Федеральное государственное автономное образовательное

учреждение высшего образования

«Национальный исследовательский университет ИТМО»

Системы искусственного интеллекта

Лабратораная работа 2

Вариант 8

Выполнил: Ву Минь Хиеу

Группа: Р33201

Санкт-Петербург

2022г.

1. Задание

Исследование алгоритмов решения задач методом поиска. Описание предметной области. Имеется транспортная сеть, связывающая города СНГ. Сеть представлена в виде таблицы связей между городами. Связи являются двусторонними, т. е. допускают движение в обоих направлениях. Необходимо проложить маршрут из одной заданной точки в другую.

2. Таблица связей между городами

Город 1	Город 2	Расстояние, км	
Вильнюс	Брест	531	
Витебск	Брест	638	
Витебск	Вильюс	360	
Воронеж	Витебск	869	
Воронеж	Волгоград	581	
Волгоград	Витебск	1455	
Витебск	Ниж.Новгород	911	
Вильнюс	Даугавпилс	211	
Калининград	Брест	699	
Калиниград	Вильнюс	333	
Каунас	Вильнюс	102	
Киев	Вильнюс	734	
Киев	Житомир	131	
Житомир	Донецк	863	

Житомир	Волгоград	1493
Кишинев	Киев	467
Кишинев	Донецк	812
С.Петербург	Витебск	602
С.Петербург	Калининград	739
С.Петербург	Рига	641
Москва	Казань	815
Москва	Ниж.Новгород	411
Москва	Минск	690
Москва	Донецк	1084
Москва	С.Петербург	664
Мурманск	С.Петербург	1412
Мурманск	Минск	2238
Орел	Витебск	522
Орел	Донецк	709
Орел	Москва	368
Одесса	Киев	487
Рига	Каунас	267
Таллинн	Рига	308
Харьков	Киев	471
Харьков	Симферополь	639
Ярославль	Воронеж	739
Ярославль	Минск	940
Уфа	Казань	525
Уфа	Самара	461

Вариант 8: 8 Вильнюс Одесса

Ссылка к репозитории : https://github.com/hieuminhvuu/AI_System_ITMO/tree/master/Lab2

3. Неинформированный поиск

3.1) Поиск в ширину

3.2) Поиск в глубину

3.3) Поиск с ограничением глубины

 $C \, \text{Лимит} = 2$

 $C \, \text{Лимит} = 1$

No path

3.4) Поиск с итеративным углублением

Вильнюс Киев Одесса

3.5) Двунаправленный поиск

Точка пересечения: Вильнюс

BDS Киев Вильнюс Киев Одесса

3.6) Вывод:

Алгоритм поиска в ширину может дать оптимальные результаты, но требует большого объема памяти, поскольку он должен помнить все вершины. Хотя поиск в глубину не требует большой памяти, он может привести к ложным результатам (в моем случае результат все же называется оптимальным). Поиск с ограниченной глубиной требует дополнительного неполного условия, но может преодолеть слабость обычного поиска по глубине, заключающуюся в том, что трудно обнаружить тупики. Итеративный поиск в глубину является оптимальным решением при условии, что пространство поиска в глубину достаточно велико, а глубина неизвестна. Двусторонний поиск требует много памяти, но может сократить время поиска вдвое, что не является оптимальным

методом.

- 4. Информированный поиск. Воспользовавшись информацией о протяженности связей от текущего узла, выполнить:
- 4.1) Жадный поиск по первому наилучшему соответствию;

Heuristics table

4.2) Затем, используя информацию о расстоянии до цели по прямой от каждого узла, выполнить поиск методом минимизации суммарной оценки А*.

