Muon Trigger Efficiency Calculation

Xiaoning Wang Sept 11, 2019

Introduction

- User Tag & Probe method to calculate efficiency of inner detector (ID) and muon chamber (MS).
- Used tight muons as tag muons.
- Used muon ID selections to select ID tracks.
- No selections applied to MS tracks.
- Match: a MS track (or reconstructed muon) and an ID track with dR < 0.2 for Eff_{ID} calculation, and with dR < 0.005 for Eff_{MS} calculation.
- Eff_{ID} = (# of MS tracks that have a matched ID track)/(# of total MS tracks).
- Eff_{MS}= (# of ID tracks that have a matched reconstructed muon)/(# of ID tracks).
- To do:
 - Produce efficiency graphs using MC truth information and compare it with MC T&P results

Inner Detector Efficiency vs p_T^{MS}

Inner Detector Efficiency vs q*η

Muon Chamber Detector Efficiency vs p_T

Muon Chamber Efficiency vs q*eta

Backup

Eff_id for data in Barrel Region p_T = 6-7 GeV

Inner Detector Efficiency versus $p_{_{T}}^{\mu}$ in Data & MC in Barrel Region

ID efficiency are in general high, signals are high comparing to the background and matched tracks are

Muon Chamber Efficiency versus $q^*\eta$ in Data & MC for $p_{_{_{\! T}}}$ = 15-40 GeV

• High pT region has very few data and some fake efficiencies are calculated.

Muon Chamber Efficiency versus $q^{\star}\eta$ in Data & MC for $\boldsymbol{p}_{_{T}}$ = 3-6 GeV

• Low pT region has more data and data and MC go the same trend approximately.