APPRENTISSAGE MACHINE & DEEP LEARNING

Deep Learning

A. Boulch, A. Chan Hon Tong, S. Herbin, B. Le Saux

retour sur innovation

Réseaux de neurones

Réseaux de neurones

Caractéristiques bien pensées Apprentissage Expertise

Réseaux de neurones

Deep learning 90's → 2005

Mise en place des premiers réseaux convolutifs

Recherche sur les architectures, les stratégies, la mise en forme des données

Fully connected

Perceptron

(présentation précédente)

Un neurone est connecté à toutes les entrées

Si dimension d'entrée grande, beaucoup de paramètres

Fully connected

- MLP de plus en plus profonds (avant 2005)
 - Très grosses difficultés d'optimisation
 - Convergence difficile
 - Peu de données
 - Entraînement très long
 - ⇒ Abandon progressif au profit des SVMs
 - Simples à utiliser
 - Preuves de convergence
 - Rapides

Réseaux convolutifs

Adapté aux données structurées

Convolution

Forward

$$x_{i,j}^{l} = \sum_{a} \sum_{b} \omega_{a,b} y_{i+a,j+b}^{l-1}$$
$$y_{i,j}^{l} = \sigma(x_{i,j}^{l})$$

Convolution

Backward, mise à jour des poids de la convolution

$$\frac{\partial E}{\partial \omega_{a,b}} = \sum_{i} \sum_{j} \frac{\partial E}{\partial x_{i,j}^{l}} \frac{\partial x_{i,j}^{l}}{\partial \omega_{a,b}} = \sum_{i} \sum_{j} \frac{\partial E}{\partial x_{i,j}^{l}} y_{i,j}^{l-1}$$

or
$$\frac{\partial E}{\partial x_{i,j}^l} = \frac{\partial E}{\partial y_{i,j}^l} \frac{\partial y_{i,j}^l}{\partial x_{i,j}^l} = \frac{\partial E}{\partial y_{i,j}^l} \sigma'(x_{i,j}^l)$$

$$\frac{\partial E}{\partial \omega_{a,b}} = \sum_{i} \sum_{j} \frac{\partial E}{\partial y_{i,j}^{l}} \sigma'(x_{i,j}^{l}) y_{i,j}^{l-1}$$

Convolution

Backward, erreur

$$\frac{\partial E}{\partial y_{i,j}^{l-1}} = \sum_{a} \sum_{b} \frac{\partial E}{\partial x_{i-a,j-b}^{l}} \frac{\partial x_{i-a,j-b}^{l}}{\partial y_{i,j}^{l-1}}$$
$$= \sum_{a} \sum_{b} \frac{\partial E}{\partial x_{i-a,j-b}^{l}} \omega_{a,b}$$

Couches: convolution

Filtres de Gabor

Exemple poids appris par la première couche de convolution d'AlexNet

Couches: Pooling

- Réduction de dimension
- Invariabilité en translation
- Mise en correspondance des pixels voisins
 - Réduction de la profondeur

Couches: Max Pooling

Forward

Transmission du maximum sur une fenêtre donnée

Backward

Transmission du gradient au maximum identifié, gradient nul sinon

LeNet

LeNet (1990) Images 28x28

Gradient-based learning applied to document recognition, LeCun, Bottou, Bengio and Haffner, 1998

Pricipaux problèmes

Vitesse d'apprentissage

Gradients exponentiels ou évanescents

Structure du réseau

Matériel

Optimiseur

Données

Initialisation des poids

Overfitting

Minima locaux

Deep learning: massively data driven apporaches

Activations

Gradients plus rapide à calculer

Convergence identique

Mini-batch

Erreur image 1

Mini-batch

Erreur image 1 Erreur image 2 Erreur image 3 Erreur image 4

- Forward
 - Prédictions indépendantes
- Backward
 - Moyennes sur les gradients

• Lissage des gradients

Réduction de la variance Possibilité d'utilisation d'un learning rate plus grand

Mini-batch

Erreur image 1 Erreur image 2 Erreur image 3 Erreur image 4

- Forward
 - Prédictions indépendantes
- Backward
 - Moyennes sur les gradients

- Lissage des gradients
 Réduction de la variance
 Possibilité d'utilisation d'un
 learning rate plus grand
- Accélération matérielle (GPU)
 Appliquer les même opérations

Couches: Batch Norm

Changements dans la distribution ⇒ variance et moyenne Apprentissage plus difficile

Contrôler la distribution des données avec une couche pour maîtriser la distribution

$$y^* = \frac{y^l - \mu}{\sqrt{\sigma^2 + \epsilon}} \gamma + \beta$$
 Les β et γ sont appris. μ et σ sont calculés sur les batchs.

Apprentissage plus rapide (en nombre d'itération), mais en général plus lent (calcul des statistiques)

Dropout

Entraînement:

- Éteindre certains neurones avec probabilité 1-p
- ⇒ Entraîner une multitude de sous-réseaux

Test:

- Utiliser tous les neurones pondérés par p

Les fully connected concentrent les poids des réseaux ⇒ overfitting Le dropout apporte plus de robustesse et une meilleure généralisation

Moins de nœuds ⇒ plus rapide

Initialisation des poids

Les poids des réseaux sont initialisés aléatoirement. L'initialisation a une grande influence sur la convergence et sur la vitesse d'apprentissage.

- Poids trop faibles ⇒ le signal peut décroître jusqu'à s'annuler
- Poids trop grands ⇒ le signal peut devenir trop gros pour être utilisable

Exemple: Initialisation Xavier

X de dimension n, un neurone linéaire avec poids W, la sortie est Y

$$Y = W_1 X_1 + W_2 X_2 + ... + W_n X_n$$

Or

$$Var(W_{i}X_{i}) = E[X_{i}]^{2} Var(W_{i}) + Var(W_{i}) Var(X_{i}) + Var(X_{i}) E[W_{i}]^{2} = Var(W_{i}) Var(X_{i}) + Var(X_{i}) + Var(X_{i}) + Var(X_{i}) + Var(X_{i}) + Var(X_{i}) + Var(X_{i}) +$$

Ainsi
$$Var(Y) = nVar(W_i)Var(X_i)$$
 et $Var(W_i) = \frac{1}{n} = \frac{1}{n_{in}}$

Glorot et Bengio () : idem avec la back prop. $Var(W_i) = \frac{1}{n_{out}}$ Moyenne des deux $Var(W_i) = \frac{1}{n_{in} + n_{out}}$

He, Rang, Zen et Sun () : $Var(W_i) = \frac{2}{n_{in}}$ (un ReLU aura la moitié de ses activations nulles)

Optimiseurs

Variation du learning rate

- Constant par morceau
- Décroissance exponentielle

Lissage du gradient

- Momentum

$$\mathbf{w} = \mathbf{w} - \alpha * \Delta \mathbf{w}$$

$$v_t = \gamma v_{t-1} + \alpha * \Delta w$$
$$w = w - v_t$$

Optimiseurs

Méthodes adaptatives

Adagrad : adaptation du learning rate à la fréquence

$$\mathbf{w}_{t+1,i} = \mathbf{w}_{t,i} - \frac{\alpha}{\sqrt{G_{t,i} + \epsilon}} \Delta \mathbf{w}_{t,i}$$

la somme des gradients au carré pour $G_{t,i}$

 $W_{t,i}$

- Adam (adaptive momentum estimation)

Adaptation du learning rate et utilisation du momentum

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) \Delta w_t$$

 $v_t = \beta_2 v_{t-1} + (1 - \beta_2) \Delta w_t^2$

$$\hat{m}_{t} = m_{t} / (1 - \beta_{1}^{t})$$

$$\hat{v}_{t} = v_{t} / (1 - \beta_{2}^{t})$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \frac{\alpha}{\sqrt{\hat{\mathbf{v}}_t} + \epsilon} \hat{m}_t$$

Estimation de la moyenne et de la variance

Moments biaisés vers 0.

Règle de mise à jour

Données adaptées

- Données adaptées
- Normalisation
 - Moyenne nulle, variance 1
 - ⇒ Éviter les problème de dynamique

- Données adaptées
- Normalisation
- Augmentation de données

 Faire varier les paramètre qu'on ne veut pas apprendre.

Illumination / contraste

Imagettes

- Données adaptées
- Normalisation

(ex : ImageNet)

Augmentation de données

Adaptation de domaine

MNIST / VGG 16

Architecture classique en vision

ResNet

Convolution

ReLU

Convolution

ReLU

Residual block

Court circuit sur les convolutions.

⇒ impose aux nouvelles convolution d'apprendre quelque chose de différent de la couche précédente

→ Meilleure circulation des gradients. Possibilité de réseaux plus profonds.

Convolution **Pooling** Res. block Res Block /2 Res. block Res. block Res Block /2 Res. block Res. block Res. block Res. block Res Block /2 Av .Pooling FC

SegNet

- Segmentation sémantique
 - Le unpooling layer pour retrouver la localité en mémorisant les emplacement des activations

Image: http://mi.eng.cam.ac.uk/projects/segnet/

FasterRCNN

Détection d'objets

person car bicycle person dog

https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/object_localization_and_detection.html

Image: https://github.com/mitmul/chainer-fast-rcnn

Generative Adversarial networks

Réseaux récurrents

Traitement de données temporelles : La sortie de l'état T+1 dépend de T

Analyse de textes, de vidéos, captioning (description d'images avec du texte) ...

Autoencoders

 Que faire quand on n'a pas de données labelisées ?

Frameworks

Interface principale : **Python**

Autres interfaces : C++ Java, Go (début)

GPU Nvidia ou CPU

Google, Deep Mind

Interface principale : **Python, Lua**

Autres interfaces : C++

GPU Nvidia ou CPU

Facebook AI, Inria, ENS Ulm

Interface principale : C++

Autres interfaces : Python

GPU Nvidia ou CPU

Académique

Fameworks

MatConvNet

DEEPLEARNING4J

Exemple: LeNet

Définition du réseau

```
conv1 = conv2d(image, 64 ,[3,3], [1,1])
relu1 = relu(conv1)
pool1 = max_pool_2x2(relu1)
conv2 = conv2d(pool1, 128, [3,3], [1,1])
relu2 = relu(conv2)
pool2 = max_pool_2x2(relu2)
flat = flatten(pool2)
fc1 = fully_connected(flat, 256)
reluf1= relu(fc1)
fc2 = fully_connected(reluf1, 10)
```

Fonction de perte et optimiseur

```
loss =softmax_cross_entropy(fc2,labels)
optimizer = AdamOptimizer(learning_rate)
train_step = optimizer.minimize(loss)
```

Exemple: LeNet

Entraînement

```
for epoch in range(epoch_max) :
    for batch in batches :
        # numpy tabs
        fd = {images:batch.images, labels.labels}
        sess.run(train_step, feed_dict=fd)
```

Test

```
for test_images in test_set :
   fd = {images:test_images}
   predictions = sess.run(fc2, fd)
```

Le Deep learning à l'ONERA

DeLTA

Conclusion

Réseaux de neurones profonds

Recherche sur les architectures, les stratégies, la mise en forme des données

Conclusion

Recherche sur les architectures, les stratégies, la mise en forme des données

Ressources

Gradient-based learning applied to document recognition, LeCun, Bottou, Bengio and Haffner, 1998

Batch normalization: Accelerating deep network training by reducing internal covariate shift, Ioffe and Szegedy, 2015

Dropout: a simple way to prevent neural networks from overfitting, Srivastava, Hinton, Krizhevsky, Sutskever and Salakhutdinov, 2014

Understanding the difficulty of training deep feedforward neural networks, Glorot and Bengio

Adaptive Subgradient Methods for Online Learning and Stochastic Optimization, Duchi, Hazan and Singer, 2011

Adam: a Method for Stochastic Optimization, Kingma and Ba, 2015

Very Deep Convolutional Networks for Large-Scale Image Recognition, Simonyan and Zisserman

Deep residual learning for image recognition, He, Zhang, Ren, and Sun, 2016

Bayesian SegNet: Model Uncertainty in Deep Convolutional Encoder-Decoder Architectures for Scene Understanding, Kendall, Badrinarayanan and Cipolla, 2015

Faster r-cnn: Towards real-time object detection with region proposal networks, Ren He, Girshick and Sun, 2015

Improving semantic embedding consistency by metric learning for zero-shot classiffication, Bucher and Herbin and Jurie, 2016

Processing of Extremely High-Resolution LiDAR and RGB Data: Outcome of the 2015 IEEE GRSS Data Fusion Contest--Part A: 2-D Contest, multiple authors, 2016

Semantic Image Inpainting with Perceptual and Contextual Losses, Yeh and al

Ressources

Principaux frameworks

Tensorflow: tensorflow.org

PyTorch et Torch : pytorch.org torch.ch

Caffe : caffe.berkeleyvision.org/

Tutoriaux

Classification de chiffres sur MNIST :

tensorflow.org/tutorials/mnist/pros/

Classification d'images sur CIFAR 10

https://github.com/pytorch/tutorials