

Surface Sampling Areas Required to Inform Risk-based Responses to *B. anthracis* Contamination

SRA 2008 at Boston Dec-10th, 2008

Tao Hong and Patrick L. Gurian
Department of Civil, Architectural, and Environmental Engineering
Drexel University, Philadelphia, PA, USA.

Outline

- Introduction
- Methodology
 - Risk scenario
 - Fate and transport
 - Dose response model
 - Minimum sampling area (MSA)
 - Using Bayesian updating method to optimize surface concentration
- Example and result
- Conclusion

Introduction

- Human health retrospective (prospective) risk from biological agents is associated with previous (future) aerosol exposures
- Aerosol exposures could be estimated by agents' concentrations found on surfaces
- Sometimes, non-detect result may not establish risk below value with confidence level
- A minimum sampling areas are required to demonstrate compliance with surface concentration standards are developed

Flow chart

Analytical equation +classical statistical interence

Risk Scenario

- Bacillus anthracis spores were released in the air
- Assuming an average breathing rate
- Exposure time is 8 hours
- Estimating the likely number of anthrax spores inhaled
- Using dose-response models to estimate the probability of mortality given certain exposure dose.

Method

- Using fate and transport model to compute surface concentration
 - We divide the office into 7 internal compartments:
 - 1) air, 2) tracked floor, 3) untracked floor, 4) walls, 5) ceiling,
 - 6) HVAC, and 7) the nasal passages

Caveats

- Uniform concentration (complete mixing) of spores
 - Appropriate for small size fraction downwind of and/or after initial release
- Use of high dose animal model for low dose human exposure

Dose-response

- Using dose-response model to estimate risk level
- Exponential dose-response model

Beta-Poisson dose-response model

$$risk \approx 1 - (1 + \frac{dose}{\beta})^{-\alpha}$$

Minimum sampling area (MSA)

- Employing MSA to check the correctness of the result
- Rejecting the hypothesis that the concentration exceeds the standard with a sufficient level of confidence 1- α

 Assuming that the spores are distributed on the surface according to a Poisson distribution

$$\sum_{X=0}^{DL-1} \frac{e^{-(AC)}(AC)^{X}}{X!} < \alpha$$

• X is the number of organisms, DL is the detecting limit of spores, A is the sampling area, and C is the surface concentration

Using Bayesian updating method to optimize surface concentration

 Bayesian statistical updating method allows the option of bringing prior information to bear on a problem

$$f(\lambda_{j} | C) = \frac{f(C | \lambda_{j}) f(\lambda_{j})}{\sum_{i=1}^{\infty} f(C_{i} | \lambda_{i}) f(\lambda_{i})}$$

$$f(C \mid \lambda_i) = \frac{e^{-\lambda_i} \lambda_i^{(C)}}{(C)!}$$

- λ is the long run surface concentration, C is the number of counts measured on the surface
- The initial concentration prior probability f(λ_i) comes from mechanistic modeling of release

Example

Model inputs

Symbol	Meaning	units	Value		Source		
٧	Room dimensions	m³	5.6×5.6×2.5 5.6×5.6×0.75 5.6×5.6×0.25				
A _{rf}	Area-tracked floor	m²					
Autr	Area-untracked floor	m²			Assumed a typical office (EPA 1997; RG Sextro 2002)		
A _{ce}	Area- ceiling	m²	5.6×5.6				
A _w	Area-wall	m²	5.6×2.5×4				
Ar	Filter area	m²	3.82×10 ⁻² (2.81×10 ⁻² -5.62×10 ⁻²)		O/A = 137m/min (91-183 m/min)		
An	Area of nasal passages	m²	0.8		(Landahl 1950)		
ACH	Air changes per hour		4		(ASHRAE 2005)		
Q	Discharge	m³/min	5.23		Q = V×ACH/60 (in minutes)		
f	Recirculation fraction		0.8		(RG Sextro 2002)		
P	Proportion tracked		0.7	75	(ASHRAE 2005)		
		hr ¹	D=1µm	1.2×10 ⁻⁴			
	Resuspension rate		D=3µm	1.9×10 ⁻³	(Thatcher and Layton 1995; RG Sextro		
μ ₂			D=5µm	0.8×10 ⁻³	2002)		
			D=10μm	0.4×10 ⁻²			
			D=1µm	0.098			
	Eller officions		D=3µm 0.49 D=5µm 0.74		(RG Sextro 2002)		
e	Filter efficiency						
			D=10μm	0.88			

Example

Model inputs (continued)

Symbol	Meaning	Units	Diameter	Lower bound	Source	Upper bound	Source	Input value
V _{se} V _{ef}	Deposition velocity on untracked and tracked floor	m/s	1µm	3.5×10 ⁻⁵	(Lai and Nazaroff 2000)	8.0×10 ⁻⁴		6.9×10 ⁻⁵
			Зµт	2.0×10 ⁻⁴		6.0×10 ⁻³	(NRC 2005)	4.2×10 ⁻⁴
			5µm	3.0×10 ⁻⁴	(NRC 2005)	1.4×10 ⁻²	(Riley, McKone et al. 2002)	1.4×10 ⁻³
			10µm	7.0×10 ⁻⁴		2.7×10 ⁻²		5.6×10 ⁻³
		m/s	1µm	3.5×10 ⁻⁸		9.0×10 ⁻⁵		3.9×10 ⁻⁵
V _w	Deposition velocity on walls		3µт	1.5×10 ⁻⁸		2.1×10 ⁻⁴		1.6×10 ⁻⁴
			5µm	1.0×10 ⁻²	(Lai and Nazaroff 2000)	4.0×10 ⁻⁴	(Schneider, Kildeso et al. 1999)	3.1×10 ⁻⁴
			10µm	7.0×10 ⁻⁹		6.0×10 ⁻⁴		3.5×10 ⁻⁴
V _{ce}	Deposition velocity on ceiling	m/s	1µm	1			(NRC2005)	6.2×10 ⁻⁷
	Nasal passages particle remove efficiency		1µm	0.02		l l	ļ.	
			3µm	0.22		0.25	Ī	0.14
e _n					(Landahl 1950)	0.68	(Roger O. McClellan and Henderson	0.45
			5µm	0.42	(caroan 1550)	0.81	1989)	0.62
			10µm	0.62		0.91		0.77
r	Probability of a single Bacillus anthracis		1-5 µm	9.1×10 ⁻⁷ (95% confidence interval)	(Jade Mitchell-Blackwood, Patrick L Gurian et al. 2008)	7.0×10 ⁻⁵ (95% confidence interval)	(Jade Mitchell-Blackwood, Patrick L Gurian et al. 2008)	7.2×10 ⁻⁶
	spore initiating infection		10 µm	1.0×10 ⁻⁷ (95% confidence interval)	Extrapolated from (Jade Mitchell-Blackwood, Patrick L Gurian et al. 2008)	8.1×10 ⁻⁶ (95% confidence interval)	Extrapolated from (Jade Mitchell-Blackwood, Patrick L Gurian et al. 2008)	8.2×10°
risk	Acceptable risk level			1.0×10 ⁻⁵	(Mitchell-Blackwood and Gurian 2008)	1.0×10 ⁻³	(Travis, Richter et al. 1987)	1.0×10 ⁻²
Inh	Breathingrate	m³/hr		0.8	(Kowalski 2003)	2.0	(Kowalski 2003)	1.02

Result

Minimum sampling area and surface concentration after a 8 hours releasing Risk level=0.001

Diameter (μm)	Amount of Initial Release (Range) (spores/m²)	Untracked or Tracked floor (Range) (spores/m²)	MSA (Range) (m²)	Walls (Range) (spores/m²)	MSA (Range) (m²)	Filter (Range) (spores/m²)	MSA (Range) (m²)	Nasal Passages (spores/m²)	MSA (Range) (m²)
1	1.5×10 ⁴	35	0.50	20	0.84	8.8×10 ⁴	1.9×10 ⁻⁴	24	0.68
	(2.4×10³ – 5.7×10⁵)	(8.8×10 ⁻¹ - 4.0×10 ³)	(4.3×10 ⁻³ -19)	(8.8×10 ⁻⁴ - 4.5×10 ²)	(3.8×10 ⁻² - 1.9×10 ⁴)	(38-1.5×10 ⁶)	(1.1×10 ⁻⁵ -4.4×10 ⁻¹)	(0.36 – 3.4×10 ²)	(4.9×10 ⁻² -47)
3	3.8×10 ⁴	2.1×10²	8.0×10 ⁻²	79	0.21	4.4×10 ⁵	3.7×10 ⁻⁵	78	0.20
	(2.5×10³- 1.3×10 ⁶)	(5.1-3.0×10 ⁴)	(5.7×10 ⁴ – 3.4)	(3.8×10 ⁻⁴ - 1.0×10 ³)	(1.6×10 ⁻² - 4.5×10 ⁴)	(1.9×10 ² - 7.5×10 ⁶)	(2.2×10 ⁻⁶ -8.8×10 ⁻²)	(3.9-9.3×10 ²)	(1.8×10 ⁻² – 4.3)
5	7.0×10 ⁴	7.4×10 ²	2.3×10 ⁻²	1.5×10 ²	0.10	6.6×10 ⁵	2.3×10 ⁻⁵	108	0.14
	(2.7×10³- 3.3×10 ⁶)	(7.6-6.9×10 ⁴)	(2.4×10 ⁻⁴ -2.2)	(2.5×10 ⁻⁴ - 2.0×10 ³)	(8.5×10 ⁻³ - 6.7×10 ⁴)	(2.9×10 ² - 1.1×10 ⁷)	(1.5×10 ⁻⁶ – 5.8×10 ⁻²)	(7.5 – 1.1×10³)	(1.5×10 ⁻² - 2.3)
10	1.3×10 ⁶	2.6×10 ⁴	6.5×10 [→]	1.5×10 ³	1.0×10 ⁻²	6.9×10 ⁴	2.2×10 ⁻⁶	1.2×10 ³	1.3×10 ⁻²
	(2.6×10 ⁴ – 6.4×10 ⁷)	(1.5×10 ² - 1.2×10 ⁶)	(1.4×10 ⁻⁵ - 0.1)	(1.5×10 ⁻³ – 2.7×10 ⁴)	(1.4×10 ⁻⁵ – 1.1×10 ⁴)	(3.0×10³- 1.2×10°)	(1.4×10 ⁻⁷ – 5.7×10 ⁻³)	(96-1.1×10*)	(1.5×10 ⁻³ – 0.18)

Minimum sampling area Vs Confidence level (Untracked floor)

Conclusion

- The proposed framework provides easily usable analytical equations to rapidly estimate risks of B. anthracis based on observed surface concentrations.
- The minimum sampling area has a negative relation to surface concentration, particle diameter and elapsed time before sampling.
- The minimum sampling area has a non-linear positive relationship with the confidence level

Acknowledgement

 The authors would like to acknowledge CAMRA, joint EPA and DHS research center for funding this project.

