RÉPONDEZ AUX 11 QUESTIONS SUIVANTES DANS LA PLATEFORME TEST DE MOODLE.

DATE DE L'EXAMEN : LUNDI 4 MAI 2020 DURÉE DE L'EXAMEN : 3 h (de 9 h 30 à 12 h 30)

Total : / 20

Cet examen est composé de trois sections :

SECTION 1: INFORMATIONS ET DÉCLARATION SUR L'HONNEUR (1 QUESTION)

Temps suggéré : 2 minutes

SECTION 2 : CHOIX DE RÉPONSES ET RÉPONSES COURTES (7 QUESTIONS)

Temps suggéré : 45 minutes

Total: / 6,5

SECTION 3: QUESTIONS À DÉVELOPPEMENT (3 QUESTIONS)

Temps suggéré : 105 minutes

Total: / 13,5

1. DÉCLARATION SUR L'HONNEUR :

Je déclare sur mon honneur que :

- ce travail est un travail original de ma part.
- j'ai répondu aux différentes questions par moi-même, sans l'aide d'une autre personne par tout moyen de communication que ce soit.
- j'ai respecté toutes les conditions énoncées dans les consignes.
- personne n'a effectué ni rédigé ce travail ou une partie de ce travail à ma place, gratuitement ou contre rémunération.
- je n'ai ni copié ni sauvegardé aucune partie du questionnaire ou du matériel transmis pour cet examen.

EXAMEN FINAL – HIVER 2020

SECTION 2 : CHOIX DE RÉPONSES ET RÉPONSES COURTES (7 QUESTIONS)

Temps suggéré : 45 minutes

Total: / 6,5

2. Développement durable - 1 (0,5 point)

Expliquez pourquoi (à l'aide de deux arguments) le recyclage des composantes électroniques est difficile à mettre en place.

3. Développement durable - 2 (0,5 point)

Afin de limiter le réchauffement climatique à 1,5 $^{\circ}$ C, le GIEC stipule qu'il faut, d'ici 2030, réduire de 45 % les émissions de CO_2 par rapport à 2010. Nommez deux éléments concrets sur lesquels les ingénieurs informatique et logiciel peuvent agir afin d'atteindre cet objectif.

4. Développement durable - 3 (0,5 point)

Expliquez le sens de l'expression « Du berceau au tombeau », souvent utilisée afin de représenter l'analyse du cycle de vie.

5. Développement durable - 4 (0,5 point)

Qu'est-ce qui explique les impacts environnementaux potentiels plus élevés associés à la fabrication d'un véhicule électrique comparativement à un véhicule conventionnel ? Donnez deux éléments de réponse.

EXAMEN FINAL – HIVER 2020

6. Références optimales (1,5 point)

Le tableau ci-dessous illustre différentes situations pour lesquelles vous devez calculer l'enthalpie. En fonction des différents outils disponibles (tables B1, B2, B5, B6, B7 et B8) et des informations données, déterminez la **meilleure** référence à poser et justifiez votre choix. Aucun calcul n'est requis pour cet exercice.

Situation	Référence	Justification
Situation	optimale à poser	(Pourquoi est-ce la meilleure référence ?)
A) L'entrée du condenseur contient du phénol gazeux (C_6H_6O) et de l'azote gazeux (N_2) à 50 °C. On désire condenser le phénol à 30 °C. L'azote reste à l'état gazeux à 30 °C. Vous désirez faire le bilan d'énergie sur le condenseur.		
B) Un échangeur de chaleur permet de produire de la vapeur d'eau surchauffée à 500 °C et 20 bar à partir d'eau liquide saturée à 50 °C. Vous désirez calculer la quantité de chaleur à fournir à cette eau.		
 C) Un réacteur est le siège de la réaction suivante à 100 °C. C₂H_{4(g)} + HCl_(g) → C₂H₅Cl_(g) 		
Malheureusement, des réactions parasites inconnues se déroulent également. On désire évaluer la quantité d'énergie à fournir ou à soutirer au réacteur.		

EXAMEN FINAL – HIVER 2020

7. Chauffage d'un gaz (2 points)

Un gaz inconnu est chauffé dans un échangeur de chaleur à pression constante. Complétez le tableau suivant en indiquant si la valeur du paramètre **augmente**, **diminue ou reste constante** entre l'entrée et la sortie de l'échangeur de chaleur. Dans chacun des cas, justifiez votre réponse.

Paramètre	Variation de la valeur du paramètre (augmente, diminue ou reste constante)	Justification de la variation de la valeur du paramètre
Masse volumique		
Débit molaire		
Débit volumique		
Enthalpie		

8. Le Vrai du Faux (1 point)

Indiquez si chacun des énoncés suivants est Vrai ou Faux. Dans le cas d'un énoncé Faux, expliquez votre réponse.

- A) Vrai ou Faux. Parfois, on peut retrouver la présence de l'avancement de réaction dans le calcul du pourcentage d'excès.
- B) Vrai ou Faux. Si le débit d'alimentation molaire d'un réacteur est triplé, la quantité d'énergie à fournir ou à soutirer à ce réacteur sera aussi triplée.
- C) Vrai ou Faux. La conversion, l'excès, le rendement et la sélectivité sont tous des paramètres adimensionnels.
- D) Vrai ou Faux. Le nombre de molécules du côté des réactifs d'une réaction chimique est nécessairement le même du côté des produits.

EXAMEN FINAL – HIVER 2020

SECTION 3: QUESTIONS À DÉVELOPPEMENT (3 QUESTIONS)

Temps suggéré : 105 minutes

Total: / 13,5

9. Séparation d'un mélange n-pentane/n-hexane (6,25 points)

Un évaporateur est utilisé afin de séparer un mélange liquide formé de 34 % molaire de n-pentane (C_5H_{12}) et le reste de n-hexane (C_6H_{14}). Le débit total de l'alimentation est de 2500 mol/s et ce courant se trouve à une température de 30 °C. L'évaporateur fonctionne à 55 °C et 0,854 atm. Le courant liquide sortant de cet évaporateur contient 81,7 % molaire de C_6H_{14} et est en équilibre avec le courant vapeur sortant du même évaporateur. Afin de chauffer cet évaporateur, on utilise de la vapeur d'eau à 280 °C et 1 bar. Cette vapeur se condense dans la chemise de l'évaporateur et en ressort sous forme de liquide saturé à la même pression.

Tableau 1 - Données utiles

Substance	ΔĤ _{vap} (kJ/mol)	Cp du liquide (kJ/mol·°C)	Cp de la vapeur (kJ/mol ·°C)
n-pentane (C ₅ H ₁₂)	25,77 (T _{eb} = 36°C)	0,16	0,11 + 0,0003 T
n-hexane (C ₆ H ₁₄)	28,85 (T _{eb} = 69°C)	0,22	0,14 + 0,0004 T

- A) Tracez le schéma de l'évaporateur et annotez chacun des courants. (0,5 point)
- B) Effectuez une analyse des degrés de liberté (DDL) sur l'évaporateur de façon à calculer la chaleur à fournir. **(0,5 point)**
- C) Calculer la chaleur (kJ/s) à fournir à l'évaporateur. (4 points)
- D) Calculez le débit de vapeur d'eau (kg/s) à alimenter dans la chemise de l'évaporateur. (1,25 point)

ÉCOLE POLYTECHNIQUE DE MONTRÉAL DÉPARTEMENT DE GÉNIE CHIMIQUE

GCH2730 – ÉNERGIE ET DÉVELOPPEMENT DURABLE DANS LES SYSTÈMES INFORMATIQUES

EXAMEN FINAL – HIVER 2020

10. Production de monoxyde d'azote (4,25 points)

Afin de produire du monoxyde d'azote (NO), de l'ammoniac (NH₃) est oxydé avec de l'oxygène provenant de l'air. La réaction suivante se produit dans le réacteur :

$$4 \text{ NH}_{3(g)} + 5 \text{ O}_{2(g)} \rightarrow 4 \text{ NO}_{(g)} + 6 \text{ H}_2\text{O}_{(g)}$$

Malheureusement, la réaction parasite suivante se produit aussi dans le réacteur :

$$2 NH_{3(g)} + 3/2 O_{2(g)} \rightarrow N_{2(g)} + 3 H_2O_{(g)}$$

On alimente 100 mol/s de NH_3 via le courant 1. De l'air humide à 150 $^{\circ}$ C et 1 atm est alimenté au réacteur via le courant 2. Une conversion de 90 % est obtenue pour l'ammoniac. L'excès d'oxygène alimenté est de 50 % et l'humidité relative de l'air alimenté est de 10 %. Le rendement en NO est de 80 %.

Figure 1 - Diagramme d'écoulement partiellement annoté du procédé

Note : Reproduisez le schéma de la figure 1 et annotez-le de sorte à déclarer les différentes variables que vous utiliserez.

EXAMEN FINAL – HIVER 2020

- A) Effectuez une analyse des degrés de liberté (DDL) sur le réacteur. (0,5 point)
- B) Déterminez les débits partiels (mol/s) sortant du réacteur en utilisant la méthode des avancements de réactions. (3,75 points)

11. Énergie échangée dans une fournaise (3 points)

Considérez la fournaise dans la figure 2 servant à produire de la vapeur d'eau qui sera par la suite acheminée à une turbine afin de produire de l'énergie électrique. Un mélange à 25 °C contenant du méthane (CH_4) et de l'éthane (C_2H_6) est alimenté à la fournaise avec un excès d'air sec, qui est préalablement chauffé à 100 °C dans un échangeur de chaleur. Les gaz de combustion sortent de la fournaise à 800 °C et une conversion de 100 % est obtenue pour chacun des hydrocarbures (C_3H_8 et $n-C_4H_{10}$). Votre collègue, qui aime beaucoup les bilans de matière, les a résolus entièrement. Ses résultats sont présentés sur le schéma ci-dessous. Déterminez la quantité d'énergie à fournir ou à soutirer de la fournaise (kW) en utilisant la **méthode des chaleurs de formation**.

Figure 2 – Diagramme d'écoulement partiellement annoté de la fournaise

EXAMEN FINAL – HIVER 2020

Tableau 2 – Données utiles

Substances	$\Delta \widehat{H}_f^o$ (kJ/mol)	Cp (kJ/mol • °C)
CH _{4(g)}	-74,85	0,03
C ₂ H _{6(g)}	-84,67	0,05
O _{2(g)}	0	non disponible
$N_{2(g)}$	0	non disponible
CO _{2(g)}	-393,15	non disponible
H ₂ O _(g)	-241,83	non disponible

EXAMEN FINAL – HIVER 2020

RÉPONDEZ AUX 11 QUESTIONS SUIVANTES DANS LA PLATEFORME TEST DE MOODLE.

DATE DE L'EXAMEN : LUNDI 4 MAI 2020 DURÉE DE L'EXAMEN : 3h (de 9 h 30 à 12 h 30)

Total : / 20

Cet examen est composé de trois sections :

SECTION 1: INFORMATIONS ET DÉCLARATION SUR L'HONNEUR (1 QUESTION)

Temps suggéré : 2 minutes

SECTION 2 : CHOIX DE RÉPONSES ET RÉPONSES COURTES (7 QUESTIONS)

Temps suggéré: 45 minutes

Total: / 6,5

SECTION 3 : QUESTIONS À DÉVELOPPEMENT (3 QUESTIONS)

Temps suggéré : 105 minutes

Total: / 13,5

1. DÉCLARATION SUR L'HONNEUR :

Je déclare sur mon honneur que :

- ce travail est un travail original de ma part.
- j'ai répondu aux différentes questions par moi-même, sans l'aide d'une autre personne par tout moyen de communication que ce soit.
- j'ai respecté toutes les conditions énoncées dans les consignes.
- personne n'a effectué ni rédigé ce travail ou une partie de ce travail à ma place, gratuitement ou contre rémunération.
- je n'ai ni copié ni sauvegardé aucune partie du questionnaire ou du matériel transmis pour cet examen.

SECTION 2 : CHOIX DE RÉPONSES ET RÉPONSES COURTES (7 QUESTIONS)

Temps suggéré : 45 minutes

Total: / 6,5

2. Développement durable - 1 (0,5 point)

Expliquez pourquoi (à l'aide de deux arguments) le recyclage des composantes électroniques est difficile à mettre en place.

3. Développement durable - 2 (0,5 point)

Afin de limiter le réchauffement climatique à 1,5°C, le GIEC stipule qu'il faut, d'ici 2030, réduire de 45% les émissions de CO₂ par rapport à 2010. Nommez deux éléments concrets sur lesquels les ingénieurs informatique et logiciel peuvent agir afin d'atteindre cet objectif.

4. Développement durable - 3 (0,5 point)

Expliquez le sens de l'expression « Du berceau au tombeau », souvent utilisée afin de représenter l'analyse du cycle de vie.

5. Développement durable - 4 (0,5 point)

Qu'est-ce qui explique les impacts environnementaux potentiels plus élevés associés à la fabrication d'un véhicule électrique comparativement à un véhicule conventionnel ? Donnez deux éléments de réponse.

EXAMEN FINAL – HIVER 2020

6. Références optimales (1,5 points)

Le tableau ci-dessous illustre différentes situations pour lesquelles vous devez calculer l'enthalpie. En fonction des différents outils disponibles (tables B1, B2, B5, B6, B7 et B8) et des informations données, déterminez la **meilleure** référence à poser et justifiez votre choix. Aucun calcul n'est requis pour cet exercice. (0,5 point/ligne: Référence ET Justification doivent être exactes)

Cituation	Référence	Justification
Situation	optimale à poser	(Pourquoi est-ce la meilleure référence ?)
L'entrée du condenseur contient du phénol gazeux (C_6H_6O) et de l'azote gazeux (N_2) à 50°C. On désire condenser le phénol à 30°C. L'azote reste à l'état gazeux à 30°C. Vous désirez faire le bilan d'énergie sur le condenseur.	$C_6H_6O_{(g)}$ à 50°C et 1 atm $N_{2(g)}$ à 25°C et 1 atm	Pour le phénol : la référence peut correspondre soit au courant d'entrée soit au courant de sortie, ce qui permet de simplifier le calcul d'une enthalpie. Pour l'azote : cette référence permet d'utiliser B8 et d'éviter de calculer des intégrales.
Un échangeur de chaleur permet de produire de la vapeur d'eau surchauffée à 500°C et 20 bar à partir d'eau liquide saturée à 50°C. Vous désirez calculer la quantité de chaleur à fournir à cette eau.	H ₂ O _(I) au point triple	Cette référence permet d'utiliser les tables B5, B6 et B7 dans lesquelles on lit directement l'enthalpie de l'eau vapeur ou liquide à différentes températures et pressions.
Un réacteur est le siège de la réaction suivante à 100° C. $C_2H_{4(g)} + HCl_{(g)} \rightarrow C_2H_5Cl_{(g)}$ Malheureusement, des réactions parasites inconnues se déroulent également. On désire évaluer la quantité d'énergie à fournir ou à soutirer au réacteur.	C _(s) , H _{2(g)} , Cl _{2(g)} à 25°C et 1 atm	Puisque des réactions sont inconnues, il faut utiliser la méthode des chaleurs de formation et donc, poser comme référence les éléments dans leur phase stable à 25°C et 1 atm.

EXAMEN FINAL – HIVER 2020

7. Chauffage d'un gaz (2 points)

Un gaz inconnu est chauffé dans un échangeur de chaleur à pression constante. Complétez le tableau suivant en indiquant si la valeur du paramètre augmente, diminue ou reste constante entre l'entrée et la sortie de l'échangeur de chaleur. Dans chacun des cas, justifiez votre réponse. (0,5 point/ligne: Paramètre ET Justification doivent être exacts)

Paramètre	Variation de la valeur du paramètre (augmente, diminue ou reste constante)	Justification de la variation de la valeur du paramètre
Masse volumique	Diminue	Formule de la masse volumique d'un gaz : $\rho = \frac{PM}{RT}$ Lorsque T augmente à pression constante, ρ diminue.
Débit molaire	Constante	Il n'y a pas de réaction chimique et la variation de température n'a pas d'impact sur le débit molaire.
Débit volumique	Augmente	Pour un gaz : $PV = nRT$ Entre l'entrée et la sortie de l'échangeur, P et n sont constants. Ainsi, lorsque T augmente, V augmente également.
Enthalpie	Augmente	La variation d'enthalpie au cours d'une évolution est donnée par : $\Delta H = \Delta U + \Delta (PV)$ L'augmentation de la température entraine une augmentation du débit volumique et une plus grande agitation des molécules, ce qui se traduit par une augmentation de l'énergie interne.

EXAMEN FINAL – HIVER 2020

8. Le Vrai du Faux (1 point)

Indiquez si chacun des énoncés suivants est Vrai ou Faux. Dans le cas d'un énoncé Faux, expliquez votre réponse.

A. Vrai ou Faux. Parfois, on peut retrouver la présence de l'avancement de réaction dans le calcul du pourcentage d'excès.

Faux, l'avancement de la réaction n'intervient jamais dans le calcul du pourcentage d'excès **OU** Vrai, l'avancement pourrait être utilisé pour le calcul de l'excès si la conversion est de 100%. Dans ce cas, le n_stœchiométrique serait égal à l'avancement. **(0,25 point)**

B. Vrai ou Faux. Si le débit d'alimentation molaire d'un réacteur est triplé, la quantité d'énergie à fournir ou à soutirer à ce réacteur sera aussi triplée.

Vrai. (0,25 point)

C. Vrai ou Faux. La conversion, l'excès, le rendement et la sélectivité sont tous des paramètres adimensionnels.

Faux, la sélectivité possède des unités de moles de produits désiré/moles de produits nondésiré. (0,25 point)

D. Vrai ou Faux. Le nombre de molécules du côté des réactifs d'une réaction chimique est nécessairement le même du côté des produits.

Faux, dans une réaction chimique, ce sont les atomes qui sont conservés et non les molécules. (0,25 point)

EXAMEN FINAL - HIVER 2020

SECTION 3: QUESTIONS À DÉVELOPPEMENT (3 QUESTIONS)

Temps suggéré: 105 minutes

Total: / 13,5

9. Séparation d'un mélange n-pentane/n-hexane (6,25 points)

Un évaporateur est utilisé afin de séparer un mélange liquide formé de 34% molaire de n-pentane (C_5H_{12}) et le reste de n-hexane (C_6H_{14}). Le débit total de l'alimentation est de 2500 mol/s et ce courant se trouve à une température de 30°C. L'évaporateur fonctionne à 55°C et 0,854 atm. Le courant liquide sortant de cet évaporateur contient 81,7 % molaire de C_6H_{14} et est en équilibre avec le courant vapeur sortant du même évaporateur. Afin de chauffer cet évaporateur, on utilise de la vapeur d'eau à 280°C et 1 bar. Cette vapeur se condense dans la chemise de l'évaporateur et en ressort sous forme de liquide saturé à la même pression.

Tableau 1 – Données utiles

Substance	ΔĤ _{vap} (kJ/mol)	Cp du liquide (kJ/mol·°C)	Cp de la vapeur (kJ/mol ·°C)
n-pentane (C₅H ₁₂)	$25,77 (T_{eb} = 36^{\circ}C)$	0,16	0,11 + 0,0003 T
n-hexane (C ₆ H ₁₄)	$28,85 (T_{eb} = 69^{\circ}C)$	0,22	0,14 + 0,0004 T

A) Tracez le schéma de l'évaporateur et annotez chacun des courants. (0,5 point)

-0,25 point/élément manquant

ÉCOLE POLYTECHNIQUE DE MONTRÉAL DÉPARTEMENT DE GÉNIE CHIMIQUE

GCH2730 – ÉNERGIE ET DÉVELOPPEMENT DURABLE DANS LES SYSTÈMES INFORMATIQUES

EXAMEN FINAL – HIVER 2020

B) Effectuez une analyse des degrés de liberté (DDL) sur l'évaporateur de façon à calculer la chaleur à fournir. (0,5 point)

5 inconnues (n_V, y_{C5H12}, y_{C6H14}, n_L, Q)

- $2 \text{ BMs} (C_5H_{12}, C_6H_{14})$
- 1 contrainte physique $(y_{C5H12} + y_{C6H14} = 1)$
- 1 éq. L/V (C₆H₁₄)
- 1 BE

0

(0,5 point ou 0)

C) Calculer la chaleur (kJ/s) à fournir à l'évaporateur. (4 points)

Éq. L/V sur C_6H_{14} :

$$P_{C6H14}^0 = 10^{6,88555 - \frac{1175,817}{55 + 224,867}} = 483,29 \ mmHg = 0,636 \ atm$$
 (0,25 point)

$$0.817(0.636) = y_2(0.854) \rightarrow y_2 = 0.608 \text{ mol } C_6H_{14}/\text{mol}$$
 (0.5 point)

Contrainte physique :
$$y_1 = 0.392 \text{ mol } C_5H_{12}/\text{mol}$$
 (0,25 point)

BMs

$$sur C_6H_{14}: 0,66(2500) = 0,608(n_V) + 0,817(n_L)$$
 (0,25 point) global: $2500 = n_V + n_L$ (0,25 point)

$$n_L = 622 \text{ mol/s et } n_V = 1878 \text{ mol/s}$$
 (0,25 point)

BE:
$$Q - W_s = \Delta E_K + \Delta E_P + \Delta H$$
; $\Delta E_K \approx 0$ ($\Delta v \approx 0$), $\Delta E_P \approx 0$ ($\Delta z \approx 0$), $W_S = 0$ (pas de pièces mobiles) $Q = \Delta H$ (0,25 point)

Références :
$$C_5H_{12}$$
 (I), C_6H_{14} (I), 30°C et 1 atm (0,5 point)

Tableau des enthalpies (0,25 point)

Substances	n _{in} (mol/s)	H _{in} (kJ/mol)	n _{out} (mol/s)	H _{out} (kJ/mol)
C ₅ H ₁₂ (I)	850	0	114	H ₁
C ₆ H ₁₄ (I)	1650	0	508	H ₂
C ₅ H ₁₂ (g)			736	H ₃
C ₆ H ₁₄ (g)			1142	H ₄

ÉCOLE POLYTECHNIQUE DE MONTRÉAL DÉPARTEMENT DE GÉNIE CHIMIQUE

GCH2730 – ÉNERGIE ET DÉVELOPPEMENT DURABLE DANS LES SYSTÈMES INFORMATIQUES

EXAMEN FINAL – HIVER 2020

Calcul des enthalpies : (1 point avec -0,25 point/erreur)

$$H_{1} = \int_{30}^{55} 0,16 \, dT = 4 \, kJ/mol$$

$$H_{2} = \int_{30}^{55} 0,22 \, dT = 5,5 \, kJ/mol$$

$$H_{3} = \int_{30}^{36} 0,16 \, dT + 25,77 + \int_{36}^{55} (0,11 + 0,0003 \, \text{T}) \, dT = 0,96 + 25,77 + 2,35$$

$$= 29,08 \, kJ/mol$$

$$H_{4} = \int_{30}^{69} 0,22 \, dT + 28,85 + \int_{69}^{55} (0,14 + 0,0004 \, \text{T}) \, dT = 8,58 + 28,85 - 2,31$$

$$= 35.12 \, kJ/mol$$

Calcul de Q: (0,25 point)

$$Q = \Delta H = \sum_{out} n \cdot H - \sum_{in} n \cdot H = 64760 \frac{kJ}{S}$$

D) Calculez le débit de vapeur d'eau (kg/s) à alimenter dans la chemise de l'évaporateur. (1,25 points)

BE: $Q - W_s = \Delta E_K + \Delta E_P + \Delta H$; $\Delta E_K \approx 0$ ($\Delta v \approx 0$), $\Delta E_P \approx 0$ ($\Delta z \approx 0$), $\Delta E_S \approx 0$ (pas de pièces mobiles) $\Delta E_S \approx 0$ (0,25 point)

Référence : H₂O (I) au point triple (0,25 point)

Hin = 3034,4 kJ/kg (interpolation dans B7) (0,25 point) Hout = 417,5 kJ/kg (B6) (0,25 point)

 $Q = \Delta H = m (Hout - Hin)$

-62088 kJ/s = m (417,5 – 3034,4) kJ/kg \rightarrow m = 23,7 kg/s (0,25 point)

ÉCOLE POLYTECHNIQUE DE MONTRÉAL DÉPARTEMENT DE GÉNIE CHIMIQUE

GCH2730 – ÉNERGIE ET DÉVELOPPEMENT DURABLE DANS LES SYSTÈMES INFORMATIQUES

EXAMEN FINAL – HIVER 2020

10. Production de monoxyde d'azote (4,25 points)

Afin de produire du monoxyde d'azote (NO), de l'ammoniac (NH₃) est oxydé avec de l'oxygène provenant de l'air. La réaction suivante se produit dans le réacteur :

$$4 \text{ NH}_{3(g)} + 5 \text{ O}_{2(g)} \rightarrow 4 \text{ NO}_{(g)} + 6 \text{ H}_2\text{O}_{(g)}$$

Malheureusement, la réaction parasite suivante se produit aussi dans le réacteur :

$$2 NH_{3(g)} + 3/2 O_{2(g)} \rightarrow N_{2(g)} + 3 H_2O_{(g)}$$

On alimente 100 mol/s de NH₃ via le courant 1. De l'air humide à 150°C et 1 atm est alimenté au réacteur via le courant 2. Une conversion de 90% est obtenue pour l'ammoniac. L'excès d'oxygène alimenté est de 50% et l'humidité relative de l'air alimenté est de 10%. Le rendement en NO est de 80%.

Figure 1 – Diagramme d'écoulement partiellement annoté du procédé

Note : Reproduisez le schéma de la figure 1 et annotez-le de sorte à déclarer les différentes variables que vous utiliserez.

ÉCOLE POLYTECHNIQUE DE MONTRÉAL DÉPARTEMENT DE GÉNIE CHIMIQUE

GCH2730 – ÉNERGIE ET DÉVELOPPEMENT DURABLE DANS LES SYSTÈMES INFORMATIQUES

EXAMEN FINAL – HIVER 2020

A) Effectuez une analyse des degrés de liberté (DDL) sur le réacteur. (0,5 point)

10 inconnues (n_{2_02} , n_{2_N2} , n_{2_H20} , n_{3_NH3} , n_{3_02} , n_{3_N2} , n_{3_H20} , n_{3_N0} , ξ_1 , ξ_2)

- 5 BMs réactifs (O₂, N₂, H₂O, NO, NH₃)
- 5 spécifications (conversion, excès, rendement, HR, ratio O₂/N₂)
 0

(0,5 point ou 0)

B) Déterminez les débits partiels (mol/s) sortant du réacteur en utilisant la méthode des avancements de réactions. (3,75 points)

NH₃: n_3 _{NH3} = 100 - 4 ξ_1 - 2 ξ_2 Bilans: O_2 : $n_{3_02} = n_{2_02} - 5\xi_1 - 3/2\xi_2$ NO: $n_{3 NO} = 0 + 4\xi_1$ (0.5 point avec -0.25 point par erreur) N_2 : $n_3 N_2 = n_2 N_2 + \xi_2$ H_2O : $n_{3 H2O} = n_{2 H2O} + 6\xi_1 + 3\xi_2$ Conversion : $0.9 = (100 - n_3) / 100$ (0.25 point) $n_{3 \text{ NH}3} = 10 \text{ mol/s}$ Excès: $0.5 = (n_2 O_2 - n_{O_2 stoe}) / n_{O_2 stoe}$ $n_2 o_2 = 187,5 \text{ mol/s}$ (0.25 point) $n_{O2 \text{ stoe}} = 125 \text{ moles/s}$ (0.25 point) Ratio: $n_{2 N2} / n_{2 O2} = 0.79 / 0.21$ $n_{2 N2} = 705 \text{ mol/s}$ (0.25 point) Rendement : $0.8 = n_3 \text{ NO} / 100$ $n_{3 NO} = 80 \text{ mol/s}$ (0.25 point) On obtient ξ_1 = 20 mol/s grâce au bilan sur le NO (0.25 point) On obtient $\xi_2 = 5$ mol/s grâce au bilan sur le NH₃ (0.25 point) $n_{3_02} = 80 \text{ mol/s}$ $n_{3 O2} = n_{2 O2} - 5\xi_1 - 3/2\xi_2 = 187,5 - 100 - 7,5 = 80 \text{ mol/s}$ (0.25 point) $n_{3}_{N2} = n_{2}_{N2} + \xi_{2} = 705 + 5 = 710 \text{ mol/s}$ $n_{3}N_{2} = 710 \text{ mol/s}$ (0.25 point)

EXAMEN FINAL – HIVER 2020

Humidité relative : $0.1 = P_{H2O} / P_{H2O}^{o}$ $P_{H2O}^{o} (150 C) = 3577 \text{ mm Hg}$ (0.25 point)

 $P_{H2O} = 357.7 \text{ mm Hg}$ $y_{H2O} = P_{H2O} / P_{tot} = 0,47$ (0.25 point)

 $y_{H2O} = n_{2_H2O} / (n_{2_H2O} + n_{2_O2} + n_{2_N2})$ $0,47 = n_{2_H2O} / (n_{2_H2O} + 892,5)$

 $n_{2_{H2O}} = 791.5 \text{ mol/s}$ (0.25 point)

 $n_{3_{-H2O}} = n_{2_{-H2O}} + 6\xi_1 + 3\xi_2 = 791,5 + 120 + 15$ $n_{3_{-H2O}} = 926,5 \text{ mol/s}$ (0.25 point)

EXAMEN FINAL – HIVER 2020

11. Énergie échangée dans une fournaise (3 points)

Considérez la fournaise dans la figure 2 servant à produire de la vapeur d'eau qui sera par la suite acheminée à une turbine afin de produire de l'énergie électrique. Un mélange à 25° C contenant du méthane (CH₄) et de l'éthane (C₂H₆) est alimenté à la fournaise avec un excès d'air sec, qui est préalablement chauffé à 100° C dans un échangeur de chaleur. Les gaz de combustion sortent de la fournaise à 800° C et une conversion de 100% est obtenue pour chacun des hydrocarbures (C₃H₈ et n-C₄H₁₀). Votre collègue, qui aime beaucoup les bilans de matière, les a résolus entièrement. Ses résultats sont présentés sur le schéma ci-dessous. Déterminez la quantité d'énergie à fournir ou à soutirer de la fournaise (kW) en utilisant la **méthode des chaleurs de formation**.

Figure 2 – Diagramme d'écoulement partiellement annoté de la fournaise

		•	_	,	. • •	
Ian	LOSII	· /	IIOn	nées	114114	ລດ
ıav	cau	_	DUII	11663	ulli	-

Substances	$\Delta \widehat{H}_f^o$ (kJ/mol)	Cp (kJ/mol • °C)
CH _{4(g)}	-74,85	0,03
C ₂ H _{6(g)}	-84,67	0,05
O _{2(g)}	0	non disponible
N _{2(g)}	0	non disponible
CO _{2(g)}	-393,15	non disponible
$H_2O_{(g)}$	-241,83	non disponible

ÉCOLE POLYTECHNIQUE DE MONTRÉAL DÉPARTEMENT DE GÉNIE CHIMIQUE

GCH2730 – ÉNERGIE ET DÉVELOPPEMENT DURABLE DANS LES SYSTÈMES INFORMATIQUES

EXAMEN FINAL - HIVER 2020

BE : $Q - W_s = \Delta E_K + \Delta E_P + \Delta H$

 $\Delta E_K \approx 0 \ (\Delta v \approx 0)$

 $\Delta E_P \approx 0 \ (\Delta z \approx 0)$

W_S = 0 (pas de pièces mobiles)

 $Q = \Delta H$ (0.25 point)

Références : C (s), H_2 (g), O_2 (g), N_2 (g) à 25°C et 1 atm (0.5 point)

Tableau des enthalpies

Substances	n _{in} (mol/s)	H _{in} (kJ/mol)	n _{out} (mol/s)	H _{out} (kJ/mol)
CH ₄ (g)	95	H ₁		
C ₂ H ₆ (g)	5	H ₂		
O ₂ (g)	250	H ₃	42,5	H ₅
N ₂ (g)	940	H ₄	940	H ₆
CO ₂ (g)			105	H ₇
H ₂ O (g)			205	H ₈

Calcul des enthalpies : (2 points avec -0.25 point/erreur)

$$\begin{split} H_1 &= \Delta H_{f_{CH4}}^0 = -74,85 \ kJ/mol \\ H_2 &= \Delta H_{f_{C2H6}}^0 = -84,67 \ kJ/mol \\ H_3 &= 2,24 \ kJ/mol \\ H_4 &= 2,19 \ kJ/mol \\ H_5 &= 25,35 \ kJ/mol \\ H_6 &= 23,86 \ kJ/mol \\ \end{split}$$

$$H_7 &= \Delta H_{f_{CO2}}^0 + \int_{25}^{800} Cp_{CO2} \ dT = -393,15 + 37,36 = -355,79 \ kJ/mol \\ H_8 &= \Delta H_{f_{H2O}}^0 + \int_{25}^{800} Cp_{H2O} \ dT = -241,83 + 29,05 = -212,78 \ kJ/mol \end{split}$$

Calcul de Q : (0.25 point)

$$Q = \Delta H = \sum_{out} n \cdot H - \sum_{in} n \cdot H = -52557 \ kW$$

EXAMEN FINAL – HIVER 2020

Annexes

Tableau de conversion d'unités

Quantité	Équivalences
Masse	1 kg = $1000 \text{ g} = 0,001 \text{ t} = 2,20462 \text{ lb}_m = 35,27392 \text{ oz}$ 1 lb _m = $16 \text{ oz} = 453,593 \text{ g}$
Longueur	$1 \text{ m} = 100 \text{ cm} = 1000 \text{ mm} = 10^6 \ \mu\text{m} = 10^{10} \ \mathring{A}$ $= 39,37 \text{ po} = 3,2808 \text{ pi} = 1,0936 \text{ vg} = 0,0006214 \text{ mi}$ $1 \text{ pi} = 12 \text{ po} = 1/3 \text{ vg} = 0,3048 \text{ m} = 30,48 \text{ cm}$
Volume	$1 \text{ m}^3 = 1000 \text{ L} = 10^6 \text{ cm}^3 = 10^6 \text{ mL}$ $= 35,3145 \text{ pi}^3 = 264,17 \text{ gal}$ $1 \text{ pi}^3 = 1728 \text{ po}^3 = 7,4805 \text{ gal} = 0,028317 \text{ m}^3 = 28,317 \text{ L} = 28 317 \text{ cm}^3$
Force	$1 \text{ N} = 1 \text{kg} \cdot \text{m/s}^2 = 10^5 \text{ dyn} = 10^5 \text{ g} \cdot \text{cm/s}^2 = 0,22481 \text{ lb}_f$ $1 \text{ lb}_f = 32,174 \text{ lb}_m \cdot \text{ft/s}^2 = 4,4482 \text{ N} = 4,4482 \text{ x } 10^5 \text{ dyn}$
Pression	1 atm = $1,01325 \times 10^5 \text{ N/m}^2 \text{ (Pa)} = 101,325 \text{ kPa} = 1,01325 \text{ bar}$ = $1,01325 \times 10^6 \text{ dyn/cm}^2 =$ = $760 \text{ mm Hg à 0°C} = 10,333 \text{ m H}_20 \text{ à 4°C}$ = $14,696 \text{ lb}_f/\text{po}^2 \text{ (psi)} = 33,9 \text{ pi H}_20 \text{ à 4°C}$ = $29,921 \text{ po Hg à 0°C}$
Énergie	$1 J = 1 N \cdot m = 10^7 dyn \cdot cm$ $= 2,778 \times 10^7 kW \cdot h = 0,23901 cal$ $= 9,486 \times 10^4 Btu$
Puissance	$1 \text{ W} = 1 \text{ J/s} = 0.23901 \text{ cal/s} = 0.9486 \text{ Btu/s} = 1.341 \text{ x}10^3 \text{ hp}$

EXAMEN FINAL – HIVER 2020

1 I A						Tab	leau p	ériodi	Tableau périodique des éléments	s élén	nents						18 VIII A
1 H hydrogène 1,008	2 II A											13 III A	14 IV A	15 V A	16 ∨I A	17 VII A	2 He hélium 4,003
3 Li lithium 6.941	4 Be bérylium 9.012											5 B bore 10.81	6 C carbone 12.01	7 N azote 14.01	8 0 0 0xygène 16.00	9 fluor 19.00	10 Ne néon 20.18
Na Na	12 Mg	0	-	ч	~	1	o	c	Ç	=						17 2	18 A
22,99	magnesium 24,31	IIIB	1 N B	o >	NI B	VIIB	اً م	VIIIB	_ -	ĺ		Ę		priospriore 30,97		25,45	argon 39,95
19 ×	29	21 Sc	25 T i	23	خ ځ	25 Mn	26 Fe	27 Co	28 Z :	29 Cu	30 Zn	31 Ga	32 Ge	33 As	% Se	35 Br	% 소
potassium 39,10	calcium 40,08	scandium 44,96	titane 47,88	vanadium 50,94	chrome 52,00	anèse	fer 55,85	cobalt 58,93			zinc 65,39		germanium 72,59	arsenic 74,92		brome 79,90	krypton 83,80
37 Rb	స %	39 Y	40 Zr	41 Nb	42 Mo	43 Tc		45 Rh	46 Pd	47 A q	48 Cd			51 Sb		53 I	54 Xe
rubidium 85,47	strontium 87,62	yttrium 88,91	zirconium 91,22	niobium 92,91	ine	étium	nium		lium		cadmium 112,4			antimoine 121,8		iode 126,9	xénon 131,3
25	56 B 3	57	72 H\$	73	74 W	75 Do					80			83 B :		85	86 D
césium 132,9	baryum 137,3	الم اanthane 138,9	hafnium 178,5	tantale 180,9				iridium 192,2	Je .	or 197,0	mercure 200,6	mn 4	plomb 207,2	bismuth 209,0	inm	astate (210)	radon (222)
87 Fr francium (223)	88 Ra radium (226)	89 Ac actinium (227)	104	105 Db dubnium (260)	Sg seaborgium (263)	107 Bh bohrium (262)	108 Hs hassium (265)	109 Mt meitnerium (266)									
				58 Ce cérium 140,1	éodyme	50 Nd néodyme 144,2	61 Pm prométhium (147)	62 Sm samarium 150,4	63 Eu europium 152,0	64 Gd gadolinium 157,3	65 Tb terbium 158,9	osium	67 Ho holium 164,9	68 Er erbium 167,3	69 Tm thulium 168,9	70 Yb ytterbium 173,0	71 Lu lutécium 175,0
€ 8	© POLYTECHNIQUE Montréal	VIQUE		90 Th thorium 232,0	91 92 U Pad U Uranium (231) 238,0	92 U uranium 238,0	93 Np neptunium (237)	94 Pu plutonium (242)			E	98 Cf californium (249)	99 Es einsteinium (254)	100 Fm fermium (253)	vium	102 No nobélium (254)	103 Lr lawrencium (257)

ÉCOLE POLYTECHNIQUE DE MONTRÉAL DÉPARTEMENT DE GÉNIE CHIMIQUE

GCH2730 – ÉNERGIE ET DÉVELOPPEMENT DURABLE DANS LES SYSTÈMES INFORMATIQUES

EXAMEN FINAL – HIVER 2020

Table B.4 Antoine Equation Constants^a

 $\log_{10} p^* = A - \frac{B}{T+C} \qquad p^* \text{ in mm Hg,} \quad T \text{ in } {}^{\circ}\text{C}$

Example: The vapor pressure of acetaldehyde at 25°C is determined as follows:

$$\log_{10} p_{C_2H_4O}^*(25^{\circ}\text{C}) = 8.00552 - \frac{1600.017}{25 + 291.809} = 2.9551$$

$$\implies p_{C_2H_4O}^{\bullet}(25^{\circ}C) = 10^{2.9551} = 902 \text{ mm Hg}$$

Compound	Formula	Range (°C)	A	В	С
Acetaldehyde	C ₂ H ₄ O	-0.2 to 34.4	8.00552	1600.017	291.809
Acetic acid	$C_2H_4O_2$	29.8 to 126.5	7.38782	1533.313	222.309
Acetic acid*	$C_2H_4O_2$	0 to 36	7.18807	1416.7	225
Acetic anhydride	$C_4H_6O_3$	62.8 to 139.4	7.14948	1444,718	199.81
Acetone	C_3H_6O	-12.9 to 55.3	7.11714	1210.595	229.66
Acrylic acid	$C_3H_4O_2$	20.0 to 70.0	5.65204	648.629	154.68
Ammonia*	NH_3	-83 to 60	7.55466	1002.711	247.88
Aniline	C_6H_7N	102.6 to 185.2	7.32010	1731.515	206.04
Benzene	C_6H_6	14.5 to 80.9	6.89272	1203.531	219.88
n-Butane	$n-C_4H_{10}$	−78.0 to −0.3	6.82485	943.453	239.71
i-Butane	i-C4H10	-85.1 to -11.6	6.78866	899.617	241.94
1-Butanol	$C_4H_{10}O$	89.2 to 125.7	7.36366	1305.198	173.42
2-Butanol	C ₄ H ₁₀ O	72.4 to 107.1	7.20131	1157.000	168.27
1-Butene	C_4H_8	-77.5 to -3.7	6.53101	810.261	228.06
Butyric acid	$C_4H_8O_2$	20.0 to 150.0	8.71019	2433.014	255.18
Carbon disulfide	CS_2	3.6 to 79.9	6.94279	1169.110	241.59
Carbon tetrachloride	CCl ₄	14.1 to 76.0	6.87926	1212.021	226.40
Chlorobenzene	C ₆ H ₅ Cl	62.0 to 131.7	6.97808	1431.053	217.5
Chlorobenzene*	C ₆ H ₅ Cl	0 to 42	7.10690	1500.0	224.0
Chlorobenzene*	C ₆ H ₅ Cl	42 to 230	6.94504	1413.12	216.0
Chloroform	CHCl ₃	-10.4 to 60.3	6.95465	1170.966	226.2
Chloroform*	CHCl ₃	-30 to 150	6.90328	1163.03	227.4
Cyclohexane	C_6H_{12}	19.9 to 81.6	6.84941	1206.001	223.14
Cyclohexanol	$C_6H_{12}O$	93.7 to 160.7	6.25530	912.866	109.1
n-Decane	$n-C_{10}H_{22}$	94.5 to 175.1	6.95707	1503.568	194.7
1-Decene	C ₁₀ H ₂₀	86.8 to 171.6	6.95433	1497.527	197.0
1.1-Dichloroethane	C ₂ H ₄ Cl ₂	-38.8 to 17.6	6.97702	1174.022	229.0
1,2-Dichloroethane	C ₂ H ₄ Cl	-30.8 to 99.4	7.02530	1271.254	222.9
Dichloromethane	CH ₂ Cl ₂	-40.0 to 40	7.40916	1325.938	252.6
Diethyl ether	$C_4H_{10}O$	-60.8 to 19.9	6.92032	1064.066	228.7
Diethyl ketone	$C_5H_{10}O$	56.5 to 111.3	7.02529	1310.281	214.1
Diethylene glycol	$C_4H_{10}O_2$	130.0 to 243.0	7.63666	1939.359	162.7
Dimethyl ether	C ₂ H ₆ O	-78.2 to -24.9	6.97603	889.264	241.9
Dimethylamine	C ₂ H ₇ N	-71.8 to 6.9	7.08212	960.242	221.6
N,N-Dimethylformamide	C ₃ H ₇ NO	30.0 to 90.0	6.92796	1400.869	196.4
1,4-Dioxane	$C_4H_8O_2$	20.0 to 105.0	7.43155	1554.679	240.3
Ethanol	C ₂ H ₆ O	19.6 to 93.4	8.11220	1592.864	226.1
Ethanolamine	C ₂ H ₇ NO	65.4 to 170.9	7.45680	1577.670	173.3
Ethyl acetate	$C_4H_8O_2$	15.6 to 75.8	7.10179	1244.951	217.8
Ethyl acetate*	$C_4H_8O_2$	-20 to 150	7.09808	1238.710	217.0
Ethyl chloride	C ₂ H ₅ Cl	-55.9 to 12.5	6.98647	1030.007	238.6
Ethylbenzene	C_8H_{10}	56.5 to 137.1	6.95650	1423.543	213.0

Table B.4 (Continued)

Compound	Formula	Range (°C)	A	В	С
Ethylene glycol	$C_2H_6O_2$	50.0 to 200.0	8.09083	2088.936	203.454
Ethylene oxide	C ₂ H ₄ O	0.3 to 31.8	8.69016	2005.779	334.765
1,2-Ethylenediamine	$C_2H_8N_2$	26.5 to 117.4	7.16871	1336.235	194.366
Formaldehyde	HCHO	-109.4 to -22.3	7.19578	970.595	244.124
Formic acid	CH_2O_2	37.4 to 100.7	7.58178	1699.173	260.714
Glycerol	$C_3H_8O_3$	183.3 to 260.4	6.16501	1036.056	28.097
n-Heptane	$n-C_7H_{16}$	25.9 to 99.3	6.90253	1267.828	216.823
i-Heptane	i-C7H16	18.5 to 90.9	6.87689	1238.122	219.783
1-Heptene	C ₇ H ₁₄ '	21.6 to 94.5	6.91381	1265.120	/220.051
n-Hexane	$n-C_6H_{14}$	13.0 to 69.5	6.88555	1175.817	224.867
i-Hexane	i-C ₆ H ₁₄	12.8 to 61.1	6.86839	1151.401	228.477
1-Hexene	C_6H_{12}	15.9 to 64.3	6.86880	1154.646	226.046
Hydrogen Cyanide	HCN	-16.4 to 46.2	7.52823	1329.49	260.418
Methanol	CH_3OH	14.9 to 83.7	8.08097	1582.271	239.726
Methanol*	CH₃OH	-20 to 140	7.87863	1473.11	230.0
Methyl acetate	$C_3H_6O_2$	1.8 to 55.8	7.06524	1157.630	219.726
Methyl bromide	CH_3Br	-70.0 to 3.6	7.09084	1046.066	244.914
Methyl chloride	CH₃Cl	-75.0 to 5.0	7.09349	948.582	249.336
Methyl ethyl ketone	C ₄ H ₈ O	42.8 to 88.4	7.06356	1261.339	221.969
Methyl isobutyl ketone	$C_6H_{12}O$	21.7 to 116.2	6.67272	1168.408	191.944
Methyl methacrylate	$C_5H_8O_2$	39.2 to 89.2	8.40919	2050.467	274.369
Methylamine	CH ₅ N	-83.1 to -6.2	7.33690	1011.532	233.286
Methylcyclohexane	C_7H_{14}	25.6 to 101.8	6.82827	1273.673	221.723
Naphthalene	$C_{10}H_{8}$	80.3 to 179.5	7.03358	1756.328	204.842
Nitrobenzene	C ₆ H ₅ NO ₂	134.1 to 210.6	7.11562	1746.586	201.783
Nitromethane	CH ₃ NO ₂	55.7 to 136.4	7.28166	1446.937	227.600
n-Nonane	$n-C_9H_{20}$	70.3 to 151.8	6.93764	1430.459	201.808
1-Nonane	C9H18	66.6 to 147.9	6.95777	1437.862	205.814
n-Octane	$n-C_8H_{18}$	52.9 to 126.6	6.91874	1351.756	209.100
i-Octane	i-C ₈ H ₁₈	41.7 to 118.5	6.88814	1319.529	211.625
1-Octene	$C_{8}H_{16}$	44.9 to 122.2	6.93637	1355.779	213.022
n-Pentane	$n-C_5H_{12}$	13.3 to 36.8	6.84471	1060.793	231.541
i-Pentane	i-C5H12	16.3 to 28.6	6.73457	992.019	229.564
1-Pentanol	C ₅ H ₁₂ O	74.7 to 156.0	7.18246	1287.625	161.330
1-Pentene	C_5H_{10}	12.8 to 30.7	6.84268	1043.206	233.344
Phenol	C_6H_6O	107.2 to 181.8	7.13301	1516.790	174.954
1-Propanol	C_3H_8O	60.2 to 104.6	7.74416	1437.686	198.463
2-Propanol	C_3H_8O	52.3 to 89.3	7.74021	1359.517	197.527
Propionic acid	$C_3H_6O_2$	72.4 to 128.3	7.71423	1733.418	217.724
Propylene oxide	C ₃ H ₆ O	-24.2 to 34.8	7.01443	1086.369	228.594
Pyridine	C_5H_5N	67.3 to 152.9	7.04115	1373.799	214.979
Styrene	C_8H_8	29.9 to 144.8	7.06623	1507.434	214.985
Toluene	C_7H_8	35.3 to 111.5	6.95805	1346.773	219.693
1,1,1-Trichloroethane	$C_2H_3Cl_3$	-5.4 to 16.9	8.64344	2136.621	302.769
1,1,2-Trichloroethane	$C_2H_3Cl_3$	50.0 to 113.7	6.95185	1314.410	209.197
Trichloroethylene	C ₂ HCl ₃	17.8 to 86.5	6.51827	1018.603	192.731
Vinyl acetate	$C_4H_6O_2$	21.8 to 72.0	7.21010	1296.130	226.655
Water*	H ₂ O	0 to 60	8.10765	1750.286	235.000
Water*	H ₂ O	60 to 150	7.96681	1668.210	228.000
m-Xylene	$m-C_8H_{10}$	59.2 to 140.0	7.00646	1460.183	214.82
o-Xylene	o-C ₈ H ₁₀	63.5 to 145.4	7.00154	1476.393	213.872
p-Xylene	$p-C_8H_{10}$	58.3 to 139.3	6.98820	1451.792	215.11

EXAMEN FINAL – HIVER 2020

 Table B.6 Properties of Saturated Steam: Pressure Table^a

		$\hat{V}(\mathbf{m}^2)$	³ /kg)	<i>Û</i> (1	kJ/kg)		Ĥ(kJ/kg)	
P(bar)	T(°C)	Water	Steam	Water	Steam	Water	Evaporation	Steam
0.00611	0.01	0.001000	206.2	zero	2375.6	+0.0	2501.6	2501.6
0.008	3.8	0.001000	159.7	15.8	2380.7	15.8	2492.6	2508.5
0.010	7.0	0.001000	129.2	29.3	2385.2	29.3	2485.0	2514.4
0.012	9.7	0.001000	108.7	40.6	2388.9	40.6	2478.7	2519.3
0.014	12.0	0.001000	93.9	50.3	2392.0	50.3	2473.2	2523.5
0.016	14.0	0.001001	82.8	58.9	2394.8	58.9	2468.4	2527.3
0.018	15.9	0.001001	74.0	66.5	2397.4	66.5	2464.1	2530.6
0.020	17.5	0.001001	67.0	73.5	2399.6	73.5	2460.2	2533.€
0.022	19.0	0.001002	61.2	79.8	2401.7	79.8	2456.6	2536.4
0.024	20.4	0.001002	56.4	85.7	2403.6	85.7	2453.3	2539.0
0.026	21.7	0.001002	52.3	91.1	2405.4	91.1	2450.2	2541.3
0.028	23.0	0.001002	48.7	96.2	2407.1	96.2	2447.3	2543.6
0.030	24.1	0.001003	45.7	101.0	2408.6	101.0	2444.6	2545.6
0.035	26.7	0.001003	39.5	111.8	2412.2	111.8	2438.5	2550.4
0.040	29.0	0.001004	34.8	121.4	2415.3	121.4	2433.1	2554.5
0.045	31.0	0.001005	31.1	130.0	2418.1	130.0	2428.2	2558.2
0.050	32.9	0.001005	28.2	137.8	2420.6	137.8	2423.8	2561.6
0.060	36.2	0.001006	23.74	151.5	2425.1	151.5	2416.0	2567.5
0.070	39.0	0.001007	20.53	163.4	2428.9	163.4	2409.2	2572.6
0.080	41.5	0.001008	18.10	173.9	2432.3	173.9	2403.2	2577.1
0.090	43.8	0.001009	16.20	183.3	2435.3	183.3	2397.9	2581.1
0.10	45.8	0.001010	14.67	191.8	2438.0	191.8	2392.9	2584.8
0.11	47.7	0.001011	13.42	199.7	2440.5	199.7	2388.4	2588.1
0.12	49.4	0.001012	12.36	206.9	2442.8	206.9	2384.3	2591.2
0.13	51.1	0.001013	11.47	213.7	2445.0	213.7	2380.4	2594.0
0.14	52.6	0.001013	10.69	220.0	2447.0	220.0	2376.7	2596.7
0.15	54.0	0.001014	10.02	226.0	2448.9	226.0	2373.2	2599.2
0.16	55.3	0.001015	9.43	231.6	2450.6	231.6	2370.0	2601.6
0.17	56.6	0.001015	8.91	236.9	2452.3	236.9	2366.9	2603.8
0.18	57.8	0.001016	8.45	242.0	2453.9	242.0	2363.9	2605.9
0.19	59.0	0.001017	8.03	246.8	2455.4	246.8	2361.1	2607.9
0.20	60.1	0.001017	7.65	251.5	2456.9	251.5	2358.4	2609.9
0.22	62.2	0.001018	7.00	260.1	2459.6	260.1	2353.3	2613.5
0.24	64.1	0.001019	6.45	268.2	2462.1	268.2	2348.6	2616.8
0.26	65.9	0.001020	5.98	275.6	2464.4	275.7	2344.2	2619.9
0.28	67.5	0.001021	5.58	282.7	2466.5	282.7	2340.0	2622.7
0.30	69.1	0.001022	5.23	289.3	2468.6	289.3	2336.1	2625.4
0.35	72.7	0.001025	4.53	304.3	2473.1	304.3	2327.2	2631.5
0.40	75.9	0.001027	3.99	317.6	2477.1	317.7	2319.2	2636.9
0.45	78.7	0.001028	3.58	329.6	2480.7	329.6	2312.0	2641.7
0.50	81.3	0.001030	3.24	340.5	2484.0	340.6	2305.4	2646.0
0.55	83.7	0.001032	2.96	350.6	2486.9	350.6	2299.3	2649.9
0.60	86.0	0.001033	2.73	359.9	2489.7	359.9	2293.6	2653.6
0.65	88.0	0.001035	2.53	368.5	2492.2	368.6	2288.3	2656.9
0.70	90.0	0.001036	2.36	376.7	2494.5	376.8	2283.3	2660.1
0.75	91.8	0.001037	2.22	384.4	2496.7	384.5	2278.6	2663.0
0.80	93.5	0.001039	2.087	391.6	2498.8	391.7	2274.1	2665.8
0.85	95.2	0.001040	1.972	398.5	2500.8	398.6	2269.8	2668.4
0.90	96.7	0.001041	1.869	405.1	2502.6	405.2	2265.6	2670.9
0.95	98.2	0.001042	1.777	411.4	2504.4	411.5	2261.7	2673.2
1.00	99.6	0.001043	1.694	417.4	2506.1	417.5	2257.9	2675.4
1.01325	100.0	0.001044	1.673	419.0	2506.5	419.1	2256.9	2676.0
atm)								

EXAMEN FINAL – HIVER 2020

Table B.7 Properties of Superheated Steam^a

P(bar) $(T_{sat.}$ °C)		Sat'd Water	Sat'd Steam	Temperature 50	(°C)→ 75	100	150	200	250	300	350
0.0	Ĥ			2595	2642	2689	2784	2880	2978	3077	3177
(—)	Û	_	_	2446	2481	2517	2589	2662	2736	2812	2890
(—)	Ŷ	_		2440		_		_	_		_
0.1	Ĥ	101.0	25040	2502		2688	2783	2880	2977	3077	3177
0.1		191.8	2584.8 2438.0	2593 2444	2640 2480	2516	2588	2661	2736	2812	2890
(45.8)	Û	191.8				17.2	19.5	21.8	24.2	26.5	28.7
	-	0.00101	14.7	14.8	16.0						
0.5	Ĥ	340.6	2646.0	209.3	313.9	2683	2780	2878	2979	3076	3177
(81.3)	Û	340.6	2484.0	209.2	313.9	2512	2586	2660	2735	2811	2889
	Ŷ	0.00103	3.24	0.00101	0.00103	3.41	3.89	4.35	4.83	5.29	5.75
1.0	Ĥ	417.5	2675.4	209.3	314.0	2676	2776	2875	2975	3074	3176
(99.6)	Û	417.5	2506.1	209.2	313.9	2507	2583	2658	2734	2811	2889
	Ŷ	0.00104	1.69	0.00101	0.00103	1.69	1.94	2.17	2.40	2.64	2.87
5.0	Ĥ	640.1	2747.5	209.7	314.3	419.4	632.2	2855	2961	3065	3168
(151.8)	Û	639.6	2560.2	209.2	313.8	418.8	631.6	2643	2724	2803	2883
(151.6)	Ŷ	0.00109	0.375	0.00101	0.00103	0.00104	0.00109	0.425	0.474	0.522	0.571
4.0								20003002000			
10	Ĥ	762.6	2776.2	210.1	314.7	419.7	632.5	2827	2943	3052	3159
(179.9)	Û	761.5	2582	209.1	313.7	418.7	631.4	2621	2710	2794	2876
	Ŷ	0.00113	0.194	0.00101	0.00103	0.00104	0.00109	0.206	0.233	0.258	0.282
20	Ĥ	908.6	2797.2	211.0	315.5	420.5	633.1	852.6	2902	3025	3139
(212.4)	Û	906.2	2598.2	209.0	313.5	418.4	603.9	850.2	2679	2774	2862
	Ŷ	0.00118	0.09950	0.00101	0.00102	0.00104	0.00109	0.00116	0.111	0.125	0.139
40	Ĥ	1087.4	2800.3	212.7	317.1	422.0	634.3	853.4	1085.8	2962	3095
(250.3)	Û	1082.4	2601.3	208.6	313.0	417.8	630.0	848.8	1080.8	2727	2829
(250.5)	v	0.00125	0.04975	0.00101	0.00102	0.00104	0.00109	0.00115	0.00125	0.0588	0.0665
(0	Ĥ			214.4	318.7	423.5	635.6	854.2	1085.8	2885	3046
(275.6)	-	1213.7	2785.0			417.3	629.1	847.3	1078.3	2668	2792
(275.6)	Û Ŷ	1205.8	2590.4	208.3	312.6 0.00103	0.00104	0.00109	0.00115	0.00125	0.0361	0.0422
		0.00132	0.0325	0.00101							
80	Ĥ	1317.1	2759.9	216.1	320.3	425.0	636.8	855.1	1085.8	2787	2990
(295.0)	Û	1306.0	2571.7	208.1	312.3	416.7	628.2	845.9	1075.8	2593	2750
	Ŷ	0.00139	0.0235	0.00101	0.00102	0.00104	0.00109	0.00115	0.00124	0.0243	0.0299
100	Ĥ	1408.0	2727.7	217.8	322.9	426.5	638.1	855.9	1085.8	1343.4	2926
(311.0)	Û	1393.5	2547.3	207.8	311.7	416.1	627.3	844.4	1073.4	1329.4	2702
,	v	0.00145	0.0181	0.00101	0.00102	0.00104	0.00109	0.00115	0.00124	0.00140	0.0224
150	Ĥ	1611.0	2615.0	222.1	326.0	430.3	641.3	858.1	1086.2	1338.2	2695
(342.1)	Û	1586.1	2459.9	207.0	310.7	414.7	625.0	841.0	1067.7	1317.6	2523
(372.1)	Ŷ	0.00166	0.0103	0.00101	0.00102	0.00104	0.00108	0.00114	0.00123	0.00138	0.0115

200	Ĥ	1826.5	2418.4	226.4	330.0	434.0	644.5	860.4 837.7	1086.7	1334.3 1307.1	1647.1 1613.7
(365.7)	Û Ŷ	1785.7	2300.8	206.3	309.7	413.2	622.9		1062.2		
		0.00204	0.005875	0.00100	0.00102	0.00103	0.00108	0.00114	0.00122	0.00136	0.0016
$221.2(P_c)$	Ĥ	2108	2108	228.2	331.7	435.7	645.8	861.4	1087.0	1332.8	1635.5
$(374.15)(T_c)$		2037.8	2037.8	206.0	309.2	412.8	622.0	836.3	1060.0	1302.9	1600.3
	Ŷ	0.00317	0.00317	0.00100	0.00102	0.00103	0.00108	0.00114	0.00122	0.00135	0.0016
250	Ĥ			230.7	334.0	437.8	647.7	862.8	1087.5	1331.1	1625.0
()	Û	_		205.7	308.7	412.1	620.8	834.4	1057.0	1297.5	1585.0
. ,	Ŷ			0.00100	0.00101	0.00103	0.00108	0.00113	0.00122	0.00135	0.0016
300	Ĥ			235.0	338.1	441.6	650.9	865.2	1088.4	1328.7	1609.9
(—)	Û			205.0	307.7	410.8	618.7	831.3	1052.1	1288.7	1563.3
()	Ŷ	_		0.0009990	0.00101	0.00103	0.00107	0.00113	0.00121	0.00133	0.0015
	2000										
500	Ĥ			251.9	354.2	456.8	664.1	875.4	1093.6	1323.7	1576.
(—)	ŷ		_	202.4	304.0	405.8	611.0	819.7	1034.3	1259.3	1504.
	Ŷ		-	0.0009911	0.00100	0.00102	0.00106	0.00111	0.00119	0.00129	0.0014
1000	Ĥ	-	_	293.9	394.3	495.1	698.0	903.5	1113.0	1328.7	1550.:
()	Û		_	196.5	295.7	395.1	594.4	795.3	999.0	1207.1	1419.0
sc 450	Ŷ			0.0009737	0.0009852	0.001000	0.00104	0.00108	0.00114	0.00122	0.0013

EXAMEN FINAL – HIVER 2020

Table B.8 Specific Enthalpies of Selected Gases: SI Units

 $\hat{H}(kJ/mol)$ Reference state: Gas, $P_{\text{ref}} = 1 \text{ atm}$, $T_{\text{ref}} = 25^{\circ}\text{C}$ \boldsymbol{T} Air O_2 N_2 H_2 CO CO_2 H_2O 0 -0.72-0.73-0.73-0.72-0.73-0.92-0.840.00 25 0.000.00 0.00 0.00 0.00 0.00 100 2.19 2.24 2.19 2.16 2.19 2.90 2.54 200 5.15 5.31 5.13 5.06 5.16 7.08 6.01 300 8.17 11.58 8.47 8.12 7.96 8.17 9.57 11.24 400 11.72 11.15 10.89 11.25 16.35 13.23 500 14.37 15.03 14.24 13.83 14.38 21.34 17.01 600 17.55 18.41 17.39 16.81 17.57 26.53 20.91 **700** 20.80 21.86 20.59 19.81 20.82 31.88 24.92 800 24.10 25.35 23.86 22.85 24.13 37.36 29.05 25.93 900 27.46 28.89 27.19 27.49 42.94 33.32 1000 30.86 32.47 30.56 29.04 30.91 48.60 37.69 1100 34.31 36.07 33.99 32.19 34.37 54.33 42.18 1200 37.81 39.70 37.46 35.39 37.87 60.14 46.78 1300 41.34 43.38 40.97 38.62 41.40 65.98 51.47 1400 44.89 47.07 44.51 41.90 44.95 71.89 56.25 1500 48.45 50.77 45.22 48.51 77.84 61.09 48.06