COMS W4701: Artificial Intelligence

Lecture 3: Constraint Satisfaction Problems

Tony Dear, Ph.D.

Department of Computer Science School of Engineering and Applied Sciences

Today

Constraint satisfaction problems

- Backtracking search
- Ordering heuristics

- Inference and constraint propagation
- Local consistency

States with Structure

Task environments so far: Fully observable, discrete, deterministic, static

- Transitions and heuristics are problem-specific
- States are atomic black boxes
- Planning solution is an action sequence, or state space path

- What if our states have a common factored representation?
- We can use general-purpose heuristics
- Solution of an assignment problem is the goal itself, not a path

Constraint Satisfaction Problems

- Special structured search problems with 3 components
 - Variables $X = \{X_1, ..., X_n\}$
 - Domains $D = \{D_1, \dots, D_n\}$
 - Constraints $C = \{C_1, \dots, C_m\}$
- Goal test: A **complete, consistent** assignment of values to each variable X_i from respective domain D_i s.t. all constraints C are satisfied
- We may have incomplete or inconsistent assignments along the way

Example: Map Coloring

Goal: Color a map so that no adjacent territories have the same color

• Variables: $X = \{WA, NT, Q, NSW, V, SA, T\}$

• Domains: $D_i = \{\text{red, green, blue}\}$

- Constraints: Implicit vs explicit representation
 - $C = \{WA \neq NT, WA \neq SA, NT \neq SA, NT \neq Q, SA \neq Q, Q \neq NSW, NSW \neq V\}$
 - $C = \{(WA, NT) \in \{(red, green), (red, blue), (green, red), (green, blue), ...\}$

Constraint Graphs

Visualization of a CSP in a graph

Nodes: Variables and domains

Edges: Presence of binary constraints

Certain graph algorithms can help give insight into the CSP

- E.g., a k-connected component indicates a k-nary constraint
- CSPs that are actually tree structures can be solved without backtracking

Types of Constraints

- So far we've seen binary constraints relating two variables
- Unary constraints involve a single variable, equivalent to domain reduction
 - Ex: SA ≠ green (implicit), SA ∈ {green, red} (explicit)

- Higher-order (global) constraints relate arbitrary number of variables
 - Ex: Alldiff requiring all variables to have different values

 If domains are finite, always possible to rewrite global constraints as binary ones using auxiliary variables

Example: *n*-Queens

• Place n queens on $n \times n$ board s.t. none share a row, column, or diagonal

• Variables:
$$X_{ij}$$
, $1 \le i \le n$, $1 \le j \le n$ (grid spaces)

• Domains: $D_{ij} = \{0,1\}$ (queen or no queen)

• Constraints:
$$\forall i \sum_{j} X_{ij} = 1$$
 $\forall i, j \sum_{k} X_{i+k,j+k} \leq 1$ $\forall j \sum_{i} X_{ij} = 1$ $\forall i, j \sum_{k} X_{i+k,j-k} \leq 1$

Example: *n*-Queens

Alternatively, states can just represent a row of the board (vs grid space)

- Variables: X_i , $1 \le i \le n$ (row of the board)
- Domains: $D_i = \{1, ..., n\}$ (column containing queen)

• Constraints: $\forall i, j, X_i \neq X_j$ $\forall i, j, X_i - X_i \neq |j - i|$

Example: Cryptarithmetic

- Variables: $X = \{T, W, O, F, U, R, ...\}$
- Also carry-overs! C_1 , C_2 , C_3
- Domains: $D_i = \{0, ..., 9\}$

- Constraints
 - $Alldiff(X_i)$ $O + O = 10C_1 + R$ $W + W + C_1 = 10C_2 + U$

$$T + T + C_2 = 10F + O$$
$$C_3 = F$$

7 possible solutions!

$$734 + 734 = 1468$$
 $765 + 765 = 1530$
 $836 + 836 = 1672$
 $846 + 846 = 1692$
 $867 + 867 = 1734$
 $928 + 928 = 1856$
 $938 + 938 = 1876$

Example: Sudoku

Variables: One for each open square

■ Domains: {1, ..., 9}

- Constraints:
 - Alldiff for each column
 - Alldiff for each row
 - Alldiff for each 3×3 square

					8			4
	8	4		1	6			
			5	6 S		1	el.	
1		3	8			9		
6		8				4		3
		2		8 8	9	5		1
		7			2			
			7	8		2	6	
2			3	100 20				

Solving CSPs with Search

- States: Partial assignments (initial state is no assignment)
- Actions: Assign value to an unassigned variable from its domain
- Goal test: Complete, consistent assignment
- No explicit costs, so maybe something like DFS/BFS?
- Problem: Naïve implementation -> lots of repeated states!
- Branching factor: Number of unassigned variables × size of domain
 - Branching factor at root: $n \times d$ for n variables with domain size d
 - Branching factor at 2^{nd} level is (n-1)d, then (n-2)d at 3^{rd} level, ...
 - Total number of leaves / possible goal states: $O(n! \times d^n)$

Backtracking Search

- Idea: CSPs are commutative, order of variable assignment doesn't matter
 - (WA = red, NT = green) is the same as (NT = green, WA = red)

- Each search tree tier only needs to correspond to a single variable
 - Branching factor is d at every level, number of leaves is $O(d^n)$
- Running DFS allows us to make one variable assignment at a time and backtrack by undoing inconsistent assignments to try alternatives
 - Don't need a frontier—just keep track of what domain values are available

Backtracking Search

Variable Selection

- Heuristic for picking next variable: Minimum remaining values (MRV)
 - Also called "most constrained variable" (MCV) or "fail-first"
 - Choose the variable with the fewest legal left values in its domain

- What if we have multiple MRV variables (e.g., initial assignment)?
 - Degree heuristic: Pick variable that appears in the most constraints
 - Reduce branching factor on future choices

Domain Value Assignment

- Heuristic for assigning a value: Least constraining value (LCV)
 - Choose a value that imposes fewest constraints on future assignments
 - May require some computation
- Why least, not most?
 - We don't have to use all values, just find an assignment that works
 - Try to look for the most likely ones earlier
 - Keep more options open for other variables

Improving Backtracking: Inference

- Both MRV and LCV heuristics assume some sort of "forward checking"
- We can detect inevitable failure earlier by checking constraints as we go

- Idea: Delete inconsistent domain values as we make assignments
- If any domain is left empty, we should not proceed

- Domain reduction also better informs MRV on selecting variables
- Inference can also inform how to use the LCV heuristic

Forward Checking

- Forward checking: After assigning a variable, check other variables related to it by a constraint and eliminate inconsistent domain values
- If any domain becomes empty, current assignment is denoted a failure

Local Consistency

- Forward checking is an example of constraint propagation
- Can be interleaved with search, or done as a preprocessing step prior to search
- Result is local consistency: remaining domain values do not violate any constraints
- Node consistency: All unary constraints are satisfied
 - Can always be done prior to starting any search process
- Arc consistency: No binary constraint is violated by any variable's domain values
 - X_i is arc-consistent with respect to X_j if every value in D_i can be paired with a value in D_j such that no constraint between X_i and X_j is violated.

Arc Consistency

- X_i being arc consistent with X_j does not imply that X_j is arc consistent with X_i !
- Example: $Y = X^2$, both with domains $\{0,1,...,9\}$
 - To make X arc consistent with Y: Reduce domain of X to $\{0,1,2,3\}$
 - To make *Y* arc consistent with *X*: Reduce domain of *Y* to {0,1,4,9}
- Entire CSP is arc consistent iff both domains are reduced
- Another issue: Arc consistency may not be preserved if a domain is reduced
- If X_i is arc consistent with X_j and X_j is changed (e.g. due to forward checking), X_i may no longer be arc consistent with X_j

- To enforce arc consistency, e.g. during backtracking search, loop over all constraints whose variables' domains have changed until all are arc consistent
- More general than forward checking
- Must maintain a dynamic queue of constraints to check

- To enforce arc consistency, e.g. during backtracking search, loop over all constraints whose variables' domains have changed until all are arc consistent
- More general than forward checking
- Must maintain a dynamic queue of constraints to check

- To enforce arc consistency, e.g. during backtracking search, loop over all constraints whose variables' domains have changed until all are arc consistent
- More general than forward checking
- Must maintain a dynamic queue of constraints to check

- To enforce arc consistency, e.g. during backtracking search, loop over all constraints whose variables' domains have changed until all are arc consistent
- More general than forward checking
- Must maintain a dynamic queue of constraints to check

- To enforce arc consistency, e.g. during backtracking search, loop over all constraints whose variables' domains have changed until all are arc consistent
- More general than forward checking
- Must maintain a dynamic queue of constraints to check

- To enforce arc consistency, e.g. during backtracking search, loop over all constraints whose variables' domains have changed until all are arc consistent
- More general than forward checking
- Must maintain a dynamic queue of constraints to check

Path and k-Consistency

- At least one arc inconsistent ⇒ no solution
- BUT arc consistency not sufficient to guarantee a solution!
- Idea: Look at more than two variables at a time

- $\{X_i, X_j\}$ is **path consistent** with X_m if for every arc consistent assignment to $\{X_i, X_j\}$, there is an assignment to X_m consistent with X_i and X_j
- k-consistency: For every consistent assignment to a set of k-1 variables, a consistent value can be assigned to the kth variable
- A strongly n-consistent CSP (n, n-1, ..., 1 consistent) is guaranteed a solution, but determining n-consistency is exponentially hard (NP-complete)!

Special Constraints

- Consistency for certain constraint types can be checked quickly
- Alldiff with m variables and n unique values: immediately declare no solution if m > n
- Suppose we have domains with lower and upper bounds
- Bounds propagation: If constraints are equality or inequality (e.g., resource constraints), we can use them to tighten the bounds and make them consistent
- Ex: X_1, X_2, X_3 , all with domains [1,5]
 - Constraint $\sum X_i = 13$: Reduce domains to [3,5]
 - Constraint $\sum X_i \leq 5$: Reduce domains to [1,3]

Introducing New Constraints

- We can also improve CSP solvers by introducing new constraints
- Recall: We backtrack whenever we see an inconsistent solution, either in the present (leaf of the search tree) or in the future (via constraint propagation)
- Constraint learning: Record the current assignment as a constraint
- A CSP may have multiple solutions due to value symmetry
- Ex: In map coloring, there are d! solutions by permutation
- Idea: Introduce **symmetry-breaking constraints** (e.g., NT < SA < WA) to reduce the number of solutions and shrink the search tree

Local Search

- Methods so far: Build up solution incrementally, check constraints
- Local search: Start with an arbitrary complete assignment, modify it until consistent
- No frontier to maintain, no backtracking!

• Min-conflicts: Reassign a variable to a value that minimizes conflicts

Example: 4-Queens

- Can be very effective in practice, roughly independent of problem size
- E.g., can solve the 1M-queens problem in an average of 50 iterations
- Also useful for solving problems online as they change
- For example, repair existing solutions as new constraints come and go

Local Search and Optimization*

- Local search generally useful when we care about goal more than path
- E.g., optimization problems with **objective function**, no specific goal test
- Pros: Very little memory, can work well in large or infinite state spaces

Hill-Climbing Methods*

- Many local search algorithms fall into category of hill-climbing
- No search tree, no knowledge beyond immediate neighbors
- Greedy search method, can get stuck at local maxima if unlucky

- Variations of simply ascending the hill:
- Stochastic: Pick random moves from time to time
- First-choice: Pick a random move that leads to a better successor
- Random-restart: Try different initial states if stuck

Other Methods*

- Simulated annealing: Combine hill climbing with random walks to get unstuck from local maxima
- Local beam search: Maintain parallel searches but share information among threads

 Genetic algorithms: Generate successor states by combining two parent states

https://eat.zesty.com/post/how-simulatedannealing-can-improve-your-lunch

Summary

- CSPs are assignment search problems with very specific structure
- Unlike general DFS, backtracking search can be very effective
- General-purpose heuristics: MRV, LCV

- Inference can further improve search performance
- Maintain local consistency through constraint propagation, take advantage of or add new common constraints

Local search: Alternative search method with few memory requirements