Integer points on a family of elliptic curves

Andrej Dujella (Zagreb) and Attila Pethő*(Debrecen)

1 Introduction

Set of m positive integers is called a Diophantine m-tuple if the product of its any two distinct elements increased by 1 is a perfect square. First example of a Diophantine quadruple is found by Fermat, and it was $\{1,3,8,120\}$ (see [6, p. 517]). In 1969, Baker and Davenport [2] proved that if d is a positive integer such that $\{1, 3, 8, d\}$ is a Diophantine quadruple, then d has to be 120.

Recently, in [9], we generalized this result to all Diophantine triples of the form $\{1,3,c\}$. The fact that $\{1,3,c\}$ is a Diophantine triple implies that $c=c_k$ for some positive integer k, where the sequence (c_k) is given by

$$c_0 = 0$$
, $c_1 = 8$, $c_{k+2} = 14c_{k+1} - c_k + 8$, $k \ge 0$.

Let $c_k + 1 = s_k^2$, $3c_k + 1 = t_k^2$. It is easy to check that

$$c_{k\pm 1}c_k + 1 = (2c_k \pm s_k t_k)^2.$$

The main result of [9] is the following theorem.

THEOREM 1 Let k be a positive integer. If d is an integer which satisfies the system

$$d+1 = \Box, \quad 3d+1 = \Box, \quad c_k d+1 = \Box,$$
 (1)

then $d \in \{0, c_{k-1}, c_{k+1}\}.$

Eliminating d from the system (1) we obtain the following system of Pellian equations

$$x_3^2 - c_k x_1^2 = 1 - c_k$$

$$3x_3^2 - c_k x_2^2 = 3 - c_k.$$
(2)

$$3x_3^2 - c_k x_2^2 = 3 - c_k. (3)$$

We used the theory of Pellian equations and some congruence relations to reformulate the system (2) and (3) to four equations of the form $v_m = w_n$, where (v_m) and (w_n) are

¹Research partially supported by Hungarian National Foundation for Scientific Research Grants No. 16791 and 16975

binary recursive sequences. After that, a comparison of the upper bound for solutions obtained from the theorem of Baker and Wüstholz [3] with the lower bound obtained from the congruence condition modulo c_k^2 finishes the proof for $k \geq 76$. The statement for $1 \leq k \leq 75$ is proved by a version of the reduction procedure due to Baker and Davenport [2].

Similar results are proved in [7] and [8] for Diophantine triples of the form $\{k-1, k+1, 4k\}$ and $\{F_{2k}, F_{2k+2}, F_{2k+4}\}$.

It is clear that every solution of the system (1) induce an integer point on the elliptic curve

$$E_k: y^2 = (x+1)(3x+1)(c_k x + 1). (4)$$

The purpose of the present paper is to prove that the converse of this statement is true provided the rank of $E_k(\mathbf{Q})$ is equal 2. As we will see in Proposition 2, for all $k \geq 2$ the rank of $E_k(\mathbf{Q})$ is always ≥ 2 . Our main result is

THEOREM 2 Let k be a positive integer. If rank $(E_k(\mathbf{Q})) = 2$ or $k \leq 20$, $k \neq 19$, then all integer points on E_k are given by

$$(x,y) \in \{(-1,0), (0,\pm 1), (c_{k-1}, \pm s_{k-1}t_{k-1}(2c_k - s_kt_k)), (c_{k+1}, \pm s_{k+1}t_{k+1}(2c_k + s_kt_k)).$$

2 Torsion group

Under the substitution $x \leftrightarrow 3c_k x$, $y \leftrightarrow 3c_k y$ the curve E_k transforms into the following Weierstraß form

$$E'_k: y^2 = x^3 + (4c_k + 3)x^2 + (3c_k^2 + 12c_k)x + 9c_k^2$$

= $(x + 3c_k)(x + c_k)(x + 3)$.

There are three rational points on E'_k of order 2, namely

$$A_k = (-3c_k, 0), \quad B_k = (-c_k, 0), \quad C_k = (-3, 0),$$

and also other two, more or less obvious, rational points on E'_k , namely

$$P_k = (0, 3c_k), \quad R_k = (s_k t_k + 2s_k + 2t_k + 1, (s_k + t_k)(s_k + 2)(t_k + 2)).$$

Note that if k = 1, then $R_1 = C_1 - P_1$.

Lemma 1
$$E'_k(\mathbf{Q})_{\text{tors}} \simeq \mathbf{Z}/2\mathbf{Z} \times \mathbf{Z}/2\mathbf{Z}$$

Proof. From [14, Main Theorem 1] it follows immediately that $E'_k(\mathbf{Q})_{\text{tors}} \simeq \mathbf{Z}/2\mathbf{Z} \times \mathbf{Z}/2\mathbf{Z}$ or $E'_k(\mathbf{Q})_{\text{tors}} \simeq \mathbf{Z}/2\mathbf{Z} \times \mathbf{Z}/6\mathbf{Z}$, and the later is possible iff there exist integers α and β such that $\frac{\alpha}{\beta} \notin \{-2, -1, -\frac{1}{2}, 0, 1\}$ and

$$c_k - 3 = \alpha^4 + 2\alpha^3\beta$$
, $3c_k - 3 = 2\alpha\beta^3 + \beta^4$.

Now, we have

$$4c_k - 6 = (\alpha^2 + \alpha\beta + \beta^2)^2 - 3\alpha^2\beta^2.$$
 (5)

Since c_k is even, left side of (5) is $\equiv 2 \pmod{8}$. If α and β are both even then right side of (5) is $\equiv 0 \pmod{8}$, and if α and β are both odd then right side of (5) is $\equiv 6 \pmod{8}$, a contradiction. Hence, $E'_k(\mathbf{Q})_{\text{tors}} \simeq \mathbf{Z}/2\mathbf{Z} \times \mathbf{Z}/2\mathbf{Z}$.

3 The independence of P_k and R_k

In this section we will often use the following 2-descent Proposition (see [11, 4.1, p.37]).

PROPOSITION 1 Let P = (x', y') be a **Q**-rational point on E, an elliptic curve over **Q** given by

$$y^2 = (x - \alpha)(x - \beta)(x - \gamma),$$

where $\alpha, \beta, \gamma \in \mathbf{Q}$. Then there exists a \mathbf{Q} -rational point Q = (x, y) on E such that 2Q = P iff $x' - \alpha$, $x' - \beta$, $x' - \gamma$ are all \mathbf{Q} -rational squares.

Lemma 2
$$P_k, P_k + A_k, P_k + B_k, P_k + C_k \notin 2E'_k(\mathbf{Q})$$

Proof. We have:

$$P_k + A_k = (-c_k - 2, -2c_k + 2), \quad P_k + B_k = (-3c_k + 6, 6c_k - 18),$$

$$P_k + C_k = (c_k^2 - 4c_k, -c_k^3 + 4c_k^2 - 3c_k).$$

It follows immediately from Proposition 1 that $P_k, P_k + A_k, P_k + B_k \notin 2E'_k(\mathbf{Q})$. If $P_k + C_k \in 2E'_k(\mathbf{Q})$, then $c_k^2 - c_k = \square$, which is impossible.

Lemma 3
$$R_k, R_k + A_k, R_k + B_k, R_k + C_k \notin 2E'_k(\mathbf{Q})$$

Proof. We have:

$$R_k = (s_k t_k + 2s_k + 2t_k + 1, (t_k + s_k)(s_k + 2)(t_k + 2)),$$

$$R_k + A_k = (2s_k - 2t_k - s_k t_k + 1, (s_k - t_k)(s_k + 2)(t_k - 2)),$$

$$R_k + B_k = (2t_k - 2s_k - s_k t_k + 1, (t_k - s_k)(s_k - 2)(t_k + 2)),$$

$$R_k + C_k = (s_k t_k - 2s_k - 2t_k + 1, (t_k + s_k)(2 - s_k)(t_k - 2)).$$

Since $2s_k - 2t_k - s_k t_k + 4 = (s_k + 2)(2 - t_k) < 0$ and $2t_k - 2s_k - s_k t_k + 4 = (t_k + 2)(2 - s_k) < 0$, we have $R_k + A_k$, $R_k + B_k \notin 2E'_k(\mathbf{Q})$.

If $R_k \in 2E_k'(\mathbf{Q})$, then $(t_k + s_k)(t_k + 2) = \square$ and $(t_k + s_k)(s_k + 2) = \square$. Let $d = \gcd(t_k + s_k, t_k + 2, s_k + 2)$. Then d divides $(t_k + 2) + (s_k + 2) - (t_k + s_k) = 4$, and since s_k and t_k are odd, we conclude that d = 1. Hence, we have

$$t_k + s_k = \square, \quad t_k + 2 = \square, \quad s_k + 2 = \square.$$
 (6)

Consider the sequence $(t_k + s_k)_{k \in \mathbb{N}}$. It follows easily by induction that $t_k + s_k = 2a_{k+1}$, where

$$a_0 = 0, \quad a_1 = 1, \quad a_{k+2} = 4a_{k+1} - a_k, \quad k \ge 0.$$
 (7)

Thus, (6) implies $a_{k+1} = 2\square$, and this is impossible by theorem of Mignotte and Pethő [13] which says that $a_k = \square, 2\square, 3\square$ or $6\square$ implies $k \le 3$.

If $R_k + C_k \in 2E'_k(\mathbf{Q})$, then $(t_k + s_k)(t_k - 2) = \square$ and $(t_k + s_k)(s_k - 2) = \square$. This implies $t_k + s_k = \square$ and we obtain a contradiction as above.

LEMMA 4 If
$$k \geq 2$$
, then $R_k + P_k, R_k + P_k + A_k, R_k + P_k + B_k, R_k + P_k + C_k \notin 2E'_k(\mathbf{Q})$

Proof. As in the proof of Lemmas 2 and 3, we use Proposition 1.

If $R_k + P_k + A_k \in 2E'_k(\mathbf{Q})$ then $0 > c_k(s_k + 2)(s_k - t_k) = \square$, and if $R_k + P_k + B_k \in 2E'_k(\mathbf{Q})$ then $0 > c_k(s_k - 2)(s_k - t_k) = \square$. Hence, $R_k + P_k + A_k$, $R_k + P_k + B_k \notin 2E'_k(\mathbf{Q})$. If $R_k + P_k \in 2E'_k(\mathbf{Q})$ then

$$3c_k(t_k + s_k)(t_k + 2) = \square, \quad c_k(t_k + s_k)(s_k + 2) = \square, \quad 3(s_k + 2)(t_k + 2) = \square.$$
 (8)

Substituting $2c_k = (t_k + s_k)(t_k - s_k)$ in (8) we obtain

$$(t_k - s_k)(t_k + 2) = 6\square$$
, $(t_k - s_k)(s_k + 2) = 2\square$, $(s_k + 2)(t_k + 2) = 3\square$.

Let $d = \gcd(s_k + 2, t_k + 2)$. Then the relation $t_k^2 - 3s_k^2 = -2$ implies d|6. Since $t_k + 2$ is odd, we have $d \in \{1, 3\}$. Hence we obtain

$$t_k - s_k = 6\square \quad \text{or} \quad t_k - s_k = 2\square. \tag{9}$$

But $t_k - s_k = 2a_k$, where (a_k) is defined by (7). Thus (9) implies $a_k = \square$ or $3\square$. According to [13], this is possible only if k = 2. But $(s_2, t_2) = (11, 19)$ and $(s_2 + 2)(t_2 + 2) \neq 3\square$.

If
$$R_k + P_k + C_k \in 2E'_k(\mathbf{Q})$$
 then

$$3c_k(t_k+s_k)(t_k-2) = \square$$
, $c_k(t_k+s_k)(s_k-2) = \square$, $3(s_k-2)(t_k-2) = \square$.

Arguing as before, we obtain

$$(t_k - s_k)(t_k - 2) = 6\square$$
, $(t_k - s_k)(s_k - 2) = 2\square$, $(s_k - 2)(t_k - 2) = 3\square$,

and conclude that

$$t_k - s_k = 6\square \quad \text{or} \quad t_k - s_k = 2\square. \tag{10}$$

As we have already seen, it is possible only for $(s_2, t_2) = (11, 19)$, but then $(s_2-2)(t_2-2) \neq 3\Box$.

PROPOSITION 2 Points P_k and R_k generate a subgroup of rank 2 in $E'_k(\mathbf{Q})/E'_k(\mathbf{Q})_{tors}$.

Proof. We have to prove that $mP_k + nR_k \in E'_k(\mathbf{Q})_{\mathrm{tors}}, m, n \in \mathbf{Z}$, implies m = n = 0. Assume $mP_k + nR_k = T \in E'_k(\mathbf{Q})_{\mathrm{tors}} = \{\mathcal{O}, A_k, B_k, C_k\}$. If m and n are not both even, then $T \equiv P_k, R_k$ or $P_k + R_k \pmod{2E'_k(\mathbf{Q})}$, which is impossible by Lemmas 2, 3 and 4. Hence, m and n are even, say $m = 2m_1, n = 2n_1$, and since by Lemma 1 $A_k, B_k, C_k \notin 2E'_k(\mathbf{Q})$,

$$2m_1P_k + 2n_1P_k = \mathcal{O}.$$

Thus we obtain $m_1P_k + n_1R_k \in E_k'(\mathbf{Q})_{\text{tors}}$. Arguing as above, we obtain that m_1 and n_1 are even, and continuing this process we finally conclude that m = n = 0.

4 Proof of Theorem 2 (rank $(E_k(\mathbf{Q})) = 2$)

Let $E'_k(\mathbf{Q})/E'_k(\mathbf{Q})_{\text{tors}} = \langle U, V \rangle$ and $X \in E'_k(\mathbf{Q})$. Then there exist integers m, n and a torsion point T such that X = mU + nV + T. Also $P_k = m_PU + n_PV + T_P$, $R_k = m_RU + n_RV + T_R$. Let $\mathcal{U} = \{\mathcal{O}, U, V, U + V\}$. There exist $U_1, U_2 \in \mathcal{U}, T_1, T_2 \in E'_k(\mathbf{Q})_{\text{tors}}$ such that $P_k \equiv U_1 + T_1 \pmod{2E'_k(\mathbf{Q})}$, $R_k \equiv U_2 + T_2 \pmod{2E'_k(\mathbf{Q})}$. Let $U_3 \in \mathcal{U}$ such that $U_3 \equiv U_1 + U_2 \pmod{2E'_k(\mathbf{Q})}$. Then $P_k + R_k \equiv U_3 + (T_1 + T_2) \pmod{2E'_k(\mathbf{Q})}$. Now Lemmas 2, 3 and 4 imply that $U_1, U_2, U_3 \neq \mathcal{O}$ and accordingly $\{U_1, U_2, U_3\} = \{U, V, U + V\}$. Therefore $X \equiv X_1 \pmod{2E'_k(\mathbf{Q})}$, where

$$X_1 \in \mathcal{S} = \{ \mathcal{O}, A_k, B_k, C_k, P_k, P_k + A_k, P_k + B_k, P_k + C_k, R_k, R_k + A_k, R_k + B_k, R_k + C_k, R_k + P_k, R_k + P_k + A_k, R_k + P_k + B_k, R_k + P_k + C_k \}.$$

Let $\{a, b, c\} = \{3, c_k, 3c_k\}$. By [12, 4.6, p.89], the function $\varphi : E'_k(\mathbf{Q}) \to \mathbf{Q}^*/\mathbf{Q}^{*2}$ defined by

$$\varphi(X) = \begin{cases} (x+a)\mathbf{Q}^{*2} & \text{if } X = (x,y) \neq \mathcal{O}, (-a,0) \\ (b-a)(c-a)\mathbf{Q}^{*2} & \text{if } X = (-a,0) \\ \mathbf{Q}^{*2} & \text{if } X = \mathcal{O} \end{cases}$$

is a group homomorphism.

This fact and Theorem 1 imply that it is sufficient to prove that for all $X_1 \in \mathcal{S} \setminus P_k$, $X_1 = (3c_k u, 3c_k v)$, the system

$$x + 1 = \alpha \square, \quad 3x + 1 = \beta \square, \quad c_k x + 1 = \gamma \square \tag{11}$$

has no integer solution, where \square denotes a square of a rational number, and α, β, γ are defined by $u+1=\alpha$, $3u+1=\beta$, $c_ku+1=\gamma$ if all those numbers are $\neq 0$, and if e.g. u+1=0 then we choose $\alpha=\beta\gamma$ (so that $\alpha\beta\gamma=\square$). Note that for $X_1=P_k$ we obtain the system $x+1=\square$, $3x+1=\square$, $c_kx+1=\square$, which is completely solved in Theorem 1.

For $X_1 \in \{A_k, B_k, P_k + A_k, P_k + B_k, R_k + A_k, R_k + B_k, R_k + P_k + A_k, R_k + P_k + B_k\}$ exactly two of the numbers α, β, γ are negative and thus the system (11) has no integer solution.

The rest of the proof falls naturally into 7 parts. By a' we will denote the square free part of an integer a.

1)
$$X_1 = \mathcal{O}$$

We have

$$x + 1 = 3c_k \square, \quad 3x + 1 = c_k \square, \quad c_k x + 1 = 3\square.$$
 (12)

From second equation in (12) we see that $3 \not| c'_k$ and thus first and second equations imply that c'_k divides 3x+1 and x+1. Accordingly, $c'_k | 3(x+1) - (3x+1) = 2$ and we conclude that $c'_k = 1$ or 2. Hence,

$$c_k = \square$$
, or $c_k = 2\square$.

However, $c_k = s_k^2 - 1 = \square$ is obviously impossible, while $c_k = 2w^2$ leads to the system of Pell equations

$$s_k^2 - 2w^2 = 1$$
, $t_k^2 - 6w^2 = 1$.

This system is solved by Anglin [1], and the only positive solution is $(s_k, t_k, w) = (3, 5, 2)$ which corresponds to $c_k = c_1 = 8$, contradicting our assumption that $k \ge 2$. (Note that for $c_1 = 8$ there is also no solution because in this case first and third equations in (12) imply 3|7.)

2)
$$X_1 = C_k$$

We have

$$x+1=c_k(c_k-1)\square$$
, $3x+1=c_k(c_k-3)\square$, $c_kx+1=(c_k-1)(c_k-3)\square$.

If 3 $/c_k$ then, as in 1), we obtain $c'_k = 1$ or 2, and $c_k = \square$ or $2\square$, which is impossible. If $c_k = 3e_k$ then e'_k divides 3x + 1 and 3x + 3 and thus $e'_k = 1$ or 2. Hence,

$$c_k = 3\square$$
, or $c_k = 6\square$.

Relation $c_k = 3\square$ is impossible since it implies $t_k^2 - 1 = 9\square$, while $c_k = 6w^2$ leads to the system of Pell equations

$$s_k^2 - 6w^2 = 1, \quad t_k^2 - 18w^2 = 1$$

which has no positive solution according to [1].

3)
$$X_1 = P_k + C_k$$

We have

$$x+1=3(c_k-1)\square$$
, $3x+1=(c_k-3)\square$, $c_kx+1=3(c_k-1)(c_k-3)\square$.

Since $c_k = s_k^2 - 1$, we see that $c_k \not\equiv 1 \pmod 3$, and thus $x \equiv -1 \pmod 3$. From the second equation we have that $(c_k - 3)'$ is not divisible by 3, and then the third equation gives $c_k x + 1 \equiv 0 \pmod 3$. This implies $c_k \equiv 1 \pmod 3$, a contradiction.

4)
$$X_1 = R_k$$

We have

$$x + 1 = 6(t_k - s_k)(t_k + 2)\square$$
, $3x + 1 = 2(t_k - s_k)(s_k + 2)\square$, $c_k x + 1 = 3(s_k + 2)(t_k + 2)\square$.

From the relation $t_k^2 - 3s_k^2 = -2$ it follows that $gcd(t_k - s_k, s_k + 2) = gcd(t_k - s_k, t_k + 2) = 1$ or 3.

If $3 / t_k - s_k$ then $[2(t_k - s_k)]'$ divides x + 1 and 3x + 1, and thus $[2(t_k - s_k)]' = 1$ or 2. Accordingly,

$$t_k - s_k = 2\square$$
 or $t_k - s_k = \square$.

As we have already seen in the proof of Lemma 4, this implies

$$a_k = \square$$
 or $a_k = 2\square$,

and [13] implies again that k = 2. Now we obtain $120x + 1 = 91\Box$, which is impossible modulo 4.

If $t_k - s_k = 3z_k$ then $(2z_k)'$ divides x + 1 and 9x + 3. Hence $(2z_k)'$ divides 6, which implies $a_k = \square, 2\square, 3\square$ or $6\square$, and this is possible only if k = 2. But for k = 2, $t_k - s_k = 8 \not\equiv 0 \pmod{3}$.

5)
$$X_1 = R_k + C_k$$

We have

$$x + 1 = 6(t_k - s_k)(t_k - 2)\square$$
, $3x + 1 = 2(t_k - s_k)(s_k - 2)\square$, $c_k x + 1 = 3(s_k - 2)(t_k - 2)\square$.

This case is completely analogous to the case 4).

6)
$$X_1 = R_k + P_k$$

We have

$$x + 1 = (t_k + s_k)(t_k + 2)\square, \quad 3x + 1 = (t_k + s_k)(s_k + 2)\square,$$

$$c_k x + 1 = (s_k + 2)(t_k + 2)\square.$$

As in 4), we obtain that if 3 $/t_k + s_k$ then $(t_k + s_k)'$ divides 2, and if $t_k + s_k = 3z_k$ then z'_k divides 6. Hence, we have $a_{k+1} = \square, 2\square, 3\square$ or $6\square$, which is impossible for $k \ge 2$.

7)
$$X_1 = R_k + P_k + C_k$$

We have

$$x + 1 = (t_k + s_k)(t_k - 2)\square$$
, $3x + 1 = (t_k + s_k)(s_k - 2)\square$, $c_k x + 1 = (s_k - 2)(t_k - 2)\square$.

This case is completely analogous to the case 5).

REMARK 1 It is easy to check that rank $(E_1(\mathbf{Q})) = 1$, and from the proof of the first statement of Theorem 2 (parts 1), 2) and 3) it is clear that all integer points on E_1 are given by $(x, y) \in \{(-1, 0), (0, \pm 1), (120, \pm 6479)\}$. Hence Theorem 2 is true for k = 1.

REMARK 2 As coefficients of E_k grow exponentially, computation of the rank of E_k for large k is difficult. The following values of rank $(E_k(\mathbf{Q}))$ are computed using the programs SIMATH ([15]) and mwrank ([5]):

In the cases k = 6, 8, 10, the rank is computed assuming the Parity Conjecture. We also verified by SIMATH that for k = 3 and k = 4 (when rank $(E_k(\mathbf{Q})) > 2$) all integer points on E_k are given by the values from Theorem 2.

Remark 3 Let us mention that Bremner, Stroeker and Tzanakis [4] proved recently a similar result as the first statement of our Theorem 2 for the family of elliptic curves

$$C_k: y^2 = \frac{1}{3}x^3 + (k - \frac{1}{2})x^2 + (k^2 - k + \frac{1}{6})x,$$

under assumptions that rank $(C_k(\mathbf{Q})) = 1$ and that $C_k(\mathbf{Q})/C_k(\mathbf{Q})_{\text{tors}} = \langle (1,k) \rangle$.

5 Proof of Theorem 2 $(3 \le k \le 20)$

We pointed out in Remark 2 that the coefficients of E_k are growing very fast. Therefore, using SIMATH² we were able to compute the integer points of $E_k(\mathbf{Q})$ only for $k \leq 4$. However, the following elementary argument gives us the proof of the second statement of Theorem 2.

Notice the following relations

$$c_0 = 0, \quad c_1 = 8, \quad c_{k+2} = 14c_{k+1} - c_k + 8, \quad \text{if } k \ge 0,$$
 (13)

$$t_0 = 1, \quad t_1 = 5, \quad t_{k+2} = 4t_{k+1} - t_k, \quad \text{if } k \ge 0,$$
 (14)

$$s_0 = 1, \quad s_1 = 3, \quad s_{k+2} = 4s_{k+1} - s_k, \quad \text{if } k \ge 0,$$
 (15)

$$c_k + 1 = s_k^2 \implies c_k = (s_k + 1)(s_k - 1),$$
 (16)

$$3c_k + 1 = t_k^2 \implies 3c_k = (t_k + 1)(t_k - 1),$$
 (17)

$$3(c_k - 1) = (t_k + 2)(t_k - 2), (18)$$

$$c_k - 3 = (s_k + 2)(s_k - 2). (19)$$

²SIMATH is the only available computer algebra system which is capable to compute all integer points of the elliptic curve. There is implemented the algorithm of Gebel, Pethő and Zimmer [10].

We have $8|c_k$ for any $k \ge 0$ by (13). Hence s_k and t_k are odd. We have further 3 $(c_k - 1)$ by (16).

Assume that $(x, y) \in \mathbf{Z}^2$ is a solution of (4). Put $D_1 = (x+1, 3x+1)$, $D_2 = (x+1, c_k x+1)$ and $D_3 = (3x+1, c_k x+1)$. As $D_1 = (x+1, 3x+1) = (x+1, 2)$, we have $D_1 = 1$ if x+1 is odd, and $D_1 = 2$ if x+1 is even. We have further $D_2 = (x+1, c_k x+1) = (x+1, c_k -1)$ and $D_3 = (3x+1, c_k x+1) = (3x+1, c_k -3)$. Hence D_1, D_2 and D_3 are pairwise relatively prime.

Assume first $D_1 = 1$. Then there exist $x_1, x_2, x_3 \in \mathbf{Z}$ such that

$$x + 1 = D_2 x_1^2$$

$$3x + 1 = D_3 x_2^2$$

$$c_k x + 1 = D_2 D_3 x_3^2$$

Eliminating x we obtain the following system

$$3D_2x_1^2 - D_3x_2^2 = 2$$

$$c_kx_1^2 - D_3x_3^2 = \frac{c_k - 1}{D_2}.$$

Similarly, if $D_1 = 2$, then (4) implies

$$x + 1 = 2D_2x_1^2$$

$$3x + 1 = 2D_3x_2^2$$

$$c_k x + 1 = D_2D_3x_3^2,$$

from which we obtain

$$3D_2x_1^2 - D_3x_2^2 = 1$$

$$2c_kx_1^2 - D_3x_3^2 = \frac{c_k - 1}{D_2}.$$

Hence, to find all integer solutions of (4), it is enough to find all integer solutions of the systems of equations

$$d_1 x_1^2 - d_2 x_2^2 = j_1, (20)$$

$$d_3x_1^2 - d_2x_2^2 = j_2, (21)$$

where

- $d_1 = 3D_2$, D_2 is a divisor of $c_k 1 = (t_k + 2)(t_k 2)/3$,
- $d_2 = D_3$, D_3 is a divisor of $c_k 3 = (s_k + 2)(s_k 2)$, which is not divisible by 3,

•
$$(d_3, j_1, j_2) = (c_k, 2, \frac{c_k - 1}{D_2})$$
 or $(d_3, j_1, j_2) = (2c_k, 1, \frac{c_k - 1}{D_2})$.

Assume that the system (20) and (21) is solvable. Let p be an odd prime divisor of d_2 such that $\operatorname{ord}_p(d_2)$ is odd. Then (20) implies

$$d_1 x_1^2 \equiv j_1 \pmod{p},$$

hence

$$(d_1x_1)^2 \equiv j_1d_1 \pmod{p},$$

i.e. $\left(\frac{j_1d_1}{p}\right) = 1$, where $\left(\frac{\cdot}{p}\right)$ denotes the Legendre symbol. Similarly, (21) implies $\left(\frac{j_2d_3}{p}\right) = 1$. If q and r are odd prime divisors of d_1 and d_3 respectively, such that $\operatorname{ord}_q(d_1)$ and $\operatorname{ord}_r(d_3)$ are odd, then we obtain the following conditions for the solvability of (20) and (21): $\left(\frac{-j_1d_2}{q}\right) = 1$ and $\left(\frac{-j_2d_2}{r}\right) = 1$. We performed this test for $3 \le k \le 20$ and we found that, apart from the systems

listed in the following table, all are unsolvable except those of the form

$$3x_1^2 - x_2^2 = 2,$$

$$c_k x_1^2 - x_3^2 = c_k - 1,$$

and this system is equivalent to the system (2) and (3) which is completely solved by Theorem 1.

n	d_1,d_2,j_1,d_3,j_2
4	789, 23405, 1, 46816, 89
7	3, 43, 2, 63250208, 63250207
7	41331, 43, 2, 63250208, 4591
13	3, 10035363467, 1, 923554499868016, 461777249934007
13	7539,9203,1,923554499868016,183755372039
19	1234767995808339,91151,1,6742688539745294182816,8191039
19	251210975091, 44809, 2, 3371344269872647091408, 40261110431

After this we tested the systems in the table modulo 8 and only the last one survived this test.

References

REFERENCES

- [1] W. A. Anglin, 'Simultaneous Pell equations', Math. Comp. 65 (1996), 355–359.
- [2] A. Baker and H. Davenport, 'The equations $3x^2 2 = y^2$ and $8x^2 7 = z^2$ ', Quart. J. Math. Oxford Ser. (2) 20 (1969), 129–137.
- [3] A. Baker and G. Wüstholz, 'Logarithmic forms and group varieties', J. Reine Angew. Math. 442 (1993), 19–62.
- [4] A. Bremner, R. J. Stroeker and N. Tzanakis, 'On sums of consecutive squares', J. Number Theory 62 (1997), 39–70.
- [5] J. E. Cremona, Algorithms for Modular Elliptic Curves, Cambridge Univ. Press, 1997.
- [6] L. E. Dickson, History of the Theory of Numbers, Vol. 2, Chelsea, New York, 1992.
- [7] A. Dujella, 'The problem of the extension of a parametric family of Diophantine triples', *Publ. Math. Debrecen* 51 (1997), 311–322.
- [8] A. Dujella, 'A proof of the Hoggatt-Bergum conjecture', Proc. Amer. Math. Soc., to appear.
- [9] A. Dujella and A. Pethő, 'Generalization of a theorem of Baker and Davenport', Quart. J. Math. Oxford Ser. (2), to appear.
- [10] J. Gebel, A. Pethő and H. G. Zimmer, 'Computing integral points on elliptic curve', Acta Arith. 68 (1994), 171–192.
- [11] D. Husemöller, Elliptic Curves, Springer-Verlag, New York, 1987.
- [12] A. Knapp, Elliptic Curves, Princeton Univ. Press, 1992.
- [13] M. Mignotte and A. Pethő, 'Sur les carres dans certaines suites de Lucas', J. Théor. Nombres Bordeaux 5 (1993), 333–341.
- [14] K. Ono, 'Euler's concordant forms', Acta Arith. 78 (1996), 101–123.
- [15] SIMATH manual, Saarbrücken, 1997.

Department of Mathematics University of Zagreb Bijenička cesta 30 10000 Zagreb Croatia

E-mail: duje@math.hr

Institute of Mathematics and Computer Science Lajos Kossuth University H-4010 Debrecen P.O. Box 12 Hungary E-mail: pethoe@math.klte.hu