Автокодировщики. Скрытое представление

Денис Волхонский

Программа курса

- День 1: Автокодировщики
 - Семинар: автокодировщик, denoising автокодировщик, вариационный автокодировщик
- День 2: Генеративное обучение
 - Семинар: аппроксимация распределений, генерация лиц
- День 3: Основы обработки текстов
 - о Семинар: генерация текста, предсказание временных рядов

Программа занятия

- Напоминание полносвязных и свёрточных сетей
- Autoencoders
- Denoising autoencoders
- Variational autoencoders

Полносвязные сети

Свёрточные сети

 Demo: http://cs231n.github.io/convolutional-ne tworks/

Обучение нейросетей

Обучение с учителем и без учителя

- Обучение с учителем: пары (x, y)
- Обучение без учителя: только объекты х

Обучение с учителем и без учителя

Обучение с учителем:

- Пары (x, y)
- Обучение отображения х->у

Обучение без учителя:

- Только объекты х
- Обучение скрытой структуры в данных

Зачем нам обучение без учителя?

Зачем нам обучение без учителя

- Поиск самых подходящих признаков
- Сжатие информации
- Визуализация многоразмерных данных
- Поиск похожих объектов
- Генерация новых объектов

Autoencoder

Основная идея:

- Данные из исходного (высокоразмерного)
 пространства
- Проецируем в другое (из которого можем восстановить их)
- Encoder: data -> hidden
- Decoder: hidden -> data
- x ~ Decoder(Encoder(x))

Вопрос: зачем это может быть нужно?

Зачем нужны автокодировщики

- Сжатие данных
- Снижение размерности
- Обучение "хороших" признаков
- Pre-training без учителя

РСА. Снижение размерности

• Минимизация ошибки реконструкции

$$L = ||X - U \cdot S \cdot V^T||$$

PCA = autoencoder

Нужно больше слоёв!

Автокодировщик для изображений

Image upsampling

 С помощью параметров свёртки мы можем снижать/увеличивать размерность

Увеличиваем скрытое представление

Что не так с этой архитектурой?

Увеличиваем скрытое представление

- Мы выучим тождественное отображение!
- Добавим регуляризацию

$$L = ||X - Dec(Enc(X))|| + \sum_{i} |Enc_{i}(X)|$$

Какие ещё варианты?

Увеличиваем скрытое представление

• В качестве регуляризации можем добавить шум или dropout

$$L = ||X - Enc(Noize(Dec(X)))||$$

Как нам сделать denoising autoencoder?

Denoising autoencoder

- Добавляем в исходное изображение шум
- Пытаемся от него избавится

$$L = ||X - Enc(Dec(Noize(X)))||$$

Source

Denoising autoencoder

Автокодировщик для предобучения нейросети

Как можно использовать автокодировщик для предобучения нейросети?

Автокодировщик для предобучения нейросети

• Использовать энкодер как инициализацию

Какие преимущества от предобученного автокодировщика? Есть же Image Net

Преимущества предобученного автокодировщика

- Не нужны метки классов
- Подходит для редких задач (в отличии от Image Net)

Deep Fake

- Обучим 2 отдельных автокодировщика для двух разных людей
- Возьмём энкодер от одного и декодер от другого
- Результат: видео <u>https://www.youtube.com/watch?v</u> <u>=BU9YAHiqNx8</u>

- Батч, у которого некоторый параметр фиксирован (одна поза)
- При прямом распространении заменяем z на усреднённый по батчу
- При обратном распространении добавляем штраф за отклонение z от среднего по батчу

Deep Visual Analogy Making

[Reed et al. NIPS 2015]

Deep Visual Analogy Making

Перевод текста

Заключение

• Зачем нужны автокодировщики?

Практика

Автокодировщик

Семинар

- Адрес: 107.178.212.42
- git clone https://github.com/dvolkhonskiy/pytorch_russky.git
- pip install pandas==0.21 sklearn tqdm -U
- Обновить: jovyan@jupyter-den:~/pytorch_russky\$ git pull