flea system description

Alexander Maringele

September 2016 – Obergurgl

Refutation

Goals

fisrst order logic with equality theorem attester

- maintainable
- simple
- tested
- fast
- extendable
- flexible

- 1 start with
 - empty list of processed clauses with selected literals
 - list of unprocessed clauses
 - empty (satisfiable) yices context
- 2 return satisfiable if the list of unprocessed clauses is empty
- 3 select a unprocessed file and process it
 - assert a ground instance of the clause in the yices context
 - return unsatisfiable if the context is unsatisfiable
 - retrieve a model from the context
 - select a literal of the clause that holds in the model
 - search for contradictions with the selected literals of the processed clauses and retrieve non-redundant instances from the contributing clauses and add them to the unprocessed clauses
 - remove the clause from the list of unprocessed clauses
 - add the clause and its selected literal to the processed clauses
- 4 continue with step 2.

$$S_0 \bot = \{ \mathsf{P}(\bot) \lor \neg \mathsf{P}(\bot), \neg \mathsf{P}(\mathsf{a}), \mathsf{P}(\mathsf{b}) \}$$
 satisfiable
$$\frac{\mathsf{P}(x) \lor \neg \mathsf{P}(y)) \quad \neg \mathsf{P}(\mathsf{a})}{\mathsf{P}(\mathsf{a}) \lor \neg \mathsf{P}(y)} \; x \mapsto \mathsf{a}$$

$$S_1 \bot \supsetneq \{ \neg \mathsf{P}(\mathsf{a}), \mathsf{P}(\mathsf{b}), \mathsf{P}(\mathsf{a}) \lor \neg \mathsf{P}(\bot) \}$$
 satisfiable
$$\frac{\mathsf{P}(\mathsf{b}) \quad \mathsf{P}(\mathsf{a}) \lor \neg \mathsf{P}(y)}{\mathsf{P}(\mathsf{a}) \lor \mathsf{P}(\mathsf{b})} \; y \mapsto \mathsf{b}$$

$$S_2 \bot \supsetneq \{ \neg \mathsf{P}(\mathsf{a}), \mathsf{P}(\mathsf{b}), \mathsf{P}(\mathsf{a}) \lor \neg \mathsf{P}(\mathsf{b}) \}$$
 unsatisfiable

$$\begin{split} S &= \{\mathsf{P}(x) \vee \neg \mathsf{P}(y), \neg \mathsf{P}(\mathsf{a}), \mathsf{P}(\mathsf{b})\} \\ &\frac{\mathsf{P}(x) \vee \neg \mathsf{P}(y) \quad \neg \mathsf{P}(\mathsf{a})}{\neg \mathsf{P}(y)} \; x \mapsto \mathsf{a} \quad \mathsf{P}(\mathsf{b}) \\ &\frac{\neg \mathsf{P}(y)}{\Box} \end{split}$$

$$\frac{L \vee C \quad \neg L' \vee D}{(L \vee C)\sigma \quad (\neg L' \vee D)\sigma}$$

where

$$\operatorname{sel}(L \vee C) = L$$
 $\operatorname{sel}(\neg L' \vee D) = \neg L'$ $\sigma = \operatorname{mgu}(L, L')$

$$\frac{L \vee C \quad \neg L' \vee D}{(C \vee D)\sigma}$$

where

 $L\sigma$ strictly maximal in $C\sigma$, $\neg L'\sigma$ maximal in $D\sigma$, $\sigma = \text{mgu}(L, L')$.

Unit Superposition Inference Rules

$$\frac{s \approx t \quad L[s']}{(L[t]) \cdot \sigma} \quad \underset{\text{paramodulation}}{\text{unit}}$$

where $\sigma = \text{mgu}(s, s')$, $s' \notin \mathcal{V}$, $t\sigma \not\succeq s\sigma$

$$\frac{s \approx t \quad u[s'] \not\approx v}{(u[t] \not\approx v) \cdot \sigma} \text{ unit superposition } \frac{s \approx t \quad u[s'] \approx v}{(u[t] \approx v) \cdot \sigma}$$

where $\sigma = \text{mgu}(s, s')$, $s' \notin \mathcal{V}$, $t\sigma \not\succeq s\sigma$, $v\sigma \not\succeq u[s']\sigma$

where s and t (A and B respectively) are unifiable

$$\neg P(g(b, z)) \mapsto \{P.1.g.1.b, P.1.g.2.*\} \mapsto \{6\} \cap \{2, 4, 6\}$$