EXHIBIT E

US008601526B2

(12) United States Patent

Nishimura et al.

(10) Patent No.: US 8,601,526 B2

(45) **Date of Patent: Dec. 3, 2013**

(54) SYSTEMS AND METHODS FOR DISPLAYING MEDIA CONTENT AND MEDIA GUIDANCE INFORMATION

(75) Inventors: Akitaka Nishimura, Tokyo (JP); Akio

Yoshimoto, Kanagawa (JP)

(73) Assignee: United Video Properties, Inc., Los

Angeles, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 249 days.

(21) Appl. No.: 12/144,434

(22) Filed: Jun. 23, 2008

(65) Prior Publication Data

US 2009/0313658 A1 Dec. 17, 2009

Related U.S. Application Data

(60) Provisional application No. 61/061,185, filed on Jun. 13, 2008.

(51) Int. Cl. H04N 5/445 (2011.01) H04N 7/16 (2011.01) H04N 7/173 (2011.01)

(56) References Cited

U.S. PATENT DOCUMENTS

4,264,924 A 4/1981 Freeman 4,264,925 A 4/1981 Freeman et al.

10/1982	George et al.
12/1983	Rodesch et al.
1/1984	Chichelli et al
2/1986	Freeman
7/1986	Freeman
8/1986	Chard
11/1986	Scott
(Con	tinued)
	12/1983 1/1984 2/1986 7/1986 8/1986 11/1986

FOREIGN PATENT DOCUMENTS

DE	4431438	3/1996
DE	4440174	5/1996
	(Con	tinued)

OTHER PUBLICATIONS

U.S. Appl. No. 60/019,351, filed Jun. 6, 1996, Williams.

(Continued)

Primary Examiner — Kieu Oanh T Bui (74) Attorney, Agent, or Firm — Ropes & Gray LLP

(57) ABSTRACT

A system comprises television equipment and a number of portable electronic devices. The television equipment includes a large display and control circuitry. The control circuitry receives media content and media guidance data for display on the display. The control circuitry also includes communication components for communicating with the portable electronic devices. The portable electronic devices are operable for displaying video and communicating with the television equipment. A method comprises the steps of receiving media guidance information with a first portable electronic device; transmitting at least some of the media guidance information from the first portable electronic device to the control circuitry of the television equipment; and displaying the media guidance information from the first portable electronic device on the display of the television equipment while simultaneously displaying media content or media guidance information received from a source other than the first portable electronic device.

33 Claims, 10 Drawing Sheets

(56)	Referer	ices Cited	5,455,570			Cook et al.
IIC	DATENIT	DOCUMENTS	5,459,522 5,465,113		10/1995 11/1995	Pint Gilboy
0.8	. PALENT	DOCUMENTS	5,469,206		11/1995	Strubbe et al.
4,630,108 A	12/1986	Gomersall	5,477,262		12/1995	Banker et al.
4,694,490 A	9/1987	Harvey et al.	5,479,266		12/1995	Young et al.
4,706,121 A	11/1987	U	5,479,268 5,479,497		12/1995	Young et al.
4,718,107 A 4,751,578 A	1/1988 6/1988	Hayes	5,481,296			Cragun et al.
4,761,684 A		Clark et al.	5,483,278			Strubbe et al.
4,787,063 A		Muguet	5,485,197		1/1996	
4,841,562 A	6/1989		5,485,219 5,485,221		1/1996 1/1996	Woo et al. Banker et al.
4,847,698 A 4,847,700 A		Freeman Freeman	5,502,504			Marshall et al.
4,857,999 A		Welsh	5,509,908			Hillstead et al.
4,866,434 A		Keenan	5,517,256			Hashinoto et al.
4,899,370 A		Kameo et al.	5,517,257 5,523,796			Dunn et al. Marshall et al.
4,908,707 A		Kinghorn Vacal	5,524,195			Clanton, III et al.
4,930,158 A 4,945,563 A	5/1990 7/1990	Horton et al.	5,526,034			Hoarty et al.
4,959,720 A		Duffield et al.	5,528,304			Cherrick et al.
4,965,825 A		Harvey et al.	5,532,754			Young et al. Levitan
4,977,455 A	12/1990		5,534,911 5,537,141			Harper et al.
4,994,908 A 5,001,554 A		Kuban et al. Johnson et al.	5,539,449			Blahut et al.
5,016,273 A	5/1991		5,539,822		7/1996	
5,036,314 A		Barillari et al.	5,541,662			Adams et al.
5,038,211 A		Hallenbeck	5,543,856 5,550,576			Rosser et al. Klosterman
5,047,867 A 5,068,733 A		Strubbe et al. Bennett	5,550,863		8/1996	Yurt et al.
5,089,885 A	2/1992		5,553,123			Chan et al.
5,105,184 A	4/1992	Pirani et al.	5,557,338			Maze et al.
5,109,279 A	4/1992		5,557,724 5,559,548		9/1996	Sampat et al. Davis et al.
5,113,259 A 5,132,992 A		Romesburg et al. Yurt et al.	5,559,549			Hendricks et al.
5,134,649 A		Gutzmer	5,559,550			Mankovitz
5,134,719 A		Mankovitz	5,568,272		10/1996	
5,151,789 A		Young	5,570,295 5,572,442			Isenburg et al. Schulhof et al.
5,155,591 A 5,168,353 A		Wachob Walker et al.	5,576,755			Davis et al.
5,172,413 A		Bradley et al.	5,579,239			Freeman et al.
5,179,439 A		Hashimoto	5,583,560			Florin et al.
5,187,589 A		Kono et al.	5,583,561 5,583,563		12/1996 12/1996	Baker et al. Wanderscheid et al.
5,195,134 A 5,200,822 A		Inoue et al. Bronfin et al.	5,583,653		12/1996	Timmermans et al.
5,200,822 A 5,202,915 A	4/1993		5,585,838		12/1996	Lawler et al.
5,210,611 A		Yee et al.	5,585,858			Harper et al.
5,216,228 A		Hashimoto	5,585,865 5,585,866		12/1996	Amano et al. Miller et al.
5,223,924 A 5,225,902 A		Strubbe et al. McMullan, Jr. et al.	5,589,892			Knee et al.
5,228,077 A		Darbee	5,592,482			Abraham
5,233,423 A		Jernigan et al.	5,592,551			Lett et al.
5,239,654 A		Ing-Simmons et al.	5,594,509 5,596,373			Florin et al. White et al.
5,241,428 A 5,249,043 A		Goldwasser et al. Grandmougin et al.	5,600,364			Hendricks et al.
5,243,043 A 5,253,066 A	10/1993		5,602,582			Wanderscheid et al.
5,253,275 A	10/1993	Yurt et al.	5,606,374			Bertram
5,283,560 A		Bartlett et al.	5,606,726 5,610,653			Yoshinobu Abecassis
5,285,284 A 5,296,931 A		Takashima et al. Na et al.	5,617,526			Oran et al.
5,307,173 A		Yuen et al.	5,619,247	A	4/1997	Russo
5,319,445 A	6/1994	Fitts	5,619,249			Billock et al.
5,323,234 A		Kawasaki et al.	5,619,274 5,621,456			Roop et al. Florin et al.
5,325,183 A 5,335,079 A		Rhee et al. Yuen et al.	5,623,613		4/1997	
5,335,277 A		Harvey et al.	5,625,406	A	4/1997	Newberry et al.
5,353,121 A	10/1994	Young et al.	5,625,464			Compoint
5,359,367 A		Stockill et al.	5,629,733 5,630,119		5/1997	Youman et al. Aristides et al.
5,371,551 A 5,377,317 A		Logan et al. Bates et al.	5,631,995			Weissensteiner et al.
5,382,983 A		Kwoh et al.	5,632,007	A		Freeman
5,398,074 A	3/1995	Duffield et al.	5,635,978			Alten et al.
5,410,326 A		Goldstein	5,635,979			Kostreski et al.
5,410,344 A		Graves et al.	5,635,989			Rothmuller Mankovitz
5,412,720 A 5,414,756 A		Hoarty Levine	5,640,484 5,646,603		6/1997 7/1997	Mankovitz Naoata
5,416,508 A		Sakuma et al.	5,648,824			Dunn et al.
5,440,678 A	8/1995	Eisen et al.	5,650,826	A	7/1997	Eitz et al.
5,442,389 A	8/1995	Blahut et al.	5,650,831	A	7/1997	Farwell

(56)		Referen	ces Cited	5,812,205	A	9/1998	Milnes et al.
(30)				5,812,930	A	9/1998	Zavrel
	U.S.	PATENT	DOCUMENTS	5,812,931 5,812,937		9/1998	Yuen Takahisa et al.
5,652,61	2 4	7/1007	Lazarus et al.	5,812,937			Howe et al.
5,652,61			Bryant et al.	5,818,441			Throckmorton et al.
5,654,74			Matthews et al.	5,819,019		10/1998	
5,654,88			Zereski, Jr. et al.	5,819,156 5,822,123			Belmont Davis et al.
5,655,21			Mullett et al.	5,822,123		10/1998	
5,657,07 5,657,41			Aristides et al. Lett et al.	5,828,420			Marshall et al.
5,659,35			Hendricks et al.	5,828,945			Klosterman
5,659,36		8/1997		RE35,954 5,838,314		11/1998	Levine Neel et al.
5,661,51 5,666,29		8/1997	Carles Metz et al.				Coleman et al 725/54
5,666,49		9/1997		5,846,704	A	12/1998	Maertens et al.
5,666,64	5 A	9/1997	Thomas et al.	5,850,218			LaJoie et al.
5,673,08			Yuen et al.	5,852,437 5,858,866			Wugofski et al. Berry et al.
5,675,39 5,682,20			Schindler et al. Wehmeyer et al.	5,861,881			Freeman et al.
5,684,52			Klosterman	5,864,704			Battle et al.
5,686,95	4 A	11/1997	Yoshinobu et al.	5,867,223			Schindler et al.
5,689,66			Berquist et al.	5,867,233 5,867,799			Tanaka et al. Lang et al.
5,692,21 5,694,16		11/1997 12/1997		5,878,222			Harrison
5,694,38			Sako et al.	5,880,768			Lemmons et al.
5,696,82		12/1997		5,883,621			Iwamura
5,699,05			Miyahara	5,884,298 5,886,732			Smith, II et al. Humpleman
5,699,10 5,710,60			Lawler et al. Marshall et al.	5,886,746			Yuen et al.
5,710,60		1/1998		5,901,366			Nakano et al.
5,710,88			Dedrick	5,907,322 5,907,323		5/1999	Kelly Lawler et al.
5,715,02 5,717,45			Kuroiwa et al. Janin et al.	5,914,746			Matthews, III et al.
5,724,09			Freeman et al.	5,915,068		6/1999	Levine
5,727,06		3/1998	Young	5,917,405		6/1999	
5,734,72			Salganicoff	5,926,624 5,929,849			Katz et al. Kikinis
5,734,85 5,734,89		3/1998 3/1998	Hendricks et al.	5,940,387			Humpleman
5,742,90			Pepe et al.	5,940,572	A	8/1999	Balaban et al.
5,745,71	0 A	4/1998	Clanton, III et al.	5,945,988			Williams et al.
5,748,19			Rozak et al.	5,956,025 5,959,592			Goulden et al. Petruzzelli
5,748,71 5,748,73		5/1998 5/1998	Levine Le Berre et al.	5,963,264		10/1999	
5,751,28			Girard et al.	5,963,645			Kigawa et al.
5,752,15			Faust et al.	5,969,748 5,970,473			Casement et al. Gerszberg et al.
5,754,77 5,754,93			Epperson et al. Herz et al.	5,973,683			Cragun et al.
5,758,25			Herz et al.	5,977,964	A	11/1999	Williams et al.
5,758,25	9 A	5/1998		5,982,411		11/1999	Eyer et al.
5,760,82			Ellis et al.	5,986,650 5,987,509		11/1999	Ellis et al.
5,761,66 5,768,52	2 A 8 A	6/1998 6/1998		5,988,078	A	11/1999	Levine
5,771,27			Brunner et al.	5,990,885			Gopinath
5,774,53		6/1998		5,991,799 5,991,832			Yen et al. Sato et al.
5,774,66 5,774,66			Hidary et al. Portuesi	6,002,394			Schein et al.
5,774,85			Houser et al.	6,002,450	A	12/1999	Darbee et al.
5,778,18	2 A		Cathey et al.	6,005,561			Hawkins et al.
5,781,22			Sheehan	6,005,565 6,005,631		12/1999	Legall et al. Anderson et al.
5,781,24 5,787,25			Alten et al. Haroun et al.	6,006,257		12/1999	Slezak
5,788,50			Redford et al.	6,009,153			Houghton et al.
5,790,19			Roop et al.	6,009,465 6,012,086		1/2000	Decker et al.
5,790,20 5,793,96			Kummer et al. Rogers et al.	6,014,184			Knee et al.
5,796,95			Davis et al.	6,016,141			Knudson et al.
5,798,78	5 A	8/1998	Hendricks et al.	6,020,880			Naimpally Horz et al
5,801,78			Schein et al.	6,020,883 6,025,837			Herz et al. Matthews, III et al.
5,802,28 5,805,15			Karlton et al. Allibhoy et al.	6,025,869			Stas et al.
5,805,20	4 A	9/1998	Thompson et al.	6,035,339	A	3/2000	Agraharam et al.
5,805,76			Lawler et al.	6,038,367			Abecassis
5,805,80			Laursen et al.	6,040,829 6,049,823		3/2000 4/2000	Croy et al.
5,805,80 5,808,60			McArthur Young et al.	6,049,823			Hwang Candelore
5,808,69			Usui et al.	6,057,890			Virden et al.
5,809,20	4 A	9/1998	Young et al.	6,058,238	A	5/2000	Ng
5,812,12	3 A	9/1998	Rowe et al.	6,061,779	A	5/2000	Garde

(56)	Referei	nces Cited		6,522,342			Gagnon et al.
IJ	S. PATENT	DOCUMENTS		6,530,083 6,536,041		3/2003	Liebenow Knudson et al.
		2000MENTS		6,545,722	В1	4/2003	Schultheiss et al.
6,064,980 A		Jacobi et al.		6,557,031 6,564,378		4/2003 5/2003	Mimura et al. Satterfield
6,067,564 A 6,075,568 A		Urakoshi et al. Matsuura		6,564,383			Combs et al.
6,091,884 A		Yuen et al.		6,571,279	В1	5/2003	Herz et al.
6,097,441 A		Allport		6,603,488			Humpleman et al.
6,104,334 A		Allport		6,611,654 6,614,987		8/2003 9/2003	Shteyn Ismail et al.
6,130,726 A 6,133,910 A		Darbee et al. Stinebruner		6,622,304			Carhart
6,133,912 A	10/2000	Montero		6,651,253			Dudkiewicz et al.
6,141,488 A		Knudson et al.		6,670,971 6,675,385		1/2003	Oral et al.
6,144,401 A 6,144,702 A		Casement et al. Yurt et al.		6,701,523			Hancock et al.
6,157,411 A	12/2000	Williams et al.		6,704,028			Wugofski
6,157,413 A	12/2000	Hanafee et al. Shroyer		6,721,954 6,727,914		4/2004 4/2004	Nickum Gutta
6,160,988 A 6,163,316 A				6,732,372		5/2004	Tomita et al.
6,167,188 A	12/2000	Young et al.		6,738,978			Hendricks et al.
6,169,543 B		Wehmeyer		6,744,967 6,756,997			Kaminski et al. Ward, III et al.
6,172,674 B 6,172,677 B		Etheredge Stautner et al.		6,760,412			Loucks
6,177,931 B		Alexander et al.		6,760,537			Mankovitz
6,182,094 B		Humpleman et al.		6,772,433 6,788,882			LaJoie et al. Geer et al.
6,188,381 B 6,188,397 B		van der Wal et al. Humpleman		6,813,775			Finseth et al.
6,192,340 B	1 2/2001	Abecassis		6,813,777		11/2004	Weinberger et al.
6,202,211 B		Williams, Jr.		6,822,661 6,837,789		1/2004	Sai et al. Garahi et al.
6,208,335 B 6,208,384 B		Gordon et al. Schultheiss		6,847,686		1/2005	
6,208,799 B		Marsh et al.		6,868,225			Brown et al.
6,212,327 B		Berstis		6,871,146 6,871,186			Kelly et al. Tuzhilin et al.
6,219,839 B 6,226,444 B		Sampsell Goldschmidt et al.		6,897,904			Potrebic et al.
6,226,618 B		Downs et al.		6,925,567			Hirata et al.
6,233,389 B		Barton et al.		6,927,806 6,934,964		8/2005 8/2005	Chan Schaffer et al.
6,233,734 B 6,237,049 B		Macrae et al. Ludtke		6,950,624			Kim et al.
6,239,794 B		Yuen et al.		6,973,669		12/2005	
6,240,555 B		Shoff et al.		7,003,791 7,006,881			Mizutani Hoffberg et al.
6,260,088 B 6,263,501 B		Gove et al. Schein et al.		7,000,331		3/2006	Schwager et al.
6,263,503 B				7,013,478		3/2006	Hendricks et al.
6,263,507 B		Ahmad et al.		7,017,171 7,020,704			Horlander et al. Lipscomb et al.
6,268,849 B 6,275,648 B		Boyer et al. Knudson et al.		7,051,353		5/2006	Yamashita et al.
6,286,142 B	1 9/2001	Ehreth		7,055,166			Logan et al.
6,288,716 B		Humpleman et al.		7,084,780 7,088,952		8/2006 8/2006	Nguyen et al. Saito et al.
6,292,624 B 6,298,482 B		Saib et al. Seidman et al.		7,096,486			Ukai et al.
6,305,018 B	1 10/2001	Usui et al.		7,117,518			Takahashi et al.
6,310,886 B				7,134,130 7,134,131	B1	11/2006	Hendricks et al.
6,311,011 B 6,317,884 B		Kuroda et al. Eames et al.	,	7,152,236	В1		Wugofski et al.
6,321,318 B	1 11/2001	Baltz et al.		7,165,098			Boyer et al.
6,324,338 B		Wood et al.		7,194,755 7,200,852		3/2007 4/2007	Nakata et al. Block
6,326,982 B 6,327,418 B		Wu et al. Barton		7,206,892			Kim et al.
6,331,877 B	1 12/2001	Bennington et al.		7,213,089			Hatakenaka
6,336,099 B		Barnett et al.		7,224,886 7,224,889		5/2007 5/2007	Akamatsu et al. Takasu et al.
6,354,378 B 6,357,043 B		Ellis et al.		7,268,833			Park et al.
6,367,080 B	1 4/2002	Enomoto et al.		7,296,284			Price et al.
6,374,406 B 6,388,714 B		Hirata Schein et al.		7,328,450 7,343,616			Macrae et al. Takahashi et al.
6,396,544 B		Schindler et al.		7,386,871			Knudson et al.
6,397,080 B	1 5/2002	Viktorsson et al.		7,428,744			Ritter et al.
6,418,556 B		Bennington et al.		7,458,093 7,480,929			Dukes et al. Klosterman et al.
6,437,836 B 6,442,332 B		Huang et al. Knudson et al.		7,518,503		4/2009	
6,445,398 B	1 9/2002	Gerba et al.	,	7,603,685	B2	10/2009	Knudson et al.
6,463,585 B		Hendricks et al.		7,689,556			Garg et al.
6,473,559 B 6,486,892 B		Knudson et al.		7,783,632 7,852,416			Richardson et al. Bennett et al.
6,493,875 B		Eames et al.		8,060,399		11/2011	
6,505,348 B	1 1/2003	Knowles et al.	;	8,104,066	B2	1/2012	Colsey et al.
6,509,908 B	1 1/2003	Croy et al.	;	8,122,491	B2	2/2012	Yee

(56)		Referen	ces Cited	2005/0204388	A1		Knudson et al.
	1181	DATENIT	DOCUMENTS	2005/0240962 2005/0251822		10/2005	Cooper Knowles et al.
	0.5.1	LAILMI	DOCUMENTS	2005/0251827	A1	11/2005	Ellis et al.
8,266,666			Friedmann	2005/0259963 2005/0265169		11/2005	Sano et al. Yoshimaru et al.
8,331,987 2001/0026533		10/2001	Rosenblatt Schwager	2005/0278741			Robarts et al.
2002/0013941	A1	1/2002	Ward, III et al.	2006/0026635			Potrebic et al.
2002/0032907 2002/0040475			Daniels Yap et al.	2006/0026665 2006/0031883			Rodriquez et al. Ellis et al.
2002/0040473			Berezowski et al.	2006/0053449		3/2006	
2002/0056119			Moynihan	2006/0085825 2006/0098221			Istvan et al. Ferlitsch
2002/0057892 2002/0059599			Mano et al. Schein et al.	2006/0101492		5/2006	Lowcock
2002/0059610	A1	5/2002	Ellis	2006/0112410 2006/0136966		5/2006 6/2006	Poli et al.
2002/0075402 2002/0078453		6/2002 6/2002	Robson et al.	2006/0130900			Russ et al.
2002/0090203			Mankovitz	2006/0218573			Proebstel
2002/0095673			Leung et al. Daniels	2006/0218604 2006/0253874			Riedl et al. Stark et al.
2002/0100044 2002/0100052			Daniels	2006/0263758	A1	11/2006	Crutchfield et al.
2002/0118676			Tonnby et al.	2006/0265427 2006/0294574		11/2006 12/2006	Chen et al 707/200
2002/0129368 2002/0157099			Schlack et al. Schrader et al.	2007/0033607		2/2007	
2002/0165751	A1	11/2002	Upadhya	2007/0036303			Lee et al.
2002/0165770 2002/0174424			Khoo et al. Chang et al.	2007/0055989 2007/0074245		3/2007 3/2007	Shanks et al. Nyako et al.
2002/0174424			Ellis et al.	2007/0076665	A1	4/2007	Nair et al.
2002/0184626			Darbee et al.	2007/0089132 2007/0130089		4/2007 6/2007	Qureshey et al.
2002/0194586 2002/0194596			Gutta et al. Srivastava	2007/0130283			Kelin et al.
2002/0194600	A1	12/2002	Ellis et al.	2007/0157240			Walker
2003/0005440 2003/0005445			Axelsson et al. Schein et al.	2007/0157242 2007/0161402			Cordray et al. Ng et al.
2003/0003443			Yuen et al.	2007/0162850		7/2007	Adler et al.
2003/0031465		2/2003		2007/0186240 2007/0204308			Ward et al. Nicholas et al.
2003/0037336 2003/0040962		2/2003	Leftwich Lewis	2007/0214489		9/2007	Kwong et al.
2003/0066085	A1	4/2003	Boyer et al.	2008/0010655 2008/0013429			Ellis et al. Chen et al.
2003/0070177 2003/0079227			Kondo et al. Knowles et al.	2008/0013429			Smith et al.
2003/0084461		5/2003		2008/0046935			Krakirian
2003/0093329 2003/0093803		5/2003	Gutta Ishikawa et al.	2008/0074546 2008/0077965			Almoumen Kamimaki et al.
2003/0093803			Knudson et al.	2008/0127253	A1	5/2008	Zhang et al.
2003/0131356			Proehl et al.	2008/0134256 2008/0155585			DaCosta Craner et al 725/32
2003/0149621 2003/0159157		8/2003 8/2003		2008/0184294	A 1	7/2008	Lemmons et al.
2003/0163813	A1	8/2003	Klosterman et al.	2008/0184304 2008/0184313			Ellis et al. Knudson et al.
2003/0164858 2003/0188310			Klosterman et al. Klosterman et al.	2008/0184313		7/2008	
2003/0188311	Al	10/2003	Yuen et al.	2008/0189742			Ellis et al.
2003/0196201 2003/0198462		10/2003	Schein et al.	2008/0189743 2008/0196068		8/2008 8/2008	Ellis et al. Tseng
2003/0198402			Bumgardner et al. Macrae et al.	2008/0263600	A1	10/2008	Olague et al.
2003/0229900			Reisman	2008/0282288 2008/0300985		11/2008	Heo Shamp et al.
2003/0237093 2004/0031050		12/2003 2/2004	Marsh Klosterman	2008/0300789			Broos et al.
2004/0064835	A1	4/2004	Bellwood et al.	2009/0044226			Ellis et al.
2004/0070491 2004/0097246		4/2004 5/2004	Huang et al.	2009/0125971 2009/0165046			Belz et al. Stallings
2004/0097240		5/2004		2009/0183208	A1	7/2009	Christensen et al.
2004/0103434		5/2004		2009/0210898 2009/0217335			Childress et al. Wong et al.
2004/0103439 2004/0117831			Macrae et al. Ellis et al.	2009/0241144	A1	9/2009	LaJoie et al.
2004/0158855	Al	8/2004	Gu	2009/0249391 2009/0288132		10/2009 11/2009	Klein et al.
2004/0177370 2004/0194138			Dudkiewicz Boylan et al.	2010/0053458			Anglin et al.
2004/0210926		10/2004	Francis et al.	2010/0107194			McKissick et al.
2004/0210932			Mori et al. Krieger et al 725/112	2010/0146445 2010/0146560		6/2010	Kraut Bonfrer
2004/0208403			LaJoie et al.	2010/0146573			Richardson
2005/0028208	A1	2/2005	Ellis et al.	2010/0169072			Zaki et al.
2005/0028218 2005/0120003		2/2005 6/2005	Blake Drury et al.	2010/0199313 2010/0310234		8/2010 12/2010	Rhim Sigvaldason
2005/0120003			Thomas et al.	2011/0029922			Hoffberg et al.
2005/0138660			Boyer et al.	2011/0069940			Shimy et al.
2005/0160461 2005/0193414			Baumgartner et al. Horvitz et al.	2011/0070819 2011/0072452		3/2011	Shimy et al. Shimy et al.
2000,0190117		5,2005					

(56)	Refere	nces Cited	WO WO	WO-9007844	7/1990 5/1001
	II C DATEN	Γ DOCUMENTS	WO	WO-9107050 WO-9108629	5/1991 6/1991
	U.S. TATEN	I DOCUMENTS	WO	WO-9214284	8/1992
2011/00	078731 A1 3/2011	Nishimura	WO	WO-9217027	10/1992
2011/01	107388 A1 5/2011	Lee et al.	WO WO	WO-9222983 WO-9414282	12/1992 6/1994
	163939 A1 7/2011		WO	WO-9414284 WO-9414284	6/1994
		Chung et al.	WO	WO-9415284	7/1994
2011/01	167447 A1 7/2011	Wong	WO	WO-9501056	1/1995
	EODEICN DATI	ENT DOCUMENTS	WO WO	WO-9501058 WO-9501059	1/1995 1/1995
	FOREIGN PALI	ENI DOCUMENTS	WO	WO-9510910	4/1995
DE	19502922	8/1996	WO	WO-9528055	10/1995
DE	19531121	2/1997	WO	WO-9532585	11/1995
DE	19740079	3/1999	WO WO	WO-9532587 WO-9607270	11/1995 3/1996
EP EP	0439281 2299711	7/1991 3/1993	WO	WO-9609721	3/1996
EP	0560593	9/1993	WO	WO-9613124	5/1996
EP	0627857	7/1994	WO	WO-9613932	5/1996
EP	0682452	11/1995	WO WO	WO-9620555 WO-9626605	7/1996 8/1996
EP EP	0744853 0753964	11/1996 1/1997	WO	WO-9631980	10/1996
EP	0774853	5/1997	WO	WO-9634491	10/1996
EP	0793225	9/1997	WO	WO-9636172	11/1996
EP	0795994	9/1997	WO WO	WO-9637075 WO-9641478	11/1996 12/1996
EP EP	0836321 0805594	10/1997 11/1997	WO	WO-9041478 WO-9712486	4/1997
EP	0836320	4/1998	WO	WO-9713368	4/1997
EP	0843468	5/1998	WO	WO-9719565	5/1997
EP	0854645	7/1998	WO WO	WO-9722207 WO-9731480	6/1997 8/1997
EP EP	0897242 0940983	2/1999 9/1999	WO	WO-9733434	8/1997 9/1997
EP	1099339	5/2001	WO	WO-9734413	9/1997
EP	1271952	1/2003	WO	WO-9735428	9/1997
EP	1363452	11/2003	WO WO	WO-9736422 WO-9741679	10/1997 11/1997
EP EP	1515549 1538838	3/2005 6/2005	WO	WO-9746943	12/1997
EP	2129113	12/2009	WO	WO-9747106	12/1997
EP	2154882	2/2010	WO	WO-9747124	12/1997
FR	2572235	4/1986	WO WO	WO-9747143 WO-9748228	12/1997 12/1997
FR GB	2579397 2227622	9/1986 8/1990	WO	WO-9748228 WO-9748230	12/1997
GB	2229595	9/1990	WO	WO-9749237	12/1997
GB	2256115	11/1992	WO	WO-9750251	12/1997
GB GB	2256546 2265792	12/1992 10/1993	WO WO	WO-9806219 WO-9810589	2/1998 3/1998
GB	2275800	9/1994	WO	WO-9810598	3/1998
GB	2286754	8/1995	WO	WO-98-17063	4/1998
GB	2346251	8/2000	WO WO	WO-9816062 WO-9817064	4/1998 4/1998
GB JP	2458727 02045495	10/2009 2/1990	WO	WO-9817004 WO-9826584	6/1998
JР	03022770	1/1991	WO	WO-9837694	8/1998
JΡ	03059837	3/1991	WO	WO-9843183	10/1998
JP JP	03215781 04250760	9/1991 9/1992	WO WO	WO-9843416 WO-9856173	10/1998 12/1998
JР	05260400	10/1993	WO	WO-9856176	12/1998
JР	06014129	1/1994	WO	WO-9859478	12/1998
JP	06046345	2/1994	WO WO	WO-9903267 WO-9904561	1/1999 1/1999
JP JP	07154349 07184131	6/1995 7/1995	WO	WO-9904501 WO-9904570	1/1999
JР	07212331	8/1995	WO	WO-9914947	3/1999
JP	07212732	8/1995	WO	WO-9930491	6/1999
JР	0856352	2/1996	WO WO	WO-9945700 WO-9952279	9/1999 10/1999
JP JP	08242313 08242436	9/1996 9/1996	WO	WO-9957839	11/1999
JР	09065300	3/1997	WO	WO-9960783	11/1999
JP	09102827	4/1997	WO	WO-9966725	12/1999
JР	09120686	5/1997	WO WO	WO-0004706 WO-0004707	1/2000 1/2000
JP JP	09148994 09162818	6/1997 6/1997	WO	WO-0004707 WO-0007368	2/2000
JР	09270965	10/1997	WO	WO-0007500 WO-0008850	2/2000
JP	09298677	11/1997	WO	WO-0008851	2/2000
JP	11317937	11/1999	WO	WO-0008852	2/2000
KR WO	1998025758 WO 8703766	7/1998 6/1987	WO WO	WO-0016548 WO-0028739	3/2000 5/2000
WO WO	WO-8703766 WO-8804507	6/1987 6/1988	WO	WO-0028739 WO-0033576	6/2000
wo	8903085	4/1989	WO	WO-0058833	10/2000
WO	WO-8903085	4/1989	WO	WO-0058967	10/2000

Page 7

(56)	References Cited						
	FOREIGN P	ATENT DOCUMENTS					
WO W	WO-0059214 WO-0059233 WO-0062299 WO-0062299 WO-0062533 WO-0067475 WO-0122729 WO-0146843 WO-0147238 WO-0147257 WO-0147273 WO-0147273 WO-0147279 WO-0176239 WO-0176248 WO-0176248 WO-0176248 WO-0278317 WO-03098932 WO-2004054264 WO-2005091626 WO-2009067670 WO-20090148056	10/2000 10/2000 10/2000 10/2000 10/2000 10/2000 11/2000 3/2001 6/2001 6/2001 6/2001 6/2001 6/2001 10/2001 10/2001 11/2001 10/2001 11/2001 10/2002 11/2003 6/2004 9/2005 4/2007 A2 4/2008 5/2009					
WO WO	WO 2011/037761 WO 2011/084950	3/2011 7/2011					

OTHER PUBLICATIONS

- U.S. Appl. No. 60/020,580, filed Jun. 26, 1996, Goldschmidt.
- U.S. Appl. No. 60/024,435, filed Aug. 22, 1996, Goldschmid.
- U.S. Appl. No. 60/024,436, filed Aug. 22, 1996, Goldschmid.
- U.S. Appl. No. 60/024,452, filed Aug. 27, 1996, Goldschmid.
- U.S. Appl. No. 08/900,417, filed Jul. 25, 1997, Daniels.
- U.S. Appl. No. 11/324,202, filed Dec. 29, 2005, Yates.
- "Advanced Analog Systems—Addressable Terminals" General Instrument Corp. of Horsham, Pennsylvania (URL:http://www.gi.com/busarea/analog/terminal/watch/watch.html) Printed from the Internet on Mar. 4, 1999.
- "Directv Digital Satellite Receiver—Operating Instructions," Sony Electronics Inc. (2001).
- "Directv Receiver—Owner's Manual," Directv, Inc. (2002).
- "Directv Receiver with TiVo Digital Satellite Receiver/Recorder SAT-T60—Installation Guide," Sony Corporation (2000).
- "Directv Receiver with TiVo Installation Guide," Philips (2000).
- "Directv Receiver with TiVo Viewer's Guide" (1999, 2000).
- "DishPro Satellite System—User's Guide," Dish Network (undated). "Electronic Programme Guide (EPG); Protocol for a TV Guide using electronic data transmission" by European Telecommunication Standards Institute, May 1997, Valbonne, France, publication No. ETS 300 707.
- "Fall 2001 TiVo Service Update with Dual Tuner!," TiVo Inc. (2001). "Honey, is there anything good on the remote tonight?", advertisement from Multichannel News, Broadband Week Section, p. 168, Nov. 30, 1998.
- "How Evolve Works," from the Internet at http://www.evolveproducts.com/network.html, printed on Dec. 28, 1998.
- "Jini Architecture Overview," by Jim Waldo, from the Internet at http://Java.sun.com/products/jini/whitepapers/
- architectureoverview.pdf/ pinted on Jan. 25, 1999. The document bears a copyright date of 1998.
- "PTV Recorder Setup Guide," Philips (2000).
- "RCA Satellite Receiver User's Guide," Thomson Multimedia Inc. (2001).
- "Reaching your subscribers is a complex and costly process-until now," from the Internet at http://www.evolveproducts.com/info.html, printed on Dec. 28, 1998.
- "Start Here," Sony, TiVo and DIRECTV (undated).
- "Sun's Next Steps in Digital Set-Tops," article in Cablevision, p. 56, Nov. 16, 1998.

- "Teletext System," National Technical Report, vol. 27, No. 4, Aug. 1981 (with full English language translation).
- "The Evolve EZ Guide. The Remote Control," from the Internet at http://www.evolveproducts.com/display2.html, printed on Dec. 28, 1998
- "Using StarSight 2," published before Apr. 19, 1995.
- "Why Jini Now?", from the internet at http://java.sun.com/products/jini/whitepapers/whyjininow.pdf, printed on Jan. 25, 1999. The document bears a copyright date of 1998.
- "Windows 98 Feature Combines TV, Terminal and the Internet," New York Times, Aug. 18, 1998.
- Archived Intel Intercast's Website from Archieve. Org, "How Does It Work?", http://web.archive.org/web/19990429214537/www.intercast.com/intercast/howitwks.htm, Accessed on Jul. 8, 2008.
- Archived Intel Intercast's Website from Archieve. Org, "What Is It?". http://web.archive.org/web/19990422195517/www.intercast.com/intercast/whatisit.htm, Accessed on Jul. 8, 2008.
- Bach et al, "Multimediales-TV-Gereat," Radio Fernsehen Electronik, De, Veb, Verlag, Technik, Berlin, vol. 45, No. 9, Aug. 1, 1996, pp. 28, 30-31, XP 000636538, ISSN: 1436-1574 (Translation, pp. 1-5).
- Bach et al., "Multimedia-Terminal ALS Endgeraet," Funkschau, De, Franzis-Verlag K.G. Munchen, vol. 68, No. 6, Mar. 1, 1996, pp. 70-75, XP 000556486, ISSN: 0016-2841 (Translation, pp. 1-7).
- Counterstatement of the Patentee for European Patent EP-B-1099341 (Feb. 23, 2006).
- Darrow, et al., "Design Guidelines for Technology-Mediated Social Interaction in a Presence Sensing Physical Space," Carnegie Mellon University Research Showcase, Carnegie Institute of Technology, Jan. 1, 2007, pp. 1-9.
- Digital Video Broadcasting (DVB); DVB specification for data broadcasting, European Telecommunications Standards Institute, Draft EN 301 192 V1.2.1 (Jan. 1999).
- DiRosa, "Pinochle's BIGSURF Netguide", Jul. 1995, Volute 3.1, pp. 260-270.
- Eitz, "Zukunftige Informations-Und Datenangebote Beim Digitalen Fernsehen—EPG Und "Lesezeichen"," Rundfunktechnische Mitteilungen, vol. 41, pp. 67-72, Apr. 30, 1997.
- EPO Opposition Against EP1213919 by Virgin Media Limited dated Dec. 16, 2010.
- EPO Opposition Statement of Grounds of Appeal for EP1099341 dated Feb. 28, 2011.
- EPO Opposition Submission for European Patent EP-B-1099341 dated Mar. 19, 2010.
- Hirtz et al:, "Open TV: Betriebssystem Fuer Interaktives Fernsehen," Fernseh Und Kinotechnik, de vde Verlag GMBH, Berlin, vol. 50, No. 3, Mar. 1, 1996, pp. 84-89, XP000581417, ISSN: 0015-0142 (Translation, pp. 1-9).
- Hofmann, et al., "Videotext Programmiert Videorecorder," Rundfunktechnische Mitteilungen, Nov.-Dec. 1982, pp. 254-257.
- Index Systems Inc., "Gemstar Service Object Model," Data Format Specification, Ver. 2.0.4, pp. 58-59.
- Jaidev, "EXSLT—A Wired and Wireless Case Study," http://csharpcomputing.com/XMLTutorial/Lession15.htm.
- Motorola, Inc.; Integrated Datacasting Solutions for Digital Television XP-002204351; Jun. 1999.
- Neumann, "WDR Online Aufbau Und Perspektiven Automatisierter Online-Dienste Im WDR," Rundfunktechnische Mitteilungen, vol. 41, pp. 56-66, Jun. 1997.
- Ochiai et al., "@randomTV: A New TV System," NEC C&C Media Research Laboratories, Mar. 17, 1998, pp. 3-302-3-303.
- Opposition against EP99935637 by Fast TV Server AG (Aug. 3, 2005).
- Opposition against EP99935637 by Velocity 303 Limited (Aug. 3, 2005).
- Papers Delivered (Part1), 61st National Conference, Information Processing Society of Japan, Oct. 3-5, 2000.
- Pogue, "State of the Art: For TiVo and Replay, New Reach," N.Y. Times, May 29, 2003.
- Randerson, "Let Software Catch the Game for You," New Scientist,
- Research Disclosure, No. 329, Sep. 1991, HAVANT GB, p. 657, XP226205, "Installation of consumer apparatus".

Page 8

(56) References Cited

OTHER PUBLICATIONS

Rewind, replay and unwind with new high-tech TV devices, by Lawrence J. Magid, LA Times. This document was printed from the Internet on Jun. 6, 1999 and bears a date of May 19, 1999. Rogers, "Telcos vs. Cable TV: The Global View," Data Communications, No. 13, New York, pp. 75, 76, 78 and 80, Sep. 1995. Saito, et al., "Homenetwork Architecture Considering Digital Home Appliance," Technical Committee meeting of the Institute of Electronics, Information and Communication Engineers (IEICE), Japan, Nov. 6, 1997, vol. 97, No. 368, p. 57-64.

Schepp et al., "The Complete Guide to CompuServe," Chapter 7, "IQuest and General Information Gathering," pp. 211-258, (McGraw-Hill Osborne Media, Har/Dis edition 1990). Submission by Velocity in European Patent No. 1099341 (Mar. 19, 2010)

User's Guide RCA Color TV with TV Plus+Guide, 1997. Venditto, Prodigy for Dummies, IDG Books, pp. 57-63, 213 (1995). Verknuepfung von TV mit INternet, Funkschau, De, Franzis—Verlag K.G. Munchen, vol. 68, No. 18 Aug. 16, 1996, pp. 70-71, XP 000631189, ISSN: 0016-2841 (Translation, pp. 1-3).

* cited by examiner

Dec. 3, 2013

Sheet 1 of 10

FIG. 2

Dec. 3, 2013

Sheet 2 of 10

U.S. Patent Dec. 3, 2013 Sheet 3 of 10 US 8,601,526 B2

U.S. Patent

Dec. 3, 2013

Sheet 4 of 10

US 8,601,526 B2

Dec. 3, 2013

Sheet 5 of 10

FIG.7.

Dec. 3, 2013

Sheet 6 of 10

Dec. 3, 2013

Sheet 7 of 10

U.S. Patent Dec. 3, 2013 Sheet 8 of 10 US 8,601,526 B2

FIG.10.

Dec. 3, 2013

Sheet 9 of 10

FIG.11.

Dec. 3, 2013

Sheet 10 of 10

FIG.12.

SYSTEMS AND METHODS FOR DISPLAYING MEDIA CONTENT AND MEDIA GUIDANCE INFORMATION

1

This application claims the benefit of U.S. Provisional ⁵ Application No. 61/061,185, filed Jun. 13, 2008, the disclosure of which is hereby incorporated by reference herein in its entirety.

BACKGROUND OF THE INVENTION

Embodiments of the invention relate generally to media systems and methods, and more particularly, to media systems and methods for displaying media content and media guidance information received by portable electronic 15 devices.

The amount and variety of media content available to users has increased dramatically in recent years. In addition to hundreds of conventional broadcast television channels, users may now access a nearly limitless amount of video, 20 audio, and other content. Moreover, with the advent of the Internet, mobile computing, and high-speed wireless networks, users are accessing media content on devices on which they traditionally did not, such as mobile phones, personal computers, hand-held computers, personal digital assistants 25 (PDAs), or other portable electronic devices. For example, it is now common to equip mobile phones with digital receivers for receiving and displaying television programs and other media content broadcast by terrestrial broadcasting services.

Interactive media guidance applications have been developed to assist users in navigating through the wide array of media content accessible by televisions, mobile phones, and other equipment. An interactive media guidance application may also perform media guidance application functions on content accessible by a user's equipment. These media guidance application functions may include searching for desired content, scheduling a selected content to be recorded, recording the selected content to a local storage device or remote media server, adding the selected content to a favorite programs list, setting a reminder for the selected content, ordering the selected content via an on-demand (e.g., video on-demand or VOD) or pay-per-view (PPV) service, or any other suitable function.

Although interactive media guidance applications are relatively easy to use with televisions and computer monitors, 45 they are less so with mobile phones and other portable electronic devices because the display screens on such devices are typically too small to display much of the media guidance data provided by the guidance applications.

Similarly, while many users enjoy the portability and convenience of watching media content via their mobile phones and other portable electronic devices, they sometimes have difficulty viewing some types of media content because of the small display screens.

SUMMARY OF THE INVENTION

Embodiments of the present invention solve the abovedescribed problems and provide enhanced systems and methods for displaying media content and media guidance information received by portable electronic devices.

Embodiments of the invention may be implemented with a system comprising television equipment and a number of portable electronic devices. The television equipment may include a display, control circuitry, and possibly other equipment such as a DVD player or digital recorder. The control circuitry may be contained within a set-top box, an integrated

2

receiver decoder (IRD), the display itself, or other similar component and receives media content and media guidance data for display on the display. The control circuitry also includes communication components for communicating with the portable electronic devices. The display is preferably a large-screen television but may be any type of monitor, liquid crystal display (LCD), or other suitable device for displaying video.

The portable electronic devices may be mobile phones, portable computers, portable game players, portable televisions, portable navigation devices, personal digital assistants, or any other type of portable electronic device capable of displaying video and communicating with other devices as described herein. The portable electronic devices are operable for wirelessly receiving and displaying media content and media guidance information and for communicating with the above-described television equipment.

Embodiments of the invention permit users to display media guidance data for their portable electronic devices on the relatively larger display of the television equipment so the data can be more easily viewed and/or used. The display may be divided into segments so that users of multiple portable electronic devices may simultaneously display their media guidance data on different segments or areas of the display. This permits members of a family or other group to watch media content on their personal electronic devices while occasionally transmitting media guidance data and/or media content to the television equipment for display on the shared large display.

Embodiments of the invention also permit portable electronic device users to edit, use, or otherwise manipulate their media guidance information while it is displayed on the large display. The edited or otherwise altered media guidance information may then be transmitted back to the portable electronic devices for use and/or display.

Embodiments of the invention also permit users to share media guidance data among several portable electronic devices; watch a media content on the display while listening to it via a portable electronic device; and play electronic games on the display while other users watch media content on the display.

An exemplary method of the invention comprises the steps of receiving media guidance information with a first portable electronic device; transmitting at least some of the media guidance information from the first portable electronic device to control circuitry of television equipment; and displaying the media guidance information from the first portable electronic device on the display of the television equipment while simultaneously displaying media content or media guidance information received from a source other than the first portable electronic device. For example, media guidance information received from a second portable electronic device or media guidance information for the television equipment itself may be simultaneously displayed alongside the media guidance information for the first portable electronic device.

These and other important aspects of the present invention are described more fully in the detailed description below.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and other objects and advantages of the invention will be apparent upon consideration of the following detailed description, taken in conjunction with the accompanying drawings, in which like reference characters refer to like parts throughout, and in which:

FIG. 1 shows an illustrative display screen that may be used to provide media guidance application listings and other media guidance information in accordance with an embodiment of the invention:

3

FIG. 2 shows another illustrative display screen that may be used to provide media guidance application listings in accordance with an embodiment of the invention;

FIG. 3 is a block diagram of an illustrative user equipment device in accordance with an embodiment of the invention;

FIG. 4 is a block diagram of an illustrative interactive media system in accordance with an embodiment of the invention:

FIG. **5** is a schematic diagram of an illustrative media system for displaying media guidance information in accordance with an embodiment of the invention;

FIG. 6 is a block diagram of selected components of an exemplary portable electronic device and an exemplary control circuitry that may be used to implement embodiments of the present invention;

FIG. 7 is an illustrative display screen showing recording options on an overlay in accordance with an embodiment of the invention:

FIG. **8** is an illustrative display screen showing media content listings for media content that has been recorded or is scheduled for recording in accordance with an embodiment of the invention; and

FIG. 9 is an illustrative display screen showing media content recommendations in accordance with an embodiment of the invention;

FIG. 10 shows an illustrative process for displaying media guidance information in accordance with an embodiment of the invention;

FIG. 11 shows another illustrative process for displaying media guidance information in accordance with an embodiment of the invention; and

FIG. 12 shows another illustrative process for displaying media guidance information in accordance with an embodiment of the invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The amount of media content available to users in any 45 given media delivery system can be substantial. Consequently, many users desire a form of media guidance through an interface that allows users to efficiently navigate media selections and easily identify media content that they may desire. An application which provides such guidance is 50 referred to herein as an interactive media guidance application or, sometimes, a media guidance application or a guidance application.

Interactive media guidance applications may take various forms depending on the media for which they provide guidance. One typical type of media guidance application is an interactive television program guide. Interactive television program guides (sometimes referred to as electronic program guides) are well-known guidance applications that, among other things, allow users to navigate among and locate many of types of media content including conventional television programming (provided via traditional broadcast, cable, satellite, Internet, or other means), as well as pay-per-view programs, on-demand programs (as in video-on-demand (VOD) systems), Internet content (e.g., streaming media, downloadable media, Webcasts, etc.), and other types of media or video content. Guidance applications also allow users to navigate

among and locate content related to the video content including, for example, video clips, articles, advertisements, chat sessions, games, etc.

4

With the advent of the Internet, mobile computing, and high-speed wireless networks, users are accessing media on devices on which they traditionally did not, such as personal computers, hand-held computers, personal digital assistants (PDAs), mobile telephones, or other mobile devices. On these devices users are able to navigate among and locate the same media available through a television. Consequently, media guidance is necessary on these devices, as well. The guidance provided may be for media content available only through a television, for media content available only through one or more of these devices, or for media content available both through a television and one or more of these devices. The media guidance applications may be provided as on-line applications (i.e., provided on a web-site), or as stand-alone applications or clients on hand-held computers, PDAs, mobile telephones, or other mobile devices. The various 20 devices and platforms that may implement media guidance applications are described in more detail below.

One of the functions of the media guidance application is to provide media listings and media information to users. FIGS. 1, 2, and 7-9 show illustrative display screens that may be used to provide media guidance data or information, and in particular, media listings. The display screens shown in FIGS. 1, 2, and 7-9 may be implemented on any suitable device or platform. The display screens may be full screen displays or may be fully or partially overlaid over media content being displayed. A user may indicate a desire to access media information by selecting a selectable option provided in a display screen (e.g., a menu option, a listings option, an icon, a hyperlink, etc.) or pressing a dedicated button (e.g., a GUIDE button) on a remote control or other user input interface or device. In response to the user's indication, the media guidance application may provide a display screen with media information organized in one of several ways, such as by time and channel in a grid, by time, by channel, by media type, by category (e.g., movies, sports, news, children, or other categories of programming), or other predefined, user-defined, or other organization criteria.

FIG. 1 shows illustrative grid program listings display 100 arranged by time and channel that also enables access to different types of media content in a single display. Display 100 may include grid 102 with: (1) a column of channel/ media type identifiers 104, where each channel/media type identifier (which is a cell in the column) identifies a different channel or media type available; and (2) a row of time identifiers 106, where each time identifier (which is a cell in the row) identifies a time block of programming. Grid 102 also includes cells of program listings, such as program listing 108, where each listing provides the title of the program provided on the listing's associated channel and time. With a user input device, a user can select program listings by moving highlight region 110. Information relating to the program listing selected by highlight region 110 may be provided in program information region 112. Region 112 may include, for example, the program title, the program description, the time the program is provided (if applicable), the channel the program is on (if applicable), the program's rating, and other desired information.

In addition to providing access to linear programming provided according to a schedule, the media guidance application also provides access to non-linear programming which is not provided according to a schedule. Non-linear programming may include content from different media sources including on-demand media content (e.g., VOD), Internet

of the present invention.

5

content (e.g., streaming media, downloadable media, etc.), locally stored media content (e.g., video content stored on a digital video recorder (DVR), digital video disc (DVD), video cassette, compact disc (CD), etc.), or other time-insensitive media content. On-demand content may include both movies and original media content provided by a particular media provider (e.g., HBO On Demand providing "The Sopranos" and "Curb Your Enthusiasm"). HBO ON DEMAND, THE SOPRANOS, and CURB YOUR ENTHUSIASM are trademarks owned by the Home Box Office, Inc. Internet content may include web events, such as a chat session or Webcast, or content available on-demand as streaming media or downloadable media through an Internet web site or other Internet access (e.g. FTP).

Grid 102 may provide listings for non-linear programming 15 including on-demand listing 114, recorded media listing 116, and Internet content listing 118. A display combining listings for content from different types of media sources is sometimes referred to as a "mixed-media" display. The various permutations of the types of listings that may be displayed 20 that are different than display 100 may be based on user selection or guidance application definition (e.g., a display of only recorded and broadcast listings, only on-demand and broadcast listings, etc.). As illustrated, listings 114, 116, and 118 are shown as spanning the entire time block displayed in 25 grid 102 to indicate that selection of these listings may provide access to a display dedicated to on-demand listings, recorded listings, or Internet listings, respectively. In other embodiments, listings for these media types may be included directly in grid 102. Additional listings may be displayed in 30 response to the user selecting one of the navigational icons 120. (Pressing an arrow key on a user input device may affect the display in a similar manner as selecting navigational icons

Display 100 may also include video region 122, advertisement 124, and options region 126. Video region 122 may allow the user to view and/or preview programs that are currently available, will be available, or were available to the user. The content of video region 122 may correspond to, or be independent from, one of the listings displayed in grid 102. 40 Grid displays including a video region are sometimes referred to as picture-in-guide (PIG) displays. PIG displays and their functionalities are described in greater detail in Satterfield et al. U.S. Pat. No. 6,564,378, issued May 13, 2003 and Yuen et al. U.S. Pat. No. 6,239,794, issued May 29, 2001, which are 45 hereby incorporated by reference herein in their entireties. PIG displays may be included in other media guidance application display screens of the present invention.

Advertisement 124 may provide an advertisement for media content that, depending on a viewer's access rights 50 (e.g., for subscription programming), is currently available for viewing, will be available for viewing in the future, or may never become available for viewing, and may correspond to or be unrelated to one or more of the media listings in grid 102. Advertisement 124 may also be for products or services 55 related or unrelated to the media content displayed in grid 102. Advertisement 124 may be selectable and provide further information about media content, provide information about a product or a service, enable purchasing of media content, a product, or a service, provide media content relat- 60 ing to the advertisement, etc. Advertisement 124 may be targeted based on a user's profile/preferences, monitored user activity, the type of display provided, or on other suitable targeted advertisement bases.

While advertisement 124 is shown as rectangular or banner 65 shaped, advertisements may be provided in any suitable size, shape, and location in a guidance application display. For

example, advertisement 124 may be provided as a rectangular shape that is horizontally adjacent to grid 102. This is sometimes referred to as a panel advertisement. In addition, advertisements may be overlaid over media content or a guidance application display or embedded within a display. Advertisements may also include text, images, rotating images, video clips, or other types of media content. Advertisements may be stored in the user equipment with the guidance application, in a database connected to the user equipment, in a remote location (including streaming media servers), or on other storage means or a combination of these locations. Providing advertisements in a media guidance application is discussed in greater detail in, for example, Knudson et al., U.S. patent application Ser. No. 10/347,673, filed Jan. 17, 2003, Ward, III et al. U.S. Pat. No. 6,756,997, issued Jun. 29, 2004, and Schein et al. U.S. Pat. No. 6,388,714, issued May 14, 2002, which are hereby incorporated by reference herein in their

entireties. It will be appreciated that advertisements may be

included in other media guidance application display screens

6

Options region 126 may allow the user to access different types of media content, media guidance application displays, and/or media guidance application features. Options region 126 may be part of display 100 (and other display screens of the present invention), or may be invoked by a user by selecting an on-screen option or pressing a dedicated or assignable button on a user input device. The selectable options within options region 126 may concern features related to program listings in grid 102 or may include options available from a main menu display. Features related to program listings may include searching for other air times or ways of receiving a program, recording a program, enabling series recording of a program, setting program and/or channel as a favorite, purchasing a program, or other features. Options available from a main menu display may include search options, VOD options, parental control options, access to various types of listing displays, subscribe to a premium service, edit a user's profile, access a browse overlay, or other options.

The media guidance application may be personalized based on a user's preferences. A personalized media guidance application allows a user to customize displays and features to create a personalized "experience" with the media guidance application. This personalized experience may be created by allowing a user to input these customizations and/or by the media guidance application monitoring user activity to determine various user preferences. Users may access their personalized guidance application by logging in or otherwise identifying themselves to the guidance application. Customization of the media guidance application may be made in accordance with a user profile. The customizations may include varying presentation schemes (e.g., color scheme of displays, font size of text, etc.), aspects of media content listings displayed (e.g., only HDTV programming, userspecified broadcast channels based on favorite channel selections, re-ordering the display of channels, recommended media content, etc.), desired recording features (e.g., recording or series recordings for particular users, recording quality, etc.), parental control settings, and other desired customiza-

The media guidance application may allow a user to provide user profile information or may automatically compile user profile information. The media guidance application may, for example, monitor the media the user accesses and/or other interactions the user may have with the guidance application. Additionally, the media guidance application may obtain all or part of other user profiles that are related to a particular user (e.g., from other web sites on the Internet the

user accesses, such as www.tvguide.com, from other media guidance applications the user accesses, from other interactive applications the user accesses, from a handheld device of the user, etc.), and/or obtain information about the user from other sources that the media guidance application may access. 5 As a result, a user can be provided with a unified guidance application experience across the user's different devices. This type of user experience is described in greater detail below in connection with FIG. 4. Additional personalized media guidance application features are described in greater 10 detail in Ellis et al., U.S. patent application Ser. No. 11/179, 410, filed Jul. 11, 2005, Boyer et al., U.S. patent application Ser. No. 09/437,304, filed Nov. 9, 1999, and Ellis et al., U.S. patent application Ser. No. 10/105,128, filed Feb. 21, 2002, which are hereby incorporated by reference herein in their 15 entireties.

7

Another display arrangement for providing media guidance is shown in FIG. 2. Video mosaic display 200 includes selectable options 202 for media content information organized based on media type, genre, and/or other organization 20 criteria. In display 200, television listings option 204 is selected, thus providing listings 206, 208, 210, and 212 as broadcast program listings. Unlike the listings from FIG. 1, the listings in display 200 are not limited to simple text (e.g., the program title) and icons to describe media. Rather, in 25 display 200 the listings may provide graphical images including cover art, still images from the media content, video clip previews, live video from the media content, or other types of media that indicate to a user the media content being described by the listing. Each of the graphical listings may also be accompanied by text to provide further information about the media content associated with the listing. For example, listing 208 may include more than one portion, including media portion 214 and text portion 216. Media portion 214 and/or text portion 216 may be selectable to view 35 video in full-screen or to view program listings related to the video displayed in media portion 214 (e.g., to view listings for the channel that the video is displayed on).

The listings in display 200 are of different sizes (i.e., listing **206** is larger than listings **208**, **210**, and **212**), but if desired, all 40 the listings may be the same size. Listings may be of different sizes or graphically accentuated to indicate degrees of interest to the user or to emphasize certain content, as desired by the media provider or based on user preferences. Various systems and methods for graphically accentuating media listings are 45 discussed in, for example, Yates, U.S. patent application Ser. No. 11/324,202, filed Dec. 29, 2005, which is hereby incorporated by reference herein in its entirety.

Users may access media content and the media guidance application (and its display screens described above and 50 below) from one or more of their user equipment devices. The user equipment devices may be personal computers, televisions, television-equipped mobile phones, or any other devices. For example, one user equipment device may be a personal computer provided with a tuner card that allows TV 55 signals to be displayed on the computer monitor. The user equipment device may also be television equipment with a set-top box or receiver that permits access to the Internet via a cable connection phone line, or other communication line. The user equipment may also be a mobile phone equipped 60 with a 1 seg tuner or other device that permits receipt of media content and media guidance data.

FIG. 3 shows a generalized embodiment of illustrative user equipment device 300. More specific implementations of user equipment devices are discussed below in connection with 65 FIGS. 4-5. User equipment device 300 may receive media content and data via input/output (hereinafter "I/O") path

8

302. I/O path 302 may provide media content (e.g., broadcast programming, on-demand programming, Internet content, and other video or audio) and data to control circuitry 304, which includes processing circuitry 306 and storage 308. Control circuitry 304 may be used to send and receive commands, requests, and other suitable data using I/O path 302. I/O path 302 may connect control circuitry 304 (and specifically processing circuitry 306) to one or more communications paths (described below). I/O functions may be provided by one or more of these communications paths, but are shown as a single path in FIG. 3 to avoid overcomplicating the

Control circuitry 304 may be based on any suitable processing circuitry 306 such as one or more microprocessors, microcontrollers, digital signal processors, programmable logic devices, etc. In some embodiments, control circuitry 304 executes instructions for a media guidance application stored in memory (i.e., storage 308). In client-server based embodiments, control circuitry 304 may include communications circuitry suitable for communicating with a guidance application server or other networks or servers. Communications circuitry may include a cable modem, an integrated services digital network (ISDN) modem, a digital subscriber line (DSL) modem, a telephone modem, or a wireless modem for communications with other equipment. Such communications may involve the Internet or any other suitable communications networks or paths (which is described in more detail in connection with FIG. 4). In addition, communications circuitry may include circuitry that enables peer-to-peer communication of user equipment devices, or communication of user equipment devices in locations remote from each other (described in more detail below).

Memory (e.g., random-access memory, read-only memory, or any other suitable memory), hard drives, optical drives, or any other suitable fixed or removable storage devices (e.g., DVD recorder, CD recorder, video cassette recorder, or other suitable recording device) may be provided as storage 308 that is part of control circuitry 304. Storage 308 may include one or more of the above types of storage devices. For example, user equipment device 300 may include a hard drive for a DVR (sometimes called a personal video recorder, or PVR) and a DVD recorder as a secondary storage device. Storage 308 may be used to store various types of media described herein and guidance application data, including program information, guidance application settings, user preferences or profile information, or other data used in operating the guidance application. Nonvolatile memory may also be used (e.g., to launch a boot-up routine and other instructions).

Control circuitry 304 may include video generating circuitry and tuning circuitry, such as one or more analog tuners, one or more MPEG-2 decoders or other digital decoding circuitry, high-definition tuners, or any other suitable tuning or video circuits or combinations of such circuits. Encoding circuitry (e.g., for converting over-the-air, analog, or digital signals to MPEG signals for storage) may also be provided. Control circuitry 304 may also include scaler circuitry for upconverting and downconverting media into the preferred output format of the user equipment 300. Circuitry 304 may also include digital-to-analog converter circuitry and analogto-digital converter circuitry for converting between digital and analog signals. The tuning and encoding circuitry may be used by the user equipment to receive and to display, to play, or to record media content. The tuning and encoding circuitry may also be used to receive guidance data. The circuitry described herein, including for example, the tuning, video generating, encoding, decoding, scaler, and analog/digital 9

circuitry, may be implemented using software running on one or more general purpose or specialized processors. Multiple tuners may be provided to handle simultaneous tuning functions (e.g., watch and record functions, picture-in-picture (PIP) functions, multiple-tuner recording, etc.). If storage 308 is provided as a separate device from user equipment 300, the tuning and encoding circuitry (including multiple tuners) may be associated with storage 308.

A user may control the control circuitry 304 using user input interface 310. User input interface 310 may be any 10 suitable user interface, such as a remote control, mouse, trackball, keypad, keyboard, touch screen, touch pad, stylus input, joystick, voice recognition interface, or other user input interfaces. Display 312 may be provided as a stand-alone device or integrated with other elements of user equipment 15 device 300. Display 312 may be one or more of a monitor, a television, a liquid crystal display (LCD) for a mobile device, or any other suitable equipment for displaying visual images. In some embodiments, display 312 may be HDTV-capable. Speakers 314 may be provided as integrated with other ele- 20 ments of user equipment device 300 or may be stand-alone units. The audio component of videos and other media content displayed on display 312 may be played through speakers 314. In some embodiments, the audio may be distributed to a receiver (not shown), which processes and outputs the audio 25 via speakers 314.

User equipment device 300 of FIG. 3 can be implemented in system 400 of FIG. 4 as user television equipment 402, user computer equipment 404, wireless user communications device 406, or any other type of user equipment suitable for 30 accessing media, such as a non-portable gaming machine. For simplicity, these devices may be referred to herein collectively as user equipment or user equipment devices. User equipment devices, on which a media guidance application is implemented, may function as a standalone device or may be 35 part of a network of devices. Various network configurations of devices may be implemented and are discussed in more detail below.

User television equipment **402** may include a set-top box, an integrated receiver decoder (IRD) for handling satellite 40 television, a television set, a digital storage device, a DVD recorder, a video-cassette recorder (VCR), a local media server, or other user television equipment. One or more of these devices may be integrated to be a single device, if desired. User computer equipment **404** may include a PC, a 45 laptop, a tablet, a WebTV box, a personal computer television (PC/TV), a PC media server, a PC media center, or other user computer equipment. WEBTV is a trademark owned by Microsoft Corp. Wireless user communications device **406** may include PDAs, a mobile telephone, a portable video 50 player, a portable music player, a portable gaming machine, or other wireless devices.

It should be noted that with the advent of television tuner cards for PC's, WebTV, and the integration of video into other user equipment devices, the lines have become blurred when 55 trying to classify a device as one of the above devices. In fact, each of user television equipment 402, user computer equipment 404, and wireless user communications device 406 may utilize at least some of the system features described above in connection with FIG. 3 and, as a result, include flexibility 60 with respect to the type of media content available on the device. For example, user television equipment 402 may be Internet-enabled allowing for access to Internet content, while user computer equipment 404 may include a tuner allowing for access to television programming. The media 65 guidance application may also have the same layout on the various different types of user equipment or may be tailored to

10

the display capabilities of the user equipment. For example, on user computer equipment, the guidance application may be provided as a web site accessed by a web browser. In another example, the guidance application may be scaled down for wireless user communications devices.

In system **400**, there is typically more than one of each type of user equipment device but only one of each is shown in FIG. **4** to avoid overcomplicating the drawing. In addition, each user may utilize more than one type of user equipment device (e.g., a user may have a television set and a computer) and also more than one of each type of user equipment device (e.g., a user may have a PDA and a mobile telephone and/or multiple television sets).

The user may also set various settings to maintain consistent media guidance application settings across in-home devices and remote devices. Settings include those described herein, as well as channel and program favorites, programming preferences that the guidance application utilizes to make programming recommendations, display preferences, and other desirable guidance settings. For example, if a user sets a channel as a favorite on, for example, the web site www.tvguide.com on their personal computer at their office, the same channel would appear as a favorite on the user's in-home devices (e.g., user television equipment and user computer equipment) as well as the user's mobile devices, if desired. Therefore, changes made on one user equipment device can change the guidance experience on another user equipment device, regardless of whether they are the same or a different type of user equipment device. In addition, the changes made may be based on settings input by a user, as well as user activity monitored by the guidance application.

The user equipment devices may be coupled to communications network 414. Namely, user television equipment 402, user computer equipment 404, and wireless user communications device 406 are coupled to communications network 414 via communications paths 408, 410, and 412, respectively. Communications network 414 may be one or more networks including the Internet, a mobile phone network, mobile device (e.g., Blackberry) network, cable network, public switched telephone network, or other types of communications network or combinations of communications networks. BLACKBERRY is a trademark owned by Research In Motion Limited Corp. Paths 408, 410, and 412 may separately or together include one or more communications paths, such as, a satellite path, a fiber-optic path, a cable path, a path that supports Internet communications (e.g., IPTV), freespace connections (e.g., for broadcast or other wireless signals), or any other suitable wired or wireless communications path or combination of such paths. Path 412 is drawn with dotted lines to indicate that in the exemplary embodiment shown in FIG. 4 it is a wireless path and paths 408 and 410 are drawn as solid lines to indicate they are wired paths (although these paths may be wireless paths, if desired). Communications with the user equipment devices may be provided by one or more of these communications paths, but are shown as a single path in FIG. 4 to avoid overcomplicating the drawing.

Although communications paths are not drawn between user equipment devices, these devices may communicate directly with each other via communication paths, such as those described above in connection with paths 408, 410, and 412, as well other short-range point-to-point communication paths, such as USB cables, IEEE 1394 cables, wireless paths (e.g., Bluetooth, infrared, IEEE 802-11x, etc.), or other short-range communication via wired or wireless paths. BLUE-TOOTH is a trademark owned by Bluetooth SIG, INC. The

11

user equipment devices may also communicate with each other directly through an indirect path via communications network 414.

System 400 includes media content source 416 and media guidance data source 418 coupled to communications net- 5 work 414 via communication paths 120 and 422, respectively. Paths 420 and 422 may include any of the communication paths described above in connection with paths 408, 410, and **412**. Communications with the media content source **416** and media guidance data source 418 may be exchanged over one 10 or more communications paths, but are shown as a single path in FIG. 4 to avoid overcomplicating the drawing. In addition, there may be more than one of each of media content source 416 and media guidance data source 418, but only one of each is shown in FIG. 4 to avoid overcomplicating the drawing. 15 (The different types of each of these sources are discussed below.) If desired, media content source 416 and media guidance data source 418 may be integrated as one or two source devices. Although communications between sources 416 and 418 with user equipment devices 402, 404, and 406 are shown 20 as through communications network 414, in some embodiments, sources 416 and 418 may communicate directly with user equipment devices 402, 404, and 406 via communication paths (not shown) such as those described above in connection with paths 408, 410, and 412.

Media content source 416 may include one or more types of media distribution equipment including a television distribution facility, cable system headend, satellite distribution facility, programming sources (e.g., television broadcasters, such as NBC, ABC, HBO, etc.), intermediate distribution 30 facilities and/or servers, Internet providers, on-demand media servers, and other media content providers. NBC is a trademark owned by the National Broadcasting Company, Inc., ABC is a trademark owned by the ABC, INC., and HBO is a trademark owned by the Home Box Office, Inc. Media 35 content source 416 may be the originator of media content (e.g., a television broadcaster, a Webcast provider, etc.) or may not be the originator of media content (e.g., an ondemand media content provider, an Internet provider of video content of broadcast programs for downloading, etc.). Media 40 content source 416 may include cable sources, satellite providers, on-demand providers, Internet providers, or other providers of media content. Media content source 416 may also include a remote media server used to store different types of media content (including video content selected by a user), in 45 a location remote from any of the user equipment devices. Systems and methods for remote storage of media content, and providing remotely stored media content to user equipment are discussed in greater detail in connection with Ellis et al., U.S. patent application Ser. No. 09/332,244, filed Jun. 11, 50 1999, which is hereby incorporated by reference herein in its entirety.

Media guidance data source 418 may provide media guidance data, such as media listings, media-related information (e.g., broadcast times, broadcast channels, media titles, media 55 descriptions, ratings information (e.g., parental control ratings, critic's ratings, etc.), genre or category information, actor information, logo data for broadcasters' or providers' logos, etc.), media format (e.g., standard definition, high definition, etc.), advertisement information (e.g., text, images, 60 media clips, etc.), on-demand information, and any other type of guidance data that is helpful for a user to navigate among and locate desired media selections.

Media guidance application data may be provided to the user equipment devices using any suitable approach. In some 65 embodiments, the guidance application may be a stand-alone interactive television program guide that receives program

12

guide data via a data feed (e.g., a continuous feed, trickle feed, or data in the vertical blanking interval of a channel).

Program schedule data and other guidance data may be provided to the user equipment on a television channel sideband, in the vertical blanking interval of a television channel, using an in-band digital signal, using an out-of-band digital signal, or by any other suitable data transmission technique. Program schedule data and other guidance data may be provided to user equipment on multiple analog or digital television channels. Program schedule data and other guidance data may be provided to the user equipment with any suitable frequency (e.g., continuously, daily, a user-specified period of time, a system-specified period of time, in response to a request from user equipment, etc.). In some approaches, guidance data from media guidance data source 418 may be provided to users' equipment using a client-server approach. For example, a guidance application client residing on the user's equipment may initiate sessions with source 418 to obtain guidance data when needed. Media guidance data source 418 may provide user equipment devices 402, 404, and 406 the media guidance application itself or software updates for the media guidance application.

Media guidance applications may be, for example, standalone applications implemented on user equipment devices. In other embodiments, media guidance applications may be client-server applications where only the client resides on the user equipment device. For example, media guidance applications may be implemented partially as a client application on control circuitry 304 of user equipment device 300 and partially on a remote server as a server application (e.g., media guidance data source 418). The guidance application displays may be generated by the media guidance data source 418 and transmitted to the user equipment devices. The media guidance data source 418 may also transmit data for storage on the user equipment, which then generates the guidance application displays based on instructions processed by control circuitry.

Media guidance system 400 is intended to illustrate a number of approaches, or network configurations, by which user equipment devices and sources of media content and guidance data may communicate with each other for the purpose of accessing media and providing media guidance. The present invention may be applied in any one or a subset of these approaches, or in a system employing other approaches for delivering media and providing media guidance. The following three approaches provide specific illustrations of the generalized example of FIG. 4.

In one approach, user equipment devices may communicate with each other within a home network. User equipment devices can communicate with each other directly via shortrange point-to-point communication schemes describe above, via indirect paths through a hub or other similar device provided on a home network, or via communications network **414**. Each of the multiple individuals in a single home may operate different user equipment devices on the home network. As a result, it may be desirable for various media guidance information or settings to be communicated between the different user equipment devices. For example, it may be desirable for users to maintain consistent media guidance application settings on different user equipment devices within a home network, as described in greater detail in Ellis et al., U.S. patent application Ser. No. 11/179,410, filed Jul. 11, 2005. Different types of user equipment devices in a home network may also communicate with each other to transmit media content. For example, a user may transmit media content from user computer equipment to a portable video player or portable music player.

13

In a second approach, users may have multiple types of user equipment by which they access media content and obtain media guidance. For example, some users may have home networks that are accessed by in-home and mobile devices. Users may control in-home devices via a media 5 guidance application implemented on a remote device. For example, users may access an online media guidance application on a website via a personal computer at their office, or a mobile device such as a PDA or web-enabled mobile telephone. The user may set various settings (e.g., recordings, reminders, or other settings) on the online guidance application to control the user's in-home equipment. The online guide may control the user's equipment directly, or by communicating with a media guidance application on the user's in-home equipment. Various systems and methods for user 15 equipment devices communicating, where the user equipment devices are in locations remote from each other, is discussed in, for example, Ellis et al., U.S. patent application Ser. No. 10/927,814, filed Aug. 26, 2004, which is hereby incorporated by reference herein in its entirety.

In a third approach, users of user equipment devices inside and outside a home can use their media guidance application to communicate directly with media content source 416 to access media content. Specifically, within a home, users of user television equipment 404 and user computer equipment 25 406 may access the media guidance application to navigate among and locate desirable media content. Users may also access the media guidance application outside of the home using wireless user communications devices 406 to navigate among and locate desirable media content.

FIG. 5 illustrates another exemplary system 500 that may be used to implement embodiments of the invention. System 500 may include television equipment 502 and several portable electronic devices 504, 506, 508. As described in more detail below, media content, media guidance information, and 35 other information may be received by one of the portable electronic devices 504-508 and then transmitted to the television equipment 502 for display.

An embodiment of the television equipment 502 may include control circuitry 510, a display 512, and possibly 40 other equipment such as a DVD player or digital recorder. The control circuitry 510 receives media content from a source such as media content source 416 shown in FIG. 4 and media guidance data from a source such as media guidance data source 418 shown in FIG. 4. The control circuitry 510 may be 45 the same as the control circuitry 304 described above and may be contained within a set-top box, an integrated receiver decoder (IRD), or other similar component. In some embodiments, the control circuitry 510 may be incorporated in the display 512.

The display 512 is coupled with the control circuitry for displaying media content, media guidance data, and other information and data. The display may be a large-screen television or any other type of monitor, liquid crystal display (LCD), or other suitable device for displaying video. The 55 display may include integral speakers or be coupled with external speakers.

The portable electronic devices 504, 506, 508 may be mobile phones, portable computers, portable game players, portable televisions, portable navigation devices, personal 60 digital assistants, or any other type of portable electronic device capable of displaying video and communicating with other devices as described herein.

FIG. 6 illustrates selected components of the control circuitry 510 and one of the portable electronic devices 504 in 65 more detail. The illustrated control circuitry 510 is a part of an integrated receiver decoder (IRD) for receiving UHF signals

14

from a terrestrial digital broadcasting service or satellite signals from a satellite media content provider. As mentioned above, the control circuitry 510 may also be incorporated in a cable TV set-top box, the display 512, or any other device capable of receiving media content and media guidance data.

The exemplary control circuitry 510 illustrated in FIG. 6 includes a tuner 602 connected to a receiving antenna 604 for receiving UHF or satellite signals from a broadcasting source. The tuner 602 may be a digital tuner configured for receiving terrestrial digital broadcast signals such as a 12 seg receiver. Media guidance data may be embedded in the transport layer of broadcast media content signals or may be provided in separate signals. The tuner 602 delivers the signals to a decoder 606, which decodes the signals and sends the audio/ video portions to an A/V processor 608 and media guidance data portions to a media guidance data processor 610. The A/V processor 608 processes the audio/video signals and delivers them to the display 512 and associated speakers. The media guidance data processor 610 processes the media guid-20 ance data signals and sends them to the A/V processor 608 for displaying corresponding media content listings or other data on the display **512**.

The exemplary control circuitry 510 also includes a communication component 612 and antenna 614 for communicating with the portable electronic device 504. In an exemplary embodiment, the communication component 612 enables short-range point-to-point communications with USB cables, IEEE 1394 cables, Bluetooth® wireless protocols, infrared techniques, IEEE 802.11X LAN methods, or any other wired or wireless communication methods.

The control circuitry 510 also includes a decoder 616 for decoding data received at communication component 612 and a video processor 618 for transferring video signals received from the personal electronic device 504 to the A/V processor 608.

The control circuitry 510 may also include an infrared port 620 or other communication port and input/output interface 622 for receiving control instructions from a remote control unit 624 such as a television remote control. Finally, the control circuitry 510 may also include media guidance application software 626, RAM 628, and ROM 630.

The exemplary portable electronic device 504 shown in FIG. 6 is a television-enabled mobile phone. The device may include a digital tuner/receiver 632 such as a 1 seg tuner or similar device that receives terrestrial digital broadcasting signals through an antenna 634. The signals are then decoded by a decoder 636 which transfers audio/video portions of the signals to an A/V processor 638 which in turn delivers them to a display 640 and speakers or earphones 642. The device 504 may also include another receiver 644 such as a modem and an associated antenna 646 for communicating with a media guidance data source for receiving media guidance data. In an alternate embodiment, the functions of the tuner/receiver 632 and modem/receiver 644 may be performed by a single receiver that receives media content and media guidance data over a common signal.

The device 504 may also include RAM 648 and ROM 650 for storing the received media guidance data and other data. The device 504 may also include media guidance application software 652 designed for displaying media guidance data on small mobile electronic devices. The software is configured to display media content listings and other media guidance data on the screen of the device and to permit a user to perform selected media guidance application functions with the media guidance data. The media guidance application functions may be the same as, or a subset of, the media guidance application functions described above.

The device 504 also includes a communication device 654 and antenna 656 for communicating with the control circuitry 510. In an exemplary embodiment, the communication device 654 and antenna 656 enable short-range point-to-point communications with USB cables, IEEE 1394 cables, Blue- 5 tooth® wireless protocols, infrared techniques, IEEE 802.11X LAN methods, or any other wired or wireless communication methods.

15

The device 504 may also include an infrared port 658 and remote control unit (RCU) software 660 that enables the 10 device to remotely control the television equipment 502. The device 504 may also include control application software 662 for operation control, set-up application software 663 for set-up control, an audio/video application software 664 for audio/video output format selection or adjustment, a key- 15 board 666 for input/output operation I/O application software 668 necessary for input and output interface, and a common control bus 670.

The above-described system 500 or other similar equipment or devices may be used to provide improved methods of 20 displaying media content, media guidance information, and/ or other information. In one example, an owner or user of portable electronic device 504 or any other portable electronic device may first enter and store certain user profile information into the device. For example, the user may type or 25 otherwise enter his or her name, nickname, age, gender, address, hobbies, habits, favorite sports, favorite TV programs, and other identification and/or preference data with the keyboard 666 or other input device. This information may then be stored as user information in the ROM 650 or other 30 memory. The user profile information may instead be entered into the television equipment 502 or other device and then transmitted to the portable electronic device via the components 644 or 654.

The portable electronic device 504 may then be used to 35 receive and watch media content such as television programs via the tuner/receiver 632. To allow the user to more easily locate desired media content and perform desired media functions, media guidance data and other information may also be downloaded to the portable electronic device. Such media 40 guidance data may be received via the tuner/receiver 632 or receiver 644 or may be first sent to the TV equipment control circuitry 510 and then wirelessly transmitted to the portable electronic device via the communication device 654. The media guidance data downloaded to the portable electronic 45 device is preferably scaled, parsed, or otherwise modified to accommodate the device's relatively smaller display screen.

Once media guidance data is received on one or more of the portable electronic devices, the data may be transmitted to and displayed on the display 512 of the television equipment 50 502. To do so, a communication link is first established between one of the portable electronic devices and the control circuitry 510 television equipment. A user may establish a link by pressing a "Link" button or other button or function on his or her portable electronic device. The user's ID and possibly other information may then be transmitted from the user's portable electronic device to the control circuitry 510 to identify the particular portable electronic device and its

Once a communication link has been established and the 60 portable electronic device has been identified, at least some of the media guidance data for the portable electronic device may be displayed on the display 512. In one exemplary embodiment, this is done by transmitting the media guidance data from the portable electronic device to the control cir- 65 cuitry 510. Specifically, media guidance data stored in RAM 648 or ROM 650 of the portable electronic device is trans16

mitted to the control circuitry where it is received by the decoder 616. The decoder 616 extracts the media guidance data and sends it to the A/V processor 608 for display on the display screen 512. The control circuitry may display the user's name or other ID, media content listings, a list of the user's favorite media content, a list of media content recorded by the user, or any other media guidance data or user information.

If the control circuitry 510 receives media guidance data from a portable electronic device that has not been set up with user information or other set-up information, it may only display the media guidance data for the device. The user may then enter user information or other set-up information while the media guidance data is displayed.

In another embodiment, the media guidance data for a portable electronic device may be stored in the control circuitry of the TV equipment rather than being transmitted from the portable electronic device. The media guidance data is retrieved and displayed on the display when the portable electronic device transmits user information or other start-up information to the control circuitry. For example, media guidance data for a portable electronic device identified by "XYZ" may be stored in the control circuitry and displayed when this portable electronic device establishes a communication link with the control circuitry.

The control circuitry 510 may also receive and display media guidance data or other information from several portable electronic devices at the same time. Scanning lines on the display 512 may be divided into several different areas, each of which is assigned to particular portable electronic devices or other devices. For example, as shown in FIG. 5, the display screen 512 may be divided into four display quadrants, with the upper right quadrant 514 being assigned to media content for the TV equipment 502 itself, the lower right quadrant 516 being assigned to media guidance data and/or media content for a first portable electronic device, the lower left quadrant 518 being assigned to media guidance data and/or media content for a second portable electronic device, and the upper left quadrant 520 being assigned to media guidance data and/or media content for a third portable electronic device. The four quadrants 514-520 are examples only, as the display screen 512 may be divided into any number of display areas limited only by the display's resolution.

Each quadrant or other screen area may be assigned to a user within a designated group such as a family. For example, the upper right quadrant 514 may be assigned to general family use for displaying media content and media guidance data received by the television equipment from a receiver or set-top box; the lower right quadrant 516 may be assigned to a father for receiving and displaying media content and/or media guidance data transmitted from the father's portable electronic device; the lower left quadrant 518 may be assigned to a mother for receiving and displaying media content and/or media guidance data transmitted from the mother's portable electronic device; and the upper left quadrant 520 may be assigned to a child for receiving and displaying media content and/or media guidance data transmitted from the child's portable electronic device.

The system 500 also permits several people to simultaneously watch their own media content or display their own media guidance data on the display without audio interference from other users. For example, the control circuitry 510 may simultaneously display three different media contents for three of the portable electronic devices as well as a media content for the TV equipment itself. The audio signals for the media contents of the portable electronic devices are not delivered to the large display's speakers but are instead trans-

mitted to the speakers or earphones of the respective portable electronic devices. This permits the users to watch their personal media content and/or media guidance data on the large display while listening to any associated audio via their portable electronic device.

17

The system 500 also permits users of the portable electronic devices to share media guidance data. For example, a user of portable electronic device 504 may transmit media guidance data to the control circuitry **510** as described above. The user of another portable electronic device **506**, or the user of portable electronic device 504, may then request that some or all of the media guidance data for portable electronic device 504 be transmitted from the control circuitry 510 to portable electronic device 506. This allows users to more easily share media guidance data such as lists of favorite 15 programs, recommendations, reminders, etc.

The system 500 also permits users to use or edit their media guidance data, perform media guidance functions, and/or otherwise manipulate the media guidance data while it is displayed on the large display. The edited or otherwise altered 20 media guidance data may then be transmitted back to the portable electronic device. This allows users to use, edit, or otherwise manipulate their media guidance data via the large display rather than the smaller displays of their portable electronic devices.

FIGS. 1, 5, 7, 8 and 9 illustrate display screens for an exemplary media guidance application function that may be performed on media guidance data for one of the portable electronic devices 504. Media guidance data is first transmitted from the portable electronic device 504 to the control 30 circuitry 510. Alternatively, the data may be retrieved from memory of the control circuitry 510 upon receiving user information transmitted from the portable electronic device. A media guidance application at least partially implemented by the control circuitry 510 may use the media guidance data 35 to display on the display 512 several media content listings such as those shown in FIG. 1.

The portable electronic device 504 may then be used to remotely control the control circuitry 510. For example, the user of the portable electronic device may select to record a 40 media content represented by a listing by moving the highlight region 110 over the media content listing 108 and pressing a "Record" button on the portable electronic device.

The media guidance application may then present on the display 512 a record options overlay 700 such as the one 45 illustrated in FIG. 7. The record options overlay 700 may display a Record Selected Episode selection 702 and a Record Series selection 704. If the user picks selections 702 or 704, the media guidance application schedules recording of a single episode or a series in a conventional manner.

The user may later select to view the recorded media content by issuing a playback command from his or her portable electronic device. In response, the media guidance application may display a list 800 of all recorded media content as illustrated in FIG. 8. Previously recorded media content 802 55 and 806 may be displayed, for example, at the beginning of the list and be accompanied by the time and date 804 and 808 of the recording. Media content 810 scheduled to be recorded in the future may be displayed next and may be accompanied by an icon 812 that indicates the media content is scheduled 60 for recording.

The user may request play-back of a recorded media content by highlighting a media content listing in the display 800 and then pressing "Enter" or another command on the portable electronic device. In response to the user request, the 65 media guidance application issues a play-back request to either the local storage device 308 or a remote storage device.

18

The play-back request may include an identifier for the media content that the user wishes to play back and an identifier of the user. The play-back request may also include a pointer to a media directory on the local or remote storage device. The local or remote storage device then retrieves the requested media content and provides it to the user equipment device 300 as a suitable signal such as an NTSC video signal or an MPEG-2 video signal. The media content may be transferred to the user equipment device 300 in real time or in a compressed form such as a compressed video file.

The user may request deletion of a previously recorded media content by, for example, highlighting one of the media content listings in FIG. 8 and then pressing a "Delete" button on the portable electronic device. In response, the media guidance application may permit deleting of a single episode and deleting of an entire series.

A user of one of the portable electronic devices may also obtain media content recommendations via the control circuitry 510. FIG. 9 illustrates an exemplary recommendations overlay 902 that may be displayed on the display 512 or otherwise conveyed to a user. The recommendations may be displayed only upon request, such as when the user operates his or her portable electronic device to request recommendations, or may be displayed automatically, for example when a user first establishes a communication link between his or her portable electronic device and the control circuitry 510. The recommendations overlay 902 may include a number of media content listings 904, 906, and 908 for recommended media content. A user may highlight any of the selections with the portable electronic device and then press "Enter" or other command on the portable electronic device to initiate a media guidance application function such as recording the media content, setting a reminder for the media content, or tuning the user equipment to the appropriate channel.

Each of the display screens in FIGS. 1, 2, and 7-9 may include a number of panel advertisements and banner advertisements. The size, shape, and location of the advertisements may be altered without departing from the spirit of the invention, and more or less advertisements than those shown may be displayed, if desired. The display screens of FIGS. 1, 2, and 7-9 are merely illustrative and may be replaced with any suitable display screen arrangements.

The system 500 also permits game players to display and play electronic games on the display 512 while other media content and/or media guidance data is displayed on other portions of the display. To do so, a user of a portable game player first establishes a communication link with the TV equipment as explained above. The control circuitry 510 recognizes the user information and identifies the device as a game player. The control circuitry may then follow protocols unique to portable game players. For example, the control circuitry may be configured so as not to suspend or otherwise interrupt an in-progress game with media content, media content alerts, etc. If a media content is scheduled for display while a game is being played on the display 512, the control circuitry 510 may display the media content and/or alert in a separate segment of the display so that the game player may continue playing the game without interruption.

The system 500 may also allow a portable electronic device user to more conveniently participate in a call-in program or game show. Most call-in programs or game shows require users to enter their names, ages, genders, addresses, telephone numbers, e-mail addresses, and other personal information. Entering all of this information with a portable electronic device is time-consuming and cumbersome. With the present invention, the user information entered during set-up of a portable electronic device as described above may be

19

transmitted from the portable electronic device to the TV equipment and used for entry into a call-in program or game show.

FIG. 10 shows an exemplary process 1000 for displaying media content and media guidance information in accordance with an exemplary embodiment of the invention. The particular order of the steps illustrated in FIG. 10 and described herein can be altered without departing from the scope of the invention. For example, some of the illustrated steps may be reversed, combined, or even removed entirely. At step 1002, one of the portable electronic devices receives media guidance information such as media guidance listings and/or other data. As discussed above, the portable electronic device may receive the media guidance information directly via its tuner/ $_{15}$ receiver 632 or receiver 644 or indirectly via the TV equip-

At step 1004, the portable electronic device transmits at least some of the media guidance information to the control circuitry 510. Alternatively, the portable electronic device 20 may only transmit certain user information or set-up information to the TV equipment and the TV equipment may retrieve the media guidance information for the portable electronic device from memory.

At step 1006, at least some of the media guidance infor- 25 mation for the portable electronic device is displayed on the display 512. As discussed above, the media guidance information may be displayed on a segment of the display such as a quadrant of the display.

At step 1008, other information such as media content or 30 media guidance information for other portable electronic devices or the TV equipment itself is displayed on the display 512 alongside the media guidance information for the portable electronic device.

FIG. 11 shows another exemplary process 1100 for dis- 35 playing media content and media guidance information. The particular order of the steps illustrated in FIG. 11 and described herein can be altered without departing from the scope of the invention. For example, some of the illustrated

At step 1102, a first one of the portable electronic devices receives media guidance information such as media guidance listings and/or other data. The first portable electronic device may receive the media guidance information in any of the ways discussed above.

At step 1104, the first portable electronic device transmits at least some of the media guidance information to the control circuitry 510. Alternatively, the first portable electronic device may only transmit user information or set-up information to the control circuitry and the control circuitry may 50 retrieve the media guidance information from memory as described in more detail above.

At step 1106, at least some of the media guidance information for the first portable electronic device is displayed on the display 512. As discussed above, the media guidance 55 information may be displayed on a quadrant or other segment

At step 1108, a second one of the portable electronic devices receives media guidance information such as media guidance listings and/or other data.

At step 1110, the second portable electronic device transmits at least some of the media guidance information to the control circuitry of the TV equipment. Alternatively, the second portable electronic device may only transmit user information or set-up information to the control circuitry and the control circuitry may retrieve the media guidance information from memory.

20

At step 1112, at least some of the media guidance information for the second portable electronic device is displayed on the display 512. As discussed above, the media guidance information may be displayed on a quadrant or other segment of the display.

FIG. 12 shows another exemplary process 1200 for displaying media content and media guidance information. The particular order of the steps illustrated in FIG. 12 and described herein can be altered without departing from the scope of the invention. For example, some of the illustrated steps may be reversed, combined, or even removed entirely.

At step 1202, one of the portable electronic devices receives media guidance information such as media guidance listings and/or other data.

At step 1204, the portable electronic device transmits at least some of the media guidance information to the control circuitry of the TV equipment. Alternatively, the portable electronic device may only transmit certain user information or set-up information to the control circuitry and the control circuitry may retrieve the media guidance information for the portable electronic device from memory.

At step 1206, at least some of the media guidance information for the portable electronic device is displayed on the large display. As discussed above, the media guidance information may be displayed on a quadrant or other segment of the display

At step 1208, a user of the portable electronic device may perform a media guidance application function with the media guidance information while it is displayed on the large display. For example, the user may use the media guidance information to navigate through the media content accessible by the portable electronic device, search for desired content, schedule a selected content to be recorded, record the selected content to a local storage device or remote media server, add the selected content to a favorite programs list, set a reminder for the selected content, order the selected content via an on-demand (e.g., video on-demand or VOD) or pay-per-view (PPV) service, or any other suitable function.

At step 1210, the media guidance information is then transsteps may be reversed, combined, or even removed entirely. 40 mitted from the control circuitry back to the portable electronic device or to a different portable electronic device.

> Although the invention has been described with reference to preferred embodiments illustrated and discussed herein, equivalents may be employed and substitutions made herein without departing from the scope of the invention as recited in the claims. For example, it will be appreciated that while the discussion of media content has focused on video content such as television programs, the principles of the present invention can be applied to other types of media content, such as music, images, etc. Moreover, the user equipment 300, system 400, and system 500 described and illustrated herein, as well as the individual components of the user equipment 300 and systems 400 and 500, are merely examples of systems, devices, and components that may be used to implement embodiments of the present invention and may be replaced with other systems, devices, and components without departing from the scope of the invention.

> Having thus described the preferred embodiment of the invention, what is claimed as new and desired to be protected by Letter Patent includes the following:

> 1. A method for displaying media guidance information, the method comprising:

receiving media guidance information with a first portable electronic device:

establishing a communication link between the first portable electronic device and control circuitry coupled with a display;

20

21

- transmitting at least some of the media guidance information from the first portable electronic device to the control circuitry via the communication link, wherein the media guidance information received by the control circuitry from the first portable electronic device is simultaneously displayed, with the display coupled to the control circuitry, with media content or media guidance information received by the control circuitry from a source other than the first portable electronic device; and receiving an indication with the first portable electronic device that the media guidance information displayed on
- manipulated.

 2. The method as set forth in claim 1, further comprising: receiving media guidance information with a second portable electronic device;

the display coupled to the control circuitry has been

- transmitting at least some of the media guidance information from the second portable electronic device to the control circuitry; and
- displaying the media guidance information from the second portable electronic device on the display alongside the media guidance information from the first portable electronic device.
- 3. The method as set forth in claim 2, further comprising 25 the step of transmitting from the control circuitry at least some of the media guidance information received from the first portable electronic device to the second portable electronic device.
- **4**. The method as set forth in claim **2**, wherein the first and 30 second portable electronic devices are mobile phones, portable computers, portable game players, portable navigation devices, portable televisions, or personal digital assistants.
 - 5. The method as set forth in claim 1, further comprising: receiving media guidance information at the control circuitry from a satellite or cable television provider; and transmitter or transceiver.

 17. The system as set for the method as set forth in claim 1, further comprising: munication device is a way transmitter or transceiver.
 - displaying the media guidance information received from the satellite or cable television provider on the display alongside the media guidance information transmitted from the first portable electronic device.
 - 6. The method as set forth in claim 1, further comprising: performing a media guidance application function with the media guidance information transmitted from the first portable electronic device while the media guidance information is displayed on the display; and
 - after the media guidance application is performed, transmitting at least some of the media guidance information back to the first portable electronic device.
- 7. The method as set forth in claim 6, wherein the media guidance application function includes entering user information, searching for a desired media content, scheduling a selected media content for recording, recording a selected media content, deleting a previously recorded media content, adding a selected media content to a favorite media content list, setting a reminder for a selected media content, or ordering a selected media content via an on-demand or pay-per-
- **8**. The method as set forth in claim **1**, wherein the display is a television and the control circuitry is contained within a set-top box coupled with the television.
- 9. The method as set forth in claim 1, wherein the control circuitry is contained within the display.
- 10. The method as set forth in claim 1, wherein the control circuitry executes an interactive media guidance application.
- 11. A system for displaying media guidance information, 65 the system comprising:

user equipment including

22

- control circuitry for receiving media content from a media content source and media guidance information from a media guidance source, and
- a display coupled with the control circuitry for simultaneously displaying the media content and the media guidance information; and
- a first portable electronic device including
 - a receiver for receiving media content from a media content source and media guidance information from a media guidance source,
 - a receiver for receiving an indication that the media guidance information displayed on the display coupled to the control circuitry has been manipulated, and
 - a communication device for:
 - establishing a communication link between the first portable electronic device and the user equipment, and
 - transmitting at least some of the media guidance information to the user equipment via the communication link for display on the display.
- 12. The system as set forth in claim 11, wherein the display is a television.
- 13. The system as set forth in claim 11, wherein the receiver includes a digital receiver for receiving the media content from a mobile terrestrial digital broadcasting service.
- 14. The system as set forth in claim 13, wherein the receiver includes a separate wireless mobile phone receiver for receiving the media guidance information from a phone network.
- 15. The system as set forth in claim 11, wherein the receiver is a single receiver that receives the media content and the media guidance information from a common signal.
- 16. The system as set forth in claim 11, wherein the communication device is a wireless local area network (LAN) transmitter or transceiver.
 - 17. The system as set forth in claim 11, further comprising: a second portable electronic device including: a first receiver for receiving media content from a media content source; a second receiver for receiving media guidance information from a media guidance source; and a communication device for transmitting at least some of the media guidance information to the user equipment for display on the display alongside the media guidance information from the first portable electronic device.
- 18. The system as set forth in claim 17, wherein the first and second portable electronic devices are mobile phones, portable computers, portable game players, portable navigation devices, portable televisions, or personal digital assistants.
- 19. The system as set forth in claim 11, wherein the first portable electronic device is operable for performing a media guidance application function with the media guidance information while the media guidance information is displayed on the display.
- 20. The system as set forth in claim 19, wherein the media guidance application function includes entering user information, searching for a desired media content, scheduling a selected media content for recording, recording a selected media content, deleting a previously recorded media content, adding a selected media content to a favorite media content to list, setting a reminder for a selected media content, or ordering a selected media content via an on-demand or pay-perview service.
 - 21. The system as set forth in claim 11, wherein the display is a television and the control circuitry is contained within a set-top box coupled with the television.
 - 22. The system as set forth in claim 11, wherein the control circuitry is contained within the display.

23 23. The system as set forth in claim 11, wherein the control circuitry executes an interactive media guidance application.

24. A system for displaying media guidance information, the system comprising:

means for receiving media guidance information with a 5 first portable electronic device;

means for establishing a communication link between the first portable electronic device and control circuitry coupled with a display;

means for transmitting at least some of the media guidance $_{10}$ information from the first portable electronic device to the control circuitry via the communication link, wherein the media guidance information received by the control circuitry from the first portable electronic device is simultaneously displayed, with the display coupled to $_{15}$ the control circuitry, with media content or media guidance information received by the control circuitry from a source other than the first portable electronic device; and

means for receiving an indication with the first portable $_{20}$ electronic device that the media guidance information displayed on the display coupled to the control circuitry has been manipulated.

25. The system as set forth in claim 24 further comprising: means for receiving media guidance information with a 25 second portable electronic device;

means for transmitting at least some of the media guidance information from the second portable electronic device to the control circuitry; and

means for displaying the media guidance information from 30 the second portable electronic device on the display alongside the media guidance information from the first portable electronic device.

26. The system as set forth in claim 25, further comprising means for transmitting from the control circuitry at least some 35 of the media guidance information received from the first portable electronic device to the second portable electronic

24

- 27. The system as set forth in claim 25, wherein the first and second portable electronic devices are mobile phones, portable computers, portable game players, portable navigation devices, portable televisions, or portable digital assistants.
 - 28. The system as set forth in claim 24, further comprising: means for receiving media guidance information at the control circuitry from a satellite or cable television pro-

means for displaying the media guidance information received from the satellite or cable television provider on the display alongside the media guidance information transmitted from the first portable electronic device.

29. The system as set forth in claim 24, further comprising: means for performing a media guidance application function with the media guidance information transmitted from the first portable electronic device while the media guidance information is displayed on the display; and

means for transmitting at least some of the media guidance information back to the first portable electronic device after the media guidance application is performed.

- 30. The system as set forth in claim 29, wherein the media guidance application function includes entering user information, searching for a desired media content, scheduling a selected media content for recording, recording a selected media content, deleting a previously recorded media content, adding a selected media content to a favorite media content list, setting a reminder for a selected media content, or ordering a selected media content via an on-demand or pay-perview service.
- 31. The system as set forth in claim 24, wherein the display is a television and the control circuitry is contained within a set-top box coupled with the television.
- 32. The system as set forth in claim 24, wherein the control circuitry is contained within the display.
- 33. The system as set forth in claim 24, wherein the control circuitry executes an interactive media guidance application.

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 8,601,526 B2 Page 1 of 1

APPLICATION NO. : 12/144434

DATED : December 3, 2013

INVENTOR(S) : Nishimura et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title Page:

The first or sole Notice should read --

Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 392 days.

Signed and Sealed this Twenty-fourth Day of March, 2015

Michelle K. Lee

Michelle K. Lee

Director of the United States Patent and Trademark Office