INDUCTOR Y CAPACITOR

Figura 1.

$$f = 0,10,50,100,500,1000 Hz$$

Para una frecuencia de cero la reactancia capacitiva se hace cero por lo cual su voltaje y corriente es 0.

Para la frecuencia de 10Hz

Reactancia capacitiva

$$X_c = \frac{1}{2\pi fC} = \frac{1}{2\pi (10Hz)(20\mu F)} = 795.77\Omega$$

Impedancia total

$$Z_T = 100 - j795.77$$

Voltaje pico 802.03∠ - 82.83°

Divisor de voltaje

$$V_{pc} = \left(\frac{795.77 \angle - 90^{\circ}}{100 - j795.77}\right) * 10 \angle 0^{\circ} = 9.92 \angle - 7.76^{\circ}$$

Voltaje Vrms

$$V_{rms} = 0.707Vp$$

 $V_{rms} = 0.707(10) = 7.07V$

Divisor de voltaje

$$V_{pc} = \left(\frac{795.77 \angle - 90^{\circ}}{100 - j795.77}\right) * 7.07 \angle 0^{\circ} = 7.01 \angle - 7.76^{\circ}$$

$$I = \frac{V}{Z} = \frac{7.07 \angle 0^{\circ}}{100 - j795.77} = 8.82 \angle 82.83^{\circ} mA$$

Para la frecuencia de 50Hz Reactancia capacitiva

$$C_T = 10 + 10 = 20\mu F$$

$$X_c = \frac{1}{2\pi fC} = \frac{1}{2\pi (50Hz)(20\mu F)} = 159.15\Omega$$

Impedancia total

$$Z_T = 100 - j159.15$$

Forma polar 187.96∠ — 57.86°

Voltaje pico

Divisor de voltaje

$$V_{pc} = \left(\frac{159.15 \angle - 90^{\circ}}{100 - j159.15}\right) * 10 \angle 0^{\circ} = 8.36 \angle - 32.14^{\circ}$$

Voltaje Vrms

$$\begin{aligned} V_{rms} &= 0.707 V p \\ V_{rms} &= 0.707 (10) = 7.07 V \end{aligned}$$

Divisor de voltaje

$$V_{pc} = \left(\frac{159.15 \angle - 90^{\circ}}{100 - j159.15}\right) * 7.07 \angle 0^{\circ} = 6 \angle - 32.14^{\circ}$$

$$I = \frac{V}{Z} = \frac{7.07 \angle 0^{\circ}}{100 - j159.15} = 37.6 \angle 57.87^{\circ} mA$$

Para la frecuencia de 100Hz

Reactancia capacitiva

$$X_c = \frac{1}{2\pi fC} = \frac{1}{2\pi (100Hz)(20\mu F)} = 79.58\Omega$$

Impedancia total

$$Z_T = 100 - j79.58$$

Forma polar 127.80∠ - 38.51°

Voltaje pico

Divisor de voltaje

$$V_{pc} = \left(\frac{79.58 \angle - 90^{\circ}}{100 - j79.58}\right) * 10 \angle 0^{\circ} = 6.23 \angle - 51.49^{\circ}$$

Voltaje Vrms

$$V_{rms} = 0.707Vp$$

 $V_{rms} = 0.707(10) = 7.07V$

Divisor de voltaje

$$V_{pc} = \left(\frac{79.58 \angle - 90^{\circ}}{100 - j79.58}\right) * 7.07 \angle 0^{\circ} = 4.40 \angle - 51.49^{\circ}$$

$$I = \frac{V}{Z} = \frac{7.07 \angle 0^{\circ}}{100 - j79.58} = 55.3 \angle 38.51^{\circ} mA$$

Para la frecuencia de 500Hz

Reactancia capacitiva

$$C_T = 10 + 10 = 20\mu F$$

$$X_c = \frac{1}{2\pi f C} = \frac{1}{2\pi (500Hz)(20\mu F)} = 15.91\Omega$$

Impedancia total

$$Z_T = 100 - j15.91$$

Forma polar 101.26∠ — 9.03° Voltaje pico Divisor de voltaje

$$V_{pc} = \left(\frac{15.91 \angle - 90^{\circ}}{100 - j15.91}\right) * 10 \angle 0^{\circ} = 1.57 \angle - 80.96^{\circ}$$

Voltaje Vrms

$$V_{rms} = 0.707Vp$$

 $V_{rms} = 0.707(10) = 7.07V$

Divisor de voltaje

$$V_{pc} = \left(\frac{15.91 \angle - 90^{\circ}}{100 - j15.91}\right) * 7.07 \angle 0^{\circ} = 1.10 \angle - 80.96^{\circ}$$

$$I = \frac{V}{Z} = \frac{7.07 \angle 0^{\circ}}{100 - j15.91} = 69.8 \angle 9.03^{\circ} mA$$

Frecuencia 1000 Reactancia capacitiva

$$X_c = \frac{1}{2\pi fC} = \frac{1}{2\pi (1000 Hz)(20\mu F)} = 7.96\Omega$$

Impedancia total

$$Z_T = 100 - j7.96$$

Forma polar $100.32 \angle -4.55^{\circ}$

Voltaje pico Divisor de voltaje

$$V_{pC} = \left(\frac{7.96\angle - 90^{\circ}}{100 - j7.96}\right) * 10\angle 0^{\circ} = 0.79\angle - 85.45^{\circ}$$

Voltaje Vrms

$$V_{rms} = 0.707Vp$$

 $V_{rms} = 0.707(10) = 7.07V$

Divisor de voltaje

$$V_{pc} = \left(\frac{7.96 \angle - 90^{\circ}}{100 - j7.96}\right) * 7.07 \angle 0^{\circ} = 0.55 \angle - 85.45^{\circ}$$

$$I = \frac{V}{Z} = \frac{7.07 \angle 0^{\circ}}{100 - j7.96} = 70.4 \angle 4.55^{\circ} mA$$

- 1.- Construya en el protoboar el circuito mostrado en la Figura 1.
 - a. Utilice el osciloscopio para observar el voltaje $V_{\rm O}$ variando la frecuencia entre los valores de 0, 10, 50, 100, 500, 1000 Hz. Anote los valores pico de las ondas observadas

Tabla1.1. Datos medidos con osciloscopio

Frecuencia (Hz)	Voltaje	Voltaje
1 1 ccuciicia (112)		Voltaje
	calculado	medido
	Calculado	medido

0	0	0
10	9.92	9.90
50	8.36	8.35
100	6.23	6.15
500	1.57	1.55
1000	0.7	0.775

b. Utilice un multímetro para medir el voltaje $V_{\rm O}$ variando la frecuencia entre los valoresde 0, 10, 50, 100, 500, 1000 Hz. Anote los resultados.

Tabla1.1. Datos medidos con multímetro

Frecuencia (Hz)	Voltaje calculado(V)	Voltaje
	calculado(V)	medido
0	0	0
10	7.01	7.02
50	6	6
100	4.40	4.38
500	1.10	1.10
1000	0.55	0.55

c. Utilice un multímetro para medir la corriente que atraviesa la resistencia variando lafrecuencia entre los valores 0, 10, 50, 100, 500, 1000 *Hz*. Anote los resultados.

Tabla1.1. Datos de la corriente en el circuito figura 1

Frecuencia	Corriente	Corriente
(Hz)	calculada(mA)	medida (mA)
0	0	0
10	8.8	8.8
50	37.6	37.7
100	55.3	55.4
500	69.8	69.8
1000	70.4	70.5

INDUCTOR

Figura 2.

Inductancia en paralelo

$$L_T = \frac{(100x10^{-3})(100x10^{-3})}{100x10^{-3} + 100x10^{-3}} = 0.05H$$

$$X_l = 2\pi f L = 2\pi (10)(0.05) = 3.14\Omega$$

Impedancia total

$$Z_T = 100 + j3.14$$

Forma polar 100.05∠1.79° Voltaje pico

Divisor de voltaje

$$V_{pc} = \left(\frac{3.14 \angle 90^{\circ}}{100 + j3.14}\right) * 10 \angle 0^{\circ} = 0.31 \angle 89.97^{\circ}$$

Voltaje Vrms

$$V_{rms} = 0.707Vp$$

 $V_{rms} = 0.707(10) = 7.07V$

Divisor de voltaje

$$V_{pc} = \left(\frac{3.14 \angle 90^{\circ}}{100 + j3.14}\right) * 7.07 \angle 0^{\circ} = 0.22 \angle 89.97^{\circ}$$

$$I = \frac{V}{Z} = \frac{7.07 \angle 0^{\circ}}{100 + j3.14} = 70.6 \angle - 1.79 mA$$

$$X_l = 2\pi f L = 2\pi (50)(0.05) = 15.71\Omega$$

Impedancia total

$$Z_T = 100 + j15.71$$

Forma polar 101.22∠8.93° Voltaje pico

Divisor de voltaje

$$V_{pc} = \left(\frac{15.71 \angle 90^{\circ}}{100 + j15.71}\right) * 10 \angle 0^{\circ} = 1.55 \angle 81.07^{\circ}$$

Voltaje Vrms

$$V_{rms} = 0.707Vp$$

 $V_{rms} = 0.707(10) = 7.07V$

Divisor de voltaje

$$V_{pc} = \left(\frac{15.71 \angle 90^{\circ}}{100 + j15.71}\right) * 7.07 \angle 0^{\circ} = 1.10 \angle 81.07^{\circ}$$

$$I = \frac{V}{Z} = \frac{7.07 \angle 0^{\circ}}{100 + j15.71} = 69.8 \angle - 8.93^{\circ} mA$$

$$X_l = 2\pi f L = 2\pi (100)(0.05) = 31.41\Omega$$

Impedancia total

$$Z_T = 100 + j31.41$$

Forma polar 104.82∠17.44° Voltaje pico Divisor de voltaje

$$V_{pC} = \left(\frac{31.41 \angle 90^{\circ}}{100 + j31.41}\right) * 10 \angle 0^{\circ} = 3 \angle 72.56^{\circ}$$

Voltaje Vrms

$$V_{rms} = 0.707Vp$$

 $V_{rms} = 0.707(10) = 7.07V$

Divisor de voltaje

$$V_{pc} = \left(\frac{31.41 \angle 90^{\circ}}{100 + j31.41}\right) * 7.07 \angle 0^{\circ} = 2.12 \angle 72.56^{\circ}$$

$$I = \frac{V}{Z} = \frac{7.07 \angle 0^{\circ}}{100 + j31.41} = 67.44 \angle - 17.44^{\circ} mA$$

$$X_l = 2\pi f L = 2\pi (500)(0.05) = 157.1\Omega$$

Impedancia total

$$Z_T = 100 + j157.1$$

Forma polar 186.23∠57.52° Voltaje pico

Divisor de voltaje

$$V_{pc} = \left(\frac{157.1 \angle 90^{\circ}}{100 + j157.1}\right) * 10 \angle 0^{\circ} = 8.43 \angle 32.34^{\circ}V$$

Voltaje Vrms

$$V_{rms} = 0.707Vp$$

 $V_{rms} = 0.707(10) = 7.07V$

Divisor de voltaje

$$V_{pc} = \left(\frac{157.1 \angle 90^{\circ}}{100 + j157.1}\right) * 7.07 \angle 0^{\circ} = 5.96 \angle 32.34^{\circ}V$$

$$I = \frac{V}{Z} = \frac{7.07 \angle 0^{\circ}}{100 + j157.1} = 38 \angle -57.52mA$$

$$X_l = 2\pi f L = 2\pi (1000)(0.05) = 314.1\Omega$$

Impedancia total

$$Z_T = 100 + j314.1$$

Forma polar 331.13∠72.34° Voltaje pico Divisor de voltaje

$$V_{pc} = \left(\frac{314.1 \angle 90^{\circ}}{100 + j314.1}\right) * 10 \angle 0^{\circ} = 9.48 \angle 17.65^{\circ}$$

Voltaje Vrms

$$V_{rms} = 0.707Vp$$

 $V_{rms} = 0.707(10) = 7.07V$

Divisor de voltaje

$$V_{pc} = \left(\frac{314.1 \angle 90^{\circ}}{100 + j314.1}\right) * 7.07 \angle 0^{\circ} = 6.70 \angle 17.65^{\circ}$$

$$I = \frac{V}{Z} = \frac{7.07 \angle 0^{\circ}}{100 + j314.1} = 21.3 \angle -72.34^{\circ} mA$$

a. Utilice el osciloscopio para observar el voltaje $V_{\rm O}$ variando la frecuencia entre los valores de 0, 10, 50, 100, 500, 1000 Hz. Anote los valores pico de las ondas observadas

Tabla1.1. Datos medidos con osciloscopio

Frecuencia (Hz)	Voltaje calculado	Voltaje medido
	calculado	medido
0	0	0
10	0.22	0.23
50	1.55	1.56
100	3	3
500	8.47	8.4
1000	9.48	9.50

b. Utilice un multímetro para medir el voltaje $V_{\rm O}$ variando la frecuencia entre los valoresde 0, 10, 50, 100, 500, 1000 Hz. Anote los resultados.

Tabla1.1. Datos medidos con multímetro

Frecuencia (Hz)	Voltaje calculado(V)	Voltaje medido
	calculado(V)	medido
0	0	0
10	0.22	0.23
50	1.10	1.11
100	2.12	2.14
500	5.96	5.98
1000	6.70	6.74

c. Utilice un multímetro para medir la corriente que atraviesa la resistencia variando la frecuencia entre los valores 0, 10, 50, 100, 500, 1000 *Hz*. Anote los resultados.

Tabla1.1. Datos de la corriente en el circuito figura 1

Tuoiai.i. Butos de la comiente en el encano ligura i		
Frecuencia	Corriente	Corriente

(Hz)	calculada(mA)	medida (mA)
0	0	0
10	70.6	70.4
50	69.8	69.9
100	67.44	67.5
500	38	37.6
1000	21.3	21.2