

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Review for the Final Exam

CprE 281: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

Administrative Stuff

The FINAL exam is scheduled for

Monday Dec 12 @ 2:15 – 4:15 PM

• It will be in this room.

Final Exam Format

 The exam will cover: Chapter 1 to Chapter 6, and Sections 7.1-7.2

Emphasis will be on Chapter 5, 6, and 7

 The exam will be open book and open notes (you can bring up to 5 pages of handwritten/typed notes) plus your textbook.

Final Exam Format

- The exam will be out of 130 points
- You need 95 points to get an A
- It will be great if you can score more than 100 points.
 - but you can't roll over your extra points ⊗

Topics for the Final Exam

- K-maps for 2, 3, and 4 variables
- Multiplexers (circuits and function)
- Synthesis of logic functions using multiplexers
- Shannon's Expansion Theorem
- 1's complement and 2's complement representation
- Addition and subtraction of binary numbers
- Circuits for adding and subtracting
- Serial adder
- Latches (circuits, behavior, timing diagrams)
- Flip-Flops (circuits, behavior, timing diagrams)
- Counters (up, down, synchronous, asynchronous)
- Registers and Register Files

Topics for the Final Exam

- Synchronous Sequential Circuits
- FSMs
- Moore Machines
- Mealy Machines
- State diagrams, state tables, state-assigned tables
- State minimization
- Designing a counter
- Arbiter Circuits
- Reverse engineering a circuit
- ASM Charts
- Register Machines
- Bus structure and Simple Processors
- Something from Star Wars

How to Study for the Final Exam

- Form a study group
- Go over the slides for this class
- Go over the homeworks again
- Go over the problems at the end of Ch 5 & 6
- Exercise
- Get some sleep

Administrative Stuff

- Please check your grades on BlackBoard
- Let me know if something is wrong or missing

Sample Problems

ASM Charts Given an ASM chart draw the corresponding FSM

ASM Charts

Given an ASM chart draw the corresponding FSM

[Figure 6.82 from the textbook]

[Figure 6.3 from the textbook]

ASM Charts Given an FSM draw the corresponding ASM Chart

ASM Charts

Given an FSM draw the corresponding ASM Chart

[Figure 6.23 from the textbook]

[Figure 6.83 from the textbook]

Circuit Implementation of FSMs Implement this state-assigned Table using JK flip-flips

	Present	Next state		
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	100	110	0
В	100	101	110	0
\mathbf{C}	101	101	110	1
D	110	100	111	0
Ε	111	100	111	1

Circuit Implementation of FSMs

Implement this state-assigned Table using JK flip-flips

В

 \mathbf{E}

$$J_1 = wy_2 + \overline{w}y_3\overline{y}_2$$

$$K_1 = \overline{w}y_2 + wy_1\overline{y}_2$$

$$J_2=w$$

$$K_2 = \overline{w}$$

$$J_3 = 1$$

$$K_3 = 0$$

$$z = y_1$$

	Present	Next		
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
	000	100	110	0
١	100	101	110	0
١	101	101	110	1
١	110	100	111	0
l	111	100	111	1

Circuit Implementation of FSMs Implement this state-assigned Table using JK flip-flips

	Present	Flip-flop inputs								
	state	7 100 h			w = 1				Output	
	$y_3y_2y_1$	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z
A	000	100	1d	0d	0d	110	1d	1d	0d	0
В	100	101	d0	0d	1d	110	d0	1d	0d	0
$^{\mathrm{C}}$	101	101	d0	0d	d0	110	d0	1d	d1	1
D	110	100	d0	d1	0d	111	d0	d0	1d	0
Ε	111	100	d0	d1	d1	111	d0	d0	d0	1

Excitation table with JK flip-flops

Register Machines:

What does this program do?

How many balls are left in each register at the end of the program?

STEP	INSTRUCTION	REGISTER	GO TO STEP	[BRANCH TO STEP]
1.	Deb	3	1	2
2.	Deb	2	3	4
3.	Inc	3	2	
4.	End			

Register Machines: Move the contents of register 2 to register 3

STEP	INSTRUCTION	REGISTER	GO TO STEP	[BRANCH TO STEP]
1.	Deb	3	1	2
2.	Deb	2	3	4
3.	Inc	3	2	
4.	End			

Register Machines:

What does this program do?

How many balls are left in each register at the end of the program?

Register 1

Register 2

Register 3

STEP	INSTRUCTION	REGISTER	GO TO STEP	[BRANCH TO STEP]
1.	Deb	3	1	2
2.	Deb	2	2	3
3.	Deb	1	4	6
4.	Inc	3	5	
5.	Inc	2	3	
6.	Deb	2	7	8
7.	Inc	1	6	
8.	End			

Register Machines:

Copy the contents of register 1 to register 3 using register 2 as a temporary storage

STEP	INSTRUCTION	REGISTER	GO TO STEP	[BRANCH TO STEP]
1.	Deb	3	1	2
2.	Deb	2	2	3
3.	Deb	1	4	6
4.	Inc	3	5	
5.	Inc	2	3	
6.	Deb	2	7	8
7.	Inc	1	6	
8.	End			

What does this circuit do?

Approach

- Find the flip-flops
- Outputs of the flip-flops = present state variables
- Inputs of the flip-flops determine the next state variables
- Determine the logical expressions for the outputs
- Given this info it is easy to do the state-assigned table
- Next do the state table
- Finally, draw the state diagram.

Goal

- Given a circuit diagram for a synchronous sequential circuit, the goal is to figure out the FSM
- Figure out the present state variables, the next state variables, the state-assigned table, the state table, and finally the state diagram.
- In other words, the goal is to reverse engineer the circuit.

What does this circuit do?

Approach

- Find the flip-flops
- Outputs of the flip-flops = present state variables
- Inputs of the flip-flops determine the next state variables
- Determine the logical expressions for the outputs
- Given this info it is easy to do the state-assigned table
- Next do the state table
- Finally, draw the state diagram.

Where are the inputs?

Where are the inputs?

Where are the outputs?

Where are the outputs?

Where kind of machine is this? Moore or Mealy?

Moore: because the output does not depend directly on the primary input

Where are the memory elements?

Where are the memory elements?

Where are the outputs of the flip-flops?

Where are the outputs of the flip-flops?

These are the present-state variables

Where are the inputs of the flip-flops?

Where are the inputs of the flip-flops?

These are the next-state variables

What are their logic expressions?

What are their logic expressions?

Where is the output, again?

Where is the output, again?

What is its logic expression?

What is its logic expression?

This is what we have to work with now (we don't need the circuit anymore)

$$Y_1 = w\overline{y}_1 + wy_2$$

$$Y_2 = wy_1 + wy_2$$

$$z = y_1 y_2$$

$$Y_1 = w\overline{y}_1 + wy_2$$

$$Y_2 = wy_1 + wy_2$$

$$z = y_1 y_2$$

Present	Next State		
state	w = 0	w = 1	Output
У2У1	Y_2Y_1	Y_2Y_1	Z
0 0			
0 1			
10			
11			

$$Y_1 = w\overline{y}_1 + wy_2$$

$$Y_2 = wy_1 + wy_2$$

$$z = y_1 y_2$$

Present	Next State		
state	w = 0	w = 1	Output
У2У1	Y ₂ Y ₁	Y ₂ Y ₁	Z
0 0			
0 1			
10			
11			

$$Y_1 = w\overline{y}_1 + wy_2$$

$$Y_2 = wy_1 + wy_2$$

$$z = y_1 y_2$$

Present	Next State		
state	w = 0	w = 1	Output
У2У1	Y_2Y_1	Y_2Y_1	Z
0 0			0
0 1			0
10			0
11			1

$$Y_1 = w\overline{y}_1 + wy_2$$

$$Y_2 = wy_1 + wy_2$$

$$z = y_1 y_2$$

Present	Next State		
state	w = 0	w = 1	Output
У2У1	Y ₂ Y ₁	Y ₂ Y ₁	Z
0 0			0
0 1			0
10			0
11			1

$$Y_1 = w\overline{y}_1 + wy_2$$

$$Y_2 = wy_1 + wy_2$$

$$z = y_1 y_2$$

Present	Next State		
state	w = 0	w = 1	Output
У2У1	Y_2Y_1	Y_2Y_1	Z
0 0	0	1	0
0 1	0	0	0
10	0	1	0
11	0	1	1

$$Y_1 = w\overline{y}_1 + wy_2$$

$$Y_2 = wy_1 + wy_2$$

$$z = y_1 y_2$$

Present	Next State		
state	w = 0 $w = 1$		Output
У2У1	Y_2Y_1	$(Y_2)Y_1$	Z
0 0	0	1	0
0 1	0	0	0
10	0	1	0
11	0	1	1

$$Y_1 = w\overline{y}_1 + wy_2$$

$$Y_2 = wy_1 + wy_2$$

$$z = y_1 y_2$$

Present	Next State		
state	w = 0	w = 1	Output
У2У1	Y_2Y_1	Y_2Y_1	Z
0 0	0 0	0 1	0
0 1	0 0	1 0	0
10	0 0	11	0
11	0 0	11	1

We don't need the logic expressions anymore

$$Y_1 = w\overline{y}_1 + wy_2$$

$$Y_2 = wy_1 + wy_2$$

$$z = y_1 y_2$$

Present	Next State		
state	w = 0	w = 1	Output
У2У1	Y_2Y_1	Y_2Y_1	Z
0 0	0 0	0 1	0
0 1	0 0	1 0	0
10	0 0	1 1	0
11	0 0	11	1

We don't need the logic expressions anymore

Present	Next State		
state	w = 0	w = 1	Output
У2У1	Y_2Y_1	Y_2Y_1	Z
0 0	0 0	0 1	0
0 1	0 0	1 0	0
10	0 0	1 1	0
11	0 0	11	1

Next state		Output
w = 0	w = 1	Z
		Next state w = 0 w = 1

Present	Next State		
state	w = 0	w = 1	Output
У2У1	Y_2Y_1	Y_2Y_1	Z
0 0	0 0	0 1	0
0 1	0 0	1 0	0
10	0 0	1 1	0
11	00	1 1	1

State table

Present	Next state		Output
state	w = 0 v	v = 1	Z

Present	Next		
state	w = 0	w = 1	Output
У2У1	Y_2Y_1	Y_2Y_1	Z
0 0	0 0	0 1	0
0 1	00	1 0	0
10	0 0	11	0
11	0 0	1 1	1

State table

Present	Next state	Output	Present	Next	State	
state	w = 0 $w = 1$	Z	state	w = 0	w = 1	Output
A ←			У2У1	Y_2Y_1	Y_2Y_1	Z
B ← C ←			0 0	0 0	0 1	0
D			- 01	0 0	10	0
			 10	0 0	11	0
			 11	0 0	11	1

State table

Present	Next	Output	
state	w = 0	w = 1	Z
Α			
В			
С			
D			

Present	Next	Next State		
state	w = 0	w = 1	Output	
У2У1	Y_2Y_1	Y_2Y_1	Z	
0 0	0 0	0 1	0	
0 1	00	10	0	
10	00	11	0	
11	00	11	1	

State table

Present	Next state	Output
state	w = 0 $w = 1$	z
А	A	
В	A	
С	Α	
D	A	

	Present	Next State		
	state	w = 0	w = 1	Output
	У2У1	Y_2Y_1	Y_2Y_1	Z
	0 0	00	0 1	0
Ì	01	00	1 0	0
	10	00	1 1	0
	11	00	11	1

State table

Present	Next	Output	
state	w = 0	w = 1	Z
Α	Α		
В	Α		
C	Α		
D	Α		

Present	Next State		
state	w = 0	w = 1	Output
У2У1	Y_2Y_1	Y_2Y_1	Z
0 0	0 0	0 1	0
0 1	0 0	10	0
10	0 0	11	0
11	00	11	1

State table

Present	Next	Output	
state	w = 0	w = 1	Z
А	А	B	
В	Α	C	
С	Α	D	
D	Α	D	

Present	Next		
state	w = 0	w = 1	Output
У2У1	Y ₂ Y ₁	Y ₂ Y ₁	Z
0 0	00	01	0
0 1	00	10	0
10	0 0	11	0
11	00	11	1

State table

Present	Next	Output	
state	w = 0	w = 1	Z
Α	Α	В	
В	Α	С	
С	Α	D	
D	Α	D	

Present	Next		
state	w = 0	w = 1	Output
У2У1	Y_2Y_1	Y_2Y_1	Z
0 0	0 0	0 1	0
0 1	0 0	1 0	0
10	0 0	11	0
11	00	11	1

State table

Present	Next state		Output
state	w = 0	w = 1	Z
Α	Α	В	
В	Α	С	
С	Α	D	
D	Α	D	

Present	Next State		
state	w = 0	w = 1	Output
У2У1	Y_2Y_1	Y_2Y_1	Z
0 0	0 0	0 1	0
0 1	0 0	1 0	0
10	0 0	11	0
11	0 0	11	1

State table

State-assigned table

The output is the same in both tables

The two tables for the initial circuit

Present	Next state		Output
state	w = 0	w = 1	Z
Α	А	В	0
В	Α	С	0
C	Α	D	0
D	Α	D	1

Present	Next State		
state	w = 0	w = 1	Output
У2У1	Y ₂ Y ₁	Y_2Y_1	Z
0 0	0 0	0 1	0
0 1	0 0	1 0	0
10	0 0	1 1	0
11	0 0	1 1	1

State table

We don't need the state-assigned table anymore

Present	Next state		Output
state	w = 0	w = 1	Z
А	А	В	0
В	Α	С	0
С	Α	D	0
D	Α	D	1

Present	Next State		
state	w = 0	w = 1	Output
У2У1	Y_2Y_1	Y_2Y_1	Z
0 0	0 0	0 1	0
0 1	0 0	1 0	0
10	0 0	1 1	0
11	00	1 1	1

State table

We don't need the state-assigned table anymore

Present	Next	Output	
state	w = 0	w = 1	Z
Α	Α	В	0
В	Α	С	0
С	Α	D	0
D	Α	D	1

Present	Next	Output	
state	w = 0	w = 1	Z
А	А	В	0
В	Α	С	0
С	Α	D	0
D	Α	D	1

Present	Next state		Output
state	w = 0	Z	
A	А	В	0
В	Α	С	0
C	Α	D	0
	Α	D	1

Because this is a Moore machine the output is tied to the state

Present	Next	Output	
state	w = 0	Z	
Α	Α	В	0
В	Α	С	0
С	Α	D	0
D	Α	D	1

Present	Next state		Output
state	w = 0	Z	
А	Α	В	0
В	Α	С	0
С	Α	D	0
D	Α	D	1

Present	Next state		Output
state	w = 0	w = 1	Z
А	A	В	0
В	Α	С	0
С	A	D	0
D	A	D	1

Present	Next state		Output
state	w = 0	w = 1	Z
Α	A	В	0
В	Α	С	0
С	Α	D	0
D	A	D	1

We are done!

Present	Next	Output	
state	w = 0	w = 1	Z
Α	Α	В	0
В	Α	С	0
С	Α	D	0
D	Α	D	1

State diagram

Almost done. What does this FSM do?

Present	Next	Output	
state	w = 0	w = 1	Z
Α	Α	В	0
В	Α	С	0
С	Α	D	0
D	Α	D	1

State diagram

Almost done. What does this FSM do?

It sets the output z to 1 when three consecutive 1's occur on the input w. In other words, it is a sequence detector for the input pattern 111.

Present	Next	Output	
state	w = 0	w = 1	Z
Α	Α	В	0
В	Α	С	0
С	Α	D	0
D	Α	D	1

State diagram

Another Example (with JK flip-flops)

What does this circuit do?

Approach

- Find the flip-flops
- Outputs of the flip-flops = present state variables
- Inputs of the flip-flops determine the next state variables
- Determine the logical expressions for the outputs
- Given this info it is easy to do the state-assigned table
- Next do the state table
- Finally, draw the state diagram.

Where are the inputs and outputs?

Where are the inputs and outputs?

What kind of machine is this?

Where are the flip-flops?

Where are the flip-flops?

Where are the outputs of the flip-flops?

Where are the outputs of the flip-flops?

These are the next-state variables

Where are the inputs of the flip-flops?

Where are the inputs of the flip-flops?

What are their logic expressions?

What are their logic expressions?

What is the logic expression of the output?

What is the logic expression of the output?

This is what we have to work with now (we don't need the circuit anymore)

$$J_1 = W$$

$$K_1 = \overline{W} + \overline{y}_2$$

$$J_2 = w y_1$$

$$K_2 = \overline{W}$$

$$z = y_1 y_2$$

$$J_1 = w$$

$$K_1 = \overline{W} + \overline{y}_2$$

$$J_2 = w y_1$$

$$K_2 = \overline{W}$$

Present		Flip-flop inputs			
state	w = 0 $w = 1$		= 1	Output	
<i>y</i> 2 <i>y</i> 1	J_2K_2	J_1K_1	J_2K_2	J_1K_1	Z
00					
01					
10					
11					

$$z = y_1 y_2$$

$$J_1 = w$$

$$K_1 = \overline{W} + \overline{y}_2$$

$$J_2 = w y_1$$

$$K_2 = \overline{W}$$

Present		Flip-flop inputs			
state	w = 0 $w = 1$		Output		
<i>y</i> 2 <i>y</i> 1	J_2K_2	J_1K_1	J_2K_2	J_1K_1	Z
00					
01					
10					
11					

$$z = y_1 y_2$$

$$J_1 = w$$

$$K_1 = \overline{W} + \overline{y}_2$$

$$J_2 = w y_1$$

$$K_2 = \overline{W}$$

Present	Flip-flop inputs				
state	w =	= 0	w = 1		Output
<i>y</i> 2 <i>y</i> 1	J_2K_2	J_1K_1	J_2K_2	J_1K_1	Z
00					0
01					0
10					0
11					1

$$z = y_1 y_2$$

$$J_1 = W$$

$$K = W + V$$

$$J_2 = w y_1$$

$$K_2 = \overline{W}$$

Present		Flip-flo	op inputs		
state	w =	= 0	w = 1		Output
<i>y</i> 2 <i>y</i> 1	J_2K_2	J_1K_1	J_2K_2	J_1K_1	Z
00					0
01					0
10					0
11					1

$$z = y_1 y_2$$

$$J_1 = w$$

$$K_1 = \overline{w} + \overline{y}_2$$

$$J_2 = w y_1$$

$$K_2 = \overline{W}$$

Present	Flip-flop inputs				
state	w = 0		w = 1		Output
<i>y</i> 2 <i>y</i> 1	J_2K_2	J_1K_1	J_2K_2	J_1K_1	Z
00		0 1		11	0
01		0 1		11	0
10		0 1		10	0
11		0 1		10	1

$$z = y_1 y_2$$

$$J_1 = w$$

$$K_1 = \overline{W} + \overline{y}_2$$

$$J_2 = w y_1$$

$$K_2 = \overline{W}$$

Present	Flip-flop inputs				
state	w = 0		w = 1		Output
<i>y</i> 2 <i>y</i> 1	J_2K_2	J_1K_1	J_2K_2	J_1K_1	Z
00		0 1		11	0
01		0 1		11	0
10		0 1		10	0
11		0 1		10	1

$$z = y_1 y_2$$

The excitation table

$$J_1 = w$$

$$K_1 = \overline{W} + \overline{y}_2$$

$$J_2 = w y_1$$

$$K_2 = \overline{W}$$

Present	Flip-flop inputs				
state	w = 0		w = 1		Output
<i>y</i> 2 <i>y</i> 1	J_2K_2	J_1K_1	J_2K_2	J_1K_1	Z
00	01	0 1	00	11	0
01	01	0 1	10	11	0
10	01	0 1	00	10	0
11	01	0 1	10	10	1

$$z = y_1 y_2$$

We don't need the logic expressions anymore

$$J_1 = w$$

$$K_1 = \overline{W} + \overline{y}_2$$

$$J_2 = w y_1$$

$$K_2 = \overline{W}$$

Present		Flip-flop inputs			
state	w = 0		w = 1		Output
<i>y</i> 2 <i>y</i> 1	J_2K_2	J_1K_1	J_2K_2	J_1K_1	Z
00	01	0 1	00	11	0
01	01	0 1	10	11	0
10	01	0 1	00	10	0
11	01	0 1	10	10	1 1

$$z = y_1 y_2$$

We don't need the logic expressions anymore

Present					
state	w = 0		w =	Output	
<i>y</i> 2 <i>y</i> 1	J_2K_2	J_1K_1	J_2K_2	J_1K_1	Z
00	01	0 1	0 0	11	0
01	01	0 1	10	11	0
10	01	0 1	00	10	0
11	01	0 1	10	10	1

Present state	Next	Output	
	w = 0	w = 1	Z

Present		Flip-flop inputs					
state	w = 0		w=	Output			
У 2 У 1	J ₂ K ₂	J_1K_1	J_2K_2	J ₁ K ₁	z		
00	01	0 1	00	11	0		
01	01	0 1	10	11	0		
10	01	0 1	00	10	0		
11	01	0 1	10	10	1		

State table Excitation table

Present	Next	state	Output	Present		Flip-flo	p inputs		
state	w = 0	w = 1	z	state	w:	= 0	w =	= 1	Output
A ←				У 2 У 1	J_2K_2	J_1K_1	J_2K_2	J_1K_1	Z
В ←				00	01	0 1	00	11	0
C ←				- 01	01	0 1	10	11	0
D ←				<u> </u>	01	0 1	00	10	0
I	l			11	01	0 1	10	10	1

State table

Excitation table

This step is easy (map 2-bit numbers to 4 letters)

Present	Next	state	Output		Present		Flip-flo	p inputs		
state	w = 0	w = 1	z Z		state	w:	= 0	w=	= 1	Output
Α			0 ←		y 2 y 1	J_2K_2	J_1K_1	J_2K_2	J_1K_1	Z
В			0 ←		00	01	01	00	11	<u> </u>
С			0 ←		01	01	01	10	11	<u> </u>
D			1 ←		10	01	01	00	10	0
' <u> </u>				,	11	01	01	10	10	<u> </u>

State table

Excitation table

This step is easy too (the outputs are the same in both tables)

Present	Next state	Output
state	w = 0 $w = 1$	Z
А	? ←	0
В		0
C		0
D		1

Present					
state	w = 0		w=	Output	
У 2 У 1	J ₂ K ₂	J_1K_1	J_2K_2	J_1K_1	Z
00	01	0 1	00	11	0
01	01	0 1	10	11	0
10	01	0 1	00	10	0
11	01	0 1	10	10	1

State table

Excitation table

How should we do this?

JK Flip-Flop Refresher

$$D = \overline{JQ} + \overline{KQ}$$

JK Flip-Flop Refresher

(b) Truth table

(c) Graphical symbol

Present	Next state	Output
state	w = 0 $w = 1$	Z
А	? ←	0
В		0
C		0
D		1

Present					
state	w = 0		w=	Output	
У 2 У 1	J ₂ K ₂	J_1K_1	J_2K_2	J_1K_1	Z
00	01	0 1	00	11	0
01	01	0 1	10	11	0
10	01	0 1	00	10	0
11	01	0 1	10	10	1

State table

Excitation table

How should we do this?

Present	Next state	Output
state	w = 0 $w = 1$	Z
Α		0
В		0
C		0
D		1

Present						
state	w:	w = 0		w = 1		
У 2 У 1	J ₂ K ₂	J_1K_1	J_2K_2	J_1K_1	Z	
00	01	01	00	11	0	
01	01	0 1	10	11	0	
10	01	0 1	00	10	0	
11	01	0 1	10	10	1	

Present	Next state	Output
state	w = 0 $w = 1$	Z
Α		0
В		0
C		0
D		1

Present		Flip-flo	p inputs		
state	w:	= 0	w=	= 1	Output
<i>y</i> 2 <i>y</i> 1	J ₂ K ₂	J_1K_1	J_2K_2	J_1K_1	Z
00	01	01	00	11	0
01	01	0 1	10	11	0
10	01	0 1	00	10	0
11	01	0 1	10	10	1

J K	Q(t+1)	JK	Q(t+1)
0 0	Q(t)	0 0	Q(t)
0 1	0	0 1	0
1 0	1	1 0	1
1 1	$\overline{Q}(t)$	1 1	$\overline{Q}(t)$

Present	Next state	Output
state	w = 0 w = 1	Z
Α	A	0
В		0
C		0
D		1

Present					
state		= 0	w=	= 1	Output
У 2 У 1	J ₂ K ₂	J_1K_1	J_2K_2	J_1K_1	z
00	01	01	00	11	0
01	01	0 1	10	11	0
10	01	0 1	00	10	0
11	01	0 1	10	10	1

Note that A = 00

ĮΚ	Q(t+1)	JK	Q(t+1)
0 0	Q(t)	00	Q(t)
0 1	0	0 1	0
1 0	1	1 0	1
1 1	$\overline{Q}(t)$	1 1	$\overline{Q}(t)$

Present	Next	Output	
state	w = 0	w = 1	Z
Α	А]	0
В		?	0
C			0
D			1

Present		Flip-flo	p inputs		
state	w:	= 0	w=	= 1	Output
<i>y</i> 2 <i>y</i> 1	J ₂ K ₂	J_1K_1	J_2K_2	J ₁ K ₁	z
00	01	0 1	00	11	0
01	01	0 1	10	11	0
10	01	0 1	00	10	0
11	01	0 1	10	10	1

J K	Q(t+1)	JK	Q(t+1)
0 0	Q(t)	0 0	\ /
0 1	0	0 1	0
1 0	1	1 0	1
1 1	$\overline{Q}(t)$	1 1	$\overline{Q}(t)$

Present	Next state	Output
state	w = 0 $w = 1$	Z
Α	Α	0
В		0
C		0
D		1

Present		Flip-flop inputs				
state	w:	= 0	w=	= 1	Output	
<i>y</i> 2 <i>y</i> 1	J ₂ K ₂	J_1K_1	J_2K_2	J ₁ K ₁	Z	
00	01	0 1	00	11	0	
01	01	0 1	10	11	0	
10	01	0 1	00	10	0	
11	01	0 1	10	10	1	

JΚ	Q(t+1)	JK	Q(t+1)
0 0	Q(t)		Q(t)
0 1	0	0 1	
1 0	1	1 0	1
1 1	$\overline{Q}(t)$	1 1	Q̄(t)

Present	Next state	Output
state	w = 0 $w = 1$	Z
Α	Α	0
В		0
C		0
D		1

Present		Flip-flop inputs				
state	w = 0 $w = 1$			Output		
<i>y</i> 2 <i>y</i> 1	J ₂ K ₂	J ₁ K ₁	J_2K_2	J ₁ K ₁	Z	
00	01	0 1	00	11	0	
01	01	0 1	10	11	0	
10	01	0 1	00	10	0	
11	01	0 1	10	10	1	

JΚ	Q(t+1)	_	J K	Q(t+1)
0 0	Q(t)	_	0 0	Q(t)
0 1	0		0 1	0
1 0	1		1 0	_1_
1 1	$\overline{Q}(t)$		1 1	$\overline{Q}(t)$

Present	Next state		Output
state	w = 0 $w =$	1	Z
Α	А		0
В			0
C			0
D			1

Present		Flip-flop inputs			
state	w = 0 $w = 1$		= 1	Output	
y 2 y 1	J ₂ K ₂	J_1K_1	J_2K_2	J ₁ K ₁	Z
00	01	01	00	11	0
01	01	0 1	10	11	0
10	01	0 1	00	10	0
11	01	0 1	10	10	1

J K	Q(t+1)	JK	Q(t+1)
0 0	Q(t)	0 0	Q(t)
0 1	0	0 1	0
1 0	1	1 0	1_
1 1	$\overline{Q}(t)$	1 1	$\overline{Q}(t)$

Present	Next state	Output
state	w = 0 $w = 1$	Z
Α	Α	0
В		0
C		0
D		1

Present		Flip-flop inputs			
state	w = 0 $w = 1$		= 1	Output	
y 2 y 1	J ₂ K ₂	J_1K_1	J_2K_2	J ₁ K ₁	Z
00	01	01	00	11	0
01	01	0 1	10	11	0
10	01	0 1	00	10	0
11	01	0 1	10	10	1

Present	Next	Output	
state	w = 0	w = 1	Z
Α	Α		0
В		C _	0
C		K	0
D			\ \ \

Present		Flip-flop inputs				
state	w = 0 $w = 1$			Output		
y 2 y 1	J ₂ K ₂	J_1K_1	J_2K_2	J ₁ K ₁	Z	
00	01	0 1	00	11	0	
01	01	0 1	10	11	0	
10	01	0 1	00	10	0	
11	01	0 1	10	10	1	

Note that C = 10

The two tables for the initial circuit

Present	Next	Output	
state	w = 0	w = 1	Z
Α	А	В	0
В	Α	С	0
C	Α	D	0
D	Α	D	1

Present		Flip-flop inputs				
state	w:	= 0	w=	= 1	Output	
<i>y</i> 2 <i>y</i> 1	J ₂ K ₂	J_1K_1	J_2K_2	J ₁ K ₁	Z	
00	01	0 1	00	11	0	
01	01	0 1	10	11	0	
10	01	0 1	00	10	0	
11	01	0 1	10	10	1	

State table Excitation table

The state diagram

Present	Next	Output	
state	w = 0	w = 1	Z
Α	Α	В	0
В	Α	С	0
C	Α	D	0
D	Α	D	1

State table

State diagram

The state diagram

Thus, this FSM is identical to the one in the previous example, even though the circuit uses JK flip-flops.

Present	Next	Output	
state	w = 0	w = 1	Z
Α	Α	В	0
В	Α	С	0
C	Α	D	0
D	Α	D	1

State table

State diagram

Yet Another Example (with mixed flip-flops)

What does this circuit do?

Approach

- Find the flip-flops
- Outputs of the flip-flops = present state variables
- Inputs of the flip-flops determine the next state variables
- Determine the logical expressions for the outputs
- Given this info it is easy to do the state-assigned table
- Next do the state table
- Finally, draw the state diagram.

What are the logic expressions?

What are the logic expressions?

What are the logic expressions?

The Excitation Table

$$D_1 = w (\overline{y_1} + y_2)$$

$$T_2 = \overline{w} y_2 + w y_1 \overline{y}_2$$

$$z = y_1 y_2$$

Present	Flip-flo		
state	w = 0	Output	
<i>y</i> 2 <i>y</i> 1	T_2D_1	T_2D_1	Z
0 0	00	01	0
01	00	10	0
10	10	01	0
11	10	01	1

Excitation table

Present	Next	Output	
state	w = 0	w = 1	Z

Present	Flip-flo		
state	w = 0 $w = 1$		Output
<i>y</i> 2 <i>y</i> 1	T_2D_1	T_2D_1	Z
0 0	00	01	0
01	00	10	0
10	10	01	0
11	10	01	1

1			I	Present	Flip-flo	p inputs	
Present	Next state	Output		state	w = 0	w = 1	Output
state	w = 0 w = 1	Z		<i>Y</i> 2 <i>Y</i> 1	T_2D_1	T_2D_1	Z
A ← B ←				- 00	0 0	01	0
C ←				01	00	10	0
D				10	10	01	0
				11	10	01	1

This step is easy (map 2-bit numbers to 4 letters)

			Present	Flip-flo _l	p inputs	
Present	Next state	Output	state	w = 0	w = 1	Output
state	w = 0 w = 1	Z	<i>Y</i> 2 <i>Y</i> 1	T_2D_1	T_2D_1	Z
A		0 ←				
В		0 🔸	00	00	01	 0
C		0 🔸	01	00	10	0
D		1 🔸	10	10	01	0
			11	10	01	<u> </u>

This step is easy too (the outputs are the same in both tables)

Present	Next state	Output
state	w = 0 $w = 1$	Z
Α	?	0
В		0
С		0
D		1

Present	Flip-flo		
state	w = 0	Output	
<i>У</i> 2 <i>У</i> 1	T_2D_1	T_2D_1	Z
0.0	00	01	0
01	0 0	10	0
10	10	01	0
11	10	01	1

What should we do here?

	Next state	_
Present	ווכאו אומוכ	Output
state	w = 0 $w = 1$	Z
Α	?	0
В		0
C		0
D		1

Present	Flip-flo		
state	w = 0	Output	
<i>y</i> 2 <i>y</i> 1	T_2D_1	T_2D_1	Z
0.0	00	01	0
0 1	00	10	0
10	10	01	0
11	10	01	1

What should we do here?

T

$$Q(t+1)$$
 D
 $Q(t+1)$

 0
 $Q(t)$
 0
 0

 1
 $Q(t)$
 1
 1

Present	Next state		Output	
state	w = 0	w = 1	Z	
Α			0	
В			0	
C			0	
D			1	

Present	Flip-flop inputs		
state	w = 0	w = 1	Output
<i>y</i> 2 <i>y</i> 1	T_2D_1	T_2D_1	Z
0 0	00	01	0
01	0 0	10	0
10	10	01	0
11	10	01	1

T

$$Q(t+1)$$
 D
 $Q(t+1)$

 0
 $Q(t)$
 0
 0

 1
 $Q(t)$
 1
 1

Present	Next state		Output
state	w = 0	w = 1	Z
Α			0
В			0
C			0
D			1

Present	Flip-flop inputs		
state	w = 0	w = 1	Output
<i>y</i> 2 <i>y</i> 1	T_2D_1	T_2D_1	Z
0 0	00	01	0
01	00	10	0
10	10	01	0
11	10	01	1

T

$$Q(t+1)$$
 D
 $Q(t+1)$

 0
 $Q(t)$
 0
 0

 1
 $\overline{Q}(t)$
 1
 1

Present state		Output z
	w = 0 $w = 1$	_
A		0
В		0
C		0
D		1

Present	Flip-flop inputs		
state	w = 0	w = 1	Output
<i>y</i> 2 <i>y</i> 1	T_2D_1	T_2D_1	Z
00	00	01	0
0 1	00	10	0
10	10	01	0
11\	10	01	1

Present	Next state		Output
state	w = 0	w = 1	Z
Α			0
В			0
C			0
D			1

Present	Flip-flop inputs		
state	w = 0	w = 1	Output
У2У1	T_2D_1	T_2D_1	Z
0 0	00	01	0
01	00	10	0
10	10	01	0
11	10	01	1

T

$$Q(t+1)$$
 D
 $Q(t+1)$

 0
 0
 0
 0

 1
 $\overline{Q}(t)$
 1
 1

Present	sent Next state		Output
state	w = 0	w = 1	Z
Α			0
В			0
C			0
D			1

Present	Flip-flop inputs		
state	w = 0	w = 1	Output
<i>y</i> 2 <i>y</i> 1	T_2D_1	T_2D_1	Z
0 0	00	01	0
01	00	10	0
10	10	01	0
11	10	01	1

$$\begin{array}{c|ccccc} T & Q(t+1) & D & Q(t+1) \\ \hline 0 & 0 & 0 & 0 \\ 1 & \overline{Q}(t) & 1 & 1 \end{array}$$

Present	Next state		Output
state	w = 0	w = 1	Z
Α			0
В			0
C			0
D			1

Present	Flip-flop inputs		
state	w = 0	w = 1	Output
<i>y</i> 2 <i>y</i> 1	T_2D_1	T_2D_1	Z
0 0	00	01	0
0 1	00	10	0
10	10	01	0
11	10	01	1

Present	Next state		Output
state	w = 0	w = 1	z
Α	Aĸ		0
В			0
C			0
D			1

Present	Flip-flop inputs		
state	w = 0	w = 1	Output
<i>y</i> 2 <i>y</i> 1	T_2D_1	T_2D_1	Z
0 0	00	01	0
0 1	00	10	0
10	10	01	0
11	10	01	1

Note that A = 00

Present	Next state		Output
state	w = 0	w = 1	Z
Α	Α		0
В			0
C		? €	0
D		اب	1

Present	Flip-flop inputs		
state	w = 0	<i>w</i> = 1	Output
<i>У</i> 2 <i>У</i> 1	T_2D_1	T_2D_1	Z
0 0	00	01	0
01	00	10	0
10	10	01	0
11	10	01	1

What should we do here?

T

$$Q(t+1)$$
 D
 $Q(t+1)$

 0
 $Q(t)$
 0
 0

 1
 $Q(t)$
 1
 1

Present	ent Next state		Output
state	w = 0	w = 1	Z
Α	Α		0
В			0
C			0
D			1

Present	Flip-flop inputs		
state	w = 0	w = 1	Output
У2У1	T_2D_1	T_2D_1	Z
0 0	00	01	0
01	00	10	0
10	10	01	0
11	10	01	1

T

$$Q(t+1)$$
 D
 $Q(t+1)$

 0
 $Q(t)$
 0
 0

 1
 $Q(t)$
 1
 1

Present	Present Next state		Output
state	w = 0	w = 1	Z
Α	Α		0
В			0
C			0
D			1

Present	Flip-flop inputs		
state	w = 0	w = 1	Output
У2У1	T_2D_1	T_2D_1	Z
0 0	00	01	0
01	00	10	0
10	10	01	0
11	10	01	1

T

$$Q(t+1)$$
 D
 $Q(t+1)$

 0
 $Q(t)$
 0
 0

 1
 $\overline{Q}(t)$
 1
 1

Present	Next state		Output
state	w = 0	w = 1	Z
Α	Α		0
В			0
C			0
D			1

Present	Flip-flop inputs		
state	w = 0	w = 1	Output
<i>У</i> 2 <i>У</i> 1	T_2D_1	T_2D_1	Z
0 0	00	01	0
01	00	10	0
10	10	01	0
1/1	10	01	1

T	Q(t+1)	D	Q(t+1)
0	Q(t)	0	0
1	$\overline{\overline{\mathrm{Q}}}(t)$	1	1

Present	Next state		Output
state	w = 0	w = 1	Z
Α	Α		0
В			0
C			0
D			1

Present	Flip-flop inputs		
state	w = 0	w = 1	Output
<i>У</i> 2 <i>У</i> 1	T_2D_1	T_2D_1	Z
0.0	00	01	0
01	00	10	0
10	10	01	0
1	10	01	1
10	4 4	01 01	0 1

T
$$Q(t+1)$$
 D $Q(t+1)$
0 1 0 0
1 $\overline{Q}(t)$ 1 1

Present	Present Next state		Output
state	w = 0	w = 1	Z
Α	Α		0
В			0
C			0
D			1

Present	Flip-flop inputs		
state	w = 0	w = 1	Output
У2У1	T_2D_1	T_2D_1	Z
0 0	00	01	0
01	00	10	0
10	10	01	0
11	10	01	1

T

$$Q(t+1)$$
 D
 $Q(t+1)$

 0
 1
 0
 0

 1
 $\overline{Q}(t)$
 1
 1

Present	Present Next state		Output
state	w = 0	w = 1	Z
Α	Α		0
В			0
C			0
D			1

Present	Flip-flop inputs		
state	w = 0	w = 1	Output
У2У1	T_2D_1	T_2D_1	Z
0 0	00	01	0
01	00	10	0
10	10	01	0
11	10	01	1

T
$$Q(t+1)$$
 D $Q(t+1)$

0 1 0 0
1 $\overline{Q}(t)$ 1 1

Present	Next state		Output
state	w = 0	w = 1	Z
Α	Α		0
В			0
C		D	0
D		K.K.	

Present	Flip-flop inputs		
state	w = 0	w = 1	Output
<i>y</i> 2 <i>y</i> 1	T_2D_1	T_2D_1	Z
0 0	00	01	0
0 1	00	10	0
10	10	01	0
11	10	01	1

Note that D = 11

Present	Next state		Output
state	w = 0	w = 1	Z
Α	Α	В	0
В	Α	С	0
С	Α	D	0
D	Α	D	1

Present	Flip-flo		
state <i>y</i> 2 <i>y</i> 1	w = 0 $w =$		Output
	T_2D_1	T_2D_1	Z
0 0	00	01	0
01	00	10	0
10	10	01	0
11	10	01	1

$$\begin{array}{c|cccc} T & Q(t+1) & D & Q(t+1) \\ \hline 0 & Q(t) & 0 & 0 \\ 1 & Q(t) & 1 & 1 \end{array}$$

The two tables for the initial circuit

Present	Next	Output	
state	w = 0	w = 1	Z
Α	Α	В	0
В	Α	С	0
C	Α	D	0
D	Α	D	1

Present	Flip-flo		
state	w = 0	w = 1	Output
У2У1	T_2D_1	T_2D_1	Z
0 0	00	01	0
01	00	10	0
10	10	01	0
11	10	01	1

State table

Excitation table

The state diagram

Present	Next	Output	
state	w = 0	w = 1	Z
Α	Α	В	0
В	Α	С	0
C	Α	D	0
D	Α	D	1

State table

State diagram

The state diagram

Thus, this FSM is identical to the ones in the previous examples, even though the circuit uses JK flip-flops.

Present	Next	Output	
state	w = 0	w = 1	Z
А	А	В	0
В	Α	С	0
C	Α	D	0
D	Α	D	1

State table

State diagram

State Minimization

State Table for This Example

Present	Next	Output		
state	w = 0 $w = 1$		\overline{z}	
A	В	C	1	
В	D	F	1	
C	F	Е	0	
D	В	G	1	
E	F	C	0	
F	Е	D	0	
G	F	G		

State Diagram (just the states)

Present	Next	Output	
state	w = 0	w = 0 $w = 1$	
A	В	C	1
В	D	F	1
C	F	E	0
D	В	G	1
Е	F	C	0
F	E	D	0
G	F	G	0

State Diagram

(transitions when w=0)

Present	Nex	Output z	
state	w = 0 $w = 1$		
A	В	С	1
в	D	F	1
C	F	Е	0
D	В	G	1
E	F	C	0
F	Е	D	0
G	F	G	0

State Diagram

(transitions when w=1)

Outputs

	1	-			•				
Present		state	Output						
state	w = 0	w = 1	z		_		~		
A B	B D	C F	1 1						
C	F	E G	0	(I	2	($C \setminus$	—	
D E	B F	G C	0	(1	, ,				
F	Е	D	0	z	=1		C		
G	F	G	0						\mathbf{E}
				/ 11				λ.	$E_{z=0}$
			/						Z=U
		(,	4)						
		\ 1	A $=1$	' //					
		z	=1	///				/ //	
				V /		\	/	// (G =0
								\	
								\sqrt{z}	=0
			(D		\			
				D $z=1$			16/		
							r /		
							F		
							=0		

(All states in the same partition)

Partition #1 (ABCDEFG)

(based on outputs)

Partition #2 (ABD)(CEFG)

(Examine the 0-successors of ABD)

(Examine the 1-successors of ABD)

(Examine the 0-successors of CEFG)

(Examine the 1-successors of CEFG)

(Examine the 1-successors of CEFG)

Partition #3 (ABD)(CEG)(F)

Partition #3 (ABD)(CEG)(F)

(Examine the 0-successors of ABD)

(Examine the 1-successors of ABD)

(Examine the 1-successors of ABD)

Partition #4 (AD)(B)(CEG)(F)

Partition #4 (AD)(B)(CEG)(F)

(Examine the 0-successors of AD)

(Examine the 1-successors of AD)

(Examine the 0-successors of B)

(Examine the 1-successors of B)

(Examine the 0-successors of CEG)

(Examine the 1-successors of CEG)

(Examine the 0-successors of F)

(Examine the 1-successors of F)

Partition #5 (AD)(B)(CEG)(F)

Partition #4 (AD)(B)(CEG)(F)

(This is the same as #4 so we can stop here)

Minimized state table

Present	Next	Output	
state	w = 0	w = 1	Z
A	В	С	1
В	A	F	1
C	F	C	0
F	C	A	0

Multiplexers

4-1 Multiplexer (Definition)

- Has four inputs: w_0 , w_1 , w_2 , w_3
- Also has two select lines: s₁ and s₀
- If s₁=0 and s₀=0, then the output f is equal to w₀
- If s₁=0 and s₀=1, then the output f is equal to w₁
- If $s_1=1$ and $s_0=0$, then the output f is equal to w_2
- If $s_1=1$ and $s_0=1$, then the output f is equal to w_3

Graphical Symbol and Truth Table

(a) Graphic symbol

<i>s</i> ₁	s_0	f
0	0	w_0
0	1	w_1
1	0	w_2
1	1	w_3

(b) Truth table

Using three 2-to-1 multiplexers to build one 4-to-1 multiplexer

Implementation of a logic function

(a) Modified truth table

[Figure 4.7 from the textbook]

Implementation of 3-input XOR with a 4-to-1 Multiplexer

	f	w_3	w_2	w_1
- 141	0	0	0	0
w ₃	1	1	0	0
\overline{w}_3	1	0	1	0
w 3	0	1	1	0
\overline{w}_3	1	0	0	1
w 3	0	1	0	1
- w ₃	0	0	1	1
w 3	1	1	1	1

Implementation of 3-input XOR with a 4-to-1 Multiplexer

w_1 w_2 w_3	f	
0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1	$ \begin{array}{c} 0\\1\\1\\w_3\\1\\0\\\hline\\0\\1\\\end{array} $ $ \begin{array}{c} w_3\\0\\\\\hline\\0\\1\\\end{array} $	w_3 w_1 f
(a) Trut	th table	(b) Circuit

Gated D Latch

Circuit Diagram for the Gated D Latch

Edge-Triggered D Flip-Flops

Master-Slave D Flip-Flop

Negative-Edge-Triggered Master-Slave D Flip-Flop

Positive-Edge-Triggered Master-Slave D Flip-Flop

Circuit Diagram for the Gated D Latch

Constructing a D Flip-Flop

Constructing a D Flip-Flop

Constructing a D Flip-Flop (with one less NOT gate)

Constructing a D Flip-Flop (with one less NOT gate)

Positive-edge-triggered D Flip-Flop

[Figure 5.15a from the textbook]

What is this?

What is this?

What is this?

T Flip-Flop

What is this?

T Flip-Flop

JK Flip-Flop

JK Flip-Flop

$$D = \overline{JQ} + \overline{KQ}$$

JK Flip-Flop

J K	Q(t+1)	
0 0 0 1	Q(t)	JO
0 1	0	
1 0	1	[_K -
1 1	$\overline{\mathbf{Q}}(\mathbf{t})$	

(b) Truth table

(c) Graphical symbol

JK Flip-Flop (How it Works)

A versatile circuit that can be used both as a SR flip-flop and as a T flip flop

If J=0 and S =0 it stays in the same state

Just like SR It can be set and reset J=S and K=R

If J=K=1 then it behaves as a T flip-flop

Registers

Register (Definition)

An n-bit structure consisting of flip-flops

A simple shift register

(a) Circuit

(b) A sample sequence

[Figure 5.17 from the textbook]

Parallel-access shift register

Counters

A three-bit up-counter

A three-bit up-counter

[Figure 5.19 from the textbook]

A three-bit down-counter

A three-bit down-counter

Synchronous Counters

A four-bit synchronous up-counter

A four-bit counter with D flip-flops

[Figure 5.23 from the textbook]

Counters with Parallel Load

A counter with parallel-load capability

A shift register with parallel load and enable control inputs

What does this circuit do?

Designing The Control Circuit

[Figure 7.9 from the textbook]

The function register and decoders

[Figure 7.11 from the textbook]

A part of the control circuit for the processor

Control signals asserted in each time step

	T ₁	T_2	T ₃
(Load): I ₀	Extern R _{in} = X Done		
(Move): I ₁	$R_{in} = X$ $R_{out} = Y$ Done		
(Add): I ₂	$R_{out} = X$ A_{in}	$R_{out} = Y$ G_{in} AddSub = 0	G _{out} R _{in} = X Done
(Sub): I ₃	$R_{out} = X$ A_{in}	$R_{out} = Y$ G_{in} AddSub = 1	G _{out} R _{in} = X Done

Operation			Fur	nction Performed
Load	Rx,	Data	Rx	← Data
Move	Rx,	Ry	Rx	← [Ry]
Add	Rx,	Ry	Rx	← [Rx] + [Ry]
Sub	Rx,	Ry	Rx	← [Rx] - [Ry]

Operation			Fur	nction Performed
Load	Rx,	Data	Rx	← Data
Move	Rx,	Ry	Rx	← [Ry]
Add	Rx,	Ry	Rx	← [Rx] + [Ry]
Sub	Rx,	Ry	Rx	← [Rx] - [Ry]

Where Rx and Ry can be one of four possible options: R0, R1, R2, and R3

f_1	f_{θ}	Function
0	0	Load
0	1	Move
1	0	Add
1	1	Sub

Rx_1	Rx_{θ}	Register
0	0	R0
0	1	R1
1	0	R2
1	1	R3

Ry_1	Ry_{θ}	Register
0	0	R0
0	1	R1
1	0	R2
1	1	R3

f_1	f_{θ}	Function
0	0	Load
0	1	Move
1	0	Add
1	1	Sub

Rx_1	Rx_{θ}	Register
0	0	R0
0	1	R1
1	0	R2
1	1	R3

Ry_1	Ry_{θ}	Register
0	0	R0
0	1	R1
1	0	R2
1	1	R3

f_1	f_{θ}	Function
0	0	Load
0	1	Move
1	0	Add
1	1	Sub

Rx_1	Rx_{θ}	Register
0	0	R0
0	1	R1
1	0	R2
1	1	R3

Ry_1	Ry_{θ}	Register
0	0	R0
0	1	R1
1	0	R2
1	1	R3

f_1	f_{θ}	Function
0	0	Load
0	1	Move
1	0	Add
1	1	Sub

Rx_1	Rx_{θ}	Register
0	0	R0
0	1	R1
1	0	R2
1	1	R3

Ry_1	Ry_{θ}	Register
0	0	R0
0	1	R1
1	0	R2
1	1	R3

f_1	f_{θ}	Function
0	0	Load
0	1	Move
1	0	Add
1	1	Sub

Rx_1	Rx_{θ}	Register
0	0	R0
0	1	R1
1	0	R2
1	1	R3

Ry_1	Ry_{θ}	Register
0	0	R0
0	1	R1
1	0	R2
1	1	R3

Similar Encoding is Used by Modern Chips

MIPS32 Add Immediate Instruction

001000	00001	00010	000000101011110
OP Code	Addr 1	Addr 2	Immediate value

Equivalent mnemonic: addi \$r1, \$r2, 350

Sample Assembly Language Program For This Processor

Move R3, R0

Add R1, R3

Sub R0, R2

Load R2, Data

Machine Language	Assemb	ly Language	Meaning / Interpretation
011100	Move	R3, R0	R3 ← [R0]
100111	Add	R1, R3	R1 ← [R1] + [R3]
110010	Sub	R0, R2	R0 ← [R0] - [R2]
001000	Load	R2, Data	R2 🗲 Data

Machine Language	Assemb	ly Language	Meaning / Interpretation
011100	Move	R3, R0	R3 ← [R0]
100111	Add	R1 , R3	R1 ← [R1] + [R3]
110010	Sub	R0, R2	R0 ← [R0] - [R2]
001000	Load	R2, Data	R2 🗲 Data

Machine Language	Assembly Language	Meaning / Interpretation
10011 3 110010 3	Move R3, R0 Add R1, R3 Sub R0, R2 Load R2, Data	R3 ← [R0] R1 ← [R1] + [R3] R0 ← [R0] - [R2] R2 ← Data

For short, each line can be expresses as a hexadecimal number

	Machine Language	Assembly Language	Meaning / Interpretation
32 Sub R0, R2 R0 ← [R0] - [R2 No	27	Add R1, R3	R1 ← [R1] + [R3]
	32	Sub R0, R2	R0 ← [R0] - [R2]

Questions?

THE END