

Group analysis

Jean Daunizeau
Wellcome Trust Centre for Neuroimaging
University College London

SPM Course Edinburgh, April 2010

*SPM

Between subjects variability

■ Standard GLM

$$y = X\beta + \varepsilon$$

assumes only one source of i.i.d. random variation

- ☐ But, in general, there are at least two sources:
 - within subj. variance
 - between subj. variance
- **Causes** dependences in ε

Lexicon

- ☐ Hierarchical models
- Mixed effect models
- ☐ Random effect (RFX) models
- Components of variance
- ... all the same
- ... all alluding to multiple sources of variation (in contrast to fixed effects)

Overview

- ☐ Group analysis: fixed versus random effects
- Two RFX methods:
 - > summary statistics approach
 - non-sphericity modelling
- Examples

Overview

- ☐ Group analysis: fixed versus random effects
- Two RFX methods:
 - > summary statistics approach
 - > non-sphericity modelling
- Examples

Fixed vs random effects

☐ Fixed effects:

Intra-subjects variation suggests all these subjects different from zero

Random effects:

Inter-subjects variation suggests population not different from zero

Fixed effects

- Only source of variation (over sessions)
 - is measurement error
- ☐ True response magnitude is *fixed*

[≜]SPM

Random effects

- Two sources of variation
 - measurement errors
 - response magnitude (over subjects)
- ☐ Response magnitude is *random*
 - each subject/session has random magnitude

[≜]SPM

Random effects

- Two sources of variation
 - measurement errors
 - response magnitude (over subjects)
- ☐ Response magnitude is *random*
 - each subject/session has random magnitude
 - but note, population mean magnitude is fixed

Fixed vs random effects

- ☐ Fixed isn't "wrong", just usually isn't of interest
- Summary:
 - > Fixed effect inference:
 - "I can see this effect in this cohort"
 - Random effect inference:
 - "If I were to sample a new cohort from the same population I would get the same result"

Fixed effect modelling in SPM

- ☐ Grand GLM approach (model all subjects at once)
- ☐ Good:
 - > max dof
 - > simple model
- □Bad:
 - > assumes common variance over subjects at each voxel

Group analysis: efficiency and power

- Efficiency = 1/ [estimator variance]
 - goes up with n (number of subjects)
 - > c.f. "experimental design" talk
- ☐ Power = chance of detecting an effect
 - \triangleright goes up with degrees of freedom (dof = n-p).
 - ➤ I reject the null when *P*<0.05. Is my risk of false positive rate (FPR) controlled at 5%?
 - Well, not exactly, but valid control: *FPR*≤α.
 - This is potentially conservative.

Overview

- ☐ Group analysis: fixed versus random effects
- Two RFX methods:
 - > summary statistics approach
 - > non-sphericity modelling
- Examples

Summary statistics approach

- Proposed by Holmes and Friston
- □ 1- or 2- sample *t* test on contrast image
 - >intra-subject variance not used
- Procedure:
 - Fit GLM for each subject i and compute contrast estimate $c\hat{\beta}_i$ (first level)
 - ightharpoonup Analyze $\left\{c\hat{eta}_i^i\right\}_{i=1,\dots,n}$ (second level)

HF approach: motivation (I)

Fixed effects...

estimated mean activation image...

...to be compared with residuals variance:

$$\bullet$$
 σ^2_{ϵ} / nw

n – subjects

w – error dof

HF approach: motivation (II)

1st level (within subjects)

2nd level (between-subject)

estimated mean activation image...

...to be compared with RFX variance:

$$\sigma^2 = \sigma^2_{\alpha} + \sigma^2_{\epsilon} / w$$

no voxels significant at p < 0.05 (corrected)

HF approach: assumptions

- Distribution
 - ➤ Normality
 - ➤ Independent subjects
- Homogeneous variance:
 - Residual error the same for all subjects
 - ➤ Balanced designs

HF approach: limitations

- □ Limitations
 - ➤ Only single image per subject
 - ➤ If 2 or more conditions, must fit separate model for each contrast
- Limitation a strength!
 - No sphericity assumption made on different conditions when fitting separate models

[≜] SPM

HF approach: efficiency & validity

- ☐ If assumptions true
 - ➤ Optimal, fully efficient
 - Exact p-values
- \square If σ^2_{FFX} differs btw subj.
 - Reduced efficiency
 - ► Biased σ^2_{RFX}
 - Liberal dof (here 3 subj. dominate)

HF approach: robustness

- ☐ In practice, validity and efficiency are excellent
 - For 1-sample case, HF impossible to break

Mumford & Nichols. Simple group fMRI modeling and inference. Neuroimage, 47(4):1469--1475, 2009.

- 2-sample and correlation might give trouble
 - Dramatic imbalance and/or heteroscedasticity

Overview

- ☐ Group analysis: fixed versus random effects
- Two RFX methods:
 - > summary statistics approach
 - non-sphericity modelling
- Examples

Non sphericity modelling – basics

- □ 1 effect per subject
 - ➤ Use Holmes & Friston approach
- □>1 effects per subject
 - Can't use HF, must use non sphericity modelling
 - ➤ Covariance components and ReML (c.f. "Bayesian inference" talk)

The i.i.d. case

$$\mathbf{y} = \mathbf{X} \boldsymbol{\beta} + \boldsymbol{e}$$

residuals covariance matrix

- □ 12 subjects, 4 conditions
 - ➤ Use F-test to find differences btw conditions
 - ➤ Underlying assumption: residuals i.i.d.

Multiple covariance components (I)

- ☐ E.g., 2-sample t-test
 - Errors are independent but not identical.
 - ▶2 covariance components

residuals covariance matrix

Multiple covariance components (II)

☐ Errors are not independent and not identical

Overview

- ☐ Group analysis: fixed versus random effects
- ☐ Two RFX methods:
 - > summary statistics approach
 - > non-sphericity modelling
- Examples

[≜]SPM

Example 1: data

- □ Stimuli:
 - Auditory presentation (SOA = 4 sec)
 - >250 scans per subject, block design
 - ➤ Words, e.g. "book"
 - ➤ Words spoken backwards, e.g. "koob"
- Subjects:
 - >12 controls
 - ≥11 blind people

Example 1: population differences

Example 2

- Stimuli:
 - Auditory presentation (SOA = 4 sec)
 - ≥250 scans per subject, block design
 - >Words:

Motion	Sound	Visual	Action
"jump"	"click"	"pink"	"turn"

- ☐ Subjects:
 - ≥12 controls
- Question:
 - What regions are affected by the semantic content of the words?

Example 2: repeated measures ANOVA

Example 2: repeated measures ANOVA

□1st level

1: motion

2: sounds

3: visual

4: action

□2nd leve

2 3 4 design matrix

$$c^{T} = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \end{pmatrix}$$

Bibliography:

- Statistical Parametric Mapping: The Analysis of Functional Brain Images. Elsevier, 2007.
- Generalisability, Random Effects & Population Inference. Holmes & Friston, NeuroImage, 1999.
- □ Classical and Bayesian inference in neuroimaging: theory. Friston et al., NeuroImage, 2002.
- Classical and Bayesian inference in neuroimaging: variance component estimation in fMRI.
 Friston et al., NeuroImage, 2002.
- Simple group fMRI modeling and inference. Mumford & Nichols, *Neuroimage*, 2009.

With many thanks to G. Flandin, J.-B. Poline and Tom Nichols for slides.

