

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (51) International Patent Classification 6: WO 95/11923 (11) International Publication Number: C07K 16/30, G01N 33/53, 33/574, C12Q 1/68, A61K 39/395, G01N 33/577 **A1** (43) International Publication Date: 4 May 1995 (04.05.95) (81) Designated States: CA, JP, US, European patent (AT, BE, CH, (21) International Application Number: PCT/US94/12502 DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE). (22) International Filing Date: 31 October 1994 (31.10.94) Published (30) Priority Data: With international search report. 08/146,488 US Before the expiration of the time limit for amending the 29 October 1993 (29.10.93) claims and to be republished in the event of the receipt of amendments. (71) Applicant (for all designated States except US): DANA-FARBER CANCER INSTITUTE, INC. [US/US]; 44 Binney Street, Boston, MA 02115 (US). (72) Inventors; and (75) Inventors/Applicants (for US only): CHEN, Lan, Bo [US/US]; 184 East Emerson Road, Lexington, MA 02173 (US). BAO, Shideng [CN/CN]; 1699 Cambridge Street #32, Cambridge, MA 02138 (US). LIU, Yuan [CN/CN]; 11 Englewood Avenue #6, Brookline, MA 02146 (US). (74) Agents: SCHURGIN, Stanley, M. et al.; Weingarten, Schurgin, Gagnebin & Hayes, Ten Post Office Square, Boston, MA 02109 (US).

(54) Title: A NOVEL TUMOR MARKER AND NOVEL METHOD OF ISOLATING SAME

(57) Abstract

153

100 mm

The invention encompasses a novel tumor marker which is present on tumor cells and absent on correponding normal cells, nucleic acid encoding the tumor marker, and a novel method of isolating DNA encoding the tumor marker or a gene which is differentially expressed in tissues.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

15,48

AΤ	Austria	GB	United Kingdom	MR	Mauritania
\mathbf{AU}	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
\mathbf{BE}	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
₿G	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
\mathbf{BY}	Belarus	KE	Kenya	RO	Romania
CA	Салада	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	Senegai
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
\mathbf{CZ}	Czech Republic	LV	Latvia	TJ	Tajikistan
ÐE	Germany	MC	Моласо	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
GA	Gabon				

- 1 -

A NOVEL TUMOR MARKER AND NOVEL METHOD OF ISOLATING SAME

FIELD OF THE INVENTION

This invention relates to proteins that serve as tumor markers for human carcinoma and to methods of isolating differentially expressed genes.

10 GOVE. MENT RIGHTS

5

15

20

25

30

35

Ŷ,

. 12

Α,

3,5

April 19

This invention was made in part with U.S. Government support. Therefore, the U.S. Government has certain rights in the invention.

BACKGROUND OF THE INVENTION

Tumor markers for human tumor cells have been largely limited to activated oncogenes and their products, for example, the myc, ras, fos, and erbB2 genes and their encoded In addition, activated anti-oncogenes, such oncoproteins. as RB, p53, and DCC, have been identified in normal cells but do not appear to be present in tumor cells. Oncogene and anti-oncogene products have proven difficult to use as consistent predictors normal and of tumor respectively, due to the relatively low level of expression of the genes encoding these proteins. Thus, there is a need marker which is not the art for a tumor differentially expressed in tumor and normal tissue, but also human tissue and tumor consistently detectable in consistently absent in the corresponding normal tissue.

A common method used to identify genes differentially or uniquely expressed in tumors, in cells responding to growth factors, and in differentiated cell types such as, among others, T cells, adipocytes, neurons, and hepatocytes is the subtractive hybridization technique (S.W. Lee et al., Proc. Natl. Acad. Sci. USA <u>80</u>:4699, 1983). A method of differential display of eukaryotic mRNA by means of the polymerase chain reaction (PCR) has recently been developed (P. Liang et al., Science <u>257</u>:967, 1992). This method

SUBSTITUTE SHEET (RULE 26)

, a

5

10

15

20

25

30

35

. 4

1

- 2 -

utilizes oligo dT linked to two additional bases as the primer for reverse transcription driven by reverse transcriptase. cDNA fragments are then amplified by Taq DNA polymerase-based PCR using an oligo dT primer along with one additional primer. The amplified cDNAs are then resolved by DNA sequencing gels. There is a need in the art for a streamlined and simplified process for isolating cDNAs corresponding to differentially expressed mRNAs.

SUMMARY OF THE INVENTION

The invention is based on the discovery of a novel protein, TC1 (SEQ ID NO:4), which is a tumor marker, particularly for invasive and metastatic tumors, and the gene encoding this protein.

The invention thus encompasses the TC1 protein (SEQ ID NO:4), which is useful as a tumor marker for tumor diagnosis and therapy, particularly for colorectal, breast, and gastrointestinal tumors, and for metastatic tumors emanating from these tumor types. TC1 is also a useful marker in general for tumor cell invasion and metastasis. mRNA encoding TC1 is not expressed in most cultured tumor cells, i.e., in vitro, but is expressed once these cells are grown in vivo. Because later stage and deeply invasive tumors contain higher levels of TC1 protein than other tumor tissues, TC1 appears to be a particularly useful marker for later stage cancers.

TC1 protein may also serve as a target in tumor targeted therapy to prevent tumor cell metastasis and thus invasion of additional organs. For example, a polypeptide fragment of the TC1 protein may be used as an antagonist of TC1 biological activity; e.g., where TC1 biological activity includes invasion and metastasis, the polypeptide fragment may be administered to a patient afflicted with the tumor in order to inhibit the spread of the tumor to other tissues. Alternatively, a truncated portion of TC1 which retains the invasive and metastatic biological activities of the full-

- 3 -

length molecule will be useful for screening for antagonists of TC1 activity. Potentially useful polypeptides are described herein.

The invention also encompasses nucleotide probes based on the TC1 nucleotide sequence; e.g., 10, 20, 30, 40, etc. nucleotides in length. Such probes are useful for PCR-based tumor detection and in situ hybridization of tumor tissue sections. In addition, probes whose nucleotide sequences are based on homologies with other genes or proteins having sequences related to TC1, i.e., genes of the TC1 family, two of which are described herein, are useful for detecting additional genes belonging to the TC1 family of genes.

The invention thus also encompasses methods of screening for agents which inhibit expression of the TC1 gene (SEQ ID NO:3)

in vitro, comprising exposing a metastatic cell line in which TC1 mRNA is detectable in cultured cells to an agent suspected of inhibiting production of the TC1 mRNA; and determining the level of TC1 mRNA in the exposed cell line, wherein a decrease in the level of TC1 mRNA after exposure of the cell line to the agent is indicative of inhibition of TC1 mRNA production.

Alternatively, the screening method may include in vitro screening of a metastatic cell line in which TC1 protein is detectable in cultured cells to an agent suspected of inhibiting production of the TC1 protein; and determining the level of TC1 protein in the cell line, wherein a decrease in the level of TC1 protein after exposure of the cell line to the agent is indicative of inhibition of TC1 protein production.

The invention also encompasses in vivo methods of screening for agents which inhibit expression of the TC1 gene, comprising

exposing a mammal having tumor cells in which TC1 mRNA or protein is detectable to an agent suspected of inhibiting production of TC1 mRNA or protein; and determining the level

37

学文

10

5

15

20

25

1

1.

30

35

- 1

 \forall_r

5

10

15

20

25

30

35

14

33

- 4 -

of TC1 mRNA or protein in tumor cells of the exposed mammal. A decrease in the level of TC1 mRNA or protein after exposure of the mammal to the agent is indicative of inhibition of TC1 gene expression.

These screening methods are particularly applicable to breast tumor cells, colon tumor cells, or tumor cells of the gastrointestinal tract.

The invention also encompasses a pharmaceutical composition for use in treating a late stage cancer, comprising an effective amount of an inhibitor of TC1, and a method of treating late stage cancer, comprising administering to a mammal afflicted with a late stage cancer a therapeutically effective amount of an inhibitor of TC1. Late stage cancers include those which have become deeply invasive in a tissue or which have metastasized to other tissues.

TC1 is detectable in patient blood, urine, sputum or other body fluid using a monoclonal antibody specific for a TC1 epitope. Thus, the invention also encompasses antibodies specific for TC1, which can easily be prepared in a kit form. Monoclonal antibodies specific for TC1 may be used for tumor imaging to localize tumor position and size. TC1-specific monoclonal antibodies are also useful as screening and diagnostic agents in immunohistochemical staining of tissue sections to distinguish tumor cells from normal cells. Thus, anti-TC1 antibodies are particularly useful where they recognize cells which produce the TC1 protein when such cells are paraffin-embedded and/or formalin-fixed. One example of such an antibody is the monoclonal antibody anti-TC1-1 produced by the hybridoma deposited with the American Type Culture Collection as ATCC Deposit No. HB 11481.

In another aspect, the invention also features a novel method, called palindromic PCR, for identifying and isolating a gene, e.g., a gene which is differentially expressed in different types of tissues. The method is based on the use

الدين الدين

San San

 \mathcal{L}

5

10

15

20

25

30

35

c ,5

17,713

- 5 -

of short DNA primers and corresponding palindromic nucleotide sequences in the nucleotide sequence to be isolated.

Thus, the invention encompasses a method for producing a double stranded cDNA that includes the steps of contacting an mRNA with a DNA primer under stringent hybridization conditions to form a first hybrid molecule, the primer having a length of from 8 to 12 nucleotides and, preferably, 9 to 11 nucleotides; subjecting the first hybrid molecule to an enzyme having reverse transcriptase activity, to produce a first DNA strand complementary to at least a portion of the mRNA; contacting the first DNA strand with the primer under stringent hybridization conditions to form a second hybrid molecule; and subjecting the second hybrid molecule to an enzyme having DNA polymerase activity, to produce a second complementary to the first DNA strand DNA Preferably, the method also includes the step of amplifying the first and second DNA strands.

In preferred embodiments, a single enzyme provides both the reverse transcriptase activity and the DNA polymerase activity. One example of a suitable such enzyme is rTth DNA polymerase from the thermophilic eubacterium Thermus thermophilus.

As used herein, the term "palindromic nucleotide sequences" means that a double stranded DNA molecule contains a specific DNA sequence in both its coding strand and its anti-parallel strand, when those strands are read in the same direction, e.g., 5' to 3'.

The specific sequence of the DNA primer is arbitrary in that it is based upon individual judgment. In some instances, the sequence can be entirely random or partly random for one or more bases. Preferably, the GC content of the primer is between 40% and 60%, most preferably about 50%. In other instances, the arbitrary sequence can be selected to contain a specific ratio of each deoxynucleotide. The arbitrary sequence can also be selected to contain, or not

*

1

5

10

15

20

25

30

4.5

. Ž

¥.

- 6 -

to contain, a recognition site for a specific restriction endonuclease.

The DNA primer can contain a sequence that is known to be a "consensus sequence" of an mRNA of known sequence. As defined herein, a "consensus sequence" is a sequence that has been found in a gene family of proteins having a similar function or similar properties. The use of a primer that includes a consensus s quence may result in the cloning of additional members of a desired gene family.

Palindromic PCR enables genes that are altered in their frequency of expression, as well as those that are constitutively or differentially expressed, to be identified by simple visual inspection and isolated. The method also allows the cloning and sequencing of selected mRNAs, so that the investigator may determine the relative desirability of the gene product prior to screening a comprehensive cDNA library for the full length gene product.

Further objects and advantages of the invention will be apparent in light of the following description and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a polyacrylamide gel of size-separated cDNAs that were reverse transcribed from paired mRNAs from colon carcinoma (T) and adjacent normal colon tissue (N) and subsequently amplified.

Fig. 2A is a gel in which the TC1 cDNA fragment identified in Fig. 1 was recovered and re-amplified.

Fig. 2B is a Northern Blot of three pairs of RNA from colon carcinoma (T) and their adjacent normal colon tissue (N) probed with 32P-labeled TC1 cDNA.

Fig. 3 shows the nucleotide sequence (described herein as SEQ ID NO:1) and corresponding amino acid sequence (SEQ ID NO:2) of the 636 bp partial TC1 clone.

30

100 mg

100

À

633

114

Y.

5

10

15

20

25

30

35

- 7 -

Fig. 4 shows the nucleotide sequence (SEQ ID NO:3) and corresponding amino acid sequence (SEQ ID NO:4) of the full-length TC1 gene and protein.

Fig. 5 is a sequence comparison of the four internal homologous domains of TC1 (SEQ ID NO:4), each approximately 135 amino acids.

Fig. 6A is a schematic representation of the four repeats of TC1.

Fig. 6B is a proposed schematic arrangement of the four repeated domains and the N- and C-terminal domains.

Fig. 7 shows the amino acid sequence identity between TC1 (SEQ ID NO:4) and Big-h3 (SEQ ID NO:17).

Fig. 8 is a Northern Blot of five pairs of RNA from colon carcinoma (T) and adjacent normal colon tissue (N) probed with 32P-labeled Big-h3 cDNA, the bottom panel representing control RNA probed with 32P-labeled B-actin.

Fig. 9 shows amino acid sequence homology between TC1 (SEQ ID NO:4) and Fasciclin I from Grasshopper (GrF) (SEQ ID NO:18) and Drosophila (DrF) (SEQ ID NO:19).

Fig. 10 is a Schematic representation showing that, on average, in every 202 bases of sequence in one strand of cDNA, there is one 9-base sequence exactly palindromic to that in a region of its antiparallel strand.

Fig. 11 shows the relationship between the palindromic frequency and the number of bases in a putative DNA primer, as determined by cDNA Matrix analysis.

Fig. 12 is a schematic representation of the method of the invention, palindromic PCR, driven by the enzyme rTth DNA polymerase with one DNA primer in one reaction tube; the dotted line indicates mRNA and the solid line indicates cDNA; the short jagged line represents the single DNA primer.

Fig. 13A shows the effect of the length of the DNA primer on the cDNA amplification patterns; the length and nucleotide sequence of each primer are: A, 8-mer (5'-TGTCCAGAGA); B', 9-mer (5'-TGTCCAGAC); C', 10-mer (5'-

TGTCCAGATG) (SEQ ID NO:5); D', 11-mer (5'-TGTCCAGATGC) (SEQ ID NO:6); E', 12-mer (5'-TGTCCAGATGAC) (SEQ ID NO:7).

Fig. 13B shows the effect of the GC content of the DNA primer on the cDNA amplification patterns; the GC content and nucleotide sequence of each primer (10-mer) are: A', 40% (5'-TGTCCAGATA) (SEQ ID NO:8); B', 50% (5'-TGTCCAGATG) (SEQ ID NO:5); C', 60% (5'-TGTCCAGACG) (SEQ ID NO:9): D', 70% (5'-TGTCCAGCCG) (SEQ ID NO:10); E', 80% (5'-TGTCCCGCCG) (SEQ ID NO:11); F', 90% (5'-TGCCCGGCCG) (SEQ ID NO:12).

Fig. 13C shows the effect of the sequence specificity of the DNA primer on the cDNA amplification patterns; 10-mer primers with the same GC content but different sequences are: A', 5'-TGATGCACTC (SEQ ID NO:13); B', 5'-TGAGCTACTC (SEQ ID NO:14); C', 5'-TGACTGACTC (SEQ ID NO:15).

Fig. 13D shows palindromic PCR performed by rTth DNA polymerase (A) with reverse transcription cycles (RT cycles) and (B) without RT cycles.

Fig. 14 shows the identification of differentially expressed genes in human colon carcinoma.

Fig. 15 shows reamplification of the TC1 cDNA fragment isolated from colon carcinoma; the PCR product was analyzed on a 1.0% agarose gel; a 0.63 Kb cDNA fragment (arrow) was detected.

Fig. 16 is an autoradiogram of DNA sequencing gels showing the presence of PP1 primer sequence (5'-CTGATCCATG) (SEQ ID NO:16) at the 5'-end of both strands of the TC1 cDNA fragment; cloning sites are indicated by arrows, sequences below arrows are pBS (KS) vector sequences reading from T3 primer and T7 primer.

Fig. 17 is a Northern Blot of 24 pairs of colon carcinoma (T) and their adjacent normal tissue (N) probed with 32P-labeled TC1 cDNA.

Fig. 18 shows the Tumor/Normal RNA Ratio from Northern Blot results of Fig. 17.

Fig. 19 is a Northern Blot of RNA from carcinoma cells which result from metastasis from colon carcinoma to liver

10

5

.

у.

1

15

20

25

30

7 E

. .

35

- 9 -

(LM) and their adjacent normal liver (NL) probed with 32P-labeled TC1 cDNA.

Fig. 20 shows a Northern Blot of RNA from breast cancer cell line MCF-7 (1) and colon cancer cell line CX-1 (2) cultured in vitro, and MCF-7 tumor (3) and CX-1 tumor (4) grown in vivo in nude mice.

Fig. 21 shows staining of formalin-fixed and paraffinembedded colon tumor tissue sections using the monoclonal antibody anti-TC1-1 and avidin-biotin-peroxidase detection.

Fig. 22 shows staining as described in Fig. 21, except that panels A, C, D represent breast invasive ductal carcinoma and panel B, normal breast tissue.

Fig. 23 shows staining as in Fig. 13, except that panels A and B represent gastric carcinoma, and panels C and D, deeply invasive colon carcinoma.

Fig. 24 is a Western Blot analysis of protein samples from two pairs of colon carcinoma and their adjacent normal colon (A) and two pairs of breast carcinoma and their adjacent normal breast (B), using a monoclonal antibody against TC1 protein as a probe.

Fig. 25A shows the ethidium bromide staining pattern of an RNA gel in which the same amount of RNA from JMN (1) and JMN1B (2) cells is loaded per lane.

Fig. 25B is a Northern Blot analysis of RNA from malignant mesothelioma cells JMN1B (2) and JMN (1) using TC1 cDNA as a probe.

Fig. 26 is a Western blot using a monoclonal antibody against TC1 to probe JMN1B cells grown in conditioned medium and whole cell lysate.

Fig. 27 shows JMN1B cells fixed with paraformaldehyde without subsequent permeabilization in panels A and B, and JMN1B cells fixed with paraformaldehyde and then permeabilized in panels C and D.

Figs. 28A-28D show the corrected nucleotide sequence and corresponding amino acid sequence of the full length TC1 gene and protein.

5

海に の

.

10

15

20

25

7.5%

55

30

35

 $\delta_{i}(\mathcal{S}_{i}^{k})$

5

10

15

20

25

30

35

14(

57

- 10 -

DESCRIPTION OF THE PREFERRED EMBODIMENTS

TC1 (SEQ ID NO:4) is a novel protein that is found in invasive and metastatic tumor cells. The nucleotide sequence (SEQ ID NO:3) encoding TC1 was found using a novel technique described herein as palindromic PCR, a technique which enables identification and cloning of a gene that is differentially expressed in tissues. Cloning and sequencing of the gene encoding TC1 and characterization of the protein is described below, along with examples of how the protein is detected in invasive and metastatic cancers. Examples describing additional uses of the TC1 protein and its fragments, the nucleotide sequence encoding TC1 and fragments thereof, and antibodies specific for TC1 are also included.

Identification, Cloning and Detection of Expression of the TC1 Gene

The identification, cloning, and differential detection of expression of the TC1 gene (SEQ ID NO:3) was performed as follows. A 636 bp cDNA fragment (SEQ ID NO:1) containing TC1 sequences was identified and isolated by a rapid method termed palindromic PCR, described herein, from human surgical colon carcinoma tissue. Briefly, paired mRNAs were isolated from colon carcinoma tissue and adjacent normal colon tissue from the same patient, then matched mRNAs were reverse transcribed to cDNA and subsequently amplified by the palindromic PCR method described herein, which utilizes one DNA primer. Both reverse transcription and PCR reactions were driven by a single enzyme, rTth DNA polymerase, in a single tube. 35S or 33P-labeled PCR cDNA fragments were resolved on a DNA sequencing gel. As shown in Fig. 1, paired mRNAs from colon carcinoma (T) and adjacent normal colon tissue (N) were reverse transcribed to cDNA and subsequently amplified by palindromic PCR. 35S-labeled PCR cDNA fragments were then resolved on a DNA sequencing gel. A differential cDNA band (TC1) appeared to be present only in the tumor This TC1 cDNA fragment was recovered from the sample.

**

3.0

15

5

10

15

20

25

30

35

- 11 -

sequencing gel and then reamplified with the same palindromic primer. This 636 bp flagment is identified with a horizontal arrow in Fig. 2A.

TC1 gene expression was examined in colon carcinoma cells and in the corresponding adjacent colon tissue, and the results were as follows. Fig. 2B is a Northern Blot of three pairs of RNA from colon carcinoma (T) and their adjacent normal colon tissue (N) probed with ³²P-labeled TC1 cDNA. TC1 mRNA was over-expressed in all three cases of colon carcinoma, whereas only very weak TC1 message appeared in the adjacent normal tissue. In the bottom panel of the blot, control RNA was blotted with ³²P-labeled cDNA encoding B-actin.

Northern Blot analysis of several pairs of Tumor/Normal total RNA using a \$^{32}P\$-labeled TC1 cDNA probe revealed that the TC1 mRNA size is about 3.6Kb. This first TC1 cDNA fragment was cloned into a pBluescript plasmid DNA vector strategies. Nucleotide sequence analysis revealed that this fragment contained 636bp with nucleotide sequences corresponding to the primer sequence at both 5'-ends of the double-stranded DNA (Fig. 3 and SEQ ID NO: 1). The corresponding predicted amino acid sequence is shown in Fig. 3 and provided in SEQ ID NO: 2. A search of the GenBank database with this cDNA fragment revealed that TC1 is a novel gene.

Nucleotide sequence analysis of the 636bp TC1 cDNA fragment obtained by the described differential display method revealed that it contained a partial open reading frame. Therefore, this 636bp cDNA fragment was used as probe to screen a cDNA library. Several overlapping clones were obtained and contained a 2997bp sequence. To obtain the complete open reading frame for TC1, a modified 5'-end RACE technique was used to amplify the TC1 coding regions. The nucleotide and deduced amino acid sequence of full-length TC1 is shown in Fig. 4 and provided in SEQ ID NOS: 3 and 4. The N-terminal signal sequence is underlined; one predicted Nboxed glycosylation (NDT) is and site a linked

であると

....

5

10

15

20

25

30

+1.30

- 12 -

polyadenylation signal (AATAAA) is indicated. The cDNA contains 3126bp with a potential polyadenylation sequences (AATAAA) at the 3'-end, beginning at residue 2963. The open reading frame (ORF) encodes a 777-amino acid protein with a calculated molecular weight of 86kD. The TC1 protein contains an amino-terminal signal peptide or secretory leader signal (ALPARILALALALAL), and one predicted site of N-linked glycosylation at amino acid residue 605 (NDT). One Cemokine B family motif (C-C) was found at amino acid residue 85 (C-C) of TC1.

Analysis of the deduced amino acid sequence (SEQ ID NO:4) revealed that TC1 contained four internal homologous domains of approximately 135 amino acids. A comparison of these repeats is shown in Fig. 5. Each boxed amino acid is identical with at least one other residue at that same position. The interdomain homologies range from 32% (between domains 2 and 4) to 18% (between domains 1 and 3). Some amino acid sequence such as TLF $\frac{A}{V}$ P $\frac{T}{S}$ NEAF, NGVIHXID are highly

conserved between all four repeats. The notations $\frac{A}{V}$ and $\frac{T}{S}$

are used herein to indicate that alanine or valine, and threonine or serine, respectively, may be found at these In addition, the notation X is used herein to positions. indicate that this position may include any amino acid. Each repeat starts with the most divergent sequence. The four repeats occur between residues 139-537 and are uninterrupted by non-homologous domains. A schematic representation of the four repeats of TC1 is shown in Fig. 6A. The four homologous repeats suggest a tetrameric structure (Mclachlan 1980; Zinn et al, 1988) with two binding sites, one at each intrachain The four repeats of TC1 may serve as ligand binding sites, with the N-terminal or C-terminal domains serving as the functional domain. One possible arrangement of the four repeated domains and the N- and C-terminal domains is shown schematically in Fig. 6B.

- 13 -

The nucleotide and corresponding amino acid sequence of the TCl gene and protein with a corrected leader signal sequence are given in Figs. 28A-28D.

Palindromic PCR

**

5

10

15

20

25

30

35

×1.5

100

Described below is a novel technique used to identify the TC1 mRNA and prepare TC1 cDNA. Although the sequence of bases in a coding and antisense strand of a cDNA molecule are, in a sense, "mirror images" of one another, we have found that with surprising frequency a short sequence of bases, e.g. 9 or 10, in one strand will be found to have an exact copy in its anti-parallel strand. We call these sequences "palindromic" sequences. This phenomenon has been used to develop a method of cDNA isolation and amplification.

In order to determine the frequency of occurrence or "palindromic frequency" of these anti-parallel repeats, a computer program called DNA Matrix (DNA Strider 1.2) was used to analyze double stranded cDNAs which were randomly selected from the GenBank database. DNA matrix analysis revealed the strand double palindromic frequency of CDNA surprisingly high and led to our develorment of relationship between the number of bases in the chosen sequence, the "palindromic bases," and the palindromic Single strand cDNA (the mRNA strand) and its frequency. anti-parallel strand were compared, each from the 5' to 3' end by the DNA Matrix program. For example, as illustrated in Fig. 10, on the average, in every 202 bases of sequence in one strand of cDNA, there is one 9-base sequence that is exactly duplicated to that in another region of its antiparallel strand. The palindromic frequency found in native cDNA is much higher than that which would be calculated from random composition, suggesting that the nucleotide composition of double-stranded cDNA follows As shown in Fig. 11, the certain palindromic rules. palindromic frequency dramatically decreases when the number of bases in the searched segment increases. The key numbers

- 14 -

of bases which lead to dramatic change of palindromic frequency are 9, 10 and 11 bases. This, then, is the theoretical basis for designing a primer for use in the DNA isolation and amplification method of the invention, palindromic PCR.

Table 1 presents the statistical data showing the palindromic frequency related to the number of bases in the searched segment.

Table 1

Palindromic Frequency Related to No. of Bases in Searched Segment as Revealed by cDNA Matrix Analysis

No. Bases in Searched Segment (X Bases)	Average Length to Find One X-Base Palindromic Sequence	Palindromic Frequency
7 bases	18 bases	0.4
9 bases	202 bases	0.048
11 bases	872 bases	0.015
13 bases	>1996 bases	<0.007

The principle of the method of palindromic PCR is shown in schematic representation in Fig. 12. The general strategy is to use a single primer and one enzyme combining both reverse transcriptase and DNA polymerase activities, e.g., rTth DNA polymerase (from the thermophilic eubacterium Thermus thermophilus), to perform both reverse transcription and polymerase chain reaction in one reaction tube. rTth DNA polymerase possesses a very efficient reverse transcriptase activity in the presence of MnCl2 and a thermostable DNA polymerase activity in the presence of MgCl2. The rTth DNA polymerase has been observed to be greater than 100-fold more efficient in coupled reverse transcription and PCR than the analogous DNA polymerase, Taq (T. W. Myers et al., Biochemistry 30:7661, 1991). In this reaction, appropriate primer would allow anchored annealing to some regions of certain mRNA species that contain sequence complementary to the palindromic primer. This subpopulation

5

. . 6

·\$:

 $\mathcal{L}^{1}(\mathcal{A})$

10

15

20

25

30

30

35

100

がおいま

Ç. G

 \mathcal{P}_{T}

5

10

15

20

25

30

35

-

4

- 15 -

of mRNAs is likely to be reverse transcribed by rTth DNA polymerase. A "Palindromic" primer apparently has a greater probability of anchoring to the coding regions of mRNA than oligodT primer. Once mRNAs are reverse transcribed to form a first strand cDNA species, the same primer can anneal to some regions of the first strand cDNA and function as the "Downstream primer" in a PCR reaction. The same primer can also function as the "Upstream primer." When the primer anchors to first strand cDNAs, the annealing position to various cDNA molecules should, in principle, be at different distances in different molecules from the first annealing Therefore, the amplified cDNA fragments from position. various mRNAs will be of different sizes. Once these PCRgenerated cDNA fragments are labeled with 35S-dATP or dATP, they can be resolved as a ladder by DNA sequencing gels. A display of cDNAs originating from various mRNAs can then be visualized after autoradiography.

The selection of the specific palindromic primer depends on three important factors: the length, the GC content, and the sequence specificity. DNA Matrix analysis has indicated that the ideal length of a primer for an appropriate palindromic frequency is from 9 to 11 bases. Therefore, a set of primer from 8 base to 12 base in length with 50% GC content was chosen for study. Our results showed that 9, 10, and 11 base primers gave an appropriate number of cDNA fragments readily resolvable by DNA sequencing gels To identify the GC content of the primer most (Fig. 13). suitable for this method, a set of 10-mer primers with GC content ranging from 40% to 90% was tested. The results suggested that a GC content from 40% to 80% is acceptable (Fig. 13). However, primers with 40% to 60% GC content appear to yield better results. To examine the effect of the specific sequence of the primer, 10-mer primers of different sequences each having 50% GC content was tested. predicted, different primers gave rise to different cDNA

- 16 -

patterns (Fig. 13). As little a difference as three bases led to totally different cDNA profiles.

cDNA patterns generated by palindromic PCR are highly stable. When the same conditions were used but the experiments repeated at different times, the patterns of the amplified cDNA fragments were highly reproduced, indicating the reliability of this method.

In order to be sure of detecting mRNAs with a low copy number, it was necessary to determine the sensitivity of this method. It has been reported that the amplification driven by rTth DNA polymerase is at least 100-fold greater than that by Taq polymerase. rTth DNA polymerase allows the detection of IL-1a mRNA, which has a very low copy number, in 80pg of total cellular RNA (T.W. Myers et al., Biochemistry 30:7661, 1991). Thus, the higher efficiency of rTth DNA polymerase ensures that the palindromic PCR method of the invention provides high sensitivity. In addition, because rTth polymerase is thermostable, it can also be used to perform several RT cycles (reverse transcription cycles), which means several copies of first strand cDNA can be obtained from a single copy of mRNA. The sensitivity of the method is increased by performing multiple RT cycles using rTth polymerase (Fig. 13).

The method of the invention was tested in a search for differences in mRNA expression between human colon carcinoma and the adjacent normal epithelium from a surgical specimen. Paired mRNA preparations were reverse transcribed with a palindromic primer 5'-CTGATCCATG (designated as PP-1 primer) (SEQ ID NO:16) in the presence of MnCl₂ followed by PCR with the same primer in the presence of MgCl₂ using rTth DNA polymerase. The reaction products were then analyzed by DNA sequencing gels. About 70-110 amplified cDNA fragments ranging from 100-700 bases from both preparations were detected (Fig. 14). Whereas overall cDNA patterns between tumor and normal tissue are similar, significant differences were detected by this method. Most cDNA bands showed the

1

700

10

5

15

20

25

30

7.7

4,1

35

1

4.4

.

5

10

15

20

25

30

35

-

distant.

.

- 17 -

same intensity between tumor and normal preparations, but two cDNA bands designated as TC1 and TC2 appeared with increased intensities in tumor tissue (Fig. 14). A sample reaction protocol is described below.

To 1.1 μ l of double distilled (dd) H_2 0 is added 0.5 μ l of 10X rTth DNA polymerase reverse transcriptase (RT) buffer (100mM Tris-Hcl, pH 8.3, 900mM KCl), 0.5 μ l of 10mM MnCl₂, 0.4 μ l of 2.50mM dNTP, \pm .0 μ l (0.50 μ g) of one palindromic primer (9-11 mer), and 1.0 μ l (100 ng) of mRNA to form Mix A in a total vol. of 4.5 μ l. Mix A is heated in a 0.5 ml PCR tube at 65°C for 6 min and then at 37°C for 8 min. Next, 0.5 μ l (1.25 unit) of rTth DNA polymerase is added, the reaction mixture is mixed well, spun briefly, incubated at 70°C for 12 min and then placed on ice. Mix B which consisting of 12.5 μ l of dd H₂0, 2.0 μ l of 10X chelating buffer (50% glycerol (v/v), 100mM Tris-HCl, pH 8.3, 1M KCl, 0.5% Tween 20), 2.0 μ l of 25 mM MgCl₂ solution, 2.50 mM dNTP and 2.0 μ l of 35 S-dATP (or 33 P-dATP) is dispensed in the amount of 20 μ 1 into each 5.0 μ l RT reaction mixture. The samples are mixed and spun briefly and then overlaid with 25 μl of mineral oil. The polymerase chain reaction is then started: 94°C for 40 sec., 40°C for 2 min., 72°C for 35 sec. (for 40 cycles, hold at 72°C for 4 min.), and then 4°C.

For cDNA analysis, 7 μ l of a PCR sample is mixed with 4 μ l of sequencing loading buffer, samples are incubated at 80°C for 3 min., and then placed on ice. 4.5 μ l of the sample is loaded on a 6%-8% agarose DNA sequencing gel.

A gel slice containing a desirable cDNA band (such as TC1) was soaked in 200 μ l of ddH₂0 for 20 min and then separated from 3M paper with a clean forcep or a plastic pipette tip. The gel was removed and pounded with an autoclaved plastic pipette tip. Elution buffer (20 μ l) was added and the mixture was vortexed and left at room temperature for 4 hrs or overnight. After centrifugation, cDNA fragments in 10 μ l eluent were reamplified by rTth DNA polymerase with the same palindromic primer, as described.

6,

5

10

15

20

25

30

35

. j. **•

- 18 **-**

After one 40-cycle PCR, the reamplified cDNA could be detected by agrose gels stained with ethidium bromide. The amount of cDNA generated was sufficient for cloning and preparing a probe for Northern Blot analysis. Fig. 15 shows the gel obtained when the TC1 cDNA band was subjected to elution and reamplification. Total PCR product of the TC1 fragment was 2.5 μ g.

The reamplified TC1 cDNA fragment was treated with T4 DNA polymerase and cloned into pBluescript plasmid DNA vector at SmaI site by blunt end ligation. The nucleotide sequence of the TC1 fragment (SEQ ID NO:1) showed that a sequence identical to the PP1 primer (SEQ ID NO:16) is indeed present at the 5'-end of both strands of the TC1 fragment (Fig. 16). This result confirms that the 5'-ends of both complementary chains of the TC1 cDNA fragment used the same palindromic primer during palindromic PCR as discussed above. implies that the same palindromic primer sequence is present at the 5'-ends of both strands for every PCR product in the These results establish that a single 9same reaction. 11 base palindromic primer can effectively prime reverse transcription and then serve as both a "Downstream primer" and an "Upstream primer" in palindromic PCR amplification.

The method of the invention differs from other methods in a number of ways. In palindromic PCR, only a single primer (9-11 bases) is used and is sufficient to prime reverse transcription as well as to support subsequent PCR for a display of nearly 100 cDNA species. Because the pattern of amplified cDNAs depends on the sequence of the single palindromic primer, the species of mRNAs that are subjected to amplification can readily be controlled by a proper sequence of the palindromic primer. If a group or family of genes shares certain sequences, a primer can be chosen from such a sequence, and a specific display of this set of mRNAs can readily be performed. Likewise, computer analysis of the Genebank database may reveal additional sequences useful as a primer shared by a set of related

- 19 -

genes. The use of such a primer by the method of the invention would allow the display for the expression of a given set of genes. Palindromic PCR provides an easy, sensitive and economical way to identify and isolate differentially expressed genes related to tumor and other disease.

<u>Differential expression of TC1 DNA in normal tissue</u> and tumor cells.

***.** 't

語の言語

isky.

·...

5

10

15

20

25

. 30

35

17.

6.48

Northern Blot analysis, as described above, confirmed the differential expression of TC1 mRNA in colon carcinoma tissue, and the absence of TC1 mRNA in the corresponding normal tissue. Evaluation of the expression of TC1 mRNA in additional cases of colon carcinoma at different stages was also undertaken. Surgical specimens of 24 cases of human primary colon carcinoma and 6 cases of liver metastases were examined by Northern hybridization of total RNA with ³²P-labeled TC1 probe.

A Northern Blot of 24 pairs of colon carcinoma (T) and their adjacent normal tissue (N) probed with ³²P-labeled TC1 cDNA is shown in Fig. 17. It is evident from the results that the level of TC1 mRNA in tumor tissue is much greater than the level in adjacent normal tissue in all 24 cases. The TC1 mRNA levels vary in different cases of carcinoma. Panels I and II show A: TC1 mRNA and B: Control; Panel III shows TC1 mRNA and control (Actin) mRNA.

Fig. 18 shows the Tumor/Normal RNA Ratio from Northern Blot results of Fig. 17. The horizontal line indicates the mean Tumor/Normal ratio. TC1 mRNA was abundantly expressed in all 24 cases of primary colon carcinoma and 6 cases of liver metastases, whereas only a small amount of TC1 mRNA was detected in a few cases of paired adjacent normal tissue. The mRNA level of TC1 was much greater in primary colon carcinoma than in paired adjacent normal colonic epithelium in all 24 cases. The Tumor/Normal ratio varied from 5.6 to 92, and the mean Tumor/Normal ratio being 32. The Tumor/Normal ratio, when plotted against the Duke's stage of

*

5

10

15

20

25

30

35

1.

disease, gave evidence for increasing TC1 expression with increasing stage of colon carcinoma.

In all six cases of paired colon carcinoma metastatic to liver, the TC1 mRNA level was much higher in metastatic tumor than in adjacent normal liver tissue. Fig. 19 shows a Northern Blot of RNA from metastatic colon carcinoma to liver (LM) and their adjacent normal liver (NL) probed with ³²P-labeled TC1 cDNA. TC1 mRNA was expressed only in metastatic tumor in 5 of 6 samples. Only one sample of normal liver tissue expressed a very weak TC1 message. The Tumor/Normal ratio is greater than 64. These results suggested that differential expression of TC1 may be associated with human colorectal cancer progression and biological aggressiveness of the disease.

In vivo and in vitro expression of TC1 mRNA

The expression of TC1 mRNA in cultured cancer cells and in vivo tumor cells was analyzed and is described below. TC1 was overexpressed in tumor tissue in vivo. The expression of TC1 mRNA in cultured cancer cell lines in vitro was examined by Northern Blot analysis. RNAs isolated from twelve colon cancer cell lines (HT29, Clone A, MIP101, CX-1, Morser, CCL227, CCL228, etc.) derived from different stage of human colon carcinoma, two melanoma cell lines (LOX, A2058), one breast cancer cell line (MCF-7), two cervical cancer cell lines (Hela, A431), three bladder cancer cell lines (EJ, T24, MB49), one pancreas cancer cell line (CRL1420), two hepatoma cell lines (HepG2, HepG3) and four normal cell lines (FS-2, MRC-5, 498A, CV-1) were screened by Northern Blot analysis. However, the TC1 transcript could not be detected in all of these cell lines. This result suggested that TC1 expression was dramatically decreased or indeed turned off in cultured cancer cells. However, after cultured cancer cells were injected into nude mice to grow tumor in vivo, TC1 mRNA expression turned on again and its mRNA level could be detected by Northern Blot analysis.

3

- The Control of the

•).

200

5

10

15

20

25

30

35

Fig. 20 shows a Northern Blot of RNA from breast cancer cell line MCF-7 (1) and colon cancer cell line CX-1 (2) cultured in vitro, and MCF-7 tumor (3) and CX-1 tumor (4) grown in vivo in nude mice. TC1 mRNA in colon cancer cell line CX-1 and breast cancer cell line MCF-7 cultured in vitro could not be detected by Northern Blot analysis. cultured CX-1 and HT29 cells were injected into nude mice to form tumors in vivo, TC1 mRNA was detectable by Northern Blot analysis, the TC1 mRNA levels being dramatically increased in vivo. This result suggests that TC1 gene expression was turned on or dramatically increased in the tumor cells in Thus, the differential expression of the TC1 gene vivo. appears to be related to invasion and metastasis of tumor cells in vivo. The regulation of TC1 gene expression in vivo and in vitro could be a very important model to understand tumorigenesis and tumor malignant behavior.

Expression of TC1 protein

The expression of TC1 protein in in vivo tumor cells, cultured carcinoma cells, and in corresponding normal cells was examined, and is described below. The TC1 gene (SEQ ID NO:3) was cloned into a plasmid expression vector, and recombinant TC1 protein (SEQ ID NO:4) was expressed in Several monoclonal antibodies against the bacteria. bacterially-produced TC1 protein were raised, as will be described below. A variety of formalin-fixed and paraffinexamined tissue sections tumor were by embeddea immunohistochemical staining with a mouse monoclonal anti-TC1 antibody anti-TC1-1 using an avidin-biotinylated-peroxidase detection technique. Strong positive staining of TC1 was found in primary colon carcinoma (Fig. 21, panel A), colon carcinoma metastatic to liver (Fig. 21, panel C) and lymph (Fig. 21, panel D), breast carcinoma (Fig. 22, node panels A,C,D) and gastric carcinoma (Fig. 23, panels A,B). The TC1 protein level in tumor tissue is much greater than the level of TC1 in adjacent normal tissue (Figs. 21B, 23B).

3.5

5

10

15

20

25

30

35

36

1

These results, which represent the staining of sixteen cases of different stages of primary colon carcinoma, eight cases of colon tumor metastatic to liver and lymph node, fourteen cases of breast carcinoma and five cases of gastric carcinoma, suggested the following three conclusions. First, the TC1 protein level appeared to be different in different types of carcinoma, with protein levels being highest in breast carcinoma. Second, the advance edge of the deeper invasive tumor appeared stain stronger for TC1, suggesting a greater prevalence of TC1 protein at the advance edge of the tissue. Third, the move advanced stages of tumor appeared to contain more TC1 protein.

Fig. 24 is a Western Blot analysis of protein samples from two pairs of colon carcinoma and their adjacent normal colon (A) and two pairs of breast carcinoma and their adjacent normal breast (B), using a monoclonal antibody against TC1 protein as a probe. A major 86kd protein (arrow) was detected by anti-TC1 antibody in tumor samples (T) but not in normal samples (N). The Western Blot analysis confirmed that tumor tissue contained significantly more TC1 protein than the corresponding adjacent normal tissue.

TC1 gene expression

The presence of TC1 mRNA and protein in malignant mesothelioma cells was examined, and is described below. More than 42 cell lines have been screened for TC1 gene expression by Northern Blot analysis. However, only two cell lines, JMN1B and JMN, express detectable mRNA by Northern Blot analysis. JMN1B and JMN are malignant mesothelioma, JMN1B being a subline of JMN cells with showing enhanced tumorigenicity after passage of JMN cells through a nude mouse. Fig. 25 is a Northern Blot analysis of RNA from malignant mesothelioma cells JMN1B and JMN using TC1 cDNA as a probe. The results presented in Panel 25B demonstrate that TC1 mRNA level in JMN1B cells (2) is much greater than that in JMN cells (1). Panel 25A shows the ethidium bromide

- 5

N. N.

5

10

15

20

25

30

35

4.7

- 23 **-**

staining pattern of an RNA gel in which the same amount of JMN (1) and JMN1B (2) RNA is loaded per lane.

The Northern Blot analysis revealed that the TC1 mRNA level is much higher in JMN1B than in JMN, the JMN1B/JMN ratio being approximately 14. Higher expression of TC1 mRNA in JMN1B could be related to the observed greater tumorigenicity of JMN1B cells. It has been found that JMN1B cells can secrete an "EGF-like" growth factor called transformed mesothelial growth factor (TMGF) that satisfies the EGF requirement of normal human mesothelial cells. The difference in the levels of TC1 mRNA in JMN1B and JMN cells provides an ideal cell model to understand the regulation of TC1 expression and its relation to tumorigenicity.

Sequence analysis of the deduced amino acid sequence has revealed that the TC1 protein (SEQ ID NO:4) contained a secretory leader signal at its N-terminus. The secretion of TC1 protein was confirmed by Wester Blot analysis of conditioned medium of JMN1B cells. JMN1B cells were cultured in regular medium until 90% confluent, then cultured in serum free medium for two days. This serum free conditioned medium was analyzed by immunoblotting with anti-TC1 monoclonal Fig. 26 is a Western blot analysis using a antibody. monoclonal antibody against TC1 to probe JMN1B cells grown in conditioned medium and whole cell lysate. Two major bands (about 86kd and 104kd) were recognized by anti-TC1 antibody both in JMN1B cell conditioned medium (1) and whole cell Numbers on the left indicate the position of lysate (2). molecular weight standards in kilodalton. The protein size of the lower molecular weight 86kd band is consistent with that of deduced TC1 protein, whereas the higher molecular weight 104kd band is consistent with a TC1 glycoprotein. There is one predicted site of N-linked glycosylation at the amino acid residue 605(NDT) of deduced TC1 protein sequence. There are 60 threonine residues and 36 serine residues in the deduced TC1 sequence, each of Which is a potential site of O-linked glycosylation.

 $\mathcal{L}_{\mathbf{1}}^{\mathbf{Z}}$

. . .

5

10

15

20

25

30

35

Human malignant mesothelioma cell line JMN1B can express This cell line was used to study the abundant TC1. localization of TC1 protein distribution by and immunofluorescent staining with an anti-TC1 monoclonal antibody followed by Rhodamine conjugated goat anti-mouse IgG When JMN1B cells were fixed with secondary antibody. paraformaldehyde without subsequent permeabilization, the positive staining was seen on the cell surface or outside of the cell (Fig. 27, panels A,B), which confirms the secretion JMN1B cells were fixed with TC1 protein. When of paraformaldehyde and then permeabilized, positive staining appeared in the Golgi complex and the endoplasmic reticulum (ER) in the cell (Fig. 27, panels C,D), suggesting that TC1 protein is synthesized in the ER and Golgi complex. The staining in the Golgi complex is clearly evident, indicating that glycosylation of TC1 protein may be located in the Golgi complex. The TC1 protein distribution pattern also suggests that TC1 is a secreted glycoprotein.

Without being bound to one theory as to the biological function of TC1, observations as to the prevalence and expression of TC1 mRNA and protein indicate that TC1 may be related to tumor malignant behavior such as invasion and metastases. These observations include the following: TC1 is significantly overexpressed in tumor tissue; TC1 is a secreted protein; later stage tumor expresses higher levels of TC1; deeper invasive tumor contains higher levels of TC1 protein; TC1 expression turns off in cultured tumor cells in vitro and turns on again after cells grow tumor tissue in vivo. These observations indicate that the function of TC1 is not related to tumor cell proliferation, but is more likely involved in tumor malignant behavior in vivo, such as invasion and metastases.

TC1 is a member of a Family of Proteins.

A FASTA search of the GenBank and EMBL database with the TC1 open reading frame indicated that the protein is unique.

 $\mathcal{A}_{i}^{i,j}$

5

10

15

20

25

30

35

27.

However, TC1 whole protein shared 45% sequence identity with a TGF-beta inducible gene, Big-h3, at the amino acid level, suggesting that TC1 and Big-h3 may belong to a new gene The identity between TC1 (SEQ ID NO:4) and Big-h3 family. (SEQ ID NO:11) at the amino acid level is shown in Fig. 7. In Fig. 7, identical amino acids between TC1 and Big-h3 are Several stretches of amino acids GSFTXFAPSNEAW, boxed. TLXAPTNEAFEKXP, ATNGVVHXIDXV, LYXGQXLETXGGKXLRVFVYR, HYPNGXVTVNCAR are highly conserved between TC1 and Big-h3. Northern Blot analysis showed that the TC1 gene is expressed from a larger transcript than Big-h3, and DNA sequence analysis indicated that TC1 contains a longer open reading frame encoding a higher molecular weight protein than the Big-h3 gene. It has been found that Big-h3 also contains four internal repeats. The amino acid sequence homology and structural similarity between TC1 and Big-h3 indicate their functional similarity and relationship. We found that Big-h3 mRNA is also much more abundant in colon carcinoma tissue than in adjacent normal colon tissue (Fig. 7). a Northern Blot of five pairs of RNA from colon carcinoma (T) and adjacent normal colon tissue (N) probed with 32P-labeled The blot shows Big-h3 mRNA level in colon Big-h3 cDNA. carcinoma to be much higher than that in adjacent normal tissue. The bottom panel represents control RNA probed with 32P-labeled B-actin.

In contrast to the expression pattern of TC1 mRNA, which is shown to be largely restricted to in vivo tumor tissue, Big-h3 mRNA is not only expressed in the tumor tissue, but also expressed in the cultured tumor cell lines and some normal cell lines. Though TC1 and Big-h3 shared significant homology, their responses to growth factors are distinctly different.

Fasciclin I, II, III are extrinsic membrane glycoproteins involved in the growth cone quidance during nervous system development in the insect embryo. A search of NBRF protein database revealed a significant homologous

- 26 -

domain between TC1 and Fasciclin I from Grasshopper and Drosophila. One TC1 domain of 204 amino acids (amino acid residue 503-706) shared 30% identity with Grasshopper Fasciclin I, and shared 25% identity with Drosophila Fasciclin. Fig. 9 shows amino acid sequence homology between TC1 (SEQ ID NO:4) and Fasciclin I from Grasshopper (GrF) (SEQ ID NO:18) and Drosophila (DrF) (SEQ ID NO:19). Boxed amino acids are identical with at least one other amino acid at that same position.

It has been found that Fasciclin also contained four internal homologous domains, each consisting of approximately 150 amino acids. The domains of TC1 and Fasciclin I share some highly conserved amino acid stretches such as $TXF \frac{V}{A}PTNXAF$, and VXHVVDXXLXP.

The most conserved sequence among TC1, Big-h3 and Fasciclin is $TXF \frac{A}{V}PTNXA \frac{F}{W}$. All four internal repeats in TC1 or Big-h3 or Fasciclin I also share the most conserved sequence $TXF \frac{A}{V}P \frac{T}{S}NXA \frac{F}{W}$. This sequence appears to be an important motif of this gene family.

Screening for antagonists to TC1 function.

5

10

15

20

25

30

4.7

175

The invention also includes methods of screening for agents which inhibit TC1 gene expression, whether such inhibition be at the transcriptional or translational level.

Screening methods, according to the invention, for agents which inhibit expression of the TC1 gene in vitro will include exposing a metastatic cell line in which TC1 mRNA is detectable in culture to an agent suspected of inhibiting production of the TC1 mRNA; and determining the level of TC1 mRNA in the exposed cell line, wherein a decrease in the level of TC1 mRNA after exposure of the cell line to the agent is indicative of inhibition of TC1 mRNA production.

23

5

10

15

20

25

30

35

· vý

- 27 **-**

Alternatively, such screening methods may include in vitro screening of a metastatic cell line in which TC1 protein is detectable in culture to an agent suspected of inhibiting production of the TC1 protein; and determining the level of TC1 protein in the cell line, wherein a decrease in the level of TC1 protein after exposure of the cell line to the agent is indicative of inhibition of TC1 protein production.

The invention also encompasses in vivo methods of screening for agents which inhibit expression of the TC1 gene, comprising

exposing a mammal having tumor cells in which TC1 mRNA or protein is detectable to an agent suspected of inhibiting production of TC1 mRNA or protein; and determining the level of TC1 mRNA or protein in tumor cells of the exposed mammal. A decrease in the level of TC1 mRNA or protein after exposure of the mammal to the agent is indicative of inhibition of TC1 gene expression.

According to the invention, agents can be screened in vitro or in vivo as follows. For in vitro screening, a metastatic cell line, e.g., JMN1B, may be cultured in vitro and exposed to an agent suspected of inhibiting TC1 expression in an amount and for a time sufficient to inhibit such expression. For in vivo screening, a mammal afflicted with a late stage cancer, particularly one of breast cancer, colon cancer, or cancer of the gastrointestinal tract, is exposed to the agent at a dosage and for a time sufficient to inhibit expression of TC1. A late stage cancer is defined by the Duke's stage of the cancer; i.e., late stage cancers correspond to Duke's stages 3-4. The amount or dosage of the agent which is effective to inhibit TC1 expression may be determined using serial dilutions of the agent. The level of TC1 mRNA or protein may be determined using an aliquot of cells from the cell culture or the in vivo tumor and performing Northern Blot analysis or Western Blot analysis, respectively. The agent will be considered inhibitory if the

. .

5

10

15

20

25

30

4

15

level of TC1 mRNA or protein decreases by more than 50%, and preferably more than 70-80%, relative to the same cell line which has not been exposed to the agent.

Examples of potential inhibitors of TC1 mRNA or protein production include but are not limited to antisense RNA, competitive inhibitors of the TC1 protein such as fragments of the TC1 protein itself, or antibodies to TC1 protein. Candidate TC1 inhibitory fragments include, but are not limited to, $T\frac{L}{V}F\frac{A}{V}P\frac{T}{S}N\frac{E}{D}A\frac{F}{W}$ and $NG\frac{V}{A}\frac{I}{V}HX\frac{T}{V}\frac{D}{F}$.

Use of anatagonists to TC1 functions.

The invention also encompasses the treatment of late stage cancers by administration to a mammal afflicted with a late stage cancer one or more of the above-selected inhibitory agents. Late stage cancers, particularly those of the breast, colon, or gastrointestinal tract, are treated according to the invention by administering the inhibitory agent to a mammal afflicted with a late stage cancer in an amount and for a time sufficient to decrease the level of TC1 protein or mRNA.

The mode of administration may be intravenously, intraperitoneally, by intramuscular or intradermal injection, or orally. Administration may be by single dose, or may be continuous or intermittent. The dosage of inhibitory agent is that dosage which is effective to inhibit TC1 production, i.e., within the range of 10 μ g/kg body weight - 100 gm/kg body weight, preferably, within the range of 1 mg/kg body weight - 1 gm/kg body weight, most preferably 10-100 mg/kg body weight.

Production of monoclonal antibodies reactive with TC1.

An anti-TC1 antibody is produced according to Kohler and Milstein, Nature, 256:495-497 (1975), Eur. J. Immunol. 6:511-519 (1976), both of which are hereby incorporated by reference, using the TC1 protein or a fragment thereof as the

- 29 **-**

immunizing antigen. Hybridomas produced by the above process are selected for anti-TC1 antibodies using the TC1 as an antigen in an ELISA assay. The single type of immunoglobulin produced by a such a hybridoma is specific for a single antigenic determinant, or epitope, on the TC1 antigen. Certain TC1-specific antibodies, for example, anti-TC1-1 produced by the hybridoma deposited with the American Type Culture Collection (ATCC) under the ATCC number HB 11481, are unique in that they recognize the TC1 protein, more specifically an epitope of the TC1 protein, in formaldehydefixed and paraffin-embedded tumor cells which bear TC1.

Deposits

212

5

10

15

20

25

30

1

The following samples were deposited on October 29, 1993, with the American Type Culture Collection (ATCC), 12301 Parklawn Drive, Rockville, MD 20852.

Deposit

TC1 gene in pBluescript
plasmid DNA vector

ATCC Accession No.
75599

Hybridoma TC-1 HB 11481

Applicants' assignee, Institute, Dana-Farber Cancer Inc., represents that the ATCC is a depository affording permanence of the deposit and ready accessibility thereto by the public if a patent is granted. All restrictions on the availability to the public of the material so deposited will be irrevocably removed upon the granting of a patent. material will be available during the pendency of the patent application to one determined by the Commissioner to be entitled thereto under 37 CFR 1,14 and 35 USC 122. The deposited material will be maintained with all the care necessary to keep it viable and uncontaminated for a period of at least five years after the most recent request for the furnishing of a sample of the deposited microorganism, and in any case, for a period of at least thirty (30) years after the date of deposit or for the enforceable life of the

- 30 -

patent, whichever period is longer. Applicants' assignee acknowledges its duty to replace the deposit should the depository be unable to furnish a sample when requested due to the condition of the deposit.

OTHER EMBODIMENTS

72

.

5

10

The invention is not limited to those embodiments described herein, but may encompass modifications and variations which do not depart from the spirit of the invention. While the invention has been described in connection with specific embodiments thereof, it will be understood that further modifications are within the scope of the following claims.

1

.

72.

1 (6%

- 31 -

SEQUENCE LISTING 5 (1) GENERAL INFORMATION: (i) APPLICANT: Chen, Lan Bo Bao, Shideng Liu, Yuan (ii) TITLE OF INVENTION: A NOVEL TUMOR MARKER AND NOVEL METHOD OF 10 ISOLATING SAME (iii) NUMBER OF SEQUENCES: 19 (iv) CORRESPONDENCE ADDRESS: (A) ADDRESSEE: Weingarten, Schurgin, Gagnebin & Hayes (B) STREET: Ten Post Office Square 15 (C) CITY: Boston (D) STATE: Massachusetts (E) COUNTRY: USA (F) ZIP: 02109 (V) COMPUTER READABLE FORM: 20 (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (vi) CURRENT APPLICATION DATA: 25 (A) APPLICATION NUMBER: US 08/146,488 (B) FILING DATE: 29-OCT-1993 (C) CLASSIFICATION: (viii) ATTORNEY/AGENT INFORMATION: (A) NAME: Heine, Holliday C. 30 (B) REGISTRATION NUMBER: 34,346 (C) _ REFERENCE/DOCKET NUMBER: DFCI-333XX (ix) TELECOMMUNICATION INFORMATION: (A) TELEPHONE: (617) 543-2290 35 (B) TELEFAX: (617) 451-0313 (2) INFORMATION FOR SEQ ID NO:1: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 636 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single 40 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO (ix) FEATURE: 45 (A) NAME/KEY: CDS

(B) LOCATION: 1..636

The second

- 32 -

		(xi	.) SE	EQUE	NCE I	DESC	RIPT	ON:	SEQ	ID !	NO:1	:					
	CTG	ATC	CAI	GGC	AAC	CAG	ATT	GCA	ACA	AAI	GGT	GTT	GTC	CAT	GTC	ATT	48
	Leu	Ile	His	Gly	Ası	n Glr	ı Ile	e Ala	a Thi	r Ası	n Gly	/ Val	Val	His	Val	l Ile	
	1				9	5				1	0				15	5	
5	GAC	CGI	GTG	CTI	ACA	CAA	ATT	GGT	ACC	TCA	ATT	CAA	GAC	TTC	ATT	GAA	96
	Asp	Arg	val	. Le	ı Thi	Glr	ılle	e Gly	Thi	r Se	r Ile	Gln	Asp	Phe	: Ile	e Glu	
				20)				25	5				30)		
	GCA	GAA	GAT	GAC	CTT	TCA	TCT	TTT	AGA	GCA	GCT	GCC .	ATC .	ACA	rcg (GAC	144
	Ala	Glu	Asp	yai	Leu	. Ser	Ser	Phe	Arç	g Ala	a Ala	Ala	Ile	Thr	Ser	Asp	
10			35	•				40)				45				
	ATA	TTG	GAG	GCC	CTT	GGA	AGA	GAC	GGT	CAC	TTC	ACA (CTC '	TTT (GCT (CCC	192
	Ile	Leu	Glu	Ala	Leu	Gly	Arg	Asp	Gly	/ His	? Phe	Thr	Leu	Phe	Ala	Pro	
		50					55					60					
4 ==	ACC	AAT	GAG	GCT	TTT	GAG	AAA	CTT	CCA	CGA	GGT	GTC (CTA (AA A	AGG A	ATC	240
15			Glu	Ala	Phe		_	Leu	Pro	Arg	Gly	Val	Leu	Glu	Arg	Ile	
	65					70					75					80	
											ATG						288
	Met	Gly	Asp	Lys			Ser	Glu	Ala		Met	Lys	Tyr	His			
20		3.00	~~~	~~	85					90					95		
20											GGA (336
	ABN	Thr	Leu	100	_	ser	Glu	ser			Gly	GTA	Ala		Pne	Glu	
	A CC	ሮሞሮ	CAA			202	እ መመ	CNC	105		TGT (מת כ	'om o	110	Cm 3	m »	204
											Cys						384
25	* * * * * * * * * * * * * * * * * * * *	Deu	115	GLY	V 211	****	116	120		Gry	Cys	rsp	125	nsp	Ser	116	
	ACA	GTA		GGA	ATC	AAA	ATG			AAA .	AAG (A TA		TG A	CAA	ייי א	432
											Lys						432
		130				1	135				- 1	140		, 441	4114	11511	
	AAT	GGT	GTG	ATC	CAT	TTG	ATT	GAT	CAG	GTC (CTA F	**-	CT G	AT T	CT G	CC	480
3 0											Leu						
	145	_				150		_			155			•		160	
	AAA	CAA	GTT	ATT	GAG	CTG	GCT	GGA	AAA (CAG (CAA A	CC A	cc T	TC A	CG G	AT	528
	Lys	Gln	Val	Ile	Glu	Leu	Ala	Gly	Lys	Gln	Gln	Thr	Thr	Phe	Thr	Asp	
					165					170					175	_	
35	CTT	GTG	GCC	CAA	TTA	GGC 1	TTG (GCA 1	rcr (GCT (CTG A	.GG C	CA G	AT G	GA G	AA	576
	Leu	Val	Ala	Gln	Leu	Gly	Leu	Ala	Ser	Ala	Leu	Arg	Pro	Asp	Gly	Glu	
				180					185					190			
	TAC	ACT	TTG	CTG	GCA	CCT (GTG 2	AAT A	AAT (GCA 7	TTT T	CT G	AT G	AT A	CT C	TC	624
	Tyr	Thr	Leu	Leu	Ala	Pro	Val	Asn	Asn	Ala	Phe	Ser	Asp	Asp	Thr	Leu	
10			195					200					205				
	AGC	ATG	GAT	CAG													636
	Ser	Met	Asp	Gln													
		210															

3

	(2)	INF	ORMA'	rion	FOR	SEQ	ID 1	NO: 2	:							
	:	+	(i)	SEQUI	ENCE	CHA	RACT	ERIS	rics	:						
				(A)) LEI	NGTH	: 21	2 am	ino a	acid	3					
				(B)	TYI	PE: a	amino	ac:	Ld							
5				(D)				linea								
		•						rote								
		•	,	•••						DID			•••	 1	•	
		Ile	His	Gly		Gln	Ile	Ala	Thr		Gly	Val	Val	His		Ile
10	1			• -	5	01 -	T1 -	63	mh -	10	T 3 o	C1 n	ħ a m	Pho	15	C1
10	Asp	Arg	Val		Thr	GIn	TTE	GIY	25	ser	116	GIN	nap	30	TTE	Glu
	בות	Clu	N em	20	T.ext	Ser	Ser	Phe		Ala	Ala	Ala	Ile		Ser	Asp
	nia	Gru	35	nsp	Dea	Jer.	DCI	40	•••				45			E
	Tle	Leu		Ala	Leu	Glv	Ara		Gly	His	Phe	Thr		Phe	Ala	Pro
15		50				,	55	_	1			60				
	Thr	Asn	Glu	Ala	Phe	Glu	Lys	Leu	Pro	Arg	Gly	Val	Leu	Glu	Arg	Ile
	65					70					75					80
	Met	Gly	Asp	Lys	Val	Ala	Ser	Glu	Ala	Leu	Met	Lys	Tyr	His	Ile	Leu
					85					90					95	
20	Asn	Thr	Leu	Gln	Cys	Ser	Glu	Ser	Ile	Met	Gly	Gly	Ala	Val	Phe	Glu
				100					105					110		
	Thr	Leu	Glu	Gly	Asn	Thr	Ile		Ile	Gly	Cys	Asp		Asp	Ser	Ile
			115					120	_	_	_	_	125			
0.5	Thr	Val	Asn	Gly	Ile	ГÄв		Val	Asn	Lys	Lys		He	Val	Thr	Asn
25	3	130	** 3	- 1 -	***	T	135	200	C1 n	17 n 1	T 011	140	Dro	n an	50~	7.1 -
		Gly	vaı	TIE	Hls	150	TTE	Asp	GIII	val	155	116	PLO	vah	ser	160
	145	Gln	V= 1	Tlo	Glu		Ala	Glv	T.vs	Gln		Thr	Thr	Phe	Thr	
	μyσ	GIII	A 47 T	***	165	Dea			_,_	170	02				175	м
30	Leu	Val	Ala	Gln		Gly	Leu	Ala	Ser		Leu	Arg	Pro	Asp		Glu
				180		-			185			_		190	_	
	Tyr	ınr	Leu	Leu	Ala	Pro	Val	Asn	Asn	Ala	Phe	Ser	Asp	Asp	Thr	Leu
			195					200					205			
	ser	Met	Asp	Gln												
35		210														
	(2)	INFO														
		(i)						STIC								
			•	•				base		cs.						
40			•	•				acid							,	
40			•	•		DEDNI DGY:		sinç ar	i T E							
		1229	•	•		JGI:										

(iii) HYPOTHETICAL: NO

:33

16

- 34 -

	(iv) ANTI-SENSE: NO	
	(ix) FEATURE:	
	(A) NAME/KEY: CDS	
	(B) LOCATION: 432376	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:	
	GCCACCATGT AGCCCGCGTC ACCGTTCTGC GCATTCCGCA GC ATG GCT CTG CCT	54
	Met Ala Leu Pro	
	1	
	GCC CGA ATC CTC GCT CTG GCC CTC GCA CTG GCG CTC GGA CCC GCC GTG	102
10	Ala Arg Ile Leu Ala Leu Ala Leu Ala Leu Ala Leu Gly Pro Ala Val	
	5 10 15 20	
	ACA CTG GCC AAC CCG GCG AGA ACG CCG TAC GAG CTG GTA CTC CAG AAG	150
	Thr Leu Ala Asn Pro Ala Arg Thr Pro Tyr Glu Leu Val Leu Gln Lys	
	25 30 35	
15		198
	Ser Ser Ala Arg Gly Gly Arg Asp Gln Gly Pro Asn Val Cys Ala Leu	
	40 45 50	
¥		246
20	Gln Gln Ile Leu Gly Thr Lys Lys Lys Tyr Phe Ser Thr Cys Lys Asn	
20	55 60 65	
		294
	Trp Tyr Lys Lys Ser Ile Cys Gly Gln Lys Thr Thr Val Leu Tyr Glu	
	70 75 80	
25		342
23	Cys Cys Pro Gly Tyr Met Arg Met Glu Gly Met Lys Gly Cys Pro Ala 85 90 95 100	
	GTT TTG CCC ATT GAC CAT GTT TAT GGC ACT CTG GGC ATC GTG GGA GCC Val Leu Pro Ile Asp His Val Tyr Gly Thr Leu Gly Ile Val Gly Ala	390
30		100
	Thr Thr Gln Arg Tyr Ser Asp Ala Ser Lys Leu Arg Glu Glu Ile	138
	120 125 130	
		186
	Glu Gly Lys Gly Ser Phe Thr Tyr Phe Ala Pro Ser Asn Glu Ala Trp	100
35	135 140 145	
		34
	Asp Asn Leu Asp Ser Asp Ile Arg Arg Gly Leu Glu Ser Asn Val Asn	,54
	150 155 160	
		82
40	Val Glu Leu Leu Asn Ala Leu His Ser His Met Ile Asn Lys Arg Met	
	165 170 175 180	
	MMC 200 220 MM2 222 220 000 200 200 200 200	30

Leu Thr Lys Asp Leu Lys Asn Gly Met Ile Ile Pro Ser Met Tyr Asn

190

195

185

34

ではいい

1000 40

- 35 -

	AAT TTG GGG CTT TTC ATT AAC CAT TAT CCT AAT GGG GTT GTC ACT GTT	678
	Asn Leu Gly Leu Phe Ile Asn His Tyr Pro Asn Gly Val Val Thr Val	
	200 205 210	
	AAT TGT GCT CGA ATC ATC CAT GGG AAC CAG ATT GCA ACA AAT GGT GTT	726
5	Asn Cys Ala Arg Ile Ile His Gly Asn Gln Ile Ala Thr Asn Gly Val	
	215 220 225	
	GTC CAT GTC ATT GAC CGT GTG CTT ACA CAA ATT GGT ACC TCA ATT CAA	774
	Val His Val Ile Asp Arg Val Leu Thr Gln Ile Gly Thr Ser Ile Gln	
	230 235 240	
10	GAC TTC ATT GAA GCA GAA GAT GAC CTT TCA TCT TTT AGA GCA GCT GCC	822
	Asp Phe Ile Glu Ala Glu Asp Asp Leu Ser Ser Phe Arg Ala Ala Ala	
	245 250 255 260	
	ATC ACA TCG GAC ATA TTG GAG GCC CTT GGA AGA GAC GGT CAC TTC ACA	870
	Ile Thr Ser Asp Ile Leu Glu Ala Leu Gly Arg Asp Gly His Phe Thr	
15	265 270 275	
	CTC TTT GCT CCC ACC AAT GAG GCT TTT GAG AAA CTT CCA CGA GGT GTC	918
	Leu Phe Ala Pro Thr Asn Glu Ala Phe Glu Lys Leu Pro Arg Gly Val	
	280 285 290	~~~
20	CTA GAA AGG ATC ATG GGA GAC AAA GTG GCT TCC GAA GCT CTT ATG AAG	966
20	Leu Glu Arg Ile Met Gly Asp Lys Val Ala Ser Glu Ala Leu Met Lys 295 300 305	
		1014
	Tyr His Ile Leu Asn Thr Leu Gln Cys Ser Glu Ser Ile Met Gly Gly	1014
	310 315 320	
25		1062
-	Ala Val Phe Glu Thr Leu Glu Gly Asn Thr Ile Glu Ile Gly Cys Asp	1002
	325 330 335 340	
		1110
	Gly Asp Ser Ile Thr Val Asn Gly Ile Lys Met Val Asn Lys Lys Asp	,
30	345 350 355	
	ATT GTG ACA AAT AAT GGT GTG ATC CAT TTG ATT GAT CAG GTC CTA ATT	1158
	Ile Val Thr Asn Asn Gly Val Ile His Leu Ile Asp Gln Val Leu Ile	
	360 365 370	
	CCT GAT TCT GCC AAA CAA GTT ATT GAG CTG GCT GGA AAA CAG CAA ACC	1206
35	Pro Asp Ser Ala Lys Gln Val Ile Glu Leu Ala Gly Lys Gln Gln Thr	
	375 380 385	
	ACC TTC ACG GAT CTT GTG GCC CAA TTA GGC TTG GCA TCT GCT CTG AGG	L254
	Thr Phe Thr Asp Leu Val Ala Gln Leu Gly Leu Ala Ser Ala Leu Arg	
	390 395 400	
40	CCA GAT GGA GAA TAC ACT TTG CTG GCA CCT GTG AAT AAT GCA TTT TCT	302
	Pro Asp Gly Glu Tyr Thr Leu Leu Ala Pro Val Asn Asn Ala Phe Ser	
	405 410 415 420	

State

37

- 36 **-**

	GAT GAT ACT CTC AGC ATG GAT CAG CGC CTC CTT AAA TTA ATT CTG CAG	1350
	Asp Asp Thr Leu Ser Met Asp Gln Arg Leu Leu Lys Leu Ile Leu Gln	
	425 430 435	
	AAT CAC ATA TTG AAA GTA AAA GTT GGC CTT AAT GAG CTT TAC AAC GGG	1398
5	Asn His Ile Leu Lys Val Lys Val Gly Leu Asn Glu Leu Tyr Asn Gly	
	440 445 450	
	CAA ATA CTG GAA ACC ATC GGA GGC AAA CAG CTC AGA GTC TTC GTA TAT	1446
	Gln Ile Leu Glu Thr Ile Gly Gly Lys Gln Leu Arg Val Phe Val Tyr	
	455 460 465	
10	CGT ACA GCT GTC TGC ATT GAA AAT TCA TGC ATG GAG AAA GGG AGT AAG	1494
	Arg Thr Ala Val Cys Ile Glu Asn Ser Cys Met Glu Lys Gly Ser Lys	
	470 475 480	
	CAA GGG AGA AAC GGT GCG ATT CAC ATA TTC CGC GAG ATC ATC AAG CCA	1542
	Gln Gly Arg Asn Gly Ala Ile His Ile Phe Arg Glu Ile Ile Lys Pro	
15	485 490 495 500	
	GCA GAG AAA TCC CTC CAT GAA AAG TTA AAA CAA GAT AAG CGC TTT ACG	1590
	Ala Glu Lys Ser Leu His Glu Lys Leu Lys Gln Asp Lys Arg Phe Thr	
	505 510 515	
	ACC TTC CTC AGC CTA CTT GAA GCT GCA GAC TTG AAA GAG CTC CTG ACA	1638
20	Thr Phe Leu Ser Leu Leu Glu Ala Ala Asp Leu Lys Glu Leu Leu Thr	
	520 525 530	
	,	1686
	Gln Pro Gly Asp Trp Thr Leu Phe Val Pro Thr Asn Asp Ala Phe Lys	
	535 540 545	
25		1734
	Gly Met Thr Ser Glu Glu Lys Glu Ile Leu Ile Arg Asp Lys Asn Ala	
	550 555 560	
		1782
	Leu Gln Asn Ile Ile Leu Tyr His Leu Thr Pro Gly Val Phe Ile Gly	
30	565 570 575 580	
		1830
	Lys Gly Phe Glu Pro Gly Val Thr Asn Ile Leu Lys Thr Thr Gln Gly	
	585 590 595	
		1878
35	Ser Lys Ile Phe Leu Lys Glu Val Asn Asp Thr Leu Leu Val Asn Glu	
	600 605 610	
		1926
	Leu Lys Ser Lys Glu Ser Asp Ile Met Thr Thr Asn Gly Val Ile His	
	615 620 625	
40		1974
	Val Val Asp Lys Leu Leu Tyr Pro Ala Asp Thr Pro Val Gly Asn Asp	
	630 635 640	

- 37 -

	CAA CTG CTG GAA ATA CTT AAT AAA TTA ATC AAA TAC ATC CAA ATT AAG 20	022
	Gln Leu Leu Glu Ile Leu Asn Lys Leu Ile Lys Tyr Ile Gln Ile Lys	
	645 650 655 660	
	TTT GTT CGT GGT AGC ACC TTC AAA GAA ATC CCC GTG ACT GTC TAT AGA 20	070
5	Phe Val Arg Gly Ser Thr Phe Lys Glu Ile Pro Val Thr Val Tyr Arg	
	665 670 675	
	CCC ACA CTA ACA AAA GTC AAA ATT GAA GGT GAA CCT GAA TTC AGA CTG 21	118
	Pro Thr Leu Thr Lys Val Lys Ile Glu Gly Glu Pro Glu Phe Arg Leu	
	680 685 690	
10	ATT AAA GAA GGT GAA ACA ATA ACT GAA GTG ATC CAT GGA GAG CCA ATT 21	166
	Ile Lys Glu Gly Glu Thr Ile Thr Glu Val Ile His Gly Glu Pro Ile	
	695 700 705	
	ATT AAA AAA TAC ACC AAA ATC ATT GAT GGA GTG CCT GTG GAA ATA ACT 22	214
	Ile Lys Lys Tyr Thr Lys Ile Ile Asp Gly Val Pro Val Glu Ile Thr	
15	710 715 720	
	GAA AAA GAG ACA CGA GAA GAA CGA ATC ATT ACA GGT CCT GAA ATA AAA 22	62
	Glu Lys Glu Thr Arg Glu Glu Arg Ile Ile Thr Gly Pro Glu Ile Lys	
	725 730 735 740	
	TAC ACT AGG ATT TCT ACT GGA GGT GGA GAA ACA GAA GAA ACT CTG AAG 23	10
20	Tyr Thr Arg Ile Ser Thr Gly Gly Glu Thr Glu Glu Thr Leu Lys	
	745 750 755	
	AAA TTG TTA CAA GAA GAC ACA CCC GTG AGG AAG TTG CAA GCC AAC AAA 23	58
	Lys Leu Leu Gln Glu Asp Thr Pro Val Arg Lys Leu Gln Ala Asn Lys	
	760 765 770	
25	AAA AGT TCA AGG ATC TAGAAGACGA TTAAGGGAAG GTCGTTCTCA GTGAAAATCC 24	13
	Lys Ser Ser Arg Ile	
	775	
	AAAAACCAGA AAAAAATGTT TATACAACCC TAAGTCAATA ACCTGACCTT AGAAAATTGT 24	73
	GAGAGCCAAG TTGACTTCAG GAACTGAAAC ATCAGCACAA AGAAGCAATC ATCAAATAAT 25	33
30	TCTGAACACA AATTTAATAT TTTTTTTCT GAATGAGAAA CATGAGGGAA ATTGTGGAGT 259	93
	TAGCCTCCTG TGGTAAAGGA ATTGAAGAAA ATATAACACC TTACACCCTT TTTCATCTTG 269	53
	ACATTAAAAG TTCTGGCTAA CTTTGGAATC CATTAGAGAA AAATCCTTGT CACCAGATTC 27	13
	ATTACAATTC AAATCGAAGA GTTGTGAACT GTTATCCCAT TGAAAAGACC GAGCCTTGTA 27	73
	TGTATGTTAT GGATACATAA AATGCACGCA AGCCATTATC TCTCCATGGG AAGCTAAGTT 283	33
35	ATAAAAATAG GTGCTTGGTG TACAAAACTT TTTATGATCA AAAGGCTTTG CACATTTCTA 289	93
	TATGAGTGGG TTTACTGGTA AATTATGTTA TTTTTTACAA CTAATTTTGT ACTCTCAGAA 29	53
	TGTTTGTCAT ATGCTTCTTG CAATGCATAT TTTTTAATCT CAAACGTTTC AATAAAACCA 30:	13
	TTTTTCAGAT ATAAAGAGAA TTACTTCAAA TTGAGTAATT CAGAAAAACT CAAGATTTAA 30	73
	GTTAAAAAGT GGTTTGGACT TGGGAATAGG ACTTTATACC TCTTTCTCGT GCC 312	26

(2) INFORMATION FOR SEQ ID NO:4:

25

: , (

40

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 777 amino acids

PCT/US94/12502

WO 95/11923

....

- 38 **-**

				•	•			o ac.								
				,	•			line								
		•	•					rote.								
		•	•						: SE							
5	Met	Ala	Leu	Pro	Ala	Arg	Ile	Leu	Ala	Leu	Ala	Leu	Ala	Leu	Ala	Let
	1				5					10					15	
	Gly	Pro	Ala	Val	Thr	Leu	Ala	Asn	Pro	Fla	Arg	Thr	Pro	Tyr	Glu	Leu
				20					25					30		
	Val	Leu	Gln	Lys	Ser	Ser	Ala	Arg	Gly	Gly	Arg	Asp	Gln	Gly	Pro	Asr
10			35					40					45			
	Val	Cys	Ala	Leu	Gln	Gln	Ile	Leu	Gly	Thr	Lys	Lys	Lys	Tyr	Phe	Ser
		50					55					60				
	Thr	Cys	Lys	Asn	Trp	Tyr	Lys	Lys	Ser	Ile	Cys	Gly	Gln	Lys	Thr	Thr
	65					70					75					80
15	Val	Leu	Tyr	Glu	Cys	Cys	Pro	Gly	Tyr	Met	Arg	Met	Glu	Gly	Met	Lys
					85					90					95	
	Gly	Cys	Pro	Ala	Val	Leu	Pro	Ile	Asp	His	Val	Tyr	Gly	Thr	Leu	Gly
				100					105					110		
	Ile	Val	Gly	Ala	Thr	Thr	Thr	Gln	Arg	Tyr	Ser	Asp	Ala	Ser	Lys	Leu
20			115					120					125			
	Arg	Glu	Glu	Ile	Glu	Gly	TAa	Gly	Ser	Phe	Thr	Tyr	Phe	Ala	Pro	Ser
		130					135					140				
	Asn	Glu	Ala	Trp	Asp	Asn	Leu	Asp	Ser	Asp	Ile	Arg	Arg	Gly	Leu	Glu
	145					150					155					160
25	Ser	Asn	Val	Asn	Val	Glu	Leu	Leu	Asn	Ala	Leu	His	Ser.	His	Met	Ile
					165					170					175	
	Asn	Lys	Arg	Met	Leu	Thr	Lys	qaA	Leu	Lys	Asn	Gly	Met	Ile	Ile	Pro
				180					185					190		
	Ser	Met	Tyr	Asn	Asn	Leu	Gly	Leu	Phe	Ile	Asn	His	Tyr	Pro	Asn	Gly
30			195					200					205			
	Val	Val	Thr	Val	Asn	Cys	Ala	Arg	Ile	Ile	His	Gly	Asn	Gln	Ile	Ala
		210					215					220				
	Thr	Asn	Gly	Val	Val	His	Val	Ile	Asp	Arg	Val	Leu	Thr	Gln	Ile	Gly
	225					230					235					240
35	Thr	Ser	Ile	Gln	Asp	Phe	Ile	Glu	Ala	Glu	Asp	Asp	Leu	Ser	Ser	Phe
					245					250					255	
	Arg	Ala	Ala	Ala	Ile	Thr	Ser	Asp	Ile	Leu	Glu	Ala	Leu	Gly	Arg	Asp
				260					265					270	_	
	Gly	His	Phe	Thr	Leu	Phe	Ala	Pro	Thr	Asn	Glu	Ala	Phe	Glu	Lys	Leu
40	•		275					280					285			
	Pro	Ara		Val	Leu	Glu	Arg	Ile	Met	Gly	Asp	Lys	Val	Ala	Ser	Glu
		290	4				295			-	-	300				
	Ala		Met	Lvs	Tvr	His		Leu	Asn	Thr	Leu	Gln	Cys	Ser	Glu	Ser
	305			4 ~	4	310					315		-			320

- 39 -

	Ile	Met	Gly	Gly	Ala 325	Val	Phe	Glu	Thr	Leu 330		Gly	Asn	Thr	Ile 335	Glu
	Ile	Gly	Сув	Asp 340	_	Asp	Ser	Ile	Thr 345		Asn	Gly	Ile	Lys 350		Val
5	Asn	Lys	Lys 355	Asp	Ile	Val	Thr	Asn 360		Gly	Val	Ile	His 365	Leu	Ile	Asp
	Gln	Val 370	Leu	Ile	Pro	Asp	Ser 375	Ala	Lys	Gln	Val	11e 380		Leu	Ala	Gly
10	Lys 385	Gln	Gln	Thr	Thr	Phe 390		Asp	Leu	Val	Ala 395	Gln	Leu	Gly	Leu	Ala 400
	Ser	Ala	Leu	Arg	Pro 405	Asp	Gly	Glu	Tyr	Thr 410	Leu	Leu	Ala	Pro	Val 415	Asn
	Asn	Ala	Phe	Ser 420	Asp	Asp	Thr	Leu	Ser 425	Met	Asp	Gln	Arg	Leu 430	Leu	Lys
15	Leu	Ile	Leu 435	Gln	Asn	His	Ile	Leu 440	Lys	Val	TAa	Val	Gly 445	Leu	Asn	Glu
	Leu	Tyr 450	Asn	Gly	Gln	Ile	Leu 455	Glu	Thr	Ile	Gly	Gly 460	Lys	Gln	Leu	Arg
20		Phe	Val	Tyr	Arg		Ala	Val	Cys	Ile		Asn	Ser	Cys	Met	
20	465	a 1	G	T	71 -	470	D) ===	G3	71-	475	tr: -	T1-	Dha	3	480
	-	-		_	485		_		_	Ala 490					495	
2.5			•	500			•		505	His		-		510		-
25	-	_	515					520		Leu			525	-		•
		530					535			Thr		540				
30	Asp 545	Ala	Phe	Lys	Gly	Met 550	Thr	Ser	Glu	Glu	Lys 555	Glu	Ile	Leu	Ile	Arg 560
		Lys	Asn	Ala	Leu 565		Asn	Ile	Ile	Leu 570		His	Leu	Thr	Pro 575	
	Val	Phe	Ile	Gly 580	Lys	Gly	Phe	Glu	Pro 585	Gly	Val	Thr	Asn	Ile 590	Leu	Lys
35	Thr	Thr	Gln 595	Gly	Ser	Lys	Ile	Phe 600	Leu	Lys	Glu	Val	Asn 605	Asp	Thr	Leu
	Leu	Val 610	Asn	Glu	Leu	Lys	Ser 615	Lys	Glu	Ser	Asp	Ile 620	Met	Thr	Thr	Asn
40	Gly 625	Val	Ile	His	Val	Val 630	Asp	Lys	Leu	Leu	Tyr 635	Pro	Ala	Asp	Thr	Pro 640
	Val	Gly	Asn	Asp	Gln 645	Leu	Leu	Glu	Ile	Leu 650	Asn	Lys	Leu	Ile	Lys 655	Tyr
	Ile	Gln	Ile	FAs	Phe	Val	Arg	Gly	Ser 665	Thr	Phe	Lys	Glu	Ile 670	Pro	Val

78

公開 冷

5%

PCT/US94/12502

WO 95/11923

1.3

2

a/25

- 40 -

	Thr Val Tyr Arg Pro Thr Leu Thr Lys Val Lys Ile Glu Gly Glu Pr	0
	675 680 685	
	Glu Phe Arg Leu Ile Lys Glu Gly Glu Thr Ile Thr Glu Val Ile Hi 690 695 700	s
5	Gly Glu Pro Ile Ile Lys Lys Tyr Thr Lys Ile Ile Asp Gly Val Pr	0
	705 710 715 72	0
	Val Glu Ile Thr Glu Lys Glu Thr Arg Glu Glu Arg Ile Ile Thr Gl 725 730 735	У
	Pro Glu Ile Lys Tyr Thr Arg Ile Ser Thr Gly Gly Gly Glu Thr Gl	u
10	740 745 750	
	Glu Thr Leu Lys Lys Leu Leu Gln Glu Asp Thr Pro Val Arg Lys Le	u
	755 760 765	
	Gln Ala Asn Lys Lys Ser Ser Arg Ile	
	770 775	
15	(2) INFORMATION FOR SEQ ID NO:5:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 10 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
20	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:	
25	TGTCCAGATG	
	10	
	(O) THEORY TON TON ONE TO WO. (
	(2) INFORMATION FOR SEQ ID NO:6:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 11 base pairs	
30	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	•
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
	(iii) HYPOTHETICAL: NO	
35	(iv) ANTI-SENSE: NO	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:	
	TGTCCAGATG C	
	11	
	(2) INFORMATION FOR SEQ ID NO:7:	
40	(i) SEQUENCE CHARACTERISTICS:	
	A DE LA CONTRACTOR DE L	

(A) LENGTH: 12 base pairs

PCT/US94/12502

, (1

24

. ;

```
(B) TYPE: nucleic acid
                        (C) STRANDEDNESS: single
                        (D) TOPOLOGY: linear
                 (ii) MOLECULE TYPE: cDNA
                (iii) HYPOTHETICAL: NO
 5
                 (iv) ANTI-SENSE: NO
                 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:
             TGTCCAGATG AC
             12
10
             (2) INFORMATION FOR SEQ ID NO:8:
                  (i) SEQUENCE CHARACTERISTICS:
                        (A) LENGTH: 10 base pairs
                        (B) TYPE: nucleic acid
                        (C) STRANDEDNESS: single
15
                        (D) TOPOLOGY: linear
                 (ii) MOLECULE TYPE: cDNA
                (iii) HYPOTHETICAL: NO
                 (iv) ANTI-SENSE: NO
                 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:
20
             TGTCCAGATA
             10
             (2) INFORMATION FOR SEQ ID NO:9:
                  (i) SEQUENCE CHARACTERISTICS:
                        (A) LENGTH: 10 base pairs
                        (B) TYPE: nucleic acid
25
                       (C) STRANDEDNESS: single
                       (D) TOPOLOGY: linear
                 (ii) MOLECULE TYPE: cDNA
                (iii) HYPOTHETICAL: NO
30
                 (iv) ANTI-SENSE: NO
                 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:
             TGTCCAGACG
             10
             (2) INFORMATION FOR SEQ ID NO:10:
                  (i) SEQUENCE CHARACTERISTICS:
35
                       (A) LENGTH: 10 base pairs
                       (B) TYPE: nucleic acid
                       (C) STRANDEDNESS: single
                        (D) TOPOLOGY: linear
40
                 (ii) MOLECULE TYPE: cDNA
                (iii) HYPOTHETICAL: NO
```

15

40

```
(iv) ANTI-SENSE: NO
                  (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:
              TGTCCAGCCG
              10
              (2) INFORMATION FOR SEQ ID NO:11:
 5
                   (i) SEQUENCE CHARACTERISTICS:
                        (A) LENGTH: 10 base pairs
                        (B) TYPE: nucleic acid
                        (C) STRANDEDNESS: single
10
                        (D) TOPOLOGY: linear
                  (ii) MOLECULE TYPE: cDNA
                 (iii) HYPOTHETICAL: NO
                  (iv) ANTI-SENSE: NO
                  (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:
15
             TGTCCCGCCG
             10
             (2) INFORMATION FOR SEQ ID NO:12:
                   (i) SEQUENCE CHARACTERISTICS:
                        (A) LENGTH: 10 base pairs
20
                        (B) TYPE: nucleic acid
                        (C) STRANDEDNESS: single
                        (D) TOPOLOGY: linear
                  (ii) MOLECULE TYPE: cDNA
                 (iii) HYPOTHETICAL: NO
25
                 (iv) ANTI-SENSE: NO
                  (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:
             TGCCCGGCCG
             10
             (2) INFORMATION FOR SEQ IT NO:13:
30
                  (i) SEQUENCE CHARACTERISTICS:
                        (A) LENGTH: 10 base pairs
                        (B) TYPE: nucleic acid
                        (C) STRANDEDNESS: single
                        (D) TOPOLOGY: linear
35
                 (ii) MOLECULE TYPE: cDNA
                (iii) HYPOTHETICAL: NO
                 (iv) ANTI-SENSE: NO
                 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:
             TGATGCACTC
```

PCT/US94/12502

1

. .

```
(2) INFORMATION FOR SEQ ID NO:14:
                  (i) SEQUENCE CHARACTERISTICS:
                        (A) LENGTH: 10 base pairs
                        (B) TYPE: nucleic acid
                        (C) STRANDEDNESS: single
 5
                        (D) TOPOLOGY: linear
                 (ii) MOLECULE TYPE: cDNA
                 (iii) HYPOTHETICAL: NO
                 (iv) ANTI-SENSE: NO
10
                 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:
             TGAGCTACTC
             10
             (2) INFORMATION FOR SEQ ID NO:15:
                  (i) SEQUENCE CHARACTERISTICS:
15
                        (A) LENGTH: 10 base pairs
                       (B) TYPE: nucleic acid
                       (C) STRANDEDNESS: single
                       (D) TOPOLOGY: linear
                 (ii) MOLECULE TYPE: cDNA
20
                (iii) HYPOTHETICAL: NO
                 (iv) ANTI-SENSE: NO
                 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:
             TGACTGACTC
             10
25
             (2) INFORMATION FOR SEQ ID NO:16:
                  (i) SEQUENCE CHARACTERISTICS:
                       (A) LENGTH: 10 base pairs
                       (B) TYPE: nucleic acid
                       (C) STRANDEDNESS: single
30
                       (D) TOPOLOGY: linear
                 (ii) MOLECULE TYPE: cDNA
                (iii) HYPOTHETICAL: NO
                 (iv) ANTI-SENSE: NO
                 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:
35
             CTGATCCATG
             10
             (2) INFORMATION FOR SEQ ID NO:17:
                  (i) SEQUENCE CHARACTERISTICS:
                       (A) LENGTH: 683 amino acids
40
                       (B) TYPE: amino acid
```

(C) STRANDEDNESS: single

PCT/US94/12502

WO 95/11923

- 44 -

		(D) TO	POLO	GY:	line	ar									
	(ii)	MOL	ECUL	E TY	PE:	prot	ein									
	(iii)	HYP	OTHE'	TICA	L: N	0										
	(iv)	ANT	I-SE	NSE:	NO											
5	(v)	FRA	GMEN'	T TY	PE:	inte	rnal									
	(xi.)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	:17:						
	Met	Ala	Leu	Phe	Val	Arg	Leu	Leu	Ala	Leu	Ala	Leu	Ala	Leu	Ala	Leu
	1				5					10					15	
	Gly	Pro	Ala	Ala	Thr	Leu	Ala	Gly	Pro	Ala	Lys	Ser	Pro	Tyr	Gln	Leu
10				20					25					30		
	Pro	Leu	Gln	His	Ser	Arg	Leu	Arg	Gly	Arg	Gln	His	Gly	Pro	Asn	Val
			35					40					45			
	Cys	Ala	Val	Thr	Lys	Val	Ile	Gly	Thr	Asn	Arg	Lys	Tyr	Phe	Thr	Asn
		50					55					60				
15	Cys	Lys	Gln	Trp	Tyr	Gln	Arg	Lys	Ile	Cys		Lys	Ser	Thr	Val	
	65					70					75					80
	Ser	Tyr	Glu	CAa	_	Pro	Gly	Tyr	Glu		Val	Pro	Gly	Glu		Gly
			_		85		_	_	_	90		9		_	95	
0.0	Сув	Pro	Ala		Leu	Pro	Leu	ser		Leu	Tyr	GIu	Thr		Gly	Val
20	** . 1	~ 1		100	mh	mh	63 -	*	105	mh	3 ~~	D	mh	110	*	T
	Val	Gly	115	Thr	Thr	Thr	GIN	120	TYE	Thr	Asp	Arg	125	GIU	гÀг	Leu
	Ara	Pro		Met	Glu	Glv	Pro		Ser	Phe	Thr	Tle		Ala	Pro	Ser
	nrg	130	GIU	1100	014	O.J	135	0-1	501	1		140	1	*****		
25	Asn	Glu	Ala	Trp	Ala	Ser		Pro	Ala	Glu	Val		Val	Ser	Leu	Val
	145					150					155					160
	Ser	Asn	Val	Asn	Ile	Glu	Leu	Leu	Asn	Ala	Leu	Arg	Tyr	His	Met	Val
					165					170					175	
	Gly	Arg	Arg	Val	Leu	Thr	Asp	Glu	Leu	Lys	His	Gly	Met	Thr	Leu	Thr
30				180					185					190		
	Ser	Met	Tyr	Gln	Asn	Ser	Asn	Ile	Gln	Ile	His	His	Tyr	Pro	Asn	Gly
			195					200					205			
	Ile	Val	Thr	Val	Asn	Cys	Ala	Arg	Leu	Leu	ГÀв	Ala	Asp	His	His	Ala
		210					215					220				
35	Thr	Asn	Gly	Val	Val	His	Leu	Ile	Asp	Lys	Val	Ile	Ser	Thr	Ile	Thr
	225					230					235					240
	Asn	Asn	Ile	Gln	Gln	Ile	Ile	Glu	Ile	Glu	Asp	Thr	Phe	Glu	Thr	Leu
					245					250					255	
	Arg	Ala	Ala		Ala	Ala	Ser	Gly		Asn	Thr	Met	Leu	Glu	Gly	Asn
40				260		-			265					270		
	Gly	Gln	~	Thr	Leu	Leu	Ala		Thr	Asn	Glu	Ala		Glu	Lys	Ile
			275		_	_	_	280		.	_	_	285		_	
•	Pro	Ser	Glu	Thr	Leu	Asn		Ile	Leu	Gly	Asp		Glu	Ala	Leu	Arg
		290					295					300				

· k

:X

rt.

× 55

ACCOUNT.

- 45 **-**

	Asp	Leu	Leu	Asn	Asn	His	Ile	Leu	Lys	Ser	Ala	Met	Cys	Ala	Glu	Ala
	305					310					315					320
	Ile	Val	Ala	Gly	Leu	Ser	Val	Glu	Thr	Leu	Glu	Gly	Thr	Thr	Leu	Glu
					325					330					335	
5	Val	Gly	Cys	Ser	Gly	Asp	Met	Leu	Thr	Ile	Asn	Gly	Lys	Ala	Ile	Ile
				340					345					350		
	Ser	Asn	Lys	Asp	Ile	Leu	Ala	Thr	Asn	Gly	Val	Ile	His	Tyr	Ile	Asp
			355					360					365			
	Glu	Leu	Leu	Ile	Pro	Asp	Ser	Ala	Lys	Thr	Leu	Phe	Glu	Leu	Ala	Ala
10		370					375					380				
	Glu	Ser	Asp	Val	Ser	Thr	Ala	Ile	Asp	Leu	Phe	Arg	Gln	Ala	Gly	Leu
	385					390					395					400
	Gly	Asn	His	Leu	Ser	Gly	Ser	Glu	Arg	Leu	Thr	Leu	Leu	Ala	Pro	Leu
					405					410					415	
15	Asn	Ser	Val	Phe	Lys	Asp	Gly	Thr	Pro	Pro	Ile	Asp	Ala	His	Thr	Arg
				420					425					430		
	Asn	Leu	Leu	Arg	Asn	His	Ile	Ile	Lys	Asp	Gln	Leu	Ala	Ser	Lys	Tyr
			435					440					445			
	Leu	Tyr	His	Gly	Gln	Thr	Leu	Glu	Thr	Leu	Gly	Gly	Lys	Lys	Leu	Arg
20		450					455					460				
		Phe	Val	Tyr	Arg		Ser	Leu	Cys	Ile		Asn	Ser	Cys	Ile	
	465					470					475					480
	Ala	His	Asp	Lys	_	Gly	Arg	Tyr	Gly		Leu	Phe	Thr	Met	•	Arg
					485					490					495	
25	Val	Leu	Thr		Pro	Met	Gly	Thr	Val	Met	Asp	Val	Leu	•	Gly	Asp
				500					505	•		_		510		
	Asn	Arg		Ser	Met	Leu	Val		Ala:	Ile	Gln	Ser		Gly	Leu	Thr
	~ 3	ml	515	•	*	01	01	520		/// h	77 - 3	nh -	525	D	mt	•
30	GLU		Leu	Asn	Arg	Glu	_	vaı	Tyr	THE	vai	540	Ala	Pro.	Thr	Asn
	C1	530	Dha	7 × ~	7.1 a	Ť OU	535 Pro	Dwo	N ====	Clu	°0×		N 44 44	T 0	T 0.1	C1
	545	ALA	File	Arg	NIG	550	FIU	FIO	Arg	GIU	555	ALG	ALG	₽€u	Tea	560
		בות	Tue	Glu	T.e.11		λan	Tle	Leu	T.ve		Hie	Tla	Glw	Aan	
	nop	ALG	Lyb	GIG	565	niu	ZI.JII	110	Leu	570	- 7 -	1113	T 7 C	Gry	575	GIU
35	Tle	ī.eu	Val	Ser		Glv	Ile	Glv	Ala		Val	Ara	Leu	T.vg		Leu
		204		580	1	1		2	585			7		590	-	
	Gln	Glv	Asp		Leu	Glu	Val	Ser	Leu	Lvs	Asn	Asn	Val		Ser	Val
		 1	595	-				600		-1 -			605			·
	Asn	Lvs			Val	Ala	Glu		Asp	Ile	Met			Asn	Glv	Val
40		610		- -			615	_ · ·	- * -			620		_ •	- - 1	. — =
	Val		Val	Ile	Thr	Asn		Leu	Gln	Pro	Pro	Ala	Asn	Arg	Pro	Gln
	625	_	_	-		630					635		-	3		640
		Arg	Gly	Asp	Glu	Leu	Ala	Asp	Ser	Ala	Leu	Glu	Ile	Phe	Lys	Gln
			•	•	645			_		650					655	

11/2

Ala Ser Ala Phe Ser Arg Ala Ser Gln Arg Ser Val Arg Leu Ala Val

665

	Pro	Tyr	Gln 675	Lys	Leu	Leu	Glu	Arg 680	Met	Lys	His					
5	(2) INFO	RMAT	ION :	FOR :	SEQ	ID N	0:18	:								
	(i)	SEQ	UENC	E CH	ARAC	TERI	STIC	s:								
		(A) LEI	NGTH	: 20	6 am	ino	acid	s							
		(B) TYI	PE:	amin	o ac	id									
		(C) STI	RAND	EDNE	ss:	sing	le								
10		(D)) TO	POLO	GY:	line	ar									
	(ii)	MOLI	ECULI	E TY	PE:	prot	ein									
	(iii)	HYPO	OTHE:	rical	L: No)										
	(iv)	ANT	I-SEI	NSE:	NO											
	(v)	FRAC	GMEN?	r TY	PE:	inte	rnal									
15	(xi)	SEQ	JENC	E DE	SCRI	PTIO	N: S	EQ II	ои о	:18:						
	Gly	Glu	Lys	Ser	Leu	Glu	Tyr	Lys	Ile	Arg	Asp	Asp	Pro	Asp	Leu	Ser
	1				5					10					15	
	Gln	Phe	Tyr	Ser	Trp	Leu	Glu	His	Asn	Glu	Val	Ala	Asn	Ser	Thr	Leu
				20					25					30		
20	Gln	Leu	Arg	Gln	Val	Thr	Val	Phe	Ala	Pro	Thr	Asn	Leu	Ala	Gln	Phe
			35					40					45			
	Asn	Tyr	Lys	Ala	Arg	Asp	Gly	Asp	Glu	Asn	Ile	Ile	Leu	Tyr	His	Met
		50					55					60				
	Thr	Asn	Leu	Ala	His	Ser	Leu	Asp	Gln	Leu		His	ГЛа	Val	Asn	
25	65					70					75					80
	Glu	Leu	Asp	Gly		Pro	Pro	Leu	Trp		Thr	Arg	Arg	Arg	Asp	Thr
					85			_		90				_	95	
	Ile	Phe	Val		Asn	Ala	Arg	Val		Thr	Glu	Arg	Ser		Tyr	Glu
				100					105				•	110		
30	Ala	Val		Arg	His	Gly	Lys		Gln	Val	Leu	His		Val	Asp	Ser
			115					120			_ •		125			
	Val		Glu	Pro	Val	Trp		Thr	Ser	Gly	Gln		Tyr	Asn	Pro	Asp
		130					135					140				
	Ala	Phe	Gln	Phe	Leu		Gln	Ser	Glu	Asn		Asp	Leu	Gly	Leu	
35	145					150					155			_	_	150
	Arg	Val	Arg	Ser		Arg	Gln	Arg	Val		Gln	Asn	Gln	Lys	Gln	Asn
					165					170	-	_			175	-
	Asp	Phe	Lys		Glu	Gly	Lys	His		Phe	Phe	Ile	Pro		Asp	Glu
				180			49		185					190		
40	Gly	Phe		Pro	Leu	Pro	Arg		Glu	Lys	Ile	Asp		Lys		
			195					200					205			

PCT/US94/12502

(2) INFOR	RMATI	ON 1	FOR	SEQ	ID N	0:19	:								
(i)	SEQU	JENCI	E CH	ARAC'	TERI	STIC	s:								
	(A)	LEI	NGTH	: 20	O am	ino	acid	8							
	(B)	TY	PE:	amin	o ac	id									
5	(C)	STI	RAND	EDNE	ss:	sing	le								
	(D)	TO	POLO	GY:	line	ar									
(ii)	MOLE	CULI	E TY	PE: 1	prot	ein									
(iii)	HYPO	THE	rica:	L: NO	0										
(iv)	ANTI	-SEI	NSE:	NO											
10 (v)	FRAG	MENT	r TY	PE:	inte	rnal									
(xi)	SEQU	ENCE	E DES	SCRII	PTIO	V: S	EQ II	ои с	:19:						
Ala	Ala	Ala	Asp	Leu	Ala	Asp	Lys	Leu	Arg	Asp	Asp	Ser	Glu	Leu	Ser
1				5					10					15	
Gln	Phe	Tyr	Ser	Leu	Leu	Glu	Ser	Asn	Gln	Ile	Ala	Asn	Ser	Thr	Leu
15			20					25					30		
Ser	Leu	Arg	Ser	CÀa	Thr	Ile	Phe	Val	Pro	Thr	Asn	Glu	Ala	Phe	Gln
		35					40					45			
Arg	Tyr	Lys	Ser	Lys	Thr	Ala	His	Val	Leu	Tyr	His	Ile	Thr	Thr	Glu
	50					55					60				
	Tyr	Thr	Gln	Lys	Arg	Leu	Pro	Asn	Thr		Ser	Ser	Asp	Met	
65					70					75					80
Gly	Asn	Pro	Pro		Tyr	Ile	Thr	Lys		Ser	Asn	Gly	Asp		Phe
				85					90	_	_			95	
Val	Gly	Asn		Arg	Ile	Ile	Pro		Leu	Ser	Val	Glu		Asn	Ser
25		_	100	3		N 4 - 4	•••	105	-,	•	~ 1		110		_
Asp	-	-	Arg	Gin	He	Met		IIe	ile	Asp	GIU		Leu	Glu	Pro
T a		115	~	21-	01	77.2	120	N	m	D-10	3	125	T)	3	3 3 -
Leu		V	гÀв	Ala	GIÀ	135	ser	Asp	IHL	PIO	140	ASII	Pro	Asn	Ala
	130	Dha	T 011	T	h an		C1	<i>a</i> 1	Dho	han		n an	N an	T1-	61
	тÄя	Pne	Leu	rla	150	MIG	GIU	GIU	File	155	Val	wah	Wall	TTE	_
145 Val	Description 1	mh	Mars.	N == ==		Cln	3753	ጥትሎ	Mat		Tvra	Tvra	C3.11	50%	160
Agi	Arg	THE	TÄT	165	ser	GIII	AGI	TILL	170	Ald	тув	гув	Giu	175	AGT
Tyr	A cr	71 2	nla		Gln	Hic	Thr.	Pho		Val	Pro	Val	A a n		Gly
35	vah.	uta	180	GIY	GIII	£4 4. C	7 11L	185	T-A	* ** *	~ = 0	AGT	190	GIU	GIY
Phe	Tare	T.au		1 1=	Dra	Ser	Ser						100		
rite	-	195	₩ ₩		******		200	,							

247

Ş

4/2/3

- 48 -

CLAIMS

What is claimed is:

5

10

15

20

25

30

35

12

Η,

......

1. A monoclonal antibody that binds to an epitope of TCl in formalin-fixed or paraffin-embedded tissues.

2. A monoclonal antibody produced by the hybridoma cell line ATCC No. HB 11481, or a monoclonal antibody that binds to the same antigenic determinant as a monoclonal antibody produced by the hybridoma cell line ATCC No. HB 11481.

3. A method of screening for agents that inhibit expression of the TC1 gene in vitro, comprising

exposing a metastatic cell line in which TCl mRNA is detectable in culture to an agent suspected of inhibiting production of said TCl mRNA; and

determining the level of TC1 mRNA in said exposed cell line, wherein a decrease in the level of TC1 mRNA after exposure of said cell line to said agent is indicative of inhibition of said TC1 mRNA production.

4. A method of screening for agents that inhibit expression of the TC1 protein in vitro, comprising

exposing a metastatic cell line in which TCl protein is detectable in culture to an agent suspected of inhibiting production of said TCl protein; and

determining the level of TC1 protein in said exposed cell line, wherein a decrease in the level of TC1 protein after exposure of said cell line to said agent is indicative of inhibition of said TC1 protein production.

- 5. The method of claim 3, said cell line comprising JMN1B.
- 6. The method of claim 4, said cell line comprising JMN1B.
- 7. A method of screening for agents that inhibit expression of the TCl gene in vivo, comprising

exposing a mammal having tumor cells in which TC1 mRNA is detectable to an agent suspected of inhibiting production of said TC1 mRNA; and

determining the level of TC1 mRNA in tumor cells of said exposed mammal, wherein a decrease in the level of TC1 mRNA after exposure of said mammal to said agent is indicative of inhibition of said TC1 mRNA production.

'n,

2,55

THE REAL PROPERTY.

 $G_{\mathcal{M}}$

5

10

15

20

25

30

- 49 -

8. A method of screening for agents that inhibit production of TC1 protein in vivo, comprising

exposing a mammal having tumor cells in which TC1 protein is detectable to an agent suspected of inhibiting production of said TC1 protein; and

determining the level of TCl protein in tumor cells of said exposed mammal, wherein a decrease in the level of TCl protein after exposure of said mammal to said agent is indicative of inhibition of said TCl protein production.

- 9. The method of claim 7, wherein said tumor cells are breast tumor cells, colon tumor cells, or tumor cells of the gastrointestinal tract.
- 10. The method of claim 8, wherein said tumor cells are breast tumor cells, colon tumor cells, or tumor cells of the gastrointestinal tract.
- 11. A pharmaceutical composition for use in treating a late stage cancer comprising an effective amount of an inhibitor of TC1.
- 12. The pharmaceutical composition of claim 11 wherein said late stage cancer is one of breast cancer, colon cancer, or gastrointestinal cancer.
- 13. A pharmaceutical composition for use in preventing tumor cell metastasis comprising an effective amount of an inhibitor of TC1.
- 14. A method for detecting a tumor in a subject, comprising detecting the presence of tumor marker protein TCl in a sample of body fluid from said subject.
 - 15. A method for detecting a in a subject comprising the steps of: providing a sample of body fluid from said subject;

contacting said sample with a monoclonal antibody specific for an epitope of tumor marker protein TC1; and

detecting the presence of TC1 protein in said sample, wherein the presence of TC1 protein in said sample is indicative of the presence of a tumor in said subject.

- 16. The method of claim 14 or 15, wherein said body fluid is selected from the group consisting of blood, urine and sputum.
- 17. A method for detecting a tumor in a subject, comprising detecting the presence of tumor marker protein TC1, or of mRNA encoding tumor marker protein TC1, in a sample of a tissue section from said subject.

5

10

15

- 50 -

18. A method for detecting an invasive or metastatic tumor comprising the steps of:

providing a sample of a formalin-fixed or paraffin-embedded tissue section from said subject;

contacting said sample with a monoclonal antibody specific for an epitope of tumor marker protein TC1 in formalin-fixed or paraffin-embedded tissue sections; and

determining the level of TCl protein in said sample, wherein the level of TCl protein in said sample is related to the presence of an invasive or metastatic tumor in said subject.

- 19. The method of claim 17 or 18, wherein said tissue is breast, colon, or gastrointestinal tract tissue.
- 20. The method of claim 18, wherein said monoclonal antibody is a monoclonal antibody produced by the hybridoma cell line ATCC No. HB 11481.
- 21. The method of claim 18, wherein said monoclonal antibody is a monoclonal antibody that binds to the same antigenic determinant as a monoclonal antibody produced by the hybridoma cell line ATCC No. HB 11481.
- 22. A kit for diagnosis of an invasive or metastatic tumor in a subject, comprising

the monoclonal antibody of claim 1 or claim 2.

eş (

Section of the sectio

ŢĨ.

Fig. 1

Δ

Fig. 2

: 3

2,51

31/11 1/1 CTG ATC CAT GGG AAC CAG ATT GCA ACA AAT GGT GTT GTC CAT GTC ATT GAC CGT GTG CTT R Ξ V ******* N G N 91/31 61/21 ACA CAR ATT GGT ACC TOA ATT CAR GAC TTO ATT GAR GCA GAR GAT GAC CTT S E Ξ D A E \Box 151/51 121/41 AGA GCA GCT GCC ATC ACA TCG GAC ATA TTG GAG GCC CTT GGA AGA GAC GGT CAC G G Ξ A S A \mathbf{A} 211/71 181/61 CTC TTT GCT CCC ACC AAT GAG GCT TTT GAG AAA CTT CCA CGA GGT GTC CTA GAA AGG ATC R R I ĸ Þ G Ξ à N 271/91 241/81 GAA GOT COT ANG AAG TAC CAC AND THA AAT ACT ATG GGA GAC AAA GTG GCT L H N ¥ K M ٧ A S 331/111 301/101 TGT TCT GAG TCT ATT ATG GGA GGA GCA GTC TTT GAG ACG CTG GAA GGA AAT ACA ATT GAG N E A G M C S E S 391/131 361/121 ATA GGA TGT GAC GGT GAC AGT ATA ACA GTA AAT GGA ATC AAA ATG GTG AAC AAA AAG GAT D K G N S G I G 451/151 421/141 ATT GTG ACA AAT AAT GGT GTG ATC CAT TTG ATT GAT CAG GTC CTA ATT CCT GAT S V D A D I H V I V N N 511/171 481/161 GGA AAA CAG GAA ACC ACC TTC ACG GAT CTT GTG GCC CAA GAG CTG GCT \square V Ξ Q ĸ A ĸ Q V I E 571/191 541/181 CTG AGG CCA GAT GGA GAA TAC ACT TTG CTG GCA CCT GTG AAT P E G R I. G λ 631/211 601/201 CTC AGC ATG GAT CAG GAT ACT M S Ē S D D A

Fig. 3

2421 agaannabatgittatacaaccctaagicaataaccigaccitagaaaitgigagagccaagitgucticuppuu

2350 GCC NAC ANA NAT TON AGG ATO TAG asgaegattaagggsaggleglleteaglyaaadleeass 770 A. H. K. S. S. R. I. *

970 CAC

850 GUA 210 G

2230 GAA GAA CGA NTC RIT ACA GGT CUT GAA NIA AAA 1AC ACT NGG ATF TOT ACT GGA GGA GGA

2290 GAN ACA GAA ACT CTG ANG ANA TTG TTA GAA GAC ACA CCC GTG AUG ANG THE CLA 150 E D T P V R K L 0

GGA GIG CCT GTG GAA ATA ACT GAA AAA GAG ACA CUA

GAT D

2170 AAA AAA TAC ACC AAA ATC ATT 710 K K Y T K I I

GAA ACA ATA ACT GAA GIG ATC CAT GGA GAG CUA A11 A14

CTG ATT ANA GAN GGT L I K E G

2110 TTC AGA 6590 F R

CTA ACA AAA GIC AAA ATF GAA GGT GAA CCT GAA L T K V K I E G E P E

CCC NCA

AGA R

GIC TAT

2050 ATC 679 I

2581 gasattgtggagttsgcctcctgtggtaaaggasttgaagaabatatsacccttacacctttttcatcttyvcatt+

2661 asgiticiggitasciliggasiccaliagagaaaaaiccilgicaccagalicaliacaalicaasicgaagagilgi-y-

2741 metgitakeceattgaasaggacegageettgtatgtatgttatggataeatmaaatgesegesagesitaletetete

2901 gggtttactggtaaattatgttattttttecaactaattttgtactctcagaatgtttgtcatatgcttcttgcaatgca

282) gggsagctaagttataaaaataggtgcttggtgtscaaaactttttatgatcaaaaggctttgcacatltctalatgagt

2981 tattittastotossacgitti(<u>MJAM</u>)scolitticagatalaaagagaattacitossaligagisaticagaasa

actempatit and tanaangt ggittggactiggganinggacit latactetil ei egigee

3126 b.p. DIM sequence TCI-DNA

CCG GCG AGA ACG CCG

CCC GCC GTG ACA CTG GCC AAC

300

C1G GCG CTC

GCC CGA ATC CTC GCT

i gecaccatglagecegegteacegttetgegeatteegeage ATG GGT CTG CCT

CAA GGC CCA ANT GTC

TAC GAG CTG GTA CTC CAG ANG AGC TCG GCA CGA GGG

gecaccatgtag ... etttetegtgee

1990 CTT MAT AMA TTA ATC AMA TAC ATC CAN ATT ANG THE GIT CGT GGT AGC ACC TIC AMA GAM. 650 L H K L I K Y I Q I K F V R G S T F K E GAA TIG AAA ICA AAA GAA ICT GAC AIC AIG ACA ACA AAT GGT GIA ATI CAF GHI E L K S K E S D I H I T N G V I H V L K E V H D T L L L GTC TGC ATT GAA AAT TCA TGC ATG GAG AAA GIG AGT AAG CAA GGG AIJA AAC V C I E N S C H E K G S K O G H N ISIO GCG NIT CAC ATA TTC CGC GAG ATC ATC AAG CCA GCA GAG AAA TCC CTC CAT GAA AAG 490 A I H I F H E I I K P A E K S L H L K GCT CIT CAA AAC AIL T P V G H D O GAA ATT CTG ATA CGG GAC AAA AAT ACG ACC TTC CTC AGC AGC AAA ATC S K I GAC D ర్ట CC. Ž, 30 CCA AAG CGC K R **8** 8 Ž AAG ACC ACA <u>ج</u> ک AGT 1870 GTG AAT 610 V H 1650 ACA GCT 1690 ATG ACT 550 H T £. 1930 GTA 630 V 1570 AAA 510 K

ATG AAG TAC CAT TIG ATT GAT CAG TTG GAG GCC CTT NAT GGT GTT GTC CAG GCT TGG GAC E A N D NCT TGT ANG ANC TGG TGT TGC CCT GGT TAT GAG AAA CTT I 9999 CIT NIT GAG CTG CCF GGA AAN CAG CAN CTG AGG CCA GAT GGA L R P D G M H 3= TTA AAA E K CCC 1CA CCT GAC CAT ATA YC . S GCA CCG AGT 550 GCT TTA CAT AGT CAC ATG NIT ANT RAG AGA ATG TTG ACC AAG GAC 170 A L II S II H I N K R H L I K D ATT ATT CCT TCA ATG TAT AAC AAT TTG GGG CTT TTC ATT AAC CAT 730 EAT GIC ATT GAC CGT GTG CTT ACA CAA ATT GGT ACC TCA ATT CAA 230 E V I D I G T S I O GAC CIT ICA TET TIT AGA GCA GCT GCC ATC ACA TCG GAC CAC TIC ACA CTC TIT GCT CCC ACC AAT GAG GCT ATG GGA GAC AAA GTG GCT TCC GAA H G D K V A S E TGT BCC CTT CAA CAG ATT TTG GGC ACC AAA AAG AAA TAC TTG AGC C A L Q Q 1 L G T K K K K F F S ANT TGT GCT CGA NTC ATC CAT GGG AAC CAG ATT II II G IN Q I 190 AAC TTG GAT TCT GAT ATC CGT AGA GGT TTG GAG AGC AAC FCC TTC ACT 310 ATC ACA ATC GAA GCA ATC AAA GCC TCC CCA 90 H R H E G H K G C P GGC NIC GTG GGA GCC ACC ACA ACG 250 TAT AAA AAG TCC ATC TGT GGA CAG NAA 10 Y K K S I C G O K CAG 1GT GAG NTA CIN GAN AGG ATC 430 GAG GAG ATC GAG GGA NAG GGA 130 E E f E G K G ACA ATT TTA NAT ACT CTC GAC GGF D G ქ ა 390 GAA GAT 8 610 GIC ACT 210 V T A ISA

Four Repeats of TC1 Protelu

A P T N E A F . EKIL P R G V L E H I M G D K V A S E A I M K Y II I II. III. A P S H E A M D N II. D S . D I I R H G II E S N V N V E I. L M A L H S H N I III. A P S H E A M D N II. D S . D I I II. II K L I L O M H I II V K V E I. H	N. T. K. D. E. T. I. G. T.	VHESD INTURES IN THE OUT HELT DOUGH. IN A DITTIP VEHIDLE OF LINK OUT HE WILL OUT OF SITE OF FIELD OF LINE SITE OF SITE	
aa#	TE CO C K R M L FILLY N		S S F T T T T T T T T T T T T T T T T T
C1 #2 C1 #4 C1 #1	11.11 #2 11.21 #4 11.21 #3		

X ...

 \hat{z}_i

: (2)

A

13

Fig. 6

manadan, Berwest III Em Bish

Fig. 7

MALIFARILALALALALIFIFANCE LAINIFARTIE YELL MALIF VIELLALALALALIGIFANAE LAIGIPAN SIE YQL V L OKISIS AIR GIGIRID CIG P N V C ALL C C I LIG TIK KIK Y F)S V L OIHISIR LIR G . IRIO H G P N V C AIV T K V I G TIN RIX Y T F NE KIOIM AIN K ZII C CIO KILILA I Z Z E C C & C AIN K K E CI E IK GCPAIVE PILDH VINGEL GIZIV GIAH TI QIRIYISDIA S.K. GCPAIAL PILSN LIMBEL GIVIV GISHTI TOLUMTDIR TEK LRIZIZI ZIE GIRIG SETIVIE APSNEA WID NILID SDIEREGIL LRIPIZIMIE GIPIG SETIJIE APSNEA WIASILIPAZVI DISIL EIS-N V NIVE LL NA LE SEE MIL N KIRIME TIK DE KING MIL I VIS N V NIZIE LE NA LIR YEE MIV G RIRIVE TID EE KIEG MIT L TIE W XIO MIE NI CITIA ME A B N CITIA L A N C Y SITIR C N C I E W XIN MIT C T E LINH A B N C A A L I H C N C I FRAAIA I ISID I LEAKIG ROIGH FIT LIFIA PINEAFER LIRAAIVAAISIG INTHEIE GNIG VIETILIAPTNEAFER LIPIR G VEZZIR II MIG DIK VIAIS Z AILIM K YIE I ZIN T L QICIS E ILEIS E TILINIR II LIS DIP EINIL ROILL N NIH I LIK S A MICIA E SIM GIGIA V FIE ILEGNII IE IIG CDIG DIS I II VIN GILK M AIIV AIGILS VIE ILEGII ILEVIG CSIG DIM LIZIN GIKAI VNKKDIVINNGVIELE DOVELIPDSAKIOVIELA I SNIKD ILATING VI HIY II DIE LILIPOSAKIT LFIE LA GKOCE: FIF ID LYAIQILG LASAILIR PDGE YEL AFSDVSITIAID UFRIOJAIGUGNEILISGSERL VNIN AMSTERDELS MEDOR LL KELLEDON E ILEOV K V G L LINIS VINKE GER P RIENA ETRNILL LIRIN HILLED C LAS N EL MNG QITE E TILIG G M QIL R V F V Y RITA V IC I E N S CI MEKCSKICIGRINIGIA I RIPRE I I KIPIA EKS LHEKILK IAAEBIKIRIG RIVIGH EFTMBRVEHEDDMGTVM5 VILK GIENREI. . . ISIMELVE ALE C S À GELHETEN À E SIV YE TELA EL MONE RENE SEIENS INTININ MENON IL T VIEW IN ENERGY RESTREE GOVERNMENT K KHI - PGVEIGKGEERGVENILEKITEGGSKI FILK VE HE TO BE THE VEGET BEALVALE N'S LIO GIDENT TEL EVI. . MID T L LIV NIE L K S KEISID I M TIT N G VI H VIV D EVIS I KININ V V SIV NIK E P V A EIPLE I MIAT N S VIV H VI I KLEYER. ADTER. VGNEQUE. . . LEHLNKLIKYI NVELOPPAINREOFRGIDELLADSALET.... CIKEVRGSTEREIPVIVYRPILIKVKIEGEPE NELLICIES TRVIRELS ANKERSEES ==:

1

19

TNTNTNTNT

28S

→ 18S

Fig. 8

Homology Between TCL and Fasciclin I

TCI 50 GMF 2	OS A E K S L H E K L K O D K R F T T E L S L L E A A 26 G E K S L E Y K L R D D P D L S Q F Y S W L E H N 19 A A A D L A D K L R D D S E L S Q F Y S L L E S N	QI
TCI GNE DNE	KELLTOPGDWTLEVPTNDAFKG ANSTLOLROVTVEAPTNLAFONYKA ANSTLSLRSCTTEVPTNEAFORYK.	M T R D
TCL Grif Drif	G D E N I E I I I R D K N Y T O N I I I I D O I G E K S E E E I I I R D K N Y T O N I I I I Y E I I I P G S E E K E I I I R D K N Y T O N I I I I Y E I I I P G S E E K E I I I R D K N Y T O N I I I I Y E I I I P G S E E K E I I I R D K N Y T O N I I I I I Y E I I I P G S E E K E I I I I R D K N Y T O N I I I I Y E I I I P G S E E K E I I I I R D K N Y T O N I I I I Y E I I I P G S E E K E I I I I R D K N Y T O N I I I I I Y E I I I P G S E E K E I I I I R D K N Y T O N I I I I I Y E I I I P G S E E K E I I I I R D K N Y T O N I I I I I Y E I I I P G S E E K E I I I I R D K N Y T O N I I I I I I P G S E E K E I I I I R D K N Y T O N I I I I I P G S E E K E I I I I R D K N Y T O N I I I I I P G S E E K E I I I I R D K N Y T O N I I I I I P G S E E K E I I I I R D K N Y T O N I I I I I P G S E E K E I I I I R D K N Y T O N I I I I I P G S E E K E I I I I I R D K N Y T O N I I I I I P G S E E K E I I I I I R D K N Y T O N I I I I I P G S E E K E I I I I I R D K N Y T O N I I I I I P G S E E K E I I I I I R D K N Y T O N I I I I I P G S E E K E I I I I I R D K N Y T O N I I I I I P G S E E K E I I I I I R D K N Y T O N I I I I I P G S E E K E I I I I I R D K N Y T O N I I I I I P G S E E K E I I I I I R D K N Y T O N I I I I I P G S E E K E I I I I I R D K N Y T O N I I I I I P G S E E K E I I I I I I R D K N Y T O N I I I I I P G S E E K E I I I I I I R D K N Y T O N I I I I I P G S E E K E I I I I I I I R D K N Y T O N I I I I I P G S E E E I I I I I I I I I I I I I I I I	V I V S
TCI Cres	IGK. GEEPGVTNLLKTTQG. SKIEL SELDGNPPLWITRRRDTIF. SDMAGNPPLYLTKNSNGDIF.	K E
	VND.TLLVNELKSKESDIM.TTNGV VNNARVLT.ERISNYEAVNRHGKKQV VGNARIIP.SLSV.ETNSD.GKRQI	LHMH
TCI Gri	VVDKLLYPAD.TP.VGNDQLLE VVDSVLEPVWSTSGQLYNPDAFQ TTDEVLEPLTVKAGESDTPNNP.	I I I
TCI Grif Drif	NKUIKI OIKE VRGSTEKEUPVIVE NOSENLOLIGIERVRSEROR.VEO NAT.KE LKNAEEFNVONEGVRTE	RIP NQ RIS
E E D E	TLTXVKIEGEPEFRLIKEGETITEV KONDFKLEGKHTE.FIPVDEGEKPI QVTMAKKESVYDAAGQHTELVPVDI	HRRF
TCI GrF DrF	GERIII KK PEKIDOK KISARSS	706 221 211

Fig. 9

e q

4,5%

海河西

が

78

Fig. 11

発送が

Fig. 12

 $J/T_{\rm c}$

**

· 清清

4.

· ·

Fig. 14

できる

Fig. 15

Fig. 16

الجاد

_24

N. C.

7

Fig. 17

TNTNTNTNTNTNTNTNA

A
B-

T N T N T N T N T N T N T N A Actin-

OF N

. >

10

Y K

TUMOR I NORMAL RATIO

Fig. 18

TC1- Actin-

Fig. 19

, ; - f

5.3

· . ·

· 克斯

1, HT29 CELL 3, HT29 TUMOR 2, CX-1 CELL 4, CX-1 TUMOR

Fig. 20

Fig. 21

Fig. 22

्रम् सःस्त्र

Fig. 23

19

V 1.2

13

Fig. 24

を表

 $q_{i,m}$

2

1, JMN; 2, JMN1B

Fig. 25

Fig. 26

Fig. 27

40

(C.)

Nucleotide Sequence and Deduced Amino Acid Sequence of TC1

69	129 28	189 48	249 68	309 88	369 108	429 128	489 148	549 168	609 188	669 208
		CAG Q	ATC	GGA G	GTG V	GGA G	GAT D	CAC	ATG M	TGT C
rrT F	AAT CAT TAT GAC AAG ATC	CAA C	TCC 1	GAA 1	ATC	GAG E	TCT S	AGT	TCA S	AAT N
ATC M	SAC A	CTT (AAG K	ATG M	9 299	ATC I	GAT D	CAT H	CCT P	GTT V
A CCC	rat (Y	GCC A	AAA K	AGA R	CTG L	GAG E	${ m TTG}$	TTA L	ATT	ACT T
r TT?	CAT	TGT	TAT Y	ATG M	ACT T	GAG E	AAC	GCT A	ATT	GTC V
HH	AAT (GTC V	TGG W	TAT Y	ე ეენე	AGG R	GAC	AAT	ATG	GTT V
ATT CCC	AAC	AAT N	AAC N	GGT G	TAT Y	CTG L	TGG ₩	CTG L) 1999 1999	වි
G AT	GCC A	CCA P	A.A.G K	CCT	GTT V	AAA K	GCT A	TTA L	AAT	AAT
g ATG M	AC	၁၅	GT	rgc C	CAT	ICA S	GAG E	GAA E	AA.A	CCT
ccaag	ATA	CAA	ACT T	GT	3AC	SCC A	AAT	GTT V	TTA L	TAT Y
agactc	CCT	GAC	ည္တ	A A	ATT L	SAC D	AGT S	AAT N	GAC D	CA1 H
ggaga	AC 1	500	rTC F	TAT Y	CCC	TCT	CCG P	GTG V	aag K	AAC N
caac	GTT V	GT	rac (rta L	TTG L	TAT Y	GCA A	AAC	ACC T	ATT I
ctg	LI	99	A.	TG	3TT 7	2GC R	rtt F	AGC S	TTC	TTC
caga	CTT	TC	AG	ACT [A CA	CAG D	T'AC Y	GAG E	A TG M	CTI
асаа	CTG	CGT	A SA	ACG F	CCA P	ACG T	ACT	TTG	AGA R	999
gtcc	TTG	AGT	DO .	AAA	rgc S	ACA T	TTC F	GGT G	AAG K	TTG L
trtc	CTA	CAT H	၁၅၅	CAG Q	၁၅၁	ACC	TCC S	AGA R	AAT	AAT
gacg	CTA L	GCT	TTG		AAA K	GCC	GGA G	CGT R	ATT	AAC
attegaegtecacaacaganetgeaac	CI	TG	T	GT	ATG	SGA	A.A.G K	ATC I	ATG M	TAT Y
⊶ ⊷	70	130	190 49	250 69	310 89	370 109	430 129	490 149	550	610 189

F16, 284

H

1329 1269 408 1149 368 1089 348 1209 1029 328 969 308 909 288 849 268 729 228 789 248 ATT CCT GTG GAT ACA GAA TCA CAC CGT CAA CTTGCA CCTAAC AAT AAT CLA GGTCTTGAC CTGAAA 999 GAT D GTGATT GGA GAC GTC GAC ATT CLL $\mathbf{T}\mathbf{T}\mathbf{G}$ AAC ACG T CTA ATG gaa e ATC AGA GAT GGT GTC Σ ACT T CTC TAC TTCGTC AAA CTG GGA CGA CAC GAA CAT I TAC CTTCGC ACC CAG ATC ACG T TAC Y CTTCCA GCA GTC α GAA GAG CAG ACC GAT GGA G GAG AAG 000CTT GAA GTT Ø GGA G AAT GAT CAA aat N ATT TTT ATG GAG AAA GGT ATT Ω Ø GAT ATG CTT TTG CAG GTC GTA V GAG \mathbf{TTG} CTT AAT TTC Σ ₹ S AGC 299 X X X ACA CAT GCA GCT TTT ATA ACA GAC 4 AGG CTC GTTATC GGA ATA I GGA GAA CCT CAA GAC r α CTG ACT AAA GTG AGT S GCT GGA GAG TCG ATT ATT D) GTA GAT GCT CTG GGTGAC GCT AAT TCA ACA CAG Q 9 TCT AAA GAG aat N GGT GTGATT ATC ACC T ACC > AAT N ATT I GCA A AAA K TTG ACA T TGT C GAG E 3 3 6 CAA TTT F ATT I ATA I TG'r C ATG M CTC aat n GAG E GAT D CAG O ATC I ACA TTC F 1090 349 \$70 309 $\frac{910}{289}$

F16. 28B

4.4

2049 668 1929 628 1989 648 1869 608 1809 588 1749 568 1689 508 GTC CTC ACA AAA ACA CCT ACT ATT I ACC CTG GAA CAA AAG \mathbf{T} CC CTGAAG GAA CAC AGT S CAC AGA ၁၁၁ AAT GAT TTA AAT TAT ACT CTG ATT CAA GCT TTC F CTT GTGCTT ATT ATG CTC AAA ACA CCC GAA GAA E ATA CTG ATT AAC N GGA GAG CGT TTA GGT CCT P AAA GAA ACT CTT CAT ATC AAG AAC AAG TAT GAA $\mathbf{T}\mathbf{T}\mathbf{C}$ CTG ACA GTT AAC TTT GAA TTG GTA ACC GGT CTG GGT GAT CAA GCT GAC CAT C Ω AGC AAT CCT GGT CTT GAT CTCGTC 国 S ATT GGT AAT GAA GTA GCT AAT GCT TCC AAG AAA CGT ACA GAA $\mathbf{L}\mathbf{L}\mathbf{L}$ AAT GAA AGT × GTC ACA AAA GGA AAA CTT CAG Q GAG 999 ပ AAA K CTG ATG GTT GAC AAA GTGCTA AAA K GCA AAA K > **×** ATC TTT ၁၁၅ CTA L ATC GAC ATT ATA I Crc L TTA ACA T AAA K TTC F ATC I CCC AGC GAA E GTT V TGG W ACC T ACC GGA G AAA K GGA G GAC D GAA AAT N CAA GGA G CTG2050 669 1750 569 1**8**10 589 $1870 \\ 609$ 1690 549 1630 529 1570 509 1510

FIG. 28C

*

3195 2958 ttctatatgagtgggtttactggtaaattatgttattttttacaactaattttgtactctcagaatgtttgtcatatgct 3037 2477 aatccaaaaaaccagaaaaaaatgtttatacaaccctaagtcaataacctgaccttagaaaattgtgagagccaagttgac 2557 2349 768 tettgeaatgeatatttttaateteaaaegttteaataaaaeeattttteagatataaaagagaattaetteaaattgag tratctctccatgggaagctaagttataaaaataggtgcttggtgtacaaaactttttatgatcaaaaggctttgcacat tagcctcctgtggtaaaggaattgaagaaatataacaccttacacctttttca 2718 tettgacattaaaagttetggetaaetttggaatecattagaaaaaateettgteaeeagatteattaeaatteaaate AAA AGT TCA AGG ATC TAG aagacgattaagggaaggtcgttctcagtgaa K S S R I * GAA GAA ATT AAA AGA CTG CTT CAG GGA GAC ACA CCC GTG AGG E E I K R L L Q G D T P V R taattcagaaaaactcaagatttaagttaaaatgggtttggacttgggaataggactttatacctctttctcgtgcc GAA GTG ATC CAT GGA GAG CCA ATT ATT AAA AAA TAC ACC AAA E V I H G E P I I K K Y T K GGT GAT ATA ACT GAA AAA GAG ACA CGA GAA CGA ATC ATT I T E K E T R E E R I I TCT ACT GGA GGA GAA ACA GAA GAA S T G G E T E E GAA GAG GTC ACC AAA TTC ATT GAA GGT E E V T K V T K F I E G ACT AGG ATT T R I GAA TAC GTG2638 agaaacatgagggaaattgtggagt GAT CAN O AAA K TTA ညည TTGTTT gaa E AAG AAA K CAA TTA CCT GAT D GAA TTG CAT H GGT G 2350 GGT 769 G AAG K CTG L ACA T 3038 3118 2558 2290 749 2230

F16. 28D

INTERNATIONAL SEARCH REPORT

PCT/US 94/12502

A. CLASSIFICATION OF SUBJECT MATTER A61K39/395 C12Q1/68 G01N33/574 G01N33/53 CO7K16/30 IPC 6 G01N33/577 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) CO7K GO1N C120 A61K IPC 6 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages Category ° 1-22 EP,A,O 562 508 (HOECHST JAPAN LTD.) 29 Α September 1993 see tables see sequence listing 3,7,9, MOLECULAR BIOLOGY OF THE CELL, SUPPLEMENT, Α 17,19 vol.4, 1993, BETHESDA MD, USA page 357A S. BAO ET AL. 'Identification and isolation of differentially expressed genes by palindromic PCR. see abstract 2069 3,7,17 WO, A, 93 04198 (BRITISH TECHNOLOGY GROUP A LTD.) 4 March 1993 see the whole document Patent family members are listed in annex. Further documents are listed in the continuation of box C. X "T" later docume it published after the international filing date * Special categories of cited documents: or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance "X" document of particular relevance; the claimed invention earlier document but published on or after the international cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone filing date "L" document which may throw doubts on priority claim(s) or "Y" document of particular relevance; the claimed invention which is cited to establish the publication date of another cannot be considered to involve an inventive step when the citation or other special reason (as specified) document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled other means in the art. document published prior to the international filing date but '&' document member of the same patent family later than the priority date claimed Date of mailing of the international search report Date of the actual completion of the international search 20 -03- 1995 9 March 1995 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Nooij, F Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,

Fax: (+31-70) 340-3016

1

.

4.8

4.

INTERNATIONAL SEARCH REPORT

PCT/US 94/12502

	on) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
	EP,A,O 549 107 (SYNTEX (U.S.A.) INC.) 30 June 1993 see examples see figures see claims	3,7,17
•		

INTERNATIONAL SEARCH REPORT Information on patent family members

Intere Jonal Application No PCT/US 94/12502

Patent document cited in search report	Publication date	Patent f memb	Publication date	
EP-A-0562508	29-09-93	JP-A-	5268982	19-10-93
WO-A-9304198	04-03-93	AU-A- CA-A- EP-A- GB-A- JP-T- NZ-A-	2379692 2115829 0613501 2258867 6510185 243922	16-03-93 04-03-93 07-09-94 24-02-93 17-11-94 26-10-94
EP-A-0549107	30-06-93	CA-A-	2080305	12-04-93

. "

. 1