AI Dietician

Project Report submitted in the partial fulfillmentOf

Bachelor of TechnologyIn

Electronics and Telecommunications EngineeringBy

Kavish Shah C047 Manas Tripathi C067 Yash Murarka C068

Under the supervision of

Prof. Anjana Rodrigues

(Designation, EXTC Department, MPSTME)

SVKM's NMIMS

Mukesh Patel School of Technology Management and Engineering, Vile Parle, Mumbai- 400056

Department of Electronics & Telecommunication

Table of Contents

Chapter 1 Introduction

- 1. Background
- 2. Motivation and Scope
- 3. Problem Statement

Chapter 2 Literature survey

Chapter 3 Methodology and Implementation

- 1. Hardware Desciption
- 2. Software Description
- 3. Model Implemented

Chapter 4 Result and Analysis

References

Introduction

1.1 Background of the project topic:

The online artificial dietician is a bot with artificial intelligence about human diets. It acts as a diet consultant similar to a real dietician. Dieticians are educated with nutrient value of foods. A dietician consults a person based on his schedule, body type, height and weight. The artificial intelligence dietician too asks all this data from the user and processes it.

The aim is to develop an open-source project on which developers worldwide can contribute. This project would be a great nutrition-manager for the mankind.

1.2 Motivation and scope of the report:

Many people have a hectic schedule and often lack time to plan a proper diet. It is quite difficult to plan a healthy diet taking all factors into consideration. The project is still in progress and we hope to complete it with sll the modifications.

1.3 Problem statement:

An application created on the internet to enter in all your details e.g. height, weight, etc. and get a medically tested diet depending on your meal timings for your body type and measure of BMI (Body Mass Index).

Literature survey

Paper	Analysis	Implementations	Limitations
Application	This paper exhibits the advancement of	1) Generates a nutrient	1) Restricted to
of Artificial	computerized menu arranging framework	rich diet for children	children
Intelligence	for a nourishment direction application	2) Takes into account	2) Does not take
for Weekly	based on Sustenance Item (Milk, Tea,	availability of products	into account the
Meal	Coffee) Sustenance Availability(yes, no)	3) The diet can be	BMI of the child.
Planning for	Resemblance Factor(low, medium, high)	changed depending on	3) The input can be
Children	Category(Underweight, Normal,	requirements.	given only as
(Aug 2016)	Overweight) General Content of		positive or
	Nutrients(Low, Medium, High)		negative.
AI	The designed system is useful for	1) The system gives	1) Needs a unique
DIETICIAN	common people to maintain their health	diet plan to the users on	physical measuring
(Mar 2019)	by taking proper diet. We can develop a	mobile based on BMI	Apparatus
	system in which if the user is at a remote	and other factors.	2) Does not take
	place, he/she can send details through	2) This result represents	into account the
	SMS and system can send diet plan to	diet plan for obese	availability of food
	user.	people.	items.
		3)This result represents	3) Does not take
		diet plan for people	any inputs on basis
		having pcos disease.	of the effect from
			the user
Exploring	This research is the first report to	1) This paper	1) Does not give
Identifiers of	describe the use of natural language	determines what aspect	you a balanced diet
Research	processing and artificial intelligence	of the food helps in	plan.
Articles	techniques to extract and analyze data	what relation to the	
Related to	from literature via an automatic classifier.	organ.	

Food and		2) There is a thorough	2) Theoretical
Disease using		research conducted on	paper with no
Artificial		basic problems such as	applications
Intelligence		heart attack and which	
(Nov 2018)		foods help in avoiding	
		the same.	
Machine	In this paper, we built a measurement	1) Technique is	1) Requires a
Learning	method that approximate the amount of	successfully applied on	physical measuring
Methods	calories from an image by computing the	a variety of food and	apparatus
Analysis For	volume of the fruit or vegetable from the	vegetables.	2) The hardware is
Calories	image and using nutrition facts tables to	2) The hardware gives a	very complex to
Measurement	calculate the amount of calories in fruits	perfect calorie	build
of Fruits and	and vegetables.	measurement	3) Restricted to
Vegetables		irrespective of the size	fruits and
		and shape.	vegetables and not
			cooked meals.

Methodology and Implementation

1. Hardware description:

- The current project is a web-app model which is purely software based.
- In future, additional hardware integration is possible. (Fitness bands, weighing scales, BFP callipers, etc).

2. Software description:

- The project is developed using modern web-development technologies. AI Dietician is a complete MERN stack project.
- The core Front-end technologies used:

TECHNOLOGY	DESCRIPTION
JavaScript	Base programming language.
React.js	Front-end Library for JavaScript.
Axios	A client to make HTTP requests.
Chart.js	A Javascript Library for data visualization.
SCSS	CSS Preprocessor for styling.
npm	Node package manager.
DevTools	Google chrome devtools for development.
Adobe XD	Front end designing software.
Firebase tools	Hosting and analytics service by google.
Webpack	Web bundling and compilation.

- APIs used
 - **EDAMAM** Food recipe and nutrition search API.
 - **MockAPI** Test API for NoSQL database controlling dynamic content.
- The core back end technologies to be used:

TECHNOLOGY	DESCRIPTION
JavaScript	Base programming language.
Node.js	JavaScript runtime with google's V8 engine.
MongoDB	NoSQL database.
Mongoose	Client to communicate with DB
Express.js	Node.js library
npm	Node package manager.

- Other technologies used:
 - GitHub
 - HTML
 - Parcel

Model Implemented

Wireframe (Dashboard)

Version 1 (Dashboard)

Version 1 (Recipe cards)

The application, at current stage is able to request data from **External servers** through **APIs** and fetch a response. This response is **rendered onto the web-app** dynamically,

A user can request recipes based on any **set of ingredients**. The relevant recipes will be displayed on an **internally routed page**. The response data has **information** such as Title, Calories, ingredients, recipe URL, Nutritional values, Macro & Micro nutrients digest, image URL, filters, cautions, etc.

Results and Analysis

Version-1 of the web-app is capable of **core-functionality** of our project — **Recipe building**. A user can request recipes and it's nutritional values from a simple UI. The dashboard has a **multi-axis line-chart** which provides the weekly **calorie tracking**. A to-do list, to keep a tract of scheduled activities. **A leader-board concept** to track progress among other application users.

The application will be a boon to people who find it difficult to maintain a nutritious diet during a tough schedule. This will help people look for a **healthy and nutritious meal plan** in the times of **COVID-19**. The **filters and health-risk features** will make the application robust and be able to use for medical-purposes.

Future Scope

The web-app will have a **customised database** and an **authentication model** so that the user's data can be stored on the **cloud**. All the content will be **dynamic** and **AI** will help the **application to be smart**. The application will have support for **cross platform usage**, with design principles making it widely accepted.

Application will be laid upon **Jenkins**, a **CICD model**, for **smoother and responsive deployment**. Integration of device-hardware eg.

- 1. **Camera** food snap.
- 2. **Microphone** voice search.
- 3. **Smartwatch** activity tracking.

The application will be made secure, with a human intervention in the case of active-dietician on request.

References

- 1. Parismita Gogoi, Rituparna Borah, Ankur Sarma and Bhargabjyoti Saikia: "On the evaluation of physical layer in multi-antenna 3GPP LTE/LTE-A: A review", International Symposium on Advanced Computing and Communication, 2015.
- 2. Paolo Castagnoa, Vincenzo Mancusoc, Matteo Serenoa and Marco Ajmone Marsan: "Limitations and sidelinkbased extensions of 3GPP cellular access protocols for very crowded environments", Computer Networks Journal, 2019.
- 3. Fayezeh Ghavimi and Hsiao-Hwa Chen: "M2M Communications in 3GPP LTE/LTE-A Networks: Architectures, Service Requirements, Challenges, and Applications", *IEEE Communication Surveys & Tutorials*, Vol. 17 No. 2, 2015.
- 4. B.M Hasiandra and Iskandar School of Electrical Engineering and Informatics: "Planning and Performance Analysis of Downlink Inter-Band Carrier Aggregation for LTE-Advanced 3GPP Released 13", 2016, IEEE.
- 5. Matthew K. LukaCall, Aderemi A. Atayero and Oluwadamilola I. Oshinadmission: "Control techniques for 3GPP LTE", SAI Computing Conference 2016 July 13-15, 2016 | London, UK.