Санкт-Петербургский государственный политехнический университет Институт компьютерных наук и технологий Высшая школа интеллектуальных систем и суперкомпьютерных технологий

КУРСОВАЯ РАБОТА

Решение уравнения Матьё

по дисциплине «Вычислительная математика»

Выполнил

студент гр. 3530901/10001 *<noдпись>* Д.Л.Симоновский

Руководитель

доцент, к.т.н. <подпись> В.Н.Цыган

«20» мая 2023 г.

Санкт-Петербург 2023

ЗАДАНИЕ НА ВЫПОЛНЕНИЕ КУРСОВОЙ РАБОТЫ

студенту группы <u>3530901/10001</u> (номер группы) Симоновский Даниил Леонидович (фамилия, имя, отчество)

1. Тема работы: Решение уравнения Матьё

Дата получения задания: «03» марта 2023 г.

- **2. Срок сдачи законченной работы** 08 июня 2023 г.
- **3. Исходные данные к работе:** Общий вид дифференциального уравнения Матьё; начальные условия для решения; рекомендованный временной интервал исследования численного решения дифференциального уравнения; перечень заданных преподавателем параметров уравнения с указанием уравнений или соотношений для их нахождения (вариант К-3-21).
- **4.** Содержание пояснительной записки (перечень подлежащих разработке вопросов): введение, основная часть (раскрывается структура основной части), заключение, список использованных источников, приложения.

Руководитель ______ В.Н. Цыган (инициалы, фамилия)

Задание принял к исполнению _____ Д.Л. Симоновский (инициалы, фамилия)

(дата)

Содержание

1. Цель работы	3
2. Уравнения Матьё	3
2.1. История	3
2.2. Применение	3
3. Ход работы	3
3.1. Анализ задания	3
3.2. План решения	4
3.3. Инструменты	4
3.4. Аналитические выкладки	4
3.5. Программирование решения	5
3.5.1. Система дифференциальных уравнений первого порядка	5
3.5.2. Поиск коэффициента А	5
3.5.3. Поиск коэффициента Е	6
3.5.4. Решение системы дифференциальных уравнений 1 порядка	6
3.5.5. Оценка погрешности	7
3.5.6. Результат работы оценки погрешности	8
3.5.7. Оценка влияния погрешности исходных данных	9
3.5.8. Результат работы оценки влияния погрешности исходных данных	11
4. Анализ результатов	14
4.1. Анализ погрешности	14
4.2. Анализ устойчивости	14
5. Заключение	14
6. Источники	14
7 Приложение	14

1. Цель работы

Решить уравнение Матьё (1.1)

$$\begin{cases} \frac{d^2U}{dt^2} + (\delta + E \cdot \cos(2t))U = 0\\ U(0) = A\\ U'(0) = B \end{cases}$$
(1.1)

для следующих значений δ , E, A, B:

 $A = 0.5300355 \cdot x^*$, где x^* — наименьший корень уравнения $x = 1.4^x$

B = 0

 $\delta = 1$

$$E = 1.553791 \int_0^1 \frac{\sin(x)}{x^2 + 1} dx$$

Построить график U(t), очень погрешность результата и влияние на точность погрешности исходных данных.

2. Уравнения Матьё

2.1. История

Уравнение Матье, классическое уравнение теории нелинейных колебаний, было введено французским математиком Эмилем Леонардом Матьё (1835-1890 г.) в 1868 году в ходе его исследований, связанных с колебаниями эллиптической мембраны барабана [1]. Уравнение отличается от простого гармонического осциллятора тем, что оно добавляет периодический (изменяющийся во времени) коэффициент жесткости [2].

2.2. Применение

Математические функции Матьё являются периодическими решениями линейного дифференциального уравнения второго порядка, известного как уравнение Матьё:

$$\frac{d^2y}{dx^2} + (a + 16q \cdot \cos(2x))y = 0$$

Они могут быть классифицированы как четные или нечетные функции, в зависимости от своей симметрии относительно оси координат.

Эти функции имеют широкий спектр применений в различных областях науки и техники. Например, функции Матьё используются в теории дифференциальных уравнений, физике колебаний, теории волн, электродинамике и оптике. Они представляют собой мощный инструмент для описания и анализа различных физических явлений [3].

Важно отметить, что функции Матьё имеют сложную аналитическую форму и требуют специальных методов и алгоритмов для их вычисления и исследования. Благодаря современным компьютерным технологиям и численным методам, эти функции стали более доступными для использования и исследования в научных и инженерных приложениях.

Таким образом, функции Матьё представляют собой важный инструмент для математического моделирования и решения различных физических задач. Их широкий спектр применений и уникальные свойства делают их неотъемлемой частью современной науки и техники.

3. Ход работы

3.1. Анализ задания

Для решения уравнения 1.1. необходимо вычислить коэффициенты А и Е, остальные заданы точно.

Для вычисления коэффициента A необходимо найти корень уравнения $x = 1.4^x$, решить таковое аналитически не представляется возможным, воспользуемся для этого программными средствами.

Для вычисления коэффициента Е необходимо вычислить значение интеграла $\int_0^1 \frac{\sin{(x)}}{x^2+1} dx$. Посчитать его аналитически не выйдет, поэтому, как и для поиска коэффициента A, будем использовать программные средства.

Так же на данный момент мы обладаем навыками решения систем дифференциальных уравнений, первого порядка, поэтому уравнение 1.1. (уравнение второго порядка) необходимо привести к знакомой системе.

3.2. План решения

Составим план по решению дифференциального уравнения 1.1.

- 1. Аналитически приведем уравнение 1.1. к системе дифференциальных уравнений первого порядка.
- 2. Программными методами вычислим значение коэффициента А
- 3. Программными методами вычислим значение коэффициента Е
- 4. Решим полученную на шаге 1 систему уравнений и оценим точность решения.
- 5. Решим эту же систему, добавив искусственную погрешность в исходные данные уравнения.

3.3. Инструменты

Для работы был выбран язык программирования Python версии 3.11 по причине удобства его использования для поставленной задачи. Были выбраны следующие библиотеки:

- 1. NumPy для большей скорости расчетов и простоты обработки
- 2. SciPy для функций расчета значения интеграла, поиска минимума функции, решения системы дифференциальных уравнений.
- 3. PrettyTable для красивого вывода таблицы в консоль
- 4. MatPlotLib для вывода графиков

3.4. Аналитические выкладки

Приведем дифференциального уравнения второго порядка к системе дифференциальных уравнений первого порядка, для этого воспользуемся алгоритмом, приведенном в книге «Вычислительная математика», авторов С. М. Устинов и В. А. Зимницкий [4].

Для наглядности добавим в уравнение 1.1. нулевой элемент $0\frac{dv}{dt}$, тогда наше уравнение будет выглядеть таким образом:

$$\frac{d^2U}{dt^2} + 0\frac{dU}{dt} + (\delta + E \cdot \cos(2t))U = 0$$

Первым делом необходимо сделать коэффициент 1 при старшей степени, однако в нашем уравнении он уже равен единице, поэтому пропустим это действие.

Выполним замену переменных: $\alpha_1 = 0$ и $\alpha_2 = (\delta + E \cdot \cos(2t))$, получим:

$$\frac{d^2U}{dt^2} + \alpha_1 \frac{dU}{dt} + \alpha_2 U = 0$$

Решение этого уравнение эквивалентно решению системы $\frac{dU}{dt} = AU + f(t)$, где f(t) = 0, А — матрица Фробениуса вида: $A = \begin{pmatrix} -\alpha_1 & -\alpha_2 \\ 1 & 0 \end{pmatrix}$, $U = \begin{pmatrix} U^{(1)} \\ U^{(2)} \end{pmatrix} = \begin{pmatrix} dU/dt \\ U \end{pmatrix}$. Таким образом получим систему:

$$\begin{cases} U^{(2)'} = U^{(1)} \\ {U^{(1)'}} = -\alpha_1 U^{(1)} - \alpha_2 U^{(2)} \end{cases}$$

Перепишем её, подставив α_1 и α_2

$$\begin{cases} U^{(2)'} = U^{(1)} \\ U^{(1)'} = (\delta + E \cdot \cos(2t))U^{(2)} \end{cases}$$

Именно эту систему необходимо будет решить.

3.5. Программирование решения

3.5.1. Система дифференциальных уравнений первого порядка

Для дальнейшего использования создадим функцию, которая, основываясь на параметрах δ и E создает и возвращает систему уравнений, полученную в пункте 3.4:

```
def get_Mathieu_function(delt, E):

"""

Bo3βραщαem φyμκιμιω Μεπьё

"""

def F(t, X):
    dX = np.zeros(X.shape)
    dX[1] = X[0]
    dX[0] = -(delt + E * np.cos(2 * t)) * X[1]
    return dX

return F
```

3.5.2. Поиск коэффициента А

Для нахождения коэффициента A необходимо умножить число 0.5300355 на наименьший корень уравнения $x = 1.4^x$.

Перепишем уравнение $x = 1.4^x$, перенеся 1.4^x в левую часть и вызвав программу для поиска минимума функции, однако перед этим построим результат в Desmos, чтоб определить начальное приближение (рис. 3.5.1.1).

Рис. 3.5.1.1. График функции $x - 1.4^x = 0$

Как видим у уравнения 2 корня, около x=2 и x=4. По заданию нам необходим минимальный корень, тогда будем искать ноль функции на промежутке от 0 до 3, начальным приближением возьмем x=2.

Для решения этого уравнения в Python будем использовать метод Ньютона из библиотеки scipy [5]. В качестве параметров ему необходимо передать функцию, ноль которой мы ищем:

```
def F(x):
    return x - (1.4 ** x)
```

Так этот метод требует приближение, которое мы нашли выше и точность:

```
def get_x():

Возвращает результат решения уравнения x=1.4^x

"""

x = 2
eps = 1e-9

def F(x):
return x - (1.4 ** x)

return scipy.optimize.newton(F, x, tol=eps)
```

При вызове этого метода мы получаем следующее число: 1.886663306.

Основываясь на графике 3.5.1.1. мы можем с большой уверенностью сказать, что найденный корень является правильным, а также, что мы нашли именно минимальный корень.

3.5.3. Поиск коэффициента Е

Для нахождения коэффициента Е необходимо умножить число 1.553791 на значение интеграла $\int_0^1 \frac{\sin{(x)}}{x^2+1} dx$.

Для поиска приближенного значения интеграла в Python воспользуемся методом quad библиотеки scipy. Для его использования объявим функцию, интеграл которой собираемся брать:

```
def F(x):
    return np.sin(x) / (x ** 2 + 1)
```

Теперь передадим эту функцию в метод quad [6], а также отрезок для интегрирования. Передадим эти параметры в метод и вернем полученное значение, умноженное на 1.553791:

```
def get_E():
    """
    Boзвращает переменную E, взяв интеграл и умножив на константу
    """
    start = 0
    end = 1

def F(x):
    return np.sin(x) / (x ** 2 + 1)

return 1.553791 * scipy.integrate.quad(F, start, end)[0]
```

3.5.4. Решение системы дифференциальных уравнений 1 порядка

Для решения системы уравнений первого порядка можно использовать программу rkf45, однако в scipy если более точный метод dop853, который использует явный метод Рунге-Кутты 8 степени [7], им мы и воспользуемся:

Теперь осталось объединить все пункты. Для начала получим значение коэффициентов:

```
# Вычисляем А на основании х*

A = 0.5300355 * get_x()

# В задано

В = 0

# Дельта задано

delt = 1

# Получим Е

E = get_E()
```

Так же получим систему с функцией Матьё:

```
Mathieu_function = get_Mathieu_function(delt, E)
```

Теперь осталось задать начальные значения и получить результат вычислений:

```
points = np.arange(0, 10.5, 0.5)
# Зададим начальные значения
X0 = np.array([A, B])
# Получим результат вычисления
Mathieu = rkf853(Mathieu_function, points, X0)[0]
```

Для удобства вынесем весь код по подсчету в отдельную функцию, передавая в неё узлы для счета:

```
def calculate_without_error(points):
    Вычисляет функцию Матьё
   # Вычисляем А на основании х*
    A = 0.5300355 * get_x()
   # В задано
   B = 0
   # Дельта задано
   delt = 1
   # Получим Е
   E = get_E()
   # Получим функцию Матьё
   Mathieu_function = get_Mathieu_function(delt, E)
    # Зададим начальные значения
   X0 = np.array([A, B])
    # Получим результат вычисления
    Mathieu = rkf853(Mathieu_function, points, X0)[0]
    return Mathieu
```

Такое название для функции выбрано не просто так, однако об это чуть позже.

3.5.5. Оценка погрешности

Оценить погрешность напрямую достаточно сложно, что связано с количеством использованных методов и проблемами с необходимостью анализа исходного кода каждого из них для выявления метода, который реально был использован внутри.

Чтоб избежать этого воспользуемся правилом Рунге [8]. Формула для оценки имеет вид:

$$\frac{\left|y_{i,h} - y_{i,h/2}\right|}{2^{p} - 1} \tag{3.5.5.1}$$

p – степень используемого метода. В нашем случае p = 8.

Вызовем метод для подсчета значений функции 2 раза, один раз с шагом 0.5, второй -0.25:

```
# Получение решения
points = np.arange(0, 10.5, 0.5)
without_error = calculate_without_error(points)
# Получение решения с двойной точностью
doubled_points = np.arange(0, 10.25, 0.25)
without_error_doubled_points = calculate_without_error(doubled_points)
```

Используя библиотеку pyplot выведем полученные функции на экран:

```
# Вывод на график
plt.plot(points, without_error, '-o', color='g', label='Step 0.5')
plt.plot(doubled_points, without_error_doubled_points, '-o', color='b', label='Step 0.25',
alpha=0.3)
plt.legend()
plt.savefig('graphs/graphs_without_error.png')
plt.show()
```

Теперь выполним оценку погрешности по формуле 3.5.5.1 и выведем её на график:

```
# Оценка точности
Runge_rule = abs(without_error - without_error_doubled_points[::2]) / (2 ** 8 - 1)
plt.plot(points, Runge_rule, '-o')
plt.savefig('graphs/error_of_method.png')
plt.show()
```

Для удобства выведем её так же в виде таблицы, используя библиотеку PrettyTable:

```
pt = PrettyTable()
pt.add_column('X', points)
pt.add_column('Without Error', without_error)
pt.add_column('Without Error Doubled', without_error_doubled_points[::2])
pt.add_column('Runge Rule', Runge_rule)
print(pt)
print(f'Max error = {max(Runge_rule)}')
```

3.5.6. Результат работы оценки погрешности

В результате работы кода пункта 3.5.5. и выше мы получаем 2 графика:

Рис. 3.5.6.2. График погрешности по методу Рунге

Так же получаем одну таблицу, в которой идет сравнение графиков с шагом 0.5 и 0.25:

+	+	+	
X	Without Error	Without Error Doubled	Runge Rule
0.0	0.9999985288579282	0.9999985288579282	0.0
0.5	0.8322980186963664	0.8322980186867972	3.752640899548686e-14
1.0	0.5020991585507858	0.5020991523945542	2.4142084845407807e-11
1.5	0.22533999377558472	0.22533998657888893	2.822233645040498e-11
2.0	-0.05559893164245444	-0.055598934264595806	1.028290731431172e-11
2.5	-0.4950896274000326	-0.4950896374212451	3.929887265281409e-11
3.0	-0.9810392049605126	-0.9810392303879802	9.971555955673341e-11
3.5	-1.171384340663171	-1.1713843749855828	1.3459769333948378e-10
4.0	-0.998984962381676	-0.9989849771187479	5.779243880840233e-11
4.5	-0.7181256913722642	-0.7181256805090818	4.2600715547772934e-11
5.0	-0.41290931403308245	-0.41290929462380604	7.611480944435654e-11
5.5	0.11553022687227327	0.11553026375978742	1.4465691825221837e-10
6.0	0.9085642356395505	0.9085643163013983	3.1632097203020535e-10
6.5	1.534340255175179	1.5343403645884244	4.2907155040290497e-10
7.0	1.61494605039075	1.6149461479453024	3.825668722988533e-10
7.5	1.3437082568084524	1.3437082990949099	1.6582924488921426e-10
8.0	0.9859012242009985	0.9859012323798511	3.207393174582929e-11
8.5	0.37059095923155216	0.37059092790467335	1.2285050514997092e-10
9.0	-0.7349853189840385	-0.7349854516933727	5.204287615236032e-10
9.5	-1.913642309491197	-1.9136425401261068	9.044506268112935e-10
10.0	-2.4145272477430137	-2.4145274810769797	9.150351604965439e-10
+	+	+	+

Max error = 9.150351604965439e-10

Табл. 3.5.6.3. Сравнение графиков с шагом 0.5 и 0.25

3.5.7. Оценка влияния погрешности исходных данных

Для оценки влияния погрешности исходных данных будем увеличивать/уменьшать значение в n- ом знаке исходных данных. Для этого создадим функцию calculate, которая будет работать аналогично функции calculate_without_error, однако будет принимать дополнительный параметр error, который будет отвечать за погрешность.

Для корректности эксперимента будем случайным образом менять знак погрешности, используя библиотеку random:

```
def calculate(points, error):
    Вычисляет функцию Матьё с заданной погрешностью
    # Вычисляем А на основании х*
   A = 0.5300355 * get_x() + error * random.choice([-1, 1])
   # В задано
   B = \emptyset + error * random.choice([-1, 1])
   # Дельта задано
   delt = 1 + error * random.choice([-1, 1])
   # Получим Е
   E = get_E() + error * random.choice([-1, 1])
    # Получим функцию Матьё
   Mathieu_function = get_Mathieu_function(delt, E)
    # Зададим начальные значения
   X0 = np.array([A, B])
    # Получим результат вычисления
   Mathieu = rkf853(Mathieu_function, points, X0)[0]
```

Так же для удобства будем сразу же выводить полученный график:

```
# Вывели результат в виде графика
plt.title(f'Error = {error}')
plt.plot(points, Mathieu, '-o')
plt.savefig(f'graphs/error_{error}.png')
plt.show()
return Mathieu
```

Создадим массив с коэффициентами для изменения начальных значений. Для эксперимента будем менять значения сначала в 6, потом в 5 и так до 1 знака:

```
error_add = np.array([10 ** (-i) for i in range(6, 0, -1)])
```

Далее вызовем функцию calculate, передавая в неё параметры погрешности:

```
error = []
for i in error_add:
    error.append(calculate(points, i))
```

Для анализа полученных данных выведем полученные значения в виде таблицы, используя библиотеку PrettyTable:

```
# Вывод значений

pt = PrettyTable()

pt.add_column('X', points)

pt.add_column('0', [f'{i:.07}' for i in without_error])

for error_val, result in zip(error_add, error):

   pt.add_column(f'{error_val:.0e}', [f'{i:.07}' for i in result])

print(pt)
```

Так же выведем разницу между тем, что мы получили, вызывая функцию без дополнительной погрешности и тем, что получили, добавив погрешность, используя туже библиотеку:

```
# Вывод погрешностей

max_delta = []

pt = PrettyTable()

pt.add_column('X', points)

for error_val, result in zip(error_add, error):

    max_delta.append(max(without_error - result))

pt.add_column(f'{error_val:.0e}', [f'{i:.05e}' for i in without_error - result])

print(pt)
```

Так же выведем максимальные значения отклонений:

```
# Вывод максимальных погрешностей

pt = PrettyTable()

pt.add_column('Error val', [f'{i:.0e}' for i in error_add])

pt.add_column('Max Error', [f'{i:.5e}' for i in max_delta])

print(pt)
```

3.5.8. Результат работы оценки влияния погрешности исходных данных

В результате работы кода из пункта 3.5.7. и выше мы получаем 6 графиков (которые при каждом запуске немного отличаются в следствии добавления случайных параметров):

Рис. 3.5.8.2. График с погрешностью на 5 знаке

-1.5

-2.0

-2.5

Рис. 3.5.8.3. График с погрешностью на 4 знаке Error = 0.001

Рис. 3.5.8.4. График с погрешностью на 3 знаке Error = 0.01

Рис. 3.5.8.5. График с погрешностью на 2 знаке

Рис. 3.5.8.6. График с погрешностью на 1 знаке

Так же в результате работы мы получаем таблицу по каждому из графиков:

	, 1		, ,			_	
X	0	1e-06	1e-05	1e-04	1e-03	1e-02	1e-01
1 0.0	0.9999985	0.9999975	0.9999885	0.9998985	0.9989985	0.9899985	1.099999
0.5	0.832298	0.8322981	0.8322827	0.8323025	0.8307683	0.8309392	0.8523798
1.0	0.5020992	0.5021001	0.5020808	0.5021974	0.5002651	0.5103346	0.4924664
1.5	0.22534	0.2253413	0.2253165	0.2254703	0.2229926	0.2441924	0.267892
2.0	-0.05559893	-0.05559757	-0.05562604	-0.05546239	-0.05830722	-0.02746436	0.05584135
2.5	-0.4950896	-0.4950882	-0.4951069	-0.4949443	-0.4968168	-0.4678209	-0.4045383
3.0	-0.9810392	-0.9810381	-0.9810293	-0.9809244	-0.9800514	-0.9711053	-1.036762
3.5	-1.171384	-1.171384	-1.171347	-1.171382	-1.167646	-1.185148	-1.384108
4.0	-0.998985	-0.9989862	-0.9989345	-0.9991122	-0.993946	-1.029184	-1.288871
4.5	-0.7181257	-0.7181276	-0.7180703	-0.7183155	-0.7125864	-0.7589457	-1.067397
5.0	-0.4129093	-0.4129113	-0.4128511	-0.4131108	-0.4071003	-0.4627374	-0.8420185
5.5	0.1155302	0.1155281	0.1155741	0.1153185	0.1199048	0.06907962	-0.2770604
6.0	0.9085642	0.9085622	0.908561	0.9083656	0.9082293	0.8931143	0.8375311
6.5	1.53434	1.534339	1.534278	1.534255	1.528137	1.565173	1.926112
7.0	1.614946	1.614947	1.614851	1.615046	1.605468	1.67709	2.287984
7.5	1.343708	1.343711	1.343606	1.343937	1.333498	1.418737	2.113977
8.0	0.9859012	0.9859039	0.9857981	0.9861728	0.9756093	1.069325	1.844639
8.5	0.370591	0.370594	0.3705058	0.3708954	0.3620996	0.4490747	1.202127
9.0	-0.7349853	-0.7349819	-0.7350013	-0.7346413	-0.7365689	-0.7030034	-0.3918448
9.5	-1.913642	-1.91364	-1.913554	-1.913369	-1.904841	-1.962307	-2.45787
10.0	-2.414527	-2.414527	-2.414368	-2.41449	-2.398649	-2.524613	-3.627452
+	+	+	+	+	+	+	++

Табл. 3.5.8.1. Значения графиков

И таблицу погрешностей этих графиков:

Χ	l 1e-06	1e-05	l 1e-04	1e-03	l 1e-02	l 1e-01
0.0	1.00000e-06	1.00000e-05	1.00000e-04	1.00000e-03	1.00000e-02	-1.00000e-01
0.5	-4.43008e-08	1.52971e-05	-4.45480e-06	1.52973e-03	1.35887e-03	-2.00818e-02
1.0	-9.82650e-07	1.83410e-05	-9.82264e-05	1.83409e-03	-8.23541e-03	9.63277e-03
1.5	-1.30407e-06	2.34828e-05	-1.30338e-04	2.34741e-03	-1.88525e-02	-4.25520e-0
2.0	-1.36622e-06	2.71100e-05	-1.36538e-04	2.70828e-03	-2.81346e-02	-1.11440e-0
2.5	-1.45442e-06	1.73098e-05	-1.45353e-04	1.72715e-03	-2.72687e-02	-9.05513e-0
3.0	-1.14869e-06	-9.85788e-06	-1.14810e-04	-9.87784e-04	-9.93391e-03	5.57225e-02
3.5	-2.10253e-08	-3.73934e-05	-2.10085e-06	-3.73805e-03	1.37637e-02	2.12723e-01
4.0	1.27257e-06	-5.04211e-05	1.27214e-04	-5.03899e-03	3.01987e-02	2.89886e-01
4.5	1.89820e-06	-5.54387e-05	1.89761e-04	-5.53931e-03	4.08200e-02	3.49271e-01
5.0	2.01503e-06	-5.81682e-05	2.01443e-04	-5.80904e-03	4.98280e-02	4.29109e-01
5.5	2.11771e-06	-4.38513e-05	2.11722e-04	-4.37453e-03	4.64506e-02	3.92591e-01
6.0	1.98616e-06	3.27731e-06	1.98610e-04	3.34972e-04	1.54499e-02	7.10332e-02
6.5	8.49719e-07	6.20463e-05	8.50274e-05	6.20307e-03	-3.08331e-02	-3.91772e-0
7.0	-1.00075e-06	9.48637e-05	-9.99805e-05	9.47832e-03	-6.21436e-02	-6.73038e-0
7.5	-2.28374e-06	1.02215e-04	-2.28279e-04	1.02102e-02	-7.50288e-02	-7.70268e-0
8.0	-2.71620e-06	1.03083e-04	-2.71543e-04	1.02919e-02	-8.34240e-02	-8.58738e-0
8.5	-3.04433e-06	8.51342e-05	-3.04392e-04	8.49133e-03	-7.84837e-02	-8.31536e-0
9.0	-3.44028e-06	1.60137e-05	-3.44066e-04	1.58358e-03	-3.19819e-02	-3.43141e-0
9.5	-2.73189e-06	-8.80077e-05	-2.73333e-04	-8.80095e-03	4.86652e-02	5.44227e-01
10.0	-3.67469e-07	-1.58946e-04	-3.69541e-05	-1.58783e-02	1.10085e-01	1.21292e+00

Табл. 3.5.8.2. Погрешности графиков, относительно графика без возмущений

А также таблица с максимальными погрешностями:

++	+
Error val	Max Error
++	+
1e-06	2.11771e-06
1e-05	1.03083e-04
1e-04	2.11722e-04
1e-03	1.02919e-02
1e-02	1.10085e-01
1e-01	1.21292e+00
1	1

Табл. 3.5.8.3. Максимальные значения погрешностей

4. Анализ результатов

4.1. Анализ погрешности

Как видно из рисунка 3.5.6.2. погрешность возрастает со степенью отдаления от начальных условий, что вполне ожидаемо. Так же видно, что погрешность имеет одинаковый порядок, а именно 10^{-10} , что свидетельствует об отличной степени точности выбранного метода.

4.2. Анализ устойчивости

Как видно из таблицы 3.5.8.2. погрешность имеет примерно тот же порядок, что и порядок, в котором мы меняли значение, что свидетельствует о хорошей устойчивости решения.

5. Заключение

В ходе курсовой работы было произведено исследование уравнение Матьё. Для исследования этого уравнения оно было сведено к системе дифференциальных уравнений первого порядка, найдены необходимые коэффициенты, используя метод Ньютона и quad, и было решено уравнение, используя метод Рунге-Кутты 8 степени.

Выполнив анализ полученных результатов, стало понятно, что выбранный метод решения дает ответ с хорошей точностью, а также заданные коэффициенты дают хорошую устойчивость решения.

6. Источники

- 1. Gutierrez-Vega, J. et al. (2003). Mathieu functions, a visual approach. из: https://www.academia.edu/4329322/Mathieu functions a visual approach
- 2. Mathieu, E.L. Journal de Mathematiques, Vol. 13 (2), 1868, -137 c.
- 3. Уиттекер Э.Т., Ватсон Дж.Н. Курс современного анализа, Том 2, $1963 \Gamma 500 c$.
- 4. Устинов С.М., Зимницкий В.А. Вычислительная математика, 2009 г. 336 с.
- 5. Документация метода newton, библиотеки scipy: официальный сайт. URL: https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.newton.html
- 6. Документация метода quad, библиотеки scipy: официальный сайт. URL: https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.quad.html
- 7. Документация метода quad, библиотеки scipy: официальный сайт. URL: https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.DOP853.html
- 8. И. М. Виноградов. Математическая энциклопедия. 1977—1985 г

7. Приложение

Код на GitHub, URL: https://github.com/DafterT/comp_math_coursework Листинг кода:

```
import random
import matplotlib.pyplot as plt
import numpy as np
import scipy
from prettytable import PrettyTable
def get_x():
    Возвращает результат решения уравнения х=1.4^х
    # Начальное приближение
    x = 2
    eps = 1e-9
    # Функция, у которой ищем ноль
    def F(x):
        return x - (1.4 ** x)
    return scipy.optimize.newton(F, x, tol=eps)
def get_E():
    Возвращает переменную Е, взяв интеграл и умножив на константу
    start = 0
    end = 1
    # Функция для интегрирования
    def F(x):
        return np.sin(x) / (x ** 2 + 1)
    return 1.553791 * scipy.integrate.quad(F, start, end)[0]
def get_Mathieu_function(delt, E):
    Возвращает функцию Метьё
    def F(t, X):
        dX = np.zeros(X.shape)
        dX[1] = X[0]
        dX[0] = -(delt + E * np.cos(2 * t)) * X[1]
        return dX
    return F
def rkf853(f, T, X0):
    Pewaem x' = f(t, x) для каждого t \ \theta \ T
    С начальным значением `ХО`, используя явный метод Рунге-Кутта 8
    runge = scipy.integrate.ode(f).set_integrator('dop853').set_initial_value(X0, T[0])
    X = [X0, *[runge.integrate(T[i]) for i in range(1, len(T))]]
    return np.array([i[0] for i in X]), np.array([i[1] for i in X])
```

```
def calculate(points, error):
    Вычисляет функцию Матьё с заданной погрешностью
    # Вычисляем А на основании х*
   A = 0.5300355 * get_x() + error * random.choice([-1, 1])
   # В задано
   B = 0 + error * random.choice([-1, 1])
    # Дельта задано
   delt = 1 + error * random.choice([-1, 1])
    # Получим Е
    E = get_E() + error * random.choice([-1, 1])
    # Получим функцию Матьё
   Mathieu_function = get_Mathieu_function(delt, E)
    # Зададим начальные значения
   X0 = np.array([A, B])
    # Получим результат вычисления
    Mathieu = rkf853(Mathieu_function, points, X0)[∅]
    # Вывели результат в виде графика
   plt.title(f'Error = {error}')
plt.plot(points, Mathieu, '-o')
    plt.savefig(f'graphs/error_{error}.png')
    plt.show()
    return Mathieu
def calculate_without_error(points):
    Вычисляет функцию Матьё
   # Вычисляем А на основании х*
   A = 0.5300355 * get_x()
   # В задано
   B = ∅
   # Дельта задано
   delt = 1
   # Получим Е
    E = get_E()
    # Получим функцию Матьё
   Mathieu_function = get_Mathieu_function(delt, E)
    # Зададим начальные значения
   X0 = np.array([A, B])
    # Получим результат вычисления
   Mathieu = rkf853(Mathieu_function, points, X0)[0]
    return Mathieu
```

```
def main():
      # Получение решения
      points = np.arange(0, 10.5, 0.5)
      without_error = calculate_without_error(points)
      # Получение решения с двойной точностью
      doubled_points = np.arange(0, 10.25, 0.25)
     without error doubled points = calculate without error(doubled points)
      # Вывод на график
      plt.plot(points, without_error, '-o', color='g', label='Step 0.5')
      plt.plot(doubled points, without error doubled points, '-o', color='b', label='Step
 0.25', alpha=0.3)
      plt.legend()
      plt.savefig('graphs/graphs_without_error.png')
      plt.show()
      # Оценка точности
      Runge_rule = abs(without_error - without_error_doubled_points[::2]) / (2 ** 8 - 1)
      plt.plot(points, Runge_rule, '-o')
      plt.savefig('graphs/error_of_method.png')
      plt.show()
      pt = PrettyTable()
      pt.add_column('X', points)
      pt.add_column('Without Error', without_error)
      pt.add_column('Without Error Doubled', without_error_doubled_points[::2])
      pt.add_column('Runge Rule', Runge_rule)
      print(pt)
      print(f'Max error = {max(Runge rule)}')
      # Оценка влияния погрешности исходных данных
      error_add = np.array([10 ** (-i) for i in range(6, 0, -1)])
      error = []
      for i in error add:
          error.append(calculate(points, i))
      # Вывод значений
     pt = PrettyTable()
     pt.add_column('X', points)
      pt.add_column('0', [f'{i:.07}' for i in without_error])
      for error_val, result in zip(error_add, error):
          pt.add_column(f'{error_val:.0e}', [f'{i:.07}' for i in result])
      print(pt)
      # Вывод погрешностей
     max_delta = []
      pt = PrettyTable()
      pt.add_column('X', points)
      for error_val, result in zip(error_add, error):
          max_delta.append(max(without_error - result))
          pt.add\_column(f'\{error\_val:.0e\}', [f'\{i:.05e\}' for i in without\_error - result])
      print(pt)
      # Вывод максимальных погрешностей
      pt = PrettyTable()
      pt.add_column('Error val', [f'{i:.0e}' for i in error_add])
      pt.add column('Max Error', [f'{i:.5e}' for i in max delta])
      print(pt)
  if __name
            _ == "__main__":
      main()
```