

Semiconductors and integrated circuits

Part 4c July 1978

Semiconductors and integrated circuits

Part 4c July 1978

Discrete semiconductors for

Hybrid thick and thin-film circuits

SEMICONDUCTORS AND INTEGRATED CIRCUITS

PART 4c - JULY 1978

DISCRETE SEMICONDUCTORS FOR HYBRID THICK AND THIN-FILM CIRCUITS

GENERAL

SOLDERING RECOMMENDATIONS

TYPE NUMBER SURVEY

SELECTION GUIDE

DEVICE DATA

DATA HANDBOOK SYSTEM INDEX OF SEMICONDUCTORS

DATA HANDBOOK SYSTEM

Our Data Handbook System is a comprehensive source of information on electronic components, subassemblies and materials; it is made up of three series of handbooks each comprising several parts.

ELECTRON TUBES

BLUE

SEMICONDUCTORS AND INTEGRATED CIRCUITS

RED

COMPONENTS AND MATERIALS

GREEN

The several parts contain all pertinent data available at the time of publication, and each is revised and reissued periodically.

Where ratings or specifications differ from those published in the preceding edition they are pointed out by arrows. Where application information is given it is advisory and does not form part of the product specification.

If you need confirmation that the published data about any of our products are the latest available, please contact our representative. He is at your service and will be glad to answer your inquiries.

This information is furnished for guidance, and with no guarantee as to its accuracy or completeness; its publication conveys no licence under any patent or other right, nor does the publisher assume liability for any consequence of its use; specifications and availability of goods mentioned in it are subject to change without notice; it is not to be reproduced in any way, in whole or in part without the written consent of the publisher.

ELECTRON TUBES (BLUE SERIES)

Part 1a December 1975	ET1a 12-75	Transmitting tubes for communication, tubes for r.f. heating Types PE05/25 to TBW15/25
Part 1b August 1977	ET1b 08-77	Transmitting tubes for communication, tubes for r.f. heating, amplifier circuit assemblies
Part 2a November 1977	ET2a 11-77	Microwave tubes Communication magnetrons, magnetrons for microwave heating, klystrons, travelling-wave tubes, diodes, triodes T-R switches
Part 2b May 1978	ET2b 05-78	Microwave semiconductors and components Gunn, Impatt and noise diodes, mixer and detector diodes, backward diodes, varactor diodes, Gunn oscillators, sub- assemblies, circulators and isolators
Part 3 January 1975	ET3 01-75	Special Quality tubes, miscellaneous devices
Part 4 March 1975	ET4 03-75	Receiving tubes
Part 5a March 1978	ET5a 03-78	Cathode-ray tubes Instrument tubes, monitor and display tubes, C.R. tubes for special applications
Part 5b May 1975	ET5b 05-75	Camera tubes, image intensifier tubes
Part 6 January 1977	ET6 01-77	Products for nuclear technology Channel electron multipliers, neutron tubes, Geiger-Müller tubes
Part 7a March 1977	ET7a 03-77	Gas-filled tubes Thyratrons, industrial rectifying tubes, ignitrons, high-voltage rectifying tubes
Part 7b March 1977	ЕТ7ь 03-77	Gas-filled tubes Segment indicator tubes, indicator tubes, switching diodes, dry reed contact units
Part 8 May 1977	ET8 05-77	TV picture tubes
Part 9 March 1978	ET9 03-78	Photomultiplier tubes; phototubes

SEMICONDUCTORS AND INTEGRATED CIRCUITS (RED SERIES)

Part 1a March 19	76 SC1a 03-76	Rectifier diodes, thyristors, triacs Rectifier diodes, voltage regulator diodes (> 1,5 W), transient suppressor diodes, rectifier stacks, thyristors, triacs
Part 1b May 1977	SC1b 05-77	Diodes Small signal germanium diodes, small signal silicon diodes, special diodes, voltage regulator diodes (< 1,5 W), voltage reference diodes, tuner diodes
Part 2 Novembe	r 1977 SC2 11-77	Low-frequency and dual transistors
Part 3 January 1	978 SC3 01-78	High-frequency, switching and field-effect transistors
Part 4a June 1970	SC4a 06-76	Special semiconductors* Transmitting transistors, field-effect transistors, dual transistors, microminiature devices for thick and thin-film circuits
Part 4b July 1978	SC4b 07-78	Devices for optoelectronics Photosensitive diodes and transistors, light emitting diodes, displays, photocouplers, infrared sensitive devices, photoconductive devices
Part 4c July 1978	SC4c 07-78	Discrete semiconductors for hybrid thick and thin-film circuits
Part 5a November	r 1976 SC5a 11-76	Professional analogue integrated circuits
Part 5b March 19	77 SC5b 03-77	Consumer integrated circuits Radio-audio, television
Part 6 October 1	977 SC6 10-77	Digital integrated circuits LOCMOS HE4000B family
Signetics integrate	d circuits 1978	Bipolar and MOS memories Bipolar and MOS microprocessors Analogue circuits

^{*} The most recent information on field-effect transistors can be found in SC3 01-78, on dual transistors in SC2 11-77, and on microminiature devices in SC4c 05-78.

COMPONENTS AND MATERIALS (GREEN SERIES)

Part 1	June`1977	CM1 06-77	Assemblies for industrial use High noise immunity logic FZ/30-series, counter modules 50-series, NORbits 60-series, 61-series, circuit blocks 90-series, circuit block CSA70(L), PLC modules, input/ output devices, hybrid circuits, peripheral devices, ferrite core memory products
Part 2a	October 1977	CM2a 10-77	Resistors Fixed resistors, variable resistors, voltage dependent resistors (VDR), light dependent resistors (LDR), negative temperature coefficient thermistors (NTC), positive temperature coefficient thermistors (PTC), test switches
Part 2b	February 1978	CM2b 02-78	Capacitors Electrolytic and solid capacitors, film capacitors, ceramic capacitors, variable capacitors
Part 3	January 1977	CM3 01-77	Radio, audio, television FM tuners, loudspeakers, television tuners and aerial input assemblies, components for black and white television, components for colour television
Part 4a	October 1976	CM4a 10-76	Soft ferrites Ferrites for radio, audio and television, beads and chokes, Ferroxcube potcores and square cores, Ferroxcube transformer cores
Part 4b	December 1976	CM4b 12-76	Piezoelectric ceramics, permanent magnet materials
Part 5	July 1975	CM5 07-75	Ferrite core memory products Ferroxcube memory cores, matrix planes and stacks, core memory systems
Part 6	April 1977	CM6 04-77	Electric motors and accessories Small synchronous motors, stepper motors, miniature direct current motors
Part 7	September 1971	СМ7 09-71	Circuit blocks Circuit blocks 100 kHz-series, circuit blocks 1-series, circuit blocks 10-series, circuit blocks for ferrite core memory drive
Part 8	February 1977	CM8 02-77	Variable mains transformers
Part 9	March 1976	CM9 03-76	Piezoelectric quartz devices
Part 10	April 1978	CM10 04-78	Connectors

INDEX OF TYPE NUMBERS

Data Handbooks SC1a to SC4c

The inclusion of a type number in this publication does not necessarily imply its availability.

type no.	part	section	type no.	part	section	type no.	part	section
AA119 AAZ15 AAZ17 AAZ18	1b 1b 1b	PC GB GB GB	BA220 BA221 BA222 BA243	1b 1b 1b	WD WD WD T	BAX13 BAX14 BAX14A BAX15	1b 1b 1b	WD WD WD
AC125	2	LF	BA243 BA244	1b	 	BAX16	1b	WD
AC126 AC127 AC128 AC128/01 AC132	2 2 2 2 2	LF LF LF LF	BA280 BA314 BA314A BA315 BA316	1b 1b 1b 1b	T Vrg Vrg Vrg WD	BAX17 BAX18 BAX18A BB105A BB105B	1b 1b 1b 1b	WD WD WD T T
AC187 AC187/01 AC188 AC188/01 AD161	2 2 2 2 2	LF LF LF F	BA317 BA318 BA379 BAS16 BAS17	1b 1b 1b 4c 4c	WD WD T Mm Mm	BB105G BB106 BB110B BB110G BB117	1b 1b 1b 1b	T T T T
AD162 AF367 ASZ15 ASZ16 ASZ17	2 3 2 2 2	P HFSW P P	BAS18 BAV10 BAV18 BAV19 BAV20	4c 1b 1b 1b	Mm WD WD WD	BB119 BB204B BB204G BB205A BB205B	1b 1b 1b 1b	T T T T
ASZ18 BA100 BA102 BA145 BA148	2 1b 1b 1a 1a	P AD T R	BAV21 BAV45 BAV70 BAV99 BAW21A	1b 1b 4c 4c 1b	WD Sp Mm Mm WD	BB205G BBY31 BC107 BC108 BC109	1b 4c 2 2 2	T Mm LF LF LF
BA182 BA216 BA217 BA218 BA219	1b 1b 1b 1b	T WD WD WD WD	BAW21B BAW56 BAW62 BAX12 BAX12A	1b 4c 1b 1b 1b	WD Mm WD WD WD	BC140 BC141 BC146 BC147 BC148	2 2 2 2 2 2	LF LF LF LF

ΑD

= Silicon alloyed diodes

GB

= Germanium gold bonded diodes

LF

HFSW = High-frequency and switching transistors = Low-frequency transistors

Mm

= Discrete semiconductors for hybrid thick and thin-film circuits

= Low-frequency power transistors

= Germanium point contact diodes

= Rectifier diodes

= Special diodes

= Tuner diodes

Vrg = Voltage regulator diodes

WD = Silicon whiskerless diodes

type no.	part	section	type no.	part	section	type no.	part	section
BC149	. 2	LF	BCW33;R	4c	Mm	BD138	2	P
BC157	2 2	LF	BCW69;R	4c	Mm	BD139	2	P
BC158 BC159	2	LF LF	BCW70;R	4c	Mm	BD140	2	P
BC160	2	LF	BCW71;R	4c	Mm	BD181	2 2	P
* * * * * * * * * * * * * * * * * * * *			BCW72;R	4c	Mm	BD182		Р
BC161	2	LF	BCX17;R	4c	Mm.	BD183	2	P
BC177	2	LF	BCX18;R	4c	Mm	BD201	2	P
BC178	2	LF LF	BCX19;R	4c	Mm	BD202	2	P
BC179 BC200	2	LF	BCX20;R	4c	Mm	BD203	2	P
	_		BCX51	4c	Mm	BD204	2	P
BC264A	3	FET'	BCX52	4c	Mm	BD226	2	P
BC264B	3	FET	BCX53	4c	Mm	BD227	2	P
BC264C	3	FET	BCX54	4c	Mm	BD228	2	Ρ.
BC264D	3	FET	BCX55	4c	Mm ·	BD229	2	P
BC327	· 2	LF	BCX56	4c	Mm	BD230	2	Р
BC328	2	LF	BCY30A	2	LF	BD231	2	Р
BC337	2	LF	BCY31A	2	LF	BD232	2	P
BC338	2	LF	BCY32A	2	LF	BD233	2	P
BC368	. 2	LF	BCY33A	2	LF	BD234	2	P
BC369	2	LF	BCY34A	2	LF	BD235	2	P.
BC546	2	LF	BCY55	2	DT	BD236	2	P
BC547	2	LF	BCY56	2	LF	BD237	2	Р
BC548	2	LF	BCY57	2	LF .	BD238	2	Р
BC549	2	LF	BCY58	2	LF	BD262	2	P
BC550	2	LF	BCY59	2	LF	BD262A	2	Р
BC556	2	LF	BCY70	2	LF	BD262B	2	Р
BC557	2	LF	BCY71	2	LF	BD263	2	P
BC558	2	LF	BCY72	2	LF	BD263A	2	P
BC559	2	LF	BCY78	2	LF	BD263B	2	P
BC560	2	LF	BCY79	2	LF	BD266	2	P
BC635	2	LF	BCY87	2	DT	BD266A	2	P
BC636	2	LF	BCY88	2	DT	BD266B	2	P
BC637	2	LF	BCY89	2	DT	BD267	2	Р
BC638	2	LF	BD115	2	P	BD267A	2	P
BC639	2	LF	BD131	2	P	BD267B	2	P
		i		1		BD291	2	P
BC640	2	LF	BD132	2	P P	BD292	2	P
BCW29;R BCW30;R	4c 4c	Mm Mm	BD133	2 2	P	BD293	2	P
BCW30;R BCW31;R	4c 4c	Mm	BD135	2	P	BD294	2	P
BCW31;R BCW32;R	4c	Mm	BD136 BD137	2	P	BD329	2	Р
D01102,11	70	'*''''	וטטו		F			

DT = Dual transistors
FET = Field-effect transistors
LF = Low-frequency transistors

Mm = Discrete semiconductors for hybrid thick and thin-film circuits

= Low-frequency power transistors

type no.	part	section	type no.	part	section	type no.	part	section
BD330 BD331 BD332 BD333 BD334	2 2 2 2 2 2	P P P P	BDX65A BDX65B BDX66 BDX66A BDX66B	2 2 2 2 2	P P P P	BF198 BF199 BF200 BF240 BF241	3 3 3 3	HFSW HFSW HFSW HFSW HFSW
BD335 BD336 BD433 BD434 BD435	2 2 2 2 2	P P P	BDX67 BDX67A BDX67B BDX77 BDX78	2 2 2 2 2	P P P P	BF245A BF245B BF245C BF256A BF256B	3 3 3 3	FET FET FET FET
BD436 BD437 BD438 BD645 BD646	2 2 2 2 2	P P P	BDX91 BDX92 BDX93 BDX94 BDX95	2 2 2 2 2	P P P P	BF256C BF324 BF327 BF336 BF337	3 3 3 3	FET HFSW FET HFSW HFSW
BD647 BD648 BD649 BD650 BD675	2 2 2 2 2	P P P P	BDX96 BDY20 BDY90 BDY91 BDY92	2 2 2 2 2	P P P P	BF338 BF362 BF363 BF422 BF423	3 3 3 3	HFSW HFSW HFSW HFSW
BD676 BD677 BD678 BD679 BD680	'2 2 2 2 2	P P P P	BDY93 BDY94 BDY96 BDY97 BF115	2 2 2 2 3	P P P HFSW	BF450 BF451 BF457 BF458 BF459	3 3 3 3	HFSW HFSW HFSW HFSW HFSW
BD681 BD682 BDX35 BDX36 BDX37	2 2 2 2 2	P P P P	BF167 BF173 BF177 BF178 BF179	3 3 3 3 3	HFSW HFSW HFSW HFSW HFSW	BF480 BF494 BF495 BF550;R BF622	3 3 4c 4c	HFSW HFSW HFSW Mm Mm
BDX62 BDX62A BDX62B BDX63 BDX63A	2 2 2 2 2	P P P P	BF180 BF181 BF182 BF183 BF184	3 3 3 3	HFSW HFSW HFSW HFSW HFSW	BF623 BFQ10 BFQ11 BFQ12 BFQ13	4c 3 3 3 3	Mm FET FET FET FET
BDX63B BDX64 BDX64A BDX64B BDX65	2 2 2 2 2 2	P P P P	BF185 BF194 BF195 BF196 BF197	3 3 3 3 3	HFSW HFSW HFSW HFSW HFSW	BFQ14 BFQ15 BFQ16 BFQ17 BFQ18A	3 3 4c 4c	FET FET FET Mm Mm

FET = Field-effect transistors

HFSW = High-frequency and switching transistors

Mm = Discrete semiconductors for hybrid thick and thin-film circuits

P = Low-frequency power transistors

INDEX

		<u> </u>		1				
type no.	part	section	type no.	part	section	type no.	part	section
BFQ19 BFQ23 BFQ24 BFQ32 BFQ34	4c 3 3 3	Mm HFSW HFSW HFSW HFSW	BFW16A BFW17A BFW30 BFW45 BFW61	3 3 3 3 3	HFSW HFSW HFSW HFSW FET	BLY91A BLY92A BLY93A BLY94 BPW22	4a 4a 4a 4a 4b	Tra Tra Tra Tra PDT
BFR29 BFR30 BFR31 BFR49 BFR53;R	3 4c 4c 3 4c	FET Mm Mm HFSW Mm	BFW92 BFW93 BFX34 BFX89 BFY50	3 3 3 3	HFSW HFSW HFSW HFSW HFSW	BPX25;29 BPX40 BPX41 BPX42 BPX70	4b 4b 4b 4b 4b	PDT PDT PDT PDT PDT
BFR64 BFR65 BFR84 BFR90 BFR91	3 3 3 3	HFSW HFSW FET HFSW HFSW	BFY51 BFY52 BFY55 BFY90 BG1895-541	3 3 3 1a	HFSW HFSW HFSW HFSW R	BPX71 BPX72 BPX94 BPX95 BR100	4b 4b 4b 4b 1a	PDT PDT PDT PDT Th
BFR92;R BFR93;R BFR94 BFR95 BFR96	4c 4c 3 3	Mm Mm HFSW HFSW HFSW	BG1895-641 BGY37 BLW60 BLW64 BLW75	1a 3 4a 4a 4a	R HFSW Tra Tra Tra	BR101 BRY39 BRY39(SCS) BRY39(PUT) BRY61	3 1a 3 3 4c	HFSW Th HFSW HFSW Mm
BFS17;R BFS18;R BFS19;R BFS20;R BFS21	4c 4c 4c 4c 3	Mm Mm Mm Mm FET	BLX13 BLX14 BLX15 BLX65 BLX66	4a 4a 4a 4a 4a	Tra Tra Tra Tra Tra	BSR12;R BSR30 BSR31 BSR32 BSR33	4c 4c 4c 4c 4c	Mm Mm Mm Mm Mm
BFS21A BFS22A BFS23A BFS28 BFT24	3 4a 4a 3	FET Tra Tra FET HFSW	BLX67 BLX68 BLX69A BLX91A BLX92A	4a 4a 4a 4a 4a	Tra Tra Tra Tra Tra	BSR40 BSR41 BSR42 BSR43 BSR56	4c 4c 4c 4c 4c	Mm Mm Mm Mm Mm
BFT25;R BFT44 BFT45 BFT46 BFT92;R	4c 3 3 4c 4c	Mm HFSW HFSW Mm Mm	BLX93A BLX94A BLX95 BLX96 BLX97	4a 4a 4a 4a 4a	Tra Tra Tra Tra Tra	BSR57 BSR58 BSS38 BSS50 BSS51	4c 4c 3 3	Mm Mm HFSW HFSW HFSW
BFT93;R BFW10 BFW11 BFW12 BFW13	4c 3 3 3 3	Mm FET FET FET FET	BLX98 BLY87A BLY88A BLY89A BLY90	4a 4a 4a 4a 4a	Tra Tra Tra Tra Tra	BSS52 BSS60 BSS61 BSS63;R BSS64;R	3 3 4c 4c	HFSW HFSW HFSW Mm Mm

= Field-effect transistors

HFSW = High-frequency and switching transistors Mm = Discrete semiconductors for hybrid

thick and thin-film circuits

PDT = Photodiodes or transistors = Rectifier diodes

Th = Thyristors

Tra = Transmitting transistors

	·							
type no.	part	section	type no.	part	section	type no.	part	section
BSS68 BSV15 BSV16 BSV17	3 3 3	HFSW HFSW HFSW	BTX18 series BTX94 series BTX95 series BTY79 series	1a 1a 1a 1a	Th Tri Th Th	BY476 BYX10 BYX22 series BYX25 series	1a 1a 1a 1a	R R R R
BSV52;R BSV64 BSV78 BSV79 BSV80 BSV81	4c 3 3 3 3 3	Mm HFSW FET FET FET FET	BTY87 series BTY91 series BU105 BU108 BU126 BU132	1a 1a 2 2 2 2	Th Th P P P	BYX29 series BYX30 series BYX32 series BYX35 BYX36 series BYX38 series	1a 1a 1a 1a 1a 1a	R R R R
BSW41A BSW66 BSW67 BSW68 BSX19	3 3 3 3 3	HFSW HFSW HFSW HFSW HFSW	BU133 BU204 BU205 BU206 BU207A	2 2 2 2 2	P P P P	BYX39 series BYX42 series BYX45 series BYX46 series BYX48 series	1a 1a 1a 1a 1a	R R R R
BSX20 BSX21 BSX45 BSX46 BSX47	3 3 3 3 3	HFSW HFSW HFSW HFSW HFSW	BU208A BU209A BU326A BUX80 BUX81	2 2 2 2 2	P P P P	BYX49 series BYX50 series BYX52 series BYX55 series BYX56 series	1a 1a 1a 1a 1a	R R R R
BSX59 BSX60 BSX61 BT126 BT128 series	3 3 1a 1a	HFSW HFSW HFSW Th	BUX82 BUX83 BUX84 BUX85 BUX86	2 2 2 2 2	P P P P	BYX71 series BYX90 BYX91 series BYX96 series BYX97 series	1a 1a 1a 1a 1a	R R R R
BT129 series BTW23 series BTW24 series BTW30 series BTW31 series	1a 1a 1a 1a 1a	Th Th Th Th Th	BUX87 BY126 BY127 BY164 BY176	2 1a 1a 1a 1a	P R R R	BYX98 series BYX99 series BZV10 BZV11 BZV12	1a 1a 1b 1b 1b	R R Vrf Vrf Vrf
BTW32 series BTW33 series BTW34 series BTW38 series BTW40 series	1a 1a 1a 1a 1a	Th Th Tri Th Th	BY179 BY184 BY187 BY188 series BY206	1a 1a •1a 1a 1a	R R R R	BZV13 BZV14 BZV15 series BZV38 BZW70 series	1b 1b 1a 1b 1a	Vrf Vrf Vrg Vrf TS
BTW42 series BTW43 series BTW45 series BTW47 series BTW92 series	1a 1a 1a 1a 1a	Th Tri Th Th Th	BY207 BY208 series BY209 BY223 BY409	1a 1a 1a 1a 1a	R R R R	BZW86 series BZW91 series BZW93 series BZX55 series BZX61 series	1a 1a 1a 1b 1b	TS TS TS Vrg Vrg

FET = Field-effect transistors

HFSW = High-frequency and switching transistors

Mm = Discrete semiconductors for hybrid thick and thin-film circuits

P = Low-frequency power transistors

R = Rectifier diodes

Th = Thyristors

Tri = Triacs

TS = Transient suppressor diodes

Vrf = Voltage reference diodes

Vrg = Voltage regulator diodes

type no.	part	section	type no.	part	section	type no.	part	section
BZX70 series	1a	Vrg	CQY11B	4b	LED	OSM9410	1a	St
BZX75 series	1b	Vrg	CQY11C	4b	LED	OSS9110	1a .	St
BZX79 series	1b	Vrg	CQY24A	4b	LED	OSS9210	1a ·	St
BZX84 series	4c	Mm	CQY46	4b	LED	OSS9310	1a	St
		i	,					1
BZX87 series	1b	Vrg	CQY47	4b	LED	OSS9410	1a	St
BZX90	1b	Vrf	CQY49B	4b	LED	RPY18	4b	Ph
BZX91	1b	Vrf	CQY49C	4b	LED	RPY19	4b	Ph.
BZX92	1b	Vrf ·	CQY50	4b	LED .	RPY20	4b	Ph
BZX93	1b	Vrf	CQY52	4b	LED	RPY33	4b	Ph
BZY78	1b .	Vrf	CQY53	4b	LED	RPY55	4b	Ph
BZY88 series	1b	Vra	CQY54	4 b	LED	RPY58A	4b	Ph
BZY91 series	1a	Vrg	CQY58	4b	LED	RPY71	4b	Ph
BZY93 series	1a	Vrg	CQY79	4b	LED	RPY76A	4b	
					D	RPY82	4b	Ph
BZY95 series	1a	Vrg	CQY81	4b	-	1,77		Ph
BZY96 series	1a	Vrg	CQY81A	4b	D	RPY84	4b	
BZZ14	1a	Vrg	CQY84	4b	D	RPY85	4b	Ph ·
BZZ15	1a	Vrg	CQY88	4b	LED	1N821	1b	Vrf
BZZ16	1a	Vrg	OA47	1b	GB	1N823	1b	Vrf
BZZ17	1a	Vrg	OA90	1b	PC	1N825	1b	Vrf
BZZ18	1a	Vrg	OA91	1b	PC	1N827	1b	Vrf
BZZ19	1a	Vrg	OA95	1b	PC	1N829	1b	Vrf .
BZZ20	1a	Vrg	OA200	1b	AD	1N914	1b	WD
BZZ21	1a	Vrg	0A202	1b	AD	1N914A	1b	WD
BZZ21	1a		ORP10	4b	1	1N916	1b	WD
		Vrg		4b	i	1N916A	1b	WD
BZZ23	1a	Vrg	ORP13			1 .	ĺ	
BZZ24	1a	Vrg	ORP23	4b	Ph	1N916B	1b	WD
BZZ25	1a	Vrg	ORP52	4b	Ph	1N4009	1b	WD
BZZ26	1a	Vrg	ORP60	4b	Ph .	1N4148	1b	WD
BZZ27	1a	Vrg	ORP61	4b	Ph	1N4150	1b	WD
BZZ28	1a	Vrg	ORP62	4b	Ph	1N4151	1b	WD
BZZ29	1a	Vrg	ORP66	4b	Ph	1N4154	1b	WD
CNY22	4b	PhC	ORP68	4b	Ph	1N4446	1b	WD
CNY23	4b	PhC	ORP69	4b	Ph	1N4448	1b	WD
CNY42	4b	PhC	OSB9110	1a	St	1N5729B	1b	Vrg
CNY43	4b	PhC	OSB9210	1a	St	1N5730B	1b	Vrg
CNY44	4b	PhC	OSB9310	1a	St	1N5731B	1b	Vrg
CNY46	4b	PhC	OSB9410	1a	St	1N5732B	1b	Vrg
CNY47	4b	PhC	OSM9110	1a	St	1N5733B	1b	Vrg
CNY47A	4b	PhC	OSM9210	1a	St	1N5734B	1b	Vrg
CNY48	4b	PhC	OSM9310	1a	St	1N5735B	1b	Vrg
	L			L	<u> </u>		·	L

AD = Silicon alloyed diodes

D = Displays

GB = Germanium gold bonded diodes

= Infrared devices

LED = Light-emitting diodes

Mm = Discrete semiconductors for hybrid thick and thin-film circuits

PC = Germanium point contact diodes

Ph = Photoconductive devices

PhC = Photocouplers

= Rectifier stacks

V_{rf} = Voltage reference diodes

V_{rg} = Voltage regulator diodes WD = Silicon whiskerless diodes

type no.	part	section	type no.	part	section	type no.	part	section
1N5736B 1N5737B 1N5738B 1N5739B 1N5740B	1b 1b 1b 1b 1b	Vrg Vrg Vrg Vrg Vrg	2N2483 2N2484 2N2894 2N2894A 2N2904	2 2 3 3 3	LF LF HFSW HFSW HFSW	2N4858 2N4859 2N4860 2N4861 2N5415	3 3 3 3	FET FET FET FET HFSW
1N5741B 1N5742B 1N5743B 1N5744B 1N5745B	1b 1b 1b 1b 1b	Vrg Vrg Vrg Vrg Vrg	2N2904A 2N2905 2N2905A 2N2906 2N2906A	3 3 3 3	HFSW HFSW HFSW HFSW HFSW	2N5416 61SV 40820 40835 40838	3 4b 3 3	HFSW I HFSW HFSW HFSW
1N5746B 1N5747B 1N5748B 1N5749B 1N5750B	1b 1b 1b 1b 1b	Vrg Vrg Vrg Vrg Vrg	2N2907 2N2907A 2N3019 2N3020 2N3055	3 3 3 3 2	HFSW HFSW HFSW HFSW P	56200 56201 56201c 56201d 56201j	2,3,4a 2 2 2 2 2	A A A A
1N5751B 1N5752B 1N5753B 1N5754B 1N5755B	1b 1b 1b 1b 1b	Vrg Vrg Vrg Vrg Vrg	2N3375 2N3442 2N3553 2N3632 2N3823	4a 2 4a 4a 3	Tra P Tra Tra FET	56203 56218 56230 56231 56233	2 2,3,4a 1a 1a 1a	A A HE HE A
1B5756B 1N5757B 2N918 2N929 2N930	1b 1b 3 2	Vrg Vrg HFSW LF LF	2N3866 2N3924 2N3926 2N3927 2N3966	4a 4a 4a 4a 3	Tra Tra Tra Tra FET	56234 56245 56246 56253 56256	1a 2,3,4a 1a to 4a 1a 1a	A A A DH DH
2N1613 2N1711 2N1893 2N2218 2N2218A	3 3 3 3	HFSW HFSW HFSW HFSW HFSW	2N4030 2N4031 2N4032 2N4033 2N4036	3 3 3 3 3	HFSW HFSW HFSW HFSW HFSW	56261 56261A 56262A 56263	2 2 1a 1a to 4a	A A A
2N2219 2N2219A 2N2221 2N2221A 2N2222	3 3 3 3	HFSW HFSW HFSW HFSW HFSW	2N4091 2N4092 2N4093 2N4347 2N4391	3 3 3 2 3	FET FET FET P FET	56264A 56268 56271 56278 56280	1a 1a 1a 1a 1a	A DH DH DH DH
2N2222A 2N2297 2N2368 2N2369 2N2369A	3 3 3 3	HFSW HFSW HFSW HFSW HFSW	2N4392 2N4393 2N4427 2N4856 2N4857	3 3 4a 3	FET FET Tra FET FET	56290 56293 56295 56299 56309B	1a 1a 1a 1a 1a	HE HE A A

A = Accessories

DH = Diecast heatsinks

FET = Field-effect transistors

HE = Heatsink extrusions

HFSW = High-frequency and switching transistors

= Infrared devices

LF = Low-frequency transistors

= Low-frequency power transistors

Tra = Transmitting transistors

Vrg = Voltage regulator diodes

INDEX

type no.	part	section	type no.	part	section	type no.	part	section
56309R	1a	Α	56334	1a	DH	56356	2,3	Α .
56312	1a	DH	56337	1a	Α	56359	2	Α
56313	1a	DH	56339	2	Α	56359a	2	Α
56314	1a	DH	56348	1a	DH	56360	2	Α
56315	1a	DH	56349	1a	DH	56360a	2	Α
56316	1a	Α	56350	1a	DH	56363	2	Α
56318	1a	DH	56351	2	Α	56364	2	Α
56319	1a	DH	56352	2	Α	56367	2	Α
56326	2,3	Α	56353	2	Α.	56368	2	Α
56333	2,3	A	56354	2	A	56369	2	Α

A = Accessories

DH = Diecast heatsinks

GENERAL

Pro Electron Type designation Rating Systems Letter Symbols S-parameters

PRO ELECTRON TYPE DESIGNATION CODE FOR SEMICONDUCTOR DEVICES

This type designation code applies to discrete semiconductor devices — as opposed to integrated circuits —, multiples of such devices and semiconductor chips.

A basic type number consists of:

TWO LETTERS FOLLOWED BY A SERIAL NUMBER

FIRST LETTER

The first letter gives information about the material used for the active part of the devices.

- A. GERMANIUM or other material with band gap of 0,6 to 1,0 eV.
- B. SILICON or other material with band gap of 1.0 to 1.3 eV.
- C. GALLIUM-ARSENIDE or other material with band gap of 1,3 eV or more.
- R. COMPOUND MATERIALS (e.g. Cadmium-Sulphide).

SECOND LETTER

The second letter indicates the function for which the device is primarily designed.

- A. DIODE; signal, low power
- B. DIODE; variable capacitance
- C. TRANSISTOR; low power, audio frequency (R_{th i-mb} > 15 °C/W)
- D. TRANSISTOR; power, audio frequency ($R_{th i-mb} \le 15 \text{ °C/W}$)
- E. DIODE; tunnel
- F. TRANSISTOR; low power, high frequency (Rth j-mb > 15 °C/W)
- G. MULTIPLE OF DISSIMILAR DEVICES MISCELLANEOUS; e.g. oscillator
- H. DIODE; magnetic sensitive
- L. TRANSISTOR; power, high frequency (R_{th i-mb} ≤ 15 °C/W)
- N. PHOTO-COUPLER
- P. RADIATION DETECTOR; e.g. high sensitivity phototransistor
- Q. RADIATION GENERATOR; e.g. light-emitting diode (LED)
- R. CONTROL AND SWITCHING DEVICE; e.g. thyristor, low power (R_{th i-mb} > 15 °C/W)
- S. TRANSISTOR; low power, switching (R_{th i-mb} > 15 °C/W)
- T. CONTROL AND SWITCHING DEVICE; e.g. thyristor, power (R_{th i-mb} ≤ 15 °C/W)
- U. TRANSISTOR; power, switching (R_{th i-mb} ≤ 15 °C/W)
- X. DIODE: multiplier, e.g. varactor, step recovery
- Y. DIODE; rectifying, booster
- Z. DIODE; voltage reference or regulator (transient suppressor diode, with third letter W)

TYPE DESIGNATION

SERIAL NUMBER

Three figures, running from 100 to 999, for devices primarily intended for consumer equipment. One letter (Z, Y, X, etc.) and two figures, running from 10 to 99, for devices primarily intended for industrial/professional equipment.

This letter has no fixed meaning except W, which is used for transient suppressor diodes.

VERSION LETTER

It indicates a minor variant of the basic type either electrically or mechanically. The letter never has a fixed meaning, except letter R, indicating reverse voltage, e.g. collector to case or anode to stud.

SUFFIX

Sub-classification can be used for devices supplied in a wide range of variants called associated types. Following sub-coding suffixes are in use:

1. VOLTAGE REFERENCE and VOLTAGE REGULATOR DIODES: ONE LETTER and ONE NUMBER

The LETTER indicates the nominal tolerance of the Zener (regulation, working or reference) voltage

- 1% (according to IEC 63: series E96)
- B. 2% (according to IEC 63: series E48)
- C. 5% (according to IEC 63: series E24)
- D. 10% (according to IEC 63: series E12)
- E. 20% (according to IEC 63: series E6)

The number denotes the typical operating (Zener) voltage related to the nominal current rating for the whole range.

The letter 'V' is used instead of the decimal point.

2. TRANSIENT SUPPRESSOR DIODES: ONE NUMBER

The NUMBER indicates the maximum recommended continuous reversed (stand-off) voltage V_R . The letter 'V' is used as above.

3. CONVENTIONAL and CONTROLLED AVALANCHE RECTIFIER DIODES and THYRISTORS: ONE NUMBER

The NUMBER indicates the rated maximum repetitive peak reverse voltage (V_{RRM}) or the rated repetitive peak off-state voltage (V_{DRM}), whichever is the lower. Reversed polarity is indicated by letter R, immediately after the number.

- 4. RADIATION DETECTORS: ONE NUMBER, preceded by a hyphen (–)
 The NUMBER indicates the depletion layer in μm. The resolution is indicated by a version LETTER.
- 5. ARRAY OF RADIATION DETECTORS and GENERATORS: ONE NUMBER, preceded by a stroke (/).

The NUMBER indicates how many basic devices are assembled into the array.

RATING SYSTEMS

The rating systems described are those recommended by the International Electrotechnical Commission (IEC) in its Publication 134.

DEFINITIONS OF TERMS USED

Electronic device. An electronic tube or valve, transistor or other semiconductor device.

Note

This definition excludes inductors, capacitors, resistors and similar components.

Characteristic. A characteristic is an inherent and measurable property of a device. Such a property may be electrical, mechanical, thermal, hydraulic, electro-magnetic, or nuclear, and can be expressed as a value for stated or recognized conditions. A characteristic may also be a set of related values, usually shown in graphical form.

Bogey electronic device. An electronic device whose characteristics have the published nominal values for the type. A bogey electronic device for any particular application can be obtained by considering only those characteristics which are directly related to the application.

Rating. A value which establishes either a limiting capability or a limiting condition for an electronic device. It is determined for specified values of environment and operation, and may be stated in any suitable terms.

Note

Limiting conditions may be either maxima or minima.

Rating system. The set of principles upon which ratings are established and which determine their interpretation.

Note

The rating system indicates the division of responsibility between the device manufacturer and the circuit designer, with the object of ensuring that the working conditions do not exceed the ratings.

ABSOLUTE MAXIMUM RATING SYSTEM

Absolute maximum ratings are limiting values of operating and environmental conditions applicable to any electronic device of a specified type as defined by its published data, which should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking no responsibility for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the device under consideration and of all other electronic devices in the equipment.

The equipment manufacturer should design so that, initially and throughout life, no absolute maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, equipment control adjustment, load variations, signal variation, environmental conditions, and variations in characteristics of the device under consideration and of all other electronic devices in the equipment.

DESIGN MAXIMUM RATING SYSTEM

Design maximum ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking responsibility for the effects of changes in operating conditions due to variations in the characteristics of the electronic device under consideration.

The equipment manufacturer should design so that, initially and throughout life, no design maximum value for the intended service is exceeded with a bogey device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, variation in characteristics of all other devices in the equipment, equipment control adjustment, load variation, signal variation and environmental conditions.

DESIGN CENTRE RATING SYSTEM

Design centre ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device of a specified type as defined by its published data, and should not be exceeded under normal conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device in average applications, taking responsibility for normal changes in operating conditions due to rated supply voltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of all electronic devices.

The equipment manufacturer should design so that, initially, no design centre value for the intended service is exceeded with a bogey electronic device in equipment operating at the stated normal supply voltage.

LETTER SYMBOLS FOR TRANSISTORS AND SIGNAL DIODES

based on IEC Publication 148

LETTER SYMBOLS FOR CURRENTS, VOLTAGES AND POWERS

Basic letters

The basic letters to be used are:

I, i = current
V, v = voltage
P, p = power.

Lower-case basic letters shall be used for the representation of instantaneous values which vary with time.

In all other instances upper-case basic letters shall be used.

Anode terminal Average value

Subscripts

(AV), (av)

A, a

B, b	Base terminal, for MOS devices: Substrate							
(BR)	Breakdown							
C, c	Collector terminal							
D, d	Drain terminal							
E, e	Emitter terminal							
F, f	Forward							
G, g	Gate terminal							
K, k	Cathode terminal							
M, m	Peak value							
0,0	As third subscript: The terminal not mentioned is open circuited							
R, r	As first subscript: Reverse. As second subscript: Repetitive.							
	As third subscript: With a specified resistance between the terminal							
	not mentioned and the reference terminal.							
(RMS), (rms)	R.M.S. value							
	(As first or second subscript: Source terminal (for FETS only)							
S, s	As second subscript: Non-repetitive (not for FETS)							
	As third subscript: Short circuit between the terminal not mentioned							
	and the reference terminal							
X, x	Specified circuit							
Z, z	Replaces R to indicate the actual working voltage, current or power							

of voltage reference and voltage regulator diodes.

Note: No additional subscript is used for d.c. values.

LETTER SYMBOLS

Upper-case subscripts shall be used for the indication of:

a) continuous (d.c.) values (without signal)

Example I_B

b) instantaneous total values

Example iB

c) average total values

Example I_{B(AV)}

d) peak total values

Example I_{BM}

e) root-mean-square total values

Example I_{B(RMS)}

Lower-case subscripts shall be used for the indication of values applying to the varying component alone:

a) instantaneous values

Example ib

b) root-mean-square values

Example Ib(rms)

c) peak values

Example I_{bm}

d) average values

Example Ib(av)

Note: If more than one subscript is used, subscript for which both styles exist shall either be all upper-case or all lower-case.

Additional rules for subscripts

Subscripts for currents

Transistors: If it is necessary to indicate the terminal carrying the current, this should

be done by the first subscript (conventional current flow from the external

circuit into the terminal is positive).

Examples: IB, iB, ib, Ibm

Diodes: To indicate a forward current (conventional current flow into the anode

terminal) the subscript F or f should be used; for a reverse current (conventional current flow out of the anode terminal) the subscript R or r

should be used.

Examples: IF, IR, iF, If(rms)

Subscripts for voltages

Transistors: If it is necessary to indicate the points between which a voltage is meas-

ured, this should be done by the first two subscripts. The first subscript indicates the terminal at which the voltage is measured and the second the reference terminal or the circuit node. Where there is no possibility of

confusion, the second subscript may be omitted.

Examples:
$$V_{BE}$$
, v_{BE} , v_{be} , V_{bem}

Diodes: To indicate a forward voltage (anode positive with respect to cathode), the

subscript F or f should be used; for a reverse voltage (anode negative with

respect to cathode) the subscript R or r should be used.

Subscripts for supply voltages or supply currents

Supply voltages or supply currents shall be indicated by repeating the appropriate terminal subscript.

Note: If it is necessary to indicate a reference terminal, this should be done by a third subscript

Example: VCCE

Subscripts for devices having more than one terminal of the same kind

If a device has more than one terminal of the same kind, the subscript is formed by the appropriate letter for the terminal followed by a number; in the case of multiple subscripts, hyphens may be necessary to avoid misunderstanding.

Examples: I_{B2} = continuous (d.c.) current flowing into the second base terminal

 ${
m V}_{
m B2-E}$ = continuous (d.c.) voltage between the terminals of second base and emitter

Subscripts for multiple devices

For multiple unit devices, the subscripts are modified by a number preceding the letter subscript; in the case of multiple subscripts, hyphens may be necessary to avoid misunderstanding.

Examples: I_{2C} = continuous (d.c.) current flowing into the collector terminal of the second unit

V_{1C-2C} = continuous (d.c.) voltage between the collector terminals of the first and the second unit.

Application of the rules

The figure below represents a transistor collector current as a function of time. It consists of a continuous (d.c.) current and a varying component.

LETTER SYMBOLS FOR ELECTRICAL PARAMETERS

Definition

For the purpose of this Publication, the term "electrical parameter" applies to fourpole matrix parameters, elements of electrical equivalent circuits, electrical impedances and admittances, inductances and capacitances.

Basic letters

The following is a list of the most important basic letters used for electrical parameters of semiconductor devices.

B, b = susceptance; imaginary part of an admittance

C = capacitance

G, g = conductance; real part of an admittance

H, h = hybrid parameter

L = inductance

R, r = resistance; real part of an impedance

X, x = reactance; imaginary part of an impedance

Y, y = admittance;

Z, z = impedance;

Upper-case letters shall be used for the representation of:

- a) electrical parameters of external circuits and of circuits in which the device forms only a part;
- b) all inductances and capacitances.

Lower-case letters shall be used for the representation of electrical parameters inherent in the device (with the exception of inductances and capacitances).

Subscripts

General subscripts

The following is a list of the most important general subscripts used for electrical parameters of semiconductor devices:

F, f = forward; forward transfer
I, i (or 1) = input
L, 1 = load
O, o (or 2) = output
R, r = reverse; reverse transfer
S, s = source

S, s = source Examples: Z_S , h_f , h_F

The upper-case variant of a subscript shall be used for the designation of static (d.c.) values.

Examples: $h_{FE} = \text{static value of forward current transfer ratio in common-emitter configuration (d.c. current gain)}$ $R_{F} = \text{d.c. value of the external emitter resistance.}$

Note: The static value is the slope of the line from the origin to the operating point on the appropriate characteristic curve, i.e. the quotient of the appropriate electrical quantities at the operating point.

The lower-case variant of a subscript shall be used for the designation of small-signal values.

Examples: h_{fe} = small-signal value of the short-circuit forward current transfer ratio in common-emitter configuration

 $Z_{e} = R_{e} + jX_{e} = small-signal value of the external impedance$

Note: If more than one subscript is used, subscripts for which both styles exist shall either be all upper-case or all lower-case

Examples: h_{FE} , y_{RE} , h_{fe}

Subscripts for four-pole matrix parameters

The first letter subscript (or double numeric subscript) indicates input, output, forward transfer or reverse transfer

$$\begin{array}{c} \text{Examples: } h_{1} \text{ (or } h_{11}) \\ h_{0} \text{ (or } h_{22}) \\ h_{f} \text{ (or } h_{21}) \\ h_{r} \text{ (or } h_{12}) \end{array}$$

A further subscript is used for the identification of the circuit configuration. When no confusion is possible, this further subscript may be omitted.

Examples:
$$h_{fe}$$
 (or h_{21e}), h_{FE} (or h_{21E})

Distinction between real and imaginary parts

If it is necessary to distinguish between real and imaginary parts of electrical parameters, no additional subscripts should be used. If basic symbols for the real and imaginary parts exist, these may be used.

Examples:
$$Z_i = R_i + jX_i$$

 $y_{fe} = g_{fe} + jb_{fe}$

If such symbols do not exist or if they are not suitable, the following notation shall be used:

Examples: Re
$$(h_{ib})$$
 etc. for the real part of h_{ib}
Im (h_{ib}) etc. for the imaginary part of h_{ib}

SCATTERING PARAMETERS

In distinction to the conventional h, y and z-parameters, s-parameters relate to travelling wave conditions. The figure below shows a two-port network with the incident and reflected waves a_1 , b_1 , a_2 and b_2 .

$$a_1 = \frac{v_{i1}}{\sqrt{z_o}}$$

$$b_1 = \frac{V_{r1}}{\sqrt{Z}}$$

$$a_2 = \frac{v_{i2}}{\sqrt{Z_0}}$$

$$b_2 = \frac{V_{r2}}{\sqrt{Z_0}}$$

¹)

 \mathbf{Z}_{o} = characteristic impedance of the transmission line in which the two-port is connected.

V_i = incident voltage

 V_r = reflected (generated) voltage

The four-pole equations for s-parameters are:

$$b_1 = s_{11}a_1 + s_{12}a_2$$

$$b_2 = s_{21}a_1 + s_{22}a_2$$

Using the subscripts i for 11, r for 12, f for 21 and o for 22, it follows that:

$$s_i = s_{11} = \frac{b_1}{a_1} \Big|_{a_2 = 0}$$

$$s_r = s_{12} = \frac{b_1}{a_2} \Big|_{a_1 = 0}$$

$$s_f = s_{21} = \frac{b_2}{a_1} | a_2 = 0$$

$$s_0 = s_{22} = \frac{b_2}{a_2} \left| a_1 = 0 \right|$$

¹⁾ The squares of these quantities have the dimension of power.

S-PARAMETERS

The s-parameters can be named and expressed as follows:

- s_i = s₁₁ = Input reflection coefficient.

 The complex ratio of the reflected wave as
 - The complex ratio of the reflected wave and the incident wave at the input, under the conditions Z_1 = Z_σ and $V_{\rm S2}$ = 0.
 - $s_r = s_{12} = Reverse transmission coefficient.$
 - The complex ratio of the generated wave at the input and the incident wave at the output, under the conditions $Z_s = Z_o$ and $V_{s1} = 0$.
 - $s_f = s_{21}$ = Forward transmission coefficient.

The complex ratio of the generated wave at the output and the incident wave at the input, under the conditions \mathbf{Z}_1 = \mathbf{Z}_0 and $\mathbf{V}_{\mathbf{S}2}$ = 0

 $s_0 = s_{22} = Output reflection coefficient.$

The complex ratio of the reflected wave and the incident wave at the output, under the conditions \mathbf{Z}_S = \mathbf{Z}_O and V_{S1} = 0.

SOLDERING RECOMMENDATIONS

SOLDERING RECOMMENDATIONS SOT-23 AND SOT-89

REFLOW SOLDERING

The preferred technique for mounting microminiature components on hybrid thick and thin-film is the method of reflow soldering.

The tags of both SOT-23 and SOT-89 envelopes are pre-tinned and the best results are obtained if a similar solder is applied to the corresponding soldering areas on the substrate. This can be done by either dipping the substrate in a solder bath or by screen printing a solder paste.

For reliable connections it should be kept in mind that:

The maximum temperature of the leads or tab during the soldering cycle does not exceed 275 °C.

The flux must affect neither components nor connectors.

The residue of the flux must be easy to remove.

Good flux or solder paste with these properties are available on the market.

The most economic method of soldering is a process in which all different components are soldered simultaneously for example SOT-23 or SOT-89 devices, capacitors and resistors.

Having first been fluxed, all components are positioned on the substrate. The slight adhesive force of the flux is sufficient to keep the components in place. Solder paste contains a flux and has therefore good inherent adhesive properties which eases positioning of the components.

With the components in position the substrate is heated to a point where the solder begins to flow. This can be done on a heating plate or on a conveyor belt running through an infrared tunnel. The maximum allowed temperature of the plastic body of a device must be kept below 250 °C during the soldering cycle. For further temperature behaviour during the soldering process see Figs 1 and 2.

The surface tension of the liquid solder tends to draw the tags of the device towards the centre of the soldering area and has thus a correcting effect on slight mispositionings. However, if the layout leaves something to be desired the same effect can result in undesirable shifts; particularly if the soldering areas on the substrate and the components are not concentrally arranged. This problem can be solved using a standard contact pattern, which leaves sufficient scope for the self-positioning effect.

After the solder has set and cooled the connections are visually inspected and, where necessary, put right with a soldering iron. Finally the remnants of the flux must be removed carefully.

IMMERSION SOLDERING

Maximum allowed temperature of the soldering bath is 235 °C. Maximum duration of soldering cycle is 5 seconds and forced cooling must be applied.

HAND SOLDERING

It is possible to solder SOT-23 and SOT-89 devices with a miniature hand-held soldering iron, but this method has particular drawbacks and should therefore be restricted to laboratory use and/or incidental repairs on production circuits.

- 1. It is time-consuming and expensive.
- The device cannot be positioned accurately and therefore the connecting tags may come into contact with the substrate and damage it.
- 3. There is a great risk of breaking either substrate or internal connections inside the encapsulation.
- 4. The envelope may be damaged by the iron.

T_{I max} = Maximum lead or tab temperature is 275 °C.

T_f = Flow temperature of the solder is 239 °C.

T_m = Melting point of the solder is 179 °C.

 α = Maximum permissible rate of temperature change is 75 °C/s.

 $T_{amb} = 25 \, {}^{\circ}C.$

Fig. 2 Reflow soldering with pre-heating.

Minimum required dimensions of metal connection pads on hybrid thick and thin-film substrates.

Dimensions in mm

Fig. 3 SOT-23 pattern.

Fig. 4 SOT-89 pattern.

GENERAL NOTES

Recommended metal-alloy

- a. 62 Sn/36 Pb/2 Ag (85% metal weight, when solder paste is used).
- b. 60 Sn/40 Pb.

Pre-heating

Pre-heating is recommended for good soldering and avoiding damage to the SOT-23 or SOT-89 devices, other components and the substrate. Maximum pre-heating temperature is 165 °C while the maximum pre-heating duration may be 10 seconds.

Duration of soldering cycle

The maximum duration of soldering cycle without pre-heating is 14 seconds; with pre-heating 22 seconds (see Figs 1 and 2). Pre-heating duration may be 10 seconds.

TYPE NUMBER SURVEY

NUMERICAL INDEX REVERSE TYPES Mark and Marking code Nearest conventional types

NUMERICAL TYPE LIST

The full type number is marked on the encapsulation of semiconductors mounted in SOT-89. Types in SOT-23 are marked with a code.

type number	marking	reverse type	marking	outline	device type	complement	nearest conventional type
BAS16 BAT17 BAT18 BAV70 BAV99	A6 A3 A2 A4 A7			SOT-23 SOT-23 SOT-23 SOT-23 SOT-23	D D D D		BAW62/1N4148 BA280 BA182/BA243 BAW62/1N4148 BAW62/1N4148
BAW56 BBY31 BCW29 BCW30 BCW31	A1 S1 C1 C2 D1	BCW29R BCW30R BCW31R	C4 C5 D4	SOT-23 SOT-23 SOT-23 SOT-23 SOT-23	D D PNP PNP NPN	BCW31; R BCW32; R BCW29; R	BAW62/1N4148 BB105G BC178A/BC558A BC178B/BC558B BC108A/BC548A
BCW32 BCW33 BCW69 BCW70 BCW71	D2 D3 H1 H2 K1	BCW32R BCW33R BCW69R BCW70R BCW71R	D5 D6 H4 H5 K4	SOT-23 SOT-23 SOT-23 SOT-23 SOT-23	NPN NPN PNP PNP NPN	BCW30; R 	BC108B/BC548B BC108C/BC548C BC177A/BC557A BC177B/BC557B BC107A/BC547A
BCW72 BCX17 BCX18 BCX19 BCX20	K2 T1 T2 U1 U2	BCW72R BCW17R BCW18R BCW19R BCX20R	K5 T4 T5 U4 U5	SOT-23 SOT-23 SOT-23 SOT-23 SOT-23	NPN PNP PNP NPN NPN	BCW70; R BCX19; R BCX20; R BCX17; R BCX18; R	BC107B/BC547B BC327 BC328 BC337 BC338
BCX51 BCX52 BCX53 BCX54 BCX55				SOT-89 SOT-89 SOT-89 SOT-89	PNP PNP PNP NPN NPN	BCX54 BCX55 BCX56 BCX51 BCX52	BC636 BC638 BC640 BC635 BC637
BCX56 BF550 BF622 BF623 BFO17	G2	BF550R	G5	SOT-89 SOT-89 SOT-89 SOT-89	NPN PNP NPN PNP NPN	BCX53 BF623 BF622	BC639 BF450 BF422 BF423 BFW16A
BFQ18A BFQ19 BFR30 BFR31 BFR53	M1 M2 N1	BFR53R	N4	SOT-89 SOT-23 SOT-23 SOT-23	NPN NPN FET FET NPN		BFQ34 BFR96 BFW11 BFW12 BFW30/BFW93

TYPE NUMBER SURVEY

								
	type number	marking	reverse type	marking	outline	device type	complement	nearest conventional type
	BFR92 BFR93 BFS17 BFS18 BFS19	P1 R1 E1 F1 F2	BFR92R BFR93R BFS17R BFS18R BFS19R	P4 R4 E4 F4 F5	SOT-23 SOT-23 SOT-23 SOT-23 SOT-23	NPN NPN NPN NPN NPN	BFT92; R BFT93; R	BFR90 BFR91 BFY90/BFW92 BF185/BF495 BF184/BF494
	BFS20 BFT25 BFT46 BFT92 BFT93	G1 V1 M3 W1 X1	BFS20R BFT25R BFT92R BFT93R	G4 V4 W4 X4	SOT-23 SOT-23 SOT-23 SOT-23	NPN NPN FET PNP PNP	BFR92; R BFR93; R	BF199 BFT24 BFW13 _ BFQ23/24
	BRY61 BSR12 BSR30 BSR31 BSR32	A5 B5	BSR12R	B8	SOT-23 SOT-23 SOT-89 SOT-89 SOT-89	PNPN PNP PNP PNP PNP	BSV52 BSR40 BSR41 BSR42	BRY56/BRY39 PUT 2N2894A) BSV16/17 2N4030-4033
	BSR33 BSR40 BSR41 BSR42 BSR43		- - - -		SOT-89 SOT-89 SOT-89 SOT-89 SOT-89	PNP NPN NPN NPN NPN	BSR43 BSR30 BSR31 BSR32 BSR33	BSX46/47 2N3019/3020
-	BSR56 BSR57 BSR58 BSS63 BSS64	M4 M5 M6 T3 U3	BSS63R BSS64R	T6 U6	SOT-23 SOT-23 SOT-23 SOT-23	FET FET FET PNP NPN	BSS64; R BSS63; R	2N4856 2N4857 2N4858 BSS68 BSS38
	BSV52 BZX84- -C4V7	B2 Z1	BSV52R	В4	SOT-23	NPN	BSR12	BSX20/2N2369
	-C5V1 -C5V6 -C6V2	Z2 Z3 Z4						
,	-C6V8 -C7V5 -C8V2 -C9V1	Z5 Z6 Z7 Z8						
	-C10 -C11 -C12 -C13	Z9 Y1 Y2 Y3			SOT-23	D		BZX79 SERIES
	-C15 -C16 -C18	Y4 Y5 Y6	,					
	-C20 -C22 -C24 -C27	Y7 Y8 Y9 Y10			i e			
:	-C30	Y11	,					

TYPE NUMBER SURVEY

type number	marking	reverse type	marking	outline	device type	complement	nearest conventional type
BZX84-							
-C33	Y12	11					
-C36	Y13						
-C39	Y14	ł l	-				,
-Ċ43	Y15	 					
-C47	Y16	}		SOT-23	D		BZX79 SERIES
-C51	Y17	ļ F					
-C56	Y18						
-C62	Y19	1					
-C68	Y20	!					
-C75	Y21	J					

CONVERSION LIST

MARKING SOT-89

The full type number is marked on the encapsulation of semiconductors mounted in SOT-89.

MARKING CODE SOT-23

Types in a SOT-23 envelope are marked by the following code.

MARKING CODE

	Α	В	С	D
1	BAW56		BCW29	BCW31
2	BAT18	BSV52	BCW30	BCW32
} .	BAT17			BCW33
	BAV70	BSV52R	BCW29R	BCW31R
	BRY61	BSR12	BCW30R	BCW32R
	BAS16			BCW33R
	BAV99	* * * * * * * * * * * * * * * * * * *		
		BSR12R		*
		<u>'</u>	I	
	Ε	F	G	Н
	BFS17	BFS18	BFS20	BCW69
		BFS19	BF550	BCW70
	BFS17R	BFS18R	BFS20R	BCW69R
		BFS19R	BF550R	BCW70R
	1.0			
,	κ	М	N	Р
	BCW71	BFR30	BFR53	BFR92
	BCW72	BFR31	D. 1100	D. 1102
	502	BFT46		
	BCW71R	BSR56	BFR53R	BFR92R
	BCW71R	BSR57	DI NOON	Di 110211
	55117211	BSR58		
		BOITOO		
ļ				1
		100		
		•	1	1

TYPE NUMBER SURVEY

			<u> </u>					
		Г						
	R		S		T		Ū	
1	BFR93		BBY31		BCX17	ļ	BCX19	
2	51 1100	1	55.0.		BCX18		BCX20	
3					BSS63		BSS64	
4	BFR93R				BCX17R		BCX19R	
5					BCX18R		BCX20R	
6 7			f		BSS63R		BSS64R	
8	-							
9								
. '	•	١,	. '	*				
	V	<u> </u>	w			1	· · · · · · · · · · · · · · · · · · ·	
	. V		VV		X	-		
1	BFT25		BFT92		BFT93	}		
2			*					
3								
4 5	BFT25R		BFT92R		BFT93R			
6								
7								
8								
9	*	ı				İ		
	Υ		Υ		· Y ·		Z	
1	BZX84-C11	10	BZX84-C27	19	BZX84-C62	1	BZX84-C4V7	
2	-C12	11	-C30	20	-C68	2	5V1	
3	-C13	12	-C33	21	-C75	3	5V6	
4	-C15	13	-C36			4	6V2	
5 6	-C16 -C18	14 15	-C39 -C43			5 6	6V8 7V5	
7	-C16 -C20	16	-C43 -C47			7	8V2	
8	-C22	17	-C51			8	9V1	
9	-C24	18	-C56			9	10V	
			•				•	

GENERAL PURPOSE TRANSISTORS

	1	RAT	INGS		hF	E	VCE	sat	fT
type	V _{CBO}	V _{CEO}	I _C mA	P _{tot} mW	min/max at		max a V	t I _C /I _B mA	typ. MHz
P-N-P									
BCW29;R	30	20	100	200	120/260	2/5	0,30	10/0,5	150
BCW30;R	30	20	100	200	215/500	2/5	0,30	10/0,5	150
BCW69;R	50	45	100	200	120/260	2/5	0,30	10/0,5	150
BCW70;R	50	45	100	200	215/500	2/5	0,30	10/0,5	150
BCX17;R	50	45	500	310	100/600	100/1	0,62	500/50	100
BCX18;R	. 30	25	500	310	100/600	100/1	0,62	500/50	100
BCX51	45	45	1000	1000	40/250	150/2	0,50	500/50	50
BCX52	60	60	1000	1000	40/160	150/2	0,50	500/50	50
BCX53	100	80	1000	1000	40/160	150/2	0,50	500/50	50
N-P-N			•						
BCW31;R	30	20	100	200	110/220	2/5	0,25	10/0,5	300
BCW32;R	30	20	100	200	200/450	2/5	0,25	10/0,5	300
BCW33;R	30	20	100	200	420/800	2/5	0,25	10/0,5	300
BCW71;R	50	45	100	200	110/200	2/5	0,25	10/0,5	300
BCW72;R	50	45	100	200	220/450	2/5	0,25	10/0,5	300
BCX19;R	50	45	500	310	100/600	100/1	0,62	500/50	200
BCX20;R	30	25	500	310	100/600	100/1	0,62	500/50	200
BCX54	45	45	1000	1000	40/250	150/2	0,50	500/50	130
BCX55	60	60	1000	1000	40/160	150/2	0,50	500/50	130
BCX56	100	80	1000	1000	40/160	150/2	0,50	500/50	130

VIDEO B/W AND COLOUR TELEVISION

type	V _{CBO}	RATI VCEO V	INGS I _C mA	P _{tot} mW	min/max	FE at I _C /V _{CE} mA/V	V _{CI} max a	f _T typ. MHz	
P-N-P	1	<u></u>		<u>.</u>					
BF623	250	250	20	1000	50/-	25/20	_	-	60
N-P-N							,		
BF622	250	250	20	1000	50/-	25/20	-	. —	60

HIGH-FREQUENCY TRANSISTORS

type	V _{CBO}	RATII VCEO V	NGS I _C mA	P _{tot} mW	hı min/max a	t I _C /V _{CE}	typ.	F at f MHz	f _T typ. MHz	C _{re} typ. pF
P-N-P										
BF550;R	40	40	25	180	50/-	1/10	2	0,1	325	0,5
N-P-N		* *								
BFS18;R BFS19;R BFS20;R	30 30 30	20 20 20	30 30 25	200 200 200	35/125 65/225 40/85	1/10 1/10 7/10	4 4 -	100 100 -	200 260 450	0,85 0,85 0,35

SWITCHING TRANSISTORS

		RATII	NGS		h	=E	VCI	sat	t ma	×
type	V _{CBO}	V _{CEO}	I _C mA	P _{tot} mW	min/max a	nt I _C /V _{CE} mA/V	max a	t I _c /I _B	on/off at ns	I _c /I _B mA
P-N-P						*				
BSR12;R	15	15	100	200	30/120	50/1	0,45	100/10	20/30	30/3
BSR30	70	60	1000	1000	40/120	100/5	1,2	500/50	500/650	100/5
BSR31	70	60	1000	1000	100/300	100/5	1,2	500/50	500/650	100/5
BSR32	90	80	1000	1000	40/120	100/5	1,2	500/50	500/650	100/5
BSR33	· 90	80	1000	1000	100/300	100/5	1,2	500/50	500/650	100/5
BSS63;R	110	100	100	200	30/	25/1	2,5	25/2,5	-	. –
N-P-N	·									
BSR40	70	60	1000	1000	40/120	100/5	1,2	500/50	250/1000	100/5
BSR41	70	60	1000	1000	100/300	100/5	1,2	500/50	250/1000	100/5
BSR42	90	80	1000	1000	40/120	100/5	1,2	500/50	250/1000	100/5
BSR43	90	80	1000	1000	100/300	100/5	1,2	500/50	250/1000	100/5
BSS64;R	120	80	100	200	20/80	10/1	0,2	50/15	/1000	15/1
BSV52;R	20	12	100	200	40/120	10/1	0,4	50/5	12/18	10/3
B3V32;N	20	12	100	200	40/120	10/1	0,4	30/5	12/10	10,
P-N-P-N										
BRY61	V _{CA} m	ax. 70	V; I _A n	nax. 175	5 mA; lp = 5	/1 μA; I _V :	= 30/50	μΑ		

WIDEBAND TRANSISTORS

type	V _{CBO}	RATII VCEO V			hFE min/max at			dim at f MHz	f _T typ GHz	G _{um} at f = MHz 200/500/800
P-N-P										
BFT92;R BFT93;R	20 15	15 12	25 35	180 180	20/— 20/—	14/10 30/5	60 60	493,25 493,25	5	- 18 - - 16,5 -
N-P-N										·
BFQ17 BFQ18A	40 25	25 15		1000 1000	25/ 25/	150/5 100/10	60	 793,25	1,2 3,6	16 – 6,5 –
BFQ19	20	15	75		25/	75/10		_ `	5,0	18,5 — 7,5
BFR53;R	18	10	50		25/—	50/5	60	217,0	2,0	22 – 10,5
BFR92;R	20	15	25	180	25/-	14/10	60	493,25	5,0	- 18 -
BFR93;R	15	12	35		25/	30/5	60	493,25	5,0	– 16,5 –
BFS17;R	25	15	25		20/150	2/1	45	217	1,3	
BFT25;R	8	5	2,5	30	20/	1/1		_	2,3	25 – 12

FIELD-EFFECT TRANSISTORS

type	V _{DS}	RATII -V _{GSO} V	NGS I _D mA	P _{tot}	-I _{GSS} max. nA	I _{DSS} min/max. mA	-V _{PGS} max. V	^y fs min. mA/V	C _{rs} max. pF	V _n max. μV
BFR30	25	25	10	200	0,2	4/10	5	1 .	1,5	0,5
BFR31	25	25	10	200	0,2	1/5	2,5	1,5	1,5	0,5
BFT46	25	25	10	200	0,2	0,2/1,5	1,0	1,0	1,5	0,5
BSR56	40	40		200	1	50/-	10		5	_
BSR57	40	40	_	200	1	20/100	6		5	
BSR58	40	40		200	1	8/80	4		5	

SWITCHING DIODES

		RAT	INGS	t _{rr}	V _F max. V	Cd	
type	description	V _R V	I _F mA	max.	at I _F = mA 10/100	max. pF	
BAS16	high-speed switch	75	100	6	855/1300	2	
BAT17	Schottky barrier	4	30	_	600/—	1 .	
BAT18	band switch	35	100		-/1200	1	
BAV70	common cathode double diode	70	100	6	855/1300	1,5	
BAV99	two diodes in series	70	100	6	855/1300	1,5	
BAW56	common anode double diode	70	100	6	855/1300	2	

VARIABLE CAPACITANCE DIODE

	RAT	INGS			СНА	RACTERIS	STICS	4
type	V _R	IF	I _R at	٧R	c _d	at V _R	capacitance ratio	rD
	V	mA	nA	٧	pF	V	typ.	Ω
BBY31	28	20	< 50	28	typ.	17,5/1 11,5/3 -2,8/25	5	<1,2

VOLTAGE REGULATOR DIODES BZX84-series

type suffix	V _{Znom} V	^r diff Ω	S _Z mV/ ^o C	type suffix	V _{Znom} V	$^{ m r}_{ m diff}$	S _Z mV/ ^O C
-C4V7	4,7	80	0,2	_C20	20	55	18,0
-C5V1	5,1	60	1,2	-C22	22	55	20,0
-C5V6	5,6	40	2,5	-C24	24	70	22,0
-C6V2	6,2	10	3,7	-C27	27	80	25,3
-C6V8	6,8	15	4,5	-C30	30	80	29,4
-C7V5	7,5	15	5,3	-C33	33	.80	33,4
-C8V2	8,2	15	6,2	_C36	36	90	37,4
C9V1	9,1	15	7,0	_C39	39	130	41,2
-C10	10	20	8,0	-C43	43	150	46,6
-C11	11	20	9,0	_C47	47	170	51,8
-C12	12	25	10,0	_C51	51	180	57,2
-C13	13	30	11,0	-C56	56	200	63,8
-C15	15	30	13,0	-C62	62	215	71,6
-C16	16	40	14,0	-C68	68	240	79,8
-C18	18	45	16,0	-C75	['] 75	255	88,6

⁻C4V7 to -C24 at I_Z = 5 mA; -C27 to -C75 at I_Z = 2 mA. BZX84 series; I_{FRM} = I_{ZRM} = 200 mA; P_{tot} = 200 mW.

SILICON PLANAR EPITAXIAL HIGH-SPEED DIODE

Silicon epitaxial high-speed diode in a microminiature plastic envelope. It is intended for high-speed switching in hybrid thick and thin-film circuits.

QUICK REFERENCE DATA

Continuous reverse voltage	VR	max.	75 V
Repetitive peak reverse voltage	v_{RRM}	max.	85 V
Repetitive peak forward current	IFRM	max.	200 mA
Junction temperature	Тj	max.	150 °C
Forward voltage at I _F = 50 mA	٧F	<	1,1 V
Reverse recovery time when switched from $I_F = 10 \text{ mA}$ to $I_R = 10 \text{ mA}$; $R_L = 100 \Omega$; measured at $I_R = 1 \text{ mA}$	t _{rr}	. <	6 ns
Recovery charge when switched from I_F = 10 mA to V_R = 5 V; R_L = 500 Ω	O _s	<	45 pC

MECHANICAL DATA

Fig. 1 SOT-23.

Dimensions in mm

Marking code

BAS16 = A6

0,85

0,75

1,2

0,8

See also Soldering recommendations.

RATINGS

Limiting values in accordance with the Absolute Maxim	um Cuntom /IE	C 124\		
Limiting values in accordance with the Absolute Maxim	ium System (ic			75. 17
Continuous reverse voltage		V _R	max.	75 V
Repetitive peak reverse voltage		VRRM	max.	85 V
Average rectified forward current * (averaged over any 20 ms period)		I _{F(AV)}	max.	100 mA
Forward current (d.c.)		IF .	max.	100 mA
Repetitive peak forward current		IERM.	max.	200 mA
Storage temperature		T _{stg}	-65 to	+150 °C
Junction temperature		Tj	max.	150 °C
THERMAL RESISTANCE				
From junction to ambient mounted on a				
ceramic substrate of 7 mm x 5 mm x 0,5 mm		R _{th j-a}	= .	0,62 °C/mW
CHARACTERISTICS				
T _j = 25 °C unless otherwise specified.				
Forward voltage				$\mathcal{A}_{i} = \{ i \in \mathcal{A}_{i} \mid i \in \mathcal{A}_{i} \}$
IF = 1 mA		VF	<	715 mV
I _F = 10 mA		٧F	<	855 mV
I _F = 50 mA I _F = 100 mA		V _F	<	1100 mV 1300 mV
•		· VF		1300 111 V
Reverse current V _R = 25 V; T _i = 150 °C		1 _R	<	30 μΑ
V _R = 75 V		I _R	<	1 μΑ
V _R = 75 V; T _i = 150 °C		I _R	<	50 μA
Diode capacitance				
V _R = 0; f = 1 MHz		Cd	<	2 pF
Forward recovery voltage (see also Fig. 2)				
when switched to $I_F = 10 \text{ mA}$; $t_D = 20 \text{ ns}$	•	V _{fr}	<	1,75 V
Reverse recovery time (see also Fig. 3)		,		
when switched from $I_F = 10 \text{ mA}$ to $I_R = 10 \text{ mA}$;				
$R_L = 100 \Omega$; measured at $I_R = 1 \text{ mA}$		t _{rr}	<	6 ns
Recovery charge (see also Fig. 4)				
when switched from $I_F = 10 \text{ mA}$ to $V_R = 5 \text{ V}$;			5	
$R_1 = 500 \Omega$		Q.	. <	45 pC

^{*} Measured under pulse conditions. Pulse time = $t_p \le 0.5$ ms. For sinusoidal operation $I_{F(AV)} = 65$ mA averaging time $t_{(av)} \le 1$ ms.

Fig. 2 Forward recovery voltage test circuit and waveforms.

Input signal: forward pulse rise time = t_r = 20 ns; forward current pulse duration t_p = 120 ns; duty

factor = δ = 0,01.

Oscilloscope: rise time = $t_r = 0.35$ ns.

Circuit capacitance $C \le 1$ pF (C = oscilloscope input capacitance + parasitic capacitance).

Fig. 3 Reverse recovery time test circuit and waveforms.

Input signal: reverse pulse rise time = t_r = 0,6 ns; reverse pulse duration = t_p = 100 ns; duty

factor = δ = 0,05. * t_{rr} up to l_R = 1 mA.

Oscilloscope: rise time = $t_r = 0.35$ ns.

Circuit capacitance $C \le 1 \text{ pF}$ (C = oscilloscope input capacitance + parasitic capacitance).

Fig. 4 Recovery charge test circuit and waveform.

D1 = BAW62; D2 = diode with minority carrier life time at 10 mA: < 200 ps

Input signal

Rise time of the reverse pulse

Reverse pulse duration

Duty factor

Circuit capacitance C \leq 7 pF (C = oscilloscope input capacitance + parasitic capacitance).

2 ns

400 ns 0,02

SCHOTTKY BARRIER DIODE

Silicon epitaxial diode in a microminiature plastic envelope. Intended for u.h.f. mixer and fast switching applications in thick and thin-film circuits.

QUICK REFERENCE DATA

Continuous reverse voltage	v_R	max.	4 V
Forward current (d.c.)	۱F	max.	30 mA
Junction temperature	T _j	max.	100 °C
Thermal resistance from junction to ambient	R _{th j-a}	=	0,62 °C/mW
Forward voltage at I _F = 10 mA	V _F	<	600 mV
Diode capacitance at V _R = 0; f = 1 MHz	c_d	<	1,0 pF
Noise figure at f = 900 MHz	F	<	8,0 dB

MECHANICAL DATA

Dimensions in mm

Marking code

BAT17 = A3

Fig.1 SOT-23.

See also Soldering recommendations.

RATINGS

Limiting values in accordance with the Absolute Maximum Systen Continuous reverse voltage	v _R	max.	. 4	V
Forward current (d.c.)	∙κ I _F	max.		mΑ
Storage temperature	T _{stg}	-65 to		
Junction temperature	∙stg T _j	max.	100	
THERMAL RESISTANCE				
From junction to ambient mounted on a ceramic substrate of 7 mm \times 5 mm \times 0,5 mm	R _{th j-a}	=	0,62	oC/mW
CHARACTERISTICS				
T _{amb} = 25 °C unless otherwise specified				
Reverse current / V _R = 3 V	I _R	<	0,25	μΑ
$V_R = 3 V$; $T_{amb} = 60 {}^{\circ}C$	I _R	<	1,25	μÀ
Reverse breakdown voltage I _R = 10 μA	V _{(BR)F}	> ,	4	v
Forward voltage IF = 10 mA	V _F	< '	600	mV
Diode capacitance $V_R = 0$; $f = 1 \text{ MHz}$	c _d	<	1,0	pF
Noise figure at f = 900 MHz *	F	<	8,0	dB
Series resistance at f = 1 kHz				

15 Ω

 $I_F = 5 \text{ mA}$

^{*} The local oscillator is adjusted for a diode current of 2 mA. I.F. amplifier noise F_{if} = 1,5 dB; f = 35 MHz.

Fig. 2.

SILICON PLANAR DIODE

Switching diode in a microminiature plastic envelope. Intended for thick and thin-film circuits.

QUICK REFERENCE DATA

Continuous reverse voltage	V _R	max.	35 V
Forward current (d.c.)	lF	max.	100 mA
Junction temperature	T_i	max.	100 °C
Diode capacitance at f = 1 MHz V _R = 20 V	c _d	typ.	0,8 pF 1,0 pF
Series resistance at f = 200 MHz I _F = 5 mA	r _D	typ.	0,5 Ω 0,7 Ω

MECHANICAL DATA

Fig. 1 SOT-23.

Dimensions in mm

Marking code BAT18 = A2

See also Soldering recommendations.

RATINGS

Limiting values in accordance with the Absolute Maximus	m System (IE	C 134)			
Continuous reverse voltage	.* .	V _R	max.	35	V
Forward current (d.c.)		ΙF	max.	100	mA
Storage temperature		T _{stg}	-55 to	+100	oC .
Junction temperature		Τj	max.	100	оС
THERMAL RESISTANCE			1, 4	•	
From junction to ambient mounted on a ceramic					
substrate of 7 mm x 5 mm x 0,5 mm		R _{th j-a}	= "	0,62	oC/mW
CHARACTERISTICS					
T _i = 25 °C unless otherwise specified					
Forward voltage at I _F = 100 mA		٧F	<	1,2	V
Reverse current V _R = 20 V		I _R	<	100	nA
$V_R = 20 V; T_i = 60 {}^{\circ}C$		IR	<	1	μΑ
Diode capacitance at f = 1 MHz V _R = 20 V		C _d	typ.	0,8 1,0	
Series resistance at f = 200 MHz I _F = 5 mA		r _D	typ.	0,5 0,7	

7Z09001

25°C

ν_R (ν)

100

Fig. 2 Typical values.

10 typical values

 I_{R}

(nA)

Fig. 4.

10

Fig. 6.

SILICON PLANAR EPITAXIAL HIGH-SPEED DIODES

The BAV70 consists of two diodes in a microminiature plastic envelope. The cathodes are commoned and the unit is intended for high-speed switching in thick and thin-film circuits.

QUICK REFERENCE DATA (per diode)

Continuous reverse voltage	VR	max.	70 V
Repetitive peak reverse voltage	V _{RRM}	max.	70 ·V
Repetitive peak forward current	IFRM	max.	200 mA
Junction temperature	T _i	max.	150 °C
Forward voltage at I _F = 50 mA	V _F	<	1,1 V
Reverse recovery time when switched from $I_F = 10$ mA to $I_R = 10$ mA; $R_L = 100$ Ω ; measured at $I_R = 1$ mA	t _{rr}	<	6 ns
Recovery charge when switched from I_F = 10 mA to V_R = 5 V; R_L = 500 Ω	Ω_{S}	<	45 pC

MECHANICAL DATA

Dimensions in mm

Marking code BAV70 = A4

Fig. 1 SOT-23.

See also Soldering recommendations.

Temperatures

Storage temperature T_{stg} -65 to +150 °C Junction temperature T_{j} max. 150 °C

THERMAL RESISTANCE (per diode)

Repetitive peak forward current

From junction to ambient mounted on a ceramic substrate of 7 mm x 5 mm x 0,5 mm both diodes loaded simultaneously $R_{th\ j-a} = 1,10 \quad ^{o}\text{C/mW}$ one diode loaded $R_{th\ j-a} = 0,67 \quad ^{o}\text{C/mW}$

200

max.

IFRM

mA

¹⁾ Measured under pulse conditions: pulse time $t_p \le 0.5$ ms. For sinusoidal operation $I_{F(AV)} = 65$ mA; averaging time $t_{(aV)} \le 1$ ms).

Forward voltage

$I_{\mathbf{F}} = 1 \text{ mA}$	en e	v_{F}	<	715	mV
$I_F = 10 \text{ mA}$		v_F	<	855	mV
$I_{\mathbf{F}} = 50 \text{ mA}$		$v_{\mathbf{F}}$	<	1100	mV
$I_F = 100 \text{ mA}$	•	$v_{\mathbf{F}}$	<	1300	mV

• ,	1.			
Reverse current				
$V_R = 25 \text{ V}; T_j = 150 ^{\circ}\text{C}$	$I_{\mathbf{R}}$	<	60	μA
$V_R = 70 \text{ V}$	$I_{\mathbf{R}}$.	<	5	μА
$V_R = 70 \text{ V}; T_j = 150 ^{\circ}\text{C}$	$I_{\mathbf{R}}$	< <	100	μΑ
Diode capacitance				
$V_R = 0$; $f = 1 \text{ MHz}$	$C_{\mathbf{d}}$	< '	1,5	pF
Forward recovery voltage when switched to				

Forward recovery voltage when switched

$$I_{F} = 10 \text{ mA}; t_{r} = 20 \text{ ns}$$
 $V_{fr} < 1,75 V_{fr}$

Test circuit and waveforms:

Input signal : Rise time of the forward pulse

Forward current pulse duration

Duty factor

 $t_r = 20 \text{ ns}$

 $t_p = 120 \text{ ns}$

 $\delta = 0.01$

Oscilloscope: Rise time

 $t_{r} = 0,35 \text{ ns}$

Circuit capacitance $C \le 1 \, pF$ (C = oscilloscope input capacitance + parasitic capacitance)

CHARACTERISTICS (per diode) (continued)

$$T_i = 25$$
 °C

--- Reverse recovery time when switched from

$$I_F$$
 = 10 mA to I_R = 10 mA; R_L = 100 Ω ; measured at I_R = 1 mA

 t_{rr}

6 ns

Test circuit and waveforms:

*) $I_R = 1 \text{ mA}$

Input signal : Rise time of the reverse pulse

Reverse pulse duration

_

Duty factor

 $t_r = 0.6 \text{ ns}$

 $t_p = 100 \text{ ns}$

 $\delta = 0.05$

Oscilloscope: Rise time

$$t_r = 0,35 \text{ ns}$$

Circuit capacitance C \leq 1 pF (C = oscilloscope input capacitance + parasitic capacitance)

Recovery charge when switched from

$$I_{\rm F}$$
 = 10 mA to $V_{\rm R}$ = 5 V; $R_{\rm L}$ = 500 Ω

 Q_s

<

5 pC

Test circuit and waveform:

D1 = BAW62

D2 = diode with minority carrier life time at 10 mA: < 200 ps

Input signal : Rise time of the reverse pulse

 $t_r = 2 \text{ ns}$

Reverse pulse duration

 $t_D = 400 \text{ ns}$

Duty factor

 $\delta = 0.02$

Circuit capacitance $C \le 7 \text{ pF}$ (C = oscilloscope input capacitance + parasitic capacitance)

SILICON PLANAR EPITAXIAL HIGH-SPEED DIODES

The BAV99 consists of two diodes in a microminiature plastic envelope. The diodes are connected in series and the unit is intended for high-speed switching in thick and thin-film circuits.

QUICK REFERENCE DATA (per diode)

Continuous reverse voltage	v_R	max.	70 V
Repetitive peak reverse voltage	V_{RRM}	max.	70 V
Repetitive peak forward current	IFRM	max.	200 mA
Junction temperature	т _ј	max.	150 °C
Forward voltage at I _F = 50 mA	٧ _F	<	1,1 V
Reverse recovery time when switched from $I_F = 10$ mA to $I_R = 10$ mA; $R_L = 100 \Omega$; measured at $I_R = 1$ mA	` t _{rr}	<	6 ns
Recovery charge when switched from I_F = 10 mA to V_R = 5 V; R_L = 500 Ω	$oldsymbol{O}_{s}$	<	45 pC

MECHANICAL DATA

Dimensions in mm

Marking code

Fig. 1 SOT-23.

BAV99 = A7

Currents

Average rectified forward current (averaged over any 20 ms period) 100 mA^{1} max. I_{F(AV)} Forward current (d. c.) I_{F} 100 max. mΑ Repetitive peak forward current 200 mΑ IFRM max.

Temperatures

Storage temperature T_{stg} -65 to +150oC. T_{i} Junction temperature max. 150 oC

THERMAL RESISTANCE (per diode)

From junction to ambient mounted on a ceramic substrate of 7 mm x 5 mm x 0,5 mm both diodes loaded simultaneously one diode loaded

 $R_{\text{th j-a}}$ 1, 10 OC/mW R_{th j-a} 0,67 OC/mW

¹⁾ Measured under pulse conditions: pulse time $t_p \le 0.5 \text{ ms}$. For sinusoidal operation $I_{F(AV)} = 65 \text{ mA}$; averaging time $t_{(av)} \le 1 \text{ ms}$.

CHARACTERISTICS (per diode)

$T_i = 25$ °C unless otherwise specified

Forward voltage

	and the second s			
$I_{\mathbf{F}} = 1 \text{ mA}$	${ m v_F}$	< ,	715	mV
$I_F = 10 \text{ mA}$	$v_{\mathbf{F}}$	<	855	mV
$I_F = 50 \text{ mA}$	$v_{\mathbf{F}}$	<	1100	mV
$I_F = 100 \text{ mA}$	v_{F}	<	1300	mV

Reverse current

$V_R = 25 \text{ V}; T_j = 150 ^{\circ}\text{C}$	$I_{\mathbf{R}}$	<	30	μΑ
$V_R = 70 \text{ V}$	$I_{\mathbf{R}}$	<	2,5	μĄ
$V_R = 70 \text{ V}; T_j = 150 ^{\circ}\text{C}$	I_{R}	<	50	μA

Diode capacitance

$$V_{R}$$
 = 0; f = 1 MHz C_{d} < 1,5 pF

Forward recovery voltage when switched to

$$I_F = 10 \text{ mA}; t_r = 20 \text{ ns}$$
 $V_{fr} < 1,75 \text{ V}$

Test circuit and waveforms:

Input signal : Rise time of the forward pulse

Forward current pulse duration

Duty factor

$$t_r = 20 \text{ ns}$$

$$t_p = 120 \text{ ns}$$

$$\delta = 0.01$$

$$t_r = 0,35 \text{ ns}$$

Circuit capacitance $C \le 1 \; pF$ ($C = oscilloscope \; input \; capacitance + parasitic \; capacitance)$

CHARACTERISTICS (per diode) (continued)

 $T_i = 25 \text{ oC}$

ns

Reverse recovery time whe switched from

$$I_F$$
 = 10 mA to I_R = 10 mA; R_L = 100 Ω ; measured at I_R = 1 mA

 t_{rr} < 6

Test circuit and waveforms:

Input signal : Rise time of the reverse pulse

 $t_r = 0,6 \text{ ns}$

*) $I_R = 1 \text{ mA}$

Reverse pulse duration

 $t_p = 100 \text{ ns}$

 $\delta = 0.05$

Oscilloscope: Rise time

 $t_r = 0,35 \text{ ns}$

Circuit capacitance $C \le 1 \ pF$ ($C = oscilloscope \ input \ capacitance + parasitic \ capacitance)$

Recovery charge when switched from

$$I_F = 10 \text{ mA to } V_R = 5 \text{ V}; R_L = 500 \Omega$$

Duty factor

 Q_{s}

<

45 pC

Test circuit and waveform:

D1 = BAW62

D2 = diode with minority carrier life time at 10 mA: $\leq\!200~ps$

Input signal: Rise time of the reverse pulse

 $t_r = 2 ns$

Reverse pulse duration

 $t_0 = 400 \, \text{ns}$

Duty factor

 $\delta = 0.02$

Circuit capacitance $C \le 7$ pF (C = oscilloscope input capacitance + parasitic capacitance)

SILICON PLANAR EPITAXIAL HIGH-SPEED DIODES

The BAW56 consists of two diodes in a microminiature plastic envelope. The anodes are commoned and the unit is intended for high-speed switching in thick and thin-film circuits.

QUICK REFERENCE DATA (per diode)

Continuous reverse voltage	V_{R}	max.	70 V
Repetitive peak reverse voltage	V _{RRM}	max.	70 V
Repetitive peak forward current	FRM	max.	200 mA
Junction temperature	T_{j}	max.	150 °C
Forward voltage at I _F = 50 mA	٧F	<	1,1 V
Reverse recovery time when switched from $I_F = 10$ mA to $I_R = 10$ mA; $R_L = 100$ Ω ; measured at $I_R = 1$ mA	t _{rr}	<	6 ns
Recovery charge when switched from I_F = 10 mA to V_R = 5 V; R_L = 500 Ω	$Q_{\sf s}$	<	45 pC

MECHANICAL DATA

Dimensions in mm

Marking code

Fig. 1 SOT-23.

BAW56 = A1

From junction to ambient

one diode loaded

7 mm x 5 mm x 0,5 mm

mounted on a ceramic substrate of

both diodes loaded simultaneously

RATINGS (per diode) Limiting values in	accordance with	the Absol	lute Maxi		System C 134)	
Voltages			· .	(12	.0 10 1,	
Continuous reverse voltage		$v_{\mathbf{R}}$	max.	70	V	
Repetitive peak reverse voltage		v_{RRM}	max.	70	\mathbf{V}_{i}	
Currents						
Average rectified forward current (averaged over any 20 ms period)	e de la companya de l	I _{F(AV)}	max.	100	m.A	1)
Forward current (d.c.)		$I_{\mathbf{F}}$	max.	100	mA	
Repetitive peak forward current		IFRM	max.	200	mA	
Temperatures						
Storage temperature		T_{stg}	-65 to	+150	$^{\circ}C$	s
Junction temperature		Тj	max.	150	°C	
THERMAL RESISTANCE (per diode)			_			

Rth j-a

 $R_{th\ j-a}$

oC/mW

oC/mW

1, 10

0,67

¹⁾ Measured under pulse conditions: pulse time $t_p \le 0.5$ ms. For sinusoidal operation $I_{F(AV)} = 65$ mA; averaging time $t_{(av)} \le 1$ ms.

CHARACTERISTICS (per diode)

$T_1 = 25$ °C unless otherwise specified

Forward voltage

					,
$I_F = 1 \text{ mA}$		$v_{\mathbf{F}}$	<	715	mV
$I_F = 10 \text{ mA}$,	$v_{\mathbf{F}}$	<	855	mV
$I_F = 50 \text{ mA}$		$v_{\mathbf{F}}$	<	1100	mV
$I_F = 100 \text{ mA}$		$v_{\mathbf{F}}$	<	1300	mV

Reverse current	· .			
$V_R = 25 \text{ V; T}_j = 150 ^{\circ}\text{C}$	$I_{\mathbf{R}}$	<	30	μΑ
$V_R = 70 \text{ V}$	$I_{\mathbf{R}}$	<	2,5	μA
$V_R = 70 \text{ V; } T_j = 150 ^{\circ}\text{C}$	$I_{\mathbf{R}}$	<	50	μΑ
Diode capacitance				
$V_R = 0$; $f = 1 \text{ MHz}$	$C_{\mathbf{d}}$	<	2	pF

	$v_R = 0; r = r$	MITZ		$c_{\mathbf{q}}$	<	Z	рr
	+						
_	_						

Forward recovery voltage when switched to

$$I_{\rm F} = 10 \text{ mA}; t_{\rm r} = 20 \text{ ns}$$
 $V_{\rm fr} < 1.75 \text{ V}$

Test circuit and waveforms:

Input signal : Rise time of the forward pulse

Forward current pulse duration

Duty factor

20 ns

 $t_D = 120 \text{ ns}$

 $\delta = 0.01$

Oscilloscope: Rise time

 $t_r = 0,35 \text{ ns}$

Circuit capacitance $C \le 1 \text{ pF}$ (C = oscilloscope input capacitance + parasitic capacitance)

CHARACTERISTICS (per diode) (continued)

 $T_i = 25 \text{ }^{\circ}\text{C}$

Reverse recovery time when switched from

$$I_F$$
 = 10 mA to I_R = 10 mA; R_L = 100 $\Omega;$ measured at I_R = 1 mA

trr

<

ó ns

Test circuit and waveforms:

*) $I_R = 1 \text{ mA}$

Input signal : Rise time of the reverse pulse

Reverse pulse duration

Duty factor

 $t_r = 0.6 \, \text{ns}$

 $t_p = 100 \text{ ns}$

 $\delta = 0.05$

Oscilloscope: Rise time

 $t_r = 0,35 \text{ ns}$

Circuit capacitance C \leq 1 pF (C = oscilloscope input capacitance + parasitic capacitance)

Recovery charge when switched from

$$I_F$$
 = 10 mA to V_R = 5 V; R_L = 500 Ω

 Q_s

pC

Test circuit and waveform:

D1 = BAW62

D2 = diode with minority carrier life time at 10 mA: < 200 ps

Input signal: Rise time of the reverse pulse

 $t_r = 2 \text{ ns}$

Reverse pulse duration

 $t_{\rm p} = 400 \, \rm ns$

Duty factor

 $\delta = 0.02$

Circuit capacitance $C \le 7 \text{ pF}$ (C = oscilloscope input capacitance + parasitic capacitance)

VARIABLE CAPACITANCE DIODE

Silicon planar variable capacitance diode in a microminiature envelope. It is intended for electronic tuning applications in thick and thin-film circuits.

QUICK REFERENCE DATA

Reverse voltage		VR	max.	28 V
Reverse current at V _R = 28 V		IR	<	50 nA
Diode capacitance at f = 1 MHz V _R = 25 V		c _d		1,8 to 2,8 pF
Capacitance ratio at f = 1 MHz	,	$\frac{C_d (V_R = 3 V)}{C_d (V_R = 25 V)}$	typ.	
Series resistance at f = 470 MHz V_R = that value at which C_d = 9 pF		rD	<	1,2 Ω

MECHANICAL DATA

Dimensions in mm

Marking code

Fig. 1 SOT-23.

BBY31 = S1

RATINGS Limiting values in accordance	with the Absolute Ma	ximum Sy	stem (Il	EC 134)
Continuous reverse voltage	$v_{\mathbf{R}}$	max.	28	V
Reverse voltage (peak value)	v_{RM}	max.	30	v
Forward current (d.c.)	$I_{\mathbf{F}}$	max.	20	mA
Storage temperature	${ m T_{stg}}$	-65 t	o +100	$^{\circ}C$
Operating junction temperature	$\mathbf{T}_{\mathbf{j}}$	max.	85	℃
THERMAL RESISTANCE				
From junction to ambient mounted on a ceramic substrate of				
7 mm x 5 mm x 0,5 mm	R _{th j} -	a =	0,62	^o C/mW
CHARACTERISTICS	$T_j = 25$ °C	unless ot	herwise	e specifie
Reverse current	- 1 -			
$V_{\mathbf{R}} = 28 \text{ V}$	$I_{\mathbf{R}}$	<	50	nA
$V_R = 28 \text{ V}; T_j = 85 ^{\circ}\text{C}$	$I_{\mathbf{R}}$	<	1000	nA
Diode capacitance at f = 1 MHz				· · .
$V_R = 1 V$	$C_{\mathbf{d}}$	typ.	17,5	рF
$V_R = 3 V$	$C_{\mathbf{d}}$	typ.	11,5	pF
$V_{\mathbf{R}} = 25 \text{ V}$	$C_{\mathbf{d}}$	1,8 t	0 2,8	pF .
Capacitance ratio at f = 1 MHz	$\frac{C_d(V_R = 3 V)}{C_d(V_R = 25 V)}$	typ.	5	
Series resistance			5.4	
at f = 470 MHz and at that value				
of V_R at which $C_d = 9 pF$	r_{D}	<	1,2	Ω

BBY31

SILICON PLANAR EPITAXIAL TRANSISTORS

P-N-P transistors, in a microminiature plastic envelope, intended for low level general purpose applications in thick and thin-film circuits.

QUICK REFERENCE DATA

			BCW29 BCW29R	BCW30 BCW30R	
D.C. current gain at $T_j = 25$ °C $-I_C = 2$ mA; $-V_{CE} = 5$ V	hFE	> <	120 260	215 500	
Collector-base voltage (open emitter)	-V _{CBO}	max.	30	0	V
Collector-emitter voltage (open base)	-V _{CEO}	max.	20	0	V
Collector current (peak value)	-I _{CM}	max.	200	o o	mΑ
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	200	0	mW
Junction temperature	T _j	max.	150	ם .	oC
Transition frequency at $f = 35 \text{ MHz}$ $-I_C = 10 \text{ mA}; -V_{CE} = 5 \text{ V}$	f	typ.	150	3	MHz
Noise figure at R _S = $2 \text{ k}\Omega$ $-\text{I}_C$ = $200 \mu\text{A}$; $-\text{V}_{CE}$ = 5 V ; f = $1 kHz$; B = $200 Hz$	F ·	<	10	ס	dB

Dimensions in mm

MECHANICAL DATA

Fig. 1 SOT-23.

Marking code

BCW29 = C1 BCW30 = C2

BCW30R = C5

BCW29 BCW30

RATINGS Limiting values in accordance with the	ne Absolute Ma	ximum S	stem	(IEC134)
Voltages				
Collector-base voltage (open emitter)	-V _{CBO}	max.	30	\mathbf{v}
Collector-emitter voltage (VBE = 0)	-V _{CES}	max.	30	V
Collector-emitter voltage (open base) $-I_C = 2 \text{ mA}$	-V _{CEO}	max.	20	V
Emitter-base voltage (open collector)	$-V_{\mathrm{EBO}}$	max.	5	v
Currents				
Collector current (d.c.)	$-I_{\mathbf{C}}$	max.	100	mA
Collector current (peak value)	$^{-I}_{\mathrm{CM}}$	max.	200	mA
Power dissipation				
Total power dissipation up to T _{amb} = 25 °C mounted on a ceramic substrate of 7 mm x 5 mm x 0.5 mm	P _{tot}	max.	200	mW
Temperatures				
Storage temperature Junction temperature	${^{\mathrm{T}}_{\mathrm{stg}}}_{{^{\mathrm{T}}_{\mathrm{j}}}}$	-65 to max.	+ 150 150	oC OC
THERMAL RESISTANCE				
From junction to ambient mounted on ceramic substrate of			*.	
7 mm x 5 mm x 0.5 mm	R _{th j-a}	=	0.62	oC/mW

CHARACTERISTICS

Collector cut-off current

$I_E = 0$; $-V_{CB} = 20$	$V; T_j = 25 ^{\circ}\text{C}$	•	-I _{CBO}	<	100	nA
	$T_j = 100 ^{\circ}\text{C}$		-I _{CBO}	<	10	μ A
Base-emitter voltage						

$$-I_C = 2 \text{ mA}$$
; $-V_{CE} = 5 \text{ V}$; $T_j = 25 \text{ °C}$ $-V_{BE}$ 600 to 750 mV

CHARACTERISTICS	(continued)
-----------------	-------------

Saturation voltages

$$-I_C = 10 \text{ mA}$$
; $-I_B = 0.5 \text{ mA}$

$$-I_C = 50 \text{ mA}$$
; $-I_B = 2.5 \text{ mA}$

D.C. current gain

$$-I_C = 10 \,\mu\text{A}$$
; $-V_{CE} = 5 \,\text{V}$

$$-I_C = 2 \text{ mA; } -V_{CE} = 5 \text{ V}$$

Collector capacitance at f = 1 MHz

$$I_{\rm F} = I_{\rm e} = 0$$
; $-V_{\rm CB} = 10 \text{ V}$

Transition frequency at f = 35 MHz
$$-I_{C} = 10 \text{ mA; } -V_{CE} = 5 \text{ V}$$

Noise figure at $R_S = 2 k\Omega$

$$-I_C = 200 \,\mu\text{A}$$
; $-V_{CE} = 5 \,\text{V}$

$$f = 1 \text{ kHz}$$
; $B = 200 \text{ Hz}$

 T_i = 25 °C unless otherwise specified

$$-V_{CEsat}$$
 typ. 80 mV $<$ 300 mV

$$h_{FE}$$
 typ. 90 | 150
 h_{FE} > 120 | 215
 $<$ 260 | 500

$$C_{\rm C}$$
 < 7.0 pF

BCW29 BCW30

SILICON PLANAR EPITAXIAL TRANSISTORS

N-P-N transistors in a microminiature plastic envelope. They are intended for low level general purpose applications in thick and thin-film circuits.

QUICK REFERENCE DATA

			BCW31 BCW31R	BCW32 BCW32R	BCW33 BCW33R	
D.C. current gain at $T_j = 25$ °C $I_C = 2$ mA; $V_{CE} = 5$ V	hFE	> <	110 220	200 450	420 800	
Collector-base voltage (open emitter)	v _{CBO}	max.		30		V
Collector-emitter voltage (open base)	V_{CEO}	max.		20		٧
Collector current (peak value)	ICM	max.		200		mΑ
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.		200		mW
Junction temperature	Тj	max.		150		oC
Transition frequency at $f = 35 \text{ MHz}$ I _C = 2 mA; V _{CE} = 5 V	f _T	typ.		300		MHz
Noise figure at R _S = 2 k Ω I _C = 200 μ A; V _{CE} = 5 V; f = 1 kHz; B = 200 Hz	F	<		10		dB

Dimensions in mm

MECHANICAL DATA

Fig. 1 SOT-23.

See also Soldering recommendations.

Marking code

BCW31R = D4 BCW32R = D5 BCW33R = D6

January 1978

Voltages				
Collector-base voltage (open emitter)	v_{CBO}	max.	30	V
Collector-emitter voltage (open base) I _C = 2 mA	$v_{ m CEO}$	max.	20	v
Emitter-base voltage (open collector)	V _{EBO}	max.	5	v
Currents				
Collector current (d.c.)	${ m I}_{ m C}$	max.	100	mA
Collector current (peak value)	I _{CM}	max.	200	mA
Power dissipation				
Total power dissipation up to T _{amb} = 25 °C mounted on a ceramic substrate of 7 mm x 5 mm x 0.5 mm	P_{tot}	max.	200	mW
Temperatures	-100			
Storage temperature Junction temperature	${f T_{stg}} {f T_{i}}$	-65 to max.		°C
THERMAL RESISTANCE	.			
From junction to ambient mounted on ceramic substrate of 7 mm x 5 mm x 0.5 mm	R _{th j-a}	= .	0.62	ºC/m₩
CHARACTERISTICS	$T_i = 25$ °C unl	ess other	wise s	specified
Collector cut-off current	J		-	
I _E = 0; V _{CB} = 20 V	$I_{ m CBO}$	< , .	100	nA
I_E = 0; V_{CB} = 20 V; T_j = 100 °C	I _{CBO}	<	10	μ A
Base-emitter voltage				
I _C = 2 mA; V _{CE} = 5 V	v_{BE}	550 to	700	mV

CHARACTERISTICS	(continued)
-----------------	-------------

Saturation voltages

$$I_C = 10 \text{ mA}$$
; $I_B = 0.5 \text{ mA}$

$$I_C = 50 \text{ mA}$$
; $I_B = 2.5 \text{ mA}$

D.C. current gain

$$I_C = 10 \mu A$$
; $V_{CE} = 5 V$

$$I_C = 2 \text{ mA}$$
; $V_{CE} = 5 \text{ V}$

Collector capacitance at f = 1 MHz

$$I_E = I_e = 0$$
; $V_{CB} = 10 \text{ V}$

Transition frequency at f = 35 MHz $I_C = 10 \text{ mA}$; $V_{CE} = 5 \text{ V}$

Noise figure at $R_S = 2 k\Omega$

$$I_C = 200 \mu A$$
; $V_{CE} = 5 V$
 $f = 1 \text{ kHz}$; $B = 200 \text{ Hz}$

 T_i = 25 °C unless otherwise specified

typ.

450

850

mV

800

220

VBEsat

<

$$C_{\rm c}$$
 < 4.0 pF

SILICON PLANAR EPITAXIAL TRANSISTORS

P-N-P transistors, in a microminiature plastic envelope, intended for low level general purpose applications in thick and thin-film circuits.

QUICK REFERENCE DATA

			BCW69 BCW69R	BCW70 BCW70R	
D.C. current gain at $T_j = 25 ^{\circ}\text{C}$ $-I_C = 2 \text{mA}; -V_{CE} = 5 \text{V}$	hFE	> <	120 260	215 500	
Collector-base voltage (open emitter)	-V _{CBO}	max.	50)	V
Collector-emitter voltage (open base)	-V _{CEO}	max.	4!	5 .	V
Collector current (peak value)	-ICM	max.	200	o .	mΑ
Total power dissipation up to T _{amb} = 25 °C	P_{tot}	max.	200		mW
Junction temperature	T_{j}	max.	150) ·	oC .
Transition frequency at f = 35 MHz $-I_C = 10$ mA; $-V_{CE} = 5$ V	f _T	typ.	150	0	MHz
Noise figure at R _S = $2 \text{ k}\Omega$ $-\text{I}_{\text{C}}$ = $200 \mu\text{A}$; $-\text{V}_{\text{CE}}$ = 5 V ; f = $1 kHz$; B = $200 Hz$	F	<	10)	dB

Dimensions in mm

MECHANICAL DATA

0,5

Fig. 1 SOT-23.

Marking code BCW69 = H1 BCW70 = H2

See also Soldering recommendations.

0,85

0,75 1,2

0,8

BCW69 BCW70

RATINGS Limiting values in accordance with the				
Voltages	•			
Collector-base voltage (open emitter)	$-v_{CBO}$	max.	50	V.
Collector-emitter voltage ($V_{BE} = 0$)	$-v_{CES}$	max.	50	\mathbf{v}
Collector-emitter voltage (open base) $-I_C = 2 \text{ mA}$	-v _{ceo}	max.	45	v
Emitter-base voltage (open collector)	$-v_{EBO}$	max.	5	v
Currents	e de la companya de l			
Collector current (d.c.)	-I _C	max.	100	mA.
Collector current (peak value)	-I _{CM}	max.	200	m.A.
Power dissipation				
Total power dissipation up to T _{amb} = 25 °C mounted on a ceramic substrate of			,	
7 mm x 5 mm x 0.5 mm	P _{tot}	max.	200	mŴ
Temperatures				
Storage temperature Junction temperature	$^{\mathrm{T}_{\mathrm{stg}}}_{\mathrm{T}_{\mathrm{j}}}$	-65 to max.		°C
THERMAL RESISTANCE				
From junction to ambient mounted on a ceramic substrate of				
7 mm x 5 mm x 0.5 mm	R _{th j-a}	=	0.62	°C/mW

-I_{CBO}

-I_{CBO}

-V_{BE}

Collector cut-off current

Base-emitter voltage

 $I_E = 0$; $-V_{CB} = 20 \text{ V}$; $T_j = 25 \, {}^{\circ}\text{C}$

 $-I_C = 2 \text{ mA}; -V_{CE} = 5 \text{ V}; T_j = 25 \text{ }^{\circ}\text{C}$

 $T_j = 100 \, {}^{\circ}C$

100 nA

10 μΑ

750 mV

600 to

80 mV

BCW69 | BCW70

90

120

260

7.0 pF

150

mV

mV

m۷

mV'

150

215

500

MHz

300

CHARACTERISTICS	(continued)
------------------------	-------------

Τį	=	25	$^{\rm oC}$	unless	otherwise	specified
----	---	----	-------------	--------	-----------	-----------

`-V_{CEsat}

 h_{FE}

 $h_{\rm FE}$

 C_c

 f_T

Saturation voltages

$$-I_C = 10 \text{ mA}$$
; $-I_B = 0.5 \text{ mA}$

$$-I_C = 50 \text{ mA}$$
; $-I_B = 2.5 \text{ mA}$

$$-V_{\mathrm{BE}\,\mathrm{sat}}$$
 typ. 720
 $-V_{\mathrm{CE}\,\mathrm{sat}}$ typ. 150
 $-V_{\mathrm{BE}\,\mathrm{sat}}$ typ. 810

typ.

<

<

typ.

D.C. current gain

$$-I_C = 10 \,\mu\text{A}$$
; $-V_{CE} = 5 \,\text{V}$

$$-I_C = 2 \text{ mA}; -V_{CE} = 5 \text{ V}$$

Collector capacitance at f = 1 MHz

$$I_{E} = I_{e} = 0; -V_{CB} = 10 \text{ V}$$

$$-I_{C} = 10 \text{ mA}; -V_{CE} = 5 \text{ V}$$

Noise figure at
$$R_S = 2 \text{ k}\Omega$$

$$-I_C = 200 \mu A$$
; $-V_{CE} = 5 V$
f = 1 kHz; B = 200 Hz

<

typ.

N-P-N transistors, in a microminiature plastic envelope, intended for low level general purpose applications in thick and thin-film circuits.

QUICK REFERENCE DATA

			BCW71 BCW71R	BCW72 BCW72R	
D.C. current gain at $T_j = 25$ °C $I_C = 2$ mA; $V_{CE} = 5$ V	hFE	> <	110 220	200 450	
Collector-base voltage (open emitter)	V _{CBO}	max.	50	0	٧
Collector-emitter voltage (open base)	v_{CEO}	max.	4!	5	V.
Collector current (peak value)	ICM	max.	20	0	mA
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	20	0	mW
Junction temperature	Τj	max.	150	0	oC
Transition frequency at f = 35 MHz $I_C = 10 \text{ mA}$; $V_{CE} = 5 \text{ V}$	fT	typ.	30	0	MHz
Noise figure at R _S = 2 k Ω I _C = 200 μ A; V _{CE} = 5 V; f = 1 kHz; B = 200 Hz	F	<	10	0	dB

Dimensions in mm

MECHANICAL DATA

Fig. 1 SOT-23.

Marking code

BCW71 = K1 BCW72 = K2

BCW71R = K4 BCW72R = K5

RATINGS Limiting values in accordance with the	Absolute Ma	ximum Syster	n (IEC 134)
Voltages		No.	
Collector-base voltage (open emitter)	v_{CBO}	max. 50	o v
Collector-emitter voltage (open base) $I_C = 2 \text{ mA}$	v_{CEO}	max. 4	5 V
Emitter-base voltage (open collector)	v_{EBO}	max.	5 V
Currents			
Collector current (d.c.)	$I_{\mathbf{C}}$	max. 100) mA
Collector current (peak value)	I_{CM}	max. 200) mA
Power dissipation			\$
Total power dissipation up to T_{amb} = 25 o C mounted on a ceramic substrate of 7 mm x 5 mm x 0.5 mm	P _{tot}	max. 200) mW
Temperatures			
Storage temperature Junction temperature	${^{\mathrm{T}}_{\mathrm{stg}}}_{{\mathrm{T}_{\mathrm{j}}}}$	-65 to +15 max. 15	
THERMAL RESISTANCE			
From junction to ambient mounted on a ceramic substrate of 7 mm x 5 mm x 0.5 mm	R _{th j-a}	= 0.6	2 ^O C/mW
CHARACTERISTICS T _j	= 25 °C unl	ess otherwise	e specified
Collector cut-off current			
$I_E = 0$; $V_{CB} = 20 \text{ V}$	I_{CBO}	< 100	nA
$I_{\rm E}$ = 0; $V_{\rm CB}$ = 20 V; $T_{\rm j}$ = 100 °C	I_{CBO}	< 10) μΑ
Base emitter voltage			
$I_C = 2 \text{ mA}; V_{CE} = 5 \text{ V}$	v_{BE}	550 to 700) mV

CHARACTERISTICS (continued)	т. – 250	C unless of	horwia	e cne	cified
CHARACTERISTICS (continued)	1j = 25	C unless of	nerwis	e spe	cined
Saturation voltages					
$I_C = 10 \text{ mA}; I_B = 0.5 \text{ mA}$		v_{CEsat}	typ.	120 250	mV mV
		v_{BEsat}	typ.	750	mV
$I_C = 50 \text{ mA}$; $I_B = 2.5 \text{ mA}$		v_{CEsat}	typ.	210	mV
		v_{BEsat}	typ.	850	mV
D.C. current gain			BCV	V71 B	CW72
$I_{\rm C}$ = 10 μA ; $V_{\rm CE}$ = 5 V		h _{FE} typ		90	150
$I_C = 2 \text{ mA}$; $V_{CE} = 5 \text{ V}$		hFE >		10 20	200 450
Collector capacitance at f = 1 MHz	•				
$I_{E} = I_{e} = 0; V_{CB} = 10 \text{ V}$		C_c	<	4.0	pF
Transition frequency at f = 35 MHz					
$I_C = 10$ mA; $V_{CE} = 5$ V		$f_{\mathbf{T}}$	typ.	300	MHz

F

Noise figure at $R_S = 2 \text{ k}\Omega$

 $I_{C} = 200 \ \mu A$; $V_{CE} = 5 \ V$ f = 1 kHz; B = 200 Hz

10 dB

BCW71 BCW72

P-N-P transistors, in a microminiature plastic envelope, intended for application in thick and thin-film circuits. These transistors are intended for general purposes as well as saturated switching and driver applications for industrial service.

N-P-N complements are BCX19; 19R and BCX20; 20R respectively.

QUICK REFERENCE DATA

			BCX17 BCX17R	BCX18 BCX18R	
Collector-emitter voltage (V _{BE} = 0)	-V _{CES}	max.	50	30	V
Collector-emitter voltage (open base)	-V _{CEO}	max.	45	25	٧
Collector current (peak value)	-I _{CM}	max.	1000		mΑ
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	3	10	mW
Junction temperature	Tj	max.	1	50	оС
D.C. current gain -I _C = 100 mA; -V _{CE} = 1 V	hFE		100 to 6	00	
Transition frequency $-I_C = 10 \text{ mA}; -V_{CE} = 5 \text{ V}; f = 35 \text{ MHz}$	fT	typ.	1	00	MHz

Dimensions in mm

MECHANICAL DATA

Fig. 1 SOT-23.

Marking code

DOV10

BCX17 = T1 BCX18 = T2

BCX17R = T4 BCX18R = T5

RATINGS Limiting values in accorda	ince with	the Abso	olute Maxii	mum Systen	n (IEC134)
Voltages			BCX 17	BCX18	
Collector-emitter voltage ($V_{BE} = 0$)	$-v_{CES}$	max.	50	30	V
Collector-emitter voltage (open base) $-I_C = 10 \text{ mA}$	-v _{CEO}	max.	45	25	v
Emitter-base voltage (open collector)	-V _{EBO}	max.	5	5	V
Currents				*	
Collector current (d.c.)	$-I_C$	max.		500	mA
Collector current (peak value)	-I _{CM}	max.		1000	mA
Emitter current (peak value)	I_{EM}	max.		1000	mA
Base current (d.c.)	-I _B	max.		100	mA
Base current (peak value)	$-I_{BM}$	max.		200	mA
Power dissipation					
Total power dissipation up to $T_{amb} = 25$ °C					
mounted on a ceramic substrate of 15 mm x 15 mm x 0,5 mm	P _{tot}	max.		310	mW
Temperatures					
Storage temperature	$T_{ exttt{stg}}$		-65 to	+150	°C
Junction temperature	$T_{\mathbf{j}}$	max.		150	o _C
THERMAL RESISTANCE					
From junction to ambient in free air mounted on a ceramic substrate of					
15 mm x 15 mm x 0, 5 mm	R _{th j} -a	= , ,		0,4	°C/mW

CHARACTERISTICS	 $T_j = 25$ °C unless	other	wise spe	ecified
Collector cut-off current				
$I_E = 0$; $-V_{CB} = 20 \text{ V}$	-I _{CBO}	<	100	nA
$I_E = 0$; $-V_{CB} = 20 \text{ V}$; $T_j = 150 ^{\circ}\text{C}$	-I _{CBO}	< '	5	μA
Emitter cut-off current				
$I_{C} = 0$; $-V_{EB} = 5 \text{ V}$	-I _{EBO}	<	10	μΑ
Base emitter voltage 1)				•
$-I_C = 500 \text{ mA}; -V_{CE} = 1 \text{ V}$	-V _{BE}	<	1,2	v
Saturation voltage				
$-I_C = 500 \text{ mA}$; $-I_B = 50 \text{ mA}$	-V _{CEsat}	<	620	mV
D.C. current gain				
$-I_C = 100 \text{ mA}; -V_{CE} = 1 \text{ V}$	\mathtt{h}_{FE}	100 t	o 600	
$-I_C = 300 \text{ mA}; -V_{CE} = 1 \text{ V}$	$\mathtt{h}_{\mathbf{FE}}$	>	70	
$-I_C = 500 \text{ mA}$; $-V_{CE} = 1 \text{ V}$	$\mathbf{h_{FE}}$	> 1	40	
Transition frequency at f = 35 MHz				
$-I_C = 10 \text{ mA}; -V_{CE} = 5 \text{ V}$	fT	typ.	100	MHz
Collector capacitance at f = 1 MHz				
$I_E = I_e = 0$; $-V_{CB} = 10 \text{ V}$	$C_{\mathbf{c}}$	typ.	8	pF

 $[\]overline{\mbox{1)}\mbox{ -VBE}}$ decreases by about 2 mV/°C with increasing temperature.

BCX17 BCX18

BCX17 BCX18

N-P-N transistors, in a microminiature plastic envelope, intended for application in thick and thin-film circuits. These transistors are intended for general purposes as well as saturated switching and driver applications for industrial service.

P-N-P complements are BCX17; 17R and BCX18; 18R respectively.

QUICK REFERENCE DATA

			BCX19 BCX19R	BCX20 BCX20R	
Collector-emitter voltage (V _{BE} = 0)	VCES	max.	50	30	V
Collector-emitter voltage (open base)	VCEO	max.	45	25	٧
Collector current (peak value)	ICM	max.	1000 310		mΑ
Total power dissipation up to $T_{amb} = 25$ °C	P _{tot}	max.			mW
Junction temperature	Τj	max.	1	50	oC
D.C. current gain $I_C = 100 \text{ mA}$; $V_{CE} = 1 \text{ V}$	hFE		100 to 6	00	
Transition frequency $I_C = 10 \text{ mA}$; $V_{CE} = 5 \text{ V}$; $f = 35 \text{ MHz}$	fΤ	typ.	20	00	MHz

Dimensions in mm

MECHANICAL DATA

Fig. 1 SOT-23.

Marking code BCX19 = U1

BCX19R = U4 BCX20R = U5

BCX19 BCX20

RATINGS Limiting values in accordan	nce with	the Absolu	ute Maxi	mum Syster	n (IEC134)
Voltages		` <u> </u>	BCX 19	BCX20	<u>.</u>
Collector-emitter voltage ($V_{BE} = 0$)	VCES	max.	50	30	v
Collector-emitter voltage (open base) $I_{\hbox{\scriptsize C}}=10~\hbox{\scriptsize mA}$	v_{CEO}	max.	45	25	v
Emitter-base voltage (open collector)	v_{EBO}	max.	5	5	v
Currents				~	
Collector current (d.c.)	$I_{\mathbf{C}}$	max.		500	mA
Collector current (peak value)	I_{CM}	max.		1000	mA
Emitter current (peak value)	$-I_{EM}$	max.		1000	mA
Base current (d.c.)	I _B	max.		100	mA
Base current (peak value)	I_{BM}	max.		200	mA
Power dissipation					
Total power dissipation up to $T_{amb} = 25$ OC					
mounted on a ceramic substrate of 15 mm x 15 mm x 0,5 mm	P_{tot}	max.		310	mW
Temperatures			, v		
Storage temperature	$T_{ extsf{stg}}$		−65 to	+150	°C
Junction temperature	$T_{\mathbf{j}}$	max.		150	°C
THERMAL RESISTANCE					
From junction to ambient in free air mounted on a ceramic substrate of					
15 mm x 15 mm x 0,5 mm	R _{th j-a}	= ' `		0,4	oC/mW

CHARACTERISTICS	$T_{j} = 25$	°C unless	otherw	ise spe	cified .
Collector cut-off current		*	•		
$I_{E} = 0$; $V_{CB} = 20 \text{ V}$		I_{CBO}	<	100	nA
I_E = 0; V_{CB} = 20 V; T_j = 150 o C		I_{CBO}	<	, 5	μΑ
Emitter cut-off current					
$I_C = 0$; $V_{EB} = 5 V$		I_{EBO}	< ,	10	μΑ
Base emitter voltage 1)	•				
$I_C = 500$ mA; $V_{CE} = 1$ V		v_{BE}	<	1, 2	v
Saturation voltage					ý
I_C = 500 mA; I_B = 50 mA		V _{CEsat}	<	620	mV
D.C. current gain					**
I_C = 100 mA; V_{CE} = 1 V		${\tt h_{FE}}$	100 to	600	
I_C = 300 mA; V_{CE} = 1 V		\mathtt{h}_{FE}	> ,	70	
$I_C = 500$ mA; $V_{CE} = 1$ V	v ^e	$h_{ m FE}$	·>	40	
Transition frequency at f = 35 MHz					
$I_C = 10 \text{ mA}$; $V_{CE} = 5 \text{ V}$		$f_{\mathbf{T}}$	typ.	200	MHz
Collector capacitance at f = 1 MHz					
$I_{R} = I_{o} = 0$: $V_{CR} = 10 \text{ V}$		Cc	tvp.	5	pF

 $[\]overline{\mbox{1) V}_{\mbox{\footnotesize{BE}}}}$ decreases by about 2 mV/OC with increasing temperature.

BCX19 BCX20

Medium power p-n-p transistors in a miniature plastic envelope intended for applications in thick and thin-film circuits. These transistors are intended for general purposes as well as for use in driver stages of audio amplifiers.

N-P-N complements are BCX54, BCX55 and BCX56 respectively.

QUICK REFERENCE DATA

		В	CX51	BCX52	BCX53
Collector-base voltage (open emitter)	-V _{CBO}	max.	45	60	100 V
Collector-emitter voltage (open base)	-V _{CEO}	max.	45	60	80 V
Collector-emitter voltage ($R_{BE} = 1 \text{ k}\Omega$)	-V _{CER}	max.	45	60	100 V
Collector current (peak value)	-I _{CM}	max.	1,5	1,5	1,5 A
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	1	1	1 W
Junction temperature	Ti	max.	150	150	150 °C
D.C. current gain $-I_C = 150 \text{ mA}$; $-V_{CE} = 2 \text{ V}$	ħFE	>	40 250	40 160	40 160
Transition frequency at f = 35 MHz $-I_C = 10 \text{ mA}$; $-V_{CE} = 5 \text{ V}$	f _T	typ.	50	50	50 MH

					•	
RATINGS Limiting values in accordance w	ith the Al	solute	Maxii	mum Sys	stem (l	EC 134
Voltages		ВС	X51	BCX52 B	CX53	
Collector-base voltage (open emitter)	$-v_{CBO}$	max.	45	60	100	$\mathbf{v}_{_{\!$
Collector-emitter voltage (open base)	-V _{CEO}	max.	45	60	80	\mathbf{v}
Collector-emitter voltage ($R_{BE} = 1 \text{ k}\Omega$)	-V _{CER}	max.	45	60	100	v
Emitter-base voltage (open collector)	$-v_{EBO}$	max.	5	5	5	V
Currrents				· · · · · · · · · · · · · · · · · · ·		_
Collector current (d.c.)	-I _C	max.		1,0		A
Collector current (peak value)	$-I_{CM}$	max.		1,5		Α
Base current (d.c.)	$-I_B$	max.		0,1		A
Base current (peak value)	$-I_{BM}$	max.		0,2		A
Power dissipation						-
Total power dissipation up to T _{amb} = 25 °C mounted on a ceramic substrate				•		
area = 2.5 cm^2 ; thickness = 0.7 mm	P _{tot}	max.		1,0		w
Temperatures		-				
Storage temperature	T_{stg}		-65 to	+ 150		оC
Junction temperature	Tj	max.		150	,	°C
THERMAL RESISTANCE						
From junction to collector tab	R _{th j-ta}	b =		10		°C/V
From junction to ambient in free air mounted on a ceramic substrate					•	
area = 2.5 cm^2 : thickness = 0.7 mm	Rehina	=		125		°C/\

MHz

CHARACTERISTICS	T _{amb}	, = :	25.ºC ur	nless otl	herwise	specified
Collector cut-off current						
$I_E = 0$; $-V_{CB} = 30 \text{ V}$	$-I_{\text{CBO}}$	<		100		nA
$I_E = 0$; $-V_{CB} = 30 \text{ V}$; $T_j = 125 ^{\circ}\text{C}$	$-I_{\text{CBO}}$	<		10		μΑ
Emitter cut-off current						
$I_C = 0$; $-V_{EB} = 5 V$	$-I_{\text{EBO}}$	<		10		μΑ
Base-emitter voltage						
$-I_C = 500 \text{ mA}; -V_{CE} = 2 \text{ V}$	$-v_{BE}$	<		1		V
Saturation voltage						
$-I_C = 500 \text{ mA}; -I_B = 50 \text{ mA}$	$-v_{CEsat}$	<		0,5		v
D.C. current gain	•		BCX51	BCX52	BCX53	
$-I_C = 5 \text{ mA}; -V_{CE} = 2 \text{ V}$	$h_{\mathbf{FE}}$	>	25	25	25	
$-I_C = 150 \text{ mA}; -V_{CE} = 2 \text{ V}$	$h_{ m FE}$	> <	40 250		40 160	
$-I_C = 500 \text{ mA}; -V_{CE} = 2 \text{ V}$	h_{FE}	>	25	ŀ	25	

 $f_{\mathbf{T}}$

typ.

Transition frequency at f = 35 MHz $-I_C = 10 \text{ mA}; -V_{CE} = 5 \text{ V}$

50

Medium power n-p-n transistors in a miniature plastic envelope intended for applications in thick and thin-film circuits. These transistors are intended for general purposes as well as for use in driver stages of audio amplifiers.

P-N-P complements are BCX51, BCX52 and BCX53 respectively.

QUICK REFERENCE DATA

		. Е	3CX54	BCX55	BCX56	
Collector-base voltage (open emitter)	V _{CBO}	max.	45	60	100	V
Collector-emitter voltage (open base)	VCEO	max.	45	60	80	Ý
Collector-emitter voltage ($R_{BE} = 1 k\Omega$)	VCER	max.	45	60	100	٧
Collector current (peak value)	ICM	max.	1,5	1,5	1,5	Α
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	1	1	1	w
Junction temperature	Τį	max.	150	150	150	οС
D.C. current gain $I_C = 150$ mA; $V_{CE} = 2$ V	hFE	> .	40 250	40 160	40 160	
Transition frequency at f = 35 MHz I _C = 10 mA; V _{CE} = 5 V	fΤ	typ.	130	130	130	MH

RATINGS Limiting values in accordance w	ith the A	bsolute	Maxi	mum Sy	stem (l	EC 134)
Voltages		В	CX54	BCX55 E	CX56	
Collector-base voltage (open emitter)	v_{CBO}	max.	45	60	100	V
Collector-emitter voltage (open base)	v_{CEO}	max.	45	60	80	V
Collector-emitter voltage (RBE = $1 \text{ k}\Omega$)	VCER	max.	45	60	100	v
Emitter-base voltage (open collector)	v_{EBO}	max.	5	5	5	v
Currents						
Collector current (d.c.)	$I_{\mathbf{C}}$	max.		1,0		A
Collector current (peak value)	I_{CM}	max.		1,5		Α
Base current (d.c.)	I_B	max.		0,1		Α
Base current (peak value)	I_{BM}	max.		0,2		A
Power dissipation						
Total power dissipation up to T _{amb} = 25 °C mounted on a ceramic substrate			•			
area = $2,5 \text{ cm}^2$; thickness = $0,7 \text{ mm}$	P_{tot}	max.		1,0		w
Temperatures						
Storage temperature	T_{stg}		-65 to	+ 150		о С .
Junction temperature	Тj	max.		150	* .	° oC
THERMAL RESISTANCE						
From junction to collector tab	R _{th j-ta}	ıb =	,	10		oC/W
From junction to ambient in free air mounted on a ceramic substrate				•		
area = $2,5 \text{ cm}^2$; thickness = $0,7 \text{ mm}$	R _{th j-a}			125		°C/W

R_{th j-a}

		···		
CHARACTERISTICS	T _{am}	_{lb} = 25 °C unles	s otherwise sp	ecified
Collector cut-off current				
$I_E = 0; V_{CB} = 30 \text{ V}$	I_{CBO}	<	100	nA
$I_{\rm E}$ = 0; $V_{\rm CB}$ = 30 V; $T_{\rm j}$ = 125 $^{\rm o}{\rm C}$	I_{CBO}	<	10	μΑ
Emitter cut-off current			•	
$I_C = 0; V_{EB} = 5 V$	I_{EBO}	<	10	μΑ
Base-emitter voltage	•			
$I_C = 500 \text{ mA}; V_{CE} = 2 \text{ V}$	v_{BE}	<	1	v
Saturation voltage				
$I_C = 500 \text{ mA}; I_B = 50 \text{ mA}$	v_{CEsat}	<	0,5	V
D.C. current gain		BCX54 B	CX55 BCX56	
$I_C = 5 \text{ mA}; V_{CE} = 2 \text{ V}$	${\tt h_{FE}}$	> 25	25 25	
$I_{C} = 150 \text{ mA}; V_{CE} = 2 \text{ V}$	\mathtt{h}_{FE}	> 40	40 40	
		200	160 160	
$I_C = 500 \text{ mA}; V_{CE} = 2 \text{ V}$	$h_{ m FE}$	> 25	25 25	
Transition frequency at f = 35 MHz				
$I_C = 10 \text{ mA}; V_{CE} = 5 \text{ V}$	$f_{\mathbf{T}}$	typ.	130	MHz

DEVELOPMENT SAMPLE DATA

This information is derived from development samples made available for evaluation. It does not form part of our data handbook system and does not necessarily imply that the device will go into production

SILICON PLANAR EPITAXIAL TRANSISTOR

P-N-P transistor, in a microminiature plastic envelope, intended for applications in thick and thin-film circuits. This transistor is primarily intended for use in i.f. detection applications.

QUICK REFERENCE DATA

Collector-base voltage (open emitter)	-V _{CBO}	max.	40 V
Collector-emitter voltage (open base)	-V _{CEO}	max.	40 V
Collector current (d.c.)	-I _C	max.	25 mA
Total power dissipation up to T _{amb} = 60 °C	P _{tot}	max.	180 mW
Junction temperature	T_{j}	max.	150 °C
D.C. current gain at $T_j = 25$ °C $-I_C = 1$ mA; $-V_{CE} = 10$ V	hFE	>	- 50
Transition frequency at f = 100 MHz $-I_C = 1 \text{ mA}$; $-V_{CE} = 10 \text{ V}$	f _T	typ.	325 MHz
Noise figure at $R_S = 300 \Omega$ -I _C = 1 mA; -V _{CE} = 10 V; f = 100 kHz	F	typ.	2 dB

MECHANICAL DATA

Dimensions in mm

Marking code

Fig. 1 SOT-23

BF550 = G2

7278182

2,5 2,1

Limiting values in accordance with the Absolute Maximum S	System (IEC 1	34)	
Collector-base voltage (open emitter)	-V _{CBO}	max.	40 V
Collector-emitter voltage (open base)	-VCEO	max.	40 V
Emitter-base voltage (open collector)	-VEBO	max.	4 V
Collector current (d.c.)	-IC	max.	25 mA
Total power dissipation up to T _{amb} = 60 °C *	P _{tot}	max.	180 mW
Storage temperature	T _{stg}	-55 t	o +150 °C
Junction temperature	T _j	max.	150 °C
THERMAL RESISTANCE *			
From junction to ambient	R _{th j-a}	=	0,5 °C/mW
CHARACTERISTICS			
T _{amb} = 25 °C unless otherwise specified			
Collector cut-off current I _E = 0; -V _{CB} = 30 V	-1сво	<	50 nA
Emitter cut-off current I _C = 0; -V _{FR} = 3 V	−lEBO	<	100 μΑ
Base-emitter voltage -I _C = 1 mA; -V _{CF} = 10 V	-V _{BE}	typ.	750 mV
D.C. current gain -IC = 1 mA; -VCF = 10 V	hFE	>	50
Transition frequency at f = 100 MHz -IC = 1 mA; -VCF = 10 V	fΤ	typ.	325 MHz
Feedback capacitance at f = 1 MHz -I _C = 1 mA; -V _{CF} = 10 V	C _{re}	typ.	0,5 pF
Noise figure at R _S = 300 Ω -lo = 1 mA - Vor = 10 V·f = 100 kHz	F	tvn.	2 dB

^{*} Mounted on a ceramic substrate of 15 mm x 10 mm x 0,5 mm.

SILICON EPITAXIAL TRANSISTOR

• for video output stages

N-P-N transistor in a miniature plastic envelope intended for application in thick and thin-film circuits. This device is intended for class-B video output stages in colour television receivers.

P-N-P complement is BF623.

QUICK REFERENCE DATA

Collector-base voltage (open emitter)	V _{СВО}	max.	250 V
Collector-emitter voltage (open base)	V _{CEO}	max.	250 V
Collector current (peak value)	1 _{CM}	max.	100 mA
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	. 1 W
Junction temperature	. T _i	max.	150 °C
D.C. current gain $I_C = 25 \text{ mA}$; $V_{CE} = 20 \text{ V}$	hFE	>	50
Transition frequency at f = 35 MHz $I_C = 10 \text{ mA}$; $V_{CE} = 10 \text{ V}$	fT	>	60 MHz
Feedback capacitance at f = 1 MHz $I_C = 0$; $V_{CE} = 30 \text{ V}$	C _{re}	<	1,6 pF

MECHANICAL DATA

Dimensions in mm

Mark

Fig. 1 SOT-89.

BF622

RATINGS

Limiting values in accordance with the Absolu	ite Maximum	ı System (IE	C 134)			
Collector-base voltage (open emitter)			V _{CBO}	max.	250	٧
Collector-emitter voltage (open base)			V _{CEO}	max.	250	٧
Emitter-base voltage (open collector)			V _{EBO}	max.	5	٧
Collector current (d.c.)			l _C	max.	20	mΑ
Collector current (peak value)			ICM	max.	100	mΑ
Total power dissipation up to T _{amb} = 25 °C mounted on a ceramic substrate				,		
area = 2.5 cm^2 ; thickness = 0.7 mm			P_{tot}	max.	1	W
Storage temperature			T _{stg}	-65 to	+150	оС
Junction temperature			Tj	max.	150	oĊ
THERMAL RESISTANCE	•					
From junction to collector tab			R _{th j-tab}	=	25	oC/W
From junction to ambient in free air mounted on a ceramic substrate						
area = 2.5 cm^2 ; thickness = 0.7 mm			R _{th j-a}	. =	125	oC/M

CHARACTERISTICS

Feedback time constant at f = 10,7 MHz **

 $I_C = 10 \text{ mA}$; $V_{CE} = 20 \text{ V}$

ij = 25 °C unless otherwise specified			
Collector cut-off current			
$I_E = 0$; $V_{CB} = 200 \text{ V}$	Iсво	<	10 nA
$R_{BE} = 10 \text{ k}\Omega; V_{CE} = 200 \text{ V}; T_j = 150 \text{ °C}$	ICER	<	50 μΑ
Emitter cut-off current			
$I_C = 0; V_{EB} = 5 V$	^I EBO	<	10 μA
Base-emitter voltage			
$I_C = 25 \text{ mA}$; $V_{CE} = 20 \text{ V}$	V_{BE}	typ.	0,73 V
D.C. current gain			
$I_C = 25 \text{ mA}$; $V_{CE} = 20 \text{ V}$	hFE	>	50
High-frequency knee voltage at T _i = 150 °C *			
$I_C = 25 \text{ mA}$	VCEK	typ.	20 V
Transition frequency at f = 35 MHz			
$I_C = 10 \text{ mA}; V_{CE} = 10 \text{ V}$	fŢ	>	60 MHz
Feedback capacitance at f = 1 MHz			
$I_{C} = 0; V_{CE} = 30 \text{ V}$	C _{re}	<	1,6 pF

<

70 ps

^{*} The high-frequency knee voltage of a transistor is that value of the collector-emitter voltage at which the small-signal gain, measured in a practical circuit, has dropped to 80% of the gain at V_{CE} = 50 V. A further reduction of the collector-emitter voltage results in a rapid increase of the distortion of the signal.

^{**} $r_{bb}'C_{b}'c = \frac{|h_{rb}|}{\omega}$.

Fig. 4 $V_{CE} = 10 \text{ V}$; $T_j = 25 \text{ °C}$; f = 35 MHz.

Fig. 5 $I_C = 25 \text{ mA}$; $V_{CE} = 20 \text{ V}$.

Fig. 7 $I_C = 0$; f = 1 MHz; $T_j = 25 \text{ °C}$.

Fig. 6 $V_{CB} = 200 V$.

SILICON EPITAXIAL TRANSISTOR

for video output stages

P-N-P transistor in a miniature plastic envelope intended for application in thick and thin-film circuits. This device is intended for class-B video output stages in colour television receivers.

N-P-N complement is BF622.

QUICK REFERENCE DATA

-V _{CBO}	max.	250 V
-V _{CEO}	max.	250 V
^{−l} CM	max.	100 mA
P _{tot}	max.	1 W
Τį	max.	150 °C
hFE	>	50
f⊤	>	60 MHz
C _{re}	< ,	1,6 pF
	-VCEO -ICM P _{tot} T _j hFE	$\begin{array}{lll} -\text{V}_{\text{CEO}} & \text{max.} \\ -\text{I}_{\text{CM}} & \text{max.} \\ \text{P}_{\text{tot}} & \text{max.} \\ \text{T}_{j} & \text{max.} \\ \\ \text{h}_{\text{FE}} & > \\ \\ \text{f}_{\text{T}} & > \\ \end{array}$

MECHANICAL DATA

Dimensions in mm

Mark BF623

Fig. 1 SOT-89.

RATINGS

Limiting values in accordance with the Absolute Maximum System (II	EC 134)			
Collector-base voltage (open emitter)	-V _{CBO}	max.	250	V :
Collector-emitter voltage (open base)	-VCEO	max.	250	V
Emitter-base voltage (open collector)	-V _{EBO}	max.	5	V
Collector current (d.c.)	-Ic	max.	20	mΑ
Collector current (peak value)	^{−l} CM	max.	100	mΑ
Total power dissipation up to T _{amb} = 25 °C mounted on a ceramic substrate	•		,	
area = 2,5 cm ² ; thickness = 0,7 mm	P _{tot}	max.	1	W
Storage temperature	T _{stg}	-65 to	+150	oC
Junction temperature	Τ _j	max.	150	oC
THERMAL RESISTANCE				٠,
From junction to collector tab	R _{th j-tab}	=	25	oC/W
From junction to ambient in free air mounted on a ceramic substrate area = 2,5 cm ² ; thickness = 0,7 mm		=	125	°C/W
area 2,0 cm / timerareas 0,7 mm	R _{th j-a}		123	O, W

CHARACTERISTICS

T _j = 25 °C unless otherwise specified			
Collector cut-off current I _E = 0; -V _{CB} = 200 V	~!сво	<	10 nA
$R_{BE} = 10 \text{ k}\Omega; -V_{CE} = 200 \text{ V}; T_{i} = 150 ^{\circ}\text{C}$	^{−l} CER	<	50 μA
Emitter cut-off current I _C = 0; -V _{EB} = 5 V	-IEBO	<	10 μΑ
Base-emitter voltage $-I_C = 25 \text{ mA}$; $-V_{CE} = 20 \text{ V}$	-V _{BE}	typ.	0,75·V
D.C. current gain $-I_C = 25 \text{ mA}$; $-V_{CE} = 20 \text{ V}$	hFE	>-	50
High-frequency knee voltage at T _j = 150 °C * -I _C = 25 mA	-VCEK	typ.	20 V
Transition frequency at $f = 35 \text{ MHz}$ -I _C = 10 mA; -V _{CE} = 10 V	fT	>	60 MHz
Feedback capacitance at f = 1 MHz I _C = 0; -V _{CE} = 30 V	C _{re}	< 1	1,6 pF
Feedback time constant at f = 10,7 MHz ** -I _C = 10 mA; -V _{CE} = 20 V	r _{bb} ′C _b ′c	< .	70 ps

^{*} The high-frequency knee voltage of a transistor is that value of the collector-emitter voltage at which the small-signal gain, measured in a practical circuit, has dropped to 80% of the gain at $-V_{CE} = 50 \text{ V}$. A further reduction of the collector-emitter voltage results in a rapid increase of the distortion of the signal.

^{**} $r_{bb}'C_{b'c} = \frac{|h_{rb}|}{C}$

Fig. 2 Typical values at $T_i = 25$ °C.

Fig. 3 $-V_{CE} = 20 \text{ V}; T_j = 25 \text{ °C}.$

Fig. 4 $-V_{CE} = 10 \text{ V}$; $T_i = 25 \text{ }^{\circ}\text{C}$; f = 35 MHz.

Fig. 5 $-I_C = 25 \text{ mA}; -V_{CE} = 20 \text{ V}.$

Fig. 7 $I_C = 0$; f = 1 MHz; $T_j = 25 \text{ }^{\circ}\text{C}$.

Fig. 6 $-V_{CB} = 200 \text{ V}$.

Fig. 8 $-V_{CE} = 20 \text{ V}$; $T_j = 25 \text{ °C}$.

SILICON PLANAR EPITAXIAL TRANSISTOR

N-P-N multi-emitter transistor in a miniature plastic envelope intended for application in thick and thin-film circuits. The transistor has extremely good intermodulation properties and a high power gain. It is primarily intended for:

- Output and driver stages of channel and band serial amplifiers with high output power for bands 1, 11, 111 and IV/V (40—860 MHz).
- Output and driver stages of wideband amplifiers.

QUICK REFERENCE DATA

Collector-base voltage (open emitter; peak value)	V _{CBOM}	max.	40	v
Collector-emitter voltage (open base)	v_{CEO}	max.	25	٧
Collector current (peak value; f > 1 MHz)	ICM	max.	300	mΑ
Total power dissipation up to T _{amb} = 25 °C	P_{tot}	max.	1	W
Junction temperature	Τ _j	max.	150	oC
Transition frequency at f = 500 MHz I_C = 150 mA; V_{CE} = 15 V	fT	typ.	1,2	GHz
Feedback capacitance at f = 1 MHz I _C = 10 mA; V _{CE} = 15 V; T _{amb} = 25 °C	C _{re}	typ.	1,9	pF

Dimensions in mm

MECHANICAL DATA

Fig. 1 SOT-89.

Mark

BFQ17

RATINGS Limiting values in accordance with the Al	osolute Max	imum Sy	stem	(IEC 13	4)
Voltages					
Collector-base voltage (open emitter; peak value)	v_{CBOM}	max.	40	V	-
Collector-emitter voltage ($R_{BE} \le 50 \Omega$; peak value)	V _{CERM}	max.	40	V 1)
Collector-emitter voltage (open base)	v_{CEO}	max.	25	\mathbf{v}^{-1})
Emitter-base voltage (open collector)	$v_{\rm EBO}$	max.	2	V 1 1	
Currents					
Collector current (d.c.)	$I_{\mathbf{C}}$	max.	150	mA	
Collector current (peak value; f > 1 MHz)	I_{CM}	max.	300	mA	
Power dissipation					
Total power dissipation up to T _{amb} = 25 °C mounted on a ceramic substrate					
area = $2,5 \text{ cm}^2$; thickness = $0,7 \text{ mm}$	P _{tot}	max.	1	W	
Temperatures					
Storage temperature	T_{stg}	-65 to	+ 150	oС	
Junction temperature	$T_{\mathbf{j}}$	max.	150	oC	
THERMAL RESISTANCE					
From junction to collector tab	R _{th j-tab}	=	30	oC/W	•
From junction to ambient in free air					
mounted on a ceramic substrate area = 2.5 cm^2 ; thickness = 0.7 mm	R_{thj-a}	=	125	°C/W	

 $[\]frac{1}{1}$ IC = 10 mA.

CHARACTERISTICS	$T_j = 25$ °C	unless other	wise sp	ecified
Collector cut-off current				
$I_{E} = 0$; $V_{CB} = 20 \text{ V}$; $T_{j} = 150 ^{\circ}\text{C}$	I_{CI}	30 <	20	μΑ
Saturation voltage				
$I_{C} = 100 \text{ mA}; I_{B} = 10 \text{ mA}$	$v_{\rm C}$	Esat <	0,5	v
D.C. current gain				
$I_C = 50 \text{ mA}; V_{CE} = 5 \text{ V}$	$\mathtt{h}_{\mathbf{F}}$	E >	25	
$I_C = 150 \text{ mA}; V_{CE} = 5 \text{ V}$	$h_{\mathbf{F}}$	E > 1	25	
<u>Transition frequency</u> at $f = 500 \text{ MHz}$ 1)				
$I_{C} = 150 \text{ mA}; V_{CE} = 15 \text{ V}$	f_{T}	typ.	1,2	GHz
Collector capacitance at f = 1 MHz				
$I_{E} = I_{e} = 0$; $V_{CB} = 15 \text{ V}$	$C_{\mathbf{c}}$	<	4	pF
Feedback capacitance at f = 1 MHz				
$I_C = 10 \text{ mA}; V_{CE} = 15 \text{ V}; T_{amb} = 25 \text{ °C}$	c_r	e typ.	1,9	pF
Max. unilateral power gain (sre assumed to be zer	0)			
G_{UM} (in dB) = $10 \log \frac{ s_{fe} ^2}{(1 - s_{ie} ^2)(1 - s_{oe} ^2)}$				

 $G_{\hbox{\footnotesize{UM}}}$

GUM

 $I_C = 60 \text{ mA}$; $V_{CE} = 15 \text{ V}$; $T_{amb} = 25 \text{ °C}$;

f = 200 MHz

f = 800 MHz

16

6,5

typ.

typ.

dΒ

dΒ

¹⁾ Measured under pulse conditions.

This information is derived from development samples made available for evaluation. It does not form part of our data handbook system and does not necessarily imply that the device will go into production

SILICON PLANAR EPITAXIAL TRANSISTOR

N-P-N transistor in a miniature plastic envelope intended for application in thick and thin-film circuits. It is primarily intended for MATV purposes.

QUICK REFERENCE DATA

Collector-base voltage (open emitter)	V _{CBO}	max.	25	٧
Collector-emitter voltage (open base)	VCEO	max.	15	٧
Collector current (d.c.)	lc	max.	150	mΑ
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	1	W
Junction temperature	Τj	max.	150	oC
Transition frequency at f = 500 MHz $I_C = 100 \text{ mA}$; $V_{CE} = 10 \text{ V}$	fT	typ.	3,6	GHz
Feedback capacitance at f = 10,7 MHz I _C = 0; V _{CE} = 10 V	C _{re}	typ.	1,2	pF
Intermodulation distortion I _C = 80 mA; V_{CE} = 10 V; R_{L} = 75 Ω measured at $f_{(p+q-r)}$ = 793,25 MHz	d _{im}	<	-60	dB

MECHANICAL DATA

Dimensions in mm

Fig. 1 SOT-89.

Mark BFQ18A

RATINGS

Limiting values in accordance with the Absolute Maximum Syster	n (IEC 134)			
Collector-base voltage (open emitter)	V _{CBO}	max.	25	٧
Collector-emitter voltage (open base)	V _{CEO}	max.	15	٧
Emitter-base voltage (open collector)	V_{EBO}	max.	2	V
Collector current (d.c.)	Ic	max.	150	mA
Total power dissipation up to T _{amb} = 25 °C *	P _{tot}	max.	1	W
Storage temperature	T _{stg}	-65 to +	150	oC
Junction temperature	Tj	max.	150	oC.
THERMAL RESISTANCE				
From junction to collector tab	R _{th j-tab}	-	25	oC/W
From junction to ambient in free air *	R _{th j-a}	=	125	oC/W
CHARACTERISTICS	*			•
T _{amb} = 25 °C unless otherwise specified				
D.C. current gain **		-		
I _C = 50 mA; V _{CE} = 10 V I _C = 100 mA; V _{CF} = 10 V	hFE	> >	25 25	
Transition frequency at f = 500 MHz **	hFE		25	
IC = 50 mA; V _{CE} = 10 V	fT	typ.	3,2	GHz
I _C = 100 mA; V _{CE} = 10 V	fT	typ.	3,6	GHz
Collector capacitance at f = 1 MHz				
$I_E = I_e = 0$; $V_{CB} = 10 \text{ V}$	C _C	typ.	2,0	pF
Emitter capacitance at f = 1 MHz	· C	t	- 11	~E
I _C = I _c = 0; V _{EB} = 0,5 V Feedback capacitance at f = 10,7 MHz	C _e	typ.	11	þΓ
IC = 0; VCE = 10 V	C _{re}	typ.	1,2	pF

The device mounted on a ceramic substrate area = 2,5 cm²; thickness = 0,7 mm.
 ** Measured under pulse conditions.

-60 dB

Intermodulation distortion (see Fig. 2)

 I_{C} = 80 mA; V_{CE} = 10 V; R_{L} = 75 Ω V_{p} = V_{o} = 700 mV at f_{p} = 795,25 MHz V_{q} = V_{o} -6 dB at f_{q} = 803,25 MHz V_{r} = V_{o} -6 dB at f_{r} = 805,25 MHz

Measured at f(p+q-r) = 793,25 MHz

Fig. 2 MATV-test circuit (40-860 MHz).

SILICON PLANAR EPITAXIAL TRANSISTOR

N-P-N transistor in a miniature plastic envelope intended for application in thick- and thin-film circuits.

It is primarily intended for use in u.h.f. and microwave amplifiers such as in aerial amplifiers, radar systems, oscilloscopes, spectrum analysers etc.

The transistor features very low intermodulation distortion and high power gain. Thanks to its very high transition frequency, it also has excellent wideband properties and low noise up to high frequencies.

QUICK REFERENCE DATA				
Collector-base voltage (open emitter)	v_{CBO}	max.	20	V
Collector-emitter voltage (open base)	v_{CEO}	max.	15	V
Collector current (d.c.)	$I_{\mathbf{C}}$	max.	75	mA
Total power dissipation up to $T_{amb} = 87,5$ $^{\circ}C$	P_{tot}	max.	500	mW
Junction temperature	Тį	max.	150	°C
Transition frequency at f = 500 MHz I_C = 50 mA; V_{CE} = 10 V	f_{T}	typ.	5	GHz
Feedback capacitance at $f = 1$ MHz $I_C = 10$ mA; $V_{CE} = 10$ V; $T_{amb} = 25$ °C	C_{re}	typ.	1,3	pF
Noise figure at optimum source impedance $I_C = 50 \text{ mA}$; $V_{CE} = 10 \text{ V}$; $f = 500 \text{ MHz}$; $T_{amb} = 25 ^{o}\text{C}$	F	typ.	3, 3	dB

RATINGS Limiting values in accordance with the Abs	olute Maxii	num Sys	stem (II	EC134)	
Voltages					
Collector-base voltage (open emitter)	V_{CBO}	max.	20	V - 1	
Collector-emitter voltage (open base)	v_{CEO}	max.	15	V .	
Emitter-base voltage (open collector)	v_{EBO}	max.	3,0	\mathbf{v} .	
Currents					
Collector current (d.c.)	$I_{\mathbf{C}}$	max.	75	,mA	
Collector current (peak value); $f > 1 \text{ MHz}$	I_{CM}	max.	150	mA	
Power dissipation					
Total power dissipation up to T _{amb} = 87,5 °C mounted on a ceramic substrate					
area = $2,5 \text{ cm}^2$; thickness = $0,7 \text{ mm}$	P_{tot}	max.	500	mW	
Temperatures					
Storage temperature	$T_{ m stg}$	-65 to	+150	°C	
Junction temperature	T_j	max.	150	°C	
THERMAL RESISTANCE					
From junction to collector tab	R _{th j-tab}	= .	40	oC/W	4
From junction to ambient in free air mounted on a ceramic substrate					
area = 2.5 cm^2 : thickness = 0.7 mm	R	=	125	OC/W	

 $I_{C} = 50 \text{ mA}; V_{CE} = 10 \text{ V}; T_{amb} = 25 \text{ °C};$

f = 200 MHz

f = 500 MHz

f = 800 MHz

18,5

11,5

7,5

typ.

typ.

typ.

GUM

GUM

 G_{UM}

ďΒ

ďΒ

dΒ

¹⁾ Measured under pulse conditions.

N-CHANNEL SILICON FIELD EFFECT TRANSISTOR

Planar epitaxial junction field effect transistor in a microminiature plastic envelope. It is intended for low level general purpose amplifiers in thick and thin-film circuits.

QUICK REFERENCE DATA

Drain-source voltage	± V _{DS}	max.	25 25		٧
Gate-source voltage (open drain)	-V _{GSO}	max.			V
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	200		mW
			BFR30	BFR31	
Drain current	1	>	4	1	mΑ
$V_{DS} = 10 \text{ V}; V_{GS} = 0$	DSS	<	10	5	mΑ
Transfer admittance (common source)		>	1,0	1,5	mA/V
I _D = 1 mA; V _{DS} = 10 V; f = 1 kHz	Yfs	<	4,0	4,5	mA/V

MECHANICAL DATA

Fig. 1 SOT-23.

Dimensions in mm

Marking code BFR30 = M1 BFR31 = M2

BFR30; BFR31

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages				
Drain-source voltage	^{±V} DS	max.	25	v .
Drain-gate voltage (open source)	v_{DGO}	max.	25	V
Gate-source voltage (open drain)	-V _{GSO}	max.	25	V
Current				
Drain current	$I_{\mathbf{D}}$	max.	10	mA
Gate current	$^{\mathrm{I}}\mathrm{G}$	max.	5	mA
Power dissipation				
Total power dissipation up to $T_{amb} = 25$ °C mounted on a ceramic substrate of				
7 mm x 5 mm x 0.5 mm	P_{tot}	max.	200	mW
Temperatures_	•			
Storage temperature	$T_{ m stg}$	-65 to	+150	°C
Junction temperature	Тj	max.	150	°C
THERMAL RESISTANCE				
From junction to ambient mounted on a ceramic substrate of				

R_{th j-a}

7 mm x 5 mm x 0.5 mm

0.62

oC/mW

			L_				
CHARACTERISTICS $T_j = 25$ °C unless otherwise specified							
Gate cut-off current	·		BFR30	BFR3	1		
$-V_{GS} = 10 \text{ V; } V_{DS} = 0$	$-I_{ m GSS}$	<	0.2	0.2	nA		
Drain current							
$V_{DS} = 10 \text{ V}; V_{GS} = 0$	I_{DSS}	> <	4 10	1 5	mA mA		
Gate-source voltage	•			_			
$I_D = 1 \text{ mA}; V_{DS} = 10 \text{ V}$	$-v_{GS}$	> <	0.7 3.0	0 1.3	V V		
$I_D = 50 \mu\text{A}; V_{DS} = 10 \text{V}$	-V _{GS}	<	4.0	2.0	V -		
Gate-source cut-off voltage							
$I_D = 0.5 \text{ nA}; V_{DS} = 10 \text{ V}$	-V _{(P)GS}	<	5	2.5	\mathbf{v}		
y parameters							
Transfer admittance at f = 1 kHz; Tamb=	= 25 °C			, ,	A /37		
$I_D = 1 \text{ mA}; V_{DS} = 10 \text{ V}$	$ y_{fs} $	>	1.0 4.0	1.5 4.5	mA/V mA/V		
$I_D = 200 \ \mu A ; V_{DS} = 10 \ V$	y _{fs}	>	0.5	0.75	mA/V		
Output admittance at $f = 1 \text{ kHz}$							
$I_D = 1 \text{ mA}; V_{DS} = 10 \text{ V}$	yos	<	40	25	$\mu A/V$		
$I_D = 200 \ \mu A$; $V_{DS} = 10 \ V$	$ y_{os} $	<	20	15	$\mu A/V$		
Input capacitance at $f = 1 \text{ MHz}$							
$I_D = 1 \text{ mA}; V_{DS} = 10 \text{ V}$	C_{is}	<	4	4	pF		
I_D = 200 μA ; V_{DS} = 10 V	C_{is}	<	4	4	pF		
Feedback capacitance at f = 1 MHz; Taml	$_{0} = 25 ^{\circ}\mathrm{C}$		-				
$I_D = 1 \text{ mA}; V_{DS} = 10 \text{ V}$	C_{rs}	<	1.5	1.5	pF		
$I_D = 200 \mu A ; V_{DS} = 10 V$	c_{rs}	<	1.5	1.5	pF		
Equivalent noise voltage							
$I_D = 200 \mu\text{A}; V_{DS} = 10 \text{V}$							
B = 0.6 to $100 Hz$	v_n	<	0.5	0.5	μV		

BFR30; BFR31

BFR30; BFR31

N-P-N multi-emitter transistor in a microminiature plastic envelope intended for application in thick and thin-film circuits. The transistor has very low intermodulation distortion and very high power gain. It is primarily intended for:

- Wideband vertical amplifiers in high speed oscilloscopes.
- Television distribution amplifiers.

QUICK REFERENCE DATA

Collector-base voltage (open emitter)	V _{CBO}	max.	18	٧
Collector-emitter voltage (open base)	V_{CEO}	max.	10	٧
Collector current (peak value; f > 1 MHz)	ICM	max.	100	mΑ
Total power dissipation up to T _{amb} = 60 °C	P _{tot}	max.	180	mW
Junction temperature	T_{j}	max.	150	оС
Feedback capacitance at f = 1 MHz $I_C = 2$ mA; $V_{CE} = 5$ V; $T_{amb} = 25$ °C	-C _{re}	typ.	0,9	pF
Transition frequency at f = 500 MHz I_C = 25 mA; V_{CE} = 5 V	fΤ	typ.	2,0	GHz
Max. unilateral power gain (see page 3) I _C = 30 mA; V _{CE} = 5 V; f = 200 MHz; T _{amb} = 25 °C I _C = 30 mA; V _{CE} = 5 V; f = 800 MHz; T _{amb} = 25 °C	G _{UM} G _{UM}	typ.	22 10,5	
Intermodulation distortion at T_{amb} = 25 °C I_C = 30 mA; V_{CE} = 5 V; R_L = 37,5 Ω V_O = 100 mV at f_D = 183 MHz				
$V_0 = 100 \text{ mV}$ at $f_q^r = 200 \text{ MHz}$ measured at $f_{(2q-p)} = 217 \text{ MHz}$	d _{im}	typ.	-60	dB

RATINGS Limiting values in accordance with the	Absolute	Maximum	System	(IEC134)
Voltages				
Collector-base voltage (open emitter)	v_{CBO}	max.	18	v
Collector-emitter voltage (open base)	$v_{\rm CEO}$	max.	10	\mathbf{v}
Emitter-base voltage (open collector)	$v_{\rm EBO}$	max.	2,5	v
Currents				
Collector current (d.c.)	$I_{\mathbf{C}}$	max.	50	mA
Collector current (peak value; $f \ge 1$ MHz)	I_{CM}	max.	100	mA
Power dissipation				
Total power dissipation up to $T_{amb} = 60$ °C mounted on a ceramic substrate of				
15 mm x 10 mm x 0,5 mm	P _{tot}	max.	180	mW
Temperatures				
Storage temperature	T_{stg}	-65 to	+150	°C
Junction temperature	$T_{\mathbf{j}}$	max.	150	°C
THERMAL RESISTANCE				

0,50

R_{th j-a}

°C/mW

From junction to ambient in free air mounted on a ceramic substrate of 15 mm x 10 mm x 0,5 mm

 $T_i = 25$ °C unless otherwise specified CHARACTERISTICS Collector cut-off current $I_E = 0$; $V_{CR} = 10 \text{ V}$ 50 I_{CBO} nAD.C. current gain 1) $I_C = 25 \text{ mA}; V_{CE} = 5 \text{ V}$ 25 h_{FE} $I_C = 50 \text{ mA}$; $V_{CE} = 5 \text{ V}$ 25 h_{FE} Transition frequency at $f = 500 \text{ MHz} \cdot 1$) $I_C = 25 \text{ mA}$; $V_{CE} = 5 \text{ V}$ fτ 2.0 GHz typ. Collector capacitance at f = 1 MHz $I_E = I_e = 0$; $V_{CB} = 5 \text{ V}$ C_{c} 0.9 typ. pF Emitter capacitance at f = 1 MHz C_{e} $I_C = I_C = 0$; $V_{ER} = 0.5 \text{ V}$ typ. 1.5 pF Feedback capacitance at f = 1 MHz $I_C = 2$ mA; $V_{CE} = 5$ V; $T_{amb} = 25$ °C 0.9 C_{re} typ. pF Noise figure at $f = 500 \text{ MHz}^{2}$ $I_C = 2$ mA; $V_{CE} = 5$ V; $T_{amb} = 25$ °C

Max. unilateral power gain (sre assumed to be zero)

$$G_{UM}$$
 (in dB) = 10 log
$$\frac{|s_{fe}|^2}{(1 - |s_{ie}|^2)(1 - |s_{oe}|^2)}$$

 $G_S = 20 \text{ mA/V}$; B_S is tuned

 $I_C = 30 \text{ mA}$; $V_{CE} = 5 \text{ V}$; f = 200 MHz; $T_{amb} = 25 \text{ }^{\circ}\text{C}$ G_{UM}

typ. I_C = 30 mA; V_{CE} = 5 V; f = 800 MHz; T_{amb} = 25 o C G_{UM} typ. 10.5 dΒ

F

<

5

22

dB

ďΒ

¹⁾ Measured under pulse conditions. 2) Crystal mounted in a BFW30 envelope.

CHARACTERISTICS (continued)

 T_{amb} = 25 °C unless otherwise specified

Intermodulation distortion 1)

 $I_C = 30 \text{ mA}$; $V_{CE} = 5 \text{ V}$; $R_L = 37.5 \Omega$

 $V_0 = 100 \text{ mV}$ at $f_p = 183 \text{ MHz}$ $V_0 = 100 \text{ mV}$ at $f_q = 200 \text{ MHz}$

Measured at f(2q - p) = 217 MHz

 $d_{\mathbf{im}}$ typ. -60 dB .

Test circuit: 680pF T.U.T. 680pF 75Ω 430Ω 91Ω Rs= 50Ω 2.4kΩ 50Ω 10nF 10nF O +18V O + 5V 7Z62500 20kΩ

¹⁾ Crystal mounted in a BFW30 envelope.

circles of constant noise figure

 $V_{CE} = 5 V$

 $I_C = 30 \text{ mA}$

 $T_{amb} = 25$ OC

Input impedance derived from input reflection coefficient sie coordinates in ohm x 50

 $V_{CE} = 5 V$

 $I_C^{\prime} = 30 \text{ mA}$

 $T_{amb} = 25$ °C

 $I_C = 30 \text{ mA}$

 $T_{amb} = 25 \text{ }^{o}C$

Output impedance derived from output reflection coefficient $s_{\mbox{\scriptsize Oe}}$ coordinates in ohm x 50

 $V_{CE} = 5 V$

 $I_C = 30 \text{ mA}$

 $T_{amb} = 25$ OC

Forward transmission coefficient $\mathbf{s}_{\mbox{\it fe}}$

SILICON PLANAR EPITAXIAL TRANSISTOR

N-P-N transistor in a microminiature plastic envelope. It is primarily intended for use in u.h.f. and microwave amplifiers in thick and thin-film circuits, such as in aerial amplifiers, radar systems, oscilloscopes, spectrum analysers etc. The transistor features low intermodulation distortion and high power gain; thanks to its very high transition frequency, it also has excellent wideband properties and low noise up to high frequencies.

QUICK REFERENCE DATA

			20.14
Collector-base voltage (open emitter)	V _{CBO}	max.	20 V
Collector-emitter voltage (open base)	VCEO	max.	15 V
Collector current (d.c.)	l _C	max.	25 mA
Total power dissipation up to T _{amb} = 60 °C	P _{tot}	max.	180 mW
Junction temperature	Тj	max.	150 °C
Transition frequency at f = 500 MHz $I_C = 14 \text{ mA}$; $V_{CE} = 10 \text{ V}$	fŢ	typ.	5 GHz
Feedback capacitance at f = 1 MHz $I_C = 2 \text{ mA}$; $V_{CE} = 10 \text{ V}$; $T_{amb} = 25 \text{ °C}$	C _{re}	typ.	0,7 pF
Noise figure at optimum source impedance $I_C = 2 \text{ mA}$; $V_{CE} = 10 \text{ V}$; $f = 500 \text{ MHz}$; $T_{amb} = 25 ^{\circ}\text{C}$	F	typ.	2,4 dB
Max. unilateral power gain (see page 3) $I_C = 14 \text{ mA}$; $V_{CE} = 10 \text{ V}$; $f = 500 \text{ MHz}$; $T_{amb} = 25 ^{\circ}\text{C}$	G _{UM}	typ.	18 dB
Intermodulation distortion at $T_{amb} = 25 ^{\circ}\text{C}$ $I_{C} = 14 \text{mA}$; $V_{CE} = 10 \text{V}$; $R_{L} = 75 \Omega$; $V_{o} = 150 \text{mV}$	d. ¹	tvn	-60 dB
$f_{(p+q-r)} = 493,25 \text{ MHz (see page 4)}$	dim	typ.	-00 ub

See also Soldering recommendations.

RATINGS Limiting values in accordance with the	Absolute	Maximum	System	(IEC134)
Voltages				
Collector-base voltage (open emitter)	v_{CBO}	max.	20	v
Collector-emitter voltage (open base)	VCEO	max.	15	v
Emitter-base voltage (open collector)	v_{EBO}	max.	2,0	\mathbf{v}
Current		•		
Collector current (d.c.)	$I_{\mathbf{C}}$	max.	25	mA
Power dissipation				
Total power dissipation up to T _{amb} = 60 °C mounted on a ceramic substrate of				
15 mm x 10 mm x 0,5 mm	P_{tot}	max.	180	mW
Temperatures				• :
Storage temperature	T_{stg}	-65 to	+150	$^{\circ}\mathrm{C}$
Junction temperature	$\mathbf{T_{j}}$	max.	150	°C
THERMAL RESISTANCE				
From junction to ambient in free air mounted on a ceramic substrate of				•

R_{th j-a}

0,5

OC/mW

15 mm x 10 mm x 0,5 mm

Collector cut-off current

$$I_E = 0$$
; $V_{CB} = 10 \text{ V}$

D.C. current gain 1)

$$I_C = 14 \text{ mA}; V_{CE} = 10 \text{ V}$$

Transition frequency at f = 500 MHz 1)

$$I_C = 14 \text{ mA}; V_{CE} = 10 \text{ V}$$

$$f_{\mathbf{T}}$$

Collector capacitance at f = 1 MHz

$$I_E = I_e = 0; V_{CB} = 10 \text{ V}$$

pF

pF

Emitter capacitance at f = 1 MHz

$$I_C = I_c = 0$$
; $V_{EB} = 0.5 \text{ V}$

Feedback capacitance at f = 1 MHz

$$I_C = 2 \text{ mA}; V_{CE} = 10 \text{ V}; T_{amb} = 25 \text{ }^{o}\text{C}$$

$$C_{re}$$

Noise figure at optimum source impedance 2)

$$I_{C}$$
 = 2 mA; V_{CE} = 10 V; f = 500 MHz; T_{amb} = 25 ^{o}C

Max. unilateral power gain (sre assumed to be zero)

$$G_{UM}$$
 (in dB) = 10 log
$$\frac{|s_{fe}|^2}{(1 - |s_{ie}|^2)(1 - |s_{oe}|^2)}$$

$$I_C$$
 = 14 mA; V_{CE} = 10 V; f = 500 MHz; T_{amb} = 25 ^{o}C

typ.

¹⁾ Measured under pulse conditions.

²⁾ Crystal mounted in a BFR90 envelope.

CHARACTERISTICS (continued)

Intermodulation distortion at $T_{amb} = 25$ °C

$$I_C$$
 = 14 mA; V_{CE} = 10 V; R_L = 75 Ω ; V.S.W.R. < 2

Measured at $f_{(p+q-r)} = 493,25 \text{ MHz}$

 d_{im} -60 dB typ.

Intermodulation test circuit:

L1 = 4 turns Cu wire (0,35 mm); winding pitch 1 mm; int. diam. 4 mm

 $L2 = L3 = 5 \mu H \text{ (code number: 3122 108 20150)}$

 $v_{CE} = 10 v$ $I_C = 14 \text{ mA}$ $T_{amb} = 25 \, {}^{\circ}C$

Input impedance derived from input reflection coefficient sie coordinates in ohm x 50

 $V_{CE} = 10 \text{ V}$ $I_C = .14 \text{ mA}$ $T_{amb} = 25 \text{ }^{\circ}\text{C}$

 $V_{CE} = 10 \text{ V}$ $I_{C} = 14 \text{ mA}$

 $T_{amb} = 25 \, {}^{\circ}C$

Output impedance derived from output reflection coefficient $s_{\mbox{\scriptsize oe}}$ coordinates in ohm x 50

 $V_{CE} = 10 \text{ V}$ $I_{C} = 14 \text{ mA}$

 $T_{amb} = 25 \text{ }^{\circ}\text{C}$

90°

Forward transmission coefficient \mathbf{s}_{fe}

SILICON PLANAR EPITAXIAL TRANSISTOR

N-P-N transistor in a microminiature plastic envelope. It is primarily intended for use in u.h.f. and microwave amplifiers in thick and thin-film circuits, such as in aerial amplifiers, radar systems, oscilloscopes, spectrum analysers etc. The transistor features very low intermodulation distortion and high power gain; thanks to its very high transition frequency, it also has excellent wideband properties and low noise up to high frequencies.

QUICK REFERENCE DATA

Collector-base voltage (open emitter)	V_{CBO}	max.	15	V
Collector-emitter voltage (open base)	V_{CEO}	max.	12	٧
Collector current (d.c.)	l _C	max.	35	mΑ
Total power dissipation up to T _{amb} = 60 °C	P _{tot}	max.	180	mW
Junction temperature	T _i	max.	150	оС
Transition frequency at f = 500 MHz I _C = 30 mA; V _{CE} = 5 V	fΤ	typ.	5	GHz
Feedback capacitance at f = 1 MHz $I_C = 2 \text{ mA}$; $V_{CE} = 5 \text{ V}$; $T_{amb} = 25 ^{\circ}\text{C}$	C _{re}	typ.	0,8	pF
Noise figure at optimum source impedance $I_C = 2 \text{ mA}$; $V_{CE} = 5 \text{ V}$; $f = 500 \text{ MHz}$; $T_{amb} = 25 ^{\circ}\text{C}$	F	typ.	1,9	dB
Max. unilateral power gain (see page 3) $I_C = 30 \text{ mA}$; $V_{CE} = 5 \text{ V}$; $f = 500 \text{ MHz}$; $T_{amb} = 25 ^{\circ}\text{C}$	G _{UM}	typ.	16,5	dB
Intermodulation distortion at $T_{amb} = 25 ^{\circ}\text{C}$ $I_{C} = 30 \text{mA}$; $V_{CE} = 5 \text{V}$; $R_{L} = 75 \Omega$; $V_{o} = 300 \text{mV}$ $f_{(A-1)} = A = 493 25 \text{MHz}$ (see page 4)	dim	tvn.	-60	dB
	Collector-emitter voltage (open base) Collector current (d.c.) Total power dissipation up to T_{amb} = 60 °C Junction temperature Transition frequency at f = 500 MHz IC = 30 mA; VCE = 5 V Feedback capacitance at f = 1 MHz IC = 2 mA; VCE = 5 V; T_{amb} = 25 °C Noise figure at optimum source impedance IC = 2 mA; VCE = 5 V; f = 500 MHz; T_{amb} = 25 °C Max. unilateral power gain (see page 3) IC = 30 mA; VCE = 5 V; f = 500 MHz; T_{amb} = 25 °C Intermodulation distortion at T_{amb} = 25 °C	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

BFR93 = R1

2

7267145

BFR93R = R4

Marking code

See also Soldering recommendations.

7Z78181

RATINGS Limiting values in accordance with the	Absolute M	aximum	System	(IEC134)
Voltages				
Collector-base voltage (open emitter)	v_{CBO}	max.	15	v
Collector-emitter voltage (open base)	v_{CEO}	max.	12	v
Emitter-base voltage (open collector)	$v_{\rm EBO}$	max.	2,0	v
Current				
Collector current (d.c.)	I_C	max.	35	mA
Power dissipation				
Total power dissipation up to T _{amb} = 60 °C mounted on a ceramic substrate of	•			
15 mm x 10 mm x 0,5 mm	P _{tot}	max.	180	mW
Temperatures	* **			
Storage temperature	T_{stg}	-65 t	o +150	$^{ m o}{ m C}$
Junction temperature	Тj	max.	150	$^{\mathrm{o}}\mathrm{C}$
THERMAL RESISTANCE				
From junction to ambient in free air				
mounted on a ceramic substrate of 15 mm x 10 mm x 0,5 mm	R _{th j-a}	=	0, 50	OC/mW

CHARACTERISTICS	$T_{i} = 25$	^O C unles	s otherv	vise spe	ecified
Collector cut-off current	J				
$I_E = 0; V_{CB} = 10 \text{ V}$		$I_{\hbox{\footnotesize CBO}}$	<	50	nA
D.C. current gain 1)					
$I_C = 30 \text{ mA}$; $V_{CE} = 5 \text{ V}$		$h_{ m FE}$	> typ.	25 50	•
Transition frequency at f = 500 MHz 1)					
I_C = 30 mA; V_{CE} = 5 V		$f_{\mathbf{T}}$	typ.	5	GHz
Collector capacitance at f = 1 MHz					•
$I_{E} = I_{e} = 0$; $V_{CB} = 10 \text{ V}$		$C_{\mathbf{c}}$	typ.	0,7	pF
Emitter capacitance at f = 1 MHz					
$I_C = I_c = 0$; $V_{EB} = 0.5 \text{ V}$		Ce	typ.	1,8	pF
Feedback capacitance at f = 1 MHz					
I_C = 2 mA; V_{CE} = 5 V; T_{amb} = 25 ^{o}C		c_{re}	typ.	0,8	pF
Noise figure at optimum source impedance 2)					
I_C = 2 mA; V_{CE} = 5 V; f = 500 MHz; T_{amb} = 25 G_{ce}	oC.	F	typ.	1,9	dB
Max. unilateral power gain (sre assumed to be zer	o)				
$ s_{\text{fe}} ^2$	<i>*</i>				
G_{UM} (in dB) = 10 log $\frac{ s_{fe} ^2}{(1 - s_{ie} ^2)(1 - s_{oe} ^2)}$					
I_{C} = 30 mA; V_{CE} = 5 V; f = 500 MHz; T_{amb} = 25	o _C	\mathtt{G}_{UM}	typ.	16,5	dB

¹⁾ Measured under pulse conditions.
2) Crystal mounted in a BFR91 envelope.

CHARACTERISTICS (continued)

Intermodulation distortion at $T_{amb} = 25$ °C

$$I_C$$
 = 30 mA; V_{CE} = 5 V; R_L = 75 Ω ; V.S.W.R. < 2

 $\begin{array}{l} V_p = V_o = 300 \,\, mV \,\, at \,\, f_p = 495, 25 \,\, MHz \\ V_q = V_o \,\, -6 \,\, dB \qquad \quad at \,\, f_q = 503, 25 \,\, MHz \\ V_r = V_o \,\, -6 \,\, dB \qquad \quad at \,\, f_r = 505, 25 \,\, MHz \end{array}$

Measured at f(p+q-r) = 493, 25 MHz

 d_{im} dB^{-1}) -60 typ.

Intermodulation test circuit:

L1 = 4 turns Cu wire (0, 35); winding pitch 1 mm; int.diam. 4 mm L2 and L3 5 µH (code number: 3122 108 20150)

¹⁾ Crystal mounted in a BFR91 envelope.

 $V_{CE} = 5 V$ $I_C = 30 \text{ mA}$ $T_{amb}^{\prime} = 25 \text{ }^{\circ}\text{C}$

Input impedance derived from input reflection coefficient sie coordinates in ohm x 50

 $v_{CE} = 5 \text{ V}$ $I_C = 30 \text{ mA}$ $T_{amb} = 25$ $^{\circ}C$

Output impedance derived from output reflection coefficient s_{oe} coordinates in ohm x 50

SILICON PLANAR EPITAXIAL TRANSISTOR

N-P-N transistor in a microminiature plastic envelope. It is intended for a wide range of v.h.f. and u.h.f. applications in thick and thin-film circuits.

QUICK REFERENCE DATA

Collector-base voltage (open emitter; peak value)	V _{CBOM}	max.	25	V
Collector-emitter voltage (open base)	VCEO	max.	15	V
Collector current (peak value)	ICM	max.	50	mA
Total power dissipation up to T _{amb} = 25 °C	P_{tot}	max.	200	mW
Junction temperature	T_{j}	max.	150	oC
D.C. current gain I _C = 2 mA; V _{CE} = 1 V	hFE	20 to	150	
Transition frequency $I_C = 25 \text{ mA}$; $V_{CE} = 5 \text{ V}$; $f = 500 \text{ MHz}$	f _T	typ.	1,3	GHz
Noise figure $I_C = 2 \text{ mA}$; $V_{CE} = 5 \text{ V}$; $R_S = 50 \Omega$; $f = 500 \text{ MHz}$	F	typ.	4,5	dB

Dimensions in mm

MECHANICAL DATA

Fig. 1 SOT-23.

Marking code BFS17 = E1

See also Soldering recommendations.

	RATINGS Limiting values in accordance w	ith the Ab	solute Max	cimum Sv	, /stem	(IEC134)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	*.			,,		, ,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Collector-base voltage (open emitter; peal	k value)	v_{CBOM}	max.	25	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			v_{CEO}	max.	15	v
Collector current (d.c.) $I_{C} \text{max.} 25 \text{mA}$ Collector current (peak value) $I_{CM} \text{max.} 50 \text{mA}$ $\frac{Power \ dissipation}{Power \ dissipation}$ Total power dissipation up to $T_{amb} = 25$ °C mounted on a ceramic substrate of $7 \text{ mm x 5 mm x 0.5 mm}$ $\frac{T_{emperatures}}{P_{tot}} \text{max.} 200 \text{mW}$ $\frac{T_{emperatures}}{T_{j}} \text{max.} 150 \text{°C}$ $\frac{T_{j}}{T_{j}} \text{max.} 15$	Emitter-base voltage (open collector)		v_{EBO}	max.	2.5	v
Collector current (peak value) I_{CM} max. 50 mA Power dissipation Total power dissipation up to $T_{amb} = 25$ °C mounted on a ceramic substrate of $7 \text{ mm x 5 mm x 0.5 mm}$ Ptot max. 200 mW Temperatures Storage temperature Tstg $-65 \text{ to } + 150$ °C Junction temperature Thermal resistance From junction to ambient mounted on a ceramic substrate of $7 \text{ mm x 5 mm x 0.5 mm}$ $R_{th \ j-a} = 0.62$ °C/n Characteristics $T_j = 25$ °C unless otherwise specification of $T_{collector} = 0.62$ °C/n Characteristics $T_j = 25$ °C unless otherwise specification of $T_{collector} = 0.62$ °C/n D.C. current gain $T_{collector} = 0.62$ °C/n	Currents					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Collector current (d.c.)		$I_{\mathbf{C}}$	max.	25	mA
Total power dissipation up to T_{amb} = 25 °C mounted on a ceramic substrate of 7 mm x 5 mm x 0.5 mm Ptot max. 200 mW Temperatures Storage temperature Storage temperature Tstg Tstg Tstg Tstg Tstg Tstg Tstg Tst	Collector current (peak value)		I_{CM}	max.	50	mA
mounted on a ceramic substrate of 7 mm x 5 mm x 0.5 mm Ptot max. 200 mW Temperatures Storage temperature Tstg $-65 \text{ to} + 150 \text{ °C}$ Junction temperature T $_{j}$ max. 150 °C THERMAL RESISTANCE From junction to ambient mounted on a ceramic substrate of 7 mm x 5 mm x 0.5 mm Rth $_{j}$ -a = 0.62 $^{\circ}$ C/m CHARACTERISTICS T $_{j}$ = 25 $^{\circ}$ C unless otherwise specific Collector cut-off current $_{E}$ = 0; $_{CB}$ = 10 $_{CB}$	Power dissipation	•		•		
Storage temperature $T_{stg} = -65 \text{ to} + 150 ^{\circ}\text{C}$ $T_{j} = 100 ^{\circ}\text{C}$ $T_{j} = 25 ^{\circ}\text{C}$ unless otherwise specific to $T_{j} = 25 ^{\circ}\text{C}$ unless otherwise specific to $T_{j} = 0$; $T_{j} = 100 ^{\circ}\text{C}$ $T_{j} = 20 \text{ to} 150 ^{\circ}\text{C}$	mounted on a ceramic substrate of 7 mm x 5 mm x 0.5 mm	°C	P _{tot}	max.	200	mW
Junction temperature T_j^{stg} max. 150 °C THERMAL RESISTANCE From junction to ambient mounted on a ceramic substrate of 7 mm x 5 mm x 0.5 mm $R_{th\ j-a} = 0.62$ °C/m CHARACTERISTICS $T_j = 25$ °C unless otherwise specific Collector cut-off current $I_E = 0; V_{CB} = 10 \text{ V}$ $I_{CBO} < 10 \text{ nA}$ $I_E = 0; V_{CB} = 10 \text{ V}; T_j = 100 \text{ °C}$ $I_{CBO} < 10 \mu\text{A}$ D.C. current gain $I_C = 2 \text{ mA}; V_{CE} = 1 \text{ V}$ $I_{FE} = 20 \text{ to } 150$			т	-65 to	± 150	0 _С
From junction to ambient mounted on a ceramic substrate of 7 mm x 5 mm x 0.5 mm $R_{th \ j-a} = 0.62 ^{\circ}\text{C/m}$ CHARACTERISTICS $T_j = 25 ^{\circ}\text{C} \text{ unless otherwise specification}$ $I_E = 0; \ V_{CB} = 10 \ V; \ T_j = 100 \ ^{\circ}\text{C}$ $I_{CBO} < 10 \ \text{nA}$ $I_E = 0; \ V_{CB} = 10 \ V; \ T_j = 100 \ ^{\circ}\text{C}$ $I_{CBO} < 10 \ \mu\text{A}$ $D.C. \ current \ gain$ $I_C = 2 \ m\text{A}; \ V_{CE} = 1 \ V$ $h_{FE} = 20 \ \text{to} \ 150$			Tstg Ti	max.	150	
mounted on a ceramic substrate of 7 mm x 5 mm x 0.5 mm $R_{th \ j-a} = 0.62 ^{o}\text{C/m}$ CHARACTERISTICS $T_{j} = 25 ^{o}\text{C unless otherwise specification}$ $I_{E} = 0; \ V_{CB} = 10 \ V$ $I_{CBO} < 10 \text{nA}$ $I_{E} = 0; \ V_{CB} = 10 \ V; \ T_{j} = 100 ^{o}\text{C}$ $I_{CBO} < 10 \mu \text{A}$ $D.C. \ current \ gain$ $I_{C} = 2 \text{ mA}; \ V_{CE} = 1 \ V$ $h_{FE} = 20 \text{ to } 150$	THERMAL RESISTANCE		•			
$\begin{array}{llllllllllllllllllllllllllllllllllll$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 mm x 5 mm x 0.5 mm		R _{th j-a}	.=	0.62	^o C/mW
$I_{E} = 0; V_{CB} = 10 \text{ V} \qquad I_{CBO} < 10 \text{ nA}$ $I_{E} = 0; V_{CB} = 10 \text{ V}; T_{j} = 100 \text{ °C} \qquad I_{CBO} < 10 \mu\text{A}$ $\frac{\text{D.C. current gain}}{I_{C} = 2 \text{ mA}; V_{CE} = 1 \text{ V}} \qquad h_{FE} \qquad 20 \text{ to } 150$	CHARACTERISTICS	T _i =	25 °C unle	ss other	wise s	specifie
I_{E} = 0; V_{CB} = 10 V; T_{j} = 100 °C I_{CBO} < 10 μ A $\frac{D.C. \text{ current gain}}{I_{C}$ = 2 mA; V_{CE} = 1 V h_{FE} 20 to 150	Collector cut-off current	•				
D.C. current gain $I_{C} = 2 \text{ mA; } V_{CE} = 1 \text{ V}$ $h_{FE} \qquad 20 \text{ to } 150$	I _E = 0; V _{CB} = 10 V		I_{CBO}	<	10	nA
$I_C = 2 \text{ mA}; V_{CE} = 1 \text{ V}$ h_{FE} 20 to 150	$I_E = 0$; $V_{CB} = 10 \text{ V}$; $T_j = 100 ^{\circ}\text{C}$		I_{CBO}	< '	10	μΑ
$I_C = 2 \text{ mA}$; $V_{CE} = 1 \text{ V}$ h_{FE} 20 to 150	D.C. current gain					
I_C = 25 mA; V_{CE} = 1 V h_{FE} > 20			$h_{ m FE}$	20 to	150	
	I_C = 25 mA; V_{CE} = 1 V		$h_{ m FE}$	>	20	

CHARACTERISTICS (continued)	T ₁ = 25 °C	unless	otherwi	ise spe	cified
Transition frequency	J				
I _C = 2 mA; V _{CE} = 5 V; f = 500 MHz		$f_{\mathbf{T}}$	typ.	1.0	GHz
I_{C} = 25 mA; V_{CE} = 5 V; f = 500 MHz		$f_{\mathbf{T}}$	typ.	1.3	GHz
Collector capacitance at f = 1 MHz					
$I_{\rm E}$ = $I_{\rm e}$ = 0; $V_{\rm CB}$ = 10 V		$C_{\mathbf{c}}$	< ,	1,5	pF
Emitter capacitance at f = 1 MHz					
$I_C = I_c = 0$; $V_{EB} = 0.5 \text{ V}$		Ce	_<	2.0	pF
Feedback capacitance at f = 1 MHz					
$I_C = 2$ mA; $V_{CE} = 5$ V		c_{re}	typ.	0.65	pF
Noise figure					
I_C = 2 mA; V_{CE} = 5 V f = 500 MHz; R_S = 50 Ω		F.	typ.	4.5	dB ¹)
Intermodulation distortion					
I_C = 10 mA; V_{CE} = 6 V; R_L = 37.5 Ω ; T_{amb} V_o = 100 mV at f_p = 183 MHz V_o = 100 mV at f_q = 200 MHz	b = 25 °C				•
measured at $f_{(2q-p)} = 217 \text{ MHz}$		d _{im}	typ.	-45	dB

¹⁾ Crystal mounted in a BFY90 envelope.

SILICON PLANAR EPITAXIAL TRANSISTORS

N-P-N transistors in a microminiature plastic envelope. They are intended for general purpose and h.f. applications in thick and thin-film circuits.

QUICK REFERENCE DATA

Collector-base voltage (open emitter)	V_{CBO}	max.	3	80	V
Collector-emitter voltage (open base)	VCEO	max.	2	20	V
Collector current (d.c.)	^I C	max.	. 3	30	mA
Total power dissipation up to T _{amb} = 25 °C	P_{tot}	max.	200		mW
Junction temperature	Τį	max.	150		оС
D.C. current gain	ŕ		BFS18	BFS19	
I _C = 1 mA; V _{CE} = 10 V	hFE		35 to 125	65 to 225	
Transition frequency at f = 100 MHz IC = 1 mA; VCE = 10 V	f⊤	typ.	200	260	MHz
Noise figure at f = 100 MHz I_C = 1 mA; V_{CE} = 10 V; G_S = 10 m Ω^{-1}	F .	typ.		4	dB

Dimensions in mm

MECHANICAL DATA.

Fig. 1 SOT-23.

Marking code BFS18 = F1

BFS18R = F4 BFS19R = F5

See also Soldering recommendations.

BFS18 BFS19

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages

Collector-base voltage (open emitter)	v_{CBO}	max.	30	V	
Collector-emitter voltage (open base) IC = 2 mA	$v_{ m CEO}$	max.	20	V ,	
Emitter-base voltage (open collector)	$v_{ m EBO}$	max.	5	v	

Currents

Collector current (d.c.)	$I_{\mathbf{C}}$	max.	30	mA
Colector current (peak value)	I_{CM}	max.	30	mA

Power dissipation

$$7 \text{ mm x } 5 \text{ mm x } 0.5 \text{ mm}$$

$$P_{tot} \qquad \text{max.} \quad 200 \quad \text{mV}$$

$$\underline{\text{Temperatures}}$$
Storage temperature
$$T_{stg} \qquad -65 \text{ to } +150 \quad {}^{o}\text{C}$$

$$\underline{\text{Junction temperature}} \qquad T_{i} \qquad \text{max.} \quad 150 \quad {}^{o}\text{C}$$

THERMAL RESISTANCE

Total power dissipation up to T_{amb} = 25 °C mounted on a **ceramic substrate of**

Rth j-a =
$$0.62$$
 °C/mW

 $T_i = 25$ °C unless otherwise specified

CHARACTERISTICS

$$I_{E}$$
 = 0; V_{CB} = 20 V I_{CBO} < 100 nA I_{E} = 0; V_{CB} = 20 V; T_{j} = 100 °C I_{CBO} < 10 μ A

Base-emitter voltage

$$I_C = 1 \text{ mA}; V_{CE} = 10 \text{ V}$$
 V_{BE} 0.65 to 0.74 V

MHz

CHARACTERISTICS (c	ontinued)
--------------------	-----------

D.C. current gain		BFS18
$I_C = 1 \text{ mA; } V_{CE} = 10 \text{ V}$	h_{FE}	35 to 125

Transition frequency	at f = 100 MHz	

$$I_C = 1 \text{ mA}$$
; $V_{CE} = 10 \text{ V}$

$$I_E = I_e = 0$$
; $V_{CB} = 10 \text{ V}$

$$\underline{\text{Feedback capacitance}}$$
 at f = 1 MHz

Noise figure

$$I_C = 1 \text{ mA}; V_{CE} = 10 \text{ V}$$

 $G_S = 10 \text{ mO}^{-1} \cdot f = 100 \text{ MHz}$

$$I_C = 1 \text{ mA}; V_{CE} = 10 \text{ V}$$

 $G_S = 10 \text{ m}\Omega^{-1}; f = 100 \text{ MHz}$

 T_i = 25 $^{\rm o}$ C unless otherwise specified

	BFS18	BFS19
hFE	35 to 125	65 to 225

260

Cc 1 pF typ.

typ. 200

 f_{T}

 C_{re} 0.85 pF typ.

 dB^{1} F typ.

¹⁾ Crystal mounted in a BF115 envelope.

Typical behaviour of collector current versus collector-emitter voltage

SILICON PLANAR EPITAXIAL TRANSISTOR

N-P-N transistor in a microminiature plastic envelope. It has a very low feedback capacitance and is intended for i.f. and v.h.f. applications in thick and thin-film circuits.

QUICK REFERENCE DATA

Collector-base voltage (open emitter)	V _{CBO}	max.	30 V
Collector-emitter voltage (open base)	V _{CEO}	max.	20 V
Collector current (d.c.)	lc	max.	25 mA
Total power dissipation up to T _{amb} = 25 °C	Ptot	max.	200 mW
Junction temperature	Тj	max.	150 °C
D.C. current gain $I_C = 7 \text{ mA}$; $V_{CE} = 10 \text{ V}$	hFE	> 1	40
Transition frequency at f = 100 MHz $I_C = 5 \text{ mA}$; $V_{CE} = 5 \text{ V}$	fŢ	typ.	450 MHz
Feedback capacitance at f = 1 MHz I _C = 1 mA; V _{CE} = 10 V	C _{re}	typ.	350 fF

Dimensions in mm

MECHANICAL DATA

Fig. 1 SOT-23.

Marking code BFS20 = G1

BFS20R = G4

See also Soldering recommendations.

RATINGS Limiting values in accordance with the Absolute Max	imum S	System	(IEC 134)

V _{CBO} V _{CEO} V _{EBO} I _C I _{CM}	max. max. max.	30 20 4 25 25	V V V mA
V _{CEO} V _{EBO}	max. max.	20 4 25	V V mA
${ m v_{EBO}}$ I $_{ m C}$	max.	25	V mA
$I_{\mathbf{C}}$	max.	25	mA
*			
*			
I_{CM}	max.	25	mA
		,	
	* .		
P _{tot}	max.	200	mW
	•		
$^{\mathrm{T}}_{\mathrm{stg}}$	-65 to max.	+150 150	°C °C
Rth i-a	; =	0.62	oC/mW
		T_{stg} -65 to T_j max.	T_{stg} -65 to +150 T_{j} max. 150

CHARACTERISTICS	T _i = 25 °C	unless oth	nerwis	se spe	cified
Collector cut-off current	•				
$I_{\rm E}$ = 0; $V_{\rm CB}$ = 20 V		I_{CBO}	<	100	nA
$I_E = 0$; $V_{CB} = 20 \text{ V}$; $T_j = 100 ^{\circ}\text{C}$		I_{CBO}	<	.10	μΑ
Base-emitter voltage					
$I_C = 7 \text{ mA}$; $V_{CE} = 10 \text{ V}$		VBE .	typ.	740 900	mV mV
D.C. current gain				40	
$I_C = 7 \text{ mA}$; $V_{CE} = 10 \text{ V}$		$h_{ m FE}$	> typ.	40 85	
Transition frequency at f = 100 MHz					
$I_C = 5 \text{ mA}; V_{CE} = 10 \text{ V}$		f_{T}	> typ.	275 450	MHz MHz
Collector capacitance at f = 1 MHz					
$I_E = I_e = 0$; $V_{CB} = 10 \text{ V}$		C_c	typ.	0.8	pF
Feedback capacitance at f = 1 MHz					
$I_C = 1 \text{ mA}; V_{CE} = 10 \text{ V}$		C_{re}	typ.	350	fF

BFS20

SILICON PLANAR EPITAXIAL TRANSISTOR

N-P-N transistor in a microminiature plastic envelope, primarily intended for use in u.h.f. low power amplifiers in thick and thin-film circuits, such as in pocket phones, paging systems, etc. The transistor features low current consumption (100 μ A - 1 mA); thanks to its high transition frequency, it also has excellent wideband properties and low noise up to high frequencies.

QUICK REFERENCE DATA

Collector-base voltage (open emitter)	V _{CBO}	max.	8	ν .
Collector-emitter voltage (open base)	V _{CEO}	max.	5	V
Collector current (d.c.)	^I C	max.	2,5	mΑ
Total power dissipation up to T _{amb} = 135 °C	P _{tot}	max.	30	mW
Junction temperature	Τį	max.	150	oC
Transition frequency at f = 500 MHz $I_C = 1$ mA; $V_{CE} = 1$ V	fT	typ.	2,3	GHz
Feedback capacitance at $f = 1 \text{ MHz}$ $I_C = 1 \text{ mA}$; $V_{CE} = 1 \text{ V}$; $T_{amb} = 25 \text{ °C}$	C _{re}	<	0,45	pF
Noise figure at optimum source impedance $I_C = 1 \text{ mA}$; $V_{CE} = 1 \text{ V}$; $f = 500 \text{ MHz}$; $T_{amb} = 25 ^{\circ}\text{C}$	F	typ.	3,8	dB
Max. unilateral power gain (see page 3) $I_C = 1 \text{ mA}$; $V_{CE} = 1 \text{ V}$; $f = 500 \text{ MHz}$; $T_{amb} = 25 ^{\circ}\text{C}$	G _{UM}	typ.	18	dB

Dimensions in mm

MECHANICAL DATA

Fig. 1 SOT-23.

Marking code BFT25 = V1

See also Soldering recommendations.

RATINGS Limiting values in accordance with the Al	bsolute Ma	aximum System (IEC134)
Voltages		
Collector-base voltage (open emitter)	v_{CBO}	max. 8 V
Collector-emitter voltage (open base)	v_{CEO}	max. 5 V
Emitter-base voltage (open collector)	$v_{\rm EBO}$	max. 2 V
Currents		
Collector current (d.c.)	$I_{\mathbf{C}}$	max. 2,5 mA
Collector current (peak value; f > 1 MHz)	I_{CM}	max. 5,0 mA
Power dissipation		
Total power dissipation up to T _{amb} = 135 °C mounted on a ceramic substrate of		
15 mm x 10 mm x 0,5 mm	P_{tot}	max. 30 mW
Temperatures		
Storage temperature	T_{stg}	-65 to +150 °C
Junction temperature	$T_{\mathbf{j}}$	max. 150 °C
THERMAL RESISTANCE	v v	
From junction to ambient in free air mounted on a ceramic substrate of		
15 mm x 10 mm x 0.5 mm	Rahaa	$=$ 0.5 ${}^{\circ}C/mW$

<u></u>	L					
CHARACTERISTICS $T_j = 25$ °C unless otherwise specified						
Collector cut-off current						
$I_E = 0; V_{CB} = 5 V$	I_{CBO}	<	50	nA		
D.C. current gain 1)						
$I_C = 10 \mu\text{A}$; $V_{CE} = 1 \text{V}$	hFE	> typ.	20 30			
$I_C = 1 \text{ mA}$; $V_{CE} = 1 \text{ V}$	$h_{ extbf{FE}}$	> typ.	20 40			
Saturation voltages		-				
$I_C = 10 \mu\text{A} \; ; I_B = 1 \mu\text{A}$	${ m v}_{ m CEsat}$ ${ m v}_{ m BEsat}$	< .	200 750	mV mV		
$I_C = 1 \text{ mA}; I_B = 0.1 \text{ mA}$	${ m ^{V}\!_{CEsat}}$ ${ m V_{BEsat}}$	< , <	175 900	mV mV		
Transition frequency at f = 500 MHz 1)						
$I_C = 1 \text{ mA}; V_{CE} = 1 \text{ V}$	$f_{\mathbf{T}}$	> typ.	1,2 2,3	GHz GHz		
Collector capacitance at f = 1 MHz						
$I_{E} = I_{e} = 0$; $V_{CB} = 0.5 \text{ V}$	$C_{\mathbf{c}}$	< ,	0,6	pF		
Emitter capacitance at f = 1 MHz	÷	}				
$I_C = I_c = 0$; $V_{EB} = 0$	Ce	<	0,5	pF		
Feedback capacitance at f = 1 MHz						
$I_C = 1 \text{ mA}; V_{CE} = 1 \text{ V}; T_{amb} = 25 ^{\circ}\text{C}$	$C_{ extbf{re}}$	<	0,45	pF		
Noise figure at optimum source impedance						
$I_C = 0.1 \text{ mA}$; $V_{CE} = 1 \text{ V}$; $f = 500 \text{ MHz}$; $T_{amb} = 25 ^{\circ}\text{C}$	F	typ.	5,5	dB		
$I_C = -1$ mA; $V_{CE} = 1$ V; $f = 500$ MHz; $T_{amb} = 25$ °C	F	typ.	3,8	dB		
Max. unilateral power gain (sre assumed to be zero)						
G_{UM} (in dB) = 10 log $\frac{ s_{fe} ^2}{(1 + s_{fe} ^2)(1 + s_{fe} ^2)}$						
G_{UM} (in dB) = 10 log $\frac{1 - s_{ie} ^2 (1 - s_{oe} ^2)}{(1 - s_{oe} ^2)}$						
$I_{C} = 1 \text{ mA}; V_{CE} = 1 \text{ V}; f = 200 \text{ MHz}; T_{amb} = 25 ^{O}\text{C}$	GUM	typ.	25	dB		
$I_{C} = 1 \text{ mA}; V_{CE} = 1 \text{ V}; f = 500 \text{ MHz}; T_{amb} = 25 \text{ OC}$	$G_{\mathbf{UM}}$	typ.	18	dB		
$I_{C} = 1 \text{ mA}; V_{CE} = 1 \text{ V}; f = 800 \text{ MHz}; T_{amb} = 25 ^{O}\text{C}$	$G_{\mathbf{UM}}$	typ.	12	dB		

¹⁾ Measured under pulse conditions.

June 1973

BFT25

June 1973

5

 $V_{CE} = 1 V$ $I_C = 1 \text{ mA}$ $T_{amb} = 25 \text{ }^{\circ}\text{C}$

Input impedance derived from input reflection coefficient sie coordinates in ohm x 50

 $V_{CE} = 1 V$ $I_C = 1 \text{ mA}$ $T_{amb} = 25$ OC

Output impedance derived from output reflection coefficient soe coordinates in ohm x 50

N-channel silicon epitaxial planar junction field-effect transistor in a microminiature plastic envelope. The transistor is intended for low level general purpose amplifiers in thick and thin-film circuits.

QUICK REFERENCE DATA

Drain-source voltage	${}^{\pm }V_{DS}$	max.	25 V
Gate-source voltage (open drain)	-V _{GSO}	max.	25 V
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	200 mW
Drain current $V_{DS} = 10 \text{ V}; V_{GS} = 0$	DSS	> <	0,2 mA 1,5 mA
Transfer admittance (common source) ID = 0,2 mA; VDS = 10 V; f = 1 kHz	y _{fs}	>	0,5 mA/V
Equivalent noise voltage $V_{DS} = 10 \text{ V}; I_D = 200 \mu\text{A}; B = 0,6 \text{ to } 100 \text{ Hz}$	V _n	<	0,5 μV

MECHANICAL DATA

Dimensions in mm

Marking code

Fig. 1 SOT-23.

BFT46 = M3

See also Soldering recommendations.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Drain-source voltage	±VDS	max.	25 V	
Drain-gate voltage (open source)	VDGO	max.	25 V	
Gate-source voltage (open drain)	-V _{GSO}	max.	25 V	
Drain current	ID	max.	10 mA	
Gate current	l _G	max.	5 mA	
Total power dissipation up to T _{amb} = 25 °C *	P _{tot}	max.	200 mW	
Storage temperature	T _{stg}	-65 to	+150 °C	
Junction temperature	T_{j}	max.	150 °C	
THERMAL RESISTANCE		•		
from junction to ambient *	R _{th j-a}	=	0,62 °C/mW	
CHARACTERISTICS				
T _j = 25 °C unless otherwise specified				
Gate cut-off current -V _{GS} = 10 V; V _{DS} = 0	-I _{GSS}	<	0,2 nA	
Drain current ** V _{DS} = 10 V; V _{GS} = 0	IDSS	> <	0,2 mA 1,5 mA	
Gate-source voltage $I_D = 50 \mu A$; $V_{DS} = 10 \text{ V}$	-V _{GS}	> <	0,1 V 1,0 V	
Gate-source cut-off voltage ID = 0,5 nA; VDS = 10 V	-V _{(P)GS}	<	1,2 V	,
Y parameters at f = 1 kHz; V _{DS} = 10 V; V _{GS} = 0; T _{amb} = 25 °C				
Transfer admittance	Yfsl	>	1,0 mA/V	
Output admittance	[y _{os}]	<	10 μA/V	
$V_{DS} = 10 \text{ V}; I_D = 200 \mu\text{A};$ Transfer admittance	Vfs	> '	0,5 mA/V	
Output admittance	yosl	< '	5 μA/V	
Input capacitance at f = 1 MHz; V _{DS} = 10 V; V _{GS} = 0; T _{amb} = 25 °C	C _{is}	<	5 pF	
Feedback capacitance at f = 1 MHz;				
$V_{DS} = 10 \text{ V; } V_{GS} = 0; T_{amb} = 25 ^{\circ}\text{C}$	C _{rs}	<	1,5 pF	
Equivalent noise voltage $V_{DS} = 10 \text{ V}; I_{D} = 200 \mu\text{A}; T_{amb} = 25 ^{O}\text{C}$ B = 0.6 to 100 Hz	v _n	, <	0,5 μV	
D - 0,0 to 100 HZ	ν Π ·	`	5,0 pt	

^{*} Mounted on a ceramic substrate of 7 mm \times 5 mm \times 0,5 mm. ** Measured under pulse conditions.

Fig. 3 Typical values. $V_{DS} = 10 \text{ V}$.

Fig. 4 Correlation between -V(P)GS and I_{DSS} . $V_{DS} = 10 \text{ V}$; $T_i = 25 \text{ }^{\circ}\text{C}$.

Fig. 5 $|y_{fs}|$ versus I_D . V_{DS} = 10 V; f = 1 kHz; T_{amb} = 25 °C.

Fig. 6 $|y_{OS}|$ versus I_D . $V_{DS} = 10 \text{ V}$; f = 1 kHz; $T_{amb} = 25 \text{ °C}$.

Fig. 7 $|y_{os}|$ versus V_{DS} . $I_D = 0.4$ mA; f = 1 kHz; $T_{amb} = 25$ °C.

Fig. 10.

Fig. 9.

Fig. 9 Typical values.
$$V_{DS} = 10 \text{ V}$$
, $T_{amb} = 25 \text{ }^{\circ}\text{C}$.

Fig. 10
$$I_{GSS}$$
 versus T_j .
 $-V_{GSS} = 10 \text{ V}$; $V_{DS} = 0$.

Fig. 11 V_{DS} = 10 V; I_D = 0,2 mA; T_{amb} = 25 °C.

Fig. 12 $V_{DS} = 10 \text{ V}$; $I_D = 0.2 \text{ mA}$; $T_{amb} = 25 \text{ }^{\circ}\text{C}$.

SILICON PLANAR EPITAXIAL TRANSISTOR

P-N-P transistor in a microminiature plastic envelope. It is primarily intended for use in u.h.f. and microwave amplifiers in thick and thin-film circuits, such as in aerial amplifiers, radar systems, oscilloscopes, spectrum analysers, etc.

The transistor features low intermodulation distortion and high power gain; thanks to its very high transition frequency, it also has excellent wideband properties and low noise up to high frequencies. This type is complementary to BFR92.

QUICK REFERENCE DATA

-V _{CBO}	max.	20 V	
-V _{CEO}	max.	15 V	
-I _C	max.	25 m	Α
P_{tot}	max.	180 m	W
T_{i}	max.	150 °C	2
fŢ	typ.	5 G	Hz
C _{re}	typ.	0,7 pf	=
F	typ.	2,7 df	3
G _{UM}	typ.	18 dE	3
d _{im}	typ.	-60 dl	3
	-VCEO -IC Ptot Tj fT Cre F	$\begin{array}{ccc} -V_{CEO} & \text{max.} \\ -I_{C} & \text{max.} \\ P_{tot} & \text{max.} \\ T_{j} & \text{max.} \\ \end{array}$ $\begin{array}{ccc} f_{T} & \text{typ.} \\ C_{re} & \text{typ.} \\ \end{array}$ $\begin{array}{ccc} F & \text{typ.} \\ \end{array}$ $\begin{array}{ccc} G_{UM} & \text{typ.} \end{array}$	-V _{CEO} max. 15 V -I _C max. 25 m P _{tot} max. 180 m T _j max. 150 0 f _T typ. 5 G C _{re} typ. 0,7 pf F typ. 2,7 df G _{UM} typ. 18 df

MECHANICAL DATA

Fig. 1 SOT-23.

Marking code

BFT92 = W1

2

7267146

BFT92R = W4

RATINGS

Limiting values in accordance with the Absolute Maximum System (IE	C 134)			
Collector-base voltage (open emitter)	-V _{CBO}	max.	20	v
Collector-emitter voltage (open base)	-V _{CEO}	max.	15	V
Emitter-base voltage (open collector)	-V _{EBO}	max.	2,0	, v .
Collector current (d.c.)	-Ic	max.	25	mA
Collector current (peak value; f > 1 MHz)	-ICM	max.	35	mA
Total power dissipation up to T _{amb} = 60 °C mounted on a ceramic substrate of				
15 mm x 10 mm x 0,5 mm	P _{tot}	max.		mW
Storage temperature	T _{stg}	-65 to		
Junction temperature	Tj	max.	150	оС
THERMAL RESISTANCE				
From junction to ambient in free air mounted on a ceramic substrate of 15 mm x 10 mm x 0,5 mm	R _{th j-a}	- 1. : :	0,5	oC/mW
CHARACTERISTICS	, -			
T _i = 25 ^o C unless otherwise specified				
Collector cut-off current E = 0; -V _{CB} = 10 V	-lcbo	<	50	nA
D.C. current gain * $-I_C = 14 \text{ mA}; -V_{CE} = 10 \text{ V}$	hFE	> typ.	20 50	
Transition frequency at f = 500 MHz * -IC = 14 mA; -VCE = 10 V	fT	typ.	5	GHz
Collector capacitance at $f = 1 \text{ MHz}$ $I_E = I_e = 0$; $-V_{CB} = 10 \text{ V}$	C _C	typ.	0,75	pF
Emitter capacitance at $f = 1 \text{ MHz}$ $I_C = I_c = 0$; $-V_{EB} = 0.5 \text{ V}$	C _e	typ.	0,8	pF

^{*} Measured under pulse conditions.

0,7 pF

2,7 dB

18 dB

CHARACTERISTICS (continued)

 $T_{amb} = 25 \, {}^{o}C$

Feedback capacitance at f = 1 MHz $-I_C = 2 \text{ mA}; -V_{CE} = 10 \text{ V}$

Noise figure at optimum source impedance *

 $-I_C = 2 \text{ mA}; -V_{CF} = 10 \text{ V}; f = 500 \text{ MHz}$

Max. unilateral power gain (sre assumed to be zero)

G_{UM}(in dB) = 10 log $\frac{|s_{fe}|^2}{(1 - |s_{ie}|^2) (1 - |s_{oe}|^2)}$

 $-I_C = 14 \text{ mA}; -V_{CE} = 10 \text{ V}; f = 500 \text{ MHz}$ Intermodulation distortion *

 $-I_C$ = 14 mA; $-V_{CE}$ = 10 V; R_L = 75 Ω ; VSWR < 2

 $V_{p} = V_{o} = 150 \text{ mV} \text{ at } f_{p} = 495,25 \text{ MHz}$ $V_{q} = V_{o} - 6 \text{ dB}$ at $f_{q} = 503,25 \text{ MHz}$ $V_{r} = V_{o} - 6 \text{ dB}$ at $f_{r} = 505,25 \text{ MHz}$

Measured at f(p + q - r)= 493,25 MHz

 d_{im} typ. -60 dB

typ.

typ.

typ.

 C_{re}

GUM

Fig. 2 Intermodulation test circuit.

L1 = 4 turns Cu wire (0,35 mm); winding pitch 1 mm; int. dia. 4 mm. L2 = L3 = 5 μ H (catalogue number: 3122 108 20150).

^{*} Crystal mounted in SOT-37 envelope.

Fig. 3 – V_{CE} = 10 V; T_j = 25 °C.

Fig. 4 $I_E = I_e = 0$; $T_j = 25$ °C; f = 1 MHz.

BFT92 BFT92R

Fig. 7.

March 1978

SILICON PLANAR EPITAXIAL TRANSISTOR

P-N-P transistor in a microminiature plastic envelope. It is primarily intended for use in u.h.f. and microwave amplifiers in thick and thin-film circuits, such as in aerial amplifiers, radar systems, oscilloscopes, spectrum analysers, etc.

The transistor features low intermodulation distortion and high power gain; thanks to its very high transition frequency, it also has excellent wideband properties and low noise up to high frequencies. This type is complementary to BFR93.

QUICK REFERENCE DATA

Collector-base voltage (open emitter)	-V _{CBO}	max.	15	V
Collector-emitter voltage (open base)	-V _{CEO}	max.	12	V
Collector current (d.c.)	-IC	max.	35	mA
Total power dissipation up to T _{amb} = 60 °C	P _{tot}	max.	180	mW
Junction temperature	Ti	max.	150	оС
Transition frequency at f = 500 MHz $-I_C$ = 30 mA; $-V_{CE}$ = 5 V	f _T	typ.	5	GHz
Feedback capacitance at $f = 1 \text{ MHz}$ $-I_C = 2 \text{ mA}; -V_{CE} = 5 \text{ V}; T_{amb} = 25 \text{ °C}$	C _{re}	typ.	1,0	pF
Noise figure at optimum source impedance -I _C = 2 mA; -V _{CE} = 5 V; f = 500 MHz; T _{amb} = 25 °C	F ,	typ.	2,4	dB
Max. unilateral power gain (see page 3) $-I_C = 30 \text{ mA}; -V_{CE} = 5 \text{ V}; f = 500 \text{ MHz}; T_{amb} = 25 \text{ °C}$	G _{UM}	typ.	16,5	dB
Intermodulation distortion at T_{amb} = 25 °C $-I_C$ = 30 mA; $-V_{CE}$ = 5 V; R_L = 75 Ω ; V_o = 300 mV $f(p+q-r)$ = 493,25 MHz (see page 3)	d _{im}	typ.	-60	dB

Dimensions in mm

MECHANICAL DATA

Fig. 1 SOT-23.

Marking code

RATINGS

	Limiting values in accordance with the Absolute Maximum System (IEC	C 134)	116		
•	Collector-base voltage (open emitter)	-V _{CBO}	max.	15	٧
	Collector-emitter voltage (open base)	-VCEO	max.	12	٧
	Émitter-base voltage (open collector)	-V _{EBO}	max.	2,0	٧
	Collector current (d.c.)	-IC	max.	35	mA
	Collector current (peak value; f > 1 MHz)	-I _{CM}	max.	50	mA
	Total power dissipation up to T _{amb} = 60 °C mounted on a ceramic substrate of 15 mm × 10 mm × 0,5 mm	P _{tot}	max.	180	mW
	Storage temperature		–65 to −	150	оС
	Junction temperature	Tj	max.	150	оС
	THERMAL RESISTANCE				
	From junction to ambient in free air mounted on a ceramic substrate of 15 mm x 10 mm x 0,5 mm	R _{th j-a}	=	0,5	oC/mW
	CHARACTERISTICS		,		
	T _i = 25 °C unless otherwise specified				
	Collector cut-off current I _E = 0; -V _{CB} = 5 V	-ICBO	<	50	nA
	D.C. current gain * -I _C = 30 mA; -V _{CE} = 5 V	hFE	> typ.	20 50	
	Transition frequency at f = 500 MHz * $-I_C = 30 \text{ mA}$; $-V_{CE} = 5 \text{ V}$	fŢ	typ.	5	GHz
	Collector capacitance at f = 1 MHz I _E = I _e = 0; -V _{CB} = 10 V	C _C	typ.	0,95	pF
	Emitter capacitance at $f = 1 \text{ MHz}$ $I_C = I_C = 0$; $-V_{EB} = 0.5 \text{ V}$	Ce	typ.	1,8	pF

^{*} Measured under pulse conditions.

CHARACTERISTICS (continued)

 $T_{amb} = 25 \, {}^{\circ}C$ Feedback capacitance at f = 1 MHz

 $-I_C = 2 \text{ mA}; -V_{CE} = 5 \text{ V}$

Noise figure at optimum source impedance * $-I_C = 2 \text{ mA}; -V_{CE} = 5 \text{ V}; f = 500 \text{ MHz}$

Max. unilateral power gain (sre assumed to be zero)

G_{UM}(in dB) =
$$10 \log \frac{|s_{fe}|^2}{(1 - |s_{ie}|^2)(1 - |s_{oe}|^2)}$$

-I_C = 30 mA; -V_{CE} = 5 V; f = 500 MHz

Intermodulation distortion *

 $-I_C = 30 \text{ mA}; -V_{CE} = 5 \text{ V}; R_L = 75 \Omega; VSWR < 2$

 $V_p = V_o = 300 \text{ mV} \text{ at } f_p = 495,25 \text{ MHz}$ $V_q = V_0 - 6 \text{ dB}$ at $f_q = 503,25 \text{ MHz}$ $V_r = V_0 - 6 \text{ dB}$ at $f_r = 505,25 \text{ MHz}$

Measured at f(p + q - r) = 493,25 MHz

Cre 1,0 pF typ.

2,4 dB typ.

16,5 dB GUM typ.

typ.

-60 dB

 d_{im}

Fig. 2 Intermodulation test circuit.

L1 = 4 turns Cu wire (0,35); winding pitch 1 mm; int. dia. 4 mm. L2 and L3 = $5 \mu H$ (catalogue number: 3122 108 20150).

^{*} Crystal mounted in SOT-37 envelope.

Fig. 5 $-V_{CE} = 5 V$; $T_i = 25 \,^{\circ}\text{C}$; $f = 500 \,^{\circ}\text{MHz}$.

Fig. 4 $I_E = I_e = 0$; $T_j = 25$ °C; f = 1 MHz.

This information is derived from development samples made available for evaluation. It does not form part of our data handbook system and does not necessarily imply that the device will go into production

PROGRAMMABLE UNIJUNCTION TRANSISTOR

Planar p-n-p-n trigger device in a microminiature plastic envelope intended for applications in thick and thin-film circuits. It is intended for use in switching applications such as motor control, oscillators, relay replacement, timers, pulse shaper, trigger device etc.

QUICK REFERENCE DATA

Gate-anode voltage	V_{GA}	max.	70 V
Anode current (d.c.) up to T _{case} = 85 °C	IA	max.	250 mA
Junction temperature	Τį	max.	150 °C
Peak point current $V_S = 10 \text{ V; } R_G = 10 \text{ k}\Omega$	ĺр	<	5 μΑ
Valley point current $V_S = 10 \text{ V}$; $R_G = 10 \text{ k}\Omega$	lv	> .	30 μΑ

MECHANICAL DATA

Dimensions in mm

Marking code

BRY61 = A5

Fig. 1 SOT-23.

Limiting values in accordance with the Absolute Maximum System (18	EC 134)			
Gate-anode voltage	V_{GA}	max.	70	V
Anode current (d.c.) up to T _{amb} = 25 °C	IA	max.	175	mΑ
Anode current (d.c.) up to T _{case} = 85 °C	IA	max.	250	mΑ
Repetitive peak anode current $t = 10 \mu s$; $\delta = 0.01$	IARM	max.	2,5	Α
Non-repetitive peak anode current $t = 10 \mu s$; $T_j = 150 ^{\circ}\text{C}$	IASM	max.	3	Α
Rate of rise of anode current up to I _A = 2,5 A	dl _A	max.	20	A/μs
Storage temperature	T _{stg}	-65 to	+150	oC
Junction temperature	Тj	max.	150	oC
THERMAL RESISTANCE				
From junction to ambient in free air mounted on a ceramic substrate of 15 mm x 10 mm x 0,5 mm	R _{th j-a}	. =	0,50	°C/mW
CHARACTERISTICS				
T _{amb} = 25 °C unless otherwise specified				
Peak point current				
$V_S = 10 \text{ V}$; $R_G = 10 \text{ k}\Omega$	lp	<	5	μΑ
$V_S = 10 \text{ V}; R_G = 1 \text{ M}\Omega$	lp	<	1	μΑ
Valley point current (see also Figs 3 and 4) V_S = 10 V; R_G = 10 k Ω	lv	> ,	30	μΑ
$V_S = 10 \text{ V}$; $R_G = 1 \text{ M}\Omega$	ly	<	50	μΑ
Offset voltage IA = 0	V _{offset}	= Vp	– V _S	V

Fig. 2 See also Fig. 12.

Fig. 3 Practical test circuit.

Notes

Remove BCY71 during measurement of Ip.

Value of R1 depends on the voltage range of voltmeter.

(a) BRY61 with "program" resistors R1 and R2.

(b) Equivalent test circuit for characteristics testing.

Fig. 4 Equivalent test circuit.

Gate-anode leakage current

I_{GAO}, V_{GA}

Fig. 5.

` ^IGAO

10 nA

Gate-cathode leakage current VAK = 0; VGK = 70 V

Fig. 6.

Anode voltage at I_A = 100 mA Peak output voltage V_{AA} = 20 V; C = 200 nF (see Fig. 13) Rise time V_{AA} = 20 V; C = 10 nF (see Fig. 13) V_A < 1,4 V V_{OM} > 6 V t_r < 80 ns

IGKS <

100 nA

Fig. 7.

SILICON LOW-POWER SWITCHING TRANSISTOR

P-N-P silicon transistor in a microminiature plastic envelope. It is intended for high-speed, saturated switching applications for industrial service in thick and thin-film circuits.

QUICK REFERENCE DATA

Collector-base voltage (open emitter)	-V _{CBO}	max.	15 V
Collector-emitter voltage (open base)	-V _{CEO}	max.	15 V
Collector current (peak value)	-ICM	max.	200 mA
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	200 mW
Junction temperature	$T_{\mathbf{j}}$	max.	150 °C
D.C. current gain -I _C = 10 mA; -V _{CE} = 1 V -I _C = 50 mA; -V _{CE} = 1 V	hFE hFE	> 30 to	30 o 120
Transition frequency at f = 500 MHz $-I_C$ = 50 mA; $-V_{CE}$ = 10 V	fΤ	>	1,5 GHz
Turn-off time $-I_{Con} = 30 \text{ mA}$; $-I_{Bon} = +I_{Boff} = 3.0 \text{ mA}$	toff	<	30 ns

MECHANICAL DATA

Dimensions in mm

Marking code BSR12 = B5

BSR12R = B8

Limiting values in accordance with the Absolute Maximum Syst	tem (IEC 134)			
Collector-base voltage (open emitter)	-V _{CBO}	max.	15	٧
Collector-emitter voltage (open base)	-V _{CEO}	max.	15	٧
Emitter-base voltage (open collector)	-VEBO	max.	3	٧
Collector current (d.c.)	-I _C	max.	100	mA
Collector current (peak value)	-I _{CM}	max.	200	mA
Total power dissipation up to T _{amb} = 25 °C mounted on a ceramic substrate of 7 mm x 5 mm x 0,5 mm	P _{tot}	max.	200	mW
Storage temperature	T _{stg}	-65 to	+150	οС
Junction temperature	T _i	max.	150	οС
THERMAL RESISTANCE				
From junction to ambient mounted on a ceramic substrate of 7 mm x 5 mm x 0,5 mm	R _{th j-a}	=	0,62	oC/mV
CHARACTERISTICS				
T _{amb} = 25 °C unless otherwise specified				
Collector cut-off current				
I _E = 0; -V _{CB} = 10 V	-ICBO	<		nA
I _E = 0; -V _{CB} = 10 V; T _{amb} = 125 °C V _{BE} = 0; -V _{CE} = 10 V	-ICBO -ICES	<		μA nA
Breakdown voltages	'CES			10A
$I_{F} = 0; -I_{C} = 10 \muA$	-V(BR)CBO	>	15	V
$V_{BE} = 0; -I_{C} = 10 \mu\text{A}$	-V(BR)CES	>	15	
$I_{C} = 0; -I_{E} = 100 \mu\text{A}$	−V(BR)EBO	>	3	٧
Collector-emitter sustaining voltage IR = 0; -IC = 10 mA	-Voco	>	15	V
Saturation voltages *	-V _{CEOsust}		10	· *
-I _C = 10 mA; -I _B = 1 mA	−VCEsat −VBEsat	< 725 t	130 o 920	mV mV
-I _C = 50 mA; -I _B = 5 mA	-V _{CEsat} -V _{BEsat}	< 800 to		mV mV
-I _C = 100 mA; -I _B = 10 mA	-V _{CEsat}	< 900 to	450	mV
	-V _{BEsat}	200 10	1000	III V

^{*} Measured under pulse conditions; t_p = 300 μ s; δ = 0,01.

D.C. current gain *

Transition frequency at f = 500 MHz
-IC = 50 mA; -VCE = 10 V

 $-I_C$ = 50 mA; $-V_{CE}$ = 10 V f_T > 1,5 GHz Collector capacitance

Cc

Ce

ton

toff

<

<

<

<

4,5 pF

6,0 pF

20 ns

30 ns

 $I_E = I_e = 0$; $-V_{CB} = 5 \text{ V}$ Emitter capacitance

 $I_C = I_c = 0$; $-V_{EB} = 0.5 \text{ V}$ Switching times

Turn-on time
Turn-off time

Fig. 2 Test circuit switching times.

	V _i V	V _{BB}	R1 Ω	R2 kΩ	R3 kΩ	-I _{Con}	-I _{Bon} mA	I _{Boff} mA	C μF	
t _{on}	-6,85	0	94	1,0	2,0	30	3,0		0,1	
toff	. 11,7	-9,85	94	1,0	2,0	30	3,0	3,0	0,1	

^{*} Measured under pulse conditions; $t_p = 300 \mu s$; $\delta = 0.01$.

Fig. 6 V_{BEsat} as a function of I_{C} at $I_{C}/I_{B} = 10$.

Fig. 7 V_{CEsat} as a function of T_j ; typical values.

Upper graph at I $_{C}$ = 100 mA; I $_{B}$ = 10 mA. Lower graph at I $_{C}$ = 50 mA and I $_{B}$ = 5 mA.

DEVELOPMENT SAMPLE DATA

This information is derived from development samples made available for evaluation. It does not form part of our data handbook system and does not necessarily imply that the device will go into production

SILICON PLANAR EPITAXIAL TRANSISTORS

P-N-P transistors in miniature plastic envelopes intended for application in thick and thin-film circuits. They are intended for use in telephony and general industrial applications.

QUICK REFERENCE DATA

		В	SR30	BSR31	BSR32	BSR33
Collector-base voltage (open emitter)	-V _{CBO}	max.	70	70	90	90 V
Collector-emitter voltage (open base)	-VCEO	max.	60	60	80	80 V
Collector current (d.c.)	-IC	max.	1	1	1	1 A
Total power dissipation up to $T_{amb} = 25$ °C	P _{tot}	max.	1,	1	1	1 W
Junction temperature	Ti	max.	150	150	150	150 °C
D.C. current gain -I _C = 100 mA; -V _{CE} = 5 V	hFE	> <	40 120	100 300	40 120	100 300
Transition frequency at f = 35 MHz $-I_C$ = 50 mA; $-V_{CE}$ = 10 V	fT	>	100	100	100	100 MHz

Dimensions in mm

MECHANICAL DATA

Fig. 1 SOT-89.

Mark

BSR30 BSR31 BSR32 BSR33

Limiting values in accordance with the Absolute Maximum System (IEC 134)

					1		
Voltages		BS	R30	BSR31	BSR32	BSR3	3
Collector-base voltage (open emitter)	-V _{CBO}	max.	70	70	90	90	o v
Collector-emitter voltage (open base)	-VCEO	max.	60	60	80	80	o v
Emitter-base voltage (open collector)	-VEBO	max.	5	5	5	!	5 V
Currents			٠, -				
Collector current (d.c.)	-I _C	max.			1		Α
Base current (d.c.)	-IB	max.			0,1		Α .
Power dissipation		_					
Total power dissipation up to T _{amb} = 25 mounted on a ceramic substrate							
area = 2,5 cm ² ; thickness = 0,7 mm	P _{tot}	max.			1		W
Temperatures							
Storage temperature	T _{stg}			-65 to +	150		oC
Junction temperature	Tj	max.		•	150		oC
THERMAL RESISTANCE							
From junction to collector tab	R _{th j-tab}	=			10		oC/M
From junction to ambient in free air mounted on a ceramic substrate	•						
area = 2,5 cm ² ; thickness = 0,7 mm	R _{th j-a}	=			125		oC/M

MHz

CHARACTERISTICS

Tamb = 25 °C unless otherwise specified

Collector cut-off current

I _E = 0; -V _{CB} = 60 V	−¹CBO	. <	100	nA
$I_{\rm F} = 0 V_{\rm OD} = 60 \text{ V} \cdot T_{\rm F} = 150 \text{ °C}$	-lono	_	50	,,Δ

Breakdown voltages

Saturation voltages *

ge-				I .	i	1	
$-I_C = 150 \text{ mA}; -I_B = 15 \text{ mA}$	−V _{CEsat} −V _{BEsat}	< <	0,25 1,0	0,25 1,0	0,25 1,0	0,25 1,0	, V V
$-I_C = 500 \text{ mA}; -I_B = 50 \text{ mA}$	−VCEsat −V _{BEsat}	<	0,5 1,2	0,5 1,2	0,5 1,2	0,5 1,2	V V
).C. current gain *							

D.

.c. current gam							
$-I_C = 100 \mu\text{A}; V_{CE} = 5 \text{V}$	hFE	>	10	30	10	30	
$-I_C = 100 \text{ mA; } V_{CE} = 5 \text{ V}$	hFE	> <	40 120		40 120	100 300	
-1_{C} = 500 mA; V_{CE} = 5 V	hFE	>	30	50	30	50	
i .							

$-I_C = 50 \text{ mA}; -V_{CE} = 10 \text{ V}$ 100 fΤ

Collector capacitance at f = 1 MHz				
$I_E = I_e = 0; -V_{CB} = 10 \text{ V}$	C _c	<	20	pF

Emitter capacitance at f = 1 MHz

$$I_C = I_c = 0; -V_{EB} = 0.5 \text{ V}$$
 C_e

Switching times see page 4

Transition frequency at f = 35 MHz

^{*} Measured under pulse conditions: t_p = 300 μ s; δ < 0,01.

CHARACTERISTICS (continued)

 $T_{amb} = 25$ °C

Switching times

 $-I_{Con} = 100 \text{ mA}; -I_{Bon} = +I_{Boff} = 5 \text{ mA}$

Turn-on time

Turn-off time Test circuit

500 ns 650 ns

Pulse generator:

Pulse duration

 $t_r \leq 15 \text{ ns}$ Rise time $t_f \leq 15 \text{ ns}$ Fall time

 $t_{\rm D} = 10 \, \mu {\rm s}$

Source impedance $Z_S = 50 \Omega$ Oscilloscope:

Rise time

Input impedance

 $t_r \le 15 \text{ ns}$ $Z_I \geqslant 100 \; k\Omega$

SILICON PLANAR EPITAXIAL TRANSISTORS

N-P-N transistors in miniature plastic envelopes intended for application in thick and thin-film circuits. They are intended for use in telephony and general industrial applications.

QUICK REFERENCE DATA

		В	SR40	BSR41	BSR42	BSR43	
Collector-base voltage (open emitter)	V _{СВО}	max.	70	70	90	90	٧
Collector-emitter voltage (open base)	VCEO	max.	60	60	80	80	٧
Collector current (d.c.)	lc	max.	1	1	1	1	Α
Total power dissipation up to $T_{amb} = 25$ °C	P _{tot}	max.	. 1	1	1	1	W
Junction temperature	Tj	max.	150	150	150	150	οС
D.C. current gain $I_C = 100$ mA; $V_{CE} = 5$ V	hFE	> <	40 120	100 300	40 120	100 300	
Transition frequency at f = 35 MHz $I_C = 50$ mA; $V_{CE} = 10$ V	fT	>	100	100	100	100	MHz

Dimensions in mm

MECHANICAL DATA

Fig. 1 SOT-89.

Mark

BSR40 BSR41 BSR42 BSR43

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages		BS	SR40	BSR41	BSR42	BSR43	1
Collector-base voltage (open emitter)	V _{CBO}	max.	70	70	90	90	V
Collector-emitter voltage (open base)	VCEO	max.	60	60	80	80	V
Emitter-base voltage (open collector)	V _{EBO}	max.	5	5	5	5	V
Currents				<u>.</u>	-	'	
Collector current (d.c.)	l _C	max.			1		Α
Base current (d.c.)	1 _B	max.			0,1		Á
Power dissipation							
Total power dissipation up to T _{amb} = 25 of mounted on a ceramic substrate	oc .						
area = $2,5 \text{ cm}^2$; thickness = $0,7 \text{ mm}$	P _{tot}	max.			1		W
Temperatures							
Storage temperature	T _{stg}			-65 to	+150		°C
Junction temperature	тj	max.			150		oC
THERMAL RESISTANCE							
From junction to collector tab	R _{th j-tab}	=			10		oc/w
From junction to ambient in free air mounted on a ceramic substrate	·						
area = 2.5 cm^2 ; thickness = 0.7 m	R _{th j-a}	=			125		oC/M

CHARACTERISTICS

Tamb = 25 °C unless otherwise specified

Collector cut-off current

$$I_{E}$$
 = 0; V_{CB} = 60 V I_{CBO} < 100 nA I_{E} = 0; V_{CB} = 60 V; T_{j} = 150 °C I_{CBO} < 50 μ A

BSR40 BSR41 BSR42 BSR43 Breakdown voltages $I_B = 0$; $I_C = 10 \text{ mA}$ 60 60 80 80 V(BR)CEO > $V_{BE} = 0$; $I_{C} = 10 \mu A$ V(BR)CES 70 > 70 90 90 $I_C = 0$; $I_E = 10 \mu A$ V(BR)EBO 5 5 5 5 ٧

Saturation voltages *

D.C. current gain *

Transition frequency at f = 35 MHz

$I_C = 50 \text{ mA}; V_{CE} = 10 \text{ V}$	fT	>	100	MHz

Collector capacitance at f = 1 MHz

Emitter capacitance at f = 1 MHz

Emitter capacitance at f = 1 MHz
$$I_C = I_C = 0$$
; $V_{EB} = 0.5 \text{ V}$ C_e $<$ 90 pF

Switching times see page 4

^{*} Measured under pulse conditions: $t_p = 300 \mu s$; $\delta < 0.01$.

CHARACTERISTICS (continued)

 $T_{amb} = 25$ °C

Switching times

Icon = 100 mA; IBon = -IBoff = 5 mA

Turn-on time Turn-off time

Turn-on time

Test circuit

Pulse generator:

Pulse duration $t_D = 10 \mu s$

Rise time $t_r \le 15 \text{ ns}$

Fall time $t_f \le 15 \text{ ns}$

Source impedance $Z_S = 50 \Omega$

Oscilloscope:

Rise time $t_r \le 15 \text{ ns}$

Input impedance $Z_1 \ge 100 \text{ k}\Omega$

250 ns

1000 ns

ton

toff

BSR56 BSR57 BSR58

This information is derived from development samples made available for evaluation. It does not form part of our data handbook system and does not necessarily imply that the device will go into production

N-CHANNEL FETS

Silicon n-channel depletion type junction field-effect transistors in a plastic microminiature envelope intended for application in thick and thin-film circuits. The transistors are intended for low-power, chopper or switching applications in industrial service.

QUICK REFERENCE DATA

		BSR56	BSR57	BSR58
Drain-source voltage	$^{\pm V}$ DS	max. 40	40	40 V
Total power dissipation up to T _{amb} = 70 °C	P_{tot}	max. 200	200	200 mW
Drain current VDS = 15 V; VGS = 0	IDSS	> 50 < -	20 100	8 mA 80 mA
Gate-source cut-off voltage $V_{DS} = 15 \text{ V}$; $I_D = 0.5 \text{ nA}$	-V(P)GS	> 4	2 6	0,8 V 4 V
Drain-source resistance (on) at $f = 1 \text{ kHz}$ $I_D = 0$; $V_{GS} = 0$	^r ds on	< 25	40	60 Ω
Feedback capacitance at f = 1 MHz -V _{GS} = 10 V; V _{DS} = 0	C _{rs}	5	5	5 pF
Turn-off time				
$V_{DD} = 10 \text{ V; } V_{GS} = 0$ $I_{D} = 20 \text{ mA; } -V_{GSM} = 10 \text{ V}$ $I_{D} = 10 \text{ mA; } -V_{GSM} = 6 \text{ V}$ $I_{D} = 5 \text{ mA; } -V_{GSM} = 4 \text{ V}$	^t off ^t off ^t off	< 25 < -	50	ns ns 100 ns

MECHANICAL DATA

Fig. 1 SOT-23.

Dimensions in mm

Marking code

BSR56 = M4 BSR57 = M5 BSR58 = M6

e Maximum Sys	stem	(IEC 134)			
±V _{DS}	max	c.	40		V
V_{DGO}	max	ς.	40		V
	max	ζ.	40		V
I _{GF}	max	c.	50	4	mA
P _{tot}	max	ς.	200		mW
		-55	to +150		°C
Tj	max	(.	150		oC
R _{th j-a}	=		0,4		OC/mW
•					
⁻¹ GSS	<		1 -		nA
I _{DSX}	<		· 1		nA
		BSR56	BSR57	BSR58	
1		F0	20		mΑ
IDSS	(50	1		mA
-V(RR)GSS	>	40	40	40	
(B)()(300				0.0	.,
-V _{(P)GS}	/		1 -	1 .	V
1.					
VDSon	<	750	E00 •	-	mV
	< <	_	500	400	mV mV
V _{DSon}	•				
	±VDS VDGO -VGSO IGF Ptot Tstg Tj Rth j-a -IGSS IDSX IDSS -V(BR)GSS -V(P)GS	#VDS max VDGO max VDGO max VDGO max IGF max IGF Ptot max Tstg Tj max Rth j-a = -IGSS < IDSX < VDSS > VDSS > VDSS > VDSS < VDSS > VDSS VDSS > VDSS VDSS > VDSS q	±VDS max. VDGO maxVGSO max. IGF max. Ptot max. Tstg -55 Tj max. Rth j-a = -IGSS < IDSX < BSR56 IDSS > 50 -V(BR)GSS > 40 -V(P)GS < 10 VDSOR < 750	±VDS max. 40 VDGO max. 40 -VGSO max. 40 IGF max. 50 Ptot max. 200 Tstg -55 to +150 Tj max. 150 Rth j-a = 0,4 -IGSS < 1 IDSX < 1 BSR56 BSR57 IDSS > 50 20 -V(BR)GSS > 40 40 -V(P)GS < 10 6 VDSon < 750 -	#VDS max. 40 VDGO max. 40 -VGSO max. 40 IGF max. 50 Ptot max. 200 Tstg -55 to +150 Tj max. 150 Rth j-a = 0,4 -IGSS < 1 IDSX < 1 BSR56 BSR57 BSR58 -V(BR)GSS > 40 40 40 -V(P)GS < 10 6 4 VDSon < 750

^{*} Measured under pulsed conditions; t_p = 100 ms; $\delta \leqslant$ 0,1.

	•			BSR56	BSR57	BSR58
	ning times*					
	D = 10 V; V _{GS} = 0 ditions I _D and -V _{GSM}	I _D	· =	20	10	5 mA
	G3W	−V _{GSM}	=	10	- 6	4 V
Dela	ay time	t _d	<	6	6	10 ns
Rise	time	t _r	<	3	4	10 ns
Tur	n-off time	t _{off}	<	25	50	100 ns

Fig. 2 Switching times waveforms.

Fig. 3 Test circuit.

BSR56; $R = 464 \Omega$

 $t_r \leq 0.75 \text{ ns}$ $\dot{R}_i \geqslant 1 M\Omega$

Oscilloscope

BSR57; $R = 953 \Omega$ BSR58; R = 1910 Ω Pulse generator $t_r = t_f \le 1 \text{ ns}$ = 0.02 Z_{o} = 50 Ω

 $C_i \leq 2.5 \, pF$

^{*} Switching times measured on devices in SOT-18 envelope.

HIGH VOLTAGE P-N-P TRANSISTOR

Silicon planar epitaxial transistor in a microminiature plastic envelope intended for application in thick and thin-film circuits. This transistor is intended for high voltage general purpose and switching applications.

QUICK REFERENCE DATA

Collector-base voltage (open emitter)	-V _{CBO} · m	nax.	110	V
Collector-emitter voltage (open base)	−V _{CEO} m	nax.	100	V
Collector current (peak value)	−l _{CM} m	nax.	100	mΑ
Total power dissipation up to T _{amb} = 25 °C	P _{tot} m	nax.	200	mW
Junction temperature	T _j m	nax.	150	оC
D.C. current gain at $T_j = 25$ °C -I _C = 25 mA; -V _{CE} = 5 V	h _{FE} >	•	30	
Transition frequency at $f = 35 \text{ MHz}$ $-1_C = 25 \text{ mA}$; $-V_{CE} = 5 \text{ V}$	f _T ty	yp.		MHz MHz

MECHANICAL DATA

Dimensions in mm

Marking code

Fig. 1 SOT-23.

		, , ,	
-IC = 1	10 μΑ		

Collector-emitter voltage (open base)
$$-I_{C} = 100 \,\mu\text{A} \qquad \qquad -V_{CEO} \quad \text{max.} \quad 100 \,\text{ V}$$

-VCBO

-IċM

-IBM

Ptot

T_{stg}

R_{th j-a}

-ICBO

-ICBO

-lebo

hFE

hpp

 $C_{\mathbf{c}}$

fΤ

-V_{CEsat} <

-V_{BEsat} <

Τį

max.

max.

max.

max.

max.

<

typ.

typ.

typ.

110 V

100 mA

100 mA

200 mW

150 °C

0,62 °C/mW

100 nA 0,25 μA

50 μA

200 nA

250 mV

900 mV

30

30

3 pF

50 MHz

85 MHz

-65 to +150 °C

Emitter-base voltage (open collector)

$$-I_E = 10 \,\mu\text{A}$$
 $-V_{EBO}$ max. 6 V
Collector current (d.c.) $-I_C$ max, 100 mA

Collector current (peak value)

Junction temperature

THERMAL RESISTANCE

CHARACTERISTICS

T_i = 25 °C unless otherwise specified

$$-I_C = 25 \text{ mA}; -I_B = 2.5 \text{ mA}$$

Collector capacitance at
$$f = 1$$
 MHz
 $I_F = I_e = 0$; $-V_{CB} = 10$ V

2

Fig. 2.

Fig. 3.

Fig. 4 Typical values collector capacitance as a function of collector-base voltage. $I_E = I_e = 0$; $T_j = 25$ °C; f = 1 MHz.

Fig. 5 Typical values collector-base current as a function of the junction temperature at a collector-base voltage of -90 V.

Silicon planar epitaxial transistor in a microminiature plastic envelope intended for application in thick and thin-film circuits. This transistor is intended for high-voltage general purpose and switching applications.

QUICK REFERENCE DATA

Collector-base voltage (open emitter)	V _{CBO}	max.	120 V
Collector-emitter voltage (open base)	V _{CEO}	max.	80 V
Collector current (peak value)	ICM	max.	250 mA
Total power dissipation up to T _{amb} = 25 °C	P_{tot}	max.	200 mW
Junction temperature	Τ _j	max.	150 °C
D.C. current gain $I_C = 10 \text{ mA}$; $V_{CE} = 1 \text{ V}$; $T_j = 25 ^{\circ}\text{C}$	hFE	> typ.	20 80
Transition frequency at f = 35 MHz I _C = 4 mA; V _{CE} = 10 V	f _T	>	60 MHz
Turn-off time I _C = 15 mA; I _{Bon} – I _{Boff} = 1 mA	t _{off}	<	1 μs

Dimensions in mm

MECHANICAL DATA

Fig. 1 SOT-23.

Marking code

BSS64 BSS64R

RATINGS

THERMAL RESISTANCE

From junction to ambient in free air *

Limiting values in accordance with the Absolute Maximum System (IEC 134)				
Collector-base voltage (open emitter) $I_C = 100 \mu A$	V _{CBO}	max.	120	V	
Collector-emitter voltage (open base) IC = 4 mA	V _{CEO}	max.	80	٧	
Emitter-base voltage (open collector) $I_E = 100 \mu A$	V _{EBO}	max.	5	V	
Collector current (d.c. or averaged over any 20 ms period)	Ic	max.	100	mA	
Collector current (peak value)	Ісм	max.	250	mΑ	
Base current (peak value)	Івм	max.	100	mA	
Total power dissipation up to T _{amb} = 25 °C *	P _{tot}	max.	200	mW	
Storage temperature	T _{stg}	-65 to	+150	οС	
Junction temperature	Ti	max.	150	oC	

R_{th j-a}

0,62 °C/mW

^{*} Device mounted on a ceramic substrate of 7 mm x 5 mm x 0,5 mm.

CHARACTERISTICS

T_i = 25 °C unless otherwise specified

Collector cut-off current

 $I_E = 0$; $V_{CB} = 90 \text{ V}$

 $I_E = 0$; $V_{CB} = 90 \text{ V}$; $T_i = 150 \text{ }^{\circ}\text{C}$

Emitter cut-off current $I_C = 0; V_{EB} = 5 V$

Saturation voltages

 $I_C = 4 \text{ mA}$; $I_B = 400 \mu \text{A}$

 $I_C = 50 \text{ mA}$; $I_B = 15 \text{ mA}$

D.C. current gain $I_C = 1 \text{ mA}; V_{CE} = 1 \text{ V}$

 $I_C = 10 \text{ mA}$; $V_{CF} = 1 \text{ V}$

 $I_C = 20 \text{ mA}; V_{CE} = 1 \text{ V}$

Transition frequency at f = 35 MHz

 $I_C = 4 \text{ mA}; V_{CE} = 10 \text{ V}$ Collector capacitance at f = 1 MHz

 $I_E = I_e = 0$; $V_{CB} = 10 \text{ V}$

Turn-off switching time $I_{Con} = 15 \text{ mA}$; $I_{Bon} = -I_{Boff} = 1 \text{ mA}$

typ. 1 nA I_{CBO} < 100 nA 0,25 µA typ. 1CBO < 50 µA

0,5 nA typ. 1EBO 200 nA <

VCEsat < 150 mV **VBEsat** < 1200 mV **V**CEsat < 200 mV

hFE typ. 60 > 20 hFE 80 typ. 55 hFE typ.

> 60 MHz fΤ 100 MHz typ. 3 pF typ. Cc 5 pF <.

Fig. 2 Typical values transition frequency. V_{CE} = 10 V; f = 35 MHz; T_j = 25 °C.

Fig. 3 Typical values collector-base currents as a function of the junction temperature at a collector-base voltage of 90 V.

SILICON PLANAR EPITAXIAL TRANSISTOR

• High-speed switching

N-P-N transistor in a microminiature plastic envelope. It is intended for very high-speed saturated switching in thick and thin-film circuits.

QUICK REFERENCE DATA

Collector-base voltage (open emitter)	V _{CBO}	max.	20	٧
Collector-emitter voltage (V _{BE} = 0)	V _{CES}	max.	20	V .
Collector-emitter voltage (open base)	VCEO	max.	12	V
Collector current (peak value)	^I CM	max.	200	mΑ
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	200	mW
Junction temperature	Τį	-65 to ∃	150	оС
D.C. current gain $I_C = 10 \text{ mA}$; $V_{CE} = 1 \text{ V}$ $I_C = 50 \text{ mA}$; $V_{CE} = 1 \text{ V}$	hFE hFE	40 to	120 25	
Transition frequency at f = 100 MHz $I_C = 10$ mA; $V_{CE} = 10$ V	fŢ	> typ.		MHz MHz
Storage time $I_C = I_B = -I_{BM} = 10 \text{ mA}$	t _s	<	13	ns

Dimensions in mm

MECHANICAL DATA

Fig. 1 SOT-23.

Marking code

BSV52 = B2

BSV52R = B4

	1 .) .			IDC 104)
RATINGS Limiting values in accordance with the Abs <u>Voltages</u>	olute Maxi	mum Sy	stem (IEC 134)
Collector-base voltage (open emitter)	v_{CBO}	max.	20	V
Collector-emitter voltage (V _{BE} = 0)	v_{CES}	max.	20	V .
Collector-emitter voltage (open base) $I_C = 10 \text{ mA}$	v_{CEO}	max.	12	v
Emitter-base voltage (open collector)	v_{EBO}	max.	5	V
Currents				
Collector current (d.c.)	I_C	max.	100	mA
Collector current (peak value)	I_{CM}	max.	200	mA
Power dissipation				
Total power dissipation up to T _{amb} = 25 °C mounted on a ceramic substrate of				
7 mm x 5 mm x 0.5 mm	P_{tot}	max.	200	mW
Temperatures				
Storage temperature Junction temperature	${^{\mathrm{T}}_{\mathrm{stg}}}_{\mathrm{T}_{\mathrm{j}}}$	-65 to max.	+150 150	°C °C
THERMAL RESISTANCE				
From junction to ambient mounted on a ceramic substrate of 7 mm x 5 mm x 0.5 mm	R _{th j-a}	=	0.62	°C/mW
CHARACTERISTICS $T_i =$	25 °C unle	ess othe	rwise	specified
Collector cut-off current				
I _E = 0; V _{CB} = 10 V	I_{CBO}	<	100	nA
$I_{E} = 0$; $V_{CB} = 10 \text{ V}$; $T_{j} = 125 \text{ °C}$	I_{CBO}	<	. , 5	μ A
Saturation voltages				e de la companya de l
$I_{\rm C}$ = 10 mA; $I_{\rm B}$ = 300 $\mu{\rm A}$	v_{CEsat}	1<	300	mV
$I_C = 10 \text{ mA}$; $I_B = 1 \text{ mA}$	V _{CEsat} V _{BEsat}	700 1	250 to 850	mV mV
$I_C = 50 \text{ mA}$; $I_B = 5 \text{ mA}$	$v_{ ext{CEsat}} \ v_{ ext{BEsat}}$	< <	400 1200	mV mV

25

25

400

500

4.5 pF

MHz

MHz

pF

40 to 120

typ.

hFE

 h_{FE}

hFE

fT

 C_{c}

 C_e

CHARACTERISTICS (continued)

D.C. current gain

$$I_C = 10 \text{ mA}$$
; $V_{CE} = 1 \text{ V}$

$$I_C$$
 = 50 mA; V_{CE} = 1 V

Collector capacitance at
$$f = 1$$
 MHz

$$I_{\rm E} = I_{\rm e} = 0$$
; $V_{\rm CB} = 5$ V

Emitter capacitance at f = 1 MHz

$$I_C = I_C = 0$$
; $V_{EB} = 1 \text{ V}$

Switching times

Storage time
$$I_C = I_B = -I_{BM} = 10 \text{ mA}$$

Test circuit:

Pulse generator:

Rise time < 1 ns Pulse duration > 300 ns

< 0.02 Duty cycle Source impedance $R_S =$ 50Ω

Oscilloscope:

Input impedance Rise time

 $R_i =$ 50Ω $t_r <$ 1 ns

CHARACTERISTICS (continued)

 T_i = 25 °C unless otherwise specified

Switching times

Turn on time when switched from $-V_{BE}$ = 1.5 V to I_{C} = 10 mA; I_{B} = 3 mA

 t_{on} < 12 ns

Turn off time when switched from

 $I_C = 10 \text{ mA}$; $I_B = 3 \text{ mA}$

to cut-off with -IBM = 1.5 mA

 $t_{\rm off}$ < 18 ns

Test circuit:

Pulse generator:

Oscilloscope:

Rise time

 $t_r < 1 \text{ ns}$

Input impedance R_i =

Pulse duration

> 300 ns

Rise time $t_r < 1$ ns

Duty cycle

 δ < 0.02

Source impedance

 $R_S = 50 \Omega$

							turn on time			turn off time		
I _C (mA)	I _B (mA)	· -I _{BM}	V _{CC} (V)	R ₁ ;R ₂ (kΩ)	R3 (Ω)	R ₄ (Ω)	-V _{BB} (V)	-V _{BE} (V)	V _i (V)	⊷V _{BB} (V)	-V _i (V)	
10	3	1.5	3	3.3	50	220	3.0	1.5	15	12.0	15	

Note

 $-I_{\mbox{\footnotesize{BM}}}$ is the reverse current that can flow during switching off. The indicated $-I_{\mbox{\footnotesize{BM}}}$ is determined and limited by the applied cut-off voltage and series resistance.

50 Ω

BSV52

SILICON PLANAR VOLTAGE REGULATOR DIODES

Low power general purpose voltage regulator diodes in a microminiature plastic envelope intended for application in thick and thin-film circuits. The series covers the whole normalized range of nominal working voltages from 4,7 V to 75 V with a tolerance of ± 5%.

QUICK REFERENCE DATA

Working voltage range	V_{Z}	nom.	4,7 to 75	٧
Working voltage tolerance			± 5	%
Total power dissipation up to T _{amb} = 25 °C	P_{tot}	max.	200	mW
Junction temperature	T_j	max.	150	oC

MECHANICAL DATA

Dimensions in mm

Fig. 1 SOT-23.

See also Soldering recommendations.

Marking code		
BZX84-C4V7 = Z1	BZX84-C12 = Y2	BZX84-C33 = Y12
C5V1 = Z2	C13 = Y3	C36 = Y13
C5V6 = Z3	C15 = Y4	C39 = Y14
C6V2 = Z4	C16 = Y5	C43 = Y15
C6V8 = Z5	C18 = Y6	C47 = Y16
C7V5 = Z6	C20 = Y7	C51 = Y17
C8V2 = Z7	C22 = Y8	C56 = Y18
C9V1 = Z8	C24 = Y9	C62 = Y19
C10 = Z9	C27 = Y10	C68 = Y20
C11 = Y1	C30 = Y11	C75 = Y21

Currents		•	·		
Repetitive peak forward	d current	I_{FRM}	max.	200	mA
Repetitive peak working	g current	^I ZRM	max.	200	mA
Power dissipation					
Total power dissipation mounted on a cerami					
7 mm x 5 mm x 0,5	mm	P_{tot}	max.	200	mW
Temperatures					
Storage temperature		$T_{ m stg}$	-65 to	+ 150	$^{\mathrm{o}}\mathrm{C}$
Junction temperature		$\tau_{\rm j}$	max.	150	о С .
THERMAL RESISTANCE					
From junction to ambie mounted on a cerami					
7 mm x 5 mm x 0,5		R _{th j-a}	= ', .	0,62	OC/mW
CHARACTERISTICS				·T	_i = 25 °C
Forward voltage					
$I_F = 10 \text{ mA}$		$v_{\mathbf{F}}$	<	0,9	v
Reverse current					
BZX84-C4V7	$V_R = 2 V$	$I_{\mathbf{R}}$	<	3000	nA
BZX84-C5V1	$V_R = 2 V$	IR	<	2000	n A
BZX84-C5V6	$V_R = 2 V$	$I_{\mathbf{R}}$	<	1000	n A
BZX84-C6V2	$V_{\mathbf{R}} = 4 V$	$^{\mathrm{I}}\mathrm{R}$	<	3000	nA
BZX84-C6V8	$V_{\mathbf{R}} = 4 V$	$I_{\mathbf{R}}$	<	2000	nA
BZX84-C7V5	$V_R = 5 V$	$I_{\mathbf{R}}$	<	1000	nA
	$V_R = 5 V$	$I_{\mathbf{R}}^{\mathbf{R}}$	<	700	nA
BZX84-C8V2			<	500	nA
BZX84-C8V2 BZX84-C9V1	$V_R = 6 V$	$I_{\mathbf{R}}$			
•	$V_R = 6 V$ $V_R = 7 V$	IR IR	<	200.	nA
BZX84-C9V1				200 100	nA nA
BZX84-C9V1 BZX84-C10 BZX84-C11	$V_R = 7 V$ $V_R = 8 V$	I _R I _R	< ·	100	nA
BZX84-C9V1 BZX84-C10	$V_R = 7 V$	$I_{\mathbf{R}}$	<		

CHARACTERISTICS (continued)

E24 (±5%) logarithmic range.

Тj	=	25	°C	

E24 (±5%)	logarithmic range.			
BZX84	Working voltage	Differential resistance	Temperature coefficient	Diode capacitance
	V _Z (V)	r _{diff} (Ω)	S _Z (mV/°C)	C_d (pF); $f = 1$ MHz
	at IZ = 5 mA	at $I_Z = 5 \text{ mA}$	at IZ = 5 mA	$V_{\mathbf{R}} = 0$
	min. max.	typ. max.	min. typ. max.	typ. max.
C4V7 C5V1 C5V6 C6V2 C6V8	4,4 5,0 4,8 5,4 5,2 6,0 5,8 6,6 6,4 7,2	50 80 40 60 15 40 6 10 6 15	$\begin{bmatrix} -3,5 & -1,4 & 0,2 \\ -2,7 & -0,8 & 1,2 \\ -2,0 & 1,2 & 2,5 \\ 0,4 & 2,3 & 3,7 \\ 1,2 & 3,0 & 4,5 \end{bmatrix}$	110 160 95 140 90 130
C7V5 C8V2 C9V1 C10 C11	7,0 7,9 7,7 8,7 8,5 9,6 9,4 10,6 10,4 11,6	6 15 6 15 6 15 8 20 10 20	2,5 4,0 5,3 3,2 4,6 6,2 3,8 5,5 7,0 4,5 6,4 8,0 5,4 7,4 9,0	80 100 75 95 70 90 70 90 65 85
C12 C13 C15 C16 C18	11,4 12,7 12,4 14,1 13,8 15,6 15,3 17,1 16,8 19,1	10 25 10 30 10 30 10 40 10 45	6,0 8,4 10,0 7,0 9,4 11,0 9,2 11,4 13,0 10,4 12,4 14,0 12,4 14,4 16,0	65 85 60 80 55 75 52 75 47 70
C20 C22 C24	18,8 21,2 20,8 23,3 22,8 25,6	15 55 20 55 25 70	14,4 16,4 18,0 16,4 18,4 20,0 18,4 20,4 22,0	36 60 34 60 33 55
,	at $IZ = 2 \text{ mA}$	at $I_Z = 2 \text{ mA}$	at $IZ = 2 \text{ mA}$	
C27 C30 C33 C36 C39	min. max. 25,1 28,9 28,0 32,0 31,0 35,0 34,0 38,0 37,0 41,0	typ. max. 25 80 30 80 35 80 35 90 40 130	min. typ. max. 21,4 23,4 25,3 24,4 26,6 29,4 27,4 29,7 33,4 30,4 33,0 37,4 33,4 36,4 41,2	30 50
C43 C47 C51 C56 C62	40,0 46,0 44,0 50,0 48,0 54,0 52,0 60,0 58,0 66,0	45 150 50 170 60 180 70 200 80 215	37,6 41,2 46,6 42,0 46,1 51,8 46,6 51,0 57,2 52,2 57,0 63,8 58,8 64,4 71,6	21 40 19 40 19 40 18 40 17 35
C68 C75	64,0 72,0 70,0 79,0	90 240 95 255	65,6 71,7 79,8 73,4 80,2 88,6	17 35 16,5 35

E24 (±5%) logarithmic range.

E24 (± 5%) 10	garininine range	:.								
BZX84	Working vol	tage	Differ resis	ential tance	Wor	king vol	tage	Differ resis	ential tance	
i e i	V _Z (V)		r _{diff} (Ω)		V _Z (V)			r _{diff} (Ω)		
	at IZ = 1 mA		at IZ = 1 mA		at IZ = 20 mA			at Iz = 20 mA		
	min. nom.	max.	typ.	max.	min.	nom.	max.	typ.	max.	
C4V7 C5V1 C5V6	3,7 4,2 4,2 4,7 4,8 5,4	4,7 5,3 6,0	425 400 80	500 480 400	4,5 5,0 5,2	5,0 5,4 5,7	5,4 5,9 6,3	8 6 4	15 15 10	
C6V2 C6V8	5,6 6,1 6,3 6,7	6,6 7,2	40 30	150 80	5,8 6,4	6,3 6,9	6,8 7,4	3 2,5	6 6	
C7V5 C8V2 C9V1 C10 C11	6,9 7,4 7,6 8,1 8,4 9,0 9,3 9,9 10,2 10,9	7,9 8,7 9,6 10,6	30 40 40 50 50	80 80 100 150 150	7,0 7,7 8,5 9,4 10,4	7,6 8,3 9,2 10,1 11,1	8,0 8,8 9,7 10,7 11,8	2,5 3 4 4 5	6 6 8 10 10	
C12 C13 C15 C16 C18	11,2 11,9 12,3 12,9 13,7 14,9 15,2 15,9 16,7 17,9	12,7 14,0 15,5 17,0	50 50 50 50 50	150 170 200 200 225	11, 4 12, 5 13, 9 15, 4 16, 9	12, 1 13, 1 15, 1 16, 1 18, 1	12,9 14,2 15,7 17,2 19,2	5 5 6 6 6	10 15 20 20 20	
C20 C22 C24	18,7 19,9 20,7 21,9 22,7 23,9	21,1 23,2 25,5	60 60 60	225 250 250	18,9 20,9 22,9	20,1 22,1 24,1	21,4	7 7 7	20 25 25	
	at $I_Z = 0,1$	mA	at $I_Z = 0.5 \text{ mA}$		at	IZ = 10 n	nA .	at IZ =	10 mA	
C27 C30 C33 C36 C39	min. nom. 25,0 26,9 27,8 29,9 30,8 32,9 33,8 35,9 36,7 38,9	max. 28,9 32,0 35,0 38,0 41,0	65 70 75 80	300 300 325 350 350	min. 25,2 28,1 31,1 34,1 37,1	nom. 27, 1 30, 1 33, 1 36, 1 39, 1	max. 29,3 32,4 35,4 38,4 41,5	10 15 20 25 25	max. 45 50 55 60 70	
C43 C47 C51 C56 C62	39,7 42,9 43,7 46,8 47,6 50,8 51,5 55,7 57,4 61,7	46,0 50,0 54,0 60,0 66,0	85 85 90 100 120	375 375 400 425 450	40,1 44,1 48,1 52,1 58,2	43, 1 47, 1 51, 1 56, 1 62, 1	46,5 50,5 54,6 60,8 67,0	25 30 35 45 60	80 90 100 110 120	
C68 C75	63,4 67,7 69,4 74,7	72,0 79,0	150 170	475 500	64,2 70,3	68,2 75,3	73,2 80,2	75 90	130 140	

BZX84 SERIES

DISCRETE SEMICONDUCTORS FOR HYBRID THICK AND THIN-FILM CIRCUITS

GENERAL

SOLDERING RECOMMENDATIONS

TYPE NUMBER SURVEY

SELECTION GUIDE

DEVICE DATA

Argentina: FAPESA I.y.C., Av. Crovara 2550, Tablada, Prov. de BUENOS AIRES, Tel. 652-7438/7478.

Australia: PHILIPS INDUSTRIES HOLDINGS LTD., Eicoma Division, 67 Mars Road, LANE COVE, 2066, N.S.W., Tel. 427 08 88.

Austria: ÖSTERREICHISCHE PHILIPS BAUELEMENTE Industrie G.m.b.H., Triester Str. 64, A-1101 WIEN, Tel. 62 91 11.

Belgium: M.B.L.E., 80, rue des Deux Gares, B-1070 BRUXELLES, Tel 523 00 00.

Brazii: IBRAPE, Caixa Postal 7383, Av. Paulista 2073-S/Loja, SAO PAULO, SP, Tel. 284-4511.

Canada: PHILIPS ELECTRONICS LTD., Electron Devices Div., 601 Milner Ave., SCARBOROUGH, Ontario, M1B 1M8, Tel, 292-5161. Chile: PHILIPS CHILENA S.A., Av. Santa Maria 0760, SANTIAGO, Tel. 39-40 01.

Colombia: SADAPE S.A., P.O. Box 9805, Calle 13, No. 51 + 39, BOGOTA D.E. 1., Tel. 600 600,

Denmark: MINIWATT A/S, Emdrupvej 115A, DK-2400 KØBENHAVN NV., Tel. (01) 69 16 22.

Finland: OY PHILIPS AB, Elcoma Division, Kaiyokatu 8, SF-00100 HELSINKI 10, Tel. 17271.

France: R.T.C. LA RADIOTECHNIQUE-COMPELEC, 130 Avenue Ledru Rollin, F-75540 PARIS 11, Tel. 355-44-99.

Germany: VALVO, UB Bauelemente der Philips G.m.b.H., Valvo Haus, Burchardstrasse 19, D-2 HAMBURG 1, Tel. (040) 3296-1.

Greece: PHILIPS S.A. HELLENIQUE, Elcoma Division, 52, Av. Syngrou, ATHENS, Tel. 915 311.

Hong Kong: PHILIPS HONG KONG LTD., Comp. Dept., Philips Ind. Bldg., Kung Yip St., K.C.T.L. 289, KWAI CHUNG, N.T. Tel. 12-24 51 21.

India: PHILIPS INDIA LTD., Elcoma Div., Band Box House, 254-D, Dr. Annie Besant Rd., Prabhadevi, BOMBAY-25-DD, Tel. 457 311-5.

Indonesia: P.T. PHILIPS-RALIN ELECTRONICS, Elcoma Division, 'Timah' Building, Jl. Jen. Gatot Subroto, JAKARTA, Tel. 44 163. ireland: PHILIPS ELECTRICAL (IRELAND) LTD., Newstead, Clonskeagh, DUBLIN 14, Tel. 69 33 55.

Italy: PHILIPS S.p.A., Sezione Elcoma, Piazza IV Novembre 3, I-20124 MILANO, Tel. 2-6994.

Japan: NIHON PHILIPS CORP., Shuwa Shinagawa Bidg., 26-33 Takanawa 3-chome, Minato-ku, TOKYO (108), Tel. 448-5611. (IC Products) SIGNETICS JAPAN, LTD., TOKYO, Tel. (03) 230-1521.

Korea: PHILIPS ELECTRONICS (KOREA) LTD., Philips House, 260-199 Itaewon-dong, Yongsan-ku, C.P.O. Box 3680, SEOUL, Tel. 44-4202.

Mexico: ELECTRONICA S.A. de C.V., Varsovia No. 36, MEXICO 6, D.F., Tel. 5-33-11-80.

Netherlands: PHILIPS NEDERLAND B.V., Afd. Elonco, Boschdijk 525, NL-4510 EINDHOVEN, Tel. (040) 79 33 33.

New Zealand: Philips Electrical Ind. Ltd., Elcoma Division, 2 Wagener Place, St. Lukes, AUCKLAND, Tel. 867 119.

Norway: ELECTRONICA A/S., Vitaminveien 11, P.O. Box 29, Grefsen, OSLO 4, Tel. (02) 15 05 90.

Peru: CADESA, Jr. IIo, No. 216, Apartado 10132, LIMA, Tel. 277317.

Philippines: ELDAC, Philips Industrial Dev. Inc., 2246 Pasong Tamo, MAKATI-RIZAL, Tel, 86-89-51 to 59.

Portugal PHILIPS PORTUGESA S.A.R.L., Av. Eng. Duharte Pacheco 6, LISBOA 1, Tel. 68 31 21.

Singapore: PHILIPS SINGAPORE PTE LTD., Elcoma Div., POB 340, Toa Payoh CPO, Lorong 1, Toa Payoh, SINGAPORE 12, Tel. 53 88 11.

South Africa: EDAC (Pty.) Ltd., South Park Lane, New Doornfontein, JOHANNESBURG 2001, Tel. 24/6701.

Spain: COPRESA S.A., Balmes 22, BARCELONA 7, Tel. 301 63 12.

Sweden: A.B. ELCOMA, Lidingövägen 50, S-10 250 STOCKHOLM 27, Tel. 08/67 97 80.

Uruguay: LUZILECTRON S.A., Rondeau 1567, piso 5, MONTEVIDEO, Tel. 9 43 21.

Switzerland: PHILIPS A.G., Elcoma Dept., Edenstrasse 20, CH-8027 ZURICH, Tel. 01/44 22 11.

Talwan: PHILIPS TAIWAN LTD., 3rd Fl., San Min Building, 57-1, Chung Shan N. Rd, Section 2, P.O. Box 22978, TAIPEI, Tel, 5513101-5.

Turkey: TÜRK PHILIPS TICARET A.S., EMET Department, Inonu Cad. No. 78-80, ISTANBUL, Tel. 43 59 10. United Kingdom: MULLARD LTD., Mullard House, Torrington Place, LONDON WC1E 7HD, Tel. 01-580 6633.

United States: (Active devices & Materials) AMPEREX SALES CORP., Providence Pike, SLATERSVILLE, R.I. 02876, Tel. (401) 762-9000.

(Passive devices) MEPCO/ELECTRA INC., Columbia Rd., MORRISTOWN, N.J. 07960, Tel. (201) 539-2000.

(IC Products) SIGNETICS CORPORATION, 811 East Arques Avenue, SUNNYVALE, California 94086, Tel. (408) 739-7700.

Venezuela: IND, VENEZOLANAS PHILIPS S.A., Elcoma Dept., A. Ppal de los Ruices, Edif. Centro Colgate, Apdo 1167, CARACAS, Tel. 36 05 11.

© 1978 N.V. Philips' Gloeilampenfabrieken

This information is furnished for guidance, and with no guarantees as to its accuracy or completeness; its publication conveys no ficence under any patent or other right does the publisher assume liability for any consequence of its use; specifications and availability of goods mentioned in it are subject to change without notice; it is not reproduced in any way, in whole or in part, without the written consent of the publisher.