Non-Invasive Brain-Computer Interfaces KU (709.028) | Summer term 2019

Jonas Ditz | Institute of Neurotechnology | TU-Graz

Unit #5 (23.05.2019)

Sensorimotor rhythm (SMR) based BCIs

Exercise 5.1: ERDS time-frequency maps

The aim of this exercise is to compute Event-Related-Synchronization-and-Desynchronization (ERDS) time-frequency maps for Laplacian re-referenced channels at positions C3, Cz and C4. From the computed maps we then identify most distinctive frequency bands (features), which will be used to simulate SMR BCI control.

Provided raw data:

- sGes: EEG signal matrix (time x channel); Laplacian data; 3 channels; positions C3, Cz and C4; 50 trials per class.
- hGes: header (struct); contains: SampleRate (Hz), Classlabel (1 left hand or 2 feet), TRIG (index in the data where a cue/class started)

ERDS maps:

- Calculate ERDS maps for class left hand motor imagery (MI) and feet MI separately.
- Calculate a map per channel (Laplacian C3, Cz, C4).
- Use the function calcErdsMap (provided for this exercise to calculate the maps).
- Settings for calcErdsMap: t=[-3, 0, 5]; f_borders=[4, 30]; t_ref = [-2.5, -0.5];
- calcErdsMap(sGes, hGes, t, f_borders, 'ref', t_ref, 'sig', 'boot', 'alpha', 0.01);
- Use the function plotErdsMap (provided for this exercise to plot the maps).

Task:

- Compute the ERDS time-frequency maps as outlined above
- Which frequency band(s) are most different between the classes? Which band(s) would you chose? Give reasons for your decision!

Non-Invasive Brain-Computer Interfaces KU (709.028) | Summer term 2019

Jonas Ditz | Institute of Neurotechnology | TU-Graz

Unit #5 (23.05.2019)

Exercise 2: BCI simulation

The aim of this exercise is to compute a SMR-BCI simulation.

Part 1: Train an LDA classifier using one logarithmic band power feature extracted from one Laplacian re-referenced EEG channel (data: sGes; header: hGes).

- Band pass the EEG from the selected Exercise 5.1 Laplacian channel to limit the frequency
 range to your selected range. Use the Matlab function butter to define a Butterworth filter
 (filter order: 4). Then use filter to apply the filter on the data.
- For each trial, extract a 2-second segment of data (1s to 3s after cue), square each sample and sum up the squared values in the segment. Subsequently, calculate the log of the sum.
- Build 2 vectors: X_train (trials x features) containing the feature and Y_train (trials x class labels) containing the class labels.
- Train an LDA classifier with X train and Y train.

Part 2: Classify unseen data with the trained LDA (data: sGes test; header: hGes test).

- Repeat the feature extraction as described in part 1 with the unseen test data.
- Classify the data.

Part 3: Repeat Part 1 and Part 2 by selecting two logarithmic band power features.

Task:

• Which accuracies do you achieve in Part 1, 2 and 3?

Pre-submission via TeachCenter at the end of the unit; final submission 02.06.2019