1. Множество на реалните числа. Принцип за непрекъснатост

Основни числови множества

- І. Множество на естествените числа
- 1, 2, 3, . . .
- $0, 1, 2, 3, \dots$

Означения: \mathbb{N} , \mathbb{N}_0 , \mathbb{N}_+

II. Множество на целите числа

$$0,\pm 1,\pm 2,\pm 3,\dots$$

Означение: Z

III. Множество на рационалните числа

$$\frac{\rho}{q}$$
, $\rho \in \mathbb{Z}$, $q \in \mathbb{N}_+$

Означение: **Q**

Реални числа — дефиниция (геометричен подход)

Искаме на всяка точка от дадена права да съпоставим число

и то по такъв начин, че всяка отсечка да има дължина

Конструираме последователност от крайни десетични дроби:

$$a_0, a_0.\overline{a_1}, a_0.\overline{a_1a_2}, \dots, a_0.\overline{a_1a_2\dots a_n}, \dots$$
 (1)

 a_0 е цяло число a_1, a_2, \dots са цифри

 $a_0.\overline{a_1a_2...a_n}$ се намира отляво на т. A, а $a_0.\overline{a_1a_2...a_n}+10^{-n}$ — отдясно

Множество на реалните числа

Ако последователността е крайна, на A съпоставяме последния ѝ елемент — той е крайна десетична дроб.

В противен случай, на A съпоставяме безкрайната последователност от цифри $a_0.\overline{a_1 a_2 \dots a_n \dots}$

Дефиниция

Реално число наричаме всяка крайна или безкрайна десетична дроб.

Множеството на реалните числа се означава чрез \mathbb{R} .

Реалните числа, които не са рационални, се наричат ирационални.

Рационалните числа са точно тези, които се представят като крайна или като периодична десетична дроб.

Дефиниция (ограничени множества)

Нека $M \subseteq \mathbb{R}$.

- (а) Казваме, че M е ограничено отгоре, ако съществува $c_1 \in \mathbb{R}$ такова, че $x \leq c_1$ за всяко $x \in M$. Всяко реално число c_1 с това свойство се нарича горна граница на M.
- (б) Казваме, че M е <u>ограничено отдолу</u>, ако съществува $c_2 \in \mathbb{R}$ такова, че $x \geq c_2$ за всяко $x \in M$. Всяко реално число c_2 с това свойство се нарича долна граница на M.
- (в) Казваме, че M е <u>ограничено</u>, ако то е ограничено както отгоре, така и отдолу, т.е. ако съществуват $c_1, c_2 \in \mathbb{R}$ такива, че $c_2 \leq x \leq c_1$ за всяко $x \in M$ или, еквиваленто, съществува $c \in \mathbb{R}$ такова, че $|x| \leq c$ за всяко $x \in M$.

Примери: 1) Множеството M = [1, 2] е ограничено;

- 2) Множеството $\pmb{M}=(-\infty,1)$ е ограничено отгоре, но не е ограничено отдолу;
- 3) Множеството $\pmb{M} = \{\pm 2\pmb{n} : \pmb{n} \in \mathbb{N}\}$ не е ограничено нито отгоре, нито отдолу.

Най-важното свойство на реалните числа

Принцип за непрекъснатост

- (a) Всяко ограничено отгоре, непразно множество от реални числа M притежава най-малка горна граница. Тя се нарича негова точна горна граница и се означава със $\sup M$ (чете се "супремум").
- (б) Всяко ограничено отдолу, непразно множество от реални числа M притежава най-голяма долна граница. Тя се нарича негова точна долна граница и се означава с $\inf M$ (чете се "инфимум").

```
Примери: 1) sup[0,1] = 1 и inf[0,1] = 0;
```

- 2) sup(0,1) = 1 u inf(0,1) = 0;
- 3) Нека $M = \{\frac{1}{n} : n \in \mathbb{N}_+\};$ тогава $\sup M = 1$ и inf M = 0;
- 4) Нека $M = \{a \in \mathbb{Q} : a > 0 \text{ и } a^2 < 2\}$; тогава $\sup M = \sqrt{2}$ и ако разполагахме само с рационалните числа, то M, въпреки че е ограничено отгоре, нямаше да има точна горна граница.