

SKETCHES RECOGNITION

PROJECT DESCRIPTION

- 1. Implement index LSH to allow fast similarity search on deep features and create an image search engine on top of it
- 2. Use the pre trained Deep Neural Network Inception to extract features from the dataset Sketches and the distractor MirFlickr
- 3. Index the extracted features using your search engine
- 4. Measure the retrieval performance of the image search engine
- 5. Fine tune the Inception for Sketches
- 6. Use the fine tuned Inception to extract features from Sketches and MirFlickr
- 7. Index the new extracted features using your search engine
- 8. Measure the retrieval performance of the image search engine using the new features
- 9. Compare the performance of the two features
- 10. Optional:
 - Build a web based user interface for your web search engine

Our goal is to train machines to recognize and generalize abstract concepts in a manner similar to humans. As a first step towards this goal, we train our model on a dataset of hand-drawn sketches.

DISTRIBUTION OF OUR DATASETS

250 Class and 20K Images

1 Class and 25K Images

LSH - LOCALITY SENSITIVE HASHING

- We don't necessarily insist on the exact answer; instead, determining an approximate answer should suffice.
 - Similar Documents => Similar Hash-Code
- For each document d:
 - Generate K-bit hash-code
 - Insert Document into hash-table
 - Collision => possible duplicate
 - Compare to documents in same bucket

d1,d3

LSH - LOCALITY SENSITIVE HASHING

- Hash functions q() such that given any two objects p, q
 - If d(p,q) > c*r then Pr[g(p) = g(q)] is small
 - If $d(p,q) \le r$ then Pr[g(p) = g(q)] is not so small

Definition: $g(p) = \langle h_1(p), h_2(p), ..., h_k(p), \rangle$ Where: $h_i(p) = \frac{L(p * X_i + b_i)}{w}$

> We compare x only to training points in the same region R

> > Inexact: missed neighbors - Repeat with different h_1, h_2, \ldots, h_k

LSH - IMPLEMENTATION

- Preprocessing: Hash function selecting $\langle g_1, g_2, \dots, g_L \rangle$
- Insertion: Any point p Insert into L buckets $\langle g_1(p), g_2(p), \ldots, g_L(p) \rangle$
- Query execution: With the query q retrieve all point from L buckets $g_1(q)$ and reorder according to the original distance function

d4

7

d1,d3

LSH - BITWISE

- The random projection method of LSH called SimHash is designed to approximate the cosine distance between vectors.
- The basic idea of this technique is to choose a random hyperplane at the outset and use the hyperplane to hash input vectors.

$$\circ \qquad h(v) = \pm 1$$

- We called Bitwise because, instead ± 1 we convert this approach to 0 or 1 (bit)
- This approach is faster and require less storage

NO INDEX STRUCTURE - TEST

- structure
- Inside the project, we create an index with the same function structure of the LSH Index for test comparations.
- Why we do that?
 - Our idea was use the same structure of our LSH index, without use the computational complexity of an index. This, for search without index.
 - We create a set of test with an exact index (No Index Structure)
 and after compare the results with an LSH index

FEATURES EXTRACTION

• Feature Extraction using the pretrained convolutional base

Create a image normalization preprocess with our images

Loading the pretrained DNN

Extract of the features

The result is our feature vector

HIGH LEVEL ARCHITECTURE

INCEPTION V3

- Have a very important milestone in the development of CNN classifiers.
- The fundamental idea behind the Inception Neural Network is the inception block
- Intermediate Classifiers to solve Vanishing Gradient.

Model Test and Performance

	Train		Test		Euclidean mAP	Cosine mAP	Euclidean mAP	Cosine mAP	
Model name	Loss	Accuracy	Loss	Accuracy	on train	on train	using test	using test	
<u> Model 1</u>	1.2724	0.6617	1.2328	0.6648	0.1452	0.1687	0.0763	0.0821	
Model 2	1.1013	0.7005	1.1035	0.6986	0.2336	0.3150	0.2701	0.3035	
Model 3	0.9033	0.7612	0.9272	0.7620	0.3035	0.3460	0.2889	0.3464	
Model 4 (Siamese)	0.4611	0.8157	0.8868	0.7373	0.2674	0.3175	0.2618	0.3264	
<u>Model 5</u>	0.8940	0.7667	0.9065	0.7610	0.2896	0.3539	0.2993	0.3784	
<u>Model 6</u>	0.6899	0.8087	1.0764	0.7090	0.4294	0.4711	0.3731	0.4047	
<u> Model 7</u>	0.7600	0.7867	0.8022	0.7840	0.3068	0.4071	0.2935	0.3797	

Model Test and Performance

Model Test and Performance

BEST MODEL CHOSEN: MODEL 6

- We choose the model with the next custom layers:
 - Pre-trained model Inception V3

5.

- Global spatial average pooling layer
- First droupout layer with a fraction of 0.5 input units to drop
- First fully connected layer with 2048 dimensionality
- Second droupout layer with a fraction of the 0.5 input units to drop Second fully connected layer with 2048 dimensionality
- Second droupout layer with a fraction of the 0.5 input units to drop
- Third fully connected layer with 2048 dimensionality
- Fourth fully connected layer with 250 dimensionality

LSH Tuning (G and H)

	Test mAP		Tes	st IE	Bucket	Bucket	# Buckets	# Items	# AVG	# STD per
LSH	Euc	Cos	Euc	Cos	Purity AVG	Purity STD			per BUCKET	BUCKET
G = 3, H = 3	0,05	0,06	355	297	0,72	0,32	4885	120000	24,5	183,97
G = 3, H = 5	0,01	0,02	3441	3485	0,87	0,24	24363	120000	4,93	36,3
G = 4, H = 2	0,17	0,20	11,2	14,3	0,62	0,34	1188	160000	134,68	677,15
G = 5, H = 1	0,31	0,37	0,52	0,46	0,52	0,35	150	200000	1333,3	3571,97
G = 5, H = 2	0,19	0,22	10	11,81	0,61	0,35	1629	200000	122,77	642,32
G = 7, H = 2	0,24	0,26	5,8	3,9	0,62	0,34	2319	280000	120,7	722,83
G = 8, H = 2	0,25	0,27	1,9	2,69	0,62	0,35	2548	320000	125,59	688,5

LSH BitWise Tuning (G and H)

LSH	Test	Test mAP Test		t IE Bucket		Bucket	# Buckets	# Items	# AVG	# STD per
BitWise	Euc	Cos	Euc	Cos	Purity AVG	Purity STD			per BUCKET	BUCKET
G = 3, H = 1	0,35	0,42	0,26	0,26	0,52	0,27	6	120000	20000	8807
G = 3, H = 5	0,30	0,33	5	4,67	0,26	0,27	96	120000	1250	2733
G = 3, H = 6	0,28	0,32	8	8,2	0,3	0,25	192	120000	625	1502,5
G = 4, H = 4	0,32	0,39	1,36	1,37	0,37	0,32	64	160000	2500	3220,32
G = 5, H = 2	0,36	0,42	0,31	0,31	0,35	0,36	20	200000	10000	8618,35
G = 5, H = 5	0,31	0,39	2,23	2,2	0,29	0,26	160	200000	1250	2347

PCA - PRINCIPAL COMPONENT ANALYSIS

• Is a standart techniche in the field of signal processing for data compression.

Is a linear dimensionality reduction
 using Singular Value Decomposition of
 the data to project it to a lower
 dimensional space.

We try it!

ACCURACY AND MAP ANALYSIS CLASS BY CLASS

Return the Worst Sketch result and Best Sketch result

RECALL VS MEAN AVERAGE PRECISION

BEST MAP AND ACCURACY RESULTS

Class Boomerang: mAP 0.77 Recall 0.90

Class Calculator: mAP 0.65 Recall 0.85

Some other sketches from the calculator class:

WORST MAP AND ACCURACY RESULTS

Class Dog: mAP 0.10 Recall 0.30

Some other sketches from the calculator class:

Class Loudspeaker: mAP 0.09 Recall 0.25

Some other sketches from the calculator class:

MOST FREQUENT MISCLASSIFICATIONS

4/20 times misclassified as Megaphone:

4/20 times misclassified as Horse:

WEB SKETCHES RECOGNITION ARCHITECTURE

DEMO reset Search

Ν

PROJECT SOURCE CODE

Analysis By Class **MIRCV** MIRCV_Functions Pca Try accuracy_assessment evaluate_models 1sh_finetuning lsh_finetuning_bucket_dispersion mAP_by_class save_index siamese_finetuning sketches web

RESOURCES

Papers

- Rethinking the Inception
 Architecture for Computer Visual
- A Neural Network for PCA and Beyond
- Theory and Applications of b-Bit Minwise Hasing

THANKS!

