- 1. (002692) 用适当符号 $(\in, \notin, =, \subsetneq)$ 填空: π _**Q**; $\{x|x=2k+1, k \in \mathbf{Z}\}$ _ $\{x|x=2k-1, k \in \mathbf{Z}\}$; $\{3.14\}$ _**Q**; $\{y|y=x^2\}$ _ $\{x|y=x^2\}$.
- 2. (002693) 已知 $P = \{y = x^2 + 1\}, \ Q = \{y|y = x^2 + 1, \ x \in \mathbf{R}\}, \ E = \{x|y = x^2 + 1, \ x \in \mathbf{R}\}, \ F = \{(x,y)|y = x^2 + 1, \ x \in \mathbf{R}\}, \ G = \{x|x \ge 1\}, \ H = \{x|x^2 + 1 = 0, \ x \in \mathbf{R}\}, \ \mathbf{M}$ 各集合间关系正确的有______. (答案可能不唯一)
 - (A) P = F (B) Q = E (C) E = F (D) $Q \subseteq G$ (E) $H \subsetneq P$
- 3. (002694) 设全集是实数集 \mathbf{R} , $M = \{x | -2 \le x \le 2\}$, $N = \{x | x < 1\}$, 则 $\mathbf{C}_U M \cap N = \underline{\hspace{1cm}}$.
- 4. (002695) 设 $A = \{x \mid -4 < x < 4, x \in \mathbb{R}\}, B = (-\infty, 1] \cup [3, +\infty), 则 \{x \mid x \in A, x \notin A \cap B\} = \underline{\hspace{1cm}}$
- 5. (002696) $\aleph A = \{x | x = \sqrt{k}, k \in \mathbb{N}\}, B = \{x | x \le 3, x \in \mathbb{Q}\}, M A \cap B = \underline{\hspace{1cm}}$
- 6. (002697) 设全集 $U = \{2, 3, a^2 + 2a 3\}$, 集合 $A = \{|2a 1|, 2\}, C_U A = \{5\}, 则实数 <math>a = \underline{\hspace{1cm}}$.
- 7. (002698)(1) 设 $M = \{y|y = x^2, x \in \mathbf{R}\}, N = \{x|x = t, t \in \mathbf{R}\}, 则 M \cap N = _____.$ (2) 设 $M = \{(x,y)|y = x^2, x \in \mathbf{R}\}, N = \{(t,x)|x = t, t \in \mathbf{R}\}, 则 M \cap N = _____.$
- 8. (002699) 设全集 $U = \{1, 2, 3, 4\}$, $C_U A \cap B = \{3\}$, $A \cap C_U B = \{2\}$, $C_U A \cup C_U B = \{2, 3, 4\}$, 则 $C_U A \cap C_U B = \{3\}$.
- 9. (002700) 集合 $C = \{x | x = \frac{k}{2} \pm \frac{1}{4}, \ k \in \mathbf{Z}\}, D = \{x | x = \frac{k}{4}, \ k \in \mathbf{Z}\},$ 试判断 C 与 D 的关系, 并证明.
- 10. (002701) 集合 $A = \{x | x^2 + 4x = 0\}, B = \{x | x^2 + 2(a+1)x + a^2 1 = 0, x \in \mathbf{R}\}.$
 - (1) 若 $A \cap B = A$, 求实数 a 的取值范围;
 - (2) 若 $A \cup B = A$, 求实数 a 的取值范围.
- 11. (002702) 若集合 A = [2,3], 集合 B = [a, 2a + 1].
 - (1) 若 $A \subseteq B$, 求实数 a 的取值范围;
 - (2) 若 $A \cap B \neq \emptyset$, 求实数 a 的取值范围.
- 12. (002703) 设全集 $U=\mathbf{R}$, 集合 $A=\{x|f(x)=0\},\ B=\{x|g(x)=0\},\ C=\{x|h(x)=0,\ x\in\mathbf{R}\},\ 则方程 \frac{f^2(x)+g^2(x)}{h(x)}=0$ 的解集是_____(用 U,A,B,C 表示).
- 13. (002704)(1) 已知集合 $A = \{y|y = x^2, x \in \mathbf{R}\}, B = \{y|y = 4 x^2, x \in \mathbf{R}\},$ 则 $A \cap B =$ _____. (2) 已知集合 $A = \{(x,y)|y = x^2, x \in \mathbf{R}\}, B = \{(x,y)|y = 4 - x^2, x \in \mathbf{R}\},$ 则 $A \cap B =$ _____.
- 14. (002705) 设 $m \in \mathbb{R}$, 已知 $A = \{x|x^2 3x + 2 = 0\}, B = \{x|mx + 1 = 0\}, 且 B \subsetneq A, 则 m = _____.$
- 16. (002707) 已知 $A = \{x | x^2 3x + 2 = 0\}$, $B = \{x | x^2 ax + a = 0, x \in \mathbf{R}\}$, 若 $B \subsetneq A$, 求满足题意的实数 a.

- 17. (002708) 设集合 $A = \{x|x^2 + px + 1 = 0, x \in \mathbf{R}\}$, 若 $A \cap \mathbf{R}^+ = \emptyset$. 求实数 p 的取值范围.
- 18. (002709) 设函数 $f(x) = \lg(\frac{2}{x+1} 1)$ 的定义域为集合 A, 函数 $g(x) = \sqrt{1 |x+a|}$ 的定义域为集合 B.

 - (2) 问: $a \ge 2$ 是 $A \cap B = \emptyset$ 的什么条件 (在"充分非必要条件、必要非充分条件、充要条件、既非充分也非 必要条件"中选一)? 并证明你的结论.
- 19. (002710) 如图, U 为全集, M, P, S 是 U 的三个子集, 则阴影部分所表示的集合是 (
 - A. $(M \cap P) \cap S$
- B. $(M \cap P) \cup S$
- C. $(M \cap P) \cap \mathcal{C}_U S$ D. $(M \cap P) \cup \mathcal{C}_U S$

- 20. (002711) 设集合 $A = \{5, \log_2(a+3)\}, B = \{a, b\}, 若 A \cap B = \{2\}, 则 A \cup B = \underline{\hspace{1cm}}$.
- 21. (002712) 设集合 $A \cap \{-2,0,1\} = \{0,1\}, A \cup \{-2,0,2\} = \{-2,0,1,2\},$ 则满足上述条件的集合 A 的个数 为______个.
- 22. (002713) 若集合 $A = \{x | x \leq 2\}, B = \{x | x \geq a\},$ 满足 $A \cap B = \{2\},$ 则实数 a =_____.
- 23. (002714) 若集合 $M = [a-1, a+1], N = (-\infty, -1) \cup [2, +\infty),$ 且 $M \cap N = \emptyset$, 则实数 a 的取值范围为_____.
- 24. (002715) 集合 $A = \{(x,y)|x^2+y^2=25\}, B = \{(x,y)|x=3y=4\}, 则 A \cap B$ 的子集个数是 个.
- 25. (002716) 已知集合 $M = \{x | x = 3m+1, m \in \mathbf{Z}\}, N = \{y | y = 3m+2, m \in \mathbf{Z}\}, 若 x_0 \in M, y_0 \in N, 则 x_0 y_0$ 与集合 M,N 的关系是(
 - A. $x_0y_0 \in M$ 但 $x_0y_0 \notin N$

B. $x_0y_0 \in N$ 但 $x_0y_0 \notin M$

C. $x_0y_0 \notin M \perp x_0y_0 \notin N$

- D. $x_0y_0 \in M \perp x_0y_0 \in N$
- 26. (002717) 若 $A = \{x | x = 2n, n \in \mathbf{Z}\}, B = \{x | x = 4m, m \in \mathbf{Z}\}, 求证: B \subsetneq A.$
- 27. (002718) 设常数 $a \in \mathbf{R}$, 集合 $A = \{x | \frac{3-2x}{x-1} + 1 \ge 0, \ x \in \mathbf{R}\}, \ B = \{x | 2ax < a+x, \ x \in \mathbf{R}\}.$ 若 $A \cup B = B$, 求 a 的取值范围.
- 28. (002719) 设常数 $m \in \mathbb{R}$, $A = \{(x,y)|x^2 + mx y + 2 = 0, x \in \mathbb{R}\}$, $B = \{(x,y)|x y + 1 = 0, x \in M\}$, 且 $A \cap B \neq \emptyset$.
 - (1) 若 $M = \mathbf{R}$, 求实数 m 的取值范围;
 - (2) 若 $M = (\frac{1}{3}, 2]$, 求实数 m 的取值范围
- $29._{(002720)}$ 设常数 $k\in\mathbf{R},$ 关于 x 的不等式组 $\begin{cases} x^2-x-2>0, \\ 2x^2+(2k+5)x+5k<0 \end{cases}$ 整数解的集合为 $\{-2\}$, 求实数 k 的 取值范围.

- 30. (002721) 设 $A = \{(x,y)|y = -4x + 6, x \in \mathbf{R}\}, B = \{(x,y)|y = 5x 3, x \in \mathbf{R}\}, 则 A \cap B = _____.$
- 31. (002722) 已知 $M=\{a|\frac{6}{5-a}\in {\bf N},\; a\in {\bf Z}\},$ 则用列举法表示 M=______.
- 32. (002723) 定义集合运算: $A \odot B = \{z|z=xy(x+y),\ x\in A,\ y\in B\}$, 设集合 $A=\{0,1\},\ B=\{2,3\}$, 则集合 $A\odot B$ 的所有元素之和为______.
- 33. (0002724) 已知全集 $U = \mathbf{R}$, $A = \{-1\}$, $B = \{x | \lg(x^2 2) = \lg x\}$, 则 ()

A. $A \subseteq B$

- B. $A \cup B = \emptyset$
- C. $A \supseteq B$
- D. $(C_U A) \cap B = \{2\}$
- 34. $_{(002725)}$ 集合 $A=\{(x,y)|y=|x|+1\},$ $B=\{(x,y)|y=\frac{1}{2}x+a\},$ 若 $A\cap B=\varnothing,$ 则 a 的取值范围是______.

- 37. (002728) 设含有三个实数的集合既可以表示为 $\{a, \frac{b}{a}, 1\}$, 又可以表示为 $\{a^2, a+b, 0\}$, 那么 a+b=______.
- 38. (002729) 设 $f(x) = x^2 12x + 36$, $A = \{a | 1 \le a \le 10, \ a \in \mathbb{N}\}$, $B = \{b | b = f(a), \ a \in A\}$, 又设 $C = A \cap B$. 求 集合 C.
- 39. (002730) 设常数 $m \in \mathbf{R}$, $A = \{(x,y)|y = -x^2 + mx 1, x \in \mathbf{R}\}$, $B = \{(x,y)|x + y = 3, x \in M\}$, 且 $A \cap B$ 的子集有两个.
 - (1) 若 $M = \mathbf{R}$, 求实数 m 的值;
 - (2) 若 M = [0,3], 求实数 m 的取值范围.