Importing the libraries

```
In [78]:
```

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
from fcmeans import FCM
from sklearn.cluster import KMeans
```

In [2]:

```
!pip install fuzzy-c-means
Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/publi
c/simple/
Collecting fuzzy-c-means
  Downloading fuzzy c means-1.6.3-py3-none-any.whl (9.1 kB)
Requirement already satisfied: tabulate<0.9.0,>=0.8.9 in /usr/local/lib/python3.7/dist-pa
ckages (from fuzzy-c-means) (0.8.10)
Collecting typer<0.4.0,>=0.3.2
  Downloading typer-0.3.2-py3-none-any.whl (21 kB)
Requirement already satisfied: numpy<2.0.0,>=1.21.1 in /usr/local/lib/python3.7/dist-pack
ages (from fuzzy-c-means) (1.21.6)
Requirement already satisfied: pydantic<2.0.0,>=1.8.2 in /usr/local/lib/python3.7/dist-pa
ckages (from fuzzy-c-means) (1.9.2)
Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.7/dis
t-packages (from pydantic<2.0.0,>=1.8.2->fuzzy-c-means) (4.1.1)
Requirement already satisfied: click<7.2.0,>=7.1.1 in /usr/local/lib/python3.7/dist-packa
ges (from typer<0.4.0,>=0.3.2->fuzzy-c-means) (7.1.2)
Installing collected packages: typer, fuzzy-c-means
  Attempting uninstall: typer
    Found existing installation: typer 0.4.2
    Uninstalling typer-0.4.2:
      Successfully uninstalled typer-0.4.2
```

Load the Dataset

```
In [3]:
```

```
data=pd.read_csv("Mall_Customers.csv")
```

In [4]:

```
data.head()
```

Out[4]:

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	Male	19	15	39
1	2	Male	21	15	81
2	3	Female	20	16	6
3	4	Female	23	16	77
4	5	Female	31	17	40

Successfully installed fuzzy-c-means-1.6.3 typer-0.3.2

```
In [5]:
```

```
data.corr()
```

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
CustomerID	1.000000	-0.026763	0.977548	0.013835
Age	-0.026763	1.000000	-0.012398	-0.327227
Annual Income (k\$)	0.977548	-0.012398	1.000000	0.009903
Spending Score (1-100)	0.013835	-0.327227	0.009903	1.000000

Univariate Analysis

In [6]:

```
#Distribution of Annnual Income
plt.figure(figsize=(10, 6))
sns.set(style = 'whitegrid')
sns.distplot(data['Annual Income (k$)'])
plt.title('Distribution of Annual Income (k$)', fontsize = 20)
plt.xlabel('Range of Annual Income (k$)')
plt.ylabel('Count')
```

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: `dis tplot` is a deprecated function and will be removed in a future version. Please adapt you r code to use either `displot` (a figure-level function with similar flexibility) or `his tplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning)

Out[6]:

Text(0, 0.5, 'Count')

In [8]:

```
#Distribution of age
plt.figure(figsize=(10, 6))
sns.set(style = 'whitegrid')
sns.distplot(data['Age'])
plt.title('Distribution of Age', fontsize = 20)
plt.xlabel('Range of Age')
plt.ylabel('Count')
```

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: `dis tplot` is a deprecated function and will be removed in a future version. Please adapt you r code to use either `displot` (a figure-level function with similar flexibility) or `his tplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[8]: Text(0, 0.5, 'Count')

In [7]:

```
#Distribution of spending score
plt.figure(figsize=(10, 6))
sns.set(style = 'whitegrid')
sns.distplot(data['Spending Score (1-100)'])
plt.title('Distribution of Spending Score (1-100)', fontsize = 20)
plt.xlabel('Range of Spending Score (1-100)')
plt.ylabel('Count')
```

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: `dis tplot` is a deprecated function and will be removed in a future version. Please adapt you r code to use either `displot` (a figure-level function with similar flexibility) or `his tplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[7]:

Text(0, 0.5, 'Count')

Bivariate Analysis

In [10]:

```
genders = data.Gender.value_counts()
sns.set_style("darkgrid")
plt.figure(figsize=(10,4))
sns.barplot(x=genders.index, y=genders.values)
plt.show()
```


In [9]:

sns.scatterplot(data["Annual Income (k\$)"],data['Spending Score (1-100)'],color='darkoran
ge')

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional a rgument will be 'data', and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

Out[9]:

<matplotlib.axes. subplots.AxesSubplot at 0x7f93d7664790>

Multivariate Analysis

In [11]:

```
sns.pairplot(data)
```

Out[11]:

<seaborn.axisgrid.PairGrid at 0x7f93d750a690>

200 ² 150

Descriptive Statistics

In [12]:

```
data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	CustomerID	200 non-null	int64
1	Gender	200 non-null	object
2	Age	200 non-null	int64
3	Annual Income (k\$)	200 non-null	int64
4	Spending Score (1-100)	200 non-null	int64
	1		

dtypes: int64(4), object(1)
memory usage: 7.9+ KB

In [13]:

```
data.shape
```

Out[13]:

(200, 5)

In [14]:

```
data.describe().T
```

Out[14]:

	count	mean	std	min	25%	50%	75%	max
CustomerID	200.0	100.50	57.879185	1.0	50.75	100.5	150.25	200.0
Age	200.0	38.85	13.969007	18.0	28.75	36.0	49.00	70.0
Annual Income (k\$)	200.0	60.56	26.264721	15.0	41.50	61.5	78.00	137.0
Spending Score (1-100)	200.0	50.20	25.823522	1.0	34.75	50.0	73.00	99.0

In [15]:

data.isna().any()

Out[15]:

CustomerID False
Gender False
Age False
Annual Income (k\$) False
Spending Score (1-100) False
dtype: bool

In [79]:

data.mean()

Out[79]:

CustomerID 100.50
Gender 0.44
Age 38.85
Annual Income (k\$) 60.56
Spending Score (1-100) 50.20
dtype: float64

In [16]:

data.median()

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

"""Entry point for launching an IPython kernel.

Out[16]:

CustomerID 100.5
Age 36.0
Annual Income (k\$) 61.5
Spending Score (1-100) 50.0

dtype: float64

In [17]:

data.mode()

Out[17]:

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	Female	32.0	54.0	42.0
1	2	NaN	NaN	78.0	NaN
2	3	NaN	NaN	NaN	NaN
3	4	NaN	NaN	NaN	NaN
4	5	NaN	NaN	NaN	NaN
195	196	NaN	NaN	NaN	NaN

196	Customet	Ge hlaic t	Majk	Annual IncomeN(k\$)	Spending Score (1-N/20)
197	198	NaN	NaN	NaN	NaN
198	199	NaN	NaN	NaN	NaN
199	200	NaN	NaN	NaN	NaN

200 rows × 5 columns

In [18]:

data.var()

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

"""Entry point for launching an IPython kernel.

Out[18]:

CustomerID 3350.000000
Age 195.133166
Annual Income (k\$) 689.835578
Spending Score (1-100) 666.854271

dtype: float64

In [19]:

data.std()

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

"""Entry point for launching an IPython kernel.

Out[19]:

CustomerID 57.879185
Age 13.969007
Annual Income (k\$) 26.264721
Spending Score (1-100) 25.823522

dtype: float64

In [20]:

data.describe(include="all")

Out[20]:

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
count	200.000000	200	200.000000	200.000000	200.000000
unique	NaN	2	NaN	NaN	NaN
top	NaN	Female	NaN	NaN	NaN
freq	NaN	112	NaN	NaN	NaN
mean	100.500000	NaN	38.850000	60.560000	50.200000
std	57.879185	NaN	13.969007	26.264721	25.823522
min	1.000000	NaN	18.000000	15.000000	1.000000
25%	50.750000	NaN	28.750000	41.500000	34.750000
50%	100.500000	NaN	36.000000	61.500000	50.000000
75%	150.250000	NaN	49.000000	78.000000	73.000000
max	200.000000	NaN	70.000000	137.000000	99.000000

Handling Missing Values

```
In [21]:
data.isnull().sum()
Out[21]:
CustomerID
                        0
Gender
                        0
Age
                        0
Annual Income (k$)
                        0
                        0
Spending Score (1-100)
dtype: int64
In [22]:
new df = data.dropna(how='all')
```

new_df
Out[22]:

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	Male	19	15	39
1	2	Male	21	15	81
2	3	Female	20	16	6
3	4	Female	23	16	77
4	5	Female	31	17	40
195	196	Female	35	120	79
196	197	Female	45	126	28
197	198	Male	32	126	74
198	199	Male	32	137	18
199	200	Male	30	137	83

200 rows × 5 columns

```
In [132]:
```

new_df.head()

Out[132]:

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	Male	19	15	39
1	2	Male	21	15	81
2	3	Female	20	16	6
3	4	Female	23	16	77
4	5	Female	31	17	40

Finding the Outliers

In [133]:

```
sns.boxplot(data['Annual Income (k$)'])
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

Out[133]:

<matplotlib.axes. subplots.AxesSubplot at 0x7f93758e5a90>

In [25]:

```
data['Annual Income (k$)'].hist()
```

Out[25]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f93d2d38150>

Encoding

```
In [26]:
```

from sklearn.preprocessing import LabelEncoder
from collections import Counter as count

In [27]:

```
le=LabelEncoder()
```

In [28]:

```
data['Gender'].unique()
```

Out[28]:

array(['Male', 'Female'], dtype=object)

In [29]:

```
data['Gender'] = le.fit_transform(data['Gender'])
```

In [30]:

```
count(data['Gender'])
```

```
Out[30]:
Counter({1: 88, 0: 112})
Scale the data
In [74]:
from sklearn.preprocessing import StandardScaler
s = StandardScaler()
s xtrain = s.fit transform(xtrain)
In [37]:
s xtrain
Out[37]:
array([[ 0.27949921, -0.90453403, 0.81961441, 0.20094935, 0.23917839],
             [ 0.12380999, 1.1055416 , 1.95796776, 0.0470073 , 0.04673601],
             [-0.13567203, 1.1055416, -1.15353139, -0.06844923,
                                                                                                               0.04673601],
                1.10984169, -0.90453403, -0.47051938, 0.93217405,
                                                                                                               1.70174048],
            [ 1.10984169, -0.90453403, -0.47051938, 0.93217405, 1.70174048], [ 1.55961053, -0.90453403, -0.09106827, 1.97128284, 1.54778658], [ -0.60273967, 1.1055416, -1.53298251, -0.53027536, 0.31615534], [ 1.07524408, -0.90453403, -0.24284871, 0.89368854, 0.93197096], [ 0.1930052, -0.90453403, -1.60887273, 0.12397832, -0.1072179], [ -0.62003848, -0.90453403, 2.18563843, -0.53027536, -0.1072179], [ -0.63733728, -0.90453403, 0.28838285, -0.53027536, -0.03024095], [ -0.6373728, -0.90453403, 0.28838285, -0.53027536, -0.03024095], [ -0.6373728, -0.90453403, 0.28838285, -0.53027536, -0.03024095], [ -0.6373728, -0.90453403, 0.28838285, -0.53027536, -0.03024095], [ -0.6373728, -0.90453403, 0.28838285, -0.53027536, -0.03024095], [ -0.6373728, -0.90453403, 0.28838285, -0.53027536, -0.03024095], [ -0.6373728, -0.90453403, 0.28838285, -0.53027536, -0.03024095], [ -0.6373728, -0.90453403, 0.28838285, -0.53027536, -0.03024095], [ -0.6373728, -0.90453403, 0.28838285, -0.53027536, -0.03024095], [ -0.6373728, -0.90453403, -0.90453403, -0.28838285, -0.53027536, -0.03024095], [ -0.6373728, -0.90453403, -0.90453403, -0.28838285, -0.53027536, -0.03024095], [ -0.6373728, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.90453403, -0.
              \hbox{\tt [ 0.29679801, 1.1055416 , -0.92586072, 0.20094935, 0.20068991], } 
             \hbox{\tt [-1.12170372, -0.90453403, -0.24284871, -0.95361598, -0.95396437],}
             [1.61150694, -0.90453403, 0.4401633, 2.47159448, -0.87698742],
             [ 1.00604888, -0.90453403, -0.77408028,  0.66277547,  1.23987877],
              [-0.06647682, \quad 1.1055416 \ , \quad -1.45709229, \quad -0.02996372, \quad -0.06872942] \, , 
             [0.85035966, -0.90453403, 0.36427307, 0.62428996, -1.18489523],
             [-0.34325765, -0.90453403, 0.51605352, -0.29936229, -0.2611718],
             [1.09254289, 1.1055416, 0.21249263, 0.93217405, -1.18489523],
             [0.24490161, -0.90453403, 0.74372419, 0.12397832, 0.31615534],
             [-1.06980732, 1.1055416, -1.15353139, -0.91513047, 1.58627505],
             [-0.39515405, 1.1055416, 1.35084597, -0.29936229, 0.00824753],
             [-0.37785525, 1.1055416, -0.09106827, -0.29936229, 0.16220144],
             [-1.22549653, 1.1055416, 1.04728508, -1.10755802, -1.80071085], [ 1.16173809, 1.1055416, 0.06071218, 0.97065956, -1.45431456], [-0.94871571, -0.90453403, -0.77408028, -0.83815945, -0.33814875],
             [-1.34658814, 1.1055416, -0.77408028, -1.29998557, 1.20139029],
             [-0.8622217, 1.1055416, 1.50262642, -0.72270291, 0.35464382],
             [0.03731599, -0.90453403, -1.38120206, 0.00852179, -0.33814875],
             [-1.48497856, 1.1055416, -1.45709229, -1.56938415, 0.58557467],
             [ 1.57690933, -0.90453403, 0.59194374, 2.24068142, -1.33884913],
             [-0.8968193, 1.1055416, -0.47051938, -0.76118842, 0.35464382],
              [-1.53687496, \quad 1.1055416 \ , \quad -0.16695849, \quad -1.60786966, \quad -1.45431456] \, , 
             [-0.36055645, 1.1055416, 2.10974821, -0.29936229, -0.37663723],
             [-0.32595885, -0.90453403, -1.38120206, -0.29936229, 0.23917839],
             [ 1.40392132, -0.90453403,  0.1366024 ,  1.43248569, -0.45361418],
             [-1.27739294, -0.90453403, -1.22942162, -1.26150006, 1.39383267],
             [-1.72716178, -0.90453403, -1.22942162, -1.7618117, 1.00894791],
             [-1.38118575, 1.1055416, -0.62229983, -1.41544211, 0.85499401],
             [0.76386566, -0.90453403, -0.54640961, 0.58580445, 0.89348248],
             [ 1.47311652, -0.90453403, 0.1366024 , 1.58642773, -1.30036066],
             [-1.13900252, -0.90453403, -0.69819005, -1.06907251,
                                                                                                               0.85499401],
             [ 1.49041532, -0.90453403, -0.24284871, 1.58642773, 1.31685572], [ 1.43851892, -0.90453403, 1.12317531, 1.50945671, -1.03094132], [ 1.45581772, 1.1055416, -0.8499705, 1.50945671, 0.66255162],
              \hbox{\tt [-1.00061211, -0.90453403, -1.15353139, -0.87664496, 0.5470862], }
              \hbox{\tt [ 0.50438363, -0.90453403, -1.07764117, 0.3933769, -0.64605656], } 
             [-0.10107443, -0.90453403, -0.92586072, -0.06844923, -0.03024095],
             [ 1.31742731, 1.1055416 , -0.31873894, 1.20157263, 1.5092981 ],
```

[1.52501293, -0.90453403, -0.54640961, 1.58642773, 0.7010401], [-1.05250852, 1.1055416, 0.66783397, -0.87664496, -0.56907961], [0.45248723, 1.1055416, -0.09106827, 0.35489139, 0.93197096], [0.48708483, 1.1055416, -0.01517804, 0.35489139, 0.93197096],

```
[-0.41245286, -0.90453403, 0.74372419, -0.29936229, -0.33814875],
[0.98875008, -0.90453403, 1.27495575, 0.66277547, -0.60756809],
[ 1.2828297 , 1.1055416 , -0.92586072, 1.00914507, 0.7010401 ],
 0.69467045, -0.90453403, -0.54640961,
                                                 0.54731894, 1.39383267],
[ 1.12714049, -0.90453403, -0.24284871, 0.97065956, -0.9154759 ],
[-1.57147257, -0.90453403, 1.4267362, -1.60786966, -1.37733761], [ 0.1584076, -0.90453403, -0.09106827, 0.08549281, -0.33814875],
[-1.58877137, -0.90453403, -0.31873894, -1.64635517, 1.85569438], [-1.39848455, -0.90453403, 0.51605352, -1.41544211, -1.76222237], [ 0.05461479, -0.90453403, 2.03385798, 0.0470073, -0.03024095],
[-0.30866005, 1.1055416, 0.66783397, -0.29936229, -0.18419485],
[\ 0.74656685,\ 1.1055416\ ,\ 0.66783397,\ 0.58580445,\ -0.56907961],
[-1.67526538, -0.90453403, -0.31873894, -1.68484068, -1.72373389],
[\ 0.43518842,\ 1.1055416\ ,\ 1.50262642,\ 0.35489139,\ -1.53129151],
[ 0.79846326, 1.1055416 , -0.39462916, 0.62428996, 1.5092981 ],
[ 0.90225607, -0.90453403, -0.92586072, 0.62428996, 1.47080962],
[0.78116446, -0.90453403, -0.39462916, 0.62428996, -1.10791828],
[0.02001718, 1.1055416, 0.74372419, 0.00852179, 0.20068991],
[-1.19089893, -0.90453403, 0.74372419, -1.10755802, -1.41582609],
[0.08921239, 1.1055416, 2.18563843, 0.0470073, -0.29966028],
[-0.9141181, -0.90453403, 0.74372419, -0.76118842, 0.04673601],
[0.53898123, 1.1055416, -1.45709229, 0.43186241, -1.76222237],
[0.71196925, 1.1055416, -1.07764117, 0.58580445, -1.49280304],
[ 0.72926805, 1.1055416 , -0.8499705 , 0.58580445, 1.77871743], [-1.70986298, -0.90453403, -0.62229983, -1.72332619, -0.41512571],
[ 0.52168243, -0.90453403, -0.62229983, 0.3933769, 0.77801705], [-1.01791091, -0.90453403, 0.74372419, -0.87664496, -0.87698742], [-0.11837323, -0.90453403, 0.59194374, -0.06844923, -0.14570637],
[ 1.2655309 , 1.1055416 , 1.4267362 , 1.00914507, -1.37733761], [-1.29469174, -0.90453403, 0.06071218, -1.26150006, -0.76152199],
[\ 0.55628004,\ -0.90453403,\ -0.77408028,\ 0.43186241,\ 1.43232115],
[ 1.17903689, 1.1055416 , -0.8499705 , 0.97065956, 0.93197096], [ 1.33472611, -0.90453403, -0.16695849, 1.35551467, -0.72303352],
[-0.55084327, -0.90453403, 0.59194374, -0.49178985, -0.33814875],
[0.26220041, -0.90453403, 0.89550464, 0.20094935, -0.29966028],
[1.54231173, 1.1055416, -0.47051938, 1.97128284, -1.64675694],
[ 1.62880574, 1.1055416 , -0.54640961, 2.47159448, 0.89348248],
[0.59087764, 1.1055416, -0.54640961, 0.43186241, 0.85499401],
[-0.49894686, 1.1055416, 1.50262642, -0.29936229, -0.14570637],
[1.36932371, 1.1055416, 0.51605352, 1.39400018, -1.37733761],
[-0.15297083, -0.90453403, -0.54640961, -0.06844923, -0.33814875],
 [-1.46767976, \quad 1.1055416 \quad , \quad 0.97139486, \quad -1.49241313, \quad -0.83849894] \, , 
[-1.31199054, 1.1055416, -0.31873894, -1.29998557, 0.39313229],
[-1.15630133, -0.90453403, 0.21249263, -1.06907251, -1.30036066],
 [-0.79302649, \quad 1.1055416 \ , \quad 2.26152865, \quad -0.6842174 \ , \quad -0.18419485] \, , 
[-1.24279533, -0.90453403, -1.38120206, -1.22301455, 0.85499401],
[-0.65463608, 1.1055416, -1.60887273, -0.53027536, 0.31615534],
[ 0.64277404, -0.90453403, 1.35084597, 0.50883343, -1.76222237],
[-0.23946484, -0.90453403, 0.81961441, -0.14542025, -0.18419485],
[0.95415247, 1.1055416, -0.39462916, 0.62428996, -1.91617627],
[-1.26009414, 1.1055416, 1.57851664, -1.22301455, -1.80071085],
[-0.29136124, -0.90453403, 1.19906553, -0.18390576, 0.27766686],
[-0.18756843, 1.1055416, 0.66783397, -0.06844923, -0.06872942],
[0.66007285, 1.1055416, -0.54640961, 0.50883343, 1.62476353],
[0.40059082, 1.1055416, 0.28838285, 0.35489139, -0.60756809],
[0.86765846, -0.90453403, -0.09106827, 0.62428996, 0.97045943],
[-1.55417376, -0.90453403, -1.15353139, -1.60786966, 1.00894791],
[-1.55417376, -0.90453403, -1.15553139, -1.60786966, 1.00894791], [-0.44705046, 1.1055416, 0.06071218, -0.29936229, -0.1072179], [1.35202491, -0.90453403, -0.54640961, 1.35551467, 1.35534419], [1.38662251, -0.90453403, -0.77408028, 1.39400018, 1.43232115], [-1.20819773, 1.1055416, -1.60887273, -1.10755802, 1.58627505], [-0.70653248, -0.90453403, 2.10974821, -0.56876087, 0.04673601], [-0.33133561, -0.90453403, 0.06071218, 0.27782037, 0.277666861]
[0.33139561, -0.90453403, 0.06071218, 0.27792037, 0.27766686],
[ 0.07191359, 1.1055416 , 1.12317531, 0.0470073 , -0.18419485], [-0.25676364, -0.90453403, -0.39462916, -0.14542025, 0.35464382],
[-0.8449229, -0.90453403, 0.81961441, -0.72270291, -0.22268333],
[0.62547524, -0.90453403, -0.31873894, 0.47034792, 0.81650553],
[-0.04917802, -0.90453403, -1.22942162, 0.00852179, -0.37663723],
```

```
[-1.50227/36, -0.90453403, -0.31873894, -1.56938415, -0.60756809],
       [0.210304, -0.90453403, -1.53298251, 0.12397832, -0.03024095],
       [ 1.05794528, 1.1055416 , 0.81961441, 0.89368854, -0.95396437],
        [-1.08710612, -0.90453403, 1.95796776, -0.91513047, -0.60756809],
        [-1.77905819, 1.1055416, -1.53298251, -1.80029721, -0.45361418],
       [-0.51624567, -0.90453403, 1.57851664, -0.45330434, 0.20068991], [-1.64066777, 1.1055416, 1.88207754, -1.64635517, -1.83919932], [ 1.59420813, -0.90453403, -0.31873894, 2.24068142, 1.08592486],
                                                    2.24068142,
       [ 0.93685367, -0.90453403, -0.69819005,
                                                    0.62428996,
                                                                  1.04743639],
       [ 0.91955487, 1.1055416 , -0.16695849,
                                                    0.62428996, -1.91617627],
                                                    0.27792037,
                                                                  1.54778658],
       [ 0.34869442, 1.1055416 , -0.01517804,
        [0.1757064, 1.1055416, -1.53298251, 0.08549281, -0.18419485],
        [-0.67193488, 1.1055416, 1.80618731, -0.53027536, 0.00824753],
       [-1.51957616, 1.1055416, -1.30531184, -1.60786966, 1.08592486],
       [ 0.38329202, -0.90453403, -0.62229983,  0.31640588,  1.00894791],
        [-1.62336897, -0.90453403, -0.69819005, -1.64635517, 0.81650553]])
In [38]:
s xtest=s.transform(xtest)
In [39]:
s xtest
Out[39]:
array([[-7.58428889e-01, 1.10554160e+00, 1.04728508e+00,
         -6.07246381e-01, -1.84194850e-01],
        [-1.69256418e+00, -9.04534034e-01, -1.30531184e+00,
       -1.72332619e+00, 9.70459433e-01], [-1.43308215e+00, 1.10554160e+00, -3.18738938e-01, -1.45392762e+00, -6.07568087e-01],
        [ 1.64610454e+00, 1.10554160e+00, -5.46409608e-01,
          2.89493510e+00, -1.26187218e+00],
        [-8.79520500e-01, -9.04534034e-01, -6.22299831e-01,
       -7.22702913e-01, 1.23712959e-01], [-1.45038095e+00, -9.04534034e-01, -3.18738938e-01,
        -1.49241313e+00, 1.81720591e+00],
        [ 1.02334768e+00, 1.10554160e+00, -1.53298251e+00,
          7.39746496e-01, -1.76222237e+00],
        [-8.27624095e-01, 1.10554160e+00, 5.91943742e-01,
         -7.22702913e-01, -3.76637231e-01],
        [-5.85440873e-01, -9.04534034e-01, -5.46409608e-01,
        -5.30275359e-01, -1.45706374e-01],
        [-1.74446058e+00, -9.04534034e-01, -1.45709229e+00,
         -1.76181170e+00, -1.72373389e+00],
        [-8.37756251e-02, 1.10554160e+00,
                                               6.67833965e-01,
       -2.99637191e-02, -3.38148754e-01], [-1.60607017e+00, 1.10554160e+00, -1.64635517e+00, -1.41582609e+00],
                                              2.10974821e+00,
        [-4.81648063e-01, 1.10554160e+00, -1.00175095e+00,
        -2.99362295e-01, 1.23712959e-01],
        [ 6.77371647e-01, -9.04534034e-01, -8.49970501e-01,
          5.47318943e-01, -4.15125707e-01],
        [ 3.65993217e-01, -9.04534034e-01, -1.22942162e+00,
          3.16405878e-01, -8.38498944e-01],
        [-6.89233682e-01, -9.04534034e-01, 1.12317531e+00,
         -5.68760870e-01, 3.16155339e-01],
        [ 1.06511193e-01, 1.10554160e+00, 2.03385798e+00,
          4.70073025e-02, -1.07217898e-01],
        [-4.29751658e-01, -9.04534034e-01, -1.22942162e+00,
        -2.99362295e-01, 4.67360067e-02],
        [ 1.41108796e-01, -9.04534034e-01, -1.53298251e+00,
          4.70073025e-02, 1.23712959e-01],
        [ 1.42122012e+00, 1.10554160e+00, -6.98190054e-01,
          1.43248569e+00, 1.77871743e+00],
        [ 8.84957267e-01, -9.04534034e-01, 5.91943742e-01,
          6.24289964e-01, -1.33884913e+00],
        [ 4.69786027e-01, 1.10554160e+00, 5.91943742e-01,
          3.54891389e-01, -1.60826847e+00],
        [-7.23831286e-01, 1.10554160e+00, -1.53298251e+00,
```

C 0704C201 - 01

1 (0001/05= 011

```
-0.U/240301e-U1, 1.022U1433e-U1],
[-2.74062443e-01, -9.04534034e-01, -1.30531184e+00,
 -1.83905762e-01, 1.62201435e-01],
[-1.45804185e-02, 1.10554160e+00, 2.10974821e+00,
  8.52179167e-03, 3.16155339e-01],
[ 3.14096813e-01, -9.04534034e-01, -9.10682680e-02,
  2.00949346e-01, -4.15125707e-01],
[ 5.73578837e-01, -9.04534034e-01,
                                     3.64273072e-01,
  4.31862410e-01, -1.68524542e+00],
[-1.76175938e+00, 1.10554160e+00, -1.38120206e+00,
 -1.80029721e+00, 1.16290181e+00],
[-9.66014509e-01, -9.04534034e-01, -9.25860724e-01,
-8.38159445e-01, -1.45706374e-01], [ 1.19633570e+00, 1.10554160e+00, -2.42848715e-01,
  9.70659561e-01, -1.56977999e+00],
[ 9.71451275e-01, -9.04534034e-01, -6.98190054e-01,
  6.24289964e-01, 8.54994005e-01],
[-1.10440492e+00, -9.04534034e-01, -1.45709229e+00,
 -9.53615978e-01, 9.31970957e-01],
[-4.64349261e-01, -9.04534034e-01,
                                     4.40163295e-01,
 -2.99362295e-01, 8.52244828e-02],
[-2.04867237e-01, 1.10554160e+00, -1.60887273e+00,
 -1.06934741e-01, -3.76637231e-01],
[-1.17360013e+00, -9.04534034e-01, -1.38120206e+00,
-1.10755802e+00, 1.16290181e+00],
[ 1.30012851e+00, 1.10554160e+00, 1.50262642e+00,
  1.20157263e+00, -1.41582609e+00],
[ 4.17889622e-01, 1.10554160e+00, 6.07121786e-02,
  3.54891389e-01, 1.70174048e+00],
[ 1.14443929e+00, 1.10554160e+00, -5.46409608e-01,
9.70659561e-01, 4.70109244e-01], [-9.83313310e-01, -9.04534034e-01, 8.19614412e-01,
-8.38159445e-01, 1.62201435e-01], [ 1.23093330e+00, -9.04534034e-01, 9.71394858e-01,
  1.00914507e+00, -1.45431456e+00],
[ 1.50771413e+00, -9.04534034e-01, -3.94629161e-01,
  1.58642773e+00, -1.06942980e+00],
[-1.65796657e+00, -9.04534034e-01, -1.22942162e+00,
-1.68484068e+00, 1.66325200e+00],
[-1.32928934e+00, -9.04534034e-01, 4.40163295e-01,
 -1.29998557e+00, -7.23033516e-01],
[ 6.08176440e-01, 1.10554160e+00, -1.53298251e+00,
  4.70347921e-01, -1.56977999e+00],
[-7.75727691e-01, -9.04534034e-01, -9.25860724e-01,
-6.07246381e-01, 8.24753060e-03],
[-5.33544468e-01, -9.04534034e-01, 1.57851664e+00,
 -4.53304338e-01, -6.87294216e-02],
[-8.10325294e-01, -9.04534034e-01,
                                    8.95504635e-01,
-6.84217402e-01, -3.02409455e-02],
[ 2.27602804e-01, -9.04534034e-01, 1.80618731e+00,
  1.23978324e-01, -2.99660278e-01],
[-1.36388695e+00, -9.04534034e-01, 1.12317531e+00,
 -1.29998557e+00, -1.41582609e+00],
[-1.03520972e+00, -9.04534034e-01, -6.22299831e-01,
 -8.76644956e-01, 3.93132292e-01],
[-3.18792202e-02, -9.04534034e-01,
                                     7.43724188e-01,
  8.52179167e-03, -1.07217898e-01],
[ 1.04064648e+00, -9.04534034e-01, -6.22299831e-01,
  7.39746496e-01, 1.62476353e+00],
[-1.41578335e+00, 1.10554160e+00, -1.07764117e+00,
-1.45392762e+00, 8.54994005e-01],
[-7.41130087e-01, 1.10554160e+00, 2.33741888e+00,
-6.07246381e-01, 2.00689911e-01],
[ 1.24823210e+00, -9.04534034e-01, -6.98190054e-01, 1.00914507e+00, 1.35534419e+00],
[-5.68142071e-01, 1.10554160e+00, 2.33741888e+00,
-4.91789848e-01, 1.62201435e-01],
[-2.22166038e-01, -9.04534034e-01, 2.18563843e+00,
  1 00001711 - 01
                  1 (0001/05= 011
```

```
-1.00934/41e-01, 1.02201435e-01],
[-9.31416905e-01, -9.04534034e-01, -6.22299831e-01,
-8.38159445e-01, -3.38148754e-01]])
```

Split the data into dependent and independent variables

In [31]:

```
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 5 columns):
# Column
                         Non-Null Count Dtype
                         -----
                         200 non-null int64
0 CustomerID
1 Gender
                         200 non-null int64
2 Age
                         200 non-null int64
3 Annual Income (k$) 200 non-null int64
4 Spending Score (1-100) 200 non-null
                                       int64
dtypes: int64(5)
memory usage: 7.9 KB
In [32]:
x=data.iloc[:,0:10]
```

In [33]:

y=data['Spending Score (1-100)']

X

Out[33]:

	Genuer	Age	Annual Income (k\$)	Spending Score (1-100)
1	1	19	15	39
2	1	21	15	81
3	0	20	16	6
4	0	23	16	77
5	0	31	17	40
196	0	35	120	79
197	0	45	126	28
198	1	32	126	74
199	1	32	137	18
200	1	30	137	83
	2 3 4 5 196 197 198 199	2 1 3 0 4 0 5 0 196 0 197 0 198 1 199 1	2 1 21 3 0 20 4 0 23 5 0 31 196 0 35 197 0 45 198 1 32 199 1 32	2 1 21 15 3 0 20 16 4 0 23 16 5 0 31 17 196 0 35 120 197 0 45 126 198 1 32 126 199 1 32 137

200 rows × 5 columns

In [34]:

```
Y
Out[34]:
```

```
0 39
1 81
2 6
3 77
4 40
...
195 79
196 28
```

74

10

197

1 0 0

190 10 199 83 Name: Spending Score (1-100), Length: 200, dtype: int64

Split bold text the data for training and testing

```
In [124]:
```

```
from sklearn.model_selection import train_test_split
xtrain,xtest,ytrain,ytest=train_test_split(x,y,test_size=0.5,random_state=0)
```

Clustering Algorithm

```
In [40]:
```

```
#Importing KMeans from sklearn
from sklearn.cluster import KMeans
```

Adding cluster data with the primary dataset

```
In [41]:
```

```
df1=data[["CustomerID", "Gender", "Age", "Annual Income (k$)", "Spending Score (1-100)"]]
X=df1[["Annual Income (k$)", "Spending Score (1-100)"]]
```

```
In [42]:
```

```
wcss=[]
for i in range(1,11):
    km=KMeans(n_clusters=i)
    km.fit(X)
    wcss.append(km.inertia_)
```

In [43]:

```
X.head()
```

Out[43]:

Annual Income (k\$) Spending Score (1-100)

0	15	39
1	15	81
2	16	6
3	16	77
4	17	40

In [44]:

```
#The elbow curve
plt.figure(figsize=(12,6))
plt.plot(range(1,11),wcss)
plt.plot(range(1,11),wcss, linewidth=2, color="red", marker ="8")
plt.xlabel("K Value")
plt.xticks(np.arange(1,11,1))
plt.ylabel("WCSS")
plt.show()
```


In [45]:

```
#Taking 5 clusters
km1=KMeans(n_clusters=5)
#Fitting the input data
km1.fit(X)
#predicting the labels of the input data
y=km1.predict(X)
#adding the labels to a column named label
df1["label"] = y
#The new dataframe with the clustering done
df1.head()
```

Out[45]:

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	label
0	1	1	19	15	39	4
1	2	1	21	15	81	3
2	3	0	20	16	6	4
3	4	0	23	16	77	3
4	5	0	31	17	40	4

In [46]:

In [47]:

```
#Taking the features
df2=df1[["CustomerID", "Gender", "Age", "Annual Income (k$)", "Spending Score (1-100)"]]
X2=df2[["Age", "Annual Income (k$)", "Spending Score (1-100)"]]
#Now we calculate the Within Cluster Sum of Squared Errors (WSS) for different values of
k.
wcss = []
for k in range (1,11):
    kmeans = KMeans(n clusters=k, init="k-means++")
    kmeans.fit(X2)
    wcss.append(kmeans.inertia)
plt.figure(figsize=(12,6))
plt.plot(range(1,11), wcss, linewidth=2, color="red", marker ="8")
plt.xlabel("K Value")
plt.xticks(np.arange(1,11,1))
plt.ylabel("WCSS")
plt.show()
```


In [48]:

```
#We choose the k for which WSS starts to diminish
km2 = KMeans(n_clusters=5)
y2 = km.fit_predict(X2)
df2["label"] = y2
#The data with labels
df2.head()
```

Out[48]:

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	label
0	1	1	19	15	39	0
1	2	1	21	15	81	4
2	3	0	20	16	6	7
3	4	0	23	16	77	4
4	5	0	31	17	40	0

In [49]:

```
#3D Plot as we did the clustering on the basis of 3 input features
fig = plt.figure(figsize=(20,10))
ax = fig.add subplot(111, projection='3d')
ax.scatter(df2.Age[df2.label == 0], df2["Annual Income (k$)"][df2.label == 0], df2["Spen Income (k$)"][df2.label == 0]
ding Score (1-100)"][df2.label == 0], c='purple', s=60)
ax.scatter(df2.Age[df2.label == 1], df2["Annual Income (k$)"][df2.label == 1], df2["Spen
ding Score (1-100)"][df2.label == 1], c='red', s=60)
ax.scatter(df2.Age[df2.label == 2], df2["Annual Income (k$)"][df2.label == 2], df2["Spen == 2], df2["Spen == 2]]
ding Score (1-100)"][df2.label == 2], c='blue', s=60)
ax.scatter(df2.Age[df2.label == 3], df2["Annual Income (k$)"][df2.label == 3], df2["Spen
ding Score (1-100)"][df2.label == 3], c='green', s=60)
ax.scatter(df2.Age[df2.label == 4], df2["Annual Income (k\$)"][df2.label == 4], df2["Spen | ax.scatter(df2.Age[df2.label == 4], df2["Spen | ax.scatter(df2.Age[df2.label == 4])]
ding Score (1-100)"][df2.label == 4], c='yellow', s=60)
ax.view init(35, 185)
plt.xlabel("Age")
plt.ylabel("Annual Income (k$)")
ax.set zlabel('Spending Score (1-100)')
plt.show()
```


In [50]:

```
cust1=df2[df2["label"]==1]
print('Number of customer in 1st group=', len(cust1))
print('They are -', cust1["CustomerID"].values)
print("----")
cust2=df2[df2["label"]==2]
print('Number of customer in 2nd group=', len(cust2))
print('They are -', cust2["CustomerID"].values)
print("-----
cust3=df2[df2["label"]==0]
print('Number of customer in 3rd group=', len(cust3))
print('They are -', cust3["CustomerID"].values)
print("----")
cust4=df2[df2["label"]==3]
print('Number of customer in 4th group=', len(cust4))
print('They are -', cust4["CustomerID"].values)
print("-----
cust5=df2[df2["label"]==4]
print('Number of customer in 5th group=', len(cust5))
print('They are -', cust5["CustomerID"].values)
print("-----
```

```
Number of customer in 1st group= 25
They are - [ 67 72 77 78 80 82 84 86 90 93 94 97 99 102 105 108 113 118 119 120 122 123 127 147 161]
```

Number of customer in 2nd group= 11
They are - [180 182 184 186 188 190 192 194 196 198 200]

Number of customer in 3rd group= 13
They are - [1 5 17 19 21 27 29 39 43 45 49 50 56]

Number of customer in 4th group= 10
They are - [181 183 185 187 189 191 193 195 197 199]

Number of customer in 5th group= 23
They are - [2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46]

Build the Model

```
In [128]:
```

```
from sklearn.linear_model import LogisticRegression
classifier = LogisticRegression(random_state = 0)
```

Train the dataset

```
In [129]:
```

```
classifier.fit(xtrain, ytrain)
/usr/local/lib/python3.7/dist-packages/sklearn/linear_model/_logistic.py:818: Convergence
Warning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown in:
    https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
    extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG,

Out[129]:
LogisticRegression(random_state=0)
```

In [130]:

```
y_pred = classifier.predict(xtest)
```

Test the model

```
In [131]:
```

```
from sklearn.metrics import roc_curve
fpr, tpr,thresholds = roc_curve(ytest, y_pred,pos_label=0)

#create ROC curve
plt.plot(fpr,tpr)
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()
```



```
0.0 0.2 0.4 0.6 0.8 1.0 False Positive Rate
```

Evaluation Metrics

```
In [59]:

from sklearn.metrics import confusion_matrix
cm = confusion_matrix(ytest, y_pred)

print ("Confusion Matrix : \n", cm)

Confusion Matrix :
   [[0 0 0 ... 0 0 0]
   [0 0 0 ... 0 0 0]
   [0 0 0 ... 0 0 0]
   [0 0 0 ... 0 0 0]
   [0 0 0 ... 0 0 0]
   [0 0 0 ... 0 0 0]
   [10 0 0 ... 0 0 0]
   [10 0 0 ... 0 0 0]
   [10 0 0 ... 0 0 0]

In [60]:

from sklearn.metrics import accuracy_score
   print ("Accuracy : ", accuracy_score(ytest, y_pred))

Accuracy : 0.0
```