FCDAE Chapter 3 cheat sheet

Lydia Gibson

2/16/2022

Point estimators in the CRD

$Single\ means\ model$

Parameter	Estimator
μ σ^2	$\underbrace{\sum_{i=1}^{g} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i\bullet})^2}_{N-g}$

$Seperate\ means\ model$

Parameter	Estimator
$\overline{\mu}$	$ar{y}_{ulletullet}$
μ_i	$ar{y}_{iullet}$
$lpha_i$	$ar{y}_{iullet} - ar{y}_{ulletullet}$
σ^2	$\frac{\bar{y}_{i\bullet} - \bar{y}_{\bullet\bullet}}{\sum_{i=1}^{g} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i\bullet})^2} \frac{N-g}{N-g}$

Standard errors of point estimators in the CRD

Parameter	Estimator	Standard Error
$\overline{\mu}$	\bar{y}_{ullet}	s/\sqrt{N}
μ_i	$ar{y}_{iullet}$	$s/\sqrt{n_i}$
α_i	$\bar{y}_{i\bullet} - \bar{y}_{\bullet \bullet}$	$s\sqrt{1/n_i-1/N}$

Sum of squares in the CRD

$$SS_{Trt} = \sum_{i=1}^{g} n_i \hat{\alpha}_i^2$$

$$SS_E = \sum_{i=1}^{g} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{1\bullet})^2$$

$$SS_T = SS_{Trt} + SS_E$$

Generic ANOVA table

Source	DF	SS	MS	F	p-value
$\overline{Treatments}$	g-1	SS_{Trt}	SS_{Trt}/g -1	MS_{Trt}/MS_{E}	
Error	N-g	SS_E	$SS_E/(N-g)$		

Source	DF	SS	MS	F	p-value
Total	N-1	$SS_T = SS_{Trt} + SS_E$			