타이타닉 데이터를 활용한 이진 생존 분류

• Download: https://www.kaggle.com/c/titanic (https://www.kaggle.com/c/titanic)

1. Data Description

• total: 1309명

train.csv: 891x12test.csv: 418x11

• Survive: 0=No, 1=Yes

• pclass: 1=1st, 2=2nd, 3=3rd(숫자가 낮을수록 높은 등급)

• SibSP = Sibilings-Spouses

• Parch = Parents-Children

pandas

- pandas 처럼 2차원 공간에 온 것 = dataframe이라고 함
- feature = 특징(열) = column
- series = 특징 하나에 대한 data
- table = 표
- column = 세로(열)
- row = 가로(행)

데이터(CSV,JSON)

Pandas: 데이터 전처리, 탐색+분석
Scikit-learn: 머신러닝 (KNN etc..)

• Tensorflow, PyTorch: 딥러닝

2. Import Module

In [1]:

```
import pandas as pd #데이터 전처리, 탐색, 분석
import numpy as np #수치해석
import matplotlib.pyplot as plt #그래프 그려주는 것
```

3. Data Load

- 절대 경로 / 상대경로
 - 웬만해선 상대경로 사용하기(다른 컴퓨터에서도 사용하기 위해)
- ::현재 ..:뒤로가기(폴더 나옴) /:들어가기(폴더 들어감)

In [2]:

```
df_train = pd.read_csv('./dataset/train.csv') #pd.read_csv() = pandas에 들어있는 csv피df_test = pd.read_csv('./dataset/test.csv')
df_train.head() #.head() = 처음부터 5건만 불러옴, .tail() = 끝에서부터 5건
```

Out[2]:

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Ci
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	ſ
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	С
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	1

In [3]:

```
print(type(df_train))
print(type(df_test))
```

```
<class 'pandas.core.frame.DataFrame'>
<class 'pandas.core.frame.DataFrame'>
```

4. Data Exploration

In [5]:

```
# Data Size 확인
print(df_train.shape)
print(df_test.shape)
```

```
(891, 12)
(418, 11)
```

In [9]:

```
# Data Type 및 Null 확인
# Cabin, Age, Embarked: 3가지 feature는 Null 존재(결측치 존재)
# ->Null(결측치) 어떻게 처리할 것인지 고민
df_train.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 891 entries, 0 to 890 Data columns (total 12 columns): # Column Non-Null Count Dtype _____ _____ 0 PassengerId 891 non-null int64 1 Survived 891 non-null int64 2 Pclass 891 non-null int64 891 non-null 891 non-null 3 Name object 4 Sex object 5 Age 714 non-null float64 6 891 non-null int64 SibSp 7 Parch 891 non-null int64 8 Ticket 891 non-null object 9 Fare 891 non-null float64 10 Cabin 204 non-null object

11 Embarked 889 non-null object
dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

In [11]:

```
# Column 별 결측치(Missing Value) 합계
df_train.isnull().sum()
```

Out[11]:

PassengerId 0 Survived 0 0 Pclass Name 0 0 Sex Age 177 SibSp 0 0 Parch Ticket 0 Fare 0 Cabin 687 Embarked 2 dtype: int64

In [14]:

```
#Feature 목록 추출 및 Type
print(df_train.columns)
print(df_train.columns.values) #list
```

In [16]:

```
# 문자열(Object) 안나옴. Only 수치형 타입 df_train.describe()
```

Out[16]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

In [18]:

```
# count = unique => 다 다른 이름이다.(Name)
# Ticket은 중복되는 티켓이 여러 사람에게 동시 발행 => 가족 단위 추론
# => 티켓과 생존간의 상관관계(아마 의미 없을 듯)
df_train.describe(include=["O"]) #대문자 O
```

Out[18]:

	Name	Sex	Ticket	Cabin	Embarked
count	891	891	891	204	889
unique	891	2	681	147	3
top	Taussig, Miss. Ruth	male	CA. 2343	B96 B98	S
freq	1	577	7	4	644

In [19]:

```
#column category 확인
df_train["Survived"].unique()
```

Out[19]:

array([0, 1], dtype=int64)

In [20]:

```
df_train["Survived"].value_counts()
```

Out[20]:

0 549 1 342

Name: Survived, dtype: int64

In [21]:

```
ratio = df_train["Survived"].value_counts()
labels=df_train["Survived"].unique()
plt.pie(ratio, labels=labels, autopct="%.1f%%")
plt.show()
```


In [22]:

```
df_train['Pclass'].unique()
```

Out[22]:

array([3, 1, 2], dtype=int64)

In [23]:

```
df_train['Pclass'].value_counts()
```

Out[23]:

3 491

1 216

2 184

Name: Pclass, dtype: int64

In [24]:

```
ratio = df_train["Pclass"].value_counts()
labels=df_train["Pclass"].unique()
plt.pie(ratio, labels=labels, autopct="%.1f%%")
plt.show()
```


5. 데이터 추출

In [25]:

```
#Column 추출(1개)
df_train['Age']
```

Out[25]:

```
0
        22.0
1
        38.0
2
        26.0
3
        35.0
4
        35.0
        . . .
886
        27.0
        19.0
887
888
        NaN
        26.0
889
890
        32.0
Name: Age, Length: 891, dtype: float64
```

In [31]:

```
# Column 추출 여러개
df_train[['Age','Pclass','Name']]
```

Out[31]:

	Age	Pclass	Name
0	22.0	3	Braund, Mr. Owen Harris
1	38.0	1	Cumings, Mrs. John Bradley (Florence Briggs Th
2	26.0	3	Heikkinen, Miss. Laina
3	35.0	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)
4	35.0	3	Allen, Mr. William Henry
886	27.0	2	Montvila, Rev. Juozas
887	19.0	1	Graham, Miss. Margaret Edith
888	NaN	3	Johnston, Miss. Catherine Helen "Carrie"
889	26.0	1	Behr, Mr. Karl Howell
890	32.0	3	Dooley, Mr. Patrick

891 rows × 3 columns

In [34]:

```
# iloc를 사용한 Row 추출 =>기존에 자동으로 생성된 index
df_train.iloc[3]
# loc를 사용한 Row 추출 => 우리가 생성한 label
#df_train.loc[label]
```

Out[34]:

PassengerId						4
Survived						1
Pclass						1
Name	Futrelle,	Mrs.	Jacques	Heath	(Lily	May Peel)
Sex						female
Age						35
SibSp						1
Parch						0
Ticket						113803
Fare						53.1
Cabin						C123
Embarked						S
Name: 3, dtype	: object					

6. 데이터 분석

In [35]:

```
# Pclass(티켓 등급), 티켓 등급별 생존율 분석
df_train[["Pclass", "Survived"]].groupby(["Pclass"]).mean()
```

Out[35]:

Survived

Pclass

- 1 0.629630
- 2 0.472826
- 3 0.242363

In [36]:

```
df_train[["Sex", "Survived"]].groupby(["Sex"]).mean()
```

Out[36]:

Survived

Sex

female 0.742038

male 0.188908

In [39]:

```
# 상관분석
# * -1~1의 값
# * 1에 가까울수록 양의 상관관계(니가 오르면 나도 오름)
# * -1에 가까울수록 음의 상관관계(니가 오르면 나는 내려감)
# * 0은 아무 관계도 없음
df_train.corr()
```

Out[39]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
PassengerId	1.000000	-0.005007	-0.035144	0.036847	-0.057527	-0.001652	0.012658
Survived	-0.005007	1.000000	-0.338481	-0.077221	-0.035322	0.081629	0.257307
Pclass	-0.035144	-0.338481	1.000000	-0.369226	0.083081	0.018443	-0.549500
Age	0.036847	-0.077221	-0.369226	1.000000	-0.308247	-0.189119	0.096067
SibSp	-0.057527	-0.035322	0.083081	-0.308247	1.000000	0.414838	0.159651
Parch	-0.001652	0.081629	0.018443	-0.189119	0.414838	1.000000	0.216225
Fare	0.012658	0.257307	-0.549500	0.096067	0.159651	0.216225	1.000000

In [40]:

```
# 히트맵 그래프
plt.matshow(df_train.corr())
```

Out[40]:

<matplotlib.image.AxesImage at 0x288583e8c40>

