Nombre: Camilo Andrés Perez Quintanilla

Materia: Sistemas Operativos

Grupo: E191

Características de IPV4 y IPV6

Características de IPv4:

Tamaño de Dirección:

- Direcciones de 32 bits.
- Expresado en notación decimal, como cuatro octetos separados por puntos (por ejemplo, 192.168.0.1).

Espacio de Direcciones:

Aproximadamente 4.3 mil millones de direcciones únicas (2^32).

Fragmentación:

Realizada por el emisor y los routers.

Configuración:

• Generalmente se configura manualmente o mediante DHCP (Dynamic Host Configuration Protocol).

Compatibilidad:

Amplia compatibilidad y soporte en dispositivos y redes actuales.

Formato de Cabecera:

Cabecera simple de 20 bytes.

Seguridad:

Opcional mediante IPSec (Internet Protocol Security).

Difusión (Broadcast):

Permite la transmisión de datos a todos los hosts en una red.

Características de IPv6:

Tamaño de Dirección:

- Direcciones de 128 bits.
- Expresado en notación hexadecimal, dividido en ocho grupos de cuatro caracteres separados por dos puntos (por ejemplo, 2001:0db8:85a3:0000:0000:8a2e:0370:7334).

Espacio de Direcciones:

Aproximadamente 340 un decillón de direcciones únicas (2^128).

Fragmentación:

• Realizada solo por el emisor.

Nombre: Camilo Andrés Perez Quintanilla

Materia: Sistemas Operativos

Grupo: E191

Configuración:

 Configuración automática mediante SLAAC (Stateless Address Autoconfiguration) o DHCPv6.

Compatibilidad:

Menos soporte en dispositivos antiguos, pero está aumentando con la adopción.

Formato de Cabecera:

• Cabecera más extensa de 40 bytes, pero simplificada y optimizada.

Seguridad:

• IPSec es obligatorio y está integrado.

Difusión (Broadcast):

• No se utiliza broadcast, en su lugar se usan multicast y anycast.

Diferencias Clave entre IPv4 y IPv6:

Tamaño de las Direcciones:

• IPv4 utiliza direcciones de 32 bits, mientras que IPv6 utiliza direcciones de 128 bits.

Espacio de Direcciones:

• IPv6 proporciona un espacio de direcciones mucho mayor que IPv4, lo que permite un número casi ilimitado de direcciones únicas.

Configuración Automática:

• IPv6 soporta autoconfiguración sin estado, lo que permite que los dispositivos se configuren automáticamente sin necesidad de un servidor DHCP.

Seguridad:

IPv6 tiene IPSec incorporado de manera obligatoria, mientras que en IPv4 es opcional.

Formato de Cabecera:

• La cabecera de IPv6 es más simple y optimizada en comparación con la de IPv4, lo que mejora el rendimiento del enrutamiento.

Fragmentación:

• En IPv4, tanto el emisor como los routers pueden fragmentar paquetes, mientras que en IPv6 solo el emisor puede fragmentarlos.

Métodos de Dirección:

• IPv4 utiliza broadcast para enviar paquetes a todos los nodos en una red local, mientras que IPv6 utiliza multicast y anycast, que son más eficientes.

Nombre: Camilo Andrés Perez Quintanilla

Materia: Sistemas Operativos

Grupo: E191

Conclusión:

IPv6 fue desarrollado para superar las limitaciones de IPv4, principalmente en términos de espacio de direcciones y capacidad de autoconfiguración. Aunque IPv4 sigue siendo ampliamente utilizado, la transición a IPv6 está en marcha para satisfacer las crecientes necesidades de la conectividad global y el Internet de las cosas (IoT).