Crises cardiaques

November 6, 2023

1 Crises cardiaques

Jeu de données de nature médicale, ou la variable à prédire output est 1 dans le cas d'une crise cardiaque, 0 dans le cas d'un individu sain.

1.1 Corrélation

Calculer la corrélation entre la variable age et la variable thalachh (fréquence cardiaque maximale atteinte). Tracer le scatterplot de ces deux variables et comparer à la valeur de corrélation. Comment interpréter cette valeur ?

1.2 ACP

En excluant la variable output (dont la valeur 0 correspond à un individu sain et la valeur 1 à un individu faisant une crise cardiaque), effectuer une ACP sur les variables restantes. Tracer les graphes suivants :

- Variance expliquée par les 15 premières composantes
- Courbe cumulative de la variance expliquée (par toutes les composantes). Interpréter : a-t-on une bonne représentation ?
- Nuage des individus projétés sur les 2 premières composantes principales, colorés par classe (avec ou sans crise cardiaque). Interpréter : peut-on obtenir une bonne classification en n'utilisant que ces deux composantes ?
- Même nuage, colorés selon la qualité de la représentation (\cos^2) . Interpréter : comment lier cela à la variance expliquée ?
- Premier cercle de corrélation. Interpréter : quelles variables sont bien expliquées dans le premier plan principal ?

1.3 AFD

- Appliquer une AFD linéaire aux mêmes données, en utilisant output come variable de référence. Combien d'axes factoriels obtient-on? Pourquoi?
- Tracer un graphe de la distribution des projections sur le(s) axe(s) factoriel(s). A-t-on une bonne séparation des deux classes ?
- Calculer l'accuracy de cette méthode de classification et la matrice de confusion. Est-ce satisfaisant ? Si on devait l'utiliser dans la pratique pour prédire si un patient aux urgences est malade, comment pourrait-on le modifier pour réduire le risque pour les patients ?

1.4 SVM

- Entraîner une SVM linéaire pour séparer les deux classes, en utilisant toutes les données
- Calculer l'accuracy et la matrice de confusion. Est-ce meilleur que l'AFD?
- Répéter l'entraînement en n'utilisant que les deux premières composantes principales. Comment change l'accuracy ?
- Tracer la droite de séparation qu'on obtient ainsi dans le plot sur les deux composantes principales.
- Répéter l'entraı̂nement en utilisant, cette fois, une SVM non-linéaire (par exemple, noyau "rbf") sur toutes les données. Est-ce meilleur ?

1.5 Réseaux de neurones

- Entraı̂ner un réseau de neurones avec les paramètres standards. Peut-on dire si c'est mieux des méthodes ci-dessus ?
- Répéter l'entraînement avec beaucoup plus de neurones ; comment change le résultat ?
- Séparer le jeu de données en 80% d'entraînement et 20% de test. Répéter l'entraînement de AFD, SVM (linéaire et non) et les deux réseaux de neurones, en n'entraînant que sur le premier 80% et évaluant sur le reste. Comment changent les résultats ?