

Bloque I: Introducción

Tema 2: Introducción a TCP/IP

Índice

- Bloque I: Introducción
 - Tema 2: Introducción a TCP/IP
 - Introducción
 - Niveles y protocolos
 - Direcciones IP y nombres DNS
 - Números de puerto
 - Transmisión de datos
 - Encapsulación
 - Demultiplexión
 - Interfaz de loopback
 - El modelo cliente-servidor

Referencias

Capítulo 1 de "TCP/IP Illustrated, Volume 1: The Protocols",
 W. Richard Stevens, Addison Wesley, 1994.

Introducción

- La familia de protocolos TCP/IP permite a ordenadores de todos los tamaños, de diferentes fabricantes, ejecutando sistemas operativos diferentes, comunicarse entre ellos.
- Un poco de historia:
 - Desarrollado desde finales de los 60.
 - Inicialmente con un proyecto financiado por el gobierno americano para investigar redes de conmutación de paquetes → ARPANET
 - Inicialmente conectó: UCLA, UC Santa Bárbara, Instituto de Investigaciones de Stanford y la Universidad de Utah.
 - En 1971 había dos docenas de nodos.
 - En 1974 se consolidan 62 nodos.
 - En 1981, se superaron los 200 nodos.
 - Hasta mediados los ochenta no se alcanzó una masa crítica de importancia.
 - En 1994 se había incorporado hasta 45.000 redes pequeñas.
 - Además, el Web:
 - En 1989 surge el World Wide Web, desarrollada en el CERN.
 - En 1991 aparece el primer servidor y el navegador.
 - En 1993 aparece el primer navegador gráfico.

Sistema final Sistema final

Aplicación]			Aplicación
Transporte		Router	. .	Transporte
Red]	Red		Red
Enlace][Enlace		Enlace
Físico		Físico		Físico

Medio físico

- **Nivel físico**: transporta los bits por el medio físico (RJ-45, coaxial, aire)
- Nivel de enlace: también llamado capa de enlace de datos o interfaz de red.
 - Incluye el correspondiente "driver" de dispositivos en el sistema operativo y la correspondiente tarjeta de red en el ordenador.
 - Juntos (driver y tarjeta de red) gestionan todos los detalles hardware de la interfaz física con el cable (o medio utilizado).
- Nivel de red: gestiona el movimiento de paquetes por la red (IP, ICMP, IGMP).
 - Enrutamiento
 - Subredes

- Nivel de transporte: gestiona para el nivel de aplicación el flujo de datos entre dos máquinas.
 - TCP (Transmission Control Protocol): proporciona un flujo fiable de datos entre dos máquinas.
 - Divide los datos que le pasa el nivel de aplicación en trozos (paquetes) para el nivel de red.
 - Confirma la recepción de paquetes.
 - Pone "timeouts" para asegurar que el otro extremo confirma paquetes enviados.
 - UDP (User Datagram Protocol): envía paquetes de datos (datagramas) de una máquina a otra, pero no hay garantía de la recepción de los datagramas por el otro extremo.
 - Más simple que TCP.
 - Cualquier nivel de fiabilidad debe ser añadido por el nivel de aplicación.
- Nivel de aplicación: gestiona los detalles de cada aplicación.
 - Telnet, FTP, SMTP (e-mail), HTTP (Web), etc.

The late

Niveles y protocolos

- El nivel de enlace → gestiona detalles del medio de comunicación (ethernet, token ring ...).
- El nivel de aplicación → gestiona detalles de una aplicación específica de usuario (ftp, telnet ...).
- ¿Para qué necesito dos niveles más intermedios?
 ¿No sería suficiente con uno?
 - Respuesta: ¿Cómo han evolucionado las redes?

Sistema final Sistema final

Aplicación	Protocolo HTTP	Aplicación
Transporte	Protocolo TCP	Transporte
Red	Protocolo IP	Red
Enlace	Protocolo Ethernet	Enlace
Físico		Físico

Medio físico

- Para interconectar dos o más redes (y crear una interred o internet) necesito un router:
 - Hardware y software de propósito específico que permite conectar diferentes tipos de redes físicas.
 - Implementa los niveles de red, enlace y físico.
- Los niveles de transporte y aplicación utilizan protocolos extremo a extremo.
- El nivel de red utiliza un protocolo salto a salto que se utiliza en los sistemas finales y en cada router.

Sistema final Sistema final **Aplicación Aplicación** Router Transporte Transporte Red Red Red **Enlace** Enlace **Enlace** Enlace **Físico Físico Físico Físico** Medio físico Medio físico

- Hay otros dispositivos de interconexión de LANs: repetidores, puentes y conmutadores.
 - Sólo implementan los niveles físico y de enlace.
 - Se basan en las direcciones del nivel de enlace (direcciones MAC)
- **Repetidor** (*hub*): repite cada trama recibida por sus puertos de entrada por el resto de puertos de salida.
 - La red se comporta con si fuese un único segmento LAN (todos oyen todo).

The late

- **Puente** (*bridge*): permite conectar distintos segmentos LAN. Una trama de entrada sólo es reenviada al segmento destino (si es necesario).
 - Puede realizar conversiones entre distintos protocolos de enlace.
 - Realiza comprobación de errores.

- Conmutador (switch): permite conectar distintos equipos para formar una LAN.
 - Una trama de entrada es enviada (conmutada) sólo al equipo destino (usando la dirección MAC).
 - Permite obtener una mayor velocidad efectiva.

Direcciones IP y DNS

 Cada interfaz en una internet debe tener una única dirección Internet (dirección IP). Son 32 bits, agrupados en 4 bytes.

Direcciones IP y DNS

- Hay tres tipos de direcciones IP:
 - unicast: destinadas para una única máquina.
 - broadcast: destinadas para todas las máquinas en una red determinada.
 - multicast: destinadas a un conjunto de máquinas que pertenecen a un grupo multicast.
- DNS (Domain Name System):
 - Base de datos distribuida utilizada por TCP/IP que hace la correspondencia entre nombres de máquinas y direcciones IP, y proporciona información de enrutamiento para e-mail.
 - Cada organización mantiene su propia base de datos de información.
 - Mantiene un servidor que otros sistemas (clientes) a través de Internet pueden consultar.
 - http://www.internic.net/whois.html
 - https://www.nic.es/

Números de puerto

- TCP y UDP identifican aplicaciones usando números de puertos de 16 bits.
- Los servidores se conocen normalmente por un número de puerto fijo y conocido (puertos 1 - 1023)
- Por ejemplo: ftp puerto 21, telnet puerto 23, SMTP puerto 25.
- Los clientes no se preocupan del puerto que se les asigna.
 - Son siempre asignaciones efímeras: sólo se mantienen mientras el cliente demanda el servicio.
 - Números utilizados: 1024 5000
- En sistemas UNIX existe el concepto de puertos reservados. No deben entrar en conflicto con los fijos. Se reservan entre 1 1023.

Encapsulación

Demultiplexión

Interfaz de loopback

- Se reserva la dirección IP tipo A 127.X.X.X para la interfaz de loopback. Normalmente será la dirección 127.0.0.1 y el nombre asociado es localhost.
- Pretende ser una interfaz a la que se envían los paquetes dirigidos a la misma máquina. Un datagrama cuyo destino sea la propia máquina (localhost) no debe llegar físicamente a la red.
- Utilización de la interfaz de loopback:
 - Todo paquete dirigido a la dirección de loopback aparece directamente como una entrada en la capa de red.
 - Los datagramas de broadcast y multicast se copian a la interfaz de loopback y se envían a la red.
 - Todo datagrama enviado a una dirección IP de la máquina se envía a la interfaz de loopback.

The Late of the La

El modelo cliente-servidor

- Dos procesos en dos sistemas finales (distintos) se comunican intercambiando mensajes a través de una red de computadores.
- Modelo cliente-servidor:
 - Cliente envía mensajes al servidor
 - Servidor recibe los mensajes, procesa la respuesta y la envía
- Se definen dos tipos de servidores:
 - Concurrente: normalmente utilizado con TCP.
 - 1. Esperar una demanda de un cliente
 - 2. Iniciar un nuevo servidor para atender la demanda recibida. Dependiente del sistema operativo: crear un nuevo proceso, thread, tarea.
 - 3. Ir a 1
 - Iterativo: normalmente utilizado con UDP.
 - 1. Esperar una demanda de un cliente
 - 2. Procesar la demanda del cliente
 - 3. Enviar una respuesta de vuelta al cliente que ha hecho la demanda
 - 4. Ira1
- Modelo peer to peer (P2P): ambos extremos tienen funcionalidades de cliente y servidor.