Análisis Numérico

Nombre: GÓMEZ LUNA ALEJANDRO

Numero de lista: 11

Grupo: 11

Examen: 01 tipo B

Fecha: 05 de marzo de 2020

Instrucciones: Es importante que su respuesta sea lo más clara posible.

Primer Enunciado

1. Sea la función

$$f(x) = \frac{1}{2x}$$

a) Determinar el polinomio de Taylor de grado tres alrededor de $x_0 = 2$

Desarrollo

El polinomio de Taylor se determina mediante la siguiente fórmula:

$$f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f^{(3)}(a)}{3!}(x-a)^3 + \cdots$$

Obteniendo el polinomio de Taylor de grado tres alrededor de $x_0 = 2$ de la función

$$f(x) = \frac{1}{2x}$$

Se tiene:

a. Primer término:

$$f(2) = \frac{1}{2(2)} = 0.25$$

b. Segundo término:

$$\frac{f'(a)}{1!}(x-a) = -\frac{1}{2(2)^2}(x-2) = -0.125(x-2)$$

c. Tercer término:

$$\frac{f''(a)}{2!}(x-a)^2 = \frac{1}{2}\frac{1}{(2)^3}(x-2)^2 = \frac{1}{2}0.125(x-2)^2$$

d. Cuarto término:

$$\frac{f'''(a)}{3!}(x-a)^3 = -\frac{1}{6}\frac{3}{(2)^4}(x-2)^3 = -\frac{1}{6}0.1875(x-2)^3$$

Con base en los términos anteriores obtenidos, el polinomio de Taylor sería:

$$0.25 - 0.125(x - 2) + 0.0625(x - 2)^2 - 0.03125(x - 2)^3$$

b) Determinar el error absoluto que se comete al calcular f(1.6)

Para determinar el error absoluto se utiliza la siguiente fórmula:

$$E_{abs} = |X_1 - X_2|$$

 $E_{abs} = |X_1 - X_2|$ En donde X_1 es el valor de 1.6 evaluado en la función y X_2 es el valor de 1.6 evaluado en el polinomio de Taylor, teniendo así que:

x	f(x)	Polinomio de Taylor	Eabs
1.6	0.3125	0.305	0.0075

Por lo que, el error absoluto es de: 0.0075

Segundo Enunciado

2. Utilice el método de bisección para calcular la raíz de la siguiente ecuación con una tolerancia 0.001

$$f(x) = sen(x) + e^{-x} - 5$$

Desarrollo

1. Tabulando la función $f(x) = sen(x) + e^{-x} - 5$ tenemos:

Х	f(x) =
-4	50.3549525
-3	14.9444169
-2	1.47975867
-1	-3.12318916
0	-4
1	-3.79064957
2	-3.95536729
3	-4.80909292
4	-5.73848686

2. Gráfica de la función

3. Primera iteración:

$$f(-2)f(-1) < 0$$

$$X_0 = \frac{-2 - 1}{2} = -1.5$$

$$f(-1.5) = sen(-1.5) + e^{1.5} - 5 = -1.515805916$$

4. Segunda iteración:

$$f(-2)f(-1.5) < 0$$

 $X_0 = \frac{-2 - 1.5}{2} = -1.75$

$$f(-1.75) = sen(-1.75) + e^{1.75} - 5 = -0.229383271$$

b. Calculando el error absoluto

$$E_{abs} = |X_1 - X_0| = |-1.75 - (-1.5)| = 0.25$$

5. Cuadro resumen

	+	-							
N. Iteración	a	b	f(a)	f(b)	f(a)f(b) < 0	x_0 = (a+b)/2	f(x_0)	Error	Criterio
0	-2	-1	1.47975867	-3.12318916	-4.62156624	-1.5	-1.51580592		
1	-2	-1.5	1.47975867	-1.51580592	-2.24302695	-1.75	-0.22938327	0.25	Divergente
2	-2	-1.75	1.47975867	-0.22938327	-0.33943188	-1.875	0.56673334	0.125	Divergente
3	-1.875	-1.75	0.56673334	-0.22938327	-0.12999915	-1.8125	0.15481106	0.0625	Divergente
4	-1.8125	-1.75	0.15481106	-0.22938327	-0.03551107	-1.78125	-0.04066287	0.03125	Divergente
5	-1.8125	-1.78125	0.15481106	-0.04066287	-0.00629506	-1.796875	0.05621894	0.015625	Divergente
6	-1.796875	-1.78125	0.05621894	-0.04066287	-0.00228602	-1.7890625	0.00756563	0.0078125	Divergente
7	-1.7890625	-1.78125	0.00756563	-0.04066287	-0.00030764	-1.78515625	-0.01660155	0.00390625	Divergente
8	-1.7890625	-1.78515625	0.00756563	-0.01660155	-0.0001256	-1.787109375	-0.00453121	0.00195313	Divergente
9	-1.7890625	-1.78710938	0.00756563	-0.00453121	-3.4281E-05	-1.788085938	0.00151389	0.00097656	Convergente

Conclusión

Con la tolerancia de 0.001 nuestra raíz es -1.788085938

Tercer Enunciado

3. Encontrar las 4 raíces del polinomio

$$p(x) = x^4 + 9.76x^3 - 5.2x^2 - 6.2x + 1.08$$

Considere como valores iniciales P=0.5275 y Q=-0.1095 con una tolerancia igual 0.0025

Desarrollo

$$p(x) = (x^2 + Px + Q)(b_0x^2 + b_1x + b_2) + Rx + S$$

- A partir del método de factores cuadráticos vamos a poder calcular los términos b_0 , b_1 y b_2
- Calculando b_0 , b_1 y b_2

$$b_k = a_k - Pb_{k-1} - Qb_{k-2}$$

- Donde k=0,1,2,..., n-2, para este caso k=0,1,2.
- Para k=0

$$b_k = a_k - Pb_{k-1} - Qb_{k-2}$$

 $b_0 = a_0 = 1$

- Para k=1

$$b_1 = a_1 - Pb_0 - Qb_{-1}$$
$$b_1 = a_1 - Pb_0$$

- Para k=2

$$b_2 = a_2 - Pb_1 - Qb_0$$

- Calculando los valores de R y S

$$R = a_3 - Pb_2 - Qb_1$$
$$S = a_4 - Qb_2$$

- Incrementos en P y Q

$$\Delta P = \frac{R}{b_{n-2}} = \frac{R}{b_2}$$

$$\Delta Q = \frac{S}{b_{n-2}} = \frac{S}{b_2}$$

- Siguientes valores de P y Q

$$P^* = \Delta P + P_{anterior}$$
$$Q^* = \Delta Q + Q_{anterior}$$

- Tabla resumen

		tolerancia =	0.0025		
		Iteraciones	1	2	10
a0	1	P	0.5275	0.52095441	0.52335756
a1	9.76	Q	-0.1095	-0.10842673	-0.10880439
a2	-5.2	bo	1	1	1
a3	-6.2	b1	9.2325	9.23904559	9.23664244
a4	1.08	b2	-9.96064375	-9.90469478	-9.9252623
		R	0.06519833	-0.03834614	-0.00055167
		S	-0.01069049	0.00606636	8.7919E-05
		ΔP	-0.00654559	0.00387151	5.5583E-05
		ΔQ	0.00107327	-0.00061247	-8.8581E-06
			Eabs_R	0.10354446	0.00148935
			Eabs_S	0.01675685	0.00023736
			Criterio_R	Diverge	Converge
			Criterio_S	Diverge	Converge

$$p(x) = (x^2 + 0.52335756x - 0.10880439)(x^2 + 9.23664244x - 9.9252623)$$

R y S se desprecian ya que tienden a cero.

Conclusión

Las raíces del polinomio son:

$$x \approx -10.2089$$

$$x\approx -0.68276$$

$$x \approx 0.159368$$

$$x \approx 0.97225$$