

RD-A141 502

A TWISTED P-C DOUBLE BOND: SYNTHESIS AND STRUCTURE OF A
(METHYLENE)PHOSPH. (U) TEXAS CHRISTIAN UNIV FORT WORTH
DEPT OF CHEMISTRY R H NEILSON ET AL. 18 MAY 84

UNCLASSIFIED

TCU/DC/TR-84-05 N00014-79-C-0632

F/G 7/2

NL

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963 A

AD-A141 502

OFFICE OF NAVAL RESEARCH
Contract No. N00014-79-C-0632
Task No. NR-053-720
TECHNICAL REPORT NO. TCU/DC/TR-84-05

12

A Twisted P-C Double Bond: Synthesis and Structure
of a (Methylene)phosphine·Fe(CO)₄ Complex

by

R.H. Neilson, R.J. Thoma, I. Vickovic, W.H. Watson

Prepared for Publication

in

Organometallics

Texas Christian University
Chemistry Department
Fort Worth, TX 76129

May 18, 1984

Reproduction in whole or in part is
Permitted for any purpose of the United States Government

This document has been approved for public
release and sale; its distribution is unlimited

DTIC FILE COPY

84 05 29 004

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER TCU/DC/TR-84-05	2. GOVT ACCESSION NO. AB-141502	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) A Twisted P-C Double Bond: Synthesis and Structure of a (Methylene)phosphine-Fe(CO) ₄ Complex	5. TYPE OF REPORT & PERIOD COVERED Technical Report, 1983	
7. AUTHOR(s) R.H. Neilson, R.J. Thoma, I. Vickovic, W.H. Watson	6. PERFORMING ORG. REPORT NUMBER TR-84-05	
8. PERFORMING ORGANIZATION NAME AND ADDRESS Texas Christian University Fort Worth, TX 76129	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS NR 053-720	
11. CONTROLLING OFFICE NAME AND ADDRESS Office of Naval Research	12. REPORT DATE May 18, 1984	
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)	13. NUMBER OF PAGES 9	
	15. SECURITY CLASS. (of this report)	
	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE	
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) Prepared for publication in <u>Organometallics</u>		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) amino(methylene)phosphine (methylene)phosphine phosphine-iron complex		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) The reaction of (Me ₃ Si) ₂ C=PCl with LiN(SiMe ₃) ₂ affords the tetrakisylated amino(methylene)phosphine ¹ which, reacts smoothly with Fe ₂ (CO) ₉ yielding the ¹ complex (Me ₃ Si) ₂ C=P[Fe(CO) ₄]-N(SiMe ₃) ₂ ⁽²⁾ . X-ray crystallographic analysis of ² reveals an unusual coordination of the phosphine ligand in an equatorial position as well as a short (1.657 Å), but severely twisted (30.3°), P=C double bond.		

A Twisted P-C Double Bond: Synthesis and Structure
of a (Methylene)phosphine·Fe(CO)₄ Complex

Robert H. Neilson*, Randall J. Thoma,
Ivan Vickovic, and William H. Watson*

Department of Chemistry
Texas Christian University
Fort Worth, Texas 76129

Summary: The reaction of (Me₃Si)₂C=PCl with LiN(SiMe₃)₂ affords the tetrasilylated amino(methylene)phosphine 1 which, reacts smoothly with Fe₂(CO)₉ yielding the η^1 complex (Me₃Si)₂C=P[Fe(CO)₄]-N(SiMe₃)₂ (2). X-ray crystallographic analysis of 2 reveals an unusual coordination of the phosphine ligand in an equatorial position as well as a short (1.657 Å), but severely twisted (30.3°), P-C double bond.

DATA COPY REQUESTED

Accession For	
NTIS GRA&I	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification _____	
By _____	
Distribution/ _____	
Availability Codes	
Dist	Avail and/or Special
A-1	

TR

PAGE

UNCLASSIFIED

JUN 05, 1984

♦♦ A141502 (U) FIELD/GROUP *****

UNCLASSIFIED TITLE
A TWISTED P-C DOUBLE BOND: SYNTHESIS AND STRUCTURE OF A (METHYLENE)PHOSPHINE FE(CO)4 COMPLEX.

ABSTRACT

(U) THE REACTION OF (ME₃Si)SC=PCL WITH LIN(SIME₃)₂ AFFORDS THE TETRAISILYLATED AMINO(METHYLENE)PHOSPHINE 1 WHICH, REACTS SMOOTHLY WITH FE₂(CO)₉ YIELDING THE ETA SUPER 1 COMPLEX (ME₃Si)₂C=P(FE(CO)₄)-N(SIME₃)₂ (2). X-RAY CRYSTALLOGRAPHIC ANALYSIS OF 2 REVEALS AN UNUSUAL COORDINATION OF THE PHOSPHINE LIGAND IN AN EQUATORIAL POSITION AS WELL AS A SHORT (1.857 A), BUT SEVERELY TWISTED (30.3 DEG). P = C DOUBLE BOND. (AUTHOR)

POSTING TERMS ASSIGNED

EQUATORIAL POSITION

USE EQUATORIAL REGIONS
POSITION(LOCATION)

PHOSPHINE LIGAND

USE LIGANDS
PHOSPHINE

X-RAY CRYSTALLOGRAPHIC ANALYSIS

USE CRYSTALS
X RAYS

PHRASES NOT FOUND DURING LEXICAL DICTIONARY MATCH PROCESS

AMINO METHYLENE PHOSPHINE 1
SUPER 1

PHOSPHINE FE CO 4
30.3 DEG

UNCLASSIFIED

The high level of current interest in unusually-hybridized phosphorus compounds has been stimulated, in part, by their potential as new types of ligands in organometallic chemistry. Among the methylenephosphines, $RP=CR_2$, for example, both $\sigma(\pi^1)$ and $\pi(\pi^2)$ complexes of the $-P=C$ moiety are now known.^{1,2} With two exceptions², however, all of the methylenephosphine complexes have contained the same ligand, $MesP=CPh_2$, first reported by Bickelhaupt.³ In order to extend these studies to the use of other ligands, we have begun an investigation of the coordination chemistry of our recently prepared amino(methylene)phosphines⁴. We report here the synthesis of the new methylenephosphine $(Me_3Si)_2NP=C(SiMe_3)_2$ and its iron tetracarbonyl complex which is found to have an unusually twisted phosphorus-carbon double bond.

Treatment of lithium bis(trimethylsilyl)amide (68 mmol) in Et_2O (250 mL) at $0^\circ C$ with chloro[bis(trimethylsilyl)methylene]-phosphine⁵ (68 mmol) afforded the tetrasilylated amino(methylene)phosphine 1 as a distillable yellow liquid (bp $61-63^\circ C/0.01$ mm) in 59% yield. A purified sample of 1 (ca. 5 mmol) was then allowed to react with one equivalent of $Fe_2(CO)_9$ in pentane (25 mL) at room temperature with stirring for 18 hours. Quantitative formation of the phosphine- $Fe(CO)_4$ complex was shown by ^{31}P NMR spectroscopy, and 2 was isolated as dark orange crystals (mp $153-155^\circ C$) by slow evaporation of the solvent. In addition to NMR spectroscopy (Table I), compounds 1 and 2 were characterized by satisfactory elemental analysis.⁶

Several aspects of the NMR spectra of 1 and 2 are structurally diagnostic. First, the low-field ^{31}P and ^{13}C chemical shifts in both compounds are indicative of sp^2 hybridization and strongly suggest π^1 -coordination to $\text{Fe}(\text{CO})_4$ via the phosphorus lone pair. Second, non-equivalence of the C-bonded Me_3Si groups due to hindered rotation about the $\text{P}=\text{C}$ double bond is seen in the ^1H , ^{13}C , and ^{29}Si NMR spectra. Third, there is a substantial coupling ($^{2}\text{J}_{\text{PC}} = 18.6$ Hz) between phosphorus and the carbonyl carbons of the $\text{Fe}(\text{CO})_4$ group, indicating that 2 does not undergo the rapid intermolecular exchange of CO as observed for the analogous complexes of the isoelectronic aminophosphonium ions.⁷

The X-ray crystallographic analysis⁸ of 2 (Figure 1) confirms the π^1 -coordination mode of the (methylene)phosphine and reveals some unexpected features. Most significant is the severe twist about the $\text{P}=\text{C}$ bond of $30.3(6)^\circ$; however, the P-C bond distance of $1.657(5)$ Å is significantly shorter than the 1.68 to 1.72 Å range reported by Appel⁹ for a series of planar $\text{P}=\text{C}$

π -systems. The distance is equivalent to the 1.647(9) Å and 1.657(4) Å values reported recently for some 3-coordinate (methylene)phosphoranes.^{10,11} Steric interactions between the bulky substituents are relieved by a rotation about the P=C bond. Although the P=C bond is considerably longer than a C=C bond, the present structure is indicative of the interactions which would exist in tri- and tetraisobutylethylenes.

In contrast to most simple phosphine- $\text{Fe}(\text{CO})_4$ complexes,^{12,13} the ligand is coordinated at an equatorial site in a slightly distorted trigonal bipyramidal geometry around the iron. The Fe, P, C(2), and C(4) atoms are coplanar with a maximum deviation from the plane of 0.001 Å. In the trigonal plane, the P-Fe-C angles are 124.1(3) and 125.5(3) $^\circ$ while the C-Fe-C angle is compressed to 110.4(3) $^\circ$. The two axial ligands make a C-Fe-C angle of 173.1(4) $^\circ$ and are bent toward the phosphine ligand which, to our knowledge, is unprecedented. The angles between axial and equatorial ligands range from 86.8(2) to 94.7(3) $^\circ$. All three atoms in the N-P=C linkage have trigonal planar geometries with the Si₂N and Si₂C planes being nearly orthogonal. The NPC plane lies between the axial and equatorial planes of the $\text{Fe}(\text{CO})_4$ moiety, probably to further minimize steric interactions.

Acknowledgment. The financial support of the U.S. Office of Naval Research and The Robert A. Welch Foundation (P-074 and P-759) is gratefully acknowledged. Silicon-29 NMR spectra were kindly provided by Professor Lattman at Southern Methodist University.

TABLE I. NMR Spectroscopic Data^a

	$\overset{\sim}{1}$	$\overset{\sim}{2}$
$\delta^{31}\text{P}$	383.1	311.4
$\delta^{1\text{H}} (J_{\text{PH}})$		
N(SiMe ₃) ₂ ^b	0.16 (0.5)	0.32
C(SiMe ₃) ₂ ^b	0.12 (2.1)	0.15
	0.15	0.25
$\delta^{13}\text{C} (J_{\text{PC}})$		
N(SiMe ₃) ₂	3.90 (1.9)	2.99 (2.0)
C(SiMe ₃) ₂ ^b	3.05 (7.8)	-0.10 (14.6)
	3.64	2.26 (4.9)
P=C	187.5 (96.7)	162.1 (12.6)
CO		213.6 (18.6)
$\delta^{29}\text{Si} (J_{\text{PSi}})$		
N(SiMe ₃) ₂	1.42	7.90 (5.0)
C(SiMe ₃) ₂ ^b	-4.60 (39.3)	-5.30 (15.8)
	-9.84 (10.7)	-8.00 (19.4)

^a Chemical shifts downfield from Me₄Si for ¹H, ¹³C, and ²⁹Si, and from H₃PO₄ for ³¹P spectra; coupling constants in Hz. Solvents: ¹H, CH₂Cl₂; ¹³C, ³¹P, and ²⁹Si, CDCl₃. ^b Non-equivalent Me₃Si groups due to hindered P=C bond rotation.

References and Notes

1. See for example: (a) Klebach, T.C.; Lourens, R.; Bickelhaupt, F.; Stam, C.H.; van Helk, A. J. Organomet. Chem. 1981, 210, 211. (b) Kroto, H. W.; Nixon, J.F.; Taylor, M.J.; Frew, A.A.; Muir, K.W. Polyhedron 1982, 1, 89. (c) Al-Resayes, S.; Klein, S.I.; Kroto, H.W.; Meidine, M.F.; Nixon, J.F. J. Chem. Soc., Chem. Commun. 1983, 930.
2. (a) Cowley, A.H.; Jones, R.A.; Stewart, C.A.; Stuart, A.L.; Atwood, J.L.; Hunter, W.E.; Zhang, H.M. J. Am. Chem. Soc. 1983, 105, 3737. (b) Holand, S.; Charrier, C.; Mathey, F.; Fischer, J.; Mischler, A. J. Am. Chem. Soc. 1984, 106, 826.
3. Klebach, Th.C.; Lourens, R.; Bickelhaupt, F. J. Am. Chem. Soc. 1978, 100, 4886.
4. (a) Neilson, R.H. Inorg. Chem. 1981, 20, 1679. (b) Thoma, R.J. Ph.D. Dissertation, Texas Christian University, Fort Worth, TX, 1984.
5. Appel, R.; Westerhaus, A. Tetrahedron Lett. 1981, 22, 2159.
6. Compound 1: Anal. Found: C, 44.37; H, 10.58. Calcd for $C_{13}H_{36}NPSi_4$: C, 44.64; H, 10.37. Compound 2: Anal. Found: C, 39.17; H, 7.00. Calcd for $C_{17}H_{36}FeNO_4PSi_4$: C, 39.45; H, 7.01.
7. Cowley, A.H.; Kemp, R.A.; Wilburn, J.C. Inorg. Chem. 1981, 20, 4289.
8. Crystal of dimensions .17 x .34 x .41 mm, triclinic space group P₁ with $a = 10.567(3)$, $b = 15.129(7)$, $c = 10.562(3)$ Å, $\alpha = 97.44(3)$, $\beta = 115.50(2)$, $\gamma = 106.08(3)^\circ$, $V = 1403(1)$ Å³, $Z = 2$, $\mu(\text{calcd}) = 1.225 \text{ gcm}^{-3}$, $F(000) = 548$, $\lambda(\text{CuK}) = 66.5 \text{ cm}^{-1}$. 3831 independent reflections collected by Θ:2Θ scan technique on Syntex P2₁ diffractometer, 3036 were considered observed ($I > 3\sigma(I)$). Lorentz and polarization corrections, but no absorption corrections. Anisotropic refinement (H atom positions fixed, thermal parameters isotropic) led to $R = 0.051$ and $R_w = 0.062$ where $w = 1/\sigma^2(F_O)$. Scattering factors and real and imaginary anomalous dispersion corrections Cromer, D.T.; Mann, J.B. Acta Cryst. 1968, A24 321. Atomic coordinates, thermal parameters, bond length, and valence angles are listed in supplementary Tables 1-5. Lists of structure factors are also available.
9. Appel, R.; Knoll, F.; Ruppert, I. Angew. Chem., Int. Ed. Engl. 1981, 20, 731.

10. Appel, R.; Knoch, F.; Kunze, H. Angew. Chem., Int. Ed. Engl. 1984, 23, 157.
11. Caira, M.; Neilson, R.H.; Watson, W.H.; Wisian-Neilson, P.; Xie, Z.-M. J. Chem. Soc., Chem. Commun., in press.
12. Axial substitution is very common for phosphine- $\text{Fe}(\text{CO})_4$ complexes. For example, see the following and references cited therein. Keiter, R.L.; Rheingold, A.L.; Hamerski, J.J.; Castle, C.K. Organometallics 1983, 2, 1635.
13. Equatorial substitution is quite unusual for phosphine- $\text{Fe}(\text{CO})_4$ complexes. Three examples, with confirmation by X-ray crystallography, have been reported:
(a) Sheldrick, W.S.; Morton S.; Stelzer, O. Z. Anorg. Allg. Chem. 1981, 475, 232. (b) Flynn, K.M.; Olmstead, M.M.; Power, P.P. J. Am. Chem. Soc. 1983, 105, 2085. (c) Cowley, A.H.; Kilduff, J.E.; Lasch, J.G.; Norman, N.C.; Pakulski, M.; Ando, F.; Wright, T.C. J. Am. Chem. Soc. 1983, 105, 7751.

Figure 1. Ortep drawing of 2 viewed down the C(5)=P bond.

Thermal ellipsoids are drawn at the 35% probability level.

Selected bond lengths (\AA) and angles ($^\circ$): P-Fe 2.208(2); Fe-C(1) 1.795(4); Fe-C(2) 1.794(2); Fe-C(3) 1.787(4); Fe-C(4) 1.768(7); P=C 1.657(5); P-N 1.681(4); N-Si 1.788(4); 1.790(4); C(5)-Si 1.884(7), 1.890(6); Fe-P-C(5) 128.0(2); Fe-P-N 116.8(2); N-P-C(5) 115.2(8); P-C(5)-Si(51) 135.0(7); P-C(5)-Si(52) 118.7(3).

FILED