FG 700S/F 系列

直接數位合成 函數信號產生器

操作說明書

安全事項

安全事項

FG 700S/F 系列直接數位合成函數產生器依照 EN61010-1:2001、EN61326:1997 設計與測試。

請注意

所有的操作和維修本儀器時必須遵守下列的一般安全警告,若沒遵守這些警告及本手冊其他特定 的警告,將失去本儀器的設計、製造和預期功能,本公司不負擔因而引起的責任。

供電之前

先確定使用正確的電源電壓。

安全符號

雷擊警告

接地記號

全部雙絕緣或強化絕緣保護設備

警告(參考附件)

(€ 遵守現行歐盟規定的設備

保護性接地

機殼接地

室內使用

請勿更換零件或更改儀器

爲免增加額外風險,請勿更換零件或自行更改儀器。請將儀器送代理商維修以確保安全。

儀器若看似受損,在未經指定維修人員修護前請勿使用。

不要安置於滴水或濺水的環境中。

保固須知

一年保固

本儀器自購買日起一年保固期內若發現問題,請送百科公司,經證實後提供免費的售後服務。

此保證不適用於不當操作或拆卸或意外事故,導致裂損或過熱等。除了新購,此保證不包括零件成品或外觀,也不包含運送至本公司的損傷。

要求免費服務時請送包括購買日期和地點的證明(收據),否則不予受理。

因爲不慎使用導致意外損傷或違反約定,就不適用此保證。

此保證不取代其他明示或隱含的約定,代理人等不承擔本產品販賣或使用的其他責任。

目錄

1	簡介.		2
	1.1	一般說明	2
	1.2	主要功能	
	1.3	實體描述	
	1.4	規格	
2	操作.	79414	
	2.1	旋鈕和按鍵	
	2.2	開機畫面	
	2.3	調整頻率	
		Duty	
	2.4	選擇波形(Func)(「」或「」)	12
		Att Sweep Sweep	
	2.5	使用頻率掃描(Sweep)功能(13
		LPF Fstep / Attn Fstep / Attn	
	2.6	飛梭頻率步進設定(Fstep)/輸出衰減(Attn)(16
	2.0	飛後頻準少進設是(FStep)/輔山袋佩(Attil)(■ 및 ■)	10
	2.7	振幅(AMP)、位移量(OFS)和方波工作週期(PWH)(「PWHISQUI」)。	17
	2.1	が特性(Tivit) 位列多重(OTS)/行列(文工下) 過機(Tivit) (Timedat 文 一)	1/
	2.8	觸發(TRG)/閘極(GAT)、相位移動(PSK)/頻率移動(FSK)(_PSK_FSK_)	20
		Counter	
	2.0	輔助函數(Sub Func)(23
	2.9	, , , , , , , , , , , , , , , , , , , ,	
	2.10	操作小記	28

1.1 一般說明

台灣百科精密儀器股份有限公司產品 FG 700S/F 系列是高品質的直接數位合成(DDS)函數信號產生器,低噪音與低失真。結合直接數位合成科技,FG 700S/F 系列產生高精確與穩定的頻率,適合您測試的精準需求。內建的觸發/閘極函數讓您可由外部或內部控制波形的產生,PSK 和 FSK 的功能可讓您在實驗室或通訊實驗時產生數位調變的波形。而 FG 700F 系列新增了調幅/調頻(AM/FM)模組、頻率記數器(Counter)等功能,讓產品功能更加的完整。

1.2 主要功能

- 直接數位合成函數信號產生器
- ▶ 正弦波、方波、三角波、脈衝波、直流、和同步輸出、上升及下降鋸齒波(700F系列)
- ▶ 超低噪音和失真(即使在 1mV 以下)
- ➤ PSK 和 FSK 模組
- 線性或對數掃描函數的數位設定
- ▶ 觸發和閘極函數
- ▶ 調幅/調頻(AM/FM)模組(700F系列)
- ▶ 頻率記數器(Counter) (700F系列)

1.3 實體描述

FG 700S 系列前面板

FG 700F 系列前面板

FG 700S/F 系列後面板

- 1 液晶顯示
- 2 鍵盤
- 3 方波工作週期調整開關 LED 顯示
- 4 輸出直流位移量開關 LED 顯示
- 5 輸出振幅衰減範圍 LED 顯示
- 6 觸發/閘極 或 PSK/FSK 的外部/內部切換 LED 顯示
- 7 飛梭旋鈕
- 8 把手
- 9 功能輸出 BNC 連結器 (50Ω 輸出阻抗)

- 10 觸發/閘極或 PSK/FSK 的外部輸入 BNC 端子 (CMOS 準位)
- 11 振幅調整鈕
- 12 直流 / 位移量調整鈕
- 13 方波工作週期調整鈕
- 14 同步輸出 BNC 端子 (TTL 準位 50Ω 輸出阻抗)
- 15 電源開關
- 16 可調支架
- 17 通風孔
- 18 保險絲座
- 19 電源輸入口
- 20 機殼接地
- 21 保護性接地
- 22 外部調變輸入(5.5Vp Max)適用於 AM/FM 功能,外部訊號進來不可大於 5.5Vp
- 23 外部頻率輸入(5V rms Max 50Ω) 適用於 Counter 功能,外部訊號進來不可大於 5Vrms
- 24 內部調幅/調頻(AM/FM)調整鈕

1.4 規格

FG 708S 輸出特性

1. 頻率範圍 : 正弦波、方波、脈衝波和同步輸出 : 100mHz ~ 8MHz

:三角波 : 100mHz ~ 1MHz

2. 頻率解析度 : 100mHz 或 6 位數顯示

3. 輸出阻抗 : 50Ω ±5%

4. 振幅 : 1mV ~ 20Vp-p (開路)

: 0.5mV ~ 10Vp-p (50Ω 負載)

5. 振幅解析度 :

10mV@0.1V~9.99V ,1mV@10mV~99mV ,0.1mV@1mV~9.9

mV,0.01mV@0.90mV~0.99mV(依衰減範圍而定)

6. 振幅準確度 : 通常 1%(在 1KHz 9Vp-p 正弦波 50Ω 負載條件下)

7. 輸出衰減 : 0db、-20db、-40db 和-60db

8. 主輸出自我保護 : 主輸出短路保護

逆電壓保護(低於20V峰值)

9. 直流位移量和輸出 : 開路時 ±10V;50Ω 負載時 ±5V

10. 直流輸出解析度 :

10 mV = 9.99 V, 1 mV = 9.9 mV, 0.1 mV = 9.9 mV, 0.01 mV = 9.9 mV, 0.01 mV = 9.9 mV

±0.99mV(依衰減範圍而定)

11 直流輸出精確度 : 1% ±5 counts (振幅旋鈕在最大位置條件下)

12. 正弦波諧波失真 : 直流 ~ 100KHz < -55dBc typical

: 100KHz ~ 1MHz < -45dBc typical : 1MHz ~ 8MHz < -35dBc typical

13. Spurious(非諧波) : DC ~ 1MHz < -55dBc typical

14. 總諧波失真 : DC ~ 100KHz < 0.3%

15. 方波 : 上升/下降時間 ≤ 15nS (10Vp-p @ 50 Ω 負載)

: 過衝< 5% Vp (10Vp-p @ 50Ω 負載)

16. 工作週期(類比式調整) : 頻率範圍 : 100mHz ~ 8MHz

:振幅 : 0 ~ 10V / 0 ~ -10V / ±10V

:調整範圍 : 100mHz ~ 5MHz : 20% ~ 80%

 $5MHz \sim 8MHz$: $40\% \sim 60\%$

17. 三角波線性度 : 99% (到 100KHz)

18. 掃描 (線性/對數) : 起始頻率、終止頻率和頻率間隔設定

> :往上、往下和上下交替 :掃描型熊

:頻率範圍 : 100mHz ~ 8MHz 19. 同步輸出

> :輸出値 :低準位≤0.6V @ 50Ω

> > : 高準位≥1V @ 50Ω

: 輸出阻抗 : 50Ω

模組特性

1. FSK : 功能 :正弦波、方波、三角波

> :頻率範圍 : 100mHz ~ 8MHz :內建 : 400Hz / 1000Hz

:來源 :內建/外部

2. PSK :功能 :正弦波、方波、三角波

> :頻率範圍 : 100mHz ~ 8MHz : 0.0000~360.0 度 :相位設定 : 400Hz / 1000Hz : 內建

:內建/外部 :來源

觸發/閘極特性

1. 觸發 :來源 : 手動(飛梭旋鈕觸發) / 外部

> :主頻設定 : 100mHz ~ 100KHz

2. 閘控 :來源 :手動(飛梭旋鈕閘控)/外部

> :主頻設定 : 100mHz ~ 8MHz

一般特件

1. 電源 :交流 115V / 230V ±10%, 50Hz / 60Hz

2. 溫度 :0°C~40°C(操作溫度)

: -20°C~70°C(儲存溫度)

3. 保險絲 :AC115V 用 0.5A/250V;AC230V 用 0.25A/250V

: 80% 3. 相對溼度

4. 尺寸 : 235mm (寬) x 95mm (高) x 280mm(長)

5. 重量 : 3Kg

6. 附件 :交流電源線 \times 1;操作手冊 \times 1;BNC 測試線 \times 1

FG 710F/720F 輸出特性

1. 頻率範圍 :正弦波、方波、脈衝波和同步輸出 : 100mHz~10M/20MHz

> :三角波 : 100mHz ~ 1MHz : 鋸齒波 $100 \text{mHz} \sim 20 \text{KHz}$

2. 頻率解析度 : 100mHz 或 6 位數顯示

3. 輸出阻抗 $: 50\Omega \pm 5\%$

4. 振幅 : 1mV ~ 20Vp-p (開路)

: 0.5mV ~ 10Vp-p (50Ω 負載)

5. 振幅解析度

 $10 \text{mV} @ 0.1 \text{V} \sim 9.99 \text{V}, 1 \text{mV} @ 10 \text{mV} \sim 99 \text{mV}, 0.1 \text{mV} @ 1 \text{mV} \sim 9.$

9mV,0.01mV@0.90mV~0.99mV(依衰減範圍而定)

6. 振幅準確度 :通常 1%(在 1KHz 9Vp-p 正弦波 50Ω 負載條件下)

7. 輸出衰減 : 0db、-20db、-40db 和-60db

8. 主輸出自我保護 : 主輸出短路保護 逆電壓保護(低於 20V 峰值)

9. 直流位移量和輸出 : 開路時 ±10V; 50Ω 負載時 ±5V

10. 直流輸出解析度 :

0.01mV@±9.99V ,1mV@±99mV ,0.1mV@±9.9mV ,0.01mV@

±0.99mV(依衰減範圍而定)

11 直流輸出精確度 : 1% ±5 counts (振幅旋鈕在最大位置條件下)

12. 正弦波諧波失真 : 直流 ~ 100KHz < -55dBc typical

: 100KHz ~ 1MHz < -45dBc typical

: 1MHz ~ 10M/20MHz < -35dBc typical

13. Spurious(非諧波) : DC ~ 1MHz < -55dBc typical

14. 總諧波失真 : DC ~ 100KHz < 0.3%

15. 方波 : 上升/下降時間 ≤ 15nS (10Vp-p @ 50Ω 負載)

: 過衝< 5% Vp (10Vp-p @ 50Ω 負載)

16. 工作週期(數位式) : 頻率範圍 : 200mHz ~ 20KHz

: 20KHz ~ 400KHz

:振幅 : 0 ~ 10V / 0 ~ -10V / ±10V

:調整範圍 : 200mHz ~ 20KHz: 0.1% ~ 99.9%

: 20KHz ~ 400KHz : 2% ~ 98%

17. 三角波線性度 : 99% (到 100KHz)

18. 掃描(線性/對數) : 起始頻率、終止頻率和頻率間隔設定

: 掃描型態 : 往上、往下和上下交替

19. 同步輸出 : 頻率範圍 : 100mHz ~ 10M/20MHz

:輸出値 :低準位≦0.6V @ 50Ω

:高準位≥1V @ 50Ω

: 輸出阻抗 : 50Ω

模組特性

1. FM : 調變 : 正弦波、方波、三角波

: 頻率: 100mHz ~ 10KHz: 峰值誤差: 4~5% 最大的頻率

:調變源

: 內建: 400Hz / 1000Hz 正弦波: 外接: 最大 5.5Vpeak 的任何波形

2. AM : 載波 : 正弦波、三角波

:調變源

: 內建: 400Hz / 1000Hz 正弦波: 外接: 最大 5.5Vpeak 的任何波形

:調變深度 : 0% ~ 100% ±5%

3. FSK : 波形選擇 : 正弦波、方波、三角波

:頻率範圍 : 100mHz ~ 10M/20MHz

: 內建: 400Hz / 1000Hz: 調變源: 內建 / 外接

4. PSK : 波形選擇 : 正弦波、方波、三角波

:頻率範圍 : 100mHz ~ 10M/20MHz

 : 相位設定
 : 0.0000 ~ 360.0 度

 : 內建
 : 400Hz / 1000Hz

:調變源 : 內建 / 外接

觸發/閘極特性

1. 觸發 : 手動(飛梭旋鈕觸發)/ 外部

:主頻設定 : 100mHz ~ 100KHz

2. 閘控 : 來源 : 手動(飛梭旋鈕閘控) / 外部

:主頻設定 : 100mHz ~ 10M/20MHz

頻率計數器

量測範圍精準度 :頻率範圍 4Hz to 100MHz,精準度:±5 counts

解析度 : 7 位 或(99.9999)

低通濾波器(LPF) : 手動模式

基本時間穩定度 : 50MHz ± 25ppm(23.5 ±5℃) 也可選購 TCXO

輸入準位衰減 : 0db、-20db

靈敏度 : 標準 4Hz~50MHz/-20dbm @50Ω Typical

: 50MHz~80MHz/-10dbm @50 Ω Typical

:80MHz~100MHz/-5dbm @50Ω Typical 一般特性

1. 電源 : 交流 115V / 230V ±10%, 50Hz / 60Hz

2. 溫度 : 0°C~40°C (操作)

:-20°C~70°C(儲存)

3. 保險絲 : AC115V 用 0.5A/250V;AC230V 用 0.25A/250V

3. 相對溼度 : 80%

4. 尺寸 : 235mm (寬) x 95mm (高) x 280mm(長)

5. 重量 : 3Kg

6. 附件 : 交流電源線 × 1;操作手冊 × 1; BNC 測試線 × 1

2 操作

2.1 旋鈕和按鍵

鍵盤和按鈕	功能
	右鍵(FG 700S/F 系列)
	1. 轉換到下一選項。
	2. 在設定頻率時,游標不顯示的狀態下,按一下則頻率增加 10 倍。
	3. 在設定頻率時,轉動飛梭,則游標顯示出來,按一下則游標向右位移一位。
Func	函數鍵(FG 700S 系列)
	選擇 1.正弦波、2.方波、3.三角波、4.直流的輸出。
Duty Func	函數鍵(FG 700F 系列)
Func	選擇 1.正弦波、2.方波、3.三角波、4.上升鋸齒波、5.下降鋸齒波、6.直流的輸
	出。
Sweep	掃描鍵(FG 700S 系列)
	掃描選單來選擇和設定 1.線性(LIN) 頻率掃描、2.對數(LOG)頻率掃描。
Att	掃描鍵(FG 700F 系列)
Sweep	掃描選單來選擇和設定 1.線性(LIN) 頻率掃描、2.對數(LOG)頻率掃描。進入計
	數器(Counter)功能時,此鍵所代表的是選擇是否需要衰減外部頻率。
Duty Att Func Sweep	兩鍵同時按下(FG 700F 系列)
Func Sweep	快速進入方波的工作週期 DTY%的設定畫面,以飛梭(Rotary)調整%。但是不可
	調整頻率,若需調整頻率,請依照 2.8 章節來操作。
Fstep / Attn	頻率步進 / 衰減鍵(FG 700S 系列)
	1. 使用衰減選單來改變衰減的倍率,有 OdB、20dB、40dB、60dB 可以選擇。
	2. 使用頻率步進選單來選擇和設定步進函數。
	頻率步進 / 衰減鍵(FG 700F 系列)
LPF	1. 使用衰減選單來改變衰減的倍率,有 OdB、20dB、40dB、60dB 可以選擇。
Fstep / Attn	2. 使用頻率步進選單以選擇和設定步進函數。
	3. 進入 Counter 功能時,此鍵所代表的是切換是否使用低通濾波器,來過濾外
	部頻率的功能。
	左鍵(FG 700S/F 系列)
	1. 轉換到上一選項。
	2. 在設定頻率時,游標不顯示的狀態下,按一下則頻率衰減 10 倍。
	3. 在設定頻率時,轉動旋鈕,則游標顯示出來,按一下則游標向左位移一位。
r AMP / OFS	振幅 / 直流位移量(FG 700S 系列)
	選擇顯示波形的 1.振幅、2.直流位移量、3.工作週期(只有在方波的模式下才會
L PWH(SQU) ♣J	出現)。
AMP / OFS	振幅 / 直流位移量(FG 700F 系列)
	選擇顯示波形的 1.振幅、2.直流位移量。
TRGGAT م	觸發 / 閘極和 PSK / FSK 鍵(FG 700S/F 系列)
	1. 選擇觸發 / 閘極選單來選擇和設定觸發 / 閘極功能。
L _{PSKFSK} ₄J	2. 使用 PSK/FSK 選單以選擇和設定 PSK/FSK 函數。
Sub Func	輔助函數鍵(FG 700S 系列)
522.4	使用輔助函數選單以選擇和設定 1.同步輸出、2.方波的工作週期(只有在方波的
	模式下才會出現)、3.直流位移量函數。
	·

Counter Sub Func	輔助函數鍵(FG 700F 系列) 使用輔助函數選單以選擇和設定 1.計數器功能(Counter)、2.同步輸出、3.方波的 工作週期(只有在方波的模式下才會出現)、4.直流位移量函數、5.調幅(AM)功 能、6.調頻(FM)功能。
Pulse Width	飛梭旋鈕(FG 700S/F 系列) 1. 順時鐘針方向轉換到下一選擇。 2. 逆時鐘方向轉換到上一選擇。 3. 在頻率編輯時,順時鐘方向轉動以增加設定頻率。 4. 在頻率編輯時,逆時鐘方向轉動以減少設定頻率。 5. 游標顯示於頻率編輯時,按飛梭一下以消除游標顯示。 6. 在飛梭觸發/閘極函數中,按飛梭一下來產生觸發/閘極信號。
	工作週期調整鈕(FG 700S 系列) 調整方波的工作週期。操作方式請參考 2.8 章節。
DC / Offset	直流/位移量調整鈕(FG 700S/F 系列) 1. 當輸出波形設在直流時,就可以調整直流量。 2. 輸出位移量開啓時,調整位移量,操作方式請參考 2.8 章節。
Amplitude	輸出振幅調整鈕(FG 700S/F 系列) 調整輸出波形振幅,當進入設定振幅的畫面時,調整此鈕來設定。
INT AM/FM	內部 調幅/調頻 調整鈕(FG 700F 系列) 調整內部的 AM/FM 調變指數。請參考 2.11 章節。

2.2 開機畫面

插上電源、開啟函數信號產生器。

FG 700S 系列開機畫面

FG 700F 系列開機畫面

- 1. 同時按下 □ 和 □ 就會重新開機,讓儀器回復到基本值-20dB 衰減振幅的 1KHz 正 弦波輸出。
- 2. FG 700S 系列請同時按 PWHISQUI 和 PSK.FSK 鍵來關掉鍵盤的嗶嗶聲。
- 3. FG 700F 系列請同時按 和 PRK...FSK 鍵來關掉鍵盤的嗶嗶聲。

警告

請確認儀器的電源,若以較高電壓(230V)用在115V產生器上,可能損壞儀器、弄斷保險 絲。請用下述規格替換。

115V 函數產生器 : 0.5A/250V 保險絲(慢斷) 230V 函數產生器 : 250mA/250V 保險絲(慢斷)

2.3 調整頻率

2. 轉動 讓游標出現,以 或 鍵向左或向右移動游標至想要改變的頻率位 數,轉動 來增加或是減少頻率。按 一下可取消游標顯示。

FRQ: 1.0100 KHz

TRG AMP: 1.00V SIN

SYN

2.4 選擇波形(Func)(「可求」」)

輸出正弦波

F R Q: 1.0000 KHz

TRG A MP: 1.00V SIN

SYN

輸出方波

FRQ: 1.0000 KHz

TRG AMP: 1.00V SQU

SYN

輸出三角波

FRQ: 1.0000 KHz

AMP: 1.00V TRI

SYN

輸出上升鋸齒波

F R Q: 1 . 0 0 0 0 KHz

A MP: 1 . 0 0 V RUP

SYN

輸出下降鋸齒波

輸出直流電壓

FRQ: - - - - - KHz

LEV: -23 mV DC

SYN

2.5 使用頻率掃描(Sweep)功能(□或□)

L I N: 4 . 0 0 0 2 K H z

TRG GAT S WE E P L I N S W1

SYN

2. 承上;選擇線性(LIN)或對數(LOG)之後,再按一下」或」 鍵選擇至 SW2 掃描型態如下圖,共有下列三種型態可選擇。TSW UP 掃描頻率由低到高(如圖四);TSW UPDOWN 掃描頻率由低到高再由高到低循環(如圖五);TSW DOWN 掃描頻率由高到低(如圖六)。

TRG GAT 3. 承上;三種型熊擇一之後,再按 鍵選擇至掃描的起始頻率設定如下圖, 可設定掃描的起始頻率。使用 🔘 或 🔾 鍵或 來設定頻率。 掃描起始頻率設定 S T A: 5 0 . 0 Ηz SweStarSet S W3 4. 承上; 再按 鍵選擇至掃描的結束頻率設定如下圖,可設定掃描的結束頻 率。使用 □ 或 □ 鍵或 來設定頻率。 掃描結束頻率設定 STO: 8.00000 MHz SweStopSet S W4 Att 5. 承上;若一開始選擇線性(LIN),再按 鍵選擇至設定線性(LIN)掃描步進 頻率設定如下圖,可設定線性掃描的間隔頻率。使用〔 頻率。 線性掃描步進頻率設定 LIN: 10.0000 K H z TRG GAT S W 5 SweStepSet 6. 承上;若一開始選擇對數(LOG),再按 鍵選擇至設定對數(LOG)掃描步進 比值設定如下圖,可設定對數掃描的比值。使用 🔘 或 🥥 鍵或 對數掃描步進比值設定 LOG: 10.0 FSK PSK

SweStepSet

S W6

實際對數掃描比值可由以下方程式求得:

實際比值 =
$$\frac{F_{n+1}}{F_n}$$
 = 1 + 對數掃描步進比值設定 1000

例如,若對數掃描步進比值設在 5,而 F_n 是 1000Hz,則實際比值是:

而

 F_{n+1} = 實際比値× F_n = 1.005×1000Hz = 1005Hz

 F_{n+2} = 實際比値× F_{n+1} = 1.005×1005Hz = 1010.025Hz

 F_{n+3} = 實際比値× F_{n+2} = 1.005×1010.025Hz = 1015.075125Hz

註:對數掃描步進比值設定的最大值是10.0,而最小值是0.0001。

對數掃描時間設定

掃描時間設定爲設定前後兩個掃描頻率之間的延遲,其值可以爲 1 到 1000 之間的任一值,較大的值將會使得兩個掃描頻率之間的延遲較長。

線性掃描

TRG GAT	F		_			0 D		 H z T 1		FSK PSK
								S١	ſΝ	
Fstep	PF / At	tn –								

頻率步進預設值

	F	R	Q	:	1		0	0	0	0		K	Н	Z	
TRG GAT		o	F	F	S	E	T		o	F	F	\mathbf{S}	В	3	FSK PSK
														SYN	

圖八:直流位移量顯示

	FRQ: 1.0000 KHz TRG OFS: .00mV SIN SYN
3.	調整 FG 700S 系列工作週期(PWH),一、需選擇方波輸出,二、按 鍵兩次;畫面顯示
	至 PWH OFF(SB2);再用 或 鍵或 來選擇是要哪一種輸出;共有三種模
	式:PWH POS(正脈衝)、PWH NEG(負脈衝)、PWH BOTHON(正、負脈衝),選擇之後再按下「PWHISQUI」
	就會出現下圖的設定畫面,再轉動的旋鈕就可改變工作週期(PWH)的%,若想改變
	頻率請用 🔾 或 🔾 鍵或 來調整。
	工作週期顯示
	FRQ: 1.0000 KHz TRG PWH: 50 % SQU FSK PSK SYN
	Counter
4.	調整 FG 700F 系列工作週期(PWH),一、需選擇方波輸出,二、按 Sub Func 鍵四次;畫面
	顯示至 PWH OFF(SB4);再用
	飛梭旋鈕來輸出單一的脈衝),選擇之後再按下 Sub Func 就會出現圖九(SB5)的設定畫面,Counter
	再用 D 或 D 鍵或 來調整 PWH 頻率,頻率調整完之後再按下Sub Func 就會出現
	圖十(SB6)的設定畫面,再用

5. FG 700F 系列若要快速進入 DTY%的工作週期設定畫面,只需要同時按下 + 就可以看到圖十(SB6)的設定畫面,方便快速的設定 DTY%的工作週期(但是不能設定頻率,要設定頻率的話必須重複上述步驟)。

圖九:工作週期頻率設定畫面

圖十:工作週期DTY%設定畫面

註:工作週期顯示只有在選擇方波時才看得到。

6. FG 708S 工作週期%輸出如下表:(低於或高於表中%,就會顯示 BELOW 或 OVER)

FG 708S 頻率範圍 顯示値	0.1Hz ~ 5.99999MHz	6.00000MHz ~ 8.00000MHz
BELOW	< 18%	< 34%
OVER	> 81%	> 75%

7. FG 700F 系列工作週期 :頻率範圍 :200mHz ~ 20KHz

: 20KHz ~ 400KHz

:振幅 $: 0 \sim 10V / 0 \sim -10V / \pm 10V$

:調整範圍 : 200mHz ~ 20KHz: 0.1% ~ 99.9%

: 20KHz ~ 400KHz : 2% ~ 98%

2.8 觸發(TRG) / 閘極(GAT)、相位移動(PSK)/頻率移動(FSK)

1. 按 PSK_FSK 鍵進入觸發 / 閘極選單(TM2)如下圖。

接 可選擇 1. 關掉觸發(TRG OFF)、2. 外部觸發(EXT TRG)、3. 飛梭觸發(ROTP TRG)、4. 外部閘極(EXT GAT)、5. 飛梭閘極(ROTP GAT),其各對應圖如下。

關掉觸發(TRG OFF)。

外部觸發(EXT TRG):經由外部輸入頻率來當作觸發源,輸入端為 Trig In 的 BNC 端子。

飛梭觸發(ROTP TRG):按飛梭鍵一下,輸出一個觸發訊號。

飛梭觸發

外部閘極(EXT GAT):經由外部輸入頻率來當作閘極輸出。

外部閘極

飛梭閘極(ROTP GAT):按下飛梭鍵來當作一連串閘極輸出。

飛梭閘極

2 按 PSK_FSK 鍵面次進入 PSK/FSK 模組選單(TM3)加下圖。

關掉 PSK/FSK 模組選單(PFM OFF):

PFM Psk1K:經由內部產生的 PSK 1KHz 的基頻輸出加入到原來的載波上;如下圖,基頻的頻率為 1KHz 再加上 10KHz 的載波,來觀察相位移動的變化。

PFM Psk1K

PFM Psk400:經由內部產生的 PSK 400Hz 的基頻輸出加入到原來的載波上;如下圖,基頻的頻率爲 400Hz 再加上 10KHz 的載波,來觀察相位移動的變化。

PFM Psk400

PFM PskExt:經由外部的輸入頻率來當作加入的基頻,但是加入的基頻,不能大於原來的載波。外部輸入頻率的輸入端爲 Trig In 的 BNC 端子。

PFM PskExt

若選擇了 PSK, 再接一次 鍵進入 PSK 相位設定選單。接 可 或 硬或 來 設定 PSK 相角。

PSK 相角設定

註: PSK 相位設定(DEG)範圍是 0~360。

PFM Fsk1K:選擇內部產生的 1KHz 做為 FSK 的基頻;如下圖。

PFM Fsk400: 選擇內部產生的 400Hz 做為 FSK 的基頻; 如下圖。

PFM FskExt:選擇經由外部的輸入頻率來當作 FSK 的基頻。外部輸入頻率的輸入端為 Trig In 的 BNC 端子。

若選擇了 FSK,再按一次 鍵,進入 FSK 頻率記存 1 設定選單。此頻率記存設定 FSK 基頻爲正半週時之輸出頻率。

FSK 頻率1 設定

FRQ: 10.000 KHz
FSK Frq1Set TM4 FSK PSK

承上;再按一次「PSK_FSK」鍵,進入 FSK 頻率記存 0 設定選單。此頻率記存設定 FSK 基頻爲負半週時之輸出頻率。

註:

▶FG 700S/F 系列: FSK 頻率記存 1 設定範圍是 12.0Hz 到最大輸出頻率。FSK 頻率記存 0 設定 範圍 0.100Hz 到最大輸出頻率。

▶FSK 頻率記存 1 和 0 最多只到 12.0000MHz。

2.9 輔助函數(Sub Func)(□或 Sub Func)

關掉同步輸出

當同步輸出 ON 時,在 Sync Out 的 BNC 輸出端子,則會產生方波的同步訊號。

開啓同步輸出

方波工作週期開關(PWH OFF):用 □ 或 □ 鍵或 來選擇開關設定。 有三種模式: PWH POS(正脈衝輸出)、PWH NEG(負脈衝輸出)、PWH BOTHON(正、負脈衝輸出)

關掉方波工作週期調整

方波工作週期輸出正脈衝

方波工作週期輸出負脈衝

方波工作週期輸出正、負脈衝

註:僅在輸出選擇方波時,方波工作週期調整開關選擇才會在 」中出現。 直流輸出位移量開關(OFFSET OFF):用 □ 或 □ 鍵或 來選擇開關設定。 當直流輸出位移量 OFF 時,則輸出波形不會有直流輸出位移。 關掉輸出位移量 FRQ: 1.0000 KHz OFFSET S B 3 OF F 當直流輸出位移量 ON 時如下圖。 開啓輸出位移量 FRQ: 1.0000 KHz OFFSET 0 NS B 3 DC / Offset 鍵回到下面的書面,轉動 就可以調整直流位移量。 直流位移量顯示 F R Q: 1. KHz OFS: Counter FG 700F 系列:按Sub Func 鍵可選擇 1.計數器功能(ATT:+ LPF:-)、2.同步輸出開關(SYN OFF)、 3.直流輸出位移量開關(OFFSET OFF)、4.工作週期調整開關(PWH OFF)(只有在方波的情形下才會 顯示,否則不顯示出來)、5.調幅(AM)、6.調頻(FM)。 Counter 計數器功能(ATT: + LPF: -):按一下Sub Func鍵,進入圖十一畫面(計數器功能,由 Ext Freq In 的 BNC 端子輸入頻率進去), ATT: 代表外部進來的頻率是否要衰減, +代表衰減 20dB 也就是衰減 10 倍; -代表衰減 0dB 也就是不衰減, 要如何切換呢?按 ┛鍵就可以切換+、 - · LPF:代表低通濾波器,+代表開啟低通濾波器;-代表關閉低通濾波器,要如何切換 LPF Fstep / Attn 鍵就可以切換+、-。在同一畫面按下 J鍵可進入圖十二書面,它可量測外 部進來頻率的工作週期 DUTY CYCLE %。 圖十一

Counter

同步輸出開關(SYN OFF):按Sub Func鍵兩次,進入SB1 畫面如下圖,爲同步輸出開關(SYN OFF):

關掉同步輸出

當同步輸出 ON 時,在 Sync Out 的輸出端子,則會產生方波的同步訊號。

開啓同步輸出

Counter

直流輸出位移量開關(OFFSET OFF):按Sub Func鍵三次,進入SB3 畫面如下圖,爲調整直流位移量

開關(OFFSET OFF):用 可 或 如 鍵或 來選擇開關設定。當直流輸出位移量 OFF 時,則輸出波形不會有直流輸出位移。

關掉輸出位移量

當直流輸出位移量 ON 時如下圖。

開啓輸出位移量

直流位移量顯示

F R Q: 1 . 0 0 0 0 K H z

TRG
GAT OF S: . 0 0 m V S I N

SYN

Counter

圖十三:關掉方波工作週期調整

	F	R	Q :	1		0	0	0	0	K	Н	Z	
TRG GAT		P	WH		o	F	F			S	В	4	FSK PSK
												SYN	

圖十四:方波工作週期輸出正脈衝

	F	R	Q	:	1		0	0	0	0]	K	Н	z	
TRG GAT		P	W	H		P	0	S			5	5	В	4	FSK PSK
														SYN	

圖十五:方波工作週期輸出負脈衝

	F	R	Q :	1		0	0	0	0	F	<	Н	Z	
TRG GAT		P	WH		N	e	g			S	5	В	4	FSK PSK
													SYN	_

圖十六:方波工作週期輸出正、負脈衝

	R	Q :	1		0	0	0	0	K	Н	\mathbf{Z}	
TRG GAT	P	WH		B	0	t	h	O n	\mathbf{S}	В	4	FSK PSK
											SYN	

圖十七:方波工作週期輸出單一脈衝

	R	Q :	1		0	0	0	0	КНг	
TRG GAT	P	WH	[P	u	l	S	e	S B 4	FSK PSK
									SYN	

註:僅在輸出選擇方波時,方波工作週期調整開關選擇才會在□□中出現。

若要快速進入 DTY%的工作週期設定畫面,只需要同時按下 就可以看到如圖十九的設定畫面,方便快速的設定 DTY%的工作週期(但是不能設定頻率,要設定頻率的話必須重複上述步驟)。

Duty

Att

圖十八:工作週期頻率設定畫面

	P V	W]	H	:	1		0	0	0	0		K	H	Z	
TRG GAT	5	5 (0	0		0				u	S	\mathbf{S}	В	5	FSK PSK
														SYN	

圖十九:工作週期DTY%設定畫面

註:工作週期顯示只在開啟輔助函數中的方波工作週期調整時才看得到。

Counter

AM(調幅):它只能產生正弦波、三角波的調幅波,所以要是選擇方波是沒辦法看的到 AM 功能。

操作方式:一、按 Sub Func 鍵直到選擇到圖二十的畫面,如下圖。再用 D 或 D 鍵或 來設定,共有三種模式選擇:1.AM 400Hz(內部產生 400Hz)如圖二十一、2.AM 1000Hz(內部產生 1000Hz)如圖二十二、3.AM EXTERN(由外部輸入頻率進來,經由 Ext MOD In 的 BNC 輸出端子) 如圖二十三。

圖二十:調幅輸出

				FM
TDC		1 . 0 0 0 0	KHz	FM AM FSK PSK
TRG GAT	A M	OF F	S B 3	PSK
			SYN	

圖二十一:400Hz 調幅輸出

	•	1 . 0 0 0 0	KHz • FM AM FSK PSK
TRG GAT	A M	4 0 0 H z	S B 3 FSK
			SYN

圖二十二:1000Hz 調幅輸出

圖二十三:外部頻率輸入調幅輸出

	F R Q:	1.0000	KHZ • FM AM FSK PSK
TRG GAT	A M	EXTERN	S B 3 FSK
			311

FM(調頻):它能產生正弦波、方波、三角波的調頻波。

圖二十四:調頻輸出

圖二十五: 400Hz 調頻輸出

圖二十六: 1000Hz 調頻輸出

圖二十七:外部頻率調頻輸出

		1 . 0 0 0 0	KHz FM
TRG GAT	F M	EXTERN	S B 7 FSK
			SYN

2.10 操作小記

1. 量測波形:

- FG 700S/F 系列主輸出阻抗是 50Ω ,因此示波器輸出阻抗必須和 50Ω 匹配。連結 FG 700S/F 系列主輸出和示波器輸入端,使用同軸電纜特性阻抗為 50Ω 。
- 爲儀器最佳效果,盡量減少電纜長度和電纜雜散電容很重要。
- 因為函數產生器輸出為寬頻信號,包含發射和接收器的每一連結路徑必須和 50Ω阻抗匹配,以避免反射和測量誤差。並且使用合適頻寬的示波器,以達到最佳的量測效果

2. 輸出電壓定義:

• 因為 FG 700S/F 系列輸出阻抗是 50Ω ,若負載阻抗遠大於 50Ω ,會導致函數產生器輸出電壓等於開路的負載電壓,若負載為 50Ω ,則負載電壓降為函數產生器輸出開路電壓的一半。

3. 輸出小信號:

• 若要輸出小信號,建議您爲函數產生器輸出添加衰減器,例如-20 dB,來調整所要的輸出值,此爲得到最佳信號/雜訊比的方法。

4. 輸出大信號:

● 通常在開路時,函數產生器輸出爲 20Vp-p,輸出電流限制在 100mA 以下。若有特殊應用需要高電壓和大電流輸出,就需要外部放大器。

APPENDIX EXAMPLE: DUTY CYCLE ADJUST FOR_2Hz

Min_DUTY_ADJ 0.5mS

Min_DUTY_ADJ 0.5mS

Cal: 1/(2(Hz)*1000)=0.5mS

Cal: 1/(2(Hz)-0.5mS=0.4995S

- (A): Minimum Resolution Of Width (MROW)
- For Example: MROW OF 2Hz=1/2Hz*1000=0.5mS
- =1/(setting Frequency(Hz)*1000)
- (B): When MROW>1us Minimum duty Is MROW
- (C) :When MROW≤1us Minimum duty Is 1us
- (D) : Maximum adjustment Of Width (MAXW) =1/(setting Frequency(Hz))-MROW

For Example: MAXW OF 2Hz=1/2Hz-0.5mS=0.4995S

台灣百科精密儀器股份有限公司

22204新北市深坑區北深路三段250號3樓 Tel:+886-2-77416699 Fax:+886-2-77416686 http://www.bkprecision.com.tw

e-mail:bktaiwan@bkprecision.com.tw