Passeio aleatório

Uma aplicação a um Homer bêbado

Pedro Vasconcelos Leite

Faculdade de Ciências da Universidade do Porto Departamento de Matemática

13 de Janeiro de 2022

Índice

1. Introdução

2. Problema

3. Resultados

A história de um passarinho

"A probabilidade de voltar ao ponto de partida num passeio aleatório de dimensão 2 é de 100% enquanto que em 3 dimensões esta probabilidade baixa para 33%. Isto significa que apesar de um bêbado voltar sempre a casa de pois de uma noite pesada, um passarinho nas mesmas condições pode mesmo nunca mais voltar a casa" - vida difícil de pássaro.

Apresentação

O objetivo deste trabalho será estudar o tempo que um "**Homer**" levaria a chegar a casa depois de uma noite passada no *Moe's*.

Mapa

Para começar faremos uma simplificação do mapa de Sprinfield, usar o mapa verdadeiro seria possivel mas o tempo que demoraria a chegar em casa em média bastaria para entrar em sobriedade e punha em causa os resultados.

Mapa

Condições

- Cada iteração o Homer poderá tomar 4 direções
 - Cima
 - Baixo
 - Esquerda
 - Direita
- Começará sempre no **Moe's** e acabará o passeio assim que chegue a casa (quadricula com a cara de Marge).
- Não se pode mover para quadriculas azuis (rio) e quadriculas "árvore"

Nrº de Passeios	Média	Desvio Padrão	Tempo programa seg.
1	489	_	0
10	599.8	482.83	0.02
100	539.98	474.31	0.16
1000	491.808	556.715	1.25
10000	505.0242	561.30	14.04
100000	507.41	570.69	136.56
1000000	508.94	57231	1394.75

Table: Comparação de resultados obtidos através de iterações.

Analisando os resultados, assumindo o mapa simplificado de Springfield, o Homer levaria em média 8 horas e meia a chegar a casa. Valor a partir do qual já estaria claramente sóbrio. Por isso vamos alterar o programa de forma a limitar este passeio aleatório às 4 horas, com isto pretende-se anular dados irrealistas.

Nr ^o de Passeios	Média	Desvio Padrão	Tempo programa seg.
1	240	_	0
10	155.5	101.34	0
100	177.53	84.42	0.06
1000	185.72	76.36	0.52
10000	184.94	77.19	5.92
100000	184.13	77.93	48.89
1000000	184.23	77.80	500.59

Table: Comparação de resultados obtidos através de iterações.

Analisando novamente estes resultados já temos uma média de tempo de chegada de 3 horas. Bastante mais próximo de uma situação "normal". Inclusivé o minimo que obtivemos foi 7 minutos, trejétoria ótima, e o máximo claro 240 min tendo em conta claro a imposição que fizemos no inicio do programa.

De seguida vamos só rapidamente analisar os casos raros, isto é, a partir de 2 dias uma pessoa é considerada desaparecida de acordo com as autoridades, daí a partir de agora termos selecionado os casos raros em que o Homer demora mais de 2880 minutos a chegar a casa.

