Exercice 1. Étant donnés un groupe G et H un sous-groupe de G, montrer que les équivalences suivantes sont vérifiées :

$$\forall g \in G, \ gHg^{-1} \subset H \iff \forall g \in G, \ gHg^{-1} = H.$$

Exercice 2. Soit G un groupe. Soient $x,y,z\in G$ et soit N un sous groupe distingué de G tels que

$$y^7 \in N, \ x^5 \in N \ \text{ et } \ y^{-1}zxz^{-1} \in N.$$

Montrer que x et y sont dans N.

Exercice 3. 1. Montrer que l'ensemble G des matrices de $M_2(\mathbb{Z}/5\mathbb{Z})$ triangulaires supérieures de déterminant non nul forme un sous-groupe de $GL_2(\mathbb{Z}/5\mathbb{Z})$ qui est non commutatif.

- 2. Calculer le centre de G. Le groupe G est-il distingué dans $\mathrm{GL}_2(\mathbb{Z}/5\mathbb{Z})$?
- 3. Calculer le cardinal de G et celui de $GL_2(\mathbb{Z}/5\mathbb{Z})$.
- 4. Montrer que le sous-ensemble K de G formé des matrices avec des 1 sur la diagonale est un sous-groupe commutatif distingué de G isomorphe au groupe additif $\mathbb{Z}/5\mathbb{Z}$.
- 5. Montrer que l'ensemble des matrices diagonales forme un sous-groupe commutatif de G qui n'est pas distingué dans G.

Exercice 4. Soit G un groupe non abélien et Z son centre. Montrer que G/Z n'est pas monogène.

Exercice 5. Résoudre dans \mathbb{Z} l'équation $2^x \equiv 1 \mod 55$.

Exercice 6. Soit G un groupe, soit $H \triangleleft G$ et soit $\pi_H : G \to G/H$ la projection canonique. Montrer qu'il y a une bijection entre les sous-groupes de G/H et les sous-groupes de G contenant H. Elle est donnée par $E \mapsto \pi_H(E)$ de réciproque $\mathcal{E} \mapsto \pi_H^{-1}(\mathcal{E})$.

Exercice 7. Soient G un groupe et

$$D(G) = \langle aba^{-1}b^{-1}, a, b \in G \rangle$$

le sous-groupe engendr'e par les commutateurs de G (éléments de la forme $aba^{-1}b^{-1}$) que l'on appelle également le groupe dérivé.

- 1. Montrer que pour tout morphisme f de G dans G, on a $f(D(G)) \subset D(G)$. En déduire que D(G) est un sous-groupe distingué de G.
- 2. Montrer que G/D(G) est abélien.
- 3. Soit N un sous-groupe distingué de G. Montrez que G/N est abélien si et seulement si $D(G) \subset N$.
- 4. Soit A un groupe abélien et $f: G \to A$ un morphisme de groupe. Montrer que $D(G) \subset Ker(f)$. En déduire qu'il existe un unique morphisme de groupes $\bar{f}: G/D(G) \to A$ tel que $\bar{f} \circ p = f$ où $p: G \to G/D(G)$ est la surjection canonique.

Exercice 8. Montrer que si G fini, et $H \subset G$ sous-groupe strict alors G n'est pas égal à l'union des conjugués de H.

Exercice 9. Soient G un groupe fini et p le plus petit facteur premier de l'ordre n de G. On suppose qu'il existe un sous-groupe H distingué dans G et d'ordre p. Montrer que H est dans le centre de G (on pourra faire opérer G par conjugaison sur H).

Exercice 10. p premier et G fini simple de Cardinal divisible par p^2 . Montrer que tout sous-groupe strict de G a indice au moins 2p. (Indication: on pourra montrer qu'il n'y a pas de morphisme $G \longrightarrow S_k$ non trivial pour $1 \le k \le 2p-1$.) Reciproquement, pour p impair, montrer qu'il existe un groupe simple de cardinal divisible par p^2 et un sous-groupe d'indice 2p.

Exercice 11. On fait opérer le groupe multiplicatif $G = (\mathbb{Z}/8\mathbb{Z})^{\times}$ sur l'ensemble $X = \mathbb{Z}/8\mathbb{Z}$ par $a \cdot x = ax$.

- 1. Calculer les orbites et le stabilisateur de chacun des éléments de X.
- 2. Soit n un entier > 1. On fait opérer le groupe $G = (\mathbb{Z}/n\mathbb{Z})^{\times}$ sur l'ensemble $X = \mathbb{Z}/n\mathbb{Z}$ par $a \cdot x = ax$. Écrire la formule des classes correspondante (on pourra définir une bijection entre l'ensemble des orbites et les diviseurs de n).

Exercice 12. Soit $X = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ que l'on dispose dans un carré

Soit G le groupe de symétrie du carré. On fait agir G sur X à travers le carré. Écrire l'équation aux classes dans ce contexte.

Exercice 13. Soit E un ensemble fini muni d'une action $G \times E \to E$ d'un groupe fini G. On note

$$E_G := \{ x \in E \mid \forall g \in G, \ g \cdot x = x \}$$

qu'on appelle l'ensemble des points fixes pour l'action de G sur E.

1. On suppose que

$$E_G = \emptyset$$
, card $(G) = 15$ et card $(E) = 17$.

Quel est alors le nombre d'orbites et le cardinal de chacune d'elles?

2. On suppose que

$$card(G) = 33 \text{ et } card(E) = 19.$$

Montrer que E_G ne peut pas être vide.

Exercice 14. Soit H un sous-groupe distingué d'un groupe G qui agit transitivement sur un ensemble X. Montrer que les orbites de l'action (induite de l'action de G) de H sur X ont toutes même cardinal.

Exercice 15. Soit une action d'un groupe G sur un ensemble. Montrer que tous les éléments d'une même orbite ont même stabilisateur si et seulement si ce stabilisateur est un sous-groupe distingué de G.

Exercice 16. Soit G un groupe de cardinal pq avec p et q premiers et distincts. On suppose que G opère sur un ensemble X de cardinal n = pq - p - q. Montrer qu'il existe au moins un point fixe par cette action.

Exercice 17. Soit (G,\cdot) un groupe dont on note 1 l'élément neutre et E un G-ensemble, c'est-à-dire un ensemble muni d'une action de G notée $G\times E\to E,\,(g,x)\mapsto g\cdot x.$ On suppose que G et E sont finis.

1. Pour tout $x \in E$ rappeler (sans démonstration) la relation liant $\operatorname{card}(G)$, $\operatorname{card}(\operatorname{Stab}_G(x))$ et $\operatorname{card}(O(x))$.

Pour tout $g \in E$, on note $\text{Fix}(g) = \{x \in E \mid g \cdot x = x\}$ On note $F = \{(g, x) \in G \times E \mid g \cdot x = x\}$.

$$p: F \to G, (g, x) \mapsto g, \text{ et } q: F \to E, (g, x) \mapsto x.$$

2. Montrer que

$$F = \coprod_{x \in E} q^{-1}(\{x\}) = \coprod_{g \in G} p^{-1}(\{g\}).$$

3. Établir la formule de Burnside :

$$k = \frac{1}{\operatorname{card}(G)} \sum_{g \in G} \operatorname{Card}(\operatorname{Fix}(g)).$$

Exercice 18. Soit G un groupe fini. On laisse G agir sur lui même par conjugaison et on appelle classe de conjugaison une orbite pour cette action, et on note C(x) la classe de conjugaison (i.e. l'orbite) de x. Pour $x \in G$ on note Z(x) le stabilisateur (ou le commutant) de x dans G.

- 1. Pour quels $x \in G$ a t'on |C(x)| = 1?
- 2. Montrer que |C(x)| divise |G|.
- 3. On note Z(G) le centre de G. Montrer que |C(x)| divise |G|/|Z(G)| et même qu'il ne peut y avoir égalité que si G est abélien.
- 4. Ecrire (formellement) l'équation aux classes (pour l'action considérée ici). Justifier que si l'on ordonne les cardinaux des orbites de manières croissante, alors le premier terme est 1.
- 5. Quels sont les groupes avec une unique classe de conjugaison?
- 6. Montrer que si l'équation pour les classes de conjugaison de G est 1+n alors $G=\mathbb{Z}/2\mathbb{Z}$.
- 7. On veut caractériser les groupes G dont l'équation pour les classes de conjugaison est de la forme 1 + n + m avec $n \ge m$.
 - (a) Montrer que si n = 1 alors m = 1. Qui est donc G?
 - (b) On suppose que n > 1. Montrer que 1 + n = m.

- (c) En déduire que n=2 et m=3, et donc $G=\mathfrak{S}_3$.
- 8. Quels sont les groupes fini possédant au plus 3 classes de conjugaison?
- 9. Montrer que l'on ne peut pas avoir une equation aux classes de la forme

$$|G| = 1 + 1 + 1 + 2 + 5$$
, $|G| = 1 + 2 + 3 + 4$ $|G| = 1 + 1 + 2 + 2 + 2 + 2$.

- 10. Bonus : montrer que |G| = 1 + 2 + 2 + 5 est possible en choisissant un bon groupe.
- 11. Bonus : montrer qu'il n'existe au plus qu'un nombre fini de groupes fini avec au plus $n \in \mathbb{N}_{>1}$ classes de conjugaison.

Solution

- 1.
- 2.
- 3. Si il y a égalité, le stabilisateur de x, c'est à dire Z(x)/Z(G) est trivial, i.e. Z(x) = Z(G). Mais x est dans Z(x), donc dans Z(G), donc $C(x) = \{x\}$ et |G|/|Z(G)| = 1 donc G = Z(G).
- 4.
- 5. groupe trivial car neutre toujours seul dans sa propre classe
- 6. n divise n + 1 donc n divise 1 donc n = 1.
- 7. (a) si n=1 et $m \neq 1$ |Z(G)|=2 donc m divise (m+2)/2 donc $m \leq m/2+1$, c'est possible que si m=m/2+1 i.e. m=2. Mais si m=2, |G|=4 donc G abélien. Plus rapidement: par la question 2, m divise m+2 donc m divise 2 puis idem. (b) m divise m+n+1 donc m+1 et m divise m+1. On a donc $m \leq m \leq m+1$. Si m=n alors m=m|1: impossible. (c) On a donc m|1+m=n+2 donc m=2 et m=3.
- 8. Pour 3 classes : $\mathbb{Z}/3\mathbb{Z}$, et \mathfrak{S}_3 .
- 9. $|G| = 10, |Z(G)| = 3, \text{ et } |Z(G)| \nmid |G|$: impossible.
 - On a une classe telle que $|C(x)| = 3 \nmid 10 = |G|$: impossible.
 - |G/Z(G)| = 10/2 = 5, et $2 \nmid 5$: impossible.
- 10. On prend le groupe $D_5 \simeq \mathbb{Z}/5\mathbb{Z} \rtimes \mathbb{Z}/2\mathbb{Z}$: il est engendré par r,s tels que $r^5 = 1, s^2 = 1$ et $r^{-1}sr = r^{-2}s$ i.e. $sr = r^{-1}s$. On a donc que 1 est dans sa propre classe, $r, r^{-1} = srs^{-1} = srs$ sont ensemble, $r^2, r^{-2} = r^3$ aussi, et $s, rs = r^{-2}sr^2, r^2s = rsr^{-1}, r^3s, r^4s$ aussi.

11. (dur : quitte à diviser par |G|, il faut montrer qu'il n'y a qu'un nombre fini de solutions à

$$\sum_{i=1}^{n} \frac{1}{n_i} = 1,$$

pour $n_i \in \mathbb{N}$. Clairement quitte à réordonner $n_1 \leq n$. Montrons par récurrence que $n_i \leq n^{1+1+2+\cdots+2^{i-1}}$, donc $n_i \leq n^{2^i}$ et donc $|G| \leq n^{2^{n-1}}$ (car le neutre a classe 1). On écrit

$$1/n_{i+1} + \dots + 1/n_n = 1 - 1/n_1 - \dots - 1/n_i = \frac{a}{n_1 \dots n_i} \ge \frac{1}{n_1 \dots n_i}$$

et donc $(n-i)/n_{i+1} \ge \frac{1}{n_1...n_i}$ et par HR, $n_{i+1} \le nn_1...n_i = n^{1+1+...+2^i}$, d'où le résultat.