

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/645,045	08/20/2003	Bradley J. Booth	P16186	8124
59796	7590	03/29/2007	EXAMINER	
INTEL CORPORATION c/o INTELLEVATE, LLC P.O. BOX 52050 MINNEAPOLIS, MN 55402			KUNAMNENI, HARI P	
			ART UNIT	PAPER NUMBER
			2109	
SHORTENED STATUTORY PERIOD OF RESPONSE		MAIL DATE	DELIVERY MODE	
3 MONTHS		03/29/2007	PAPER	

Please find below and/or attached an Office communication concerning this application or proceeding.

If NO period for reply is specified above, the maximum statutory period will apply and will expire 6 MONTHS from the mailing date of this communication.

7H

Office Action Summary	Application No.	Applicant(s)
	10/645,045	BOOTH ET AL.
	Examiner	Art Unit
	Hari Kunamneni	2109

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on _____.
- 2a) This action is FINAL. 2b) This action is non-final.
- 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1-34 is/are pending in the application.
 - 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
- 5) Claim(s) _____ is/are allowed.
- 6) Claim(s) 1-34 is/are rejected.
- 7) Claim(s) 20 is/are objected to.
- 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
- 10) The drawing(s) filed on 8/20/2003 is/are: a) accepted or b) objected to by the Examiner.

Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).

Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
- 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
 - a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).
- * See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

- | | |
|---|---|
| 1) <input checked="" type="checkbox"/> Notice of References Cited (PTO-892) | 4) <input type="checkbox"/> Interview Summary (PTO-413) |
| 2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948) | Paper No(s)/Mail Date. _____ . |
| 3) <input checked="" type="checkbox"/> Information Disclosure Statement(s) (PTO/SB/08)
Paper No(s)/Mail Date <u>See Continuation Sheet</u> . | 5) <input type="checkbox"/> Notice of Informal Patent Application |
| | 6) <input type="checkbox"/> Other: _____. |

Continuation of Attachment(s) 3). Information Disclosure Statement(s) (PTO/SB/08), Paper No(s)/Mail Date :July 11, 2005,
March 25, 2005, Aug. 20, 03.

DETAILED OFFICE ACTION

Specification Objections

1. The disclosure is objected to because of the following informalities:
 - i. Summary of the invention is missing (see MPEP 608.01(d))
 - ii. Cover page (page #1) is not required.
 - iii. Brief summary of invention sub-title is missing.

Appropriate correction is required.

Drawings Objections

2. New corrected drawings in compliance with 37 CFR 1.121(d) are required in this application because , the drawings are informal. Applicant is advised to employ the services of a competent patent draftsperson outside the Office, as the U.S. Patent and Trademark Office no longer prepares new drawings. The corrected drawings are required in reply to the Office action to avoid abandonment of the application. The requirement for corrected drawings will not be held in abeyance.

Claim Objections

3. Claim 4-6 are objected to because of the following informalities:

Claim 4, line 5 states, "... transmitting a serial data signal to and receiving a serial data signal ...", i.e. introduces a serial data signal to transmit and a serial signal to receive.

Line 7, refers to this data signals with an indefinite article, "a". These signals should be referenced with definite article "the".

Claim 29 on line 1 states, "The method of claim 21", where as claim 21, line 1 states, "A device comprising ...", this is clearly an error, because claim 21 is a machine claim.

For further examination of claim 29, examiner has assumed that claim 29 is a device claim.

Appropriate corrections are required.

4. Claim 6 is objected to because of the following informalities:

in claim 6, line 2 states that, "transmitting **data** and receiving **data** from ...". The first and second instance of data should have been introduced with an indefinite article "a".

Appropriate correction is required.

5. Claim 20 is objected to because of the following informalities:

Claim 20 depends upon 20. Examiner has assumed that claim 20 is dependant upon claim 18, for further prosecution of the application.

Appropriate correction is required.

Claim Rejections - 35 USC § 101

6. 35 U.S.C. 101 reads as follows:

Whoever invents or discovers any new and useful process, machine, manufacture, or composition of matter, or any new and useful improvement thereof, may obtain a patent therefor, subject to the conditions and requirements of this title.

Claims 11-17 and 30-34 are rejected; claims 11-20 and 30-34 are statutory class of method, with judicial exception of implementing abstract idea of transmitting, varying, receiving, etc. without tangible output.

Claim 21, 22, 23, 26 and 27 are rejected under 35 U.S.C. 101 because,

Claim 21 states, "a state machine ...".

NIST defines state machine as, " A model of computation consisting of a (possibly infinite) set of states, a set of start states, an input alphabet, and a transition function which maps input symbols and current states to a next state."

This includes the implementation of state machine in software. Receiving data and transmitting data is not considered to be a structure. Therefore, claim 21 is a software implementation, which is neither a machine, process, composition of matter, nor an article of manufacture, i.e. it is a non-statutory subject matter.

Due to above reason, claim 21 is rejected as non-statutory subject matter.

The defendant claims 22, 23, 26 (MAC can be implemented in software), and 27 does not introduce any structure to make them statutory subject matter.

Claim Rejections - 35 USC § 102

(b) the invention was patented or described in a printed publication in this or a foreign country or in public use or on sale in this country, more than one year prior to the date of application for patent in the United States.

7. Claims 1-7, 9-13, and 16-19 are rejected under 35 U.S.C. 102(b) as being anticipated by Agilent Technologies product note (Dated January 2002, hereafter referenced as Agilent).

For claim 1:

A media access controller (MAC) (Figure 1, Data link mapped to MAC and LLC); and

A communication device comprising:

A media independent interface (MII)(Figure 1, XGMII) coupled to the MAC (Figure 1, XGMII is coupled to the MAC by data lines)

a plurality of data lane interfaces (Figure 3 from left, device 1 consists of two blocks from left, let side of XAUI interface and device 2 consists the rest of the blocks right side of XAUI interface, XAUI interfaces are plurality of data lane interfaces) each data lane interface being capable of at least one of transmitting a serial data signal to and receiving a serial data signal from a data lane (see the number of XAUI interface line descriptions of XAUI interface is being 16 Point to point, i.e. (4 Tx + 4Rx) times 2 for differential) in a device-to-device interconnection; and

logic to vary the data rate based, at least in part, upon a number of the data lane interfaces actively transmitting a serial data signal to or actively receiving a serial data signal from the device-to-device interconnection (Variance of data rate is a functional limitation, because no structural element of the logic was claimed in the claim, therefore reference only need to be capable varying the data rate. The reference is a product note using instruments to test 10GB Ethernet, where the instrument(s) is capable of generating $\frac{1}{4}$ main clock rate (see 71612C technical specifications, page 7, sub clock & data Outputs, Specifications: Frequency range $\frac{1}{4}$ main clock rate), therefore, the instrument will be able to generate and capture various data rates on the XAUI interface data lines) when viewed in conjunction with the description of, "The XAUI inputs of the device under test may be driven single-ended, for example by the Agilent Technologies 71612C pattern generator sub-rate outputs, ...", page 10, last Para).

For claim 2:

The system of claim 1 (see supra for discussion), wherein the system further comprises a switch fabric coupled to the MAC (See Figure 7, XAUI on the left hand side coupled to MAC as shown in Figure 2, and switch fabric shown as, i. 16:1 mux along with clock and associated logic (muxes do not have clocks, a control logic built in to convert 8 data input ingress ports to one egress data

output port along with clock) ii. 1:16 demux along with associated control logic (dmuxes does not have clock as input) having an ingress of 1 data and clock with an egress of 8 ports of data output).

For claim 3:

The system of claim 1 (see supra for discussion), wherein the system further comprises a packet classification device coupled to the MAC (see Figure 1, MAC is coupled to higher layers which are capable of classifying the packets, for example in the case of transport layer based on port numbers, etc).

For claim 4:

A device comprising:

a media independent interface (MII) to at least one of transmit and receive data at a data rate (see figure 6, page 9);

a plurality of data lane interfaces (see Figure 6), each data lane interface being capable of at least one of transmitting a serial data signal to and receiving a serial data signal from a data lane in a device-to-device interconnection (see Figure 6, SCD connector technology); and

logic to vary the data rate based, at least in part, upon a number of the data lane interfaces actively transmitting a serial data signal to or actively receiving a serial data signal from the device-to-device interconnection (Variance

of data rate is a functional limitation, because no structural element of the logic was claimed in the claim, therefore reference only need to be capable varying the data rate. The reference is a product note using instruments to test 10GB Ethernet, where the instrument(s) is capable of generating $\frac{1}{4}$ main clock rate (see 71612C technical specifications, page 7, sub clock & data Outputs, Specifications: Frequency range $\frac{1}{4}$ main clock rate), therefore, the instrument will be able to generate and capture various data rates on the XAUI interface data lines) when viewed in conjunction with the description of, "The XAUI inputs of the device under test may be driven single-ended, for example by the Agilent Technologies 71612C pattern generator sub-rate outputs, ...", page 10, last Para).

For claim 5:

the device of claim 4 (see supra for discussion), wherein each data lane interface is associated with a first differential pair to transmit a serial data signal and a second differential pair to receive a serial data signal (see Figure 3.10 or Figure 4 of page 8, that shows Differential input and output data lanes).

For claim 6:

The device of claim 5 (see supra for discussion), wherein the plurality of data lane interface are capable of transmitting data to and receiving data from a 10 gigabit attachment unit interface (See Figure 7, XAUI Interface).

For claim 7:

The device of claim 4 (see supra for discussion), wherein the device further comprises:

a plurality of 8B 10B decoders, each 8B 10B decoder being associated with one of the data lane interfaces, each 8B 10B decoder being capable of decoding one eight bit byte from a differential pair on first intervals of a first clock signal (see Figure 6 or 5, 8B/10B interfaces);

For claim 9:

The device of claim 4, wherein the device-to-device interconnection comprises printed circuit board traces (see page 7, third para, last line, "XAUI solutions together with the XGP will enable efficient low-cost 10 Gigabit Ethernet direct multiport MAC to optical module interconnects with only PC board traces between").

For claim 10:

The device of claim 4 (see supra for discussion), wherein the device-to-device interconnection comprises a cable (See Figure 3.10 or 4, Opto, Optical interfaces, typically connected by cable).

For claim 11:

A method comprising:

- at least one of transmitting data to and receiving data from a media independent interface (MII) at a data rate (see Figure 4);
- at least one transmitting a serial data signal to and receiving a serial data signal from one or more data lanes in a device-to-device interconnection, each data lane being coupled to the MII by an associated data lane interface (see Figure 4, serdes); and

varying the data rate based, at least in part, upon a number of the data lane interfaces actively transmitting a serial data signal to or actively receiving a serial data signal from the device-to-device interconnection (Variance of data rate is a functional limitation, because no structural element of the logic was claimed in the claim, therefore reference only need to be capable varying the data rate. The reference is a product note using instruments to test 10GB Ethernet, where the instrument(s) is capable of generating $\frac{1}{4}$ main clock rate (see 71612C technical specifications, page 7, sub clock & data Outputs, Specifications: Frequency range $\frac{1}{4}$ main clock rate), therefore, the instrument will be able to generate and capture various data rates on the XAUI interface data lines) when viewed in conjunction with the description of, "The XAUI inputs of the device under test may be driven single-ended, for example by the Agilent Technologies 71612C pattern generator sub-rate outputs, ...", page 10, last Para).

For claim 12:

The method of claim 11 (see supra for discussion), the method further comprising:

transmitting one or more serial data signals to the device-to-device interconnection in a first differential pair signal (see Figure 4 or 3); and receiving one or more serial data signals from the device-to-device interconnection in a second differential pair signal(see Figure 4 or 3).

For claim 13:

The method of claim 12 (see supra for discussion), the method further comprising transmitting data to and receiving data from a 10 gigabit attachment unit interface (see Figure 7, XAUI interface).

For claim 16:

The method of claim 11 (see supra for discussion), wherein the device-to-device interconnection comprises printed circuit board traces(see page 7, third Para, last line, "XAUI solutions together with the XGP will enable efficient low-cost 10 Gigabit Ethernet direct multi-port MAC to optical module interconnects with only **PC board traces between**"..

For claim 17:

The method of claim 11, wherein the device-to-device interconnection comprises a cable (See Figure 3.10 or 4, Opto, Optical interfaces, typically connected by cable).

For claim 18:

A system comprising:

a physical layer communication device to transmit data between a transmission medium and a media independent interface (MII) at a data rate (see Figure 1, MII interfaces, XGMII); and

a communication device comprising:

a plurality of data lane interfaces, each data lane interface being capable of at least one of transmitting a serial data signal to and receiving a serial data signal from a data lane in a device-to-device interconnection (see page 8, Figure 3.10 or 4); and

logic to vary the data rate based, at least in part, upon a number of the data lane interfaces actively transmitting a serial data signal to or actively receiving a serial data signal from the device-to-device interconnection (Variance of data rate is a functional limitation, because no structural element of the logic was claimed in the claim, therefore reference only need to be capable varying the data rate. The reference is a product note using instruments to test 10GB Ethernet, where the instrument(s) is capable of generating $\frac{1}{4}$ main clock rate (see 71612C technical specifications, page 7, sub clock & data Outputs, Specifications: Frequency range $\frac{1}{4}$ main clock rate), therefore, the instrument will be able to generate and capture various data rates on the XAUI interface data lines) when viewed in conjunction with the description of, "The XAUI inputs of the

device under test may be driven single-ended, for example by the Agilent Technologies 71612C pattern generator sub-rate outputs, ...”, page 10, last Para).

For claim 19:

The system of claim 18 (see supra for discussion), wherein the physical layer communication device is adapted to transmit data between the MII and a fiber optic cable (see Figure 3, 4, 5 or 6, Optical interfaces from 10 G serDes).

Claim Rejections - 35 USC § 103

8. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

9. Claim 2 is rejected under 35 U.S.C. 103(a) as being unpatentable over Agilent in view of Samudrala (US 2005/0013311 A1).

Agilent teaches everything (for discussion see claim 19, supra) except for connecting the optical port to a switch fabric.

The general concept of connecting 10 GB/sec to switch fabric well known in the art as illustrated by Samudrala et al (Fig. 5, Ingress Fabric port 7 or 8).

It would have been obvious to one skilled in the art at the time of the invention to connect optical output of Agilent to Asymmetric switch of Samudrala et al. in order to have lower rate (i.e. at 1 Gb/s and 2 Gb/s rates) device inter connections as taught in Samudrala et al (Figure 5, egress ports of 0-3 (1 Gb/s port) and port 4-5 (2 Gb/s), and Port 6-7 (10 Gb/S).

10. Claim 20 is rejected under 35 U.S.C. 103(a) as being unpatentable over Agilent publication (Agilent Technologies product note) in view January 1997 National Semiconductor publication (pages 1-14, Jan 1997).

Agilent teaches everything (for discussion see claim 19 supra) except for adapting physical communication device to transmit data between the MII and a twisted wire pair cable.

The general concept of adapting physical communication device to transmit data between the MII and a twisted wire pair cable is well known in the art as illustrated by National semiconductor publication as shown in page 12, with RJ45 Jack connection (are always connected by pair of wires)).

It would have been obvious to one skilled in the art at the time of invention to modify Agilent application note to adapt physical communication device to transmit data between the MII and a twisted wire pair cable in order to be back word compatible with 10/100 Mb/S PHY devices as taught in National semiconductor publication (Page 9, second square bullet point).

Art Unit: 2109

11. Claim 21-29 and 30-34 are rejected under 35 U.S.C. 103(a) as being unpatentable over Agilent publication in view of Actel Application Notes (a copy provided):

For Claims 21 and 30:

Agilent publication teaches:

a plurality of data lane interfaces, each data lane interface being capable of at least one of transmitting a serial data signal to and receiving a serial data signal from a data lane in a device-to-device interconnection (page 8, Figure 4, Plurality of data lines two differential transmitting and two differential receiving); and

logic to vary the data rate based, at least in part, upon a number of the data lane interfaces actively transmitting a serial data signal to or actively receiving a serial data signal from the device-to-device interconnection (Variance of data rate is a functional limitation, because no structural element of the logic was claimed in the claim, therefore reference only need to be capable varying the data rate. The reference is a product note using instruments to test 10GB Ethernet, where the instrument(s) is capable of generating $\frac{1}{4}$ main clock rate (see 71612C technical specifications, page 7, sub clock & data Outputs, Specifications: Frequency range $\frac{1}{4}$ main clock rate), therefore, the instrument will be able to generate and capture various data rates on the XAUI interface data lines) when viewed in conjunction with the description of, "The XAUI inputs of the

device under test may be driven single-ended, for example by the Agilent Technologies 71612C pattern generator sub-rate outputs, ...”, page 10, last Para).

Therefore, Agilent publication teaches every thing except for using state machine at least one of transmit and receive data at a data rate.

The general concept of using state machine to transmit and receive data is well known as illustrated by Actel publication (see block diagram on page 2, Figure 1 and 2, Reset Sync and with block diagrams is a state machine, also see Figure 3, transmitter block diagram and Figure 5, receiver Block diagram along with Figure 6, SYNC_FSM state Diagram).

It would have obvious to one in skilled in art at the time of invention to modify Agilent publication to use the state machine to transmit and receive data in order to implement the device in the programmable logic design as taught in Actel publication (page 1, column 2, second Para, lines 1-2, “There are several challenges in implementing an 8b/10b encoder/decoder (ENDEC) in a programmable logic device.”).

For Claims 22 and 31:

The device of claim 21 (see supra for discussion), wherein each data lane interface is associated with a first differential pair to transmit a

serial data signal and a second differential pair to receive a serial data signal (See Agilent publication, Figure 4, 2 (Differential) X 2 (Tx & Rx)).

For claims 23 and 32:

The device of claim 22 (see claim 22 supra) wherein the plurality of data lane interface are capable of transmitting data to and receiving data from a 10 gigabit attachment unit interface (See Figure 7, XAUI interface).

For claims 24 and 33:

The device of claim 21 (see supra for discussion), wherein the data rate is controlled by a frequency of a first clock signal, and wherein the device further comprises:

a plurality of 8B 10B decoders, each 8B 10B decoder being associated with one of the data lane interfaces, each 8B 10B decoder being capable of decoding one eight bit byte from a differential pair at a rate controlled by a frequency of a second clock signal (Figure 5 or 6, showing of 8B/10 encoder/decoder serdes for each data lanes);
and

logic to vary the frequency of the first clock signal based, at least in part, upon a number of the data lane interfaces actively receiving serial data from the device-to-device interconnection (to strobe the received data into a register, the clock frequency has to be changed).

For claims 25 and 34: The device of claim 21, wherein the data rate is controlled by a frequency of a first clock signal, and wherein the device further comprises:

a plurality of 8B 10B encoders, each 8B 10B encoder being associated with one of the data lane interfaces, each 8B 10B encoder being capable of encoding one eight bit byte of the fixed length data signal for transmission to a differential pair at a rate controlled by a second clock signal (Figure 5 or 6, showing of 8B/10B encoder/decoder serdes for each of data lanes); and

logic to vary the frequency of the first clock signal based, at least in part, upon a number of the data lane interfaces actively transmitting serial data from to the device to device interconnection (to strobe data to be transmitted, the strobe clock frequency has to be changed).

For claim 26:

The device of claim 21 (see supra for discussion), wherein the device further comprises a MAC to at least one of transmit data to and receive data from the state machine at the data rate (Agilent publication, see figure 4, MAC with RCS).

For claim 27:

The device of claim 21 (see supra for discussion), wherein the device further comprises a physical layer communication device to at least one of transmit data to and receive data from the state machine at the data rate (See agilent publication, page 8, Figure 4, Optical SCD connector technology).

For claim 28:

The device of claim 21, wherein the device-to-device interconnection comprises printed circuit board traces (see page 8, Figure 4, "Robust CML differential, un-clocked interface allows trace lengths of 18" on FR4", which are PCB copper traces).

For claim 29:

The method of claim 21 (see supra for discussion); wherein the device-to-device interconnection comprises a cable (Figure 5 or 6, Optical connector is a cable).

CONCLUSION

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Hari Kunamneni whose telephone number is (571)274-

1592. The examiner can normally be reached on Monday thru Friday 7:30-5:00 PM alt. fridays off.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, FRANTZ JULES can be reached on (571)272-6681. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

hpk
3/16/2007

FRANTZ JULES
SUPERVISORY PATENT EXAMINER

