

FÍSICA NIVEL MEDIO PRUEBA 3

Viernes 11 de mayo de 2012 (mañana)

1 hora

Numero de convocatoria del alumno									
0	0								

Código del examen

2	2	1	2	_	6	5	3	0

INSTRUCCIONES PARA LOS ALUMNOS

- Escriba su número de convocatoria en las casillas de arriba.
- No abra esta prueba hasta que se lo autoricen.
- Conteste todas las preguntas de dos de las opciones.
- Escriba sus respuestas en las casillas provistas.
- En esta prueba es necesario usar una calculadora.
- Se necesita una copia sin anotaciones del *cuadernillo de datos de Física* para esta prueba.
- La puntuación máxima para esta prueba de examen es [40 puntos].

No escriba en esta página.

Las respuestas que se escriban en esta página no serán corregidas.

Opción A — Visión y fenómenos ondulatorios

A1. Esta pregunta trata de la visión.

(a)	(i)	Describa qué quiere decir profundidad de visión.	[2]
	(ii)	Indique un factor que pueda afectar a la profundidad de visión.	[1]
(b)		re un filtro incide un haz de luz blanca. Después de la transmisión a través del filtro, blor del haz es amarillo.	
	Exp	lique esta observación utilizando las ideas de sustracción y adición de colores.	[2]

A2. Esta pregunta trata de las ondas estacionarias.

(a)	Indique un aspecto en el que una onda estacionaria difiere de una onda progresiva (o viajera).	[1]
(b)	Se coloca un altavoz conectado a un generador de señales delante del extremo abierto de un tubo.	

Se hace aumentar lentamente la frecuencia del sonido desde cero. A una frecuencia de 92,0 Hz se oye el primer incremento grande en la intensidad del sonido.

(i)	Sobre el anterior diagrama, dibuje una representación de la onda en el tubo para la frecuencia de 92,0 Hz.	[1]
(ii)	Si la longitud del tubo es de 0,910 m, determine la velocidad del sonido en el tubo.	[2]

(Pregunta A2: continuación)

(c)	Se hace aumentar de manera continua la frecuencia del sonido por encima de 92,0 Hz.									
	Calcule la frecuencia a la que se oirá el siguiente incremento grande en la intensidad del sonido.	[2]								

A3. Esta pregunta trata de la resolución.

A través de una abertura circular pasa luz procedente de dos fuentes puntuales monocromáticas y se observa sobre una pantalla.

La gráfica muestra cómo la intensidad I de la luz sobre la pantalla varía con el ángulo θ .

Las dos fuentes están apenas resueltas según el criterio de Rayleigh.

(a)	Indique qué quiere decir resuelto en este contexto.	[1]

(Pregunta A3: continuación)

(b) La longitud de onda de la luz procedente de ambas fuentes es de 528 nm. La distancia de las dos fuentes a la abertura es de 1,60 m.

A partir de los datos de la gráfica de enfrente, determine

(1)	la separación de las dos fuentes.	[2
(ii)	el diámetro de la abertura.	[1

A4. Esta pregunta trata de la polarización.

(a)	indique que se entiende por luz polarizada.	[1]

Sobre un polarizador incide luz de intensidad I_0 . El eje de transmisión del polarizador es vertical. Se hace rotar el polarizador un ángulo θ en torno a la dirección de la luz incidente. Se mide la intensidad de la luz transmitida para diversos ángulos θ .

Sobre los ejes siguientes, esquematice gráficas que muestren la variación de la intensidad transmitida I frente a θ cuando la luz incidente está

(Pregunta A4: continuación)

(ii) no polarizada.

[2]

Opción B — Física cuántica y física nuclear

(a)	Des	criba el concepto del fotón.				
			_			
(b)		el efecto fotoeléctrico existe una frecuencia umbral por debajo de la cual no se produce guna emisión de fotoelectrones.				
 (b) En el efecto fotoeléctrico existe una frecuencia umbral por debajo de la cual no se prininguna emisión de fotoelectrones. Resuma cómo (i) la teoría ondulatoria de la luz no consigue explicar esta observación. 						
	(i)	la teoría ondulatoria de la luz no consigue explicar esta observación.				
	(ii)	los conceptos del fotón y función de trabajo sí consiguen explicar esta observación.				

(Pregunta B1: continuación)

(c)	Sobre una	superficie	de	metal	limpia	incide	luz	con	longitud	de	onda	de	420 nm.
	La función de trabajo del metal es de 2,0 eV.												

Determine

(i)	la frecuencia umbral para este metal.	[2]
(ii)	la energía cinética máxima en eV de los electrones emitidos.	[4]

B2.	Esta pregunta	trata de lo	os niveles nuo	cleares de	energía v	de la desin	tegración r	nuclear.

(a)	El isótopo bismuto-212 sufre desintegración-α dando lugar a un isótopo de talio. En esta
	desintegración se produce también un fotón (rayo gamma). El isótopo potasio-40 sufre
	una desintegración β ⁺ dando lugar a un isótopo de argón.

Resuma cómo

(i)	el espectro de partículas α y el espectro gamma de la desintegración del bismuto-212 proporcionan evidencia de la existencia de niveles de energía nucleares discretos.	[3]
(ii)	el espectro β^+ de la desintegración del potasio-40 llevó a que se postulara	
	la existencia del neutrino.	[2]

(Pregunta B2: continuación)

(b) El isótopo potasio-40 existe de manera natural en muchas formaciones rocosas. En una muestra concreta de rocas se encuentra que, del número total de átomos de argón y de potasio-40, el 23 % son átomos de potasio-40.

Determine la edad de la muestra de rocas. La constante de desintegración para el potasio-40 es de 5.3×10^{-10} año⁻¹.

	1	7
- /	≺	1
•	J	1

[3]

Opción C — Tecnología digital

- C1. Esta pregunta trata de los aparatos digitales.
 - Tanto los CD como los discos de vinilo de larga duración (LP) se pueden utilizar para (a) almacenar y reproducir sonidos musicales.

Resu	esuma las diferencias entre estos dos métodos para almacenar sonidos musicales.	
CD:		
LP:		

(Pregunta C1: continuación)

(b)	En un CD concreto, la longitud de onda de la luz láser utilizada para leer los sonidos musicales almacenados es de 720 nm.	
	Determine, explicando su respuesta, la profundidad d de un pozo en la superficie del CD.	[3]

(Pregunta C1: continuación)

(c)	Un dispositivo acoplado por carga (CCD), a diferencia de un CD de audio, almacena
	imágenes ópticas. La superficie de un CCD está dividida en pequeñas regiones llamadas
	píxeles. Cada píxel se comporta como un capacitor con capacitancia C.

(i)	Defina capacitancia.	[1]
(ii)	Un píxel de un CCD concreto tiene una capacitancia de C =20 pF y un rendimiento cuántico del 80%. Se ilumina el píxel con luz durante un período breve de tiempo, de modo que el potencial eléctrico del píxel varía en 0,18 mV.	
	Estime el número de fotones que inciden sobre el píxel en este período de tiempo.	[3]

C2. Esta pregunta trata de un amplificador operacional.

El diagrama muestra un circuito de amplificador operacional en configuración no inversora.

(a)	Los valores de los resistores del circuito son de $800 \mathrm{k}\Omega$ y $100 \mathrm{k}\Omega$, tal como se muestra en	
	el diagrama. Calcule la ganancia del amplificador.	[2]

 	 	• • • • • • • • • • • • • • • • • • • •

(Pregunta C2: continuación)

/	1 \	T 1'	1	1	. 1 1 1	1	1.0 1	. 1
1	h	i Explique	en términos de	e las nro	niedades d	le iin ami	Miticador o	neracional
1	\mathbf{v}	, Explique,	cii terriminos de	lus pro	preduces d	ic all alli	Jiiiicaaoi o	peracionar,

(i)	por qué no hay diferencia de potencial entre los puntos X e Y cuando el circuito funciona correctamente.	[3]
(ii)	por qué la corriente eléctrica en los resistores de $800\mathrm{k}\Omega$ y $100\mathrm{k}\Omega$ es la misma.	[1]

Esta pregunta trata de la comunicacion celular en telefonía móvil.

(a) Resuma el papel de la comunicacion celular en una red de telefonía móvil.

[3]

(b) Indique **un** aspecto medioambiental que considere que se deriva del uso de comunicaciones celulares en una red de telefonía móvil.

[1]

Opción D — Relatividad y física de partículas

D1. Esta pregunta trata de la simultaneidad.

	Ι	n	di	q	ue	9	el	ľ)(S	tı	u]	la	d	o) (de	•]	la	r	e	la	ıt	iv	/i	d	la	d	(es	sp	e	c	ia	ıl	C	Įu	e	S	e	re	el	a	ci	O1	na	1 (cc	n	1	a	V	e]	lo	c	id	a	d	d	e	18	1	lu	Z.	
_																																																																	
	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•		•	•	•	•		•	•	•	•		•	•	•	•	•		•	•	•	•		

(Pregunta D1: continuación)

(b) Un cohete que se desplaza a una velocidad relativista pasa junto a un observador que se encuentra en reposo en el suelo y equidistante de dos árboles L y R. En el momento en que un observador que está en el cohete se encuentra frente al observador en el suelo, un relámpago impacta en L y R al mismo tiempo según el observador del suelo. La luz de los impactos alcanza al observador del cohete así como al observador del suelo.

		•	•	•	•	•	•	•	•	•		•	•		•		 	•	•		 •	٠	•	 ٠	•	•	 	•	•		 •	•	•	•	•	•		•	٠	•	

el árbol R habría sufrido el impacto del relámpago antes que el árbol L.

[2]

D2. Esta pregunta trata de la cinemática relativista.

(b)

Se emite un pulso corto que contiene muchos núcleos de un isótopo radiactivo desde una fuente S en un laboratorio. Los núcleos tienen una velocidad v=0.920c medida con respecto al laboratorio.

El pulso llega a un detector D. El detector se encuentra a 250 m de distancia, tal como lo mide un observador en el laboratorio.

Calcule el tiempo que le lleva al pulso desplazarse de S a D, según (a)

(i)	un observador en el laboratorio.	[1]
(ii)	un observador Q que se mueve con el pulso.	[2]
Calc	cule la distancia entre la fuente S y el detector D según el observador Q.	[1]

(Pregunta D2: continuación)

(c) Según el observador del laboratorio, cuando el pulso llega a D se ha desintegrado la mitad de los núcleos.

Indique si la fracción de los núcleos que se han desintegrado según el observador Q es menor que, igual a, \mathbf{o} mayor que $\frac{1}{2}$.

[1]

							•	 																									

D3. Esta pregunta trata de la desintegración de un kaón.

Un kaón (K^+) es un mesón que consiste en un quark *up* y un quark *anti-strange*.

(a) Sugiera por qué el kaón está clasificado como bosón.

[2]

(b) Un kaón se desintegra en un antimuón y un neutrino, $K^+ \to \mu^+ + \nu$. El diagrama de Feynman de la desintegración se muestra a continuación.

(i) Indique cuáles son las **dos** partículas rotuladas como X e Y. [2]

X:	
Y:	

(Pregunta D3: continuación)

(ii)	Explique cómo puede deducirse que esta desintegración tiene lugar a través de la interacción débil.	[2]
(iii)	Indique el nombre y signo de la carga eléctrica de la partícula rotulada como A.	[2]
	Nombre:	
	Signo:	
(iv)	La masa de la partícula en (b)(iii) es de 1,4×10 ⁻²⁵ kg. Determine el alcance de la interacción débil que interviene en esta desintegración.	[2]

Opción E — Astrofísica

- **E1.** Esta pregunta trata de algunas de las propiedades de la estrella Aldebarán y también de las distancias galácticas.
 - (a) Aldebarán es una estrella gigante roja en la constelación de Tauro.

(i)	Describa las diferencias entre una constelación y un cúmulo estelar.	[3]
(ii)	Defina la <i>luminosidad</i> de una estrella.	[1]
(11)	Defina la tummostata de una estrena.	[1]
(iii)	El brillo aparente de Aldebarán es de $3.3 \times 10^{-8} \mathrm{W m^{-2}}$ y la luminosidad del Sol es de $3.9 \times 10^{26} \mathrm{W}$. Si la luminosidad de Aldebarán es 370 veces la del Sol, demuestre que Aldebarán se encuentra a una distancia de 19 pc de la Tierra. (1 pc= $3.1 \times 10^{16} \mathrm{m}$)	[3]

(Pregunta E1: continuación)

(b)

(c)

Lan	nagnitud aparente de Aldebarán es de 0,75.	
(i)	Indique qué se entiende por magnitud aparente de una estrella.	[1]
(ii)	Utilice la respuesta a (a)(iii) para determinar la magnitud absoluta de Aldebarán.	[2]
Teni	listancia a las galaxias puede determinarse mediante las estrellas variables cefeidas. dendo en cuenta la naturaleza y las propiedades de las estrellas variables cefeidas, ique cómo se utilizan estas estrellas para determinar las distancias galácticas.	[5]

E2. Esta pregunta trata del desarrollo del universo.

	ег	ın	a,	, (n	r	el	ac	2i	Ó1	n	c	0	n	e	:1	n	10	Э(le	el	0	p)la	aı	no	С	d	el	u	ın	ίİ	/e	rs	0	,	la	a	lei	ns	ic	la	ıd	C	cr	íti	ic	a	•						
									_	_	_			_	_	_	_		_				_			_	_		_	_	_																								
					•		•		•		•							•				•								•														•			•			•					•
											-																			-														-						-					
											-																			-														-						-					

(Pregunta E2: continuación)

(b) El diagrama representa cómo podría desarrollarse el universo si su densidad fuera mayor que la densidad crítica.

La línea a trazos representa el desarrollo del universo si su densidad fuera cero.

Sobre el diagrama anterior,

- (i) rotule con la letra N el tiempo actual. [1]
- (ii) dibuje una línea rotulada como F que represente el desarrollo del universo que correspondería a un universo plano. [1]
- (iii) dibuje una línea rotulada como O que represente el desarrollo del universo que correspondería a un universo con densidad menor que la densidad crítica. [1]

Opción F — Comunicaciones

LSta	pregu	inta trata de las transmisiones por radio.	
(a)		criba, en relación a la amplitud de la onda de señal, cómo varía la frecuencia de onda portadora en la transmisión por radio en frecuencia modulada (FM).	[2]
(b)		onda portadora modulada en amplitud (AM) con frecuencia de 190 kHz se ve lulada por una onda de señal cuya frecuencia es de 5,0 kHz.	
	(i)	Indique las frecuencias transmitidas en la señal AM.	[2]
	(ii)	La frecuencia de esta señal de radio AM se encuentra dentro de la banda europea de radio de onda larga que tiene asignadas frecuencias entre 149 kHz y 284 kHz.	
		Determine el máximo número de emisoras de radio que pueden transmitir la señal de radio en esta banda de frecuencias.	[2]

(Pregunta F1: continuación)

(c) Indique y explique el papel de los bloques B y C en el receptor de radio básico que se muestra. [5]

A

amplificador C

amplificador af

altavoz

Explicación:	
Bloque C:	
Explicación:	

[3]

- **F2.** Esta pregunta trata de la transmisión de señales digitales en una fibra óptica.
 - (a) El diagrama muestra señales digitales A, B, C, ... que llegan simultáneamente a un multiplexor por división de tiempo.

Explique cómo se pueden enviar a lo largo de la fibra óptica única X grandes cantidades de señales digitales de audio muestreadas.

٠	٠	•	•	 •	•	•	•	•	•	•	•	•	•	 •	•	•	•	•	•	•	•	•	•	•	•	 •	•	•	•	٠	•	•	 •	•	٠	•	•	 	•	•	٠	•	٠	•	 	٠	•	•	•	•	•	 	 •	•	
				 																																		 						-	 							 			

(b) La potencia de entrada en la fibra óptica única X es de $25\,\text{mW}$. La señal necesita ser amplificada cuando la potencia se atenúa hasta $4.0\times10^{-19}\,\text{W}$. La pérdida por atenuación en la fibra óptica es de $1.8\,\text{dB\,km}^{-1}$.

Calcule la distancia máxima entre amplificadores en el sistema. [3]

•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•		 •	•	•	•	•		•	•	•	•	٠	٠	٠	٠	٠	٠	•	•	•	•	•	•	•	•	•	• •		•	•	•	•	•	•	•	 •	•	•	•	•	•	•	 •	•		
•	•	•	•	•	•		•	•	•	•	•	•	•	•	٠	•	•	• •	 •	•	•	•	•	٠.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	 •	•	•	•	•	•	•	 •	•		
	•	•	•	•	•	• •	•	•	•	•	•	•	٠	•	•	•	•	•	 •	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	 •	•	•	•	•	•	•	 •	٠		
		•	•	•				•	•			•	•	•		•	•		 								•	•	•	•	•	•	•	•	•	•	•								 			•		•	•					•	•						

(Pregunta F2: continuación)

(c) En un sistema de multiplexación por división de tiempo, se lleva a cabo el muestreo a un ritmo de 32 kHz. La duración de cada muestra es de 50 ns.

Determine el número de canales separados que puede transmitir el sistema.	[3]

 	•	 •	•	 ٠	 •	 ٠	 ٠	 ٠	•	 ٠	•	 •	•	 ٠	•	 •	 ٠	 	•	 ٠	 ٠	 •	•	 •	 	٠	٠	 ٠	•	
		 	_						_				_					 				 	_		 					
 																											•	 •	•	
 	•	 •	•	 •	 ٠	 •	 ٠	 ٠	•	 ٠	•	 •	•	 ٠	•	 •	 ٠	 		 •	 •	 •	•	 •	 	٠	•	 ٠	•	
 		 •													•			 				 •		 •	 				•	

No escriba en esta página.

Las respuestas que se escriban en esta página no serán corregidas.

Opción G — Ondas electromagnéticas

G1. Esta pregunta trata de la naturaleza de las ondas electromagnéticas.

(a)	Resuma que se entiende por onda electromagnetica.	[2]
(b)	Indique dos casos en que los electrones pueden producir ondas electromagnéticas.	[2]

G2. Esta pregunta trata de un telescopio astronómico.

Se utiliza un telescopio astronómico concreto para observar la Luna. El diagrama de rayos muestra la posición P de la imagen intermedia de la Luna formada por la lente objetivo.

El telescopio se encuentra en ajuste normal.

- (a) Sobre el diagrama anterior,
 - (i) rotule con la letra F los **dos** puntos focales de la lente ocular. [1]
 - (ii) dibuje rayos que determinen la localización de la imagen final de la Luna. [3]

[2]

[2]

(Pregunta G2: continuación)

(b) El diámetro de la Luna describe un ángulo de 8.7×10^{-3} rad al ojo desnudo.

(i)	Determine el diámetro de la imagen de la Luna formada por la lente objetivo.

(ii) Si la longitud focal del ocular es de 30 cm, calcule el ángulo que describe la imagen final de la Luna en el ocular.

- **G3.** Esta pregunta trata de la interferencia con dos fuentes.
 - (a) La luz de una fuente monocromática incide en perpendicular sobre dos rendijas. Tras atravesar las rendijas, la luz incide sobre una pantalla distante. El punto M es el punto medio de la pantalla.

La separación de las rendijas es grande en comparación con su anchura. Sobre la pantalla se observa un patrón de franjas brillantes y oscuras.

(i)	Indique el fenómeno que permite a la luz alcanzar el punto M sobre la pantalla.	[1]

(ii) Sobre los ejes siguientes, esquematice la intensidad de la luz como se observaría sobre la pantalla en función del ángulo θ . (No hay que poner ningún número sobre los ejes.)

(Pregunta G3: continuación)

(iii)	La distancia a la	pantalla desde	e las rendijas	s es de 1,8 n	n y la separa	ción entre rendija	1S
	es de 0,12 mm.	La longitud	de onda de	la luz es c	de 650 nm.	El punto Q sobi	re
	la pantalla mues	stra la posición	n de la prime	era franja o	scura.		

Calcul	e la distancia MQ.
Sugiera por	qué, no se pierde energía, a pesar de haber franjas oscuras en el patrón.
Sugiera por	qué, no se pierde energía, a pesar de haber franjas oscuras en el patrón.
Sugiera por	qué, no se pierde energía, a pesar de haber franjas oscuras en el patrón.

No escriba en esta página.

Las respuestas que se escriban en esta página no serán corregidas.

