QUIZ 3 CORRECTIONS – MATH 392 March 6, 2018

ALEX THIES athies@uoregon.edu

Problem 1. Construct a field of order 9. Carefully cite all theorems used.

Solution. As I said on the original quiz, we want to make use of the fact that for [E:K]=n, and |K|=q, we have $|K(c)|=q^n$ for c a root of the minimal polynomial of degree n.¹ The field \mathbb{Z}_3 is a great candidate for our base field since it has order 3, and with the benefit of hindsight, we'll use an irreducible polynomial of degree 2, as $3^2=9$.

Consider the polynomial $p(x) = x^2 + 1$, since $\mathbb{Z}_3 = \{0, 1, 2\}$ we can check irreducibility by the long, but reliable way:

$$p(0) = 1,$$

 $p(1) = 2,$
 $p(2) = 4 \equiv 1 \pmod{3}.$

Hence, p(x) is irreducible over \mathbb{Z}_3 , notice that it is also monic, thus minimal. Let c be a root of \mathbb{Z}_3 over some extension $\mathbb{Z}_3(c)$, it remains to create all of the basis elements of $\mathbb{Z}_3(c)$. It follows that we have $\mathbb{Z}_3(c) = \{0, 1, 2, 0 + c, 1 + c, 2 + c, 0 + 2c, 1 + 2c, 2 + 2c\}$. Notice that $|\mathbb{Z}_3(c)| = 9$ as desired.

Problem 3. Let E be a finite extension of K. Let $c \in E$ be algebraic over K, with minimum polynomial p(x). Prove that deg(p(x)) = [E : K] if and only if E = K(c). Carefully cite all theorems used. (Hint: one direction should be immediate.)

Proof. Let E, K, c, p(x) be as above.

- \Rightarrow) Assume $\deg(p(x)) = [E:K]$, we will show that E = K(c). Since E is a finite extension of K, and by Theorem 9.5 we know that $K(c) \subseteq E$, we can invoke Theorem 9.22 and write [E:K] = [E:K(c)][K(c):K]. By Theorem 9.20, we have that $\deg(p(x)) = [K(c):K]$, and by our hypothesis we assume that $\deg(p(x)) = [E:K]$. Pair these facts, and we have that [E:K(c)] = 1, which implies E = K(x) as we aimed to show. It remains to prove the converse.
- \Leftarrow) Assume that E = K(c), we will show that $\deg(p(x)) = [E : K]$. By Theorem 9.20 we have that $\deg(p(x)) = [K(c) : K]$; moreover, since E = K(c) we know they have identical bases, and we can write [E : K] = [K(c) : K], which we just said is equal to $\deg(p(x))$. Thus, $\deg(p(x)) = [E : K]$, as desired.

¹This is a result of Theorem 9.20, and explained more thoroughly in the remarks following the proof of this Theorem on page 251 of the text.