Biological Motion for Gestural Communication by Social Robots

Adedayo Akinade and David Vernon Carnegie Mellon University Africa, Kigali, Rwanda

Significance of Biological Motion

Superior Temporal Sulcus activation (Puce and Perret, 2003)

Method

Models of Biological Motion

Decoupled Minimum-Jerk (Huber et al., 2009)

$$r_z(t) = \sum_{k=0}^5 a_{kz} t^k$$

Trajectory in z-direction

Trajectory in xy-direction

$$r_{xy}(t) = \sum_{k=0}^{5} a_{kxy} t^k$$

Trajectory Generation

Form of trajectory that minimizes jerk

$$\theta(t) = a_0 + a_1t + a_2t^2 + a_3t^3 + a_4t^4 + a_5t^5$$

Boundary conditions

$$\theta(0) = p_s; \qquad \dot{\theta}(0); \qquad \ddot{\theta}(0) = 0$$

$$\theta(d) = p_f; \qquad \dot{\theta}(d); \qquad \ddot{\theta}(d) = 0$$

 $\theta(t) = p_s + k \left[10(t/d)^3 - 15(t/d)^4 + 6(t/d)^5 \right]$ $\dot{\theta}(t) = \frac{k}{d} \left[30(t/d)^2 - 60(t/d)^3 + 30(t/d)^4 \right]$

Joint velocities

 $\ddot{\theta}(t) = \frac{k}{d^2} \left[60(t/d) - 180(t/d)^2 + 120(t/d)^3 \right]$

 $0 \le t \le d$

Results

Impact Assessment

Reterences

Warmth Dimension

A. Akinade, Y. Haile, N. Mutangana, C. Tucker, and D. Vernon, "Culturally Competent Social Robots Target Inclusion in Africa", Science Robotics, 2023.

Discomfort Dimension

Discomfort Dimension

Biological Motion

- C. Carpinella, A. Wyman, M. Perez, and S. Stroessner, "The Robotic Social Attributes Scale (RoSAS): Development and Validation", in 12th ACM/IEEE International Conference on Human-Robot Interaction, 2017, pp. 254 – 262.
- W. Chan, T. Tran, S. Sheikholeslami, and E. Croft, "An experimental validation and comparison of reaching motion models for unconstrained handovers: towards generating humanlike motions for human-robot handovers", in Proceedings of the 20th IEEE-RAS International Conference on Humanoid Robots, 2020, pp. 356-361.
- M. Huber, H. Radrich, C. Wendt, M. Rickert, A. Knoll, T. Brandt, and S. Glasauer, "Evaluation of a novel biologically inspired trajectory generator in human-robot interaction", in 18th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), 2009, pp. 639-644.
- C. Bartneck, T. Belpaeme, F. Eyssel, T. Kanda, M. Keijsers, and S. Sabanovic, Human-Robot Interaction: An Introduction, 02 2019. Puce and D. Perrett, "Electrophysiology and brain imaging of biological motion", in Philosophical Transactions of the Royal Society B: Biological Sciences, 2003, 358(1431), pp. 435 – 445.
- P. Viviani, and T. Flash, "Minimum-jerk, two-thirds power law, and isochrony: converging approaches to movement planning", Journal of Experimental Psychology, Human Perception and Performance, 1995, 21(1), pp. 32-53.

This research was carried out in the Culturally Sensitive Social Robotics for Africa project, www.CSSR4Africa.org, as part of the Afretec Network. Afretec is led by Carnegie Mellon University Africa. The network is working in partnership with the Mastercard Foundation.

Warmth Dimension

Biological Motion

