DETAILED PROJECT REPORT (DPR)

Project Title: 600KWp Solar PV Grid-Connected Plant

(RESCO Model)

PART A - General Details of the Project

1. Project Title:

600KWp Solar PV Grid-Connected Plant

2. Executive Summary

The proposed **600KWp Solar PV Grid-Connected Plant** is designed to provide **clean**, **renewable energy** to **Lakeside Industrial Park**, significantly reducing electricity costs and enhancing sustainability efforts. The facility's current electricity consumption is **300,000 kWh annually**, with an expected increase to **800,000 kWh** over the next three years.

The system will be **grid-connected with a net-metering mechanism**, allowing excess energy to be exported back to the grid. The project is expected to **cut electricity expenses by 75%** and reduce carbon emissions considerably.

- Location: Lakeside Industrial Park, Springfield, USA
- Available Rooftop Area: 5,200 sq. meters
- Estimated Annual Generation: 920,000 kWh
- Grid Voltage Level: 480V
- Expected CO₂ Reduction: 600 metric tons per year

3. Socio-Economic Justification

- Environmental Benefits: Reduction of 600 metric tons of CO₂ emissions annually.
- **Economic Advantages:** Lower energy costs for industrial operations.
- Community Impact: Supports local clean energy initiatives and job creation.

4. Benefits from the Project

- Supports renewable energy policies and sustainability goals.
- Promotes **energy independence** by reducing reliance on fossil fuels.
- Encourages industrial decarbonization and corporate responsibility.

PART B - Technical Details

5. Technical Details of the Project

The project will be designed with the following components:

- Solar PV Modules: 550Wp Polycrystalline Panels with a 25-year warranty.
- Inverters: 120KW Grid-Tied Inverters (5 units).
- Mounting Structure: Aluminum alloy with corrosion resistance.
- Net-Metering System: Integrated with a real-time energy monitoring interface.

6. Operation and Maintenance

- Warranty: 25 years for modules, 6 years for inverters.
- Maintenance Schedule:
 - Monthly Performance Checks
 - Quarterly Panel Cleaning
 - Annual Electrical System Inspection

7. Performance Monitoring Mechanism

- Cloud-based performance tracking with real-time alerts.
- Automated fault detection system to identify efficiency drops.

8. Expected Energy Generation

- Annual Generation: 920,000 kWh
- Efficiency Factors:
 - Solar Panel Efficiency: 17.5%
 - Inverter Efficiency: 97%
 - o Grid Availability: 98%

PART C - Financial and Implementation Plan

9. Project Cost Estimate

Component	Specifications	Quantity	Estimated Cost (USD)
Solar Panels	550Wp Polycrystalline	1,091 units	\$310,000

Total Estimated Cost	-	-	\$505,000
Installation & Labor	Civil & Electrical Works	-	\$65,000
Net-Metering System	Smart Bi-Directional Meter	1 unit	\$8,000
Cabling & Wiring	Copper, UV-Protected	As Required	\$22,000
Mounting Structure	Corrosion-Resistant Alloy	As Required	\$40,000
Inverters	120KW Grid-Tied	5 units	\$60,000

10. Project Timeline

Phase 1 (Planning & Permitting): 1.5 Months
 Phase 2 (Procurement & Logistics): 2.5 Months

• Phase 3 (Installation & Testing): 2 Months

• Phase 4 (Commissioning & Final Approval): 1 Month

Conclusion

The 600KWp Solar PV Grid-Connected Plant is a well-structured, financially viable, and technically sound renewable energy solution. The project aligns with global sustainability efforts and corporate decarbonization goals, ensuring long-term cost savings and environmental benefits.