МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ

Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет «Московский институт электронной техники»

Институт интегральной электроники (ИЭ) Кафедра проектирования и конструирования интегральных микросхем (ПКИМС)

Курсовая работа на тему: «Система управления роботом на гусеничном ходу»

Выполнил студент группы ЭН-

Проверил доцент каф. ПКИМС, д.т.н. Гусев Станислав Валентинович

1. Техническое задание.

Цель: Реализовать схему гусеничного робота, который управляется с дистанционного пульта. Предусмотреть различные режимы хода, поворота, запуска и остановки: режим прогрева двигателя перед стартом, элементы искусственного интеллекта (автоостановка перед препятствием и т.д.).

2. Теоретическая часть.

3. Практическая часть.

3.1 Блок-схема выводов и карта сигналов.

Рисунок . Блок-схема выводов устройства.

На рисунке X показана блок-схема портов устройства управления гусеничным роботом. Назначение сигналов приведено в таблице.

Название сигнала	Разрядность	Назначение
	сигнала	
clk_i	1	Тактовый синхросигнал
rstn_i	1	Асинхронный сигнал сброса системы. Сброс
		осуществляется по срезу rstn_i
motor_on_i	1	Сигнал включения двигателей робота.
move_i	3	Шина управления движением робота.
		Управляется пультом ДУ.
tracker_fwrd_i	1	Сигнал переднего датчика препятствий.
motor_status_o	1	Сигнал индикации статуса моторов робота.
left_motor_o	2	Сигнал управления левым мотором робота
right_motor_o	2	Сигнал управления правым мотором робота
tracker_status_o	1	Статус датчика препятствий, передаваемый на
		пульт ДУ.

3.2. Значение входных и выходных шин устройства.

Назначение сигналов управления move_i.

Значение на	Описание	
шине move_i		
0b000 / 0b100	Робот стоит на месте	
0b111	Движение робота вперед	
0b101 / 0b010	Разворот робота на 90° против	
	часовой стрелки	
0b110 / 0b001	Разворот робота на 90° по часовой	
	стрелке	
0b011	Движение робота назад	

Назначение выходных сигналов моторов робота.

Значение на шинах left_motor_o /	Описание
right_motor_o	
0b00	Гусеница робота не движется
0b01	Движение гусеницы вперед
0b10	Движение гусеницы назад

3.3. Описание схемы устройства.

Рисунок – Структурная схема устройства в программе Quartus II (RTL Viewer).

Рисунок – Результат синтеза схемы в САПР Quartus II.

3.4. Конечный автомат схемы робота.

Для функциональной реализации устройства был разработан конечный автомат, имеющий 8 состояний + состояние PWR_OFF - сброс схемы и состояние по умолчанию.

Рисунок – Граф конечного автомата робота.

Описание состояний конечного автомата приведено в таблице ниже.

Название	Значение	Описание состояния
состояния	состояния	
PWR_OFF	0	Состояние схемы по умолчанию и в случае
		сброса системы.
ENGINE_START	1	Запуск двигателей робота.
ENGINE_END	2	Отключение двигателей робота.
PWR_ON_IDLE	3	Двигатели робота включены; Ожидание
		команды на передвижение.
MOVE_FWRD	4	Движение робота вперед.
TURN_LEFT	5	Поворот робота на 90° против часовой стрелки.
TURN_RIGHT	6	Поворот робота на 90° по часовой стрелке.

MOVE_BACK	7	Движение робота назад.
TRACKER_ERROR	8	Ошибка при движении робота: обнаружено
		препятствие датчиком.

	Source State	Destination State	Condition
1	ENGINE_END	PWR_OFF	
2	ENGINE_START	PWR_ON_IDLE	
3	MOVE_BACK	PWR_ON_IDLE	
4	MOVE_FWRD	PWR_ON_IDLE	(!tracker_fwrd_i)
5	MOVE_FWRD	TRACKER_ERROR	(tracker_fwrd_i)
6	PWR_OFF	ENGINE_START	(motor_on_i)
7	PWR_OFF	PWR_OFF	(!motor_on_i)
8	PWR_ON_IDLE	TURN_LEFT	(!Decoder1).(Decoder1).(motor_on_i) + (Decoder1).(motor_on_i)
9	PWR_ON_IDLE	MOVE_BACK	(Decoder1).(motor_on_i)
10	PWR_ON_IDLE	MOVE_FWRD	(Decoder1).(motor_on_i)
11	PWR_ON_IDLE	PWR_ON_IDLE	(Decoder0).(motor_on_i)
12	PWR_ON_IDLE	TURN_RIGHT	(!Decoder1).(Decoder1).(motor_on_i) + (Decoder1).(motor_on_i)
13	PWR_ON_IDLE	ENGINE_END	(!motor_on_i)
14	TRACKER_ERROR	PWR_ON_IDLE	
15	TURN_LEFT	PWR_ON_IDLE	
16	TURN_RIGHT	PWR_ON_IDLE	

Рисунок — Таблица переходов комбинационной логики конечного автомата между состояниями.

3.5. Функциональная верификация.

Для проведения функциональной верификации, было разработано тестовое окружение устройства, способное проверить правильность составления переходов конечного автомата. Представлена визуализация передвижения робота по полю размером 7х7 клеток. Начальные координаты движения: [5:1].

Рисунок — Визуализация движения робота во время прохождения теста.

```
# Turn on motor
                                                     # Stay on position: Axis X: 7, Axis Y: 6, Side: 11
# Motor status is ON
                                                     # Robot moved to 1 square forward
# Start coordinates: Axis X: 5, Axis Y: 1
                                                      Move forward
# Move forward
                                                      Stay on position: Axis X: 7, Axis Y: 5, Side: 11
# Robot moved to 1 square forward
                                                       Robot moved to 1 square forward
# Move forward
                                                      Move forward
# Stay on position: Axis X: 5, Axis Y: 2, Side: 01
                                                       Stay on position: Axis X: 7, Axis Y: 4, Side: 11
# Robot moved to 1 square forward
                                                       Robot moved to 1 square forward
# Stay on position: Axis X: 5, Axis Y: 3, Side: 01
                                                       Move forward
# Robot turns left
                                                       Stay on position: Axis X: 7, Axis Y: 3, Side: 11
# Move forward
                                                       Robot moved to 1 square forward
# Stay on position: Axis X: 5, Axis Y: 3, Side: 00
                                                       Move forward
# Robot moved to 1 square forward
                                                       Stay on position: Axis X: 7, Axis Y: 2, Side: 11
# Stav on position: Axis X: 4, Axis Y: 3, Side: 00
                                                       Robot moved to 1 square forward
# Robot turns right
                                                       Stay on position: Axis X: 7, Axis Y: 1, Side: 11
# Move forward
                                                       Obstacle is founded! Robot is stopped
 Stay on position: Axis X: 4, Axis Y: 3, Side: 01
                                                       Stay on position: Axis X: 7, Axis Y: 1, Side: 11
# Robot moved to 1 square forward
                                                       Move forward
# Move forward
                                                       Robot turns left
# Stay on position: Axis X: 4, Axis Y: 4, Side: 01
                                                       Stay on position: Axis X: 7, Axis Y: 1, Side: 10
 Robot moved to 1 square forward
                                                       Robot moved to 1 square backward
# Stay on position: Axis X: 4, Axis Y: 5, Side: 01
                                                       Stay on position: Axis X: 6, Axis Y: 1, Side: 10
 Robot turns right
                                                       Robot moved to 1 square backward
 Stay on position: Axis X: 4, Axis Y: 5, Side: 10
                                                       Stay on position: Axis X: 5, Axis Y: 1, Side: 10
 Robot turns right
                                                       Robot moved to 1 square backward
 Stay on position: Axis X: 4, Axis Y: 5, Side: 11
                                                       Stav on position: Axis X: 4. Axis Y: 1. Side: 10
 Robot moved to 1 square backward
                                                       Robot moved to 1 square backward
 Stay on position: Axis X: 4, Axis Y: 6, Side: 11
                                                       Stay on position: Axis X: 3. Axis Y: 1. Side: 10
 Robot moved to 1 square backward
                                                       Robot moved to 1 square backward
 Stay on position: Axis X: 4, Axis Y: 7, Side: 11
                                                       Stav on position: Axis X: 2. Axis Y: 1. Side: 10
 Robot turns left
                                                       Robot moved to 1 square backward
# Move forward
                                                       Turn off motor
# Stay on position: Axis X: 4, Axis Y: 7, Side: 10
                                                       Stay on position: Axis X: 1, Axis Y: 1, Side: 10
# Robot moved to 1 square forward
                                                       Finish coordinates: Axis X: 1, Axis Y: 1
# Move forward
                                                       Motor status is OFF
# Stay on position: Axis X: 5, Axis Y: 7, Side: 10
                                                                         : ../verif/robot tb.v(110)
                                                       ** Note: $stop
                                                         * Note: $stop : ../verii/10000_00.v(iic,
Time: 785 ns Iteration: 1 Instance: /robot_tb
# Robot moved to 1 square forward
# Move forward
                                                     # Break in Module robot_tb at ../verif/robot_tb.v line 110
# Stay on position: Axis X: 6, Axis Y: 7, Side: 10
# Robot moved to 1 square forward
# Stay on position: Axis X: 7, Axis Y: 7, Side: 10
# Obstacle is founded! Robot is stopped
# Stay on position: Axis X: 7, Axis Y: 7, Side: 10
# Move forward
# Robot turns right
# Move forward
# Stay on position: Axis X: 7, Axis Y: 7, Side: 11
# Robot moved to 1 square forward
# Move forward
# Stav on position: Axis X: 7. Axis Y: 6. Side: 11
# Robot moved to 1 square forward
# Move forward
```

Рисунок – Листинг прохождения теста.