Final Project Report

Title: Smart Sorting: Transfer Learning for Identifying Rotten Fruits and Vegetables

Team ID: LTVIP2025TMID43537

College: SWARNANDHRA COLLEGE OF ENGINEERING AND TECHNOLOGY

Date: June 30, 2025

Abstract

MobileNetV2

Flask

In the agriculture and food industry, identifying spoiled produce is essential to prevent contamination and reduce waste. Manual sorting of fruits is time-consuming, inconsistent, and prone to human error. This project proposes a smart solution using deep learning and transfer learning to automatically classify fruits as fresh or rotten.

A MobileNetV2-based model is fine-tuned and trained on a labeled dataset of fruits. The system is deployed using a Flask web application, enabling users to upload images and get real-time predictions. The model achieves high accuracy with minimal resources and can significantly aid the food industry.

Develop a model that classifies fruits as fresh or rotten. Reduce human involvement in fruit quality inspection. Provide a real-time interface using a web application. Apply transfer learning for efficient training and high accuracy. Technologies Used Python TensorFlow / Keras

HTML / CSS
Google Colab
Pillow (for image handling)
□ Dataset
The dataset used includes labeled images of common fruits (apples, bananas, oranges) categorized as fresh or rotten. The dataset was collected from online sources and split into:
70% Training
20% Validation
10% Testing
Images were resized to 224x224 and normalized for consistent input to the CNN model.
⚠ Methodology
Data Preprocessing: Images were resized and normalized.
Data Augmentation: Flip, zoom, and rotation techniques were applied.
Model Building: MobileNetV2 used as a base with custom dense layers.
Model Training: Model trained with early stopping on validation loss.
Deployment: A Flask-based web app accepts images and shows predictions instantly.

Results Achieved ~94% accuracy on validation data
Fast predictions (<1 second)
Works across multiple fruit types
Lightweight model using transfer learning
■ Web Application Interface Screenshot showing the prediction UI
(Insert the screenshot image below the title in your Word/Docs file) Caption: "Flask Web App – Predicting Rotten Fruit"

Team Details

Team ID: LTVIP2025TMID43537

Team Leader:

Name: Krupakar Injeti

Roll No: 22A21A5429

Branch: AI&DS

Team Members:

Triveni Yadlapalli

Roll No: 24A21F00L8

Branch: MCA

Varre Anjani Durga

Roll No: 23A21A6425

Branch: Robotics

Satyanarayana Kali

Roll No: 23A21A6141

Branch: AI&DS

☐ Conclusion

This project demonstrates the effective use of transfer learning for automating fruit quality inspection. It reduces manual labor and errors, offering a scalable and efficient system for use in agriculture and food processing industries. The web app can be extended with camera input and deployed on IoT devices for real-time monitoring.

References

TensorFlow Documentation – https://www.tensorflow.org

Keras API – https://keras.io

MobileNetV2 Paper – https://arxiv.org/abs/1801.04381

Flask Framework – https://flask.palletsprojects.com

Roboflow Datasets – https://roboflow.com