CIS506 Mid-term exam, Spring 2012

Multiple Choice Questions (1pt each unless noted otherwise)

Notes

*Answer all questions. Unless stated otherwise, select a single **best** answer to each question.

*The following three algorithms in your lecture notes are given in the Appendix for your reference.

Perceptron Algorithm

Halving Algorithm

Weighted Majority Algorithm

*There are thirty questions in total

1. Consider the following book ratings:

Name\Title	The Hobbit	The Bourne Identity	The Silmarillion
Wayne Rooney	2	4.5	1.5
Federer	3.5	3.2	5
Foo Kok Keong	2.5	5	?

Based on these ratings, what would be the predicted rating for Foo Kok Keong, for "The Silmarillion", using first 1-NN then using the weighted averaging technique?

(use the Cosine similarity function and the user-based approach)

- a) 1.5,3.2
- b) 1.5, 3.7
- c) 5,3.2
- d) 5, 3.7
- e) None of the above
- 2. What if an item-based approach was taken?
 - a) 2.5,4
 - b) 2.5,3.6
 - c) 5,4
 - d) 5.3.6
 - e) None of the above
- 3. It is also possible to formulate the prediction as a matrix factorization problem. Where the problem is to decompose the ratings matrix *R* into the product of two smaller matrices:

 $R \approx PQ$

(If R is $n \times m$, then P and Q are $n \times k$ and $k \times m$ respectively)

For a small data set, we can do this manually as follows: First, set k=2. Next, to reduce the degrees of freedom, set P to be the first two columns of R.

In this way, the problem then reduces to finding Q, which can be tackled as follows:

$$\begin{bmatrix} 2 & 4.5 & 1.5 \\ 3.5 & 3.2 & 5 \\ 2.5 & 5 & ? \end{bmatrix} = \begin{bmatrix} 2 & 4.5 \\ 3.5 & 3.2 \\ 2.5 & 5 \end{bmatrix} \times \begin{bmatrix} 1 & 0 & q_1 \\ 0 & 1 & q_2 \end{bmatrix}$$

In this case, suggest appropriate values of q_1 and q_2 and subsequently, what is the predicted rating for "Foo Kok Keong" and "The Silmarillion"?

- a) 0.5,1e.9,3.2
- b) -0.5,1.9,2.2
- c) 1.9,0.5,3.2
- d) 1.9,0.5,2.2
- e) 1.9,-0.5,2.2
- 4. In the context of the previous question, which of the following statements about *k* DO NOT apply?
 - a) It controls the number of degrees of freedom of the subsequent optimization
 - b) It is related with the intrinsic dimensionality of the column space of *R*
 - c) It should ideally be a lot smaller than n or m.
 - d) It's value depends on whether a user or item-based approach is adopted.
 - e) By setting a smaller value of k, we can ensure that matrices P and O are not sparse.
- 5. The following set of transactions were obtained from a supermarket's database:

{chips, salsa, popcorn}

{salsa, popcorn, cheese}

{chips, salsa, cheese}

{cheese, pizza-base, baguettes}

{salsa, cheese, pizza-base}

{cheese, sausages, baguettes}

Assuming a confidence level of $\geq 80\%$, which of the following is a valid association rule:

- a) pizza-base → cheese
- b) cheese → chips
- c) chips → popcorn
- d) salsa → popcorn
- e) salsa → chips

- 6. Which of the following statements about association rule mining is NOT valid:
 - a) Meeting the confidence threshold implies that the support threshold was met
 - b) Meeting the confidence threshold helps to establish causality.
 - c) Having a support threshold ensures only commonly encountered instances can form rules
 - d) Having a support threshold helps to ensure that rules are generalizable
 - e) Meeting the support threshold does not guarantee that an association is a valid rule.
- 7. The Expectation-Maximization algorithm is:
 - a) A form of reinforcement learning
 - b) A form of supervised learning
 - c) A method for performing maximum likelihood estimation
 - d) A method for performing maximum a-posteriori estimation
 - e) None of the above
- 8. The "Expectation" in the EM-algorithm refers to the expected value of:
 - a) The value of the parameters
 - b) The value of the hidden data
 - c) The complete data log likelihood
 - d) The observed data log likelihood
 - e) The probability of the latent variables

The following scenario applies to Q9-Q12

"There are two varieties of apples. In variant one, the weight is distributed according to a normal distribution, while in variant two, the weight is distributed according to a Binomial distribution \rightarrow so, when the tree produces an apple, it literally pops into existence, and is immediately at weight w_1 or w_2 , (yes, these are very strange apples, from the planet Qo'nos - pronounced "kronos")

The following probability distribution captures the situation above:

$$p(w) \!=\! \! \left[\frac{1}{\sqrt{2\pi}\sigma} \exp\!\left[\frac{-(w\!-\!\mu)^2}{\left(2\sigma^2\right)} \right] \right] \! p(z\!=\!1) + \! \left[\delta\!\left(w\!-\!w_1\right) p + \! \delta\!\left(w\!-\!w_2\right) \! (1-p) \right] p(z\!=\!2)$$

w - weight of apple; μ,σ - mean and std of the gaussian; p - the probability that w=w₁ in the Bernoulli case; z - variant index.

Assume that $\mu=5$, $\sigma=2$, $w_1=3$ and $w_2=6$, p=0.2, and p(z=1)=p(z=2)=0.5."

- 9. What is the probability of w=6?
 - a) 0.19
 - b) 0.29

- c) 0.35
- d) 0.49
- e) 0.55
- 10. What is the probability of variant 2 given the observed data mentioned in question 9?
 - a) 0.52
 - b) 0.62
 - c) 0.69
 - d) 0.75
 - e) 0.82
- 11. Three apples are collected, and their weights are {3,5,6}. During the M-step, solving which of the following equations provides the update term for *p*?

a)
$$\frac{p(z=2|w=3)}{p} + \frac{p(z=2|w=5)}{p} - \frac{p(z=2|w=6)}{1-p} = 0$$

b)
$$\frac{p(z=2|w=3)}{p} - \frac{p(z=2|w=5)}{1-p} - \frac{p(z=2|w=6)}{1-p} = 0$$

c)
$$\frac{p(z=2|w=3)}{p} - \frac{p(z=2|w=6)}{1-p} = 0$$

$$\frac{p(z=1|w=3)}{p} - \frac{p(z=2|w=6)}{1-p} = 0$$

$$\frac{p(z=1|w=3)}{p} - \frac{p(z=1|w=6)}{1-p} = 0$$

- 12. If instead, the weights were $\{7,8,9\}$, what would the next M-step updated value of μ be?
 - a) 7
 - b) 7.5
 - c) 8
 - d) 8.5
 - e) 9

Q13-14

The following expression holds true for all forms of Q(z), the "variational distribution":

$$\log \sum_{z} Q(z) \frac{p(x,z)}{Q(z)} \ge \sum_{z} Q(z) \log \frac{p(x,z)}{Q(z)} \cdots \cdots (1)$$

- 13. In the context of the EM-algorithm, this is an important property because:
 - a) Q(z) captures the confidence we have in the likelihood

- b) Q(z) helps to determine the uncertainty in the likelihood
- c) The LHS of the equation is easily differentiable
- d) The RHS of the equation is easily differentiable
- e) None of the above
- 14. In theory, Q(z) could potentially be any valid distribution. In practice, however, Q(z) is always set to $Q^*(z)$ a particular distribution to ensure the fastest possible convergence of the EM-algorithm. The idea is to

ensure that
$$\frac{p(\mathbf{x},\mathbf{z})}{Q(\mathbf{z})} = p(\mathbf{x})$$
 . Why is this?

- a) We are only interested in x, the observed variable.
- b) EM is a maximum-likelihood estimation algorithm, maximizing p(x) (i.e. $p(x|\theta)$) achieves this.
- c) p(x) is constant w.r.t. z, which means that in (1) the RHS=LHS
- d) This can help to overcome local minima issues
- e) None of the above
- 15. Which of the following statements about mixture models is false?
 - a) They allow complex probability distributions to be more intuitively modelled
 - b) They involve the combination of 2 more distributions
 - c) They can be formulated as a latent variable problem
 - d) Directly optimizing the likelihood functions of mixture models is often very difficult
 - e) Mixture models generally only occur in 1-D or low dimensional spaces

... Continued on following page ...

- 16. Which of the following statements is **false**?
 - a. A data vector with *d* dimensions can be represented as a data point in *d*-dimensional space.
 - b. In a d-dimensional space, if a set of given data points are linearly separable, there exists at least one (d-1)-dimensional decision hyperplane to separate those data points.
 - c. A (d-1)-dimensional decision hyperplane can be defined by a d-dimensional parameter vector perpendicular to it and a scalar offset value from the origin.
 - d. The magnitude (norm) of a vector must be always non-negative.
 - e. None of the above.
- 17. In the perceptron algorithm (without offset), after certain number of updates, the parameter vector $\underline{\theta}$ is now [1.0, 2.0]. Then, the parameter vector $\underline{\theta}$ is updated for a data point $\underline{x}_i = [2.0, 1.0]$ whose label $y_i = -1$. What is the new value of $\underline{\theta}$?
 - a. [3.0, 3.0]
 - b. [-1.0, 1.0]
 - c. [-1.0, -2.0]
 - d. [-2.0, -1.0]
 - e. None of the above.
- 18. Which of the following about the perceptron algorithm is **false**?
 - a. The algorithm will always converge if the given data points are linearly separable.
 - b. The number of updates to the parameter vector $\underline{\theta}$ cannot exceed R^2 / γ_g^2 where R is the radius of the minimum bounding sphere of all data points and γ_g is geometric margin (i.e., the distance between the decision boundary and the nearest data point).
 - c. The algorithm can always guarantee to obtain the maximum geometric margin γ_g .
 - d. The number of updates to the parameter vector $\underline{\theta}$ can sometimes be more than the number of given data points.
 - e. None of the above.
- 19. What is the radius of the minimum bounding sphere (centered at the origin) for the data set composed of the following 4 data points?

$$\underline{x}_1 = [2.0, 1.0]$$

 $\underline{x}_2 = [-2.0, -2.0]$
 $\underline{x}_3 = [-2.0, 1.0]$
 $\underline{x}_4 = [2.0, -1.0]$

- a. 5.0
- b. 8.0
- c. 2.828
- d. 2.236
- e. None of the above.

- 20. Suppose you have a data point $\underline{x} = [-1.0, -2.0]$ with its label y = -1. After running the perceptron algorithm (without offset) on a set of given data points including \underline{x} , you have the final parameter vector $\underline{\theta}^* = [3.0, 4.0]$. What is the shortest distance between \underline{x} and the decision boundary defined by $\underline{\theta}^*$?
 - a. 2.2
 - b. -2.2
 - c. 0.4545
 - d. -0.4545
 - e. None of the above.
- 21. If \underline{a} and \underline{b} are two data points of dimension (d > 1) and $K_1(\underline{a}, \underline{b})$ and $K_2(\underline{a}, \underline{b})$ are two valid kernel functions, which of the following is NOT a valid kernel function?
 - a. $2K_1(\underline{a},\underline{b})$
 - b. $K_1(\underline{a}, \underline{b}) + (K_2(\underline{a}, \underline{b}))^2$
 - c. $\underline{a}^2 K_1(\underline{a}, \underline{b}) \underline{b}^2$
 - d. $\underline{a} K_2(\underline{a}, \underline{b}) \underline{b}$
 - e. None of the above.
- 22. Suppose the number of vectors (data points) in a data set is 10 and the dimensionality of each vector is 2. Suppose we deploy an instance of SVM algorithm $\mathcal A$ on that data set and found that the number of support vectors is 4. What is the maximum possible error rate if we conduct a "ten-fold cross validation" on that data set using the same algorithm $\mathcal A$?
 - a. 0.8
 - b. 0.889
 - c. 0.444
 - d. 0.4
 - e. None of the above.

23. If we construct a linear SVM (with an offset but without slacks) on the following 6 data points (vectors), what are the most likely ones to become the "support vectors"?

$$\underline{x}_1 = [2, 1],$$
 $y_1 = +1$
 $\underline{x}_2 = [1, 2],$ $y_2 = +1$
 $\underline{x}_3 = [3, 2],$ $y_3 = +1$
 $\underline{x}_4 = [2, 3],$ $y_4 = -1$
 $\underline{x}_5 = [1, 4],$ $y_5 = -1$
 $\underline{x}_6 = [3, 4],$ $y_6 = -1$

- a. $\underline{X}_1, \underline{X}_2, \underline{X}_3, \underline{X}_4, \underline{X}_5, \underline{X}_6$
- b. $\underline{x}_2, \underline{x}_3, \underline{x}_4$
- C. \underline{X}_1 , \underline{X}_2 , \underline{X}_3
- d. $\underline{x}_4, \underline{x}_5, \underline{x}_6$
- e. None of the above.
- 24. Regarding a support vector machine, which of the following is false?
 - a. The objective of the primal SVM is to minimize one half the square of the norm of the parameter vector ($\underline{\theta}$).
 - b. The purpose of introducing an offset θ_0 is to obtain a wider margin if possible.
 - c. The quadratic programming problem in SVM is one with quadratic objective and quadratic constraints.
 - d. If the training data points in d dimensional space are not linearly separable, we can try to map those data points into d' dimensional feature space (where d' > d) in which the points in the new feature space may become linearly separable.
 - e. None of the above.
- 25. Regarding a support vector machine, which of the following is **false**?
 - a. The advantage of SVM is good generalization because the solution is sparse (i.e. the number of support vectors are much smaller than the number of training samples).
 - b. We can readily use kernel functions in the primal formulation of SVM.
 - c. The dual SVM formulation is a quadratic programming problem with simple box constraints.
 - d. After solving the dual SVM formulation, only those data points (vectors) whose resultant Lagrange multipliers (α_i^*) are greater than 0 are regarded as the support vectors.
 - e. None of the above.

- 26. Which of the following statement about a kernel function is **false**?
 - a. The purpose of a kernel function $K(\underline{x}_1, \underline{x}_2)$ is to find the cross product of the feature vectors $\underline{\phi}(\underline{x}_1)$ and $\underline{\phi}(\underline{x}_2)$, where \underline{x}_1 and \underline{x}_2 are the input vectors.
 - b. For a non-linear kernel function, is not really necessary to explicitly convert the input vectors \underline{x}_1 and \underline{x}_2 into their respective feature vectors $\underline{\phi}(\underline{x}_1)$ and $\underline{\phi}(\underline{x}_2)$ in a higher dimensional space in order to compute the output from a kernel function $K(\underline{x}_1,\underline{x}_2)$.
 - c. Any distinct set of training points, regardless of their labels, are separable using the Radial Basis kernel function.
 - d. It is also possible to define valid kernel functions to measure pairwise similarities of complex objects like strings, trees, and graphs.
 - e. None of the above.
- 27. For a linear classifier in two dimensional space (where dimension #1 is denoted as X_1 , and dimension #2 is denoted as X_2), the equation of the decision boundary is $X_1 X_2 = 0$. If the coordinates of the nearest point to the decision boundary is $[X_1=2.0, X_2=1.0]$, what is the geometric margin (γ_g) of the classifier?
 - a. 1
 - b. $\sqrt{2}$
 - c. $\sqrt{2}$
 - d. 2
 - e. None of the above.
- 28. For the Halving Algorithm, if $Q^{(t)} = \{A, H, I, K, L, M, Z\}$, $Q_{+}^{(t)} = \{A, I, L, Z\}$, $Q_{-}^{(t)} = \{H, K, M\}$, and the actual label $y^{(t)} = -1$, what will be $Q^{(t+1)}$?
 - a. {A, H, I, K, L, M, Z}
 - b. {A, I, L, Z}
 - c. {H, K, M}
 - d. {}
 - e. None of the above.
- 29. For the Halving Algorithm, if there are 20 experts and at least one of them is a "super expert" who always makes correct predictions, what is the maximum number of prediction error that the algorithm can commit?
 - a. 4
 - b. 5
 - c. 2
 - d. 20
 - e. None of the above.

- 30. For the Weighted Majority Algorithm, assume that there are 4 experts and the penalty parameter β =0.5. If $w^{(t)}$ = {1.0, 1.0, 0.5, 0.25}, $q_+^{(t)}$ = 2.0, $q_-^{(t)}$ = 0.75, and the actual label $y^{(t)}$ = -1, what will be $w^{(t+1)}$?
 - a. {1.0, 1.0, 0.5, 0.25}
 - b. {1.0, 1.0, 0.25, 0.125}
 - c. $\{0.5, 0.5, 0.5, 0.25\}$
 - d. {0.5, 0.5, 0.25, 0.125}
 - e. None of the above.

Appendix

Perceptron algorithm

Initialize: $\underline{\theta} = 0$

Repeat until convergence:

for
$$t = 1, \ldots, n$$

if
$$y_t(\underline{\theta} \cdot \underline{x}_t) \leq 0$$
 (mistake)

$$\underline{\theta} \leftarrow \underline{\theta} + y_t \underline{x}_t$$

The Halving Algorithm

- ▶ Initialization: $Q^{(1)} = \{1, 2, 3, \dots d\}$
- $\blacktriangleright \ \text{For} \ t=1\dots T$
 - 1. I receive some input $\underline{x}^{(t)}$
 - 2. Define

$$Q_{+}^{(t)} = \{ j \in Q^{(t)} : x_{i}^{(t)} = +1 \}$$

$$Q_{-}^{(t)} = \{ j \in Q^{(t)} : x_{i}^{(t)} = -1 \}$$

If
$$|\mathcal{Q}_+^{(t)}| > |\mathcal{Q}_-^{(t)}|$$
 predict $\hat{y}^{(t)} = +1$, else $\hat{y}^{(t)} = -1$

- 3. I receive the correct label $y^{(t)} \in \{-1,+1\}$. If $\hat{y}^{(t)} \neq y^{(t)}$ I have made an error.
- 4. Update: if $y^{(t)}=+1$ then $\mathcal{Q}^{(t+1)}=\mathcal{Q}_+^{(t)}$, else $\mathcal{Q}^{(t+1)}=\mathcal{Q}_-^{(t)}$.

The Weighted Majority Algorithm

- ▶ Parameter: $0 < \beta < 1$
- ▶ Initialization: set $w_j = 1$ for $j = 1 \dots d$.
- $\blacktriangleright \ \mathsf{For} \ t = 1 \dots T$
 - 1. I receive some input $\underline{x}^{(t)}$
 - 2. Define

$$q_{+}^{(t)} = \sum_{j:x_{j}^{(t)}=+1} w_{j}; \quad q_{-}^{(t)} = \sum_{j:x_{j}^{(t)}=-1} w_{j}$$

If
$$q_+^{(t)} > q_-^{(t)}$$
 predict $\hat{y}^{(t)} = +1$, else $\hat{y}^{(t)} = -1$

- 3. I receive the correct label $y^{(t)} \in \{-1, +1\}$. If $\hat{y}^{(t)} \neq y^{(t)}$ I have made an error.
- 4. Update: for all j such that $x_j^{(t)} \neq y^{(t)}$, set $w_j = w_j \times \beta$