Chapter 10. Discrete Data Analysis

- **10.1** Inferences on a Population Proportion
- **10.2** Comparing Two Population Proportions
- 10.3 Goodness of Fit Tests for One-Way Contingency Tables
- 10.4 Testing for Independence in Two-Way Contingency Tables

10.1 Inferences on a Population Proportion

Sample proportion \hat{p}

- $X \sim B(n,p)$.
- $\hat{p} = \frac{x}{n}$.
- $E(\hat{p}) = p$ and $Var(\hat{p}) = \frac{p(1-p)}{n}$.

For large n,

•
$$\hat{p} \sim N\left(p, \frac{p(1-p)}{n}\right) \approx N\left(p, \frac{\hat{p}(1-\hat{p})}{n}\right)$$

10.1.1 Confidence Intervals for Population Proportions

• Two-sided conf. intervals for a population proportion

$$(\hat{p} - z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p} + z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}})$$

One-sided conf. intervals for a population proportion with a lower bound

$$(\hat{p} - z_{\alpha} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \qquad 1)$$

One-sided conf. intervals for a population proportion with a upper bound

$$(0, \qquad \hat{p} + z_{\alpha} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}})$$

• These approximate results are safe as long as both x and n-x are larger than 5.

• Example 57 : Building Tile Cracks

Random sample n = 1250 of tiles in a certain group of downtown building for cracking. x = 98 are found to be cracked.

$$\hat{p} = \frac{98}{1250} = 0.0784. z_{0.005} = 2.576.$$

99% two-sided conf. interval

$$(\hat{p} - z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p} + z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}) = (0.0588, 0.0980)$$

10.1.2 Hypothesis Tests on a Population Proportion

Two-sided hypothesis tests

$$H_0$$
: $p = p_0$ vs H_A : $p \neq p_0$ p-value= $2 \times \min\{P(X \geq x), P(X \leq x)\}$ where $X \sim B(n, p_0)$.

• When np_0 and $n(1-p_0)$ are both larger than 5, a normal approximation may be used to compute the p-value.

p-value=
$$2 \times \Phi(-|z|)$$
 where

$$z = \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)/n}}$$

- Continuity correction can be used for a better approximation to the p-value.
- A size α hypothesis test rejects H_0 when

$$|z| > z_{\alpha/2}$$
 or p-value $< \alpha$.

Otherwise, accept H_0 .

One-sided hypothesis tests for a population proportion

For testing

$$H_0$$
: $p \ge p_0$ vs H_A : $p < p_0$
P-value= $P(X \le x)$ where $X \sim B(n, p_0)$

The p-value by the normal approximation:

P-value=
$$\Phi(z)$$
 where $z = \frac{x+0.5-np_0}{\sqrt{np_0(1-p_0)}}$.

For testing

$$H_0: p \le p_0 \text{ vs } H_A: p > p_0$$

P-value=
$$P(X \ge x)$$
 where $X \sim B(n, p_0)$

The p-value by the normal approximation:

P-value=1 –
$$\Phi(z)$$
 where $z = \frac{x-0.5-np_0}{\sqrt{np_0(1-p_0)}}$.

• Example 57 : Building Tile Cracks

10% or more of the building tiles are cracked?

$$H_0\colon\ p\geq 0.1\ \text{vs}\ H_A\colon\ p<0.1$$
 From data: $n=1250,$ $x=98.$
$$z=\frac{x+0.5-np_0}{\sqrt{np_0(1-p_0)}}=-2.50$$
 P-value= $\Phi(-2.50)=0.0062$

Python codes

```
import numpy as np
from statsmodels.stats.proportion import proportions ztest
from scipy.stats import binom test
zstat, pvalue = proportions ztest(45,100,0.5)
print("Two-sided 1 sample proportions test \n Z = \%.4f, p-value
= %.4f" %(zstat, pvalue))
  Two-sided 1 sample proportions test
  Z = -1.0050, p-value = 0.3149
pvalue = binom_test(8,20,0.5)
print("Two-sided exact binomial test \n p-value = %.4f" %pvalue)
  Two-sided exact binomial test
  p-value = 0.5034
```

10.1.3 Sample Size Calculations

• Consider a two-sided $1-\alpha$ level CI for p which is obtained by normal approximation

The interval length L is given by

$$L = 2 z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

In case \hat{p} is not available,

$$L = 2 z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \le z_{\alpha/2} \sqrt{\frac{1}{n}}$$

• Example 61: Political Polling

To determine the proportion p of people who agree with the statement "The city mayor is doing a good job." within 3% accuracy, how many people do they need to poll?

A 99% CI for p with length no larger than $L_0 = 6\%$

$$L = 2 z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \le 0.06$$

Since \hat{p} is not available,

$$L \le z_{0.005} \sqrt{\frac{1}{n}} \le 0.06.$$

The smallest sample size n satisfying the above inequality is desired.

$$n \ge \frac{z_{0.005}^2}{0.06^2} = \frac{2.576^2}{0.06^2} = 1843.3.$$

10.2 Comparing Two Population Proportions 10.2.1 Confidence Intervals for the Difference Between Two Population Proportions

- Assume $X \sim B(n, p_A)$ and $Y \sim B(m, p_B)$ and X and Y are independent.
- Approximate two-sided $1-\alpha$ level CI for p_A-p_B with end-points:

$$\hat{p}_A - \hat{p}_B \pm z_{\alpha/2} \sqrt{\frac{\hat{p}_A(1-\hat{p}_A)}{n} + \frac{\hat{p}_B(1-\hat{p}_B)}{m}}$$

• Approximate one-sided $1-\alpha$ level CI for p_A-p_B with a lower bound:

$$(\hat{p}_A - \hat{p}_B - z_\alpha \sqrt{\frac{\hat{p}_A(1-\hat{p}_A)}{n} + \frac{\hat{p}_B(1-\hat{p}_B)}{m}}, 1)$$

• Approximate two-sided $1-\alpha$ level CI for p_A-p_B with an upper bound:

$$(-1, \ \hat{p}_A - \hat{p}_B + z_\alpha \sqrt{\frac{\hat{p}_A(1-\hat{p}_A)}{n} + \frac{\hat{p}_B(1-\hat{p}_B)}{m}})$$

• These approximations are reasonable as long as x, n-x, y, and n-y are all larger than 5.

• Example 57: Building Tile Cracks

Building A: 406 cracked tiles out of n = 6000.

Building B: 83 cracked tiles out of m = 2000.

$$\hat{p}_A = \frac{406}{6000} = 0.0677. \ \hat{p}_B = \frac{83}{2000} = 0.0415.$$

A $1 - \alpha$ level CI for $p_A - p_B$:

$$\hat{p}_A - \hat{p}_B \pm z_{\alpha/2} \sqrt{\frac{\hat{p}_A(1-\hat{p}_A)}{n} + \frac{\hat{p}_B(1-\hat{p}_B)}{m}}$$

 \Rightarrow (0.0120, 0.0404) when $\alpha = 0.01$.

10.2.2 Hypothesis Tests on the Difference Between Two Population Proportions

- For testing H_0 : $p_A = p_B$ vs H_A : $p_A \neq p_B$ p-value= $2 \times \Phi(-|z|)$ where $z = \frac{\hat{p}_A \hat{p}_B}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n} + \frac{1}{m}\right)}} \text{ and } \hat{p} = \frac{x+y}{n+m}$
- For testing H_0 : $p_A \ge p_B$ vs H_A : $p_A < p_B$ p-value= $\Phi(z)$
- For testing H_0 : $p_A \le p_B$ vs H_A : $p_A > p_B$ p-value=1 $-\Phi(z)$
- Conclusion:

Reject H_0 if p-value is smaller than the sig. level α . Otherwise, accept H_0 . • Example 57: Building Tile Cracks

Test
$$H_0$$
: $p_A = p_B$ vs H_A : $p_A \neq p_B$

$$\hat{p}_A = \frac{406}{6000} = 0.0677. \ \hat{p}_B = \frac{83}{2000} = 0.0415.$$
p-value = $2 \times \Phi(-|z|) \approx 0$ where
$$z = \frac{\hat{p}_A - \hat{p}_B}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n} + \frac{1}{m}\right)}} = 4.3755 \text{ and}$$

$$\hat{p} = \frac{x+y}{n+m} = \frac{489}{8000} = 0.0611.$$

Python codes for two-sample test of proportions

10.3 Goodness of Fit Tests for One-Way Contingency Tables 10.3.1 One-Way Classifications

Each of n observations is classified into one of k categories or cells.

Cell frequencies:
$$x_1, \dots, x_k$$
. $\sum_{i=1}^k x_i = n$

Cell probabilities:
$$p_1, \dots, p_k$$
. $\sum_{i=1}^k p_i = 1$.

• Test H_0 : $p_i = p_i^*$, $i = 1, \cdots, k$ vs H_A : $not \ H_0$. Under H_0 , the expected cell frequency at cell i, e_i , is given by $e_i = np_i^*$

Two test statistics:

(1) Pearson's Chi-square statistic:

$$X^{2} = \sum_{i=1}^{\kappa} \frac{(x_{i} - e_{i})^{2}}{e_{i}}.$$

(2) Likelihood ratio Chi-square statistic:

$$G^2 = 2\sum_{i=1}^{\kappa} x_i \ln(\frac{x_i}{e_i}).$$

Both of the statistics, X^2 and G^2 , follow asymptotically Chi-square distribution with df = k-1.

This asymptotic result is reasonable as long as all the e_i 's are larger than 5.

P-value =
$$P(X^2 \ge obs(X^2))$$

Conclusion: Reject H_0 if the p-value is smaller than the sig. level α . Otherwise, accept H_0 .

Mathematics for goodness-of-fit test

- •Likelihood function $L(p_1, \dots, p_k) = f(x^1, x^2, \dots, x^n; p_1, \dots, p_k) = \prod_{i=1}^k p_i^{x_i}$ where x^l is the l-th observation of data.
- $\bullet \log L = \sum_{i=1}^k x_i \log p_i.$
- For $i \neq k$, $\frac{\partial \log L}{\partial p_i} = x_i \frac{\partial \log p_i}{\partial p_i} + x_k \frac{\partial \log p_k}{\partial p_i} = \frac{x_i}{p_i} \frac{x_k}{p_k}$. $\frac{\partial \log L}{\partial p_i} = 0$. $\Rightarrow \hat{p}_i = \hat{p}_k \frac{x_i}{x_k}$.

Therefore, $\hat{p}_i = \frac{x_i}{n}$, $i = 1, 2, \dots, k$.

$$\bullet \gamma = \log \frac{\prod_{i=1}^k \hat{p_i}^{x_i}}{\prod_{i=1}^k p_i^{x_i}} = \log \prod_{i=1}^k \left(\frac{\hat{p_i}}{p_i}\right)^{x_i} = \sum_i^k x_i \log \frac{\hat{p_i}}{p_i}$$

 $G^2 = 2 \gamma$ when p_i 's are the cell probabilities under H_0 .

• Example 1 : Machine Breakdowns

n = 46 machine breakdowns.

 $x_1 = 9$: electrical problems

 $x_2 = 24$: mechanical problems

 $x_3 = 13$: operator misuse

It is suggested that the cell probabilities are

$$p_1^* = 0.2, p_2^* = 0.5, p_3^* = 0.3.$$

For testing H_0 : $p_1 = 0.2$, $p_2 = 0.5$, $p_3 = 0.3$ vs H_A : not H_0 .

	Electrical	Mechanical	Operator misuse	
Observed cell freq.	$x_1 = 9$	x ₂ = 24	x ₃ = 13	n = 46
Expected cell freq.	$e_1 = 46*0.2$ = 9.2	e ₂ = 46*0.5 =23.0	$e_3 = 46*0.3$ =13.8	n = 46

$$X^2 = 0.0942$$
. $G^2 = 0.0945$. df=3-1=2.
P-value $\approx P(X^2 \ge 0.0942) = 0.95$.

Check for homogeneity

$$H_0$$
: $p_1 = p_2 = p_3 = \frac{1}{3}$ vs H_A : not H_0
P-value= $P(X^2 \ge 7.87) \approx 0.02$.

10.3.2 Testing Distributional Assumptions

Number of errors found in a soft- ware product	0	1	2	3	4	5	6	7	8	
Frequency	3	14	20	25	14	6	2	0	1	n = 85

 H_0 : number of errors, X, has a Poisson distribution with mean $\lambda = 3.0$

Cell	Expected cell frequency	
X = 0	$e_1 = 85 \times P(X = 0) = 85 \times \frac{e^{-3} \times 3^0}{0!}$	= 4.23
X = 1	$e_2 = 85 \times P(X = 1) = 85 \times \frac{e^{-3} \times 3^1}{1!}$	= 12.70 Group
X = 2	$e_3 = 85 \times P(X = 2) = 85 \times \frac{e^{-3} \times 3^2}{2!}$	= 19.04
<i>X</i> = 3	$e_4 = 85 \times P(X = 3) = 85 \times \frac{e^{-3} \times 3^3}{3!}$	= 19.04
X = 4	$e_4 = 85 \times P(X = 4) = 85 \times \frac{e^{-3} \times 3^4}{4!}$	= 14.28
<i>X</i> = 5	$e_5 = 85 \times P(X = 5) = 85 \times \frac{e^{-3} \times 3^5}{5!}$	= 8.57
<i>X</i> = 6	$e_6 = 85 \times P(X = 6) = 85 \times \frac{e^{-3} \times 3^6}{6!}$	= 4.28
X = 7	$e_7 = 85 \times P(X = 7) = 85 \times \frac{e^{-3} \times 3^7}{7!}$	= 1.84 Group
X = 8	$e_8 = 85 \times P(X = 8) = 85 \times \frac{e^{-3} \times 3^8}{8!}$	= 0.69
$X \ge 9$	$e_9 = 85 \times P(X \ge 9)$	= 0.33
	1	i = 85.0

• Example 3 : Software Errors

For some of expected values are smaller than 5, it is appropriate to group the cells.

• Test if (H_0) the data are from a Poisson distribution with mean=3.

After grouping

Number of errors	0–1	2	3	4	5	≥ 6	
Observed cell frequency	$x_1 = 17$	$x_2 = 20$	$x_3 = 25$	$x_4 = 14$	$x_5 = 6$	$x_6 = 3$	n = 85
Expected cell frequency	$e_1 = 16.93$	$e_2 = 19.04$	$e_3 = 19.04$	$e_4 = 14.28$	$e_5 = 8.57$	$e_6 = 7.14$	n = 85

$$X^{2} = \frac{(17.00 - 16.93)^{2}}{16.93} + \frac{(20.0 - 19.04)^{2}}{19.04} + \frac{(25.00 - 19.04)^{2}}{19.04} + \frac{(14.00 - 14.28)^{2}}{14.28} + \frac{(6.00 - 8.57)^{2}}{8.57} + \frac{(3.00 - 7.14)^{2}}{7.14}$$
$$= 5.12$$

P-value = $P(X^2 \ge 5.12) = 0.40$ where X^2 follows a Chi-square distribution with df=5.

10.4 Testing for Independence in Two-Way Contingency Tables 10.4.1 Two-Way Classifications

A two-way (r x c) contingency table.

Second Categorization

Column marginal frequencies

Example 57: Building Tile Cracks

	Location					
		Building A	Building B			
Tile Condition	Undamaged	x ₁₁ = 5594	x ₁₂ = 1917	x ₁ . = 7511		
	Cracked	$x_{21} = 406$	x ₂₂ = 83	x ₂ . = 489		
		x. ₁ = 6000	x. ₂ = 2000	n = x = 8000		

Notice that the column marginal frequencies are fixed. $(x_{1} = 6000, x_{2} = 2000)$

10.4.2 Testing for Independence

• Testing for independence in a Two-way contingency table H_0 : Two factors are independent vs H_A : not H_0

$$X^{2} = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(x_{ij} - e_{ij})^{2}}{e_{ij}}. \qquad G^{2} = 2 \sum_{i=1}^{r} \sum_{j=1}^{c} x_{ij} \ln(\frac{x_{ij}}{e_{ij}}).$$
 Here $e_{ij} = \frac{x_{i}.x_{ij}}{n}$.

The two test statistics follow asymptotically Chi-square distribution with df = rc - 1 - (r - 1) - (c - 1) = (r - 1)(c - 1).

This result is valid as long as all the e_{ij} 's are larger than 5.

P-value=
$$P(X^2 \ge obs(X^2))$$

• Example 57 : Building Tile Cracks

	Building A	Building B	
Undamaged	$x_{11} = 5594$ $e_{11} = 5633.25$	$x_{12} = 1917$ $e_{12} = 1877.75$	x ₁ . = 7511
Cracked	$x_{21} = 406$ $e_{21} = 366.75$	$x_{22} = 83$ $e_{22} = 122.25$	x ₂ . = 489
	x. ₁ = 6000	x. ₂ = 2000	n = x = 8000

$$obs(X^2) = 17.896$$

 $P - value = 0.000023 \approx 0$

Python codes for Independence test

```
import numpy as np
import pandas as pd
from scipy.stats import chi2 contingency
chi, pvalue, dof, expctd = chi2_contingency(np.array[[24,12],[8,10]])
print("Pearson's Chi-squared test \nX-squared = %.4f, p-value = %.4f,
df = \%d," %(chi, pvalue, dof))
print("Expected cell frequencies:\n", pd.DataFrame(expctd,
index=[1,2], columns=[1,2]))
  Pearson's Chi-squared test
  X-squared = 1.6204, p-value = 0.2030, df = 1,
  Expected cell frequencies:
  1 21.333333 14.666667
  2 10.666667 7.333333
```

Mathematics for Independence Test (1)

- Likelihood function $L(p_{11},\cdots,p_{rc})=f(x^1,x^2,\cdots,x^n;p_{11},\cdots,p_{rc})=\prod_{i=1}^r\prod_{j=1}^cp_{ij}^c$ where x^l is the l-th observation of data.
- $\log L = \sum_{i}^{r} \sum_{j}^{c} x_{ij} \log p_{ij}$.
- Under H_0 :

$$\begin{split} \log L &= \sum_{i}^{r} \sum_{j}^{c} x_{ij} \log p_{i.} p_{.j} = \sum_{i}^{r} \sum_{j}^{c} x_{ij} \log p_{i.} + \sum_{i}^{r} \sum_{j}^{c} x_{ij} \log p_{.j} \\ &= \sum_{i=1}^{r} x_{i.} \log p_{i.} + \sum_{j}^{c} x_{.j} \log p_{.j} \\ &\text{For } \mathbf{i} \neq r, \quad \frac{\partial \log L}{\partial p_{i.}} = x_{i.} \frac{\partial \log p_{i.}}{\partial p_{i.}} + x_{r.} \frac{\partial \log p_{r.}}{\partial p_{i.}} = \frac{x_{i.}}{p_{i.}} - \frac{x_{r.}}{p_{r.}} \\ &\frac{\partial \log L}{\partial p_{i.}} = 0. \quad \Longrightarrow \quad \hat{p}_{i.} = \hat{p}_{r.} \frac{x_{i.}}{x_{r.}} \\ &\text{Therefore, } \hat{p}_{i.} = \frac{x_{i.}}{n}, \quad \mathbf{i} = 1, 2, \cdots, r. \end{split}$$
 In the same way, we obtain $\hat{p}_{.j} = \frac{x_{.j}}{n}$, $j = 1, 2, \cdots, c$.

Mathematics for Independence Test (2)

• Under H_0 :

$$e_{ij} = n\hat{p}_{ij} = n\hat{p}_{i.}\hat{p}_{.j} = \frac{x_{i.}x_{.j}}{n}$$

Example 10.4.a SAT score and occupation

• The following data is a two-dimensional contingency table data of 4353 individuals. They are cross-classified into 4 occupational groups (O) and 5 aptitude levels (A) as measured by a SAT test (Beaton, 1975) The aptitude levels are from low (A1) to high (A5) and the occupational levels are:

O1 = self-employed, business

O2 = self-employed, professional

O3 = teacher

O4 = salaried, employed

 Test if the SAT score and the occupation are independent with the sig. level 0.05.

[✓] Beaton, A.E. (1975). The influence of educational and ability on alary and attitudes. In F.T. Juster (ed.), Education, Income, and Human Behavior}, pp. 365-396. New York, McGraw-Hill.

```
import numpy as np
import pandas as pd
from scipy.stats import chi2 contingency
aptocc =
np.array([[122,30,20,472],[226,51,66,704],[306,115,96,1 072], [130,59,38,501],[50,31,15,249]])
aptocc = pd.DataFrame(data=aptocc, index=['A1','A2','A3','A4','A5'], columns=['O1','O2','O3','O4'])
print("Observed cell frequencies:\n", aptocc)
       Observed cell frequencies:
          01 02 03 04
       A1 122 30 20 472
       A2 226 51 66 704
       A3 306 115 96 1072
       A4 130 59 38 501
       A5 50 31 15 249
```

chi, pvalue, dof, expctd = chi2_contingency(aptocc)

print("Pearson's Chi-squared test \nX-squared = %.4f, p-value = %.4f, df = %d," %(chi, pvalue, dof))

print("Expected cell frequencies:\n", pd.DataFrame(expctd, index=['A1','A2','A3','A4','A5'],

columns=['O1','O2','O3','O4']))

Pearson's Chi-squared test

X-squared = 35.7989, p-value = 0.0003, df = 12,

Expected cell frequencies:

O1 O2 O3 O4

A1 123.385252 42.311969 34.766827 443.535952

A2 200.596830 68.789800 56.523088 721.090283

A3 304.439697 104.400184 85.783368 1094.376752

A4 139.478980 47.830921 39.301631 501.388468

A5 66.099242 22.667126 18.625086 237.608546

Conclusion:

This result strongly suggests that the SAT level and the occupation are not independent at the sig. level 0.05.

Simpson's paradox

```
Suppose P(A|B' \cap C_i) < P(A'|B' \cap C_i) for i=1,2,\cdots,k, with \sum_{i=1}^k P(C_i) = 1.
 It is possible that P(A|B') > P(A'|B')
```

This phenomenon is called a Simpson's paradox.

Example 41 (Internet commerce).

FIGURE 10.34

Simpson's paradox

	ALTERNATION OF THE PARTY OF THE	Internet sales	Telephone sales
	New customers	199 (11.10%)	63 (6.71%)
Product A Sales	Repeat customers	1594 (88.90%) 1793	876 (93.29%) 939
Product B Sales	New customers	243 (11.10%)	138 (9.98%)
	Repeat customers	1946 (88.90%) 2189	1245 (90.02%) 1383
Product C Sales	New customers Repeat customers	864 (16.15%) 4486 (83.85%) 5350	1107 (15.90%) 5855 (84.10%) 6962
Product D Sales	New customers Repeat customers	128 (38.32%) 206 (61.68%) 334	180 (36.59%) 312 (63.41%) 492
Total Sales	New customers Repeat customers	1434 (14.84%) 8232 (85.16%) 9666	1488 (15.22%) 8288 (84.78%) 9776

Chapter summary

- 10.1 Inferences on a Population Proportion
- **10.2** Comparing Two Population Proportions
- 10.3 Goodness of Fit Tests for One-Way Contingency Tables
 Two test statistics. Asymptotic distributions of them.
 Conditions for asymptotic distributions.
- 10.4 Testing for Independence in Two-Way Contingency Tables