Administration de bases de données

S. Lopes, complété par L.Yeh

February 5, 2021

Content

- Introduction
- Rôles du DBA
- Caractéristiques Principales d'un Serveur de BD
- Administration Oracle

Introduction

- Les systèmes de gestion de bases de données (SGBD) sont très complexes.
- Pourquoi apprendre l'administration de BD ?
 - Toute organisation a besoin de données.
 - ⇒ Mieux elles sont installées et configurées, plus l'organisation est compétitive.

SECTION Rôles du DBA

• DBA: personne responsable du bon fonctionnement et de l'efficacité des BD d'une organisation et des applications qui y accèdent.

- DBA: personne responsable du bon fonctionnement et de l'efficacité des BD d'une organisation et des applications qui y accèdent.
- DBA doit concevoir et maintenir la BD d'une entreprise.

- DBA: personne responsable du bon fonctionnement et de l'efficacité des BD d'une organisation et des applications qui y accèdent.
- DBA doit concevoir et maintenir la BD d'une entreprise.
- Administration ⇒ Planification
 - DBA réactif: résout les plus gros problèmes auxquels il est confronté.
 - **DBA proactif**: met en place des procédures pour éviter les problèmes avant qu'ils n'apparaissent.

- Différents rôles: administrateur de bases de données (DBA),
 administrateur de données (DA) et administrateur système (SA)
 - DA
 - Séparer gestion des données/technologie pour les gérer.
 - Responsable de la compréhension du jargon de l'entreprise et de générer un modèle logique de données.
 - Phases d'analyse des besoins et de conception (DBA: conception, développement et tests).
 - S'occupe des métadonnées (description des données: définition, nom, abréviation, type, taille, ...)
 - ⇒ Besoin de communication entre DA et DBA
 - SA
 - Installation et configuration des applications (y compris le SGBD).
 - ⇒ Besoin de communication entre SA et DBA

	SA	DA	DBA
Infrastructure système	Х		x (si pas de SA)
Données et métadonnées		X	x (si pas de DA)
Analyse		X	x (si pas de DA)
Conception		X	x (si pas de DA)
Développement			X
Tests			X
Implantation			X
Maintenance et tuning			X

Table: Rôles du SA, DA et DBA

- Conception de BD
 - Nécessite de bonnes connaissances
 - du modèle relationnel
 - des particularités du SGBD
 - des modèles conceptuels et logiques
 - des transformations du modèle logique vers le modèle physique

- Conception de BD
 - Nécessite de bonnes connaissances
 - du modèle relationnel
 - des particularités du SGBD
 - des modèles conceptuels et logiques
 - des transformations du modèle logique vers le modèle physique
- Surveillance, analyse des performances et tuning
 - Optimisation de l'utilisation des ressources pour améliorer le taux de sortie et minimiser la contention en permettant l'exécution du workload le plus important.

- Conception de BD
 - Nécessite de bonnes connaissances
 - du modèle relationnel
 - des particularités du SGBD
 - des modèles conceptuels et logiques
 - des transformations du modèle logique vers le modèle physique
- Surveillance, analyse des performances et tuning
 - Optimisation de l'utilisation des ressources pour améliorer le taux de sortie et minimiser la contention en permettant l'exécution du workload le plus important.
- Disponibilité des données et de la BD
 - Garder la BD en état de fonctionnement
 - Minimiser le nombre de périodes d'arrêt pour des tâches d'administration

Rôles du DBA (suite)

- Sécurité et contrôle d'accès
 - Contrôler l'accès des utilisateurs aux données
 - Droits d'accès aux objets de la BD
 - Droits d'accès aux fonctionnalités
- Sauvegarde et reprise
 - DBA doit être préparé à récupérer (réparer) une défaillance
 - Reprise dans un état cohérent récent le plus rapidement possible
 - ⇒ Stratégie de sauvegarde des fichiers de la BD et des journaux
- Intégrité des données
 - Niveau sémantique: qualité des données (données bruitées, manquantes)
 - Niveau physique: type de données, contraintes d'intégrité (CI)
 - Niveau interne: index, sauvegardes, ...
- Gestion des migrations (changement de version du SGBD)
- . .


```
Client = programmes d'application
Serveur = serveur de BD (gestion des données)
```

Client/serveur

```
Client = programmes d'application
Serveur = serveur de BD (gestion des données)
```

 Multi-utilisateur: plusieurs applications accèdent à la BD en même temps

```
Client = programmes d'application
Serveur = serveur de BD (gestion des données)
```

- Multi-utilisateur: plusieurs applications accèdent à la BD en même temps
- Gestion des transactions: exécution concurrentes de transactions (correction et performance)

```
Client = programmes d'application
Serveur = serveur de BD (gestion des données)
```

- Multi-utilisateur: plusieurs applications accèdent à la BD en même temps
- Gestion des transactions: exécution concurrentes de transactions (correction et performance)
- Disponibilité: tolérance aux pannes

```
Client = programmes d'application
Serveur = serveur de BD (gestion des données)
```

- Multi-utilisateur: plusieurs applications accèdent à la BD en même temps
- Gestion des transactions: exécution concurrentes de transactions (correction et performance)
- Disponibilité: tolérance aux pannes
- Sécurité: restrictions sur les objets et les fonctionnalités

```
Client = programmes d'application
Serveur = serveur de BD (gestion des données)
```

- Multi-utilisateur: plusieurs applications accèdent à la BD en même temps
- Gestion des transactions: exécution concurrentes de transactions (correction et performance)
- Disponibilité: tolérance aux pannes
- Sécurité: restrictions sur les objets et les fonctionnalités
- Intégrité des données: Cl, ...

SECTION Administration Oracle

- Principaux Rôles d'Administration
- Principaux Outils d'Administration
- Fichier de Parametres
- Dictionnaire de Données
- Architecture et Instance Oracle
- Gestion de la mémoire
- Les processus d'arrière-plan
- Instance Oracle
- Structures Logiques
- Structures Physique
- Structures Logiques (suite)
- Démarrage et arrêt d'une BD
- Création d'une BD
- Sécurité et utilisateurs

Principaux Rôles d'Administration

- L'utilisateur INTERNAL
 - Utilisateur spécial qui n'est pas géré par le dictionnaire d'Oracle
 - Géré par le fichier de mots de passe d'Oracle
 - Déprécié au profit du privilège SYSDBA
 - Connexion: svrmgrl INTERNAL

Principaux Rôles d'Administration

- L'utilisateur INTERNAL
 - Utilisateur spécial qui n'est pas géré par le dictionnaire d'Oracle
 - Géré par le fichier de mots de passe d'Oracle
 - Déprécié au profit du privilège SYSDBA
 - Connexion: svrmgrl INTERNAL
- L'utilisateur SYS
 - Possède la BD et le dictionnaire de données
 - Possède le rôle DBA
 - Mot de passe par défaut (jusqu'à 8.1.7): CHANGE_ON_INSTALL

Principaux Rôles d'Administration

- L'utilisateur INTERNAL
 - Utilisateur spécial qui n'est pas géré par le dictionnaire d'Oracle
 - Géré par le fichier de mots de passe d'Oracle
 - Déprécié au profit du privilège SYSDBA
 - Connexion: svrmgrl INTERNAL
- L'utilisateur SYS
 - Possède la BD et le dictionnaire de données
 - Possède le rôle DBA
 - Mot de passe par défaut (jusqu'à 8.1.7): CHANGE_ON_INSTALL
- L'utilisateur SYSTEM
 - Tâches d'administration courantes
 - Possède le rôle DBA
 - Mot de passe par défaut (jusqu'à 8.1.7): MANAGER

Principaux Rôles d'Administration(suite)

- Le privilège SYSDBA
 - Donne tous les droits sur la BD
 - En se connectant comme SYSDBA, on devient l'utilisateur SYS
 - Il existe d'autres privilèges similaires (SYSOPER par exemple)
 - Connexion: sqlplus "/ AS SYSDBA"

Principaux Rôles d'Administration(suite)

- Le privilège SYSDBA
 - Donne tous les droits sur la BD
 - En se connectant comme SYSDBA, on devient l'utilisateur SYS
 - Il existe d'autres privilèges similaires (SYSOPER par exemple)
 - Connexion: sqlplus "/ AS SYSDBA"
- Le rôle DBA
 - Regroupe un ensemble de privilèges pour l'administration

Server manager

svrmgr30.exe (Oracle 8.0.x), svrmrgl.exe (Oracle 8.1.6, 1 pour line mode) Déprécié au profit de SQL*Plus Tâches d'administration de bas niveau (créer une BD, démarrer/arrêter une instance, ...) En général, connexion comme SYS ou INTERNAL

Server manager

svrmgr30.exe (Oracle 8.0.x),

svrmrgl.exe (Oracle 8.1.6, 1 pour line mode)

Déprécié au profit de SQL*Plus

Tâches d'administration de bas niveau (créer une BD, démarrer/arrêter une instance, ...)

En général, connexion comme SYS ou INTERNAL

SQL*Plus

Client de base sous Oracle

Permet maintenant d'effectuer les tâches

d'administration (sqlplus "/ as SYSDBA")

Commande SET pour fixer les paramètres

d'environnement (SET LINESIZE 100, SET

PAGESIZE 50)

Commande SHOW pour afficher diverses informations (SHOW ERRORS, SHOW LINESIZE)

Oracle Enterprise Manager

Environnement intégré pour accéder aux outils d'administration Ensemble d'outils graphiques pour l'administration de BD DBA Studio (8.1.7), console

```
Oracle Enterprise Manager
```

Environnement intégré pour accéder aux outils d'administration Ensemble d'outils graphiques pour l'administration de BD DBA Studio (8.1.7), console

```
EXP, IMP, SQLLDR, ORADIM (sous windows), ORAPWD , TKPROF
```

. . .

Fichier de Parametres

- Fichier texte contenant les paramètres d'initialisation d'une instance Oracle (init.ora dans /Oracle/admin/Oracle/pfile)
- Modification des paramètres
 - en éditant le fichier: prise en compte lors du prochain démarrage
 - dynamiquement pour la session courante:
 ALTER SESSION param = value
 - dynamiquement pour la durée de l'instance:
 ALTER SYSTEM param = value [DEFERRED]
- Visualisation des paramètres: SHOW PARAMETERS (dans SQL*Plus)
- Référence: Oracle reference

```
db_name = "oracle"  # identifiant de la BD
instance_name = oracle  # identifiant de l'instance
db_block_buffers = 2048  # nombre de blocs dans le cache
db_block_size = 8192  # taille d'un bloc en octet
```

Dictionnaire de Données

- Ensemble de tables fournissant des informations à propos du serveur de BD qui contient:
 - définition de tous les objets du schéma
 - espace alloué aux objets
 - définition des contraintes d'intégrité
 - définition des utilisateurs
 - ...
- Se trouve dans le tablespace SYSTEM et appartient à SYS

Dictionnaire de Données (Structure)

Tables de base

- contiennent l'information proprement dite
- utilisées intensivement par Oracle (consultation du schéma, modification lors des ordres DDL (Data Definition Language), ...)
- rarement accédées par l'utilisateur (normalisées, codées)

Dictionnaire de Données (Structure)

Tables de base

- contiennent l'information proprement dite
- utilisées intensivement par Oracle (consultation du schéma, modification lors des ordres DDL (Data Definition Language), ...)
- rarement accédées par l'utilisateur (normalisées, codées)

Vues

- informations décodées
- interrogeables par l'utilisateur (SELECT)
- différents types de vue identifiables par leur préfixe
 - les vues du schéma de l'utilisateur (ce qu'il possède): USER
 - les vues du "schéma étendu" de l'utilisateur (ce qu'il voit): ALL
 - les vues de l'administrateur (tout): DBA (nécessite le privilège SELECT ANY TABLE)

Example 1

```
SELECT object_name, object_type FROM user_objects;
SELECT owner, object_name, object_type FROM all_objects;
SELECT owner, object_name, object_type FROM SYS.dba_objects;
Référence: Oracle reference ou interroger la vue DICTIONARY
```

Tables de Performances Dynamiques

- Partie du dictionnaire formé de tables virtuelles enregistrant l'activité de la BD
 - Préfixé par V_\$ (réservé à SYS)
 - Synonyme public V\$

Architecture et Instance Oracle

Serveur Oracle = instance Oracle + BDOracle

Instance: ce qui se trouve en mémoire

BD: ce qui se trouve sur

le disque

Instance Oracle =ensemble de processus +

buffers en mémoire

Instance Oracle

- Deux types de processus
 - processus Oracle
 - processus serveurs
 - * exécutent les traitements (requêtes) des clients
 - * peuvent être dédiés (un processus serveur par client) ou multi-thread (un processus serveur pour plusieurs clients)
 - processus en arrière plan
 - * assurent le fonctionnement et la maintenance du serveur
 - * asynchrones
 - processus utilisateurs
 - * exécutent le code d'une application
 - * communiquent avec les processus serveurs par l'intermédiaire d'une interface de programmation

Instance Oracle

- Deux types de processus
 - processus Oracle
 - processus serveurs
 - * exécutent les traitements (requêtes) des clients
 - * peuvent être dédiés (un processus serveur par client) ou multi-thread (un processus serveur pour plusieurs clients)
 - processus en arrière plan
 - * assurent le fonctionnement et la maintenance du serveur
 - * asynchrones
 - processus utilisateurs
 - * exécutent le code d'une application
 - * communiquent avec les processus serveurs par l'intermédiaire d'une interface de programmation
- Démarrage d'une instance = allocation de la System Global Area (SGA) + démarrage des processus d'arrière plan
 - SGA: zone mémoire partagée par les utilisateurs

SGA

 Région de mémoire partagée qui contient des informations de contrôle et des données pour une instance

SGA

- Région de mémoire partagée qui contient des informations de contrôle et des données pour une instance
- Contient plusieurs zones (SHOW SGA dans SQL*Plus)

zone SQL partagée

- Buffers de la BD
 - conservent les blocs les plus récemment accédés
 - taille fixée par le paramètre DB_BLOCK_BUFFERS

- Buffer Redo Log journalise les changements de la BD
 - sera écrit dans un fichier redo log
 - taille fixée par le paramètre LOG_BUFFER

Shared pool

- contient le plan d'exécution et d'autres informations sur les requêtes
- taille fixée par le paramètre SHARED_POOL_SIZE

Program Global Area (PGA)

- Buffer mémoire contenant des données et des informations de contrôle pour un processus serveur
- Lancé lors du démarrage d'un processus serveur
- Son contenu dépend de la configuration d'Oracle (pile, informations sur la session, . . .)

DB Writer (DBWn)

- Ecrit les blocs modifiés du cache dans les fichiers de données
- Généralement un seul processus (DBW0)
- Dans certains cas, plusieurs processus (DBW1 à DBW9) permettent d'améliorer les performances
- Paramètre DB_WRITER_PROCESSES

Log Writer/Checkpoint/System Monitor

Log Writer (LGWR)

 Ecrit les entrées redo log séquentiellement sur disque à partir du buffer redo log

Checkpoint (CKPT)

- Déclenche DBWn à intervalle fixé (checkpoint)
- Met à jour les fichiers de données et de contrôle pour indiquer le checkpoint le plus récent

System Monitor (SMON)

- reprise après panne d'une instance lors du redémarrage
- effectue différentes tâches de nettoyage (regroupe l'espace libre, ...)

Process Monitor/Archiver/Recover

Process Monitor (PMON)

- reprise après panne d'un processus utilisateur
- nettoie le cache et libère les ressources (verrous, ...)

Archiver (ARCn)

- Copie les fichiers redo log online sur une archive lorsqu'ils sont pleins ou lors d'un changement de fichier
- Généralement un seul (ARC0)
- Paramètre LOG_ARCHIVE_MAX_PROCESSES
- Actif si la BD est en mode ARCHIVELOG

Recover (RECO)

• Termine les transactions distribuées après une panne réseau ou système

Dispatcher/Lock/Job queue/Queue monitor

Dispatcher (Dnnn)

- Route les requêtes d'un processus utilisateur vers un processus serveur partagé libre
- Uniquement sur un serveur multi-thread
- Un par protocole de communication
- Lock (LCK0)
 - Concerne Oracle Parallel Server
- Job queue (SNPn)
 - BD distribuée
 - rafraîchissement des snapshots
- Queue monitor (QMNn)
 - Concerne Oracle Advanced Queuing

Références

- Vues du dictionnaire
 - V\$PROCESS: à propos des processus actifs
 - V\$SESSION: sur les sessions
 - V\$SESS_IO: statistiques sur les E/S des sessions
 - V\$SYS_STAT: statistiques sur les sessions
 - V\$SQLAREA: statistiques sur la zone SQL partagée
- Informations sur la SGA
 - SHOW SGA dans SQL*Plus
 - V\$SGA

BD Oracle

• Une BD Oracle possède un structure logique et physique

Structures Logiques

- BD
- Tablespace
 - par exemple relatif à une application
 - contient les objets du schéma
- Segment
 - données
 - index
 - rollback
 - temporaire
- Extent
 - ensemble de blocs contigus
- Bloc
 - plus fin degré de granularité
 - correspond à un nombre d'octets physiques précisé lors de la création de la BD

Structure Physique: Fichiers de données

- associés à une et une seule BD
- un ou plusieurs fichiers de données forment un tablespace
- possibilité de croissance en cas de dépassement
- utilisation
 - les données des fichiers de données sont lues durant les opérations classiques et placées dans la mémoire cache d'Oracle (si les données ne s'y trouvent pas déja)
 - les données modifiées ne sont pas forcément écrites immédiatement dans le fichier pour des raisons de performance (c'est un processus d'arrière-plan qui se charge des écritures)

Structure Physique: Fichiers Redo Log

- enregistrent toutes les modifications de la BD
- chaque BD en possèdent au moins deux
- une entrée d'un fichier redo log représente un groupe de changements décrivant une modification atomique de la BD
- utilisation
 - pour la reprise après panne quand les données n'ont pas été écrites sur disque
 - lors de la réouverture de la BD après une panne, les changements non présents sur le disque sont réappliqués à partir du redo log (rolling forward)

Structure Physique: Fichiers de contrôle

- spécifient la structure physique de la BD (nom de la BD, nom et localisation des fichiers de données et redo log, ...)
- utilisation
 - lors de l'ouverture de la BD pour déterminer les fichiers de données et redo log
 - modifié pour refléter les changements de la BD (ajout d'un fichier de données, ...)
 - également lors de la reprise après panne

Tablespace et Fichiers de Données

- Une BD = un ou plusieurs tablespaces
- Un tablespace = un ou plusieurs fichiers de données
- Un tablespace peut être online (accessible) ou offline (inaccessible)

Tablespace et Fichiers de Données

- On peut augmenter la taille d'un BD de trois façons
 - en ajoutant un nouveau tablespace
 - en ajoutant un fichier de données à un tablespace
 - en augmentant la taille d'un fichier de données

Example 2

- Ajout d'un tablespace
 CREATE TABLESPACE tbs DATAFILE 'tbs01.ora'
- Ajout d'un fichier dans un tablespace
 ALTER TABLESPACE tbs ADD DATAFILE 'tbs02.ora'
- Augmentation de la taille d'un fichier
 ALTER DATABASE DATAFILE 'tbs02.ora' AUTOEXTEND ON NEXT 20M MAXSIZE 1000M

Tablespaces particuliers

- Tablespace SYSTEM
 - Automatiquement créé lors de la création de la BD
 - Contient le dictionnaire de données, les programme PL/SQL
 - Toujours online
- Tablespace temporaire (TEMP)
 - Opérations de tris
 - Clause TEMPORARY de CREATE TABLESPACE
- Tablespace utilisateur (USERS)
 - Sépare les données utilisateur des données système

Blocs de données, extents et segments

Bloc de données

- Plus petite unité d'E/S
- Correspond à un nombre d'octets physique précis
- Taille fixée lors de la création de la BD (paramètre DB_BLOCK_SIZE)
- Taille devrait être un multiple de la taille d'un bloc du SE

Bloc de données: Format du bloc

- Entête: informations générales sur le bloc (adresse, type, ...)
- Répertoire des tables: informations sur les tables ayant des tuples dans le bloc
- Répertoire des tuples: informations sur les tuples du bloc
- Données: contient les données d'une table ou d'un index et peut être répartis sur plusieurs blocs
- Espace libre: utilisé pour les ajouts et les mises à jour

Bloc de données: Format du bloc

- Paramètres PCTFREE et PCTUSED lors de la création ou l'altération d'une table
 - PCTFREE: pourcentage minimum d'un bloc réservé pour l'espace libre (utilisé lors des mises à jour mais pas pour les insertions)
 - PCTUSED: pourcentage minimum utilisé dans un bloc avant ajout
 - Quand un bloc est rempli à PCTFREE, les insertions ne se font plus dans ce bloc jusqu'à ce que son taux de remplissage descende en dessous de Popula Block

 Example 3

PCTEBEE = 20, PCTUSED = 40 2 Updates to exisiting rows use the free Bows are reserved in inserted up to the block. 80% only. No new rows can he inserted into the block until the amount of need for updates of space is 39% or less.

tbl(...) PCTFREE 10 PCTUSED 40;

CREATE TABLE

Extent

- Unité logique formée de blocs contigus
- Un ou plusieurs extents forment un segment
- Lors de la création d'une table, un extent initial d'une taille fixée est alloué
- Quand le segment est plein, un extent incrémental d'une taille éventuellement différente est alloué
- Clause STORAGE de CREATE TABLE ou valeur par défaut du tablespace (clause DEFAULT STORAGE de CREATE TABLESPACE)

Example 4

```
CREATE TABLE tbl(...)
STORAGE ( INITIAL 100K
NEXT 100K
MINEXTENTS 2
MAXEXTENTS 5
PCTINCREASE 50 );
```

Extent

- INITIAL: taille (en octets) du premier extent alloué lorsqu'un segment est créé
- NEXT: taille (en octets) du prochain extent incrémental alloué pour un segment
- PCTINCREASE: pourcentage d'augmentation de la taille de chaque extent incrémental (NEXT = ancienNEXT \times (1 + $\frac{\text{PCTINCREASE}}{100}$) arrondi au multiple suivant de la taille d'un bloc)
- MINEXTENTS: nombre d'extents alloués lors de la création du segment
- MAXEXTENTS: nombre maximum d'extents pouvant être alloués au segment (UNLIMITED si pas de limite)

no d'extent	taille	NEXT
-		102400
1	102400	102400
2	102400	153600
3	153600	231424 (bloc de 2K)
4	231424	348160
5	348160	MAXEXTENTS est atteint

Segments

- Ensemble d'extents contenant la totalité d'une structure logique
- Par exemple, pour chaque table, un ou plusieurs extents forment le segment de données de la table
- Quatre types de segments: données, index, temporaire et rollback
- Segment de données
 - Contient les données pour une table non partitionnée ou non en cluster, une partition ou un cluster
 - Créé lors du CREATE à l'aide des paramètres de stockage
- Segment d'index
 - Contient les données pour un index
 - Créé lors du CREATE INDEX à l'aide des paramètres de stockage
- Segment temporaire
 - Espace temporaire pour l'exécution de requêtes SQL
 - Utilisé pour les tris (CREATE INDEX, DISTINCT, ORDER BY, GROUP BY, opérations ensemblistes)
 - Paramètre SORT_AREA_SIZE

Segments

- Segment rollback
 - Contient les anciennes valeurs modifiées par les transactions
 - Un ou plusieurs par BD
 - Utilisé pour les lectures cohérents, annuler une transaction ou la reprise
 - Seul Oracle peut manipuler ces segments
 - Vues du dictionnaire: DBA_ROLLBACK_SEGS, V\$ROLLSTAT

Example 5

- Création d'un segment rollback (online par défaut)
 CREATE ROLLBACK SEGMENT rbs_02 TABLESPACE rbsspace STORAGE
- Mise online
 ALTER ROLLBACK SEGMENT rbs_02 ONLINE;
- Mise offline
 ALTER ROLLBACK SEGMENT rbs_02 OFFLINE;

Démarrage

- Démarrer l'instance
 - Lecture du fichier de paramètre
 - Allocation de la SGA
 - Création des processus d'arrière plan
- Monter la BD
 - Association d'une BD à l'instance
 - Ouverture et lecture des fichiers de contrôle (emplacements des fichiers de données et redo log)
 - Ouverture en accès restreint
- Ouvrir la BD
 - Ouverture et mise online les fichiers de données et redo log
 - Reprise après panne si nécessaire
 - Acquisition d'un ou plusieurs segments de rollback
 - La BD est disponible pour les opérations classiques

Démarrage

Example 6

```
sqlplus /nolog (sous le shell du SE)
CONNECT sys/change_on_install AS SYSDBA (sous version 8.1.
STARTUP PFILE=D:\oracle\admin\oracle\pfile\init.ora
  (démarrage, montage et ouverture)
STARTUP RESTRICT (idem avec accès limité aux administrateu
STARTUP NOMOUNT (démarrage)
STARTUP MOUNT (démarrage et montage)
ALTER DATABASE MOUNT (montage)
ALTER DATABASE OPEN (ouverture)
```

Arrêt

- Fermer la BD
 - Ecriture sur le disque de ce qui se trouve dans la SGA (données et données de reprise)
 - Fermeture de tous les fichiers online (données et redol log)
 - La BD devient inaccessible pour les opérations classiques
- Démonter la BD
 - Déassociation de la BD et de l'instance
 - Fermeture des fichiers de contrôle
- Stopper l'instance
 - Déallocation de la SGA
 - Arrêt des processus d'arrière-plan

ALTER DATABASE DISMOUNT (démontage)

```
sqlplus /nolog (sous le shell du SE)
CONNECT sys/change_on_install AS SYSDBA (sous version 8.1.7)
SHUTDOWN [NORMAL|IMMEDIATE|TRANSACTION|ABORT] (fermeture, démo
ALTER DATABASE CLOSE NORMAL (fermeture)
```

February 5, 2021

Création d'une BD

- Choisir l'identifiant de l'instance (DB_NAME et SID)
- Créer le fichier de paramètres d'initialisation
- Se connecter à SQL*Plus
 sqlplus /nolog (sous le shell du SE)
 CONNECT sys/change_on_install AS SYSDBA (sous version 8.1.
- Démarrer l'instance STARTUP NOMOUNT PFILE=D:\oracle\admin\testbd\pfile
- Créer la base de données
- Exécuter les scripts CATALOG.SQL et CATPROC.SQL

Création d'une BD

Example 7

```
CREATE DATABASE testbd

LOGFILE 'D:\oracle\oradata\testbd\redo01.log' SIZE 1M,
'D:\oracle\oradata\testbd\redo02.log' SIZE 1M

DATAFILE 'D:\oracle\oradata\testbd\system01.dbf' SIZE 10M

AUTOEXTEND [ON|OFF] NEXT 10M MAXSIZE [200M|UNLIMITED]

CHARACTER SET WE8ISO8859P1;

REM Il faut ensuite créer des segments de rollback

REM dans un autre tablespace que system

REM pour que les utilisateurs puissent accéder

REM aux autres tablespaces
```

Example 8

Exécuter les scripts CATALOG. SQL et CATPROC. SQL

```
@d:\oracle\ora81\admin\rdbms\catalog.sql
@d:\oracle\ora81\admin\rdbms\catproc.sql
```

Sécurité et utilisateurs

- Chaque utilisateur possède un login et un mot de passe
- L'authentification peut être réalisée de différentes façons: par Oracle, par le SE, . . .
- La sécurité est basée sur la notion de privilège (droit d'exécuter un type d'ordre SQL ou d'accéder à un objet)
- Les privilèges sont accordés (GRANT) à un utilisateur ou révoqués (REVOKE)
- Deux types de privilèges
 - privilèges système: droit d'effectuer une action, l'ordre GRANT avec l'option WITH ADMIN OPTION permet de transmettre les privilèges
 - privilèges sur les objets: droit d'accéder à un objet

Sécurité et utilisateurs (Rôles)

- Plusieurs privilèges peuvent être regroupés dans un rôle
- Un rôle peut être utilisé dans le cadre d'une application ou pour représenter un groupe d'utilisateur
- Un rôle est accordé ou révoqué de la même façon qu'un privilège
- Certains rôles sont prédéfinis: CONNECT, RESOURCE, DBA, ...
- La notion de profil permet de limiter l'utilisation de certaines ressources

Example 9

```
CREATE USER usr1 IDENTIFIED BY usr1

DEFAULT TABLESPACE users TEMPORARY TABLESPACE temp
QUOTA UNLIMITED ON users QUOTA 5M ON system;

GRANT CONNECT TO usr1;

CREATE ROLE tuning;

GRANT SELECT ANY TABLE TO tuning;

GRANT tuning TO usr1;
```

Références

- DBA_USERS: Description de tous les utilisateurs
- DBA_TS_QUOTAS: Description des quotas

Example 10