Set 12: Ordered Dictionary Abstract Data Types: (2,4) Trees, *B* Trees

CS240: Data Structures and Data Management

Jérémy Barbay

Outline

(2,4) trees

Definitions

Properties

Insertion

Deletion

B-Trees

Definition Motivations

Conclusion to Ordered Dictionary ADTs

Concepts

References

Multi-way search trees

Definition

A d-node is an internal node with

- ightharpoonup d children, t_1, \ldots, t_d , and
- ▶ d-1 keys such that $k_1 < k_2 < ... < k_{d-1}$.

This generalizes binary search trees to larger degrees.

Multi-Way Search Trees

Definition

A Multi-Way Search Tree is an ordered search tree consisting of linked d-nodes, where each node may have a different value for d:

It is searched almost like a binary tree.

(2,4)-Trees

Definition

A (2,4)-tree is a multi-way search tree such that

- Every node has between 2 and 4 children
- ▶ All external nodes have the same depth

(2,4)-Trees

Definition

A (2,4)-tree is a multi-way search tree such that

- Every node has between 2 and 4 children
- All external nodes have the same depth

Note: As all external nodes have the same depth, placeholders don't carry much information anymore, and can be omitted.

Properties

Theorem

Consider a (2,4)-tree with n internal keys:

- 1. The number of external placeholders is |E| = n + 1.
- 2. The height h is $\Theta(\log n)$.

Proof: Exercise.

- ▶ Find deepest node where the key belongs, and insert.
- ▶ If overflow, perform a node split:

► The third element (counting the new element) moves up to parent, possibly causing a new overflow.

Example

Example (cont)

Overflow in RSTU!

Insert(T)

Overflow in GLPT!

Example (end)

Theorem

Insertion requires at most $h \in O(\lg n)$ operations.

- Search for the key
- As in an AVL:
 - ▶ if it has no children, remove it.
 - if it has children, replace it with in-order predecessor or successor.
- If too few keys (underflow), then
 - ▶ Transfer a node from an *immediate sibling* if possible

Otherwise, fuse with an immediate sibling and parent element

Example

Delete(A) Simply remove A

Example (cont)

Delete(J) Replace J with H

Example (cont)

Delete(N) Transfer from RS

Example (cont)

Delete(L) Fusion MRP and split

Example (cont)

 ${\tt Delete(\ G\)\ Fusion\ CE+Underflow+transfer\ from\ RU}$

Example (cont)

Delete(Z) immediate
Delete(S) Fusion UX + Underflow + Fusion HR

Example (end)

Theorem

Deletion requires at most $h \in O(\lg n)$ operations.

Summary for (2,4)-trees

- search easy
- insert may involve several splittings.
- deletion may involve one transfer, or several fusions.
- h increases only if root is split.
- h decreases only if root's sibling's fuse, and root becomes empty.
- \triangleright $O(\log n)$ since constant amount of work at each node.

Outline

(2,4) trees

Definitions

I.............................

msertion

Deletion

B-Trees

Definition

Motivations

Improvements

Conclusion to Ordered Dictionary ADTs

Concepts

References

B-Trees Definition

- A generalization of (2,4)-trees
- ▶ A B-Tree of order d ($d \ge 3$) is a multi-way search such that
 - ightharpoonup every node has $\leq d$ children
 - every *non-root* node has $\geq \lceil \frac{d}{2} \rceil$ children
 - ▶ all the external nodes have the same depth
- ▶ Often called an (a, b)-tree where $a = \lceil \frac{d}{2} \rceil$ and b = d
- ▶ The operations are performed the same as before
 - For overflow we promote element $\lceil \frac{d+1}{2} \rceil$ (counting the new element)

B-Tree of Order 6

Example

Also known as a (3,6)-tree:

▶ Insert(A)

▶ Delete (F)

▶ Delete (B)

ACDF

Motivations

External Searching

- What if the dictionary cannot fit in main memory?
- ▶ Need to store data in persistent memory (e.g. on disks)
- ▶ A single access to the data structure takes much longer
 - ► RAM Seek 100 000 memory accesses
 - Disk Seek for 1 disk access
- A disk access brings in a whole page of data
- ▶ Assume we can fit B dictionary elements per page: How many disk accesses would binary search (or an AVL tree) require?

$$\lg n - \lg B$$

B-Trees

- ▶ **Problem**: One disk access only cuts range of keys in half
- ▶ **Solution**: Use a B-Tree of order *d*
 - ▶ Choose *d* such that one *d*-node fills exactly one disk page
 - One disk access narrows search a lot more
- Searching the d-node is still far less expensive than bringing it into memory
- Running time is proportional to the number of blocks read
 - Insert and delete designed to reduce the number of d-nodes examined

Performance

- ► Suppose *d* = 256
- ▶ Minimum and maximum number of keys *found at each depth*:

Depth	Minimum # Keys	Maximum # Keys
0	1	255
1	254	65,280
2	32,512	16,711,680
3	4,161,536	4,278,190,080
4	532,676,608	1.1×10^{12}

Property

Theorem

The height h of a B-tree of order d is

- $ightharpoonup \Omega(\log_d(n))$
- $ightharpoonup O(\log_{\lceil \frac{d}{2} \rceil}(n))$

Proof.

We know $2\lceil \frac{d}{2} \rceil^{h-1} \leq |E| \leq d^h$ combined with |E| = n+1 gives the result.

Improvements

One-Pass Update

One-Pass Update

- Insert and delete require two passes
 - ▶ First pass down tree finds the bottom level node
 - Second pass up tree performs splitting or fusing
- Algorithm can be reworked to perform preemptive splits and fusions on the way down
- See CLRS textbook for details
 - You will never need to perform this in our class

Improvements

B*-Tree

B*-Tree

- ▶ Each non-root *d*-node could have as low as 50% utilization
- ▶ On average a node is 69% filled
- ▶ We could insist that a non-root node is at least $\frac{2}{3}$ filled
- ▶ More difficult to do a node split or fusion
- ▶ A B*-Tree node is 90% filled on average

Improvements

B⁺-Tree

B⁺-Tree

- ▶ Desire greatest branching possible
- Internal nodes contain only keys (not the corresponding satellite data)
- Bottom level of tree contains the real key-data pair
- ► We also wish to perform Range Queries
 - ▶ List all professors with id-numbers between 39 and 75
- Each node has a pointer to the next and previous bottom level page

B⁺-Tree

Summary for B-trees

- ▶ Generalisation of (2, 4)-trees
- Usefull for large dictionaries, which does not fit in memory.
- ► Several variants, corresponding to various needs.
- Very important in practical Databases.

Outline

(2,4) trees

Definitions

Properties

Insertion

Deletion

B-Trees

Definition Motivations

Improvements

Conclusion to Ordered Dictionary ADTs

Concepts

References

Ordered Dictionary ADTs and their DS

- Array Compact
- Binary Search Tree (BST) Fast for static
- Sequence (Skip Lists) Dynamic
- ► AVL Fast and Dynamic
- ▶ (2,4) Trees Fast and "amortized" dynamic
- ▶ *B*-Trees extension for memory issues.

Diferent solutions to different problems...

References

	GT	CLRS
Arrays	pp. 140-151	pp. 253-264
BST		
Skiplists	pp. 195-202	Not covered.
AVL	pp. 152-158	pp. 296 (poorly covered)
(2, 4)-trees	pp. 159-169	pp, 434-452 (indirectly)
B-Trees	pp. 649-653	pp. 434-452