

Курсовая работа по дискретной математике

«Синтез комбинационных схем»

Вариант 9

Работу выполнил: Данилов Павел Р3110

Проверил:

№ Bap.	Условие, при которых f = 1	Условие, при которых f = d
9	$3 < x_1 x_2 x_3 + x_4 x_5 < 8$	$ x_1x_2x_3 =1$

1. Составление таблицы истинности

	4004-	4.0.0	4 0 0/46		4 5/40		
	x1x2x3x4x5	x1x2x3	x1x2x3(10)	x4x5	x4x5(10)	+	f
1	00000	000	0	00	0	0	0
2	00001	000	0	01	1	1	0
3	00010	000	0	10	2	2	0
4	00011	000	0	11	3	3	0
5	00100	001	1	00	0	1	d
6	00101	001	1	01	1	2	d
7	00110	001	1	10	2	3	d
8	00111	001	1	11	3	4	d
9	01000	010	2	00	0	2	0
10	01001	010	2	01	1	3	0
11	01010	010	2	10	2	4	1
12	01011	010	2	11	3	5	1
13	01100	011	3	00	0	3	0
14	01101	011	3	01	1	4	1
15	01110	011	3	10	2	5	1
16	01111	011	3	11	3	6	1
17	10000	100	4	00	0	4	1
18	10001	100	4	01	1	5	1
19	10010	100	4	10	2	6	1
20	10011	100	4	11	3	7	1
21	10100	101	5	00	0	5	1
22	10101	101	5	01	1	6	1
23	10110	101	5	10	2	7	1
24	10111	101	5	11	3	8	0
25	11000	110	6	00	0	6	1
26	11001	110	6	01	1	7	1
27	11010	110	6	10	2	8	0
28	11011	110	6	11	3	9	0
29	11100	111	7	00	0	7	1
30	11101	111	7	01	1	8	0
31	11110	111	7	10	2	9	0
32	11111	111	7	11	3	10	0

1. Представление булевой функции в аналитическом виде

КД**НФ:** $\mathbf{f} = \bar{x}_1 x_2 \bar{x}_3 x_4 \bar{x}_5 \text{ v } \bar{x}_1 x_2 \bar{x}_3 x_4 x_5 \text{ v } \bar{x}_1 x_2 x_3 \bar{x}_4 x_5 \text{ v } \bar{x}_1 x_2 x_3 x_4 \bar{x}_5 \text{ v } \bar{x}_1 x_2 x_3 x_4 \bar{x}_5 \text{ v } \bar{x}_1 x_2 x_3 x_4 \bar{x}_5 \text{ v } \bar{x}_1 \bar{x}_2 \bar{x}_3 \bar{x}_4 \bar{x}_5 \text{ v } \bar{x}_1 \bar{x}_2 \bar{x}_3 \bar{x}_4 \bar{x}_5 \text{ v } \bar{x}_1 \bar{x}_2 \bar{x}_3 x_4 \bar{x}_5 \text{ v } \bar{x}_1 \bar{x}_2 \bar{x}_3 \bar{x}_4 \bar{x}_5 \text{ v$

KKHO: $f = (x_1 \vee x_2 \vee x_3 \vee x_4 \vee x_5) (x_1 \vee x_2 \vee x_3 \vee x_4 \vee \bar{x}_5)$ $(x_1 \vee x_2 \vee x_3 \vee \bar{x}_4 \vee x_5) (x_1 \vee x_2 \vee x_3 \vee \bar{x}_4 \vee \bar{x}_5) (x_1 \vee \bar{x}_2 \vee x_3 \vee x_4 \vee x_5)$ $(x_1 \vee \bar{x}_2 \vee x_3 \vee x_4 \vee \bar{x}_5) (x_1 \vee \bar{x}_2 \vee \bar{x}_3 \vee x_4 \vee x_5) (\bar{x}_1 \vee x_2 \vee \bar{x}_3 \vee \bar{x}_4 \vee \bar{x}_5)$ $(\bar{x}_1 \vee \bar{x}_2 \vee x_3 \vee \bar{x}_4 \vee x_5) (\bar{x}_1 \vee \bar{x}_2 \vee x_3 \vee \bar{x}_4 \vee \bar{x}_5) (\bar{x}_1 \vee \bar{x}_2 \vee \bar{x}_3 \vee x_4 \vee \bar{x}_5)$ $(\bar{x}_1 \vee \bar{x}_2 \vee \bar{x}_3 \vee \bar{x}_4 \vee x_5) (\bar{x}_1 \vee \bar{x}_2 \vee \bar{x}_3 \vee \bar{x}_4 \vee \bar{x}_5)$ $(\bar{x}_1 \vee \bar{x}_2 \vee \bar{x}_3 \vee \bar{x}_4 \vee x_5) (\bar{x}_1 \vee \bar{x}_2 \vee \bar{x}_3 \vee \bar{x}_4 \vee \bar{x}_5)$

2. Минимизация булевой функции методом Квайна-Мак-Класки

1)Нахождение простых импликант:

K°	$\overline{(f) \cup N(f)}$)		$K^1(f)$)			$K^2(f)$		Z(f)		
1	00100	*	1	0010X	1-2	*	1	001XX	1-7	1	001XX	
2	00101	*	2	001X0	1-3	*	2	X010X	1-25	2	X010X	
3	00110	*	3	X0100	1-14	*	3	X01X0	2-26	3	X01X0	
4	00111	*	4	001X1	2-4	*	4	0X1X1	4-14	4	0X1X1	
5	01010	*	5	0X101	2-7	*	5	0X11X	7-15	5	0X11X	
6	01011	*	6	X0101	2-15	*	6	01X1X	11-15	6	01X1X	
7	01101	*	7	0011X	3-4	*	7	100XX	16-23	7	100XX	
8	01110	*	8	0X110	3-8	*	8	10X0X	16-25	8	10X0X	
9	01111	*	9	X0110	3-16	*	9	1X00X	16-28	9	1X00X	
10	10000	*	10	0X111	4-9	*	10	10XX0	17-26	10	10XX0	
11	10001	*	11	0101X	5-6	*	11	1XX00	18-29	11	1XX00	
12	10010	*	12	01X10	5-8	*						
13	10011	*	13	01X11	6-9	*						
14	10100	*	14	011X1	7-9	*						
15	10101	*	15	0111X	8-9	*						
16	10110	*	16	1000X	10-11	*						
17	11000	*	17	100X0	10-12	*						
18	11001	*	18	10X00	10-14	*						
19	11100	*	19	1X000	10-17	*						
			20	100X1	11-13	*						
			21	10X01	11-15	*						
			22	1X001	11-18	*						
			23	1001X	12-13	*						
			24	10X10	12-16	*						
			25	1010X	14-15	*						
			26	101X0	14-16	*						
			27	1X100	14-19	*						
			28	1100X	17-18	*						
			29	11X00	17-19	*						

0-кубы выписаны в порядке появления в таблице истинности

2)Составление импликантной таблицы:

	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
	1	1	1	1	1	0	0	0	0	0	0	0	1	1	1
	0	0	1	1	1	0	0	0	0	1	1	1	0	0	1
	1	1	0	1	1	0	0	1	1	0	0	1	0	0	0
	0	1	1	0	1	0	1	0	1	0	1	0	0	1	0
001XX															
X010X										*	*				
X01X0										*		*			
0X1X1			(*)		*										
0X11X				*	*										
01X1X	(*)	(*)		*	*										
100XX						*	*	*	(*)						
10X0X						*	*			*	*				
1X00X						*	*						*	(*)	
10XX0						*		*		*		*			
1XX00						*				*			*		(*)

Множество существенных импликант:

Импликанты 4, 6, 7, 9 и 11 - существенные, так как они покрывают вершины 1, 2, 3, 9, 14 и 15, не покрытые другими импликантами. Вычеркнем из таблицы строки, соответствующие этим импликантам, а также столбцы, соответствующие вершинам, покрываемым существенными импликантами.

3)Определение существенных импликант

Множество существенных импликант (максимальных кубов) образует ядро покрытия как его обязательную часть:

$$T = egin{cases} 0X1X1 \\ 01X1X \\ 100XX \\ 1X00X \\ 1XX00 \end{pmatrix} S_T^a = 15, S_T^b = 21$$

		10101	10110
		a	b
X010X	A	*	
X01X0	В		*
10X0X	С	*	
10XX0	D		*

4)Определение минимального покрытия

Метод Петрика. Выпишем булево выражение Y, определяющее условие покрытия всех 0-кубов (существенных вершин), не покрываемых существенными импликантами, в соответствии с табл.5.

$$Y = (A \cup B)(A \cup D)(C \cup B)(C \cup D)$$

$$C1 = \begin{cases} T \\ A \\ B \end{cases} S_1^a = 21, S_1^b = 28$$

$$C2 = \begin{cases} T \\ A \\ D \end{cases} S_2^a = 21, S_2^b = 28$$

$$C3 = \begin{cases} T \\ C \\ B \end{cases} S_3^a = 21, S_3^b = 28$$

$$C4 = \begin{cases} T \\ C \\ B \end{cases} S_4^a = 21, S_4^b = 28$$

$$F = \bar{x}_1 x_3 x_5 \vee \bar{x}_1 x_2 x_4 \vee x_1 \bar{x}_2 \bar{x}_3 \vee x_1 \bar{x}_3 \bar{x}_4 \vee x_1 \bar{x}_4 \bar{x}_5 \vee \bar{x}_2 x_3 \bar{x}_4 \vee \bar{x}_2 x_3 \bar{x}_5$$

Число букв в МДН Φ совпадает с ценой покрытия S^a , а суммарное число букв и число термов совпадает с ценой покрытия S^b .

5) Нахождение простых имплицент:

Kº	$(f) \cup N(f)$)		$K^1(f)$)			K ² (<i>f</i>)			$K^3(f)$				Z (<i>f</i>)
1	00000	*	1	0000X	1-2	*	1	000X X	1-7	*	1	00XXX	1-8(4-6)	1	X0111
2	00001	*	2	000X0	1-3	*	2	0X0X	1-25	*				2	1X111
3	00010	*	3	00X00	1-5	*	3	0X00 X	2-26					3	111X1
4	00011	*	4	0X000	1-9	*	4	00XX0	4-14	*				4	0X00X
5	00100	*	5	000X1	2-4	*	5	0XX00	7-15					5	0XX00
6	00101	*	6	00X01	2-6	*	6	00XX1	11-15	*				6	11X1X
7	00110	*	7	0X001	2-10	*	7	00X1X	16-23	*				7	00XXX
8	00111	*	8	0001X	3-4	*	8	001X X	16-25	*					
9	01000	*	9	00X10	3-7	*	9	11X1X	16-28						
10	01001	*	10	00X11	4-8	*									
11	01100	*	11	0010X	5-6	*									
12	10111	*	12	001X0	5-7	*									
13	11010	*	13	0X100	5-11	*									
14	11011	*	14	001X1	6-8	*									
15	11101	*	15	0011X	7-8	*									
16	11110	*	16	X0111	8-12										
17	11111	*	17	0100X	9-10	*									
			18	01X00	9-11	*									
			19	1X111	12-17										
			20	1101X	13-14										
			21	11X10	13-16	_									
			22	11X11	14-17	*									
			23	111X1	15-17										
			24	1111X	16-17	*									

6)Составление имплицентной таблицы:

	0	0	0	0	0	0	0	1	1	1	1	1	1
	0	0	0	0	1	1	1	0	1	1	1	1	1
	0	0	0	0	0	0	1	1	0	0	1	1	1
	0	0	1	1	0	0	0	1	1	1	0	1	1
	0	1	0	1	0	1	0	1	0	1	1	0	1
X0111								*					
1X111								*					*
111X1											(*)		*
0X00X	*	*			*	(*)							
0XX00	*				*		(*)						
11X1X									(*)	(*)		(*)	*
00XXX	*	*	(*)	(*)									

Множество существенных имплицент:

Имплиценты [3..7] - существенные, так как они покрывают вершины [1..7], [9..13] не покрытые другими имплицентами. Вычеркнем из таблицы строки, соответствующие этим имплицентам, а также столбцы, соответствующие вершинам, покрываемым существенными имплицентами.

7)Определение существенных имплицент

Множество существенных имплицент (максимальных кубов) образует ядро покрытия как его обязательную часть:

$$T = \begin{cases} 111X1\\ 0X00X\\ 0XX00\\ 11X1X\\ 00XXX \end{cases} S_T^a = 15, S_T^b = 20$$

		10111
		a
X0111	Α	*
1X111	В	*

8)Определение минимального покрытия

$$Y = (A)(B)$$

$$C1 = \left\{ \frac{T}{A} \right\} S_1^a = 19, S_1^b = 25$$

$$C2 = \left\{ \frac{T}{B} \right\} S_1^a = 19, S_1^b = 25$$

 $F = (\bar{x}_1 \cup \bar{x}_2 \cup \bar{x}_3 \cup \ \bar{x}_5)(x_1 \cup x_3 \cup x_4)(x_1 \cup x_4 \cup x_5)(\bar{x}_1 \cup \bar{x}_2 \cup \bar{x}_4)(x_1 \cup x_2) \ (\bar{x}_1 \cup \bar{x}_3 \cup \bar{x}_4 \cup \ \bar{x}_5)$

Число букв в МКН Φ совпадает с ценой покрытия S^a , а суммарное число букв и число термов совпадает с ценой покрытия S^b .

3. Минимизация булевой функции на картах Карно

4.1 Определение МДНФ

Для минимизации булевой функции от пяти переменных используем две четырехмерные карты Карно, различающиеся по переменной X_1 : (единичные покрытия)

	X_4X_5									
		00	01	11	10					
37. 37	00									
	01	d	d	d	d					
X_2X_3	11		1	1	1					
	10			1	1					
			$X_1 = 0$)						

$$X_{4}X_{5}$$

$$\begin{array}{|c|c|c|c|c|c|c|c|}\hline & \textbf{00} & \textbf{01} & \textbf{11} & \textbf{10}\\\hline \textbf{00} & 1 & 1 & 1 & 1\\\hline \textbf{01} & 1 & 1 & 1 & 1\\\hline \textbf{11} & 1 & & & & \\\hline \textbf{10} & 1 & 1 & & & & \\\hline X_{1} = 1 & & & & & \\\hline \end{array}$$

$$C_{\min}(f) \begin{cases} 0X1X1 \\ 1XX00 \\ 01X1X \\ 100XX \\ X01X0 \\ 1X00X \\ X010X \end{cases}; \quad S_1^a = 21 \\ S_1^b = 28$$

МДНФ имеет следующий вид:

$$\mathbf{F} = \bar{x}_1 x_3 x_5 \vee x_1 \bar{x}_4 \bar{x}_5 \vee \bar{x}_1 x_2 x_4 \vee x_1 \bar{x}_2 \bar{x}_3 \vee \bar{x}_2 x_3 \bar{x}_5 \vee x_1 \bar{x}_3 \bar{x}_4 \vee \bar{x}_2 x_3 \bar{x}_4 \vee \bar{x}_2 x_3 \bar{x}_4 \vee \bar{x}_3 \bar{x}_4 \vee \bar{x}_2 x_3 \bar{x}_4 \vee \bar{x}_3 \bar{x}_5 \vee \bar{x}_3 \bar{x}_4 \vee \bar{x}_3$$

4.2 Определение МКНФ

	X_4X_5									
		00	01	11	10					
	00	0	0	0	0					
vv	01	d	d	d	d					
X_2X_3	11	0								
	10	0	0	0	0					
	$X_1 = 0$									

$$X_{4}X_{5}$$

$$\begin{array}{|c|c|c|c|c|c|c|}\hline & \textbf{00} & \textbf{01} & \textbf{11} & \textbf{10} \\ \hline \textbf{00} & & & & & \\ \hline \textbf{01} & & & & & \\ \hline \textbf{11} & & 0 & 0 & 0 \\ \hline \textbf{10} & & & 0 & 0 \\ \hline X_{1} = 1 \\ \hline \end{array}$$

$$C_{\min} \overline{(f)} \begin{cases} 111X1 \\ 1X111 \\ 11X1X \\ 00XXX \\ 0X00X \\ 0XX00 \end{cases}; \quad S_1^a = 19 \\ S_1^b = 25$$

МКНФ имеет следующий вид:

 $F = (\bar{x}_1 \cup \bar{x}_2 \cup \bar{x}_3 \cup \bar{x}_5)(\bar{x}_1 \cup \bar{x}_3 \cup \bar{x}_4 \cup \bar{x}_5)(\bar{x}_1 \cup \bar{x}_2 \cup \bar{x}_4)(x_1 \cup x_2)(x_1 \cup x_3 \cup x_4)(x_1 \cup x_4 \cup x_5)$

4. Преобразование минимальных форм булевой функции

4.1 Факторное преобразование для МДНФ

$$F = \bar{x}_1 x_3 x_5 \lor x_1 \bar{x}_4 \bar{x}_5 \lor \bar{x}_1 x_2 x_4 \lor x_1 \bar{x}_2 \bar{x}_3 \lor \bar{x}_2 x_3 \bar{x}_5 \lor x_1 \bar{x}_3 \bar{x}_4 \lor \bar{x}_2 x_3 \bar{x}_4 (\mathbf{S_q=28})$$

$$F = x_1 (\bar{x}_4 \bar{x}_5 \lor \bar{x}_2 \bar{x}_3 \lor \bar{x}_3 \bar{x}_4) \lor \bar{x}_2 x_3 (\bar{x}_5 \lor \bar{x}_4) \lor \bar{x}_1 (x_3 x_5 \lor x_2 x_4) (\mathbf{S_q=27})$$

$$F = x_1 (\bar{x}_4 (\bar{x}_5 \lor \bar{x}_3) \lor \bar{x}_2 \bar{x}_3) \lor \bar{x}_2 x_3 (\bar{x}_5 \lor \bar{x}_4) \lor \bar{x}_1 (x_3 x_5 \lor x_2 x_4) (\mathbf{S_q=26})$$

$$\varphi = (x_3 x_5) \ \bar{\varphi} = \bar{x}_5 \lor \bar{x}_3$$

$$F = x_1 (\bar{x}_4 \bar{\varphi} \lor \bar{x}_2 \bar{x}_3) \lor \bar{x}_2 x_3 (\bar{x}_5 \lor \bar{x}_4) \lor \bar{x}_1 (\varphi \lor x_2 x_4) (\mathbf{S}_q = \mathbf{25}) (\mathbf{1})$$

5.2 Факторное преобразование для МКНФ

$$F = (\bar{x}_{1} \cup \bar{x}_{2} \cup \bar{x}_{3} \cup \bar{x}_{5})(\bar{x}_{1} \cup \bar{x}_{3} \cup \bar{x}_{4} \cup \bar{x}_{5})(\bar{x}_{1} \cup \bar{x}_{2} \cup \bar{x}_{4})(x_{1} \cup x_{2})(x_{1} \cup x_{3} \cup x_{4})(x_{1} \cup x_{2})(x_{1} \cup x_{2} \cup x_{3} \cup x_{4})(x_{1} \cup x_{2} \cup x_{3} \cup x_{5})(\bar{x}_{2} = 25)$$

$$F = (\bar{x}_{1} \cup (\bar{x}_{2} \cup \bar{x}_{3} \cup \bar{x}_{5})(\bar{x}_{3} \cup \bar{x}_{4} \cup \bar{x}_{5})(\bar{x}_{2} \cup \bar{x}_{4}))(x_{1} \cup x_{2} (x_{3} \cup x_{4})(x_{4} \cup x_{5}))$$

$$(\mathbf{S}_{q} = 24)$$

$$F = (\bar{x}_{1} \cup (\bar{x}_{3} \cup \bar{x}_{5})(\bar{x}_{2} \cup \bar{x}_{4}) \cup \bar{x}_{4}\bar{x}_{2})(x_{1} \cup x_{2}(x_{4} \cup x_{3}x_{5})) \quad (\mathbf{S}_{q} = 21)$$

$$\varphi = (x_{3}x_{5}) \quad \bar{\varphi} = \bar{x}_{5} \vee \bar{x}_{3}$$

$$F = (\bar{x}_{1} \cup \bar{x}_{4}\bar{x}_{2} \cup \bar{\varphi}(\bar{x}_{2} \cup \bar{x}_{4}))(x_{1} \cup x_{2}(x_{4} \cup \varphi)) \quad (\mathbf{S}_{q} = 19) \quad (2)$$

5. Синтез комбинационных схем в булевом базисе

Комбинационная схема с парафазными входами для выражения (2):

Цена схемы по Квайну $S_q=20$

Задержка Т= 5т

Комбинационная схема с однофазными входами:

Цена схемы по Квайну S_q =25 Задержка T= 6τ

6. Синтез комбинационных схем в универсальных базисах

6.1 Базис (ИЛИ-НЕ)

а) Приведение функции к базису ИЛИ-НЕ и построение схемы с парафазными входами

$$ab = \overline{a} \downarrow \overline{b} ; a \cup b = \overline{a \downarrow b}$$

$$\varphi = (x_3 x_5) = \bar{x}_5 \downarrow \bar{x}_3 \quad \bar{\varphi} = \overline{\bar{x}_5 \lor \bar{x}_3} = \overline{\bar{x}_5 \downarrow \bar{x}_3}
F = (\bar{x}_1 \cup \bar{x}_4 \bar{x}_2 \cup \bar{\varphi}(\bar{x}_2 \cup \bar{x}_4))(x_1 \cup x_2(x_4 \cup \varphi)) =
((\bar{x}_1 \downarrow (x_4 \downarrow x_2) \downarrow (\varphi \downarrow (\bar{x}_2 \downarrow \bar{x}_4))) \downarrow (x_1 \downarrow (\bar{x}_2 \downarrow (x_4 \downarrow \varphi)))$$

Цена схемы по Квайну S_q =19 Задержка T= 5τ

b) Преобразование схемы из булева базиса в универсальный

Схема выйдет такая же(если вместо инвертирования элементов в схеме подавать на входы уже инвертированные значения), как и при привидении аналитического выражения к базису (ИЛИНЕ), представленное выше

Цена схемы по Квайну(при замене некоторых переменных на их инверсию) $S_q=19$ Задержка(при замене некоторых переменных на их инверсию) $T=5\tau$

6.2 Базис (И-НЕ)

а) Приведение функции к базису И-НЕ и построение схемы с парафазными входами

$$ab = \overline{a \mid b}; a \cup b = \overline{a \mid \overline{b}}$$

$$\varphi = (x_3 x_5) = \overline{x_5 \mid x_3}; \ \overline{\varphi} = x_5 \mid x_3$$

$$F = (\overline{x_1} \cup \overline{x_4} \overline{x_2} \cup \overline{\varphi}(\overline{x_2} \cup \overline{x_4}))(x_1 \cup x_2(x_4 \cup \varphi)) =$$

$$= (x_1 \mid (\overline{x_4} \mid \overline{x_2}) \mid (\overline{\varphi} \mid (x_2 \mid x_4))) \mid (\overline{x_1} \mid (x_2 \mid (\overline{x_4} \mid \overline{\varphi})))$$

Цена схемы по Квайну \mathbf{S}_q =21 Задержка \mathbf{T} = 7τ

b) Преобразование схемы из булева базиса в универсальный

Схема выйдет такая же(если вместо инвертирования элементов в схеме подавать на входы уже инвертированные значения), как и при привидении аналитического выражения к базису (И-НЕ), представленное выше

Цена схемы по Квайну(при замене некоторых переменных на их инверсию) S_q =21 Задержка(при замене некоторых переменных на их инверсию) T= 7τ

7. Синтез комбинационных схем в сокращенных базисах

7.1 ИЛИ-НЕ

Цена по Квайну: 27; задержка: 11т

Прим.: относительно схемы из n.6.1 мы получили на 8 больше цену за счет замены эл-тов ИЛИ-НЕ на последовательные ИЛИ, НЕ. Таких замен было ровно 8. Соответственно каждый такой элемент дал +1 к задержке, что сказалось на итоговой задержке схемы.

7.2 И-НЕ

$$\varphi = x_3 x_5$$

$$F = (\overline{x}_1 \cup \overline{x}_4 \overline{x}_2 \cup \varphi(\overline{x}_2 \cup \overline{x}_4)) (x_1 \cup x_2(x_4 \cup \overline{\varphi})) =$$

$$= (\overline{x}_1 \cup \overline{x}_4 \overline{x}_2 \cup \varphi(\overline{\overline{x}_2} \cup \overline{x}_4)) (x_1 \cup x_2 \overline{(x_4 \cup \overline{\varphi})}) =$$

$$= (x_1(\overline{x}_4 \overline{x}_2)(\overline{\varphi(\overline{x}_2 x_4)})) (\overline{x}_1(\overline{x}_2(\overline{x}_4 \overline{\varphi})))$$

Цена по Квайну: 26; задержка: 9т

8. Синтез комбинационных схем в базисе Жегалкина

Получим схему методом замены инвертирующих элементов схемы из **п. 7.2** на сложение по модулю 2 с единицей(из $\bar{a} \oplus 1 = a$).

Цена по Квайну: 34; задержка: 9т

9. Анализ комбинационных схем

Определение реакции схемы на входные наборы: 00000 и 01010, на которых значение f=0 и 1 соответственно.

а. Для булева базиса с парафазными входами

b. Для базиса ИЛИ-HE

с. Для базиса И-НЕ

d. Для базиса Жегалкина

На данных наборах входных значений $x_1...x_5$ для всех синтезированных схем все результаты совпадают со значениями функции на соответствующих наборах.