МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ<<ЛЬВІВСЬКА ПОЛІТЕХНІКА>>

Інститут ІКНІ

Кафедра систем штучного інтелекту

3BIT

Лабораторна робота №2 3 курсу "Дискретна математика"

Виконав:

Гавриляк Тарас

гр. **КН-110**

Прийняв(ла):

ст. вк. Мельникова Н.І.

Тема: Моделювання основних операцій для числових множин.

Мета роботи: Ознайомитись на практиці із основними поняттями теорії множин, навчитись будувати діаграми Ейлера-Венна операцій над множинами, використовувати закони алгебри множин, освоїти принцип включень-виключень для двох і трьох множин та комп'ютерне подання множин.

2.1. Основні поняття теорії множин. Операції над множинами

Множина — це сукупність об'єктів, які називають елементами. Кажуть, що множина $A \in \mathbf{підмножиною}$ множини S (цей факт позначають $A \subseteq S$, де \subseteq — знак нестрогого включення), якщо кожен її елемент автоматично \in елементом множини S. Досить часто при цьому кажуть, що множина A міститься в множині S.

Якщо $A \subseteq S$ і $S \neq A$, то A називають власною (строгою, істинною) підмножиною S (позначають $A \subset S$, де $\subset -$ знак строгого включення). Дві множини A та S називаються рівними, якщо вони складаються з однакових елементів. У цьому випадку пишуть A = S.

Якщо розглядувані множини є підмножинами деякої множини, то її називають універсумом або універсальною множиною і позначають літерою U (зауважимо, що універсальна множина існує не у всіх випадках). Множини як об'єкти можуть бути елементами інших множин, Множину, елементами якої є множини, інколи називають сімейством.

Множину, елементами якої є всі підмножини множини A і тільки вони (включно з порожньою множиною та самою множиною A), називають **булеаном** або **множиною-степенем** множини A і позначають P(A).

Потужністю скінченної множини A називають число її елементів, позначають |A|.

Множина, яка не має жодного елемента, називається *порожньою* і позначається \varnothing .

Вважається, що порожня множина є підмножиною будь-якої множини, а також $A \subset A$.

Множину, елементами якої є всі підмножини множини A і тільки вони (включно з порожньою множиною та самою множиною A), називають **булеаном** або **множиною-степенем** множини A і позначають P(A).

Множина всіх підмножин множини A називається δ улеаном і позначається P(A). Потужність скінченної множини дорівнює кількості її елементів, позначається A. Потужність порожньої множини дорівнює 0. Якщо A = n, то $_{n}P(A) = 2$.

Приклад.
$$\{1, 4, 5\} \subset \{-1, 0, 1, 2, 3, 4, 5, 7\}$$
, але $\{1, 4, 5\} \notin \{-1, 0, 1, 2, 3, 4, 5, 7\}$

Приклад. Знайти булеан множини $A = \{a, b c\}$.

Розв'язання.

Потужності множин A = 3, P(A) = 8. Булеан має вигляд $P(A) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a\,c,\}, \{b\,c,\}, \{a,b,c\}\}.$

 $P(A) = \{ \emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\} \}.$

Дві множини A і B рівні між собою, якщо $A \subset B$ і $B \subset A$. Над множинами можна виконувати дії: об'єднання, переріз, доповнення, різницю, симетричну різницю, декартів добуток.

Об'єднанням двох множин A і B (рис. 2.1, a) називають множину $A \cup B = \{x : (x \in A) \lor (x \in B)\}.$

Перетином (**перерізом**) двох множин A і B (рис. 2.1, δ) називають множину

 $A \cap B = \{x : (x \in A) \land (x \in B)\}.$

Різницею множин A та B (рис. 2.2, a) називають множину $A \setminus B = \{x : (x \in A) \land (x \notin B)\}.$

Зазначимо, що $A \setminus B = A \cap B$.

Симетричною різницею множин A та B (рис. 2.2, a) називають множину

 $A\Delta B = \{x : ((x \in A) \land (x \notin B)) \lor ((x \in B) \land (x \notin A))\}.$

В означенні різниці не розглядають випадок $B \subset A$. Якщо $B \subset A$, то різницю $A \setminus B$ називають доповненням множини B до множини A і позначають AB. Для підмножини A універсальної множини U можна

розглядати доповнення A до U, тобто $U \setminus A$, її позначають $A = \{x : \neg(x \in A)\} \Leftrightarrow A = \{x : x \notin A\}$ і називають **доповненням множини** A.

Пріоритет виконання операцій у спадному порядку – доповнення, переріз, об'єднання, різниця, симетрична різниця.

2.2. Закони алгебри множин

Закони асоціативності	
$A \cup (B \cup C) = (A \cup B) \cup C$	$A \cap (B \cap C) = (A \cap B) \cap C$
Закони комутативності	
$A \cup B = B \cup A$	$A \cap B = B \cap A$
Закони тотожності	
$A \cup \varnothing = A$	$A \cap U = A$
Закони домінування	
$A \cup U = U$	$A \cap \emptyset = \emptyset$
Закони ідемпотентності	
$A \cup A = A$	$A \cap A = A$
Закони дистрибутивності	
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
Закони поглинання	
$(A \cup B) \cap A = A$	$(A \cap B) \cup A = A$
Закони доповнення	
$A \cup \overline{A} = U$	$A \cap \overline{A} = \emptyset$
$\overline{U}=\varnothing$	$\overline{\varnothing} = U$
$\overline{A} = A$	$\overline{A} = A$
Закони де Моргана	
$\overline{(A \cup B)} = \overline{A} \cap \overline{B}$	$\overline{(A \cap B)} = \overline{A} \cup \overline{B}$

Вивчення законів алгебри множин дозволяє зауважити, що кожна з тотожностей правої колонки може бути одержана з відповідної тотожності лівої шляхом заміни \cup на \cap , \emptyset на U і навпаки. Таку відповідність тотожностей називають законом двоїстості, а відповідні тотожності — двоїстими одна одній. Використовуючи цей закон, можна обгрунтувати двоїсту тотожність, довівши пряму і обернувши операції.

2.3. Формули включень та виключень для двох і трьох множин. Комп'ютерне подання множин

 $|A \cup B| = |A| + |B| - |A \cap B|$

$$A \cup B \cup C = A + B + C - (A \cap B + B \cap C + A \cap C) + A \cap B \cap C.$$

Одним із найпоширеніших та найпростіших способів ϵ подання множин за допомогою *бітових рядків*. Нехай універсальна множина U

містить n елементів. Упорядкуємо довільним способом елементи

універсальної множини. Тоді $\{\ \}$ 1231, , ,... , . nn U a a a a a a

Множину $A \subset U$ зображають у комп'ютері рядком із 0 та 1 довжини n так: якщо a A $i \in$, то i-й біт дорівнює 1, якщо a A $i \notin$, то i-й біт дорівнює 0. Такий рядок бітів називають xapakmepucmuчним bekmopom підмножини A.

Завдання до практичних занять та лабораторної роботи з теми №2:

- 1. Отримати індивідуальний варіант завдань.
- 2. Розв'язати індивідуальне завдання згідно варіанту з Додатку № 1.
- 3. Написати на будь-якій відомій студентові мові програмування програму для реалізації вказаних операцій над заданими множинами відповідно до варіанту з Додатку №2.
- 4. Оформити звіт про виконану роботу.
- 5. Продемонструвати викладачеві результати, відповісти на запитання стосовно виконання роботи. Лабораторна робота вважається зарахованою, якщо програма протестована разом з викладачем та отримано вірний результат під час аудиторних занять.

Вимоги до програми:

Програма має передбачати такі можливості:

- 1. Автоматичне знаходження результуючих множин, поданих списками елементів, для відповідного завдання:
- запис характеристичних векторів заданих множин (в універсальну включити всі елементи заданих);
- запис отриманих множин списком елементів;
- запис потужності утворених множин;
- запис булеану однієї з них.
- 2. Введення вхідних даних вручну:
- задати елементи першої множини;
- задати елементи другої множини.

- 3. Некоректне введення даних (символьних чи числових).
- 4. Виведення відповідного повідомлення у випадку неіснування розв'язку.

Варіант №6

1. а) Для даних скінчених множин $A = \{1,2,3,4,5,6,7\}$, $B = \{5,6,7,8,9,10\}$, $C = \{1,2,3,8,9,10\}$ та універсума $U = \{1,2,3,4,5,6,7,8,9,10\}$ знайти множину, яку задано за допомогою операцій: а) $(A \cap C) \cup B$; б) $B\Delta C$. Розв'язати, використовуючи комп'ютерне подання множин.

a)

A
$$\cap$$
 C = {1, 2, 3}
(A \cap C) \cup B = {1, 2, 3, 5, 6, 7, 8, 9, 10}
6)
 $B\Delta C = \{1, 2, 3, 5, 6, 7\}$

Записали елементи множини В, котрих немає у С, а потім елементи С, котрих немає у В.

- **2.** На множинах задачі 1 побудувати булеан множини $C \setminus (A \cup C) \cap B$. Знайти його потужність.
- (2) (1) (3) порядок виконання дій;

 $C \backslash (!A \cup !C) \cap B$

- 1) {4, 5, 6, 7, 8, 9, 10}
- 2) {1, 2, 3}
- 3) {порожня множина}
- 4) Булеан = {порожня множина}
- **3.** Нехай маємо множини: N множина натуральних чисел, Z множина цілих чисел, Q множина раціональних чисел, R множина дійсних чисел; A, B, C будь-які множини. Перевірити які твердження є вірними (в останній задачі у випадку невірного твердження достатньо навести контрприклад, якщо твердження вірне навести доведення):

a)
$$\emptyset \cup \{\emptyset\} = \emptyset$$
; \emptyset) $N \in Z$;

B)
$$Q \cup N = R \cap Q$$
; Γ) $R \setminus (N \cup Z) \subset Q$;

д) якщо $A \cap B \subset {!C}$, то ${!(A \cap B)} \subset C$.

Твердження $\emptyset \cup \{\emptyset\} = \emptyset$ - невірне. Тому, що при об'єднанні з порожньою множиною отримаємо $\{\emptyset\}$.

Твердження $N \in Z$ – вірне. Тому, що множина Z містить всі елементи множини N.

Твердження $Q \cup N = R \cap Q - \epsilon$ вірним. Тому, що $Q \cup N = R$ і $R \cap Q = R$.

Твердження $R \setminus (N \cup Z) \subset Q - \epsilon$ вірним. Тому, що порожня множина ϵ підмножиною Q.

Якщо $A \cap B \subset {}^{!}C$, то ${}^{!}(A \cap B) \subset C$.

Твердження ϵ не вірним. З першого виразу виплива ϵ що будь-які спільні елементи A та B не ϵ підмножиною C, що заперечу ϵ другий вираз.

4. Логічним методом довести тотожність:

$$A \cap (B \setminus C) = (A \cap B) \setminus C$$
.

$$A \cap (B \setminus C) = A \cap (B \cap !(C)) = (A \cap B) \cap !(C)$$

$$(A \cap B) \setminus C = (A \cap B) \cap !(C)$$

Тотожність доведено.

5. Зобразити на діаграмі Ейлера-Венна множину: $((C \cup A)\Delta B) \setminus (A \cup C)$.

6. Множину зображено на діаграмі. Записати її за допомогою операцій.

 $(A \cap !D) \cup (D \cap !A \cap !B \cap !C) \cup (A \cap D \cap C \cap !B) \cup (B \cap C \cap !D)$

7. Спростити вигляд множини, яка задана за допомогою операцій, растосовуючи закони алгебри множин (у відповідь множини можуть входити не більше одного разу): $(A\Delta B \cap C) \cup B$.

$$(A\Delta B\cap C)\cup B=(((A\backslash B)\cup (B\backslash A))\cap C)\cup B=(((A\cap !(B)\cup (B\cap !(A)))\cap C)\cup B=$$
 = $((A\cap !(A))\cup (B\cap !(B))\cap C)\cup B=$ пуста множина $(A\cap B)\cup (B\cap B)\cup (B\cap B)$ множина $(A\cap B)\cup (B\cap B)\cup (B\cap$

8. Скільки чисел серед 1, 2, 3,..., 99, 100 таких, що не діляться на жодне з чисел 11, 17?

Нехай А – множина чисел, що діляться на 11,

В – множина чисел, що ділиться на 17, то

$$|A| = 100/11 = 9,09$$

$$|\mathbf{B}| = 100/17 = 5,88$$

$$|A \cap B| = 100/17 * 11 = 0,53$$

$$|A \cup B| = 9,09 + 5,88 - 0,53 = 14,44$$

$$100 - 14,44 = 85,56$$

Відповідь: На множині 1-100 існує 86 таких чисел, що не діляться ні на 17 ні на 11.

Код програми:

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

```
int main() {
  int A [50], B [50], C[100], length_1, length_2, length_3 = 0;
  printf("State two strings of numbers (Lim = 50 characters for each)\n");
  printf("Elements of A :");
  scanf("%d",&length_1);
  printf("Elements of B :");
  scanf("%d",&length_2);
  for ( int i = 0; i < length 1; i++) { // заповнення множини A
    printf("A[%d] = ", i);
    scanf("%d", &A[i]);
                             //
  }
  printf("A = ");
  for (int i = 0; i < length 1; i++) { // вивід множини А
    printf("%d ", A[i]);
  }
  puts("\n");
  for (int j = 0; j < length_2; j++) { // заповнення множини В
    printf("B[%d] = ", j);
```

scanf("%d", &B[j]);

}

```
printf("B = ");
 for( int j = 0; j < length 2; j++) { // вивід множини В
    printf("%d ", B[j]);
  }
 puts("\n");
 printf("|A| = %d\n",length_1); // вивід потужностей
 printf("|B| = \%d\n",length_2);
  int P_A = pow(2, length_1);
 int P_B = pow(2, length_2);
  printf("Boolean A or B? :"); // запит на множину + вивід булена 1-ї з
множин
  getchar();
  char c = getchar();
  while(1) {
    getchar();
    if ((c == 'a') || (c == 'A'))
      printf("P_A= %d\n", P_A);
      break;
    }
    else if ((c == 'b') || (c == 'B'))
      printf("P_B = \%d n", P_B);
```

```
break;
  }
  else {
     printf("Character is wrong, try again (a or b)!: ");
    c = getchar();
  }
}
for ( int i = 0, j = 0; i < length_1; i++ ) {
  for (j = 0; j < length_3; j++) {
    if (A[i] == C[j])
       break;
     }
  }
    if(j == length_3){
       C[length_3] = A[i];
       length_3++;
     }
}
for (int i = 0, j = 0; i < length_2; i++) {
  for (j = 0; j < length_3; j++){
```

```
if(B[i] == C[j])
         break;
       }
     }
    if(j == length_3)
       C[length_3] = B[i];
       length_3++;
    }
  }
  for (int i = 0; i < length_3; i++) {
    printf("C[\%d] = \%d \n",i, C[i]);
  }
  printf("|C| = \n\%d\n", length_3);
return 0;
```

Результат програми:

}

```
~/workspace/ $ ./wwww
State two strings of numbers (Lim = 50 characters for each)
Elements of A :5
Elements of B :5
A[0] = 1
A[1] = 2
A[2] = 5
A[3] = 8
A[4] = 4
A = 1 2 5 8 4
B[\theta] = 1
B[1] = 3
B[2] = 7
B[3] = 8
B[4] = 5
B = 1 3 7 8 5
|A| = 5
|B| = 5
Boolean A or B? :a
P_A= 32
C[0] = 1
C[1] = 2
C[2] = 5
C[3] = 8
C[4] = 4
C[5] = 3
C[6] = 7
|C| = 7
~/workspace/ $
```

Висновок:

Навчився на практиці основним поняттям теорії множин, навчився будувати діаграми Ейлера-Венна, використовувати закони алгебри множин, освоїв принцип включень-виключень для двох і трьох множин та комп'ютерне подання множин.