BROWN UNIVERSITY PROBLEM SET 2

INSTRUCTOR: SAMUEL S. WATSON
DUE: 22 SEPTEMBER 2017

Print out these pages, including the additional space at the end, and complete the problems by hand. Then use Gradescope to scan and upload the entire packet by 18:00 on the due date.

Problem 1
If a and b are scalars and \mathbf{u} is a vector in \mathbb{R}^3 , then $(ab)\mathbf{u} = a(b\mathbf{u})$. Explain the difference between the meaning of $(ab)\mathbf{u}$ and the meaning of $a(b\mathbf{u})$ and use coordinates to show that the two sides are in fact equal.
Solution
Duolalom 2
Problem 2
Problem 2 Suppose that \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors such that $\mathbf{u} \cdot \mathbf{v} = 3$, $ \mathbf{u} = 4$, $ \mathbf{w} = 2$, and the cosine of the angle between \mathbf{u} and \mathbf{w} is $\frac{3}{4}$. Show that \mathbf{u} is perpendicular to $-2\mathbf{v} + \mathbf{w}$.
Suppose that \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors such that $\mathbf{u} \cdot \mathbf{v} = 3$, $ \mathbf{u} = 4$, $ \mathbf{w} = 2$, and the cosine of the angle between \mathbf{u} and \mathbf{w} is $\frac{3}{4}$. Show that \mathbf{u} is perpendicular to $-2\mathbf{v} + \mathbf{w}$.
Suppose that \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors such that $\mathbf{u} \cdot \mathbf{v} = 3$, $ \mathbf{u} = 4$, $ \mathbf{w} = 2$, and the cosine of the angle between \mathbf{u} and
Suppose that \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors such that $\mathbf{u} \cdot \mathbf{v} = 3$, $ \mathbf{u} = 4$, $ \mathbf{w} = 2$, and the cosine of the angle between \mathbf{u} and \mathbf{w} is $\frac{3}{4}$. Show that \mathbf{u} is perpendicular to $-2\mathbf{v} + \mathbf{w}$.
Suppose that \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors such that $\mathbf{u} \cdot \mathbf{v} = 3$, $ \mathbf{u} = 4$, $ \mathbf{w} = 2$, and the cosine of the angle between \mathbf{u} and \mathbf{w} is $\frac{3}{4}$. Show that \mathbf{u} is perpendicular to $-2\mathbf{v} + \mathbf{w}$.
Suppose that \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors such that $\mathbf{u} \cdot \mathbf{v} = 3$, $ \mathbf{u} = 4$, $ \mathbf{w} = 2$, and the cosine of the angle between \mathbf{u} and \mathbf{w} is $\frac{3}{4}$. Show that \mathbf{u} is perpendicular to $-2\mathbf{v} + \mathbf{w}$.
Suppose that \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors such that $\mathbf{u} \cdot \mathbf{v} = 3$, $ \mathbf{u} = 4$, $ \mathbf{w} = 2$, and the cosine of the angle between \mathbf{u} and \mathbf{w} is $\frac{3}{4}$. Show that \mathbf{u} is perpendicular to $-2\mathbf{v} + \mathbf{w}$.
Suppose that \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors such that $\mathbf{u} \cdot \mathbf{v} = 3$, $ \mathbf{u} = 4$, $ \mathbf{w} = 2$, and the cosine of the angle between \mathbf{u} and \mathbf{w} is $\frac{3}{4}$. Show that \mathbf{u} is perpendicular to $-2\mathbf{v} + \mathbf{w}$.
Suppose that \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors such that $\mathbf{u} \cdot \mathbf{v} = 3$, $ \mathbf{u} = 4$, $ \mathbf{w} = 2$, and the cosine of the angle between \mathbf{u} and \mathbf{w} is $\frac{3}{4}$. Show that \mathbf{u} is perpendicular to $-2\mathbf{v} + \mathbf{w}$.
Suppose that \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors such that $\mathbf{u} \cdot \mathbf{v} = 3$, $ \mathbf{u} = 4$, $ \mathbf{w} = 2$, and the cosine of the angle between \mathbf{u} and \mathbf{w} is $\frac{3}{4}$. Show that \mathbf{u} is perpendicular to $-2\mathbf{v} + \mathbf{w}$.
Suppose that \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors such that $\mathbf{u} \cdot \mathbf{v} = 3$, $ \mathbf{u} = 4$, $ \mathbf{w} = 2$, and the cosine of the angle between \mathbf{u} and \mathbf{w} is $\frac{3}{4}$. Show that \mathbf{u} is perpendicular to $-2\mathbf{v} + \mathbf{w}$.
Suppose that \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors such that $\mathbf{u} \cdot \mathbf{v} = 3$, $ \mathbf{u} = 4$, $ \mathbf{w} = 2$, and the cosine of the angle between \mathbf{u} and \mathbf{w} is $\frac{3}{4}$. Show that \mathbf{u} is perpendicular to $-2\mathbf{v} + \mathbf{w}$.
Suppose that \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors such that $\mathbf{u} \cdot \mathbf{v} = 3$, $ \mathbf{u} = 4$, $ \mathbf{w} = 2$, and the cosine of the angle between \mathbf{u} and \mathbf{w} is $\frac{3}{4}$. Show that \mathbf{u} is perpendicular to $-2\mathbf{v} + \mathbf{w}$.

Problem 3

Find the determinant of each of the following matrices, and draw the image of the unit square under the corresponding linear transformations to see that value of the determinant you computed makes sense.

(a)
$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$$

$$(c) \left[\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right]$$

$$(d) \left[\begin{array}{cc} 2 & 1 \\ 4 & 2 \end{array} \right]$$

Solution	

Problem 4
Find two vectors \mathbf{u} and \mathbf{v} which are both perpendicular to $\langle -1,4,3 \rangle$ and are perpendicular to each other.
Solution
Problem 5
Use dot products to show that the diagonals of a parallelogram have the same length if and only if the parallelogram
is a rectangle. (Hints: let a and b be vectors along two sides of the parallelogram, and express vectors running along the diagonals in terms of a and b .)
Solution

Problem 6	
Find the distance from	in the origin to the plane $x + 2y + 3z = 6$.
Solution	
Problem 7	
The line L_1 is describe	ed by the parametric equation $(x(t), y(t), z(t)) = (3 + 2t, t, 4)$, and the line L_2 passes through
the points $P(2,1,-3)$ a Find the shortest poss	and $Q(0,8,4)$. These two lines are <i>skew</i> , meaning that they do not intersect and are not parallel. sible distance between a point on L_1 and a point on L_2 .
Solution	
Solution	

Additional space	