Unusual and influential data

hapter II	
Vhat to do with unusual data?	
Inusual data points	4
everage points	5
Leverage	6
Leverage	7
Regression outliers	8
Residuals	9
Standardized/studentized residuals	10
Testing for outliers	11
nfluential points	12
Influence	13
Joint influence	14
Some more useful R-commands	

Chapter 11

- Unusual data points:
 - ◆ What to do with them?
 - Leverage: hat values
 - Outliers: standardized/studentized residuals
 - ◆ Influence: Cook's distance
 - Added variable plots can help find clusters of points that are jointly influential

2 / 15

What to do with unusual data?

- Neither ignore them, nor throw them out without thinking
- Check for data entry errors
- Think of reasons why observation may be different
- Change the model
- Fit model with and without the observations to see the effect
- Robust regression

3 / 15

Unusual data points

- Univariate outlier:
 - lacktriangle Unusual value for one of the X's or for Y
- Leverage point: point with unusual combination of independent variables
- Regression outlier:
 - ◆ Large residual (in absolute value)
 - lack The value of Y conditional on X is unusual
- Influential point: points with large influence on the regression coefficients
- Influence = Leverage × 'Outlyingness'
- See examples

Leverage points 5 / 15

Leverage

- Leverage is measured by the so-called "hat values"
- Hat values: $\hat{Y}_j = h_{1j}Y_1 + \cdots + h_{nj}Y_n = \sum_{i=1}^n h_{ij}Y_i$
- In matrix notation, h_{ij} are the elements of the hat matrix $H = X(X^TX)^{-1}X^T$. H is called the hat matrix since $\hat{Y} = HY$.
- lacktriangle The weight h_{ij} captures the contribution of Y_i to the fitted value \hat{Y}_j
- lacktriangle The number $h_i \equiv h_{ii} = \sum_{j=1}^n h_{ij}^2$ summarizes the leverage of Y_i on all fitted values
- lacktriangle Note the dependent variable Y is not involved in the computation of the hat values

6 / 15

Leverage

- Range of the hat values: $1/n \le h_i \le 1$
- Average of the hat values: $\bar{h} = (k+1)/n$
- Rule of thumb: leverage is large is $h_i > 2(k+1)/n$. Draw a horizontal line at this value
- R-function: hatvalues()
- See example

7 / 15

Regression outliers

8 / 15

Residuals

- Residuals: $E_i = Y_i \hat{Y}_i$. R-function resid().
- Even if statistical errors have constant variance, the residuals do not have constant variance: $V(E_i) = \sigma_{\epsilon}^2 (1 h_i)$.
- Hence, high leverage points tend to have small residuals, which makes sense because these points can 'pull' the regression line towards them.

Standardized/studentized residuals

- We can compute versions of the residuals with constant variance:
 - lacktriangle Standardized residuals E'_i and studentized residuals E_i^* :

$$E_i' = \frac{E_i}{S_E\sqrt{1-h_i}} \quad \text{and} \quad E_i^* = \frac{E_i}{S_{E(-i)}\sqrt{1-h_i}}.$$

- lacktriangle Here $S_{E(-i)}$ is an estimate of σ_ϵ when leaving out the ith observation.
- ◆ R-functions rstandard() and rstudent().

10 / 15

Testing for outliers

- Look at studentized residuals by eye.
- If the model is correct, then E_i^* has t-distribution with n-k-2 degrees of freedom.
- If the model is true, about 5% of observations will have studentized residuals outside of the ranges [-2,2]. It is therefore reasonable to draw horizontal lines at ± 2 .
- We can use Bonferroni test to determine if largest studentized residual is an outlier: divide your cut-off for significant p-values (usually 0.05) by n.

11 / 15

Influential points

12 / 15

Influence

- Influence = Leverage × 'Outlyingness'
- Cook's distance:

$$D_i = \frac{h_i}{1 - h_i} \times \frac{E_i^{\prime 2}}{k + 1}$$

- Cook's distance measures the difference in the regression estimates when the ith observation is left out
- Rule of thumb: Cook's distance is large if $D_i > 4/(n-k-1)$
- R-command: cooks.distance()

13 / 15

Joint influence

- See example
- Use added variable plots to detect this

Some more useful R-commands

- indentify(): to identify points in the plot
- plot(m): gives 4 plots:
 - ◆ Residuals against fitted values
 - ◆ QQ-plot of standardized residuals
 - ♦ Scale-location plot
 - ◆ Cook's distance plot
- influence.measures(m): contains various measures of influence.