L1-MIASH - ALGÈBRE LINÉAIRE I

FEUILLE DE TRAVAUX DIRIGÉS N° 1

Matrices

Enseignant: H. El-Otmany

A.U.: 2013-2014

Exercice n°1 On considère les matrices carrées $A, B \in \mathcal{M}_{3,3}(\mathbb{R})$ telles que

$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 0 & 1 \\ 3 & 2 & 0 \end{pmatrix}; \qquad B = \begin{pmatrix} 0 & 3 & 1 \\ 1 & 0 & 1 \\ 2 & -1 & 1 \end{pmatrix}.$$

Calculer AB, BA, $(A + B)^2$, $A^2 + B^2 + 2A.B$ et A - 3B.

On considère la matrice carrée $A \in \mathcal{M}_{2,2}(\mathbb{R})$ telle que Exercice n°2

$$A = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right).$$

- 1. Calculer A^2 et A^3 .
- 2. Déterminer A^n pour tout $n \in \mathbb{Z}$.

Soient A et B deux matrices dans $\mathcal{M}_{n,n}(\mathbb{R})$ pour n un entier quelconque. Exercice n°3

- 1. Sous quelles conditions l'égalité $(A+B)(A-B)=A^2-B^2$ est vraie?
- 2. Déterminer si l'égalité de la question (1) est vérifiée pour les matrices suivantes :

$$A = \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix}; \qquad B = \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix}.$$

Une matrice carrée $A\mathcal{M}_{3,3}(\mathbb{R})$ est dite *orthogonale* si et seulement si A satisfait $A^tA =$ Exercice n°4 I_3 . Déterminer les valeurs $a, b \in \mathbb{R}$ telles que la matrice A définie ci-dessous est orthogonale.

$$A = \begin{pmatrix} a & 0 & 0 \\ 0 & \cos b & \sin b \\ 0 & -\sin b & \cos b \end{pmatrix}.$$

Soit $A \in \mathcal{M}_{n,n}(\mathbb{R})$ une matrice carrée. On suppose que A vérifie l'identité $A^3 - A^2 - I_n =$ 0. Montrer que A est inversible et donner une formule simple pour A^{-1} .

Exercice n°6 On considère la matrice carrée $A \in \mathcal{M}_{3,3}(\mathbb{R})$ telle que

$$A = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 1 \end{array}\right).$$

1. Calculer A^2 , A^3 et $A^3 - A^2 + A - I_3$.

- 2. Exprimer A^{-1} en fonction de A^2 , A et I_3 .
- 3. Exprimer A^4 en fonction de A^2 , A et I_3 .

Exercice n°7 On considère la matrice carrée $A \in \mathcal{M}_{3,3}(\mathbb{R})$ telle que

$$A = \left(\begin{array}{ccc} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{array}\right).$$

- 1. Exprimer $A = B + I_3$ avec $B \in \mathcal{M}_{3,3}(\mathbb{R})$.
- 2. Calculer B^n et en déduire A^n .
- 3. Vérifier que $A^2 = 5A 4I_3$.
- 4. Déduire que A est inversible et calculer son inverse A^{-1} .

Exercice n°8 Soit $m \in \mathbb{R}^*$, on pose :

$$A = \begin{pmatrix} 0 & m & m^2 \\ \frac{1}{m} & 0 & m \\ \frac{1}{m^2} & \frac{1}{m} & 1 \end{pmatrix}.$$

- 1. Calculer $(A + I_3)(A 2I_3)$.
- 2. Soient deux matrices B et C telles que BC = 0 et $C \neq 0$, peut-on déduire que B = 0?
- 3. Soit $B = \frac{1}{3}(A + I_3)$ et $C = \frac{1}{3}(A 2I_3)$. Calculer B^2 et C^2 . En déduire une expression pour B^n et C^n pour tout $n \in \mathbb{N}^*$.
- 4. Déduire que pour tout $n \in \mathbb{N}^*$:

$$A^n = 2^n B + (-1)^{n+1} C.$$

Exercice n^{\circ}9 Montrer que la matrice carrée A définie par :

$$M = \left(\begin{array}{cccc} 0 & 0 & 2 & 1\\ 0 & 1 & -1 & 0\\ -1 & 0 & 3 & 1\\ 0 & -1 & -2 & -1 \end{array}\right)$$

est inversible en calculant explicitement son inverse.