PHY1701	Engineering Physics		L	T	P	J	C
			3	0	2	0	4
Pre-requisite	PHY1001	Syllabus version					
							1.0

Course Objectives:

To enable the students to understand the basics of the latest advancements in Physics viz., Quantum Mechanics, Nanotechnology, Lasers, Electro Magnetic Theory and Fiber Optics.

Expected Course Outcome: Students will be able to

- 1. Comprehend the dual nature of radiation and matter.
- 2. Compute Schrodinger's equations to solve finite and infinite potential problems.
- 3. Analyze quantum ideas at the nanoscale.
- 4. Apply quantum ideas for understanding the operation and working principle of optoelectronic devices.
- 5. Recall the Maxwell's equations in differential and integral form.
- 6. Design the various types of optical fibers for different Engineering applications.
- 7. Explain concept of Lorentz Transformation for Engineering applications.
- 8. Demonstrate the quantum mechanical ideas

Student Learning Outcomes (SLO): 2, 4, 5, 9

Module:1 Introduction to Modern Physics

6 hours

Planck's concept (hypothesis), Compton Effect, Particle properties of wave: Matter Waves, Davisson Germer Experiment, Heisenberg Uncertainty Principle, Wave function, and Schrodinger equation (time dependent & independent).

Module:2 | Applications of Quantum Physics

5 hours

Particle in a 1-D box (Eigen Value and Eigen Function), 3-D Analysis (Qualitative), Tunneling Effect (Qualitative) (AB 205), Scanning Tunneling Microscope (STM).

Module:3 | Nanophysics

5 hours

Introduction to Nano-materials, Moore's law, Properties of Nano-materials, Quantum confinement, Quantum well, wire & dot, Carbon Nano-tubes (CNT), Applications of nanotechnology in industry.

Module:4 | Laser Principles and Engineering Application

6 hours

Laser Characteristics, Spatial and Temporal Coherence, Einstein Coefficient & its significance, Population inversion, Two, three & four level systems, Pumping schemes, Threshold gain coefficient, Components of laser, Nd-YAG, He-Ne, CO2 and Dye laser and their engineering applications.

Module:5 | Electromagnetic Theory and its application

6 hours

Physics of Divergence, Gradient and Curl, Qualitative understanding of surface and volume integral, Maxwell Equations (Qualitative), Wave Equation (Derivation), EM Waves, Phase velocity, Group velocity, Group index , Wave guide (Qualitative)

Module:6 Propagation of EM waves in Optical fibers and Optoelectronic Devices

10 hours

Light propagation through fibers, Acceptance angle, Numerical Aperture, Types of fibers - step

index, graded index, single mode & multimode, Attenuation, Dispersion-intermodal and intramodal. Sources-LED & Laser Diode, Detectors-Photodetectors- PN & PIN - Applications of fiber optics in communication- Endoscopy.

Module:7 | Special Theory of Relativity

5 hours

Frame of reference, Galilean relativity, Postulate of special theory of relativity, Simultaneity, length contraction and time dilation.

Module:8 Contemporary issues:

2 hours

Lecture by Industry Experts

Total Lecture hours:

45 hours

Text Book(s)

- 1. Arthur Beiser et al., Concepts of Modern Physics, 2013, Sixth Edition, Tata McGraw Hill.
- 2. William Silfvast, Laser Fundamentals, 2008, Cambridge University Press.
- 3. D. J. Griffith, Introduction to Electrodynamics, 2014, 4th Edition, Pearson.
- 4. Djafar K. Mynbaev and Lowell L.Scheiner, Fiber Optic Communication Technology, 2011, Pearson

Reference Books

- 1. Raymond A. Serway, Clement J. Mosses, Curt A. Moyer Modern Physics, 2010, 3rd Indian Edition Cengage learning.
- 2. John R. Taylor, Chris D. Zafiratos and Michael A. Dubson, Modern Physics for Scientists and Engineers, 2011, PHI Learning Private Ltd.
- 3. Kenneth Krane Modern Physics, 2010, Wiley Indian Edition.
- 4. Nityanand Choudhary and Richa Verma, Laser Systems and Applications, 2011, PHI
- 5. Learning Private Ltd.
 - S. Nagabhushana and B. Sathyanarayana, Lasers and Optical Instrumentation, 2010, I.K.
- 6. International Publishing House Pvt. Ltd.,
- 7. R. Shevgaonkar, Electromagnetic Waves, 2005, 1st Edition, Tata McGraw Hill
- 8. Principles of Electromagnetics, Matthew N.O. Sadiku, 2010, Fourth Edition, Oxford. Ajoy Ghatak and K. Thyagarajan, Introduction to Fiber Optics, 2010, Cambridge University Press

Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar

List of Experiments					
1.	Determination of Planck's constant using electroluminescence process	2 hrs			
2.	Electron diffraction	2 hrs			
3.	Determination of wavelength of laser source (He -Ne laser and diode lasers of different wavelengths) using diffraction technique	2 hrs			
4.	Determination of size of fine particle using laser diffraction	2 hrs			
5.	Determination of the track width (periodicity) in a written CD	2 hrs			
6.	Optical Fiber communication (source + optical fiber + detector)	2 hrs			
7.	Analysis of crystallite size and strain in a nano -crystalline film using X-ray diffraction	2 hrs			
8.	Numerical solutions of Schrödinger equation (e.g. particle in a box problem) (can be given as an assignment)	2 hrs			
9.	Laser coherence length measurement	2 hrs			

10.	Proof for transverse nature of E.M. waves								
11.	11. Quantum confinement and Heisenberg's uncertainty principle								
12.	12. Determination of angle of prism and refractive index for various colour – Spectrometer								
13.	13. Determination of divergence of a laser beam								
14.	14. Determination of crystalline size for nanomaterial (Computer simulation)								
15. Demonstration of phase velocity and group velocity (Computer simulation)					2 hrs				
Total Laboratory Hours									
Mod	Mode of evaluation: CAT / FAT								
Reco	Recommended by Board of Studies 11.08.2017								
Approved by Academic Council No. 46 Date 24.08.2017									