

Programming

C++, C, Python, MATLAB, valgrind, gdb, emacs, Linux, git

Micro Controllers, EagleCAD, SolidWorks, OnShape, Soldering Electronics | CAD

ROS, OpenCV, Control Theory [MPC LQR PID], SLAM, Inverse Kinematics, LiDAR, Drake Phy-**Robotics**

sics Simulator, Reduced Order Models [SLIP, ASLIP, etc.]

EXPERIENCE

Present

MassRobotics | Robotics Assistant Lab Manager and Robotics Technician

Oct 2019

- > Programmed AMRs for live demos and simulations.
- > Setup, programmed, and maintained various robot arms.
- > Managed, built, and designed 3D printers, and robot grippers.
- > Wrote libraries for actuators, end-effectors, and sensors for low level processes and ROS compatibility. Toyota HSR UR Arms ROS grippers LiDAR 3D Printers IR cameras SLAM Embedded Systems

Present

BU Robotics Lab (Dr. John Baillieul) | Research Assistant

Sept 2021

- > Programmed and maintain Jackal UGV Robot from Clearpath robotics for experiments.
- > Consult and plan out current ONR research.
- > Aided in experiments with the Jackal UGV with various SLAM algorithms, utilizing the ZED 2 depth camera. ROS AMRS UGVs SLAM C++ Python Depth Sensing

Aug 2021

Thinking Robots | Robotics Intern

Jan 2021

- > Worked on manufacturing and developing novel open source tethered mobile robotics base for UV solutions during the COVID-19 pandemic.
- > Created extension for social robotics' chassis, enabling future add-ons and support modules. OnShape AMR's C++ OnShape CAD 3D printing Robot Assembly

Sept 2018

Dynamic Robotics Laboratory (PI: Dr. Jonathan W. Hurst) | Research Assistant

Aug 2019

- > Conducted research on the physical principles of legged locomotion through dynamic analysis and biomechanics research. Worked with and aided in maintaining a CassieV2 from Agility Robotics (lab spin-off).
- > Implemented MPC (Model Predictive Control) in MATLAB and Python meant for walking LIP (linear inverted pendulum) as seen in the MIT Cheetah 2 for autonomous mobility.
- > Aided in outdoor experiments of the Cassie robot's reinforcement learning walking controllers. Cassie Robot Control Theory MPC EGB Bipedal Reduced Order Models SLIP LIP MATLAB Python

Sept 2018 June 2018

Booz Allen Hamilton (Defense Consulting Firm) | Air Force Division Systems Operations Intern

> Wrote code on projects such as organizational operation programs and performed code reviews of various languages (Python, C++, C, VBA) for a broad range of contracts and subsystems.

Sept 2016

Aptima (Military Defense Contractor) | Computer Vision and Robotics Intern

June 2016

- > Wrote programs for solving advanced computer vision problems based on aerial drone video datasets with OpenCV in C++.
- > Created ROS (Robot Operating System) projects for brain controlled robotics in Python. C++ OpenCV ROS Python drones Kinova Arm

EDUCATION

- Oregon State University [Honors College] [GPA: 3.97/4.00] [BS: Electrical and Computer Engineering with a focus in Robotics (Minor in CS and Maths)]
- Boston University [GPA: 4.00/4.00] [BS: Electrical Engineering] 2021

HONORS AWARDS PUBLICATIONS

Python C++ C VBA

- >Paper acknowledgements, "Visual Navigation Using Sparse Optical Flow and Time-to-Transit"
- >Paper acknowledgements, "Eliminating Peak Impact Forces by Customizing the Passive Foot Dynamics of Legged Robots"
- >Journal acknowledgements, "Mitigating Peak Impact Forces by Customizing the Passive Foot Dynamics of Legged Robots"
- >AFCEA (Armed Forces Communications and Electronics Association) Fellowship Award 2018
- >Letter of Commendation by Commonwealth of MA Speaker of the House for Achievement in STEM
- >Official Citation by MA State Senate for STEM excellence for winning the RWDC State Championship and National Challenge Merit Award

PROJECTS

WHEELED BIPED: Biped robot on wheels like Boston Dynamics' Handle C++ C Python Control Theory LQR Cascaded PID IK

MINI QUADRUPED: Created and programmed a mini dynamic quadruped C++ Python Control Theory MATLAB 3D printing

FURUTA PENDULUM: Furuta Pendulum w/ Moteus Controller, simulated and controlled with Drake C++ Python Control Theory OnShape Drake BLDC

6 DOF ROBOT ARM: Robot Arm w/ force sensing, current control, etc. Python IK CAD 3D printing Dynamixel Servos

★ References are available upon request from the following:

- > Joyce Sidopoulos (Vice President, Programs Community) | MassRobotics
- > Tom Ryden (Executive Director) | MassRobotics
- > Dr. Jonathan Hurst (CTO Professor) | Agility Robotics & OSU
- > Dr. Matthias Scheutz (CEO Professor) | Thinking Robots & Tufts University
- > Dr. John Baillieul (Distinguished Professor) | Boston University