CA Final Project Report Group 22

b08901056 盧弘偉 b08901198 顏柏傑

1. CPU Architecture

先進行instruction fetch及decode, 再根據不同opcode、func3、func7來決定控制訊號、輸出還有rd data, 並依需求決定ALU的模式。

2. Data Path of Instructions

- jal, jalr
 兩者實作方法相似, 先進行instruction decode, 若opcode符合則設rd_data為PC+4, PC_nxt則依各自規則賦值 (jal: PC-relative, jalr: Base addressing)。
- auipc
 先進行instruction decode, 若opcode符合則設rd_data為PC+upper immediate, 運作完成則執行下一個指令(PC_nxt = PC+4)。

3. Multi-cycle Instructions

Multi-cycle instruction的實作是採用類似作業二的FSM概念:讀到mul指令時若ALU沒有在運作(alu_running = 0), 就將alu_running_nxt與mulDiv_valid設為1;若ALU有在運作(alu_running = 1),則會讓mulDiv_valid變回0,再依據mulDiv_ready分case,若mulDiv_ready = 0,代表答案還沒算完,此時要讓ALU繼續運作(設alu_running_nxt = 1), PC_nxt = PC;若mulDiv_ready = 1,可以把對應的output給值,PC_nxt = PC + 4,並讓alu_running_nxt = 0。

4. Simulation Time

- Leaf: a = 3, b = 9, c = 5, d = 17
 Simulation complete via \$finish(1) at time 275 NS + 0
- Perm: n = 8, r = 5
 Simulation complete via \$finish(1) at time 2695 NS + 0
- (Bonus) HW1: n = 11
 Simulation complete via \$finish(1) at time 2195 NS + 0

5. Observation

SIZE_TEXT、SIZE_DATA、SIZE_STACK影響了bonus運作的正確性,執行前兩行指令後就發生instruction fetch出錯的問題,直到上述SIZE都調到41以上才解決。

6. Register Tables

	Register Name	I	Туре	I	Width	I	Bus	I	MB	I	AR	I	AS	I	SR	I	SS	I	ST	
 	PC_reg PC_reg alu_running_reg		Flip-flop Flip-flop Flip-flop	İ	1		Y N N		N N N		Y N Y		N Y N		N N N		N N N		N N N	- - -
	======================================	l	Туре		 Width	I	Bus	I	MB	I	AR	I	AS	I	SR	I	SS	I	ST	=
1	mom roa		F1 /	7	005	Т		7	N.I	7	V	7	M	7	M	7	M	7	N	_
 	mem_reg mem_reg ========		Flip-flop Flip-flop		995 29 ======		Υ Υ =====		N N		Y N		N Y		N N		N N		N	<u> </u>
====		 	Flip-flop	İ		 - 	Y	 	N		N	 	Y	 	N	 	N	 	N	 - - -

7. Work Distribution

Main architecture: 盧弘偉 Bonus: 盧弘偉, 顏柏傑

修正HW1 instructions: 顏柏傑