ICPC 024 Control Systems II

For Assessment III

Make 11 groups of 4 students per group. Each group shall follow the sequence:

- 1. Pick up a third-order, 2-(or 3-)input and multiple-output circuit.
 - There are a lot of books on circuits you can hunt through to get a circuit that appeals to you; expand your hunt to pick up circuits having amplifiers, particularly the Op-Amps.
- 2. Obtain 2 models M_1 using nodal analysis, and M_2 using mesh analysis, and demonstrate a transformation matrix T such that $A_2 = TA_1T^{-1}$ and $B_2 = TB_1$.
 - Plot the transformation in 3-D.
- 3. Compute the eigenvalues and eigenvectors of A_1 and A_2 , and answer the following:
 - If a matrix T_1 is composed of the eigenvectors of A_1 as columns, what is $T_1^{-1}A_1T_1$?
 - Why do get this? Have you expected this result a priori?
 - Under what conditions might your expectation not be met?
 - Is the result same if you have performed $T_1A_1T_1^{-1}$? Why/why not?
- 4. Check the stability of the *system* using A_1 , A_2 , $T_1^{-1}A_1T_1$, and $T_2^{-1}A_2T_2$, where the matrix T_2 is composed of the eigenvectors of A_2 as columns.
 - What is the computational effort, in terms of the total number of multiplications required, in solving for the matrix P, and checking its sign-definiteness?
- 5. Compute e^{A_1t} and obtain e^{A_2t} using T.
- 6. Compute the designated outputs of the circuit. Assume arbitrary initial conditions on the choice of state variables, and assume that input-1 is a unit step while input-2 is $\cos \omega t$.
 - Obtain the plots of $x_1(t)$, $x_2(t)$, and $x_3(t)$, and the outputs; clearly indicate the initial conditions.

- 7. Show that the system is controllable using and all the models.
 - Use both the criteria:

$$rank\left[B:AB:A^{2}B\right]=n$$

and the Hautus' criterion

$$rank [\lambda_i I - A : -B] = n \quad \forall \lambda_i \in \text{eigenvalues of } A$$

- 8. Repeat the above exercise and show that the *system* is observable using and all the models.
 - Anything you notice?
- 9. Take one of the models and design at least 4 different controllers to meet the same set of specifications desired eigenvalues $\Lambda = \{a, b \pm jc\}$, $a, b, c \in \Re$, i.e, one real eigenvalue and a pair of complex conjugates.
 - What if a = 0?
- 10. Design more than one (different) full- and reduced-order observers.
- 11. And, finally show all the wiring diagrams (using summing amplifiers etc.) for the complete control system.
- 12. It is desirable that your final artefact, suitably scaled, is tested in the laboratory.

You may use MATLAB for computations and plots; not for the solutions. You may email to me if there are any doubts.

LAST DATE: April 19, 2019, 5 p.m.