Problem – Climbing Stairs

leetcode.com/problems/climbing-stairs

Problem

- You need to climb a staircase with **n steps**
- Each time, you can only climb either 1 step or 2 steps
- Find out how many different ways you can climb to the top
- Example:

Input

n = 2

Output: 2

Explanation:

- 1. Climb 1 step, then climb 1 step again
- 2. Climb 2 steps in one go

Solution – Climbing Stairs

leetcode.com/problems/climbing-stairs

Solution

- You need to climb a staircase with n steps and want to find the total number of distinct ways to reach the top
- At each step, you can either take 1 step or 2 steps this gives you two choices at most positions
- This follows the Fibonacci sequence pattern the number of ways to reach step n equals ways to reach (n-1) plus ways to reach (n-2)
- Use dynamic programming to avoid recalculating subproblems either bottom-up tabulation or memoized recursion works well
- Base cases are crucial: typically f(1) = 1 and f(2) = 2, representing the ways to reach the first and second steps

Solution – Climbing Stairs

leetcode.com/problems/climbing-stairs

Code

```
std::unordered map<int, int> memo;
int climbStairs(int n) {
   // Identify the sequence, when:
   // n = 0 (0 way), there is no way to get up
   // n = 1 (1 way): only one way : 1-step
   // n = 2 (2 ways): 1s + 1s | 2s
   // n = 3 (3 ways): 1s + 1s + 1s | 1s + 2s | 2s + 1s
   // n = 4 (5 ways): 1s + 1s + 1s + 1s | 1s + 1s + 2s | 1s + 2s + 1s | 2s + 1s + 1s | 2s + 2s |
   if (n <= 2) {
       return n;
   if (memo.find(n) != memo.end()) {
       return memo[n];
   memo[n] = climbStairs(n - 1) + climbStairs(n - 2);
   return memo[n];
```

Problem – 1143. Longest Common Subsequence

https://leetcode.com/problems/longest-common-subsequence

Problem

You are given two strings, example:

Find the longest subsequence between them

https://leetcode.com/problems/unique-paths

Problem

- The robot is placed in a m x n grid
- It starts at the top-left cell (0,0) and must reach the bottom-right (m 1, n 1)
- The robot can only move right or down at any point
- Return the number of unique paths the robot can take to reach the destination

https://leetcode.com/problems/unique-paths

Solution 1 (recursive)

- Define a recursive function countPaths(m, n)
- Base case

If m == 1 or n == 1, there's only one way to reach that cell (either all downs or all rights).

Recursive case

To reach cell (m, n) the robot must come from:

Cell (m - 1, n) \rightarrow from above

Cell (m, n - 1) \rightarrow from left

So the number of of paths to (m, n) is the **sum** of the paths to those two cells

Memoization

Use a 2D vector[m + 1][n + 1]

Code – 62. Unique Paths

LeetCode

https://leetcode.com/problems/unique-paths

```
Code Time: O(m * n) Space: O(m * n)
```

```
int countPaths(int m, int n, vector<vector<int>>& memo) {
   if (m == 1 || n == 1) return 1;
   if (memo[m][n] != -1) return memo[m][n];
   memo[m][n] = countPaths(m, n - 1, memo) + countPaths(m - 1, n, memo);
   return memo[m][n];
}
int uniquePaths(int m, int n) {
   /*
      count(m, n) = count(m, n + 1) + count(m + 1, n)
      same as (imagine robot going from m, n to 0,0 up and left)
      count(m, n) = count(m, n - 1) + count(m - 1, n)
   */
   vector<vector<int>> memo(m + 1, vector<int>(n + 1, -1));
   return countPaths(m, n, memo);
}
```


https://leetcode.com/problems/unique-paths

Solution 2 (iterative)

- Create a 2D vector dp of size $(m+1) \times (n+1)$ to store intermediate results
- Set dp[1][1] = 1 because there is exactly one way to stand on the starting cell
- Iterate through each cell (row, col) from (1, 1) to (m, n):
 - Skip (1, 1) since it's already initialized
 - For every other cell, the number of unique paths to it is the sum of:
 - Paths from the cell above: dp[row-1][col]
 - Paths from the cell to the left: dp[row][col-1]

dp[row][col] = dp[row - 1][col] + dp[row][col - 1]