Exercice 1. /5

Soit f la fonction définie sur \mathbb{R} par $f(x) = 2x - e^{x-1}$.

- 1. Étudier la convexité de f sur \mathbb{R} .
- 2. Déterminer une équation de la tangente à la courbe représentative de la fonction f au point d'abscisse 1.
- 3. Démontrer que pour tout réel $x: 2x e^{x-1} \le x$.

Exercice 2. /6

Soit f la fonction définie sur [-2; 2] par $f(x) = xe^x$.

- 1. Montrer que l'équation f(x) = 5 admet une unique solution α sur [-2; 2] puis justifier que α appartient à l'intervalle [1; 2].
- 2. Soit le programme écrit en Python suivant pour que l'appel alpha() renvoie deux bornes d'un encadrement d'amplitude de α :

```
from math import e
2
    def alpha() :
3
        a=1
4
        b=2
        while b-a>0.1:
5
6
             m=(b+a)/2
7
                m*e**(m)<5:
8
                  a = m
9
10
                  b = m
11
        return a,b
```

(a) Compléter le tableau ci-dessous donnant les différentes étapes :

	m	Condition $f(m) > 10$	a	b	Condition $b-a > 10^{-1}$
Initialisation			1	2	Vraie
Étape 1					
Étape 2					
Étape 3					
Étape 4					

(b) Interpréter les valeurs de a et b obtenues en fin d'étape 4.

Exercice 3.

Lorsque la pénicilline est injectée directement dans le sang, on considère que sa vitesse d'élimination est, à chaque instant, proportionnelle à la quantité de pénicilline présente dans le sang à cet instant.

Ainsi, la quantité de pénicilline Q(t), exprimée en milligrammes, présente dans le sang à l'instant t ($t \ge 0$, exprimé en heures), est solution de l'équation différentielle :

$$Q'(t) = -aQ(t)$$
, où a est un réel.

À l'instant t = 0, on injecte une dose de 5 mg de pénicilline.

- 1. Si Q est une telle fonction, on pose pour tout t de l'intervalle $[0; +\infty[, f(t) = Q(t)e^{at}]$.
 - (a) Montrer que la fonction f est dérivable sur $[0 ; +\infty[$ et que, pour tout réel t de cet intervalle, f'(t)=0.
 - (b) Calculer f(0).
 - (c) En déduire, pour tout t de l'intervalle $[0; +\infty[$, une expression de f(t), puis en déduire que pour tout réel t positif, $Q(t) = 5e^{-at}$.
- 2. Dans toute cette question, on prend la valeur a = 0.35 d'où $Q(t) = 5e^{-0.35t}$.
 - (a) Calculer la limite de Q en $+\infty$.
 - (b) Démontrer que la fonction Q est strictement décroissante sur $[0; +\infty[$.
 - (c) Montrer qu'il existe un unique réel t_0 dans $[0; +\infty[$ tel que $Q(t_0)=2,5$ puis donner la valeur de t_0 arrondie à la minute.

