KRUŽNICA

Kružnica:

- Kružnicou so stredom S a polomerom r > 0 nazývame množinu všetkých bodov X v rovine, pre ktoré platí |SX| = r.
- obvod = $O = 2\pi r$

Kruh:

- Množinu všetkých bodov X v rovine, pre ktoré platí $|SX| \le r$ nazývame kruhom so stredom S a polomerom r. Hranicu kruhu tvorí takzvaná hraničná kružnica.
- obsah = $S = \pi r^2$

(→ S odvodíme buď: integrálom alebo pomocou n-uholníka (zväčšujeme n) – limitne)

Priemer:

- Priemerom kružnice(kruhu) rozumieme jednak číslo d = 2r, jednak každú úsečku dĺžky d, ktorej koncové body ležia na kružnici(na hraničnej kružnici). V tomto chápaní je teda priemer špeciálny prípad tetivy kružnice.
 - \rightarrow r = polomer

Kružnicový oblúk:

- prienik kružnice a polroviny
- Výpočet dĺžky oblúka pomocou priamej úmery:

•
$$\frac{\alpha^{\circ} \text{ v stupňoch}}{2\pi r ... 360^{\circ}}$$
:
 $\frac{O_{m} ... \alpha^{\circ}}{360^{\circ}}$.
 $\rightarrow O_{m} = \frac{\pi 2r}{360^{\circ}}.\alpha^{\circ}$

 $O_m = dlžka oblúka$

$$\rightarrow O_m = \frac{\pi 2r}{2\pi}.\alpha = r.\alpha$$

 $\rightarrow \alpha$ je stredový uhol

Kruhový výsek:

- prienik kruhu a uhla, ktorý má vrchol v strede kružnice S
- Výpočet obsahu kruhového výseku pomocou priamej úmery:
 - α° v stupňoch:

$$\pi r^2 ... 360^{\circ}$$

$$\underline{S_{v} \ ... \ \alpha^{\circ}}$$

$$\rightarrow S_{v} = \frac{\pi r^{2}}{360^{\circ}} \alpha^{\circ}$$

• α v radiánoch:

S_v je obsah kruhového výseku.

Kruhový odsek:

• prienik kruhu a polroviny

$$S_{od} = S_v - S_\Delta = \frac{\pi r^2}{360^\circ} \alpha^\circ - \frac{r^2 \sin \alpha^\circ}{2} = \frac{r^2}{2} \alpha - \frac{r^2 \sin \alpha}{2} = \frac{r^2}{2} (\alpha - \sin \alpha) rad$$

 $\pi = \text{konštanta} = 3,14 = \text{Ludolfovo číslo}$

Medzikružie:

Plocha ohraničená dvomi sústredným kružnicami.

$$S = \pi r_1^2 - \pi r_2^2 = \pi (r_1^2 - r_2^2)$$

Opísaná kružnica:

- Kružnica opísaná trojuholníku ABC je kružnica prechádzajúca jeho tromi vrcholmi A, B, C.
- Každému trojuholníku možno opísať kružnicu. Jej stred nájdeme ako priesečník osí strán trojuholníka.

Vpísaná kružnica:

- Kružnica vpísaná trojuholníku ABC je kružnica ležiaca vnútri trojuholníka ABC a dotýkajúca sa všetkých jeho strán.
- Každému trojuholníku možno vpísať jednu kružnicu. Jej stred nájdeme ako priesečník osí uhlov trojuholníka.

<u>Pre polomer opísanej kružnice, polomer vpísanej kružnice a ostatné prvky trojuholníka platia</u> nasledujúce základné vzťahy:

$$r = \frac{abc}{4S}$$

$$\rho = \frac{2S}{o}$$

$$2r = \frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}$$

Kde r je polomer opísanej kružnice, ρ je polomer vpísanej kružnice, S je obsah trojuholníka, o je jeho obvod, a, b, c sú dĺžky strán a α , β , γ sú veľkosti vnútorných uhlov.

Veta o obvodovom a stredovom uhle:

- Veľkosť každého obvodového uhla prislúchajúceho oblúku m sa rovná polovici veľkosti stredového uhla prislúchajúceho oblúku m.
- A,B rozdelia *k* na dva oblúky
- C ľubovoľný bod na *k*
- Stredový uhol je práve jeden, obvodových je nekonečne veľa

• Špeciálnym prípadom vety o obvodovom a stredovom uhle je Talesova veta, ktorú dostaneme, keď za oblúk *m* zvolíme polkružnicu.

• Talesova veta:

Všetky obvodové uhly nad priemerom sú pravé.

Tetivy kružnice:

 Každá úsečka MN, ktorej koncové body M a N ležia na kružnici, sa nazýva tetiva kružnice. Priemer PQ je tetiva prechádzajúca stredom S kružnice. Polomer kružnice je každá úsečka SP, SQ, SR, ktorej jeden koncový bod je stred kružnice a druhý leží na kružnici.

Vzájomná poloha priamky a kružnice:

Priamka vo všeobecnej polohe môže:

- pretínať kružnicu v dvoch rôznych bodoch sečnica kružnice
- dotýkať sa kružnice v jednom spoločnom bode dotyčnica kružnice
- neobsahovať žiadne body kružnice nesečnica kružnice.
- Priamka *p* je sečnicou kružnice, priamka *t* jej dotyčnicou a priamka *r* je nesečnicou kružnice.

- **Dotyčnica** ku kružnici je priamka kolmá na polomer kružnice v bode dotyku.
- Dotyčnica kružnice neobsahuje žiadne vnútorné body kružnice.
- Existujú práve dve dotyčnice kružnice rovnobežné s danou priamkou.
 - Dôkaz:

Stredom *S* kružnice *k* prechádza jediná kolmica *k* na danú priamku. Priamka *k* je priemer kružnice kolmý na hľadanú dotyčnicu v smere priamky. Pretína kružnicu v dvoch rôznych bodoch, ktoré sú dotykovými bodmi dvoch dotyčníc kružnice v danom smere.

- Existujú práve dve dotyčnice kružnice prechádzajúce jej vonkajším bodom.
 - Dôkaz:

Dotyčnica kružnice je kolmá ma polomer kružnice v bode dotyku. Trojuholník RST určený stredom kružnice, vonkajším bodom R a bodom dotyku T je preto pravouhlý, s pravým uhlom pri vrchole T a preponou SR. Bod dotyku teda leží na Tálesovej kružnici s priemerom SR. Tálesova kružnica pretína danú kružnicu k v dvoch rôznych bodoch, ktoré sú dotykovými bodmi dvoch dotyčníc prechádzajúcich vonkajším bodom R kružnice.

Vzájomná poloha dvoch kružníc:

Uvažujme dve kružnice $k_1(S_1, r_1)$, $k_2(S_2, r_2)$, $r_1 > r_2$

- $S_1 \neq S_2$ a $r_1 + r_2 < |S_1S_2|$ kružnice nemajú spoločné body, každá leží vo vonkajšej oblasti tej druhej
- $S_1 \neq S_2$ a $r_1 + r_2 = |S_1S_2|$ kružnice majú vonkajší dotyk
- $S_1 \neq S_2$ a r_1 $r_2 < |S_1S_2| < r_1 + r_2 kružnice$ sa pretínajú v dvoch spoločných bodoch
- $S_1 \neq S_2$, $|S_1S_2| = r_1 r_2 -$ menšia z kružníc leží vo vnútornej oblasti druhej a majú spoločný vnútorný dotyk.
- $S_1 \neq S_2$, $|S_1S_2| < r_1$ r_2 menšia z kružníc leží vo vnútornej oblasti druhej a nemajú spoločné body
- $S_1 = S_2$, $r_1 \neq r_2$ kružnice sú sústredné. Oblasť $\{X \in \rho, r_2 \leq |S_1X| \leq r_1 \}$ nazývame medzikružím.
- $S_1 = S_2$, $r_1 = r_2 \text{kružnice sú totožné}$

Veta o mocnosti bodu ku kružnici:

• Nech k(S,r) je kružnica v rovine a M bod neležiaci na tejto kružnici. Nech p, q sú dve sečnice kružnice k prechádzajúce bodom M a pretínajúce kružnicu k v bodoch P_1 , P_2 , Q_1 , Q_2 . Potom platí:

$$|P_1M| |P_2M| = |Q_1M| |Q_2M| = |SM|^2 - r^2$$

Veta o Apolóniovej kružnici:

• Nech A, B sú dva body rôzne body roviny, $k \in \mathbb{R}^+ - \{1\}$. Množina všetkých bodov X v rovine, pre ktoré platí |AX| = k|BX| je kružnica so stredom na priamke AB. Nazýva sa Apolóniova kružnica.

Dôkaz vety o obvodovom a stredovom uhle

 $\{C\}$ = polpriamka AS prienik s k ΔBCS – rovnostranný \rightarrow uhol SBC= α Uhol CSB, teda ϕ = **180°- 2** α a zároveň ϕ =**180°-** ω $\rightarrow \omega$ =**2** α

Polpriamka CS prienik k, vznikne bod D

$$\omega_1 + \omega_2 = \omega$$

$$\alpha_1 + \alpha_2 = \alpha$$

$$\phi_1+\phi_2=\phi$$

$$\phi_1 = 180^{\circ} - 2 \ \alpha_1 = 180^{\circ} - 2 \ \omega_1$$

$$\phi_2 = 180^{\circ} - 2 \alpha_2 = 180^{\circ} - 2 \omega_2$$

$$\rightarrow 2 \alpha_1 = \omega_1$$

$$\rightarrow 2\alpha_2 = \omega_2$$

$$\omega_1 + \omega_2 = 2(\alpha_1 + \alpha_2) = 2 \alpha$$