

Introduction

- Hospital Pressure: Rapid, accurate COVID-19 patient identification is critical
- Testing Issues: Traditional methods are slow, straining hospital resources
- Al Solution: Machine learning predicts COVID-19 using patient dataurces
- Efficiency Boost: Optimizes bed use, testing, and patient isolation
- Better Care: Enhances screening, reduces strain, improves patient outcomes

Business Goal and KPI

Business/Mining Goal:

- Reduce the total screening time to be hospitalized after taking a COVID-19 test (Time to receive your results) against RT-PCR tests.
- Develop a predictive model to identify patients in need of hospitalization based on admission characteristics and PCR results.

► KPI:

- Average hospitalization waiting time after a PCR-test
- Accuracy in Positive Case Detection: Achieve at least 95% recall for identifying
 COVID-positive individuals to ensure minimal missed diagnoses in high-risk area

EDA Analysis

Hospital 1 Analysis

- 54 columns of data with different data types
 - Integers
 - Floats
 - Strings (object)
 - Datetime
- Continuous, Nominal and Ordinal values
- Missing 1720 total values

Hospital 2 Analysis

- 54 columns of data with different data types
 - Integers
 - Floats
 - Strings (object)
 - Datetime
- Continuous, Nominal and Ordinal values
- Missing 1333 total values
- 1 column (age) with unexpected value

Hospital 1 vs Hospital 2

- 50 similar column names with different data types (floats vs ints)
- 4 different columns names in Hospital 1
 - basvurutarihi (Admission Date) # 2021-03-01
 - gender_k=female_e=male # K
 - nationality # Mexico
 - patient_id.1 # 11850006
- 4 different columns names in Hospital 2
 - admission_date # 2021-03-01 00:00:00
 - o admission_id # 45.0
 - country_of_residence # T.C.
 - sex # K

Data Preprocessing

Column Mapping

Hospital 1	Hospital 2
basvurutarihi	admission_date
patient_id.1	admission_id
gender_k=female_e=male	sex
nationality	country_of_residence

Drop Values:

Drop values with empty nationalities # Population Density plays a big role

Data Preprocessing: Hospital 1

* Compared Mean vs Reduced Mean

Data Preprocessing: Hospital 2

Hospital 2
Results: 12737
54 features

Hospital 2
Missing 1,333 over 4
features

Change Sex (E, K) to int

Converted symptoms + age values to int

Replacement of unexpected values with None (Oxy Sat)

Replacement of unexpected values with None (sex)

Drop Rows [PCR_Results]

Mean Completion* [Temp, Oxy Sat.]

5 features

Mode Completion

Temp: 37.34 °C

Oxy Sat: 83.12%

Missing values: fever_temperature

fever_temperature 1219
oxygen_saturation 4
history_of_fever 5
bleeding 36
other_symptoms 36

33

pcr_result
dtype: int64

* Compared Mean vs Reduced Mean

Reduced Mean vs Computed Mean

Continuous values such a Temperature and Oxygen Saturation need to be computed using mean. However extreme outliers can cause an invalid statistic. Should they be considered?

Reduced Mean vs Computed Mean

Hospital 1

-1%, 0% of saturations means your dead

Hospital 2

Unique oxygen saturation values: 33

2 rows × 33 columns

Data Preprocessing: Merge

Hospital 1 Results: 13536 54 features Hospital 2 Results: 12701 54 features

Merge Results: 26237

Alter nationalities to ISO 3166 numeric codes

Datetimes to ordinal numbers, excluding time

111 Different countries
Frequencies between 1 and 24911

2 Columns: [date_of_first_symptoms, admission_date]

Data Processing: Analysis

Total number of rows in dataset: 26237

- Number of Negative PCR-Results: 4,027
- Number of Positive PCR-Results: 22,210
- Balanced using oversampling

```
# Oversample the minority class
oversampled_minority = minority_class.sample(len(majority_class), replace=True)

# Combine the majority class with the oversampled minority class
balanced_df = pd.concat([majority_class, oversampled_minority])

# After oversampling, shuffle the dataset to mix the samples
balanced_df = balanced_df.sample(frac=1).reset_index(drop=True)
```

Modeling

- Removed obvious columns that are related to COVID-19
 - pacient_id
 - admission date
 - admission id
 - pcr result # That the y-value
- Divided 80% train and 20% test
- Pearson Correlation analysis should that we have a range of values, meaning that many values don't have linear relationships. So linear models are discarded.
 - ► **Min**: 3.860067504733165e-05
 - Max: 0.1625352289290226

Modeling

Trained with RandomForrestClassifier with 42 random_states and 100 n_estimators, to maximize the number of best alternatives

80% - Train 20% - Test

Findings

- Feature importance (nominal, ordinal and continuous) play an important role.
- It was good to drop N/A nationalities since it plays an important role
- As expected age and Oxy. Satu are of great importance
- Values such as date_of_symptoms can be heavily related since there can be more data in certain periods.

Findings

Weighted Average F1-Score: 89%

 Accounting for class imbalance (splitting data), the model has a robust real-world utility.

Model Accuracy: 89%

- The model is highly effective at identifying PCR-positive cases, with minimal false negatives.
- Performance for PCR-negative cases is moderate, with room for improvement in reducing false positives and negatives.

Classification Report:					
	precision	recall	f1-score	support	
0	0.69	0.51	0.59	787	
1	0.92	0.96	0.94	4461	
accuracy			0.89	5248	
macro avg	0.81	0.74	0.76	5248	
weighted avg	0.88	0.89	0.89	5248	
Accuracy: 0.8	9				

Findings - ROC Curve

- 92% ROC Curve suggest indicates a very strong performance for a classification model in distinguishing classes on unseen data.
- This is backed by the 89%
 F1 Weighted score, even when not taking imbalance into consideration

Findings

Using a confusion matrix we can calculate the true impact to the customer.

Using the 20% test data, we can simulate a scenario where we can predict how many days will it take for a single patient to be hospitalized

Findings

Assuming that a standard 1st Generation RT-PCR test has a accuracy of 85% with a mean waiting time between 1-2 days we can calculate the impact if the model is implemented*

- The average hospitalization rate
 using a prediction model is ~11 hours
 accounting for all possible scenarios
- The average hospitalization rate using the traditional PCR-Test approach is ~1.5 days accounting for all possible scenarios

^{*} Oliveira, M.C., Scharan, K.O., Thomés, B.I. *et al.* Diagnostic accuracy of a set of clinical and radiological criteria for screening of COVID-19 using RT-PCR as the reference standard. *BMC Pulm Med* 23, 81 (2023). https://doi.org/10.1186/s12890-023-02369-9

Future training notes

- For future implementation we need to focus on improving PCR_Negative detection to enhance recall and balance across both classes
- When breaking the datasets, we need to use techniques such as K-Types to address
 proper shuffling to avoid improper balance.

Conclusion

- Implementing the model reduces the average hospitalization time from ~1.5 days to ~11 hours or a 87.31% decrease.
- Factors such as age, oxygen saturation and fever play a great importance making crucial to get those values right
- The business objective was achieved, since we got a 87.31% reduction which is great overall, while increasing the accuracy against traditional methods.
- KPI's such as recall in positive test where successfully achieved with a 1% difference (95% to 96%)
- Even though we got a 69% precision when predicting false results, the model is still implementable, which is backed by the ROC-Curve with a 92%. This is a good indicator to test the model in real life

Summary

- We started by exploring the data, understanding the values
- Transforming it, cleaning and standardizing the values
- Data was imbalance, so oversampling was applied to level the bias
- Given that they where low correlation values, we decided to implement alternative non-linear models such as Random Forest to train the data
- The model yield a 89% accuracy against a 85.5% accuracy in RT-PCR testing.
- Further breakdown can be done by partitioning data more appropriately using K-Fold techniques
- We computed the ROC-Curve against the test data with a 92%.