

ÉPREUVE SENIOR

Samedi 29 avril 2023

Les problèmes ne sont pas classés par ordre de difficulté

Problème 1

Soit

$$P(X) = a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0$$

un polynôme à coefficients réels, tel que $0 \le a_i \le a_0$ pour chacun des entiers $i = 1, 2, \dots, n$. Démontrer que, si

$$P(X)^{2} = b_{2n}X^{2n} + b_{2n-1}X^{2n-1} + \dots + b_{n+1}X^{n+1} + \dots + b_{1}X + b_{0},$$

alors $4b_{n+1} \leq P(1)^2$.

Problème 2

Soit $k \ge 1$ un entier fixé; oncle Picsou dispose de k pièces de monnaie. Il dispose également d'une infinité de boîtes B_1, B_2, B_3, \ldots devant lui. Initialement, la boîte B_1 contient une des pièces de Picsou; les k-1 autres pièces sont posées sur la table, en dehors de toute boîte.

Oncle Picsou s'autorise alors à effectuer, autant qu'il le voudra, des opérations de la forme suivante :

- \triangleright si deux boîtes consécutives B_i et B_{i+1} contiennent chacune une pièce, il peut ôter la pièce que contenait la boîte B_{i+1} et la reposer sur sa table;
- \triangleright si une boîte B_i contient une pièce, si la boîte B_{i+1} est vide, et si Picsou a encore au moins une pièce sur sa table, il peut prendre cette pièce et la mettre dans la boîte B_{i+1} .

En fonction de k, pour quels entiers n oncle Picsou peut-il faire en sorte de mettre une pièce dans la boîte B_n ?

Problème 3

Soit ABCD un quadrilatère convexe, tel que $\widehat{ABC} > 90^{\circ}$, $\widehat{CDA} > 90^{\circ}$ et $\widehat{DAB} = \widehat{BCD}$. On note E, F et G les symétriques de A par rapport aux droites (BC), (CD) et (DB). Enfin, on suppose que la droite (BD) rencontre les segments [AE] et [AF] en deux points K et L.

Démontrer que les cercles circonscrits aux triangles BEK et DFL sont tangents l'un à l'autre en G.

Problème 4

Existe-t-il deux entiers a et b tels qu'aucun des nombres $a, a+1, \ldots, a+2023, b, b+1, \ldots, b+2023$ n'en divise un des 4047 autres, mais que $a(a+1)(a+2)\cdots(a+2023)$ divise $b(b+1)(b+2)\cdots(b+2023)$?

Durée de l'épreuve : 4 heures et 30 minutes Chaque problème est noté sur 7 points