Entity Relationship

For

AIRLINE MANAGEMENT SYSTEM

Version 1.0

Prepared by

Arnav Tripathi 29 - 230953278

Aryan Nair 31 - 230953294

Madhavan Komandur 32- 230953298

Manipal Institute of Technology

4th April 2025

Analysis Models

• Entity-Relationship Diagrams (ERD): Diagrams depicting the relationships between all the key data entities.

Schema/Class Diagram: A visual representation of a database structure. It shows the
tables, columns, data types, primary keys, foreign keys, and relationships between
tables in a database.

Schema Reduction Using Functional Dependency-Based Normalization

Step 1: Identify Relations and Functional Dependencies

From the ERD, we identify the following relations and their attributes:

Has already been reduced and mentioned in the NORMALIZATION REPORT.

Step 2: Final Normalized Tables

After completing the normalization process, we obtain:

- Airplane_type Table:
 - Airplane_ID (PK)
 - Passenger_Capacity
 - Weight
 - Manufacturer
- Airport Table:
 - Airport_Code (PK)
 - o Airport_Name
 - City
 - o Country
 - o State
- Route Table:
 - o Route_ID (PK)
 - Origin_Airport_Code (FK)
 - Destination_Airport_Code (FK)
 - o Distance

o Duration

• Flight Table:

- Flight_ID (PK)
- Flight_Number
- Departure_Time
- Arrival_Time
- Flight_Date
- Airplane_ID (FK)
- o Route_ID (FK)

• Flight_Status Table:

- Status_ID (PK)
- Flight_ID (FK)
- o Status
- o Status_Update_Time
- Delay_Reason

• Employee Table:

- Employee_ID (PK)
- Employee_Name
- Airline
- Contact_Number
- o Email_Address

Passengers Table:

- Passenger_ID (PK)
- Passenger_Name
- o Age
- o Gender

- o Address
- Contact_Number
- o Email

• Fare_Class Table:

- Class_ID (PK)
- o Class_Name
- Description

• AirFare Table:

- Fare_ID (PK)
- o Base_Amount
- Tax_Amount
- Discount
- Flight_ID (FK)
- o Class_ID (FK)

• Transactions Table:

- Transaction_ID (PK)
- Booking_Date
- Payment_Method
- Payment_Status
- Amount
- Passenger_ID (FK)

Booking Table:

- Booking_ID (PK)
- Booking_Status
- Seat_Number
- o Class_ID (FK)

- Transaction_ID (FK)
- Flight_ID (FK)
- Passenger_ID (FK)
- UserCredentials:
 - o Email (PK)
 - o Password
 - User_Type

Step 3: Verify Lossless Join and Dependency Preservation

- All relations still allow natural joins to reconstruct the original data.
- All functional dependencies are preserved.

Conclusion

This reduction removes redundancy, prevents anomalies, and preserves dependencies while maintaining a lossless join.