Fundamentos Teóricos da Computação

CIÊNCIA DA COMPUTAÇÃO

Prof. Dr. João Paulo Aramuni

Autômatos de Pilha Não Determinísticos

* Autômatos de Pilha Não Determinísticos

Transições Compatíveis

- * Uma pilha de símbolos de um alfabeto Γ será representada por meio de uma palavra w de Γ^*
- Seja a função de Transição

$$\delta : E \times (\Sigma \cup {\lambda}) \times (\Gamma \cup {\lambda}) \rightarrow E \times \Gamma^*$$

(Além dos estados atingidos, é importante saber o conteúdo da pilha)

* Duas transições $\delta(e, a, b)$ e $\delta(e, a', b')$ são ditas compatíveis se, e somente se:

$$(a = a' \text{ ou } a = \lambda \text{ ou } a' = \lambda) \text{ e } (b = b' \text{ ou } b = \lambda \text{ ou } b' = \lambda)$$

Transições Compatíveis

$$\begin{array}{c|c}
 & a, \lambda/z_1 \\
\hline
 & a, b/z_2
\end{array}$$

$$\begin{array}{c}
a, b/z_1 \\
\hline
a, \lambda/z_2
\end{array}$$

$$\underbrace{e} \qquad \frac{\lambda, b/z_1}{a, \lambda/z_2} \rightarrow$$

$$\begin{array}{c}
a, b/z_1 \\
\hline
\lambda, \lambda/z_2
\end{array}$$

Transições Compatíveis

$$\begin{array}{c}
 & a, b/z_1 \\
\hline
 & a, \lambda/z_2
\end{array}$$

$$\begin{array}{c}
\lambda, b/z_{1} \\
\hline
a, b/z_{2}
\end{array}$$

$$\begin{array}{cccc}
& \lambda, b/z_1 \\
& a, \lambda/z_2
\end{array}$$

$$\begin{array}{c}
a, b/z_1 \\
\lambda, b/z_2
\end{array}$$

$$\begin{array}{c}
a, b/z_1 \\
\hline
\lambda, \lambda/z_2
\end{array}$$

Definição de APN

- * Um Autômato de Pilha Não Determinístico (APN) é uma sêxtupla $(E, \Sigma, \Gamma, \delta, I, F)$ em que:
 - * E é um conjunto finito de um ou mais estados;
 - * Σ é o alfabeto de entrada;
 - Γ é o alfabeto de pilha;
 - * δ , a função de transição, é <u>parcial</u>:
 - * $\delta : E \times (\Sigma \cup {\lambda}) \times (\Gamma \cup {\lambda}) \rightarrow D$
 - * D é constituído dos subconjuntos finitos de $E \times \Gamma^*$
 - * I, um subconjunto de E, é o conjunto dos estados iniciais;
 - * F é conjunto de estados finais.

* Construir um APN que reconheça a seguinte linguagem, e simular o funcionamento do AP para algumas palavras

- * Raciocínio
 - Sempre que se recebe um 0
 - * Se o topo da pilha for Z, empilha ZZ:
 - * Se o topo da pilha for U, não empilha nada.
 - Sempre que se recebe um 1
 - * Se o topo da pilha for U, empilha UU:
 - * Se o topo da pilha for Z, não empilha nada.
 - * Ao fim da computação
 - * A pilha terá \mathbb{Z}^n se a palavra de entrada tiver n 0s a mais que 1s; ou
 - * U^n se a palavra de entrada tiver n 1s a mais que 0s.
 - * NÃO É necessário um símbolo para marcar que a pilha está vazia

* Construir um APN que reconheça a seguinte linguagem, e simular o funcionamento do AP para algumas palavras

Exemplo 1 Outra Solução

* Construir um APN que reconheça a seguinte linguagem, e simular o funcionamento do AP para algumas palavras

Exemplo 1 E mais Outra Solução

* Construir um APN que reconheça a seguinte linguagem, e simular o funcionamento do AP para algumas palavras

* Construir um APN que reconheça a seguinte linguagem:

$$L(M) = \{ w \in \{0,1\}^* \mid w = w^r \}$$

* Construir um APN que reconheça a seguinte linguagem:

$$L(M) = \{ w \in \{0,1\}^* \mid w = w^{\mathrm{r}} \}$$

* Construir um APN que reconheça a seguinte linguagem:

$$L(M) = \{ w \in \{0,1\}^* \mid w = w^{\mathrm{r}} \}$$

* Construir um APN que reconheça a seguinte linguagem:

$$L(M) = \{ w \in \{0,1\}^* \mid w = w^{\mathrm{r}} \}$$

* Construir um APN que reconheça a seguinte linguagem:

$$L(M) = \{ w \in \{0,1\}^* \mid w = w^{\mathrm{r}} \}$$

* Construir um APN que reconheça a seguinte linguagem:

$$L(M) = \{ w \in \{0,1\}^* \mid w = w^{\mathrm{r}} \}$$

- * Testando o autômato:
 - * 0 : sob a transição 0, λ/λ É palíndromo
 - * 1 : sob a transição 1, λ/λ É palíndromo
 - * 010 : sob as transições 0, $\lambda/0$ e 1, λ/λ e 0, $0/\lambda$ É palíndromo
 - * 101 : sob as transições 1, $\lambda/1$ e 0, λ/λ e 1, $1/\lambda$ É palíndromo
 - * 0110 : sob as transições 0, λ /0 e 1, λ /1 e λ , λ / λ e 1, 1/ λ e 0, 0/ λ É palíndromo
 - * 0101 : sob as transições 0, $\lambda/0$ e 1, $\lambda/1$ e λ , λ/λ e para Não é palíndromo

* Construir um APN que reconheça a seguinte linguagem:

$$L(M) = \{ w \in \{0,1\}^* \mid w = w^{\mathrm{r}} \}$$

- * Testando o autômato:
 - * 0101 : sob as transições 0, $\lambda/0$ e 1, $\lambda/1$ e λ , λ/λ e para Não é palíndromo
 - * 0101 não é palíndromo e não é reconhecida por esse APN pois a pilha estava com 10, ou seja, o topo da pilha é 1, o último símbolo (1) a entrar na pilha, deve ser o primeiro a sair (LIFO). Já se tentarmos com a palavra 0110, por exemplo, também teremos 10 na pilha ao processar 01, com topo da pilha em 1, porém, dessa vez, será possível desempilhar o 10 e reconhecer a w.

* Construir um APN que reconheça a seguinte linguagem:

APN para palíndromos sobre
$$\{0,1\}^*$$

$$L(M) = \{ w \in \{0,1\}^* \mid w = w^{\mathrm{r}} \}$$

* Não é possível reconhecer esta linguagem com um \underline{APD} pois não se sabe onde fica o meio da palavra. Por esse motivo, construímos na aula anterior um APD para $w0w^{\mathrm{r}}$, com um 0 marcando o meio da palavra.

Autômatos de Pilha

* Critérios de Aceitação de Linguagens

Aceitação de Linguagens

- st Seja L uma linguagem. As seguintes afirmativas são equivalentes
 - st a) L pode ser reconhecida por pilha vazia e estado final
 - st b) L pode ser reconhecida por estado final
 - * c) $L \cup \{\lambda\}$ pode ser reconhecida por pilha vazia

$$*$$
 (a) -> (b)

* O símbolo de pilha F é utilizado para evitar que a pilha fique vazia, exceto quando a palavra deve ser reconhecida. A pilha fica vazia se, e somente se, for atingido o estado h.

$$*$$
 (c) -> (a)

* Um APN que reconhece por pilha vazia pode ser transformado em um APN que reconhece por pilha vazia e estado final apenas trocando os estados do APN para finais

- * Construa APNs para as seguintes linguagens, utilizando reconhecimento por pilha vazia e estado final
- * $\{0^n1^n \mid n >= 0\} \cup \{0^n1^{2n} \mid n >= 0\};$
- * $\{0^m 1^n \mid m >= n\};$
- * $\{0^m 1^n \mid m > n\};$

- * Construa APNs para as seguintes linguagens, utilizando reconhecimento por pilha vazia e estado final
- * $\{0^n1^n \mid n \ge 0\} \cup \{0^n1^{2n} \mid n \ge 0\};$

APN para $\{0^n 1^n \mid n \ge 0\} \cup \{0^n 1^{2n} \mid n \ge 0\}$:

- * Construa APNs para as seguintes linguagens, utilizando reconhecimento por pilha vazia e estado final
- * $\{0^m 1^n \mid m >= n\};$

APN para $\{0^m 1^n \mid m \ge n\}$:

- * Construa APNs para as seguintes linguagens, utilizando reconhecimento por pilha vazia e estado final
- * $\{0^m1^n \mid m > n\};$

APN para $\{0^m 1^n | m > n\}$:

$$\begin{array}{c|c} \mathbf{0}, \lambda/\mathbf{X} \\ \mathbf{0}, \lambda/\lambda & \mathbf{1}, \mathbf{X}/\lambda \\ \hline \\ \mathbf{0}, \lambda/\lambda & \end{array}$$

Obrigado.

joaopauloaramuni@gmail.com joaopauloaramuni@fumec.br

