西南大学 数学与统计学院

概率论与数理统计 》课程试题【A】卷

	201	1~2	012	学年	第 2	学 期	J		期末	き 考试	74	
考证	时间	120	分钟	考核方式	闭卷氧	試	学生类别	2	本科	人数	τ	
适用	专业或和	4类		经管各专业 学科或专业					年级		级	
题号	_	=	三	四	五	六	七	八	九	+	合计	
得分												
签名	g 199		a			ć.	32	į.	48		5	

阅卷须知: 阅卷用红色墨水笔书写,得分用阿拉伯数字写在每小题题号前,用正分表示,不得分则在题号前写 0; 大题得 分登录在对应的分数框内; 统一命题的课程应集体阅卷,流水作业; 阅卷后要进行复核,发现漏评、漏记或总分统计错 误应及时更正:对评定分数或统分记录进行修改时,修改人必须签名。

特别提醒: 学生必须遵守课程考核纪律, 违规者将受到严肃处理。

一、选择题(每题只有一个最合题意的选项,每题 2 分,共 10×2=20 分)。

1、对于任意二事件 A 和 B, 与 $A \cup B = B$ 不等价的是()。

(A),
$$A \subset B$$

(B),
$$\overline{B} \subset \overline{A}$$

(C),
$$A\overline{B} = \phi$$

(D),
$$\overline{A}B = \phi$$

2、设 A、B 为两个事件,且0 < P(B) < 1,则下列结果正确的是()。

(A),
$$P(A/B) + P(\overline{A}/\overline{B}) = 1$$
 (B), $P(A/B) + P(A/\overline{B}) = 1$

(B),
$$P(A/B) + P(A/\overline{B}) = 1$$

(C),
$$P(A/B) + P(\overline{A}/B) = 1$$
 (D), $P(\overline{A}/B) + P(A/\overline{B}) = 1$

(D),
$$P(A/B) + P(A/B) = 1$$

3、设连续型随机变量 $X \sim N(2, 1)$, 密度函数为 f(x), 分布函数为 F(x), 则() 。

(A)
$$P(X \le 0) = P(X \ge 0) = 0.5$$

(A)
$$P(X \le 0) = P(X \ge 0) = 0.5$$
 (B) $f(-x) = f(x), x \in (-\infty, +\infty)$

(C)
$$P(X \le 2) = P(X \ge 2) = 0.5$$

(C)
$$P(X \le 2) = P(X \ge 2) = 0.5$$
 (D) $F(-x) = 1 - F(x), x \in (-\infty, +\infty)$

4、设随机变量 X 服从正态分布 $N(\mu, \sigma^2)$, 则随 σ 的增大, 概率 $P(|X - \mu| < \sigma)$ 将 ((A)、单调增大 (B)、单调减小 (C)、保持不变 (D)、增减不定 5. 设(ξ,η)的联合概率密度为: $f(x,y) = \begin{cases} \frac{1}{\pi} & x^2 + y^2 \le 1 \\ 0 & \text{ 其他} \end{cases}$ 则 ξ 与 η 为()的随机变量。 (B) 、不独立同分布 (A)、独立同分布 (C) 、独立不同分布 (D) 、不独立也不同分布 6、设 $\Phi(x)$ 为标准正态分布函数, $X_i = \begin{cases} 1, & \text{事件A发生} \\ 0, & \text{事件A不发生} \end{cases}$, $i=1,\cdots,100$,且 P(A)=0.8, $X_1, X_2, \cdots, X_{100}$ 相互独立。令 $Y = \sum_{i=1}^{100} X_i$,则由中心极限定理知 Y 的分布函数 F(y)近似于((A), $\Phi(y)$ B. $\Phi(\frac{y-80}{4})$ C. $\Phi(16y+80)$ D. $\Phi(4y+80)$ 7、设两个相互独立的随机变量 X, Y , $X \sim N(1,2)$, $Y \sim N(0,1)$, 则 Z=2X-Y+3 仍服从 正态分布,且有()。 (A), $Z \sim N(5, 9)$ (B), $Z \sim N(5,7)$ (C), $Z \sim N(5, 18)$ ((D)、以上都不正确 8、设总体 X 服从正态分布 $N(\mu, \sigma^2)$, 其中 μ , σ^2 均未知, X_1 , X_2 , ···, X_n 为其样本, n≥2,则下列说法中正确的是((A)、 $\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\mu)^{2}$ 是统计量 (B)、 $\frac{\sigma^{2}}{n}\sum_{i=1}^{n}X_{i}^{2}$ 是统计量 (C)、 $\frac{\sigma^2}{n-1}\sum_{i=1}^n (X_i - \mu)^2$ 是统计量 (D)、 $\frac{1}{n-1}\sum_{i=1}^n X_i$ 是统计量

9、对正态总体的均值 μ 进行假设检验,如果在显著性水平 0.01 下,拒绝原假设 $H_0: \mu = \mu_0$,
那么在显著性水平 $\alpha = 0.05$ 下,下列结论正确的是(
(A)、必接受 H_0 (B)、必拒绝 H_0
(C)、可能接受也可能拒绝 H_0 (D)、以上都不正确
10、设总体 $X \sim N(0, 2^2)$, 而 X_1, X_2, \cdots, X_{15} 是来自总体 X 的简单随机样本,则随机变量
$Y = \frac{X_1^2 + \dots + X_{10}^2}{2(X_{11}^2 + \dots + X_{15}^2)}$ 所服从的分布为 ()。
(A) $\chi^2(15)$ (B) $t(14)$ (C) $F(5,10)$ (D) $F(10,5)$
二、填空题(请将答案填写在每题中的画线处,写在其它位置不给分;每题3分,共6×3
=18分)。
1、随机事件 A 与 B 相互独立, P(A)=0.3, P(B)=0.5, 则 P(ĀŪB)=。
2、10件产品中含有4件次品,今从中任取2件,已知一件是次品的条件下,另外一件 也是次品的概率为。
3 、随机变量 X 服从参数为 1 泊松分布,则 $E(X^2-2x+3)=$ 。
4 、设 $X \sim B(2,p), Y \sim B(3,p)$, 若 $P(X=0) = 4/9$, 则 $P(Y \ge 1) =$ 。
5、设 X_1, X_2 为来自总体 $X \sim N(\mu, \sigma^2)$ 的样本,若 $CX_1 + \frac{1}{2012}X_2$ 为 μ 的一个无偏估计,
C = a
6、随机变量 X 的分布律为 $P\{X=k\}=ak(k=1,2,\cdots n)$,则常数 $a=___$ 。

三、(本题 10 分)。

某工厂向三家出租车公司(D,E,F)租用汽车,20%汽车来自D公司,20%来自E公司,60%来自F公司,而这三家出租车公司在运输中发生故障的概率依次为0.10,0.12,0.04。

- (1) 该工厂租用汽车发生故障的概率是多少?
- (2) 若该工厂租用的汽车发生故障,次汽车来自F公司的概率是多少?

四、(本题 14 分)

设随机变量 X 的概率密度为

$$f(x) = \begin{cases} Cx & 0 \le x \le 1, \\ 0 & \text{ i.e.} \end{cases}$$

- (1) 求常数 C;
- (2) Y表示对X的三次独立重复观察中事件 $\{X \leq \frac{1}{2}\}$ 出现的次数,求概率 $P\{Y = 2\}$;
- (3) 求 $Z = X^2$ 的分布函数。

试将其余数据填入表中空白处。

XY	1	2	3	$P_{i\cdot}$
1		$\frac{1}{8}$		
2	$\frac{1}{8}$			
$P_{\cdot j}$	$\frac{1}{6}$			

七、(本题 10 分)

设总体 x 的概率密度为

$$f(x) = \begin{cases} (\theta + 1)x^{\theta} & 0 \le x \le 1, \\ 0 & \text{ 其他.} \end{cases}$$

其中 $\theta>-1$ 是未知参数, X_1,X_2,\cdots,X_n 是来自总体X的一个容量为n的简单随机样本。试求 θ 的矩估计量和似然估计量。

(10分)

八、(本题8分)

某一百货公司经理宣称,其持有信用卡的顾客的平均年收入至少为 18000 元,某一含有 58 位持有信用卡的顾客的样本均值为 17200 元且样本标准差为 3000 元,若显著性水平

为 0.05, 该经理的宣称能被拒绝吗? 假定顾客的年收入服从正态分布。

(注:文档可能无法思考全面,请浏览后下载,供参考。可复制、编制,期待你的好评与 关注!)