

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : C12N 5/06, 5/08		A1	(11) International Publication Number: WO 99/57248 (43) International Publication Date: 11 November 1999 (11.11.99)
(21) International Application Number: PCT/US98/08716 (22) International Filing Date: 30 April 1998 (30.04.98)		(81) Designated States: CA, JP, US, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).	
(71) Applicant (for all designated States except US): PRESIDENT AND FELLOWS OF HARVARD COLLEGE [US/US]; 17 Quincy Street; Cambridge, MA 02138 (US).			
(72) Inventors; and (75) Inventors/Applicants (for US only): McMAHON, Andrew, P. [GB/US]; 128 Kendall Road, Lexington, MA 02173 (US). LEE, Scott, K. [US/US]; 54 Chestnut Street, Cambridge, MA 02139 (US). TAKADA, Shinji [-/-]; -			
(74) Agent: FREEMAN, John, W.; Fish & Richardson P.C., 225 Franklin Street, Boston, MA 02110-2804 (US).			
(54) Title: INDUCTION OF NEURONAL REGENERATION			
(57) Abstract <p>An enriched population of mammalian dorsal neural progenitor cells, e.g., dopaminergic neural precursor cells, are described that are useful to induce neuronal regeneration in mammals suffering from a neurodegenerative disease.</p>			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

- 1 -

INDUCTION OF NEURONAL REGENERATION

Background of the Invention

5 The invention relates to neuronal growth and differentiation.

Wnt polypeptides are secreted cysteine-rich glycosylated polypeptides that play a role in the development of a wide range of organisms. The Wnt family 10 of polypeptides contains at least 16 mammalian members which bind to an extracellular domain of a family of cell surface proteins called Frizzled receptors. Wnt polypeptides may play a role in embryonic induction, generation of cell polarity, and specification of cell fate. Deregulation of Wnt signalling has been linked to tumor development.

Summary of the Invention

The invention is based on the discovery that Wnt polypeptides regulate neuronal precursor cell fate, i.e., 20 the type of neuron into which a precursor cell differentiates depends qualitatively on the Wnt signal it receives. For example, Wnt-1 specifies midbrain cell fate. In addition to regulation of cell type, Wnt polypeptides regulate neural precursor state, i.e., 25 proliferation versus differentiation. A stem cell phenotype is characterized by mitotic activity and a lack of characteristics associated with a mature terminally-differentiated neuron, whereas a differentiated phenotype is characterized by a lack of proliferation and 30 acquisition of properties, e.g., morphology or cell surface proteins, associated with a particular terminally-differentiated neural cell type.

The invention features an enriched population of mammalian dorsal neural precursor cells that maintain a 35 stem cell phenotype in the presence of a Wnt polypeptide. By an "enriched population" is meant a population of

- 2 -

cells that has been treated with a Wnt polypeptide to selectively expand a desired neural precursor cell type. Thus, an enriched population of neural precursor cells is not naturally-occurring, but contains a higher 5 concentration of neural precursor cells having a particular cell fate compared to the concentration in a naturally-occurring population of stem cells.

The Wnt polypeptide is preferably a Wnt-1 class polypeptide such as Wnt-1, Wnt-2, Wnt-3a, Wnt-7a, and 10 Wnt-7b. A Wnt-1 class polypeptide is a Wnt polypeptide that transforms C57MG cells in culture. Other Wnt polypeptides, e.g., Wnt-5a, that play a role in midbrain development may also be used to culture stem cells.

A drawback of conventional stem cell preparations 15 is that they heterogenous, i.e., a precursor cell with a particular cell fate may constitute only a small fraction of the population. The invention solves this problem by providing a method of selecting for a desired precursor cell type, i.e., by contacting the cell with a Wnt 20 polypeptide. For example, the invention provides a method of treating a heterogeneous population of neural cell precursor cells to enrich for neural precursor cells committed to a desired cell fate by culturing the population with a Wnt polypeptide, e.g., a Wnt-1 class 25 polypeptide. Neural precursor cells selectively proliferate in the presence of the Wnt polypeptide, whereas other precursor cells do not proliferate (or proliferate at a rate lower than that of the dorsal neural precursor cells). Thus, repeated culturing of the 30 population in this manner yields a population of neural precursor cells that is progressively more enriched for dorsal neural precursor cells. The enriched population of dorsal neural precursor cells is at least 60%, preferably at least 75%, more preferably at least 80%, 35 more preferably at least 90%, more preferably at least

- 3 -

95%, more preferably at least 98%, and most preferably 100% dorsal neural precursor cells.

For example, the invention encompasses an enriched population of mammalian dopaminergic neuron precursor 5 cells. Selection of such cells is accomplished by contacting a heterogenous population of precursor cells with a Wnt-1 class polypeptide. The cells may be human or porcine cells and may be derived from fetal tissue. The cells are mitotically-active and maintaining a stem 10 cell phenotype in the presence of a Wnt polypeptide. In the absence of a Wnt polypeptide, the cells cease proliferating and differentiate into dopaminergic neurons. A dopaminergic neuron is one that produces dopamine. Preferably, the Wnt polypeptide is human Wnt-1 15 or a fragment of Wnt-1 that is capable of stimulating proliferation of such cells and arresting differentiation. Since Wnt polypeptides have mitogenic activity for neural precursor cells, a method of stimulating cell proliferation of a dorsal neural 20 precursor cell is carried out by contacting the cell in culture or in vivo with a Wnt-1 polypeptide and/or a Wnt-3a polypeptide. To promote proliferation of mammalian dopaminergic neuron precursor cells, the polypeptide preferably has a sequence that is at least 80% identical 25 to amino acid sequence of naturally-occurring human Wnt-1 (SEQ ID NO:1) and has a biological property of naturally- occurring Wnt-1, e.g., the ability to maintain the neural stem cell phenotype of a neural precursor cell in culture.

- 4 -

Table 1: Human Wnt-1 amino acid sequence

1 MGLWALLPGW VSATLLLALA ALPAALAANS SGRWWGIVNV ASSTNLLTDS
 KSQLQVLEPS
 5 61 LQLLSRKQRR LIRQNPGILH SVSGGLQSAV RECKWQFRNR RWNCPTAPGP
 HLFGKIVNRG
 121 CRETAFIFAI TSAGVTHSVA RSCSEGSIES CTCDYRRRGF GGPDWLWGCG
 SDNIDFGRLF
 181 GREFVDSGEK GRDLRFLMNL HNNEAGRRTTV FSEMRQECKC HGMMSGCTVR
 TCWMRLPTLR
 10 241 AVGDVLRDRF DGASRVLYGN RGSNRASRAE LLRLEPEDPA HKPPSPHDLV
 YFEKSPNFT
 301 YSGRLGTAGT AGRACNSSSP ALDGCELLCC GRGHRTQV VTERCNCTFH
 WCCHVSCRNC
 361 THTRVLHECL (SEQ ID NO:1)

Table 2: Human Wnt-2 amino acid sequence

MNAPLGGIWLWPLLLTWLTPEVNSWWYMRATGGSSRVMCDNV
 PGLVSSQRQLCHRHPDVRAISQGVAEWTAEQHQFRQHRWNCNTLDRDHSLFGRVLL
 RSSRESAFVYAISSAGVVFATRACSOGEVKSCCDPKMGSAKDSKGIFDWGGCSDN
 20 IDYGIKFARAFVDAKERKGKDARALMNLLHNNRAGRKAVKRFLKQECCKCHGVSGSCTRL
 TCWLAMADFRKTGDTLWRKYNGAIQVVMNQDGTGFTVANERFKKPTKNDLVYFENSPD
 YCIRDREAGSLGTAGRVCNLTSRCMDSCEVMMCGRGYDTSVTRMTKCGCKFWCCAV
 RCQDCLEALDVHTCKAPKNADWTAT (SEQ ID NO:2)

Where a particular polypeptide or nucleic acid molecule is said to have a specific percent identity to a reference polypeptide or nucleic acid molecule of a defined length, the percent identity is relative to the reference polypeptide or nucleic acid molecule. Thus, a peptide that is 50% identical to a reference polypeptide that is 100 amino acids long can be a 50 amino acid polypeptide that is completely identical to a 50 amino acid long portion of the reference polypeptide. It might also be a 100 amino acid long polypeptide which is 50% identical to the reference polypeptide over its entire length. In the case of polypeptide sequences which are less than 100% identical to a reference sequence, the non-identical positions are preferably, but not necessarily, conservative substitutions for the reference sequence. Conservative substitutions typically include substitutions within the following groups: glycine and alanine; valine, isoleucine, and leucine; aspartic acid and glutamic acid; asparagine and glutamine; serine and threonine; lysine and arginine; and phenylalanine and tyrosine.

- 5 -

Sequence identity can be measured using sequence analysis software (for example, the Sequence Analysis Software Package of the Genetics Computer Group, University of Wisconsin Biotechnology Center, 1710 5 University Avenue, Madison, WI 53705), with the default parameters as specified therein.

An enriched population of mammalian dorsal hindbrain precursor cells is also within the invention. Such cells are selected by contacting a heterogenous 10 population of cells with a mixture of a Wnt-1 polypeptide and a Wnt-3a polypeptide. An enriched population of mitotically-active mammalian hippocampal neuron precursor cells are selected by culturing the cells in the presence of a Wnt-1 class polypeptide such as Wnt-3a; the cells 15 maintain a stem cell phenotype in culture in the presence of a Wnt-3a polypeptide. Such precursor cells cease proliferating and differentiate into hippocampal neurons in the absence of the Wnt-3a polypeptide. Preferably, the Wnt-3a polypeptide has a sequence that is at least 20 80% identical to SEQ ID NO:2 and has a biological property of naturally-occurring Wnt-3a, e.g., the ability to maintain a neural stem cell phenotype in culture.

Table 3: Murine Wnt-3a amino acid sequence

MAPLGYLLVLCSLKQALGSYPIWWSLAVGPQYSSLSTQPILCAS
 25 IPGLVPKQLRCRNYVEIMPSVAEGVKAGIQCQHQFRGRWNCTTVNSLAIIFGPVL
 DKATRESAFVHAIASAGVAFTRSCAEGSAÀICGCSSRLQGSPGEWKWGCGSEDIE
 FGGMVSREFADARENRPDARSAMNRHNNEAGRQAIASHMLKCKCHGLSGSCEVKTCW
 WSQPDFRTIGDFLKDKYDSASEMVVEKHRESRGWVETLRPRYTYFKVPTERDLVYYEA
 SPNFCEPNPETGSFGTRDRTCNVSSHGIDGCDLLCCGRGHNARTERRREKCHCVFHWC
 30 CYVSCQECTRVYDVHTCK (SEQ ID NO:3)

Table 10: Human Wnt-3a amino acid sequence

CKCHGLSGSC EVKTCWWSQP DFRAIGDFLK DKYDSASEMV VEKHRESRGW
 VETLRPRYTY FKVPTERDLV YYEASPNFCE PNPETGSFGT RDRTCNVSSH
 GIDGCDLLCC GRGHNARAER RREKRCVFH WCC (SEQ ID NO:10)

35 Table 4: Human Wnt-7a amino acid sequence

1 MNRKALRCLG HLFLSLGMVC LRIGGFSSVV ALGATIICNK IPGLAPRORA ICQSRPDAII
 61 VIGEGSQMGL DECFQFQRNG RWNCALGER TVFGKELKVG SRDGAFTYAI IAAGVAHAIT
 121 AACTHGNLSD CGCDKEKQGQ YHRDEGWKG GCSADIRYGI GFAKVFVDAR EIKQNARTLM
 181 NLHNNEAGRK ILEENMKLEC KCHGVSGSCT TKTCAWTTLPO FRELGYVLKD KYNEAVHVEP
 241 VRASRNKRPT FLKIKKPLSY RKPMDDTLVY IEKSPNYCEE DPVTGSVGTQ GRACNKTAPO

- 6 -

301 ASGC DLMCCG RGYNTHQYAR VWQC NCKFW CCYVK CNTCS ERTE MYTCK

Table 5: Human Wnt-7b partial amino acid sequence

1 GVSGSCTTKT CWTTLPKFRE VGHLLKEKYN AAVQVEVVRA SRLRQPTFLR IKQLRSYQKP
 61 METDLVYIEK SPNYCEEDAA TGSVGTQGRI CNRTSPGADG CDTMCCGRGY NTHQYT KVWQ
 5 121 CNCK (SEQ ID NO:5)

Table 6: Human Wnt-5a amino acid sequence

1 MAGSAMSSKF FLVALAIFFS FAQV VIEANS WWSLGMNNPV QMSEVYIIGA QPLCSQLAGL
 61 SQGQKKLCHL YQDHMQYIGE GAKTGIKECQ YQFRHRRWNC STVDNTSVFG RVMQIGSRET
 121 AFTYAVSAAG VVNAMSRACR EGELSTCGCS RAARP KDLPR DWLWGCGDN IDYGYRFAKE
 181 FVDARE RERI HAKGSYESAR ILMNLHNNEA GRRTVYNLAD VACKCHGVSG SCSSLKTCWLQ
 241 LADFRKVGDA LKEYK YDSAAA MRLNSRGKLV QVNSRFNSPT TDQLVYIDPS PDYCVRNEST
 301 GSLGTQGRLC NKTSEGMDGC ELMCCGRGYD QFKTVQTERC HCKFHWCYV KCKKCTEIVD
 361 QFVCK (SEQ ID NO:6)

Other patterning signals, e.g., Bmp polypeptides
 15 or Hedgehog polypeptides, are also used to induce differentiation of an enriched population of neural precursor cells into a differentiated neural cell type.

An population of neural precursor cells that is enriched for a particular type of precursor cell is useful clinically, e.g., to repopulate a depleted population of a particular type of neuron. Depletion of subpopulations of neurons may be the result of the progression of a neurodegenerative disease such as Parkinson's Disease, Amyotrophic Lateral Sclerosis, Diffuse Lewy Body Disease, Cortical-basal Ganglionic Degeneration, Hallervorden-Spatz Disease, or Myoclonic Epilepsy. A method of inducing neuronal regeneration in an adult mammal suffering from a neurodegenerative disorder is carried out by transplanting into the affected mammal an enriched population of dorsal neural precursor cells such as that cultured in the presence of one or more Wnt polypeptides. To promote proliferation of the transplanted stem cells *in vivo*, the method may also include a step of administering to the mammal a Wnt polypeptide or Wnt agonist systemically or locally at the site of transplantation. For example, a patient suffering from Parkinson's disease is treated by transplanting into the brain of the patient an enriched

- 7 -

population of dopaminergic neuron precursor cells. A Wnt-1 polypeptide may be administered concurrently or subsequent to transplantation.

The invention also includes a transgenic non-human 5 mammal, e.g., a rodent such as a mouse, the germ cells and somatic cells of which contain a null mutation, e.g., a deletion, in DNA encoding a Wnt polypeptide. These animals can serve as useful models of neural development. By "null mutation" is meant an alteration in the 10 nucleotide sequence that renders the gene incapable of expressing a functional protein product. The mutation could be in a Wnt gene regulatory region or in the coding sequence. It can, e.g., introduce a stop codon that results in production of a truncated, inactive gene 15 product or it can be a deletion of all or a substantial portion of the coding sequence.

Other features and advantages of the invention will be apparent from the following description of the preferred embodiments thereof, and from the claims.

20 Detailed Description

The invention provides methods of selecting for neural precursor cells that will differentiate into a particular type of neuron upon exposure to a differentiation-inducing condition or composition and 25 methods for growing such precursor cells in culture. The methods permit expansion of precursor cells of a desired cell fate to achieve large number of cells suitable for clinical transplantation.

Neural Stem Cells

30 Primary neural progenitor cells are obtained from a mammalian source, e.g., fetal CNS precursor tissue such as developing neural crest tissue, using known methods. Such primary cells are cultured in the presence of a Wnt polypeptide such as Wnt-1 class polypeptide (purified 35 from a natural source or produced recombinantly) in

- 8 -

conventional tissue culture medium such as Dulbecco's Modified Eagles Medium (DMEM) containing fetal calf serum or in serum-free tissue culture medium.

Wnt polypeptides regulate neuronal precursor cell fate as well as neural precursor state. Wnt polypeptides that belong to the Wnt-1 class of Wnt polypeptides are preferably used to culture neural precursor cells for the purpose of maintaining a stem cell phenotype and promoting proliferation. A Wnt-1 class polypeptide is a Wnt polypeptide and that transforms C57MG cells in culture. To determine whether a Wnt polypeptide is a Wnt-1 class polypeptide, C57MG cells (an epithelial cell line derived from normal mouse mammary tissue) are cultured in the presence and absence of the Wnt polypeptide using known methods, e.g., that described by Wong et al., 1994, Mol. Cell. Biol. 14:6278-6286, and their morphology assessed for a transformed phenotype. Normal C57MG cells grow in a monolayer with a regular, cuboidal appearance at confluence, whereas culturing C57MG cells in the presence of a Wnt-1 class polypeptide causes the cells to become transformed, i.e., refractile and elongated, growing over other cells in a disorganized manner. Wnt polypeptides of the Wnt-1 class cause C57MG cells to assume a transformed phenotype. Human Wnt polypeptides which belong to the Wnt-1 class include Wnt-1 (GENBANK Accession #139743, Wnt-2 (GENBANK Accession #139750), Wnt-3a, Wnt-7a (GENBANK Accession #2501663), and Wnt-7b (GENBANK Accession #546573). A Wnt polypeptide, e.g., human Wnt-5a (GENBANK Accession #731157), that is not a member of the Wnt-1 class may also be used (with or without a Wnt-1 class polypeptide) to culture neural precursor cells.

The cells are cultured in the presence or absence of feeder cells. Feeder cells may be engineered to produce a recombinant Wnt-1 class polypeptide such as

- 9 -

Wnt-1 and/or Wnt-3a, e.g., by introducing DNA encoding a Wnt polypeptide, e.g., DNA encoding Wnt-1, Wnt-2, Wnt-3a, Wnt-7a or Wnt-7b, into the cell and culturing the cell under conditions that permit expression of the recombinant polypeptide and secretion of the polypeptide into the extracellular environment. For example, feeder cells can be transfected with an expression vector containing DNA having the sequence of naturally-occurring Wnt-1, Wnt-2, or Wnt-3a.

10 Table 7: Human Wnt-1 Nucleotide Sequence

1	atgtatgtat gtatgtatgt atgtatgtat acgtgcgtgc acctgtgtgt
gcttgggttc	
61	agtggggctc agacatcacc tgattccctg gaactggagt tacaggtggc
tataagccac	
121	cacttgggtg ctgagaacag agtccgggcc tctggcagag cagtcagtgc
tttttagccac	
181	tgagccactc tcatcccccc aattatgttc atcttgagtt gggcaggtagc
ggtggcggaa	
241	taggcctgtta atcccagcag tcactggacc atcatgggtt ctacatatta
2.0 aacctttatg	
301	ttaggttaggg tcacacagca agatccggtc aaaaaaccag caacaacaaa
aacccaaagg	
361	agccagcttc ttcccacaag catttttcc ctcaggtctt cagctccatc
tgacagctac	
421	tcggctggtg gtcctatcct ttctgagcct agttgccaga gaaacaagcc
cggttcatct	
481	tcatgactag cacatctaata gataagcaca gggtgactca aggtgccata
gagtgacact	
541	aggtacccag agcgacagaa tgacacctat gagtgcacgt cgtaatcac
30 aaacacacac	
601	acacacacac acacacacac acacacacac tcatgcaccc acctgcaaac
acaattgcag	
661	ccttctggac gtctctgtc acagccccac ctccctcctg atacactgctg
ttaagtggtg	
721	actgtAACAA aatgacttca tgctctccct gtcctgagcc aaattacaca
attatttggaa	
781	aagggctcaa aatgttcttc gttagaagtt tctggataca ccaatacaca
ggagcgtgca	
841	ccctcagaac acatgtacac tttgacttaa tctcacgggt gacacacoga
40 cgcttacact	
901	ccccctagcc cacagaggca aactgctggg cgcttctgag tttctcaactg
ccaccagctc	
961	ggtttgccta gcctacccccc gcaccccgcg cccgggaatc cctgaccaca
gctccaccca	
1021	tgctctgtct cttcttttc ttctctgtc cagccgtcgg gttccctggg
tgaggaagtg	
1081	tctccacgga gtcgctggct agaaccacaa ctttcatcct gccattcaga
atagggaaaga	
1141	gaagagacca cagcgttaggg gggacagagg agacggactt cgagaggaca
50 gccccacccgg	
1201	cgcggtgggg ggaggcaatc caggctgcaa acaggtgtc cccagcgcatt
tgtcccccgcg	
1261	ccccctggcg gatgtggtc cccgacgggc tccggacgcg cagaagagtg
aggccggcgc	
1321	gcgtggagg ccatccaaag gggaggggtc ggcggccagt gcagacctgg
aggcggggcc	

- 10 -

1381 accaggcagg gggcggggt gagccccac ggtagccctg tcagctctt
 gctcagaccg
 1441 gcaagagcca cagcttcgct cgccactcat tgtctgtggc cctgaccagt
 ggcgcctgg
 5 1501 gcttttagtg ccgcccggc ccggaggggc agccctttct cactgcagtc
 agcgccgcaa
 1561 ctataagagg cctataagag gcggtgcctc ccgcagtggc tgcttcagcc
 cagcagccag
 1621 gacagcgaac catgctgcct gcggcccgcc tccagactta tttagagccag
 10 cctggaaact
 1681 cgcatcaactg ccctcaccgc tgtgtccagt cccaccgtcg cggacagcaa
 ccacagtgcgt
 1741 cagaaccgca gcacagaacc agcaaggcca ggcaggccat ggggctctgg
 gegctgctgc
 1801 ccagctgggt ttctactacg ttgctactgg cactgaccgc tctgcccga
 gcccggctg
 1861 ccaacagtag tggccgatgg tggtaagtga gctagtaacgg ggtccgcccac
 ttgtcctggg
 1921 gcaaagagcc aggcacgggc cttaccacgc tcccacgctg tggggatcac
 20 caaacctacag
 1981 accccccctcg tgcattgtga cttcacatcc agggtgctca cacctagaac
 tagctctgct
 .2041 gaagtggggc acatcattgg catcagaag cccagataca ccaggctcg
 agaccattcc
 25 2101 catthaatac gaccccgaaa ctgctgagca acaggtccca acctcgctgt
 ggtgggtgt
 2161 caggtgtccc ttaggtctt aaaaaaaa aaaaaaaaaa aaaaaaaaaa
 accagatatt
 2221 agctttgagg tgagggagtg gaattcctaa gttttcaag gtgggcaagg
 30 ctgcagggtgg
 2281 gtttctcct cgggggctga cttgaagaaa ggaagagcta aggtagccat
 gcctttctg
 2341 tccactcaact agactctggc gctcaggccc aggcaaggat agggtggtac
 agcctgtatg
 35 2401 gtttaggatgc aggtcccctc ccctggactg aacccttatg catccgcca
 gggcatgt
 2461 gaacatagcc tcctccacga acctgttgac ggattccaag agtctgcagc
 tggtgctcg
 2521 gcccagtcgt cagctgctga gcccgaagca gcccggactg atccgacaga
 40 acccgggat
 2581 cctgcacagc gtgagtgag ggctccagag cgctgtgcga gagtgcaaatt
 ggcaattccg
 2641 aaaccgcgc tggaactgcc ccactgctcc gggggccac ctttcggca
 agatcgtaaa
 45 2701 ccgagggtggg tgcccaggaa agcgcacgtt ccgggattaa gggaaaagca
 gggcatctc
 2761 cagggcatag gccccggcaag gcagggaaaga catcccagggttataatgtga
 tcaaactgag
 2821 aatcgccctgg tgccggcagt taccgttagt cagcaccaga ttctttctag
 50 cttgcgttg
 2881 tgagcatgat cttaacgtt gctggccact gccccacaga aaggaaattc
 cggatcggtgg
 2941 gcgctggcg acagctgttt ttccctagcc ttccctcaaag gtacctggga
 agctgatctc
 55 3001 tgagggctag ctagggttgt gcttcgcacc cagcaaagtt tgcaactgcca
 atactatgt
 3061 cgatcttggc tatcagatt tggactactt gggaaatctcc cttggagct
 gctctgttag
 3121 ggctctggag tctcagtaaa gcttagagag gagggcattc catgcttcgc
 60 acacatgact
 3181 ccaaggatgt tggactgttag ggtaccaagt ctccaaaca gggtgctgag
 ttggcccccac
 3241 gccttctctc aactgatgcg gggtcgttc acccacaggc tgccgagaaa
 cagcgttcat
 65 3301 ctgcgaatc acctccggccg gggtcacaca ttccgtggcg cgctctgt
 ccgaaggctc

- 11 -

3361 catcgagtcc tgcacccgtcg actaccggcg ggcggccct gggggccccg
 actggcactg
 3421 ggggggctgc agtgacaaca tcgatttgg tcgcctctt ggccgagagt
 tcgtggactc
 5 3481 cggggagaag gggcgggacc tacgcttcct catgaacctt cacaacaacg
 aggccaggcg
 3541 aacggtaacgt cggtgtgtcc ggaaccaatg gcagggaga tgtaagacag
 gtgcacgggg.
 3601 acagaggcac agggaggggc ttcccggagag agtggactc taggaggaa
 10 gacagagaag
 3661 agtgtgggt tgagggcaaa gaggttcctg agctgatgac agaacagaag
 agattagcag
 3721 gctatcaaca cgtggatgt attgagatgg ctccatggca cactttgaa
 agataaaagt
 15 3781 gacttgcgg cgtggaggcag agtctggcg aatgtcccta tctcagccgg
 ccatttgc
 3841 cttectctct cccgagctta gtcacacctg gaccttggct gaagtttcca
 cagcatcgac
 3901 gtgacccggg tgggggggg gttggaaat atgggtggtg gttcgtggaa
 20 tggggctt
 3961 gacctttct tccctctcc ctcgtcccc tcctcccca gaccgtgttc
 tctgagatgc
 4021 gccaagagtg caaatgccac gggatgtccg gtcctgcac ggtgcgcacg
 tggggatgc
 25 4081 ggctgcccac gtcgcgcgt gtgggcgacg tgctgcgcga cccgttgcac
 ggccgcctcc
 4141 ggttccttta cggcaaccga ggcagcaacc ggcgcctcgcg ggccggagctg
 ctgcgcctgg
 4201 agcccgaaaga ccccgccac aagcctccct cccctcacga ctcgtctac
 30 ttgcgaaaat
 4261 cgcccaactt ctgcacgtac agtggccgac tggcacagc tggcacagct
 ggacgagctt
 4321 gcaacagctc gtctccgcg ctggacggct gtgagctgct gtgctgtggc
 cgaggccacc
 35 4381 gcaacgcgcac gcagcgcgtc acggagcgct gcaactgcac cttccactgg
 tgctgcccacg
 4441 tcaagctgcgcg caactgcacg cacacgcgcg ttctgcacga gtgtctatga
 ggtggcgcc
 4501 ctccggaaac gggaaacgcgc tttccagtt ctcaagacaca ctgcgtggtc
 40 ctgatgttg
 4561 cccaccctac cgcgtccagc cacagtccca gggttcatag cgatccatct
 ctcccacctc
 4621 ctacctgggg actcctgaaa ccacttgccct gagtcggctc gaacccttt
 gccatccctga
 4681 gggccctgac ccagccatcc tccctccctc tttgagggag actccctttg
 cactgcccc
 4741 caatttggcc agagggtgag agaaagattc ttcttctggg gtgggggtgg
 ggagggtcaac
 4801 ttttgaagggt gttgggttc ctgatgtatt ttgcgtgtg acctctttg
 50 gtattatcac
 4861 ctttccctgt ctctgggtc cctataggtc ctttgcgttc tctaaccagc
 acctctggc
 4921 ttcaaggcc ttccctccc acctgttaget gaagagttc cgagttgaaa
 gggcacggaa
 55 4981 agctaagtgg gaaaggaggt tgctggaccc agcagcaaaa ccctacatcc
 tccttgtc
 5041 tgccctggag ccattgaaca gctgtgaacc atgcctccct cagcctcctc
 ccacccttc
 5101 ctgtccctgcc tcctcatcac tgtgtaaata atttgcaccg aaatgtggcc
 60 gcagagccac
 5161 gcgttcggtt atgtaaataa aactatttat tgtgtgggt tccagccctgg
 gttgcagaga
 5221 ccaccctcac cccacccac tgctccctgt ttctgcgc cagtcctttt
 gttatccgac
 5281 ttttttctc ttttacccag ttctcatag ggcgccttgc ccaccggatc
 agtattttccct

- 12 -

5341 tccactgttag ctattagtgg ctccctcgccc ccaccaatgt agtatcttcc
 tctgaggaaat
 5401 aaaatatcta ttttatcaa cgactctggc ccttgaatcc agaacacagc
 atggcttcca
 5 5461 acgtccttcc cccttccaaat ggacttgctt ctcttctcat agccaaacaa
 aagagataga
 5521 gttgttgaag atctcttttc cagggcctga gcaaggaccc tgagatcctg
 acccttggat
 5581 gaccctaaat gagaccaact agggatc (SEQ ID NO:7)

10 Table 8: Human Wnt-2 Nucleotide Sequence

1 1 agcagagcgg acggggcgccg gggaggcgcg cagagcttcc gggctgcagg cgctcgctgc
 61 61 cgctggggaa ttgggtgtg ggcgaggcgcc tcggggctgg cctttatcgc tcgctggggcc
 121 121 catcgtttga aactttatca gcgagtcgca actcgtcgca ggaccgagcg gggggcgcccc
 ,181 ,181 gcgccgcgag gccgcggccg tgacgaggcg ctcccgagc tgacgcgttc tgctctggcc
 241 241 acgcatggcg cccgcacacg gagtctgacc tgatgcagac gcaagggggta taatatgaac
 301 301 gcccctctcg gtgaaatctg gctctggctc cctctgtct tgacctggct caccggcag
 361 361 gtcaacttcc catggtgta catgagagct acagggtggc cctccagggt gatgtgcgt
 421 421 aatgtggccag gcctggtag cagccgcgg cagctgtgc accgacatcc agatgtgt
 481 481 cgtggcattt gccagggggt ggccgagttt acagcagaat gccaggccca gttccggcc
 20 541 541 caccgcttga attgcaacac cctggacagg gatcacagcc ttttggcag ggtcctactc
 601 601 cgaagtagtc gggaaatctgc ctttgtttat qccatcttcc cagctggagt ttttggc
 661 661 atcaccaggc cctgttagcca aggagaagta aaatcctgtt cctgtgatcc aaagaagatg
 721 721 ggaagcgcca aggacagccaa aggatttttt gattgggggt gctgcagtga taacattgac
 781 781 tatggatca aatttgcggc cgcattttgtg gatgc当地aaaggaaagg aaaggatgcc
 841 841 agagccctga tgaatcttca caacaacaga gctggcaggaa aggtgtaaa gcggttcttgc
 901 901 aaacaagatg ccaagtgccca cgggggtgagc ggtctatgtt ctctcaggac atgctggct
 961 961 gccatggccg acttcaggaa aacggggcgat tatctcttgc ggaagtacaa tggggccatc
 1021 1021 caggtggtca tgaaccaggaa tggcacaggt ttcaactgtgg ctaacgagag gtttaagaag
 1081 1081 ccaacaaaaa atgacctcgt gtatttttag aattctccag actactgtat cagggaccga
 1141 1141 gaggcaggct ccctgggtac agcaggccgt gtgtgc当地ccg gggcatggac
 1201 1201 agctgtgaag tcatgtgtg tggagggc tacgacaccc cccatgtcac cccgatgacc
 1261 1261 aagtgtgggt gtaatttca ctgtgtgtc gccgtgc当地 gtcaggactg cctggaaag
 1321 1321 ctggatgtgc acacatgca gggccccaag aacgcgtact ggacaaccgc tacatgacc
 1381 1381 cagcaggcgt caccatccac cttcccttct acaaggactc cattggatct gcaagaacac
 1441 1441 tggacctttg gttttttt gggggatata ttccctaaaggc atgtggcatt tatctcaacg
 1501 1501 gaagccccctt cttcccttcc gggggccca ggatgggggg ccacacgctg cacctaaagc
 1561 1561 ctaccctattt ctatccatct cctgggttgc tgcagtc当地 tccctctgc gcgagtttcc
 1621 1621 tttggaaata gcatgacagg ctgtgtc当地 gggaggggtgg tggggccaga ccactgttcc
 1681 1681 caccacccctt gacgtttttt ctttttagag cagttggccca agcagaaaaaa aaagtgttcc
 40 1741 1741 aaaggagctt tctcaatgtc ttcccacaaa tggtcccaat taagaaaattt catacttcc
 1801 1801 tcagatggaa cagtaaagaa agcagaatca actgcccctg acttaacttt aacttttggaa
 1861 1861 aagaccaaga cttttgtctg tacaagtggg tttacagcta ccacccttag ggttaatttgg
 1921 1921 aattacctgg agaagaatgg ctttcaatac ctttttaatgt taaaatgtg tatttttcaa
 1981 1981 ggcattttt gccatattaa aatctgtatg aacaagggtgg ggacgtgtgt ctttggtac
 45 2041 2041 tatgggtgt tttatctttt taagagccaa agcctcaggaa aggattgtt ttgcattact
 2101 2101 gttcccttgc tataaaaaat ctttagggaa tgagatgtcc ttctcaacttta gaatcttgg
 2161 2161 ggaattaaaaa agaagatgaa tggctggca atattctgtt actattgggt gaatatgg
 2221 2221 gaaaataatt tagtggatgg aataatcgaa gtatatctgt acagatcaag aaaaaaagga
 2281 2281 agaataaaaaat tcctatataca t (SEQ ID NO:8)

50 Table 9: Murine Wnt-3A Nucleotide Sequence

1 1 gaattcatgt cttacggtca aggcagaggg cccagcgccca ctgcagccgc
 gcccacccccc
 61 61 agggccgggc cagcccgaggc gtcccgccctc tcgggggtggc cttcccccgc
 55 55 tgcgcgtca
 121 121 agccggcgat ggctccctctc ggataccctct tagtgc当地 cagcctgaag
 caggtctgg
 181 181 gcagctaccc gatctgggtgg tccttggctg tgggacccca gtactccct
 ctgagcactc
 60 241 241 agcccattct ctgtgccaggc atcccaggcc tggtaccgaa gcagctgcgc
 ttctgcaggaa

- 13 -

301 actacgtgga gatcatgccc agcgtggctg agggtgtcaa agcgggcatt
caggagtgcc
361 agcaccagtt ccgaggccgg cggttggaaact gcaccaccgt cagcaacagc
5 ctggccatct
421 ttggccctgt tctggacaaa gccacceggg agtcagccctt tgtccatgccc
atcgctccg
481 ctggagtagc tttcgagtg acacgctcct gtgcagaggg atcagctgt
atctgtgggt
541 gcagcagccg cctccagggc tccccaggcg agggctggaa gtggggcggc
10 tgcgtgtgagg
601 acattgaatt tggaggaatg gtctctcggg agtttgcga tgccaggagg
aaccggccgg
661 atgcccgcctc tgccatgaac cgtcacaaca atgaggctgg gcccaggcc
atcgccagtc
15 721 acatgcaccc caagtgc当地 tgccacgggc tatctggcag ctgtgaagt
aagacactgt
781 ggtggtcgca gccggacttc cgcaccatcg gggatttcct caaggacaag
tatgacagtg
841 cctcggagat ggtggtagag aaacaccgag agtctcgtgg ctgggtggag
20 accctggc
901 cacgttacac gtacttcaag gtgccgacag aacgcgacct ggtctactac
gaggcctcac
961 ccaacttctg cgaacctaac cccgaaaccc gtccttcgg gacgcgtgac
cgcacctgca
25 1021 atgtgagctc gcatggcata gatgggtgcg acctgttgcg ctgcgggcgc
gggcataacg
1081 cgccactgca ggcacggagg gagaaatgcc actgtgtttt ccattggtgc
tgctacgtca
1141 gctgccagga gtgcacacgt gtctatgacg tgcacacctg caagtagggag
30 agctccaaac
1201 acgggagcag gtttcatcc gaaaaatggcaag gttcttaccc gggggcgggg
tttctacttg
1261 gaggggtctc ttacttgggg actcggttct tacttggagg cggagatcc
acctgtgagg
35 1321 gtctcataacc taaggacccg gtttctgcct tcagcctggg ctcctatttg
ggatctgggt
1381 tccttttag gggagaagct octgtctggg atacgggtttt ctgcccggagg
gtggggctcc
1441 acttggggat ggaattccaa tttggggccgg aagtcttacc tcaatggctt
40 ggactccctc
1501 cttgacccga cagggctcaa atggagacag gtaagctact ccctcaacta
ggtgggggttc
1561 gtgcggatgg gtgggggggg agagattagg gtccctccctc ccagaggcac
tgctctatct
45 1621 agatacatga gagggtgctt cagggtgggc ctttgcctggg cttgaggatc
ccgtgggggc
1681 ggggcttac cccgactggg tggactttt ggagacccccc ttccactggg
gcaaggcttc
1741 actgaagact catggatgg agtccacgg aaggaggagt tcctgagcga
50 gcctgggctc
1801 tgagcaggcc atccagctcc catctggccc ctttccagtc ctgggtgtaaag
gttcaacactg
1861 caagcctcat ctgcgcagag caggatctcc tggcagaatg aggcatggag
aagaactcag
55 1921 gggtgataacc aagacctaac aaacccctgt cctgggtacc tcttttaaag
ctctgcaccc
1981 cttcttcataag ggcttcata gtccttcgg cagagcttc ctgaggaaga
tttgcagtcc
2041 cccagagtcc aagtgaacac ccatagaaca gaacagactc tatcctgagt
60 agagagggtt
2101 ctcttaggaat ctctatgggg actgcttagga aggatcctgg gcatgacagc
ctcgatgtat
2161 agcctgcata cgcctgtaca cttataactc agatctcccg ggaaacccag
ctcatccgg
65 2221 ccgtgatgtc catgccccaa atgcctcaga gatgttgct cactttgagt
tgtatgaact

- 14 -

2281 tcggagacat ggggacacag tcaagccga gagccagggt tgttttagga
 cccatctgat
 2341 tccccagaga ctgcgttgta ggcaatggtc accagatccg ttggccacca
 ccctgtcccg
 5 2401 agcttctcta gtgtctgtct ggcctggaaag tgaggtgtca catacagccc
 atctgccaca
 2461 aagagttcct gattggtacc actgtgaacc gtccctcccc ctccagacag
 gggaggggat
 2521 gtggccatac aggagtgtgc cggagagcgc cgaaaagagg aagagaggct
 10 gcacacgcgt
 2581 ggtgactgac tgtcttctgc ctggaaacttt gcgttcgcgc ttgttaacttt
 attttcaatg
 2641 ctgctataatc caccaccac tggatttaga caaaaatgtat tttttttttt
 tttttttctt
 15 2701 ttctttctat gaaagaaatt attttagttt atagtatgtt tgtttcaaatt
 aatggggaaa
 2761 gtaaaaaagag agaaaaaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaa
 (SEQ ID NO:9)

Table 11: Human Wnt-3a nucleotide sequence

20 tgtaagtgcc acgggctgtc gggcagctgc gaggtgaaga catgctggtg
 gtcgcaaccc gacttccgcg ccatcggtga cttcctcaag gacaagtacg
 acagcgccgc ggagatggtg gtggagaagc accggggagtc cccggcgctgg
 gtggagaccc tggggccgcg ctacacccatc tcaagggtgc ccacggagcg
 25 cgacctggtc tactacgagg cctcgcccaa cttctgcgag cccaaacctg
 agacgggttc ctteggcactc cgcgaccgca cctgcaacgt cagctcgac
 ggcattcgacg gctgcgaccc gctgtgtgc ggccggggcc acaacgcgcg
 agcggagcgg cggccggaga agtgcgcgtc cgtgtttcac tggtgtgt
 (SEQ ID NO:11)

Stem cells may be obtained from a heterologous
 30 donor animal such as a pig. The animal is euthanized and
 tissue removed using a sterile procedure. Brain areas of
 particular interest include any area from which
 progenitor cells can be obtained which will serve to
 restore function to a degenerated area of the host's
 35 brain. These regions include areas of the CNS including
 the cerebral cortex, cerebellum, midbrain, brainstem,
 spinal cord and ventricular tissue, and areas of the
 peripheral nervous system (PNS) including the carotid
 body and the adrenal medulla. For example, cells may be
 40 obtained from the basal ganglia, preferably the striatum
 which consists of the caudate and putamen, or various
 cell groups such as the globus pallidus, the subthalamic
 nucleus, or the substantia nigra pars compacta (which is
 found to be degenerated in Parkinson's Disease patients).

- 15 -

Human heterologous neural progenitor cells may be derived from fetal tissue obtained from elective abortion, or from a post-natal, juvenile or adult organ donor. Autologous neural tissue can be obtained by 5 biopsy, or from patients undergoing neurosurgery in which neural tissue is removed, in particular during epilepsy surgery, and more particularly during temporal lobectomies and hippocampallectomies.

Cells can be obtained from donor tissue by 10 dissociation of individual cells from the connecting extracellular matrix of the tissue. Dissociation can be obtained using any known procedure, including treatment with enzymes, e.g., trypsin or collagenase, or by using physical methods of dissociation such as with a blunt 15 instrument. Dissociation of fetal cells can be carried out in tissue culture medium, while a preferable medium for dissociation of juvenile and adult cells is artificial cerebral spinal fluid (aCSF). Regular aCSF contains 124 mM NaCl, 5 mM KCl, 1.3 mM MgCl₂, 2 mM CaCl₂, 20 26 mM NaHCO₃, and 10 mM D-glucose. Low Ca²⁺ aCSF contains the same ingredients except for MgCl₂ at a concentration of 3.2 mM and CaCl₂ at a concentration of 0.1 mM.

Dissociated cells can be placed into any culture medium capable of supporting cell growth, including MEM, 25 DMEM, RPMI, F-12. The medium may containin supplements which support cellular metabolism such as glutamine and other amino acids, vitamins, minerals and proteins such as transferrin. In some cases, the medium may contain bovine, equine, chicken or human serum. A preferable 30 medium for neural precursor cells is a mixture of DMEM and F-12. Conditions for culturing mimic physiological conditions, e.g., physiological pH, preferably between pH 6-8, more preferably close to pH 7, even more particularly about pH 7.4 at a temperature that is at or 35 close to physiological temperature.

- 16 -

Cells can be grown in suspension or on a fixed substrate, but proliferation of the precursor cells is preferably done in suspension to generate large numbers of cells by formation of "neurospheres" (see, for example, Reynolds et al., 1992, Science 255:1070-1079, and PCT Publications WO93/01275, WO94/09119, WO94/10292, and WO94/16718). Cell suspensions in culture medium are supplemented with any growth factor which allows for the proliferation of precursor cells and seeded in any receptacle capable of sustaining cells, preferably in culture flasks or roller bottles. Cells typically proliferate within 3-4 days in a 37°C incubator, and proliferation can be reinitiated at any time after that by dissociation of the cells and resuspension in fresh medium containing growth factors.

In the absence of substrate, cells lift off the floor of the flask and continue to proliferate in suspension forming a hollow sphere of undifferentiated cells. After approximately 3-10 days *in vitro*, the proliferating clusters (neurospheres) are fed every 2-7 days, and more particularly every 2-4 days by gentle centrifugation and resuspension in medium containing a Wnt polypeptide or a growth factor.

After 6-7 days *in vitro*, individual cells in the neurospheres can be separated by physical dissociation of the neurospheres with a blunt instrument, more particularly by titrating the neurospheres with a pipette. Single cells from the dissociated neurospheres are suspended in culture medium containing growth factors, and differentiation of the cells can be induced by plating (or resuspending) the cells in the presence of a Wnt agonist, and (optionally) any other factor capable of inducing and/or sustaining differentiation.

The tissue culture media is supplemented with a Wnt polypeptide (either by adding a Wnt polypeptide to

- 17 -

the culture media or by adding feeder cells producing a Wnt polypeptide) to maintain a stem cell phenotype of the precursor cells and to promote proliferation of the cells. Other commercially available growth factors such 5 as Fibroblast Growth Factor (FGF) or Epidermal Growth Factor (EGF) are added to the culture as mitogens.

Cells cultured in the presence of a Wnt polypeptide, e.g., a member of the Wnt-1 class of polypeptides, proliferate and maintain a stem cell 10 phenotype. Differentiation of the cells can proceed upon the removal of the Wnt polypeptide and/or addition of a composition that promotes differentiation.

A naturally-occurring population of neural crest cells contains multipotent (i.e., uncommitted) neural 15 crest cells and committed precursor cells. The role of Wnt proteins employed in the present method is to culture a population of neural precursor cells, e.g., a naturally-occurring population of neural crest cells, (1) to induce cell fate of an uncommitted precursor and 20 thereby give rise to a committed precursor cell and (2) to maintain such cells in a stem cell state (e.g., to arrest the development of a committed precursor cell towards becoming a terminally-differentiated neuronal cell). For example, the present method can be used in 25 vitro to induce and/or maintain the differentiation of neural crest cells into glial cells, schwann cells, chromaffin cells, cholinergic sympathetic or parasympathetic neurons, as well as peptidergic and serotonergic neurons. The Wnt protein can be used alone, 30 or can be used in combination with other neurotrophic factors which act to more particularly enhance a particular differentiation fate of the neuronal precursor cell. In the later instance, an Wnt polypeptide might be viewed as ensuring that the treated cell has achieved a 35 particular phenotypic state such that the cell is poised

- 18 -

along a certain developmental pathway so as to be properly induced upon contact with a secondary neurotrophic factor. Even relatively undifferentiated stem cells or primitive neuroblasts can be maintained in culture and caused to differentiate by treatment with Wnt agonists. Exemplary primitive cell cultures comprise cells harvested from the neural plate or neural tube of an embryo.

A population of neural precursor cells is characterized as having a stem cell phenotype when the level of proliferation of the cells in standard tissue culture media (e.g., MEM, DMEM, RPMI, F-12) in the presence of a Wnt polypeptide is at least 20% greater than the level of proliferation in the same tissue culture media without the Wnt polypeptide. Preferably, the level of cell proliferation is at least 50% greater in the presence of a Wnt polypeptide compared to the level of proliferation in the absence of a Wnt polypeptide. Proliferation is measured using known methods, e.g., incorporation of tritiated thymidine. Neural cells with a differentiated phenotype are characterized as non-proliferating and having the physical characteristics and cell markers of a mature terminally-differentiated neuron.

Primary stem cells may be immortalized by a variety of known techniques such as retrovirus-mediated transduction of an immortalizing gene, e.g., avian myc (*v-myc*).

Graft preparation

The therapeutic methods of the invention which utilize enriched populations of neural precursor cells may be used to treat neurodegenerative diseases and other types of diseases that result in depletion of neural cells. In addition to chronic depletion associated with progressive neurodegenerative diseases, neurons may be

- 19 -

killed as a consequence of infectious diseases, autoimmune diseases, and immunodeficiency diseases. Clinical outcome of treatment can be assessed by measuring as motor and cognitive capabilities of the 5 patient, length of patient survival, quality of life.

Precursor cells cultured in the presence of a Wnt polypeptide as described above are washed and resuspended in a pharmaceutically acceptable excipient, e.g., a solution of 0.6% glucose-saline, are transplanted 10 into brain tissue of a recipient mammal using known methods, e.g., those described by Gage et al., 1987, Ciba Found. Symp. 126:143-159. A small volume of a cell suspension is stereotactically injected into a desired region, e.g., the hippocampus, of a mammal. For example, 15 approximately 10^6 cells are infused into a desired location of the brain of the patient over 30 min.

Subsequent to transplantation, a Wnt polypeptide may be administered to the patient to induce further proliferation of stem cell *in vivo*. Wnt polypeptides 20 can be administered in the form of a nerve prostheses for the repair of central and peripheral nerve damage. In particular, where a crushed or severed axon is intubulated by use of a prosthetic device, Wnt polypeptides can be added to the prosthetic device to 25 increase the rate of growth and regeneration of the dendritic processes.

Alternatively, prior to transplantation, the cells may be exposed to a composition that induces differentiation. Treatment of neurodegenerative disease

30 Neurodegenerative diseases include familial and sporadic amyotrophic lateral sclerosis (FALS and ALS, respectively), familial and sporadic Parkinson's disease, Huntington's disease, familial and sporadic Alzheimer's disease, olivopontocerebellar atrophy, multiple system 35 atrophy, progressive supranuclear palsy, diffuse Lewy

- 20 -

- body disease, corticodentatonigral degeneration, progressive familial myoclonic epilepsy, strionigral degeneration, torsion dystonia, familial tremor, gilles de la tourette syndrome, and Hallervorden-Spatz disease.
- 5 Most of the diseases are typified by onset during the middle adult years and lead to rapid degeneration of specific subsets of neurons within the neural system, ultimately resulting in premature death. There is no known cure nor is there an effective therapy to slow the
- 10 progression for any of the listed diseases.

Parkinson's disease (paralysis agitans) is a common neurodegenerative disorder which appears in mid to late life. Familial and sporadic cases occur, although familial cases account for only 1-2 percent of the

15 observed cases. The neurological changes which cause this disease are somewhat variable and not fully understood. Patients frequently have nerve cell loss with reactive gliosis and Lewy bodies in the substantia nigra and locus coeruleus of the brain stem. Similar

20 changes are observed in the nucleus basalis of Meynert. Nigrostriatal dopaminergic neurons are most affected.

The disorder generally develops asymmetrically with tremors in one hand or leg and progresses into symmetrical loss of voluntary movement. Eventually, the

25 patient becomes incapacitated by rigidity and tremors. In the advanced stages the disease is frequently accompanied by dementia.

Diagnosis of both familial and sporadic cases of Parkinson's disease can only be made after the onset of

30 the disease. Anticholinergic compounds, propranolol, primidone and levodopa are frequently administered to modify neural transmissions and thereby suppress the symptoms of the disease, though there is no known therapy which halts or slows the underlying progression. The

35 therapeutic methods described herein may be administered

- 21 -

in conjunction with existing therapeutic approaches to neurodegenerative diseases.

The death of the dopaminergic neurons in the basal ganglia is an underlying defect of this progressive chronic disease as the basal ganglia are involved in the control of voluntary movements. Wnt-polypeptides and neural precursor cells cultured in the presence of Wnt polypeptides, e.g., Wnt-1, are useful in the treatment of Parkinson's disease and other disorders of midbrain dopamine circuitry. Transplantation of dopaminergic neural precursor cells is used to repopulate a patient's depleted population of dopaminergic neurons to treat or ameliorate the symptoms of Parkinson's disease.

Another neurodegenerative disease, Alzheimer's disease, can take two forms: disease exist: presenile dementia, in which the symptoms emerge during middle age, and senile dementia which occurs in the elderly. Both forms of the disease appear to have the same pathology. Diseases which affect learning and memory may be characterized by a depletion of hippocampal cells. Transplantation of hippocampal neural precursor cell is used to repopulate a patient's depleted population of hippocampal neurons to treat neurodegenerative diseases that affect learning and memory such as Alzheimer's disease.

Example 1: Wnt Signaling and Proliferation

Wnt signalling was found to regulate the expansion of dorsal neural precursors. Wnt-1 and Wnt-3a are coexpressed at the dorsal midline of the developing neural tube. Wnt-1 is involved in midbrain patterning, and Wnt-3a is involved in the formation of the paraxial mesoderm. The absence of a dorsal neural tube phenotype in animals with a mutation in either gene suggested that Wnt signalling is redundant. The data described below indicate that in the absence of both Wnt-1 and Wnt-3a,

- 22 -

there is a marked deficiency in neural crest derivatives, which originate from the dorsal neural tube, and a pronounced reduction in dorsolateral precursors within the neural tube itself.

5 Mice lacking both Wnt-1 and Wnt-3a signaling were generated. Mice which are heterozygous for null alleles of Wnt-1 and Wnt-3a were made using known methods (e.g., McMahon et al., 1990, Cell 62:1073-1085 and Takada et al., 1994, Genes Dev. 8:174-189). Compound heterozygotes 10 (on a predominantly 129/Sv background) were intercrossed to recover compound mutants. Genotypes were confirmed by genomic Southern hybridization and polymerase chain reaction (PCR). Whole mount immunostaining was carried out using antibodies specific for neurofilaments, CRABP-1, and Lmx-1b. Skeletons from 18.5 d.p.c embryos were prepared and stained with alcian blue and alizarin red 15 using known methods.

To evaluate cell proliferation and death, embryos were collected at 9.5 d.p.c (20-25 somite stage 20 development) after intraperitoneal injection of pregnant females with 50 µg per body weight of 5-bromo-2'-deoxyuridine (BrdU). Mice were killed one hour later. Embryos were fixed overnight in 4% paraformaldehyde in phosphate-buffered saline (PBS) at 4°C. After 25 dehydration, wax embedding and sectioning at a thickness of 6 µm, serial sections were dewaxed and either stained with haematoxylin and eosin, or assayed for BrdU incorporation for apoptotic death using a standard TUNEL procedure.

30 Compound homozygotes were recovered at the expected Mendelian frequency (51 compound homozygotes in 673 embryos. The frequency was close to the expected frequency of 1/16) between 9.0 and 10.5 days post coitum (d.p.c.). Due to the termination of caudal axial 35 development accompanying the loss of Wnt-3a activity,

- 23 -

relatively few of these embryos survived to 18.5 d.p.c.
(3 compound homozygotes in 151 embryos).

To assess the development of the dorsal neural tube in compound mutants, neural crest derived structures were examined. Neural crest cells are among the first differentiated cell types to be formed by dorsal neural precursors. Neurofilament staining indicated that both neural crest derived cranial and spinal ganglia formation were unaltered in single mutants (either Wnt-1 or Wnt-3a mutants) which were either wild type or heterozygous for mutations in the other Wnt member. However, in double mutants, neurons derived from the proximal ganglion of cranial nerve IX (glossopharyngeal), which is formed by crest cells originating from rhombomere 6 within the hindbrain (r6), were absent. In contrast, the distal ganglion which is placodal in origin was present. In addition, there was a marked reduction in the proximal axons of cranial nerves V (trigeminal, r2 derived) and X (vagus, r7 derived). Similarly, in the trunk, there was a reduction in neurofilament staining in the cervical dorsal root ganglia. Further, cell counts indicated a 60% decrease in the cellular content of the dorsal root ganglia. Whole-mount *in situ* hybridization with probes specific for *Islet-1* and *cadherin-6*, markers of neuronal and glial neural crest derivatives, respectively, confirmed the reduction or absence of crest cells within the cranial ganglia and dorsal root ganglia. In contrast sympathetic ganglia, which express *c-ret*, were unaffected.

The reduction of neurogenic and gliogenic crest derivatives in the caudal head and rostral trunk regions indicates that fewer neural crest cells emerge in embryos lacking both Wnt-1 and Wnt-3a signaling. The issue of neural crest formation was evaluated by examining CRABP-1 immunoreactivity and AP-2 transcription. CRABP-1 is

- 24 -

normally present in the dorsal CNS at 9.0 d.p.c. as well as in migrating neural crest cells arising from r2, 4 and 6. AP-2 is first expressed at 8.5 d.p.c. in the dorsal neural plate, coincident with neural crest formation. By 5 9.5 d.p.c. cranial expression is absent in the neural tube but persists in migrating and maturing neural crest derivatives at cranial and spinal cord levels. Loss of function studies have demonstrated that AP-2 is essential for development of neural crest derived structures. A 10 clear decrease was observed in migrating CRABP-1 positive cells within the hindbrain, although CRABP-1 staining within the CNS appeared to be relatively normal. Similarly, examination of AP-2 expression revealed a reduction in both cranial and trunk neural crest. In 15 contrast to their wild type litter mates, double mutants also retained AP-2 expression within the dorsal CNS at 9.5 d.p.c. Thus, in the absence of Wnt-1 and Wnt-3a, there is both a reduction in neural crest cell formation and persistent expression of AP-2 at the dorsal midline.

20 To determine whether Wnt-signaling was required throughout the period of cranial crest formation, expression of TRP-2 was evaluated. TRP-2 is a marker of presumptive melanocytes which are dominant in late formed cranial crest derivatives. At 11.5 d.p.c., TRP-2 25 expression was virtually absent within presumptive melanocytes migrating within the hindbrain region of double mutants though a few TRP-2 cells remained at the dorsal midline. In view of the prolonged expression of AP-2 within the dorsal CNS, TRP-2 expressing cells may be 30 differentiating at a later stage, or they may be retained at the midline because Wnt-signaling promotes neural crest migration. Neither CRABP-1, TRP-2 or AP-2 expression was altered in the forebrain indicating that there is regional specificity in the requirement for 35 these Wnt-signals.

- 25 -

Much of the head skeleton is generated by cranial neural crest. Distinct skeletal elements are derived from neural crest cells which emerge from different regions of the brain. To determine whether the reduction 5 in neural crest formation in double mutants leads to alterations in the skeleton, 18.5 d.p.c. embryos were stained with alcian blue and alizarin red to examine cartilage and bone development. The stapes and the main body of the hyoid bone including the greater horn which 10 originate from crest cells derived from r3-5 and r6-7, respectively, were absent. Thyroid cartilage showed a consistent dysmorphology. The reduction in hindbrain crest formation was also reflected in the absence of specific skeletal derivatives. In contrast, despite the 15 early loss of forebrain, midbrain and rostral hindbrain in double mutants, the development of skeletal crest derivatives from these regions, as well as non-crest derived bones, was largely normal though there was some reduction in development of the squamosal, alisphenoid, 20 basisphenoid, presphenoid and otic capsule. These data indicate that, in the absence of Wnt-1/3a signaling, several neural crest cell fates form, but there is a dramatic reduction in neural crest derivatives in the hindbrain region and in the spinal cord..

25 Neural crest cell development, and other aspects of dorsal polarity within the developing CNS, are thought to be regulated by BMP signals produced initially by the dorsal ectoderm and subsequently by the dorsal CNS. BMP-7 expression was induced, as expected, in the roof plate 30 of double mutants. The data indicate that it was unlikely that defective neural crest development resulted from a secondary loss of BMP-signaling within the dorsal neural tube.

To determine whether Wnt-signaling directly 35 regulates dorso-ventral polarity within the CNS, the

- 26 -

distribution of a number of regionally expressed markers was examined. Whereas spinal cord levels appeared normal, the hindbrain displayed a striking phenotype. Expression of Wnt-3a, Wnt-1 and Lmx-1b was normal in the 5 roof plate. Thus, unlike other aspects of Wnt-signaling in the mammalian embryo, these Wnt-expressing cells did appear to require the Wnt-signals they produce. In contrast, expression of Math1 (which is activated at 9.5 d.p.c. in cells immediately adjacent to the roof plate) 10 and Pax-3 (which occupies most of the dorsal half of the CNS) were dramatically reduced in the double mutant hindbrain. Dbx expression at the dorsal-ventral interface and Pax-6 expression in the ventro-lateral CNS 15 were normal.

The data indicate that in the hindbrain, Wnt-signaling does not appear to play a role directly in the primary patterning processes which lead to the establishment of distinct cell fates in appropriate positions along the dorsoventral axis. Rather, it 20 appears to play an essential role in the subsequent expansion of dorso-lateral neural progenitors. In support of a potential role in neural proliferation, transgenic analysis demonstrated that Wnt-1 can act as a potent mitogen when ectopically expressed within the 25 dorsal CNS.

In normal development there is a ventral to dorsal progression in the formation of different neural crest derivatives. In the double mutants, the most severely affected crest derivatives were more proximal (dorsally 30 located) structures. The stapes was absent from the second branchial arch while the lesser horn of the hyoid was unaltered, and in the trunk, dorsal root ganglia were markedly reduced while the sympathetic ganglia appeared normal. If the signals governing commitment to neural 35 crest cell fates were unperturbed in the double mutant,

- 27 -

but renewal of a multipotential dorsal neural progenitor pool required Wnt-signals, the expected result would be a loss of later forming neural crest derivatives in Wnt-1/-3a mutants, as precursors within the neural tube became limiting.

Cell proliferation and cell death in hindbrain tissue sections (9.5 d.p.c; 20-25 somites) were analyzed using BrdU incorporation and TUNEL staining, respectively.

10 Dorsal neural precursors were reduced, but no discernible change was detected in either proliferation or cell death within remaining dorsal regions of Wnt-1 and Wnt-3a mutants. As these two Wnts are first coexpressed at the otic level when the first neural crest cells appear (at 15 about 8.5 d.p.c; 8-10 somites), it is likely that the main reduction in dorsolateral neural precursors occurs between 8.5 and 9.5 d.p.c.

These data indicate that Wnt signalling regulates dorsoventral patterning in the mammalian CNS through the 20 control of cell proliferation.

Example 2: Wnt-3A Signaling in Neuronal Differentiation

Wnt-3a expression in the mouse begins in the primitive streak region of the late egg cylinder at 7.5 d.p.c. and is maintained in the tail bud until tail 25 formation is complete. To determine which cell types in the primitive streak region express Wnt-3a, the expression of Wnt-3a transcripts was examined in wild type embryos at the 7 somite stage. Expression was detected in the ectoderm layer in the primitive streak 30 region but was absent from the node. Expression was further restricted for ventrally located cells in the anterior streak region. In contrast, in the posterior streak, most cells in the ectoderm layer expressed Wnt-3a. Wnt-3a expression was not observed in migrating 35 mesodermal cells at either anterior or posterior

- 28 -

positions. These data indicate that Wnt-3a expression is localized to the primitive ectoderm prior to the physical segregation of the paraxial mesoderm and is downregulated as cells ingress through the primitive streak.

5 The phenotype of Wnt-3a homozygous mutant embryos was analyzed at early somite stages. At the 5 somite stage, no obvious differences in morphology between wild type and Wnt-3a mutant embryos were detected. However, by the 7 somite stage, differences in the shape of the
10 primitive streak region were apparent. In Wnt-3a mutants, the width of the primitive streak region is narrower than in the wild type embryos and this phenotype becomes more pronounced by the 10 somite stage.

To further investigate the abnormal morphology of
15 mutant embryo, histological analysis of the sections was carried out. In wild type embryos at the 7 somite stage, migrating presomitic mesodermal cells were observed under the primitive ectoderm layer in the primitive streak region. However, in Wnt-3a mutant embryos at the same
20 stage, no migrating presomitic mesoderm cells were observed; in contrast, the shape and movement of cells ingressed through the primitive streak are quite different from those in normal embryos. In the anterior streak region of the mutant embryos, the ingressing cells
25 were round in appearance, quite distinct from the usual stellate mesenchymal morphology of the ingressing mesoderm. Furthermore, these cells contacted each other and formed an ectopic tubular structure under the primitive streak at more posterior level. This tubular
30 structure was not observed anterior to the streak where somites are present. Thus, in Wnt-3a mutant embryos, the absence of somite precursors appears to be correlated with the appearance of an ectopic tubular structure arising in the primitive streak region.

- 29 -

To identify the molecular characteristics of the ectopic tubular structure in Wnt-3a mutant embryos, *in situ* hybridization and whole mount immunostaining and the expression of a variety of molecular markers detected.

MF-1, encodes a forkhead domain containing protein, which is normally expressed in somites, presomitic mesoderm, and lateral mesoderm at 9.5 d.p.c. In Wnt-3a mutant embryos at this stage, no obvious MF-1 expression was observed in the position where the ectopic tube was formed posterior to the forelimb level. A transverse section of the stained embryo at this axial level clearly indicated that no MF-1 transcripts were localized in the ectopic tube. Similarly another paraxial mesoderm marker, Mox-1, was not expressed in the ectopic tube in Wnt-3a mutants at either 8.5 or 9.5 d.p.c. The data indicate that the ectopic tube does not have the molecular and morphological characteristics of paraxial mesoderm.

Mash-1 is normally expressed in central nervous system and peripheral nervous system precursors at 9.5 d.p.c. but not in the mesoderm. In Wnt-3a mutant embryos at the same stage, Mash-1 expression was detected not only in these region but also in the region ventral to the original neural tube posterior to the forelimb level. A transverse section of Wnt-3a mutants at the axial level, where abnormal Mash-1 expression was observed, indicated that the ventral expression of Mash-1 was localized in the ectopic tube. A second neural marker, HES-5, which is normally expressed in CNS, was also expressed in the ectopic tube in Wnt-3a mutants at 9.5 d.p.c. To explore further whether neurons differentiate in the ectopic tube, Wnt-3a mutant embryos at 10.5 d.p.c. were immunostained with antineurofilament antibody, 2H3. Neurofilament expressing cells were present in both the dorsal neural tube and the ectopic ventral tube.

- 30 -

The ectopic tube also exhibited polarity typical of CNS tissue. For example, Sonic hedgehog (Shh) is normally expressed in the floor plate of the neural tube. In 9.5 d.p.c. Wnt-3a mutant embryos, the notochord was 5 present under the ventral ectopic tubular structure but not under the original neural tube at the axial level just posterior to the forelimbs while no notochord was absorbed at more posterior levels. Shh was expressed in ventrally in the ectopic tube where it contacts the 10 notochord, suggesting, that the ectopic tube forms a floor plate in response to a Shh signaling by the notochord. The ectopic neural tube also exhibits dorsal polarity typical of the CNS such as the expression of the dorsal midline marker, Wnt-1 and increased levels of Pax- 15 3 expression, where the tube contacts the surface ectoderm. In addition, expression of a ventral CNS marker, Pax-6, was suppressed where the ectopic tube contacts the surface ectoderm. Taken together, the data indicate that the ectopic tubular structure in the 20 mutants has the molecular and cellular characteristics of an ectopic neural tube and consequently the loss of Wnt-3a signaling results in the formation of CNS precursors at the expense of paraxial mesoderm.

The phenotype of Wnt-3a knock out mutant embryos 25 at 9.5 d.p.c. indicated that Wnt-3a is essential for formation of somitic mesoderm caudal to first 7-9 somites. In the absence of somite formation, an ectopic tubular structure which displays both cellular and molecular characteristics of presumptive CNS tissue is 30 formed. Several lines of evidences suggest that the neural tube was formed ectopically. First, transverse sections of Wnt-3a mutant embryos at an early somite stage indicated that cells delaminating from and ingressing through the primitive streak form an 35 epithelial cell layer that contribute to an ectopic tube

- 31 -

under the primitive ectoderm in the primitive streak region. Second, the notochord contacts the ventral but not the dorsal neural tube, suggesting that the ventral (ectopic) neural tube had already formed at the time when 5 the notochord was laid down. Third, by the analysis of serial transverse sections of several 8.5 and 9.5 d.p.c. Wnt-3a mutant embryos, it is apparent that the ectopic neural tube is not continuous with the original dorsal neural tube suggesting an independent origin.

10 The appearance of the ectopic neural tube correlates with the disappearance of the paraxial mesoderm precursors in Wnt-3a mutant embryos. This correlation suggests that the absence of Wnt-3a signaling in the primitive ectoderm of the primitive streak may 15 lead to presumptive somitic mesoderm cells to adopting, neural cell fate. That is, a neural fate may be a "default" state for cells which normally give rise to both mesodermal and neural derivatives.

The results described herein indicate that in the 20 normal primitive ectoderm, where Wnt-3a is expressed, undifferentiated cells can differentiate into both neural and somitic mesoderm cell lineages. At early somite stages, cells in the anterior primitive streak generate mostly somitic mesoderm, while cells in the posterior 25 streak gives rise to mostly lateral mesoderm. In contrast, primitive ectoderm adjacent to the anterior primitive streak contributes mainly to somitic mesoderm and neuroectoderm, suggesting that these two cell types might arise from the same cell population. The data 30 indicate that Wnt-3a signaling regulates cell fate specification between somitic mesoderm and neural lineages in the normal mouse embryo.

Although Wnt-3a is expressed in the anterior streak in regions which gives rise to somitic mesoderm, 35 it is also expressed in more posterior regions which

- 32 -

generate lateral and ventral mesoderm. Thus, expression is not restricted to paraxial mesoderm precursors. Wnt-3a may establish a competence to respond to a paraxial mesoderm inducing signal, rather than itself directly inducing paraxial mesodermal cell fates. This competence may be broadly distributed within the streak.

Example 3: Wnt-1 signaling and mid-brain development

Expression of En-1 in the developing midbrain of Wnt-1 null embryos is sufficient to rescue midbrain and interior hindbrain development. In the mouse, Wnt-1 and Engrailed-1 (En-1) are first expressed in the presumptive midbrain, from 8.0 days post coitum (d.p.c.) and continue to be expressed, together with En-2, in overlapping patterns during midbrain development. In Wnt-1^{-/-} (Wnt-1 null) embryos, En-1 and En-2 expression is initiated normally, but subsequently both domains of En expression are lost, which is concomitant with a failure of midbrain and anterior hindbrain development.

En-1 was expressed from the transgene WEXPZ-En-1 in a pattern similar to that of endogenous Wnt-1 gene. To assess whether En-1 was able to rescue the Wnt-1-null phenotype, embryos from matings of Wnt-1^{+/+}, WEXPZ-En-1⁺ males with Wnt-1^{-/-} females were collected at 14.5 d.p.c., when the Wnt-1^{-/-} phenotype can easily be scored morphologically. The genotype was subsequently determined by southern blotting. Wnt-1^{+/+} and Wnt-1^{-/-} embryos with or without WEXPZ-En-1 appeared to be wild-type (n = 112) whereas all Wnt-1^{-/-} embryos (n = 12) displayed the Wnt-1^{-/-} phenotype. In Wnt-1^{-/-}, WEXPZ-En-1⁺ embryos, 7 out of 17 appeared superficially wildtype, 8 out of 17 were partially rescued and only 2 out of 17 were similar to Wnt-1^{-/-} embryos.

To characterize brain development in greater detail, a minimum of four embryos from each category were

- 33 -

sectioned for histological analysis. All Wnt-1^{-/-} embryos lacked the midbrain and cerebellum. In contrast, in Wnt-1^{-/-}, WEXPZ-En-1⁺ embryos that were scored as wild-type, the midbrain and cerebellum appeared similar to those of 5 wild-type embryos. In partially rescued embryos, only the posterior midbrain and a slightly reduced cerebellum were apparent. The absence of rescue in some cases, and partial rescue in others, may reflect influences of the genetic background or variations in the levels of En-1 expressed from the transgene.

To characterize the development of the midbrain in Wnt-1^{-/-}, WEXPZ-En-1⁺ embryos further, the expression of several genes normally transcribed in this region was examined at 10.5 d.p.c. Pax-5 is expressed in a broad 15 domain at the midbrain-hindbrain junction, but this domain is missing in Wnt-1^{-/-} embryos. In Wnt-1^{-/-}, WEXPZ-En-1⁺ embryos, Pax-5 expression was detected in a pattern similar to that of the wild-type embryos. Wnt-1 and Fgf-8 are normally expressed in adjacent rings of cells just 20 anterior and posterior to the midbrain-hindbrain junction, respectively. Fgf8 signalling is involved in midbrain development. In Wnt-1^{-/-} embryos, both rings of expressing cells are absent. In contrast, both Wnt-1 and Fgf-8 were expressed in sharp rings of cells in Wnt-1^{-/-}, 25 WEXPZ-En-1⁺ embryos despite the fact that no morphologically obvious midbrain-hindbrain junction was apparent. These results indicate that Wnt-1 signaling at this later stage may not play a direct role in regulating Fgf-8 expression in adjacent cells. En gene expression 30 was also restored in the mid-hindbrain region of Wnt-1^{-/-}, WEXPZ-En-1⁺ embryos outside the area where the transgene is expressed.

In all the rescued embryos, the expression domains of Pax-5, Fgf-8, En, and, in a few cases, Wnt-1 were

- 34 -

slightly reduced relative to wild-type littermates (18
out

41 Wnt-1^{-/-}, WEXPZ-En-1⁺ embryos expressed one of the
markers examined, of these at least half were
5 substantially rescued). One likely explanation is that
rescued embryos have a smaller population of midbrain
cells than wild-type siblings because when Wnt-1 and En-1
expression is initiated, Wnt-1 mRNA transcription is
patchy, whereas En genes are expressed more uniformly in
10 presumptive midbrain cells. Thus, in Wnt-1^{-/-}, WEXPZ-En-1⁺
embryos, where En-1 is not uniformly expressed in all
presumptive midbrain cells, only those cells that express
En-1 at this early stage may contribute to midbrain
development. As En-1 expression in the midbrain restores
15 Fgf-8, Pax-5 and En expression in the anterior hindbrain,
and subsequently cerebellum development in Wnt-1^{-/-}
embryos, the data suggest that a midbrain-derived signal
other than Wnt-1 is necessary for anterior hindbrain
development.

20 To assess whether expression of En-1 was
sufficient to rescue the viability of Wnt-1^{-/-} mice (pups
are born but die within 24 h) pups were genotyped at
10 days post partum (n = 68). No live Wnt-1^{-/-}, WEXPZ-
En-1⁺ mice were obtained indicating that En-1 was
25 insufficient to rescue the Wnt-1-null phenotype
completely. Further analysis indicated that between 14.5
and 18.5 d.p.c., brains of Wnt-1^{-/-}, WEXPZ-En-1⁺ embryos
deteriorate, indicating that there may be additional
functions of Wnt-1 signaling that cannot be replaced by
30 En-1. This conclusion is supported by analysis of two
cranial motor nerves, III (oculomotor) and IV
(trochlear), which normally develop adjacent to Wnt-1-
expressing cells in the ventral midbrain. Each of these
fail to develop in Wnt-1^{-/-} embryos. Similarly, neither
35 nerve forms in Wnt-1^{-/-}, WEXPZ-En-1⁺ embryos which have

- 35 -

global restoration of midbrain development. In contrast, a second ventral population, tyrosine-hydroxylase-expressing neurons (catecholaminergic neurons) of the substantia nigra, are rescued in Wnt-1^{-/-}, WEXPZ-En-1⁺ 5 embryos.

These data demonstrate that, in the absence of a Wnt-1 signal, expression of En-1 from the Wnt-1 enhancer is sufficient to substantially rescue early midbrain and anterior hindbrain development, and suggest that a major 10 role of Wnt-1 signalling in the mammalian brain is to maintain En expression.

Other embodiments are within the following claims.

- 36 -

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT: President and Fellows of Harvard College
(ii) TITLE OF INVENTION: INDUCTION OF NEURONAL REGENERATION
(iii) NUMBER OF SEQUENCES: 11

(iv) CORRESPONDENCE ADDRESS:

- (A) ADDRESSEE: Fish & Richardson P.C.
(B) STREET: 225 Franklin Street
(C) CITY: Boston
(D) STATE: MA
(E) COUNTRY: USA
(F) ZIP: 02110-2804

(v) COMPUTER READABLE FORM:

- (A) MEDIUM TYPE: Diskette
(B) COMPUTER: IBM Compatible
(C) OPERATING SYSTEM: Windows 95
(D) SOFTWARE: FastSEQ for Windows Version 2.0b

(vi) CURRENT APPLICATION DATA:

- (A) APPLICATION NUMBER: PCT/US98/-----
(B) FILING DATE: 30-APR-1998

(vii) PRIOR APPLICATION DATA:

- (A) APPLICATION NUMBER:
(B) FILING DATE:

(viii) ATTORNEY/AGENT INFORMATION:

- (A) NAME: Freeman, John W.
(B) REGISTRATION NUMBER: 29,066
(C) REFERENCE/DOCKET NUMBER: 00246/222WO1

(ix) TELECOMMUNICATION INFORMATION:

- (A) TELEPHONE: 617/542-5070
(B) TELEFAX: 617/542-8906
(C) TELEX: 200154

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 370 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

Met Gly Leu Trp Ala Leu Leu Pro Gly Trp Val Ser Ala Thr Leu Leu
1 5 10 15
Leu Ala Leu Ala Ala Leu Pro Ala Ala Leu Ala Asn Ser Ser Gly
20 25 30
Arg Trp Trp Gly Ile Val Asn Val Ala Ser Ser Thr Asn Leu Leu Thr
35 40 45
Asp Ser Lys Ser Leu Gln Leu Val Leu Glu Pro Ser Leu Gln Leu Leu
50 55 60
Ser Arg Lys Gln Arg Arg Leu Ile Arg Gln Asn Pro Gly Ile Leu His

- 37 -

65	70	75	80
Ser Val Ser Gly	Gly Leu Gln Ser Ala Val Arg	Glu Cys Lys Trp	Gln
85	90	95	
Phe Arg Asn Arg	Arg Trp Asn Cys Pro Thr Ala Pro	Gly Pro His	Leu
100	105	110	
Phe Gly Lys Ile	Val Asn Arg Gly Cys Arg	Glu Thr Ala Phe	Ile Phe
115	120	125	
Ala Ile Thr Ser Ala	Gly Val Thr His Ser Val Ala Arg	Ser Cys Ser	
130	135	140	
Glu Gly Ser Ile	Glu Ser Cys Thr Cys Asp Tyr Arg Arg	Gly Arg Pro	
145	150	155	160
Gly Gly Pro Asp	Trp His Trp Gly Gly Cys Ser Asp Asn	Ile Asp Phe	
165	170	175	
Gly Arg Leu Phe	Gly Arg Glu Phe Val Asp Ser Gly Glu Lys	Gly Arg	
180	185	190	
Asp Leu Arg Phe	Leu Met Asn Leu His Asn Asn Glu Ala	Gly Arg Thr	
195	200	205	
Thr Val Phe Ser	Glu Met Arg Gln Glu Cys Lys Cys His	Gly Met Ser	
210	215	220	
Gly Ser Cys Thr	Val Arg Thr Cys Trp Met Arg Leu Pro	Thr Leu Arg	
225	230	235	240
Ala Val Gly Asp	Val Leu Arg Asp Arg Phe Asp Gly Ala Ser	Arg Val	
245	250	255	
Leu Tyr Gly Asn	Arg Gly Ser Asn Arg Ala Ser Arg Ala	Glu Leu Leu	
260	265	270	
Arg Leu Glu Pro	Glu Asp Pro Ala His Lys Pro Pro Ser	Pro His Asp	
275	280	285	
Leu Val Tyr Phe	Glu Lys Ser Pro Asn Phe Cys Thr Tyr Ser	Gly Arg	
290	295	300	
Leu Gly Thr Ala	Gly Thr Ala Gly Arg Ala Cys Asn Ser Ser	Pro	
305	310	315	320
Ala Leu Asp Gly	Cys Glu Leu Leu Cys Cys Gly Arg Gly His Arg	Thr	
325	330	335	
Arg Thr Gln Arg	Val Thr Glu Arg Cys Asn Cys Thr Phe His	Trp Cys	
340	345	350	
Cys His Val Ser	Cys Arg Asn Cys Thr His Thr Arg Val	Leu His Glu	
355	360	365	
Cys Leu			
370			

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 360 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Asn Ala Pro	Leu Gly Ile Trp	Leu Trp Pro	Leu Leu
1	5	10	15
Thr Trp Leu	Thr Pro Glu Val	Asn Ser Ser	Trp Tyr Met Arg
20	25	30	
Thr Gly Gly	Ser Ser Arg Val	Met Cys Asp Asn Val	Pro Gly Leu Val
35	40	45	
Ser Ser Gln Arg	Gln Leu Cys His Arg His	Pro Asp Val	Met Arg Ala
50	55	60	
Ile Ser Gln Gly	Val Ala Glu Trp	Thr Ala Glu Cys Gln His Gln	Phe
65	70	75	80
Arg Gln His Arg	Trp Asn Cys Asn	Thr Leu Asp Arg Asp His Ser	Leu

- 38 -

Phe	Gly	Arg	Val	Leu	Leu	Arg	Ser	Ser	Arg	Glu	Ser	Ala	Phe	Val	Tyr
100							105		110						
Ala	Ile	Ser	Ser	Ala	Gly	Val	Val	Phe	Ala	Ile	Thr	Arg	Ala	Cys	Ser
115							120		125						
Gln	Gly	Glu	Val	Lys	Ser	Cys	Ser	Cys	Asp	Pro	Lys	Lys	Met	Gly	Ser
130						135				140					
Ala	Lys	Asp	Ser	Lys	Gly	Ile	Phe	Asp	Trp	Gly	Gly	Cys	Ser	Asp	Asn
145						150			155				160		
Ile	Asp	Tyr	Gly	Ile	Lys	Phe	Ala	Arg	Ala	Phe	Val	Asp	Ala	Lys	Glu
165						170			175						
Arg	Lys	Gly	Lys	Asp	Ala	Arg	Ala	Leu	Met	Asn	Leu	His	Asn	Asn	Arg
180						185			190						
Ala	Gly	Arg	Lys	Ala	Val	Lys	Arg	Phe	Leu	Lys	Gln	Glu	Cys	Lys	Cys
195						200			205						
His	Gly	Val	Ser	Gly	Ser	Cys	Thr	Leu	Arg	Thr	Cys	Trp	Leu	Ala	Met
210						215			220						
Ala	Asp	Phe	Arg	Lys	Thr	Gly	Asp	Tyr	Leu	Trp	Arg	Lys	Tyr	Asn	Gly
225						230			235				240		
Ala	Ile	Gln	Val	Val	Met	Asn	Gln	Asp	Gly	Thr	Gly	Phe	Thr	Val	Ala
245						250			255						
Asn	Glu	Arg	Phe	Lys	Lys	Pro	Thr	Lys	Asn	Asp	Leu	Val	Tyr	Phe	Glu
260						265			270						
Asn	Ser	Pro	Asp	Tyr	Cys	Ile	Arg	Asp	Arg	Glu	Ala	Gly	Ser	Leu	Gly
275						280			285						
Thr	Ala	Gly	Arg	Val	Cys	Asn	Leu	Thr	Ser	Arg	Gly	Met	Asp	Ser	Cys
290						295			300						
Glu	Val	Met	Cys	Cys	Gly	Arg	Gly	Tyr	Asp	Thr	Ser	His	Val	Thr	Arg
305						310			315				320		
Met	Thr	Lys	Cys	Gly	Cys	Lys	Phe	His	Trp	Cys	Cys	Ala	Val	Arg	Cys
325						330			335						
Gln	Asp	Cys	Leu	Glu	Ala	Leu	Asp	Val	His	Thr	Cys	Lys	Ala	Pro	Lys
340						345			350						
Asn	Ala	Asp	Trp	Thr	Thr	Ala	Thr								
355						360									

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 352 amino acids
- (B) TYPE: amino acid
- (C) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

Met	Ala	Pro	Leu	Gly	Tyr	Leu	Leu	Val	Leu	Cys	Ser	Leu	Lys	Gln	Ala
1						5			10				15		
Leu	Gly	Ser	Tyr	Pro	Ile	Trp	Trp	Ser	Leu	Ala	Val	Gly	Pro	Gln	Tyr
						20			25				30		
Ser	Ser	Leu	Ser	Thr	Gln	Pro	Ile	Leu	Cys	Ala	Ser	Ile	Pro	Gly	Leu
						35			40				45		
Val	Pro	Lys	Gln	Leu	Arg	Phe	Cys	Arg	Asn	Tyr	Val	Glu	Ile	Met	Pro
						50			55			60			
Ser	Val	Ala	Glu	Gly	Val	Lys	Ala	Gly	Ile	Gln	Glu	Cys	Gln	His	Gln
						65			70			75			80
Phe	Arg	Gly	Arg	Arg	Trp	Asn	Cys	Thr	Thr	Val	Ser	Asn	Ser	Leu	Ala
						85			90				95		
Ile	Phe	Gly	Pro	Val	Leu	Asp	Lys	Ala	Thr	Arg	Glu	Ser	Ala	Phe	Val
						100			105			110			
His	Ala	Ile	Ala	Ser	Ala	Gly	Val	Ala	Phe	Ala	Val	Thr	Arg	Ser	Cys

- 39 -

115	120	125
Ala Glu Gly Ser Ala Ala Ile Cys Gly Cys Ser Ser Arg Leu Gln Gly		
130	135	140
Ser Pro Gly Glu Gly Trp Lys Trp Gly Gly Cys Ser Glu Asp Ile Glu		
145	150	155
Phe Gly Gly Met Val Ser Arg Glu Phe Ala Asp Ala Arg Glu Asn Arg		160
165	170	175
Pro Asp Ala Arg Ser Ala Met Asn Arg His Asn Asn Glu Ala Gly Arg		
180	185	190
Gln Ala Ile Ala Ser His Met His Leu Lys Cys Lys Cys His Gly Leu		
195	200	205
Ser Gly Ser Cys Glu Val Lys Thr Cys Trp Trp Ser Gln Pro Asp Phe		
210	215	220
Arg Thr Ile Gly Asp Phe Leu Lys Asp Lys Tyr Asp Ser Ala Ser Glu		
225	230	235
Met Val Val Glu Lys His Arg Glu Ser Arg Gly Trp Val Glu Thr Leu		240
245	250	255
Arg Pro Arg Tyr Thr Tyr Phe Lys Val Pro Thr Glu Arg Asp Leu Val		
260	265	270
Tyr Tyr Glu Ala Ser Pro Asn Phe Cys Glu Pro Asn Pro Glu Thr Gly		
275	280	285
Ser Phe Gly Thr Arg Asp Arg Thr Cys Asn Val Ser Ser His Gly Ile		
290	295	300
Asp Gly Cys Asp Leu Leu Cys Cys Gly Arg Gly His Asn Ala Arg Thr		
305	310	315
Glu Arg Arg Arg Glu Lys Cys His Cys Val Phe His Trp Cys Cys Tyr		320
325	330	335
Val Ser Cys Gln Glu Cys Thr Arg Val Tyr Asp Val His Thr Cys Lys		
340	345	350

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 349 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met Asn Arg Lys Ala Leu Arg Cys Leu Gly His Leu Phe Leu Ser Leu			
1	5	10	15
Gly Met Val Cys Leu Arg Ile Gly Gly Phe Ser Ser Val Val Ala Leu			
20	25	30	
Gly Ala Thr Ile Ile Cys Asn Lys Ile Pro Gly Leu Ala Pro Arg Gln			
35	40	45	
Arg Ala Ile Cys Gln Ser Arg Pro Asp Ala Ile Ile Val Ile Gly Glu			
50	55	60	
Gly Ser Gln Met Gly Leu Asp Glu Cys Gln Phe Gln Phe Arg Asn Gly			
65	70	75	80
Arg Trp Asn Cys Ser Ala Leu Gly Glu Arg Thr Val Phe Gly Lys Glu			
85	90	95	
Leu Lys Val Gly Ser Arg Asp Gly Ala Phe Thr Tyr Ala Ile Ile Ala			
100	105	110	
Ala Gly Val Ala His Ala Ile Thr Ala Ala Cys Thr His Gly Asn Leu			
115	120	125	
Ser Asp Cys Gly Cys Asp Lys Glu Lys Gln Gly Gln Tyr His Arg Asp			
130	135	140	
Glu Gly Trp Lys Trp Gly Gly Cys Ser Ala Asp Ile Arg Tyr Gly Ile			
145	150	155	160
Gly Phe Ala Lys Val Phe Val Asp Ala Arg Glu Ile Lys Gln Asn Ala			
165	170	175	

- 40 -

Arg	Thr	Leu	Met	Asn	Leu	His	Asn	Asn	Glu	Ala	Gly	Arg	Lys	Ile	Leu
			180				185						190		
Glu	Glu	Asn	Met	Lys	Leu	Glu	Cys	Lys	Cys	His	Gly	Val	Ser	Gly	Ser
			195				200						205		
Cys	Thr	Thr	Lys	Thr	Cys	Trp	Thr	Thr	Leu	Pro	Gln	Phe	Arg	Glu	Leu
			210				215					220			
Gly	Tyr	Val	Leu	Lys	Asp	Lys	Tyr	Asn	Glu	Ala	Val	His	Val	Glu	Pro
			225				230				235			240	
Val	Arg	Ala	Ser	Arg	Asn	Lys	Arg	Pro	Thr	Phe	Leu	Lys	Ile	Lys	Lys
			245				250						255		
Pro	Leu	Ser	Tyr	Arg	Lys	Pro	Met	Asp	Thr	Asp	Leu	Val	Tyr	Ile	Glu
			260				265						270		
Lys	Ser	Pro	Asn	Tyr	Cys	Glu	Glu	Asp	Pro	Val	Thr	Gly	Ser	Val	Gly
			275				280						285		
Thr	Gln	Gly	Arg	Ala	Cys	Asn	Lys	Thr	Ala	Pro	Gln	Ala	Ser	Gly	Cys
			290				295					300			
Asp	Leu	Met	Cys	Cys	Gly	Arg	Gly	Tyr	Asn	Thr	His	Gln	Tyr	Ala	Arg
			305				310				315			320	
Val	Trp	Gln	Cys	Asn	Cys	Lys	Phe	His	Trp	Cys	Cys	Tyr	Val	Lys	Cys
			325				330						335		
Asn	Thr	Cys	Ser	Glu	Arg	Thr	Glu	Met	Tyr	Thr	Cys	Lys			
			340				345								

(2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 124 amino acids
- (B) TYPE: amino acid
- (C) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

Gly	Val	Ser	Gly	Ser	Cys	Thr	Thr	Lys	Thr	Cys	Trp	Thr	Leu	Pro
1					5				10					15
Lys	Phe	Arg	Glu	Val	Gly	His	Leu	Leu	Lys	Glu	Lys	Tyr	Asn	Ala
									25					30
Val	Gln	Val	Glu	Val	Val	Arg	Ala	Ser	Arg	Leu	Arg	Gln	Pro	Thr
			35			40						45		
Leu	Arg	Ile	Lys	Gln	Leu	Arg	Ser	Tyr	Gln	Lys	Pro	Met	Glu	Thr
			50			55						60		
Leu	Val	Tyr	Ile	Glu	Lys	Ser	Pro	Asn	Tyr	Cys	Glu	Asp	Ala	Ala
			65			70				75			80	
Thr	Gly	Ser	Val	Gly	Thr	Gln	Gly	Arg	Ile	Cys	Asn	Arg	Thr	Ser
													95	
			85						90					
Gly	Ala	Asp	Gly	Cys	Asp	Thr	Met	Cys	Cys	Gly	Arg	Gly	Tyr	Asn
			100				105					110		
His	Gln	Tyr	Thr	Lys	Val	Trp	Gln	Cys	Asn	Cys	Lys			
			115				120							

(2) INFORMATION FOR SEQ ID NO:6:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 365 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Met Ala Gly Ser Ala Met Ser Ser Lys Phe Phe Leu Val Ala Leu Ala

- 41 -

1	5	10	15
Ile Phe Phe Ser Phe Ala Gln Val Val Ile Glu Ala Asn Ser Trp Trp			
20	25	30	
Ser Leu Gly Met Asn Asn Pro Val Gln Met Ser Glu Val Tyr Ile Ile			
35	40	45	
Gly Ala Gln Pro Leu Cys Ser Gln Leu Ala Gly Leu Ser Gln Gly Gln			
50	55	60	
Lys Lys Leu Cys His Leu Tyr Gln Asp His Met Gln Tyr Ile Gly Glu			
65	70	75	80
Gly Ala Lys Thr Gly Ile Lys Glu Cys Gln Tyr Gln Phe Arg His Arg			
85	90	95	
Arg Trp Asn Cys Ser Thr Val Asp Asn Thr Ser Val Phe Gly Arg Val			
100	105	110	
Met Gln Ile Gly Ser Arg Glu Thr Ala Phe Thr Tyr Ala Val Ser Ala			
115	120	125	
Ala Gly Val Val Asn Ala Met Ser Arg Ala Cys Arg Glu Gly Glu Leu			
130	135	140	
Ser Thr Cys Gly Cys Ser Arg Ala Ala Arg Pro Lys Asp Leu Pro Arg			
145	150	155	160
Asp Trp Leu Trp Gly Gly Cys Gly Asp Asn Ile Asp Tyr Gly Tyr Arg			
165	170	175	
Phe Ala Lys Glu Phe Val Asp Ala Arg Glu Arg Glu Arg Ile His Ala			
180	185	190	
Lys Gly Ser Tyr Glu Ser Ala Arg Ile Leu Met Asn Leu His Asn Asn			
195	200	205	
Glu Ala Gly Arg Arg Thr Val Tyr Asn Leu Ala Asp Val Ala Cys Lys			
210	215	220	
Cys His Gly Val Ser Gly Ser Cys Ser Leu Lys Thr Cys Trp Leu Gln			
225	230	235	240
Leu Ala Asp Phe Arg Lys Val Gly Asp Ala Leu Lys Glu Lys Tyr Asp			
245	250	255	
Ser Ala Ala Ala Met Arg Leu Asn Ser Arg Gly Lys Leu Val Gln Val			
260	265	270	
Asn Ser Arg Phe Asn Ser Pro Thr Thr Gln Asp Leu Val Tyr Ile Asp			
275	280	285	
Pro Ser Pro Asp Tyr Cys Val Arg Asn Glu Ser Thr Gly Ser Leu Gly			
290	295	300	
Thr Gln Gly Arg Leu Cys Asn Lys Thr Ser Glu Gly Met Asp Gly Cys			
305	310	315	320
Glu Leu Met Cys Cys Gly Arg Gly Tyr Asp Gln Phe Lys Thr Val Gln			
325	330	335	
Thr Glu Arg Cys His Cys Lys Phe His Trp Cys Cys Tyr Val Lys Cys			
340	345	350	
Lys Lys Cys Thr Glu Ile Val Asp Gln Phe Val Cys Lys			
355	360	365	

(2) INFORMATION FOR SEQ ID NO:7:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 5607 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

ATGTATGTAT GTATGTATGT ATGTATGTAT ACGTGCCTGC ACCTGTGTGT GCTTGGTGTC
 60 AGTGGGGCTC AGACATCACC TGATTCCCTG GAACTGGAGT TACAGGTGGC TATAAGCCAC
 120

- 42 -

CACTTGGGTG CTGAGAACAG AGTCGGGCC TCTGGCAGAG CAGTCAGTGC TTTTAGCCAC
180 TGAGCCACTC TCATCCCCC AATTATGTT ATCTTGAGTT GGGCAGGTAC GGTGGCGAA
240 TAGGCCTGTA ATCCCAGCAG TCACTGGACC ATCATGGTT CTACATATTA AACCTTTATG
300 TTAGGTAGGG TCACACAGCA AGATCCGGTC ACAAAAACAG CAACAACAAA ACCAAAAAGG
360 AGCCAGCTTC TTCCCCACAAG CATTCTTCC CTCAGGTCTT CAGCTCCATC TGACAGCTAC
420 TCGGCTGGTG GTCCTATCCT TTCTGAGCCT AGTTGCCAGA GAAACAAGCC CGGTTCATCT
480 TCATGACTAG CACATCTAAT GATAAGCACA GGTTGACTCA AGGTGCCATA GAGTGACACT
540 AGGTACCCAG AGCGACAGAA TGACACCTAT GAGTGCACGT CGTTAACAC AAACACACAC
600 ACACACACAC ACACACACAC ACACACACAC TCATGCACCC ACCTGCAAAC ACAATTGCAG
660 CCTTCTGGAC GTCTCCTGTC ACAGCCCCAC CTCCCTCCTG ATACACTGCG TTAAGTGGTG
720 ACTGTAACAA AATGACTTCA TGCTCTCCCT GTCTTGAGCC AAATTACACA ATTATTTGGA
780 AAGGGCTCAA AATGTTCTTC GTTAGAAGTT TCTGGATACA CCAATACACA GGAGCGTGCA
840 CCCTCAGAAC ACATGTACAC TTTGACTTAA TCTCACGGGT GACACACCGA CGCTTACACT
900 CCCCTAGCC CACAGAGGCA AACTGCTGGG CGCTTCTGAG TTTCTCACTG CCACCAGCTC
960 GGTTTGCTCA GCCTACCCCC GCACCCCCGCG CCCGGGAATC CCTGACCACA GCTCCACCCA
1020 TGCTCTGTCT CCTTCTTTTC CTTCTCTGTC CAGCCGTCGG GGTTCTGGG TGAGGAAGTG
1080 TCTCCACCGA GTCGCTGGCT AGAACACAA CTTTCATCCT GCCATTCAAGA ATAGGAAAGA
1140 GAAGAGACCA CAGCGTAGGG GGGACAGAGG AGACGGACTT CGAGAGGACA GCCCCACCGG
1200 CGCGTGTGGG GGAGGCAATC CAGGCTGAA ACAGGTTGTC CCCAGCGCAT TGTCCCCGCG
1260 CCCCTGGCG GATGCTGGTC CCCGACGGGC TCCGGACGCG CAGAAAGAGTG AGGCCGGCGC
1320 GCGTGGGAGG CCATCCCAAG GGGAGGGGTC GGCGGCCAGT GCAGACCTGG AGGCCGGGCC
1380 ACCAGGCAGG GGGCGGGGT GAGCCCCGAC GGTTAGCCTG TCAGCTCTT GCTCAGACCG
1440 GCAAGAGCCA CAGCTTCGCT CGCCACTCAT TGTCTGTGGC CCTGACCAGT GCGCCCTGGT
1500 GCTTTAGTG CCGCCCCGGC CCGGAGGGGC AGCCTTTCT CACTGCAGTC AGCGCCGCAA
1560 CTATAAGAGG CCTATAAGAG GCGGTGCCTC CCGCAGTGGC TGCTTCAGCC CAGCAGCCAG
1620 GACAGCGAAC CATGCTGCCT GCGGCCCGCC TCCAGACTTA TTAGAGCCAG CCTGGGAAC
1680 CGCATCACTG CCCTCACCGC TGTGTCCAGT CCCACCGTCG CGGACAGCAA CCACAGTCGT
1740 CAGAACCGCA GCACAGAAC AGCAAGGCCA GGCAGGCCAT GGGGCTCTGG GCGCTGCTGC
1800 CAGCTGGGT TTCTACTACG TTGCTACTGG CACTGACCGC TCTGCCCGCA GCCCTGGCTG
1860 CCAACAGTAG TGGCCGATGG TGGTAAGTGA GCTAGTACGG GGTCCGCCAC TTGTCTGGG
1920 GCAAAGAGCC AGGCACGGGC CTTACCCAGC TCCCACGCTG TGGGGATCAC CAACCTACAG
1980

- 43 -

ACCCCCCTCG TGCATTGTGA CTTCACATCC AGGGTGCCTCA CACCTAGAAC TAGCTCTGCT
2040
GAAGTGGGGC ACATCATTGG CATGCAGAAC CCCAGATACA CCAGGCTCAG AGACCATTCC
2100
CATTAAATAC GACCCCGTTT CTGCTGAGCA ACAGGTCCCA ACCTCGCTGT GGTGGGTGCT
2160
CAGGTGTCCC TTAGGTCTTG AACCAAAAAA AAAAAAAA AAAAAAAA ACCAGATATT
2220
AGCTTGAGG TGAGGGAGTG GAATTCTAA GTTTTCAGG GTGGGCAAGG CTGCAGGTGG
2280
GGTTTCTCCT CGGGGGCTGA CTTGAAGAAA GGAAGAGCTA AGGTAGCCAT GCCTTTCTG
2340
TCCACTCACT AGACTCTGGA GCTCAGGGCC AGGCAAGGAT AGGGTGGTAC AGCCTGTATG
2400
GTAGGATGCC AGGTCCCCCTC CCTGGACTG AACCTTATG CATCCGCCA GGGGCATCGT
2460
GAACATAGCC TCCTCCACGA ACCTGTTGAC GGATTCCAAG AGTCTGCAGC TGGTGCTCGA
2520
GCCAGTCTG CAGCTGCTGA GCCGCAAGCA GCGGCGACTG ATCCGACAGA ACCCGGGGAT
2580
CCTGCACAGC GTGAGTGGAG GGCTCCAGAG CGCTGTGCGA GAGTGCAAAT GGCAATTCCG
2640
AAACCGCCGC TGGAACGTGCC CCACTGCTCC GGGGCCCCAC CTCTCGGCA AGATCGTCAA
2700
CCGAGGTGGG TGCCCAGGAA AGCGACGCTT CCGGGATTAA GGGAAAAGCA GGGTCATCTC
2760
CAGGGCATAG GCGGGCGAAG GCAGGGAAAGA CATCCCAGGG TTATATGTGA TCAAACGTGAG
2820
AATGCCCTGG TGCCGGCAGT TACCGTAGGT CAGCACCAGA TTCTTTCTAG CCTTGCCTTG
2880
TGAGCATGAT CTTAACGTT GCTGCCACT GGCCCACAGA AAGGAAATTC CGGATCGTGG
2940
GCGCTGGCG ACAGCTTTT TTCCCTAGCC TTCCCTCAAAG GTACCTGGGA AGCTGATCTC
3000
TGAGGGCTAG CTAGGGTTGT GCTTCGCACC CAGCAAAGTT TGCACGTCCA ATACTAGTAG
3060
CGATCTTGGC TATGCAGATT TGTCTACTT GGGAACTCTCC CCTTGGAGCT GCTCTGCTAG
3120
GGCTCTGGAG TCTCAGTAAA GCTTAGAGAG GAGGGCATTG CATGCTTCGC ACACATGACT
3180
CCAAGGATGT TGGACTGTAG GGTACCAAGT CTTCCAAACA GGGTGCTGAG TTGGGCCCCAC
3240
GCCTTCTCTC AACTGATGCG GGGTCGCTTC ACCCACAGGC TGCCGAGAAA CAGCGTTCAT
3300
CTTCGCAATC ACCTCCGCCG GGGTCACACA TTCCGTGGCG CGCTCCTGCT CCGAAGGCTC
3360
CATCGAGTCC TGCACCTGCG ACTACCGCG GCGCGGCCCT GGGGGCCCCG ACTGGCACTG
3420
GGGGGGCTGC AGTGACAACA TCGATTTGG TCGCCTCTT GGCGAGAGT TCGTGGACTC
3480
CGGGGAGAAG GGGCGGGACC TACGCTTCCT CATGAACCTT CACAACAAACG AGGCAGGGCG
3540
AACGGTACGT CGGTGTGTCC GGAACCAATG GCAGGGAGA TGTAAGACAG GTGCACGGGG
3600
ACAGAGGCAC AGGGAGGGGC TTCCCGAGAG AGTGGGACTC TAGGAGGGAA GACAGAGAAG
3660
AGGTGGTGGT TGAGGGCAAA GAGGTTCTG AGCTGATGAC AGAACAGAAC AGATTAGCAG
3720
GCTATCAACA CGTGGGATGT ATTGAGATGG CTCCATGGCA CACTTTGAA AGATAAAAGT
3780
GACTTGCTGG CGTGGAGCAG AGTCTGGCCG AATGTCCCTA TCTCAGCGGG CCATTTGCA
3840

- 44 -

CTTCCTCTCT CCCGAGCTTA GTCACACCTG GACCTGGCT GAAGTTCCA CAGCATCGAC
3900 GTGACCCGGG TGGGGTGGGG GTGGGGAAGT ATGGGTGGTG GTTCGTGGGA TGTTGGCTTT
3960 GACCTTTCT TCCCTCCTCC CCTCGTCCCC TCCTCCCCCA GACC GTGTTTC TCTGAGATGC
4020 GCCAAGAGTG CAAATGCCAC GGGATGTCCG GCTCCTGCAC GGTGCGCACG TGTTGGATGC
4080 GGCTGCCAC GCTGCGCGCT GTGGGCGACG TGCTGCGGA CCGCTTCGAC GGCGCCTCCC
4140 GCGTCCTTTA CGGCAACCGA GGCAGCAACC GCGCCTCGCG GCGGGAGCTG CTGCGCCTGG
4200 AGCCCAGAAGA CCCC GCGCAC AAGCCTCCCT CCCCTCACGA CCTCGTCTAC TTGAGAAAT
4260 CGCCCAACTT CTGCACGTAC AGTGGCCGCC TGGCACAGC TGGCACAGCT GGACGAGCTT
4320 GCAACAGCTC GTCTCCCGCG CTGGACGGCT GTGAGCTGCT GTGCTGTGGC CGAGGCCACC
4380 GCACGCGCAC GCAGCGCGTC ACGGAGCGCT GCAACTGCAC CTTCCACTGG TGCTGCCACG
4440 TCAGCTGCCG CAACTGCACG CACACGCGCG TTCTGCACGA GTGTCTATGA GGTGCCGCGC
4500 CTCCGGAAC GGGAACGCTC TCTTCCAGTT CTCAGACACA CTCGCTGGTC CTGATGTTTG
4560 CCCACCCCTAC CGCGTCCAGC CACAGTCCCA GGGTCATAG CGATCCATCT CTCCCACCTC
4620 CTACCTGGGG ACTCCTGAAA CCACTTGCT GAGTCGGCTC GAACCCTTTT GCCATCCTGA
4680 GGGCCCTGAC CCAGCCTACC TCCCTCCCTC TTTGAGGGAG ACTCCTTTG CACTGCC
4740 CAATTGGCC AGAGGGTGAG AGAAAGATTG TTCTTCTGGG GTGGGGGTGG GGAGGTCAAC
4800 TCTGAAGGT GTGCGGTTG CTGATGTATT TTGCGCTGTG ACCTCTTGG GTATTATCAC
4860 CTTTCCTTGT CTCTCGGGTC CCTATAGGTC CCTTGAGTTC TCTAACCAAGC ACCTCTGGC
4920 TTCAAGGCCT TTCCCTCCAC ACCTGTAGCT GAAGAGTTTC CGAGTTGAAA GGGCACGGAA
4980 AGCTAAGTGG GAAAGGAGGT TGCTGGACCC AGCAGCAAAA CCCTACATTC TCCTGTCTC
5040 TGCTCGGAG CCATTGAACA GCTGTGAACC ATGCCTCCCT CAGCCTCCTC CCACCCCTTC
5100 CTGTCCTGCC TCCTCATCAC TGTGAAATA ATTTGCACCG AAATGTGGCC GCAGAGCCAC
5160 GCGTTCGGTT ATGTAAATAA AACTATTTAT TGTGCTGGGT TCCAGCCTGG GTTGCAGAGA
5220 CCACCCCTCAC CCCACCTCAC TGCTCCTCTG TTCTGCTCGC CAGTCCTTTT GTTATCCGAC
5280 CTTTTTCTC TTTTACCCAG CTTCTCATAG GCGCCCTGCG CCACCGGATC AGTATTTCT
5340 TCCACTGTAG CTATTAGTGG CTCCTCGCCC CCACCAATGT AGTATCTTC TCTGAGGAAT
5400 AAAATATCTA TTTTATCAA CGACTCTGGT CCTTGAATCC AGAACACAGC ATGGCTTCCA
5460 ACGTCCTCTT CCCTTCAAT GGACTTGCTT CTCTTCTCAT AGCCAAACAA AAGAGATAGA
5520 GTTGTGAAG ATCTCTTTTC CAGGGCCTGA GCAAGGACCC TGAGATCCTG ACCCTTGGAT
5580 GACCCTAAAT GAGACCAACT AGGGATC
5607

(2) INFORMATION FOR SEQ ID NO:8:

- 45 -

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2301 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

AGCAGAGCGG ACGGGCGCGC GGGAGGCAG CAGAGCTTC GGGCTGCAGG CGCTCGCTGC
60 CGCTGGGAA TTGGGCTGTG GGCGAGGCGG TCCGGCTGG CCTTTATCGC TCGCTGGGCC
120 CATCGTTGA AACTTATCA GCGAGTCGCC ACTCGTCGA GGACCGAGCG GGGGGCGGGG
180 GCGCGGCAG GCGGCAGGCC TGACGAGGCG CTCCCGGAGC TGAGCGCTTC TGCTCTGGGC
240 ACGCATGGCG CCCGCACACG GAGTCTGACC TGATGCAGAC GCAAGGGGT TAATATGAAC
300 GCCCCTCTCG GTGGAATCTG GCTCTGGCTC CCTCTGCTCT TGACCTGGCT CACCCCCGAG
360 GTCAAATCTT CATGGTGGTA CATGAGAGCT ACAGGTGGCT CCTCCAGGGT GATGTGCGAT
420 AATGTGCCAG GCCTGGTGAG CAGCCAGCGG CAGCTGTGTC ACCGACATCC AGATGTGATG
480 CGTGCATTA GCCAGGGCGT GGCGAGTGG ACAGCAGAAT GCCAGCACCA GTTCCGCCAG
540 CACCGCTGGA ATTGCAACAC CCTGGACAGG GATCACAGCC TTTTGCCAG GGTCCTACTC
600 CGAAGTAGTC GGGAAATCTGC CTTTGTATGCC ATCTCTCCT CAGCTGGAGT TGTATTTGCC
660 ATCACCAAGGG CCTGTAGCCA AGGAGAAGTA AAATCCTGTT CCTGTGATCC AAAGAAGATG
720 GGAAGCGCCA AGGACAGCAA AGGCATTTT GATTGGGTG GCTGCAGTGA TAACATTGAC
780 TATGGGATCA AATTGCCCCG CGCATTGTTG GATGCAAAGG AAAGGAAAGG AAAGGATGCC
840 AGAGCCCTGA TGAATCTTCA CAACAACAGA GCTGGCAGGA AGGCTGTAAA GCGGTTCTTG
900 AAACAAGAGT GCAAGTGCCA CGGGGTGAGC GGCTCATGTA CTCTCAGGAC ATGCTGGCTG
960 GCCATGGCCG ACTTCAGGAA AACGGCGAT TATCTCTGGA GGAAGTACAA TGGGGCCATC
1020 CAGGTGGTCA TGAACCAGGA TGGCACAGGT TTCACTGTGG CTAACGAGAG GTTTAAGAAC
1080 CCAACAAAA ATGACCTCGT GTATTTGAG AATTCTCCAG ACTACTGTAT CAGGGACCGA
1140 GAGGCAGGCT CCCTGGGTAC AGCAGGCCGT GTGTGCAACC TGACTTCCCG GGGCATGGAC
1200 AGCTGTGAAG TCATGTGCTG TGGGAGAGGC TACGACACCT CCCATGTCAC CCGGATGACC
1260 AAGTGTGGGT GTAAGTTCCA CTGGTGCTGC GCGTGCAGCT GTCAGGACTG CCTGGAAGCT
1320 CTGGATGTGC ACACATGCAA GGCCCCAAG AACGCTGACT GGACAACCGC TACATGACCC
1380 CAGCAGGCCGT CACCATCCAC CTTCCCTCT ACAAGGACTC CATTGGATCT GCAAGAACAC
1440 TGGACCTTG GGTTCTTCT GGGGGATAT TTCTAAGGC ATGTGGCCTT TATCTCAACG
1500 GAAGCCCCCT CTTCCCTCCCT GGGGGCCCCA GGATGGGGGG CCACACGCTG CACCTAAAGC
1560

- 46 -

CTACCCATT CTATCCATCT CCTGGTGTTC TGCAGTCATC TCCCCTCCCTG GCGAGTTCTC
 1620
 TTTGGAAATA GCATGACAGG CTGTCAGCC GGGAGGGTGG TGGGCCAGA CCACTGTCTC
 1680
 CACCCACCTT GACGTTTCTT CTTCTAGAG CAGTGGCCA AGCAGAAAAA AAAGTGTCTC
 1740
 AAAGGAGCTT TCTCAATGTC TTCCCACAAA TGGTCCAAT TAAGAAATTC CATACTTCTC
 1800
 TCAGATGGAA CAGTAAAGAA ACCAGAACATCA ACTGCCCTG ACTTAACCTT AACTTTGAA
 1860
 AAGACCAAGA CTTTGTCCTG TACAAGTGGT TTTACAGCTA CCACCCTTAG GGTAATTGGT
 1920
 ATTACCTGG AGAAGAATGG CTTCAATAC CCTTTAAGT TTAAATGTG TATTTTCAA
 1980
 GGCATTTATT GCCATATTAA AATCTGATGT AACAAAGGTGG GGACGTGTGT CCTTTGGTAC
 2040
 TATGGTGTGT TGTATCTTG TAAGAGAAA AGCCTCAGAA AGGGATTGCT TTGCATTACT
 2100
 GTCCCCCTGA TATAAAAAT CTTAGGGAA TGAGAGTCC TTCTCACTTA GAATCTGAAG
 2160
 GGAATTAAAA AGAAGATGAA TGGTCTGGCA ATATTCTGTA ACTATTGGGT GAATATGGTG
 2220
 GAAAATAATT TAGTGGATGG AATATCAGAA GTATATCTGT ACAGATCAAG AAAAAAAGGA
 2280
 AGAATAAAAAT TCCTATATCA T
 2301

(2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 2814 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

GAATTCATGT CTTACGGTCA AGGCAGAGGG CCCAGCGCCA CTGCAGCCGC GCCACCTCCC
 60
 AGGGCCGGGC CAGCCCAGGC GTCCCGCCTC TCGGGGTGGA CTCCCCCGC TGCGCGCTCA
 120
 AGCCGGCGAT GGCTCCTCTC GGATACCTCT TAGTGCTCTG CAGCCTGAAG CAGGCTCTGG
 180
 GCAGCTACCC GATCTGGTGG TCCTTGGCTG TGGGACCCCA GTACTCCTCT CTGAGCACTC
 240
 AGCCCATTCT CTGTGCCAGC ATCCCAGGCC TGGTACCGAA GCAGCTGCAGC TTCTGCAGGA
 300
 ACTACGTGGA GATCATGCC AGCGTGGCTG AGGGTGTCAA AGCGGGCATC CAGGAGTGCC
 360
 AGCACCAAGTT CCGAGGCCGG CGTTGGAACT GCACCACCGT CAGCAACAGC CTGGCCATCT
 420
 TTGGCCCTGT TCTGGACAAA GCCACCCGGG AGTCAGCCTT TGTCCATGCC ATCGCCTCCG
 480
 CTGGAGTAGC TTTCGCAGTG ACACGCTCCT GTGCAGAGGG ATCAGCTGCT ATCTGTGGGT
 540
 GCAGCAGCCG CCTCCAGGGC TCCCCAGGCC AGGGCTGGAA GTGGGGCGGC TGTAGTGAGG
 600
 ACATTGAATT TGGAGGAATG GTCTCTCGGG AGTTTGCCGA TGCCAGGGAG AACCGGCCGG
 660
 ATGCCCGCTC TGCCATGAAC CGTCACAAACA ATGAGGCTGG GCGCCAGGCC ATCGCCAGTC
 720

- 47 -

ACATGCACCT CAAAGTGCAGA TGCCACGGGC TATCTGGCAG CTGTGAAGTG AAGACCTGCT
780
GGTGGTCGCA GCCGGACTTC CGCACCATCG GGGATTCCCT CAAGGACAAG TATGACAGTG
840
CCTCGGAGAT GGTGGTAGAG AAACACCGAG AGTCTCGTGG CTGGGTGGAG ACCCTGAGGC
900
CACGTTACAC GTACTTCAAG GTGCCGACAG AACGCGACCT GGTCTACTAC GAGGCCTCAC
960
CCAACCTCTG CGAACCTAAC CCCGAAACCG GTCCTTCGG GACGCGTGAC CGCACCTGCA
1020
ATGTGAGCTC GCATGGCATA GATGGGTGCG ACCTGTTGTG CTGCGGGCGC GGGCATAACG
1080
CGCGCACTGA GCGACGGAGG GAGAAATGCC ACTGTGTTT CCATTGGTGC TGCTACGTCA
1140
GCTGCCAGGA GTGCACACGT GTCTATGACG TGCACACCTG CAAGTAGGAG AGCTCCTAAC
1200
ACGGGAGCAG GGTCATTCC GAGGGGCAAG GTTCCTACCT GGGGGCGGGG TTCCTACTTG
1260
GAGGGGTCTC TTACTTGGGG ACTCGGTTCT TACTTGAGGG CGGAGATCCT ACCTGTGAGG
1320
GTCTCATAACC TAAGGACCCG GTTTCTGCCT TCAGCCTGGG CTCCTATTTG GGATCTGGGT
1380
TCCTTTTAG GGGAGAAGCT CCTGTCTGGG ATACGGGTTT CTGCCCGAGG GTGGGGCTCC
1440
ACTTGGGGAT GGAATTCCAA TTTGGGCCGG AAGTCCTACC TCAATGGCTT GGACTCCTCT
1500
CTTGACCCGA CAGGGCTCAA ATGGAGACAG GTAAGCTACT CCCTCAACTA GGTGGGGTTC
1560
GTGCGGATGG GTGGGAGGGG AGAGATTAGG GTCCCTCCTC CCAGAGGCAC TGCTCTATCT
1620
AGATACATGA GAGGGTGCTT CAGGGTGGGC CCTATTTGGG CTTGAGGATC CCGTGGGGC
1680
GGGGCTTCAC CCCGACTGGG TGGAACTTTT GGAGACCCCC TTCCACTGGG GCAAGGCTTC
1740
ACTGAAGACT CATGGGATGG AGCTCCACGG AAGGAGGAGT TCCTGAGCGA GCCTGGGCTC
1800
TGAGCAGGCC ATCCAGCTCC CATCTGGCCC CTTCCAGTC CTGGTGTAAAG GTTCAACCTG
1860
CAAGCCTCAT CTGCGCAGAG CAGGATCTCC TGGCAGAATG AGGCATGGAG AACAACTCAG
1920
GGGTGATACC AAGACCTAAC AAACCCCGTG CCTGGGTACC TCTTTAAAG CTCTGCACCC
1980
CTTCTTCAGGG GGCTTCCTA GTCTCCTTGG CAGAGCTTC CTGAGGAAGA TTTGCAGTCC
2040
CCCAGAGTTC AAGTGAACAC CCATAGAACAA GAACAGACTC TATCCTGAGT AGAGAGGGTT
2100
CTCTAGGAAT CTCTATGGGG ACTGCTAGGA AGGATCCTGG GCATGACAGC CTCGTATGAT
2160
AGCCTGCATC CGCTCTGACA CTTAATACTC AGATCTCCCG GGAAACCCAG CTCATCCGGT
2220
CCGTGATGTC CATGCCCAA ATGCCTCAGA GATGTTGCCT CACTTGAGT TGTATGAAC
2280
TCGGAGACAT GGGGACACAG TCAAGCCGCA GAGCCAGGGT TGTTTCAGGA CCCATCTGAT
2340
TCCCCAGAGC CTGCTGTTGA GGCAATGGTC ACCAGATCCG TTGGCCACCA CCCTGTCCCG
2400
AGCTTCTCTA GTGTCTGTCT GGCTGGAAAG TGAGGTGCTA CATAACAGCCC ATCTGCCACA
2460
AGAGCTTCCT GATTGGTACC ACTGTGAACC GTCCCTCCCC CTCCAGACAG GGGAGGGGAT
2520
GTGGCCATAC AGGAGTGTGC CCGGAGAGCG CGGAAAGAGG AAGAGAGGCT GCACACGCGT
2580

INTERNATIONAL SEARCH REPORTInternational application No.
PCT/US98/08716**Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)**

This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

Please See Extra Sheet.

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
1-13

Remark on Protest

The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US98/08716

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING

This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for all inventions to be searched, the appropriate additional search fees must be paid.

Group I, claim(s) 1-13, drawn to a population of mammalian neural precursor cells committed to a cell fate.

Group II, claim(s) 14-16, drawn to a method of stimulating proliferation of a heterogenous population of neural cell precursor cells to enrich for dorsal neural cells.

Group III, claim(s) 17-18 and 20, drawn to a method of inducing neuronal regeneration in an adult mammal comprising transplanting dorsal neural precursor cells.

Group IV, claim(s) 19, drawn to a method of inducing neuronal regeneration in an adult mammal comprising administering a Wnt polypeptide or Wnt agonist.

The inventions listed as Groups I-IV do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons:

Group I is directed to a population of mammalian neural precursor cells, which is the first product. However, because Boss et al teach an enriched population of porcine or human neuron progenitor cells (i.e., mammalian neural precursor cells), no special technical feature exists for Group I as defined by PCT RULE 13.2, because it does not define a contribution over the prior art. The technical features of Groups II-IV are drawn to methods having different goals, method steps and starting materials, which do not share the same or a corresponding technical feature. Note that PCT Rule 13 does not provide for multiple products or methods within a single application. Because the technical feature of Group I is not a special technical feature, and because the technical features of the Group II-IV inventions are not present in the Group I claims, unity of invention is lacking.

THIS PAGE BLANK (USPTO)