Weihnachtsaufgabe

Gegeben sei folgender Algorithmus. Er findet (für eine Zweierpotenz n) in einer n-elementigen Menge von gleichwertigen Elementen ein einzelnes mit höherem Wert.

Die Werte seinen in einem Array A[1...n] gegeben für ein $n=2^p$. Für die Eingabe sei garantiert, dass es ein k gibt mit A[i] < A[k] für alle $i \neq k$ und A[i] = A[j] für alle $i, j \neq k$.

Die Methode weight(A[i,j]) gibt dabei in $\mathcal{O}(1)$ die Summe aller Werte zwischen den Stellen i und j aus.

Algorithm 1: SockSearch

- 1. Geben Sie seine Laufzeit in \mathcal{O} -Notation an. Begründen Sie!
 - Bei jedem Schleifendurchlauf wird betrachteter Bereich genau halbiert (dadurch $\mathcal{O}(\log n)$ Schleifendurchläufe).
 - In der Schleife werden nur Operationen mit konstanter Laufzeit durchgeführt,
 - das gilt auch für den Aufruf der Methode weight.
 - Laufzeit ist also in $\mathcal{O}(\log n)$.
- 2. Beweisen Sie die Korrektheit des Algorithmus mit Hilfe der Verifikation nach Floyd.
 - INV: $l \le k \le r$ vor jedem Schleifendurchlauf
 - In die Schleife hinein: Keine Operationen $\Rightarrow k$ ist im Suchbereich (ganzes Array)
 - (IndAnfang) i = 1: Suchbereich ist ganzes Array, k also zwischen l und r
 - (IndSchritt) $i-1 \Rightarrow i$: In Schleifendurchlauf i-1 wird der Suchbereich auf die schwerere Hälfte begrenzt, damit gilt immer noch $l \leq k \leq r \Rightarrow$ INV gilt nach Schleifendurchlauf i-1 und damit auch vor i
 - Im letzten Schleifendurchlauf (INV gilt bis VOR letzten SL) besteht der Suchbereich nur noch aus 2 Elementen. l bzw. r wird auf das schwerere Element gesetzt \Rightarrow Ausgabe l=r=k
 - Da der Suchbereich immer (um eine nat $\tilde{A}_{\overline{A}}^{1}$ rliche Zahl) kleiner wird \Rightarrow terminiert.