ICCS310: Assignment 4

Possawat Sanorkam possawat2017@hotmail.com February 24, 2021

1: Eh? They Have The Same Cardinality?

Prove the following statements using rigorous mathematical reasoning:

(1)
$$|[0,\frac{1}{2})| = |[0,1)|$$

Proof: We want to show that $|[0, \frac{1}{2})| = |[0, 1)|$ by direct proof. By definition, let A and B be sets. Say A and B have the same cardinality (size), denoted by |A| = |B|, if there exists a bijection between them.

We want to show that there exist a function f such that f is a bijection. Let $f:A\to B$, $A=[0,\frac{1}{2})$, and B=[0,1). Then, let f(x)=2x. Let $a\in A$ and $a'\in A$. From observation, f(a) is unique for any arbitrary a. We have that $(\forall a\neq a')[f(a)\neq f(a')]$, so f is injective. Let $b\in B$. From observation, every b can be obtain from some f(a). We have that $(\forall b)(\exists a)[f(a)=b]$, so f is also surjective. According to the definition we stated before, f is a bijective function. Hence, |A|=|B|. Therefore, $|[0,\frac{1}{2})|=|[0,1)|$. \square

(2)
$$|[0,1)| = |(-1,1)|$$

Proof: We want to show that |[0,1)| = |(-1,1)| by direct proof. By definition, let A and B be sets. Say A and B have the same cardinality (size), denoted by |A| = |B|, if there exists a bijection between them. In addition, |A| = |B| if and only if $|A| \le |B|$ and $|B| \le |A|$.

We want to show that there exist functions f that is injective and g that is also injective. Let $f:A\to B, g:B\to A, A=[0,1),$ and B=(-1,1). Then, let f(x)=x. Let $a\in A$ and $a'\in A.$ From observation, f(a) is unique for any arbitrary a. We have that $(\forall a\neq a')[f(a)\neq f(a')],$ so f is injective. Then, let $g(x)=\frac{(x+1)}{2}.$ Let $b\in B$ and $b'\in B.$ From observation, g(b) is unique for any arbitrary b. We have that $(\forall b\neq b')[f(b)\neq f(b')],$ so g is injective. Hence, $|A|\leq |B|$ and $|B|\leq |A|$ which implies that |A|=|B|. Therefore, |[0,1)|=|(-1,1)|. \square

(3)
$$|[0,1)| = |\mathbb{R}|$$

Proof: We want to show that $|[0,1)| = |\mathbb{R}|$ by direct proof. Besides, we have that |[0,1)| = |(-1,1)| which means we can show that $|\mathbb{R}| = |(-1,1)|$ instead. Say A and B have the same cardinality (size), denoted by |A| = |B|, if there exists a bijection between |A| = |C|, we have |B| = |C| also.

We want to show that there exist a function f such that f is a bijection. Let $f:A\to\mathbb{R}$, and A=(-1,1). Then, let $f(x)=\frac{x}{1-x^2}$. This function is continuous on domain A when $x\neq 1$ and $x\neq -1$. Let $a\in A$ and $a'\in A$. From observation, f(a) is unique for any arbitrary a. We have that $(\forall a\neq a')[f(a)\neq f(a')]$, so f is injective. Let $b\in B$. From observation, every b can be obtain from some f(a). The upper bound of f(x) is $\lim_{x\to 1}f(x)\approx \infty$ and the lower bound of f(x) is $\lim_{x\to -1}f(x)\approx -\infty$. So, we can cover all element in \mathbb{R} . We have that $(\forall b)(\exists a)[f(a)=b]$, so f is also surjective. According to the definition we stated before, f is a bijective function. So, $|A|=|\mathbb{R}|$ or $|\mathbb{R}|=|(-1,1)|$. Hence, $|\mathbb{R}|=|(-1,1)|$ implies that $|\mathbb{R}|=|[0,1)|$ also. Therefore, $|[0,1)|=|\mathbb{R}|$. \square

2: The Power Set of A

(1) Prove that $|2^A| = |\{0,1\}^A|$.

Proof: We want to show that $|2^A| = |\{0,1\}^A|$ by direct proof. Say K and B have the same cardinality (size), denoted by |K| = |B|, if there exists a bijection between them. In addition, |K| = |B| if and only if $|K| \le |B|$ and $|B| \le |K|$.

We want to show that there exist a function f such that f is a bijection. Let $f: K \to B$, $g_k: A \to \{1,0\}, K = 2^A, a \in A, k \in K \text{ and } B = \{0,1\}^A$. Then, let

f(x) = binary array of length |A| where each bit represents the presence of a in x

Besides, we say that binary array is just a tuple of $g_k(x)$.

$$f(x) = (g_k(x)|k \in A)$$

Also, let

$$g_k(x) = \begin{cases} 1 & \text{if } k \in x \\ 0 & \text{if } k \notin x \end{cases}$$

So, we have a function that map a set a and represents it in a tuple of bits like (1,0,...) of length |A|. Let $i \in K$ and $i' \in K$. From observation, f(i) is unique for any arbitrary i. Besides, we can map all the permutation of binary string to each set. We have that $(\forall i \neq i')[f(i) \neq f(i')]$, so f is injective. Let $b \in B$. From observation, every b can be obtain from some f(a). The upper bound of f(x) is f(A) = (1, 1, ..., 1) which is a tuple of 1s with length of |A| and the lower bound of f(x) is $f(\emptyset) = (0, 0, ..., 0)$ which is a tuple of 0s with length of |A|. So, we can cover all element in B. We have that $(\forall b)(\exists a)[f(a) = b]$, so f is also surjective. According to the definition we stated before, f is a bijective function. So, |A| = |B|. Therefore, $|2^A| = |\{0, 1\}^A|$. \square .

(2) Prove that $|A| < |\{0,1\}^A|$ and conclude that $|A| < |2^A|$. *Proof*:

3: Hamming Code

Consider applying the Hamming coding scheme to send 8 bits of data. This will require 4 parity bits, so an encoded code word in this scheme is 12 bits long.

(1) If the data bits are $d_1, d_2, d_3...d_8$, what is β_2 in terms of d_i 's? Solution: $\beta_2 = p_2 \oplus d_1 \oplus d_3 \oplus d_4 \oplus d_6 \oplus d_7$

(2) Encode the following 8-bit data: 01101010.

Solution: Hamming Code = $(p_1p_2d_1p_4d_2d_3d_4p_8d_5d_6d_7d_8)$

Encode 01101010 by adding the parity bits as followed

$$p_1 = d_1 \oplus d_2 \oplus d_4 \oplus d_5 \oplus d_7 = 0 \oplus 1 \oplus 0 \oplus 1 \oplus 1 = 1 \tag{1}$$

$$p_2 = d_1 \oplus d_3 \oplus d_4 \oplus d_6 \oplus d_7 = 0 \oplus 1 \oplus 0 \oplus 0 \oplus 1 = 0 \tag{2}$$

$$p_4 = d_2 \oplus d_3 \oplus d_4 \oplus d_8 = 1 \oplus 1 \oplus 0 \oplus 0 = 0$$
 (3)

$$p_8 = d_5 \oplus d_6 \oplus d_7 \oplus d_8 = 1 \oplus 0 \oplus 1 \oplus 0 = 0$$
 (4)

Therefore, encoded bits are 100011001010

(3) Assuming that at most a single single bit flip, decide the following codewords (indicate also whether there was any error):

Solution: Hamming Code = $(p_1p_2d_1p_4d_2d_3d_4p_8d_5d_6d_7d_8)$

(i) 010011111000

So, $p_1 = 0$, $p_2 = 1$, $p_4 = 0$, and $p_8 = 1$.

$$\beta_1 = p_1 \oplus d_1 \oplus d_2 \oplus d_4 \oplus d_5 \oplus d_7 = 0 \oplus 0 \oplus 1 \oplus 1 \oplus 1 \oplus 0 = 1 \tag{5}$$

$$\beta_2 = p_2 \oplus d_1 \oplus d_3 \oplus d_4 \oplus d_6 \oplus d_7 = 1 \oplus 0 \oplus 1 \oplus 1 \oplus 0 \oplus 0 = 1 \tag{6}$$

$$\beta_4 = p_4 \oplus d_2 \oplus d_3 \oplus d_4 \oplus d_8 = 0 \oplus 1 \oplus 1 \oplus 1 \oplus 0 = 1 \tag{7}$$

$$\beta_8 = p_8 \oplus d_5 \oplus d_6 \oplus d_7 \oplus d_8 = 1 \oplus 1 \oplus 0 \oplus 0 \oplus 0 = 0 \tag{8}$$

Error Position is $0111_2 = 7$. Corrected Data is 010011011000.

(ii) 011101010010

So, $\beta_1 = 0, \beta_2 = 1, \beta_4 = 1,$ and $\beta_8 = 1.$

$$\beta_1 = p_1 \oplus d_1 \oplus d_2 \oplus d_4 \oplus d_5 \oplus d_7 = 0 \oplus 1 \oplus 0 \oplus 0 \oplus 0 \oplus 1 = 0 \tag{9}$$

$$\beta_2 = p_2 \oplus d_1 \oplus d_3 \oplus d_4 \oplus d_6 \oplus d_7 = 1 \oplus 1 \oplus 1 \oplus 0 \oplus 0 \oplus 1 = 0 \tag{10}$$

$$\beta_4 = p_4 \oplus d_2 \oplus d_3 \oplus d_4 \oplus d_8 = 1 \oplus 0 \oplus 1 \oplus 0 \oplus 0 = 0 \tag{11}$$

$$\beta_8 = p_8 \oplus d_5 \oplus d_6 \oplus d_7 \oplus d_8 = 1 \oplus 0 \oplus 0 \oplus 1 \oplus 0 = 0 \tag{12}$$

Data is already correct.

4: Same Number of 0s and 1s

Consider the language $L = \{w \in \{0,1\}^* | \text{ w contains an equal number of 0s and 1s } \}$. Show that L is (Turing) decidable by providing a TM that decides it (a medium-level detail is preferred).

Proof:

5: Infinite DFA

Show that the following language is (Turing) decideable:

$$IDFA = \{\langle M \rangle | M \text{ is a DFA and L(M) is an infinite language } \}.$$

Proof: We want to show that IDFA is decidable. So, we will construct a TM T that decides IDFA. For all DFAs M, we want $T(\langle M \rangle)$ to accepts if L(M) is infinite language, else it will reject.

6: Lucky 9

(1) Let $L_1 \subseteq \Sigma^*$ be defined as

$$L_1 = \begin{cases} \varnothing & \text{if } 2^{74207281} - 1 \text{ is prime} \\ \{99\} & \text{if } 2^{74207281} - 1 \text{ is not prime} \end{cases}$$

Prove that L_1 is (Turing) decidable.

Proof:

(2) Let $L_2 \subseteq \Sigma^*$ be defined as

 $w \in L_2 \iff w$ appears somewhere (not necessarily consecutively) in the decimal expansion of π

Prove that L_2 is (Turing) decidable.

Proof:

7: β -reduction

(1) $(\lambda z.z)(\lambda z.zz)(\lambda z.zy)$

Solution:

$$(\lambda z.z)(\lambda z.zz)(\lambda z.zy) \rightarrow_1 (\lambda z.zz)(\lambda z.zy)$$
 (13)

$$\rightarrow_1 (\lambda z.zy)(\lambda z.zy)$$
 (14)

$$\rightarrow_1 (\lambda z. zy)y$$
 (15)

$$\rightarrow_1 \quad yy \tag{16}$$

(2)
$$(((\lambda x.\lambda y.(xy))(\lambda y.y))w)$$

Solution:

$$(((\lambda x.\lambda y.(xy))(\lambda y.y))w) \rightarrow_1 (((\lambda x.\lambda y.(xy))(\lambda y'.y'))w)$$
(17)

$$\to_1 \quad (\lambda y.((\lambda y'.y')y)w) \tag{18}$$

$$\to_1 \quad (\lambda y.(y)w) \tag{19}$$

$$\rightarrow_1 \quad w \tag{20}$$

8: Fibonacci

Using the functions we have developed (e.g., pred, if_then_else, mult, add, etc.), write down an explicit λ -term fib such that $\overline{\text{fib}} \overline{n} =_{\beta} \overline{f(n)}$.

Solution: Let $fib(n) = plain_fib(fib, n)$ for all n

Define $T = \lambda z w.z$

We say iszero is a function that return T if the input is zero, else F.

Define iszero := $\lambda nxy.n(\lambda z.y)x$

Define or := $\lambda xy.x(T)(y)$

$$\overline{\text{fib}} \, \overline{n} \to_* (\text{plain_fib} \, \overline{\text{fib}}) \overline{n}$$
 (21)

$$\rightarrow_*$$
 if_then_else(or (iszero \overline{n})(iszero (pred \overline{n}))) (22)

$$(\overline{1})(\operatorname{add}(\overline{\operatorname{fib}}\operatorname{pred}\overline{n})(\overline{\operatorname{fib}}\operatorname{pred}(\operatorname{pred}\overline{n})))$$

Therefore,

 $\overline{\mathtt{fib}} \ \overline{n} = \mathtt{if_then_else}(\mathtt{or} \ (\mathtt{iszero} \ \overline{n})(\mathtt{iszero} \ (\mathtt{pred} \ \overline{n})))(\overline{1})(\mathtt{add}(\overline{\mathtt{fib}} \ \mathtt{pred} \ \overline{n})(\overline{\mathtt{fib}} \ \mathtt{pred} \ (\mathtt{pred} \ \overline{n})))$

9: Power Of 2

Implement a λ -term for the $pow(n) = 2^n$

Solution: $\overline{pow} \ \overline{n} = (pow \ \overline{n})\overline{2} = ((\lambda pq.pq)\overline{n})\overline{2}$

Substitute all church numerals, we get \overline{pow} $\overline{n} =$

$$((\lambda pq.pq)\lambda fx.f^nx))\lambda fx.f(fx)$$