基于CUDA的遗传算法和神经网络在股票趋势问题中的应用研究

中期答辩

王劭阳

研究内容和进展

本课题计划使用遗传算法和人工神经网络对舆情数据进行分析,得出可以相对准确地预测股票趋势的算法和模型,并使用CUDA架构优化算法的性能,最后对比这两种算法的优劣。

成果介绍-问题建模

- 数据
 - · 2014~2016
 - 收盘价(价格)
 - 发生的事件(舆情)
 - (event_type_id, scope_id, polarity, count)
- 预处理
 - · 涨跌
 - (event_type_id, scope_id, polarity, count) -> (feature_id, count)

成果介绍-问题建模

- m为样本总数(总天数), n为特征总数。
- 对于每日的数据:
- $y^{(j)} = \begin{cases} 1, & if$ 第j天股票价格上涨或不变 0, if 第j天股票价格下跌
- $x^{(j)} = (x_0, x_1, x_2, ..., x_n)$,其 x_i 为第j天feature_id = i的特征发生次数, $x_0 = 1$ 。
- 称一组 $(x^{(j)}, y^{(j)})$ 为一个样本。
- 对于全体数据:

$$y = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \dots \\ y^{(m)} \end{pmatrix} \qquad X = \begin{pmatrix} x^{(1)} \\ x^{(2)} \\ \dots \\ x^{(m)} \end{pmatrix} = \begin{pmatrix} x_0^{(1)} & \dots & x_n^{(1)} \\ \dots & \dots & \dots \\ x_0^{(m)} & \dots & x_n^{(m)} \end{pmatrix}$$

· 需要提到的一点是,X和y是从总体 X_{total} 和 y_{total} (从古至今每一天的数据)抽样出的一组样本。

成果介绍-问题建模

- 现实中存在一个函数f, 满足y = f(X), 并且 $y_{total} = f(X_{total})$ 。
- 我们的目标是找到一个函数h, 使得h与f尽量相近, 使我们可以通过函数h来预测 股票的趋势。

- 设参数 $\theta = (\theta_0, \theta_1, \theta_2, ..., \theta_n)$ 为一个n维向量。
- 我们选定函数h的模型为 $h_{\theta}(x) = g(\theta^T x) = \frac{1}{1+e^{-\theta^T x}}$
- 其中 $g(z) = \frac{1}{1+e^{-z}}$ 为sigmoid函数,形状如下图所示

- 由于x, y是随机变量, 并且 $h_{\theta}(x) \in (0,1)$, 所以我们做出如下假设:
- $P(y = 1|x, \theta) = h_{\theta}(x)$
- $P(y = 0|x, \theta) = 1 h_{\theta}(x)$
- 即是说 $P(y|x,\theta)$ 满足参数为 $h_{\theta}(x)$ 的伯努利分布。

•

- 将两个等式写在一起得到:
- $P(y|x,\theta) = (h_{\theta}(x))^{y} (1 h_{\theta}(x))^{1-y}$

• 我们使用极大似然估计的方法来求出 θ , 假设 \mathbf{m} 个样本相互独立:

•
$$L(\theta) = P(y|X,\theta)$$

•
$$= \prod_{j=1}^m P(y^{(j)}|x^{(j)},\theta)$$

• =
$$\prod_{j=1}^{m} (h_{\theta}(x^{(j)}))^{y^{(j)}} (1 - h_{\theta}(x^{(j)}))^{1-y^{(j)}}$$

• 于是 θ 的值应为使 $L(\theta)$ 取到最大的值。

遗传算法

- 基因序列实数编码
- 基因 θ 的每个分量
- 适应度函数 $L(\theta)$
- $\theta_i \epsilon [-10000, 10000]$

交叉过程

- 从原种群中随机选出小部分个体,选出这部分中适应度最高的个体A
- 从原种群中随机选出小部分个体,选出这部分中适应度最高的个体B
- 遍历生成新个体的基因(50% A or B)

变异过程

- · 遍历新个体的基因,以设定好的突变率决定该基因是否突变, 不突变则continue
- ・新基因 $\theta_i' = \theta_i + \gamma \cdot d(\gamma, \theta_i) \cdot (1 r^{(1 \frac{t}{T})^b})$
- $d(\gamma, \theta_i) = \begin{cases} 10000 \theta_i, & \gamma = 1 \\ \theta_i (-10000), & \gamma = -1 \end{cases}$

精英保留策略

每次生成新一代种群时,上一代适应度最高的个体总是得以原样保留

成果介绍-遗传算法部分的实验

- 样本划分
 - 训练集 300
 - 验证集 100
 - 测试集 100左右
- · 德国DAX股票指数

Total: 104, Correct: 65, Accuracy: 0.625000

• 国际金价

Total: 117, Correct: 79, Accuracy: 0.675214

- h ∈ H
- 输入层 x
- 隐层
 - 共2层
 - 每层8个神经元
 - 全连接
- 输出层 h(x)
- 神经元 整个遗传算法部分使用的模型

Neuron

$$z = a_1 w_1 + \dots + a_k w_k + \dots + a_K w_K + b$$

Fully Connect Feedforward Network

每层在做什么?

- · x'和y'是该层的输入输出向量
- · Θ是该层的参数矩阵
- · A是矩阵为Θ的线性变换
- $y' = \sigma(A(x') + b) = \sigma(\Theta x' + b)$
 - A 升降维、放大缩小、旋转
 - +b 平移
 - $\cdot \sigma$ 将输入空间投向另一个空间(弯曲)
- 函数模型复杂 -> H很大

- 后向传播
- 初始化所有 @
- 从后向前操作
 - 计算残差 (使用均方误差)
 - 梯度下降

后期进度安排

日期	进度
2017.03.30-2017.04.20	完成神经网络部分的优化
2017.04.20-2017.05.01	使用CUDA对代码性能进行优化
2017.05.01-2017.05.20	撰写毕设论文,并根据论文情况补充或调整代码
2017.05.20-之后	准备毕设答辩