

An Automatic Finite-Data Robustness Check for Bayes and Beyond: Can Dropping a Little Data Change Conclusions?

Tamara Broderick
Associate Professor,
MIT

With Ryan Giordano, Rachael Meager

 More data & better computation → data analyses increasingly drive life-changing decisions

 Typical setup: (1) run a data analysis on available data to reach a decision; (2) apply that decision to new data

- Typical setup: (1) run a data analysis on available data to reach a decision; (2) apply that decision to new data
- Might worry about generalizing if very small subset of data was instrumental to original analysis

- Typical setup: (1) run a data analysis on available data to reach a decision; (2) apply that decision to new data
- Might worry about generalizing if very small subset of data was instrumental to original analysis
 - E.g. in a study of microcredit with ~16,500 data points, we find just one data point drives the sign of the effect

- Typical setup: (1) run a data analysis on available data to reach a decision; (2) apply that decision to new data
- Might worry about generalizing if very small subset of data was instrumental to original analysis
 - E.g. in a study of microcredit with ~16,500 data points, we find just one data point drives the sign of the effect
- Challenge: Impossibly costly to check every data subset

- Typical setup: (1) run a data analysis on available data to reach a decision; (2) apply that decision to new data
- Might worry about generalizing if very small subset of data was instrumental to original analysis
 - E.g. in a study of microcredit with ~16,500 data points, we find just one data point drives the sign of the effect
- Challenge: Impossibly costly to check every data subset
- Our Solution: a fast, automated, accurate approximation

When do we care about dropping data subsets?

- When do we care about dropping data subsets?
- How should we drop data subsets?

- When do we care about dropping data subsets?
- How should we drop data subsets?
- Why is dropping data subsets computationally expensive?

- When do we care about dropping data subsets?
- How should we drop data subsets?
- Why is dropping data subsets computationally expensive?
- We provide a fast & automatic approximation

- When do we care about dropping data subsets?
- How should we drop data subsets?
- Why is dropping data subsets computationally expensive?
- We provide a fast & automatic approximation
- Many analyses are robust but some aren't

- When do we care about dropping data subsets?
- How should we drop data subsets?
- Why is dropping data subsets computationally expensive?
- We provide a fast & automatic approximation
- Many analyses are robust but some aren't
 - Being Bayesian doesn't guarantee robustness

- When do we care about dropping data subsets?
- How should we drop data subsets?
- Why is dropping data subsets computationally expensive?
- We provide a fast & automatic approximation
- Many analyses are robust but some aren't
 - Being Bayesian doesn't guarantee robustness
 - Here non-robustness isn't just a product of gross outliers, large p-values, heavy tails, etc.

- When do we care about dropping data subsets?
- How should we drop data subsets?
- Why is dropping data subsets computationally expensive?
- We provide a fast & automatic approximation
- Many analyses are robust but some aren't
 - Being Bayesian doesn't guarantee robustness
 - Here non-robustness isn't just a product of gross outliers, large p-values, heavy tails, etc.
 - Non-robustness is a product of low signal-to-noise

- When do we care about dropping data subsets?
- How should we drop data subsets?
- Why is dropping data subsets computationally expensive?
- We provide a fast & automatic approximation
- Many analyses are robust but some aren't
 - Being Bayesian doesn't guarantee robustness
 - Here non-robustness isn't just a product of gross outliers, large p-values, heavy tails, etc.
 - Non-robustness is a product of low signal-to-noise

 Any useful data analysis should be sensitive to some change in the data

- Any useful data analysis should be sensitive to some change in the data
- What types of sensitivity concern us? Varies by problem

- Any useful data analysis should be sensitive to some change in the data
- What types of sensitivity concern us? Varies by problem
- Let's look at economics (e.g. because of the important applications and wonderful reproducibility)

- Any useful data analysis should be sensitive to some change in the data
- What types of sensitivity concern us? Varies by problem
- Let's look at economics (e.g. because of the important applications and wonderful reproducibility)
 - Report a convenient proxy (e.g. mean)

- Any useful data analysis should be sensitive to some change in the data
- What types of sensitivity concern us? Varies by problem
- Let's look at economics (e.g. because of the important applications and wonderful reproducibility)
 - Report a convenient proxy (e.g. mean)
 - Policy population different from analyzed population

- Any useful data analysis should be sensitive to some change in the data
- What types of sensitivity concern us? Varies by problem
- Let's look at economics (e.g. because of the important applications and wonderful reproducibility)
 - Report a convenient proxy (e.g. mean)
 - Policy population different from analyzed population
 - Small fractions of data often missing not-at-random

- Any useful data analysis should be sensitive to some change in the data
- What types of sensitivity concern us? Varies by problem
- Let's look at economics (e.g. because of the important applications and wonderful reproducibility)
 - Report a convenient proxy (e.g. mean)
 - Policy population different from analyzed population
 - Small fractions of data often missing not-at-random
 - Models are necessarily misspecified

- Any useful data analysis should be sensitive to some change in the data
- What types of sensitivity concern us? Varies by problem
- Let's look at economics (e.g. because of the important applications and wonderful reproducibility)
 - Report a convenient proxy (e.g. mean)
 - Policy population different from analyzed population
 - Small fractions of data often missing not-at-random
 - Models are necessarily misspecified
- In all these cases, we'd be concerned if dropping a very small fraction of data changed our conclusions

- Any useful data analysis should be sensitive to some change in the data
- What types of sensitivity concern us? Varies by problem
- Let's look at economics (e.g. because of the important applications and wonderful reproducibility)
 - Report a convenient proxy (e.g. mean)
 - Policy population different from analyzed population
 - Small fractions of data often missing not-at-random
 - Models are necessarily misspecified
- In all these cases, we'd be concerned if dropping a very small fraction of data changed our conclusions
- Concerns not specific to economics

- Any useful data analysis should be sensitive to some change in the data
- What types of sensitivity concern us? Varies by problem
- Let's look at economics (e.g. because of the important applications and wonderful reproducibility)
 - Report a convenient proxy (e.g. mean)
 - Policy population different from analyzed population
 - Small fractions of data often missing not-at-random
 - Models are necessarily misspecified
- In all these cases, we'd be concerned if dropping a very small fraction of data changed our conclusions
- Concerns not specific to economics
- Even if doesn't bother you, should be up front about it

• Might worry if removing very small fraction $\alpha \in (0,1)$ of data changes your decision.

- Might worry if removing very small fraction $\alpha \in (0,1)$ of data changes your decision. E.g.
 - Changes sign of estimated effect (e.g. posterior mean)

- Might worry if removing very small fraction $\alpha \in (0,1)$ of data changes your decision. E.g.
 - Changes sign of estimated effect (e.g. posterior mean)
 - Changes whether Bayesian credible interval includes 0

- Might worry if removing very small fraction $\alpha \in (0,1)$ of data changes your decision. E.g.
 - Changes sign of estimated effect (e.g. posterior mean)
 - Changes whether Bayesian credible interval includes 0
 - Changes whether confidence interval includes 0

- Might worry if removing very small fraction $\alpha \in (0,1)$ of data changes your decision. E.g.
 - Changes sign of estimated effect (e.g. posterior mean)
 - Changes whether Bayesian credible interval includes 0
 - Changes whether confidence interval includes 0
- Brute force approach: re-run data analysis with every verysmall subset dropped

- Might worry if removing very small fraction $\alpha \in (0,1)$ of data changes your decision. E.g.
 - Changes sign of estimated effect (e.g. posterior mean)
 - Changes whether Bayesian credible interval includes 0
 - Changes whether confidence interval includes 0
- Brute force approach: re-run data analysis with every verysmall subset dropped
- Angelucci et al 2015 microcredit study: over 16,000 points

- Might worry if removing very small fraction $\alpha \in (0,1)$ of data changes your decision. E.g.
 - Changes sign of estimated effect (e.g. posterior mean)
 - Changes whether Bayesian credible interval includes 0
 - Changes whether confidence interval includes 0
- Brute force approach: re-run data analysis with every verysmall subset dropped
- Angelucci et al 2015 microcredit study: over 16,000 points
 - Take $\alpha = 0.001$; 0.1% of 16,000 is 16

- Might worry if removing very small fraction $\alpha \in (0,1)$ of data changes your decision. E.g.
 - Changes sign of estimated effect (e.g. posterior mean)
 - Changes whether Bayesian credible interval includes 0
 - Changes whether confidence interval includes 0
- Brute force approach: re-run data analysis with every verysmall subset dropped
- Angelucci et al 2015 microcredit study: over 16,000 points
 - Take $\alpha = 0.001$; 0.1% of 16,000 is 16
 - A dataset of size 16,000 has ~10⁵³ subsets of size 16

- Might worry if removing very small fraction $\alpha \in (0,1)$ of data changes your decision. E.g.
 - Changes sign of estimated effect (e.g. posterior mean)
 - Changes whether Bayesian credible interval includes 0
 - Changes whether confidence interval includes 0
- Brute force approach: re-run data analysis with every verysmall subset dropped
- Angelucci et al 2015 microcredit study: over 16,000 points
 - Take $\alpha = 0.001$; 0.1% of 16,000 is 16
 - A dataset of size 16,000 has ~10⁵³ subsets of size 16
 - If analysis takes 1 second, check takes > 10⁴⁶ years

- Might worry if removing very small fraction $\alpha \in (0,1)$ of data changes your decision. E.g.
 - Changes sign of estimated effect (e.g. posterior mean)
 - Changes whether Bayesian credible interval includes 0
 - Changes whether confidence interval includes 0
- Brute force approach: re-run data analysis with every verysmall subset dropped
- Angelucci et al 2015 microcredit study: over 16,000 points
 - Take $\alpha = 0.001$; 0.1% of 16,000 is 16
 - A dataset of size 16,000 has ~10⁵³ subsets of size 16
 - If analysis takes 1 second, check takes > 10⁴⁶ years
 - Parallel computing can't save you here!

- Might worry if removing very small fraction $\alpha \in (0,1)$ of data changes your decision. E.g.
 - Changes sign of estimated effect (e.g. posterior mean)
 - Changes whether Bayesian credible interval includes 0
 - Changes whether confidence interval includes 0
- Brute force approach: re-run data analysis with every verysmall subset dropped
- Angelucci et al 2015 microcredit study: over 16,000 points
 - Take $\alpha = 0.001$; 0.1% of 16,000 is 16
 - A dataset of size 16,000 has ~10⁵³ subsets of size 16
 - If analysis takes 1 second, check takes > 10⁴⁶ years
 - Parallel computing can't save you here!
- We provide a fast, automated, accurate approximation

- Angelucci et al 2015: Largest (16,561 households) of 7 randomized controlled trials examining effect of microcredit
 - Fantastic reproducibility and data sharing!

- Angelucci et al 2015: Largest (16,561 households) of 7 randomized controlled trials examining effect of microcredit
 - Fantastic reproducibility and data sharing!
 - Original model:

- Angelucci et al 2015: Largest (16,561 households) of 7 randomized controlled trials examining effect of microcredit
 - Fantastic reproducibility and data sharing!
 - Original model: $y_n = \theta_0 + \theta_1 x_n + \epsilon_n, \epsilon_n \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^2)$

 Angelucci et al 2015: Largest (16,561 households) of 7 randomized controlled trials examining effect of microcredit

microcredit indicator

Fantastic reproducibility and data sharing!

• Original model: $y_n = \theta_0 + \theta_1 x_n + \epsilon_n, \epsilon_n \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^2)$

- Angelucci et al 2015: Largest (16,561 households) of 7 randomized controlled trials examining effect of microcredit
 - Fantastic reproducibility and data sharing!
 profit
 microcredit indicator
 - Original model: $y_n = \theta_0 + \theta_1 x_n + \epsilon_n, \epsilon_n \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^2)$

- Angelucci et al 2015: Largest (16,561 households) of 7 randomized controlled trials examining effect of microcredit
 - Fantastic reproducibility and data sharing!
 profit
 parameters
 mjcrocredit indicator
 - Original model: $y_n = \theta_0 + \theta_1 x_n + \epsilon_n, \epsilon_n \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^2)$

- Angelucci et al 2015: Largest (16,561 households) of 7 randomized controlled trials examining effect of microcredit
 - Fantastic reproducibility and data sharing!
 profit
 parameters
 mjcrocredit indicator
 - Original model: $y_n = \theta_0 + \theta_1 x_n + \epsilon_n, \epsilon_n \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^2)$
 - Result: $\hat{\theta}_1 = -4.55$ USD PPP/2 weeks, std error 5.88

- Angelucci et al 2015: Largest (16,561 households) of 7 randomized controlled trials examining effect of microcredit
 - Fantastic reproducibility and data sharing!
 profit
 parameters
 mjcrocredit indicator
 - Original model: $y_n = \theta_0 + \theta_1 x_n + \epsilon_n, \epsilon_n \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^2)$
 - Result: $\hat{\theta}_1 = -4.55$ USD PPP/2 weeks, std error 5.88
- Our approximation:

- Angelucci et al 2015: Largest (16,561 households) of 7 randomized controlled trials examining effect of microcredit
 - Fantastic reproducibility and data sharing!
 profit
 parameters
 mjcrocredit indicator
 - Original model: $y_n = \theta_0 + \theta_1 x_n + \epsilon_n, \epsilon_n \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^2)$
 - Result: $\hat{\theta}_1 = -4.55$ USD PPP/2 weeks, std error 5.88
- Our approximation:
 - Takes 2 seconds to run (not 10⁴⁶ years)

- Angelucci et al 2015: Largest (16,561 households) of 7 randomized controlled trials examining effect of microcredit
 - Fantastic reproducibility and data sharing!
 profit
 parameters
 mjcrocredit indicator
 - Original model: $y_n = \theta_0 + \theta_1 x_n + \epsilon_n, \epsilon_n \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^2)$
 - Result: $\hat{\theta}_1 = -4.55$ USD PPP/2 weeks, std error 5.88
- Our approximation:
 - Takes 2 seconds to run (not 10⁴⁶ years)
 - Can remove 1 household & change sign: neg → pos

- Angelucci et al 2015: Largest (16,561 households) of 7 randomized controlled trials examining effect of microcredit
 - Fantastic reproducibility and data sharing!
 profit
 parameters
 mjcrocredit indicator
 - Original model: $y_n = \theta_0 + \theta_1 x_n + \epsilon_n, \epsilon_n \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^2)$
 - Result: $\hat{\theta}_1 = -4.55$ USD PPP/2 weeks, std error 5.88
- Our approximation:
 - Takes 2 seconds to run (not 10⁴⁶ years)
 - Can remove 1 household & change sign: neg → pos
 - Can remove 15 points to get $\hat{\theta}_1 = 7.03$, std err 2.55

- Angelucci et al 2015: Largest (16,561 households) of 7 randomized controlled trials examining effect of microcredit
 - Fantastic reproducibility and data sharing!
 profit
 parameters
 mjcrocredit indicator
 - Original model: $y_n = \theta_0 + \theta_1 x_n + \epsilon_n, \epsilon_n \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^2)$
 - Result: $\hat{\theta}_1 = -4.55$ USD PPP/2 weeks, std error 5.88
- Our approximation:
 - Takes 2 seconds to run (not 10⁴⁶ years)
 - Can remove 1 household & change sign: neg → pos
 - Can remove 15 points to get $\hat{\theta}_1 = 7.03$, std err 2.55
 - Can re-run regression to check directly
 - · We provide theoretical support, but no need to trust it

- Angelucci et al 2015: Largest (16,561 households) of 7 randomized controlled trials examining effect of microcredit
 - Fantastic reproducibility and data sharing!
 profit
 parameters
 mjcrocredit indicator
 - Original model: $y_n = \theta_0 + \theta_1 x_n + \epsilon_n, \epsilon_n \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^2)$
 - Result: $\hat{\theta}_1 = -4.55$ USD PPP/2 weeks, std error 5.88
- Our approximation:
 - Takes 2 seconds to run (not 10⁴⁶ years)
 - Can remove 1 household & change sign: neg → pos
 - Can remove 15 points to get $\hat{\theta}_1 = 7.03$, std err 2.55
 - Can re-run regression to check directly
 - We provide theoretical support, but no need to trust it
- It's not just non-significance, gross outliers, heavy tails,
- 5 reporting means, or not using Bayes; issue is signal-to-noise

 Meager 2020 provides a hierarchical Bayesian analysis of 7 randomized controlled trials examining effect of microcredit

- Meager 2020 provides a hierarchical Bayesian analysis of 7 randomized controlled trials examining effect of microcredit
 - +Original studies: fantastic reproducibility & data sharing!

- Meager 2020 provides a hierarchical Bayesian analysis of 7 randomized controlled trials examining effect of microcredit
 - +Original studies: fantastic reproducibility & data sharing!
 - Meager 2020: Carefully chosen likelihoods and priors

- Meager 2020 provides a hierarchical Bayesian analysis of 7 randomized controlled trials examining effect of microcredit
 - +Original studies: fantastic reproducibility & data sharing!
 - Meager 2020: Carefully chosen likelihoods and priors
- Meager approximates posterior with MCMC (Stan)

- Meager 2020 provides a hierarchical Bayesian analysis of 7 randomized controlled trials examining effect of microcredit
 - +Original studies: fantastic reproducibility & data sharing!
 - Meager 2020: Carefully chosen likelihoods and priors
- Meager approximates posterior with MCMC (Stan)
 - We use variational Bayes (VB)

- Meager 2020 provides a hierarchical Bayesian analysis of 7 randomized controlled trials examining effect of microcredit
 - +Original studies: fantastic reproducibility & data sharing!
 - Meager 2020: Carefully chosen likelihoods and priors
- Meager approximates posterior with MCMC (Stan)
 - We use variational Bayes (VB)
 - We check that VB matches Stan MCMC output

- Meager 2020 provides a hierarchical Bayesian analysis of 7 randomized controlled trials examining effect of microcredit
 - +Original studies: fantastic reproducibility & data sharing!
 - Meager 2020: Carefully chosen likelihoods and priors
- Meager approximates posterior with MCMC (Stan)
 - We use variational Bayes (VB)
 - We check that VB matches Stan MCMC output
 - Note: MCMC & VB match only when we use linear response covariance correction [Giordano, Broderick, Jordan 2018, 2015]

- Meager 2020 provides a hierarchical Bayesian analysis of 7 randomized controlled trials examining effect of microcredit
 - +Original studies: fantastic reproducibility & data sharing!
 - Meager 2020: Carefully chosen likelihoods and priors
- Meager approximates posterior with MCMC (Stan)
 - We use variational Bayes (VB)
 - We check that VB matches Stan MCMC output
 - Note: MCMC & VB match only when we use linear response covariance correction [Giordano, Broderick, Jordan 2018, 2015]
- We find that dropping < 0.1% of data changes the sign of the posterior expected average effect of microcredit

- Meager 2020 provides a hierarchical Bayesian analysis of 7 randomized controlled trials examining effect of microcredit
 - +Original studies: fantastic reproducibility & data sharing!
 - Meager 2020: Carefully chosen likelihoods and priors
- Meager approximates posterior with MCMC (Stan)
 - We use variational Bayes (VB)
 - We check that VB matches Stan MCMC output
 - Note: MCMC & VB match only when we use linear response covariance correction [Giordano, Broderick, Jordan 2018, 2015]
- We find that dropping < 0.1% of data changes the sign of the posterior expected average effect of microcredit
 - Still sensitive like the ordinary least squares analyses

• A data analysis:

A data analysis:

 d_n datum; e.g. (x_n, y_n)

A data analysis:

parameters θ, d_n datum; e.g. (x_n, y_n)

A data analysis:

 $f(\theta, d_n)$

datum; e.g. (x_n, y_n)

loss parameters

Setup & the Approximation loss parameters

A data analysis:

 $\sum_{n=1}^{N} f(\theta, d_n)$ datum; e.g. (x_n, y_n)

A data analysis:

$$\underset{\theta}{\operatorname{argmin}} \sum_{n=1}^{N} f(\theta, d_n)$$

$$\operatorname{datum; e.g. } (x_n, y_n)$$

parameters

1

A data analysis:

$$\hat{\theta} := \underset{\theta}{\operatorname{argmin}} \sum_{n=1}^{N} f(\theta, d_n)$$

estimator

datum; e.g. (x_n, y_n)

parameters

loss

• A data analysis:
$$\hat{\theta} := \operatorname*{argmin}_{\theta} \sum_{n=1}^{N} f(\theta, d_n) + R(\theta)$$

datum; e.g. (x_n, y_n)

parameters

parameters

• A data analysis:
$$\hat{\theta} := \operatorname*{argmin}_{\theta} \sum_{n=1}^{N} f(\theta, d_n) + R(\theta)$$

datum; e.g. (x_n, y_n)

A data analysis:
$$\hat{\theta} := \operatorname*{argmin} \sum_{n=1}^{N} f(\theta, d_n) + R(\theta)$$

• Actually any Z-estimator works (e.g. MAP, VB, multistage)

• A data analysis:
$$\hat{\theta} := \operatorname*{argmin}_{\theta} \sum_{n=1}^{N} f(\theta, d_n) + R(\theta)$$

- Actually any Z-estimator works (e.g. MAP, VB, multistage)
- A quantity of interest ϕ

- A data analysis: $\hat{\theta} := \operatorname*{argmin}_{\theta} \sum_{n=1}^{N} f(\theta, d_n) + R(\theta)$
 - Actually any Z-estimator works (e.g. MAP, VB, multistage)
- A quantity of interest ϕ : E.g. posterior mean, posterior credible interval endpoint, confidence interval endpoint

• A data analysis:
$$\hat{\theta} := \operatorname*{argmin}_{\theta} \sum_{n=1}^{N} f(\theta, d_n) + R(\theta)$$

- Actually any Z-estimator works (e.g. MAP, VB, multistage)
- A quantity of interest ϕ : E.g. posterior mean, posterior credible interval endpoint, confidence interval endpoint
- Original problem: $w = (1, \dots, 1, 1, 1, \dots, 1)$

• A data analysis:
$$\hat{\theta} := \operatorname*{argmin}_{\theta} \sum_{n=1}^{N} f(\theta, d_n) + R(\theta)$$

- Actually any Z-estimator works (e.g. MAP, VB, multistage)
- A quantity of interest ϕ : E.g. posterior mean, posterior credible interval endpoint, confidence interval endpoint
- Original problem: $w = (1, \dots, 1, 1, 1, \dots, 1)$

• Dropping a data point: $w = (1, \dots, 1, 0, 1, \dots, 1)$

- A data analysis: $\hat{\theta} := \operatorname*{argmin}_{\theta} \sum_{n=1}^{N} f(\theta, d_n) + R(\theta)$ estimator

 - Actually any Z-estimator works (e.g. MAP, VB, multistage)
- A quantity of interest ϕ : E.g. posterior mean, posterior credible interval endpoint, confidence interval endpoint
- Original problem: $w = (1, \dots, 1, 1, 1, \dots, 1)$

• Dropping a data point: $w = (1, \dots, 1, 0, 1, \dots, 1)$

- - Actually any Z-estimator works (e.g. MAP, VB, multistage)
- A quantity of interest ϕ : E.g. posterior mean, posterior credible interval endpoint, confidence interval endpoint
- Original problem: $w = (1, \dots, 1, 1, 1, \dots, 1)$ $w_1 w_2 w_3 \dots$
- Dropping a data point: $w = (1, \dots, 1, 0, 1, \dots, 1)$

• A data analysis:
$$\hat{\theta} := \underset{\theta}{\operatorname{argmin}} \sum_{n=1}^{N} f(\theta, d_n) + R(\theta)$$

- Actually any Z-estimator works (e.g. MAP, VB, multistage)
- A quantity of interest ϕ : E.g. posterior mean, posterior credible interval endpoint, confidence interval endpoint
- Original problem: $w = (1, \dots, 1, 1, 1, \dots, 1)$

• Dropping a data point: $w = (1, \dots, 1, 0, 1, \dots, 1)$

• A data analysis:
$$\hat{\theta} := \operatorname*{argmin}_{\theta} \sum_{n=1}^{N} \textcolor{red}{w_n} f(\theta, d_n) + R(\theta)$$

- Actually any Z-estimator works (e.g. MAP, VB, multistage)
- A quantity of interest ϕ : E.g. posterior mean, posterior credible interval endpoint, confidence interval endpoint
- Original problem: $w = (1, \dots, 1, 1, 1, \dots, 1)$

• Dropping a data point: $w = (1, \dots, 1, 0, 1, \dots, 1)$

- A data analysis: $\hat{\theta} := \underset{\theta}{\operatorname{argmin}} \sum_{n=1}^{N} w_n f(\theta, d_n) + R(\theta)$

- Actually any Z-estimator works (e.g. MAP, VB, multistage)
- A quantity of interest ϕ : E.g. posterior mean, posterior credible interval endpoint, confidence interval endpoint
- Original problem: $w = (1, \dots, 1, 1, 1, \dots, 1)$

 $w_1 w_2 w_3 \dots$

• Dropping a data point: $w = (1, \dots, 1, 0, 1, \dots, 1)$

- penalty
- A data analysis: $\hat{\theta}(w) := \underset{\theta}{\operatorname{argmin}} \sum_{n=1}^{N} w_n f(\theta, d_n) + R(\theta)$
 - Actually any Z-estimator works (e.g. MAP, VB, multistage)
- A quantity of interest ϕ : E.g. posterior mean, posterior credible interval endpoint, confidence interval endpoint

• Dropping a data point: $w = (1, \dots, 1, 0, 1, \dots, 1)$

- penalty
- A data analysis: $\hat{\theta}(w) := \operatorname*{argmin}_{\theta} \sum_{n=1}^{N} w_n f(\theta, d_n) + R(\theta)$
 - Actually any Z-estimator works (e.g. MAP, VB, multistage)
- A quantity of interest ϕ : E.g. posterior mean, posterior credible interval endpoint, confidence interval endpoint
- Original problem: $w=(1,\ldots,1,1,1,\ldots,1)$ 1 $w_1w_2w_3\cdots$ w_N
- Dropping a data point: $w = (1, \dots, 1, 0, 1, \dots, 1)$

- penalty
- A data analysis: $\hat{\theta}(w) := \operatorname*{argmin}_{\theta} \sum_{n=1}^{N} w_n f(\theta, d_n) + R(\theta)$
 - Actually any Z-estimator works (e.g. MAP, VB, multistage)
- A quantity of interest $\phi(w)$: E.g. posterior mean, posterior credible interval endpoint, confidence interval endpoint
- Original problem: $w=(1,\ldots,1,1,1,\ldots,1)$ $w_1 w_2 w_3 \cdots$
- Dropping a data point: $w = (1, \dots, 1, 0, 1, \dots, 1)$

penalty

- A data analysis: $\hat{\theta}(w) := \operatorname*{argmin}_{\theta} \sum_{n=1}^{N} w_n f(\theta, d_n) + R(\theta)$
 - Actually any Z-estimator works (e.g. MAP, VB, multistage)
- A quantity of interest $\phi(w)$: E.g. posterior mean, posterior credible interval endpoint, confidence interval endpoint
- Original problem: $w=(1,\ldots,1,1,1,\ldots,1)$ 1 $w_1w_2w_3\cdots$
- Dropping a data point: $w = (1, \dots, 1, 0, 1, \dots, 1)$

- Each dropped data subset corresponds to a different w
- $\phi(w) \approx \phi^{\text{lin}}(w)$

penalty

- A data analysis: $\hat{\theta}(w) := \operatorname*{argmin}_{\theta} \sum_{n=1}^{N} w_n f(\theta, d_n) + R(\theta)$
 - Actually any Z-estimator works (e.g. MAP, VB, multistage)
- A quantity of interest $\phi(w)$: E.g. posterior mean, posterior credible interval endpoint, confidence interval endpoint
- Original problem: $w=(1,\ldots,1,1,1,\ldots 1)$ 1 $w_1w_2w_3\cdots$
- Dropping a data point: $w = (1, \dots, 1, 0, 1, \dots, 1)$

- Each dropped data subset corresponds to a different w
- $\phi(w) \approx \phi^{\text{lin}}(w) := \text{first-order Taylor expansion in } w$

- penalty
- A data analysis: $\hat{\theta}(w) := \operatorname*{argmin} \sum_{n=1}^{N} w_n f(\theta, d_n) + R(\theta)$
 - Actually any Z-estimator works (e.g. MAP, VB, multistage)
- A quantity of interest $\phi(w)$: E.g. posterior mean, posterior credible interval endpoint, confidence interval endpoint
- Original problem: $w=(1,\ldots,1,1,1,\ldots 1)$ 1 $w_1w_2w_3\cdots$
- Dropping a data point: $w = (1, \dots, 1, 0, 1, \dots, 1)$

- Each dropped data subset corresponds to a different $\,w\,$
- $\phi(w) \approx \phi^{\text{lin}}(w) := \text{first-order Taylor expansion in } w$
 - Finding worst data to drop: linear in N + cost of "sort"

penalty

- A data analysis: $\hat{\theta}(w) := \operatorname*{argmin}_{\theta} \sum_{n=1}^{N} w_n f(\theta, d_n) + R(\theta)$
 - Actually any Z-estimator works (e.g. MAP, VB, multistage)
- A quantity of interest $\phi(w)$: E.g. posterior mean, posterior credible interval endpoint, confidence interval endpoint
- Original problem: $w=(1,\ldots,1,1,1,\ldots,1)$ 1 $w_1\,w_2\,w_3\,\cdots$
- Dropping a data point: $w = (1, \dots, 1, 0, 1, \dots, 1)$

- Each dropped data subset corresponds to a different w
- $\phi(w) \approx \phi^{\text{lin}}(w) := \text{first-order Taylor expansion in } w$
 - Finding worst data to drop: linear in N + cost of "sort"
 - Can automate with automatic differentiation tools

It's not just non-significance

- It's not just non-significance
 - Oregon Medicaid, Finkelstein et al 2012, >21,000 data

- It's not just non-significance
 - Oregon Medicaid, Finkelstein et al 2012, >21,000 data
 - p < 0.01 for a positive effect of lottery on health

- It's not just non-significance
 - Oregon Medicaid, Finkelstein et al 2012, >21,000 data
 - p < 0.01 for a positive effect of lottery on health
 - We find: drop 11 points (0.05%) to change signific.

- It's not just non-significance
 - Oregon Medicaid, Finkelstein et al 2012, >21,000 data
 - p < 0.01 for a positive effect of lottery on health
 - We find: drop 11 points (0.05%) to change signific.
- It's not just that everything is non-robust

It's not just non-significance

- Oregon Medicaid, Finkelstein et al 2012, >21,000 data
- p < 0.01 for a positive effect of lottery on health
 - We find: drop 11 points (0.05%) to change signific.

It's not just that everything is non-robust

 Effect of cash transfers on consumption in poor households, Angelucci & De Giorgi 2009, >10,000 data

It's not just non-significance

- Oregon Medicaid, Finkelstein et al 2012, >21,000 data
- p < 0.01 for a positive effect of lottery on health
 - We find: drop 11 points (0.05%) to change signific.

It's not just that everything is non-robust

- Effect of cash transfers on consumption in poor households, Angelucci & De Giorgi 2009, >10,000 data
- We find: drop >4% data to change sign and/or signific.

It's not just non-significance

- Oregon Medicaid, Finkelstein et al 2012, >21,000 data
- p < 0.01 for a positive effect of lottery on health
 - We find: drop 11 points (0.05%) to change signific.

It's not just that everything is non-robust

- Effect of cash transfers on consumption in poor households, Angelucci & De Giorgi 2009, >10,000 data
- We find: drop >4% data to change sign and/or signific.
- Removing outliers isn't a panacea

It's not just non-significance

- Oregon Medicaid, Finkelstein et al 2012, >21,000 data
- p < 0.01 for a positive effect of lottery on health
 - We find: drop 11 points (0.05%) to change signific.

It's not just that everything is non-robust

- Effect of cash transfers on consumption in poor households, Angelucci & De Giorgi 2009, >10,000 data
- We find: drop >4% data to change sign and/or signific.

Removing outliers isn't a panacea

 Angelucci & De Giorgi 2009 look at spillover effect on non-poor households & remove largest responses

It's not just non-significance

- Oregon Medicaid, Finkelstein et al 2012, >21,000 data
- p < 0.01 for a positive effect of lottery on health
 - We find: drop 11 points (0.05%) to change signific.

It's not just that everything is non-robust

- Effect of cash transfers on consumption in poor households, Angelucci & De Giorgi 2009, >10,000 data
- We find: drop >4% data to change sign and/or signific.

Removing outliers isn't a panacea

- Angelucci & De Giorgi 2009 look at spillover effect on non-poor households & remove largest responses
- We find: can drop 3 points of >4,000 & change signific.

It's not just non-significance

- Oregon Medicaid, Finkelstein et al 2012, >21,000 data
- p < 0.01 for a positive effect of lottery on health
 - We find: drop 11 points (0.05%) to change signific.

It's not just that everything is non-robust

- Effect of cash transfers on consumption in poor households, Angelucci & De Giorgi 2009, >10,000 data
- We find: drop >4% data to change sign and/or signific.

Removing outliers isn't a panacea

- Angelucci & De Giorgi 2009 look at spillover effect on non-poor households & remove largest responses
- We find: can drop 3 points of >4,000 & change signific.

It's not just heavy tails or reporting means

It's not just non-significance

- Oregon Medicaid, Finkelstein et al 2012, >21,000 data
- p < 0.01 for a positive effect of lottery on health
 - We find: drop 11 points (0.05%) to change signific.

It's not just that everything is non-robust

- Effect of cash transfers on consumption in poor households, Angelucci & De Giorgi 2009, >10,000 data
- We find: drop >4% data to change sign and/or signific.

Removing outliers isn't a panacea

- Angelucci & De Giorgi 2009 look at spillover effect on non-poor households & remove largest responses
- We find: can drop 3 points of >4,000 & change signific.

It's not just heavy tails or reporting means

 We run Gaussian linear model simulations & find both robust/non-robust cases; issue is signal-to-noise

- We present a way to check if there is a very small fraction of data you can drop to change decisions
- Paper: Broderick, Giordano, Meager "An Automatic Finite-Sample Robustness Metric: When Can Dropping a Little Data Make a Big Difference?" (alphabetical)

- We present a way to check if there is a very small fraction of data you can drop to change decisions
- Paper: Broderick, Giordano, Meager "An Automatic Finite-Sample Robustness Metric: When Can Dropping a Little Data Make a Big Difference?" (alphabetical)

arxiv.org/abs/2011.14999

Paper above focused on optimization. MCMC soon!

- We present a way to check if there is a very small fraction of data you can drop to change decisions
- Paper: Broderick, Giordano, Meager "An Automatic Finite-Sample Robustness Metric: When Can Dropping a Little Data Make a Big Difference?" (alphabetical)

- Paper above focused on optimization. MCMC soon!
- Code, etc: github.com/rgiordan/zaminfluence

- We present a way to check if there is a very small fraction of data you can drop to change decisions
- Paper: Broderick, Giordano, Meager "An Automatic Finite-Sample Robustness Metric: When Can Dropping a Little Data Make a Big Difference?" (alphabetical)

- Paper above focused on optimization. MCMC soon!
- Code, etc: github.com/rgiordan/zaminfluence
- Our check can flag p-hacking:
 - michaelwiebe.com/blog/2021/01/amip
 - rgiordan.github.io/robustness/2021/09/17/amip_p_hacking.html

- We present a way to check if there is a very small fraction of data you can drop to change decisions
- Paper: Broderick, Giordano, Meager "An Automatic Finite-Sample Robustness Metric: When Can Dropping a Little Data Make a Big Difference?" (alphabetical)

- Paper above focused on optimization. MCMC soon!
- Code, etc: github.com/rgiordan/zaminfluence
- Our check can flag p-hacking:
 - michaelwiebe.com/blog/2021/01/amip
 - rgiordan.github.io/robustness/2021/09/17/amip_p_hacking.html
- Our check is just one part of a trustworthy workflow:
 - Broderick, Gelman, Meager, Smith, Zheng "Toward a Taxonomy of Trust for Probabilistic Machine Learning" ArXiv:2112.03270

- We present a way to check if there is a very small fraction of data you can drop to change decisions
- Paper: Broderick, Giordano, Meager "An Automatic Finite-Sample Robustness Metric: When Can Dropping a Little Data Make a Big Difference?" (alphabetical)

- Paper above focused on optimization. MCMC soon!
- Code, etc: github.com/rgiordan/zaminfluence
- Our check can flag p-hacking:
 - michaelwiebe.com/blog/2021/01/amip
 - rgiordan.github.io/robustness/2021/09/17/amip_p_hacking.html
- Our check is just one part of a trustworthy workflow:
 - Broderick, Gelman, Meager, Smith, Zheng "Toward a Taxonomy of Trust for Probabilistic Machine Learning" ArXiv:2112.03270
- Variational Bayes covariance correction:
 - Giordano, Broderick, Jordan. Covariances, Robustness, and Variational Bayes, JMLR 2018. (Also Giordano, Broderick, Jordan, NeurIPS 2015.)