TDs Optimisation – 2A (MMIS / IF)

17 avril 2024

Exercice 1

Calculer le gradient des fonctions suivantes :

- $f_1(x) = u^T x$.
- $f_2(x) = \frac{1}{2}(x^T A x) + b^T x + c$, où $A \in \mathcal{S}^n, b \in \mathbb{R}^n$ et $c \in \mathbb{R}$.
- $f_3(x) = ||Ax b||_2^2$.
- $f_4(x) = ||x||_2$.
- $f_5(x) = \log \left(\sum_{i=1}^m \exp(a_i^T x + b_i) \right)$, où $a_1, \dots, a_m \in \mathbb{R}^n, b_1, \dots, b_m \in \mathbb{R}$.

Exercice 2

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction de classe C^1 et $g: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$g(x,y) = f(x+y, x^2 + y^2).$$

Exprimer les dérivées partielles de g en (1,2) fonction de celles de f.

Exercice 3

Exprimer les ensembles suivants comme des boules. Sont-elles des ouverts ou fermés ?

- $E = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 < 2\}.$
- $F = \{(x, y) \in \mathbb{R}^3 : |x 2| + |y + 2| < 2\}.$

Exercice 4

Montrer que les ensembles suivants sont des fermés de \mathbb{R}^2

- $E = \{(x,y) \in \mathbb{R}^2 : (x-1)^2 + y^2 \ge 2 \text{ ou } (x+1)^2 + y^2 \ge 1\}.$
- $F = \{(x, y) \in \mathbb{R}^2 : \sin(x) + \cos(y) \le 1\}.$

Exercice 5

Montrer $G = \{(x, y) \in \mathbb{R}^2 : x^2 + y^4 \le 4\}$ est compact dans \mathbb{R}^2 .

Exercice 6

On note par

$$\mathcal{S}_{++}^n = \{ A \in \mathcal{S}_n : \ x^T A x > 0 : \ \text{pour tout } x \in \mathbb{R}^n \setminus \{0\} \}$$

l'ensemble des matrice symétriques définies positives et

$$\mathcal{S}^n_+ = \{ A \in \mathcal{S}^n : x^T A x \ge 0 : \text{ pour tout } x \in \mathbb{R}^n \}$$

l'ensemble des matrice symétriques semi-définies positives.

- Montrer que \mathcal{S}^n_+ et \mathcal{S}^n_{++} sont convexes. Montrer que \mathcal{S}^n_+ est un cône, i.e., pour tout $\lambda \geq 0$ et $A \in \mathcal{S}^n_+$, on a $\lambda A \in \mathcal{S}^n_+$.
- Montrer que \mathcal{S}^n_+ est fermé. Qu'elle est l'adhérence de \mathcal{S}^n_{++} ?

Exercice 7

Montrer que les ensembles suivants sont convexes :

- 1. $L = \{x + td : t \in \mathbb{R}\}$ avec $x, d \in \mathbb{R}^n$ et $d \neq 0$.
- 2. Les boules ouvertes et fermées : B(a,r), $B_f(a,r)$ avec $a \in \mathbb{R}^n$, r > 0.
- 3. $H = \{x \in \mathbb{R}^n : a^T x = b\}, a \in \mathbb{R}^n, b \in \mathbb{R}.$
- 4. $H^{-} = \{x \in \mathbb{R}^{n} : a^{T}x \leq b\}, a \in \mathbb{R}^{n}, b \in \mathbb{R}.$

Exercice 8

Donner le domaine où les fonctions suivantes sont convexes :

- 1. $f(x,y) = x + 2y + y^2$.
- 2. $f(x,y) = y^2/x$.
- 3. $f(x) = x \log(x)$.

Exercice 9

On appelle fonction support ou d'appui de $S \subset \mathbb{R}^n$ la fonction

$$\sigma_S(x) = \sup_{y \in S} x^T y \text{ pour } x \in \mathbb{R}^n.$$

- 1. Montrer que σ_S est convexe.
- 2. Calculer σ_S pour les ensembles suivants
 - (a) $S = \{a_1, \dots, a_k\}$ avec $a_1, \dots, a_k \in \mathbb{R}^n$.
 - (b) $S = \mathbb{R}^n_{\perp}$.
 - (c) $S = B_f(0,1) = \{x \in \mathbb{R}^n : ||x|| \le 1\}.$

Exercice 10

Soit $f: \mathbb{R}^n \to \overline{\mathbb{R}}$. On définit la conjuguée de f par

$$f^*(x) = \sup_{y} y^T x - f(y).$$

Montrer que f^* est convexe. Calculer f^* pour :

- 1. $f = \delta_C$, avec C un ensemble non vide de \mathbb{R}^n .
- 2. $f: x \in \mathbb{R} \mapsto e^x$.
- 3. $f: x \in \mathbb{R} \mapsto \frac{1}{p}|x|^p$ avec p > 1.

Exercice 11

Soient $S, T \subset \mathbb{R}^n$. Montrer que :

- Si $S \subset T$ alors $Conv(S) \subset Conv(T)$.
- Conv(S + T) = Conv(S) + Conv(T)
- Conv(Conv(S)) = Conv(S).

Exercice 12

Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction différentiable telle que sont gradient $\nabla f: \mathbb{R}^n \to \mathbb{R}^n$ est L-Lipschitz, i.e.,

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|$$
, pour tout $x, y \in \mathbb{R}^n$.

1. Montrer que pour tout $x, y \in \mathbb{R}^n$:

$$f(y) - f(x) = \int_0^1 (y - x)^T \nabla f(x + t(y - x)) dt.$$

2. En déduire que pour tout $x, y \in \mathbb{R}^n$:

$$f(y) \le f(x) + (y - x)^T \nabla f(y) + \frac{L}{2} ||x - y||^2.$$

3. Appliquer l'inégalité précédente pour $y = x - \gamma \nabla f(x)$ avec $\gamma < 2/L$.

Exercice 13

On considère le problème de minimisation suivant

$$\begin{cases} \min f(x,y) := x^3 + y^2 \\ g(x,y) := x^2 + y^2 - 9 \leqslant 0. \end{cases}$$
 (1)

- 1. Déterminer les points vérifiants les conditions nécessaire de minimalité du premier ordre.
- 2. En déduire les solutions du problème.

Exercice 14

On considère la fonction $f(x,y) = \frac{1}{2}(x^2 + \gamma y^2)$, avec $\gamma > 0$.

1. En appliquant une descente de gradient avec recherche linéaire exacte partant de $(x_0, y_0) = (\gamma, 1)$, trouver l'expression des itérations (x_k, y_k) .

Exercice 15

Dans le processus de minimisation d'une fonction $f \in C^2(\mathbb{R}^n)$, la direction de Newton à partir d'un point x_k où $\nabla f(x_k) \neq 0$ et $\nabla^2 f(x_k)$ est définie positive est obtenue :

- 1. soit en minimisant $d \longmapsto \langle \nabla f(x_k), d \rangle + \frac{1}{2} \langle \nabla^2 f(x_k) d, d \rangle$ sur \mathbb{R}^n
- 2. soit en minimisant $d \mapsto \langle \nabla f(x_k), d \rangle$ sous la contrainte $\langle \nabla^2 f(x_k) d, d \rangle \leqslant 1$.

Montrer que les directions obtenues comme solutions de ces deux problèmes de minimisation sont les mêmes à une constante positive multiplicative près.

Exercice 16

Soit $\phi: \mathbf{R} \to \mathbf{R}$ une fonction convexe strictement croissante, et $f: \mathbf{R}^n \to \mathbf{R}$ une fonction convexe. On définit $g(x) = \phi(f(x))$ et on suppose que f et g sont de classe C^2 .

1. Justifier pourquoi g est convexe.

2. Comparer la méthode du gradient et celle de Newton, appliquées à f and g. Quel est le lien entre les directions de recherche? Que dire quand un recherche linéaire exacte est utilisée?

On peut utiliser le lemme d'inversion : Si $A \in \mathbb{R}^{n \times n}$ est inversible et $B \in \mathbb{R}^{n \times p}, C \in \mathbb{R}^{p \times n}$ alors

$$(A+BC)^{-1} = A^{-1} - A^{-1}B \left(I + CA^{-1}B\right)^{-1}CA^{-1}.$$
 (2)

Exercice 17

On considère le problème de minimisation suivant

$$\min\left\{x^TQx + 2c^Tx : Ax = b\right\},\,$$

avec $Q \in \mathcal{S}^n_{++}$, $c \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, and $A \in \mathbb{R}^{m \times n}$ de rang plein. Trouver la solution optimale du problem.

Exercice 18

Soit l'ensemble $C = \{(x, y) \in \mathbb{R}^2 : x + y \leqslant 1, x \geqslant 0, y \geqslant 0\}.$

- 1. Dessiner C. En considérant les contraintes actives, exhiber 7 zones dans C.
- 2. Écrire les conditions d'optimalité de KKT de la minimisation de la fonction $f(x,y) = \exp(x-y) x y$ sur C. Sont-elles nécessaires et/ou suffisantes ?
- 3. Trouver le minimum global de cette fonction sur C.

Exercice 19

Soient a_1, \ldots, a_n des réels non-nuls. On considère l'ellipsoide

$$\mathcal{E} = \left\{ x = (x_1, \dots, x_n) \in \mathbb{R}^n : \sum_{i=1}^n \frac{x_i^2}{a_i^2} \le 1 \right\}.$$

Soit $x \notin \mathcal{E}$ et $y = P_{\mathcal{E}}(x)$. Montrer que

$$y_i = \frac{a_i^2 x_i}{a_i^2 + \lambda}$$
, $\forall i = 1, \dots, n$,

avec $\lambda > 0$ est l'unique solution (en λ) de l'équation $f(\lambda) = 0$ avec $f(\lambda) = \sum_{i=1}^{n} \frac{a_i^2 x_i^2}{(a_i^2 + \lambda)^2} - 1$.

Exercice 20

Soit $f: \mathbb{R}^n \to \mathbb{R}$ telle que $\partial f(x) \neq \emptyset$ pour tout $x \in \mathbb{R}^n$. Montrer que f est convexe.

Exercice 21

Soit $f:A\in\mathcal{S}^n\mapsto f(A)=\lambda_{\max}(A)$. Soit $A\in\mathcal{S}^n$ et v le vecteur propre normalisé associé à $\lambda_{\max}(A)$. Montrer que

$$vv^T \in \partial f(A)$$
.

Exercice 22

Soit f une fonction affine. On considère

$$g(x) = f(x) + a^T x + b.$$

Exprimer g^* en fonction de f^* , a et b.

Exercice 23

Soit f(x,z) une fonction convexe en les deux variables. On définit $g(x)=\inf_z f(x,z)$.

- $\bullet \ \ {\rm Exprimer} \ g^* \ {\rm en} \ {\rm terme} \ {\rm de} \ f^*$
- Calculer g^* avec

$$g(x)=\inf_z\{h(z):\ Az+b=x\}$$

où h est convexe.