Séries de fonctions - Démonstrations

Théorème:

Si $\sum f_n$ CVN sur A, alors :

- (i) $\sum f_n$ CVAS sur A.
- (ii) $\sum f_n$ CVU sur A.

<u>Démonstration</u>:

Supposons que $\sum f_n$ CVN sur $A \subset D$.

- Soit $x_0 \in A$, alors $0 \le |f_n(x_0)| \le \|f_n\|_{\infty,A}$ Or $\sum \|f_n\|_{\infty,A}$ CV, donc par comparaison de SATP, $\sum |f_n(x_0)|$ CV Donc $\sum f_n$ CVAS sur A.
- Comme $\sum f_n$ CVAS sur A, $\sum f_n$ CVS sur A. Notons $\forall n \in \mathbb{N}, \forall x \in A, R_n(x) = \sum_{k=n+1}^{+\infty} f_k(x)$ Comme la série numérique $\sum |f_n(x)|$ CV,

$$|R_n(x)| \leq \sum_{k=n+1}^{+\infty} |f_k(x)| \leq \sum_{k=n+1}^{+\infty} ||f_k||_{\infty,A} := \alpha_n$$

Alors la fonction R_n est bornée sur A et :

$$0 \le \|R_n\|_{\infty,A} \le \sum_{k=n+1}^{+\infty} \|f_k\|_{\infty,A} \underset{n \to +\infty}{\longrightarrow} 0$$

comme reste d'une série CV.

Donc par le théorème des gendarmes, $\|R_n\|_{\infty,A} \xrightarrow[n \to +\infty]{} 0$

Donc $(R_n)_n$ CVU vers la fonction nulle, donc $\sum f_n$ CVU vers A.