

More FREE Science Mom Guides available at www.jennyballif.com

SCIENCE MOM'S Guide to WATER Part 2

The dewdrop is SUPER small compared to the lake. But a water molecule (the smallest bit of water you can have) is MUCH smaller than a dewdrop.

A single drop of water has more than 1,000,000,000,000,000,000,000 water molecules! That huge number with 21 zeros is called a sextillion, and it is a TRILLION TIMES BIGGER than one billion.

THEN SET THE BOAT IN WATER AND WATCH IT GO!

LIKE THIS FOR THE CUT THE PAPER CARDSTOCK. PREFERABLY

2. Soap Boat

OF PAPER,

GET A SQUARE

c) Match the pepper scatter! surface of the water. p) Add a touch of soap to the

with pepper. a) Place water in bowl and sprinkle :poqjəM

- Water
- · Concentrated dish soap
 - Ground black pepper · Bowl or plate
 - Materials:

1. Pepper Scatter

LET'S TALK ABOUT BIG NUMBERS

3. Floating Pin

Materials:

- · A small pin or needle
- Bowl or cup
- · Concentrated dish soap
- Water

Method:

STI

- a) Fill bowl or cup with water and carefully place pin on surface. Hint: tweezers may help. The pin must be flat with the surface of the water. It will sink if it comes in at an angle.
- b) Add a touch of soap.
- c) Watch the pin sink!

4. Floating Paperclip

Materials:

- Paper clip
- · Tissue paper or paper towel
- Cup or bowl Water

Method:

- a) Fill the cup with water and gently place a piece of tissue paper on the surface.
- b) Carefully place a dry paperclip on the tissue.
- c) The tissue should sink. If it doesn't, give it a gentle push downward.

Tip: be sure that the cup and water are not soapy.

IF IT WORKS WITH A PAPERCLIP, HOW ABOUT SOMETHING BIGGER

Reality:

THE SURFACE TENSION OF WATER IS ONLY 72 DYNES PER CENTIMETER!

I MONDER WHAT IT 15? GOT TO BE A WORD FOR IT.. NEGATIVE CHARGE, THERE'S THE OTHER HALF HAS A OF WATER IS POSITIVE AND THAT'S SO COOL THAT PART

negative sides. form between the positive and negative (-). Hydrogen bonds (\bigcirc) molecule is part positive (+) and part Positive loves negative. Each water Because opposites attract!

want to be by each other? But \mathcal{Why} do water molecules

the side? Mater spills off can you fit on a coin before the drops of water ном мон :uoizsano

d allows us to fill cups above the brim, eighbors. This creates surface tension, than they like air, so the molecules on

".Noiznel Jension.

or make a dome of water on a coin. which helps raindrops stay together an the surface bond more tightly to their n Water molecules like each other more

\mathbf{B}	A		
B			D
F	E	E	b
E	G		