1. FORM A GENE-SPECIFIC SNP SET

$\{SNP_1, SNP_2, ..., SNP_M\}$

2. ESTIMATE MARGINAL SNP EFECT SIZES

GWAS marginal models

$$Y = SNP_1 \times \beta_1 + e_1$$

$$Y = SNP_2 \times \beta_2 + e_2$$

$$\vdots$$

$$Y = SNP_M \times \beta_M + e_M$$

Estimated effect sizes and SEs

$$\{\hat{\beta}_1, \hat{\beta}_2, \dots, \hat{\beta}_M\}$$

 $\{\operatorname{SE}(\hat{\beta}_1), \operatorname{SE}(\hat{\beta}_2), \dots, \operatorname{SE}(\hat{\beta}_M)\}$

SNP Z-statistics

$$Z_j = \hat{\beta}_j \times SE(\hat{\beta}_j)^{-1}$$
$$\mathbf{z} = (Z_1, Z_2, ..., Z_M)^{\mathsf{T}}$$

2. ESTIMATE MARGINAL XQTL **EFECT SIZES**

xQTL marginal models

(xQTL trait L_k ; e.g., gene expression in tissue k)

$$L_k = SNP_1 \times \mu_{k1} + \epsilon_{k1}$$

$$L_k = SNP_2 \times \mu_{k2} + \epsilon_{k2}$$

$$\vdots$$

$$L_k = SNP_M \times \mu_{kM} + \epsilon_{kM}$$

Estimated effect sizes and SEs

$$\{\hat{\mu}_{k1}, \hat{\mu}_{k2}, ..., \hat{\mu}_{kM}\}\$$

 $\{SE(\hat{\mu}_{k1}), SE(\hat{\mu}_{k2}), ..., SE(\hat{\mu}_{kM})\}$

xQTL Z-statistics

$$V_{kj} = \hat{\mu}_{kj} \times SE(\hat{\mu}_{kj})^{-1}$$

$$\mathbf{v}_{1} = (V_{11}, V_{12}, ..., V_{1M})^{T}$$

$$\vdots$$

$$\mathbf{v}_{K} = (V_{K1}, V_{K2}, ..., V_{KM})^{T}$$

4. PERFORM xQTL-INTEGRATED GENE-BASED ASSOCIATION TEST (xGenT)

xGenT hypotheses

$$H_0: \cap_{j=1}^M \beta_j = 0, \qquad H_1: \cup_{j=1}^M \beta_j \neq 0$$

Test statistic *T*

$$T = \mathbf{z}^{\mathsf{T}} \mathbf{L} \mathbf{z}, \qquad \mathbf{L} = \left(\sum_{k=1}^{K} \mathbf{v}_k \mathbf{v}_k^{\mathsf{T}} \right)$$

Null distribution

$$T \mid H_0 \sim \text{Gamma}(\alpha_0, \xi_0)$$

$$\xi_0 = M/\text{trace}(2\mathbf{LRLR}), \qquad \alpha_0 = M\xi_0$$

Test at level α

$$T > \tau^2 \rightarrow \text{Reject } H_0$$

 $T \leq \tau^2 \rightarrow \text{Do not reject } H_0$

xGenT Computational Overview

Input

GWAS summary statistics

rsID Z A1 CHR POS rs1 -1.2 A G 1.4 3 985 rs3 0.6 C 8 6583

Allele-matched LD reference

Subject	rs1	rs2	rs3	•••
ID1	A/A	G/T	C/A	•••
ID2	A/G	G/T	C/C	•••
ID3	G/G	T/T	A/A	
:		:	:	•

xQTL summary statistics

A1 CHR POS -0.1 Α 1 |1223 0.8 G 3 985 С 1.0 8 6583

Tissue 1

rsID Z A1 CHR POS rs1 -5.8 1 1223 Α rs2 4.4 G 3 985 rs3 3.2 С 8 6583

Tissue K

Data preparation

Gene B

 Z_6 Z_7 Z_8 Z_9 Z_9

rs6 rs7 rs8 rs9

Computation

Gene B eqtl_Zb <- cbind(xZb1, xZbK) test b <- gent(Zb, LD = Rb, $xqtl_Z = eqtl_Zb)$

Output

Example for gene A > str(test a) List of 5 \$ pval : num 0.0948 \leftarrow P-value testing xGenT H_0 \$ shape : num 0.523 \leftarrow α_0 (null Gamma rate) : num 0.00388 \leftarrow ξ_0 (null Gamma shape) : num 135 ← M (number of tested SNPs) \$ sigma2 h0: num 34818 \top 2trace(LRLR) (null variance)