Expression, purification, and assay of beta-glucosidase B

Day 1: Transform expression cells

MATERIALS

Material	Concentration	Amount per reaction
Chemically-competent Escherichia coli bl21(de3)		20 μL
Expression plasmid in buffer solution	> 20 ng/µL	1 <i>µ</i> L
ТВ		200 μL
LB agar plates with kanamycin		1
Sterile beads		8–10
Goog tube		1

METHOD

- 1. Set tubes on ice and warm up 42 C dry bath
- 2. In an ice cold Goog tube, mix 1 μ L plasmid and 20 μ L competent cells

KEEP CELLS COLD AND WORK QUICKLY

- 3. Incubate on ice for 10 minutes
- 4. Incubate at 42 C for 60 seconds
- 5. Incubate on ice for 60 seconds
- 6. Add 200 μ L media and recover at 37 C for 1 hour
- 7. Pipet 200 μ L recovered cells on to plate, add glass beads, shake, and get rid of beads
- 8. Incubate plate overnight at 37 C

Day 2: Growth cultures

MATERIALS

Material	Amount per reaction
Transformant plates from day 1	1
Falcon tube	1
Pre-cut tube seal	1
Terrific broth with kanamycin	5 mL

METHOD

- 1. Aliquot 5 mL terrific broth with kanamycin into Falcon tubes
- 2. Inoculate tube with a single colony from plate
- 3. Seal tubes with tube seals
- 4. Incubate with shaking at 37 C for 24 hours

Day 3: Expression cultures

MATERIALS

Material	Concentration	Amount per reaction
Growth cultures from day 2		1
Terrific broth		5 mL
IPTG	1000X	5 μL
Kanamycin	1000X	5 μL
Pre-cut tube seal		1

METHOD

- 1. Centrifuge growth cultures at 4,700 RPM for 10 minutes and toss supernatant
- 2. Make induction medium by adding IPTG and kanamycin to TB

MAKE ENOUGH FOR N+1 REACTIONS

- 3. Add IPTG and kanamycin to TB to make induction medium for all reactions (make N+1)
- 4. Add 1 mL induction medium to cell pellet in tube
- 5. Vortex to resuspend pellet
- 6. Add 4 mL induction medium to tubes
- 7. Seal with tube seals
- 8. Incubate with shaking at 18 C for 24 hours

Day 4: Protein purification

MATERIALS

Material	Concentration	Amount per reaction
Expression culture from day 3		5 mL
Wash buffer		450 μL
Bugbuster	10X	50 μL
Dry lysis mix		1 mg
2 mL Goog tubes		1
Protein buffer		200 μL

METHOD

- 1. Centrifuge expression cultures at 4,700 RPM for 10 minutes and toss supernatant
- 2. Resuspend cell pellet in 500 μ L wash buffer and transfer 1 mL to Goog tube
- 3. Make lysis buffer by mixing BugBuster, wash buffer, and lysis mix in a sterile tube
- 4. Aliquot 500 μ L lysis buffer into resuspended pellets in Goog tubes
- 5. Rock tubes for 20 minutes
- 6. Centrifuge at 14,700 RPM for 10 minutes
- 7. Set microcolumns in rack over waste collector
- 8. Add 100uL of nickel resin (blue) from 50% slurry to each microcolumn
- 9. Add 500 μ L of wash buffer and allow to drip through
- 10. Add 500 μ L of supernatant and allow to drip through
- 11. Add another 500 μ L of supernatant and allow to drip through
- 12. Wash **six times** with 500 μ L of wash buffer, allow to drip through each time
- 13. Transfer column to fresh tube
- 14. Add 100 μ L protein buffer directly to beads and wait five minutes
- 15. Add second 100 μ L protein buffer and spin briefly to ensure you get all your protein
- 16. Read yield on the spectrophotometer and **record data** in Excel template "Yields"
- 17. Run a gel and set in stain on the rocker overnight

Day 5: Assay

MATERIALS

Material	Concentration	Amount per reaction
Protein solution from day 4	about 1 mg/mL	200 μL
Substrate solution	100 mM	1.8 mL
96-well plate (cheap)		1
Non-binding 96-well plate		1

METHOD

- 1. Remove stain from gel and replace with water
- 2. Perform a quick test of activity by mixing 90 μ L substrate stock and 10 μ L purified protein:
 - 1. If this turns yellow within 5 minutes, make 1/100 dilutions of your proteins:
 - 1. Add 10 μ L of purified protein to 990 μ L of protein buffer in a Goog tube
 - 2. If this doesn't turn yellow within 5 minutes, make 1/10 dilutions
 - 1. Add 100 μ L of purified protein solution to 900 μ L of protein buffer in a Goog tube
- 3. Aliquot 25 μ L of diluted protein solution into a non-binding (white) plate, using three columns per mutant and three for wild type
- 4. In a convenient, inexpensive plate, aliquot 100 μ L of substrate stock into the first row and 75 μ L of protein buffer into the rest of the rows
- 5. With multichannel pipettor, remove 25 μ L from the first row, add to second row, and mix
- 6. Repeat but **leave the last row alone**. Verify that every well is the same volume (75 μ L)
- 7. Set up Gen5 program "Model enzyme kinetics"
- 8. Transfer 75 μ L substrate from cheap plate to assay plate to initiate reaction
- 9. After 1 hour, examine your data to make sure the Gen5-calculated rates make sense
- 10. Record your data using Excel template "Observed rates"

Recipes

LB **plates** with kanamycin (25 plates)

Autoclave 250 mL water with 2 pellets of LB agar in a 500 mL bottle. After autoclaving, hold in 50 C dry bath until 50 C, then add 250 μ L 1000X kanamycin solution. Use a serological pipet to pour 8–10 mL per plate

Lysis mix (100 reactions)

Combine 80 mg lysozyme, 10 mg DNAse, and 10 mg PMSF

Terrific broth (TB) (250 mL)

Dissolve 12.5 g granulated or powder TB in 250 mL water and autoclave

1 M isopropyl-beta-D-thiogalactopyranoside (1000X **IPTG**) (10 mL)

Dissolve 2.40 g IPTG in 10 mL wash buffer. Store 250 μ L aliquots at –20 C

Wash buffer (1 L)

Dissolve 11.9 g HEPES, 8.7 g sodium chloride, and 0.68 g imidazole in water and adjust pH to 7.50

Protein buffer (1 L)

Dissolve 11.9 g HEPES, 8.7 g sodium chloride, and 7.31 g EDTA in water and adjust pH to 7.50

0.1 M 4-nitrophenyl-beta-D-glucopyranoside (substrate) (100 mL)

Dissolve 3.01 g 4-nitrophenyl-beta-D-glucopyranoside in 100 mL protein buffer. Store 1.25 mL aliquots at –20 C