3 РОЗРОБКА ТЕХНОЛОГІЧНОГО ПРОЦЕСУ ВІДНОВЛЕННЯ РОЗПОДІЛЮВАЛЬНОГО ВАЛУ АВТОМОБІЛЯ ГАЗ -24

3.1 Обгрунтування розміру виробничої партії

Величину виробничої партії деталей, орієнтовно можна визначити за формулою:

$$X = N*n*t / \Phi$$

де N - Виробнича програма виробів на рік; (5000 ед. – за завданням)

- n Число деталей в виробі; (1)
- t Необхідний запас деталей в днях для забезпечення безперервності збірки;
- t = 5 днів для середніх деталей, зберігання яких можливе на багатоярусних стелажах;
 - Φ число рабочих днів у році; (253 дні)
 - X = 5000*~1~*5~/~253~= 98 деталей ≈ 100 деталей
 - 3.2 Призначення і аналіз умов роботи деталі

Деталь, пропонована для проектування - вал розподільний двигуна 3МЗ-402. Дана деталь сприяє своєчасному відкриттю і закриттю клапанів двигуна внутрішнього згоряння.

Ця деталь має наступні характеристики:

- 1. Найменування деталі: вал розподільний.
- 2. Клас деталі: 2. (круглі стрижні)
- 3. Номер деталі по каталогу: 24-1006015
- 4. Кількість деталей на один ремонтується двигун: 1.
- 5. Матеріал: Сталь 45 ГОСТ 1050-88.
- 6. Твердість шийок HRC 54-62;

- 7. Маса деталі: 12 кг.
- 8. Характер деформації: вигин з крученням.

Основними поверхнями даної деталі є циліндрична поверхня опорних шийок, номінальний діаметр яких становить $Д_{\rm H} = 45_{-0.02}$.

Деталь працює в герметичному корпусі при температурі від +5 °C до +90 °C в рідкій (моторне масло) середовищі. Частота обертання знаходиться в межах від 1600 об / хв до 8000 об / хв. Виходячи із призначення і умов роботи даної деталі, можна зробити висновок, що матеріал обраний правильно.

Розподільчий вал або распредвал в газорозподільному механізмі забезпечує виконання основної функції - своєчасного відкриття і закриття клапанів, за рахунок чого проводиться приплив свіжого повітря і випуск відпрацьованих газів. У загальному вигляді розподільний вал управляє процесом газообміну в двигуні.

Для зменшення інерційних навантажень, збільшення жорсткості елементів газорозподільного механізму розподільний вал повинен розташовуватися якомога ближче до клапанів. Тому стандартне положення розподілювального валу на сучасному двигуні в голівці блоку циліндрів - т.зв. верхнє розташування розподільного валу.

У газорозподільному механізмі використовується один або два розподільних вала на ряд циліндрів. При одновальній схемі обслуговуються впускні і випускні клапани (два клапани на циліндр). У двохвальному газорозподільному механізмі один вал обслуговує впускні клапани, інший випускні (два впускних і два випускних клапана на циліндр).

Основу конструкції розподільного валу складають кулачки. На кожен клапан використовується, як правило, один кулачок. Кулачок має складну форму, яка забезпечує відкриття і закриття клапана у встановлений час, і його підйом на певну висоту. Залежно від конструкції газорозподільного механізму кулачок взаємодіє або з штовхачем, або з коромислом.

При роботі розподільного валу кулачки змушені долати зусилля зворотних пружин клапанів і сили тертя від взаємодії з штовхачами. На все витрачається корисна потужність двигуна. Зазначених це недоліків позбавлена біс пружинна система, реалізована в десмодромного механізмі. Для зменшення сили тертя між кулачком і штовхачем пласка поверхня У віддаленій може замінюватися роликом. перспективі штовхача використання магнітної системи для управління клапанами, що забезпечує повну відмову від розподільного валу. Розподільчий вал виготовляється з чавуну (литтям) або стали (куванням). Шток обертається в опорах, які представляють собою підшипники ковзання. Число опор на одне перевищує число циліндрів. Опори, в основному, роз'ємні, рідше - нероз'ємні (виконані як одне ціле з головкою блоку). В опорах, виконаних в чавунної голівці, використовуються тонкостінні вкладиші, які при зношуванні замінюються.

Від подовжнього переміщення распредвал утримують наполегливі розташовані близько приводної шестерні (зірочки). підшипники, Розподільчий вал змащується під тиском. Кращим є індивідуальний пілшипника. Значно підведення масла ДΟ кожного підвищується ефективність газорозподільного механізму з використанням різних систем зміни фаз газорозподілу, які дозволяють домогтися підвищення потужності, економічності, зниження токсичності відпрацьованих паливної газів. Розрізняють декілька підходів до зміни фаз газорозподілу:

- поворот розподільного валу на різних режимах роботи;
- використання декількох кулачків з різним профілем на один клапан;
- зміна положення осі коромисла.

Розподільчий вал в двигуні обертається рівно в два рази повільніше колінчастого валу. Система змащення двигуна передбачає постійну подачі моторного масла на розподільний вал. Незважаючи на фізичні дії, не варто забувати про досить жорстку хімічну і температурну середу в якій працює распредвал. Картерів гази в карбюраторних за складом на 80% аналогічні незгорілої паливної суміші, а в дизелях - близькі на 90% повітрю. До складу

картерних газів входять компоненти такі як CO, CO2, O2 і CH. Частка CH в дизельних двигунах нескінченно мала.

2.2 Аналіз технологічності деталі

Мета аналізу - виявлення недоліків конструкції за відомостями, що містяться в кресленні і технічних вимогах, а також можливе поліпшення даної конструкції. Розміри деталі відповідають нормальному ряду чисел, допустимі відхилення розмірів відповідають СТ. РЕВ 144 - 75. Наведених на кресленні видів і розрізів досить для однозначного уявлення про конфігурацію деталі і способах отримання заготовки. Розміри і їх граничні відхилення проставлені для всіх поверхонь.

Визначення типу виробництва

Характер технологічного процесу в значній мірі залежить від типу виробництва деталей (одиничне, серійне, масове). Це обумовлено тим, що в різних типах виробництв економічно доцільне використання різного за універсальності, механізації ступенем та автоматизації обладнання, пристосувань, різного складністю і універсальності за ріжучого і вимірювального інструмента. Залежно від виду виробництва істотно змінюються і організаційні структури цеху: розміщення устаткування, системи обслуговування робочих місць, номенклатура деталей і т.д.

По таблиці 2.1 встановлюємо попередньо тип виробництва в залежності від ваги і кількості деталей, що підлягають виготовленню протягом року.

Таблиця 2.1 - Тип виробництва в залежності від ваги і кількості деталей

Тип виробництва	Кількість оброблю типорозміру на рік	ваних деталей	одного	найменування	i
	Великі (важкі)	Середні	1	Дрібних	
Одиничне	До 5	До 10)	До 100	

Серійне	Понад 5 до 1000	Понад 10 до 5000	Понад 1000 50000	до
Масове	Понад 1000	Понад 5000	Понад 50000	

Серійне виробництво умовно поділяється на дрібносерійне, середнє серійне і великосерійне, в залежності від кількості деталей в серії. Орієнтовно такий розподіл можна зробити на основі даних таблиці 2.2.

Таблиця 2.2 – Значення виробництва дрібносерійне, середнє серійне і великосерійне

Серійність виробництва	Кількість виробів в серії (партії)			
	Великих	Великих Середніх Дріб		
Дрібносерійне	3 - 10	5 - 25	10 - 50	
Среднесерійное	11 - 50	26 - 200	51 - 500	
Багатосерійне	понад 50	понад 200	понад 500	

Таким чином, маючи річний випуск продукції 1000 штук, наше виробництво ϵ крупносерійним.

2.3 Вибір способу відновлення (зміцнення) деталі

Найбільш характерними дефектами «круглих стрижнів» ϵ :

- Знос шийок
- Пошкодження і знос різьбових поверхонь
- Погнусть
- Биття привалочних фланців
- Знос гнізд під підшипники
- Знос ексцентриків і кулачків
- Знос торцевих поверхонь буртів
- Облом і знос зубів

• Знос шліців

• Затурканість центрових отворів

Перш за все відновлюють установчі поверхні, тобто центрові отвори, потім усувають погнутости і виконують всі наплавочні операції і після механічної, а якщо і потрібно, і термічної обробки переходять до інших способів нарощування поверхонь. Завершальною операцією є шліфування з подальшим хонингованием або Супер фінішування точних поверхонь.

3.3 Схема технологічного процесу

Таблиця 1 Схема технологічного процесу

Дефект	Спосіб устране- ня	№ опер ації	Найменування і зміст операції	Установо к-чная база
Знос опорних	Обробка	1	Механічна обробка. Обробити шийки під ремонтний розмір.	Поитророз
шийок	під ремонтни й розмір	2	Шліфування. Шліфувати оброблені шийки.	Центровое отверстие
	и розмір	3	Мийка. промити деталь.	
Знос		1	Механічна обробка. Обробити	
кулачків		1	кулачки до усунення дефекту.	
	Механічн	2	Шліфування. шліфувати кулачки.	Центровое
	а обробка	3	Мийка. Промити деталь.	· •
	а обробка		Загартування. Провести	отверстие
		4	загартування оброблених	
			кулачків за допомогою ТВЧ.	
Знос		1	Шліфування. Шліфувати шийку.	
шийки		2	Декапирование.	
під			Хромування. Ізольовані не	
шестеро	Хромуван	3	хроміруемой ділянки, хромувати	Центровое
	ня		шийку під шестерню.	отверстие
		4	Шліфування. Шліфувати	
		4	хромовану поверхню шийки.	
		5	Мийка. Промити деталь.	

Таблица 2- План технологических операций.

	Наіменова-ня	ологических опер		Інстру	мент
№	і зміст операції	Устаткування	Приспособ -лення	Робочий	Ізмері- вальний
1	Обробка шийок під ремонтний розмір	Круглошлифув альний станок 36151		Шліфоваль -ний круг	Мікро- метр
2	шліфування	Круглошлифув альний станок 36151		Шліфоваль -ний круг ПП600х40х 305 24425ПСМ2	Мікро- метр
3	Мойка	Ванна з щелочним раствором	Підвіска для мийки деталей		
4	Механічна обробка кулачків	Станок для шлифування кулачків распредвалів моделі 3433	Копір для распредвал а ЗМЗ-24Д	Шліфоваль -ний круг	Скоба листовая 32.00 мм
5	Шліфування	Станок для шлифування кулачків распредвалів моделі 3433	Копір для распредвал а ЗМЗ-24Д	Шліфоваль -ний круг ПП600х40х 305 24425ПСМ2 5КВА	скоба листова 32.00 мм
6	Мойка	Ванна з лужним розчином	Підвіска для мийки деталей		
7	Загартування	Піч для закалки ТВЧ			
8	Шліфування	Круглошліфува льний верстат 36151		Шліфоваль -ний круг ПП600х40х 305 24425ПСМ2 5КВА	Штанген- циркуль ЩЦ – 1- 125-0,01 ГОСТ 166- 80
9	Хромування	Ванна гальванічна	Підвіска для хромірова- ня деталі		Штанген- циркуль ЩЦ – 1- 125-0,01
10	Шліфування	Круглошліфува льний верстат		Шліфоваль -ний круг	Штанген- циркуль

Изм	Лист	№ докум	Подпись	Дата

		36151		ПП600х40х	ЩЦ — 1-
				305	125-0,01
				24425ПСМ2	ГОСТ 166-
				5КВА	80
		Ванна з	Підвіска		
11	Мойка	лужним	для мийки		
		розчином	деталей		

3. 4 Розробка операцій по відновленню деталей

Вихідні дані (для операції 9):

Деталь - вал розподільний ЗМЗ-402 кулачки.

 $d = 32\pm0,025$ мм $a-6=6,6\pm0,05$ мм (ремонтный чертёж детали).

Матеріал – сталь 45 за ГОСТ 1050-88;

Твердість HRC=56;

Маса деталі – не більше 5 кг;

Устаткування - ванна гальванічна;

Установка деталі - завішування в ванні;

Таблиця 3 Зміст операції

№ перехід	Зміст переходу
1	Помістити деталь в гальванічну ванну
2	Хромувати шийку с D=27,85 до d=28,0
3	Зняти деталь

Визначаємо припуск на обробку при хромування:

номінальний діаметр Дном = 28.0 (+0.017; -0.002) (по робочим кресленням)

Приймаємо до розрахунку d $_{\text{ном}} = 28,0$

 $(\text{r.e. Dmax} = 28,017; \quad \text{Dmin} = 27,998)$

Діаметр зношеної поверхні (за завданням) дизноса = 27,85 мм.

Перед хромуванням деталь шліфують «як чисто» для усунення слідів зносу і додання правильної геометричної форми.

Припуск на шліфування (на діаметр) $2*\sigma_1=0,1$ (6.стр186)

		Никоровский				Лист
		Деменев В.М.			КП РА 09 00 00 ПЗ	
Изм	Лист	№ докум	Подпись	<i>Дата</i>	111.11.05.00.00.113	12
-						

3 урахуванням шліфування «як чисто» діаметр шийки складе:

Dmin = d ізноса -
$$2\sigma_1 = 27,85 - 0,1=27,75$$
.

Для відновлення розміру отвори слід нанести шар металу (хромуванням) такої товщини, щоб після обробки забезпечити розміри і шорсткість по робочим кресленням, виконавши попередню і остаточну обробки. При призначенні товщини покриття необхідно враховувати припуск на подальше шліфування деталі в межах 0.2 - 0.25 мм.

Определяем припуск на шлифование после хромирования.

Попереднє: $2\sigma_2=0,050$.

Залишкова: 2 □ 3 = 0,15.

Таким чином, максимальний діаметр отвору після хромування повинен бути:

Dmax = dhom +
$$2\sigma_2 + 2\sigma_3 = 27,85 + 0,050 + 0,15 = 28,05$$

Следовательно, толщина гальванического покрытия должна быть не менее:

$$H = (dmax-dmin)/2 = (28,05 - 27,75)/2 = 0,15$$

Результати розрахунку:

1. Шліфованіе до хромування «як чисто»:

Припуск σ_1 =0,050

2. Товщина хромиромування:

Припуск Н=0,2

- 3. Шліфування після хромування:
- попередн ϵ

Припуск $\sigma_2 = 0.025$

- окончательное

Припуск σ₃=0,075

Изм	Лист	№ докум	Подпись	Дата
-				

КП.РА.09.00.00.ПЗ

Розраховуємо режими обробки:

За основний час при нормуванні гальванічних робіт приймають тривалість покриття.

Основний час визначається:

$$T = 60 * H * r / C * Дк * η$$

де Н – товщина осаду покриття на сторону, м (6. табл.221)

r - щільність осідає, металу, кг/м³ r = 7.8 г/ см

C – електрохімічний еквівалент, г/а.ч (6. табл.222) C = 1,042 г/а ч

Дк – катодний щільність струму, $A/дм^2$ (6. табл.223)

η - вихід металу по струму в % (6. табл.223)

$$To = (60 * 0.415 *7800) / (1.042 * 40 * 85) = 54.82 \text{ мин}$$

Допоміжний час приймається підготовка обладнання до роботи, підготовка вироби для покриття, завантаження і вивантаження, монтаж його в пристосуванні і т.д и т.д. (6.табл. 225-232)

Допоміжний час

$$T_B = 0.07 + 0.27 + 0.13 + 0.05 + 0.04 + 0.12 = 12.56$$
 мин

Додатковий час:

$$T_{\pi}=14\%$$
 (To +Tв) (6. стр. 192)

Тд=9,43 мин

Штучний час

$$T_{III} = T_O + T_B + T_A$$

$$T$$
ш = $54,82 + 12,56 + 9,43 = 76,81$ мин

Вихідні дані (для операції 2)

Деталь - вал розподільний ЗМЗ-24Д опорні шийки d = 52-0.02мм

Матеріал - сталь 45 по ГОСТ 1050-74

Tвердість - HRC = 54

Маса деталі - не більше 5 кг

Устаткування - Круглошліфувальний верстат 36151

Спосіб установки - центрові отвори

Інструмент - Шліфувальний круг ПП600х40х305 24425ПСМ25КВА

Необхідна точність - 52-0.02 мм

Необхідна шорсткість - не більше Ra = 0.32 по ГОСТ 2789-73

Умови обробки - охолодження суміш гасу з маслом

Таблиця 4 Зміст операції

№	Зміст переходу
переходу	
1	Встановити вал розподільник в центрові отвори
2	Налаштувати швидкість обертання шпинделя
3	Включити подачу МОР (суміш гасу з маслом)
4	Шлифовать опорные шейки до 51.75-0.02мм

Визначаємо припуск на обробку опорних шийок вала розподільного ЗМЗ-24Д

Номинальный размер Д $_{\text{ном}}$ =52 $_{\text{-0.02}}$ мм

Приймаємо до розрахунку $d_{\text{ном}}$ =51.998мм

Приймаємо до розрахунку 51.890мм

Наступний ремонтний розмір 51.750-0.02мм

Визначаємо припуск на шліфування до наступного ремонтного розміру

Попереднє $2\sigma_2 = 0.100$ мм

Остаточне $4\sigma_4$ =0.040мм

Изм	Лист	№ докум	Подпись	Дата

КП.РА.09.00.00.ПЗ

Jiucm

Результати розрахунку

Шліфування до ремонтного розміру

Попереднє: пріпуск σ_2 =0,050мм

Остаточне: припуск σ_4 =0,010мм

Визначити штучний час на шліфування опорних шийок розподільного вала ЗМЗ-24д. Припуск на шліфування -0,140. діаметр шийки-51,75. обладнання - Круглошліфувальний верстат 36151

1. Виконуємо розрахунки режимів обробки для даної операції

2. Основний час

3.
$$T_o=Z*K\setminus n_u*S_t$$

$$Z=0,140$$
 $N_u=184$

$$K=1,7$$

Частота обертання оброблюваної деталі

Швидкість обертання V_u= 30м\мин

За паспортом верстата N_u =140 об\мин

Радіальна подача $S_t = 0.005$

$$N_u=1000*V_u\\Pi d=1000*30\3,14*51,75=184$$
 об\мин

$$T_o = Z*K \setminus n_u*S_t = 0,140*1,7 \setminus 184*0.005 = 0,25$$
мин

На деталь: $T_o=4*0,25=1$ мин

4. Вспомогательное время

$$T_{\text{в}}^{\text{cy}} = 1,0 \text{ мин}$$
 $T_{\text{в}}^{\text{пр}} = 1,0+4*0,55=3,2 \text{ мин}$

$$T_{\text{в}} = T_{\text{в}}^{\text{ cy*}} T_{\text{в}}^{\text{пр}} = 1,0 + 3,2 = 4,2 \text{ мин}$$

5. Дополнительное время

$$T_g$$
= $K(T_o+T_B)$ \100= $9(1+4,2)$ \100= $0,46$ мин

6. Штучное время

$$T_{\text{iiit}}$$
=1 + 4,2 +0,46 = 5,66 мин.

4 Організація праці на механічній дільниці

4.1 Загальна характеристика ділянки

Ділянка призначена для ремонту деталей слюсарно-механічної обробки, а також виготовлення деяких деталей нетоварної номенклатури (додаткових ремонтних, простих осей, валів). Базисні деталі (блоки циліндрів, балки передніх мостів, картера) на цій ділянці, як правило не ремонтують.

4.2 Виробничий процес на ділянці

№ докум

Подпись

Лист

4.3 Розрахунок виробничої площі механічного ділянки

Таблиця 5 Устаткування й оснащення для механічного ділянки.

№ п/п	Наименование оборудования	Модель	Принятое кол- во	Габаритные размеры в плане, мм.	Общая занимае мая. площ м ²	Потреб ляемая мощ- ность, квт.
1	Универсальный токарно- винторезный станок	1E604	1	1180X590	0,7	1,1
2	Радиально- сверлильный станок	2M55	1	2670X1000	2,67	4,0
3	Вертикально- сверлильный станок	2H135	1	1245X815	1,0	4,0
4	Поперечно- строгальный станок	7B36	1	2950X1430	4,22	3,5
5	Универсальный консольно- фрезерный станок	6Р83Ш	1	2600X2135	5,55	10,0
6	Внутришлифова льный станок универсальный высокой точности	3K227	1	2815X1900	5,35	4,0
7	Круглошлифова льный станок	36151	1	3060X2000	6,12	4,0
8	Станок для шлифования кулачков распределитель ных валов	3433	1	2580X1550	4,0	3,5
9	Пресс гидравлический	P-342- M1	1	1700×650	1,1	3,0
		30,71	37,1			

Розраховувати площа механіческго ділянки:

де Кп- коефіцієнт щільності розміщення обладнання,

Для механічного ділянки Кп = 4,5

$$F$$
уч = 30,71 * 4,5 = 138,2 м², принимаем 144 м² (12х12)

Приймаємо ширину поста В= 12 м

$$Z=F_{\pi}/B$$

Z= 138,2/12= 11,52 принимаем длину поста 12 м

Окончательно площадь поста:

$$F_{II} = B*Z$$

$$F_{\pi} \!=\! \! 12 \! * \! 12 \! = \! \! 144 \ \mathsf{m}^2$$

Размер колон- 600×600 мм

Наружная стена-520 мм

При проектировании участка, годовой объем работ рассчитывается по формуле:

$$T_p = t * n * N * K_{mp},$$

где t – трудоемкость на единицу продукции, чел-ч

n – число одноименных деталей в изделии, шт

N – годовая программа

 $K_{\rm мp}-$ маршрутный коэффициент ремонта =1,07

$$t=~2,01$$
 чел-ч , $n{=}1$; $N=7000,~K_{\text{мp}}{=}~1,07$

$$T_p = 2.01 * 1 * 5000 * 1.07 = 10750.9$$

Расчет количества производственных рабочих на участке.

Состав рабочих для участка рассчитывается по формуле:

$$M_{c\pi} = T_{rp} \backslash \Phi_{дp}$$
 , где

 $M_{c\pi}$ – состав работающих, чел

 $\Phi_{\mbox{\scriptsize дp}}-$ фонд времени действительного рабочего, ч.

$$T_r = 10750.9$$
 чел-ч $\Phi_{дp} = 2070$

 $M_{c\pi} = 10750,9 \ 2070 = 5,07$ чел принимаем 6 чел.

Изм	Лист	№ докум	Подпись	Дата