# Relazione 5: Oscillatore a ponte di Wien ed a rilassamento

**Gruppo MER3**: Ziglio Simone, Furlan Riccardo\*

8 novembre 2021

#### 1 Introduzione

In quest'esperienza abbiamo costruito e caratterizzato due circuiti che implementano oscillatori: l'oscillatore a ponte di Wien e l'oscillatore a rilassamento. Dal momento che il primo di questi circuiti utilizza una lampadina come resistenza variabile abbiamo inizialmente misurato la caratteristica I-V di questo elemento tramite una sorgente di corrente Howland.

### 2 Sorgente di corrente di Howland



Figura 1: Sorgente di corrente Howland

Il primo circuito realizzato 1 è visibile nella Figura 7a. Abbiamo utilizzato come componenti un op-amp OP07, quattro resistenze da 100  $\Omega$  e una lampadina come carico  $Z_L$ ; il circuito risulta essere una sorgente di corrente su questo carico. L'obiettivo è quello di ottenere la curva I-V caratteristica della lampadina, in modo da comprendere meglio il funzionamento del ponte di Wien.

A questo scopo immettiamo nel circuito un segnale  $V_{IN}$  dato da un'onda triangolare di ampiezza 1.5 V e frequenza 0.01 Hz; effettuiamo misure di  $V_{in}$  e  $V_{out}$  salvando tramite l'oscilloscopio una forma d'onda contenente due periodi. A partire da queste ddp otteniamo la corrente che scorre nella lampadina  $I_L = \frac{V_{in}}{R}$ .

Per ottenere questa formula, basta approssimare l'impedenza in ingresso del pin non invertente come infinita e che la stessa corrente che scorre attraverso R, scorra nel carico  $Z_L$ . La tensione ai capi del carico è invece ottenuta dal partitore di due resistenze uguali, perciò  $V_L = \frac{V_{out}}{2}$ .

<sup>\*</sup>E-mail: simone.ziglio-1@studenti.unitn.it - riccardo.furlan@studenti.unitn.it



Osserviamo come la dipendenza sia evidentemente non lineare a causa della presenza della lampadina ed effettuiamo quindi una regressione al modello:

$$I_L(V_L) = \frac{V_L}{R_L(1 + \alpha V_L^2)}$$
 utilizzando  $V_L$  e  $I_L$  rispettivamente in  $V$  e  $A$  (1)

Effettuando un fit (figura 2b) otteniamo come parametri  $R_L = 36.47\Omega$  e  $\alpha = 4.51~V^{-2}$ . La dipendenza quadratica dell'impedenza della lampadina in  $V_L$  contenuta nel modello discende dall'effetto Joule: la dissipazione resistiva all'interno dei fili ne fa aumentare la temperatura e di conseguenza la resistività.

### 3 Oscillatore a ponte di Wien



Figura 3: Oscillatore di Wien

Costruiamo il circuito in figura 3 (e 7b) utilizzando un op-amp OP07, due resistenze  $R = 100 \ k\Omega$ , due capacità  $C = 10 \ nF$ , una resistenza  $R_2 = 100 \ \Omega$  e la lampadina come resistenza variabile  $R_1$ . Osserviamo un transiente iniziale, nel quale le oscillazioni risultano smorzate da decadimenti esponenziali sempre meno accennati; nel giro di tre decadimenti il circuito arriva a regime e si osserva

 $V_{out}$  oscillare sinusoidalmente ad ampiezza costante.

Il comportamento oscillatorio del circuito discende dalla serie e dal parallelo RC presenti, che vanno a generare un filtro passa banda, questi seleziona una frequenza del rumore  $f = \frac{1}{2\pi RC} \simeq 159.16~Hz$  amplificandolo e dando origine alle oscillazioni. Il comportamento "passa banda" è spiegato pensando che a frequenze inferiori di f, il secondo condensatore si comporta come un circuito aperto, essenzialmente eliminando l'effetto del feedback positivo e di conseguenza diminuendo  $V_{out}$ . Per frequenze maggiori di f invece, il primo condensatore ha impedenza minore ed ha l'effetto di portare  $V_+$  a massa, diminuendo nuovamente  $V_{out}$ . La lampadina gioca il ruolo di resistenza variabile, in grado di stabilizzare l'ampiezza delle oscillazioni quando raggiunge il valore  $R_0$ .

L'ampiezza finale di tali oscillazioni dipende quindi fortemente dalla resistenza  $R_1$ : basta muovere lievemente i contatti della lampadina per osservare una grande variazione nell'ampiezza, inoltre scaldando la stessa con le dita essa diminuisce.

Misuriamo frequenza ed ampiezza di tali oscillazioni, ricaviamo f=160~Hz e V=0.818~V. La frequenza risulta in accordo con la predizione teorica. L'ampiezza risulta spiegabile considerando la caratteristica della lampadina studiata in precedenza, infatti per avere stabilità necessitiamo di  $R_1=R_0$ , imponendo questa condizione ed invertendo la formula per  $Z_L$  ed osservando che  $V_-=\frac{V_{out}}{3}$  in questo regime.

$$V_{out} = 3\sqrt{\frac{1}{\alpha} \left(\frac{R_0}{R_L} - 1\right)} \simeq 0.86 \ V \tag{2}$$

Utilizzando al funzionalità trasformata di Fourier dell'oscilloscopio osserviamo la trasformata del segnale, notiamo come questa sia, giustamente, una simil-delta, avente picco ad  $\omega_s = 2\pi f$ , notiamo però un picco meno accentuato a frequenza  $3\omega_s$ .

Questi discende dalla soluzione approssimata dell'equazione di Van der Pol per il circuito; salviamo quindi una forma d'onda contenente quattro periodi dell'oscillazione ed effettuiamo un fit al modello contenete il contributo a questa frequenza in modo da verificare il contributo effettivo di questo termine al segnale. Il risultato è visibile in Figura 4: effettuando un fit senza la componente  $3w_s$  e calcolando la differenza con il segnale misurato (grafico dei residui) si osserva un'onda sinusoidale avente frequenza proprio  $3w_s$ . L'entità della correzione è lieve, dimostrando che una buona soluzione approssimata dell'equazione di Van der Pol è  $V(t) = A \cdot cos(w_s t)$ .



Figura 4: In blu il segnale misurato con l'oscilloscopio, in rosso quello ottenuto dal fit senza il termine  $3\omega_s$  e in verde il fit contenente  $3\omega_s$ . Nella parte inferiore grafico della differenza tra segnale misurato e modelli e onda con frequenza  $3\omega_s$  in nero.

# 4 Oscillatore a rilassamento



Figura 5: Circuito dell'oscillatore a rilassamento

Costruiamo infine l'oscillatore a rilassamento (vedi figure 5 e 7c), utilizzando un op-amp uA741, una resistenza  $R=100~k\Omega$ ,una capacità C=100~nF e due resistenze  $R_1$  e  $R_2$  che scegliamo da un set di resistori da 1 e 10  $k\Omega$  in modo da studiare il comportamento del circuito per valori del rapporto  $r=\frac{R_1}{R_2}$  pari a [0.1,1,10].

Osserviamo, dopo un transiente in cui le oscillazioni si portano ad ampiezza di regime, un segnale

| $R1 [k\Omega]$ | $R1 [k\Omega]$ | r   | f[Hz] | T [ms] | $T_{teorico} [ms]$ |
|----------------|----------------|-----|-------|--------|--------------------|
| 1              | 10             | 0.1 | 262   | 3.81   | 3.65               |
| 10             | 10             | 1   | 45.2  | 22.1   | 22.0               |
| 10             | 1              | 10  | 16.4  | 61.1   | 60.9               |

**Tabella 1:** Dati ottenuti per diversi valori di del rapporto r, confrontati con i valori teorici attesi

 $V_{OUT}$  dato da un'onda quadra. Osserviamo inoltre come il segnale  $V_+$  sia un'onda quadra avente ampiezza pari alla metà di  $V_{OUT}$  e  $V_-$  segua un andamento esponenziale di ampiezza massima pari a quella di  $V_+$ , il passaggio fra carica e scarica e viceversa avviene in prossimità del cambio di segno di  $V_+$ .

Assumendo l'op-amp ideale il comportamento del circuito si spiega nella seguente maniera. Si ha un partitore fra  $R_1$  e  $R_2$  da cui  $V_+ = V_{out} \frac{R_1}{R_1 + R_2}$ , inoltre si avrà  $V_-$  che tende esponenzialmente, a causa della presenza del condensatore, a  $V_+$ . Quando  $V_-$  supera in ampiezza  $V_+$ , il segnale in output cambierà segno, di conseguenza lo cambierà anche  $V_+$  e  $V_-$  tornerà ad inseguirlo, passando da carica a scarica o viceversa, da modello questo processo si ripete con un periodo:

$$T = 2\tau \ln(\frac{2R_1 + R_2}{R_2}) = 2\tau \ln(2r + 1) \simeq 20\ln(2r + 1) \quad \text{(in } ms)$$
 (3)

dove  $\tau = RC \simeq 10 \ ms$ .

In Tabella 1 sono riportate ampiezza e frequenza del segnale in uscita al variare del parametro r con confronto col modello appena enunciato; si osserva un buon accordo fra previsioni e dati. In Figura 6 è visibile un fit per i periodi misurati in funzione di  $\ln(1+2r)$ , la pendenza m della retta di fit ci permette di calcolare il fattore  $\tau = \frac{m}{2} = 10.01 \ ms$ , in accordo col valore teorico.



**Figura 6:** Grafico del periodo T dell'oscillatore in funzione di ln(1+2r) con regressione lineare da modello

### 5 Conclusione

Siamo riusciti a misurare la caratteristica di una lampadina tramite una sorgente di corrente Howland; ciò ci ha permesso di studiare meglio un oscillatore a ponte di Wien implementante la stessa lampadina.

Abbiamo caratterizzato quest'oscillatore osservando inoltre la componente del segnale a frequenza  $3\omega_s$ . Infine abbiamo costruito e caratterizzato un oscillatore a rilassamento al variare delle componenti resistive confermando la dipendenza del periodo dal parametro  $\ln(1+2r)$ .

### 6 Appendice



(a) Sorgente di corrente di Howland



(b) Oscillatore a ponte di Wien



(c) Oscillatore a rilassamento