CS & IT ENGING

Operating System

File System

Lecture - 01

Recap of Previous Lecture

Topics to be Covered

A file is a named collection of related information that is recorded on secondary storage.

Topic: File Attributes

- Name
- 2. Extension
- 3. Size
- 4. Date
- 5. Author
- Created, Modified, Accessed
- 7. Attributes: Read-only, hidden
- 8. Default Program
- 9. Security Details

Topic: File Directory

Collection of files

Assume a directory has 4 files

each file directory entry => 8 bytes long of Space needed = 32 bytes

(printer to file)

Topic: File System

Module of OS which manages, controls and organizes files and related structures

Topic: File System

Topic: Types of File Systems

- 1. FAT32
- 2. NTFS
- 3. HFS+
- 4. Ext2 / Ext3 / Ext4
- 5. Swap

Topic: File System

s-SSD	Sharing
sk	
93,87,61,70,752 bytes	87.4 GB
60,84,49,55,648 bytes	149 GB
54,72,11,26,400 bytes	237 GB
Drive C:	Disk Cleanup
o save disk space e to have contents inde	exed in addition to
	.60,84,49,55,648 bytes .54,72,11,26,400 bytes .Drive C:

Topic: File Directory Structure

Single-Level Directory

2 files can not have same name. (even if type of files are different)

Topic: File Directory Structure

2. Two-Level Directory (multiple User)

Topic: File Directory Structure

3. Tree Structure Directory (Latest)

Topic: Disk Formatting

Low-level formalling (physical formalling)

done by menufecturer

After this 05 is stored (instelled) in one of the drives Cogical formatting

(kigh-level formatting) Logical partions of disk

reating (dives) C:1>, E:, F:... -> Creating disk blocks -> installing file system

Logical partions: > 1. Primary partition => 05 + user files (one or 2) 2. Extended partition => User files (as many as you want)

Assume

Lisk block address = 6 bits

Number of disk blocks = 2^{16}

Size of each block = 1KB

Total Size of disk? 216 * 1kB

Disk block address= 24-bits
$$\Rightarrow$$
 no. of blocks = 2²⁴

Size of each block =
$$2KB$$

Total Size of disk? =
$$2^{24} \times 2kB$$

= $2^{35}B$
= $32GB$

Total disk size = 256GB

no of blocks in disk =
$$\frac{25665}{21.20} = \frac{8}{2.20}$$

Block Size = 2KB

Disk block address? => 27 61ts

Topic: Free Space Management

By

- Free List
- 2. Bitmap Method

1. Free List:
A list of free block
addresses is maintained.

La How file system keeps track of free disk

2:- Bitmap Method:
1 bit for each block stored to denote
if block is free or occupied

ex:- Disk has 16 blocks = 24 blocks

16 bit bitmap

010|1000|000000Absume =) 0 = free 1 = occupied

Topic: Free Space Management

To search free block

- 1. No searching in free list, but in bitmap we search for first zero \mathcal{I}
- 2. Free list is faster in allocating a free block
- 3. Free list size is variable, where as bitmap size is constant

Topic: Question

A particular disk unit uses a bit string to record the occupancy or vacancy of its disk blocks with '0' denoting vacant block and '1' denoting occupied block. A 32-bit part of this string has Hexadecimal value of D4F2A001. The percentage of occupied blocks on the disk for this part is ?

$$\frac{1101 \text{ o100 } 1111 \text{ oolo } 1010 \text{ o000 } 0000 \text{ o000}}{1}$$

$$\frac{1}{3} \frac{1}{1} \frac{4}{1} \frac{1}{2} \frac{2}{0} \frac{0}{0} \frac{0}{0} \frac{1}{1}$$

$$\text{Total occupied blacks} = 12$$

$$\frac{1}{32} \frac{37.5\%}{100\%} \text{ Ans.}$$

anes

no. of blocks = 2

1 block size = 1 k bytes

no of disk blocks used to stone free space bitmap?

soin no of bits needed to stone bitmap = 2 bits

bitmap sise = $\frac{2^{18}}{8}$ = 2^{15} bytes = 32kB

no. of blocks needed to stone bitmap = $\frac{32 \text{ kB}}{1 \text{ KB}} = 32 \text{ blocks}$

H.W.

A system directory is kept in 4 disk blocks each of size 2Kbytes. It is a single leveldirectory and each directory entry is of size 32-bits.

- 1. The maximum number of files possible in this system is?
- 2. The maximum size of any file is?

2 mins Summary

Topic File System

Topic Directory

Topic Disk Blocks

Happy Learning

THANK - YOU