ECE5029	VLSI TESTING AND TESTABILITY	L	T	P	J	C
		3	0	0	0	3
Pre-requisite	Nil				v 1	.1

Course Objective:

The course is aimed to

- 1. Model and simulate different types of faults in digital circuits at the gate level.
- 2. Establish equivalence and dominance relationships of faults in a circuit.
- 3. compare automatic test pattern generation algorithms with respect to search space, speed, fault coverage and other criteria.
- 4. Handle design complexity, ensure reliable operation, and achieve short time-to-market using various testing methodologies.

Expected Course Outcome:

After completion of the course students will be able to:

- 1. Model different fault models.
- 2. Simulate faults and generate test patterns for combinational circuits.
- 3. Apply scan based testing.
- 4. Recognize the BIST techniques for improving testability.
- 5. Understand boundary scan based test architectures.
- 6. Analyse and apply the test vector compression techniques for memory reduction and fault diagnosis.

Student Learning Outcomes (SLO): 1,17

Module:1 | Fault Modelling

6hours

Importance of Testing - Testing during the VLSI Lifecycle - Challenges in the VLSI Testing: Test Generation - Fault Models - Levels of Abstraction in VLSI Testing - Historical Review of VLSI Test Technology - Functional Versus Structural Testing - Levels of Fault Models - Fault Equivalence - Fault Dominance - Fault Collapsing - Check point Theorem - Delay Fault.

Module:2 | Fault Simulation and Test Generation

7hours

Fault Simulation: Serial, Parallel, Deductive, Concurrent - Combinational Test Generations - ATPG for Combinational Circuits - D-Algorithm - Testability Analysis - SCOAP measures for Combinational Circuits

Module:3 | Scan based Testing

7hours

Design for Testability Basics - Ad Hoc Approach - Structured Approach - Scan Cell Designs - Scan Architectures - Scan Design Rules - Scan Design Flow - Special Purpose Scan Designs - RTL Design for Testability.

Module:4 Built-in Self-Test

7hours

BIST Design Rules - Test Pattern Generation - Exhaustive Testing - Pseudo-Random Testing - Pseudo-Exhaustive Testing - Delay Fault Testing - Output Response Analysis - Logic BIST Architectures - BIST Architectures for Circuits with and without Scan Chains

Module:5 Boundary scan and Core based Testing										
Digital Boundary Scan (IEEE Std. 1149.1): Test Architecture and Operations - On-Chip Test										
Support wit	h Boundary Scan - Board and System	m-Level Bou	ndary-Scan	Control Archite	ectures.					
Module:6	Test Compression and Compact	ion			6hours					
Test Stimulus Compression: Code-Based Schemes, Linear-Decompression-Based Schemes - Test										
Response C	ompaction.									
	1									
Module:7	Fault Diagnosis				5hours					
Dictionary Based and Adaptive fault diagnosis.										
Module:8 Contemporary issues:					2hours					
	Total Lecture hours:			4	5hours					
Text Book(,									
1. Z.Navabi, Digital System Test and Testable Design, Springer, 2011.										
1. Laung-Terng Wang, Cheng-Wen Wu, and Xiaoqing Wen, VLSI Test Principles and										
Architectures, The Morgan Kaufmann, 2013.										
	valuation:Continuous Assessment T									
	eminar / Challenging Assignments			/ Innovative ide	eas leading					
	for industrial problems, Final Asses									
Recommended by Board of Studies 28/02/2017										
Approved b	y Academic Council	47 th AC	Date	05/10/2017						