STAT 432: Basics of Statistical Learning

Tree and Random Forests

Shiwei Lan, Ph.D. <shiwei@illinois.edu>

http://shiwei.stat.illinois.edu/stat432.html

April 1, 2019

University of Illinois at Urbana-Champaign

Classification and Regression

Trees (CART)

Tree-based Methods

- Tree-based methods are nonparametric methods that recursively partition the feature space into hyper-rectangular subsets, and make prediction on each subset.
- · Two main streams of models:
 - Classification and regression Trees (CART): Breiman, Friedman,
 Olshen and Stone (1984)
 - ID3/C4.5: Quinlan (1986, 1993)
- Both are among the top algorithms in data mining (Wu et al., 2008)
- · In statistics, the CART is more popular.

Titanic Survivals

Classification and regression Trees

• Example: independent x_1 and x_2 from uniform [-1, 1],

$$\begin{split} \mathsf{P}(Y = \mathsf{blue} \ | \ x_1^2 + x_2^2 < 0.6) &= 90\% \\ \mathsf{P}(Y = \mathsf{orange} \ | \ x_1^2 + x_2^2 \geq 0.6) &= 90\% \end{split}$$

- Existing methods require transformation of the feature space to deal with this model. Tree and random forests do not.
- · How tree works in classification?

- There are many popular packages that can fit a CART model: rpart, tree and party.
- · Read the reference manual carefully!

Initialized the root node: all training data

Root node

- Initialized the root node: all training data
- Find a splitting rule $1\{X^{(j)} \le c\}$ and split the node

- Initialized the root node: all training data
- Find a splitting rule $1\{X^{(j)} \le c\}$ and split the node
- · Recursively apply the procedure on each daughter node

- Initialized the root node: all training data
- Find a splitting rule $\mathbf{1}\{X^{(j)} \leq c\}$ and split the node
- · Recursively apply the procedure on each daughter node

- Initialized the root node: all training data
- Find a splitting rule $\mathbf{1}\{X^{(j)} \leq c\}$ and split the node
- · Recursively apply the procedure on each daughter node
- · Predict each terminal node using within-node data

Classification and Regression Trees

- How to construct the splitting rules?
 - · Classification problems
 - Regression problems
- · How to deal with categorical predictors?
- Tree pruning

Constructing Splitting Rules

Splitting Using Continuous Covariates

- Splitting of continuous predictors are in the form of $\mathbf{1}\{X^{(j)} \leq c\}$
- At a node A, with |A| observations

$$\{(x_i, y_i) : x_i \in \mathcal{A}, 1 \le i \le n\}$$

• We want to split this node into two child nodes \mathcal{A}_L and \mathcal{A}_R

$$\mathcal{A}_L = \{ x \in \mathcal{A}, \, x^{(j)} \le c \}$$
$$\mathcal{A}_R = \{ x \in \mathcal{A}, \, x^{(j)} > c \}$$

 This is done by calculating and comparing the impurity, before and after a split.

Impurity for Classification

- We need to define the criteria for classification and regression problems separately.
- Before the split: we evaluate the impurity for the entire node A
 using the Gini index,
- Gini impurity is used as the measurement. Suppose we have K
 different classes,

Gini =
$$\sum_{k=1}^{K} p_k (1 - p_k) = 1 - \sum_{k=1}^{K} p_k^2$$

 Interpretation: Gini = 0 means pure node (only one class), larger Gini means more diverse node.

Impurity for Classification

- After the split, we want each child node to be as pure as possible, i.e., the sum of their Gini impurities are as small as possible.
- · Maximize the Gini impurity reduction after the split:

$$\mathsf{score} = \mathsf{Gini}(\mathcal{A}) - \frac{|\mathcal{A}_L|}{|\mathcal{A}|} \mathsf{Gini}(\mathcal{A}_L) - \frac{|\mathcal{A}_R|}{|\mathcal{A}|} \mathsf{Gini}(\mathcal{A}_R),$$

where $|\cdot|$ denotes the cardinality (sample size) of a node.

- Note 1: $\mathrm{Gini}(\mathcal{A}_L)$ and $\mathrm{Gini}(\mathcal{A}_R)$ are calculated within their respective node.
- Note 2: An alternative (and equivalent) definition is to minimize $\frac{|\mathcal{A}_L|}{|\mathcal{A}|} \text{Gini}(\mathcal{A}_L) + \frac{|\mathcal{A}_R|}{|\mathcal{A}|} \text{Gini}(\mathcal{A}_R)$.

Impurity for Classification

- Calculating the Gini index based on the samples is very simple:
- First, for any node A, we estimate the frequencies \widehat{p}_k :

$$\widehat{p}_k = \frac{\sum_i \mathbf{1}\{y_i = k\} \mathbf{1}\{x_i \in \mathcal{A}\}}{\sum_i \mathbf{1}\{x_i \in \mathcal{A}\}},$$

which is the proportion of samples with class label k in node A.

· Then the Gini impurity is

$$\mathsf{Gini}(\mathcal{A}) = \sum_{k=1}^K \widehat{p}_k (1 - \widehat{p}_k) = 1 - \sum_{k=1}^K \widehat{p}_k^2$$

• Do the same for A_L and A_R , then calculate the score of a split.

Choosing the Split

- To define a split $1\{X^{(j)} \le c\}$, we need to know
 - variable index j
 - cutting point c
- To find the best split at a node, we do an exhaustive search:
 - ullet Go through each variable j, and all of its possible cutting points c
 - For each combination of j and c, calculate the score of that split
 - · Compare all of such splits and choose the one with the best score
- Note: to exhaust all cutting points, we only need to examine middle points of order statistics.

Other Impurity Measures

- · Gini index is not the only measurement.
 - ID3/C4.5 uses Shannon entropy from information theory

$$\mathsf{Entropy}(\mathcal{A}) = -\sum_{k=1}^K \widehat{p}_k \log(\widehat{p}_k)$$

Misclassification error

$$\mathsf{Error}(\mathcal{A}) = 1 - \max_{k=1,\dots,K} \widehat{p}_k$$

 Similarly, we can use these measures to define the reduction of impurity and search for the best splitting rule

Comparing Impurity Measures

	Class 1	Class 2	\widehat{p}_1	\widehat{p}_2	Gini	Entropy	Error
$\overline{\mathcal{A}}$	7	3	7/10	3/10	0.420	0.611	0.3
\mathcal{A}_L	3	0	3/3	0	0	0	0
\mathcal{A}_{R}	4	3	4/7	3/7	0.490	0.683	3/7

$$\begin{split} & \text{score}_{\text{Gini}} = 0.420 - (3/10 \cdot 0 + 7/10 \cdot 0.490) = 0.077 \\ & \text{score}_{\text{Entropy}} = 0.611 - (3/10 \cdot 0 + 7/10 \cdot 0.683) = 0.133 \\ & \text{score}_{\text{Error}} = 3/10 - (3/10 \cdot 0 + 7/10 \cdot 3/7) = 0 \end{split}$$

Comparing Different Measures

- Gini index and Shannon entropy are more sensitive to the changes in the node probability
- · They prefer to create more "pure" nodes
- Misclassification error can be used for evaluating a tree, but may not be sensitive enough for building a tree.

Regression Problems

- When the outcome Y is continuous, all we need is a corresponding impurity measure
- Use variance instead of Gini, and consider the weighted variance reduction:

$$\mathsf{score} = \mathsf{Var}(\mathcal{A}) - \frac{|\mathcal{A}_L|}{|\mathcal{A}|} \mathsf{Var}(\mathcal{A}_L) - \frac{|\mathcal{A}_R|}{|\mathcal{A}|} \mathsf{Var}(\mathcal{A}_R)$$

where for any \mathcal{A} , $Var(\mathcal{A})$ is just the variance of the node samples:

$$Var(\mathcal{A}) = \frac{1}{|\mathcal{A}|} \sum_{i \in \mathcal{A}} (y_i - \overline{y}_{\mathcal{A}})^2,$$

 $|\mathcal{A}|$ is the cardinality of \mathcal{A} and $\overline{y}_{\mathcal{A}}$ is the within-node mean.

Categorical Predictors

• If $X^{(j)}$ is a categorical variable talking values in $\{1,\ldots,C\}$, we search for a subset $\mathcal{C}\subset\{1,\ldots,C\}$, and define the child nodes

$$\mathcal{A}_L = \{ x \in \mathcal{A}, \, x^{(j)} \in \mathcal{C} \}$$
$$\mathcal{A}_R = \{ x \in \mathcal{A}, \, x^{(j)} \notin \mathcal{C} \}$$

- Maximum of $2^{C-1} 1$ number of possible splits
- When C is too large, exhaustively searching for the best C can be computationally intense.
- In the R randomForest package C needs to be less than 53 (when C is larger than 10, this is not exhaustively searched).
- Some heuristic methods are used, such as randomly sample a subset of $\{1,\dots,C\}$ as $\mathcal C.$

Overfitting and Tree Pruning

- There is a close connection with the (adaptive) histogram estimator
- A large tree (with too many splits) can easily overfit the data
 - Small terminal node
 ⇔ small bias, large variance
- Small tree may not capture important structures
 - Large terminal node \iff large bias, small variance
- Tree size is measured by the number of splits

Overfitting and Tree Pruning

- Balancing tree size and accuracy is the same as the "loss + penalty" framework
- One possible approach is to split tree nodes only if the decrease in the loss exceed certain threshold, however this can be short-sighted
- A better approach is to grow a large tree, then prune it

Cost-Complexity Pruning

- First, fit the maximum tree T_{max} (possibly one observation per terminal node).
- Specify a complexity penalty parameter α .
- For any sub-tree of \mathcal{T}_{max} , denoted as $\mathcal{T} \preceq \mathcal{T}_{max}$, calculate

$$\begin{split} C_{\alpha}(\mathcal{T}) &= \sum_{\text{all terminal nodes } \mathcal{A} \text{ of } \mathcal{T}} |\mathcal{A}| \cdot \mathsf{Gini}(\mathcal{A}) + \alpha |\mathcal{T}| \\ &= C(\mathcal{T}) + \alpha |\mathcal{T}| \end{split}$$

where |A| is the cardinality of node A, |T| is the cardinality (number of terminal nodes) of tree T.

- Find T that minimizes $C_{\alpha}(T)$
 - Large α gives small trees
 - Choose α using CV (or plot)

Missing Values

- If each variable has 5% chance to have missing value, then if we have 50 variables, there are only 7.7% of the samples that has compete measures.
- Traditional approach is to discard observations with missing values, or impute them
- Tree-based method can handle them by either putting them as a separate category, or using surrogate variables whenever the splitting variable is missing.

Remark

- · Advantages of tree-based method:
 - handles both categorical and continuous variables in a simple and natural way
 - Invariant under all monotone transformations of variables
 - · Robust to outliers
 - · Flexible model structure, capture iterations, easy to interpret
- Limitations
 - Small changes in the data can result in a very different series of splits
 - Non-smooth. Some other techniques such as the multivariate adaptive regression splines (MARS, Friedman 1991) can be used to generate smoothed models.

Random Forests

Weak and Strong Learners

- Back in the mid-late 90's, researches started to investigate whether aggregated "weak learners" (unstable, less accurate) can be a "strong learner".
- Bagging, boosting, and random forests are all methods along this line.
- Bagging and random forests learn individual trees with some random perturbations, and "average" them.
- Boosting progressively learn models with small magnitude, then "add" them
- In general, Boosting, Random Forests \succ Bagging \succ Single Tree.

Bagging Predictors

- · Bagging stands for "Bootstrap aggregating"
- Draw B bootstrap samples from the training dataset, fit CART to each of them, then average the trees
- "Averaging" is symbolic, what we really do is to get the predictions from each tree, and average the predicted values.
- Motivation: CART is unstable, however, perturbing and averaging can improve stability and leads to better accuracy

Ensemble of Trees

Bagging Predictors

- Bootstrap sample with replacement. Fit a CART model to each bootstrap sample (may require pruning for each tree).
- To combine the bootstrap learners, for classification:

$$\widehat{f}_{\mathrm{bagging}}(x) = \mathrm{Majority} \; \mathrm{Vote} \big\{ \widehat{f}_b(x) \big\}_{b=1}^B,$$

and for regression:

$$\widehat{f}_{\text{bagging}}(x) = \frac{1}{B} \sum_{b=1}^{B} \widehat{f}_b(x),$$

- Dramatically reduce the variance of individual learners
- · CART can be replaced by other weak learners

CART vs. Bagging

CART vs. Bagging

Remarks about Bagging

- · Why Bagging works?
- Averaging (nearly) independent copies of $\widehat{f}(x)$ can lead to reduced variance
- The "independence" is introduced by bootstrapping
- However, the simple structure of trees will be lost due to averaging, hence it is difficult to interpret

Remarks about Bagging

- But, the performance of bagging in practice is oftentimes not satisfactory. Why?
- · Its not really independent...
- Different trees have high correlation which makes averaging not very effective
- How to further de-correlate trees?

Random Forests

- Several articles came out in the late 90's discussing the advantages of using random features, these papers greatly influenced Breiman's idea of random forests.
- For example, in Ho (1998), each tree is constructed using a randomly selected subset of features
- Random forests take a step forward: at each splitting rule we consider a random subset of features
- Important tuning parameters: mtry and nodesize

Tuning Parameter: mtry

- An important tuning parameter of random forests is mtry
- At each split, randomly select ${\tt mtry}$ variables from the entire set of features $\{1,\ldots,p\}$
- Search for the best variable and the splitting point out of these mtry variables
- · Split and proceed to child nodes

Tuning Parameter: nodesize

- Another important tuning parameter is (terminal) nodesize
- Random forests do not perform pruning!
- Instead, splitting does not stop until the terminal node size is less or equal to nodesize, and the entire tree is used.
- nodesize controls the trade-off between bias and variance in each tree, same as k in kNN
- In the most extreme case, $n_{min}=1$ means exactly fit each observation, but this is not 1NN!

Tuning parameters

- A summary of important tuning parameters in Random forests (using R package randomForest)
- ntree: number of trees, set it to be large. Default 500.
- mtry: number of variables considered at each split. Default p/3 for regression, \sqrt{p} for classification.
- nodesize: terminal node size. Default 5 for regression, 1 for classification
- sampsize: Bootstrap sample size, usually n with replacement.
- Overall, tuning is very crucial in random forests

CART vs. Bagging vs. RF

RF: ntree = 1000, mtry = 1, nodesize = 25

Smoothness Effect of Random Forests

Smoothness Effect of Random Forests (Age: continuous; Diagnosis: categorical)

Random Forests vs. Kernel

Random Forests vs. Kernel

- Random forests are essentially kernel methods
- However, the distance used in random forests is adaptive to the true underlying structure
- This can be seen from the kernel weights derived from a random forests

RF vs. Kernel

Random forest kernel at two different target points

RF vs. Kernel

Gaussian Kernel at two different target points

Variable Importance

Variable Importance

- Random forests has a built-in variable selection tool: variable importance
- Variable importance utilizes samples that are not selected by bootstrapping (out-of-bag data):
 - For the b-th tree, use the corresponding out-of-bag data as the testing set to obtain the prediction error: Err₀^b
 - For each variable j, randomly permute its value among the testing samples, and recalculate the prediction error: Err_i^b
 - calculate for each j

$$\mathsf{VI}_{bj} = \frac{\mathsf{Err}_j^b}{\mathsf{Err}_0^b} - 1$$

Average VI_{bj} across all trees

$$\mathsf{VI}_j = \sum_{b=1}^B \mathsf{VI}_{bj}$$

Variable Importance

- · This essentially works like a cross-validation:
 - · the in-bag samples are training samples,
 - the out-of-bag samples are testing samples
 - · a bootstrapped cross-validation
- · Usually the misclassification error is used instead of Gini index
- Higher VI means larger loss of accuracy due to the loss of information on $X^{(j)}$, hence more important.

Variable Importance in RF

Same simulation setting as the "circle" example, with additional 48 noise variables.

Remarks about Random Forests

- · Performs well on high-dimensional data
- · Tuning parameters are crucial
- Difficult to interpret
- Adaptive kernel