Package 'MicroMoB'

January 17, 2023

```
Type Package
```

Title Discrete Time Simulation of Mosquito-Borne Pathogen Transmission

Version 0.1.2

Description Provides a framework based on S3 dispatch for constructing models of mosquito-borne pathogen transmission which are constructed from submodels of various components (i.e. immature and adult mosquitoes, human populations). A consistent mathematical expression for the distribution of bites on hosts means that different models (stochastic, deterministic, etc.) can be coherently incorporated and updated over a discrete time step.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.2.1.9000

Imports abind, jsonlite

Suggests knitr, rmarkdown, testthat (>= 3.0.0), ggplot2, data.table, callr, httr, readr, withr, plumber

VignetteBuilder knitr

URL https://dd-harp.github.io/MicroMoB/,
 https://github.com/dd-harp/MicroMoB

BugReports https://github.com/dd-harp/MicroMoB/issues

NeedsCompilation yes

Author Sean L. Wu [aut, cre] (https://orcid.org/0000-0002-5781-9493),
David L. Smith [aut] (https://orcid.org/0000-0003-4367-3849),
Sophie Libkind [ctb]

Maintainer Sean L. Wu <slwood89@gmail.com>

Repository CRAN

Date/Publication 2023-01-17 03:40:02 UTC

R topics documented:

api_config_global	5
approx_equal	5
compute_bloodmeal	6
compute_bloodmeal_simple	6
compute_emergents	7
compute_emergents.BH	7
compute_emergents.trace	8
compute_emergents.trace_deterministic	8
compute_emergents.trace_stochastic	9
$compute_f \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	9
compute_f.BQ	10
compute_f.RM	10
compute_f.trace	11
$compute_H \ \dots $	11
compute_H.MOI	12
compute_H.SIP	12
compute_H.SIR	13
compute_H.SIS	13
compute_O	14
compute_O.trace	14
compute_oviposit	15
compute_oviposit.BQ	15
compute_oviposit.BQ_deterministic	16
compute_oviposit.BQ_stochastic	16
compute_oviposit.RM	17
compute_oviposit.RM_deterministic	17
compute_oviposit.RM_stochastic	18
compute_oviposit.trace	18
compute_Psi	19
compute_Psi.MOI	19
compute_Psi.SIP	20
compute_Psi.SIR	20
compute_Psi.SIS	21
$compute_q \ldots \ldots \ldots \ldots \ldots \ldots$	21
$compute_q.BQ $	22
$compute_q.RM \ \dots $	22
compute_q.trace	23
compute_Wd	23
compute_Wd.trace	24
$compute_wf \ldots \ldots$	24
compute_wf.MOI	25
compute_wf.SIP	25
compute_wf.SIR	26
compute_wf.SIS	26
$compute_x \ldots \ldots \ldots \ldots \ldots \ldots$	27
compute_x.MOI	27

compute_x.SIP	28
compute_x.SIR	28
compute_x.SIS	29
compute_xd	29
compute_xd.trace	30
$compute_Z \dots \dots \dots \dots \dots \dots \dots \dots \dots $	30
compute_Z.BQ	31
compute_Z.RM	31
compute_Z.trace	32
distribute	32
divmod	33
draw_multinom	33
get_config_alternative_trace	34
get_config_aqua_BH	34
get_config_aqua_trace	35
get_config_humans_MOI	36
get_config_humans_SIR	37
get_config_humans_SIS	38
get_config_mosquito_RM	
get_config_mosquito_trace	
get_config_visitor_trace	
get_eip_mosquito_RM	42
get_f_mosquito_RM	42
get_kappa_mosquito_RM	
get_K_aqua_BH	
get_lambda_aqua_trace	
get_molt_aqua_BH	
get_nu_mosquito_RM	45
get_psi_mosquito_RM	45
get_p_mosquito_RM	46
get_q_mosquito_RM	46
get_surv_aqua_BH	47
get_tmax	47
get_tnow	
is_binary	
make_MicroMoB	
MicroMoB	49
observe_pfpr	50
observe_pfpr.SIP	50
observe_pfpr.SIS	51
output_aqua	51
output_aqua.BH	52
output_aqua.trace	52
output_mosquitoes	53
output_mosquitoes.RM	53
output_mosquitoes.trace	54
sample_stochastic_matrix	54
•	55 55
sample_stochastic_vector	JJ

setup_alternative_trace		55
setup_aqua_BH		56
setup_aqua_trace		56
setup_aqua_uace		57
setup_humans_SIP		58
setup_numans_SIR		59
1— —		60
setup_humans_SIS		
setup_mosquito_BQ		61
setup_mosquito_RM		62
setup_mosquito_trace		63
setup_visitor_trace		63
set_eip_mosquito_RM		64
set_f_mosquito_RM		65
set_kappa_mosquito_RM		65
set_K_aqua_BH	 	66
set_lambda_aqua_trace	 	66
set_molt_aqua_BH	 	67
set_nu_mosquito_RM	 	67
set_psi_mosquito_RM	 	68
set_p_mosquito_RM		68
set_q_mosquito_RM		69
set_surv_aqua_BH		
step_aqua		
step_aqua.BH		
step_aqua.BH_deterministic		71
step_aqua.BH_stochastic		71
step_aqua.trace		
step_aqua.trace		
1 —		
step_humans.MOI		
step_humans.MOI_deterministic		
step_humans.MOI_stochastic		
step_humans.SIP		74
step_humans.SIP_deterministic		
step_humans.SIP_stochastic		
step_humans.SIR		
step_humans.SIR_deterministic		
step_humans.SIR_stochastic		77
step_humans.SIS		77
step_humans.SIS_deterministic	 	78
step_humans.SIS_stochastic	 	78
step_mosquitoes	 	79
step_mosquitoes.BQ	 	79
step_mosquitoes.BQ_deterministic		80
step_mosquitoes.BQ_stochastic		80
step_mosquitoes.RM		81
step_mosquitoes.RM_deterministic		81
step_mosquitoes.RM_stochastic		82
step_mosquitoes.trace	 	82

Description

Read global configuration options

Usage

```
api_config_global(path)
```

Arguments

path

file path to a JSON file

approx_equal

Check if two numeric values are approximately equal

Description

Check if two numeric values are approximately equal

Usage

```
approx_equal(a, b, tol = sqrt(.Machine$double.eps))
```

Arguments

a a numeric objectb a numeric objecttol the numeric tolerance

Value

a logical value

compute_bloodmeal

Compute bloodmeals taken by mosquitoes on hosts

Description

This should be run prior to any step functions to update components over a time step. It computes various quantities related to disease transmission between species using the generic interfaces (methods) provided by each component. It updates the EIR vector for the human component, and kappa, the net infectiousness of hosts for the mosquito component.

Usage

```
compute_bloodmeal(model)
```

Arguments

model

an object from make_MicroMoB

Value

no return value

compute_bloodmeal_simple

Compute bloodmeals taken by mosquitoes on hosts in simple models

Description

The difference between this and compute_bloodmeal is that this function does not include any computations of alternative blood hosts or visitors and is suitable for models which only include mosquitoes and resident human populations.

Usage

```
compute_bloodmeal_simple(model)
```

Arguments

model

an object from make_MicroMoB

Value

no return value

compute_emergents 7

compute_emergents

Compute number of newly emerging adults (λ)

Description

This method dispatches on the type of model\$aqua

Usage

```
compute_emergents(model)
```

Arguments

model

an object from make_MicroMoB

Value

a vector of length p giving the number of newly emerging adult in each patch

compute_emergents.BH

Compute number of newly emerging adults from Beverton-Holt dynamics

Description

This function dispatches on the second class attribute of model\$aqua for stochastic or deterministic behavior.

Usage

```
## S3 method for class 'BH'
compute_emergents(model)
```

Arguments

model

an object from make_MicroMoB

Value

a vector of length 1 giving the number of newly emerging adult in each patch

```
compute_emergents.trace
```

Compute number of newly emerging adults from forcing term

Description

This function dispatches on the second class attribute of model\$aqua for stochastic or deterministic behavior.

Usage

```
## S3 method for class 'trace'
compute_emergents(model)
```

Arguments

model

an object from make_MicroMoB

Details

see compute_emergents.trace_deterministic and compute_emergents.trace_stochastic

Value

no return value

```
compute_emergents.trace_deterministic
```

Compute number of newly emerging adults from forcing term (deterministic)

Description

Return the column of the lambda matrix for this day.

Usage

```
## S3 method for class 'trace_deterministic'
compute_emergents(model)
```

Arguments

model

an object from make_MicroMoB

Value

a vector of length 1 giving the number of newly emerging adult in each patch

```
compute_emergents.trace_stochastic
```

Compute number of newly emerging adults from forcing term (stochastic)

Description

Draw a Poisson distributed number of emerging adults with mean parameter from the column of the trace matrix for this day.

Usage

```
## S3 method for class 'trace_stochastic'
compute_emergents(model)
```

Arguments

model

an object from make_MicroMoB

Value

a vector of length 1 giving the number of newly emerging adult in each patch

compute_f

Compute mosquito feeding rate (f)

Description

This method dispatches on the type of model\$mosquito

Usage

```
compute_f(model, B)
```

Arguments

model an object from make_MicroMoB

B a vector of length p giving total blood host availability by patch

Value

a vector of length p giving the per-capita blood feeding rate of mosquitoes in each patch

10 compute_f.RM

compute_f.BQ

Compute mosquito feeding rate for BQ model (f)

Description

Blood feeding rates are modeled as a Holling type 2 (rational) function of blood host availability.

$$f(B) = f_x \frac{s_f B}{1 + s_f B}$$

Here f_x is the maximum blood feeding rate and s_f is a scaling parameter.

Usage

```
## S3 method for class 'BQ'
compute_f(model, B)
```

Arguments

model an object from make_MicroMoB

B a vector of length p giving total blood host availability by patch

Value

a vector of length p giving the per-capita blood feeding rate of mosquitoes in each blood feeding haunt

compute_f.RM

Compute mosquito feeding rate for RM model (f)

Description

This method simply returns the f parameter of the mosquito object, because the RM model assumes a constant blood feeding rate.

Usage

```
## S3 method for class 'RM'
compute_f(model, B)
```

Arguments

model an object from make_MicroMoB

B a vector of length p giving total blood host availability by patch

Value

a vector of length p giving the per-capita blood feeding rate of mosquitoes in each patch

compute_f.trace 11

compute_f.trace

Compute null mosquito feeding rate (f)

Description

Compute null mosquito feeding rate (f)

Usage

```
## S3 method for class 'trace'
compute_f(model, B)
```

Arguments

model an object from make_MicroMoB

B a vector of length p giving total blood host availability by patch

Value

no return value

compute_H

Compute human population strata sizes (H)

Description

This method dispatches on the type of model\$human.

Usage

```
compute_H(model)
```

Arguments

model

an object from make_MicroMoB

Value

a vector of length n giving the size of each human population stratum

12 compute_H.SIP

compute_H.MOI

Compute human population strata sizes for MOI model (H)

Description

Compute human population strata sizes for MOI model (H)

Usage

```
## S3 method for class 'MOI'
compute_H(model)
```

Arguments

model

an object from make_MicroMoB

Value

a vector of length n giving the size of each human population stratum

compute_H.SIP

Compute human population strata sizes for SIP model (H)

Description

Compute human population strata sizes for SIP model (H)

Usage

```
## S3 method for class 'SIP'
compute_H(model)
```

Arguments

model

an object from make_MicroMoB

Value

a vector of length n giving the size of each human population stratum

compute_H.SIR

compute_H.SIR

Compute human population strata sizes for SIR model (H)

Description

Compute human population strata sizes for SIR model (H)

Usage

```
## S3 method for class 'SIR'
compute_H(model)
```

Arguments

model

an object from make_MicroMoB

Value

a vector of length n giving the size of each human population stratum

compute_H.SIS

Compute human population strata sizes for SIS model (H)

Description

Compute human population strata sizes for SIS model (H)

Usage

```
## S3 method for class 'SIS'
compute_H(model)
```

Arguments

model

an object from make_MicroMoB

Value

a vector of length n giving the size of each human population stratum

14 compute_O.trace

compute_0

Compute available alternative blood hosts (O)

Description

This method dispatches on the type of model\$alternative.

Usage

```
compute_0(model)
```

Arguments

model

an object from make_MicroMoB

Value

a vector of length p giving biting availability of other blood hosts at each patch

compute_0.trace

Compute available alternative blood hosts for trace model (O)

Description

Compute available alternative blood hosts for trace model (O)

Usage

```
## S3 method for class 'trace'
compute_0(model)
```

Arguments

model

an object from make_MicroMoB

Value

a vector of length p giving biting availability of other blood hosts at each patch

compute_oviposit 15

compute_oviposit

Compute number of eggs laid from oviposition for each patch

Description

This method dispatches on the type of model\$mosquito

Usage

```
compute_oviposit(model)
```

Arguments

model

an object from make_MicroMoB

Value

a vector of length 1 giving the total number of eggs laid by adult mosquitoes in each aquatic habitat

compute_oviposit.BQ

Compute number of eggs laid from oviposition for each aquatic habitat for BQ model

Description

This method returns a vector of length 1.

Usage

```
## S3 method for class 'BQ'
compute_oviposit(model)
```

Arguments

model

an object from make_MicroMoB

Details

```
see compute_oviposit.BQ_deterministic and compute_oviposit.BQ_stochastic
```

Value

a vector of length 1 giving the total number of eggs laid by adult mosquitoes in each aquatic habitat

```
compute_oviposit.BQ_deterministic
```

Compute number of eggs laid from oviposition for each patch for deterministic RM model

Description

Compute number of eggs laid from oviposition for each patch for deterministic RM model

Usage

```
## S3 method for class 'BQ_deterministic'
compute_oviposit(model)
```

Arguments

model

an object from make_MicroMoB

Value

a vector of length 1 giving the total number of eggs laid by adult mosquitoes in each aquatic habitat

```
compute_oviposit.BQ_stochastic
```

Compute number of eggs laid from oviposition for each patch for stochastic RM model

Description

Compute number of eggs laid from oviposition for each patch for stochastic RM model

Usage

```
## S3 method for class 'BQ_stochastic'
compute_oviposit(model)
```

Arguments

model

an object from make_MicroMoB

Value

a vector of length 1 giving the total number of eggs laid by adult mosquitoes in each aquatic habitat

compute_oviposit.RM 17

compute_oviposit.RM

Compute number of eggs laid from oviposition for each patch for RM model

Description

This method returns a vector of length p.

Usage

```
## S3 method for class 'RM'
compute_oviposit(model)
```

Arguments

model

an object from make_MicroMoB

Details

see compute_oviposit.RM_deterministic and compute_oviposit.RM_stochastic

Value

a vector of length p giving the total number of eggs laid by adult mosquitoes in each patch

```
compute_oviposit.RM_deterministic
```

Compute number of eggs laid from oviposition for each patch for deterministic RM model

Description

Compute number of eggs laid from oviposition for each patch for deterministic RM model

Usage

```
## S3 method for class 'RM_deterministic'
compute_oviposit(model)
```

Arguments

model

an object from make_MicroMoB

Value

a vector of length p giving the total number of eggs laid by adult mosquitoes in each patch

```
compute\_oviposit.RM\_stochastic
```

Compute number of eggs laid from oviposition for each patch for stochastic RM model

Description

Compute number of eggs laid from oviposition for each patch for stochastic RM model

Usage

```
## S3 method for class 'RM_stochastic'
compute_oviposit(model)
```

Arguments

model

an object from make_MicroMoB

Value

a vector of length 1 giving the total number of eggs laid by adult mosquitoes in each patch

```
compute_oviposit.trace
```

Compute number of eggs laid from oviposition for each patch for null model

Description

This method dispatches on the type of model\$mosquito

Usage

```
## S3 method for class 'trace'
compute_oviposit(model)
```

Arguments

model

an object from make_MicroMoB

Value

a vector of length p giving the total number of eggs laid by adult mosquitoes in each patch

compute_Psi 19

compute_Psi

Compute time at risk matrix (Ψ)

Description

The time at risk matrix is $\Psi=\Theta\xi$ This method dispatches on the type of model\$human.

Usage

```
compute_Psi(model)
```

Arguments

model

an object from make_MicroMoB

Value

a matrix with n rows and p columns, the time at risk matrix

compute_Psi.MOI

Compute time at risk matrix for MOI model (Ψ)

Description

Compute time at risk matrix for MOI model (Ψ)

Usage

```
## S3 method for class 'MOI'
compute_Psi(model)
```

Arguments

model

an object from make_MicroMoB

Value

a matrix with n rows and p columns, the time at risk matrix

20 compute_Psi.SIR

compute_Psi.SIP

Compute time at risk matrix for SIP model (Ψ)

Description

Compute time at risk matrix for SIP model (Ψ)

Usage

```
## S3 method for class 'SIP'
compute_Psi(model)
```

Arguments

model

an object from make_MicroMoB

Value

a matrix with n rows and p columns, the time at risk matrix

 $compute_Psi.SIR$

Compute time at risk matrix for SIR model (Ψ)

Description

Compute time at risk matrix for SIR model (Ψ)

Usage

```
## S3 method for class 'SIR'
compute_Psi(model)
```

Arguments

model

an object from make_MicroMoB

Value

a matrix with n rows and p columns, the time at risk matrix

compute_Psi.SIS 21

compute_Psi.SIS

Compute time at risk matrix for SIS model (Ψ)

Description

Compute time at risk matrix for SIS model (Ψ)

Usage

```
## S3 method for class 'SIS'
compute_Psi(model)
```

Arguments

model

an object from make_MicroMoB

Value

a matrix with n rows and p columns, the time at risk matrix

compute_q

Compute human blood feeding fraction (q)

Description

This method dispatches on the type of model\$mosquito

Usage

```
compute_q(model, W, Wd, B)
```

Arguments

model an object from make_MicroMoB

W a vector of length p giving human availability by patch (W) Wd a vector of length p giving visitor availability by patch (W_{δ})

B a vector of length p giving total blood host availability by patch (B)

Value

a vector of length p giving the proportion of bites taken on human hosts in each patch

22 compute_q.RM

compute_q.BQ

Compute human blood feeding fraction for BQ model (q)

Description

The human blood feeding fraction is simply the proportion of human hosts.

Usage

```
## S3 method for class 'BQ'
compute_q(model, W, Wd, B)
```

Arguments

model an object from make_MicroMoB

W a vector of length p giving human availability by patch (W) Wd a vector of length p giving visitor availability by patch (W_{δ})

B a vector of length p giving total blood host availability by patch (B)

Value

a vector of length p giving the proportion of bites taken on human hosts in each blood feeding haunt

compute_q.RM

Compute human blood feeding fraction for RM model (q)

Description

This method simply returns the q parameter of the mosquito object, because the RM model assumes a constant fraction of blood meals are taken on human hosts.

Usage

```
## S3 method for class 'RM'
compute_q(model, W, Wd, B)
```

Arguments

model an object from make_MicroMoB

W a vector of length p giving human availability by patch (W) Wd a vector of length p giving visitor availability by patch (W_{δ})

B a vector of length p giving total blood host availability by patch (B)

Value

a vector of length p giving the proportion of bites taken on human hosts in each patch

compute_q.trace 23

compute_q.trace

Compute null human blood feeding fraction (q)

Description

Compute null human blood feeding fraction (q)

Usage

```
## S3 method for class 'trace'
compute_q(model, W, Wd, B)
```

Arguments

model an object from make_MicroMoB

W a vector of length p giving human availability by patch (W) Wd a vector of length p giving visitor availability by patch (W_{δ})

B a vector of length p giving total blood host availability by patch (B)

Value

no return value

compute_Wd

Compute available visitors (W_{δ})

Description

This method dispatches on the type of model\$visitor.

Usage

```
compute_Wd(model)
```

Arguments

model

an object from make_MicroMoB

Value

a vector of length p giving biting availability of visitors at each patch

24 compute_wf

compute_Wd.trace

Compute available visitors for trace model ($W_{-}\delta$)

Description

Compute available visitors for trace model (W_{δ})

Usage

```
## S3 method for class 'trace'
compute_Wd(model)
```

Arguments

model

an object from make_MicroMoB

Value

a vector of length p giving biting availability of visitors at each patch

compute_wf

Compute human biting weights (w_f)

Description

This method dispatches on the type of model\$human.

Usage

```
compute_wf(model)
```

Arguments

model

an object from make_MicroMoB

Value

a vector of length n giving the biting weights of human hosts in each stratum

compute_wf.MOI 25

compute_wf.MOI

Compute human biting weights for MOI model (w_f)

Description

Compute human biting weights for MOI model (w_f)

Usage

```
## S3 method for class 'MOI'
compute_wf(model)
```

Arguments

model

an object from make_MicroMoB

Value

a vector of length n giving the biting weights of human hosts in each stratum

compute_wf.SIP

Compute human biting weights for SIP model (w_f)

Description

Compute human biting weights for SIP model (w_f)

Usage

```
## S3 method for class 'SIP'
compute_wf(model)
```

Arguments

model

an object from make_MicroMoB

Value

a vector of length n giving the biting weights of human hosts in each stratum

26 compute_wf.SIS

compute_wf.SIR

Compute human biting weights for SIR model (w_f)

Description

Compute human biting weights for SIR model (w_f)

Usage

```
## S3 method for class 'SIR'
compute_wf(model)
```

Arguments

model

an object from make_MicroMoB

Value

a vector of length n giving the biting weights of human hosts in each stratum

compute_wf.SIS

Compute human biting weights for SIS model (w_f)

Description

Compute human biting weights for SIS model (w_f)

Usage

```
## S3 method for class 'SIS'
compute_wf(model)
```

Arguments

model

an object from make_MicroMoB

Value

a vector of length n giving the biting weights of human hosts in each stratum

compute_x 27

compute_x

Compute net infectiousness of humans (x)

Description

In a Ross-Macdonald style transmission model, this is computed as

$$x = cX$$

This method dispatches on the type of model\$human.

Usage

```
compute_x(model)
```

Arguments

model

an object from make_MicroMoB

Value

a vector of length n giving the net infectiousness of human hosts in each stratum

compute_x.MOI

Compute net infectiousness for MOI model (x)

Description

In the simple MOI (queueing) model here (M/M/inf), net infectiousness is considered not to vary with increasing MOI. It is calculated as

$$c\cdot (1-\frac{X_0}{H})$$

where X_0 is the number of uninfected persons (multiplicity of infection of zero).

Usage

```
## S3 method for class 'MOI'
compute_x(model)
```

Arguments

model

an object from make_MicroMoB

Value

a vector of length n giving the net infectiousness of human hosts in each stratum

28 compute_x.SIR

compute_x.SIP

Compute net infectiousness for SIP model (x)

Description

Compute net infectiousness for SIP model (x)

Usage

```
## S3 method for class 'SIP'
compute_x(model)
```

Arguments

model

an object from make_MicroMoB

Value

a vector of length n giving the net infectiousness of human hosts in each stratum

compute_x.SIR

Compute net infectiousness for SIR model (x)

Description

Compute net infectiousness for SIR model (x)

Usage

```
## S3 method for class 'SIR'
compute_x(model)
```

Arguments

model

an object from make_MicroMoB

Value

a vector of length n giving the net infectiousness of human hosts in each stratum

compute_x.SIS 29

compute_x.SIS

Compute net infectiousness for SIS model (x)

Description

Compute net infectiousness for SIS model (x)

Usage

```
## S3 method for class 'SIS'
compute_x(model)
```

Arguments

model

an object from make_MicroMoB

Value

a vector of length n giving the net infectiousness of human hosts in each stratum

 $compute_xd$

Compute net infectiousness of visitors (x_{δ})

Description

This method dispatches on the type of model\$visitor.

Usage

```
compute_xd(model)
```

Arguments

model

an object from make_MicroMoB

Value

a vector of length p giving net infectiousness of visitors at each patch

30 compute_Z

compute_xd.trace

Compute net infectiousness of visitors for trace model (x_{δ})

Description

Compute net infectiousness of visitors for trace model (x_{δ})

Usage

```
## S3 method for class 'trace'
compute_xd(model)
```

Arguments

model

an object from make_MicroMoB

Value

a vector of length p giving net infectiousness of visitors at each patch

 ${\tt compute_Z}$

Compute density of infective mosquitoes (Z)

Description

This method dispatches on the type of modelmosquito. Z is also known as the "sporozoite rate" in malariology.

Usage

```
compute_Z(model)
```

Arguments

model

an object from make_MicroMoB

Value

a vector of length p giving the density of infected and infectious mosquitoes in each patch

compute_Z.BQ 31

compute_Z.BQ

Compute density of infective mosquitoes for BQ model (Z)

Description

This method returns Z.

Usage

```
## S3 method for class 'BQ'
compute_Z(model)
```

Arguments

model

an object from make_MicroMoB

Value

a vector of length p giving the density of infected and infectious mosquitoes in each blood feeding haunt

compute_Z.RM

Compute density of infective mosquitoes for RM model (Z)

Description

This method returns Z.

Usage

```
## S3 method for class 'RM'
compute_Z(model)
```

Arguments

model

an object from make_MicroMoB

Value

a vector of length p giving the density of infected and infectious mosquitoes in each patch

32 distribute

compute_Z.trace

Compute null density of infective mosquitoes (Z)

Description

Compute null density of infective mosquitoes (Z)

Usage

```
## S3 method for class 'trace'
compute_Z(model)
```

Arguments

model

an object from make_MicroMoB

Value

no return value

distribute

Distribute items into bins as evenly as possible

Description

Distribute items into bins as evenly as possible

Usage

```
distribute(n, p)
```

Arguments

n number of bins p number of items

Value

a numeric vector of bin sizes

divmod 33

divmod

Division of integers

Description

Division of integers

Usage

```
divmod(a, b)
```

Arguments

a the dividend b the divisor

Value

a list with two elements, quo (quotient) and rem (remainder)

draw_multinom

Draw a multinomially distributed random vector

Description

Warning: this function does no argument checking. Ensure the arguments are as follows.

Usage

```
draw_multinom(n, prob)
```

Arguments

n an integer giving the number of balls to distribute in bins prob a vector of probabilities for each bin, which must sum to one

Value

an integer vector of length equal to the length of prob

Note

This function uses the algorithm presented in: Startek, Michał. "An asymptotically optimal, online algorithm for weighted random sampling with replacement." arXiv preprint arXiv:1611.00532 (2016).

```
get_config_alternative_trace
```

Get parameters for trace driven alternative blood hosts

Description

The JSON config file should have two entries:

• O: vector or matrix (see time_patch_varying_parameter for valid dimensions)

For interpretation of the entries, please read setup_alternative_trace.

Usage

```
get_config_alternative_trace(path)
```

Arguments

path

a file path to a JSON file

Value

a named list

Examples

```
# to see an example of proper JSON input, run the following
library(jsonlite)
par <- list(
  "0" = rep(1, 5)
)
toJSON(par, pretty = TRUE)
```

get_config_aqua_BH

Get parameters for aquatic (immature) model with Beverton-Holt dynamics

Description

The JSON config file should have two entries:

- stochastic: a boolean value
- molt: a scalar, vector, or matrix (row major)
- surv: a scalar, vector, or matrix (row major)
- K: a scalar, vector, or matrix (row major)
- L: a vector

Please see time_patch_varying_parameter for allowed dimensions of entries molt, surv, and K. L should be of length equal to the number of patches. For interpretation of the entries, please read setup_aqua_BH.

get_config_aqua_trace 35

Usage

```
get_config_aqua_BH(path)
```

Arguments

path

a file path to a JSON file

Value

a named list

Examples

```
# to see an example of proper JSON input, run the following
library(jsonlite)
p <- 5 # number of patches
t <- 10 # number of days to simulate
par <- list(
    "stochastic" = FALSE,
    "molt" = 0.3,
    "surv" = rep(0.5, 365),
    "K" = matrix(rpois(n = t * p, lambda = 100), nrow = p, ncol = t),
    "L" = rep(10, p)
)
toJSON(par, pretty = TRUE)</pre>
```

 ${\tt get_config_aqua_trace} \ \ \textit{Get parameters for a quatic (immature) model with forced emergence}$

Description

The JSON config file should have two entries:

- stochastic: a boolean value
- lambda: a scalar, vector, or matrix (row major). It will be passed to time_patch_varying_parameter, see that function's documentation for appropriate dimensions.

For interpretation of the entries, please read setup_aqua_trace.

Usage

```
get_config_aqua_trace(path)
```

Arguments

path

a file path to a JSON file

Value

a named list

Examples

```
# to see an example of proper JSON input, run the following
library(jsonlite)
t <- 10 # number of days to simulate
par <- list(
   "stochastic" = FALSE,
   "lambda" = rpois(n = t, lambda = 10)
)
toJSON(par, pretty = TRUE)</pre>
```

get_config_humans_MOI Get parameters for MOI human model

Description

The JSON config file should have 9 entries:

- stochastic: a boolean value
- theta: matrix (row major)
- wf: vector
- H: vector
- MOI: matrix (row major)
- b: scalar
- c: scalar
- r: scalar
- · sigma: scalar

For interpretation of the entries, please read setup_humans_MOI.

Usage

```
get_config_humans_MOI(path)
```

Arguments

path a file path to a JSON file

Value

a named list

Examples

```
# to see an example of proper JSON input, run the following
library(jsonlite)
n <- 6 # number of human population strata
p <- 5 # number of patches
theta <- matrix(rexp(n*p), nrow = n, ncol = p)</pre>
theta <- theta / rowSums(theta)</pre>
H < - rep(10, n)
MOI \leftarrow matrix(0, nrow = 10, ncol = n)
MOI[1, ] <- H
par <- list(</pre>
 "stochastic" = FALSE,
 "theta" = theta,
 "wf" = rep(1, n),
 "H" = H,
 "MOI" = MOI,
 "b" = 0.55,
 c'' = 0.15
 "r" = 1/200,
 "sigma" = 1
toJSON(par, pretty = TRUE)
```

get_config_humans_SIR Get parameters for SIR human model

Description

The JSON config file should have 8 entries:

- stochastic: a boolean value
- theta: matrix (row major)
- · wf: vector
- H: vector
- SIR: matrix (row major)
- b: scalar
- c: scalar
- gamma: scalar

For interpretation of the entries, please read setup_humans_SIR.

Usage

```
get_config_humans_SIR(path)
```

Arguments

path a file path to a JSON file

Value

a named list

Examples

```
# to see an example of proper JSON input, run the following
library(jsonlite)
n <- 6 \text{ \# number of human population strata}
p <- 5 # number of patches</pre>
theta <- matrix(rexp(n*p), nrow = n, ncol = p)</pre>
theta <- theta / rowSums(theta)</pre>
H < - rep(10, n)
SIR \leftarrow matrix(0, nrow = n, ncol = 3)
SIR[, 1] \leftarrow H
par <- list(
 "stochastic" = FALSE,
 "theta" = theta,
 "wf" = rep(1, n),
 "H" = H,
 "SIR" = SIR,
 b'' = 0.55,
 c'' = 0.15,
 "gamma" = 1/7
toJSON(par, pretty = TRUE)
```

 ${\tt get_config_humans_SIS} \quad \textit{Get parameters for SIS human model}$

Description

The JSON config file should have 8 entries:

- stochastic: a boolean value
- theta: matrix (row major)
- wf: vector
- H: vector
- X: vector
- b: scalar
- c: scalar
- r: scalar

For interpretation of the entries, please read setup_humans_SIS.

Usage

```
get_config_humans_SIS(path)
```

Arguments

path

a file path to a JSON file

Value

a named list

Examples

```
# to see an example of proper JSON input, run the following
library(jsonlite)
n <- 6 \text{ \# number of human population strata}
p <- 5 # number of patches
theta <- matrix(rexp(n*p), nrow = n, ncol = p)</pre>
theta <- theta / rowSums(theta)</pre>
H \leftarrow rep(10, n)
X \leftarrow rep(3, n)
par <- list(</pre>
 "stochastic" = FALSE,
 "theta" = theta,
 "wf" = rep(1, n),
 "H" = H,
 "X" = X,
 "b" = 0.55,
 c'' = 0.15
 "r" = 1/200
toJSON(par, pretty = TRUE)
```

get_config_mosquito_RM

Get parameters for generalized Ross-Macdonald mosquito model

Description

The JSON config file should have 8 entries:

- stochastic: a boolean value
- f: scalar
- q: scalar
- eip: scalar or vector; see time_varying_parameter for valid formats
- p: scalar or vector; see time_varying_parameter for valid formats
- psi: matrix
- nu: scalar
- M: vector
- Y: vector
- Z: vector

For interpretation of the entries, please read setup_mosquito_RM.

Usage

```
get_config_mosquito_RM(path)
```

Arguments

path

a file path to a JSON file

Value

a named list

Examples

```
# to see an example of proper JSON input, run the following
library(jsonlite)
t <- 10 # days to simulate
p <- 5 \# number of patches
EIP \leftarrow rep(5, t)
p_surv <- 0.95
psi <- matrix(rexp(p^2), nrow = p, ncol = p)</pre>
psi <- psi / rowSums(psi)</pre>
par <- list(</pre>
 "stochastic" = FALSE,
 "f" = 0.3,
 "q" = 0.9,
 "eip" = EIP,
 "p" = p_surv,
 "psi" = psi,
 "nu" = 20,
 "M" = rep(100, p),
 "Y" = rep(20, p),
 "Z" = rep(5, p)
toJSON(par, pretty = TRUE)
```

 ${\tt get_config_mosquito_trace}$

Get parameters for null mosquito model

Description

The JSON config file should have 1 entry:

· oviposit: vector

For interpretation of the entries, please read setup_mosquito_trace.

Usage

```
get_config_mosquito_trace(path)
```

Arguments

path

a file path to a JSON file

Value

a named list

Examples

```
# to see an example of proper JSON input, run the following
library(jsonlite)
par <- list(
  "oviposit" = rep(1, 5)
)
toJSON(par, pretty = TRUE)
```

```
get_config_visitor_trace
```

Get parameters for trace driven visitors

Description

The JSON config file should have two entries:

- Wd: vector or matrix (see time_patch_varying_parameter for valid dimensions)
- xd: vector or matrix (see time_patch_varying_parameter for valid dimensions)

For interpretation of the entries, please read setup_visitor_trace.

Usage

```
get_config_visitor_trace(path)
```

Arguments

path

a file path to a JSON file

Value

a named list

Examples

```
# to see an example of proper JSON input, run the following
library(jsonlite)
par <- list(
  "Wd" = rep(1, 5),
  "xd" = rep(0.01, 365)
)
toJSON(par, pretty = TRUE)</pre>
```

get_eip_mosquito_RM

Get extrinsic incubation period for Ross-Macdonald mosquito model

Description

Get extrinsic incubation period for Ross-Macdonald mosquito model

Usage

```
get_eip_mosquito_RM(model, times)
```

Arguments

model an object from make_MicroMoB

times vector of times to return

Value

no return value

get_f_mosquito_RM

Get feeding rate for Ross-Macdonald mosquito model

Description

Get feeding rate for Ross-Macdonald mosquito model

Usage

```
get_f_mosquito_RM(model)
```

Arguments

model

an object from make_MicroMoB

Value

a vector

 ${\tt get_kappa_mosquito_RM} \quad \textit{Get kappa for Ross-Macdonald mosquito model}$

Description

Get kappa for Ross-Macdonald mosquito model

Usage

```
get_kappa_mosquito_RM(model)
```

Arguments

model an object from make_MicroMoB

Value

a vector

get_K_aqua_BH

Get carrying capacity for Beverton-Holt aquatic mosquito model

Description

Get carrying capacity for Beverton-Holt aquatic mosquito model

Usage

```
get_K_aqua_BH(model, times, places)
```

Arguments

model an object from make_MicroMoB
times vector of times to get values
places vector of places to get values

Value

a matrix

44 get_molt_aqua_BH

get_lambda_aqua_trace Get daily emergence for Beverton-Holt aquatic mosquito model

Description

Get daily emergence for Beverton-Holt aquatic mosquito model

Usage

```
get_lambda_aqua_trace(model, times, places)
```

Arguments

model an object from make_MicroMoB
times vector of times to get values
places vector of places to get values

Value

a matrix

get_molt_aqua_BH Get daily maturation probability for Beverton-Holt aquatic mosquito

model

Description

Get daily maturation probability for Beverton-Holt aquatic mosquito model

Usage

```
get_molt_aqua_BH(model, times, places)
```

Arguments

model an object from make_MicroMoB
times vector of times to get values
places vector of places to get values

Value

a matrix

get_nu_mosquito_RM 45

get_nu_mosquito_RM

Get number of eggs laid per oviposition for Ross-Macdonald mosquito model

Description

Get number of eggs laid per oviposition for Ross-Macdonald mosquito model

Usage

```
get_nu_mosquito_RM(model)
```

Arguments

model

an object from make_MicroMoB

Value

a vector

get_psi_mosquito_RM

Get mosquito dispersal matrix for Ross-Macdonald mosquito model

Description

Get mosquito dispersal matrix for Ross-Macdonald mosquito model

Usage

```
get_psi_mosquito_RM(model)
```

Arguments

model

an object from make_MicroMoB

Value

a matrix

get_p_mosquito_RM

Get daily survival probability for Ross-Macdonald mosquito model

Description

Get daily survival probability for Ross-Macdonald mosquito model

Usage

```
get_p_mosquito_RM(model, times, places)
```

Arguments

model an object from make_MicroMoB
times vector of times to get values
places vector of places to get values

Value

a matrix

get_q_mosquito_RM

Get human blood feeding fraction for Ross-Macdonald mosquito model

Description

Get human blood feeding fraction for Ross-Macdonald mosquito model

Usage

```
get_q_mosquito_RM(model)
```

Arguments

model an object from

an object from make_MicroMoB

Value

a vector

get_surv_aqua_BH 47

get_surv_aqua_BH	Get daily survival probability for Beverton-Holt aquatic mosquito
	model

Description

Get daily survival probability for Beverton-Holt aquatic mosquito model

Usage

```
get_surv_aqua_BH(model, times, places)
```

Arguments

model an object from make_MicroMoB

times vector of times to get values
places vector of places to get values

Value

a matrix

get_tmax

Get maximum time of simulation from model object

Description

Get maximum time of simulation from model object

Usage

```
get_tmax(model)
```

Arguments

model an object from make_MicroMoB

is_binary

get_tnow

Get current time of simulation from model object

Description

Get current time of simulation from model object

Usage

```
get_tnow(model)
```

Arguments

model

an object from make_MicroMoB

is_binary

Does a numeric object consist of only zeros and ones?

Description

Does a numeric object consist of only zeros and ones?

Usage

```
is_binary(x)
```

Arguments

Χ

a numeric object

Value

a logical value

make_MicroMoB 49

make_MicroMoB Make a model object

Description

The model object is a hashed environment. By default it contains a single list, model\$global storing global state.

Usage

```
make\_MicroMoB(tmax, p, l = p)
```

Arguments

tmax number of days to simulate

p number of places

1 number of aquatic habitats (optional, will be set to p by default)

Value

an object of class environment

MicroMoB

MicroMoB: Microsimulation for mosquito-borne pathogens

Description

Discrete time simulation of mosquito-borne pathogen transmission

Author(s)

Maintainer: Sean L. Wu <slwood89@gmail.com> (ORCID)

Authors:

• David L. Smith <smitdave@uw.edu> (ORCID)

Other contributors:

• Sophie Libkind [contributor]

See Also

Useful links:

- https://dd-harp.github.io/MicroMoB/
- https://github.com/dd-harp/MicroMoB
- Report bugs at https://github.com/dd-harp/MicroMoB/issues

50 observe_pfpr.SIP

observe_pfpr

Observe PfPR in human strata

Description

This method dispatches on the type of model\$human.

Usage

```
observe_pfpr(model, parameters)
```

Arguments

model an object from make_MicroMoB

parameters a named list, should have elements sens (sensitivity), spec (specificity), and a

vector of length equal to number of strata testprop which gives the proportion

of each strata to be tested.

Value

an array of counts, with actual condition as first dimension and tested condition as the second dimension, and the third dimension is the human strata

observe_pfpr.SIP

Observe PfPR in human strata for SIP model

Description

Observe PfPR in human strata for SIP model

Usage

```
## S3 method for class 'SIP'
observe_pfpr(model, parameters)
```

Arguments

model an object from make_MicroMoB

parameters a named list, should have elements sens (sensitivity), spec (specificity), and a

vector of length equal to number of strata testprop which gives the proportion

of each strata to be tested.

Value

an array of counts, with actual condition as first dimension and tested condition as the second dimension, and the third dimension is the human strata

observe_pfpr.SIS 51

observe_pfpr.SIS

Observe PfPR in human strata for SIS model

Description

Observe PfPR in human strata for SIS model

Usage

```
## S3 method for class 'SIS'
observe_pfpr(model, parameters)
```

Arguments

model an object from make_MicroMoB

parameters a named list, should have elements sens (sensitivity), spec (specificity), and a

vector of length equal to number of strata testprop which gives the proportion

of each strata to be tested.

Value

an array of counts, with actual condition as first dimension and tested condition as the second dimension, and the third dimension is the human strata

output_aqua

Get output for aquatic (immature) mosquito populations

Description

This method dispatches on the type of model\$aqua. It returns the current state of the aquatic component.

Usage

```
output_aqua(model)
```

Arguments

model

an object from make_MicroMoB

Value

a data.frame

52 output_aqua.trace

output_aqua.BH

Get output for aquatic (immature) mosquito populations with Beverton-Holt dynamics

Description

Return a data.frame.

Usage

```
## S3 method for class 'BH'
output_aqua(model)
```

Arguments

model

an object from make_MicroMoB

Value

```
a data.frame with columns L (immature) and A (emerging pupae)
```

output_aqua.trace

Get output for aquatic (immature) mosquito populations with forced emergence

Description

This function returns an empty data.frame as trace models do not have endogenous dynamics.

Usage

```
## S3 method for class 'trace'
output_aqua(model)
```

Arguments

model

an object from make_MicroMoB

Value

a data.frame

output_mosquitoes 53

output_mosquitoes

Get output for mosquito populations

Description

This method dispatches on the type of model\$mosquito. It returns the current state of the adult mosquito component.

Usage

```
output_mosquitoes(model)
```

Arguments

model

an object from make_MicroMoB

Value

a data.frame

output_mosquitoes.RM Get output for Ross-Macdonald mosquito populations

Description

Return a data.frame.

Usage

```
## S3 method for class 'RM'
output_mosquitoes(model)
```

Arguments

model

an object from make_MicroMoB

Value

a data.frame with columns M (all adult mosquitoes), Y (infected mosquitoes), and Z (infectious mosquitoes), and rows correspond to places.

```
output_mosquitoes.trace
```

Get output for null mosquito populations

Description

This function returns an empty data.frame as trace models do not have endogenous dynamics.

Usage

```
## S3 method for class 'trace'
output_mosquitoes(model)
```

Arguments

model

an object from make_MicroMoB

Value

a data.frame

```
sample_stochastic_matrix
```

Sample a stochastic matrix

Description

x is a matrix with arbitrary number of rows but whose columns are equal to the number of bins that the stochastic matrix prob parameterizes a distribution over. Each row of x gives a distribution of counts over bins and is resampled according to prob. It is conceptually similar to "stochastically" distributing the matrix as x *** prob, which gives the expectation.

Usage

```
sample_stochastic_matrix(x, prob)
```

Arguments

x a matrix

prob a matrix, it must have number of columns equal to the number of columns of x

and rows that sum to one

Value

a matrix whose dimensions equal the original x

```
sample_stochastic_vector
```

Sample a stochastic vector

Description

Given a vector of counts in cells, x and a stochastic matrix prob, each row of which describes a probability distribution of how that cell should be distributed among bins, sample destination bins for each cell count, and return a vector giving the number of counts in bins. It is conceptually similar to "stochastically" distributing the vector as x *** prob, which gives the expectation.

Usage

```
sample_stochastic_vector(x, prob)
```

Arguments

x a vector

prob a matrix, it must have number of rows equal to x and rows that sum to one

Value

a vector of length equal to the number of columns of prob

```
setup_alternative_trace
```

Setup trace driven alternative blood hosts

Description

This model complies with the visitors component interface. It adds a named list model \$alternative.

Usage

```
setup_alternative_trace(model, 0 = NULL)
```

Arguments

model an object from make_MicroMoB

0 a time varying trace passed to time_patch_varying_parameter or NULL to set to

0 (no alternative blood hosts)

Value

setup_aqua_trace

setup_aqua_BH Setup aquatic (immature) mosquito model with Beverton-Holt dynamics

Description

A single compartment for all aquatic stages is modeled which suffers density dependent mortality like the Beverton-Holt model.

Usage

```
setup_aqua_BH(model, stochastic, molt, surv, K, L)
```

Arguments

model an object from make_MicroMoB

stochastic should the model update deterministically or stochastically?

molt proportion of immature stages which will mature and emerge as adults each day

(may be time and patch varying see time_patch_varying_parameter)

surv daily survival probability (may be time and patch varying see time_patch_varying_parameter)

K carrying capacity (may be time and patch varying see time_patch_varying_parameter)

L initial number of immature mosquitoes

Details

All parameters can be passed either as a vector of length equal to 1, a matrix with 1 rows and tmax columns, or a matrix with 1 rows and 365 columns.

Value

no return value

setup_aqua_trace	Setup aquatic (immature) mosquito model with trace (forced) emer-
	gence

Description

Emergence is passed as a (possibly time varying) parameter which is decoupled from the adult mosquito dynamics. This module assumes 1 and p are equivalent, as emergence rates are given for p.

Usage

```
setup_aqua_trace(model, lambda, stochastic)
```

setup_humans_MOI 57

Arguments

model an object from make_MicroMoB

lambda daily emergence of mosquitoes, may be time and patch varying, see time_patch_varying_parameter

stochastic should the model update deterministically or stochastically?

Value

no return value

setup_humans_MOI

Setup humans with MOI (multiplicity of infection) pathogen model

Description

This is a queueing model (M/M/inf) of superinfection in humans.

Usage

```
setup_humans_MOI(
  model,
  stochastic,
  theta,
  wf = NULL,
  H,
  MOI,
  b = 0.55,
  c = 0.15,
  r = 1/200,
  sigma = 1
)
```

Arguments

model an object from make_MicroMoB

stochastic should the model update deterministically or stochastically?

theta a time spent matrix wf biting weights

H vector of strata population sizes

MOI a matrix giving the distribution of persons across strata (columns) and multiplic-

ity of infection (rows).

b transmission efficiency (mosquito to human)
c transmission efficiency (human to mosquito)
r recovery rate (inverse of infectious duration)

sigma control non-independence of pathogen clearance; sigma > 1 indicates competi-

tion (clearance is faster than independent) and sigma < 1 indicates facilitation

(clearance is slower than independent).

58 setup_humans_SIP

Value

no return value

Note

The step_humans method for the MOI model will grow the MOI matrix (add rows) if an individual's MOI exceeds the size of the matrix; therefore it's a good idea to pad the input matrix with extra empty rows to avoid reallocating memory during the simulation as much as possible.

setup_humans_SIP

Setup humans with SIP pathogen model

Description

A simple SIP (Susceptible-Infected-Protected) model

Usage

```
setup_humans_SIP(
  model,
  stochastic,
  theta,
  wf = NULL,
  SIP,
  b = 0.55,
  c = 0.15,
  r = 1/200,
  rho = 0.07,
  eta = 1/32
)
```

Arguments

```
model
                  an object from make_MicroMoB
stochastic
                  should the model update deterministically or stochastically?
                  a time spent matrix
theta
wf
                  biting weights
SIP
                  matrix of strata (rows) by health states (SIP)
                  transmission efficiency (mosquito to human)
b
                  transmission efficiency (human to mosquito)
С
                  recovery rate (inverse of infectious duration)
                  probability of treatment upon infection
rho
                  rate at which prophylaxis decays
eta
```

Value

setup_humans_SIR 59

setup_humans_SIR

Setup humans with SIR infection model

Description

A simple SIR (Susceptible-Infected-Recovered) model

Usage

```
setup_humans_SIR(
  model,
  stochastic,
  theta,
  wf = NULL,
  H,
  SIR,
  b = 0.55,
  c = 0.15,
  gamma = 1/5
)
```

Arguments

model	an object from make_MicroMoB
stochastic	should the model update deterministically or stochastically?
theta	a time spent matrix
wf	biting weights
Н	vector of strata population sizes
SIR	a matrix giving S, I, R counts (columns) for each strata (rows)
b	transmission efficiency (mosquito to human)
С	transmission efficiency (human to mosquito)
gamma	rate of recovery

Value

60 setup_humans_SIS

setup_humans_SIS

Setup humans with SIS pathogen model

Description

A simple SIS (Susceptible-Infected-Susceptible) model

Usage

```
setup_humans_SIS(
  model,
  stochastic,
  theta,
  wf = NULL,
  H,
  X,
  b = 0.55,
  c = 0.15,
  r = 1/200
)
```

Arguments

model	an object from make_MicroMoB
stochastic	should the model update deterministically or stochastically?
theta	a time spent matrix
wf	biting weights
Н	vector of strata population sizes
X	number of infectious persons in each strata
b	transmission efficiency (mosquito to human)
С	transmission efficiency (human to mosquito)
r	recovery rate (inverse of infectious duration)

Value

setup_mosquito_BQ 61

setup_mosquito_BQ	Setup blood feeding & oviposition (BQ) behavioral state mosquito model

Description

This is a behavioral state model which allows for time varying EIP and survival probability. Mosquitoes transition between blood feeding (B) and oviposition (Q) depending on the success (or not) of those biological activities. It complies with the mosquito component interface, and may be simulated deterministically or stochastically.

Usage

```
setup_mosquito_BQ(
  model,
  stochastic,
  eip,
  pB,
  pQ,
  psiQ,
  Psi_bb,
  Psi_bd,
  Psi_qd,
  Psi_qq,
  nu = 25,
  M,
  Y
)
```

Arguments

model	an object from make_MicroMoB
stochastic	should the model update deterministically or stochastically?
eip	the Extrinsic Incubation Period (may be time varying see time_varying_parameter)
рВ	daily survival probability during blood feeding (may be time and patch varying see time_patch_varying_parameter)
pQ	daily survival probability during oviposition (may be time and patch varying see time_patch_varying_parameter)
psiQ	oviposition success probability (may be time and patch varying see time_patch_varying_parameter)
Psi_bb	movement matrix from blood feeding haunts to blood feeding haunts (columns must sum to 1, p rows and columns)
Psi_bq	movement matrix from blood feeding haunts to aquatic habitats (columns must sum to 1, 1 rows and p columns)
Psi_qb	movement matrix from aquatic habitats to blood feeding haunts (columns must sum to 1, p rows and 1 columns)

Psi_qq	movement matrix from aquatic habitats to aquatic habitats (columns must sum to 1, 1 rows and columns)
nu	number of eggs laid per oviposition
М	number of susceptible mosquitoes (vector of length p + 1)
Υ	number of incubating mosquitoes (matrix with p + 1 rows and maxEIP + 1 columns)

Value

no return value

setup_mosquito_RM Setup generalized Ross-Macdonald mosquito model

Description

This is a generalized RM model which allows for time varying EIP and survival probability. It complies with the mosquito component interface, and may be simulated deterministically or stochastically.

Usage

```
setup_mosquito_RM(
  model,
  stochastic,
  f = 0.3,
  q = 0.9,
  eip,
  p,
  psi,
  nu = 25,
  M,
  Y,
  Z,
  N = NULL
)
```

Arguments

model	an object from make_MicroMoB
stochastic	should the model update deterministically or stochastically?
f	the blood feeding rate
q	the human blood feeding fraction
eip	the Extrinsic Incubation Period (may be time varying see time_varying_parameter)
р	daily survival probability (may be time and patch varying see time_patch_varying_parameter)
psi	a mosquito dispersal matrix (rows must sum to 1)

setup_mosquito_trace 63

nu	number of eggs laid per oviposition
М	total mosquito density per patch (vector of length p)
Υ	density of incubating mosquitoes per patch (vector of length p)
Z	density of infectious mosquitoes per patch (vector of length p)
N	1 by p matrix describing how eggs from mosquitoes in patches are distributed amongst aquatic habitats. If NULL it is the identity matrix of dimension 1.

Value

no return value

```
setup_mosquito_trace Setup null mosquito model
```

Description

This is a null model of mosquito dynamics that is only for testing/verifying aquatic models. It implements a single method compute_oviposit.trace and all other methods throw an error.

Usage

```
setup_mosquito_trace(model, oviposit)
```

Arguments

model an object from make_MicroMoB

oviposit a vector of length p used as a return value for compute_oviposit

Value

no return value

Description

This model complies with the visitors component interface. It adds a named list model\$visitor.

Usage

```
setup_visitor_trace(model, Wd = NULL, xd = NULL)
```

Arguments

model an object from make_MicroMoB

Wd a time varying trace of visitor host availability passed to time_patch_varying_parameter

or NULL to set to 0 (no visitors)

xd a time varying trace of visitor net infectiousness passed to time_patch_varying_parameter

or NULL to set to 0 (no visitors)

Value

no return value

set_eip_mosquito_RM

Set extrinsic incubation period for Ross-Macdonald mosquito model

Description

Change the extrinsic incubation period parameter eip for some set of times. The new values eip should either be a scalar or a vector of length equal to the length of times.

Usage

```
set_eip_mosquito_RM(model, eip, times)
```

Arguments

model an object from make_MicroMoB

eip new extrinsic incubation period values

times vector of times to set the new values

Value

set_f_mosquito_RM 65

 $set_f_mosquito_RM$

Set feeding rate for Ross-Macdonald mosquito model

Description

Change the feeding rate parameter f.

Usage

```
set_f_mosquito_RM(model, f)
```

Arguments

model an object from make_MicroMoB

f new blood feeding rate

Value

no return value

 $\verb|set_kappa_mosquito_RM| \textit{ Set kappa for Ross-Macdonald mosquito model}|$

Description

Change kappa.

Usage

```
set_kappa_mosquito_RM(model, kappa)
```

Arguments

model an object from make_MicroMoB

kappa new value of kappa

Value

set_K_aqua_BH

Set carrying capacity for Beverton-Holt aquatic mosquito model

Description

Change the carrying capacity parameter K for some times and places. The parameter K is stored internally as a matrix so that times and places are used to modify a submatrix, therefore the new value K should either be a scalar value to update the entire submatrix or a matrix of places rows and times columns.

Usage

```
set_K_aqua_BH(model, K, times, places)
```

Arguments

model an object from make_MicroMoB

K new carrying capacity

times vector of times to set the new values
places vector of places to set the new values

Value

no return value

set_lambda_aqua_trace Set daily emergence for trace (forced) aquatic mosquito model

Description

Change the daily emergence parameter lambda for some times and places. The parameter lambda is stored internally as a matrix so that times and places are used to modify a submatrix, therefore the new value lambda should either be a scalar value to update the entire submatrix or a matrix of places rows and times columns.

Usage

```
set_lambda_aqua_trace(model, lambda, times, places)
```

Arguments

model an object from make_MicroMoB

lambda new emergence

times vector of times to set the new values places vector of places to set the new values

set_molt_aqua_BH 67

Value

no return value

set_molt_aqua_BH Set daily maturation probability for Beverton-Holt aquatic mosquito

model

Description

Change the daily maturation probability parameter molt for some times and places. The parameter molt is stored internally as a matrix so that times and places are used to modify a submatrix, therefore the new value molt should either be a scalar value to update the entire submatrix or a matrix of places rows and times columns.

Usage

```
set_molt_aqua_BH(model, molt, times, places)
```

Arguments

model an object from make_MicroMoB
molt new daily maturation probability
times vector of times to set the new values
places vector of places to set the new values

Value

no return value

set_nu_mosquito_RM

Set number of eggs laid per oviposition for Ross-Macdonald mosquito model

Description

Change the number of eggs laid per oviposition parameter nu.

Usage

```
set_nu_mosquito_RM(model, nu)
```

Arguments

model an object from make_MicroMoB

nu new number of eggs laid per oviposition

Value

no return value

Set mosquito dispersal matrix for Ross-Macdonald mosquito model

Description

Change the mosquito dispersal matrix parameter psi.

Usage

```
set_psi_mosquito_RM(model, psi)
```

Arguments

model an object from make_MicroMoB
psi new mosquito dispersal matrix

Value

no return value

set_p_mosquito_RM

Set daily survival probability for Ross-Macdonald mosquito model

Description

Change the daily survival probability parameter p for some times and places. The parameter p is stored internally as a matrix so that times and places are used to modify a submatrix, therefore the new value p should either be a scalar value to update the entire submatrix or a matrix of places rows and times columns.

Usage

```
set_p_mosquito_RM(model, p, times, places)
```

Arguments

model an object from make_MicroMoB

p new human blood feeding fraction

times vector of times to set the new values

places vector of places to set the new values

Value

set_q_mosquito_RM 69

cat	а	mosauito	NA PM
set	u	IIIOSUUI LO	ויוא כ

Set human blood feeding fraction for Ross-Macdonald mosquito model

Description

Change the human blood feeding fraction parameter q.

Usage

```
set_q_mosquito_RM(model, q)
```

Arguments

model an object from make_MicroMoB
q new human blood feeding fraction

Value

no return value

set_surv_aqua_BH

Set daily survival probability for Beverton-Holt aquatic mosquito model

Description

Change the daily survival probability parameter surv for some times and places. The parameter surv is stored internally as a matrix so that times and places are used to modify a submatrix, therefore the new value surv should either be a scalar value to update the entire submatrix or a matrix of places rows and times columns.

Usage

```
set_surv_aqua_BH(model, surv, times, places)
```

Arguments

model an object from make_MicroMoB
surv new daily survival probability
times vector of times to set the new values
places vector of places to set the new values

Value

70 step_aqua.BH

step_aqua

Update aquatic (immature) mosquito populations

Description

This method dispatches on the type of model\$aqua

Usage

```
step_aqua(model)
```

Arguments

model

an object from make_MicroMoB

Value

no return value

step_aqua.BH

Update aquatic (immature) mosquito populations for Beverton-Holt dynamics

Description

This function dispatches on the second class attribute of model\$aqua for stochastic or deterministic behavior.

Usage

```
## S3 method for class 'BH'
step_aqua(model)
```

Arguments

model

an object from make_MicroMoB

Value

step_aqua.BH_deterministic

Update aquatic (immature) mosquito populations for deterministic Beverton-Holt dynamics

Description

Run a deterministic state update.

Usage

```
## S3 method for class 'BH_deterministic'
step_aqua(model)
```

Arguments

model

an object from make_MicroMoB

Value

no return value

```
step_aqua.BH_stochastic
```

Update aquatic (immature) mosquito populations for stochastic Beverton-Holt dynamics

Description

Run a stochastic state update.

Usage

```
## S3 method for class 'BH_stochastic'
step_aqua(model)
```

Arguments

model

an object from make_MicroMoB

Value

72 step_humans

step_aqua.trace

Update aquatic (immature) mosquito populations for forced emergence

Description

This function does nothing as trace models do not have endogenous dynamics.

Usage

```
## S3 method for class 'trace'
step_aqua(model)
```

Arguments

model

an object from make_MicroMoB

Value

no return value

step_humans

Update human population

Description

This method dispatches on the type of model\$human.

Usage

```
step_humans(model)
```

Arguments

model

an object from make_MicroMoB

Value

step_humans.MOI 73

step_humans.MOI

Update MOI human model

Description

Update MOI human model

Usage

```
## S3 method for class 'MOI'
step_humans(model)
```

Arguments

model

an object from make_MicroMoB

Value

no return value

```
step_humans.MOI_deterministic
```

Update MOI human model (deterministic)

Description

Update MOI human model (deterministic)

Usage

```
## S3 method for class 'MOI_deterministic'
step_humans(model)
```

Arguments

model

an object from make_MicroMoB

Value

74 step_humans.SIP

```
step_humans.MOI_stochastic
```

Update MOI human model (stochastic)

Description

Update MOI human model (stochastic)

Usage

```
## S3 method for class 'MOI_stochastic'
step_humans(model)
```

Arguments

model

an object from make_MicroMoB

Value

no return value

 $step_humans.SIP$

Update SIP human model

Description

Update SIP human model

Usage

```
## S3 method for class 'SIP'
step_humans(model)
```

Arguments

model

an object from make_MicroMoB

Value

```
step\_humans.SIP\_deterministic
```

Update SIP human model (deterministic)

Description

Update SIP human model (deterministic)

Usage

```
## S3 method for class 'SIP_deterministic'
step_humans(model)
```

Arguments

model

an object from make_MicroMoB

Value

no return value

```
step_humans.SIP_stochastic
```

Update SIP human model (stochastic)

Description

Update SIP human model (stochastic)

Usage

```
## S3 method for class 'SIP_stochastic'
step_humans(model)
```

Arguments

model

an object from make_MicroMoB

Value

step_humans.SIR

Update SIR human model

Description

Update SIR human model

Usage

```
## S3 method for class 'SIR'
step_humans(model)
```

Arguments

model

an object from make_MicroMoB

Value

no return value

```
step_humans.SIR_deterministic
```

Update SIR human model (deterministic)

Description

Update SIR human model (deterministic)

Usage

```
## S3 method for class 'SIR_deterministic'
step_humans(model)
```

Arguments

model

an object from make_MicroMoB

Value

```
step_humans.SIR_stochastic
```

Update SIR human model (stochastic)

Description

Update SIR human model (stochastic)

Usage

```
## S3 method for class 'SIR_stochastic'
step_humans(model)
```

Arguments

model

an object from make_MicroMoB

Value

no return value

step_humans.SIS

Update SIS human model

Description

Update SIS human model

Usage

```
## S3 method for class 'SIS'
step_humans(model)
```

Arguments

model

an object from make_MicroMoB

Value

```
step\_humans.SIS\_deterministic
```

Update SIS human model (deterministic)

Description

Update SIS human model (deterministic)

Usage

```
## S3 method for class 'SIS_deterministic'
step_humans(model)
```

Arguments

model

an object from make_MicroMoB

Value

no return value

```
step_humans.SIS_stochastic
```

Update SIS human model (stochastic)

Description

Update SIS human model (stochastic)

Usage

```
## S3 method for class 'SIS_stochastic'
step_humans(model)
```

Arguments

model

an object from make_MicroMoB

Value

step_mosquitoes 79

step_mosquitoes

Update mosquito population

Description

This method dispatches on the type of model\$mosquito

Usage

```
step_mosquitoes(model)
```

Arguments

model

an object from make_MicroMoB

Value

no return value

step_mosquitoes.BQ

Update blood feeding & oviposition (BQ) behavioral state mosquitoes

Description

This function dispatches on the second argument of model\$mosquito for stochastic or deterministic behavior.

Usage

```
## S3 method for class 'BQ'
step_mosquitoes(model)
```

Arguments

model

an object from make_MicroMoB

Details

```
see step_mosquitoes.BQ_deterministic and step_mosquitoes.BQ_stochastic
```

Value

 $step_mosquitoes.BQ_deterministic$

Update blood feeding & oviposition (BQ) behavioral state mosquitoes (deterministic)

Description

Update blood feeding & oviposition (BQ) behavioral state mosquitoes (deterministic)

Usage

```
## S3 method for class 'BQ_deterministic'
step_mosquitoes(model)
```

Arguments

model

an object from make_MicroMoB

Value

no return value

```
step_mosquitoes.BQ_stochastic
```

Update blood feeding & oviposition (BQ) behavioral state mosquitoes (stochastic)

Description

Update blood feeding & oviposition (BQ) behavioral state mosquitoes (stochastic)

Usage

```
## S3 method for class 'BQ_stochastic'
step_mosquitoes(model)
```

Arguments

model

an object from make_MicroMoB

Value

step_mosquitoes.RM 81

 $step_mosquitoes.RM$

Update Ross-Macdonald mosquitoes

Description

This function dispatches on the second argument of model\$mosquito for stochastic or deterministic behavior.

Usage

```
## S3 method for class 'RM'
step_mosquitoes(model)
```

Arguments

model

an object from make_MicroMoB

Details

see step_mosquitoes.RM_deterministic and step_mosquitoes.RM_stochastic

Value

no return value

```
step_mosquitoes.RM_deterministic
```

Update Ross-Macdonald mosquitoes (deterministic)

Description

Update Ross-Macdonald mosquitoes (deterministic)

Usage

```
## S3 method for class 'RM_deterministic'
step_mosquitoes(model)
```

Arguments

model

an object from make_MicroMoB

Value

82 step_mosquitoes.trace

```
step\_mosquitoes.RM\_stochastic
```

Update Ross-Macdonald mosquitoes (stochastic)

Description

Update Ross-Macdonald mosquitoes (stochastic)

Usage

```
## S3 method for class 'RM_stochastic'
step_mosquitoes(model)
```

Arguments

model

an object from make_MicroMoB

Value

no return value

```
step\_mosquitoes.trace Update null mosquito population
```

Description

Update null mosquito population

Usage

```
## S3 method for class 'trace'
step_mosquitoes(model)
```

Arguments

model

an object from make_MicroMoB

Value

```
strata_to_residency_counts
```

Helper function for lumped population strata (counts)

Description

If input is given as a matrix of population counts per strata (columns) and patch (rows), this function calculates the residency matrix and population size for the overall stratification of both residency and strata.

Usage

```
strata_to_residency_counts(H_counts)
```

Arguments

H_counts

a matrix of population counts

Value

a list with three elements:

- J: the residency matrix mapping elements in H to patches
- H: the overall population distribution over strata and patches

Examples

```
# taken from package tests
J <- matrix(
    c(0.3, 0.5, 0.2,
    0.1, 0.6, 0.3), nrow = 3, ncol = 2, byrow = FALSE
)
H <- c(50, 60)
H_overall <- J %*% diag(H)
residency <- strata_to_residency_proportion(H_strata = H, J_strata = J)</pre>
```

```
strata_to_residency_proportion
```

Helper function for lumped population strata (proportional assignment)

Description

If input is given as a vector of population sizes per-strata, lumped over patches, and a separate matrix whose columns describe how each strata is distributed over patches, this function calculates the residency matrix and population size for the overall stratification of both residency and strata.

Usage

```
strata_to_residency_proportion(H_strata, J_strata)
```

Arguments

H_strata a vector of population size by strata

J_strata a matrix whose columns sum to one giving the distribution of strata (columns)

populations over patches (rows)

Value

a list with three elements:

- assignment_indices: provides a mapping from patch (rows) and strata (columns) into the "unrolled" vector H
- J: the residency matrix mapping elements in H to patches
- H: the overall population distribution over strata and patches

Examples

```
# taken from package tests
J <- matrix(
    c(0.3, 0.5, 0.2,
    0.1, 0.6, 0.3), nrow = 3, ncol = 2, byrow = FALSE
)
H <- c(50, 60)
# get the overall assignment of strata (cols) across patches (rows)
H_overall <- J %*% diag(H)
residency <- strata_to_residency_proportion(H_strata = H, J_strata = J)</pre>
```

time_patch_varying_parameter

Input parameters that may vary by time and patch

Description

Input parameters that may vary by time and patch

Usage

```
time_patch_varying_parameter(param, p, tmax)
```

Arguments

param if given a matrix, it must have nrows equal to p and ncols equal to either tmax

or 365; if given a vector it must be of length p, tmax, or 365.

p number of patchestmax number of time steps

Value

a matrix with p rows and tmax columns

time_varying_parameter

Input parameters that may vary by time

Description

Input parameters that may vary by time

Usage

```
time_varying_parameter(param, tmax)
```

Arguments

param a vector of length 1, tmax, or 365.

tmax number of time steps

Value

a vector with tmax elements

Index

```
api_config_global, 5
                                                compute_q.BQ, 22
approx_equal, 5
                                                compute_q.RM, 22
array, 50, 51
                                                compute_q.trace, 23
                                                compute_Wd, 23
compute_bloodmeal, 6, 6
                                                compute_Wd.trace, 24
compute_bloodmeal_simple, 6
                                                compute\_wf, 24
compute_emergents, 7
                                                compute_wf.MOI, 25
compute_emergents.BH, 7
                                                compute_wf.SIP, 25
compute_emergents.trace, 8
                                                compute_wf.SIR, 26
compute_emergents.trace_deterministic,
                                                compute_wf.SIS, 26
                                                compute_x, 27
compute_emergents.trace_stochastic, 8,
                                                compute_x.MOI, 27
                                                compute_x.SIP, 28
compute_f, 9
                                                compute_x.SIR, 28
compute_f.BQ, 10
                                                compute_x.SIS, 29
compute_f.RM, 10
                                                compute_xd, 29
compute_f.trace, 11
                                                compute_xd.trace, 30
compute_H, 11
                                                compute_Z, 30
compute_H.MOI, 12
                                                compute_Z.BQ, 31
compute_H.SIP, 12
                                                compute_Z.RM, 31
compute_H.SIR, 13
                                                compute_Z.trace, 32
compute_H.SIS, 13
compute_0, 14
                                                data.frame. 51-54
compute_0.trace, 14
                                                distribute, 32
compute_oviposit, 15, 63
                                                divmod, 33
compute_oviposit.BQ, 15
                                                draw_multinom, 33
compute_oviposit.BQ_deterministic, 15,
        16
                                                environment, 49
compute_oviposit.BQ_stochastic, 15, 16
                                                get_config_alternative_trace, 34
compute_oviposit.RM, 17
compute_oviposit.RM_deterministic, 17,
                                                get_config_aqua_BH, 34
                                                get_config_aqua_trace, 35
compute_oviposit.RM_stochastic, 17, 18
                                                get_config_humans_MOI, 36
compute_oviposit.trace, 18,63
                                                get_config_humans_SIR, 37
                                                get_config_humans_SIS, 38
compute_Psi, 19
compute_Psi.MOI, 19
                                                get_config_mosquito_RM, 39
compute_Psi.SIP, 20
                                                get_config_mosquito_trace, 40
compute_Psi.SIR, 20
                                                get_config_visitor_trace, 41
compute_Psi.SIS, 21
                                                get_eip_mosquito_RM, 42
compute_q, 21
                                                get_f_mosquito_RM, 42
```

INDEX 87

get_K_aqua_BH, 43	setup_humans_SIP, 58
<pre>get_kappa_mosquito_RM, 43</pre>	setup_humans_SIR, 37, 59
get_lambda_aqua_trace, 44	setup_humans_SIS, 38, 60
get_molt_aqua_BH, 44	setup_mosquito_BQ, 61
get_nu_mosquito_RM, 45	setup_mosquito_RM, 39, 62
get_p_mosquito_RM, 46	setup_mosquito_trace, 40, 63
get_psi_mosquito_RM, 45	setup_visitor_trace, 41, 63
get_q_mosquito_RM, 46	step_aqua, 70
get_surv_aqua_BH, 47	step_aqua.BH, 70
get_tmax, 47	step_aqua.BH_deterministic, 71
get_tnow, 48	step_aqua.BH_stochastic,71
	step_aqua.trace, 72
is_binary, 48	step_humans, 58, 72
	step_humans.MOI, 73
list, 34–36, 38–41, 50, 51, 83, 84	step_humans.MOI_deterministic, 73
	step_humans.MOI_stochastic, 74
make_MicroMoB, $6-32$, $42-48$, 49 , $50-82$	step_humans.SIP, 74
matrix, 43, 44, 47	step_humans.SIP_deterministic, 75
MicroMoB, 49	step_humans.SIP_stochastic, 75
MicroMoB-package (MicroMoB), 49	step_humans.SIR, 76
	step_humans.SIR_deterministic,76
numeric, 5, 48	·
ah aanua n Can 50	step_humans.SIR_stochastic,77
observe_pfpr, 50	step_humans.SIS,77
observe_pfpr.SIP, 50	step_humans.SIS_deterministic,78
observe_pfpr.SIS, 51	step_humans.SIS_stochastic,78
output_aqua, 51	step_mosquitoes, 79
output_aqua.BH, 52	step_mosquitoes.BQ, 79
output_aqua.trace, 52	step_mosquitoes.BQ_deterministic, 79,
output_mosquitoes, 53	80
output_mosquitoes.RM, 53	step_mosquitoes.BQ_stochastic, 79, 80
output_mosquitoes.trace, 54	step_mosquitoes.RM, 81
1	step_mosquitoes.RM_deterministic, 81,
sample_stochastic_matrix, 54	81
sample_stochastic_vector, 55	step_mosquitoes.RM_stochastic, 81, 82
set_eip_mosquito_RM, 64	step_mosquitoes.trace,82
set_f_mosquito_RM, 65	strata_to_residency_counts,83
set_K_aqua_BH, 66	strata_to_residency_proportion, 83
set_kappa_mosquito_RM, 65	
set_lambda_aqua_trace, 66	time_patch_varying_parameter, 34, 35, 41
set_molt_aqua_BH, 67	55–57, 61, 62, 64, 84
set_nu_mosquito_RM, 67	time_varying_parameter, 39 , 61 , 62 , 85
set_p_mosquito_RM, 68	
set_psi_mosquito_RM, 68	
set_q_mosquito_RM, 69	
set_surv_aqua_BH, 69	
setup_alternative_trace, 34, 55	
setup_aqua_BH, <i>34</i> , 56	
setup_aqua_trace, 35, 56	
setup_humans_MOI, 36, 57	