Student ID: DH20042

Name: 弗兰克

Data analysis

1. Wine quality analysis

```
In [341]: #Load module and pkg
    import pandas as pd
    import seaborn as sns
    import matplotlib.pyplot as plt
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.model_selection import GridSearchCV
    import warnings
    warnings.filterwarnings('ignore')
In [187]: #Load dataframe
try:
    wine = pd.read_csv('winequality-red.csv', sep =';')
except:
    print("cannot find the file")
```

In [188]: # Check the info of the dataframe wine.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1599 entries, 0 to 1598
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	fixed acidity	1599 non-null	float64
1	volatile acidity	1599 non-null	float64
2	citric acid	1599 non-null	float64
3	residual sugar	1599 non-null	float64
4	chlorides	1599 non-null	float64
5	free sulfur dioxide	1599 non-null	float64
6	total sulfur dioxide	1599 non-null	float64
7	density	1599 non-null	float64
8	рН	1599 non-null	float64
9	sulphates	1599 non-null	float64
10	alcohol	1599 non-null	float64
11	quality	1599 non-null	int64
	_		

dtypes: float64(11), int64(1)

memory usage: 150.0 KB

In [189]: # let us visualize the dataframe wine

Out[189]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4	5
1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68	9.8	5
2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	0.65	9.8	5
3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	0.58	9.8	6
4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4	5
1594	6.2	0.600	0.08	2.0	0.090	32.0	44.0	0.99490	3.45	0.58	10.5	5
1595	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.76	11.2	6
1596	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75	11.0	6
1597	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71	10.2	5
1598	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39	0.66	11.0	6

1599 rows × 12 columns

Out[190]: 240

In [191]: #drop all duplicated records
wine.drop_duplicates()

Out[191]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4	5
1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68	9.8	5
2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	0.65	9.8	5
3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	0.58	9.8	6
5	7.4	0.660	0.00	1.8	0.075	13.0	40.0	0.99780	3.51	0.56	9.4	5
1593	6.8	0.620	0.08	1.9	0.068	28.0	38.0	0.99651	3.42	0.82	9.5	6
1594	6.2	0.600	0.08	2.0	0.090	32.0	44.0	0.99490	3.45	0.58	10.5	5
1595	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.76	11.2	6
1597	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71	10.2	5
1598	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39	0.66	11.0	6

1359 rows × 12 columns

In [192]: # Check the basic statistics of the data wine.describe()

Out[192]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphate
count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.00000
mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.874922	46.467792	0.996747	3.311113	0.65814
std	1.741096	0.179060	0.194801	1.409928	0.047065	10.460157	32.895324	0.001887	0.154386	0.16950
min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.000000	0.990070	2.740000	0.33000
25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.000000	22.000000	0.995600	3.210000	0.55000
50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.000000	38.000000	0.996750	3.310000	0.62000
75%	9.200000	0.640000	0.420000	2.600000	0.090000	21.000000	62.000000	0.997835	3.400000	0.73000
max	15.900000	1.580000	1.000000	15.500000	0.611000	72.000000	289.000000	1.003690	4.010000	2.00000

In [193]: #Check the values of each category of the quality attribute has wine.quality.value_counts()

Out[193]: 5 681

6 638

7 199

4 53

8 18 3 10

Name: quality, dtype: int64

```
In [194]: # Let plot the quality values
wine.quality.value_counts().plot(kind = 'pie', autopct = '%.2f')
```

Out[194]: <AxesSubplot:ylabel='quality'>

In [195]: #Check the correlation wine.corr().quality

```
Out[195]: fixed acidity
                                   0.124052
          volatile acidity
                                  -0.390558
          citric acid
                                   0.226373
          residual sugar
                                   0.013732
          chlorides
                                  -0.128907
          free sulfur dioxide
                                  -0.050656
          total sulfur dioxide
                                  -0.185100
          density
                                  -0.174919
                                  -0.057731
          рН
          sulphates
                                   0.251397
          alcohol
                                   0.476166
          quality
                                   1.000000
          Name: quality, dtype: float64
```

In [198]: # Check the distribution mean sns.barplot(x = 'quality', y = 'volatile acidity', data = wine)

Out[198]: <AxesSubplot:xlabel='quality', ylabel='volatile acidity'>


```
In [199]: sns.barplot(x = 'quality', y = 'alcohol', data = wine)
```

Out[199]: <AxesSubplot:xlabel='quality', ylabel='alcohol'>


```
In [340]: from sklearn.preprocessing import LabelEncoder
    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import scale
    from sklearn.metrics import confusion_matrix
    from sklearn.preprocessing import StandardScaler
    from pandas.plotting import scatter_matrix
    from sklearn.pipeline import make_pipeline
```

```
In [242]: # Now seperate the dataset as response variable and feature variabes
    X = wine.drop('quality', axis=1)
    y = wine['quality']
    # Train and Test splitting of data
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=50)
    # Applying Standard scaling to get optimized result
    sc = StandardScaler()
    X_train = sc.fit_transform(X_train)
    X_test = sc.fit_transform(X_test)
```

In [243]: # Statistical characteristics of each numerical feature
 print(wine.describe())

	fixed acidit	y volatile a	cidity	citric acid	residual	sugar \	
count	1599.00000	0 1599.	000000	1599.000000	1599.0	00000	
mean	8.31963	7 0.5	527821	0.270976	2.5	38806	
std	1.74109	6 0.:	179060	0.194801	1.4	09928	
min	4.60000	0 0.	120000	0.000000	0.9	00000	
25%	7.10000	0 0.3	390000	0.090000	1.9	00000	
50%	7.90000	0 0.5	520000	0.260000	2.2	00000	
75%	9.20000	0.0	640000	0.420000	2.6	00000	
max	15.90000	0 1.	580000	1.000000	15.5	00000	
	chlorides	free sulfur	dioxide	total sulfu	r dioxide	density	\
count	1599.000000	1599	.000000	15	99.000000	1599.000000	
mean	0.087467	15	.874922		46.467792	0.996747	
std	0.047065	10	.460157		32.895324	0.001887	
min	0.012000	1	.000000		6.000000	0.990070	
25%	0.070000	7	.000000		22.000000	0.995600	
50%	0.079000	14	.000000		38.000000	0.996750	
75%	0.090000	21	.000000		62.000000	0.997835	
max	0.611000	72	.000000	2	89.000000	1.003690	
	рН	sulphates	alc	ohol			
count	1599.000000	1599.000000	1599.00	0000			
mean	3.311113	0.658149	10.42	2983			
std	0.154386	0.169507	1.06	5668			
min	2.740000	0.330000	8.40	0000			
25%	3.210000	0.550000	9.50	0000			
50%	3.310000	0.620000	10.20	0000			
75%	3.400000	0.730000	11.10	0000			
max	4.010000	2.000000	14.90	0000			

```
In [254]: # Histograms
    wine.hist(bins=10,figsize=(13, 10))
    plt.show()
    # Density
    wine.plot(kind='density', subplots=True, layout=(4,3), sharex=False)
    plt.show()
```



```
In [255]: # Create pivot table
          group names = ['fixed acidity', 'volatile acidity', 'citric acid', 'residual sugar', 'chlorides', 'free
          wine pivot table = wine.pivot table(group names,
                         ['quality'], aggfunc='median')
          print(wine pivot table)
                   alcohol chlorides citric acid density fixed acidity \
          quality
          low
                      10.0
                                0.080
                                              0.08 0.99660
                                                                      7.5
          medium
                      10.0
                                                                      7.8
                                0.080
                                              0.24 0.99680
          high
                      11.6
                                0.073
                                              0.40 0.99572
                                                                      8.7
                   free sulfur dioxide
                                         pH residual sugar sulphates \
          quality
          low
                                   9.0 3.38
                                                                   0.56
                                                         2.1
          medium
                                  14.0 3.31
                                                        2.2
                                                                   0.61
          high
                                                        2.3
                                                                   0.74
                                  11.0 3.27
                   total sulfur dioxide volatile acidity
          quality
          low
                                   26.0
                                                     0.68
          medium
                                   40.0
                                                     0.54
          high
                                   27.0
                                                     0.37
```

In [262]: corr_matrix = wine.corr()
corr_matrix

Out[262]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol
fixed acidity	1.000000	-0.256131	0.671703	0.114777	0.093705	-0.153794	-0.113181	0.668047	-0.682978	0.183006	-0.061668
volatile acidity	-0.256131	1.000000	-0.552496	0.001918	0.061298	-0.010504	0.076470	0.022026	0.234937	-0.260987	-0.202288
citric acid	0.671703	-0.552496	1.000000	0.143577	0.203823	-0.060978	0.035533	0.364947	-0.541904	0.312770	0.109903
residual sugar	0.114777	0.001918	0.143577	1.000000	0.055610	0.187049	0.203028	0.355283	-0.085652	0.005527	0.042075
chlorides	0.093705	0.061298	0.203823	0.055610	1.000000	0.005562	0.047400	0.200632	-0.265026	0.371260	-0.221141
free sulfur dioxide	-0.153794	-0.010504	-0.060978	0.187049	0.005562	1.000000	0.667666	-0.021946	0.070377	0.051658	-0.069408
total sulfur dioxide	-0.113181	0.076470	0.035533	0.203028	0.047400	0.667666	1.000000	0.071269	-0.066495	0.042947	-0.205654
density	0.668047	0.022026	0.364947	0.355283	0.200632	-0.021946	0.071269	1.000000	-0.341699	0.148506	-0.496180
рН	-0.682978	0.234937	-0.541904	-0.085652	-0.265026	0.070377	-0.066495	-0.341699	1.000000	-0.196648	0.205633
sulphates	0.183006	-0.260987	0.312770	0.005527	0.371260	0.051658	0.042947	0.148506	-0.196648	1.000000	0.093595
alcohol	-0.061668	-0.202288	0.109903	0.042075	-0.221141	-0.069408	-0.205654	-0.496180	0.205633	0.093595	1.000000

```
In [344]: group_names = ['fixed acidity', 'volatile acidity', 'citric acid', 'residual sugar', 'chlorides', 'free
# Correlation matrix
correlations = wine.corr()
# Plot figsize
fig, ax = plt.subplots(figsize=(10, 10))
# Generate Color Map
colormap = sns.diverging_palette(220, 10, as_cmap=True)
# Generate Heat Map, allow annotations and place floats in map
sns.heatmap(correlations, cmap=colormap, annot=True, fmt=".2f")
plt.show()
```

fixed acidity -	1.00	-0.26	0.67	0.11	0.09	-0.15	-0.11	0.67	-0.68	0.18	-0.06		-1.0
volatile acidity -	-0.26	1.00	-0.55	0.00	0.06	-0.01	0.08	0.02	0.23	-0.26	-0.20		- 0.8
citric acid -	0.67	-0.55	1.00	0.14	0.20	-0.06	0.04	0.36	-0.54	0.31	0.11		- 0.6
residual sugar -	0.11	0.00	0.14	1.00	0.06	0.19	0.20	0.36	-0.09	0.01	0.04		- 0.4
chlorides -	0.09	0.06	0.20	0.06	1.00	0.01	0.05	0.20	-0.27	0.37	-0.22		
free sulfur dioxide -	-0.15	-0.01	-0.06	0.19	0.01	1.00	0.67	-0.02	0.07	0.05	-0.07		- 0.2
total sulfur dioxide -	-0.11	0.08	0.04	0.20	0.05	0.67	1.00	0.07	-0.07	0.04	-0.21		- 0.0
density -	0.67	0.02	0.36	0.36	0.20	-0.02	0.07	1.00	-0.34	0.15	-0.50		0.2
pH -	-0.68	0.23	-0.54	-0.09	-0.27	0.07	-0.07	-0.34	1.00	-0.20	0.21		
sulphates -	0.18	-0.26	0.31	0.01	0.37	0.05	0.04	0.15	-0.20	1.00	0.09		0.4
alcohol -	-0.06	-0.20	0.11	0.04	-0.22	-0.07	-0.21	-0.50	0.21	0.09	1.00		0.6
	fixed acidity -	volatile acidity -	citric acid -	residual sugar -	chlorides -	free sulfur dioxide -	total sulfur dioxide -	density -	H.	sulphates -	alcohol -		

```
In [345]: # Scatterplot Matrix
sm = scatter_matrix(wine, figsize=(13, 10), diagonal='kde')
#Change label rotation
[s.xaxis.label.set_rotation(40) for s in sm.reshape(-1)]
[s.yaxis.label.set_rotation(0) for s in sm.reshape(-1)]
#May need to offset label when rotating to prevent overlap of figure
[s.get_yaxis().set_label_coords(-0.6,0.5) for s in sm.reshape(-1)]
#Hide all ticks
[s.set_xticks(()) for s in sm.reshape(-1)]
[s.set_yticks(()) for s in sm.reshape(-1)]
plt.show()
```



```
In [347]: # Dividing wine as low, medium and high by giving the limit for the quality
bins = (2,4,6,8)
group_names = ['low','medium', 'high']
wine['quality'] = pd.cut(wine['quality'], bins = bins, labels = group_names)
# Now lets assign a labels to our quality variable
label_quality = LabelEncoder()
wine['quality'] = label_quality.fit_transform(wine['quality'])

"''

File "/var/folders/57/yhl6qkcj0wsd5j12rr54v5400000gn/T/ipykernel_40670/1689526706.py", line 9

"''
SyntaxError: EOF while scanning triple-quoted string literal
```

```
In [343]: wine.quality.value_counts()
Out[343]: medium    1319
    high     217
    low    63
    Name: quality, dtype: int64
```

```
In [289]: sns.countplot(wine['quality'])
Out[289]: <AxesSubplot:xlabel='quality', ylabel='count'>
             1200
             1000
              800
              600
              400
              200
                                    medium
                                                   high
                       low
                                    quality
In [321]: X = wine.iloc[:,:-1]
          y = wine.quality
          X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
In [322]: X_train = scale(X_train)
          X_test = scale (X_test)
In [323]: | rfc = RandomForestClassifier(n_estimators = 200)
          rfc.fit(X_train, y_train)
          y_pred = rfc.predict(X_test)
          print(confusion matrix(y test,y pred))
           [[ 27
                   0 30]
                   0 17]
            0
            [ 19
                   0 387]]
  In [ ]:
```