Машинное обучение ФТиАД

Домашнее задание №3

Задача 1. Пусть $a, x \in \mathbb{R}^n$. Найдите производную по вектору x

$$\frac{\partial}{\partial x}||x-a||.$$

Под нормой подразумевается L_2 -норма: $||x|| = \sqrt{\sum_{i=1}^n x_i^2}$. Ответ запишите в векторном виде (без индексов).

Задача 2. Пусть $x \in \mathbb{R}^n$. Рассмотрим функцию log-softmax: $\mathbb{R}^n \to \mathbb{R}^n$:

$$y = \log \operatorname{softmax}(x), \quad y_i = \log \left[\frac{\exp(x_i)}{\sum_{j=1}^n \exp(x_j)} \right].$$

Найдите якобиан $\frac{\partial y}{\partial x} \in \mathbb{R}^{n \times n}$. Ответ запишите в векторном виде (без индексов).

Задача 3. Найдите производную по вектору $a \in \mathbb{R}^n$

$$\frac{\partial}{\partial a} \left(a^T \exp(aa^T) a \right),$$

где $\exp(B)$ — матричная экспонента, $B \in \mathbb{R}^{n \times n}$. Матричной экспонентой обозначают ряд

$$1 + \frac{B}{1!} + \frac{B^2}{2!} + \frac{B^3}{3!} + \frac{B^4}{4!} + \dots = \sum_{k=0}^{\infty} \frac{B^k}{k!}.$$

Ответ запишите в векторном виде (без индексов).

Задача 4. Рассмотрим задачу обучения линейной регрессии

$$Q(w) = (y - Xw)^{T}(y - Xw) \to \min_{w}$$

Будем решать её с помощью градиентного спуска. Допустим, мы находимся на некоторой итерации k, и хотим выполнить очередной шаг

$$w^{(k)} = w^{(k-1)} - \alpha \nabla_w Q(w^{(k-1)}).$$

При известных $y,X,w^{(k-1)}$ найдите длину шага α , при которой уменьшение значения функционала будет наибольшим:

$$Q(w^{(k-1)} - \alpha \nabla_w Q(w^{(k-1)})) \to \min_{\alpha}.$$