Complexe Scolaire "Jean Michel Le FAUCON "

BP: 211 Abomey-Calavi ; Tél: +229 21 06 22 04

<u>Année Scolaire</u> : 2020 - 2021 <u>Classe</u> : Tle D <u>Durée</u> : 4h

COMPOSITION DU PREMIER TRIMESTRE

EPREUVE: MATHÉMATIQUES

Contexte: Réalisation d'un rêve d'enfance.

Monsieur Itisagame est un ingénieur spécialisé en décoration (Designer). Comme rêve d'enfance, il souhaite avoir une maison dans les arbres à partir d'un modèle mathématique minutieusement conçu. Afin de réaliser son rêve d'enfance dans son domaine de plantation d'hévéa (arbre pouvant atteindre plus de 30m de hauteur, servant à fabriquer le caoutchouc), il munit l'espace d'un repère orthonormé direct $(0; \vec{\iota}, \vec{j}, \vec{k})$ et sépare le domaine en deux portions à l'aide de l'ensemble (Δ) des points M de l'espace tels que $\overrightarrow{MA} \land \overrightarrow{MB} = \overrightarrow{MC} \land \overrightarrow{MA}$ avec A(-1;1;2), B(1;1;-2) et C(1;2;3). Le toit et la façade de la maison auront pour supports respectifs les plans (P) et (Q) perpendiculaires suivant la droite (D) de systèmes d'équations cartésiennes $\begin{cases} x-1=0\\ z=y+3 \end{cases}$ où

une représentation paramétrique du plan (Q) est : $\begin{cases} x = \infty + 3\beta - 1 \\ y = 2 \infty - \beta \\ z = 3 \infty + 2\beta + 1 \end{cases} (\infty; \beta) \in \mathbb{R}^2$

Pour la décoration du salon, il prévoit fixer dans le plan du sol, un jeu de lumière aux points E, F, G et H d'affixes respectives z_1, z_2, z_3 et z_4 telles que

 $z_1 \times z_2 \times z_3 = 15$; $i \times z_3 = -\bar{z}_2$; $z_1 \times z_2 = -3(1+2i)$ (\bar{z}_2 est le nombre complexe conjugué de z_2 et i est tel que $i^2 = -1$) et $z_4 = 1 - \frac{\sqrt{3}}{2} + \frac{1}{2}i$ puis construire trois figures (Γ_1), (Γ_2) et (Γ_3) sur les murs à l'intérieur du salon.

En informant sa petite famille du projet, sa fille Anne, élève en classe de terminale scientifique a identifié certaines notions mathématiques étudiées en classe et désire connaître la position relative de l'ensemble (Δ) et la droite (D) ; la nature du triangle EFG ; le module et un argument de z_4 ainsi que (Γ_1), (Γ_2) et (Γ_3)

<u>Tâche</u>: Tu es invité(e) à répondre aux différentes préoccupations de Anne en résolvant les problèmes ci-après :

Problème 1

- 1) Justifie qu'une équation cartésienne du plan (Q) est x + y z + 2 = 0
- 2) Détermine une équation cartésienne du plan (P)
- 3) a) Justifie que le point I milieu du segment [BC] appartient à (Δ)

- b) Démontre que $M \in (\Delta) \Leftrightarrow \overrightarrow{MA} \wedge \overrightarrow{MI} = \overrightarrow{0}$
- c) Déduis-en la nature de (Δ) puis donne une représentation paramétrique de (Δ)
- 4) Démontre que les droites (D) et (Δ) sont non coplanaires

Problème 2

Itisagame a muni le plan du sol de son salon du repère orthonormé direct $(0; \overrightarrow{e_1}, \overrightarrow{e_2})$

- 5) a) Justifie que $\overrightarrow{OE} = -3\overrightarrow{e_2}$; $\overrightarrow{OF} = 2\overrightarrow{e_1} \overrightarrow{e_2}$ et $\overrightarrow{OG} = -\overrightarrow{e_1} + 2\overrightarrow{e_2}$
 - b) Détermine la nature du triangle EFG.
- 6) Soit G' le symétrique de G par rapport à F et E' le point du plan tel que le quadrilatère EGE'G' soit un parallélogramme.

Détermine les affixes des points E'et G'.

- 7) On pose $a = \frac{\sqrt{6}}{2} \frac{\sqrt{2}}{2}i$; $b = \frac{1}{2} + \frac{1}{2}i$ et $c = a \times b$
 - a) Détermine la partie réelle et la partie imaginaire de c
 - b) Écris c sous forme exponentielle
 - c) Déduis-en les valeurs exactes de $\cos \frac{\pi}{12}$ et $\sin \frac{\pi}{12}$
- 8) a) Vérifie que $z_4 = e^{-i\frac{\pi}{12}} \left(e^{i\frac{\pi}{12}} e^{-i\frac{\pi}{12}} \right)$
 - b) Déduis-en le module et un argument de z_4 .

Problème 3

Dans le plan du sol du salon muni du repère orthonormé direct $(0; \overrightarrow{e_1}, \overrightarrow{e_2})$, les trois figures (Γ_1) , (Γ_2) et (Γ_3) sont définies respectivement de la façon suivante :

Etant donné un nombre complexe z d'écriture algébrique z = x + iy, avec $(x, y) \in \mathbb{R}^2$, différents de -i, et en notant f(z) le nombre complexe $\frac{iz+2}{z+i}$

- (Γ_1) est l'ensemble des points M d'affixe z tels que f(z) soit un nombre imaginaire,
- (Γ_2) est l'ensemble des points M d'affixe z tels que f(z) soit un nombre réel,
- (Γ_3) est l'ensemble des points M d'affixe z tels que le point image de f(z) appartient au cercle de centre O et de rayon 1
- 9) a) Calcule (f(z) i)(z + i)
 - b) Démontre que lorsque le point M d'affixe z appartient au cercle de centre J(0;-1) et de rayon 1 alors le point N d'affixe f(z) appartient à un cercle dont tu préciseras le centre et le rayon
- 10) a) Détermine la partie réelle et la partie imaginaire de f(z) en fonction de x et de y
 - b) Détermine (Γ_1) , (Γ_2) et (Γ_3)