

SGM8584 Single-Supply, Quad Rail-to-Rail I/O Precision Operational Amplifier

PRODUCT DESCRIPTION

The SGM8584 is a quad rail-to-rail input and output precision operational amplifier which has low input offset voltage, and bias current. It is guaranteed to operate from 2.5V to 5.5V single supply.

The rail-to-rail input and output swings provided by the SGM8584 make both high-side and low-side sensing easy. The combination of characteristics makes the SGM8584 good choices for temperature, position and pressure sensors, medical equipment and strain gauge amplifiers, or any other 2.5V to 5.5V application requiring precision and long term stability.

The SGM8584 is specified for the extended industrial/automotive (-40°C to +125°C) temperature range. The SGM8584 comes in the Green SOIC-14 and TSSOP-14 packages.

APPLICATIONS

Temperature Measurements
Pressure Sensors
Precision Current Sensing
Electronic Scales
Strain Gage Amplifiers
Medical Instrumentation
Thermocouple Amplifiers
Handheld Test Equipment

FEATURES

• Low Offset Voltage: 25μV (TYP)

• Rail-to-Rail Input and Output Swing

• 2.5V to 5.5V Single Supply Operation

• Voltage Gain: 135dB (TYP) at +5V

PSRR: 115dB (TYP)CMRR: 92dB (TYP)

• Low Input Bias Current: 60pA

• Low Supply Current: 430µA/Channel

• Overload Recovery Time: 30µs (at V_s = +5V)

• No External Capacitors Required

-40°C to +125°C Operating Temperature Range

 Available in Green SOIC-14 and TSSOP-14 Packages

PIN CONFIGURATIONS (TOP VIEW)

SGM8584

PACKAGE/ORDERING INFORMATION

MODEL	ORDER NUMBER	PACKAGE DESCRIPTION	PACKAGE OPTION	MARKING INFORMATION
SGM8584	SGM8584XS14G/TR	SOIC-14	Tape and Reel, 2500	SGM8584XS14
3GW0304	SGM8584XTS14G/TR	TSSOP-14	Tape and Reel, 3000	SGM8584XTS14

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	\dots -V _S to (+V _S) + 0.1V \dots -5V to 5V
Junction Temperature	150°C
Operating Temperature Range	40°C to +125°C
Lead Temperature (Soldering 10 sec)	
	260°C
ESD Susceptibility	
HBM (TSSOP-14)	8000V
HBM (SOIC-14)	7000V
MM	400V

NOTE:

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

SGMICRO reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. Please contact SGMICRO sales office to get the latest datasheet.

SGM8584

ELECTRICAL CHARACTERISTICS

(V_S = +5V, V_{CM} = +2.5V, V_O = +2.5V, T_A = +25°C, unless otherwise noted.)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	
INPUT CHARACTERISTICS						
learnt Officet Valte as (V.)			25	100	/	
Input Offset Voltage (Vos)	-40°C ≤ T _A ≤ +125°C		11	110	μV	
Input Bias Current (I _B)			60		pA	
Input Offset Current (Ios)			50		pА	
Input Voltage Range		0		5	V	
Common Mode Rejection Ratio (CMRR)	V _{CM} = 0V to 5V	88	92		dB	
Common wode Rejection Ratio (CIVIRR)	-40°C ≤ T _A ≤ +125°C	77			UB	
Lorge Signal Voltage Cain (A.)	$R_L = 10k\Omega$, $V_O = 0.3V$ to 4.7V	120	135		dB	
Large Signal Voltage Gain (A _{VO})	-40°C ≤ T _A ≤ +125°C	104			uБ	
Input Offset Voltage Drift ($\Delta V_{OS}/\Delta_T$)	-40°C ≤ T _A ≤ +125°C		150		nV/°C	
OUTPUT CHARACTERISTICS						
	$R_L = 100k\Omega$ to $-V_S$	4.9	4.998		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Outrout Valta as I lists (V	-40°C ≤ T _A ≤ +125°C	4.894			V	
Output Voltage High (V _{OH})	$R_L = 10k\Omega$ to $-V_S$	4.9	4.994		1,,	
	-40°C ≤ T _A ≤ +125°C	4.888			V	
	$R_L = 100k\Omega$ to $+V_S$		3.5	6		
Outrout Valtage Levy (V.)	-40°C ≤ T _A ≤ +125°C			8	mV	
Output Voltage Low (V _{OL})	$R_L = 10k\Omega$ to $+V_S$		7	10	pm\ /	
	-40°C ≤ T _A ≤ +125°C			23	mV	
Chart Circuit Limit //	$V_O = 2.5V$, $R_L = 10\Omega$ to GND	30	40		A	
Short Circuit Limit (I _{SC})	-40°C ≤ T _A ≤ +125°C	22			– mA	
POWER SUPPLY						
Power Supply Rejection Ratio (1) (PSRR)	V _S = 2.5V to 5.5V	90	115		dП	
Power Supply Rejection Ratio (PSRR)	-40°C ≤ T _A ≤ +125°C	80			- dB	
Ovices and Course of Channel (L.)	$V_O = +V_S/2$	430		555	μА	
Quiescent Current/Channel (I _Q)	-40°C ≤ T _A ≤ +125°C	C ≤ T _A ≤ +125°C				
DYNAMIC PERFORMANCE						
Gain-Bandwidth Product (GBP)	A _V = +100		1.5		MHz	
Slew Rate (SR)	$A_V = +1$, $R_L = 10k\Omega$, 2V Output Step		0.9		V/µs	
Overload Recovery Time	$A_V = -100, R_L = 10k\Omega, V_{IN} = 200mV (RET to GND)$		0.03		ms	
NOISE PERFORMANCE						
Voltage Noise (e _n p-p)	0.1Hz to 10Hz		1.4		μV _{P-P}	
Voltage Noise Density (e _n)	f = 1kHz		78		nV/√Hz	

NOTE 1: PSRR and CMRR are affected by the matching between external gain-setting resistor ratios.

SGM8584

ELECTRICAL CHARACTERISTICS

(V_S = +2.5V, V_{CM} = +1.25V, V_O = +1.25V, T_A = +25°C, unless otherwise noted.)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	
INPUT CHARACTERISTICS						
land Office (Vallege (V			25	100	/	
Input Offset Voltage (Vos)	-40°C ≤ T _A ≤ +125°C		12	120	μV	
Input Bias Current (I _B)			30		pA	
Input Offset Current (I _{OS})			20		рА	
Input Voltage Range		0		2.5	V	
Common Mode Rejection Ratio (CMRR)	V _{CM} = 0V to 2.5V	79	85		dB	
Common wode Rejection Ratio (CIVIRR)	-40°C ≤ T _A ≤ +125°C	70			uБ	
Large Signal Voltage Coin (A.)	$R_L = 10k\Omega$, $V_O = 0.3V$ to 2.4V	120	130		dB	
Large Signal Voltage Gain (A _{VO})	-40°C ≤ T _A ≤ +125°C	104			uБ	
Input Offset Voltage Drift ($\Delta V_{OS}/\Delta_T$)	-40°C ≤ T _A ≤ +125°C		150		nV/°C	
OUTPUT CHARACTERISTICS					•	
	$R_L = 100k\Omega$ to $-V_S$	2.4	2.499			
Output Valta as High (V	-40°C ≤ T _A ≤ $+125$ °C	2.38			_ V	
Output Voltage High (V _{OH})	$R_L = 10k\Omega$ to $-V_S$	2.4	2.497		V	
	-40°C ≤ T _A ≤ $+125$ °C	2.389				
	$R_L = 100k\Omega$ to $+V_S$		4	6	\	
Outrot Valtage Law (V.)	-40°C ≤ T _A ≤ +125°C			7	mV	
Output Voltage Low (V _{OL})	$R_L = 10k\Omega$ to $+V_S$		6	8	m\/	
	-40°C ≤ T _A ≤ +125°C			12	mV	
Chart Circuit Limit //	V_{O} = 1.25V, R_{L} = 10 Ω to GND	20	28		A	
Short Circuit Limit (I _{SC})	-40°C ≤ T _A ≤ +125°C	13			mA	
POWER SUPPLY					•	
Power Supply Rejection Ratio (1) (PSRR)	V _S = 2.5V to 5.5V	90	115		dB	
rower Supply Rejection Ratio (FSRK)	-40°C ≤ T _A ≤ +125°C	80			uв	
Ovigenment Coursent/Channel (I.)	$V_O = +V_S/2$		430	550		
Quiescent Current/Channel (I _Q)	-40°C ≤ T _A ≤ +125°C			710	μA	
DYNAMIC PERFORMANCE					•	
Gain-Bandwidth Product (GBP)	A _V = +100		1.5		MHz	
Slew Rate (SR)	A_V = +1, R_L = 10k Ω , 2V Output Step		1.0		V/µs	
Overload Recovery Time	$A_V = -100, R_L = 10k\Omega, V_{IN} = 200mV (RET to GND)$		0.02		ms	
NOISE PERFORMANCE						
Voltage Noise (e _n p-p)	0.1Hz to 10Hz		1.7		μV _{P-P}	
Voltage Noise Density (e _n)	f = 1kHz		108		nV/√Hz	

NOTE 1: PSRR and CMRR are affected by the matching between external gain-setting resistor ratios.

Large Signal Transient Response at +5V

Time (5µs/div)

Large Signal Transient Response at +2.5V

Time (2µs/div)

Small Signal Transient Response at +5V

Time (5µs/div)

Small Signal Transient Response at +2.5V

Time (5µs/div)

PACKAGE OUTLINE DIMENSIONS

SOIC-14

RECOMMENDED LAND PATTERN (Unit: mm)

Cumbal	Dimens	Dimensions In Millimeters			Dimensions In Inches			
Symbol	MIN	MOD	MAX	MIN	MOD	MAX		
Α	1.35		1.75	0.053		0.069		
A1	0.10		0.25	0.004		0.010		
A2	1.25		1.65	0.049		0.065		
A3	0.55		0.75	0.022		0.030		
b	0.36		0.49	0.014		0.019		
D	8.53		8.73	0.336		0.344		
Е	5.80		6.20	0.228		0.244		
E1	3.80		4.00	0.150		0.157		
е		1.27 BSC			0.050 BSC			
L	0.45		0.80	0.018		0.032		
L1		1.04 REF		0.040 REF				
L2		0.25 BSC		0.01 BSC				
R	0.07			0.003				
R1	0.07			0.003				
h	0.30		0.50	0.012		0.020		
θ	0°	_	8°	0°	_	8°		

PACKAGE OUTLINE DIMENSIONS

TSSOP-14

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	_	nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
А		1.100		0.043	
A1	0.050	0.150	0.002	0.006	
A2	0.800	1.000	0.031	0.039	
b	0.190	0.300	0.007	0.012	
С	0.090	0.200	0.004	800.0	
D	4.900	5.100	0.193	0.201	
Е	4.300	4.500	0.169	0.177	
E1	6.250	6.550	0.246	0.258	
е	0.650 BSC 0.500 0.700		0.026	BSC	
L			0.02	0.028	
Н	0.25 TYP		0.01	TYP	
θ	1°	7°	1°	7°	

TAPE AND REEL INFORMATION

REEL DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOIC-14	13"	16.4	6.6	9.3	2.1	4.0	8.0	2.0	16.0	Q1
TSSOP-14	13"	12.4	6.95	5.6	1.2	4.0	8.0	2.0	12.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)		Height (mm)	Pizza/Carton	
13″	386	280	370	5	