Politechnika Wrocławska

Wydział Elektroniki

Technologie sieciowe 2

Projekt sieci komputerowej Zestaw 43

Prowadzący: Dr. inż. Wojciech Kmiecik

Skład Grupy:

Tomasz Łapszo 226097

Paweł Szynal 226026

Spis treści

1.	Wstęp	3
2.	Inwentaryzacja zasobów: sprzętu, aplikacji, zasobów ludzkich	4
	Zasoby firmy:	5
	Aplikacje wykorzystane w firmie:	5
	Rozmieszczenie sprzętu na poszczególnych piętrach w budynku 1:	6
	Rozmieszczenie sprzętu na poszczególnych piętrach w budynku 2:	6
	Rozmieszczenie punktów dystrybucyjnych i podłączonych do nich punktów abonenckich:	7
3.	Analiza potrzeb użytkowników – wymagania zamawiającego	7
	Transfer danych w [kb/s] do/z Internetu:	8
	Transfer danych w [kb/s] do/z Serwera 1:	9
	Transfer danych w [kb/s] do/z Serwera 2:	10
	Transfer danych w [kb/s] do/z Serwera 3:	11
	Transfer danych w [kb/s] do/z drukarek:	12
	Transfer danych w [kb/s] do/z podczas sesji:	12
3.	1. Transfer łączny z/do Internetu	13
3.	2. Przykładowe obliczenia	13
	Transfer do internetu na stanowisko zarządu	13
	IDF 2 - Transfer z Internetu łącznie [kb/s]	13
	MDF – Projektanci: Transfer do serwera nr 3 łącznie [kb/s]	13
4.	Założenia projektowe	14
5.	Projekt sieci	15
5.	1. Projekt logiczny sieci	15
5.	2. Wybór urządzeń sieciowych	18
	Wykaz urządzeń inwentaryzacyjnych	19
5	3. Adresacja IP	21
5.4	4. Konfiguracja urządzeń	23
5.:	5. Podłączenie do Internetu	25
5.0	6. Analiza bezpieczeństwa i niezawodności sieci	25
5.0	6.1. Ataki oraz nieprzemyślane działanie użytkowników w sieci	25
5.0	6.2. Uszkodzenia mechaniczne elementów sieci oraz samoistne uszkodzeni	25
5.	7. Kosztorys	27
	Zestawienie kosztów zakupu wszystkich urządzeń sieciowych:	27
	Zestawienie kosztów dostawy usług internetowych przez okres 2 lat:	27
6.	Karty katalogowe proponowanych urządzeń	28

1. Wstęp

Celem projektu jest stworzenie dokumentacji umożliwiającej wykonanie sieci komputerowej dla biura projektowego "Szynal & Łapszo Design z.o.o". Projekt dotyczy wdrożenia platformy elektronicznej w postaci zintegrowanego i jednolitego systemu informatycznego

a jego realizacja ma zapewnić rozwiązanie poniższych kwestii:

- Obsługę firmowej poczty elektronicznej oraz strony internetowej, znajdującej się na zewnętrznym serwerze.
- Bezpieczny intranet oparty o nowoczesną technologię łączy szerokopasmowych wraz z systemem transmisji danych.
- Elektroniczna wymianę oraz archiwizację wykonywanych projektów budowlano architektonicznych.
- Wydzielenie sieci logicznej w ramach obecnej sieci fizycznej.

"Szynal & Łapszo Design z.o.o" to: architektura mieszkaniowa jednorodzinna i wielorodzinna oraz użyteczności publicznej. To aranżacje i projekty wnętrz. Dotychczas firma w swoim dorobku posiada realizację 230 budynków mieszkalnych oraz 21 budynków przemysłowych. Obecnie firma znajduje się we Wrocławiu na ulicy Aleja Armii Krajowej 46 i zatrudnia ponad 400 pracowników. W związku z modernizacją i rozbudową firmy, zarząd planuje przenieść główną siedzibę na ulicę Nyska 70 do nowo wybudowanego budynku oddalonego o 317m. jednocześnie zostawiając Dział Scenograficzny i Dział Wyceny Nieruchomości w aktualnej siedzibie firmy. Przeniesienie biur do nowego budynku okazała się bardziej korzystna niż modernizacja obecnego budynku. Przebudowa firmy umożliwi zatrudnienie ponad 600 pracowników.

Oba budynki połączone będą ze sobą światłowodem w miejscach, gdzie potrzebne jest połączenie internetowe. Wszystkie urządzenia końcowe znajdujące się w firmie powinny mieć zapewnione połączenie z siecią, o przepustowości umożliwiającej sprawne działanie. Realizacja projektu mu umożliwić łatwe rozbudowanie sieci dla przyszłych potrzeb związanych z rozwojem firmy. Zamówienie obejmuje również dostawę, wdrożenie nowego sprzętu teleinformatycznego oraz modernizację posiadanego przez firmę sprzętu. Firma "Szynal & Łapszo Design z.o.o" preferuje technologię z rodziny Ethernet oraz posiada własne serwery oraz drukarki z interfejsem sieciowym.

2. Inwentaryzacja zasobów: sprzętu, aplikacji, zasobów ludzkich

Istotne z punktu projektu jest położenie budynków względem siebie. W linii prostej pomiędzy budynkami znajdują się niskie jedno piętrowe zabudowania. Położenie budynków przedstawione jest na Rysunku 1.Budynek znajdujący się na ul. Aleja Armii Krajowej 46zajmuje jedynie piętro pierwsze oraz wymaga modernizacji sprzętu. Wymiana dotyczy zarówno urządzeń sieciowych takich jak szafa krosownicza, serwer, firewall itp. Nowa siedziba firmy będzie znajdować się na ulicy Nyska 70. Nowo wybudowany budynek jest już przystosowany do nowoczesnych rozwiązań energetycznych oraz telefonicznych co pozwoli na zredukowanie kosztów modernizacyjnych. Projektowana sieć musi cechować się jakością, niezawodnością oraz skalowalnością w przypadku potrzeby zwiększenia ilości pracowników w firmie. Ważnym czynnikiem jest również estetyczna jakość wykonania instalacji.

W nowym budynku firma wykorzystuje kondygnacje 1-4.Obecnie w firmie znajdują się cztery grupy robocze: Konstruktorzy Architekci, Projektanci oraz Zarząd. Dostęp do bezprzewodowego Internetu będzie tylko na pierwszym piętrze pierwszego budynku i trzecim piętrze drugiego budynku. Ze względów bezpieczeństwa oraz korzystnego działania sieci dostęp do zasobów będzie ograniczony przez poszczególnych użytkowników.

MDF – główny punkt dystrybucyjny, zlokalizowany na trzecim piętrze w budynku drugim. Obsługuje ruch generowany przez 218 użytkowników z piętra trzeciego i czwartego w budynku drugim.

IDF1 – pomocniczy punkt dystrybucyjny, zlokalizowany na drugim piętrze drugiego budynku. Obsługuje ruch generowany przez 292 użytkowników z piętra pierwszego i drugiego w drugim budynku.

IDF2 – pomocniczy punkt dystrybucyjny, zlokalizowany na pierwszym piętrze w budynku pierwszym, obsługuje ruch generowany przez 96 użytkowników z piętra pierwszego.

Użytkownicy podzieleni są na 4 grupy robocze: Konstruktorzy, Architekci, Projektanci, Zarząd. Do sieci należy również podłączyć, należące do klienta, 3 serwery lokalne, 9 drukarek, 2 punkty dostępowe

Zasoby firmy:

Rodzaj zasobu	Liczba
Komputer	606
Drukarka	9
Puknt dostępu WIFI	4
Urzadzenia bezprzewodowe	21

Tabela 1 Zasoby firmy

Aplikacje wykorzystane w firmie:

Rodzaj programu	Przykład
Przeglądarka internetowa	Google chrome
Komunikator	Skype, TeamVevier
Klient FTP	Total Commander
VoIP	Skype
Wideokonferencja	Skype

Tabela 2Aplikacje wykorzystane w firmie

Rozmieszczenie sprzętu na poszczególnych piętrach w budynku 1:

Piętro 1				
Rodzaj zasobu	Liczba			
Komputer	96			
Drukarka	1			
Punkt dostępu WIFI	3			
Urządzenia bezprzewodowe	4			

Tabela 3 Rozmieszczenie sprzętu na poszczególnych piętrach w budynku 1

Rozmieszczenie sprzętu na poszczególnych piętrach w budynku 2:

Piętro 1					
Liczba					
120					
2					
0					
0					
Liczba					
172					
2					
0					
0					
Liczba					
147					
2					
1					
17					
Liczba					
71					
2					
0					

Tabela 4 Rozmieszczenie sprzętu na poszczególnych piętrach w budynku 2

Rozmieszczenie punktów dystrybucyjnych i podłączonych do nich punktów abonenckich:

Oznaczenie	Lokalizacja	Podłączone punkty abonenckie
MDF	Bud. 2, Piętro 3	Bud. 2, Piętro 3,4,
IDF1	Bud. 2, Piętro 2	Bud. 2, Piętro 2,1,
IDF2	Bud. 1, Piętro 1	Bud. 1

Tabela 5 Rozmieszczenie punktów dystrybucyjnych i podłączonych do nich punktów abonenckich

3. Analiza potrzeb użytkowników – wymagania zamawiającego

Firma Łapszo & Szynal Design jest dużą firmą architektoniczną wykorzystującą nowoczesne rozwiązania technologiczne. Pomiędzy stanowiskami przesyłana jest dość spora ilość informacji takich jak wysokiej rozdzielczości zdjęcia projektów architektonicznych, dlatego wybrana została technologia okablowania 1000Baste-T Gigabit Ethernet. Ukryta instalacja wraz ze stosownym dostępem do niej ułatwi rozwiązywanie usterek oraz ewentualnych modyfikacji. Praca w firmie wymaga często dostępu do tych samych plików przez wielu użytkowników naraz, dlatego też planowane jest uruchomienie serwera plików (FTP) opartego na systemie Linux Slackware 9.1. Wszyscy pracownicy firmy potrzebują komfortowego dostępu do sieci Internet, dlatego został podpisany kontrakt z dwoma niezależnymi dostawcami. Pierwszy niezależnym dostawcą internetu będzie Netia umożliwiający pobieranie danych z prędkością do 200 MB/S i pobieraniem danych do 150 MB/S. Drugim niezależnym dostawcą internetu będzie Vectra z owiązującą ofertą: Internet do 150 MB/S – download, 150 MB/S – upload. Dział techniczny zamierza uruchomić wsparcie on-line dla swoich klientów, prace serwisowe, czy też konfiguracja oprogramowania u klientów będzie często odbywać się zdalnie poprzez programy typu VNC. W związku z tym wymagane będzie takie skonfigurowanie połączenia z Internetem, aby praca zdalna uzyskała największy priorytet, czyli najmniejsze opóźnienia i zagwarantowane pasmo na dostępnym łączu. Do połączenia stanowisk zostaną wybrane przełączniki, ponieważ umożliwią łatwą kontrolę ruchu w sieci oraz jego kształtowanie zgodnie z wymaganiami. Na każdym piętrze umieszczony zostanie jeden przełącznik główny. Ponieważ planowane są punkty dostępowe WiFi, dlatego wymaga się by komputery były nie tylko wyposażone w kartę sieciową i kartę bezprzewodową WiFi.

Transfer danych w [kb/s] do/z Internetu:

Punkt			Transfer do Transfer z Internetu		Transfer do Internetu	Transfer z Internetu
dystrybucyjny	Nazwa	Ilość stanowisk	na stanowisko	na stanowisko	łącznie	łącznie
	Konstruktorzy	49	43	169	2107	8281
	Architekci	56	87	157	4872	8792
MDF	Projektanci	93	75	128	6975	11904
	Zarząd	20	67	213	1340	4260
	Urządzenia WiFi	17	56	137	952	2329
	Łącznie	235	328	804	16246	35566
	Konstruktorzy	55	43	169	2365	9295
	Architekci	78	87	157	6786	12246
IDF 1	Projektanci	75	75	128	5625	9600
	Zarząd	84	67	213	5628	17892
	Urządzenia WiFi	0	56	137	0	0
	Łącznie	292	328	804	20404	49033
	Konstruktorzy	4	43	169	172	676
	Architekci	31	87	157	2697	4867
IDF 2	Projektanci	40	75	128	3000	5120
	Zarząd	21	67	213	1407	4473
	Urządzenia WiFi	4	56	137	224	548
	Łącznie	100	328	804	7500	15684

Tabela 6 Transfer danych w [kb/s] do/z Internetu

Transfer danych w [kb/s] do/z Serwera 1:

Punkt	Grupa robocza		Transfer do serwera nr	Transfer z serwera nr	Transfer do	Transfer z serwera nr
dystrybucyjny	Nazwa	Ilość stanowisk	1 na stanowisko	1 na stanowisko	1 łącznie	1 łącznie
	Konstruktorzy	49	600	550	29400	26950
	Architekci	56	400	100	22400	5600
MDF	Projektanci	93	0	0	0	0
	Zarząd	20	0	0	0	0
	Urządzenia WiFi	17	150	100	2550	1700
	Łącznie	235	1150	750	54350	34250
	Konstruktorzy	55	600	550	33000	30250
	Architekci	78	400	100	31200	7800
IDF 1	Projektanci	75	0	0	0	0
	Zarząd	84	0	0	0	0
	Urządzenia WiFi	0	150	100	0	0
	Łącznie	292	1150	750	64200	38050
	Konstruktorzy	4	600	550	2400	2200
	Architekci	31	400	100	12400	3100
IDF 2	Projektanci	40	0	0	0	0
	Zarząd	21	0	0	0	0
	Urządzenia WiFi	4	150	100	600	400
	Łącznie	100	1150	750	15400	5700

Tabela 7 Transfer danych w [kb/s] do/z Serwera 1

Transfer danych w [kb/s] do/z Serwera 2:

Punkt	Grupa robocza		Transfer do serwera nr 2 na	Transfer z serwera nr 2 na	Transfer do serwera	z	
dystrybucyjny	Nazwa	llość stanowisk	stanowisko [kb/s]	stanowisko [kb/s]	nr 2 łącznie [kb/s]	nr 2 łącznie [kb/s]	
	Konstruktorzy	49	0	0	0	0	
	Architekci	56	350	950	19600	53200	
MDF	Projektanci	93	0	0	0	0	
	Zarząd	20	0	0	0	0	
	Urządzenia WiFi	17	150	150	2550	2550	
	Łącznie	235	500	1100	22150	55750	
	Konstruktorzy	55	0	0	0	0	
	Architekci	78	350	950	27300	74100	
IDF 1	Projektanci	75	0	0	0	0	
	Zarząd	84	0	0	0	0	
	Urządzenia WiFi	0	150	150	0	0	
	Łącznie	292	500	1100	27300	74100	
	Konstruktorzy	4	0	0	0	0	
	Architekci	31	350	950	10850	29450	
IDF 2	Projektanci	40	0	0	0	0	
	Zarząd	21	0	0	0	0	
	Urządzenia WiFi	4	150	150	600	600	
	Łącznie	100	500	1100	11450	30050	

Tabela 8 Transfer danych w [kb/s] do/z Serwera 2

Transfer danych w [kb/s] do/z Serwera 3:

Punkt	serwera nr serw				Transfer z serwera nr	
dystrybucyjny	Nazwa	Ilość stanowisk	stanowisko [kb/s]	stanowisko [kb/s]	serwera nr 3 łącznie [kb/s]	3 łącznie [kb/s]
	Konstruktorzy	49	600	750	29400	36750
	Architekci	56	0	0	0	0
MDF	Projektanci	93	650	250	60450	23250
	Zarząd	20	150	100	3000	2000
	Urządzenia WiFi	17	0	0	0	0
	Łącznie	235	1400	1100	92850	62000
	Konstruktorzy	55	600	750	33000	41250
	Architekci	78	0	0	0	0
IDF 1	Projektanci	75	650	250	48750	18750
	Zarząd	84	150	100	12600	8400
	Urządzenia WiFi	0	0	0	0	0
	Łącznie	292	1400	1100	94350	68400
	Konstruktorzy	4	600	750	2400	3000
	Architekci	31	0	0	0	0
IDF 2	Projektanci	40	650	250	26000	10000
	Zarząd	21	150	100	3150	2100
	Urządzenia WiFi	4	0	0	0	0
	Łącznie	100	1400	1100	31550	15100

Tabela 9 Transfer danych w [kb/s] do/z Serwera

Transfer danych w [kb/s] do/z drukarek:

Punkt dystrybucyjny	Grupa rob		Transfer do drukarki na stanowisko	Transfer z drukarki na stanowisko	Transfer do drukarki łącznie	Transfer z	
	Nazwa	Ilość stanowisk	[kb/s]	[kb/s]	[kb/s]	[, 2]	
	Konstruktorzy	49	160	10	7840	490	
	Architekci	56	160	10	8960	560	
MDF	Projektanci	93	150	10	13950	930	
	Zarząd	20	200	10	4000	200	
	Urządzenia WiFi	17	180	10	3060	170	
	Łącznie	235	850	50	37810	2350	
	Konstruktorzy	55	160	10	8800	550	
	Architekci	78	160	10	12480	780	
IDF 1	Projektanci	75	150	10	11250	750	
	Zarząd	84	200	10	16800	840	
	Urządzenia WiFi	0	180	10	0	0	
	Łącznie	292	850	50	49330	2920	
	Konstruktorzy	4	160	10	640	40	
	Architekci	31	160	10	4960	310	
IDF 2	Projektanci	40	150	10	6000	400	
	Zarząd	21	200	10	4200	210	
	Urządzenia WiFi	4	180	10	720	40	
	Łącznie	100	850	50	16520	1000	

Tabela 10 Transfer danych w [kb/s] do/z drukarek

Transfer danych w [kb/s] do/z podczas sesji:

	Transfer do Internetu	Transfer z Internetu	Liczba sesji
Serwer WWW	3870	1075	43
Serwer FTP	2000	900	10

Tabela 11 Transfer danych w [kb/s] do/z podczas sesji

3.1. Transfer łączny z/do Internetu

	Transfer z internetu [kb\s]	Transfer do internetu [kb/s]
Serwery	1975	5870
Aplikacje Budynek 1	15684	7500
Aplikacje Budynek 2	83283	74754
Łącznie	100942	88124

Tabela 12 Transfer łączny z/do Internetu

Transfer z internetu	Transfer do internetu
[Mb/s]	[Mb/s]
100,94	88,12

Tabela 13 Podsumowanie

3.2. Przykładowe obliczenia

Transfer do internetu na stanowisko zarządu

Transfer do Internetu na stanowisko [kb/s] * Ilość stanowisk w grupie roboczej = (10 + 40 + 17)* 17 = 1340 [kB/s]

IDF 2 - Transfer z Internetu łącznie [kb/s]

(Transfer z internetu na stanowisko konstruktorów * ilość stanowisk) + (Transfer z internetu na stanowisko architektów * ilość stanowisk) + (Transfer z internetu na stanowisko projektantów * ilość stanowisk) + (Transfer z internetu na stanowisko zarządu *ilość stanowisk) + (Transfer z internetu urządzeń WiFi * ilość stanowisk) = ((77 + 20 + 72) * 4) + ((48 + 20 + 40 + 49) * 31) + ((40 + 20 + 68) * 40) + ((66 + 40 + 20 + 87) * 21) + ((40 + 97) + 4) = 15684 [kb/s]

MDF – Projektanci: Transfer do serwera nr 3 łącznie [kb/s]

Transfer do serwera nr 3 na stanowisko [kb/s] projektantów *Ilość stanowisk w grupie roboczej = 650 * 93 = 60450 [kb/s]

4. Założenia projektowe

- Okablowanie szkieletowe i poziome, wewnątrz budynków (skrętka kat. 6A), wykonane w technologii 1000Baste-T Gigabit Ethernet
- Wymagana jest estetyka instalacji zarządzanie okablowaniem oraz ukrycie go.
- Połączenie między budynkami łącze optyczne jednomodowe
- Co najmniej 25% wolnych portów w przełącznikach, w celu umożliwienia przyszłej rozbudowy
- Wykorzystanie technologii VLAN w celu ograniczenia ilości sztormów broadcastowych,
 ułatwienia pracy pracowników każdego z działów i zwiększenia bezpieczeństwa sieci
- Zapewnienie odpowiedniej konfiguracji sieci bezprzewodowej i kontroli dostępu sieć zabezpieczona szyfrowaniem WPA2-Enterprise, z ograniczonym dostępem do sieci firmowe
- W celu zapewnienia niezawodności połączenia z Internetem, dzierżawa dwóch łączy od niezależnych operatorów.
 - Pierwszy niezależnym dostawcą internetu będzie Netia z ofertą: Internet do 200 MB/S download, 150 MB/S upload za 69,90 ZŁ/MIES.
 - Drugim niezależnym dostawcą internetu będzie Vectra z ofertą: Internet do 150 MB/S download, 150 MB/S upload za 49,99 ZŁ/MIES.
- Zapewnienie maksymalnego bezpieczeństwa sieci: ochrona przed dostępem z zewnątrz do wewnętrznych zasobów (prywatna adresacja), a także odporność na fizyczne uszkodzenia – redundancja zasobów
- Serwery obsługujące ruch Internetowy zostaną odizolowane w strefie DMZ, tak, aby w przypadku włamania, atakujący nie uzyskał dostępu do całej sieci komputerowej przedsiębiorstwa
- Prace serwisowe, czy też konfiguracja oprogramowania u klientów będą często odbywać się zdalnie poprzez program typu VNC - UltraVNC.

5. Projekt sieci

5.1. Projekt logiczny sieci

Projekt logiczny sieci przedstawiono na Rysunku 4. Główne oraz zapasowe przyłącze do sieci Internet znajduje się w budynku pierwszym. W tym samym budynku zainstalowany zostanie główny router R1T3F1B1 pośredniczący w ruchu sieciowym między Internetem oraz jednostkami roboczymi oraz router R2T3F1B1 jako połączenie z siecią zapasową. Oprócz tego w budynku pierwszym umieszczone zostaną serwery (włącznie z serwerem ftp oraz WWW). Serwery umieścimy w strefie zdemilitaryzowanej DMZ za urządzeniem pełniącym funkcje firewalla. W budynku pierwszym został umieszczony przełącznik warstwy III N1T1F1B1, który jest niezbędny do poprawnego funkcjonowania wewnętrznych sieci VLAN. Jest to głównym przełącznik w pierwszym budynku. W drugim budynku głównym przełącznikiem jest przełącznik warstwy II N1T2F1B2. Oba te przełączniki połączone są połączone optycznym kablem wielodomowym (połączenie między budynkami) oraz zostały wyposażone w dodatkowe moduł obsługujące taki rodzaj połączenia. W każdym punkcie dystrybucyjnym zostaną umieszczone stakowalne przełączniki warstwy II do zarządzania jednostkami roboczymi. Wykorzystanie przełączników pozwala zaoszczędzić kabel używany do łączenia jednostek z urządzeniem aktywnym. Drukarki z interfejsem sieciowym ulokowane na poszczególnych piętrach zostaną podłączone do przełączników w odpowiadających im punktach dystrybucyjnych. Alternatywny sposób dostępu do sieci umożliwi technologia bezprzewodowa znajdująca się na 1 piętrze 1 budynku oraz 3 piętrze 2 budynku. Zastosowany układ w dużej mierze zależy od fizycznego rozkładu pomieszczeń oraz poszczególnych działów przedsiębiorstwa. Przyjęte rozwiązania pozwolą utworzyć spójną i wydajną infrastrukturę sieciową.

Oznaczenia:

 $N{x}T{y}F{x}B{a}$, gdzie:

x – numer urządzenia

y – typ urządzenia

z – numer piętra

a – numer budynku

Legenda:

Symbol	Numer inwentaryzacyjny (typ urządzenia)	Opis
	1	Przełącznik warstwy trzeciej
	2	Przełącznik
65	3	Router
	4	Serwer
	5	Stacje robocze
	6	Drukarki
	7	Punkt dostępowy
	8	Internet
	9	Firewall
	10	Urządzenia bezprzewodowe

GigabitEthernet

FastEthernet

Optyczne łącze wielomodowe (światłowód)

Lącze bezprzewodowe

Numer VLAN	Oznaczenie kolorem	Nazwa
1	Czerwony	Konstruktorzy
2	Niebieski	Architekci
3	Zielony	Projektanci
4	Pomarańczowy	Zarząd
5	Szary	WiFi i drukarki
6	Fioletowy	Urządzenia bezprzewodowe

Tabela 14 Podział na sieci VLAN

5.2. Wybór urządzeń sieciowych

Przełączniki warstwy 2:

Ze względu na ilość abonentów konieczne było zastosowanie stackowalnych przełączników. Rozwiązanie to pozwala na złączenie na raz kilku urządzeń i zarządzanie nimi jakby były jednym urządzeniem. Do projektu został wybrany przełącznik Cisco WS-C2960G-24TC-L. Każdy z nich posiada 24 gniazd Fast Ethernet oraz 2 Gigabit Ethernet. Do połączenia z serwerami został wybrany Cisco SG300-10PP-K9-EU wyposażony w porty Gigabit Ethernet.

Przełączniki warstwy 3:

W związku z charakterystyką ruchu sieciowego firmy, konieczne było zastosowanie gigabitowych przełączników warstwy trzeciej. Wybrany został przełącznik warstwy trzeciej. Cisco SG500X-24-K9-G5 wyposażony w 24 porty Gigabit Ethernet.

Routery

By zapewnić stałe połączenie użytkowników z Internetem potrzebny jest wysokiej klasy router. Jest nim: Cisco 1921-SEC/K9.

Access Pointy

Ze względu na niskie zapotrzebowanie ze strony urządzeń bezprzewodowych, wystarczającym urządzeniem będzie Cisco WAP321-E-K9.

Firewall

Cisco ASA5506-SEC-BUN-K9 cechuje się przepustowością 125 Mbit/s oraz maksymalną szybkością przesyłania danych na poziomie 250 Mbit/s. Urządzenie wyposażono w 8 portów Ethernet LAN (RJ-45), 1 port USB 2.0, 1 szeregowy port komunikacyjny, a także port wan Ethernet (RJ-45). Wyżej wymienione cechy sprawiają, że Firewall spełni nasze oczekiwania.

Wykaz urządzeń inwentaryzacyjnych

Numer inwentaryzacyjny urządzenia	Model urządzenia	Typ Urządzenia
N1T1F1B1	Cisco SG500X-24-K9-G5	Przełącznik warstwy trzeciej
N19T2F1B1		
N1017T2F1B2		
N1826T2F2B2	Cisco WS-C2960G-24TC-L	Przełącznik warstwy drugiej
N2735T2F3B2		, , ,
N3641T2F4B2		
N2T2F1B1	Cisco SG300-10PP-K9-EU	
N12T3F1B1	Cisco 1921-SEC/K9	Router
N13T7F1B1	Cisco WAP321-E-K9	Punkt dostępowy
N4T7F3B2		
N13T9F1B1	Cisco ASA5506-SEC-BUN-K9	Firewall

Tabela 15 wykaz urządzeń inwentaryzacyjnych

Symbol	Liczba	Opis
**	1	Przełącznik warstwy trzeciej
	41	Przełącznik
63	2	Router
	5	Serwer
	606	Stacje robocze
	9	Drukarki
	5	Punkt dostępowy
	2	Internet
P	3	Firewall

Tabela 16 Zapotrzebowanie na poszczególne urządzenia sieciowe

5.3.Adresacja IP

VLAN1	Konstruktorzy
Adres podsieci:	192.168.0.0
Maska:	255.255.255.0
Hosty:	192.168.0.1 - 192.168.0.254
Adres rozgłoszeniowy:	192.168.0.255

Tabela 17 Konfiguracja VLAN1

VLAN2	Architekci
Adres podsieci:	192.168.1.0
Maska:	255.255.255.0
Hosty:	192.168.1.1 - 192.168.1.254
Adres rozgłoszeniowy:	192.168.1.255

Tabela 18 Konfiguracja VLAN2

VLAN3	Projektanci
Adres podsieci:	192.168.2.0
Maska:	255.255.255.0
Hosty:	192.168.2.1 - 192.168.2.254
Adres rozgłoszeniowy:	192.168.2.255

Tabela 19 Konfiguracja VLAN3

VLAN4	Zarząd
Adres podsieci:	192.168.3.0
Maska:	255.255.255.0
Hosty:	192.168.3.1 - 192.168.3.254
Adres rozgłoszeniowy:	192.168.3.255

Tabela 20 Konfiguracja VLAN4

VLAN5	Drukarki i Wi-fi
Adres podsieci:	192.168.4.0
Maska:	255.255.255.0
Hosty:	192.168.4.1 - 192.168.4.254
Adres rozgłoszeniowy:	192.168.4.255

Tabela 21 Konfiguracja VLAN5

VLAN6	Urządzenia bezprzewodowe	
Adres podsieci:	192.168.5.0	
Maska:	255.255.255.0	
Hosty:	192.168.5.1 – 192.168.5.254	
Adres		
rozgłoszeniowy:	192.168.5.255	

Tabela 22 Konfiguracja VLAN6

5.4. Konfiguracja urządzeń

Adresy interfejsów:

Publiczne:

W adresy publiczne zaopatrza firmę dostawca Internetu. Podczas projektowania sieci nie są one znane. W projekcie znajdują się następujące urządzenia, którym należy ustawić publiczny adres sieci w celu umożliwienia dostępu przez użytkowników spoza firmy (np. dostęp do strony internetowej firmy). Należą do nich:

- Router 1
- Router 2
- Serwer WWW
- Serwer FTP

Prywatne:

Adresy statyczne z puli adresów prywatnych będą ustawione jedynie na następujących urządzeniach:

- Serwer 1 (adres IP: 192.168.6.1)
- Serwer 2 (adres IP: 192.168.6.2)
- Serwer 3 (adres IP: 192.168.6.3)

Adresy urządzeń takich jak komputery stacjonarne, drukarki, punkty dostępowe WiFi lub urządzenia bezprzewodowe będą przydzielane za pomocą Serwera 1, który korzystać będzie z protokołu DHCP. Serwer DHCP będzie skonfigurowany dla każdego istniejącego VLANu. Aby móc sprawnie wykorzystać protokół DHCP należy odpowiednio skonfigurować VLANy na przełącznikach.

W budynku pierwszym na pierwszym piętrze pracować będzie 4 konstruktorów. Grupę roboczą konstruktorów identyfikuje VLAN 1. Oznacza to, iż na przełączniku należy ustawić 4 porty jako VLAN 1. Należy w tym celu użyć następujących komend:

<u>Definiowanie sieci VLAN</u>

```
Switch(config) #vlan 1
Switch(config-vlan) #name Konstruktorzy
```

Konfiguracja portów

```
Switch(config) #interface range fa0/1-4
Switch(config-if) #switchport mode access
Switch(config-if) #switchport access vlan 1
```

Następnym krokiem jest nadanie odpowiednich adresów IP dla poszczególnych VLANów według adresacji IP.

```
Switch(config) #interface vlan 1
Switch(config-if) #ip address 192.168.0.0 255.255.255.0
Switch(config-if) #no shutdown
```

Ostatnim krokiem jest zalogowanie się na maszynę, która pełni funkcję serwera DHCP. Należy podnieść wybrany interfejs etho (jest to konieczne do konfiguracji VLAN) i poleceniem vconfig dodajemy VLAN o ID 1,2.... Następnie należy podnieść utworzone interfejsy w ramach odpowiednich podsieci.

5.5. Podłączenie do Internetu

Obliczenia obciążenia sieci wykazały, że minimalny transfer download musi wynosić 101 Mb/s, a uploadu 89 Mb/s. Biorąc pod uwagę, że wszystkie urządzenia mogą działać jednocześnie musimy uwzględnić pewnien zapas, dzięki któremu będziemy mieli pewność, że łącze wytrzyma obciążenie. Zdecydowaliśmy się, że naszym głównym niezależnym dostawcą Internetu będzie Netia z ofertą 200 Mb/s – download oraz 150 Mb/s – upload za 69,90 zł miesięcznie. Drugim niezależnym dostawcą internetu będzie Vectra z ofertą 150 MB/S – download oraz 150 MB/S – upload za 49,99 zł miesięcznie. Obie firmy wspierają dostępność wybranych usług w lokalizacji naszej firmy.

5.6. Analiza bezpieczeństwa i niezawodności sieci

5.6.1. Ataki oraz nieprzemyślane działanie użytkowników w sieci

- ataki hakerskie na stację roboczą
- ataki hakerskie na serwerownie
- wirusy w programach pobieranych z internetu przez użytkowników
- wykorzystanie sieci przez osoby nieuprawnione

5.6.2. Uszkodzenia mechaniczne elementów sieci oraz samoistne uszkodzeni

- uszkodzenia kabli/wtyczek
- uszkodzenie przełączników warstwy 2
- uszkodzenie przełączników warstwy 3
- awaria dostępu do Internetu

Ataki hakerskie na stację roboczą - w celu zabezpieczenia firmy Łapszo & Szynal Design przed atakami na stacje robocze zastosowano sprzęt Firewall na poziomie routera głównego. Dzięki niemu możliwa jest kontrola informacji przesyłanych w obu kierunkach.

Ataki hakerskie na serwerownię - w celu dodatkowego zabezpieczenia serwerów mających kontakt z Internetem, zastosowana została strefa zdemilitaryzowana która dodatkowo została zabezpieczona dodatkowym urządzeniem typu Firewall.

Wirusy w programach pobieranych z internetu przez użytkowników – w celu zmniejszenia ryzyka zawirusowania stacji roboczych, a nawet w gorszych przypadkach całej sieci zostaną zastosowane oprogramowania antywirusowe w każdej stacji roboczej.

Wykorzystanie sieci przez osoby nieuprawnione - w celu zabezpieczenia dostępu do sieci została ona zabezpieczona hasłem WPA2-PSK, które są w posiadaniu administratorów firmy Łapszo & Szynal Design.

Uszkodzenia kabli/wtyczek - w celu zminimalizowania problemów związanych z okablowaniem i mechanicznymi uszkodzeniami systemu okablowania, kable prowadzone są w formie ściennej w specjalnych przewodach co minimalizuje ryzyko ich uszkodzenia, a ewentualne uszkodzenia mogą zajść bezpośrednio przy stacjach roboczych.

Uszkodzenia przełączników warstwy drugiej - na każdym piętrze w każdym punkcie abonenckim znajduje się liczba przełączników dopasowana do aktualnych potrzeb plus minimum 20% dodatkowych portów, zlokalizowanych czasem w nieużywanych przełącznikach. Jest ich na tyle dużo, że awaria pojedynczego przełącznika warstwy drugiej nie wpłynie na zatrzymanie działań wszystkich stacji roboczych w jednym punkcie abonenckim.

Uszkodzenie przełączników warstwy trzecie - na każdym piętrze zlokalizowany jest osobny przełącznik warstwy 3 do którego podłączone są przełączniki warstwy 2, więc awaria jednego przełącznika warstwy trzeciej nie spowoduje awarii łącza wszystkich użytkowników, tylko tych w danym punkcie abonenckim.

Awaria dostępu do Internetu - w celu zapewnienia nieprzerwanego dostępu do Internetu w firmie Łapszo & Szynal Design, o przepustowości spełniającej wymagania sieci.

5.7. Kosztorys

Zestawienie kosztów zakupu wszystkich urządzeń sieciowych:

Urządzenie	Model	llość	Cena za sztukę	Ogółem
Router	1921-SEC/K9	2	2 450,50 zł	4 901,00 zł
Przełacznik warstwy II	WS-C2960G-24TC-L	40	790,00 zł	31 600,00 zł
Przełacznik warstwy II	SG300-10PP-K9-EU	1	757,00 zł	757,00 zł
Przełacznik warstwy III	SG500X-24-K9-G5	1	4 700,00 zł	4 700,00 zł
Access Point	WAP321-E-K9	4	686,02 zł	2 744,08 zł
Firewall	ASA5506-SEC-BUN-K9	3	2 479,49 zł	7 438,47 zł
			Razem:	52 140,55 zł

Tabela 27 Koszta urządzeń sieciowych

Zestawienie kosztów dostawy usług internetowych przez okres 2 lat:

Dostawca internetu	Download [Mb/s]	Upload [Mb/s]	Cena za miesiąc	Cena za okres 2 lat
Netia	200	150	69,90 zł	1 677,60 zł
Vectra	150	150	49,99 zł	1 199,76 zł
			Razem:	2 877,36 zł

Tabela 28 Koszta dostawy usług internetowych

Całkowity koszt urządzeń sieciowych wraz z usługami internetowymi na okres 2 lat wynosi **55 017,91 zł.**

6. Karty katalogowe proponowanych urządzeń

Przełącznik warstwy II CISCO WS-C2960G-24TC-L

- Liczba portów Ethernet (RJ - 45): 24

- Podstawowe przełączania Ethernet RJ - 45 porty typu: Gigabit Ethernet 10/100/1000

- Liczba portów SFP Combo: 2

- Ilość portów Gigabit Ethernet: 24

- Przepustowość przełączania: 48 Gbit/s

- Liczba VLANs: 255

Dokumentacja:

CISCO WS-C2960G-24TC-L

Przełącznik warstwy II CISCO SG300-10PP-K9-EU

- Liczba portów Ethernet (RJ - 45): 8

- Podstawowe przełączania Ethernet RJ - 45 porty typu: Gigabit Ethernet 10/100/1000

- Liczba portów SFP Combo: 2

- Ilość portów Gigabit Ethernet: 8

- Przepustowość przełączania: 20 Gbit/s

- Liczba VLANs: 4096

Dokumentacja:

CISCO SG300-10PP-K9-EU

Przełącznik warstwy III CISCO SG500X-24-K9-G5

- Rodzaj interfejsu sieci Ethernet: Gigabit Ethernet

- Liczba portów Ethernet (RJ - 45): 24

- Podstawowe przełączania Ethernet RJ - 45 porty typu: Gigabit Ethernet 10/100/1000

- Liczba portów SFP Combo: 2

- Ilość slotów modułu: 2

- Technologia okablowania 1000BASE-T, 100BASE-TX, 10BASE-TX

- Przepustowość przełączania: 128 Gbit/s

- Liczba VLANs: 4096

- Maksymalna szybkość przesyłania danych: 10 Gbit/s

- Ilość interfejsów IP: 128

Dokumentacja:

CISCO SG500X-24-K9-G5

Router CISCO 1921-SEC/K9

- Przewodowa sieć LAN
- Prędkość transferu danych przez Ethernet LAN: 10, 100, 1000Mbit/s
- Technologia okablowania: 10/100/1000BASE-T(X)
- Ilość portów Ethernet LAN (RJ 45): 2
- Ilość portów USB: 1

Dokumentacja:

CISCO 1921-SEC/K9

Firewall CISCO ASA5506-SEC-BUN-K9

- Maksymalna szybkość przesyłania danych: 250Mb/s
- Przepustowość Firewall: 125Mb/s
- Liczba portów USB: 1
- Ilość portów Ethernet LAN (RJ-45): 8

Dokumentacja:

CISCO ASA5506-SEC-BUN-K9

Access Point CISCO WAP321-E-K9

- Maksymalna szybkość przesyłania danych: 300 Mbit/s
- Pasmo 2,4 GHz oraz 5 GHz
- Liczba użytkowników: 32
- Liczba kanałów: 13
- Klient DHCP
- Technologia okablowania 5e
- Szyfrowanie: WEP, WPA, WPA2

CISCO WAP321-E-K9

