

planetmath.org

Math for the people, by the people.

hemicompact space

Canonical name HemicompactSpace
Date of creation 2013-03-22 19:08:18
Last modified on 2013-03-22 19:08:18
Owner karstenb (16623)
Last modified by karstenb (16623)

Numerical id 8

Author karstenb (16623)

Entry type Definition
Classification msc 54-00
Related topic SigmaCompact
Defines hemicompact space

A topological space (X, τ) is called a *hemicompact* space if there is an *admissible sequence* in X, i.e. there is a sequence of compact sets $(K_n)_{n\in\mathbb{N}}$ in X such that for every $K\subset X$ compact there is an $n\in\mathbb{N}$ with $K\subset K_n$.

- The above conditions imply that if X is hemicompact with admissible sequence $(K_n)_{n\in\mathbb{N}}$ then $X = \bigcup_{n\in\mathbb{N}} K_n$ because every point of X is compact and lies in one of the K_n .
- A hemicompact space is clearly σ -compact. The converse is false in general. This follows from the fact that a first countable hemicompact space is locally compact (see below). Consider the set of rational numbers $\mathbb Q$ with the induced euclidean topology. $\mathbb Q$ is σ -compact but not hemicompact. Since $\mathbb Q$ satisfies the first axiom of countability it can't be hemicompact as this would imply local compactness.
- Not every locally compact space (like \mathbb{R}) is hemicompact. Take for example an uncountable discrete space. If we assume in addition σ -compactness we obtain a hemicompact space (see below).

Proposition. Let (X, τ) be a first countable hemicompact space. Then X is locally compact.

Proof. Let $\cdots \subset K_n \subset K_{n+1} \subset \cdots$ be an admissible sequence of X. Assume for contradiction that there is an $x \in X$ without compact neighborhood. Let $U_n \supset U_{n+1} \supset \cdots$ be a countable basis for the neighbourhoods of x. For every $n \in \mathbb{N}$ choose a point $x_n \in U_n \setminus K_n$. The set $K := \{x_n : n \in \mathbb{N}\} \cup \{x\}$ is compact but there is no $n \in \mathbb{N}$ with $K \subset K_n$. We have a contradiction. \square

Proposition. Let (X, τ) be a locally compact and σ -compact space. Then X is hemicompact.

Proof. By local compactness we choose a cover $X \subset \bigcup_{i \in I} U_i$ of open sets with compact closure (take a compact neighborhood of every point). By σ -compactness there is a sequence $(K_n)_{n \in \mathbb{N}}$ of compacts such that $X = \bigcup_{n \in \mathbb{N}} K_n$. To each K_n there is a finite subfamily of $(U_i)_{i \in I}$ which covers K_n . Denote the union of this finite family by U_n for each $n \in \mathbb{N}$. Set $\tilde{K}_n := \overline{\bigcup_{k=1}^n U_k}$. Then $(\tilde{K}_n)_{n \in \mathbb{N}}$ is a sequence of compacts. Let $K \subset X$ be compact then there is a finite subfamily of $(U_i)_{i \in I}$ covering K. Therefore $K \subset K_n$ for some $n \in \mathbb{N}$.