My researches

My reasearch focusses on:

- Deformation of polytopes:
 - * Deformation cone of nestohedra
 - * Deformation cone of graphical zonotopes
- Fiber polytopes:
 - * Monotone path polytopes of hypersimplices
 - \star Fiber polytopes for Cyclic(d, n) \to Cyclic(2, n)
- Pivot polytopes:
 - * Pivot polytopes of cyclic polytopes
 - * Pivot polytopes of product of simplices

My researches

My reasearch focusses on:

- Deformation of polytopes:
 - * Deformation cone of nestohedra
 - * Deformation cone of graphical zonotopes
- Fiber polytopes:
 - * Monotone path polytopes of hypersimplices
 - \star Fiber polytopes for Cyclic(d, n) \to Cyclic(2, n)
- Pivot polytopes:
 - * Pivot polytopes of cyclic polytopes
 - ⋆ Pivot polytopes of product of simplices

Monotone path polytopes of hypersimplex (n, 2)

1010

Shadow vertex rule and monotone paths

2 Hypersimplex $\Delta(n, k)$

3 Monotone path polytope of $\Delta(n,2)$

Optimization in dimension 2 (for linear programs):

Optimization in dimension 2 (for linear programs):

Goal: start at v_0 and find v_{opt} .

Optimization in dimension 2 (for linear programs):

Goal: start at v_0 and find v_{opt} .

Optimization in dimension 2 (for linear programs):

Goal: start at v_0 and find v_{opt} .

Optimization in dimension 2 (for linear programs): **EASY**! Goal: start at v_0 and find v_{opt} .

By convention, we always choose the upper path when optimizing.

Optimization in higher dimension: make it 2-dimensional!

Shadow vertex rule (i.e. "take the neighbor with the best slope"):

$$A^{\omega}(v) = \operatorname{argmax} \left\{ \frac{\langle \omega, u - v \rangle}{\langle \boldsymbol{c}, u - v \rangle}; u \text{ impr. neig. of } v \right\}$$

Monotone path polytope

```
Let \mathsf{P}\subset\mathbb{R}^d be a polytope. Shadow vertex rule: A^{\omega}(v)=\operatorname{argmax}\Big\{\frac{\langle \omega, u-v\rangle}{\langle c, u-v\rangle}; u \text{ impr. neig. of } v\Big\}.
```

Coherent monotone path: A monotone path that can be obtained via the shadow vertex rule: $v_{i+1} = A^{\omega}(v_i)$ for some ω .

Monotone path polytope

Let $\mathsf{P} \subset \mathbb{R}^d$ be a polytope.

Shadow vertex rule:
$$A^{\omega}(v) = \operatorname{argmax}\left\{\frac{\langle \omega, u-v \rangle}{\langle c, u-v \rangle}; u \text{ impr. neig. of } v\right\}$$
.

Coherent monotone path: A monotone path that can be obtained via the shadow vertex rule: $v_{i+1} = A^{\omega}(v_i)$ for some ω .

Monotone path polytope $\Sigma_{\pi}(P)$: Fiber polytope of $P \xrightarrow{\pi} Q$ with Q a segment. (Can be seen as a Minkowski sum of sections of P.)

The vertices of $\Sigma_{\pi}(P)$ are all coherent monotone paths.

Monotone path fan $\pi_c(P)$: $\omega \sim \omega'$ iff they induce the same monotone path.

This gives a polytopal fan.

Monotone path fan $\pi_c(P)$: $\omega \sim \omega'$ iff they induce the same monotone path.

This gives a polytopal fan.

The monotone path polytope is the dual of this fan.

Monotone path fan $\pi_c(P)$:

 $\omega \sim \omega'$ iff they induce the same monotone path.

This gives a polytopal fan.

The monotone path polytope is the dual of this fan.

For any *d*-simplex Δ_{d+1} , any π :

$$\Sigma_{\pi}(\Delta_{d+1}) = \mathsf{Cube}_{d-1}$$

For the cube Cube_d, any π :

$$\Sigma_{\pi}(\mathsf{Cube}_d) = \mathsf{Permuto}_{d-1}$$

Monotone path fan $\pi_c(P)$:

 $\omega \sim \omega'$ iff they induce the same monotone path.

This gives a polytopal fan.

The monotone path polytope is the dual of this fan.

For any d-simplex Δ_{d+1} , any π :

$$\Sigma_{\pi}(\Delta_{d+1}) = \mathsf{Cube}_{d-1}$$

For the cube Cube_d, any π :

$$\Sigma_{\pi}(\mathsf{Cube}_d) = \mathsf{Permuto}_{d-1}$$

$$\Sigma_{\pi}(\Delta_{d+1})$$
:

A monotone path = $(v_0, part of the vertices, v_{opt})$.

Choosing a monotone path = Choosing a part of the (d-1)-remaining vertices.

Exercise: Prove all such paths are coherent.

Hypersimplex $\Delta(n, k)$

Hypersimplex $\Delta(n, k)$

Fix $n \ge 1$ and $k \in [1, n - 1]$.

Definition

In \mathbb{R}^n , the hypersimplex $\Delta(n, k)$ is

$$\Delta(n,k) = \operatorname{conv}\left\{\mathbf{v} \in \{0,1\}^n : \sum v_i = k\right\}$$

Hypersimplex $\Delta(n, k)$

Fix $n \ge 1$ and $k \in [1, n-1]$.

Definition

In \mathbb{R}^n , the hypersimplex $\Delta(n, k)$ is

$$\Delta(n,k) = \operatorname{conv}\left\{\mathbf{v} \in \{0,1\}^n : \sum v_i = k\right\}$$

dimension: n-1

Number of vertices: $\binom{n}{k}$

It is a section of the standard cube by an hyperplane.

 $\Delta(n,1)$ and $\Delta(n,n-1)$ are simplices.

Monotone path polytope of $\Delta(n, 2)$

How many coherent monotone paths on $\Delta(n,2)$?

How many coherent monotone paths on $\Delta(n,2)$?

n	4	5	6	7	8	
Number of coherent paths	8	33	133	533	2133	???

Monotone path polytope of $\Delta(n, k)$

Monotone paths on $\Delta(n, k)$ \longleftrightarrow diagonal-avoiding lattice path in $[n]^k$.

Monotone path polytope of $\Delta(n, k)$

Monotone paths on $\Delta(n, k)$ \longleftrightarrow diagonal-avoiding lattice path in $[n]^k$. Denote each step of the lattice path $x \xrightarrow{z} y$ where z is the un-changed coordinate.

Theorem (Necessary criterion)

When $i \stackrel{a}{\to} j$ preceeds $x \stackrel{z}{\to} y$ in the path, then if x < j, then x = a or j = z.

Monotone path polytope of $\Delta(n, k)$

Monotone paths on $\Delta(n,k)$

 \longleftrightarrow diagonal-avoiding lattice path in $[n]^k$.

Denote each step of the lattice path $x \xrightarrow{z} y$ where z is the un-changed coordinate.

Theorem (Necessary criterion)

When $i \stackrel{a}{\to} j$ preceeds $x \stackrel{z}{\to} y$ in the path, then if x < j, then x = a or j = z.

Theorem

For k = 2, this criterion is sufficient!

 \Rightarrow bijection between vertices of $\Sigma_{\pi}(\Delta(n,2))$ and lattice paths with a simple property.

We can inductively describe the lattice paths at stake.

We can inductively describe the lattice paths at stake...

We can inductively describe the lattice paths at stake...

Lemma

Number of coherent paths : $t_n + q_n + c_n$ with

$$\forall n \geq 4, \quad \begin{pmatrix} t_{n+1} \\ q_{n+1} \\ c_{n+1} \end{pmatrix} = \begin{pmatrix} 1 & 2 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 2 \end{pmatrix} \begin{pmatrix} t_n \\ q_n \\ c_n \end{pmatrix} \quad with \quad \begin{pmatrix} t_4 \\ q_4 \\ c_4 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix}$$

We can inductively describe the lattice paths at stake...

Lemma

Number of coherent paths : $t_n + q_n + c_n$ with

$$\forall n \geq 4, \quad \begin{pmatrix} t_{n+1} \\ q_{n+1} \\ c_{n+1} \end{pmatrix} = \begin{pmatrix} 1 & 2 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 2 \end{pmatrix} \begin{pmatrix} t_n \\ q_n \\ c_n \end{pmatrix} \quad with \quad \begin{pmatrix} t_4 \\ q_4 \\ c_4 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix}$$

Theorem (Number vertices of $\Sigma_{\pi}(\Delta(n,2))$)

For $n \geq 4$, there are $\frac{1}{3}(25 \times 4^{n-4} - 1)$ coherent paths of size n. This is the number of vertices of $\Sigma_{\pi}(\Delta(n,2))$.

$$\frac{n}{\text{Nb of coherent paths}} \ \frac{4}{8} \ \frac{5}{33} \ \frac{6}{133} \ \dots \ \frac{1}{3}(25 \times 4^{n-4} - 1)$$

A conjecture on log-concavity

De Loera's conjecture

Conjecture (De Loera)

For any polytope P and generic objective function c, the sequence $(N_{\ell}; \ell \geq 1)$ of number of coherent monotone paths on P of length ℓ is a log-concave sequence.

Induction process (better)

 $v_{n,\ell}=$ number of coherent paths on $\Delta(n,2)$ of length ℓ . $V_n(z)=\sum_\ell v_{n,\ell}z^\ell$, generating polynomial

Lemma

Number of coherent paths : $V_n = T_n + Q_n + C_n$ with

$$\forall n \geq 4, \quad \begin{pmatrix} T_{n+1} \\ Q_{n+1} \\ C_{n+1} \end{pmatrix} = \begin{pmatrix} z & 1+z & 1+z \\ 0 & 1+z & z \\ z+z^2 & 0 & 1+z \end{pmatrix} \begin{pmatrix} T_n \\ Q_n \\ C_n \end{pmatrix}$$

$$with \quad \begin{pmatrix} T_4 \\ Q_4 \\ C_4 \end{pmatrix} = \begin{pmatrix} z^4 + 2z^3 \\ z^4 \\ 2z^4 + 2z^3 \end{pmatrix}$$

Induction process (better)

 $(v_{n,\ell})_{\ell}$ seems to be log-concave (here for n=50)...

Induction process (better)

 $(v_{n,\ell})_{\ell}$ seems to be log-concave (here for n=50)... but have resisted my attemps to prove it so.

Thank you for your attention!

