Lattice thermal conductivity for wurtzite AIN in phono3py

Relaxed a = 3.113 Ang and c = 4.9821 Ang

Supercell 5x5x2 : Finite difference method

- E refers to energy cutoff, KP refers to
- K-points grid used in force calculations
- within VASP.
- ALM is used to generate force constants.
- For Ecut 500 eV, and higher phonons frequency seems converge.

Supercell 5x5x3 : Finite difference method

- E refers to energy cutoff, KP refers to
- K-points grid used in force calculations
- within VASP.
- ALM is used to generate force constants.
- For Ecut 500 eV, and higher phonons frequency seems converge.

Comparison of different super cell sizes: Finite difference method

-SC552_E500eV_KP_332 -SC553_E500eV_KP_332

- Sc refers to supercell size, E refers to energy cutoff, KP refers to K-points grid used in force calculations within VASP.
- ALM is used to generate force constants.
- For Ecut 500 eV, and higher phonons frequency seems converge.
- For supercell 5x5x2 and 5x5x3 phonons are similar
- From here we take 5x5x3 as best supercell for 2nd order lfcs computation

3rd order IFCs

Here various combination of supercell and K-points are tested

- 3x3x2 supercell with Gamma point only
- 3x3x2 supercell with Kpoints 3x3x3 with G-centered mesh
- 3x3x2 supercell with Kpoints 2x2x2 with k-mesh shifted by (0,0,1/2)
- 4x4x2 supercell with Gamma point only
- 4x4x2 supercell with 3x3x3 with G-centered mesh
- 5x5x3 supercell with Gamma point only

- Here all possible interactions in the super-cell are included.
- Both 2nd and 3rd order IFCs are computed within finite difference method

Lattice thermal conductivity at 300K

Using tetrahedron method, without phonon-isotope scattering, non-analytical correction method: X. Gronze

Α	В	С	D	Е	F	G
2 nd Ifcs	3 rd IFCs	Q-mesh	Direct sol (300K)		RTA (300K)	
			kxx	kzz	kxx	kzz
552-KP-553	3x3x2 Gamma point-only	31x31x17	278.88	259.14	247.797	222.483
552-KP-553	332-KP333-G-centered	31x31x17	283.927	262.45	252.287	226.04
552-KP-553	332-KP222-(0,0,1/2) shifted	31x31x17	283.886	262.45	252.234	226.007
552-KP-553	442-Gamma point-only	31x31x17	290.152	267.851	259.406	231.23
553-KP-332	3x3x2 Gamma point-only	31x31x17	279.88	267.908	248.416	228.276
553-KP-332	332-KP333-G-centered	31x31x17	285.048	271.262	252.992	231.947
553-KP-332	332-KP222-(0,0,1/2) shifted	31x31x17	285.002	271.261	252.936	231.91
553-KP-332	442-Gamma point-only	31x31x17	291.211	276.495	260.105	237.201
553-KP-332	442-KP-222	31x31x17	291.17	276.812	259.217	237.179
553-KP-332	553-Gamma point-only	31x31x17	283.952	263.79	251.339	225.841