

Evaluation metrics matter: predicting sentiment from financial news headlines.

Andrew Moore and Paul Rayson February 27, 2018

School of Computing and Communications, Lancaster University.

Table of contents

- 1. Introduction
- 2. Approach
- 3. Findings and Results
- 4. Why evaluation metrics matter

Introduction

What is SemEval

The task

Example sentence

'Why AstraZeneca plc & Dixons Carphone PLC Are Red-Hot Growth Stars!'

Sentiment scale

Data

Training data: 1142 samples, 960 headlines/sentences. Testing data: 491 samples, 461 headlines/sentences.

Evaluation metric

Cosine Similarity (CS) ¹

$$\frac{\sum_{i=1}^{K} A_{i} B_{i}}{\sqrt{\sum_{i=1}^{K} A_{i}^{2}} \sqrt{\sum_{i=1}^{K} B_{i}^{2}}}$$
(1)

Example

A = Predicted sentiment = [0.5, -0.2]

B = True sentiment = [0.4, 0.1]

Cosine similarity = 0.189

 $^{^{1}\}mathsf{Taken}\ \mathsf{from}\ \mathsf{Wikipedia}\ \mathsf{https://en.wikipedia.org/wiki/Cosine_similarity}$

Approach

Additional data used

Word2Vec model

Used 189, 206 financial articles (e.g. Financial Times) that were manually downloaded from Factiva² to create a Word2Vec model [5]³.

These were created using Gensim⁴.

²https://global.factiva.com/factivalogin/login.asp?productname=global

³https://github.com/apmoore1/semeval/tree/master/models/word2vec_models

⁴https://radimrehurek.com/gensim/models/word2vec.html

Support Vector Regression (SVR) [2]

Features and settings that we changed

- 1. Tokenisation Whitespace or Unitok⁵
- 2. N-grams uni-grams, bi-grams and both.
- 3. SVR settings penalty parameter C and epsilon parameter.
- 4. Target aspect.
- 5. Word Replacements.

⁵http://corpus.tools/wiki/Unitok

Word Replacements

Example Sentence

'AstraZeneca PLC had an improved performance where as Dixons performed poorly'

'companyname had an posword performance where as companyname performed negword'

Word Replacements

Company example N=10 company = 'tesco'

sainsbury 0.6729	primark 0.4811
asda 0.5999	grocer 0.4792
morrisons 0.5188	unilever 0.4764
supermarkets 0.5089	wal-mart 0.4750
kingfisher 0.4956	waitrose 0.4713

Bi-directional Long Short-Term Memory BLSTM [3][4]

BLSTM Sentence representation

- 1. Sentences are fixed length.
- 2. All words are represented as vectors.

Example

why astrazeneca plc & dixons carphone plc are red - hot growth stars!

BLSTM LSTM network⁶

LSTM network

Properties

- 1. Forgot gate.
- 2. Input gate.
- 3. Output gate.

 $^{^{6}} Image \ idea \ taken \ from: \ https://colah.github.io/posts/2015-08-Understanding-LSTMs/$

BLSTM LSTM network

The advantages of LSTMs

- 1. Good at learning sequential data.
- 2. Able to learn long term dependencies.

LSTM related work

- 1. Google have improved their translation system using LSTMs[7]
- 2. Chiu and Nichols improved Named Entity Recognition[1].

BLSTM architecture explained

Loss function Mean Square Error (MSE)

$$\frac{1}{Y} \sum_{i=1}^{Y} (\hat{y}_i - y)^2 \qquad (2)$$

Two BLSTM models

Standard Model (SLSTM)

- Drop out between layers and connections.
- 25 times trained over the data (epoch of 25).

Early stopping model (ELSTM)

- Drop out between layers only.
- Early stopping used to determine the epoch.

Findings and Results

SVR best features

Features

- Using uni-grams and bi-grams to be the best.
- Using a tokeniser always better. Affects bi-gram results the most.
- SVR parameter settings important 8% difference between using C=0.1 and C=0.01.
- Incorporating the target aspect increased performance.
- Using all word replacements. N=10 for pos and neg words and N=0 for company.

Results

 SVR
 SLSTM
 ELSTM

 60.21%
 73.20%
 73.27%

Future Work

- Incorporate aspects into the BLSTM's shown to be useful by Wang et al. [6].
- Improve BLSTM's by using an attention model Wang et al. [6].

Future Work

dixons profits have increased while amazons debt has decreased

- 1. Incorporate aspects into the BLSTM's shown to be useful by Wang et al. [6].
- 2. Improve BLSTM's by using an attention model Wang et al. [6].

Why evaluation metrics matter

The task

'given a text instance predict the sentiment score for each of the companies/stocks mentioned' 7

⁷http://alt.qcri.org/semeval2017/task5/

The three different metrics

Cosine Similarity (CS) Metric 2 Metric 1

Etric 1
$$\frac{\sum_{n=1}^{N} CS(\hat{y}_n, y_n)}{N}$$
 (4)

$$\frac{i=1}{\sqrt{\sum_{i=1}^{K} y_{i}^{2}} \sqrt{\sum_{i=1}^{K} \hat{y}_{i}^{2}}}$$

$$\frac{\sum_{n=1}^{N} \begin{cases} len(\hat{y}_n) * \mathsf{CS}(\hat{y}_n, y_n), & \text{if } len(\hat{y}_n) > 1 \\ 1 - |y - \hat{y}_n|, & \text{if } \frac{\hat{y}_n}{y} \ge 0 \end{cases}}{K}$$

(5)

K = Total number of samples.

N = Total number of sentences.

The differences in metrics⁸

			Metric		
PS	TS	1	2	3	No. Sentences
[[0.2],[0.5]]	[[-0.4],[-0.1]]	-0.585	-1	0	2
[[0.9],[0.2]]	[[0.8],[0.3]]	0.99	1	0.9	2
[[0.2, 0.3]]	[[-0.1, -0.2]]	-0.992	-0.496	-0.992	1

PS = Predicted Sentiment

 $\mathsf{TS} = \mathsf{True} \; \mathsf{Sentiment}$

All of the above are two samples.

⁸Code for this slide https://github.com/apmoore1/semeval/blob/master/examples/metric_examples.py

Different metrics different results 9

		Metric	
Model	1	2	3
SVR	62.14	54.59	62.34
SLSTM	72.89	61.55	68.64
ELSTM	73.20	61.98	69.24

 $^{^9 {\}tt code\ this\ slide\ https://github.com/apmoore1/semeval/blob/master/examples/run.py}$

Metrics should reflect the problem

Problem

To identify 'bullish (optimistic; believing that the stock price will increase) and bearish (pessimistic; believing that the stock price will decline) sentiment associated with companies and stocks.' ¹⁰

Main reason against metric 1

That scores with opposite sentiment should not be rewarded in any way.

¹⁰ http://alt.qcri.org/semeval2017/task5/

Recomended blog posts for word vectors

- https://colah.github.io/posts/ 2014-07-NLP-RNNs-Representations/
- 2. http://sebastianruder.com/word-embeddings-1/

Recomended blog posts for RNN/LSTM

- 1. https://deeplearning4j.org/lstm Good place to start.
- 2. https:

//colah.github.io/posts/2015-08-Understanding-LSTMs/-Good place to understand LSTM.

3. https:

//karpathy.github.io/2015/05/21/rnn-effectiveness/ on the applications of RNN's.

- 4. https://skillsmatter.com/skillscasts/ 6611-visualizing-and-understanding-recurrent-networks video on RNN's.¹¹
- 5. https:

//nbviewer.ipython.org/gist/yoavg/d76121dfde2618422139 usefulness of RNN's.

 $^{^{11}\!\!14.44}$ mins tips on how to train RNN/LSTM architectures.

Other related resources

- 1. Recommended book http://www.deeplearningbook.org/
- 2. Oxford Deep learning course https://github.com/oxford-cs-deepnlp-2017/lectures
- 3. Stanford courses
 - 3.1 Machine Learning CS229
 - 3.2 NLP with deep learning CS224n
 - 3.3 CNN for visual recognition CS231n

Drawings to code

```
max length = self. set max length(train texts)
vector length = self. word2vec model.vector size
train vectors = self. text2vector(train texts)
model = Sequential()
model.add(Dropout(0.5, input shape=(max length, vector length)))
model.add(Bidirectional(LSTM(max length, activation='softsign',
                            return sequences=True)))
model.add(Dropout(0.5))
model.add(Bidirectional(LSTM(max length, activation='softsign')))
model.add(Dropout(0.5))
model.add(Dense(1))
model.add(Activation('linear'))
             clipvalue=5)
early stopping = EarlyStopping(monitor='val loss', patience=10)
model.fit(train vectors, sentiment values, validation split=0.1.
```


Python libraries used

- 1. Scikit-learn for the SVR http://scikit-learn.org/stable/
- 2. Keras for the BLSTMs https://keras.io/

Summary

- 1. BLSTM outperform SVRs with minimal feature engineering.
- 2. Define your evaluation metric with regards to your real world problem.
- 3. Ensure that you know your evaluation metric before creating your system.

Questions?

a.moore@lancaster.ac.uk

@apmoore94

All the code can be found here 12

Presentation can be found here 13

¹² https://github.com/apmoore1/semeval

¹³https://github.com/apmoore1/semeval/blob/master/presentation/slides.pdf

References I

J. Chiu and E. Nichols.

Named entity recognition with bidirectional Istm-cnns.

Transactions of the Association of Computational Linguistics, 4:357–370, 2016.

H. Drucker, C. J. Burges, L. Kaufman, A. Smola, V. Vapnik, et al. **Support vector regression machines.**

Advances in neural information processing systems, 9:155–161, 1997.

A. Graves and J. Schmidhuber.

Framewise phoneme classification with bidirectional lstm and other neural network architectures.

Neural Networks, 18(5):602-610, 2005.

References II

S. Hochreiter and J. Schmidhuber.

Long short-term memory.

Neural computation, 9(8):1735-1780, 1997.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word representations in vector space.

arXiv preprint arXiv:1301.3781, 2013.

Y. Wang, M. Huang, x. zhu, and L. Zhao.

Attention-based lstm for aspect-level sentiment classification.

In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 606-615. Association for Computational Linguistics, 2016.

References III

Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao, Q. Gao, K. Macherey, et al.

Google's neural machine translation system: Bridging the gap between human and machine translation.

arXiv preprint arXiv:1609.08144, 2016.