A1

14. (Amended) A compound having the structural formula (V)

$$(V) \qquad \qquad R^{5} \qquad \qquad R^{20} \qquad \qquad R^$$

wherein:

R¹ is hydrogen or CR¹¹R¹², wherein R¹¹ and R¹² are hydrogen or lower alkyl;

 R^2 is selected from the group consisting of hydrogen, hydroxyl, alkyl, $-OR^{13}$, and $-SR^{13}$ wherein R^{13} is alkyl;

R³ is hydrocarbyl;

R⁴, R⁵, and R⁷ are independently selected from the group consisting of hydrogen and lower alkyl;

R^{6Mod} is selected from the group consisting of hydrogen, alkyl, acyl, -C(O)-aryl, -C(O)-alkyl, hydroxyl-protecting groups, and hydroxyl-activating groups;

R^{8a} is selected from the group consisting of hydrogen, hydroxyl, oxo, and -OR¹⁸ wherein R¹⁸ is lower alkyl or lower acyl;

R⁹ is hydrogen or alkyl;

R¹⁰ is methyl or ethyl; and

 R^{20} is hydroxyl, hydroxymethyl, protected hydroxyl, protected hydroxymethyl, activated hydroxyl, activated hydroxymethyl, or

$$\underbrace{-(CH_2)_m}^{Q^1} \underbrace{-Q^2}_{Q^3} \underbrace{-(CH_2)_{p-1}}_{Q^3} \underbrace{-(CH_2)$$

in which m is zero or 1, p is an integer in the range of 1 to 7, t is zero or 1, with the proviso that when R^{8a} is oxo, t is 1, and when R^{8a} is hydrogen, t is zero, and R^{21} and R^{22} are lower alkyl or are linked together to form a five- or six-membered heterocycloalkyl ring; and

 Q^1 , Q^2 , Q^3 , and Q^4 are independently selected from the group consisting of hydrogen, hydroxyl, carboxyl, alkoxy, alkyl, halogen, amino, and alkyl-substituted amino.

AA Cod

15. (Amended) The compound of claim 14, having the structural formula (VI)

wherein:

R³ is lower alkyl;

R^{6Mod} is hydrogen or a hydroxyl-protecting group;

 R^{8b} is selected from the group consisting of hydrogen, hydroxyl, and oxo; and R^{19} is hydroxyl, hydroxymethyl, protected hydroxyl, protected hydroxymethyl, activated hydroxyl, or activated hydroxymethyl.

16. (Amended) The compound of claim 15, wherein R³ is methyl, R^{6Mod} is hydrogen or lower alkyl, R^{8b} is oxo, and R¹⁹ is hydroxyl, hydroxymethyl, -O-acetyl, or -Otetrahydropyranyl.

A2

18. (Amended) The compound of claim 16, wherein R^{6Mod} is isopropyl.

A3

21. (Amended) A compound having the structural formula (VII)

(VII)
$$\begin{array}{c}
Q^{1} Q^{2} \\
 & | Q^{2} \\
 &$$

wherein:

R³ is hydrogen or hydrocarbyl;

R^{6Mod} is selected from the group consisting of hydrogen, alkyl, acyl, -C(O)-aryl, and -C(O)-alkyl, hydroxyl-protecting groups, and hydroxyl-activating groups;

 R^{8b} is selected from the group consisting of hydrogen, hydroxyl, and oxo;

m is zero or 1;

p is an integer in the range of 1 to 7;

t is zero or 1, with the proviso that when R^{8b} is oxo, t is 1, and when R^{8b} is hydrogen, t is zero, and;

 $\ensuremath{R^{21}}$ and $\ensuremath{R^{22}}$ are lower alkyl or are linked together to form a five- or six-membered heterocycloalkyl ring; and

Q¹, Q², Q³, and Q⁴ are independently selected from the group consisting of hydrogen, hydroxyl, carboxyl, alkoxy, alkyl, halogen, amino, and alkyl-substituted amino.

REMARKS

In the Office Action, claims 14-18, 21, 37, and 41 have been examined. The remaining claims, i.e., claims 1-13, 19, 20, 22-36, 38, 39, 40, and 42-44, have been withdrawn from consideration as being directed to non-elected subject matter. The Examiner has rejected claims 14, 15, and 21 as follows:

- 1. Under 35 U.S.C. §112, second paragraph, as indefinite (claims 14 and 21);
- 2. Under 35 U.S.C. §102(b) as anticipated by Peters et al. (XP 002005625) (claims 14 and 15); and
- 3. Under 35 U.S.C. §102(b) as anticipated by Japanese Patent 54117456 to Morita et al. (claims 14 and 15).

Additionally, the Examiner has rejected all claims for obviousness-type double patenting over claims 1-16 of U.S. Patent No. 6,281,205 and claims 7-25 of U.S. Patent No. 6,054,446.

With the above amendments, claims 14, 15, 16, 18, and 21 have been amended and claim 17 has been canceled. Thus, claims 1-16 and 18-44 remain pending, with claims 1-13, 19, 20,