1 Определения

Определение 1.1. Кольцо – это тройка (R, +, *), где R – непустое множество, $+, *: R^2 \mapsto R$, такая что (R, +) – абелева группа, а также выполнена дистрибутивность умножения * относительно сложения + слева и справа. Нейтральный элемент относительно сложения обозначается 0

Кольцо с единицей — это кольцо, в котором относительно умножения есть нейтральный элемент, обозначаемый 1: 1*a=a*1=1

Ассоциативное кольцо — это кольцо, в котором выполнена ассоциативность операции умножения: a*(b*c)=(a*b)*c

Коммутативное кольцо — это кольцо, в котором выполнена коммутативность операции умножения a*b=b*a, а также присутствует единица и выполнена ассоциативность.

Определение 1.2. Элемент $a \neq 0$ ассоциативного кольца с единицей R называется обратимым, если $\exists a^{-1} \in R : a^{-1} * a = a * a^{-1} = 1$

Определение 1.3. Элемент $0 \neq a \in R$ называется делителем нуля, если $\exists 0 \neq b \in R : ab = 0$

Определение 1.4. Для кольца K множество его обратимых элементов обозначается K^*

Элементы a и b называются ассоциированными, если $\exists c \in K^* : a = cb$

Определение 1.5. Коммутативное кольцо без делителей нуля называется областью целостности.

Определение 1.6. Ненулевой необратимый элемент a области целостности называется неразложимым, если из того, что он представляется в виде a=bc, следует, что либо b либо c обратим.

Определение 1.7. Ненулевой необратимый элемент p называется простым, если из того, что p|ab следует, что либо p|a либо p|b

Определение 1.8. Евклидово кольцо – это область целостности K с определенной на ней функцией евклидовой нормы $N: K \setminus \{0\} \mapsto \mathbb{N}_0$:

- 1. $\forall a, b \in K \setminus \{0\} : N(a) < N(ab)$
- 2. $\forall a, b \in K \setminus \{0\} : \exists q, r : a = qb + r, N(r) < N(b)$

Определение 1.9. Пусть K – область целостности. Тогда элемент $z \in K$ называется наибольшим общим делителем элементов $a,b \in K$ (обозначается как (a,b)), если z|a,z|b и $\forall z':z'|a,z'|b$ выполнено, что z'|z

Определение 1.10. Пусть R_1 и R_2 – кольца. Отображение $\varphi: R_1 \mapsto R_2$ наызвается гомоморфизмом колец, если:

- 1. $\varphi(a+b) = \varphi(a) + \varphi(b)$
- 2. $\varphi(a*b) = \varphi(a)*\varphi(b)$

Определение 1.11. Подмножество $R \subset K$ называется подкольцом, если оно замкнуто относительно умножения и является подгруппой по сложению.

Определение 1.12. Подкольцо R коммутативного кольца K называется идеалом, если оно замкнуто относительно умножения на элемент из K, то есть $\forall r \in R, k \in K : rk \in R$

Определение 1.13. Тривиальным называют идеал, либо совпадающий со всем кольцом, либо состоящий из одного элемента (нейтрального элемента по сложению)

Определение 1.14. Идеал I коммутативного кольца K называется порожденным элементами x_1, \cdots, x_n (обозначение $I = (x_1, \cdots, x_n)$), если $I = \{a_1 * x_1 + a_2 * x_2 + \cdots + a_n * x_n | \forall i : a_i \in K\}$

Определение 1.15. Идеал конечнопорожден, если он порожден конечным числом элементов.

Определение 1.16. Идеал называется главным, если он порожден одним элементом.

Определение 1.17. Кольцо называется кольцом главных идеалов (КГИ), если в нём все идеалы главные.

Определение 1.18. Область целостности называется факториальным кольцом, если в нём любой ненулевой элемент либо обратим, либо с точностью до перестановки и домножения на обратимые представляется в виде произведения неразложимых.

Определение 1.19. Идеал $I \neq K$ называется простым, если $ab \in I \Rightarrow a \in I \lor b \in I$

Определение 1.20. Идеал $I \neq K$ называется максимальным, если не существует другого нетривиального идеала, содержащего I

2 Вопросы сложности 2

Утверждение 2.1. В коммутативном кольце элемент не может иметь двух различных обратных

Доказательство. Пусть K — коммутативное кольцо, $a \in K$ — ненулевой элемент этого кольца, a_1, a_2 — два различных обратных элемента к нему. Тогда, с одной стороны $a_1aa_2 = a_1(aa_2) = a_1$, а с другой стороны $a_1aa_2 = (a_1a)a_2 = a_2$. Получили, что $a_1 = a_2$. Противоречие.

Утверждение 2.2. Пусть R – кольцо с единицей, причем |R| > 1. Тогда в этом кольце $1 \neq 0$

Доказательство. Пусть $a \in R$. Докажем, что $a \cdot 0 = 0$. Воспользуемся тем, что 0 = 0 + 0 (это прямое следствие аксиом кольца), а также дистрибутивностью:

$$a \cdot 0 = a \cdot (0+0) = a \cdot 0 + a \cdot 0$$

Если добавить к обоим частям равнества обратный по сложению $-(a \cdot 0)$, то получим, что $a \cdot 0 = 0$.

Пусть теперь 1=0. Поскольку |R|>1, то можно найти такой $a\in R$, что $a\neq 0$. Тогда $a\cdot 1=0$ из выше доказанного. С другой стороны, поскольку 1 — нейтральный элемент по умножению, $a\cdot 1=a$. Тогда a=0. Но мы выбирали a так, что $a\neq 0$. Противоречие.

Утверждение 2.3. Пусть R – ассоциативное кольцо с единицей. a – обратимый элемент в R. Тогда a не может быть делителем нуля.

Доказательство. Пусть $\exists b \neq 0: ab = 0$. Умножим последнее равенство на a^{-1} . Тогда $0 = a^{-1}ab = (a^{-1}a)b = b$. Получили, что b = 0. Противоречие. \square

Утверждение 2.4. Пусть K – область целостности, пусть $a,b,c \in K$, причем $c \neq 0$. Тогда $ac = bc \Rightarrow a = b$

Доказательство. $ac = bc \Leftrightarrow ac - bc = 0 \Leftrightarrow (a - b)c = 0$. Поскольку K -область целостности, то либо c = 0, либо a - b = 0. Но первое противоречит условию, поэтому верно второе, то есть a = b.

Утверждение 2.5. $S=\{\frac{p}{q}\in\mathbb{Q}:(p,1)=1,q|n\}$ не является подкольцом \mathbb{Q}

Доказательство. Пусть $n=12,\,\frac{1}{4}\in S,\frac{1}{6}\in S.$ Но их произведение $\frac{1}{4}\cdot\frac{1}{6}=\frac{1}{24}\not\in S.$ Получили, что S не замкнуто относительно умножения.

Утверждение 2.6. Пусть p – простое, $S = \{\frac{a}{b} \in \mathbb{Q} : (a,b) = 1, \not p|b\}$. Тогда S – подкольцо в \mathbb{Q}

Доказательство. Проверяем замкнутость относительно операций. Пусть $\frac{a}{b} \in S, \frac{c}{d} \in S$, причем /p|b,/p|d $\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}$, причем /p|bd. Действительно, пусть p|bd. Так как p простое, то либо p|b, либо p|d. А это не так. Поскольку p|bd, то и после сокращения дроби $\frac{ad+bc}{bd}$ на некоторое число e, $p|\frac{bd}{e}$. Действительно, воспользуемся ОТА: пусть $bd = p_1p_2\cdots p_k$, причем в этом разложении нет числа p. Но тогда после сокращения, в разложении числа bd могут лишь исчезнуть некоторые p_i , но не появится p.

Аналогично с произведением. Понятно также, что все обратные к $\frac{a}{b}$ в S лежат, ведь это просто $\frac{-a}{b}$

Утверждение 2.7. Пусть p – простое, $S = \{\frac{a}{b} \in \mathbb{Q} : (a,b) = 1, \exists n \in \mathbb{N}_0 : b = p^n\}$. Тогда S – подкольцо в \mathbb{Q}

Доказательство. Проверяем замкнутость операций, пусть $\frac{a}{n^n} \in S, \frac{b}{n^m} \in S$.

Без ограничения общности, m>n. Тогда $\frac{a}{p^n}+\frac{b}{p^m}=\frac{ap^{m-n}+b}{p^m}$. После сокращения последней дроби её знаменатель останется степенью p. Аналогично с произведением. Обратные ко всем элементам также лежат.

Утверждение 2.8. Множество обратимых элементов ассоциативного кольца с единицей является группой по умножению и называется мультипликативной группой кольца

Доказательство. Пусть K^* – это множество всех обратимых элементов ассоциативного кольца с единицей К. Понятно, что для этих элементов выполняется ассоциативность, ведь она наследуется из кольца K. Кроме того, $1 \in K^*$, ведь 1 — обратимый элемент. И последнее: если a — обратим, то a^{-1} тоже обратим. В итоге мы доказали, что K^* – группа.

Утверждение 2.9. $a \sim b \Leftrightarrow a|b \wedge b|a$

Доказательство. Пусть $a \sim b$. Тогда $\exists c \in K^* : a = bc$. Тогда b|a. Кроме того, $c^{-1}a = b$, то есть a|b.

Наоборот, пусть a|b,b|a. Понятно, что тогда $a \neq 0, b \neq 0$. Тогда b = ca, a =db. Тогда b = cdb. Сокращая на b получаем, что cd = 1, а это означает, что c и d – обратимые, то есть $a \sim b$

Утверждение 2.10. Если a – неразложим, a b $\sim a$, то b – неразложим.

Доказательство. Пусть b – разложимый элемент, то есть $\exists c, d \notin K^* : b =$ cd. Но a=eb, причем $e\in K^*$. Тогда a=ecd. Но $ec\notin K^*$. Действительно, пусть $ec \in K^*$. $e^{-1} \in K^*$. Тогда $c \in K^*$, а это не так. Получили разложения для a на необратимые элементы.

Утверждение 2.11. Пусть p – простой, $p \sim q$. Тогда q тоже простой.

Доказательство. Пусть $q|ab,q=cp,c\in K^*$. Тогда ab=dq=cdp. Тогда p|ab. Тогда либо p|a, либо p|b. Пусть, без ограничения общности, p|a. Тогда $a = ep = ec^{-1}q$. Но тогда q|a.

Утверждение 2.12. Пусть $d_1=(a,b), d_2=(a,b)$. Тогда $d_1\sim d_2$

Доказательство. Поскольку d_1 – наибольший общий делитель, а d_2 – общий делитель, то $d_2|d_1$. Аналогично, $d_1|d_2$. По критерию ассоциированности, $d_1 \sim d_2$

Утверждение 2.13. $\mathbb{Z}[\omega]$ – евклидово кольцо с нормой $N(a+b\omega)=a^2+$ $b^2 - ab$

Доказательство. Заметим, что $|a+b\omega|^2=(a+b\omega)\cdot(a+b\overline{\omega})=a^2+ab(\omega+b\omega)$ $\overline{\omega}$) + $b^2\omega\overline{\omega} = a^2 + b^2 - ab = N(a + b\omega) \ge 1$, при $(a,b) \ne 0$

Тогда для $z_1,z_2 \neq 0$: $N(z_1z_2)=z_1z_2\overline{z}_1\overline{z}_2=N(z_1)N(z_2)\geq N(z_1)$ и первое свойство нормы выполнено.

Теперь нужно сказать пару слов, про то, как мы делим элементы в $\mathbb{Z}[\omega]$ (то есть как для любых двух $a,b\in\mathbb{Z}[\omega]$ выбрать $q,r\in\mathbb{Z}[\omega]$ так, что a=bq+r, причем N(r)< N(b))

Положим $q = \left[\frac{a}{b}\right] - ближайшую к \frac{a}{b}$ точку из $\mathbb{Z}[\omega]$, $r = b*(q - \frac{a}{b}) = b*(\left[\frac{a}{b}\right] - \frac{a}{b}) = bq - a$. Если мы докажем, что $\left|\left[\frac{a}{b}\right] - \frac{a}{b}\right| < 1$, это будет означать, что N(r) < N(1)N(b) = N(b). Для этого докажем, что расстояние вообще от любой точки из \mathbb{C} до ближайшей точки $\mathbb{Z}[\omega]$ удовлетворяет требуемому неравенству. Рассмотрим $z \in \mathbb{C}$. Для неё в $\mathbb{Z}[\omega]$ есть три ближайшие точки z_1, z_2, z_3 , образующие треугольник вокруг z. Любой такой треугольник является равносторонним со стороной 1. Докажем, что $f(z) = \max_z \min\{|z_1 - z|, |z_2 - z|, |z_3 - z|\} < 1$. Но максимум достигается, когда все $|z_i - z|$ равны. Тогда точка z — центр описанной окружности вокрут треугольника, а f(z) — то радиус описанной окружности, который находится по формуле $\frac{abc}{4S} = \frac{1}{\sqrt{3}} < 1$

Утверждение 2.14. В области целостности $\mathbb{Z}[u]$ элемент z=a+bu делится на $k\in\mathbb{Z}$ тодгда и только тогда, когда a u b делятся на k.

Доказательство. Пусть k|z. Тогда a+bu=z=k(x+yu)=kx+kyu. Пусть u=c+di. Тогда a+bc+bdi=kx+kyc+kydi. Два компексных числа равны, если равны их мнимые и действительные части, поэтому

$$\begin{cases} a + bc = kx + kyc, \\ bd = kyd \end{cases}$$

Считаем, что $d \neq 0$, в противном случае утверждение не верно (например, 2|1+3=4, но неверно, что 2|1,2|3). Тогда b=ky, a=kx. Значит, a и b делятся на k.

Пусть наоборот, a и b делятся на k. Тогда b=ky, a=kx. z=a+bu=k(x+uy). Тогда k|z.

Утверждение 2.15. $B \mathbb{Z}[\omega]$ если z|x,|z|=|x|, то $z\sim x$

Доказательство. x=zy, причем |x|=|z||y|, а значит, |y|=1. Но в $\mathbb{Z}[\omega]$ все такие z, что |z|=1 обратимы, следовательно, $z\sim x$

Утверждение 2.16. $B \mathbb{Z}[i]$ если z|x,|z|=|x|, то $z\sim x$

Доказательство. x=zy, причем |x|=|z||y|, а значит, |y|=1. Но в $\mathbb{Z}[i]$ все такие z, что |z|=1 обратимы, следовательно, $z\sim x$

Утверждение 2.17. Если z – неразложимый в $\mathbb{Z}[i]$, то $\exists p$ – простое, $N(z) = p \lor N(z) = p^2$

Доказательство. Будет пользоваться тем фактом, что $\mathbb{Z}[i]]$ — факториальное кольцо. Тогда z — простой. $N(z)=z\overline{z}$, причем $N(z)\in\mathbb{Z}$. Разложим N(z) на простые. $z\overline{z}=p_1^{k_1}p_2^{k_2}\cdots p_s^{k_s}$. То есть $z|p_1^{k_1}\cdots p_s^{k_s}$. но z — простое, поэтому $\exists i:z|p_i$. То есть $zx=p_i$. Обозначим $z=p_i$, оно простое. $z=p_i$. Есть 3 варианта:

- 1. N(x) = 1. Тогда $N(z) = p^2$
- 2. N(x) = p. Тогда N(z) = p.
- 3. $N(x)=p^2$. Тогда N(z)=1, и z обратим, а значит, не является неразложимым. Противоречие.

Утверждение 2.18. Если z – неразложимый в $\mathbb{Z}[\omega]$, то $\exists p$ – простое, $N(z) = p \vee N(z) = p^2$

Доказательство повторяет предыдущее. Будет пользоваться тем фактом, что $\mathbb{Z}[\omega]$ — факториальное кольцо. Тогда z — простой. $N(z)=z\overline{z}$, причем $N(z)\in\mathbb{Z}$. Разложим N(z) на простые. $z\overline{z}=p_1^{k_1}p_2^{k_2}\cdots p_s^{k_s}$. То есть $z|p_1^{k_1}\cdots p_s^{k_s}$. но z — простое, поэтому $\exists i:z|p_i$. То есть $zx=p_i$. Обозначим $p=p_i$, оно простое. $N(z)N(x)=p^2$. Есть 3 варианта:

- 1. N(x) = 1. Тогда $N(z) = p^2$
- 2. N(x) = p. Тогда N(z) = p.
- 3. $N(x)=p^2$. Тогда N(z)=1, и z обратим, а значит, не является неразложимым. Противоречие.

Утверждение 2.19. Если x – неразложимый элемент $\mathbb{Z}[i]$ и $N(z)=p^2$, то $z\sim p$

Доказательства. В рамках предыдущего доказательства мы показали, что $\exists x: zx=p$. Тогда $N(z)N(x)=p^2$, но также $N(z)=p^2$, а значит, N(x)=1. Значит, x — обратим и $z\sim p$

Утверждение 2.20. Если x – неразложимый элемент $\mathbb{Z}[\omega]$ и $N(z)=p^2$, то $z\sim p$

Доказательство. Аналогично.

Утверждение 2.21. Если для $z \in \mathbb{Z}[i]$ выполнено, что N(z) = p, где p – простое, то z неразложим.

Доказательство. Пусть z разложим, тогда $z=z_1z_2$, причем $z_1,z_2\notin\mathbb{Z}[i]^*$. Тогда $p=N(z)=N(z_1)N(z_2)$. Так как p простое, то либо $N(z_1)=1$, либо $N(z_2)=1$. Но тогда либо z_1 , либо z_2 обратим. Противоречие.

Утверждение 2.22. Если для $z \in \mathbb{Z}[\omega]$ выполнено, что N(z) = p, где p – простое, то z неразложим.

Доказательство. Аналогично.

Утверждение 2.23. Множество делителей нуля кольца K вместе c нулём не всегда образуют идеал.

Доказательство. Рассмотрим $K=\mathbb{Z}_6$. Его множество делителей нуля (вместе с нулем) — это $\{0,2,3\}$. Это множество не образует даже подкольцо, так как $2+3=5 \not\in \{0,2,3\}$

Утверждение 2.24. 3 – разложимый элемент $\mathbb{Z}[\omega]$

Доказательство.
$$(1-\omega)(1-\omega^2)=1-\omega-\omega^2+\omega^3=2-\omega-\omega^2=2-\omega-(-1-\omega)=3$$

Утверждение 2.25. Если идеал $I\subset K$ содержит обратимый элемент, то I=K

Доказательство. Пусть $a \in I$ — обратимый элемент. Тогда $\exists a^{-1} \in K$: $aa^{-1} = 1$. Из опеределения идеала $\forall x \in I$: $\forall y \in K$: $xy \in I$. Значит, $1 = aa^{-1} \in I$. Раз $1 \in I$, то и $\forall y \in K$: $1 \cdot y \in I$. Значит, $K \subset I$. Но тогда K = i.

Утверждение 2.26. $I = (a_1, \dots, a_k) = \{x_1 a_1 + \dots + x_k a_k : \forall i : x_i \in K\}$ - это минимальный по включению идеал, содержащий элементы a_1, \dots, a_k .

Доказательство. Во-первых, I – это идеал. Действительно, пусть $x \in I, y \in K$. Тогда $x = x_1a_1 + \cdots + x_ka_k$. $yx = yx_1a_1 + \cdots + yx_ka_k \in I$. Кроме того, это подгруппа по сложению.

Пусть J — другой идеал, содержащий a_1, \cdots, a_k . Тогда $\forall i: \forall x \in K: xa_i \in J$. Тогда $\forall x_1, \cdots, x_k: x_1a_1 + \cdots + x_ka_k \in J$. Но тогда $I \subset J$. Но это и означает, что I — минмальный по включению идеал, содержащий элементы a_1, \cdots, a_k .

Утверждение 2.27. Идеал $(x, x+1) \subset \mathbb{Z}[x]$ не является ни простым, ни максимальным.

Доказательство. $x \in (x,x+1), x+1 \in (x,x+1) \Rightarrow x+1-x=1 \in (x,x+1).$ Но тогда $I=\mathbb{Z}[x]$. То есть этот идеал тривиальный. Значит, он не максимальный и не простой.

3 Вопросы сложности 3

Утверждение 3.1. Множество $S = \{x + \sqrt{2}y : x, y \in \mathbb{Q}\}$ является кольцом.

Доказательство. Так как $S \subset \mathbb{R}$, а \mathbb{R} – кольцо, то достаточно проверить замкнутость S. Пусть $x + \sqrt{2}y \in S, a + \sqrt{2}b \in S$. Тогда $-(x + \sqrt{2}y) = -x + \sqrt{2}(-y) \in S$. $(x + \sqrt{2}y) + (a + \sqrt{2}b) = (x + a) + \sqrt{2}(y + b) \in S$. $(x + \sqrt{2}y)(a + \sqrt{2}b) = (xa + 2yb) + \sqrt{2}(ya + xb) \in S$. Получаем, что S замкнуто относительно операци. Значит S – подкольцо, значит S – кольцо.

Утверждение 3.2. Простой элемент области целостности является неразложимым.

Доказательство. Пусть p — простой элемент области целостности K. Пусть p — разложим, то есть $\exists a \not ! nK^*, b \not \in K^* : p = ab$. Тогда p|ab. Значит, либо p|a, либо p|b. Пусть без ограничения общности p|a. Тогда a = px. Тогда p = pxb. Значит, p(1-xb) = 0. Так как $p \neq 0$, то 1-xb = 0. Значит, xb = 1, и следовательно, $b \in K^*$. Противоречие.

Утверждение 3.3. При каких $u \in \mathbb{C}$ множество $\mathbb{Z}[u] = \{a + bu : a, b \in \mathbb{Z}\}$ является областью целостности.

Доказательство. Заметим, что $\mathbb{Z}[u] \subset \mathbb{C}$. Но в \mathbb{C} делителей нуля нет, так как это поле (ну или так: пусть a – делители нуля в \mathbb{C} , тогда 0 = |ab| = |a||b|. Но тогда либо |a| = 0, либо |b| = 0).

Осталось проверить, при каких u $\mathbb{Z}[u]$ замкнуто. Понятно, что (a+bu)+(c+du)=(a+c)+(d+b)u, то есть относительно сложения это множество всегда замкнуто. Посмотрим, что происходит при умножении: $(a+bu)(c+du)=ac+(bc+ad)u+bdu^2$. Значит, это множество замкнуто тогда и только тогда, когда $u^2\in\mathbb{Z}[u]$. То есть $\exists r,s:u^2=r+su$. Заметим, что если u- корень $u^2=r+su$, то и \overline{u} это тоже корень $u^2=r+su$. Тогда по теореме Виета это означает, что $u+\overline{u}=2\Re u\in\mathbb{Z}, u\cdot\overline{u}=|u|^2\in\mathbb{Z}$

Утверждение 3.4.

$$\mathbb{Z}[ni]^* = \begin{cases} \{1, -1, i, -i\}, n = 1, \\ \{1, -1\}, n > 1. \end{cases}$$

Доказательство. Заметим, что если z – обратимый, то $|z|^2|z^{-1}|^2=|zz^{-1}|^2=|1|^2=1$. Если $z,z^{-1}\in\mathbb{Z}[ni]$, то $|z|^2,|z^{-1}|^2\in\mathbb{Z}$. Произведение двух положительных чисел из \mathbb{Z} дает единицу, если оба числа это единица. Значит, обратимыми могут быть только элементы с нормой 1. Просто переберём все элементы из $\mathbb{Z}[ni]$ с нормой 1 и посмотрим, какие из них обратимы.

Утверждение 3.5.
$$\mathbb{Z}[\omega]^* = \{1, -1, \omega, -\omega, \omega^2, -\omega^2\}$$

Доказательство. Рисуем $\mathbb{Z}[\omega]$ на листочке и внимательно смотрим, использую соображения из предыдущего доказательства.

Утверждение 3.6. $\mathbb{Z}[3i]$ не факториально.

Доказательство. $3i\cdot(-3i)=9=3\cdot3$. Докажем, что 3,3i,-3i неразложимы. Пусть не так, и скажем, $3=z_1z_2$, причем ни z_1 , ни z_2 не обратимы, а следовательно $N(z_1)>1, N(z_2)>1$. Тогда $9=N(z_1)N(z_2)$. Понятно, что тогда $N(z_1)=3, N(z_2)=3$. Но $N(z)=a^2+9b^2$. Легко показать, что $N(z)\neq 3$ при любых a,b. Ну или можно нарисовать $\mathbb{Z}[3i]$ и убедиться в этом при помощи геометрии. Оба варианта являются правильными. Аналогично делаем с 3i и -3i

Утверждение 3.7. $\mathbb{Z}[\sqrt{3}i]$ не факториально.

Доказательство. $4=2\cdot 2=(1-\sqrt{3}i)(1+\sqrt{3}i)$. $N(2)=N(1-\sqrt{3}i)=N(1+\sqrt{3}i)=4$. Покажем, что элемент с нормой 4 неразложим. $4=N(z_1)\cdot N(z_2)$. Тогда $N(z_1)=N(z_2)=2$. Но элементов с такой нормой в $\mathbb{Z}[\sqrt{3}i]$ нет.

Утверждение 3.8. Если $N(ab)=N(a),\;u\;a,b\neq 0,\;mo\;b$ – обратим

Доказательство. Разделим a на ab с остатком. Тогда $\exists q, r: a = abq + r$. Пусть $r \neq 0$. Тогда N(r) < N(ab) = N(a). Но r = a - abq = a(1 - bq), следовательно a|r. Тогда r = xa. $N(r) = N(xa) \geq N(a)$. Но мы получили противоречие, ведь $N(a) \leq N(xa) = N(r) < N(ab) = N(a)$. Значит r = 0. Но тогда b — обратимый

Утверждение 3.9. Если b – обратим, то N(ab) = N(a)

Доказательство. Из свойства нормы: $N(ab) \geq N(a)$. Докажем, что $N(a) \geq N(ab)$. Так как b — обратимый, то $a = abb^{-1}$. Тогда Из свойства нормы $N(a) = N(abb^{-1}) \geq N(ab)$. Конец.

Утверждение 3.10. Если p – простое целое число, причем p=4k+3, то p – неразложимый элемент в $\mathbb{Z}[i]$

Доказательство. Пусть не так. Тогда $\exists z_1, z_2 \notin \mathbb{Z}[i]^* : p = z_1 z_2$. Посмотрим на норму $p: p^2 = N(z_1)N(z_2)$. Понятно, что без ограничения общности есть два варианта:

- 1. $N(z_1) = N(z_2) = p$. Но такого быть не может, т.к. $N(z_1) = a^2 + b^2 \not\equiv 3 \mod 4$
- 2. $N(z_1)=1, N(z_2)=p^2.$ Но тогда z_1 обратимый, и мы опять пришли к противоречию.

Значит, р неразложимый.

Утверждение 3.11. Если p – простое целое число вида 4k+1, то p – разложимый элемент в $\mathbb{Z}[i]$

 \mathcal{A} оказательство. Предположим противное, пусть p – неразложимый, а следовательно, простой, так как $\mathbb{Z}[i]$ – факториально.

Заметим, что -1 является квадратичным вычетом по модулю p (другими словами, $\exists a: a^2 \equiv -1 \mod p$). Это можно понять, посчитав символ Лежандра $\left(\frac{-1}{p}\right)$. Но есть и другой вариант доказательства. Мы знаем, что $\forall a: a^{p-1} \equiv 1 \mod p$ из малой теоремы Ферма. Тогда $(a^{\frac{p-1}{2}}-1)(a^{\frac{p-1}{2}}+1) \equiv 0 \mod p$. Мы знаем, что у этого многочлена p-1 корень, а у $a^{\frac{p-1}{2}}-1 \equiv 0 \mod p$ не может быть больше $\frac{p-1}{2}$ корней (так как $\mathbb{Z}[p]$ — это поле). Тогда $\exists a: a^{\frac{p-1}{2}} \equiv -1 \mod p$. Если положить $x=a^k$, то $x^2=a^{2k}=a^{\frac{p-1}{2}} \equiv -1 \mod p$. Значит, -1 является квадратичным вычетом по модулю p. Тогда $x^2+1=(x-i)(x+i)\equiv 0 \mod p$. Так как p простое, то либо p|x+i, либо p|x-i. Но оба этих утверждения неверны (это доказывалось в 2.14)

Утверждение 3.12. Натуральное число представимо в виде суммы двух квадратов (целых чисел) тогда и только тогда, когда любое простое число вида 4k+3 входит в его разложение на простые множители в чётной степени.

Доказательство. Пусть число m представимо в виде суммы двух квадратов, тогда $\exists z: m=z\overline{z}$. Разложим z на простые. Пусть $z=p_1\cdots p_s$. Тогда $m=(p_1\overline{p}_1)\cdots (p_s\overline{p}_s)$. Почему в этом разложении простые вида 4k+3 входят в чётных степени? Давайте это проверим, путь для некоторого k простое 4k+3 входит в разложение m на простые, тогда 4k+3|m. Так как 4k+3 простое над $\mathbb{Z}[i]$, то либо $\exists i:4k+3|p_i$, либо $\exists i:4k+3|p_i$. Пусть без ограничения общности $4k+3|p_i$, то есть $(4k+3)x=p_i$. Но p_i — простое (и \overline{p}_i). Тогда они неразложимы, а тогда x — обратимо. Но тогда $p_i\sim 4k+3$. Но $N(p_i)=p_i\overline{p}_i=(4k+3)^2$. Значит, эта скобка $(p_i\overline{p}_i)=(4k+3)^2$. Поделим m на $(4k+3)^2$ и продолжим доказательство по индукции. В результате, все простые вида (4k+3), которые нам удастся вынести, будут всегда выносится в чётной степени.

Пусть теперь наоборот, m таково, что простые вида 4k+3 входят в его разложение в чётной степени. То есть $m=p_1^2\cdots p_s^2q_1\cdots q_r$. Причем $p1,\cdots,p_s$ – простые вида 4k+3, а q_1,\cdots,q_r – простые вида 4k+1. Докажем, что $\forall i\in\{1,\cdots,r\}:\exists z_i:q_i=z_i\cdot \overline{z}_i$. Дейстивтельно, q_i – это простое вида 4k+1. Оно разложимо над $\mathbb{Z}[i]$. Тогда $q_i=uv$, тогда $q_i^2=N(q_i)=N(u)N(v)$. Но N(u)>1,N(v)>1. Тогда $u\overline{u}=N(u)=q_i,v\overline{v}=N(v)=q_i$. Тогда можно переписать разложение для m в виде: $m=p_1^2\cdots p_s^2(z_1\overline{z}_1)\cdots (z_r\overline{z}_r)$. Если положить $z=p_1\cdots p_sz_1\cdots z_r$, то $m=z\overline{z}=N(z)$, а значит m представляется как сумма квадратов.

Утверждение 3.13. Пусть p – простое целое число вида p=3k+1. Тогда p разложим в $\mathbb{Z}[\omega]$

Доказательство. Сначала докажем, что -3 является квадратичным вычетом по модулю p используя символ Лежандра: $\left(\frac{-3}{p}\right) = \left(\frac{-1}{p}\right) \cdot \left(\frac{3}{p}\right) = \left(-1\right)^{\frac{p-1}{2}} \left(\frac{p}{3}\right) (-1)^{\frac{p-1}{2}} = \left(\frac{p}{3}\right) = \left(\frac{1}{3}\right) = 1$. Здесь мы воспользовались квадратичным законом взаимности и критерием Эйлера для квадратичных вычетов. Значит, $\exists c: c^2 + 3 = (c - \sqrt{3}i)(c + \sqrt{3}i) \equiv 0 \mod p$. Но $\sqrt{3}i = 2\omega + 1$. Тогда $p|(c+1+2\omega)(c-1-2\omega)$. Если бы p было простым, то либо $p|(c+1+2\omega)$, либо $p|(c-1-2\omega)$. Но это не так (показано в 2.14)

Утверждение 3.14. Если p – простое число вида p=3K+2, то p – неразложимый элемент $\mathbb{Z}[\omega]$

Доказательство. Пусть не так и $p=z_1z_2$, причем $N(z_1)>1, N(z_2)>1$. Тогда $p^2=N(z_1)N(z_2)$. Это возможно, если только если $N(z_1)=N(z_2)=p$. Узнаем, можно ли найти такие $a,b:a^2-ab+b^2=p=3k+2$. Посмотрим на это равенство по модулю 3. Тогда $2\equiv a^2-ab+b^2\equiv a^2+2ab+b^2\equiv (a+b)^2$ mod 3. Но 2— не квадратичный вычет по модулю 3. Значит, таких a,b найти не удастся, значит, p— неразложимый.

Утверждение 3.15. Кольцо $\mathbb Z$ является евклидовым с нормой N(z)=|z|

Доказательство. Проверяем свойства:

- 1. $|ab| = |a||b| \ge |a|$
- 2. $\forall a,b:\exists q=\lfloor \frac{a}{b}\rfloor, r=a-qb:a=bq+r,$ причем либо r=0, либо N(r)< N(b)

Утверждение 3.16. Евклидово кольцо является кольцом главных идеалов, в частности, \mathbb{Z} является кольцом главных идеалов.

Доказательство. Рассмотрим идеал I евклидова кольца K. Если $I=\{0\}$, то он главный. Иначе в I есть ненулевые элементы. Выберем x — элемент I с минимальной нормой. Рассмотрим $y\in I$. Поделим y на x с остатком. y=qx+r, где $q\in K$. Тогда $r=y-qx\in I$. Если r=0, то любой $y\in I$ представляется в виде y=qx, и тогда $I\subset (x)$. Если $r\neq 0$, тогда N(r)< N(x). Но $r\in I$ и это противоречит выбору x как элементу с минмальной нормой. Значит $I\subset (x)$, но с другой стороны $(x)\subset I$, так как $x\in I$. Получили, что I — главный.

Утверждение 3.17. Если K – поле, то K[x] – евклидово.

Доказательство. Введём норму $N(p) = \deg p$. Тогда $\deg fg = \deg(a_n x^n + \cdots + a_0)(b_m x^m + \cdots + b_0) = \deg(a_n b_m x^{n+m} + \cdots) = \deg f + \deg g \ge \deg f$. Второе свойство следует из алгоритма деления многочленов столбиком: в результате деления степень остатка всегда меньше степень делителя, ведь иначе мы можем продолжить алгоритм.

Утверждение 3.18. $\mathbb{Z}[i]$ евклидово

Доказательство. Аналогично 2.13

Утверждение 3.19. $\mathbb{Z}[\omega]$ евклидово

Доказательство. Доказательство содержится в 2.13

Утверждение 3.20. Пусть $I,J\subset K$ – идеалы, тогда $I+J=\{i+j:i\in I,j\in J\}$ – идеал в K

Доказательство. Проверяем замкнутость: пусть $i_1+j_1\in I+J, i_2+j_2\in I+J, k\in K$. Тогда $(i_1+j_1)+(i_2+j_2)=(i_1+i_2)+(j_1+j_2)\in I+J, -(i_1+j_1)=(-i_1)+(-j_1)\in I+J, k(i_1+j_1)=(ki_1)+(kj_1)\in I+J$

Утверждение 3.21. Пусть $I,J\subset K$ – uдеалы, тогда $I\cap J$ – uдеал в K.

Доказательство. Проверяем замкнутость: пусть $x,y\in I\cap J, k\in K$. Тогда $x\in I, x\in J, y\in I, y\in J$. Тогда $x+y,-x, kx\in I, J$ Тогда $x+y,-x, kx\in I\cap J$

Утверждение 3.22. Пусть $I \subset K$ — идеал, тогда радикал $\sqrt{I} = \{a \in K : \exists m \in \mathbb{N} : a^m \in I\}$ тоже является идеалом

Доказательство. Пусть $x, y \in \sqrt{I}, k \in K$. Пусть $m: x^m \in I, n: y^n \in I$. Тогда $(x+y)^{n+m} \in I$. Значит, $(x+y) \in \sqrt{I}$. Кроме того, $(ky)^m = k^m y^m \in I$. Значит, $ky \in \sqrt{I}$. $(-x)^n = (-1)^n x^n \in I$. Тогда $(-x) \in \sqrt{I}$

Утверждение 3.23. Пусть $K \neq \{0\}$. Тогда K является полем тогда u только тогда, когда K не содержит нетривиальных идеалов.

Доказательство. Пусть K — поле, а $I \subset K$ — идеал, причем $I \neq \{0\}$. Тогда $\exists x \neq 0 \in I$. Но в этом случае x — обратимый. Тогда $x^{-1}x = 1 \in I$. А значит I = K.

Наоборот, пусть K не содержит нетривиальных идеалов. Рассмотрим $x \neq 0 \in K$. $(x) \neq \{0\} \Rightarrow (x) = K$. Тогда $\exists b: bx = 1 \in (x)$. Тогда x – обратимый.

Утверждение 3.24. Пусть K — область целостности. Тогда идеал (x) простой тогда и только тогда, когда элемент x простой.

Доказательство. Пусть (x) — простой. Тогда $(x) \neq \{0\}$ Значит, $x \neq 0$. Кроме того, $(x) \neq K$, значит x не обратимый. Пусть x|ab. Тогда kx = ab. Тогда $ab \in (x)$. Так как (x) — простой, то либо $a \in (x)$, либо $b \in (x)$. Это означает, что либо a = ux, либо b = vx. Значит, x|a, либо x|b.

Пусть x — простой. Тогда он не ноль и не обратимый, тогда $(x) \neq \{0\}, (x) \neq K$. Пусть $ab \in (x)$. Тогда ab = kx. Тогда x|ab. Так как x — простой, то либо x|a, либо x|b. Тогда либо a = ux, либо b = vx. Тогда либо $a \in (x)$, либо $b \in (x)$.

Утверждение 3.25. Идеал $(5, x^2 + 4) \subset \mathbb{Z}[x]$ не простой и не максимальный.

Доказательство. Пользуемся тем фактом, что I — максимальный идеал в $K \Leftrightarrow K/I$ — поле, I — простой идеал в $K \Leftrightarrow K/i$ — область целостности. $\mathbb{Z}[x] / (5, x^2 + 4) \cong \mathbb{Z}_5[x] / (x^2 + 4)$. Но $x^2 + 4 = (x - 2)(x + 2)$, $x^2 + 4 \in (x^2 + 4)$, $x - 2 \notin (x^2 + 4)$, $x + 2 \notin (x^2 + 4)$ и идеал $(x^2 + 4)$ не простой в $\mathbb{Z}_5[x]$. Тогда $\mathbb{Z}_5[x] / (x^2 + 4)$ — не область целостности и не поле, а значит, $(5, x^2 + 4)$ — не простой и не максимальный.

Утверждение 3.26. $И dean (x^2 + 1, x + 2)$ простой и максимальный.

Доказательство. $(x^2+1,x+2)=(x^2+1-x(x+2),x+2)=(1-2x,x+2)=(1-2x+2(x+2),x+2)=(5,x+2)$. Аналогично, $\mathbb{Z}[x]/(5,x+2)\cong\mathbb{Z}_5[x]/(x+2)$. Рассмотрим гомоморфизм $\varphi:\mathbb{Z}_5[x]\mapsto\mathbb{Z}_5$ устроенный таким образом $\varphi(p)=p(-2)$. Тогда $Im\varphi=\mathbb{Z}_5$, $Ker\varphi=(x+2)$. По основной теореме о гомоморфизмах $\mathbb{Z}_5[x]/(x+2)\cong\mathbb{Z}_5$, а это поле. Значит, идеал простой и максимальный.

Утверждение 3.27. Пусть многочлен $n = const \in \mathbb{Z}[x]$ (deg n = 0). Тогда n — неприводим в $\mathbb{Z}[x]$ тогда и только тогда, когда n — простой в \mathbb{Z} .

Доказательство. Пусть n — неприводим в $\mathbb{Z}[x]$ и n — не простой в \mathbb{Z} . Тогда n=pq в \mathbb{Z} . Но тогда n=pq в $\mathbb{Z}[x]$. Причем p и q необратимы. Противоречие. Значит n — протой.

Пусть теперь n — простой в $\mathbb Z$ и n — приводим в $\mathbb Z[x]$. Тогда $\exists f,g\in\mathbb Z[x]:fg=n.$ Но $\deg fg=\deg f+\deg g=0.$ Значит, f=const,g=const. Но тогда n приводим в $\mathbb Z$, а значит, не простой. Противоречие.