Matrix Factorization

```
Matrix Factorization
 Patings Metrix (N×M)
  N= users W= items
- Factors:
   10 = 2.5
   15=3.5
  Split matrix into product of 2 matrices
   D=WUT D=approx.
   RNXM is sparse => stored as dict
   N=130k H=26k
    NxH=3,38B
    # ratings = 2011
  W/u should be very skinny
  WAXE UMXE
 L~ 10-15
  If k=10, N=130k, U=26k
 NE + ME = 1,56 M => even less space than ratings
One rating
                wi=W[i]
Tij = wi uj
             u; = U[3]
 台。一句は
 Interpretation
   K demonts in 10; and u;
  k=5 and action, comedy, romance, horror, animation
  W; (1) = how much user; likes action
  W1(2) = how which user i likes comedy
  U; (1)=how much movie; contains comedy
u; (2)=how much movie; contains comedy
  Wi U = 11 W:11.11 uil 1000 oc shu (i.j.)
    user i correlate with addributes of movie;
```

Example

$$W_i = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix}$$
 $U_i = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}$
 $U_i = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}$
 $U_i = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}$
 $U_i = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}$
 $U_i = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}$
 $U_i = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}$
 $U_i = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}$
 $U_i = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}$
 $U_i = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}$
 $U_i = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}$
 $U_i = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}$
 $U_i = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}$
 $U_i = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}$
 $U_i = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}$
 $U_i = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}$
 $U_i = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}$
 $U_i = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}$
 $U_i = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}$
 $U_i = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}$
 $U_i = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}$
 $U_i = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}$
 $U_i = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}$
 $U_i = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}$
 $U_i = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}$

each feature is latent, is the latent dimensionality what features mean is not known before examining them (hidden cause)

Divineusionality reduction

if k=H and N>H and rank(X)=H

U/S/V are approximations (shrinbed)

Truncated SUD yields Best rank & approx of x

MF reduces the dimensionality of D

Training

- Squared Error (for regression)

07 = 27 (ri; -wiru;) (-uj)=0 -> min

- Solving for W

- Solving for U

Solving (or
$$u_i$$
) u_i u_i

-2-way dependency solution for w depends on a and reverse start with random u/w and apply equations (alternating least squares) Loss is symmetric, so w loss = u loss Expanding Model - Degression

y = mx + 6 - Blas toms
user vector
user vector

Tij = wiu. + Bi + C; + M - global aug. M = contenue the dataset with mean o B:/c; = Bioges great movie -> every one likes it; attributes are not enough - Moure Bios Avotar us Scifi shit - Training Objective: J= Z (ri; -ri;)2 rij = Wiuj +6: + C; +M 2] = 0 ~> wi= (Zu; u;)-1 Z (rif-6i-g-m) u; symmetric (; elpi) ; elpi $\frac{\partial J}{\partial u_{i}} \stackrel{!}{=} 0 \sim u_{i} = \left(\frac{\sum w_{i}w_{i}}{\sum (c_{i}-b_{i}-c_{j}-\mu)w_{i}}\right)$ $\frac{\partial J}{\partial B_{i}} \stackrel{!}{=} 0 \longrightarrow B_{i} = \frac{1}{|\Psi_{i}|} \sum_{j \in \Psi_{i}} (\Gamma_{ij} - w_{i}^{*}u_{j} - C_{j} - \mu)$ $\frac{\partial J}{\partial B_{i}} \stackrel{!}{=} 0 \longrightarrow C_{j} = \frac{1}{|\Sigma_{j}|} \sum_{i \in \Sigma_{j}} (\Gamma_{ij} - w_{i}^{*}u_{j} - C_{j} - \mu)$

Regularization prevents over fitting Model: $\hat{y} = \hat{w}^T \times \hat{u}^S = \sum_{i=1}^{square} wagnitude$ are paralised objective: $J = \sum_{i=1}^{N} (y_i - \hat{y}_i)^2 + \lambda \| \hat{w} \|_2^2$ Solution: $W = (\chi I + \chi I \chi)^{-1} \chi^{-1} \chi$ $||*||_{F} = Frobative norum \qquad ||w||_{F}^{2} = \sum_{i=1}^{N} \sum_{k=1}^{N} |w_{ik}|^{2} = \sum_{i=1}^{N} ||w_{ik}||_{2}^{2} = \sum_{i=1}^{N}$ $\frac{\partial Z}{\partial w} \stackrel{!}{=} 0 \longrightarrow W := \left(\frac{\sum u_{i} u_{i}^{T} + \lambda I}{\sum (i_{i} - 6i - c_{i} - M)} u_{i} \right)$ $u_{j} = \left(\frac{\sum w_{i}w_{i}^{T} + \lambda^{T}}{\sum (\Gamma_{ij} - \beta_{i} - C_{j} - \mu)}w_{i}\right)^{-1}$ Bi = 1 (1+) = ([if - w]uf - 61 - M) Cj = 1 |Si|(1+)) i= 2: SVD X can be decomposed into U,S,V

XNXM = UNXM · SMXM · VMXM

truncated SUD -> U,S,V ordered By importance

UNXY · Sexy · VHXX ~ X (approximation)

Probabalistic Matrix Factorization

$$\frac{2}{\Gamma_{ij}} \sim N(WU, 6^2)$$

$$\Gamma_{ij} \sim N(W^{\dagger}_{i} U_{ij}, 6^2)$$

- Maximum likelihood estimation

L=
$$\frac{1}{i\dot{y} \in \Sigma} \frac{1}{\sqrt{2\pi 6^2}} \cdot \exp\left(-\frac{1}{26^2} \left(\Gamma_{i\dot{y}} - \omega_i^T u_{\dot{y}}\right)^2\right)$$

WILL = aspware L

- MAP Estimation

$$P(w_1u|2) = \frac{P(2|w_1u|P(w)P(u)}{P(2)}$$

$$p(w) = N(0, \lambda^{-1}) \quad p(u) = N(0, \lambda^{-1})$$

$$p(w) = N(0, \lambda^{-1}) \quad p(u) = N(0, \lambda^{-1})$$

$$p(w) = N(0, \lambda^{-1}) \quad p(u) = N(0, \lambda^{-1})$$

$$p(w) = N(0, \lambda^{-1}) \quad p(u) = N(0, \lambda^{-1})$$

normal, centered around sero

- MAP Objective

$$L = \pi \frac{1}{\sqrt{2\pi}62} \exp\left(-\frac{1}{26^2} \left(\Gamma_{ij} - w_i^T u_j\right)^2\right) \times \frac{\lambda}{\sqrt{2\pi}} e^{-\frac{\lambda}{2}\|w\|_F^2} \cdot \frac{\lambda}{\sqrt{2\pi}} e^{-\frac{\lambda}{2}\|u\|_F^2}$$

Bayesian Matrix Factorization

everything is random variable

N word vocabulary = stuple word - In Veras 2 Eurodding Layers emb_u= Embedding (N,K) emb_u= Embedding (M,K) 2 juputs -> user+ movie dot (Embeduser, Embedmarie) -Bias Terms keras is not low-level liberary (layer level lib) Embedding (N,1) -> is scalar (user Bios) (M,1) -> movie bias actual rating - M (full dataset mean) Desidual Learning (Vision Inspired) Different Branches, summed together at the end Base to detect different patterns 1×1 Pool 121 Fifter Coucast -MF performs well, but is linear - NN can Rind nonlinear patterns $\hat{\Gamma} = MF(x) + ANN(x)$ Residual (com Be non-linear) MF model LNV(x)= f-MF(x) = error made by NN will try to predict Input S [ANN] TOURSPUT the error made of MF, mon linear pattern many Be about the residuals

Autoencoders (Auto Dec)
- Feed forward NN that predicts it's own input Error = (autiput - input) ²
general NN: ann. fit (x,x) autoencoder: ann. fit (x,x)
- Denoising Autoencoders - Denoising Autoencoders - Denoising Autoencoders
- leconnerders -> fill was
- Structure of data in non-recomendars NxD (# soundes, # leatures)
N= images and images
D= pixel values in each way - Patings Matrix: 2014 cells in the matrix are Rilled in Items
Users
N= miniber of samples (users) M = miniber of features (movies) 1200. 11805 (not 2011 individual ratings)
I have guer is the use the
- New Addition - New Addition add noise to input (Dropout layer to the front of NN) add noise to input the matrix not enuply reconstruct the matrix not enuply reconstruct the Bit)
not enuply reconstructions (North too Bile)
- Sparse Matrices Lil / CST / COO matrices Lil / CST / COO matrices Lil / CST / COO matrices
Missiup values (0) have to be shipped
- Test NSt wodel predict (x-test) / y-test -> wormal input to cutout
ignore keras val-loss, because the ratings train ratings should predict test values exist
predictions are entries in N×M/where test values exist Test Dest i=1 j=1 Test Dest i=1 j=1
Stest Dest i=1 &=1
miltest)=1 if (iii) & Dest else D
Lit = Lerong 1 2001 12 2 Mg