

دانشگاه صنعتی امیر کبیر (بلی تکنیک تهران)

دانشکده مهندسی انرژی و فیزیک

دفتر چه گزارش کار

آزمایشگاه فیزیک ۲

نکته ا: دفترچه گزارش کار شامل دو بخش-1 و بخش-1 می باشد. که باید بخش-1 (پیش گزارش) قبل از جلسه آزمایش و بخش-7 (نتایج آزمایش) در جلسه بعد آزمایش، تنظیم و تحویل مربی گردد.

نکته ۲: گزارش کار باید با خود کار تنظیم و منحنی ها با مداد ترسیم گردد (پرینت قابل قبول نیست).

آزمایش ۱: تعیین مقاومت درونی منبع تغذیه				
شماره دانشجوئي:	نام و نام خانوادگی:			
نام مربى:	روز و ساعت آزمایشگاه:			

- ●هدف أزمايش:
- ●وسایل آزمایش:
- •تئورى آزمايش (با ترسيم مدار الكتريكي):

●روش انجام أزمايش:

آزمایش ۱: تعیین مقاومت درونی منبع تغذیه				
شماره دانشجوئي:	نام و نام خانوادگی:			
نام مربى:	روز و ساعت آزمایشگاه:			

•جدول زیر را تکمیل کنید:

$E \pm \Delta E = \cdots \pm \cdots$						
R(Ω) (کد رنگی)	V(v)	$\frac{1}{R}(\Omega^{-1})$	$\frac{1}{V}(V^{-1})$	$r(\Omega)$	$ar{r}\pm\overline{\Delta r}(\Omega)$	

[●]یک نمونه از محاسبات را انجام دهید:

[•]مقاومت درونی منبع تغذیه را با استفاده از روش محاسباتی (تعیین میانگین کمیت و میانگین خطای مطلق، $(\bar{r}\pm \overline{\Delta r}(\Omega))$ گزارش کنید و درون جدول ثبت کنید.

• $\frac{1}{V}$ بر حسب $\frac{1}{V}$ را رسم کنید:

•با استفاده از شیب خط مقدار مقاومت درونی منبع تغذیه au را تعیین کنید.

r=

●جواب به سؤالات:

۱-چرا در این آزمایش از مقاومتهای کوچک (زیر۱۰ اهم) استفاده می شود؟

٢- أيا سلكتور منبع تغذيه را تغيير دهيم مقاومت دروني منبع تغذيه تغيير مي كند؟

 $^{-}$ آیا با اهم متر می توانیم مقاومت درونی منبع تغذیه را به طور مستقیم اندازه گیری کنیم

•در مورد نتایج بدست آمده بحث کنید:

ومت درونی ولتمتر	آزمایش ۲: تعیین مقار
شماره دانشجوئي:	نام و نام خانوادگی:
نام مربی:	روز و ساعت آزمایشگاه:

- ●هدف أزمايش:
- ●وسایل آزمایش:
- •تئورى آزمايش (با ترسيم مدار الكتريكي):

•روش انجام أزمايش:

روني ولتمتر بخش- 2	آزمایش ۲: تعیین مقاومت درونی ولتمتر		
، دانشجوئي:	شمار	نام و نام خانوادگی:	
بی:	نام م	روز و ساعت آزمایشگاه:	

جدول زیر را تکمیل کنید:

$E \pm \Delta E = \cdots \pm \cdots$					
R(MΩ) (کد رنگی)	V(v)	$\frac{1}{V}(V^{-1})$	$R_V(M\Omega)$	$\overline{R_V} \pm \overline{\Delta R_V}(M\Omega)$	
(کد رنگی)		V			

[●]یک نمونه از محاسبات را انجام دهید:

[•]مقاومت درونی ولتمتر را با استفاده از روش محاسباتی (تعیین میانگین کمیت و میانگین خطای مطلق، $\overline{R_V} \pm \overline{\Delta R_V}$ گزارش کنید و درون جدول ثبت کنید.

•نمودار $\frac{1}{V}$ را بر حسب R روی کاغذ میلیمتری رسم کنید.

ullet از روی نمودار مقدار مقاومت درونی ولتمتر R_V (طول از مبدا) را تعیین کنید.

 $R_V =$

ullet بار دیگر با معلوم بودن ullet ، مقاومت درونی ولتمتر (R_V) را با استفاده از شیب خط گزارش کنید.

 $R_V =$

	●جواب به سؤالات:
	۱ – آیا محدوده های مختلف ولتمتر مقاومت درونی یکسانی دارند؟
	۲-چرا مقاومت R در مدار شکل ۱ باید خیلی زیاد باشد؟
	●در مورد نتایج بدست آمده بحث کنید:
A	

آزمايش ٣: تحقيق قوانين كريشهف				
شماره دانشجوئي:	نام و نام خانوادگی:			
نام مربی:	روز و ساعت آزمایشگاه:			

- ●هدف أزمايش:
- ●وسایل آزمایش:
- •تئورى آزمايش (با ترسيم مدار الكتريكي):

●روش انجام أزمايش:

آزمایش ۳: تحقیق قوانین کریشهف			
نام و نام خانوادگی:	شماره دانشجوئي:		
روز و ساعت آزمایشگاه:	نام مربی:		

●جداول زیر را با استفاده از روش های خواسته شده، تکمیل کنید:

جدول ۱: مقادیر معلوم

$R_2 \pm \Delta R_2$	$R_3 \pm \Delta R_3$	$V_1 \pm \Delta V_1$	$V_2 \pm \Delta V_2$
(کد رنگی)	(کد رنگی)		

محدوده خطای جریان را با استفاده از روش لگاریتمی $I = \left(rac{\Delta V}{V} + rac{\Delta R}{R}
ight)$ محاسبه کنید، و در جدول ۲ ثبت نمائید.

 $\begin{cases} \Delta I_{\gamma} = \\ \Delta I_{\gamma} = \\ \Delta I_{\gamma} = \end{cases}$

جدول ۲: تحقیق قوانین کریشهف با استفاده از نتایج قانون اهم

$V_{R1} \pm \Delta V_{R1}$	$V_{R2} \pm \Delta V_{R2}$	$V_{R3} \pm \Delta V_{R3}$	$I_1 \pm \Delta I_1$	$I_2 \pm \Delta I_2$	$I_3 \pm \Delta I_3$	$I_1 + I_2 - I_3$

جدول ۳: تحقیق قوانین کریشهف با استفاده از اندازه گیری مستقیم

$I_1' \pm \Delta I_1'$	$I_2' \pm \Delta I_2'$	$I_3' \pm \Delta I_3'$	$\mathbf{I}_1' + \mathbf{I}_2' - \mathbf{I}_3'$	$V_1 - V_2 - R_1 I_1' + R_2 I_2'$	$V_2 - R_2 \mathbf{I}_2' - R_3 \mathbf{I}_3'$

جدول ۴: روش سه معادله و سه مجهول

<i>I</i> ₁ ''	<i>I</i> ₂ ''	<i>I</i> ₃ "

جدول۵: مقایسه نتایج

$\frac{ I_1'' - I_1 }{I_1''} \times 100$	$\frac{ I_2'' - I_2 }{I_2''} \times 100$	$\frac{ I_3'' - I_3 }{I_3''} \times 100$
$\frac{ I_1'' - I_1' }{ I_1'' } \times 100$	$\frac{ \mathbf{I}_2'' - \mathbf{I}_2' }{\mathbf{I}_2''} \times 100$	$\frac{ \mathbf{I}_3'' - \mathbf{I}_3' }{\mathbf{I}_3''} \times 100$
1 1	12	

●جواب به سؤالات:

۱-قوانین کربشهف در حل معادلات مدار چه کمکی به ما می کنند؟

•در مورد نتایج بدست آمده بحث کنید:

پل وتستون بخش- ۱	آزمایش ۴ –
شماره دانشجوئي:	نام و نام خانوادگی:
نام مربى:	روز و ساعت آزمایشگاه:

- ●هدف أزمايش:
- ●وسایل آزمایش:
- •تئورى آزمايش (با ترسيم مدار الكتريكي):

●روش انجام أزمايش:

آزمایش ۴ — پ	پل وتستون ب خ ش- ۲
ام و نام خانوادگی:	شماره دانشجوئي:
وز و ساعت آزمایشگاه:	نام مربى:

الف)پل وتستون

- مقدار مقاومتهای مجهول X_1 و X_2 که در اختیار دارید را با استفاده از کد رنگی خوانده و در جدول زیر ثبت کنید:
 - مقدار مقاومتهای X_s و X_t را با استفاده از روابط زیر محاسبه و در جدول زیر ثبت کنید:

$$\begin{cases} X_{S} = X_{1} + X_{7} \\ \frac{1}{X_{D}} = \frac{1}{X_{1}} + \frac{1}{X_{7}} \end{cases}$$

●خطای مطلق آنها را با استفاده از روش لگاریتمی به دست آورید و آنها را بصورت زیر گزارش و در جدول ثبت کنید:

$$\begin{cases} X_s \pm \Delta X_s(\Omega) \\ X_p \pm \Delta X_p(\Omega) \end{cases}$$

• بار دیگر مقدار مقاومتهای مجهول X_s ، X_s , X_s و X_s را با استفاده از دستگاه پل وتستون اندازه گیری و در جدول زیر ثبت کنید:

	(کد رنگی – تئوری $)$	$\frac{a}{b}$	$R(\Omega)$	(دستگاه پل وتستون) $rac{a}{b} m R \pm \Delta X$
X ₁				
X ₂				
X_s				
X _p				

ب) اندازه گیری مقاومت درونی گالوانومتر–پل کلوین

•مقاومت درونی گالوانومتر را با استفاده از پل کلوین محاسبه کنید:

$$X_G = \frac{a}{b}R =$$

●خطای مطلق آن را با استفاده از روش لگاریتمی به دست آورید و نهایتا" آن را بصورت زیر گزارش کنید:

$$X_G \pm \Delta X_G(\Omega) =$$

•جواب به سؤالات:

۱-هر یک از نسبت های ممکن a/b برای اندازه گیری چه محدوده ای از مقاومت های مجهول مناسب می باشند؟

۲-چهار مقاومت داریم که به ترتیب در حدود ۰/۴ ، ۸ ، ۱۵۹ و۴۴۰۰ اهم می باشند. بهترین نسبت a/b را برای اندازه گیری این مقاومت ها تعیین کنید.

۳-در صورتی که حداکثر مقدار مقاومت متغیر قادر به صفر کردن جریان آمپرمتر نباشد، چه راهکاری را پیشنهاد می کنید؟

۴–نشان دهید هر گاه پل وتستون در حال تعادل باشد و جریانی از گالوانومتر عبور ننماید، اگر جای گالوانومتر و باطری با هم عوض شود، در این حالت نیز جریانی از گالوانومتر عبور نخواهد کرد.

۵-در اندازه گیری مقاومت درونی گالوانومتر، مقادیر a و b برابر۱۰۰۰ اهم اختیار شدند. علت را توضیح دهید.

۶-چگونگی برقراری شرط تعادل را در مدار شکل (۴) به طور کامل شرح دهید.

۷-آیا شرط تعادل پل وتستون برای مدار زیر برقرار می باشد؟ چرا؟

•در مورد نتایج بدست آمده بحث کنید:

آزمایش ۵: خازن ۱		
شماره دانشجوئي:	نام و نام خانوادگی:	
نام مربى:	روز و ساعت آزمایشگاه:	

- ●هدف أزمايش:
- ●وسایل آزمایش:
- تئورى آزمايش (با ترسيم مدار الكتريكي):

●روش انجام أزمايش:

: خازن ۱	آزمایش ۵
شماره دانشجوئي:	نام و نام خانوادگی:
نام مربی:	روز و ساعت آزمایشگاه:

الف) تحقیق رابطه خطی $C=rac{q}{v}$ و محاسبه ظرفیت خازن

●ظرفیت خازن را در هر مرحله محاسبه کنید و در جدول ۱ ثبت کنید:

جدول ۱

V(volt)	1+	۲٠	٣٠	۴+	۵٠
q(c)					
C(F)					
$\overline{C} \pm \overline{\Delta C}$					

●یک نمونه از محاسبات را انجام دهید:

با استفاده از روش محاسباتی (تعیین میانگین کمیت و میانگین خطای مطلق، $(\bar{C}\pm \overline{\Delta C})$ گزارش کنید و درون جدول ۱ ثبت کنید:

●نمودار (q-V) را رسم کنید:

C=

ب) بستگی ظرفیت خازن به فاصله صفحات

●ظرفیت خازن را در هر مرحله محاسبه کنید و در جدول ۲ ثبت کنید:

جدول ۲

	V(volt)	q(c)	C(µF)
d=٣mm	1++		
d=۶mm	1++		

برای تحقیق درستی رابطه (۷)، اینچنین عمل کنید:

$$\begin{cases} X = \frac{C_{\gamma}}{C_{\gamma}} = \\ Y = \frac{d_{\gamma}}{d_{\gamma}} = \end{cases}$$

$$\frac{|X - Y|}{X} \times \gamma \dots =$$

ج) بستگی ظرفیت خازن به مساحت صفحات فلزی

●ظرفیت خازن را در هر مرحله محاسبه کنید و در جدول ۳ ثبت کنید:

جدول ۳

	V(volt)	q(c)	C(F)
$A_b = */* \lambda m^{\gamma}$	1++		
As=+/+ 4 m 7	1++		

برای تحقیق درستی رابطه (۸)، اینچنین عمل کنید:

$$\begin{cases} X' = \frac{C_b}{C_s} = \\ Y' = \frac{A_b}{A_s} = \\ \frac{|X' - Y'|}{Y'} \times \dots = \end{cases}$$

د) بستگی ظرفیت خازن به نوع دی الکتریک

با استفاده از روابط موجود در دستور کار، کمیتهای K_g و K_g را نسبت به ضریب دی الکتریک هوا K_w محاسبه کنید و در جدول K_g ثبت کنید: جدول K_g

	V(volt)	q(c)	C(F)	К
شیشه(g)	1++			
پلاستیک(r)	1++			
هوا(w)	1++			

●محاسبات را ارائه دهید:

$$\begin{cases} K_g = \frac{q_g}{q_w} = \\ K_r = \frac{q_r}{q_w} = \end{cases}$$

د) موازي بستن خازنها

جدول ۵

	V(volts)	q(C)	C(F)
صفحات Ab با عايق ثسيشه اي	1 • •	$q_b =$	$C_b =$
صفحات As با عايق پلاستيكى	1 • •	$q_s =$	$C_s =$
در حالت موازی	1 • •	$q_t =$	$C_t =$

برای تحقیق درستی رابطه $q_{t'}=q_{s}+q_{b}$ اینچنین عمل کنید:

$$\begin{cases} q_{t'} = q_s + q_b = \\ \frac{|q_{t'} - q_t|}{q_{t'}} \times \vee \cdot \cdot = \end{cases}$$

برای تحقیق درستی رابطه $C_t' = C_b + C_s$ اینچنین عمل کنید:

$$\begin{cases} C_t' = C_b + C_s = \\ \frac{|C_{t'} - C_t|}{C_{t'}} \times \cdots = \end{cases}$$

با استفاده از نتایج بدست آمده در بخش (الف)، مقدار ϵ_0 را به دست آورید:

●در مورد نتایج بدست آمده بحث کنید:

: خازن ۲	آزمایش ۶:
شماره دانشجوئي:	نام و نام خانوادگی:
نام مربی:	روز و ساعت آزمایشگاه:

- ●هدف أزمايش:
- وسايل أزمايش:
- تعریف کمیت مورد اندازه گیری و تعیین واحد آن:
 - تئورى أزمايش (با ترسيم مدار الكتريكي):

•روش انجام أزمايش:

: خازن ۲	آزمایش ۶:
شماره دانشجوئي:	نام و نام خانوادگی:
نام مربى:	روز و ساعت آزمایشگاه:

الف) بررسی قطبیت (پلاریته) خازن

●اختلاف پتانسیل ها را در هر دو حالت، برای اولین خازنی که در اختیار دارید، اندازه بگیرید (اولین عددی که مشاهده می کنید را ثبت کنید):

 $\begin{cases} V_{AB} = \\ V_{BA} = \end{cases}$

●اختلاف پتانسیل ها را در هر دو حالت، برای دومین خازنی که در اختیار دارید، اندازه بگیرید (اولین عددی که مشاهده می کنید را ثبت کنید):

 $\begin{cases} V'_{AB} = \\ V'_{BA} = \end{cases}$

جواب به سوال ١ – ولتاژ دو سر خازن شروع به افت مي كند. *چرا؟*

جواب به سوال ۲ – دو سر ولتمتر را جا به جا کنید. چه تغییری در صفحه نمایش آن مشاهده می کنید؟

جواب به سوال ۳- آیا پلاریته منبع تغذیه و خازن شارژ شده یکسان است؟

ب) اندازه گیری اختلاف پتانسیل دو سر خازنهای سری شده

 $\begin{cases} V_{AB} = \\ V_{BC} = \\ V_{AC} = \end{cases}$

جواب به سوال ۴ چه رابطه ای بین ولتاژها وجود دارد؟

جواب به سوال ۵– ولتاژها به چه نسبتی تقسیم شده اند؟

C_{r} و C_{s} و خازنهای C_{s} و جدول

C_1 خازن C_2 خازن t(s) $V_C = \varepsilon - V_V$ $V(v) | V_C = \varepsilon - V_V$ $V_V(v)$ ۵ 1+ ۱۵ ۲+ 20 ٣+ ٣۵ 40 ۵۵ ۶. ۶۵ ٧٠ ۷۵ ٨+ ۸۵ ۹٠ ٩۵ 1++ 1+0 11+ 110 17+ 170 14+ ۱۳۵ 14+ 140 10+ ۱۵۵ 18+ 180 14+

C_s و C_p و خازنهای جدول ۲: شارژ خازنهای

t(s)		خازنهای		خازنهای مواز
	$V_V(v)$	$V_s = \varepsilon - V_V$	$V_V(v)$	$V_{\rm P} = \varepsilon - V_{\rm V}$
*				
۵				
1+				
۱۵				
۲٠				
70				
٣+				
۳۵				
۴٠				
40				
۵+				
۵۵				
۶+				
۶۵				
٧٠				
۷۵				
۸٠				
۸۵				
٩+				
٩۵				
1++				
1+0				
11+				
110				
17+				
170				
18+				
۱۳۵				
14+				
140				
10+				
۱۵۵				
18+				
180				
17+				

●نمودار ولتاژ خازن ها بر حسب زمان(Vc-t) را برای هر یک از حالت های بالا در یک دستگاه مختصات، جهت مقایسه رسم نمایید.

•ثابت زمانی au_s ، au_s و au_s را برای هر یک از منحنی ها به دست آورید.

$$\begin{cases} \tau_{\scriptscriptstyle 1} = \\ \tau_{\scriptscriptstyle 7} = \\ \tau_{\scriptscriptstyle 8} = \\ \tau_{\scriptscriptstyle p} = \end{cases}$$

•مقدار مقاومت ولتمتر R_V را یک بار از روی منحنی خازن $C_ ext{ iny }$ و بار دیگر از روی منحنی خازن $C_ ext{ iny }$ ، با استفاده از رابطه au به دست آورید.

$$\begin{cases} R_{V^{\gamma}} = \\ R_{V^{\gamma}} = \\ \overline{R_{V}} = \end{cases}$$

ullet با فرض مجهول بودن ظرفیت خازن $C_{ au}$ ، ظرفیت خازن را با استفاده از رابطه (۵) محاسبه کنید:

$$C_{r} =$$

•با استفاده از au_S و و au_S ، مقدار ظرفیت خازن های معادل را در هر حالت به دست اَورید.

$$\begin{cases} C_S = \frac{\tau_S}{R_V} = \\ C_P = \frac{\tau_P}{R_V} = \end{cases}$$

•روابط خازن های سری و موازی را تحقیق کنید (خطای نسبی هر یک را به دست اورید):

$$\begin{cases} C_S' = \frac{C_1 \times C_{\tau}}{C_1 + C_{\tau}} = \\ C_P' = C_1 + C_{\tau} = \end{cases}$$

$$\begin{cases} \frac{|C'_S - C_S|}{C'_S} \times \cdots = \\ \frac{|C'_P - C_P|}{C'_P} \times \cdots = \end{cases}$$

د) دئسارژ خازن

جدول ۳

t(s)	*	۵	1+	۱۵	۲٠	۲۵	٣٠	٣۵	۴+	۴۵	۵٠	۵۵	۶٠	۶۵	٧٠	۷۵	٨٠	۸۵	9+
V _{C1} (v)																			
V _{C2} (v)																			

•نمودار تغییرات ولتاژ خازن بر حسب زمان $(v_c - t)$ را در حالت دشارژ برای خازنهای C_r و C_r در یک دستگاه مختصات، جهت مقایسه رسم نمایید:

•ثابت زمانی های au_1 و au_7 را در حالت دشارژ از روی نمودار به دست آورید:

$$\left\{
 \begin{array}{l}
 \tau_{\scriptscriptstyle 1} = \\
 \tau_{\scriptscriptstyle 7} = \end{array}
 \right.$$

جواب به سوال $au_S = \frac{ au_P}{ au_S} = \frac{C_P}{C_S}$ صادق است؟

جواب به سوال ۷– نقش ولتمتر دیجیتالی در حالت شارژ و دشارژ خازن چیست؟

جواب به سوال Λ - ثابت زمانی τ در حالت دشارژ را تعریف کنید.

جواب به سوال ۹ - آیا ثابت زمانی در حالت شارژ و دشارژ متفاوت است؟

•در مورد نتایج بدست آمده بحث کنید:

: اسیلوسکوپ	آزمایش ۷:
شماره دانشجوئي:	نام و نام خانوادگی:
نام مربى:	روز و ساعت آزمایشگاه:

- ●هدف أزمايش:
- وسايل أزمايش:
- تعریف کمیت مورد اندازه گیری و تعیین واحد آن:
 - تئوری آزمایش (با تشریح لامپ پرتو کاتدی):

•روش انجام أزمايش:

بخش- ۲	آزمایش ۷	
	شماره دانشجوئي:	نام و نام خانوادگی:
	نام مربي:	روز و ساعت آزمایشگاه:

الف) اندازه گیری پتانسیل منبع- DC

 $V \pm \Delta V =$

ب) اندازه گیری دامنه و مقدار ولتاژ مؤثر (V_{rms}) – منبع

 $V_{rms} \pm \Delta V_{rms} =$

ج) اندازه گیری زمان تناوب و فر کانس

 $\begin{cases} T \pm \Delta T = \\ f \pm \Delta f = \end{cases}$

د) محاسبه اختلاف فاز بر حسب فرکانس در مدار RC

f (HZ)	7++	4++	8++	۸۰۰	1+++	17++	14	18++	14++	7+++	77++	74
۲A												
۲B												
Sinθ=A/B												

•نمودار Sinθ بر حسب فرکانس را رسم کنید:

اختلاف فاز $\left(heta_{
m re}
ight)$ مربوط به فرکانس ۱۵۰۰ هرتز را از روی نمودار به دست آورید:

•مقدار اختلاف فاز $\left(\theta_{rigo}\right)$ را از رابطه $\frac{v_c}{RC\omega} = \frac{v_c}{RC\omega}$ به ازای فرکانس ۱۵۰۰ هرتز به دست آورید و درصد خطای نسبی آنها را محاسبه کنید:

$$\begin{cases} \theta_{\omega, \neq z} = \\ \theta_{\omega, \neq z} = \\ \left| \frac{\theta_{\omega, \neq z}}{\theta_{\omega, \varphi}} - \frac{\theta_{\omega, \varphi}}{\theta_{\omega, \varphi}} \right| \times \dots = \end{cases}$$

ه) نحوه محاسبه فركانس مجهول با استفاده از اشكال ليساژو

را برای یکی از اشکالی که در آزمایشگاه ایجاد کردید، تحقیق کنید: $\left(\frac{f_v}{f_h} = \frac{N_{
m T}}{N_{
m N}}\right)$

•جواب به سؤالات:

۱- آیا می توان از اسیلوسکوپ برای اندازه گیری مستقیم شدت جریان استفاده نمود؟ چرا؟

۲-اشکال لیساژو را چگونه می توان تشکیل داد و برای اندازه گیری چه پارامترهایی به کار می روند؟

۳-علت اختلاف فاز θ در مدار چیست و تابع چه پارامترهایی است؟

۴-علت حضور مقاومت ۱۰۰۰ اهم در مدار چیست؟

آزمایش ۸: تحقیق قانون القای فارادی						
شماره دانشجوئي:	نام و نام خانوادگی:					
نام مربى:	روز و ساعت آزمایشگاه:					

- ●هدف أزمايش:
- وسايل أزمايش:
- تعریف کمیت مورد اندازه گیری و تعیین واحد آن:
 - تئورى أزمايش (با ترسيم مدار الكتريكي):

•روش انجام أزمايش:

انون القاي فارادي	آزمایش ۸: تحقیق قانون القای فارادی					
شماره دانشجوئي:	نام و نام خانوادگی:					
نام مربى:	روز و ساعت آزمایشگاه:					

الف) تحقیق بستگی نیروی محرکه القائی با فرکانس موج تحریک

•مطابق دستور کار عمل کرده و جدول ۱ را کامل کنید:

جدول ا

f(Hz)	7++	4++	9++	۸۰۰	1 * * *
dI(A)					
dt(S)					
dI/dt(A/S)					
ε(v)					

•منحنی ε بر حسب dI/dt را بر روی کاغذ میلیمتری رسم کنید:

از روی نمودار مقدار \mathbf{M} را محاسبه نموده و از آنجا مقدار $\mu_{\cdot \cdot}$ را بدست آورید:

$${M = \atop \mu_{\cdot}} =$$

ب) تحقیق بستگی نیروی محرکه القائی با دامنه موج تحریک

•مطابق دستور کار عمل کرده و جدول۲ را کامل کنید:

جدول۲

ولتاژ منبع	۱/۴ منبع	۲/۴ منبع	۳/۴ منبع	۴/۴ منبع
dI(A)				
dt(S)				
dI/dt(A/S)				
ε(v)				

•منحنی ε بر حسب dI/dt را بر روی کاغذ میلیمتری رسم کنید:

از روی نمودار مقدار \mathbf{M} را محاسبه نموده و از آنجا مقدار $\mu_{,\gamma}$ را بدست آورید:

$$\begin{cases} M = \\ \mu_{. \text{\tiny Y}} = \end{cases}$$

با توجه به مقدار $(\mu_{\cdot} = \pi \times 10^{-7})$ ، درصد خطای نسبی آنها را حساب کنید.

$$\frac{|\mu_{\cdot, \gamma} - \mu_{\cdot, \gamma}|}{\mu_{\cdot}} \times \gamma \cdots =$$

ج) اندازه گیری اختلاف فاز دو موج

•مطابق دستور کار عمل کرده و برای یک موج سینوسی اختلاف فاز دو موج را تعیین کنید:

 $\Delta \varphi =$

لات:	سؤا	<u>ل</u> ه	ں	وحوا

آزمایش ۹: اندازه گیری میدان مغناطیسی زمین		
شماره دانشجوئي:	نام و نام خانوادگی:	
نام مربى:	روز و ساعت آزمایشگاه:	

- •هدف أزمايش:
- وسايل أزمايش:
- تعریف کمیت مورد اندازه گیری و تعیین واحد آن:
 - تئورى أزمايش (با ترسيم مدار الكتريكي):

•روش انجام أزمايش:

آزمایش ۹: اندازه گیری میدان مغناطیسی زمین		
شماره دانشجوئي:	نام و نام خانوادگی:	
نام مربی:	روز و ساعت آزمایشگاه:	

الف) حلقه بزر*گ*

•مطابق دستور کار عمل کرده و جدول ۱ را برای حلقه بزرگ کامل کنید:

جدول۱: نتایج مربوط به حلقه بزرگ

دوران حول	$\varepsilon_{ ext{max}}$ (v)	T (s)	$a = \frac{2\pi^2 NR^2}{T} (m^2/s)$
X			
y			
Z			

•با توجه به نتایج بدست آمده، اندازه میدان مغناطیسی و زاویه میل میدان مغناطیسی را تعیین کنید:

 $\begin{cases} B_{X} = \\ B_{Y} = \\ B_{Z} = \end{cases}$

 $\begin{cases} B_{e} = \\ \psi_{1} = \end{cases}$

ب) حلقه کوچک

•مطابق دستور کار عمل کرده و جدول ۲ را برای حلقه کوچک کامل کنید:

جدول ۲: نتایج مربوط به حلقه کوچک

دوران حول	$\varepsilon_{\mathrm{max}}$ (v)	T (s)	$a = \frac{2\pi^2 NR^2}{T} (m^2/s)$
X			
y			
Z			

•با توجه به نتایج بدست آمده، اندازه میدان مغناطیسی و زاویه میل میدان مغناطیسی را تعیین کنید:

$$\begin{cases} B_{X\tau} = \\ B_{Y\tau} = \\ B_{Z\tau} = \end{cases}$$
$$\begin{cases} B_{e\tau} = \\ \psi_{\tau} = \end{cases}$$

• نتایج را با یکدیگر مقایسه نمایید:

$$\begin{cases} \frac{|B_{e^{\gamma}} - B_{e^{\gamma}}|}{\bar{B}_{e}} \times \cdots = \\ \frac{|\psi_{\gamma} - \psi_{\gamma}|}{\bar{\psi}} \times \cdots = \end{cases}$$

•در مورد نتایج بدست آمده بحث کنید:

: مگنتومتر	آزمایش ۱۰
شماره دانشجوئي:	نام و نام خانوادگی:
نام مربى:	روز و ساعت آزمایشگاه:

- ●هدف أزمايش:
- وسايل أزمايش:
- تعریف کمیت مورد اندازه گیری و تعیین واحد آن:
 - تئورى أزمايش (با ترسيم مدار الكتريكي):

•روش انجام أزمايش:

آزمایش ۱۰: مگنتومتر		
شماره دانشجوئي:	نام و نام خانوادگی:	
نام مربى:	روز و ساعت آزمایشگاه:	

•مطابق دستور کار عمل کرده و جدول زیر را تکمیل کنید:

I(A)	Ө(ст)	H(A/m)	$B=\lambda\theta(T)$	μ(H)=B/H
+/+۵				
/1				
+/10				
+/۲+				
+/٢۵				
+/٣+				
+/٣۵				
+/4+				
+/42				
+/۵+				
+ 9+				
+/ Y +				
+/^+				
+/9.+				
1/++				
1/1+				
1/۲+				
1/4+				
1/4+				
1/0+				

●کمیتهای زیر را تعیین کنید:

$$\begin{cases} \boldsymbol{\theta_0} = \\ \boldsymbol{\beta} = \\ \boldsymbol{\lambda} = \end{cases}$$

•نمودار (B-H) و (µ -H)را بر روی یک کاغذ میلیمتری رسم کنید:

را دهید. این کار، کمیت B را بر روی محور عمودی سمت چپ قرار دهید و کمیت μ را بر روی محور عمودی سمت راست قرار دهید.

•جواب به سؤالات:

۱-چرا تنها در لحظات قطع و وصل کلید، گالوانومتر بالستیک جریانی را در مدار ثانویه نشان می دهد؟

۲-اگر هسته اَهنی در داخل سیم پیچ وجود نداشت منحنی B-H به چه شکل می بود؟

۳-در اواخر ازمایش هنگامی که جریان از ۱ امپر تجاوز می کند، تغییر H تغییر زیادی را در B ایجاد نخواهد کرد. علت این امر چیست؟

