Assignment #4

1. . (Ch 5: P4) [6pts] Consider the network shown below. Using Dijkstra's algorithm, and showing your work using a table (similar to the one in the lecture and textbook), do the following:

a. Compute the shortest path from t to all network nodes.

Step	N'	D(u), p(u)	D(v), p(v)	D(w), p(w)	D(x), p(x)	D(y), p(y)	D(z), $p(z)$
0	t	2, t	4, t	∞	∞	7, t	∞
1	tu	2, t	4, t	5, u	∞	7, t	∞
2	tuv	2, t	4, t	5, u	7, v	7, t	∞
3	tuvw	2, t	4, t	5, u	7, v	7, t	∞
4	tuvwx	2, t	4, t	5, u	7, v	7, t	15, x
5	tuvwxy	2, t	4, t	5, u	7, v	7, t	15, x
6	tuvwxyz	2, t	4, t	5, u	7, v	7, t	15, x

b. Compute the shortest path from u to all network nodes.

Step	N'	D(t), p(t)	D(v), p(v)	D(w), p(w)	D(x), p(x)	D(y), p(y)	D(z), p(z)
0	u	2, u	3, u	3, u	∞	∞	∞
1	ut	2, u	3, u	3, u	∞	9, t	∞
2	utv	2, u	3, u	3, u	6, v	9, t	∞
3	utvw	2, u	3, u	3, u	6, v	9, t	∞
4	utvwx	2, u	3, u	3, u	6, v	9, t	14, x
5	utvwxy	2, u	3, u	3, u	6, v	9, t	14, x
6	utvwxyz	2, u	3, u	3, u	6, v	9, t	14, x

c. Compute the shortest path from v to all network nodes.

Step	N'	D(t), p(t)	D(u), p(u)	D(w), p(w)	D(x), p(x)	D(y), p(y)	D(z), $p(z)$			
0	v	4, v	3, v	4, v	3, v	8, v	∞			
1	VX	4, v	3, v	4, v	3, v	8, v	11, x			
2	vxu	4, v	3, v	4, v	3, v	8, v	11, x			
3	vxut	4, v	3, v	4, v	3, v	8, v	11, x			
4	vxutw	4, v	3, v	4, v	3, v	8, v	11, x			
5	vxutwy	4, v	3, v	4, v	3, v	8, v	11, x			
6	vxutwyz	4, v	3, v	4, v	3, v	8, v	11, x			

d. Compute the shortest path from x to all network nodes.

Step	N'	D(t), p(t)	D(u), p(u)	D(v), p(v)	D(w), p(w)	D(y), p(y)	D(z), p(z)
0	X	∞	∞	3, x	6, x	6, x	8, x
1	xy	7, v	6, v	3, x	6, x	6, x	8, x
2	xvu	7, v	6, v	3, x	6, x	6, x	8, x
3	xvuw	7, v	6, v	3, x	6, x	6, x	8, x
4	xvuwy	7, v	6, v	3, x	6, x	6, x	8, x
5	xvuwyt	7, v	6, v	3, x	6, x	6, x	8, x
6	xvuwytz	7, v	6, v	3, x	6, x	6, x	8, x

e. Using the routes generated above, compute the forwarding table for t, u, v and x.

Forwarding table for t

Destination	Cost	Next Hop
t	0	-
u	2	u
v	4	X
W	5	w
X	7	z
у	7	у
Z	15	Z

Forwarding table for u

Destination	Cost	Next Hop
t	2	t
u	0	-
v	3	X
W	3	W
X	6	Z
y	9	у
Z	14	Z

Forwarding table for v

Destination	Cost	Next Hop
t	4	t
u	3	u
v	0	-
W	4	W
X	3	z
у	8	у
Z	11	Z

Forwarding table for x

Destination	Cost	Next Hop
t	7	t
u	6	u
V	3	V
W	6	W
X	0	-
у	6	у
Z	8	Z

2. [5pts] Consider the network shown below. Compute the all pairs shortest paths between the nodes using the DVR algorithms. Provide calculations.

U U V W X Y	V U	V W	X Y	W	U	V	W	X	Y	X	U	V	W	X	Y	Y	U	V	W	X	Y
$U \mid 0 2 \infty \infty \infty$	U ∞	∞ ∞	∞ ∞	V	∞	∞	∞	∞	∞	V	8	∞	∞	∞	∞	X	8	∞	∞	∞	∞
$V \propto \infty \propto \infty \propto$	V 2	0 6	6 ∞	W	∞	6	0	5	∞	W	∞	∞	∞	∞	∞	Y	∞	∞	∞	7	0
	$\mathbf{W} \mid \infty$	∞ ∞	∞ ∞	X	∞	∞	∞	∞	∞	X	∞	6	5	0	7						
	$X \mid \infty$	∞ ∞	∞ ∞							Y	∞	∞	∞	∞	∞						
U U V W X Y	V U	V W	X Y	W	U	V	W	X	Y	X	U	V	W	X	Y	Y	U	V	W	X	Y
U 0 2 8 8 15	U 0	2 ∞	∞ ∞	V	2	0	6	6	∞	V	2	0	6	6	∞	X	8	6	5	0	7
V 2 0 6 6 ∞	V 2	0 6	6 13	W	8	6	0	5	12	W	∞	6	0	5	∞	Y	∞	13	12	7	0
·	\mathbf{W} ∞	6 0	5 ∞	X	∞	6	5	0	7	X	8	6	5	0	7						
	$X \mid \infty$	6 5	0 7							Y	∞	∞	∞	7	0						
U U V W X Y	V U	V W	X Y	W	U	V	W	X	Y	X	U	V	W	X	Y	Y	U	V	W	X	Y
U 0 2 8 8 15	U 0	2 8	8 ∞	V	2	0	6	6	13	V	2	0	6	6	13	X	8	6	5	0	7
V 2 0 6 6 13	V 2	0 6	6 13	W	8	6	0	5	12	W	8	6	0	5	12	Y	15	13	12	7	0
	W 8	6 0	5 12	X	8	6	5	0	7	X	8	6	5	0	7						
	$X \mid \infty$	6 5	0 7							Y	15	13	12	7	0						

3. (Ch 6: P18) [Extra credit 4pts] Suppose nodes A and B are on the same 10 Mbps broadcast channel, and the propagation delay between the two nodes is 325 bit times (A bit time is the time need to transmit a bit). Suppose CSMA/CD and Ethernet packets are used for this broadcast channel. Suppose node A begins transmitting a frame and, before it finishes, node B begins transmitting a frame. Can A finish transmitting before it detects that B has transmitted? Why or why not? If the answer is yes, then A incorrectly believes that its frame was successfully transmitted without a collision. Hint: Suppose at time t=0 bits, A begins transmitting a frame. In the worst case, A transmits a minimum-sized frame of 512 + 64 bit times. So A would finish transmitting the frame at t= 512 + 64 bit times. Thus, the answer is no, if B's signal reaches A before bit time t=512+64 bits. In the worst case, when does B's signal reach A?

Speed of the Ethernet bus = 10 Mbps

Propagation delay between node A and node B = 325 times

At t = 0 node A transmits the frame

At t = 576, node A completes transmitting the frame

Worst case: node B begins its transmission at time just before the first bit of node A arrives at node B (before time propagation delay). So, node B begins its transmission at time t = 324.

As propagation delay is 325 times, at time t 324 + 325 = 649, the first bit of node B arrives at node A.

Node A finishes its transmission before detecting that transmission by node B started. Node A believes incorrectly that the frame sent by node A is transmitted successfully without collision.