

#### **COURSE SYLLABUS**

### 1. COURSE TITLE

**Operating Systems** 

#### 2. COURSE CODE

**COMP3033** 

### 3. PRE-REQUISITE

COMP1013 Structured Programming or COMP2013 Object-Oriented Programming

#### 4. **CO-REQUISITE**

Nil

#### 5. NO. OF UNITS

3

### 6. CONTACT HOURS

42

#### 7. OFFERING UNIT

Computer Science and Technology Programme, Division of Science and Technology

#### 8. SYLLABUS PREPARED & REVIEWED BY

Prepared by Dr. Louis TANG

Reviewed by Dr. Weifeng SU

Revised by Dr. Judy FENG and Dr. Changjiang ZHANG

## 9. AIMS & OBJECTIVES

This course aims to provide the fundamentals and major concepts of operating systems design and principles. Topics include an overview of the components of an operating system, mutual exclusion and synchronisation, deadlocks and starvation, implementation of processes and threads, resources scheduling algorithms, memory management, and file systems.

#### 10. COURSE CONTENT



## **Operating Systems Overview** 3 hours **Historical Development** B. Operating System Objectives and Functions C. Major Achievements **Process & Thread Management** 6 hours **Process Concepts** В. Thread Concepts C. Descriptions, Structures, and Controls 9 hours **Concurrency Control Mutual Exclusion** В. Synchronization C. Deadlock Starvation D. **Memory Management** 6 hours Multiprogramming and Partitions A. B. Paging and Segmentation C. Virtual Memory D. Demand Paging Page Replacement Algorithms **Processor Scheduling** 6 hours **Scheduling Concepts** В. **Scheduling Algorithms** Algorithm Evaluation I/O & File Management 6 hours A. I/O Devices В. Disk Scheduling C. File Organization **Directory Structures Case Studies** 4 hours

11. COURSE INTENDED LEARNING OUTCOMES (CILOS) WITH MATCHING TO

**PILOS** 



# **Programme Intended Learning Outcomes (PILOs)**

| Programme Title: Bachelor of Science (Honours) in Computer Science and |                                                                          |  |  |  |
|------------------------------------------------------------------------|--------------------------------------------------------------------------|--|--|--|
| Technology                                                             |                                                                          |  |  |  |
| PILO                                                                   | Upon successful completion of the Programme, students should be able     |  |  |  |
|                                                                        | to:                                                                      |  |  |  |
| PILO 1                                                                 | analyze the basic principles of computer science and technology;         |  |  |  |
| PILO 2                                                                 | Translate real world problems into IT requirements;                      |  |  |  |
| PILO 3                                                                 | design and develop complex software;                                     |  |  |  |
| PILO 4                                                                 | apply up-to-date technology to solve general problems in specific areas; |  |  |  |
| PILO 5                                                                 | communicate effectively and collaborate in a team.                       |  |  |  |

# **CILOs-PILOs Mapping Matrix**

| Course Code & Title: COMP3033 Operating Systems |                                                           |               |  |  |
|-------------------------------------------------|-----------------------------------------------------------|---------------|--|--|
| CILO                                            | Upon successful completion of the course, students should | PILO(s) to be |  |  |
|                                                 | be able to:                                               | addressed     |  |  |
| CILO 1                                          | Explain the basic principles of the operating system.     | PILO 1        |  |  |
| CILO 2                                          | Implement operating systems concepts in detail. PILO 3,   |               |  |  |

# 12. TEACHING & LEARNING ACTIVITIES (TLAS)

| CILO No. | TLAs                                                                             |  |  |  |  |  |
|----------|----------------------------------------------------------------------------------|--|--|--|--|--|
| CILO 1   | • Lecture: The instructor will explain the course material in detail. And        |  |  |  |  |  |
|          | students will be given extensive well-designed study cases during the class      |  |  |  |  |  |
|          | to help them understanding the concepts of Operating System.                     |  |  |  |  |  |
|          | • Hands-on practice: Each student is given some exercises during the cla         |  |  |  |  |  |
|          | and after class. As for the class exercise, students will present their solution |  |  |  |  |  |
|          | to the class. And there will be a short discussion after that. As for the        |  |  |  |  |  |
|          | exercises after class, students need to submit their answer to lecturer.         |  |  |  |  |  |
|          | • Programming Assignment: Each student will implement some medium-               |  |  |  |  |  |
|          | sized programming tasks.                                                         |  |  |  |  |  |
|          | • Project: Each student is required to join a group to complete and              |  |  |  |  |  |
|          | implement a free project related to Operating System wherein students            |  |  |  |  |  |
|          | need to cooperate with each other to propose a new idea, analysis their          |  |  |  |  |  |
|          | problem, design a solution, and implement their solution.                        |  |  |  |  |  |



| CILO No. | TLAs                                                                    |
|----------|-------------------------------------------------------------------------|
| CILO 2   | Programming Assignment: Each student will implement some medium-        |
|          | sized programming tasks.                                                |
|          | • Project: Each student is required to join a group to complete and     |
|          | implement a free project related to Operating System wherein students   |
|          | need to cooperate with each other to propose a new idea, analysis their |
|          | problem, design a solution, and implement their solution.               |

# 13. ASSESSMENT METHODS (AMs)

| Type of                | Weighting | CILOs to be addressed | Description of Assessment Tasks                                                                                                                                                                               |
|------------------------|-----------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Assessment             |           |                       |                                                                                                                                                                                                               |
| Methods                |           |                       |                                                                                                                                                                                                               |
| Hands-on<br>Exercise   | 10%       | 1                     | Exercise will give students the hand on experience to solve some simple programming task.                                                                                                                     |
| Programming Assignment | 20%       | 1-2                   | Assignment will give students the hand on experience to implement some medium-sized programming tasks. Compared with exercise, the knowledge required in the assignment will be more broad and comprehensive. |
| Project                | 10%       | 1-2                   | This project aims to assess the major learning outcomes achieved by students upon completion of the course.                                                                                                   |
| Mid-Term Exam          | 25%       | 1                     | This mid-term Exam will test the students' knowledge about operation systems' basic concepts and theories in the first five chapters.                                                                         |
| Final examination      | 35%       | 1-2                   | This examination will test students' knowledge about operating systems' concepts and theories mainly in chapters after the mid-term exam.                                                                     |

# 14. <u>TEXTBOOKS / RECOMMENDED READINGS</u>

**TEXTBOOK:** 

Nil



#### **RECOMMEND READINGS:**

- [1] Abraham Silberschatz, Peter Baer Galvin, Greg Gagne, Operating System Concepts, John Wiley and Sons, 10<sup>th</sup> Ed., 2018.
- [2] Maurice J. Bach, The Design of the Unix Operating System, Prentice Hall, 1986.
- [3] Tom Carpenter, Microsoft Windows Operatingt System Essentials: Exam 98-349, Sybex, 2012.
- [4] Norton Fausto Garfield, Distributed Operating System, Anim, 2011.
- [5] Qinghua Lu, JARTOS: A Real-Time Operating System in Java, Lambert Academic, 2012.
- [6] Sahar Sabbeh, Adaptation of Web Operating System Using Semantic Web Techniques, Lambert Academic, 2012.
- [7] Ralf G. Herrtwich, Network and Operating System Support for Digital Audio and Video: Second International Workshop, Heidelberg, Germany, November 18-19, 1991. Proceeding, Springer.
- [8] Jose M. Garrido, Performance Modeling of Operating Systems Using Object-Oriented Simulations: A Practical Introduction, Springer, 2014.
- [9] Iain D. Craig, Formal Refinement for Operating System Kernels, Springer, 2007.
- [10] Iain D. Craig, Formal Models of Operating System Kernels, Springer, 2006

#### 15. MEDIUM OF INSTRUCTION (MOI)

English

Revised on: <2021-12-31>