U-ERRE

Universidad Regiomontana

Axel Alberto Mireles Martínez: 739047

Materia: Métodos Numéricos.

Título: Método Jacobi y Gauss-Seidel.

Profesor: Sergio Castillo.

Fecha: 22/06/2026

Lugar: Monterrey, N.L., México.

REPORTE

METODO Jacobi Gauss-Seidel

Axel Alberto Mixeles Martinez
#739047

Definición= Son técnicas iterativas utilizadas

para vesolver sistemas de ecuaciones lineales. Ambos buscan

aproximar la solución mediante repeticiones sucesivas, pero

difieren en como actualizan los valores: Jacobi usa los

valores de la iteración anterior, mientras que Gauss-Seidel

aprovecha los valores ya calculados en la misma iteración, lo que

suele acelerar la convergencia.

Antecedentes: Estos métodos surgieron en el siglo XIX, nombrados en honor a los matematicos (arl Gustar Jacobi (1804-1851) y Philipp Ludwig von Sciolel (1821-1896). Fueron desarrollados para resolver problemas de algéra lineal en física e ingeniería, donde los sistemas cran demosiado grandes para métodos directos como la elimación gaussiana.

Melación con otro método: Están relacionados con otros algoritmos iterativos como el metodo de relajerion sucesiva (5017), que es una generalización de Gauss-Seidel donde se introduce un factor de velajación, para acetror la convergencia.

Algoritmo=

- 1 Inicializar con una solución aproximada xco).
- 2 Herar = Para cada variable, aplicar la fórmula correspondiente (Jacobi o Gouss-Seidel).
- 3 Verificar convergencia = 5; el enor entre iteraciones es menor a una tolerancia predefinida, detenerse.
- 4 Mepetir hasta alcanzar la solución o un número máximo de iteraciones.

Aplicaciones en la vida (ot: diana =

Se usan en ingeniería para si mular circuitos eléctricos, en gráficos por computador a para renderizar exenas 3D, y en meteorología para predecir condiciones climáticas.

También son útiles en economia pora optimizar recursos o en robótica pora ajustor trayectorias, donde sistemas lineales modelan problemas reales.

Ejercicio de Ejemplo=

Método Jacobi
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
b) Galuss - Seidel
Paso 1 - Definir Dagonal Dominante
Paso 2 - Despei ar X, Y, Z Paso 3 X = 5 - 2 y + 1
y=-11+x-42 $y=-11+(0)-4(0)-0.916$ $y=-12$ $y=-5(0)+9(0)=0$
From Xactual Xanterior XIDO
1 Havación 1 Xactual Suponemos que X=0 Y=0
720

dord about 1/4 Iteración 2 X=0,714 Y=0,916 7=0 X=5-2(0.916)+(0)=(0,462 Y=-11+(0)714)-4(0)=(0897 -10 2=-5(0.714)+9(0.916)-(0.203 Paso 4 Error X = 11-0,714 | x 100 = 57,9698 0.452 ×100 = 6.88 % Z=11-0,203 | X 100= 100% Iteración 3 Paso 3 X = 0.452 4=0.857 2=0203 X=5-2 (0.857)+ (0.203)- (0.988 4=-11+ (0,452)-4 (0,203) = 0.946 2=-5 (0,452) + 9 (0.867)= 6.237

Ejemplo de ejercicio Gauss-Seidel

	G	ava	55 -	- 5	ei	de	1																
1+	ere	acia	on	1								1						T		T	1		
	F	990	3		7					1	OC							_		1	-0	01	W.
E	va	Jay		1					-	9	35	. 5:	97		1	3	P.	1	1		F		
	-			-					L,	1		-	1 14				100		-	-	-		
	1	- 1	1-2		7	0	-	0,	+	4					- C					90	-		2
								3				1			9		- 10		0		4		
	,	4=	-1	1+	C	.7	14)-	9	(0)	2	0.	85	7		-							
							12	155	-	C		-	11	(0)	P			0	4	100		-	
-	-	2=	-	5 (0,=	19) -			1.85	7)	=1	0,1	180		9					-	-	
								23				2.50			-						0	3 5	1
14	ere	1(10	n	2													-	PF	-		V		
)71			y =	0,	88	7		2 :	0,	80	0	-	10			F			11		4
-			-			0 1	10	1.00	1			05				01	-	30	10		10		1
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1	5-2	U	0.8	7	1	(9)	130		- (0,4	45)		111	AL	4	10	16	+/		14	+
,	0=	- 11	+	(0.	19:	5)	-4	(0	18	Co	21	0,0	35	7	X	1 =	Pal			-11	13	- CO	
-	1				-	12										F		200					-
	7	= -	50	0.4	05 0	. 6	Co	a.	35) -	6	26	g)										
	-			1	15	23					10,	-											
F	05	0 9									4				-	-		4					
			EN	YOY			X=	[1-	- 0	771	4 1	X	00	=	14	4 1.	24	90	4				
							Y=	1	1	0,8	35	X	100	- 8	139	%					-	-	-
							구:	1		0,	100	1	X 10		60		1	9	1	+	1	1	

