Soil Sensing for Measuring and Mapping Soils

ISRIC Springschool 2018

Titia Mulder

Outline

- Fundamentals of spectroscopy
- Available techniques & Scales
- Spectral-based soil information
- Digital Soil Mapping example
- Points of consideration

Questions

- ${f 1.}$ Which different soil sensing techniques are available
- 2. What are the typical scales of the different soil sensing techniques and devices
- 3. How can sensing techniques complement traditional soil inventories
- 4. What are the main challenges of using soil sensing techniques

1. Fundamentals of spectroscopy for environmental analysis

Q1 Which different soil sensing techniques are available

Measuring & Sensing technologies

- Measuring & monitoring
 - Cost effective
 - Non-destructive
 - Time efficient

Introduction Remote Sensing (RS)

- RS is the science/ are the techniques of deriving information about the Earth's land and water areas from images at a distance
- It relies upon measurement of electro-magnetic (EM) energy reflected or emitted from the objects of interest at the surface of the Earth

Sensing technologies: wavelengths, sensor, tools

- Remote Sensing
- Soil spectroscopy (VIS/NIR/MIR)
- Gamma-ray spectroscopy
- Electro Magnetic/Electrical Conductivity (EM/EC)
- Radar/Ground Penetrating Radar (GPR)
- Rontgen Diffraction (XRF)

Remote Sensing (RS)

- Low spectral resolution (i.e. few bands)
- Space or airborne
- High spatial coverage
- Temporal coverage
- Usage: Mapping & Monitoring

Remote Sensing (RS): Indices – MODIS NDVI

Proximal Sensing (PS)

- High spectral resolution (i.e. many bands)
- Airborne, field or laboratory
- Detailed information
- Usage: spectral library

Proximal vs Remote Sensing

Geophysical Sensing (GS) techniques

- Techniques:
 - Gamma-ray spectroscopy
 - ElectroMagnetic induction (EM)
 - Magnetics
 - Ground Penetrating Radar
- Field, drone, airborne

Gamma-ray spectroscopy

- -Soil texture (clay, loam, sand, soil organic matter)
- -Top 30 cm of the soil
- -Little sensitivity to soil water content

Ground Penetrating Lidar

- Reflection of radar signal in soil
- Soil structure/ abrupt texture changes
- Objects
- Fast
- 2 to 5 m depth

Ground Penetrating Radar (GPR)

2. Spectral-based soil information

- Inventory & auxiliary data
- Examples Remote and Proximal sensing for soils
- Obtaining data

Soil Sensing for Digital Soil Mapping

Soil sensing

- Extra tool in mapping: covariates.
- Choose technique based on question and scale.
- Remain proxies and are bound to physical laws.
- Ground truthing will always remain necessary.
- Provide highly detailed data in short time span at low cost.
- Fundamental knowledge of soil systems, geostatistics and measurement techniques is <u>crucial</u>.

Slide courtesy: Ir. F.M. Egmond, ISRIC World Soil Information Wageningen

Frequently used Remote Sensing methods

- Classification e.g. land use, delineation soil types
- Calculation of indices e.g. NDVI, SWI, ASTER GEOSCIENCE products (Tutorial)
- Spectral feature comparison e.g mineral mapping

Frequently used Proximal Sensing methods

- Spectral libraries & prediction models (Tutorial)
- Spectral deconvolution/Spectral Feature Analysis
- Memory-based learning

PS Spectral library

- Spectral library: large collection of soil sample and spectral data
- Calibration soil property prediction models
- Prediction of soil properties using only spectral data
- (Ideally) no need for expensive and time consuming chemical and physical lab analysis
- Methods: partial least squares regression (PLSR), random forest, cubist...etc.
- Usage: measuring & monitoring

PS Spectral library

- A global spectral library to characterize the world's soil
 - https://doi.org/10.1016/j.earscirev.2016.01.012
- Soil profile imaging
- SOC monitoring

PS Choice of Method

- Problem: Spectral mixing
- In this example: inference of mineralogy
 - 1. Many minerals in a single sample
 - 2. Absorption features not distinct

PS Choice of Method: spectral feature analysis

Mineral Identification & Classification Algorithm (MICA) USGS
 Processing Routines in IDL for Spectroscopic Measurements
 (PRISM)

— Dolomite

2400

2200

2300

Reflectance (nm)

Results

- Mineral categories
- Overall accuracy 52%

Mineral	Calcite- rich	Calcite- poor
Kaolinite	38	17
Smectite	6	27
Dioctahedral	40	34
Mica		

2100

PS Choice of Method: Spectral deconvolution

Method (Pompillio et al., 2009)

Results (natural samples)

3. Digital Soil Mapping Example

Courtesy: Ir. F.M. Egmond, ISRIC World Soil Information Wageningen

Understanding soil

7	Report vision preside	THE PARTY NAMED IN
	Affice retires	
616		
7		
reli	A	200
	Montpolico del rapa Sonte Facque	250
(B)		EL S

Lab analysis					
Finca	arcilla	Mat. Org.	Etc.		
1	Promedio	promedio			
2	promedio	Promedio			

Slide courtesy: Ir. F.M. Egmond ISRIC World Soil Information Wageningen

Example Falces - Navarra

4. Points for consideration

Q4 What are the main difficulties of using soil sensing techniques?

Before drawing conclusion think
about the meaning of the data in
relation to the target property

Key questions: Bare soil?

- Spectral signature bare soil
 - Commonly method: NDVI < 0.1-0.2
- Bare soil: some variability
 - Season, year, climate
 - Land use, cropping system
- No bare soil? Vegetation proxies when and which vegetation properties
 - Top of the growing season
 - Leave-on/leave off
 - Outside of growing season

Spectral resolution

- What are the spectral characteristics of my target property
- Are there satellites that can directly retrieve this information or do I need a higher spectral resolution and would airborne or proximal sensing be more appropriate
- Use of data as reflectance or actually only suitable for calculating indices?
- Do not forget the physical meaning of the data you work with and using it solely as statistical numerical dataset to optimize a prediction model

Other points

- Topography of the study area
- In mountainous areas many inaccuracies occur due to image distortions caused by differences in altitude and sloping areas
- What pre-processing has been performed on my data?
 - Think about the level of pre-processing and the possible limitations towards the prediction of the target variable
 - Atmospheric, topographic corrections, cloud removal etc.

Summary

- Many RS and PS sensing technologies and data sets available
- Valuable information
 - Spectral
 - Spatial
 - Temporal
- Many datasets in DSM rely on Remote Sensing
- Evaluate the use of data against your scientific goals

Tutorial: Soil Sensing - Measuring & Mapping soil properties

A case study in Morocco

Content

Part 1: Estimating soil properties using a spectral library

- Point data: VNIR-SWIR spectroscopy
- How to fit a Partial Least Squares Regression model (PLSR)
- How to use the PLSR for predicting soil properties using the spectral library

Part 2: Using satellite data for mapping soil properties

- Exhaustive spatial data: ASTER satellite data
- Spectral data and derived indices
- Stepwise Multiple Linear Regression (MLR)

