Задача №1

Активное сопротивление контура в резонансе $R_{\rm 0}$. Входное сопротивление следующего каскада $R_{\rm Bx}$, так что $\frac{R_{\rm 0}}{R_{\rm Bx}}=k$.Определить

результирующее сопротивление параллельного соединения $R_{\scriptscriptstyle \mathrm{BX}}$ и $R_{\scriptscriptstyle 0}$ при коэффициенте включения по выходу $n_{\scriptscriptstyle 2}$

Задача №2

Активное сопротивление контура в резонансе R_0 =20 кОМ. Коэффициент включения по выходу n_2 = 0,5. Величина входного сопротивления следующего каскада $R_{\rm ex}$ = 2,5 кОм. Какой коэффициент включения по входу n_1 необходимо обеспечить для согласования кабеля с волновым сопротивлением ρ_{Φ} = 75 Ом?

Задача №3

Колебательный контур $L_{{}_K}C_{{}_K}$ настроен на частоту $f_{{}_0}$. Входная емкость следующего каскада $C_{{}_{\! extsf{d}[}}$, так что $\frac{C_{{}_{\! extsf{BX}}}}{C_{{}_{\! extsf{L}}}}=k$.

Определить относительную $\frac{\Delta f}{f_0} = \frac{\left(f_0 - f_0^{''}\right)}{f_0} = \frac{f_0^{''}}{f_0} - 1 = \frac{\omega_0^{'}}{\omega_0} - 1$ отстройку $\Delta f = \left(f_0 - f_0^{'}\right)$

входной цепи от частоты f_0 $\frac{\Delta f}{f_0} = \frac{\left(f_0 - f_0^{'}\right)}{f_0}$

при подключении емкости $C_{
m df}$ с коэффициентом включения n_2

Задача №4

Найти полосу пропускания одноконтурной входной цепи если эквивалентное сопротивление R_9 =20 кОм, C_κ =10 пФ, L_κ =10мГн, а частота полезного сигнала 160 МГц.

Задача №5 Определить избирательность входной цепи если коэффициент передачи по мощности на частоте полезного сигнала $K_{p \text{ BU}}(f_o)$ =0,9; коэффициент передачи по мощности на частоте помехи (вне полосы пропускания) K_p вц (f_π) =0,3