POWTORECZKA?

PODSTAWOWE POJECIA

CIALO - zbior $+,\cdot,0,1\in K$, gdzie

+, · sa przemienne, laczne i rozdzielne

$$\forall x \quad 0 + x = 1 \cdot x = x$$

$$\forall x \exists -x \quad x + (-x) = 0$$

$$x \neq 0 \colon \exists x^{-1} \quad x \cdot x^{-1} = 1$$

$$0 \neq 1$$

Jesli istnieja -x oraz x^{-1} , to sa one jedyne.

 $\mathbb{R},\mathbb{C},\mathbb{Q}$ sa cialami, ale \mathbb{Z} nie jest cialem (nie ma elementu odwrotnego do 2).

Cialo jest zamkniete na dodawanie i mnozenie, czyli wynikiem tych dzialan na zbiorze K jest element ze zbioru K.

 $\{0,1,2,3,4\}$ z dodawaniem i mnozeniem $\mod 5$ jest cialem, czyli jest element odwrotny dla wszystkich liczb:

$$2*3 = 4*4 = 1$$

Mozna zdefiniowac cialo rozszerzone o pierwiastek:

$$d \in \mathbb{Q} \to \mathbb{Q}[\sqrt{d}]\{a + b\sqrt{d} : a, b \in \mathbb{Q}\}$$

Cialo K rozszezmy o x: K[x] nie jest cialem, bo x^{-1} nie istnieje.

PRZESTRZEN LINIOWA nad K to zbior V:

$$\begin{array}{c} +:\; V\times V\to V\\ \cdot:\; K\times V\to V\\ 0\in V \end{array}$$

takie, ze:

+, \cdot sa laczne, przemienne i rozdzielne

0 jest tylko jedno

zachodzi lacznosc mnozenia dla \ldots : $(\alpha \underset{K}{\cdot} \beta) \underset{V}{\cdot} v = \alpha \underset{V}{\cdot} (\beta \underset{V}{\cdot} v)$

Przestrzeniami liniowymi sa m.in. \mathbb{R}^2 i \mathbb{R}^3 nad \mathbb{R} , \mathbb{C}^2 i \mathbb{C}^3 nad \mathbb{C} .

Jesli K jest cialem, do dla dowolnego $n\in\mathbb{N}$ zbior K^n jest przestrzenia liniowa nad K Jesli A jest dowolnym zbiorem, to $K^A=\{f:A\to K\}$ tez jest przestrzenia liniowa nad K $K_n[X]$ – zbior wielomianow o stopniu $\leq n$ i wspolczynnikach z K jest przestrzenia liniowa nad K $C(\mathbb{R})$ – zbior wszystkich funkcji ciaglych $\mathbb{R}\to\mathbb{R}$ jest przestrzenia liniowa nad \mathbb{R} .