SEMINAR SUJATHA (I) "p-ADIC L-FUNCTIONS AND FONTAINE'S RINGS" AUGUST-NOVEMBER, 2014

VICKY SIQI WEI

vicky.wei@math.ubc.ca

AND

JUSTIN SCARFY

scarfy@ugrad.math.ubc.ca

Department of Mathematics The University of British Columbia Room 121, 1984 Mathematics Road Vancouver, British Columbia, Canada V6T 1Z2

ABSTRACT. This seminar covers the study of p-adic zeta functions in the case of the cyclotomic \mathbb{Z}_p -extension of a number filed F. We begin with the Coleman power series associated to norm compatible elements and the Coates-Wiles homomorphism. We will then switch to p-adic Hodge theory and cover Fonatine's theory of (φ, Γ) -modules. We will then revisit the Coates-Wiles homomorphism from this set-up as well as the general machinery of p-adic L-functions. We thank all the speakers for speaking at the seminar and for their feedback on preparing these notes, especially Sujatha for her expertise and for her encouragement for us to write this up.

CONTENTS

0.	Introduction and Overview by Sujatha	3
1.		
2.	by Sujatha	4
۷.	by Sujatha	5
3.	by Sujatha	6
4.	by Sujatha	7
5.	Iwasawa algebra and p-adic measures (1/2)	,
	by Zheng Li	8
6.	Iwasawa algebra and p-adic measures (2/2) by Zheng Li	9

7.		
, •	by Sujatha	10
8.	by Sujatha	11
9.	by Sujatha	12
10.	Basic theory of (φ, Γ) -modules (1/2) by Shen-Ning Tung	13
11.	Basic theory of (φ, Γ) -modules (2/2) by Shen-Ning Tung	14
12.	B_{dR} and de Rham Galois representations (1/2) by Miljan	15
13.	B_{dR} and de Rham Galois representations (2/2) by Miljan	16
14.	Formalisms of p -adic Hodge Theory (1/4) by Zheng Li	17
15.	Formalisms of p -adic Hodge Theory (2/4) by Zheng Li	18
16.	Formalisms of <i>p</i> -adic Hodge Theory (3/4) by Zheng Li	19
17.	Introduction to Euler systems (1/5) by Miljan	20
18.	Formalisms of <i>p</i> -adic Hodge Theory (4/4) by Zheng Li	21
19.	Introduction to Euler systems (2/5) by Miljan	22
20.	Further Developments in p -adic Hodge Theory (1/3) by Shen-Ning Tung	23
21.	Introduction to Euler systems (3/5) by Miljan	24
22.	Further Developments in <i>p</i> -adic Hodge Theory (2/3) by Shen-Ning Tung	25
23.	Introduction to Euler systems (4/5) by Miljan	26
24.	Further Developments in p -adic Hodge Theory (3/3) by Shen-Ning Tung)	27
25.	Introduction to Euler systems (5/5) by Miljan	28

0. Introduction and Overview by Sujatha

1. By Sujatha

2. By Sujatha

3. By Sujatha

4. BY SUJATHA

5. Iwasawa algebra and p-adic measures (1/2) by Zheng Li

6. IWASAWA ALGEBRA AND P-ADIC MEASURES (2/2) BY ZHENG LI

7. by Sujatha

8. by Sujatha

9. by Sujatha

10. Basic theory of $(\varphi,\Gamma)\text{-modules}$ (1/2) by Shen-Ning Tung

11. Basic theory of $(\varphi,\Gamma)\text{-modules}$ (2/2) by Shen-Ning Tung

12. B_{dR} and de Rham Galois representations (1/2) by Miljan

13. B_{dR} and de Rham Galois representations (2/2) by Miljan

14. Formalisms of p-adic Hodge Theory (1/4) by Zheng Li

15. Formalisms of p-adic Hodge Theory (2/4) by Zheng Li

16. Formalisms of p-adic Hodge Theory (3/4) by Zheng Li

17. Introduction to Euler systems (1/5) by Miljan

18. Formalisms of p-adic Hodge Theory (4/4) by Zheng Li

19. Introduction to Euler systems (2/5) by Miljan

20. Further Developments in p-adic Hodge Theory (1/3) by Shen-Ning Tung

21. Introduction to Euler systems (3/5) by Miljan

22. Further Developments in p-adic Hodge Theory (2/3) by Shen-Ning Tung

23. Introduction to Euler systems (4/5) by Miljan

24. Further Developments in p-adic Hodge Theory (3/3) by Shen-Ning Tung)

25. Introduction to Euler systems (5/5) by Miljan