РУКОВОДСТВО ПОЛЬЗОВАТЕЛЯ

TRIMBLE® S5 TOTAL STATION

Правовая информация

Geospatial Division, 10368 Westmoor Drive Westminster CO 80021 USA (США) www.trimble.com

Авторские права и товарные знаки

© 2015, Trimble Navigation Limited. Все права защищены.

Autolock, Tracklight, Trimble и логотип «Глобус и треугольник» являются товарными знаками компании Trimble Navigation Limited, зарегистрированными в агентстве по патентам и товарным знакам США, а также в других странах. FineLock, MagDrive, MultiTrack, SurePoint, SureScan и VISION являются товарными знаками компании Trimble Navigation Limited.

Microsoft и Windows являются зарегистрированными товарными знаками или товарными знаками корпорации Microsoft в США и (или) других странах.

Словесный знак и логотипы Bluetooth являются собственностью компании Bluetooth SIG, Inc., и любое использование этих знаков осуществляется компанией Trimble Navigation Limited в соответствии с лицензией.

Все прочие торговые марки являются собственностью соответствующих лиц.

Сведения о выпуске

Данный выпуск Руководства пользователя тахометра Trimble S5, артикул 57010045, датирован апрелем 2015 г. Настоящее руководство относится к тахометру Trimble S5.

Приведенные ниже ограниченные гарантийные обязательства дают Потребителю определенные юридические права. У Потребителя могут быть иные права, зависящие от страны пребывания и юрисдикции.

Сведения о гарантии на изделие

Сведения о гарантии на изделие см. в гарантийном талоне, поставляющемся с данным изделием Trimble, или запрашивайте у поставщика продукции Trimble.

Соответствие нормативным требованиям

Сведения о соответствии применимым нормативным требованиям см. в документе «Сведения о соответствии нормативным требованиям» для тахеометра Trimble S5, S7, S9, S9 HP, входящем в комплект поставки данного изделия Trimble, или запрашивайте у поставщика продукции Trimble.

Регистрация

Для получения информации об обновлениях и новой продукции обратитесь к поставщику продукции Trimble или посетите веб-сайт по aдресу: www.trimble.com/register. Регистрация дает возможность выбрать необходимые информационные бюллетени, информацию об обновлениях и новых продуктах.

Правила техники безопасности

Правила техники безопасности при работе с лазерной аппаратурой

Перед началом эксплуатации инструмента необходимо ознакомиться с настоящим руководством по эксплуатации, а также со всеми требованиями по технике безопасности при эксплуатации оборудования и проведении работ.

Данное изделие прошло испытания и признано соответствующим требованиям стандартов МЭК 60825-1 2007, 21 CFR 1040.10 и 1040.11 за исключением отклонений согласно Примечанию о лазерах № 50 от 24 июня 2007 г.

ОСТОРОЖНО! Использование средств управления, настроек или выполнение процедур, отличных от указанных в настоящем документе, может привести к опасному воздействию излучения светодиода или лазера. Необходимо соблюдать осторожность, как и при обращении с любыми источниками яркого света, например солнечным светом, электродуговой сваркой и дуговыми лампами. ЗАПРЕЩАЕТСЯ смотреть в апертуру включенного лазера. Дополнительные сведения о правилах техники безопасности при эксплуатации лазерной аппаратуры см. в стандарте МЭК 60825-1 от 24 июня 2007 г.

Запросы

С любыми вопросами относительно безопасности лазерной аппаратуры обращайтесь по адресу:

Trimble Navigation Limited

5475 Kellenburger Road

Dayton, OH USA 45424-1099 (США)

Attention: Laser Safety Officer, Quality Assurance Group (Вниманию Специалиста по безопасности лазерной аппаратуре, отдел контроля качества)

Тел.: (937) 233-8921 доб. 824 или (800) 538-7800

Факс: (937) 233-9661

Апертуры

На следующем рисунке представлены апертуры тахеометра Trimble® S5.

Рисунок 1.1. Апертуры тахеометра Trimble S5

Тахеометр Trimble S5

Тахеометр Trimble S5 является ЛАЗЕРНЫМ ПРИБОРОМ КЛАССА 2.

В данном инструменте имеются источники видимого и невидимого лазерного излучения, перечисленные ниже.

Лазерный диод дальномера: длина волны 905 нм (инфракрасный, невидимый свет), расходимость пучка 0,4 х 0,8 мрад, выходная мощность <1,1 мВт, лазерный луч расположен соосно со зрительной трубой, ЛАЗЕР КЛАССА 1.

Лазерный диод лазерного указателя: длина волны 630—680 нм (видимый свет), расходимость пучка <0,3 мрад, выходная мощность <0,7 мВт, лазерный луч расположен соосно со зрительной трубой, ЛАЗЕР КЛАССА 2.

Лазерный диод системы Autolock®: длина волны 785 нм (инфракрасный, невидимый свет), расходимость пучка <38,5 мрад, выходная мощность <0,35 мВт, лазерный луч расположен соосно со зрительной трубой, ЛАЗЕР КЛАССА 1.

Лазерный диод системы Autolock и лазерный диод системы Long Range FineLock не могут работать одновременно.

При работе в отражательном режиме с функцией Autolock и (или) с измерением расстояния излучаемая мощность не превышает пределов, установленных для ЛАЗЕРА КЛАССА 1.

Правила техники безопасности при эксплуатации аккумуляторной батареи

ОСТОРОЖНО! Не допускайте повреждения литий-ионной аккумуляторной батареи. Повреждение батареи может вызвать взрыв или возгорание, а также привести к причинению вреда здоровью людей и материального ущерба. Меры предосторожности во избежание причинения вреда здоровью людей и материального ущерба перечислены ниже.

- Не допускается использовать, а также заряжать батарею с признаками повреждения. К признакам повреждения, среди прочего, относятся обесцвечивание, деформация и утечка электролита из батареи.
- Запрещается подвергать батарею воздействию огня, высоких температур и прямых солнечных лучей.
- Запрещается погружать батарею в воду.
- Не допускается использовать или хранить батарею в автомобиле в жаркую погоду.
- Не допускается ронять или пробивать батарею.
- Запрещается вскрывать батарею, а также замыкать ее контакты.

ОСТОРОЖНО! Не дотрагивайтесь до литий-ионной аккумуляторной батареи с признаками протечки. Внутри батареи находится едкий электролит, контакт с которым может причинить вред здоровью людей и материальный ущерб. Меры предосторожности во избежание причинения вреда здоровью людей и материального ущерба перечислены ниже.

- В случае протечки батареи избегайте контакта с электролитом из нее.
- Если электролит из батареи попал в глаза, немедленно промойте их чистой водой и обратитесь за медицинской помощью. Недопустимо тереть глаза!
- Если электролит из батареи попал на кожу или одежду, немедленно смойте его чистой водой.

ОСТОРОЖНО! Заряжать и эксплуатировать литий-ионную аккумуляторную батарею необходимо в строгом соответствии с настоящими инструкциями. Зарядка и эксплуатация аккумуляторной батареи в непредназначенном для этого оборудовании может вызвать взрыв или возгорание, а также привести к причинению вреда здоровью людей и материального ущерба. Меры предосторожности во избежание причинения вреда здоровью людей и материального ущерба перечислены ниже.

- Запрещается использовать и заряжать аккумуляторную батарею с признаками повреждения или протечки.
- Заряжать литий-ионную аккумуляторную батарею допускается только в предназначенных для этого приборах Trimble.

 Необходимо неукоснительно следовать всем инструкциям, поставляющимся с зарядным устройством для аккумуляторной батареи.
- В случае перегрева или появления запаха гари следует прекратить зарядку аккумуляторной батареи.
- Использовать аккумуляторную батарею допускается только в предназначенных для нее приборах Trimble.
- Использовать аккумуляторную батарею допускается только по прямому назначению и в соответствии с инструкциями, приведенными в документации на прибор.

Транспортировка

Данный инструмент оснащен модулем Locate 2 Protect (L2P), который содержит сотовый модем, поэтому перед транспортировкой данного инструмента воздушным транспортом следует уточнить местные правила.

ОСТОРОЖНО! Во время транспортировки инструмента воздушным транспортом модуль L2P должен быть выключен.

Процедура выключения модуля L2P: Выключение модуля L2P, стр. 85.

Сведения о защите от электростатических разрядов

Данный инструмент прошел испытания и признан соответствующим требованиям по защите от электростатических разрядов.

Если на инструмент не установлен контроллер Trimble CU, следует установить крышку держателя контроллера, арт. 50014012, чтобы полностью защитить инструмент от электростатических разрядов и воздействия окружающей среды.

Крышка держателя контроллера крепится на держатель и отсоединяется таким же образом как контроллер Trimble CU. См. раздел «Установка TCU на инструмент», стр. 67 и См. раздел «Снятие TCU с инструмента», стр. 68.

Рисунок 1.2. Крышка держателя контроллера, арт. 50014012

Оглавление

	Правовая информация	. II
	Правила техники безопасности	.III
	Правила техники безопасности при работе с лазерной аппаратурой	
	Запросы	
	Апертуры	
	Тахеометр Trimble S5	
	Правила техники безопасности при эксплуатации аккумуляторной батареи	
	Сведения о защите от электростатических разрядов	
	сведении о защите от электростати тесним разридов	. •
1	Введение	. 1
	Приветствие	
	Сопутствующая информация	
	Техническая поддержка	
	Ваши замечания	
	Регистрация	. 3
2	Осмотр, уход и обслуживание	. 4
_	Осмотр коробки	
	Футляр инструмента	
	Хранение ремней для переноски	
	Уход и обслуживание	. 9
	Чистка	.10
	Удаление влаги	
	Хранение	
	Транспортировка	
	Транспортировка воздушным транспортом	
	Обслуживание	.11
3	Начало работы	12
	Правила техники безопасности при эксплуатации аккумуляторной батареи	.13
	Батарея	.14
	Утилизация	
	Зарядка аккумуляторной батареи	
	Зарядное устройство на пять батарей	
	Зарядное устройство на две батареи	
	Установка внутренней батареи	
	Подключение внешней оатарей	
	Кнопка запуска	
	Дисплей КП	
	Оптический центрир	
	Ручка	
	We are an a	20
4	Установка	
	Установка инструмента	
	Устойчивость установки	
	Стабильность измерений	
	Нивелировка	
	Настройка инструмента	

	Безопасность	22
	PIN-код	
	• •	
	РUК-код	
	Настройки радиомодема	
	Настройки Bluetooth®	
	Опорный горизонтальный угол	44
	Меню «Юстировка»	44
	Сведения о версии прошивки	55
	Сведения о техническом обслуживании	56
	Выбор языка	
	Выход из меню	
	Лазерный указатель	
	Поверка соосности лазерного указателя	
	· · · · · · · · · · · · · · · · · · ·	
	Юстировка лазерного указателя	
	Измерение высоты инструмента	
	Юстировка оптического центрира	
	Регламент проверки перечень перед началом измерений	
	Подключение контроллера	65
	Контроллер Trimble CU	65
	Контроллер Trimble TSC3	71
5	Технологии инструмента	. 74
	Технология угловых измерений	75
	Поправка за погрешность нивелировки	
	Поправка за коллимационную ошибку	
	Поправка за неравенство колонок	
	Усреднение измерений для сокращения погрешностей визирования	
	Технология измерения расстояний	
	Расходимость пучка	
	Технология Autolock	
	Наведение	
	Поверка наведения	
	Створоуказатель Tracklight	
	Технология Locate2Protect	
	Режим «В самолете»	
	Технология сервоприводов	
	Сервопривод наведения	
	Сервопривод фокусировки	87
	Управление питанием	88
	Автономный режим	88
	Инструмент с установленным контроллером Trimble CU	89
	Сообщение о низком заряде батареи	90
	Связь с внешними устройствами	
	СОМ-порт	
	Порт USB	
6	Принадлежности инструмента	. 92
	Стандартная веха Trimble	
	Идентификатор цели Trimble	
	Цель Trimble MultiTrack™	
	Внешний вид	
	Размеры	
	·	
	Установка и извлечение батареи	
	Паспортная табличка	. 100
	HOUS THINDIO ACTIVO TESCY 30H	1 1 11

Внешний вид
Размеры
Установка батареи
Включение цели
Выбор идентификационного номера
Установка и снятие
Держатель Trimble Robotic
Управление питанием
Установка батареи
Извлечение батареи
Установка контроллера Trimble CU на держатель
Снятие контроллера Trimble CU с держателя
Присоединение держателя Trimble Robotic к вехе
Отсоединение держателя Trimble Robotic от вехи
Радиомодем
Встроенный 2,4-ГГц радиомодем
Внешний 2,4-ГГц радиомодем
Установка батареи
Снятие батареи
Комплект удлинителя антенны радиомодема

Введение

Разделы данной главы:

- Приветствие
- Сопутствующая информация
- Техническая поддержка
- Ваши замечания
- Регистрация

Приветствие

Представляем руководство пользователя тахеометра Trimble S5. В настоящем руководстве приводятся инструкции по настройке и эксплуатации тахеометра Trimble S5. Даже если вы имеете опыт использования электронного тахеометра, компания Trimble рекомендует уделить некоторое время чтению настоящего руководства для ознакомления с особенностями данного инструмента.

Taxeометр Trimble S5

В настоящем руководстве пользователя тахеометр Trimble S5 именуется инструментом.

Сопутствующая информация

С дополнительной информацией о данном изделии можно ознакомиться на нашем веб-сайте по адресу:

www.trimble.com

Техническая поддержка

В случае возникновения проблемы и отсутствия необходимой информации в документации к изделию следует *обратиться к поставщику продукции Trimble*. Запрос на техническую поддержку можно также разместить на веб-сайте Trimble по адресу:

www.trimble.com

Ваши замечания

Ваши замечания по сопроводительной документации помогают нам улучшать ее последующие выпуски.

Присылайте свои комментарии по адресу: ReaderFeedback@trimble.com.

Регистрация

Для получения информации об обновлениях и новой продукции зарегистрируйтесь на веб-сайте Trimble по адресу:

www.trimble.com/register

Осмотр, уход и обслуживание

Разделы данной главы:

- Осмотр коробки
- Футляр инструмента
- Уход и обслуживание
- Транспортировка
- Обслуживание

Осмотр коробки

Осмотрите транспортировочную коробку. Если коробка поступила в неудовлетворительном состоянии, проведите осмотр оборудования на предмет отсутствия видимых повреждений. При обнаружении повреждений необходимо немедленно уведомить об этом транспортную компанию и торгового представителя Trimble. Сохраните коробку и упаковочные материалы для осмотра специалистами транспортной компании.

Футляр инструмента

При распаковке инструмента проверьте наличие всех заказанных предметов. Ниже приведен пример расположения всех предметов в футляре инструмента. См. рис. 2.1.

Рисунок 2.1. Расположение предметов в футляре инструмента

Примечание. Некоторые из показанных предметов (рис. 2.1) являются дополнительными. Не все предметы входят в комплект поставки инструмента.

Nº	Описание	
1	Тахеометр Trimble S5	
2	Трегер	
3	Цель Trimble Active Track 360 (входит в комплект поставки не всех моделей)	
4	Футляр инструмента с ремнями для переноски	
5 Непромокаемый чехол		
6	Инструмент для ручки (звездообразный ключ Т30)	
7 Инструменты для трегера и оптического центрира		
8	Ключи к футляру инструмента (2 шт.)	
9	Краткое руководство по эксплуатации тахеометра Trimble S5, S7, S9, S9 HP, документ «Сведения о соответствии нормативным требованиям» для тахеометра Trimble S5, S7, S9, S9 HP, карточка активации службы Locate2Protect, гарантийный талон, талон расширенной гарантии, краткое руководство по эксплуатации цели Trimble Active Track 360 (если цель Trimble Active Track 360 входит в комплект поставки)	
10	Инструмент для юстировки лазерного указателя	
11	Мишень из отражающей пленки	
12	Мишень для юстировки лазерного указателя (тип мишени зависит от типа дальномера)	
13	Козырек от дождя для объектива	

ВНИМАНИЕ! Если инструмент оснащен дополнительным DIN-переходником для DINтрегера, то DIN-трегер необходимо снять перед помещением инструмента в футляр. Стандарт DIN в основном используется в Германии.

ВНИМАНИЕ! Перед транспортировкой инструмента удостоверьтесь, что на инструмент не установлен контроллер Trimble CU. Во избежание повреждения инструмента поместите контроллер Trimble CU в специальный отсек в транспортировочном футляре. См. рис. 2.1

Хранение ремней для переноски

Когда ремни для переноски не используются, их можно хранить в специальном отсеке футляра инструмента.

Совет. Сначала положите в отсек поясные ремни, а затем — наплечные ремни.

Порядок извлечения и использования ремней для переноски

1. Прижмите вниз фиксатор крышки отсека ремней для переноски и откройте отсек. См. рис. 2.2.

Рисунок 2.2. Футляр инструмента с ремнями для переноски внутри специального отсека

2. Извлеките ремни из отсека для ремней. Ремни уже пристегнуты к футляру инструмента. См. рис. 2.3.

Рисунок 2.3. Извлечение ремней для переноски

3. Закройте крышку отсека для ремней, не допуская защемления ремней. См. рис. 2.4.

Рисунок 2.4. Футляр инструмента с ремнями для переноски, готовыми к использованию

Закрепление футляра для принадлежностей на футляре инструмента

Футляр для принадлежностей можно закрепить на футляре инструмента для транспортировки на участок работ. Для этого используйте специальные ремни (не входят в комплект поставки), см. рис. 2.5.

Рисунок 2.5. Футляр для принадлежностей, закрепленный на футляре инструмента

Уход и обслуживание

ОСТОРОЖНО! Запрещается снимать с инструмента крышку. Конструкция данного инструмента выдерживает обычное электромагнитное воздействие окружающей среды, однако в инструменте имеются цепи, чувствительные к статическому электричеству. В случае вскрытия крышки инструмента неавторизованным лицом работоспособность инструмента не гарантируется, а гарантия на изделие аннулируется.

Данный инструмент предназначен для работы и испытан в полевых условиях, однако, как и любому высокоточному прибору, ему требуется уход и обслуживание. Для достижения наилучших результатов при работе с инструментом выполняйте перечисленные ниже рекомендации.

- Оберегайте инструмент от ударов и небрежного обращения.
- Содержите объективы и цели в чистоте. Для чистки оптики используйте только бумагу для объективов и другие специальные материалы. В качестве чистящего средства используйте раствор чистой воды и 20–30% изопропилового спирта с остатком после выпаривания не более 5 мг/л.

- Храните инструмент в защищенном месте в вертикальном положении, желательно в футляре инструмента.
- Запрещается переносить инструмент, закрепленный на штативе. Это может привести к повреждению винтов трегера.
- Запрещается переносить инструмент, держась за корпус зрительной трубы. Используйте ручку для переноски.
- Для максимально точных измерений инструмент должен принять температуру окружающей среды. Значительные перепады температуры инструмента могут снизить точность измерений.

Чистка

ВНИМАНИЕ! Категорически запрещается использовать для чистки инструмента и его футляра сильнодействующие чистящие средства, такие как бензин и растворители.

Соблюдайте осторожность при чистке инструмента, особенно при удалении песка и пыли с линз и целей. Категорически запрещается использовать грубую и грязную ткань, а также жесткую бумагу. Компания Trimble рекомендует использовать антистатическую бумагу для объективов, ватный тампон или кисточку для объективов.

Удаление влаги

После использования инструмента в условиях повышенной влажности его следует занести в помещение и достать из футляра. Дайте инструменту просохнуть естественным путем. В случае образования конденсата на линзах позвольте влаге испариться естественным путем. Оставьте футляр инструмента открытым, чтобы влага испарилась.

Хранение

- Диапазон температур хранения: -40...+70 °C, хранить в сухом месте.
- Перед постановкой инструмента на хранение извлеките из него аккумуляторную батарею.

Транспортировка

Транспортировать инструмент необходимо в закрытом футляре инструмента. В случае длительной перевозки инструмент следует транспортировать в футляре инструмента и в оригинальной транспортировочной коробке.

Перед транспортировкой следует обязательно извлечь внутреннюю аккумуляторную батарею.

При транспортировке батарей следует неукоснительно соблюдать местные и международные правила. Перед транспортировкой батарей проконсультируйтесь с транспортной компанией.

ВНИМАНИЕ! Перед транспортировкой инструмента удостоверьтесь, что на инструмент не установлен контроллер Trimble CU. Во избежание повреждения инструмента поместите контроллер Trimble CU в специальный отсек в транспортировочном футляре. См. рис. 2.1

Транспортировка воздушным транспортом

Данный инструмент оснащен модулем Locate 2 Protect (L2P), который оснащен сотовым модемом, поэтому перед транспортировкой данного инструмента воздушным транспортом следует уточнить местные правила.

ОСТОРОЖНО! Во время транспортировки инструмента воздушным транспортом модуль L2P должен быть выключен.

Процедура выключения модуля L2P: «Выключение модуля L2P», стр. 85.

Обслуживание

Примечание. Данный инструмент не содержит деталей, предназначенных для обслуживания пользователем.

Компания Trimble рекомендует ежегодно обращаться в авторизованный сервисный центр Trimble для проведения обслуживания и калибровки инструмента. Это необходимо для обеспечения измерений с заявленной точностью.

При отправке инструмента в сервисный центр четко напишите имя отправителя и получателя на футляре инструмента. При необходимости ремонта вложите акт о неисправности в футляр инструмента. В акте необходимо четко описать все неполадки и их признаки, а также указать, что необходим ремонт.

Начало работы

Разделы данной главы:

- Правила техники безопасности при эксплуатации аккумуляторной батареи
- Батарея
- Зарядка аккумуляторной батареи
- Установка внутренней батареи
- Подключение внешней батареи
- Описание инструмента

Правила техники безопасности при эксплуатации аккумуляторной батареи

Перед зарядкой и началом использования батареи необходимо ознакомиться с правилами техники безопасности.

ОСТОРОЖНО! Не допускайте повреждения литий-ионной аккумуляторной батареи. Повреждение батареи может вызвать взрыв или возгорание, а также привести к причинению вреда здоровью людей и материального ущерба. Меры предосторожности во избежание причинения вреда здоровью людей и материального ущерба перечислены ниже.

- Не допускается использовать, а также заряжать батарею с признаками повреждения. К признакам повреждения, среди прочего, относятся обесцвечивание, деформация и утечка электролита из батареи.
- Запрещается подвергать батарею воздействию огня, высоких температур и прямых солнечных лучей.
- Запрещается погружать батарею в воду.
- Не допускается использовать или хранить батарею в автомобиле в жаркую погоду.
- Не допускается ронять или пробивать батарею.
- Запрещается вскрывать батарею, а также замыкать ее контакты.

ОСТОРОЖНО! Не дотрагивайтесь до литий-ионной аккумуляторной батареи с признаками протечки. Внутри батареи находится едкий электролит, контакт с которым может причинить вред здоровью людей и материальный ущерб. Меры предосторожности во избежание причинения вреда здоровью людей и материального ущерба перечислены ниже.

- В случае протечки батареи избегайте контакта с электролитом из нее.
- Если электролит из батареи попал в глаза, немедленно промойте их чистой водой и обратитесь за медицинской помощью. Недопустимо тереть глаза!
- Если электролит из батареи попал на кожу или одежду, немедленно смойте его чистой водой.

ОСТОРОЖНО! Заряжать и эксплуатировать литий-ионную аккумуляторную батарею необходимо в строгом соответствии с настоящими инструкциями. Зарядка и эксплуатация аккумуляторной батареи в неразрешенном оборудовании может вызвать взрыв или возгорание, а также привести к причинению вреда здоровью людей и материального ущерба. Меры предосторожности во избежание причинения вреда здоровью людей и материального ущерба перечислены ниже.

- Запрещается использовать и заряжать аккумуляторную батарею с признаками повреждения или протечки.
- Заряжать литий-ионную аккумуляторную батарею допускается только в предназначенных для этого приборах Trimble.

 Необходимо неукоснительно следовать всем инструкциям, поставляющимся с зарядным устройством для аккумуляторной батареи.
- В случае перегрева или появления запаха гари следует прекратить зарядку аккумуляторной батареи.
- Использовать аккумуляторную батарею допускается только в предназначенных для нее приборах Trimble.
- Использовать аккумуляторную батарею допускается только по прямому назначению и в соответствии с инструкциями, приведенными в документации на прибор.

Батарея

Питание данного инструмента осуществляется от съемной литий-ионной аккумуляторной батареи.

Батарея оснащена встроенным индикатором заряда, который отображает ее состояние. Индикатор заряда активируется нажатием кнопки в нижней части батареи. См. рис. 3.1.

Рисунок 3.1. Индикатор заряда и кнопка батареи

При нажатии кнопки уровень заряда батареи инструмента отображается с помощью четырех светодиодов на батарее. Каждый светодиод соответствует уровню заряда 25%, поэтому при уровне заряда 100% светятся все четыре светодиода. Если батарея полностью разряжена, ни один из светодиодов не светится.

Если при нажатии кнопки мигают все светодиоды, необходимо выполнить калибровку батареи в зарядном устройстве, См. раздел «Калибровка батареи», стр. 16.

Когда уровень заряда батареи составляет от 0 до 10%, мигает один светодиод. Заряда батареи с мигающим светодиодом может быть недостаточно для запуска инструмента или контроллера Trimble CU. Если инструмент запустился от батареи, на которой мигает светодиод, время работы составит от 5 до 15 минут.

Утилизация

- Перед утилизацией батарею необходимо разрядить.
- При утилизации использованной батареи необходимо соблюдать местные и национальные правила охраны окружающей среды.

Зарядка аккумуляторной батареи

Аккумуляторная батарея поставляется частично заряженной. Перед первым использованием батарею необходимо полностью зарядить.

❖

Совет. Зарядные устройства на пять батарей и на две батареи также можно использовать для зарядки 7,4-В литий-ионных аккумуляторных батарей Trimble, используемых в целях Trimble MultiTrack™ и Trimble Active Track 360, см. рис. 3.2.

Рисунок 3.2. Литий-ионная 7,4 В аккумуляторная батарея Trimble

Зарядное устройство на пять батарей

Зарядное устройство допускается эксплуатировать при температуре от 0 до 40 °C. Зарядка батареи при температуре от 0 до 5 °C занимает больше времени, чем зарядка при комнатной температуре.

ВНИМАНИЕ! Никогда не закрывайте вентиляционные отверстия на задней панели зарядного устройства. Во время зарядки батарей нижняя часть зарядного устройства нагревается.

Рисунок 3.3. Зарядное устройство на пять батарей

Процедура зарядки батареи

- 1. Удостоверьтесь, что вентиляционные отверстия на задней панели зарядного устройства не закрыты.
- 2. Поместите зарядное устройство на твердую, плоскую и горизонтальную поверхность, чтобы обеспечить циркуляцию воздуха под ним.

- 3. Подключите к зарядному устройству сетевой блок питания. Зарядное устройство просканирует наличие батарей в отсеках. Индикатор сканируемого отсека будет мигать зеленым цветом.
- 4. Поместите батарею в любой из отсеков. Описание показаний индикаторов см. на стр. 17.
- 5. Зарядка каждой аккумуляторной батареи занимает приблизительно 3 часа при комнатной температуре. Если в зарядном устройстве установлено несколько аккумуляторных батарей, они заряжаются последовательно, в порядке слева направо.

Глубоко разряженную или замкнутую накоротко батарею следует оставить в зарядном устройстве на ночь, чтобы попытаться восстановить ее. Замкнутая накоротко батарея обычно восстанавливается после сканирования соответствующего отсека. Если желтый индикатор перестал светиться, батарея восстановлена. Если желтый индикатор продолжает светиться, батарея больше не функционирует и ее следует заменить.

Калибровка батареи

Зарядите батарею, выполнив указанные выше действия. Удостоверьтесь, что вентиляционные отверстия на задней панели зарядного устройства не закрыты и оно установлено на ровной и устойчивой поверхности.

Если индикатор отсека, в котором установлена батарея, мигает желтым цветом, требуется калибровка батареи.

После 20 последовательных неполных циклов зарядки-разрядки требуется калибровка батареи, и срабатывает индикатор необходимости калибровки. Полным циклом зарядки-разрядки считается цикл, при котором используется более 90% емкости батареи. Батарее требуется калибровка, если погрешность показаний индикатора заряда батареи составляет более 8 %. Батарею при этом можно использовать, но индикатор заряда может работать неточно, что может привести к сокращению времени работы батареи в полевых условиях.

Полная разрядка батареи приведет к сбросу индикатора заряда батареи. Зарядное устройство также оснащено функцией калибровки.

Порядок калибровки батареи

1. Нажмите кнопку калибровки на задней панели зарядного устройства. Желтые индикаторы начнут светиться постоянно, все зеленые индикаторы начнут мигать. Отпустите кнопку калибровки. См. рис. 3.4.

В режиме калибровки зарядное устройство разряжает и снова заряжает все батареи, которым требуется калибровка.

Калибровка одной батареи может занять до 24 часов. Калибровка пяти батарей может занять до 60 часов. Компания Trimble рекомендует выполнять калибровку батарей в выходные дни.

ВНИМАНИЕ! Во время калибровки батарей нижняя часть зарядного устройства нагревается. Не прикасайтесь к нижней пластине.

2. Повторное нажатие кнопки калибровки прекращает процесс калибровки. Для успешной калибровки ее цикл должен быть непрерывным.

Рисунок 3.4. Кнопка калибровки на зарядном устройстве

Показания индикаторов зарядного устройства

Таблица 3.1. Показания индикаторов зарядного устройства на пять батарей

Состояние	Желтый индикатор	Зеленый индикатор
Батарея не обнаружена или повреждена	Светится	Не светится
Обнаружена батарея (зарядка не началась)		
Калибровка не требуется	Не светится	Не светится
Требуется калибровка	Мигает	Не светится
Выполняется зарядка		
Калибровка не требуется	Не светится	Мигает
Требуется калибровка	Мигает	Мигает
Выполняется калибровка	Светится	Мигает
Калибровка выполнена (батарея полностью заряжена)	Светится	Светится
Батарея полностью заряжена		
Калибровка не требуется	Не светится	Светится
Требуется калибровка	Мигает	Светится

Зарядное устройство на две батареи

Зарядное устройство допускается эксплуатировать при температуре от 0 до 40 °C. Зарядка батареи при температуре от 0 до 5 °C занимает больше времени, чем зарядка при комнатной температуре.

ВНИМАНИЕ! Никогда не закрывайте вентиляционные отверстия на задней и нижней панелях зарядного устройства.

Рисунок 3.5. Зарядное устройство на две батареи

Процедура зарядки батареи

- 1. Удостоверьтесь, что вентиляционные отверстия на задней и нижней панелях зарядного устройства не закрыты.
- 2. Поместите зарядное устройство на твердую, плоскую и горизонтальную поверхность, чтобы обеспечить циркуляцию воздуха под ним.
- 3. Подключите зарядное устройство к сетевому блоку питания или к 12-В автомобильной розетке прикуривателя. Зарядное устройство просканирует наличие батарей в отсеках.
- 4. Поместите батарею в любой из отсеков. Красный индикатор погаснет (это может занять до 5 с). Описание показаний индикаторов см. в разделе «Индикаторы состояния».
- 5. Зарядка каждой аккумуляторной батареи занимает приблизительно 3 часа при комнатной температуре. Если в зарядном устройстве установлено две батареи, они заряжаются последовательно.

Глубоко разряженную или замкнутую накоротко батарею следует оставить в зарядном устройстве на ночь, чтобы попытаться восстановить ее. Замкнутая накоротко батарея обычно восстанавливается после сканирования соответствующего отсека. Если красный индикатор перестал светиться, батарея восстановлена. Если красный индикатор продолжает светиться, батарея больше не функционирует и ее следует заменить.

Калибровка батареи

ВНИМАНИЕ! Во время калибровки батарей нижняя часть зарядного устройства нагревается. Не прикасайтесь к нижней пластине.

ВНИМАНИЕ! Никогда не закрывайте вентиляционные отверстия на задней и нижней панелях зарядного устройства.

После нескольких неполных циклов зарядки-разрядки снижается точность показаний индикатора заряда батареи. Батарею при этом можно использовать, но индикатор заряда может работать неточно, что может привести к сокращению времени работы батареи в полевых условиях. В таком случае требуется калибровка батареи. Ниже приведен цикл калибровки.

Полностью зарядите батарею.

Разрядите батарею до падения напряжения ниже минимального порога калибровки. Снова зарядите батарею.

Зарядное устройство определяет необходимость калибровки батареи и указывает на это мигающим красным индикатором. Калибровка начинается после нажатия кнопки калибровки. Для каждого отсека предусмотрена отдельная кнопка. Допускается калибровать только батареи, которым требуется калибровка.

Порядок калибровки батареи

- 1. Нажмите кнопку калибровки, расположенную под соответствующим батарейным отсеком. Красный индикатор начнет светиться постоянно, а зеленый индикатор начнет мигать. Отпустите кнопку калибровки.
- 2. Если извлечь батарею из зарядного устройства в процессе калибровки, калибровка будет отменена. Для успешной калибровки ее цикл должен быть непрерывным.

Калибровка одной батареи может занять до 24 часов. Рекомендуется выполнять калибровку батарей в выходные дни.

Индикаторы состояния

Рядом с каждым отсеком расположено два светодиодных индикатора (красный и зеленый), указывающие состояние батареи.

Рисунок 3.6. Панель управления зарядного устройства на две батареи

Таблица 3.2. Показания индикаторов зарядного устройства на две батареи

Состояние	Красный индикатор	Зеленый индикатор
Батарея не обнаружена или повреждена	Светится	Не светится
Обнаружена батарея (зарядка не началась)		
Калибровка не требуется	Не светится	Не светится
Требуется калибровка	Мигает	Не светится
Выполняется зарядка		
Калибровка не требуется	Не светится	Мигает
Требуется калибровка	Мигает	Мигает
Слишком высокая или низкая температура (зарядка запрещена)	Мигает с интервалом 2,5 с	Мигает
Выполняется калибровка	Светится	Мигает
Калибровка выполнена (батарея полностью заряжена)	Светится	Светится
Батарея полностью заряжена		
Калибровка не требуется	Не светится	Светится
Требуется калибровка	Мигает	Светится
Сработала защита от повышенного или пониженного напряжения питания	Не светится	Мигает с интервалом 2,5 с

Дополнительные сведения о зарядном устройстве на две батареи см. в документации, входящей в комплект поставки данного зарядного устройства.

Установка внутренней батареи

Внутренняя батарея инструмента устанавливается в батарейный отсек с боковой стороны инструмента. Эту батарею можно легко извлечь и заменить.

Порядок установки батареи

- 1. Откройте крышку батарейного отсека, нажав на кнопку фиксатора.
- 2. Вставьте батарею в батарейный отсек контактами по направлению к верхней части инструмента. См. рис. 3.7

Рисунок 3.7. Установка и извлечение внутренней батареи

Подключение внешней батареи

В основании инструмента предусмотрено два разъема. Оба разъема можно использовать для подключения к инструменту внешнего источника питания. Внешним источником питания может служить одно из следующих устройств:

- адаптер для нескольких батарей, см. раздел «Адаптер Trimble для нескольких батарей», стр. 93;
- автомобильный аккумулятор, подключенный посредством кабеля с зажимами типа «крокодил» или кабеля с разъемом для прикуривателя.

ВНИМАНИЕ! Адаптер для нескольких батарей следует подключать к инструменту только серыми кабелями Trimble с 6-контактными разъемами Hirose.

Совет. При подключении кабеля к инструменту логотип Trimble должен располагаться сверху.

Описание инструмента

В данном разделе приводится описание органов управления инструмента. Компания Trimble рекомендует уделить некоторое время ознакомлению с названиями и расположением органов управления. См. рис. 3.8 и рис. 3.9.

Рисунок 3.8. Вид инструмента со стороны оператора

Рисунок 3.9. Вид инструмента спереди

Кнопка запуска

Если на инструмент не установлен контроллер Trimble CU, кнопка запуска служит в качестве кнопки питания. Индикатор в кнопке запуска указывает, включен ли инструмент. Если индикатор светится постоянно, инструмент включен. Если индикатор мигает, инструмент находится в дежурном режиме.

Если к инструменту подключен контроллер Trimble CU, на котором выполняется полевое ПО, кнопка запуска действует так же, как кнопка «Ввод» на контроллере Trimble CU.

Дисплей КП

Дисплей КП — это графический дисплей со встроенной подсветкой и тремя кнопками управления. См. рис. 3.10.

Рисунок 3.10. Дисплей и кнопки КП

Когда для кнопки доступна дополнительная функция, в нижней части дисплея отображается значок. Для доступа к дополнительной функции нажмите и удерживайте соответствующую кнопку.

Если на инструмент установлен контроллер Trimble CU, выполняющееся на контроллере ПО управляет дисплеем и кнопками КП, а также определяет доступность дополнительных функций. Сведения о том, как ПО управляет дисплеем КП, см. в документации к полевому ПО.

Если на инструмент не установлен контроллер Trimble CU, при включении инструмента с помощью кнопки запуска, на дисплее КП отобразится страница нивелировки с электронным уровнем. См. рис. 3.11.

Рисунок 3.11.Страница нивелировки с электронным уровнем на дисплее КП

Сведения о доступе к меню компенсатора и меню настройки инструмента посредством дисплея и кнопок КП: См. раздел «Настройка инструмента», стр. 33.

Оптический центрир

Инструмент оснащен оптическим центриром с 2-кратным увеличением и диапазоном фокусировки от 0,5 м до бесконечности. Инструмент можно расположить с точностью 0,5 мм на высоте 1,5 м над маркой на земле.

Рисунок 3.12.Оптический центрир

См. рис. 3.12.

- Для фокусировки сетки нитей вращайте окуляр.
- Чтобы сфокусировать оптический центрир на земле, задвигайте или выдвигайте оптический центрир.

Сведения о юстировке оптического центрира: См. раздел «Юстировка оптического центрира», стр. 63.

Ручка

Ручка инструмента выполнена съемной для измерений в ограниченном пространстве или в тех случаях, когда ручка загораживает линию визирования.

Ручка инструмента расположена таким образом, что она не препятствует измерениям в положении при КЛ и не ограничивает провешивание вертикально под верхним маркером или визирование вверх в вертикальной шахте.

Порядок отсоединения ручки

- 1. Отвинтите два винта под звездообразный ключ, крепящие ручку к инструменту. Используйте звездообразный ключ Т30.
- 2. Сдвиньте ручку в горизонтальной плоскости с передней части инструмента. См. рис. 3.13 и рис. 3.14.

Рисунок 3.13.Отсоединение ручки инструмента

Рисунок 3.14. Отсоединение ручки инструмента

Установка ручки на инструмент

Чтобы установить ручку на инструмент, выполните указанные выше действия в обратном порядке.

ВНИМАНИЕ! Прежде чем поднимать инструмент, убедитесь, что ручка надежно закреплена.

Установка

Разделы данной главы:

- Установка инструмента
- Включение инструмента
- Нивелировка
- Настройка инструмента
- Лазерный указатель
- Измерение высоты инструмента
- Юстировка оптического центрира
- Регламент проверки перечень перед началом измерений
- Установка TCU на инструмент
- Снятие TCU с инструмента
- Контроллер Trimble TSC3

Установка инструмента

Устойчивая установка инструмента позволяет повысить точность результатов измерений и полностью использовать возможности инструмента.

Устойчивость установки

При установке инструмента следует соблюдать приведенные ниже рекомендации.

1. Широко расставьте ножки штатива для повышения устойчивости. При установке одной ножки штатива, например, на асфальт, а двух других на землю, устойчивость будет обеспечена в том случае, если ножки штатива достаточно широко расставлены. Если невозможно широко расставить ножки штатива из-за препятствий, можно уменьшить высоту штатива для большей устойчивости.

Рисунок 4.1. Правильная установка инструмента

- 2. Во избежание люфта убедитесь, что затянуты все винты на штативе и (или) трегере.
- 3. Можно использовать любые высококачественные штативы и трегеры. Тем не менее, компания Trimble настоятельно рекомендует использовать штативные головки, выполненные из стали, алюминия или подобного материала. Не рекомендуется использовать штативные головки, выполненные из стекловолокна или других композитных материалов.

См. раздел «Технология сервоприводов», стр. 85 для получения дополнительных сведений.

Стабильность измерений

Следует учитывать, что обязательная инструменту требуется определенное время, чтобы принять температуру окружающей среды. В случае высокоточных измерений справедливо следующее эмпирическое правило: разность температур в градусах Цельсия (°C) х 2 = время в минутах, необходимое для адаптации инструмента к новой температуре.

Избегайте визирования через пространства с большим градиентом температуры воздуха при солнечном свете, например в полдень.

Включение инструмента

Примечание. Перед выполнением любых инструкций, приведенных ниже, установите инструмент в положение КП, то есть окуляр зрительной трубы, кнопки и дисплей КП должны быть направлены на вас.

Меню на дисплее КП, указанные в данном разделе, доступны, только когда на инструмент не установлен контроллер Trimble CU. Снимите контроллер Trimble CU перед включением инструмента.

Включите инструмент, нажав кнопку запуска.

После включения инструмента на дисплее КП отобразится меню «Выбор режима».

Перейдите к меню «Настр./Нивелир.», нажав кнопку 🔲.

Примечание. Если в течение 10 секунд не будет сделан выбор, инструмент перейдет в дежурный режим. Чтобы вернуться к меню выбора режима, нажмите кнопку запуска.

Нивелировка

После выбора меню «Настр./Нивелир.» на дисплее КП отобразится электронный уровень для нивелировки. Если на инструмент установлен контроллер Trimble CU, ПО контроллера Trimble CU будет управлять дисплеем КП. На рис. 4.2 показан порядок нивелировки.

Для переключения между графическим и цифровым представлением нажмите и удерживайте кнопку .

Для изменения чувствительности (масштаба) графического представления нажмите кнопку

Чтобы принять нивелировку и перейти к меню «Настройка», нажмите кнопку 🔲.

Примечание. В связи с высокой скоростью работы сервоприводов важно использовать высококачественные штатив и трегер.

Рисунок 4.2. Порядок нивелировки

Примечание. Если инструмент не используется более 300 с (5 мин), он переходит в дежурный режим. См. раздел «Управление питанием», стр. 88

Настройка инструмента

Дисплей КП позволяет использовать различные функции и процедуры инструмента без подключения контроллера Trimble CU.

На странице нивелировки выберите пункт «Настройка», нажав кнопку . Отобразится меню «Настройка».

Примечание. Вызвать меню настройки можно без нивелировки инструмента.

Ниже приведена структура меню «Настройка».

- Выход (к нивел.).
- Настройки защиты. См. раздел «Безопасность», стр. 33
- Настройки радиомодема. См. стр. 39.
- Настройки модуля Bluetooth[®]. См. раздел «Настройки Bluetooth[®]», стр. 42
- Опорный горизонтальный угол. См. стр. 44.
- Юстировка. См. стр. 44.
 - Назад
 - Калибровка компенсатора. См. стр. 45.
 - Коллимация ГК/ВК и компенсация неравенства колонок. См. стр. 47.
 - Коллимация системы слежения. См. стр. 51.
 - Включение и выключение лазерного указателя. См. стр. 52.
 - Калибровка автофокуса. См. стр. 54
- Сведения о версии прошивки. См. стр. 55.
- Сведения об обслуживании. См. раздел «Сведения о техническом обслуживании», стр. 56
- Настройки языка. См. раздел «Выбор языка», стр. 56

Безопасность

Во избежание несанкционированного использования инструмента пользователь может установить защитный PIN-код или PUK-код.

PIN-код

PIN-код состоит из четырех цифр от 0 до 9, например: 1234. PIN-код может установить и изменить пользователь инструмента.

По умолчанию установлен PIN-код 0000. С таким PIN-кодом функция защиты отключена, и при включении инструмента пользователю не требуется вводить PIN-код.

Примечание. После 10 неудачных попыток ввода PIN-кода инструмент будет заблокирован, и потребуется ввести PUK-код.

Установка или смена PIN-кода

Ниже приведен порядок установки или смены PIN-кода

- 1. При помощи кнопки 🚺 выберите пункт «Защита», затем нажмите кнопку 🔲.
- 2. При помощи кнопки 🚺 выберите пункт «Сменить PIN», затем нажмите кнопку 🔲.
- 3. Введите текущий PIN-код. Выбранная для изменения цифра обозначена подчеркиванием.
 - а. При помощи кнопки 🗸 установите требуемую цифру.
 - b. Нажмите кнопку , чтобы перейти к следующей цифре.
 - с. Установив все четыре цифры PIN-кода, нажмите кнопку 🔲.
- 4. Введите свой новый PIN-код и нажмите кнопку 🚚, выполните шаги 3а, 3b и 3с.
- 5. Для подтверждения PIN-кода нажмите кнопку 🔃.

6. При помощи кнопки 🕕 выберите пункт «Назад...», затем нажмите кнопку 🞣, чтобы вернуться к меню «Настройка».

Разблокирование инструмента при помощи PIN-кода

Если установлен PIN-код, при включении инструмента требуется вводить PIN-код.

Чтобы разблокировать инструмент выберите пункт «Разблок. инструмент» и нажмите кнопку

✓

Примечание. Если в течение 10 секунд не будет сделан выбор, инструмент перейдет в дежурный режим. Чтобы вернуться к меню выбора режима, нажмите кнопку запуска.

PIN-код состоит из четырех цифр. Выбранная для изменения цифра обозначена подчеркиванием.

- 1. При помощи кнопки 🚺 установите требуемую цифру
- 2. Нажмите кнопку , чтобы перейти к следующей цифре.

После десяти неудачных попыток ввода PIN-кода отобразится запрос на ввод PUK-кода.

После ввода правильного PUK-кода будет восстановлен PIN-код 0000. При этом защита PIN-кодом будет отключена.

PUK-код

PUK-код состоит из десяти цифр от 0 до 9, например: 0123456789. Пользователь инструмента не может установить или изменить PUK-код.

PUK-код устанавливается на заводе. В комплект поставки инструмента входит документ с PUK-кодом. Храните этот документ в надежном месте.

Примечание. В случае утраты РИК-кода для его восстановления следует обращаться к поставщику продукции Trimble.

Примечание. PUK-код требуется для разблокирования инструмента после десяти неудачных попыток ввода PIN-кода.

PUK-код можно считать с инструмента.

- 1. При помощи кнопки 💶 выберите пункт «Защита», затем нажмите кнопку 🖵 .
- 2. При помощи кнопки 🔰 выберите пункт «Получить PUK», а затем нажмите 🚚.
- 3. Нажмите кнопку , чтобы вернуться к меню «Защита».

Настройки радиомодема

В меню «Настр. радиомодема» можно установить радиоканал и идентификатор сети.

Установка радиоканала

- 1. При помощи кнопки 🚺 выберите пункт «Настр. радиомодема», затем нажмите кнопку 🔃.
- 2. При помощи кнопки 🚺 выберите пункт «Устан. радиоканал», затем нажмите кнопку 💶.

3. Для смены номера радиоканала нажмите кнопку и выберите пункт «Далее», а затем нажмите кнопку и измените номер канала на дисплее.

Примечание. При кратковременном нажатии на кнопку ввода номер канала увеличится на 1, при длительном нажатии — на 10.

4. Выбрав необходимый номер канала, нажмите кнопку , чтобы выбрать пункт «Установить», а затем нажмите кнопку для сохранения номера канала. Снова отобразится меню «Настр. радиомодема».

- 5. Для отмены выберите пункт «Отмена» при помощи кнопки , а затем нажмите кнопку для возврата к меню «Настр. радиомодема».

Установка идентификатора сети

- 1. При помощи кнопки 🕕 выберите пункт «Настр. радиомодема», затем нажмите кнопку
- 2. При помощи кнопки 🚺 выберите пункт «Устан. идент. сети», а затем нажмите кнопку

3. Для смены идентификатора сети нажмите кнопку и выберите пункт «Далее», а затем нажмите кнопку и измените идентификатор на дисплее.

Примечание. При кратковременном нажатие на кнопку ввода идентификатор сети увеличится на 1, при длительном нажатии — на 10.

Диапазон значений идентификатора сети: 0-255.

4. Выбрав необходимый идентификатор сети, нажмите кнопку , чтобы выбрать пункт «Установить», а затем нажмите кнопку для сохранения идентификатора сети. Снова отобразится меню «Настр. радиомодема».

- 5. Для отмены выберите пункт «Отмена» при помощи кнопки , а затем нажмите кнопку для возврата к меню «Настр. радиомодема».
- 6. Для возврата к меню «*Настройка*» при помощи кнопки выберите пункт «Назад», а затем нажмите кнопку .

Настройки Bluetooth[®]

Данный инструмент оснащен модулем Bluetooth, который позволяет устанавливать беспроводные соединения. Антенна модуля Bluetooth расположена непосредственно под крепежной пластиной для контроллера в положении при КЛ. Для установления связи между инструментом и контроллерами TSC3 или Tablet сначала включите на инструменте беспроводной модуль Bluetooth. Порядок представлен ниже.

ВНИМАНИЕ! Перед включением модуля Bluetooth удостоверьтесь, что в стране, в которой проводятся работы, разрешено использование технологии беспроводной связи Bluetooth.

1. При помощи кнопки 🕕 выберите пункт «Hacтр. Bluetooth», затем нажмите кнопку

2. Для смены режима Bluetooth при помощи кнопки выберите пункт «Далее», а затем при помощи кнопки выберите пункт «Вкл.» или «Выкл.».

3. Выбрав необходимый режим, нажмите кнопку , чтобы выбрать пункт «Установить», а затем нажмите кнопку для сохранения настройки. Снова отобразится меню «Настройка».

4. Для отмены выберите пункт «Отмена» при помощи кнопки , а затем нажмите кнопку , чтобы вернуться к меню «Настройка».

Примечание. При поставке инструмента модуль Bluetooth отключен. Установленный оператором инструмента режим становится настройкой по умолчанию до следующего изменения.

Примечание. Для снижения энергопотребления и увеличения времени работы инструмента компания Trimble рекомендует выключать модуль Bluetooth, если он не используется.

Опорный горизонтальный угол

1. При помощи кнопки 🕕 выберите пункт «Опорный ГУ», затем нажмите кнопку 🔃.

2. Наведите инструмент в положении КП на цель, а затем нажмите кнопку ввода , чтобы установить опорный горизонтальный угол, или кнопку для отмены операции.

После наведения инструмента на опорную цель в положении КП в процессе установки опорного горизонтального угла отсчет по горизонтальному кругу инструмента будет установлен на 180 градусов или 200 град. При этом опорный горизонтальный угол при КЛ будет равен 0 градусов или град.

Отобразится меню «Настройка».

Меню «Юстировка»

Меню «Юстировка» позволяет выполнять все процедуры коллимации и калибровки.

• При помощи кнопки 🔱 выберите пункт «Юстировка», затем нажмите кнопку 🖊 .

Калибровка компенсатора

Для калибровки компенсатора инструмент должен быть идеально сбалансирован. После калибровки датчик компенсатора будет автоматически подстраиваться и компенсировать изменения баланса вследствие наличия контроллера Trimble CU или отсутствия внутренней батареи.

Меры по минимизации нарушения балансировки инструмента

- На инструменте не должен быть установлен контроллер Trimble CU.
- В батарейный отсек должна быть установлена внутренняя батарея.
- На инструмент должна быть установлена ручка.
- Инструмент автоматически расположит зрительную трубу и дальномер в сбалансированное положение.

Запуск калибровки компенсатора

- 1. Выставьте инструмент по уровню. Перед началом калибровки инструмент автоматически проверит, установлен ли компенсатор в пределах допусков.
- 2. При помощи кнопки 💵 выберите пункт «Калибр. компенс.», затем нажмите кнопку 🛋.
- 3. Следуйте указаниям на экране. См. рис. 4.3.

Примечание. Компания Trimble рекомендует регулярно выполнять калибровку компенсатора, особенно при измерениях в условиях значительных перепадов температур и для достижения максимальной точности измерений.

В процессе калибровки инструмент автоматически считывает значение компенсатора в нескольких предопределенных положениях при полном повороте ГК инструмента. Этот процесс занимает примерно одну минуту. Во время калибровки инструмент должен находиться на устойчивом основании, не должен подвергаться воздействию вибрации, и его не должен касаться пользователь.

Рисунок 4.3. Порядок калибровки компенсатора

Коллимация ГК/ВК и компенсация неравенства колонок

Данный инструмент производит высокоточные угловые и линейные измерения для определения положения наблюдаемой точки. Конструкция инструмента позволяет выполнять измерения всех точек одним наведением на цель в положении КЛ. Все электронные тахеометры подвержены ошибкам коллимации в системах измерения горизонтальных и вертикальных углов, а также ошибкам, вызванных тем, что ось зрительной трубы не совсем перпендикулярна вертикали инструмента.

Для компенсации этих ошибок процедура коллимации позволяет оператору точно определить текущие значения ошибок инструмента и сохранить их в качестве поправок, которые будут применяться ко всем измерениям, выполненным при однократном наведении на цель. Это позволяет обеспечить высокую точность результатов измерений инструментом.

Коллимационные ошибки и наклон горизонтальной оси вращения изменяются со временем, и чаще всего изменения вызваны следующими причинами:

- износ в процессе эксплуатации;
- толчки и удары во время транспортировки;
- значительные изменения рабочей температуры.

Компания Trimble рекомендует регулярно выполнять поверку коллимации и неравенства колонок в следующих случаях:

- после любой длительной неконтролируемой транспортировки инструмента (например, после технического обслуживания или перевозки на новое место);
- после любого случайного удара или падения;
- каждый раз в случае изменения рабочей температуры более чем на 10 °C;
- каждый раз в случае изменения высоты инструмента над уровнем моря более чем на 500 м;
- каждый раз, когда обеспечить высокую точность измерений;
- периодически с определенным интервалом (ежемесячно, еженедельно и т.д.).

Компания Trimble также рекомендует оператору регистрировать даты и значения полученных величин с целю выявления их существенных изменений. Такие изменения указывают на необходимость поверки инструмента в авторизованном сервисном центре.

Юстировка инструмента для устранения коллимационных ошибок ГК/ВК и компенсации неравенства колонок выполняется в два этапа.

Поправки за коллимационные ошибки ГК/ВК и неравенство колонок определяются на заводеизготовителе и сохраняются в памяти инструмента.

При проведении всех калибровок осуществляется несколько наблюдений при обоих кругах с целью компенсации любых незначительных ошибок наведения при определении текущих значений коллимационных ошибок с высокой точностью.

В новом инструменте эти значения должны быть близки к нулю, но со временем они изменяются. Инструмент допускает значения поправок за коллимационные ошибки ГК, ВК и неравенство колонок не более 0,045 градусов (0,05 град). В случае превышения этих допусков инструмент необходимо отправить на обслуживание для устранения механической проблемы.

1. При помощи кнопки
выберите пункт «Коллимация ГК/ВК», затем нажмите кнопку

Отобразятся текущие значения поправок за коллимационные ошибки.

- 2. При помощи кнопки 🚺 выберите требуемый пункт:
 - «Продолжить», затем нажмите кнопку , чтобы выполнить поверку коллимации ГК/ВК.
 - «Отмена», затем нажмите кнопку 🔲 , чтобы вернуться к меню «Юстировка».

В случае выбора пункта «Продолжить»...

- 3. При помощи кнопки 🚺 выберите требуемый пункт:
 - «Новое наблюд.», затем нажмите кнопку , чтобы выполнить поверку коллимации ГК/ВК.
 - «Смена круга», затем нажмите кнопку « 🚚 » для переключения КЛ и КП.

В случае выбора пункта «Новое наблюд.»...

- а. Точно наведите инструмент при КП на точку, удаленную от горизонта на угол не более ±4,5 градуса (±5 град) и находящуюся на расстоянии не менее 100 м.
- b. При помощи кнопки выберите пункт «Новое наблюд.». Затем нажмите кнопку чтобы измерить и записать углы.

- с. Заново наведите инструмент на ту же точку и снова нажмите кнопку ввода. Повторяйте этот процесс, выполнив как минимум 5 наблюдений при КП.
- d. При помощи кнопки
 выберите пункт «Смена круга». затем нажмите кнопку «
 » для переключения на КЛ.
- е. Точно наведите инструмент на ту же цель, что и при КП.
- f. При помощи кнопки
 выберите пункт «Новое наблюд.». Затем нажмите кнопку
 чтобы измерить и записать углы.
- g. Заново наведите инструмент на ту же точку и снова нажмите кнопку ввода. Повторяйте этот процесс столько же раз, сколько при КП.

По мере выполнения измерений при первом круге (КЛ или КП) сохраняются значения углов и увеличивается значение счетчика наблюдений. Когда при обоих кругах выполнено одно или несколько измерений и количество измерений при каждом круге совпадает, ПО вычисляет и отображает новые значения коллимационных ошибок ГК и ВК.

- 4. При помощи кнопки 🚺 выберите требуемый пункт:
 - «Коллим. гор. оси», затем нажмите кнопку , чтобы определить неравенство колонок.
 - «Сохр. поправку», затем нажмите кнопку , чтобы принять и сохранить новые значения поправок.
 - «Отмена», затем нажмите кнопку 🔲 , чтобы вернуться к меню «Юстировка».

Выберите пункт «Коллим. гор. оси», чтобы определить неравенство колонок.

5. При помощи кнопки 🕕 выберите пункт «Коллим. гор. оси». Затем нажмите кнопку гор., чтобы выполнить поверку неравенства колонок.

- 6. При помощи кнопки 🚺 выберите требуемый пункт:
 - «Новое наблюд.», затем нажмите кнопку , чтобы выполнить поверку неравенства колонок.
 - «Смена круга», затем нажмите кнопку « ✓ », чтобы сменить круг.
 - «Отмена», затем нажмите кнопку 🔲, чтобы вернуться к меню «Юстировка».

В случае выбора пункта «Новое наблюд.» отобразится количество наблюдений при обоих кругах.

- а. Точно наведите инструмент при КП на точку как минимум на 13,5 градуса (15 град) выше или ниже точки, по которой выполнялась поверка коллимации, и расположенную на расстоянии не менее 30 м.
- b. Нажмите кнопку **—** , чтобы измерить и записать углы.
- с. При помощи кнопки выберите пункт «Смена круга». Затем нажмите кнопку « ¬», чтобы сменить круг.
- d. Точно наведите инструмент на точку.
- е. Нажмите кнопку 🔲, чтобы измерить и записать углы.

По мере выполнения измерений при первом круге (КЛ или КП) сохраняются значения углов и увеличивается значение счетчика наблюдений. Когда при обоих кругах выполнено одно или несколько измерений и количество измерений при каждом круге совпадает, ПО вычисляет и отображает новое значение неравенства колонок.

- 7. При помощи кнопки 🚺 выберите требуемый пункт:
 - «Сохр. поправку», затем нажмите кнопку , чтобы принять новое значение неравенства колонок. Отобразится меню «Юстировка».
 - «Отмена», затем нажмите кнопку , чтобы вернуться к меню «Юстировка».

Примечание. Инструмент не позволит выполнить поверку неравенства колонок в случае наведения на точку, отстоящую менее чем на 13,5 градуса (15 град) от точки, по которой выполнялась поверка коллимации. Чем больше угол места измеряемой точки, тем выше будет точность определения неравенства колонок. Минимальное расстояние до точки, изменяемой с целью определения неравенства колонок, составляет 30 м.

Примечание. Если значение поправки за неравенство колонок превышает 0,045 градусов (0,05 град), отобразится сообщение «Ошибка. Измерить снова?». Нажмите кнопку «Да» и повторите процедуру измерения. Если значение превышает 0,045 градусов (0,05 град) и вы нажмете кнопку «Нет» при запросе на повторное измерение, инструмент будет использовать предыдущее значение поправки, хранящееся в его памяти. Если значение превышает 0,045 градусов (0,05 град), требуется механическая юстировка инструмента в сервисном центре Trimble.

Коллимация Autolock

Система слежения инструмента конструктивно расположена соосно его сетке нитей. Если по какой-либо причине ось системы слежения отклоняется оси зрительной трубы, это приведет к ошибкам в измеренном положении точки. Поэтому необходимо регулярно выполнять поверку коллимации Autolock (в таких же условиях, что выполняется поверка коллимации ГК/ВК), что позволит компенсировать любое незначительное отклонение.

Поверку следует производить примерно на том же расстоянии, на котором будет осуществляться работа, но не менее 100 м. Во время поверки призменный отражатель должен быть неподвижным (компания Trimble рекомендует установить отражатель на штатив или веху сподставкой) и должен находиться в прямой видимости без каких-либо преград. Инструмент калибруется таким образом, чтобы обеспечить точное наведение на точку в центре отражателя по горизонтальной и вертикальной осям. Калибровка используется для корректировки положения всех точек, измеренных с использованием функции Autolock. Результаты калибровки сохраняются и используются до тех пор, пока не будет определен их новый набор.

Примечание. Положение двух оптических осей, то есть зрительной трубы и системы слежения, может не совпадать. См. раздел «Наведение», стр. 83

1. При помощи кнопки 🕕 выберите пункт «Коллим. устр. слеж.», затем нажмите кнопку ᢇ.

- 2. Точно наведите инструмент на призму.
- 3. При помощи кнопки 💵 выберите пункт «Новое наблюд.», затем нажмите кнопку 킽.

- 4. Инструмент автоматически выполнит измерение до цели при обоих кругах и отобразит текущие значения.
- 5. При помощи кнопки 🚺 выберите требуемый пункт:
 - «Сохр. поправку», затем нажмите кнопку 🚚 , чтобы сохранить значения поправок.
 - «Отмена», затем нажмите кнопку 🔲 , чтобы вернуться к меню «Юстировка».
- 6. Когда инструмент сохранит значения поправок, отобразится меню «Юстировка».

Лазерный указатель

Лазерный указатель излучает видимый лазерный луч из зрительной трубы по линии визирования. Лазер визуально показывает измеряемую точку и особенно полезен при использовании для измерения безотражательного электронного дальномера DR. Луч лазерного указателя хорошо различим в тени, внутри зданий и туннелей, а также в ночное время. Однако в условиях яркого солнечного освещения его слабо видно невооруженным глазом.

Ниже приведен порядок включения и отключения лазерного указателя.

Примечание. Ось лазерного указателя механически совмещена с осью зрительной трубы. Лазерный указатель может периодически требовать юстировки для обеспечения условия соосности при проведении измерений. Для юстировки лазера он должен быть включен, см. стр. 4-57.

1. При помощи кнопки 🕕 выберите пункт «Лазерный указатель», затем нажмите кнопку

3. Выбрав необходимый режим, нажмите кнопку ↓, чтобы выбрать пункт «Установить», а затем нажмите кнопку ↓ для сохранения настройки. Снова отобразится меню «Юстировка».

4. Для отмены выберите пункт «Отмена» при помощи кнопки , а затем нажмите кнопку , чтобы вернуться к меню «Юстировка».

Включив лазерный указатель, можно отъюстировать луч. Подробные сведения см. в разделе «Лазерный указатель», стр. 57.

Калибровка автофокуса

Инструмент оснащен функцией автофокуса. Перед использованием автофокуса его необходимо откалибровать.

Порядок калибровки

- 1. Отсоедините от инструмента контроллер.
- 2. Выставьте инструмент по уровню. Перед началом калибровки инструмент автоматически проверит, установлен ли компенсатор в пределах допусков.
- 3. При помощи кнопки 👪 выберите пункт «Калиб. автофокуса», затем нажмите кнопку 💶.

Возврат

1. Чтобы вернуться к меню «Настройка», при помощи кнопки 🚺 выберите пункт «Назад...», а затем нажмите кнопку 🞑.

Сведения о версии прошивки.

1. При помощи кнопки
 выберите пункт «Версия прошивки», затем нажмите кнопку
 . На экране отобразится версия прошивки инструмента. Программа автоматически вернется к меню «Настройка».

Сведения о техническом обслуживании

В меню «Свед. об. обслуж.» можно просмотреть дату следующего рекомендованного технического обслуживания или наработку до рекомендованного технического обслуживания.

Выбор языка

Меню «Выбор языка» позволяет выбрать язык отображения информации на дисплее КП.

- 1. При помощи кнопки 💵 выберите пункт «Выбор языка», затем нажмите кнопку 킽.
- 2. При помощи кнопки 🚺 выберите требуемый язык.
- 3. Нажмите кнопку 🖊 , чтобы установить язык.

Выход из меню

1. Чтобы выйти из меню «Настройка», при помощи кнопки 🕕 выберите пункт «Выход (к нивел.)», а затем нажмите кнопку ᢇ. Отобразится электронный уровень.

Примечание. Если инструмент не будет использоваться более 300 секунд (5 минут) во время любой из вышеуказанных процедур, он перейдет в дежурный режим.

Лазерный указатель

В тахеометре Trimble S5 красный лазерный луч используется только в качестве лазерного указателя. Лазерный указатель расположен соосно с линией визирования зрительной трубы. При надлежащей юстировке инструмента красный лазерный луч указателя совпадает с линией визирования. Внешние воздействия, такие как удары и значительные перепады температуры, могут привести к смещению красного лазерного луча указателя относительно линии визирования.

Поверка соосности лазерного указателя

ВНИМАНИЕ! Наблюдение лазерного пятна на юстировочном отражателе через зрительную трубу безопасно для здоровья. Не пытайтесь выполнить юстировку с помощью призмы, так как отраженный от призмы свет может ослепить глаза.

ВНИМАНИЕ! Не используйте лазерный указатель в качестве вспомогательного средства при поиске призм, поскольку отраженный свет может ослепить глаза. Отраженный свет не повредит зрение, но может вызвать неприятные ощущения.

Во избежание ошибочных измерений при наведении с помощью лазерного указателя используйте входящий в комплект поставки юстировочный отражатель для регулярной поверки соостности лазера и перед выполнением измерений расстояния с высокой точностью.

- 1. Установите юстировочный отражатель на расстоянии 25–50 м, направив его на инструмент.
- 2. Наведите инструмент на центр пластины отражателя и проверьте положение красного лазерного пятна по отношению к сетке нитей зрительной трубы.
- 3. Если красное лазерное пятно лежит вне сетки нитей, отрегулируйте направление луча так, чтобы оно совпало с сеткой нитей, см. рис. 4.4.

Рисунок 4.4. Юстировочный отражатель для тахеометра Trimble S5

Юстировка лазерного указателя

1. Извлеките две заглушки из отверстий юстировочных винтов в верхней части корпуса зрительной трубы. См. рис. 4.5

Рисунок 4.5. Отверстия юстировочных винтов лазерного указателя

2. Для корректировки положения лазерного пятна по вертикали вставьте шестигранный ключ в отверстие для юстировки по вертикали и поворачивайте его, как показано на рис. 4.6.

Рисунок 4.6. Юстировка положения лазерного указателя по вертикали

3. Для корректировки положения лазерного пятна по горизонтали вставьте шестигранный ключ в отверстие для юстировки по горизонтали и поворачивайте его, как показано на рис. 4.7.

Рисунок 4.7. Юстировка положения лазерного указателя по горизонтали

- 4. Проверьте соосность лазерного пятна и сетки нитей. Во время процедуры юстировки удерживайте зрительную трубу в направлении юстировочного отражателя. Юстировочные винты самостопорящиеся и поворачиваются с усилием. Винты автоматически застопорятся после юстировки.
- 5. Установите заглушки обратно в отверстия юстировочных винтов. Заглушки должны быть правильно установлены для обеспечения должной герметизации крышки.

ВНИМАНИЕ! Для предохранения инструмента от влаги и пыли убедитесь в надлежащей установке заглушек в отверстия юстировочных винтов.

Измерение высоты инструмента

На боковой панели инструмента имеются две отметки для измерения высоты инструмента. Верхняя отметка соответствует положению горизонтальной оси вращения инструмента. Нижняя отметка находится на 0,158 м ниже верхней отметки. При использовании нижней отметки измерения следует выполнять от ее верхнего края. См. рис. 4.8

Рисунок 4.8. Отметки высоты инструмента

Если к инструменту подключен контроллер Trimble CU или TSC3, на котором выполняется полевое ПО, то программное обеспечение приводит наклонное расстояние до пункта, измеренное по нижней отметке к требуемой высоте горизонтальной оси вращения инструмента; см. рис. 4.9 и следующий параграф.

Рисунок 4.9. Измерение высоты инструмента

Для получения высоты нижней отметки (Hc) в измеренное расстояние (Hm) вводится поправка за наклон. Для получения высоты горизонтальной оси вращения инструмента над центром (Ih) к Hc следует прибавить постоянное расстояние от нижней отметки до верхней (0,158 м). Более подробные сведения см. в документации полевого ПО.

Кроме того, для получения корректной высоты по верхней отметке (Ih) можно измерить наклонное расстояние от центра до нижней отметки (Hm) и вычислить высоту инструмента (Ih), подставив измеренное наклонное расстояние (Hm) в следующую формулу:

Ih =
$$0, 158 + \sqrt{\text{Hm}^2 - 0, 091}^2$$

Юстировка оптического центрира

- 1. Установите инструмент и выставьте его по уровню его над маркой на земле так, чтобы высота штатива составляла 1,5 м $(\pm 0,1$ м). См. рис. 4.10.
- 2. Запомните положение внутреннего круга оптического центрира по отношению к марке на земле.
- 3. Поверните инструмент на 180 градусов (200 град).
- 4. Запомните положение внутреннего круга оптического центрира по отношению к марке на земле. Если внутренний круг сетки нитей оптического центрира перемещается относительно марки на земле, необходимо отъюстировать положение сетки нитей центрира.
- 5. Отъюстируйте сетку нитей оптического центрира на половину погрешности с помощью четырех юстировочных винтов.
- 6. Поверните инструмент на 180 градусов (200 град).
- 7. Если внутренний круг сетки нитей оптического центрира не переместился относительно марки на земле, дальнейшая юстировка не требуется.

ВНИМАНИЕ! При юстировке оптического центрира с помощью четырех юстировочных винтов важно правильно вращать их. При вращении одного винта противоположный винт необходимо вращать в обратном направлении, чтобы поддержать надлежащее натяжение внутри оптической системы. Не затягивайте винты слишком сильно, это может привести к повреждению оптической системы.

Рисунок 4.10. Юстировка оптического центрира

Регламент проверки перечень перед началом измерений

Перед началом измерения или разбивки проконтролируйте следующее:

- оптика не загрязнена;
- инструмент установлен по уровню;
- значение коллимационной ошибки постоянно и находится в пределах допуска;
- значение коллимационной ошибки системы слежения (если инструмент оснащен функцией Autolock) постоянно и находится в пределах допуска;
- значение наклона горизонтальной оси постоянно и находится в пределах допуска;
- выбран правильный радиоканал (только для измерений в режиме Robotic);
- ось лазерного указателя совпадает с визирной осью зрительной трубы;
- высота инструмента измерена;
- инструменту отведено достаточное времени чтобы принять температуру окружающей среды, см. стр. 31.

Подключение контроллера

Для выполнения съемки к инструменту необходимо подключить контроллер, на котором выполняется полевое ПО.

Контроллер Trimble CU

В качестве контроллера инструмента можно использовать контроллер Trimble CU (TCU).

TCU поддерживает различные способы обмена данными с инструментом:

- установка непосредственно на инструмент (А);
- беспроводной интерфейс Bluetooth® в случае установки на держатель Robotic или докстанцию (B);
- 2,4-ГГц радиомодем для связи с роботизированными тахеометрами в случае установки в держатель Robotic (C).

Рисунок 4.11. Подключение TCU к инструменту

Установка TCU на инструмент

1. Закрепите верхнюю часть TCU на верхнем крае держателя контроллера, рис. 4.12.

Рисунок 4.12. Установка TCU на инструмент

2. Прижмите нижнюю часть контроллера TCU к держателю контроллера на инструменте до щелчка, рис. 4.13.

Рисунок 4.13. Установка TCU на инструмент

Снятие TCU с инструмента

ВНИМАНИЕ! При снятии контроллера TCU с инструмента рекомендуется перевести контроллер в дежурный режим или выключить его.

Снятие контроллера Trimble CU с инструмента во включенном состоянии не повлечет повреждение оборудования, но файлы, сохраняемые или записываемые в момент снятия контроллера TCU, могут быть повреждены или утрачены.

- 1. Нажмите кнопку фиксатора в нижней части ТСО, рис. 4.14 (1).
- 2. Снимите нижнюю часть контроллера TCU с инструмента, рис. 4.14 (2).

Нажмите, чтобы отсоединить

Рисунок 4.14. Снятие TCU с инструмента

3. Отсоедините верхнюю часть контроллера TCU от верхнего края держателя контроллера и снимите контроллер с инструмента, рис. 4.15.

Рисунок 4.15. Снятие TCU с инструмента

Примечание. Если контроллер TCU не установлен на инструмент, следует установить крышку держателя контроллера, арт. 50014012, чтобы полностью защитить инструмент от электростатических разрядов, а также предохранить контакты от механических повреждений и коррозии. См. раздел «Сведения о защите от электростатических разрядов», стр. VII.

Подключение посредством беспроводного интерфейса Bluetooth®

ВНИМАНИЕ! Прежде чем активировать модуль Bluetooth, удостоверьтесь, что местные правила разрешают использование технологии беспроводной связи Bluetooth.

Контроллер TCU оснащен встроенным модулем беспроводной связи Bluetooth. Инструкции по активации и настройке модуля Bluetooth, встроенного в контроллер TCU, см. в документации полевого ПО.

Для подачи питания контроллер TCU необходимо установить в держатель Robotic. Инструкции по подготовке держателя Robotic к работе: См. раздел «Держатель Trimble Robotic», стр. 105.

Подключение посредством 2,4-ГГц радиомодема

Роботизированный инструмент оснащен 2,4-ГГц радиомодемом, который может осуществлять обмен данными с контроллером TCU посредством аналогичного радиомодема, встроенного в держатель Robotic. Для подачи питания и подключения к радиомодему TCU необходимо установить в держатель Robotic.

Для установления связи оба радиомодема должны быть настроены на один канал. Радиоканал на инструменте можно задать следующими способами:

- с помощью панели КП, см. стр. 4-39;
- с помощью полевого ПО ТСИ, когда контроллер установлен на инструмент, см. стр. 4-67.

Контроллер Trimble TSC3

В качестве контроллера инструмента можно использовать контроллер TSC3 (TSC3).

TSC3 поддерживает различные способы обмена данными с инструментом:

- кабельное подключение к инструменту (А);
- интерфейс беспроводной связи Bluetooth® (B);
- 2,4-ГГц радио модем, при работе с роботизированными инструментами (С).

Рисунок 4.16. Подключение TSC3 к инструменту

Подключение посредством кабеля

COM-порт инструмента подключается к порту USB на контроллере TSC3 посредством кабеля, артикул 73840001.

Подключение посредством беспроводного интерфейса Bluetooth®

ВНИМАНИЕ! Прежде чем включать модуль Bluetooth, удостоверьтесь, что местные правила разрешают использование технологии беспроводной связи Bluetooth.

Контроллер TSC3 оснащен встроенным модулем беспроводной связи Bluetooth. Инструкции по активации и настройке модуля Bluetooth на TSC3 см. в документации полевого ПО.

Подключение посредством 2,4-ГГц радиомодема

Роботизированный инструмент оснащен 2,4-ГГц радиомодемом, который может осуществлять обмен данными с контроллером TSC3 посредством аналогичного встроенного радиомодема.

Для установления связи оба радиомодема должны быть настроены на один канал. Радиоканал на инструменте можно задать следующими способами:

- с помощью панели КП, см. стр. 4-39
- с помощью полевого ПО TSC3 , когда контроллер TSC3 подключен к инструменту кабелем, см. рис. 4.16.

Технологии инструмента

Разделы данной главы:

- Технология угловых измерений
- Технология измерения расстояний
- Технология Autolock
- Створоуказатель Tracklight
- Технология Locate2Protect
- Технология сервоприводов
- Управление питанием
- Связь с внешними устройствами

Технология угловых измерений

Принцип угловых измерений основан на считывании общего сигнала по двум противоположным секторам датчика угла и вычислении среднего значения угла. Это позволяет устранить погрешности, вызванные эксцентриситетом и погрешностями градуировки.

Кроме того, система угловых измерений автоматически компенсирует следующие погрешности:

- погрешность нивелировки инструмента (отклонение от вертикальной оси);
- коллимационные ошибки;
- наклон горизонтальной оси вращения. См. стр. 77.

Поправка за погрешность нивелировки

Инструмент автоматически компенсирует погрешность нивелировки до ± 6 '. Инструмент немедленно предупреждает оператора о наклоне инструмента, превышающем ± 6 ' ($\pm 0,11$ град).

В инструменте также реализована технология SurePoint™ для автоматической коррекции наведения зрительной трубы с целью устранения погрешностей нивелировки инструмента и неравенства колонок в реальном времени в процессе эксплуатации.

Значения поправок ГК, ВК и наклонного расстояния вычисляются в полевом прикладном ПО и применяются ко всем измерениям.

Поправка за коллимационную ошибку

Коллимационная ошибка ГК — это отклонение визирной оси от перпендикуляра к горизонтальной оси вращения.

Коллимационная ошибка ВК — это отклонение визирной оси при нуле вертикального круга и от расположенной отвесно вертикальной оси инструмента.

Обычно влияние коллимационных ошибок устраняется посредством измерения углов при двух кругах инструмента. В тахеометре Trimble S5 перед измерением производится поверка коллимации с целью определения коллимационных ошибок. Для этого выполняются угловые измерения при двух кругах инструмента, вычисляются значения коллимационных ошибок, и в памяти инструмента сохраняются соответствующие поправки, которые затем применяются ко всем последующим угловым измерениям. В результаты угловых измерений, выполненных при одном круге, вводится поправка за коллимационную ошибку, что устраняет необходимость измерения углов при двух кругах инструмента.

Выполняйте поверку коллимации в следующих случаях:

- после небрежной транспортировки инструмента;
- если температура окружающей среды отличается более чем на 10 °C от температуры при предыдущей поверке коллимации;
- непосредственно перед проведением высокоточных угловых измерений при одном круге.

Taxeoмetp Trimble S5 с функцией Autolock

Тахеометр Trimble S5 оснащен функцией Autolock, которая позволяет автоматически захватывать и отслеживать призму или активную цель. Погрешности наведения, вызванные незначительным нарушением юстировки системы слежения инструмента, оказывают такое же влияние на коллимационные ошибки ГК и ВК, как описано выше.

Для коррекции коллимационных ошибок устройства слежения выполните поверку коллимации Autolock. В ходе поверки коллимации Autolock автоматически выполняются угловые измерения цели при двух кругах, вычисляются коллимационные ошибки устройства слежения, и в памяти инструмента сохраняются соответствующие значения поправок, которые затем применяются ко всем последующим угловым измерениям, выполненным при включенной функции Autolock. В результаты угловых измерений, выполненных при одном круге, вводится поправка за коллимационную ошибку устройства слежения, что устраняет необходимость измерения углов при двух кругах инструмента.

Выполняйте поверку коллимации Autolock в следующих случаях:

- после небрежной транспортировки инструмента;
- если температура окружающей среды отличается более чем на 10 °C от температуры при предыдущей поверке коллимации;
- непосредственно перед проведением высокоточных угловых измерений с использованием Autolock при одном круге.

Поправка за неравенство колонок

Неравенство колонок — это отклонение горизонтальной оси вращения зрительной трубы от перпендикуляра к вертикальной оси инструмента. См. рис. 5.1;

Рисунок 5.1. Погрешность неравенства колонок

Перед измерениями выполните поверку наклона горизонтальной оси вращения инструмента для определения неравенства колонок. Для этого производятся угловые измерения при двух кругах инструмента, вычисляется неравенство колонок, и в памяти инструмента сохраняется соответствующее значение поправки, которое затем вводится в значение угла, а также учитывается при автоматическом повторном наведении зрительной трубы с использованием технологии Surepoint.

Выполняйте поверку неравенства колонок в следующих случаях:

- после небрежной транспортировки инструмента;
- если температура окружающей среды отличается более чем на 10 °C от температуры при предыдущей поверке;
- непосредственно перед выполнением высокоточных угловых измерений при одном круге, особенно в случае наблюдения целей, значительно удаленных от плоскости горизонта.

Усреднение измерений для сокращения погрешностей визирования

Инструмент автоматически сокращает погрешности визирования, вызванные неточным наведением инструмента на цель или перемещением вехи в ходе измерения. Рекомендуется использовать перечисленные ниже методы.

- Функция Autolock. При включенной функции Autolock инструмент автоматически захватывает и отслеживает цель. Сокращаются погрешности ручного наведения.
- Автоматическое усреднение углов во время измерения расстояний. Измерение расстояния в стандартном режиме занимает примерно 1,2 с. Значения углов, считываемые инструментом с частотой 1000 Гц, усредняются за период 1,2 с; итоговый результат измерения угла является средним значением более чем 1200 наблюдений.
- Функции усреднения измерений, доступные в полевом ПО.

Технология измерения расстояний

Инструменты оснащены комбинированным дальномером. Это означает, что инструмент может измерять расстояние до призмы или до обычных поверхностей (в безотражательном (DR) режиме).

В тахеометре Trimble S5 используется импульсный лазерный дальномер, определяющий расстояние посредством точного измерения времени прохождения излученного светового импульса. Дальномер излучает через зрительную трубу на цель последовательность коротких лазерных импульсов. Импульсы отражаются от поверхности цели и возвращаются в инструмент. Дальномер определяет разность времени между моментом излучения и приема импульсов и вычисляет расстояние до цели.

Дальномер поддерживает дополнительные функции, позволяющие посредством полевого прикладного ПО управлять качеством и точностью безотражательных измерений.

Функции, доступные в полевом прикладном ПО

- Минимальное среднеквадратическое отклонение (СКО): этот параметр позволяет задать требуемую точность безотражательного измерения, при достижении которой будет принято значение расстояния. Инструмент будет продолжать процесс измерения расстояния до тех пор, пока не будет достигнуто заданное значение СКО. По умолчанию оно составляет 0,003 м. Если установить более высокое значение, время измерения сократится, но снизится точность, особенно при измерении до поверхностей на больших расстояниях или под косыми углами к линии визирования.
- Слабый сигнал: эта функция позволяет принять безотражательное измерение, не соответствующее спецификации инструмента. Она может быть полезна при измерении до слабоотражающих поверхностей, а также при попытке измерений предельных для инструмента расстояний.
- Мин.—макс. дальность: эта функция позволяет задать интервал безотражательных измерений. Например, при измерении небольшого объекта на расстоянии 50 м, за которым расположен объект на расстоянии 200 м, задайте диапазон мин.—макс. дальности 2—100 м. Тогда дальномер будет настроен на измерение расстояний в указанном диапазоне и не будет учитывать сигнал, отраженный от объектов за пределами заданной дальности. По умолчанию диапазон мин.—макс. дальности составляет 2—100 м.

Расходимость пучка

Луч любого дальномера расходится по мере увеличения расстояния от инструмента. Расходимость пучка лазера дальномера характеризует размеры области измерения и их увеличение с расстоянием и не влияет на точность результатов измерений. См. рис. 5.2.

Рисунок 5.2. Расходимость пучка

Область измерения большего размера на большем расстоянии обычно лучше, поскольку она дает возможность выделить небольшие объекты, например ЛЭП и антенны, и точно измерить расстояние до них. При меньшей области измерения такие объекты можно легко пропустить. Область измерения меньшей площади имеет преимущества при измерении острых углов и вершин на небольшом расстоянии. При измерении расстояния до острого угла, расходимость

пучка лазера дальномера вносит погрешность, обусловленную размером пятна измерения. См. рис. 5.3.

Рисунок 5.3. Измерение расстояния до внутренних и внешних углов

Дальномер с пучком лазера меньшего диаметра обеспечит более точные результаты за счет меньшей области измерения, тем не менее, указанную погрешность невозможно устранить полностью. Наиболее надежным способом измерения расстояния до острых углов и устранения погрешностей, вызванных расходимостью пучка лазера, является измерение со смещением, например, реализованное в полевом прикладном ПО.

- 1. Измерьте две точки на стене здания.
- 2. Наведите инструмент на угол, чтобы записать правильные значения горизонтального и вертикального углов. См. рис. 5.4.

Рисунок 5.4. Измерение со смещением

Способ измерения со смещением позволяет точно измерить до труднодоступные точки с помощью инструментов, оснащенных безотражательным дальномером, и устранить влияние погрешности, вызванной расходимостью пучка. Более подробные сведения см. в документации полевого прикладного ПО.

Технология Autolock

Инструмент поддерживает технологию Autolock, которая используется при роботизированной и традиционной съемке с функцией Autolock.

Функция Autolock управляет сервоприводами инструмента и наводит его точно на цель. См. рис. 5.5.

Совет. Для достижения максимальной производительности при использовании Autolock объектив должен быть сухим и чистым.

Рисунок 5.5. Функция Autolock в тахеометре Trimble S5

Инструмент может захватывать и отслеживать цель в двух разных режимах в зависимости от типа цели.

Пассивный режим

В пассивном режиме инструмент может захватывать и отслеживать призму.

SplitVision

Если на призме установлен идентификатор цели, инструмент будет захватывать и отслеживать активный идентификатор цели по горизонтали и пассивную призму по вертикали.

Соответствующий режим можно задать посредством интерфейса полевого ПО при выборе 360-градусной цели следующего типа: призма с идентификатором цели.

Примечание. В полевом ПО необходимо выбрать соответствующую цель, чтобы обеспечить надлежащий захват и отслеживание цели.

ВНИМАНИЕ! Для выполнения точных измерений при использовании призмы с углом обзора 360° важно повернуть призму таким образом, чтобы одна из входящих в ее состав призм была направлена на инструмент.

Наведение

Оптические оси зрительной трубы и системы слежения могут не совпадать. Несовпадение выглядит так, что при использовании Autolock кажется, будто инструмент не наведен на центр призмы, рис. 5.6. Это не является проблемой, поскольку для двух осей имеются отдельные данные коллимации. Тем не менее, важно выполнить поверку коллимации для обеих осей.

Рисунок 5.6. Различие между наведением вручную и наведением с помощью Autolock

Поверка наведения

Можно проверить калибровку инструмента, выполнив измерение на призму с использованием и без использования Autolock, а затем сравнить значения измеренных углов.

- 1. Вручную наведите инструмент на призму и возьмите отсчет по ГК и ВК.
- 2. Включите Autolock и дайте возможность инструменту автоматически захватить ту же самую призму, а затем возьмите отсчет по ГК и ВК.
- 3. Сравните отсчеты, полученные при ручном наведении и с помощью Autolock.

В случае значительного расхождения необходимо выполнить поверку коллимации ГК/ВК и системы слежения.

Створоуказатель Tracklight

Некоторые модели инструмента оснащены створоуказателем Tracklight $^{\circ}$. Tracklight — это оптический прибор, видимый свет от которог дает возможность реечнику встать на текущей линии визирования инструмента. Створоуказатель Tracklight целесообразно использовать во время разбивки во всех рабочих режимах. Он также очень полезен при работе в режиме роботизированной съемки для контроля отслеживания цели инструментом, при создании условия для захвата инструментом потерянной цели посредством входа на линию

визирования системы слежения, а также при использовании дистанционного управления инструментом в роботизированном режиме с помощью джойстика. Створоуказатель Tracklight выполнен в виде мигающего источника света двух цветов; лучи каждого цвета лежат в слева и справа колиммационной плоскости инструмента. Если реечник находится слева от измерительного луча, он увидит красный мигающий свет, а если он находится справа, он увидит зеленый мигающий свет. См. рис. 5.7

Рисунок 5.7. Створоуказатель Tracklight

Совет. Tracklight можно использовать для очистки линий визирования и в качестве вспомогательного средства при поиске призм в темноте или в плохих условиях визирования.

ВНИМАНИЕ! Не используйте лазерный указатель в качестве вспомогательного средства при поиске призм, поскольку отраженный свет может ослепить глаза. Отраженный свет не повредит зрение, но может вызвать неприятные ощущения.

Технология Locate2Protect

Инструмент поддерживает технологию Locate2Protect (L2P).

Примечание. Модуль L2P при поставке не активирован. Обратитесь в авторизованный сервисный центр для активации модуля L2P.

Когда модуль L2P активирован, он позволяет отслеживать местоположение инструмента в реальном времени при помощи веб-службы Trimble® InSphere™ Equipment Manager.

Помимо сведений о местонахождении инструмента также можно получать оповещения, если инструмент покинул заданную пользователем геозону, подвергся удару или небрежному обращению.

Модуль L2P определяет координаты инструмента посредством GPS-приемника. Если инструмент расположен таким образом, что GPS-приемник не может принимать сигналы со спутников, например, в помещении, модуль L2P определяет местоположение инструмента посредством технологии Assisted GPS (A-GPS). A-GPS позволяет вычислить координаты инструмента посредством триангуляции по ближайшим вышкам сотовой связи.

Режим «В самолете»

Модуль L2P содержит сотовый модем, поэтому перед транспортировкой данного инструмента воздушным транспортом следует уточнить местные правила, см. раздел «Транспортировка», стр. VII.

ОСТОРОЖНО! Во время транспортировки инструмента воздушным транспортом модуль L2P должен быть выключен.

Выключение модуля L2P

При наличии действующей подписки для модуля L2P, которая была активирована в авторизованном сервисном центре, можно при помощи веб-интерфейса службы InSphere Equipment Manager перевести модуль L2P в режим «В самолете».

Если действующая подписка для модуля L2P отсутствует, то перевести модуль L2P в режим «В самолете» с помощью веб-интерфейса службы Insphere Equipment Manager будет невозможно. В этом случае на время транспортировки необходимо извлечь из инструмента внутреннюю батарею и (или) отключить внешние источники питания. В противном случае модуль L2P будет включен и сможет производить поиск сотовой сети, что может являться нарушением правил.

Технология сервоприводов

Данный инструмент оснащен серводвигателями, которые используются для привода алидады, зрительной трубы, а также механизма фокусировки инструмента.

В связи с применением в инструменте высокоскоростных сервоприводов и технологии SurePoint важно использовать высококачественные штатив и трегер. Необходимо также установить штатив в наиболее устойчивое положение. В случае неустойчивой установки

инструмента, штатива или трегера серводвигатели инструмента могут периодически перемещаться, чтобы компенсировать эту нестабильность. Неустойчивая установка может снизить точность измерений. См. раздел «Установка инструмента», стр. 30.

Сервопривод наведения

Сервомотор Trimble MagDrive™ представляет собой систему прямого электромагнитного привода, обеспечивающего высокую скорость вращения при высокой точности. Движение происходит без трения и шума, что снижает износ инструмента. Система обеспечивает бесконечное горизонтальное и вертикальное перемещение алидады и зрительной трубы, включая бесконечное точное наведение. Инструмент задействует сервоприводы при выполнении различных операций, например, при повороте ручек горизонтального и вертикального перемещения, для автоматической поверки и калибровки, а также при использовании технологии Autolock для роботизированной съемки. См. рис. 5.8.

Примечание. В связи с высокой скоростью работы сервопривода важно использовать высококачественные штатив и трегер.

Рисунок 5.8. Сервопривод наведения

Сервопривод фокусировки

Данный инструмент оснащен сервоприводом фокусировки. Ручка фокусировки находится на боковой стороне инструмента для облегчения доступа.

Ручка фокусировки подключена к серводвигателю, встроенному в зрительную трубу. При вращении ручки фокусировки серводвигатель регулирует положение фокусировочных линз. См. рис. 5.9.

Рисунок 5.9. Сервопривод фокусировки

Управление питанием

Функция управления питанием инструмента позволяет переключить инструмент в один из трех режимов:

- инструмент выключен;
- инструмент включен;
- дежурный режим.

Автономный режим

Используется только инструмент, контроллер Trimble CU не подключен.

Инструмент выключен

Когда инструмент выключен, индикатор кнопки запуска и дисплей КП не действуют.

Для включения инструмента нажмите и 1 секунду удерживайте кнопку запуска. Инструмент также включится при подключении 12-В источника питания или кабеля обмена данными к разъему в нижней части инструмента.

Примечание. Во время запуска индикатор кнопки запуска будет мигать с интервалом в 1 с.

Инструмент включен

Когда инструмент включен, светится индикатор кнопки запуска и включен дисплей КП.

Для выключения инструмента нажмите и 3 секунды удерживайте кнопку запуска.

Инструмент выключится при очень низком заряде батареи (менее 2 %).

При простое в течение 300 с (5 минут) инструмент переходит в дежурный режим.

Дежурный режим

В дежурном режиме индикатор кнопки запуска мигает с интервалом 2 с и дисплей КП выключен.

Для включения инструмента нажмите и 1 секунду удерживайте кнопку запуска или включите инструмент с помощью удаленного приложения.

Для выключения инструмента нажмите и 3 секунды удерживайте кнопку запуска.

В дежурном режиме инструмент выключится автоматически по таймеру дежурного режима. Таймер дежурного режима устанавливается в операционной системе контроллера Trimble CU.

Инструмент с установленным контроллером Trimble CU

Инструмент выключен

Когда инструмент выключен, индикатор кнопки запуска и дисплей КП не действуют. Контроллер Trimble CU выключен или находится в дежурном режиме.

Для включения инструмента нажмите и 1 секунду удерживайте кнопку запуска или нажмите кнопку питания контроллера Trimble CU. Инструмент также включится при подключении 12-В источника питания или кабеля обмена данными к разъему в нижней части инструмента.

Примечание. Во время запуска индикатор кнопки запуска будет мигать с интервалом в 1 с.

Инструмент включен

Когда инструмент включен, светится индикатор кнопки запуска и включен дисплей КП. Управление дисплеем КП осуществляется с помощью прикладного ПО контроллера Trimble CU. Установленный на инструмент контроллер Trimble CU включен, и заряжается резервная батарея для дежурного режима в контроллере Trimble CU.

Для выключения инструмента нажмите и 3 секунды удерживайте кнопку запуска или нажмите кнопку питания контроллера Trimble CU. В зависимости от настроек операционной системы контроллера Trimble CU инструмент выключится или перейдет в дежурный режим.

Инструмент перейдет в дежурный режим при очень низком заряде батареи (менее 2%).

Дежурный режим

В дежурном режиме индикатор кнопки запуска мигает с интервалом 2 с и дисплей КП выключен. Установленный на инструмент контроллер Trimble CU находится в дежурном режиме, и заряжается резервная батарея для дежурного режима в контроллере Trimble CU.

Для включения инструмента нажмите и 1 секунду удерживайте кнопку запуска или нажмите кнопку питания контроллера Trimble CU.

Для выключения инструмента нажмите и 3 секунды удерживайте кнопку запуска.

При этом выключится только инструмент. Контроллер Trimble CU будет находиться в дежурном режиме до истечения таймера дежурного режима.

ВНИМАНИЕ! Перед снятием контроллера Trimble CU с инструмента рекомендуется перевести контроллер Trimble CU в дежурный режим.

Снятие контроллера Trimble CU с инструмента во включенном состоянии не повлечет повреждение оборудования, но сохраняемые или записываемые файлы могут быть повреждены или утрачены при снятии Trimble CU.

Сообщение о низком заряде батареи

Если заряд батареи слишком низкий, на дисплее контроллера Trimble CU отобразится сообщение «Батарея разряжена» и инструмент выключится. В течение двух часов необходимо заменить батарею во избежание сброса параметров и функций инструмента, таких как высота инструмента, высота цели, координаты, азимут и показания двухосевого компенсатора. По прошествии этого времени система восстановит заводские значения всех настроек.

Примечание. Резервная память настроек и функций инструмента действует только в случае отображения на дисплее сообщения «Низкий заряд батареи», но не сработает, если извлечь батарею во время эксплуатации инструмента.

Связь с внешними устройствами

СОМ-порт

СОМ-порт в основании инструмента используется для связи с компьютером или контроллером.

ВНИМАНИЕ! Подключайте к инструменту только серые кабели Trimble с 6-контактными разъемами Hirose.

Порт USB

Порт USB на боковой поверхности держателя контроллера служит для обмена данными между установленным на инструмент контроллером TCU и USB-накопителем.

Рисунок 5.10. Порт USB

Порт USB

Принадлежности инструмента

Разделы данной главы:

- Адаптер Trimble для нескольких батарей
- Стандартная веха Trimble
- Идентификатор цели Trimble
- Цель Trimble MultiTrack™
- Цель Trimble Active Track 360
- Держатель Trimble Robotic
- Радиомодем
- Комплект удлинителя антенны радиомодема

Адаптер Trimble для нескольких батарей

ОСТОРОЖНО! С адаптером для нескольких батарей следует использовать только указанные производителем батареи и кабель. Используйте данный адаптер только для подачи питания на указанный производителем прибор Trimble. Категорически запрещается заряжать аккумуляторные батареи, когда они установлены в адаптере. Соблюдайте все меры предосторожности, приведенные в разделе настоящего руководства, посвященном аккумуляторной батарее.

Адаптер для нескольких батарей — это адаптер внешнего питания, подключающийся к инструменту и вмещающий три батареи. Адаптер для нескольких батарей оснащен проушиной для крепления к штативу. См. рис. 6.1.

Рисунок 6.1. Адаптер для нескольких батарей

Подключение адаптера Trimble для нескольких батарей

Адаптер Trimble для нескольких батарей подключается к инструменту стандартным кабелем Trimble с 6-контактными разъемами Hirose. См. рис. 6.2.

ВНИМАНИЕ! Адаптер для нескольких батарей следует подключать к инструменту только серыми кабелями Trimble с 6-контактными разъемами Hirose.

Рисунок 6.2. Подключение адаптера для нескольких батарей

Стандартная веха Trimble

Стандартная веха Trimble доступна для поставки вместе с инструментом. Данная веха имеет следующие отличительные черты:

- шкала, градуированная в метрах и футах;
- фиксированные позиции высоты цели;
- 360-градусная призма, состоящая из 7 призм размером 25 мм; постоянная призмы 2 мм;
- круглый уровень;
- возможна установка идентификатора цели с удлинителем вехи (дополнительно).

Встроенный удлинитель вехи можно легко подсоединить к стандартной вехе или к обычной вехе с помощью переходника удлинителя вехи.

Высота цели от вершины удлинителя вехи до центра призмы составляет 0,115 м.

Идентификатор цели Trimble

Идентификатор цели Trimble не входит в комплект поставки инструмента и присоединяется к стандартной вехе Trimble, чтобы перевести отражатель из пассивного режима работы в активный. См. рис. 6.3.

Рисунок 6.3. Идентификатор цели Trimble

Идентификатору цели можно присвоить один из восьми идентификационных номеров с тем, чтобы инструмент захватывал и отслеживал надлежащую цель. Настройка идентификатора цели выполняется с помощью его собственной панели управления со светодиодным дисплеем. См. рис. 6.4.

Рисунок 6.4. Панель управления идентификатора цели

Нажимайте кнопку питания для выбора требуемого режима:

- включен на 60 секунд;
- включен постоянно;
- выключен.

На активный режим будет указывать полоса на дисплее.

При включении идентификатора цели отобразится текущий идентификационный номер. Для смены текущего идентификационного номера нажмите кнопку выбора идентификационного номера.

Питание идентификатора цели осуществляется от двух батарей типоразмера AA. Продолжительность их непрерывной работы составляет приблизительно 12 часов. Когда батареи разряжены, рядом со значком батареи светится точка.

Установка и снятие идентификатора цели

- 1. Привинтите адаптер и удлинитель вехи на хвостовик стандартной вехи и затяните крепление.
- 2. Установите идентификатор цели на удлинитель вехи, до фиксации первого. Пружинный фиксатор будет удерживать идентификатор цели на месте.

Чтобы снять идентификатор цели, следует выполнить те же действия в обратном порядке.

Рисунок 6.5. Установка и снятие идентификатора цели

Информация об излучателе

Идентификатор цели прошел испытания и признан соответствующим требованиям к светодиодным приборам Класса 1. См. рис. 6.4. См. раздел «Правила техники безопасности при работе с лазерной аппаратурой», стр. III.

Рисунок 6.6. Апертура светодиода идентификатора цели

Замена батарей в идентификаторе цели

- 1. Поверните на четверть оборота против часовой стрелки винт, крепящий крышку батарейного отсека, затем снимите крышку батарейного отсека.
- 2. Наклоните идентификатор цели так, чтобы две использованные батареи выпали из отсека.
- 3. Установите две новые батареи типоразмера АА.
- 4. Установите на место и зафиксируйте крышку батарейного отсека, повернув крепежный винт на четверть оборота по часовой стрелке. См. рис. 6.7

Рисунок 6.7. Замена батарей идентификатора цели

Цель Trimble MultiTrack™

Цель Trimble MultiTrack™ обеспечивает полностью соосное пассивное и активное слежение посредством кольца встроенных призм и 2-х активных светодиодных колец. Активные светодиодные кольца поддерживают выбор уникального идентификатора, что позволяет работать с 8 различными целями на одном участке и гарантированным отслеживанием надлежащей цели.

Внешний вид

Рисунок 6.8. Внешний вид цели Trimble MultiTrack

Nº	Описание
1	Батарейный отсек
2	Фиксаторы батареи
3	Резьба 5/8"
4	Выбор канала (выключатель)
5	Индикатор питания и низкого заряда батареи
6	Индикатор положения
7	Круглый уровень

Размеры

Рисунок 6.9. Размеры цели Trimble MultiTrack

Установка и извлечение батареи

Для установки батареи вставьте батарею в батарейный отсек (1) контактами (2) вверх и внутрь и нажмите на нее до фиксации (3) со щелчком на месте.

Для извлечения батареи сдвиньте фиксаторы батареи (4). Теперь батарею можно извлечь из батарейного отсека (5).

Батарея представляет собой литий-ионный аккумулятор Trimble напряжением 7,4 В.

Цель Trimble MultiTrack может работать до 8 часов в режиме активного слежения от одной полностью заряженной батареи. Когда индикатор питания и низкого заряда батареи начинает мигать, заряда батареи хватит примерно на 40 минут работы.

Рисунок 6.10. Установка и извлечение батареи цели Trimble MultiTrack

Паспортная табличка

Чтобы прочесть паспортную табличку, отвинтите верхнюю крышку цели (1).

Примечание. Характеристика точности для активного режима действительна при наклоне в пределах 15° от горизонтали. Для вертикальных углов за пределами этого диапазона рекомендуется использовать пассивный режим или цель с регулируемым наклоном, чтобы получить наиболее точные результаты.

Рисунок 6.11. Расположение паспортной таблички цели Trimble MultiTrack

Цель Trimble Active Track 360

Цель Trimble® Active Track 360 представляет собой круговую цель для роботизированной съемки. Это — активная цель, предназначенная для использования при роботизированной съемке.

Цель Trimble Active Track 360 оснащена встроенным светодиодным кольцом для отслеживания и отражающей пленкой для линейных измерений.

Питание цели Trimble Active Track 360 осуществляется от литий-ионной аккумуляторной батареи. При стационарной установке питание может также осуществляться через разъем от внешнего источника питания. Этот разъем также используется для обновления прошивки цели.

С помощью панели управления можно выбрать любой из восьми уникальных идентификаторов для отслеживания надлежащей цели, если на учамтке одновременно используется несколько целей.

Цель Trimble Active Track 360 оснащена беспроводным интерфейсом Bluetooth.

Встроенные датчики наклона обеспечивают работу электронного уровня, если он поддерживается полевым ПО.

Внешний вид

Рисунок 6.12. Внешний вид цели Trimble Active Track 360

Размеры

Рисунок 6.13. Размеры цели Trimble Active Track 360

Установка батареи

Снимая крышку батарейного отсека, удерживайте цель Active Track 360 за нижнюю часть, а не за защитное стекло. Важно, чтобы защитное стекло оставалось чистым.

Рисунок 6.14. Так следует держать цель, открывая крышку батарейного отсека

- 1. Поверните крышку батарейного отсека, чтобы разблокировать ее.
- 2. Снимите крышку батарейного отсека.
- 3. Вставьте аккумуляторную батарею контактами вниз.
- 4. Установите крышку батарейного отсека.
- 5. Поверните крышку батарейного отсека, чтобы зафиксировать ее.

Рисунок 6.15. Установка батареи в цель Trimble Active Track 360

Включение цели

Для включения цели нажмите кнопку питания на ней.

Цель будет оставаться включенной до тех пор, пока для ее включения снова не будет нажата кнопка питания или пока не разрядится батарея.

На низкий заряд батареи указывает мигание индикатора выбранного в текущий момент идентификационного канала.

Выбор идентификационного номера

Цели Active Track 360 можно присвоить один из восьми идентификационных номеров.

Если в полевом ПО выбран такой же идентификационный номер как на цели, тахеометр будет захватывать и отслеживать только эту цель.

Для выбора идентификационного номера нажимайте кнопку выбора идентификационного номера. При каждом нажатии кнопки выбирается идентификационный номер по порядку от 1 до 8. После идентификационного номера 8 выбор начинается снова с номера 1. Также можно выбрать идентификационный номер с помощью контроллера через интерфейс Bluetooth, если эту функцию поддерживает полевое ПО.

Выбранный идентификационный номер будет указан индикатором.

Рисунок 6.16. Панель управления и индикаторов Trimble Active Track 360

Установка и снятие

Для установки на другое оборудование и аксессуары Trimble цель Active Track 360 оснащена резьбовым штифтом 5/8" на верхнем торце и резьбовым отверстием 5/8" на нижнем торце.

ВНИМАНИЕ! Запрещается навинчивать или отвинчивать цель Active Track 360, держась за саму цель. Приложение чрезмерных усилий при навинчивании или отвинчивании цели Active Track 360 может привести к повреждению ее корпуса. Используйте для этого гаечный ключ, разводной ключ или ключ Trimble (не входит в комплект поставки), см. рисунок ниже.

Рисунок 6.17. Установка и снятие цели Trimble Active Track 360

Держатель Trimble Robotic

При использовании инструмента в роботизированном режиме контроллер Trimble CU устанавливается на держатель Trimble Robotic. См. рис. 6.18

Рисунок 6.18. Держатель Trimble Robotic с контроллером Trimble CU и встроенным радиомодемом

Особенности держателя Trimble Robotic:

- надежное быстросъемное крепление для контроллера Trimble CU;
- надежное быстросъемное крепление для батареи;
- встроенный 2,4-ГГц радиомодем;
- прочная эргономичная конструкция с защитным бампером, предохраняющим контроллер Trimble CU;
- быстросъемное крепление на веху;
- два порта внешнего источника питания и связи с внешним устройством (USB).

В роботизированном режиме питание контроллера Trimble CU и радиомодема осуществляется от батареи.

Держатель Trimble Robotic дает возможность использовать USB-накопитель для передачи данных между офисным и полевым устройством или между двумя полевыми устройствами. Дла этого подключите USB-накопитель кабелем USB к порту связи держателя Trimble Robotic и используйте проводник Microsoft® Windows® для передачи файлов с контроллера Trimble CU на накопитель.

ВНИМАНИЕ! Подключайте к держателю Trimble Robotic только серые кабели Trimble с 6-контактными разъемами Hirose.

Управление питанием

Инструмент выключен

В выключенном состоянии держатель Robotic не работает. Контроллер Trimble CU выключен или находится в дежурном режиме.

Для включения держателя Robotic и контроллера Trimble CU нажмите кнопку питания на контроллере Trimble CU. Держатель Robotic и контроллер Trimble CU также включатся при подключении кабеля питания (+12 В) или кабеля передачи данных к разъему на боковой панели.

Инструмент включен

Во включенном состоянии держатель Robotic работает. Установленный на держатель контроллер Trimble CU включен, и заряжается резервная батарея для дежурного режима в контроллере Trimble CU.

Для выключения держателя Robotic и контроллера Trimble CU нажмите кнопку питания на контроллере Trimble CU. В зависимости от настроек операционной системы контроллера Trimble CU инструмент выключится или перейдет в дежурный режим.

Держатель Robotic и контроллер Trimble CU перейдут в дежурный режим при очень низком заряде батареи (менее 2%).

Дежурный режим

Держатель Robotic и установленный в него контроллер Trimble CU находится в дежурном режиме, и заряжается резервная батарея для дежурного режима в контроллере Trimble CU.

Для включения держателя Robotic и контроллера Trimble CU нажмите кнопку питания на контроллере Trimble CU.

Держатель Robotic и контроллер Trimble CU будут находиться в дежурном режиме до истечения таймера дежурного режима.

ВНИМАНИЕ! Перед снятием контроллера Trimble CU с держателя Robotic рекомендуется перевести контроллер Trimble CU в дежурный режим.

Снятие контроллера Trimble CU с инструмента во включенном состоянии не повлечет повреждение оборудования, но сохраняемые или записываемые файлы могут быть повреждены или утрачены при снятии Trimble CU.

Установка батареи

- 1. Совместите батарею с креплениями на держателе (1).
- 2. Нажмите на батарею так, чтобы она со щелчком зафиксировалась в отсеке (2). См. рис. 6.19.

Рисунок 6.19. Установка батареи в держатель Trimble Robotic

Извлечение батареи

- 1. Оттяните фиксатор от батареи (1).
- 2. Поднимите эту сторону батареи (2).
- 3. Извлеките батарею из держателя (3). См. рис. 6.20.

Рисунок 6.20. Извлечение батареи из держателя Trimble Robotic

Установка контроллера Trimble CU на держатель

- 1. Закрепите верхнюю часть контроллера Trimble CU на верхнем крае держателя (1).
- 2. Прижмите нижнюю часть контроллера Trimble CU к держателю, чтобы он зафиксировался со щелчком (2), рис. 6.21.

Рисунок 6.21. Установка контроллера Trimble CU на держатель Trimble Robotic

Снятие контроллера Trimble CU с держателя

A

ВНИМАНИЕ! Перед снятием с держателя контроллер Trimble CU необходимо выключить.

- 1. Нажмите кнопку фиксатора в нижней части контроллера Trimble CU (1) и поднимите нижнюю часть Trimble CU с держателя (2).
- 2. Снимите верхнюю часть контроллера Trimble CU с верхнего края держателя контроллера и снимите Trimble CU с держателя (3), рис. 6.22.

Рисунок 6.22. Снятие контроллера Trimble CU с держателя Trimble Robotic

Присоединение держателя Trimble Robotic к вехе

Чтобы присоединить держатель Trimble Robotic, установите держатель на адаптер стандартной вехи до фиксации со щелчком. рис. 6.23.

Рисунок 6.23. Присоединение держателя Trimble Robotic к адаптеру стандартной вехи

Отсоединение держателя Trimble Robotic от вехи

- 1. Чтобы отсоединить держатель Trimble Robotic от вехи, потяните фиксатор (1).
- 2. Снимите держатель с кронштейна вехи (2).

Рисунок 6.24. Отсоединение держателя Trimble Robotic с адаптера стандартной вехи

ВНИМАНИЕ! Контроллер Trimble CU и держатель Robotic не предназначены для установки в автомобиле. На автомобилях и вездеходах следует использовать контроллер TSC3, конструкция которого выдерживает сотрясения и вибрации, связанные с такими условиями эксплуатации. Установка контроллера Trimble CU и держателя Robotic в таких условиях не рекомендуется и может привести к повреждению оборудования, на которое гарантия не распространяется.

Радиомодем

Встроенный 2,4-ГГц радиомодем

Данный инструмент может быть оснащен встроенным радиомодемом для работы в роботизированном режиме

Встроенный радиомодем имеет мощность 100 мВт и работает на свободной гражданской частоте 2,4 ГГц. В радиомодеме используется технология скачкообразной перестройки частоты для снижения влияния радиопомех и поддержания радиосвязи даже в самых неблагоприятных условиях.

Скорость передачи данных радиомодема составляет 115200 бит/с. Высокая скорость передачи данных результатов обеспечивает их на стороне оператора всего через 100 мс после их отправки с инструмента.

Для поддержания радиосвязи с инструментом закрепленный на вехе контроллер Trimble CU должен быть также подключен к внешнему 2,4-ГГц радиомодему. Радиомодем для контроллера Trimble CU предлагается в виде дополнительного модуля, встроенного в держатель Trimble Robotic. Контроллер Trimble TSC3 предлагается также в исполнении со встроенным 2,4-ГГц радиомодемом.

Внешний 2,4-ГГц радиомодем

Внешний 2,4-ГГц радиомодем доступен также в виде отдельного устройства для производства измерений в роботизированном режиме при использовании контроллера, не оснащенного встроенным радиомодемом. Питание внешнего 2,4-ГГц радиомодема осуществляется от одной литий-ионной аккумуляторной батареи напряжением 7,4 В. Батарея емкостью 2,4 Ач обеспечивает работу радиомодема в течение 15 часов. Технические сведения: см. раздел «Встроенный 2,4-ГГц радиомодем» стр. 112.

Рисунок 6.25. Внешний 2,4-ГГц радиомодем

Сведения о зарядке батареи: См. раздел «Зарядка аккумуляторной батареи», стр. 15

ВНИМАНИЕ! Всегда снимайте батарею с внешнего радиомодема после использования.

Установка батареи

Процедура установки батареи на радиомодем

1. Поместите батарею в держатель батареи.

Рисунок 6.26. Установка батареи на внешний радиомодем

2. Прижмите батарею вниз, чтобы она защелкнулась на месте.

Рисунок 6.27. Установка батареи на внешний радиомодем

Снятие батареи

Процедура снятия батареи с радиомодема

- 1. Прижмите фиксатор к радиомодему.
- 2. Сдвиньте батарею вверх.

Рисунок 6.28.Снятие батареи с внешнего радиомодема

3. Извлеките батарею из держателя батареи

Рисунок 6.29. Снятие батареи с внешнего радиомодема

Комплект удлинителя антенны радиомодема

Для увеличения дальности действия радиомодема предусмотрен комплект удлинителя антенны, позволяющий расположить антенну выше на вехе, где ее не будут загораживать ни пользователь, ни сама веха. Это может существенно повысить надежность передачи данных при работе на границе зоны уверенной радиосвязи.

Комплект удлинителя антенны состоит из представленных ниже предметов.

Nº	Описание
а	Кронштейн антенны
b	Кабель антенны
С	Шайба
d	Стопорная шайба
е	Гайка

Рисунок 6.30. Установка комплекта удлинителя антенны.

- 1. Отвинтите и снимите верхнюю часть кругового отражателя.
- 2. Поместите кронштейн антенны (а) на резьбовой штифт и установите на место верхнюю часть кругового отражателя.
- 3. Поместите шайбу (c) на кабель антенны (b) и подсоедините к кронштейну антенны кабель антенны (b), подведя его снизу.
- 4. Установите стопорную шайбу (d) и гайку (e).
- 5. Установите сверху антенну и подсоедините кабель антенны к разъему для антенны на держателе Trimble Robotic.