BestMap: Context-Aware SKOS Vocabulary Mappings in OWL 2

Rinke Hoekstra

Overview

- Use Case
 - Access to court proceedings
- Vocabulary Mapping
- Requirements
- BestMap
- Discussion

BestPortal

- BEST Project
 - "BATNA Establishment using Semantic Web Technology"
 - Best Alternative to a Negotiated Agreement
- Improve access to court proceedings
 - Netherlands Council of the Judiciary http://www.rechtspraak.nl
 - 50 thousand verdicts

"Does my case stand a chance in court?"

- Full text search is not enough
 - Laymen
 - Lawyers
- Lawyers have their own language: legalese
 - Bridge the gap between common sense and legal knowledge
- Knowledge-based solution too expensive
 - Modelling effort
 - Quality assurance
 - Legal theory: definitions

BestPortal: Requirements

- Translate layman description to legal terms
- Search using fingerprints of legal terms

- Context in which layman concepts co-occur in a case determines the applicability of a legal concept
- A mapping is **not** the definition of a concept

Vocabularies

- Cultural Heritage
 - Museums, libraries
 - Huge repositories of (rich) information
 - Annotated using many different vocabularies (knowledge organization systems)
- Concept-based information retrieval
 - Europeana portal (http://www.europeana.eu)

Why Vocabulary Mapping

- Integrated access? Vocabulary mapping!
 - Format (XML to RDF)
 - e.g. via XSLT one-way transformation
 - Structure (VCard:Given + VCard:Family to foaf:name)
 - e.g. via SPARQL++, one-way transformation
 - Concepts (foaf:Person to lkif:Person)
- Simple Knowledge Organization System (SKOS)
 - Lifting existing KOS's to the Semantic Web
 - Every skos:Concept is an OWL individual
 - Lightweight semantic relations: broader, narrower, and related.
 - Lightweight mapping relations between skos:ConceptSchemes,

Europeana Datacloud

Mapping in SKOS

Information retrieval perspective **vs**. lightweight semantics

- No many-to-many mappings
 - Mapping only between pairs of concepts
 - Required for re-indexing and search across collections (Isaac et al. 2007)
- ... fundamental issue
 - SKOS concepts and relations are 'intensional'
 - What does a mapping then mean?
- Implicit assumption of extensionality

Extensional View

- SKOS relations
 - "Resources annotated by some concept should be retrievable via its broader concept."
- SKOS mappings
 - "Resources annotated by some concept should be retrievable via the concepts it is mapped to."

• ... only means to assess quality

BestMap: Requirements

- Extensional perspective
 - Concepts as annotations on resources
- Compatibility
 - Integrated with SKOS
- Hierarchic mappings
 - Exploit skos:broader and skos:narrower
- Many-to-many mappings
 - Granularity
 - Context determines whether a mapping holds
- Flexible and Lightweight
 - A mapping is **not** the definition of a concept

Connecting to SKOS (1)

Relation between :Resource and skos:Concept

:about
$$\equiv inv(:describes)$$

Direct and indirect annotations

```
:d_about □ :about
```

 $:d_describes \sqsubseteq :describes$

 $:d_{describes} \equiv inv(:d_{about})$

Connecting to SKOS (2)

Transitive broader/narrower

:d_about **o** skos:broaderTransitive □ :bt_about

 $:d_about o skos:narrowerTransitive \sqsubseteq :nt_about$

Similar for other SKOS relations

Connecting to SKOS (3)

Mappings as OWL Classes

A mapping class:

- Classifies resources annotated using one vocabulary, and
- Infers annotations using the other vocabulary
- ... it may be *directed*

```
ex:AO_Mapping \equiv :about value lv:animal \ \square :about value lv:company \ \square :about value lv:dangerous\_action
\sqsubseteq :d\_about value <math>tv:animal \ \square : d\_about value <math>tv:animal\_owner \ \square :d_about value tv:damage
```

Example

Discussion

- Extensible
 - Any OWL axiom may be used in a mapping (e.g. someValuesFrom etc.)
 - Reusable (partial) mappings
 - Exclude resources annotated with a particular concept
 - Negative property assertions
- Novel
 - "Reification" wrt. normal OWL ontologies
- Overcomes limitations of SKOS semantics
 - Makes explicit the extensional perspective that underlies SKOS semantics
 - Non-intrusive

Discussion

- OWL 1 vs OWL 2
 - Property chains
 - Disjoint properties
 - Negative property assertions
- The bad
 - Cannot enforce that the mapping holds between two distinct concept schemes
 - Property chains are not equivalent to super property

Future Work

- Apply BestMap to other domains
 - Legal assessment based on spatial plans
 - **—** ...
- Further development of BestPortal
 - Do the mappings actually work?
 - Structured mappings
 - (case frames)
 - Does BestPortal really improve access to court proceedings?
 - Connect to the linked data cloud

