

KCT als Multi-Commodity-Flow-Formulierung (MCF)

Finn Stutzenstein, Levin Nemesch, Joshua Sangmeister January 18, 2021

Algorithm Engineering - Übung 4

Definitionen

- $V' := V \cup \{r\}$
- $A := \{(v, w), (w, v) \mid \{v, w\} \in E\}$
- $A_r := \{(r, v) \mid v \in V\}$
- $A' := A \cup A_r$
- gerichteter Graph G' = (V', A')
- Nachbarknoten von v: $N(v) := \{ w \in V' \mid \{v, w\} \in E' \}$
- Flussvariable $f_{(v,w)}^u$ modelliert Fluss der Stärke y_u von r nach u über die Kante (v,w)

1

MCF ILP

 $c^T z$ min z(A) = ks.t. y(V) = k + 1 $z(A_r)=1$ $\sum_{w \in N(v)} f_{(w,v)}^u - \sum_{w \in N(v)} f_{(v,w)}^u = \begin{cases} y_u & v = u \\ 0 & \text{sonst} \end{cases}$ $\forall u, v \in V$ $0 \le f_{(v,w)}^u \le z_{(v,w)}$ $\forall (v, w) \in A', u \in V$ $z_a, y_v \in \{0, 1\}$ $\forall a \in A, v \in V$

Eigenschaften von MCF

- Analog zu DCut:
 - Extra Knoten r
 - Zusätzliche Kanten $\{r\} \times V$
 - Flüsse sind gerichtet
 - Wählt nur eine der Kanten von r
- Wählt k Kanten aus A und k+1 Knoten aus $V \Rightarrow$ Keine Kreise möglich
- Flussbedingungen stellen Graphzusammenhang her.

Flussbedingungen

- Existiert ein Fluss an einer Kante, muss die Kante gewählt werden
- Sei v gewählt ($y_v = 1$), dann existiert ein Pfad von r nach v mit dem Fluss 1. Flussbedingung für v:

$$\sum_{w \in N(v)} f_{(w,v)}^{v} - \sum_{w \in N(v)} f_{(v,w)}^{v} = 1$$

$$\Rightarrow \exists w \in N(v) : f_{(w,v)}^{v} = 1$$

$$\Rightarrow \sum_{x \in N(w)} f_{(x,w)}^{v} - \sum_{x \in N(w)} f_{(w,x)}^{v} = 0$$

$$\Rightarrow \exists x \in N(w) : f_{(x,w)}^{v} = 1 \dots \text{ bis } r$$

• Sei (r, a) die von r gewählte Kante. Dann führen alle Pfade über a. Folgerung: Der Graph ist zusammenhängend.

4

MCF echt stärker als UCut: ∃-Teil

MCF echt stärker als UCut: ∀-Teil

Projektion einer zulässigen MCF Lösung $(z'_{(v,w)}, y'_v, f'^u_{(v,w)})$ auf eine UCut Lösung (x'_e, y'_v) :

$$x_{\{v,w\}} = z'_{(v,w)} + z'_{(w,v)}$$

(Lasse f' fallen) Ist UCut Lösung zulässig?

- 0/1-Schranken: y'_{v} passt, x'_{e} : O.B.d.A. gilt $z_{(u,v)} + z_{(v,u)} \leq 1$. Passt
- x(E), y(V): Analoge Constraints. Passt
- $x(\delta(W)) \ge y_v + y_w 1$:

Angenommen es existiert W, sodass v und w gewählt sind und $\mathbf{x}(\delta(W)) < 1$. Da beide Knoten gewählt sind existiert ein (ungerichteter) Fluss von v über r nach w mit einer Kapazität von 1. Nach dem max-flow-min-cut Theorem muss ein Schnitt mit mindestens 1 existieren.

MCF vs. DCut

	DCut	MCF
Größe Zfkt:	2 <i>E</i>	2 <i>E</i>
Anzahl Constraints	$1+1+ V + V \cdot 2^{ V -1}$	$1+1+1+ V ^2+ V ^2(2 E + V)$
Anzahl binäre Variablen	2 <i>E</i>	2 V + 2 E
Anzahl reelle Variablen	0	$ V ^2(2 E + V)$

MCF vs. DCut

The MCF formulation requires only a polynomial number of variables and constraints. However, the sheer number of variables becomes a practical drawback of this approach. In addition to the x and y variables, we require $|V| \cdot |A|$ variables to model the flow. As we know from similar problems [...], this leads to poor performance of MCFs in practice, compared to directed cut-based approaches, which allow efficient separation of their exponentially many constraints.

— M. Chimani et al: Obtaining optimal k-cardinality trees fast. ACM Journal of Experimental Algorithmics, 14 (2009)