

# Interactive biobank feature selection using Pearson's correlation



Tim Swarts<sup>1,3</sup>

## Dr Sipko van Dam<sup>2,3</sup>

- <sup>1</sup> Student Bioinformatics, Institute for Life Science & Technology, Hanze University of Applied Sciences, Groningen, The Netherlands
- <sup>2</sup> Head of Bioinformatics, Ancora Health B.V., Groningen, The Netherlands
- <sup>3</sup> Department of Endocrinology, University of Groningen, University Medical Center Groningen, P.O. Box 30001, 9700 RB, Groningen, The Netherlands

**February 1<sup>st</sup>, 2024** 



## Background

Despite the continuous rise in global health expectancy, prevalence of preventable diseases is increasing [1-3]. To allow effective prevention, Ancora uses machine learning algorithms to identify individuals at high risk [4]. They data from the UK Biobank. [5] This database contains biomarkers, measurements, questionnaire answers, and genetic data from 500,000 UK participants [6]. Due to strong collinearity between features effective feature selection is necessary. This can increase efficiency and performance of machine learning models trained on such large datasets [7, 8].



# **Project Goal**

Creating graphical user interface that:

- Allows interactive feature selection for machine learning
- Helps prevent use of multicollinear features
- Handles both numeric and categorical data
- Is easy to use for doctors and researches without a background in informatics

### **Selecting a Feature**

Decided by highest absolute value of Pearson's correlation with the target

#### **Correcting for Multicollinearity**

Effect of selected feature is removed with linear regression

regression <- lm(remaining ~ selected)</pre> remaining <- regression\$residuals</pre>

#### **Calculate Corrected Correlations**

For the remaining features, their correlation to the target is revaluated, now with the effect of the selected feature removed



## Results

The recursive feature addition method shown in the visualisation was used to reduce a subset from the UK Biobank down from 313 features to just 15, optimised for diabetes classification. This resulted in the following improvements the training of a logistic regression model:

- Training speed increased by a factor of 81.
- AUC improved from 0.89 to 0.91.
- Comparison using Akaike's Information Criterion favoured the simpler model with a difference of 133.



# Discussion

The interface is user friendly and will allow noninformaticians to do complex analyses with the click of a button (figure below).

# Possible future improvements:

- Integrating the feature selection tool with a machine learning interface for model training and evaluation.
- Optimisation of the correlation table computation to enhance tool responsiveness.
- Further validating the feature selection method by training multiple models and assessing the average performance difference.



## Example





## **References:**

- [1] AbdulRaheem, Y. (2023). Unveiling the significance and challenges of integrating prevention levels in healthcare practice. J. Prim. Care
- Community Health, 14, 21501319231186500. Retrieved from https://journals.sagepub.com/doi/10.1177/21501319231186500 • [2] Dattani, S., Rodés-Guirao, L., Ritchie, H., Ortiz-Ospina, E., & Roser, M. (2023). Life Expectancy. Our World in Data. Retrieved from
- [3] Dattani, S., Rodés-Guirao, L., Ritchie, H., Ortiz-Ospina, E., & Roser, M. (2023). Life Expectancy. Our World in Data. Retrieved from
- https://ourworldindata.org/life-expectancy • [4] Ancora Health. (2023, September). Ancora Health. Retrieved from https://ancora.health/

https://ourworldindata.org/life-expectancy

- [5] van Dam, S., Folkertsma, P., Castela Forte, J., de Vries, D. H., Herrera Cunillera, C., Gannamani, R., & Wolffenbuttel, B. H. R. (2023). The necessity of incorporating non-genetic risk factors into polygenic risk score models. Sci. Rep., 13(1), 1351. Retrieved from https://www.nature.com/articles/s41598-023-27637-w
- [6] UK Biobank UK Biobank 2023. (2023, May). UK Biobank UK Biobank. Retrieved from https://www.ukbiobank.ac.uk/ [7] Zhao, Z., Morstatter, F., Sharma, S., Alelyani, S., Anand, A., & Liu, H. (01 2010). Advancing feature selection research. ASU Feature Selection
- Repository Arizona State University, 1–28. • [8] Cai, J., Luo, J., Wang, S., & Yang, S. (2018). Feature selection in machine learning: A new perspective. Neurocomputing, 300, 70–79.
- **Student:**

Tim Swarts - 372975 t.swarts@st.hanze.nl **Supervisor:** Dr Sipko van Dam sipko@ancora.health

**Supervising Teacher:** Lübeckweg 2 Ronald Wedema 9723 HE Groningen r.wedema@pl.hanze.nl





Zernikeplein 7 9747 AS Groningen