Липецкий государственный технический университет

Факультет автоматизации и информатики Кафедра автоматизированных систем управления

ЛАБОРАТНАЯ РАБОТА №5

файлов»

по дисциплине «OS Linux» на тему «Программирование на SHELL. Использование командных

Студент Сухоруких А.О.

Группа АС-18

Руководитель Кургасов В.В.

к.т.н

Липецк 2020 г.

Оглавление

Цель работы5
Задание6
1. Используя команды ECHO, PRINTF вывести информационные сообщения
на экран9
В первой строке мы присваиваем переменной А значение 5. С помощью
команда echo выводим это значение на экран10
Аналогично заданию 2 присваиваем переменной А значение 5, затем
переменной В присваиваем значение А и выводи значение В на экран11
Присваиваем переменной D имя команды date, выводим полученную дату на
экран13
6. Присвоить переменной Е значение "имя команды", а именно, команды
просмотра содержимого файла, просмотреть содержимое переменной.
Выполнить эту команду, используя значение переменной14
7. Присвоить переменной F значение "имя команды", а именно сортировки
содержимого текстового файла. Выполнить эту команду, используя
значение переменной
8. Программа запрашивает значение переменной, а затем выводит значение
этой переменной17
9. Программа запрашивает имя пользователя, затем здоровается с ним,
используя значение введенной переменной18
10. Программа запрашивает значения двух переменных, вычисляет сумму
(разность, произведение, деление) этих переменных. Результат выводится на
экран (использовать команды a) EXPR; б) BC)19
11. Вычислить объем цилиндра. Исходные данные запрашиваются
программой. Результат выводится на экран20

12. Используя позиционные параметры, отооразить имя программы,
количество аргументов командной строки, значение каждого аргумента
командной строки21
13. Используя позиционный параметр, отобразить содержимое текстового
файла, указанного в качестве аргумента командной строки. После паузы
экран очищается
14. Используя оператор FOR, отобразить содержимое текстовых файлов
текущего каталога поэкранно
15. Программой запрашивается ввод числа, значение которого затем
сравнивается с допустимым значением. В результате этого сравнения на
экран выдаются соответствующие сообщения
16. Программой запрашивается год, определяется, високосный ли он.
Результат выдается на экран
17. Вводятся целочисленные значения двух переменных. Вводится диапазон
данных. Пока значения переменных находятся в указанном диапазоне, их
значения инкрементируются26
18. В качестве аргумента командной строки указывается пароль. Если пароль
введен верно, постранично отображается в длинном формате с указанием
скрытых файлов содержимое каталога /etc
19. Проверить, существует ли файл. Если да, выводится на экран его
содержимое, если нет - выдается соответствующее сообщение
20. Если файл есть каталог и этот каталог можно читать, просматривается
содержимое этого каталога. Если каталог отсутствует, он создается. Если
файл не есть каталог, просматривается содержимое файла29
21. Анализируются атрибуты файла. Если первый файл существует и
используется для чтения, а второй файл существует и используется для записи,
то содержимое первого файла перенаправляется во второй файл. В случае

несовпадении указанных атриоутов или отсутствия фаилов на экран выдаются
соответствующие сообщения (использовать а) имена файлов; б) позиционные
параметры)
30
22. Если файл запуска программы найден, программа запускается (по
выбору)
23. В качестве позиционного параметра задается файл, анализируется его
размер. Если размер файла больше нуля, содержимое файла сортируется по
первому столбцу по возрастанию, отсортированная информация помещается
в другой файл, содержимое которого затем отображается на экране 33
24. Командой TAR осуществляется сборка всех текстовых файлов текущего
каталога в один архивный файл, после паузы просматривается содержимое
файла, затем командой GZIP архивный файл сжимается34
25. Написать скрипт с использованием функции, например, функции,
суммирующей значения двух переменных
Вывод

Цель работы

Изучение основных возможностей языка программирования Shell с целью автоматизации процесса администрирования системы за счет написания и использования командных файлов.

Задание

- 1. Используя команды ECHO, PRINTF вывести информационные сообщения на экран.
- 2. Присвоить переменной А целочисленное значение. Просмотреть значение переменной А.
- 3. Присвоить переменной B значение переменной A. Просмотреть значение переменной B.
- 4. Присвоить переменной C значение "путь до своего каталога". Перейти в этот каталог с использованием переменной.
- 5. Присвоить переменной D значение "имя команды", а именно, команды DATE. Выполнить эту команду, используя значение переменной.
- 6. Присвоить переменной Е значение "имя команды", а именно, команды просмотра содержимого файла, просмотреть содержимое переменной. Выполнить эту команду, используя значение переменной.
- 7. Присвоить переменной F значение "имя команды", а именно сортировки содержимого текстового файла. Выполнить эту команду, используя значение переменной.

Написать скрипты, при запуске которых выполняются следующие действия:

- 8. Программа запрашивает значение переменной, а затем выводит значение этой переменной.
- 9. Программа запрашивает имя пользователя, затем здоровается с ним, используя значение введенной переменной.
- 10. Программа запрашивает значения двух переменных, вычисляет сумму (разность, произведение, деление) этих переменных. Результат выводится на экран (использовать команды а) EXPR; б) BC).,

- 11. Вычислить объем цилиндра. Исходные данные запрашиваются программой. Результат выводится на экран.
- 12. Используя позиционные параметры, отобразить имя программы, количество аргументов командной строки, значение каждого аргумента командной строки.
- 13. Используя позиционный параметр, отобразить содержимое текстового файла, указанного в качестве аргумента командной строки. После паузы экран очищается.
- 14. Используя оператор FOR, отобразить содержимое текстовых файлов текущего каталога поэкранно.
- 15. Программой запрашивается ввод числа, значение которого затем сравнивается с допустимым значением. В результате этого сравнения на экран выдаются соответствующие сообщения.
- 16. Программой запрашивается год, определяется, високосный ли он. Результат выдается на экран.
- 17. Вводятся целочисленные значения двух переменных. Вводится диапазон данных. Пока значения переменных находятся в указанном диапазоне, их значения инкрементируются.
- 18. В качестве аргумента командной строки указывается пароль. Если пароль введен верно, постранично отображается в длинном формате с указанием скрытых файлов содержимое каталога /etc.
- 19. Проверить, существует ли файл. Если да, выводится на экран его содержимое, если нет выдается соответствующее сообщение.
- 20. Если файл есть каталог и этот каталог можно читать, просматривается содержимое этого каталога. Если каталог отсутствует, он создается. Если файл не есть каталог, просматривается содержимое файла.

- 21. Анализируются атрибуты файла. Если первый файл существует и используется для чтения, а второй файл существует и используется для записи, то содержимое первого файла перенаправляется во второй файл. В случае несовпадений указанных атрибутов или отсутствия файлов на экран выдаются соответствующие сообщения (использовать а) имена файлов; б) позиционные параметры).
- 22. Если файл запуска программы найден, программа запускается (по выбору).
- 23. В качестве позиционного параметра задается файл, анализируется его размер. Если размер файла больше нуля, содержимое файла сортируется по первому столбцу по возрастанию, отсортированная информация помещается в другой файл, содержимое которого затем отображается на экране.
- 24. Командой ТАР осуществляется сборка всех текстовых файлов текущего каталога в один архивный файл my.tar, после паузы просматривается содержимое файла my.tar, затем командой GZIP архивный файл my.tar сжимается.
- 25. Написать скрипт с использованием функции, например, функции, суммирующей значения двух переменных.

Ход работы

1. Используя команды ECHO, PRINTF вывести информационные сообщения на экран

С помощью команды echo выведем текущую дату на экран, а с помощью команды printf сообщение test printf. Листинг скрипта и пример выполнения показаны на рисунках 1-2.

Рисунок 1 – Листинг скрипта для задания 1

Рисунок 2 – Пример выполнения задания 1

2. Присвоить переменной A целочисленное значение. Просмотреть значение переменной A

В первой строке мы присваиваем переменной A значение 5. С помощью команда есho выводим это значение на экран. Листинг скрипта и пример выполнения показаны на рисунках 3-4.

Рисунок 3 – Листинг скрипта для задания 2

Рисунок 4 – Пример выполнения задания 2

3. Присвоить переменной B значение переменной A. Просмотреть значение переменной B

Аналогично заданию 2 присваиваем переменной A значение 5, затем переменной B присваиваем значение A и выводи значение B на экран. Листинг скрипта и пример выполнения показаны на рисунках 5-6.

Рисунок 5 – Листинг скрипта для задания 3

Рисунок 6 – Пример выполнения задания 3

4. Присвоить переменной C значение "путь до своего каталога". Перейти в этот каталог с использованием переменной

Переменной С присваиваем путь до каталога используя команду pwd, выводим получившееся значение на экран, затем перегодим в этот каталог. Листинг скрипта и пример выполнения показаны на рисунках 7-8.

Рисунок 7 – Листинг скрипта для задания 4

Рисунок 8 – Пример выполнения задания 4

5. Присвоить переменной D значение "имя команды", а именно, команды DATE. Выполнить эту команду, используя значение переменной

Присваиваем переменной D имя команды date, выводим полученную дату на экран. Листинг скрипта и пример выполнения показаны на рисунках 9-10.

Рисунок 9 – Листинг скрипта для задания 5

Рисунок 10 – Пример выполнения задания 5

6. Присвоить переменной Е значение "имя команды", а именно, команды просмотра содержимого файла, просмотреть содержимое переменной. Выполнить эту команду, используя значение переменной

Переменной Е присваиваем значение команды для просмотра содержимого файла test. Выводим содержимое файла на экран. Листинг скрипта и пример выполнения показаны на рисунках 11-12.

Рисунок 11 – Листинг скрипта для задания 6

Рисунок 12 – Пример выполнения задания 6

7. Присвоить переменной F значение "имя команды", а именно сортировки содержимого текстового файла. Выполнить эту команду, используя значение переменной.

Создадим файл, который нам необходимо будет отсортировать. Создания файла для сортировки показан на рисунке 13.

Рисунок 13 – Создание файла для сортировки

Затем в скрипте присвоим переменной E имя команды для сортировки и имя файла, который нас необходимо отсортировать. Выведем результат сортировки на экран. Листинг скрипта и пример выполнения показаны на рисунках 14-15.

Рисунок 14 – Листинг скрипта для задания 7

Рисунок 15 – Пример выполнения задания 7

8. Программа запрашивает значение переменной, а затем выводит значение этой переменной

Для ввода значения переменной A воспользуемся командой read. Затем с помощью команды echo выведем значение переменной на экран. Листинг скрипта и пример выполнения показаны на рисунках 16-17.

Рисунок 16 – Листинг скрипта для задания 8

Рисунок 17 – Пример выполнения задания 8

9. Программа запрашивает имя пользователя, затем здоровается с ним, используя значение введенной переменной

Для ввода имени в переменную A воспользуемся командой read. Затем с помощью команды echo выведем приветствие и имя на экран. Листинг скрипта и пример выполнения показаны на рисунках 18-19.

Рисунок 18 – Листинг скрипта для задания 9

Рисунок 19 – Пример выполнения задания 9

10. Программа запрашивает значения двух переменных, вычисляет сумму (разность, произведение, деление) этих переменных. Результат выводится на экран (использовать команды а) EXPR; б) ВС)

Для ввода значений в переменные A и B воспользуемся командой read. Затем с помощью команды echo выведем значения полученных операций на экран. Листинг скрипта и пример выполнения показаны на рисунках 20-21.

Рисунок 20 – Листинг скрипта для задания 10

Рисунок 21 – Пример выполнения задания 10

11. Вычислить объем цилиндра. Исходные данные запрашиваются программой. Результат выводится на экран

Для ввода значений в переменные r (радиус основания) и h (высота цилиндра) воспользуемся командой read. В переменную рі положим значение числа пи (3,14). Затем с помощью команды есhо выведем значения полученного объема. Листинг скрипта и пример выполнения показаны на рисунках 22-23.

Рисунок 22 – Листинг скрипта для задания 11

Рисунок 23 – Пример выполнения задания 11

12. Используя позиционные параметры, отобразить имя программы, количество аргументов командной строки, значение каждого аргумента командной строки

В переменной \$0 хранится имя программы, а в \$# кол-во аргументов. С помощью цикла for пройдемся по всем аргументам командной строки. Листинг скрипта и пример выполнения показаны на рисунках 24 – 25.

Рисунок 24 – Листинг скрипта для задания 12

Рисунок 25 – Пример выполнения задания 12

13. Используя позиционный параметр, отобразить содержимое текстового файла, указанного в качестве аргумента командной строки. После паузы экран очищается

Имя текстового файла будет находиться в переменной \$1. С помощью оператора іf производим необходимые проверки: 1. Количество аргументов командной строки единица; 2. Что текстовый файл существует. Выводим содержимое файла командой echo (cat 1). Пауза создается командой sleep, очистка экрана — clear. Листинг скрипта и пример выполнения показаны на рисунках 25 - 26.

Рисунок 25 – Листинг скрипта для задания 13

Рисунок 26 – Пример выполнения задания 13

14. Используя оператор FOR, отобразить содержимое текстовых файлов текущего каталога поэкранно

С помощью цикла for проходимся по всем файлам, если файл текстовый, то используем команду саt. Листинг скрипта и пример выполнения показаны на рисунках 27 – 28.

Рисунок 27 – Листинг скрипта для задания 14

Рисунок 28 – Пример выполнения задания 14

15. Программой запрашивается ввод числа, значение которого затем сравнивается с допустимым значением. В результате этого сравнения на экран выдаются соответствующие сообщения

Для ввода значения в переменную A воспользуемся командой read. Затем с помощью if сравниваем значения переменной A с числом 10. В зависимости от сравнения выводим соответствующее сообщение на экран. Листинг скрипта и пример выполнения показаны на рисунках 29 – 30.

Рисунок 29 – Листинг скрипта для задания 15

Рисунок 30 – Пример выполнения задания 15

16. Программой запрашивается год, определяется, високосный ли он. Результат выдается на экран

В переменную у будет помещен введённый год, проверяем введенный год с помощью условий if. В зависимости от сравнения выводим соответствующее сообщение на экран. Листинг скрипта и пример выполнения показаны на рисунках 31-32.

```
GNU nano 4.8

ccho "Year - ?"

read y

if [ expr $\frac{1}{2}\times \frac{1}{2}\times \frac{1}\times \frac{1}{2}\times \frac{1}{2}\times \frac{1}{2}\times \frac{1}{2}\times \
```

Рисунок 31 – Листинг скрипта для задания 16

Рисунок 32 – Пример выполнения задания 16

17. Вводятся целочисленные значения двух переменных. Вводится диапазон данных. Пока значения переменных находятся в указанном диапазоне, их значения инкрементируются

С помощью команды read вводим значения. С помощью цикла while инкрементируем переменные а и b пока выполняется условие. Листинг скрипта и пример выполнения показаны на рисунках 33 – 34.

```
GNU nano 4.8

cho "Input two numbers"
read a
read b
cho "Input interval"
read c
read d
while [sc -gt sa ] 88 [sc -gt sb ] 88 [sd -gt sa ] 88 [sd -gt sb ]

do

a `expr sa + 1 `
b `expr sb + 1 `
echo "sa; sb"

done
echo "a - $a;b - $b"

C Get Help C Write Out K Here Is K Out Text J Justify C Cur Pos M-U Undo
X Exit R Read File N Replace C Paste Text T To Spell C Go To Line N-E Redo
```

Рисунок 33 – Листинг скрипта для задания 17

```
echo "$a ; $b"

done
echo "a - $a;b - $b"

artem@artemserver:~$ sh lab5.sh
Input two numbers
2
5
Input interval
8
9
3; 6
4; 7
5; 8
a - 5;b - 8
artem@artemserver:~$ _
```

Рисунок 34 – Пример выполнения задания 17

18. В качестве аргумента командной строки указывается пароль. Если пароль введен верно, постранично отображается в длинном формате с указанием скрытых файлов содержимое каталога /etc

Пароль будет храниться в переменной \$1, в переменной рN хранится пароль с которым будет сравниваться с введенный. Если пароли совпадают, то будет выполнена команда для отображения в длинном формате с указанием скрытых файлов содержимое каталога /etc. Листинг скрипта и пример выполнения показаны на рисунках 35 - 36.

Рисунок 35 – Листинг скрипта для задания 18

Рисунок 36 – Пример выполнения задания 18

19. Проверить, существует ли файл. Если да, выводится на экран его содержимое, если нет - выдается соответствующее сообщение

С помощью команды read вводим имя файла. Затем с помощью оператора if проверяем существует ли файл. Если существует выполняем команду для просмотра содержимого файла. Листинг скрипта и пример выполнения показаны на рисунках 37 – 38.

Рисунок 37 – Листинг скрипта для задания 19

Рисунок 37 – Пример выполнения задания 19

20. Если файл есть каталог и этот каталог можно читать, просматривается содержимое этого каталога. Если каталог отсутствует, он создается. Если файл не есть каталог, просматривается содержимое файла

Вводим имя файла или каталога. С помощью операторов if осуществляем необходимые проверки (существование каталога с таким именем, является ли файл каталогом, возможность чтения содержимого каталога). Листинг скрипта и пример выполнения показаны на рисунках 38 – 40.

Рисунок 38 – Листинг скрипта для задания 20

Рисунок 39 – Пример открытия файла

```
FileName\DirName
test

Dpen file

1
2
3
4
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
artem@artemserver:~$ ls
dirWithText lab5.sh loop3 newdir nowdate.sh result test
artem@artemserver:*$ sh lab5.sh
FileName\DirName
dirWithText
1 2 3 task14.sh
artem@artemserver:*$ =
```

Рисунок 40 – Пример открытие каталога

21. Анализируются атрибуты файла. Если первый файл существует и используется для чтения, а второй файл существует и используется для записи, то содержимое первого файла перенаправляется во второй файл. В случае несовпадений указанных атрибутов или отсутствия файлов на экран выдаются соответствующие сообщения (использовать а) имена файлов; б) позиционные параметры)

Вводим с помощью команды read имена файлов. С помощью if проверим существование файлов, и права доступа. Перенаправляем содержимое файла 1 в файл 2 с помощью команды сат и перенаправления вывода. Листинг скрипта и пример выполнения показаны на рисунках 41 – 42.

Рисунок 41 – Листинг скрипта для задания 21

Рисунок 42 – Пример выполнения задания 21

22. Если файл запуска программы найден, программа запускается (по выбору)

Проверяем количество аргументов командной строки, если файл \$1 существует и может быть выполнен, то выполняем данный файл. Листинг скрипта и пример выполнения показаны на рисунках 43-43.

Рисунок 43 – Листинг скрипта для задания 22

```
if [-e si] 88 [-x si]
then
sh si
else
echo "Error"
fi

else
echo "ArgCount Error"

fi

artem@artemserver:~$ sh lab5.sh 9.sh
artem
Hello artem
artem@artemserver:~$ _
```

Рисунок 44 – Пример выполнения задания 22

23. В качестве позиционного параметра задается файл, анализируется его размер. Если размер файла больше нуля, содержимое файла сортируется по первому столбцу по возрастанию, отсортированная информация помещается в другой файл, содержимое которого затем отображается на экране

Проверяем количество аргументов, в переменной \$1 будет находится имя файла. С помощью іf проверяем, что файл существует и не пуст. Если размер файла больше нуля, содержимое файла сортируется по первому столбцу по возрастанию, отсортированная информация помещается в файл task23result. Листинг скрипта и пример выполнения показаны на рисунках 45 - 46.

Рисунок 45 – Листинг скрипта для задания 23

Рисунок 46 – Пример выполнения задания 23

24. Командой TAR осуществляется сборка всех текстовых файлов текущего каталога в один архивный файл, после паузы просматривается содержимое файла, затем командой GZIP архивный файл сжимается

Командой find . —type f поиск всех текстовых файлов. В переменной archName хранится название архивного файла. Командой tar осуществляется сборка всех текстовых файлов текущего каталога в архивный файл, после паузы просматривается содержимое файла, затем командой gzip архивный файл сжимается. Листинг скрипта и пример выполнения показаны на рисунках 47-48.

```
GG Get Help TO Write Out TW Where Is TK Cut Text TJ Justify To Cur Pos M-U Undo X Exit TR Read File To Spell To
```

Рисунок 47 – Листинг скрипта для задания 24

```
artem@artemserver:~$ sh lab5.sh
./.bashrc
./.sudo_as_admin_successful
./nowdate.sh
./ls
./result_new
./sort_result
./bash_logut
./enrloop.log
./newdir/newchanel
./newdir/newchanel
./newdir/newdir/file2.txt
./newdir/file1.txt
./newdir/file1.txt
./newdir/file1.txt
./newdir/file2.txt
./newdir/file3.txt
./newdir/file3.txt
./newdir/file3.txt
./newdir/file3.txt
./newdir/file3.txt
./nop3
./loop2
./loop
./result
./9.sh
./.selected_editor
./.profile
./nowdatelogs.log
./nowloop.log
./nowloop.log
./nowloop.log
./nowloop.log
./nowloop.log
./idark-motd.legal-displayed
./test
./notsort
./idirkithText/1
./dirkithText/1
./dirkithText/1
./dirkithText/2
./dirWithText/2
./dirWithText/3
./dirWithText/2
./dirWithText/3
./dirWithText/3
./dirWithText/3
./dirWithText/4
./dirWithT
```

Рисунок 48 – Пример выполнения задания 24

25. Написать скрипт с использованием функции, например, функции, суммирующей значения двух переменных

С помощью read вводим значения цифр для суммирования. Затем создаем функцию и вызываем её. Листинг скрипта и пример выполнения показаны на рисунках 49-50.

Рисунок 49 – Листинг скрипта для задания 25

Рисунок 50 – Пример выполнения задания 25

Вывод

В ходе выполнения данной лабораторной работы были изучены возможности языка программирования Shell с целью автоматизации процесса администрирования системы за счет написания и использования командных файлов.