

® BUNDESREPUBLIK DEUTSCHLAND

[®] Offenlegungsschrift[®] DE 42 23 005 A 1

(5) Int. Cl.⁵: F 28 D 19/04

DEUTSCHES PATENTAMT

21) Aktenzeichen:

P 42 23 005.5

② Anmeldetag:

13. 7. 92

43) Offenlegungstag:

14. 1.93

2 Erfinder:

Antrag auf Nichtnennung

3 Innere Priorität: 3 3 3

13.07.91 DE 41 23 294.1

(1) Anmelder:

Eisenmann Maschinenbau KG (Komplementär: Eisenmann-Stiftung), 7030 Böblingen, DE

(74) Vertreter:

Seemann, N., Dipl.-Ing. Pat.-Ing., 7320 Göppingen

Prüfungsantrag gem. § 44 PatG ist gestellt

- (54) Rotations-Wärmetauscher
- 5) Bei einem Rotationswärmetauscher mit entsprechender Speichermasse (1) und horizontal liegender Drehachse (12) sowie in gleicher Richtung verlaufenden Durchströmkanälen (13) für die im Gegenstromprinzip bewegte Ab- und Zuluft (AL und ZL) bei Farbspritzkabinen wird beidseits des Rotors (1) über einen Düsenkanal (4) sog. Sperrluft gegen die Abluftseite (AL) geblasen zum Verhindern des Zutritts von verunreinigter Abluft in die angesaugte Frischluft (FL).

Beschreibung

Die Erfindung bezieht sich nach dem Oberbegriff des Patentanspruchs 1 auf einen Rotations-Wärmetauscher zur Rückgewinnung von Wärme und Feuchte aus der Abluft von insbesondere Farb-Spritzkabinen bei der industriellen Lackiertechnik.

Derartige Rotations-Wärmetauscher sind bereis bekannt und übertragen die Wärme von dem warmen, aus den Kabinen kommenden Abluftstrom auf den kälteren 10 der Frischluft. Dieses wird dabei durch eine drehende, wabenförmige Aluminiummasse erreicht, die die Wärme vom warmen Luftstrom aufnimmt und an den kälteren abgibt. Ein zusätzlicher Feuchteaustausch wird hierbei ebenfalls erzielt, wenn auf der Abluftseite Wasser- 15 dampf kondensiert und dieser auf der Zuluftseite wieder verdampft. Dieser Effekt kann durch eine hydroskopische Beschichtung der Rotorspeichermasse noch verstärkt werden.

großes Druckgefälle von der Abluftseite auf die Zuluftseite aufreten kann und Leckströme aus der Abluft in die Zuluft möglichst vermieden werden sollten, ist es neben der Rückgewinnung von möglichst viel Energie aus der Abluft die vorrangige Aufgabe der vorliegenden Erfindung, bei den hier zur Rede stehenden Anlagen geeignete Vorkehrungen zu treffen, um ein solches Überströmen der Abluft wirksam zu verhindern, also dem Zutritt von Luftverunreinigungen aus der Kabinenabluft über das Wärmerad in die zugeführte Frischluft 30 triebsgegebenheiten individuell angepaßt werden. mit geeigneten Mitteln und Maßnahmen zu begegnen. Eine weitere Teilaufgabe der vorliegenden Erfindung ist noch darin zu sehen, daß Mittel und Maßnahmen zur Abreinigung des Wärmerades von anhaftenden Verschmutzungen aus der Kabinenabluft vorgesehen sind.

Ausgegangen zum Stand der Technik wird dabei beispielsweise von der DE-PS 1101 677, aus der bereits ein umlaufender Regenerativ-Luftvorwärmer bekannt ist, bei dem die Speichermasse in ihren Übergangszonen zwischen den beiden die gasförmigen Medien unter- 40 schiedlichen Drucks führenden Kanälen stirnseitig durch Sektorplatten abgedeckt ist und bei dem jeweils in der Übergangszone ein Hilfskanal ohne Fördervorrichtung einen Sperrgasstrom vom Hauptkanal höheren Drucks zum niederdruckseitigen Ende des Leckspaltes 45 führt, wobei der Sperrgaskanal geringen Strömungswiderstandes in den Leckspalt stark geneigt, und zwar entgegen der Leckstromrichtung an einer Stelle einmündet, an der der Druck infolge des Abfalls längs des Leckweges niedriger ist als im Kanal höheren Drucks.

Solche Luftvorwärmer fanden dabei bislang vor allem bei Großfeuerungsanlagen Anwendung, um mit Hilfe der heißen Rauchgase die Verbrennungsluft vorzuwärmen. Es liegt auf der Hand, daß eine einfache, rein handwerkliche Übertragung der bekannten Maßnahmen auf 55 Anlagen der hier zur Rede stehenden Art nicht ohne erfinderisches Zutun möglich ist.

Gelöst wird die bei der vorliegenden Erfindung eingangs gestellte Aufgabe daher vor allem durch die im Patentanspruch 1 angegebenen speziellen baulichen 60 Merkmale; die Unteransprüche beinhalten sinnvolle Weiterbildungen und zusätzliche Maßnahmen zum Gegenstand des Hauptanspruchs.

Die Zeichnungen verdeutlichen in Verbindung mit der zugehörigen Beschreibung zusätzlich noch das We- 65 sen der vorliegenden Erfindung. Es zeigen hierzu in weitestgehend schematischer Darstellung die

Fig. 1 das gesamte Anlagen-System einer Spritzkabi-

ne in Seitenansicht.

Fig. 2 in perspektivischer Darstellung das Wärmerad von der Abluft-/Zuluftseite aus gesehen:

Fig. 3 desgleichen von der Fortluft-/Außenluftseite 5 her sowie.

Fig. 4 bis 8 bauliche Einzelheiten der neuen Lösung.

In der Systemdarstellung gemäß Fig. 1 sowie den Fig. 2 und 3 ist zunächst dargestellt die Spritzkabine SP mit Zu- und Abluftkanal 2 und 3 sowie daran anschlie-Bend der Rotationswärmetauscher mit entsprechender Speichermasse 1 und horizontal liegender Drehachse 12 sowie in gleicher Richtung verlaufenden Durchströmkanälen 13 für die im Gegenstromprinzip bewegte Abund Zuluft AL und ZL.

Die Lösung der bei einer derartigen Einrichtung eingangs gestellten Aufgabe sieht nun als erstes und wichtigstes Merkmal vor, je eine beidseits 1a und 1b des Wärmerades 1 bis auf einen verbleibenden engen Spalt S etwa mittig an dieses 1 heranverlaufende, vorzugswei-Da bei derartigen Anlagen im allgemeinen ein relativ 20 se ebenfalls horizontal liegende Luftkanalwand 2 und 3, wobei der jeweilige Trennsteg an der Wandstirnfläche als mit einer Schlitzdüse 4a versehenen Düsenkanal 4 ausgebildet ist, über welchen auf beiden Seiten Frischluft mit hoher Geschwindigkeit gegen den Rotor des Wärmerades 1 geblasen wird.

> Der sich dabei aufbauende Druck verhindert ein Überströmen von Abluft in die Zuluft. Sowohl der Auslaßquerschnitt als auch der Abstand von Düse zu Rotor sind einstellbar und können somit den jeweiligen Be-

> Dies bedeutet hierbei auch, daß die Spaltweite S zwischen Düsenkanal 4 und Speichermasse des Rotors 1 einstellbar und die Schlitzdüse 4a schräg in Richtung auf die Speichermasse 1 hin gerichtet ist.

> Weiterhin als wichtig vorgesehen ist noch die Zuordnung eines Spülluftkanals 5 zum Durchblasen der Kanäle der Rotorspeichermasse 1 mit Frischluft, zum Verhindern der Übertragung von Abluft, die durch die Rotordrehung in der Speichermasse 1 zwangsläufig mittransportiert wird auf die Zuluftseite; diese Spülluft säubert somit die Rotormasse von der zwangsläufig mitrotierenden Abluft, bevor letztere in den Bereich der einströmenden Frischluft gelangt.

Die vorstehend beschriebene Ausführung zeichnet sich zudem noch aus durch Zuordnung einer aus Führungsschiene 7 und darauf verfahrbarem Schlitten 8 bestehenden, zusätzlichen Abreinigungsvorrichtung 6 zumindest auf der Abluftseite AL des Wärmerades 1, vorzugsweise jedoch ebenfalls beidseits 1a und 1b. Im ein-50 zelnen und mit Bezug auf die Fig. 4 bis 8 ist dabei folgende Konstruktion denkbar:

Ein Schlitten verfährt hierzu in Richtung "Rotorradius" über einen Rotor. Dieser Schlitten trägt die Düse für Heißwasser und Druckluft. Auf der gegenüberliegenden Rotorseite fährt synchron ein Schlitten, der das ausströmende Reinigungswasser in einem Trichter auffängt. Die Reinigungsschlitten befinden sich in ihren Parkpositionen am Rotorumfang. Nach erfolgtem Startimpuls fahren die Schlitten in Richtung Rotormitte. Die Verschmutzungen werden dabei mit Heißwasser ausgespült. Gleichzeitig wird das im Rotor verbleibende Restwasser mit Druckluft ausgeblasen.

Auf dem Rückweg von der Rotormitte zum Umfang erfolgt ein weiteres Ausblasen des Reinigungswassers mit Druckluft. Um eine lückenlose Abreinigung zu gewährleisten, werden die Reinigungsschlitten vollautomatisch gesteuert. Das heißt, daß sie bei jeder Rotordrehung einen genau definierten Weg zurücklegen. Dieser

ist von der Düse bestrichenen Fläche abhängig. Die Rotordrehzahl während der Reinigung wird so geregelt, daß der Rotor eine konstante, einstellbare Umfängsgeschwindigkeit an der Reinigungsdüse fährt. Sämtliche Regelfunktionen der Abreinigung sind im Regelgerät AS 1 integriert.

Unerläßlich für eine sichere Funktion der erfindungsgemäßen Vorrichtung ist weiterhin die Minimierung des sog. Seitenschlags des umlaufenden Rotors 1 durch verstellbare Führungsbolzen 9 o. dgl. auf beiden Rotorsei- 10 ten 1a und 1b und Zuordnung einer Umfangsdichtung 10 zwischen Rotor 1 und umgebenden Gehäuse G.

In spezieller baulicher Ausgestaltung ist dabei gemäß Fig. 8 vorgesehen, daß der Rotor 1 außen einen glatten Profilring 11 trägt, gegen den die Umfangsdichtung 10 15 mit Federkraft P gedrückt wird. Die Dichtung 10 schleift also nicht auf der rauhen Oberfläche des Rotors 1. Letztlich ist es noch von Vorteil, wenn die Speichermasse 1 des aus Bahnmaterial gewickelten Rotors zur Erhöhung der mechanischen Festigkeit miteinander verklebt, 20 der Rotor in Pendelkugellagern gelagert und der Rahmen des Rotors 1 aus Alu-Profil gefertigt ist.

Zusammenfassend sei also nochmals hervorgehoben, daß im Gegensatz zum Stand der Technik bei der vorliegenden Erfindung die beidseitige Anordnung der Sperr- 25 luftdüsen 4a sowie der Abreinigungsvorrichtungen 6, 7, 8 zum Wärmerad erforderlich ist, um einerseits bei den relativ hohen Gebläse-Drücken, mit denen bei der Luftversorgung von Spritzkabinen gearbeitet wird, das Überströmen der Luft von einer in die andere Kammer 30 im Spaltbereich wirksam zu verhindern und zum anderen, um an der Ein- sowie Ausströmseite sich aus der Abluft an der Speichermasse des Wärmerades 1 außen ansetzende bzw. aufbauende Farbpartikelchen sicher mit der Abreinigungsvorrichtung mechanisch zu entfer- 35

Bezugsziffernverzeichnis

 Speichermasse, Wärmerad 40 1a Stirnseite 1b Stirnseite 2 Luftkanal (Zuluft) 2a Luftkanalwand (kabinenseitig) 3 Luftkarial (Abluft) 45 3a Luftkanalwand (kaminseitig) 4 Düsenkanal (Sperrluft) 4a Schlitzdüse 5 Spülluftkanal 6 Abreinigungsvorrichtung 50 7 Führungsschiene der Abreinigungsvorrichtung 8 Schlitten der Abreinigungsvorrichtung 9 Führungsbolzen 10 Umfangsdichtung 11 Profilring 55 12 Drehachse des Wärmerades 13 Durchströmkanal AL Abluftseite ZL Zuluft S Spaltweite 60 P Federkraft SP Spritzkasten K Abluftkammern

Patentansprüche

G Gehäuse, Rahmen des Rotors

oder vertikal liegende Drehachse (12) umlaufender Speichermasse (1), die in gleicher Richtung verlaufende Durchströmkanäle (13) für die im Gegenstromprinzip bewegte Ab- und Zuluft (AL und ZL) aufweist und bei welchem bis auf einen verbleibenden engen Spalt (S) etwa mittig an die Speichermassen (1) eine ebenfalls horizontal liegende Luftkanalwand (2 und 3) heranverläuft, wobei der jeweilige Trennsteg an der Wandstirnfläche als mit einer schräg in Richtung auf die Abluftseite (AL) hin gerichteten Schlitzdüse (4a) versehener Düsenkanal (4) ausgebildet ist, über welchen als sog. Sperrluft Frischluft mit hoher Geschwindigkeit gegen den Rotor des Wärmerades (1) geblasen wird, dadurch gekennzeichnet, daß Luftkanalwand (2 und 3) samt Trennsteg, Düsenkanal (4) und Schlitzdüse (4a) beidseits (1a und 1b) des Wärmerades (1) angeordnet sind und die Spaltweite (S) zwischen Düsenkanal (4) und Speichermasse des Rotors (1) verstellbar ist.

- 2. Rotationswärmetauscher nach Anspruch 1, gekennzeichnet durch Zuordnung einer aus Führungsschiene (7) und darauf verfahrbarem Schlitten (8) bestehenden, zusätzlichen Abreinigungsvorrichtung (6) zumindest auf der Abluftseite (AL) des Wärmerades (1), vorzugsweise jedoch ebenfalls beidseits (1a und 1b).
- 3. Rotationswärmetauscher nach den Ansprüchen und 2. gekennzeichnet durch Zuordnung eines Spülluftkanals (5) zum Durchblasen der Kanäle der Rotorspeichermasse (1) mit Frischluft als sog. Spülluft zum Verhindern der Obertragung von Abluft, die durch die Rotordrehung in der Speichermasse (1) zwangsläufig mittransportiert wird auf die Zuluftseite.
- 4. Rotationswärmetauscher nach einem der vorhergehenden Ansprüche, gekennzeichnet durch Minimierung des sog. Seitenschlags des umlaufenden Rotors (1) durch verstellbare Führungsbolzen (9) o. dgl. auf beiden Rotorseiten (1a und 1b) und Zuordnung einer Umfangsdichtung (10) zwischen Rotor (1) und umgebenden Gehäuse (G).
- 5. Rotationswärmetauscher nach Anspruch 4, dadurch gekennzeichnet, daß der Rotor (1) außen einen glatten Profilring (11) trägt, gegen den die Umfangsdichtung (10) mit Federkraft (P) gedrückt
- 6. Rotationswärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Speichermasse (1) des aus Bahnmaterial gewikkelten Rotors zur Erhöhung der mechanischen Festigkeit an den Bahnflächen miteinander verklebt
- 7. Rotationswärmetauscher nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Auslaßquerschnitt der Schlitzdüse (4a) verstellbar ist.

Hierzu 7 Seite(n) Zeichnungen

65

1. Rotationswärmetauscher mit um eine horizontal

Offenlegungstag:

DE 42 23 005 A1 F 28 D 19/04 14. Januar 1993

Fig

Nummer: Int. Cl.⁵: Offenlegungstag:

DE 42 23 006 A1 F 28 D 19/04 14. Januar 1993

Fig 4

DE 42 23 006 A1 F 28 D 19/04 14. Januar 1993

Fig 6

Nummer: Int. Cl.⁵: Offenlegungstag:

DE 42 23 005 A1 F 28 D 19/04 14. Januar 1993

Fig 7

Fig 8