<u>Proof.</u> Let $(T(t))_{t\geq 0}$ be a strongly continuous multiplication semigroup. There exist $w\in\mathbb{R}$, $M\geq 1$ such that $\|T(t)\|\leq Me^{w|t|}$ ($t\geq 0$). Then $\|f\|_1:=\sup_{t\geq 0}\|e^{-wt}T(t)\|f\|$ defines an equivalent lattice norm on E for which $\|T(t)\|_1\leq e^{wt}$ ($t\geq 0$). Since Z(E) is isometrically isomorphic to a space C(K) (as a Banach lattice), for an operator $S\in Z(E)$ one has $\|S\|=\inf\{c>0:|S|\leq c\cdot Id\}$. Hence the operator norm of S is independent of which lattice norm equivalent to the given one is considered on E. Consequently, $\|T(t)\|=\|T(t)\|_1\leq e^{wt}$ ($t\geq 0$).

If $(T(t))_{t\geq 0}$ is a strongly continuous group contained in $\mathcal{I}(E)$, then it follows that $\|T(t)\|\leq e^{w|t|}$ (t $\epsilon\,\mathbb{R}$) for some $w\geq 0$. If in addition the operators T(t) are real one obtains from the above expression for the operator norm that

$$e^{-wt} \cdot Id \le T(t) \le e^{wt} \cdot Id$$
 $(t \ge 0)$.

Consequently, $\lim_{t \to 0} ||T(t) - Id|| = 0$.

The assumption that the group consists of real operators is essential in Proposition 5.16. In fact, many differential operators on $L^2(\mathbb{R}^n)$ generate a strongly continuous group which (via Fourier transformation) is similar to a multiplication group. A concrete example is the Laplacian (A-I,Example 2.8).

On the other hand, if E = C(K) (K compact), then every strongly continous multiplication semigroup $(T(t))_{t \ge 0}$ has a bounded generator.

[In fact, let
$$m_t = T(t)1$$
 ($t \ge 0$). Then $\lim_{t \to 0} \|T(t) - Id\| = \lim_{t \to 0} \|m_t - 1\|_{\infty} = 0$.]

<u>Lemma</u> 5.17. Let E be a real Banach lattice with order continuous norm. Let $A \in L(E)$. Assume that there exists a dense sublattice D of E such that for all $f \in D$, $g \in E$, $f \cdot g$ implies $Af \cdot g$. Then $A \in Z(E)$.

<u>Proof.</u> Let $0 \le f \in D$, $\phi \in E'_+$ such that $\langle f, \phi \rangle = 0$. Since $Af \in \{f\}^{dd}$ by assumption, it follows that $\langle Af, \phi \rangle = 0$. Thus $A_{\mid D}$ and $-A_{\mid D}$ satisfy (P). It follows from Thm.1.8 that $(e^{tA})_{t \in \mathbb{R}}$ is a positive group. Thus $A \in \mathcal{I}(E)$ by Prop.5.15.

Let A be the generator of a positive semigroup and B $\in L(E)$. The semigroup generated by A + B is positive whenever $(e^{tB})_{t\geq 0}$ is positive (this follows from (1.8)). However this condition is not