- Q1. Download the Titanic dataset and perform the Exploratory data analysis using pandas. Read the dataset (df= pd.read_csv(r'.....\Titanic.csv') Display the first and last 10 instances from the dataset Acquire the necessary information using the df.info() and df. Describe(). Retrieve the number of columns and rows. (using shape)
- Q2. Create the data visualization using the matplotlib. Visualize the Gender of Passengers using the Bar graph. Visualize the Survival Count of Passengers using the Bar graph. Visualize the Age of Passengers using the Bar/Histogram graph. Visualize the comparison of Age and Fare of Passengers using the Scatterplot.

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from IPython.display import Image, display
%matplotlib inline
titan = pd.read_csv('/content/Titanic - Titanic.csv')
display(titan.head(10))
display(titan.tail(10))
```

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500
5	6	0	3	Moran, Mr. James	male	NaN	0	0	330877	8.4583
6	7	0	1	McCarthy, Mr. Timothy J	male	54.0	0	0	17463	51.8625
7	8	0	3	Palsson, Master. Gosta Leonard	male	2.0	3	1	349909	21.0750
8	9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27.0	0	2	347742	11.1333
9	10	1	2	Nasser, Mrs. Nicholas (Adele Achem)	female	14.0	1	0	237736	30.0708

←

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fa
881	882	0	3	Markun, Mr. Johann	male	33.0	0	0	349257	7.89
882	883	0	3	Dahlberg, Miss. Gerda Ulrika	female	22.0	0	0	7552	10.51
883	884	0	2	Banfield, Mr. Frederick James	male	28.0	0	0	C.A./SOTON 34068	10.50
884	885	0	3	Sutehall, Mr. Henry Jr	male	25.0	0	0	SOTON/OQ 392076	7.05
885	886	0	3	Rice, Mrs. William (Margaret Norton)	female	39.0	0	5	382652	29.12
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.00
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.00
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.45
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.00
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.75
4 6										•

In []: titan.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
    Column
                Non-Null Count Dtype
    -----
                 -----
0
    PassengerId 891 non-null
                                int64
1
    Survived
                891 non-null
                             int64
 2
                             int64
    Pclass
                891 non-null
 3
                             object
    Name
                891 non-null
 4
                                object
    Sex
                891 non-null
 5
                714 non-null
                                float64
    Age
 6
    SibSp
                891 non-null
                                int64
7
                                int64
    Parch
                891 non-null
    Ticket
                891 non-null
                                object
 9
    Fare
                891 non-null
                                float64
10 Cabin
                 204 non-null
                                object
11 Embarked
                889 non-null
                                object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB
```

```
In [ ]: titan.describe()
```

Out[]:		PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
	count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
	mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
	std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
	min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
	25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
	50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
	75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
	max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

```
In [ ]: rownum = np.shape(titan)[0]
    colnum = np.shape(titan)[1]
    print(rownum)
    print(colnum)
```

891 12

```
In [ ]: gender_counts = titan['Sex'].value_counts()
    plt.figure(figsize=(6, 4))
    sns.barplot(x=gender_counts.index, y=gender_counts.values)
    plt.title('Gender of Passengers')
    plt.xlabel('Gender')
    plt.ylabel('Count')
    plt.show()
```



```
In [ ]: survival_counts = titan['Survived'].value_counts()
    plt.figure(figsize=(6, 4))
    sns.barplot(x=survival_counts.index, y=survival_counts.values)
    plt.title('Survival Count of Passengers')
    plt.xlabel('Survived')
    plt.ylabel('Count')
    plt.show()
```



```
In [ ]: plt.figure(figsize=(8, 6))
    plt.hist(titan['Age'], bins=20, edgecolor='black')
    plt.title('Age of Passengers')
    plt.xlabel('Age')
    plt.ylabel('Count')
    plt.show()
```



```
In []: plt.figure(figsize=(8, 6))
    sns.scatterplot(x='Age', y='Fare', data=titan)
    plt.title('Age vs Fare of Passengers')
    plt.xlabel('Age')
    plt.ylabel('Fare')
    plt.show()
```

Age vs Fare of Passengers

