лаба 3 - исполнение циклических программ

Полезный гайд - https://github.com/Zerumi/OPD-guide-RU-

Организация одномерных массивов данных в памяти. Организация и обработка массивов с числом измерений, больше чем одно

Массивы располагают элементы данных в памяти. Перебираем элементы массива с помощью LOOP и косвенной относительной адресации.

В БЭВМ как и в PDP-8 и PDP-11 память организована как линейное пространство. Это значит, что независимо от размерности массива данные хранятся в последовательных ячейках памяти. Мы должны учитывать организацию массива (по строкам или столбцам), чтобы правильно вычислять адреса элементов

По строкам: Адрес A[i][j] = базовый адрес + і*кол-во столбцов + ј

По столбцам: Адрес А[i][j] = базовый адрес + j*кол-во строк + i

Сравнение значений в БЭВМ. Команды условного и безусловного переходов

Инструкция сравнения команды СМР

AC + (- operand) → признаки результата NZVC

CMP не записывает результат в аккумулятор, но выставляет вспомогательные флаги NZVC

Как сравнивать числа А и В?

A ≤ B

LD A

CMP B

Разветвления в программах организуются с помощью **команд перехода**. Эти команды при выполнении заданного признаками NZVC условия

осуществляют переход по указанному адресу (запись в IP нового адреса выполнения в программе). Если условие не выполняется, то выполняется команда, которая следует за командой ветвления.

Нужно различать использование ветвлений по признакам, которые подходят для беззнаковых, знаковых чисел или обоих сразу:

Для беззнаковых: после установки NZVC можно проверить командами BCC, BCS

Для знаковых: BLT и BGE

Равенство/Неравенство: CMP или SUB / команды ветвления BEQ и BNE /

AND и BEQ

е) Команда ветвления

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
коп=1111			Расш. КОП			Смещение									

Наименование	Мнемон.	Код	Описание
Переход, если равенство	BEQ D	F0XX	IF Z==1 THEN IP+D+1 → IP
Переход, если неравенство	BNE D	F1XX	IF Z==0 THEN IP+D+1 → IP
Переход, если минус	BMI D	F2XX	IF N==1 THEN IP+D+1 → IP
Переход, если плюс	BPL D	F3XX	IF N==0 THEN IP+D+1 → IP
Переход, если выше или равно /перенос	BCS D BHIS D	F4XX	IF C==1 THEN IP+D+1 → IP
Переход, если ниже/нет переноса	BCC D BLO D	F5XX	IF C==0 THEN IP+D+1 → IP
Переход, если переполнение	BVS D	F6XX	IF V==1 THEN IP+D+1 → IP
Переход, если нет переполнения	BVC D	F7XX	IF V==0 THEN IP+D+1 → IP
Переход, если меньше	BLT D	F8XX	IF N⊕V==1 THEN IP+D+1 → IP
Переход, если больше или равно	BGE D	F9XX	IF N⊕V==0 THEN IP+D+1 → IP
Безусловный переход	BR D JUMP D	CEXX	IP+D+1 → IP

Организация циклических вычислений

JUMP M (BR) - переход, к команде, расположенной в ячейке с адресом М Циклы со счетчиком в БЭВМ организуются при помощи команды "Декремент и пропуск" (**LOOP**). Данная команда уменьшает заданную ячейку памяти,

определяющую число повторений, и проверяет, что в ячейке еще находится положительное число. Если оно действительно положительное, то выполняется следующая после LOOP команда, если число отрицательное или равно нулю, то к счетчику команд добавляется единица, и следующей будет выполнена команда через одну после LOOP

Цикл исполнения

 $DR - 1 \rightarrow DR$

 $DR - 1 \rightarrow BR, DR \rightarrow MEM(AR)$

IF (BR 15) == 0; break; IP+1 \rightarrow IP (переход к следующей команде)

Таким образом, мы уменьшаем значение на 2 и проверяем, не стало ли оно отрицательным. Это выполняется, т.к не установлены признаки результата при данной операции

Режимы адресации БЭВМ

1. Прямая абсолютная(0)

В 11 бите всегда 0. Указывает на ячейку, где хранится необходимое значение. При выполнении операции команда обращается по заданному адресу выбирая или записывая операнд

2. Прямая относительная (со смещение относительно ІР), (Е)

Код 0xE. Указывает на адрес ячейки. Адрес операнда получается сложением закодированного в команде смещения со счетчиком команд

Adress Fetch:

 $CR(0...7) \rightarrow BR$

 $BR + IP \rightarrow DR$

3. Косвенная относительная(8)

Код 0x8. Косвенная адресация означает, что в ячейке памяти, которая вычисляется из адресной части команды через сложение смещения со счетчиком команд, хранится адрес операнда

(В результате после вычисления ячейки, где хранится адрес, ее значение снова используется в качестве адреса, вычисляя расположение операнда в памяти)

Adress Fetch

 $CR(0-7) \rightarrow BR$

 $BR + IP \rightarrow AR, MEM(AR) \rightarrow DR$

4. Косвенная автоинкрементная(А)

Аналогична косвенной относительной, но после загрузки операнда из памяти значение адреса в ячейке памяти увеличивается на 1

Adress Fetch

CR(0-7 биты) → BR

 $BR + IP \rightarrow AR$

 $MEM(AR) \rightarrow DR$

 $DR + 1 \rightarrow DR$

 $DR \rightarrow MEM(AR)$

 $DR - 1 \rightarrow DR$

5. Косвенная автодекрементная (В)

Перед загрузкой операнда из памяти значение адреса в ячейке памяти уменьшается на 1

Adress Fetch

 $CR(0-7) \rightarrow BR$

 $BR + IP \rightarrow AR$

 $MEM(AR) \rightarrow DR$

 $DR - 1 \rightarrow DR$

 $DR \rightarrow MEM(AR)$

	Код					Реализация машинных циклов					
11	10	9	8	Мнемоника	Описание	Address Fetch, Operand Fetch					
0	М	М	М	ADD 0ADDR ADD \$L	Прямая абсолютная	$DR \rightarrow AR$; $MEM(AR) \rightarrow DR$					
1	0	0	0	ADD (L)	Косвенная относительная	$SXT_CR(07) \rightarrow BR$, $BR + IP \rightarrow AR$, $MEM(AR) \rightarrow DR$, $DR \rightarrow AR$; $MEM(AR) \rightarrow DR$					
1	0	0	1		Резерв						
1	0	1	0	ADD (L)+	Косвенная автоинкрементная (постинкремент)	$\begin{array}{l} SXT_CR(07) \to BR, \\ BR + IP \to AR, MEM(AR) \to DR, DR + 1 \to DR, \\ DR \to MEM(AR), DR - 1 \to DR, \\ DR \to AR; MEM(AR) \to DR \end{array}$					
1	0	1	1	ADD -(L)	Косвенная автодекрементная (предекремент)	SXT_CR(07) \rightarrow BR, BR + IP \rightarrow AR, MEM(AR) \rightarrow DR, DR - 1 \rightarrow DR, DR \rightarrow MEM(AR), DR \rightarrow AR; MEM(AR) \rightarrow DR					
1	1	0	0	ADD &N ADD (SP+N)	Косвенная относительная, со смещением (SP)	$SXT_CR(07) \rightarrow BR$, $BR + SP \rightarrow DR$, $DR \rightarrow AR$; $MEM(AR) \rightarrow DR$					
1	1	0	1		Резерв						
1	1	1		ADD L ADD (IP+N)	Прямая относительная	$SXT_CR(07) \rightarrow BR$, $BR + IP \rightarrow DR$, $DR \rightarrow AR$; $MEM(AR) \rightarrow DR$					
1	1	1	1	ADD #N	Прямая загрузка	$SXT_CR(07) \rightarrow BR, BR \rightarrow DR$					

Рисунок В.10 Циклы выборки адреса и операнда для различных режимов адресации

Важно помнить, что КОП + режим отнимают у нас 8 бит. Значит, на сам адрес остается всего 8, старший бит отвечает за знак, поэтому остаётся уже **7 бит для смещения**, тогда [-2^7; 2^7-1] = [-128; 127] (исключаем значение 1000 0000)

6. Прямая загрузка в АС(F)

Код 0хF. Для такого формата биты 8-11 установлены в единицы. Команда с режимом адресации «прямая загрузка» по факту не является адресной, а только использует формат адресной команды. Она берет число в битах 0-7 команды в качестве операнда и рассматривает его как знаковое, расширяя знак байта (7 бит копируется в биты 8-15 старшего байта)