Steven Labalme Mr. Bilak AP Physics C: Electricity and Magnetism, 6 26 March 2019

RC Circuit Analysis

Figure 1: A basic RC circuit.

Consider the elementary RC circuit depicted in Figure 1. We seek to derive an expression for the magnitude of the charge Q on either plate of the capacitor as a function of time t, as well as other values from Figure 1 as needed.

To begin, analyze the circuit using Kirchhoff's Voltage Law. According to said law and WLOG^[1], analyze the circuit in a clockwise direction beginning in the bottom-left corner as indicated by Figure 1. This analysis will yield the following equation, where V_C is the voltage gain across the capacitor and V_R is the voltage drop across the resistor.

$$V_C - V_R = 0$$

Let's express V_C and V_R in terms of other variables from Figure 1. Notably, V_C can be related to C and Q through the definition of capacitance and V_R can be related to I and R via Ohm's Law, as shown in Figure 2.

Figure 2: Introducing more variables into the circuit analysis.

We still need to find a way to introduce time. Fortunately, current is the time derivative of charge. While it might seem natural to substitute $\frac{dQ}{dt}$ for I, this will actually lead to an incorrect answer — current is the rate at which charge q passes through the circuit^[2], not the rate of change of the magnitude of charge Q on the plates of the capacitor. While it may now be tempting to substitute $\frac{dq}{dt}$ for I and dismiss any relationship between q and Q, the pair are intrinsically related.

In order to proceed, we must relate q to Q. Let Δq be a small quantity of charge that leaves the positive plate, passes through the circuit, and ends up on the negative plate. When Δq leaves the positive plate, Q decreases by Δq ; in other words, the change in Q, ΔQ , is equal to $-\Delta q$, or $\Delta Q = -\Delta q$. This is the relationship that we were looking for.

¹"Without the Loss Of Generality"

²Or, more formally, a cross section of it.

Both sides of the relationship $\Delta Q = -\Delta q$ can be differentiated with respect to time to relate said expression back to current I, as follows.

$$\begin{split} \Delta Q &= -\Delta q \\ \frac{\mathrm{d}Q}{\mathrm{d}t} &= -\frac{\mathrm{d}q}{\mathrm{d}t} \\ \frac{\mathrm{d}Q}{\mathrm{d}t} &= -I \\ I &= -\frac{\mathrm{d}Q}{\mathrm{d}t} \end{split}$$

Substitute the above definition of current into the resultant equation from Figure 2.

$$\frac{Q}{C} + \frac{\mathrm{d}Q}{\mathrm{d}t}R = 0$$

Solve the above first-order differential equation for Q, as follows. Note that Q_0 is the initial charge on the plates at time t = 0, while Q is the variable charge on the plates at time t.

$$\frac{Q}{RC} + \frac{\mathrm{d}Q}{\mathrm{d}t} = 0$$

$$\frac{\mathrm{d}Q}{\mathrm{d}t} = -\frac{Q}{RC}$$

$$\frac{\mathrm{d}Q}{Q} = -\frac{1}{RC} \, \mathrm{d}t$$

$$\int_{Q_0}^{Q} \frac{1}{Q} \, \mathrm{d}Q = \int_0^t -\frac{1}{RC} \, \mathrm{d}t$$

$$\left[\ln(Q)\right]_{Q_0}^{Q} = \left[-\frac{t}{RC}\right]_0^t$$

$$\ln(Q) - \ln(Q_0) = -\frac{t}{RC}$$

$$\ln\left(\frac{Q}{Q_0}\right) = -\frac{t}{RC}$$

$$\frac{Q}{Q_0} = \mathrm{e}^{-\frac{t}{RC}}$$

$$Q = Q_0 \mathrm{e}^{-\frac{t}{RC}}$$

Note that the above equation can be holds true for V and V_0 , and I and I_0 , as well. These can be derived as follows^[3].

$$\frac{Q}{C} = \frac{Q_0}{C} e^{-\frac{t}{RC}}$$

$$\frac{Q}{RC} = \frac{Q_0}{RC} e^{-\frac{t}{RC}}$$

$$I = I_0 e^{-\frac{t}{RC}}$$

 $^{^{3}}$ The substitutions are chosen and made based on the definition of capacitance and Ohm's law.