# Big Data Well Care Health

## **Fall 2017 Healthcare Group**

Gayathri Ganesh
Shengluan (Sharon) Zhong
Reshma Thippesha Kangokar
Maria Elena Lanot





## **Problem Highlights**

| Gross domestic product and<br>national health expenditures | 1960                          | 1970   | 1975    | 1980    | 1990    | 2000      | 2009      | 2014      | 2015      |
|------------------------------------------------------------|-------------------------------|--------|---------|---------|---------|-----------|-----------|-----------|-----------|
|                                                            | Per capita amount, in dollars |        |         |         |         | 90 00     |           |           |           |
| National health expenditures                               | \$146                         | \$355  | \$605   | \$1,108 | \$2,843 | \$4,857   | \$8,141   | \$9,515   | \$9,990   |
| Health consumption expenditures                            | 133                           | 319    | 550     | 1,022   | 2,657   | 4,562     | 7,687     | 9,041     | 9,508     |
| Personal health care                                       | 125                           | 300    | 514     | 942     | 2,425   | 4,121     | 6,899     | 8,050     | 8,468     |
| Administration and net cost of                             |                               |        |         |         |         |           |           |           | 10000     |
| private health insurance                                   | 6                             | 13     | 22      | 52      | 153     | 288       | 546       | 743       | 787       |
| Public health                                              | 2                             | 6      | 13      | 28      | 79      | 153       | 242       | 248       | 252       |
| Investment <sup>2</sup>                                    | 13                            | 36     | 55      | 86      | 187     | 295       | 453       | 474       | 482       |
|                                                            | Amount, in billions           |        |         |         |         |           |           |           |           |
| lational health expenditures                               | \$27.2                        | \$74.6 | \$133.3 | \$255.3 | \$721.4 | \$1,369.7 | \$2,494.7 | \$3,029.3 | \$3,205.6 |
| Health consumption expenditures                            | 24.7                          | 67.0   | 121.1   | 235.5   | 674.1   | 1,286.4   | 2,355.7   | 2,878.4   | 3,050.8   |
| Personal health care                                       | 23.3                          | 63.1   | 113.2   | 217.0   | 615.3   | 1,162.0   | 2,114.2   | 2,562.8   | 2,717.2   |
| Administration and net cost of                             |                               |        |         |         |         |           |           |           | 5000000   |
| private health insurance                                   | 1.1                           | 2.6    | 4.9     | 12.1    | 38.7    | 81.3      | 167.4     | 236.6     | 252.7     |
| Public health                                              | 0.4                           | 1.4    | 3.0     | 6.4     | 20.0    | 43.0      | 74.1      | 79.0      | 80.9      |
| Investment <sup>2</sup>                                    | 2.5                           | 7.5    | 12.2    | 19.9    | 47.3    | 83.3      | 139.0     | 150.9     | 154.7     |
|                                                            |                               |        |         |         |         |           |           |           |           |
|                                                            |                               |        |         |         | Percent |           |           |           |           |
| National health expenditures as                            |                               |        |         |         |         |           |           |           |           |

### Health, United States, 2016, table 93

- It is not that we are not spending enough money on healthcare, the problem is that we are not spending the money wisely.
- The goal of our healthcare solution is to <u>offer access at a</u> <u>sensible price</u>.



## United States per capita healthcare spending is more than twice the average of other developed countries



In 2015, U.S. health care spending increased 5.8 percent to reach \$3.2 trillion, or \$9,990 per person

PGPF.ORG



KFF.ORG

## 





## **High Re admission Rates**

- < 30 days of being discharged
- Pain and suffering for the patient
- Sends bills skyrocketing

### High cost of health insurance

- Patient unaware of care plan and medications
- Poor coordinated care

### 80% of data is unstructured

- Physician's dictation electronically transcribed one time use-dig through patient pages
- EMR Data / Claims
- Pharmaceutical R&D: Clinical Trials Data, Genomic Data
- Patient behavior and sentiment data





http://www.hospitalmedicine.org/Web/Quality Innovation/Implementation To olkit/Boost/Best Practices/Should Act.aspx

## **Key Trends in Healthcare**

Value-based patient-centric care



### Big Data in Healthcare: Tapping New Insight to Save Lives

Healthcare is challenged by large amounts of data in motion that is diverse, unstructured and growing exponentially. Data constantly streams in through interconnected sensors, monitors and instruments in real-time faster than a physician or nurse can keep up.

annual compound collect data on patients use remote monitoring growth rate is anticipated between 2010 and 2016 devices by 2016 for patients that will use remote monitoring devices equipment pumps out an average of unstructured and stored in hundreds of .000 forms such as labs readings per second or results, images, and medical transcripts 86,400 readings in a day



Healthcare Internet of Things (IoT) & real-time monitoring

> **Predictive** analytics to improve outcomes



Reducing fraud, waste, and abuse

Kaiser **Telehealth** /IBM Watson Health

## **Proposed Solution**

- Deploy a system to fully utilize patient's data, unstructured (80%), semi-structured, and structured, with Lambda architecture, which handles both NRT data processing and batch data processing.
- Develop a user friendly patient portal to promptly collect discharged patient's health data and provide better patient care.
  - Proactively follow up with patients if needed
  - Have patient to visit his/her primary doctor before the situation getting deteriorated.
- Provide sensor/monitor etc. IoT technology to discharged patients for real time monitoring
  - Proactive detection and alert
  - Call and communicate with patients if needed
- Implement data analysis, pattern recognition, machine learning to predict the readmission
- Create a 360 degree view with patient's consolidated data EHR, CDR, sensor data, patient portal log, etc.



## **Proposed Solution**

Semi-constructed
Data
(EMR, sensor, log)

Unconstructed data (EMR, sensor, log)

Structured Data

Lambda Architecture With Hadoop / Spark



## **Proposed Solution Architecture**







WELLCARE HEALTH ©
PATIENT PORTAL APP
PATIENT CARE: INTERVENTION
(USING RECOMMENDATION ENGINE)

PREDICTING READMISSION

- PATIENT FOLLOW-UP (Outgoing)
- PATIENT CARE (Incoming)

DATA ANALYSIS (R)

BI (TABLEAU):

- \* Cost
- \* Readmission Stats
- \* Other KPIs

## Recommended Tech Stacks

**Flume** is a distributed, reliable and available service for efficiently collecting, aggregating, and moving large amount of log data from different sources to Hbase.

**Kafka** is used to build real-time data pipeline and streaming apps. It is horizontally scalable, fault-tolerant and very fast.

Sqoop: to transfer data from relational database to Hadoop

**Ambari** 

• Ambari enables system admin to provision, manage, and monitor a Hadoop cluster.

HDFS and YARN MapReduce form the data management layer of Hadoop.

- YARN MapReduce provides the resource management

 HDFS provides the scalable, fault-tolerant, cost-efficient storage for big data.

**HBase:** stores Hadoop output files into a big table for random access

## Recommended Tech Stacks



Cassandra is a database with linear scalability and high availability without compromising performance. It is the perfect platform for NRT data.

**Cloudera Impala** is the open source, analytic massively parallel processing (MPP) database for Apache Hadoop that provides the fastest time-to-insight.

**Apache Mahout** is used to create scalable performance machine learning applications.

Tableau is an integrated Business Intelligence (BI) and analytics solution that helps to analyze key business data and generate meaningful insights.

Deployment strategy

| Debioai                                   |                                                                           |                                                                                                                            |                                                       |
|-------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
|                                           | POC                                                                       | Design Build T                                                                                                             | Deploy + Post<br>Implementation                       |
|                                           | 1 month                                                                   | 4-5 months                                                                                                                 | 1 month                                               |
| Lambda Services<br>(incl Hadoop)          | <ul><li>Min # of clusters</li><li>Tech stack POC</li></ul>                | <ul> <li>Increase cluster size for build / test</li> <li>Dev't and test of tech stack</li> </ul>                           |                                                       |
| Intervention / Recomm. Engine, Prediction | <ul> <li>Sample patient<br/>data across all<br/>data sources</li> </ul>   | <ul> <li>Design, build, test recommendation engine,<br/>intervention feature, and prediction-based<br/>features</li> </ul> |                                                       |
| Patient management system                 |                                                                           | Design, build, test features to support patient care using Agile                                                           | <ul> <li>Scale out for<br/>production size</li> </ul> |
| Monitoring devices / IoT                  | <ul><li>Test devices<br/>with sample<br/>high-risk<br/>patients</li></ul> | Integration of devices with patient managem system and WellCare Health Patient Portal Apple                                | ı i                                                   |
| WellCare Health©<br>Patient Portal App    |                                                                           | <ul> <li>Design, build, test features to support patient<br/>care; MVP / Agile methodology</li> </ul>                      |                                                       |
| Business<br>Intelligence                  | Sample data                                                               | <ul> <li>Gap analysis of data</li> <li>Design, build, test BI dashboards using Agile</li> </ul>                            |                                                       |

## **Deployment strategy**



### **Stakeholders**

| WellCare Health Team<br>(Customers / End<br>Users)                                                               | External Parties                                    | Solution Providers                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Management</li> <li>IT</li> <li>Patient Care Team</li> <li>SMEs (Doctors,<br/>Practitioners)</li> </ul> | <ul><li>Patients</li><li>Software Vendors</li></ul> | <ul> <li>Solutions / Technical<br/>Architect</li> <li>Software Engineers</li> <li>Data Scientists</li> <li>Business Analysts</li> <li>Project Managers</li> </ul> |



## **Deployment Strategy**

## High Level Cost Table

| Items                                     | Unit price                                  | Subtotal     |  |
|-------------------------------------------|---------------------------------------------|--------------|--|
| Amazon EC2 with Kafka/Cassandra supported | \$15,000/month (enterprise)                 | \$180k/yr    |  |
| AWS Lambda Services                       | \$40/month                                  | \$480/yr     |  |
| Sqoop/Flume                               | Open source (free)                          | 0            |  |
| Cloudera                                  | \$2800 for basic                            | \$2800       |  |
| Tableau                                   | \$1000/user yr +<br>\$1600 one-time-license | \$7600       |  |
| Mahout                                    | \$60/month                                  | \$720/yr     |  |
| Health App development (Software)         | \$55,600.00                                 | \$55600      |  |
| Resources                                 |                                             |              |  |
| 3 patient system management staff         | \$60K/yr * 3 = \$180k/yr                    | \$180k/yr    |  |
| 4 data analysis/scientist                 | \$80k/yr * 4 = \$320k/yr                    | \$320k/yr    |  |
| Business intelligence                     | \$70k/yr                                    | \$70k/yr     |  |
| Total                                     |                                             | \$817,200/yr |  |

# Solution design mockup - NRT



## Solution design mockup - Batch



Data Sources Platform Data Analysis Deliver/Decision Makers

## Solution design mock up

### Metrics Dashboard Examples

Admission & Readmission

**NRT Monitoring** 

**Patient Satisfaction** 

**Financials** 

### **Admission Rates**

### **Readmission Rates**

30-Day Readmissions **Total** 

**By Procedure** 

By Diagnosis

By Payer Type

60-Day Readmissions

90-Day Readmissions





### **Admission Rates**

### **NRT Monitoring**

### **Patient Satisfaction**

 Patient Satisfaction Rating, Quarterly

### **Financials**

- Cost of Readmission by Payer Type
- Cost Avoidance Through Intervention Readmissions



## **Proposed Solution Benefits**



### **Benefits:**

- Reduction of readmission rates
- Reduction of overall healthcare costs through decrease in avoidable readmissions and reduction of waste
- Increase in effectiveness of patient care and patient satisfaction
- Contribution of data to the healthcare industry

### **Proposed Solution Themes**

- Data-driven holistic patient care using big data
- Individualized proactive patient care and use of IoT for real-time health monitoring
  - Key metrics for prediction, recommendation and decision making



## Summary

"The world is one big data problem."
<u>Andrew McAfee</u>, MIT scientist



