Modéliser le comportement des systèmes mécaniques dans le but d'établir une loi de comportement ou de déterminer des actions mécaniques en utilisant le PFD

Chapitre 3 - Cinétique et application du Principe Fondamental de la

Dynamique

Sciences Industrielles de l'Ingénieur

Colle 3

Colle 3 – Régulateur

Savoirs et compétences :

Un système matériel est constitué de 5 solides reliés au bâti (0). Les solides (1), (2), (3) et (5) sont des barres sans épaisseur, articulées par des pivots en O, A ou B de manière à demeurer dans un même plan noté $(\overrightarrow{x_1}, \overrightarrow{y_1})$. Cet ensemble est donc mobile en rotation autour de $\overrightarrow{z_1}$. On repère sa position angulaire par le paramètre ψ .

Au bâti (0), on associé le repère fixe \mathcal{R}_0 .

À chaque S_i on associe une base $\mathcal{B}_i(\overrightarrow{x_i}, \overrightarrow{y_i}, \overrightarrow{z_i})$. Les repère \mathcal{R}_i sont d'origine O ou A selon le cas.

Les rotations internes sont définies par θ_2 autour de $(O, \overrightarrow{y_1})$ et θ_3 autour de $(A, \overrightarrow{y_1})$.

Les barres (2) et (3) sont identiques, de longueur 2a et de masse $m_2 = m_3 = m$.

Les barres (1) et (5) ont une masse m_i et des longueurs ℓ_i . (4) est un volant d'inertie de masse M qui fait l'objet d'une liaison pivot d'axe $(G, \overrightarrow{x_3})$ avec la barre (3). Un repère \mathcal{R}_4 est lié à ce volant dont on définit sa position par le paramètre angulaire φ .

On donne le paramétrage suivant.

Question 1 Déterminer les torseurs cinétiques suivants : $\{\sigma(1/0)\}_{O}$, $\{\sigma(2/0)\}_{O}$ et $\{\sigma(3/0)\}_{O}$ dans \mathcal{R}_{1} , $\{\sigma(4/0)\}_{O}$ $dans \mathcal{R}_3 et \{\sigma(5/0)\}_A dans \mathcal{R}_1.$

1

Question 2 Déterminer les torseur dynamique $\{\delta(4/0)\}_G \cdot \overrightarrow{x_3}$.

Question 3 Déterminer les torseur dynamique $\{\delta(1\cup 2\cup 3\cup 4\cup 5/0)\}_O \cdot \overrightarrow{z_0}$.

Question 4 Calculer l'énergie cinétique de l'ensemble du système dans son mouvement par rapport au bâti.

