) Furan and carbon tetrachloride
- (d) Ethanol and toluene

VLE Simple Models: General

- Important goal: mathematical description of VLE
 - Prediction of vapour and liquid compositions at given temperature and pressure
 - Basis for process modelling
- Two simple models for VLE:
 - Raoult's law
 - Henry's law

VLE Simple Models: Raoult's Law

- Two major assumptions:
 - Vapour phase is an ideal gas
 - Liquid phase is an ideal solution
- Mathematical expression:

$$y_i P = x_i P_i^{sat}$$
 $(i = 1, 2, ..., N)$

x_i liquid phase mole fraction
 y_i gas phase mole fraction
 P_i^{sat} vapour pressure
 N number of chem. species

- Only valid for limited number of systems
- Valid for any species present at $x \rightarrow 1$

VLE Simple Models: Raoult's Law

- Ideal gas mixture properties:
 - Dalton's law:

$$P = \sum_{i} P_{i} = \sum_{i} y_{i} P$$

- Amagat's law:
$$V^{t} = \sum_{i} V_{i}^{t} = \sum_{i} y_{i} V^{t}$$

– Kay's rule:

$$T_c' = \sum_i y_i T_{c,i}$$

$$P_c' = \sum_i y_i P_{c,i}$$

VLE Simple Models: Raoult's Law

- Dew point and bubble point calculations:
 - BUBL P: calculate y_i and P for given x_i and T
 - DEW P: calculate x_i and P for given y_i and T
 - BUBL T: calculate y_i and T for given x_i and P
 - DEW T: calculate x_i and T for given y_i and P
- Worked example:

Prepare a graph showing P vs x_1 and P vs y_1 for T = 75 degC using Raoult's law for the binary system acetonitrile(1)/nitromethane(2)

VLE

Simple Models: Modified Raoult's Law

 To account for deviations from ideal solution behaviour in liquid phase:

$$y_i P = x_i \gamma_i P_i^{sat} \qquad (i = 1, 2, ..., N)$$

 x_i liquid phase mole fraction y_i gas phase mole fraction P_i^{sat} vapour pressure N number of chem. Species γ_i activity coefficient

 Activity coefficients are typically a function of temperature and chemical composition, e.g.

$$\ln \gamma_i = A(T) \cdot x_j^2$$
 $(i, j = 1, 2, ..., N)$

VLE Simple Models: Henry's Law

- Raoult's law requires vapour pressure data
 - Not applicable if temperature is above the critical temperature of one species
 - No gas dissolution in liquid
- Henry's law:

$$y_i P = x_i \mathcal{H}_i \quad (i = 1, 2, ..., N)$$

 \mathcal{H}_i Henry's constant

Gas	H/bar	Gas	H/bar
Acetylene	1,350	Helium	126,600
Air	72,950	Hydrogen	71,600
Carbon dioxide	1,670	Hydrogen sulfide	550
Carbon monoxide	54,600	Methane	41,850
Ethane	30,600	Nitrogen	87,650
Ethylene	11,550	Oxygen	44,380

Henry's constants for gases dissolved in water at 25°C

VLE K-Value Correlations

• Equilibrium ratio K_i

$$K_i = \frac{y_i}{x_i}$$

With Raoult's law

$$K_i = \frac{P_i^{sat}}{P}$$

Worked example:
 Determine dew point and bubble point pressures for a mixture of 10% methane, 20% ethane, and 70% propane at 50 degF.

Figure 10.13: K-values for systems of light hydrocarbons. Low-temperature range. (Reproduced by permission from C. L. DePriester, Chem. Eng. Progr. Symp. Ser. No. 7, vol. 49, p. 41, 1953.)

VLE Flash Calculations

- Flash: liquid at $P \ge P_{\text{bubblepoint}} \to P$ reduction \to liquid flashes/partially evaporates to produce a 2-phase system in equilibrium
- Introduction of useful quantities:
 - Moles of liquid: \mathcal{L} with mole fractions $\{x_i\}$
 - Moles of vapour: v with mole fractions $\{y_i\}$
 - Overall mole fraction: $\{z_i\}$