

Skin lesion classification

Medical Image Analysis
Project presentation - 19/12/2019
Yusuke Kaga, Szymon Stanclik

Introduction -skin cancer-

- Skin is the largest organ in the body.
- Skin is made up of 3 layers and many different cells
- The name of skin cancer is depending on the types of cells.
- -Melanocyte→ Melanoma
- -Basal cells →Basal cell carcinoma(BCC)
- -Squamous cell→Squamous cell carcinoma(SCC)

Introduction -Category of skin cancer-

Туре	Malignant	Benign		
Subtype	Melanoma	ВСС	SCC	
appearance				
Morbidity	less than 2 % of all cases in skin cancer	Most frequent	Second frequent	
Mortality	Most lethal	Curable	Curable	

Introduction -typical diagnosis of skin cancer-

Drawbacks

- Invasive method
- Time and cost consuming
- Human errors

State of the art -Computer aided diagnosis(CAD)-

Merit

- Noninvasive method
- Quickly
- Precise decision

Our approach

Scheme of Image processing

Prefiltering and segmentation - results

Good segmentation
One contour
Benign: 79,16%
Malignant: 50%

Feature measurement

Bad segmentation
Zero or multiple contours
Benign: 20,84%
Malignant: 50%

THE ABCDs OF MELANOMA

A ASYMMETE one half unlike the other half

B BORDER
irregular, scalloped
or poorly
circumscribed
border

C COLOR
varied from one
area to another;
shades of tan and
brown, black;
sometimes white,
red or blue

larger than 6mm as a rule (diameter of pencil eraser)

Computed values

Size	Shape features	Color features
Diameter	Asymmetry index $AI = \frac{height}{width}$	Histogram analysis (mean, standard deviation)
Perimeter	Circularity index $CI = \frac{4 \times perimeter}{area^2}$	Ratio of highly pigmented region to low pigmented regions area
Area	Border irregularity $BI = \frac{perimeter^2}{area}$	-
_	Compactness $C = \frac{perimeter^2}{4 \times \pi \times area}$	-

Evaluation of extracted features

- Neglect incorrect segmented images
- Calculate and compare feature values for both benign and malignant skin lesions

-	Area	Perimeter	Diameter	Al	CI	ВІ	С
Benign	10730.63	385.46	124.37	1.13	0.25	16.25	1.29
Malignant	10646.86	381.86	116.98	1.15	0.23	18.98	1.51

Al - Asymmetry Index; Cl - Circularity Index; Bl - Border Irregularity; C - Compactness

Classification using supervised learning algorithms

Cross validation

Data division to training (80%) and test (20%) sets for mixed malignant and benign lesion.

Supervised learning classification

- Linear Discriminant Analysis
 Quadratic Discriminant Analysis
 - K-nearest neighbor (for multiple k)

Classification of benign and malignant skin lesions

Output: final diagnosis

Evaluation of classification algorithms

Conclusions

Segmentation rate was low especially for malignant cancer datasets

 Extracted features of benign and malignant skin lesions had on average similar values (except of border irregularity and compactness)

Challenges of this project

1. Segmentation methods

Malignant segmentation were difficult to perform due to their diversity.

Raw Image

Result

Filtered out (Due to multiple segmentation)

Uncorrected segmentation

2. Lack of features

Not enough extracted features (7 features)

Ex) in the paper[4] [5], 29 features were extracted

Other algorithm for supervised learning, or usage of Deep learnings(ex.CNNs)

4. Increasing the number of datasets

Bibliography

- 1. Techniques and algorithms for computer aided diagnosis of pigmented skin lesions—A review Sameena Pathana et al
- 2. A simple weighted thresholding method for the segmentation of pigmented skin lesions in macroscopic images Maciel Zortea et al
- 3. Skin Lesion Segmentation in Dermoscopic Images with Combination of YOLO and GrabCut Algorithm Halil Murat Ünver et al
- 4. Automated melanoma recognition Ganster et al
- 5. Performance of a dermoscopy-based computer vision system for the diagnosis of pigmented skin lesions compared with visual evaluation by experienced dermatologists Zortea et al.

Yusuke Kaga	Szymon Stanclik	
yusuke.kaga@etu.parisdescartes.fr	szymon.stanclik@etu.parisdescartes.fr	

Scheme of prefiltering and segmentation

Results of prefiltering and segmentation

•Centroid: (231, 232)

•Area: 123205.5

•Perimeter: 1385.2

To Feature extraction... ABCD for skin cancer

categorization

Contour & centeroid