DIV	/- DIV-	Questions
	B B	Questions
1 1	64	Show that $\left[\overline{p} + \overline{q}, \ \overline{q} + \overline{r}, \ \overline{r} + \overline{p}\right] = \left(\overline{p} + \overline{q}\right) \cdot \left[\left(\overline{q} + \overline{r}\right) \times \left(\overline{r} + \overline{p}\right)\right] = 2\left[\overline{p} \ \overline{q} \ \overline{r}\right]$
2	65	If $l, \overline{m}, \overline{n}$ are three non-conjugar vectors, prove that
		$ \left[\bar{l} \ \overline{m} \ \bar{n} \right] \left(\bar{a} \times \bar{b} \right) = \begin{vmatrix} \bar{l} \cdot \bar{a} & \bar{l} \cdot \bar{b} & \bar{l} \\ \overline{m} \cdot \bar{a} & \overline{m} \cdot \bar{b} & \overline{m} \end{vmatrix} $
		$\left[\left[\overline{l} \overline{m} \overline{n} \right] \left(\overline{a} \times \overline{b} \right) - \left[\overline{m} \overline{a} \overline{m} \overline{b} \right] = 0$
		$\left \begin{array}{ccc} \overline{n} \cdot \overline{a} & \overline{n} \cdot \overline{b} & \overline{n} \end{array} \right $
3	66	
4	67	Prove that the points (2, 1, 1), (0, 1, -3), (3, 2, -1) and (7, 2, 7) are coplanar.
5	68	Show that the vectors are coplanar: $2i - j + k$, $i + 2j - 3k$, $3i + aj + 5k$ if $a = -4$
6	69	Prove that the points $(1, 1, 1)$, $(2, -1, 1)$, $(3, 1, 2)$ and $(5, 1, 3)$ are coplanar. Prove that $i \times (\overline{a} \times i) + j \times (\overline{a} \times j) + k \times (\overline{a} \times k) = 2\overline{a}$
7	70	Prove that $\overline{a} \times [\overline{b} \times (\overline{c} \times \overline{d})] = (\overline{b} \cdot \overline{d}) (\overline{a} \times \overline{c}) - (\overline{b} \cdot \overline{c}) (\overline{a} \times \overline{d})$
8	71	
9	72	Prove that $\left[\overline{b} \times \overline{c} \overline{c} \times \overline{a} \overline{a} \times \overline{b}\right] = \left[\overline{a} \ \overline{b} \ \overline{c}\right]^2$
		Prove that $\overline{a} \times (\overline{b} \times \overline{c}) + \overline{b} \times (\overline{c} \times \overline{a}) + \overline{c} \times (\overline{a} \times \overline{b}) = 0$
10	73	Prove that $(\overline{a} \times \overline{b}) \cdot (\overline{c} \times \overline{d}) + (\overline{b} \times \overline{c}) \cdot (\overline{a} \times \overline{d}) + (\overline{c} \times \overline{a}) \cdot (\overline{b} \times \overline{d}) = 0$
11	74	Prove that $(\overline{a} \times \overline{b}) \cdot (\overline{c} \times \overline{d}) = [\overline{a} \ \overline{c} \ \overline{d}] \overline{b} - [\overline{b} \ \overline{c} \ \overline{d}] \overline{a}$, where $\overline{a}, \overline{b}, \overline{c}$ are coplanar vectors.
12	75	Prove that $\overline{d} \cdot \left[\overline{a} \times \left[\overline{b} \times (\overline{c} \times \overline{d}) \right] \right] \approx \left(\overline{b} \cdot \overline{d} \right) \left[\overline{a} \ \overline{c} \ \overline{d} \right]$
13	76	
		$\frac{d\overline{d}}{dt} = \overline{u} \times \overline{a} \& \frac{d\overline{b}}{dt} = \overline{u} \times \overline{b}, \text{ prove that } \frac{d}{dt} \left[\overline{a} \times \overline{b} \right] = \overline{u} \times \left(\overline{a} \times \overline{b} \right)$
14	77	If $\overline{r} = a \cos t \ i + a \sin t \ j + at \tan \alpha \ k$, show that $\left[\frac{d\overline{r}}{dt} \ \frac{d^2 \overline{r}}{dt^2} \ \frac{d^3 \overline{r}}{dt^3} \right] = a^3 \tan \alpha$
		If $r = a \cos t t + a \sin t f + at \tan \alpha k$, show that $\left \frac{dr}{dt} \frac{dr}{dt^2} \frac{d^3r}{dt^3} \right = a^3 \tan \alpha$
15	78	
		Show that $\frac{d}{dt} \left[\overline{u} \frac{d\overline{u}}{dt} \frac{d^2 \overline{u}}{dt^2} \right] = \left[\overline{u} \frac{d\overline{u}}{dt} \frac{d^3 \overline{u}}{dt^3} \right]$
16	70	
16	79	If $\overline{A} = (\sin t)i + (\cos t)j + tk$, $\overline{B} = (\cos t)i - (\sin t)j - 3k$, $\overline{C} = 2i + 3j - k$ find
		$\frac{d}{dt} \left[\overline{A} \times \left(\overline{B} \times \overline{C} \right) \right] at \ t = 0$
-,	100	1 (1)
CDAT	80 7	$\overline{a} = i - 2j - 3k, \overline{b} = 2i + j - k, \overline{c} = i + 3j - k$ Find $\overline{a} \times (\overline{b} \times \overline{c})$ and $(\overline{a} \times \overline{b}) \times \overline{c}$
18	81	nd DIRECTIONAL DERIVATIVES
19	82	Find $\nabla \phi_{if} \phi = 3x^2y - y^3z^2$ at $(1, -2, 1)$
19	02	Find the directional derivative of $\phi = x^2y + y^2z + z^2x^2$ at $P(1, 2, 1)$ in the direction of the
		normal to the surface $x^2 + y^2 - z^2x = 1$ at $Q(1, 1, 1)$
20	83	Find the directional derivative of $\phi = 2x^3y - 3y^2z$ at $P(1, 2, -1)$ in the direction towards
		Q(3, -1, 5). In what direction from P is the directional derivative maximum? Find the magnitude
أمري		of maximum directional derivative.
21	84	Find the directional derivative of $\phi = x^4 + y^4 + z^4$ at $A(1, -2, 1)$ in the direction of AB
_		where B is $(2, 6, -1)$. Also find the maximum directional derivative of ϕ at $(1, -2, 1)$.
22	85	Find the directional derivative of $\phi = x^2y^2 + y^2z^2 + z^2x^2$ at $(1, 1, -2)$ in the direction of the
7		tangent to the curve $x = e^{-t}$, $y = 2\sin t + 1$, $z = t - \cos t$ at $t = 0$
23	86	Find the directional derivative of $\lambda = 2x$
ر		Find the directional derivative of $\phi = e^{2x} \cos yz$ at $(0, 0, 0)$ in the direction of the tangent to the
		curve $x = a \sin t$, $y = a \cos t$, $z = at$ at $t = \pi/4$.

24	87	Find the directional derivative of $\phi = x^2 + y^2 + z^2$ in the direction of the line $\frac{x}{3} = \frac{y}{4} = \frac{z}{5}$ at
		(1, 2, 3)
25	88	Find the directional derivative of $\phi = x^2 y \cos z$ in the direction of the line $\overline{a} = 2i + 3j + 2k$ at
26	100	$(1,2,\pi/2)$
26	89	Find the acute angle between the surface $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 - 3$ at $(2, -1, 2)$
27	90	Find the angle between the two surfaces $x^2 + y^2 + a z^2 = 6$ and $z = 4 - y^2 + b x y$ at $(1, 1, 2)$
28	91	Find the rate of change of $\phi = xy + yz + zx$ at $(1, -1, 2)$ in the direction of the normal to the
	-	surface $x^2 + y^2 = z + 4$.
29	92	In what direction is the directional derivative of $\phi = 2xz - y^2$ at $(1, 3, 2)$ maximum? Find its magnitude.
30	93	Find the rate of change of $\phi = xy^2 + yz^3$ at $(2, -1, 1)$ in the direction of the normal to the
		surface $x \log z - y^2 + 4 = 0$ at $(-1, 2, 1)$
31	94	Find the angle between the normals to the surfaces $x^2y + 2xz = 4$ at $(2, -2, 3)$ and to
"	1	
		$x^3 + y^3 + 3xyz = 3$ at $(1, 2, -1)$
32	95	Find the constants a and b such that the surfaces $ax^2 - 2byz = (a + 4)x$ will be orthogonal to
		the surface $4x^2y + z^3 = 4$ at $(1,-1,2)$.
33	96	Find the constants a, b if the angle between the surfaces $x^2 + axz + byz = 2$ &
		$x^2z + xy + y + 1 = z$ at $(0, 1, 2)$ is $\cos^{-1}(1/\sqrt{3})$.
24	07	$x + xy + y + 1 = z$ at $(0, 1, 2)$ is $\cos (1/\sqrt{3})$.
34	97	Find the constants a, b such that the surfaces $5x^2 - 2yz - 9x = 0$ & $ax^2y + bz^3 = 4$ cut
35	98	orthogonally at (1,-1,2)
,	100	If the directional derivative of $\phi = ax^2 + by + 2z$ at (1, 1, 1) is maximum in the direction of
	-	i + j + k, find a &b.
36	99	Find the constants a and b such that the surface $ax^2 - bxy + xz = 10$ is orthogonal to the surface $x^2 + y^2 = 4 + xz$ at $(1, 2, 1)$
37	100	Find the directional derivative of $\emptyset = \frac{x}{x^2 + y^2}$ at (0,1,1) in the direction of normal to the
		surface $x^2 + y^2 - z^2x = 1$ at $(1,1,1)$
38	101	Find the constants a and b such that the directional derivative of $\emptyset = ax^2 + by^2 + cz^2$ at (1,1,2)
		has the maximum magnitude 4 in the direction parallel to x-axis.
		TIAL OPERATORS
39	102	If \overline{a} is a constant vector such that $ \overline{a} = a$ then prove that $\nabla \cdot \{(\overline{a} \cdot \overline{r})\overline{a}\} = a^2$
40	103	If \overline{a} is a constant vector and $\overline{r} = xi + yj + zk$, prove that i) $div(\overline{a} \times \overline{r}) = 0$
		ii) $div (\overline{a} \cdot \overline{r}) \overline{a} = a^2 \text{ iii}) div (\overline{a} \times \overline{r} \times \overline{a}) = 2a^2 \text{ iv) } curl (\overline{a} \times \overline{r}) = 2\overline{a}$
		ii) $div (\overline{a} \cdot \overline{r}) \overline{a} = a^2$ iii) $div (\overline{a} \times \overline{r} \times \overline{a}) = 2a^2$ iv) $curl (\overline{a} \times \overline{r}) = 2\overline{a}$ https://web.szl.ai/share?share_token=b12142e5-8f52-4483-ad69-c36c169fdbdd
41	104	If $\phi = x^3 + y^3 + z^3 - 3xyz$, find (i) $\overline{r} \cdot \nabla \phi$, (ii) $\nabla \cdot \overline{F}$, $\nabla \times \overline{F}$ where $\overline{F} = \nabla \phi$
42	105	If $\phi = x^3 + y^3 + z^3 - 3xyz$, find (i) $\overline{r} \cdot \nabla \phi$, (ii) $\nabla \cdot \overline{F}$, $\nabla \times \overline{F}$ where $\overline{F} = \nabla \phi$ Prove that $\nabla \left(\frac{1}{r}\right) = -\frac{\overline{r}}{r^3}$. share_token=7e8e885a-2b7e-43d6-b301-6ca6fbe27623
43	106	Prove that $\nabla f(r) = \frac{f'(r)}{r} \overline{r}$ and hence, find f if $\nabla f = 2r^4 \overline{r}$.
44	107	Show that $\nabla \left[\frac{(\overline{a} \cdot \overline{r})}{r^n} \right] = \frac{\overline{a}}{r^n} - \frac{n(\overline{a} \cdot \overline{r})\overline{r}}{r^{n+2}}$

Vector Differentiation Practice Problems

45	108	Prove that $\nabla r^n = n r^{n-2} \overline{r}$
46	109	Prove that $\nabla \cdot (\nabla \times \overline{F}) = 0$ where \overline{F} is a vector point function.
47	110	Prove that $\nabla \left\{ \nabla \cdot \frac{\overline{r}}{r} \right\} = -\frac{2}{r^3} \overline{r}$
48	111	Prove that $\nabla \cdot \left(r \nabla \frac{1}{r^3} \right) = \frac{3}{r^4}$ https://web.szl.ai/share? share_token=8bc22f3d-3a58-4b84-8669-c6f
49	112	Prove that $\nabla \cdot \left(r \nabla \frac{1}{r''} \right) = \frac{n(n-2)}{r^{n+1}}$
50	113	Prove that div grad $r^n = n(n+1)r^{n-2}$
51	114	Prove that $\nabla \times \left(\frac{\overline{a} \times \overline{r}}{r^n}\right) = \frac{(2-n)\overline{a}}{r^n} + \frac{n(\overline{a} \cdot \overline{r})\overline{r}}{r^{n+2}}$
52	115	Prove that $\nabla \log r = \frac{\overline{r}}{r^2}$ and hence, show that $\nabla \times (\overline{a} \times \nabla \log r) = 2 \frac{(\overline{a} \cdot \overline{r}) \overline{r}}{r^4}$, where \overline{a} is
DIV	ERGEN	a constant vector. CE AND CURL
53	116	
		$div \overline{F} and curl \overline{F} where \overline{F} = \frac{xi - yj}{x^2 + y^2}$ Find
54	117	If $\overline{A} = \nabla(xy + yz + zx)$, find $\nabla \cdot \overline{A}$ and $\nabla \times \overline{A}$
55	118	If $\overline{F} = (\overline{a} \cdot \overline{r}) \overline{r}$ where \overline{a} is constant vector, find $curl \overline{F}$ and P.T. it is perpendicular to \overline{a} .
56	119	Prove that $\overline{F} = \frac{\overline{r}}{r^3}$ is both irrotational and solenoidal.
57	120	A
,	120	A vector field \overline{F} is given by $\overline{F} = (y \sin z - \sin x)i + (x \sin z + 2yz)j + (xy \cos z + y^2)k \text{ Prove that it is irrotational and hence, find its scalar potential.}$
58	121	A vector field is given by $\overline{F} = (x^2 + xy^2)i + (y^2 + x^2y)j$. Show that \overline{F} irrotational and find its scalar potential.
59	122	If $\nabla \phi = (y^2 - 2 xyz^3)i + (3 + 2xy - x^2z^3)j + (6z^3 - 3x^2yz^2)k$, find ϕ where $\phi(1, 0, 1) = 2$
60	123	Find the value of n for which the vector $r^n \overline{r}$ is solenoidal, where $\overline{r} = xi + yj + zk$
61	124	Prove that $\nabla \cdot \left\{ \frac{f(r)}{r} \overline{r} \right\} = \frac{1}{r^2} \frac{d}{dr} [r^2 f(r)]$ hence or otherwise prove that $\operatorname{div}(r^n \overline{r}) = (n+3)r^n$
62	125	Show that $\overline{F} = (y^2 - z^2 + 3yz - 2x)i + (3xz + 2xy)j + (3xy - 2xz + 2z)k$ is both solenoidal & irrotational.
63	126	If \overline{r} is the position vector of point (x, y, z) and r is the modulus of \overline{r} , then prove that $r^n \overline{r}$ is an irrotational vector for any value of n but solenoidal only if $n = -3$.

Vector Differentiation Practice Problems

DI	127,D 7	If $\bar{f} = (x+y+1)i + j - (x+y)k$, prove that $\bar{f} \cdot curl\ \bar{f} = 0$
D2	128,D 8	Define irrotational field and hence check whether the vector field $\overline{F} = (x + 2y + 4z)i + (2x - 3y - z)j + (4x - y + 2z)k$ is irrotational.
DIFF	ERENTI	AL OPERATORS
D3	D9	With usual notation, prove that $\nabla^2 \left[\nabla \cdot \frac{\overline{r}}{r^2} \right] = \frac{2}{r^4}$
D4	D10	Show that $\nabla^4 r^2 \log r = \frac{6}{r^2}$
D5	DII	Prove that $\nabla^2 f(r) = \frac{d^2 f}{dr^2} + \frac{2}{r} \frac{df}{dr}$
D6	D12	Prove that $\nabla^2(r^2 \log r) = 5 + 6 \log r$

https://web.szl.ai/share?share_token=201f0103-32cd-4fb6-b5e6-fc35f05a2827