Package 'KERE'

October 12, 2022

Title Expectile Regression in Reproducing Kernel Hilbert Space

Version 1.0.0 **Date** 2015-8-26

Author Yi Yang, Teng Zhang, Hui Zou
Maintainer Yi Yang <yiyang@umn.edu></yiyang@umn.edu>
Depends methods
Description An efficient algorithm inspired by majorization-minimization principle for solving the entire solution path of a flexible nonparametric expectile regression estimator constructed in a reproducing kernel Hilbert space.
License GPL-2
Repository CRAN
Date/Publication 2015-08-28 00:35:09
NeedsCompilation yes
R topics documented:
as.kernelMatrix
cv.KERE
dots
KERE
kernel-class
kernelMatrix
plot.KERE
predict.KERE
Index 16

2 as.kernelMatrix

as.kernelMatrix

Assing kernelMatrix class to matrix objects

Description

as.kernelMatrix in package **KERE** can be used to coerce the kernelMatrix class to matrix objects representing a kernel matrix. These matrices can then be used with the kernelMatrix interfaces which most of the functions in **KERE** support.

Usage

```
## S4 method for signature 'matrix'
as.kernelMatrix(x, center = FALSE)
```

Arguments

x matrix to be assigned the kernelMatrix class
center center the kernel matrix in feature space (default: FALSE)

Author(s)

```
Alexandros Karatzoglou <alexandros.karatzoglou@ci.tuwien.ac.at>
```

See Also

```
kernelMatrix, dots
```

```
## Create toy data
x <- rbind(matrix(rnorm(10),,2),matrix(rnorm(10,mean=3),,2))
y <- matrix(c(rep(1,5),rep(-1,5)))
### Use as.kernelMatrix to label the cov. matrix as a kernel matrix
### which is eq. to using a linear kernel
K <- as.kernelMatrix(crossprod(t(x)))</pre>
K
```

cv.KERE 3

cv.KERE	Cross-validation for KERE

Description

Does k-fold cross-validation for KERE, produces a plot, and returns a value for lambda.

Usage

```
## S3 method for class 'KERE'
cv(x, y, kern, lambda = NULL, nfolds = 5, foldid, omega = 0.5, ...)
```

Arguments

x matrix of predictors, of dimension $N \times p$; each row is an observation vector.

y response variable.

the built-in kernel classes in **KERE**. The kern parameter can be set to any function, of class kernel, which computes the inner product in feature space between two vector arguments. **KERE** provides the most popular kernel functions which

can be initialized by using the following functions:

• rbfdot Radial Basis kernel function,

- polydot Polynomial kernel function,
- vanilladot Linear kernel function,
- tanhdot Hyperbolic tangent kernel function,
- laplacedot Laplacian kernel function,
- besseldot Bessel kernel function,
- anovadot ANOVA RBF kernel function,
- splinedot the Spline kernel.

Objects can be created by calling the rbfdot, polydot, tanhdot, vanilladot, anovadot, besseldot, laplacedot, splinedot functions etc. (see example.)

lambda a user supplied lambda sequence. It is better to supply a decreasing sequence

of lambda values, if not, the program will sort user-defined lambda sequence in

decreasing order automatically.

nfolds number of folds - default is 5. Although nfolds can be as large as the sample

size (leave-one-out CV), it is not recommended for large datasets. Smallest

value allowable is nfolds=3.

foldid an optional vector of values between 1 and nfold identifying what fold each

observation is in. If supplied, nfold can be missing.

omega the parameter ω in the expectile regression model. The value must be in (0,1).

Default is 0.5.

. . . other arguments that can be passed to KERE.

4 cv.KERE

Details

The function runs KERE nfolds+1 times; the first to get the lambda sequence, and then the remainder to compute the fit with each of the folds omitted. The average error and standard deviation over the folds are computed.

Value

an object of class cv. KERE is returned, which is a list with the ingredients of the cross-validation fit.

lambda the values of lambda used in the fits.

cvm the mean cross-validated error - a vector of length length(lambda).

cvsd estimate of standard error of cvm.

cvupper upper curve = cvm+cvsd. cvlo lower curve = cvm-cvsd.

name a character string "Expectile Loss"

lambda.min the optimal value of lambda that gives minimum cross validation error cvm.

cvm.min the minimum cross validation error cvm.

Author(s)

Yi Yang, Teng Zhang and Hui Zou Maintainer: Yi Yang <yiyang@umn.edu>

References

Y. Yang, T. Zhang, and H. Zou. "Flexible Expectile Regression in Reproducing Kernel Hilbert Space." ArXiv e-prints: stat.ME/1508.05987, August 2015.

```
N <- 200
X1 <- runif(N)
X2 <- 2*runif(N)
X3 <- 3*runif(N)
SNR <- 10 # signal-to-noise ratio
Y <- X1**1.5 + 2 * (X2**.5) + X1*X3
sigma <- sqrt(var(Y)/SNR)
Y <- Y + X2*rnorm(N,0,sigma)
X <- cbind(X1,X2,X3)
# set gaussian kernel
kern <- rbfdot(sigma=0.1)
# define lambda sequence
lambda <- exp(seq(log(0.5),log(0.01),len=10))
cv.KERE(x=X, y=Y, kern, lambda = lambda, nfolds = 5, omega = 0.5)</pre>
```

dots 5

dots Kernel Functions

Description

```
The kernel generating functions provided in KERE.
```

The Gaussian RBF kernel $k(x, x') = \exp(-\sigma ||x - x'||^2)$

The Polynomial kernel $k(x, x') = (scale < x, x') + offset)^{degree}$

The Linear kernel $k(x, x') = \langle x, x' \rangle$

The Hyperbolic tangent kernel $k(x, x') = \tanh(scale < x, x' > + offset)$

The Laplacian kernel $k(x, x') = \exp(-\sigma ||x - x'||)$

The Bessel kernel $k(x, x') = (-Bessel_{(\nu+1)}^n \sigma ||x - x'||^2)$

The ANOVA RBF kernel $k(x,x') = \sum_{1 \leq i_1 \dots < i_D \leq N} \prod_{d=1}^D k(x_{id},x'_{id})$ where k(x,x) is a Gaussian RBF kernel.

The Spline kernel $\prod_{d=1}^{D} 1 + x_i x_j + x_i x_j min(x_i, x_j) - \frac{x_i + x_j}{2} min(x_i, x_j)^2 + \frac{min(x_i, x_j)^3}{3} \setminus \frac{min(x_i, x_j)^3}{3} = \frac{min(x_i, x_j)^3}{3}$

Usage

```
rbfdot(sigma = 1)
polydot(degree = 1, scale = 1, offset = 1)
tanhdot(scale = 1, offset = 1)
vanilladot()
laplacedot(sigma = 1)
besseldot(sigma = 1, order = 1, degree = 1)
anovadot(sigma = 1, degree = 1)
splinedot()
```

Arguments

sigma	The inverse kernel width used by the Gaussian the Laplacian, the Bessel and the ANOVA kernel
degree	The degree of the polynomial, bessel or ANOVA kernel function. This has to be an positive integer.
scale	The scaling parameter of the polynomial and tangent kernel is a convenient way of normalizing patterns without the need to modify the data itself
offset	The offset used in a polynomial or hyperbolic tangent kernel
order	The order of the Bessel function to be used as a kernel

6 dots

Details

The kernel generating functions are used to initialize a kernel function which calculates the dot (inner) product between two feature vectors in a Hilbert Space. These functions can be passed as a kernel argument on almost all functions in **KERE**(e.g., ksvm, kpca etc).

Although using one of the existing kernel functions as a kernel argument in various functions in **KERE** has the advantage that optimized code is used to calculate various kernel expressions, any other function implementing a dot product of class kernel can also be used as a kernel argument. This allows the user to use, test and develop special kernels for a given data set or algorithm.

Value

Return an S4 object of class kernel which extents the function class. The resulting function implements the given kernel calculating the inner (dot) product between two vectors.

```
kpar a list containing the kernel parameters (hyperparameters) used.
```

The kernel parameters can be accessed by the kpar function.

Note

If the offset in the Polynomial kernel is set to 0, we obtain homogeneous polynomial kernels, for positive values, we have inhomogeneous kernels. Note that for negative values the kernel does not satisfy Mercer's condition and thus the optimizers may fail.

In the Hyperbolic tangent kernel if the offset is negative the likelihood of obtaining a kernel matrix that is not positive definite is much higher (since then even some diagonal elements may be negative), hence if this kernel has to be used, the offset should always be positive. Note, however, that this is no guarantee that the kernel will be positive.

Author(s)

```
Alexandros Karatzoglou <alexandros.karatzoglou@ci.tuwien.ac.at>
```

See Also

```
kernelMatrix, kernelMult, kernelPol
```

```
rbfkernel <- rbfdot(sigma = 0.1)
rbfkernel
kpar(rbfkernel)
## create two vectors
x <- rnorm(10)
y <- rnorm(10)
## calculate dot product</pre>
```

KERE 7

```
rbfkernel(x,y)
```

KERE

Fits the regularization paths for the kernel expectile regression.

Description

Fits a regularization path for the kernel expectile regression at a sequence of regularization parameters lambda.

Usage

```
KERE(x, y, kern, lambda = NULL, eps = 1e-08, maxit = 1e4, omega = 0.5, gamma = 1e-06, option = c("fast", "normal")
```

Arguments

x matrix of predictors, of dimension $N \times p$; each row is an observation vector.

y response variable.

the built-in kernel classes in **KERE**. The kern parameter can be set to any function, of class kernel, which computes the inner product in feature space between two vector arguments. **KERE** provides the most popular kernel functions which can be initialized by using the following functions:

- rbfdot Radial Basis kernel function,
- polydot Polynomial kernel function,
- vanilladot Linear kernel function,
- tanhdot Hyperbolic tangent kernel function,
- laplacedot Laplacian kernel function,
- besseldot Bessel kernel function,
- · anovadot ANOVA RBF kernel function,
- splinedot the Spline kernel.

Objects can be created by calling the rbfdot, polydot, tanhdot, vanilladot, anovadot, besseldot, laplacedot, splinedot functions etc. (see example.)

lambda a user supplied lambda sequence. It is better to supply a decreasing sequence

of lambda values, if not, the program will sort user-defined lambda sequence in

decreasing order automatically.

eps convergence threshold for majorization minimization algorithm. Each majoriza-

tion descent loop continues until the relative change in any coefficient ||alpha(new)-

 $\alpha(old)||_2^2/||\alpha(old)||_2^2$ is less than eps. Defaults value is 1e-8.

maxit maximum number of loop iterations allowed at fixed lambda value. Default is

1e4. If models do not converge, consider increasing maxit.

omega the parameter ω in the expectile regression model. The value must be in (0,1).

Default is 0.5.

8 KERE

gamma a scalar number. If it is specified, the number will be added to each diagonal

element of the kernel matrix as perturbation. The default is 1e-06.

option users can choose which method to use to update the inverse matrix in the MM al-

gorithm. "fast" uses a trick described in Yang, Zhang and Zou (2015) to update estimates for each lambda. "normal" uses a naive way for the computation.

Details

Note that the objective function in KERE is

$$Loss(y - \alpha_0 - K * \alpha)) + \lambda * \alpha^T * K * \alpha,$$

where the α_0 is the intercept, α is the solution vector, and K is the kernel matrix with $K_{ij} = K(x_i, x_j)$. Users can specify the kernel function to use, options include Radial Basis kernel, Polynomial kernel, Linear kernel, Hyperbolic tangent kernel, Laplacian kernel, Bessel kernel, ANOVA RBF kernel, the Spline kernel. Users can also tweak the penalty by choosing different lambda.

For computing speed reason, if models are not converging or running slow, consider increasing eps before increasing maxit.

Value

An object with S3 class KERE.

call the call that produced this object.

alpha a nrow(x)*length(lambda) matrix of coefficients. Each column is a solution

vector corresponding to a lambda value in the lambda sequence.

lambda the actual sequence of lambda values used.

npass total number of loop iterations corresponding to each lambda value.

jerr error flag, for warnings and errors, 0 if no error.

Author(s)

Yi Yang, Teng Zhang and Hui Zou

Maintainer: Yi Yang <yiyang@umn.edu>

References

Y. Yang, T. Zhang, and H. Zou. "Flexible Expectile Regression in Reproducing Kernel Hilbert Space." ArXiv e-prints: stat.ME/1508.05987, August 2015.

```
# create data
N <- 200
X1 <- runif(N)
X2 <- 2*runif(N)
X3 <- 3*runif(N)
SNR <- 10 # signal-to-noise ratio
Y <- X1**1.5 + 2 * (X2**.5) + X1*X3</pre>
```

kernel-class 9

```
sigma <- sqrt(var(Y)/SNR)
Y <- Y + X2*rnorm(N,0,sigma)
X <- cbind(X1,X2,X3)

# set gaussian kernel
kern <- rbfdot(sigma=0.1)

# define lambda sequence
lambda <- exp(seq(log(0.5),log(0.01),len=10))

# run KERE
m1 <- KERE(x=X, y=Y, kern=kern, lambda = lambda, omega = 0.5)

# plot the solution paths
plot(m1)</pre>
```

kernel-class

Class "kernel" "rbfkernel" "polykernel", "tanhkernel", "vanillakernel"

Description

The built-in kernel classes in **KERE**

Objects from the Class

Objects can be created by calls of the form new("rbfkernel"), new{"polykernel"}, new{"tanhkernel"}, new{"vanillakernel"}, new{"anovakernel"}, new{"besselkernel"}, new{"laplacekernel"}, new{"splinekernel"} or by calling the rbfdot, polydot, tanhdot, vanilladot, anovadot, besseldot, laplacedot, splinedot functions etc..

Slots

```
.Data: Object of class "function" containing the kernel function kpar: Object of class "list" containing the kernel parameters
```

Extends

```
Class "kernel", directly. Class "function", by class "kernel".
```

Methods

```
kernelMatrix signature(kernel = "rbfkernel", x = "matrix"): computes the kernel matrix
kernelMult signature(kernel = "rbfkernel", x = "matrix"): computes the quadratic kernel
expression
```

kernelPol signature(kernel = "rbfkernel", x = "matrix"): computes the kernel expansion
kernelFast signature(kernel = "rbfkernel", x = "matrix"),,a: computes parts or the full
kernel matrix, mainly used in kernel algorithms where columns of the kernel matrix are computed per invocation

10 kernelMatrix

Author(s)

```
Alexandros Karatzoglou <alexandros.karatzoglou@ci.tuwien.ac.at>
```

See Also

dots

Examples

```
rbfkernel <- rbfdot(sigma = 0.1)
rbfkernel
is(rbfkernel)
kpar(rbfkernel)</pre>
```

kernelMatrix

Kernel Matrix functions

Description

```
kernelMatrix calculates the kernel matrix K_{ij}=k(x_i,x_j) or K_{ij}=k(x_i,y_j). kernelPol computes the quadratic kernel expression H=z_iz_jk(x_i,x_j), H=z_ik_jk(x_i,y_j). kernelMult calculates the kernel expansion f(x_i)=\sum_{i=1}^m z_ik(x_i,x_j) kernelFast computes the kernel matrix, identical to kernelMatrix, except that it also requires the squared norm of the first argument as additional input, useful in iterative kernel matrix calculations.
```

Usage

```
## S4 method for signature 'kernel'
kernelMatrix(kernel, x, y = NULL)

## S4 method for signature 'kernel'
kernelPol(kernel, x, y = NULL, z, k = NULL)

## S4 method for signature 'kernel'
kernelMult(kernel, x, y = NULL, z, blocksize = 256)

## S4 method for signature 'kernel'
kernelFast(kernel, x, y, a)
```

Arguments

kernel

the kernel function to be used to calculate the kernel matrix. This has to be a function of class kernel, i.e. which can be generated either one of the build in kernel generating functions (e.g., rbfdot etc.) or a user defined function of class kernel taking two vector arguments and returning a scalar.

kernelMatrix 11

X	a data matrix to be used to calculate the kernel matrix.	
У	second data matrix to calculate the kernel matrix.	
z	a suitable vector or matrix	
k	a suitable vector or matrix	
a	the squared norm of x , e.g., rowSums(x^2)	
blocksize	the kernel expansion computations are done block wise to avoid storing the kernel matrix into memory. blocksize defines the size of the computational blocks.	

Details

Common functions used during kernel based computations.

The kernel parameter can be set to any function, of class kernel, which computes the inner product in feature space between two vector arguments. **KERE** provides the most popular kernel functions which can be initialized by using the following functions:

- rbfdot Radial Basis kernel function
- polydot Polynomial kernel function
- vanilladot Linear kernel function
- tanhdot Hyperbolic tangent kernel function
- laplacedot Laplacian kernel function
- besseldot Bessel kernel function
- anovadot ANOVA RBF kernel function
- splinedot the Spline kernel

(see example.)

kernelFast is mainly used in situations where columns of the kernel matrix are computed per invocation. In these cases, evaluating the norm of each row-entry over and over again would cause significant computational overhead.

Value

```
kernelMatrix returns a symmetric diagonal semi-definite matrix.
kernelPol returns a matrix.
kernelMult usually returns a one-column matrix.
```

Author(s)

```
Alexandros Karatzoglou <alexandros.karatzoglou@ci.tuwien.ac.at>
```

See Also

```
rbfdot, polydot, tanhdot, vanilladot
```

12 plot.KERE

Examples

```
## use the spam data
x <- matrix(rnorm(10*10),10,10)

## initialize kernel function
rbf <- rbfdot(sigma = 0.05)
rbf

## calculate kernel matrix
kernelMatrix(rbf, x)

y <- matrix(rnorm(10*1),10,1)

## calculate the quadratic kernel expression
kernelPol(rbf, x, ,y)

## calculate the kernel expansion
kernelMult(rbf, x, ,y)</pre>
```

plot.KERE

Plot coefficients from a "KERE" object

Description

Produces a coefficient profile plot of the coefficient paths for a fitted KERE object.

Usage

```
## S3 method for class 'KERE'
plot(x, ...)
```

Arguments

x fitted KERE model.... other graphical parameters to plot.

Details

A coefficient profile plot is produced. The x-axis is $log(\lambda)$. The y-axis is the value of fitted α 's.

Author(s)

```
Yi Yang, Teng Zhang and Hui Zou
Maintainer: Yi Yang <yiyang@umn.edu>
```

predict.KERE 13

References

Y. Yang, T. Zhang, and H. Zou. "Flexible Expectile Regression in Reproducing Kernel Hilbert Space." ArXiv e-prints: stat.ME/1508.05987, August 2015.

Examples

```
# create data
N <- 200
X1 <- runif(N)
X2 <- 2*runif(N)</pre>
X3 <- 3*runif(N)
SNR <- 10 # signal-to-noise ratio
Y \leftarrow X1**1.5 + 2 * (X2**.5) + X1*X3
sigma <- sqrt(var(Y)/SNR)</pre>
Y \leftarrow Y + X2*rnorm(N,0,sigma)
X <- cbind(X1,X2,X3)</pre>
# set gaussian kernel
kern <- rbfdot(sigma=0.1)</pre>
# define lambda sequence
lambda <- exp(seq(log(0.5), log(0.01), len=10))
# run KERE
m1 <- KERE(x=X, y=Y, kern=kern, lambda = lambda, omega = 0.5)
# plot the solution paths
plot(m1)
```

predict.KERE

make predictions from a "KERE" object.

Description

Similar to other predict methods, this functions predicts fitted values and class labels from a fitted KERE object.

Usage

```
## S3 method for class 'KERE'
predict(object, kern, x, newx,...)
```

Arguments

object fitted KERE model object.

kern the built-in kernel classes in **KERE**. Objects can be created by calling the rbfdot,

polydot, tanhdot, vanilladot, anovadot, besseldot, laplacedot, splinedot functions

etc. (see example.)

14 predict.KERE

x the original design matrix for training KERE.

newx matrix of new values for x at which predictions are to be made. NOTE: newx

must be a matrix with each row as an observation. predict function does not

accept a vector or other formats of newx.

... other parameters to predict function.

Details

The fitted $\alpha_0 + K * \alpha$ at newx is returned as a size nrow(newx)*length(lambda) matrix for various lambda values where the KERE model was fitted.

Value

The fitted $\alpha_0 + K * \alpha$ is returned as a size nrow(newx)*length(lambda) matrix. The row represents the index for observations of newx. The column represents the index for the lambda sequence.

Author(s)

```
Yi Yang, Teng Zhang and Hui Zou
Maintainer: Yi Yang <yiyang@umn.edu>
```

References

Y. Yang, T. Zhang, and H. Zou. "Flexible Expectile Regression in Reproducing Kernel Hilbert Space." ArXiv e-prints: stat.ME/1508.05987, August 2015.

```
# create data
N <- 100
X1 <- runif(N)</pre>
X2 \leftarrow 2*runif(N)
X3 <- 3*runif(N)
SNR <- 10 # signal-to-noise ratio
Y \leftarrow X1**1.5 + 2 * (X2**.5) + X1*X3
sigma <- sqrt(var(Y)/SNR)</pre>
Y \leftarrow Y + X2*rnorm(N,0,sigma)
X \leftarrow cbind(X1,X2,X3)
# set gaussian kernel
kern <- rbfdot(sigma=0.1)</pre>
# define lambda sequence
lambda <- exp(seq(log(0.5), log(0.01), len=10))
# run KERE
m1 <- KERE(x=X, y=Y, kern=kern, lambda = lambda, omega = 0.5)
# create newx for prediction
N1 <- 5
X1 <- runif(N1)</pre>
```

predict.KERE 15

```
X2 <- 2*runif(N1)
X3 <- 3*runif(N1)
newx <- cbind(X1,X2,X3)

# make prediction
p1 <- predict.KERE(m1, kern, X, newx)
p1</pre>
```

Index

* algebra	kernelFast(kernelMatrix), 10
kernelMatrix, 10	kernelFast,anovakernel-method
* array	(kernelMatrix), 10
kernelMatrix, 10	kernelFast,besselkernel-method
* classes	(kernelMatrix), 10
kernel-class, 9	kernelFast,kernel-method
* methods	(kernelMatrix), 10
as.kernelMatrix,2	kernelFast,laplacekernel-method
* models	(kernelMatrix), 10
cv.KERE, 3	kernelFast,polykernel-method
KERE, 7	(kernelMatrix), 10
plot.KERE, 12	kernelFast,rbfkernel-method
predict.KERE, 13	(kernelMatrix), 10
* regression	kernelFast,splinekernel-method
cv.KERE, 3	(kernelMatrix), 10
KERE, 7	kernelFast,tanhkernel-method
plot.KERE, 12	(kernelMatrix), 10
predict.KERE, 13	kernelFast,vanillakernel-method
* symbolmath	(kernelMatrix), 10
dots, 5	kernelMatrix, 2, 6, 10
anovadot (dots), 5	kernelMatrix,anovakernel-method
anovakernel-class (kernel-class), 9	(kernelMatrix), 10
as.kernelMatrix, 2	kernelMatrix,besselkernel-method
as.kernelMatrix,matrix-method	(kernelMatrix), 10
(as.kernelMatrix), 2	kernelMatrix,kernel-method
as.kernelMatrix-methods	(kernelMatrix), 10
(as.kernelMatrix), 2	kernelMatrix,laplacekernel-method
, , , , , , , , , , , , , , , , , , , ,	(kernelMatrix), 10
besseldot (dots), 5	kernelMatrix,polykernel-method
besselkernel-class (kernel-class), 9	(kernelMatrix), 10
0 /	kernelMatrix,rbfkernel-method
cv.KERE, 3, 4	(kernelMatrix), 10
dots, 2, 5, 10	kernelMatrix,splinekernel-method
dots, 2, 3, 10	(kernelMatrix), 10
fourierdot (dots), 5	kernelMatrix,tanhkernel-method
fourierkernel-class (kernel-class), 9	(kernelMatrix), 10
(kernelMatrix,vanillakernel-method
KERE, 4, 7, 8, 12, 13	(kernelMatrix), 10
kernel-class, 9	kernelMatrix-class(as.kernelMatrix), 2

INDEX 17

kernelMult, 6	laplacekernel-class (kernel-class), 9
kernelMult (kernelMatrix), 10	
kernelMult, anovakernel, ANY-method	plot.KERE, 12
(kernelMatrix), 10	polydot, <i>11</i>
kernelMult, besselkernel, ANY-method	polydot (dots), 5
(kernelMatrix), 10	polykernel-class (kernel-class), 9
kernelMult,character,kernelMatrix-method	predict.KERE, 13
(kernelMatrix), 10	•
kernelMult,kernel-method	rbfdot, 11
(kernelMatrix), 10	rbfdot (dots), 5
	rbfkernel-class (kernel-class), 9
kernelMult, laplacekernel, ANY-method	, , , , , , , , , , , , , , , , , , , ,
(kernelMatrix), 10	show, kernel-method (dots), 5
kernelMult,polykernel,ANY-method	splinedot (dots), 5
(kernelMatrix), 10	splinekernel-class (kernel-class), 9
kernelMult,rbfkernel,ANY-method	, , , , , , , , , , , , , , , , , , , ,
(kernelMatrix), 10	tanhdot, 11
kernelMult,splinekernel,ANY-method	tanhdot (dots), 5
(kernelMatrix), 10	tanhkernel-class (kernel-class), 9
kernelMult,tanhkernel,ANY-method	,,,
(kernelMatrix), 10	vanilladot, <i>11</i>
kernelMult,vanillakernel,ANY-method	vanilladot (dots), 5
(kernelMatrix), 10	vanillakernel-class (kernel-class), 9
kernelPol, 6	, , , , , , , , , , , , , , , , , , , ,
kernelPol (kernelMatrix), 10	
kernelPol,anovakernel-method	
(kernelMatrix), 10	
kernelPol,besselkernel-method	
(kernelMatrix), 10	
kernelPol, kernel-method (kernelMatrix),	
10	
kernelPol,laplacekernel-method	
(kernelMatrix), 10	
kernelPol,polykernel-method	
• • •	
(kernelMatrix), 10	
kernelPol, rbfkernel-method	
(kernelMatrix), 10	
kernelPol,splinekernel-method	
(kernelMatrix), 10	
kernelPol,tanhkernel-method	
(kernelMatrix), 10	
kernelPol,vanillakernel-method	
(kernelMatrix), 10	
kernels (dots), 5	
kfunction (dots), 5	
kfunction-class (kernel-class), 9	
kpar (dots), 5	
kpar, kernel-method (kernel-class), 9	
laplacedot (dots), 5	