CSE 105: Data Structures and Algorithms-I (Part 2)

Instructor
Dr Md Monirul Islam

Graphs and Trees: Representation and Search

BST Operation: Minimum and Maximum

TREE_MINIMUM (x)

1 **if** x == NULL **return** NULL

2 while x-> $left \neq NULL$

3 x = x - left

4 return *x*

TREE MXIMUM (x)

1 if x == NULL return NULL

2 while x-> $right \neq NULL$

3 x = x - > right

4 return *x*

Complexity: O(h)

BST Operation: Successor

successor of a node x: the node with the smallest key greater than x. key

successor of the node with 11: the node with 16 (minimum of right subtree)

BST Operation: Successor

successor of a node x: the node with the smallest key greater than x. key

successor of the node with 68: the node with 70 (right subtree is NULL)

A node being deleted is not always going to be a leaf node

There are three possible scenarios:

- The node is a leaf node
- It has exactly one child, or
- It has two children (it is a full node)

Review

Removing a leaf node Set left pointer of 13 as NULL

Review

Removing a node with exactly one child Remove node with key 13 which has a left subtree ONLY Promote the left subtree

If
$$z$$
-> $left$ =NULL
 x = z -> $right$
else x = z -> $left$

Review

Removing a node with exactly one child Remove node with key 7 which has a **RIGHT** subtree ONLY

If
$$z$$
-> $left$ =NULL
 x = z -> $right$
else x = z -> $left$

Review

Removing a node with exactly one child Remove node with key 7 which has a **RIGHT** subtree ONLY

BST property holds

Removing a node having two children (full node)
Remove node with 6

Petien

the successor is minimum in the right subtree

The minimum will be a **leaf node OR** a **node with NO left** child

If x would have a left child that would be the minimum of the subtree

Removing a node having two children (full node)
Remove node with 6

Perion

Removes a node directly even if it has two children (full node)

First try to replace node u by node v

First try to replace node u by node v

Removes a node directly even if it has two children (full node)

Removes a node directly even if it has two children (full node)

First try to replace node u by node v

We did not change children of *v*

This is also transplant

Even we can replace the root

This algorithm replaces node u by node v

Node Deletion Cases

Node u has **NO LEFT** child

Node Deletion Cases

Node u has **NO LEFT** child

This also covers if both children are empty

Node Deletion Cases

Node u has **NO LEFT** child


```
TREE_DELETE (T, u)
1 if u->left == NULL
2 TRANSPLANT(T, u, u->right)
```

Node Deletion Cases

Node u has **NO RIGHT** child


```
TREE_DELETE (T, u)
1 if u->left == NULL
2 TRANSPLANT(T, u, u->right)
3 elseif u->right == NULL
4 TRANSPLANT(T, u, u->left)
```

Node Deletion Cases

Node *u* has **BOTH** Children

Node Deletion Cases

Node u has **BOTH** Children

Find y =successor (next minimum) from RIGHT subtree

Node Deletion Cases

Node u has **BOTH** Children

y is immediate RIGHT child of u

y is NOT immediate child of u

CASE A

y is immediate RIGHT child of u

```
TREE_DELETE (T, u)

1 if u->left == NULL

2 TRANSPLANT(T, u, u->right)

3 elseif u->right == NULL

4 TRANSPLANT(T, u, u->left)

5 else y = TREE_MINIMUM(u->right)
```

when
$$y$$
-> $parent == u$

- 10 TRANSPLANT(T, u, y)
- 11 y->left = u->left
- 12 y->left->parent = y

CASE A

y is immediate RIGHT child of u

```
TREE_DELETE (T, u)
1 if u->left == NULL
2 TRANSPLANT(T, u, u->right)
3 elseif u->right == NULL
4 TRANSPLANT(T, u, u->left)
5 else y = TREE_MINIMUM(u->right)
```

when y->parent == u

- 10 TRANSPLANT(T, u, y)
- 11 y->left = u->left
- 12 y->left->parent = y

CASE B

y is **NOT** immediate child of u

CASE B

 $y.key < \cdot \cdot \cdot < x.key \cdot \cdot \cdot < r.key$

y is **NOT** immediate child of u

CASE B

 $y.key < \cdot \cdot \cdot < x.key \cdot \cdot \cdot < r.key$

TRANSPLANT(T, y, y->right)

CASE B

 $y.key < \cdot \cdot \cdot < x.key \cdot \cdot \cdot < r.key$

CASE B

CASE B Outcome

CASE A

y is immediate RIGHT child of u

CASE B

Starting state

```
TREE DELETE (T, u)
1 if u->left == NULL
    TRANSPLANT(T, u, u->right)
3 elseif u->right == NULL
     TRANSPLANT (T, u, u->left)
5 else y = TREE\_MINIMUM(u->right)
     if y->parent \neq u
6
         TRANSPLANT(T, y, y->right)
         y->right = u->right
         y->right->parent=y
    TRANSPLANT(T, u, y)
10
   y->left = u->left
11
    y->left->parent = y
12
```

CASE B

Back to Graph

Adjacency Matrix Representation

Pros:

- Simple to implement
- Easy and fast to tell if a pair (i, j) is an edge: simply check if A[i, j] is 1 or 0
- Can be very efficient for small graphs
- Good for dense graphs (why?)

Cons:

■ No matter how few edges the graph has, the matrix takes $O(n^2)$, i.e., $O(|V|^2)$ in memory

Adjacency Lists Representation

- A graph is represented by a one-dimensional array L of linked lists, where
 - L[i] is the linked list containing all the nodes adjacent to node i.
 - The nodes in the list L[i] are in NO particular order

Adjacency Lists Representation

Adjacency Lists Representation

Pros:

- Saves on space (memory): the representation takes O(|V|+|E|) memory.
- Good for large, sparse graphs (e.g., planar maps)

How to find whether there is an edge (4,1)?

Cons:

It can take up to O(n) time to determine if a pair of nodes (i, j) is an edge: one would have to search the linked list L[i], which takes time proportional to the length of L[i].

Graph Searching

Graph Searching

- Given: a graph G = (V, E), directed or undirected
- Goal: methodically explore every vertex and every edge
- Ultimately: build a tree on the graph
- General Procedure:
 - Pick a vertex as the root
 - Choose certain edges to produce a tree
 - Note: might also build a forest if graph is not connected

Graph Searching

- There are two standard graph traversal techniques:
 - Breadth-First Search (BFS)
 - Depth-First Search (DFS)

- "Explore" a graph, turning it into a tree
 - One vertex at a time
 - Expand frontier of explored vertices across the *breadth* of the frontier
- Builds a tree over the graph
 - Pick a source vertex to be the root
 - Find ("discover") its children, then their children, etc.

- "Explore" a graph, turning it into a tree
 - One vertex at a time
 - Expand frontier of explored vertices across the *breadth* of the frontier
- Builds a tree over the graph
 - Pick a source vertex to be the root
 - Find ("discover") its children, then their children, etc.

- "Explore" a graph, turning it into a tree
 - One vertex at a time
 - Expand frontier of explored vertices across the breadth of the frontier
- Builds a tree over the graph
 - Pick a *source vertex* to be the root
 - Find ("discover") its children, then their children, etc.

- "Explore" a graph, turning it into a tree
 - One vertex at a time
 - Expand frontier of explored vertices across the breadth of the frontier
- Builds a tree over the graph
 - Pick a *source vertex* to be the root
 - Find ("discover") its children, then their children, etc.

- "Explore" a graph, turning it into a tree
 - One vertex at a time
 - Expand frontier of explored vertices across the breadth of the frontier
- Builds a tree over the graph
 - Pick a *source vertex* to be the root
 - Find ("discover") its children, then their children, etc.

- "Explore" a graph, turning it into a tree
 - One vertex at a time
 - Expand frontier of explored vertices across the breadth of the frontier
- Builds a tree over the graph
 - Pick a *source vertex* to be the root
 - Find ("discover") its children, then their children, etc.

- "Explore" a graph, turning it into a tree
 - One vertex at a time
 - Expand frontier of explored vertices across the breadth of the frontier
- Builds a tree over the graph
 - Pick a *source vertex* to be the root
 - Find ("discover") its children, then their children, etc.

- "Explore" a graph, turning it into a tree
 - One vertex at a time
 - Expand frontier of explored vertices across the breadth of the frontier
- Builds a tree over the graph
 - Pick a source vertex to be the root
 - Find ("discover") its children, then their children, etc.

 Tree (dotted line removed)

- It associates vertex "colors" to guide the algorithm
 - White vertices have not been discovered
 - All vertices start out white
 - Grey vertices are discovered but not fully explored
 - They may be adjacent to white vertices
 - Black vertices are discovered and fully explored
 - They are adjacent only to black and grey vertices
- Explore vertices by scanning adjacency list of grey vertices

```
BFS(G,s)
 1 for each vertex u \in G.V - \{s\}
    u.color = WHITE
   u.d = \infty
        u.\pi = NIL
 5 s.color = GRAY
 6 \, s.d = 0
 7 s.\pi = NIL
 8 \quad Q = \emptyset
   ENQUEUE(Q, s)
    while Q \neq \emptyset
10
11
        u = \text{DEQUEUE}(Q)
        for each v \in G.Adj[u]
12
             if v.color == WHITE
13
14
                 v.color = GRAY
                 v.d = u.d + 1
15
16
                 \nu.\pi = u
17
                 ENQUEUE(Q, \nu)
        u.color = BLACK
18
```

```
BFS(G,s)
1 for each vertex u \in G.V - \{s\}
2 u.color = WHITE
 3 \qquad u.d = \infty
    u.\pi = NIL
 5 s.color = GRAY
 6 \, s.d = 0
 7 s.\pi = NIL
 8 \quad Q = \emptyset
 9 ENQUEUE(Q, s)
    while Q \neq \emptyset
10
11
         u = \text{DEQUEUE}(Q)
         for each v \in G.Adj[u]
12
              if v.color == WHITE
13
                  v.color = GRAY
14
15
                  v.d = u.d + 1
16
                  \nu.\pi = u
17
                  ENQUEUE(Q, \nu)
```

u.color = BLACK

18

Whitening

```
BFS(G,s)
1 for each vertex u \in G.V - \{s\}
2 u.color = WHITE
2 u.color = WHITE
3 u.d = \infty
      u.\pi = NIL
 5 s.color = GRAY
 6 \, s.d = 0
 7 s.\pi = NIL
 8 \quad Q = \emptyset
   ENQUEUE(Q, s)
    while Q \neq \emptyset
10
11
         u = \text{DEQUEUE}(Q)
         for each v \in G.Adj[u]
12
              if v.color == WHITE
13
                  v.color = GRAY
14
15
                  v.d = u.d + 1
16
                  \nu.\pi = u
17
                  ENQUEUE(Q, \nu)
         u.color = BLACK
18
```

Whitening

Enqueue the root

BFS(G, s)

```
for each vertex u \in G.V - \{s\}
   u.color = WHITE
 3 \qquad u.d = \infty
        u.\pi = NIL
 5 \quad s.color = GRAY
 6 \, s.d = 0
   s.\pi = NIL
 8 \quad Q = \emptyset
    ENQUEUE(Q, s)
    while Q \neq \emptyset
10
11
         u = \text{DEQUEUE}(Q)
         for each v \in G.Adj[u]
12
             if v.color == WHITE
13
14
                  v.color = GRAY
15
                  v.d = u.d + 1
16
                  \nu.\pi = u
17
                  ENQUEUE(Q, \nu)
         u.color = BLACK
18
```

Whitening

Enqueue the root

runs until queue is empty