P8130_final_project

Michael Yan 11/15/2019

```
# tidying data and adding a column with the average salary
law data = read csv("./data/Lawsuit.csv") %>%
  janitor::clean_names() %>%
  mutate(dept = recode_factor(dept,
                              "1" = "Biochemistry/Molecular Biology",
                              "2" = "Physiology",
                              "3" = "Genetics",
                              "4" = "Pediatrics",
                              "5" = "Medicine",
                              "6" = "Surgery"),
         gender = recode_factor(gender,
                                "1" = "Male",
                                "0" = "Female"),
         clin = recode_factor(clin,
                              "1" = "Primarily clinical emphasis",
                              "0" = "Primarily research emphasis"),
         cert = recode_factor(cert,
                              "1" = "Board certified",
                              "0" = "Not certified"),
         rank = recode_factor(rank,
                              "1" = "Assistant",
                              "2" = "Associate",
                              "3" = "Full professor"),
         avg_salary = (sal94 + sal95) / 2)
# data exploration pt. 1
my_labels = list(dept = "Dept, n(%)",
                   clin = "Clin, n(%)",
                   cert = "Clin, n(%)",
                   prate = "Prate",
                   exper = "Exper",
                   rank = "Rank, n(\%)",
                   sal94 = "Sal94",
                   sal95 = "Sal95",
                   avg_salary = "Average Salary")
my_controls = tableby.control(
               total = F,
               numeric.stats = c("meansd", "medianq1q3"),
               digits = 2,
               digits.pct = 2)
table1 = tableby(gender ~ dept + clin + cert + prate + exper + rank + sal94 + sal95 + avg_salary, data
summary(table1, labelTranslations = my_labels,
        title = "Demographics and co-morbidities ", text = T) %>%
```

knitr::kable()

##

##

Residuals:

-81806 -15581

1Q Median

ЗQ

-201 12484 146200

Max

	Male (N=155)	Female (N=106)
Dept, n(%)		
- Biochemistry/Molecular Biology	30 (19.35%)	20 (18.87%)
- Physiology	20 (12.90%)	20 (18.87%)
- Genetics	10 (6.45%)	11 (10.38%)
- Pediatrics	10 (6.45%)	20 (18.87%)
- Medicine	50 (32.26%)	30 (28.30%)
- Surgery	35 (22.58%)	5 (4.72%)
Clin, $n(\%)$		
- Primarily clinical emphasis	$100 \ (64.52\%)$	60 (56.60%)
- Primarily research emphasis	55 (35.48%)	46 (43.40%)
Clin, $n(\%)$		
- Board certified	118 (76.13%)	70 (66.04%)
- Not certified	37 (23.87%)	36 (33.96%)
Prate		
- Mean (SD)	4.65 (1.94)	5.35(1.89)
- Median (Q1, Q3)	$4.00 \ (3.10, \ 6.70)$	$5.25 \ (3.73,\ 7.27)$
Exper		
- Mean (SD)	12.10 (6.70)	7.49(4.17)
- Median (Q1, Q3)	$10.00 \ (7.00, \ 15.00)$	$7.00 \ (5.00, \ 10.00)$
Rank, $n(\%)$		
- Assistant	43 (27.74%)	69 (65.09%)
- Associate	43 (27.74%)	21 (19.81%)
- Full professor	69 (44.52%)	16 (15.09%)
Sal94		
- Mean (SD)	$177338.76 \ (85930.54)$	118871.27 (56168.01)
- Median (Q1, Q3)	$155006.00 \ (109687.00, \ 231501.50)$	$108457.00 \ (75774.50, 143096.00)$
Sal95		
- Mean (SD)	194914.09 (94902.73)	$130876.92 \ (62034.51)$
- Median (Q1, Q3)	$170967.00 \ (119952.50, 257163.00)$	$119135.00 \ (82345.25, \ 154170.50)$
Average Salary		
- Mean (SD)	186126.43 (90397.11)	124874.09 (59089.62)
- Median (Q1, Q3)	$162987.00 \ (114612.50, 244332.25)$	$113706.00 \ (79059.88, 148401.12)$

Assumptions about residuals: 1. Normally Distributed 2. They have the same variance at every predictor (Homoscedasticity) 3. They are independent of one another

```
# data exploration pt. 2
# investigate the shape of the distribution for variable 'avg_salary' and try different transformations
law_model = lm(avg_salary ~ dept + clin + cert + prate + exper + rank + avg_salary, data = law_data)
summary(law_model)
##
## Call:
## lm(formula = avg_salary ~ dept + clin + cert + prate + exper +
## rank + avg_salary, data = law_data)
```

```
## Coefficients:
                                         Estimate Std. Error t value Pr(>|t|)
##
##
   (Intercept)
                                          85421.0
                                                        19981.1
                                                                    4.275 2.72e-05 ***
   deptPhysiology
                                         -12363.0
                                                         5821.4
                                                                  -2.124 0.034679 *
   deptGenetics
                                           24053.5
                                                         7728.1
                                                                   3.112 0.002072 **
   deptPediatrics
                                          23648.9
                                                        10461.9
                                                                   2.260 0.024656 *
## deptMedicine
                                          77483.5
                                                         8984.0
                                                                   8.625 7.65e-16 ***
## deptSurgery
                                         179580.1
                                                        12289.2
                                                                  14.613
                                                                            < 2e-16 ***
   clinPrimarily research emphasis -18736.8
                                                         8057.7
                                                                  -2.325 0.020858 *
   certNot certified
                                         -20185.1
                                                         4250.2
                                                                  -4.749 3.45e-06 ***
##
   prate
                                           -2621.2
                                                         3371.4
                                                                  -0.777 0.437617
   exper
                                            3133.7
                                                          360.7
                                                                   8.687 5.01e-16 ***
##
   rankAssociate
                                           17412.3
                                                         4645.8
                                                                   3.748 0.000222 ***
##
   rankFull professor
                                           34684.7
                                                                   6.732 1.14e-10 ***
                                                         5151.8
##
## Signif. codes:
                        '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 26750 on 249 degrees of freedom
## Multiple R-squared: 0.9043, Adjusted R-squared: 0.9001
## F-statistic: 213.9 on 11 and 249 DF, p-value: < 2.2e-16
par(mfrow = c(2, 2))
plot(law_model)
                 Residuals vs Fitted
                                                                     Normal Q-Q
                                                 Standardized residuals
                                                     9
                                                                                          1840
    100000
                                                                                       2390
Residuals
                                                     0
                                                     0
    -100000
                                                     7
          50000
                   150000
                            250000
                                     350000
                                                                           0
                                                                                      2
                                                                                            3
                                                         -3
                     Fitted values
                                                                   Theoretical Quantiles
                   Scale-Location
                                                                 Residuals vs Leverage
(Standardized residuals)
                                                 Standardized residuals
                                                     ဖ
                                                                   1840
                                    2390
    2.0
                                                                  0239
                                                     N
    0.1
                                                               Cook's distance
          50000
                   150000
                            250000
                                     350000
                                                         0.00
                                                                   0.05
                                                                              0.10
                                                                                         0.15
                     Fitted values
                                                                        Leverage
```

Based on the residual vs. fitted values plot, there is a pattern and one can't say that the points are evenly distributed along the residuals = 0 dash line. This indicates that there is going to be a transformation of the average salary.

The normal Q-Q plot further emphasizes this decision since a number of data points on the near the tail on the right side are not aligned with the dash line, indicating the residuals are not normal.

The scale-location plot is used to test for homoscedasticity and since points are approximately evenly spread around the line, we can conclude that variance of residuals are approximately constant across the range of all predictor variables.

There is presence of point close to the boundary, dashed-line of the Cook's distance, those have to be tested as potential outliers and a decision have to be made about their relevance to the overal population.

• Yeo-Johnson: Test to Determine the best Transformation for average salary.

```
par(mfrow = c(1, 1))
hist(law_data$avg_salary,
    main = "Untransformed Response Variable",
    xlab = "Average salary")
```

Untransformed Response Variable

the graph we see an apparent right skewness. Therefore, we are not able to use BoxCox as it does not transform negative response variables. Hence we will use the yeojohnson function from the bestNormalize package to determine the power (Lamda) at which the outcome variable needs to be raised.

```
yeojohnson(law_data$avg_salary)

## Standardized Yeo-Johnson Transformation with 261 nonmissing obs.:

## Estimated statistics:

## - lambda = -0.06327105

## - mean (before standardization) = 8.339307

## - sd (before standardization) = 0.2400873
```

Therefore, I will round up the Lamda and use the Log transformation of the response variable.

```
hist(log(law_data$avg_salary),
main = "Log-Transformed Response Variable",
xlab = "Log-Transformed average salary")
```

Log-Transformed Response Variable

doing log-transformation, the histogram shows normal distribution of the response variable, in this case, the log-transformed average salary.

After

• Building a new Multiple Regression Model

certNot certified

prate

```
law_log_model = lm(log(avg_salary) ~ dept + clin + cert + prate + exper + rank + avg_salary, data = law
summary(law_log_model)
##
## Call:
## lm(formula = log(avg_salary) ~ dept + clin + cert + prate + exper +
##
       rank + avg_salary, data = law_data)
##
## Residuals:
##
        Min
                       Median
                                    3Q
                  1Q
                                             Max
                      0.00430
   -0.39664 -0.05235
                               0.06132
##
## Coefficients:
##
                                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                               7.156e-02 156.734 < 2e-16 ***
                                    1.122e+01
## deptPhysiology
                                                2.030e-02
                                    -1.321e-01
                                                           -6.504 4.28e-10 ***
## deptGenetics
                                    7.874e-02
                                                2.723e-02
                                                            2.892 0.00417 **
## deptPediatrics
                                    5.615e-02
                                                3.653e-02
                                                            1.537
                                                                   0.12558
## deptMedicine
                                    2.107e-01
                                                3.539e-02
                                                            5.953 8.92e-09 ***
                                                5.790e-02
## deptSurgery
                                    2.171e-01
                                                            3.750
                                                                  0.00022 ***
## clinPrimarily research emphasis -8.879e-02
                                               2.815e-02
                                                           -3.153 0.00181 **
```

1.534e-02

-1.640e-02 1.167e-02 -1.406 0.16111

-7.746 2.43e-13 ***

-1.188e-01

```
## exper 7.008e-03 1.423e-03 4.924 1.55e-06 ***
## rankAssociate 7.383e-02 1.651e-02 4.473 1.18e-05 ***
## rankFull professor 9.961e-02 1.936e-02 5.145 5.45e-07 ***
## avg_salary 3.608e-06 2.191e-07 16.472 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.09246 on 248 degrees of freedom
## Multiple R-squared: 0.9685, Adjusted R-squared: 0.967
## F-statistic: 635.6 on 12 and 248 DF, p-value: < 2.2e-16</pre>
```