Самостоятельная работа 9

Тема. Рекурсивные алгоритмы и их реализация

Цель:

- получить знания и практические навыки по разработке, рекурсивных алгоритмов;
- получить навыки реализации рекурсивных алгоритмов;
- получить умения и навыки в определении асимптотической сложности рекурсивного алгоритма при применении известных методов.

1. Требования к выполнению практической работы

В данной практической работе требуется реализовать два задания. Варианты задач к заданиям в табл. 20.

Первое задание направлено на освоении процесса разработки алгоритма, включающего: определение рекурсивного процесса решения задачи, запись его рекурсивной зависимости, оценка сложности рекурсивного алгоритма подходящим для него методом, реализация алгоритма. В этом задании решается первая задача варианта.

Второе задание направлено на закрепление знаний и умений по разработке и реализации более сложных рекурсивных процессов. В этом задании решается вторая задача варианта.

2. Задание 1

Реализовать рекурсивную функцию для решения первой задачи варианта.

2.1. Требования к выполнению задания 1

- 1. Выполнить разработку и оценить сложность алгоритма, для этого:
- определить, что процесс решения задачи может быть рекурсивным, для этого приведите рекуррентную зависимость процесса;
- определить глубину рекурсии, изменяя исходные данные;
- определить сложность рекурсивного алгоритма, используя метод подстановки и дерево рекурсии;
- проверить возможность применения основного метода оценки сложности рекурсивного алгоритма, если метод допустим, то проверить, что уже полученное вами решение совпадает с решением по этому методу.
- 2. Реализовать рекуррентную зависимость, разработав рекурсивную функцию.

<u>Примечание.</u> При разработке алгоритма принимайте во внимание результат алгоритма. Если алгоритм формирует одно значение простого или ссылочного типа, то его, возможно удобно реализовать как функцию, возвращающую результат.

- 3. Подготовить тесты.
- 4. Разработать программу, демонстрирующую получение решения задачи на подготовленных тестах.
- 5. Оформить отчет.

3. Задание 2

Разработать рекурсивную функцию (функции) для обработки списковой структуры согласно варианту.

3.1. Требования к выполнению задания 2

1. Разработать функцию создания исходного списка.

Для создания списка может быть разработана простая или рекурсивная функция по желанию (в тех вариантах, где не требуется рекурсивное создание списка).

- 2. Разработать рекурсивную функцию (функции), реализующую вторую задачу варианта.
- 3. Оформить отчет.

4. Варианты задач

Таблица 20. Варианты задач к заданиям 1 и 2 практической работы 8

	· · · · · · · · · · · · · · · · · · ·	
$N_{\underline{0}}$	Задачи варианта	
1.	1. Найти наибольший общий делитель двух целых чисел.	
1.	2. Создание и вывод линейного однонаправленного списка из п элементов.	
	1. Дан массив из п элементов целого типа. Найти минимальное значение массива.	
2.	Считать, что оно одно.	
	2. В однонаправленном списке из п элементов найти элемент с заданным	
	значением и вернуть на него указатель.	
3.	1. Определить делится ли число на каждую из своих цифр.	
	2. В двунаправленном списке из п узлов, перевернуть часть списка, начиная с узла	
	с номером р1 до узла с номером р2 (р1<р2).	
	1. Определить является ли текст – палиндромом.	
4.	2. Удалить из связного однонаправленного списка все элементы, равные	
	заданному.	
5.	1. Дан массив из п элементов вещественного типа. Вычислить среднее значение	
	всех элементов массива.	
	2. Создание связного стека из п элементов.	

	•
№	Задачи варианта
6.	1. Сколько квадратов можно отрезать от прямоугольника со сторонами а и в.
0.	2. Удаление стека, реализованного на однонаправленном списке.
7.	1. Найти максимальный элемент в массиве из п элементов.
	2. Создание очереди на однонаправленном списке.
	1. Перевести число из 10-системы счисления в систему с основанием В(1<В<10).
8.	Алгоритм выводит цифры кода в консоль.
	2. Удаление очереди, реализованной на однонаправленном списке.
9.	1. Бинарный поиск элемента в массиве.
9.	2. Создание двунаправленного списка.
10.	1. Вычислить значение цифрового корня для некоторого целого числа N.
	2. Найти в двунаправленном списке количество четных элементов.
11.	1. Вычислить x1(x2+x3)(x4+x5+x6)(x46+x47++x55).
	2. Удаление двунаправленного списка.
	1. Сортировка массива по возрастанию.
12.	2. Создать новый однонаправленный список из исходного однонаправленного
	списка, являющийся перевертышем исходного.
	1. Дана последовательность из N чисел X1,X2,,XN. Вычислить значение
13.	выражения: Xn(Xn+Xn-1)(Xn+Xn-1+Xn-2)(Xn+Xn-1+Xn-2+Xn-3) (Xn+Xn-1+Xn-
13.	2++Х1). Массив не использовать.
	2. Удалить из однонаправленного списка нули.
	1. Дана строка. Выполнить переворот строки (записать наоборот) на ее же месте в
14.	памяти.
17.	2. Определить количество вхождений: положительных, отрицательных, нулевых
	значений в линейный однонаправленный список.
15.	1. Ханойская башня.
13.	2. Удалить двунаправленный список.
	1. Прохождение лабиринта.
16.	2. Определить симметрично ли число, цифры которого последовательно записаны
	в узлах двунаправленного списка.
	1. Проверить баланс скобок в арифметическом выражении, которое передано как
17.	строка.
	2. Найти минимальное значение в однонаправленном списке.
	1. Дано целое число. Найти максимальную цифру десятичного числа.
18.	2. Определить количество узлов однонаправленного списка, содержащих нечетное
	значение.

$N_{\underline{0}}$	Задачи варианта	
	1. Дано целое десятичное число. Добавить цифру в начало числа.	
19.	2. Даны два линейных однонаправленных списка. Определить, равны ли они.	
	Должны совпадать по длине и по значениям узлов одинаковым номером.	
	1. Дано целое число. Определить количество делителей числа.	
20.	2. Дан линейный однонаправленный список. Сформировать новый список, записав	
20.	него четные числа, но в обратном порядке, по отношению к их расположению в	
	исходном.	
	1. Вычислить с заданной точностью ε>0 значение функции у=ех, используя	
	представление ее рядом. Точность считается достигнутой, если очередное	
	слагаемое по модулю меньше є. Гармоничный ряд вычисления:	
21.	y=ex=1+x/1!+x2/2!++xn/n!+	
	2. Дан линейный однонаправленный список. Переформировать его так, чтобы он	
	начинался с узла с заданным номером, а все узлы исходного списка до этого	
	номера разместились после последнего узла и в обратном порядке.	
	1. Вычислить с заданной точностью ε>0 значение функции y=cos(x), используя	
	представление ее рядом. Точность считается достигнутой, если очередное	
	слагаемое по модулю меньше є. Гармоничный ряд вычисления:	
22.	$y=\cos(x)=1-x^{2/2}!+x^{4/4}!+(-1)nx^{2n/(2n!)}+$	
	2. Дан линейный однонаправленный список, значения узлов которого символы, и	
	его длина. Длина списка четное число. Определить содержит ли список слово	
	палиндром.	
	1. Разработать рекурсивную функцию, которая реализует синтаксический	
	анализатор для понятия идентификатор.	
	[letter	
23.	$identifier := \left\{ identifier \left\{ digit \right\} \right\}$	
	$identifier ::= \begin{cases} letter \\ identifier \begin{cases} digit \\ letter \end{cases} \end{cases}$	
	2. Дан линейный однонаправленный список. Сформировать новый список из	
	значений узлов исходного, записывая в него значения в обратном порядке.	
	1. Вычислить количество комбинаций из п разных элементов по т. Количество	
	комбинаций определяется формулой:	
24.	[1, если $m = 0, n > 0$ або $m = n \ge 0$;	
	$C_n^m = \begin{cases} 1, ecлu m = 0, n > 0 a foo m = n \ge 0; \\ 0, ecлu m > n \ge 0; \\ C_{n-1}^{m-1} + C_{n-1}^m u h a u e. \end{cases}$	
	$C_n = 0$, com $m > n \ge 0$,	
	$C_{n-1} + C_{n-1}$ unave.	
	2. Дан линейный однонаправленный список. Вывести значения узлов списка по	
	правилу: сначала все отрицательные, затем все остальные.	

No	Задачи варианта	
25.	1. Дана последовательность натуральных чисел (одно число в строке),	
	завершающаяся числом 0. Определите, какое количество элементов этой	
	последовательности, равны ее наибольшему элементу.	
	2. Дан линейный однонаправленный список, в каждом узле одна десятичная цифра	
	некоторого десятичного числа. Сформировать десятичное число, обратное числу,	
	хранящемуся в списке.	
26.	1. Даны числа а и b. Определите, сколько существует последовательностей из а	
	нулей и в единиц, в которых никакие два нуля не стоят рядом.	
	2. Дан линейный однонаправленный список. Сформировать десятичное число из	
	нечетных цифр списка, включая их в число в обратном порядке.	
27.	1. Дана строка, содержащая только английские буквы (большие и маленькие).	
	Добавить открывающиеся и закрывающиеся скобки по следующему образцу:	
	example -> e(x(a(m)p)l)e . До середины добавляются открывающиеся скобки, после	
	середины – закрывающиеся. В случае, когда длина строки четна, в скобках,	
	расположенных в середине, должно быть 2 символа: card -> $c(ar)d$, но не $c(a()r)d$.	
	2. Дан линейный однонаправленный список из n узлов (n>=3). Удалить последние	
	три узла списка.	
	1. Строки АВАСАВА формируются по следующему правилу. Первая строка — это	
	просто "А" (без кавычек). Каждая последующая строка получается так: берется	
	предыдущая строка, к ней приписывается первая буква, которая в ней не	
	встречается, и потом еще раз предыдущая строка. Соответственно, вторая строка	
28.	получается "А" + "В" + "А" = "АВА", третья строка — "АВА" + "С" + "АВА" =	
	"ABACABA", четвертая — "ABACABA" + "D" + "ABACABA" =	
	"ABACABADABACABA" и т.д. Сформируйте по этому правилу n-ую строку	
	(1<=n<=6).	
	2. Дан линейный однонаправленный список, узлы которого целые числа.	
	Сформировать новый список обратный исходному.	
29.	1. Организовать ввод-вывод последовательности п целых чисел, с применением	
	рекурсии. Числа должны выводится с порядковыми номерами и в том же порядке,	
	в каком производился их ввод. Использование массивов не разрешается.	
	2. Дан линейный однонаправленный список. Сформировать новый список из	
	нечетных значений исходного. Порядок следования значений в узлах нового	
	списка соответствует порядку следования значений в исходном списке.	

No	Задачи варианта	
30.	1. Составить программу, которая, используя рекурсивную функцию, находит	
	значение данной функции для любых целых неотрицательных аргументов n и a:	
	$R(n,a) = \underbrace{\sqrt{a + \sqrt{a + \dots + \sqrt{a}}}}_{\mathbf{n-kophe}reve{\mathbf{n}}}$	
	2. Дан линейный однонаправленный список. Реализовать функцию, реализующую	
	удаление узла из списка по алгоритму клавиши BackSpace.	
31.	1. Определение корней уравнения (например, такого y=x ² -2) на заданном отрезке	
	методом половинного деления с заданной точностью ε>0. Для простоты будем	
	считать, что отрезок задается таким образом, что корень на нем есть (иначе	
	основная программа должна содержать проверку наличия корня).	
	Метод половинного деления. Корень расположен между серединой отрезка и тем	
	концом, значение функции в котором по знаку не совпадает со значением функции	
	в середине отрезка. Если абсолютная величина функции в середине отрезка не	
	превышает заданного значения точности, то координата середины отрезка и есть	
	корень.	

5. Структура отчета

Титульный лист.

Оглавление.

- 1. Задание 1.
 - 1.1. Условие задания и задачи варианта.
 - 1.2. Описание алгоритма (представить рекуррентную зависимость).
 - 1.3. Выполнение анализа сложности алгоритма.
 - 1.3.1. Приведите рекуррентное соотношение для алгоритма.
 - 1.3.2. Приведите процесс получения решения рекуррентного соотношения методами подстановки и дерево рекурсии.
 - 1.3.3. Обоснуйте применение основной теоремы для получения (или не получения) решения рекуррентного соотношения. Если применима теорема для представленного соотношения, то опишите процесс получения решения.
 - 1.4. Тесты.
 - 1.5. Коды используемых функций.
 - 1.6. Код программы и скриншоты результатов тестирования.
- 2. Задание 2.
 - 2.1. Условие задания и задачи варианта.

- 2.2. Тесты.
- 2.3. Коды используемых функций.
- 2.4. Код программы и скриншоты результатов тестирования.
- 3. Привести выводы по полученным знаниям и умениям.
- 4. Список информационных источников, которые были использованы при выполнении задания.

6. Примеры реализации рекурсивных алгоритмов

Задача 1. Дана последовательность целых чисел, заканчивающаяся нулем. Вывести сначала положительные, а затем отрицательные значения.

Рекурсивная зависимость, представляющая алгоритм.

Такое определение алгоритма говорит об его рекурсивной природе.

$$rec1(\ \) = egin{cases} ext{Ввод в переменную n числа последовательности} \ & ext{Вывод n и шаг в рекурсию при $n > 0$} \ & ext{Шаг в рекурсию и вывод n при $n < 0$} \ & ext{Выход из рекурсии при $n = 0$} \end{cases}$$

Задача 2. Вычислить xⁿ. При x=0 и n<0 результат INFINITY. Рекурсивная зависимость, представляющая алгоритм.

$$rec2(x,n) = egin{cases} 1 & ext{если } n = 0 \ x*rec2(x,n-1) ext{ если } n > 0 \ 1/rec2(x,|n|) & ext{если } n < 0 \end{cases}$$

Коды рекурсивных алгоритмов.

```
void rec1()
                                                 double rec2(int x, int n)
{int n;
 cin>>n;
                                                  if (n==0)
 if (n==0)
        return;
                                                          return 1;
 else
                                                  if (n>0)
        if(n>0)
                                                                                   recursii
                                                                     step
                                           rec2(x,n)=x*rec2(x,n-1)
                  cout<<n;
                  rec11();
                                                          return x*rec2(x,n-1);
                                                   if(n<0){
        else
                                                          return 1/rec2(x,abs(n));
```

{ rec11(); cout< <n;< th=""><th>}</th></n;<>	}
}	

7. Контрольные вопросы

- 1. Какой алгоритм называют рекурсивным?
- 2. Что определяет термин Шаг рекурсии?
- 3. Что определяет термин Глубина рекурсии?
- 4. Когда наступает завершение рекурсии?
- 5. Какая рекурсия называется прямой рекурсией?
- 6. Как организуется косвенная рекурсия?
- 7. Как реализуется алгоритм прямой линейной рекурсии?
- 8. Как по коду функции определить, что функция реализует каскадную рекурсию?
- 9. Что хранит элемент стека при каждом вызове рекурсивной функции?
- 10. Что происходи со значениями элементов стека при завершении выполнения рекурсивной функции?
- 11. Изобразите модель стека рекурсивных вызовов для алгоритма вычисления n!.
- 12. Изобразите дерево рекурсии вычисления значения 5! и пятого числа Фибоначчи.
- 13. Как по дереву рекурсии алгоритма можно определить глубину рекурсии?
- 14. Как связана глубина рекурсии и стек рекурсивных вызовов одного алгоритма?
- 15. Как получить асимптотическую оценку сложности рекурсивного алгоритма?
- 16. Как называется метод разработки алгоритма, рекуррентное соотношение которого для задачи размера n записано так: T(n)=aT(n/b)+c.
- 17. Даны два рекуррентных соотношения:

```
T(n)=2T(n/2)+\theta(n) и T(n)=T(n-1)+c
```

К какому из них можно применить основной метод для получения решения?

18. Определите глубину рекурсии алгоритма при значениях: a=7, b=2.

```
int count (int a, int b) //a>0, b>0 {
  if(a==b) return 1;
  else
```

```
if(a>b) return 1+ count(a-b,b);
else return 1+count(a,b-a);
}
```

19. Добавьте в строку 2 оператор, завершающий рекурсию алгоритма.

```
    int count (int a, int b) //a>0, b>0 {
    if(a==b) _____;
    else
    if(a>b) return 1+ count(a-b,b);
    else return 1+count(a,b-a);
    }
```

20. Дано рекуррентное соотношение времени выполнения рекурсивного алгоритма. Найти решение рекуррентного соотношения.

$$T(n) =$$
 $\begin{cases} \Theta(1) \text{ при } n = 1 \\ 2T(n/2) + \Theta(n); \text{ при } n > 1 \end{cases}$