Chrome: Feature Proposal

CISC/CMPE 322

Mackenzie Furlong
Alex Golinescu
David Haddad
William Melanson-O'Neill
Michael Reinhart
Lianne Zelsman

Agenda

- Proposal Overview
- SAAM Analysis
 - Design Options
 - NFRs and Stakeholders
 - Advantages/Disadvantages
- Architecture Implementation
 - Sequence Diagram
 - Impact & Risks
 - Concurrency
 - Testing
- Team Issues
- Limitations & Lessons Learned
- Conclusion

Proposal

Facial Recognition

- Two use cases
 - 1. Protect autofill data
 - 2. Bypass Chrome-prompted login requests
- Value
 - Improve security
 - Increase speed

Concrete Architecture

SAAM Analysis

Design One

Dependency Used by Feature -----

Subsystem Used by Feature

Stakeholders & NFRs

- Users: performance & security
- Google: security
- Developers: evolvability, maintainability & testability

Advantages & Disadvantages

	Design One	Design Two
Security		 Preexisting security built into API Concurrency of using rendering engine
Maintainability	 Redundancy due to recreation of similar features clutters code 	
Testability	 Decreased cohesion of subcomponents makes individual testing difficult 	 High cohesion helps with testing Unit tests already exist for autofill and webcam API
Evolvability	 Decreased cohesion may reduce evolvability as changes in subsystems will be difficult to make 	 Increased coupling can make evolution difficult But, spreading out functionality across more subsystems can ease isolated development
Performance	Less subsystems and required connections, so less chance of bottlenecking	 API usage increases efficiency However, more subsystems and required connections can increase chance of bottlenecking
Other	More work to develop	Less work to develop

Implementation

New Subsystem

New Dependency

Autofill Use-Case

Message → Response - - -> Lifeline Object Actor Activation

High-Level Impact

- Still object-oriented architecture
- No noticeable impact on performance, testability, maintainability
- Could decrease evolvability due to increased coupling

Low-Level Impact

- No impact on most internal components
 - Mostly OO internally, with implicit style for UI and layering in rendering/browser system
- Data persistence and rendering engine subsystems need minor adjustment to allow new communication channels
 - Can be done easily using WebRTC, so won't impact component performance
- Following files in rendering engine must be adjusted:
 - content/browser/renderer host/media
 - content/renderer/media/
 - content/browser/webrtc/
 - content/public/renderer/

Concurrency

- Each Chrome tab runs its own rendering engine instance
 - Limits performance bottlenecks
 - Ensures errors in one tab won't impact login/autofill for another
 - Increases security (facial recognition must be re-done in each webpage)

Risks

• Performance

 Inefficient facial recognition algorithm could greatly reduce usage speed

Security

 Inaccurate facial recognition (false positives) is a huge security risk

Testing

- 1. Facial recognition (performance)
- 2. Facial recognition (accuracy)
- 3. Correct UI & rendering engine reaction to changes in data persistence object
- 4. Correct response to system failures & errors during recognition process

Design Process

Team Issues

- Implementation involves multiple subsystems
 - Require cross-collaboration between multiple teams
- Suggestion: main development done by rendering engine team
 - Consultation with a few UI and data persistence team members to ensure correct feature functionality in those systems

Limitations

- Difficult to piece together existing autofill and webcam functionality from Chromium documentation
- Multiple assumptions were probably incorrect, skewing accuracy of design

Lessons Learned

- Even seemingly small changes can have a large impact on the entire system in unexpected ways
 - Really reinforces importance of low coupling and high cohesion

Conclusion

- Many factors to consider when implementing a new feature
- Less intensive approach taken towards feature implementation
- Risks to performance and security with improper implementation
 - But benefits from successful implementation outway risks

Questions?