Examples of First Order Theories

CS156: The Calculus of
Computation
Zohar Manna
Autumn 2008

Edited slides from the original slides from CS156 by Prof. Z.Manna

Chapter 3: First-Order Theories

First-Order Theories

		Quantifiers	QFF
	Theory	Decidable	Decidable
$\overline{T_E}$	Equality	_	✓
T_{PA}	Peano Arithmetic	_	_
$\mathcal{T}_{\mathbb{N}}$	Presburger Arithmetic	✓	✓
$T_{\mathbb{Z}}$	Linear Integer Arithmetic	✓	✓
$\mathcal{T}_{\mathbb{R}}$	Real Arithmetic	✓	✓
$\mathcal{T}_{\mathbb{Q}}$	Linear Rationals	✓	✓
$T_{ m cons}$	Lists	_	✓
$T_{ m cons}^E$	Lists with Equality	_	✓

Theory of Equality T_E I

Signature:

$$\Sigma_{=}$$
: $\{=, a, b, c, \cdots, f, g, h, \cdots, p, q, r, \cdots\}$

consists of

- =, a binary predicate, <u>interpreted</u> with meaning provided by axioms
- all constant, function, and predicate symbols

Axioms of T_E

- 1. $\forall x. \ x = x$ (reflexivity)
- 2. $\forall x, y. \ x = y \rightarrow y = x$ (symmetry)
- 3. $\forall x, y, z. \ x = y \land y = z \rightarrow x = z$ (transitivity)
- 4. for each positive integer n and n-ary function symbol f, $\forall x_1, \ldots, x_n, y_1, \ldots, y_n$. $\bigwedge_i x_i = y_i$ $\rightarrow f(x_1, \ldots, x_n) = f(y_1, \ldots, y_n)$ (function congruence)

Theory of Equality T_E II

5. for each positive integer n and n-ary predicate symbol p,

(function) and (predicate) are <u>axiom schemata</u>.

Example:

(function) for binary function f for n = 2:

$$\forall x_1, x_2, y_1, y_2. \ x_1 = y_1 \land x_2 = y_2 \rightarrow f(x_1, x_2) = f(y_1, y_2)$$

(predicate) for unary predicate p for n = 1:

$$\forall x, y. \ x = y \rightarrow (p(x) \leftrightarrow p(y))$$

Note: we omit "congruence" for brevity.

Decidability of T_E I

 T_E is undecidable.

The quantifier-free fragment of T_E is decidable. Very efficient algorithm.

Semantic argument method can be used for T_E

Example: Prove

$$F: a = b \wedge b = c \rightarrow g(f(a), b) = g(f(c), a)$$

is T_E -valid.

Decidability of T_E II

Suppose not; then there exists a T_{E} -interpretation I such that $I \not\models F$. Then,

1.
$$I \not\models F$$
 assumption
2. $I \models a = b \land b = c$ 1, \rightarrow
3. $I \not\models g(f(a), b) = g(f(c), a)$ 1, \rightarrow
4. $I \models a = b$ 2, \land
5. $I \models b = c$ 2, \land
6. $I \models a = c$ 4, 5, (transitivity)
7. $I \models f(a) = f(c)$ 6, (function)
8. $I \models b = a$ 4, (symmetry)
9. $I \models g(f(a), b) = g(f(c), a)$ 7, 8, (function)
10. $I \models \bot$ 3, 9 contradictory

F is T_{E} -valid.

Natural Numbers and Integers

```
Natural numbers \mathbb{N}=\{0,1,2,\cdots\} Integers \mathbb{Z}=\{\cdots,-2,-1,0,1,2,\cdots\}
```

Three variations:

- Peano arithmetic T_{PA} : natural numbers with addition, multiplication, =
- lacktriangle Presburger arithmetic $T_{\mathbb{N}}$: natural numbers with addition, =
- ► Theory of integers $T_{\mathbb{Z}}$: integers with +,-,>,=, multiplication by constants

1. Peano Arithmetic T_{PA} (first-order arithmetic)

$$\Sigma_{PA}$$
: {0, 1, +, ·, =}

Equality Axioms: (reflexivity), (symmetry), (transitivity), (function) for +, (function) for \cdot .

And the axioms:

1.
$$\forall x. \ \neg(x+1=0)$$
 (zero)

2.
$$\forall x, y. x + 1 = y + 1 \rightarrow x = y$$
 (successor)

3.
$$F[0] \land (\forall x. F[x] \rightarrow F[x+1]) \rightarrow \forall x. F[x]$$
 (induction)

4.
$$\forall x. \ x + 0 = x$$
 (plus zero)

5.
$$\forall x, y. \ x + (y + 1) = (x + y) + 1$$
 (plus successor)

6.
$$\forall x. \ x \cdot 0 = 0$$
 (times zero)

7.
$$\forall x, y. \ x \cdot (y+1) = x \cdot y + x$$
 (times successor)

Line 3 is an axiom schema.

Example: 3x+5=2y can be written using Σ_{PA} as

$$x + x + x + 1 + 1 + 1 + 1 + 1 = y + y$$

Note: we have > and \ge since

$$3x + 5 > 2y$$
 write as $\exists z. \ z \neq 0 \land 3x + 5 = 2y + z$
 $3x + 5 \ge 2y$ write as $\exists z. \ 3x + 5 = 2y + z$

Example:

Existence of pythagorean triples (F is T_{PA} -valid):

$$F: \exists x, y, z. \ x \neq 0 \land y \neq 0 \land z \neq 0 \land x \cdot x + y \cdot y = z \cdot z$$

2. Presburger Arithmetic $T_{\mathbb{N}}$

Signature
$$\Sigma_{\mathbb{N}}$$
: $\{0, 1, +, =\}$ no multiplication!

Axioms of $T_{\mathbb{N}}$ (equality axioms, with 1-5):

1.
$$\forall x. \ \neg(x+1=0)$$
 (zero)

2.
$$\forall x, y. x + 1 = y + 1 \rightarrow x = y$$
 (successor)

3.
$$F[0] \land (\forall x. F[x] \rightarrow F[x+1]) \rightarrow \forall x. F[x]$$
 (induction)

4.
$$\forall x. \ x + 0 = x$$
 (plus zero)

5.
$$\forall x, y. \ x + (y + 1) = (x + y) + 1$$
 (plus successor)

Line 3 is an axiom schema.

 $T_{\mathbb{N}}$ -satisfiability (and thus $T_{\mathbb{N}}$ -validity) is decidable (Presburger, 1929)

3. Theory of Integers $T_{\mathbb{Z}}$

Signature:

$$\Sigma_{\mathbb{Z}}$$
: $\{\ldots, -2, -1, 0, 1, 2, \ldots, -3\cdot, -2\cdot, 2\cdot, 3\cdot, \ldots, +, -, >, =\}$

where

- ..., -2, -1, 0, 1, 2, ... are constants
- -1 ..., $-3\cdot$, $-2\cdot$, $2\cdot$, $3\cdot$, ... are unary functions (intended meaning: $2\cdot x$ is x+x, $-3\cdot x$ is -x-x-x)
- ightharpoonup +,-,>,= have the usual meanings.

Relation between $T_{\mathbb{Z}}$ and $T_{\mathbb{N}}$:

 $T_{\mathbb{Z}}$ and $T_{\mathbb{N}}$ have the same expressiveness:

- For every $\Sigma_{\mathbb{Z}}$ -formula there is an equisatisfiable $\Sigma_{\mathbb{N}}$ -formula.
- ightharpoonup For every $\Sigma_{\mathbb{N}}$ -formula there is an equisatisfiable $\Sigma_{\mathbb{Z}}$ -formula.

 $\Sigma_{\mathbb{Z}}$ -formula F and $\Sigma_{\mathbb{N}}$ -formula G are equisatisfiable iff:

F is $T_{\mathbb{Z}}$ -satisfiable iff G is $T_{\mathbb{N}}$ -satisfiable

1. Theory of Reals $T_{\mathbb{R}}$

Signature:

$$\Sigma_{\mathbb{R}}$$
: $\{0, 1, +, -, \cdot, =, \geq\}$

with multiplication. Axioms in text.

Example:

$$\forall a, b, c. b^2 - 4ac \ge 0 \leftrightarrow \exists x. ax^2 + bx + c = 0$$

is $T_{\mathbb{R}}$ -valid.

 $T_{\mathbb{R}}$ is decidable (Tarski, 1930) High time complexity

2. Theory of Rationals $T_{\mathbb{Q}}$

Signature:

$$\Sigma_{\mathbb{Q}}:\ \{0,\ 1,\ +,\ -,\ =,\ \geq\}$$

without multiplication. Axioms in text.

Rational coefficients are simple to express in $T_{\mathbb{Q}}$.

Example: Rewrite

$$\frac{1}{2}x + \frac{2}{3}y \ge 4$$

as the $\Sigma_{\mathbb O}$ -formula

$$3x + 4y \ge 24$$

 $T_{\mathbb{Q}}$ is decidable

Quantifier-free fragment of $\mathcal{T}_{\mathbb{Q}}$ is efficiently decidable

Theory of Arrays T_A

Signature:

$$\Sigma_{\mathsf{A}}: \{\cdot[\cdot], \cdot \langle \cdot \triangleleft \cdot \rangle, =\}$$

where

- a[i] binary function read array a at index i ("read(a,i)")
- ▶ $a\langle i \triangleleft v \rangle$ ternary function write value v to index i of array a ("write(a,i,v)")

Axioms

- 1. the axioms of (reflexivity), (symmetry), and (transitivity) of T_{E}
- 2. $\forall a, i, j. \ i = j \rightarrow a[i] = a[j]$ (array congruence)
- 3. $\forall a, v, i, j. \ i = j \rightarrow a \langle i \triangleleft v \rangle [j] = v$ (read-over-write 1)
- 4. $\forall a, v, i, j. i \neq j \rightarrow a \langle i \triangleleft v \rangle [j] = a[j]$ (read-over-write 2)

<u>Note</u>: = is only defined for array elements

$$F: a[i] = e \rightarrow a\langle i \triangleleft e \rangle = a$$

not T_A -valid, but

$$F': a[i] = e \rightarrow \forall j. \ a\langle i \triangleleft e \rangle[j] = a[j],$$

is T_A -valid.

Also

$$a = b \rightarrow a[i] = b[i]$$

is not T_A -valid: We have only axiomatized a restricted congruence.

 $T_{\rm A}$ is undecidable Quantifier-free fragment of $T_{\rm A}$ is decidable

2. Theory of Arrays $T_A^=$ (with extensionality)

Signature and axioms of $T_{\rm A}^{=}$ are the same as $T_{\rm A}$, with one additional axiom

$$\forall a, b. (\forall i. a[i] = b[i]) \leftrightarrow a = b$$
 (extensionality)

Example:

$$F: a[i] = e \rightarrow a\langle i \triangleleft e \rangle = a$$

is $T_{\rm A}^{=}$ -valid.

 $T_{
m A}^{=}$ is undecidable Quantifier-free fragment of $T_{
m A}^{=}$ is decidable