# Počítačové videnie - BRISK, RANSAC

Ing. Viktor Kocur viktor.kocur@fmph.uniba.sk

DAI FMFI UK

7.4.2020

# Nájdenie bodov

### Postup

Lokálne príznaky získame tak, že najprv nájdeme v obrázku kľúčové body. Teda miesta ktoré sú vhodné na hľadanie pri otočení a podobne. Takéto miesta môžu byť hrany, rohy, alebo bloby. Následne každému bodu spočítame deskriptor. Teda vektor popisujúci bod a jeho okolie. Idéalne chceme aby bol tento deskriptor invariantný na rôzne transformácie obrazu, resp. zmenu pozície bodu v reálnej scéne.

#### **SIFT**

V prednáške ste preberali metódu SIFT, ale tá je bohužiaľ patentovaná a tak v Matlabe natívne nieje. Je možné stiahnuť kód z Matlab central, alebo odinadiaľ. Kvôli možným problémom s rôznymi OS však budeme používať iné metódy.

# Metódy dostupné v matlabe - detekcia kľúčových bodov

## Detekcia kľučových bodov

V Matlabe sú okrem iných dostupné detektory SURF, BRISK, FAST a Harissov detektor.

### Matlab implementácia

Jednotlivé príkazy pre tieto dektory sú podobné: detectSURFFeatures, detectBRISKFeatures, detectFASTFeatures a detectHarrisFeatures. Tieto funkcie vracajú custom objekty s ktorými budeme ďalej pracovať.

# Detekcia kľučových bodov v Matlabe

# Nájdenie a zobrazenie 20 najlepších kľučových bodov

```
p = detectXXXXFeatures(I);
imshow(I);
hold on;
plot(p.selectStrongest(20));
```

#### Úloha

Zobrazte si zaujímave body zo scene.pgm, box.pgm a book.pgm. Pre rôzne detektory.

# Extrakcia príznakov - deskriptorov

### Extrakcia príznakov

V ďalšom kole priradíme každému kľučovému bodu deskriptor. Ten nám pomôže nájsť tento bod v inom obrázku.

#### extractFeatures

[f, valid\_p] = extractFeatures(I, p) - pre šedotónový obrázok I a objekt kľúčových bodov z predchádzajúceho kroku vráti objekt f obsahujúci deskriptory pre každý vhodný bod, valid\_p bude obsahovať tie body z p, ktoré sa dali použiť. Príkaz automaticky vyberie metódu podľa typu bodov, ale môžeme ju zmeniť ak pridáme argument 'Method' (pozirte si help). Bodý p môžu byť aj jednoduchá matica  $N \times 2$ , kde na každom riadku sú súradnice kľučových bodov.

### Párovanie bodov

#### Úloha

Pozrite si v objekte f aké deskriptory boli vygenerované.

#### Párovanie bodov

Ak máme dva obrázky môžeme v nich nájsť kľučové body a potom ich spárovať na základe ich deskriptorov.

#### matchFeatures

idxs = matchFeatures(f1, f2) - vráti maticu idxs, ktorá na každom riadku obsahuje v prvom stĺpci index pre bod z f1 a v druhom stĺpci index pre bod z f2 pre jeden pár. f1 a f2 sú feature objekty z predchádzajúceho kroku. Párovanie si môžete zobraziť napr. pomocou priloženého súboru match.m.

# Hľadanie homografie

## Homografia - transformácia

Hľadáme transformáciu medzi rovinou na hľadanom vzore a obrázkom kde sa tento objekt nachádza.

## Ako nájsť homografiu?

Homografiu hľadáme tak, že minimalizujeme funkciu  $\sum_i res(H, \vec{x_i}, \vec{x_i'})$ . Pre homografie platí že H je matica  $3 \times 3$ .

# Homogénne súradnice

Pre použitie matice homografie využívame tzv. homogénne súradnice. Každý bod v obraze reprezentujeme troma číslami:  $x_h, y_h, z_h$ . Pre prechod na štandarné súradnice platí  $x_s = \frac{x_h}{z_h}$  a  $y_s = \frac{y_h}{z_h}$ . V prípade že  $z_h = 0$  ide o bod v nekonečne.

### RANSAC

#### Implementácia

Implementáciu RANSAC-u si môžete stiahnuť zo stránky. Ak nechcete mať všetky súbory spolu so SIFT-om v jednom adresáry, môžete si zložku ransac pridať do MATLABPATH.

### RANSAC

#### Funkcia ktorú minimalizujeme

$$\sum_{i} res(H, \vec{x}_{i}, \vec{x}'_{i}) = \sum_{i} \rho(H\vec{x}_{i}, \vec{x}'_{i}) + \rho(\vec{x}_{i}, H^{-1}\vec{x}'_{i}).$$

#### ransacfithomography

[H, inliers] = ransacfithomography(x1, x2, t) - Pre spárované body x1 a x2 (môžu byť aj v štandardných súradniciach) a prah t (0.001 - 0.01) vráti maticu homografie H a zoznam indexov pre x1 a x2, ktoré sú spárované správne.

# Úloha

# Úprava match

Upravte funkciu match, tak aby volala RANSAC a našla homografiu. Na pôvodnom obrázku zobrazte kde sa nachádza vzor. Zeleným vykreslite inliers a červenými nechajte ostaé ostatné. Otestujte pre obrázky scene.pgm s book.pgm a box.pgm.

