Chapter 3: Discrete Random Variables Geometric & Poisson R.V.'s

Kevin Lutz PhD Candidate of Statistics Wednesday, September 14, 2022

Department of Mathematical Sciences The University of Texas at Dallas

Table of Contents

- 1 Introduction

- Learn 4 discrete probability distributions this week:
 - Monday: Bernoulli and Binomial ✓
 - Wednesday: Geometric and Poisson

Table of Contents

- 2 Geometric R.V.

Review: Geometric Sequences

Examples:

$$1, 2, 4, 8, 16, 32, 64, \dots \implies b_n = 1(2)^{n-1}$$

 $9, 3, 1, 1/3, 1/9, 1/27, \dots \implies b_n = 9(1/3)^{n-1}$
 $a, ar, ar^2, ar^3, ar^4, \dots \implies b_n = a(r)^{n-1}$

• Generally, given a = first term and r = common ratio, any term b_x of geometric sequence can be written as:

$$b_x = a(r)^{x-1}$$
 for $x = 1, \dots, \infty$

or

$$b_r = a(r)^x$$
 for $x = 0, \dots, \infty$

■ If 0 < r < 1, then the sum of the infinite geometric series is given by

$$g(r) = \sum_{x=0}^{\infty} a(r)^x = a + ar + ar^2 + ar^3 + \dots = \boxed{\frac{a}{1-r}}$$

$$g(r) = \sum_{x=1}^{\infty} a(r)^{x-1} = a + ar + ar^2 + ar^3 + \dots = \boxed{\frac{a}{1-r}}$$

Example: Calculate $g(x) = \sum_{x=0}^{\infty} 3(1/2)^x \implies a = 3, r = 1/2$. Since 0 < r < 1, the infinite sum exists and its value is

$$\frac{a}{1-r} = \frac{3}{1-1/2} = 6$$

Introduction to the Concepts

- Examples of a Geometric random variable
 - **11** Taking a driver's test until you pass.
 - The number of days a patient has to wait until they get a kidney donor.
 - The number of tries playing a slot machine or the lottery to hit a jackpot.
 - The number of miles or flights until a plane is retired.
 - The number of attempts it takes a salesperson to make a successful sale.
- Any experiment that stops when a particular events occurs has a Geometric distribution.

Introduction to the Concepts

- Any experiment that stops after the first success has a Geometric distribution.
- Let *F* = failure probability (not observed)
- Let S =success probability (observed)
- What is the probability that the first success occurs on the n^{th} try?

Formula for Geometric Probability

Geometric p.m.f.

The geometric probability mass function is given by

$$P(X = x) = p \cdot (1 - p)^{x-1}$$

which calculates the probability that the first success occurs at the x^{th} trial.

- **1** p is the success probability.
- $\mathbf{2}$ x is the total number of independent trials where $x = \{1, 2, 3, ..., \infty\}.$
- B The r.v. X only depends on p

$$X \sim \mathsf{Geometric}(p)$$

Axiom 2

Show that the sum of the probabilities of the Geometric distribution is 1.

Formula for Cumulative Geometric Probability

Geometric c.d.f.

The geometric cumulative distribution function is given by

$$P(X \le x) = 1 - P(X > x)$$

 $P(X \le x) = 1 - (1 - p)^x$

which calculates the cumulative probability that the first success occurs within the first x number of trials.

- **I** Ex: $P(X \le 4)$ is interpreted as:
 - The probability that the first success occurs within the first 4 trials.
- **2** Ex: P(X = 4) is interpreted as:
 - The probability that the first success occurs at the 4th trial.

Complete Summary of the Geometric Distribution

Term	Notation	Formula
1. Probability	$P(X=x)$ or $f_X(x)$	$p \cdot (1-p)^{x-1}$
2. Cumulative Probability	$P(X \le x) \text{ or } F_X(x)$	$1 - (1-p)^x$
3. Mean	μ or $E(X)$	$\frac{1}{p}$
4. Variance	σ^2 or $Var(X)$	$\frac{1-p}{p^2}$
5. Standard Deviation	σ or $SD(X)$	$\sqrt{\frac{1-p}{p^2}}$

where p is the success probability and x is the number of trials until success.

Using the TI84 to calculate geometric probabilities

■ Press $|2nd| \rightarrow |VARS|$

Quantity	TI84	
$P(X=x)$ or $f_X(x)$	geometpdf(p,x)	
$P(X \le x) \text{ or } F_X(x)$	geometcdf(p,x)	

A patient is waiting for a blood donor where the probability of a match is 0.2. Numerous donors are tested until a match is found.

(a) What is the expected number of donors tested until a match is found?

A patient is waiting for a blood donor where the probability of a match is 0.2. Numerous donors are tested until a match is found.

(b) What is the probability that the first match is the third donor?

A patient is waiting for a blood donor where the probability of a match is 0.2. Numerous donors are tested until a match is found.

(c) What is the probability of at most four donors until a match is found?

Example - Your Turn

A patient is waiting for a blood donor where the probability of a match is 0.2. Numerous donors are tested until a match is found.

(d) What is the probability of needing less than 4 donors?

•000000000

- 3 Poisson R.V.

Introducing Poisson

- Named after Siméon-Denis Poisson
- Probability for rare events over a period of time
 - Two events are unlikely to occur simultaneously or within a very short period of time
- Examples
 - Number of car accidents at an intersection in a year
 - Number of phone calls in a day
 - Number of emails/texts in an hour
 - Number of blackouts, viruses, errors, etc.

Formula for Poisson Probability

Poisson p.m.f.

The Poisson probability mass function is given by

$$P(X = x) = \frac{e^{-\lambda} \cdot \lambda^x}{x!}$$

and calculates the probability of \boldsymbol{x} rare events within a period of time.

- λ is the mean number of events in a given time frame.
- \mathbf{z} x is the number of events of interest.
- 3 The r.v. X only depends on λ

$$X \sim \mathsf{Poisson}(\lambda)$$

Term	Notation	Formula
1. Probability	$P(X=x) \text{ or } f_X(x)$	$\frac{e^{-\lambda} \cdot \lambda^x}{x!}$
2. Mean	μ or $E(X)$	λ
3. Variance	σ^2 or $Var(X)$	λ
4. Standard Deviation	σ or $SD(X)$	$\sqrt{\lambda}$

Poisson R.V. 0000000000

■ The Poisson mean, λ , depends on time and is parametrized as

$$\lambda = \theta t$$

where t = time and $\theta = \text{rate}$ per unit time.

■ Note: The mean and variance are equal for a Poisson r.v.

■ Press $|2nd| \rightarrow |VARS|$

0000000000

Quantity	TI84	
$P(X=x)$ or $f_X(x)$	poissonpdf(λ ,x)	
$P(X \le x) \text{ or } F_X(x)$	poissoncdf(λ ,x)	

Example

At a certain intersection, there are on average 5 accidents per month.

0000000000

(a) Calculate the mean and variance of the Poisson r.v. X

Example

At a certain intersection, there are on average 5 accidents per month.

0000000000

(b) What is the probability of exactly 7 accidents this month?

At a certain intersection, there are on average 5 accidents per month.

(c) What is the probability of exactly 20 accidents over the next three months?

0000000000

Example

At a certain intersection, there are on average 5 accidents per month.

(d) What is the probability of more than 70 accidents in a year at this intersection?

Example

At a certain intersection, there are on average 5 accidents per month.

(e) What is the probability of having between 30 and 40 accidents in a five month period?

- 4 Summary

Summary of Discrete Probability Distributions

Distribution	Main Interest	Parameters
1. Binomial	Number of successes within	n n
1. Dillollilai	a <i>fixed</i> number of trials	n, p
	Number of trials until the	
2. Geometric	the first success occurs. Trials	p
	can be infinite.	
3. Poisson	Number of successes within	\
J. FUISSUII	an interval of unit time.	