Advanced Machine Learning

Problem Sheet 1 due Friday, Oct-30 2015

Problem 1 (Kernel Trick for polynomial SVM) Consider the polynomial Kernel $K(u, v) = (1 + u \cdot v)^2$ where $u, v \in [-1, 1]^d$.

- a) show that for d=2 that K(u, v) can be written as a scalar product $\phi(u) \cdot \phi(v)$ in a six-dimensional state space and provide explicit expressions for the feature transform $\phi(u)$.
- b) generalize your result for general (integer) d>1.
- c) demonstrate for this case explicitly the validity of Mercer's condition, if the integration range is chosen as the hypercube $[-1,1]^d$.
- d) use your results to explain why the "Kernel Machine"

$$y(\boldsymbol{x}) = \sum_{l=1}^{L} c_l K(\boldsymbol{x}_l, \boldsymbol{x})$$

with $oldsymbol{x}, oldsymbol{x}_1, ... oldsymbol{x}_L \in [-1, 1]^d$ is equivalent to a perceptron

$$y(\boldsymbol{x}) = \sum_{k=1}^{D} w_k \phi_k(\boldsymbol{x})$$

with D linearly independent features $\phi_k(\mathbf{x}), k = 1..D$, and specify D

Problem 2 (Linear filter features for time series prediction) Consider the learning a predictor for the simple time sequence

$$x_t = sin(\omega \cdot t).$$

a) show that for a linear predictor that uses only the previous time step value as its only feature, i.e.,

$$x_t = a \cdot x_{t-1} + b$$

no accurate prediction becomes possible (Hint: consider how much b has to minimally vary about a constant value for a given value of a and show from this that no choice of a can make this variation zero).

b) show that using the values x_{t-1} and x_{t-2} of two consecutive previous time steps as features allows to find a linear predictor

$$x_t = a_0 + a_1 \cdot x_{t-1} + a_2 \cdot x_{t-2}$$

that predicts the time sequence *perfectly*. What are the values for the coefficients? (Hint: express x_{t-1} and x_{t-2} in terms of $x_t = \sin(\omega \cdot t)$ and $\cos(\omega \cdot t)$ and solve for x_t).