Lecture 3: Truth and Validity

MATH230

Te Kura Pāngarau | School of Mathematics and Statistics Te Whare Wānanga o Waitaha | University of Canterbury

Outline

- Example
- 2 Argument
- Truth Values
- **4** Valid Arguments

Example

"Thin is guilty," observed Watson, "because either Holmes is right and the vile Moriarty is guilty, or he (Holmes) is wrong and Thin did the job; but those scoundrels are either both guilty or both innocent; and, as usual, Holmes is correct".

Argument Structure

Proposition 1
Proposition 2
:
Proposition n
Conclusion

Question: What makes for a "good argument"? What might we mean by a "good argument"?

Truth Values

It may either be the case that an atomic formula is true, or false.

$$\begin{array}{c|c}
A & A \\
\hline
T & 1 \\
F & 0
\end{array}$$

There are precisely two truth values in *classical* propositional logic and each proposition must take *exactly one* of them: there are no contradictions and there are no other logical values. Note that there are other logics which relax these conditions.

Truth table: (\neg) Negation

The truth of compound variables (wff with syntactic structure) will depend, ultimately, on the truth values of the atomic formulae from which it is built.

Truth table: (∧) **Conjunction**

Α	В	$A \wedge B$
T	Т	
T	F	
F	Τ	
F	F	

Truth table: (∨) Disjunction

Α	В	$A \vee B$
1	1	
1	0	
0	1	
0	0	

Truth table: (∨) Disjunction

Α	В	$A \vee B$
1	1	
1	0	
0	1	
0	0	

Your intuition may not agree with this. Perhaps \vee should not be true when both A and B are true. We have another binary connective to associate to this meaning: *exclusive disjunction* and we denote it by \oplus or \veebar .

Truth table: (\rightarrow) Implication

Α	В	$A \rightarrow B$
1	1	
1	0	
0	1	
0	0	

Truth table: (\rightarrow) Implication

Α	В	$A \rightarrow B$
1	1	
1	0	
0	1	
0	0	

Again, your intuition may resist here. Implication is used in this sense in mathematics, so we stick to it. See the reading at the end for a discussion on the different meanings of implication.

Example

Consider the wff $(A \rightarrow (B \land A))$ that involves more than one binary operation.

Α	В	$B \wedge A$	$(A \to (B \land A))$
1	1		
1	0		
1 1 0 0	1		
0	0		

Valid Argument

Suppose Σ is the set of premises of an argument with γ as the conclusion.

Definition

We say an argument is valid if its conclusion is true in every case in which each of its premises are true.

If the argument for γ from Σ is valid, then we say γ is a *semantic* consequence of Σ and denote it $\Sigma \vDash \gamma$

Example: Modus Ponens

Show $\{A, (A \rightarrow B)\} \models B$

Example: Modus Ponens

Show $\{A, (A \rightarrow B)\} \models B$

Α	B	$(A \rightarrow B)$
1	1	1
1	0	0
0	1	1
0	0	1

Example: Modus Ponens

Show $\{A, (A \rightarrow B)\} \models B$

$$\begin{array}{c|c|c|c} A & B & (A \to B) \\ \hline 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \\ \end{array}$$

There is only one case in which both of the premises are true. In that case, the conclusion is also true.

$$\begin{array}{c|c|c} A & B & (A \rightarrow B) \\ \hline 1 & 1 & 1 \end{array}$$

Counterexamples

Definition (Counterexample)

A counterexample to an argument is a case in which the premises are all true, but the conclusion is false.

Example: Affirming the Consequent

Show $\{B, (A \rightarrow B)\} \not\vDash A$

Α	В	$(A \rightarrow B)$
1	1	1
1	0	0
0	1	1
0	0	1

This time the one line of interest is the counterexample: A (the conclusion) is false, but the premises are true.

$$\begin{array}{c|c|c}
A & B & (A \to B) \\
\hline
0 & 1 & 1
\end{array}$$

Further Reading

Here are some recommended reading to follow up on the lecture content. They are all freely available online.

- L∃∀N, Logic and Proof. Sections: 3.1, 6.1, and 6.2
- Logic Matters, An Introduction to Formal Logic: p172 216