Lecture 14: Least squares and Gram-Schmidt (Section 3.3-3.4)

Thang Huynh, UC San Diego 2/12/2018

Least squares

In practice,

 $Ax \approx b$.

Least squares

In practice,

$$Ax \approx b$$
.

▶ Definition. \hat{x} is a **least squares solution** of the system Ax = b if \hat{x} is such that $A\hat{x} - b$ is as small as possible.

Theorem \hat{x} is a least squares solution of Ax = b if and only if $A^T A \hat{x} = A^T b$ (the normal equation).

1

▶ Example. Find β_1 , β_2 such that the line $y = \beta_1 + \beta_2 x$ best fits the data points (2, 1), (5, 2), (7, 3), (8, 3).

- **Example.** Find β_1 , β_2 such that the line $y = \beta_1 + \beta_2 x$ best fits the data points (2,1), (5,2), (7,3), (8,3).
- ▶ Solution. The equations $y_i = \beta_1 + \beta_2 x_i$ in matrix form

$$\begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ 1 & x_3 \\ 1 & x_4 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix}$$
design matrix X observation vector Y

design matrix X

We need to find a least squares solution to

$$\begin{bmatrix} 1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 1 & 8 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix}.$$

We need to find a least squares solution to

$$\begin{bmatrix} 1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 1 & 8 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix}.$$

We need to find the line $y=\widehat{\beta}_1+\widehat{\beta}_2x$, i.e. $(\widehat{\beta}_1,\widehat{\beta}_2)$, which minimizes the squared error

$$E^{2} = \|\mathbf{y} - X\boldsymbol{\beta}\|^{2} = (1 - \beta_{1} - 2\beta_{2})^{2} + \dots + (3 - \beta_{1} - 8\beta_{2})^{2}.$$

3

We need to find a least squares solution to

$$\begin{bmatrix} 1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 1 & 8 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix}.$$

We need to find the line $y=\widehat{\beta}_1+\widehat{\beta}_2x$, i.e. $(\widehat{\beta}_1,\widehat{\beta}_2)$, which minimizes the squared error

$$E^2 = \| \boldsymbol{y} - X \boldsymbol{\beta} \|^2 = (1 - \beta_1 - 2\beta_2)^2 + \dots + (3 - \beta_1 - 8\beta_2)^2.$$

 \Rightarrow least squares solution.

$$X^T X = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 5 & 7 & 8 \end{bmatrix} \begin{vmatrix} 1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 1 & 8 \end{vmatrix} = \begin{bmatrix} 4 & 22 \\ 22 & 142 \end{bmatrix},$$

and

$$X^{T}\mathbf{y} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 5 & 7 & 8 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix} = \begin{bmatrix} 9 \\ 57 \end{bmatrix} \Longrightarrow \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} 2/7 \\ 5/14 \end{bmatrix}.$$

The least squares line is $y = \frac{2}{7} + \frac{5}{14}x$.

Other curves

We can also fit the experimental data (x_i, y_i) using other curves.

▶ Example. $y_i \approx \beta_1 + \beta_2 x_i + \beta_3 x_i^2$ with parameters $\beta_1, \beta_2, \beta_3$.

Other curves

We can also fit the experimental data (x_i, y_i) using other curves.

► Example. $y_i \approx \beta_1 + \beta_2 x_i + \beta_3 x_i^2$ with parameters $\beta_1, \beta_2, \beta_3$. The equations $y_i = \beta_1 + \beta_2 x_i + \beta_3 x_i^2$ in matrix form:

$$\begin{bmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \\ \vdots & \vdots & \vdots \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \end{bmatrix}.$$

Given the data (x_i, y_i) , we then find the least squares solution to $X\beta = y$.

 \blacktriangleright Vectors v_1, \dots, v_n are orthonormal if

$$\mathbf{v}_i^T \mathbf{v}_j = \begin{cases} 0, & \text{if } i \neq j, \\ 1, & \text{if } i = j. \end{cases}$$

- ▶ Gram-Schmidt orthonormalization:
 - Input: basis a_1, \dots, a_n for V
 - Output: orthonormal basis q_1, \dots, q_n for V.

$$\boldsymbol{b}_1 = \boldsymbol{a}_1, \qquad \boldsymbol{q}_1 = \frac{\boldsymbol{b}_1}{\|\boldsymbol{b}_1\|}$$

$$\boldsymbol{b}_2 = \boldsymbol{a}_2 - \langle \boldsymbol{a}_2, \boldsymbol{q}_1 \rangle \boldsymbol{q}_1, \qquad \boldsymbol{q}_2 = \frac{\boldsymbol{b}_2}{\|\boldsymbol{b}_2\|}$$

$$\boldsymbol{b}_3 = \boldsymbol{a}_3 - \langle \boldsymbol{a}_3, \boldsymbol{q}_1 \rangle \boldsymbol{q}_1 - \langle \boldsymbol{a}_3, \boldsymbol{q}_2 \rangle \boldsymbol{q}_2, \qquad \boldsymbol{q}_3 = \frac{\boldsymbol{b}_3}{\|\boldsymbol{b}_3\|}$$

$$\vdots$$

$$m{b}_1 = m{a}_1, \qquad m{q}_1 = \frac{m{b}_1}{\|m{b}_1\|}$$
 $m{b}_2 = m{a}_2 - \langle m{a}_2, m{q}_1 \rangle m{q}_1, \qquad m{q}_2 = \frac{m{b}_2}{\|m{b}_2\|}$ $m{b}_3 = m{a}_3 - \langle m{a}_3, m{q}_1 \rangle m{q}_1 - \langle m{a}_3, m{q}_2 \rangle m{q}_2, \qquad m{q}_3 = \frac{m{b}_3}{\|m{b}_3\|}$ \vdots

► Example. Apply Gram-Schmidt to the vectors $\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.

► Example. Apply Gram-Schmidt to the vectors $\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.

- ► Example. Apply Gram-Schmidt to the vectors $\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.
- Solution. $\frac{1}{3}\begin{bmatrix}1\\2\\2\end{bmatrix}, \frac{1}{3}\begin{bmatrix}2\\1\\-2\end{bmatrix}, \frac{1}{3}\begin{bmatrix}2\\-2\\1\end{bmatrix}$.

Theorem. The columns of an $m \times n$ matrix Q are orthonormal if and only if

$$Q^TQ=I_{n\times n}.$$

Proof.

Theorem. The columns of an $m \times n$ matrix Q are orthonormal if and only if

$$Q^TQ=I_{n\times n}.$$

Proof.

ightharpoonup Definition. An **orthogonal matrix** is a square matrix Q with orthonormal columns.

Theorem. The columns of an $m \times n$ matrix Q are orthonormal if and only if

$$Q^TQ=I_{n\times n}.$$

Proof.

 \blacktriangleright Definition. An **orthogonal matrix** is a square matrix Q with orthonormal columns.

Example.
$$P = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$
 is orthogonal.

Theorem. The columns of an $m \times n$ matrix Q are orthonormal if and only if

$$Q^TQ=I_{n\times n}.$$

Proof.

- \blacktriangleright Definition. An **orthogonal matrix** is a square matrix Q with orthonormal columns.
- Example. $P = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ is orthogonal.
- ► Example. $Q = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ is orthogonal.

Theorem. The columns of an $m \times n$ matrix Q are orthonormal if and only if

$$Q^TQ=I_{n\times n}.$$

Proof.

- ightharpoonup Definition. An **orthogonal matrix** is a square matrix Q with orthonormal columns.
- Example. $P = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ is orthogonal.
- **Example.** $Q = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ is orthogonal.
- **Example.** Is $H = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$ orthogonal?

The QR decomposition

Let A be an $m \times n$ matrix of rank n. Then we have the **QR** decomposition A = QR,

- where Q is $m \times n$ and has orthonormal columns, and
- R is upper triangular, $n \times n$ and invertible.

The QR decomposition

Let A be an $m \times n$ matrix of rank n. Then we have the **QR** decomposition A = QR,

- where Q is $m \times n$ and has orthonormal columns, and
- R is upper triangular, $n \times n$ and invertible.
- ► Example. Find the QR decomposition of $A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 5 \\ 0 & 3 & 6 \end{bmatrix}$.

$$\triangleright Q = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \text{ and } R = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 3 & 6 \\ 0 & 0 & 5 \end{bmatrix}.$$

The QR decomposition

Let A be an $m \times n$ matrix of rank n. Then we have the **QR** decomposition A = QR,

- where Q is $m \times n$ and has orthonormal columns, and
- R is upper triangular, $n \times n$ and invertible.
- ► Example. Find the QR decomposition of $A = \begin{bmatrix} 1 & 2 & 7 \\ 0 & 0 & 5 \\ 0 & 3 & 6 \end{bmatrix}$.

In general, to obtain A = QR

- Gram-Schmidt on (columns of) A, to get Q.
- Then $R = Q^T A$.