Langages Formels, Calculabilité, Complexité

Mickaël Thomazo Lucas Larroque

28 septembre 2023

1

Table des matières

Cours 1 28/09

1 Langages, Automates, RegExp, Monoïdes finis 1 Première partie Cours 1 28/09 Langages, Automates, RegExp, Monoïdes finis **Définition 1.0.1.** On appelle alphabet un ensemble fini Σ de lettres. On appelle mot une suite finie de lettres. On appelle langage un ensemble de mots **Définition 1.0.2.** On appelle automate sur l'alphabet Σ un graphe orienté dont les arêtes sont étiquetées par les lettres de l'alphabet Σ Formellement, c'est un quadruplet $A = (Q, \Sigma, I, F, \delta)$ ou : — Q est un ensemble fini d'états $-\Sigma$ est un alphabet $-I \subseteq Q$ $-F \subseteq Q$ $- \ \delta: Q \times \Sigma \to 2^Q$ Un calcul de A sur $w = a_0 \dots a_n$ est une séquence $q_0 \dots q_n$ telle que $q_0 \in I$, $\forall i \geq 1$, $q_i \in$ On appelle Langage reconnu par \mathcal{A} l'ensemble $\mathcal{L}(\mathcal{A}) = \{ w \in \Sigma^* \mid \exists q_0 \dots q_n \text{ calcul de } \mathcal{A} \text{ sur } w \text{ où } q_n \in F \}$ On dit que A est déterministe si : $- \forall q, a, |\delta(q, a)| \le 1$ - |I| = 1Définition 1.0.3. Une expression régulière est de la forme : $-a \in \Sigma$ — Ø $-r+r \ (+ \ d\acute{e}signe \ l'union : L_1+L_2 = \{w \in L_1 \cup L_2\})$ $-r \cdot r$ (· désigne la concaténation : $L_1 \cdot L_2 = \{w_1w_2 \mid w_1 \in L_1, w_2 \in L_2\}$) $- \ r^* \ (* \ d\text{\'e}signe \ l\text{\'e}toile \ de \ Kleene, \ L^* = \left\{ \underbrace{\bigcirc}_{w \in s} w \ \mid \ s \in \bigcup_{n \in \mathbb{N}} L^n \right\})$

Définition 1.0.4 (Automate des Parties). On pose, si $A = (Q, \Sigma, I, F, \delta)$ est un automate :

$$-\hat{Q} = 2^Q = \{q_S \mid S \subset Q\}$$

- $-\hat{I} = \{q_I\}$
- $-\hat{F} = \{q_S \mid S \cap F \neq \varnothing\}$

$$-- \hat{\delta}(q_S, a) = \{q_{S'}\} \ avec \ S' = \bigcup_{q \in S} \delta(q, a)$$

Alors, $\hat{\mathcal{A}} = (\hat{Q}, \Sigma, \hat{I}, \hat{F}, \hat{\delta})$ est un automate déterministe reconnaissant $\mathcal{L}(\mathcal{A})$

Démonstration. On procède par double inclusion :

— (\subset) On introduit un calcul de $w \in \mathcal{L}(A)$ sur \hat{A} et on vérifie par récurrence que son dernier état est final.

— On procède de même pour la réciproque.

Définition 1.0.5. Un monoïde est un magma associatif unifère.

Un morphisme de monoïde est une application $\varphi:(N,\cdot_N)\to(M,\cdot_M)$ telle que :

- $\varphi(1_N) = 1_M$
- $-\varphi(n_1n_2) = \varphi(n_1)\varphi(n_2)$

Un langage L est reconnu par (M,\times) ssi il existe $P\subset M$ tel que $L=\varphi^{-1}(P)$ où φ est un morphisme de Σ^* dans M

Proposition 1.0.1. $L \subseteq \Sigma^*$ est reconnu par un automate ssi L est reconnu par un monoïde fini.

Démonstration. — Soit L reconnu par un monoïde fini (M, \times) . Soit φ un morphisme tel que $L = \varphi^{-1}(P), \ P \subset M$. On pose $\mathcal{A} = (M, \Sigma, \{1\}, P, \delta)$ où $\delta(q, a) = q \times \varphi(a)$. Alors, \mathcal{A} reconnaît L.

— Soit \mathcal{A} , déterministe, complet, reconnaissant L. Pour $a \in \Sigma$, $a \to \varphi_a : q \in Q \mapsto \delta(q, a)$ induit par induction un morphisme de (Σ^*, \cdot) dans (Q^Q, \circ) . Alors, avec $P = \{f \in Q^Q \mid f(i) \in F_{\mathcal{A}}\}$. On a défini le monoïde des transitions de \mathcal{A} .

2