THE DISTINCTNESS AND GENERATING FIELDS OF TWISTED KLOOSTERMAN SUMS

SHENXING ZHANG

ABSTRACT. We use the Kloosterman sheaves constructed by Fisher to show when two Kloosterman sums differ a (q-1)-th root of unity, and use p-adic analysis to prove the non-vanishing of the Kloosterman sums. Then we can determine the generating fields by these results.

Contents

1. Introduction	1
1.1. Background	1
1.2. Notations and main results	2
2. Kloosterman sheaves constructed by Fisher	3
2.1. Kloosterman sheaves	3
2.2. Fisher's descent	3
2.3. Distinctness	4
3. The non-vanishing of Kloosterman sums	ϵ
4. The generating fields	S
4.1. The proof	S
4.2. An example: $n = 2$ case	10
4.3. An example with trivial η	11
References	11

1. Introduction

1.1. **Background.** Let p be a prime number, $q = p^d$ a power of p, and \mathbb{F}_q the field with q elements. Let $\psi : \mathbb{F}_p \to \mu_p$ be a fixed non-trivial additive character. For $\chi = \{\chi_1, \dots, \chi_n\}$ an unordered n-tuple of multiplicative characters $\chi_i : \mathbb{F}_q^{\times} \to \mu_{q-1}$ and $a \in \mathbb{F}_q^{\times}$, define the $Kloosterman\ sum$ as

$$\mathrm{Kl}_n(\psi, \chi, q, a) = \sum_{\substack{x_1 \cdots x_n = a \\ x_i \in \mathbb{F}_q}} \chi_1(x_1) \cdots \chi_n(x_n) \psi \big(\mathrm{Tr}_{\mathbb{F}_q/\mathbb{F}_p} (x_1 + \cdots + x_n) \big).$$

Clearly it lies in $\mathbb{Z}[\mu_{p(q-1)}]$.

Date: October 2, 2021.

²⁰²⁰ Mathematics Subject Classification. 11L05, 11L07, 11T23.

 $[\]it Key words \ and \ phrases.$ Kloosterman sums; Kloosterman sheaves; cyclotomic fields; algebraic numbers.

When $\chi = 1 = \{1, \dots, 1\}$ is trivial, the distinctness of Kloosterman sums is studied by many peoples. It's easy to see that

$$a, b \text{ conjugate} \implies \mathrm{Kl}_n(\psi, \mathbf{1}, q, a) = \mathrm{Kl}_n(\psi, \mathbf{1}, q, b).$$

It's a conjecture (Ref conjecture) that the converse is true when $p \geq nd$, see [Fis92, Remark 4.28(2)]. This is true when $p > (2n^{2d}+1)^2$ in [Fis92], or $p \geq (d-1)n+2$ and p does not divide a certain integer in [Wan95, Theorem 1.3]. In these cases, one can obtain that the algebraic degree of $\mathrm{Kl}_n(\psi,\mathbf{1},q,a)$ is (p-1)/(p-1,n). When $\mathrm{Tr}(a) \neq 0$ or the Ref conjecture holds for \mathbb{F}_q , the algebraic degree is given in [Wan95] and [KRV11].

1.2. Notations and main results. In this article, we will study the twisted version. More precisely, we will study the distinctness of Kloosterman sums up to (q-1)-th roots of unity, the non-vanishing and the generating fields of Kloosterman sums.

Let m be an integer prime to p, such that $\chi_i^m = 1$ for all i. For any integer $w \in \mathbb{Z}$ or $\mathbb{Z}/m\mathbb{Z}$, any multiplicative character Λ and $\sigma \in \operatorname{Gal}(\mathbb{F}_q/\mathbb{F}_p)$, denote by

$$\boldsymbol{\chi}^w = \{\chi_1^w, \dots, \chi_n^w\}, \quad \boldsymbol{\chi}\Lambda = \{\chi_1\Lambda, \dots, \chi_n\Lambda\}, \quad \boldsymbol{\chi}\circ\sigma = \{\chi_1\circ\sigma, \dots, \chi_n\circ\sigma\}$$

and $\prod \chi = \chi_1 \cdots \chi_n$ for abbreviations. The Galois group

$$\operatorname{Gal}(\mathbb{Q}(\mu_{pm})/\mathbb{Q}) = \left\{ \sigma_t \tau_w \mid t \in (\mathbb{Z}/p\mathbb{Z})^{\times}, w \in (\mathbb{Z}/m\mathbb{Z})^{\times} \right\},\,$$

where

$$\sigma_t(\zeta_p) = \zeta_p^t, \quad \sigma_t(\zeta_m) = \zeta_m,$$

$$\tau_w(\zeta_p) = \zeta_p, \quad \tau_w(\zeta_m) = \zeta_m^w,$$

for any $\zeta_p \in \mu_p$, $\zeta_{q-1} \in \mu_m$. We will take m to be q-1, or

$$c =$$
the least common multiplier of the orders of χ_i . (1.1)

Definition 1.1. The *n*-tuple χ is called *Kummer-induced* if there exsists a non-trivial character Λ such that $\chi = \chi \Lambda := \{\chi_1 \Lambda, \dots, \chi_n \Lambda\}$ as unordered *n*-tuples. In this case, $\prod \chi = \prod (\chi \Lambda) = \Lambda^n \prod \chi$ and thus $\Lambda^n = 1$.

A basic observation tells

$$\sigma_t \tau_w \mathrm{Kl}_n(\psi, \boldsymbol{\chi}, q, a) = \prod \boldsymbol{\chi}(t)^{-w} \mathrm{Kl}_n(\psi, \boldsymbol{\chi}^w, q, at^n).$$

To obtain its generating field, we need to know when two Kloosterman sums are same up to a (q-1)-th root of unity.

In Section 2, we will recall the construction of Kloosterman sheaves by Fisher and follow his method to show the following theorem. Denote by Λ_2 the non-trivial quadratic character on \mathbb{F}_q^{\times} .

Theorem 1.2. Let $a, b \in \mathbb{F}_q^{\times}$ and let χ and ρ be n-tuples of multiplicative characters. Assume that χ, ρ are not Kummer-induced and neither of them is of type $(\xi_1, \xi_1^{-1}, 1, \Lambda_2)\xi_2$. If $p > (2n^{2d} + 1)^2$ and

$$Kl_n(\psi, \boldsymbol{\chi}, q, a) = \lambda Kl_n(\psi, \boldsymbol{\rho}, q, b)$$

for some $\lambda \in \mu_{q-1}$, then there exists $\sigma \in \operatorname{Gal}(\mathbb{F}_q/\mathbb{F}_p)$ and a multiplicative character η , such that $b = \sigma(a)$ and $\rho = \eta \cdot (\chi \circ \sigma^{-1})$ as unordered tuples. Moreover, either both Kloosterman sums vanish or $\eta(b) = \lambda^{-1}$.

In Section 3, we will prove the non-vanishing of Kloosterman sum by p-adic analysis. We need the following condition on χ :

For any
$$i, j, \chi_i = \chi_j$$
 if $\chi_i^n = \chi_j^n$. (1.2)

That's to say, $\chi_i = \chi_j$, or $\chi_i \chi_j^{-1}$ is not a character of order dividing n. Denote by

$$C_{\chi} = \max_{i,j} \operatorname{lcm}(\operatorname{ord}(\chi_i), \operatorname{ord}(\chi_j))$$
(1.3)

the supremum of least common multipliers of the orders of any two characters in χ .

Theorem 1.3. If $p > (3n-1)C_{\chi} - n$ and χ satisfies (1.2), then $Kl_n(\psi, \chi, q, a)$ is nonzero.

In Section 4, we will discuss the generating fields and give several examples.

Theorem 1.4. If $p > \max \{(2n^{2d} + 1)^2, (3n - 1)C_{\chi} - n\}$ and χ satisfies (1.2), then $\mathrm{Kl}_n(\psi, \chi, q, a)$ generates $\mathbb{Q}(\mu_{pc})^H$, where H consists of those $\sigma_t \tau_w$ such that there exists an integer β and a character η satisfying

$$t = \lambda a_1^{\beta}, \lambda^{n_1} = 1, \ \chi^w = \eta \chi^{q_1^{\beta}}, \ \eta(a) = \prod \chi^w(t).$$

Here $n_1=(n,p-1)$, $q_1=\#\mathbb{F}_p(a^{(p-1)/n_1})$ and $a_1\in\mathbb{F}_p^{\times}$ such that $a_1^{n/n_1}=\mathbf{N}_{\mathbb{F}_{q_1}/\mathbb{F}_p}(a^{(1-p)/n_1})=a^{(1-q_1)/n_1}$.

2. Kloosterman sheaves constructed by Fisher

2.1. **Kloosterman sheaves.** Let $\ell \neq p$ be a prime. We fix an embedding $\overline{\mathbb{Q}}_{\ell} \hookrightarrow \mathbb{C}$. Then the additive and multiplicative character ψ, χ_i can take value both in $\overline{\mathbb{Q}}_{\ell}$ or \mathbb{C} .

Deligne in [Del77, Theorem 7.8] and Katz in [Kat88, Theorem 4.11] defined the Kloosterman sheaf

$$\mathcal{K}l = \mathcal{K}l_{n,q}(\psi, \chi)$$

on $\mathbb{G}_m \otimes \mathbb{F}_q$, with the following properties:

- (1) Kl is lisse of rank n and pure of weight n-1.
- (2) For any $a \in \mathbb{F}_q^{\times}$, $\operatorname{Tr}(\operatorname{Frob}_a, \mathcal{K}l_{\overline{a}}) = (-1)^{n-1} \operatorname{Kl}_n(\psi, \chi, q, a)$.
- (3) \mathcal{K} l is tame at 0.
- (4) \mathcal{K} l is totally wild with Swan conductor 1 at ∞ . So all ∞ -breaks are 1/n.

Remark 2.1. When χ is not Kummer-induced, $\mathcal{K}l$ is not geometrically Kummer-induced. That's to say, $\mathcal{K}l$ is not of type $(t \mapsto t^N)_*\mathcal{F}$ for some positive integer N > 1 and some lisse sheaf \mathcal{F} on $\mathbb{G}_m \otimes \overline{\mathbb{F}}_q$. See [Fis92, Theorem 2.9].

2.2. **Fisher's descent.** In [Fis92, §3], Fisher gave a descent of Kloosterman sheaves along an extension of finite fields. For any $a \in \mathbb{F}_q^{\times}$, he defined a lisse sheaf $\mathcal{F}_a(\chi)$ on $\mathbb{G}_m \otimes \mathbb{F}_p$, such that

- $(1) \mathcal{F}_a(\boldsymbol{\chi})|\mathbb{G}_m \otimes \mathbb{F}_q = \bigotimes_{\sigma \in \operatorname{Gal}(\mathbb{F}_q/\mathbb{F}_p)} (t \mapsto \sigma(a)t^n)^* \mathcal{K} \operatorname{l}_n(\psi \circ \sigma^{-1}, \boldsymbol{\chi} \circ \sigma^{-1}).$
- (2) $\mathcal{F}_a(\chi)$ is lisse of rank n^d and pure of weight d(n-1).
- (3) For any $t \in \mathbb{F}_n^{\times}$, $\operatorname{Tr}(\operatorname{Frob}_t, \mathcal{F}_a(\chi)_{\overline{t}}) = (-1)^{(n-1)d} \operatorname{Kl}_n(\psi, \chi, q, at^n)$.
- (4) $\mathcal{F}_a(\chi)$ is tame at 0 and its ∞ -breaks are at most 1.

Assume that p > 2n+1 and χ is not Kummer-induced. Then $\mathcal{F}_a(\chi)$ has a highest weight with multiplicity one. Thus it has a subsheaf $\mathcal{G}_a(\chi)$ such that, as representations of the Lie algebra $\mathfrak{g}(\mathcal{F}_a(\chi))$, $\mathcal{G}_a(\chi)$ is the irreducible sub-representation with highest weight. Moreover, it is geometrically irreducible and occurs exactly once in $\mathcal{F}_a(\chi)$ over $\mathbb{G}_m \otimes \overline{\mathbb{F}}_p$. See [Fis92, Proposition 4.18].

The additive character ψ can be viewed as a character on \mathbb{F}_p -points of $\mathbb{B} = \operatorname{Res}_{\mathbb{F}_q/\mathbb{F}_p}\mathbb{G}_a$. It gives a rank one lisse sheaf L_{ψ} on \mathbb{B} constructed from the Lang torsor as in [Kat88, §4.3]. We still denote by L_{ψ} its restriction on \mathbb{B}^{\times} . Denote by \mathcal{L}_{ψ} its pull-back along $\mathbb{G}_m \otimes \mathbb{F}_p \to \mathbb{B}^{\times}, t \mapsto t \otimes 1$. For the multiplicative character χ , we can define \mathcal{L}_{χ} similarly. Then for $t \in \mathbb{F}_p^{\times}$,

$$\operatorname{Tr}(\operatorname{Frob}_t, (\mathcal{L}_{\psi})_{\overline{t}}) = \psi(t), \quad \operatorname{Tr}(\operatorname{Frob}_t, (\mathcal{L}_{\chi})_{\overline{t}}) = \chi(t).$$

2.3. **Distinctness.** We will consider when

$$\mathrm{Kl}_n(\psi, \boldsymbol{\chi}, q, a) = \lambda \mathrm{Kl}_n(\psi, \boldsymbol{\rho}, q, b)$$

for some $\lambda \in \mu_{q-1}$. The argument is almost the same as in [Fis92], while $\lambda = 1$ in his paper. So we will only show the difference.

Lemma 2.2. Let $\mathcal{F}, \mathcal{F}'$ be lisse sheaves on $\mathbb{G}_m \otimes \mathbb{F}_p$ of same rank r and pure of the same weight w. Assume that there is a root of unity λ such that for any $t \in \mathbb{F}_p^{\times}$, we have

$$\operatorname{Tr}(\operatorname{Frob}_t, \mathcal{F}_{\overline{t}}) = \lambda \operatorname{Tr}(\operatorname{Frob}_t, \mathcal{F}'_{\overline{t}}).$$

Let \mathcal{G} be a geometrically irreducible sheaf of rank s on $\mathbb{G}_m \otimes \mathbb{F}_p$, pure of weight w, such that $\mathcal{G} \mid \mathbb{G}_m \otimes \overline{\mathbb{F}}_p$ occurs exactly once in $\mathcal{F} \mid \mathbb{G}_m \otimes \overline{\mathbb{F}}_p$. Then $\mathcal{G} \mid \mathbb{G}_m \otimes \overline{\mathbb{F}}_p$ occurs at least once in $\mathcal{F}' \mid \mathbb{G}_m \otimes \overline{\mathbb{F}}_p$, provided that $p > [2rs(M_0 + M_\infty) + 1]^2$, where M_η is the largest η -break of $\mathcal{F} \oplus \mathcal{F}'$.

Proof. See [Fis92, Lemma 4.9]. Assume that $\mathcal{G} \mid \mathbb{G}_m \otimes \overline{\mathbb{F}}_p$ does not occur in $\mathcal{F}' \mid \mathbb{G}_m \otimes \overline{\mathbb{F}}_p$. We reduce to the case w = 0 by a twist. We have

$$\begin{aligned} &\operatorname{Tr}\big(\operatorname{Frob}_{t},(\mathcal{G}^{\vee}\otimes\mathcal{F})_{\overline{t}}\big) = \operatorname{Tr}(\operatorname{Frob}_{t},\mathcal{G}_{\overline{t}}^{\vee}) \cdot \operatorname{Tr}(\operatorname{Frob}_{t},\mathcal{F}_{\overline{t}}) \\ &= &\operatorname{Tr}(\operatorname{Frob}_{t},\mathcal{G}_{\overline{t}}^{\vee}) \cdot \lambda \operatorname{Tr}(\operatorname{Frob}_{t},\mathcal{F}_{\overline{t}}^{\prime}) = \lambda \operatorname{Tr}(\operatorname{Frob}_{t},(\mathcal{G}^{\vee}\otimes\mathcal{F}^{\prime})_{\overline{t}}). \end{aligned}$$

Applying the Lefschetz Trace Formula to $\mathcal{G}^{\vee} \otimes \mathcal{F}$ and $\mathcal{G}^{\vee} \otimes \mathcal{F}'$, we have

$$\sum_{i=0}^{2} (-1)^{i} \operatorname{Tr} \left(\operatorname{Frob}_{p}, \operatorname{H}_{c}^{i}(\mathcal{G}^{\vee} \otimes \mathcal{F}) \right) = \lambda \sum_{i=0}^{2} (-1)^{i} \operatorname{Tr} \left(\operatorname{Frob}_{p}, \operatorname{H}_{c}^{i}(\mathcal{G}^{\vee} \otimes \mathcal{F}') \right).$$

Note that $H_c^0 = 0$,

$$\mathrm{H}^2_c(\mathcal{G}^\vee\otimes\mathcal{F})=\mathrm{Hom}(\mathcal{G},\mathcal{F})_{\pi_1^{\mathrm{geom}}(\mathbb{G}_m\otimes\overline{\mathbb{F}}_p)}(-1)$$

is one-dimensional, pure of weight 2,

$$\mathrm{H}^2_c(\mathcal{G}^\vee\otimes\mathcal{F}')=\mathrm{Hom}(\mathcal{G},\mathcal{F}')_{\pi^{\mathrm{geom}}(\mathbb{G}_m\otimes\overline{\mathbb{F}}_n)}(-1)=0,$$

 $H_c^1(\mathcal{G}^{\vee} \otimes \mathcal{F}), H_c^1(\mathcal{G}^{\vee} \otimes \mathcal{F})$ are mixed of weight ≤ 1 by Weil II [Del80]. Therefore

$$p = \left| \operatorname{Tr} \left(\operatorname{Frob}_p, \operatorname{H}_c^2(\mathcal{G}^{\vee} \otimes \mathcal{F}) \right) \right|$$

$$= \left| \operatorname{Tr} \left(\operatorname{Frob}_p, \operatorname{H}_c^1(\mathcal{G}^{\vee} \otimes \mathcal{F}) \right) - \lambda \operatorname{Tr} \left(\operatorname{Frob}_p, \operatorname{H}_c^1(\mathcal{G}^{\vee} \otimes \mathcal{F}') \right) \right|$$

$$\leq \sqrt{p} \left(h_c^1(\mathcal{G}^{\vee} \otimes \mathcal{F}) + h_c^1(\mathcal{G}^{\vee} \otimes \mathcal{F}') \right).$$

By Euler-Poincaré formula,

$$h_c^1(\mathcal{G}^{\vee} \otimes \mathcal{F}) = \operatorname{Sw}_0(\mathcal{G}^{\vee} \otimes \mathcal{F}) + \operatorname{Sw}_{\infty}(\mathcal{G}^{\vee} \otimes \mathcal{F}) + 1$$
$$h_c^1(\mathcal{G}^{\vee} \otimes \mathcal{F}') = \operatorname{Sw}_0(\mathcal{G}^{\vee} \otimes \mathcal{F}') + \operatorname{Sw}_{\infty}(\mathcal{G}^{\vee} \otimes \mathcal{F}').$$

Therefore $p \leq (2rs(M_0 + M_\infty) + 1)^2$.

Corollary 2.3. Let $a, b \in \mathbb{F}_q^{\times}$ and let χ and ρ be n-tuples of multiplicative characters $\chi_i, \rho_j : \mathbb{F}_q^{\times} \to \overline{\mathbb{Q}}_{\ell}^{\times}$. Assume that $p > (2n^{2d} + 1)^2$, χ is not Kummer-induced and

$$Kl_n(\psi, \boldsymbol{\chi}, q, a) = \lambda Kl_n(\psi, \boldsymbol{\rho}, q, b)$$

for a fixed root of unity $\lambda \in \mu_{q-1}$. Then $\mathcal{G}_a(\chi) \otimes \mathcal{L}_{\prod \overline{\chi}} \mid \mathbb{G}_m \otimes \overline{\mathbb{F}}_p$ occurs at least once in $\mathcal{F}_b(\rho) \otimes \mathcal{L}_{\prod \overline{\rho}} \mid \mathbb{G}_m \otimes \overline{\mathbb{F}}_p$.

Proof. See [Fis92, Corollary 4.20]. Denote by

$$\mathcal{F} = \mathcal{F}_a(\chi) \otimes \mathcal{L}_{\prod \overline{\chi}}, \ \mathcal{F}' = \mathcal{F}_b(\rho) \otimes \mathcal{L}_{\prod \overline{\rho}}, \ \mathcal{G} = \mathcal{G}_a(\chi) \otimes \mathcal{L}_{\prod \overline{\chi}}.$$

For $t \in \mathbb{F}_p^{\times}$, we have $\sigma_t \lambda = \lambda$ and thus

$$(-1)^{(n-1)d}\operatorname{Tr}(\operatorname{Frob}_t, \mathcal{F}_{\overline{t}}) = \prod \overline{\chi}(t) \cdot \operatorname{Kl}_n(\psi, \chi, q, at^n) = \sigma_t(\operatorname{Kl}_n(\psi, \chi, q, a))$$

$$= \lambda \sigma_t \big(\mathrm{Kl}_n(\psi, \boldsymbol{\rho}, q, b) \big) = \lambda \prod_{\boldsymbol{\rho}} \overline{\boldsymbol{\rho}}(t) \cdot \mathrm{Kl}_n(\psi, \boldsymbol{\rho}, q, bt^n) = (-1)^{(n-1)d} \lambda \mathrm{Tr} \big(\mathrm{Frob}_t, \mathcal{F}_{\overline{t}}' \big).$$

Apply Lemma 2.2 to these sheaves with $r = s = n^d, M_0 = 0, M_{\infty} \le 1$, the result then follows.

Proof of Theorem 1.2. By our assumptions, the Kloosterman sheaves $\mathcal{K}l_n(\psi, \chi)$ and $\mathcal{K}l_n(\psi, \rho)$ are not Kummer-induced by [Fis92, Theorem 2.9]. If the connected geometric monodromy group $G_{\text{geom}}(\mathcal{K}l_n(\psi, \chi))^{\circ} = \text{SO}(4)$, by [Fis92, Proposition 2.10], n=4 and there is a multiplicative character η such that $\overline{\chi} = \chi \eta$ as unordered 4-tuples and $\prod \chi = \Lambda_2 \eta^{-2}$. Since χ is not Kummer-induced, we have $\chi = (\xi_1, \xi_1^{-1}, 1, \Lambda_2)\xi_2$ for some ξ_1, ξ_2 . This contradicts to our assumptions. Thus $G_{\text{geom}}(\mathcal{K}l_n(\psi, \chi))^{\circ} \neq \text{SO}(4)$. Similarly, $G_{\text{geom}}(\mathcal{K}n(\psi, \rho))^{\circ} \neq \text{SO}(4)$.

As showned in [Fis92, Theorem 4.22], we have

$$\mathcal{G}_a(\chi) \hookrightarrow \mathcal{F}_b(\rho), \quad \mathcal{G}_b(\rho) \hookrightarrow \mathcal{F}_a(\chi),$$

by applying Corollary 2.3 twice. By following Fisher's argument step by step, there are $\sigma \in \operatorname{Gal}(\mathbb{F}_q/\mathbb{F}_p)$ and a multiplicative character η , such that $b = \sigma(a)$ and $\rho = \eta \cdot (\chi \circ \sigma^{-1})$ as unordered tuples. Finally,

$$\mathrm{Kl}_n(\psi, \boldsymbol{\rho}, q, b) = \eta(b)\mathrm{Kl}_n(\psi, \boldsymbol{\chi}, q, a).$$

Hence both Kloosterman sums vanish or $\eta(b) = \lambda^{-1}$.

Remark 2.4. In [Fis92, Corollary 4.27], Fisher showed that if $p > (2n^{4d} + 1)^2$ and

$$|\mathrm{Kl}_n(\psi, \boldsymbol{\chi}, q, a)| = |\mathrm{Kl}_n(\psi, \boldsymbol{\rho}, q, b)|,$$

then
$$b = \sigma(a), \rho = \eta \cdot (\chi \circ \sigma^{-1}), \text{ or } b = (-1)^n \sigma(a), \rho = \eta \cdot (\chi \circ \sigma^{-1}).$$

Corollary 2.5. Keeping the hypotheses of Theorem 1.2. Assume that χ is defined over \mathbb{F}_p , that's to say, $\chi = \chi_0 \circ \mathbf{N}_{\mathbb{F}_q/\mathbb{F}_p}$ for some n-tuple χ_0 of characters on \mathbb{F}_p^{\times} . Then

$$\mathrm{Kl}_n(\psi, \boldsymbol{\chi}, q, a) = \lambda \mathrm{Kl}_n(\psi, \boldsymbol{\chi}, q, b), \quad \lambda \in \mu_{q-1}$$

if and only if $b = \sigma(a)$ for some $\sigma \in \operatorname{Gal}(\mathbb{F}_q/\mathbb{F}_p)$, and $\operatorname{Kl}_n(\psi, \chi, q, a) = \operatorname{Kl}_n(\psi, \chi, q, b)$.

Proof. In this case, we have $\chi = \eta \chi$ and then $\eta = 1$. The result then follows easily.

3. The non-vanishing of Kloosterman sums

We will prove Theorem 1.3 in this section.

Proof of Theorem 1.3. Let \mathfrak{p} be a prime above p in $\mathbb{Q}(\mu_{q-1})$ and \mathfrak{P} the unique prime above \mathfrak{p} in $\mathbb{Q}(\mu_{(q-1)p})$. Let v the normalized \mathfrak{P} -adic valuation. Once we fix an isomorphism from \mathbb{F}_q to the residue field of \mathfrak{p} , the Teichmüller lifting of the residue map at \mathfrak{p} is a primitive character of \mathbb{F}_q^{\times} , which is denoted by ω . Denote by

$$g(m) = \sum_{t \in \mathbb{F}_{\times}^{\times}} \omega^{-m}(t) \psi(\operatorname{Tr}(t))$$

the Gauss sum. Then the Stickelberger's congruence theorem tells that

$$v(g(m)) = \sum_{j=0}^{d-2} m_j,$$
 (3.1)

where

$$0 \le m \le q - 2$$
, $m = \sum_{j=0}^{d-1} m_j p^j$, $0 \le m_j \le p - 1$,

see [Sti90] or [Was97, Chap. 6].

For any $1 \le i \le n$, there is s_i such that $\chi_i = \omega^{-s_i}$. Note that

$$\sum_{m=0}^{q-2} \omega^{-m}(x) = \begin{cases} q-1, & \text{if } x = 1; \\ 0, & \text{if } x \neq 1. \end{cases}$$

Take $x = x_1 \cdots x_n a^{-1}$, we have

$$(q-1)\mathrm{Kl}_n(\psi, \chi, q, a) = \sum_{m=0}^{q-2} \omega^m(a) \prod_{i=1}^n g(m+s_i).$$

There is a unique m such that $v(\prod_{i=1}^n g(m+s_i))$ is minimal by Proposition 3.1. Thus the valuation of the Kloosterman sum is finite and the Kloosterman sum is nonzero.

We may assume that $1 \le s_i \le q - 1$ (notice the bound). Write

$$s_i = \sum_{j=0}^{d-1} s_{ij} p^j$$

with $0 \le s_{ij} \le p - 1$.

Proposition 3.1. If $p > (3n-1)C_{\chi} - n$ and χ satisfies (1.2), then there is a unique m such that $v(\prod_{i=1}^n g(m+s_i))$ is minimal.

Proof. We may assume that $s_1 = q - 1$ for simplicity. Write

$$m + s_i - (q - 1)\epsilon_{i, -1} = \sum_{i=0}^{d-1} m_{ij} p^i, \ 1 \le i \le n$$

where $\epsilon_{i,-1} \in \{0,1\}$ is the integer part of $(m+s_i)/(q-1)$ and $0 \le m_{ij} \le p-1$. Then

$$m_{ij} = m_j + s_{ij} + \epsilon_{i,j-1} - p\epsilon_{ij}, \quad \epsilon_{ij} \in \{0,1\}, \epsilon_{i,-1} = \epsilon_{i,k-1}$$

and

$$v(\prod_{i=1}^{n} g(m+s_i)) = \sum_{i=1}^{n} \sum_{j=0}^{d-1} m_{ij}$$
(3.2)

by the Stickelberger's congruence theorem (3.1).

There exsits a permutation $\sigma_i \in S_n$ such that

$$s_{\sigma_i(1),j} \ge s_{\sigma_i(2),j} \ge \dots \ge s_{\sigma_i(n),j}. \tag{3.3}$$

By Lemma 3.2, there exists a unique u_i such that

$$s_{\sigma_j(u_j),j} + \frac{p-1}{n}u_j = \max_{1 \le i \le n} \left\{ s_{\sigma_j(i),j} + \frac{p-1}{n}i \right\}.$$

Moreover,

$$s_{\sigma_j(u_j),j} + \frac{p-1}{n}u_j > s_{\sigma_j(i),j} + \frac{p-1}{n}i + 1$$
 (3.4)

for any $i \neq u_j$. Indeed, if $s_{\sigma_j(u_j)} \neq s_{\sigma_j(i)}$, then by Lemma 3.2, $s_{\sigma_j(u_j),j} \neq s_{\sigma_j(i),j}$ and this claim follows; if $s_{\sigma_j(u_j)} = s_{\sigma_j(i)}$, this follows from (p-1)/n > 1.

If $s_{ij} = s_{i'j}$, we have $\chi_i = \chi_{i'}$ and $\epsilon_{ij} = \epsilon_{i'j}$. If $s_{ij} > s_{i'j}$, then $s_{ij} + \epsilon_{i,j-1} \ge s_{i'j} + \epsilon_{i',j-1}$ and $\epsilon_{ij} \ge \epsilon_{i'j}$. By (3.3), there exists $0 \le \mu_j \le n$ such that

$$\epsilon_{\sigma_j(1),j} = \dots = \epsilon_{\sigma_j(\mu_j),j} = 1, \quad \epsilon_{\sigma_j(\mu_j+1),j} = \dots = \epsilon_{\sigma_j(n),j} = 0.$$

Notice that $s_1 = q - 1$, $\epsilon_{1,k-1} = \epsilon_{1,-1} = 1$, which means $\mu_j \neq 0$. Since $\{s_{ij} + \epsilon_{i,j-1}\}_i$ has same order as (3.3), we have

$$m'_j := \min_i \{m_{ij}\} = m_j + s_{\sigma_j(\mu_j),j} + \epsilon_{\sigma_j(\mu_j),j-1} - p.$$

Then

$$\sum_{i} m_{ij} = \sum_{i} (m'_{j} + p(1 - \epsilon_{ij}) + s_{ij} - s_{\sigma_{j}(\mu_{j}), j} + \epsilon_{i, j-1} - \epsilon_{\sigma_{j}(\mu_{j}), j-1})$$

and the valuation (3.2) is

$$\begin{split} & \sum_{i,j} m_{ij} = \sum_{i,j} \left(m'_j + p(1 - \epsilon_{ij}) + s_{ij} - s_{\sigma_j(\mu_j),j} + \epsilon_{i,j-1} - \epsilon_{\sigma_j(\mu_j),j-1} \right) \\ & = \sum_{j} \left(n m'_j + (p-1)(n - \mu_j) - n s_{\sigma_j(\mu_j),j} + \sum_{i} (s_{ij} + 1 - \epsilon_{ij} + \epsilon_{i,j-1} - \epsilon_{\sigma_j(\mu_j),j-1}) \right) \\ & = \sum_{j} \left(n m'_j + (p-1)(n - \mu_j) - n s_{\sigma_j(\mu_j),j} + \sum_{i} (s_{ij} + 1 - \epsilon_{\sigma_j(\mu_j),j-1}) \right). \end{split}$$

Write

$$E_{\sigma_i(1),j} = \dots = E_{\sigma_i(u_i),j} = 1, \quad E_{\sigma_i(u_i+1),j} = \dots = E_{\sigma_i(n),j} = 0.$$

If m is

$$M = \sum_{j=0}^{d-1} M_j p^j$$
, $M_j = p - s_{\sigma_j(u_j),j} - E_{\sigma_j(u_j),j-1}$,

then $m'_{ij} = 0, \epsilon_{ij} = E_{ij}$ and $\mu_j = u_j$. Denote by V the corresponding valuation (3.2).

If all $\mu_j = u_j$, then $\epsilon_{ij} = E_{ij}$ and

$$\sum_{i,j} m_{ij} = V + n \sum_{j} m'_{j} \ge V.$$

If there exists j such that $\mu_j \neq u_j$, then

$$\begin{split} &\sum_{i,j} m_{ij} - V \\ &= \sum_{j} \left(n m_j' + (p-1)(n-\mu_j) - n s_{\sigma_j(\mu_j),j} + \sum_{i} (s_{ij} + 1 - \epsilon_{\sigma_j(\mu_j),j-1}) \right) \\ &- \sum_{j} \left((p-1)(n-u_j) - n s_{\sigma_j(u_j),j} + \sum_{i} (s_{ij} + 1 - E_{\sigma_j(u_j),j-1}) \right) \\ &\geq \sum_{j} \left((p-1)(u_j - \mu_j) + n (s_{\sigma_j(u_j),j} - s_{\sigma_j(\mu_j),j}) + \sum_{i} (E_{\sigma_j(u_j),j-1} - \epsilon_{\sigma_j(\mu_j),j-1}) \right) \\ &\geq n \sum_{j} \left(s_{\sigma_j(u_j),j} + \frac{p-1}{n} u_j - s_{\sigma_j(\mu_j),j} - \frac{p-1}{n} \mu_j \right) + \sum_{i,j} \left(E_{\sigma_j(u_j),j} - \epsilon_{\sigma_j(\mu_j),j} \right) \\ &= n \sum_{\mu_i \neq \mu_j} \sum_{j} \left(s_{\sigma_j(u_j),j} + \frac{p-1}{n} u_j - s_{\sigma_j(\mu_j),j} - \frac{p-1}{n} \mu_j - 1 \right) > 0 \end{split}$$

by (3.4). Hence the valuation (3.2) is minimal if and only if m = M.

Lemma 3.2. Assume that $p > (3n-1)C_{\chi} - n$. If $\chi_i^n \neq \chi_{i'}^n$, then there is no integer $0 \leq \alpha \leq n$ such that $|s_{ij} - s_{i'j} - \frac{p-1}{n}\alpha| \leq 1$.

Proof. There exists r, r' such that

$$s_i = \frac{(q-1)r}{C_{\chi}}, \quad s_{i'} = \frac{(q-1)r'}{C_{\chi}}$$

and

$$s_{ij} = \frac{a_{j+1}p - a_j}{C_{\mathbf{v}}}, \quad s_{i'j} = \frac{a'_{j+1}p - a'_j}{C_{\mathbf{v}}},$$

where $a_j \equiv rp^{-j}, a_j' \equiv r'p^{-j} \mod C_{\chi}$ with $1 \leq a_j, a_j' \leq C_{\chi}$. Let $a_j'' := a_j - a_j'$. Then $|a_j''| \leq C_{\chi} - 1$.

$$\frac{p-1}{n}\alpha + t = s_{ij} - s_{i'j} = \frac{a''_{j+1}p - a''_{j}}{C_{x}}$$

for some $0 \le \alpha \le n$ and $|t| \le 1$, then

$$(na_{j+1}'' - C_{\chi}\alpha)p = na_j'' - C_{\chi}\alpha + nC_{\chi}t.$$

There are three cases:

- If $na_{j+1}'' C_{\chi}\alpha \neq 0$ and $\alpha = n$, then $p \leq |(C_{\chi} a_{j+1}'')p| = |C_{\chi} a_{j}'' C_{\chi}t| \leq 3C_{\chi} 1 \leq (3n-1)C_{\chi} n$ since $n \geq 2$.
- If $na''_{j+1} C_{\chi}\alpha \neq 0$ and $\alpha < n$, then $p \leq |na''_{j} C_{\chi}\alpha + nC_{\chi}t| \leq n(C_{\chi} 1) + C_{\chi}(n-1) + nC_{\chi} \leq (3n-1)C_{\chi} n$.

• If $na_{j+1}'' - C_{\chi}\alpha = 0$, both of $na_j'' = C_{\chi}(\alpha - nt)$ and $na_{j+1}'' = C_{\chi}\alpha$ are multipliers of C_{χ} since $nt \in \mathbb{Z}$. That's to say, $(\chi_i \chi_{i'}^{-1})^n$ is trivial and then $\chi_i^n = \chi_{i'}^n$.

The result then follows.

Remark 3.3. When $n=2,\,p>3C_{\chi}-2$ is enough by a careful estimate, see [Zha21, Lemma 3.4, Proposition 3.6].

4. The generating fields

4.1. The proof.

Proof of Theorem 1.4. Note that if χ is Kummer-induced, there is a non-trivial character Λ such that $\chi = \chi \Lambda$ and $\Lambda^n = 1$. Thus there exists $i \neq j$ such that $\chi_i = \chi_j \Lambda$ and $\chi_i^n = \chi_j^n$, which contradicts to our assumptions. Certainly, $\chi = (\xi_1, \xi_1^{-1}, 1, \Lambda_2)\xi_2$ is also impossible.

By Theorem 1.2, 1.3, the fact

$$\sigma_t \tau_w \mathrm{Kl}_n(\psi, \chi, q, a) = \prod \chi^{-w}(t) \mathrm{Kl}_n(\psi, \chi^w, q, at^n),$$

and $t^p = t$, we have

$$t^n=a^{1-p^k},\ \pmb{\chi}^w=\eta \pmb{\chi}^{p^k},\ \eta(a)=\prod \pmb{\chi}^w(t)$$

for some integer k.

Recall that $n_1 = (n, p-1)$. Denote by $b = a^{(1-p)/n_1}$. Then $q_1 = p^{d_1}$ where d_1 is the degree of b. Write $n = n_1 n_2$ and $n_0 \equiv n_2^{-1} \mod (p-1)$. Then

$$t^{n_1} = t^{nn_0} = a^{n_0(1-p^k)} = b^{n_0n_1(p^k-1)/(p-1)}$$

and

$$1 = t^{p-1} = b^{n_0(p^k - 1)}$$

Since the degree of b^{n_0} is d_1 , the same as the degree of b, we have $k = d_1\beta$ for some integer β . Conversely, if $k = d_1\beta$ and $b^{n_0(p^k-1)} = 1$, then

$$t^{n_1} = b^{n_0 n_1(p^k - 1)/(p - 1)} = a_1^{n_1(p^k - 1)/(p^{d_1} - 1)} = a_1^{n_1 \beta}$$

has solutions $t = \lambda a_1^{\beta}$ for some $\lambda^{n_1} = 1$.

Recall $c \mid (q-1)$ is the least common multiplier of orders of χ_i . By abuse of notations, we also denote by $\tau_w \in \operatorname{Gal}(\mathbb{Q}(\mu_{pc})/\mathbb{Q})$ for $w \in (\mathbb{Z}/c\mathbb{Z})^{\times}$ similarly.

Remark 4.1. Fix q, χ , a and assume that χ satisfies (1.2). Consider the Kloosterman sums

$$S_k = \mathrm{Kl}(\psi, \boldsymbol{\chi} \circ \mathbf{N}_{\mathbb{F}_{q^k}/\mathbb{F}_q}, q^k, a).$$

By Theorem 1.4, if $p > \max \{(2n^{2dk} + 1)^2, (3n - 1)C_{\chi} - n\}$, then $\mathbb{Q}(S_k) = \mathbb{Q}(\mu_{pc})^H$, where H consists of those $\sigma_t \tau_w$ such that there exists an integer β and a character η on \mathbb{F}_q^{\times} satisfying

$$t = \lambda a_1^{\beta}, \lambda^{n_1} = 1, \quad \boldsymbol{\chi}^w = \eta \boldsymbol{\chi}^{q_1^{\beta}}, \quad \eta(a) = \gamma \cdot \prod \boldsymbol{\chi}^w(t), \gamma^k = 1. \tag{4.1}$$

Thus $\mathbb{Q}(S_k) = \mathbb{Q}(S_{k-c})$ since $\gamma^c = 1$. The *L*-function

$$L(T) = \exp\left(\sum_{k=1}^{\infty} \frac{T^k}{k} S_k\right)$$

is a rational function over $\mathbb{Q}(\zeta_{p(q-1)})$ by the Dwork-Bombieri-Grothendick rationality theorem. Thus the sequence $\{S_k\}_k$ is linear recurrence sequence. As shown in [WY20, Theorem 3], the sequence $\{\mathbb{Q}(S_k)\}_{k\geq N}$ is periodic of period r for some N. Thus if $p>\max\left\{\left(2n^{2d(N+r)}+1\right)^2,(3n-1)C_{\chi}-n\right\}$, the generating field of S_k is determined by (4.1) for any k. For this purpose, we need to decrease the bound $(2n^{2d}+1)^2$ and estimate the period r and N. We guess that S_k has the predicted generating field if p>3ndc.

We will end our paper with two examples.

4.2. An example: n=2 case.

Proposition 4.2. Let $\chi = \{1, \chi\}$, where χ is a multiplicative character of order $c \neq 2$. If $p > \max\{(2^{2d+1}+1)^2, 5c-2)\}$, then $\mathrm{Kl}(\psi, \chi, p^d, a)$ generates $\mathbb{Q}(\mu_{pc})^H$, where

$$H = \begin{cases} \langle \tau_{q_1} \sigma_{a_1}, \sigma_{-1}, \tau_{-1} \rangle, & \text{if } \chi(-1) = 1, \chi(a) = 1; \\ \langle \tau_{-q_1} \sigma_{a_1}, \sigma_{-1} \rangle, & \text{if } \chi(-1) = 1, \chi(a) = \chi(a_1) = -1; \\ \langle \tau_{q_1^{\alpha}} \sigma_{a_1^{\alpha}}, \sigma_{-1} \rangle, & \text{if } \chi(-1) = 1, \chi(a)^{\alpha} \neq 1; \\ \langle \tau_{q_1} \sigma_{-a_1}, \tau_{-1} \sigma_{-1} \rangle, & \text{if } \chi(-1) = -1, \chi(a) = \chi(a_1) = -1; \\ \langle \tau_{q_1} \sigma_{a_1}, \tau_{-1} \rangle & \text{if } \chi(-1) = -1, \chi(a) = 1; \\ \langle \tau_{q_1} \sigma_{a_1}, \tau_{-1} \sigma_{-1} \rangle, & \text{if } \chi(-1) = -1, \chi(a) = -1, \chi(a_1) = 1; \\ \langle \tau_{q_1^{\alpha}} \sigma_{a_1^{\alpha}}, \tau_{-1} \sigma_{-1} \rangle, & \text{if } \chi(-1) = -1, 2 \mid \alpha, \chi(a) \neq \pm 1; \\ \langle \tau_{q_1^{\alpha}} \sigma_{a_1^{\alpha}} \rangle, & \text{if } \chi(-1) = -1, 2 \mid \alpha, \chi(a) \neq \pm 1. \end{cases}$$

is a subgroup of $\operatorname{Gal}(\mathbb{Q}(\mu_{pc})/\mathbb{Q})$, $q_1 = \#\mathbb{F}_p(a^{(1-p)/2})$, $a_1 = a^{(1-q_1)/2}$ and α is the order of $\chi(a_1) \in \mu_{p-1}$.

Proof. We have

$$\boldsymbol{\chi}^w = \{1, \chi^w\} = \eta \boldsymbol{\chi}^{q_1^{\beta}} = \left\{\eta, \eta \chi^{q_1^{\beta}}\right\}.$$

There are two cases:

(a) If $\eta = 1, \chi^w = \chi^{q_1^{\beta}}$, then $w \equiv q_1^{\beta} \mod c$. Since $\eta(a) = \chi^w(t)$, we have $1 = \chi(t) = \chi(\pm a_1^{\beta})$.

(b) If $\eta = \chi^w, \eta \chi^{q_1^{\beta}} = 1$, then $w \equiv -q_1^{\beta} \mod c$. Since $\eta(a) = \chi^w(t) = \chi(t)^{-1}$ and $t = \pm a_1^{\beta}$, we have $\chi(a) = \chi(t) = \chi(\pm a_1^{\beta})$. Since $a_1 = a^{(1-q_1)/2} \in \mathbb{F}_p^{\times}$, we have

$$\chi(a_1)^2 = \chi(a)^{1-q_1} = \chi(a_1)^{(1-q_1)\beta} = 1.$$

Thus $\chi(a_1) = \pm 1$ and $\alpha = 1$ or 2.

Case $\chi(-1) = 1$: In case (a), $\beta = \alpha m$ for some m and $w \equiv q_1^{\alpha m}, t = \pm a_1^{\alpha m}$. In case (b), if $\alpha = 1$, $\chi(a_1) = \chi(a) = 1$, then $w \equiv -q_1^m, t = \pm a_1^m$; if $\alpha = 2$, $\chi(a_1) = \chi(a) = -1$, then $w \equiv -q_1^{1+2m}, t = \pm a_1^{1+2m}$.

Case $\chi(-1) = -1$ and $2 \mid \alpha$: In case (a), $w \equiv q_1^{\alpha m}$, $t = a_1^{\alpha m}$ or $w \equiv q_1^{\alpha (m+1/2)}$, $t = -a_1^{\alpha (m+1/2)}$. In case (b), $\alpha = 2$, $\chi(a) = \chi(a_1) = -1$. Then $w \equiv -q_1^{1+2m}$, $t = a_1^{1+2m}$ or $w \equiv -q_1^{2m}$, $t = -a_1^{2m}$.

Case $\chi(-1) = -1$ and $2 \nmid \alpha$: In case (a), $w \equiv q_1^{\alpha m}, t = a_1^{\alpha m}$. In case (b), $\alpha = 1$ and $\chi(a_1) = 1$. If $\chi(a) = 1$, then $w \equiv -q_1^m, t = a_1^m$; if $\chi(a) = -1$, then $w \equiv -q_1^m, t = -a_1^m$.

Example 4.3. If $a \in \mathbb{F}_p^{\times}$, then $q_1 = p, \alpha = 1$ or 2. One can easily obtain that

$$H = \begin{cases} \langle \tau_p, \tau_{-1}, \sigma_{-1} \rangle, & \text{if } \chi(-1) = 1 \text{ and } \chi(a) = 1; \\ \langle \tau_p, \sigma_{-1} \rangle, & \text{if } \chi(-1) = 1 \text{ and } \chi(a) = -1; \\ \langle \tau_p, \tau_{-1} \rangle, & \text{if } \chi(-1) = -1 \text{ and } \chi(a) = 1; \\ \langle \tau_p, \tau_{-1} \sigma_{-1} \rangle, & \text{if } \chi(-1) = -1 \text{ and } \chi(a) = -1; \\ \langle \tau_p \rangle, & \text{if } \chi(-1) = -1 \text{ and } \chi(a) \neq \pm 1. \end{cases}$$

This drops the combinatorial condition on (p, d) and the non-vanishing condition on Tr(a) in [Zha21, Theorems 1.1, 1.3], while we require that p is large with respect to d.

Remark 4.4. When $\chi = \Lambda_2$, $\Lambda_2(a) = 1$, if we assume that $\operatorname{Tr}(\sqrt{a}) \neq 0$, then the Kloosterman sum generates $\mathbb{Q}(\mu_p)^+$ if $\chi(-1) = 1$; $\mathbb{Q}(\mu_p)$ if $\chi(-1) = -1$. See [Zha21, Theorem 1.1(1)].

4.3. An example with trivial η .

Example 4.5. Let χ be a n-tuple containing 1 and satisfying (1.2). Assume that χ_i, χ_j have same multiplicities only if $\chi_i = \chi_j$. It's easy to see that $\eta = 1$ and $\chi_i^w = \chi_i^{q_1^{\beta}}$. Thus $w \equiv q_1^{\beta} \mod c$. Write $\chi = \prod \chi$ and denote by ℓ the minimal positive integer such that

$$\chi(a_1)^{\beta} \in \{\chi(\lambda) \mid \lambda^{n_1} = 1\}.$$

Write $\chi(a_1)^\ell = \chi(\lambda_0^{-1})$ and $t_0 = \lambda_0 a_1^\ell$. If $t = \lambda_1 a_1^\beta$ for some $\lambda_1^{n_1} = 1$ with $\chi(t) = 1$, then $\beta = \ell m$ and $t = \lambda t_0^m$ for some $\lambda^{n_1} = 1$ and $\chi(\lambda) = 1$. Hence if $p > \max\left\{(2n^{2d}+1)^2, (3n-1)C_{\chi}-n)\right\}$, then $\mathrm{Kl}(\psi,\chi,p^d,a)$ generates $\mathbb{Q}(\mu_{pc})^H$, where

$$H = \langle \tau_{q_1^{\ell}} \sigma_{t_0}, \sigma_{\lambda} \mid \lambda^{n_1} = 1, \prod \chi(\lambda) = 1 \rangle.$$

Acknowledgments. This work is partially supported by NSFC (Grant No. 12001510), the Fundamental Research Funds for the Central Universities (No. WK0010000061) and Anhui Initiative in Quantum Information Technologies (Grant No. AHY150200).

References

- [Del77] P. Deligne. Cohomologie étale, volume 569 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1977. Séminaire de géométrie algébrique du Bois-Marie SGA $4\frac{1}{2}$.
- [Del80] Pierre Deligne. La conjecture de Weil. II. Inst. Hautes Études Sci. Publ. Math., 52:137–252, 1980.
- [Fis92] Benji Fisher. Distinctness of Kloosterman sums. In p-adic methods in number theory and algebraic geometry, volume 133 of Contemp. Math., pages 81–102. Amer. Math. Soc., Providence, RI, 1992.
- [Kat88] Nicholas M. Katz. Gauss sums, Kloosterman sums, and monodromy groups, volume 116 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1988.
- [KRV11] Keijo Kononen, Marko Rintaaho, and Keijo Väänänen. On the degree of a kloosterman sum as an algebraic integer. arXiv: Number Theory, page 6, 2011.
- [Sti90] L. Stickelberger. Ueber eine Verallgemeinerung der Kreistheilung. Math. Ann., 37(3):321–367, 1890.
- [Wan95] Da Qing Wan. Minimal polynomials and distinctness of Kloosterman sums. Finite Fields Appl., 1(2):189-203, 1995. Special issue dedicated to Leonard Carlitz.
- [Was97] Lawrence C. Washington. Introduction to cyclotomic fields, volume 83 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1997.

 $[WY20] \quad \text{Daqing Wan and Hang Yin. Algebraic degree periodicity in recurrence sequences. } \textit{arXiv:}$ Number Theory, page 7, 2020.
[Zha21] Shenxing Zhang. The generating fields of two kloosterman sums. preprint, 2021.

School of Mathematics, Hefei University of Technology, Hefei, Anhui 230009, China $Email\ address: \verb"zsxqq@mail.ustc.edu.cn"$