Data fusion

DESIGNING MACHINE LEARNING WORKFLOWS IN PYTHON

Dr. Chris Anagnostopoulos Honorary Associate Professor

Computers, ports, and protocols

The LANL cyber dataset

flows: Flows are sessions of continuous data transfer between a port on a source computer and a port on a destination computer, following a certain protocol.

flows.iloc[1]

	.=
time	471692
duration	0
source_computer	C5808
source_port	N2414
destination_computer	C26871
destination_port	N19148
protocol	6
packet_count	1
byte_count	60

¹ https://csr.lanl.gov/data/cyber1/

The LANL cyber dataset

attack: information about certain attacks performed by the security team itself during a test.

attacks.head()

```
time user@domain source_computer destination_computer
151036
         U748@D0M1
                             C17693
                                                     C305
151648
         U748@D0M1
                             C17693
                                                     C728
151993
        U6115@D0M1
                             C17693
                                                    C1173
153792
         U636@D0M1
                             C17693
                                                     C294
155219
         U748@D0M1
                             C17693
                                                    C5693
```

¹ https://csr.lanl.gov/data/cyber1/

Labeling events versus labeling computers

A single event cannot be easily labeled.

But an entire computer is either infected or not.

Group and featurize

Unit of analysis = destination_computer

```
flows_grouped = flows.groupby('destination_computer')
list(flows_grouped)[0]
```

```
('C10047',
        time
              duration
                                   packet_count byte_count
2791
      471694
                                              12
                                                       6988
     471694
2792
                      0
                                                        193
2846
      471694
                    38
                                             157
                                                      84120
```


Group and featurize

From one DataFrame per computer, to one feature vector per computer.

```
def featurize(df):
    return {
        'unique_ports': len(set(df['destination_port'])),
        'average_packet': np.mean(df['packet_count']),
        'average_duration': np.mean(df['duration'])
    }
```

Group and featurize

```
out = flows.groupby('destination_computer').apply(featurize)

X = pd.DataFrame(list(out), index=out.index)
X.head()
```

```
      average_duration
      ...
      unique_ports

      destination_computer
      ...

      C10047
      7.538462
      ...
      13

      C10054
      0.000000
      ...
      1

      C10131
      55.000000
      ...
      1

      ...
      [5 rows x 3 columns]
```


Labeled dataset

```
bads = set(attacks['source_computer'].append(attacks['destination_computer']))
y = [x in bads for x in X.index]
```

The pair (X, y) is now a standard labeled classification dataset.

```
X_train, X_test, y_train, y_test = train_test_split(X, y)
clf = AdaBoostClassifier()
accuracy_score(y_test, clf.fit(X_train, y_train).predict(X_test))
```

0.92

Ready to catch a hacker?

DESIGNING MACHINE LEARNING WORKFLOWS IN PYTHON

Labels, weak labels and truth

DESIGNING MACHINE LEARNING WORKFLOWS IN PYTHON

Dr. Chris Anagnostopoulos Honorary Associate Professor

Labels are not always perfect

Degrees of truth:

- Ground truth
 - the computer crashes and a message asks for ransom money
- Human expert labeling
 - the analyst inspects the computer logs and identifies unauthorized behaviors
- Heuristic labeling
 - too many ports received traffic in a very small period of time

Labels are not always perfect

Noiseless or strong labels:

- Ground truth
- Human expert labeling

Noisy or weak labels:

Heuristic labeling

Feature engineering:

Features used in heuristics

Features and heuristics

Average of unique ports visited by each infected host:

```
np.mean(X[y]['unique_ports'])
```

15.11

Average of unique ports visited per host disregarding labels:

```
np.mean(X['<mark>unique_ports</mark>'])
```

11.23

From features to labels

Convert a feature into a labeling heuristic:

```
X_train, X_test, y_train, y_test = train_test_split(X, y)
y_weak_train = X_train['unique_ports'] > 15
```


From features to labels


```
X_train_aug = pd.concat([X_train, X_train])
y_train_aug = pd.concat([pd.Series(y_train), pd.Series(y_weak_train)])
```

weights Ground 1.0 Features Truth Labels Weak 0.5 Features Labels

weights =
$$[1.0]*len(y_train) + [0.1]*len(y_weak_train)$$

Accuracy using ground truth only:

0.91

Ground truth and weak labels without weights:

accuracy_score(y_test, clf.fit(X_train_aug, y_train_aug).predict(X_test))

0.93

Add weights:

accuracy_score(y_test, clf.fit(X_train_aug, y_train_aug, sample_weight=weights).predict(X_test))

0.95

Labels do not need to be perfect!

DESIGNING MACHINE LEARNING WORKFLOWS IN PYTHON

Loss functions Part I

DESIGNING MACHINE LEARNING WORKFLOWS IN PYTHON

Dr. Chris Anagnostopoulos Honorary Associate Professor

The KDD '99 cup dataset

```
kdd.iloc[0]
```

```
kdd.iloc[0]
duration
                                  51
protocol_type
                                 tcp
service
                                smtp
flag
                                  SF
src_bytes
                                1169
dst_bytes
                                 332
land
dst_host_rerror_rate
dst_host_srv_rerror_rate
label
                                good
```


Binarize label:

```
kdd['label'] = kdd['label'] == 'bad'
```

```
clf = GaussianNB().fit(X_train, y_train)
predictions = clf.predict(X_test)
results = pd.DataFrame({
    'actual': y_test,
    'predicted': predictions
})
```

```
actual predicted

0 True True

1 False False

2 True False

3 False True
```

Binarize label:

```
kdd['label'] = kdd['label'] == 'bad'
```

```
clf = GaussianNB().fit(X_train, y_train)
predictions = clf.predict(X_test)
results = pd.DataFrame({
    'actual': y_test,
    'predicted': predictions
})
```

```
actual predicted

True True

False False

True False

True True
```

Binarize label:

```
kdd['label'] = kdd['label'] == 'bad'
```

```
clf = GaussianNB().fit(X_train, y_train)
predictions = clf.predict(X_test)
results = pd.DataFrame({
    'actual': y_test,
    'predicted': predictions
})
```

```
actual predicted

0 True True

1 False False

2 True False

3 False True
```

Binarize label:

```
kdd['label'] = kdd['label'] == 'bad'
```

```
clf = GaussianNB().fit(X_train, y_train)
predictions = clf.predict(X_test)
results = pd.DataFrame({
    'actual': y_test,
    'predicted': predictions
})
```

```
actual predicted

True True

False False

True False

True True
```

The confusion matrix

```
conf_mat = confusion_matrix(
    ground_truth, predictions)
```

```
array([[9477, 19],
[ 397, 2458]])
```

```
tn, fp, fn, tp = conf_mat.ravel()
(fp, fn)
```

(19, 397)

Actual Predicted	Bad traffic	Normal traffic
Labelled bad	True Positives 9477	False Positives 19
Labelled normal	False Negatives 397	True Negatives 2458

Scalar performance metrics

```
accuracy = 1-(fp + fn)/len(ground_truth)
recall = tp/(tp+fn)
fpr = fp/(tn+fp)
precision = tp/(tp+fp)
f1 = 2*(precision*recall)/(precision+recall)
```

```
accuracy_score(ground_truth, predictions)
recall_score(ground_truth, predictions)
precision_score(ground_truth, predictions)
f1_score(ground_truth, predictions)
```

Classifier A:

```
tn, fp, fn, tp = confusion_matrix(
    ground_truth, predictions_A).ravel()
(fp,fn)
```

Classifier B:

```
tn, fp, fn, tp = confusion_matrix(
    ground_truth, predictions_B).ravel()
(fp,fn)
```

(3, 3)

$$cost = 10*fp + fn$$

33

(0, 26)

$$cost = 10*fp + fn$$

26

Which classifier is better?

DESIGNING MACHINE LEARNING WORKFLOWS IN PYTHON

Loss functions Part II

DESIGNING MACHINE LEARNING WORKFLOWS IN PYTHON

Dr. Chris Anagnostopoulos Honorary Associate Professor

Probability scores

```
clf = GaussianNB().fit(X_train, y_train)
scores = clf.predict_proba(X_test)
array([[3.74717371e-07, 9.99999625e-01],
       [9.99943716e-01, 5.62841678e-05],
       [9.99937502e-01, 6.24977552e-05]])
[s[1] > 0.5 for s in scores] == clf.predict(X_test)
```


Probability scores

Threshold	false positive	false negative
0.0	178	0
0.25	66	17
0.5	35	37
0.75	13	57
1.0	0	72

ROC curves


```
fpr, tpr, thres = roc_curve(
    ground_truth,
    [s[1] for s in scores])
plt.plot(fpr, tpr)
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
```


AUC

```
clf = AdaBoostClassifier().fit(X_train, y_train)
scores_ab = clf.predict_proba(X_test)
roc_auc_score(ground_truth, [s[1] for s in scores_ab])
```

0.9999

Cost minimisation

```
def my_scorer(y_test, y_est, cost_fp=10.0, cost_fn=1.0):
    tn, fp, fn, tp = confusion_matrix(y_test, y_est).ravel()
    return cost_fp*fp + cost_fn*fn
```

```
t_range = [0.0, 0.25, 0.5, 0.75, 1.0]
costs = [
   my_scorer(y_test, [s[1] > thres for s in scores]) for thres in t_range
]
```

```
[94740.0, 626.0, 587.0, 507.0, 2855.0]
```

Each use case is different!

DESIGNING MACHINE LEARNING WORKFLOWS IN PYTHON

