1 Decidable languages

Languages that are always accepted or rejected by a Turing Machine (i.e. by a decider TM).

Definition We will use < M > to denote the binary encoding of a TM. Or, alternatively, write a program for M, and let < M > be its binary executable.

Examples:

Theorem 1.1 $A_{DFA} = \{ \langle B, w \rangle \mid B \text{ is a DFA that accepts input string } w \} \text{ is decidable.}$

Proof We simply need to present a TM M_1 that decides A_{DFA} :

 M_1 = On input < B, w >, where B is a DFA and w is a string

- 1. Simulate B on input w.
- 2. If the simulation ends in an accept state, accept. If it ends in a nonaccepting state, reject.

Theorem 1.2 $A_{NFA} = \{ \langle B, w \rangle \mid B \text{ is an NFA that accepts input string } w \}$ is decidable.

Proof We will use M_1 from above as a subroutine.

 M_2 = On input < B, w >, where B is an NFA and w is a string

- 1. Convert NFA B to an equivalent DFA C.
- 2. Run TM M_1 on input $\langle C, w \rangle$.
- 3. If M_1 accepts, accept; otherwise, reject.

Theorem 1.3 $A_{REX} = \{ \langle R, w \rangle \mid R \text{ is a regular expression that generates string } w \} \text{ is decidable.}$

Proof M_3 = On input $\langle R, w \rangle$, where R is a regular expression and w is a string

- 1. Convert regular expression R to an equivalent NFA A.
- 2. Run TM M_2 on input $\langle A, w \rangle$.
- 3. If M_2 accepts, accept; otherwise, reject.

Theorem 1.4 $E_{DFA} = \{ \langle A \rangle \mid A \text{ is a } DFA \text{ and } L(A) = \emptyset \} \text{ is decidable.}$

Proof M_4 = On input $\langle A \rangle$, where A is a DFA

- 1. Mark the start state of A.
- 2. Repeat until no new states get marked:
 - (a) Mark any state that has a transition coming into it from any state that is already marked.
- 3. If no accept state is marked, accept; otherwise, reject.

Theorem 1.5 $EQ_{DFA} = \{ \langle A, B \rangle \mid A \text{ and } B \text{ are } DFAs \text{ and } L(A) = L(B) \}$ is decidable.

Proof M_5 = On input $\langle A, B \rangle$, where A, B are DFAs

1. Construct a new DFA C from A and B, where C accepts only those strings that are accepted by either A or B, but not both. Thus, if A and B recognize the same language, C will accept nothing. The language of C is:

$$L(C) = (L(A) \cap \overline{L(B)}) \cup (\overline{L(A)} \cap L(B))$$

- 2. Run M_4 on input < C >.
- 3. If M_4 accepts, accept; otherwise, reject.

Theorem 1.6 $A_{CFG} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates string } w \}$ is decidable.

Theorem 1.7 $E_{CFG} = \{ \langle G \rangle \mid G \text{ is a } CFG \text{ and } L(G) = \emptyset \} \text{ is decidable.}$

But:

Theorem 1.8 $EQ_{CFG} = \{ \langle G, H \rangle \mid G \text{ and } H \text{ are } CFGs \text{ and } L(G) = L(H) \}$ is **NOT** decidable.

2 Undecidability

- Problems that cannot be solved by computers (TMs).
- Practical significance: software testing.

Fact: Every TM can be encoded as a binary string according to some convention.

Example Assume:

- q_1 is the start state, q_2 is the accept state, q_3 is the reject state, and q_i , $i \ge 4$ are the rest of the states.
- $\Gamma = \{X_1, X_2, X_3, \ldots\}$ where $X_1 = 0, X_2 = 1, X_3 = \sqcup, \ldots$
- $\{L,R\} = \{D_1,D_2\}$
- A transition $\delta(q_i, X_j) = (q_k, X_l, D_m)$ is encoded as $0^i 10^j 10^k 10^l 10^m$.
- The TM is encoded as the list of its transitions separated by 11s since transition codes do not include two consecutive 1s. We also include a prefix of 1 to be able to convert to an integer:

$$TM = 1 Code1 11 Code2 11 Code3 \dots$$

Then the i^{th} TM is the TM, where the binary representation of the integer i is the binary encoding of TM (< M >). Some TMs do not make sense. For an i^{th} TM to be valid, there must be 5 blocks of 0s separated by single 1s between any pair of 11s. For example the 3^{rd} TM does not make sense. For such TMs we will assume that the language they accept is empty.

2.1 A language that is not Turing-recognizable

input string TM i j	0	1	2	3	4	5	
0	0	0	0	0	0	0	
1	0	0	0	0	0	0	
•							
•							
•							
$\langle M \rangle$	0	0	1	0	1	0	
•							
•							
•							

The diagonal will be defined as

$$D = a_1 a_2 a_3 \dots$$

where $a_i = 1$ if (i, i) = 0 and $a_i = 0$ if (i, i) = 1.

Define:

$$L_d = \{ < M > | < M > \notin L(M) \}$$

Assume that L_d is recognizable by some TM N; i.e. $L_d = L(N)$. Now, the question becomes: is $\langle N \rangle \in L_d$?

- If yes, $< N > \notin L_d$, hence $< N > \notin L_d$.
- If no, $\langle N \rangle \in L_d$, hence $\langle N \rangle \in L_d$.

Therefore, no such N is possible: L_d is not recognizable.

2.2 Recognizable but not decidable language

Define:

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a } TM, \text{ and } w \in L(M) \}$$

Assume A_{TM} is recognizable by a TM U (the "universal" TM). U on < M, w >

- Check if M is a valid TM encoding.
- If so, evaluate M on w.
- If M accepts w, accept.
- If M rejects w, reject.

Note that U is not a decider. If M loops on w, U will also loop. Then $A_{TM}=L(U)$.

Theorem 2.1 A_{TM} is not decidable.

Proof by contradiction.

Assume that A_{TM} is decided by some TM H. $H(< M, w >) = \left\{ \begin{array}{l} accept, \ if \ w \in L(M) \\ reject, \ otherwise \end{array} \right.$ From H, we can construct another TM D that decides L_d :

 $\underline{D} \text{ on } < M >: \text{Is } < M > \in L_d?$

- Run H on < M, < M >>.
- Accept if *H* rejects.
- Reject if H accepts.

We know that no such D exists since L_d is not recognizable, i.e. not decidable. Hence, no such H exists. A_{TM} is not decidable.

Corollary 2.2 $\overline{A_{TM}}$ is not Turing-recognizable.

Proof We know that A_{TM} is Turing-recognizable. If $\overline{A_{TM}}$ were also Turing-recognizable, A_{TM} would be decidable. But we know that A_{TM} is undecidable, so $\overline{A_{TM}}$ must not be Turing-recognizable.