Giugno 2018

In [1]:

```
import pandas as pd
import numpy as np
import math
import scipy.stats as st
import matplotlib.pyplot as plt
```

Esercizio 0

 q_1, q_2, q_3 primo, secondo e terzo quartile

0.1 ¶

Quanto vale $P(X \geq q_2)$? 50\% per definizione di quartile quindi la probabilità è 0,5.

0.2

Quanto vale $P(q_1 \leq X \leq q_3)$? primo e terzo sono 25\% e 75\% quindi 0.5

$$X \sim Z(\mu, \sigma^2)$$

0.3.1
$$P(|X - \mu| \leq lpha \cdot \sigma) = 0.5$$
 determinare $lpha$

$$P(|Z| \le \alpha) = 0.5$$

$$2\Phi(\alpha) - 1 = 0.5$$

$$\Phi(lpha)=0.75$$

$$lpha = \Phi^- 1 (0.75)$$

In [2]:

```
X = st.norm()
# X.cdf(a) = 0.75
X.ppf(0.75)
```

Out[2]:

0.6744897501960817

0.3.2

 q_1, q_2 in funzione dei parametri di X

$$P(X < x) = 0.25 \; P(Z < rac{x-\mu}{\sigma})$$

0.3.3

```
In [3]:
```

```
mu =1
sigma = 1
Z = st.norm(mu,sigma)
```

0.3.4

```
P(|X - \mu| < 2\sigma) = 0.95
```

In [4]:

```
X = st.norm()
X.cdf(2) - X.cdf(-2)
```

Out[4]:

0.9544997361036416

Esercizio 1

```
In [5]:
```

```
cani = pd.read_csv('cani.csv', delimiter=";",decimal=",")
cani.columns
```

```
Out[5]:
```

1.1

In [6]:

```
len(cani)
```

Out[6]:

161

1.2

In [7]:

```
caniIP = cani[cani['IP'] == "SI"]
len(caniIP)
```

Out[7]:

58

1.3.1

In [8]:

```
età = cani['EtaAnni']
bins = np.arange(0,età.max(),1)
età.hist(bins = np.hstack(bins))
plt.show()
```


1.3.2

In [9]:

```
print(età.min(),età.mean(),età.var(),età.max())
```

1.22 12.124658385093174 6.905200038819876 16.84

1.3.3

In [10]:

```
mask1 = età < 13
mask2 = età >= 12
len(età[ mask1 & mask2])
```

Out[10]:

32

1.3.4

```
In [11]:
età.max()
Out[11]:
16.84
1.3.5
In [12]:
età.mode()
Out[12]:
0
     14.25
1
     14.73
dtype: float64
1.4.1
In [13]:
len(cani[cani['MORTE'] == 1])
Out[13]:
118
1.4.2
In [14]:
cani[cani.MORTE == 1].MC.isna().value_counts()
Out[14]:
False
         115
True
Name: MC, dtype: int64
1.4.3
In [15]:
mask1 = cani.MORTE == 0
mask2 = cani.MC == 1
len(cani[mask1 & mask2])
Out[15]:
0
```

1.4.4

```
In [16]:
len(cani[cani.MC == 1])
Out[16]:
87
1.4.4
In [17]:
morti = cani[cani.MORTE == 1]
len(morti[morti.MC == 1])/len(morti)
Out[17]:
0.7372881355932204
1.5.1
In [18]:
gip = cani.GravitaIP
print('ordinale')
ordinale
1.5.2
In [19]:
gip.unique()
Out[19]:
array([0, 1, 2, 3], dtype=int64)
```

1.5.4

In [20]:

fgip = pd.crosstab(index=gip,colnames=[''],columns=['Frequenza Relativa'],normalize=Tru
e)
fgip

Out[20]:

	Frequenza Relativa
GravitalP	
0	0.639752
1	0.180124
2	0.111801
3	0.068323

1.5.4

In [21]:

fgip.plot.bar()
plt.show()

Esercizio 2

2.1

In [22]:

```
surv = cani.SURVIVALTIME
bins = np.arange(0,surv.max(),120)
surv.hist(bins = np.hstack(bins))
plt.show()
surv.value_counts(normalize=True).sort_index().cumsum().plot()
plt.show()
```


2.2

In [23]:

surv.mean()

Out[23]:

459.888198757764

2.3

$$T_n = \sum_{i=1}^n rac{X_i}{n}$$

2.4

Non è distorto in quanto la media campionaria, che è lo stimatore utilizzato non è mai distorto rispetto al valore atteso.

$$E(T_n)=E(rac{1}{n}\sum X_i)=rac{1}{n}\sum E(X_i)=rac{1}{n}nE(X)=E(X)$$

2.5

$$Var(T_n) = rac{Var(X)}{n} \ \sigma(T_n) = \sqrt{rac{Var(X)}{n}} = rac{\sigma}{\sqrt{n}}$$

2.6

In [24]:

surv.std()

Out[24]:

467.1967063479367

2.7

$$P(|T_n - E(X)| < 60) = 0.9$$
 $2\Phi(\frac{60\sqrt{n}}{\sigma}) - 1 = 0.9$ $\Phi(\dots) = 0.95$ $\sqrt{n} = \frac{\Phi^{-1}(0.95)\sigma}{60}$

In [25]:

```
X = st.norm()
n = ((X.ppf(0.95)* surv.std())/60)**2
n
```

Out[25]:

164.04067877198327

2.8

Dall'esercizio precedente possiamo affermare che la nostra taglia non è sufficiente.

In [26]:		
len(surv)		
Out[26]:		
161		
2.9		
T., [27].		
In [27]:		
(surv/365).mean()		
Out[27]:		
1.2599676678294895		
2.10		
E' non distorto perchè la media campionaria è sempre uno stimatore non distorto		
2.11		
In [28]:		
surv.mean()/365		
Out[28]:		
1.2599676678294904		

Esercizio 3

3.1

Sono strettamente dipendenti. Vedi il grafico e il valore tendente a 1 dell'indice di correlazione

In [29]:

```
EDVI = cani.EDVI
Allodiast = cani.Allodiast
plt.scatter(EDVI,Allodiast)
plt.show()
EDVI.corr(Allodiast)
```


Out[29]:

0.9073039817753574

3.2

Guardando l'istogramma e i valori di media e mediana simili posso affermare che segue una legge normale

In [30]:

Allodiast.hist() plt.show()

In [31]:

Allodiast.describe()

Out[31]:

count	161.000000
mean	2.013354
std	0.279596
min	1.050000
25%	1.850000
50%	2.000000
75%	2.180000
max	2.600000

Name: Allodiast, dtype: float64

In [32]:

3.3

In [33]:

```
print(Allodiast.mean(),Allodiast.median())
```

2.0133540372670815 2.0