Lab 5: AC Network Theorems

A. Objectives

• To investigate and verify Thevenin's Theorem and Superposition for AC circuits.

B. Background

Thevenin's theorem states that any two-terminal linear ac network can be replaced with an equivalent circuit consisting of a voltage source and an impedance in series.

Since the reactance of a circuit is frequency dependent, the Thévenin's circuit found for a particular network is applicable only at one frequency. If the Input signals frequency is changed while keeping the same amplitude, the E_{th} (Thevenin equivalent voltage) and Z_{th} (Thevenin equivalent impedance) of the Thévenin equivalent circuit will change.

Process of finding the Thevenin's equivalent circuits for an independent source:

- 1. Remove that portion of the network across which the Thévenin equivalent circuit is to be found.
- 2. Calculate Z_{Th} by first setting all voltage and current sources to zero (short circuit and open circuit, respectively) and then finding the resulting impedance between the two marked terminals.
- 3. Calculate E_{Th} by first replacing the voltage and current sources and then finding the open-circuit voltage between the marked terminals.

C. Apparatus

Components	Instruments		
 Resistors: 1×1kΩ, 1×1.2kΩ, 1×2.2kΩ 	1x Bread Board		
• Capacitors: 1×0.1µF	1× Function Generator1× Digital Multimeter		
Variable Resistor: 1	1x Digital Storage Oscilloscope		

D. Procedure

- 1. Measure the practical values of the resistors (R₁, R₂ and R_L) using the DMM and note down the values in Table 1.1. Use the measured values in all your calculations.
- 2. Measure the practical value of the capacitor (C) using an LCR meter and note down the value in Table 1.1.
- 3. Construct the circuit shown in Fig.B.1 on the bread board. Connect Channel 1 of the oscilloscope across the source VS (positive red port to node 'a' and negative black port to node '0' i.e. ground). Connect the channel 2 at node 'c' (positive red port to node 'b' and negative black port to node 0 i.e. ground).
- 4. To set 3V peak (6V peak to peak) and 1 KHz in the function generator, observe the generated signal on the oscilloscope screen (channel 1) and fine tune the amplitude & frequency of the input signal generated from the function generator to match the nominal values. Always set the amplitude after setting the frequency because changing the frequency of a non-ideal source might alter the amplitude.
- 5. Channel 2 of the Oscilloscope will show you the voltage drop across **RL**. From measurement, find out the peak voltage drop across **RL** (V_{LOAD (ORIGINAL)}) and record it in table 1.2.
- 6. Remove the load resistor (RL) from the circuit while keeping channel 2 of the oscilloscope connected (positive red port to node 'c' and negative black port to node '0' i.e. ground) to the circuit as shown in Fig. B.3.
- 7. From measurement (Vmax of CH-2), find out the peak value of the Thevenin's equivalent voltage (E_{Thevenin}) and note it down in the 'Measured' column of Table 1.3.
- 8. Now, construct the circuit shown in Fig.B.4. Here, Rs represents the internal impedance of the original source and R3 is a sense resistor. Use the Function Generator as VS2.
- 9. Use the oscilloscope to measure the magnitude and phase of V_{R3}. You can do this by connecting channel 2 at node 'c' and channel 1 at node 's'. The peak voltage in channel 2 is the magnitude of V_{R3} and the delay between the wave shapes in channel 1 and channel 2 can be used to calculate the phase. Calculate I_{R3}.

RThev b CThev

RL >1kΩ

Fig.B.1: Original circuit

Fig.B.2: Thevenin's Equivalent circuit

Fig.B.3: Measuring V_{Thev}

Fig.B.4: Measuring Z_{Thev}

- 10. Since I_{S2} and I_{R3} are equal, V_{S2} and I_{R3} can be used to calculate the total impedance on the circuit. This is the practical value of the Thevenin's equivalent impedance (Z_{Thevenin}). Note it down in the 'Measured' column of **Table 1.3**.
- 11. Construct the Thevenin's equivalent circuit in **Fig.B.2** using the E_{Thevenin} and Z_{Thevenin} values that you obtained in the previous steps.
- 12. Now, measure the load voltage from the Thevenin's equivalent circuit and note it down in Table 1.2.

F.2 Simulation

- 1. Construct the original circuit in Fig.B.1 in Multisim and use a DMM to show the RMS value of V_L.
- 2. Now, construct the Thevenin's equivalent circuit using the E_{Thev} and Z_{Thev} values you obtained from your experiment and again use a DMM to show the RMS value of V_L .
- 3. Attach the screen-shots of the circuit and DMM readings with your report.

G.2 Questions

- 1. What extra components did you need to construct the Thevenin's equivalent circuit? Did you face any difficulty constructing the circuit in the lab? If so, how were those issues resolved?
- 2. Why was an oscilloscope used to measure the values required to calculate Z_{Thevenin} instead of a DMM?
- 3. Would the procedure used to determine the Thevenin's equivalent circuit change if the capacitor in the original circuit was replaced with an inductor?
- 4. Do the practical readings you obtained confirm the theoretical values? If any of the percentage differences are above 10%, suggest 3 possible reasons for the discrepancy.
- 5. Can a Norton's equivalent circuit be derived from the Thevenin's equivalent circuit? If so, convert the Thevenin's equivalent circuit of this experiment into a Norton's equivalent circuit. Finally, justify your answer.

Status:

E.1	Data	Sheet:	Lab	5,	, Experiment 1	ı
-----	------	--------	-----	----	----------------	---

Remarks:	Signature of the Instructor
Student Information	

E.1.1 Table 1.1: Component Values

Section:

R_1 (measured)(Ω)	R _L (measured)(Ω)	C ₁ (measured)(F)	X_{C} (Theory) $\left[\frac{1}{2\pi fC}\right]$ (Ω)

E.1.2 Table 1.2: Load Voltage comparison

E.1.2 Table 1.2. Load Voltage Companison					
(a) V _{Load} Theory (V)	(b) V _{Load} (measured) Original (V)	(c) V _{Load} (measured) Thevenin (V)	% Deviation (Theory - Original) $\left[\frac{a-b}{a} \times 100\right]$	% Deviation (Original – Thevenin) $\left[\frac{b-c}{b} \times 100\right]$	

E.1.4 Table 1.3: Thevenin Voltage and Impedance Comparision

Group:

	(a) Theoretical	(b) Measured	% Deviation $\left[\frac{a-b}{a} \times 100\right]$
Z _{Thevenin} (Ω)			
E _{Thevenin} (V)			

E.1.3 Box 2.1: E_{Thevenin} and Z_{Thevenin} calculations