PATENT ABSTRACTS OF JAPAN

(11)Publication number :

10-267047

(43)Date of publication of application: 06.10.1998

(51)Int.CI.

F16D 7/04 F04B 35/00

(21)Application number: 09-071646

(71)Applicant : SANDEN CORP

(22)Date of filing: 25 03 1997 (72)Inventor: KOITABASHI TAKATOSHI

(54) POWER TRANSMISSION DEVICE

(57)Abstract

PROBLEM TO BE SOLVED: To improve durability of a power transmission device and reliability of interruption of power transmission without adopting an overload rupture possible material.

SOLUTION: In steady operation, when a pulley 7 is rightward rotated, a groove 8A of a fixed pawl 8 of the pulley 7 presses in a right direction a tip end part 9A of a turn pawl 9 supported turnably by a support pin 10 to a boss 4. The turn pawl 9 tends to turn to the right with the support pin 10 serving as the center, but a first plate spring 11 impedes a right turn of the turn pawl 9. Accordingly, with a condition shown by the drawing (a) left as maintained, a total unit is right rotated. At abnormality time, even when the pulley 7 is right rotated. the boss 4 can not be rotated. Thus by strong pressing the tip end part 9A of the turn pawl 9 to the groove 8A of the fixed pawl 8, the turn pawl 9, with the support pin 10 serving as the center, while resisting pressing force of the first plate spring 11, is right turned. When the turn

pawl 9 is turned by a prescribed angle, the tip end part 9A of the turn pawl 9 is detached from the groove 8A of the fixed pawl 8, simultaneously with a second plate spring 13 locking a lock shoulder 9C of the turn pawl 9.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection] [Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開平10-267047

(43)公開日 平成10年(1998)10月6日

(51) Int.Cl. ⁶		識別記号	FΙ		
F16D	7/04		F16D	7/04	С
F 0 4 B	35/00		F04B	35/00	В

審査請求 未請求 請求項の数4 OL (全 7 頁)

(21)出願番号	特顯平9-71646	(71)出顧人	000001845		
(22)出顧日	平成9年(1997)3月25日		サンデン株式会社 群馬県伊勢崎市寿町20番地		
(22)山麓口	平成9年(1997) 3 月23日	1	# 海県伊労町巾労町20番地 小板橋 孝利		
			群馬県伊勢崎市寿町20番地 サンデン株式		
			会社内		
		(74)代理人	弁理士 後藤 洋介 (外2名)		

(54) 【発明の名称】 動力伝達機構

(57)【要約】

【課題】 過負荷可破断材を採用せずに、動力伝達機構の耐久性及び動力伝達の遮断の信頼性を向上する。

【解決手段】 正常運転時は、ブーリ7が右回転すると、ブーリ7の固定爪8の薄8Aはボス4に支持ビン10により画前能に支持された回動爪9の先端部9Aを右方向へ押圧する。回動爪9は支持ビン10を中心として右回動しようとするが、第1板ばね11が回動爪9の右回動と阻止する。したがって、12回示の状態を維持したまま、全体が右回転する。異常時には、ブーリ7が右回転しても、ボス4は回転できない。よって、回動爪9の先端部9Aは固定爪8の溝8Aに強く押圧されるから、回動爪9Aは指示ピン10を中心として第1板ばね11の押圧力に抵抗しながら右回動する。回動爪9所2が原を角度回動すると、回動爪9Aの先端部9Aは固定爪8の溝8Aから離脱し、同時に第2板ばね13は回動爪9の様と属9Cを係止する。

【特許請求の範囲】

【請求項1】 プーリに設けられた固定爪と、前記プー リと同心に配置されてシャフトに固定されたボスに回動 可能に支持され、かつ、前記ボスに取り付けられた板ば ねにより動力伝達位置に押圧される回動爪とが係合離脱 することができることを特徴とする動力伝達機構。

1

【請求項2】 前記回動爪の係止層に前記ボスに取り付 けられた他の板ばねが係止することにより、前記回動爪 の前記固定爪からの離脱状態を維持することを特徴とす る請求項1記載の動力伝達機構。

【請求項3】 前記板ばねが前記回動爪を拘束すること により、前記回動爪の前記固定爪からの離脱状態を維持 することを特徴とする請求項1記載の動力伝達機構。

【請求項4】 前記板ばねが前記回動爪を押圧する位置 を変化することができることを特徴とする請求項1記載 の動力伝達機構。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、圧縮機、一般産業 用機器等のトルクリミッターとして使用する動力伝達機 20 構に関する。

[0002]

【従来の技術】まず、実公平6-39105号公報に記 載された圧縮機の動力伝達機構について図6を参照して 説明する。

【0003】圧縮機31のハウジング32のフロントノ ーズ33に軸受34を介してプーリ35を回転可能に装 着する。圧縮機31のシャフト36に回転伝達板37を 固定し、回転伝達板37の4箇所に合成樹脂製の過負荷 可破断材38を固定する。各過負荷可破断材38の先端 30 をプーリ35の4箇所に設けられた穴35Aにそれぞれ 插入する。

【0004】このように構成すると、圧縮機31に異常 が発生し、回転伝達板37に設定値を越えた回転力がか かると、過負荷可破断材38は破断する。したがって、 動力はプーリ35から回転伝達板37へ伝達されないの で、動力伝達機構が保護される。

【0005】次に、実開昭63-142460号公報に 記載された圧縮機の動力伝達機構について図7を参照し て説明する。

【0006】 圧縮機 4 1 のハウジング 4 2 のフロントノ ーズ43に軸受44を介してプーリ45を回転可能に装 着する。圧縮機41のシャフト46にハブ47を固定 し、ハブ47の4箇所にリベット48を中心としてドラ イブレバー49を回転可能に取り付ける。ハブ47の外 周には、4箇所の係合凹部47Aが設けられ、環状の金 属製板ばね50がハブ47の外間に係合凹部47Aに陥 入するように配設されている。各ドライブレバー49の 内端円形係合部49Aは、板ばね50を介してハブ47 の各係合凹部 4 7 A に係合し、各ドライブレバー 4 9 の 50 3 にボス 4 がナット 5 により固定されている。また、ケ

外端円形係合部49 Bは、プーリ45の各係合凹部45 Aに係合する。

【0007】このように構成すると、圧縮機41に異常 が発生し、ハブ47に設定値を越えた回転力がかかる と、各ドライブレバー49が各リベット48を中心とし て回転するから、各内端円形係合部49Aと各外端円形 係合部49Bは、それぞれハブ47の各係合凹部47A とプーリ45の各係合凹部45Aから離脱する。したが って、動力はプーリ45からハブ47へ伝達されたいの 10 で、動力伝達機構が保護される。

[0008]

【発明が解決しようとする課題】前記第1の従来の技術 では、圧縮機の駆動によって、繰り返し応力が過負荷可 破断材に発生し、破断回転力が一定値を維持し難く、経 時的に低下するという欠点がある。

【0009】前記第2の従来の技術は、部品点数が多 く、また、構造が複雑である。更に、ドライブレバーが 長いため、プーリ径の小型化が困難である。更に、圧縮 機の駆動によって、ドライブレバーには曲げ応力が加わ るので、ドライブレバーの適宜な設計が困難である。

【0010】そこで、本発明は、前記従来の技術の欠点 を改良し、過負荷可破断材を採用せずに、動力伝達機構 の耐久性及び動力伝達の遮断の信頼性を向上しようとす るものである。

[0011]

【課題を解決するための手段】本発明は、前記課題を解 決するため、次の手段を採用する。

【0012】(1)プーリに設けられた固定爪と、前記 プーリと同心に配置されてシャフトに固定されたボスに 回動可能に支持され、かつ、前記ボスに取り付けられた 板ばねにより動力伝達位置に押圧される回動爪とが係合 離脱することができる動力伝達機構。

【0013】(2)前記回動爪の係止肩に前記ボスに取 り付けられた他の板ばねが係止することにより、前記回 動爪の前記固定爪からの離脱状態を維持する前記(1) 記載の動力伝達機構。

【0014】(3)前記板ばねが前記回動爪を拘束する ことにより、前記回動爪の前記固定爪からの離脱状態を 維持する前記(1)記載の動力伝達機構。

【0015】(4)前記板ばねが前記回動爪を押圧する 位置を変化することができる前記(1)記載の動力伝達 機構。

[0016]

【発明の実施の形態】本発明の二つの実施の形態例につ いて図1~図5を参照して説明する。

【0017】まず、本発明の第1実施の形態例について 図1と図2を参照して説明する。

【0018】図1において、圧縮機1のケーシング2の 中央には、シャフト3が回転可能に支持され、シャフト

3 ーシング2の端部付近の外周面に球軸受6の内輪が固定 され、球軸受6の外輪にブーリ7が固定されている。ブ ーリ7の3箇所には、それぞれ固定爪8が固定されてい る。

【0019】ボス4は、三角形状であり、各項点の延長 部に回動爪9が支持ピン10を中心として回動可能に支 持されている。ボス4の各項点付近の両側に、長い第1 板ばね11を支持するクランプ12と短い第2板ばね1 3を支持するクランプ14とがボルト15により固定さ れている。

【0020】回動爪9の先端部9Aはブーリ7に固定された固定爪8の幕8Aに係合し、回動爪9の後端部9Bの一側は第1板ば和11に圧接し、他側は第2板ば和1 3に圧接している。

【0021】圧縮機の正常運転時は、図1(a)において、ブーリ7が右回転すると、固定爪8の溝8Aは回動爪9の先端部9Aを右方向へ押圧する。回動爪9は支持ビン10を中心として右回動しようとするが、第1板ばね11が回動爪9の右回動を阻止する。したがって、ブーリ7、固定爪8、回動爪9及びボス4は、相対的に図1(a)に示される状態を維持したまま右回転する。

【0022】一方、圧縮機の異常時には、図2(a)に示されるように、ブーリアが右回転しても、ボス4は回転することができない。したがって、回動爪9の先端部9Aが固定爪8の溝8Aに強な押圧されるから、回動爪9は支持ピン10を中心として第1板ばね11の押圧力に抵抗しながら右回動する。そして、回動爪9が所定角度回動すると、回動爪9の先端部9Aは固定爪8の溝8Aから離脱し、同時に第2板ばね13は回動爪9の係止肩9Cを係止する。したがって、以後、回動爪9の先端部9Aは固定爪8に接触しないから、ブーリ7は回転しても、動力は伝達されない。

【0023】本実施の形態例では、回動爪9が動力伝達 不能位置に移動し、動力伝達が一旦遮断されても、第2 板ばね13を回動爪9の係止肩9Cからはずすことによ り、回動爪9を動力伝達可能位置に簡単に復帰させるこ とができる。

【0024】次に、本発明の第2実施の形態例について 図3〜図5を参照して説明する。なお、第1実施の形態 例と同一の部分の説明を省略する。

【0025】図3において、六角形状のボス21の3箇所の突出部21Aに設けられた支持ピン22には、それぞれ回動爪23が回動可能に支持されている。また、ボス21の3箇所の辺部21Bには、それぞれ長い第1板ばれ24と短い第2板ばれ25とを重ね、両板ばれの根で部に断面コ字形のクランプ26をあてがってボルト27により固定する。第1板ばれ24の先端部は、回動爪23の先端部23Aと後端部23Bを押圧している。ブーリ28の3箇所には、それぞれ突出係合部29Aを有する固定爪29が固定されている。固定爪29の突出係 50

合部29Aは、回動爪23の先端部23Aに係合している。

【0026】圧縮機の正常運転時には、図3(a)において、プーリ28が右回転すると、固定爪29の突出係合部29人は回動爪23の先端部23人を右方向へ押圧する。回動爪23は支持ビン22を中心として右回動しようとするが、第1板ばね24が回動爪23の右回動を阻止する。したがって、ブーリ28、固定爪29、回動爪23及びボス21は、相対的に図3(a)に示される10 状態を維持したまま右回転する。

【0027】一方、圧縮機の異常時には、図4(a)に 示されるように、プーリ28が矢印方向に回転しても、 ボス21は回転することができない。したがって、回動 爪23の先端部23Aが固定爪29の突出係合部29A に強く押圧されるから、同動爪23は支持ピン22を中 心として第1板ばね24の押圧力に抵抗しながら右回動 する。そして、回動爪23は、第1板ばね24を所定量 たわませた後で、第2板ばね25をもたわませる。プー リ28が更に矢印方向に回転すると、固定爪29の突出 係合部29Aは回動爪23の先端部23Aから離脱す る。すると、第1板ばね24と第2板ばね25はたわみ により蓄積された弾性エネルギーを一気に放出するの で、回動爪23を急速に押圧して最初の位置より90度 左回動した図5 (a) の位置まで至らせる。この位置で は、回動爪23は、その後端部23Bが第1板ばね24 に圧接しているため、回動しない。図5 (a) におい て、ボス21の中心から第1板ばね24の先端までの半 径R」がボス21の中心から突出係合部29Aまでの半 径R2 より小さいので、プーリ28が回転しても、動力 は伝達されない。

【0028】動力伝達を遮断するときの回転力の設定値は、圧縮機の容量以は圧縮機構作応じて適正にする必要がある。本実施の形態例においては、回動爪23と第1板は1224及び第2板は125との間の押圧力の調整は、両板は120たわみの変化により行う。すなわち、クランプ26には、長次26んが開けられており、ボルト27を緩めてクランプ26をスライドさせ、両板ばねの固定点を変化させる。

[0029]

40 【発明の効果】以上の説明から明らかなように、本発明によれば、次の効果を奏することができる。

【0030】(1)過負荷可破断材を採用しておらず、 負荷回転力を板ばねのたわみで受けるため、耐久性が向 上する。

【0031】(2)回転力が設定値を越えた場合には、 回動爪が固定爪から離隔するので、動力伝達の遮断の信 頼性を向上することができる。また、騒音、発熱や振動 が発生しない。

【0032】(3)動力伝達の遮断後、簡単な操作で動 50 力伝達の可能な状態に復旧することができ、また、部品 5

	5			
交換が不	要である。	*	8	固定爪
【図面の	簡単な説明】		8 A	溝
【図1】	本発明の第1実施の形態例の動力伝達時の状態		9	回動爪
を示し、	(a) は正面図、(b) は断面図である。		9 A	先端部
【図2】	本発明の第1実施の形態例の動力伝達の遮断時		9 B	後端部
の状態を	示し、(a)は正面図、(b)は断面図であ		9 C	係止肩
る。			10	支持ピン
【図3】	本発明の第2実施の形態例の動力伝達時の状態		1 1	第1板ばね
を示し、	(a) は正面図、(b) は断面図である。		12	クランプ
図4】	本発明の第2実施の形態例の動力伝達の遮断開	10	13	第2板ばね
始時の状	態を示し、(a)は正面図、(b)は断面図で		1 4	クランプ
ある。			1 5	ボルト
【図5】	本発明の第2実施の形態例の動力伝達の遮断時		2 1	ボス
の状態を	示し、(a) は正面図、(b) は断面図であ		2 1 A	突出部
る。			2 1 B	辺部
【図6】	第1の従来の圧縮機の動力伝達機構を示し、		2 2	支持ピン
(a) は	断面図、(b)は要部の正面図、(c)は要部		23	回動爪
の断面図	である。		2 3 A	先端部
【図7】	第2の従来の圧縮機の動力伝達機構を示し、		2 3 B	後端部
(a) は	断面図、(b)は正面図である。	20	2 4	第1板ばね
【符号の	説明】		2 5	第2板ばね
1 圧	縮機		26	クランプ
2 ケ	ーシング		2 6 A	長穴
3 シ	ヤフト		2 7	ボルト
4 ボ	ス		28	プーリ
5 ナ	ット		29	固定爪
6 球	軸受		2 9 A	突出係合部
7 -	'— II	Ŀ		

【図1】

[図4]

【図5】

【図6】

【図7】

* NOTICES *

JPO and INPIT are not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.

2.**** shows the word which can not be translated.

3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] The power transmission device characterized by the ability of the rotation pawl pressed by the power transfer location by the flat spring which was supported rotatable by the boss who has been stationed at the fixed pawl formed in the pulley, said pulley, and this alignment, and was fixed to the shaft, and was attached in said boss to carry out engagement balking.

[Claim 2] The power transmission device according to claim 1 characterized by maintaining the balking condition from said fixed pawl of said rotation pawl when other flat spring attached in the stop shoulder of said rotation pawl at said boss stops.

[Claim 3] The power transmission device according to claim 1 characterized by maintaining the balking condition from said fixed pawl of said rotation pawl when said flat spring restrains said rotation pawl.

[Claim $4\overline{1}$ The power transmission device according to claim 1 characterized by the ability to change the location where said flat spring presses said rotation pawl.

[Translation done.]

* NOTICES *

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[Field of the Invention] This invention relates to the power transmission device used as torque limiters, such as a compressor and a general industrial use device. [0002]

[Description of the Prior Art] First, the power transmission device of the compressor indicated by JP,6-39105,Y is explained with reference to drawing 6.

[0003] the front of the housing 32 of a compressor 31 — a nose 33 is equipped with a pulley 35 pivotable through bearing 34. The revolution transfer plate 37 is fixed to the shaft 36 of a compressor 31, and the overload good fracture material 38 of the product [paces / four] made of synthetic resin of the revolution transfer plate 37 is fixed. It inserts in hole 35A in which the head of each overload good fracture material 38 was established by four places of a pulley 35, respectively.

[0004] Thus, if constituted, abnormalities will occur in a compressor 31, and if the turning effort which exceeded the set point to the revolution transfer plate 37 is applied, the overload good fracture material 38 will fracture. Therefore, since power is not transmitted to the revolution transfer plate 37 from a pulley 35, a power transmission device is protected.

[0005] Next, the power transmission device of the compressor indicated by JP,63-142460,U is explained with reference to drawing 7.

[0006] the front of the housing 42 of a compressor 41 — a nose 43 is equipped with a pulley 45 pivotable through bearing 44. A hub 47 is fixed to the shaft 46 of a compressor 41, and the drive lever 49 is attached in four places of a hub 47 pivotable centering on a rivet 48. Four engagement crevice 47A is prepared in the periphery of a hub 47, and it is arranged in it so that the annular metal plate manufacturing spring 50 may carry out invagination to the periphery of a hub 47 at engagement crevice 47A. Inner edge circular engagement section 49A of each drive lever 49 engages with each engagement crevice 47A of a hub 47 through flat spring 50, and outer edge circular engagement section 49B of each drive lever 49 engages with each engagement crevice 45A of a pulley 45.

[0007] Thus, if constituted, abnormalities will occur in a compressor 41, and if the turning effort which exceeded the set point to the hub 47 is applied, since each drive lever 49 rotates each rivet 48 as a core, each **** circular engagement section 49A and each outer edge circular engagement section 49B will secede from each engagement crevice 47A of a hub 47, and each engagement crevice 45A of a pulley 45, respectively. Therefore, since power is not transmitted to a hub 47 from a pulley 45, a power transmission device is protected.

[Problem(s) to be Solved by the Invention] In said 1st Prior art, due to actuation of a compressor, repeated stress occurs in overload good fracture material, fracture turning effort cannot maintain constant value easily, and there is a fault of falling with time.

[0009] Said 2nd Prior art has many components mark, and its structure is complicated. Furthermore, since the drive lever is long, the miniaturization of the diameter of a pulley is difficult. Furthermore, since bending stress joins a drive lever by actuation of a compressor, the

proper design of a drive lever is difficult.

[0010] Then, this invention tends to improve the fault of said Prior art, and tends to improve the endurance of a power transmission device, and the dependability of cutoff of power transfer, without adopting overload good fracture material.

[0011]

[Means for Solving the Problem] The following means is used for this invention in order to solve said technical problem.

[0012] (1) The power transmission device in which the rotation pawl pressed by the power transfer location by the flat spring which was supported rotatable by the boss who has been stationed at the fixed pawl formed in the pulley, said pulley, and this alignment, and was fixed to the shaft, and was attached in said boss can carry out engagement balking.

[0013] (2) said — rotation — a pawl — a stop — a shoulder — said — a boss — attaching — having had — others — flat spring — stopping — things — said — rotation — a pawl — said — immobilization — a pawl — from — balking — a condition — maintaining — the above — (— one —) — a publication — a power transmission device.

[0014] (3) The power transmission device of the aforementioned (1) publication which maintains the balking condition from said fixed pawl of said rotation pawl when said flat spring restrains said rotation pawl.

[0015] (4) The power transmission device of the aforementioned (1) publication which can change the location where said flat spring presses said rotation pawl.

[0016]

[Embodiment of the Invention] The example of a gestalt of two operations of this invention is explained with reference to $\underline{\text{drawing 1}} - \underline{\text{drawing 5}}$.

[0017] First, the example of a gestalt of the 1st operation of this invention is explained with reference to $\frac{1}{2}$ and $\frac{1$

[0018] In drawing 1, in the center of the casing 2 of a compressor 1, a shaft 3 is supported pivotable, and the boss 4 is being fixed to the shaft 3 with the nut 5. Moreover, the inner ring of spiral wound gasket of ball bearing 6 is fixed to the peripheral face near the edge of casing 2, and the pulley 7 is being fixed to the outer ring of spiral wound gasket of ball bearing 6. The fixed pawl 8 is being fixed to three places of a pulley 7, respectively.

[0019] A boss 4 is a triangle-like and the rotation pawl 9 is supported by the extension of each top-most vertices rotatable considering the support pin 10 as a core. The clamp 12 which supports the 1st long flat spring 11, and the clamp 14 which supports the 2nd short flat spring 13 are being fixed to the both sides near [each] a boss's 4 top-most vertices with the bolt 15. [0020] Point 9A of the rotation pawl 9 engages with slot 8A of the fixed pawl 8 fixed to the pulley 7, the pressure welding of the 1 side of back end section 9B of the rotation pawl 9 is carried out to the 1st flat spring 11, and the pressure welding of the side else is carried out to the 2nd flat spring 13.

[0021] If a pulley 7 carries out the RRC of the time of the normal operation of a compressor in drawing 1 (a), slot 8A of the fixed pawl 8 will press point 9A of the rotation pawl 9 rightward. Although the rotation pawl 9 tends to carry out right rotation a core [the support pin 10], the 1st flat spring 11 prevents right rotation of the rotation pawl 9. Therefore, a pulley 7, the fixed pawl 8, the rotation pawl 9 and a boss 4 do a RRC, with the condition maintained by which it is relatively shown in drawing 1 (a).

[0022] On the other hand, at the time of the abnormalities of a compressor, as shown in drawing 2 (a), even if a pulley 7 carries out a RRC, a boss 4 cannot rotate. Therefore, since point 9A of the rotation pawl 9 is strongly pressed to slot 8A of the fixed pawl 8, the rotation pawl 9 carries out right rotation, resisting the thrust of the 1st flat spring 11 centering on the support pin 10. And if the rotation pawl 9 carries out predetermined include—angle rotation, point 9A of the rotation pawl 9 will secede from slot 8A of the fixed pawl 8, and the 2nd flat spring 13 will stop stop shoulder 9C of the rotation pawl 9 simultaneously. Therefore, since point 9A of the rotation pawl 9 does not contact the fixed pawl 8 henceforth, power is not transmitted even if a pulley 7 rotates.

[0023] In the example of a gestalt of this operation, even if the rotation pawl 9 moves to a power

transfer impossible location and power transfer is once intercepted, the rotation pawl 9 can be simply returned in the location which can be power transmitted by removing the 2nd flat spring 13 from stop shoulder 9C of the rotation pawl 9.

[0024] Next, the example of a gestalt of the 2nd operation of this invention is explained with reference to drawing.5. In addition, explanation of the same part as the example of a sestalt of the 1st operation is omitted.

[0025] In drawing 3, the rotation pawl 23 is supported rotatable by the support pin 22 prepared in the hexagon-like boss's 21 three lobes 21A, respectively. Moreover, the 1st respectively long flat spring 24 and the 2nd short flat spring 25 are piled up, the clamp 26 of a cross-section KO typeface is assigned to the bottom section of both flat spring, and it fixes to a boss's 21 three side sections 21B with a bolt 27. The point of the 1st flat spring 24 is pressing point 23A of the rotation pawl 23, and back end section 23B. The fixed pawl 29 which has projection engagement section 29A, respectively is being fixed to three places of a pulley 28. Projection engagement section 29A of the fixed pawl 29 is engaging with point 23A of the rotation pawl 23.

[0026] At the time of the normal operation of a compressor, in drawing 3 (a), if a pulley 28 carries out a RRC, projection engagement section 29A of the fixed pawl 29 will press point 23A of the rotation pawl 23 rightward. Although the rotation pawl 23 tends to carry out right rotation a core [the support pin 22], the 1st flat spring 24 prevents right rotation of the rotation pawl 23. Therefore, a pulley 28, the fixed pawl 29, the rotation pawl 23, and a boss 21 do a RRC, with the condition maintained by which it is relatively shown in drawing 3 (a).

[0028] It is necessary to make proper the set point of the turning effort when intercepting power transfer according to the capacity or the compressor style of a compressor. In the example of a gestalt of this operation, change of the deflection of both flat spring performs adjustment of the thrust between the rotation pawl 23, the 1st flat spring 24, and the 2nd flat spring 25. That is, slot 26A has opened, loosen a bolt 27 for a clamp 26, a clamp 26 is made to slide to it, and the fixed point of both flat spring is changed.

[0029]

[Effect of the Invention] According to this invention, the following effectiveness can be done so so that clearly from the above explanation.

[0030] (1) In order not to adopt overload good fracture material but to receive load turning effort by the deflection of flat spring, endurance improves.

[0031] (2) Since a rotation pawl is isolated from a fixed pawl when turning effort exceeds the set point, the dependability of cutoff of power transfer can be improved. Moreover, neither the noise, generation of heat nor an oscillation occurs.

[0032] (3) It can restore in the possible condition of power transfer by easy actuation after cutoff of power transfer, and a parts replacement is unnecessary.

[Translation done.]

* NOTICES *

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

[Drawing 1] The condition at the time of power transfer of the example of a gestalt of the 1st operation of this invention is shown, (a) is a front view and (b) is a sectional view.

[Drawing 2] The condition at the time of cutoff of power transfer of the example of a gestalt of the 1st operation of this invention is shown. (a) is a front view and (b) is a sectional view. [Drawing 3] The condition at the time of power transfer of the example of a gestalt of the 2nd

operation of this invention is shown. (a) is a front view and (b) is a sectional view. [Drawing 4] The condition at the time of cutoff initiation of power transfer of the example of a

gestalt of the 2nd operation of this invention is shown. (a) is a front view and (b) is a sectional view.

[Drawing 5] The condition at the time of cutoff of power transfer of the example of a gestalt of the 2nd operation of this invention is shown, (a) is a front view and (b) is a sectional view. [Drawing 6] The power transmission device of the 1st conventional compressor is shown, and (a)

is [the front view of an important section and (c of a sectional view and (b))] the sectional views of an important section.

[Drawing 7] The power transmission device of the 2nd conventional compressor is shown, (a) is a sectional view and (b) is a front view.

[Description of Notations]

- 1 Compressor
- 2 Casing
- 3 Shaft
- 4 Boss
- 5 Nut
- 6 Ball Bearing 7 Pulley
- 8 Fixed Pawl
- 8A Slot
- 9 Rotation Pawl
- 9A Point
- 9B Back end section
- 9C Stop shoulder
- 10 Support Pin
- 11 1st Flat Spring
- 12 Clamp
- 13 2nd Flat Spring
- 14 Clamp 15 Bolt
- 21 Boss
- 21A Lobe
- 21B Side section
- 22 Support Pin

23 Rotation Pawl

23A Point

23B Back end section 24 1st Flat Spring

25 2nd Flat Spring

26 Clamp

26A Slot

27 Bolt

28 Pulley

29 Fixed Pawl

29A Projection engagement section

[Translation done.]