

Facultad de Ingeniería y Ciencias Agropecuaria Ingeniería en Biotecnología IBT511 Bioquímica 2

Período 2017-1

1. Identificación

Número de sesiones: 48

Número total de horas de aprendizaje: 120h=48 h presenciales + 72h trabajo

autónomo.

Créditos – malla actual: 4.5

Profesor: M. Sc. María Gabriela Granja Bastidas

Correo electrónico del docente (Udlanet): mg.granja@udlanet.ec

Coordinador: Dra. Vivian Morera

Campus: Queri

Pre-requisito: IBT411 Co-requisito: Ninguno

Paralelo:

Tipo de asignatura:

Optativa	
Obligatoria	X
Práctica	

Organización curricular:

Unidad 1: Formación Básica	
Unidad 2: Formación Profesional	X
Unidad 3: Titulación	

Campo de formación:

Campo de formación						
Fundamentos	Praxis	Epistemología y	Integración de	Comunicación y		
teóricos	profesional	metodología de la	saberes, contextos	lenguajes		
		investigación	y cultura			
X						

2. Descripción del curso

La asignatura de bioquímica II se centra en el estudio del metabolismo celular y su regulación. El metabolismo celular es el conjunto de reacciones bioquímicas que ocurren en los sistemas biológicos y se divide en dos procesos acoplados: catabolismo y anabolismo. En el curso se conocerán y profundizarán rutas de interés en biotecnología, así como las interacciones que existen entre ellas.

3. Objetivo del curso

UOD-

Sílabo pregrado

Profundizar en las rutas y vías metabólicas mediante el análisis de las mismas así como de las interacciones que existentes entre ellas, con el fin de conocer la aplicación concreta de estas en la biotecnología.

4. Resultados de aprendizaje deseados al finalizar el curso

Resultados de aprendizaje	RdA perfil de egreso de carrera	Nivel de desarro (carrera)
1. Integra rutas y vías	2. Evalúa y diseña tecnologías	Inicial ()
metabólicas para su	biológicas aplicadas a procesos	Medio (X)
aplicación en Biotecnología.	productivos, basados en normativas	Final ()
	legales y de calidad, con el objetivo	
	de optimizar los recursos y	
	aumentar la productividad en	
	empresas y laboratorios, con ética	
	profesional.	

5. Sistema de evaluación

De acuerdo al Modelo Educativo de la UDLA la evaluación busca evidenciar el logro de los resultados de aprendizaje (RdA) enunciados en cada carrera y asignatura, a través de mecanismos de evaluación (MdE). Por lo tanto la evaluación debe ser continua, formativa y sumativa. La UDLA estipula la siguiente distribución porcentual para los reportes de evaluaciones previstas en cada semestre de acuerdo al calendario académico:

Reporte de progreso 1	35%
Cuestionario de clase	5%
Participaciones expositivas	10%
Pruebas	10%
Trabajos	10%
	050/
Reporte de progreso 2	35%
Cuestionario de clase	5%
Participaciones expositivas	10%
Pruebas	10%
Trabajos	10%
Evaluación final	30%
Cuestionario de clase	5%
Participaciones expositivas	5%
Pruebas	5%
Trabajos	5%
Examen final	10%

Sílabo pregrado

Asistencia: A pesar de que la asistencia no tiene una nota cuantitativa, es obligatorio tomar asistencia en cada sesión de clase. Además, tendrá incidencia en el examen de recuperación.

Al finalizar el curso habrá un examen de recuperación para los estudiantes que, habiendo cumplido con más del 80% de asistencia presencial a clases, deseen reemplazar la nota de un examen anterior (ningún otro tipo de evaluación). Este examen debe integrar todos los conocimientos estudiados durante el periodo académico, por lo que será de alta exigencia y el estudiante necesitará prepararse con rigurosidad. La nota de este examen reemplazará a la del examen que sustituye. Recordar que para rendir el EXAMEN DE RECUPERACIÓN, es requisito que el estudiante hava asistido por lo menos al 80% del total de sesiones programadas de la materia. No se podrá sustituir la nota de un examen previo en el que el estudiante haya sido sancionado por una falta grave, como copia o deshonestidad académica.

6. Metodología del curso y de mecanismos de evaluación.

La metodología del curso se basara en el aprendizaje por procesos, el alumno inicia su proceso de aprendizaje a través de la adquisición de nueva información en su proceso de lectura previa a la clase, tras lo cual en la sesión con la docente realizará su proceso de transformación del conocimiento y resolución de inquietudes, para terminar con una pregunta evaluativa, para poder evaluar el proceso de aprendizaje. Las metodologías a emplearse dentro de las sesiones de clase serán:

- Clases magistrales, instrucción directa, demostración y modelaje de ejercicios,: se presentarán los contenidos los cuales serán impartidos por la profesora con la ayuda de material audiovisual y/o en el pizarrón. Las clases serán participativas ya que en la mayoría de las mismas se realizarán actividades de participación en el aula, las cuales serán evaluadas como participaciones.
- Aprendizaje inductivo, aprendizaje basado en el descubrimiento, y trabajo en grupos: al alumno se le entregará o se le pedirá que traiga variedad de material didáctico con el cual pueda construir su conocimiento del tema de clase de forma inductiva y deductiva, siendo evaluada esta actividad como trabajos, tras lo cual presentarán los resultados como participación en algunos casos, la misma que será evaluada.
- Juego de roles: el alumno director del juego deberá crear la historia y conducirá a sus compañeros a través de la misma. Se utilizará esta estrategia para temas puntuales en donde la ruta metabólica se preste para lo mismo. Será evaluado como *participación expositiva*.

Para alcanzar este objetivo, el alumno se desenvolverá en los siguientes escenarios:

6.1 Escenario de aprendizaje presencial.

- Pruebas 10% (progreso 1 y 2), 5% (evaluación final): cada semana se realizará una prueba en donde se evaluará el resultado del proceso de aprendizaje. Estas preguntas se irán acumulando para dar la nota final de esta sección al

- final del progreso 1 y 2, en el caso de la evaluación final será un componente de evaluación más. Se evaluará por calificación directa.
- Participaciones expositivas 10% (progreso 1 y 2), 5% (evaluación final): las participaciones se realizarán a lo largo de la clase como parte de varias actividades metodológicas en el aula. El alumno deberá tener por lo menos dos participaciones por progreso, de no ser así de igual manera se le promediará para dos. Esta actividad será evaluada por rúbrica ese mismo momento, si el alumno acumula más participaciones que dos, el promedio será sobre el total de participaciones acumuladas.
- Examen final 10% (evaluación final): este examen será de tipo complexivo e integrador, se basará en todos los conocimientos y resultados de aprendizaje que el alumno debe alcanzar para poder aprobar la materia. Se evaluará con calificación directa.
- Trabajos 10% (progreso 1 y 2) y 5% (evaluación final): estos trabajos podrán ser realizados en la clase o como tarea-trabajo autónomo. Serán trabajos grupales de tipo práctico en los cuales los alumnos demostrarán la integración de los conocimientos de manera creativa y didáctica. Estos trabajos serán entregados y evaluados durante la clase. Si el grupo no trae el material la calificación será igual a cero y no tendrán opción a ningún tipo de reclamo.

6.2 Escenario de aprendizaje virtual

- Cuestionario de clase 5% (progresos 1, 2 y evaluación final): existirá un cuestionario por semana. Cada estudiante deberá completar de acuerdo al sílabo la actividad correspondiente a la lectura del día de clase, el día anterior a la primera clase de la semana. Esta actividad se evaluará de manera automática por calificación directa, en algunos casos algunas preguntas podrán ser calificadas manual y no automáticamente.

6.3 Escenario de aprendizaje autónomo.

- Trabajos 10% (progreso 1 y 2) y 5% (evaluación final): estos trabajos podrán ser realizados en la clase o como tarea-trabajo autónomo. Serán trabajos grupales de tipo práctico en los cuales los alumnos demostrarán la integración de los conocimientos de manera creativa y didáctica. Estos trabajos serán entregados y evaluados durante la clase. Si el grupo no trae el material la calificación será igual a cero y no tendrán opción a ningún tipo de reclamo.
- Cuestionario de clase 5% (progresos 1, 2 y evaluación final): existirá un cuestionario por semana. Cada estudiante deberá completar de acuerdo al sílabo la actividad correspondiente a la lectura del día de clase, el día anterior a la primera clase de la semana. Esta actividad se evaluará de manera automática por calificación directa, en algunos casos algunas preguntas podrán ser calificadas manual y no automáticamente.

7. Temas y subtemas del curso

RdA Temas		Subtemas	
	1. Introducción a la	1.1 Introducción y definición de metabolismo.	

	Bioquímica II.	 1.2 Bioenergética y termodinámica. 1.3 Transferencia de grupos fosforilo y ATP. 1.4 Reacciones de oxidoreducción biológicas. 1.5 Introducción a la regulación del metabolismo. 	
1. Integra	2. Glucólisis y gluconeogénesis.	2.1 Glucólisis.2.2 Gluconeogénesis.2.3 Regulación coordinada de la glucólisis y la gluconeogénesis.	
rutas y vías metabólicas para su	3. El ciclo del ácido cítrico y el ciclo del	3.1 Ciclo del ácido cítrico 3.2 Ciclo del glioxilato	
aplicación en	glioxiato	3.3 Regulación del ciclo del ácido cítrico.	
Biotecnología	4. Fosforilación	4.1 Reacciones de transferencia de electrones en la mitocondria.	
	oxidativa	4.2 Síntesis de ATP y lanzaderas.4.3 Regulación de la fosforilación oxidativa.	
		5.1 Características generales de la fotosíntesis fase luminosa y absorción de la luz.	
	5. Fotosíntesis: fase luminosa	5.2 El flujo de electrones impulsado por luz. 5.3 Síntesis de ATP por la fotosíntesis y	
		evolución del a fotosíntesis oxigénica.	
	6. Fotosíntesis: fase	6.1 Ciclo de Calvin	
	oscura	6.2 Vías de las pentosas fosfato6.3 Regulación e integración de la fotosíntesis	
		fase oscura	
	7. Metabolismo del	7.1 Degradación y síntesis del glucógeno	
	glucógeno	7.2 Regulación del metabolismo del glucógeno 8.1 Catabolismo de los ácidos grasos	
	8. Metabolismo de	8.2 Biosíntesis de los ácidos grasos	
	los ácidos grasos	8.3 Regulación del metabolismo de los ácidos	
	9. Recambio de	grasos	
	proteínas y	9.1 Recambio de proteínas y catabolismo de los	
	catabolismo de los aminoácidos.	aminoácidos.	
	10. Biosíntesis de	10.1 Biosíntesis de aminoácidos	
	aminoácidos	10.2 Regulación de la biosíntesis de aminoácidos	
	11. Biosíntesis de	11.1 Biosíntesis de nucleótidos	
	nucleótidos 12. Biosíntesis de	11.2 Regulación de la biosíntesis de nucleótidos 12.1 Biosíntesis de lípidos de membrana y	
	lípidos de	esteroides.	
	membrana y de	12.2 Regulación de la biosíntesis de lípidos de	
	esteroides.	membrana y esteroides.	
	13. Integración del metabolismo	13.1 Integración del metabolismo.	

8. Planificación secuencial del curso

Sem	Semana 1 (12-16 septiembre)						
Rd A	Tema	Subtema	Actividad/ metodología/cla se	Tarea/ trabajo autónomo	MdE/Product o/ fecha de entrega		
	1. Introd ucción a la Bioquí mica II.		(1) Presentación de la materia y sílabo (1 hora).				
	1. Introd ucción a la Bioquí mica II.	1.1 Introducción y definición de metabolismo.1.2 Bioenergética y termodinámica.	(1) Instrucción directa (30 minutos).(1) Clase magistral (30 minutos).	` '	-Participación 1/Rúbrica/ ese mismo día.		
	1. Introd ucción a la Bioquí mica II.	1.2 Bioenergética y termodinámica.	(1) Clase magistral (30 minutos). (1) Resolución de ejercicios demostrativos (20 minutos).	(2) Lectura 1.2: *Nelson y Cox, 2015, "Bioenergética y termodinámica", pp. 505-511. *Stryer, Berg & Tymoczko, (2013), "El metabolismo está constituido por muchas reacciones acopladas e interconectadas", pp. 428-430. (2) Cuestionario 1 (1.1 y 1.2)	-Participación 2/Rúbrica/ ese mismo día. -Cuestionario 1 (1.1 y 1.2) /Rúbrica/ un día antes de la clase.		

Sem	ana 2 (1	9-23 septiembre)			
1	1. Introd ucción a la Bioquí mica II.	1.3 Transferencia de grupos fosforilo y ATP.	(1) Clase magistral (45 minutos). (1) Resolución de ejercicios demostrativos (15 minutos).	(2) Lectura 1.3: * Stryer, Berg & Tymoczko, (2013), "El ATP es la moneda universal de energía libre en los sistemas biológicos", pp. 430-435. (2) Cuestionario 2 (1.3, 1.4 y 1.5)	-Cuestionario 2 (1.3, 1.4 y 1.5) /Rúbrica/ antes de cada claseParticipación 3/ Rúbrica/ ese mismo día.
	1. Introd ucción a la Bioquí mica II.	1.4 Reacciones de oxidoreducción biológicas.		(2) Lectura 1.4: * Stryer, Berg & Tymoczko, (2013), "La oxidación de las moléculas carbonadas es una fuente importante de la energía celular", pp. 435-438.	-Participación 4/ Rúbrica/ ese mismo día.
	1. Introd ucción a la Bioquí mica II.	1.5 Introducción a la regulación del metabolismo.	(1) Clase magistral (40 minutos). (1) Prueba 1 (1.1, 1.2, 1.3, 1.4 y 1.5) (20 minutos).	(2) Lectura 1.5: * Stryer, Berg & Tymoczko, (2013), "Las vías metabólicas presentan muchos aspectos recurrentes", pp. 438-448.	-Participación 5/ Rúbrica/ ese mismo día. - Prueba 1 (1.1, 1.2, 1.3, 1.4 y 1.5) / Calificación directa/ el mismo día de

					clase.		
Sem	Semana 3 (26-30 septiembre)						
1	2. Glucól isis y glucon eogén esis.	2.1 Glucólisis.	(1) Aprendizaje inductivo (1 hora)	(2) Lectura 2.1: * Stryer, Berg & Tymoczko, (2013), "En muchos organismos, la glucólisis es una vía de conversión de energía", pp. 453-479	-Trabajo 1/Rúbrica/ ese mismo día.		
				(2) Cuestionario 3 (2.1).	-Cuestionario 3 (2.1)/Rúbrica / antes de cada clase.		
	2. Glucól isis y glucon eogén esis.	2.1 Glucólisis.	(1) Aprendizaje inductivo (1 hora)		-Trabajo 3/Rúbrica/ ese mismo día.		
	2. Glucól isis y glucon eogén esis.	2.1 Glucólisis.	(1) Aprendizaje inductivo (40 minutos)		-Participación 6/Rúbrica/ ese mismo día.		
Sem	ana 4 (3	-7 octubre)					
1,2	2. Glucól isis y glucon eogén esis.	2.2 Gluconeogénesis.	(1) Clase magistral (1 hora).	(2) Lectura 2.2: * Stryer, Berg & Tymoczko, (2013), "La glucosa puede sintetizarse a partir de precursores no carbohidratados", pp. 479-486.	-Participación 7/ Rúbrica/ ese mismo momento.		
				(2) Cuestionario 4 (2.2 y 2.3).	-Cuestionario 4 (2.2 y 2.3)/ Rúbrica/ antes de cada clase.		

	2. Glucól isis y glucon eogén esis.	2.2 Gluconeogénesis.	(1) Clase magistral (1 hora).		-Participación 7/ Rúbrica/ ese mismo momento.
	2. Glucól isis y glucon eogén esis.	2.3 Regulación coordinada de la glucólisis y la gluconeogénesis.	(1) Clase magistral (40 minutos).	(2) Lectura 2.3: * Stryer, Berg & Tymoczko, (2013), "La gluconeogénesis y la glicólisis se regulan de forma recíproca", pp. 486-493.	-Participación 8/Rúbrica/ese mismo día.
			(1) Prueba 2 (2.1, 2.2 y 2.3) (20 minutos).		- Prueba 2 (2.1, 2.2 y 2.3) / Calificación directa/ el mismo día de clase.
		0-14 octubre)	(4) A 1: :	(2) I 2.1	m l ·
1,2	3. El ciclo del ácido cítrico y el ciclo del glioxia to.	3.1 Ciclo del ácido cítrico. 3.2 Ciclo del glioxilato.	(1) Aprendizaje inductivo (1 hora)	(2) Lectura 3.1: * Stryer, Berg & Tymoczko, (2013), "La piruvato deshidrogenasa conecta la glucólisis con el ciclo del ácido cítrico", "El ciclo del ácido cítrico oxida unidades de dos carbonos", pp. 497-512. (2) Lectura 3.2: * Stryer, Berg & Tymoczko, (2013), "El ciclo del glioxilato permite a las plantas y bacterias crecer en acetato", pp. 518-519.	-Cuestionario 5 (3.1, 3.2 y

				(2) Cuestionario 5 (3.1, 3.2 y 3.3).	3.3) /Rúbrica/ antes de cada clase.
	3. El ciclo del ácido cítrico y el cilo del glioxia to.	3.1 Ciclo del ácido cítrico.3.2 Ciclo del glioxilato.	(1) Aprendizaje inductivo (1 hora)		-Participación 9/Rúbrica / ese mismo día.
	3. El ciclo del ácido cítrico y el cilo del glioxia to.	3.3 Regulación del ciclo del ácido cítrico.	(1) Clase magistral (40 minutos).	(2) Lectura 3.3: * Stryer, Berg & Tymoczko, (2013), "la entrada en el ciclo del ácido cítrico y sus reacciones están controladas", "El ciclo del ácido cítrico es una fuente de precursores biosintéticos", pp. 512-518.	-Participación 10/Rúbrica/e se mismo día.
Sem	ana 6 (1	7-21 octubre)		1	
Sem	4. Fosfor ilación oxidat iva.	4.1 Reacciones de transferencia de electrones en la mitocondria.	(1) Juego de roles (1 hora).	(2) Lectura 4.1: * Stryer, Berg & Tymoczko, (2013), "La fosforilación oxidativa en eucariotas tiene lugar en las mitocondrias", "La fosforilación oxidativa depende del transporte electrónico", "La cadena respiratoria está formada por cuatro complejos: tres bombas de	-Trabajo 5/Rúbrica/ ese mismo día.

				protones y una	
				conexión física	
				con el ciclo del	
				ácido cítrico", pp. 525-543.	
				020 010.	-Cuestionario
				(2) Cuestionario 6	6 (4.1 y
				(4.1 y 4.2).	4.2)/Rúbrica/ antes de cada
					clase.
	4.	4.1 Reacciones de	(1) Juego de roles		-Trabajo
	Fosfor ilación	transferencia de electrones en la	(30 minutos).		4/Rúbrica/ ese mismo día.
	oxidat	mitocondria.			ese illisillo ula.
	iva.				-Participación
			(4) I I I		11/
			(1) Juego de roles (30 minutos).		Rúbrica/ese mismo día.
			(30 mmucos).		momo uu.
	4.	4.1 Reacciones de	(1) Ivage de veles		Dantiainaaián
	Fosfor	transferencia de	(1) Juego de roles (50 minutos).		-Participación 11/
	ilación	electrones en la	(5.5		Rúbrica/ese
	oxidat	mitocondria.			mismo día.
	iva.				-Prueba 3 (3.1,
			(1) Prueba 3 (3.1,		3.2, 3.3 y 4.1)
			3.2, 3.3 y 4.1) (10		/ Calificación
			minutos).		directa/ el mismo día de
					clase.
Sem	nana 7 (2	4-28 octubre)			
	4.	4.2 Síntesis de ATP		Lectura 4.2:	-Participación
	Fosforil ación	y lanzaderas.	magistral (1 hora).	* Stryer, Berg & Tymoczko,	12/ Rúbrica/ese
	oxidati		noraj.	(2013), "Un	mismo día.
	va			gradiente de	
				protones impulsa	
				la síntesis de ATP"; "Muchas	
				lanzaderas	
				permiten los	
				movimientos a través de las	
				membranas	
				mitocondriales",p	
				p. 543-554.	

4. Fosforil ación oxidati va	4.2 Síntesis de ATP y lanzaderas.	(1) magistral hora).	Clase (1	(2) Cuestionario 7 (4.2 y 4.3).	-Cuestionario 7 (4.2 y 4.3)/Rúbrica/ antes de cada claseParticipación 12/ Rúbrica/ese mismo día.
4. Fosforil ación oxidati va.	4.3 Regulación de la fosforilación oxidativa.	(1) magistral minutos).	Clase (40	(2) Lectura 4.3: * Stryer, Berg & Tymoczko, (2013), "La regulación de la respiración celular está gobernada en primera instancia por la necesidad de ATP", pp. 554-561.	-Participación 13/ Rúbrica/ese mismo día.
	-11 noviembre)			T	
5. Fotosín tesis: fase lumino sa	5.1 Características generales de la fotosíntesis fase luminosa y absorción de la luz.	(1) magistral (1 minutos).		(2) Lectura 5.1: * Stryer, Berg & Tymoczko, (2013), "La fotosíntesis tiene lugar en los cloroplastos", "La absorción de la luz por la clorofila induce a la transferencia de electrones", "En la fotosíntesis productora de oxígeno, dos fotosistemas generan un gradiente de protones y NADPH" pp. 565-572. (2) Cuestionario 8	-Participación 14/ Rúbrica/ese mismo día.

	5. Fotosín tesis: fase lumino sa	5.2 El flujo de electrones impulsado por luz. 5.3 Síntesis de ATP		(5.1, 5.2 y 5.3). (2) Lectura 5.2: * Stryer, Berg & Tymoczko, (2013), "En la fotosíntesis productora de oxígeno, dos fotosistemas generan un gradiente de protones y NADPH" pp. 572-577. (2) Lectura 5.2:	8 (5.1, 5.2 y 5.3)/Rúbrica/antes de cada claseParticipación 15/Rúbrica/ese mismo día.
	Fotosín tesis: fase lumino sa	por la fotosíntesis y evolución del a fotosíntesis oxigénica.	magistral (40 minutos).	* Stryer, Berg & Tymoczko, (2013), "En la fotosíntesis productora de oxígeno, dos fotosistemas generan un gradiente de protones y NADPH" pp. 577-586.	16/ Rúbrica/ese mismo día.
			(1) Prueba 4 (4.2, 4.3, 5.1, 5.2 y 5.3) (20 minutos).		-Prueba 4 (4.2, 4.3, 5.1, 5.2 y 5.3) /Calificación directa/ el mismo día de clase.
Sen	nana 9 (1	4-18 noviembre)			
1	6. Fotosín tesis: fase oscura	6.1 El ciclo de Calvin.	. , .	(2) Lectura 6.1: * Stryer, Berg & Tymoczko, (2013), "El ciclo de Calvin sintetiza hexosas a partir de dióxido de carbono y agua",	-Trabajo 6/Rúbrica/ ese mismo día. -Participación 17/ Rúbrica/ese mismo día.

6. Fotosín tesis: fase oscura	6.2 Vía de las pentosas fosfato 6.3 Regulación e		"La actividad del ciclo de Calvin depende de las condiciones ambientales" pp. 589-601. (2) Cuestionario 9 (6.1, 6.2 y 6.3). (2) Lectura 6.2: * Stryer, Berg & Tymoczko, (2013), "La vía de las pentosas fosfato genera NADPH y sintetiza azúcares de cinco carbonos" pp. 601-606. (2) Lectura 6.3:	-Cuestionario 9 (6.1, 6.2 y 6.3)/Rúbrica/ antes de cada claseTrabajo 7/Rúbrica/ ese mismo díaParticipación 18/ Rúbrica/ese mismo día.
Fotosín tesis: fase oscura	integración de la fotosíntesis fase oscura.	magistral (40 minutos).	` ,	

	7. Metabo lismo del glucóge no.	7.1 Degradación y síntesis del glucógeno	(1) magistral hora).	Clase (1	(2) Lectura 7.1 y 7.2: * Stryer, Berg & Tymoczko, (2013), "Metabolismo del glucógeno", pp. 615-636. (2) Cuestionario 10 (7.1 y 7.2).	-Participación 20/ Rúbrica/ese mismo día. -Cuestionario 10 (7.1 y 7.2) Rúbrica/ antes de cada clase.
	7. Metabo lismo del glucóge no.	7.1 Degradación y síntesis del glucógeno.	(1) magistral hora).	Clase (1		-Participación 21/ Rúbrica/ese mismo día.
	7. Metabo lismo del glucóge no.	7.2 Regulación del metabolismo del glucógeno.	(1) magistral hora). (1) Prueba 6.2, 6.3, 7.1 (20 minutos	y 7.2)		-Participación 22/ Rúbrica/ese mismo día. -Prueba 5 (6.1, 6.2, 6.3, 7.1 y 7.2) /Calificación directa/ el mismo día de clase.
Sen	ana 11 (28 noviembre- 2 dic	iembre)			
	8.Meta bolism o de los ácidos grasos	8.1 Catabolismo de los ácidos grasos.	(1) magistral hora).		(2) Lectura 8.1: * Stryer, Berg & Tymoczko, (2013), "Los triacilgliceroles son depósitos de energía muy concentrada", "la utilización de los ácidos grasos como combustible requiere un procesamiento en tres etapas", "Los ácidos	-Participación 23/ Rúbrica/ese mismo día.

					1	
	8.Meta bolism o de los	8.2 Biosíntesis de los ácidos grasos	(1) magistral hora).		grasos insaturados o con cadena impar requieren etapas adicionales de degradación", pp. 639-656. (2) Cuestionario 11 (8.1, 8.2 y 8.3). (2)Lectura 8.2: * Stryer, Berg & Tymoczko,	-Cuestionario 11 (8.1, 8.2 y 8.3) Rúbrica/ antes de cada clase. -Participación 24/ Rúbrica/ese
	ácidos grasos		noraj.		(2013), "Los ácidos grasos se sintetizan por la ácido graso sintasa","La elongación y la insaturación de los ácidos grasos se realizan por sistemas enzimáticos accesorios", pp. 656-666.	mismo día.
	8.Meta bolism o de los ácidos grasos	8.3 Regulación del metabolismo de los ácidos grasos.	(1) magistral minutos).		(2)Lectura 8.3: * Stryer, Berg & Tymoczko, (2013), "La acetil- CoA carboxilasa ejerce una funación esencial en el control del metabolismo de los ácidos grasos", pp. 666-668.	-Participación 25/ Rúbrica/ese mismo día.
		5-9 diciembre)			,	
1	9. Recam bio de proteí	9.1 Recambio de proteínas y catabolismo de los aminoácidos.	(1) magistral hora).	Clase (1	(2) Lectura 9.1: * Stryer, Berg & Tymoczko, (2013),	-Participación 26/ Rúbrica/ese mismo día.

	Ī	<u> </u>				
	nas y				"Recambio de	
	catabo				proteínas y	
	lismo				catabolismo de	
	de los				los aminoácidos,	
	amino				pp. 673-698.	
	ácidos				rr	
	acraos				(2) Cuestionario	-Cuestionario
					12 (9.1).	12
						(9.1)/Rúbrica
						/antes de cada
						clase.
	9.	9.1 Recambio de	(1) Aprendi:	zaje		-Trabajo
	Recam	proteínas y	inductivo	(1		8/Rúbrica/
	bio de	catabolismo de los	hora).			ese mismo día.
	proteí	aminoácidos.				
	nas y					-Participación
	catabo					27/
	lismo					Rúbrica/ese
	de los					mismo día.
	amino					mismo dia.
	ácidos					
	9.	9.1 Recambio de	(1) C	lase		-Participación
	Recam	proteínas y		(40		28/
	bio de	catabolismo de los	minutos).	OF)		Rúbrica/ese
	proteí	aminoácidos.	iiiiiutosj.			mismo día.
	nas y	ammoacidos.				mismo dia.
	catabo		(1) Prueba 6 (ั่		-Prueba 6 (8.1,
	lismo		8.2 y 8.3, 9.1)			8.2 y 8.3, 9.1)
	de los		minutos).	(20		/Calificación
	amino		iiiiiutosj.			directa/ el
	ácidos					mismo día de
	aciuos					clase.
Com		(10 16 disismbus)				ciase.
-	•	12- 16 diciembre)	(1)	lage	(2) Loghyman 10.1	Doubles 4
1	10.	10.1 Biosíntesis de aminoácidos		lase		-Participación
	Biosín	ammoacidos	magistral	(1	y 10.2:	29/
	tesis		hora).		* Stryer, Berg &	Rúbrica/ese
	de				Tymoczko,	mismo día.
	amino				(2013),	
	ácidos				"Biosíntesis de	
					aminoácidos", pp.	
					705-734.	
					(2)	
					(2) Cuestionario	-Cuestionario
					13 (10.1 y 10.2).	13 (10.1 y
						10.2)/Rúbrica
						/ antes de
						cada clase.
	10.	10.1 Biosíntesis de	(1) C	lase		-Participación

	Biosín tesis de amino ácidos 10. Biosín tesis de amino ácidos	aminoácidos 10.2 Regulación de la biosíntesis de aminoácidos	magistral hora). (1) (1) (1) magistral minutos).	Clase (40		30/ Rúbrica/ese mismo día. -Participación 31/ Rúbrica/ese mismo día.
Sem		2-6 enero)				
1	11. Biosín tesis de nucleó tidos.	11.1 Biosíntesis de nucleótidos	(1) (magistral hora).	Clase (1	(2) Lecturas 11.1 y 11.2: * Stryer, Berg & Tymoczko, (2013), "Biosíntesis de nucleótidos", pp.735-758. (2) Cuestionario 14 (11.1 y 11.2).	-Participación 32/ Rúbrica/ese mismo día. -Cuestionario 14 (11.1 y 11.2)/Rúbrica / antes de cada clase.
	11. Biosín tesis de nucleó tidos.	11.1 Biosíntesis de nucleótidos	(1) Aprendi inductivo hora).	izaje (1		-Trabajo 9/ Rúbrica/ ese mismo día. -Participación 33/ Rúbrica/ese mismo día.
	11. Biosín tesis de nucleó tidos.	11.2 Regulación de la biosíntesis de nucleótidos	(1) (1) magistral minutos). (1) Prueba 7 (10.1, 10.2, 11 11.2) (20 minutos).	Clase (40		-Participación 34/ Rúbrica/ese mismo día. -Prueba 7 (10.1, 10.2, 11.1 y 11.2) /Calificación directa/ el mismo día de clase.
Sem		9-13 enero)			1	
	12. Biosín	12.1 Biosíntesis de lípidos de	(1) (magistral	Clase (1	(2) Lecturas 12.1 y 12.2:	-Participación 35/

de líp de m	emb na y tero	membrana y de esteroides.	hora).	* Stryer, Berg & Tymoczko, (2013), "Biosíntesis de lípidos de membrana y esteroides", pp.759-790.	Rúbrica/ese mismo día.
				(2) Cuestionario 15 (12.1 y 102.2).4	-Cuestionario 15 (12.1 y 12.2)/Rúbrica / antes de cada clase.
te:	osín sis	12.1 Biosíntesis de lípidos de membrana y de esteroides.	(1) Aprendizaj inductivo (hora).		-Trabajo 10/ Rúbrica/ ese mismo día.
de me ra	emb na y tero				-Participación 36/ Rúbrica/ese mismo día.
tes de líp de ma ra es les	osín sis e oidos e emb na y tero s.	12.2 Regulación de la biosíntesis de lípidos de membrana y esteroides.	(1) Clas magistral (4 minutos).		-Participación 36/ Rúbrica/ese mismo día.
		16-20 enero)			
ac de m	tegr ión	13.1 Integración del metabolismo		e (2) Lectura 13.1: 1 * Stryer, Berg & Tymoczko, (2013), "Integración del metabolismo", pp.791-817. (2) Cuestionario 16 (13.1 y 13.2).	-Cuestionario 16 (13.1 y 13.2)/Rúbrica / antes de cada clase.
	3. tegr ión	13.1 Integración del metabolismo	(1) Clas magistral (hora).	е	

	del						
	metab						
	olismo						
	13. Integr ación del	13.1 Integración del metabolismo	(1) Taller (40 minutos).		-Trabajo 11/Rúbrica/ ese mismo día.		
	metab				-Prueba 8		
	olismo		(1) Prueba 8 (10.1, 10.2, 11.1 y 11.2, 12.1, 12.2, 13.1 y 13.2) (20 minutos).		(10.1, 10.2, 11.1, 11.2, 12.1, 12.2, 13.1 y 13.2) /Calificación directa/ el mismo día de		
					clase.		
	Semana 17 (23-27 enero)						
	Semana de recuperación						
	Semana 18 (30 enero - 3 febrero)						
Evaluación final y examen de recuperación							
Sem	ana 19 (6 - 10 febrero)					
Eval	Evaluación final y examen de recuperación						

9. Normas y procedimientos para el aula

- No está permitido el uso de ningún dispositivo electrónico en la clase, si alguien es encontrado usando algún dispositivo este será retirado hasta el final de la clase. En los exámenes y pruebas se solicitará a los alumnos entregar sus celulares apagados a la profesora hasta el final de la actividad.
- La asistencia se tomará al inicio de cada sesión, registrándose la asistencia a los 10 minutos iniciales. Los alumnos que lleguen pasado este tiempo, podrán ingresar pero no podrán estar en lista. En todo caso, se les pasará la lista en la segunda hora de clase.
- Tomar en cuenta que durante el día del examen solamente se deberá presentar al mismo con esfero, lápiz, borrador, corrector y de ser el caso la calculadora. Se podrán presentar ejercicios resueltos con lápiz sin derecho a reclamo de calificación.
- Todos los trabajos que sean subidos a TURNITIN serán calificados exclusivamente si poseen un % de homología menor o igual al 10%. Trabajos que, descontando los párrafos citados y/o bibliografías posean más de este valor, tendrán directamente la calificación igual a 0, sin ninguna opción a reclamación.
- Bajo ninguna circunstancia se aceptarán justificaciones con certificados médicos externos. Solamente para trabajos en clase, pruebas y/o exámenes, se considerarán certificados del centro médico de la UDLA, o certificados de

Sílabo pregrado

hospitalización validados, ningún otro tipo de certificado será válido, ni el alumno deberá insistir en justificar. La persona que no asista a la actividad tendrá la calificación de cero.

Integridad estudiantil

El código de ética para la materia de Bioquímica II, se rige a las normas de la UDLA. La copia durante exámenes o pruebas y/o de trabajos, informes o cualquier otra tarea presentada por los estudiantes tendrá una calificación de cero, sin opción a reclamos.

El profesor solicitará a las autoridades de la Facultad, la aplicación de las máximas sanciones posibles para los casos de deshonestidad académica.

Se considera deshonestidad académica la copia y facilitación de la copia. La copia incluye la compra, robo u obtención fraudulenta de exámenes, pruebas, deberes, informes o trabajos, así como recibir información de otros durante los exámenes, referirse a notas no autorizadas u otra información electrónica o escrita.

Cualquier estudiante que participe deliberadamente en cualquier forma de deshonestidad académica será considerado tan culpable como el estudiante que acepta dicha ayuda.

10. Referencias bibliográficas

1. Principales.

Berg, J., Tymoczko, J., & Stryer, L. (2013). *Bioquímica con aplicaciones clínicas*. Barcelona: Reverté.

Lehninger, A., Nelson, D., & Cox, M. (2015). *Lehninger Principios de Bioquímica*. Barcelona: Omega.

2. Referencias complementarias.

Voet, D., & Voet, J. (2006). *Bioquímica*. Buenos Aires: Panamericana.

11. Perfil del docente

Nombre de la docente: María Gabriela Granja Bastidas

Maestría en Bioquímica, Biología Molecular y Biomedicina con especialidad en Patología Molecular (Universidad Autónoma de Barcelona- UAB). Ingeniera en Biotecnología (Escuela Politécnica del Ejército-ESPE). Experiencia laboral y líneas de investigación en biología molecular diagnóstica e investigativa en: enfermedades infecciosas, cáncer, síndrome metabólico; manejo de técnicas avanzadas de biología molecular e ingeniería genética, microbiología, cultivo celular, bioquímica. Experiencia docente en las materias de Bioquímica e Ingeniería Genética y Biotecnología de los Microorganismos.

Contacto: mg.granja@udlanet.ec

Horario de atención al estudiante: Por definir.

Sílabo pregrado

