Seul-Ki Kim ICS 6D January 23, 2019

Homework 2

1. **Exercise 8.4.1**: Components of an inductive proof. (a-f) Define P(n) to be the assertion that:

$$\sum_{j=1}^{n} j^2 = \frac{n(n+1)(2n+1)}{6}$$

(a) Verify that P(3) is true.

•
$$1^2 + 2^2 + 3^2$$
 ? $\frac{3(3+1)(2(3)+1)}{6}$
 $1+4+9$? $\frac{3(4)(7)}{6}$
 $14 = 14$

(b) Express P(k).

•
$$\sum_{j=1}^{k} j^2 = \frac{k(k+1)(2k+1)}{6}$$

(c) Express P(k+1).

$$\sum_{j=1}^{k+1} j^2 = \frac{(k+1)(k+1+1)(2(k+1)+1)}{6}$$

$$= \frac{(k+1)(k+2)(2k+3)}{6}$$

(d) In an inductive proof that for every positive integer n,

$$\sum_{j=1}^{n} j^2 = \frac{n(n+1)(2n+1)}{6}$$

What must be proven in the base case?

- For the base case, it has to be proven that formula is true for n = 1.
- When n = 1, the left side of the equation is $\sum_{j=1}^{1} j^2 = 1$. When n = 1, the right side of the equation is $\frac{1(1+1)(2+1)}{6} = 1$ Therefore, $\sum_{j=1}^{1} j^2 = \frac{1(1+1)(2+1)}{6}$.
- (e) In an inductive proof that for every positive integer n,

$$\sum_{j=1}^{n} j^2 = \frac{n(n+1)(2n+1)}{6}$$

What must be proven in the inductive step?

- Suppose that for positive integer k, $\sum_{j=1}^k j^2 = \frac{k(k+1)(2k+1)}{6}$, then we will show that $\sum_{j=1}^{k+1} j^2 = \frac{(k+1)(k+2)(2k+3)}{6}$
- Starting with the left side of the equation to be proven:

$$\begin{split} \sum_{j=1}^{k+1} j^2 &= \sum_{j=1}^k j^2 + (k+1)^2 & \text{by separating out the last term} \\ &= \frac{k(k+1)(2k+1)}{6} + (k+1)^2 & \text{by the inductive hypothesis} \\ &= \frac{k(k+1)(2k+1)}{6} + \frac{6(k+1)^2}{6} \\ &= \frac{(k+1)[k(2k+1)+6(k+1)]}{6} \\ &= \frac{(k+1)[2k^2+7k+6]}{6} \\ &= \frac{(k+1)(k+2)(2k+3)}{6} & \text{by algebra} \end{split}$$
 Therefore, $\sum_{j=1}^{k+1} j^2 = \frac{(k+1)(k+2)(2k+3)}{6}$

- (f) What would be the inductive hypothesis in the inductive step from your previous answer?
 - The inductive hypothesis would be this $\rightarrow \frac{k(k+1)(2k+1)}{6} + (k+1)^2$
- 2. Exercise 8.4.3: Proving inequalities by induction. (a) Prove each of the following statements using mathematical induction.

- (a) Prove that for $n \ge 2$, $3^n > 2^n + n^2$. Base case: n = 2 $3^2 = 9 > 8 = 2^2 + 2^2$ Therefore, for n = 2, $3^n > 2^n + n^2$
 - Inductive step: Suppose that for positive integer $k \ge 2$, if $3^k > 2^k + 2^k \le 2$ k^2 , then $3^{k+1} > 2^{k+1} + (k+1)^2$

Starting with the left side of the inequality to be prove:

Starting with the left side of the inequality to be prove:
$$3^{k+1} = 3 \cdot 3^k$$
 by algebra $> 3 \cdot (2^k + k^2)$ by the inductive hypothesis $= 3 \cdot 2^k + 3 \cdot k^2$ $> 2^k + 2^k + 2^k + k^2 + k^2 + k^2$ because $k \ge 2 \ge 0$ $= 2^k + 2^k +$

3. Exercise 8.5.1: Proving divisibility results by induction. (b) Prove each of the following statements using mathematical induction.

- (a) Prove that for any positive integer n, 4 evenly divides 3^{2n} 1.
 - Theorem: For every positive integer n, 4 evenly divides 3^{2n} 1.
 - Proof: By induction on n.
 - Base case: n = 1 $3^{2(1)} - 1 = 3^2 - 1 = 8$. Since 4 evenly divides 8, the theorem holds for the case n = 1.
 - Inductive step: Suppose that for positive integer k, 4 evenly divides $3^{2k} 1$. Then we will show that 4 evenly divides $3^{2(k+1)} 1$. By the inductive hypothesis, 4 evenly divides $3^{2k} 1$, which means that $3^{2k} 1 = 4m$ for some integer m. By adding 1 to both sides of the equation $4m = 3^{2k} 1$, we get $4m + 1 = 3^{2k}$ which is an equivalent statement of the inductive hypothesis.

We must show that $3^{2(k+1)} - 1$ can be expressed as 4 times an integer.

$$3^{2(k+1)} - 1 = 3^{2k+2} - 1$$

= $9 \cdot 3^{2k} - 1$ by algebra
= $9(4m+1) - 1$ by the inductive hypothesis
= $4 \cdot 9m + 9 - 1$
= $4(9m+2)$ by algebra

Since m is an integer, (9m + 2) is also an integer. Therefore $3^{2(k+1)} - 1$ is equal to 4 times an integer which means that $3^{2(k+1)} - 1$ is divisible by 4.

- (b) Prove that for any positive integer n, 6 evenly divides 7ⁿ 1.
 - Theorem: For every positive integer n, 6 evenly divides 7ⁿ 1.
 - Proof: By induction on n.
 - Base case: n = 1 $7^1 - 1 = 6$. Since 6 evenly divides 6, the theorem holds for the case n = 1.
 - Inductive step: Suppose that for positive integer k, 6 evenly divides $7^k 1$. Then we will show that 6 evenly divides $7^{(k+1)} 1$. By the inductive hypothesis, 6 evenly divides $7^k 1$, which means that $7^k 1 = 6m$ for some integer m. By adding 1 to both sides of the equation $6m = 7^k 1$, we get $6m + 1 = 7^k$ which is an equivalent statement of the inductive hypothesis.

We must show that $7^{(k+1)} - 1$ can be expressed as 6 times an integer.

$$7^{(k+1)} - 1 = 7 \cdot 7^k - 1$$
 by algebra $= 7(6m+1) - 1$ by the inductive hypothesis $= 6 \cdot 7m + 7 - 1$

$$=6(7m+1)$$
 by algebra

- Since m is an integer, (7m + 1) is also an integer. Therefore $7^{(k+1)} 1$ is equal to 6 times an integer which means that $7^{(k+1)} 1$ is divisible by 6.
- 4. **Exercise 8.5.2**: Proving explicit formulas for recurrence relations by induction. (b)

Prove each of the following statements using mathematical induction.

(b) Define the sequence $\{b_n\}$ as follows:

$$b_0 = 1$$

 $b_k = 2b_{k-1} + 1 \text{ for } k \ge 1$

Prove that for $n \ge 0$, $b_n = 2^{n+1} - 1$.

- Proof: By induction on n
- Base case: n = 0We must show that $b_0 = 2^{0+1} - 1$. Since $2^{0+1} - 1 = 1$ and the initial condition states that $b_0 = 1$, the theorem holds for n = 0.
- Inductive step: Suppose that for any integer $k \ge 0$, $b_k = 2^{k+1} - 1$. Then we will show that $b_{k+1} = 2^{k+2} - 1$.

For any integer $k \ge 0$:

$$b_{k+1} = 2b_k + 1$$

$$= 2 \cdot (2^{k+1} - 1) + 1$$

$$= 2^{k+1+1} - 2 + 1$$

$$= 2^{k+2} - 1$$

Therefore, $b_{k+1} = 2^{k+2} - 1$

5. **Exercise 8.6.1**: Proofs by strong induction – combining stamps. (a) Prove each of the following statements using strong induction.

- (a) Prove that any amount of postage worth 8 cents or more can be made from 3-cent or 5-cent stamps.
 - Base case: P(8), P(9), P(10)

n = 8: one 3-cent stamp and one 5-cent stamp

n = 9: three 3-cent stamps

n = 10: two 5-cent stamps

• Inductive step: For $k \ge 10$, assume P(j) is true for any j in the range 8 through k.

Prove P(k + 1)

$$k \ge 10 \Longrightarrow k - 2 \ge 8$$

k-2 is in the range 8 through k

$$(k-2) + 3 = k + 1$$
 stamps

P(k + 1) is true.

Since $k \ge 10$, then $k - 2 \ge 6$. Therefore, k - 2 is in the range 8 through k and by the inductive hypothesis, k - 2 stamps can be purchased.

6. Exercise 8.6.2: Proofs by strong induction – explicit formulas for recurrence relations. (c)

Prove each of the following statements using strong induction.

(c) Define the sequence $\{g_n\}$ as follows:

$$g_0 = 51$$

$$g_1 = 348$$

$$g_n = 5g_{n-1} - 6g_{n-2} + 20 \cdot 7^n \text{ for } n \ge 2$$

Prove that for $n \ge 0$, $g_n = 2^n + 3^n + 7^{n+2}$

- Base case: n = 0, n = 1
 - → We must show that $g_0 = 2^0 + 3^0 + 7^{0+2}$. Since $2^0 + 3^0 + 7^{0+2} = 51$ and the initial condition states that $g_0 = 51$, the theorem holds for n = 0.
 - → We must show that $g_1 = 2^1 + 3^1 + 7^{1+2}$. Since $2^1 + 3^1 + 7^{1+2} = 348$ and the initial condition states that $g_1 = 348$, the theorem holds for n = 1.
- Inductive step:

Suppose that for any integer $k \ge 0$, $g_k = 2^k + 3^k + 7^{k+2}$. Then we will show that $g_{k+1} = 2^{k+1} + 3^{k+1} + 7^{k+3}$.

For any integer $k \ge 0$:

$$\begin{split} g_{k+1} &= 5g_k - 6g_{k-1} + 20 \cdot 7^{k+1} \\ &= 5(2^k + 3^k + 7^{k+2}) - 6(2^{k-1} + 3^{k-1} + 7^{k+1}) + 20 \cdot 7^{k+1} \\ &= 5 \cdot 2^k + 5 \cdot 3^k + 5 \cdot 7^{k+2} - 6 \cdot 2^{k-1} - 6 \cdot 3^{k-1} - 6 \cdot 7^{k+1} + 20 \cdot 7^{k+1} \\ &= (5 \cdot 2^k - 6 \cdot 2^{-1} \cdot 2^k) + (5 \cdot 3^k - 6 \cdot 3^{-1} \cdot 3^k) + (5 \cdot 7 \cdot 7 \cdot 7^k - 6 \cdot 7 \cdot 7^k + 20 \cdot 7 \cdot 7^k) \\ &= 2^k (5 - 6 \cdot 2^{-1}) + 3^k (5 - 6 \cdot 3^{-1}) + 7^k (5 \cdot 7 \cdot 7 - 6 \cdot 7 + 20 \cdot 7) \\ &= 2^k (5 - 3) + 3^k (5 - 2) + 7^k (343) \\ &= 2 \cdot 2^k + 3 \cdot 3^k + 7 \cdot 7 \cdot 7 \cdot 7^k \\ &= 2^{k+1} + 3^{k+1} + 7^{k+3} \end{split}$$

Therefore, $g_{k+1} = 5g_k - 6g_{k-1} + 20 \cdot 7^{k+1}$