GROUP 8 Diego, Khushi, Thomas, Sac **STATUS**

52.5%

Sections of project and progress bars. All tasks are divided among team members. Digital Twin Simulation and Multicast Optimization for Software-Defined Optical Networks in Financial Exchanges

100% 50% 50% 10%

LITERATURE REVIEW

SIMULATION & DESIGN

MULTICAST ALGORITHM

FAIRNESS MECHANISM

01

02

03

04

LITERATURE

Papers totaled 37 pages to review. Had to consolidate notes somehow, used markdown files. Delegate and design project architecture.

SIMULATION

Installing Mininet and Ryu SDN Controller packages. Reading documentation. Debugging.

MULTICAST

Efficient VM hedging and Hold-And-Release Implementation to achieve effective throughput optimization.

FAIRNESS

Conducting evaluation by following processes in literature. How to recreate a live exchange trading network congestion?

FUTURE DEVELOPMENT PLANS

TOPOLOGY

An 8-node ring topology mimics a small-scale optical backbone, with high-bandwidth links (e.g., 10 Gbps) and low latency (e.g., 1 ms) to simulate optical properties.

DIGITAL TWIN

A Python script queries Mininet via OpenFlow to track network state (e.g., bandwidth usage, queue lengths), serving as the digital twin for real-time monitoring and optimization.

MULTICAST

Adapt Jasper's multicast tree algorithm, coded in Python, to distribute financial data fairly across nodes, tested with iperf-generated traffic.

TESTING

Synthetic financial traffic (e.g., stock updates) is injected, and CloudEx and DBO mechanisms are simulated for comparison, measuring latency, jitter, and fairness.