Lemma 1. If weight of edge (u,v) in G is decreased to obtain G', then for any $x \in V$, the set of shortest paths from x to u and from v to x is the same in G and G', and d'(x,u) = d(x,u), d'(v,x) = d(v,x); $\sigma'_{xu} = \sigma_{xu}$, $\sigma'_{vx} = \sigma_{vx}$.

Lemma 2. Let the weight of edge (u, v) be decreased to $\mathbf{w}'(u, v)$, and for any given pair of vertices s, t, let $D(s, t) = d(s, u) + \mathbf{w}'(u, v) + d(v, t)$. Then,

- 1. If d(s,t) < D(s,t), then d'(s,t) = d(s,t) and $\sigma'_{st} = \sigma_{st}$.

 The abortiset meths from a to t in C' and the same as in C
- The shortest paths from s to t in G' are the same as in G.

 If d(s, t) = D(s, t), then d'(s, t) = d(s, t) and $\sigma' = \sigma_{st} + (\sigma_{st} + \sigma_{st})$

If d(s,t) = D(s,t), then d'(s,t) = d(s,t) and σ'_{st} = σ_{st} + (σ_{su} · σ_{vt}).
 The shortest paths from s to t in G' are a superset of the shortest paths G.

 If d(s,t) > D(s,t), then d'(s,t) = D(s,t) and σ'_{st} = σ_{su} · σ_{vt}.
 The shortest paths from s to t in G' are new (shorter distance).