

IME OBJETIVO 2

2023

QUÍMICA

Dados

- Constante de Avogadro, $N_{\rm A}=6.02\cdot 10^{23}\,{
 m mol}^{-1}$ Constante de Faraday, $F=96\,500\,{
 m C\,mol}^{-1}$
- Carga elementar, $e = 1.6 \cdot 10^{-19} \,\mathrm{C}$
- Constante de Planck, $h=6.6\cdot 10^{-34}\,\mathrm{m^2\,kg\,s^{-1}}$ Constante de Rydberg, $\mathcal{R}=1.1\cdot 10^7\,\mathrm{m^{-1}}$
- Constante de autoionização da água, $K_{\rm w}=1\cdot 10^{-14}$ Velocidade da luz no vácuo, $c=3\cdot 10^8~{\rm m~s^{-1}}$
- Constante dos gases, $R = 8.31 \,\mathrm{J\,K^{-1}\,mol^{-1}}$

Definições

- Composição do ar atmosférico: $79\%~N_2$ e $21\%~O_2$

Aproximações Numéricas

- $\sqrt{2} = 1.4$ $\sqrt{3} = 1.7$ $\sqrt{5} = 2.2$ $\log 2 = 0.3$ $\log 3 = 0.5$ $\ln 10 = 2.3$

Tabela Periódica

Elemento Químico	Número Atômico	Massa Molar $(g \operatorname{mol}^{-1})$	Elemento Químico	Número Atômico	Massa Molar $(g \operatorname{mol}^{-1})$
Н	1	1,01	Mg	12	24,31
С	6	12,01	S	16	32,06
N	7	14,01	CI	17	$35,\!45$
0	8	16,00	Br	35	79,90
F	9	19,00	Os	76	190,23
Na	11	22,99			

31ª QUESTÃO Valor: 1,00

Muitos fogos de artifício utilizam a combustão do magnésio, que libera quantidade significativa de energia. O calor liberado faz o óxido incandescer, emitindo luz branca. É possível alterar a cor dessa luz incluindo nitratos e cloretos de elementos que emitem na região visível de seus espectros. Um desses compostos é o nitrato de bário, que produz uma luz amarelo-esverdeada. Os íons bário quando excitados geram luz com comprimento de onda igual a 487 nm, 524 nm, 543 nm e 578 nm.

Assinale a alternativa que mais se aproxima da variação molar de energia quando os íons bário excitados geram luz com a maior frequência possível.

- **A**() $207 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- **B**() $216 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- **C**() $220 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$

- **D**() $228 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- **E**() $246 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$

32ª QUESTÃO

Valor: 1,00

Considere os processos.

- 1. Sublimação do gelo seco.
- 2. Fusão do gelo quando sal é espalhado nas calçadas no inverno.
- 3. Formação do ácido sulfuroso na atmosfera, $SO_2(g) + H_2O(l) \longrightarrow H_2SO_3(aq)$
- 4. Preparação industrial da amônia: $N_2(g) + 3 H_2(g) \longrightarrow 2 NH_3(g)$

Assinale a alternativa que relaciona os processos com variação de entropia padrão positiva.

- A() 1

- B() 2 C() 1 e 2 D() 1, 2 e 3
- E() 1,2e4

33ª QUESTÃO

Valor: 1,00

Um cilindro de $100 \, \mathrm{cm}^3$ contém gás nitrogênio sob $200 \, \mathrm{Torr}$ e $27 \, ^{\circ}\mathrm{C}$.

Assinale a alternativa que mais se aproxima do número de átomos de nitrogênio no cilindro.

- **A**() $1.2 \cdot 10^{21}$ **B**() $6.0 \cdot 10^{21}$ **C**() $1.2 \cdot 10^{22}$ **D**() $6.0 \cdot 10^{22}$
- **E**() $6.0 \cdot 10^{23}$

34ª QUESTÃO

Valor: 1,00

Colesterol é um lipídio encontrado nas membranas celulares e transportado no plasma sanguíneo de todos os animais. É um componente essencial das membranas celulares dos mamíferos.

Colesterol

Assinale a alternativa com o número de estereoisômeros do colesterol.

- **A**() 32
- **B**() 64
- **C**() 128
- **D**() 256
- **E**() 512

35° QUESTÃO

Valor: 1,00

Assinale a alternativa com a configuração eletrônica do átomo de ósmio no estado fundamental.

- **A**() [Xe] $6s^24f^{14}5d^6$
- **B**() [Xe] $6s^24f^{14}5d^6$
- **C**() [Xe] $6s^24f^{14}5d^6$
- **D**() [Xe] $6s^24f^{14}5d^6$ **E**() [Xe] $6s^24f^{14}5d^6$

36ª QUESTÃO Valor: 1,00

O trinitrotolueno, TNT, é um explosivo. Em princípio ele poderia ser usado como combustível de foguetes, com os gases formados na decomposição saindo para dar o impulso necessário. Na prática, é claro, ele seria extremamente perigoso como combustível, porque é sensível ao choque.

$$O_2N$$
 NO_2
 NO_2
 NO_3

A densidade do TNT é $1,\!65\,\mathrm{g\,cm^{-3}}.$ Considere os dados em $25\,^{\circ}\mathrm{C}:$

	$\mathrm{H}_{2}\mathrm{O}\left(l\right)$	$CO_2(g)$	TNT(s)
Entalpia padrão de formação, $\Delta H_{ m f}^{\circ}/{{ m kJ}\over{ m mol}}$	-286	-394	-67

Assinale a alternativa que mais se aproxima da densidade de entalpia (entalpia liberada por litro de combustível na reação de combustão) do TNT.

A()
$$1200 \,\mathrm{kJ} \,\mathrm{L}^{-1}$$

B()
$$2400 \,\mathrm{kJ} \,\mathrm{L}^{-1}$$

$$C()$$
 3600 kJ L⁻¹

A()
$$1200\,\mathrm{kJ}\,\mathrm{L}^{-1}$$
 B() $2400\,\mathrm{kJ}\,\mathrm{L}^{-1}$ **C**() $3600\,\mathrm{kJ}\,\mathrm{L}^{-1}$ **D**() $4800\,\mathrm{kJ}\,\mathrm{L}^{-1}$ **E**() $6000\,\mathrm{kJ}\,\mathrm{L}^{-1}$

E()
$$6000 \,\mathrm{kJ} \,\mathrm{L}^{-1}$$

37ª QUESTÃO Valor: 1,00

Uma amostra de $59,6\,\mathrm{g}$ de biodiesel, contendo somente carbono, hidrogênio e oxigênio, foi analisado por combustão. As massas de água e dióxido de carbono produzidas foram $68.4\,\mathrm{g}$ e $167.2\,\mathrm{g}$, respectivamente.

Assinale a alternativa com a fórmula empírica do composto.

A()
$$C_{20}H_{36}O_{3}$$

$$\textbf{A()} \ C_{20}H_{36}O_{2} \qquad \textbf{B()} \ C_{19}H_{38}O_{2} \qquad \textbf{C()} \ C_{16}H_{28}O \qquad \textbf{D()} \ C_{19}H_{28}O_{4} \qquad \textbf{E()} \ C_{16}H_{22}O_{4}$$

$$\mathbf{C}(\) \ \mathrm{C}_{16}\mathrm{H}_{28}\mathrm{C}$$

$$D() C_{19}H_{28}O_4$$

$$E() C_{16}H_{22}O_{2}$$

O paclitaxel é um medicamento usado no tratamento do câncer.

Paclitaxel

Assinale a alternativa com as funções orgânicas presentes nesse composto.

- A() Álcool, amida, éster, éter, cetona.
- **B**() Álcool, amida, éster, cetona, aldeído.
- C() Álcool, amina, éster, éter, cetona.
- **D**() Álcool, amina, acetal, éter, aldeído.
- E() Álcool, amida, éster, ácido carboxílico, cetona.

Considere as proposições a respeito da reação de combustão do etanol, C_2H_6O , líquido.

1. A reação de combustão completa libera mais energia do que a reação de combustão incompleta, formando monóxido de carbono.

- 2. A reação libera mais energia quando há formação de água líquida do que quando há formação de água gasosa.
- 3. A reação libera mais energia quando ocorre sob volume constante em $25\,^{\circ}\mathrm{C}$ do que quando ocorre sob pressão constante na mesma temperatura.
- 4. A reação libera mais energia quando ocorre sob pressão constante em $10\,^{\circ}\mathrm{C}$ do que quando ocorre sob pressão constante em 60 °C.

Considere os dados.

	$O_2(g)$	$\mathrm{H_{2}O}\left(l\right)$	$\mathrm{CO}_2(\mathrm{g})$	$\mathrm{C_{2}H_{6}O}\left(l\right)$
Capacidade calorífica molar em pressão constante, $C_{P,\mathrm{m}}/rac{\mathrm{J}}{\mathrm{Kmol}}$	29	89	37	110

Assinale a alternativa que relaciona as proposições corretas

- A() NDA
- B() 1 C() 2 D() 3
- E() 4

40^a QUESTÃO Valor: 1,00

Considere a reação entre dióxido de cloro, ${\rm ClO_2}$, e trifluoreto de bromo, ${\rm BrF_3}$.

$$ClO_2(g) + BrF_3(l) \longrightarrow ClO_2F(s) + Br_2(l)$$

Em um experimento, $675\,\mathrm{g}$ de ClO_2 reagiram com $685\,\mathrm{g}$ de $\mathrm{BrF}_3.$

Assinale a alternativa que mais se aproxima da massa do reagente em excesso que permanece ao final da reação.

- **A**() 200 g
- **B**() 230 g **C**() 260 g **D**() 290 g
- **E**() 320 g