

DEPARTAMENTO DE ELETRÓNICA, TELECOMUNICAÇÕES E INFORMÁTICA

MESTRADO INTEGRADO EM ENG. DE COMPUTADORES E TELEMÁTICA

Ano 2020/2021

DESEMPENHO E DIMENSIONAMENTO DE REDES

ASSIGNMENT GUIDE NO. 1

APPLICATION EXAMPLES OF PROBABILITIES, RANDOM VARIABLES AND MARKOV CHAINS

Assignment Description

Implement the following tasks using MATLAB to obtain the requested numerical solutions and conclusions. At the end, submit a report with the answers to the questions of the <u>tasks requested</u> <u>for reporting</u> including the numerical results, the MATLAB codes duly explained and the requested conclusions.

Task 1

Consider a multiple choice test such that each question has n possible answers and only one is correct. Assume that the student has studied a percentage p (with $0\% \le p \le 100\%$) of the test content. When a question addresses the content the student has studied, he selects the right answer with 100% of probability. Otherwise, he selects randomly one of the n answers with a uniform distribution.

- **1.a.** When p = 60% and n = 4, determine the probability of the student to select the right answer. Answer: 70%
- **1.b.** When p = 70% and n = 5, determine the probability of the student to known the answer when he selects the right answer. Answer: 92.1%
- **1.c.** Draw a plot with the same look as the answer below of the probability of the student to select the right answer as a function of the probability p (consider n = 3, 4 and 5). Answer:

1.d. Draw a plot with the same look as the answer below of the probability of the student to know the answer when he selects the right answer as a function of the probability p (consider n = 3, 4 and 5). Answer:

Task 2

Consider a wireless link between multiple stations for data communications with a bit error rate (*ber*) of *p*. Assume that errors in the different bits of a data packet are statistically independent (i.e., the number of errors of a data packet is a binomial random variable).

- **2.a.** Determine the probability of a data packet of 100 Bytes to be received without errors when $p = 10^{-2}$. Answer: 0.0322%
- **2.b.** Determine the probability of a data packet of 1000 Bytes to be received with exactly one error when $p = 10^{-3}$. Answer: 0.2676%
- **2.c.** Determine the probability of a data packet of 200 Bytes to be received with one or more errors when $p = 10^{-4}$. Answer: 14.7863%
- **2.d.** Draw a plot with the same look as the answer below of the probability of a data packet (of size 100 Bytes, 200 Bytes or 1000 Bytes) being received without errors as a function of the *ber* (from $p = 10^{-8}$ up to $p = 10^{-2}$). Answer:

2.e. Draw a plot with the same look as the answer below of the probability of a data packet being received without errors (for $p = 10^{-4}$, 10^{-3} and 10^{-2}) as a function of the packet size (from 64 Bytes up to 1518 Bytes). Answer:

Task 3

Consider a wireless link between multiple stations for data communications. The bit error rate (*ber*) introduced by the wireless link (due to the variation of the propagation and interference factors along with time) is approximately given by the following Markov chain:

where the state transition rates are in number of transitions per hour. Consider that the link is in an interference state when its ber is at least 10^{-3} and in a normal state, otherwise. Determine:

- **3.a.** the probability of the link being in one of the five states; <u>answer:</u> $9.87 \times 10^{-1} (10^{-6})$, $5.48 \times 10^{-3} (10^{-5})$, $2.74 \times 10^{-3} (10^{-4})$, $1.37 \times 10^{-3} (10^{-3})$, $3.43 \times 10^{-3} (10^{-2})$
- **3.b.** the average percentage of time the link is in each of the five states; <u>answer:</u> $9.87 \times 10^{-1} (10^{-6})$, $5.48 \times 10^{-3} (10^{-5})$, $2.74 \times 10^{-3} (10^{-4})$, $1.37 \times 10^{-3} (10^{-3})$, $3.43 \times 10^{-3} (10^{-2})$
- **3.c.** the average *ber* of the link; answer: 3.70×10^{-5}
- **3.d.** the average time duration (in minutes) that the link stays in each of the five states; answer: $60.0 (10^{-6})$, $0.30 (10^{-5})$, $1.20 (10^{-4})$, $2.40 (10^{-3})$, $30.0 (10^{-2})$
- **3.e.** the probability of the link being in interference state; answer: 4.80×10^{-3}
- **3.f.** the average *ber* of the link when it is in the interference state. Answer: 7.43×10^{-3}

Task 4 – for reporting (evaluation weight = 50%)

Consider a wireless link between two stations for data communications. The bit error rate (*ber*) introduced by the wireless link is approximately given by the following Markov chain:

where the state transition rates are in number of transitions per hour. Consider that the link is in the interference state when its ber is at least 10^{-3} and is in the normal state, otherwise. Assume that both stations detect with a probability of 100% when the data frames sent by the other station are received with errors.

- **4.a.** Determine the probability of the link being in the normal state and in the interference state.
- **4.b.** Determine the average *ber* of the link when it is in the normal state and when it is in the interference state.

Assignment Guide No. 1

- **4.c.** Consider that a data frame of size *B* (in Bytes) sent by one of the stations is received with errors by the other station. Draw a plot of the probability of the link being in the normal state as a function of the packet size (from 64 Bytes up to 200 Bytes). Analyze and justify the results.
- **4.d.** Consider now that a data frame of size *B* (in Bytes) sent by one of the stations is received without errors by the other station. Draw a plot of the probability of the link being in the interference state as a function of the packet size (from 64 Bytes up to 200 Bytes). Analyze and justify the results.

Task 5 – for reporting (evaluation weight = 50%)

Consider again the wireless link between two stations of the previous Task 4. Consider now that the two stations run an interference detection system that works as follows: the stations exchange from time to time a set of n consecutive control frames (each frame with a size of B = 64 Bytes) and the stations decide that the link:

- is in the interference state when all *n* control frames are received with errors and
- is in the normal station if at least one of the *n* control frames is received without errors.

Consider the following definitions:

- <u>a false positive</u> is when a station decides wrongly that the link is in interference state (i.e., it receives the *n* control frames with error and the link is in the normal state)
- <u>a false negative</u> is when a station decides wrongly that the link is in the normal state (i.e., at least one of the *n* control frames is received without errors and the link is in the interference state)
- **5.a.** Draw a plot using a logarithmic scale for the Y-axis (use the MATLAB function semilogy) with the probability of false positives for n = 2, 3, 4 and 5. Analyze and justify the results.
- **5.b.** Draw a plot with the probability of false negatives for n = 2, 3, 4 and 5. Analyze and justify the results.
- **5.c.** Assume that the probabilities of false positives and false negatives are equally important in the accuracy of the interference detection system. From the plots obtained in **5.a** and **5.b**, determine the best value of *n* to be used by the system. Justify your answer.