

Application of Deep Learning on Image Deblurring

Mattia Orlandi & Giacomo Pinardi

Contents

- Datasets
- Convolutional Autoencoders (CAEs)
 - Models
 - Experimental results
- Wasserstein Generative Adversarial Networks (WGANs):
 - Models
 - Experimental results
- Tools
- REDNet30 on GOPRO

Datasets - CIFAR10

- Constructed by applying Gaussian blur with random standard deviation between 0 and 3
- Basic data augmentation: horizontal and/or vertical flip

Datasets - REDS

- Resolution reduction from 1280x720 to 512x288
- Patch-based approach: each image is splitted into 12 patches analysed separately
- Basic data augmentation: horizontal and/or vertical flip

Resolution reduction 288

Convolutional Autoencoders - ResNet16

- It comprises an encoder and a decoder, each made of 4 residual blocks:
 - the encoder shrinks the input image using standard strided convolutions
 - the decoder enlarges the latent image using transposed strided convolutions
- Residual connections inspired by ResNet50 (for image classification)

Convolutional Autoencoders - UNet16

- Based on UNet model for image segmentation:
 - contracting path (convolutional layers + max pooling)
 - expansive path (common + transposed convolutions)

Convolutional Autoencoders - REDNet30

- 30 blocks made of:
 - Convolution 3x3 with stride 1 and padding
 - Exponential Linear Unit
 - Batch Normalization
- Symmetrical residual connections every 2 blocks
- No bottleneck: spatial size remains constant

(CAE) Training phase on CIFAR-10

- Batch size: 32 (x8 TPU's replicas)
- 120 epochs (+ extra 80 epochs for REDNet30)
- Adam optimizer
- Learning rate: 0.001 (+ exp. decay in REDNet30's last 80 epochs)
- LogCosh loss function (more robust than MSE and differentiable unlike MAE)
- SSIM and PSNR metrics to assess image similarity

(CAE) Experimental results on CIFAR-10

Model	ResNet16	UNet16	REDNet30	Baseline
Loss [10 ⁻⁴]	9.794	10.44	6.966	34.48
SSIM	0.9034	0.9001	0.9258	0.7135
PSNR	29.09	29.32	33.52	24.67
MSE [10 ⁻³]	1.965	2.095	1.398	6.317
MAE [10 ⁻²]	2.888	2.898	2.165	4.517

(CAE) Training phase on REDS

- 100 epochs instead of 120
- Other parameters remained unchanged

(CAE) Experimental results on REDS

Model	ResNet16	UNet16	REDNet30	Baseline
Loss [10 ⁻⁴]	8.669	8.763	5.793	19.54
SSIM	0.8554	0.8646	0.8976	0.8237
PSNR	29.49	30.41	31.98	28.80
MSE [10 ⁻³]	1.742	1.761	1.163	2.594
MAE [10 ⁻²]	2.536	2.312	1.884	2.118

REDNet30

Sharp

WGANs - MSDeblurWGAN generator

- It comprises three branches, each made of 19 ResBlocks:
 - branch for coarsest resolution
 - o branch for middle resolution (which relies on the coarsest one)
 - o branch for finer resolution (which relies on the middle one)

WGANs - REDNet30WGAN generator

• The architecture of the generator is the same as the one of REDNet30, since it performed well as a standard CAE

WGANs - PatchGAN critic

- The discriminator in WGANS (called *critic*) computes a 1-Lipschitz continuous function:
 - o apply basic 4x4 convolution with stride 2
 - use of Layer Normalization
- To obtain the image score the last 16 values are averaged to get a single value

(WGAN) Training phase on CIFAR-10

- Batch size: 32 (x8 TPU's replicas)
- 150 epochs for MSDeblurWGAN, 350 epochs for REDNet30WGAN
- Adam optimizer
- Learning rate: 2 10⁻⁴
- Content loss: LogCosh (multi-scale version for MSDeblurWGAN)
- Adversarial loss: negated critic's score
- SSIM and PSNR metrics to assess image similarity
- Gradient penalty technique to enforce 1-Lipschitz constraint
- At every generator's train step, the critic is trained 5 times

(WGAN) Experimental results on CIFAR-10

Model	MSDeblur WGAN	REDNet30 WGAN	REDNet30	Baseline
Loss	0.1254	-0.0057		
SSIM	0.9054	0.9012	0.9258	0.7135
PSNR	31.49	31.98	33.52	24.67
MSE [10 ⁻³]	1.734	1.900	1.398	6.317
MAE [10 ⁻²]	2.471	2.482	2.165	4.517

(WGAN) Training phase on REDS

- 100 epochs (MSDeblurWGAN only)
- Number of ResBlocks reduced from 19 to 5
- Lower image resolution (256x144 instead of 512x288)

(WGAN) Experimental results on REDS

Model	MSDeblur WGAN	REDNet30	Baseline
Loss	0.2195		
SSIM	0.8031	0.8976	0.8359
PSNR	27.11	31.98	27.68
MSE [10 ⁻³]	1.729	1.163	3.120
MAE [10 ⁻²]	2.495	1.884	2.390

Tools

- Google Colab's TPU:
 - training performed in parallel across 8 replicas
 - results are reduced into a single value
- Files in tfrecord format on Google Cloud Storage
- Brain floating point:
 - half bits employed (16) w.r.t. standard 32-bit floating point
 - same dynamic range

REDNet30 on GOPRO

- REDNet30 trained on REDS dataset
- Does not reach Nah's
 DeepDeblur's performance
- Still able to reconstruct smaller details in GOPRO test images
- Some generalization capabilities

