Mostafa Sabri

Lecture 4

- 1.8 Introduction to Linear Transformations
- 1.9 The Matrix of a Linear Transformation

Linear Transformations

A transformation (or function or map) $T : \mathbb{R}^n \to \mathbb{R}^m$ is a rule that assigns to each vector $\mathbf{x} \in \mathbb{R}^n$ a vector $T(\mathbf{x}) \in \mathbb{R}^m$. Here, the *domain* of T is \mathbb{R}^n and the *codomain* is \mathbb{R}^m . We call $T(\mathbf{x})$ the *image* of \mathbf{x} under T. The set of all images $\{T(\mathbf{x})\}$ is called the *range* of T.

Matrix transformations

Let
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 and define $T : \mathbb{R}^2 \to \mathbb{R}^3$ by $T(\mathbf{x}) = A\mathbf{x}$.

a. Find
$$T(\mathbf{u})$$
 for $\mathbf{u} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

b. Find
$$\mathbf{x} \in \mathbb{R}^2$$
 whose image under T is $\mathbf{b} = \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix}$.

 ${f c}.$ Is there more than one ${f x}$ whose image is ${f b}$?

d. Is
$$\mathbf{c} = \begin{bmatrix} 1 \\ 3 \\ 6 \end{bmatrix}$$
 in the range of T ?

Matrix transformations

Thm: The range of a matrix transformation is the span of its columns.

<u>Proof.</u> Indeed, $A\mathbf{x} = \sum_{i=1}^{n} x_i \mathbf{a}_i$. As \mathbf{x} varies, we get all linear combinations of \mathbf{a}_i .

e.g. The projection of \mathbb{R}^3 onto the xy plane is given by

the transformation
$$T(\mathbf{x}) = A\mathbf{x}$$
, for $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.

Linear transformations

The map $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(\mathbf{x}) = A\mathbf{x}$ for $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$ is a *shear* transformation.

A transformation (or mapping) T is *linear* if for any \mathbf{u} , \mathbf{v} in the domain of T, and any scalar c,

(i)
$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$$
.

(ii)
$$T(c\mathbf{u}) = cT(\mathbf{u})$$
.

Linear transformations

Hence, linear transformations preserve the operations of vector addition and scalar multiplication.

Any matrix transformation is linear since $A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v}$ and $A(c\mathbf{u}) = cA\mathbf{u}$.

Thm: If T is linear, then $T(\mathbf{0}) = \mathbf{0}$ and $T(c\mathbf{u} + d\mathbf{v}) = cT(\mathbf{u}) + dT(\mathbf{v})$, for any \mathbf{u}, \mathbf{v} in the domain of T and scalars c, d.

Proof.
$$T(\mathbf{0}) = T(0\mathbf{u}) = 0T(\mathbf{u}) = \mathbf{0}$$
. Next, $T(c\mathbf{u} + d\mathbf{v}) = T(c\mathbf{u}) + T(d\mathbf{v}) = cT(\mathbf{u}) + dT(\mathbf{v})$.

Linear transformations

Repeating, we get $T(\sum_{i=1}^{p} c_i \mathbf{v}_i) = \sum_{i=1}^{p} c_i T(\mathbf{v}_i)$.

The map $T: \mathbb{R}^n \to \mathbb{R}^n$ given by $T(\mathbf{x}) = c\mathbf{x}$ is a *dilation* if c > 1 and a *contraction* if $0 \le c \le 1$.

The map $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(\mathbf{x}) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ is a rotation counterclockwise by θ .

The matrix of a linear transformation

Show the previous maps are linear.

In the following, \mathbf{e}_j is the vector with all entries equal to 0 except the j-th entry, which is equal to 1.

Thm: Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then there exists a unique matrix A such that $T(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$.

In fact, A is the $m \times n$ matrix $A = [T(\mathbf{e}_1) \cdots T(\mathbf{e}_n)]$.

The matrix of a linear transformation

Proof. Write $\mathbf{x} = x_1 \mathbf{e}_1 + \cdots + x_n \mathbf{e}_n$. Then by linearity of T,

$$T(\mathbf{x}) = T\left(\sum_{i=1}^{n} x_i \mathbf{e}_i\right) = \sum_{i=1}^{n} x_i T(\mathbf{e}_i), \text{ and by definition,}$$

$$A\mathbf{x} = \begin{bmatrix} T(\mathbf{e}_1) & \cdots & T(\mathbf{e}_n) \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \sum_{i=1}^{n} x_i T(\mathbf{e}_i).$$

So $T(\mathbf{x}) = A\mathbf{x}$ as required.

The matrix A is called the standard matrix for T.

Find the standard matrix for the dilation transformation $T(\mathbf{x}) = c\mathbf{x}$.

Illustrations

Illustrations

 $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$

$$\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

Surjective maps

A map $T: \mathbb{R}^n \to \mathbb{R}^m$ is surjective, or onto \mathbb{R}^m , if the range of T is all of \mathbb{R}^m . In other words, for each $\mathbf{b} \in \mathbb{R}^m$, there exists some $\mathbf{x} \in \mathbb{R}^n$ such that $T(\mathbf{x}) = \mathbf{b}$.

Injective maps

A map $T: \mathbb{R}^n \to \mathbb{R}^m$ is injective, or one-to-one, if distinct elements in \mathbb{R}^n have distinct images in \mathbb{R}^m . In other words, $\mathbf{u} \neq \mathbf{v} \Longrightarrow T(\mathbf{u}) \neq T(\mathbf{v})$. Equivalently, $T(\mathbf{u}) = T(\mathbf{v}) \Longrightarrow \mathbf{u} = \mathbf{v}$.

Let $T : \mathbb{R}^3 \to \mathbb{R}^2$ be the linear map defined by the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \end{bmatrix}$. Is T onto \mathbb{R}^2 ? Is it one-to-one?

Injective maps

Thm: Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then T is one-to-one iff the equation $T(\mathbf{x}) = \mathbf{0}$ has only the trivial solution.

<u>Proof.</u> (\Longrightarrow) As T is linear, $T(\mathbf{0}) = \mathbf{0}$. If T is one-to-one, then any $\mathbf{x} \neq \mathbf{0}$ has a different image, i.e. $T(\mathbf{x}) \neq \mathbf{0}$. Hence, the equation has only the trivial solution.

П

 (\longleftarrow) If $T(\mathbf{x}) = \mathbf{0}$ has only the trivial solution, let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, and suppose that $T(\mathbf{u}) = T(\mathbf{v})$. Then $T(\mathbf{u} - \mathbf{v}) = T(\mathbf{u}) - T(\mathbf{v}) = \mathbf{0}$ by linearity. So by hypothesis, we get $\mathbf{u} - \mathbf{v} = \mathbf{0}$, i.e. $\mathbf{u} = \mathbf{v}$.

Injective and surjective maps

Thm: Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation with standard matrix A.

- 1. T maps \mathbb{R}^n onto \mathbb{R}^m iff the columns of A span \mathbb{R}^m .
- 2. *T* is one-to-one iff the columns of *A* are linearly independent.
- <u>Proof.</u> 1. T is onto \mathbb{R}^m iff Range(T) = \mathbb{R}^m . The range is the span of the columns of A (earlier slide), so we get 1.
- 2. T is one-to-one iff $T(\mathbf{x}) = \mathbf{0}$ has only the trivial solution (previous slide), which occurs iff the columns of A are linearly independent (previous lecture), proving 2.

Injective and surjective maps

Cor: Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be linear.

- 1. If n > m then T is never one-to-one.
- 2. If n < m then T is never onto \mathbb{R}^m .

<u>Proof.</u> Here A is $m \times n$, so we have n column vectors in \mathbb{R}^m . If n > m, they must be linearly dependent (theorem), so T is not 1-1. If n < m then we have fewer vectors than the dimension m of the space, hence they cannot span \mathbb{R}^m , so T is not surjective.

Define $T: \mathbb{R}^2 \to \mathbb{R}^3$ by T(x, y) = (x + 2y, 2x + 4y, 3x - 5y). Is T one-to-one? Is it onto \mathbb{R}^3 ?