STAT 3006 Assignment 1

Due date: 5:00 pm on 9 February

(30%)Q1: Please use the bisection method to find all zero points of the following function,

$$f(x) = x^3 + 7.8x^2 - 28.33x - 39.27.$$

(30%)Q2 (Poisson regression): We collected n=15 independent count observations $\{y_i: i=1,\ldots,15\}$ and their corresponding covariates $\{x_i: i=1,\ldots,15\}$. Assume the relationship between y_i and x_i (for $i=1,\ldots,15$) is $y_i \sim Poisson(\lambda_i)$ and $log(\lambda_i) = \alpha + \beta x_i$. Please 1) write down the likelihood function $L(\alpha,\beta|\mathbf{x},\mathbf{y})$ of the Poisson regression model; 2) derive the Newton method for maxmizing $L(\alpha,\beta|\mathbf{x},\mathbf{y})$; 3) implement the Newton method using R to get MLE of (α,β) .

$\overline{x_i}$	-0.30	0.32	0.41	0.62	-0.21	0.31	0.41	0.81
y_i	2	10	0.41 11	22	0	6	9	34
$\overline{x_i}$	0.50	-0.21	-0.20	0.70	0.10	0.13	0.69	-
y_i	0.50 5	0	1	21	3	2	29	-

(10%)Q3 (Logistic regression): We collected n = 15 independent binary observations $\{y_i : i = 1, ..., 15\}$ and their corresponding covariates $\{x_i : i = 1, ..., 15\}$. Assume the relationship between y_i and x_i (for i = 1, ..., 15) is $y_i \sim Bernoulli(p_i)$ and $logit(p_i) = \alpha + \beta x_i$, where $logit(t) = \log \frac{t}{1-t}$. Please 1) write down the likelihood function $L(\alpha, \beta | \mathbf{x}, \mathbf{y})$ of the logistic regression model; 2) derive the Newton method for maxmizing $L(\alpha, \beta | \mathbf{x}, \mathbf{y})$; 3) implement the Newton method using R to get MLE of (α, β) .

$\overline{x_i}$	-0.30	0.32	0.41	0.62	-0.21	0.31	0.41	0.81
y_i	0	1	1	1	0	0	0	1
x_i	0.50	-0.21	-0.20	0.70	0.10	0.13	0.69	-
y_i	0	0	0	1	1	1	0	-

 $(30\%)\mathbf{Q}4$ (EM algorithm): The heights of n=8000 students are drawn from a school. Assume the height largely depends on the gender. We denote the height of student i by Y_i , and the gender of student i by Z_i . $\{Y_i: 1 \leq i \leq n\}$ are observed, but $\{Z_i: 1 \leq i \leq n\}$ are unknown. Our model can be formulated as follows. First, $Pr(Z_i = 1) = \pi$ and $Pr(Z_i = 2) = 1 - \pi$, where $Z_i = 1$ indicates student i is female, $Z_i = 2$ indicates student i is male, and π can be

interpreted as the proportion of female students in all the students. Second, given $Z_i = 1$, Y_i is assumed to be from a normal distribution $N(\mu_1, \sigma_1^2)$; given $Z_i = 2$, Y_i is assumed to be from a normal distribution $N(\mu_2, \sigma_2^2)$. Based on these notations and information, please 1) write down the complete-data likelihood function $L(\pi, \mu_1, \mu_2, \sigma_1, \sigma_2 | \mathbf{Y}, \mathbf{Z})$; 2) derive E step and M step to find MLE of $(\pi, \mu_1, \mu_2, \sigma_1, \sigma_2)$; 3) use R to implement your EM algorithm, give MLE of $(\pi, \mu_1, \mu_2, \sigma_1, \sigma_2)$, and distinguish the first ten students' gender. (The data set $\{Y_i : 1 \leq i \leq n\}$ is "heights_data.txt".)

Requirements: your answer must contain two parts. The first part is a paper report which includes your derivation and answers for each problem. The second part is a file which includes all your R code to implement your algorithms. Please, by the due date, 1) put your paper report in the assignment box "STAT3006" besides LSB 125 and 2) submit your R code file in the elearning system. You must finish both of the two parts to get a grade. Otherwise, your homework will be regarded as missing. Details of requirements are in the table below.

-	in the paper report	in the R code file		
Q1	all zero points	R code for implementing the bisection method		
Q2	likelhood function	R code for implementing Newton method		
	derivation procedure for Newton algorithm			
	MLE of (α, β)			
Q3	likelhood function	R code for implementing Newton method		
	derivation procedure for Newton algorithm			
	MLE of (α, β)			
Q4	complete data likelihood function L	R code for implementing EM algorithm		
	derivation procedure for E step and M step			
	MLE of $(\pi, \mu_1, \mu_2, \sigma_1, \sigma_2)$			
	The first ten students' genders you learned			