Machine Learning

Clustering

Fabio Vandin

December 18th, 2023

A Model for Clustering

Let's formulate the clustering problem more formally:

- Input: set of elements X and distance function
 d: X × X → R+, that is a function that
 - is symmetric: $d(\mathbf{x}, \mathbf{x}') = d(\mathbf{x}', \mathbf{x})$ for all $\mathbf{x}, \mathbf{x}' \in \mathcal{X}$
 - $d(\mathbf{x}, \mathbf{x}) = 0$ for all $\mathbf{x} \in \mathcal{X}$
 - d satisfies the triangle inequality: $d(\mathbf{x}, \mathbf{x}') \leq d(\mathbf{x}, \mathbf{z}) + d(\mathbf{z}, \mathbf{x}')$
- **Output**: a partition of \mathcal{X} into *clusters*, that is $C = (C_1, C_2, \dots, C_k)$ with
 - $\bigcup_{i=1}^k C_i = \mathcal{X}$
 - for all $i \neq j$: $C_i \cap C_j = \emptyset$

Notes:

- sometimes the input also includes the number k of clusters to produce in output
- sometimes, the output is a dendrogram (from Greek dendron = tree, gramma = drawing), a tree diagram showing the arrangement of the clusters

A Model for Clustering (continue)

Sometimes instead of a distance function we have a similarity function $s: \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$, that is a function that:

- is symmetric: s(x, x') = s(x', x) for all $x, x' \in \mathcal{X}$
- $s(\mathbf{x}, \mathbf{x}) = 1$ for all $\mathbf{x} \in \mathcal{X}$

Choice of distances/similarity:

- depends on the type of data
- different distances may be used for the same dataset
 - ⇒ choice of distances may have an impact on the results

Classes of Algorithms for Clustering

- 1 Cost minimization algorithms
- 2 Linkage-based algorithms

Cost Minimization Clustering

Common approach in clustering:

- define a cost function over possible partitions of the objects
- find the partition (=clustering) of minimal cost

Assumptions:

- ssumptions: ihpat

 data points $x \in \mathcal{X}$ come from a larger space \mathcal{X}' , that is $\mathcal{X} \subseteq \mathcal{X}'$
- distance function $d(\mathbf{x}, \mathbf{x}')$ for $\mathbf{x}, \mathbf{x}' \in \mathcal{X}$

For simplicity: assume $\mathcal{X}' = \mathbb{R}^d$ and $d(\mathbf{x}, \mathbf{x}') = ||\mathbf{x} - \mathbf{x}'||$

k-Means Clustering

Input: data points $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m$; $k \in \mathbb{N}^+$

Goal: find

- partition $C = (C_1, C_2, \dots, C_k)$ of $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m$;
- centers $\mu_1, \mu_2, \dots, \mu_k$ with $\mu_i \in \mathcal{X}'$ center for C_i , $1 \le i \le k$

that minimizes the k-means objective (cost)

Other Objectives (Costs)

k-medoids objective:

$$\min_{\substack{\mu_1,\dots,\mu_k \in \mathcal{X} \\ \text{centeus}: \text{ one points}}} \sum_{i=1}^k \sum_{\mathbf{x} \in C_i} d(\mathbf{x}, \mu_i)^2$$

k-median objective:

$$\min_{\mu_1,...,\mu_k \in \mathcal{X}} \sum_{i=1}^k \sum_{\mathbf{x} \in C_i} d(\mathbf{x}, \mu_i)$$

Back to k-means clustering

What is more difficult: finding the clusters or finding the centers?

Proposition

Given a cluster
$$C_i$$
, the center μ_i that minimizes $\sum_{\mathbf{x} \in C_i} d(\mathbf{x}, \mu_i)^2$ is the points in
$$\mu_i = \frac{1}{|C_i|} \sum_{\mathbf{x} \in C_i} \mathbf{x}$$

Proof: Exercise

Algorithm for k-means clustering

Naive (brute-force) algorithm to solve k-means clustering?

Try all possible partitions of the m points into k clusters, evaluate each partition, and find the best one.

Is it efficient?

Depends on the number of partitions of m points into k clusters:

- trivial upper bound: k^m
- exact count: number of ways in which we can partition a set of m objects into k subsets \Rightarrow Stirling number of the second kind:

$$S(m,k) = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{k-j} {k \choose j} j^{m}$$

- simple bounds:
 - $S(m,k) \in O\left(\frac{k^m}{k!}\right)$ $S(m,k) \in \Omega\left(k^{m-k+1}\right)$

Fact

Finding the optimal solution for k-means clustering is computationally difficult (NP-hard). This is true for most optimization problems of cost minimization clusterings (including k-medoids and k-median)

Lloyd's Algorithm

A good practical $\frac{\text{heuristic}}{\text{heuristic}}$ to solve $\frac{\text{k}}{\text{-means}}$

```
iteration 0
```

```
Input: data points \mathcal{X} = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m\}; k \in \mathbb{N}^+
Output: clustering C = (C_1, C_2, \dots, C_k) of \mathcal{X}; centers
               \mu_1, \mu_2, \dots, \mu_k with \mu_i center for C_i, 1 \le i \le k;
randomly choose \mu_1^{(0)}, \ldots, \mu_k^{(0)};
for t \leftarrow 0, 1, 2, \dots do /* until convergence
     for i = 1, ..., k: C_i \leftarrow \{\mathbf{x} \in \mathcal{X} : i = \arg\min_i d(\mathbf{x}, \mu_i^{(t)})\};
    for i = 1, ..., k: \mu_i^{(t+1)} \leftarrow \frac{1}{|C_i|} \sum_{\mathbf{x} \in C_i} \mathbf{x};
     if convergence reached then
     return C = (C_1, ..., C_k) and \mu_1^{(t+1)}, \mu_2^{(t+1)}, ..., \mu_k^{(t+1)}
```

Notes

Convergence: commonly used criteria

- the k-means objective for the cluster at iteration t is not lower than the k-means objective for the cluster at iteration t - 1
- $\sum_{i=1}^k d(\mu_i^{(t+1)}, \mu_i^{(t)}) \leq \varepsilon$
- $\bullet \ \max_{1 \leq i \leq k} d(\mu_i^{(t+1)}, \mu_i^{(t)}) \leq \varepsilon$

Theorem

If the first convergence criteria above is used, then Lloyd's algorithm always terminates.

Exercize

Draw (approximately) the solution (clusters and centers) found by Lloyd algorithm for the 2 clusters (k=2) problem, when the data ($x_i \in \mathbb{R}$) are the crosses in the figure below and the algorithm is initialised with center values indicated with the circle (\circ , cluster 1) and triangle (\triangle , cluster 2) shown in the figure.

Complexity of Lloyd's Algorithm

to compute

Complexity:

- Assignment of points $x \in \mathcal{X}$ to clusters C_i : time O(kmd)
- Computation of centers μ_i : time O(md)

If convergence after t iterations $\Rightarrow O(tkmd)$

How many iterations are required for convergence?

Number of Iterations of Lloyd's Algorithm

- the number of iterations can be exponential in the input size: a trivial upper bound is $\approx k^m$ as before
- more sophisticated studies: upper bound $O\left(m^{kd}\right)$ $(\mathbf{x} \in \mathbb{R}^d)$
- recent studies: lower bound $2^{\Omega(\sqrt{m})}$ in the worst-case
- in practice: much less than m iterations are required

Note: the convergence and the quality of the clustering depends on the initialization of the centers!

Effective Centers Initialization

Is there a way to choose the initial centers that is efficient but also provably leads to good clusters?

k-means++: simple but effective center initialization strategy proposed by D. Arthur and S. Vassilvitskii (article: D. Arthur and S. Vassilvitskii. k-means++: the advantages of careful seeding. Proc. of ACM-SIAM SODA 2007.)

```
input
```

Algorithm k-means++

$$\mathcal{X} = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m\}, \text{ with } \mathbf{x}_i \in \mathbb{R}^d \text{ for } 1 \leq i \leq m; \ k \in \mathbb{N}^+$$

Given a point
$$\mathbf{x} \in \mathcal{X}$$
 and a set \mathbf{F} , let $d(\mathbf{x}, \mathbf{F}) = \min_{\mathbf{f} \in \mathbf{F}} d(\mathbf{x}, \mathbf{f})$

The algorithm to compute the initial set *F* of centers is the following:

```
From \mathcal{X} chosen uniformly at random; F \leftarrow \{\mu_1\}; for i \leftarrow 2 to k do  \mu_i \leftarrow \text{random point from } \mathcal{X} \setminus F \text{, choosing point } \mathbf{x} \text{ with probability } \frac{(d(\mathbf{x},\mathbf{F}))^2}{\sum_{\mathbf{x}' \in \mathcal{X} \setminus F} (d(\mathbf{x}',\mathbf{F}))^2}; F \leftarrow F \cup \{\mu_i\};
```

return *F*;

The following result is proved in the original paper by D. Arthur and S. Vassilvitskii.

Theorem

Let $\Phi_{k-means}^*(\mathcal{X}, k)$ be the cost of the optimal (i.e., minimum) k-means clustering of \mathcal{X} , and let $\Phi_{k-means}(\mathcal{X}, F_{k-means++})$ be the cost of the clustering \mathcal{X} obtained by:

- using the points i F_{k-means++} returned by k-means++ as centers;
- assigning each point of \mathcal{X} to its closest center.

(Note that $\Phi(\mathcal{X}, F_{k-means++})$ is a random variable.) Then

$$\mathbb{E}[\Phi_{k-means}(\mathcal{X}, F_{k-means++})] \leq 8(\ln k + 2)\Phi_{k-means}^*(\mathcal{X}, k).$$

Notes:

- the expectation $\mathbb{E}[\Phi_{k-means}(\mathcal{X}, F_{k-means++})]$ is over all possible sets $F_{k-means++}$ returned by k-means++ (with input \mathcal{X}), which depends on the random choices in k-means++.
- k-means++ already provides a good solution for k-means, but it makes sense to use it to initialize centers in Lloyd's algorithm (the solution can only improve in the next iterations, if the first convergence criteria is used)

Linkage-Based Clustering

General class of algorithms that follow the general scheme below.

Algorithm

- start from the trivial clustering: each data point is a (single-point) cluster
- until "termination condition": repeatedly merge the "closest" clusters of the previous clustering

We need to specify two "parameters":

- how to define distance between clusters
- termination condition

Linkage-Based Clustering (continue)

Different distances D(A, B) between two clusters A and B can be used, resulting into different linkage methods:

- single linkage: $D(A, B) = \min\{d(\mathbf{x}, \mathbf{x}') : \mathbf{x} \in A, \mathbf{x}' \in B\}$
- average linkage: $D(A, B) = \frac{1}{|A||B|} \sum_{\mathbf{x} \in A, \mathbf{x}' \in B} d(\mathbf{x}, \mathbf{x}')$
- max linkage: $D(A, B) = \max\{d(\mathbf{x}, \mathbf{x}') : \mathbf{x} \in A, \mathbf{x}' \in B\}$

Common termination condition:

- data points are partitioned into k clusters
- minimum distance between pairs of clusters is > r, where r is a parameter provided in input
- all points are in a cluster ⇒ output is a dendrogram

Dendrogram: Example

Dendrogram: tree, with input points $\mathbf{x} \in \mathcal{X}$ as leaves, that shows the arrangement/relation between clusters.

Exercize

Let the dataset \mathcal{X} be as in figure below. Show the output of running the single linkage clustering algorithm when the termination condition is given by having all points in a cluster.

Solution

The output is a dendrogram:

