Quantum Mechanical Model of an Atom

Quantum Numbers

- In quantum mechanics, three *quantum numbers are* required to describe the distribution of electrons in hydrogen and other atoms.
- They are-
 - The principal quantum number (n),
 - The angular momentum quantum number (1),
 - The magnetic quantum number (m_l) & The magnetic spin quantum number (m_s) .

The Principal Quantum Number (n)

- The principal quantum number (n) can have integral values 1, 2, 3, ...
- the value of *n* determines the energy of an orbital
- It also relates to the average distance of the electron from the nucleus in a particular orbital.
- The larger the *n* is, the greater the average distance of an electron in the orbital from the nucleus and therefore the larger the orbital.

The Angular Momentum Quantum Number (1)

- Tells the "shape" of the orbitals.
- The values of 1 depend on the value of the principal quantum number, n.
- For a given value of n, l has possible integral values from $\underline{0}$ to (n-1).
- If n = 1, l = (1-1) = 0, So, 1 has one value "0".
- If n = 2, there are two values of 1, given by 0 and 1.

ℓ	0	1	2	3	4	5
Name of orbital	S	p	d	f	g	h

The Magnetic Quantum Number (m_l)

- It tells about the orientation of the e
- m depends on l. it will have (2l +1) number of integral values.

There is another "Magnetic spin quantum number(m_s). It tells spinning motion of electron if one is clockwise the other is counter-clockwise.

It has 2 values: +1/2 and -1/2.

Quantum Numbers

- All electrons that have the same value for n (the principle quantum number) are in the same shell
- Within a shell (same n), all electrons that share the same I (orbital shape) are in the same sub-shell
- When electrons share the same n, I and mI, we say they are in the same orbital (they have the same energy level, shape, and orientation)

Atomic Orbital

distance from nucleus

I = angular

shape of orbital

m = magnetic

orientation in space

S = spin

electron spin

Atomic Orbital

- A 3 dimensional space around a nucleus in which electrons are most likely to be found
- Shape represents electron density (not a path the electron follows)
- Each orbital can hold up to 2 electrons.
- Each of the major energy levels (n=1, 2, 3...) contain one or more sublevels (s, p, d and f) in which there are one or more orbitals.

Atomic Orbital (s, p, d, f)

TABL	E 7.2	Relation Between Qua	nd Atomic Orbitals	
n	ℓ	m_{ℓ}	Number of Orbitals	Atomic Orbital Designations
1	0	0	1	1 <i>s</i>
2	0	0	1	2s
	1	-1, 0, 1	3	$2p_x$, $2p_y$, $2p_z$
3	0	0	1	3s
	1	-1, 0, 1	3	$3p_x$, $3p_y$, $3p_z$
	2	-2, -1, 0, 1, 2	5	$3d_{xy}$, $3d_{yz}$, $3d_{xz}$,
				$3d_{x^2-y^2}$, $3d_{z^2}$
			:	:
		:	:	:

The s orbital

1s orbital

2s orbital

3s orbital

The three p orbitals

The five d orbitals

d orbitals, 1 = 2

Quantum Numbers and Atomic Orbitals

$$n = 1, l = 0, m_{\ell} = 0$$

$$n = 2$$
, $l = 0$, $m_l = 0$
 $l = 1$, $m_l = -1$, 0 , $+1$

$$N=3$$
, $l=0$, $m_{\ell}=0$
 $l=1$, $m_{\ell}=-1$, 0 , $+1$
 $l=2$, $m_{\ell}=-2$, -1 , 0 , $+1$, $+2$.

Table 7.2 The Hierarchy of Quantum Numbers for Atomic Orbitals

Name, Symbol (Property)

Allowed Values

Quantum Numbers

Principal, *n* Positive integer (size) (1, 2, 3, ...)

Angular momentum, *l* (shape)

0 to n - 1

Magnetic, m_l (orientation)

-*l*,...,0,...,+*l*

+1

Quantum Numbers for Electrons

Name	Symbol	Permitted Values	Property
principal	n	positive integers (1, 2, 3,)	orbital energy (size)
angular momentum	l	integers from 0 to $n-1$	orbital shape (The <i>l</i> values 0, 1, 2, and 3 correspond to <i>s</i> , <i>p</i> , <i>d</i> , and <i>f</i> orbitals, respectively.)
magnetic	m_l	integers from $-l$ to 0 to $+l$	orbital orientation
spin	$m_{_{S}}$	$+\frac{1}{2}$ or $-\frac{1}{2}$	direction of e- spin
		7 1	

- Each electron in any atom is described completely by a set of four quantum numbers.
- ➤ The first three quantum numbers describe the orbital, while the fourth quantum number describes electron spin.

Sample Problem 7.6

What values of the angular momentum (l) and magnetic (m_l) quantum numbers are allowed for a principal quantum number (n) of 3? How many orbitals are allowed for n = 3?

$$n=3$$
, $l=0$, $m_1=0$
 $l=1$, $m_1=-1$, 0 , $+1$
 $l=2$, $m_1=-2$, -1 , 0 , $+1$, $+2$.
Total # orbitals for $n=3$ is $\frac{9}{2}$
For any n, # of orbitals is n^2
For any n, # of electrons is $2n^2$

Sample Problem 7.7

Give the name, magnetic quantum numbers, and number of orbitals for each sublevel with the following quantum numbers:

(a)
$$n = 3$$
, $l = 2$ (b) $n = 2$, $l = 0$ (c) $n = 5$, $l = 1$ (d) $n = 4$, $l = 3$

	<u>Name</u> 3d	-2,-1,0,+1,+2	# orbitals	
(b) n = 2, l = 0	25	0	1	
c h=5, l=1	5p	-1,0,+1	3	
d n=4, l=3	44	->,-2,-1,0,+1, +2,+3	7	

Sample Problem 7.8

What is wrong with each of the following quantum numbers designations and/or sublevel names?

	<u>n</u>	l	m_l	Name
(a)	1	×	0	1 <i>p</i>
(b)	4	3	+1	36 44
(c)	3	1	*	3 <i>p</i>

CLASS ACTIVITY

Problem 7.50

How many orbitals in an atom can have each of the following designations:

- (a) 5*f*
- (b) 4p
- (c) 5*d*
- (d) n = 2?

Problem 7.52

Give all possible m_l values for orbitals that have each of the following:

- (a) l = 3
- (b) n = 2
- (c) n = 6, l = 1.

Problem 7.72

The following combinations are not allowed. If n and m_l are correct, change the l value to create an allowable combination:

- (a) n = 3; l = 0; $m_l = -1$
- (b) n = 3; l = 3; $m_l = +1$
- (c) n = 7; l = 2; $m_l = +3$
- (d) n = 4; l = 1; $m_l = -2$

Electronic Configuration of Atoms with Many Electrons

Energies of Orbital

- Total energy of a subshell = energy of the main shell + the subshell
- The 4s energy < 3d energy

```
4p ____ (finishes the n=3 shell) 4s ____ (starts the n=4 shell) 3p ____ 3s
```


2p

2s

Aufbau (or Building Up) Principle

The Aufbau Principle states that electrons are always placed in the lowest energy level first, and then placed in higher levels in order.

Period 1:

$$H(Z=1) 1s^1$$

He
$$(Z=2)$$
 1s² $\uparrow \downarrow$ 1s

Period 2:

Aid to memorizing sub-shell filling order

The Pauli Exclusion Principle

- "No two electrons in an atom can have the same set of four quantum numbers."
- If two electrons in an atom have the same n, l, and m_l values, then they must have different values of m_s

Hund's Rule

• Hund's rule states that:

- 1. Every orbital in a sublevel is singly occupied before any orbital is doubly occupied.
- 2. All of the electrons in singly occupied orbitals have the same spin (to maximize total spin).

Hund's Rule

Consider the correct electron configuration of the nitrogen (Z = 7) atom: 1s2 2s2 2p3

The p orbitals are half-filled; there are three electrons and three p orbitals. This is because the three electrons in the 2p subshell will fill all the empty orbitals first before pairing with electrons in them.

Next, consider oxygen (Z = 8) atom, the element after nitrogen in the same period; its electron configuration is: 1s2 2s2 2p4

General Rules for Assigning Electrons to Atomic Orbitals

- Based on the preceding examples we can formulate some general rules for determining the maximum number of electrons that can be assigned to the various subshells and orbitals for a given value of n:
- 1. Each shell or principal level of quantum number n contains n subshells. For example, if n = 2, then there are two subshells (two values of l) of angular momentum quantum numbers 0 and 1.
- 2. Each subshell of quantum number 1 contains (21+1) orbitals. For example, if 1 = 1, then there are three *p orbitals*.
- 3. No more than two electrons can be placed in each orbital. Therefore, the maximum number of electrons is simply twice the number of orbitals that are employed.
- 4. A quick way to determine the maximum number of electrons that an atom can have in a principal level n is to use the formula $2n^2$.

Electron Configuration

- List of subshells containing electrons
- Written in order of increasing energy
- Superscripts give the number of electrons

Example: Electron configuration of neon

number of electrons

 $1s^2$

 $2s^2$

2p⁶

main shell subshell

Learning Check

Write the complete electronic configuration for each:

A. 99Es

B. 77Ir

Learning Check

Write the complete electronic configuration

A. 99Es

1s²2s²2p⁶3s²3p⁶4s²3d¹⁰4p⁶5s²4d¹⁰5p⁶6s²4f¹⁴5d¹⁰6p⁶7s²5f¹¹

[Rn] 5f¹¹ 7s²

• Einsteinium is a synthetic element with symbol Es. Einsteinium was discovered as a component of the debris of the first hydrogen bomb explosion in 1952, and named after Albert Einstein. Its most common isotope einsteinium-253 (half life 20.47 days) is produced artificially.

Learning Check

Write the complete electronic configuration A. 77Ir

1s²2s²2p⁶3s²3p⁶4s²3d¹⁰4p⁶5s²4d¹⁰5p⁶6s²4f¹⁴5d⁷

[Xe] 4f¹⁴ 5d⁷ 6s²

- A very hard, brittle, silverywhite transition metal
- Iridium was discovered in 1803 among insoluble impurities in natural platinum

•	TABLE 7.3	The G	iround-State Ele	ctron Con	figurations	s of the Element	s*		
	Atomic Number	Symbol	Electron Configuration	Atomic Number	Symbol	Electron Configuration	Atomic Number	Symbol	Electron Configuration
	0.		1 10 40 4		GI.	175 15 44 895 3	00		ID 17 4
4	Si	1]	$Ne]3s^23p^2$	51	Sb	$[Kr]5s^24d^{10}5p^3$	88	Ra	$[Rn]7s^2$
5	P	[]	$[8]3s^23p^3$	52	Te	$[Kr]5s^24d^{10}5p^4$	89	Ac	$[Rn]7s^26d^1$
6	S	[]	$Ne]3s^23p^4$	53	I	$[Kr]5s^24d^{10}5p^5$	90	Th	$[Rn]7s^26d^2$
7	C	[]	$[Ne]3s^23p^5$	54	Xe	$[Kr]5s^24d^{10}5p^6$	91	Pa	$[Rn]7s^25f^26a$
8	A	r [N	$[8]3s^23p^6$	55	Cs	[Xe]6s ¹	92	U	$[Rn]7s^25f^36a$
9	K	[/	\r]4s ¹	56	Ba	[Xe]6s ²	93	Np	[Rn]7s ² 5f ⁴ 6a
0	Ca	a [A	$\Lambda r]4s^2$	57	La	$[Xe]6s^25d^1$	94	Pu	$[Rn]7s^25f^6$

Exceptions

Although the Aufbau rule accurately predicts the electron configuration of most elements, there are notable exceptions among the **transition metals and heavier elements.** The reason these exceptions occur is that some elements are more stable with fewer electrons in some subshells and more electrons in others. A list of the exceptions to the Aufbau process is given below.

Table 1: Exceptions to Electron Configuration Trends

Period 4:	Period 5:
Chromium: Z:24 [Ar] 3d ⁵ 4s ¹	Niobium: Z:41 [Kr] 5s¹ 4d⁴
Copper: Z:29 [Ar] 3d ¹⁰ 4s ¹	Molybdenum: Z:42 [Kr] 5s ¹ 4d ⁵
	Ruthenium: Z:44 [Kr] 5s ¹ 4d ⁷
	Rhodium: Z:45 [Kr] 5s ¹ 4d ⁸
	Palladium: Z:46 [Kr] 4d ¹⁰
	Silver: Z:47 [Kr] 5s1 4d10

Table 1: Exceptions to Electron Configuration Trends

Period 6:	Period 7:
Lanthanum: Z:57 [Xe] 6s ² 5d ¹	Actinium: Z:89 [Rn] 7s ² 6d ¹
Cerium: Z:58 [Xe] 6s ² 4f ¹ 5d ¹	Thorium: Z:90 [Rn] 7s ² 6d ²
Gadolinium: Z:64 [Xe] 6s ² 4f ⁷ 5d ¹	Protactium: Z:91 [Rn] 7s ² 5f ² 6d ¹
Platinum: Z:78 [Xe] 6s ¹ 4f ¹⁴ 5d ⁹	Uranium: Z:92 [Rn] 7s ² 5f ³ 6d ¹
Gold: Z:79 [Xe] 6s ¹ 4f ¹⁴ 5d ¹⁰	Neptunium: Z:93 [Rn] 7s² 5f⁴ 6d¹
	Curium: Z:96 [Rn] 7s ² 5t ⁷ 6d ¹
	Lawrencium: Z:103 [Rn] 7s ² 5f ¹⁴ 7p ¹

Anomalies of 24Cr and 29Cu

Half-filled and fulfilled d-orbitals tend to be more stable than partially filled ones

$$24(r \rightarrow [Ar] 1 1 1 1 1$$

Table 8.4	Partial Orbital Diagrams and Electron Configurations* for the Elements in Period 4

Atomic Number	Element	Partial Orbital Diagram (4s, 3d, and 4p Sublevels Only)	Full Electron Configuration	Condensed Electron Configuration
19	K	4s 3d 4p	$] 1s^2 2s^2 2p^6 3s^2 3p^6 4s^1$	[Ar] 4s ¹
20	Ca	↑	$] 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$	$[Ar] 4s^2$
21	Sc	$\uparrow\downarrow$ \uparrow	$\left] 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^1 \right.$	$[Ar] 4s^2 3d^1$
22	Ti	$\uparrow \downarrow \qquad \boxed{\uparrow \uparrow }$	$\left] 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^2 \right.$	$[Ar] 4s^2 3d^2$
23	V	$\uparrow\downarrow$ \uparrow \uparrow \uparrow	$\left] 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^3 \right.$	$[Ar] 4s^2 3d^3$
24	Cr	$\uparrow \qquad \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$	$1s^2 2s^2 2p^6 3s^2 3p^6 4s^1 3d^5$	$[Ar] 4s^1 3d^5$
25	Mn	$\uparrow \downarrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$	$1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^5$	$[Ar] \frac{4s^23d^5}{}$
26	Fe	$\uparrow \downarrow \qquad \uparrow \downarrow \qquad \uparrow \qquad $	$1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^6$	$[Ar] 4s^2 3d^6$
27	Co	$\uparrow \downarrow \qquad \uparrow \downarrow \uparrow \downarrow \uparrow $	$1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^7$	$[Ar] 4s^2 3d^7$
28	Ni	$\uparrow \downarrow \qquad \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \qquad \uparrow$	$1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^8$	$[Ar] 4s^2 3d^8$
29	Cu	$\uparrow \qquad \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow$	$1s^2 2s^2 2p^6 3s^2 3p^6 4s^1 3d^{10}$	[Ar] $4s^13d^{10}$
30	Zn	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10}$	[Ar] $4s^23d^{10}$
31	Ga	$\uparrow\downarrow$ $\uparrow\downarrow\uparrow\uparrow\downarrow\uparrow\uparrow\downarrow$ $\uparrow\downarrow$	$\left] 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^1 \right]$	[Ar] $4s^23d^{10}4p^1$
32	Ge		$\left] 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^2 \right]$	[Ar] $4s^2 3d^{10} 4p^2$
33	As	$\uparrow\downarrow$ $\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow$ $\uparrow\uparrow\uparrow\uparrow$	$1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^3$	[Ar] $4s^2 3d^{10} 4p^3$
34	Se	$\uparrow\downarrow \qquad \uparrow\downarrow\uparrow\uparrow\downarrow\uparrow\uparrow\downarrow\uparrow\uparrow$	$1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^4$	[Ar] $4s^23d^{10}4p^4$
35	Br	$\uparrow\downarrow$ $\uparrow\downarrow\uparrow\uparrow\downarrow\uparrow\uparrow\downarrow$ $\uparrow\downarrow\uparrow\uparrow\downarrow$	$1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^5$	[Ar] $4s^2 3d^{10} 4p^5$
36	Kr	$\boxed{\uparrow\downarrow}\boxed{\uparrow\downarrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow}\boxed{\uparrow\downarrow\uparrow\uparrow\uparrow}$	$1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6$	[Ar] $4s^23d^{10}4p^6$

Sample Problem 8.1

Write a set of quantum numbers for the *third* electron and a set for the *eighth* electron of the F atom.

SOLUTION

		Main-G Elem (s bl	ents												Ма		p Eleme lock)	ents	
		1A (1) ns ¹			3A 4A 5A 6A 7A (13) (14) (15) (16) (17)														8A (18) ns ² np ⁶
	1	1 H	2A (2)																2 He
-	+	1s ¹	ns ²																1s ²
gy level	2	Li 2s ¹	Be 2s ²				Tr		Elemen	nts				B 28 ² 2p ¹	C 2s ² 2p ²	N 2s ² 2p ³	O 2s ² 2p ⁴	F 2s ² 2p ⁵	Ne 2s ² 2p ⁶
oied ener	3	11 Na 3s ¹	12 Mg 3s ²	3B (3)												17 CI 3s ² 3p ⁵	18 Ar 3s ² 3p ⁶		
Period number: highest occupied energy level	4	19 K 4s ¹	20 Ca 4s ²	21 Sc 4s ² 3d ¹	22 Ti 4s ² 3d ²	23 V 4s ² 3d ³	24 Cr 4s ¹ 3d ⁵	25 Mn 4s ² 3d ⁵	26 Fe 4s ² 3d ⁶	27 Co 4s ² 3d ⁷	28 Ni 4s ² 3d ⁸	29 Cu	30 Zn	31 Ga 4s ² 4p ¹	32 Ge 4s ² 4p ²	33 As 4s ² 4p ³	34 Se 4s ² 4p ⁴	35 Br 4s ² 4p ⁵	36 Kr 4s ² 4p ⁶
umber: hig	5	37 Rb _{5s} 1	38 Sr _{5s} ²	39 Y 5s ² 4d ¹	40 Zr 5s ² 4d ²	41 Nb 5s ¹ 4d ⁴	42 Mo 5s ¹ 4d ⁵	43 Tc 5s ² 4d ⁵	44 Ru 5s ¹ 4d ⁷	45 Rh 5s ¹ 4d ⁸	46 Pd 4d ¹⁰	47 Ag 5s ¹ 4d 10	48 Cd _{5s²4d} 10	49 In 5s ² 5p ¹	50 Sn 5s ² 5p ²	51 Sb 5s ² 5p ³	52 Te 5s 25p 4	53 5s ² 5p ⁵	54 Xe 5s ² 5p ⁶
Period n	6	55 Cs _{6s} ¹	56 Ba 6s ²	57 La* 6s ² 5d ¹	57 72 73 74 75 76 77 78 79 80 81 82 83 84 La* Hf Ta W Re Os Ir Pt Au Hg TI Pb Bi Po										85 At 6s ² 6p ⁵	86 Rn 6s ² 6p ⁶			
,	7	87 Fr 7s ¹	88 Ra 7s ²	89 Ac** 7s ² 6d ¹	104 Rf 7s ² 6d ²	105 Db 7s ² 6d ³	106 Sg 7s ² 6d ⁴	107 Bh 7s ² 6d ⁵	108 Hs 7s ² 6d ⁶	109 Mt 7s ² 6d ⁷	110 Ds 7s ² 6d ⁸	111 Rg 7s ² 6d ⁹	112 Cn 7s ² 6d ¹⁰	113 7s ² 7p ¹	114 FI 7s ²⁷ p ²	115 7s ^{27p³}	116 Lv 7s ^{27p⁴}	117 7s ² 7p ⁵	118 7s ² 7p ⁶
_									ner Tra			f block							
	6 *Lanthanides			58 Ce 6s ² 4f ¹ 5d ¹	59 Pr 6s ² 4f ³	60 Nd 6s ² 4f ⁴	61 Pm 6s ² 4f ⁵	62 Sm 6s ² 4f ⁶	63 Eu 6s ² 4f ⁷	64 Gd 6s ² 4f ⁷ 5d ¹	65 Tb 6s ^{24f} ⁹	66 Dy 6s ² 4f ¹⁰	67 Ho 6s ² 4f ¹¹	68 Er 6s ² 4f 12	69 Tm 6s ² 4f ¹³	70 Yb 6s ² 4f ¹⁴	71 Lu 6s ² 4f ¹⁴ 5d ¹		
	7 **Actinides		tinides	90 Th 7s ² 6d ²	91 Pa 7s 25f 26d 1	92 U 7s ² 5f ³ 6d ¹	93 Np _{7s 25f 46d 1}	94 Pu 7s ² 5f ⁶	95 Am 7s ² 5f ⁷	96 Cm 7s 25f 76d 1	97 Bk 7s ² 5f ⁹	98 Cf 7s ² 5f 10	99 Es 7s ² 5f ¹¹	100 Fm 7s ² 5f ¹²	101 Md 7s ² 5f ¹³	102 No 7s ² 5f ¹⁴	103 Lr 7s ² 5f ¹⁴ 6d ¹		

Electronic Configuration of Period 3: ₁₁Na, ₁₂Mg,, ₁₅P...., ₁₈Ar (using Ne configuration)

Atomic Number	Element	Partial Orbital Diagram (3s and 3p Sublevels Only)	Full Electron Configuration [†]	Condensed Electron Configuration
11	Na	3s $3p$	$[1s^22s^22p^6]$ 3s ¹	[Ne] $3s^1$
12	Mg	$\uparrow\downarrow$	$[1s^22s^22p^6]$ $3s^2$	[Ne] $3s^2$
13	Al	$\uparrow\downarrow$	$[1s^22s^22p^6] \ 3s^23p^1$	[Ne] $3s^2 3p^1$
14	Si	$\uparrow\downarrow$ \uparrow \uparrow	$[1s^22s^22p^6] 3s^23p^2$	[Ne] $3s^2 3p^2$
15	P	$\boxed{\uparrow}$	$[1s^22s^22p^6] 3s^23p^3$	[Ne] $3s^2 3p^3$
16	S	$\uparrow\downarrow$ \uparrow \uparrow	$[1s^22s^22p^6] 3s^23p^4$	[Ne] $3s^2 3p^4$
17	Cl	$\uparrow\downarrow$ $\uparrow\downarrow$ \uparrow	$[1s^22s^22p^6] 3s^23p^5$	[Ne] $3s^2 3p^5$
18	Ar	$\boxed{\uparrow\downarrow}\boxed{\uparrow\downarrow \uparrow\downarrow \uparrow\downarrow}$	$[1s^22s^22p^6]\ 3s^23p^6$	[Ne] $3s^2 3p^6$

Electronic Configuration of Period 4: ₁₉K, ... ₂₃V, ..., ₂₈Ni, ..., ₃₆Kr (using Ar configuration)

$$|8^{Ar} \rightarrow |s^{2} 2e^{2} 2e^{6} 3s^{2} 3e^{6} \rightarrow |8e^{-}|$$

$$|4^{K} \rightarrow |A^{r}| |4s^{4} \rightarrow |A^{r}| |4s^{2} |3d^{3} \rightarrow |A^{r}| |4s^{2}$$

Categories of Electrons

- Inner (core) electrons are those an atom has in common with the previous noble gas and any completed transition series.
- Outer electrons are those in the *highest* energy level (highest n value).

- Valence electrons are those involved in forming compounds.
- For main group elements, the valence electrons are the outer electrons.
- ➤ For transition elements, the valence electrons include the outer electrons and any (n-1)d electrons.

Electron Configuration and Group

 Elements in the same group of the periodic table have the same outer electron configuration, and thus they exhibit similar chemical behavior.

		Main-0 Elem (s blo	ents												Ма	iin-Grou (p bl	p Eleme lock)	ents	
		1A (1) ns ¹			$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														8A (18) ns ² np ⁶
1	1	1 H	2A (2)	: :															2 He
gy level	2	3 Li 2s ¹	4 Be 2s ²		5 6 7 8 9 B C N O F Transition Elements 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 4 2 2 2 2														10 Ne 2s ² 2p ⁶
Period number: highest occupied energy level	3	11 Na 3s ¹	12 Mg 3s ²	3B (3)	4B (4)	5B (5)	6B (6)	7B (7)	(8)	- 8B - (9)	(10)	1B (11)	2B (12)	13 AI 3s ² 3p ¹	14 Si 3s ² 3p ²	15 P 3s ² 3p ³	16 S 3s ² 3p ⁴	17 CI 3s ² 3p ⁵	18 Ar 3s ² 3p ⁶
ghest occu	4	19 K 4s ¹	20 Ca 4s ²	21 Sc 4s ² 3d ¹	22 Ti 4s ² 3d ²	23 V 4s ² 3d ³	24 Cr 4s ¹ 3d ⁵	25 Mn 4s ² 3d ⁵	26 Fe 4s ² 3d ⁶	27 Co 4s ² 3d ⁷	28 Ni 4s ² 3d ⁸	29 Cu 4s ¹ 3d ¹⁰	30 Zn 4s ² 3d ¹⁰	31 Ga 4s ² 4p ¹	32 Ge 4s ² 4p ²	33 As 4s ² 4p ³	34 Se 4s ² 4p ⁴	35 Br 4s ² 4p ⁵	36 Kr 4s ² 4p ⁶
umber: hi	5	37 Rb 5s ¹	38 Sr _{5s} ²	39 Y 5s ² 4d ¹	40 Zr 5s ² 4d ²	41 Nb 5s ¹ 4d ⁴	42 Mo 5s ¹ 4d ⁵	43 Tc 5s ² 4d ⁵	44 Ru 5s ¹ 4d ⁷	45 Rh 5s ¹ 4d ⁸	46 Pd 4d ¹⁰	47 Ag 5s ¹ 4d ¹⁰	48 Cd 5s ² 4d 10	49 In 5s ² 5p ¹	50 Sn 5s ² 5p ²	51 Sb 5s ² 5p ³	52 Te 5s ² 5p ⁴	53 55 ² 5p ⁵	54 Xe 5s ² 5p ⁶
Period	6	55 Cs 6s ¹	56 Ba 6s ²	57 La* 68 ² 5d ¹	72 Hf 6s ² 5d ²	73 Ta 6s ² 5d ³	74 W 6s ² 5d ⁴	75 Re 6s 25d 5	76 Os 6s ² 5d ⁶	77 Ir 6s ² 5d ⁷	78 Pt 6s ¹ 5d ⁹	79 Au 6s ¹ 5d ¹⁰	80 Hg 6s ² 5d ¹⁰	81 TI 6s ² 6p ¹	82 Pb 6s ² 6p ²	83 Bi 6s ² 6p ³	84 Po 6s ² 6p ⁴	85 At 6s ² 6p ⁵	86 Rn 6s ² 6p ⁶
7	7	87 Fr 7s ¹	88 Ra 7s ²	89 Ac** 7s ² 6d ¹	104 Rf 7s ² 6d ²	105 Db 7s ² 6d ³	106 Sg 7s ² 6d ⁴	107 Bh 7s ² 6d ⁵	108 Hs 7s ² 6d ⁶	109 Mt 7s ² 6d ⁷	110 Ds 7s ² 6d ⁸	111 Rg 7s ² 6d ⁹	112 Cn 7s ² 6d ¹⁰	113 7s ² 7p ¹	114 FI 7s ² 7p ²	115 7s ² 7p ³	116 Lv 7s ² 7p ⁴	117 7s ² 7p ⁵	118 7s ² 7p ⁶
								lr	nner Trai	nsition E	Elements	s (f block	 <)						
6	6 *Lanthanides			58 Ce _{6s ²4f ¹5d ¹}	59 Pr 6s ² 4f ³	60 Nd 6s ² 4f ⁴	61 Pm 6s ² 4f ⁵	62 Sm 6s ² 4f ⁶	63 Eu 6s ² 4f ⁷	64 Gd 6s ² 4f ⁷ 5d ¹	65 Tb 6s ² 4f ⁹	66 Dy 6s ² 4f ¹⁰	67 Ho 6s ² 4f 11	68 Er 6s ² 4f 12	69 Tm 6s ² 4f ¹³	70 Yb 6s ² 4f ¹⁴	71 Lu 6s ² 4f ¹⁴ 5d ¹		
7	7 **Actinides		tinides	90 Th 7s ² 6d ²	91 Pa 7s ² 5f ² 6d ¹	92 U 7s ² 5f ³ 6d ¹	93 Np 7s ² 5f ⁴ 6d ¹	94 Pu 7s ² 5f ⁶	95 Am 7s ² 5f ⁷	96 Cm 7s 25f 76d 1	97 Bk 7s ² 5f ⁹	98 Cf 7s ² 5f ¹⁰	99 Es 7s ² 5f ¹¹	100 Fm 7s ² 5f ¹²	101 Md 7s ² 5f ¹³	102 No 7s ² 5f ¹⁴	103 Lr 7s ² 5/ ¹⁴ 6/ ¹		

Sample Problem 8.2

Give the **condensed** and **full** electron configurations for the following elements:

(a) Technetium (Tc; Z = 43)

(b) Lead (Pb; Z = 82)

SOLUTION

(a) For Tc (Z = 43)

Condensed: [Kr]5s²4d⁵

Full: $1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^24d^5$

(b) For Pb (Z = 82)

Condensed: [Xe] $6s^24f^{14}5d^{10}6p^2$

Full: $1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^24d^{10}5p^66s^24f^{14}5d^{10}6p^2$

