WUOLAH

practical guia Cent O S leccion 2. pdf

- 3° Ingeniería de Servidores
- Escuela Técnica Superior de Ingenierías Informática y de Telecomunicación
 Universidad de Granada

Reservados todos los derechos. No se permite la explotación económica ni la transformación de esta obra. Queda permitida la impresión en su totalidad.

Guía para instalar CentOS de la lección 2:

1. Nueva

Nombre: 1_CentOS

○ Tipo: **Linux**

○ Versión: **Red Hat**

• Tamaño: 1G está bien

Crear disco virtual ahora: VDI

• Reservado dinámicamente

• Tamaño disco duro: 8 GB.

• Crear

2. Configuración → Almacenamiento

• Controlador: IDE

- o Pulsamos en Vacío
- Unidad Óptica: IDE secundario maestro → seleccionamos el disco de la derecha
 - Seleccione archivo de disco óptico virtual
 - Seleccionamos la imagen
- Controlador: SATA
 - Debemos crear **dos** discos duros virtuales:
 - Pulsamos en Controlador: SATA
 - Abajo pinchamos en Agregar una nueva conexión de almacenamiento:
 - Agregar disco duro → Crear nuevo disco
 - VDI
 - Reservado dinámicamente
 - Tamaño: el de por defecto

3. Instalación CentOS

- Iniciamos la máquina
- Install CentOS Linux7
- Idioma: Español
- Sistema → Destino de la instalación:
 - ATA VBOX HARDDISK /sda
 - o Particionado: Configurar el particionado automáticamente

- Empezar la instalación
- Ajustes de usuario:
 - Creación de usuario:
 - Nombre completo y nombre de usuario: iniciales_nombre
 - Contraseña: practicas,ISE
 - Contraseña root: practicas,ISE
- Esperamos que instale
- Reiniciar
- 4. Configuración CentOS (lo haremos con la terminal):
 - localhost login: iniciales_nombre
 - Password: practicas, ISE
 - Entramos como usuario root:
 - 0 & SU
 - contraseña: practicas,ISE
 - Creamos un volumen físico en sdb y comprobamos:
 - & pvcreate /dev/sdb
 - & pvdisplay
 - Añadir el volumen físico al grupo de volúmenes:
 - ∘ & vgextend cl /dev/sdb
 - Podemos ver si se ha añadido con pvdisplay, sdb debe tener como VG Name cl, y vgdisplay.

```
Physical volume
PV Name
                       /dev/sdb
UG Name
PV Size
                      8,00 GiB / not usable 4,00 MiB
Allocatable
                       4,00 MiB
PE Size
Total PE
                       2047
Free PE
                       2047
Allocated PE
                       bdcsfJ-Rc7s-51aN-vArO-041b-nRh3-yoI9cU
PV UUID
```

- Creamos un nuevo volumen lógico:
 - Especificamos el tamaño, el nombre y el grupo de volúmenes al que pertenece.
 - & lvcreate -L 1G -n newvar cl
 - Podemos comprobar con lvdisplay

- Copiar los datos de /var al nuevo volumen
 - Creamos el sistema de ficheros con extensión ext4 en el volumen creado antes

```
& mkfs -t ext4 /dev/cl/newvar
```

- Montamos el volumen
 - & mkdir /mnt/newvar
 - & mount /dev/mapper/cl-newvar /mnt/newvar
 - Comprobamos con lsblk.

```
| Iroot@localhost pso|# mkdir /mnt/newar |
| Iroot@localhost pso|# mount /dev/mapper/cl-newar /mnt/newar |
| Iroot@localhost pso|# mount /dev/mapper/cl-newar /mnt/newar |
| Iroot@localhost pso|# mount /dev/mapper/cl-newar /mnt/newar |
| Iroot@localhost pso|# mount / mountpoint |
| Iroot@localhost pso|# mkdir /mnt/newar |
| I
```

Aislar el sistema

& systemctl isolate runlevel1.target

```
Welcome to emergency mode! After logging in, type "journalctl -xb" to view system logs, "systemctl reboot" to reboot, "systemctl default" or ^D to boot into default mode.
Give root password for maintenance
(or type Control-D to continue):
[root@localhost ~1#
```

Realizar la copia

```
& cp -a /var/. /mnt/newvar == $ cp -dR --preserve=all /var/. /mnt/newvar
```

- & ls /mnt/newvar
- & ls -lahZ /mnt/newvar
- & systemctl status

POSTGRADO EN DATA SCIENCE

Lidera tu futuro. Define tu éxito.

- Automatizar el montaje
 - & vi /etc/fstab
 - Añadimos al final la línea:

/dev/mapper/cl-newvar /var /ext4 defaults 0 0

```
t /etc/fstab
t Created by anaconda on Thu Oct 24 18:48:39 2019
t Accessible filesystems, by reference, are maintained under '/dev/disk'
t See man pages fstab(5), findfs(8), mount(8) and/or blkid(8) for more info
t //dev/mapper/cl-root / xfs defaults 0 0
UIUID=dce20ec5-c931-461e-a4c8-cd02dfd8d716 /boot xfs defaults
dev/mapper/cl-swap swap swap defaults 0 0
dev/mapper/cl-newvar /var /ext4 defaults 0 0
```

- Desmontamos lo anterior
 - & umount /mnt/newvar
 - & mount -a
- o Borrar los datos antiguos de /var
 - & umount /dev/mapper/cl-newvar
 - & mv /var /var_old
 - & ls -lahZ /var → debe estar var_old
 - & mkdir /var
 - & ls -lahZ → vemos que los contextos no son los correctos
 - & restorecon /var
 - & ls -lahZ → ya tiene los contextos correctos
 - & mount -a
 - & systemctl default → salimos del modo mantenimiento
 - & lsblk → vemos que newvar está montado en /var

```
[pso0localhost ~1$ lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 86 0 disk
|-sda1 8:1 0 16 0 part /boot
|-sda2 8:2 0 76 0 part
|-cl-root 253:0 0 6,26 0 lvm /
|-cl-swap 253:1 0 820M 0 lvm [SWAP]

sdb 8:16 0 86 0 disk
|-cl-newvar 253:2 0 16 0 lvm /var
sr0 11:0 1 1024M 0 rom
```

- Apagar la máquina
- Configuración → Red → Adaptador <u>2</u>:
 - Habilitar adaptador de red
 - o Conectado a: Adaptador sólo-anfitrión (ó Red interna, si no funciona)
 - Aceptar

- Iniciamos la máquina
 - Entramos como usuario root (& su)
 - Creamos una toma de red, para ello escribimos la configuración en /etc/sysconfig/network-scripts/ifcfg-enp0s8
 - & vi /etc/sysconfig/network-scripts/ifcfg-enp0s8

TYPE=Ethernet
BOOTPROTO=none
NAME=enp0s8
DEVICE=enp0s8
ONBOOT=yes
IPADDR=192.168.56.110
NETMASK=255.255.255.0

TYPE=Ethernet BOOTPROTO=none NAME=enp0s8 DEVICE=enp0s8 ONBOOT=yes IPADDR=192.168.56.110 NETMASK=255.255.0

- & ifup enp0s8
- & ifup enp0s3
- & ip addr → para comprobar
- & reboot
- & ping

Ya tendríamos la máquina en funcionamiento y conectada a Internet.

