Crew Scheduling Performance

Crew Autonomy through Self-Scheduling: Guidelines for Crew Scheduling Performance Envelope and Mitigation Strategies

PI: J.J. Marquez, Ph.D.

Co-I: J. Karasinski, Ph.D.

Human-Computer Interaction Group
NASA Ames Research Center

Current Team

PI Jessica J. Marquez, Ph.D.

Co-I John Karasinski, Ph.D.

Co-I Jimin Zheng

Co-I John Bresina, Ph.D.

Research Interns: Megan Shyr (UC Davis)

Playbook Technical: Ivy Deliz, Bob Kanefsky, Anthony Robertson

Self-Scheduling Enables Crew Autonomy

BENEFITS

Enables crew to contribute their insight how to best manage schedule.

Minimizes idle time waiting for Mission Control responses.

Mitigates effects of communication latency, intermittent communication, and limited bandwidth.

CHALLENGES

Different concept of operations that requires new protocols.

Do not want to overwhelm astronauts who are not expert mission planners.

Still need to ensure and retain constraint-abiding plans and schedules.

Research Objective

Characterize the human performance envelope for the task of planning and scheduling (crew self-scheduling), develop countermeasures to mitigate adverse performance effects due to plan complexity, and inform performance standards and guidelines based on research results.

Research Aims

- 1. Quantify crew performance envelope for the task of self-scheduling spaceflight operational plans.
- 2. Develop countermeasures that mitigate deficient crew self-scheduling performance.
- 3. Validate self-scheduling countermeasures by evaluating changes in crew performance with countermeasures in spaceflight analogs.
- 4. Recommend standards and guidelines appropriate for autonomous crew in long duration exploration missions with regards to self-scheduling.

Remote Data Collection

YEAR 2: "Big" Experiment

- Conducted a completely remote, human-in-the-loop experiments in Year 2, leveraging experimental platform (ESSEX) and Playbook.
- Collect self-scheduling human performance data from 31 participants.

Human Performance of Self-Scheduling

Mixed factorial design (2 x 2 x 4)

- One between-subject factor: type of task (scheduling vs. rescheduling)
- Two within-subject factors:
 - Percent of activities with constraints (1/3 vs. 2/3)
 - Type of activity constraints (equality requirement, earliest/latest, claimables, and temporal binary constraints)

Dependent measures include: effectiveness, efficiency, situation awareness, workload, trust, and usability.

Self-Scheduling Task

Task List activities have priorities and some have constraints.

Activities are scheduled and assigned to complete a violation-free timeline.

Results

YEAR 3: Data Analysis & Publications

- Main Results
 - Significant effects of type of task, type and number of constraints
 - Scheduling is generally "harder" than rescheduling
 - More constraints are generally "harder" than less constraints
- Constraints affect different metrics uniquely
 - Time Range (TR) constraint takes much longer for participants to resolve
 - Claimables (CL) constraints result in more violations
- Significant interaction effects show that the story is complicated
- 1 journal publication, 5 conference papers, and 1 upcoming conference paper

Time on Task

Margin (white space)

Research Aims

- 1. Quantify crew performance envelope for the task of self-scheduling spaceflight operational plans.
- 2. Develop countermeasures that mitigate deficient crew self-scheduling performance.
- 3. Validate self-scheduling countermeasures by evaluating changes in crew performance with countermeasures in spaceflight analogs.
- 4. Recommend standards and guidelines appropriate for autonomous crew in long duration exploration missions with regards to self-scheduling.

Designs of New Countermeasures

Research Aims

- 1. Quantify crew performance envelope for the task of self-scheduling spaceflight operational plans.
- 2. Develop countermeasures that mitigate deficient crew self-scheduling performance.
- 3. Validate self-scheduling countermeasures by evaluating changes in crew performance with countermeasures in spaceflight analogs.
- 4. Recommend standards and guidelines appropriate for autonomous crew in long duration exploration missions with regards to self-scheduling.

HERA Campaign 6

YEAR 3: Validation in Analog Environment

HERA C6

- Each crewmember gets to self-schedule one mission day for the 4-person crew.
- Focusing on evaluating countermeasure aids: M1 & M2 (no aids) vs. M3 & M4 (with aids).
- Taking advantage of the opportunity that crew is allowed to self-schedule throughout most of the mission to collect additional operational-relevant self-scheduling data.
- Established data sharing agreements with BHP Lab & other HFBP grants in HERA.

Upcoming work

- Continued data collection for M2 through M4. Post-processing HERA data.
- Assessing additional opportunity for NEEMO analog and HERA Campaign 7.

Human Performance of Self-Scheduling

Next steps:

- Finish summarizing findings, through reports and publications.
- Continued data collection in analogs.
- Begin summarizing recommended standards and guidelines.

Questions?

jessica.j.marquez@nasa.gov