Intelligence artificielle

Inférence en logique propositionnelle

Elise Bonzon elise.bonzon@u-paris.fr

LIPADE - Université de Paris http://www.math-info.univ-paris5.fr/~bonzon/

Inférence en logique propositionnelle

- 1. Schémas de raisonnement en logique propositionnelle
- 2. Agents basés sur la logique propositionnelle
- 3. Conclusion

logique propositionnelle

Schémas de raisonnement en

Méthodes de preuve

Les méthodes de preuves sont de deux principaux types :

- Application des règles d'inférence
 - Génération légitime (valide) de nouveaux énoncés à partir de ceux que l'on a déjà
 - Preuve : séquence d'applications des règles d'inférence
 - Nécessite la transformation des énoncés en forme normale
- Vérification des modèles (Model checking)
 - Enumération de la table de vérité (toujours exponentiel en n)
 - Amélioré par backtracking (Davis-Putnam-Logemann-Loveland (DPLL))
 - Recherche heuristique dans l'espace d'état (valide mais incomplet)

Schémas de raisonnement en

logique propositionnelle

Calcul de conséquences logiques

- La déduction est une forme de raisonnement
 - Elle calcule des conséquences logiques d'une BC
 - En utilisant une procédure de démonstration : une preuve

- La déduction est une forme de raisonnement
 - Elle calcule des conséquences logiques d'une BC
 - En utilisant une procédure de démonstration : une preuve
- Un théorème est une proposition démontrable en appliquant des règles d'inférence

- La déduction est une forme de raisonnement
 - Elle calcule des conséquences logiques d'une BC
 - En utilisant une procédure de démonstration : une preuve
- Un théorème est une proposition démontrable en appliquant des règles d'inférence
- $BC \vdash_i \alpha$ signifie que α peut être démontré à partir de BC grâce à la procédure i

- La déduction est une forme de raisonnement
 - Elle calcule des conséquences logiques d'une BC
 - En utilisant une procédure de démonstration : une preuve
- Un théorème est une proposition démontrable en appliquant des règles d'inférence
- $BC \vdash_i \alpha$ signifie que α peut être démontré à partir de BC grâce à la procédure i

Rappel

- Une procédure i est valide (sound) si tout ce qu'elle permet de démontrer à partir de BC est une conséquence logique de BC : si BC ⊢_i α, alors BC ⊨ α
- Une procédure i est complète si tout ce qui est conséquence logique de BC peut être démontré par i :
 si BC ⊨ α alors BC ⊢_i α

Inférence en logique propositionnelle

Pour pouvoir démontrer de nouvelles conséquences, on a besoin :

- Des règles de ré-écritures (équivalences logiques)
- Et de règles d'inférence
 - Un ensemble de conditions
 - Une partie conclusion (vraie si les conditions sont vérifiées)

$$\frac{\alpha \Rightarrow \beta, \alpha}{\beta}$$

$$\frac{\alpha\Rightarrow\beta,\alpha}{\beta}$$
 Élimination de la conjonction
$$\frac{\alpha_1\wedge\alpha_2\wedge\ldots\wedge\alpha_n}{\alpha_i}$$

Modus Ponens	$\frac{\alpha \Rightarrow \beta, \alpha}{\beta}$
Élimination de la conjonction	$\frac{\alpha_1 \wedge \alpha_2 \wedge \ldots \wedge \alpha_n}{\alpha_i}$
Introduction de la conjonction	$\frac{\alpha_1, \alpha_2, \dots, \alpha_n}{\alpha_1 \wedge \alpha_2 \wedge \dots \wedge \alpha_n}$

Modus Ponens	$\frac{\alpha \Rightarrow \beta, \alpha}{\beta}$
Élimination de la conjonction	$\frac{\alpha_1 \wedge \alpha_2 \wedge \ldots \wedge \alpha_n}{\alpha_i}$
Introduction de la conjonction	$\frac{\alpha_1, \alpha_2, \dots, \alpha_n}{\alpha_1 \wedge \alpha_2 \wedge \dots \wedge \alpha_n}$
Introduction de la disjonction	$\frac{\alpha_i}{\alpha_1 \vee \alpha_2 \vee \ldots \vee \alpha_n}$

Modus Ponens	$\frac{\alpha \Rightarrow \beta, \alpha}{\beta}$
Élimination de la conjonction	$\frac{\alpha_1 \wedge \alpha_2 \wedge \ldots \wedge \alpha_n}{\alpha_i}$
Introduction de la conjonction	$\frac{\alpha_1, \alpha_2, \dots, \alpha_n}{\alpha_1 \wedge \alpha_2 \wedge \dots \wedge \alpha_n}$
Introduction de la disjonction	$\frac{\alpha_i}{\alpha_1 \vee \alpha_2 \vee \ldots \vee \alpha_n}$
Élimination de la double négation	$\frac{\neg \neg \alpha}{\alpha}$

$$\frac{\alpha \Leftrightarrow \beta}{(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)}$$

Élimination de l'équivalence

Introduction de l'équivalence

$$\frac{\alpha \Leftrightarrow \beta}{(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)}$$
$$\frac{(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)}{\alpha \Leftrightarrow \beta}$$

Élimination de l'équivalence

Introduction de l'équivalence

Résolution unitaire

$$\frac{\alpha \Leftrightarrow \beta}{(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)}$$
$$\frac{(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)}{\alpha \Leftrightarrow \beta}$$
$$\frac{\alpha \lor \beta, \neg \beta}{\alpha}$$

Élimination de l'équivalence	$\alpha \Leftrightarrow \beta$
	$(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$
Introduction de l'équivalence	$(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$
meroduction de l'équivalence	$\alpha \Leftrightarrow \beta$
Résolution unitaire	$\alpha \vee \beta, \neg \beta$
	α
Résolution	$\underline{\alpha \vee \beta, \neg \beta \vee \gamma}$
	$\alpha \vee \gamma$

Méthodes de preuve : déduction

Déductions

Une formule A se déduit d'un ensemble de formules $\{B_1, B_2, \ldots, B_n\}$, noté $B_1, B_2, \ldots, B_n \vdash A$ s'il existe une suite finie $(A_1, A_2, \ldots, A_i, \ldots, A)$, où chaque A_i est

- Soit l'un des Bi
- Soit obtenu par l'application d'une règle d'inférence sur deux éléments A_j , A_k de la suite déjà obtenue (j, k < i).

- $R_1 : \neg P_{1,1}; R_2 : B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1}); R_3 : B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1}); R_4 : \neg B_{1,1}; R_5 : B_{2,1}$
- On veut prouver $\neg P_{1,2}$ (pas de puits en [1, 2])

- $R_1: \neg P_{1,1}; R_2: B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1}); R_3: B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1}); R_4: \neg B_{1,1}; R_5: B_{2,1}$
- On veut prouver $\neg P_{1,2}$ (pas de puits en [1,2])
- Élimination de l'équivalence à R_2 : $R_6: (B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$

- $R_1 : \neg P_{1,1}; R_2 : B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1}); R_3 : B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1}); R_4 : \neg B_{1,1}; R_5 : B_{2,1}$
- On veut prouver $\neg P_{1,2}$ (pas de puits en [1,2])
- Élimination de l'équivalence à R_2 : $R_6: (B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$
- Élimination de la conjonction à R_6 : $R_7: (P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1}$

- $R_1 : \neg P_{1,1}; R_2 : B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1}); R_3 : B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1}); R_4 : \neg B_{1,1}; R_5 : B_{2,1}$
- On veut prouver $\neg P_{1,2}$ (pas de puits en [1,2])
- Élimination de l'équivalence à R_2 : $R_6: (B_{1,1} \Rightarrow (P_{1,2} \vee P_{2,1})) \wedge ((P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1})$
- Élimination de la conjonction à R_6 : $R_7: (P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1}$
- Équivalence logique des contraposées :
 R₈ : ¬B_{1,1} ⇒ ¬(P_{1,2} ∨ P_{2,1})

- $R_1 : \neg P_{1,1}; R_2 : B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1}); R_3 : B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1}); R_4 : \neg B_{1,1}; R_5 : B_{2,1}$
- On veut prouver $\neg P_{1,2}$ (pas de puits en [1,2])
- Élimination de l'équivalence à R_2 : $R_6: (B_{1,1} \Rightarrow (P_{1,2} \vee P_{2,1})) \wedge ((P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1})$
- Élimination de la conjonction à R_6 : $R_7: (P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1}$
- Équivalence logique des contraposées : $R_8 : \neg B_{1,1} \Rightarrow \neg (P_{1,2} \lor P_{2,1})$
- **Modus Ponens** avec R_8 et R_4 : $R_9: \neg (P_{1,2} \lor P_{2,1})$

- $R_1 : \neg P_{1,1}; R_2 : B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1}); R_3 : B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1}); R_4 : \neg B_{1,1}; R_5 : B_{2,1}$
- On veut prouver $\neg P_{1,2}$ (pas de puits en [1, 2])
- Élimination de l'équivalence à R_2 : $R_6: (B_{1,1} \Rightarrow (P_{1,2} \vee P_{2,1})) \wedge ((P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1})$
- Élimination de la conjonction à R_6 : $R_7: (P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1}$
- Équivalence logique des contraposées : $R_8 : \neg B_{1,1} \Rightarrow \neg (P_{1,2} \lor P_{2,1})$
- Modus Ponens avec R_8 et R_4 : $R_9: \neg (P_{1,2} \lor P_{2,1})$
- Règle de De Morgan : R_{10} : $\neg P_{1,2} \land \neg P_{2,1}$

Schémas de raisonnement en

logique propositionnelle

Preuves par résolution

Preuve par résolution : démarche

- 1. Normaliser la représentation
 - \rightarrow les formes normales : clauses
- 2. Introduction d'une règle d'inférence unique
 - → la résolution

Standardisation de la représentation

• Il existe plusieurs manières d'exprimer les mêmes propositions

$$p \Rightarrow q \equiv \neg p \lor q \equiv \neg (p \land \neg q)$$

⇒ Besoin d'avoir une forme standardisée ou canonique

Standardisation de la représentation

• Il existe plusieurs manières d'exprimer les mêmes propositions

$$p \Rightarrow q \equiv \neg p \lor q \equiv \neg (p \land \neg q)$$

⇒ Besoin d'avoir une forme standardisée ou canonique

Forme normale conjonctive (CNF)

Forme normale conjonctive (CNF) : conjonction de disjonctions de littéraux.

- Une disjonction de littéraux est une clause
- Exemple : $(a \lor \neg b) \land (b \lor \neg c \lor \neg d)$

Standardisation de la représentation

• Il existe plusieurs manières d'exprimer les mêmes propositions

$$p \Rightarrow q \equiv \neg p \lor q \equiv \neg (p \land \neg q)$$

⇒ Besoin d'avoir une forme standardisée ou canonique

Forme normale conjonctive (CNF)

Forme normale conjonctive (CNF) : conjonction de disjonctions de littéraux.

- Une disjonction de littéraux est une clause
- Exemple : $(a \lor \neg b) \land (b \lor \neg c \lor \neg d)$

La transformation d'une wff en CNF est toujours possible

Traduction d'une wff en CNF

Traduction d'une wff en CNF

Jusqu'à 5 étapes nécessaires :

- 1. Éliminer les équivalences
- 2. Éliminer les implications
- 3. Faire migrer les négations "à l'intérieur"
- 4. Éliminer les doubles négations
- 5. Appliquer la loi de distributivité sur \wedge et \vee

Traduction d'une wff en CNF: un exemple

$$(\neg p \land (\neg q \Rightarrow r)) \Rightarrow s$$

Traduction d'une wff en CNF: un exemple

$$(\neg p \land (\neg q \Rightarrow r)) \Rightarrow s$$

$$\equiv \neg (\neg p \land (\neg q \Rightarrow r)) \lor s$$

2. Éliminer les implications

Traduction d'une wff en CNF : un exemple

$$(\neg p \land (\neg q \Rightarrow r)) \Rightarrow s$$

$$\equiv \neg(\neg p \land (\neg q \Rightarrow r)) \lor s$$

$$\equiv \neg(\neg p \land (q \lor r)) \lor s$$

- 2. Éliminer les implications
- 2. Éliminer les implications

Traduction d'une wff en CNF: un exemple

$$(\neg p \land (\neg q \Rightarrow r)) \Rightarrow s$$

$$\equiv \neg(\neg p \land (\neg q \Rightarrow r)) \lor s$$

$$\equiv \neg(\neg p \land (q \lor r)) \lor s$$

$$\equiv (\neg \neg p \lor \neg(q \lor r)) \lor s$$

- 2. Éliminer les implications
- 2. Éliminer les implications
 - 3. Migrer les négations

Traduction d'une wff en CNF: un exemple

$$(\neg p \land (\neg q \Rightarrow r)) \Rightarrow s$$

$$\equiv \neg (\neg p \land (\neg q \Rightarrow r)) \lor s$$

$$\equiv \neg (\neg p \land (q \lor r)) \lor s$$

$$\equiv (\neg \neg p \lor \neg (q \lor r)) \lor s$$

$$\equiv (\neg \neg p \lor (\neg q \land \neg r)) \lor s$$

- 2. Éliminer les implications
- 2. Éliminer les implications
 - 3. Migrer les négations
 - 3. Migrer les négations

Traduction d'une wff en CNF: un exemple

$$(\neg p \land (\neg q \Rightarrow r)) \Rightarrow s$$

$$\equiv \neg (\neg p \land (\neg q \Rightarrow r)) \lor s$$

$$\equiv \neg (\neg p \land (q \lor r)) \lor s$$

$$\equiv (\neg \neg p \lor \neg (q \lor r)) \lor s$$

$$\equiv (\neg \neg p \lor (\neg q \land \neg r)) \lor s$$

$$\equiv (p \lor (\neg q \land \neg r)) \lor s$$

- 2. Éliminer les implications
- 2. Éliminer les implications
 - 3. Migrer les négations
 - 3. Migrer les négations
- 4. Éliminer les doubles négations

Traduction d'une wff en CNF : un exemple

$$(\neg p \land (\neg q \Rightarrow r)) \Rightarrow s$$

$$\equiv \neg (\neg p \land (\neg q \Rightarrow r)) \lor s$$

$$\equiv \neg (\neg p \land (q \lor r)) \lor s$$

$$\equiv (\neg \neg p \lor \neg (q \lor r)) \lor s$$

$$\equiv (\neg \neg p \lor (\neg q \land \neg r)) \lor s$$

$$\equiv (p \lor (\neg q \land \neg r)) \lor s$$

$$\equiv ((p \lor \neg q) \land (p \lor \neg r)) \lor s$$

- 2. Éliminer les implications
- 2. Éliminer les implications
 - 3. Migrer les négations
 - 3. Migrer les négations
- 4. Éliminer les doubles négations
 - 5. Distribuer les \land sur les \lor

Traduction d'une wff en CNF : un exemple

$$(\neg p \land (\neg q \Rightarrow r)) \Rightarrow s$$

$$\equiv \neg (\neg p \land (\neg q \Rightarrow r)) \lor s$$

$$\equiv \neg (\neg p \land (q \lor r)) \lor s$$

$$\equiv (\neg \neg p \lor \neg (q \lor r)) \lor s$$

$$\equiv (\neg \neg p \lor (\neg q \land \neg r)) \lor s$$

$$\equiv (p \lor (\neg q \land \neg r)) \lor s$$

$$\equiv ((p \lor \neg q) \land (p \lor \neg r)) \lor s$$

$$\equiv (p \lor \neg q \lor s) \land (p \lor \neg r \lor s)$$

- 2. Éliminer les implications
- 2. Éliminer les implications
 - 3. Migrer les négations
 - 3. Migrer les négations
- 4. Éliminer les doubles négations
 - 5. Distribuer les \land sur les \lor
 - 5. Distribuer les ∧ sur les ∨

Inférence par résolution

- Idée :
 - Soient les clauses $(p \lor q)$ et $(\neg q \lor r)$
 - Si q est vrai, alors r est vrai
 - ullet Si q est faux, alors p est vrai
 - On peut donc conclure $(p \lor r)$

Inférence par résolution

- Idée :
 - Soient les clauses $(p \lor q)$ et $(\neg q \lor r)$
 - Si q est vrai, alors r est vrai
 - Si q est faux, alors p est vrai
 - On peut donc conclure $(p \lor r)$

$$\frac{\alpha \vee \beta, \neg \beta}{\alpha}$$

$$\frac{\alpha_1 \vee \alpha_2 \vee \ldots \vee \beta \vee \ldots \vee \alpha_n, \gamma_1 \vee \gamma_2 \vee \ldots \vee \neg \beta \vee \ldots \vee \gamma_p}{\alpha_1 \vee \ldots \vee \alpha_n \vee \gamma_1 \vee \ldots \vee \gamma_p}$$

Inférence par résolution

- Idée :
 - Soient les clauses $(p \lor q)$ et $(\neg q \lor r)$
 - Si q est vrai, alors r est vrai
 - Si q est faux, alors p est vrai
 - On peut donc conclure $(p \lor r)$

$$\frac{\alpha \vee \beta, \neg \beta}{\alpha}$$

$$\frac{\alpha_1 \vee \alpha_2 \vee \ldots \vee \beta \vee \ldots \vee \alpha_n, \gamma_1 \vee \gamma_2 \vee \ldots \vee \neg \beta \vee \ldots \vee \gamma_p}{\alpha_1 \vee \ldots \vee \alpha_n \vee \gamma_1 \vee \ldots \vee \gamma_p}$$

• Le modus ponens est un cas particulier de la résolution

Algorithme de résolution

- Application du théorème de la déduction : pour montrer $BC \models \alpha$, on montre que $BC \land \neg \alpha$ est insatisfiable
- Méthodologie :
 - Ajouter la négation de la conclusion désirée à la base de connaissances
 - Obtention de la clause vide par résolution
- La résolution par réfutation est valide et complète pour la logique propositionnelle

Algorithme de résolution

Algorithme de résolution

```
fonction PL-Resolution(KB, \alpha) retourne vrai ou faux
clauses \leftarrow \text{ ensemble de clauses dans la représentation CNF de } KB \land \neg \alpha
nouveau \leftarrow \{\}
loop do
pour chaque C_i, C_j dans clauses faire
resolvants \leftarrow \text{PL-Résout}(C_i, C_j)
\text{si } resolvants \text{ contient la clause } vide \text{ alors retourner } vrai
nouveau \leftarrow nouveau \cup resolvants
\text{si } nouveau \subseteq clauses \text{ alors retourner } faux
clauses \leftarrow clause \cup nouveau
```

Schémas de raisonnement en

logique propositionnelle

Systèmes à base de règles

Clauses de Horn

- Clauses de Horn : disjonction de littéraux dont un au maximum est positif
 - $(\neg L_{1,1} \lor \neg Brise \lor B_{1,1})$ est une clause de Horn
 - $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1})$ n'est pas une clause de Horn
- Toute clause de Horn peut s'écrire sous la forme d'une implication avec
 - Prémisse = conjonction de littéraux positifs
 - Conclusion = littéral positif unique
 - $(\neg L_{1,1} \lor \neg Brise \lor B_{1,1}) = ((L_{1,1} \land Brise) \Rightarrow B_{1,1})$
- Clauses définies : clauses de Horn ayant exactement un littéral positif
- Littéral positif = tête; littéraux négatifs = corps de la clause
- Fait = clause sans littéraux négatifs

Formes de Horn

- Forme de Horn : BC = conjonction de clauses de Horn
- Modus Ponens pour les clauses de Horn :

$$\frac{\alpha_1,\ldots,\alpha_n \quad (\alpha_1\wedge\ldots\wedge\alpha_n)\Rightarrow\beta}{\beta}$$

- Ce Modus Ponens peut être utilisé pour le chaînage avant ou chaînage arrière
- Ces algorithmes sont très naturels et sont réalisés en temps linéaire

Chaînage avant

- Idée : appliquer toutes les règles dont les prémisses sont satisfaits dans la base de connaissances
- Ajouter les conclusions de ces règles dans la base de connaissances, jusqu'à ce que la requête soit satisfaite
- Le chaînage avant est valide et complet pour les bases de connaissances de Horn

Chaînage avant

Chaînage avant

```
fonction PL-FC-Entails(KB, q) retourne vrai ou faux
    variables locales :
         compteur table indexée par clause, initialement le nombre de prémisses
         infer table, indexée par symbole, chaque entrée initialement à faux
         agenda liste de symboles, initialement symboles vrais dans KB
    tant que agenda n'est pas vide faire
         p \leftarrow Pop(agenda)
         si p = q alors retourner vrai
         si non infer[p] alors faire
             infer[p] \leftarrow vrai
             pour chaque clause de Horn c dans laquelle la prémisse p apparaît faire
                 compteur[c] \leftarrow compteur[c] - 1
                 si compteur[c] = 0 alors faire Push(Head[c], agenda)
    retourner faux
```

Chaînage avant : exemple

$$P \Rightarrow Q$$
 $L \land M \Rightarrow P$
 $B \land L \Rightarrow M$
 $A \land P \Rightarrow L$
 $A \land B \Rightarrow L$
 $A \land B \Rightarrow B$

Preuve de complétude

- La procédure de chaînage avant permet d'obtenir tout énoncé atomique pouvant être déduit de KB
 - 1. L'algorithme atteint un **point fixe** au terme duquel aucune nouvelle inférence n'est possible
 - 2. L'état final peut être vu comme un **modèle** *m* dans lequel tout symbole inféré est mis à *vrai*, tous les autres à *faux*
 - 3. Toutes les clauses définies dans la KB d'origine sont vraies dans m
 - 4. Donc *m* est un modèle de *KB*
 - 5. Si $KB \models q$ est vrai, q est vrai dans tous les modèles de KB, donc dans m

Chaînage arrière

- Idée : Partir de la requête et rebrousser chemin
 - Vérifier si q n'est pas vérifiée dans la BC
 - Chercher dans la BC les implications ayant q pour conclusion, et essayer de prouver leurs prémisses
- Eviter les boucles : vérifier si le nouveau sous-but n'est pas déjà dans la liste des buts à établir
- Eviter de répéter le même travail : vérifier si le nouveau sous-but a déjà été prouvé vrai ou faux

Chaînage arrière

$$P \Rightarrow Q$$
 $L \land M \Rightarrow P$
 $B \land L \Rightarrow M$
 $A \land P \Rightarrow L$
 $A \land B \Rightarrow L$
 $A \land B \Rightarrow B$

Chaînage avant vs chaînage arrière

- Chaînage avant : raisonnement piloté par les données
 - Conclusions à partir de percepts entrants
 - Pas toujours de requête spécifique en tête
 - Beaucoup de conséquences déduites, toutes ne sont pas utiles ou nécessaires
- Chaînage arrière : raisonnement piloté par le but
 - Répondre à des questions spécifiques
 - Se limite aux seuls faits pertinents
 - La complexité du chaînage arrière peut être bien inférieure à une fonction linéaire à la taille de la base de connaissances

Schémas de raisonnement en logique propositionnelle

Algorithmes efficaces d'inférence propositionnelle

Algorithmes efficaces d'inférence propositionnelle

Deux familles d'algorithmes efficaces pour l'inférence propositionnelle :

- Exploration par backtracking
 - Algorithme DPLL (Davis, Putnam, Logemann, Loveland)
- Algorithmes de recherche locale incomplète
 - Algorithme WalkSAT

• Cet algorithme détermine si un énoncé logique en CNF est satisfiable

- Cet algorithme détermine si un énoncé logique en CNF est satisfiable
- Améliorations par rapport à l'énumération de la table de vérité

- Cet algorithme détermine si un énoncé logique en CNF est satisfiable
- Améliorations par rapport à l'énumération de la table de vérité
 - Elagage

- Cet algorithme détermine si un énoncé logique en CNF est satisfiable
- Améliorations par rapport à l'énumération de la table de vérité
 - Elagage
 - Une clause est vraie si l'un des littéraux est vrai

- Cet algorithme détermine si un énoncé logique en CNF est satisfiable
- Améliorations par rapport à l'énumération de la table de vérité
 - Elagage
 - Une clause est vraie si l'un des littéraux est vrai
 - Un énoncé est faux si l'une des clauses est fausse

- Cet algorithme détermine si un énoncé logique en CNF est satisfiable
- Améliorations par rapport à l'énumération de la table de vérité
 - Elagage
 - Une clause est vraie si l'un des littéraux est vrai
 - Un énoncé est faux si l'une des clauses est fausse
 - Heuristique des symboles purs

- Cet algorithme détermine si un énoncé logique en CNF est satisfiable
- Améliorations par rapport à l'énumération de la table de vérité
 - Elagage
 - Une clause est vraie si l'un des littéraux est vrai
 - Un énoncé est faux si l'une des clauses est fausse
 - Heuristique des symboles purs
 - Un symbole pur est un symbole qui apparaît toujours avec le même "signe" dans toutes les clauses

- Cet algorithme détermine si un énoncé logique en CNF est satisfiable
- Améliorations par rapport à l'énumération de la table de vérité
 - Elagage
 - Une clause est vraie si l'un des littéraux est vrai
 - Un énoncé est faux si l'une des clauses est fausse
 - Heuristique des symboles purs
 - Un symbole pur est un symbole qui apparaît toujours avec le même "signe" dans toutes les clauses
 - $(A \lor \neg B) \land (\neg B \lor \neg C) \land (C \lor A)$. A et B sont purs, C est impur

- Cet algorithme détermine si un énoncé logique en CNF est satisfiable
- Améliorations par rapport à l'énumération de la table de vérité
 - Elagage
 - Une clause est vraie si l'un des littéraux est vrai
 - Un énoncé est faux si l'une des clauses est fausse
 - Heuristique des symboles purs
 - Un symbole pur est un symbole qui apparaît toujours avec le même "signe" dans toutes les clauses
 - $(A \lor \neg B) \land (\neg B \lor \neg C) \land (C \lor A)$. A et B sont purs, C est impur
 - Instancier les littéraux des symboles purs à vrai

- Cet algorithme détermine si un énoncé logique en CNF est satisfiable
- Améliorations par rapport à l'énumération de la table de vérité
 - Elagage
 - Une clause est vraie si l'un des littéraux est vrai
 - Un énoncé est faux si l'une des clauses est fausse
 - · Heuristique des symboles purs
 - Un symbole pur est un symbole qui apparaît toujours avec le même "signe" dans toutes les clauses
 - $(A \lor \neg B) \land (\neg B \lor \neg C) \land (C \lor A)$. A et B sont purs, C est impur
 - Instancier les littéraux des symboles purs à vrai
 - Heuristique de la clause unitaire

- Cet algorithme détermine si un énoncé logique en CNF est satisfiable
- Améliorations par rapport à l'énumération de la table de vérité
 - Elagage
 - Une clause est vraie si l'un des littéraux est vrai
 - Un énoncé est faux si l'une des clauses est fausse
 - Heuristique des symboles purs
 - Un symbole pur est un symbole qui apparaît toujours avec le même "signe" dans toutes les clauses
 - $(A \lor \neg B) \land (\neg B \lor \neg C) \land (C \lor A)$. A et B sont purs, C est impur
 - Instancier les littéraux des symboles purs à vrai
 - Heuristique de la clause unitaire
 - Clause unitaire : clause qui ne contient qu'un littéral

- Cet algorithme détermine si un énoncé logique en CNF est satisfiable
- Améliorations par rapport à l'énumération de la table de vérité
 - Elagage
 - Une clause est vraie si l'un des littéraux est vrai
 - Un énoncé est faux si l'une des clauses est fausse
 - Heuristique des symboles purs
 - Un symbole pur est un symbole qui apparaît toujours avec le même "signe" dans toutes les clauses
 - $(A \lor \neg B) \land (\neg B \lor \neg C) \land (C \lor A)$. A et B sont purs, C est impur
 - Instancier les littéraux des symboles purs à vrai
 - Heuristique de la clause unitaire
 - Clause unitaire : clause qui ne contient qu'un littéral
 - Ce littéral doit être vrai

Algorithme WalkSAT

- Algorithme de recherche locale incomplète
- Chaque itération : sélection d'une clause non satisfaite et un symbole à "basculer"
- Choix du symbole à basculer :
 - Fonction d'évaluation : heuristique Min-Conflicts qui minimise le nombre de clauses non satisfaites
 - Etape de parcours aléatoire qui sélectionne le symbole au hasard

Algorithme WalkSAT

Algorithme WalkSAT

fonction WalkSAT(clauses, p, max_flips) retourne un modèle satisfiable ou erreur entrées : clauses. un ensemble de clauses

p probabilité de choisir le parcours aléatoire

 max_flips le nombre de "bascules" autorisées avant de renoncer $modele \leftarrow$ affectation aléatoire de vrai/faux des symboles dans clauses pour i=1 à max_flips faire

si modele satisfait clauses alors retourner modele

 $\textit{clause} \leftarrow \text{une clause s\'electionn\'ee au hasard parmi les } \textit{clauses} \text{ fausses de } \textit{modele}$

avec la probabilité p basculer dans modele la valeur d'un symbole sélectionné au hasard dans clause

 ${f sinon}$ basculer le symbole dans ${\it clause}$ qui maximise le nombre de clauses satisfaites

retourner erreur

Problèmes de satisfiabilité difficiles

- Soit l'énoncé 3-CNF généré aléatoirement suivant :
 (¬D∨¬B∨C)∧(B∨¬A∨¬C)∧(¬C∨¬B∨E)∧(E∨¬D∨B)∧(B∨E∨¬C)
- 16 des 32 affectations possibles sont des modèles de cet énoncé
 - → en moyenne 2 tentatives aléatoires pour trouver un modèle
- Problème difficile : augmenter le nombre de clauses en laissant fixe le nombre de symboles
 - → Problème plus contraint
- *m* nombre de clauses, *n* nombre de symboles
- Problèmes difficiles : ratio aux alentours de $\frac{m}{n} = 4.3$: **point critique**

Problèmes de satisfiabilité difficiles

Problèmes de satisfiabilité difficiles

 Temps d'exécution médian sur 100 énoncés 3-CNF aléatoires satisfiables avec n=50

Agents basés sur la logique

propositionnelle

Agents basés sur la logique propositionnelle dans le monde du Wumpus

- $\neg P_{1,1}$
- $\bullet \neg W_{1,1}$
- $B_{x,y} \Leftrightarrow (P_{x,y+1} \vee P_{x,y-1} \vee P_{x+1,y} \vee P_{x-1,y})$
- $S_{x,y} \Leftrightarrow (W_{x,y+1} \vee W_{x,y-1} \vee W_{x+1,y} \vee W_{x-1,y})$
- $W_{1,1} \vee W_{1,2} \vee \ldots \vee W_{4,4}$
- $\bullet \ \neg W_{1,1} \lor \neg W_{1,2}$
- $\neg W_{1,1} \lor \neg W_{1,3}$
- . . .
- ⇒ 64 symboles propositionnels distincts; 155 énoncés

Agents basés sur la LP dans le monde du Wumpus

```
fonction PL-Wumpus-Agent(percept) retourne une action
     entrées : percept : une liste [odeur, brise, lueur]
     var. statiques : KB, contenant au départ la "physique" du monde du Wumpus ;
x, y, O la position de l'agent (1, 1, droite) au départ; V un tableau indiquant les
cases visitées, initialement à faux; A action la plus récente de l'agent, initialement à
nul: P séquence d'actions, initialement vide
     si odeur alors Tell(KB, S_{x,v}) sinon Tell(KB, \neg S_{x,v})
     si brise alors Tell(KB, B_{x,y}) sinon Tell(KB, \neg B_{x,y})
     si lueur alors A \leftarrow ramasser
     sinon si P n'est pas vide alors A \leftarrow Pop(P)
       sinon si pour une case voisine [i,j], Ask(KB, \neg P_{i,j} \land \neg W_{i,j}) est vrai ou
                 pour une case voisine [i,j], Ask(KB, P_{i,j} \vee W_{i,j}) est faux
       alors P \leftarrow A^*(\text{Route-Problem}([x, y], O, [i, j], V)); A \leftarrow \text{Pop}(P)
      sinon A \leftarrow un déplacement choisi de manière aléatoire
     retourner A
```

Limitation de l'expressivité de la logique propositionnelle

- La base de connaissances doit contenir des énoncés pour représenter "physiquement" toute case
- A chaque temps t et pour chaque localisation [x, y], on a

$$L_{x,y}^t \wedge droite^t avance^t \Rightarrow L_{x+1,y}^{t+1}$$

• Prolifération très rapide des clauses

Conclusion

Conclusion

- Les agents logiques appliquent l'inférence sur une base de connaissances pour déduire de nouvelles informations et prendre une décision
- La résolution est valide et complète pour la logique propositionnelle
- Les chaînages avant et arrière sont linéaire en temps, valides, et complets pour les clauses de Horn
- La logique propositionnelle manque de pouvoir d'expression