Galaxies and Extragalactic Astronomy

8. Gravitational Lensing

8 Gravitational Lensing

8.1 Introduction

- According to GR matter distorts spacetime and therefore light paths are changed: gravitational lensing
- Gravitational lensing effects depend on the matter distribution and the geometry

8 Gravitational Lensing

8.1 Introduction

- According to GR matter distorts spacetime and therefore light paths are changed: gravitational lensing
- Gravitational lensing effects depend on the matter distribution and the geometry
- Two regimes: strong and weak lensing
- achromatic

strong lensing

• lensing of background sources by foreground galaxies, clusters, ...

(→ strong distortion, magnification, and multiple images)

microlensing

mainly referred to as lensing by objects of stellar (point) masses
 (→ no distortion, mainly magnification)

weak lensing

lensing via large-scale structure

(→ weak distortion and magnification)

wave picture

strong/micro lensing regime

Cleaned

R

1**

Microlens Event MACHO-96-BLG-5 Hubble Space Telescope • WFPC2

Foreground mass distribution depends on growth of structure

lensing preserves surface brightness D_{S} $Z \rightarrow d\Omega_{A_L}$ observer

$$I(\vec{\theta}) = I^{(s)} \left[\vec{\beta}_0 + \mathcal{A}(\vec{\theta}_0) \cdot (\vec{\theta} - \vec{\theta}_0) \right]$$

$$1 - \kappa + |\gamma|$$

A circle becomes an ellipse.

The minor and major axes given by the inverse of the eigenvalues of A.

The orientation is given by the eigenvectors of A

$$\begin{pmatrix} x_u \\ y_u \end{pmatrix} = \begin{pmatrix} 1 - g_1 & -g_2 \\ -g_2 & 1 + g_1 \end{pmatrix} \begin{pmatrix} x_l \\ y_l \end{pmatrix}$$

Real data: g_i~0.03

Atmospheric Seeing and telescope PSF

Real data: seeing disk ~ Galaxy size

Sum light in each square

Real data: Pixel size ~ seeing size /3

Mostly Poisson. Some Gaussian and bad pixels.

Uncertainty on total light ~ 5 per cent

The Forward Process.

Galaxies: Intrinsic galaxy shapes to measured image:

Stars: Point sources to star images:

A full weak lensing pipeline:

The broader context typical for cosmological measurements

Measure galaxy sizes and shapes

e1 = 0.167

e2 = 0.289

g2 = 0.338

Eucli

Example 10000 galaxies

Example 10000 galaxies

Example 10000 galaxies

