计算机组成原理

1.2 计算机系统性能评价

1 非时间指标

1)机器字长: 指机器一次能处理的二进制位数

- ◆由加法器、寄存器的位数决定;
- ◆一般与内部寄存器的位数相等(字长);
- ◆字长越长,表示数据的范围就越大,精确度越高;
- ◆目前常见的有32位和64位字长。

1 非时间指标

2)总线宽度:数据总线一次能并行传送的最大信息的位数

- ◆一般指运算器与存储器之间的数据总线位数。
- ◆有些计算机内部与外部数据总线宽度不一致:
- ◆8086、80286、80386内外数据总线等宽;
- ◆8088、80386SX 外部总线宽度8位内部总线宽度 16位;
- ◆Pentium外总线64位,内总线32位(两条32位流水线)

第一章 概述

1.2 计算机系统性能评价

1 非时间指标

3)主存容量与存储带宽

- ◆ **主存容量**:是指一台计算机主存所包含的存储单元总数。
- ◆ 存储带宽: 指单位时间内与主存交换的二进制信息量, 常用单位B/s(字节/秒)。(影响存储带宽的指标包括数据位宽和数据传输速率)。

2 时间指标

1) 主频f/时钟周期T, 外频、倍频

主频f

指CPU内核工作的时钟频率,即CPU内数字脉冲信号振荡的速率,与 CPU实际的运算能力之间不是唯一的、直接关系;

时钟周期T

也称节拍周期,是计算机中最基本的、最小的时间单位。在一个时 钟周期内,CPU仅完成一个最基本的动作;

互为倒数, f越高, T就越小 (f = 100MHz时T=10ns, f = 1GHz时T=1ns)。

第一章 概述 1.2 计算机系统性能评价

时间指标

◆ 主频f/时钟周期T, 外频、倍频

外频

指CPU(内存)与主板之间 同步的时钟频率(系统总 线的工作频率);

倍频

CPU主频与外频之间的倍 数;

◆主频 = 外频×倍频

如: Pentium 4 2.4G CPU主频

2400M = 133M (外频) × 18 (倍频)

如何超频?

2 时间指标

2) CPI (Clock cycles Per Instruction)

执行一条指令(平均)需要的时钟周期数(即T周期的个数)

单条指令CPI、一段程序中所有指令的CPI、指令系统CPI等

CPI = 程序中所有指令的时钟周期数之和 / 程序指令总数

 $= \Sigma$ (程序中各类指令的CPI \times 程序中该类指令的比例)

2 时间指标

CPI 应用举例

例1 某计算机指令系统中各类指令所占比例及CPI如下表所示,求程序的CPI。

指令类型	СЫ	指令比例
算术和逻辑	1	60%
Load/Store	2	18%
转移	4	12%
Cache缺失访存	8	10%

解: CPI = 1*60% + 2*18% + 4*12% +8*10% = 2.24

IPC (Instruction per Clock)

每个时钟周期内执行的指令条数 (并行)

2

时间指标

实际上频率和IPC在真正影响CPU性能。

准确的CPU性能判断标准应该是:CPU性能=IPC(CPU每一时钟周期内所执行的指令多少)×频率(MHz时钟速度)--由英特尔提出并被业界广泛认可。

如果将英特尔用于企业级服务器的主频为800MHz的安腾处理器(英特尔的最高级系列CPU)与用于台式机的主频为1800MHz的<u>奔腾4处理器</u>进行对比,我们就会发现:主频仅为800MHz的安腾处理器在性能上竟然比主频高达1800MHz的奔腾4处理器还要强大。

- 2 时间指标
 - 3) MIPS (Million Instructions Per Second)

◆ 每秒钟CPU能执行的指令总条数 (单位:百万条/秒)

MIPS =
$$\frac{\text{指令条数}}{\text{执行时间} \times 10^6}$$

= $\frac{\text{指令条数}}{(所有指令CPU时钟周期数之和 / f) \times 10^6}$
= $\frac{f}{CPI \times 10^6}$ (全性能公式)

2 时间指标

◆ MIPS 应用举例

例 某计算机主频为1GHZ,在其上运行的目标代码包含2x10⁵条指令,分4类, 各类指令所占比例和各自CPI如下表所示,求程序的MIPS。

指令类型	СРІ	指令混合比例
算术和逻辑	1	60%
Load/Store	2	18%
转移	4	12%
Cache缺失访存	8	10%

解: 根据CPU全性能公式: MIPS = $\frac{t}{CPI \times 10^6}$

CPI = 1*60% + 2*18% + 4*12% + 8*10% = 2.24

MIPS = $f/(CPI * 10^6) = 1*10^9/(2.24 * 10^6) = 446.4$

2 时间指标

4) CPU时间

- ◆ 执行一段程序所需的时间 (CPU时间+ I/O时间 + 存储访问时间+ 各类排队时延等)。
 - ◆ CPU时间 = 程序中所有指令的时钟周期数之和 × T =程序中所有指令的时钟周期数之和 / f (回顾汇编语言课程中延时子程序的设计原理)

第一章 概述 1.2 计算机系统性能评价

时间指标

◆ CPU时间的计算方法

●考虑CPI后的CPU时间:

$$\begin{array}{l} \mathsf{CPU时间} = \, \dot{\otimes} \, \mathrm{ifl} \, \mathrm{obs} \times \, \sum_{i=1}^n (\mathit{CPI}_I \times \frac{\mathit{IC}_i}{\dot{\otimes} \, \mathrm{ifl} \, \mathrm{obs}}) \times \mathrm{ifl} \, \mathrm{$$

● 考MIPS后的CPU时间:

MIPS =
$$\frac{指令数量}{执行指令的时间 \times 10^6}$$

2 时间指标

◆ CPU时间应用举例

例 某计算机主频为1GHZ,在其上运行的目标代码包含2×10⁵条指令,分4类,各类指令所占比例和各自CPI如下表所示,求该段程序的CPU时间。

指令类型	СРІ	指令混合比例
算术和逻辑	1	60%
Load/Store	2	18%
转移	4	12%
Cache缺失访存	8	10%

解方法1:利用CPI

CPU时间 = 2 × 10⁵ × CPI / f

 $= (2 \times 10^{5} \times 2.24 / 10^{9}) = 4.48 \times 10^{-4}$ (秒)

2 时间指标

◆ CPU时间应用举例

例 某计算机主频为1GHZ,在其上运行的目标代码包含2×10⁵条指令,分4类,各类指令所占比例和各自CPI如下表所示,求该段程序的CPU时间。

指令类型	СРІ	指令混合比例
算术和逻辑	1	60%
Load/Store	2	18%
转移	4	12%
Cache缺失访存	8	10%

解 方法2: 利用MIPS 指令数量
$$=\frac{12 \times 10^5}{\text{MIPS} \times 10^6} = \frac{2 \times 10^5}{(10^3 / 2.24) \times 10^6} = 4.48 \times 10^{-4}$$
 (秒)

3 时间指标的应用思考

◆ 如何合理利用时间指标评测计算机性能

f、CPI、MIPS、CPU时间在评价计算机性能方面的特点和不足?

如何科学合理测试计算机系统的综合性能?有哪些常用测试工具?测试结果能否真实反映计算机的实际性能?

第一章 概述 1.2 计算机系统性能评价

时间指标的应用思考

◆ 计算机性能指标是确定的吗?

硬件或软件指标	影响什么	如何影响
算法	CPI、MIPS、CPU时间	影响指令数量和指令类型
编程语言	CPI、MIPS、CPU时间	指令数量和指令类型
编译程序	CPI、MIPS、CPU时间	影响指令数量和指令类型
指令集体系结构	f/T CPI MIPS CPU时间	全面影响