Reisz-Markov

Here, we wish to provide a intuitive presentation of Reisz-Markov and a motivation of its proof.

Suppose ϕ is a positive linear functional on $C_c(\mathbb{R})$, i.e. a positive Radon measure. It is not far-fetched to hope for a representation like

$$\phi(f) = \int f d\mu_{\phi}.$$

After all, integration plays a large part in the dual spaces of L^q . So we ask ourselves: if such a representation existed, what would μ_{ϕ} look like?

Let f be the following function:

Figure 1: A Simple Example

By linearity, we can decompose $\phi(f) \approx 1 \cdot \phi(g_{(1,2)}) + 2 \cdot \phi(g_{(2,3)})$ where g_E is the continuous analog to the characteristic function χ_E , i.e.

Figure 2: Decomposition

This suggests that we should set $\mu_{\phi}(E) = \phi(g_E)$. If you think about it (intuitively), this indeed turns ϕ into an integral. Hence, we start our construction of μ_{ϕ} by defining

$$\mu_{\phi}(U) = \sup\{\phi(f) : 0 \le f \le \chi_U, \ f \in C_c(X), \ \sup\{f\} \subset U\}$$

for open sets U. (Note as ϕ is positive, this supremum is really just approximating χ_U by continuous functions.)