Topology

K

October 7, 2022

Contents

1	Introduction	Ę
2	Topological Spaces	7
3	New Spaces from Old	11
4	Simplicial Complexes	13
5	Homotopy and the Fundamental Group	17

4 CONTENTS

Introduction

Topological Spaces

2-1

"\Rightarrow": Let $f: X_1 \longrightarrow X_2$ be a homeomorphism and fix a subset (not necessarily open) $U \in \mathcal{T}_1$.

- 1. Assume U is open in X_1 . Because f is continuous, the image of open subsets are again open, thus f(U) lies in \mathcal{T}_2 .
- 2. On the other hand, if f(U) is open in X_2 , then since f is bijective we have

$$f^{-1}\left(f\left(U\right) \right) =U.$$

Because f is continuous, the preimage of open subsets under f is open. We may therefore conclude U is open in X_1 .

We have shown that if f is a homeomorphism, then $f(\mathcal{T}_1) = \mathcal{T}_2$.

" \Leftarrow ": Let $f: X_1 \longrightarrow X_2$ be a bijective map such that $f(\mathcal{T}_1) = \mathcal{T}_2$. Consider the inverse map f^{-1} . We want to show f^{-1} is continuous. Fix an open subset $U \in \mathcal{T}_1$. It is

$$(f^{-1})^{-1}(U) = f(U)$$

because f is bijective. Since $f(\mathcal{T}_1) = \mathcal{T}_2$ and U is open, f(U) is open as well. Hence the preimage of U under f^{-1} is open and f^{-1} is continuous.

Now we show that f is also continuous. Again, fix an open subset $V \in \mathcal{T}_2$. The preimage of V under f is just the image of the inverse function. We have already shown that the inverse is continuous. Thus, $f^{-1}(V)$ is open and f is continuous. Since f and f^{-1} exist and are continuous, f is a homeomorphism as desired.

2-2

 $\mathbf{a})$

We show that \mathcal{T} is a topology by verifying the axioms of a topology.

- 1. Since \mathcal{T} is the collection of all unions of finite intersections of elements of \mathcal{B} , it contains the union of all elements of \mathcal{B} which is just X. The union of empty collection generates the emptyset so $\emptyset \in \mathcal{T}$ as well.
- 2. Let $\mathcal{U} \subset \mathcal{T}$ be any subset. The elements of \mathcal{U} are unions of finite intersections of elements of \mathcal{B} . Thus, $\bigcup_{U \in \mathcal{U}} U$ is again a union of finite intersections of elements of \mathcal{B} . In other words, \mathcal{T} is closed under union.
- 3. \mathcal{T} is stable under finite intersections due to distributive property of sets.

b)

2-3

1.

The collection of subset $\mathcal{T}_1 = \{ U \subset X \mid X \setminus U \text{ is finite or is all of } X \}$ forms a topology. We show this by verifying the axioms of a topology.

- 1. It is $X \setminus \emptyset = X$ and $X \setminus X = \emptyset$ which is finite. Thus, $X \in \mathcal{T}_1$ and $\emptyset \in \mathcal{T}_1$.
- 2. Let $\mathcal{U} \subset \mathcal{T}$ be a subset. By De Morgan's laws we have

$$X \setminus \left(\bigcup_{U \in \mathcal{U}} U\right) = \bigcap_{U \in \mathcal{U}} (X \setminus U).$$

Since each $U \in \mathcal{U}$ lies in \mathcal{T} , the complement $X \setminus U$ is finite or is all of X. Therefore, the intersection of all $X \setminus U$ is again finite or all of X, and we may conclude that \mathcal{T} is stable under arbitary unions.

3. Use De Morgan's law again.

2.

The collection of subsets $\mathcal{T}_2 = \{U \subset X \mid X \setminus U \text{ is infinite or is empty}\}$ is not a topology. Take $X = \mathbb{Z}$ for example and consider $A = \{1, 2, 3, ...\}$ and $B = \{-1, -2, -3, ...\}$. A and B are open because their complements are the non-positive and the non-negative integers respectively. If \mathcal{T}_2 is a topology, it should contain their union $A \cup B = \mathbb{Z} \setminus \{0\}$. However,

$$\mathbb{Z} \setminus (A \cup B) = \mathbb{Z}(\mathbb{Z} \setminus \{0\}) = \{0\}$$

which is not infinite and thus doesn't lie in \mathcal{T}_2 .

3

The collection of subsets $\mathcal{T}_3 = \{ U \subset X \mid X \setminus U \text{ is countable or all of } X \}$ is a topology PROBABLY.

2-4

Already did somewhere else.

2-5

- 1. $id_1: X \longrightarrow \mathbb{R}^2$ is continuous probably.
- 2. $id_2: \mathbb{R}^2 \longrightarrow X$ is not continuous probably.

2-6

f is continuous because any preimage of a subset $U \subset Z$ under f is open, since any subset in X is open.

For g, the only preimages to check are the empty set \varnothing and Y. Simply, $g^{-1}(\varnothing) = \varnothing$ and $g^{-1}(Y) = Z$. Both subsets are open in Z, therefore g is continuous.

If h is constant, say $h(Y) = \{p\}$, then $h^{-1}(U) = Y$ if $p \in U$ and $h^{-1}(U) = \emptyset$ if $p \in U$. In both cases the preimages are open, thus h is continuous. Assume h is continuous but not constant, i.e. there are points $x_1, x_2 \in Y$ such that $h(x_1) \neq h(x_2)$. Z is Hausdorff, so there are disjoint neighbourhoods U of $h(x_1)$ and V of $h(x_2)$. h was assumed to be continuous, so $h^{-1}(U) = Y$ and $h^{-1}(V) = Y$ which is impossible (REALLY?).

- 2-7
- a)
- f)

2-8

Firstly, any element in $f(\mathcal{B})$ is open because f is an open map. Fix an open subset V in Y and consider its preimage $f^{-1}(V)$ under f. Because f is continuous, the preimage is open, thus there are base elements B_i with $i \in I$ in \mathcal{B} such that

$$f^{-1}(V) = \bigcup_{i \in I} B_i.$$

The surjectivity of f grants us $f(f^{-1}(V)) = V$, therefore, we have

$$f(f^{-1}(V)) = V = f\left(\bigcup_{i \in I} B_i\right) = \bigcup_{i \in I} f(B_i).$$

Thus, $f(\mathcal{B})$ is a basis of Y.

2-9

2-10

Fix a point y in Y. Since f is surjective, there is an x in X such that f(x) = y. X is locally Euclidean, thus there is a neighbourhood U of x that is homeomorphic to \mathbb{R}^n . Moreover, f is locally homeomorphic, so there is a neighbourhood V of x such that the restriction of f under V is a homeomorphism. Then, the intersection $U \cap V = N$ has both of these properties, i.e. N is a neighbourhood of x that is homeomorphic to \mathbb{R}^n and the restriction of f under V is a homeomorphism. f(N) is a neighbourhood of y that is homeomorphic to \mathbb{R}^n , therefore Y is locally Euclidean.

2-11

" \Rightarrow ": Let M^0 be a 0-manifold and consider a point $p \in M^0$. First, we show that M^0 is discrete. Since M^0 is locally Euclidean, there is a neighbourhood U of p such that U is homeomorphic to an open subset of \mathbb{R}^0 . But \mathbb{R}^0 contains only one element, thus the only nonempty open subset is \mathbb{R}^0 . Now, a homeomorphism implies bijectivity, we have that $U = \{p\}$. Every singleton set in M^0 is open, so M^0 is a discrete space.

 M^0 is also countable because being a manifold implies that it has a countable base and any base must contain all the singleton sets.

" \Leftarrow ": Let M^0 be a countable discrete space. M^0 is second-countable because the set of singletons form a countable base. It is also T_2 since each point has itself as its neighbourhood which clearly does not contain any other points. Now let $p \in M^0$ be a point. $\{p\}$ is a neighbourhood of p and it is homeomorphic to \mathbb{R}^0 by the mapping $p \mapsto 0$, thus M^0 is locally Euclidean.

2-12

ล

It is $L(b) \cap R(a) = \{c \in X \mid c < b \text{ and } c > a\} = (a, b)$, thus (a, b) is open.

Moreover, we have $L(a) \cup R(b) = \{c \in X \mid c < a \text{ or } c > b\} = X \setminus [a, b]$ which is open, so [a, b] is closed.

b

Let $a, b \in X$ be two distinct points and assume without loss of generality a < b. Then, L(b) is open and contains the point a, while R(a) is also open and contains the point b, but L(b) and R(a) are disjoint. Thus, X is Hausdorff.

 \mathbf{c}

Fix two points $a, b \in X$. By definition, it is

$$\overline{(a,b)} = \bigcap \left\{ C \subset X \mid (a,b) \subset C \text{ and } C \text{ is closed in } X \right\}.$$

We have shown that [a, b] is closed in a) and clearly contains (a, b), thus

$$[a,b] \in \{ C \subset X \mid (a,b) \subset C \text{ and } C \text{ is closed in } X \}$$

or in other words

$$\bigcap \{ C \subset X \mid (a,b) \subset C \text{ and } C \text{ is closed in } X \} \subset [a,b]$$

as desired.

When does $\overline{(a,b)} = [a,b]$ hold? Maybe it is pertinent to ask when does it not hold? The equality does not hold if and only if (a,b) is already closed. That means $X \setminus (a,b) = (-\infty,a] \cup [b,\infty)$ is open. I'm not sure, maybe X needs to be countable, finite?

2-13

Let X be a second countable topological space and fix a collection of disjoint open subsets \mathcal{S} , i.e.

$$S = \{ U \subset X \mid U \text{ is open and for all } U, V \in S \text{ it is } U \cap V = \emptyset \}.$$

We want to show S is countable. If B is a base for X, then for any two members of the collection $U, V \in S$, we have

$$U = \bigcup_{i \in \mathbb{N}} B_i \qquad V = \bigcup_{j \in \mathbb{N}} B_j.$$

Since U and V are disjoint, B_i and B_j are also disjoint for all $i, j \in \mathbb{N}$. Thus, any $U \in \mathcal{S}$ is a union of base elements that is different from any other $V \in \mathcal{S}$. \mathcal{B} is countable, therefore \mathcal{S} must also be.

2-14

Let X be a locally Euclidean space. We show that X is first-countable. Let $p \in X$ be a point, then since X is locally Euclidean, there is a neighbourhood N of p such that N is homeomorphic to \mathbb{R}^n . Thus, we have a sequence of neighbourhoods as \mathbb{R}^n is first-countable, yada yada yada. Let M be a metric space. I've shown that this is first-countable already.

2-15

 $\mathbf{a})$

Let X be a second-countable space. We want to show that X contains a dense subset that is countable.

New Spaces from Old

3-1

Simplicial Complexes

Exercise 5.1

Definition 1 (Simplex). Given points v_0, \ldots, v_k in general position in \mathbb{R}^n , simplex spanned by them is the set of all points in \mathbb{R}^n of the form:

$$\sum_{i=0}^{k} t_i v_i \quad \text{where } 0 \le t_1 \le 1 \text{ and } \sum_{i=0}^{k} t_i = 1.$$

Definition 2 (Convex Hull). Let X be a subset of \mathbb{R}^n , then the convex hull of X is the intersection of all convex sets containing X.

Definition 3 (Convex Set). A subset X of \mathbb{R}^n is convex if for all $x, y \in X$ and for all $t \in [0, 1]$ it is

$$(1-t)x + ty \in X.$$

Proof. Let σ be a simplex and denote its vertices by v_0, \ldots, v_k . Fix a point $p \in \sigma$, then by definition

$$p = \sum_{i=0}^{k} t_i v_i$$

for some $t \in [0,1]$ and $\sum_{i=0}^{k} t_i = 1$. We show that p lies in any convex set containing v_0, \ldots, v_k by induction. In the initial case, $p = t_i v_i = v_i$ for some i which clearly lies in all convex set containing v_0, \ldots, v_k . Consider the case where n+1 number of t_0, \ldots, t_k is nonzero. Without loss of generality, we may reorder the indecies for notational ease and yield

$$p = \sum_{i=0}^{n+1} t_i v_i = t_{n+1} v_{n+1} + \sum_{i=0}^{n} t_i v_i.$$

By induction hypothesis, $\sum_{i=0}^{n} t_i v_i$ is contained in any convex set containing v_0, \ldots, v_k .

Exercise 5.2

a)

Fix two simplices σ and τ , and denote the set of their vertices by $\operatorname{vert}(\sigma)$ and $\operatorname{vert}(\tau)$ respectively. Let $f_0 : \operatorname{vert}(\sigma) \longrightarrow \operatorname{vert}(\tau)$ be any map and consider a point $p \in \sigma$. p may be represented by a linear combination of the vertices, thus

$$p = \sum_{i=1}^{k} v_i$$

which allows us to define

$$f(p) := \sum_{i=1}^{k} f_0(v_i).$$

Since a simplex is the convex hull of its vertices, f(p) lies in τ . Unsure, but should be the right direction.

b)

sounds reasonable

c)

more suprising

Exercise 5.3

Example 5.2 a)

Let K be the collection of a n-simplex σ and its faces. Trivially, the faces of σ lies in K, and the faces of its faces are just faces of σ , and thus are also members of K. The any intersection of σ and its faces are again faces or empty. (IF I UNDERSTOOD THIS CORRECTLY) since K is already finite the third condition also applies.

Exercise 5.4

Exercise 5.5

Definition 4 (Simplex). Given points v_0, \ldots, v_k in general position in \mathbb{R}^n , simplex spanned by them is the set of all points in \mathbb{R}^n of the form:

$$\sum_{i=0}^k t_i v_i \qquad \text{where } 0 \le t_1 \le 1 \text{ and } \sum_{i=0}^k t_i = 1.$$

Definition 5 (Euclidean Simplicial Complex). A Euclidean simplicial complex is a collection K of simplices in some Euclidean space \mathbb{R}^n satisfying the following conditions:

- 1. If $\sigma \in K$, then every face of σ is in K.
- 2. The intersection of any two simplices in K is either empty or a face of each.
- 3. Every point in a simplex of K has a neighborhood that intersects at most finitely many simplices of K.

Definition 6 (Abstract Complex). A collection \mathcal{K} of nonempty finite sets is called abstract complex if for all $\sigma \in \mathcal{K}$ nonempty subsets of σ also lie in \mathcal{K} .

Definition 7 (Vertex Scheme). Let K be an Euclidean simplicial complex and set

$$\mathcal{K} := \left\{ \left. \{ v_0, \dots, v_k \right\} \subset K^{(0)} \mid v_0, \dots, v_k \text{ are vertices of some simplex of K} \right. \right\}$$

where $K^{(0)}$ is the 0-skeleton of K, i.e. it is the set of all simplices of dimension 0 in K. In this case, K is an abstract simplicial complex and it is called the vertex scheme of K.

Every finite abstract complex is the vertex scheme of a Euclidean simplicial complex.

Proof. Let K be a finite abstract complex.

Exercise 5.6

Homotopy and the Fundamental Group

Exercise 7.1.

a)

We simply have $f \sim g \iff f \cdot g^{-1} \sim g \cdot g^{-1} \iff f \cdot g^{-1} \sim c_P$.

b)

" \Rightarrow ": Let X be simply connected and fix two paths f and g with the same initial, say p, and terminal point. Since X is simply connected, $\pi(X,p)$ is trivial, and therefore, $f \cdot g^{-1}$ is homotopic to c_p . By a), $f \sim g$ as desired.

"\(\infty\)": If any two paths in X with the same initial and terminal point are path homotopic, then by similar reason as above, $\pi_1(X)$ is trivial.

7.4

First, $f \cdot g$ and $h \cdot k$ are well-defined because f(1) = F(1,0) = g(0) and h(1) = F(0,1) = k(0). The initial and the terminal point of $f \cdot g$ and $h \cdot k$ is also the same since f(0) = F(0,0) = h(0) and g(1) = F(1,1) = k(1).

7.5

First, $\varphi \circ f_0$ and $\varphi \circ f_1$ have the same initial and terminal points because $\varphi(f_0(0)) = \varphi(f_1(0))$ and $\varphi(f_0(1)) = \varphi(f_1(1))$. Let $F: I \times I \longrightarrow X$ be the homotopy between f_0 and f_1 . Set $H: I \times I \longrightarrow Y$ by $H(s,t) = \varphi(F(s,t))$. Then, H is continuous because it is a composition of continuous functions and

$$H(s,0) = \varphi(F(s,0)) = \varphi(f_0(s))$$
 $H(s,1) = \varphi(F(s,1)) = \varphi(f_1(s)).$