Analysis and Design of Algorithms

Algorithms
C53230
C23330

Tutorial

Week 9

A Convex Polygon

Representation:

 $< p_1, ..., p_n >$ Stored in an array.

 $< p_i, ..., p_j > :$

Polygon consisting of points $p_i, ..., p_j$

Triangulation of A Convex Polygon

 $\omega(i,j,k)$: Weight of triangle formed by p_i , p_j , p_k .

Assumption: It takes O(1) time to compute $\omega(i,j,k)$

Cost of a triangulation : Sum of the weight of n-2 triangles formed.

Triangulation of A Convex Polygon

 $\omega(i,j,k)$: Weight of triangle formed by p_i , p_j , p_k .

Assumption: It takes O(1) time to compute $\omega(i,j,k)$

Cost of a triangulation : Sum of the weight of n-2 triangles formed.

Problem: Given a convex polygon represented by $p_1, \ldots, p_n >$, the objective is to find a triangulation with minimum cost.

Let $\tau(i,j)$: cost of an optimal triangulation of polygon $(p_i,...,p_j)$

Write down a recursive formula for the above problem, i.e., express $\tau(i,j)$ in terms of $\tau(i',j')$'s where j'-i' < j-i and $j' \le j$, $i' \ge i$.

How to compute optimal triangulation?

How to compute optimal triangulation?

If the opt. triangulation has triangle (p_1, p_k, p_n) , what can we infer?

Recursive formulation for

 $\tau(i,j)$

Consider the following algorithm to find the value of $\tau(i,j)$

```
Find-\tau(i,j)
                                                             What is the running time?
\{ | i | (j = i + 1) \}
                                                             1. 2^{O(j-i)}
     return 0;
                                                             2. O((j-i)^2)
                                                             3. O((j-i)^3)
 Else
\{t \leftarrow \infty;
   For (i < k < j)
       temp \leftarrow Find-\tau(i,k) + Find-\tau(k,j) + \omega(i,k,j);
       If (t > temp)
           t \leftarrow temp;
return t;
```

Answer: A

n is the number of points


```
T(n): worst case running time of \tau(1,n)
T(2) = c
T(n) = T(2) + T(n-1) + c
+ T(3) + T(n-2) + c
:
+ T(n-1) + T(2) + c
\Rightarrow T(n) = 2 \sum_{i=2}^{n-1} T(i) + c(n-2)
\Rightarrow T(n) - T(n-1) = 2 T(n-1) + c
\Rightarrow T(n) = 3 T(n-1) + c
```

$$T(n)=2^{O(n)}$$

Exponential !!

Consider the previous Find $-\tau(1, n)$ algorithm. Which one of the following is/are true.

- 1. Find- $\tau(1, n)$ computes 2^n different sub-problems
- 2. Find- $\tau(1,n)$ computes only at most n^2 different subproblems, but to compute each sub-problem it takes $O(\frac{2^n}{n^2})$ time
- 3. Find- $\tau(1, n)$ computes only at most n^2 different sub-problems, but each sub-problem multiple times.

Answer: 3

Draw the recursion tree.

Consider the following algorithm

} return T[1,n];

```
Iterative-opt-traingulation (1,n)

\{ \mathbf{for} \ (i = 1 \ \text{to} \ n-1) \ \mathbf{T}[i,i+1] \leftarrow 0; \}
```

```
for (k = i + 1 \text{ to } j - 1)
{
```


Fill the blocks so that the following are true:

- 1. This algorithm finds the value of $\tau(i,j)$
- 2. This algorithm runs in time $O(n^3)$ time
- 3. This algorithm computes only at most n^2 different sub-problems, each exactly once

Recursive algorithm for $\tau(i,j)$


```
T[i,j] = \tau(i,j)
Find-\tau(i,j)
                                                        n
\{ | f(j = i + 1) |
      return 0;
                                                                                                 0
Else
                                                                                             0
\{t \leftarrow \infty;
    For (i < k < j)
                                                                                     0
                                                                                  0
                                                                                0
        temp \leftarrow Find-\tau(i,k) + Find-\tau(k,j)
+ \omega(i,k,j);
       If (t > temp)
                                                                      0
            t \leftarrow temp;
                                                              1 2
                                                                                                 n
return t;
```

Iterative algorithm for $\tau(i,j)$

```
Iterative-opt-traingulation (1,n)
\{ \text{for } (i = 1 \text{ to } n - 1) \mid T[i, i + 1] \leftarrow 0; 
for (\Delta = 2 \text{ to } n - 1)
{ for (i = 1 \text{ to } n - 1 - \Delta)
     \{ j \leftarrow i + \Delta;
        T[i,j] \leftarrow \infty;
       for (k = i + 1 \text{ to } j - 1)
       { temp \leftarrow T[i,k] + T[k,j] +
\omega(i, k, j);
             If (T[i,j] > temp)
                 T[i,j] \leftarrow temp;
 return T[1,n];
```


$$T[i,j] = \tau(i,j)$$

