Machine Learning

Prof. Dr. Stefan Kramer Johannes Gutenberg-Universität Mainz

Acknowledgements

- Eibe Frank
- lan Witten
- Tom Mitchell

Evaluation and Validation in Predictive Mining

Outline

- ROC and recall-precision curves
- Loss functions and error measures
- Bayesian learning and Naive Bayes
- Application of Naive Bayes to text categorization

ROC Curves

- "ROC" stands for "receiver operating characteristic"
- Used in signal detection to show tradeoff between hit rate and false alarm rate over a noisy channel
- x axis shows percentage of false positives in sample (rather than sample size)
- y axis shows percentage of true positives in sample (rather than absolute number)

Measures and Curves

	Predicted Class			
Actual Class		Pos	Neg	
	Pos	TP	FN	Р
	Neg	FP	TN	Z
		PP	PN	

ROC Curves:

x-axis: False Positive Rate = FP / (FP + TN) = FP / N y-axis: True Positive Rate = TP / (TP + FN) = TP / P

Recall-Precision Curves:

x-axis: Recall = TP / (TP + FN) = TP / P = TPR y-axis: Precision = TP / (TP + FP) = TP / PP

A Sample ROC Curve

ROC Curves for Two Schemes

Area Under ROC (AUC or AUROC)

- Sometimes, the area under the ROC curve is taken as a measure of quality
- AUROC can also be represented as the ratio of the number of correct pairwise rankings vs. the number of all possible pairs, a quantity known as called the *Wilcoxon-Mann-Whitney (WMW)* statistic

Cross-Validation and ROC

- Simple method of getting a ROC curve using cross-validation:
 - collect probabilities for instances in test folds
 - sort instances according to probability of being positive
- This is the method implemented, for instance, in the WEKA workbench

Measures and Curves

	Predicted Class			
Actual Class		Pos	Neg	
	Pos	TP	FN	Р
	Neg	FP	TN	N
		PP	PN	

ROC Curves:

x-axis: False Positive Rate = FP / (FP + TN) = FP / N y-axis: True Positive Rate = TP / (TP + FN) = TP / P

Recall-Precision Curves:

x-axis: Recall = TP / (TP + FN) = TP / P = TPR y-axis: Precision = TP / (TP + FP) = TP / PP

Recall-Precision Curve/Space

- x-axis is y-axis from ROC curve (TPR)
- Summary measures: average precision at 20%, 50% and 80% recall ("three-point average recall")
- F-measure=(2xRxP)/(R+P)

Summary of Measures and Curves

Lift Charts:

- x-axis: subset size (TP+FP)/(TP+FP+TN+FN)
- y-axis: TP

ROC Curves:

- x-axis: False Positive Rate FPR = FP / (FP + TN) = FP / N
- y-axis: True Positive Rate TPR = TP / (TP + FN) = TP / P

Recall-Precision Curves:

- x-axis: Recall = TP / (TP + FN) = TP / P = TPR
- y-axis: Precision = TP / (TP + FP) = TP / PP

How about the false negatives in ROC and recall-precision curves?

```
Sensitivity = TP / P = Recall = TPR
Specificity = TN / N = (1 - FPR)
```

Bayesian Learning and Naive Bayes

Bayesian Learning

- Useful in two ways
- As a theoretical tool to analyze learning
 - MAP hypothesis
 - Bayes optimal classifier
 - to analyze learning algorithms from a Bayesian point of view:
 - candidate elimination algorithm
 - regression
 - ...
 - to derive schemes for *model selection* like the *minimum description length (MDL)* principle
- To derive practical machine learning schemes
 - Naive Bayes, Semi-Naive Bayes, Bayes nets

Bayesian Theorem

- P(h) = prior probability of hypothesis h
- P(D) = prior probability of training data D
- P(h|D) = conditional probability of h given D
- P(D|h) = conditional probability of D given h

Application Bayesian Theorem

- P(cancer) = 0.008
- P(not cancer) = 0.992

- $P(h \mid D) = \frac{P(D \mid h)P(h)}{P(D)}$
- P(pos test|cancer) = 0.98
- P(neg test|cancer) = 0.02
- P(pos test|not cancer) = 0.03
- P(neg test|not cancer) = 0.97
- P(cancer|pos test) =
 P(pos test|cancer)P(cancer)/P(pos test) =
 0.00784/P(pos test)
- P(not cancer|pos test) = P(pos test|not cancer)P(not cancer)/P(pos test)= 0.02976/P(pos test)

Remember Basic Rules of Probabilities

- Product Rule: probability P(A ∧ B) of a conjunction of two events A and B:
 P(A ∧ B) = P(A | B) P(B) = P(B | A) P(A)
- Sum Rule: probability of a disjunction of two events A and B:
 P(A \times B) = P(A) + P(B) - P(A \times B)
- Theorem of total probability: if events $A_1, ..., A_n$ are mutually exclusive with $\Sigma P(A_i) = 1$ then $P(B) = \Sigma P(B|A_i) P(A_i)$

Brute Force MAP Hypothesis Learner

 For each hypothesis h in H, calculate the posterior probability

$$P(h \mid D) = \frac{P(D \mid h)P(h)}{P(D)}$$

 Output the hypothesis h_{MAP} with the highest posterior probability

$$h_{MAP} = \operatorname{arg\,max}_{h \in H} P(h \mid D)$$

Most Probable Classification of New Instances

- So far we have sought the most probable hypothesis given the data D (i.e., h_{MAP})
- Given new instance x, what is its most probable classification?
- h_{MAP}(x) is not the most probable classification!
- Consider: three possible hypotheses: $P(h_1|D) = 0.4$, $P(h_2|D) = 0.3$, $P(h_3|D) = 0.3$
- Given new instance x, $h_1(x) = +$, $h_2(x) = -$, $h_3(x) = -$
- What is the *most probable classification* of x?

Bayes Optimal Classifier

$$\arg\max_{v_j \in V} \sum_{h_i \in H} P(v_j|h_i) P(h_i|D)$$

• Example:

$$P(h_1|D) = 0.4$$
, $P(-|h_1) = 0.0$, $P(+|h_1) = 1.0$
 $P(h_2|D) = 0.3$, $P(-|h_2) = 1.0$, $P(+|h_2) = 0.0$
 $P(h_3|D) = 0.3$, $P(-|h_3) = 1.0$, $P(+|h_3) = 0.0$

How does the Bayes optimal classifier decide?

Model Selection

- Selecting a model from a given class of models
- Methods:
 - cross-validation
 - minimum description length (MDL) principle
 - ...

Minimum Description Length (MDL) Principle

- Occam's razor:
 - ~ "prefer the shortest hypothesis"
- MDL: prefer the hypothesis h that minimizes

$$h_{MDL} = \underset{h \in H}{\operatorname{argmin}} L_{C_1}(h) + L_{C_2}(D|h)$$

where $L_C(x)$ is the description length of x under encoding C

 Measure for a model and its errors in a common currency, namely bits

Minimum Description Length (MDL) Principle

- Example: H = decision trees, D = training data
- L_{C1}(h) is # bits to describe (encode) tree h
- L_{C2}(D|h) is # bits to describe D given h
- Note L_{C2}(D|h)=0 if examples classified perfectly by h
- Need only to encode exceptions, i.e., the errors made by the tree
- Hence h_{MDL} trades off tree size for training errors

Cost Choose

 Coding cost to choose k elements from a set of n

$$L_{choose}(k, n) = n \times Entropy(k, n)$$

$$Entropy(k,n) = -\frac{k}{n}\log(\frac{k}{n}) - \frac{n-k}{n}\log(\frac{n-k}{n})$$

Minimum Description Length (MDL) Principle

```
h_{MAP} = \arg \max_{h \in H} P(D|h)P(h)
= \arg \max_{h \in H} \log_2 P(D|h) + \log_2 P(h)
= \arg \min_{h \in H} - \log_2 P(D|h) - \log_2 P(h) \quad (1)
```

Interesting fact from information theory: optimal (shortest expected coding length) code for an event with probability p is -log₂ p bits. So interpret (1):

- -log₂ P(h) is length of h under optimal code
- -log₂ P(D|h) is length of D given h under optimal code
- prefers the hypothesis that minimize length(h) + length(misclassifications)
- In other words: under an optimal encoding with respect to the priors, $h_{MAP} = h_{MDL}$

Naive Bayes Classifier

- Along with nearest neighbor algorithms, one of the fastest baseline learning algorithms
- When to use
 - large training set available
 - attributes that describe instances are conditionally independent given classification
- Successful applications:
 - diagnosis
 - classifying text documents

Naive Bayes Classifier

- Assume target function $f: X \to V$, where each instance x is described by attributes $\{a_1, \ldots, a_n\}$
- Most probable value of f(x) is:

$$v_{MAP} = \underset{v_{j} \in V}{\operatorname{argmax}} P(v_{j} | a_{1}, a_{2} \dots a_{n})$$

$$v_{MAP} = \underset{v_{j} \in V}{\operatorname{argmax}} \frac{P(a_{1}, a_{2} \dots a_{n} | v_{j}) P(v_{j})}{P(a_{1}, a_{2} \dots a_{n})}$$

$$= \underset{v_{j} \in V}{\operatorname{argmax}} P(a_{1}, a_{2} \dots a_{n} | v_{j}) P(v_{j})$$

The Naive Bayes assumption of conditional independence

$$P(a_1,a_2\dots a_n|v_j)=\prod\limits_i P(a_i|v_j)$$

gives the Naive Bayes classifier:

$$v_{NB} = \operatorname*{argmax}_{v_j \in V} P(v_j) \prod_i P(a_i | v_j)$$

Naive Bayes Algorithm

Naive_Bayes_Learn(examples)

For each target value v_j

$$\hat{P}(v_j) \leftarrow \text{estimate } P(v_j)$$

For each attribute value a_i of each attribute a $\hat{P}(a_i|v_i) \leftarrow \text{estimate } P(a_i|v_i)$

 $Classify_New_Instance(x)$

$$v_{NB} = \operatorname*{argmax}_{v_j \in V} \hat{P}(v_j) \prod_{a_i \in x} \hat{P}(a_i | v_j)$$

More on Naive Bayes Algorithm

```
for each V_k do
  c[v_k] := 0
  for each a<sub>i</sub> do
    c[v_k, a_i] := 0
for each x in D do
  c[x.v] := c[x.v] + 1
  for each x.a; do
    c[x.v, a_i] := c[x.v, a_i] + 1
```

Naive Bayes Example

- Consider PlayTennis again, and a new instance (Outlook=sunny, Temp=cool, Humid=high, Wind=strong)
- Want to compute:

$$v_{NB} = \operatorname*{argmax}_{v_j \in V} P(v_j) \prod_i P(a_i | v_j)$$

- P(y) P(sunny|y) P(cool|y) P(high|y) P(strong|y) = 0.005
- P(n) P(sunny|n) P(cool|n) P(high|n) P(strong|n) = 0.021

Naive Bayes Subtleties

Conditional independence assumption is often violated

$$P(a_1, a_2 \dots a_n | v_j) = \prod_i P(a_i | v_j)$$

...but it works surprisingly well anyway

- Estimated posteriors of P(v_i|x) need not be correct
- Only

$$\underset{v_j \in V}{\operatorname{argmax}} \, \hat{P}(v_j) \underset{i}{\Pi} \, \hat{P}(a_i | v_j) = \underset{v_j \in V}{\operatorname{argmax}} \, P(v_j) P(a_1 \dots, a_n | v_j)$$

- See (Domingos and Pazzani, 1996) for analysis
- Naive Bayes posteriors often unrealistically close to 1 or 0

Naive Bayes Subtleties

- What if none of the training instances with target value v_i have attribute value a_i? (Problem?)
- Typical solution is Bayesian estimate where

$$\hat{P}(a_i|v_j) \leftarrow \frac{n_c + mp}{n+m}$$

- n is number of training examples for which v=v_i,
- n_c number of examples for which v=v_j and a=a_i
- p is a prior estimate for P(a_i | v_i)
- m is weight given to prior (i.e., number of "virtual" examples)

Application of Naive Bayes to Text Categorization

Learning to Classify Text

- Why?
 - learn which news articles are of interest
 - learn to classify web pages by topic
- Naive Bayes is a simple and useful baseline algorithm
- What attributes shall we use to represent text documents?

Learning to Classify Text

- Usually: represent each document in socalled bag-of-word (BOW) representation
- Target concept Interesting?: Document → {+,-}
- Learning: Use training examples to estimate P(+), P(-), P(doc|+), P(doc|-)
- Basic simplifying assumption: position of word in document does not matter!

Learn_naive_Bayes_text(Examples, V)

- 1. collect all words and other tokens that occur in Examples
- $Vocabulary \leftarrow$ all distinct words and other tokens in Examples
- 2. calculate the required $P(v_j)$ and $P(w_k|v_j)$ probability terms
- For each target value v_j in V do
 - $-docs_j \leftarrow \text{subset of } Examples \text{ for which the }$ target value is v_j
 - $-P(v_j) \leftarrow \frac{|docs_j|}{|Examples|}$
 - $-Text_j \leftarrow a \text{ single document created by concatenating all members of } docs_i$
 - $-n \leftarrow \text{total number of words in } Text_j \text{ (counting duplicate words multiple times)}$
 - for each word w_k in Vocabulary
 - * $n_k \leftarrow$ number of times word w_k occurs in $Text_j$
 - * $P(w_k|v_j) \leftarrow \frac{n_k+1}{n+|Vocabulary|}$

Naive Bayes for Text Categorization

Testing Time

CLASSIFY_NAIVE_BAYES_TEXT(Doc)

- $positions \leftarrow$ all word positions in Doc that contain tokens found in Vocabulary
- Return v_{NB} , where

$$v_{NB} = \underset{v_j \in V}{\operatorname{argmax}} P(v_j) \prod_{i \in positions} P(a_i | v_j)$$

Bayesian Networks

Bayesian Networks

- Each node is asserted to be conditionally independent of its non-descendants, given its immediate predecessors
- Represents joint probability distribution over all variables, e.g., P(Storm, BusTourGroup, ..., ForestFire)

	S,B	S, ¬B	$\neg S, B$	$\neg S, \neg B$			
C	0.4	0.1	0.8	0.2			
$\neg C$	0.6	0.9	0.2	0.8			
Campfire							