Computabilità e Algoritmi (Mod. A) 17 Settembre 2010

Esercizio 1

Enunciare formalmente e dimostrare la proprietà di chiusura dell'insieme delle funzioni calcolabili rispetto all'operazione di minimalizzazione illimitata.

Esercizio 2

Dire se è calcolabile la funzione $f : \mathbb{N} \to \mathbb{N}$ definita da

$$f(x) = \begin{cases} \phi_x(x) + 1 & \text{se per ogni } y \le x \text{ vale } \phi_y(y) \downarrow \\ 0 & \text{altrimenti} \end{cases}$$

Motivare adeguatamente la risposta.

Esercizio 3

Si dica che una funzione $f: \mathbb{N} \to \mathbb{N}$ è *quasi totale* se è indefinita su di un insieme finito di punti. Studiare la ricorsività dell'insieme $A = \{x \mid \varphi_x \text{ quasi totale}\}$, ovvero dire se A e \bar{A} sono ricorsivi/ricorsivamente enumerabili.

Esercizio 4

Detto $B = \{x \in \mathbb{N} \mid \varphi_x \text{ totale}\}$, dimostrare che $\bar{K} \leq B$.

Esercizio 5

Enunciare il teorema s-m-n ed utilizzarlo per dimostrare che esiste una funzione calcolabile totale $s: \mathbb{N}^2 \to \mathbb{N}$ tale che $W_{s(x,y)} = \{z: x*z = y\}$