Student No.:

Group A

For each of the following problems, find the correct answer (tick as appropriate!). No justifications are required. Each problem has exactly one correct solution, which is worth 1 mark. Incorrect solutions (including no answer, multiple answers, or unreadable answers) will be assigned 0 marks; there are no penalties.

1. The vector field $G(x,y) = (x^2 + cy^2, xy), (x,y) \in \mathbb{R}^2$ is a gradient field if $c = 1/2 \qquad \qquad \boxed{c = 1} \qquad \boxed{c = -1/2}$

2. The line integral of y dx + 2x dy along the half circle $\gamma(t) = (\cos t, \sin t), t \in [0, \pi]$ equals

3. Let $D \subseteq \mathbb{R}^2$ be the region bounded from below by the lines $y = \pm x$ and from above by the unit circle. The integral $\int_D x + y d^2(x, y)$ is equal to

 $\left| -\frac{1}{6}\sqrt{2} \right|$

4. Let *R* be the (solid) rectangle in \mathbb{R}^2 with vertices (0,0), (1,0), (0,2), (1,2). The integral $\int_{B} xy(x+y) d^{2}(x,y) \quad \text{equals}$

2

8/3

5. The volume of $\{(x, y, z) \in \mathbb{R}^3; 0 \le x \le 4 - y^2 - z^2\}$ is

8π

16π

6. For $F(x) = \int_0^2 \frac{\sin(xt^2)}{t^3 + 1} dt$ the derivative F'(0) is equal to

 $\frac{2}{3}\ln(2)$ $\frac{2}{3}\ln(3)$ $\frac{1}{3}\ln(2)$ $\frac{3}{2}\ln(2)$ $\frac{1}{2}\ln(3)$

7. The function $f(x,y) = \cos x + \sin y$ has in (0,0)

a local minimum

no extremum

a global extremum

a saddle point

a local maximum

8. The tangent plane to the surface $x^2 - yz = 3$ in (1,2,-1) contains the point (0,0,c)

c = -3

c = 11 c = 5 c = -7

9. The function z = g(x, y) implicitly defined by the equation $xy^3 + yz^3 + zx^3 = -1$ and g(1,1) = -1 has $g_x(1,1)$ equal to

1/2

10. The 1-dimensional surface integral (integral with respect to arc length) of $f(x,y) = x^2$ over the cicle $x^2 + y^2 = 4$ is

 2π

 4π

8π

 16π