Hello-FPGA BISS-C Master IP User Manual

Hello-FPGA
INFO@HELLO-FPGA.COM

目录

Hell	o-FPC	SA BISS	S-C Master User Manual	4
1	BISS-		oduction	
	1.1	Data	Format and Timing	4
	1.2	IP Fe	atures	5
2	Prod	uct Spe	ecification	5
	2.1		view	
3	Parar	neters.		6
	3.1	Port	Descriptions	6
	,	3.1.1	AXI Lite Interface Ports	6
	,	3.1.2	AXI Stream Interface Ports	7
	,	3.1.3	BISS-C	7
	,	3.1.4	Sample clock	7
	,	3.1.5	Others	8
	3.2	Regis	ster Description	8
Ann	ex A:	参考资	<u> </u>	

Hello-FPGA

冬	1-1 BISS-C	data format	1
冬	2-1 BISS-C	master block diagram	3

Hello-FPGA BISS-C Master User Manual

1 BISS-C INTRODUCTION

BISS (Bi-Synchronous Serial interface) is a type of serial communication protocol used in sensors and actuators for high-precision measurement and control applications. It is a synchronous protocol that uses a clock signal to synchronize the data transmission between the master and slave devices.

The BISS protocol has two variants: BISS-C and BISS-B. BISS-C is a unidirectional protocol used for transmitting measurement data from the slave to the master device, while BISS-B is a bidirectional protocol used for both transmitting and receiving data.

In BISS, the slave device sends a serial data stream to the master device, which includes position, velocity, or other measurement data. The master device sends a clock signal to the slave device, which uses it to synchronize the data transmission. BISS-B also includes an acknowledgment signal from the master device to the slave device to confirm that data has been received correctly.

BISS has several advantages over other serial communication protocols, including **high accuracy, low latency, and high noise immunity**. However, it is a complex protocol and requires specialized hardware to implement. Our IP is a FPGA logic which can communicate well with the BISS-C sensors or actuators.

1.1 DATA FORMAT AND TIMING

BiSS C-mode (unidirectional) is a fast synchronous serial interface for acquiring position data from an encoder. It is a master-slave interface. The master controls the timing of position acquisition and the data transmission speed, and the encoder is the slave.

The interface consists of two unidirectional differential pairs of lines:

- "MA" transmits position acquisition requests and timing information (clock) from master to encoder
- "SLO" transfers position data from encoder to master, synchronized to MA.

图 1-1 BISS-C data format

The master-slave signal communication format is RS485/RS422 differential line-driven.

A typical request cycle proceeds as follows:

- When idle, the master holds MA high. The encoder indicates it is ready by holding SLO high.
- 2. The master requests position acquisition by starting to transmit clock pulses on MA.

- 3. The encoder responds by setting SLO low on the second rising edge on MA.
- 4. After the "Ack" period is complete, the encoder transmits data to the master synchronized with the clock as shown in the diagrams above.
- 5. When all data has been transferred, the master stops the clock and sets MA high.
- 6. If the encoder is not yet ready for the next request cycle, it sets SLO low (the Timeout period).
- 7. When the encoder is ready for the next request cycle, it indicates this to the master by setting SLO high.

Description of data

- Ack This is the period during which the valid information transmitted back.
- Start and "0" (1 bit each) The encoder transmits the start bit to signal to the master that it is starting to transmit data. The start bit is always high and the "0" bit is always low.
- Position (18, 26, 32 or 36 bits) The absolute position data is in binary format and sent MSB first. For rotary encoders, there are exactly 2n counts per revolution, after which the count "wraps around" to zero. [Lower resolutions may be achieved by ignoring the least significant bit(s) of the position data.]
- Error (1 bit) The error bit is active low.
- Warning (1 bit) The warning bit is active low.
- CRC for position data (6 bit) The CRC polynomial for position, error and warning data is: $x^6 + x^1 + x^0$. It is transmitted MSB first and inverted. The start bit and "0" bit are omitted from the CRC calculation.
- Timeout RESOLUTE encoders are capable of acquiring a new position reading every 40 μs (a maximum request cycle rate of 25 kHz). Therefore 40 μs must elapse between the start of one request cycle and the start of the next.

1.2 IP FEATURES

- 1-N parallel BISS-C sensors, the cable length difference can be compensated by the IP itself.
- Valid position data resolution is 1-32.
- AXI4-Lite Interface for register access.
- AXI-Stream valid data output.
- Reconfigurable valid data resolution.
- Internal CRC-6 can be enabled or disabled.
- Single point, finite, continuous sample mode, internal or external sample clock.

2 PRODUCT SPECIFICATION

2.1 Overview

The following figure shows the top level block diagram of the IP exposing all the relevant

interfaces. The SW interface to the IP is via AXI-Lite. The valid position data is via AXI Stream Interface. Error and Warn status can used to monitor the sensor's state. External sample clock can used to synchronize with different devices.

2.2 PARAMETERS

Table 1 User configurable parameters

Name	Value	Description
BISS_CHANNEL_WIDTH	1-N	The channel number of BISS-C

2.3 PORT DESCRIPTIONS

2.3.1 AXI Lite Interface Ports

Table 2 SW AXI-Lite Interface Ports

Port Name	1/0	Width	Description	
axi_aclk	1	1	AXI Lite clock, the main clock of the IP	
axi_aresetn	1	1	Active low synchronous AXI Lite reset	
S_AXI_*	-	-	See the Vivado Design Suite: AXI	
			Reference Guide (UG1037) for the	
			description of AXI4 signals.	

2.3.2 AXI Stream Interface Ports

Table 3 HW AXI Stream Interface Ports

Port Name	1/0	Width	Description	
s_axis_tdata	1	32*BISS_CHANNEL_WIDTH	Decoded valid position data, [31:0] is	
			the channel 0 position data, if the	
			encoder's resolution is not 32bit, the	
			high bits will be zero. [63:32] is	
			channel 1 position data.	
s_axis_tvalid	1	1	Active high, indicate the s_axis_tdata	
			is valid data, active one clock cycle.	
s_axis_tlast	-	1	Active high, indicate the s_axis_tdata	
			is the last data(actually it will be	
			always active).	

2.3.3 BISS-C

Table 4 BISS-C Interface Ports

Port Name	1/0	Width	Description	
ma	0	BISS_CHANNEL_WIDTH	master clock "MA" transmits position acquisition requests and timing information (clock) from master to encoder	
slo	I	BISS_CHANNEL_WIDTH	slave output "SLO" transfers position data from encoder to master, synchronized to MA.	

This is a standard BISS-C serial interface.

2.3.4 Sample clock

Table 5 BISS-C sample clock Ports

1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0						
Port Name	1/0	Width	Description			
ext_sample_clk	0	1	External sample clock for the IP,			
			sample means the period which one			
			position data is read.			
sample_clk_output	0	1	Sample clock output			
sample_en	1	1	Active high, sample start			

Sample clock means the IP will read one complete position data from the sensors at it's rising edge.

Figure 2-1 sample_clk timing

The sample clock can route from internal divider or external sample clock pins.

2.3.5 Others

Table 6 others Ports

Port Name	1/0	Width	Description
error	0	1	error mask, active 0
warn	0	1	/warn mask, active 0

2.4 REGISTER DESCRIPTION

2.4.1 Registers

Address(he	R/	Width	defaul	range	Register
x)	W		t		
0x00	R/	1	0	0/1	Soft reset, active high
	W				
0x04	R/	1	0	0/1	External sample clock
	W				enable, 1: external
					sample clock; 0: internal
					sample clock(divided by
					axi_aclk)
0x08	R/	1	0	0/1	Single point mode
	W				enable, 1: single point
					mode, only read the
					sensor's position data
					when SW request. 0:
					sample controlled by the
					sample clock, read the
					sensor's position data at
					the sample clock rising
					edge.
0x0c	R/	1	0	0/1	Single point position
	W				data read enable, active
					rising edge. It will lead

					the IP send ma clock to
					the sensor, so user can
					get a new and complete
					position data.
0x10	R/	28	0	1-	Internal sample clock
	W			268,435,45	divider. 1000 means the
				5	internal sample clock is
					divided 2000 from the
					axi_aclk.
0x14	R/	8	0	1-255	MA clock divider. 4
	W				means the MA is divided
					8 from the axi_aclk.
0x18	R/	8	0	1-32	Resolution bits. The valid
	W				bit in the sensor. 1-32
0x1c	R/	1	0	0/1	Ignore crc check. 0: do
	W				not check the crc value;
					1: check the crc value.
0x20	R/	1	0	0x00-0xffff	channel enable. Bit
	W				enable. 0x3 means
					channel 0 and channel 1
0.04	D /	1	0	0.00.0.11	enabled.
0x24	R/ W	1	0	0x00-0xff	channel index. 0x2
	VV				means current channel is channel 2.
0x28	R/	BISS_CHANNEL_WIDT	0	0/1	Shift MA clock enable or
0.20	W	H	U	0/1	disable. Bit enable.
0x2c	R	6(CRC6 only)	0	_	shifted_crc_data_debug,
OAZO					CRC data from the
					sensors.
0x30	R	6(CRC6 only)	0	-	crc_check_value_debug,
					the internal CRC data
					calculated by the
					internal CRC module.
0x34	R	BISS_CHANNEL_WIDT	0	0x0-0xff	single_point_data_valid,
		Н			if the single point data is
					valid or invalid, this
					signal will keep until
					hardware or software
					reset happened.
0x38	R	32	0	-	single_point_data
0x3c	R	10	0	0x0-0x3ff	ma_slo_delay_ticks_debu
					g, the output ma clock
					and the echo ma clock
					delay ticks(1 tick is 1
					period of the aclk)

2.5 SOFTWARE DRIVER

Next below are the software driver API, user can use these API to write their own software.

```
/// initial configure the biss ip
/// </summary>
/// <param name="hdev">register configuration device handle</param>
/// <returns>0: sucess;others: faild</returns>
int BISS C Init(Int hdev);
/// <summary>
/// ignore crc check for the data
/// </summary>
/// <param name="hdev">register configuration device handle</param>
/// <param name="ignoreCRC">1: ignore the internal crc check</param>
/// <returns>0: sucess;others: faild</returns>
int BISS_C_IgnoreCRC(Int hdev, int ignoreCRC);
// ***********************************
/// <summary>
/// this is for debug, read back the MA delay ticks
/// <param name="hdev">register configuration device handle</param>
/// <param name="channelIndex">chanel index</param>
/// <param name="maSloDelayTicks">delayed ticks of ma clock</param>
/// <returns>0: sucess;others: faild</returns>
int BISS_C_CheckAjustDelay(Int hdev, int channelIndex, int *maSloDelayTicks );
/// <summary>
/// config the sample clock of the biss-c ip
/// </summary>
/// <param name="hdev">register configuration device handle</param>
/// <param name="highlowTicksNum">the divider parameters of the divider</param>
/// <param name="isExtSampleClk">1: external sample clock</param>
/// <returns>0: sucess;others: faild</returns>
// **********************************
int BISS C ConfigSampleClk(Int hdev, int highlowTicksNum, bool isExtSampleClk);
// *********************************
/// <summary>
/// MA signal divider, user can change the ma clock frequency
```

```
/// </summary>
/// <param name="hdev">register configuration device handle</param>
/// <param name="highlowTicksNum">the divider parameters of the divider</param>
/// <returns>0: sucess;others: faild</returns>
int BISS C ConfigMAClk(Int hdev, int highlowTicksNum);
/// <summary>
///
/// </summary>
/// <param name="hdev"></param>
/// <param name="bitsNum"></param>
/// <returns>0: sucess;others: faild</returns>
int BISS_C_ConfigPositionDatabits(Int hdev, int bitsNum);
/// enable the channels
/// </summary>
/// <param name="hdev">register configuration device handle</param>
/// /// cannel Enable > active low, bit active, 0x03 means channel 0 and channel 1
are enabled </param>
/// <returns>0: sucess;others: faild</returns>
int BISS C ConfigChannels(Int hdev, int channelEnable);
/// <summary>
/// read back single point data of the sensors
/// </summary>
/// <param name="hdev">register configuration device handle</param>
/// <param name="channelIndex">0:means the channel index</param>
/// <param name="data">sigle point data of the specified channel dara</param>
/// <param name="isValid">check if the dara is valid or not</param>
/// <returns>0: sucess;others: faild</returns>
int BISS C ReadSinglePoint(Int hdev, int channelIndex, unsigned int* data, bool* isValid);
```

Annex A:参考资料

- 1、CoaXPess JIIA CXP-001-2021
- 2. https://www.cnblogs.com/xingce/category/2165251.html