Diagonalization

Edward Kim

August 4, 2018

Diagonalization is a time-tested tool dating back to Cantor's famous proof on the cardinality of \mathbb{R} . The of the undecidability of halting problem uses diagonalization to show that no TM can decide whether an arbitrary TM will halt on a given input x. This technique will be used to show some basic results on the natural hierarchy of deterministic and non-deterministic TMs based on the amount of resources one allocates to it.

1 The Time Hierarchy Theorems

Definition 1.1. Given a function $f : \mathbb{N} \to \mathbb{N}$, we say that f is time-constructible if the map $x \mapsto f(|x|)$ can be computed in O(f(|x|)) time

Theorem 1.1. Let f, g be time-constructible functions such that $f(n) \log f(n) = o(g(n))$, then

$$DTIME(f(n)) \subset DTIME(g(n))$$

Proof. We assume that simulating a machine by universal TM, \mathcal{U} is at most logarithmic. Consider the language L determined by the machine D which exhibits the following behavior: on input x, run the TM $M_x(x)$ for g(|x|) steps. If the machine halts at any point with output y, output its negation $\neg y$. Otherwise, output 0.

By construction, $L \in DTIME(g(n))$. We shall prove that L cannot be decided by any machine in DTIME(f(n)). For the sake of contradiction, suppose that there exists machine G such that G decides L and for any input x, there exists a constant c such that G runs for at most c|x|. By our assumption above, we can simulate G on \mathcal{U} with $c|x|\log|x|$ steps. Since $f(n)\log f(n)=o(g(n))$, there exists an string g such that $g(|g|)>f(|g|)\log|g|$ such that $M_g=G$ (this follows from the padding lemma). Hence, $D(g)=\neg b=G(g)$. This gives us our contradiction.

Theorem 1.2. If f, g are time-constructible functions such that f(n + 1) = o(g(n)), then

$$NTIME(f(n)) \subset NTIME(g(n))$$