CHAPITRE 2

LOGIQUE ET ENSEMBLES

Exercice 2.1

On calcule la table de vérité de chaque proposition

	\mathcal{P}	Q	\mathcal{P} ou non \mathcal{Q}
	V	V	V
1.	V	F	V
	F	V	F
	F	F	V

Ainsi, la proposition n'est pas une tautologie.

	\mathcal{P}	Q	$\mathcal{P}\Rightarrow\mathcal{Q}$	$non(\mathcal{P} \text{ et non } \mathcal{Q})$	$(\mathcal{P} \Rightarrow \mathcal{Q}) \Leftrightarrow \operatorname{non}(\mathcal{P} \text{ et non } \mathcal{Q})$
	V	V	V	V	V
2.	V	F	F	F	V
	F	V	V	V	V
	F	F	V	V	V

Ainsi, la proposition est une tautologie.

	\mathcal{P}	Q	\mathcal{R}	$\mathcal{P}\Rightarrow\mathcal{Q}$	$\mathcal{Q}\Rightarrow\mathcal{R}$	$(\mathcal{P} \Rightarrow \mathcal{Q}) \text{ et } (\mathcal{Q} \Rightarrow \mathcal{R})$	$\mathcal{P}\Rightarrow\mathcal{R}$	$((\mathcal{P} \Rightarrow \mathcal{Q}) \text{ et } (\mathcal{Q} \Rightarrow \mathcal{R})) \Rightarrow (\mathcal{P} \Rightarrow \mathcal{R})$
	V	V	V	V	V	V	V	V
	V	V	F	V	F	F	F	V
	V	F	V	F	V	F	V	V
3.	V	F	F	F	V	F	F	V
	F	V	V	V	V	V	V	V
	F	V	F	V	F	F	V	V
	F	F	V	F	V	F	V	V
	F	F	F	F	V	F	V	V

Ainsi, la proposition est une tautologie ¹.

	\mathcal{P}	Q	$non\mathcal{P} \Rightarrow non\mathcal{Q}$	$\mathcal{P}\Rightarrow\mathcal{Q}$	$(non\mathcal{P}\Rightarrow non\mathcal{Q})\Leftrightarrow (\mathcal{P}\Rightarrow\mathcal{Q})$
	V	V	V	V	V
4.	V	F	V	F	F
	F	V	F	V	F
	F	F	V	V	V

Ainsi, la proposition n'est pas une tautologie.

Exercice 2.2

La négation de « $\mathcal{P} \Rightarrow \mathcal{Q}$ » est « \mathcal{P} et non \mathcal{Q} ».

Exercice 2.3

- 1. Un entier est strictement plus grand que 10 si il est plus grand que 15, mais ce n'est pas nécessaire.
- 2. Un entier est divisible par 6 seulement si il est divisible par 3, mais ce n'est pas suffisant.

^{1.} C'est ce qu'on appelle la transitivité de l'implication logique.

AR1 - TD 2 David Kolar

Exercice 2.4

La contraposée de « f croissante $\Rightarrow f(3) \ge f(2)$ » est « $f(3) < f(2) \Rightarrow f$ pas croissante ».

Exercice 2.5

- 1. La proposition $\forall x \in \mathbb{R}, \ x > 1 \Rightarrow x^2 > 1$ est vraie.
- 2. La proposition $2 > 1 \Rightarrow 2^2 > 1$ est vraie.
- 3. La proposition $0 > 1 \Rightarrow 0^2 > 1$ est vraie.
- 4. La proposition $(-2) > 1 \Rightarrow (-2)^2 > 1$ est vraie.

Exercice 2.6

- 1. La négation de « $\exists n \in \mathbb{N}$, $\forall m \in \mathbb{N}$, $m \le n$ » est « $\forall n \in \mathbb{N}$, $\exists m \in \mathbb{N}$, m > n ». Cette négation est vraie (car tout entier naturel admet un successeur).
- 2. La négation de « $\forall n \in \mathbb{N}$, $\exists m \in \mathbb{N}$, $m \le n$ » est « $\exists n \in \mathbb{N}$, $\forall m \in \mathbb{N}$, m > n ». Cette négation est fausse (car 0 n'est plus grand qu'aucun entier naturel).
- 3. La négation de « $\exists x \in \mathbb{R}$, x + y > 0 » est « $\forall x \in \mathbb{R}$, $x + y \leq 0$ ». Ces deux propositions n'ont pas de sens, car y n'est pas défini.
- 4. La négation de « $\forall x \in \mathbb{R}$, x + y > 0 » est « $\exists x \in \mathbb{R}$, $x + y \leq 0$ ». Ces deux propositions n'ont pas de sens, car y n'est pas défini.
- 5. La négation de « $\exists x \in \mathbb{R}$, $\forall y \in \mathbb{R}$, x + y > 0 » est « $\forall x \in \mathbb{R}$, $\exists y \in \mathbb{R}$, $x + y \leq 0$ ». Cette négation est vraie (il suffit de prendre y = -x 1).
- 6. La négation de « $\forall x \in \mathbb{R}$, $\exists y \in \mathbb{R}$, x + y > 0 » est « $\exists x \in \mathbb{R}$, $\forall y \in \mathbb{R}$, $x + y \leq 0$ ». Cette négation est fausse (il suffit de prendre y = -x + 1).
- 7. La négation de « $\exists x \in \mathbb{R}$, $\exists y \in \mathbb{R}$, x + y > 0 » est « $\forall x \in \mathbb{R}$, $\forall y \in \mathbb{R}$, $x + y \leq 0$ ». Cette négation est fausse (car 1 + 1 = 2 > 0).
- 8. La négation de « $\forall x \in \mathbb{R}$, $\forall y \in \mathbb{R}$, x + y > 0 » est « $\exists x \in \mathbb{R}$, $\exists y \in \mathbb{R}$, $x + y \leq 0$ ». Cette négation est vraie (car $(-1) + (-1) = -2 \leq 0$).

Exercice 2.7

- 1. La proposition se traduit par « $\forall x \in \mathbb{R}$, $f(x) \ge 0$ ». Sa négation est « $\exists x \in \mathbb{R}$, f(x) < 0 ». Les fonctions f(x) = |x| et $f(x) = x^2$ vérifient la première proposition. Les fonctions f(x) = x et f(x) = -1 vérifient sa négation.
- 2. La proposition se traduit par « $\forall x \in \mathbb{R}$, $\forall y \in \mathbb{R}$, $y \ge x \Rightarrow f(y) \ge f(x)$ ». Sa négation est « $\exists x \in \mathbb{R}$, $\exists y \in \mathbb{R}$, $y \ge x$ et f(y) < f(x) ». Les fonctions f(x) = x et f(x) = 1 vérifient la première proposition. Les fonctions $f(x) = x^2$ et f(x) = -x vérifient sa négation.
- 3. La proposition se traduit par « $\forall x \in \mathbb{R}$, $f(x) \ge 0$ et $\forall x \in \mathbb{R}$, $\forall y \in \mathbb{R}$, $y \ge x \Rightarrow f(y) \ge f(x)$ ». Sa négation est « $\exists x \in \mathbb{R}$, f(x) < 0 ou $\exists x \in \mathbb{R}$, $\exists y \in \mathbb{R}$, $y \ge x$ et f(y) < f(x) ». Les fonctions $f(x) = \arctan(x) + \pi$ et $f(x) = e^x$ vérifient la première proposition. Les fonctions $f(x) = x^2$ et $f(x) = x^3$ vérifient sa négation.
- 4. La proposition se traduit par « $\exists x \in \mathbb{R}$, $f(x) \ge 0$ ». Sa négation est « $\forall x \in \mathbb{R}$, f(x) < 0 ». Les fonctions $f(x) = \cos(x)$ et f(x) = x vérifient la première proposition. Les fonctions f(x) = -1 et $f(x) = -e^{-x}$ vérifient sa négation.

AR1 - TD 2 David Kolar

5. La proposition se traduit par « $\forall x \in \mathbb{R}, f(x) > 0$ ».

Sa négation est « $\exists x \in \mathbb{R}, f(x) \leq 0$ ».

Les fonctions $f(x) = e^x$ et $f(x) = \sin(x) + 2$ vérifient la première proposition.

Les fonctions $f(x) = \cos(x) + 1$ et f(x) = |x| vérifient sa négation.

6. La proposition se traduit par « $\forall x \in \mathbb{R}$, f(-x) = f(x) ».

Sa négation est « $\exists x \in \mathbb{R}, \ f(-x) \neq f(x)$ ».

Les fonctions $f(x) = \cos(x)$ et $f(x) = x^2$ vérifient la première proposition.

Les fonctions $f(x) = \sin(x)$ et $f(x) = x^2 + x$ vérifient sa négation.

Exercice 2.8

- 1. La contraposée de « Un entier naturel dont le carré est pair est automatiquement pair » est « Un entier naturel impair est de carré impair ». Et en effet, pour 2n + 1 un entier naturel impair, $(2n + 1)^2 = 4n^2 + 2n + 1$ est impair.
- 2. La contraposée de « Un nombre réel dont le carré vaut deux est toujours strictement inférieur à deux » est « Un nombre réel supérieur ou égal à deux est de carré différent de deux ». Et en effet, pour $x \in \mathbb{R}$ plus grand que 2, $x^2 \ge 4$, donc en particulier, $x^2 \ne 2$.

Exercice 2.9

- 1. La négation de « zéro est le seul réel positif inférieur à tout réel strictement positif » est « il existe un réel positif non nul inférieur à tout réel strictement positif ».
 - Supposons que tel soit le cas et notons x un tel nombre. Alors x est positif, non nul, et inférieur à tout réel strictement positif.
 - Cependant, $\frac{x}{2}$ est positif, non nul, et inférieur à x, ceci est une contradiction avec notre hypothèse, qui doit être fausse. Ainsi, la proposition initiale est vraie.
- 2. La négation de « la racine carrée de deux n'est pas un nombre entier » est « la racine carrée de deux est un nombre entier ».
 - Supposons que tel soit le cas, et notons n un tel nombre entier. Alors $n^2 = 2$. Donc n < 2, ainsi, soit n = 0, soit n = 1. Cependant, $0^2 = 0$ et $1^2 = 1$, donc 2 = 0 ou 2 = 1, ce qui est absurde.
 - Ainsi, la proposition initiale est vraie.