LA TORRE ENCANTADA

Una malvada bruja ha llegado al pantano y ha encerrado a la princesa. Nuestro héroe será el encargado de rescatarla y para ello tendrá que hacer una serie de cálculos matemáticos y estadísticos apoyados de la computación, los algoritmos y lo aprendido en la unidad de grafos.

El mapa del bosque se ve en la figura que sigue:

En el mapa se pueden distinguir:

- ✓ Posición inicial de la bruja, etiquetada con una estrella azul.
- ✓ Dos posiciones iniciales etiquetadas 1 y 2. Más adelante se explica.
- ✓ Tres posiciones con las llaves del candado que permite abrir la celda en que la princesa se encuentra encerrada.

✓ Además, existe un dado que permite saber la cantidad de movimientos que harán la bruja y nuestro héroe. El dado consiste en las siguientes 6 caras, donde el número azul es el movimiento de la bruja y el número en rojo es el movimiento de nuestro héroe en cada turno:

Objetivo del juego.

Para nuestro héroe es recorrer el mapa buscando la llave hasta encontrarla. Debe encontrarla antes de que la bruja llegue a robarla. La bruja tiene la ventaja de que sabe donde se encuentra la llave, pero tiene la desventaja del dado.

Inicio del juego.

Al comenzar la partida, nuestro héroe se ubicará en la posición inicial 1 y la bruja en la casilla con la estrella azul.

La bruja escogerá al azar 1 de las 3 casillas con el icono de la llave para esconderla, de modo tal que nuestro héroe sabe que 1 de esos 3 lugares tiene la llave. La llave permanecerá en esta casilla hasta que el héroe o la bruja lleguen a ella.

Dinámica del juego.

Para cada turno del juego se lanzará el dado. Nuestro héroe tiene la ventaja de ser el primero en moverse en cada turno y luego hará lo propio la bruja. Ambos se moverán la cantidad indicada por el dado. El dado se lanza una vez y según esos números, ambos se mueven para luego lanzar nuevamente el dado.

Movimiento de los jugadores.

<u>Héroe</u>

- 1. Nuestro héroe se moverá tantas casillas como indique el número rojo del dado.
- 2. Si en el movimiento llega a una bifurcación, deberá elegir entre las rutas de forma aleatoria equitativamente (misma probabilidad). Es decir, si la bifurcación tiene 3 opciones, cada ruta posible tendrá 1/3 de probabilidad. Cuando llegamos a una bifurcación, la ruta desde donde venimos no es una posible ruta hasta el movimiento siguiente, a excepción de la casilla marcada con círculo azul, la que si permite volver.
- 3. El punto 3 es el punto de no retorno y por lo tanto no es un camino posible para el héroe recorrer el mapa en dirección a la estrella.
- 4. Si al terminar la jugada, termina en una de las 3 casillas donde posiblemente se encuentre la llave, deberá verificar la casilla. Si la llave se encuentra, gana, salva a la princesa y se acaba el juego. Si no está, se queda ahí hasta el siguiente lanzamiento del dado.

Bruja

Debido a que, a diferencia de nuestro héroe, la bruja si sabe donde se encuentra la llave, tendrá que usar la ruta más corta para llegar a ella antes que nuestro héroe. Para ello, la bruja usará todo lo aprendido en la asignatura de grafos y así optimizar su ruta.

Objetivo del trabajo

Para obtener la nota máxima se solicita lo siguiente:

- 1. Realizar una simulación de Montecarlo que permita ver las probabilidades que tiene el héroe y la bruja de ganar el juego. Al menos 5.000 iteraciones.
- 2. Cada iteración es una partida. Es decir, desde que se inicia el juego hasta que el héroe o la bruja encuentran la llave.
- 3. Habrá tres conjuntos diferentes de resultados:
 - a. El héroe comenzando en la posición 1.
 - b. El héroe comenzando en la posición 2.
 - c. El héroe comenzando en la posición 3.

Resultados

Los resultados que se solicitan son los siguientes:

- 1. Número de casos de éxito del héroe, desde las distintas casillas.
- 2. Número de casos de éxito de la bruja, desde las distintas casillas.
- 3. Como cambian los resultados anteriores si los números del dado rojos aumentan en 1 en cada cara y se mantienen los mismos números azules.
- 4. Como cambian los resultados anteriores si los números del dado azules aumentan en 1 en cada cara y se mantienen los mismos números rojos.
- 5. Número de lanzamientos o turnos máximo y mínimo para el que nuestro héroe encontró la llave
- 6. Número de lanzamientos o turnos máximo y mínimo para el que la bruja llegó a la llave.

Propuesta

Proponer una y solo una modificación al juego de forma tal que el héroe tenga una probabilidad de ganar mayor al 50% en el juego. Implementar dicha propuesta en el programa arrojando los datos necesarios para comprobar que se cumple con lo solicitado.

Despliegue en pantalla

- ✓ Se deberá presentar en pantalla cada uno de los resultados de forma clara y precisa.
- ✓ Se deben generar gráficos que permitan representar de forma clara los resultados.
- ✓ Creatividad, imaginación, diseño y facilidad de uso de la aplicación son requeridos.

Requerimientos del trabajo

- ✓ El trabajo deberá ser realizado en PYTHON 3.7 o superior.
- ✓ Se deberá entregar vía correo a la dirección del profesor adjuntando solo el archivo con el código fuente (.py). Si se requieren imágenes, adjuntar los archivos necesarios.
- ✓ No enviar ejecutables u otro tipo de archivo que pueda ser bloqueado por el correo institucional.
- ✓ Se podrá realizar en parejas.

El plazo de entrega del trabajo es el día 25 de noviembre de 2023 a las 09:00 hrs. (56 días de plazo desde el 30/09/2023).