DigiHaul Data Science Lead Take-home test

Problem statement:

Road haulage is essential for the people and businesses of the UK. Approximately 90% of all goods transported by land in Great Britain are moved directly by road. DigiHaul is a digital transport business, specialising in managing, consolidating and integrating data from both Carriers and Shippers to deliver seamless end-to-end logistics service.

Shippers book shipments on the DigiHaul platform, detailing the scheduled collection and delivery time windows / locations and required vehicle types for carriers to consider. Once a carrier accepts a job and collection is scheduled, DigiHaul's driver app facilitates real-time tracking of shipments through GPS signals, **subject to carriers granting permissions for location logging**.

Dataset:

The dataset include the following files, and the data access link will be provided via email:

1. "GPS_data.csv":

Column Name	Explanation
SHIPMENT_NUMBER	Unique identifier of shipment
LAT	Latitude of the position
LON	Longitude of the position
RECORD_TIMESTAMP	Time stamp ¹

2. "Shipment_bookings.csv"

Column Name	Explanation
SHIPMENT_NUMBER	Unique identifier of shipment
SHIPPER_ID	Shipper ID
CARRIER_ID	Carrer ID
VEHICLE_SIZE	Vehicle type
VEHICLE_BUILD_UP	Vehicle trailer build up
FIRST_COLLECTION_POST_CODE	Collection post code (can be NULL)
LAST_DELIVERY_POST_CODE	Delivery post code (can be NULL)
FIRST_COLLECTION_LATITUDE	Collection latitude
FIRST_COLLECTION_LONGITUDE	Collection longitude
LAST_DELIVERY_LATITUDE	Delivery latitude
LAST_DELIVERY_LONGITUDE	Delivery longitude
FIRST_COLLECTION_SCHEDULE_EARLIEST	Scheduled earliest collection time
FIRST_COLLECTION_SCHEDULE_LATEST	Scheduled latest collection time
LAST_DELIVERY_SCHEDULE_EARLIEST	Scheduled earliest delivery time
LAST_DELIVERY_SCHEDULE_LATEST	Scheduled latest delivery time

-

¹ "+0100" means British Summer Time

3. "New_bookings.csv" – same format as "Shipment_bookings.csv", but for different time periods

Tasks:

- 1. Operational teams rely on KPIs like on-time collection and on-time delivery to gauge carrier performance. What percentage of shipments met the on-time delivery threshold (arriving no later than 30 minutes past the scheduled delivery window) between October 1st and December 31st, 2023? Please outline your assumptions.
- 2. Predict the likelihood of delay for the list of shipments in "New_bookings.csv" dataset.
- 3. Outline the technical design for deploying the prediction model through an online endpoint.
- 4. Develop a presentation summarising the analysis findings and suggested next steps tailored for senior non-technical stakeholders.

Bonus points if the following could be considered:

- a. Demonstrate best practices in coding.
- b. Utilise additional data sources by making API calls.

Please send the GitHub link containing the presentation and python/R scripts to wenjia.tang@digihaul.com. You may be required to demonstrate the solution live during subsequent interviews.