

Reference:

Montgomery – Introduction to Statistical Quality Control

1

Control charts for variables and assumptions

Normality:

- Xbar Control Chart:
 - Known parameters: central limit theorem (sample mean is approx. Normal even though single observations are non-normal)
 - Unknwon parameters: we need an estimate of s based on R or s (R is better)
- R chart is more robust than S and S 2 charts with respect to small departures from normality

Solution: Box-Cox transformation on the original data

Quality Data Analysis- BM Colosimo

POLITECNICO MILANO 1863

Control charts for variables and the assumptions: Non-random patterns

Pbm: A large variety of possible violations to random patterns do exist (linear and nonlinear trends):

- Trends
- Seasonal patterns
- Autocorrelation
- Other systematic patterns

and many possible combinations of the aforementioned features

- G.E.P. Box in chemical processes
- Montgomery and Friedman (1989) in manufacturing of integrated circuits
- Alwan and Bissel (1988) in clinical analyses

Alwan and Roberts (1995) in an empirical study on quality of products and services: systematic patterns represent 80% of the real patterns observed in reality

Quality Data Analysis- BM Colosimo

POLITECNICO MILANO 1863

3

3

How does traditional SPC work in these cases?

Montgomery (1996): Among the [required] assumptions, the most important one is the independence assumption, ... Traditional control charts [Shewhart, CUSUM, EWMA] give unrealiable results when data arte correlated

Example 1:

1. Daily weight – autocorreleted process

(weight.dat)

Three out of controls?

Looking for assignable causes - none

Quality Data Analysis- BM Colosimo

POLITECNICO MILANO 1863

Δ

Advanced data monitoring vs Shewhart control chart

Main difference between advanced data monitoring and Shewhart approach

(Hoerl and Palm -1992)

Statistical modeling: "Fit the model to the process"

Shewhart control charts: "Fit the process to the model", where

model=NID

Quality Data Analysis- BM Colosimo

POLITECNICO MILANO 1863

8

8

Advanced data monitoring

- Fit the model to the initial data and compute the residuals
- Design a control chart for the residuals. Residuals are differences between the forecast values (deterministic component of the model) and measured ones.
- If the model is correct, residuals are independent and identically (normally) distributed (when process is in-control).
- Two different 'charts' can be used:
 - 1. Fitted-Values Chart: it has no control limits; it shows just the fit versus the actual data to take a look to the non-random process pattern
 - 2. Special-Cause Chart: I-MR control chart on model residuals: it is used to monitor the random component of the process

Quality Data Analysis- BM Colosimo

POLITECNICO MILANO 1863

Advanced data monitoring

Phase 1 vs Phase 2

Phase 1: consists of estimating the data model and parameters (indentifying and fitting the right model and estimate all the parameters)

Phase 2: model and parameters are assumed to be KNOWN and are just used to compute residuals and check if they are in control or not

Quality Data Analysis- BM Colosimo

POLITECNICO MILANO 1863

10

Examples

Ex.1: Trend

Ex. 2: Non-linear trend + non-normality

Ex. 3: Autocorrelation (meandering process)

Ex. 4: Trend + autocorrelation

Quality Data Analysis- BM Colosimo

POLITECNICO MILANO 1863

Ex. 1: Trend (Trend control chart)

Several processes, in practical applications, exhibit a systematic (and natural) change over time of the quality characteristic

- Examples: tool wear, continuous improvement, etc.

In these cases, we need a proper quality control tool.

Quality Data Analysis- BM Colosimo

POLITECNICO MILANO 1863

12

12

Example:

Camber measurements (in minutes) on one vehicle randomly selected in every production period

Table 5.4	Camber measurements										
-50.4000	-47.4000	-43.8000	-43.0000	-47.6000	-42.6000	-44.0000					
-42.6000	-44.0000	-38.2000	-45.2000	-42.2000	-46.8000	-45.6000					
-47.6000	-54.5000	-42.8000	-44.2000	-44.0000	-46.6000	-52.0000					
-47.6000	-48.4000	-38.6700	-52.2000	-50.4000	-46.2000	-50.4000					
-43.5000	-48.0000	-57.0000	-48.5000	-46.8000	-48.8000	-54.8000					
-59.0000	-60.0000	-51.2500	-56,0000	-53.0000	-56.3300	-47.6000					
-49.2500	-48.2000	-47.6000	-57.2000	-63.6700	-50.8000	-56.8000					
-58.5000	-56.4000	-53.0000	-61.2000	-61.8000	-62.8000	-50.0000					
-58.2500	-47.6000	-52.0000									

(vehicle2.dat)

Quality Data Analysis- BM Colosimo

POLITECNICO MILANO 1863

13

$$b_0 + b_1 t \pm 3 \frac{\overline{MR}}{d_2(2)}$$

The regression equation is vehicle 2 = -42.8 - 0.241 t

Model for process mean:

$$b_0 + b_1 t_1$$

Contro limits for process mean:

$$b_0 + b_1 t \pm 3 \frac{\overline{MR}}{d_2}$$

$$S = 4.565$$
 $R-Sq = 45.6\%$ $R-Sq(adj) = 44.6\%$

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	1	994.92	994.92	47.75	0.000
Residual Error	57	1187.73	20.84		
Total	58	2182.65			

Quality Data Analysis

16

16

If we try to detrend the process: control limits for future periods may indicate the success of the detrending operation

$$UCL = -42.8 - 0.241t + 3\left(\frac{4.748}{1.128}\right) = -30.2 - 0.241t$$

$$CL = -42.8 - 0.241t$$

$$LCL = -42.8 - 0.241t - 3\left(\frac{4.748}{1.128}\right) = -55.4 - 0.241t$$

Quality Data Analysis- BM Colosimo

POLITECNICO MILANO 1863 17

Fitted-Values Chart & Special-Cause Chart

Consider the previous example: let's analyse the residual time series.

Residuals:

Verify the goodness of the trend model. Check assumptions on residuals:

- Independence
- Normality

Quality Data Analysis- BM Colosimo

POLITECNICO MILANO 1863

8

18

```
residual
                       0.0000
                The observed number of runs =
                                                30
                                                              Check the absence of systematic
                The expected number of runs =
                                                30.4237
                31 Observations above K 28 below
                    The test is significant at 0.9112
                                                              patterns in the residual time
                    Cannot reject at alpha = 0.05
                                                              series (IID assumption)
                                (a) Runs test
 ACF of residual
           -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
    0.115
                                     XXXX
    -0.001
                                     Х
    -0.096
                                   XXX
    -0.058
                                    XX
    -0.042
                                    XX
    -0.032
                                    XX
    -0.155
                                 XXXXX
                                                              The ACF shows that no significant
    -0.163
                                 XXXXX
    -0.148
                                                              correlation exists (first 15 lags)
 10
    0.141
                                     XXXXX
    -0.073
                                   XXX
 12
    -0.093
                                   XXX
 13
    -0.083
                                   XXX
                                     XXXXXX
 14
     0.201
 15
    0.194
                                     XXXXXX
                                 (b) ACF
Quality Data Analysis
                                          Quality Engineering
```


Fitted-Values Chart & Special-Cause Chart

We can design the fitted-values chart (FVC) on the same data:

Both the control charts work by applying a retrospective analysis to the process.

Indeed, they rely on values (fitted values or residuals) computed after process observation.

The FVC provides a tool to determine the natural process behaviour (deterministic component) that may be helpful to improve the process itself.

The SCC provides a tool for process improvement, because it highlights any possible special cause that is not related with the natural process behaviour.

Quality Data Analysis 22

22

	Example: time between Table 5.5						
omputer failures	83.483	86.267	331.750	17.783	37.967	126.417	38.917
ina din harra la atrica an	32.533	50.467	64.534	38.700	51.267	170.390	100.640
ime (in hours) between	19.683	28.683	74.817	27.667	85.500	54.083	217.58
rashes of an information	113.550	168.200	5.867	44.400	142.600	12.567	95.91
	40.883	68.933	13.500	84.000	624.819	99.150	49.08
ystem of a Mid-West bank	13.083	14.450	83.883	36.550	40.950	58.750	61.91
IC A \	103.050	30.283	270.000	1.233	97.183	86.883	28.71
JSA)	81.817	3.800	55.483	15.633	15.417	4.833	1.000
/fa:1a alast\	78.400	37.683	73.467	32.617	43.833	86.650	29.350
(failure.dat)	24.000	42.000	1.500	97.500	65.750	34.083	39.16
	8.750 12.233	5.250 1.183	75.917 9.667	22.483	88.100	54.500	4.66
600	UN M		-	-	ems to be		:

		Regression Analy	sis: trans(f	ail) versus t**2							
		The regression equation is									
		trans(fail) =	2.33 -0.0	000095 t**2							
Step	1	Predictor	Coef	SE Coef	T	P					
Constant	2.327	Constant	2.32724	0.07656	30.40	0.000					
		t**2 -0.0	0009523	0.00002634	-3.62	0.001					
t**2	-0.00010	S = 0.4547	R-Sq =	14.4% R-	Sq(adj) = 1	3.3%					
T-Value	-3.62										
P-Value	0.001	Analysis of Va	riance								
		Source	DF	SS	MS	F	P				
S	0.455	Regression	1	2.7030	2.7030	13.07	0.001				
R-Sq	14.35	Residual Error	78	16.1284	0.2068						
R-Sq(adj)	13.26	Total	79	18.8313							
C-p	0.3	Regression Analysis: trans(fail) versus t									
		The regression	equation	n is							
*****		trans(fail) =	2.43 - 0	.00770 t							
With line	ear trend	Predictor	Coef	SE Coef	T	P					
		Constant	2.4321	0.1032	23.57	0.000					
		-0	.007699	0.002213	-3.48	0.001					
Quality Data A	nalysis- BM Colo	s = 0.4572	R-Sq =	13.4% R-	Sq(adj) = 1	2.3%					

Alpha-to-	Enter: 0.0	5 Alpha-to-Re	move: 0.05					
Response is	s trans(fa	on 4 predict	ors, with $N = 80$					
Step	1	2	Regression Analysis	: trans(fail) versus t**2, s	pecial		
Constant	2.327	2.298		•	,			
t**2	-0.00010 -	0.00009	The regression	equa	tion is			
T-Value	-3.62	-3.62		-				
P-Value	0.001	0.001	trans(fail) =	2.30	-0.000090 t*	*2 + 1.42	special	
special		1.42						
T-Value		3.30	Predictor	Coef	SE Coef	T	P	
P-Value		0.001	Constant 2.	29819	0.07268	31.62	0.000	
S	0.455	0.428	t**2 -0.000	09005	0.00002487	-3.62	0.001	
R-Sq	14.35	24.94	special 1	.4236	0.4320	3.30	0.001	
R-Sq(adj)	13.26	22.99						
C-p	10.1	1.4	S = 0.4285	R-Sq =	24.9% R-S	q(adj) = 2	3.0%	
			Analysis of Vari	ance				
			Source	DF	SS	MS	F	P
			Regression	2	4.6961	2.3481	12.79	0.000
			Residual Error	77	14.1352	0.1836		
Quality Data A	Analysis		Total	79	18.8313			31

Fitted Value Chart:

For a better interpretation, let's look back to original data (before transformation)

Attention: time between crashes has been decreasing!

Quality Data Analysis- BM Colosimo

600 -500 -400 -200 -100 -0 10 20 30 40 50 60 70 80

34

Remark:

If after control chart design on residuals there is an out of control with assignable cause: the observation shall be removed

- Re-estimation of linear regression coefficients
- Control chart design on new residuals

Quality Data Analysis- BM Colosimo

POLITECNICO MILANO 1863

Is there a unique explanation for the systematic pattern? ACF of phos phos -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 0.518 XXXXXXXXXXXX The observed number of runs 27 0.294 XXXXXXX The expected number of runs 45.9778 XXXX 44 Observations above K 46 below -0.013 The test is significant at 0.0001 -0.101 xxxx -0.125 XXXX xxxxxx (a) Runs test -0.222 xxxxxx It looks like an -0.203 xxxxxx 10 -0.224 XXXXXX -0.185 xxxxxx autocorrelated 12 -0.172 xxxxx 13 -0.090 XXX -0.035 process, but a XX 16 0.082 stationary one (stable 17 0.078 XXX 18 0.078 XXX -0.006 mean) 20 -0.071 xxx 21 -0.069 XXX 22 -0.132 **PACF** XXXX (b) ACF **POLITECNICO MILANO 1863 Quality Data Analysis- BM Colosimo**

Adjustment? Assume target=0.045 and:

- departure from target determines computable loss (e.g., quadratic?)
- adjustment cost (to get back to target value) is known

 It is possible to compute values for which we have expected loss = adjustment cost ACTION LIMITS

 Quality Data Analysis

38

Quality Data Analysis

Control charts for variables and assumptions

Non-random pattern (process is not IID)?

- For I-MR chart (between observations)
- For chart with n>1: non-random pattern within the sample

Quality Data Analysis- BM Colosimo

POLITECNICO MILANO 1863

	ity cor	ntent d	of a te	extile	product n	neasured a	at (5) regular intervals:	
6:00	-	:00		:00	18:00	22:00	on 25 consecutive days	
aul	6:00	10.00	14:00	19.00	22.00			(ishikawa.dat)
subgroup						mean	range	
1	14.0	12.6	13.2	13.1	12.1	13.00	1.9	
2	13.2	13.3	12.7	13.4	12.1	12.94	1.3	
3	13.5	12.8	13.0	12.8	12.4	12.90	1.1	
4	13.9	12.4	13.3	13.1	13.2	13.18	1.5	
5	13.0	13.0	12.1	12.2	13.3	12.72	1.2	
6	13.7	12.0	12.5	12.4	12.4	12.60	1.7	
20	13.9	13.0	13.0	13.2	12.6	13.14	1.3	
21	13.3	12.7	12.6	12.8	12.7	12.82	0.7	
22	13.9	12.4	12.7	12.4	12.8	12.84	1.5	
23	13.2	12.3	12.6	13.1	12.7	12.78	0.9	
24	13.2	12.8	12.8	12.3	12.6	12.74	0.9	
25	13.3	12.8	13.0	12.3	12.2	12.72	1.1	

First obs. (1) is the largest one in the sample for 21 days in 25 (expected value (1/5)25=5 gg)

Insert seasonality index:

Independent variable *6hours* (=1 if the observation is the first one in the sample, 0 otherwise) and estimate the deterministic component of the model via regression

Quality Data Analysis

50

Regression Analysis: ishikawa versus ore6 The regression equation is ishikawa = 12.8 + 0.865 ore6Predictor Coef SE Coef Constant 12.7670 0.0408 312.61 0.000 0.86500 p-value<0.0005 ore6 0.09132 9.47 0.000 S = 0.4084R-Sq = 42.2%R-Sq(adj) = 41.7%I and MR Chart for RESI1 Individual Value I-MR on residuals UCL=1.435 Moving Range 51 **Quality Data Analysis**

Fitted line plot: by removing the start-up effect, a variability reduction of about 42.2% would be achieved (R²)

Conclusion 1: important information may be lost (masked) by studying the sample statistics only

Conclusion 2: keep track of how data have been collected within the sample!!

Quality Data Analysis

52

52

W.A. Shewhart (1931) *Economic Control of Quality Manufactured product:*

- 204 electrical resistance consecutive measurements (M Ω) (shewhart.dat)
- n=4 (arbitrary choice as stated by Shewhart)

Xbar/R Chart for shewhart

✓ 10 mean values (19.6% of all values) are out-of-control

✓ with run rules: 10 more out-of-control (globally 17 samples - 35% of totalseem to be out-of-control)

53

Analogously to the previous example: I control chart directly applied on process means

Figure 6.18 Subgroup means for megohm data with different control limits.

Contrary to the previous example: between-sample standard deviation

Quality Data Analysis

54

54

• Conclusions:

-Detrimental effects due to non-random patterns within the subgroup. E.g., Shewhart with positive autocorr. → standard dev. is understimated → many unjustified out-of-control observations

Quality Data Analysis

60

60

Control chart for process mean: gapping-batching

Non-random patterns within the sample yield:

- Wrong estimation of process dispersion;
- Non-randomness that may characterize the sample mean sequence too
 - 1. Identify a model for non-random pattern directly on the sample mean sequence
 - 2. Gapping (sampling)-Batching

Strategy n° 2: What types of time series does it work for?

The process that generates the observed data must be stationary.

- Theoretically speaking, if the process is not stationary (e.g., trend, random walk, ...)
 it is not possible to remove the relationship between observed means
- Practically speaking, it might look like one could remove the relationship between observations even though the process is not stationary

Quality Data Analysis- BM Colosimo

POLITECNICO MILANO 1863

Data: daily values of Standard & Poors index (S&P) from January 6, 1992 to December 24, 1992 (sp500.dat)

- Remind: time series of economic/finantial indexes often follows a random walk
- BATCHING: consider subgroup=week (from Monday to Friday):

- ✓ means: non-random pattern
- ✓ Control limits are so tight that more than 50% of observations are out-of-control ✓ Missing data (days off)

64

64

Quality Data Analysis

Random walk is a special case of AR(1) with $\phi=1$

 $Y_t = \mu + Y_{t-1} + \varepsilon_t$

Partial Autocorrelation Function for mean

After batching: gapping: consider one subgroup every three weeks: from 51 subgroups to 13

Autocorrelation Function for mean_1 over4

Autocorrelation seems to be filtered out (but only because the number of data is reduced): add means (with gapping) from dec. 92 to dec. 93

Figure 6.28 Subgroup mean chart for gapped S&P subgroups.

66

66

Quality Data Analysis

Work on 51 process mean values as they were individuals:

The regression equation is mean = 18.3 + 0.957 mean t-1

50 cases used 1 cases contain missing values

Predictor	Coef	SE Coef	Т	P	It looks like a
Constant	18.33	33.76	0.54	0.590	random walk
mean t-1	0.95691	0.08133	11.77	0.000	even on process
S = 4.154	R-Sq = 7	4.3% R-S	sq(adj) = 7	3.7%	means

Indeed:

$$Y_{t+5} = \mu + Y_{t+4} + \varepsilon_{t+5} = 2\mu + Y_{t+3} + \varepsilon_{t+4} + \varepsilon_{t+5} = 3\mu + Y_{t+2} + \varepsilon_{t+3} + \varepsilon_{t+4} + \varepsilon_{t+5} = \dots = 5\mu + Y_t + \sum_{j=1}^{3} \varepsilon_{t+j}$$

$$Y_{t+k+5} - Y_{t+k} = 5\mu + \sum_{j=1}^{5} \varepsilon_{t+k+j}$$

Sample mean

$$\frac{1}{5} \left(\sum_{k=6}^{10} Y_{t+k} \right) - \frac{1}{5} \left(\sum_{k=1}^{5} Y_{t+k} \right) = \frac{1}{5} \left(\sum_{k=1}^{5} (Y_{t+k+5} - Y_{t+k}) \right) = \frac{1}{5} \left(\sum_{k=1}^{5} \left(5\mu + \sum_{j=1}^{5} \varepsilon_{t+k+j} \right) \right) = 5\mu + \underbrace{\frac{1}{5} \left(\sum_{k=1}^{5} \sum_{j=1}^{5} \varepsilon_{t+k+j} \right)}_{\text{comb. lineare: } \varepsilon_{t}'} \quad \mathbf{AR}(1)$$

Quality Data Analysis

R chart with correlation within the group

Thus far, our attention has been on the chart for process mean

R chart: even with severe autocorrelation, the sample range exhibits a random pattern, but:

The distribution of R values becomes more and more asymmetric as the autocorrelation increases

Two out-of-control data: by the way, control limits at $\pm 3\sigma_R$ are appropriate?

- -Probability limits (if data follow NID distribution)
- -Data transformation (Range)

70

70

Runs Test: range 5.2498 The observed number of runs = The expected number of runs = 26.4118 24 Observations above K 27 below The test is significant at Autocorrelation Function for range ^0.5 1.0 0.8 0.6 0.4 0.2 0.0 -0.2 -0.4 -0.6 -0.8 -1.0 Despite non randomness Autocorrelation of original data, the ranges exhibit a random pattern Corr LBQ Corr LBQ -0.02 7.87 -0.22 2.52 -N 14 3.25 0.08 8.24 -0.11 -0.78 0.05 0.35 3.40 10 0.03 0.19 8.30 -1.02 4.72 8.91 -0.15 -0.09 -0.60 0.020.13 71 **Quality Data Analysis**

