Probability

Marco Biroli

September 3, 2020

Contents

1	Founding Blocks	5
	1.1 Definitions	5

4 CONTENTS

Chapter 1

Founding Blocks

1.1 Definitions

Definition 1.1.1 (Universe). We consider a random experiment, then the set of all possible outcomes of the experiment is denoted by Ω and is called the universe.

Definition 1.1.2 (Event). An event is usually denoted by E. An event is a set of results for which we can compute the probability.

Definition 1.1.3 (Collection). The collection of all events is denoted by \mathcal{F} . Hence $\mathcal{F} \subseteq \mathcal{P}(\Omega)$.

Definition 1.1.4 (Disjoint Events). Two events $A, B \in \mathcal{F}$ are disjoint or incompatible if they cannot occur simultaneously. In other words if $A \cap B = \emptyset$.

Remark. We require that the collection \mathcal{F} of the events is an algebra of sets.

Definition 1.1.5 (Algebra of Sets). An element \mathcal{F} is called an algebra of sets if $\mathcal{F} \neq \emptyset$ and:

- 1. $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$
- 2. $A, B \in \mathcal{F} \Rightarrow A \cup B \in \mathcal{F}$

Remark. For the scope of this course we further require that \mathcal{F} is stable under countable unions. In other words the second condition above is replaced by:

$$(A_n)_{n\in\mathbb{N}}\in\mathcal{F}^{\mathbb{N}}\Rightarrow\bigcup_{n\in\mathbb{N}}A_n\in\mathcal{F}$$

Definition 1.1.6 (σ -algebra). A σ -algebra is an algebra of sets where the second condition is replaced by the stronger condition requiring stability under countable union.

Definition 1.1.7 (Probability). The probability P(E) of E is the theoretical value for the proportion of experiments in which E occurs. Thus the probability is a function from \mathcal{F} to [0,1]. Such that:

- 1. $P(\Omega) = 1$.
- 2. $A, B \in \mathcal{F}, A \cap B = \emptyset \Rightarrow P(A \cup B) = P(A) + P(B)$.

In other words, P is an additive set function from \mathcal{F} to [0,1].

Remark. This definition however is not very well suited to infinite event sets. Then modern probability theory adds a condition to the above.

Definition 1.1.8 (Modern Probability). A modern probability P(E) of E is a probability with the stronger condition:

$$\forall (A_n)_{n\in\mathbb{N}}\in\mathcal{F}^{\mathbb{N}}, (\forall n,m\in\mathbb{N},n\neq m\Rightarrow A_n\cap A_m=\emptyset)\Rightarrow P\left(\bigcup_{n\in\mathbb{N}}A_n\right)=\sum_{n\in\mathbb{N}}P(A_n)$$

Definition 1.1.9 (Probability Space). A probability space is a triple (Ω, \mathcal{F}, P) . Where Ω is the universe of all possible results, \mathcal{F} is a σ -field on Ω , and P is a modern probability function on \mathcal{F} .

Remark. The mathematical framework which defines probability theory actually comes from another mathematical framework called measure theory. This is why the elements of the σ -field are sometimes called the measurable sets and the probability function is sometimes called a probability measure.

Definition 1.1.10 (Finite Space). We consider the case where Ω is a finite set, we write $\Omega = \{x_1, \dots, x_n\}$. The natural σ -field on Ω is $\mathcal{P}(\Omega)$. It is the only σ -field which contains the singletons. Then let P be a probability on Ω and let us set $\forall i \in [1, n], p_i = P(\{x_i\})$. Then the numbers p_i satisfy:

$$(\forall i \in [1, n], 0 \le p_i \le 1) \land \sum_{i=1}^{n} p_i = 1$$

Then for any $A \subset \Omega$ we have by additivity that:

$$P(A) = \sum_{x \in A} P(\lbrace x \rbrace) = \sum_{i: x_i \in A} p_i$$

Hence P is completely determined by the numbers p_i .

Remark. Notice that conversely if we are given the numbers p_i summing to 1 we can define a probability P on Ω by stating $P(\{x_i\}) = p_i$ and P will indeed be a probability measure.

Definition 1.1.11 (Countable Spaces). We suppose that Ω is countable and we set $\Omega = \{x_n, n \in \mathbb{N}\}$. The natural σ -field on Ω is again the power set of Ω . Then the definitions are an immediate generalization of the ones for a finite space.

Definition 1.1.12 (Continuous Spaces). If we take the simplest example of $\Omega = \mathbb{R}$ then the intuitive σ -field being the power set turns out to be too complicated to be useful. Hence we take for \mathcal{F} the Borel tribe of \mathbb{R} , $\mathcal{B}(\mathbb{R})$. The Borel σ -field corresponds to taking a countable union of all possible closed intervals of \mathbb{R} .

Definition 1.1.13 (Random Variable). Let (Ω, \mathcal{F}, P) be a probability space. A random variable X on (Ω, \mathcal{F}, P) is map from Ω to \mathbb{R} . Which satisfies:

$$\forall B \in \mathcal{B}(\mathbb{R}), X^{-1}(B) = \{\omega \in \Omega : X(\omega) \in B\} \in \mathcal{F}$$

Remark. This definition is equivalent to: for all interval I of \mathbb{R} we have that $X^{-1}(I) \in \mathcal{F}$.

Notation. The event $X^{-1}(I)$ is denoted by $\{X \in I\}$ or even simply $X \in I$. Secondly random variables are denoted by capital letters typically X, Y, U, V and their possible values are denoted by the corresponding lowercase letters.

Definition 1.1.14 (Law of a random variable). Let (Ω, \mathcal{F}, P) be a probability space and let X be a random variable defined on $\Omega \to \mathbb{R}$. The law of X is the probability measure on \mathbb{R} defined by:

$$\forall B \in \mathcal{B}(\mathbb{R}), P_X(B) = P(X \in B)$$

Proof. Let us check that P_X is indeed a probability measure. We have that:

$$P_X(\mathbb{R}) = P(X \in \mathbb{R}) = 1.$$

Furthermore let $(B_n)_{n\in\mathbb{N}}\in\mathcal{B}(\mathbb{R})^{\mathbb{N}}$ be a disjoint sequence of Borel sets. Then:

$$P_X\left(\bigcup_{n\in\mathbb{N}}B_n\right) = P\left(X\in\bigcup_{n\in\mathbb{N}}B_n\right) = P\left(\bigcup_{n\in\mathbb{N}}\{X\in B_n\}\right) = \sum_{n\in\mathbb{N}}P(X\in B_n) = \sum_{n\in\mathbb{N}}P_X(B_n)$$

Notation. The law P_X of X is sometimes called the distribution of X. We furthermore say that two variables X, Y have the same law if $P_X = P_Y$. The object of primary interest for a random variable is its law.

Definition 1.1.15 (Law). Let f be a non-negative function $\mathbb{R} \to \mathbb{R}^+$ which is integrable and $\int_{\mathbb{R}} f(x) dx = 1$. We define next:

$$\forall A \in \mathcal{B}(\mathbb{R}) \quad P(A) = \int_A f(x) dx$$

This formula defines a probability measure on \mathbb{R} , called the probability measure with density function f.

1.1. DEFINITIONS 7

Definition 1.1.16 (Expectation). We say that the random variable X has an expectation or that it is integrable if:

$$\int_{\mathbb{R}} |x| \mathrm{d}P_X(x) < +\infty$$

Then the expectation is defined as:

$$E(X) = \int_{\mathbb{R}} x dP_X(x) = \int_{\Omega} X dP = \int_{\omega \in \Omega} X(\omega) dP(\omega) = \int_{\mathbb{R}} Id_{\mathbb{R}} dP_X$$

From this formula we see that the expectation is completely dependent on the law of the random variable.