AMENDMENTS TO THE CLAIMS

Please amend claims 1, 12-14, 16, 20, 22, and 43 as follows, and cancelled claim 11. This listing of claims will replace all prior versions and listings of claims in the application.

1. (Currently amended) A pharmaceutical composition comprising a pharmaceutically effective amount of at least one insulin secretagogue and a pharmaceutically effective amount of at least one FBPase inhibitor, wherein said insulin secretagogue is selected from a group consisting of sulfonylurea antidiabetic agents and non-sulfonylurea antidiabetic agents, and the FBPase inhibitor is selected from the group consisting of formulae I and IA and pharmaceutically acceptable prodrugs and salts thereof, wherein formulae I and IA are as follows:

wherein in vivo or in vitro compounds of formulae I and IA are converted to M-PO₃²⁻, which inhibits FBPase, and wherein:

Y is independently selected from -O- and -NR⁶, with the provisos that:

when Y is -O-, the R¹ attached to -O- is independently selected from

-H, alkyl, optionally substituted aryl, optionally substituted alicyclic where the cyclic moiety contains a carbonate or a thiocarbonate, optionally substituted -arylalkyl,

-C(R²)₂OC(O)NR²₂, -NR²-C(O)-R³, -C(R²)₂-OC(O)R³, -C(R²)₂-O-C(O)OR³,

-C(R²)₂OC(O)SR³, -alkyl-S-C(O)R³, -alkyl-S-S-alkylhydroxy, and

-alkyl-S-S-alkylhydroxy;

when Y is -NR⁶-, the R¹ attached to -NR⁶- is independently selected from -H, - $[C(R^2)_2]_q$ -COOR³, - $C(R^4)_2$ COOR³, - $[C(R^2)_2]_q$ -C(O)SR, and -cycloalkylene-COOR³, where q is 1 or 2;

when only one Y is -O-, which -O- is not part of a cyclic group

containing the other Y, the other Y is -N(R¹⁸)-(CR¹²R¹³)-C(O)-R¹⁴; and

when Y is independently selected from -O- and -NR⁶, together R¹ and

R¹ are alkyl-S-S-alkyl- and form a cyclic group, or together, R¹ and R¹ form:

wherein

a) V is selected from the group of aryl, substituted aryl, heteroaryl, substituted heteroaryl, 1-alkynyl and 1-alkenyl; or

together V and Z are connected via an additional 3-5 atoms to form a cyclic group, optionally containing 1 heteroatom, said cyclic group is fused to an aryl group at the beta and gamma position to the Y adjacent to V; or

Z is selected from the group of $-CHR^2OH$, $-CHR^2OC(O)R^3$, $-CHR^2OC(S)R^3$, $-CHR^2OC(S)OR^3$, $-CHR^2$

together Z and W are connected via an additional 3-5 atoms to form a cyclic group, optionally containing one heteroatom, and V must be aryl, substituted aryl, heteroaryl, or substituted heteroaryl; or

W and W' are independently selected from the group of -H, alkyl, aralkyl, alicyclic, aryl, substituted aryl, heteroaryl, substituted heteroaryl, 1-alkenyl and 1-alkynyl; or

together W and W' are connected via an additional 2-5 atoms to form a cyclic group, optionally containing 0-2 heteroatoms, and V must be aryl, substituted aryl, heteroaryl, or substituted heteroaryl;

b) V², W² and W'' are independently selected from the group of -H, alkyl, aralkyl, alicyclic, aryl, substituted aryl, heteroaryl, substituted heteroaryl, 1-alkenyl, and 1-alkynyl;

 Z^2 is selected from the group of -CHR²OH, -CHR²OC(O)R³, -CHR²OC(S)R³, -CHR²OCO₂R³, -CHR²OC(O)SR³, -CHR²OC(S)OR³, -CH(aryl)OH, -CH(CH=CR²₂)OH, -CH(C≡CR²)OH, -SR², -CH₂NHaryl, -CH₂aryl; or

together V^2 and Z^2 are connected via an additional 3-5 atoms to form a cyclic group containing 5-7 ring atoms, optionally containing 1 heteroatom, and substituted with hydroxy, acyloxy, alkoxycarbonyloxy, or aryloxycarbonyloxy attached to a carbon atom that is three atoms from a Y attached to phosphorus;

c) Z' is selected from the group of -OH, -OC(O)R³, -OCO₂R³, and -OC(O)SR³;

D' is -H;

D" is selected from the group of -H, alkyl, -OR², -OH, and -OC(O)R³;

each W³ is independently selected from the group of -H, alkyl, aralkyl,

alicyclic, aryl, substituted aryl, heteroaryl, substituted heteroaryl, 1-alkenyl, and

1-alkynyl;

with the proviso that:

i) V, Z, W, W' are not all -H and V^2, Z^2, W^2, W'' are not all -H; and R^2 is selected from R^3 and -H;

R³ is selected from alkyl, aryl, alicyclic, and aralkyl;

each R⁴ is independently selected from the group of -H, alkylene, -alkylenearyl and aryl, or together R⁴ and R⁴ are connected via 2-6 atoms, optionally including one heteroatom selected from the group of O, N, and S;

R⁶ is selected from -H, lower alkyl, acyloxyalkyl, alkoxycarbonyloxyalkyl, and lower acyl;

n is an integer from 1 to 3;

 R^{18} is independently selected from H, lower alkyl, aryl, and aralkyl, or, together, R^{12} and R^{18} are connected via 1-4 carbon atoms to form a cyclic group;

each R¹² and each R¹³ is independently selected from H, lower alkyl, lower aryl, lower aralkyl, all optionally substituted, or R¹² and R¹³, together, are connected via 2-6 carbon atoms, optionally including 1 heteroatom selected from the group of O, N, and S, to form a cyclic group;

each R^{14} is independently selected from -OR¹⁷, -N(R^{17})₂, -NHR¹⁷, -SR¹⁷, and -NR² R^{20} ;

R¹⁵ is selected from -H, lower alkyl, lower aryl, and lower aralkyl, or, together, R¹⁵ and R¹⁶ are connected via 2-6 atoms to form a cyclic group, wherein the cyclic group optionally includes one heteroatom selected from O, N, and S;

R¹⁶ is selected from -(CR¹²R¹³)_n-C(O)-R¹⁴, -H, lower alkyl, lower aryl, and lower aralkyl, or, together, R¹⁵ and R¹⁶ are connected via 2-6 atoms to form a cyclic group, wherein the cyclic group optionally includes one heteroatom selected from O, N, and S;

each R¹⁷ is independently selected from lower alkyl, lower aryl, and lower aralkyl, or, when R¹⁴ is -N(R¹⁷)₂, together, both R¹⁷s are connected via 2-6 atoms to form a cyclic group, wherein the cyclic group optionally includes one heteroatom selected from O, N, and S;

 R^{20} is selected from the group of -H, lower R^3 , and -C(O)-lower R^3 ; and M is selected from the group consisting of

wherein:

U⁶ and V⁶ are independently selected from hydrogen, hydroxy, and acyloxy, or, when taken together, U⁶ and V⁶ form a lower cyclic ring containing at least one oxygen;

W⁶ is selected from amino and lower alkyl amino; and

Z⁶ is selected from alkyl and halogen;

wherein:

 A^2 is selected from -NR 8_2 , -NHSO₂R 3 , -OR 25 , -SR 25 , halogen, lower alkyl, -CON(R 4)₂, guanidine, amidine, -H, and perhaloalkyl;

E² is selected from -H, halogen, lower alkylthio, lower perhaloalkyl, lower alkyl, lower alkynyl, lower alkoxy, -CN, and -NR⁷₂;

X³ is selected from -alkyl(hydroxy)-; -alkyl-; -alkynyl-; -aryl-; -carbonyl-alkyl-; -1,1-dihaloalkyl-; -alkyloxy-; -alkylthioalkyl-; -alkylthio-; -alkylaminocarbonyl-; -alkylcarbonylamino-; -alicyclic-; -aralkyl-; -alkylaryl-; -alkoxycarbonyl-; -carbonyloxyalkyl-; -alkoxycarbonylamino-; and -alkylaminocarbonylamino-, all optionally substituted, with the proviso that X³ is not substituted with -COOR², -SO₃H, or -PO₃R²₂;

Y³ is selected from -H, alkyl, alkenyl, alkynyl, aryl, alicyclic, aralkyl, aryloxyalkyl, alkoxyalkyl, $-C(O)R^3$, $-S(O)_2R^3$, $-C(O)-R^{11}$, $-CONHR^3$, $-NR^2$, and $-OR^3$, all, except H, optionally substituted;

each R⁴ is independently selected from -H and alkyl, or, together, both R⁴s form a cyclic alkyl group;

R²⁵ is selected from lower alkyl, lower aryl, lower aralkyl, and lower alicyclic;

each R⁷ is independently selected from -H, lower alkyl, lower alicyclic, lower aralkyl, lower aryl, and -C(O)R¹⁰;

each R⁸ is independently selected from -H, lower alkyl, lower aralkyl, lower aryl, lower alicyclic, -C(O)R¹⁰, or, together, both R⁸s form a bidendate alkyl;

 $\underline{R^{10}}$ is selected from -H, lower alkyl, -NH₂, lower aryl, and lower perhaloalkyl; and $\underline{R^{11}}$ is selected from alkyl, aryl, -NR²₂, and -OR²;

$$-x^3 - x^3 - x^3$$

wherein:

A, E, and L are independently selected from -NR⁸₂, -NO₂, -H, -OR⁷, -SR⁷, -C(O)NR₂, halo, -COR¹¹, -SO₂R³, guanidine, amidine, -NHSO₂R²⁵, -SO₂NR⁴₂, -CN, sulfoxide, perhaloacyl, perhaloalkyl, perhaloalkoxy, C₁-C₅ alkyl, C₂-C₅ alkenyl, C₂-C₅ alkynyl, and lower alicyclic, or, together, A and L form a cyclic group, or, together, L and E form a cyclic group, or, together, E and J form a cyclic group selected from the group of aryl, cyclic alkyl, and heterocyclic;

J is selected from -NR⁸₂, -NO₂, -H, -OR⁷, -SR⁷, -C(O)NR⁴₂, halo,

-C(O)R¹¹, -CN, sulfonyl, sulfoxide, perhaloalkyl, hydroxyalkyl, perhaloalkoxy, alkyl, haloalkyl,
aminoalkyl, alkenyl, alkynyl, alicyclic, aryl, and aralkyl, or, together, J and Y form a cyclic group
selected from the group of aryl, cyclic alkyl, and heterocyclic alkyl;

X³ is selected from -alkyl(hydroxy)-; -alkyl-; -alkynyl-; -aryl-; -carbonyl-alkyl-; -1,1-dihaloalkyl-; -alkoxyalkyl-; -alkyloxy-; -alkylthioalkyl-; -alkylthio-; -alkylaminocarbonyl-; -alkylcarbonylamino-; -alicyclic-; -aralkyl-; -alkylaryl-; -alkoxycarbonyl-; -carbonyloxyalkyl-; -alkoxycarbonylamino-; and -alkylaminocarbonylamino-, all optionally substituted, with the proviso that X³ is not substituted with -COOR², -SO₃H, or -PO₃R²₂;

 $\underline{Y^3}$ is selected from -H, alkyl, alkenyl, alkynyl, aryl, alicyclic, aralkyl, aryloxyalkyl, alkoxyalkyl, -C(O)R³, -S(O)₂R³, -C(O)-R¹¹, -CONHR³, -NR²₂, and -OR³, all except H are optionally substituted;

each R⁴ is independently selected from –H and alkyl, or, together, both R⁴s form a cyclic alkyl group;

 R^{25} is selected from lower alkyl, lower aryl, lower aralkyl, and lower alicyclic; each R^7 is independently selected from -H, lower alkyl, lower alicyclic, lower aralkyl, lower aryl, and -C(O) R^{10} ;

each R⁸ is independently selected from -H, lower alkyl, lower aralkyl, lower aryl, lower alicyclic, -C(O)R¹⁰, or, together, both R⁸s form a bidendate alkyl;

 $\underline{R^{10}}$ is selected from -H, lower alkyl, -NH₂, lower aryl, and lower perhaloalkyl; and $\underline{R^{11}}$ is selected from alkyl, aryl, -NR²₂, and -OR²;

wherein:

 B^5 is selected from -NH-, -N= and -CH=;

 \underline{D}^5 is selected from $\underline{-C}$ and $\underline{-N}$;

 Q^5 is selected from -C= and -N-;

with the provisos that:

when
$$B^5$$
 is -NH-, Q^5 is -C= and D^5 is —C=;
when B^5 is -CH=, Q^5 is -N- and D^5 is —C=; and
when B^5 is -N=, D^5 is —N— and Q^5 is -C=;

A, E, and L are independently selected from -NR⁸₂, -NO₂, -H, -OR⁷, -SR⁷,

-C(O)NR⁴₂, halo, -COR¹¹, -SO₂R³, guanidine, amidine, -NHSO₂R²⁵, -SO₂NR⁴₂, -CN, sulfoxide,

perhaloacyl, perhaloalkyl, perhaloalkoxy, C₁-C₅ alkyl, C₂-C₅ alkenyl, C₂-C₅ alkynyl, and lower

alicyclic, or, together, A and L form a cyclic group, or, together, L and E form a cyclic group, or,

together, E and J form a cyclic group selected from the group of aryl, cyclic alkyl, and heterocyclic;

J is selected from -NR⁸₂, -NO₂, -H, -OR⁷, -SR⁷, -C(O)NR⁴₂, halo, -C(O)R¹¹,

-CN, sulfonyl, sulfoxide, perhaloalkyl, hydroxyalkyl, perhaloalkoxy, alkyl, haloalkyl, aminoalkyl,
alkenyl, alkynyl, alicyclic, aryl, and aralkyl, or together with Y forms a cyclic group selected from
the group of aryl, cyclic alkyl and heterocyclic alkyl;

X³ is selected from -alkyl(hydroxy)-, -alkyl-, -alkynyl-, -aryl-, -carbonyl-alkyl-, -1,1-dihaloalkyl-, -alkoxyalkyl-, -alkyloxy-, -alkylthioalkyl-, -alkylthio-, -alkylaminocarbonyl-, -alkylcarbonylamino-, -alicyclic-, -aralkyl-, -alkylaryl-, -alkoxycarbonyl-, -carbonyloxyalkyl-,

-alkoxycarbonylamino-, and -alkylaminocarbonylamino-, all optionally substituted; with the proviso that X³ is not substituted with -COOR², -SO₃H, or -PO₃R²₂;

 \underline{Y}^3 is selected from -H, alkyl, alkenyl, alkynyl, aryl, alicyclic, aralkyl, aryloxyalkyl, alkoxyalkyl, -C(O)R³, -S(O)₂R³, -C(O)-R¹¹, -CONHR³, -NR²₂, and -OR³, all except H are optionally substituted;

R⁴ is independently selected from -H and alkyl, or together R⁴ and R⁴ form a cyclic alkyl group;

 R^{25} is selected from lower alkyl, lower aryl, lower aralkyl, and lower alicyclic; R^7 is independently selected from -H, lower alkyl, lower alicyclic, lower aralkyl, lower aryl, and -C(O) R^{10} ;

 R^8 is independently selected from -H, lower alkyl, lower aralkyl, lower aryl, lower alkyl, lower aryl, lower alkyl; alicyclic, -C(O) R^{10} , or together they form a bidentate alkyl;

 R^{10} is selected from -H, lower alkyl, -NH₂, lower aryl, and lower perhaloalkyl; R^{11} is selected from alkyl, aryl, -NR²₂ and -OR³;

wherein:

each G is independently selected from C, N, O, S, and Se, and wherein not more than one G is O, S, or Se, and not more than one G is N;

each G' is independently selected from C and N and wherein no more than two G' groups are N;

A is selected from -H, -NR⁴₂, -CONR⁴₂, -CO₂R³, halo, -S(O)R³, -SO₂R³, alkyl, alkenyl, alkynyl, perhaloalkyl, haloalkyl, aryl, -CH₂OH, -CH₂NR⁴₂, -CH₂CN, -CN, -C(S)NH₂, -OR³, -SR³, -N₃, -NHC(S)NR⁴₂, -NHAc, and null;

each B and D are independently selected from -H, alkyl, alkenyl, alkynyl, aryl, alicyclic, aralkyl, alkoxyalkyl, -C(O)R¹¹, -C(O)SR³, -SO₂R¹¹, -S(O)R³, -CN, -NR⁹₂, -OR³, -SR³, perhaloalkyl, halo, -NO₂, and null, all except -H, -CN, perhaloalkyl, -NO₂, and halo are optionally substituted;

E is selected from -H, alkyl, alkenyl, alkynyl, aryl, alicyclic, alkoxyalkyl, -C(O)OR³, -CONR⁴₂, -CN, -NR⁹₂, -NO₂, -OR³, -SR³, perhaloalkyl, halo, and null, all except -H, -CN, perhaloalkyl, and halo are optionally substituted;

<u>J is selected from -H and null;</u>

X is an optionally substituted linking group that links R⁵ to the phosphorus atom via 2-4 atoms, including 0-1 heteroatoms selected from N, O, and S, except that if X is urea or carbamate there are 2 heteroatoms, measured by the shortest path between R⁵ and the phosphorus atom, and wherein the atom attached to the phosphorus is a carbon atom, and wherein X is selected from furan-2,5-diyl, -alkyl(hydroxy)-, -alkynyl-, -heteroaryl-, -carbonylalkyl-, -1,1-dihaloalkyl-, -alkoxyalkyl-, -alkyloxy-, -alkylthioalkyl-, -alkyl-, -thio-, -alkylaminocarbonyl-, -alkylcarbonylamino-, -alkoxycarbonyl-, -carbonyloxyalkyl-, -alkoxycarbonylamino-, and -alkylaminocarbonylamino-, all optionally substituted; with the proviso that X is not substituted with -COOR², -SO₃H, or -PO₃R²₂;

R² is selected from R³ and -H;

R³ is selected from alkyl, aryl, alicyclic, and aralkyl;

each R⁴ is independently selected from -H, and alkyl, or together R⁴ and R⁴ form a cyclic alkyl group;

each R⁹ is independently selected from -H, alkyl, aralkyl, and alicyclic, or together R⁹ and R⁹ form a cyclic alkyl group or a heterocyclic group where the heteroatom is selected from the group of O,S and N;

 R^{11} is selected from alkyl, aryl, $-NR^2_2$, and $-OR^2$; and with the proviso that:

- 1) when G' is N, then the respective A, B, D, or E is null;
- 2) at least one of A and B, or A, B, D, and E is not selected from -H or null;
- 3) when R⁵ is a six-membered ring, then X is not any 2 atom linker, an optionally substituted -alkyloxy-, or an optionally substituted -alkylthio-;
- 4) when G is N, then the respective A or B is not halogen or a group directly bonded to G via a heteroatom;
- 5) when X is not an -aryl- group, then R⁵ is not substituted with two or more aryl groups;

and
$$A^2$$

$$-X^2 - L^2$$

wherein:

G" is selected from -O- and -S-;

 A^2 , L^2 , E^2 , and J^2 are selected from $-NR_2^4$, $-NO_2$, -H, $-OR^2$, $-SR^2$, $-C(O)NR_2^4$, halo, $-COR^{11}$, $-SO_2R^3$, guanidinyl, amidinyl, aryl, aralkyl, alkoxyalkyl, -SCN, $-NHSO_2R^9$, $-SO_2NR_2^4$, -CN, $-S(O)R^3$, perhaloacyl, perhaloalkyl, perhaloalkoxy, C_1 - C_5 alkyl, C_2 - C_5 alkenyl, C_2 - C_5 alkynyl, and lower alicyclic, or together L^2 and E^2 or E^2 and J^2 form an annulated cyclic group;

 X^2 is selected from -CR 2_2 -, -CF $_2$ -, -CR 2_2 -O-, -CR 2_2 -S-, -C(O)-O-, -C(O)-S-, -C(S)-O-, and -CR 2_2 -NR 19 -, and wherein in the atom attached to the phosphorus is a carbon atom; with the proviso that X^2 is not substituted with -COOR 2 , -SO $_3$ H, or -PO $_3$ R 2_2 ;

 R^2 is selected from R^3 and -H;

R³ is selected from alkyl, aryl, alicyclic, and aralkyl;

each R⁴ is independently selected from -H, and alkyl, or together R⁴ and R⁴ form a cyclic alkyl group;

each R⁹ is independently selected from -H, alkyl, aralkyl, and alicyclic, or together R⁹ and R⁹ form a cyclic alkyl group;

R¹¹ is selected from alkyl, aryl, -NR²₂, and -OR²;

R¹⁹ is selected from lower alkyl, -H, and -COR².

2. (Original) The pharmaceutical composition of claim 1 wherein said insulin secretagogue is a sulfonylurea antidiabetic agent.

3. (Original) The pharmaceutical composition of claim 2 wherein said sulfonylurea antidiabetic agent is a compound of formula XV:

wherein

A is selected from hydrogen, halo, alkyl, alkanoyl, aryl, aralkyl, heteroaryl, and cycloalkyl; and

B is selected from alkyl, cycloalkyl, and heterocyclic alkyl.

- 4. (Original) The pharmaceutical composition of claim 2 wherein said sulfonylurea antidiabetic agent is selected from glyburide, glisoxepid, acetohexamide, chlorpropamide, glibornuride, tolbutamide, tolazamide, glipizide, gliclazide, gliquidone, glyhexamide, phenbutamide, tolcyclamide, and glimepiride.
- 5. (Original) The pharmaceutical composition of claim 1 wherein said insulin secretagogue is a non-sulfonylurea.
 - 6-10. (Previously withdrawn)
 - 11. (Currently withdrawn)

12. (Currently amended) The pharmaceutical composition of claim <u>11 1</u> wherein

M is:

$$-0.$$

$$Z^{6}$$

$$Z^{6}$$

wherein:

 U^6 and V^6 are independently selected from hydrogen, hydroxy, and acyloxy, or, when taken together, U^6 and V^6 form a lower cyclic ring containing at least one oxygen;

W⁶ is selected from amino and lower alkyl amino; and

Z⁶ is selected from alkyl and halogen.

13. (Currently amended) The pharmaceutical composition of claim 11 1 wherein said insulin secretagogue is a sulfonylurea antidiabetic agent.

14. (Currently amended) The pharmaceutical composition of claim 11 1 wherein

M is:

$$X^3$$
 X^3
 X^3
 X^3
 X^3
 X^4
 X^4

wherein:

 A^2 is selected from -NR 8_2 , -NHSO $_2$ R 3 , -OR 25 , -SR 25 , halogen, lower alkyl, -CON(R 4) $_2$, guanidine, amidine, -H, and perhaloalkyl;

E² is selected from -H, halogen, lower alkylthio, lower perhaloalkyl, lower alkyl, lower alkynyl, lower alkoxy, -CN, and -NR⁷₂;

 X^3 is selected from -alkyl(hydroxy)-; -alkyl-; -alkynyl-; -aryl-; -carbonyl-alkyl-; -1,1-dihaloalkyl-; -alkoxyalkyl-; -alkyloxy-; -alkylthioalkyl-; -alkylthio-; -alkylaminocarbonyl-; -alkylcarbonylamino-; -alicyclic-; -aralkyl-; -alkylaryl-; -alkoxycarbonyl-; -carbonyloxyalkyl-; -alkoxycarbonylamino-; and -alkylaminocarbonylamino-, all optionally substituted, with the proviso that X^3 is not substituted with -COOR 2 , -SO $_3$ H, or -PO $_3$ R 2_2 ;

 Y^3 is selected from -H, alkyl, alkenyl, alkynyl, aryl, alicyclic, aralkyl, aryloxyalkyl, alkoxyalkyl, -C(O)R³, -S(O)₂R³, -C(O)-R¹¹, -CONHR³, -NR²₂, and -OR³, all, except H, optionally substituted;

each R⁴ is independently selected from -H and alkyl, or, together, both R⁴s form a cyclic alkyl group;

 R^{25} is selected from lower alkyl, lower aryl, lower aralkyl, and lower alicyclic; each R^7 is independently selected from -H, lower alkyl, lower alicyclic, lower aralkyl, lower aryl, and -C(O) R^{10} ;

each R^8 is independently selected from -H, lower alkyl, lower aralkyl, lower aryl, lower alicyclic, -C(O) R^{10} , or, together, both R^8 s form a bidendate alkyl;

 R^{10} is selected from -H, lower alkyl, -NH₂, lower aryl, and lower perhaloalkyl; R^{11} is selected from alkyl, aryl, -NR²₂, and -OR²;

and pharmaceutically acceptable prodrugs and salts thereof.

15. (Original) The pharmaceutical composition of claim 14 wherein said insulin secretagogue is a sulfonylurea antidiabetic agent.

16. (Currently amended) The pharmaceutical composition of claim 11 1 wherein M is:

wherein:

A, E, and L are independently selected from -NR⁸₂, -NO₂, -H, -OR⁷, -SR⁷, -C(O)NR⁴₂, halo, -COR¹¹, -SO₂R³, guanidine, amidine, -NHSO₂R²⁵, -SO₂NR⁴₂, -CN, sulfoxide, perhaloacyl, perhaloalkyl, perhaloalkoxy, C₁-C₅ alkyl, C₂-C₅ alkenyl, C₂-C₅ alkynyl, and lower alicyclic, or, together, A and L form a cyclic group, or, together, L and E form a cyclic group, or, together, E and J form a cyclic group selected from the group of aryl, cyclic alkyl, and heterocyclic;

J is selected from -NR⁸₂, -NO₂, -H, -OR⁷, -SR⁷, -C(O)NR⁴₂, halo, -C(O)R¹¹, -CN, sulfonyl, sulfoxide, perhaloalkyl, hydroxyalkyl, perhaloalkoxy, alkyl, haloalkyl, aminoalkyl, alkenyl, alkynyl, alicyclic, aryl, and aralkyl, or, together, J and Y form a cyclic group selected from the group of aryl, cyclic alkyl, and heterocyclic alkyl;

X³ is selected from -alkyl(hydroxy)-; -alkyl-; -alkynyl-; -aryl-; -carbonyl-alkyl-; -1,l-dihaloalkyl-; -alkoxyalkyl-; -alkyloxy-; -alkylthioalkyl-; -alkylthio-; -alkylaminocarbonyl-; -alkylcarbonylamino-; -alicyclic-; -aralkyl-; -alkylaryl-; -alkoxycarbonyl-; -carbonyloxyalkyl-; -alkoxycarbonylamino-; and -alkylaminocarbonylamino-, all optionally substituted, with the proviso that X³ is not substituted with -COOR², -SO₃H, or -PO₃R²₂;

 Y^3 is selected from -H, alkyl, alkenyl, alkynyl, aryl, alicyclic, aralkyl, aryloxyalkyl, alkoxyalkyl, -C(O)R³, -S(O)₂R³, -C(O)-R¹¹, -CONHR³, -NR²₂, and -OR³, all except H are optionally substituted;

each R⁴ is independently selected from -H and alkyl, or, together, both R⁴s form a cyclic alkyl group;

 R^{25} is selected from lower alkyl, lower aryl, lower aralkyl, and lower alicyclic; each R^7 is independently selected from -H, lower alkyl, lower alicyclic, lower aralkyl, lower aryl, and -C(O) R^{10} ;

each R^8 is independently selected from -H, lower alkyl, lower aralkyl, lower aryl, lower alicyclic, -C(O) R^{10} , or, together, both R^8 s form a bidendate alkyl;

 R^{10} is selected from -H, lower alkyl, -NH₂, lower aryl, and lower perhaloalkyl; and R^{11} is selected from alkyl, aryl, -NR²₂, and -OR²; and pharmaceutically acceptable prodrugs and salts thereof.

17. (Original) The pharmaceutical composition of claim 16 wherein said insulin secretagogue is a sulfonylurea antidiabetic agent.

18. (Original) The pharmaceutical composition of claim 17 wherein said sulfonylurea antidiabetic agent is selected from glyburide, glisoxepid, acetohexamide, chlorpropamide, glibornuride, tolbutamide, tolazamide, glipizide, gliclazide, gliquidone, glyhexamide, phenbutamide, tolcyclamide, and glimepiride.

19. (Previously withdrawn)

20. (Currently amended) The pharmaceutical composition of claim 41 1 wherein M is:

$$X^3$$
 Q^5
 D^5
 E

wherein:

B⁵ is selected from -NH-, -N= and -CH=;

$$D^5$$
 is selected from $-C = and -N - ;$

Q⁵ is selected from -C= and -N-;

with the provisos that:

when B⁵ is -NH-, Q⁵ is -C= and D⁵ is
$$-C=$$
;

when B⁵ is -CH=, Q⁵ is -N- and D⁵ is
$$-C=$$
; and when B⁵ is -N=, D⁵ is $-N=$ and Q⁵ is -C=;

A, E, and L are independently selected from -NR⁸₂, -NO₂, -H, -OR⁷, -SR⁷,

-C(O)NR⁴₂, halo, -COR¹¹, -SO₂R³, guanidine, amidine, -NHSO₂R²⁵, -SO₂NR⁴₂, -CN, sulfoxide,
perhaloacyl, perhaloalkyl, perhaloalkoxy, C₁-C₅ alkyl, C₂-C₅ alkenyl, C₂-C₅ alkynyl, and lower
alicyclic, or, together, A and L form a cyclic group, or, together, L and E form a cyclic group, or,
together, E and J form a cyclic group selected from the group of aryl, cyclic alkyl, and heterocyclic;

J is selected from -NR⁸₂, -NO₂, -H, -OR⁷, -SR⁷, -C(O)NR⁴₂, halo, -C(O)R¹¹,
-CN, sulfonyl, sulfoxide, perhaloalkyl, hydroxyalkyl, perhaloalkoxy, alkyl, haloalkyl, aminoalkyl, alkenyl, alkynyl, alicyclic, aryl, and aralkyl, or together with Y forms a cyclic group selected from the group of aryl, cyclic alkyl and heterocyclic alkyl;

 X^3 is selected from -alkyl(hydroxy)-, -alkyl-, -alkynyl-, -aryl-, -carbonyl-alkyl-, -1,1-dihaloalkyl-, -alkoxyalkyl-, -alkyloxy-, -alkylthioalkyl-, -alkylthio-, -alkylaminocarbonyl-, -alkylcarbonylamino-, -alicyclic-, -aralkyl-, -alkylaryl-, -alkoxycarbonyl-, -carbonyloxyalkyl-, -alkoxycarbonylamino-, and -alkylaminocarbonylamino-, all optionally substituted; with the proviso that X^3 is not substituted with -COOR 2 , -SO $_3$ H, or -PO $_3$ R 2_2 ;

 Y^3 is selected from -H, alkyl, alkenyl, alkynyl, aryl, alicyclic, aralkyl, aryloxyalkyl, alkoxyalkyl, -C(O)R³, -S(O)₂R³, -C(O)-R¹¹, -CONHR³, -NR²₂, and -OR³, all except H are optionally substituted;

R⁴ is independently selected from -H and alkyl, or together R⁴ and R⁴ form a cyclic alkyl group;

R²⁵ is selected from lower alkyl, lower aryl, lower aralkyl, and lower alicyclic;

 R^7 is independently selected from -H, lower alkyl, lower alicyclic, lower aralkyl, lower aryl, and -C(O) R^{10} ;

 R^8 is independently selected from -H, lower alkyl, lower aralkyl, lower aryl, lower alicyclic, -C(O) R^{10} , or together they form a bidentate alkyl;

 R^{10} is selected from -H, lower alkyl, -NH₂, lower aryl, and lower perhaloalkyl; R^{11} is selected from alkyl, aryl, -NR²₂ and -OR³; and pharmaceutically acceptable prodrugs and salts thereof.

21. (Original) The pharmaceutical composition of claim 20 wherein said insulin secretagogue is a sulfonylurea antidiabetic agent.

22. (Currently amended) The pharmaceutical composition of claim 11 wherein M is -X-R⁵ wherein R⁵ is selected from:

wherein:

each G is independently selected from C, N, O, S, and Se, and wherein not more than one G is O, S, or Se, and not more than one G is N;

each G' is independently selected from C and N and wherein no more than two G' groups are N;

A is selected from -H, -NR 4 ₂, -CONR 4 ₂, -CO₂R 3 , halo, -S(O)R 3 , -SO₂R 3 , alkyl, alkenyl, alkynyl, perhaloalkyl, haloalkyl, aryl, -CH₂OH, -CH₂NR 4 ₂, -CH₂CN, -CN, -C(S)NH₂, -OR 3 , -SR 3 , -N₃, -NHC(S)NR 4 ₂, -NHAc, and null;

each B and D are independently selected from -H, alkyl, alkenyl, alkynyl, aryl, alicyclic, aralkyl, alkoxyalkyl, -C(O)R¹¹, -C(O)SR³, -SO₂R¹¹, -S(O)R³, -CN, -NR⁹₂, -OR³, -SR³, perhaloalkyl, halo, -NO₂, and null, all except -H, -CN, perhaloalkyl, -NO₂, and halo are optionally substituted;

E is selected from -H, alkyl, alkenyl, alkynyl, aryl, alicyclic, alkoxyalkyl, -C(O)OR³, -CONR⁴₂, -CN, -NR⁹₂, -NO₂, -OR³, -SR³, perhaloalkyl, halo, and null, all except -H, -CN, perhaloalkyl, and halo are optionally substituted;

J is selected from -H and null;

X is an optionally substituted linking group that links R⁵ to the phosphorus atom via 2-4 atoms, including 0-1 heteroatoms selected from N, O, and S, except that if X is urea or carbamate there are 2 heteroatoms, measured by the shortest path between R⁵ and the phosphorus atom, and wherein the atom attached to the phosphorus is a carbon atom, and wherein X is selected from furan-2,5-diyl, -alkyl(hydroxy)-, -alkynyl-, -heteroaryl-, -carbonylalkyl-, -1,1-dihaloalkyl-, -alkoxyalkyl-, -alkyloxy-, -alkylthioalkyl-, -alkyl-, -thio-, -alkylaminocarbonyl-, -alkylcarbonylamino-, -alkoxycarbonyl-, -carbonyloxyalkyl-, -alkoxycarbonylamino-, and -alkylaminocarbonylamino-, all optionally substituted; with the proviso that X is not substituted with -COOR². -SO₃H, or -PO₃R²₂:

R² is selected from R³ and -H;

R³ is selected from alkyl, aryl, alicyclic, and aralkyl;

each R⁴ is independently selected from -H, and alkyl, or together R⁴ and R⁴ form a cyclic alkyl group;

each R^9 is independently selected from -H, alkyl, aralkyl, and alicyclic, or together R^9 and R^9 form a cyclic alkyl group or a heterocyclic group where the heteroatom is selected from the group of O,S and N;

R¹¹ is selected from alkyl, aryl, -NR²₂, and -OR²; and with the proviso that:

- 1) when G' is N, then the respective A, B, D, or E is null;
- 2) at least one of A and B, or A, B, D, and E is not selected from -H or null;
- when R⁵ is a six-membered ring, then X is not any 2 atom linker, an optionally substituted -alkyloxy-, or an optionally substituted -alkylthio-;
- 4) when G is N, then the respective A or B is not halogen or a group directly bonded to G via a heteroatom;
- 5) when X is not an -aryl- group, then R⁵ is not substituted with two or more aryl groups;

and pharmaceutically acceptable prodrugs and salts thereof.

23. (Original) The pharmaceutical compositions of claim 22 wherein R⁵ is selected from pyrrolyl; imidazolyl; oxazolyl; thiazolyl; isothiazolyl; 1,2,4-thiadiazolyl; pyrazolyl; isoxazolyl; 1,2,3-oxadiazolyl; 1,2,4-oxadiazolyl; 1,2,4-thiadiazolyl;

- 1,3,4-thiadiazolyl; pyridinyl; pyrimidinyl; pyrazinyl; pyridazinyl; 1,3,5-triazinyl; 1,2,4-triazinyl; and 1,3-selenazolyl, all of which contain at least one substituent.
- 24. (Original) The pharmaceutical composition of claim 22 wherein R⁵ is not 2-thiazolyl or 2-oxazolyl.
- 25. (Original) The pharmaceutical composition of claim 22 wherein R⁵ is selected from the group of:

wherein:

A" is selected from -H, -NR 4 ₂, -CONR 4 ₂, -CO₂R 3 , halo, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ perhaloalkyl, C₁-C₆ haloalkyl, aryl, -CH₂OH, -CH₂NR 4 ₂, -CH₂CN, -CN, -C(S)NH₂, -OR 3 , -SR 3 , -N₃, -NHC(S)NR 4 ₂, and -NHAc;

B" and D" are independently selected from -H, alkyl, alkenyl, alkynyl, aryl, alicyclic, aralkyl, alkoxyalkyl, $-C(O)R^{11}$, $-C(O)SR^3$, $-SO_2R^{11}$, $-S(O)R^3$, -CN, $-NR^9_2$, $-OR^3$, $-SR^3$, perhaloalkyl, and halo, all except -H, -CN, perhaloalkyl, and halo are optionally substituted;

E" is selected from -H, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_4 - C_6 alicyclic, alkoxyalkyl, -C(O)OR³, -CONR⁴₂, -CN, -NR⁹₂, -OR³, -SR³, C_1 - C_6 perhaloalkyl, and halo, all except H, -CN, perhaloalkyl, and halo are optionally substituted; and

each R^3 is independently selected from C_1 – C_6 alkyl, C_6 aryl, C_3 – C_6 heteroaryl, C_3 – C_8 alicyclic, C_2 – C_7 heteroalicyclic, C_7 – C_{10} aralkyl, and C_4 – C_9 heteroaralkyl;

each R^4 and R^9 is independently selected from -H and C_1 - C_2 alkyl;

X is selected from -heteroaryl-, -alkylcarbonylamino-, -alkylaminocarbonyl-, and -alkoxycarbonyl-;

each R^{11} is selected from -NR 4_2 , -OH, -OR 3 , C_1 -C $_6$ alkyl, C_6 aryl, and C_3 -C $_6$ heteroaryl.

26. (Original) The pharmaceutical composition of claim 25 wherein X is selected from -heteroaryl- and -alkoxycarbonyl-.

27. (Original) The pharmaceutical composition of claim 25 wherein said compound is a compound of formulae XII, XIII, or XIV:

$$R^{14}$$
— $C(0)$ — $(CR^{12}R^{13})_n$ — N — P — R^5
 $NR^{15}R^{16}$
(XII)

$$R^{14}$$
— $C(O)$ - $(CR^{12}R^{13})_n$ — N - P — CH_2 - NH - C - R^5
 $NR^{15}R^{16}$
(XIII)

$$R^{14}$$
— $C(O)$ — $(CR^{12}R^{13})_n$ - N — P — CH_2 - $O\cdot C\cdot R^5$
 $NR^{15}R^{16}$ (XIV).

28. (Original) The pharmaceutical composition of claim 25 wherein:

A" is selected from -NH₂, -Cl, -Br, and -CH₃;

each B" is selected from -H, -C(O)OR 3 , -C(O)SR 3 , C1-C6 alkyl, alicyclic, halo, heteroaryl, and -SR 3 ;

D" is selected from -H, -C(O)OR³, lower alkyl, alicyclic, and halo; and E" is selected from -H, -Br, and -Cl.

29. (Original) The pharmaceutical composition of claim 27 wherein: R^{18} is selected from -H, methyl, and ethyl;

each R¹² and R¹³ is independently selected from -H, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, -CH₂CH₂-SCH₃, phenyl, and benzyl, or together R¹² and R¹³ are connected via a chain of 2-5 carbon atoms to form a cycloalkyl group;

n is 1 or 2;

each R^{14} is independently selected from -OR¹⁷, wherein R^{17} is selected from methyl, ethyl, propyl, and benzyl; and

 R^{15} and R^{16} are independently selected from lower alkyl and lower aralkyl, or together R^{15} and R^{16} are connected via a chain of 2-6 atoms, optionally including 1 heteroatom selected from O, N, and S.

30. (Original) The pharmaceutical composition of claim 27 wherein R^{16} is -(CR $^{12}R^{13}$)_n-C(O)-R 14 .

31. (Original) The pharmaceutical composition of claim 27 wherein:

R¹⁸ is selected from -H, methyl, and ethyl;

R¹² and R¹³ are independently selected from -H, methyl, i-propyl, i-butyl, and benzyl, or together are connected via a chain of 2-5 carbon atoms to form a cycloalkyl group;

$$R^{14}$$
 is $-OR^{17}$;

R¹⁷ is selected from methyl, ethyl, propyl, t-butyl, and benzyl; and

 R^{15} and R^{16} are independently selected from lower alkyl, and lower aralkyl, or together R^{15} and R^{16} are connected via a chain of 2-6 atoms, optionally including 1 heteroatom selected from O, and N.

32. (Original) The pharmaceutical composition of claim 22 wherein said FBPase inhibitor is a compound of the formula:

wherein X is selected from furan-2,5-diyl; -alkoxycarbonyl-; and -alkylaminocarbonyl-.

33. (Original) The pharmaceutical composition of claim 32 wherein:

n is 1;

 R^{12} and R^{13} are independently selected from -H, methyl, i-propyl, i-butyl, and benzyl, or, together, R^{12} and R^{13} are connected via a chain of 2-5 carbon atoms to form a cycloalkyl group, and, when R^{12} and R^{13} are not the same, $H_2N-CR^{12}R^{13}-C(O)-R^{14}$ is an ester or thioester of a naturally occurring amino acid;

R¹⁴ is selected from -OR¹⁷ and -SR¹⁷;

 R^{17} is selected from methyl, ethyl, propyl, t-butyl, and benzyl; and R^{18} is selected from -H, methyl, and ethyl.

34. (Original) The pharmaceutical composition of claim 25 wherein:

R⁵ is:

 $A"\ is\ selected\ from\ -NH_2,\ -CONH_2,\ halo,\ -CH_3,\ -CF_3,\ -CH_2-halo,\ -CN,$ $-OCH_3,\ -SCH_3,\ and\ -H;$

B" is selected from -H, -C(O)R 11 , -C(O)SR 3 , alkyl, aryl, alicyclic, halo, -CN, -SR 3 , OR 3 , and -NR 9_2 ; and

X is selected from -heteroaryl-, -alkoxycarbonyl-, and -alkylaminocarbonyl-, all optionally substituted.

35. (Original) The pharmaceutical compositions of claim 34 wherein said FBPase inhibitor is a compound of Formula 1A and wherein:

is selected from

and

wherein:

C* has S stereochemistry;

R¹⁸ and R¹⁵ are independently selected from H and methyl;

each R^{12} and R^{13} is independently selected from -H, methyl, i-propyl, i-butyl, and benzyl, or together R^{12} and R^{13} are connected via a chain of 2-5 carbon atoms to form a cycloalkyl group;

n is 1;

 R^{14} is $-OR^{17}$:

 R^{16} is $-(CR^{12}R^{13})_n$ -C(O)- R^{14} ; and

R¹⁷ is selected from methyl, ethyl, propyl, phenyl, and benzyl.

36. (Original) The pharmaceutical composition of claim 34 wherein A" is -NH₂, X is furan-2,5-diyl, and B" is -S(CH₂)₂CH₃.

37. (Original) The pharmaceutical composition of claim 34 wherein A" is -NH₂, X is furan-2,5-diyl, and B" is -CH₂-CH(CH₃)₂.

38. (Original) The pharmaceutical composition of claim 37 wherein said FBPase inhibitor is a compound of Formula 1A and wherein

$$R^{14} - C - C - N - P - R^{15} R^{16}$$

$$R^{13} NR^{15}R^{16}$$

is

$$\begin{bmatrix} EtOOC & CH_3 & O \\ C & HN & P \\ CH_3 & 2 \end{bmatrix}$$

39. (Original) The pharmaceutical composition of claim 37 wherein said FBPase inhibitor is a compound of Formula 1A and wherein

is

$$\begin{bmatrix} EtOOC & C^* & HN \\ H & 2 \end{bmatrix}$$

wherein C* has S stereochemistry.

- 40. (Original) The pharmaceutical composition of claim 22 wherein said insulin secretagogue is a sulfonylurea antidiabetic agent.
- 41. (Original) The pharmaceutical composition of claim 40 wherein said sulfonylurea antidiabetic agent is selected from glyburide, glisoxepid, acetohexamide, chlorpropamide, glibornuride, tolbutamide, tolazamide, glipizide, gliclazide, gliquidone, glyhexamide, phenbutamide, tolcyclamide, and glimepiride.
- 42. (Original) The pharmaceutical composition of claim 22 wherein said insulin secretagogue is selected from mitiglinide, BTS-67582, repaglinide, nateglinide, dipeptidyl peptidase-IV (DPP-IV) inhibitors, and glucagon like peptide-1 (GLP-1) receptor agonists.
- 43. (Currently amended) The pharmaceutical composition of claim 11 1 wherein M is

wherein:

G" is selected from -O- and -S-;

 A^2 , L^2 , E^2 , and J^2 are selected from -NR 4 ₂, -NO₂, -H, -OR 2 , -SR 2 , -C(O)NR 4 ₂, halo, -COR 11 , -SO₂R 3 , guanidinyl, amidinyl, aryl, aralkyl, alkoxyalkyl, -SCN, -NHSO₂R 9 , -SO₂NR 4 ₂, -CN, -S(O)R 3 , perhaloacyl, perhaloalkyl, perhaloalkoxy, C₁-C₅ alkyl, C₂-C₅ alkenyl, C₂-C₅ alkynyl, and lower alicyclic, or together L^2 and E^2 or E^2 and J^2 form an annulated cyclic group;

 X^2 is selected from -CR 2_2 -, -CF $_2$ -, -CR 2_2 -O-, -CR 2_2 -S-, -C(O)-O-, -C(O)-S-, -C(S)-O-, and -CR 2_2 -NR 19 -, and wherein in the atom attached to the phosphorus is a carbon atom; with the proviso that X^2 is not substituted with -COOR 2 , -SO $_3$ H, or -PO $_3$ R 2_2 ;

R² is selected from R³ and -H;

R³ is selected from alkyl, aryl, alicyclic, and aralkyl;

each R^4 is independently selected from -H, and alkyl, or together R^4 and R^4 form a cyclic alkyl group;

each R^9 is independently selected from -H, alkyl, aralkyl, and alicyclic, or together R^9 and R^9 form a cyclic alkyl group;

R¹¹ is selected from alkyl, aryl, -NR²₂, and -OR²;
R¹⁹ is selected from lower alkyl, -H, and -COR²;

and pharmaceutically acceptable prodrugs and salts thereof.

44. (Original) The pharmaceutical composition of claim 43 wherein G" is -S-.

45. (Original) The pharmaceutical composition of claim 43 wherein said insulin secretagogue is a sulfonylurea antidiabetic agent.

46-114. (Previously withdrawn)