Estremi

- 1. Determinare gli estremi relativi di $f(x,y) = e^x(x-1)(y-1) + (y-1)^2$.
- 2. Determinare gli estremi relativi di $f(x,y) = \frac{y^2}{4} (y+1)\cos x$.
- 3. Determinare gli estremi relativi di $f(x,y) = xye^{-\frac{x^2+y^2}{2}}$.
- **4.** Sia $f(x,y)=xy(x-1)^2$. a) Determinare gli estremi relativi di f; b) determinare gli estremi assoluti di f in $D=\{(x,y)\in\mathbb{R}^2:x\geq 0,y\geq 0,x+y\leq 1\}$.
- 5. Determinare le dimensioni di una scatola rettangolare di volume v assegnato, che abbia la superficie minima.
- **6.** Sia $f(x,y) = e^{2x-x^2-y^2}$. a) Determinare gli estremi relativi liberi di f. b) Determinare gli estremi assoluti di f in $D = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 4\}$.
- 7. Per quali valori di $\lambda \in \mathbb{R}$ la funzione $f(x,y) = e^x \lambda x + y^2$ ha massimo o minimo relativo?
- 8. Sia $g \in \mathcal{C}^2(\mathbb{R})$. Calcolare tutte le derivate parziali fino al secondo ordine della funzione f(x,y)=g(xy). Verificare che l'origine è un punto critico per f, qualunque sia g; trovare una condizione sufficiente su g affinché l'origine sia un punto di sella.
- 9. Sia $f(x,y) = \frac{1}{\sqrt{x^2 y^2}}$. a) Determinare l'insieme di definizione D di f. b) Determinare le curve di livello di f. c) Scrivere l'equazione del piano tangente alla superficie grafico di f nel punto (1,0,1). Qual è la direzione di massima crescita di f nel punto (1,0)? d) Mostrare che f non ha estremi locali.
- **10.** Sia $f(x,y) = x^4 x^2y^2$. a) Trovare gli eventuali punti di massimo e minimo relativo di f in \mathbb{R}^2 . b) Dire se f ammette massimo e minimo assoluti in \mathbb{R}^2 .
- 11. Determinare gli eventuali punti di massimo o minimo locale della funzione $f(x,y)=x^3-xy^2+y^4$.

- 12. Determinare gli eventuali punti di massimo o minimo locale della funzione $f(x,y) = x^4 6x^2y^2 + y^4$.
- 13. Determinare gli eventuali punti di massimo o minimo locale della funzione $f(x,y) = x^4 + y^4 2(x^2 + y^2)$.
- **14.** Sia $f(x,y) = (x^2 + y^2 1)^2(x+y)$. Senza ricorrere al calcolo differenziale dire se i punti della circonferenza $x^2 + y^2 = 1$ sono di massimo o di minimo relativo.
- **15.** Detrminare gli estremi assoluti della funzione f(x,y)=2xy in $D=\{(x,y)\in\mathbb{R}^2:x^2+y^2\leq 4\}.$
- 16. Determinare la minima distanza della curva di equazione $y = \frac{16}{x^2}$ dall'origine.
- 17. Sia $f(x,y) = \sqrt{1-x^2-\frac{1}{9}y^2}+2x$. a) Determinare il dominio D di f; b) stabilire se f è differenziabile nei punti interni di D; c) determinare gli estremi assoluti di f in D.
- 18. Determinare gli estremi relativi della funzione f(x,y)=xy, vincolati alla circonferenza $x^2+y^2=1$.
- 19. Determinare gli estremi relativi della funzione f(x,y)=xy, vincolati all'ellisse $x^2+4y^2=1$.
- **20.** Determinare gli estremi relativi della funzione f(x,y) = x + y, vincolati al ramo di iperbole xy = 1, x > 0, y > 0.
- **21.** Determinare gli estremi superiore e inferiore della funzione $f(x,y) = e^{-(x^2+y^2)}$, al variare di (x,y) sulla retta di equazione 3x + 4y = 25. Verificare che nel punto (3,4) il gradiente di f é perpendicolare alla retta.
- **22.** Determinare gli estremi assoluti della funzione $f(x,y) = 1 e^{(x-y)^2(x^2+y^2-1)^2}$ sull'insieme $D = \{(x,y) : x^2 + y^2 \le 1, \ x \ge y\}.$
- 23. Determinare gli estremi relativi della funzione $f(x,y)=4x(x^2-y^2)-3x^2+y^2$, vicolati all'iperbole $x^2-y^2=\frac{1}{4}$.

Soluzioni.

$$\begin{cases} \frac{\partial f}{\partial x} = e^x x(y-1) = 0\\ \\ \frac{\partial f}{\partial y} = e^x (x-1) + 2(y-1) = 0 \end{cases}$$

La prima equazione ha come soluzione x=0 oppure y=1. Sostituendo x=0 nella seconda equazione si trova $y=\frac{3}{2}$; sostituendo y=1 si trova y=1. Dunque i punti critici sono: $\left(0,\frac{3}{2}\right)$ e (1,1). $\frac{\partial^2 f}{\partial x^2}=e^x(x+1)(y-1)$; $\frac{\partial^2 f}{\partial x \partial y}=e^x x$; $\frac{\partial^2 f}{\partial y^2}=2$. Il determinante della matrice Hessiana è positivo in $\left(0,\frac{3}{2}\right)$, e $\frac{\partial^2 f}{\partial x^2}\left(0,\frac{3}{2}\right)>0$, dunque $\left(0,\frac{3}{2}\right)$ è un punto di minimo relativo. Il determinante della matrice Hessiana è negativo in (1,1), dunque (1,1) è un punto di sella.

2.

$$\begin{cases} \frac{\partial f}{\partial x} = (y+1)\sin x = 0\\ \frac{\partial f}{\partial y} = \frac{y}{2} - \cos x = 0 \end{cases}$$

La funzione è periodica in x, dunque possiamo limitarci a considerare $x \in [0,2\pi)$. La prima equazione ha come soluzione y=-1 oppure x=0 oppure $x=\pi$. Sostituendo y=-1 nella seconda equazione si trova $x=\frac{2}{3}\pi, x=\frac{4}{3}\pi;$ sostituendo x=0 si trova y=2; sostituendo $x=\pi$ si trova y=-2. Dunque i punti critici sono: $\left(\frac{2}{3}\pi,-1\right), \left(\frac{4}{3}\pi,-1\right), (0,2)$ e $(\pi,-2)$. $\frac{\partial^2 f}{\partial x^2}=(y+1)\cos x; \frac{\partial^2 f}{\partial x \partial y}=\sin x; \frac{\partial^2 f}{\partial y^2}=\frac{1}{2}.$ $\left(\frac{2}{3}\pi,-1\right), \left(\frac{4}{3}\pi,-1\right)$ sono punti di sella, $(\pi,-2)$ e (0,2) sono punti di minimo relativo.

3. a)

$$\begin{cases} \frac{\partial f}{\partial x} = e^{-\frac{x^2 + y^2}{2}} (y - x^2 y) = 0\\ \\ \frac{\partial f}{\partial y} = e^{-\frac{x^2 + y^2}{2}} (x - xy^2) = 0 \end{cases}$$

I punti critici sono: (0,0), (1,1), (1,-1), (-1,1), (-1,-1). $\frac{\partial^2 f}{\partial x^2} = xy(x^2 - 3)e^{-\frac{x^2+y^2}{2}}; \frac{\partial^2 f}{\partial x \partial y} = (1-x^2)(1-y^2)e^{-\frac{x^2+y^2}{2}}; \frac{\partial^2 f}{\partial y^2} = xy(y^2 - 3)e^{-\frac{x^2+y^2}{2}}.$ (0,0) è un punto di sella; (1,1) e (-1,-1) sono punti di massimo relativo; (1,-1) e (-1,1) sono punti di minimo relativo.

4. a) $\begin{cases} \frac{\partial f}{\partial x} = y(x-1)^2 + 2xy(x-1) = 0\\ \\ \frac{\partial f}{\partial y} = x(x-1)^2 = 0 \end{cases}$

I punti critici sono: (0,0) e tutti i punti della retta x=1. L'origine è un punto di sella, infatti f(0,0)=0 e la funzione cambia di segno in ogni intorno dell'origine. I punti (1,y) con y>0 sono punti di minimo relativo, infatti f(1,y)=0 e la funzione è positiva in un intorno di tali punti; analogamente si ha che i punti (1,y) con y<0 sono punti di massimo relativo e il punto (1,0) è un punto di sella.

b) D è il triangolo di vertici (0,0),(1,0),(0,1). All'interno di D non ci sono punti critici di f, alllora gli estremi assoluti, che esistono essendo la funzione continua e D chiuso e limitato, si trovano sulla frontiera di D. Si ha che: $f(x,0)=f(0,y)=0; \ f(x,1-x)=x(1-x)^3$. La funzione $g(x)=x(1-x)^3$ ha massimo in $x=\frac{1}{4}$ e minimo in x=0 e x=1. Dunque il minimo assoluto di f in D vale 0; il massimo assoluto vale $g\left(\frac{1}{4}\right)=\frac{27}{256}$.

5. Siano x, y, z le dimensioni della scatola. Si tratta di minimizzare la superficie: S = 2xz + 2xy + 2yz, sotto la condizione: xyz = v. Sia $f(x, y) = 2x\frac{v}{xy} + 2xy + 2y\frac{v}{xy}$;

$$\begin{cases} \frac{\partial f}{\partial x} = 2y - 2\frac{v}{x^2} = 0\\ \frac{\partial f}{\partial y} = 2x - 2\frac{v}{y^2} = 0 \end{cases}$$

Tale sistema ha come soluzione: $(x,y)=(\sqrt[3]{v},\sqrt[3]{v})$. Si verifica che tale punto è un punto di minimo per f, dunque le dimensioni della scatola sono: $x=y=z=\sqrt[3]{v}$.

6. a) Essendo la funzione esponenziale monotona crescente, gli estremi di f si hanno in corrispondenza degli estremi dell'esponente $g(x,y)=2x-x^2-y^2$. Si trova che il punto (1,0) è un punto di massimo relativo per g, e dunque per f. b) All'interno del cerchio l'unico eventuale estremo assoluto è il punto (1,0). Sulla frontiera di D la funzione vale $f(x,y)=e^{2x-4}, -2 \le x \le 2$; dunque x=2 e x=-2 sono rispettivamente punti di massimo e minimo per f sulla frontiera di D. Poichè per il teorema di Wierstrass la funzione assume valore massimo e valore minimo in D, confrontando i valori: $f(1,0)=e, f(2,0)=1, f(-2,0)=e^{-8}$, si deduce che il massimo assoluto vale e e il minimo assoluto vale e^{-8} .

7.

$$\begin{cases} \frac{\partial f}{\partial x} = e^x - \lambda = 0 \\ \frac{\partial f}{\partial y} = 2y = 0 \end{cases}$$

Se $\lambda > 0$ il sistema ha la soluzione: $(\log \lambda, 0)$. $\frac{\partial^2 f}{\partial x^2} = e^x$; $\frac{\partial^2 f}{\partial x \partial y} = 0$; $\frac{\partial^2 f}{\partial y^2} = 2$; si verifica che $(\log \lambda, 0)$ è un punto di minimo relativo per f.

8. $\frac{\partial f}{\partial x} = yg'(xy); \frac{\partial f}{\partial y} = xg'(xy); \frac{\partial^2 f}{\partial x^2} = y^2g''(xy); \frac{\partial^2 f}{\partial x \partial y} = g'(xy) + xyg''(xy);$ $\frac{\partial^2 f}{\partial y^2} = x^2g''(xy).$ L'origine é un punto critico per f perché le due derivate parziali si annullano nell'origine. Il determinante della matrice Hessiana di f nell'origine vale $-g'(0)^2$, dunque se $g'(0) \neq 0$ l'origine è un punto di sella.

9. a) $D=\{(x,y)\in\mathbb{R}^2:-|x|< y<|x|\}$. b) Le curve di livello c hanno equazione: $x^2-y^2=\frac{1}{c^2},\ c>0$; sono iperboli equilatere. c) $\frac{\partial f}{\partial x}=-\frac{x}{\sqrt{(x^2-y^2)^3}}; \frac{\partial f}{\partial y}=\frac{y}{\sqrt{(x^2-y^2)^3}}$. Il piano tangente ha equazione: x+z=2. La direzione di massima crescita in (1,0) è quella del gradiente: (-1,0). d) Siccome le derivate parziali non si annullano mai in D, la funzione non ha estremi.

10. a) I punti critici sono quelli dell'asse y. Studiamo il segno della funzione: $f(x,y) = x^2(x^2 - y^2) \ge 0, -|x| \le y \le |x|$. Quindi l'origine è un punto di sella, mentre gli altri punti dell'asse y sono dei punti di massimo relativo. b) Si ha

che: $\lim_{x \to +\infty} f(x,0) = \lim_{x \to +\infty} x^4 = +\infty$, $\lim_{x \to +\infty} f(x,x^2) = \lim_{x \to +\infty} x^4 - x^6 = -\infty$. Dunque f non ha né massimo né minimo assoluti in \mathbb{R}^2 .

11.
$$\frac{\partial f}{\partial x} = 3x^2 - y^2 = 0; \frac{\partial f}{\partial y} = 2y(2y^2 - x); \frac{\partial^2 f}{\partial x^2} = 6x; \frac{\partial^2 f}{\partial x \partial y} = -2y; \frac{\partial^2 f}{\partial y^2} = 12y^2 - 2x.$$
 I punti critici sono: $(0,0), \left(\frac{1}{6}, \pm \frac{1}{2\sqrt{3}}\right)$. L'origine è un punto di sella; $\left(\frac{1}{6}, \pm \frac{1}{2\sqrt{3}}\right)$ sono punti di minimo.

- 12. L'origine è l'unico punto critico. Si ha che: $f(0,0) = 0, f(x,0) = x^4 \ge 0, f(x,x) = -4x^4 \le 0,$ dunque l'origine è un punto di sella, in quanto in OGNI intorno dell'origine la funzione assume valori positivi e negativi.
- 13. Per simmetria possiamo limitare lo studio al primo quadrante. I punti critici sono: (0,0), (1,0), (0,1), (1,1). Si verifica che: (0,0) è un punto di massimo, (1,0) e (0,1) sono punti di sella, (1,1) è un punto di minimo. Per simmetria si deduce che: (-1,0) e (0,-1) sono punti di sella, (-1,1), (1,-1), (-1,-1) sono punti di minimo.
- 14. La funzione si annulla nei punti della circonferenza. Studiando il segno della funzione si deduce che i punti della circonferenza sopra la retta y=-x sono punti di minimo, quelli sotto la retta sono punti di massimo, e i due punti di intersezione della retta con la circonferenza sono punti di sella.
- 15. Per il teorema di Weierstrass f ha massimo e minimo assoluti in D. All'interno di D l'unico punto critico è l'origine, ma poiché f(0,0)=0 e la funzione cambia di segno in ogni intorno dell'origine, l'origine non è un estremo. Per valutare la funzione sulla circonferenza $x^2+y^2=4$, scriviamola in forma parametrica: $x=2\cos t, y=2\sin t, 0\leq t\leq 2\pi$. Dunque la restrizione di f sulla circonferenza vale: $f(2\cos t, 2\sin t)=8\cos t\sin t=4\sin(2t)$. Tale funzione ha come massimo 4, assunto per $t=\frac{\pi}{4}, t=\frac{5}{4}\pi$, e minimo -4, assunto per $t=\frac{3}{4}\pi, t=\frac{7}{4}\pi$. Il massimo di f vale quindi 4 ed è assunto in $(\pm\sqrt{2},\pm\sqrt{2})$; il minimo vale -4 ed è assunto in $(\pm\sqrt{2},\mp\sqrt{2})$.
- 16. Il quadrato della distanza dell'origine dal generico punto della curva: $(x, \frac{16}{x^2})$, vale $x^2 + \frac{16^2}{x^4}$ Si tratta allora di trovare il minimo della funzione f(x) =

 $x^2 + \frac{16^2}{x^4}$. La derivata di f si annulla in $x = \pm \sqrt[6]{\frac{4^5}{2}} = \pm 2\sqrt{2}$. La distanza minima vale $d = 2\sqrt{3}$.

- 17. a) $D = \{(x,y) \in \mathbb{R}^2 : x^2 + \frac{1}{9}y^2 \le 1\}$; b) f è differenziabile nei punti interni di D poiché entrambe le derivate parziali sono definite e continue all'interno di D; c) l'unico punto stazionario interno a D è $A = \left(\frac{2}{\sqrt{5}}, 0\right)$; si ha che $f(A) = \sqrt{5}$. Sul bordo di D la funzione vale 2x; dunque il minimo assoluto vale -2 ed è assunto sul bordo, nel punto (-1,0), e il massimo assoluto vale $\sqrt{5}$ ed è assunto in A.
- 18. Ponendo $x = \cos t$, $y = \sin t$, si trova che la funzione, ristretta sulla circonferenza, vale: $f(\cos t, \sin t) = \cos t \sin t = \frac{1}{2}\sin(2t)$; il massimo è quindi $\frac{1}{2}$, ed è assunto nei punti $\left(\pm \frac{\sqrt{2}}{2}, \pm \frac{\sqrt{2}}{2}\right)$; il minimo è $-\frac{1}{2}$, ed è assunto nei punti $\left(\pm \frac{\sqrt{2}}{2}, \mp \frac{\sqrt{2}}{2}\right)$.
- 19. Ponendo $x = \cos t, \ y = \frac{1}{2}\sin t,$ si trova che la funzione, ristretta sull'ellisse, vale: $f(\cos t, \sin t) = \cos t \sin t = \frac{1}{2}\sin(2t)$; il massimo è quindi $\frac{1}{4}$, ed è assunto nei punti $\left(\pm \frac{\sqrt{2}}{2}, \pm \frac{\sqrt{2}}{4}\right)$; il minimo è $-\frac{1}{4}$, ed è assunto nei punti $\left(\pm \frac{\sqrt{2}}{2}, \pm \frac{\sqrt{2}}{4}\right)$.
- **20.** La restrizione della funzione all'iperbole è $f(x, \frac{1}{x}) = x + \frac{1}{x}$, che per x > 0 non ha massimo e ha minimo 1, assunto in (1, 1).
- **21.** La restrizione della funzione alla retta è $f(x, \frac{25-3x}{4}) = e^{-x^2-\left(\frac{25-3x}{4}\right)^2};$ tale funzione ha massimo in x=3 e il massimo vale $e^{-25};$ il minimo non esiste, l'estremo inferiore è zero. Il gradiente nel punto (3,4) è $-2e^{-25}(3,4);$ tale vettore appartiene alla retta $y=\frac{4}{3}x$, che è ortogonale alla retta 3x+4y=25.

- **22.** La funzione è sempre negativa, nei punti di frontiera di D si annulla, quindi i punti di frontiera di D sono punti di massimo assoluti, e il massimo assoluto è zero. All'interno di D, annullando le derivate parziali, si trova come unico punto stazionario il punto $\left(\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}\right)$ che risulta un punto di minimo assoluto.
- **23.** La funzione ha un massimo che vale $-\frac{1}{4}$, ed è assunto in $(\frac{1}{2},0)$.