14163

Bulk Soil Sample 7,776 grams

Figure 1a: Map of Apollo 14

Figure 1b: Sieving soil sample in SNAP.

Modal content of soils 14163.

From Simon et al.	1981
Agglutinates	45.7 %
Basalt	2.8
Breccia	31
Anorthosite	2.9
Norite	
Gabbro	
Plagioclase	5.1
Pyroxene	2.6
Olivine	
Ilmenite	
Glass other	10

Introduction

At the end of the first EVA on Apollo 14, a large soil sample was collected from the area near the LM. The area, about 15 meters from the LM, was apparently free of rock fragments (see Graf 1993), and not many were sieved from the large soil collected. The transcript indicates that the bulk soil sample was scooped from a small (2 foot) crater with glass in the bottom, possibly secondary in origin. 14163 should be compared with 14259, which is more of a surface sample.

Twenty nine small rock samples from this soil were numbered 14425 to 14453. Reserve soil 14421 (<1 cm) and 14422 and 14423 were also from this bag. Note: It seems odd, that out of all this soil, only a few rock chips were collected.

Petrography

14163 was chosen as one of the reference soils for the lunar highlands suite (Labotka et al. 1980).

The maturity index for 14163 ($I_s/FeO = 57$, submature) was reported by Morris (1978) and the soil contained about 46 % agglutinates. King et al. (1972), McKay et al. (1972) and others determined the grain size distribution (figure 1).

Carr and Meyer (1972) and Simon et al. (1981) determined the petrographic mode, finding a very high percentage of glass (figure 4). Much of this is agglutinate glass but Papike et al. (1982) note that some of the glass has the composition of mare basalt (an exotic component at the A14 site). There is also a small percentage of "granitic" glass.

Modal content of soils 14163.

From Carr and Meyer (1972)								
Glass		61.1 %						
	Dark cloudy	41						
	Homogeneous	20.1						
Breccia		27.9						
	Light matrix	17.9						
	Dark matrix	10						
Minerals		9.6						
	Plagioclase	5.1						
	Pyroxene	4.1						
	Olivine	0.4						

Figure 2a: Grain size distribution for soil 14163 (from Graf 1993, data from King).

A glass sphere (14425) was found in the particles from 14163 and was allocated to John O'Keefe. Kramer and Twedell (1977) sorted and described a portion of the coarse fine particles (14160) and also found a high percentage of agglutinates (Table 3). McKay et al. (1979) studied three breccias from 14160, while Hubbard et al. (1972), Taylor et al. (1972) and Powell and Weiblen (1972) reported on other fragments from this large soil sample. Brad Jolliff (1991) studied three crystalline coarse-fines of granitic composition from 14161 (Table 4).

Finkelman (1973) and Devine et al. (1982) studied the finest fraction, concluding that compositional differences are related to comminution of local components. Walker and Papike (1981) determined the composition and considered the origin of agglutinates in 14163, which fuse

Papike et al. (1982) summarized the mineral compositions in 14163 (figure 3). They found that the

Figure 2b: Grain size distribution for soil 14163 (from Graf 1993, data from McKay).

minerals in the soil were mostly derived from the Fra Mauro breccias and/or KREEP basalt.

Chemistry

Taylor et al. (1972), Laul et al. (1972), Lindstrom et al. (1972), Rose et al. (1972), Hubbard (1972), Wanke et al. (1972), Masuda et al. (1972), Laul and Papike (1980), Morgan et al. (1972), Baedecker et al. (1972), Willis et al. (1972), Brunfelt et al. (1972), Helmke et al. (1972), Philpotts et al. (1972), Quaide and Wrigley (1972) and Keith et al. (1972) all analyzed 14163 (table 1, figures 5 and 6).

Laul and Papike (1980) and Papike et al. (1982) calculate the relative proportion of rock types present in 14163 using a chemical mixing model (55-67% high-K KREEP, 6-15% exotic mare basalt and the rest low-K Fra Mauro basalt).

Figure 3: Labotka et al. (1980) and Papike et al. (1982) summarized the mineral compositions in 14163.

Moore et al. (1972) and Cadogen et al. (1972) reported 120 ppm carbon (figure 7). Goel and Kothari (1972) determined nitrogen = 80 ppm.

Cosmogenic isotopes and exposure ages

Keith et al. (1972) determined the cosmic-ray-induced activity of 22 Na = 46 dpm/kg., 26 Al = 79 dpm/kg, 46 Sc = 0.7 dpm/kg., 54 Mn = 4 dpm/kg and 56 Co = 21 dpm/kg. for 14163. Begemann et al. (1972) obtained 26 Al = 86 dpm/kg. and 36 Cl = 25 dpm/kg. Quaide and Wrigley (1972) determined 22 Na = 71 dpm/kg and 26 Al = 88 dpm/kg.

Particles from 14161 and 14160 have long exposure ages (Kirsten et al. 1972; Lugmair and Marti 1972).

CC Rodger. If you take an additional weigh bag, and put material from the immediate vicinity of the LM into it to fill up the SRC, we request that you drop a documented sample bag in it as a tag (1 N).

CDR Okay, I guess we've got a little room to do that. I put the foot-ball-sized rocks in the STB.

- - -

LMP Why don't you let me help you with the – let's take the shovel, Al; it'll be faster.

CDR All right.

LMP Trenching tool.

CDR Want to hold the bag?

LPM Yes

CDR Let's hit the little crater out there. It looks like a secondary.

LMP Let's go get it.

CDR Right out here.

LMP Isaw a little crater about this size out here that I'd swear had glass in the bottom of it, but I was too busy thumping to stop and make any comment on it.

- - -

CDR There's a little different colored layer at the bottom of it there.

LMP Yes. Scoop it out. ***

CDR See, there's a different color there, maybe. Okay how does that look to you?

LMP I can take another shovelful.

CDR Okay. Houston, that's in a small crater, looks like it might be a secondary impact, just hazarding a guess; it's about 2 feet in diameter, and it's about 130 feet from the LM.

Figure 4: Labotka et al. (1980) determined glass composition in 14163.

Figure 5: Composition of lunar soils with 14163.

Figure 6: Normalized rare-earth-element diagram for 14163 (data by isotope dilution mass spectrometry, Hubbard et al 1972).

Figure 7: Maturity and carbon content of lunar soils with 14163.

Other Studies

A very large number of highly imaginative studies have been performed on this soil; only a few are mentioned here. See also sections on 14259, 14149, 14003 etc. Gibson and Moore (1972) determined the gas release profile (figure 9).

Cadenhead et al. (1972) studied the adsorption of water (figure 8).

Figure 8: Adsorption isotherm for 14163 (Cadenhead et al. 1972).

Figure 9: Evolution of gasses from 14163 as function of temperature (from Gibson and Moore 1972).

Heymann et al. (1972), Bogard and Nyquist (1972) and Baur et al. (1972) reported rare gas data.. Tatsumoto et al. (1972) studied the U, Th and Pb systematics.

Table 1a. Chemical composition of 14163.

Weight Fapike F	reference	Laul72		Laul80	22	Lindstror	n72	Rose7	2	Hubbard		Wanke	72	Taylor72	2	Masuda		Keith7	72
CaO 11 (a) 11, (a) 14, (a) (a) 14, (a) (a) 15, (a) 0.75 (a) 0.75 (a) 0.75 (a) 0.75 (a) 0.75 (b) 0.65 (d) 0.65 (d) 0.65 (d) 0.52 (e) 0.65 (d) 0.57 (g) 0.52 (e) 0.53 (d) 0.57 (g) 0.52 (e) 0.53 (d) 0.57 (g) 0.55 (e) 0.55 (TiO2 Al2O3 FeO MnO	18.4 10.4	(a) (a)	47.3 1.6 17.8 10.5 0.135	(a) (a) (a) (a)	10.7	(a)	1.77 17.57 10.41 0.14	(c) (c) (c)	vveisilia	111117	48.35 1.46 18.1 10.4 0.13	(d) (d) (d) (d)	1.83 17.6 10.3 0.18	(e) (e) (e) (e)	47.3 1.84 17.1 10.15 0.127	(d) (d) (d) (d) (d)		
V 57	CaO Na2O K2O P2O5 S %	0.711	(a)	11.4 0.7	(a) (a)		. ,	11.15 0.7 0.58	(c) (c) (c)		٠,	10.2 0.67	(d) (d)	10.4 0.62	(e) (e)	10.65 0.65 0.53	(d) (d) (d)	0.57	(g)
Co			` '			21.4	(a)					22.8	(a, h)			42	(d)		
Cu	Co	38	(a)	33	(a)		` '	36	(c)			43	(a, h)	34					
Ge ppb As	Cu			350	(a)			17	(c)							14	(d)		
See	Ga											8.3	(a, h)	4.5	(f)	43	(a)		
Rob	As											0.087	(a, h)						
Zr 900 (a) 720 (a) 820 (c) 850 (f) 766 (d) Nb Mo 8 70 (c) 850 (f) 766 (d) Ru Ru RRh RU	Rb Sr	204	(0)	170	(a)			140	(c)					180	(f)	235	(d)		
Rh	Zr Nb					720	(a)	820	(c)					850	(f)	766	(d)		
Ag ppb Cd ppb In ppb	Rh											00	(- l-)						
In ppb	Ag ppb											28	(a, n)						
Te ppb Cs ppm Ba 730 (a) 800 (a) 950 (a) 1100 926 (b) 775 (a, h) 710 (f) 1065 (d) La 68 (a) 66.7 (a) 67.3 (a) 79 68.2 (b) 68 (a, h) 64 (f) 66.6 (b) Ce 200 (a) 170 (a) 194 (a) 176 (b) 180 (a, h) 200 (f) 178 (b) Pr 24.4 (a) Nd 103 (a) 100 (a) 100 (a) 103 (b) 130 (a, h) 102 (f) 106 (b) Sm 32.2 (a) 29.1 (a) 29.6 (a) 29 (b) 28 (a, h) 29 (f) 30.2 (b) Eu 2.78 (a) 2.45 (a) 2.75 (a) 2.54 (b) 2.45 (a, h) 33 (f) 34.78 (b) Tb 6.4 (a) 5.9 (a) 7.1 (a) 36 (a) 33 (b) 40 (a, h) 32 (f) 40.6 (b) Ho 10.2 (a) 8.6 (a) 6.9 Fr 24.5 (a) 2.25 (a) 25.3 (a) 23.8 (b) 28 (a, h) 23 (f) 24.23 (b) Tm 4.1 (a) 3.2 (a) 2 Th 4.1 (a) 3.2 (a) 2 Th 4.1 (a) 3.2 (a) 2 Th 5.2 (a) 2.5 (a) 25.3 (a) 2.3 (a, h) 19.5 (f) Ta 2.9 (a) 4.3 (a) 3.2 (a) 3.2 (a) 3.2 (a, h) Th ppb Pt ppb Au ppb Th ppb Au ppb Th ppm 13 (a) 13.3 (a) 15.2 (a) 15.2 (a) 15.9 (a, h) 12 (f) 1.3.7 (g) U ppm 13 (a) 13.3 (a) 15.2 (a) 1100 (a) 1100 (a) 1100 (a) 1100 (a) 1100 (a) 1100 (a) 100 (a) 103 (a) 10.2 (b) 2.655 (b) 30.2 (b) E	In ppb Sn ppb											1010	(a, h)						
Ba 730 (a) 800 (a) 950 (a) 1100 926 (b) 775 (a, h) 710 (f) 1065 (d) La 68 (a) 66.7 (a) 67.3 (a) 79 68.2 (b) 68 (a, h) 64 (f) 66.6 (b) Ce 200 (a) 170 (a) 194 (a) 176 (b) 180 (a, h) 200 (f) 178 (b) Pr 24.4 (a) 22 (a, h) 26 (f) Nd 103 (a) 100 (a) 100 (a) 103 (b) 130 (a, h) 102 (f) 106 (b) Sm 32.2 (a) 29.1 (a) 29.6 (a) 29 (b) 28 (a, h) 29 (f) 30.2 (b) Eu 2.78 (a) 2.45 (a) 2.75 (a) 2.54 (b) 2.45 (a, h) 2.25 (f) 2.655 (b) Gd 37 (a) 35 (a, h) 33 (f) 34.78 (b) Tb 6.4 (a) 5.9 (a) 7.1 (a) 6.6 (a, h) 5 (f) Dy 41 (a) 36 (a) 38.3 (b) 40 (a, h) 32 (f) 40.6 (b) Ho 10.2 (a) 8.6 (a) 6.6 (a, h) 8 (f) Er 24.5 (a) 2.2 (a) 22 (a) 28 20.9 (b) 23.5 (a, h) 18.5 (f) 24.23 (b) Tm 4.1 (a) 3.2 (a) 22 (a) 28 20.9 (b) 23.5 (a, h) 18.5 (f) 21.93 (b) Lu 3.6 (a) 3 (a) 3.21 (a) 2 2 (a) 28 20.9 (b) 23.5 (a, h) 19.5 (f) Ta 2.9 (a) 4.3 (a) 3.2 (a) 3.2 (a, h) W ppb Re ppb Os ppb Ir ppb Au ppb Th ppm 13 (a) 13.3 (a) 15.2 (a) 15.2 (a) 15.9 (a, h) 12 (f) 13.7 (g) U ppm 13 (a) 13.3 (a) 15.2 (a) 11.00 (b) 17.5 (b) 18.9 (d, h) 12 (f) 1.37 (g) U ppm 13 (a) 13.3 (a) 15.2 (a) 11.00 (b) 17.5 (b) 18.9 (d, h) 12 (f) 1.37 (g) U ppm 13 (a) 13.3 (a) 15.2 (a) 11.00 (b) 17.5 (f) 15.9 (a, h) 12 (f) 1.37 (g)	Te ppb					0.78	(a)					0.74	(a, h)	0.7	(f)				
Pr 24.4 (a)		68	` '		` '							68	(a, h)	64	(f)		(b)		
Sm 32.2 (a) 29.1 (a) 29.6 (a) 29 (b) 28 (a, h) 29 (f) 30.2 (b) Eu 2.78 (a) 2.45 (a) 2.75 (a) 2.54 (b) 2.45 (a, h) 2.25 (f) 2.655 (b) Gd 37 (a) 37 (a) 38.3 (b) 2.45 (a, h) 2.25 (f) 2.655 (b) Tb 6.4 (a) 5.9 (a) 7.1 (a) 6.6 (a, h) 3.6 (f) 34.78 (b) Dy 41 (a) 36 (a) 7.1 (a) 38.3 (b) 40 (a, h) 32 (f) 40.6 (b) Ho 10.2 (a) 8.6 (a) 38.3 (b) 40 (a, h) 32 (f) 40.6 (b) Ho 10.2 (a) 8.6 (a) 23.8 (b) 28 (a, h) 23.5 (a, h) 18.5 (f) 21.93 (b)<	Pr	24.4	(a)		,						` '	22	(a, h)	26	(f)				
Gd 37 (a) 7.1 (a) 35 (a, h) 33 (f) 34.78 (b) Tb 6.4 (a) 5.9 (a) 7.1 (a) 6.6 (a, h) 5 (f) Dy 41 (a) 36 (a) 38.3 (b) 40 (a, h) 32 (f) 40.6 (b) Ho 10.2 (a) 8.6 (a) 6.6 (a, h) 8 (f) Er 24.5 (a) 23.8 (b) 28 (a, h) 23 (f) 24.23 (b) Tm 4.1 (a) 3.2 (a) 22 (a) 28 20.9 (b) 23.5 (a, h) 18.5 (f) 21.93 (b) Lu 3.6 (a) 3 (a) 3.21 (a) 2.7 (a, h) 31.7 (b) Hf 20 (a) 22.5 (a) 25.3 (a) 25.3 (a) 23 (a, h) 19.5 (f) Ta 2.9 (a) 4.3 (a) 3.2 (a) 3.2 (a, h) W ppb Re ppb Os ppb Ir ppb Au ppb Th ppm 13 (a) 13.3 (a) 15.2 (a) 15.2 (a) 15.9 (a, h) 12 (f) 13.7 (g) U ppm 3.5 (a) 4.07 (a, h) 3.2 (f) 3.9 (g)	Sm	32.2	(a)	29.1	(a)	29.6	(a)			29	(b)	28	(a, h)	29	(f)	30.2	(b)		
Dy 41 (a) 36 (a) 38.3 (b) 40 (a, h) 32 (f) 40.6 (b) Ho 10.2 (a) 8.6 (a) 23.8 (b) 28 (a, h) 23 (f) 24.23 (b) Tm 4.1 (a) 3.2 (a) 22 (a) 28 20.9 (b) 23.5 (a, h) 18.5 (f) 21.93 (b) Lu 3.6 (a) 3 (a) 3.21 (a) 2.7 (a, h) 3.17 (b) Hf 20 (a) 22.5 (a) 25.3 (a) 25.3 (a) 2.9 (a) 4.3 (a) 19.5 (f) Ta 2.9 (a) 4.3 (a) 19.5 (f) Re ppb Os ppb Ir ppb Pt ppb Au ppb Th ppm Th ppm 13 (a) 13.3 (a) 15.2 (a) 15.2 (a) 15.9 (a, h) 12 (f) 13.7 (g) U ppm 13 (a) 13.3 (a) 15.2 (a) 4.07 (a, h) 3.2 (f) 3.9 (g)	Gd	37	(a)				. ,			2.34	(D)	35	(a, h)	33	(f)				
Er 24.5 (a)	Dy	41	(a)	36	(a)		(=)			38.3	(b)	40	(a, h)	32	(f)	40.6	(b)		
Lu 3.6 (a) 3 (a) 3.21 (a) 2.7 (a, h) 3.17 (b) Hf 20 (a) 22.5 (a) 25.3 (a) 23 (a, h) 19.5 (f) Ta 2.9 (a) 4.3 (a) 3.2 (a, h) W ppb 1950 (a, h) 700 (f) Re ppb Os ppb Ir ppb 19 19 Pt ppb Au ppb 6.1 (a, h) Th ppm 13 (a) 13.3 (a) 15.2 (a) 15.9 (a, h) 12 (f) 13.7 (g) U ppm 3.5 (a) 4.07 (a, h) 3.2 (f) 3.9 (g)	Tm		(a)								(b)	28	(a, h)	23 3.5	(f)	24.23	(b)		
Ta	Lu	3.6	(a)	3	(a)	3.21	(a)	28		20.9	(b)	2.7	(a, h)		. ,				
Os ppb	Ta W ppb	20	(a)									3.2	(a, h)						
Pt ppb Au ppb Th ppm 13 (a) 13.3 (a) 15.2 (a) 15.9 (a, h) 12 (f) 13.7 (g) U ppm 3.5 (a) 4.07 (a, h) 3.2 (f) 3.9 (g)	Os ppb											19							
Th ppm 13 (a) 13.3 (a) 15.2 (a) 15.9 (a, h) 12 (f) 13.7 (g) U ppm 3.5 (a) 4.07 (a, h) 3.2 (f) 3.9 (g)	Pt ppb												(a, h)						
	U ppm		. ,	3.5	(a)			(d) vari	OUS	(e) XRF (f) sr	4.07	(a, h) (a, h)	12 3.2	(f)	radiation	coun	3.9	

Table 1b. Chemical composition of 14163 (cont.)

reference weight	Morgar	172		Baedecker Wasson73				bbard72		Brunfel regolith			Helmk	ke72	Philpott 14421	s72	Quaide	e72
SiO2 % TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 S % sum						47.25 1.79 17.34 10.32 0.137 9.36 10.97 0.66 0.56 0.49 0.1	(e) (e) (e) (e) (e) (e) (e) (e)	47.2 1.79 17.2 10.4 0.14 9.37 11 0.66 0.58 0.46 0.08	(e) (e) (e)	17.2 10.4 0.13 9.1 10	1.85 18.1 10.5 0.13 11.1 10.2 0.74 0.4	(a) (a) (a) (a) (a) (a) (a)					0.57	(i)
Sc ppm V Cr Co Ni				359	(h)	1684	(e)	1505 322	(e) (e)	21 48 1370 34	20.5 45 1430 34.7	(a) (a) (a)	20.5 1570 27 331	(a) (a) (a)				
Cu Zn Ga Ge ppb	31	31	(h)	37 8.4 670	(h) (h) (h)					10.4 33 7.7	13.4 40 8.2		34 7.5	(a) (a)				
As Se Rb Sr Y Zr Nb Mo	15.8	16.1	(h)	070	(11)	16 177 209 1022 63.4	(e) (e) (e)	15 186 213 978 65	(e) (e) (e) (e)		100 13 170	(a) (a) (a) (a)			13.9 180 858	(b) (b)		
Ru Rh Pd ppb Ag ppb Cd ppb In ppb	16.6 140	18.4 139	(h) (h)	192 120	(h) (h)					110	100	(a)						
Sn ppb Sb ppb Te ppb	70	5.7 30	(h) (h)							3	10	(a)						
Cs ppm Ba La Ce Pr	0.645	0.73	(h)			855	(e)			0.68 748 67 203	0.57 740 61 26		70.4 157	(a) (a)	806 170	(b)		
Nd Sm Eu										30 2.5	27.3 2.8	(a)	101 30.8 2.57	(a) (a) (a)	105 29.7 2.68	(b) (b)		
Gd Tb Dy Ho Er										6.3	5.8 33.5 8.2 17.3	(a) (a)	36 6.4 44.8 8.6 25	(a) (a) (a) (a) (a)	38.8 23	(b)		
Tm Yb Lu Hf Ta W ppb										21 3.1 19 2.7 1800	15 20.6 2.9 1400	(a) (a)	24.6 3.16 22	(a) (a) (a)	21.7 3.27 20.9	(b) (b) (b)		
Re ppb Os ppb	0.93	1.07	(h)							.500	. 100	(ω)						
Ir ppb Pt ppb	13.6	11.7		9.1	(h)						0.0	, .						
Au ppb Th ppm U ppm	5.4	5.3	(h)					13	(e)	11.3 3.4	2.3 10.6 3.4	(a) (a) (a)					13.2 3.75	(i) (i)
	(h) RN	AA, (e) λ	(RF,	(a) INAA, (b) ID	MS, (i) r	adia	tion coui	nting									

Table 2. Chemical composition of some coarse-fines from 14163.

I able 2	. Onci	ilicai co	IIIposii		1 01 3	oille c	oai se	-111163	11 0111		05.				
reference weight	14160 McKay 7	14160,79 79	14160		14161, Hubba Weism		cias				14161 and Hubbard7 Weisman	1	14163 Brunfelt7 light rx.	'2 dark rx.	
SiO2 % TiO2 Al2O3 FeO MnO	48.3 2.1 16 10 0.12	47.8 1.66 16.2 10.2 0.14	47.6 1.99 15.4 10.5 0.12		1.83	1.57	1.97	1.62	1.6	(a)			1.2 19.3 8.5 0.11	1.4 16.8 10.2 0.13	(a) (a) (a) (a)
MgO CaO Na2O	10.1	10.7	11.6 9.67		12.4 9.1 0.81	11.3 9.8 0.78	9.8	12.2 8.7 0.73	11.4 9.4 0.75	(a) (a)	3.6 17.8 0.39	(a) (a) (a)	9.7 12 0.81	12.2 10.1 0.76	(a) (a) (a)
K2O P2O5 S % sum	0.81	0.62	0.7		0.57	0.28	0.62	0.57	0.68	(a)	0.018	(a)			
Sc ppm V Cr	1163	1300	1300						2095	(a)			16.5 18 1160	19.7 38 1470	(a) (a) (a)
Co Ni Cu Zn Ga Ge ppb As Se	1103	1300	1300						2000	(α)			19.8 220	24.6 230	(a) (a)
Rb Sr Y Zr Nb Mo Ru Rh Pd ppb Ag ppb Cd ppb In ppb Sn ppb Sb ppb Te ppb Cs ppm	(a) 187	16.3 182	18.4	(a) (a)	12.9 171	3.34 180	15.4 197	14.7 170	16.9 182		0.32 163	(a) (a)	18	15	(a)
Ba La Ce	1039 109 276	850 77.2 196	976 81.5 208	(a) (a)	1022 55.6 252	775 205	811 266	817 165	916 212	` ,	16	` ,	647 64 189	753 81 214	(a) (a)
Pr				(a)							3.33	(a)	109	214	(a)
Nd Sm Eu Gd	171 48 2.98 55	119 33.6 2.74 38.9	126 35.4 2.75 41.5	(a)	149 42.8 2.76 49.1	122 34.4 2.74 43	158 44.3 3.04	106 29.7 2.49 34.9	132 38.7 2.76 43.6	(a)	1.87 0.49 0.756	(a) (a) (a)	30 2.8	37.3 2.8	(a) (a)
Tb Dy	60.5	44.1	46.8	. ,	55.8	45.6	56.8	40.3	49.3	(a)			5.8 33.4	7.1 41.5	(a) (a)
Ho Er	35.2	26.3	28.4	(a)	00.0	31.2	00.0	24.6	.0.0		0.34	(a)			(=)
Tm Yb		23.2	25.1			26.1	37.6		27.4	. ,	0.37	(a)	19	25	(a)
Lu Hf Ta W ppb Re ppb Os ppb Ir ppb Pt ppb	29.6 4.12	23.2 3.35	25.1 3.58	(a) (a)		26.1	37.6	23.4	27.4	(a)			23.3 2.7	3.6	(a) (a) (a)
Au ppb Th ppm U ppm technique:	(a) IDM	S			5.03	4.08	4.71	3.92	4.61	(a)	0.058	(a)	10.9 4	13.6 4.4	(a) (a)

Lunar Sample Compendium C Meyer 2011

Crozaz et al. (1972), Bhandari et al. (1972) and Berdot et al. (1972) reported the density of nuclear and cosmicray tracks (less than for 14259).

Processing

The bulk soil was placed in weight bag #2 (number 1028), which was returned in D-ALSRC#1007 (it was processed in N_2 atmosphere). The processing of sample 14163/14422 was not well documented (figure 1b). A portion of 14422 (285 g) was used as the "biopool sample" for the purpose of quarantine. Other portions were set aside as "organic reserves".

Table 2: Small rocks from 14422 - -

	wt. grams	type
14425	0.79	glass sphere
14426	1.59	breccia
14427	4.47	breccia
14428	1.47	CMB
14429	3.03	CMB
14430	4.81	breccia
14431	1.7	melt rock
14432	1.81	
14433	1.23	breccia
14434	1.68	CMB
14435	0.92	CMB
14436	3.76	basalt
14437	2.65	breccia
14438	2.35	breccia
14439	1	breccia
14440	1.5	basalt
14441	1.23	breccia
14442	0.0_	breccia
14443	2.54	basalt
14444	1.56	basalt
14445	9.22	breccia
14446	0.82	basalt
14447	0.91	breccia
14448	1.06	breccia
14449	1.7	breccia
14450	1.27	breccia
14451	2.1	basalt
14452	1.77	breccia
14453	6.03	breccia

Table 3: Coarse fines.

from Kramer and Twedell 1977

	number	weight	split
Soil breccia	50	18 g	,87
Anorthosite	2	0.2 g	,88
breccia, light matrix	13	2 g	,89
breccia, dark matrix	14	3.5 g	,92
fine grained basalt, light	24	6.6 g	,90
fine grained basalt, dark	37	9.7 g	,91
aphanitic basalt ?	2	1.6 g	,93
impact melt	10	2.2 g	,94
aphanite	2	1.7 g	,95
total	154	45 g	

Table 4: Composition of granitic coarse-fines, 14161.

	Jolliff 19	93		
	,7069	,7373	,7269	
FeO	14	16	7.4	(a)
CaO	9	11.3	7.5	(a)
Na2O	1.41	0.75	0.71	(a)
Sc	30.2	42.2	15.6	(a)
Cr	361	982	680	(a)
Ni	110		110	(a)
Rb	52	21	107	(a)
Sr	160	207	190	(a)
Zr	4240	7150	1240	(a)
Cs	1.6	0.36	5	(a)
Ва	2050	740	2290	(a)
La	228	696	95.3	(a)
Sm	97	326	35.6	(a)
Eu	3.35	5.68	2.69	(a)
Tb	18.7	62.2	7.95	(a)
Yb	73.6	146	55.3	(a)
Lu	10.2	18.7	7.93	(a)
Hf	100	163	33	(a)
Ta	9.2	4.3	11	(a)
Ir ppb			6	(a)
Au ppb			4	(a)
Th	44	37	66	(a)
U	12	5.4	20	(a)
techniq	ue: a) IN	1AA		

technique: a) INAA

Selected References for 14163

Baedecker P.A., Chou C-L. and Wasson J.T. (1972) The extralunar component in lunar soils and breccias. Proc. 3rd Lunar Sci. Conf. 1343-1359.

Baur H., Frick U., Funk H., Schultz L. and Signer P. (1972) Thermal release of helium, neon, and argon from lunar fines and minerals. Proc. 3rd Lunar Sci. Conf. 1947-1966.

Berdot J.L., Chetrit G.C., Lorin J.C., Pellas P. and Poupeau G. (1972) Track studies of Apollo 14 rocks and Apollo 14, Apollo 15 and Luna 16 soils. Proc. 3rd Lunar Sci. Conf. 2867-2881.

Begemann F., Born W., Palme H., Vilcsek E. and Wanke H. (1972) Cosmic-ray produced radionuclides in Apollo 12 and Apollo 14 samples. Proc. 3rd Lunar Sci. Conf. 1693-1702.

Bhandari N., Goswami J.N., Gupta S.K., Lal D., Tamhane A.S. and Venkatavaradan V.S. (1972) Collision controlled radiation history of the lunar regolith. Proc. 3rd Lunar Sci. Conf. 2811-2829.

Bogard D.D. and Nyquist L.A. (1972) Noble gas studies on regolith materials from Apollo 14 and 15. Proc. 3rd Lunar Sci. Conf. 1797-1819.

Brunfeldt A.O., Heier K.S., Nilssen B., Sundvoll B. and Steinnes E. (1972) Distribution of elements between different phases of Apollo 14 rocks and soils. Proc. 3rd Lunar Sci. Conf. 1133-1147.

Cadenhead D.A., Wagner N.J., Jones B.R. and Stetter J.R. (1972) Some surface characteristics and gas interactions of Apollo 14 fines and rock fragments. Proc. 3rd Lunar Sci. Conf. 2243-2257.

Cadogen P.H., Eglington G., Firth J.N.M., Maxwell J.R., May B.J. and Pillinger C.T. (1972) Survey of lunar carbon compounds: II. The carbon chemistry of Apollo 11, 12, 14 and 15 samples. Proc. 3rd Lunar Sci. Conf. 2069-2091.

Carr M.H. and Meyer C.E. (1972) Chemical and petrographic characterization of Fra Mauro soils. Proc. 3rd Lunar Sci. Conf. 1015-1027.

Crozaz G., Drozd R., Hohenberg C.M., Hoyt H.P., Rajan D., Walker R.M. and Yuhas D. (1972b) Solar flare and galactic cosmic ray studies of Apollo,14 and 15 samples. Proc. 3rd Lunar Sci. Conf. 2917-2931.

Devine J.M., McKay D.S. and Papike J.J. (1982) Lunar regloith: Petrology of the <10 micron fraction. Proc. 13th Lunar Planet. Sci. Conf. in J. Geophys. Res. 87, A260-A268.

Finkelman R.B. (1973) Analysis of the ultrafine fraction of the Apollo 14 regolith. Proc. 4th Lunar Sci. Conf. 179-189.

Gibson E.K. and Moore G.W. (1972) Inorganic gas release and thermal analysis study of Apollo 14 and 15 soils. Proc. 3rd Lunar Sci. Conf. 2029-2040.

Goel P.S. and Kothari B.K. (1972) Total nitrogen contents of some Apollo 14 lunar samples by neutron activation analysis. Proc. 3rd Lunar Sci. Conf. 2041-2050.

Graf J.C. (1993) Lunar Soils Grain Size Catalog. NASA Pub. 1265

Helmke P.A., Haskin L.A., Korotev R.L. and Ziege K.E. (1972) Rare earths and other trace elements in Apollo 14 samples. Proc. 3rd Lunar Sci. Conf. 1275-1292.

Heymann D., Yaniv A. and Lakatos S. (1972) Inert gases from Apollo 12, 14 and 15 fines. Proc. 3rd Lunar Sci. Conf. 1857-1863.

Hubbard N.J., Gast P.W., Meyer C., Nyquist L.E. and Shih C.-Y. (1971b) Chemical composition of lunar anorthosites and their parent liquids. Earth Planet. Sci. Lett. 13, 71-75.

Hubbard N.J., Gast P.W., Rhodes J.M., Bansal B.M., Wiesmann H. and Church S.E. (1972) Nonmare basalts: Part II. Proc. 3rd Lunar Sci. Conf. 1161-1179.

Jolliff B.L. (1991) Fragments of quartz-monzodiorite and felsite in Apollo 14 soil particles. Proc. 21st Lunar Planet. Sci. Conf. 101-118. Lunar Planetary Institute, Houston

Keith J.E., Clark R.S. and Richardson K.A. (1972) Gammaray measurements of Apollo 12, 14 and 15 lunar samples. Proc. 3rd Lunar Sci. Conf. 1671-1680.

King E.A., Butler J.C. and Carman M.F. (1972) Chondrules in Apollo 14 samples and size analyses of Apollo 14 and 15 fines. Proc. 3rd Lunar Sci. Conf. 673-686.

Kirsten T., Deubner J., Horn P., Kaneoka I., Kiko J., Schaeffer O.A. and Thio S.K. (1972) The rare gas record of Apollo 14 and 15 samples. Proc. 3rd Lunar Sci. Conf. 1865-1889.

Kramer F.E. and Twedell D.B. (1977) Apoloo 14 coarse fines (4-10 mm) sample location and clasification. JSC 12922

Labotka T.C., Kempa M.J., White C., Papike J.J. and Laul J.C. (1980) The lunar regolith: Comparative petrology of the Apollo sites. Proc. 11th Lunar Planet. Sci. Conf. 1285-1305.

Laul J.C., Wakita H., Showalter D.L., Boynton W.V. and Schmitt R.A (1972) Bulk, rare earth, and other trace elements in Apollo 14 and 15 and Luna 16 samples. Proc. 3rd Lunar Sci. Conf. 1181-1200.

Laul J.C. and Papike J.J. (1980) The lunar regolith: Comparative chemistry of the Apollo sites. Proc. 11th Lunar Planet. Sci. Conf. 1307-1340.

Lindstrom M.M., Duncan A.R., Fruchter J.S., McKay S.M., Stoeser J.W., Goles G.G. and Lindstrom D.J. (1972) Compositional characteristics of some Apollo 14 clastic materials. Proc. 3rd Lunar Sci. Conf. 1201-1214.

LSPET (1971) Preliminary examination of lunar samples from Apollo 14. Science 173, 681-693.

Lugmair G.W. and Marti K. (1972) Exposure ages and neutron capture record in lunar samples from Fra Mauro. Proc. 3rd Lunar Sci. Conf. 1891-1897.

Masuda A., Nakamura N., Kurasawa H. and Tanaka T. (1972) Precise determination of rare-earth elements in the Apollo 14 and 15 samples. Proc. 3rd Lunar Sci. Conf. 1307-1313.

McKay D.S., Heiken G.H., Taylor R.M., Clanton U.S., Morrison D.A. and Ladle G.H. (1972) Apollo 14 soils: Size distribution and particle types. Proc. 3rd Lunar Sci. Conf. 983-995.

McKay G.A., Wiesmann H., Bansal B.M. and Shih C.-Y. (1979a) Petrology, chemistry, and chronology of Apollo 14

KREEP basalts. Proc. 10th Lunar Planet. Sci. Conf. 181-205.

Moore C.B., Lewis C.F., Cripe J., Delles F.M., Kelly W.R. and Gibson E.K. (1972) Total carbon, nitrogen and sulfur in Apollo 14 lunar samples. Proc. 3rd Lunar Sci. Conf. 2051-2058.

Morgan J.W., Laul J.C., Krahenbuhl U., Ganapathy R. and Anders E. (1972b) Major impacts on the moon: Characterization from trace elements in Apollo 12 and 14 samples. Proc. 3rd Lunar Sci. Conf. 1377-1395.

Morris R.V. (1976) Surface exposure indicies of lunar soils: A comparative FMR study. Proc. 7th Lunar Sci. Conf. 315-335.

Morris R.V. (1978) The surface exposure (maturity) of lunar soils: Some concepts and Is/FeO compilation. Proc. 9th Lunar Sci. Conf. 2287-2297.

Philpotts J.A., Schnetzler C.C., Nava D.F., Bottino M.L., Fullagar P.D., Thomas H.H., Schumann S. and Kouns C.W. (1972) Apollo 14: Some geochemical aspects. Proc. 3rd Lunar Sci. Conf. 1293-1305.

Powell B.N. and Weiblen P.W. (1972) Petrology and origin of lithic fragments in the Apollo 14 regolith. Proc. 3rd Lunar Sci. Conf. 837-852.

Quaide W. and Wrigley R. (1972) Mineralogy and origin of Fra Mauro fines and breccias. Proc. 3rd Lunar Sci. Conf. 771-784.

Rose H.J., Cuttitta F., Annell C.S., Carron M.K., Christian R.P., Dwornik E.J., Greenland L.P. and Ligon D.T. (1972) Compositional data for twenty-one Fra Mauro lunar materials. Proc. 3rd Lunar Sci. Conf. 1215-1229.

Stasheim A., Jackson P.F.S., Coetzee J.H.J., Strelow F.W.E., Wybenga F.T., Gricius A.J., Kokot M.L. and Scott R.H. (1972a) Analysis of lunar samples 14163, 14259 and 14321 with isotopic data for 7Li/6Li. Proc. 3rd Lunar Sci. Conf. 1337-1342.

Sutton R.L., Hait M.H. and Swann G.A. (1972) Geology of the Apollo 14 landing site. Proc. 3rd Lunar Sci. Conf. 27-38

Simon S.B., Papike J.J. and Laul J.C. (1981) The lunar regolith: Comparative studies of the Apollo and Luna sites. Proc. 12th Lunar Planet. Sci. Conf. 371-388.

Swann G.A., Bailey N.G., Batson R.M., Eggleton R.E., Hait M.H., Holt H.E., Larson K.B., McEwen M.C., Mitchell E.D., Schaber G.G., Schafer J.P., Shepard A.B., Sutton R.L., Trask N.J., Ulrich G.E., Wilshire H.G. and Wolf E.W. (1971)

Preliminary geologic investigations of the Apollo 14 landing site. In Apollo 14; Preliminary Science Report. NASA SP-272, 39-85.

Swann G.A., Bailey N.G., Batson R.M., Eggleton R.E., Hait M.H., Holt H.E., Larson K.B., Reed V.S., Schaber G.G., Sutton R.L., Trask N.J., Ulrich G.E. and Wilshire H.G. (1977) Geology of the Apollo 14 landing site in the Fra Mauro highlands. U.S. Geological Survey Professional Paper 880

Tatsumoto M., Hedge C.E., Doe B.R. and Unruh D.M. (1972a) U-Th-Pb and Rb-Sr measurements on some Apollo 14 lunar samples. Proc. 3rd Lunar Sci. Conf. 1531-1555.

Taylor G.J., Marvin U.B., Ried J.B. and Wood J.A. (1972) Noritic fragments in the Apollo 14 and 12 soils and the origin of Oceanus Procellarum. Proc. 3rd Lunar Sci. Conf. 995-1014.

Taylor S.R., Kaye M., Muir P., Nance W., Rudowski R. and Ware N. (1972) Composition of the lunar uplands: Chemistry of Apollo 14 samples from Fra Mauro. Proc. 3rd Lunar Sci. Conf. 1231-1249.

Walker R.J. and Papike J.J. (1981a) The relationship of the lunar regolith < 10 micron fraction and agglutinates. Part II: Chemical composition of agglutinate glass as a test of the F3 model. Proc. 12th Lunar Planet. Sci. Conf. 421-432.

Wänke H., Baddenhausen H., Balacescu A., Teschke F., Spettel B., Dreibus G., Palme H., Quijano-Rico M., Kruse H., Wlotzka F. and Begemann F. (1972) Multielement analysis of lunar samples and some implications of the results. Proc. 3rd Lunar Sci. Conf. 1251-1268.

Wasson J.T., Chou C-L., Bild R.W. and Baedecker P.A. (1973) Extralunar materials in Cone-crater soil 14141. Geochim. Cosmochim Acta 37, 2349-2353.

Willis J.P., Erlank A.J., Gurney J.J., Theil R.H. and Ahrens L.H. (1972) Major, minor, and trace element data for some Apollo 11, 12, 14 and 15 samples. Proc. 3rd Lunar Sci. Conf. 1269-1273.