

Midterm

		Nam	e:			ID:		S	Section#:.		
Q1:	Choos	e the corre	ect answei	r: <u>5 points</u>							
#		1	2	3	4	5	6	7	8	9	10
A	nswer										
1)	A) C B) T C) T	is any pa component. rustworthy rust. implicity.	,	tem that, by it	self, prov	ides all or a	portion of t	he total fun	ctionality re	quired of a sy	ystem:
2)		-	gree to whi	ich the securit	y behavio	or of the com	ponent is d	emonstrabl	y compliant	with its state	ed
	B) TC) T	omponent.									
3)		_ is the deg	gree to wh	ich the user o	r a compo	nent depend	s on the tru	stworthines	s of another	component:	
	B) T	omponent. rustworthy rust. implicity.									
4)	Which	of the foll	owing is N	NOT a benefit	of Modu	lar Design:					
5)	A good	d software	design wil	Il have:							
	B) L C) H	ow cohesion	on and hig on and hig	v coupling. h coupling. th coupling. coupling. coupling.							
6)	Firewa	ılls, intrusi	on detection	on and preven	tion syste	ems are exam	ples of sec	urity measu	res at which	layer:	
	B) N C) E	erimeter se letwork sec ndpoint se lata securit	curity.	ion.							
7)		include se	curity mea	sures that cor	sist of po	licies or pro	cedures dire	ected at an	organization	's employees	s:
		hysical cor									
	C) A	dministratione of the	ive control	ls.							

- 8) Antivirus, antimalware, and e-mail security solutions are examples of security measures at which layer:
 - A) Perimeter security.
 - B) Network security.

 - D) Data security / protection.
- 9) Virtual private networks (VPNs) are an example of security measures at TWO layers. Which are they:
 - A) Perimeter and Network.

 - C) Perimeter and Access.
 - D) None of the above.
- 10) Which of the following is NOT an example of Safety measures:
 - A) Redundancy in critical systems.
 - B) Fire suppression systems.
 - C) Regular data backups.
- 11) Which of the following is NOT a Security feature of System Integrity:
 - A) Physical security.
 - B) Software key and provisioning.
 - C) Runtime security.
- 12) The difference between security and functional safety can be summed up in one word:
 - A) Function.
 - B) Approach.
 - A) Scope.
- __ makes vulnerabilities harder for developers and testers to find and fix:
 - A) Choke Point.
 - B) Hardening.
 - C) Minimization.
- 14) Remove or disable code known to create vulnerabilities, like JavaScript and Flash, is one way to apply:
 - A) Choke Point.
 - B) Hardening.

 - C) MinimizationD) Simplicity.
- 15) Reduce the number of components used, keeping only those that are essential is one way to apply:
 - A) Choke Point.
 - B) Hardening.
 - C) Minimization.

Q2: Match the correct answer from column A to column B: 5 points

#	A	The answer	В
1	It is the degree to which the elements of the module are functionally related, and every aspect of the module is tied to its single purpose.	6	Safety in IT
2	It is the degree with which a component depends on other components in the system.	7	Encapsulation
3	It means that all unnecessary services off by default.	4	Choke Point
4	It is a centralized piece of code through which control must pass.	3	Hardening
5	It focuses on protecting against intentional threats and malicious activities.	1	Cohesion
6	It focuses on preventing accidental (i.e., unintentional) harm and damage.	2	Coupling
7	It means packaging the information inside a component.	5	Security in IT
8	It means reducing the size, quantity, and complexity of what is to be protected, and limit externally facing points of attack.	8	Minimization

Q3: Answer the following questions: 5 points

- 1) List the four phases of incident response according to NIST.
 - 1. The preparation phase.
 - 2. The detection and analysis phase.
 - 3. The containment, eradication, and recovery phase.
 - 4. The post-event activity phase.
- 2) Defense-in-Depth covers three levels/categories of security controls. List them.
 - 1. Physical controls.
 - 2. Technical controls.
 - 3. Administrative controls.
- 3) While many new solutions are being introduced to address security issues, they often ignore the problems caused by complexity. List three steps to improve Simplicity in these security solutions.
 - 1. Evaluate What You Need from Multipurpose Security Suites.
 - $2. \quad \ \ Increase\ Clarity\ and\ Reduce\ Complexity\ with\ Automation.$
 - 3. Intercept Attacks as Quickly as Possible.
 - 4. Keep designs as simple and small as possible.
 - 5. Reduce the number of components used, keeping only those that are essential.
 - 6. To keep software simple and security checks localized, you can take advantage of a concept called a choke point

- 4) The goal of Modularization is to have each component / module meet four conditions. List them.
 - 1. <u>single-purpose</u>: performs one function.
 - 2. <u>small</u>: consists of an amount of information small enough in structure and content.
 - 3. <u>simple</u>: is of a low degree of complexity so that a human can readily understand.
 - 4. <u>independent</u>: performs a task isolated from other modules.
- 5) List three different ways to achieve Minimization.
 - 1. Delete sensitive data when it is no longer needed, and don't store data in the first place if there is no need.
 - 2. Remove unnecessary interfaces and functionality.
 - 3. Remove or disable code known to create vulnerabilities, like JavaScript and Flash.
 - 4. Remove unused code as soon as possible.
 - Give every element in an organization the minimum access needed to do their jobs—this includes nonhumans, such as servers and applications.

Q4: Put (T) for correct sentences and (F) for wrong sentences: 5 points

- 1) The worst enemy of security is simplicity. (F)
- 2) The more enabled features of a system the more potential exploits and decreased security. (${f T}$)
- 3) Modularization is effective to be used for small and large systems. (F)
- 4) Modularization supports security by improving testing and enabling more layers of defense. (\mathbf{T})
- 5) Defense-in-Depth is considered part of Layered Security (F)
- 6) The layered security is about implementing the same defense multiple times. For example, having McAfee, Norton, and Avast antivirus tools installed on your windows computer. (F)
- 7) The main aim of incident response is to contain the threat, reducing the cost and recovery time associated with handling a breach or cybercriminal attack. (T)
- 8) An organization should only worry about the traffic that comes into its network (F)
- 9) Easy to follow and maintain program statements is an example of simplicity. (T)
- 10) Automation with Machine Learning increases complexity hence decreases security (F)

Commented [R.1]: complexity

Commented [R.2]: large

Commented [R.3]: Layered Security is considered part of Defense-in-Depth.

Commented [R.4]: is NOT about implementing the same defense multiple times

Commented [R.5]: Organizations should monitor for traffic leaving their perimeters as well.

Commented [R.6]: reduces complexity hence increases security