PHY 107

HW 1

Due dates

SECTION 4 and SECTION 5: June 26, 2018 SECTION 6 and SECTION 7: June 27, 2018

NOTE This is HW 1 based on the materials from Measurement and Vector/Scalar. Please, read each question carefully and answer. You must show all of your working to get full credit. Students can discuss with other students, but each student must submit his/her own work. Total points for this HW is 80. Score of 60 would mean that he/she will contribute $\frac{60}{80}(5) = 3.75$ towards his/her HW 1.

$\mathbf{Q}\mathbf{1}$

List any 5 base quantities and their units.	[10]
What is a derived quantity? Give three examples.	[2+3]
What is the prefix for the factor 10^{-12} ?	[1]
Write the following in scientific notation	
a. 45000000b. 0.0000311	[1] [1]
Define density. What is the density of water in $\frac{kg}{m^3}$?	[1+1]

$\mathbf{Q2}$

- (1) A rectangular building lot is 100 ft by 150 ft. What is the area of the lot in m^2 ? [2]
- (2) The tropical year, the time from vernal equinox to the next vernal equinox, is the basis for our calendar. It contains 365.242199 days. Find the number of seconds in a tropical year. [2]
- (3) A particle has acceleration (a) while moving with uniform speed v in a circle of radius r. Start with $a \propto r^n v^m$. Derive the relationship between a, r and v using dimensional analysis.
- (4) Explain accuracy and precision. A student measured the mass of a wooden block several times and got the following values: **2.150 kg**, **2.160 kg**, **2.145 kg**, **2.152 kg**, **2.156 kg**. But the true mass of the block is 2.85 kg. Comment on the situation in terms of accuracy and the precision of the measurements.

$\mathbf{Q3}$

Define vector quantity. Give two examples.	[1+2]
Define scalar quantity. Give two examples.	[1+2]
Discuss the commutative and associative laws for vector addition.	[4]
$\mathbf{Q4}$	
Two 3D vectors are given	
$\overrightarrow{d} = 4\hat{i} - 3\hat{j} + 1\hat{k}$	
$\overrightarrow{d} = 4\hat{i} - 3\hat{j} + 1\hat{k}$ $\overrightarrow{b} = -1\hat{i} + 1\hat{j} + 4\hat{k}$	
Find	
(a) $\overrightarrow{a} + \overrightarrow{b}$	[1]
(b) $\overrightarrow{a} - \overrightarrow{b}$	[1]
That $(a) \overrightarrow{a} + \overrightarrow{b}$ $(b) \overrightarrow{a} - \overrightarrow{b}$ $(c) \overrightarrow{k} if \overrightarrow{k} - 2\overrightarrow{a} + 3\overrightarrow{b} = 0$ $(d) \overrightarrow{a} . \overrightarrow{b}$ $(e) \overrightarrow{a} X \overrightarrow{b}$	[3]
(d) $\overrightarrow{a} \cdot \overrightarrow{b}$	[2]
(e) $\overrightarrow{a} X \overrightarrow{b}$	[3]

Q_5

Let's say you have two displacements, one of magnitude 3m and another of magnitude 4m. Show how these two vectors can be combined to give a resultant displacement of magnitude (a) 7m [1] [1]

(b) 1m

(c) 5m [3]

Q6

There are two vectors \overrightarrow{X} and \overrightarrow{Y} . What is the angle between the two vectors if $|\overrightarrow{X}| = |\overrightarrow{Y}| = 5$ units and $\overrightarrow{X} + \overrightarrow{Y} = 5\sqrt{2}\hat{j}$?

$\mathbf{Q7}$

(i) Given: $\overrightarrow{a} = -\hat{i} - 4\hat{j}$ and $\overrightarrow{b} = -3\hat{i} - 2\hat{j}$ Compute the magnitude and direction angle of $\overrightarrow{a} + \overrightarrow{b}$. [2+2](ii) Find the x and y component of \overrightarrow{A} shown below [2+2]

 $\mathbf{Q8}$

(i) Given:
$$\overrightarrow{a} = 5\hat{i} - 6.5\hat{j}$$
 and $\overrightarrow{b} = -3.5\hat{i} + 7\hat{j}$
If $\overrightarrow{c} \perp \overrightarrow{a}$ and $\overrightarrow{c} \cdot \overrightarrow{b} = 15$, what are the components of \overrightarrow{c} ? [5]

 $\mathbf{Q}\mathbf{9}$

- (1) Write the vector \overrightarrow{A} and \overrightarrow{B} in terms of unit vectors \hat{i} and \hat{j} . (2) Express \overrightarrow{C} , where $\overrightarrow{C} = 3\overrightarrow{A} 4\overrightarrow{B}$
- (3) What is the magnitude and direction of \overrightarrow{C} ?

[2] [2]