an 1

The number of electric lines of force that intersect a given area which in the property of an electric field in called electric blun

0 = EA Con O

		Coy				1
Sub:		Time :	Date :	1	7	

am 5:

(i)

E = 3.0 m N/c

a = 11 cm = 0.11m

NOW,

Q 6 5 5 - 9 E - 9

E = 3. m, N/C.

= 0.003 N/C

P & Blun = - \$0.03 x d A

Plux, dine = -0.03 x 7 (0.11)

Palux, dine - 63-630A 840 Nm7e

\$2100, net - 2336x1 xf8 N m2/c

L

Day					
THE RESIDENCE OF THE PARTY OF	and the same		T	1	January J
Thine :	#135 and the selection	Deba I	7	7	a granden o

$$k = 9 \times 10^9$$
 $e = 1.6 \times 10^{-19}$
 $\pi = 10.5 \times 10^{-150}$

$$= 4 \pi \epsilon_0$$

$$= (9 \times 10^9) \times (0.5 \times 10^{-19})$$

$$= 5.26 \times 10^2 \text{ Ne}$$

$$= 4 \pi \epsilon_0$$

$$= (9 \times 10^9) \times (0.5 \times 10^{-15})$$

Day		
nme:	Date: /	

Gnn 4 ...

ery				
lme :	Date:	1	1	

On 3

$$= 2 \times (0.78 \times 10^{-9})$$

$$= 1.56 \times 10^{-19} cm$$

$$=(1.56\times10^{-19})\times(3.9\times10^{6})\times1$$

D)				-	THE RESERVE TO	-
				-	-	1
	_	 Dnte	-	7	7	
		Dura	4.	,	,	

(V)

$$T_{\text{max}} = PESin(90^{\circ})$$

= $(1.56 \times 10^{-19}) \times (3.4 \times 10^{6}) \times 1$
= $5.304 \times 10^{-13} \text{Nm}$

(v)

Am