Estadística

Alejandro Caceres

2022-10-16

Contents

1	Obje	etivo	9
	1.1	$\label{lectura} \mbox{Lectura recomendada} \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	9
2	Desc	r	1
	2.1	Objetivo	11
	2.2	Estadísticas	11
	2.3	Metodo científico	11
	2.4	Resultado	11
	2.5	Tipos de resultado	12
	2.6	Experimentos aleatorios	12
	2.7	Frecuencias absolutas	12
	2.8	Ejemplo	13
	2.9	Frecuencias relativas	13
	2.10	Ejemplo	14
	2.11	Diagrama de barras	14
	2.12	Gráfico de sectores	15
	2.13	Variables categóricas y ordenadas	15
			16
	2.15	Frecuencias acumuladas absolutas y relativas	16
			16
			17
	2.18	Variables continuas	17
	2.19	Contenedores	18
	2.20	Crear una variable categórica a partir de una continua	18
			19
	2.22	Histograma	19
			20
	2.24	Histograma	20
		<u>e</u>	21
			22
			23
			23
		,	23

	2.30	Promedio
	2.31	Promedio
	2.32	mediana
	2.33	Mediana Vs Promedio
	2.34	Dispersión
	2.35	Dispersión
		Variación de la muestra
	2.37	Variación de la muestra
	2.38	Desviación Estándar
		RIC
		RIC
	2.41	Diagrama de caja
3	Pro	babilidad 33
J	3.1	Objetivo
	3.2	Experimentos aleatorios
	3.3	Probabilidad
	3.4	Ejemplo
	$3.4 \\ 3.5$	Ejemplo
	3.6	Frecuencia relativa
	$\frac{3.0}{3.7}$	En el infinito
	3.8	Probabilidad frecuentista
	3.9	Probabilidad clásica
	3.10	Probabilidades clásicas y frecuentistas
		Probabilidad
		Espacio muestral
		Ejemplos de espacios muestrales
		Espacios muestrales discretos y continuos
		Evento
		Operaciones de eventos
		Ejemplo de operaciones de eventos
		Resultados
		Definición de probabilidad
		Propiedades de probabilidad
		Regla de adición
		Ejemplo de regla de adición
		Diagrama de Venn
		Tabla de probabilidades
		Ejemplo de tabla de probabilidades
		Tabla de contingencia
		Ejemplo de tabla de contingencia 4
	3.28	Estudio de misofonía
	3.29	Tabla de contingencia para frecuencias
		Mapa de calor
	3.31	Variables continuas
	3.32	Variables continuas

	3.33	Gráfico de dispersión	49
4	Pro	babilidad condicional	51
	4.1	Objetivo	51
	4.2	Probabilidad conjunta	51
	4.3	Diagnósticos	52
	4.4	Prueba de diagnóstico	52
	4.5	Observaciones	52
	4.6	Tablas de contingencia	53
	4.7	La probabilidad condicional	53
	4.8	La probabilidad condicional	54
	4.9	Tabla de contingencia condicional	54
	4.10	Ejemplo de tabla de contingencia condicional	55
		Regla de multiplicación	55
		Rendimiento de diagnóstico	55
		Regla de multiplicación	56
		-	
		Árbol condicional	57
			57
		Regla de probabilidad total	57
		Árbol condicional	58
		Encontrar probabilidades inversas	58
		Recuperar probabilidades conjuntas	58
		Condicionales inversas	58
		Teorema de Bayes	59
		Ejemplo: teorema de Bayes	60
		Ejemplo: teorema de Bayes	60
		Independencia estadística	61
		Independencia estadística	61
		Independencia estadística	61
		Independencia estadística	62
		Productos de productos marginales	62
		Ejemplo	63
	1.00	Притри	0.0
5	Vari	iables aleatorias discretas	65
	5.1	Objetivo	65
	5.2	¿Cómo asignamos valores de probabilidad a los resultados?	
	5.3	Variable aleatoria	65
	5.4	Variable aleatoria	66
	5.5	Eventos de observar una variable aleatoria	66
	5.6	Probabilidad de variables aleatorias	67
	5.7	Funciones de probabilidad	67
	5.8	Funciones de probabilidad	68
	5.9	Funciones de probabilidad	68
		Funciones de probabilidad	69
		Eiemplo: función de masa de probabilidad	69

		Tabla de probabilidad para resultados igualmente probables
		Tabla de probabilidad para X
		Ejemplo
		Ejemplo
	5.16	Probabilidades y frecuencias
	5.17	Probabilidades y frecuencias relativas
	5.18	Media y Varianza
	5.19	Media y Varianza
	5.20	Media
	5.21	Ejemplo: Media
	5.22	Media y Promedio
	5.23	Variación
		Ejemplo: Varianza
		Funciones de X
		Ejemplo: Varianza sobre el origen
		Distribución de probabilidad
		Ejemplo: distribución de probabilidad
		Probability distribution
		Función de probabilidad y Distribución de probabilidad
		Función de probabilidad y Distribución de probabilidad
		Cuantiles
		Resumen
	0.00	
3	Vari	ables aleatorias continuas
	6.1	Objetivo
	6.2	Variable aleatoria continua
	6.3	Variable aleatoria continua
	6.4	Variable aleatoria continua
	6.5	Variable aleatoria continua
	6.6	Variable aleatoria continua
	6.7	Área total bajo la curva
	6.8	Área bajo la curva
	6.9	Área bajo la curva
	6.10	Distribución de probabilidad
		Gráficos de probabilidad
		Gráficos de probabilidad
		Media
	-	Media
		Varianza
		Funciones de X
		Ejemplo
	5.20	<u> </u>

	7.1	Objetivo
	7.2	Función de probabilidad
	7.3	Modelo de probabilidad
	7.4	Modelos paramétricos
	7.5	Distribución uniforme (un parámetro)
	7.6	Distribución uniforme
	7.7	Distribución uniforme (dos parámetros)
	7.8	Distribución uniforme (dos parámetros)
	7.9	Distribución uniforme
	7.10	Distribución uniforme (dos parámetros)
		Parámetros y Modelos
		Parámetros y Modelos
		Ensayo de Bernoulli
		Distribución binomial
		Ejemplos: distribución binomial
		Distribución binomial
		Distribución binomial
		Distribución binomial: Definición
		Distribución binomial: Media y Varianza
		Ejemplo 1
		Ejemplo 1
		Ejemplo 2
		Distribución binomial
		Distribución binomial negativa
		Distribución binomial negativa
		Distribución binomial negativa
		Media y Varianza
		Distribución geométrica
		Ejemplo
		Ejemplo
		Ejemplo
		Ejemplos
		Distribución binomial negativa
		Resumen de modelos de probabilidad
8	Ejer	cicios 115
	8.1	Descripción de datos
	8.2	Probabilidad
	8.3	La probabilidad condicional
	8.4	Variables aleatorias
	8.5	Modelos de probabilidad
	8.6	Estimadores puntuales
	8.7	Muestreo y teorema del límite central

8	CONTENTS

8.8	Máxima verosimilitud												126
8.9	Método de los momentos.												127

Chapter 1

Objetivo

- Este es el curso de introducción a la estadística de la EEBE (UPC).

1.1 Lectura recomendada

• Douglas C. Montgomery and George C. Runger. "Applied Statistics and Probability for Engineers" 4th Edition. Wiley 2007.

Chapter 2

Descripción de datos

2.1 Objetivo

- Datos: discretos, continuos
- Resumir datos en tablas y figuras.

2.2 Estadísticas

- Resolver problemas de manera sistemática (ciencia, tecnología e ingeniería)
- ¡Los humanos modernos usamos un **método** general históricamente desarrollado durante miles de años! ... y aún en desarrollo.
- Tiene tres componentes principales: observación, lógica y generación de nuevo conocimiento.

2.3	Metodo	científico

2.4 Resultado

Observación o Realización

• Una **observación** es la adquisición de un número o una característica de un experimento

... 1 0 0 1 0 1 0 1 1 ... (el número en negrita es una observación en una repetición del experimento)

Resultado

•	Un resultad	o es una o	le las	posibles	observaciones	de un	experimento
---	-------------	------------	--------	----------	---------------	-------	-------------

I	es	un	resu	litado	o, U	es	eı	otro	resi	iitad	do			
					-									

2.5 Tipos de resultado

- Categórico: Si el resultado de un experimento solo puede tomar valores discretos (número de piezas de automóvil producidas por hora, número de leucocitos en sangre)
- Continuo: Si el resultado de un experimento solo puede tomar valores continuos (estado de carga de la batería, temperatura del motor).

2.6 Experimentos aleatorios

Definición:

Un **experimento aleatorio** es un experimento que da diferentes resultados cuando se repite de la misma manera.

Ejemplos:

- en el mismo objeto (persona): temperatura, niveles de azúcar.
- sobre objetos diferentes pero de la misma medida: el peso de un animal.
- sobre eventos: número de correos electrónicos recibidos en una hora.

2.7 Frecuencias absolutas

Cuando repetimos un experimento aleatorio, registramos una lista de resultados.

2.8. EJEMPLO 13

Resumimos las observaciones **categóricas** contando cuántas veces vimos un resultado en particular.

Frecuencia absoluta:

 n_i

es el número de veces que observamos el resultado i

2.8 Ejemplo

Experimento aleatorio: extraiga un leucocito de **un** donante y anote su tipo. Repita el experimento N=119 veces.

(célula T, célula T, neutrófilo, ..., célula B)

```
## 1 outcome ni
## 1 T Cell 34
## 2 B cell 50
## 3 basophil 20
## 4 Monocyte 5
## 5 Neutrophil 10
```

- Por ejemplo: $n_1=34$ es el número total de células T
- $N = \sum_{i} \hat{n}_i = 1\overline{19}$

2.9 Frecuencias relativas

También podemos resumir las observaciones calculando la **proporción** de cuántas veces vimos un resultado en particular.

$$f_i = n_i/N$$

donde N es el número total de observaciones

En nuestro ejemplo se registran $n_1=34$ células T, por lo que la frecuencia relativa nos da la proporción de células T de un total de 119.

2.10 Ejemplo

```
## outcome ni fi

## 1 T Cell 34 0.28571429

## 2 B cell 50 0.42016807

## 3 basophil 20 0.16806723

## 4 Monocyte 5 0.04201681

## 5 Neutrophil 10 0.08403361
```

Tenemos

$$\sum_{i=1..M} n_i = N$$

$$\sum_{i=1..M} f_i = 1$$

donde M es el número de resultados.

2.11 Diagrama de barras

Podemos graficar n_i V
s los resultados, dándonos un gráfico de barras

2.12 Gráfico de sectores

Podemos visualizar las frecuencias relativas con un gráfico de sectores

• Donde el área del círculo representa el 100% de las observaciones (proporción = 1) y las secciones las frecuencias relativas de todos los resultados.

2.13 Variables categóricas y ordenadas

Los tipos de células no están ordenados de manera lógica en relación con los resultados. Sin embargo, a veces las variables **categóricas** se pueden **ordenar**.

Estudio de misofonía:

- 123 pacientes fueron examinados por misofonía: ansiedad/ira producida por ciertos sonidos
- Se clasificaron en 4 grupos diferentes según la gravedad.

2.14 Ejemplo

Los resultados del estudio son:

```
## [1] 4 2 0 3 0 0 0 2 3 0 3 0 0 2 2 0 2 0 0 3 3 0 3 2 0 0 0 4 2 2 0 2 0 0 3 0 2 2 8 ## [38] 3 2 2 0 2 0 2 3 0 0 2 2 3 3 0 0 4 3 3 2 0 2 0 0 0 2 2 0 0 2 3 0 1 3 2 4 3 2 3 ## [75] 0 2 3 2 4 1 2 0 2 0 2 0 2 2 4 3 0 3 0 0 0 2 2 1 3 0 0 3 2 1 3 0 4 4 2 3 3 ## [112] 3 0 3 2 1 2 3 3 4 2 3 2
```

y su tabla de frecuencias

```
## outcome ni fi

## 1 0 41 0.33333333

## 2 1 5 0.04065041

## 3 2 37 0.30081301

## 4 3 31 0.25203252

## 5 4 9 0.07317073
```

2.15 Frecuencias acumuladas absolutas y relativas

La gravedad de la misofonía es categórica y ordenada.

Cuando los resultados se pueden ordenar, entonces es útil preguntarse por el **número** de observaciones que se obtuvieron hasta un resultado dado. Llamamos a este número la frecuencia acumulada absoluta hasta el resultado i:

$$N_i = \sum_{k=1..i} n_k$$

Tambíen es útil calcular la **proporción** de las observaciones que se obtuvo hasta un resultado dado

$$F_i = \sum_{k=1..i} f_k$$

2.16 Tabla de frecuencia

```
## outcome ni fi Ni Fi
## 0 0 41 0.33333333 41 0.3333333
## 1 1 5 0.04065041 46 0.3739837
```

```
## 2 2 37 0.30081301 83 0.6747967
## 3 3 31 0.25203252 114 0.9268293
## 4 4 9 0.07317073 123 1.0000000
```

- ullet 67% de los pacientes tenían misofonía hasta la gravedad 2
- 37% de los pacientes tienen una gravedad menor o igual a 1

2.17 Gráfica de frecuencia acumulada

También podemos graficar la frecuencia acumulada Vs los resultados

2.18 Variables continuas

El resultado de un experimento aleatorio también puede dar resultados continuos.

En el estudio de misofonía, los investigadores se preguntaron si la convexidad de la mandíbula afectaría la gravedad de la misofonía (la hipótesis científica es que el ángulo de convexidad de la mandíbula puede influir en el oído y su

sensibilidad). Estos son los resultados para la convexidad de la mandíbula (grados)

```
##
    [1]
                         7.81 9.81 13.50 19.30 7.70 12.30 7.90 12.60 19.00
         7.97 18.23 12.27
                          8.00 11.20 7.75 7.94 16.69 7.62 7.02 7.00 19.20
##
    Γ137
         7.27 14.00 5.40
                          7.80
                                      4.70
                                           4.40 14.00 14.40 16.00
##
         7.96 14.70
                    7.24
                               7.90
                                                                  7.29
##
   [37]
         7.90
              7.90
                   7.40 6.30 7.76
                                     7.30 7.00 11.23 16.00
                                                            7.90
##
   [49]
         7.10 13.40 11.60 -1.00 6.00 7.82 4.80 11.00
                                                      9.00 11.50 16.00 15.00
                   7.70 16.14
                                7.12 -1.00 17.00 9.26 18.70
##
    [61]
         1.40 16.80
                                                            3.40 21.30
    [73]
         6.03
              7.50 19.00 19.01 8.10 7.80
                                           6.10 15.26
                                                      7.95 18.00
##
              8.00 16.80 8.54 7.00 18.30
                                           7.80 16.00 14.00 12.30 11.40
##
         7.00 7.96 17.60 10.00 3.50 6.70 17.00 20.26 6.64 1.80
                                                                  7.02
                                                                        2.46
                    6.10 6.64 12.00 6.60 8.70 14.05 7.20 19.70
## [109] 19.00 17.86
                                                                  7.70
                                                                        6.02
## [121]
        2.50 19.00 6.80
```

2.19 Contenedores

¡Los resultados continuos no se pueden contar!

Las transformamos en variables categóricas ordenadas

• Cubrimos el rango de las observaciones en intervalos regulares del mismo tamaño (bins)

2.20 Crear una variable categórica a partir de una continua

• Asignamos cada observación a su intervalo: creando una variable categórica **ordenada**; en este caso con 5 resultados posibles

```
[1] "(7.92,12.4]" "(16.8,21.3]"
                                      "(7.92,12.4]" "(3.46,7.92]"
                                                                     "(7.92,12.4]"
##
     [6] "(12.4,16.8]"
                       "(16.8,21.3]"
                                       "(3.46,7.92]"
                                                     "(7.92,12.4]"
##
                                                                     "(3.46,7.92]"
    [11] "(12.4,16.8]"
                       "(16.8,21.3]"
                                      "(3.46,7.92]"
                                                     "(12.4,16.8]"
                                                                    "(3.46,7.92]"
                       "(7.92,12.4]"
                                       "(3.46,7.92]"
                                                                     "(12.4,16.8]"
    [16] "(7.92,12.4]"
                                                     "(7.92,12.4]"
                                                     "(16.8,21.3]"
##
    [21] "(3.46,7.92]"
                       "(3.46,7.92]"
                                      "(3.46,7.92]"
                                                                     "(7.92,12.4]"
    [26] "(12.4,16.8]"
                       "(3.46,7.92]" "(3.46,7.92]"
                                                     "(3.46,7.92]"
                                                                    "(3.46,7.92]"
##
    [31] "(3.46,7.92]" "(12.4,16.8]" "(12.4,16.8]" "(12.4,16.8]"
                                                                    "[-1.02,3.46]"
    [36] "(7.92,12.4]" "(3.46,7.92]" "(3.46,7.92]" "(3.46,7.92]"
                                                                    "(3.46.7.92]"
```

```
##
    [41] "(3.46,7.92]"
                        "(3.46,7.92]"
                                        "(3.46,7.92]"
                                                       "(7.92,12.4]"
                                                                      "(12.4,16.8]"
    [46] "(3.46,7.92]"
                        "(3.46,7.92]"
                                        "(3.46,7.92]"
                                                       "(3.46,7.92]"
                                                                      "(12.4,16.8]"
##
    [51] "(7.92,12.4]"
                        "[-1.02,3.46]" "(3.46,7.92]"
                                                       "(3.46,7.92]"
                                                                      "(3.46,7.92]"
    [56] "(7.92,12.4]"
                        "(7.92,12.4]"
                                        "(7.92,12.4]"
                                                       "(12.4,16.8]"
                                                                      "(12.4,16.8]"
    [61] "[-1.02,3.46]" "(12.4,16.8]"
                                                       "(12.4,16.8]"
##
                                        "(3.46,7.92]"
                                                                      "(3.46,7.92]"
    [66] "[-1.02,3.46]" "(16.8,21.3]"
                                        "(7.92,12.4]"
##
                                                       "(16.8,21.3]"
                                                                      "[-1.02,3.46]"
    [71] "(16.8,21.3]" "(3.46,7.92]"
                                        "(3.46,7.92]"
                                                       "(3.46,7.92]"
                                                                      "(16.8,21.3]"
    [76] "(16.8,21.3]"
                        "(7.92,12.4]"
                                                       "(3.46,7.92]"
##
                                        "(3.46,7.92]"
                                                                      "(12.4,16.8]"
    [81] "(7.92,12.4]"
                        "(16.8,21.3]"
                                        "(3.46,7.92]"
                                                       "(12.4,16.8]"
                                                                      "(3.46,7.92]"
##
##
    [86] "(7.92,12.4]"
                        "(12.4,16.8]"
                                        "(7.92,12.4]"
                                                       "(3.46,7.92]"
                                                                      "(16.8,21.3]"
    [91] "(3.46,7.92]"
                        "(12.4,16.8]"
                                        "(12.4,16.8]"
                                                       "(7.92,12.4]"
                                                                      "(7.92,12.4]"
    [96] "(7.92,12.4]"
                        "(3.46,7.92]"
                                        "(7.92,12.4]"
                                                       "(16.8,21.3]"
                                                                      "(7.92,12.4]"
                        "(3.46,7.92]"
                                                       "(16.8,21.3]"
## [101] "(3.46,7.92]"
                                        "(16.8,21.3]"
                                                                      "(3.46,7.92]"
## [106] "[-1.02,3.46]" "(3.46,7.92]"
                                        "[-1.02,3.46]" "(16.8,21.3]"
                                                                      "(16.8,21.3]"
                                        "(7.92,12.4]"
                       "(3.46,7.92]"
                                                       "(3.46,7.92]"
## [111] "(3.46,7.92]"
                                                                      "(7.92,12.4]"
## [116] "(12.4,16.8]" "(3.46,7.92]"
                                        "(16.8,21.3]"
                                                       "(3.46,7.92]"
                                                                      "(3.46,7.92]"
## [121] "[-1.02,3.46]" "(16.8,21.3]"
                                        "(3.46,7.92]"
```

2.21 Tabla de frecuencias para una variable continua

##		outcome	ni	fi	Ni	Fi
##	1	[-1.02, 3.46]	8	0.06504065	8	0.06504065
##	2	(3.46, 7.92]	51	0.41463415	59	0.47967480
##	3	(7.92, 12.4]	26	0.21138211	85	0.69105691
##	4	(12.4, 16.8]	20	0.16260163	105	0.85365854
##	5	(16.8,21.3]	18	0.14634146	123	1.0000000
		_				

2.22 Histograma

El histograma es la gráfica de n_i o f_i Vs los resultados (bins). El histograma depende del tamaño de los contenedores.

2.23 Tabla de frecuencias para una variable continua

2.24 Histograma

El histograma es la gráfica de n_i o f_i Vs los resultados (bins). El histograma depende del tamaño de los contenedores.

2.25 Gráfica de frecuencia acumulada: Variables continuas

También podemos graficar la frecuencia acumulada Vs los resultados

2.26 Resumen estadístico

Las estadísticas de resumen son números calculados a partir de los datos que nos dicen características importantes de las variables numéricas (categóricas o continuas).

Valores límite:

- mínimo: el resultado mínimo observado
- máximo: el resultado máximo observado

Valor central para los resultados

• El promedio se define como

$$\bar{x} = \frac{1}{N} \sum_{j=1..N} x_j$$

donde x_j es la **observación** j (convexidad) de un total de N.

2.27. PROMEDIO

23

2.27 Promedio

La convexidad promedio se puede calcular directamente a partir de las **observaciones**

$$\bar{x} = \frac{1}{N} \sum_{j} x_{j}$$

$$= \frac{1}{N} (7.97 + 18.23 + 12.27... + 6.80) = 10.19894$$

2.28 Promedio (ordenado categóricamente)

Para las variables **ordenadas categóricamente**, podemos usar la tabla de frecuencias para calcular el promedio

```
## outcome ni fi

## 1 0 41 0.33333333

## 2 1 5 0.04065041

## 3 2 37 0.30081301

## 4 3 31 0.25203252

## 5 4 9 0.07317073
```

La **severidad** promedio de la misofonía en el estudio **también** puede calcularse a partir de las frecuencias relativas de los **resultados**

$$\begin{split} \bar{x} &= \tfrac{1}{N} \sum_{i=1...N} x_j = \tfrac{1}{N} \sum_{i=1...M} x_i * n_i = \sum_{i=1...M} x_i * f_i \\ &= 0 * f_0 + 1 * f_1 + 2 * f_2 + 3 * f_3 + 4 * f_4 = 1,691057 \end{split}$$

(note el cambio de N a M en la segunda suma)

2.29 Promedio (ordenado categóricamente)

En términos de los **resultados** de las variables ordenadas categóricas, el **promedio** se puede escribir como

$$\bar{x} = \sum_{i=1...M} x_i f_i$$

de un total de M posibles resultados (número de niveles de gravedad).

 \bar{x} es el valor central o centro de gravedad de los resultados. Como si cada resultado tuviera una densidad de masa dada por f_i .

2.30 Promedio

- El promedio no es el resultado de una observación (experimento aleatorio).
- Es el resultado de una serie de observaciones (muestra).
- Describe el número donde se equilibran los valores observados.

Por eso escuchamos, por ejemplo, que un paciente con una infección puede contagiar a una media de 2,5 personas.

2.31 Promedio

2.32. MEDIANA 25

2.32 mediana

Otra medida de centralidad es la mediana. La mediana $q_{0.5}$ es el valor \boldsymbol{x}_p

$$mediana(x) = q_{0.5} = x_p$$

debajo del cual encontramos la mitad de las observaciones

$$\sum_{x \leq x_p} 1 = \frac{N}{2}$$

o en términos de frecuencias, es el valor x_p que hace que la frecuencia acumulada ${\cal F}_p$ sea igual a 0.5

$$q_{0.5} = \sum_{x \le x_p} f_x = F_p = 0.5$$

2.33 Mediana Vs Promedio

- Promedio: Centro de masa (compensa valores distantes)
- Mediana: La mitad de la masa

2.34 Dispersión

Una medida importante de los resultados es su **dispersión**. Muchos experimentos pueden compartir su media, pero difieren en la dispersión de los valores.

2.35 Dispersión

2.36 Variación de la muestra

La dispersión con respecto a la media se mide con el

• La varianza muestral:

$$s^2 = \frac{1}{N-1} \sum_{j=1..N} (x_j - \bar{x})^2$$

Mide la distancia cuadrada promedio de las **observaciones** al promedio. La razón de N-1 se explicará cuando hablemos de inferencia.

2.37 Variación de la muestra

• En términos de frecuencias de variables categóricas y ordenadas

$$s^2 = \frac{N}{N-1} \sum_x (x-\bar{x})^2 f_x$$

 \boldsymbol{s}^2 se puede considerar como el momento de inercia de las observaciones.

2.38 Desviación Estándar

La raíz cuadrada de la varianza de la muestra se denomina **desviación estándar** s.

La desviación estándar del ángulo de convexidad es

$$s = [\frac{1}{123-1}((7,97-10,19894)^2 + (18,23-10,19894)^2 + (12,27-10,19894)^2 + \ldots)]^{1/2} = 5,086707$$

La convexidad de la mandíbula se desvía de su media en 5,086707.

2.39 RIC

- La dispersión de datos también se puede medir con respecto a la mediana por el rango intercuartílico
- Definimos el **primer** cuartil como el valor x_p que hace que la frecuencia acumulada F_p sea igual a 0,25

$$q_{0.25} = \sum_{x \leq x_p} f_x = F_p = 0.25$$

• También definimos el **tercer** cuartil como el valor x_p que hace que la frecuencia acumulada F_p sea igual a 0,75

$$q_{0.75} = \sum_{x \le x_p} f_x = F_p = 0.75$$

2.40. RIC 29

2.40 RIC

La distancia entre el tercer cuartil y el primer cuartil se denomina ${\bf rango}$ intercuartílico (RIC) y captura el 50 % central de las observaciones

2.41 Diagrama de caja

El rango intercuartílico, la mediana y el 5 % y el 95 % de los datos se pueden visualizar en un **diagrama de caja**, aquí los valores de los resultados están en el eje y. El IQR es la caja, la mediana es la línea del medio y los bigotes marcan el 5% y el 95% de los datos.

Chapter 3

Probabilidad

3.1 Objetivo

- Definición de probabilidad
- Álgebra de probabilidad
- Probabilidad conjunta

3.2 Experimentos aleatorios

Observación

 $\bullet\,$ y **observación** es la adquisición de un número o una característica de un experimento

Salir

• Un **resultado** es una posible observación que es el resultado de un experimento.

Experimento aleatorio

• Un experimento que da resultados **diferentes** cuando se repite de la misma manera.

3.3 Probabilidad

La **probabilidad** de un resultado es una medida de cuán seguros estamos de observar ese resultado al realizar un experimento aleatorio.

- 0: Estamos seguros de que la observación **no** ocurrirá.
- 1: Estamos seguros de que la observación sucederá.

3.4 Ejemplo

• Considere las siguientes observaciones de un experimento aleatorio:

 $1\ 5\ 1\ 2\ 2\ 1\ 2\ 2$

• ¿Qué tan seguro estamos de obtener 2 en la siguiente observación?

3.5 Ejemplo

La tabla de frecuencias es

```
## 1 outcome ni fi
## 1 1 3 0.375
## 2 2 4 0.500
## 3 5 1 0.125
```

La frecuencia relativa f_i

- es un número entre 0 y 1.
- mide la proporción del total de observaciones que observamos un resultado particular.
- parece una medida de probabilidad razonable.

Como $f_2=0.5$ entonces estaríamos 50 seguros de obtener 2 en la siguiente repetición del experimento.

3.6 Frecuencia relativa

 ξf_i es una buena medida de certeza?

Digamos que repetimos el experimento 12 veces más:

15122122311331635644

La tabla de frecuencias es ahora

##		outcome	ni	fi
##	1	1	6	0.3
##	2	2	4	0.2
##	3	3	4	0.2
##	4	4	2	0.1
##	5	5	2	0.1
##	6	6	2	0.1

Aparecieron nuevos resultados y f_2 ahora es
 0.2,ahora estamos un 20% seguros de obtener 2 en el próximo experimento... la probabilidad no debería de
pender de N

3.7 En el infinito

Digamos que repetimos el experimento 1000 veces:

```
## 0utcome ni fi
## 1 1 168 0.168
## 2 2 149 0.149
## 3 3 176 0.176
## 4 4 175 0.175
## 5 5 179 0.179
## 6 6 153 0.153
```

Encontramos que f_i está convergiendo a un valor constante

$$lim_{N\to\infty}f_i=P_i$$

3.8 Probabilidad frecuentista

Llamamos Probabilidad P_i al límite cuando $N\to\infty$ de la frecuencia relativa de observar el resultado i en un experimento aleatorio.

Defendida por Venn (1876)

La interpretación frecuentista de probabilidades se deriva de datos/experiencia (empírica).

- No observamos P_i , observamos f_i
- Cuando estimamos P_i con f_i (normalmente cuando N es grande), escribimos:

$$\hat{P}_i = f_i$$

3.9 Probabilidad clásica

Cada vez que un experimento aleatorio tiene M resultados posibles que son todos **igualmente probables**, la probabilidad de cada resultado es $\frac{1}{M}$.

Defendida por Laplace (1814).

Dado que cada resultado es **igualmente probable**, declaramos una completa ignorancia y lo mejor que podemos hacer es distribuir equitativamente la misma probabilidad para cada resultado.

 $\+_{2}\mathrm{Y}$ si te dijera que nuestro experimento fue tirar un dado? entonces $P_{2}=1/6=0.166666.$

$$P_i = lim_{N \to \infty} \frac{n_i}{N} = \frac{1}{M}$$

3.10 Probabilidades clásicas y frecuentistas

3.11 Probabilidad

La probabilidad es un número entre 0 y 1 que se asigna a cada miembro E de una colección de **eventos** de un **espacio muestral** (S) de un experimento aleatorio.

$$P(E) \in (0,1)$$
donde $E \in S$

3.12 Espacio muestral

Empezamos razonando cuáles son todos los valores posibles (resultados) que podría dar un experimento aleatorio.

Tenga en cuenta que no tenemos que observarlos en un experimento en particular: estamos usando **razón/lógica** y no observación.

Definición:

• El conjunto de todos los resultados posibles de un experimento aleatorio se denomina **espacio muestral** del experimento

- El espacio muestral se denota como S .
3.13 Ejemplos de espacios muestrales
 temperatura 35 y 42 grados centígrados niveles de azúcar: 70-80mg/dL el tamaño de un tornillo de una línea de producción: 70 mm-72 mm número de correos electrónicos recibidos en una hora: 0-100 un lanzamiento de dados: 1, 2, 3, 4, 5, 6
 3.14 Espacios muestrales discretos y continuos • Un espacio muestral es discreto si consiste en un conjunto de resultados
finito o infinito numerable. • Un espacio muestral es continuo si contiene un intervalo (ya sea de longitud finita o infinita) de numeros reales.
3.15 Evento
Definición:
Un evento es un subconjunto del espacio muestral de un experimento aleato rio. Es una colección de resultados.
Ejemplos de eventos:
 El evento de una temperatura saludable: temperatura 37-38 grados centí grados El evento de producir un tornillo con un tamaño: de 71,5 mm El evento de recibir más de 4 correos electrónicos en una hora. El evento de obtener un número menor de 3 en el lanzamiento de un dado
Un evento se refiere a un posible conjunto de resultados .

3.16 Operaciones de eventos

Para dos eventos A y B, podemos construir los siguientes eventos derivados:

- Complemento A': el evento de **no** A
- Unión $A \cup B$: el evento de A o B
- Intersección $A \cap B$: el evento de $A \mathbf{y} B$

3.17 Ejemplo de operaciones de eventos

Tomar

- Evento $A:\{1,2,3\}$ un número menor o igual a tres en el lanzamiento de un dado
- Evento $B:\{2,4,6\}$ un número par en el lanzamiento de un dado

Nuevos eventos:

- No menos de tres: $A': \{4,5,6\}$
- Menor o igual a tres o par: $A \cup B : \{1, 2, 3, 4, 6\}$
- Menor o igual a tres \mathbf{y} par $A \cap B : \{2\}$

3.18 Resultados

Los resultados son eventos que son mutuamente excluyentes

Definición:

Dos eventos denotados como E_1 y E_2 , tales que

$$E_1 \cap E_2 = \emptyset$$

No pueden ocurrir al mismo tiempo.

Ejemplo:

- El resultado de obtener 1 \mathbf{y} el resultado de obtener 5 en el lanzamiento de un dado son mutuamente excluyentes:
- El evento de obtener 1 y 5 está vacío:

$$\{1\} \cap \{5\} = \emptyset$$

3.19 Definición de probabilidad

Una probabilidad es un número que se asigna a cada evento posible (E) de un espacio muestral (S) de un experimento aleatorio que cumple las siguientes propiedades:

- P(S) = 1
- $0 \le P(E) \le 1$
- cuando $E_1 \cap E_2 = \emptyset$

$$P(E_1 \cup E_2) = P(E_1) + P(E_2)$$

Propuesto por Kolmogorov (1933)

3.20 Propiedades de probabilidad

Kolmogorov dice que podemos construir una tabla de probabilidad (al igual que la tabla de frecuencia relativa)

resultado	Probabilidad
1	1/6
2	1/6
3	1/6
4	1/6
5	1/6
6	1/6
$P(1 \cup 2 \cup \dots \cup 6)$	1

Como $\{1, 2, 3, 4, 5, 6\}$ son mutuamente excluyentes, entonces

$$P(S) = P(1 \cup 2 \cup \dots \cup 6) = P(1) + P(2) + \dots + P(n) = 1$$

3.21 Regla de adición

Cuando A y B no son mutuamente excluyentes, entonces:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Donde P(A) y P(B) se denominan **probabilidades marginales**

3.22 Ejemplo de regla de adición

Tomar

- Evento $A:\{1,2,3\}$ un número menor o igual a tres en el lanzamiento de un dado
- Evento $B:\{2,4,6\}$ un número par en el lanzamiento de un dado

después:

- P(A): P(1) + P(2) + P(3) = 3/6
- P(G): P(2) + P(4) + P(6) = 3/6
- $P(A \cap B) : P(2) = 1/6$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = 3/6 + 3/6 - 1/6 = 5/6$$

Nota: P(2) aparece en P(A) y P(B) por eso lo restamos con la intersección

3.23 Diagrama de Venn

Tenga en cuenta que siempre se puede descomponer el espacio muestral en conjuntos **mutuamente excluyentes** que involucran las intersecciones:

$$S = \{A \cap B, A \cap B', A' \cap B, A' \cap B'\}$$

Marginales:

- $P(A) = P(A \cap B') + P(A \cap B) = 2/6 + 1/6 = 3/6$
- $P(B) = P(A' \cap B) + P(A \cap B) = 2/6 + 1/6 = 3/6$

3.24 Tabla de probabilidades

Veamos la tabla de probabilidades.

resultado	Probabilidad
$A \cap B$	$P(A \cap B)$
$A \cap B'$	$P(A \cap B')$
$A' \cap B$	$P(A' \cap B)$
$A' \cap B'$	$P(A' \cap B')$
suma	1

3.25 Ejemplo de tabla de probabilidades

También escribimos $A\cap B$ como (A,B) y lo llamamos la **probabilidad conjunta** de A y B

En nuestro ejemplo:

resultado	Probabilidad
(A,B)	P(A,B) = 1/6
(A, B')	P(A, B') = 2/6
(A',B)	P(A',B) = 2/6
(A', B')	P(A', B') = 1/6
suma	1

Nota: cada resultado tiene dos valores (uno para la característica del tipo A y otro para el tipo B)

3.26 Tabla de contingencia

Podemos organizar la probabilidad de $\bf resultados$ conjuntos en una $\bf tabla$ de $\bf contingencia$

	B	B'	suma
\overline{A}	P(A,B)	P(A, B')	P(A)

	В	B'	suma
A'	P(A',B)	P(A', B')	P(A')
suma	P(B)	P(B')	1

marginales:

- P(A) = P(A, B') + P(A, B)
- $\bullet \ \ P(B)=P(A',B)+P(A,B)$

3.27 Ejemplo de tabla de contingencia

- Evento $A:\{1,2,3\}$ un número menor o igual a tres en el lanzamiento de un dado
- Evento $B:\{2,4,6\}$ un número par en el lanzamiento de un dado

	В	B'	suma
\overline{A}	1/6	2/6	3/6
A'	2/6	1/6	3/6
suma	3/6	3/6	1

Tres formas de la regla de la suma:

$$P(A \cup B)$$

$$= P(A) + P(B) - P(A \cap B)$$

$$= P(A \cap B) + P(A \cap B') + P(A' \cap B)$$

$$= 1 - P(A' \cap B')$$

3.28 Estudio de misofonía

En el estudio de misofonía, se evaluó a los pacientes según la gravedad de su misofonía ${\bf y}$ si estaban deprimidos.

El resultado de un experimento aleatorio es medir la gravedad de la misofonía \mathbf{y} el estado de depresión de un paciente. La repetición del experimento aleatorio consistía en realizar las mismas dos mediciones en otro paciente.

##	Misofonia.dic	depresion.dic
## 1	4	1
## 2	2	0
## 3	0	0
## 4	3	0
## 5	0	0
## 6	0	0
## 7	2	0
## 8	3	0
## 9	0	1
## 10	3	0
## 11	0	0
## 12	2	0
## 13	2	1
## 14	0	0
## 15	2	0
## 16	0	0
## 17	0	0
## 18	3	0
## 19	3	0
## 20	0	0
## 21	3	0
## 22	3	0
## 23	2	0
## 24	0	0
## 25	0	0
## 26 ## 27	0 4	0
## 27 ## 28	2	0
## 28 ## 29	2	0
## 30	0	0
## 31	2	0
## 32	0	0
## 33	0	0
## 34	0	0
## 35	3	0
## 36	0	0
## 37	2	0
## 38	3	1
## 39	2	0
## 40	2	0
## 41	0	0
## 42	2	0
## 43	3	0
## 44	0	0
## 45	0	0

##	46	2	0
##	47	2	0
##	48	3	0
##	49	3	0
##	50	0	0
##	51	0	0
##	52	4	1
##	53	3	0
##	54	3	1
##	55	2	1
##	56	0	1
##	57	2	0
##	58	0	0
##	59	0	0
##	60	0	0
##	61	2	0
##	62	2	0
##	63	0	0
## ##	64 65	0 2	0
## ##	66	3	0
## ##	67	0	0
##	68	1	0
##	69	3	0
##	70	2	0
##	71	4	1
##	72	3	0
##	73	2	1
##	74	3	0
##	75	0	1
##	76	2	0
##	77	3	0
##	78	2	0
##	79	4	1
##	80	1	0
##	81	2	0
##	82	0	0
##	83	2	0
##	84	0	0
##	85	2	0
##	86	0	1
##	87	2	0
##	88	2	0
##	89	4	1
##	90	3	0
##	91	0	1

##	92	3	0
##	93	0	0
##	94	0	0
##	95	0	0
##	96	2	0
##	97	2	0
##	98	1	0
##	99	3	0
##	100	0	0
##	101	0	0
##	102	3	1
##	103	2	0
##	104	1	0
##	105	3	0
##	106	0	0
##	107	4	1
##	108	4	1
##	109	2	0
##	110	3	0
##	111	3	0
##	112	3	1
##	113	0	0
##	114	3	0
##	115	2	0
##	116	1	0
##	117	2	0
##	118	3	1
##	119	3	0
##		4	1
##	121	2	0
##		3	0
##	123	2	0
	-		

3.29 Tabla de contingencia para frecuencias

• Para el número de observaciones $n_{i,j}$ de cada resultado (x_i,y_i) , misofonía: $x\in\{0,1,2,3,4\}$ y depresión y $en\{0,1\}$ (no:0, sí:1)

```
##
## Depression:0 Depression:1
## Misophonia:4 0 9
## Misophonia:3 25 6
```

##	Misophonia:2	34	3
##	Misophonia:1	5	0
##	Misophonia:0	36	5

- para las frecuencias relativas $f_{i,j}$

```
##
##
                  Depression: 0 Depression: 1
##
     Misophonia:4
                    0.00000000
                                  0.07317073
##
     Misophonia:3
                    0.20325203
                                  0.04878049
                    0.27642276
##
     Misophonia:2
                                  0.02439024
     Misophonia:1
##
                    0.04065041
                                  0.0000000
     Misophonia:0
                    0.29268293
                                  0.04065041
```

3.30 Mapa de calor

La tabla de contingencia se puede trazar como un mapa de calor

3.31 Variables continuas

En el estudio de misofonía también se midió la protrusión mandibular como posible factor cefalométrico de la enfermedad.

##		Angulo convexidad	protusion.mandibular
##	1	7.97	13.00
##	2	18.23	-5.00
##	3	12.27	11.50
##	4	7.81	16.80
##	5	9.81	33.00
##	6	13.50	2.00
##	7	19.30	-3.90
##	8	7.70	16.80
##	9	12.30	8.00
##	10	7.90	28.80
##	11	12.60	3.00
##	12	19.00	-7.90
##	13	7.27	28.30
##	14	14.00	4.00
##	15	5.40	22.20
##	16	8.00	0.00
##	17	11.20	15.00
##	18	7.75	17.00
##	19	7.94	49.00
##	20	16.69	5.00
##	21	7.62	42.00
	22	7.02	28.00
	23	7.00	9.40
##	24	19.20	-13.20
##	25	7.96	23.00
##	26	14.70	2.30
	27	7.24	25.00
##	28	7.80	4.90
##	29	7.90	92.00
##	30	4.70 4.40	6.00 17.00
## ##	31 32	14.00	3.30
##	33	14.40	10.30
##	34	16.00	6.30
##	35	1.40	19.50
##	36	9.76	22.00
##	37	7.90	5.00
##	38	7.90	78.00
##	39	7.40	9.30
##	40	6.30	50.60
		0.00	30.00

##	41	7.76	18.00
##	42	7.30	18.00
##	43	7.00	10.00
##	44	11.23	4.00
##	45	16.00	13.30
##	46	7.90	48.00
##	47	7.29	23.50
##	48	6.91	37.60
##	49	7.10	15.00
##	50	13.40	5.10
##	51	11.60	-2.20
##	52	-1.00	32.00
##	53	6.00	25.00
##	54	7.82	24.00
##	55	4.80	33.60
##	56	11.00	3.30
##	57	9.00	31.50
##	58	11.50	12.80
##	59	16.00	3.00
##	60	15.00	6.00
##	61	1.40	21.40
## ##	62 63	16.80 7.70	-10.00 19.00
##	64	16.14	32.00
##	65	7.12	15.00
##	66	-1.00	10.00
##	67	17.00	-16.90
##	68	9.26	2.00
##	69	18.70	-10.10
##	70	3.40	12.20
##	71	21.30	-11.00
##	72	7.50	5.20
##	73	6.03	16.00
##	74	7.50	5.80
##	75	19.00	5.20
##	76	19.01	13.00
##	77	8.10	13.60
##	78	7.80	16.10
##	79	6.10	33.20
##	80	15.26	4.00
##	81	7.95	12.00
##	82	18.00	-1.50
##	83	4.60	18.30
##	84	15.00	3.00
##	85	7.50	15.80
##	86	8.00	27.10

##	87	16.80	-10.00
##	88	8.54	25.00
##	89	7.00	27.10
##	90	18.30	-8.00
##	91	7.80	12.00
##	92	16.00	-8.00
##	93	14.00	23.00
##	94	12.30	5.00
##	95	11.40	1.00
##	96	8.50	18.90
##	97	7.00	15.00
##	98	7.96	22.00
##	99	17.60	-3.50
##	100	10.00	20.00
##	101	3.50	12.20
##	102	6.70	14.70
##	103	17.00	-5.00
##	104	20.26	-4.15
##	105	6.64	11.00
##	106	1.80	-4.00
##	107	7.02	25.00
##	108	2.46	35.00
##	109	19.00	-5.00
##	110	17.86	-30.00
##	111	6.10	12.20
##	112	6.64	19.00
##	113	12.00	1.60
##	114	6.60	20.00
##	115	8.70	17.10
##	116	14.05	24.00
##	117	7.20	7.10
##	118	19.70	-11.00
##	119	7.70	21.30
##	120	6.02	5.00
##	121	2.50	12.90
##	122	19.00	5.90
##	123	6.80	5.80

3.32 Variables continuas

En el estudio de misofonía también se midió la protrusión mandibular como posible factor cefalométrico de la enfermedad.

3.33 Gráfico de dispersión

- El histograma depende del tamaño del contenedor (píxel).
- Si el píxel es lo suficientemente pequeño como para contener una sola observación, el mapa de calor da como resultado un diagrama de dispersión

El diagrama de dispersión es la ilustración de una "tabla de contingencia" para variables continuas cuando el contenedor (píxel) es lo suficientemente pequeño como para contener una sola observación (que consta de un par de valores).

Chapter 4

Probabilidad condicional

4.1 Objetivo

- Probabilidad condicional
- Independencia
- Teorema de Bayes

4.2 Probabilidad conjunta

La probabilidad conjunta de dos eventos A y B es

$$P(A,B) = P(A \cap B)$$

Imaginemos un experimento aleatorio que mide dos tipos diferentes de resultados.

- altura y peso de un individuo: (h, w)
- hora y lugar de una carga eléctrica: (p,t)
- una tirada de dos dados: (n_1, n_2)
- cruzar dos semáforos en verde: $(\bar{R_1}, \bar{R_2})$

En muchos casos, nos interesa saber si los valores de un resultado **condicionan** los valores del otro.

4.3 Diagnósticos

Consideremos una herramienta de diagnóstico

Queremos encontrar el estado de un sistema (s):

- inadecuado (sí)
- adecuado (no)

con una prueba (t):

- positivo
- negativo

Probamos una batería para saber cuánto tiempo puede vivir. Tensamos un cable para saber si resiste llevar cierta carga. Realizamos una PCR para ver si alguien está infectado.

4.4 Prueba de diagnóstico

Consideremos diagnosticar una infección con una nueva prueba.

Estado de infección:

- si (infectado)
- no (no infectado)

Prueba:

- positivo
- negativo

4.5 Observaciones

Cada individuo es un experimento aleatorio con dos medidas: (Infección, Prueba)

Asunto	Infección	Prueba
s_1	si	positivo
s_2	no	$_{ m negativo}$
s_3	si	positivo

-		١
'n	١.	í

Asunto	Infección	Prueba
s_i	no	positivo*
•••	•••	•••
	•••	
s_n	si	negativo*

4.6 Tablas de contingencia

• Por el número de observaciones de cada resultado

	Infección: sí	Infección: no	suma
Test: positivo	18	12	30
Test: negativo	30	300	330
suma	48	312	360

- Para las frecuencias relativas, siN>>0tomaremos $f_{i,j}=\hat{P}(x_i,y_j)$

	Infección: sí	Infección: no	suma
Test: positivo	0.05	0.0333	0.0833
Test: negativo	0.0833	0.833	0.9166
suma	0.133	0.866	1

4.7 La probabilidad condicional

Pensemos primero en términos de aquellos que están ${\bf infectados}$

Dentro de los que están infectados (sí), ¿cuál es la probabilidad de dar positivo?

• Sensibilidad (tasa de verdaderos positivos)

$$\hat{P}(positivo|s) = \frac{n_{positivo,s}}{n_s}$$

$$=\frac{\frac{n_{positivo,s}}{N}}{\frac{n_{s}}{N}}=\frac{f_{positivo,s}}{f_{s}}$$

Por lo tanto, en el límite, esperamos tener una probabilidad del tipo

$$P(positivo|s) = \frac{P(positivo, s)}{P(s)} = \frac{P(positivo \cap s)}{P(s)}$$

4.8 La probabilidad condicional

Definición: La probabilidad condicional de un evento B dado un evento A, denotado como P(A|B), es

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

- se puede probar que la probabilidad condicional satisface los axiomas de probabilidad.
- la probabilidad condicional es la probabilidad bajo el espacio muestral dado por $B{:}\ S_B.$

4.9 Tabla de contingencia condicional

	Infección: Sí	Infección: No
Test: positivo Test: negativo suma	P(positivo sí) P(negativo sí) 1	P(positivo no) P(negativo no) 1

- Tasa de verdaderos positivos (Sensibilidad): La probabilidad de dar positivo \mathbf{si} se tiene la enfermedad P(positivo|s)
- Tasa de verdaderos negativos (Especificidad): La probabilidad de dar negativo \mathbf{si} no se tiene la enfermedad P(negativo|no)
- Tasa de falsos positivos: La probabilidad de dar positivo si no se tiene la enfermedad P(positivo|no)
- Tasa de falsos negativos: la probabilidad de dar negativo si se tiene la enfermedad P(negativo|s)

4.10 Ejemplo de tabla de contingencia condicional

Tomando las frecuencias como estimaciones de las probabilidades, entonces

	Infección: Sí	Infección: No
Test: positivo	18/48 = 0.375	12/312 = 0.038
Test: negativo	30/48 = 0.625	300/312 = 0.962
suma	1	1

Nuestra herramienta de diagnóstico tiene baja sensibilidad (0.375) pero alta especificidad (0.962).

4.11 Regla de multiplicación

Ahora imaginemos la situación real, donde queremos obtener la probabilidad **conjunta** de la probabilidad **condicional**

- Se (realizaron) PCR para coronavirus [https://www.nejm.org/doi/full/10 .1056/NEJMp2015897] en personas en el hospital que estamos seguros de estar infectadas. Este test tiene una sensibilidad del 70%. También se ha probado en el laboratorio en condiciones sin infección con una especificidad del 96 %.
- Un estudio de prevalencia en España mostró que $P(s)=0.05,\ P(no)=0.95$ antes del verano.

Con estos datos, ¿cuál era la probabilidad de que una persona seleccionada al azar de la población diera positivo \mathbf{y} estuviera infectada: $P(s \cap positivo) = P(s, positivo)$?

4.12 Rendimiento de diagnóstico

Para estudiar el rendimiento de una nueva prueba diagnóstica:

• selecciona muestras que son inadecuadas (enfermedad: \mathbf{si}) y aplica la prueba, tratando de encontrar su sensibilidad: P(positivo|s) (0.70 para PCR)

• selecciona muestras que son adecuadas (enfermedad: **no**) y aplica la prueba, tratando de encontrar su especificidad: P(negativo|no) (0.96 para PCR)

	Infección: Sí	Infección: No
Test: positivo	P(positivo sí)=0.7	P(positivo no)=0.06
Test: negativo	P(negativo si)=0.3	P(negativo no)=0.94
suma	1	1

De esta matriz, ¿podemos obtener P(s, positivo)?

4.13 Regla de multiplicación

¿Cómo se recupera la probabilidad conjunta de la probabilidad condicional? Para dos eventos A y B tenemos la regla de la multiplicación

$$P(A, B) = P(A|B)P(B)$$

que se sigue de la definición de probabilidad condicional.

4.14 Tabla de contingencia en términos de probabilidades condicionales

	Infección: Sí	Infección: No	suma
Test: positivo Test: negativo suma	$\begin{array}{c c} P(positivo \mid si)P(si) \\ P(negativo \mid si)P(si) \\ P(si) \end{array}$	P(positivo no)P(no) P(negativo no) P(no) P(no)	P(positivo) P(negativo)

Por ejemplo, la probabilidad de dar positivo y estar infectado s:

 $\bullet \ \ P(positivo,s) = P(positivo \cap s) = P(positivo|s)P(s)$

4.15 Árbol condicional

4.16 Tabla de contingencia en términos de probabilidades condicionales

	Infección: sí	Infección: no	suma
Test: positivo	0.035	0.057	0.092
Test: negativo	0.015	0.893	0.908
suma	0.05	0.95	1

• P(positivo, si) = 0.035

Pero también encontramos la probabilidad marginal de ser positivo:

• P(positivo) = 0.092

4.17 Regla de probabilidad total

	Infección: Sí	Infección: No	suma
-	$P(positivo \mid si)P(si)$ $P(negativo \mid si)P(si)$ $P(si)$	P(positivo no)P(no) P(negativo no) P(no) P(no)	P(positivo) P(negativo)

Cuando escribimos las marginales desconocidas en términos de sus probabilidades condicionales, lo llamamos **regla de probabilidad total**

- P(positivo) = P(positivo|s)P(s) + P(positivo|no)P(no)
- $\bullet \ \ P(negativo) = P(negativo|s)P(s) + P(negativo|no)P(no)$

4.18 Árbol condicional

Regla de probabilidad total para la marginal de B: ¿De cuántas maneras puedo obtener el resultado B?

$$P(B) = P(B|A)P(A) + P(B|A')P(A')$$

4.19 Encontrar probabilidades inversas

De la tabla de contingencia condicional

	Infección: Sí	Infección: No
Test: positivo Test: negativo suma	$\begin{array}{c} P(\text{positivo} \mid \text{si}) \\ P(\text{negativo} \mid \text{si}) \\ 1 \end{array}$	P(positivo no) P(negativo no) 1

¿Cómo podemos calcular la probabilidad de estar infectado si la prueba da positivo: P(s|positivo)?

4.20 Recuperar probabilidades conjuntas

1. Recuperamos la tabla de contingencia para probabilidades conjuntas

		Infección: Sí	Infección: No	suma
= ()	Test: negativo	P(negativo sí)P(sí)	P(negativo no) P(no)	

4.21 Condicionales inversas

 $2.\,$ Calculamos las probabilidades condicionales para la prueba:

$$P(infeccin|prueba) = \frac{P(prueba|infeccin)P(infeccin)}{P(prueba)}$$

	Infección: Sí	Infección: No	suma
Test: positivo	P(sí positivo)	P(sin positivo)	1
Test: negativo	P(sí negativo)	P(sin negativo)	1

Por ejemplo:

$$P(s|positivo) = \frac{P(positivo|s)P(s)}{P(positivo)}$$

como normalmente no tenemos P(positivo), usamos la regla de **probabilidad** total en el denominador

$$P(s|positivo) = \frac{P(positivo|s)P(s)}{P(positivo|s)P(s) + P(positivo|no)P(no)}$$

4.22 Teorema de Bayes

La expresion:

$$P(s|positivo) = \frac{P(positivo|s)P(s)}{P(positivo|s)P(s) + P(positivo|no)P(no)}$$

se llama teorema de Bayes

Teorema

Si E1, E2, ..., Ek son k eventos mutuamente excluyentes y exhaustivos y B es cualquier evento,

$$P(Ei|B) = \frac{P(B|Ei)P(Ei)}{P(B|E1)P(E1) + \ldots + P(B|Ek)P(Ek)}$$

Permite invertir los condicionales:

$$P(B|A) \rightarrow P(A|B)$$

O diseñe una prueba B en condición controlada A y luego utilícela para **inferir** la probabilidad de la condición cuando la prueba es positiva.

4.23 Ejemplo: teorema de Bayes

Teorema de Bayes:

$$P(s|positivo| = \frac{P(positivo|s)P(s)}{P(positivo|s)P(s) + P(positivo|no)P(no)}$$

sabemos:

- P(positivo|s) = 0.70
- P(positivo|no) = 1 P(negativo|no) = 0.06
- la probabilidad de infección y no infección en la población: P(s)=0.05 y P(no)=1-P(s)=0.95.

Por lo tanto:

$$P(s|positivo) = 0.47$$

Las pruebas no son tan buenas para **confirmar** infecciones.

4.24 Ejemplo: teorema de Bayes

Apliquémoslo ahora a la probabilidad de no estar infectado si la prueba es negativa.

$$P(no|negativo) = \frac{P(negativo|no)P(no)}{P(negativo|no)P(no) + P(negativo|s)P(s)}$$

La sustitución de todos los valores da

$$P(no|negativo) = 0.98$$

Las pruebas son buenas para **descartar** infecciones.

61

4.25 Independencia estadística

En muchas aplicaciones, queremos saber si el conocimiento de un evento condiciona el resultado de otro evento.

• hay casos en los que queremos saber si los eventos no están condicionados

4.26 Independencia estadística

Considere los conductores para los cuales medimos sus fallas superficiales y si su capacidad de conducción es defectuosa.

Las probabilidades conjuntas estimadas son

	fallas (F)	sin fallas (F')	suma
defectuoso (D)	0.005	0.045	0.05
sin defectos (D')	0.095	0.855	0.95
suma	0.1	0.9	1

donde, por ejemplo, la probabilidad conjunta de F y D es

•
$$P(D, F) = 0.005$$

Las probabilidades marginales son

•
$$P(D) = P(D, F) + P(D, F') = 0.05$$

•
$$P(F) = P(D, F) + P(D', F) = 0.1$$
.

4.27 Independencia estadística

¿Cuál es la **probabilidad condicional** de observar un conductor defectuoso si tiene un defecto?

	F	F'
D	P(D F) = 0.05	P(D F')=0.05
D'	P(D' F)=0.95	P(D' F')=0.95
suma	1	1

 ${\it i}$ Las probabilidades marginales y condicionales son las mismas!

- P(D|F) = P(D|F') = P(D)
- P(D'|F) = P(D'|F') = P(D')

La probabilidad de observar un conductor defectuoso **no** depende de haber observado o no un defecto.

$$P(D) = P(D|F)$$

4.28 Independencia estadística

Dos eventos A y B son estadísticamente independientes si

- P(A|B) = P(A); A es independiente de B
- P(B|A) = P(B); B es independiente de A

y por la regla de la multiplicación, su probabilidad conjunta es

•
$$P(A \cap B) = P(A|B)P(B) = P(A)P(B)$$

la multiplicación de sus probabilidades marginales.

4.29 Productos de productos marginales

	F	F'	suma
D	0.005	0.045	0.05
D'	0.095	0.855	0.95
suma	0.1	0.9	1

Confirme que todas las entradas de la matriz son el producto de los marginales.

Por ejemplo:

- $P(F)P(D) = P(D \cap F)$
- $P(D')P(F') = P(D' \cap F')$

4.30. EJEMPLO 63

4.30 Ejemplo

Resultados de lanzar dos monedas: S = (H, H), (H, T), (T, H), (T, T)

	Н	Τ	suma
Н	1/4	1/4	1/2
${ m T}$	1/4	1/4	1/2
suma	1/2	1/2	1

- Obtener cara en la primera moneda no condiciona obtener cruz en el resultado de la segunda moneda P(T|H)=P(T)=1/2
- la probabilidad de obtener cara y después cruz es el producto de cada resultado independiente P(H,T)=P(H)*P(T)=1/4

Chapter 5

Variables aleatorias discretas

5.1 Objetivo

- Variables aleatorias
- Función de probabilidad
- Media y varianza
- Distribución de probabilidad

5.2 ¿Cómo asignamos valores de probabilidad a los resultados?

5.3 Variable aleatoria

Definición:

Una variable aleatoria es una función que asigna un número real a cada resultado en el espacio muestral de un experimento aleatorio.

• Por lo general, una variable aleatoria es el valor de la **medida** de interés que se realiza en un experimento aleatorio.

T I.o.o	rramia bla	aleatoria	nunda.	
Ona	variable	aleatoria	puede	ser.

- Discreta (nominal, ordinal)
- Continua (intervalo, relación)

5.4 Variable aleatoria

Un valor (o resultado) de una variable aleatoria es uno de los números posibles que la variable puede tomar en un experimento aleatorio.

Escribimos la variable aleatoria en mayúsculas.

Ejemplo:

Si $X \in \{0,1\}$, entonces decimos que X es una variable aleatoria que puede tomar los valores 0 o 1.

Observación de una variable aleatoria

• Una observación es la **adquisición** del valor de una variable aleatoria en un experimento aleatorio

Ejemplo:

 $1\; 0\; 0\; 1\; 0\; \mathbf{1}\; 0\; 1\; 1$

El número en negrita es una observación de X

5.5 Eventos de observar una variable aleatoria

- X = 1 es el **evento** de observar la variable aleatoria X con valor 1
- X=2 es el **evento** de observar la variable aleatoria X con valor 2

En general:

- X=x es el **evento** de observar la variable aleatoria X con valor x (pequeño x)
- Dos valores cualesquiera de una variable aleatoria definen dos eventos **mutuamente excluyentes**.

5.6 Probabilidad de variables aleatorias

Nos interesa asignar probabilidades a los valores de una variable aleatoria.

Ya hemos hecho esto para los dados: $X \in \{1,2,3,4,5,6\}$ (interpretación clásica de probabilidad)

X	Probabilidad
1	P(X=1) = 1/6
2	P(X=2) = 1/6
3	P(X=3) = 1/6
4	P(X=4) = 1/6
5	P(X=5) = 1/6
6	P(X=6) = 1/6

5.7 Funciones de probabilidad

- Podemos escribir la tabla de probabilidad
- graficarla

• o escribirla como la función

$$f(x) = P(X = x) = 1/6$$

5.8 Funciones de probabilidad

Podemos **crear** cualquier tipo de función de probabilidad si respetamos las reglas de probabilidad:

5.9 Funciones de probabilidad

Para una variable aleatoria discreta $X \in \{x_1, x_2, .., x_M\}$, una función de masa de probabilidad

siempre es positiva

•
$$f(x_i) \ge 0$$

se utiliza para calcular probabilidades

•
$$f(x_i) = P(X = x_i)$$

y su suma sobre todos los valores de la variable es 1:

•
$$\sum_{i=1}^{M} f(x_i) = 1$$

5.10 Funciones de probabilidad

- Tenga en cuenta que la definición de X y su función de masa de probabilidad es general **sin referencia** a ningún experimento. Las funciones viven en el espacio modelo (abstracto).
- X y f(x) son objetos abstractos que pueden o no asignarse a un experimento
- Tenemos la libertad de construirlos como queramos siempre que respetemos su definición.
- $\bullet\,$ Tienen algunas ${\bf propiedades}$ que se derivan exclusivamente de su definición.

5.11 Ejemplo: función de masa de probabilidad

Considere la siguiente variable aleatoria X sobre los resultados

resultado	X
a	0
b	0
c	1.5
d	1.5
e	2
f	3

Si cada resultado es igualmente probable, ¿cuál es la función de masa de probabilidad de x?

5.12 Tabla de probabilidad para resultados igualmente probables

resultado	Probabilidad (resultado)
\overline{a}	1/6
$\overset{a}{b}$	$\frac{1}{6}$
c	1/6
d	1/6
e	1/6
f	1/6

5.13 Tabla de probabilidad para X

X	f(x) = P(X = x)
0	P(X=0) = 2/6
1.5	P(X = 1.5) = 2/6
2	P(X=2) = 1/6
3	P(X=3) = 1/6

Podemos calcular, por ejemplo, las siguientes probabilidades de eventos en los valores de \boldsymbol{X}

- P(X > 3)
- $P(X = 0 \cup X = 2)$
- $P(X \le 2)$

5.14 Ejemplo

Modelo de probabilidad:

Considere el siguiente experimento: En una urna ponga 8 bolas y:

- marque 1 bola con el número -2
- marque 2 bolas con el número -1
- $\bullet\,\,$ marque 2 bolas con el número 0

5.15. EJEMPLO 71

 $\bullet\,\,$ marque 2 bolas con el número 1

 $\bullet\,\,$ marque 1 bola con el número 2

experimento: Tome una bola y lea el número.

X	P(X=x)
-2	1/8 = 0.125
-1	2/8 = 0.25
0	2/8 = 0.25
1	2/8 = 0.25
2	1/8 = 0.125

5.15 Ejemplo

Considere otro experimento en el que no sabemos qué hay en la urna anterior. Sacamos una bola 30 veces, escribimos su númeror y la devolvemos a la urna.

- no sabemos cuáles son los eventos primarios con iguales probabilidades.
- y estimamos la función de masa de probabilidad a partir de las frecuencias relativas observadas para cada variable aleatoria

X	f_{i}
-2	0.132
-1	0.262
0	0.240
1	0.248
2	0.118

5.16 Probabilidades y frecuencias

Para calcular las frecuencias relativas f_i trenemos que

• repetir el experimento N veces (tenemos que volver a poner la bola en la urna cada vez) y al final calcular

$$f_i = n_i/N$$

Estamos suponiendo que:

$$lim_{N\to\infty}f_i=f(x_i)=P(X=x_i)$$

5.17 Probabilidades y frecuencias relativas

- En este ejemplo, sabemos el modelo de probabilidad f(x) = P(X = x) por diseño.
- Nunca observamos f(x)
- Podemos usar frecuencias relativas para estimar las probabilidades

$$f_i = \hat{f}(x_i) = \hat{P}(X = x_i)$$

 $(f_i \text{ depende de } N)$

5.18 Media y Varianza

Las funciones de masa de probabilidad f(x) tienen dos propiedades principales

- su centro
- su dispersión

Podemos preguntar,

- λ Alrededor de qué valores de X se concentró la probabilidad?
- ¿Qué tan dispersos son los valores de X en relación a sus probabilidades?

5.19 Media y Varianza

5.20 Media

Recuerde que el **promedio** en términos de las frecuencias relativas de los valores de x_i (resultados ordenados categóricos) se puede escribir como

$$\bar{x} = \sum_{i=1}^M x_i \frac{n_i}{N} = \sum_{i=1}^M x_i f_i$$

Definición

La **media** (μ) o valor esperado de una variable aleatoria discreta X, E(X), con función de masa f(x) está dada por

$$\mu = E(X) = \sum_{i=1}^{M} x_i f(x_i)$$

Es el centro de gravedad de las **probabilidades**: El punto donde se equilibran las cargas de probabilidad

5.21 Ejemplo: Media

¿Cuál es la media de X si su función de masa de probabilidad f(x) está dada por

$$P(X=0) = 1/16 \ P(X=1) = 4/16 \ P(X=2) = 6/16 \ P(X=3) = 4/16 \ P(X=4) = 1/16$$

$$\mu = E(X) = \sum_{i=1}^m x_i f(x_i)$$

$$E(X) = \mathbf{0} * 1/16 + \mathbf{1} * 4/16 + \mathbf{2} * 6/16 + \mathbf{3} * 4/16 + \mathbf{4} * 1/16 = 2$$

5.22 Media y Promedio

• La media μ es el centro de gravedad de función de masa de probabilidad y no cambia

Por ejemplo de

$$X \qquad P(X=x)$$

$$2 \qquad 1/8 = 0.125$$

• El promedio \bar{x} es el centro de gravedad de las observaciones (frequencias relativas) **y cambia** de acuerdo a los datos.

Por ejemplo de

X	f_i
-2	0.132
-1	0.262
0	0.240
1	0.248
2	0.118

5.23 Variación

En términos similares definimos la distancia media al cuadrado de la media:

Definición

La varianza, escrita como σ^2 o V(X), de una variable aleatoria discreta X con función de masa f(x) está dada por

$$\sigma^2 = V(X) = \sum_{i=1}^M (x_i - \mu)^2 f(x_i)$$

- $\sigma = \sqrt{V(X)}$ se llama la **desviación estándar** de la variable aleatoria
- Piense en ello como el momento de inercia de las probabilidades sobre la media.

5.24 Ejemplo: Varianza

¿Cuál es la varianza de X si su función de masa de probabilidad f(x) está dada por

$$P(X=0) = 1/16 \ P(X=1) = 4/16 \ P(X=2) = 6/16 \ P(X=3) = 4/16 \ P(X=4) = 1/16$$

$$\sigma^2=V(X)=\sum_{i=1}^m(x_i-\mu)^2f(x_i)$$

$$V(X) = (\mathbf{0-2})^{2*} 1/16 + (\mathbf{1-2})^{2*} 4/16 + (\mathbf{2-2})^{2*} 6/16 + (\mathbf{3-2})^{2*} 4/16 + (\mathbf{4-2})^{2*} 1/16 = 1$$

$$V(X) = \sigma^2 = 1$$
$$\sigma = 1$$

5.25 Funciones de X

Definición

Para cualquier función h de una variable aleatoria X, con función de masa f(x), su **valor esperado** viene dado por

$$E[h(X)] = \sum_{i=1}^{M} h(x_i) f(x_i)$$

Esta es una definición importante que nos permite probar **tres propiedades** importantes de la mediana y la varianza:

• La media de una función lineal es la función lineal de la media:

$$E(a \times X + b) = a \times E(X) + b$$

para a y b escalares (números) .

• La varianza de una función lineal de X es:

$$V(a \times X + b) = a^2 \times V(X)$$

• La varianza **sobre el origen** es la varianza **sobre la media** más la media al cuadrado:

$$E(X^2) = V(X) + E(X)^2$$

5.26 Ejemplo: Varianza sobre el origen

¿Cuál es la varianza X sobre el origen, $E(X^2)$, si su función de masa de probabilidad f(x) está dada por

$$P(X=0) = 1/16$$
 $P(X=1) = 4/16$ $P(X=2) = 6/16$ $P(X=3) = 4/16$ $P(X=4) = 1/16$

$$E(X^2) = \sum_{i=1}^m x_i^2 f(x_i)$$

$$E(X^2) = (\mathbf{0})^{2*} 1/16 + (\mathbf{1})^{2*} 4/16 + (\mathbf{2})^{2*} 6/16 + (\mathbf{3})^{2*} 4/16 + (\mathbf{4})^{2*} 1/16 = 5$$

También podemos verificar:

$$E(X^2) = V(X) + E(X)^2$$

 $5 = 1 + 2^2$

5.27 Distribución de probabilidad

Definición:

La función de distribución de probabilidad se define como

$$F(x) = P(X \leq x) = \sum_{x_i \leq x} f(x_i)$$

Esa es la probabilidad acumulada hasta un valor dado x

F(x) satisface:

- $0 \le F(x) \le 1$
- Si $x \le y$, entonces $F(x) \le F(y)$

5.28 Ejemplo: distribución de probabilidad

Para la función de masa de probabilidad:

$$f(0) = P(X=0) = 1/16 \ f(1) = P(X=1) = 4/16 \ f(2) = P(X=2) = 6/16 \ f(3) = P(X=3) = 4/16 \ f(4) = P(X=4) = 1/16$$

La distribución de probabilidad es:

$$F(x) = \begin{cases} 1/16, & \text{if } 0 \le x < 1\\ 5/16, & 1 \le x < 2\\ 11/16, & 2 \le x < 3\\ 15/16, & 4 \le x < 5\\ 16/16, & x \le 5 \end{cases}$$

Para $X \in \mathbb{Z}$

5.29 Probability distribution

5.30 Función de probabilidad y Distribución de probabilidad

Calcule la función de probabilidad de masa de la siguiente distribución de probabilidad:

$$F(0) = 1/16$$
, $F(1) = 5/16$, $F(2) = 11/16$, $F(3) = 15/16$, $F(4) = 16/16$,

Trabajemos al revés.

$$f(0) = F(0) = 1/16 \ f(1) = F(1) - f(0) = 5/32 - 1/32 = 4/16 \ f(2) = F(2) - f(1) - f(0) = F(2) - F(1) = 6/16 \ f(3) = F(3) - f(2) - f(1) - f(0) = F(3) - F(2) = 4/16 \ f(4) = F(4) - F(3) = 1/16$$

5.31 Función de probabilidad y Distribución de probabilidad

La distribución de probabilidad es otra forma de especificar la probabilidad de una variable aleatoria.

$$f(x_i) = F(x_i) - F(x_{i-1})$$

con

$$f(x_1) = F(x_1)$$

para X tomando valores en $x_1 \leq x_2 \leq \ldots \leq x_n$

5.32 Cuantiles

Definimos el **q-cuantil** como el valor x_p bajo el cual hemos acumulado q*100% de la probabilidad

$$q = \sum_{i=1}^{p} f(x_i) = F(x_p)$$

• La **mediana** es valor x_m tal que q = 0.5

$$F(x_m) = 0.5$$

• El cuantil 0.05 es el valor x_r tal que q=0.05

$$F(x_r) = 0.05$$

• El cuantil 0,25 es el primer **cuartil** o sea el valor x_s tal que q=0,25

$$F(x_s) = 0,25$$

5.33 Resumen

nombres de cantidades	modelo (no observado)	datos (observados)
función de masa de probabilidad // frecuencia relativa	$f(x_i) = P(X = x_i)$	$f_i = \frac{n_i}{N}$
distribución de probabilidad // frecuencia relativa acumulada	$F(x_i) = P(X \le x_i)$	$F_i = \textstyle \sum_{k \leq i} f_k$
media // promedio	$\mu = E(X) = \sum_{i=1}^{M} x_i f(x_i)$	$\bar{x} = \sum_{j=1}^{N} x_j / N$
varianza // varianza de la muestra	$\sigma^2 = V(X) = \sum_{i=1}^{M} (x_i - \mu)^2 f(x_i)$	$s^{2} = \sum_{j=1}^{N} (x_{j} - \bar{x})^{2} / (N - 1)$
desviación estándar // muestra sd	$\sigma = \sqrt{V(X)}$	s
varianza sobre el origen // 2º momento muestral	$\begin{array}{l} E(X^2) = \\ \sum_{i=1}^M x_i^2 f(x_i) \end{array}$	$m_2 = \sum_{j=1}^N x_j^2 / n$

Tenga en cuenta que:

- i = 1...M es un **resultado** de la variable aleatoria X.
- j = 1...N es una **observación** de la variable aleatoria X.

Propiedades:

- $$\begin{split} \bullet & \sum_{i=1...N} f(x_i) = 1 \\ \bullet & f(x_i) = F(x_i) F(x_{i-1}) \\ \bullet & E(a \times X + b) = a \times E(X) + b; \text{ para los escalares } a \neq b. \\ \bullet & V(a \times X + b) = a^2 \times V(X) \\ \bullet & E(X^2) = V(X) + E(X)^2 \end{split}$$

Chapter 6

Variables aleatorias continuas

6.1 Objetivo

- Función de densidad de probabilidad
- Media y varianza
- Distribución de probabilidad

6.2 Variable aleatoria continua

¿Qué sucede con las variables aleatorias continuas?

Reconsideremos el ángulo de convexidad de los pacientes con misofonía (Sección 2.21).

 Para esta variabler redefinimos los resultados como pequeños intervalos regulares (bins) y calculamos la frecuencia relativa para cada uno de ellos como hicimos en el caso discreto.

```
## outcome ni fi

## 1 [-1.02,3.46] 8 0.06504065

## 2 (3.46,7.92] 51 0.41463415

## 3 (7.92,12.4] 26 0.21138211

## 4 (12.4,16.8] 20 0.16260163

## 5 (16.8,21.3] 18 0.14634146
```

6.3 Variable aleatoria continua

Consideremos nuevamente que sus frecuencias relativas son las probabilidades cuando $N\to\infty$

$$f_i = \frac{n_i}{N} \to f(x_i) = P(X = x_i)$$

La probabilidad depende ahora de la longitud de los bins Δx . Si hacemos los contenedores cada vez más pequeños, las frecuencias se hacen más pequeñas y, por lo tanto,

```
P(X=x_i) \to 0 cuando \Delta x \to 0, porque n_i \to 0
```

```
outcome ni
## 1
      [-1.02, 0.115]
                       2 0.01626016
## 2
       (0.115, 1.23]
                      0 0.00000000
         (1.23, 2.34]
## 3
                       3 0.02439024
## 4
         (2.34, 3.46]
                       3 0.02439024
## 5
         (3.46, 4.58]
                       2 0.01626016
## 6
         (4.58, 5.69]
                      4 0.03252033
## 7
          (5.69,6.8] 11 0.08943089
## 8
          (6.8,7.92] 34 0.27642276
## 9
         (7.92,9.04] 12 0.09756098
## 10
         (9.04, 10.2]
                      4 0.03252033
## 11
         (10.2, 11.3]
                       3 0.02439024
## 12
         (11.3, 12.4]
                       7 0.05691057
## 13
         (12.4, 13.5]
                      2 0.01626016
         (13.5, 14.6]
                       6 0.04878049
## 14
         (14.6, 15.7]
## 15
                       4 0.03252033
         (15.7, 16.8]
## 16
                      8 0.06504065
## 17
           (16.8, 18]
                      4 0.03252033
           (18, 19.1]
## 18
                       9 0.07317073
## 19
         (19.1, 20.2]
                       3 0.02439024
## 20
         (20.2, 21.3]
                       2 0.01626016
```

6.4 Variable aleatoria continua

Definimos una cantidad en un punto x que es la cantidad de probabilidad por unidad de distancia que encontraríamos en un contenedor **infinitesimal** dx en x

$$f(x) = \frac{P(x \le X \le x + dx)}{dx}$$

f(x) se llama la función de **densidad** de probabilidad.

Por tanto, la probabilidad de observar x entre x y x + dx está dada por

$$P(x \le X \le x + dx) = f(x)dx$$

6.5 Variable aleatoria continua

Definición

Para una variable aleatoria continua X, una función de **densidad de probabilidad** es tal que

La función es positiva:

•
$$f(x) \ge 0$$

La probabilidad de observar un valor dentro de un intervalo es el **área bajo la** curva:

•
$$P(a \le X \le b) = \int_a^b f(x)dx$$

La probabilidad de observar **cualquier** valor es 1:

•
$$\int_{-\infty}^{\infty} f(x)dx = 1$$

6.6 Variable aleatoria continua

- La función de densidad de probabilidad es un paso adelante en la abstracción de probabilidades: sumamos el límite continuo $(dx \to 0)$.
- Todas las propiedades de las probabilidades se traducen en términos de densidades $(\sum \to \int)$.
- La asignación de probabilidades a una variable aleatoria se puede realizar con argumentos de equiprobabilidad (clásicos).
- Las densidades son cantidades matemáticas que algunas asignarán a experimentos y otras no. ¿Qué densidad corresponderá mejor a mi experimento?

6.7 Área total bajo la curva

Ejemplo: toma la **densidad de probabilidad** que podría describir la variable aleatoria que mide dónde cae una gota de lluvia en una canaleta de lluvia de 100cm de longitud.

$$f(x) = \begin{cases} \frac{1}{100}, & \text{si } x \in (0, 100) \\ 0, & \text{si no} \end{cases}$$

Entonces la probabilidad de **cualquier** observación es el **área total bajo la curva**

$$P(-\infty \leq X \leq \infty) = \int_{-\infty}^{\infty} f(x) dx = 100*0.01 = 1$$

6.8 Área bajo la curva

La probabilidad de observar x en un intervalo es el **área bajo la curva** dentro del intervalo

•
$$P(20 \le X \le 60) = \int_{20}^{60} f(x)dx = (60 - 20) * 0.01 = 0.4$$

6.9 Área bajo la curva

En general, f(x) debe satisfacer:

•
$$0 \le P(a \le X \le b) = \int_a^b f(x)dx \le 1$$

6.10 Distribución de probabilidad

La probabilidad acumulada hasta bestá definida por la distribución de probabilidad ${\cal F}$

•
$$F(b) = P(X \le b) = \int_{-\infty}^{b} f(x)dx$$

La probabilidad acumulada hasta a es

•
$$F(a) = P(X \le a)$$

6.11 Distribución de probabilidad

La probabilidad entre a y b está definida por la distribución de probabilidad F

•
$$P(a \le X \le b) = \int_a^b f(x) dx = F(b) - F(a)$$

6.12 Distribución de probabilidad

La distribución de probabilidad de una variable aleatoria continua se define como $F(a)=P(X\leq a)=\int_{-\infty}^a f(x)dx$

con las propiedades que:

Está entre 0 y 1:

•
$$F(-\infty) = 0$$
 y $F(\infty) = 1$

Siempre aumenta:

• si $a \le b$ entonces $F(a) \le F(b)$

Se puede utilizar para calcular probabilidades:

•
$$P(a \le X \le b) = F(b) - F(a)$$

Recupera la densidad de probabilidad:

•
$$f(x) = \frac{dF(x)}{dx}$$

Usamos distribuciones de probabilidad para calcular probabilidades de una variable aleatoria en intervalos

6.13 Distribución de probabilidad

Para la funcion de densidad uniforme:

$$f(x) = \begin{cases} \frac{1}{100}, & \text{si } x \in (0, 100) \\ 0, & \text{si no} \end{cases}$$

La distribución de probabilidad es

$$F(a) = \begin{cases} 0, & a \le 0\\ \frac{a}{100}, & \text{si } a \in [0, 100)\\ 1, & 100 < a \end{cases}$$

6.14 Gráficos de probabilidad

La probabilidad P(20 < X < 60) es el área bajo la curva de **densidad**

6.15 Gráficos de probabilidad

La probabilidad P(20 < X < 60) es la diferencia en valores de **distribución**

6.16. MEDIA 91

6.16 Media

Como en el caso discreto, la media mide el centro de la distribución

Definición

Supongamos que X es una variable aleatoria continua con función de probabilidad **densidad** f(x). El valor medio o esperado de X, denotado como μ o E(X), es

$$\mu = E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

Es la versión continua del centro de masa.

6.17 Media

$$f(x) = \begin{cases} \frac{1}{100}, & \text{si } x \in (0, 100) \\ 0, & \text{si no} \end{cases}$$

E(X) = 50

6.18 Varianza

Como en el caso discreto, la varianza mide la dispersión con respecto a la media

Definición

Supongamos que X es una variable aleatoria continua con función de densidad de probabilidad f(x). La varianza de X, denotada como σ^2 o V(X), es

$$\sigma^2 = V(X) = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$$

6.19 Funciones de X

Definición

Para cualquier función h de una variable aleatoria X, con función de masa f(x), su valor esperado viene dado por

6.20. EJEMPLO 93

$$E[h(X)] = \int_{-\infty}^{\infty} h(x) f(x) dx$$

Y tenemos las mismas propiedades que en el caso discreto

• La media de una función lineal es la función lineal de la media:

$$E(a \times X + b) = a \times E(X) + b$$

para a y b escalares.

- La varianza de una función lineal de X es:

$$V(a \times X + b) = a^2 \times V(X)$$

• La varianza sobre el origen es la varianza sobre la media más la media al cuadrado:

$$E(X^2) = V(X) + E(X)^2 \label{eq:energy}$$

6.20 Ejemplo

• para la densidad de probabilidad

$$f(x) = \begin{cases} \frac{1}{100}, & \text{si } x \in (0, 100) \\ 0, & \text{si } no \end{cases}$$

- calcule la media
- calcule la varianza usando $E(X^2) = V(X) + E(X)^2$
- calcule $P(\mu \sigma \le X \le \mu + \sigma)$
- ¿Cuáles son el primer y tercer cuartiles?

Chapter 7

Modelos de probabilidad para variables aleatorias discretas

7.1 Objetivo

Modelos probabilidad:

- Funciones de probabilidad uniforme y de Bernoulli
- Funciones de probabilidad binomial y binomial negativa

7.2 Función de probabilidad

Una función de masa de probabilidad de una variable aleatoria discreta X con valores posibles $x_1,x_2,..,x_M$ es cualquier función tal que

es positiva:

•
$$f(x_i) \ge 0$$

Nos permite calcular probabilidades:

•
$$f(x_i) = P(X = x_i)$$

La probabilidad de observar algún resultado es 1

•
$$\sum_{i=1}^{M} f(x_i) = 1$$

Propiedades:

Tendencia central:

•
$$E(X) = \sum_{i=1}^{M} x_i f(x_i)$$

Dispersión:

•
$$V(X) = \sum_{i=1}^{M} (x_i - \mu)^2 f(x_i)$$

Son objetos abstractos con propiedades generales que pueden o no **describir** un proceso natural o de ingeniería.

7.3 Modelo de probabilidad

Un modelo de probabilidad es una función de masa de probabilidad que puede representar las probabilidades de un experimento aleatorio.

Ejemplos:

- f(x) = P(X = x) = 1/6 representa la probabilidad de los resultados de una tirada de dados.
- La función de masa de probabilidad

X	f(x)
-2	1/8
-1	2/8
0	2/8
1	2/8
2	1/8

Representa la probabilidad de sacar **una** bola de una urna donde hay dos bolas por etiqueta: -1,0,1 y una bola por etiqueta: -2,2.

7.4 Modelos paramétricos

Cuando realizamos un experimento aleatorio y ${f no}$ sabemos las probabilidades de los resultados:

• Siempre podemos formular el modelo dado por las frecuencias relativas: $\hat{P}(X=x_i)=f_i$ (donde i=1...M).

Necesitamos encontrar M números cada uno dependiendo de N.

En muchos casos:

• Podemos formular funciones de probabilidad f(x) que dependen solamente de **muy pocos** números.

Ejemplo:

Un experimento aleatorio con M resultados igualmente probables tiene una función de masa de probabilidad:

$$f(x) = P(X = x) = 1/M$$

Solo necesitamos saber M.

Los números que **necesitamos saber** para determinar completamente una función de probabilidad se llaman **parámetros**.

7.5 Distribución uniforme (un parámetro)

Definición Una variable aleatoria X con resultados $\{1,...M\}$ tiene una **distribución uniforme** discreta si todos sus resultados M tienen la misma probabilidad

$$f(x) = \frac{1}{M}$$

Con media y varianza:

$$E(X) = \frac{M+1}{2}$$

$$V(X) = \frac{M^2 - 1}{12}$$

Nota: E(X) y V(X) también son **parámetros**. Si conocemos alguno de ellos, entonces podemos determinar completamente la distribución.

$$f(x) = \frac{1}{2E(X)-1}$$

7.6 Distribución uniforme

7.7 Distribución uniforme (dos parámetros)

Presentemos un nuevo modelo de probabilidad uniforme con **dos parámetros**: los resultados mínimo y máximo.

Si la variable aleatoria toma valores en $\{a,a+1,...b\}$, donde a y b son números enteros y todos los resultados son igualmente probables, entonces

$$f(x) = \frac{1}{b-a+1}$$

como M = b - a + 1.

• Entonces decimos que X se distribuye uniformemente entre a y b y escribimos

$$X \to Unif(a,b)$$

7.8 Distribución uniforme (dos parámetros)

Ejemplo:

¿Cuál es la probabilidad de observar a un niño de una edad particular en una escuela primaria (si todas las clases tienen la misma cantidad de niños)?

Del experimento sabemos: a = 6 y b = 11 entonces

$$X \rightarrow Unif(a = 7, b = 11)$$

eso es

$$f(x) = \frac{1}{6}$$

para $x \in \{6,7,8,9,10,11\},$ y 0 en caso contrario

7.9 Distribución uniforme

El modelo de probabilidad de una variable aleatoria \boldsymbol{X}

100CHAPTER 7. MODELOS DE PROBABILIDAD PARA VARIABLES ALEATORIAS DISCRETAS

$$f(x) = \frac{1}{b-a+1}$$

para $x \in \{a, a + 1, ...b\}$

tiene media y varianza:

- $E(X) = \frac{b+a}{2}$
- $V(X) = \frac{(b-a+1)^2-1}{12}$

(Cambiar variables $X = Y + a - 1, y \in \{1, ...M\}$)

Podemos especificar a y b o E(X) y V(X).

En nuestro ejemplo:

- $\begin{array}{ll} \bullet & E(X) = (11+6)/2 = 8.5 \\ \bullet & V(X) = (6^2-1)/12 = 2.916667 \end{array}$

Distribución uniforme (dos parámetros) 7.10

7.11 Parámetros y Modelos

- Un **modelo** es una función particular f(x) que **describe** nuestro experimento
- Si el modelo es una función **conocida** que depende de algunos parámetros, al cambiar el valor de los parámetros producimos una **familia de modelos**
- El conocimiento de f(x) se reduce al conocimiento del valor de los parámetros
- Idealmente, el modelo y los parámetros son interpretables

Ejemplo:

Modelo: Los datos de nuestro experimento se producen mediante un proceso aleatorio en el que cada edad tiene la misma probabilidad de ser observada.

Parámetros:	a	es	la	edad	mínima,	E(X)	es	la	edad	esperada	son
propiedades	físic	\mathbf{as}	del	experi	mento.						

7.12 Parámetros y Modelos

Ejemplo:

Una familia de modelos obtenidos a partir de distribuciones uniformes de dos parámetros cambiando las varianzas y manteniendo una media constante (E(X) = 8.5). Da como resultado **cambiar** los resultados **mínimo** y **máximo**.

• Nota: solo un modelo tiene sentido para nuestro experimento (solo un modelo puede representar las edades de los niños en una escuela).

 Podemos pensar en familias que cambian solo en la media, solo el mínimo o solo el máximo

7.13 Ensayo de Bernoulli

Intentemos avanzar desde el caso de probabilidad igual y supongamos un modelo con dos resultados $(A \ y \ B)$ que tienen probabilidades **desiguales**

Ejemplos:

- Anotar el sexo de un paciente que acude a urgencias de un hospital $(A: masculino \ y \ B: femenino).$
- Registrar si una máquina fabricada está defectuosa o no (A: defectuosa y B: buena).
- Dar en el blanco (A: xito y B: fracaso).
- Transmitiendo un píxel correctamente (A: s y B: no).

En estos ejemplos, la probabilidad del resultado A suele ser **desconocida**.

7.14 Ensayo de Bernoulli

Introduciremos la probabilidad de un resultado (A) como el **parámetro** del modelo:

- resultado A (éxito): tiene probabilidad p (parámetro)
- resultado B (fracaso): tiene una probabilidad 1-p

O podemos escribir la función de masa de probabilidad de Ktomando valores $\{0,1\}$ para $A \ge B$

$$f(k) = \begin{cases} 1 - p, & k = 0 \, (evento \, B) \\ p, & k = 1 \, (evento \, A) \end{cases}$$

o más en breve

$$f(k;p) = (1-p)^{1-k}p^k$$

para k = (0, 1)

Solo necesitamos saber p.

7.15 Ensayo de Bernoulli

Una variable de Bernoulli K con resultados $\{0,1\}$ tiene una función de masa de probabilidad

$$f(k;p) = (1-p)^{1-k}p^k$$

Con media y varianza:

- E(K) = p
- V(K) = (1-p)p

Nota:

- La probabilidad del resultado A es el parámetro p que es lo mismo que f(0) = P(X=0).
- Como p suele ser **desconocido**, normalmente lo estimamos por la frecuencia relativa (más sobre esto en las secciones de inferencia): $\hat{p} = f_A = \frac{n_A}{N}$

7.16 Ensayo de Bernoulli

7.17 Distribución binomial

Cuando estamos interesados en aprender sobre un ensayo de Bernoulli en particular

- Repetimos el ensayo de Bernoulli N veces y contamos cuantas veces obtuvimos A (n_A) .
- Definimos una variable aleatoria $X=n_A$ tomando valores $x\in 0,1,...N$

Ahora preguntamos por la probabilidad de observar x eventos de tipo A en la repetición de n ensayos independientes de Bernoulli, cuando la probabilidad de observar A es p.

$$P(X = x) = f(x) = ?$$

7.18 Ejemplos: distribución binomial

- Anotar el sexo de n=10 pacientes que acuden a urgencias de un hospital. ¿Cuál es la probabilidad de que x=6 los pacientes sean hombres cuando p=0,9?
- Intentar n=5 veces para dar en el blanco $(A:xito\ y\ B:fracaso)$. ¿Cuál es la probabilidad de que alcance el objetivo x=5 veces cuando normalmente lo hago el 20% de las veces (p=0,25)?
- Transmitiendo n=100 píxeles correctamente $(A:s \ y \ B:no)$. ¿Cuál es la probabilidad de que x=2 píxeles sean errores, cuando la probabilidad de error es p=0,1?

7.19 Distribución binomial

¿Cuál es la probabilidad de observar X=4 errores al transmitir 4 píxeles, si la probabilidad de error es p?

Considere las variables aleatorias 4: K_1 , K_2 , K_3 y K_4 que registran si se ha cometido un error en el 1^o , 2^o , 3^r y 4^o píxel.

Por lo tanto

- k_i toma valores {correcto: 0; error: 1}
- $X = \sum_{i=1}^{4} K_i$ toma valores $\{0, 1, 2, 3, 4\}$

Entonces la probabilidad de observar 4 errores es:

• $P(X=4) = P(1,1,1,1) = p * p * p * p * p = p^4$ porque K_i son independientes.

La probabilidad de observar 0 errores es:

•
$$P(X=0) = P(0,0,0,0) = (1-p)(1-p)(1-p)(1-p) = (1-p)^4$$

La probabilidad de errores de 3 es:

$$P(X=3) = P(0,1,1,1) + P(1,0,1,1) + P(1,1,0,1) + P(1,1,1,0) = 4p^3(1-p)^1 + P(1,1,1,0) = 4p^3(1-p)^2 + P(1,1,1,0) = 4p^3(1-p)^2 + P(1,1,0,1) + P(1,$$

7.20 Distribución binomial

Por lo tanto, la probabilidad de x errores es

106CHAPTER 7. MODELOS DE PROBABILIDAD PARA VARIABLES ALEATORIAS DISCRETAS

$$f(x) = \begin{cases} 1 * p^4 (1-p)^4 & x = 0 \\ 4 * p^3 (1-p)^3, & x = 1 \\ 6 * p^2 (1-p)^2, & x = 2 \\ 4 * p^1 (1-p)^1, & x = 3 \\ 1 * p^0 (1-p)^0 & x = 4 \end{cases}$$

o más en breve

$$f(x) = \binom{4}{x} p^x (1-p)^{4-x}$$

para x = 0, 1, 2, 3, 4

donde $\binom{4}{x}$ es el número de posibles resultados (transmisiones de 4 píxeles) con x errores.

7.21 Distribución binomial: Definición

La función de probabilidad binomial es la función de masa de probabilidad de observar x resultados de tipo A en n ensayos independientes de Bernoulli, donde A tiene la misma probabilidad p en cada ensayo.

La función está dada por

$$f(x) = \binom{n}{r} p^x (1-p)^{n-x}, x = 0, 1, ...n$$

 $\binom{n}{x} = \frac{n!}{x!(n-x)!}$ se denomina **coeficiente binomial** y da el número de formas en que se pueden obtener x eventos de tipo A en un conjunto de n.

Cuando una variable X tiene una función de probabilidad binomial decimos que se distribuye binomialmente y escribimos

$$X \to Bin(n,p)$$

donde n y p son parámetros.

7.22 Distribución binomial: Media y Varianza

La media y la varianza de $X \to Bin(n, p)$ son

- E(X) = np
- $\bullet \ \ V(X) = np(1-p)$
- $\bullet\,$ Dado que X es la suma de n variables independientes de Bernoulli

$$E(X) = E(\sum_{i=1}^{n} K_i) = np$$

У

$$\textstyle V(X) = V(\sum_{i=1}^n K_i) = n(1-p)p$$

Ejemplo:

- El valor esperado para el número de errores en la transmisión de 4 píxeles es np = 4 * 0.1 = 0.4 cuando la probabilidad de error es 0.1.
- La varianza es n(1-p)p = 0.36

Recuerde: Podemos especificar los parámetros n y p, o los parámetros E(X) y V(X)

7.23 Ejemplo 1

Ahora respondamos:

• ¿Cuál es la probabilidad de observar 4 de al transmitir 4 píxeles, si la probabilidad de error es de 0.1?

Dado que estamos repitiendo una prueba de Bernoulli n=4 veces y contando el número de eventos de tipo A (errores), cuando P(A)=p=0.1 entonces

$$X \rightarrow Bin(n = 4, p = 0.1)$$

Eso es

$$f(x) = \binom{4}{x} 0.1^x (1 - 0.1)^{4-x}$$

108CHAPTER 7. MODELOS DE PROBABILIDAD PARA VARIABLES ALEATORIAS DISCRETAS

7.24 Ejemplo 1

• Queremos calcular:

$$P(X = 4) = f(4) = {4 \choose 4} \cdot 0.1^4 \cdot 0.9^0 = 0.1^4 = 10^{-4}$$

En R dbinom(4,4,0.1)

• También podemos calcular:

$$P(X=2) = \binom{4}{2}0.1^20.9^2 = 0.0486$$

En R dbinom(2,4,0.1)

7.25 Ejemplo 2

• ¿Cuál es la probabilidad de observar al menos 8 votantes del partido de gobierno en una encuesta electoral de tamaño 10, si la probabilidad de un voto positivo es de 0.9?

Para este caso

$$X \rightarrow Bin(n = 8, p = 0.9)$$

Eso es

$$f(x) = \binom{10}{x} 0.9^x (0.1)^{4-x}$$

Queremos calcular: $P(X \le 8) = F(8) = \sum_{i=1..8} f(x_i) = 0.2639011$ en R pbinom(8,10, 0.9)

7.26 Distribución binomial

7.27 Distribución binomial negativa

Ahora imaginemos que estamos interesados en contar los píxeles bien transmitidos antes de que ocurra un **número dado** de errores. Digamos que podemos **tolerar** r errores en la transmisión.

- Experimento: Supongamos que realizamos ensayos de Bernoulli hasta que observamos que el resultado A aparece r veces.
- ullet Variable aleatoria: Contamos el número de eventos B
- Ejemplo: ¿Cuál es la probabilidad de observar y píxeles bien transmitidos (B) antes de r errores (A)?

7.28 Distribución binomial negativa

Primero encontremos la probabilidad de una transmisión en particular con y número de píxeles correctos (B) y r número de errores (A).

$$(0,0,1,..,0,1,...0,1)$$
 (hay y ceros y r unos)

Observamos y píxeles correctos en un total de y + r intentos.

Por lo tanto

• $P(0,0,1,..,0,1,...0,1) = (1-p)^y p^r$ (Recuerda: p es la probabilidad de error)

¿Cuántas transmisiones pueden tener y píxeles correctos antes de r errores?

Nota:

- El último bit es fijo (marca el final de la transmisión)
- El número total de transmisiones con y número de píxeles correctos (B) que podemos obtener en y+r-1 intentos es: $\binom{y+r-1}{y}$

7.29 Distribución binomial negativa

Por lo tanto, la probabilidad de observar y eventos de tipo B antes de r eventos de tipo A (con probabilidad p) es

$$P(Y=y)=f(y)=\binom{y+r-1}{y}(1-p)^yp^r$$

para y = 0, 1, ...

Entonces decimos que Y sigue una distribución binomial negativa y escribimos

$$Y \to NB(r,p)$$

donde r y p son parámetros que representan la tolerancia y la probabilidad de un solo error.

7.30 Media y Varianza

Una variable aleatoria con $Y \to NB(r,p)$ tiene

- media: $E(Y) = r \frac{1-p}{p}$
- varianza: $V(Y) = r \frac{1-p}{p^2}$

7.31 Distribución geométrica

Llamamos distribución geométrica a la distribución binomial negativa con r=1

La probabilidad de observar B eventos antes de observar el \mathbf{primer} evento de tipo A es

$$P(Y = y) = f(y) = (1 - p)^y p$$

$$Y \to Geom(p)$$

con media

- media: $E(Y) = \frac{1-p}{p}$
- varianza: $V(Y) = \frac{1-p}{n^2}$

7.32 Ejemplo

- Un sitio web tiene tres servidores.
- Un servidor opera a la vez y solo cuando falla una solicitud se utiliza otro servidor.
- Si se sabe que la probabilidad de que falle una solicitud es p=0.0005, entonces
- ¿Cuál es el número esperado de solicitudes exitosas antes de que los tres servidores fallen?

7.33 Ejemplo

Ya que estamos repitiendo un ensayo de Bernoulli hasta que se observan r=3 eventos de tipo A (cada uno con P(A)=p=0.0005) y estamos contando el número de eventos de tipo B (errores) después

$$Y \to NB(r = 3, p = 0.0005)$$

Por lo tanto, el número esperado de solicitudes antes de que el sistema falle es:

$$E(Y) = r \frac{1-p}{p} = 3 \frac{1-0.0005}{0.0005} = 5997$$

• Tenga en cuenta que para enviar este número de solicitures hemos enviado un total de 6000 = 5997 + 3

7.34 Ejemplo

¿Cuál es la probabilidad de tratar con éxito como máximo 5 solicitudes antes de que el sistema falle?

Recuerde la función de distribución: $F(y) = P(Y \le 5)$

$$F(5) = P(Y \le 5) = \sum_{y=0}^{5} f(y)$$

$$= \sum_{y=0}^{5} {y+2 \choose y} 0.9995^{y} 0.0005^{r}$$

$$=\binom{2}{0}0.9995^{0}0.0005^{3} + \binom{3}{1}0.9995^{1}0.0005^{3}$$

$$+ \binom{4}{2} 0.9995^2 0.0005^3 + \binom{5}{3} 0.9995^3 0.0005^3$$

$$+\binom{6}{4}0.9995^40.0005^3+\binom{7}{5}0.9995^50.0005^3$$

$$=6.9\times10^{-9}$$

En R pnbinom(5,3,0.0005)

7.35 Ejemplos

Con la función de probabilidad binomial negativa:

$$f(y) = \binom{y+r-1}{y} (1-p)^y p^r$$

Ahora podemos responder preguntas como:

• ¿Cuál es la probabilidad de observar 10 píxeles correctos antes de 2 errores, si la probabilidad de error es 0.1?

$$f(10; r = 2, p = 0.1) = 0.03835463$$

en R dnbinom(10, 2, 0.1)

• ¿Cuál es la probabilidad de que entren 2 chicas antes que 4 chicos si la probabilidad de que entre una chica es de 0.5?

$$f(2; r = 4, p = 0.5) = 0.15625$$

en R dnbinom(2, 4, 0.5)

7.36 Distribución binomial negativa

7.37 Resumen de modelos de probabilidad

114CHAPTER 7. MODELOS DE PROBABILIDAD PARA VARIABLES ALEATORIAS DISCRETAS

modelo	X	rango de x	f(x)	E(X)	V(X)	R
Uniforme	número entero o real	[a,b]	$\frac{1}{n}$	$\frac{b+a}{2}$	$\frac{(b-a+1)^2}{12}$	n), dunif(a, b)
Bernoulli	evento A	0,1	$(1-n)^{1-x}n^x$	p	p(1-p)	c(1- p, p)
binomial	# de eventos A en n repeticiones de ensayos de Bernoulli		$(1-p)^{1-x}p^x$ $\binom{n}{x}(1-p)^{n-x}p^x$			dbimo
Binomial negativo para eventos	# de eventos B en repeticiones de Bernoulli antes de r Como se observan	0,1,	$\binom{x+r-1}{x} p^x p^r$	$(f^{(1-p)}_{\overline{p}})$	$\frac{r(1-p)}{p^2}$	dnbine

Chapter 8

Ejercicios

8.1 Descripción de datos

8.1.0.1 Ejercicio 1

Hemos realizado un experimento 12 veces con los siguientes resultados

```
## [1] 3 3 10 2 6 11 5 4
```

Responde las siguientes preguntas:

- Calcula las frecuencias relativas de cada resultado.
- Calcula las frecuencias acumuladas de cada resultado.
- ¿Cuál es el promedio de las observaciones?
- ¿Qué es la mediana?
- ¿Qué es el tercer cuartil?
- ¿Cuál es el primer cuartil?

8.1.0.2 Ejercicio 2

Hemos realizado un experimento 10 veces con los siguientes resultados

```
## [1] 2.875775 7.883051 4.089769 8.830174 9.404673 0.455565 5.281055 8.924190 ## [9] 5.514350 4.566147
```

Considere 10 contenedores de tamaño 1: [0,1], (1,2]...(9,10).

Responde las siguientes preguntas:

- Calcula las frecuencias relativas de cada resultado y dibuje el histograma
- Calcula las frecuencias acumulativas de cada resultado y dibuje la gráfica acumulativa.
- Dibuja un diagrama de caja.

8.2 Probabilidad

8.2.0.1 Ejercicio 1

El resultado de un experimento aleatorio es medir la gravedad de la misofonía **y** el estado de depresión de un paciente.

- Gravedad de la misofonía: $x \in \{0, 1, 2, 3, 4\}$
- Depresión: $y \in \{0, 1\}$ (no:0, si:1)

```
##
     Misofonia.dic depresion.dic
## 1
                   4
                  2
## 2
                                  0
                  0
                                  0
## 3
                                  0
## 4
                  3
                  0
## 5
                                  0
## 6
                  0
                                  0
```

Un estudio en 123 pacientes mostró las frecuencias $n_{x,y}$ dadas en la tabla de contingencia:

```
##
                   Depression: 0 Depression: 1
##
##
     Misophonia:4
                                0
##
     Misophonia:3
                               25
                                              6
                               34
                                              3
##
     Misophonia:2
##
     Misophonia:1
                                5
                                              0
                                              5
##
     Misophonia:0
                               36
```

Supongamos que N >> 0 y que las frecuencias **estiman** las probabilidades $f_{x,y} = \hat{P}(X,Y)$

```
##
##
                   Depression: 0 Depression: 1
##
     Misophonia:4
                     0.00000000
                                   0.07317073
##
     Misophonia:3
                     0.20325203
                                   0.04878049
##
     Misophonia:2
                                   0.02439024
                     0.27642276
##
     Misophonia:1
                     0.04065041
                                   0.0000000
##
     Misophonia:0
                     0.29268293
                                   0.04065041
```

- ¿Cuál es la probabilidad marginal de misofonía de gravedad 3?
- ¿Cuál es la probabilidad de no ser misofónico y no estar deprimido?
- ¿Cuál es la probabilidad de ser misofónico o deprimido?
- ¿Cuál es la probabilidad de ser misofónico y deprimido?
- Describir en palabras los resultados con probabilidad 0.

8.2.0.2 Ejercicio 2

Hemos realizado un experimento 10 veces con los siguientes resultados

```
##
                 В
           Α
## 1
        male
              dead
        male
              dead
        male
              dead
      female alive
        male dead
     female alive
  7
     female dead
## 8
     female alive
## 9
        male alive
## 10
        male alive
```

- Crear la tabla de contingencia para el número $(n_{i,j})$ de observaciones de cada resultado (A,B)
- Crear la tabla de contingencia para la frecuencia relativa $(f_{i,j})$ de los resultados
- ¿Cuál es la frecuencia marginal de ser hombre?
- ¿Cuál es la frecuencia marginal de estar vivo?
- ¿Cuál es la frecuencia de estar vivo o mujer?

8.3 La probabilidad condicional

8.3.0.1 Ejercicio 1

Se prueba el rendimiento de una máquina para producir varillas de torneado de alta calidad. Estos son los resultados de las pruebas

	Redondeado: Sí	Redondeado: No
superficie lisa: sí	200	1
superficie lisa: no	4	2

- ¿Cuál es la probabilidad estimada de que la máquina produzca una varilla que no satisfaga ningún control de calidad?
- ¿Cuál es la probabilidad estimada de que la máquina produzca una varilla que no satisfaga al menos un control de calidad?
- ¿Cuál es la probabilidad estimada de que la máquina produzca varillas de superficie redondeada y alisada?
- ¿Cuál es la probabilidad estimada de que la barra sea redondeada si la barra es lisa?
- ¿Cuál es la probabilidad estimada de que la varilla sea lisa si es redondeada?
- ¿Cuál es la probabilidad estimada de que la varilla no sea ni lisa ni redondeada si no cumple al menos un control de calidad?

• ¿Son eventos independientes la suavidad y la redondez?

8.3.0.2 Ejercicio 2

Desarrollamos un test para detectar la presencia de bacterias en un lago. Encontramos que si el lago contiene la bacteria, la prueba es positiva el 70% de las veces. Si no hay bacterias, la prueba es negativa el 60% de las veces. Implementamos la prueba en una región donde sabemos que el 20% de los lagos tienen bacterias

• ¿Cuál es la probabilidad de que un lago que dé positivo esté contaminado con bacterias?

8.3.0.3 Ejercicio 3

Se prueba el rendimiento de dos máquinas para producir varillas de torneado de alta calidad. Estos son los resultados de las pruebas

Máquina 1

	Redondeado: Sí	Redondeado: No
superficie lisa: sí	200	1
superficie lisa: no	4	2

Máquina 2

	Redondeado: Sí	Redondeado: No
superficie lisa: sí	145	4
superficie lisa: no	8	6

- ¿Cuál es la probabilidad de que la barra sea redondeada?
- ¿Cuál es la probabilidad de que la varilla haya sido producida por la máquina 1?
- ¿Cuál es la probabilidad de que la varilla no sea lisa?
- ¿Cuál es la probabilidad de que la varilla sea lisa o redondeada o producida por la máquina 1?
- ¿Cuál es la probabilidad de que la varilla quede redondeada si es alisada y de la máquina 1?
- ¿Cuál es la probabilidad de que la varilla no esté redondeada si no está alisada y es de la máquina 2?
- ¿Cuál es la probabilidad de que la varilla haya salido de la máquina 1 si está alisada y redondeada?
- ¿Cuál es la probabilidad de que la varilla haya venido de la máquina 2 si no pasa al menos uno de los controles de calidad?

8.3.0.4 Ejercicio 4

Queremos cruzar una avenida con dos semáforos. La probabilidad de encontrar el primer semáforo en rojo es 0,6. Si paramos en el primer semáforo, la probabilidad de parar en el segundo es 0,15. Mientras que la probabilidad de detenernos en el segundo si no nos detenemos en el primero es 0,25.

Cuando intentamos cruzar ambos semáforos:

- ¿Cuál es la probabilidad de tener que detenerse en cada semáforo?
- ¿Cuál es la probabilidad de tener que parar en al menos un semáforo?
- ¿Cuál es la probabilidad de tener que detenerse en un solo semáforo?
- Si paré en el segundo semáforo, ¿cuál es la probabilidad de que hubiera tenido que parar en el primero?
- Si tuviera que parar en cualquier semáforo, ¿cuál es la probabilidad de que tuviera que hacerlo dos veces?
- ¿Parar en el primer semáforo es un evento independiente de detenerse en el segundo semáforo?

Ahora, queremos cruzar una avenida con tres semáforos. La probabilidad de encontrar un semáforo en rojo solo depende de la anterior. En concreto, la probabilidad de encontrar un semáforo en rojo dado que el anterior estaba en rojo es de 0,15. Mientras que la probabilidad de encontrar un tráfico justo en rojo dado que el anterior estaba en verde es de 0,25. Además, la probabilidad de encontrar el primer semáforo en rojo es de 0,6.

- ¿Cuál es la probabilidad de tener que parar en cada semáforo?
- ¿Cuál es la probabilidad de tener que parar en al menos un semáforo?
- ¿Cuál es la probabilidad de tener que detenerse en un solo semáforo?

consejos:

- Si la probabilidad de que un semáforo esté en rojo depende únicamente del anterior, entonces $P(R_3|R_2,R_1)=P(R_3|R_2,\bar{R}_1)=P(R_3|R_2)$ y $P(R_3|\bar{R}_2,R_1)=P(R_3|\bar{R}_2,\bar{R}_1)=P(R_3|\bar{R}_2)$
- La probabilidad conjunta de encontrar tres semáforos en rojo se puede escribir como: $P(R_1,R_2,R_3)=P(R_3|R_2)P(R_2|R_1)P(R_1)$

8.3.0.5 Ejercicio 5

Una prueba de calidad en un ladrillo aleatorio se define por los eventos:

- Pasar la prueba de calidad: E, no pasar la prueba de calidad: \bar{E}
- Defectuoso: D, no defectuoso: \bar{D}

Si la prueba diagnóstica tiene sensibilidad $P(E|\bar{D})=0.99$ y especificidad $P(\bar{E}|D)=0.98$, y la probabilidad de pasar la prueba es P(E)=0.893 entonces

• ¿Cuál es la probabilidad de que un ladrillo elegido al azar sea defectuoso P(D)?

- ¿Cuál es la probabilidad de que un ladrillo que ha pasado la prueba sea realmente defectuoso?
- La probabilidad de que un ladrillo no sea defectuoso ${\bf y}$ que no pase la prueba
- ¿Son D y \bar{E} estadísticamente independientes?

8.4 Variables aleatorias

8.4.0.1 Ejercicio 1

Dada la función de masa de probabilidad

\boldsymbol{x}	f(x) = P(X = x)
10	0.1
12	0.3
14	0.25
15	0.15
17	?
20	0.15

• ¿Cuál es su valor esperado y su desviación estándar?

8.4.0.2 Ejercicio 2

Dada la distribución de probabilidad para una variable discreta X

$$F(x) = \begin{cases} 0, & x < -1 \\ 0.2, & x \in [-1, 0) \\ 0.35, & x \in [0, 1) \\ 0.45, & x \in [1, 2) \\ 1, & x \ge 2 \end{cases}$$

- encuentra f(X)
- encuentra E(X) y V(X)
- cuál es el valor esperado y la varianza de Y = 2X + 3
- ¿Cuál es la mediana y el primer y tercer cuartil de X?

8.4.0.3 Ejercicio 3

Estamos probando un sistema para transmitir imágenes digitales. Primero consideramos el experimento de enviar 3 píxeles y tener por ejemplo eventos como (0,1,1). Este es el evento de recibir el primer píxel sin error, el segundo con error y el tercero con error.

- 121
- Enumere en una columna el espacio muestral del experimento aleatorio.
- En la segunda columna asigne la variable aleatoria que cuenta el número de errores transmitidos para cada resultado

Considere que tenemos un canal totalmente ruidoso, es decir, cualquier resultado de tres píxeles es igualmente probable.

- ¿Cuál es la probabilidad de recibir errores de 0, 1, 2 o 3 en la transmisión de 3 píxeles?
- Dibuje la función de masa de probabilidad para el número de errores
- ¿Cuál es el valor esperado para el número de errores?
- ¿Cuál es su varianza?
- Dibujar la distribución de probabilidad
- ¿Cuál es la probabilidad de transmitir al menos 1 error?

8.4.0.4 Ejercicio 4

Para la densidad de probabilidad

$$f(x) = \begin{cases} \frac{1}{100}, & \text{si } x \in (0, 100) \\ 0, de \, lo \, contrario \end{cases}$$

- calcular la media
- calcular la varianza usando $E(X^2) = V(X) + E(X)^2$
- calcular $P(\mu \sigma \le X \le \mu + \sigma)$
- ¿Cuáles son el primer y tercer cuartiles?

8.4.0.5 Ejercicio 5

Dado

$$f(x) = \begin{cases} 0, & x < 0 \\ ax, & x \in [0, 3] \\ b, & x \in (3, 5) \\ \frac{b}{3}(8 - x), & x \in [5, 8] \\ 0, & x > 8 \end{cases}$$

- ¿Cuáles son los valores de a y b tales que f(x) es una función de densidad de probabilidad continua?
- ¿Cuál es la media de X?

8.4.0.6 Ejercicio 6

Para la densidad de probabilidad

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \ge 0 \\ 0, & \text{si no} \end{cases}$$

- Confirmar que se trata de una densidad de probabilidad
- Calcular la media
- Calcule el valor esperado de X^2
- Calcular la varianza

- Hallar la distribución de probabilidad F(a)
- Encuentra la mediana

8.4.0.7 Ejercicio 7

Dada la distribución de probabilidad de una variable aleatoria X

$$F(x) = \begin{cases} 0, & x < -1\\ \frac{1}{80}(17 + 16x - x^2), & x \in [-1, 7)\\ 1, & x \ge 7 \end{cases}$$

calcular:

- P(X > 0)
- E(X)
- P(X > 0|X < 2)

8.5 Modelos de probabilidad

8.5.0.1 Ejercicio 1

Un motor de búsqueda falla al recuperar información con una probabilidad de $0.1\,$

- Si nuestro sistema recibe solicitudes de búsqueda de 50, ¿cuál es la probabilidad de que el sistema no responda a tres de ellas?
- ¿Cuál es la probabilidad de que el motor complete con éxito búsquedas de 15 antes de la primera falla?
- Consideramos que un buscador funciona suficientemente bien cuando es capaz de encontrar información para mas de 10 solicitudes por cada 2 fallos. ¿Cuál es la probabilidad de que en un ensayo de fiabilidad nuestro motor de búsqueda sea satisfactorio?

8.5.0.2 Ejercicio 2

En una población, la probabilidad de que nazca un niño es p=0,51. Considere una familia de 4 hijos.

- ¿Cuál es la probabilidad de que una familia tenga un solo niño?
- ¿Cuál es la probabilidad de que una familia tenga una sola niña?
- ¿Cuál es la probabilidad de que una familia tenga solo un niño o solo una niña?
- ¿Cuál es la probabilidad de que la familia tenga al menos dos niños?
- ¿Cuál es el número de hijos que debe tener una familia para que la probabilidad de tener al menos una niña sea superior a 0,75?

8.5.0.3 Ejercicio 3

La cantidad promedio de partículas radiactivas que golpean un contador Geiger es de 2.3 por segundo.

- ¿Cuál es la probabilidad de contar exactamente 2 partículas en un segundo?
- ¿Cuál es la probabilidad de detectar exactamente 10 partículas en 5 segundos?
- ¿Cuál es la probabilidad de al menos un conteo en dos segundos?
- ¿Cuál es la probabilidad de tener que esperar 2, 5 segundos después de que encendemos el detector?

8.5.0.4 Ejercicio 4

- ¿Cuál es la probabilidad de que la altura de un hombre sea al menos 165cm si la media poblacional es 175cm y la desviación estándar es 10cm?
- ¿Cuál es la probabilidad de que la altura de un hombre esté entre 165cm y 180cm.
- ¿Cuál es la altura que define el 5% de los hombres más pequeños?

8.6 Estimadores puntuales

8.6.0.1 Ejercicio 1

Considere el modelo de probabilidad

$$f(x) = \begin{cases} 1/2 - a, & \text{si } x = -1\\ 1/2, & \text{si } x = 0\\ a, & \text{1si } x = 1 \end{cases}$$

donde a es un parámetro.

Calcule la media y la varianza de la estadística:

$$T = \frac{\bar{X}}{2} + \frac{1}{4}$$

donde
$$\bar{X} = \frac{1}{N} \sum_{i=1}^{N} X_i$$

- ξT es un estimador sesgado de a?
- ¿Es T consistente? es decir, $V(T) \to 0$ cuando $N \to \infty$

8.6.0.2 Ejercicio 2

• ¿Es $\bar{X}^2 = (\frac{1}{N} \sum_{i=1}^N X_i)^2$ un estimador imparcial de $E(X)^2$?

8.7 Muestreo y teorema del límite central

8.7.0.1 Ejercicio 1

Un modelo de batería carga hasta 75% de su capacidad en una hora con una desviación estándar de 15%.

- Si cobramos 25, ¿cuál es la probabilidad de que el promedio de la muestra esté a una distancia de 5% del cargo de la media?
- Si cobramos 100, ¿cuál es esa probabilidad?
- Si, en cambio, solo cargamos baterías de 9, ¿cuál es la carga que es superada por el promedio de la muestra con solo 0.015 de probabilidad?

8.7.0.2 Ejercicio 2

Se necesita un componente electrónico para el correcto funcionamiento de un telescopio. Necesita ser reemplazado inmediatamente cuando se desgasta.

La vida media del componente (μ) es de 100 horas y su desviación estándar σ es de 30 horas.

- ¿Cuál es la probabilidad de que el promedio de la vida media de 50 componentes esté dentro de 1 hora de la vida media de un solo componente?
- ¿Cuántos componentes necesitamos para que el telescopio esté operativo 2750 horas consecutivas con una probabilidad de 0,95?

8.7.0.3 Ejercicio 3

Una máquina automática llena tubos de ensayo con muestras biológicas con una media de $\mu = 130 \,\mathrm{mg}$ y una desviación estándar de $\sigma = 5 \,\mathrm{mg}$.

- para una muestra aleatoria de tamaño 50. ¿Cuál es la probabilidad de que la media muestral (promedio) está entre 128 y 132gr?
- ¿Cuál debe ser el tamaño de la muestra (n) para que la media muestral \bar{X} sea mayor a 131gr con una probabilidad menor o igual a 0.025?

8.7.0.4 Ejercicio 4

En el Caribe, parece haber un promedio de huracanes de 6 por año. Teniendo en cuenta que la formación de huracanes es un proceso de Poisson, los meteorólogos planean estimar el tiempo medio entre la formación de dos huracanes. Planean recolectar una muestra de tamaño 36 para los tiempos entre dos huracanes.

- ¿Cuál es la probabilidad de que su promedio muestral esté entre 45 y 60 días?
- ¿Cuál debe ser el tamaño de la muestra para que tengan una probabilidad de 0.025 de que la media muestral sea mayor a 70 días?

8.7.0.5 Ejercicio 5

La probabilidad de que se encuentre una mutación particular en la población es de 0.4. Si probamos 2000 personas para la mutación:

• ¿Cuál es la probabilidad de que el número total de personas con la mutación esté entre 791 y 809?

sugerencia: use el CLT con una muestra de ensayos de Bernoulli de 2000. Esto se conoce como la aproximación normal de la distribución binomial.

8.8 Máxima verosimilitud

8.8.0.1 Ejercicio 1

Para una variable aleatoria con una función de probabilidad binomial

$$f(x;p) = \binom{n}{x} p^x (1-p)^{n-x}$$

- ¿Cuál es el estimador de máxima verosimilitud de p para una muestra de tamaño 1 de esta variable aleatoria?
- En un examen de 100 estudiantes observamos $x_1=68$ estudiantes que aprobaron el examen. ¿Cuál es la estimación de p?

8.8.0.2 Ejercicio 2

Tome una variable aleatoria con la siguiente función de densidad de probabilidad

$$f(x) = \begin{cases} (1+\theta)x^{\theta}, & \text{si } x \in (0,1) \\ 0, & x \notin (0,1) \end{cases}$$

- ¿Cuál es la estimación de máxima verosimilitud para θ ?
- Si tomamos una muestra de 5 con observaciones $x_1=0,92; \qquad x_2=0,79; \qquad x_3=0,90; \qquad x_4=0,65; \qquad x_5=0,86$

¿Cuál es el valor estimado del parámetro θ ?

8.8.0.3 Ejercicio 3

Tome una variable aleatoria con la siguiente función de densidad de probabilidad

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{si } 0 \le x \\ 0, & \text{si } no \end{cases}$$

- ¿Cuál es la estimación de máxima verosimilitud para λ ?
- Si tomamos una muestra de 5 con observaciones $x_1=0.223$ $x_2=0.681;$ $x_3=0,117;$ $x_4=0,150;$ $x_5=0.520$

¿Cuál es el valor estimado del parámetro λ ?

8.9 Método de los momentos

8.9.0.1 Ejercicio 1

¿Cuáles son los estimadores de los siguientes modelos paramétricos dados por el método de los momentos?

modelo	f(x)	E(X)
Bernoulli	$ p^{x}(1-p)^{1-x} \\ \binom{n}{x} p^{x}(1-p)^{n-x} $	\overline{p}
binomial	$\binom{n}{x}p^x(1-p)^{n-x}$	np
Geométrico desplazado	$p(1-p)^{x-1}$	$\frac{1}{p}$
Binomial negativo	$\binom{x+r-1}{x}p^r(1-p)^x$	$r^{\frac{p}{1-p}}$
Veneno	$\frac{e^{-\lambda}\lambda^x}{x!} \lambda e^{-\lambda x}$	λ
Exponencial		$\frac{1}{\lambda}$
normales	$\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	μ

8.9.0.2 Ejercicio 2

Tome una variable aleatoria con la siguiente función de densidad de probabilidad

$$f(x) = \begin{cases} (1+\theta)x^{\theta}, & \text{si } x \in (0,1) \\ 0, & x \notin (0,1) \end{cases}$$

- Calcule E(X) como una función de θ
- ¿Cuál es la estimación de θ utilizando el método de los momentos?
- Si tomamos una muestra de 5 con observaciones $x_1=0,92;$ $x_2=0,79;$ $x_3=0,90;$ $x_4=0,65;$ $x_5=0,86$

¿Cuál es el valor estimado del parámetro θ ?

8.9.0.3 Ejercicio 3

Considere una variable aleatoria discreta X que sigue una distribución binomial negativa con función de masa de probabilidad:

$$f(x) = \binom{x+r-1}{x} p^r (1-p)^x$$

Dado que

•
$$E(X) = \frac{r(1-p)}{p}$$

• $V(X) = \frac{r(1-p)}{p^2}$

$$V(X) = \frac{r(1-p)}{p^2}$$

calcular:

- \bullet Una estimación del parámetro r y una estimación del parámetro pobtenidas a partir de una muestra aleatoria de tamaño n por el método de los momentos.
- Los valores de las estimaciones de r y p para la siguiente muestra aleatoria:

$$x_1=27; \qquad x_2=8; \qquad x_3=22; \qquad x_4=29; \qquad x_5=19; \qquad x_5=32$$