Chapter 1:

Solve linear system by matrix Section ②

♣ Three possibilities of linear system of equations

- 1) Has exactly one solution
- 2) Has infinitly many solutions Consistent System
- 3) Has no solution

} Inconsistent System

Consistent System: System of equations that has at least one solution .

Inconsistent System: System of equations that has no solution.

① The line L_1 intersect line L_2 at only one point. (One Solution)

$$2x + y = 4$$
$$x + y = 2$$

Solution:

$$y = 0$$

② The line L_1 coincide line L_2 . (Infinite Solutions)

$$2x + 2y = 4$$
$$x + y = 2$$

Solution: Infinitely many solutions

3 The lines L_1 , L_2 are parallel. (No Solution)

$$\begin{cases} x + y = 4 \\ 2x + 2y = 6 \end{cases}$$

No Solution

How to determine if a system has no solution, or infinite solutions from augmented matrix?

✓ A system has no solution
$$\begin{bmatrix} 1 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$
 ✓ A system infinite solutions
$$\begin{bmatrix} 1 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix}$$

Lesson Example 1: Solve by Gaussian Elimination

$$\begin{cases} x_1 - 2x_2 - 6x_3 = 12 \\ 2x_1 + 4x_2 + 12x_3 = -17 \\ x_1 - 4x_2 - 12x_3 = 22 \end{cases}$$

-----Solution-----

$$\begin{bmatrix} 1 & -2 & -6 & 12 \\ 2 & 4 & 12 & -17 \\ 1 & -4 & -12 & 22 \end{bmatrix}$$

The System has no solution

Lesson Series 2 : Solve by Gauss-Jordan

$$\begin{cases}
 x + 2y - 3z + w = -2 \\
 3x - y - 2z - 4w = 1 \\
 2x + 3y - 5z + w = -3
 \end{cases}$$

-----Solution-----

$$\begin{bmatrix} 1 & 2 & -3 & 1 & -2 \\ 3 & -1 & -2 & -4 & 1 \\ 2 & 3 & -5 & 1 & -3 \end{bmatrix}$$

The System has infinitely many solutions

X, y are **leading** variables Z, w are **free** variables

$$X-z-w=0$$
 \Longrightarrow $x=z+w$
 $Y-z+w=-1$ \Longrightarrow $y=z-w-1$

Solution <u>1</u> Solution <u>2</u> Solution <u>3</u> Solution <u>n</u>

$$X = 0$$

$$X = 2$$

$$Y = -1$$
 $Y = -1$

$$Y = -1$$

$$Z = 0$$

$$Z = 1$$

$$W = 0$$

$$W = 1$$

Let up Example $\underline{3}$: What condition that b_1 , b_2 and b_3 should satisfy in order to solve the following system?

$$\left. \begin{array}{l} x_1 + x_2 + x_3 = b_1 \\ x_1 + 2x_3 = b_2 \\ 2x_1 + x_2 + 3x_3 = b_3 \end{array} \right\}$$

-----Solution-----

$$\begin{bmatrix} \mathbf{1} & \mathbf{1} & \mathbf{1} & b_1 \\ \mathbf{1} & \mathbf{0} & \mathbf{2} & b_2 \\ \mathbf{2} & \mathbf{1} & \mathbf{3} & b_3 \end{bmatrix} \qquad \xrightarrow{-R_1 + R_2 \longrightarrow R_2} \qquad \begin{bmatrix} \mathbf{1} & \mathbf{1} & \mathbf{1} & b_1 \\ \mathbf{0} & -\mathbf{1} & \mathbf{1} & b_2 - b_1 \\ \mathbf{0} & -\mathbf{1} & \mathbf{1} & b_3 - 2b_1 \end{bmatrix}$$

Condition: $b_3 - b_2 - b_1 = 0$