TFY4155/FY1003 Elektr. & magnetisme

Øving 8 Likestrømskretser. Lorentzkrafta.

Veiledning: 5. og 6. mars ifølge nettsider. Innlevering: Onsdag 7. mars kl. 14:00

Oppgave 1. Strøm i en leder.

- a) Estimer driftshastigheten $v_{\rm d}$ for elektroner i en kopperwire med diameter d=0,100 cm som fører en strøm på 100 mA. For kopper anta ett fritt elektron per atom, massetetthet på $8,92~{\rm g/cm^3}$ og molvekt $63,5~{\rm g/mol}$. Avogadros tall $N_{\rm A}=6,022\cdot 10^{23}\,{\rm mol^{-1}}$. Elektronladning $e=1,602\cdot 10^{-19}~{\rm C}$.
- b) Bestem også strømtet
theten, resistansen og det elektriske feltet når det er gitt at wiren er
 L=10,0m lang og kopperresistiviteten $\rho=1,72\cdot 10^{-8}\,\Omega{\rm m}.$

Oppgave 2. Resistans i aluminiumsledning.

En motstand med resistans $R=10,00\,\Omega$ er kopla i serie med to aluminiumsledninger som vist i figuren. Over ytterpunktene er det en spenning V=1,500 V. Al-ledningene har tverrsnitt 0,700 mm² og hver lengde 30,0 cm. Aluminium har elektrisk ledningsevne (konduktivitet): $3,546\cdot 10^7~\Omega^{-1}\mathrm{m}^{-1}$.

- a) Finn først resistansen $R_{\rm Al}$ i hver av Al-trådene og beregn deretter spenningsfallet over henholdsvis Al-trådene og over motstanden.
- b) Bestem strømstyrken og utviklet effekt i kretsen.

Du bør i denne oppgaven lære at motstand og spenningsfall i vanlige ledninger er svært liten. Med mindre noe annet er spesifisert, regner vi i alle følgende oppgaver at ledningene mellom de ulike kretskomponenter er *perfekte ledere*, dvs. med null motstand.

Oppgave 3. Motstandsnettverk.

Figuren til venstre viser en elektrisk krets med 5 motstander R_j , j = 1, ..., 5.

a) Bestem total motstand R mellom punktene A og B, dvs: Bestem motstanden R i den ekvivalente kretsen i følgende figur:

b) En ideell spenningskilde med elektromotorisk spenning \mathcal{E} kobles til kretsen slik at $\Delta V = V_{\rm A} - V_{\rm B} = \mathcal{E}$. Bestem hvor stor strøm I_j som da passerer gjennom hver av motstandene R_j .

Oppgave 4. Kirchhoffs regler.

Bruk Kirchhoffs knutepunktregel og maskestrømsregel for aktuelle knutepunkt og masker i kretsen i figuren og finn verdi for strømmen I_5 . Verdien på ems'ene er $\mathcal{E}_1=12\mathrm{V}$, $\mathcal{E}_2=9.0~\mathrm{V}$ med polaritet som gitt i figuren. Resistansverdiene er gitt i figuren.

TIPS: Du kan her tillate deg å sette inn verdier for R_i og \mathcal{E}_i fra starten og unnlate å skrive enheter, idet du forsikrer deg om at strømmene skal ende opp i ampere.

Oppgave 5. RC-krets I (oppvarming til neste).

Kretsen i figuren har kretselementer med følgende verdier: $\mathcal{E} = 12$ V, R = 100 Ω og C = 10,0 μ F. Bryteren settes i posisjon a ved tida t = 0. Kretsen er gjennomgått i forelesning hvor det er vist at strømmen i kretsen I(t) og ladningen Q(t) på kondensatoren er

$$I(t) = I_0 e^{-\frac{t}{\tau}} \qquad \qquad Q(t) = Q_{\rm f} \left(1 - e^{-\frac{t}{\tau}}\right) \,. \label{eq:eq:energy}$$

- a) Finn verdi for alle størrelser i disse likningene: Startstrøm I_0 , sluttladning $Q_{\rm f}$, og tidskonstant τ .
- b) Finn arbeidet gjort av batteriet for å lade opp kondensatoren. Hva har energien gått med til?
- c) Hvor lang tid tar det før kondensatoren er ladet opp til 99,9 % av sluttladningen?

Oppgave 6. RC-krets II.

I kretsen i figuren settes bryteren i posisjon a ved tida t=0. La spenninger og strømmer være som angitt i figuren. Kondensatoren har til enhver tid ladningen $Q_{\rm C}(t)$. Ved t<0 er $V_{\rm C}=0$ og dermed alle strømmer lik null (og $V_{\rm a}=\mathcal{E}$).

- a) Finn uttrykk for følgende størrelser ved $t=0^+$ (umiddelbart etter bryteren er slått på): $V_{\rm C},\,Q_{\rm C},\,I_{\rm C},\,I_{\rm R},\,I.$
- b) Finn uttrykk for de samme størrelser ved $t=\infty$ (etter svært lang tid).

c) Finn uttrykk for de samme størrelser som funksjon av tida for t>0. Uttrykk svarene med bl.a. tidskonstanten τ som du skal finne uttrykk for. Sikre deg at grensetilfellene stemmer med svarene i a) og b). Opptegning av grafene for alle størrelsene under hverandre kan være lærerikt.

TIPS: Bruks Kirchhoffs regler og husk at strømmen til kondensatoren har følgende sammenheng med ladningen på kondensatoren: $I_C = \frac{dQ_C}{dt}$. Finn en differensiallikning for $I_C(t)$.

Oppgave 7. Lorentzkrafta: Vektorregning.

Jordas magnetfelt er et sted på jordoverflata målt til å ha en størrelse 0,60 G retta nedover og nordover med en vinkel på 70° med horisontalplanet som vist i figuren. (Jordas magnetfelt varierer fra sted til sted – dette er feltet som finnes sentralt i USA, i Trondheim er verdien ca 0,50 G og vinkelen litt større.) $G = gauss = 10^{-4} T$.

Et proton med ladning $e=1,60\cdot 10^{-19}$ C beveger seg horisontalt i nordover-retning med hastighet v=10,0 Mm/s = $1,00\cdot 10^7$ m/s. Beregn den magnetiske krafta \vec{F} på protonet (størrelse og retning).

Velg et kartesisk koordinatsystem med x østover, og uttrykk \vec{B} -vektor og \vec{v} -vektor på komponentform, og utfør kryssproduktet.

¹a) 9, 42 $\mu \text{m/s}$; 1b) 0, 219 Ω ; 2, 18 · 10⁻³ V/m. 2a) 12,09 m Ω ; 3,62 mV; 1,50 V; 2b) 0,150 A; 0,225 W. 4) 0,18 A. 5b) 1, 4 mJ; 5c) 6,9 ms. 6b) $I = I_{\text{R}} = \frac{\mathcal{E}}{R_1 + R}$, $Q_{\text{C}} = \mathcal{E} \frac{RC}{R_1 + R}$; 6c) $\tau = \frac{R_1 RC}{R_1 + R}$.

⁷⁾ $-9.02 \cdot 10^{-17} \,\mathrm{N} \,\,\hat{\mathbf{i}}$.