Examples: Saturated liquid-vapor mixture states on *T-v* and *P-v* diagrams.

In the region to the right of the saturated vapor line and at temperatures above the critical point temperature, a substance exists as superheated vapor.

In this region, temperature and pressure are independent properties.

	V	и	h
T,°C	m³/kg	kJ/kg	kJ/kg
	P = 0.1	MPa (99	.61°C)
Sat.	1.6941	2505.6	2675.0
100	1.6959	2506.2	2675.8
150	1.9367	2582.9	2776.6
-:	:		:
1300	7.2605	4687.2	5413.3
	P = 0.5	MPa (151	.83°C)
Sat.	0.37483	2560.7	2748.1
200	0.42503	2643.3	2855.8
250	0.47443	2723.8	2961.0
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A CONTRACTOR OF THE PARTY OF TH

Superheated Vapor

Compared to saturated vapor, superheated vapor is characterized by

Lower pressures ($P < P_{\rm sat}$ at a given T)

Higher tempreatures ($T > T_{\rm sat}$ at a given P)

Higher specific volumes ($\lor > \lor_g$ at a given P or T)

Higher internal energies ($u > u_g$ at a given P or T)

Higher enthalpies ($h > h_g$ at a given P or T)

At a specified *P*, superheated vapor exists at a higher *h* than the saturated vapor.

A partial listing of Table A–6.

The compressed liquid properties depend on temperature much more strongly than they do on pressure.

$$y \cong y_{f @ T}$$
 $y \rightarrow v$, u , or h

A more accurate relation for h

$$|h \cong h_{f@T} + \nu_{f@T}(P - P_{sat@T})|$$

Given: P and T

$$v \cong v_{f @ T}
u \cong u_{f @ T}
h \cong h_{f @ T}$$

A compressed liquid may be approximated as a saturated liquid at the given temperature.

Compressed Liquid

Compressed liquid is characterized by

Higher pressures $(P > P_{\text{sat}})$ at a given T) Lower tempreatures $(T < T_{\text{sat}})$ at a given P) Lower specific volumes $(v < v_f)$ at a given P or T) Lower internal energies $(u < u_f)$ at a given P or T) Lower enthalpies $(h < h_f)$ at a given P or T)

FIGURE 3-41

At a given P and T, a pure substance will exist as a compressed liquid if $T < T_{\text{sat @ }P}$.

Reference State and Reference Values

- The values of *u*, *h*, and *s* cannot be measured directly, and they are calculated from measurable properties using the relations between properties.
- However, those relations give the *changes* in properties, not the values of properties at specified states.
- Therefore, we need to choose a convenient reference state and assign a value of zero for a convenient property or properties at that state.
- The reference state for water is 0.01°C and for R-134a is -40°C in tables.
- Some properties may have negative values as a result of the reference state chosen.
- Sometimes different tables list different values for some properties at the same state as a result of using a different reference state.
- However, In thermodynamics we are concerned with the *changes* in properties, and the reference state chosen is of no consequence in calculations.

Saturate	ed water—	Temperatur	e table									
			fic volume, m³/kg		Internal energy, kJ/kg		Enthalpy, kJ/kg			Entropy, kJ/kg · K		
Temp., T°C	Sat. press., P _{sat} kPa	Sat. liquid, v _f	Sat. vapor, v _g	Sat. liquid, <i>u_f</i>	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, h _f	Evap., h _{fg}	Sat. vapor, h_g	Sat. liquid, s _f	Evap., s_{fg}	Sat. vapor, s _g
0.01 5	0.6117 0.8725	0.001000 0.001000	206.00 147.03	0.000 21.019	2374.9 2360.8	2374.9 2381.8	0.001 21.020	2500.9 2489.1	2500.9 2510.1	0.0000 0.0763	9.1556 8.9487	9.1556 9.0249

Satura	ted refrig	erant-134a–	-Temperat	ure table								
		Specific m ³ /k		Inte	ernal ene kJ/kg	rgy,		Enthalpy kJ/kg	;		Entropy, kJ/kg · K	
Temp.,	Sat. press., P _{sat} kPa	Sat. liquid, v _f	Sat. vapor, v_g	Sat. liquid, u_f	Evap., u_{fg}	Sat. vapor, u_g	Sat. liquid, <i>h_f</i>	Evap., h_{fg}	Sat. vapor, h_g	Sat. liquid, s _f	Evap., s _{fg}	Sat. vapor, s_g
-40	51.25	0.0007054	0.36081	-0.036	207.40	207.37	0.000	225.86	225.86	0.00000	0.96866	0.9686

THE IDEAL-GAS EQUATION OF STATE

- Equation of state: Any equation that relates the pressure, temperature, and specific volume of a substance.
- The simplest and best-known equation of state for substances in the gas phase is the ideal-gas equation of state. This equation predicts the *P-v-T* behavior of a gas quite accurately within some properly selected region.

$$P = R\left(\frac{T}{V}\right)$$
 $PV = RT$ | Ideal gas equation of state

$$R = \frac{R_u}{M} \qquad (kJ/kg \cdot K \text{ or } kPa \cdot m^3/kg \cdot K)$$

R: gas constant

M: molar mass (kg/kmol)

R_u: universal gas constant

$$R_{u} = \begin{cases} 8.31447 \text{ kJ/kmol} \cdot \text{K} \\ 8.31447 \text{ kPa} \cdot \text{m}^{3}/\text{kmol} \cdot \text{K} \\ 0.0831447 \text{ bar} \cdot \text{m}^{3}/\text{kmol} \cdot \text{K} \\ 1.98588 \text{ Btu/lbmol} \cdot \text{R} \\ 10.7316 \text{ psia} \cdot \text{ft}^{3}/\text{lbmol} \cdot \text{R} \\ 1545.37 \text{ ft} \cdot \text{lbf/lbmol} \cdot \text{R} \end{cases}$$

Substance	R, kJ/kg·K
Air	0.2870
Helium	2.0769
Argon	0.2081
Nitrogen	0.2968

Different substances have different gas constants.

Mass = Molar mass × Mole number

$$m = MN$$
 (kg)

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$

Ideal gas $\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$ equation at two states for a fixed mass

Various expressions of ideal gas equation

$$V = mv \longrightarrow PV = mRT$$

$$mR = (MN)R = NR_u \longrightarrow PV = NR_uT$$

$$V = N\overline{V} \longrightarrow P\overline{V} = R_uT$$

Real gases behave as an ideal gas at low densities (i.e., low pressure, high temperature).

FIGURE 3-43

Properties per unit mole are denoted with a bar on the top.

Is Water Vapor an Ideal Gas?

- At pressures below 10 kPa, water vapor can be treated as an ideal gas, regardless of its temperature, with negligible error (less than 0.1 percent).
 - At higher pressures, however, the ideal gas assumption yields unacceptable errors, particularly in the vicinity of the critical point and the saturated vapor line.
 - In air-conditioning applications, the water vapor in the air can be treated as an ideal gas. Why?
- In steam power plant applications, however, the pressures involved are usually very high; therefore, ideal-gas relations should not be used.

Percentage of error $([|v_{table} - v_{ideal}|/v_{table}] \times 100)$ involved in assuming steam to be an ideal gas, and the region where steam can be treated as an ideal gas with less than 1 percent error.

COMPRESSIBILITY FACTOR—A MEASURE OF DEVIATION FROM IDEAL-GAS BEHAVIOR

Compressibility factor Z

A factor that accounts for the deviation of real gases from ideal-gas behavior at a given temperature and pressure. $P_V = ZRT$

$$Z = \frac{PV}{RT}$$
 $Z = \frac{V_{\text{actual}}}{V_{\text{ideal}}}$

FIGURE 3-46

The compressibility factor is unity for ideal gases.

The farther away *Z* is from unity, the more the gas deviates from ideal-gas behavior.

Gases behave as an ideal gas at low densities (i.e., low pressure, high temperature).

Question: What is the criteria for low pressure and high temperature?

Answer: The pressure or temperature of a gas is high or low relative to its critical temperature or pressure.

FIGURE 3-48

At very low pressures, all gases approach ideal-gas behavior (regardless of their temperature).

$$P_R = \frac{P}{P_{\rm cr}}$$
 $T_R = \frac{T}{T_R}$

Reduced pressure

Reduced temperature

$$v_R = \frac{v_{
m actual}}{RT_{
m cr}/P_{
m cr}}$$

 $\frac{V_{\text{actual}}}{RT_{\text{cr}}/P_{\text{cr}}}$ Pseudo-reduced specific volume Pseudo-reduced

Z can also be determined from a knowledge of P_R and V_R .

FIGURE 3-49

Gases deviate from the ideal-gas behavior the most in the neighborhood of the critical point.

Comparison of Z factors for various gases.

OTHER EQUATIONS OF STATE

Several equations have been proposed to represent the *P-v-T* behavior of substances accurately over a larger region with no limitations.

Van der Waals Equation of State

$$\left(P + \frac{a}{v^2}\right)(v - b) = RT$$

$$a = \frac{27R^2T_{\rm cr}^2}{64P_{\rm cr}} b = \frac{RT_{\rm cr}}{8P_{\rm cr}}$$

This model includes two effects not considered in the ideal-gas model: the *intermolecular* attraction forces and the *volume occupied by the molecules themselves*. The accuracy of the van der Waals equation of state is often inadequate.

Critical isotherm of a pure substance has an inflection point at the critical state.

van der Waals

Berthelet

Redlich-Kwang

Beattie-Bridgeman

Benedict-Webb-Rubin

Strobridge

Virial

