

#### WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

XXO 0002120

# INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(11) 1-4-motional Publication Numbers

|                                                        | 07K 14/72, G01N 33/50,     | A1  | (43) International Publication Date:                                                                                   | 00 4 13 0000 (00 04 00)                               |
|--------------------------------------------------------|----------------------------|-----|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| 33/566 (21) International App (22) International Filia |                            |     | (74) Agents: MILLER, Suzanne, E. et<br>Kurtz Mackiewicz & Norris LI                                                    | P, 46th floor, One Liberty                            |
| (30) Priority Data:<br>09/170,496                      | 13 October 1998 (13.10.98) | ) ( | (81) Designated States: AE, AL, AM, BR, BY, CA, CH, CN, CR, C ES, FI, GB, GD, GE, GH, GM, KE, KG, KP, KR, KZ, LC, I, K | U, CZ, DE, DK, DM, EE,<br>HR, HU, 1D, IL, IN, IS, JP, |

13 October 1998 (13.10.98) (71) Applicant (for all designated States except US): ARENA

PHARMACEUTICALS, INC. [US/US]; 6166 Nancy Ridge Drive, San Diego, CA 92121 (US).

(63) Related by Continuation (CON) or Continuation-in-Part

(CIP) to Earlier Application

US

Filed on

(72) Inventors; and (75) Inventors/Applicants (for US only): BEHAN, Dominic, P. [GB/US]; 11472 Roxboro Court, San Diego, CA 92131 (US). CHALMERS, Derek, T. [GB/US]; 347 Longden Lane, Solana Beach, CA 92075 (US). LIAW, Chen, W. [US/US]; 7668 Salix Place, San Diego, CA 92129 (US).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments

MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU,

SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG.

US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE,

LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU,

MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM,

GA, GN, GW, ML, MR, NE, SN, TD, TG).

(54) Title: NON-ENDOGENOUS, CONSTITUTIVELY ACTIVATED HUMAN G PROTEIN-COUPLED RECEPTORS

09/170.496 (CIP)

(57) Abstract

Disclosed herein are constitutively activated, non-endogenous versions of endogenous human G protein-coupled receptors comprising (a) the following amino acid sequence region (C-terminus to N-terminus orientation) and/or (b) the following nucleic acid sequence region (3' to 5' orientation) transversing the transmembrane-6 (TM6) and intracellular loop-3 (IC3) regions of the GPCR: (a) P<sup>1</sup> AA<sub>15</sub> X and/or (b) P<sup>coden</sup> (AA-coden)<sub>15</sub> X<sub>coden</sub>, respectively. In a most preferred embodiment, P<sup>1</sup> and P<sup>coden</sup> are endogenous proline and an endogenous nucleic acid encoding region encoding proline, respectively, located within TM6 of the non-endogenous GPCR; AA15 and (AA-codon)<sub>15</sub> are 15 endogenous amino acid residues and 15 codons encoding endogenous amino acid residues, respectively; and X and X<sub>codon</sub> are non-endogenous lysine and a non-endogenous nucleic acid encoding region encoding lysine, respectively, located within IC3 of the non-endogenous GPCR. Because it is most preferred that the non-endogenous human GPCRs which incorporate these mutations are incorporated into mammalian cells and utilized for the screening of the candidate compounds, the non-endogenous human GPCR incorporating the mutation need not be purified and isolated per se (i.e., these are incorporated within the cellular membrane of a mammalian cell), although such purified and isolated non-endogenous human GPCRs are well within the purview of this disclosure.

## FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

| AL | Albania                  | ES | Spain               | LS | Lesotho               | SI | Slovenia                 |
|----|--------------------------|----|---------------------|----|-----------------------|----|--------------------------|
| AM | Armenia                  | FI | Finland             | LT | Lithuania             | SK | Slovakia                 |
| AT | Austria                  | FR | France              | LU | Luxembourg            | SN | Senegal                  |
| AU | Australia                | GA | Gabon               | LV | Latvia                | SZ | Swaziland                |
| AZ | Azerbaijan               | GB | United Kingdom      | MC | Monaco                | TD | Chad                     |
| BA | Bosnia and Herzegovina   | GE | Georgia             | MD | Republic of Moldova   | TC | Togo                     |
| BB | Barbados                 | GH | Ghana               | MG | Madagascar            | TJ | Tajikistan               |
| BE | Belgium                  | GN | Guinea              | MK | The former Yugoslav   | TM | Turkmenistan             |
| BF | Burkina Faso             | GR | Greece              |    | Republic of Macedonia | TR | Turkey                   |
| BG | Bulgaria                 | HU | Hungary             | ML | Mali                  | TT | Trinidad and Tobago      |
| BJ | Benin                    | IE | Ireland             | MN | Mongolia              | UA | Ukraine                  |
| BR | Brazil                   | IL | Israel              | MR | Mauritania            | UG | Uganda                   |
| BY | Belarus                  | IS | Iceland             | MW | Malawi                | US | United States of America |
| CA | Canada                   | IT | Italy               | MX | Mexico                | UZ | Uzbekistan               |
| CF | Central African Republic | JP | Japan               | NE | Niger                 | VN | Viet Nam                 |
| CG | Congo                    | KE | Kenya               | NL | Netherlands           | YU | Yugoslavia               |
| CH | Switzerland              | KG | Kyrgyzstan          | NO | Norway                | zw | Zimbabwe                 |
| CI | Côte d'Ivoire            | KP | Democratic People's | NZ | New Zealand           |    |                          |
| CM | Cameroon                 |    | Republic of Korea   | PL | Poland                |    |                          |
| CN | China                    | KR | Republic of Korea   | PT | Portugal              |    |                          |
| CU | Cuba                     | KZ | Kazakstan           | RO | Romania               |    |                          |
| CZ | Czech Republic           | LC | Saint Lucia         | RU | Russian Federation    |    |                          |
| DE | Germany                  | LI | Liechtenstein       | SD | Sudan                 |    |                          |
| DK | Denmark                  | LK | Sri Lanka           | SE | Sweden                |    |                          |
| EE | Estonia                  | LR | Liberia             | SC | Singapore             |    |                          |
|    |                          |    |                     |    |                       |    |                          |

# NON-ENDOGENOUS, CONSTITUTIVELY ACTIVATED HUMAN G PROTEIN-COUPLED RECEPTORS

The benefits of commonly owned U.S. Serial Number 09/170,496, filed
October 13, 1998, U.S. Serial Number 08/839, 449 filed April 14, 1997 (now abandoned),

U.S. Serial Number 09/060,188, filed April 14, 1998; U.S. Provisional Number 60/090,783,
filed June 26, 1998; and U.S. Provisional Number 60/095,677, filed on August 7, 1998, are
hereby claimed. Each of the foregoing applications are incorporated by reference herein in
their entirety.

#### FIELD OF THE INVENTION

The invention disclosed in this patent document relates to transmembrane receptors, and more particularly to human G protein-coupled receptors (GPCRs) which have been altered such that altered GPCRs are constitutively activated. Most preferably, the altered human GPCRs are used for the screening of therapeutic compounds.

- 2 -

# BACKGROUND OF THE INVENTION

Although a number of receptor classes exist in humans, by far the most abundant and therapeutically relevant is represented by the G protein-coupled receptor (GPCR or GPCRs) class. It is estimated that there are some 100,000 genes within the human genome, and of these, approximately 2% or 2,000 genes, are estimated to code for GPCRs. Of these, there are approximately 100 GPCRs for which the endogenous ligand that binds to the GPCR has been identified. Because of the significant time-lag that exists between the discovery of an endogenous GPCR and its endogenous ligand, it can be presumed that the remaining 1,900 GPCRs will be identified and characterized long before the endogenous ligands for these receptors are identified.

Indeed, the rapidity by which the Human Genome Project is sequencing the 100,000 human genes indicates that the remaining human GPCRs will be fully sequenced within the next few years. Nevertheless, and despite the efforts to sequence the human genome, it is still very unclear as to how scientists will be able to rapidly, effectively and efficiently exploit this information to improve and enhance the human condition. The present invention is geared towards this important objective.

Receptors, including GPCRs, for which the endogenous ligand has been identified are referred to as "known" receptors, while receptors for which the endogenous ligand has not been identified are referred to as "orphan" receptors. This distinction is not merely semantic, particularly in the case of GPCRs. GPCRs represent an important area for the development of pharmaceutical products: from approximately 20 of the 100 known GPCRs, 60% of all prescription pharmaceuticals have been developed. Thus, the orphan GPCRs are to the pharmaceutical industry what gold was to California in the late 19th century – an opportunity to drive growth, expansion, enhancement and development. A serious drawback exists, however,

- 3 -

with orphan receptors relative to the discovery of novel therapeutics. This is because the traditional approach to the discovery and development of pharmaceuticals has required access to both the receptor and its endogenous ligand. Thus, heretofore, orphan GPCRs have presented the art with a tantalizing and undeveloped resource for the discovery of pharmaceuticals.

Under the traditional approach to the discovery of potential therapeutics, it is generally the case that the receptor is first identified. Before drug discovery efforts can be initiated, elaborate. time consuming and expensive procedures are typically put into place in order to identify, isolate and generate the receptor's endogenous ligand - this process can require from between 3 and ten years per receptor, at a cost of about \$5million (U.S.) per receptor. These time and financial 10 resources must be expended before the traditional approach to drug discovery can commence. This is because traditional drug discovery techniques rely upon so-called "competitive binding assays" whereby putative therapeutic agents are "screened" against the receptor in an effort to discover compounds that either block the endogenous ligand from binding to the receptor ("antagonists"), or enhance or mimic the effects of the ligand binding to the receptor ("agonists"). 15 The overall objective is to identify compounds that prevent cellular activation when the ligand binds to the receptor (the antagonists), or that enhance or increase cellular activity that would otherwise occur if the ligand was properly binding with the receptor (the agonists). Because the endogenous ligands for orphan GPCRs are by definition not identified, the ability to discover novel and unique therapeutics to these receptors using traditional drug discovery techniques is not 20 possible. The present invention, as will be set forth in greater detail below, overcomes these and other severe limitations created by such traditional drug discovery techniques.

GPCRs share a common structural motif. All these receptors have seven sequences of between 22 to 24 hydrophobic amino acids that form seven alpha helices, each of which spans the

- 4 -

membrane (each span is identified by number, i.e., transmembrane-1 (TM-1), transmebrane-2 (TM-2), etc.). The transmembrane helices are joined by strands of amino acids between transmembrane-2 and transmembrane-3, transmembrane-4 and transmembrane-5, and transmembrane-6 and transmembrane-7 on the exterior, or "extracellular" side, of the cell membrane (these are referred to as "extracellular" regions 1, 2 and 3 (EC-1, EC-2 and EC-3), respectively). The transmembrane helices are also joined by strands of amino acids between transmembrane-1 and transmembrane-2, transmembrane-3 and transmembrane-4, and transmembrane-5 and transmembrane-6 on the interior, or "intracellular" side, of the cell membrane (these are referred to as "intracellular" regions 1, 2 and 3 (IC-1, IC-2 and IC-3), respectively). The "carboxy" ("C") terminus of the receptor lies in the intracellular space within the cell, and the "amino" ("N") terminus of the receptor lies in the extracellular space outside of the cell. The general structure of G protein-coupled receptors is depicted in Figure 1.

Generally, when an endogenous ligand binds with the receptor (often referred to as 
"activation" of the receptor), there is a change in the conformation of the intracellular region that

15 allows for coupling between the intracellular region and an intracellular "G-protein." Although

other G proteins exist, currently, Gq, Gs, Gi, and Go are G proteins that have been identified.

Endogenous ligand-activated GPCR coupling with the G-protein begins a signaling cascade

process (referred to as "signal transduction"). Under normal conditions, signal transduction

ultimately results in cellular activation or cellular inhibition. It is thought that the IC-3 loop as

well as the carboxy terminus of the receptor interact with the G protein. A principal focus of this

invention is directed to the transmembrane-6 (TM6) region and the intracellular-3 (IC3) region of

the GPCR.

Under physiological conditions, GPCRs exist in the cell membrane in equilibrium between

- 5 -

5

20

two different conformations: an "inactive" state and an "active" state. As shown schematically in Figure 2, a receptor in an inactive state is unable to link to the intracellular signaling transduction pathway to produce a biological response. Changing the receptor conformation to the active state allows linkage to the transduction pathway (via the G-protein) and produces a biological response.

A receptor may be stabilized in an active state by an endogenous ligand or a compound such as a drug. Recent discoveries, including but not exclusively limited to modifications to the amino acid sequence of the receptor, provide means other than endogenous ligands or drugs to promote and stabilize the receptor in the active state conformation. These means effectively stabilize the receptor in an active state by simulating the effect of an endogenous ligand binding to the receptor. Stabilization by such ligand-independent means is termed "constitutive receptor activation."

As noted above, the use of an orphan receptor for screening purposes has not been possible. This is because the traditional "dogma" regarding screening of compounds mandates that the ligand for the receptor be known. By definition, then, this approach has no applicability with respect to orphan receptors. Thus, by adhering to this dogmatic approach to the discovery of therapeutics, the art, in essence, has taught and has been taught to forsake the use of orphan receptors unless and until the endogenous ligand for the receptor is discovered. Given that there are an estimated 2,000 G protein coupled receptors, the majority of which are orphan receptors, such dogma castigates a creative, unique and distinct approach to the discovery of therapeutics.

Information regarding the nucleic acid and/or amino acid sequences of a variety of GPCRs is summarized below in Table A. Because an important focus of the invention disclosed herein is directed towards orphan GPCRs, many of the below-cited references are related to orphan GPCRs. However, this list is not intended to imply, nor is this list to be construed, legally or

- 6 -

otherwise, that the invention disclosed herein is only applicable to orphan GPCRs or the specific GPCRs listed below. Additionally, certain receptors that have been isolated are not the subject of publications per se; for example, reference is made to a G Protein-Coupled Receptor database on the "world-wide web" (neither the named inventors nor the assignee have any affiliation with this site) that lists GPCRs. Other GPCRs are the subject of patent applications owned by the present assignee and these are not listed below (including GPR3, GPR6 and GPR12; see U.S. Provisional Number 60/094879):

10

15

20

25

30

35

Table A

| Receptor Name | Publication Reference                    |  |  |
|---------------|------------------------------------------|--|--|
| GPR1          | 23 Genomics 609 (1994)                   |  |  |
| GPR4          | 14 DNA and Cell Biology 25 (1995)        |  |  |
| GPR5          | 14 DNA and Cell Biology 25 (1995)        |  |  |
| GPR7          | 28 Genomics 84 (1995)                    |  |  |
| GPR8          | 28 Genomics 84 (1995)                    |  |  |
| GPR9          | 184 J. Exp. Med. 963 (1996)              |  |  |
| GPR10         | 29 Genomics 335 (1995)                   |  |  |
| GPR15         | 32 Genomics 462 (1996)                   |  |  |
| GPR17         | 70 J Neurochem, 1357 (1998)              |  |  |
| GPR18         | 42 Genomics 462 (1997)                   |  |  |
| GPR20         | 187 Gene 75 (1997)                       |  |  |
| GPR21         | 187 Gene 75 (1997)                       |  |  |
| GPR22         | 187 Gene 75 (1997)                       |  |  |
| GPR24         | 398 FEBS Lett. 253 (1996)                |  |  |
| GPR30         | 45 Genomics 607 (1997)                   |  |  |
| GPR31         | 42 Genomics 519 (1997)                   |  |  |
| GPR32         | 50 Genomics 281 (1997)                   |  |  |
| GPR40         | 239 Biochem. Biophys.                    |  |  |
|               | Res. Commun. 543 (1997)                  |  |  |
| GPR41         | 239 Biochem. Biophys.                    |  |  |
|               | Res. Commun. 543 (1997)                  |  |  |
| GPR43         | 239 Biochem. Biophys.                    |  |  |
|               | Res. Commun. 543 (1997)                  |  |  |
| APJ           | 136 Gene 355 (1993)                      |  |  |
| BLR1          | 22 Eur. J. Immunol. 2759 (1992)          |  |  |
| CEPR          | 231 Biochem. Biophys.                    |  |  |
|               | Res. Commun. 651 (1997)                  |  |  |
| EBI1          | 23 Genomics 643 (1994)                   |  |  |
| EBI2          | 67 J. Virol. 2209 (1993)                 |  |  |
| ETBR-LP2      | 424 FEBS Lett. 193 (1998)                |  |  |
| GPCR-CNS      | 54 Brain Res. Mol. Brain Res. 152 (1998) |  |  |
|               | 45 Genomics 68 (1997)                    |  |  |
| GPR-NGA       | 394 FEBS Lett. 325 (1996)                |  |  |
| H9            | 386 FEBS Lett 219 (1996)                 |  |  |

- 7 -

| HBA954 | 1261 Biochim. Biophys. Acta 121 (1995) |  |  |
|--------|----------------------------------------|--|--|
| HG38   | 247 Biochem. Biophys.                  |  |  |
|        | Res. Commun. 266 (1998)                |  |  |
| HM74   | 5 Int. Immunol. 1239 (1993)            |  |  |
| OGR1   | 35 Genomics 397 (1996)                 |  |  |
| V28    | 163 Gene 295 (1995)                    |  |  |

5

As will be set forth and disclosed in greater detail below, utilization of a mutational cassette to modify the endogenous sequence of a human GPCR leads to a constitutively activated version of the human GPCR. These non-endogenous, constitutively activated versions of human GPCRs can be utilized, inter alia, for the screening of candidate compounds to directly identify compounds of of, e.g., therapeutic relevance.

#### SUMMARY OF THE INVENTION

Disclosed herein is a non-endogenous, human G protein-coupled receptor comprising

(a) as a most preferred amino acid sequence region (C-terminus to N-terminus orientation)

and/or (b) as a most preferred nucleic acid sequence region (3' to 5' orientation) transversing
the transmembrane-6 (TM6) and intracellular loop-3 (IC3) regions of the GPCR:

wherein:

20

- (1) P¹ is an amino acid residue located within the TM6 region of the GPCR, where P¹ is selected from the group consisting of (i) the endogenous GPCR¹s proline residue, and (ii) a nonendogenous amino acid residue other than proline;
- (2) AA<sub>15</sub> are 15 amino acids selected from the group consisting of

- 8 -

(a) the endogenous GPCR's amino acids (b) non-endogenous amino acid residues, and (c) a combination of the endogenous GPCR's amino acids and non-endogenous amino acids, excepting that none of the 15 endogenous amino acid residues that are positioned within the TM6 region of the GPCR is proline; and

(3) X is a non-endogenous amino acid residue located within the IC3 region of said GPCR, preferably selected from the group consisting of lysine, histitidine and arginine, and most preferably lysine, excepting that when the endogenous amino acid at position X is lysine, then X is an amino acid other than lysine, preferably alanine:

and/or

5

10

(b) Pcodon (AA-codon)15 Xcodon

15 wherein:

 Peodon is a nucleic acid sequence within the TM6 region of the GPCR, where Peodon encodes an amino acid selected from the group consisting of (i) the endogenous GPCR's proline residue, and (ii) a non-endogenous amino acid residue other than proline;
 (AA-codon)<sub>15</sub> are 15 codons encoding 15 amino acids selected

20

(AA-codon)<sub>15</sub> are 15 codons encoding 15 amino acids selected from the group consisting of (a) the endogenous GPCR's amino acids (b) non-endogenous amino acid residues and (c) a combination of the endogenous GPCR's amino acids and non-

-9-

(3)

5

10

endogenous amino acids, excepting that none of the 15 endogenous codons within the TM6 region of the GPCR encodes a proline amino acid residue; and

 $X_{\rm coden}$  is a nucleic acid encoding region residue located within the IC3 region of said GPCR, where  $X_{\rm coden}$  encodes a non-endogenous amino acid, preferably selected from the group consisting of lysine, hisitidine and arginine, and most preferably lysine, excepting that when the endogenous encoding region at position  $X_{\rm coden}$  encodes the amino acid lysine, then  $X_{\rm coden}$  encodes an amino acid other than lysine, preferably alanine.

The terms endogenous and non-endogenous in reference to these sequence cassettes are relative to the endogenous GPCR. For example, once the endogenous proline residue is located within the TM6 region of a particular GPCR, and the  $16^{th}$  amino acid therefrom is identified for mutation to constitutively activate the receptor, it is also possible to mutate the endogenous proline residue (i.e., once the marker is located and the  $16^{th}$  amino acid to be mutated is identified, one may mutate the marker itself), although it is most preferred that the proline residue not be mutated. Similarly, and while it is most preferred that  $AA_{15}$  be maintained in their endogenous forms, these amino acids may also be mutated. The only amino acid that must be mutated in the non-endogenous version of the human GPCR is X i.e., the endogenous amino acid that is 16 residues from  $P^1$  cannot be maintained in its endogenous form and must be mutated, as further disclosed herein. Stated again, while it is preferred that in the non-endogenous version of the human GPCR,  $P^1$  and  $AA_{15}$  remain in their endogenous forms (i.e., identical to their wild-type forms), once <math>X is identified and mutated, any and/or all of  $P^1$  and  $AA_{15}$  can be mutated. This applies to the nucleic

- 10 -

acid sequences as well. In those cases where the endogenous amino acid at position X is lysine, then in the non-endogenous version of such GPCR, X is an amino acid other than lysine, preferably alanine.

Accordingly, and as a hypothetical example, if the endogenous GPCR has the following

5 endogenous amino acid sequence at the above-noted positions:

P-AACCTTGGRRRDDDE -O

then any of the following exemplary and hypothetical cassettes would fall within the scope of the disclosure (non-endogenous amino acids are set forth in bold):

P-AACCTTGGRRRDDDE -K

10 P-AACCTTHIGRRDDDE -K

P-ADEETTGGRRRDDDE -A

P-LLKFMSTWZLVAAPO -K

A-LLKFMSTWZLVAAPO -K

It is also possible to add amino acid residues within AA<sub>15</sub>, but such an approach is not particularly

15 advanced. Indeed, in the most preferred embodiments, the only amino acid that differs in the nonendogenous version of the human GPCR as compared with the endogenous version of that GPCR
is the amino acid in position X; mutation of this amino acid itself leads to constitutive activation
of the receptor.

Thus, in particularly preferred embodiments, P<sup>1</sup> and P<sup>codem</sup> are endogenous proline and an 20 endogenous nucleic acid encoding region encoding proline, respectively; and X and X<sub>codem</sub> are non-endogenous lysine or alanine and a non-endogenous nucleic acid encoding region encoding lysine or alanine, respectively, with lysine being most preferred. Because it is most preferred that the non-endogenous versions of the human GPCRs which incorporate these mutations are

- 11 -

incorporated into mammalian cells and utilized for the screening of candidate compounds, the nonendogenous human GPCR incorporating the mutation need not be purified and isolated per se (i.e.,
these are incorporated within the cellular membrane of a mammalian cell), although such purified
and isolated non-endogenous human GPCRs are well within the purview of this disclosure. Genetargeted and transgenic non-human mammals (preferably rats and mice) incorporating the nonendogenous human GPCRs are also within the purview of this invention; in particular, genetargeted mammals are most preferred in that these animals will incorporate the non-endogenous
versions of the human GPCRs in place of the non-human mammal's endogenous GPCR-encoding
region (techniques for generating such non-human mammals to replace the non-human mammal's
protein encoding region with a human encoding region are well known; see, for example, U.S.
Patent No. 5,777,194.)

It has been discovered that these changes to an endogenous human GPCR render the

GPCR constitutively active such that, as will be further disclosed herein, the non-endogenous,
constitutively activated version of the human GPCR can be utilized for, inter alia, the direct

screening of candidate compounds without the need for the endogenous ligand. Thus, methods
for using these materials, and products identified by these methods are also within the purview of
the following disclosure.

# BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows a generalized structure of a G protein-coupled receptor with the numbers

assigned to the transmembrane helixes, the intracellular loops, and the extracellular loops.

Figure 2 schematically shows the two states, active and inactive, for a typical G protein coupled receptor and the linkage of the active state to the second messenger transduction pathway.

- 12 -

Figure 3 is a sequence diagram of the preferred vector pCMV, including restriction enzymen site locations.

Figure 4 is a diagrammatic representation of the signal measured comparing pCMV, nonendogenous, constitutively active GPR30 inhibition of GPR6-mediated activation of CRE-Luc
reporter with endogenous GPR30 inhibition of GPR6-mediated activation of CRE-Luc
reporter.

Figure 5 is a diagrammatic representation of the signal measured comparing pCMV, nonendogenous, constitutively activated GPR17 inhibition of GPR3-mediated activation of CRELuc reporter with endogenous GPR17 inhibition of GPR3-mediated activation of CRE-Luc

10 reporter.

Figure 6 provides diagrammatic results of the signal measured comparing control pCMV, endogenous APJ and non-endogenous APJ.

Figure 7 provides an illustration of  $IP_3$  production from non-endogenous human 5-  $HT_{2A}$  receptor as compared to the endogenous version of this receptor.

Figure 8 are dot-blot format results for GPR1 (8A), GPR30 (8B) and APJ (8C).

#### DETAILED DESCRIPTION

The scientific literature that has evolved around receptors has adopted a number of terms
to refer to ligands having various effects on receptors. For clarity and consistency, the following
definitions will be used throughout this patent document. To the extent that these definitions
20 conflict with other definitions for these terms, the following definitions shall control:

AGONISTS shall mean compounds that activate the intracellular response when they bind to the receptor, or enhance GTP binding to membranes.

- 13 
AMINO ACID ABBREVIATIONS used herein are set below:

|    | ALANINE       | ALA | A   |
|----|---------------|-----|-----|
|    | ARGININE      | ARG | R   |
|    | ASPARAGINE    | ASN | N   |
| 5  | ASPARTIC ACID | ASP | D   |
|    | CYSTEINE      | CYS | С   |
|    | GLUTAMIC ACID | GLU | Е   |
|    | GLUTAMINE     | GLN | Q   |
|    | GLYCINE       | GLY | G   |
| 10 | HISTIDINE     | HIS | Н   |
|    | ISOLEUCINE    | ILE | I   |
|    | LEUCINE       | LEU | L   |
|    | LYSINE        | LYS | K   |
|    | METHIONINE    | MET | M   |
| 15 | PHENYLALANINE | PHE | F   |
|    | PROLINE       | PRO | . P |
|    | SERINE        | SER | S   |
|    | THREONINE     | THR | T   |
|    | TRYPTOPHAN    | TRP | w   |
| 20 | TYROSINE      | TYR | Y   |
|    | VALINE        | VAL | v   |
|    |               |     |     |

25

30

PARTIAL AGONISTS shall mean compounds which activate the intracellular response when they bind to the receptor to a lesser degree/extent than do agonists, or enhance GTP binding to membranes to a lesser degree/extent than do agonists

ANTAGONIST shall mean compounds that competitively bind to the receptor at the same site as the agonists but which do not activate the intracellular response initiated by the active form of the receptor, and can thereby inhibit the intracellular responses by agonists or partial agonists. ANTAGONISTS do not diminish the baseline intracellular response in the absence of an agonist or partial agonist.

CANDIDATE COMPOUND shall mean a molecule (for example, and not limitation, a chemical compound) which is amenable to a screening technique. Preferably, the phrase

- 14 -

"candidate compound" does not include compounds which were publicly known to be compounds selected from the group consisting of inverse agonist, agonist or antagonist to a receptor, as previously determined by an indirect identification process ("indirectly identified compound"); more preferably, not including an indirectly identified compound which has previously been determined to have therapeutic efficacy in at least one mammal; and, most preferably, not including an indirectly identified compound which has previously been determined to have therapeutic utility in humans.

CODON shall mean a grouping of three nucleotides (or equivalents to nucleotides) which
generally comprise a nucleoside (adenosine (A), guanosine (G), cytidine (C), uridine (U) and
thymidine (T)) coupled to a phosphate group and which, when translated, encodes an amino acid.

COMPOUND EFFICACY shall mean a measurement of the ability of a compound to inhibit or stimulate receptor functionality, as opposed to receptor binding affinity. A preferred means of detecting compound efficacy is via measurement of, e.g., [ $^{25}$ S]GTP $\gamma$ S binding, as further disclosed in the Example section of this patent document.

CONSTITUTIVELY ACTIVATED RECEPTOR shall mean a receptor subject to constitutive receptor activation. In accordance with the invention disclosed herein, a non-endogenous, human constitutively activated G protein-coupled receptor is one that has been mutated to include the amino acid cassette P<sup>j</sup>AA<sub>15</sub>X, as set forth in greater detail below.

15

CONSTITUTIVE RECEPTOR ACTIVATION shall mean stabilization of a receptor

in the active state by means other than binding of the receptor with its endogenous ligand or a

chemical equivalent thereof. Preferably, a G protein-coupled receptor subjected to constitutive

receptor activation in accordance with the invention disclosed herein evidences at least a 10%

difference in response (increase or decrease, as the case may be) to the signal measured for

- 15 -

constitutive activation as compared with the endogenous form of that GPCR, more preferably, about a 25% difference in such comparative response, and most preferably about a 50% difference in such comparative response. When used for the purposes of directly identifying candidate compounds, it is most preferred that the signal difference be at least about 50% such that there is a sufficient difference between the endogenous signal and the non-endogenous signal to differentiate between selected candidate compounds. In most instances, the "difference" will be an increase in signal; however, with respect to Gs-coupled GPCRS, the "difference" measured is preferably a decrease, as will be set forth in greater detail below.

CONTACT or CONTACTING shall mean bringing at least two moieties together,

10 whether in an in vitro system or an in vivo system.

DIRECTLY IDENTIFYING or DIRECTLY IDENTIFIED, in relationship to the

phrase "candidate compound", shall mean the screening of a candidate compound against a

constitutively activated G protein-coupled receptor, and assessing the compound efficacy of such

compound. This phrase is, under no circumstances, to be interpreted or understood to be

15 encompassed by or to encompass the phrase "indirectly identifying" or "indirectly identified."

ENDOGENOUS shall mean a material that is naturally produced by the genome of the species. ENDOGENOUS in reference to, for example and not limitation, GPCR, shall mean that which is naturally produced by a human, an insect, a plant, a bacterium, or a virus. By contrast, the term NON-ENDOGENOUS in this context shall mean that which is not naturally produced by the genome of a species. For example, and not limitation, a receptor which is not constitutively active in its endogenous form, but when mutated by using the cassettes disclosed herein and thereafter becomes constitutively active, is most preferably referred to herein as a "non-endogenous, constitutively activated receptor." Both terms can be utilized to describe both "in

- 16 -

vivo" and "in vitro" systems. For example, and not limitation, in a screening approach, the endogenous or non-endogenous receptor may be in reference to an in vitro screening system whereby the receptor is expressed on the cell-surface of a mammalian cell. As a further example and not limitation, where the genome of a mammal has been manipulated to include a nonendogenous constitutively activated receptor, screening of a candidate compound by means of an in vivo system is viable.

HOST CELL shall mean a cell capable of having a Plasmid and/or Vector incorporated therein. In the case of a prokaryotic Host Cell, a Plasmid is typically replicated as an autonomous molecule as the Host Cell replicates (generally, the Plasmid is thereafter isolated for introduction 10 into a eukaryotic Host Cell); in the case of a eukaryotic Host Cell, a Plasmid is integrated into the cellular DNA of the Host Cell such that when the eukaryotic Host Cell replicates, the Plasmid replicates. Preferably, for the purposes of the invention disclosed herein, the Host Cell is eukaryotic, more preferably, mammalian, and most preferably selected from the group consisting of 293, 293T and COS-7 cells.

INDIRECTLY IDENTIFYING or INDIRECTLY IDENTIFIED means the traditional approach to the drug discovery process involving identification of an endogenous ligand specific for an endogenous receptor, screening of candidate compounds against the receptor for determination of those which interfere and/or compete with the ligand-receptor interaction, and assessing the efficacy of the compound for affecting at least one second messenger pathway 20 associated with the activated receptor.

15

INHIBIT or INHIBITING, in relationship to the term "response" shall mean that a response is decreased or prevented in the presence of a compound as opposed to in the absence of the compound.

- 17 -

INVERSE AGONISTS shall mean compounds which bind to either the endogenous form of the receptor or to the constitutively activated form of the receptor, and which inhibit the baseline intracellular response initiated by the active form of the receptor below the normal base level of activity which is observed in the absence of agonists or partial agonists, or decrease GTP binding to membranes. Preferably, the baseline intracellular response is inhibited in the presence of the inverse agonist by at least 30%, more preferably by at least 50%, and most preferably by at least 75%, as compared with the baseline response in the absence of the inverse agonist.

KNOWN RECEPTOR shall mean an endogenous receptor for which the endogenous ligand specific for that receptor has been identified.

10 LIGAND shall mean an endogenous, naturally occurring molecule specific for an endogenous, naturally occurring receptor.

amino acid sequence shall mean a specified change or changes to such endogenous sequences such that a mutated form of an endogenous, non-constitutively activated receptor evidences constitutive activation of the receptor. In terms of equivalents to specific sequences, a subsequent mutated form of a human receptor is considered to be equivalent to a first mutation of the human receptor if (a) the level of constitutive activation of the subsequent mutated form of the receptor is substantially the same as that evidenced by the first mutation of the receptor; and (b) the percent sequence (amino acid and/or nucleic acid) homology between the subsequent mutated form of the receptor and the first mutation of the receptor is at least about 80%, more preferably at least about 90% and most preferably at least 95%. Ideally, and owing to the fact that the most preferred cassettes disclosed herein for achieving constitutive activation includes a single amino acid and/or codon change between the endogenous and the non-endogenous forms of the GPCR (i.e. X or

- 18 -

X<sub>codon</sub>), the percent sequence homology should be at least 98%.

15

ORPHAN RECEPTOR shall mean an endogenous receptor for which the endogenous ligand specific for that receptor has not been identified or is not known.

PHARMACEUTICAL COMPOSITION shall mean a composition comprising at least one active ingredient, whereby the composition is amenable to investigation for a specified, efficacious outcome in a mammal (for example, and not limitation, a human). Those of ordinary skill in the art will understand and appreciate the techniques appropriate for determining whether an active ingredient has a desired efficacious outcome based upon the needs of the artisan.

PLASMID shall mean the combination of a Vector and cDNA. Generally, a Plasmid is 10 introduced into a Host Cell for the purpose of replication and/or expression of the cDNA as a protein.

STIMULATE or STIMULATING, in relationship to the term "response" shall mean that a response is increased in the presence of a compound as opposed to in the absence of the compound.

TRANSVERSE or TRANSVERSING, in reference to either a defined nucleic acid sequence or a defined amino acid sequence, shall mean that the sequence is located within at least two different and defined regions. For example, in an amino acid sequence that is 10 amino acid moieties in length, where 3 of the 10 moieties are in the TM6 region of a GPCR and the remaining 7 moieties are in the IC3 region of the GPCR, the 10 amino acid moiety can be described as 20 transversing the TM6 and IC3 regions of the GPCR.

VECTOR in reference to cDNA shall mean a circular DNA capable of incorporating at least one cDNA and capable of incorporation into a Host Cell.

The order of the following sections is set forth for presentational efficiency and is not

- 19 -

intended, nor should be construed, as a limitation on the disclosure or the claims to follow.

#### A. Introduction

The traditional study of receptors has always proceeded from the a priori assumption (historically based) that the endogenous ligand must first be identified before discovery could proceed to find antagonists and other molecules that could affect the receptor. Even in cases where an antagonist might have been known first, the search immediately extended to looking for the endogenous ligand. This mode of thinking has persisted in receptor research even after the discovery of constitutively activated receptors. What has not been heretofore recognized is that it is the active state of the receptor that is most useful for discovering agonists, partial agonists, and inverse agonists of the receptor. For those diseases which result from an overly active receptor or an under-active receptor, what is desired in a therapeutic drug is a compound which acts to diminish the active state of a receptor or enhance the activity of the receptor, respectively, not necessarily a drug which is an antagonist to the endogenous ligand. This is because a compound that reduces or enhances the activity of the active receptor state need not bind at the same site as the endogenous ligand. Thus, as taught by a method of this invention, any scarch for therapeutic compounds should start by screening compounds against the ligand-independent active state.

Screening candidate compounds against non-endogenous, constitutively activated GPCRs allows for the direct identification of candidate compounds which act at these cell surface receptors, without requiring any prior knowledge or use of the receptor's endogenous ligand. By determining areas within the body where the endogenous version of such GPCRs are expressed and/or over-expressed, it is possible to determine related disease/disorder states which are associated with the expression and/or over-expression of these receptors; such an approach is disclosed in this patent document.

- 20 -

# B. Disease/Disorder Identification and/or Selection

Most preferably, inverse agonists to the non-endogenous, constitutively activated GPCRs can be identified using the materials of this invention. Such inverse agonists are ideal candidates as lead compounds in drug discovery programs for treating diseases related to these receptors.

5 Because of the ability to directly identify inverse agonists, partial agonists or agonists to these receptors, thereby allowing for the development of pharmaceutical compositions, a search, for diseases and disorders associated with these receptors is possible. For example, scanning both diseased and normal tissue samples for the presence of these receptor now becomes more than an academic exercise or one which might be pursued along the path of identifying, in the case of an orphan receptor, an endogenous ligand. Tissue scans can be conducted across a broad range of healthy and diseased tissues. Such tissue scans provide a preferred first step in associating a specific receptor with a disease and/or disorder.

Preferably, the DNA sequence of the endogenous GPCR is used to make a probe for either radiolabeled cDNA or RT-PCR identification of the expression of the GPCR in tissue samples.

The presence of a receptor in a diseased tissue, or the presence of the receptor at elevated or decreased concentrations in diseased tissue compared to a normal tissue, can be preferably utilized to identify a correlation with that disease. Receptors can equally well be localized to regions of organs by this technique. Based on the known functions of the specific tissues to which the receptor is localized, the putative functional role of the receptor can be deduced.

## C. A "Human GPCR Proline Marker" Algorithm and the Creation of Non-Endogenous, Constitutively-Active Human GPCRs

Among the many challenges facing the biotechnology arts is the unpredictability in gleaning genetic information from one species and correlating that information to another species

- 21 -

nowhere in this art does this problem evidence more annoying exacerbation than in the genetic sequences that encode nucleic acids and proteins. Thus, for consistency and because of the highly unpredictable nature of this art, the following invention is limited, in terms of mammals, to human GPCRs – applicability of this invention to other mammalian species, while a potential possibility,
 is considered beyond mere rote application.

In general, when attempting to apply common "rules" from one related protein sequence to another or from one species to another, the art has typically resorted to sequence alignment, i.e., sequences are linearized and attempts are then made to find regions of commonality between two or more sequences. While useful, this approach does not always prove to result in meaningful 10 information. In the case of GPCRs, while the general structural motif is identical for all GPCRs, the variations in lengths of the TMs, ECs and ICs make such alignment approaches from one GPCR to another difficult at best. Thus, while it may be desirable to apply a consistent approach to, e.g., constitutive activation from one GPCR to another, because of the great diversity in sequence length, fidelity, etc from one GPCR to the next, a generally applicable, and readily 15 successful mutational alignment approach is in essence not possible. In an analogy, such an approach is akin to having a traveler start a journey at point A by giving the traveler dozens of different maps to point B, without any scale or distance markers on any of the maps, and then asking the traveler to find the shortest and most efficient route to destination B only by using the maps. In such a situation, the task can be readily simplified by having (a) a common "place-20 marker" on each map, and (b) the ability to measure the distance from the place-marker to destination B - this, then, will allow the traveler to select the most efficient from starting-point A to destination B.

In essence, a feature of the invention is to provide such coordinates within human GPCRs

- 22 -

that readily allows for creation of a constitutively active form of the human GPCRs.

As those in the art appreciate, the transmembrane region of a cell is highly hydrophobic; thus, using standard hydrophobicity plotting techniques, those in the art are readily able to determine the TM regions of a GPCR, and specifically TM6 (this same approach is also applicable to determining the EC and IC regions of the GPCR). It has been discovered that within the TM6 region of human GPCRs, a common proline residue (generally near the middle of TM6), acts as a constitutive activation "marker." By counting 15 amino acids from the proline marker, the 16th amino acid (which is located in the IC3 loop), when mutated from its endogenous form to a non-endogenous form, leads to constitutive activation of the receptor. For convenience, we 10 refer to this as the "Human GPCR Proline Marker" Algorithm. Although the non-endogenous amino acid at this position can be any of the amino acids, most preferably, the non-endogenous amino acid is lysine. While not wishing to be bound by any theory, we believe that this position itself is unique and that the mutation at this location impacts the receptor to allow for constitutive activation.

We note that, for example, when the endogenous amino acid at the 16th position is already lysine (as is the case with GPR4 and GPR32), then in order for X to be a non-endogenous amino acid, it must be other than lysine; thus, in those situations where the endogenous GPCR has an endogenous lysine residue at the 16th position, the non-endogenous version of that GPCR preferably incorporates an amino acid other than lysine, preferably alanine, histidine and arginine, 20 at this position. Of further note, it has been determined that GPR4 appears to be linked to Gs and active in its endogenous form (data not shown).

15

Because there are only 20 naturally occurring amino acids (although the use of nonnaturally occurring amino acids is also viable), selection of a particular non-endogenous amino

- 23 -

acid for substitution at this 16<sup>th</sup> position is viable and allows for efficient selection of a nonendogenous amino acid that fits the needs of the investigator. However, as noted, the more
preferred non-endogenous amino acids at the 16<sup>th</sup> position are lysine, histidine, arginine and
alanine, with lysine being most preferred. Those of ordinary skill in the art are credited with the

ability to readily determine proficient methods for changing the sequence of a codon to achieve
a desired mutation.

It has also been discovered that occasionally, but not always, the proline residue marker will be preceded in TM6 by W2 (i.e., W2P<sup>1</sup>AA<sub>15</sub>X) where W is tryptophan and 2 is any amino acid residue.

Our discovery, amongst other things, negates the need for unpredictable and complicated sequence alignment approaches commonly used by the art. Indeed, the strength of our discovery, while an algorithm in nature, is that it can be applied in a facile manner to human GPCRs, with dexterous simplicity by those in the art, to achieve a unique and highly useful end-product, i.e., a constitutively activated version of a human GPCR. Because many years and significant amounts of money will be required to determine the endogenous ligands for the human GPCRs that the Human Genome project is uncovering, the disclosed invention not only reduces the time necessary to positively exploit this sequence information, but at significant cost-savings. This approach truly validates the importance of the Human Genome Project because it allows for the utilization of genetic information to not only understand the role of the GPCRs in, e.g., diseases, but also provides the opportunity to improve the human condition.

## D. Screening of Candidate Compounds

## 1. Generic GPCR screening assay techniques

When a G protein receptor becomes constitutively active, it couples to a G protein (e.g.,

- 24 -

Gq, Gs, Gi, Go) and stimulates release and subsequent binding of GTP to the G protein. The G protein then acts as a GTPase and slowly hydrolyzes the GTP to GDP, whereby the receptor, under normal conditions, becomes deactivated. However, constitutively activated receptors, including the non-endogenous, human constitutively active GPCRs of the present invention, continue to exchange GDP for GTP. A non-hydrolyzable analog of GTP, [<sup>15</sup>S]GTPyS, can be used to monitor enhanced binding to G proteins present on membranes which express constitutively activated receptors. It is reported that [<sup>25</sup>S]GTPyS can be used to monitor G protein coupling to membranes in the absence and presence of ligand. An example of this monitoring, among other examples well-known and available to those in the art, was reported by Traynor and Nahorski in 1995. The preferred use of this assay system is for initial screening of candidate compounds because the system is generically applicable to all G protein-coupled receptors regardless of the particular G protein that interacts with the intracellular domain of the receptor.

#### B 2. Specific GPCR screening assay techniques

C Once candidate compounds are identified using the "generic" G proteincoupled receptor assay (i.e., an assay to select compounds that are agonists, partial
agonists, or inverse agonists), further screening to confirm that the compounds have
interacted at the receptor site is preferred. For example, a compound identified by the
"generic" assay may not bind to the receptor, but may instead merely "uncouple" the G
protein from the intracellular domain.

#### 20 a. Gs and Gi

15

Gs stimulates the enzyme adenylyl cyclase. Gi (and Go), on the other hand, inhibit this enzyme. Adenylyl cyclase catalyzes the conversion of ATP to cAMP; thus,

- 25 -

constitutively activated GPCRs that couple the Gs protein are associated with increased cellular levels of cAMP. On the other hand, constitutively activated GPCRs that couple the Gi (or Go) protein are associated with decreased cellular levels of cAMP. See, generally, "Indirect Mechanisms of Synaptic Transmission," Chpt. 8, From Neuron To Brain (3rd Ed.) Nichols, J.G. et al eds. Sinauer Associates, Inc. (1992). Thus, assays that detect cAMP can be utilized to determine if a candidate compound is, e.g., an inverse agonist to the receptor (i.e., such a compound would decrease the levels of cAMP). A variety of approaches known in the art for measuring cAMP can be utilized; a most preferred approach relies upon the use of anti-cAMP antibodies in an ELISA-based format. Another type of assay that can be utilized is a whole cell second messenger reporter system assay. Promoters on genes drive the expression of the proteins that a particular gene encodes. Cyclic AMP drives gene expression by promoting the binding of a cAMP-responsive DNA binding protein or transcription factor (CREB) which then binds to the promoter at specific sites called cAMP response elements and drives the expression of the gene. Reporter systems can be constructed which have a promoter containing 15 multiple cAMP response elements before the reporter gene, e.g., β-galactosidase or luciferase. Thus, a constitutively activated Gs-linked receptor causes the accumulation of cAMP that then activates the gene and expression of the reporter protein. The reporter protein such as βgalactosidase or luciferase can then be detected using standard biochemical assays (Chen et al. 1995). With respect to GPCRs that link to Gi (or Go), and thus decrease levels of cAMP, an 20 approach to the screening of, e.g., inverse agonists, based upon utilization of receptors that link to Gs (and thus increase levels of cAMP) is disclosed in the Example section with respect to GPR17 and GPR30.

- 26 -

## b. Go and Gq.

Gq and Go are associated with activation of the enzyme phospholipase C,
which in turn hydrolyzes the phospholipid PIP<sub>2</sub>, releasing two intracellular messengers:
diacycloglycerol (DAG) and inistol 1,4,5-triphoisphate (IP<sub>3</sub>). Increased accumulation of IP<sub>3</sub>
is associated with activation of Gq- and Go-associated receptors. See, generally, "Indirect
Mechanisms of Synaptic Transmission," Chpt. 8, From Neuron To Brain (3<sup>rd</sup> Ed.) Nichols,
J.G. et al eds. Sinauer Associates, Inc. (1992). Assays that detect IP<sub>3</sub> accumulation can be
utilized to determine if a candidate compound is, e.g., an inverse agonist to a Gq- or Goassociated receptor (i.e., such a compound would decrease the levels of IP<sub>3</sub>). Gq-associated
receptors can also been examined using an AP1 reporter assay in that Gq-dependent
phospholipase C causes activation of genes containing AP1 elements; thus, activated Gqassociated receptors will evidence an increase in the expression of such genes, whereby
inverse agonists thereto will evidence a decrease in such expression, and agonists will
evidence an increase in such expression. Commercially available assays for such detection
are available.

# E. Medicinal Chemistry

Generally, but not always, direct identification of candidate compounds is preferably conducted in conjunction with compounds generated via combinatorial chemistry techniques, whereby thousands of compounds are randomly prepared for such analysis. Generally, the results of such screening will be compounds having unique core structures; thereafter, these compounds are preferably subjected to additional chemical modification around a preferred core structure(s) to further enhance the medicinal properties thereof. Such techniques are

- 27 -

known to those in the art and will not be addressed in detail in this patent document.

## F. Pharmaceutical Compositions

Candidate compounds selected for further development can be formulated into pharmaceutical compositions using techniques well known to those in the art. Suitable

pharmaceutically-acceptable carriers are available to those in the art; for example, see Remington's

Pharmaceutical Sciences, 16th Edition, 1980, Mack Publishing Co., (Oslo et al., eds.)

## G. Other Utility

Although a preferred use of the non-endogenous versions of the disclosed human GPCRs is for the direct identification of candidate compounds as inverse agonists, agonists or partial agonists (preferably for use as pharmaceutical agents), these receptors can also be utilized in research settings. For example, in vitro and in vivo systems incorporating these receptors can be utilized to further elucidate and understand the roles of the receptors in the human condition, both normal and diseased, as well understanding the role of constitutive activation as it applies to understanding the signaling cascade. A value in these non-endogenous receptors is that their utility as a research tool is enhanced in that, because of their unique features, the disclosed receptors can be used to understand the role of a particular receptor in the human body before the endogenous ligand therefor is identified. Other uses of the disclosed receptors will become apparent to those in the art based upon, inter alia, a review of this patent document.

#### EXAMPLES

The following examples are presented for purposes of elucidation, and not limitation, of the present invention. Following the teaching of this patent document that a mutational cassette may be utilized in the IC3 loop of human GPCRs based upon a position relative to a proline residue in TM6 to constitutively activate the receptor, and while specific nucleic acid

- 28 -

and amino acid sequences are disclosed herein, those of ordinary skill in the art are credited with the ability to make minor modifications to these sequences while achieving the same or substantially similar results reported below. Particular approaches to sequence mutations are within the purview of the artisan based upon the particular needs of the artisan.

## 5 Example 1 Preparation of Endogenous Human GPCRs

A variety of GPCRs were utilized in the Examples to follow. Some endogenous human GPCRs were graciously provided in expression vectors (as acknowledged below) and other endogenous human GPCRs were synthesized *de novo* using publicly-available sequence information.

## GPR1 (GenBank Accession Number: U13666)

The human cDNA sequence for GPR1 was provided in pReCMV by Brian
O'Dowd (University of Toronto). GPR1 cDNA (1.4kB fragment) was excised from the pReCMV
vector as a Ndel-Xbal fragment and was subcloned into the Ndel-Xbal site of pCMV vector (see
15 Figure 3). Nucleic acid (SEQ.ID.NO.: 1) and amino acid (SEQ.ID.NO.: 2) sequences for human
GPR1 were thereafter determined and verified

## GPR4 (GenBank Accession Numbers: L36148, U35399, U21051)

The human cDNA sequence for GPR4 was provided in pRcCMV by Brian
O'Dowd (University of Toronto). GPR1 cDNA (1.4kB fragment) was excised from the pRcCMV
20 vector as an ApaI(blunted)-XbaI fragment and was subcloned (with most of the 5' untranslated
region removed) into HindIII(blunted)-XbaI site of pCMV vector. Nucleic acid (SEQ.ID.NO.: 3)
and amino acid (SEQ.ID.NO.: 4) sequences for human GPR4 were thereafter determined and
verified

## GPR5 (GenBank Accession Number: L36149)

- 29 -

The cDNA for human GPR5 was generated and cloned into pCMV expression vector as follows: PCR was performed using genomic DNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 µM of each primer, and 0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 64°C for 1 min; and 72°C for 1.5 min. The 5' PCR primer contained an EcoRI site with the sequence: 5'-TATGAATTCAGATGCTCTAAACGTCCCTGC-3' (SEQ.ID.NO.: 5) and the 3' primer contained BamHI site with the sequence: 5'-TCCGGATCCACCTGCACCTGCGCTGCACC-3' (SEQ.ID.NO.: 6).

The 1.1 kb PCR fragment was digested with EcoRI and BamHI and cloned into EcoRI-BamHI

# 4. GPR7 (GenBank Accession Number: U22491)

10 site of PCMV expression vector. Nucleic acid (SEQ.ID.NO.: 7) and amino acid (SEQ.ID.NO.:

8) sequences for human GPR5 were thereafter determined and verified.

The cDNA for human GPR7 was generated and cloned into pCMV expression vector as follows: PCR condition-PCR was performed using genomic DNA as template and rTth

15 polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 µM of each primer, and 0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 62°C for 1 min; and 72°C for 1 min and 20 sec. The 5° PCR primer contained a HindIII site with the sequence:

- 5'-GCAAGCTTGGGGGACGCCAGGTCGCCGGCT-3' (SEQ.ID.NO.: 9)
- 20 and the 3' primer contained a BamHI site with the sequence:
  - 5'-GCGGATCCGGACGCTGGGGGAGTCAGGCTGC-3' (SEQ.ID.NO.: 10).

The 1.1 kb PCR fragment was digested with HindIII and BamHI and cloned into HindIII-BamHI site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 11) and amino acid (SEQ.ID.NO.:

- 30 -

12) sequences for human GPR7 were thereafter determined and verified.

## 5. GPR8 (GenBank Accession Number: U22492)

The cDNA for human GPR8 was generated and cloned into pCMV expression vector as follows: PCR was performed using genomic DNA as template and rTth polymerase 

(Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 µM of each primer, and 
0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 62°C 

for 1 min; and 72°C for 1 min and 20 sec. The 5' PCR primer contained an EcoRI site with the 
sequence:

5'-CGGAATTCGTCAACGGTCCCAGCTACAATG-3' (SEQ.ID.NO.: 13).

10 and the 3' primer contained a BamHI site with the sequence:

5'-ATGGATCCCAGGCCCTTCAGCACCGCAATAT-3'(SEQ.ID.NO.: 14).

The 1.1 kb PCR fragment was digested with EcoRI and BamHI and cloned into EcoRI-BamHI site of PCMV expression vector. All 4 cDNA clones sequenced contained a possible polymorphism involving a change of amino acid 206 from Arg to Gln. Aside from this difference, nucleic acid (SEQ.ID.NO.:15) and amino acid (SEQ.ID.NO.:16) sequences for human GPR8 were thereafter determined and verified.

#### GPR9 (GenBank Accession Number: X95876)

The cDNA for human GPR9 was generated and cloned into pCMV expression vector as follows: PCR was performed using a clone (provided by Brian O'Dowd) as template and 20 pfu polymerase (Stratagene) with the buffer system provided by the manufacturer supplemented with 10% DMSO, 0.25 µM of each primer, and 0.5 mM of each of the 4 nucleotides. The cycle condition was 25 cycles of: 94°C for 1 min; 56°C for 1 min; and 72 °C for 2.5 min. The 5' PCR primer contained an EcoRI site with the sequence:

- 31 -

5'-ACGAATTCAGCCATGGTCCTTGAGGTGAGTGACCACCAAGTGCTAAAT-3'
(SEQ.ID.NO.: 17)

and the 3' primer contained a BamHI site with the sequence:

- 5'-GAGGATCCTGGAATGCGGGGAAGTCAG-3' (SEQ.ID.NO.: 18).
- 5 The 1.2 kb PCR fragment was digested with EcoRI and cloned into EcoRI-Smal site of PCMV expression vector. Nucleic acid (SEQ.ID.NO.: 19) and amino acid (SEQ.ID.NO.: 20) sequences for human GPR9 were thereafter determined and verified.

## GPR9-6 (GenBank Accession Number: U45982)

The cDNA for human GPR9-6 was generated and cloned into pCMV expression

10 vector as follows: PCR was performed using genomic DNA as template and rTth polymerase

(Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 µM of each primer, and

0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 62°C

for 1 min; and 72 °C for 1 min and 20 sec. The 5' PCR primer was kinased with the sequence:

5'-TTAAGCTTGACCTAATGCCATCTTGTGTCC-3' (SEQ.ID.NO.: 21)

15 and the 3' primer contained a BamHI site with the sequence:

20

5'-TTGGATCCAAAAGAACCATGCACCTCAGAG-3' (SEQ.ID.NO.: 22).

The 1.2 kb PCR fragment was digested with BamHI and cloned into EcoRV-BamHI site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 23) and amino acid (SEQ.ID.NO.: 24) sequences for human GPR9-6 were thereafter determined and verified.

## GPR10 (GenBank Accession Number: U32672)

The human cDNA sequence for GPR10 was provided in pRcCMV by Brian O'Dowd (University of Toronto). GPR10 cDNA (1.3kB fragment) was excised from the pRcCMV vector as an EcoRI-Xbal fragment and was subcloned into EcoRI-Xbal site of pCMV

- 32 -

vector. Nucleic acid (SEQ.ID.NO.: 25) and amino acid (SEQ.ID.NO.: 26) sequences for human GPR10 were thereafter determined and verified.

## 9. GPR15 (GenBank Accession Number: U34806)

The human cDNA sequence for GPR15 was provided in pCDNA3 by Brian 5 O'Dowd (University of Toronto). GPR15 cDNA (1.5kB fragment) was excised from the pCDNA3 vector as a HindIII-Bam fragment and was subcloned into HindIII-Bam site of pCMV vector. Nucleic acid (SEQ.ID.NO.: 27) and amino acid (SEQ.ID.NO.: 28) sequences for human GPR15 were thereafter determined and verified.

# 10. GPR17 (GenBank Accession Number: Z94154)

10

The cDNA for human GPR17 was generated and cloned into pCMV expression vector as follows: PCR was performed using genomic DNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 μM of each primer, and 0.2 mM of each 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 56°C for 1min and 72 °C for 1 min and 20 sec. The 5' PCR primer contained an EcoRI site with the 15 sequence:

5'-CTAGAATTCTGACTCCAGCCAAAGCATGAAT-3' (SEQ.ID.NO.: 29)and the 3' primer contained a BamHI site with the sequence:

5'-GCTGGATCCTAAACAGTCTGCGCTCGGCCT-3' (SEQ.ID.NO.: 30).

The 1.1 kb PCR fragment was digested with EcoRI and BamHI and cloned into EcoRI-BamHI 20 site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 31) and amino acid (SEQ.ID.NO.: 32) sequences for human GPR17 were thereafter determined and verified.

## 11. GPR18 (GenBank Accession Number: L42324)

The cDNA for human GPR18 was generated and cloned into pCMV expression

- 33 -

vector as follows: PCR was performed using genomic DNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer,  $0.25 \,\mu\text{M}$  of each primer, and  $0.2 \,\text{mM}$  of each of the 4 nucleotides. The cycle condition was 30 cycles of:  $94^{\circ}\text{C}$  for 1 min;  $30^{\circ}\text{C}$  for 1 min; and  $30^{\circ}\text{C}$  for 1 min and  $30^{\circ}\text{C}$  for 1 min

5 5'-ATAAGATGATCACCCTGAACAATCAAGAT -3' (SEQ.ID.NO.: 33)

and the 3' primer contained an EcoRI site with the sequence:

5'-TCCGAATTCATAACATTTCACTGTTTATATTGC-3' (SEO.ID.NO.: 34).

The 1.0 kb PCR fragment was digested with EcoRI and cloned into blunt-EcoRI site of pCMV expression vector. All 8 cDNA clones sequenced contained 4 possible polymorphisms involving changes of amino acid 12 from Thr to Pro, amino acid 86 from Ala to Glu, amino acid 97 from lle to Leu and amino acid 310 from Leu to Met. Aside from these changes, nucleic acid (SEQ.ID.NO.: 35) and amino acid (SEQ.ID.NO.: 36) sequences for human GPR 18 were thereafter determined and verified.

# 12. GPR20 (GenBank Accession Number: U66579)

- The cDNA for human GPR20 was generated and cloned into pCMV expression vector as follows: PCR was performed using genomic DNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 µM of each primer, and 0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 62°C for 1 min; 62°C
- 0 5'-CCAAGCTTCCAGGCCTGGGGTGTGCTGG-3' (SEQ.ID.NO.: 37) and the 3' primer contained a BamHI site with the sequence:

5'-ATGGATCCTGACCTTCGGCCCCTGGCAGA-3' (SEQ.ID.NO.: 38).

The 1.2 kb PCR fragment was digested with Baml-II and cloned into EcoRV-BamHI site of

- 34 -

PCMV expression vector. Nucleic acid (SEQ.ID.NO.: 39) and amino acid (SEQ.ID.NO.: 40) sequences for human GPR20 were thereafter determined and verified.

# 13. GPR21 (GenBank Accession Number: U66580)

The cDNA for human GPR21 was generated and cloned into pCMV expression

vector as follows: PCR was performed using genomic DNA as template and rTth polymerase

(Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 µM of each primer, and

0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 62°C

for 1 min; and 72°C for 1 min and 20 sec. The 5' PCR primer was kinased with the sequence:

5'-GAGAATTCACTCCTGAGCTCAAGATGAACT-3' (SEQ.ID.NO.: 41)

10 and the 3' primer contained a BamHI site with the sequence:

5'-CGGGATCCCCGTAACTGAGCCACTTCAGAT-3' (SEO.ID.NO.: 42).

The 1.1 kb PCR fragment was digested with BamHI and cloned into EcoRV-BamHI site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 43) and amino acid (SEQ.ID.NO.: 44) sequences for human GPR21 were thereafter determined and verified.

## 14. GPR22 (GenBank Accession Number: U66581)

15

The cDNA for human GPR22 was generated and cloned into pCMV expression vector as follows: PCR was performed using genomic DNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 µM of each primer, and 0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 50°C for 1 min; 30°C for 1 min; 50°C for 1 min; 30°C for 1.5 min. The 5° PCR primer was kinased with the sequence:

5'-TCCCCCGGGAAAAAAACCAACTGCTCCAAA-3' (SEQ.ID.NO.: 45)

5'-TAGGATCCATTTGAATGTGGATTTGGTGAAA-3' (SEO.ID.NO.: 46).

and the 3' primer contained a BamHI site with the sequence:

- 35 -

The 1.38 kb PCR fragment was digested with BamHI and cloned into EcoRV-BamHI site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 47) and amino acid (SEQ.ID.NO.: 48) sequences for human GPR22 were thereafter determined and verified.

### 15. GPR24 (GenBank Accession Number: U71092)

5 The cDNA for human GPR24 was generated and cloned into pCMV expression vector as follows: PCR was performed using genomic DNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 μM of each primer, and 0.2 mM of each 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 56°C for 1 min; and 72 °C for 1 min and 20 sec. The 5' PCR primer contains a HindIII site with the sequence:

5'-GTGAAGCTTGCCTCTGGTGCCTGCAGGAGG-3' (SEQ.ID.NO.: 49)

and the 3' primer contains an EcoRI site with the sequence:

5'-GCAGAATTCCCGGTGGCGTGTTGTGGTGCCC-3' (SEQ.ID.NO.: 50).

The 1.3 kb PCR fragment was digested with HindIII and EcoRI and cloned into HindIII-EcoRI

site of pCMV expression vector. The nucleic acid (SEQ.ID.NO.: 51) and amino acid sequence
(SEQ.ID.NO.: 52) for human GPR24 were thereafter determined and verified.

#### 16. GPR30 (GenBank Accession Number: U63917)

The cDNA for human GPR30 was generated and cloned as follows: the coding sequence of GPR30 (1128bp in length) was amplified from genomic DNA using the primers:

20 5'-GGCGGATCCATGGATGTGACTTCCCAA-3' (SEQ.ID.NO.: 53) and

5'-GGCGGATCCCTACACGGCACTGCTGAA-3' (SEQ.ID.NO.: 54).

The amplified product was then cloned into a commercially available vector, pCR2.1 (Invitrogen),

- 36 -

using a "TOPO-TA Cloning Kit" (Invitrogen, #K4500-01), following manufacturer instructions.

The full-length GPR30 insert was liberated by digestion with BamH1, separated from the vector by agarose gel electrophoresis, and purified using a Sephaglas Bandprep™ Kit (Pharmacia, #27-9285-01) following manufacturer instructions. The nucleic acid (SEQ.ID.NO.: 55) and amino acid sequence (SEQ.ID.NO.: 56) for human GPR30 were thereafter determined and verified.

#### 17. GPR31 (GenBank Accession Number: U65402)

The cDNA for human GPR31 was generated and cloned into pCMV expression vector as follows: PCR was performed using genomic DNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 µM of each primer, and 10 0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 58°C for 1 min; and 72°C for 2 min. The 5' PCR primer contained an EcoRI site with the sequence: 5'-AAGGAATTCACGGCCGGGTGATGCCATTCCC-3' (SEQ.ID.NO.: 57) and the 3' primer contained a BamHI site with the sequence: 5'-GGTGGATCCATAAACACGGGCGTTGAGGAC -3' (SEQ.ID.NO.: 58).

15 The 1.0 kb PCR fragment was digested with EcoRI and BamHI and cloned into EcoRI-BamHI site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 59) and amino acid (SEQ.ID.NO.: 60) sequences for human GPR31 were thereafter determined and verified.

## 18. GPR32 (GenBank Accession Number: AF045764)

The cDNA for human GPR32 was generated and cloned into pCMV expression

vector as follows: PCR was performed using genomic DNA as template and rTth polymerase

(Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 µM of each primer, and

0.2 mM of each 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 56°C for

1min; and 72 °C for 1 min and 20 sec. The 5' PCR primer contained an EcoR1 site with the

- 37 -

sequence:

5'-TAAGAATTCCATAAAAATTATGGAATGG-3' (SEQ.ID.NO.:243)

and the 3' primer contained a BamHI site with the sequence:

5'-CCAGGATCCAGCTGAAGTCTTCCATCATTC-3' (SEQ.ID.NO.: 244).

5 The 1.1 kb PCR fragment was digested with EcoRI and BamHI and cloned into EcoRI-BamHI site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 245) and amino acid (SEQ.ID.NO.: 246) sequences for human GPR32 were thereafter determined and verified.

#### 19. GPR40 (GenBank Accession Number: AF024687)

The cDNA for human GPR40 was generated and cloned into pCMV expression

10 vector as follows: PCR was performed using genomic DNA as template and rTth polymerase

(Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 µM of each primer, and

0.2 mM of each 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min, 65°C for

1min and 72 °C for 1 min and 10 sec. The 5' PCR primer contained an EcoRI site with the

sequence

15 5'-GCAGAATTCGGCGGCCCCATGGACCTGCCCCC-3' (SEQ.ID.NO.: 247)

and the 3' primer contained a BamHI site with the sequence

5'-GCTGGATCCCCCGAGCAGTGGCGTTACTTC-3' (SEQ.ID.NO.: 248).

The 1 kb PCR fragment was digested with EcoRI and BamHI and cloned into EcoRI-BamHI site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 249) and amino acid (SEQ.ID.NO.: 250)

20 sequences for human GPR40 were thereafter determined and verified.

#### 20. GPR41 (GenBank Accession Number AF024688)

The cDNA for human GPR41 was generated and cloned into pCMV expression vector as follows: PCR was performed using genomic DNA as template and rTth polymerase

- 38 -

(Perkin Elmer) with the buffer system provided by the manufacturer,  $0.25\,\mu\text{M}$  of each primer, and  $0.2\,\text{mM}$  of each 4 nucleotides. The cycle condition was 30 cycles of 94°C for 1 min, 65°C for 1 min and 72 °C for 1 min and 10 sec. The 5' PCR primer contained an HindIII site with the sequence:

## 5 5'-CTCAAGCTTACTCTCTCACCAGTGGCCAC-3' (SEQ.ID.NO.: 251)

and the 3' primer was kinased with the sequence

5'-CCCTCCTCCCCGGAGGACCTAGC-3' (SEQ.ID.NO.: 252).

The 1 kb PCR fragment was digested with HindIII and cloned into HindIII-blunt site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 253) and amino acid (SEQ.ID.NO.: 254)

10 sequences for human GPR41 were thereafter determined and verified.

#### 21. GPR43 (GenBank Accession Number AF024690)

The cDNA for human GPR43 was generated and cloned into pCMV expression vector as follows: PCR was performed using genomic DNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer,  $0.25\,\mu\text{M}$  of each primer, and

15 0.2 mM of each 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 65°C for 1 min; and 72 °C for 1 min and 10 sec. The 5' PCR primer contains an HindIII site with the sequence:

5'-TTTAAGCTTCCCCTCCAGGATGCTGCCGGAC-3' (SEQ.ID.NO.: 255) and the 3' primer contained an EcoRI site with the sequence:

20 5'-GGCGAATTCTGAAGGTCCAGGGAAACTGCTA-3' (SEQ.ID.NO. 256).

The 1 kb PCR fragment was digested with HindIII and EcoRI and cloned into HindIII-EcoRI site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 257) and amino acid (SEQ.ID.NO.: 258) sequences for human GPR43 were thereafter determined and verified.

- 39 -

#### 22. APJ (GenBank Accession Number: U03642)

Human APJ cDNA (in pRcCMV vector) was provided by Brian O'Dowd

(University of Toronto). The human APJ cDNA was excised from the pRcCMV vector as an

EcoRI-Xbal (blunted) fragment and was subcloned into EcoRI-Smal site of pCMV vector.

Nucleic acid (SEQ.ID.NO.: 61) and amino acid (SEQ.ID.NO.: 62) sequences for human APJ

were thereafter determined and verified

#### 23. BLR1 (GenBank Accession Number: X68149)

The cDNA for human BLR1 was generated and cloned into pCMV expression vector as follows: PCR was performed using thymus cDNA as template and rTth polymerase

10 (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 µM of each primer, and 0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 62°C for 1 min and 20 sec. The 5' PCR primer contained an EcoRI site with the sequence:

5'-TGAGAATTCTGGTGACTCACAGCCGGCACAG-3' (SEO.ID.NO.: 63):

15 and the 3' primer contained a BamHI site with the sequence:

20

5'-GCCGGATCCAAGGAAAAGCAGCAATAAAAGG-3' (SEQ.ID.NO.: 64). The 1.2 kb PCR fragment was digested with EcoRI and BamHI and cloned into EcoRI-BamHI site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 65) and amino acid (SEQ.ID.NO.: 66) sequences for human BLRI were thereafter determined and verified.

#### 24. CEPR (GenBank Accession Number: U77827)

The cDNA for human CEPR was generated and cloned into pCMV expression vector as follows: PCR was performed using genomic DNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 µM of each primer, and

- 40 -

0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 65°C for 1min; and 72 °C for 1 min and 20 sec. The 5' PCR primer was kinased with the sequence: 5'-CAAAGCTTGAAAGCTGCACGGTGCAGAGAC-3' (SEQ.ID.NO.:67) and the 3' primer contained a BamHI site with the sequence:

5 5'-GCGGATCCCGAGTCACACCCTGGCTGGGCC-3' (SEO.ID.NO.: 68).

The 1.2 kb PCR fragment was digested with BamHI and cloned into EcoRV-BamHI site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 69) and amino acid (SEQ.ID.NO.: 70) sequences for human CEPR were thereafter determined and verified.

#### 25. EBI1 (GenBank Accession Number: L31581)

The cDNA for human EBI1 was generated and cloned into pCMV expression vector as follows: PCR was performed using thymus cDNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 μM of each primer, and 0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 62°C for Imin; and 72 °C for 1 min and 20 sec. The 5' PCR primer contained an EcoRI site with the 15 sequence:

5'-ACAGAATTCCTGTGTGGTTTTACCGCCCAG-3' (SEQ.ID.NO.: 71)

and the 3' primer contained a BamHI site with the sequence:

10

5'-CTCGGATCCAGGCAGAAGAGTCGCCTATGG-3' (SEQ.ID.NO.: 72).

The 1.2 kb PCR fragment was digested with EcoRI and BamHI and cloned into EcoRI-BamHI

20 site of PCMV expression vector. Nucleic acid (SEQ.ID.NO.: 73) and amino acid (SEQ.ID.NO.:

74) sequences for human EBI1 were thereafter determined and verified.

## 26. EBI2 (GenBank Accession Number: L08177)

The cDNA for human EBI2 was generated and cloned into pCMV expression

- 41 -

vector as follows: PCR was performed using cDNA clone (graciously provided by Kevin Lynch, University of Virginia Health Sciences Center; the vector utilized was not identified by the source) as template and pfu polymerase (Stratagene) with the buffer system provided by the manufacturer supplemented with 10% DMSO, 0.25 μM of each primer, and 0.5 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 60°C for 1min; and 72°C for 1 min and 20 sec. The 5' PCR primer contained an EcoRI site with the sequence:

5'-CTGGAATTCACCTGGACCACCACTATGGATA-3' (SEQ.ID.NO.: 75) and the 3' primer contained a BamHI site with the sequence

5'-CTCGGATCCTGCAAAGTTTGTCATACAG TT-3' (SEQ.ID.NO.: 76).

10 The 1.2 kb PCR fragment was digested with EcoRI and BamHI and cloned into EcoRI-BamHI site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 77) and amino acid (SEQ.ID.NO.: 78) sequences for human EBI2 were thereafter determined and verified.

### 27. ETBR-LP2 (GenBank Accession Number: D38449)

The cDNA for human ETBR-LP2 was generated and cloned into pCMV

15 expression vector as follows: PCR was performed using brain cDNA as template and rTth
polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 µM of each
primer, and 0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of: 94°C for
1 min; 65°C for 1min; and 72 °C for 1.5 min. The 5° PCR contained an EcoRI site with the
sequence:

20 5'-CTGGAATTCTCCTGCTCATCCAGCCATGCGG -3' (SEQ.ID.NO.: 79) and the 3' primer contained a BamHI site with the sequence:
5'-CCTGGATCCCCACCCTACTGGGGCCTCAG -3' (SEQ.ID.NO.: 80).
The 1.5 kb PCR fragment was digested with EcoRI and BamHI and cloned into EcoRI-BamHI

- 42 -

site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 81) and amino acid (SEQ.ID.NO.: 82) sequences for human ETBR-LP2 were thereafter determined and verified.

### 28. GHSR (GenBank Accession Number: U60179)

The cDNA for human GHSR was generated and cloned into pCMV expression

- 5 vector as follows: PCR was performed using hippocampus cDNA as template and TaqPlus Precision polymerase (Stratagene) with the buffer system provided by the manufacturer, 0.25 µM of each primer, and 0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 68°C for 1 min; and 72 °C for 1 min and 10 sec. For first round PCR, the 5' PCR primer sequence was:
- 10 5'-ATGTGGAACGCGACGCCCAGCG-3' (SEQ.ID.NO.: 83)

and the 3' primer sequence was:

5'-TCATGTATTAATACTAGATTCT-3' (SEQ.ID.NO.: 84).

Two microliters of the first round PCR was used as template for the second round PCR where the 5' primer was kinased with sequence:

- 15 5'-TACCATGTGGAACGCGACGCCCAGCGAAGAGCCGGGGT-3'(SEQ.ID.NO.:85) and the 3' primer contained an EcoRI site with the sequence:
  - 5'-CGGAATTCATGTATTAATACTAGATTCTGTCCAGGCCCG-3'(SEQ.ID.NO.:86).

The 1.1 kb PCR fragment was digested with EcoRI and cloned into blunt-EcoRI site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 87) and amino acid (SEQ.ID.NO.: 88) sequences

20 for human GHSR were thereafter determined and verified.

### 29. GPCR-CNS (GenBank Accession Number: AFO17262)

The cDNA for human GPCR-CNS was generated and cloned into pCMV expression vector as follows: PCR was performed using brain cDNA as template and rTth

- 43 -

polymerase (Perkin Elmer) with the buffer system provided by the manufacturer,  $0.25\,\mu\text{M}$  of each primer, and  $0.2\,\text{mM}$  of each of the 4 nucleotides. The cycle condition was 30 cycles of:  $94^{\circ}\text{C}$  for 1 min;  $65^{\circ}\text{C}$  for 1 min; and  $72^{\circ}\text{C}$  for 2 min. The  $5^{\circ}$  PCR primer contained a HindIII site with the sequence:

5 5'-GCAAGCTTGTGCCCTCACCAAGCCATGCGAGCC-3' (SEQ.ID.NO.: 89) and the 3' primer contained an EcoRI site with the sequence:

5'-CGGAATTCAGCAATGAGTTCCGACAGAAGC-3' (SEQ.ID.NO.: 90).

The 1.9 kb PCR fragment was digested with HindIII and EcoRI and cloned into HindIII-EcoRI site of pCMV expression vector. All nine clones sequenced contained a potential polymorphism involving a S284C change. Aside from this difference, nucleic acid (SEQ.ID.NO.: 91) and amino acid (SEQ.ID.NO.: 92) sequences for human GPCR-CNS were thereafter determined and verified.

## 30. GPR-NGA (GenBank Accession Number: U55312)

The cDNA for human GPR-NGA was generated and cloned into pCMV expression vector as follows: PCR was performed using genomic DNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 µM of each primer, and 0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of 94°C for 1 min, 56°C for 1 min and 72°C for 1.5 min. The 5° PCR primer contained an EcoRI site with the sequence:

5'-CAGAATTCAGAGAAAAAAAGTGAATATGGTTTTT-3' (SEQ.ID.NO.: 93)

20 and the 3' primer contained a BamHI site with the sequence:

5'-TTGGATCCCTGGTGCATAACAATTGAAAGAAT-3' (SEQ.ID.NO.: 94).

The 1.3 kb PCR fragment was digested with EcoRI and BamHI and cloned into EcoRI-BamHI site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 95) and amino acid (SEQ.ID.NO.:

- 44 -

96) sequences for human GPR-NGA were thereafter determined and verified.

#### 31. H9 (GenBank Accession Number: U52219)

The cDNA for human HB954 was generated and cloned into pCMV expression vector as follows: PCR was performed using pituitary cDNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 µM of each primer, and 0.2 mM of each 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min, 62°C for 1 min and 72 °C for 2 min. The 5' PCR primer contains a HindIII site with the sequence: 5'-GGAAAGCTTAACGATCCCCAGGAGCAACAT-3' (SEQ.ID.NO.: 97) and the 3' primer contains a BamHI site with the sequence:

10 5'-CTGGGATCCTACGAGAGCATTTTTCACACAG-3' (SEQ.ID.NO.: 98).

The 1.9 kb PCR fragment was digested with HindIII and BamHI and cloned into HindIIIBamHI site of pCMV expression vector. When compared to the published sequences, a
different isoform with 12 bp in frame insertion in the cytoplasmic tail was also identified and
designated "H9b." Both isoforms contain two potential polymorphisms involving changes
of amino acid P320S and amino acid G448A. Isoform H9a contained another potential
polymorphism of amino acid S493N, while isoform H9b contained two additional potential
polymorphisms involving changes of amino acid I502T and amino acid A532T
(corresponding to amino acid 528 of isoform H9a). Nucleic acid (SEQ.ID.NO.: 99) and
amino acid (SEQ.ID.NO.: 100) sequences for human H9 were thereafter determined and
verified (in the section below, both isoforms were mutated in accordance with the Human
GPCR Proline Marker Algorithm).

#### 32. HB954 (GenBank Accession Number: D38449)

The cDNA for human HB954 was generated and cloned into pCMV expression

- 45 -

vector as follows: PCR was performed using brain cDNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer,  $0.25 \mu M$  of each primer, and 0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of  $94^{\circ}C$  for 1 min,  $58^{\circ}C$  for 1 min and  $72^{\circ}C$  for 2 min. The 5' PCR contained a HindIII site with the sequence:

5 5'-TCCAAGCTTCGCCATGGGACATAACGGGAGCT -3' (SEQ.ID.NO.: 101) and the 3' primer contained an EcoRI site with the sequence:

5'-CGTGAATTCCAAGAATTTACAATCCTTGCT -3' (SEO.ID.NO.: 102).

The 1.6 kb PCR fragment was digested with HindIII and EcoRI and cloned into HindIII
EcoRI site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 103) and amino acid

(SEO.ID.NO.: 104) sequences for human HB954 were thereafter determined and verified.

#### 33. HG38 (GenBank Accession Number: AF062006)

The cDNA for human HG38 was generated and cloned into pCMV expression vector as follows: PCR was performed using brain cDNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 µM of each primer, and 0.2 mM of each 4 nucleotides. The cycle condition was 30 cycles of 94°C for 1 min, 56°C for 1 min and 72°C for 1 min and 30 sec. Two PCR reactions were performed to separately obtain the 5' and 3' fragment. For the 5' fragment, the 5' PCR primer contained an HindIII site with the sequence: 5'-CCCAAGCTTCGGGCACCATGGACACCTCCC-3' (SEQ.ID.NO.: 259) and the 3' primer contained a BamHIsite with the sequence:

20 5'-ACAGGATCCAAATGCACAGCACTGGTAAGC-3' (SEQ.ID.NO.: 260).
This 5' 1.5 kb PCR fragment was digested with HindIII and BamHI and cloned into an HindIII-BamHI site of pCMV. For the 3' fragment, the 5' PCR primer was kinased with the sequence:
5'-CTATAACTGGGTTACATGGTTTAAC-3' (SEQ.ID.NO. 261)

- 46 -

and the 3' primer contained an EcoRI site with the sequence:

5'-TTTGAATTCACATATTAATTAGAGACATGG-3' (SEQ.ID.NO.: 262).

The 1.4 kb 3' PCR fragment was digested with EcoRI and subcloned into a blunt-EcoRI site of pCMV vector. The 5' and 3' fragments were then ligated together through a common EcoRV site to generate the full length cDNA clone. Nucleic acid (SEQ.ID.NO.: 263) and amino acid (SEQ.ID.NO.: 264) sequences for human HG38 were thereafter determined and verified.

#### 34. HM74 (GenBank Accession Number: D10923)

The cDNA for human HM74 was generated and cloned into pCMV expression vector as follows: PCR was performed using either genomic DNA or thymus cDNA (pooled) as 10 template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 µM of each primer, and 0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 65°C for 1 min; and 72°C for 1 min and 20 sec. The 5' PCR primer contained an EcoRI site with the sequence:

5'-GGAGAATTCACTAGGCGAGGCGCTCCATC-3' (SEQ.ID.NO.: 105)

15 and the 3' primer was kinased with the sequence:

5'-GGAGGATCCAGGAAACCTTAGGCCGAGTCC-3' (SEQ.ID.NO.:106).

The 1.3 kb PCR fragment was digested with EcoRI and cloned into EcoRI-Smal site of pCMV expression vector. Clones sequenced revealed a potential polymorphism involving a N94K change. Aside from this difference, nucleic acid (SEQ.ID.NO.: 107) and amino acid

(SEQ.ID.NO.: 108) sequences for human HM74 were thereafter determined and verified.

## 35. MIG (GenBank Accession Numbers: AFO44600 and AFO44601)

The cDNA for human MIG was generated and cloned into pCMV expression vector as follows: PCR was performed using genomic DNA as template and TaqPlus Precision

- 47 -

polymerase (Stratagene) for first round PCR or pfu polymerase (Stratagene) for second round PCR with the buffer system provided by the manufacturer, 0.25 μM of each primer, and 0.2 mM (TaqPlus Precision) or 0.5 mM (pfu) of each of the 4 nucleotides. When pfu was used, 10% DMSO was included in the buffer. The cycle condition was 30 cycles of: 94°C for 1 min; 65°C for 1 min; and 72 °C for: (a) 1 min for first round PCR; and (b) 2 min for second round PCR. Because there is an intron in the coding region, two sets of primers were separately used to generate overlapping 5° and 3° fragments. The 5° fragment PCR primers were:

5'-ACCATGGCTTGCAATGGCAGTGCGGCCAGGGGGCACT-3' (external sense) (SEQ.ID.NO.: 109)

10 and

5'-CGACCAGGACAAACAGCATCTTGGTCACTTGTCTCCGGC-3'(internal antisense)
(SEQ.ID.NO.: 110).

The 3' fragment PCR primers were:

5'-GACCAAGATGCTGTTTGTCCTGGTCGTGGTGTTTTGGCAT-3' (internal sense)

15 (SEQ.ID.NO.: 111) and

5'-CGGAATTCAGGATCGGTCTCTTGCTGCGCCT-3' (external antisense with an EcoRI site) (SEQ.ID.NO.: 112).

The 5' and 3' fragments were ligated together by using the first round PCR as template and the kinased external sense primer and external antisense primer to perform second round PCR. The

1.2 kb PCR fragment was digested with EcoRI and cloned into the blunt-EcoRI site of pCMV

expression vector. Nucleic acid (SEQ.ID.NO.: 113) and amino acid (SEQ.ID.NO.: 114)

sequences for human MIG were thereafter determined and verified.

36. OGR1 (GenBank Accession Number: U48405)

- 48 -

The cDNA for human OGR1 was generated and cloned into pCMV expression vector as follows: PCR was performed using genomic DNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 µM of each primer, and 0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 65°C for 1 min; and 72°C for 1 min and 20 sec. The 5° PCR primer was kinased with the sequence: 5°-GGAAGCTTCAGGCCCAAAGATGGGGAACAT-3° (SEQ.ID.NO.: 115): and the 3° primer contained a BamHI site with the sequence:

5'-GTGGATCCACCCGCGGAGGACCCAGGCTAG -3' (SEO.ID.NO.: 116).

The 1.1 kb PCR fragment was digested with BamHI and cloned into the EcoRV-BamHI site

of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 117) and amino acid (SEQ.ID.NO.:

118) sequences for human OGR1 were thereafter determined and verified.

#### 37. Serotonin 5HT,

The cDNA encoding endogenous human 5HT<sub>2A</sub> receptor was obtained by RT-PCR using human brain poly-A' RNA; a 5' primer from the 5' untranslated region with an Xho I 15 restriction site:

5'-GACCTCGAGTCCTTCTACACCTCATC-3' (SEQ.ID.NO: 119)

and a 3' primer from the 3' untranslated region containing an Xba I site:

5'-TGCTCTAGATTCCAGATAGGTGAAAACTTG-3' (SEQ.ID.NO: 120)

PCR was performed using either TaqPlus<sup>™</sup> precision polymerase (Stratagene) or rTth<sup>™</sup>

20 polymerase (Perkin Elmer) with the buffer system provided by the manufacturers, 0.25 µM of each primer, and 0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 57°C for 1 min; and 72°C for 2 min. The 1.5 kb PCR fragment was digested with Xba I and subcloned into Eco RV-Xba I site of pBluescript. The resultine cDNA clones were fully

- 49 -

sequenced and found to encode two amino acid changes from the published sequences. The first
one was a T25N mutation in the N-terminal extracellular domain; the second is an H452Y
mutation. Because cDNA clones derived from two independent PCR reactions using Taq
polymerase from two different commercial sources (TaqPlus<sup>TM</sup> from Stratagene and rTth<sup>TM</sup> Perkin

Elmer) contained the same two mutations, these mutations are likely to represent sequence
polymorphisms rather than PCR errors. With these exceptions, the nucleic acid (SEQ.ID.NO.:
121) and amino acid (SEQ.ID.NO.: 122) sequences for human 5HT<sub>2A</sub> were thereafter determined
and verified.

#### 38. Serotonin 5HT20

10

The cDNA encoding endogenous human 5HT<sub>2C</sub> receptor was obtained from human brain poly-A<sup>+</sup> RNA by RT-PCR. The 5' and 3' primers were derived from the 5' and 3' untranslated regions and contained the following sequences:

5'-GACCTCGAGGTTGCTTAAGACTGAAGC-3' (SEQ.ID.NO.: 123)

5'-ATTTCTAGACATATGTAGCTTGTACCG-3' (SEQ.ID.NO.: 124)

15 Nucleic acid (SEQ.ID.NO.: 125) and amino acid (SEQ.ID.NO.: 126) sequences for human 5HT<sub>2C</sub> were thereafter determined and verified

#### 39. V28 (GenBank Accession Number: U20350)

The cDNA for human V28 was generated and cloned into pCMV expression vector as follows: PCR was performed using brain cDNA as template and rTth polymerase (Perkin 20 Elmer) with the buffer system provided by the manufacturer, 0.25 µM of each primer, and 0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 65°C for 1 min; and 72 °C for 1 min and 20 sec. The 5' PCR primer contained a HindIII site with the sequence: 5'-GGTAAGCTTGGCAGTCCACGCCAGGCCTTC-3' (SEQ.ID.NO.: 127)

- 50 -

and the 3' primer contained an EcoRI site with the sequence:

#### 5'-TCCGAATTCTCTGTAGACACAAGGCTTTGG-3' (SEO.ID.NO.: 128)

The 1.1 kb PCR fragment was digested with HindIII and EcoRI and cloned into HindIII-EcoRI site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 129) and amino acid (SEQ.ID.NO.:

5 130) sequences for human V28 were thereafter determined and verified.

Example 2
PREPARATION OF NON-ENDOGENOUS HUMAN GPCRS

#### 1. Site-Directed Mutagenesis

Mutagenesis based upon the Human GPCR Proline Marker approach disclosed herein was

10 performed on the foregoing endogenous human GPCRs using Transformer Site-Directed

Mutagenesis Kit (Clontech) according to the manufacturer instructions. For this mutagenesis

approach, a Mutation Probe and a Selection Marker Probe (unless otherwise indicated, the probe

of SEQ.ID.NO.: 132 was the same throughout) were utilized, and the sequences of these for the

specified sequences are listed below in Table B (the parenthetical number is the SEQ. ID.NO.).

15 For convenience, the codon mutation incorporated into the human GPCR is also noted, in standard

For convenience, the codon mutation incorporated into the human GPCR is also noted, in standar form:

Table B

|    | Receptor Identifier<br>(Codon Mutation) | Mutation Probe Sequence<br>(5'-3')<br>(SEQ.ID.NO.) | Selection Marker Probe<br>Sequence (5'-3')<br>(SEQ.ID.NO.) |
|----|-----------------------------------------|----------------------------------------------------|------------------------------------------------------------|
| 20 | GPR1<br>(F245K)                         | GATCTCCAGTAGGCATAAGT<br>GGACAATTCTGG<br>(131)      | CTCCTTCGGTCCTCCTATCGT<br>TGTCAGAAG<br>(132)                |
|    | GPR4<br>(K223A)                         | AGAAGGCCAAGATCGCGCGG<br>CTGGCCCTCA<br>(133)        | CTCCTTCGGTCCTCCTATCGT<br>TGTCAGAAGT                        |
| 25 | GPR5<br>(V224K)                         | CGGCGCCACGCACGAAAAA<br>GCTCATCTTC                  | CTCCTTCGGTCCTCCTATCGT<br>TGTCAGAAGT                        |

|                                         | (134)                         |                                                |
|-----------------------------------------|-------------------------------|------------------------------------------------|
| GPR7                                    | GCCAAGAAGCGGGTGAAGTT          | CTCCTTCGGTCCTCCTATCGT                          |
| (T250K)                                 | CCTGGTGGTGGCA                 | TGTCAGAAGT                                     |
| (12501)                                 | (135)                         |                                                |
| CIPTO                                   |                               |                                                |
| GPR8                                    | CAGGCGGAAGGTG <u>AAA</u> GTCC | CTCCTTCGGTCCTCCTATCGT                          |
| (T259K)                                 | TGGTCCTCGT                    | TGTCAGAAGT                                     |
| a compa                                 | (136)                         |                                                |
| 30 GPR9                                 | CGGCGCCTGCGGGCCAAGCG          | CICCITCGGTCCTCCTATCGT                          |
| (M254K)                                 | GCTGGTGGTG                    | TGTCAGAAGT                                     |
| CDD 0 C                                 | (137)                         |                                                |
| GPR9-6                                  | CCAAGCACAAAGCC <u>AAG</u> AAA | CICCTICGGTCCTCCTATCGT                          |
| (L241K)                                 | GTGACCATCAC                   | TGTCAGAAGT                                     |
|                                         | (138)                         |                                                |
| GPR10                                   | GCGCCGGCGCACCAAATGCT          | CTCCTTCGGTCCTCCTATCGT                          |
|                                         | TGCTGGTGGT                    | TGTCAGAAGT                                     |
| 35 (F276K)                              | (139)                         | IGICAGAAGI                                     |
|                                         | 1 /2007                       |                                                |
| GPR15                                   | CAAAAAGCTGAAGAAATCTA          | CTCCTTCGGTCCTCCTATCGT                          |
| (1240K)                                 | AGAAGATCATCTTTATTGTCG         | TGTCAGAAGT                                     |
| (= 1011)                                | (140)                         |                                                |
| GPR17                                   | CAAGACCAAGGCAAAACGCA          | CTCCTTCGGTCCTCCTATCGT                          |
| (V234K)                                 | TGATCGCCAT                    | TGTCAGAAGT                                     |
| 1                                       | (141)                         |                                                |
| 40 GPR18                                | GTCAAGGAGAAGTCCAAAAG          | CTCCTTCGGTCCTCCTATCGT                          |
| (I231K)                                 | GATCATCATC                    | TGTCAGAAGT                                     |
| (ILUTIK)                                | (142)                         |                                                |
| GPR20                                   | CGCCGCGTGCGGGCCAAGCA          | CICCTICGGTCCTCCTATCGT                          |
| (M240K)                                 | GCTCCTGCTC                    | TGTCAGAAGT                                     |
|                                         | (143)                         |                                                |
| GPR21                                   | CCTGATAAGCGCTAT <u>AAA</u> AT | CTCCTTCGGTCCTCCTATCGT                          |
| 45 (A251K)                              | GGTCCTGTTTCGA                 | TGTCAGAAGT                                     |
|                                         | (144)                         |                                                |
| GPR22                                   | GAAAGACAAAAGAGAGTCA           | CTROCTED S S S S S S S S S S S S S S S S S S S |
|                                         | AGAGGATGTCTTTATTG             | CTCCTTCGGTCCTCCTATCGT                          |
| (F312K)                                 | (145)                         | TGTCAGAAGT                                     |
| GPR24                                   | CGGAGAAAGAGGGTGAAAC           | CTCCTTCGGTCCTCCTATCGT                          |
| (T304K)                                 | GCACAGCCATCGCC                | TGTCAGAAGT                                     |
| (130416)                                | (146)                         | TOTCHONNOT                                     |
| 0 GPR30                                 | alternate approach; see below | alternate approach; see below                  |
| (L258K)                                 |                               | anomine approach, see below                    |
| GPR31                                   | AAGCTTCAGCGGGCCAAGGC          | CTCCTTCGGTCCTCCTATCGT                          |
|                                         | ACTGGTCACC                    | TGTCAGAAGT                                     |
| (Q221K)                                 | (147)                         | IGICAGAAGI                                     |
| GPR32                                   | CATGCCAACCGGCCCGCGAG          | ACCAGCAGCAGCCTCGCGGG                           |
| 5 (K255A)                               | GCTGCTGCTGGT                  | CCGGTTGGCATG                                   |
| ]                                       | (279)                         | (280)                                          |
| GPR40                                   | CGGAAGCTGCGGGCCAAATG          | CTCCTTCGGTCCTCCTATCGT                          |
| (A223K)                                 | GGTGGCCGGC                    | TGTCAGAAGT                                     |
| (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | (265)                         |                                                |
| GPR41                                   | CAGAGGAGGGTGAAGGGGCT          | CTCCTTCGGTCCTCCTATCGT                          |
|                                         | GTTGGCG                       | TGTCAGAAGT                                     |
| 1                                       | 1 311 3000                    | TOTCAGAAGT                                     |

| (A223K)                                  | (266)                                                                |                                             |
|------------------------------------------|----------------------------------------------------------------------|---------------------------------------------|
| GPR43                                    | GGCGGCGCGAGCCAAGGGG                                                  | CTCCTTCGGTCCTCCTATCGT                       |
| (V221K)                                  | CTGGCTGTGG<br>(267)                                                  | TGTCAGAAGT                                  |
| APJ<br>5 (L247K)                         | alternate approach; see below                                        | alternate approach; see below               |
| BLR1<br>(V258K)                          | CAGCGGCAGAAGGCA <u>AAA</u> A<br>GGGTGGCCATC<br>(148)                 | CTCCTTCGGTCCTCCTATCGT<br>TGTCAGAAGT         |
| CEPR<br>(L258K)                          | CGGCAGAAGGCG <u>AAG</u> CGCAT<br>GATCCTCGCG<br>(149)                 | CTCCTTCGGTCCTCCTATCGT<br>TGTCAGAAGT         |
| 10 EBI1<br>(I262K)                       | GAGCGCAACAAGGCC <u>AAA</u> A<br>AGGTGATCATC<br>(150)                 | CTCCTTCGGTCCTCCTATCGT<br>TGTCAGAAGT         |
| EBI2<br>(L243K)                          | GGTGTAAACAAAAAGGCT <u>AA</u><br><u>A</u> AACACAATTATTCTTATT<br>(151) | CTCCTTCGGTCCTCCTATCGT<br>TGTCAGAAGT         |
| ETBR-LP2<br>15 (N358K)                   | GAGAGCCAGCTC <u>AAG</u> AGCAC<br>CGTGGTG<br>(152)                    | CTCCTTCGGTCCTCCTATCGT<br>TGTCAGAAGT         |
| GHSR<br>(V262K)                          | CCACAAGCAAACC <u>AAG</u> AAAA<br>TGCTGGCTGT<br>(153)                 | CTCCTTCGGTCCTCCTATCGT<br>TGTCAGAAGT         |
| GPCR-CNS<br>(N491K)                      | CTAGAGAGTCAGATGAAGTG<br>TACAGTAGTGGCAC<br>(155)                      | CTCCTTCGGTCCTCCTATCGT<br>TGTCAGAAGT         |
| 20 GPR-NGA<br>(1275K)                    | CGGACAAAAGTGAAAACT <u>AA</u> AAAGATGTTCCTCATT (156)                  | CTCCTTCGGTCCTCCTATCGT<br>TGTCAGAAGT         |
| H9a and H9b<br>(F236K)                   | GCTGAGGTTCGCAAT <u>AAA</u> CT<br>AACCATGTTTGTG<br>(157)              | CTCCTTCGGTCCTCCTATCGT<br>TGTCAGAAGT         |
| HB954<br>25 (H265K)                      | GGGAGGCCGAGCTG <u>AAA</u> GCC<br>ACCCTGCTC<br>(158)                  | CTCCTTCGGTCCTCCTATCGT<br>TGTCAGAAGT         |
| HG38<br>(V765K)                          | GGGACTGCTCTATG <u>AAA</u> AAA<br>CACATTGCCCTG<br>(268)               | CATCAAGTGTATCATGTGCC<br>AAGTACGCCC<br>(154) |
| HM74<br>(I230K)                          | CAAGATCAAGAGAGCC <u>AAA</u> A<br>CCTTCATCATG<br>(159)                | CTCCTTCGGTCCTCCTATCGT<br>TGTCAGAAGT         |
| 0 MIG<br>(T273K)                         | CCGGAGACAAGTG <u>AAG</u> AAG<br>ATGCTGTTTGTC<br>(160)                | CTCCTTCGGTCCTCCTATCGT<br>TGTCAGAAGT         |
| OGR1<br>(Q227K)                          | GCAAGGACCAGATC <u>AAG</u> CGG<br>CTGGTGCTCA<br>(161)                 | CTCCTTCGGTCCTCCTATCGT<br>TGTCAGAAGT         |
| Serotonin 5HT <sub>2A</sub><br>5 (C322K) | alternate approach; see below                                        | alternate approach; see below               |
| Serotonin 5HT <sub>2C</sub><br>(S310K)   | alternate approach; see below                                        | alternate approach; see below               |

- 53 -

| V28     | CAAGAAAGCCAAAGCC <u>AAG</u> | CTCCTTCGGTCCTCCTATCGT |
|---------|-----------------------------|-----------------------|
| (1230K) | AAACTGATCCTTCTG             | TGTCAGAAGT            |
| (       | (162)                       |                       |

The non-endogenous human GPCRs were then sequenced and the derived and verified nucleic acid and amino acid sequences are listed in the accompanying "Sequence Listing" appendix

5 to this patent document, as summarized in Table C below:

Table C

| Mutated GPCR | Nucleic Acid Sequence | Amino Acid Sequence |
|--------------|-----------------------|---------------------|
| CDD          | Listing               | Listing             |
| GPR1         | SEQ.ID.NO.: 163       | SEQ.ID.NO.: 164     |
| (F245K)      |                       |                     |
| Ø GPR4       | SEQ.ID.NO.: 165       | SEQ.ID.NO.: 166     |
| (K223A)      |                       |                     |
| GPR5         | SEQ.ID.NO.: 167       | SEQ.ID.NO.: 168     |
| (V224K)      |                       |                     |
| GPR7         | SEQ.ID.NO.: 169       | SEQ.ID.NO.: 170     |
| \$ (T250K)   |                       |                     |
| GPR8         | SEQ.ID.NO.: 171       | SEQ.ID.NO.: 172     |
| (T259K)      |                       |                     |
| GPR9         | SEO.ID.NO.: 173       | SEO.ID.NO.: 174     |
| (M254K)      |                       |                     |
| 0 GPR9-6     | SEO.ID.NO.: 175       | SEQ.ID.NO.: 176     |
| (L241K)      |                       |                     |
| GPR10        | SEO.ID.NO.: 177       | SEO.ID.NO.: 178     |
| (F276K)      | 5202.210.111          | 5=2,121,101,170     |
| GPR15        | SEO.ID.NO.: 179       | SEO.ID.NO.: 180     |
| 5 (I240K)    | BEQUESTION 179        | DEQ.10.10 100       |
| GPR17        | SEO.ID.NO.: 181       | SEO.ID.NO.: 182     |
| (V234K)      | BEQ.IB.ING 101        | BEQ.IB10 162        |
| GPR18        | SEO.ID.NO.: 183       | SEO.ID.NO.: 184     |
| (I231K)      |                       | 5=2,==1011101       |
| 0 GPR20      | SEQ.ID.NO.: 185       | SEO.ID.NO.: 186     |
| (M240K)      | SEQ.ID.I.VO 103       | BEQ.IB.110 180      |
| GPR21        | SEQ.ID.NO.: 187       | SEO.ID.NO.: 188     |
| (A251K)      | 3EQ.ID.NO 187         | 3EQ.ID.NO 188       |
| GPR22        | SEO.ID.NO.: 189       | CEO ID NO : 100     |
|              | 2EG:ID:IAO:: 189      | SEQ.ID.NO.: 190     |
| 5 (F312K)    |                       |                     |
| GPR24        | SEQ.ID.NO.: 191       | SEQ.ID.NO.: 192     |
| (T304K))     |                       | 200 200 100         |
| GPR30        | SEQ.ID.NO.: 193       | SEQ.ID.NO.: 194     |

| (L258K)                     |                 |                                         |
|-----------------------------|-----------------|-----------------------------------------|
| GPR31                       | SEO.ID.NO.; 195 | SEQ.ID.NO.: 196                         |
| (O221K)                     |                 | 52Q.12.110 150                          |
| GPR32                       | SEO.ID.NO.: 269 | SEQ.ID.NO.: 270                         |
| 5 (K255A)                   |                 |                                         |
| GPR40                       | SEO.ID.NO.: 271 | SEO.ID.NO.: 272                         |
| (A223K)                     |                 | Q=======                                |
| GPR41                       | SEQ.ID.NO.: 273 | SEQ.ID.NO.: 274                         |
| (A223K)                     |                 |                                         |
| 10 GPR43                    | SEQ.ID.NO.: 275 | SEQ.ID.NO.: 276                         |
| (V221K)<br>APJ              |                 |                                         |
| (L247K)                     | SEQ.ID.NO.: 197 | SEQ.ID.NO.: 198                         |
| BLR1                        | SEO.ID.NO.: 199 | (TOO TO VIO. AND                        |
| 15 (V258K)                  | SEQ.ID.NO.: 199 | SEQ.ID.NO.: 200                         |
| CEPR                        | SEO.ID.NO.: 201 | SEO.ID.NO.: 202                         |
| (L258K)                     | SEQ.ID.NO.: 201 | SEQ.ID.NO.: 202                         |
| EBI1                        | SEO.ID.NO.: 203 | SEQ.ID.NO.; 204                         |
| (1262K)                     | 5DQ.ID.I.10 205 | 52Q.25.110.1204                         |
| 20 EBI2                     | SEO.ID.NO.: 205 | SEO.ID.NO.: 206                         |
| (L243K)                     |                 |                                         |
| ETBR-LP2                    | SEQ.ID.NO.: 207 | SEQ.ID.NO.: 208                         |
| (N358K)                     |                 |                                         |
| GHSR                        | SEQ.ID.NO.: 209 | SEQ.ID.NO.: 210                         |
| .5 (V262K)                  |                 |                                         |
| GPCR-CNS                    | SEQ.ID.NO.: 211 | SEQ.ID.NO.: 212                         |
| (N491K)<br>GPR-NGA          |                 |                                         |
| (I275K)                     | SEQ.ID.NO.: 213 | SEQ.ID.NO.: 214                         |
| 0 H9a                       | SEO.ID.NO.: 215 | area made and                           |
| (F236K)                     | SEQ.ID.NO.: 215 | SEQ.ID.NO.: 216                         |
| H9b                         | SEO.ID.NO.: 217 | SEQ.ID.NO.: 218                         |
| (F236K)                     | 3EQ.ID.INO 217  | 3EQ.ID.NO.: 218                         |
| HB954                       | SEQ.ID.NO.: 219 | SEQ.ID.NO.; 220                         |
| 5 (H265K)                   |                 | (====================================== |
| HG38                        | SEO.ID.NO.: 277 | SEO.ID.NO.: 278                         |
| (V765K)                     | 220111011211    |                                         |
| HM74                        | SEQ.ID.NO.: 221 | SEQ.ID.NO.: 222                         |
| (I230K)                     |                 |                                         |
| 0 MIG                       | SEQ.ID.NO.: 223 | SEQ.ID.NO.: 224                         |
| (T273K)                     |                 |                                         |
| OGR1                        | SEQ.ID.NO.: 225 | SEQ.ID.NO.: 226                         |
| (Q227K)                     |                 |                                         |
| Serotonin 5HT <sub>2A</sub> | SEQ.ID.NO.: 227 | SEQ.ID.NO.: 228                         |
| 5 (C322K)                   |                 |                                         |
| Serotonin 5HT <sub>2C</sub> | SEQ.ID.NO.: 229 | SEQ.ID.NO.: 230                         |
| (S310K)                     |                 |                                         |
| V28                         | SEQ.ID.NO.: 231 | SEO.ID.NO.: 232                         |
| (I230K)                     |                 |                                         |

- 55 -

#### Alternate Mutation Approaches for Employment of the Proline Marker Algorithm: APJ; Serotonin 5HT<sub>2A</sub>; Serotonin 5HT<sub>3C</sub>; and GPR30

Although the above site-directed mutagenesis approach is particularly preferred, other approaches can be utilized to create such mutations; those skilled in the art are readily credited with selecting approaches to mutating a GPCR that fits within the particular needs of the artisan.

#### a. APJ

Preparation of the non-endogenous, human APJ receptor was accomplished by mutating L247K. Two oligonucleotides containing this mutation were synthesized:

5'- GGCTTAAGAGCATCATCGTGGTGCTGGTG-3' (SEQ.ID.NO.: 233 )

10 5'-GTCACCACCACCACCACGATGATGCTCTTAAGCC-3' (SEQ.ID.NO.: 234)

The two oligonucleotides were annealed and used to replace the NacI-BstEII fragment of human, endogenous APJ to generate the non-endogenous, version of human APJ.

#### b. Serotonin 5HT,

cDNA containing the point mutation C322K was constructed by utilizing the restriction

15 enzyme site Sph1 which encompasses amino acid 322. A primer containing the C322K mutation:

5'-CAAAGAAAGTACTGGGCATCGTCTTCTTCT-3' (SEQ.ID.NO: 235)

was used along with the primer from the 3' untranslated region of the receptor:

5'-TGCTCTAGATTCCAGATAGGTGAAAA CTTG-3' (SEQ.ID.NO.: 236)

to perform PCR (under the conditions described above). The resulting PCR fragment was then

20 used to replace the 3' end of endogenous 5HT24 cDNA through the T4 polymerase blunted Sph

#### c. Serotonin 5HT<sub>2C</sub>

I site.

The cDNA containing a S310K mutation was constructed by replacing the Sty I restriction fragment containing amino acid 310 with synthetic double stranded oligonucleotides that encode

- 56 -

the desired mutation. The sense strand sequence utilized had the following sequence:

5'-CTAGGGGCACCATGCAGGCTATCAACAATGAAAGAAAGCTAAGAAAGTC-3'
(SEQ. ID.NO.: 237)

and the antisense strand sequence utilized had the following sequence:

5 5'-CAAGGACTITCTTAGCTTTTCATTGTTGATAGCCTGCATGGTGCCC-3' (SEQ. ID. NO.: 238)

#### d. GPR30

Prior to generating non-endogenous GPR30, several independent pCR2.1/GPR30 isolates
were sequenced in their entirety in order to identify clones with no PCR-generated mutations. A

10 clone having no mutations was digested with EcoR1 and the endogenous GPR30 cDNA fragment
was transferred into the CMV-driven expression plasmid pCI-neo (Promega), by digesting pCINeo with EcoR1 and subcloning the EcoR1-liberated GPR30 fragment from pCR2.1/GPR30, to
generate pCI/GPR30. Thereafter, the leucine at codon 258 was mutated to a lysine using a QuickChange™ Site-Directed Mutagenesis Kit (Stratagene, #200518), according to manufacturer's

15 instructions, and the following primers:

5'-CGGCGGCAGAAGGCGAAACGCATGATCCTCGCGGT-3' (SEQ.ID.NO.: 239) and 5'-ACCGCGAGGATCATGCGTTTCGCCTTCTGC CGCCG-3' (SEQ.ID.NO.: 240)

## Example 3

#### Receptor (Endogenous and Mutated) Expression

20

Although a variety of cells are available to the art for the expression of proteins, it is most preferred that mammalian cells be utilized. The primary reason for this is predicated upon practicalities, i.e., utilization of, e.g., yeast cells for the expression of a GPCR, while possible,

- 57 -

introduces into the protocol a non-mammalian cell which may not (indeed, in the case of yeast, does not) include the receptor-coupling, genetic-mechanism and secretary pathways that have evolved for mammalian systems – thus, results obtained in non-mammalian cells, while of potential use, are not as preferred as that obtained from mammalian cells. Of the mammalian cells, COS-7, 293 and 293T cells are particularly preferred, although the specific mammalian cell utilized can be predicated upon the particular needs of the artisan.

Unless otherwise noted herein, the following protocol was utilized for the expression of the endogenous and non-endogenous human GPCRs. Table D lists the mammalian cell and number utilized (per 150mm plate) for GPCR expression.

10 Table D

| Receptor Name               | Mammalian Cell              |
|-----------------------------|-----------------------------|
| (Endogenous or Non-         | (Number Utilized)           |
| Endogenous)                 |                             |
| GPR17                       | 293 (2 x 10 <sup>4</sup> )  |
| GPR30                       | 293 (4 x 10 <sup>4</sup> )  |
| APJ                         | COS-7 (5X106)               |
| ETBR-LP2                    | 293 (1 x 10°)               |
|                             | 293T (1 x 10 <sup>7</sup> ) |
| GHSR                        | 293 (1 x 10 <sup>7</sup> )  |
|                             | 293T (1 x 10 <sup>7</sup> ) |
| MIG                         | 293 (1 x 10 <sup>7</sup> )  |
| Serotonin 5HT <sub>2A</sub> | 293T (1 x 10 <sup>7</sup> ) |
| Serotonin 5HT <sub>2c</sub> | 293T (1 x 10 <sup>7</sup> ) |

20

15

On day one, mammalian cells were plated out. On day two, two reaction tubes were prepared (the proportions to follow for each tube are per plate): tube A was prepared by mixing 20µg DNA (e.g., pCMV vector, pCMV vector with endogenous receptor cDNA, and pCMV vector with non-endogenous receptor cDNA.) in 1.2ml serum free DMEM (Irvine Scientific.

- 58 -

Irvine, CA); tube B was prepared by mixing 120µl lipofectamine (Gibco BRL) in 1.2ml serum free DMEM. Tubes A and B were then admixed by inversions (several times), followed by incubation at room temperature for 30-45min. The admixture is referred to as the "transfection mixture". Plated cells were washed with 1XPBS, followed by addition of 10ml serum free DMEM. 2.4ml of the transfection mixture was then added to the cells, followed by incubation for 4hrs at 37°C/5% CO<sub>2</sub>. The transfection mixture was then removed by aspiration, followed by the addition of 25ml of DMEM/10% Fetal Bovine Serum. Cells were then incubated at 37°C/5% CO<sub>2</sub>. After 72hr incubation, cells were then harvested and utilized for analysis.

## Gi-Coupled Receptors: Co-Transfection with Gs-Coupled Receptors

In the case of GPR30, it has been determined that this receptor couples the G protein Gi.

Gi is known to inhibit the enzyme adenylyl cyclase, which is necessary for catalyzing the conversion of ATP to cAMP. Thus, a non-endogenous, constitutively activated form of GPR30 would be expected to be associated with decreased levels of cAMP. Assay confirmation of a non-endogenous, constitutively activated form of GPR30 directly via measurement of decreasing levels of cAMP, while viable, can be preferably measured by cooperative use of a Gs-coupled receptor. For example, a receptor that is Gs-coupled will stimulate adenylyl cyclase, and thus will be associated with an increase in cAMP. The assignee of the present application has discovered that the orphan receptor GPR6 is an endogenous, constitutively activated GPCR. GPR6 couples to the Gs protein. Thus when co-transfected, one can readily verify that a putative GPR30-mutation leads to constitutive activation thereof: i.e., an endogenous, constitutively activated GPR6/endogenous, non-constitutively activated GPR30 cell will evidence an elevated level of cAMP when compared with an endogenous, constitutively active GPR6/non-endogenous, constitutively activated GPR30 (the latter evidencing a comparatively lower level of cAMP).

- 59 -

Assays that detect cAMP can be utilized to determine if a candidate compound is e.g., an inverse agonist to a Gs-associated receptor (i.e., such a compound would decrease the levels of cAMP) or a Gi-associated receptor (or a Go-associated receptor) (i.e., such a candidate compound would increase the levels of cAMP). A variety of approaches known in the art for measuring cAMP can 5 be utilized; a preferred approach relies upon the use of anti-cAMP antibodies. Another approach, and most preferred, utilizes a whole cell second messenger reporter system assay. Promoters on genes drive the expression of the proteins that a particular gene encodes. Cyclic AMP drives gene expression by promoting the binding of a cAMP-responsive DNA binding protein or transcription factor (CREB) which then binds to the promoter at specific sites called cAMP response elements 10 and drives the expression of the gene. Reporter systems can be constructed which have a promoter containing multiple cAMP response elements before the reporter gene, e.g., β-galactosidase or luciferase. Thus, an activated receptor such as GPR6 causes the accumulation of cAMP which then activates the gene and expression of the reporter protein. Most preferably, 293 cells are cotransfected with GPR6 (or another Gs-linked receptor) and GPR30 (or another Gi-linked receptor) 15 plasmids, preferably in a 1:1 ratio, most preferably in a 1:4 ratio. Because GPR6 is an endogenous, constitutively active receptor that stimulates the production of cAMP, GPR6 strongly activates the reporter gene and its expression. The reporter protein such as  $\beta$ -galactosidase or luciferase can then be detected using standard biochemical assays (Chen et al. 1995). Cotransfection of endogenous, constitutively active GPR6 with endogenous, non-constitutively active 20 GPR30 evidences an increase in the luciferase reporter protein. Conversely, co-transfection of endogenous, constitutively active GPR6 with non-endogenous, constitutively active GPR30 evidences a drastic decrease in expression of luciferase. Several reporter plasmids are known and available in the art for measuring a second messenger assay. It is considered well within the

- 60 -

skilled artisan to determine an appropriate reporter plasmid for a particular gene expression based primarily upon the particular need of the artisan. Although a variety of cells are available for expression, mammalian cells are most preferred, and of these types, 293 cells are most preferred. 293 cells were transfected with the reporter plasmid pCRE-Luc/GPR6 and non-endogenous, constitutively activated GPR30 using a Mammalian Transfection<sup>TM</sup> Kit (Stratagene, #200285) CaPO4 precipitation protocol according to the manufacturer's instructions (see, 28 Genomics 347 (1995) for the published endogenous GPR6 sequence). The precipitate contained 400ng reporter, 80ng CMV-expression plasmid (having a 1:4 GPR6 to endogenous GPR30 or non-endogenous GPR30 ratio) and 20ng CMV-SEAP (a transfection control plasmid encoding secreted alkaline phosphatase). 50% of the precipitate was split into 3 wells of a 96-well tissue culture dish (containing 4X10<sup>4</sup> cells/well); the remaining 50% was discarded. The following morning, the media was changed. 48 hr after the start of the transfection, cells were lysed and examined for luciferase activity using a Lucllie<sup>TM</sup> Kit (Packard, Cat. # 6016911) and Trilux 1450 Microbeta<sup>TM</sup> liquid scintillation and luminescence counter (Wallac) as per the vendor's instructions. The data were analyzed using GraphPad Prism 2.0a (GraphPad Software Inc.).

With respect to GPR17, which has also been determined to be Gi-linked, a modification of the foregoing approach was utilized, based upon, inter alia, use of another Gs-linked endogenous receptor, GPR3 (see 23 Genomics 609 (1994) and 24 Genomics 391 (1994)). Most preferably, 293 cells are utilized. These cells were plated-out on 96 well plates at a density of 2 x 10<sup>4</sup> cells per well and were transfected using Lipofectamine Reagent (BRL) the following day according to manufacturer instructions. A DNA/lipid mixture was prepared for each 6-well transfection as follows: 260ng of plasmid DNA in 100µl of DMEM were gently mixed with 2µl of lipid in 100µl of DMEM (the 260ng of plasmid DNA consisted of 200ng of a 8xCRE-Luc

- 61 -

reporter plasmid (see below), 50ng of pCMV comprising endogenous receptor or non-endogenous receptor or pCMV alone, and 10ng of a GPRS expression plasmid (GPRS in pcDNA3 (Invitrogen)). The 8XCRE-Luc reporter plasmid was prepared as follows: vector SRIF-β-gal was obtained by cloning the rat somatostatin promoter (-71/+51) at BglV-HindIII site in the pBgal-5 Basic Vector (Clontech). Eight (8) copies of cAMP response element were obtained by PCR from an adenovirus template AdpCF126CCRE8 (see 7 Human Gene Therapy 1883 (1996)) and cloned into the SRIF- $\beta$ -gal vector at the Kpn-BglV site, resulting in the 8xCRE- $\beta$ -gal reporter vector. The 8xCRE-Luc reporter plasmid was generated by replacing the beta-galactosidase gene in the 8xCRE-β-gal reporter vector with the luciferase gene obtained from the pGL3-basic vector (Promega) at the HindIII-BamHI site. Following 30min. incubation at room temperature, the DNA/lipid mixture was diluted with 400 µl of DMEM and 100µl of the diluted mixture was added to each well. 100 µl of DMEM with 10% FCS were added to each well after a 4hr incubation in a cell culture incubator. The next morning the transfected cells were changed with 200 µl/well of DMEM with 10% FCS. Eight (8) hours later, the wells were changed to 100 µl /well of DMEM 15 without phenol red, after one wash with PBS. Luciferase activity were measured the next day using the LucLite™ reporter gene assay kit (Packard) following manufacturer instructions and read on a 1450 MicroBeta™ scintillation and luminescence counter (Wallac).

Figure 4 evidences that constitutively active GPR30 inhibits GPR6-mediated activation of CRE-Luc reporter in 293 cells. Luciferase was measured at about 4.1 relative light units in the expression vector pCMV. Endogenous GPR30 expressed luciferase at about 8.5 relative light units, whereas the non-endogenous, constitutively active GPR30 (L258K), expressed luciferase at about 3.8 and 3.1 relative light units, respectively. Co-transfection of endogenous GPR6 with endogenous GPR30, at a 1.4 ratio, drastically increased luciferase

- 62 -

expression to about 104.1 relative light units. Co-transfection of endogenous GPR6 with nonendogenous GPR30 (L258K), at the same ratio, drastically decreased the expression, which
is evident at about 18.2 and 29.5 relative light units, respectively. Similar results were
observed with respect to GPR17 with respect to co-transfection with GPR3, as set forth in
5 Figure 5.

# Example 3 ASSAYS FOR DETERMINATION OF CONSTITUTIVE ACTIVITY OF NON-ENDOGENOUS GPCRS

#### A. Membrane Binding Assays

[35S]GTPγS Assay

10

When a G protein-coupled receptor is in its active state, either as a result of ligand binding or constitutive activation, the receptor couples to a G protein and stimulates the release of GDP and subsequent binding of GTP to the G protein. The alpha subunit of the G protein-receptor complex acts as a GTPase and slowly hydrolyzes the GTP to GDP, at which point the receptor normally is deactivated. Constitutively activated receptors continue to exchange GDP for GTP. The non-hydrolyzable GTP analog, [\*\*S]GTPγS, can be utilized to demonstrate enhanced binding of [\*\*S]GTPγS to membranes expressing constitutively activated receptors. The advantage of using [\*\*S]GTPγS binding to measure constitutive activation is that: (a) it is generically applicable to all G protein-coupled receptors; (b) it is proximal at the membrane surface making it less likely to pick-up molecules which affect the intracellular cascade.

The assay utilizes the ability of G protein coupled receptors to stimulate [18S]GTPyS binding to membranes expressing the relevant receptors. The assay can, therefore, be used in the direct identification method to screen candidate compounds to known, orphan and constitutively activated G protein-coupled receptors. The assay is generic and has application

- 63 -

to drug discovery at all G protein-coupled receptors.

The [<sup>3s</sup>S]GTPγS assay was incubated in 20 mM HEPES and between 1 and about 20mM MgCl<sub>2</sub>
(this amount can be adjusted for optimization of results, although 20mM is preferred) pH 7.4,
binding buffer with between about 0.3 and about 1.2 nM [<sup>3s</sup>S]GTPγS (this amount can be adjusted
for optimization of results, although 1.2 is preferred ) and 12.5 to 75 μg membrane protein (e.g.
COS-7 cells expressing the receptor; this amount can be adjusted for optimization, although 75μg
is preferred) and 1 μM GDP (this amount can be changed for optimization) for 1 hour.
Wheatgerm agglutinin beads (25 μ]; Amersham) were then added and the mixture was incubated
for another 30 minutes at room temperature. The tubes were then centrifuged at 1500 x g for 5
minutes at room temperature and then counted in a scintillation counter.

A less costly but equally applicable alternative has been identified which also meets the needs of large scale screening. Flash plates™ and Wallac™ scintistrips may be utilized to format a high throughput [³³S]GTPγS binding assay. Furthermore, using this technique, the assay can be utilized for known GPCRs to simultaneously monitor tritiated ligand binding to the receptor at the same time as monitoring the efficacy via [³³S]GTPγS binding. This is possible because the Wallac beta counter can switch energy windows to look at both tritium and ³³S-labeled probes. This assay may also be used to detect other types of membrane activation events resulting in receptor activation. For example, the assay may be used to monitor ³²P phosphorylation of a variety of receptors (both G protein coupled and tyrosine kinase receptors). When the membranes are centrifuged to the bottom of the well, the bound [³³S]GTPγS or the ³³P-phosphorylated receptor will activate the scintillant which is coated of the wells. Scinti³® strips (Wallac) have been used to demonstrate this principle. In addition, the assay also has utility for measuring ligand binding to receptors using radioactively labeled ligands. In a similar manner, when the radiolabeled bound

- 64 -

ligand is centrifuged to the bottom of the well, the scintistrip label comes into proximity with the radiolabeled ligand resulting in activation and detection.

Representative results of graph comparing Control (pCMV), Endogenous APJ and Non-Endogenous APJ, based upon the foregoing protocol, are set forth in Figure 6.

## 5 2. Adenylyl Cyclase

A Flash Plate™ Adenylyl Cyclase kit (New England Nuclear, Cat. No. SMP004A)

designed for cell-based assays was modified for use with crude plasma membranes. The Flash

Plate wells contain a scintillant coating which also contains a specific antibody recognizing cAMP.

The cAMP generated in the wells was quantitated by a direct competition for binding of

radioactive cAMP tracer to the cAMP antibody. The following serves as a brief protocol for the

measurement of changes in cAMP levels in membranes that express the receptors.

Transfected cells were harvested approximately three days after transfection. Membranes were prepared by homogenization of suspended cells in buffer containing 20mM HEPES, pH 7.4 and 10mM MgCl₂. Homogenization was performed on icc using a Brinkman Polytron™ for approximately 10 seconds. The resulting homogenate was centrifuged at 49,000 X g for 15 minutes at 4°C. The resulting pellet was then resuspended in buffer containing 20mM HEPES, pH 7.4 and 0.1 mM EDTA, homogenized for 10 seconds, followed by centrifugation at 49,000 X g for 15 minutes at 4°C. The resulting pellet can be stored at -80°C until utilized. On the day of measurement, the membrane pellet was slowly thaved at room temperature, resuspended in buffer containing 20mM HEPES, pH 7.4 and 10mM MgCL₂ (these amounts can be optimized, although the values listed herein are prefereed), to yield a final protein concentration of 0.60mg/ml (the resuspended membranes were placed on icc until use).

cAMP standards and Detection Buffer (comprising 2 µCi of tracer [125I cAMP (100 µI] to

- 65 -

11 ml Detection Buffer) were prepared and maintained in accordance with the manufacturer's instructions. Assay Buffer was prepared fresh for screening and contained 20mM HEPES, pH 7.4, 10mM MgCl<sub>2</sub>, 20mM (Sigma), 0.1 units/ml creatine phosphokinase (Sigma), 50 μM GTP (Sigma), and 0.2 mM ATP (Sigma); Assay Buffer can be stored on ice until utilized. The assay was initiated by addition of 50ul of assay buffer followed by addition of 50ul of membrane suspension to the NEN Flash Plate. The resultant assay mixture is incubated for 60 minutes at room temperature followed by addition of 100ul of detection buffer. Plates are then incubated an additional 2-4 hours followed by counting in a Wallac MicroBeta scintillation counter. Values of cAMP/well are extrapolated from a standard cAMP curve which is contained within each assay plate. The foregoing assay was utilized with respect to analysis of MIG.

### B. Reporter-Based Assays

### 1. CREB Reporter Assay (Gs-associated receptors)

A method to detect Gs stimulation depends on the known property of the transcription factor CREB, which is activated in a cAMP-dependent manner. A PathDetect CREB trans
15 Reporting System (Stratagene, Catalogue # 219010) was utilized to assay for Gs coupled activity in 293 or 293T cells. Cells were transfected with the plasmids components of this above system and the indicated expression plasmid encoding endogenous or mutant receptor using a Mammalian Transfection Kit (Stratagene, Catalogue #200285) according to the manufacurer's instructions. Briefly, 400 ng pFR-Luc (luciferase reporter plasmid containing de Gal4 recognition sequences), 40 ng pFA2-CREB (Gal4-CREB fusion protein containing the Gal4 DNA-binding domain), 80 ng CMV-receptor expression plasmid (comprising the receptor) and 20 ng CMV-SEAP (secreted alkaline phosphatase expression plasmid; alkaline phosphatase activity is measured in the media of transfected cells to control for variations in

- 66 -

transfection efficiency between samples) were combined in a calcium phosphate precipitate as per the Kit's instructions. Half of the precipitate was equally distributed over 3 wells in a 96-well plate, kept on the cells overnight, and replaced with fresh medium the following morning. Forty-eight (48) hr after the start of the transfection, cells were treated and assayed for luciferase activity as set forth with resepct to the GPR30 system, above. This assay was used with respect to GHSR.

#### 2. AP1 reporter assay (Gq-associated receptors)

Ae method to detect Gq stimulation depends on the known property of Gq-dependent phospholipase C to cause the activation of genes containing AP1 elements in their promoter. A Pathdetect AP-1 cis-Reporting System (Stratagene, Catalogue # 219073) was utilized following the protocl set forth above with respect to the CREB reporter assay, except that the components of the calcium phosphate precipitate were 410 ng pAP1-Luc, 80 ng receptor expression plasmid, and 20 ng CMV-SEAP. This assay was used with respect to ETBR-LP2

#### Intracellular IP3 Accumulation Assav

15

On day 1, cells comprising the serotonin receptors (endogenous and mutated) were plated onto 24 well plates, usually 1x105 cells/well. On day 2 cells were transfected by firstly mixing 0.25ug DNA in 50 ul serumfree DMEM/well and 2 ul lipofectamine in 50 ul serumfree DMEM/well. The solutions were gently mixed and incubated for 15-30 min at room temperature. Cells were washed with 0.5 ml PBS and 400 µl of serum free media was 20 mixed with the transfection media and added to the cells. The cells were then incubated for 3-4 hrs at 37°C/5%CO2 and then the transfection media was removed and replaced with 1 ml/well of regular growth media. On day 3 the cells were labeled with 3H-myo-inositol. Briefly, the media was removed the cells were washed with 0.5 ml PBS. Then 0.5 ml inositolfree/serumfree media (GIBCO BRL) was added/well with 0.25 µCi of 3H-myo-inositol / well

- 67 -

and the cells were incubated for 16-18 hrs o/n at 37°C/5%CO2. On Day 4 the cells were washed with 0.5 ml PBS and 0.45 ml of assay medium was added containing inositolfree/serum free media 10 µM pargyline 10 mM lithium chloride or 0.4 ml of assay medium and 50 ul of 10x ketanserin (ket) to final concentration of 10µM. The cells were then 5 incubated for 30 min at 37°C. The cells were then washed with 0.5 ml PBSand 200 ul of fresh/icecold stop solution (1M KOH; 18 mM Na-borate; 3.8 mM EDTA) was added/well. The solution was kept on ice for 5-10 min or until cells were lysed and then neutralized by 200 µl of fresh/ice cold neutralization sol. (7.5 % HCL). The lysate was then transferred into 1.5 ml eppendorf tubes and 1 ml of chloroform/methanol (1:2) was added/tube. The solution was vortexed for 15 sec and the upper phase was applied to a Biorad AG1-X8 anion exchange resin (100-200 mesh). Firstly, the resin was washed with water at 1:1.25 W/V and 0.9 ml of upper phase was loaded onto the column. The column was washed with 10 mls of 5 mM myo-inositol and 10 ml of 5 mM Na-borate/60mM Na-formate. The inositol tris phosphates were eluted into scintillation vials containing 10 ml of scintillation cocktail with 2 ml of 0.1 M formic acid/ 1 M ammonium formate. The columns were regenerated by washing with 10 ml of 0.1 M formic acid/3M ammonium formate and rinsed twice with dd H<sub>2</sub>O and stored at 4°C in water.

Figure 7 provides an illustration of IP3 production from the human  $5\text{-HT}_{2\text{A}}$  receptor that incorporates the C322K mutation. While these results evidence that the Proline Mutation Algorithm approach constitutively activates this receptor, for purposes of using such a receptor for screening for identification of potential therapeutics, a more robust difference would be preferred. However, because the activated receptor can be utilized for understanding and elucidating the role of constitutive activation and for the identification of compounds that

- 68 -

can be further examined, we believe that this difference is itself useful in differentiating between the endogenous and non-endogenous versions of the human 5HT<sub>2A</sub> receptor.

#### D. Result Summary

The results for the GPCRs tested are set forth in Table E where the Per-Cent Increase

indicates the percentage difference in results observed for the non-endogenous GPCR as compared
to the endogenous GPCR; these values are followed by parenthetical indications as to the type of
assay utilized. Additionally, the assay system utilized is parenthetically listed (and, in cases where
different Host Cells were used, both are listed). As these results indicate, a variety of assays can
be utilized to determine constitutive activity of the non-endogenous versions of the human GPCRs.

10 Those skilled in the art, based upon the foregoing and with reference to information available to the art, are creditied with theability to selelect and/ot maximize a particular assay approach that suites the particular needs of theirwestigator.

Table E

| Receptor Identifier | Per-Cent Difference  |
|---------------------|----------------------|
| (Codon Mutation)    |                      |
| GPR17               | 74.5                 |
| (V234K)             | (CRE-Luc)            |
| GPR30               | 71.6                 |
| (L258K)             | (CREB)               |
| APJ                 | 49.0                 |
| (L247K)             | (GTPyS)              |
| ETBR-LP2            | 48.4(AP1-Luc - 293)  |
| (N358K)             | 61.1(AP1-Luc - 293T) |

| GHSR    | 58.9(CREB - 293)  |
|---------|-------------------|
| (V262K) | 35.6(CREB - 293T) |

20

15

25

- 69 -

| MIG                         | 39 (cAMP)               |
|-----------------------------|-------------------------|
| (I230K)                     |                         |
| Serotonin 5HT <sub>2A</sub> | 33.2 (IP <sub>3</sub> ) |
| (C322K)                     |                         |
| Serotonin 5HT <sub>2C</sub> | 39.1(IP <sub>3</sub> )  |
| (S310K)                     |                         |

Example 6

5

20

### Tissue Distribution of Endogenous Orphan GPCRs

Using a commercially available human-tissue dot-blot format, endogenous orphan GPCRs

10 were probed for a determination of the areas where such receptors are localized. Except as indicate
below, the entire receptor cDNA (radiolabelled) was used as the probe: radiolabeled probe was
generated using the complete receptor cDNA (excised from the vector) using a Prime-It II™
Random Primer Labeling Kit (Stratagene, #300385), according to manufacturer's instructions.

A human RNA Master Blot™ (Clontech, #7770-1) was hybridized with the GPCR

15 radiolabeled probe and washed under stringent conditions according manufacturer's
instructions. The blot was exposed to Kodak BioMax Autoradiography film overnight at 80°C.

Representative dot-blot format results are presented in Figure 8 for GPR1 (8A), GPR30 (8B), and APJ (8C), with results being summarized for all receptors in Table F

Table F

| GPCR | Tissue Distribution                           |
|------|-----------------------------------------------|
|      | (highest levels, relative to other tissues in |
|      | the dot-blot)                                 |
| GPR1 | Placenta, Ovary, Adrenal                      |

- 70 -

| GPR4                                  | Broad; highest in Heart, Lung, Adrena       |  |
|---------------------------------------|---------------------------------------------|--|
|                                       | Thyroid, Spinal Cord                        |  |
| GPR5                                  | Placenta, Thymus, Fetal Thymus              |  |
| Lesser levels in spleen, fetal spleen |                                             |  |
| GPR7                                  | Liver, Spleen, Spinal Cord, Placenta        |  |
| GPR8                                  | No expression detected                      |  |
| GPR9-6                                | Thymus, Fetal Thymus                        |  |
|                                       | Lesser levels in Small Intestine            |  |
| GPR18                                 | Spleen, Lymph Node, Fetal Spleen, Testis    |  |
| GPR20                                 | Broad                                       |  |
| GPR21                                 | Broad; very low abundance                   |  |
| GPR22                                 | Heart, Fetal Heart                          |  |
|                                       | Lesser levels in Brain                      |  |
| GPR30                                 | Stomach                                     |  |
| GPR31                                 | Broad                                       |  |
| BLR1                                  | Spleen                                      |  |
| CEPR                                  | Stomach, Liver, Thyroid, Putamen            |  |
| EBI1                                  | Pancreas                                    |  |
|                                       | Lesser levels in Lymphoid Tissues           |  |
| EBI2                                  | Lymphoid Tissues, Aorta, Lung, Spinal Core  |  |
| ETBR-LP2                              | Broad; Brain Tissue                         |  |
| GPCR-CNS                              | Brain                                       |  |
|                                       | Lesser levels in Testis, Placenta           |  |
| GPR-NGA                               | Pituitary                                   |  |
|                                       | Lesser levels in Brain                      |  |
| H9                                    | Pituitary                                   |  |
| HB954                                 | Aorta, Cerebellum                           |  |
|                                       | Lesser levels in most other tissues         |  |
| HM74                                  | Spleen, Leukocytes, Bone marrow, Mammary    |  |
|                                       | Glands, Lung, Trachea                       |  |
| MIG                                   | Low levels in Kidney, Liver, Pancreas, Lung |  |
|                                       | Spleen Spleen                               |  |
| ORGI                                  | Pituitary, Stomach, Placenta                |  |
| V28                                   | Brain, Spleen, Peripheral Leukocytes        |  |

Based upon the foregoing information, it is noted that human GPCRs can also be assessed for distribution in diseased tissue; comparative assessments between "normal" and diseased tissue can then be utilized to determine the potential for over-expression or under-expression of a particular receptor in a diseased state. In those circumstances where it is desirable to utilize the non-endogenous versions of the human GPCRs for the purpose of screening to directly identify

- 71 -

candidate compounds of potential therapeutic relevance, it is noted that inverse agonists are useful in the treatment of diseases and disorders where a particular human GPCR is over-expressed, whereas agonists or partial agonists are useful in the treatment of diseases and disorders where a particular human GPCR is under-expressed.

As desired, more detailed, cellular localization of the recepotrs, using techniques wellknown to those in the art (e.g., in-situ hybridization) can be utilized to identify particular cells within these tissues where the receptor of interest is expressed.

5

10

It is intended that each of the patents, applications, and printed publications mentioned in this patent document be hereby incorporated by reference in their entirety.

As those skilled in the art will appreciate, numerous changes and modifications may be made to the preferred embodiments of the invention without departing from the spirit of the invention. It is intended that all such variations fall within the scope of the invention.

Although a variety of expression vectors are available to those in the art, for purposes of utilization for both the endogenous and non-endogenous human GPCRs, it is most preferred that the vector utilized be pCMV. This vector has been deposited with the American Type Culture Collection (ATCC) on October 13, 1998 (10801 University Blvd., Manassas, VA 20110-2209 USA) under the provisions of the Budapest Treaty for the International Recognition of the Deposit of Microorganisms for the Purpose of patent Procedure. The vector was tested by the ATCC on \_\_\_\_\_\_\_, 1998 and determined to be viable on \_\_\_\_\_\_\_\_, 1998. The ATCC has assigned the following deposit number to pCMV:

- 72 -

### CLAIMS

What is claimed is:

of the non-endogenous GPCR:

A constitutively active, non-endogenous version of an endogenous human orphan G proteincoupled receptor (GPCR) comprising the following amino acid residues (carboxy-terminus to aminoterminus orientation) transversing the transmembrane-6 (TM6) and intracellular loop-3 (IC3) regions

### PI AA., X

wherein:

10

15

- (1) P<sup>1</sup> is an amino acid residue located within the TM6 region of the non-endogenous GPCR, where P<sup>1</sup> is selected from the group consisting of (i) the endogenous orphan GPCR proline residue, and (ii) a non-endogenous amino acid residue other than proline;
- (2) AA<sub>15</sub> are 15 amino acid residues selected from the group consisting of (a) the 15 endogenous amino acid residues of the endogenous orphan GPCR, (b) 15 non-endogenous amino acid residues, and (c) a combination of 15 amino acid residues, the combination comprising at least one endogenous amino acid residue of the endogenous orphan GPCR and at least one non-endogenous amino acid residue, excepting that none of the 15 endogenous amino acid residues that are positioned within the TM6 region of the GPCR is proline; and
  - (2) X is a non-endogenous amino acid residue located within the IC3 region of said non-endogenous GPCR.
- The non-endogenous human GPCR of claim 1 wherein P<sup>1</sup> is the endogenous proline

- 73 -

residue.

- The non-endogenous human GPCR of claim 1 wherein P<sup>1</sup> is a non-endogenous amino acid residue other than a proline residue.
- The non-endogenous human GPCR of claim 1 wherein AA<sub>15</sub> are the 15 endogenous amino acid residues of the endogenous GPCR
- 5 amino acid residues of the endogenous GPCR.
  - 5. The non-endogenous human GPCR of claim 1 wherein X is selected from the group consisting of lysine, histidine, arganine and alanine residues, excepting that when the endogenous amino acid in position X of said endogenous human GPCR is lysine, X is selected from the group consisting of histidine, arginine and alanine.
- 10 6. The non-endogenous human GPCR of claim 1 wherein X is a 1ysine residue, excepting that when the endogenous amino acid in position X of said endogenous human GPCR is lysine, X is an amino acid other than lysine.
  - The non-endogenous human GPCR of claim 4 wherein X is a lysine residue, excepting
    that when the endogenous amino acid in position X of said endogenous human GPCR
    is lysine, X is an amino acid other than lysine.
  - 8. The non-endogenous, human GPCR of claim 1 wherein P<sup>1</sup> is a proline residue and X is a lysine residue, excepting that when the endogenous amino acid in position X of said endogenous human GPCR is lysine, X is an amino acid other than lysine.
  - A host cell comprising the non-endogenous human GPCR of claim 1.
- 20 10. The material of claim 9 wherein said host cell is of mammalian origin.
  - 11. The non-endogenous human GPCR of claim 1 in a purified and isolated form.
  - A nucleic acid sequence encoding a constitutively active, non-endogenous version of an endogenous human orphan G protein-coupled receptor (GPCR) comprising the following

- 74 -

nucleic acid sequence region transversing the transmembrane-6 (TM6) and intracellular loop-3 (IC3) regions of the orphan GPCR;

wherein:

5

10

15

- (1) P<sup>coden</sup> is a nucleic acid encoding region within the TM6 region of the non-endogenous GPCR, where P<sup>coden</sup> encodes an amino acid selected from the group consisting of (i) the endogenous GPCR proline residue, and (ii) a non-endogenous amino acid residue other than proline;
  - (2) (AA-codon)<sub>15</sub> are 15 codons encoding 15 amino acid residues selected from the group consisting of (a) the 15 endogenous amino acid residues of the endogenous orphan GPCR, (b) 15 non-endogenous amino acid residues, and (c) a combination of 15 amino acid residues, the combination comprising at least one endogenous amino acid residue of the endogenous orphan GPCR and at least one non-endogenous amino acid residue, excepting that none of the 15 endogenous amino acid residues that are positioned within the TM6 region of the orphan GPCR is proline; and
  - (3) X<sub>coden</sub> is a nucleic acid encoding region residue located within the IC3 region of said non-endogenous human GPCR, where X<sub>coden</sub> encodes a non-endogenous amino acid.
- The nucleic acid sequence of claim 12 wherein Produce encodes an endogenous proline residue.
- 14. The nucleic acid sequence of claim 12 wherein Pcoden encodes a non-endogenous

- 75 -

amino acid residue other than a proline residue.

5

- 15. The nucleic acid sequence of claim 12 wherein X<sub>essien</sub> encodes a non-endogenous amino acid selected from the group consisting of lysine, histidine, arginine and alanine, excepting that when the endogenous amino acid in position X of said endogenous human GPCR is lysine, X<sub>coden</sub> encodes an amino acid selected from the group consisting of histidine, arginine and alanine.
- 16. The nucleic acid sequence of claim 13 wherein X<sub>coden</sub> encodes a non-endogenous lysine amino acid excepting that when the endogenous amino acid in position X of said endogenous human GPCR is lysine, X<sub>coden</sub> encodes an amino acid selected from the group consisting of histidine, arginine and alanine.
- The nucleic acid sequence of claim 12 wherein X<sub>coden</sub> is selected from the group consisting of AAA, AAG, GCA, GCG, GCC and GCU.
- The nucleic acid sequence of claim 12 wherein X<sub>coden</sub> is selected from the group consisting of AAA and AAG.
- 15 19. The nucleic acid sequence of claim 12 wherein Proston is selected from the group consisting of CCA, CCC, CCG and CCU, and X<sub>codon</sub> is selected from the group consisting of AAA and AAG.
  - 20. A vector comprising the nucleic acid sequence of claim 12.
  - 21. A plasmid comprising the nucleic acid sequence of claim 12.
- 20 22. A host cell comprising the nucleic acid sequence of claim 21.
  - 23. The nucleic acid sequence of claim 12 in a purified and isolated form.
  - 24. A method for selecting for alteration an endogenous amino acid residue within the third intracellular loop of a human G protein-coupled receptor ("GPCR"), said receptor

- 76 -

comprising a transmembrane 6 region and an intracellular loop 3 region, which endogenous amino acid, when altered to a non-endogenous amino acid, constitutively activates said human GPCR, comprising the following steps:

- (a) identifying an endogenous proline residue within the transmembrane 6 region
   of a human GPCR:
  - (b) identifying, by moving in a direction of the carboxy-terminus region of said GPCR towards the amino-terminus region of said GPCR, the endogenous,  $16^{\rm th}$  amino acid residue from said proline residue;
  - altering the endogenous residue of step (b) to a non-endogenous amino acid residue to create a non-endogenous version of an endogenous human GPCR;

- (d) determining whether the non-endogenous human GPCR of step (c) is constitutively active.
- 25. The method of claim 24 wherein the amino acid residue that is two residues from said proline residue in the transmembrane 6 region, in a carboxy-terminus to aminoterminus direction, is tryptophan.
  - A constitutively active, non-endogenous human GPCR produced by the process of claim 24.
- A constitutively active, non-endogenous human GPCR produced by the process of
   claim 25.
  - 28. An algorithmic approach for creating a non-endogenous, constitutively active version of an endogenous human G protein coupled receptor (GPCR), said endogenous GPCR comprising a transmembrane 6 region and an intracellular loop 3 region, the

- 77 -

algorithmic approach comprising the steps of:

- (a) selecting an endogenous human GPCR comprising a proline residue in the transmembrane-6 region;
- (b) identifying, by counting 16 amino acid residues from the proline residue of
   step (a), in a carboxy-terminus to amino-terminus direction, an endogenous amino acid residue;
  - (c) altering the identified amino acid residue of step (b) to a non-endogenous amino acid residue to create a non-endogenous version of the endogenous human GPCR; and
- 10 (d) determining if the non-endogenous version of the endogenous human GPCR of step (e) is constitutively active.
  - 29. The algorithmic approach of claim 28 wherein the amino acid residue that is two residues from said proline residue in the transmembrane 6 region, in a carboxy-terminus to amino-terminus direction, is tryptophan.
- 30. A constitutively active, non-endogenous human GPCR produced by the algorithmic approach of claim 28.
  - A constitutively active, non-endogenous human GPCR produced by the algorithmic approach of claim 29.
- 32. A method for directly identifying a compound selected from the group consisting of inverse agonists, agonists and partial agonists to a non-endogenous, constitutively activated human G protein coupled receptor, said receptor comprising a transmembrane-6 region and an intracellular loop-3 region, comprising the steps of:
  (a) selecting an endogenous human GPCR:

- 78 -

- identifying a proline residue within the transmembrane-6 region of the GPCR of step (a);
- identifying, in a carboxy-terminus to amino-terminus direction, the endogenous, 16th amino acid residue from the proline residue of step (b);
- (d) altering the endogenous amino acid of step (e) to a non-endogenous amino acid;
  - (e) confirming that the non-endogenous GPCR of step (d) is constitutively active;
  - (f) contacting a candidate compound with the non-endogenous, constitutivelyactivated GPCR of step (e); and
- 10 (g) determining, by measurement of the compound efficacy at said contacted receptor, whether said compound is an inverse agonist, agonist or partial agonist of said receptor.
  - 33. The method of claim 32 wherein the non-endogenous amino acid of step (d) is lysine.
  - 34. A compound directly identified by the method of claim 32.
- 15 35. The method of claim 32 wherein the directly identified compound is an inverse agonist.
  - 36. The method of claim 32 wherein the directly identified compound is an agonist.--
  - The method of claim 32 wherein the directly identified compound is a partial agonist.
  - 38. A composition comprising the inverse agonist of claim 35.
- 20 39. A composition comprising the agonist of claim 36.
  - A composition comprising the partial agonist of claim 37.
  - 41. A method for directly identifying an inverse agonist to a non-endogenous,

- 79 -

constitutively activated human G protein coupled receptor ("GPCR"), said GPCR comprising a transmembrane-6 region and an intracellular loop-3 region, comprising the steps of:

(a) selecting an endogenous human GPCR;

- (b) identifying a proline residue within the transmembrane-6 region of the GPCR of step (a);
- (c) identifying, in a carboxy-terminus to amino-terminus direction, the endogenous, 16th amino acid residue from the proline residue of step (b);
- (d) altering the endogenous amino acid of step (c) to a non-endogenous lysine residue;
- (e) confirming that the non-endogenous GPCR of step (d) is constitutively active;
- 10 (f) contacting a candidate compound with the non-endogenous, constitutivelyactivated GPCR of step (e); and
  - (g) determining, by measurement of the compound efficacy at said contacted receptor, whether said compound is an inverse agonist of said receptor.
  - 42. An inverse agonist directly identified by the method of claim 37.
- 15 43. A composition comprising an inverse agonist of claim 38.



EXTRACELLULAR



FIGURE 2

# pCMV Sequence and Restriction Site





FIGURE 3B





FIGURE 3D







FIGURE 36



WO 00/22129



11/19



| ACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TGGCGACAACTCTAGGTCAAGCTACATTGGGTGAGCACGTGGGTTGACTAGAAGTCGTAGAAAATGAAAGTGGTCGCAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| PLL RSSSH. PTRAPN. SSASFTFTSY<br>YRC. DPYRCNPLYHPTDLGHLLLSPAF<br>TAYEIGFDYTHSCTGLIFSIFYFHGRF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| G S N L D L E I Y G V R A G L O D E A D K V K V L T E<br>R O O S G T R H L G S T C G V S R . C R K S E G A N<br>V A T S I W N S T V W E H V W S I K L M K . K . W R K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| GACCCACTCGTTTTTGTCCTTCCGTTTTACGGCGTTTTTTCCCTTATTCCCGCTGTGCCTTTACAACTTATGAGTATGAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| S G . A K T G R O N A A K K G I R A T R K C . I L I L<br>L G E O K O E G K H P O O K R E . G R H G N V E Y S Y S<br>W V S K N R K A K C R K K G N K G D T E H L N T H T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| PHÁFVPLCFÁAFFPILÁVRFHOISMS<br>ROSCFCSPLIGCFLSYPRCPFTSYEY<br>OTLLFLFAFHRLFPFLPSVSINFV. VR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Hinc II Spe I Asel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ITCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGCGCGTTGACATTGATTATTGACTAGTTATTAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| AAGGAAAAAGTTATAATAACTTCGTAAATAGTCCCAATAACAGAGTACGCGCAACTGTAACTAATAACTGATCAATAATT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| FLF 0 Y Y . SIY 0 G Y C L H R V D I D Y . L V I N<br>S FF N I I E A F I R V I V S C A L T L I I D . L L<br>. P F S I L L K H L S G L L S H A R . H . L L T S Y .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| . RK. Y. OLM. P. ORMRTSMS OSTIL<br>EKKLIISAN ILTITEHAN VNIIS.N NI<br>GKEINN FCKDPN D. AROCONN VL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Hae III BgI I AGTAATCAATTACGGGGTCATTAGTTCATAGCCCATATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCC 3620 TCATTAGTTAATGCCCCCATATATCAGGTATACCGGGGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| The state of the s |
| SNOLRGH. FIAHIWS SALHNLR. HAR<br>VINYGVISS. PIYGVPRYITYG KWPA<br>SITGSLVHSPYMEFRVT. LTVNGPP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| LL.NRPNMAWIHLEANCLKRYIARR<br>TIL.PTMLEYGMYPTGR.MV.PLHGA<br>YDIVPDNT.LGYISNRTVYSVTFPGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |





P. SSFGSSLOSISILVV...LSVW RAL.LVWQKVPKDFNIRSVIPLG QSVLSGVA.SA.RF.YSESYPSG 15/19



FIGURE 4



FIGURE 5



FIGURE 6



FIGURE 7

FIGURE 8A



FIGURE 8B





FIGURE 8C

## 1 SEQUENCE LISTING

(1) GENERAL INFORMATION: (i) APPLICANT: Behan, Dominic P. Chalmers, Derek T. 5 Liaw, Chen W. (ii) TITLE OF INVENTION: Non-Endogenous, Constitutively Activated Human G Protein-Coupled Orphan Receptors (iii) NUMBER OF SECUENCES: 280 10 (iv) CORRESPONDENCE ADDRESS: (A) ADDRESSEE: Arena Pharmaceuticals, Inc. (B) STREET: 6166 Nancy Ridge Drive (C) CITY: San Diego 15 (D) STATE: (E) COUNTRY: IIS A (F) ZIP: 92122 (v) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk 20 (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (vi) CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: US 25 (B) FILING DATE: (C) CLASSIFICATION: (viii) ATTORNEY/AGENT INFORMATION: (A) NAME: Burgoon, Richard P. (B) REGISTRATION NUMBER: 34.787 30 (ix) TELECOMMUNICATION INFORMATION: (A) TELEPHONE: (619)453-7200 (B) TRLEFAX. (619)453-7210 (2) INFORMATION FOR SEO ID NO:1: (i) SEQUENCE CHARACTERISTICS: 35 (A) LENGTH: 1068 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEOUENCE DESCRIPTION: SEO ID NO:1:

2

|    | TATTACTCTC  | TGGAGTCTGA  | TTTGGAGGAG | AAAGTCCAGC | TGGGAGTTGT | TCACTGGGTC | 120  |
|----|-------------|-------------|------------|------------|------------|------------|------|
|    | TCCCTGGTGT  | TATATTGTTT  | GGCTTTTGTT | CTGGGAATTC | CAGGAAATGC | CATCGTCATT | 180  |
|    | TGGTTCACGG  | GGCTCAAGTG  | GAAGAAGACA | GTCACCACTC | TGTGGTTCCT | CAATCTAGCC | 240  |
|    | ATTGCGGATT  | TCATTTTCT   | TCTCTTTCTG | CCCCTGTACA | TCTCCTATGT | GGCCATGAAT | 300  |
| 5  | TTCCACTGGC  | CCTTTGGCAT  | CTGGCTGTGC | AAAGCCAATT | CCTTCACTGC | CCAGTTGAAC | 360  |
|    | ATGTTTGCCA  | GTGTTTTTT   | CCTGACAGTG | ATCAGCCTGG | ACCACTATAT | CCACTTGATC | 420  |
|    | CATCCTGTCT  | TATCTCATCG  | GCATCGAACC | CTCAAGAACT | CTCTGATTGT | CATTATATTC | 480  |
|    | ATCTGGCTTT  | TGGCTTCTCT  | AATTGGCGGT | CCTGCCCTGT | ACTTCCGGGA | CACTGTGGAG | 540  |
|    | TTCAATAATC  | ATACTCTTTG  | CTATAACAAT | TTTCAGAAGC | ATGATCCTGA | CCTCACTTTG | 600  |
| 10 | ATCAGGCACC  | ATGTTCTGAC  | TTGGGTGAAA | TTTATCATTG | GCTATCTCTT | CCCTTTGCTA | 660  |
|    | ACAATGAGTA  | TTTGCTACTT  | GTGTCTCATC | TTCAAGGTGA | AGAAGCGAAC | AGTCCTGATC | 720  |
|    | TCCAGTAGGC  | ATTTCTGGAC  | AATTCTGGTT | GTGGTTGTGG | CCTTTGTGGT | TTGCTGGACT | 780  |
|    | CCTTATCACC  | TGTTTAGCAT  | TTGGGAGCTC | ACCATTCACC | ACAATAGCTA | TTCCCACCAT | 840  |
|    | GTGATGCAGG  | CTGGAATCCC  | CCTCTCCACT | GGTTTGGCAT | TCCTCAATAG | TTGCTTGAAC | 900  |
| 15 | CCCATCCTTT  | ATGTCCTAAT  | TAGTAAGAAG | TTCCAAGCTC | GCTTCCGGTC | CTCAGTTGCT | 960  |
|    | GAGATACTCA  | AGTACACACT  | GTGGGAAGTC | AGCTGTTCTG | GCACAGTGAG | TGAACAGCTC | 1020 |
|    | AGGAACTCAG  | AAACCAAGAA  | TCTGTGTCTC | CTGGAAACAG | CTCAATAA   |            | 1068 |
|    | (3) INFORMA | TION FOR SE | Q ID NO:2: |            |            |            |      |
|    |             |             |            |            |            |            |      |

(i) SEQUENCE CHARACTERISTICS:

20

- (A) LENGTH: 355 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein
- 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Glu Asp Leu Glu Glu Thr Leu Phe Glu Glu Phe Glu Asn Tyr Ser 10

Tyr Asp Leu Asp Tyr Tyr Ser Leu Glu Ser Asp Leu Glu Glu Lys Val

30 Gln Leu Gly Val Val His Trp Val Ser Leu Val Leu Tyr Cys Leu Ala 40 45

|    |            |            |            |            |            |            |            |            | _          |            |            |            |            |            |            |            |
|----|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    | Phe        | Val<br>50  | Leu        | Gly        | Ile        | Pro        | Gly<br>55  | Asn        | Ala        | Ile        | Val        | Ile<br>60  | Trp        | Phe        | Thr        | Gly        |
|    | Leu<br>65  | Lys        | Trp        | Lys        | Lys        | Thr<br>70  | Val        | Thr        | Thr        | Leu        | Trp<br>75  | Phe        | Leu        | Asn        | Leu        | Ala<br>80  |
| 5  | Ile        | Ala        | Asp        | Phe        | Ile<br>85  | Phe        | Leu        | Leu        | Phe        | Leu<br>90  | Pro        | Leu        | Tyr        | Ile        | Ser<br>95  | Tyr        |
|    | Val        | Ala        | Met        | Asn<br>100 | Phe        | His        | Trp        | Pro        | Phe<br>105 | Gly        | Ile        | Trp        | Leu        | Cys<br>110 | Lys        | Ala        |
| 10 | Asn        | Ser        | Phe<br>115 | Thr        | Ala        | Gln        |            | Asn<br>120 | Met        | Phe        | Ala        | Ser        | Val<br>125 | Phe        | Phe        | Leu        |
|    | Thr        | Val<br>130 | Ile        | Ser        | Leu        | Asp        | His<br>135 | Tyr        | Ile        | His        | Leu        | Ile<br>140 | His        | Pro        | Val        | Leu        |
|    | Ser<br>145 | His        | Arg        | His        | Arg        | Thr<br>150 | Leu        | Lys        | Asn        | Ser        | Leu<br>155 | Ile        | Val        | Ile        | Ile        | Phe<br>160 |
| 15 | Ile        | Trp        | Leu        | Leu        | Ala<br>165 | Ser        | Leu        | Ile        | Gly        | Gly<br>170 | Pro        | Ala        | Leu        | Tyr        | Phe<br>175 | Arg        |
|    | Asp        | Thr        | Val        | Glu<br>180 | Phe        | Asn        | Asn        | His        | Thr<br>185 | Leu        | Cys        | Tyr        | Asn        | Asn<br>190 | Phe        | Gln        |
| 20 | Lys        | His        | Asp<br>195 | Pro        | Asp        | Leu        | Thr        | Leu<br>200 | Ile        | Arg        | His        | His        | Val<br>205 | Leu        | Thr        | Trp        |
|    | Val        | Lys<br>210 | Phe        | Ile        | Ile        | Gly        | Tyr<br>215 | Leu        | Phe        | Pro        | Leu        | Leu<br>220 | Thr        | Met        | Ser        | Ile        |
|    | Cys<br>225 | Tyr        | Leu        | Cys        | Leu        | Ile<br>230 | Phe        | Lys        | Val        | Lys        | Lys<br>235 | Arg        | Thr        | Val        | Leu        | Ile<br>240 |
| 25 | Ser        | Ser        | Arg        | His        | Phe<br>245 | Trp        | Thr        | Ile        | Leu        | Val<br>250 | Val        | Val        | Val        | Ala        | Phe<br>255 | Val        |
|    | Val        | Cys        | Trp        | Thr<br>260 | Pro        | Tyr        | His        | Leu        | Phe<br>265 | Ser        | Ile        | Trp        | Glu        | Leu<br>270 | Thr        | Ile        |
| 30 | His        | His        | Asn<br>275 | Ser        | Tyr        | Ser        | His        | His<br>280 | Val        | Met        | Gln        | Ala        | Gly<br>285 | Ile        | Pro        | Leu        |
|    | Ser        | Thr<br>290 | Gly        | Leu        | Ala        | Phe        | Leu<br>295 | Asn        | Ser        | Cys        | Leu        | Asn<br>300 | Pro        | Ile        | Leu        | Tyr        |
|    | Val<br>305 | Leu        | Ile        | Ser        | Lys        | Lys<br>310 | Phe        | Gln        | Ala        | Arg        | Phe<br>315 | Arg        | Ser        | Ser        | Val        | Ala<br>320 |
| 35 | Glu        | Ile        | Leu        | Lys        | Tyr<br>325 | Thr        | Leu        | Trp        | Glu        | Val<br>330 | Ser        | Cys        | Ser        | Gly        | Thr<br>335 | Val        |
|    | Ser        | Glu        | Gln        | Leu        | Arg        | Asn        | Ser        | Glu        | Thr        | Lys        | Asn        | Leu        | Cys        | Leu        | Leu        | Glu        |

| 340 | 345 | 350 |
|-----|-----|-----|
|     |     |     |

Thr Ala Gln 355

30 GCACAATGA

### (4) INFORMATION FOR SEC ID NO:3:

5 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1089 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- 10 (ii) MOLECULE TYPE: DNA (genomic)
  - (xi) SEQUENCE DESCRIPTION: SEO ID NO:3:

ATGGGCAACC ACACGTGGGA GGGCTGCCAC GTGGACTCGC GCGTGGACCA CCTCTTTCCG 60 CCATCCCTCT ACATCTTTGT CATCGGCGTG GGGCTGCCCA CCAACTGCCT GGCTCTGTGG 120 GCGGCCTACC GCCAGGTGCA ACAGCGCAAC GAGCTGGGCG TCTACCTGAT GAACCTCAGC 180 15 ATCGCCGACC TGCTGTACAT CTGCACGCTG CCGCTGTGGG TGGACTACTT CCTGCACCAC 240 GACAACTGGA TCCACGGCCC CGGGTCCTGC AAGCTCTTTG GGTTCATCTT CTACACCAAT 300 ATCTACATCA GCATCGCCTT CCTGTGCTGC ATCTCGGTGG ACCGCTACCT GGCTGTGGCC 360 CACCCACTCC GCTTCGCCCG CCTGCGCCGC GTCAAGACCG CCGTGGCCGT GAGCTCCGTG 420 GTCTGGGCCA CGGAGCTGGG CGCCAACTCG GCGCCCCTGT TCCATGACGA GCTCTTCCGA 480 20 GACCGCTACA ACCACACCTT CTGCTTTGAG AAGTTCCCCA TGGAAGGCTG GGTGGCCTGG 540 ATGAACCTCT ATCGGGTGTT CGTGGGCTTC CTCTTCCCGT GGGCGCTCAT GCTGCTGTCG 600 TACCGGGGCA TCCTGCGGGC CGTGCGGGGC AGCGTGTCCA CCGAGCGCCA GGAGAAGGCC 660 AAGATCAAGC GGCTGGCCCT CAGCCTCATC GCCATCGTGC TGGTCTGCTT TGCGCCCTAT 720 CACGTGCTCT TGCTGTCCCG CAGCGCCATC TACCTGGGCC GCCCCTGGGA CTGCGGCTTC 780 25 GAGGAGCGCG TCTTTTCTGC ATACCACAGC TCACTGGCTT TCACCAGCCT CAACTGTGTG 840 GCGGACCCCA TCCTCTACTG CCTGGTCAAC GAGGGCGCCC GCAGCGATGT GGCCAAGGCC 900 CTGCACAACC TGCTCCGCTT TCTGGCCAGC GACAAGCCCC AGGAGATGGC CAATGCCTCG 960 CTCACCCTGG AGACCCCACT CACCTCCAAG AGGAACAGCA CAGCCAAAGC CATGACTGGC 1020 AGCTGGGCGG CCACTCCGCC TTCCCAGGGG GACCAGGTGC AGCTGAAGAT GCTGCCGCCA 1080

5

|    | (5) II                                                                                                                     | IFOE      | TAMS       | ION I      | FOR S      | SEQ :      | ID N       | 0:4:       |            |            |            |            |            |            |            |            |            |
|----|----------------------------------------------------------------------------------------------------------------------------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| 5  | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 362 amino acids (B) TYPE: mino acid (C) STRANDEDNESS: (D) TOPOLOGY: not relevant |           |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
|    |                                                                                                                            | (ii       | L) Mo      | OLECT      | JLE :      | TYPE       | pr         | otei       | n          |            |            |            |            |            |            |            |            |
|    |                                                                                                                            | (xi       | .) SI      | EQUEI      | ICE I      | DESCI      | RIPT:      | ION:       | SEQ        | ID I       | NO:4       | :          |            |            |            |            |            |
| 10 | 1                                                                                                                          |           | Gly        | Asn        | His        | Thr<br>5   | Trp        | Glu        | Gly        | Cys        | His<br>10  | Val        | Asp        | Ser        | Arg        | Val<br>15  | Asp        |
|    | F                                                                                                                          | lis       | Leu        | Phe        | Pro<br>20  | Pro        | Ser        | Leu        | Tyr        | Ile<br>25  | Phe        | Val        | Ile        | Gly        | Val<br>30  | Gly        | Leu        |
|    | I                                                                                                                          | Pro       | Thr        | Asn<br>35  | Cys        | Leu        | Ala        | Leu        | Trp<br>40  | Ala        | Ala        | Tyr        | Arg        | Gln<br>45  | Val        | Gln        | Gln        |
| 15 | I                                                                                                                          | Arg       | Asn<br>50  | Glu        | Leu        | Gly        | Val        | Tyr<br>55  | Leu        | Met        | Asn        | Leu        | ser<br>60  | Ile        | Ala        | Asp        | Leu        |
|    |                                                                                                                            | eu<br>55  | Tyr        | Ile        | Cys        | Thr        | Leu<br>70  | Pro        | Leu        | Trp        | Val        | Asp<br>75  | Tyr        | Phe        | Leu        | His        | His<br>80  |
| 20 | 3                                                                                                                          | Asp       | Asn        | Trp        | Ile        | His<br>85  | Gly        | Pro        | Gly        | Ser        | Cys<br>90  | Lys        | Leu        | Phe        | Gly        | Phe<br>95  | Ile        |
|    | F                                                                                                                          | he        | Tyr        | Thr        | Asn<br>100 | Ile        | Tyr        | Ile        | Ser        | Ile<br>105 | Ala        | Phe        | Leu        | Cys        | Cys<br>110 | Ile        | Ser        |
|    | V                                                                                                                          | /al       | Asp        | Arg<br>115 | Tyr        | Leu        | Ala        | Val        | Ala<br>120 | His        | Pro        | Leu        | Arg        | Phe<br>125 | Ala        | Arg        | Leu        |
| 25 | A                                                                                                                          | Arg       | Arg<br>130 | Val        | Lys        | Thr        | Ala        | Val<br>135 | Ala        | Val        | Ser        | Ser        | Val<br>140 | Val        | Trp        | Ala        | Thr        |
|    |                                                                                                                            | lu<br>145 | Leu        | Gly        | Ala        | Asn        | Ser<br>150 | Ala        | Pro        | Leu        | Phe        | His<br>155 | Asp        | Glu        | Leu        | Phe        | Arg<br>160 |
| 30 | A                                                                                                                          | lsp       | Arg        | Tyr        | Asn        | His<br>165 | Thr        | Phe        | Cys        | Phe        | Glu<br>170 | Lys        | Phe        | Pro        | Met        | Glu<br>175 | Gly        |
|    | T                                                                                                                          | rp        | Val        | Ala        | Trp<br>180 | Met        | Asn        | Leu        | Tyr        | Arg<br>185 | Val        | Phe        | Val        | Gly        | Phe<br>190 | Leu        | Phe        |
|    | F                                                                                                                          | ro        | Trp        | Ala<br>195 | Leu        | Met        | Leu        | Leu        | Ser<br>200 | Tyr        | Arg        | Gly        | Ile        | Leu<br>205 | Arg        | Ala        | Val        |
| 35 | A                                                                                                                          | lrg       | Gly<br>210 | Ser        | Val        | Ser        | Thr        | Glu<br>215 | Arg        | Gln        | Glu        | Lys        | Ala<br>220 | Lys        | Ile        | Lys        | Arg        |

Leu Ala Leu Ser Leu Ile Ala Ile Val Leu Val Cys Phe Ala Pro Tyr

|    | 0                                |            |                   |                        |               |                        |                        |            |            |            |            |            |            |            |            |            |    |
|----|----------------------------------|------------|-------------------|------------------------|---------------|------------------------|------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|----|
|    | 225                              |            |                   |                        |               | 230                    |                        |            |            |            | 235        |            |            |            |            | 240        |    |
|    | His                              | Val        | Leu               | Leu                    | Leu<br>245    | Ser                    | Arg                    | Ser        | Ala        | Ile<br>250 |            | Leu        | Gly        | Arg        | Pro<br>255 | Trp        |    |
| 5  | Asp                              | Cys        | Gly               | Phe<br>260             | Glu           | Glu                    | Arg                    | Val        | Phe<br>265 |            | Ala        | Tyr        | His        | Ser<br>270 | Ser        | Leu        |    |
|    | Ala                              | Phe        | Thr<br>275        | Ser                    | Leu           | Asn                    | Сув                    | Val<br>280 | Ala        | Asp        | Pro        | Ile        | Leu<br>285 | Tyr        | Cys        | Leu        |    |
|    | Val                              | Asn<br>290 | Glu               | Gly                    | Ala           | Arg                    | Ser<br>295             | Asp        | Val        | Ala        | Lys        | Ala<br>300 | Leu        | His        | Asn        | Leu        |    |
| 10 | Leu<br>305                       | Arg        | Phe               | Leu                    | Ala           | Ser<br>310             | Asp                    | Lys        | Pro        | Gln        | Glu<br>315 | Met        | Ala        | Asn        | Ala        | Ser<br>320 |    |
|    | Leu                              | Thr        | Leu               | Glu                    | Thr<br>325    | Pro                    | Leu                    | Thr        | Ser        | Lys<br>330 | Arg        | Asn        | Ser        | Thr        | Ala<br>335 | Lys        |    |
| 15 | Ala                              | Met        | Thr               | Gly<br>340             | Ser           | Trp                    | Ala                    | Ala        | Thr<br>345 | Pro        | Pro        | Ser        | Gln        | Gly<br>350 | Asp        | Gln        |    |
|    | Val                              | Gln        | Leu<br>355        | Lys                    | Met           | Leu                    | Pro                    | Pro<br>360 | Ala        | Gln        |            |            |            |            |            |            |    |
|    | (6) INFORMATION FOR SEQ ID NO:5: |            |                   |                        |               |                        |                        |            |            |            |            |            |            |            |            |            |    |
| 20 | (i) SEQUENCE CHARACTERISTICS:    |            |                   |                        |               |                        |                        |            |            |            |            |            |            |            |            |            |    |
|    | (ii                              | i) MC      | LECU              | JLE T                  | YPE           | : DN                   | A (ge                  | enomi      | ic)        |            |            |            |            |            |            |            |    |
| 25 | (xi                              | ) SE       | QUE               | ICE I                  | DESCE         | RIPTI                  | ION:                   | SEQ        | ID 1       | NO:5       |            |            |            |            |            |            |    |
|    | TATGAATTO                        | CA GA      | TGC               | CTA                    | ACC           | TCC                    | CTGC                   |            |            |            |            |            |            |            |            |            | 30 |
|    | (7) INFOR                        | TAM        | ON E              | or s                   | BEQ 1         | ID NO                  | 0:6:                   |            |            |            |            |            |            |            |            |            |    |
| 30 | (i)                              | (B)        | LEN<br>TYI<br>STI | GTH:<br>PE: 1<br>RANDI | : 30<br>nucle | base<br>eic a<br>SS: s | e pai<br>acid<br>singl | irs        |            |            |            |            |            |            |            |            |    |
|    | (ii                              | ) MC       | LECU              | JLE T                  | TYPE:         | : DN                   | A (ge                  | enomi      | ic)        |            |            |            |            |            |            |            |    |
|    | (xi                              | ) SE       | QUE               | ICE I                  | DESCI         | RIPTI                  | ION:                   | SEQ        | ID 1       | NO:6       |            |            |            |            |            |            |    |
| 35 | TCCGGATCC                        | CA CC      | CTGC              | CCT                    | CGC           | CTG                    | CACC                   |            |            |            |            |            |            |            |            |            | 30 |
|    | (8) INFOR                        | TTAM       | ON F              | OR S                   | EC 1          | ות מז                  | )· 7·                  |            |            |            |            |            |            |            |            |            |    |

| ( I ) | SEQ | DENCE | CH | ARACT. | EKISI. | LCS: |
|-------|-----|-------|----|--------|--------|------|
|       | (A) | LENGT | H: | 1002   | base   | pai  |

(B) TYPE: nucleic acid (C) STRANDEDNESS: single

(D) TOPOLOGY: linear

5

30

(ii) MOLECULE TYPE: DNA (genomic) (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

ATGGAGTCCT CAGGCAACCC AGAGAGCACC ACCTTTTTTT ACTATGACCT TCAGAGCCAG 60 CCGTGTGAGA ACCAGGCCTG GGTCTTTGCT ACCCTCGCCA CCACTGTCCT GTACTGCCTG 120 10 GTGTTTCTCC TCAGCCTAGT GGGCAACAGC CTGGTCCTGT GGGTCCTGGT GAAGTATGAG 180 AGCCTGGAGT CCCTCACCAA CATCTTCATC CTCAACCTGT GCCTCTCAGA CCTGGTGTTC 240 GCCTGCTTGT TGCCTGTGTG GATCTCCCCA TACCACTGGG GCTGGGTGCT GGGAGACTTC 300 CTCTGCAAAC TCCTCAATAT GATCTTCTCC ATCAGCCTCT ACAGCAGCAT CTTCTTCCTG 360 ACCATCATGA CCATCCACCG CTACCTGTCG GTAGTGAGCC CCCTCTCCAC CCTGCGCGTC 420 15 CCCACCCTCC GCTGCCGGGT GCTGGTGACC ATGGCTGTGT GGGTAGCCAG CATCCTGTCC 480 TCCATCCTCG ACACCATCTT CCACAAGGTG CTTTCTTCGG GCTGTGATTA TTCCGAACTC 540 ACGTGGTACC TCACCTCCGT CTACCAGCAC AACCTCTTCT TCCTGCTGTC CCTGGGGATT 600 ATCCTGTTCT GCTACGTGGA GATCCTCAGG ACCCTGTTCC GCTCACGCTC CAAGCGGGGC 660 CACCGCACGG TCAAGCTCAT CTTCGCCATC GTGGTGGCCT ACTTCCTCAG CTGGGGTCCC 720 20 TACAACTICA CCCTGTTTCT GCAGACGCTG TTTCGGACCC AGATCATCCG GAGCTGCGAG 780 GCCAAACAGC AGCTAGAATA CGCCCTGCTC ATCTGCCGCA ACCTCGCCTT CTCCCACTGC 840 TGCTTTAACC CGGTGCTCTA TGTCTTCGTG GGGGTCAAGT TCCGCACACA CCTGAAACAT 900 GTTCTCCGGC AGTTCTGGTT CTGCCGGCTG CAGGCACCCA GCCCAGCCTC GATCCCCCAC 960 TCCCCTGGTG CCTTCGCCTA TGAGGGCGCC TCCTTCTACT GA 1002

25 (9) INFORMATION FOR SEQ ID NO:8:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 333 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

|    | Met<br>1   | Glu        | Ser        | Ser        | Gly<br>5   | Asn        | Pro        | Glu        | Ser        | Thr<br>10  | Thr        | Phe        | Phe        | Tyr        | Tyr<br>15  | Asj        |
|----|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    | Leu        | Gln        | Ser        | Gln<br>20  | Pro        | Cys        | Glu        | Asn        | Gln<br>25  | Ala        | Trp        | Val        | Phe        | Ala<br>30  | Thr        | Lo         |
| 5  | Ala        | Thr        | Thr<br>35  | Val        | Leu        | Tyr        | Cys        | Leu<br>40  | Val        | Phe        | Leu        | Leu        | Ser<br>45  | Leu        | Val        | Gl         |
|    | Asn        | Ser<br>50  | Leu        | Val        | Leu        | Trp        | Val<br>55  | Leu        | Val        | Lys        | Tyr        | Glu<br>60  | Ser        | Leu        | Glu        | Sei        |
| 10 | Leu<br>65  | Thr        | Asn        | Ile        | Phe        | Ile<br>70  | Leu        | Asn        | Leu        | Cys        | Leu<br>75  | Ser        | Asp        | Leu        | Val        | Phe<br>80  |
|    | Ala        | Cys        | Leu        | Leu        | Pro<br>85  | Val        | Trp        | Ile        | Ser        | Pro<br>90  | Tyr        | His        | Trp        | Gly        | Trp<br>95  | Va]        |
|    | Leu        | Gly        | Asp        | Phe<br>100 | Leu        | Cys        | Lys        | Leu        | Leu<br>105 | Asn        | Met        | Ile        | Phe        | Ser<br>110 | Ile        | Sei        |
| 15 | Leu        | Tyr        | Ser<br>115 | Ser        | Ile        | Phe        | Phe        | Leu<br>120 | Thr        | Ile        | Met        | Thr        | Ile<br>125 | His        | Arg        | Туг        |
|    | Leu        | Ser<br>130 | Val        | Val        | Ser        | Pro        | Leu<br>135 | Ser        | Thr        | Leu        | Arg        | Val<br>140 | Pro        | Thr        | Leu        | Arg        |
| 20 | Cys<br>145 | Arg        | Val        | Leu        | Val        | Thr<br>150 | Met        | Ala        | Val        | Trp        | Val<br>155 | Ala        | Ser        | Ile        | Leu        | Ser<br>160 |
|    | Ser        | Ile        | Leu        | Asp        | Thr<br>165 | Ile        | Phe        | His        | Lys        | Val<br>170 | Leu        | Ser        | Ser        | Gly        | Cys<br>175 | Asp        |
|    | Tyr        | Ser        | Glu        | Leu<br>180 | Thr        | Trp        | Tyr        | Leu        | Thr<br>185 | Ser        | Val        | Tyr        | Gln        | His<br>190 | Asn        | Leu        |
| 25 | Phe        | Phe        | Leu<br>195 | Leu        | Ser        | Leu        | Gly        | Ile<br>200 | Ile        | Leu        | Phe        | Cys        | Tyr<br>205 | Val        | Glu        | Ile        |
|    | Leu        | Arg<br>210 | Thr        | Leu        | Phe        | Arg        | Ser<br>215 | Arg        | Ser        | Lys        | Arg        | Arg<br>220 | His        | Arg        | Thr        | Val        |
| 30 | Lys<br>225 | Leu        | Ile        | Phe        | Ala        | Ile<br>230 | Val        | Val        | Ala        | Tyr        | Phe<br>235 | Leu        | Ser        | Trp        | Gly        | Pro        |
|    | Tyr        | Asn        | Phe        |            | Leu<br>245 | Phe        | Leu        | Gln        | Thr        | Leu<br>250 | Phe        | Arg        | Thr        | Gln        | Ile<br>255 | Ile        |
|    | Arg        | Ser        | Cys        | Glu<br>260 | Ala        | Lys        | Gln        | Gln        | Leu<br>265 | Glu        | Tyr        | Ala        | Leu        | Leu<br>270 | Ile        | Cys        |
| 35 | Arg        | Asn        | Leu<br>275 | Ala        | Phe        | Ser        | His        | Cys<br>280 | Cys        | Phe        | Asn        | Pro        | Val<br>285 | Leu        | Tyr        | Val        |

|    | Phe Val Gly Val Lys Phe Arg Thr His Leu Lys His Val Leu Arg Gln<br>290 295 300                                                |     |
|----|-------------------------------------------------------------------------------------------------------------------------------|-----|
|    | Phe Trp Phe Cys Arg Leu Gln Ala Pro Ser Pro Ala Ser Ile Pro His<br>305 310 315                                                |     |
| 5  | Ser Pro Gly Ala Phe Ala Tyr Glu Gly Ala Ser Phe Tyr<br>325 330                                                                |     |
|    | (10) INFORMATION FOR SEQ ID NO:9:                                                                                             |     |
| 10 | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear  |     |
|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                             |     |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:                                                                                       |     |
| 15 | GCAAGCTTGG GGGACGCCAG GTCGCCGGCT                                                                                              | 30  |
|    | (11) INFORMATION FOR SEQ ID NO:10:                                                                                            |     |
| 20 | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDENDESS: single (D) TOPOLOGY: linear  |     |
|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                             |     |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:                                                                                      |     |
|    | GCGGATCCGG ACGCTGGGGG AGTCAGGCTG C                                                                                            | 31  |
| 25 | (12) INFORMATION FOR SEQ ID NO:11:                                                                                            |     |
| 30 | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 987 base pairs (B) TYPE: nucleic acid (C) STRANDENDESS: single (D) TOPOLOGY: linear |     |
|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                             |     |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:                                                                                      |     |
|    | ATGGACAACG CCTCGTTCTC GGAGCCCTGG CCCGCCAACG CATCGGGCCC GGACCCGGCG                                                             | 60  |
|    | CTGAGCTGCT CCAACGCGTC GACTCTGGCG CCCCTGCCGG CGCCGCTGGC GGTGGCTGTA                                                             | .20 |
| 35 | CCAGTTGTCT ACGCGGTGAT CTGCGCCGTG GGTCTGGCGG GCAACTCCGC CGTGCTGTAC 1                                                           | .80 |

| WO 00/22129   | PCT/US99/23938   |
|---------------|------------------|
| 11 0 00/22129 | F C 1/U377/23730 |

|    | GTGTTGCTGC GGGCGCCCCG CATGAAGACC GTCACCAACC TGTTCATCCT CAACCTGGCC 2                      | 40 |
|----|------------------------------------------------------------------------------------------|----|
|    | ATCGCCGACG AGCTCTTCAC GCTGGTGCTG CCCATCAACA TCGCCGACTT CCTGCTGCGG 3                      | 00 |
|    | CAGTGGCCCT TCGGGGAGCT CATGTGCAAG CTCATCGTGG CTATCGACCA GTACAACACC 3                      | 60 |
|    | TTCTCCAGCC TCTACTTCCT CACCGTCATG AGCGCCGACC GCTACCTGGT GGTGTTGGCC 4                      | 20 |
| 5  | ACTGCGGAGT CGCGCCGGGT GGCCGGCCGC ACCTACAGCG CCGCGCGCG GGTGAGCCTG 4                       | 80 |
|    | GCCGTGTGGG GGATCGTCAC ACTCGTCGTG CTGCCCTTCG CAGTCTTCGC CCGGCTAGAC 5                      | 40 |
|    | GACGAGCAGG GCCGGCGCCA GTGCGTGCTA GTCTTTCCGC AGCCCGAGGC CTTCTGGTGG 6                      | 00 |
|    | CGCGCGAGCC GCCTCTACAC GCTCGTGCTG GGCTTCGCCA TCCCCGTGTC CACCATCTGT 6                      | 60 |
|    | GTCCTCTATA CCACCCTGCT GTGCCGGCTG CATGCCATGC                                              | 20 |
| 10 | GCCCTGGAGC GCGCCAAGAA GCGGGTGACC TTCCTGGTGG TGGCAATCCT GGCGGTGTGC 7                      | 80 |
|    | CTCCTCTGCT GGACGCCCTA CCACCTGAGC ACCGTGGTGG CGCTCACCAC CGACCTCCCG 8                      | 40 |
|    | CAGACGCCGC TGGTCATCGC TATCTCCTAC TTCATCACCA GCCTGACGTA CGCCAACAGC 9                      | 00 |
|    | TGCCTCAACC CCTTCCTCTA CGCCTTCCTG GACGCCAGCT TCCGCAGGAA CCTCCGCCAG 9                      | 60 |
|    | CTGATAACTT GCCGCGCGC AGCCTGA 9                                                           | 87 |
| 15 | (13) INFORMATION FOR SEQ ID NO:12:                                                       |    |
|    | (i) SEQUENCE CHARACTERISTICS:                                                            |    |
|    | (A) LENGTH: 328 amino acids (B) TYPE: amino acid (C) STRANDEDNESS:                       |    |
| 20 | (D) TOPOLOGY: not relevant                                                               |    |
|    | (ii) MOLECULE TYPE: protein                                                              |    |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:                                                 |    |
|    | Met Asp Asn Ala Ser Phe Ser Glu Pro Trp Pro Ala Asn Ala Ser Gly                          |    |
| 25 | Pro Asp Pro Ala Leu Ser Cys Ser Asn Ala Ser Thr Leu Ala Pro Leu                          |    |
|    | 20 25 30                                                                                 |    |
|    | Pro Ala Pro Leu Ala Val Ala Val Pro Val Val Tyr Ala Val Ile Cys<br>35 40 45              |    |
| 30 | Ala Val Gly Leu Ala Gly As<br>n Ser Ala Val Leu Tyr Val Leu Leu Arg $50 \hspace{1cm} 60$ |    |
|    | Ala Pro Arg Met Lys Thr Val Thr Asn Leu Phe Ile Leu Asn Leu Ala<br>65 70 75 80           |    |

11

|    |      | Ile        | Ala        | Asp                       | Glu            | Leu<br>85  | Phe          | Thr        | Leu        | Val        | Leu<br>90  | Pro        | Ile        | Asn        | Ile        | Ala<br>95  | Asp        |
|----|------|------------|------------|---------------------------|----------------|------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    |      | Phe        | Leu        | Leu                       | Arg<br>100     |            | Trp          | Pro        | Phe        | Gly<br>105 | Glu        | Leu        | Met        | Cys        | Lys<br>110 | Leu        | Ile        |
| 5  |      | Val        | Ala        | Ile<br>115                | Asp            | Gln        | Tyr          | Asn        | Thr<br>120 | Phe        | Ser        | Ser        | Leu        | Tyr<br>125 | Phe        | Leu        | Thr        |
|    |      | Val        | Met<br>130 | Ser                       | Ala            | Asp        | Arg          | Tyr<br>135 | Leu        | Val        | Val        | Leu        | Ala<br>140 | Thr        | Ala        | Glu        | Ser        |
| 10 |      | Arg<br>145 | Arg        | Val                       | Ala            | Gly        | Arg<br>150   | Thr        | Tyr        | Ser        | Ala        | Ala<br>155 | Arg        | Ala        | Val        | Ser        | Leu<br>160 |
|    |      | Ala        | Val        | Trp                       | Gly            | Ile<br>165 | Val          | Thr        | Leu        | Val        | Val<br>170 | Leu        | Pro        | Phe        | Ala        | Val<br>175 | Phe        |
|    |      | Ala        | Arg        | Leu                       | Asp<br>180     | Asp        | Glu          | Gln        | Gly        | Arg<br>185 | Arg        | Gln        | Cys        | Val        | Leu<br>190 | Val        | Phe        |
| 15 |      | Pro        | Gln        | Pro<br>195                | Glu            | Ala        | Phe          | Trp        | Trp<br>200 | Arg        | Ala        | Ser        | Arg        | Leu<br>205 | Tyr        | Thr        | Leu        |
|    |      | Val        | Leu<br>210 | Gly                       | Phe            | Ala        | Ile          | Pro<br>215 | Val        | Ser        | Thr        | Ile        | Cys<br>220 | Val        | Leu        | Tyr        | Thr        |
| 20 |      | Thr<br>225 | Leu        | Leu                       | Cys            | Arg        | Leu<br>230   | His        | Ala        | Met        | Arg        | Leu<br>235 | Asp        | Ser        | His        | Ala        | Lys<br>240 |
|    |      | Ala        | Leu        | Glu                       | Arg            | Ala<br>245 | Lys          | Lys        | Arg        | Val        | Thr<br>250 | Phe        | Leu        | Val        | Val        | Ala<br>255 | Ile        |
|    |      | Leu        | Ala        | Val                       | Cys<br>260     | Leu        | Leu          | Cys        | Trp        | Thr<br>265 | Pro        | Tyr        | His        | Leu        | Ser<br>270 | Thr        | Val        |
| 25 |      | Val        | Ala        | Leu<br>275                | Thr            | Thr        | Asp          | Leu        | Pro<br>280 | Gln        | Thr        | Pro        | Leu        | Val<br>285 | Ile        | Ala        | Ile        |
|    |      | Ser        | Tyr<br>290 | Phe                       | Ile            | Thr        | Ser          | Leu<br>295 | Thr        | Tyr        | Ala        | Asn        | Ser<br>300 | Cys        | Leu        | Asn        | Pro        |
| 30 |      | Phe<br>305 | Leu        | Tyr                       | Ala            | Phe        | Leu<br>310   | Asp        | Ala        | Ser        | Phe        | Arg<br>315 | Arg        | Asn        | Leu        | Arg        | Gln<br>320 |
|    |      | Leu        | Ile        | Thr                       | Cys            | Arg<br>325 | Ala          | Ala        | Ala        |            |            |            |            |            |            |            |            |
|    | (14) | INFO       | RMAT       | MOI                       | FOR            | SEQ        | ID 1         | 10:13      | 3:         |            |            |            |            |            |            |            |            |
| 35 |      | (i)        | (A)        | UENC<br>LEN<br>TYE<br>STE | IGTH:<br>PE: r | 30<br>ucle | base<br>ic a | pai<br>cid | rs         |            |            |            |            |            |            |            |            |

(D) TOPOLOGY: linear

|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                                  |     |
|----|------------------------------------------------------------------------------------------------------------------------------------|-----|
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:                                                                                           |     |
|    | CGGAATTCGT CAACGGTCCC AGCTACAATG                                                                                                   | 30  |
|    | (15) INFORMATION FOR SEQ ID NO:14:                                                                                                 |     |
| 5  | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear       |     |
| 10 | <ul><li>(ii) MOLECULE TYPE: DNA (genomic)</li><li>(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:</li></ul>                               |     |
|    | ATGGATCCCA GGCCCTTCAG CACCGCAATA T                                                                                                 | 31  |
|    | (16) INFORMATION FOR SEQ ID NO:15:                                                                                                 |     |
| 15 | (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 1002 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear |     |
|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                                  |     |
| 20 | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:                                                                                           |     |
|    | ATGCAGGCCG CTGGGCACCC AGAGCCCCTT GACAGCAGGG GCTCCTTCTC CCTCCCCACG                                                                  | 60  |
|    | ATGGGTGCCA ACGTCTCTCA GGACAATGGC ACTGGCCACA ATGCCACCTT CTCCGAGCCA                                                                  | 120 |
|    | CTGCCGTTCC TCTATGTGCT CCTGCCCGCC GTGTACTCCG GGATCTGTGC TGTGGGGCTG                                                                  | 180 |
|    | ACTGGCAACA CGGCCGTCAT CCTTGTAATC CTAAGGGCGC CCAAGATGAA GACGGTGACC                                                                  | 240 |
| 25 | AACGTGTTCA TCCTGAACCT GGCCGTCGCC GACGGGCTCT TCACGCTGGT ACTGCCCGTC                                                                  | 300 |
|    | AACATCGCGG AGCACCTGCT GCAGTACTGG CCCTTCGGGG AGCTGCTCTG CAAGCTGGTG                                                                  | 360 |
|    | CTGGCCGTCG ACCACTACAA CATCTTCTCC AGCATCTACT TCCTAGCCGT GATGAGCGTG                                                                  | 420 |
|    | GACCGATACC TGGTGGTGCT GGCCACCGTG AGGTCCCGCC ACATGCCCTG GCGCACCTAC                                                                  | 480 |
|    | CGGGGGGCGA AGGTCGCCAG CCTGTGTGTC TGGCTGGGCG TCACGGTCCT GGTTCTGCCC                                                                  | 540 |
| 30 | TTCTTCTCTT TCGCTGGCGT CTACAGCAAC GAGCTGCAGG TCCCAAGCTG TGGGCTGAGC                                                                  | 600 |
|    | TTCCCGTGGC CCGAGCGGGT CTGGTTCAAG GCCAGCCGTG TCTACACTTT GGTCCTGGGC                                                                  | 660 |
|    | TTCGTGCTGC CCGTGTGCAC CATCTGTGTG CTCTACACAG ACCTCCTGCG CAGGCTGCGG                                                                  | 720 |

|    | GCCGTGCG                                                                                                                                                     | GC T       | CCGC.      | rctg       | G AG       | CCAA       | GGCT       | CTA        | GGCA       | AGG (      | CCAG       | GCGG.      | AA G       | GTGA       | CCGT       | 780        |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    | CTGGTCCT                                                                                                                                                     | CG T       | CGTG       | CTGG       | C CG       | TGTG       | CCTC       | CTC        | rgct       | GGA (      | CGCC       | CTTC       | CA C       | CTGG       | CCTC       | r 840      |
|    | GTCGTGGC                                                                                                                                                     | CC T       | GACC       | ACGG       | A CC       | rgcc       | CCAG       | ACC        | CCAC       | rgg :      | CAT        | CAGT       | AT G       | TCCT       | ACGT       | 900        |
|    | ATCACCAG                                                                                                                                                     | CC T       | CACG'      | FACG       | C CA       | ACTC       | GTGC       | CTG        | AACC       | CCT 1      | rcct       | CTAC       | GC C       | TTTC       | raga:      | r 960      |
| 5  | GACAACTT                                                                                                                                                     | CC G       | GAAG       | AACT       | r cc       | GCAG       | CATA       | TTG        | CGGT       | GCT (      | GΑ         |            |            |            |            | 1002       |
|    | (17) INF                                                                                                                                                     | ORMA:      | rion       | FOR        | SEQ        | ID 1       | NO:1       | 5:         |            |            |            |            |            |            |            |            |
| 10 | (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 333 amino acids  (B) TTPE: amino acid  (C) STRANDEDNESS:  (D) TOPOLOGY: not relevant  (ii) MOLECULE TYPE: protein |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
|    |                                                                                                                                                              | i) M       |            |            |            | -          |            |            | <b>.</b>   |            | _          |            |            |            |            |            |
|    |                                                                                                                                                              | Gln        |            |            |            |            |            | -          |            |            |            |            |            | a1         |            | Dh -       |
| 15 | 1                                                                                                                                                            | GIII       | нта        | нта        | 5          | пть        | PIO        | GIU        | PIO        | 10         | мыр        | ser        | Arg        | GIĀ        | 15         | Pile       |
|    | Ser                                                                                                                                                          | Leu        | Pro        | Thr<br>20  | Met        | Gly        | Ala        | Asn        | Val<br>25  | Ser        | Gln        | Asp        | Asn        | Gly<br>30  | Thr        | Gly        |
|    | His                                                                                                                                                          | Asn        | Ala<br>35  | Thr        | Phe        | Ser        | Glu        | Pro<br>40  | Leu        | Pro        | Phe        | Leu        | Tyr<br>45  | Val        | Leu        | Leu        |
| 20 | Pro                                                                                                                                                          | Ala<br>50  | Val        | Tyr        | Ser        | Gly        | Ile<br>55  | Cys        | Ala        | Val        | Gly        | Leu<br>60  | Thr        | Gly        | Asn        | Thr        |
|    | Ala<br>65                                                                                                                                                    | Val        | Ile        | Leu        | Val        | Ile<br>70  | Leu        | Arg        | Ala        | Pro        | Lys<br>75  | Met        | Lys        | Thr        | Val        | Thr<br>80  |
| 25 | Asn                                                                                                                                                          | Val        | Phe        | Ile        | Leu<br>85  | Asn        | Leu        | Ala        | Val        | Ala<br>90  | Asp        | Gly        | Leu        | Phe        | Thr<br>95  | Leu        |
|    | Val                                                                                                                                                          | Leu        | Pro        | Val<br>100 | Asn        | Ile        | Ala        | Glu        | His<br>105 | Leu        | Leu        | Gln        | Tyr        | Trp<br>110 | Pro        | Phe        |
|    | Gly                                                                                                                                                          | Glu        | Leu<br>115 | Leu        | Cys        | Lys        | Leu        | Val<br>120 | Leu        | Ala        | Val        | Asp        | His<br>125 | Tyr        | Asn        | Ile        |
| 30 | Phe                                                                                                                                                          | Ser<br>130 | Ser        | Ile        | Tyr        | Phe        | Leu<br>135 | Ala        | Val        | Met        | Ser        | Val<br>140 | Asp        | Arg        | Tyr        | Leu        |
|    | Val<br>145                                                                                                                                                   | Val        | Leu        | Ala        | Thr        | Val<br>150 | Arg        | Ser        | Arg        | His        | Met<br>155 | Pro        | Trp        | Arg        | Thr        | Tyr<br>160 |
| 35 | Arg                                                                                                                                                          | Gly        | Ala        | Lys        | Val<br>165 | Ala        | Ser        | Leu        | Cys        | Val<br>170 | Trp        | Leu        | Gly        | Val        | Thr<br>175 | Val        |

|    |      | Leu        | Val        | Leu               | Pro<br>180                       | Phe        | Phe                   | Ser                    | Phe        | Ala<br>185 | Gly        | Val        | Tyr        | Ser        | Asn<br>190 | Glu        | Leu        |     |
|----|------|------------|------------|-------------------|----------------------------------|------------|-----------------------|------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----|
|    |      | Gln        | Val        | Pro<br>195        | Ser                              | Cys        | Gly                   | Leu                    | Ser<br>200 | Phe        | Pro        | Trp        | Pro        | Glu<br>205 | Arg        | Val        | Trp        |     |
| 5  |      | Phe        | Lys<br>210 | Ala               | Ser                              | Arg        | Val                   | Tyr<br>215             | Thr        | Leu        | Val        | Leu        | Gly<br>220 | Phe        | Val        | Leu        | Pro        |     |
|    |      | Val<br>225 | Cys        | Thr               | Ile                              | Cys        | Val<br>230            | Leu                    | Tyr        | Thr        | Asp        | Leu<br>235 | Leu        | Arg        | Arg        | Leu        | Arg<br>240 |     |
| 10 |      | Ala        | Val        | Arg               | Leu                              | Arg<br>245 | Ser                   | Gly                    | Ala        | Lys        | Ala<br>250 | Leu        | Gly        | Lys        | Ala        | Arg<br>255 | Arg        |     |
|    |      | Lys        | Val        | Thr               | Val<br>260                       | Leu        | Val                   | Leu                    | Val        | Val<br>265 | Leu        | Ala        | Val        | Cys        | Leu<br>270 | Leu        | Cys        |     |
|    |      | Trp        | Thr        | Pro<br>275        | Phe                              | His        | Leu                   | Ala                    | Ser<br>280 | Val        | Val        | Ala        | Leu        | Thr<br>285 | Thr        | Asp        | Leu        |     |
| 15 |      | Pro        | Gln<br>290 | Thr               | Pro                              | Leu        | Val                   | Ile<br>295             | Ser        | Met        | Ser        | Tyr        | Val<br>300 | Ile        | Thr        | Ser        | Leu        |     |
|    |      | Thr<br>305 | Tyr        | Ala               | Asn                              | Ser        | Cys<br>310            | Leu                    | Asn        | Pro        | Phe        | Leu<br>315 | Tyr        | Ala        | Phe        | Leu        | Asp<br>320 |     |
| 20 |      | Asp        | Asn        | Phe               | Arg                              | Lys<br>325 | Asn                   | Phe                    | Arg        | Ser        | Ile<br>330 | Leu        | Arg        | Cys        |            |            |            |     |
|    | (18) | INF        | ORMA:      | rion              | FOR                              | SEQ        | ID 1                  | 10:17                  | 7:         |            |            |            |            |            |            |            |            |     |
| 25 |      | (i)        | (B)        | LEN<br>TYI<br>STI | CE CH<br>NGTH:<br>PE: I<br>RANDE | 48<br>ucle | base<br>ic a<br>SS: s | e pai<br>acid<br>singl | irs        |            |            |            |            |            |            |            |            |     |
|    |      | (i:        | i.) MC     | LECU              | JLE T                            | YPE:       | DNA                   | A (ge                  | enomi      | ic)        |            |            |            |            |            |            |            |     |
|    |      | (x:        | L) SI      | QUE               | ICE I                            | ESCF       | RIPTI                 | EON:                   | SEQ        | ID 1       | 10:17      | 7:         |            |            |            |            |            |     |
|    | ACGA | ATTC!      | AG CC      | ATG               | TCCI                             | TGF        | AGGTO                 | SAGT                   | GAC        | ACC        | AG T       | GCT        | TAA        |            |            |            |            | 4.8 |
| 80 | (19) | INFO       | ORMAT      | rion              | FOR                              | SEQ        | ID N                  | NO:18                  | 3:         |            |            |            |            |            |            |            |            |     |
| 35 |      | (i)        | (B)        | LEN<br>TYI<br>STI | CE CH<br>NGTH:<br>PE: 1<br>RANDE | 27<br>ucle | base<br>ic a<br>SS: s | e pai<br>acid<br>singl | irs        |            |            |            |            |            |            |            |            |     |
|    |      | (i:        | i) Mo      | DLECT             | JLE T                            | YPE:       | DN2                   | A (ge                  | enomi      | ic)        |            |            |            |            |            |            |            |     |
|    |      | (20.       | 1) CI      | OTTEN             | ICE I                            | rect       | וייים די              | ON.                    | GEO.       | TD N       | 10.10      | ٠.         |            |            |            |            |            |     |

15

GAGGATCCTG GAATGCGGGG AAGTCAG 27

(20) INFORMATION FOR SEO ID NO:19:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1107 base pairs 5

(21) INFORMATION FOR SEQ ID NO:20:

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single (ii) MOLECULE TYPE: DNA (genomic)

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

ATGGTCCTTG AGGTGAGTGA CCACCAAGTG CTAAATGACG CCGAGGTTGC CGCCCTCCTG 60 GAGAACTICA GCTCTTCCTA TGACTATGGA GAAAACGAGA GTGACTCCTG CTGTACCTCC 120 CCGCCCTGCC CACAGGACTT CAGCCTGAAC TTCGACCGGG CCTTCCTGCC AGCCCTCTAC 180 AGCCTCCTCT TTCTGCTGGG GCTGCTGGGC AACGGCGCGG TGGCAGCCGT GCTGCTGAGC 240 CGGCGGACAG CCCTGAGCAG CACCGACACC TTCCTGCTCC ACCTAGCTGT AGCAGACACG 300 15 CTGCTGGTGC TGACACTGCC GCTCTGGGCA GTGGACGCTC CCGTCCAGTG GGTCTTTGGC 360 TCTGGCCTCT GCAAAGTGGC AGGTGCCCTC TTCAACATCA ACTTCTACGC AGGAGCCCTC 420 CTGCTGGCCT GCATCAGCTT TGACCGCTAC CTGAACATAG TTCATGCCAC CCAGCTCTAC 480 CGCCGGGGGC CCCCGGCCCG CGTGACCCTC ACCTGCCTGG CTGTCTGGGG GCTCTGCCTG 540 CTTTTCGCCC TCCCAGACTT CATCTTCCTG TCGGCCCACC ACGACGAGCG CCTCAACGCC 600 ACCCACTGCC AATACAACTT CCCACAGGTG GGCCGCACGC CTCTGCGGGT GCTGCAGCTG 660 GTGGCTGGCT TTCTGCTGCC CCTGCTGGTC ATGGCCTACT GCTATGCCCA CATCCTGGCC 720 GTGCTGCTGG TTTCCAGGGG CCAGCGGCGC CTGCGGGCCA TGCGGCTGGT GGTGGTGGTC 780 GTGGTGGCCT TTGCCCTCTG CTGGACCCCC TATCACCTGG TGGTGCTGGT GGACATCCTC 840 ATGGACCTGG GCGCTTTGGC CCGCAACTGT GGCCGAGAAA GCAGGGTAGA CGTGGCCAAG 900 TCGGTCACCT CAGGCCTGGG CTACATGCAC TGCTGCCTCA ACCCGCTGCT CTATGCCTTT 960 GTAGGGGTCA AGTTCCGGGA GCGGATGTGG ATGCTGCTCT TGCGCCTGGG CTGCCCCAAC 1020 CAGAGAGGGC TCCAGAGGCA GCCATCGTCT TCCCGCCGGG ATTCATCCTG GTCTGAGACC 1080 TCAGAGGCCT CCTACTCGGG CTTGTGA 1107

| 5  | (i) SEQUENCE CHARACTERISTICS: (A) LENTH: 368 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: 5 (D) TOPOLOGY: not relevant (ii) MOLECULE TYPE: protein |              |            |            |            |            |            |            |            |            |            |            |            |            |            |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    | (ii)                                                                                                                                                     | MOLE         | CULE       | TYPE       | : pro      | oteir      | 1          |            |            |            |            |            |            |            |            |
|    | (xi)                                                                                                                                                     | SEQU         | ENCE       | DESCI      | RIPT       | ION:       | SEQ        | ID 1       | NO:20      | ) :        |            |            |            |            |            |
|    | Met V<br>1                                                                                                                                               | al Le        | ı Glu      | Val<br>5   | Ser        | Asp        | His        | Gln        | Val<br>10  | Leu        | Asn        | Asp        | Ala        | Glu<br>15  | Val        |
| 10 | Ala A                                                                                                                                                    | la Le        | Leu<br>20  | Glu        | Asn        | Phe        | Ser        | Ser<br>25  | Ser        | Tyr        | Asp        | Tyr        | Gly<br>30  | Glu        | Asn        |
|    | Glu S                                                                                                                                                    | er Ası<br>35 | Ser        | Cys        | Cys        | Thr        | Ser<br>40  | Pro        | Pro        | Cys        | Pro        | Gln<br>45  | Asp        | Phe        | Ser        |
| 15 |                                                                                                                                                          | sn Ph        | a Asp      | Arg        | Ala        | Phe<br>55  | Leu        | Pro        | Ala        | Leu        | Tyr<br>60  | Ser        | Leu        | Leu        | Phe        |
|    | Leu L<br>65                                                                                                                                              | eu Gl        | / Leu      | Leu        | Gly<br>70  | Asn        | Gly        | Ala        | Val        | Ala<br>75  | Ala        | Val        | Leu        | Leu        | Ser<br>80  |
|    | Arg A                                                                                                                                                    | arg Th       | r Ala      | Leu<br>85  | Ser        | Ser        | Thr        | Asp        | Thr<br>90  | Phe        | Leu        | Leu        | His        | Leu<br>95  | Ala        |
| 20 | Val A                                                                                                                                                    | ıla Asp      | Thr<br>100 |            | Leu        | Val        | Leu        | Thr<br>105 | Leu        | Pro        | Leu        | Trp        | Ala<br>110 | Val        | Asp        |
|    | Ala A                                                                                                                                                    | la Va        |            | Trp        | Val        | Phe        | Gly<br>120 | Ser        | Gly        | Leu        | Cys        | Lys<br>125 | Val        | Ala        | Gly        |
| 25 |                                                                                                                                                          | eu Ph        | e Asn      | Ile        | Asn        | Phe<br>135 | Tyr        | Ala        | Gly        | Ala        | Leu<br>140 | Leu        | Leu        | Ala        | Cys        |
|    | Ile S<br>145                                                                                                                                             | er Ph        | e Asp      | Arg        | Tyr<br>150 | Leu        | Asn        | Ile        | Val        | His<br>155 | Ala        | Thr        | Gln        | Leu        | Tyr<br>160 |
|    | Arg A                                                                                                                                                    | urg Gl       | y Pro      | Pro<br>165 | Ala        | Arg        | Val        | Thr        | Leu<br>170 | Thr        | Cys        | Leu        | Ala        | Val<br>175 | Trp        |
| 30 | Gly L                                                                                                                                                    | eu Cy        | 180        | Leu        | Phe        | Ala        | Leu        | Pro<br>185 | Asp        | Phe        | Ile        | Phe        | Leu<br>190 | Ser        | Ala        |
|    | His H                                                                                                                                                    | lis As       |            | Arg        | Leu        | Asn        | Ala<br>200 | Thr        | His        | Сув        | Gln        | Tyr<br>205 | Asn        | Phe        | Pro        |
| 35 |                                                                                                                                                          | /al Gl       | y Arg      | Thr        | Ala        | Leu<br>215 | Arg        | Val        | Leu        | Gln        | Leu<br>220 | Val        | Ala        | Gly        | Phe        |
|    | Leu I<br>225                                                                                                                                             | eu Pr        | o Leu      | Leu        | Val<br>230 |            | Ala        | Tyr        | Сув        | Tyr<br>235 | Ala        | His        | Ile        | Leu        | Ala<br>240 |

|    | Val :                                                   | Leu Leu                            | Val                     | Ser<br>245           | Arg                    | Gly                             | Gln        | Arg        | Arg<br>250 | Leu        | Arg        | Ala        | Met        | Arg<br>255 | Leu        |    |
|----|---------------------------------------------------------|------------------------------------|-------------------------|----------------------|------------------------|---------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|----|
|    | Val '                                                   | Val Val                            | Val<br>260              | Val                  | Val                    | Ala                             | Phe        | Ala<br>265 | Leu        | Cys        | Trp        | Thr        | Pro<br>270 | Tyr        | His        |    |
| 5  | Leu '                                                   | Val Val<br>275                     |                         | Val                  | Asp                    | Ile                             | Leu<br>280 | Met        | Asp        | Leu        | Gly        | Ala<br>285 | Leu        | Ala        | Arg        |    |
|    |                                                         | Cys Gly<br>290                     | Arg                     | Glu                  | Ser                    | Arg<br>295                      | Val        | Asp        | Val        | Ala        | Lys<br>300 | Ser        | Val        | Thr        | Ser        |    |
| 10 | Gly :                                                   | Leu Gly                            | Tyr                     | Met                  | His<br>310             |                                 | Cys        | Leu        | Asn        | Pro<br>315 | Leu        | Leu        | Tyr        | Ala        | Phe<br>320 |    |
|    | Val                                                     | Gly Val                            | Lys                     | Phe<br>325           | Arg                    | Glu                             | Arg        | Met        | Trp<br>330 | Met        | Leu        | Leu        | Leu        | Arg<br>335 | Leu        |    |
|    | Gly                                                     | Cys Pro                            | Asn<br>340              | Gln                  | Arg                    | Gly                             | Leu        | Gln<br>345 | Arg        | Gln        | Pro        | Ser        | Ser<br>350 | Ser        | Arg        |    |
| 15 | Arg                                                     | Asp Ser<br>355                     |                         | Trp                  | Ser                    | Glu                             | Thr<br>360 | Ser        | Glu        | Ala        | Ser        | Tyr<br>365 | Ser        | Gly        | Leu        |    |
| •  | (22) INFO                                               | ORMATIO                            | N FOI                   | SE(                  | Q ID                   | NO:                             | 21:        |            |            |            |            |            |            |            |            |    |
| 20 | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs |                                    |                         |                      |                        |                                 |            |            |            |            |            |            |            |            |            |    |
|    | (xi)                                                    | ) SEQUE                            | NCE I                   | DESCI                | RIPT:                  | ON:                             | SEQ        | ID N       | IO:21      | L:         |            |            |            |            |            |    |
| 25 | TTAAGCTTG                                               | a cctaa                            | TGCC                    | A TC:                | TTGT                   | TCC                             |            |            |            |            |            |            |            |            |            | 30 |
|    | (23) INFO                                               | RMATTON                            | FOR                     | SEO                  | TD 1                   | 10:23                           |            |            |            |            |            |            |            |            |            |    |
| 30 |                                                         | SEQUEN (A) LE (B) TY (C) ST (D) TO | CE CE<br>NGTH:<br>PE: 1 | HARAG<br>30<br>nucle | CTER:<br>base<br>eic a | ISTIC<br>e pa:<br>acid<br>sing: | cs:        |            |            |            |            |            |            |            |            |    |
|    | (ii                                                     | ) MOLEC                            | ULE ?                   | TYPE                 | : DNZ                  | A (ge                           | enom:      | ic)        |            |            |            |            |            |            |            |    |
|    | (xi                                                     | ) SEQUE                            | NCE I                   | DESC                 | RIPT                   | EON:                            | SEQ        | ID 1       | IO:22      | 2:         |            |            |            |            |            |    |
|    | TTGGATCCA                                               | a aagaa                            | CCAT                    | CAC                  | CCTC                   | AGAG                            |            |            |            |            |            |            |            |            |            | 30 |
| 35 | (24) INFO                                               | RMATION                            | FOR                     | SEQ                  | ID 1                   | NO:2                            | 3:         |            |            |            |            |            |            |            |            |    |
|    | (i) :                                                   | SEQUENC                            | E CH                    | ARAC:                | TERIS                  | STIC                            | 3:         |            |            |            |            |            |            |            |            |    |

(A) LENGTH: 1074 base pairs

(B) TYPE: nucleic acid (C) STRANDEDNESS: single

(D) TOPOLOGY: linear

5 (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

ATGGCTGATG ACTATGGCTC TGAATCCACA TCTTCCATGG AAGACTACGT TAACTTCAAC 6.0 TTCACTGACT TCTACTGTGA GAAAAACAAT GTCAGGCAGT TTGCGAGCCA TTTCCTCCCA 120 CCCTTGTACT GGCTCGTGTT CATCGTGGGT GCCTTGGGCA ACAGTCTTGT TATCCTTGTC 180 TACTGGTACT GCACAAGAGT GAAGACCATG ACCGACATGT TCCTTTTGAA TTTGGCAATT 240 GCTGACCTCC TCTTTCTTGT CACTCTTCCC TTCTGGGCCA TTGCTGCTGC TGACCAGTGG 300 AAGTTCCAGA CCTTCATGTG CAAGGTGGTC AACAGCATGT ACAAGATGAA CTTCTACAGC 360 TGTGTGTTGC TGATCATGTG CATCAGCGTG GACAGGTACA TTGCCATTGC CCAGGCCATG 420 AGAGCACATA CTTGGAGGGA GAAAAGGCTT TTGTACAGCA AAATGGTTTG CTTTACCATC 480 15 TGGGTATTGG CAGCTGCTCT CTGCATCCCA GAAATCTTAT ACAGCCAAAT CAAGGAGGAA 540 TCCGGCATTG CTATCTGCAC CATGGTTTAC CCTAGCGATG AGAGCACCAA ACTGAAGTCA 600 GCTGTCTTGA CCCTGAAGGT CATTCTGGGG TTCTTCCTTC CCTTCGTGGT CATGGCTTGC 660 TGCTATACCA TCATCATTCA CACCCTGATA CAAGCCAAGA AGTCTTCCAA GCACAAAGCC 720 CTAAAAGTGA CCATCACTGT CCTGACCGTC TTTGTCTTGT CTCAGTTTCC CTACAACTGC 780 ATTTGTTGG TGCAGACCAT TGACGCCTAT GCCATGTTCA TCTCCAACTG TGCCGTTTCC 840 ACCAACATTG ACATCTGCTT CCAGGTCACC CAGACCATCG CCTTCTTCCA CAGTTGCCTG 900 AACCCTGTTC TCTATGTTTT TGTGGGTGAG AGATTCCGCC GGGATCTCGT GAAAACCCTG 960 AAGAACTTGG GTTGCATCAG CCAGGCCCAG TGGGTTTCAT TTACAAGGAG AGAGGGAAGC 1020 TTGAAGCTGT CGTCTATGTT GCTGGAGACA ACCTCAGGAG CACTCTCCCT CTGA 1074

25 (25) INFORMATION FOR SEQ ID NO:24:

30

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 357 amino acids (B) TYPE: amino acid

(C) STRANDEDNESS:

(D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: protein

|    | i) s       | EQUE       | NCE I      | DESCI      | RIPT:      | ION:       | SEQ        | ID 1       | NO:2       | 4:         |            |            |            |            |            |            |
|----|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    | Met<br>1   | Ala        | Asp        | Asp        | Tyr<br>5   | Gly        | Ser        | Glu        | Ser        | Thr<br>10  | Ser        | Ser        | Met        | Glu        | Asp<br>15  | Tyr        |
| 5  | Val        | Asn        | Phe        | Asn<br>20  | Phe        | Thr        | Asp        | Phe        | Tyr<br>25  | Cys        | Glu        | Lys        | Asn        | Asn<br>30  | Val        | Arg        |
|    | Gln        | Phe        | Ala<br>35  | Ser        | His        | Phe        | Leu        | Pro<br>40  | Pro        | Leu        | Tyr        | Trp        | Leu<br>45  | Val        | Phe        | Ile        |
|    | Val        | Gly<br>50  | Ala        | Leu        | Gly        | Asn        | Ser<br>55  | Leu        | Val        | Ile        | Leu        | Val<br>60  | Tyr        | Trp        | Tyr        | Cys        |
| 10 | Thr<br>65  | Arg        | Val        | Lys        | Thr        | Met<br>70  | Thr        | Asp        | Met        | Phe        | Leu<br>75  | Leu        | Asn        | Leu        | Ala        | Ile<br>80  |
|    | Ala        | Asp        | Leu        | Leu        | Phe<br>85  | Leu        | Val        | Thr        | Leu        | Pro<br>90  | Phe        | Trp        | Ala        | Ile        | Ala<br>95  | Ala        |
| 15 | Ala        | Asp        | Gln        | Trp<br>100 | Lys        | Phe        | Gln        | Thr        | Phe<br>105 | Met        | Cys        | Lys        | Val        | Val<br>110 | Asn        | Ser        |
|    | Met        | Tyr        | Lys<br>115 | Met        | Asn        | Phe        | Tyr        | Ser<br>120 | Суз        | Val        | Leu        | Leu        | Ile<br>125 | Met        | Cys        | Ile        |
|    | Ser        | Val<br>130 | Asp        | Arg        | Tyr        | Ile        | Ala<br>135 | Ile        | Ala        | Gln        | Ala        | Met<br>140 | Arg        | Ala        | His        | Thr        |
| 20 | Trp<br>145 | Arg        | Glu        | Lys        | Arg        | Leu<br>150 | Leu        | Tyr        | Ser        | Lys        | Met<br>155 | Val        | Cys        | Phe        | Thr        | Ile<br>160 |
|    | Trp        | Val        | Leu        | Ala        | Ala<br>165 | Ala        | Leu        | Cys        | Ile        | Pro<br>170 | G1u        | Ile        | Leu        | Tyr        | Ser<br>175 | Gln        |
| 25 | Ile        | Lys        | Glu        | Glu<br>180 | Ser        | Gly        | Ile        | Ala        | Ile<br>185 | Cys        | Thr        | Met        | Val        | Tyr<br>190 | Pro        | Ser        |
|    | Asp        | Glu        | Ser<br>195 | Thr        | Lys        | Leu        | Lys        | Ser<br>200 | Ala        | Val        | Leu        | Thr        | Leu<br>205 | Lys        | Val        | Ile        |
|    | Leu        | Gly<br>210 | Phe        | Phe        | Leu        | Pro        | Phe<br>215 | Val        | Val        | Met        | Ala        | Суз<br>220 | Cys        | Tyr        | Thr        | Ile        |
| 30 | Ile<br>225 | Ile        | His        | Thr        | Leu        | Ile<br>230 | Gln        | Ala        | Lys        | Lys        | Ser<br>235 | Ser        | Lys        | His        | Lys        | Ala<br>240 |
|    | Leu        | Lys        | Val        | Thr        | Ile<br>245 | Thr        | Val        | Leu        | Thr        | Val<br>250 | Phe        | Val        | Leu        | Ser        | Gln<br>255 | Phe        |
| 35 | Pro        | Tyr        | Asn        | Cys<br>260 | Ile        | Leu        | Leu        | Val        | Gln<br>265 | Thr        | Ile        | Asp        | Ala        | Tyr<br>270 | Ala        | Met        |
|    | Phe        | Ile        | Ser<br>275 | Asn        | Cys        | Ala        | Val        | Ser<br>280 | Thr        | Asn        | Ile        | Asp        | Ile<br>285 | Cys        | Phe        | Gln        |

|                                                                                                                                                                       |           |                |         |               |            |       | U          |            |            |            |       |            |            |            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|---------|---------------|------------|-------|------------|------------|------------|------------|-------|------------|------------|------------|
|                                                                                                                                                                       |           | Thr Gln<br>290 | Thr I   | le Ala        | Phe<br>295 | Phe   | His        | Ser        | Cys        | Leu<br>300 | Asn   | Pro        | Val        | Leu        |
|                                                                                                                                                                       | Tyr 305   | Val Phe        | Val G   | ly Glu<br>310 | Arg        | Phe   | Arg        | Arg        | Asp<br>315 | Leu        | Val   | Lys        | Thr        | Leu<br>320 |
| 5                                                                                                                                                                     | Lys .     | Asn Leu        |         | ys Ile<br>25  | Ser        | Gln   | Ala        | Gln<br>330 | Trp        | Val        | Ser   | Phe        | Thr<br>335 | Arg        |
|                                                                                                                                                                       | Arg       | Glu Gly        | Ser L   | eu Lys        | Leu        | ser   | Ser<br>345 | Met        | Leu        | Leu        | Glu   | Thr<br>350 | Thr        | Ser        |
| 10                                                                                                                                                                    | Gly :     | Ala Leu<br>355 | Ser L   | eu            |            |       |            |            |            |            |       |            |            |            |
|                                                                                                                                                                       | (26) INFO | RMATION        | FOR S   | EQ ID 1       | NO:2       | 5:    |            |            |            |            |       |            |            |            |
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 1110 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear  (ii) MOLECULE TYPE: DNA (genomic) |           |                |         |               |            |       |            |            |            |            |       |            |            |            |
|                                                                                                                                                                       | (ii)      | ) MOLECI       | JLE TY  | PE: DN        | A (ge      | enomi | c)         |            |            |            |       |            |            |            |
|                                                                                                                                                                       | (xi)      | ) SEQUE        | CE DE   | SCRIPT        | ION:       | SEQ   | ID N       | 10:25      | 5 :        |            |       |            |            |            |
|                                                                                                                                                                       | ATGGCCTCA | r cgacca       | ACTCG ( | GGCCC         | CAGG       | GTTT  | CTGA       | CT T       | ATT        | TCT        | G GC  | TGC        | GCCG       | 60         |
| 20                                                                                                                                                                    | GCGGTCACA | A CTCCC        | CCAA    | CCAGAG        | CGCA       | GAGG  | CCTC       | GG (       | GGGG       | CAACG      | G GI  | 'CGG'      | rggci      | 120        |
|                                                                                                                                                                       | GGCGCGGAC | G CTCCAC       | CCGT    | CACGCC        | CTTC       | CAGA  | GCCI       | GC A       | GCT        | GTGC       | а то  | AGCI       | GAAG       | 180        |
|                                                                                                                                                                       | GGGCTGATC | G TGCTG        | CTCTA ( | CAGCGT        | GTG        | GTGG  | TCGI       | GG G       | GCT        | GTGG       | G CA  | ACTO       | CCTG       | 240        |
|                                                                                                                                                                       | CTGGTGCTG | G TGATCO       | eccc (  | GTGCC         | GCGG       | CTGC  | ACAA       | CG I       | GAC        | BAACT      | T CC  | TCAT       | CGGC       | 300        |
|                                                                                                                                                                       | AACCTGGCC | r tgtcc        | GACGT ( | GCTCAT        | STGC       | Acco  | CCTG       | CG T       | GCCC       | GCTCA      | C GC  | TGGC       | CTAT       | 360        |
| 25                                                                                                                                                                    | GCCTTCGAG | CACGC          | GCTG (  | GTGTT         | CGGC       | GGCG  | GCCI       | GT (       | CCAC       | CTGG       | T CI  | TCTT       | CCTG       | 420        |
|                                                                                                                                                                       | CAGCCGGTC | A CCGTC        | TATGT ( | STCGGT        | STTC       | ACGC  | TCAC       | CA C       | CATO       | GCAG       | T GG  | ACCG       | CTAC       | 480        |
|                                                                                                                                                                       | GTCGTGCTG | G TGCAC        | CCGCT   | BAGGCG        | CGCA       | TCTC  | GCTG       | GCG C      | CTC        | GCCI       | 'A CG | CTGI       | GCTG       | 540        |
|                                                                                                                                                                       | GCCATCTGG | G CGCTG        | rccgc ( | GTGCT         | GCG        | CTGC  | cgcc       | CG C       | CGT        | CACA       | C CI  | ATC/       | CGTG       | 600        |
|                                                                                                                                                                       | GAGCTCAAG | CGCAC          | ACGT (  | CGCCT         | CTGC       | GAGG  | AGTI       | CT G       | GGGG       | TCCC       | A GG  | AGCG       | CCAG       | 660        |
| 30                                                                                                                                                                    | CGCCAGCTC | r ACGCC        | rgggg ( | CTGCT         | ECTG       | GTCA  | CCTA       | CC I       | GCTC       | CCTC       | T GC  | TGGI       | CATO       | 720        |
|                                                                                                                                                                       | CTCCTGTCT | r ACGTCO       | CGGGT ( | STCAGTO       | BAAG       | CTCC  | GCAA       | CC G       | CGT        | GTGC       | C GG  | GCTG       | CGTG       | 780        |
|                                                                                                                                                                       | ACCCAGAGC | C AGGCCC       | SACTG ( | egaccg (      | CGCT       | CGGC  | GCCG       | GC G       | CACC       | TTCT       | G CI  | TGCI       | GGTG       | 840        |

| GTGGTCGT   | G T             | GGTG                         | TTCG                            | c cg                                  | TCTG                        | CTGG              | CTG          | CCGC       | TGC        | ACGT       | CTTC       | AA C       | CTGC       | TGCG      | G 900      |  |
|------------|-----------------|------------------------------|---------------------------------|---------------------------------------|-----------------------------|-------------------|--------------|------------|------------|------------|------------|------------|------------|-----------|------------|--|
| GACCTCGA   | ec c            | CCAC                         | GCCA                            | T CG.                                 | ACCC                        | TTAC              | GCC          | TTTG       | GGC        | TGGT       | GCAG       | CT G       | CTCT       | GCCA      | C 960      |  |
| TGGCTCGC   | CA TO           | GAGT                         | TCGG                            | C CT                                  | GCTA                        | CAAC              | CCC          | TTCA       | TCT        | ACCC       | CTGG       | CT G       | CACG       | ACAG      | C 1020     |  |
| TTCCGCGA   | eg A            | GCTG                         | CGCA.                           | A AC                                  | TGTT                        | GGTC              | GCT          | TGGC       | CCC        | GCAA       | GATA       | GC C       | cccc       | ATGG      | C 1080     |  |
| CAGAATAT   | BA C            | CGTC.                        | AGCG                            | T GG                                  | TCAT                        | CTGA              |              |            |            |            |            |            |            |           | 1110       |  |
| (27) INFO  | ORMA!           | TION                         | FOR                             | SEQ                                   | ID I                        | NO:2              | 6:           |            |            |            |            |            |            |           |            |  |
|            | (A<br>(B<br>(C) | ) LE<br>) TY<br>) ST<br>) TO | NGTH<br>PE: :<br>RAND:<br>POLO: | HARA<br>: 36<br>amin<br>EDNE<br>GY: : | 9 am<br>o ac<br>SS:<br>not: | ino<br>id<br>rele | acid<br>vant | В          |            |            |            |            |            |           |            |  |
| (xi        | ) SI            | EQUE                         | NCE I                           | DESC                                  | RIPT                        | ION:              | SEQ          | ID I       | NO:2       | 6:         |            |            |            |           |            |  |
| Met<br>1   | Ala             | ser                          | ser                             | Thr<br>5                              | Thr                         | Arg               | Gly          | Pro        | Arg<br>10  | Val        | Ser        | Asp        | Leu        | Phe<br>15 | Ser        |  |
| Gly        | Leu             | Pro                          | Pro<br>20                       | Ala                                   | Val                         | Thr               | Thr          | Pro<br>25  | Ala        | Asn        | Gln        | Ser        | Ala<br>30  | Glu       | Ala        |  |
| Ser        | Ala             | Gly<br>35                    | Asn                             | Gly                                   | Ser                         | Val               | Ala<br>40    | Gly        | Ala        | Asp        | Ala        | Pro<br>45  | Ala        | Val       | Thr        |  |
| Pro        | Phe<br>50       | Gln                          | Ser                             | Leu                                   | Gln                         | Leu<br>55         | Val          | His        | Gln        | Leu        | Lys<br>60  | Gly        | Leu        | Ile       | Val        |  |
| Leu<br>65  | Leu             | Tyr                          | Ser                             | Val                                   | Val<br>70                   | Val               | Val          | Val        | Gly        | Leu<br>75  | Val        | Gly        | Asn        | Сув       | Leu<br>80  |  |
| Leu        | Val             | Leu                          | Val                             | Ile<br>85                             | Ala                         | Arg               | Val          | Pro        | Arg<br>90  | Leu        | His        | Asn        | Val        | Thr<br>95 | Asn        |  |
| Phe        | Leu             | Ile                          | Gly<br>100                      | Asn                                   | Leu                         | Ala               | Leu          | Ser<br>105 | Asp        | Val        | Leu        | Met        | Cys<br>110 | Thr       | Ala        |  |
| Cys        | Val             | Pro<br>115                   | Leu                             | Thr                                   | Leu                         | Ala               | Tyr<br>120   | Ala        | Phe        | Glu        | Pro        | Arg<br>125 | Gly        | Trp       | Val        |  |
| Phe        | Gly<br>130      | Gly                          | Gly                             | Leu                                   | Cys                         | His<br>135        | Leu          | Val        | Phe        | Phe        | Leu<br>140 | Gln        | Pro        | Val       | Thr        |  |
| Val<br>145 | Tyr             | Val                          | ser                             | Val                                   | Phe<br>150                  | Thr               | Leu          | Thr        | Thr        | Ile<br>155 | Ala        | Val        | Asp        | Arg       | Tyr<br>160 |  |
| Val        | Val             | Leu                          | Val                             | His<br>165                            | Pro                         | Leu               | Arg          | Arg        | Ala<br>170 | Ser        | Arg        | Cys        | Ala        | Ser       | Ala        |  |

|    |       | Tyr        | Ala        | Val        | Leu<br>180                                | Ala          | Ile                     | Trp        | Ala        | Leu<br>185 | Ser        | Ala        | Val        | Leu        | Ala<br>190 | Leu        | Pro        |
|----|-------|------------|------------|------------|-------------------------------------------|--------------|-------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    |       | Pro        | Ala        | Val<br>195 | His                                       | Thr          | Tyr                     | His        | Val<br>200 | Glu        | Leu        | Lys        | Pro        | His<br>205 | Asp        | Val        | Arg        |
| 5  |       | Leu        | Cys<br>210 | Glu        | Glu                                       | Phe          | Trp                     | Gly<br>215 | Ser        | Gln        | Glu        | Arg        | Gln<br>220 | Arg        | Gln        | Leu        | Tyr        |
|    |       | Ala<br>225 | Trp        | Gly        | Leu                                       | Leu          | Leu<br>230              | Val        | Thr        | Tyr        | Leu        | Leu<br>235 | Pro        | Leu        | Leu        | Val        | Ile<br>240 |
| 10 |       | Leu        | Leu        | Ser        | Tyr                                       | Val<br>245   | Arg                     | Val        | Ser        | Val        | Lys<br>250 | Leu        | Arg        | Asn        | Arg        | Val<br>255 | Val        |
|    |       | Pro        | Gly        | Cys        | Val<br>260                                | Thr          | Gln                     | Ser        | Gln        | Ala<br>265 | Asp        | Trp        | Asp        | Arg        | Ala<br>270 | Arg        | Arg        |
|    |       | Arg        | Arg        | Thr<br>275 | Phe                                       | Cys          | Leu                     | Leu        | Val<br>280 | Val        | Val        | Val        | Val        | Val<br>285 | Phe        | Ala        | Val        |
| 15 |       | Cys        | Trp<br>290 | Leu        | Pro                                       | Leu          | His                     | Val<br>295 | Phe        | Asn        | Leu        | Leu        | Arg<br>300 | Asp        | Leu        | Asp        | Pro        |
|    |       | His<br>305 | Ala        | Ile        | Asp                                       | Pro          | Tyr<br>310              | Ala        | Phe        | Gly        | Leu        | Val<br>315 | Gln        | Leu        | Leu        | Cys        | His<br>320 |
| 20 |       | Trp        | Leu        | Ala        | Met                                       | Ser<br>325   | Ser                     | Ala        | Cys        | Tyr        | Asn<br>330 | Pro        | Phe        | Ile        | Tyr        | Ala<br>335 | Trp        |
|    |       | Leu        | His        | Asp        | Ser<br>340                                | Phe          | Arg                     | Glu        | Glu        | Leu<br>345 | Arg        | Lys        | Leu        | Leu        | Val<br>350 | Ala        | Trp        |
|    |       | Pro        | Arg        | Lys<br>355 | Ile                                       | Ala          | Pro                     | His        | Gly<br>360 | Gln        | Asn        | Met        | Thr        | Val<br>365 | Ser        | Val        | Val        |
| 25 |       | Ile        |            |            |                                           |              |                         |            |            |            |            |            |            |            |            |            |            |
|    | (28)  | INF        | ORMAT      | rion       | FOR                                       | SEQ          | ID 1                    | 10:27      | 7:         |            |            |            |            |            |            |            |            |
| 30 |       | (i)        | (A)<br>(B) | LEI<br>TYI | CE CH<br>NGTH:<br>PE: 1<br>RANDI<br>POLOG | 108<br>nucle | 33 ba<br>eic a<br>35: a | ase pacid  | pairs      | 3          |            |            |            |            |            |            |            |
|    |       | (i:        | L) MO      | OLECT      | JLE 7                                     | TYPE         | : DN                    | A (ge      | nomi       | ic)        |            |            |            |            |            |            |            |
|    |       | (x:        | i) SI      | EQUE       | ICE I                                     | DESCI        | RIPT                    | ION:       | SEQ        | ID 1       | IO:27      | 7:         |            |            |            |            |            |
| 35 | ATGG  | ACCC       | AG AJ      | AGAA       | ACTTO                                     | AG1          | TTA:                    | TTTG       | GATT       | TATT       | ACT A      | ATGC1      | TACGA      | NG CO      | CAA        | ACTCI      | 60         |
|    | GACA: | rcago      | G A        | GACC       | CACT                                      | CC2          | ATGT:                   | rcct       | TAC        | ACCTO      | TG 7       | CTT        | CTTC       | CC AC      | TCT:       | TTAC       | 120        |

|    | ACAGCTGTGT  | TCCTGACTGG   | AGTGCTGGGG  | AACCTTGTTC | TCATGGGAGC | GTTGCATTTC | 18  |
|----|-------------|--------------|-------------|------------|------------|------------|-----|
|    | AAACCCGGCA  | GCCGAAGACT   | GATCGACATC  | TTTATCATCA | ATCTGGCTGC | CTCTGACTTC | 24  |
|    | ATTTTTCTTG  | TCACATTGCC   | TCTCTGGGTG  | GATAAAGAAG | CATCTCTAGG | ACTGTGGAGG | 30  |
|    | ACGGGCTCCT  | TCCTGTGCAA   | AGGGAGCTCC  | TACATGATCT | CCGTCAATAT | GCACTGCAGT | 36  |
| 5  | GTCCTCCTGC  | TCACTTGCAT   | GAGTGTTGAC  | CGCTACCTGG | CCATTGTGTG | GCCAGTCGTA | 42  |
|    | TCCAGGAAAT  | TCAGAAGGAC   | AGACTGTGCA  | TATGTAGTCT | GTGCCAGCAT | CTGGTTTATC | 48  |
|    | TCCTGCCTGC  | TGGGGTTGCC   | TACTCTTCTG  | TCCAGGGAGC | TCACGCTGAT | TGATGATAAG | 54  |
|    | CCATACTGTG  | CAGAGAAAAA   | GGCAACTCCA  | ATTAAACTCA | TATGGTCCCT | GGTGGCCTTA | 60  |
|    | ATTTTCACCT  | TTTTTGTCCC   | TTTGTTGAGC  | ATTGTGACCT | GCTACTGTTG | CATTGCAAGG | 66  |
| 10 | AAGCTGTGTG  | CCCATTACCA   | GCAATCAGGA  | AAGCACAACA | AAAAGCTGAA | GAAATCTATA | 72  |
|    | AAGATCATCT  | TTATTGTCGT   | GGCAGCCTTT  | CTTGTCTCCT | GGCTGCCCTT | CAATACTTTC | 78  |
|    | AAGTTCCTGG  | CCATTGTCTC   | TGGGTTGCGG  | CAAGAACACT | ATTTACCCTC | AGCTATTCTT | 84  |
|    | CAGCTTGGTA  | TGGAGGTGAG   | TGGACCCTTG  | GCATTTGCCA | ACAGCTGTGT | CAACCCTTTC | 90  |
|    | ATTTACTATA  | TCTTCGACAG   | CTACATCCGC  | CGGGCCATTG | TCCACTGCTT | GTGCCCTTGC | 96  |
| 15 | CTGAAAAACT  | ATGACTTTGG   | GAGTAGCACT  | GAGACATCAG | ATAGTCACCT | CACTAAGGCT | 102 |
|    | CTCTCCACCT  | TCATTCATGC   | AGAAGATTTT  | GCCAGGAGGA | GGAAGAGGTC | TGTGTCACTC | 108 |
|    | TAA         |              |             |            |            |            | 108 |
|    | (29) INFORM | TATION FOR S | EU ID MU-SE | 1 -        |            |            |     |

(i) SEQUENCE CHARACTERISTICS: 20

(A) LENGTH: 360 amino acids (B) TYPE: amino acid

- (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein
- 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

Met Asp Pro Glu Glu Thr Ser Val Tyr Leu Asp Tyr Tyr Tyr Ala Thr 10

Ser Pro Asn Ser Asp Ile Arg Glu Thr His Ser His Val Pro Tyr Thr 20

30 Ser Val Phe Leu Pro Val Phe Tyr Thr Ala Val Phe Leu Thr Gly Val 35 40 45

|    | Leu        | Gly<br>50  | Asn        | Leu        | Val        | Leu        | Met<br>55  | Gly        | Ala        | Leu        | His        | Phe<br>60  | Lys        | Pro        | Gly        | Ser        |
|----|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    | Arg<br>65  | Arg        | Leu        | Ile        | Asp        | Ile<br>70  | Phe        | Ile        | Ile        | Asn        | Leu<br>75  | Ala        | Ala        | Ser        | Asp        | Phe<br>80  |
| 5  | Ile        | Phe        | Leu        | Val        | Thr<br>85  | Leu        | Pro        | Leu        | Trp        | Val<br>90  | Asp        | Lys        | Glu        | Ala        | Ser<br>95  | Leu        |
|    | Gly        | Leu        | Trp        | Arg<br>100 | Thr        | Gly        | Ser        | Phe        | Leu<br>105 | Cys        | Lys        | Gly        | Ser        | Ser<br>110 | Tyr        | Met        |
| 10 | Ile        | Ser        | Val<br>115 | Asn        | Met        | His        | Cys        | Ser<br>120 | Val        | Leu        | Leu        | Leu        | Thr<br>125 | Cys        | Met        | ser        |
|    | Val        | Asp<br>130 |            | Tyr        | Leu        | Ala        | Ile<br>135 | Val        | Trp        | Pro        | Val        | Val<br>140 | Ser        | Arg        | Lys        | Phe        |
|    | Arg<br>145 | Arg        | Thr        | Asp        | Cys        | Ala<br>150 | Tyr        | Val        | Val        | Cys        | Ala<br>155 | Ser        | Ile        | Trp        | Phe        | Ile<br>160 |
| 15 | Ser        | Cys        | Leu        | Leu        | Gly<br>165 | Leu        | Pro        | Thr        | Leu        | Leu<br>170 | Ser        | Arg        | Glu        | Leu        | Thr<br>175 | Leu        |
|    | Ile        | Asp        | Asp        | Lys<br>180 | Pro        | Tyr        | Cys        | Ala        | Glu<br>185 | Lys        | Lys        | Ala        | Thr        | Pro<br>190 | Ile        | Lys        |
| 20 | Leu        | Ile        | Trp<br>195 | Ser        | Leu        | Val        | Ala        | Leu<br>200 | Ile        | Phe        | Thr        | Phe        | Phe<br>205 | Val        | Pro        | Leu        |
|    | Leu        | Ser<br>210 | Ile        | Val        | Thr        | Cys        | Tyr<br>215 | Cys        | Cys        | Ile        | Ala        | Arg<br>220 | Lys        | Leu        | Cys        | Ala        |
|    | His<br>225 | Tyr        | Gln        | Gln        | Ser        | Gly<br>230 | Lys        | His        | Asn        | Lys        | Lys<br>235 | Leu        | Lys        | Lys        | Ser        | Ile<br>240 |
| 25 | Lys        | Ile        | Ile        | Phe        | Ile<br>245 | Val        | Val        | Ala        | Ala        | Phe<br>250 | Leu        | Val        | Ser        | Trp        | Leu<br>255 | Pro        |
|    | Phe        | Asn        | Thr        | Phe<br>260 | Lys        | Phe        | Leu        | Ala        | Ile<br>265 | Val        | Ser        | Gly        | Leu        | Arg<br>270 | Gln        | Glu        |
| 30 | His        | Tyr        | Leu<br>275 | Pro        | Ser        | Ala        | Ile        | Leu<br>280 | Gln        | Leu        | Gly        | Met        | Glu<br>285 | Val        | Ser        | Gly        |
|    | Pro        | Leu<br>290 | Ala        | Phe        | Ala        | Asn        | Ser<br>295 | Cys        | Val        | Asn        | Pro        | Phe<br>300 | Ile        | Tyr        | Tyr        | Ile        |
|    | Phe<br>305 | Asp        | Ser        | Tyr        | Ile        | Arg<br>310 | Arg        | Ala        | Ile        | Val        | His<br>315 | Cys        | Leu        | Cys        | Pro        | Cys<br>320 |
| 35 | Leu        | Lys        | Asn        | Tyr        | Asp<br>325 | Phe        | Gly        | Ser        | Ser        | Thr<br>330 | Glu        | Thr        | Ser        | Asp        | Ser<br>335 | His        |
|    | Leu        | Thr        | Lys        | Ala        | Leu        | Ser        | Thr        | Phe        | Ile        | His        | Ala        | Glu        | Asp        | Phe        | Ala        | Arg        |

| 25                                                                                                                                                               |          |     |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----|-----|
| 340 3                                                                                                                                                            | 45       | 350 |     |
| Arg Arg Lys Arg Ser Val Ser Leu<br>355 360                                                                                                                       |          |     |     |
| (30) INFORMATION FOR SEQ ID NO:29:                                                                                                                               |          |     |     |
| (i) SEQUENCE CHARACTERISTICS: (A) LEMOTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDENNESS: single (D) TOPOLOGY: linear                                     |          |     |     |
| (ii) MOLECULE TYPE: DNA (genomic                                                                                                                                 | .)       |     |     |
| (xi) SEQUENCE DESCRIPTION: SEQ I                                                                                                                                 | D NO:29: |     |     |
| CTAGAATTCT GACTCCAGCC AAAGCATGAA T                                                                                                                               |          |     | 31  |
| (31) INFORMATION FOR SEQ ID NO:30:                                                                                                                               |          |     |     |
| (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear                                     |          |     |     |
| (ii) MOLECULE TYPE: DNA (genomic                                                                                                                                 | 1)       |     |     |
| (xi) SEQUENCE DESCRIPTION: SEQ I                                                                                                                                 | D NO:30: |     |     |
| GCTGGATCCT AAACAGTCTG CGCTCGGCCT                                                                                                                                 |          |     | 30  |
| (32) INFORMATION FOR SEQ ID NO:31:                                                                                                                               |          |     |     |
| (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1020 base pairs (B) TYPE: nucleic acid (C) STRANDENNESS: single (D) TOPOLOGY: linear  (ii) MOLECULE TYPE: DNA (genomic | ,        |     |     |
| ,,                                                                                                                                                               |          |     |     |
| (xi) SEQUENCE DESCRIPTION: SEQ 1                                                                                                                                 |          |     | 60  |
|                                                                                                                                                                  |          |     |     |
| GAGCAATGTG GCCAGGAGAC GCCACTGGAG AACA                                                                                                                            |          |     |     |
| GATTTTATCC TGGCTTTAGT TGGCAATACC CTGGC  AAGTCCGGGA CCCCGGCCAA CGTGTTCCTG ATGCA                                                                                   |          |     |     |
| AAGTCCGGGA CCCCGGCCAA CGTGTTCCTG ATGC                                                                                                                            |          |     | 300 |

|    | GAAATCGC  | AT G                 | CCGT                             | CTCA                                      | C CG             | GCTT                        | CCTC                | TTC          | TACC      | TCA       | ACAT      | GTAC        | GC C      | AGCA      | TCTA      | .c        | 360 |
|----|-----------|----------------------|----------------------------------|-------------------------------------------|------------------|-----------------------------|---------------------|--------------|-----------|-----------|-----------|-------------|-----------|-----------|-----------|-----------|-----|
|    | TTCCTCAC  | CT G                 | CATC                             | AGCG                                      | C CG             | ACCG                        | TTTC                | CTG          | GCCA      | TTG       | TGCA      | cccg        | GT C      | AAGT      | CCCT      | C         | 420 |
|    | AAGCTCCG  | CA G                 | GCCC                             | CTCT                                      | A CG             | CACA                        | CCTG                | GCC          | TGTG      | CCT       | TCCT      | GTGG        | GT G      | GTGG      | TGGC      | Т         | 480 |
|    | GTGGCCAT  | GG C                 | CCCG                             | CTGC                                      | r gg             | TGAG                        | CCCA                | CAG          | ACCG      | TGC       | AGAC      | CAAC        | CA C      | ACGG      | TGGT      | С         | 540 |
| 5  | TGCCTGCA  | GC T                 | GTAC                             | CGGGI                                     | A GA             | AGGC                        | CTCC                | CAC          | CATG      | ccc       | TGGT      | GTCC        | CT G      | GCAG      | TGGC      | С         | 600 |
|    | TTCACCTT  | cc c                 | GTTC                             | ATCA                                      | CA               | CGGT                        | CACC                | TGC          | TACC      | TGC       | TGAT      | CATC        | CG C      | AGCC      | TGCG      | G         | 660 |
|    | CAGGGCCT  | GC G                 | TGTG                             | GAGA                                      | A GC             | GCCT                        | CAAG                | ACC          | AAGG      | CAG       | TGCG      | CATG        | AT C      | GCCA      | TAGT      | G         | 720 |
|    | CTGGCCAT  | CT T                 | CCTG                             | GTCTC                                     | CT               | TCGT                        | GCCC                | TAC          | CACG      | TCA       | ACCG      | CTCC        | GT C      | TACG      | TGCT      | G         | 780 |
|    | CACTACCG  | CA G                 | CCAT                             | GGGGG                                     | CT               | CCTG                        | CGCC                | ACC          | CAGC      | GCA       | TCCT      | GGCC        | CT G      | GCAA      | ACCG      | С         | 840 |
| 10 | ATCACCTC  | CT G                 | CCTC.                            | ACCAC                                     | cc.              | TCAA                        | CGGG                | GCA          | CTCG.     | ACC       | CCAT      | CATG        | та т      | TTCT      | TCGT      | G .       | 900 |
|    | GCTGAGAA  | GT T                 | CCGC                             | CACG                                      | c cc             | TGTG                        | CAAC                | TTG          | CTCT      | GTG       | GCAA.     | AAGG        | CT C      | AAGG      | gccc      | G         | 960 |
|    | CCCCCAG   | CT T                 | CGAA                             | GGGA                                      | AA A             | CCAA                        | CGAG                | AGC          | rcgc      | rga       | GTGC      | CAAG        | TC A      | GAGC      | TGTG.     | A 1       | 020 |
|    | (33) INF  | ORMA                 | TION                             | FOR                                       | SEQ              | ID :                        | NO:3:               | 2:           |           |           |           |             |           |           |           |           |     |
| 15 |           | (A<br>(B<br>(C<br>(D | ) LEI<br>) TY:<br>) STI<br>) TOI | CE CH<br>NGTH:<br>PE: &<br>RANDE<br>POLOG | 33<br>min<br>DNE | 9 am<br>o ac<br>SS:<br>not: | ino a<br>id<br>rele | acid<br>vant | 3         |           |           |             |           |           |           |           |     |
| 20 |           |                      |                                  | NCE I                                     |                  | -                           |                     |              | ו מד      | 10 · 3    | 2 -       |             |           |           |           |           |     |
|    |           |                      |                                  | Leu                                       |                  |                             |                     | -            |           |           |           | <b>71</b> - | m1        | •         | -         |           |     |
|    | 1         | Abii                 | GIY                              | Leu                                       | 5                | Vall                        | MIG                 | PIO          | PIO       | 10        | Leu       | iie         | THE       | Asn       | 15        | ser       |     |
|    | Leu       | Ala                  | Thr                              | Ala<br>20                                 | Glu              | Gln                         | Cys                 | Gly          | Gln<br>25 | Glu       | Thr       | Pro         | Leu       | Glu<br>30 | Asn       | Met       |     |
| 25 | Leu       | Phe                  | Ala<br>35                        | Ser                                       | Phe              | Tyr                         | Leu                 | Leu<br>40    | Asp       | Phe       | Ile       | Leu         | Ala<br>45 | Leu       | Val       | Gly       |     |
|    | Asn       | Thr<br>50            | Leu                              | Ala                                       | Leu              | Trp                         | Leu<br>55           | Phe          | Ile       | Arg       | Asp       | His<br>60   | Lys       | Ser       | Gly       | Thr       |     |
| 30 | Pro<br>65 | Ala                  | Asn                              | Val                                       | Phe              | Leu<br>70                   | Met                 | His          | Leu       | Ala       | Val<br>75 | Ala         | Asp       | Leu       | Ser       | Cys<br>80 |     |
|    | Val       | Leu                  | Val                              | Leu                                       | Pro<br>85        | Thr                         | Arg                 | Leu          | Val       | Tyr<br>90 | His       | Phe         | Ser       | Gly       | Asn<br>95 | His       |     |
|    | Trp       | Pro                  | Phe                              | Gly                                       | Glu              | Ile                         | Ala                 | Cys          | Arg       | Leu       | Thr       | Gly         | Phe       | Leu       | Phe       | Tyr       |     |

27

|    |      |            |                     |            | 100                    |                      |                      |                             |            | 105        |            |            |            |            | 110        |            |            |
|----|------|------------|---------------------|------------|------------------------|----------------------|----------------------|-----------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    |      | Leu        | Asn                 | Met<br>115 | Tyr                    | Ala                  | Ser                  | Ile                         | Tyr<br>120 | Phe        | Leu        | Thr        | Cys        | Ile<br>125 | Ser        | Ala        | Asp        |
| 5  |      | Arg        | Phe<br>130          | Leu        | Ala                    | Ile                  | Val                  | His<br>135                  | Pro        | Val        | Lys        | Ser        | Leu<br>140 | Lys        | Leu        | Arg        | Arg        |
|    |      | Pro<br>145 | Leu                 | Tyr        | Ala                    | His                  | Leu<br>150           | Ala                         | Cys        | Ala        | Phe        | Leu<br>155 | Trp        | Val        | Val        | Val        | Ala<br>160 |
|    |      | Val        | Ala                 | Met        | Ala                    | Pro<br>165           | Leu                  | Leu                         | Val        | Ser        | Pro<br>170 | Gln        | Thr        | Val        | Gln        | Thr<br>175 | Asn        |
| 10 |      | His        | Thr                 | Val        | Val<br>180             | Cys                  | Leu                  | Gln                         | Leu        | Tyr<br>185 | Arg        | Glu        | Lys        | Ala        | Ser<br>190 | His        | His        |
|    |      | Ala        | Leu                 | Val<br>195 | Ser                    | Leu                  | Ala                  | Val                         | Ala<br>200 | Phe        | Thr        | Phe        | Pro        | Phe<br>205 | Ile        | Thr        | Thr        |
| 15 |      | Val        | Thr<br>210          | Cys        | Tyr                    | Leu                  | Leu                  | Ile<br>215                  | Ile        | Arg        | Ser        | Leu        | Arg<br>220 | Gln        | Gly        | Leu        | Arg        |
|    |      | Val<br>225 | Glu                 | Lys        | Arg                    | Leu                  | Lys<br>230           | Thr                         | Lys        | Ala        | Val        | Arg<br>235 | Met        | Ile        | Ala        | Ile        | Val<br>240 |
|    |      | Leu        | Ala                 | Ile        | Phe                    | Leu<br>245           | Val                  | Сув                         | Phe        | Val        | Pro<br>250 | Tyr        | His        | Val        | Asn        | Arg<br>255 | Ser        |
| 20 |      | Val        | Tyr                 | Val        | Leu<br>260             | His                  | Tyr                  | Arg                         | Ser        | His<br>265 | Gly        | Ala        | Ser        | Cys        | Ala<br>270 | Thr        | Gln        |
|    |      | Arg        | Ile                 | Leu<br>275 | Ala                    | Leu                  | Ala                  | Asn                         | Arg<br>280 | Ile        | Thr        | Ser        | Cys        | Leu<br>285 | Thr        | Ser        | Leu        |
| 25 |      | Asn        | Gly<br>290          | Ala        | Leu                    | Asp                  | Pro                  | Ile<br>295                  | Met        | Tyr        | Phe        | Phe        | Val<br>300 | Ala        | Glu        | Lys        | Phe        |
|    |      | Arg<br>305 | His                 | Ala        | Leu                    | Cys                  | Asn<br>310           | Leu                         | Leu        | Cys        | Gly        | Lys<br>315 | Arg        | Leu        | Lys        | Gly        | Pro<br>320 |
|    |      | Pro        | Pro                 | Ser        | Phe                    | Glu<br>325           | Gly                  | Lys                         | Thr        | Asn        | Glu<br>330 | Ser        | Ser        | Leu        | Ser        | Ala<br>335 | Lys        |
| 30 | (34) | Ser        | Glu<br>ORMAT        |            | FOR                    | SEO                  | ID N                 | 10:33                       | l :        |            |            |            |            |            |            |            |            |
| 35 | 7    |            | SE(A)<br>(B)<br>(C) |            | E CF<br>IGTH:<br>PE: r | IARAC<br>29<br>nucle | TERI<br>base<br>ic a | STIC<br>pai<br>cid<br>singl | s:<br>rs   |            |            |            |            |            |            |            |            |
|    |      |            |                     |            |                        |                      |                      |                             |            |            |            |            |            |            |            |            |            |

(ii) MOLECULE TYPE: DNA (genomic)

PCT/US99/23938 28

|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:                                                                                      |     |
|----|-------------------------------------------------------------------------------------------------------------------------------|-----|
|    | ATAAGATGAT CACCCTGAAC AATCAAGAT                                                                                               | 29  |
|    | (35) INFORMATION FOR SEQ ID NO:34:                                                                                            |     |
| 5  | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDENMESS: single (D) TOPOLOGY: linear  |     |
|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                             |     |
| 10 | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:                                                                                      |     |
|    | TCCGAATTCA TAACATTTCA CTGTTTATAT TGC                                                                                          | 33  |
|    | (36) INFORMATION FOR SEQ ID NO:35:                                                                                            |     |
| 15 | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 996 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear |     |
|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                             |     |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:                                                                                      |     |
| 20 | ATGATCACCC TGAACAATCA AGATCAACCT GTCACTTTTA ACAGCTCACA TCCAGATGAA                                                             | 60  |
|    | TACAAAATTG CAGCCCTTGT CTTCTATAGC TGTATCTTCA TAATTGGATT ATTTGTTAAC                                                             | 120 |
|    | ATCACTGCAT TATGGGTTTT CAGTTGTACC ACCAAGAAGA GAACCACGGT AACCATCTAT                                                             | 180 |
|    | ATGATGAATG TGGCATTAGT GGACTTGATA TTTATAATGA CTTTACCCTT TCGAATGTTT                                                             | 240 |
|    | TATTATGCAA AAGATGCATG GCCATTTGGA GAGTACTTCT GCCAGATTAT TGGAGCTCTC                                                             | 300 |
| 25 | ACAGTGTTTT ACCCAAGCAT TGCTTTATGG CTTCTTGCCT TTATTAGTGC TGACAGATAC                                                             | 360 |
|    | ATGGCCATTG TACAGCCGAA GTACGCCAAA GAACTTAAAA ACACGTGCAA AGCCGTGCTG                                                             | 420 |
|    | GCGTGTGTGG GAGTCTGGAT AATGACCCTG ACCACGACCA CCCCTCTGCT ACTGCTCTAT                                                             | 480 |
|    | AAAGACCCAG ATAAAGACTC CACTCCCGCC ACCTGCCTCA AGATTTCTGA CATCATCTAT                                                             | 540 |
|    | CTAAAAGCTG TGAACGTGCT GAACCTCACT CGACTGACAT TTTTTTTCTT GATTCCTTTG                                                             | 600 |
| 30 | TTCATCATGA TTGGGTGCTA CTTGGTCATT ATTCATAATC TCCTTCACGG CAGGACGTCT                                                             | 660 |
|    | AAGCTGAAAC CCAAAGTCAA GGAGAAGTCC ATAAGGATCA TCATCACGCT GCTGGTGCAG                                                             | 720 |

| GTGC  | rcgt       | CT G                 | CTTI                         | ATGC                        | C CI                                  | TCCA                       | CATO              | TGT          | TTC        | CTT        | TCCT       | GATG       | CT (       | GGAA       | CGGC       | G          | 780 |
|-------|------------|----------------------|------------------------------|-----------------------------|---------------------------------------|----------------------------|-------------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|-----|
| GAGA  | ACAG       | TT A                 | CAAT                         | CCCI                        | G GG                                  | GAGC                       | CTTI              | ACC          | ACCI       | TCC        | TCAT       | GAAC       | CT (       | CAGCA      | CGTC       | T          | 840 |
| CTGG  | ATGT       | GA T                 | TCTC                         | TACT                        | A CA                                  | TCGT                       | TTCA              | AAA          | CAAT       | TTC        | AGGC       | TCGA       | GT C       | ATTA       | GTGI       | C.         | 900 |
| ATGCT | TATA       | CC G                 | TAAT                         | TACC                        | T TC                                  | GAAG                       | CCTG              | CGC          | AGAA       | AAA        | GTTI       | CCGA       | TC I       | GGTA       | GTCI       | 'A         | 960 |
| AGGTO | CACT       | AA G                 | CAAI                         | AATA                        | A CA                                  | GTGA                       | AATG              | TTA          | TGA        |            |            |            |            |            |            |            | 996 |
| (37)  | INF        | ORMA                 | TION                         | FOR                         | SEQ                                   | ID                         | NO:3              | 6:           |            |            |            |            |            |            |            |            |     |
|       |            | (A<br>(B<br>(C<br>(D | ) LE<br>) TY<br>) ST<br>) TO | NGTH<br>PE:<br>RAND<br>POLO | HARA<br>: 33<br>amin<br>EDNE<br>GY: : | 1 am<br>o ac<br>SS:<br>not | ino<br>id<br>rele | acid<br>vant | _          |            |            |            |            |            |            |            |     |
|       | (x:        | i) s                 | EQUE                         | NCE :                       | DESC:                                 | RIPT                       | ION:              | SEQ          | ID         | NO:3       | 6:         |            |            |            |            |            |     |
|       | Met<br>1   | Ile                  | Thr                          | Leu                         | Asn<br>5                              | Asn                        | Gln               | Asp          | Gln        | Pro        | Val        | Thr        | Phe        | Asn        | Ser<br>15  | Ser        |     |
|       | His        | Pro                  | Asp                          | Glu<br>20                   | Tyr                                   | Lys                        | Ile               | Ala          | Ala<br>25  | Leu        | Val        | Phe        | Tyr        | Ser<br>30  | Cys        | Ile        |     |
|       | Phe        | Ile                  | Ile<br>35                    | Gly                         | Leu                                   | Phe                        | Val               | Asn<br>40    | Ile        | Thr        | Ala        | Leu        | Trp<br>45  | Val        | Phe        | Ser        |     |
|       | Cys        | Thr<br>50            | Thr                          | Lys                         | Lys                                   | Arg                        | Thr<br>55         | Thr          | Val        | Thr        | Ile        | Tyr<br>60  | Met        | Met        | Asn        | Val        |     |
|       | Ala<br>65  | Leu                  | Val                          | Asp                         | Leu                                   | Ile<br>70                  | Phe               | Ile          | Met        | Thr        | Leu<br>75  | Pro        | Phe        | Arg        | Met        | Phe<br>80  |     |
|       | Tyr        | Tyr                  | Ala                          | Lys                         | Asp<br>85                             | Ala                        | Trp               | Pro          | Phe        | Gly<br>90  | Glu        | Tyr        | Phe        | Cys        | Gln<br>95  | Ile        |     |
|       | Ile        | Gly                  | Ala                          | Leu<br>100                  | Thr                                   | Val                        | Phe               | Tyr          | Pro<br>105 | Ser        | Ile        | Ala        | Leu        | Trp<br>110 | Leu        | Leu        |     |
|       | Ala        | Phe                  | Ile<br>115                   | Ser                         | Ala                                   | Asp                        | Arg               | Tyr<br>120   | Met        | Ala        | Ile        | Val        | Gln<br>125 | Pro        | Lys        | Tyr        |     |
| i     | Ala        | Lys<br>130           | Glu                          | Leu                         | Lys                                   | Asn                        | Thr<br>135        | Cys          | Lys        | Ala        | Val        | Leu<br>140 | Ala        | Cys        | Val        | Gly        |     |
| :     | Val<br>145 | Trp                  | Ile                          | Met                         | Thr                                   | Leu<br>150                 | Thr               | Thr          | Thr        | Thr        | Pro<br>155 | Leu        | Leu        | Leu        | Leu        | Tyr<br>160 |     |
| 1     | Lys        | Asp                  | Pro                          | Asp                         | Lys<br>165                            | Asp                        | Ser               | Thr          | Pro        | Ala<br>170 | Thr        | Cys        | Leu        | Lys        | Ile<br>175 | Ser        |     |

|    | P       | gel      | Ile        | Ile        | Tyr<br>180 | Leu        | Lys        | Ala         | Val        | Asn<br>185 | Val        | Leu        | Asn        | Leu        | Thr<br>190 | Arg        | Leu        |
|----|---------|----------|------------|------------|------------|------------|------------|-------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    | T       | hr       | Phe        | Phe<br>195 | Phe        | Leu        | Ile        | Pro         | Leu<br>200 | Phe        | Ile        | Met        | Ile        | Gly<br>205 | Cys        | Tyr        | Leu        |
| 5  | ν       | al       | Ile<br>210 | Ile        | His        | Asn        | Leu        | Leu<br>215  | His        | Gly        | Arg        | Thr        | Ser<br>220 | Lys        | Leu        | Lys        | Pro        |
|    | L<br>2  | ys<br>25 | Val        | Lys        | Glu        | Lys        | Ser<br>230 | Ile         | Arg        | Ile        | Ile        | Ile<br>235 | Thr        | Leu        | Leu        | Val        | Gln<br>240 |
| 10 | ν       | al       | Leu        | Val        | Cys        | Phe<br>245 | Met        | Pro         | Phe        | His        | Ile<br>250 | Cys        | Phe        | Ala        | Phe        | Leu<br>255 | Met        |
|    | L       | eu       | Gly        | Thr        | Gly<br>260 | Glu        | Asn        | Ser         | Tyr        | Asn<br>265 | Pro        | Trp        | Gly        | Ala        | Phe<br>270 | Thr        | Thr        |
|    | P       | he       | Leu        | Met<br>275 | Asn        | Leu        | Ser        | Thr         | Cys<br>280 | Leu        | Asp        | Val        | Ile        | Leu<br>285 | Tyr        | Tyr        | Ile        |
| 15 | v       |          | Ser<br>290 | Lys        | Gln        | Phe        | Gln        | Ala<br>295  | Arg        | Val        | Ile        | Ser        | Val<br>300 | Met        | Leu        | Tyr        | Arg        |
|    | A<br>3  | sn<br>05 | Tyr        | Leu        | Arg        | Ser        | Leu<br>310 | Arg         | Arg        | Lys        | Ser        | Phe<br>315 | Arg        | Ser        | Gly        | Ser        | Leu<br>320 |
| 20 | A       | rg       | Ser        | Leu        | Ser        | Asn<br>325 | Ile        | Asn         | Ser        | Glu        | Met<br>330 | Leu        |            |            |            |            |            |
|    | (38) I  | NFO      | RMAT       | NOI        | FOR        | SEQ        | ID N       | 10:37       | ' :        |            |            |            |            |            |            |            |            |
|    |         | (i)      |            |            |            |            |            | STIC        |            |            |            |            |            |            |            |            |            |
| 25 |         |          | (B)        | TYF        | E: r       | ucle       | ic a       |             |            |            |            |            |            |            |            |            |            |
| 25 |         |          |            | TOP        |            |            |            | ingl<br>r   | .e         |            |            |            |            |            |            |            |            |
|    |         | (ii      | ) MC       | LECU       | LE I       | YPE:       | DNA        | (ge         | nomi       | c)         |            |            |            |            |            |            |            |
|    |         | (xi      | ) SE       | QUEN       | CE I       | ESCR       | IPTI       | ON:         | SEQ        | ID N       | O:37       |            |            |            |            |            |            |
|    | CCAAGC  | TTC      | C AG       | GCCI       | GGGG       | TGI        | GCTG       | G           |            |            |            |            |            |            |            |            | 28         |
| 30 | (39) II | NFO      | RMAI       | 'ION       | FOR        | SEQ        | ID N       | O:38        | :          |            |            |            |            |            |            |            |            |
|    |         | (i)      | (A)        |            | GTH:       | 29         | base       | STIC<br>pai |            |            |            |            |            |            |            |            |            |
| 35 |         |          |            | STR        |            |            |            | ingl<br>r   | e          |            |            |            |            |            |            |            |            |
|    |         | (ii      | ) MC       | LECU       | LE T       | YPE:       | DNA        | (ge         | поті       | c)         |            |            |            |            |            |            |            |
|    |         | (xi      | ) SE       | QUEN       | CE D       | ESCR       | IPTI       | ON:         | SEQ        | ID N       | 0:38       | :          |            |            |            |            |            |

31

29

| ATGGATCCTG | ACCTTCGGCC | CCTGGCAGA |
|------------|------------|-----------|

(40) INFORMATION FOR SEQ ID NO:39:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1077 base pairs

(B) TYPE: nucleic acid (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:

10 ATGCCCTCTG TGTCTCCAGC GGGGCCCTCG GCCGGGGCAG TCCCCAATGC CACCGCAGTG 6.0 ACAACAGTGC GGACCAATGC CAGCGGGCTG GAGGTGCCCC TGTTCCACCT GTTTGCCCGG 120 CTGGACGAGG AGCTGCATGG CACCTTCCCA GGCCTGTGCG TGGCGCTGAT GGCGGTGCAC 180 GGAGCCATCT TCCTGGCAGG GCTGGTGCTC AACGGGCTGG CGCTGTACGT CTTCTGCTGC 240 CGCACCCGGG CCAAGACACC CTCAGTCATC TACACCATCA ACCTGGTGGT GACCGATCTA 300 15 CTGGTAGGGC TGTCCCTGCC CACGCGCTTC GCTGTGTACT ACGGCGCCAG GGGCTGCCTG 360 CGCTGTGCCT TCCCGCACGT CCTCGGTTAC TTCCTCAACA TGCACTGCTC CATCCTCTTC 420 CTCACCTGCA TCTGCGTGGA CCGCTACCTG GCCATCGTGC GGCCCGAAGG CTCCCGCCGC 480 TGCCGCCAGC CTGCCTGTGC CAGGGCCGTG TGCGCCTTCG TGTGGCTGGC CGCCGGTGCC 540 GTCACCCTGT CGGTGCTGGG CGTGACAGGC AGCCGGCCCT GCTGCCGTGT CTTTGCGCTG 600 ACTGTCCTGG AGTTCCTGCT GCCCCTGCTG GTCATCAGCG TGTTTACCGG CCGCATCATG 660 TGTGCACTGT CGCGGCCGGG TCTGCTCCAC CAGGGTCGCC AGCGCCGCGT GCGGGCCATG 720 CAGCTCCTGC TCACGGTGCT CATCATCTTT CTCGTCTGCT TCACGCCCTT CCACGCCCGC 780 840 GTGGCCGTGA CCCTCAGCAG CCTCAACAGC TGCATGGACC CCATCGTCTA CTGCTTCGTC 900 25 ACCAGTGGCT TCCAGGCCAC CGTCCGAGGC CTCTTCGGCC AGCACGGAGA GCGTGAGCCC 960 AGCAGCGGTG ACGTGGTCAG CATGCACAGG AGCTCCAAGG GCTCAGGCCG TCATCACATC 1020 CTCAGTGCCG GCCCTCACGC CCTCACCCAG GCCCTGGCTA ATGGGCCCGA GGCTTAG 1077

(41) INFORMATION FOR SEO ID NO:40:

(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 358 amino acids

32

- (B) TYPE: amino acid (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein

15

25

35

5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:

Met Pro Ser Val Ser Pro Ala Gly Pro Ser Ala Gly Ala Val Pro Asn 1  $$\rm 10^{\circ}$ 

Ala Thr Ala Val Thr Thr Val Arg Thr Asn Ala Ser Gly Leu Glu Val 20 25 30

10 Pro Leu Phe His Leu Phe Ala Arg Leu Asp Glu Glu Leu His Gly Thr \$35\$

Phe Pro Gly Leu Cys Val Ala Leu Met Ala Val His Gly Ala Ile Phe  $50 \hspace{1cm} 60$ 

Leu Ala Gly Leu Val Leu Asn Gly Leu Ala Leu Tyr Val Phe Cys Cys 65 70 75 80

Arg Thr Arg Ala Lys Thr Pro Ser Val Ile Tyr Thr Ile Asn Leu Val  $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95 \hspace{1.5cm}$ 

Val Thr Asp Leu Leu Val Gly Leu Ser Leu Pro Thr Arg Phe Ala Val

20 Tyr Tyr Gly Ala Arg Gly Cys Leu Arg Cys Ala Phe Pro His Val Leu 115 120 125

> Gly Tyr Phe Leu Asn Met His Cys Ser Ile Leu Phe Leu Thr Cys Ile 130 135 140

Cys Val Asp Arg Tyr Leu Ala Ile Val Arg Pro Glu Ala Pro Ala Ala 145 150 155 160

Cys Arg Gln Pro Ala Cys Ala Arg Ala Val Cys Ala Phe Val Trp Leu \$165\$

Ala Ala Gly Ala Val Thr Leu Ser Val Leu Gly Val Thr Gly Ser Arg \$180\$

30 Pro Cys Cys Arg Val Phe Ala Leu Thr Val Leu Glu Phe Leu Leu Pro 195 200 205

Leu Leu Val Ile Ser Val Phe Thr Gly Arg Ile Met Cys Ala Leu Ser 210 215 220

Arg Pro Gly Leu Leu His Gln Gly Arg Gln Arg Arg Val Arg Ala Met 225 230 235 240

Gln Leu Leu Thr Val Leu Ile Ile Phe Leu Val Cys Phe Thr Pro \$245\$

33

|     |      | Phe        | His        | Ala        | Arg<br>260   | Gln        | Val        | Ala        | Val        | Ala<br>265 | Leu        | Trp        | Pro        | Asp        | Met<br>270 | Pro        | His        |    |
|-----|------|------------|------------|------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|----|
|     |      | His        | Thr        | Ser<br>275 | Leu          | Val        | Val        | Tyr        | His<br>280 | Val        | Ala        | Val        | Thr        | Leu<br>285 | Ser        | Ser        | Leu        |    |
| 5   |      | Asn        | Ser<br>290 | Cys        | Met          | Asp        | Pro        | Ile<br>295 | Val        | Tyr        | Cys        | Phe        | Val<br>300 | Thr        | Ser        | Gly        | Phe        |    |
|     |      | Gln<br>305 | Ala        | Thr        | Val          | Arg        | Gly<br>310 | Leu        | Phe        | Gly        | Gln        | His<br>315 | Gly        | Glu        | Arg        | Glu        | Pro<br>320 |    |
| 10  |      | Ser        | Ser        | Gly        | Asp          | Val<br>325 | Val        | Ser        | Met        | His        | Arg<br>330 | Ser        | Ser        | Lys        | Gly        | Ser<br>335 | Gly        |    |
|     |      | Arg        | His        | His        | Ile<br>340   | Leu        | Ser        | Ala        | Gly        | Pro<br>345 | His        | Ala        | Leu        | Thr        | Gln<br>350 | Ala        | Leu        |    |
|     |      | Ala        | Asn        | Gly<br>355 | Pro          | Glu        | Ala        |            |            |            |            |            |            |            |            |            |            |    |
| 15  | (42) | INFO       | ORMAT      | rion       | FOR          | SEQ        | ID h       | 10:4:      | l:         |            |            |            |            |            |            |            |            |    |
|     |      | (2)        | 0770       |            | 7D 07        |            |            |            |            |            |            |            |            |            |            |            |            |    |
|     |      | (1)        |            |            | CE CE        |            |            |            |            |            |            |            |            |            |            |            |            |    |
|     |      |            |            |            | E: r         |            |            |            |            |            |            |            |            |            |            |            |            |    |
| 20  |      |            |            |            | POLOC        |            |            |            | .e         |            |            |            |            |            |            |            |            |    |
|     |      |            | (2)        | 101        | OLOC         |            | LIIGO      |            |            |            |            |            |            |            |            |            |            |    |
|     |      | (ii        | .) MC      | LECU       | JLE T        | YPE:       | DNA        | (ge        | nomi       | .c)        |            |            |            |            |            |            |            |    |
|     |      | (xi        | .) SE      | QUE        | ICE I        | ESCF       | PTI        | ON:        | SEQ        | ID N       | 0:41       | . :        |            |            |            |            |            |    |
|     | GAGA | ATTCA      | C TO       | CTG        | AGCTO        | AAC        | ATGA       | ACT        |            |            |            |            |            |            |            |            |            | 30 |
|     | (43) | INFO       | RMAT       | ON         | FOR          | SEQ        | ID N       | 10:42      | :          |            |            |            |            |            |            |            |            |    |
| 25  |      | (i)        | SEC        | UENC       | E CH         | IARAC      | TERI       | STIC       | s:         |            |            |            |            |            |            |            |            |    |
|     |      |            | (A)        | LEN        | GTH:         | 30         | base       | pai        |            |            |            |            |            |            |            |            |            |    |
|     |      |            |            |            | E: n         |            |            |            |            |            |            |            |            |            |            |            |            |    |
|     |      |            |            |            | OLOG         |            |            |            | .е         |            |            |            |            |            |            |            |            |    |
| 30  |      | (ii        | .) MC      | LECU       | LE T         | YPE:       | DNA        | (ge        | nomi       | c)         |            |            |            |            |            |            |            |    |
|     |      | (xi        | ) SE       | QUEN       | ICE I        | ESCR       | IPTI       | ON:        | SEQ        | ID N       | 0:42       | :          |            |            |            |            |            |    |
|     | CGGG | ATCCC      | C GT       | AACT       | GAGC         | CAC        | TTCA       | GAT        |            |            |            |            |            |            |            |            |            | 30 |
|     | (44) | INFO       | RMAT       | ION        | FOR          | SEQ        | ID N       | 0:43       |            |            |            |            |            |            |            |            |            |    |
| 2.5 |      | (i)        |            |            | E CH         |            |            |            |            |            |            |            |            |            |            |            |            |    |
| 35  |      |            |            |            | GTH:<br>E: n |            |            |            | airs       |            |            |            |            |            |            |            |            |    |
|     |      |            |            |            | ANDE         |            |            |            | e          |            |            |            |            |            |            |            |            |    |

(D) TOPOLOGY: linear

| (11) | MOLECULE | TVDD. | DMA | (ganomia) |
|------|----------|-------|-----|-----------|
|      |          |       |     |           |

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:

|    | ATGAACTCCA | CCTTGGATGG | TAATCAGAGC | AGCCACCCTT | TTTGCCTCTT | GGCATTTGGC | 6    |
|----|------------|------------|------------|------------|------------|------------|------|
| 5  | TATTTGGAAA | CTGTCAATTT | TTGCCTTTTG | GAAGTATTGA | TTATTGTCTT | TCTAACTGTA | 12   |
|    | TTGATTATTT | CTGGCAACAT | CATTGTGATT | TTTGTATTTC | ACTGTGCACC | TTTGTTGAAC | 18   |
|    | CATCACACTA | CAAGTTATTT | TATCCAGACT | ATGGCATATG | CTGACCTTTT | TGTTGGGGTG | 240  |
|    | AGCTGCGTGG | TCCCTTCTTT | ATCACTCCTC | CATCACCCCC | TTCCAGTAGA | GGAGTCCTTG | 300  |
|    | ACTTGCCAGA | TATTTGGTTT | TGTAGTATCA | GTTCTGAAGA | GCGTCTCCAT | GGCTTCTCTG | 360  |
| 10 | GCCTGTATCA | GCATTGATAG | ATACATTGCC | ATTACTAAAC | CTTTAACCTA | TAATACTCTG | 420  |
|    | GTTACACCCT | GGAGACTACG | CCTGTGTATT | TTCCTGATTT | GGCTATACTC | GACCCTGGTC | 480  |
|    | TTCCTGCCTT | CCTTTTTCCA | CTGGGGCAAA | CCTGGATATC | ATGGAGATGT | GTTTCAGTGG | 540  |
|    | TGTGCGGAGT | CCTGGCACAC | CGACTCCTAC | TTCACCCTGT | TCATCGTGAT | GATGTTATAT | 600  |
|    | GCCCCAGCAG | CCCTTATTGT | CTGCTTCACC | TATTTCAACA | TCTTCCGCAT | CTGCCAACAG | 660  |
| 15 | CACACAAAGG | ATATCAGCGA | AAGGCAAGCC | CGCTTCAGCA | GCCAGAGTGG | GGAGACTGGG | 720  |
|    | GAAGTGCAGG | CCTGTCCTGA | TAAGCGCTAT | GCCATGGTCC | TGTTTCGAAT | CACTAGTGTA | 780  |
|    | TTTTACATCC | TCTGGTTGCC | ATATATCATC | TACTTCTTGT | TGGAAAGCTC | CACTGGCCAC | 840  |
|    | AGCAACCGCT | TCGCATCCTT | CTTGACCACC | TGGCTTGCTA | TTAGTAACAG | TTTCTGCAAC | 900  |
|    | TGTGTAATTT | ATAGTCTCTC | CAACAGTGTA | TTCCAAAGAG | GACTAAAGCG | CCTCTCAGGG | 960  |
| 20 | GCTATGTGTA | CTTCTTGTGC | AAGTCAGACT | ACAGCCAACG | ACCCTTACAC | AGTTAGAAGC | 1020 |
|    | AAAGGCCCTC | TTAATGGATG | TCATATCTGA |            |            |            | 1050 |
|    |            |            |            |            |            |            |      |

(45) INFORMATION FOR SEQ ID NO:44:

25

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 349 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:
- 30 Met Asn Ser Thr Leu Asp Gly Asn Gln Ser Ser His Pro Phe Cys Leu

|    | 1          |            |            |            | 5          |            |            |            |            | 10         |            |            |            |            | 15         |            |
|----|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    | Leu        | Ala        | Phe        | Gly<br>20  | Tyr        | Leu        | Glu        | Thr        | Val<br>25  | Asn        | Phe        | Cys        | Leu        | Leu<br>30  | Glu        | Val        |
| 5  | Leu        | Ile        | Ile<br>35  | Val        | Phe        | Leu        | Thr        | Val<br>40  | Leu        | Ile        | Ile        | Ser        | Gly<br>45  | Asn        | Ile        | Ile        |
|    | Val        | Ile<br>50  | Phe        | Val        | Phe        | His        | Cys<br>55  | Ala        | Pro        | Leu        | Leu        | Asn<br>60  | His        | His        | Thr        | Thr        |
|    | Ser<br>65  | Tyr        | Phe        | Ile        | Gln        | Thr<br>70  | Met        | Ala        | Tyr        | Ala        | Asp<br>75  | Leu        | Phe        | Val        | Gly        | Val<br>80  |
| 10 | ser        | Cys        | Val        | Val        | Pro<br>85  | Ser        | Leu        | Ser        | Leu        | Leu<br>90  | His        | His        | Pro        | Leu        | Pro<br>95  | Val        |
|    | Glu        | Glu        | Ser        | Leu<br>100 | Thr        | Cys        | Gln        | Ile        | Phe<br>105 | Gly        | Phe        | Val        | Val        | Ser<br>110 | Val        | Leu        |
| 15 | Lys        | Ser        | Val<br>115 | Ser        | Met        | Ala        | Ser        | Leu<br>120 | Ala        | Cys        | Ile        | Ser        | Ile<br>125 | Asp        | Arg        | Tyr        |
|    | Ile        | Ala<br>130 | Ile        | Thr        | Lys        | Pro        | Leu<br>135 | Thr        | Tyr        | Asn        | Thr        | Leu<br>140 | Val        | Thr        | Pro        | Trp        |
|    | Arg<br>145 | Leu        | Arg        | Leu        | Cys        | Ile<br>150 | Phe        | Leu        | Ile        | Trp        | Leu<br>155 | Tyr        | Ser        | Thr        | Leu        | Val<br>160 |
| 20 | Phe        | Leu        | Pro        | Ser        | Phe<br>165 | Phe        | His        | Trp        | Gly        | Lys<br>170 | Pro        | Gly        | Tyr        | His        | Gly<br>175 | Asp        |
|    | Val        | Phe        | Gln        | Trp<br>180 | Cys        | Ala        | Glu        | Ser        | Trp<br>185 | His        | Thr        | Asp        | Ser        | Tyr<br>190 | Phe        | Thr        |
| 25 | Leu        | Phe        | Ile<br>195 | Val        | Met        | Met        | Leu        | Tyr<br>200 | Ala        | Pro        | Ala        | Ala        | Leu<br>205 | Ile        | Val        | Cys        |
|    | Phe        | Thr<br>210 | Tyr        | Phe        | Asn        | Ile        | Phe<br>215 | Arg        | Ile        | Cys        | Gln        | Gln<br>220 | His        | Thr        | Lys        | Asp        |
|    | Ile<br>225 | Ser        | Glu        | Arg        | Gln        | Ala<br>230 | Arg        | Phe        | Ser        | Ser        | Gln<br>235 | Ser        | Gly        | Glu        | Thr        | Gly<br>240 |
| 30 | Glu        | Val        | Gln        | Ala        | Cys<br>245 | Pro        | Asp        | Lys        | Arg        | Tyr<br>250 | Ala        | Met        | Val        | Leu        | Phe<br>255 | Arg        |
|    | Ile        | Thr        | Ser        | Val<br>260 | Phe        | Tyr        | Ile        | Leu        | Trp<br>265 | Leu        | Pro        | Tyr        | Ile        | Ile<br>270 | Tyr        | Phe        |
| 35 | Leu        | Leu        | Glu<br>275 | Ser        | Ser        | Thr        | Gly        | His<br>280 | Ser        | Asn        | Arg        | Phe        | Ala<br>285 | Ser        | Phe        | Leu        |
|    | Thr        | Thr<br>290 | Trp        | Leu        | Ala        | Ile        | Ser<br>295 | Asn        | Ser        | Phe        | Cys        | Asn<br>300 | Cys        | Val        | Ile        | Tyr        |

|    | Ser Leu Ser Asn Ser Val Phe Gln Arg Gly Leu Lys Arg Leu Ser Gly<br>305 310 315 320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|    | Ala Met Cys Thr Ser Cys Ala Ser Gln Thr Thr Ala Asn Asp Pro Tyr<br>325 330 335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
| 5  | Thr Val Arg Ser Lys Gly Pro Leu Asn Gly Cys His Ile<br>340 345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|    | (46) INFORMATION FOR SEQ ID NO:45:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| 10 | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDMESS: single (D) TOPOLOGY: linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| 15 | TCCCCCGGGA AAAAAACCAA CTGCTCCAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30 |
|    | (47) INFORMATION FOR SEQ ID NO:46:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| 20 | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDENDESS: single (D) TOPOLOGY: linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|    | TAGGATCCAT TTGAATGTGG ATTTGGTGAA A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31 |
| 25 | (48) INFORMATION FOR SEQ ID NO:47:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| 30 | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1302 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|    | ATGTGTTTTT CTCCCATTCT GGAAATCAAC ATGCAGTCTG AATCTAACAT TACAGTGCGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60 |
|    | GATGACATTG ATGACATCAA CACCAATATG TACCAACCAC TATCATATCC GTTAAGCTTT 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20 |
| 35 | CAR A CITY COURT OF THE COURT OF THE CAR A | 80 |

|    | ACTGTATTGG  | TACTTTACTG   | CATGAAATCC   | AACTTAATCA | ACTCTGTCAG | TAACATTATT | 240  |
|----|-------------|--------------|--------------|------------|------------|------------|------|
|    | ACAATGAATC  | TTCATGTACT   | TGATGTAATA   | ATTTGTGTGG | GATGTATTCC | TCTAACTATA | 300  |
|    | GTTATCCTTC  | TGCTTTCACT   | GGAGAGTAAC   | ACTGCTCTCA | TTTGCTGTTT | CCATGAGGCT | 360  |
|    | TGTGTATCTT  | TTGCAAGTGT   | CTCAACAGCA   | ATCAACGTTT | TTGCTATCAC | TTTGGACAGA | 420  |
| 5  | TATGACATCT  | CTGTAAAACC   | TGCAAACCGA   | ATTCTGACAA | TGGGCAGAGC | TGTAATGTTA | 480  |
|    | ATGATATCCA  | TTTGGATTTT   | TTCTTTTTC    | TCTTTCCTGA | TTCCTTTTAT | TGAGGTAAAT | 540  |
|    | TTTTTCAGTC  | TTCAAAGTGG   | AAATACCTGG   | GAAAACAAGA | CACTTTTATG | TGTCAGTACA | 600  |
|    | AATGAATACT  | ACACTGAACT   | GGGAATGTAT   | TATCACCTGT | TAGTACAGAT | CCCAATATTC | 660  |
|    | TTTTTCACTG  | TTGTAGTAAT   | GTTAATCACA   | TACACCAAAA | TACTTCAGGC | TCTTAATATT | 720  |
| 10 | CGAATAGGCA  | CAAGATTTTC   | AACAGGGCAG   | AAGAAGAAAG | CAAGAAAGAA | AAAGACAATT | 780  |
|    | TCTCTAACCA  | CACAACATGA   | GGCTACAGAC   | ATGTCACAAA | GCAGTGGTGG | GAGAAATGTA | 840  |
|    | GTCTTTGGTG  | TAAGAACTTC   | AGTTTCTGTA   | ATAATTGCCC | TCCGGCGAGC | TGTGAAACGA | 900  |
|    | CACCGTGAAC  | GACGAGAAAG   | ACAAAAGAGA   | GTCTTCAGGA | TGTCTTTATT | GATTATTTCT | 960  |
|    | ACATTTCTTC  | TCTGCTGGAC   | ACCAATTTCT   | GTTTTAAATA | CCACCATTTT | ATGTTTAGGC | 1020 |
| 15 | CCAAGTGACC  | TTTTAGTAAA   | ATTAAGATTG   | TGTTTTTTAG | TCATGGCTTA | TGGAACAACT | 1080 |
|    | ATATTTCACC  | CTCTATTATA   | TGCATTCACT   | AGACAAAAAT | TTCAAAAGGT | CTTGAAAAGT | 1140 |
|    | AAAATGAAAA  | AGCGAGTTGT   | TTCTATAGTA   | GAAGCTGATC | CCCTGCCTAA | TAATGCTGTA | 1200 |
|    | ATACACAACT  | CTTGGATAGA   | TCCCAAAAGA   | AACAAAAAA  | TTACCTTTGA | AGATAGTGAA | 1260 |
|    | ATAAGAGAAA  | AACGTTTAGT   | GCCTCAGGTT   | GTCACAGACT | AG         |            | 1302 |
| 20 | (49) INFORM | MATION FOR S | SEQ ID NO:48 | 3:         |            |            |      |

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 433 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS:
  - (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:

Met Cys Phe Ser Pro Ile Leu Glu Ile Asn Met Gln Ser Glu Ser Asn 10

30 Ile Thr Val Arg Asp Asp Ile Asp Asp Ile Asn Thr Asn Met Tyr Gln 20 25 30

|    |   | Pro        | Leu        | Ser<br>35  | Tyr        | Pro        | Leu        | Ser        | Phe<br>40  | Gln        | Val        | Ser        | Leu        | Thr<br>45  | Gly        | Phe        | Leu        |
|----|---|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    |   | Met        | Leu<br>50  | Glu        | Ile        | Val        | Leu        | Gly<br>55  | Leu        | Gly        | Ser        | Asn        | Leu<br>60  | Thr        | Val        | Leu        | Val        |
| 5  |   | Leu<br>65  | Tyr        | Cys        | Met        | Lys        | Ser<br>70  | Asn        | Leu        | Ile        | Asn        | Ser<br>75  | Val        | Ser        | Asn        | Ile        | Ile<br>80  |
|    |   | Thr        | Met        | Asn        | Leu        | His<br>85  | Val        | Leu        | Asp        | Val        | Ile<br>90  | Ile        | Cys        | Val        | Gly        | Cys<br>95  | Ile        |
| 10 |   | Pro        | Leu        | Thr        | Ile<br>100 | Val        | Ile        | Leu        | Leu        | Leu<br>105 | Ser        | Leu        | Glu        | Ser        | Asn<br>110 | Thr        | Ala        |
|    |   | Leu        | Ile        | Cys<br>115 | Cys        | Phe        | His        | Glu        | Ala<br>120 | Cys        | Val        | Ser        | Phe        | Ala<br>125 | Ser        | Val        | Ser        |
|    |   | Thr        | Ala<br>130 | Ile        | Asn        | Val        | Phe        | Ala<br>135 | Ile        | Thr        | Leu        | Asp        | Arg<br>140 | Tyr        | Asp        | Ile        | ser        |
| 15 |   | Val<br>145 | Lys        | Pro        | Ala        | Asn        | Arg<br>150 | Ile        | Leu        | Thr        | Met        | Gly<br>155 | Arg        | Ala        | Val        | Met        | Leu<br>160 |
|    |   | Met        | Ile        | Ser        | Ile        | Trp<br>165 | Ile        | Phe        | Ser        | Phe        | Phe<br>170 | Ser        | Phe        | Leu        | Ile        | Pro<br>175 | Phe        |
| 20 | ) | Ile        | Glu        | Val        | Asn<br>180 | Phe        | Phe        | Ser        | Leu        | Gln<br>185 | Ser        | Gly        | Asn        | Thr        | Trp<br>190 | Glu        | Asn        |
|    |   | Lys        | Thr        | Leu<br>195 | Leu        | Cys        | Val        | Ser        | Thr<br>200 | Asn        | Glu        | Tyr        | Tyr        | Thr<br>205 | Glu        | Leu        | Gly        |
|    |   | Met        | Tyr<br>210 | Tyr        | His        | Leu        | Leu        | Val<br>215 | Gln        | Ile        | Pro        | Ile        | Phe<br>220 | Phe        | Phe        | Thr        | Val        |
| 25 | ; | Val<br>225 | Val        | Met        | Leu        | Ile        | Thr<br>230 | Tyr        | Thr        | Lys        | Ile        | Leu<br>235 | Gln        | Ala        | Leu        | Asn        | Ile<br>240 |
|    |   | Arg        | Ile        | Gly        | Thr        | Arg<br>245 |            | Ser        | Thr        | Gly        | Gln<br>250 | Lys        | Lys        | Lys        | Ala        | Arg<br>255 | Lys        |
| 3( | ) | Lys        | Lys        | Thr        | Ile<br>260 |            | Leu        | Thr        | Thr        | Gln<br>265 | His        | Glu        | Ala        | Thr        | Asp<br>270 | Met        | Ser        |
|    |   | Gln        | Ser        | Ser<br>275 |            | Gly        | Arg        | Asn        | Val<br>280 | Val        | Phe        | Gly        | Val        | Arg<br>285 | Thr        | Ser        | Val        |
|    |   | Ser        | Val<br>290 |            | Ile        | Ala        | Leu        | Arg<br>295 | Arg        | Ala        | Val        | Lys        | Arg<br>300 | His        | Arg        | Glu        | Arg        |
| 3  | 5 | Arg<br>305 |            | Arg        | Gln        | Lys        | Arg<br>310 |            | Phe        | Arg        | Met        | Ser<br>315 | Leu        | Leu        | Ile        | Ile        | Ser<br>320 |
|    |   | Thr        | Phe        | Leu        | Leu        | Cys        | Trp        | Thr        | Pro        | Ile        | Ser        | Val        | Leu        | Asn        | Thr        | Thr        | Ile        |

|    | 325 330 |            |            |            |              |            |            |            |            |            |            |            |            |            |            |            |            |    |
|----|---------|------------|------------|------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|----|
|    |         |            |            |            |              |            |            |            |            |            |            |            |            |            |            | 335        |            |    |
|    |         | Leu        | Cys        | Leu        | Gly<br>340   | Pro        | Ser        | Asp        | Leu        | Leu<br>345 | Val        | Lys        | Leu        | Arg        | Leu<br>350 | Cys        | Phe        |    |
| 5  |         | Leu        | Val        | Met<br>355 | Ala          | Tyr        | Gly        | Thr        | Thr<br>360 | Ile        | Phe        | His        | Pro        | Leu<br>365 | Leu        | Tyr        | Ala        |    |
|    |         | Phe        | Thr<br>370 | Arg        | Gln          | Lys        | Phe        | Gln<br>375 | Lys        | Val        | Leu        | Lys        | Ser<br>380 | Lys        | Met        | Lys        | Lys        |    |
|    |         | Arg<br>385 | Val        | Val        | Ser          | Ile        | Val<br>390 | Glu        | Ala        | Asp        | Pro        | Leu<br>395 | Pro        | Asn        | Asn        | Ala        | Val<br>400 |    |
| 10 |         | Ile        | His        | Asn        | Ser          | Trp<br>405 | Ile        | Asp        | Pro        | Lys        | Arg<br>410 | Asn        | Lys        | Lys        | Ile        | Thr<br>415 | Phe        |    |
|    |         | Glu        | Asp        | Ser        | Glu<br>420   | Ile        | Arg        | Glu        | Lys        | Arg<br>425 | Leu        | Val        | Pro        | Gln        | Val<br>430 | Val        | Thr        |    |
| 15 |         | Asp        |            |            |              |            |            |            |            |            |            |            |            |            |            |            |            |    |
|    | (50)    | INFO       | RMAT       | CION       | FOR          | SEQ        | ID N       | 10:49      | · :        |            |            |            |            |            |            |            |            |    |
|    |         | (i)        | SEC        | UENC       | E CH         | IARAC      | TER        | STIC       | S:         |            |            |            |            |            |            |            |            |    |
|    |         |            |            |            | GTH:<br>E: n |            |            |            | rs         |            |            |            |            |            |            |            |            |    |
| 20 |         |            | (C)        | STF        | ANDE         | DNES       | S: £       | ingl       | .e         |            |            |            |            |            |            |            |            |    |
|    |         | (ii        | .) MC      | LECU       | LE I         | YPE:       | DNA        | (ge        | nomi       | c)         |            |            |            |            |            |            |            |    |
|    |         | (xi        | ) SE       | QUEN       | ICE D        | ESCR       | IPTI       | ON:        | SEQ        | ID N       | 0:49       |            |            |            |            |            |            |    |
|    | GTGA    | AGCTI      | 'G CC      | TCTG       | GTGC         | CTG        | CAGG       | AGG        |            |            |            |            |            |            |            |            |            | 30 |
| 25 | (51)    | INFO       | RMAT       | ION        | FOR          | SEQ        | ID N       | o:50       | :          |            |            |            |            |            |            |            |            |    |
|    |         |            |            |            | E CH         |            |            |            |            |            |            |            |            |            |            |            |            |    |
|    |         |            | (A)        | LEN        | GTH:<br>E: n | 31         | base       | pai        |            |            |            |            |            |            |            |            |            |    |
| 30 |         |            | (C)        | STR        | ANDE<br>OLOG | DNES       | S: s       | ingl       | е          |            |            |            |            |            |            |            |            |    |
|    |         | (ii        | ) Mo       | LECU       | LE T         | YPE:       | DNA        | . (ge      | nomi       | c)         |            |            |            |            |            |            |            |    |
|    |         | (xi        | ) SE       | QUEN       | CE D         | ESCR       | IPTI       | ON:        | SEQ        | ID N       | 0:50       | :          |            |            |            |            |            |    |
|    | GCAG    | ARTTC      | C CG       | GTGG       | CGTG         | TTG        | TGGT       | GCC        | С          |            |            |            |            |            |            |            |            | 31 |
|    | (52)    | INFO       | RMAT       | ION        | FOR          | SEQ        | ID N       | 0:51       |            |            |            |            |            |            |            |            |            |    |
| 35 |         | (i)        |            |            | E CH.        |            |            |            |            |            |            |            |            |            |            |            |            |    |

- (B) TYPE: nucleic acid (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:

ATGTTGTGTC CTTCCAAGAC AGATGGCTCA GGGCACTCTG GTAGGATTCA CCAGGAAACT CATGGAGAAG GGAAAAGGGA CAAGATTAGC AACAGTGAAG GGAGGGAGAA TGGTGGGAGA 120 GGATTCCAGA TGAACGGTGG GTCGCTGGAG GCTGAGCATG CCAGCAGGAT GTCAGTTCTC AGAGCAAAGC CCATGTCAAA CAGCCAACGC TTGCTCCTTC TGTCCCCAGG ATCACCTCCT 240 10 CGCACGGGGA GCATCTCCTA CATCACATC ATCATGCCTT CGGTGTTCGG CACCATCTGC CTCCTGGGCA TCATCGGGAA CTCCACGGTC ATCTTCGCGG TCGTGAAGAA GTCCAAGCTG 360 CACTGGTGCA ACAACGTCCC CGACATCTTC ATCATCAACC TCTCGGTAGT AGATCTCCTC TTTCTCCTGG GCATGCCCTT CATGATCCAC CAGCTCATGG GCAATGGGGT GTGGCACTTT 480 GGGGAGACCA TGTGCACCCT CATCACGGCC ATGGATGCCA ATAGTCAGTT CACCAGCACC 15 TACATCCTGA CCGCCATGGC CATTGACCGC TACCTGGCCA CTGTCCACCC CATCTCTTCC 600 ACGAAGTTCC GGAAGCCCTC TGTGGCCACC CTGGTGATCT GCCTCCTGTG GGCCCTCTCC TTCATCAGCA TCACCCCTGT GTGGCTGTAT GCCAGACTCA TCCCCTTCCC AGGAGGTGCA 720 GTGGGCTGCG GCATACGCCT GCCCAACCCA GACACTGACC TCTACTGGTT CACCCTGTAC 780 CAGTTTTTCC TGGCCTTTGC CCTGCCTTTT GTGGTCATCA CAGCCGCATA CGTGAGGATC 840 20 CTGCAGCGCA TGACGTCCTC AGTGGCCCCC GCCTCCCAGC GCAGCATCCG GCTGCGGACA 900 AAGAGGGTGA CCCGCACAGC CATCGCCATC TGTCTGGTCT TCTTTGTGTG CTGGGCACCC 960 TACTATGTGC TACAGCTGAC CCAGTTGTCC ATCAGCCGCC CGACCCTCAC CTTTGTCTAC 1020 TTATACAATG CGGCCATCAG CTTGGGCTAT GCCAACAGCT GCCTCAACCC CTTTGTGTAC 1080 ATCGTGCTCT GTGAGACGTT CCGCAAACGC TTGGTCCTGT CGGTGAAGCC TGCAGCCCAG 1140 25 GGGCAGCTTC GCGCTGTCAG CAACGCTCAG ACGGCTGACG AGGAGAGGAC AGAAAGCAAA 1200 GGCACCTGA

- (53) INFORMATION FOR SEO ID NO:52:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 402 amino acids
    - (B) TYPE: amino acid

|    | (C) STRANDEDNESS: (D) TOPOLOGY: not relevant |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
|----|----------------------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    | (i                                           | i) M       | OLEC       | ULE '      | TYPE       | : pr       | otei       | n          |            |            |            |            |            |            |            |            |
|    | (x                                           | i) S       | EQUE       | NCE I      | DESC       | SEQ        | ID :       | NO:5       | 2:         |            |            |            |            |            |            |            |
| 5  | Met<br>1                                     | Leu        | Cys        | Pro        | Ser<br>5   | Lys        | Thr        | Asp        | Gly        | Ser<br>10  | Gly        | His        | Ser        | Gly        | Arg<br>15  | Ile        |
|    | His                                          | Gln        | Glu        | Thr<br>20  | His        | Gly        | Glu        | Gly        | Lys<br>25  | Arg        | Asp        | Lys        | Ile        | Ser<br>30  | Asn        | Ser        |
| 10 | Glu                                          | Gly        | Arg<br>35  | Glu        | Asn        | Gly        | Gly        | Arg<br>40  | Gly        | Phe        | Gln        | Met        | Asn<br>45  | Gly        | Gly        | Ser        |
|    | Leu                                          | Glu<br>50  | Ala        | Glu        | His        | Ala        | Ser<br>55  | Arg        | Met        | Ser        | Val        | Leu<br>60  | Arg        | Ala        | Lys        | Pro        |
|    | Met<br>65                                    | Ser        | Asn        | Ser        | Gln        | Arg<br>70  | Leu        | Leu        | Leu        | Leu        | Ser<br>75  | Pro        | Gly        | Ser        | Pro        | Pro<br>80  |
| 15 | Arg                                          | Thr        | Gly        | Ser        | Ile<br>85  | Ser        | Tyr        | Ile        | Asn        | Ile<br>90  | Ile        | Met        | Pro        | Ser        | Val<br>95  | Phe        |
|    | Gly                                          | Thr        | Ile        | Cys<br>100 | Leu        | Leu        | Gly        | Ile        | Ile<br>105 | Gly        | Asn        | Ser        | Thr        | Val<br>110 | Ile        | Phe        |
| 20 | Ala                                          | Val        | Val<br>115 | Lys        | Lys        | Ser        | Lys        | Leu<br>120 | His        | Trp        | Cys        | Asn        | Asn<br>125 | Val        | Pro        | Asp        |
|    | Ile                                          | Phe<br>130 | Ile        | Ile        | Asn        | Leu        | Ser<br>135 | Val        | Val        | Asp        | Leu        | Leu<br>140 | Phe        | Leu        | Leu        | Gly        |
|    | Met<br>145                                   | Pro        | Phe        | Met        | Ile        | His<br>150 | Gln        | Leu        | Met        | Gly        | Asn<br>155 | Gly        | Val        | Trp        | His        | Phe<br>160 |
| 25 | Gly                                          | Glu        | Thr        | Met        | Cys<br>165 | Thr        | Leu        | Ile        | Thr        | Ala<br>170 | Met        | Asp        | Ala        | Asn        | Ser<br>175 | Gln        |
|    | Phe                                          | Thr        | Ser        | Thr<br>180 | Tyr        | Ile        | Leu        | Thr        | Ala<br>185 | Met        | Ala        | Ile        | Asp        | Arg<br>190 | Tyr        | Leu        |
| 30 | Ala                                          | Thr        | Val<br>195 | His        | Pro        | Ile        | Ser        | Ser<br>200 | Thr        | Lys        | Phe        | Arg        | Lys<br>205 | Pro        | Ser        | Val        |
|    | Ala                                          | Thr<br>210 | Leu        | Val        | Ile        | Cys        | Leu<br>215 | Leu        | Trp        | Ala        | Leu        | Ser<br>220 | Phe        | Ile        | Ser        | Ile        |
|    | Thr<br>225                                   | Pro        | Val        | Trp        | Leu        | Tyr<br>230 | Ala        | Arg        | Leu        | Ile        | Pro<br>235 | Phe        | Pro        | Gly        | Gly        | Ala<br>240 |
| 35 | Val                                          | Gly        | Cys        | Gly        | 11e<br>245 | Arg        | Leu        | Pro        | Asn        | Pro<br>250 | Asp        | Thr        | Asp        | Leu        | Tyr<br>255 | Trp        |

42

|    |       | Phe        | Thr        | Leu                        | Tyr<br>260             | Gln                    | Phe                   | Phe                    | Leu        | Ala<br>265 | Phe           | Ala        | Leu        | Pro        | Phe<br>270 | Val        | Val        |    |
|----|-------|------------|------------|----------------------------|------------------------|------------------------|-----------------------|------------------------|------------|------------|---------------|------------|------------|------------|------------|------------|------------|----|
|    |       | Ile        | Thr        | Ala<br>275                 | Ala                    | Tyr                    | Val                   | Arg                    | Ile<br>280 | Leu        | Gln           | Arg        | Met        | Thr<br>235 | Ser        | Ser        | Val        |    |
| 5  |       | Ala        | Pro<br>290 | Ala                        | Ser                    | Gln                    | Arg                   | Ser<br>295             | Ile        | Arg        | Leu           | Arg        | Thr<br>300 | Lys        | Arg        | Val        | Thr        |    |
|    |       | Arg<br>305 | Thr        | Ala                        | Ile                    | Ala                    | Ile<br>310            | Cys                    | Leu        | Val        | Phe           | Phe<br>315 | Val        | Cys        | Trp        | Ala        | Pro<br>320 |    |
| 10 |       | Tyr        | Tyr        | Val                        | Leu                    | Gln<br>325             | Leu                   | Thr                    | Gln        | Leu        | Ser<br>330    | Ile        | Ser        | Arg        | Pro        | Thr<br>335 | Leu        |    |
|    |       | Thr        | Phe        | Val                        | Tyr<br>340             | Leu                    | Tyr                   | Asn                    | Ala        | Ala<br>345 | Ile           | Ser        | Leu        | Gly        | Tyr<br>350 | Ala        | Asn        |    |
|    |       | Ser        | Cys        | Leu<br>355                 | Asn                    | Pro                    | Phe                   | Val                    | Tyr<br>360 | Ile        | Val           | Leu        | Cys        | Glu<br>365 | Thr        | Phe        | Arg        |    |
| 15 |       | Lys        | Arg<br>370 | Leu                        | Val                    | Leu                    | Ser                   | Val<br>375             | Lys        | Pro        | Ala           | Ala        | Gln<br>380 | Gly        | Gln        | Leu        | Arg        |    |
|    |       | Ala<br>385 | Val        | Ser                        | Asn                    | Ala                    | Gln<br>390            | Thr                    | Ala        | Asp        | Glu           | Glu<br>395 | Arg        | Thr        | Glu        | Ser        | Lys<br>400 |    |
|    |       | Gly        | Thr        |                            |                        |                        |                       |                        |            |            |               |            |            |            |            |            |            |    |
| 20 | (54)  | INFO       | ORMA:      | rion                       | FOR                    | SEQ                    | ID 1                  | 10:53                  | 3:         |            |               |            |            |            |            |            |            |    |
| 25 |       | (i)        | (B)        | QUENC<br>LEI<br>TYI<br>STI | NGTH<br>PE: 1<br>RANDI | : 27<br>nucle<br>EDNES | base<br>ic a<br>SS: s | e pai<br>acid<br>singl | irs        |            |               |            |            |            |            |            |            |    |
|    |       | (ii        | L) MO      | DLECT                      | JLE :                  | TYPE:                  | DNZ                   | A (ge                  | enomi      | ic)        |               |            |            |            |            |            |            |    |
|    |       | (xi        | i) SI      | EQUE                       | ICE I                  | DESCI                  | RIPT                  | ION:                   | SEQ        | ID 1       | <b>10:</b> 53 | 3 :        |            |            |            |            |            |    |
|    | GGCGG | GATC       | CA TO      | GAT                        | STGA                   | TTC                    | CCA                   | A                      |            |            |               |            |            |            |            |            |            | 27 |
| 30 | (55)  | INFO       | ORMA!      | rion                       | FOR                    | SEQ                    | ID 1                  | NO:54                  | ١:         |            |               |            |            |            |            |            |            |    |
| 35 |       | (i)        | (B)        | QUENC<br>LEI<br>TYI<br>STI | NGTH<br>PE: 1<br>RANDI | : 27<br>nucle<br>EDNES | base<br>eic a         | e pai<br>acid<br>singl | irs        |            |               |            |            |            |            |            |            |    |

(ii) MOLECULE TYPE: DNA (genomic)
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:

43

27

GGCGGATCCC TACACGGCAC TGCTGAA

5

(56) INFORMATION FOR SEQ ID NO:55:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1128 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:

10 ATGGATGTGA CTTCCCAAGC CCGGGGCGTG GGCCTGGAGA TGTACCCAGG CACCGCGCAC 60 GCTGCGGCCC CCAACACCAC CTCCCCCGAG CTCAACCTGT CCCACCCGCT CCTGGGCACC GCCCTGGCCA ATGGGACAGG TGAGCTCTCG GAGCACCAGC AGTACGTGAT CGGCCTGTTC CTCTCGTGCC TCTACACCAT CTTCCTCTTC CCCATCGGCT TTGTGGGCAA CATCCTGATC CTGGTGGTGA ACATCAGCTT CCGCGAGAAG ATGACCATCC CCGACCTGTA CTTCATCAAC 300 15 CTGGCGGTGG CGGACCTCAT CCTGGTGGCC GACTCCCTCA TTGAGGTGTT CAACCTGCAC GAGGGGTACT ACGACATCGC CGTCCTGTGC ACCTTCATGT CGCTCTTCCT GCAGGTCAAC 420 ATGTACAGCA GCGTCTTCTT CCTCACCTGG ATGAGCTTCG ACCGCTACAT CGCCCTGGCC AGGGCCATGC GCTGCAGCCT GTTCCGCACC AAGCACCACG CCCGGCTGAG CTGTGGCCTC 540 ATCTGGATGG CATCCGTGTC AGCCACGCTG GTGCCCTTCA CCGCCGTGCA CCTGCAGCAC 600 20 ACCGACGAGG CCTGCTTCTG TTTCGCGGAT GTCCGGGAGG TGCAGTGGCT CGAGGTCACG 660 CTGGGCTTCA TCGTGCCCTT CGCCATCATC GGCCTGTGCT ACTCCCTCAT TGTCCGGGTG 720 CTGGTCAGGG CGCACCGGCA CCGTGGGCTG CGGCCCCGGC GGCAGAAGGC GCTCCGCATG 780 840 GTGCACCTCC TGCAGCGGAC GCAGCCTGGG GCCGCTCCCT GCAAGCAGTC TTTCCGCCAT 900 25 GCCCACCCC TCACGGGCCA CATTGTCAAC CTCGCCGCCT TCTCCAACAG CTGCCTAAAC 960 CCCCTCATCT ACAGCTTTCT CGGGGAGACC TTCAGGGACA AGCTGAGGCT GTACATTGAG 1020 CAGAAACAA ATTTGCCGGC CCTGAACCGC TTCTGTCACG CTGCCCTGAA GGCCGTCATT 1080 CCAGACAGCA CCGAGCAGTC GGATGTGAGG TTCAGCAGTG CCGTGTGA 1128

(57) INFORMATION FOR SEQ ID NO:56:

30 (i) SEQUENCE CHARACTERISTICS:

|            | (A) LENGTH: 375 amino acids (B) TYPE: amino acid (C) STRANDENNESS: (D) TOPOLOGY: not relevant |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
|------------|-----------------------------------------------------------------------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| (i         | (ii) MOLECULE TYPE: protein                                                                   |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| (x         | i) S                                                                                          | EQUE       | NCE I      | DESC       | RIPT       | ION:       | SEQ        | ID :       | NO : 5     | 6:         |            |            |            |            |            |
| Met<br>1   | Asp                                                                                           | Val        | Thr        | Ser<br>5   | Gln        | Ala        | Arg        | Gly        | Val<br>10  | Gly        | Leu        | Glu        | Met        | Tyr<br>15  | Pro        |
| Gly        | Thr                                                                                           | Ala        | His<br>20  | Ala        | Ala        | Ala        | Pro        | Asn<br>25  | Thr        | Thr        | Ser        | Pro        | Glu<br>30  | Leu        | Asn        |
| Leu        | Ser                                                                                           | His<br>35  | Pro        | Leu        | Leu        | Gly        | Thr<br>40  | Ala        | Leu        | Ala        | Asn        | Gly<br>45  | Thr        | Gly        | Glu        |
| Leu        | Ser<br>50                                                                                     | Glu        | His        | Gln        | Gln        | Tyr<br>55  | Val        | Ile        | Gly        | Leu        | Phe<br>60  | Leu        | Ser        | Cys        | Leu        |
| Tyr<br>65  | Thr                                                                                           | Ile        | Phe        | Leu        | Phe<br>70  | Pro        | Ile        | Gly        | Phe        | Val<br>75  | Gly        | Asn        | Ile        | Leu        | Ile<br>80  |
| Leu        | Val                                                                                           | Val        | Asn        | Ile<br>85  | Ser        | Phe        | Arg        | Glu        | Lys<br>90  | Met        | Thr        | Ile        | Pro        | Asp<br>95  | Leu        |
| Tyr        | Phe                                                                                           | Ile        | Asn<br>100 | Leu        | Ala        | Val        | Ala        | Asp<br>105 | Leu        | Ile        | Leu        | Val        | Ala<br>110 | Asp        | Ser        |
| Leu        | Ile                                                                                           | Glu<br>115 | Val        | Phe        | Asn        | Leu        | His<br>120 | Glu        | Arg        | Tyr        | Tyr        | Asp<br>125 | Ile        | Ala        | Val        |
| Leu        | Cys<br>130                                                                                    | Thr        | Phe        | Met        | Ser        | Leu<br>135 | Phe        | Leu        | Gln        | Val        | Asn<br>140 | Met        | Tyr        | Ser        | Ser        |
| Val<br>145 | Phe                                                                                           | Phe        | Leu        | Thr        | Trp<br>150 | Met        | Ser        | Phe        | Asp        | Arg<br>155 | Tyr        | Ile        | Ala        | Leu        | Ala<br>160 |
| Arg        | Ala                                                                                           | Met        | Arg        | Cys<br>165 | Ser        | Leu        | Phe        | Arg        | Thr<br>170 | Lys        | His        | His        | Ala        | Arg<br>175 | Leu        |
| Ser        | Cys                                                                                           | Gly        | Leu        | Ile        | Trp        | Met        | Ala        | Ser        | Val        | Ser        | Ala        | Thr        | Leu        | Val        | Pro        |

Phe Thr Ala Val His Leu Gln His Thr Asp Glu Ala Cys Phe Cys Phe 195 200 205 Ala Asp Val Arg Glu Val Gln Trp Leu Glu Val Thr Leu Gly Phe Ile

210 215 220

Val Pro Phe Ala Ile Ile Gly Leu Cys Tyr Ser Leu Ile Val Arg Val

225 230 235 240
Leu Val Arg Ala His Arg His Arg Gly Leu Arg Pro Arg Arg Gln Lys

|    | -      | мта        | Leu               | AIG               | 260                     | 116           | Leu                   | MIA        | Val        | 265        | Leu        | vai        | Pne        | Pne        | 270        | Cys        | Trp        |    |
|----|--------|------------|-------------------|-------------------|-------------------------|---------------|-----------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|----|
| 5  | 1      | Leu        | Pro               | Glu<br>275        | Asn                     | Val           | Phe                   | Ile        | Ser<br>280 | Val        | His        | Leu        | Leu        | Gln<br>285 | Arg        | Thr        | Gln        |    |
|    | 1      | Pro        | Gly<br>290        | Ala               | Ala                     | Pro           | Cys                   | Lys<br>295 | Gln        | Ser        | Phe        | Arg        | His<br>300 | Ala        | His        | Pro        | Leu        |    |
|    |        | Thr<br>305 | Gly               | His               | Ile                     | Val           | Asn<br>310            | Leu        | Ala        | Ala        | Phe        | Ser<br>315 | Asn        | Ser        | Cys        | Leu        | Asn<br>320 |    |
| 10 | 1      | Pro        | Leu               | Ile               | Tyr                     | Ser<br>325    | Phe                   | Leu        | Gly        | Glu        | Thr<br>330 | Phe        | Arg        | Asp        | Lys        | Leu<br>335 | Arg        |    |
|    | I      | Leu        | Tyr               | Ile               | Glu<br>340              | Gln           | Lys                   | Thr        | Asn        | Leu<br>345 | Pro        | Ala        | Leu        | Asn        | Arg<br>350 | Phe        | Cys        |    |
| 15 | I      | lis        | Ala               | Ala<br>355        | Leu                     | Lys           | Ala                   | Val        | Ile<br>360 | Pro        | Asp        | Ser        | Thr        | Glu<br>365 | Gln        | Ser        | Asp        |    |
|    | 7      | /al        | Arg<br>370        | Phe               | Ser                     | Ser           | Ala                   | Val<br>375 |            |            |            |            |            |            |            |            |            |    |
|    | (58)   | INFO       | RMAT              | CION              | FOR                     | SEQ           | ID 1                  | 10:5       | 7:         |            |            |            |            |            |            |            |            |    |
| 20 |        | (i)        | (A)<br>(B)<br>(C) | LEN<br>TYI<br>STI | IGTH:<br>PE: 1<br>RANDI | : 31<br>nucle | base<br>ic a<br>SS: s | ingl       | irs        |            |            |            |            |            |            |            |            |    |
|    |        | (ii        | .) MC             | LECU              | JLE T                   | YPE:          | DNZ                   | k (ge      | enomi      | ic)        |            |            |            |            |            |            |            |    |
| 25 |        | (xi        | ) SE              | QUE               | ICE I                   | ESCF          | RIPTI                 | ON:        | SEQ        | ID 1       | 10:57      | ':         |            |            |            |            |            |    |
|    | AAGGAA | ATTC       | A CG              | GCCG              | GGT                     | ATC           | CCAT                  | TCC        | C          |            |            |            |            |            |            |            |            | 31 |
|    | (59) 1 | NFO        | RMAT              | CION              | FOR                     | SEQ           | ID N                  | 10:58      | 3:         |            |            |            |            |            |            |            |            |    |
| 30 |        | (i)        | (A)<br>(B)<br>(C) | LEN<br>TYP<br>STF | IGTH:<br>PE: r<br>RANDE | 30<br>ucle    | base<br>ic a<br>SS: s | ingl       | rs         |            |            |            |            |            |            |            |            |    |
|    |        | (ii        | .) MC             | LECU              | ILE T                   | YPE:          | DNA                   | 4 (ge      | enomi      | ic)        |            |            |            |            |            |            |            |    |
|    |        | (xi        | ) SE              | QUEN              | ICE I                   | ESCF          | RIPTI                 | ON:        | SEQ        | ID N       | 10:58      | :          |            |            |            |            |            |    |
| 35 | GGTGGA | ATCC       | A TA              | AACA              | CGGG                    | CGT           | TGAC                  | GAC        |            |            |            |            |            |            |            |            |            | 30 |
|    | (60) I | NFO        | RMAT              | CION              | FOR                     | SEQ           | ID N                  | 10:59      | ):         |            |            |            |            |            |            |            |            |    |

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 960 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: single (D) TOPOLOGY: linear

5

25

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEO ID NO:59:

ATGCCATTCC CAAACTGCTC AGCCCCCAGC ACTGTGGTGG CCACAGCTGT GGGTGTCTTG 60 CTGGGGCTGG AGTGTGGGCT GGGTCTGCTG GGCAACGCGG TGGCGCTGTG GACCTTCCTG 120 10 TTCCGGGTCA GGGTGTGGAA GCCGTACGCT GTCTACCTGC TCAACCTGGC CCTGGCTGAC 180 CTGCTGTTGG CTGCGTGCCT GCCTTTCCTG GCCGCCTTCT ACCTGAGCCT CCAGGCTTGG 240 CATCTGGGCC GTGTGGGCTG CTGGGCCCTG CGCTTCCTGC TGGACCTCAG CCGCAGCGTG 300 GGGATGGCCT TCCTGGCCGC CGTGGCTTTG GACCGGTACC TCCGTGTGGT CCACCCTCGG CTTAAGGTCA ACCTGCTGTC TCCTCAGGCG GCCCTGGGGG TCTCGGGCCT CGTCTGGCTC 420 15 CTGATGGTCG CCCTCACCTG CCCGGGCTTG CTCATCTCTG AGGCCGCCCA GAACTCCACC 480 AGGTGCCACA GTTTCTACTC CAGGGCAGAC GGCTCCTTCA GCATCATCTG GCAGGAAGCA 540 CTCTCCTGCC TTCAGTTTGT CCTCCCCTTT GGCCTCATCG TGTTCTGCAA TGCAGGCATC 600 ATCAGGGCTC TCCAGAAAAG ACTCCGGGAG CCTGAGAAAC AGCCCAAGCT TCAGCGGGCC 660 CAGGCACTGG TCACCTTGGT GGTGGTGCTG TTTGCTCTGT GCTTTCTGCC CTGCTTCCTG 20 GCCAGAGTCC TGATGCACAT CTTCCAGAAT CTGGGGAGCT GCAGGGCCCT TTGTGCAGTG 780 GCTCATACCT CGGATGTCAC GGGCAGCCTC ACCTACCTGC ACAGTGTCGT CAACCCCGTG GTATACTGCT TCTCCAGCCC CACCTTCAGG AGCTCCTATC GGAGGGTCTT CCACACCCTC 900 CGAGGCAAAG GGCAGGCAGC AGAGCCCCCA GATTTCAACC CCAGAGACTC CTATTCCTGA (61) INFORMATION FOR SEO ID NO:60:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 319 amino acids

- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: linear
- 30 (ii) MOLECULE TYPE: protein
  - (xi) SECUENCE DESCRIPTION: SEC ID NO:60:

Met Pro Phe Pro Asn Cys Ser Ala Pro Ser Thr Val Val Ala Thr Ala

|    | 1          |            |            |            | 5          |            |            |            |            | 10         |            |            |            |            | 15         |            |
|----|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    | Val        | Gly        | Val        | Leu<br>20  | Leu        | Gly        | Leu        | Glu        | Cys<br>25  | Gly        | Leu        | Gly        | Leu        | Leu<br>30  | Gly        | Asn        |
| 5  | Ala        | Val        | Ala<br>35  | Leu        | Trp        | Thr        | Phe        | Leu<br>40  | Phe        | Arg        | Val        | Arg        | Val<br>45  | Trp        | Lys        | Pro        |
|    | Tyr        | Ala<br>50  | Val        | Tyr        | Leu        | Leu        | Asn<br>55  | Leu        | Ala        | Leu        | Ala        | Asp<br>60  | Leu        | Leu        | Leu        | Ala        |
|    | Ala<br>65  | Cys        | Leu        | Pro        | Phe        | Leu<br>70  | Ala        | Ala        | Phe        | Tyr        | Leu<br>75  | Ser        | Leu        | Gln        | Ala        | Trp<br>80  |
| 10 | His        | Leu        | Gly        | Arg        | Val<br>85  | Gly        | Cys        | Trp        | Ala        | Leu<br>90  | Arg        | Phe        | Leu        | Leu        | Asp<br>95  | Leu        |
|    | Ser.       | Arg        | Ser        | Val<br>100 | Gly        | Met        | Ala        | Phe        | Leu<br>105 | Ala        | Ala        | Val        | Ala        | Leu<br>110 | Asp        | Arg        |
| 15 | Tyr        | Leu        | Arg<br>115 | Val        | Val        | His        | Pro        | Arg<br>120 | Leu        | Lys        | Val        | Asn        | Leu<br>125 | Leu        | Ser        | Pro        |
|    | Gln .      | Ala<br>130 | Ala        | Leu        | Gly        | Val        | Ser<br>135 | Gly        | Leu        | Val        | Trp        | Leu<br>140 | Leu        | Met        | Val        | Ala        |
|    | Leu<br>145 | Thr        | Cys        | Pro        | Gly        | Leu<br>150 | Leu        | Ile        | Ser        | Glu        | Ala<br>155 | Ala        | Gln        | Asn        | Ser        | Thr<br>160 |
| 20 | Arg        | Cys        | His        | Ser        | Phe<br>165 | Tyr        | Ser        | Arg        | Ala        | Asp<br>170 | Gly        | Ser        | Phe        | Ser        | Ile<br>175 | Ile        |
|    | Trp        | Gln        | Glu        | Ala<br>180 | Leu        | Ser        | Cys        |            | Gln<br>185 | Phe        | Val        | Leu        | Pro        | Phe<br>190 | Gly        | Leu        |
| 25 | Ile '      | Val        | Phe<br>195 | Cys        | Asn        | Ala        | Gly        | Ile<br>200 | Ile        | Arg        | Ala        | Leu        | Gln<br>205 | Lys        | Arg        | Leu        |
|    | Arg (      | Glu<br>210 | Pro        | Glu        | Lys        | Gln        | Pro<br>215 | Lys        | Leu        | Gln        | Arg        | Ala<br>220 | Gln        | Ala        | Leu        | Val        |
|    | Thr :      | Leu        | Val        | Val        | Val        | Leu<br>230 | Phe        | Ala        | Leu        | Cys        | Phe<br>235 | Leu        | Pro        | Cys        | Phe        | Leu<br>240 |
| 30 | Ala        | Arg        | Val        |            | Met<br>245 | His        | Ile        | Phe        | Gln        | Asn<br>250 | Leu        | Gly        | Ser        | Cys        | Arg<br>255 | Ala        |
|    | Leu        | Сув        |            | Val<br>260 | Ala        | His        | Thr        |            | Asp<br>265 | Val        | Thr        | Gly        | Ser        | Leu<br>270 | Thr        | Tyr        |
| 35 | Leu l      | His        | Ser<br>275 | Val        | Val        | Asn        |            | Val<br>280 | Val        | Tyr        | Cys        |            | Ser<br>285 | Ser        | Pro        | Thr        |
|    | Phe i      | Arg<br>290 | Ser        | Ser        | Tyr        |            | Arg<br>295 | Val        | Phe        | His        | Thr        | Leu<br>300 | Arg        | Gly        | Lys        | Gly        |

48

Gln Ala Ala Glu Pro Pro Asp Phe Asn Pro Arg Asp Ser Tyr Ser 305 310 315

(62) INFORMATION FOR SEQ ID NO:61:

(i) SEQUENCE CHARACTERISTICS:

5 (A) LENGTH: 1143 base pairs

30 TAG

(B) TYPE: nucleic acid (C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:61:

ATGGAGGAAG GTGGTGATTT TGACAACTAC TATGGGGCAG ACAACCAGTC TGAGTGTGAG 60 TACACAGACT GGAAATCCTC GGGGGCCCTC ATCCCTGCCA TCTACATGTT GGTCTTCCTC 120 CTGGGCACCA CGGGAAACGG TCTGGTGCTC TGGACCGTGT TTCGGAGCAG CCGGGAGAAG 240 15 ACGCTGCCCC TGTGGGCTAC CTACACGTAC CGGGACTATG ACTGGCCCTT TGGGACCTTC 300 TTCTGCAAGC TCAGCAGCTA CCTCATCTTC GTCAACATGT ACGCCAGCGT CTTCTGCCTC 360 ACCGGCCTCA GCTTCGACCG CTACCTGGCC ATCGTGAGGC CAGTGGCCAA TGCTCGGCTG 420 AGGCTGCGGG TCAGCGGGGC CGTGGCCACG GCAGTTCTTT GGGTGCTGGC CGCCCTCCTG 480 GCCATGCCTG TCATGGTGTT ACGCACCACC GGGGACTTGG AGAACACCAC TAAGGTGCAG 540 TGCTACATGG ACTACTCCAT GGTGGCCACT GTGAGCTCAG AGTGGGCCTG GGAGGTGGGC 600 CTTGGGGTCT CGTCCACCAC CGTGGGCTTT GTGGTGCCCT TCACCATCAT GCTGACCTGT 660 TACTTCTTCA TCGCCCAAAC CATCGCTGGC CACTTCCGCA AGGAACGCAT CGAGGGCCTG 720 CGGAAGCGGC GCCGGCTGCT CAGCATCATC GTGGTGCTGG TGGTGACCTT TGCCCTGTGC 780 TGGATGCCCT ACCACCTGGT GAAGACGCTG TACATGCTGG GCAGCCTGCT GCACTGGCCC 840 25 TGTGACTTTG ACCTCTTCCT CATGAACATC TTCCCCTACT GCACCTGCAT CAGCTACGTC 900 ARCAGOTGOO TONACCOOTT COTOTATGOO TITTTOGACO COCGOTTOGG COAGGOOTGO 960 ACCTCCATGC TCTGCTGTGG CCAGAGCAGG TGCGCAGGCA CCTCCCACAG CAGCAGTGGG CAGARGECAG COAGCTACTC TTCGGGGCAC AGCCAGGGGC CCGGCCCCAA CATGGGCAAG 1080 GGTGGAGAAC AGATGCACGA GAAATCCATC CCCTACAGCC AGGAGACCCT TGTGGTTGAC 1140

| (63) INFORMATION FOR SEQ 1 | D NO:62: |
|----------------------------|----------|
|----------------------------|----------|

- (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 380 amino acids
  - (B) TYPE: amino acid
- (C) STRANDEDNESS:

- (D) TOPOLOGY: not relevant
  - (ii) MOLECULE TYPE: protein
  - (xi) SEQUENCE DESCRIPTION: SEO ID NO:62.
- Met Glu Glu Gly Gly Asp Phe Asp Asn Tyr Tyr Gly Ala Asp Asn Gln 10
  - Ser Glu Cys Glu Tyr Thr Asp Trp Lys Ser Ser Gly Ala Leu Ile Pro
  - Ala Ile Tyr Met Leu Val Phe Leu Leu Gly Thr Thr Gly Asn Gly Leu
- 15 Val Leu Trp Thr Val Phe Arg Ser Ser Arg Glu Lys Arg Arg Ser Ala 60
  - Asp Ile Phe Ile Ala Ser Leu Ala Val Ala Asp Leu Thr Phe Val Val
- Thr Leu Pro Leu Trp Ala Thr Tyr Thr Tyr Arg Asp Tyr Asp Trp Pro 20
  - Phe Gly Thr Phe Phe Cys Lys Leu Ser Ser Tyr Leu Ile Phe Val Asn 100 105 Met Tyr Ala Ser Val Phe Cys Leu Thr Gly Leu Ser Phe Asp Arg Tyr
  - 120
- 25 Leu Ala Ile Val Arg Pro Val Ala Asn Ala Arg Leu Arg Leu Arg Val 130
  - Ser Gly Ala Val Ala Thr Ala Val Leu Trp Val Leu Ala Ala Leu Leu 145 150
  - Ala Met Pro Val Met Val Leu Arg Thr Thr Gly Asp Leu Glu Asn Thr
    - Thr Lys Val Gln Cys Tyr Met Asp Tyr Ser Met Val Ala Thr Val Ser 180 185
    - Ser Glu Trp Ala Trp Glu Val Gly Leu Gly Val Ser Ser Thr Thr Val 200
- 35 Gly Phe Val Val Pro Phe Thr Ile Met Leu Thr Cys Tyr Phe Phe Ile 210 215 220
  - Ala Gln Thr Ile Ala Gly His Phe Arg Lys Glu Arg Ile Glu Gly Leu

|    |       | 225        |                   |                   |                         |            | 230                   |            |            |            |            | 235        |            |            |            |            | 240        |    |
|----|-------|------------|-------------------|-------------------|-------------------------|------------|-----------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|----|
|    |       | Arg        | Lys               | Arg               | Arg                     | Arg<br>245 | Leu                   | Leu        | Ser        | Ile        | Ile<br>250 | Val        | Val        | Leu        | Val        | Val<br>255 | Thr        |    |
| 5  |       | Phe        | Ala               | Leu               | Сув<br>260              | Trp        | Met                   | Pro        | Tyr        | His<br>265 | Leu        | Val        | Lys        | Thr        | Leu<br>270 | Tyr        | Met        |    |
|    |       | Leu        | Gly               | Ser<br>275        | Leu                     | Leu        | His                   | Trp        | Pro<br>280 | Cys        | Asp        | Phe        | Asp        | Leu<br>285 | Phe        | Leu        | Met        |    |
|    |       | Asn        | Ile<br>290        | Phe               | Pro                     | Tyr        | Cys                   | Thr<br>295 | Cys        | Ile        | Ser        | Tyr        | Val<br>300 | Asn        | Ser        | Cys        | Leu        |    |
| 10 |       | Asn<br>305 | Pro               | Phe               | Leu                     | Tyr        | Ala<br>310            | Phe        | Phe        | Asp        | Pro        | Arg<br>315 | Phe        | Arg        | Gln        | Ala        | Cys<br>320 |    |
|    |       | Thr        | Ser               | Met               | Leu                     | Сув<br>325 | Cys                   | Gly        | Gln        | Ser        | Arg<br>330 | Cys        | Ala        | Gly        | Thr        | Ser<br>335 | His        |    |
| 15 |       | Ser        | Ser               | Ser               | Gly<br>340              | Glu        | Lys                   | Ser        | Ala        | Ser<br>345 | Tyr        | Ser        | Ser        | Gly        | His<br>350 | Ser        | Gln        |    |
|    |       | Gly        | Pro               | Gly<br>355        | Pro                     | Asn        | Met                   | Gly        | Lys<br>360 | Gly        | Gly        | Glu        | Gln        | Met<br>365 | His        | Glu        | Lys        |    |
|    |       | Ser        | Ile<br>370        | Pro               | Tyr                     | Ser        | Gln                   | Glu<br>375 | Thr        | Leu        | Val        | Val        | Asp<br>380 |            |            |            |            |    |
| 20 | (64)  | INFO       | RMA               | rion              | FOR                     | SEQ        | ID 1                  | NO:63      | · :        |            |            |            |            |            |            |            |            |    |
|    |       | (i)        | (A)<br>(B)<br>(C) | LEN<br>TYP<br>STR | IGTH:<br>PE: r<br>RANDE | 31<br>ucle | base<br>ic a<br>SS: s | ingl       | rs         |            |            |            |            |            |            |            |            |    |
| 25 |       |            | (D)               | TOI               | POLOG                   | Y: ]       | inea                  | ır         |            |            |            |            |            |            |            |            |            |    |
|    |       | (ii        | .) MC             | LECT              | JLE T                   | YPE:       | DNA                   | l (ge      | nomi       | .c)        |            |            |            |            |            |            |            |    |
|    |       | (xi        | .) SE             | QUE               | ICE I                   | ESCI       | RIPTI                 | ON:        | SEQ        | ID N       | 10:63      | :          |            |            |            |            |            |    |
|    | TGAGI | ATTO       | T GO              | TGAC              | CTCAC                   | AGO        | CCGGC                 | CACA       | G          |            |            |            |            |            |            |            |            | 31 |
|    | (65)  | INFO       | RMAT              | NOI               | FOR                     | SEQ        | ID 1                  | IO:64      | :          |            |            |            |            |            |            |            |            |    |
| 30 |       | (i)        | (A)<br>(B)<br>(C) | LEN<br>TYE        | GTH:<br>E: r<br>CANDE   | 31<br>ucle | base<br>ic a<br>S: s  | ingl       | rs         |            |            |            |            |            |            |            |            |    |
| 35 |       | (ii        | .) MC             | LECU              | ILE T                   | YPE:       | DNA                   | 4 (ge      | nomi       | .c)        |            |            |            |            |            |            |            |    |
|    |       | (xi        | ) SE              | QUEN              | ICE I                   | ESCF       | RIPTI                 | ON:        | SEQ        | ID N       | 10:64      | :          |            |            |            |            |            |    |

31

GCCGGATCCA AGGAAAAGCA GCAATAAAAG G

(66) INFORMATION FOR SEO ID NO:65:

5

30

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1119 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:65:

10 ATGAACTACC CGCTAACGCT GGAAATGGAC CTCGAGAACC TGGAGGACCT GTTCTGGGAA 120 ACAGAGGGTC CCCTCATGGC CTCCTTCAAG GCCGTGTTCG TGCCCGTGGC CTACAGCCTC ATCTTCCTCC TGGGCGTGAT CGGCAACGTC CTGGTGCTGG TGATCCTGGA GCGGCACCGG 240 CAGACACGCA GTTCCACGGA GACCTTCCTG TTCCACCTGG CCGTGGCCGA CCTCCTGCTG 15 GTCTTCATCT TGCCCTTTGC CGTGGCCGAG GGCTCTGTGG GCTGGGTCCT GGGGACCTTC 360 CTCTGCAAAA CTGTGATTGC CCTGCACAAA GTCAACTTCT ACTGCAGCAG CCTGCTCCTG GCCTGCATCG CCGTGGACCG CTACCTGGCC ATTGTCCACG CCGTCCATGC CTACCGCCAC 480 CGCCGCCTCC TCTCCATCCA CATCACCTGT GGGACCATCT GGCTGGTGGG CTTCCTCCTT GCCTTGCCAG AGATTCTCTT CGCCAAAGTC AGCCAAGGCC ATCACAACAA CTCCCTGCCA 600 20 CGTTGCACCT TCTCCCAAGA GAACCAAGCA GAAACGCATG CCTGGTTCAC CTCCCGATTC 660 CTCTACCATG TGGCGGGATT CCTGCTGCCC ATGCTGGTGA TGGGCTGGTG CTACGTGGGG 720 GTAGTGCACA GGTTGCGCCA GGCCCAGCGG CGCCCTCAGC GGCAGAAGGC AGTCAGGGTG 780 GCCATCCTGG TGACAAGCAT CTTCTTCCTC TGCTGGTCAC CCTACCACAT CGTCATCTTC 840 CTGGACACCC TGGCGAGGCT GAAGGCCGTG GACAATACCT GCAAGCTGAA TGGCTCTCTC 900 25 CCCGTGGCCA TCACCATGTG TGAGTTCCTG GGCCTGGCCC ACTGCTGCCT CAACCCCATG 960 CTCTACACTT TCGCCGGCGT GAAGTTCCGC AGTGACCTGT CGCGGCTCCT GACCAAGCTG 1020 GGCTGTACCG GCCCTGCCTC CCTGTGCCAG CTCTTCCCTA GCTGGCGCAG GAGCAGTCTC 1080 TCTGAGTCAG AGAATGCCAC CTCTCTCACC ACGTTCTAG 1119

(67) INFORMATION FOR SEQ ID NO:66:

(i) SEQUENCE CHARACTERISTICS:

|    |            | (B         | ) TY       | NGTH<br>PE:<br>RAND<br>POLO | amin<br>EDNE | o ac<br>ss: | id         |            | s          |            |            |            |            |            |            |            |
|----|------------|------------|------------|-----------------------------|--------------|-------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| 5  | (i         | i) M       | OLEC       | ULE                         | TYPE         | : pr        | otei       | n          |            |            |            |            |            |            |            |            |
|    | (x         | i) s       | EQUE       | NCE :                       | DESC         | RIPT        | ION:       | SEQ        | ID :       | NO:6       | б:         |            |            |            |            |            |
|    | Met<br>1   | Asn        | Tyr        | Pro                         | Leu<br>5     | Thr         | Leu        | Glu        | Met        | Asp<br>10  | Leu        | Glu        | Asn        | Leu        | Glu<br>15  | Asp        |
| 10 | Leu        | Phe        | Trp        | Glu<br>20                   | Leu          | Asp         | Arg        | Leu        | Asp<br>25  | Asn        | Tyr        | Asn        | Asp        | Thr<br>30  | Ser        | Leu        |
|    | Val        | Glu        | Asn<br>35  | His                         | Leu          | Cys         | Pro        | Ala<br>40  | Thr        | Glu        | Gly        | Pro        | Leu<br>45  | Met        | Ala        | ser        |
|    | Phe        | Lys<br>50  | Ala        | Val                         | Phe          | Val         | Pro<br>55  | Val        | Ala        | Tyr        | Ser        | Leu<br>60  | Ile        | Phe        | Leu        | Leu        |
| 15 | Gly<br>65  | Val        | Ile        | Gly                         | Asn          | Val<br>70   | Leu        | Val        | Leu        | Val        | Ile<br>75  | Leu        | Glu        | Arg        | His        | Arg<br>80  |
|    | Gln        | Thr        | Arg        | Ser                         | Ser<br>85    | Thr         | Glu        | Thr        | Phe        | Leu<br>90  | Phe        | His        | Leu        | Ala        | Val<br>95  | Ala        |
| 20 | Asp        | Leu        | Leu        | Leu<br>100                  | Val          | Phe         | Ile        | Leu        | Pro<br>105 | Phe        | Ala        | Val        | Ala        | Glu<br>110 | Gly        | Ser        |
|    | Val        | Gly        | Trp<br>115 | Val                         | Leu          | Gly         | Thr        | Phe<br>120 | Leu        | Cys        | Lys        | Thr        | Val<br>125 | Ile        | Ala        | Leu        |
|    | His        | Lys<br>130 | Val        | Asn                         | Phe          | Tyr         | Cys<br>135 | Ser        | Ser        | Leu        | Leu        | Leu<br>140 | Ala        | Сув        | Ile        | Ala        |
| 25 | Val<br>145 | Asp        | Arg        | Tyr                         | Leu          | Ala<br>150  | Ile        | Val        | His        | Ala        | Val<br>155 | His        | Ala        | Tyr        | Arg        | His<br>160 |
|    | Arg        | Arg        | Leu        | Leu                         | Ser<br>165   | Ile         | His        | Ile        | Thr        | Cys<br>170 | Gly        | Thr        | Ile        | Trp        | Leu<br>175 | Val        |
| 30 | Gly        | Phe        | Leu        | Leu<br>180                  | Ala          | Leu         | Pro        | Glu        | Ile<br>185 | Leu        | Phe        | Ala        | Lys        | Val<br>190 | Ser        | Gln        |
|    | Gly        | His        | His<br>195 | Asn                         | Asn          | Ser         | Leu        | Pro<br>200 | Arg        | Cys        | Thr        | Phe        | Ser<br>205 | Gln        | Glu        | Asn        |
|    | Gln        | Ala<br>210 | Glu        | Thr                         | His          | Ala         | Trp<br>215 | Phe        | Thr        | Ser        | Arg        | Phe<br>220 | Leu        | Tyr        | His        | Val        |
| 35 | Ala<br>225 | Gly        | Phe        | Leu                         | Leu          | Pro<br>230  | Met        | Leu        | Val        | Met        | Gly<br>235 | Trp        | Cys        | Tyr        | Val        | Gly<br>240 |
|    | Val        | Val        | His        | Arg                         | Leu          | Arg         | Gln        | Ala        | Gln        | Arg        | Arg        | Pro        | Gln        | Ara        | Gln        | Lvs        |

|    |                                    |              |                                           |               |                    |                      |                    | _          | -          |            |            |            |            |            |            |            |     |
|----|------------------------------------|--------------|-------------------------------------------|---------------|--------------------|----------------------|--------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----|
|    |                                    |              |                                           |               | 245                |                      |                    |            |            | 250        |            |            |            |            | 255        |            |     |
|    | Al                                 | a Val        | Arg                                       | Val<br>260    | Ala                | Ile                  | Leu                | Val        | Thr<br>265 | Ser        | Ile        | Phe        | Phe        | Leu<br>270 | Cys        | Trp        |     |
| 5  | Se                                 | r Pro        | Tyr<br>275                                | His           | Ile                | Val                  | Ile                | Phe<br>280 | Leu        | Asp        | Thr        | Leu        | Ala<br>285 | Arg        | Leu        | Lys        |     |
|    | Al                                 | a Val<br>290 |                                           | Asn           | Thr                | Сув                  | Lys<br>295         | Leu        | Asn        | Gly        | Ser        | Leu<br>300 | Pro        | Val        | Ala        | Ile        |     |
|    | Th<br>30                           | r Met<br>5   | Cys                                       | Glu           | Phe                | Leu<br>310           | Gly                | Leu        | Ala        | His        | Cys<br>315 | Cys        | Leu        | Asn        | Pro        | Met<br>320 |     |
| 10 | Le                                 | u Tyr        | Thr                                       | Phe           | Ala<br>325         | Gly                  | Val                | Lys        | Phe        | Arg<br>330 | Ser        | Asp        | Leu        | Ser        | Arg<br>335 | Leu        |     |
|    | Le                                 | u Thr        | Lys                                       | Leu<br>340    | Gly                | Cys                  | Thr                | Gly        | Pro<br>345 | Ala        | Ser        | Leu        | Cys        | Gln<br>350 | Leu        | Phe        |     |
| 15 | Pr                                 | o Ser        | Trp<br>355                                | Arg           | Arg                | Ser                  | Ser                | Leu<br>360 | Ser        | Glu        | Ser        | Glu        | Asn<br>365 | Ala        | Thr        | Ser        |     |
|    | Le                                 | u Thr<br>370 | Thr                                       | Phe           |                    |                      |                    |            |            |            |            |            |            |            |            |            |     |
|    | (68) INFORMATION FOR SEQ ID NO:67; |              |                                           |               |                    |                      |                    |            |            |            |            |            |            |            |            |            |     |
| 20 |                                    |              |                                           |               |                    |                      |                    |            |            |            |            |            |            |            |            |            |     |
|    | (                                  | ii) M        | OLECT                                     | ILE 1         | YPE:               | DNA                  | ı (ge              | nomi       | lc)        |            |            |            |            |            |            |            |     |
| 25 | (:                                 | xi) S        | EQUE                                      | ICE I         | ESCF               | PTI                  | ON:                | SEQ        | ID N       | 10:67      | <i>'</i> : |            |            |            |            |            |     |
|    | CAAAGCT                            | TGA A        | AGCTO                                     | CAC           | GTG                | CAG                  | GAC                |            |            |            |            |            |            |            |            |            | 3 ( |
|    | (69) IN                            | FORMA'       | TION                                      | FOR           | SEQ                | ID N                 | 10:68              | :          |            |            |            |            |            |            |            |            |     |
| 30 | (i                                 | (B)          | UENCE<br>) LEM<br>) TYE<br>) STE<br>) TOE | GTH:<br>PE: n | 30<br>ucle<br>DNES | base<br>ic a<br>S: s | pai<br>cid<br>ingl | rs         |            |            |            |            |            |            |            |            |     |
|    | (                                  | ii) M        | OLECT                                     | JLE 1         | YPE:               | DNA                  | (ge                | nomi       | .c)        |            |            |            |            |            |            |            |     |
|    | (:                                 | xi) SI       | EQUEN                                     | CE I          | ESCF               | IPTI                 | ON:                | SEQ        | ID N       | 10:68      | 3:         |            |            |            |            |            |     |
| 35 | GCGGATC                            | CCG A        | GTCAC                                     | CACCO         | TGG                | CTGG                 | GCC                |            |            |            |            |            |            |            |            |            | 3 ( |
|    | (70) IN                            | FORMA!       | TION                                      | FOR           | SEQ                | ID N                 | 10:69              | :          |            |            |            |            |            |            |            |            |     |

|     |     |       |      |       |       | -     |
|-----|-----|-------|------|-------|-------|-------|
| (i) | SEQ | UENCE | CHA  | RACT  | ERIST | ICS:  |
|     | (A) | LENGT | Ή:   | 1128  | base  | pairs |
|     | (B) | TYPE: | nu   | clei  | c aci | ď     |
|     | (C) | STRAN | IDED | NESS  | : sin | gle   |
|     | (D) | TOPOL | OGY  | : li: | near  |       |

(ii) MOLECULE TYPE: DNA (genomic)

5

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:69:

ATGGATGTGA CTTCCCAAGC CCGGGGCGTG GGCCTGGAGA TGTACCCAGG CACCGCGCAG 60 CCTGCGGCCC CCAACACCAC CTCCCCCGAG CTCAACCTGT CCCACCCGCT CCTGGGCACC 120 10 GCCCTGGCCA ATGGGACAGG TGAGCTCTCG GAGCACCAGC AGTACGTGAT CGGCCTGTTC CTCTCGTGCC TCTACACCAT CTTCCTCTTC CCCATCGGCT TTGTGGGCAA CATCCTGATC CTGGTGGTGA ACATCAGCTT CCGCGAGAAG ATGACCATCC CCGACCTGTA CTTCATCAAC 300 CTGGCGGTGG CGGACCTCAT CCTGGTGGCC GACTCCCTCA TTGAGGTGTT CAACCTGCAC GAGCGGTACT ACGACATCGC CGTCCTGTGC ACCTTCATGT CGCTCTTCCT GCAGGTCAAC 420 15 ATGTACAGCA GCGTCTTCTT CCTCACCTGG ATGAGCTTCG ACCGCTACAT CGCCCTGGCC AGGGCCATGC GCTGCAGCCT GTTCCGCACC AAGCACCACG CCCGGCTGAG CTGTGGCCTC 540 ATCTGGATGG CATCCGTGTC AGCCACGCTG GTGCCCTTCA CCGCCGTGCA CCTGCAGCAC ACCGACGAGG CCTGCTTCTG TTTCGCGGAT GTCCGGGAGG TGCAGTGGCT CGAGGTCACG 660 CTGGGCTTCA TCGTGCCCTT CGCCATCATC GGCCTGTGCT ACTCCCTCAT TGTCCGGGTG 720 20 CTGGTCAGGG CGCACCGGCA CCGTGGGCTG CGGCCCCGGC GGCAGAAGGC GCTCCGCATG 780 840 GTGCACCTCC TGCAGCGGAC GCAGCCTGGG GCCGCTCCCT GCAAGCAGTC TTTCCGCCAT 900 GCCCACCCC TCACGGGCCA CATTGTCAAC CTCACCGCCT TCTCCAACAG CTGCCTAAAC 960 CCCCTCATCT ACAGCTTTCT CGGGGAGACC TTCAGGGACA AGCTGAGGCT GTACATTGAG 1020 25 CAGAAAACAA ATTTGCCGGC CCTGAACCGC TTCTGTCACG CTGCCCTGAA GGCCGTCATT 1080 CCAGACAGCA CCGAGCAGTC GGATGTGAGG TTCAGCAGTG CCGTGTAG 1128

(71) INFORMATION FOR SEO ID NO:70:

- (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 375 amino acids

  - (B) TYPE: amino acid
  - (C) STRANDEDNESS:
  - (D) TOPOLOGY: not relevant

|    | (i         | i) M       | OLEC       | ULE        | TYPE       | : pr       | otei       | n          |            |            |            |            |            |            |            |            |
|----|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    | (x         | i) s       | EQUE       | NCE        | DESC       | RIPT       | ION:       | SEQ        | ID         | NO:7       | 0:         |            |            |            |            |            |
|    | Met<br>1   | Asp        | Val        | Thr        | Ser<br>5   | Gln        | Ala        | Arg        | Gly        | Val        | Gly        | Leu        | Glu        | Met        | Tyr<br>15  | Pro        |
| 5  | Gly        | Thr        | Ala        | Gln<br>20  | Pro        | Ala        | Ala        | Pro        | Asn<br>25  | Thr        | Thr        | Ser        | Pro        | Glu<br>30  | Leu        | Asn        |
|    | Leu        | Ser        | His<br>35  | Pro        | Leu        | Leu        | Gly        | Thr<br>40  | Ala        | Leu        | Ala        | Asn        | Gly<br>45  | Thr        | Gly        | Glu        |
| 10 | Leu        | Ser<br>50  | Glu        | His        | Gln        | Gln        | Tyr<br>55  | Val        | Ile        | Gly        | Leu        | Phe<br>60  | Leu        | Ser        | Cys        | Leu        |
|    | Tyr<br>65  | Thr        | Ile        | Phe        | Leu        | Phe<br>70  | Pro        | Ile        | Gly        | Phe        | Val<br>75  | Gly        | Asn        | Ile        | Leu        | Ile<br>80  |
|    | Leu        | Val        | Val        | Asn        | Ile<br>85  | Ser        | Phe        | Arg        | Glu        | Lys<br>90  | Met        | Thr        | Ile        | Pro        | Asp<br>95  | Leu        |
| 15 | Tyr        | Phe        | Ile        | Asn<br>100 | Leu        | Ala        | Val        | Ala        | Asp<br>105 | Leu        | Ile        | Leu        | Val        | Ala<br>110 | Asp        | Ser        |
|    | Leu        | Ile        | Glu<br>115 | Val        | Phe        | Asn        | Leu        | His<br>120 | Glu        | Arg        | Tyr        | Tyr        | Asp<br>125 | Ile        | Ala        | Val        |
| 20 | Leu        | Cys<br>130 | Thr        | Phe        | Met        | Ser        | Leu<br>135 | Phe        | Leu        | Gln        | Val        | Asn<br>140 | Met        | Tyr        | Ser        | Ser        |
|    | Val<br>145 | Phe        | Phe        | Leu        | Thr        | Trp<br>150 | Met        | Ser        | Phe        | Asp        | Arg<br>155 | Tyr        | Ile        | Ala        | Leu        | Ala<br>160 |
|    | Arg        | Ala        | Met        | Arg        | Cys<br>165 | Ser        | Leu        | Phe        | Arg        | Thr<br>170 | Lys        | His        | His        | Ala        | Arg<br>175 | Leu        |
| 25 | Ser        | Cys        | Gly        | Leu<br>180 | Ile        | Trp        | Met        | Ala        | Ser<br>185 | Val        | Ser        | Ala        | Thr        | Leu<br>190 | Val        | Pro        |
|    | Phe        | Thr        | Ala<br>195 | Val        | His        | Leu        | Gln        | His<br>200 | Thr        | Asp        | Glu        | Ala        | Cys<br>205 | Phe        | Cys        | Phe        |
| 30 | Ala        | Asp<br>210 | Val        | Arg        | Glu        | Val        | Gln<br>215 | Trp        | Leu        | Glu        | Val        | Thr<br>220 | Leu        | Gly        | Phe        | Ile        |
|    | Val<br>225 | Pro        | Phe        | Ala        | Ile        | Ile<br>230 | Gly        | Leu        | Cys        | Tyr        | Ser<br>235 | Leu        | Ile        | Val        | Arg        | Val<br>240 |
|    | Leu        | Val        | Arg        | Ala        | His<br>245 | Arg        | His        | Arg        |            | Leu<br>250 | Arg        | Pro        | Arg        | Arg        | Gln<br>255 | Lys        |
| 35 | Ala        | Leu        | Arg        | Met<br>260 | Ile        | Leu        | Ala        |            | Val<br>265 | Leu        | Val        | Phe        | Phe        | Val<br>270 | Cys        | Trp        |

|    |                                                                                                                                                                                                     | Leu        | Pro               | Glu<br>275 | Asn          | Val                | Phe                  | Ile                         | Ser<br>280 | Val        | His        | Leu        | Leu | Gln<br>285 | Arg        | Thr        | Gln        |    |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------|------------|--------------|--------------------|----------------------|-----------------------------|------------|------------|------------|------------|-----|------------|------------|------------|------------|----|
|    |                                                                                                                                                                                                     | Pro        | Gly<br>290        | Ala        | Ala          | Pro                | Cys                  | Lys<br>295                  | Gln        | Ser        | Phe        | Arg        | His | Ala        | His        | Pro        | Leu        |    |
| 5  |                                                                                                                                                                                                     | Thr<br>305 | Gly               | His        | Ile          | Val                | Asn<br>310           | Leu                         | Thr        | Ala        | Phe        | Ser<br>315 | Asn | Ser        | Сув        | Leu        | Asn<br>320 |    |
|    |                                                                                                                                                                                                     | Pro        | Leu               | Ile        | Tyr          | Ser<br>325         | Phe                  | Leu                         | Gly        | Glu        | Thr<br>330 | Phe        | Arg | Asp        | Lys        | Leu<br>335 | Arg        |    |
| 10 |                                                                                                                                                                                                     | Leu        | Tyr               | Ile        | Glu<br>340   | Gln                | Lys                  | Thr                         | Asn        | Leu<br>345 | Pro        | Ala        | Leu | Asn        | Arg<br>350 | Phe        | Cys        |    |
|    |                                                                                                                                                                                                     | His        | Ala               | Ala<br>355 | Leu          | Lys                | Ala                  | Val                         | Ile<br>360 | Pro        | Asp        | Ser        | Thr | Glu<br>365 | Gln        | Ser        | Asp        |    |
|    | Val Arg Phe Ser Ser Ala Val 370 375  (72) INFORMATION FOR SEQ ID NO:71:                                                                                                                             |            |                   |            |              |                    |                      |                             |            |            |            |            |     |            |            |            |            |    |
| 15 | (72)                                                                                                                                                                                                | INFO       | ORMAT             | rion       | FOR          | SEQ                | ID N                 | 10:73                       | .:         |            |            |            |     |            |            |            |            |    |
| 20 | (72) INFORMATION FOR SEQ ID NO:71:  (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear  (ii) MOLECULE TYPE: DNA (genomic) |            |                   |            |              |                    |                      |                             |            |            |            |            |     |            |            |            |            |    |
|    |                                                                                                                                                                                                     | (ii        | .) MC             | DLECU      | LE 1         | YPE:               | DNA                  | ı (ge                       | nomi       | .c)        |            |            |     |            |            |            |            |    |
|    |                                                                                                                                                                                                     | (xi        | .) SE             | EQUE       | ICE I        | ESCR               | IPTI                 | ON:                         | SEQ        | ID N       | 10:71      | :          |     |            |            |            |            |    |
|    | ACAGA                                                                                                                                                                                               | ATTC       | C TO              | TGT        | GTTT         | TAC                | CGCC                 | CAG                         |            |            |            |            |     |            |            |            |            | 30 |
|    | (73)                                                                                                                                                                                                | INFO       | RMAI              | CION       | FOR          | SEQ                | ID N                 | 10:72                       | :          |            |            |            |     |            |            |            |            |    |
| 25 |                                                                                                                                                                                                     | (i)        | (A)<br>(B)<br>(C) | TYP<br>STR | GTH:         | 30<br>ucle<br>DNES | base<br>ic a<br>S: s | ingl                        | rs         |            |            |            |     |            |            |            |            |    |
| 30 |                                                                                                                                                                                                     | (ii        | ) MC              | LECU       | LE T         | YPE:               | DNA                  | (ge                         | nomi       | c)         |            |            |     |            |            |            |            |    |
|    |                                                                                                                                                                                                     | (xi        | ) SE              | QUEN       | CE D         | ESCR               | IPTI                 | ON:                         | SEQ        | ID N       | 0:72       | :          |     |            |            |            |            |    |
|    | CTCGG                                                                                                                                                                                               | ATCC       | A GG              | CAGA       | AGAG         | TCG                | CCTA                 | TGG                         |            |            |            |            |     |            |            |            |            | 30 |
|    | (74)                                                                                                                                                                                                | INFO       | RMAT              | ON         | FOR          | SEQ                | ID N                 | 0:73                        | :          |            |            |            |     |            |            |            |            |    |
| 35 |                                                                                                                                                                                                     | (i)        | (A)<br>(B)        | LEN<br>TYP | GTH:<br>E: n | 113<br>ucle        | 7 ba<br>ic a         | STIC<br>se p<br>cid<br>ingl | airs       |            |            |            |     |            |            |            |            |    |

(D) TOPOLOGY: linear

25

| 11) | MOLECULE | TYPE. | DMZ | (genomic) |
|-----|----------|-------|-----|-----------|

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:73:

|    | ATGGACCTGG  | GGAAACCAAT  | GAAAAGCGTG  | CTGGTGGTGG | CTCTCCTTGT | CATTTTCCAG | 60   |
|----|-------------|-------------|-------------|------------|------------|------------|------|
| 5  | GTATGCCTGT  | GTCAAGATGA  | GGTCACGGAC  | GATTACATCG | GAGACAACAC | CACAGTGGAC | 120  |
|    | TACACTTTGT  | TCGAGTCTTT  | GTGCTCCAAG  | AAGGACGTGC | GGAACTTTAA | AGCCTGGTTC | 180  |
|    | CTCCCTATCA  | TGTACTCCAT  | CATTTGTTTC  | GTGGGCCTAC | TGGGCAATGG | GCTGGTCGTG | 240  |
|    | TTGACCTATA  | TCTATTTCAA  | GAGGCTCAAG  | ACCATGACCG | ATACCTACCT | GCTCAACCTG | 300  |
|    | GCGGTGGCAG  | ACATCCTCTT  | CCTCCTGACC  | CTTCCCTTCT | GGGCCTACAG | CGCGGCCAAG | 360  |
| 10 | TCCTGGGTCT  | TCGGTGTCCA  | CTTTTGCAAG  | CTCATCTTTG | CCATCTACAA | GATGAGCTTC | 420  |
|    | TTCAGTGGCA  | TGCTCCTACT  | TCTTTGCATC  | AGCATTGACC | GCTACGTGGC | CATCGTCCAG | 480  |
|    | GCTGTCTCAG  | CTCACCGCCA  | CCGTGCCCGC  | GTCCTTCTCA | TCAGCAAGCT | GTCCTGTGTG | 540  |
|    | GGCATCTGGA  | TACTAGCCAC  | AGTGCTCTCC  | ATCCCAGAGC | TCCTGTACAG | TGACCTCCAG | 600  |
|    | AGGAGCAGCA  | GTGAGCAAGC  | GATGCGATGC  | TCTCTCATCA | CAGAGCATGT | GGAGGCCTTT | 660  |
| 15 | ATCACCATCC  | AGGTGGCCCA  | GATGGTGATC  | GGCTTTCTGG | TCCCCCTGCT | GGCCATGAGC | 720  |
|    | TTCTGTTACC  | TTGTCATCAT  | CCGCACCCTG  | CTCCAGGCAC | GCAACTTTGA | GCGCAACAAG | 780  |
|    | GCCATCAAGG  | TGATCATCGC  | TGTGGTCGTG  | GTCTTCATAG | TCTTCCAGCT | GCCCTACAAT | 840  |
|    | GGGGTGGTCC  | TGGCCCAGAC  | GGTGGCCAAC  | TTCAACATCA | CCAGTAGCAC | CTGTGAGCTC | 900  |
|    | AGTAAGCAAC  | TCAACATCGC  | CTACGACGTC  | ACCTACAGCC | TGGCCTGCGT | CCGCTGCTGC | 960  |
| 20 | GTCAACCCTT  | TCTTGTACGC  | CTTCATCGGC  | GTCAAGTTCC | GCAACGATCT | CTTCAAGCTC | 1020 |
|    | TTCAAGGACC  | TGGGCTGCCT  | CAGCCAGGAG  | CAGCTCCGGC | AGTGGTCTTC | CTGTCGGCAC | 1080 |
|    | ATCCGGCGCT  | CCTCCATGAG  | TGTGGAGGCC  | GAGACCACCA | CCACCTTCTC | CCCATAG    | 1137 |
|    | (75) INFORM | ATION FOR S | EQ ID NO:74 | .:         |            |            |      |

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 378 amino acids

- (B) TYPE: amino acid (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein
- 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:74:

|    | Met Asp<br>1   | Leu Gly        | Lys<br>5   | Pro        | Met        | Lys        | Ser        | Val        | Leu        | Val        | Val        | Ala        | Leu<br>15  | Leu        |
|----|----------------|----------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    | Val Ile        | Phe Gln<br>20  | Val        | Cys        | Leu        | Cys        | Cln<br>25  | Asp        | Glu        | Val        | Thr        | Asp<br>30  | Asp        | Tyr        |
| 5  | Ile Gly        | Asp Asn<br>35  | Thr        | Thr        | Val        | Asp<br>40  | Tyr        | Thr        | Leu        | Phe        | Glu<br>45  | Ser        | Leu        | Cys        |
|    | Ser Lys<br>50  | Lys Asp        | Val        | Arg        | Asn<br>55  | Phe        | Lys        | Ala        | Trp        | Phe<br>60  | Leu        | Pro        | Ile        | Met        |
| 10 | Tyr Ser<br>65  | Ile Ile        | Cys        | Phe<br>70  | Val        | Gly        | Leu        | Leu        | Gly<br>75  | Asn        | Gly        | Leu        | Val        | Val<br>80  |
|    | Leu Thr        | Tyr Ile        | Tyr<br>85  | Phe        | Lys        | Arg        | Leu        | Lys<br>90  | Thr        | Met        | Thr        | Asp        | Thr<br>95  | Tyr        |
|    | Leu Leu        | Asn Leu<br>100 | Ala        | Val        | Ala        | Asp        | Ile<br>105 | Leu        | Phe        | Leu        | Leu        | Thr<br>110 | Leu        | Pro        |
| 15 | Phe Trp        | Ala Tyr<br>115 | Ser        | Ala        | Ala        | Lys<br>120 | Ser        | Trp        | Val        | Phe        | Gly<br>125 | Val        | His        | Phe        |
|    | Cys Lys<br>130 | Leu Ile        | Phe        |            | Ile<br>135 | Tyr        | Lys        | Met        | Ser        | Phe<br>140 | Phe        | Ser        | Gly        | Met        |
| 20 | Leu Leu<br>145 | Leu Leu        |            | Ile<br>150 | Ser        | Ile        | Asp        | Arg        | Tyr<br>155 | Val        | Ala        | Ile        | Val        | Gln<br>160 |
|    | Ala Val        | Ser Ala        | His<br>165 | Arg        | His        | Arg        | Ala        | Arg<br>170 | Val        | Leu        | Leu        | Ile        | Ser<br>175 | Lys        |
|    | Leu Ser        | Cys Val<br>180 | Gly        | Ile        | Trp        | Ile        | Leu<br>185 | Ala        | Thr        | Val        |            | Ser<br>190 | Ile        | Pro        |
| 25 | Glu Leu        | Leu Tyr<br>195 | Ser.       | Asp        |            | Gln<br>200 | Arg        | Ser        | Ser        | Ser        | Glu<br>205 | Gln        | Ala        | Met        |
|    | Arg Cys<br>210 | Ser Leu        | Ile        |            | Glu<br>215 | His        | Val        | Glu        | Ala        | Phe<br>220 | Ile        | Thr        | Ile        | Gln        |
| 30 | Val Ala<br>225 | Gln Met        |            | Ile<br>230 | Gly        | Phe        | Leu        | Val        | Pro<br>235 | Leu        | Leu        | Ala        | Met        | Ser<br>240 |
|    | Phe Cys        | Tyr Leu        | Val :      | Ile        | Ile        | Arg        |            | Leu<br>250 | Leu        | Gln        | Ala        |            | Asn<br>255 | Phe        |
|    | Glu Arg        | Asn Lys<br>260 | Ala        | Ile        | Lys        |            | Ile<br>265 | Ile        | Ala        | Val        |            | Val<br>270 | Val        | Phe        |
| 35 | Ile Val        | Phe Gln<br>275 | Leu :      | Pro        |            | Asn<br>280 | Gly        | Val        | Val        | Leu        | Ala<br>285 | Gln        | Thr        | Val        |

|    | Ala Asn Phe Asn Ile Thr Ser Ser Thr Cys Glu Leu Ser Lys Gln Leu                                                                                                  |            |                          |                          |                                      |                             |                              |                     |            |            |            |            |            |            |            |            |            |    |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------|--------------------------|--------------------------------------|-----------------------------|------------------------------|---------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|----|
|    |                                                                                                                                                                  | Ala        | Asn<br>290               | Phe                      | Asn                                  | Ile                         | Thr                          | Ser<br>295          | Ser        | Thr        | Cys        | Glu        | Leu<br>300 | Ser        | Lys        | Gln        | Leu        |    |
|    |                                                                                                                                                                  | Asn<br>305 | Ile                      | Ala                      | Tyr                                  | Asp                         | Val<br>310                   | Thr                 | Tyr        | Ser        | Leu        | Ala<br>315 | Cys        | Val        | Arg        | Cys        | Cys<br>320 |    |
| 5  |                                                                                                                                                                  | Val        | Asn                      | Pro                      | Phe                                  | Leu<br>325                  | Tyr                          | Ala                 | Phe        | Ile        | Gly<br>330 | Val        | Lys        | Phe        | Arg        | Asn<br>335 | Asp        |    |
|    |                                                                                                                                                                  | Leu        | Phe                      | Lys                      | Leu<br>340                           | Phe                         | Lys                          | Asp                 | Leu        | Gly<br>345 | Cys        | Leu        | Ser        | Gln        | Glu<br>350 | Gln        | Leu        |    |
| 10 |                                                                                                                                                                  | Arg        | Gln                      | Trp<br>355               | Ser                                  | Ser                         | Cys                          | Arg                 | His<br>360 | Ile        | Arg        | Arg        | Ser        | Ser<br>365 | Met        | Ser        | Val        |    |
|    |                                                                                                                                                                  | Glu        | Ala<br>370               | Glu                      | Thr                                  | Thr                         | Thr                          | Thr<br>375          | Phe        | Ser        | Pro        |            |            |            |            |            |            |    |
|    | (76)                                                                                                                                                             | INFO       | RMAT                     | CION                     | FOR                                  | SEQ                         | ID I                         | 10:75               | 5:         |            |            |            |            |            |            |            |            |    |
| 15 | (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDENNESS: single (D) TOPOLOGY: linear  (ii) MOLECULE TYPE: DNA (genomic) |            |                          |                          |                                      |                             |                              |                     |            |            |            |            |            |            |            |            |            |    |
|    |                                                                                                                                                                  |            |                          |                          |                                      |                             |                              |                     |            |            |            |            |            |            |            |            |            |    |
| 20 | ' <del>'</del>                                                                                                                                                   |            |                          |                          |                                      |                             |                              |                     |            |            |            |            |            |            |            |            |            |    |
|    | CTGG                                                                                                                                                             | AATTC      | A CC                     | TGG                      | CCAC                                 | CAC                         | CAAT                         | GGA                 | TA         |            |            |            |            |            |            |            |            | 32 |
|    | (77)                                                                                                                                                             | INFO       | RMAT                     | ION                      | FOR                                  | SEQ                         | ID N                         | IO:76               | ; :        |            |            |            |            |            |            |            |            |    |
| 25 |                                                                                                                                                                  |            | (A)<br>(B)<br>(C)<br>(D) | TYI<br>STF               | CE CH<br>IGTH:<br>PE: IN<br>RANDE    | 30<br>ucle<br>DNES          | base<br>ic a<br>S: s<br>inea | pai<br>cid<br>ingl  | rs<br>.e   |            |            |            |            |            |            |            |            |    |
|    |                                                                                                                                                                  | (ii        | ) MC                     | LECU                     | LE T                                 | YPE:                        | DNA                          | ı (ge               | nomi       | c)         |            |            |            |            |            |            |            |    |
|    |                                                                                                                                                                  | (xi        | ) SE                     | QUEN                     | ICE E                                | ESCR                        | IPTI                         | ON:                 | SEQ        | ID N       | 0:76       | :          |            |            |            |            |            |    |
| 30 | CTCG                                                                                                                                                             | ATCC       | T GC                     | AAAG                     | TTTG                                 | TCA                         | TACE                         | GTT                 |            |            |            |            |            |            |            |            |            | 30 |
|    | (78)                                                                                                                                                             | INFO       | RMAT                     | ION                      | FOR                                  | SEQ                         | ID N                         | 10:77               | ':         |            |            |            |            |            |            |            |            |    |
| 35 |                                                                                                                                                                  |            | (A)<br>(B)<br>(C)<br>(D) | LEN<br>TYP<br>STR<br>TOP | E CH<br>GTH:<br>E: n<br>ANDE<br>OLOG | 108<br>ucle<br>DNES<br>Y: 1 | ic a<br>s:<br>s:s            | se p<br>cid<br>ingl | airs<br>e  |            |            |            |            |            |            |            |            |    |
|    |                                                                                                                                                                  | ,          | ,                        | ~~~                      | I                                    | ** 10:                      | DMP                          | . 196               | · · · OHIL | ~ /        |            |            |            |            |            |            |            |    |

60

|    | (xi)       | SEQUENCE DI | SCRIPTION: | SEQ ID NO: | 77:        |            |      |
|----|------------|-------------|------------|------------|------------|------------|------|
|    | ATGGATATAC | AAATGGCAAA  | CAATTTTACT | CCGCCCTCTG | CAACTCCTCA | GGGAAATGAC | 60   |
|    | TGTGACCTCT | ATGCACATCA  | CAGCACGGCC | AGGATAGTAA | TGCCTCTGCA | TTACAGCCTC | 120  |
|    | GTCTTCATCA | TTGGGCTCGT  | GGGAAACTTA | CTAGCCTTGG | TCGTCATTGT | TCAAAACAGG | 180  |
| 5  | AAAAAAATCA | ACTCTACCAC  | CCTCTATTCA | ACAAATTTGG | TGATTTCTGA | TATACTTTTT | 240  |
|    | ACCACGGCTT | TGCCTACACG  | AATAGCCTAC | TATGCAATGG | GCTTTGACTG | GAGAATCGGA | 300  |
|    | GATGCCTTGT | GTAGGATAAC  | TGCGCTAGTG | TTTTACATCA | ACACATATGC | AGGTGTGAAC | 360  |
|    | TTTATGACCT | GCCTGAGTAT  | TGACCGCTTC | ATTGCTGTGG | TGCACCCTCT | ACGCTACAAC | 420  |
|    | AAGATAAAAA | GGATTGAACA  | TGCAAAAGGC | GTGTGCATAT | TTGTCTGGAT | TCTAGTATTT | 480  |
| 10 | GCTCAGACAC | TCCCACTCCT  | CATCAACCCT | ATGTCAAAGC | AGGAGGCTGA | AAGGATTACA | 540  |
|    | TGCATGGAGT | ATCCAAACTT  | TGAAGAAACT | AAATCTCTTC | CCTGGATTCT | GCTTGGGGCA | 600  |
|    | TGTTTCATAG | GATATGTACT  | TCCACTTATA | ATCATTCTCA | TCTGCTATTC | TCAGATCTGC | 660  |
|    | TGCAAACTCT | TCAGAACTGC  | CAAACAAAAC | CCACTCACTG | AGAAATCTGG | TGTAAACAAA | 720  |
|    | AAGGCTCTCA | ACACAATTAT  | TCTTATTATT | GTTGTGTTTG | TTCTCTGTTT | CACACCTTAC | 780  |
| 15 | CATGTTGCAA | TTATTCAACA  | TATGATTAAG | AAGCTTCGTT | TCTCTAATTT | CCTGGAATGT | 840  |
|    | AGCCAAAGAC | ATTCGTTCCA  | GATTTCTCTG | CACTTTACAG | TATGCCTGAT | GAACTTCAAT | 900  |
|    | TGCTGCATGG | ACCCTTTTAT  | CTACTTCTTT | GCATGTAAAG | GGTATAAGAG | AAAGGTTATG | 960  |
|    | AGGATGCTGA | AACGGCAAGT  | CAGTGTATCG | ATTTCTAGTG | CTGTGAAGTC | AGCCCCTGAA | 1020 |

GAAAATTCAC GTGAAATGAC AGAAACGCAG ATGATGATAC ATTCCAAGTC TTCAAATGGA 1080

1086

(79) INFORMATION FOR SEQ ID NO:78:

20 aagtga

25

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 361 amino acids (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:78:

Met Asp Ile Gln Met Ala Asn Asn Phe Thr Pro Pro Ser Ala Thr Pro 30 1 5 10

|    | Gln        | Gly        | Asn        | Asp<br>20  | Cys        | Asp        | Leu        | Tyr        | Ala<br>25  | His        | His        | Ser        | Thr        | Ala<br>30  | Arg        | Ile        |
|----|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    | Val        | Met        | Pro<br>35  | Leu        | His        | Tyr        | Ser        | Leu<br>40  | Val        | Phe        | Ile        | Ile        | Gly<br>45  | Leu        | Val        | Gly        |
| 5  | Asn        | Leu<br>50  | Leu        | Ala        | Leu        | Val        | Val<br>55  | Ile        | Val        | Gln        | Asn        | Arg<br>60  | Lys        | Lys        | Ile        | Asn        |
|    | Ser<br>65  | Thr        | Thr        | Leu        | Tyr        | Ser<br>70  | Thr        | Asn        | Leu        | Val        | Ile<br>75  | Ser        | Asp        | Ile        | Leu        | Phe<br>80  |
| 10 | Thr        | Thr        | Ala        | Leu        | Pro<br>85  | Thr        | Arg        | Ile        | Ala        | Tyr<br>90  | Tyr        | Ala        | Met        | Gly        | Phe<br>95  | Asp        |
|    | Trp        | Arg        | Ile        | Gly<br>100 | Asp        | Ala        | Leu        | Cys        | Arg<br>105 | Ile        | Thr        | Ala        | Leu        | Val<br>110 | Phe        | Tyr        |
|    | Ile        | Asn        | Thr<br>115 | Tyr        | Ala        | Gly        | Val        | Asn<br>120 | Phe        | Met        | Thr        | Сув        | Leu<br>125 | Ser        | Ile        | Asp        |
| 15 | Arg        | Phe<br>130 | Ile        | Ala        | Val        | Val        | His<br>135 | Pro        | Leu        | Arg        | Tyr        | Asn<br>140 | Lys        | Ile        | Lys        | Arg        |
|    | Ile<br>145 | Glu        | His        | Ala        | Lys        | Gly<br>150 | Val        | Cys        | Ile        | Phe        | Val<br>155 | Trp        | Ile        | Leu        | Val        | Phe<br>160 |
| 20 | Ala        | Gln        | Thr        | Leu        | Pro<br>165 | Leu        | Leu        | Ile        | Asn        | Pro<br>170 | Met        | Ser        | Lys        | Gln        | Glu<br>175 | Ala        |
|    | Glu        | Arg        | Ile        | Thr<br>180 | Cys        | Met        | Glu        | Tyr        | Pro<br>185 | Asn        | Phe        | Glu        | Glu        | Thr<br>190 | Lys        | Ser        |
|    | Leu        | Pro        | Trp<br>195 | Ile        | Leu        | Leu        | Gly        | Ala<br>200 | Cys        | Phe        | Ile        | Gly        | Tyr<br>205 | Val        | Leu        | Pro        |
| 25 | Leu        | Ile<br>210 | Ile        | Ile        | Leu        | Ile        | Cys<br>215 | Tyr        | Ser        | Gln        | Ile        | Cys<br>220 | Cys        | Lys        | Leu        | Phe        |
|    | Arg<br>225 | Thr        | Ala        | Lys        | Gln        | Asn<br>230 | Pro        | Leu        | Thr        | Glu        | Lys<br>235 | Ser        | Gly        | Val        | Asn        | Lys<br>240 |
| 30 | Lys        | Ala        | Leu        | Asn        | Thr<br>245 | Ile        | Ile        | Leu        | Ile        | Ile<br>250 | Val        | Val        | Phe        | Val        | Leu<br>255 | Cys        |
|    | Phe        | Thr        | Pro        | Tyr<br>260 | His        | Val        | Ala        | Ile        | Ile<br>265 | Gln        | His        | Met        | Ile        | Lys<br>270 | Lys        | Leu        |
|    | Arg        | Phe        | Ser<br>275 | Asn        | Phe        | Leu        | Glu        | Cys<br>280 | Ser        | Gln        | Arg        | His        | Ser<br>285 | Phe        | Gln        | Ile        |
| 35 | Ser        | Leu<br>290 | His        | Phe        | Thr        | Val        | Cys<br>295 | Leu        | Met        | Asn        | Phe        | Asn<br>300 | Cys        | Cys        | Met        | Asp        |
|    | Pro        | Phe        | Ile        | Tyr        | Phe        | Phe        | Ala        | Cys        | Lys        | Gly        | Tyr        | Lys        | Arg        | Lys        | Val        | Met        |

|    |                                                                                                                                                                  | 305  |                   |                   |                                      |                     | 310                  |                     |            |            |      |      |       |       |            |       | 320 |    |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------|-------------------|--------------------------------------|---------------------|----------------------|---------------------|------------|------------|------|------|-------|-------|------------|-------|-----|----|
|    |                                                                                                                                                                  | Ara  | Met               | Len               | Lys                                  | Ara                 | Gln                  | Val.                | Car        | 179.1      | Cor  |      | Com   |       | 77-        | **- 3 |     |    |
|    |                                                                                                                                                                  |      | 1100              | Dou               | 2,5                                  | 325                 | 0211                 | val                 | 561        | vai        | 330  | 116  | ser   | ser   | Ala        | 335   | ьуs |    |
| 5  |                                                                                                                                                                  | Ser  | Ala               | Pro               | Glu<br>340                           | Glu                 | Asn                  | Ser                 | Arg        | Glu<br>345 | Met  | Thr  | Glu   | Thr   | Gln<br>350 | Met   | Met |    |
|    |                                                                                                                                                                  | Ile  | His               | Ser<br>355        | Lys                                  | Ser                 | Ser                  | Asn                 | Gly<br>360 | Lys        |      |      |       |       |            |       |     |    |
|    | (80)                                                                                                                                                             | INFO | ORMA!             | rion              | FOR                                  | SEQ                 | ID N                 | 10:75               | €:         |            |      |      |       |       |            |       |     |    |
| 10 |                                                                                                                                                                  | (i)  | (A)<br>(B)<br>(C) | LEN<br>TYI<br>STI | CE CH<br>IGTH:<br>PE: r<br>RANDE     | 31<br>ucle          | base<br>ic a<br>S: s | pai<br>cid<br>ingl  | rs         |            |      |      |       |       |            |       |     |    |
|    |                                                                                                                                                                  | (ii  | .) MC             | DLECU             | ILE T                                | YPE:                | DNA                  | (ge                 | enomi      | .c)        |      |      |       |       |            |       |     |    |
| 15 |                                                                                                                                                                  | ix)  | .) SI             | EQUEN             | ICE I                                | ESCR                | IPTI                 | ON:                 | SEQ        | ID N       | O:79 | ) :  |       |       |            |       |     |    |
|    | CTGG                                                                                                                                                             | ATTO | T C               | TGCT              | CATO                                 | CAG                 | CCAT                 | GCG                 | G          |            |      |      |       |       |            |       |     | 31 |
|    | (81)                                                                                                                                                             | INFO | RMAT              | MOI               | FOR                                  | SEQ                 | ID N                 | 0:80                | ١:         |            |      |      |       |       |            |       |     |    |
| 20 | (81) INFORMATION FOR SEC ID NO:80:  (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear |      |                   |                   |                                      |                     |                      |                     |            |            |      |      |       |       |            |       |     |    |
|    |                                                                                                                                                                  | (ii  | ) MC              | LECU              | LE T                                 | YPE:                | DNA                  | (ge                 | nomi       | c)         |      |      |       |       |            |       |     |    |
|    |                                                                                                                                                                  | (xi  | ) SE              | QUEN              | CE D                                 | ESCR                | IPTI                 | ON:                 | SEQ        | ID N       | 0:80 | :    |       |       |            |       |     |    |
| 25 | CCTGG                                                                                                                                                            | ATCC | C CA              | cccc              | TACT                                 | GGG                 | GCCT                 | CAG                 |            |            |      |      |       |       |            |       |     | 30 |
|    | (82)                                                                                                                                                             | INFO | RMAT              | ION               | FOR                                  | SEQ                 | ID N                 | 0:81                | :          |            |      |      |       |       |            |       |     |    |
| 30 |                                                                                                                                                                  | (i)  | (A)<br>(B)<br>(C) | LEN<br>TYP<br>STR | E CH<br>GTH:<br>E: n<br>ANDE<br>OLOG | 144<br>ucle<br>DNES | 6 ba<br>ic a<br>S: s | se p<br>cid<br>ingl | airs       |            |      |      |       |       |            |       |     |    |
|    |                                                                                                                                                                  | (ii  | ) MO              | LECU              | LE T                                 | YPE:                | DNA                  | (ge                 | nomi       | c)         |      |      |       |       |            |       |     |    |
|    |                                                                                                                                                                  | (xi  | ) SE              | QUEN              | CE D                                 | ESCR                | IPTI                 | ON:                 | SEQ        | ID N       | 0:81 | :    |       |       |            |       |     |    |
|    | ATGCG                                                                                                                                                            | GTGG | C TG              | TGGC              | CCCT                                 | GGC                 | TGTC                 | TCT                 | CTTG       | CTGT       | ga T | TTTG | GCTG' | T GG  | GGCT.      | AAGC  |     | 60 |
| 35 | AGGGT                                                                                                                                                            | CTCT | G GG              | GGTG              | cccc                                 | CCT                 | GCAC                 | CTG                 | GGCA       | GGCA       | CA G | AGCC | GAGA  | c cc. | AGGA       | GCAG  | 1   | 20 |

|    | CAGAGCCGAT | CCAAGAGGGG | CACCGAGGAT | GAGGAGGCCA | AGGGCGTGCA | GCAGTATGTG | 180  |
|----|------------|------------|------------|------------|------------|------------|------|
|    | CCTGAGGAGT | GGGCGGAGTA | CCCCCGGCCC | ATTCACCCTG | CTGGCCTGCA | GCCAACCAAG | 240  |
|    | CCCTTGGTGG | CCACCAGCCC | TAACCCCGAC | AAGGATGGGG | GCACCCCAGA | CAGTGGGCAG | 300  |
|    | GAACTGAGGG | GCAATCTGAC | AGGGGCACCA | GGGCAGAGGC | TACAGATCCA | GAACCCCCTG | 360  |
| 5  | TATCCGGTGA | CCGAGAGCTC | CTACAGTGCC | TATGCCATCA | TGCTTCTGGC | GCTGGTGGTG | 420  |
|    | TTTGCGGTGG | GCATTGTGGG | CAACCTGTCG | GTCATGTGCA | TCGTGTGGCA | CAGCTACTAC | 480  |
|    | CTGAAGAGCG | CCTGGAACTC | CATCCTTGCC | AGCCTGGCCC | TCTGGGATTT | TCTGGTCCTC | 540  |
|    | TTTTTCTGCC | TCCCTATTGT | CATCTTCAAC | GAGATCACCA | AGCAGAGGCT | ACTGGGTGAC | 600  |
|    | GTTTCTTGTC | GTGCCGTGCC | CTTCATGGAG | GTCTCCTCTC | TGGGAGTCAC | GACTTTCAGC | 660  |
| 10 | CTCTGTGCCC | TGGGCATTGA | CCGCTTCCAC | GTGGCCACCA | GCACCCTGCC | CAAGGTGAGG | 720  |
|    | CCCATCGAGC | GGTGCCAATC | CATCCTGGCC | AAGTTGGCTG | TCATCTGGGT | GGGCTCCATG | 780  |
|    | ACGCTGGCTG | TGCCTGAGCT | CCTGCTGTGG | CAGCTGGCAC | AGGAGCCTGC | CCCCACCATG | 840  |
|    | GGCACCCTGG | ACTCATGCAT | CATGAAACCC | TCAGCCAGCC | TGCCCGAGTC | CCTGTATTCA | 900  |
|    | CTGGTGATGA | CCTACCAGAA | CGCCCGCATG | TGGTGGTACT | TTGGCTGCTA | CTTCTGCCTG | 960  |
| 15 | CCCATCCTCT | TCACAGTCAC | CTGCCAGCTG | GTGACATGGC | GGGTGCGAGG | CCCTCCAGGG | 1020 |
|    | AGGAAGTCAG | AGTGCAGGGC | CAGCAAGCAC | GAGCAGTGTG | AGAGCCAGCT | CAACAGCACC | 1080 |
|    | GTGGTGGGCC | TGACCGTGGT | CTACGCCTTC | TGCACCCTCC | CAGAGAACGT | CTGCAACATC | 1140 |
|    | GTGGTGGCCT | ACCTCTCCAC | CGAGCTGACC | CGCCAGACCC | TGGACCTCCT | GGGCCTCATC | 1200 |
|    | AACCAGTTCT | CCACCTTCTT | CAAGGGCGCC | ATCACCCCAG | TGCTGCTCCT | TTGCATCTGC | 1260 |
| 20 | AGGCCGCTGG | GCCAGGCCTT | CCTGGACTGC | TGCTGCTGCT | GCTGCTGTGA | GGAGTGCGGC | 1320 |
|    | GGGGCTTCGG | AGGCCTCTGC | TGCCAATGGG | TCGGACAACA | AGCTCAAGAC | CGAGGTGTCC | 1380 |
|    | TCTTCCATCT | ACTTCCACAA | GCCCAGGGAG | TCACCCCCAC | TCCTGCCCCT | GGGCACACCT | 1440 |
|    | TGCTGA     |            |            |            |            |            | 1446 |

(83) INFORMATION FOR SEQ ID NO:82:

- 25 (i) SEQUENCE CHARACTERISTICS:
  (A) LENGTH: 481 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS:
  - (D) TOPOLOGY: not relevant
- 30 (ii) MOLECULE TYPE: protein

64

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:82: Met Arg Trp Leu Trp Pro Leu Ala Val Ser Leu Ala Val Ile Leu Ala Val Gly Leu Ser Arg Val Ser Gly Gly Ala Pro Leu His Leu Gly Arg 5 His Arg Ala Glu Thr Gln Glu Gln Gln Ser Arg Ser Lys Arg Gly Thr Glu Asp Glu Glu Ala Lys Gly Val Gln Gln Tyr Val Pro Glu Glu Trp 10 Ala Glu Tyr Pro Arg Pro Ile His Pro Ala Gly Leu Gln Pro Thr Lys 70 Pro Leu Val Ala Thr Ser Pro Asn Pro Asp Lys Asp Gly Gly Thr Pro Asp Ser Gly Gln Glu Leu Arg Gly Asn Leu Thr Gly Ala Pro Gly Gln 15 100 105 Arg Leu Gln Ile Gln Asn Pro Leu Tyr Pro Val Thr Glu Ser Ser Tyr Ser Ala Tyr Ala Ile Met Leu Leu Ala Leu Val Val Phe Ala Val Gly 20 Ile Val Gly Asn Leu Ser Val Met Cys Ile Val Trp His Ser Tyr Tyr 145 150 Leu Lys Ser Ala Trp Asn Ser Ile Leu Ala Ser Leu Ala Leu Trp Asp 170 Phe Leu Val Leu Phe Phe Cys Leu Pro Ile Val Ile Phe Asn Glu Ile 25 185 190 Thr Lys Gln Arg Leu Leu Gly Asp Val Ser Cys Arg Ala Val Pro Phe Met Glu Val Ser Ser Leu Gly Val Thr Thr Phe Ser Leu Cys Ala Leu 30 Gly Ile Asp Arg Phe His Val Ala Thr Ser Thr Leu Pro Lys Val Arg 225 230 Pro Ile Glu Arg Cys Gln Ser Ile Leu Ala Lys Leu Ala Val Ile Trp 250 Val Gly Ser Met Thr Leu Ala Val Pro Glu Leu Leu Leu Trp Gln Leu 35 260 265 270

Ala Gln Glu Pro Ala Pro Thr Met Gly Thr Leu Asp Ser Cys Ile Met

65

280 275 285 Lvs Pro Ser Ala Ser Leu Pro Glu Ser Leu Tvr Ser Leu Val Met Thr 290 Tyr Gln Asn Ala Arg Met Trp Trp Tyr Phe Gly Cys Tyr Phe Cys Leu 5 310 Pro Ile Leu Phe Thr Val Thr Cys Gln Leu Val Thr Trp Arg Val Arg Gly Pro Pro Gly Arg Lys Ser Glu Cys Arg Ala Ser Lys His Glu Gln 345 Cys Glu Ser Gln Leu Asn Ser Thr Val Val Gly Leu Thr Val Val Tyr 10 360 Ala Phe Cys Thr Leu Pro Glu Asn Val Cys Asn Ile Val Val Ala Tyr 370 Leu Ser Thr Glu Leu Thr Arg Gln Thr Leu Asp Leu Leu Gly Leu Ile 15 390 395 Asn Gln Phe Ser Thr Phe Phe Lys Gly Ala Ile Thr Pro Val Leu Leu 410 Leu Cys Ile Cys Arg Pro Leu Gly Gln Ala Phe Leu Asp Cys Cys 420 425 20 Cys Cys Cys Cys Glu Glu Cys Gly Gly Ala Ser Glu Ala Ser Ala Ala 440 Asn Gly Ser Asp Asn Lys Leu Lys Thr Glu Val Ser Ser Ser Ile Tyr 450 Phe His Lys Pro Arg Glu Ser Pro Pro Leu Leu Pro Leu Gly Thr Pro 25 475 465 470 Cys (84) INFORMATION FOR SEQ ID NO:83: (i) SEQUENCE CHARACTERISTICS: 30 (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:83:

|    | (85) INFORMATION FOR SEQ ID NO:84:                                                                                             |    |
|----|--------------------------------------------------------------------------------------------------------------------------------|----|
| 5  | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: uncleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear   |    |
|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                              |    |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:84:                                                                                       |    |
|    | TCATGTATTA ATACTAGATT CT                                                                                                       | 22 |
| 10 | (86) INFORMATION FOR SEQ ID NO:85:                                                                                             |    |
| 15 | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear   |    |
|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                              |    |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:85:                                                                                       |    |
|    | TACCATGTGG AACGCGACGC CCAGCGAAGA GCCGGGGT                                                                                      | 38 |
|    | (87) INFORMATION FOR SEQ ID NO:86:                                                                                             |    |
| 20 | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 base pairs (E) TYPE: nucleic acid (C) STRANDEDMESS: single (D) TOPOLOGY: linear   |    |
| 25 | (ii) MOLECULE TYPE: DNA (genomic)                                                                                              |    |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:86:                                                                                       |    |
|    | CGGAATTCAT GTATTAATAC TAGATTCTGT CCAGGCCCG                                                                                     | 39 |
|    | (88) INFORMATION FOR SEQ ID NO:87:                                                                                             |    |
| 30 | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1101 base pairs (B) TYPE: nucleic acid (C) STRANDEDMESS: single (D) TOPOLOGY: linear |    |
|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                              |    |
| 35 | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:87:                                                                                       |    |

67

|    | ATGTGGAACG  | CGACGCCCAG | CGAAGAGCCG | GGGTTCAACC | TCACACTGGC | CGACCTGGAC | 60   |
|----|-------------|------------|------------|------------|------------|------------|------|
|    | TGGGATGCTT  | CCCCCGGCAA | CGACTCGCTG | GGCGACGAGC | TGCTGCAGCT | CTTCCCCGCG | 120  |
|    | CCGCTGCTGG  | CGGGCGTCAC | AGCCACCTGC | GTGGCACTCT | TCGTGGTGGG | TATCGCTGGC | 180  |
|    | AACCTGCTCA  | CCATGCTGGT | GGTGTCGCGC | TTCCGCGAGC | TGCGCACCAC | CACCAACCTC | 240  |
| 5  | TACCTGTCCA  | GCATGGCCTT | CTCCGATCTG | CTCATCTTCC | TCTGCATGCC | CCTGGACCTC | 300  |
|    | GTTCGCCTCT  | GGCAGTACCG | GCCCTGGAAC | TTCGGCGACC | TCCTCTGCAA | ACTCTTCCAA | 360  |
|    | TTCGTCAGTG  | AGAGCTGCAC | CTACGCCACG | GTGCTCACCA | TCACAGCGCT | GAGCGTCGAG | 420  |
|    | CGCTACTTCG  | CCATCTGCTT | CCCACTCCGG | GCCAAGGTGG | TGGTCACCAA | GGGGCGGGTG | 480  |
|    | AAGCTGGTCA  | TCTTCGTCAT | CTGGGCCGTG | GCCTTCTGCA | GCGCCGGGCC | CATCTTCGTG | 540  |
| 10 | CTAGTCGGGG  | TGGAGCACGA | GAACGGCACC | GACCCTTGGG | ACACCAACGA | GTGCCGCCCC | 600  |
|    | ACCGAGTTTG  | CGGTGCGCTC | TGGACTGCTC | ACGGTCATGG | TGTGGGTGTC | CAGCATCTTC | 660  |
|    | TTCTTCCTTC  | CTGTCTTCTG | TCTCACGGTC | CTCTACAGTC | TCATCGGCAG | GAAGCTGTGG | 720  |
|    | CGGAGGAGGC  | GCGGCGATGC | TGTCGTGGGT | GCCTCGCTCA | GGGACCAGAA | CCACAAGCAA | 780  |
|    | ACCGTGAAAA  | TGCTGGCTGT | AGTGGTGTTT | GCCTTCATCC | TCTGCTGGCT | CCCCTTCCAC | 840  |
| 15 | GTAGGGCGAT  | ATTTATTTC  | CAAATCCTTT | GAGCCTGGCT | CCTTGGAGAT | TGCTCAGATC | 900  |
|    | AGCCAGTACT  | GCAACCTCGT | GTCCTTTGTC | CTCTTCTACC | TCAGTGCTGC | CATCAACCCC | 960  |
|    | ATTCTGTACA  | ACATCATGTC | CAAGAAGTAC | CGGGTGGCAG | TGTTCAGACT | TCTGGGATTC | 1020 |
|    | GAACCCTTCT  | CCCAGAGAAA | GCTCTCCACT | CTGAAAGATG | AAAGTTCTCG | GGCCTGGACA | 1080 |
|    | GAATCTAGTA  | TTAATACATG | A          |            |            |            | 1101 |
| 20 | (OO) THEODY |            |            |            |            |            |      |

- 20 (89) INFORMATION FOR SEQ ID NO:88:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 366 amino acids
      - (B) TYPE: amino acid
      - (C) STRANDEDNESS:
- 25 (D) TOPOLOGY: not relevant
  - (ii) MOLECULE TYPE: protein
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:88:

Met Trp Asn Ala Thr Pro Ser Glu Glu Pro Gly Phe Asn Leu Thr Leu 1 5 10 15

30 Ala Asp Leu Asp Trp Asp Ala Ser Pro Gly Asn Asp Ser Leu Gly Asp  $20 \hspace{1cm} 25 \hspace{1cm} 30$ 

|    | • | Glu        | Leu        | Leu<br>35  | Gln        | Leu        | Phe        | Pro        | Ala<br>40  | Pro        | Leu        | Leu        | Ala        | Gly<br>45  | Val        | Thr        | Ala        |
|----|---|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    | • | Thr        | Cys<br>50  | Val        | Ala        | Leu        | Phe        | Val<br>55  | Val        | Gly        | Ile        | Ala        | Gly<br>60  | Asn        | Leu        | Leu        | Thr        |
| 5  |   | Met<br>65  | Leu        | Val        | Val        | Ser        | Arg<br>70  | Phe        | Arg        | Glu        | Leu        | Arg<br>75  | Thr        | Thr        | Thr        | Asn        | Leu<br>80  |
|    | • | Tyr        | Leu        | Ser        | Ser        | Met<br>85  | Ala        | Phe        | Ser        | Asp        | Leu<br>90  | Leu        | Ile        | Phe        | Leu        | Cys<br>95  | Met        |
| 10 | 1 | Pro        | Leu        | Asp        | Leu<br>100 | Val        | Arg        | Leu        | Trp        | Gln<br>105 | Tyr        | Arg        | Pro        | Trp        | Asn<br>110 | Phe        | Gly        |
|    | 1 | Asp        | Leu        | Leu<br>115 | Cys        | Lys        | Leu        | Phe        | Gln<br>120 | Phe        | Val        | Ser        | Glu        | Ser<br>125 | Cys        | Thr        | Tyr        |
|    | i | Ala        | Thr<br>130 | Val        | Leu        | Thr        | Ile        | Thr<br>135 | Ala        | Leu        | Ser        | Val        | Glu<br>140 | Arg        | Tyr        | Phe        | Ala        |
| 15 |   | Ile<br>145 | Cys        | Phe        | Pro        | Leu        | Arg<br>150 | Ala        | Lys        | Val        | Val        | Val<br>155 | Thr        | Lys        | Gly        | Arg        | Val<br>160 |
|    | I | Lys        | Leu        | Val        | Ile        | Phe<br>165 | Val        | Ile        | Trp        | Ala        | Val<br>170 | Ala        | Phe        | Cys        | Ser        | Ala<br>175 | Gly        |
| 20 | I | Pro        | Ile        | Phe        | Val<br>180 | Leu        | Val        | Gly        | Val        | Glu<br>185 | His        | Glu        | Asn        | Gly        | Thr<br>190 | Asp        | Pro        |
|    | 7 | Trp        | Asp        | Thr<br>195 | Asn        | Glu        | Cys        | Arg        | Pro<br>200 | Thr        | Glu        | Phe        | Ala        | Val<br>205 | Arg        | Ser        | Gly        |
|    | I |            | Leu<br>210 | Thr        | Val        | Met        | Val        | Trp<br>215 | Val        | Ser        | Ser        | Ile        | Phe<br>220 | Phe        | Phe        | Leu        | Pro        |
| 25 | 1 | Val<br>225 | Phe        | Cys        | Leu        | Thr        | Val<br>230 | Leu        | Tyr        | Ser        | Leu        | Ile<br>235 | Gly        | Arg        | Lys        | Leu        | Trp<br>240 |
|    | I | Arg        | Arg        | Arg        | Arg        | Gly<br>245 | Asp        | Ala        | Val        | Val        | Gly<br>250 | Ala        | Ser        | Leu        | Arg        | Asp<br>255 | Gln        |
| 30 | I | Asn        | His        | Lys        | Gln<br>260 | Thr        | Val        | Lys        | Met        | Leu<br>265 | Ala        | Val        | Val        | Val        | Phe<br>270 | Ala        | Phe        |
|    | 3 | Ile        |            | Cys<br>275 | Trp        | Leu        | Pro        |            | His<br>280 | Val        | Gly        | Arg        | Tyr        | Leu<br>285 | Phe        | Ser        | Lys        |
|    | S | Ser        | Phe<br>290 | Glu        | Pro        | Gly        |            | Leu<br>295 | Glu        | Ile        | Ala        | Gln        | Ile<br>300 | Ser        | Gln        | Tyr        | Cys        |
| 35 | 3 | Asn<br>305 | Leu        | Val        | Ser        | Phe        | Val<br>310 | Leu        | Phe        | Tyr        | Leu        | Ser<br>315 | Ala        | Ala        | Ile        | Asn        | Pro<br>320 |
|    | 1 | Ile        | Leu        | Tyr        | Asn        | Ile        | Met        | Ser        | Lys        | Lys        | Tyr        | Arg        | Val        | Ala        | Val        | Phe        | Arg        |
|    |   |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |

69

325 330 335 Leu Leu Gly Phe Glu Pro Phe Ser Gln Arg Lys Leu Ser Thr Leu Lys 345 Asp Glu Ser Ser Arg Ala Trp Thr Glu Ser Ser Ile Asn Thr 5 360 365 (90) INFORMATION FOR SEO ID NO:89: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid 10 (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (xi) SECUENCE DESCRIPTION: SEC ID NO:89: GCAAGCTTGT GCCCTCACCA AGCCATGCGA GCC 33 15 (91) INFORMATION FOR SEO ID NO:90: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single 20 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (xi) SEQUENCE DESCRIPTION: SEQ ID NO:90: CGGAATTCAG CAATGAGTTC CGACAGAAGC 3.0 (92) INFORMATION FOR SEO ID NO:91: 25 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1842 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 30 (ii) MOLECULE TYPE: DNA (genomic) (xi) SEQUENCE DESCRIPTION: SEQ ID NO:91: ATGCGAGCCC CGGGCGCGCT TCTCGCCCGC ATGTCGCGGC TACTGCTTCT GCTACTGCTC 60 AAGGTGTCTG CCTCTTCTGC CCTCGGGGTC GCCCCTGCGT CCAGAAACGA AACTTGTCTG 120 GGGGAGAGCT GTGCACCTAC AGTGATCCAG CGCCGCGGCA GGGACGCCTG GGGACCGGGA 180 35 AATTCTGCAA GAGACGTTCT GCGAGCCCGA GCACCCAGGG AGGAGCAGGG GGCAGCGTTT 240

|    | CTTGCGGGAC | CCTCCTGGGA | CCTGCCGGCG | GCCCCGGGCC | GTGACCCGGC | TGCAGGCAGA | 300  |
|----|------------|------------|------------|------------|------------|------------|------|
|    | GGGGCGGAGG | CGTCGGCAGC | CGGACCCCCG | GGACCTCCAA | CCAGGCCACC | TGGCCCCTGG | 360  |
|    | AGGTGGAAAG | GTGCTCGGGG | TCAGGAGCCT | TCTGAAACTT | TGGGGAGAGG | GAACCCCACG | 420  |
|    | GCCCTCCAGC | TCTTCCTTCA | GATCTCAGAG | GAGGAAGAGA | AGGGTCCCAG | AGGCGCTGGC | 480  |
| 5  | ATTTCCGGGC | GTAGCCAGGA | GCAGAGTGTG | AAGACAGTCC | CCGGAGCCAG | CGATCTTTTT | 540  |
|    | TACTGGCCAA | GGAGAGCCGG | GAAACTCCAG | GGTTCCCACC | ACAAGCCCCT | GTCCAAGACG | 600  |
|    | GCCAATGGAC | TGGCGGGGCA | CGAAGGGTGG | ACAATTGCAC | TCCCGGGCCG | GGCGCTGGCC | 660  |
|    | CAGAATGGAT | CCTTGGGTGA | AGGAATCCAT | GAGCCTGGGG | GTCCCCGCCG | GGGAAACAGC | 720  |
|    | ACGAACCGGC | GTGTGAGACT | GAAGAACCCC | TTCTACCCGC | TGACCCAGGA | GTCCTATGGA | 780  |
| 10 | GCCTACGCGG | TCATGTGTCT | GTCCGTGGTG | ATCTTCGGGA | CCGGCATCAT | TGGCAACCTG | 840  |
|    | GCGGTGATGA | GCATCGTGTG | CCACAACTAC | TACATGCGGA | GCATCTCCAA | CTCCCTCTTG | 900  |
|    | GCCAACCTGG | CCTTCTGGGA | CTTTCTCATC | ATCTTCTTCT | GCCTTCCGCT | GGTCATCTTC | 960  |
|    | CACGAGCTGA | CCAAGAAGTG | GCTGCTGGAG | GACTTCTCCT | GCAAGATCGT | GCCCTATATA | 1020 |
|    | GAGGTCGCTT | CTCTGGGAGT | CACCACTTTC | ACCTTATGTG | CTCTGTGCAT | AGACCGCTTC | 1080 |
| 15 | CGTGCTGCCA | CCAACGTACA | GATGTACTAC | GAAATGATCG | AAAACTGTTC | CTCAACAACT | 1140 |
|    | GCCAAACTTG | CTGTTATATG | GGTGGGAGCT | CTATTGTTAG | CACTTCCAGA | AGTTGTTCTC | 1200 |
|    | CGCCAGCTGA | GCAAGGAGGA | TTTGGGGTTT | AGTGGCCGAG | CTCCGGCAGA | AAGGTGCATT | 1260 |
|    | ATTAAGATCT | CTCCTGATTT | ACCAGACACC | ATCTATGTTC | TAGCCCTCAC | CTACGACAGT | 1320 |
|    | GCGAGACTGT | GGTGGTATTT | TGGCTGTTAC | TTTTGTTTGC | CCACGCTTTT | CACCATCACC | 1380 |
| 20 | TGCTCTCTAG | TGACTGCGAG | GAAAATCCGC | AAAGCAGAGA | AAGCCTGTAC | CCGAGGGAAT | 1440 |
|    | AAACGGCAGA | TTCAACTAGA | GAGTCAGATG | AACTGTACAG | TAGTGGCACT | GACCATTTTA | 1500 |
|    | TATGGATTTT | GCATTATTCC | TGAAAATATC | TGCAACATTG | TTACTGCCTA | CATGGCTACA | 1560 |
|    | GGGGTTTCAC | AGCAGACAAT | GGACCTCCTT | AATATCATCA | GCCAGTTCCT | TTTGTTCTTT | 1620 |
|    | AAGTCCTGTG | TCACCCCAGT | CCTCCTTTTC | TGTCTCTGCA | AACCCTTCAG | TCGGGCCTTC | 1680 |
| 25 | ATGGAGTGCT | GCTGCTGTTG | CTGTGAGGAA | TGCATTCAGA | AGTCTTCAAC | GGTGACCAGT | 1740 |
|    | GATGACAATG | ACAACGAGTA | CACCACGGAA | CTCGAACTCT | CGCCTTTCAG | TACCATACGC | 1800 |
|    | CGTGAAATGT | CCACTTTTGC | TTCTGTCGGA | ACTCATTGCT | GA         |            | 1842 |

(93) INFORMATION FOR SEQ ID NO:92:

| 5  | (a)                                                                                                        |  |  |  |  |  |  |  |  |  |  |  |  |  |
|----|------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|--|--|
|    | (ii) MOLECULE TYPE: protein                                                                                |  |  |  |  |  |  |  |  |  |  |  |  |  |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:92:                                                                   |  |  |  |  |  |  |  |  |  |  |  |  |  |
|    | Met Arg Ala Pro Gly Ala Leu Leu Ala Arg Met Ser Arg Leu Leu Leu 1 5 10 15                                  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 | Leu Leu Leu Lys Val Ser Ala Ser Ser Ala Leu Gly Val Ala Pro<br>20 25 30                                    |  |  |  |  |  |  |  |  |  |  |  |  |  |
|    | Ala Ser Arg Asn Glu Thr Cys Leu Gly Glu Ser Cys Ala Pro Thr Val $$35$$                                     |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 15 | Ile Gln Arg Arg Gly Arg Asp Ala Trp Gly Pro Gly Asn Ser Ala Arg $50 \\ 0000000000000000000000000000000000$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
|    | Asp Val Leu Arg Ala Arg Ala Pro Arg Glu Glu Glu Gly Ala Ala Phe 65 70 80                                   |  |  |  |  |  |  |  |  |  |  |  |  |  |
|    | Leu Ala Gly Pro Ser Trp Asp Leu Pro Ala Ala Pro Gly Arg Asp Pro 85 $$90$$ 95                               |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 20 | Ala Ala Gly Arg Gly Ala Glu Ala Ser Ala Ala Gly Pro Pro Gly Pro 100 $$105$$                                |  |  |  |  |  |  |  |  |  |  |  |  |  |
|    | Pro Thr Arg Pro Pro Gly Pro Trp Arg Trp Lys Gly Ala Arg Gly Gln 115 120 125                                |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 25 | Glu Pro Ser Glu Thr Leu Gly Arg Gly Asn Pro Thr Ala Leu Gln Leu<br>130 135 140                             |  |  |  |  |  |  |  |  |  |  |  |  |  |
|    | Phe Leu Gln Ile Ser Glu Glu Glu Glu Lys Gly Pro Arg Gly Ala Gly<br>145 150 155 160                         |  |  |  |  |  |  |  |  |  |  |  |  |  |
|    | Ile Ser Gly Arg Ser Gln Glu Gln Ser Val Lys Thr Val Pro Gly Ala<br>165 170 175                             |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 30 | Ser Asp Leu Phe Tyr Trp Pro Arg Arg Ala Gly Lys Leu Gln Gly Ser<br>180 185 190                             |  |  |  |  |  |  |  |  |  |  |  |  |  |
|    | His His Lys Pro Leu Ser Lys Thr Ala Asn Gly Leu Ala Gly His Glu<br>195 200 205                             |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 35 | Gly Trp Thr Ile Ala Leu Pro Gly Arg Ala Leu Ala Gln Asn Gly Ser $$210$$                                    |  |  |  |  |  |  |  |  |  |  |  |  |  |
|    | Leu Gly Glu Gly Ile His Glu Pro Gly Gly Pro Arg Arg Gly Asn Ser 225 230 235 240                            |  |  |  |  |  |  |  |  |  |  |  |  |  |

|    |            |            |            |            |            |            |            |            | -          |            |            |            |            |            |            |            |
|----|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    | Thr        | Asn        | Arg        | Arg        | Val<br>245 | Arg        | Leu        | Lys        | Asn        | Pro<br>250 |            | Tyr        | Pro        | Leu        | Thr<br>255 | Gln        |
|    | Glu        | Ser        | Tyr        | Gly<br>260 |            | Tyr        | Ala        | Val        | Met<br>265 |            | Leu        | Ser        | Val        | Val<br>270 |            | Phe        |
| 5  | Gly        | Thr        | Gly<br>275 | Ile        | Ile        | Gly        | Asn        | Leu<br>280 | Ala        | Val        | Met        | Ser        | Ile<br>285 | Val        | Cys        | His        |
|    | Asn        | Tyr<br>290 | Tyr        | Met        | Arg        | Ser        | Ile<br>295 | Ser        | Asn        | Ser        | Leu        | Leu<br>300 | Ala        | Asn        | Leu        | Ala        |
| 10 | Phe<br>305 | Trp        | Asp        | Phe        | Leu        | Ile<br>310 | Ile        | Phe        | Phe        | Cys        | Leu<br>315 | Pro        | Leu        | Val        | Ile        | Phe<br>320 |
|    | His        | Glu        | Leu        | Thr        | Lys<br>325 | Lys        | Trp        | Leu        | Leu        | Glu<br>330 | Asp        | Phe        | Ser        | Cys        | Lys<br>335 | Ile        |
|    | Val        | Pro        | Tyr        | Ile<br>340 | Glu        | Val        | Ala        | Ser        | Leu<br>345 | Gly        | Val        | Thr        | Thr        | Phe<br>350 | Thr        | Leu        |
| 15 | Cys        | Ala        | Leu<br>355 | Cys        | Ile        | Asp        | Arg        | Phe<br>360 | Arg        | Ala        | Ala        | Thr        | Asn<br>365 | Val        | Gln        | Met        |
|    | Tyr        | Tyr<br>370 | Glu        | Met        | Ile        | Glu        | Asn<br>375 | Cys        | Ser        | Ser        | Thr        | Thr<br>380 | Ala        | Lys        | Leu        | Ala        |
| 20 | Val<br>385 | Ile        | Trp        | Val        | Gly        | Ala<br>390 | Leu        | Leu        | Leu        | Ala        | Leu<br>395 | Pro        | Glu        | Val        | Val        | Leu<br>400 |
|    | Arg        | Gln        | Leu        | Ser        | Lys<br>405 | Glu        | Asp        | Leu        | Gly        | Phe<br>410 | Ser        | Gly        | Arg        | Ala        | Pro<br>415 | Ala        |
|    | Glu        | Arg        | Cys        | Ile<br>420 | Ile        | Lys        | Ile        | Ser        | Pro<br>425 | Asp        | Leu        | Pro        | Asp        | Thr<br>430 | Ile        | Tyr        |
| 25 | Val        | Leu        | Ala<br>435 | Leu        | Thr        | Tyr        | Asp        | Ser<br>440 | Ala        | Arg        | Leu        | Trp        | Trp<br>445 | Tyr        | Phe        | Gly        |
|    | Cys        | Tyr<br>450 | Phe        | Cys        | Leu        | Pro        | Thr<br>455 | Leu        | Phe        | Thr        | Ile        | Thr<br>460 | Cys        | Ser        | Leu        | Val        |
| 30 | Thr<br>465 | Ala        | Arg        | Lys        | Ile        | Arg<br>470 | Lys        | Ala        | Glu        | Lys        | Ala<br>475 | Cys        | Thr        | Arg        | Gly        | Asn<br>480 |
|    | Lys        | Arg        | Gln        | Ile        | Gln<br>485 | Leu        | Glu        | Ser        |            | Met<br>490 | Asn        | Cys        | Thr        | Val        | Val<br>495 | Ala        |
|    | Leu        | Thr        | Ile        | Leu<br>500 | Tyr        | Gly        | Phe        |            | Ile<br>505 | Ile        | Pro        | Glu        | Asn        | Ile<br>510 | Cys        | Asn        |
| 35 | Ile        | Val        | Thr<br>515 | Ala        | Tyr        | Met        | Ala        | Thr<br>520 | Gly        | Val        | Ser        | Gln        | Gln<br>525 | Thr        | Met        | Asp        |
|    | Leu        | Leu        | Asn        | Ile        | Ile        | Ser        | Gln        | Phe        | Leu        | Leu        | Phe        | Phe        | Lys        | Ser        | Cys        | Val        |

|    | /3                                            |            |                   |                   |                |                     |                      |        |            |            |            |            |     |            |            |            |            |    |
|----|-----------------------------------------------|------------|-------------------|-------------------|----------------|---------------------|----------------------|--------|------------|------------|------------|------------|-----|------------|------------|------------|------------|----|
|    | 530 535                                       |            |                   |                   |                |                     |                      |        |            |            |            |            | 540 |            |            |            |            |    |
|    |                                               | Thr<br>545 | Pro               | Val               | Leu            | Leu                 | Phe<br>550           | Cys    | Leu        | Cys        | Lys        | Pro<br>555 | Phe | Ser        | Arg        | Ala        | Phe<br>560 |    |
| 5  |                                               | Met        | Glu               | Cys               | Cys            | Cys<br>565          | Cys                  | Cys    | Сув        | Glu        | Glu<br>570 | Сув        | Ile | Gln        | Lys        | Ser<br>575 | Ser        |    |
|    |                                               | Thr        | Val               | Thr               | Ser<br>580     | Asp                 | Asp                  | Asn    | Asp        | Asn<br>585 | Glu        | Tyr        | Thr | Thr        | Glu<br>590 | Leu        | Glu        |    |
|    |                                               | Leu        | Ser               | Pro<br>595        | Phe            | Ser                 | Thr                  | Ile    | Arg<br>600 | Arg        | Glu        | Met        | Ser | Thr<br>605 | Phe        | Ala        | Ser        |    |
| 10 |                                               | Val        | Gly<br>610        | Thr               | His            | Cys                 |                      |        |            |            |            |            |     |            |            |            |            |    |
|    | (94)                                          | INFO       | ORMA!             | rion              | FOR            | SEQ                 | ID 1                 | NO: 93 | 3:         |            |            |            |     |            |            |            |            |    |
| 15 | (C) STRANDEDNESS: single (D) TOPOLOGY: linear |            |                   |                   |                |                     |                      |        |            |            |            |            |     |            |            |            |            |    |
|    | (ii) MOLECULE TYPE: DNA (genomic)             |            |                   |                   |                |                     |                      |        |            |            |            |            |     |            |            |            |            |    |
|    |                                               | (xi        | ) SE              | QUE               | ICE I          | ESCF                | IPTI                 | ON:    | SEQ        | ID N       | 0:93       | :          |     |            |            |            |            |    |
| 20 | CAGAI                                         | ATTCA      | G AG              | AAA               | AAAG           | TGF                 | ATAI                 | rggt   | TTTT       | •          |            |            |     |            |            |            |            | 34 |
|    | (95)                                          | INFO       | RMAT              | 'ION              | FOR            | SEQ                 | ID N                 | IO:94  | :          |            |            |            |     |            |            |            |            |    |
| 25 |                                               | (i)        | (A)<br>(B)<br>(C) | TYP<br>STF        | IGTH:<br>PE: n | 32<br>ucle<br>DNES  | base<br>ic a<br>S: s | ingl   | rs         |            |            |            |     |            |            |            |            |    |
|    |                                               | (ii        | ) MC              | LECU              | LE T           | YPE:                | DNA                  | (ge    | nomi       | c)         |            |            |     |            |            |            |            |    |
|    |                                               | (x         | i) s              | EQUE              | NCE            | DESC                | RIPT                 | ION:   | SEQ        | ID         | NO:9       | 4:         |     |            |            |            |            |    |
|    | TTGGATCCCT GGTGCATAAC AATTGAAAGA AT 32        |            |                   |                   |                |                     |                      |        |            |            |            |            | 32  |            |            |            |            |    |
| 30 | (96)                                          | INFO       | RMAT              | ION               | FOR            | SEQ                 | ID N                 | 10:95  | :          |            |            |            |     |            |            |            |            |    |
| 35 |                                               | (i)        | (A)<br>(B)<br>(C) | LEN<br>TYP<br>STR | GTH:<br>E: n   | 124<br>ucle<br>DNES | 8 ba<br>ic a<br>S: s | ingl   | airs       |            |            |            |     |            |            |            |            |    |
|    |                                               |            |                   |                   |                |                     |                      |        |            |            |            |            |     |            |            |            |            |    |

(ii) MOLECULE TYPE: DNA (genomic)

| (xi) | SEQUENCE | DESCRIPTION: | SEQ | ID | NO:95: |
|------|----------|--------------|-----|----|--------|
|      |          |              |     |    |        |

|    | ATGGTTTTTG  | CTCACAGAAT   | GGATAACAGC  | AAGCCACATT | TGATTATTCC | TACACTTCTG | 60   |
|----|-------------|--------------|-------------|------------|------------|------------|------|
|    | GTGCCCCTCC  | AAAACCGCAG   | CTGCACTGAA  | ACAGCCACAC | CTCTGCCAAG | CCAATACCTG | 120  |
|    | ATGGAATTAA  | GTGAGGAGCA   | CAGTTGGATG  | AGCAACCAAA | CAGACCTTCA | CTATGTGCTG | 180  |
| 5  | AAACCCGGGG  | AAGTGGCCAC   | AGCCAGCATC  | TTCTTTGGGA | TTCTGTGGTT | GTTTTCTATC | 240  |
|    | TTCGGCAATT  | CCCTGGTTTG   | TTTGGTCATC  | CATAGGAGTA | GGAGGACTCA | GTCTACCACC | 300  |
|    | AACTACTTTG  | TGGTCTCCAT   | GGCATGTGCT  | GACCTTCTCA | TCAGCGTTGC | CAGCACGCCT | 360  |
|    | TTCGTCCTGC  | TCCAGTTCAC   | CACTGGAAGG  | TGGACGCTGG | GTAGTGCAAC | GTGCAAGGTT | 420  |
|    | GTGCGATATT  | TTCAATATCT   | CACTCCAGGT  | GTCCAGATCT | ACGTTCTCCT | CTCCATCTGC | 480  |
| 10 | ATAGACCGGT  | TCTACACCAT   | CGTCTATCCT  | CTGAGCTTCA | AGGTGTCCAG | AGAAAAAGCC | 540  |
|    | AAGAAAATGA  | TTGCGGCATC   | GTGGATCTTT  | GATGCAGGCT | TTGTGACCCC | TGTGCTCTTT | 600  |
|    | TTCTATGGCT  | CCAACTGGGA   | CAGTCATTGT  | AACTATTTCC | TCCCCTCCTC | TTGGGAAGGC | 660  |
|    | ACTGCCTACA  | CTGTCATCCA   | CTTCTTGGTG  | GGCTTTGTGA | TTCCATCTGT | CCTCATAATT | 720  |
|    | TTATTTTACC  | AAAAGGTCAT   | AAAATATATT  | TGGAGAATAG | GCACAGATGG | CCGAACGGTG | 780  |
| 15 | AGGAGGACAA  | TGAACATTGT   | CCCTCGGACA  | AAAGTGAAAA | CTATCAAGAT | GTTCCTCATT | 840  |
|    | TTAAATCTGT  | TGTTTTTGCT   | CTCCTGGCTG  | CCTTTTCATG | TAGCTCAGCT | ATGGCACCCC | 900  |
|    | CATGAACAAG  | actataagaa   | AAGTTCCCTT  | GTTTTCACAG | CTATCACATG | GATATCCTTT | 960  |
|    | AGTTCTTCAG  | CCTCTAAACC   | TACTCTGTAT  | TCAATTTATA | ATGCCAATTT | TCGGAGAGGG | 1020 |
|    | ATGAAAGAGA  | CTTTTTGCAT   | GTCCTCTATG  | AAATGTTACC | GAAGCAATGC | CTATACTATC | 1080 |
| 20 | ACAACAAGTT  | CAAGGATGGC   | CAAAAAAAAC  | TACGTTGGCA | TTTCAGAAAT | CCCTTCCATG | 1140 |
|    | GCCAAAACTA  | TTACCAAAGA   | CTCGATCTAT  | GACTCATTTG | ACAGAGAAGC | CAAGGAAAAA | 1200 |
|    | AAGCTTGCTT  | GGCCCATTAA   | CTCAAATCCA  | CCAAATACTT | TTGTCTAA   |            | 1248 |
|    | (97) INFORM | MATION FOR S | EQ ID NO:96 | 5:         |            |            |      |

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 415 amino acids

- (B) TYPE: amino acid
- (C) STRANDEDNESS: (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein
- (11) Modecode IIFE. process

25

30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:96:

|    | Met<br>1   | Val        | Phe        | Ala        | His<br>5   | Arg        | Met        | Asp        | Asn        | Ser<br>10  | Lys        | Pro        | His        | Leu        | Ile<br>15  | Ile        |
|----|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    | Pro        | Thr        | Leu        | Leu<br>20  | Val        | Pro        | Leu        | Gln        | Asn<br>25  | Arg        | Ser        | Суз        | Thr        | Glu<br>30  | Thr        | Ala        |
| 5  | Thr        | Pro        | Leu<br>35  | Pro        | Ser        | Gln        | Tyr        | Leu<br>40  | Met        | Glu        | Leu        | Ser        | Glu<br>45  | Glu        | His        | Ser        |
|    | Trp        | Met<br>50  | Ser        | Asn        | Gln        | Thr        | Asp<br>55  | Leu        | His        | Tyr        | Val        | Leu<br>60  | Lys        | Pro        | Gly        | Glu        |
| 10 | 65         |            | Thr        |            |            | 70         |            |            |            |            | 75         |            |            |            |            | 80         |
|    | Phe        | Gly        | Asn        | Ser        | Leu<br>85  | Val        | Сув        | Leu        | Val        | Ile<br>90  | His        | Arg        | Ser        | Arg        | Arg<br>95  | Thr        |
|    | Gln        | Ser        | Thr        | Thr<br>100 | Asn        | Tyr        | Phe        | Val        | Val<br>105 | Ser        | Met        | Ala        | Сув        | Ala<br>110 | Asp        | Leu        |
| 15 | Leu        | Ile        | Ser<br>115 | Val        | Ala        | Ser        | Thr        | Pro<br>120 | Phe        | Val        | Leu        | Leu        | Gln<br>125 | Phe        | Thr        | Thr        |
|    | Gly        | Arg<br>130 | Trp        | Thr        | Leu        | Gly        | Ser<br>135 | Ala        | Thr        | Cys        | Lys        | Val<br>140 | Val        | Arg        | Tyr        | Phe        |
| 20 | Gln<br>145 | Tyr        | Leu        | Thr        | Pro        | Gly<br>150 | Val        | Gln        | Ile        | Tyr        | Val<br>155 | Leu        | Leu        | Ser        | Ile        | Cys<br>160 |
|    | Ile        | Asp        | Arg        | Phe        | Tyr<br>165 | Thr        | Ile        | Val        | Tyr        | Pro<br>170 | Leu        | Ser        | Phe        | Lys        | Val<br>175 | Ser        |
|    | Arg        | Glu        | Lys        | Ala<br>180 | Lys        | Lys        | Met        | Ile        | Ala<br>185 | Ala        | Ser        | Trp        | Ile        | Phe<br>190 | Asp        | Ala        |
| 25 | Gly        | Phe        | Val<br>195 | Thr        | Pro        | Val        | Leu        | Phe<br>200 | Phe        | Tyr        | Gly        | Ser        | Asn<br>205 | Trp        | Asp        | Ser        |
|    | His        | Cys<br>210 | Asn        | Tyr        | Phe        | Leu        | Pro<br>215 | Ser        | Ser        | Trp        | Glu        | Gly<br>220 | Thr        | Ala        | Tyr        | Thr        |
| 30 | Val<br>225 | Ile        | His        | Phe        | Leu        | Val<br>230 | Gly        | Phe        | Val        | Ile        | Pro<br>235 | Ser        | Val        | Leu        | Ile        | Ile<br>240 |
|    | Leu        | Phe        | Tyr        | Gln        | Lys<br>245 | Val        | Ile        | Lys        | Tyr        | Ile<br>250 | Trp        | Arg        | Ile        | Gly        | Thr<br>255 | Asp        |
|    | Gly        | Arg        | Thr        | Val<br>260 | Arg        | Arg        | Thr        | Met        | Asn<br>265 | Ile        | Val        | Pro        | Arg        | Thr<br>270 | Lys        | Val        |
| 35 | Lys        | Thr        | Ile<br>275 | Lys        | Met        | Phe        | Leu        | Ile<br>280 | Leu        | Asn        | Leu        |            | Phe<br>285 | Leu        | Leu        | Ser        |

|    |                                                                                                                                                                |            |                   |                          |                      |                    |                      |                    |            | -          |            |            |            |            |            |            |            |    |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------|--------------------------|----------------------|--------------------|----------------------|--------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|----|
|    |                                                                                                                                                                | Trp        | Leu<br>290        | Pro                      | Phe                  | His                | Val                  | Ala<br>295         | Gln        | Leu        | Trp        | His        | Pro<br>300 | His        | Glu        | Gln        | Asp        |    |
|    |                                                                                                                                                                | Tyr<br>305 | Lys               | Lys                      | Ser                  | Ser                | Leu<br>310           | Val                | Phe        | Thr        | Ala        | Ile<br>315 | Thr        | Trp        | Ile        | Ser        | Phe<br>320 |    |
| 5  |                                                                                                                                                                | Ser        | Ser               | Ser                      | Ala                  | Ser<br>325         | Lys                  | Pro                | Thr        | Leu        | Tyr<br>330 | Ser        | Ile        | Tyr        | Asn        | Ala<br>335 | Asn        |    |
|    |                                                                                                                                                                | Phe        | Arg               | Arg                      | Gly<br>340           | Met                | Lys                  | Glu                | Thr        | Phe<br>345 | Cys        | Met        | Ser        | Ser        | Met<br>350 | Lys        | Cys        |    |
| 10 |                                                                                                                                                                | Tyr        | Arg               | Ser<br>355               | Asn                  | Ala                | Tyr                  | Thr                | Ile<br>360 | Thr        | Thr        | Ser        | Ser        | Arg<br>365 | Met        | Ala        | Lys        |    |
|    |                                                                                                                                                                | Lys        | Asn<br>370        | Tyr                      | Val                  | Gly                | Ile                  | Ser<br>375         | Glu        | Ile        | Pro        | Ser        | Met<br>380 | Ala        | Lys        | Thr        | Ile        |    |
|    |                                                                                                                                                                | Thr<br>385 | Lys               | Asp                      | Ser                  | Ile                | Tyr<br>390           | Asp                | Ser        | Phe        | Asp        | Arg<br>395 | Glu        | Ala        | Lys        | Glu        | Lys<br>400 |    |
| 15 |                                                                                                                                                                | Lys        | Leu               | Ala                      | Trp                  | Pro<br>405         | Ile                  | Asn                | Ser        |            | Pro<br>410 | Pro        | Asn        | Thr        | Phe        | Val<br>415 |            |    |
|    | (98)                                                                                                                                                           | INFO       | RMAT              | CION                     | FOR                  | SEQ                | ID 1                 | 10:97              | · :        |            |            |            |            |            |            |            |            |    |
| 20 | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDENNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) |            |                   |                          |                      |                    |                      |                    |            |            |            |            |            |            |            |            |            |    |
|    |                                                                                                                                                                |            |                   |                          |                      |                    |                      |                    |            |            |            |            |            |            |            |            |            |    |
|    |                                                                                                                                                                |            |                   | EQUE                     |                      |                    |                      |                    | SEÇ        | ID         | NO:9       | 7:         |            |            |            |            |            |    |
| 25 | GGAA                                                                                                                                                           | AGCTT      | A AC              | GATO                     | CCCA                 | GGA                | GCAA                 | CAT                |            |            |            |            |            |            |            |            |            | 30 |
|    | (99)                                                                                                                                                           | INFO       | RMAI              | NOI                      | FOR                  | SEQ                | ID N                 | 0:98               | :          |            |            |            |            |            |            |            |            |    |
| 30 |                                                                                                                                                                | (i)        | (A)<br>(B)<br>(C) | LEN<br>TYP<br>STR<br>TOP | GTH:<br>E: n<br>ANDE | 31<br>ucle<br>DNES | base<br>ic a<br>S: s | pai<br>cid<br>ingl | rs         |            |            |            |            |            |            |            |            |    |
|    |                                                                                                                                                                | (ii        | ) MO              | LECU                     | LE T                 | YPE:               | DNA                  | (ge                | nomi       | c)         |            |            |            |            |            |            |            |    |
|    |                                                                                                                                                                | (xi        | ) SE              | QUEN                     | CE D                 | ESCR               | IPTI                 | ON:                | SEQ        | ID N       | 0:98       | :          |            |            |            |            |            |    |
|    | CTGGG                                                                                                                                                          | ATCC       | T AC              | GAGA                     | GCAT                 | TTT                | TCAC                 | ACA                | G          |            |            |            |            |            |            |            |            | 31 |
| 35 | (100)                                                                                                                                                          | INF        | ORMA              | TION                     | FOR                  | SEQ                | ID                   | NO: 9              | 9 :        |            |            |            |            |            |            |            |            |    |
|    |                                                                                                                                                                | (i)        | SEQ               | UENC                     | E CH                 | ARAC               | TERI                 | STIC               | S:         |            |            |            |            |            |            |            |            |    |
|    |                                                                                                                                                                |            |                   |                          |                      |                    |                      |                    |            |            |            |            |            |            |            |            |            |    |

77

(A) LENGTH: 1842 base pairs

(B) TYPE: nucleic acid (C) STRANDEDNESS: single

(D) TOPOLOGY: linear

5 (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:99:

ATGGGGCCCA CCCTAGCGGT TCCCACCCC TATGGCTGTA TTGGCTGTAA GCTACCCCAG 60 CCAGAATACC CACCGGCTCT AATCATCTTT ATGTTCTGCG CGATGGTTAT CACCATCGTT 120 GTAGACCTAA TCGGCAACTC CATGGTCATT TTGGCTGTGA CGAAGAACAA GAACCTCCGG 180 10 AATTCTGGCA ACATCTTCGT GGTCAGTCTC TCTGTGGCCG ATATGCTGGT GGCCATCTAC 240 CCATACCCTT TGATGCTGCA TGCCATGTCC ATTGGGGGCT GGGATCTGAG CCAGTTACAG 300 TGCCAGATGG TCGGGTTCAT CACAGGGCTG AGTGTGGTCG GCTCCATCTT CAACATCGTG 360 GCAATCGCTA TCAACCGTTA CTGCTACATC TGCCACAGCC TCCAGTACGA ACGGATCTTC 420 AGTGTGCGCA ATACCTGCAT CTACCTGGTC ATCACCTGGA TCATGACCGT CCTGGCTGTC 480 15 CTGCCCAACA TGTACATTGG CACCATCGAG TACGATCCTC GCACCTACAC CTGCATCTTC 540 AACTATCTGA ACAACCCTGT CTTCACTGTT ACCATCGTCT GCATCCACTT CGTCCTCCCT 600 CTCCTCATCG TGGGTTTCTG CTACGTGAGG ATCTGGACCA AAGTGCTGGC GGCCCGTGAC 660 CCTGCAGGGC AGAATCCTGA CAACCAACTT GCTGAGGTTC GCAATTTTCT AACCATGTTT 720 GTGATCTTCC TCCTCTTTGC AGTGTGCTGG TGCCCTATCA ACGTGCTCAC TGTCTTGGTG 780 20 GCTGTCAGTC CGAAGGAGAT GGCAGGCAAG ATCCCCAACT GGCTTTATCT TGCAGCCTAC 840 TTCATAGCCT ACTTCAACAG CTGCCTCAAC GCTGTGATCT ACGGGCTCCT CAATGAGAAT 900 TTCCGAAGAG AATACTGGAC CATCTTCCAT GCTATGCGGC ACCCTATCAT ATTCTTCCCT 960 GGCCTCATCA GTGATATTCG TGAGATGCAG GAGGCCCGTA CCCTGGCCCG CGCCCGTGCC 1020 CATGCTCGCG ACCAAGCTCG TGAACAAGAC CGTGCCCATG CCTGTCCTGC TGTGGAGGAA 1080 ACCCCGATGA ATGTCCGGAA TGTTCCATTA CCTGGTGATG CTGCAGCTGG CCACCCCGAC 1140 CGTGCCTCTG GCCACCCTAA GCCCCATTCC AGATCCTCCT CTGCCTATCG CAAATCTGCC 1200 TCTACCCACC ACAGTCTGT CTTTAGCCAC TCCAAGGCTG CCTCTGGTCA CCTCAAGCCT 1260 GTCTCTGGCC ACTCCAAGCC TGCCTCTGGT CACCCCAAGT CTGCCACTGT CTACCCTAAG 1320 CCTGCCTCTG TCCATTTCAA GGGTGACTCT GTCCATTTCA AGGGTGACTC TGTCCATTTC 1380

|    | AAGCCTGACT CTGTTCATTT CAAGCCTGCT TCCAGCAACC CCAAGCCCAT CACTGGCCAC 14                    | 140 |
|----|-----------------------------------------------------------------------------------------|-----|
|    | CATGTCTCTG CTGGCAGCCA CTCCAAGTCT GCCTTCAGTG CTGCCACCAG CCACCCTAAA 1:                    | 500 |
|    | CCCATCAAGC CAGCTACCAG CCATGCTGAG CCCACCACTG CTGACTATCC CAAGCCTGCC 1                     | 60  |
|    | ACTACCAGCC ACCCTAAGCC CGCTGCTGCT GACAACCCTG AGCTCTCTGC CTCCCATTGC 16                    | 520 |
| 5  | CCCGAGATCC CTGCCATTGC CCACCCTGTG TCTGACGACA GTGACCTCCC TGAGTCGGCC 16                    | 80  |
|    | TCTAGCCCTG CCGCTGGGCC CACCAAGCCT GCTGCCAGCC AGCTGGAGTC TGACACCATC 1:                    | 740 |
|    | GCTGACCTTC CTGACCCTAC TGTAGTCACT ACCAGTACCA ATGATTACCA TGATGTCGTG 18                    | 00  |
|    | GTTGTTGATG TTGAAGATGA TCCTGATGAA ATGGCTGTGT GA                                          | 342 |
|    | (101) INFORMATION FOR SEQ ID NO:100:                                                    |     |
| 10 | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 613 amino acids                               |     |
|    | (B) TYPE: amino acid<br>(C) STRANDEDNESS:                                               |     |
|    | (D) TOPOLOGY: not relevant                                                              |     |
| 15 | (ii) MOLECULE TYPE: protein                                                             |     |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:100:                                               |     |
|    | Met Gly Pro Thr Leu Ala Val Pro Thr Pro Tyr Gly Cys Ile Gly Cys<br>1 5 10 15            |     |
| 20 | Lys Leu Pro Gln Pro Glu Tyr Pro Pro Ala Leu Ile Ile Phe Met Phe $20 \\ 25 \\ 30$        |     |
|    | Cys Ala Met Val Ile Thr Ile Val Val Asp Leu Ile Gly Asn Ser Met 35 $$40\ $              |     |
|    | Val Ile Leu Ala Val Thr Lys Asn Lys Leu Arg Asn Ser Gly Asn 50 60                       |     |
| 25 | Ile Phe Val Val Ser Leu Ser Val Ala Asp Met Leu Val Ala Ile Tyr<br>65 70 80             |     |
|    | Pro Tyr Pro Leu Met Leu His Ala Met Ser Ile Gly Gly Trp Asp Leu $85$ 90 $$ 95           |     |
| 30 | Ser Gln Leu Gln Cys Gln Met Val Gly Phe Ile Thr Gly Leu Ser Val<br>100 105 110          |     |
|    | Val Gly Ser Ile Phe Asn Ile Val Ala Ile Ala Ile Asn Arg Tyr Cys $$115$$ $$120$$ $$125$$ |     |
|    | Tyr Ile Cys His Ser Leu Gln Tyr Glu Arg Ile Phe Ser Val Arg Asn 130 $$140$              |     |

|    |               |               |            |            |            |            | - '        | ,          |            |            |            |            |            |            |            |
|----|---------------|---------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    | Thr C         | ys Ile        | Tyr        | Leu        | Val<br>150 | Ile        | Thr        | Trp        | Ile        | Met<br>155 | Thr        | Val        | Leu        | Ala        | Val<br>160 |
|    |               | ro Asn        |            | 165        |            |            |            |            | 170        |            |            |            |            | 175        | -          |
| 5  | Thr C         | ys Ile        | Phe<br>180 | Asn        | Tyr        | Leu        | Asn        | Asn<br>185 | Pro        | Val        | Phe        | Thr        | Val<br>190 | Thr        | Ile        |
|    | Val C         | ys Ile<br>195 |            | Phe        | Val        | Leu        | Pro<br>200 | Leu        | Leu        | Ile        | Val        | Gly<br>205 | Phe        | Сув        | Tyr        |
| 10 | Val A         | rg Ile<br>10  | Trp        | Thr        | Lys        | Val<br>215 | Leu        | Ala        | Ala        | Arg        | Asp<br>220 | Pro        | Ala        | Gly        | Gln        |
|    | 225           | ro Asp        |            |            | 230        |            |            |            |            | 235        |            |            |            |            | 240        |
|    |               | le Phe        |            | 245        |            |            |            |            | 250        |            |            |            |            | 255        |            |
| 15 | Thr V         | al Leu        | Val<br>260 | Ala        | Val        | Ser        | Pro        | Lys<br>265 | Glu        | Met        | Ala        | Gly        | Lys<br>270 | Ile        | Pro        |
|    | Asn T         | rp Leu<br>275 | Tyr        | Leu        | Ala        | Ala        | Tyr<br>280 | Phe        | Ile        | Ala        | Tyr        | Phe<br>285 | Asn        | Ser        | Cys        |
| 20 |               | sn Ala<br>90  | Val        | Ile        | Tyr        | Gly<br>295 | Leu        | Leu        | Asn        | Glu        | Asn<br>300 | Phe        | Arg        | Arg        | Glu        |
|    | Tyr Ti<br>305 | rp Thr        | Ile        | Phe        | His<br>310 | Ala        | Met        | Arg        | His        | Pro<br>315 | Ile        | Ile        | Phe        | Phe        | Pro<br>320 |
|    | Gly Le        | eu Ile        | Ser        | Asp<br>325 | Ile        | Arg        | Glu        | Met        | Gln<br>330 | Glu        | Ala        | Arg        | Thr        | Leu<br>335 | Ala        |
| 25 | Arg Al        | la Arg        | Ala<br>340 | His        | Ala        | Arg        | Asp        | Gln<br>345 | Ala        | Arg        | Glu        | Gln        | Asp<br>350 | Arg        | Ala        |
|    | His Al        | la Cys<br>355 | Pro        | Ala        | Val        | Glu        | Glu<br>360 | Thr        | Pro        | Met        |            | Val<br>365 | Arg        | Asn        | Val        |
| 30 | Pro Le        | eu Pro        | Gly        | Asp        | Ala        | Ala<br>375 | Ala        | Gly        | His        | Pro        | Asp<br>380 | Arg        | Ala        | Ser        | Gly        |
|    | His Pr<br>385 | o Lys         | Pro        | His        | Ser<br>390 | Arg        | Ser        | Ser        | Ser        | Ala<br>395 | Tyr        | Arg        | Lys        | Ser        | Ala<br>400 |
|    | Ser Th        | r His         | His        | Lys<br>405 | Ser        | Val        | Phe        | Ser        | His<br>410 | Ser        | Lys        | Ala        | Ala        | Ser<br>415 | Gly        |
| 35 | His Le        | eu Lys        | Pro<br>420 | Val        | Ser        | Gly        | His        | Ser<br>425 | Lys        | Pro        | Ala        |            | Gly<br>430 | His        | Pro        |
|    | Lys Se        | er Ala        | Thr        | Val        | Tyr        | Pro        | Lys        | Pro        | Ala        | Ser        | Val        | His        | Phe        | Lys        | Gly        |

|    |            |                   | 435               |                                           |                    |                      |                    | 440        |            |            |            |            |            | 445        |            |            |    |  |
|----|------------|-------------------|-------------------|-------------------------------------------|--------------------|----------------------|--------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|----|--|
|    | Asp        | Ser<br>450        | Val               | His                                       | Phe                | Lys                  | Gly<br>455         | Asp        | Ser        | Val        | His        | Phe<br>460 | Lys        | Pro        | Asp        | Ser        |    |  |
| 5  | Val<br>465 | His               | Phe               | Lys                                       | Pro                | Ala<br>470           | Ser                | Ser        | Asn        | Pro        | Lys<br>475 | Pro        | Ile        | Thr        | Gly        | His<br>480 |    |  |
|    | His        | Val               | Ser               | Ala                                       | Gly<br>485         | Ser                  | His                | Ser        | Lys        | Ser<br>490 | Ala        | Phe        | Ser        | Ala        | Ala<br>495 | Thr        |    |  |
|    | Ser        | His               | Pro               | Lys<br>500                                | Pro                | Ile                  | Lys                | Pro        | Ala<br>505 | Thr        | Ser        | His        | Ala        | Glu<br>510 | Pro        | Thr        |    |  |
| 10 | Thr        | Ala               | Asp<br>515        | Tyr                                       | Pro                | Lys                  | Pro                | Ala<br>520 | Thr        | Thr        | Ser        | His        | Pro<br>525 | Lys        | Pro        | Ala        |    |  |
|    | Ala        | Ala<br>530        | Asp               | Asn                                       | Pro                | Glu                  | Leu<br>535         | Ser        | Ala        | Ser        | His        | Cys<br>540 | Pro        | Glu        | Ile        | Pro        |    |  |
| 15 | Ala<br>545 | Ile               | Ala               | His                                       | Pro                | Val<br>550           | Ser                | Asp        | Asp        | Ser        | Asp<br>555 | Leu        | Pro        | Glu        | Ser        | Ala<br>560 |    |  |
|    | Ser        | Ser               | Pro               | Ala                                       | Ala<br>565         | Gly                  | Pro                | Thr        | Lys        | Pro<br>570 | Ala        | Ala        | Ser        | Gln        | Leu<br>575 | Glu        |    |  |
|    | Ser        | Asp               | Thr               | Ile<br>580                                | Ala                | Asp                  | Leu                | Pro        | Asp<br>585 | Pro        | Thr        | Val        | Val        | Thr<br>590 | Thr        | ser        |    |  |
| 20 | Thr        | Asn               | Asp<br>595        | Tyr                                       | His                | Asp                  | Val                | Val<br>600 | Val        | Val        | Asp        |            | Glu<br>605 | Asp        | Asp        | Pro        |    |  |
|    | Asp        | Glu<br>610        | Met               | Ala                                       | Val                |                      |                    |            |            |            |            |            |            |            |            |            |    |  |
|    | (102) IN   | ORMA              | TION              | 1 FOR                                     | SEC                | ID                   | NO:1               | .01:       |            |            |            |            |            |            |            |            |    |  |
| 25 | (i)        | (A)<br>(B)<br>(C) | LEN<br>TYP<br>STF | CE CE<br>NGTH:<br>PE: n<br>RANDE<br>POLOG | 32<br>ucle<br>DNES | base<br>ic a<br>S: s | pai<br>cid<br>ingl | rs         |            |            |            |            |            |            |            |            |    |  |
| 30 | (ii        | .) MC             | LECU              | JLE T                                     | YPE:               | DNA                  | (ge                | nomi       | .c)        |            |            |            |            |            |            |            |    |  |
|    | (xi        | .) SE             | QUEN              | ICE D                                     | ESCR               | IPTI                 | ON:                | SEQ        | ID N       | 0:10       | 1:         |            |            |            |            |            |    |  |
|    | TCCAAGCTI  | C GC              | CATG              | GGAC                                      | ATA                | ACGG                 | GAG                | CT         |            |            |            |            |            |            |            |            | 32 |  |
|    | (103) INF  | ORMA              | TION              | FOR                                       | SEQ                | ID                   | NO:1               | 02:        |            |            |            |            |            |            |            |            |    |  |
| 35 | (i)        | (A)               | LEN               | E CH<br>IGTH:<br>PE: n                    | 30<br>ucle         | base<br>ic a         | pai<br>cid         | rs         |            |            |            |            |            |            |            |            |    |  |

81

30

(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:102:

CGTGAATTCC AAGAATTTAC AATCCTTGCT

- 5 (104) INFORMATION FOR SEQ ID NO:103:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1548 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
- 10 (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: DNA (genomic)
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:103:

ATGGGACATA ACGGGAGCTG GATCTCTCCA AATGCCAGCG AGCCGCACAA CGCGTCCGGC 60 GCCGAGGCTG CGGGTGTGAA CCGCAGCGCG CTCGGGGAGT TCGGCGAGGC GCAGCTGTAC 120 15 CGCCAGTTCA CCACCACCGT GCAGGTCGTC ATCTTCATAG GCTCGCTGCT CGGAAACTTC 180 ATGGTGTTAT GGTCAACTTG CCGCACAACC GTGTTCAAAT CTGTCACCAA CAGGTTCATT 240 AAAAACCTGG CCTGCTCGGG GATTTGTGCC AGCCTGGTCT GTGTGCCCTT CGACATCATC 300 CTCAGCACCA GTCCTCACTG TTGCTGGTGG ATCTACACCA TGCTCTTCTG CAAGGTCGTC 360 AAATTTTTGC ACAAAGTATT CTGCTCTGTG ACCATCCTCA GCTTCCCTGC TATTGCTTTG 420 20 GACAGGTACT ACTCAGTCCT CTATCCACTG GAGAGGAAAA TATCTGATGC CAAGTCCCGT 480 GAACTGGTGA TGTACATCTG GGCCCATGCA GTGGTGGCCA GTGTCCCTGT GTTTGCAGTA 540 ACCAATGTGG CTGACATCTA TGCCACGTCC ACCTGCACGG AAGTCTGGAG CAACTCCTTG 600 GGCCACCTGG TGTACGTTCT GGTGTATAAC ATCACCACGG TCATTGTGCC TGTGGTGGTG 660 GTGTTCCTCT TCTTGATACT GATCCGACGG GCCCTGAGTG CCAGCCAGAA GAAGAAGGTC 720 ATCATAGCAG CGCTCCGGAC CCCACAGAAC ACCATCTCTA TTCCCTATGC CTCCCAGCGG 780 GAGGCCGAGC TGCACGCCAC CCTGCTCTCC ATGGTGATGG TCTTCATCTT GTGTAGCGTG 840 CCCTATGCCA CCCTGGTCGT CTACCAGACT GTGCTCAATG TCCCTGACAC TTCCGTCTTC 900 TTGCTGCTCA CTGCTGTTTG GCTGCCCAAA GTCTCCCTGC TGGCAAACCC TGTTCTCTTT 960 CTTACTGTGA ACAAATCTGT CCGCAAGTGC TTGATAGGGA CCCTGGTGCA ACTACACCAC 1020

CGGTACAGTC GCCGTAATGT GGTCAGTACA GGGAGTGGCA TGGCTGAGGC CAGCCTGGAA 1080

| CCCAGCATAC GC     | TCGGGTAG (                                                     | CCAGCTCCT                   | G GAGATG       | TTCC ACA      | TTGGGCA        | GCAGCAGA'         | IC 1140   |
|-------------------|----------------------------------------------------------------|-----------------------------|----------------|---------------|----------------|-------------------|-----------|
| TTTAAGCCCA CA     | GAGGATGA                                                       | GAAGAGAG                    | T GAGGCC       | AAGT ACA      | TTGGCTC        | AGCTGACT          | FC 1200   |
| CAGGCCAAGG AG     | ATATTTAG                                                       | CACCTGCCT                   | C GAGGGA       | BAGC AGG      | GCCACA         | GTTTGCGC          | CC 1260   |
| TCTGCCCCAC CC     | CTGAGCAC A                                                     | GTGGACTC                    | F GTATCC       | CAGG TGG      | CACCGGC .      | AGCCCCTG          | rg 1320   |
| GAACCTGAAA CA     | TTCCCTGA :                                                     | AAGTATTC                    | C CTGCAG       | TTG GCT       | TTGGGCC        | TTTTGAGT          | rg 1380   |
| CCTCCTCAGT GG     | CTCTCAGA (                                                     | ACCCGAAA                    | C AGCAAG       | AGC GGC       | rgcttcc ·      | CCCCTTGG          | C 1440    |
| AACACCCCAG AA     | GAGCTGAT (                                                     | CAGACAAA                    | GTGCCC         | AGG TAGG      | GCAGGGT (      | ggagcgga <i>i</i> | AG 1500   |
| ATGAGCAGAA AC     | AATAAAGT G                                                     | AGCATTTT                    | CCAAAGO        | TGG ATTO      | CCTAG          |                   | 1548      |
| (105) INFORM      | ATION FOR                                                      | SEQ ID NO                   | ):104:         |               |                |                   |           |
| (A)<br>(B)<br>(C) | UENCE CHAR<br>LENGTH: 5<br>TYPE: ami<br>STRANDEDN<br>TOPOLOGY: | 15 amino<br>no acid<br>ESS: | acids          |               |                |                   |           |
| (ii) MO           | LECULE TYP                                                     | E: protei                   | .n             |               |                |                   |           |
| (xi) SE           | QUENCE DES                                                     | CRIPTION:                   | SEQ ID         | NO:104:       |                |                   |           |
| Met Gly I         | His Asn Gl<br>5                                                | y Ser Trp                   | Ile Ser        | Pro Asn<br>10 | Ala Ser        | Glu Pro           | His       |
| Asn Ala S         | Ser Gly Al<br>20                                               | a Glu Ala                   | Ala Gly<br>25  | Val Asn       | Arg Ser        | Ala Leu<br>30     | Gly       |
| Glu Phe G         | 31y Glu Al<br>35                                               | a Gln Leu                   | Tyr Arg<br>40  | Gln Phe       | Thr Thr        | Thr Val           | Gln       |
| Val Val 3<br>50   | le Phe Il                                                      | e Gly Ser<br>55             | Leu Leu        | Gly Asn       | Phe Met        | Val Leu           | Trp       |
| Ser Thr 0         | ys Arg Th                                                      | Thr Val                     | Phe Lys        | Ser Val<br>75 | Thr Asn        | Arg Phe           | Ile<br>80 |
| Lys Asn I         | eu Ala Cy:<br>85                                               | s Ser Gly                   | Ile Cys        | Ala Ser<br>90 | Leu Val        | Cys Val<br>95     | Pro       |
| Phe Asp I         | le Ile Lem<br>100                                              | Ser Thr                     | Ser Pro<br>105 | His Cys       | Cys Trp        | Trp Ile           | Tyr       |
| Thr Met L         | eu Phe Cys<br>15                                               | Lys Val                     | Val Lys<br>120 | Phe Leu       | His Lys<br>125 | Val Phe           | Cys       |
| Ser Val T<br>130  | hr Ile Lev                                                     | Ser Phe<br>135              | Pro Ala        | Ile Ala       | Leu Asp        | Arg Tyr           | Tyr       |

|    | Ser Val        | l Leu Tyr      | Pro Le         | ı Glu        | Arg        | Lys        | Ile        | Ser<br>155 | Asp        | Ala        | Lys        | Ser        | Arg<br>160 |
|----|----------------|----------------|----------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    | Glu Lev        | val Met        | Tyr Ile<br>165 | Trp          | Ala        | His        | Ala<br>170 | Val        | Val        | Ala        | Ser        | Val<br>175 |            |
| 5  | Val Phe        | Ala Val        | Thr Ası        | val          | Ala        | Asp<br>185 | Ile        | Tyr        | Ala        | Thr        | Ser<br>190 |            | Cys        |
|    | Thr Glu        | Val Trp<br>195 | Ser Ası        | ser          | Leu<br>200 | Gly        | His        | Leu        | Val        | Tyr<br>205 | Val        | Leu        | Val        |
| 10 | Tyr Asn<br>210 | lle Thr        | Thr Val        | . Ile<br>215 | Val        | Pro        | Val        | Val        | Val<br>220 | Val        | Phe        | Leu        | Phe        |
|    | Leu Ile<br>225 | Leu Ile        | Arg Arg<br>230 | Ala          | Leu        | Ser        | Ala        | Ser<br>235 | Gln        | Lys        | Lys        | Lys        | Val<br>240 |
|    | Ile Ile        | Ala Ala        | Leu Arg<br>245 | Thr          | Pro        | Gln        | Asn<br>250 | Thr        | Ile        | Ser        | Ile        | Pro<br>255 | Tyr        |
| 15 | Ala Ser        | Gln Arg<br>260 | Glu Ala        | Glu          | Leu        | His<br>265 | Ala        | Thr        | Leu        | Leu        | Ser<br>270 | Met        | Val        |
|    | Met Val        | Phe Ile<br>275 | Leu Cys        | Ser          | Val<br>280 | Pro        | Tyr        | Ala        | Thr        | Leu<br>285 | Val        | Val        | Tyr        |
| 20 | Gln Thr<br>290 | Val Leu        | Asn Val        | Pro<br>295   | Asp        | Thr        | Ser        | Val        | Phe<br>300 | Leu        | Leu        | Leu        | Thr        |
|    | Ala Val<br>305 | Trp Leu        | Pro Lys<br>310 | Val          | Ser        | Leu        | Leu        | Ala<br>315 | Asn        | Pro        | Val        | Leu        | Phe<br>320 |
|    | Leu Thr        | Val Asn        | Lys Ser<br>325 | Val          | Arg        | Lys        | Cys<br>330 | Leu        | Ile        | Gly        | Thr        | Leu<br>335 | Val        |
| 25 | Gln Leu        | His His<br>340 | Arg Tyr        | Ser          |            | Arg<br>345 | Asn        | Val        | Val        | Ser        | Thr<br>350 | Gly        | Ser        |
|    | Gly Met        | Ala Glu<br>355 | Ala Ser        | Leu          | Glu<br>360 | Pro        | ser        | Ile        | Arg        | Ser<br>365 | Gly        | Ser        | Gln        |
| 30 | Leu Leu<br>370 | Glu Met        | Phe His        | Ile<br>375   | Gly        | Gln        | Gln        |            | Ile<br>380 | Phe        | Lys        | Pro        | Thr        |
|    | Glu Asp<br>385 | Glu Glu        | Glu Ser<br>390 | Glu          | Ala        | Lys        |            | Ile<br>395 | Gly        | Ser        | Ala        | Asp        | Phe<br>400 |
|    | Gln Ala        | Lys Glu        | Ile Phe<br>405 | Ser          | Thr        |            | Leu<br>410 | Glu        | Gly        | Glu        | Gln        | Gly<br>415 | Pro        |
| 35 | Gln Phe        | Ala Pro<br>420 | Ser Ala        | Pro          |            | Leu<br>425 | Ser        | Thr        | Val        | Asp        | Ser<br>430 | Val        | Ser        |
|    | Gln Val        | Ala Pro        | Ala Ala        | Pro          | Val        | Glu        | Pro        | Glu        | Thr        | Phe        | Pro        | Asp        | Lys        |

|    |        |            |                          | 435                      |                              |                               |                                      |                          | 440       |            |            |            |            | 445 |            |            |            |
|----|--------|------------|--------------------------|--------------------------|------------------------------|-------------------------------|--------------------------------------|--------------------------|-----------|------------|------------|------------|------------|-----|------------|------------|------------|
|    |        | Tyr        | Ser<br>450               | Leu                      | Gln                          | Phe                           | Gly                                  | Phe                      | Gly       | Pro        | Phe        | Glu        | Leu<br>460 | Pro | Pro        | Gln        | Trp        |
| 5  |        | Leu<br>465 | Ser                      | Glu                      | Thr                          | Arg                           | Asn<br>470                           | Ser                      | Lys       | Lys        | Arg        | Leu<br>475 | Leu        | Pro | Pro        | Leu        | Gly<br>480 |
|    |        | Asn        | Thr                      | Pro                      | Glu                          | Glu<br>485                    | Leu                                  | Ile                      | Gln       | Thr        | Lys<br>490 | Val        | Pro        | Lys | Val        | Gly<br>495 | Arg        |
|    |        | Val        | Glu                      | Arg                      | Lys<br>500                   | Met                           | Ser                                  | Arg                      | Asn       | Asn<br>505 | Lys        | Val        | Ser        | Ile | Phe<br>510 | Pro        | Lys        |
| 10 |        | Val        | Asp                      | Ser<br>515               |                              |                               |                                      |                          |           |            |            |            |            |     |            |            |            |
|    | (106)  | INF        | ORMA                     | TION                     | FOF                          | SEC                           | O ID                                 | NO:                      | .05:      |            |            |            |            |     |            |            |            |
| 15 |        | (i)        | (A)<br>(B)<br>(C)        | LEN<br>TYI<br>STF        | GTH:<br>E: r<br>ANDE         | 29<br>ucle<br>DNES            | Dase<br>base<br>ic a<br>S: s         | pai<br>cid<br>ing]       | rs        |            |            |            |            |     |            |            |            |
|    |        | (ii        | ) MC                     | LECU                     | LE I                         | YPE:                          | DNA                                  | . (ge                    | nomi      | c)         |            |            |            |     |            |            |            |
|    |        | (xi        | ) SE                     | QUEN                     | CE I                         | ESCR                          | IPTI                                 | ON:                      | SEQ       | ID N       | 0:10       | 5:         |            |     |            |            |            |
| 20 | GGAGA  | ATTC.      | A CT                     | AGGC                     | GAGG                         | CGC                           | TCCA                                 | TC                       |           |            |            |            |            |     |            |            | 2          |
|    | (107)  | INF        | ORMA                     | TION                     | FOR                          | SEQ                           | ID                                   | NO:1                     | 06:       |            |            |            |            |     |            |            |            |
| 25 |        | (i)        | (A)<br>(B)<br>(C)        | LEN<br>TYP<br>STR        | GTH:<br>E: n<br>ANDE         | 30<br>ucle<br>DNES            | TERI<br>base<br>ic a<br>S: s<br>inea | pai<br>cid<br>ingl       | rs        |            |            |            |            |     |            |            |            |
|    |        | (ii        | ) MO                     | LECU                     | LE T                         | YPE:                          | DNA                                  | (ge                      | nomi      | c)         |            |            |            |     |            |            |            |
|    |        | (xi        | ) SE                     | QUEN                     | CE D                         | ESCR                          | IPTI                                 | ON:                      | SEQ       | ID N       | 0:10       | 6:         |            |     |            |            |            |
|    | GGAGGA | ATCC       | A GG                     | AAAC                     | CTTA                         | GGC                           | CGAG                                 | TCC                      |           |            |            |            |            |     |            |            | 3 (        |
| 30 | (108)  | INF        | ORMA                     | TION                     | FOR                          | SEQ                           | ID :                                 | NO:1                     | 07:       |            |            |            |            |     |            |            |            |
| 35 |        |            | (A)<br>(B)<br>(C)<br>(D) | LEN<br>TYP<br>STR<br>TOP | GTH:<br>E: n<br>ANDE<br>OLOG | 116-<br>ucle<br>DNES:<br>Y: 1 | TERI<br>4 ba<br>ic a<br>S: s<br>inea | se p<br>cid<br>ingl<br>r | airs<br>e | c)         |            |            |            |     |            |            |            |
|    |        |            |                          |                          |                              |                               |                                      | ,50                      |           | -,         |            |            |            |     |            |            |            |

25

| (xi) | SEQUENCE | DESCRIPTION: | SEQ | ID | NO:107: |
|------|----------|--------------|-----|----|---------|
|------|----------|--------------|-----|----|---------|

|    | ATGAATCGGC | ACCATCTGCA | GGATCACTTT | CTGGAAATAG | ACAAGAAGAA | CTGCTGTGTG | 60   |
|----|------------|------------|------------|------------|------------|------------|------|
|    | TTCCGAGATG | ACTTCATTGC | CAAGGTGTTG | CCGCCGGTGT | TGGGGCTGGA | GTTTATCTTT | 120  |
|    | GGGCTTCTGG | GCAATGGCCT | TGCCCTGTGG | ATTTTCTGTT | TCCACCTCAA | GTCCTGGAAA | 180  |
| 5  | TCCAGCCGGA | TTTTCCTGTT | CAACCTGGCA | GTAGCTGACT | TTCTACTGAT | CATCTGCCTG | 240  |
|    | CCGTTCGTGA | TGGACTACTA | TGTGCGGCGT | TCAGACTGGA | ACTTTGGGGA | CATCCCTTGC | 300  |
|    | CGGCTGGTGC | TCTTCATGTT | TGCCATGAAC | CGCCAGGGCA | GCATCATCTT | CCTCACGGTG | 360  |
|    | GTGGCGGTAG | ACAGGTATTT | CCGGGTGGTC | CATCCCCACC | ACGCCCTGAA | CAAGATCTCC | 420  |
|    | AATTGGACAG | CAGCCATCAT | CTCTTGCCTT | CTGTGGGGCA | TCACTGTTGG | CCTAACAGTC | 480  |
| 10 | CACCTCCTGA | AGAAGAAGTT | GCTGATCCAG | AATGGCCCTG | CAAATGTGTG | CATCAGCTTC | 540  |
|    | AGCATCTGCC | ATACCTTCCG | GTGGCACGAA | GCTATGTTCC | TCCTGGAGTT | CCTCCTGCCC | 600  |
|    | CTGGGCATCA | TCCTGTTCTG | CTCAGCCAGA | ATTATCTGGA | GCCTGCGGCA | GAGACAAATG | 660  |
|    | GACCGGCATG | CCAAGATCAA | GAGAGCCATC | ACCTTCATCA | TGGTGGTGGC | CATCGTCTTT | 720  |
|    | GTCATCTGCT | TCCTTCCCAG | CGTGGTTGTG | CGGATCCGCA | TCTTCTGGCT | CCTGCACACT | 780  |
| 15 | TCGGGCACGC | AGAATTGTGA | AGTGTACCGC | TCGGTGGACC | TGGCGTTCTT | TATCACTCTC | 840  |
|    | AGCTTCACCT | ACATGAACAG | CATGCTGGAC | CCCGTGGTGT | ACTACTTCTC | CAGCCCATCC | 900  |
|    | TTTCCCAACT | TCTTCTCCAC | TTTGATCAAC | CGCTGCCTCC | AGAGGAAGAT | GACAGGTGAG | 960  |
|    | CCAGATAATA | ACCGCAGCAC | GAGCGTCGAG | CTCACAGGGG | ACCCCAACAA | AACCAGAGGC | 1020 |
|    | GCTCCAGAGG | CGTTAATGGC | CAACTCCGGT | GAGCCATGGA | GCCCCTCTTA | TCTGGGCCCA | 1080 |
| 20 | ACCTCAAATA | ACCATTCCAA | GAAGGGACAT | TGTCACCAAG | AACCAGCATC | TCTGGAGAAA | 1140 |
|    | CAGTTGGGCT | GTTGCATCGA | GTAA       |            |            |            | 1164 |

(109) INFORMATION FOR SEQ ID NO:108:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 387 amino acids

(B) TYPE: amino acid

- (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:108:
- 30 Met Asn Arg His His Leu Gln Asp His Phe Leu Glu Ile Asp Lys Lys

|    | 1              |                | 5             |              |            |            | 10         |            |            |            |            | 15         |            |
|----|----------------|----------------|---------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    | Asn Cys        | Cys Val        | Phe Ar        | g Asp        | Asp        | Phe<br>25  | Ile        | Ala        | Lys        | Val        | Leu<br>30  | Pro        | Pro        |
| 5  | Val Let        | Gly Leu<br>35  | Glu Ph        | e Ile        | Phe<br>40  | Gly        | Leu        | Leu        | Gly        | Asn<br>45  | Gly        | Leu        | Ala        |
|    | Leu Try        | lle Phe        | Cys Ph        | e His        | Leu        | Lys        | Ser        | Trp        | Lys<br>60  | Ser        | Ser        | Arg        | Ile        |
|    | Phe Leu<br>65  | Phe Asn        | Leu Al        |              | Ala        | Asp        | Phe        | Leu<br>75  | Leu        | Ile        | Ile        | Cys        | Leu<br>80  |
| 10 | Pro Phe        | Val Met        | Asp Ty<br>85  | r Tyr        | Val        | Arg        | Arg<br>90  | Ser        | Asp        | Trp        | Asn        | Phe<br>95  | Gly        |
|    | Asp Ile        | Pro Cys        | Arg Le        | u Val        | Leu        | Phe<br>105 | Met        | Phe        | Ala        | Met        | Asn<br>110 | Arg        | Gln        |
| 15 | Gly Ser        | Ile Ile<br>115 | Phe Le        | u Thr        | Val<br>120 | Val        | Ala        | Val        | Asp        | Arg<br>125 | Tyr        | Phe        | Arg        |
|    | Val Val        | His Pro        | His Hi        | s Ala<br>135 | Leu        | Asn        | Lys        | Ile        | Ser<br>140 | Asn        | Trp        | Thr        | Ala        |
|    | Ala Ile<br>145 | Ile Ser        | Cys Le<br>15  |              | Trp        | Gly        | Ile        | Thr<br>155 | Val        | Gly        | Leu        | Thr        | Val<br>160 |
| 20 | His Leu        | Leu Lys        | Lys Ly<br>165 | s Leu        | Leu        | Ile        | Gln<br>170 | Asn        | Gly        | Pro        | Ala        | Asn<br>175 | Val        |
|    | Cys Ile        | Ser Phe<br>180 | Ser Il        | e Cys        | His        | Thr<br>185 | Phe        | Arg        | Trp        | His        | Glu<br>190 | Ala        | Met        |
| 25 | Phe Leu        | Leu Glu<br>195 | Phe Le        | u Leu        | Pro<br>200 | Leu        | Gly        | Ile        | Ile        | Leu<br>205 | Phe        | Cys        | Ser        |
|    | Ala Arg<br>210 | Ile Ile        | Trp Se        | r Leu<br>215 | Arg        | Gln        | Arg        | Gln        | Met<br>220 | Asp        | Arg        | His        | Ala        |
|    | Lys Ile<br>225 | Lys Arg        | Ala Il<br>23  |              | Phe        | Ile        | Met        | Val<br>235 | Val        | Ala        | Ile        | Val        | Phe<br>240 |
| 30 | Val Ile        | Cys Phe        | Leu Pr<br>245 | o Ser        | Val        |            | Val<br>250 | Arg        | Ile        | Arg        | Ile        | Phe<br>255 | Trp        |
|    | Leu Leu        | His Thr<br>260 | Ser Gl        | y Thr        | Gln        | Asn<br>265 | Cys        | Glu        | Val        | Tyr        | Arg<br>270 | Ser        | Val        |
| 35 | Asp Leu        | Ala Phe<br>275 | Phe Il        | e Thr        | Leu<br>280 | Ser        | Phe        | Thr        | Tyr        | Met<br>285 | Asn        | Ser        | Met        |
|    | Leu Asp<br>290 | Pro Val        | Val Ty        | r Tyr<br>295 | Phe        | Ser        | Ser        | Pro        | Ser<br>300 | Phe        | Pro        | Asn        | Phe        |

|    |       | Phe<br>305 | Ser               | Thr                               | Leu                  | Ile                | Asn<br>310           | Arg                 | Cys        | Leu        | Gln        | Arg<br>315 | Lys        | Met        | Thr        | Gly        | Glu<br>320 |    |
|----|-------|------------|-------------------|-----------------------------------|----------------------|--------------------|----------------------|---------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|----|
|    |       | Pro        | Asp               | Asn                               | Asn                  | Arg<br>325         | Ser                  | Thr                 | Ser        | Val        | Glu<br>330 | Leu        | Thr        | Gly        | Asp        | Pro<br>335 | Asn        |    |
| 5  |       | Lys        | Thr               | Arg                               | Gly<br>340           | Ala                | Pro                  | Glu                 | Ala        | Leu<br>345 | Met        | Ala        | Asn        | Ser        | Gly<br>350 | Glu        | Pro        |    |
|    |       | Trp        | Ser               | Pro<br>355                        | Ser                  | Tyr                | Leu                  | Gly                 | Pro<br>360 | Thr        | Ser        | Asn        | Asn        | His<br>365 | Ser        | Lys        | Lys        |    |
| 10 |       | Gly        | His<br>370        | Cys                               | His                  | Gln                | Glu                  | Pro<br>375          | Ala        | Ser        | Leu        | Glu        | Lys<br>380 | Gln        | Leu        | Gly        | Cys        |    |
|    |       | Cys<br>385 | Ile               | Glu                               |                      |                    |                      |                     |            |            |            |            |            |            |            |            |            |    |
|    | (110) | INF        | ORM               | ATIOI                             | 1 FOF                | SEC                | ] ID                 | NO:                 | 109:       |            |            |            |            |            |            |            |            |    |
| 15 |       | (i)        | (A)<br>(B)<br>(C) | QUENC<br>LEN<br>TYI<br>STI<br>TOI | GTH:<br>E: r<br>ANDE | 37<br>ucle<br>DNES | base<br>ic a         | pai<br>cid<br>singl | rs         |            |            |            |            |            |            |            |            |    |
|    |       | (ii        | ) мс              | LECU                              | LE I                 | YPE:               | DNA                  | (ge                 | enomi      | .c)        |            |            |            |            |            |            |            |    |
| 20 |       | (iv        | ) AN              | NTI-S                             | ENSE                 | : NC               | •                    |                     |            |            |            |            |            |            |            |            |            |    |
|    |       | (xi        | ) SE              | EQUE                              | CE I                 | ESCR               | IPTI                 | : NO                | SEQ        | ID N       | 10:10      | 9:         |            |            |            |            |            |    |
|    | ACCAT | GGCT       | T GC              | CAATO                             | GCAG                 | TGC                | GGCC                 | AGG                 | GGGC       | ACT        |            |            |            |            |            |            |            | 37 |
|    | (111) | INF        | ORMA              | MOITA                             | FOR                  | SEC                | ID                   | NO:1                | .10:       |            |            |            |            |            |            |            |            |    |
| 25 |       | (i)        | (A)<br>(B)<br>(C) | UENC<br>LEN<br>TYP<br>STR<br>TOP  | GTH:<br>E: n<br>ANDE | 39<br>ucle<br>DNES | base<br>ic a<br>S: s | pai<br>cid<br>ingl  | rs         |            |            |            |            |            |            |            |            |    |
|    |       | (ii        | ) MC              | LECU                              | LE T                 | YPE:               | DNA                  | (ge                 | nomi       | c)         |            |            |            |            |            |            |            |    |
| 30 |       | (iv        | ) AN              | TI-S                              | ENSE                 | : YE               | s                    |                     |            |            |            |            |            |            |            |            |            |    |
|    |       | (xi        | ) SE              | QUEN                              | CE D                 | ESCR               | IPTI                 | ON:                 | SEQ        | ID N       | 0:11       | 0:         |            |            |            |            |            |    |
|    | CGACC | AGGA       | C AA              | ACAG                              | CATC                 | TTG                | GTCA                 | CTT                 | GTCT       | CCGG       | C          |            |            |            |            |            |            | 39 |
|    | (112) | INF        | ORMA              | TION                              | FOR                  | SEQ                | ID                   | NO:1                | 11:        |            |            |            |            |            |            |            |            |    |
| 35 |       | (i)        | (A)               | UENC<br>LEN                       | GTH:                 | 39                 | base                 | pai                 |            |            |            |            |            |            |            |            |            |    |

|    | (C) STRANDEDNESS: single (D) TOPOLOGY: linear                                                                                  |     |
|----|--------------------------------------------------------------------------------------------------------------------------------|-----|
|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                              |     |
| 5  | (iv) ANTI-SENSE: NO                                                                                                            |     |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:111:                                                                                      |     |
|    | GACCAAGATG CTGTTTGTCC TGGTCGTGGT GTTTGGCAT                                                                                     | 39  |
|    | (113) INFORMATION FOR SEQ ID NO:112:                                                                                           |     |
| 10 | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 base pairs (B) TYPE: nucleic acid (C) STRANDENNESS: single (D) TOPOLOGY: linear   |     |
|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                              |     |
| 15 | (iv) ANTI-SENSE: YES                                                                                                           |     |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:112:                                                                                      |     |
|    | CGGAATTCAG GATGGATCGG TCTCTTGCTG CGCCT                                                                                         | 35  |
|    | (114) INFORMATION FOR SEQ ID NO:113:                                                                                           |     |
| 20 | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1212 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear |     |
|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                              |     |
| 25 | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:113:                                                                                      |     |
|    | ATGGCTTGCA ATGGCAGTGC GGCCAGGGGG CACTTTGACC CTGAGGACTT GAACCTGACT                                                              | 60  |
|    | GACGAGGCAC TGAGACTCAA GTACCTGGGG CCCCAGCAGA CAGAGCTGTT CATGCCCATC                                                              | 120 |
|    | TGTGCCACAT ACCTGCTGAT CTTCGTGGTG GGCGCTGTGG GCAATGGGCT GACCTGTCTG                                                              | 180 |
|    | GTCATCCTGC GCCACAAGGC CATGCGCACG CCTACCAACT ACTACCTCTT CAGCCTGGCC                                                              | 240 |
| 30 | GTGTCGGACC TGCTGGTGCT GCTGGTGGGC CTGCCCCTGG AGCTCTATGA GATGTGGCAC                                                              | 300 |
|    | AACTACCCCT TCCTGCTGGG CGTTGGTGGC TGCTATTTCC GCACGCTACT GTTTGAGATG                                                              | 360 |
|    | GTCTGCCTGG CCTCAGTGCT CAACGTCACT GCCCTGAGCG TGGAACGCTA TGTGGCCGTG                                                              | 420 |
|    | GTGCACCCAC TCCAGGCCAG GTCCATGGTG ACGCGGGCCC ATGTGCGCCG AGTGCTTGGG                                                              | 480 |

89

|    | GCCGTCTGGG GTCTTGCCAT GCTCTGCTCC CTGCCCAACA CCAGCCTGCA CGGCATCCGG 540                                                       |
|----|-----------------------------------------------------------------------------------------------------------------------------|
|    | CAGCTGCACG TGCCCTGCCG GGGCCCAGTG CCAGACTCAG CTGTTTGCAT GCTGGTCCGC 600                                                       |
|    | CCACGGGCCC TCTACAACAT GGTAGTGCAG ACCACCGCGC TGCTCTTCTT CTGCCTGCCC 660                                                       |
|    | ATGGCCATCA TGAGCGTGCT CTACCTGCTC ATTGGGCTGC GACTGCGGCG GGAGAGGCTG 720                                                       |
| 5  | CTGCTCATGC AGGAGGCCAA GGGCAGGGGC TCTGCAGCAG CCAGGTCCAG ATACACCTGC 780                                                       |
|    | AGGCTCCAGC AGCACGATCG GGGCCGGAGA CAAGTGACCA AGATGCTGTT TGTCCTGGTC 840                                                       |
|    | GTGGTGTTTG GCATCTGCTG GGCCCCGTTC CACGCCGACC GCGTCATGTG GAGCGTCGTG 900                                                       |
|    | TCACAGTGGA CAGATGGCCT GCACCTGGCC TTCCAGCACG TGCACGTCAT CTCCGGCATC 960                                                       |
|    | TTCTTCTACC TGGGCTCGGC GGCCAACCCC GTGCTCTATA GCCTCATGTC CAGCCGCTTC 1020                                                      |
| 10 | CGAGAGACCT TCCAGGAGGC CCTGTGCCTC GGGGCCTGCT GCCATCGCCT CAGACCCCGC 108                                                       |
|    | CACAGCTCCC ACAGCCTCAG CAGGATGACC ACAGGCAGCA CCCTGTGTGA TGTGGGCTCC 1140                                                      |
|    | CTGGGCAGCT GGGTCCACCC CCTGGCTGGG AACGATGGCC CAGAGGGCGCA GCAAGAGACC 1200                                                     |
|    | GATCCATCCT GA 1212                                                                                                          |
|    | (115) INFORMATION FOR SEQ ID NO:114:                                                                                        |
| 15 | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 403 amino acids (B) TYPE: amino acid (C) STRANDEDMESS: (D) TOPOLOGY: not relevant |
| 20 | (ii) MOLECULE TYPE: protein                                                                                                 |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:114:                                                                                   |
|    | Met Ala Cys Asn Gly Ser Ala Ala Arg Gly His Phe Asp Pro Glu Asp 1 $$10$$                                                    |
| 25 | Leu Asn Leu Thr Asp Glu Ala Leu Arg Leu Lys Tyr Leu Gly Pro Gln $$20$ \end{tabular}$                                        |
|    | Gln Thr Glu Leu Phe Met Pro Ile Cys Ala Thr Tyr Leu Leu Ile Phe $$35$$ $$40$$                                               |
|    | Val Val Gly Ala Val Gly Asn Gly Leu Thr Cys Leu Val Ile Leu Arg<br>50 60                                                    |
| 30 | His Lys Ala Met Arg Thr Pro Thr Asn Tyr Tyr Leu Phe Ser Leu Ala<br>65 70 80                                                 |
|    | Val Ser Asp Leu Leu Val Leu Leu Val Gly Leu Pro Leu Glu Leu Tyr                                                             |

|    | Glu        | Met        | Trp        | His<br>100 | Asn        | Tyr        | Pro        | Phe        | Leu<br>105 | Leu        | Gly        | Val        | Gly        | Gly<br>110 |            | Tyr        |
|----|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    | Phe        | Arg        | Thr<br>115 | Leu        | Leu        | Phe        | Glu        | Met<br>120 | Val        | Cys        | Leu        | Ala        | Ser<br>125 |            | Leu        | Asn        |
| 5  | Val        | Thr<br>130 | Ala        | Leu        | Ser        | Val        | Glu<br>135 | Arg        | Tyr        | Val        | Ala        | Val<br>140 |            | His        | Pro        | Leu        |
|    | Gln<br>145 | Ala        | Arg        | Ser        | Met        | Val<br>150 | Thr        | Arg        | Ala        | His        | Val<br>155 | Arg        | Arg        | Val        | Leu        | Gly<br>160 |
| 10 | Ala        | Val        | Trp        | Gly        | Leu<br>165 | Ala        | Met        | Leu        | Cys        | Ser<br>170 |            | Pro        | Asn        | Thr        | Ser<br>175 | Leu        |
|    | His        | Gly        | Ile        | Arg<br>180 | Gln        | Leu        | His        | Val        | Pro<br>185 | Cys        | Arg        | Gly        | Pro        | Val<br>190 | Pro        | Asp        |
|    | Ser        | Ala        | Val<br>195 | Суз        | Met        | Leu        | Val        | Arg<br>200 | Pro        | Arg        | Ala        | Leu        | Tyr<br>205 | Asn        | Met        | Val        |
| 15 | Val        | Gln<br>210 | Thr        | Thr        | Ala        | Leu        | Leu<br>215 | Phe        | Phe        | Cys        | Leu        | Pro<br>220 | Met        | Ala        | Ile        | Met        |
|    | Ser<br>225 | Val        | Leu        | Tyr        | Leu        | Leu<br>230 | Ile        | Gly        | Leu        | Arg        | Leu<br>235 | Arg        | Arg        | Glu        | Arg        | Leu<br>240 |
| 20 | Leu        | Leu        | Met        | Gln        | Glu<br>245 | Ala        | Lys        | Gly        | Arg        | Gly<br>250 | Ser        | Ala        | Ala        | Ala        | Arg<br>255 | Ser        |
|    | Arg        | Tyr        | Thr        | Cys<br>260 | Arg        | Leu        | Gln        | Gln        | His<br>265 | Asp        | Arg        | Gly        | Arg        | Arg<br>270 | Gln        | Val        |
|    | Thr        | Lys        | Met<br>275 | Leu        | Phe        | Val        | Leu        | Val<br>280 | Val        | Val        | Phe        | Gly        | Ile<br>285 | Cys        | Trp        | Ala        |
| 25 | Pro        | Phe<br>290 | His        | Ala        | Asp        | Arg        | Val<br>295 | Met        | Trp        | Ser        | Val        | Val<br>300 | Ser        | Gln        | Trp        | Thr        |
|    | Asp<br>305 | Gly        | Leu        | His        | Leu        | Ala<br>310 | Phe        | Gln        | His        | Val        | His<br>315 | Val        | Ile        | Ser        | Gly        | Ile<br>320 |
| 30 | Phe        | Phe        | Tyr        | Leu        | Gly<br>325 | Ser        | Ala        | Ala        | Asn        | Pro<br>330 | Val        | Leu        | Tyr        | Ser        | Leu<br>335 | Met.       |
|    | Ser        | Ser        | Arg        | Phe<br>340 | Arg        | Glu        | Thr        | Phe        | Gln<br>345 | Glu        | Ala        | Leu        | Cys        | Leu<br>350 | Gly        | Ala        |
|    | Cys        | Cys        | His<br>355 | Arg        | Leu        | Arg        |            | Arg<br>360 | His        | Ser        | Ser        |            | Ser<br>365 | Leu        | Ser        | Arg        |
| 35 | Met        | Thr<br>370 | Thr        | Gly        | Ser        | Thr        | Leu<br>375 | Cys        | Asp        | Val        |            | Ser<br>380 | Leu        | Gly        | Ser        | Trp        |
|    | Val        | His        | Pro        | Leu        | Ala        | Gly        | Asn        | Asp        | Gly        | Pro        | Glu        | Ala        | Gln        | Gln        | Glu        | Thr        |

|    | 385        | 3                                                                                                     | 90                           |         | 395        |            | 400 |
|----|------------|-------------------------------------------------------------------------------------------------------|------------------------------|---------|------------|------------|-----|
|    | Asp I      | ro Ser                                                                                                |                              |         |            |            |     |
|    | (116) INFO | RMATION FOR SEQ :                                                                                     | D NO:115:                    |         |            |            |     |
| 5  | (i)        | SEQUENCE CHARACTE<br>(A) LENGTH: 30 ba<br>(B) TYPE: nucleic<br>(C) STRANDEDNESS:<br>(D) TOPOLOGY: lin | se pairs<br>acid<br>single   |         |            |            |     |
| 10 | (ii)       | MOLECULE TYPE: I                                                                                      | NA (genom                    | ic)     |            |            |     |
|    | (xi        | ) SEQUENCE DESCRI                                                                                     | PTION: SE                    | Q ID NO | :115:      |            |     |
|    | GGAAGCTTCA | GGCCCAAAGA TGGGG                                                                                      | AACAT                        |         |            |            | 30  |
|    | (117) INFO | RMATION FOR SEQ I                                                                                     | D NO:116:                    |         |            |            |     |
| 15 | (i)        | SEQUENCE CHARACTE<br>(A) LENGTH: 30 ba<br>(B) TYPE: nucleic<br>(C) STRANDEDNESS:<br>(D) TOPOLOGY: lin | se pairs<br>acid<br>single   |         |            |            |     |
|    | (ii)       | MOLECULE TYPE: D                                                                                      | NA (genom                    | ic)     |            |            |     |
| 20 | (xi)       | SEQUENCE DESCRIP                                                                                      | TION: SEQ                    | ID NO:  | 116:       |            |     |
|    | GTGGATCCAC | CCGCGGAGGA CCCAG                                                                                      | GCTAG                        |         |            |            | 30  |
|    | (118) INFO | RMATION FOR SEQ I                                                                                     | D NO:117:                    |         |            |            |     |
| 25 |            | SEQUENCE CHARACTE (A) LENGTH: 1098 (B) TYPE: nucleic (C) STRANDEDNESS: (D) TOPOLOGY: lin              | base pair:<br>acid<br>single | 5       |            |            |     |
|    | (ii)       | MOLECULE TYPE: D                                                                                      | NA (genom:                   | ic)     |            |            |     |
|    | (xi)       | SEQUENCE DESCRIP                                                                                      | TION: SEQ                    | ID NO:  | 117:       |            |     |
| 30 | ATGGGGAACA | TCACTGCAGA CAACT                                                                                      | CCTCG ATG                    | AGCTGTA | CCATCGACCA | TACCATCCAC | 60  |
|    | CAGACGCTGG | CCCCGGTGGT CTATG                                                                                      | PTACC GTG                    | CTGGTGG | TGGGCTTCCC | GGCCAACTGC | 120 |
|    | CTGTCCCTCT | ACTTCGGCTA CCTGC                                                                                      | AGATC AAGO                   | GCCCGGA | ACGAGCTGGG | CGTGTACCTG | 180 |
|    | TGCAACCTGA | CGGTGGCCGA CCTCT                                                                                      | CTAC ATC                     | rgctcgc | TGCCCTTCTG | GCTGCAGTAC | 240 |
|    | GTGCTGCAGC | ACGACAACTG GTCTC                                                                                      | ACGGC GAC                    | CTGTCCT | GCCAGGTGTG | CGGCATCCTC | 300 |
| 35 | CTGTACGAGA | ACATCTACAT CAGCG                                                                                      | rgggc ttc                    | CTCTGCT | GCATCTCCGT | GGACCGCTAC | 360 |

|    | CTGGCTGT  | rgg (          | CCAT                 | CCCT                                      | T CC              | GCTT                | CCAC      | CAG       | TTCC      | GGA       | CCCI      | 'GAAG     | GC (      | GCCG      | TCGG      | C         | 420 |
|----|-----------|----------------|----------------------|-------------------------------------------|-------------------|---------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----|
|    | GTCAGCGT  | rgg 1          | CATO                 | TGGG                                      | C C#              | AGGA                | GCTG      | CTG       | ACC       | GCA       | TCT       | CTTC      | CT (      | ATGO      | ACGA      | G         | 480 |
|    | GAGGTCAT  | CG A           | GGAC                 | GAGA                                      | A CC              | AGCA                | CCGC      | GTG       | TGCT      | TTG       | AGCF      | CTAC      | cc c      | ATCC      | AGGC      | A         | 540 |
|    | TGGCAGCG  | cc c           | CATO                 | AACT.                                     | A CI              | ACCG                | CTTC      | CTG       | GTGG      | GCT       | TCCI      | сттс      | CC (      | ATCT      | GCCT      | G         | 600 |
| 5  | CTGCTGGC  | GT C           | CTAC                 | CAGG                                      | G CA              | TCCI                | GCGC      | GCC       | GTGC      | GCC       | GGAG      | CCAC      | GG (      | ACCC      | AGAA      | .G        | 660 |
|    | AGCCGCAA  | .GG A          | CCAG                 | ATCC                                      | A GC              | GGCT                | GGTG      | CTC       | AGCA      | CCG       | TGGI      | CATC      | TT C      | CTGG      | CCTG      | С         | 720 |
|    | TTCCTGCC  | CT A           | CCAC                 | GTGT                                      | r gc              | TGCT                | GGTG      | CGC       | AGCG      | TCT       | GGGA      | GGCC      | AG C      | TGCG      | ACTT      | C         | 780 |
|    | GCCAAGGG  | CG T           | TTTC                 | AACG                                      | CI                | ACCA                | CTTC      | TCC       | CTCC      | TGC       | TCAC      | CAGC      | TT C      | AACT      | GCGT      | C         | 840 |
|    | GCCGACCC  | CG T           | GCTC                 | TACTO                                     | G CT              | TCGT                | CAGC      | GAG       | ACCA      | .ccc      | ACCG      | GGAC      | CT G      | GCCC      | GCCT      | C         | 900 |
| 10 | CGCGGGGC  | CT G           | CCTG                 | GCCT                                      | r cc              | TCAC                | CTGC      | TCC       | AGGA      | CCG       | GCCG      | GGCC.     | AG G      | GAGG      | CCTA      | С         | 960 |
|    | CCGCTGGG  | TG C           | cccc                 | GAGG                                      | CT                | CCGG                | GAAA      | AGC       | GGGG      | CCC       | AGGG      | TGAG      | ga g      | CCCG      | AGCT      | G 1       | 020 |
|    | TTGACCAA  | GC T           | CCAC                 | CCGG                                      | CT                | TCCA                | GACC      | CCT       | AACT      | CGC       | CAGG      | GTCG      | GG C      | GGGT      | TCCC      | C 1       | 080 |
|    | ACGGGCAG  | GT T           | GGCC                 | TAG                                       |                   |                     |           |           |           |           |           |           |           |           |           | 1         | 098 |
|    | (119) IN  | FORM           | ATIO                 | N FOI                                     | SE                | Q ID                | No:       | 118:      |           |           |           |           |           |           |           |           |     |
| 15 | (i        | (A<br>(B<br>(C | ) LE<br>) TY<br>) ST | CE CH<br>NGTH:<br>PE: &<br>RANDE<br>POLOG | 36<br>min<br>EDNE | 5 am<br>o ac<br>SS: | ino a     | acid      | s         |           |           |           |           |           |           |           |     |
| 20 | (i        | i) M           | OLEC                 | ULE 1                                     | YPE               | : pr                | oteir     | n         |           |           |           |           |           |           |           |           |     |
|    | (x        | i) s           | EQUE                 | NCE I                                     | ESC               | RIPT                | ION:      | SEQ       | ID I      | NO:1      | 18:       |           |           |           |           |           |     |
|    | Met<br>1  | Gly            | Asn                  | Ile                                       | Thr<br>5          | Ala                 | Asp       | Asn       | Ser       | Ser<br>10 | Met       | Ser       | Cys       | Thr       | Ile<br>15 | Asp       |     |
| 25 | His       | Thr            | Ile                  | His<br>20                                 | Gln               | Thr                 | Leu       | Ala       | Pro<br>25 | Val       | Val       | Tyr       | Val       | Thr<br>30 | Val       | Leu       |     |
|    | Val       | Val            | Gly<br>35            | Phe                                       | Pro               | Ala                 | Asn       | Cys<br>40 | Leu       | Ser       | Leu       | Tyr       | Phe<br>45 | Gly       | Tyr       | Leu       |     |
|    | Gln       | Ile<br>50      | Lys                  | Ala                                       | Arg               | Asn                 | Glu<br>55 | Leu       | Gly       | Val       | Tyr       | Leu<br>60 | Cys       | Asn       | Leu       | Thr       |     |
| 30 | Val<br>65 | Ala            | Asp                  | Leu                                       | Phe               | Tyr<br>70           | Ile       | Cys       | Ser       | Leu       | Pro<br>75 | Phe       | Trp       | Leu       | Gln       | Tyr<br>80 |     |
|    | Val       | Leu            | Gln                  | His                                       | Asp<br>85         | Asn                 | Trp       | Ser       | His       | Gly<br>90 | Asp       | Leu       | Ser       | Cys       | Gln<br>95 | Val       |     |

|    | Cys        | Gly        | Ile        | Leu<br>100 | Leu        | Tyr        | Glu        | Asn        | Ile<br>105 |            | Ile        | Ser        | Val        | Gly<br>110 |            | Leu        |
|----|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    | Cys        | Cys        | Ile<br>115 | Ser        | Val        | Asp        | Arg        | Tyr<br>120 | Leu        | Ala        | Val        | Ala        | His<br>125 |            | Phe        | Arg        |
| 5  | Phe        | His<br>130 | Gln        | Phe        | Arg        | Thr        | Leu<br>135 | Lys        | Ala        | Ala        | Val        | Gly<br>140 |            | Ser        | Val        | Val        |
|    | Ile<br>145 | Trp        | Ala        | Lys        | Glu        | Leu<br>150 | Leu        | Thr        | Ser        | Ile        | Tyr<br>155 |            | Leu        | Met        | His        | Glu<br>160 |
| 10 | Glu        | Val        | Ile        | Glu        | Asp<br>165 | Glu        | Asn        | Gln        | His        | Arg<br>170 |            | Cys        | Phe        | Glu        | His<br>175 | Tyr        |
|    | Pro        | Ile        | Gln        | Ala<br>180 | Trp        | Gln        | Arg        | Ala        | Ile<br>185 | Asn        | Tyr        | Tyr        | Arg        | Phe<br>190 | Leu        | Val        |
|    | Gly        | Phe        | Leu<br>195 | Phe        | Pro        | Ile        | Cys        | Leu<br>200 | Leu        | Leu        | Ala        | Ser        | Tyr<br>205 | Gln        | Gly        | Ile        |
| 15 | Leu        | Arg<br>210 | Ala        | Val        | Arg        | Arg        | Ser<br>215 | His        | Gly        | Thr        | Gln        | Lys<br>220 | Ser        | Arg        | Lys        | Asp        |
|    | Gln<br>225 | Ile        | Gln        | Arg        | Leu        | Val<br>230 | Leu        | Ser        | Thr        | Val        | Val<br>235 | Ile        | Phe        | Leu        | Ala        | Cys<br>240 |
| 20 | Phe        | Leu        | Pro        | Tyr        | His<br>245 | Val        | Leu        | Leu        | Leu        | Val<br>250 | Arg        | Ser        | Val        | Trp        | Glu<br>255 | Ala        |
|    | Ser        | Cys        | Asp        | Phe<br>260 | Ala        | Lys        | Gly        | Val        | Phe<br>265 | Asn        | Ala        | Tyr        | His        | Phe<br>270 | Ser        | Leu        |
|    | Leu        | Leu        | Thr<br>275 | Ser        | Phe        | Asn        | Cys        | Val<br>280 | Ala        | Asp        | Pro        | Val        | Leu<br>285 | Tyr        | Cys        | Phe        |
| 25 | Val        | Ser<br>290 | Glu        | Thr        | Thr        | His        | Arg<br>295 | Asp        | Leu        | Ala        | Arg        | Leu<br>300 | Arg        | Gly        | Ala        | Cys        |
|    | Leu<br>305 | Ala        | Phe        | Leu        | Thr        | Cys<br>310 | Ser        | Arg        | Thr        | Gly        | Arg<br>315 | Ala        | Arg        | Glu        | Ala        | Tyr<br>320 |
| 30 | Pro        | Leu        | Gly        | Ala        | Pro<br>325 | Glu        | Ala        | Ser        | Gly        | Lys<br>330 | Ser        | Gly        | Ala        | Gln        | Gly<br>335 | Glu        |
|    | Glu        | Pro        | Glu        | Leu<br>340 | Leu        | Thr        | Lys        | Leu        | His<br>345 | Pro        | Ala        | Phe        | Gln        | Thr<br>350 | Pro        | Asn        |
|    | Ser        | Pro        | Gly<br>355 | Ser        | Gly        | Gly        |            | Pro<br>360 | Thr        | Gly        | Arg        | Leu        | Ala<br>365 |            |            |            |
| 35 | (120) INF  | ORMA       | TION       | FOR        | SEC        | ID         | NO:1       | 19:        |            |            |            |            |            |            |            |            |

- 3:
  - (i) SEQUENCE CHARACTERISTICS:
    (A) LENGTH: 26 base pairs

94

|    | (B) TYPE: nucleic acid<br>(C) STRANDEDNESS: single<br>(D) TOPOLOGY: linear                                                         |     |
|----|------------------------------------------------------------------------------------------------------------------------------------|-----|
|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                                  |     |
| 5  | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:119:                                                                                          |     |
|    | GACCTCGAGT CCTTCTACAC CTCATC                                                                                                       | 26  |
|    | (121) INFORMATION FOR SEQ ID NO:120:                                                                                               |     |
| 10 | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANEDENISS: single (D) TOPOLOGY: linear       |     |
|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                                  |     |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:120:                                                                                          |     |
| 15 | TGCTCTAGAT TCCAGATAGG TGAAAACTTG                                                                                                   | 30  |
|    | (122) INFORMATION FOR SEQ ID NO:121:                                                                                               |     |
| 20 | (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 1416 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear |     |
|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                                  |     |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:121:                                                                                          |     |
|    | ATGGATATTC TTTGTGAAGA AAATACTTCT TTGAGCTCAA CTACGAACTC CCTAATGCAA                                                                  | 60  |
| 25 | TTAAATGATG ACAACAGGCT CTACAGTAAT GACTTTAACT CCGGAGAAGC TAACACTTCT                                                                  | 120 |
|    | GATGCATTTA ACTGGACAGT CGACTCTGAA AATCGAACCA ACCTTTCCTG TGAAGGGTGC                                                                  | 180 |
|    | CTCTCACCGT CGTGTCTCTC CTTACTTCAT CTCCAGGAAA AAAACTGGTC TGCTTTACTG                                                                  | 240 |
|    | ACAGCCGTAG TGATTATTCT AACTATTGCT GGAAACATAC TCGTCATCAT GGCAGTGTCC                                                                  | 300 |
|    | CTAGAGAAAA AGCTGCAGAA TGCCACCAAC TATTTCCTGA TGTCACTTGC CATAGCTGAT                                                                  | 360 |
| 30 | ATGCTGCTGG GTTTCCTTGT CATGCCCGTG TCCATGTTAA CCATCCTGTA TGGGTACCGG                                                                  | 420 |
|    | TGGCCTCTGC CGAGCAAGCT TTGTGCAGTC TGGATTTACC TGGACGTGCT CTTCTCCACG                                                                  | 480 |

GCCTCCATCA TGCACCTCTG CGCCATCTCG CTGGACCGCT ACGTCGCCAT CCAGAATCCC 540
ATCCACCACA GCCGCTTCAA CTCCAGAACT AAGGCATTC TGAAAATCAT TGCTGTTTGG 600

|    | ACCATATCAG TAGGTATATC CATGCCAATA CCAGTCTTTG GGCTACAGGA CGATTCGAAG                                                           | 660          |
|----|-----------------------------------------------------------------------------------------------------------------------------|--------------|
|    | GTCTTTAAGG AGGGGAGTTG CTTACTCGCC GATGATAACT TTGTCCTGAT CGGCTCTTTT                                                           | 720          |
|    | GTGTCATTTT TCATTCCCTT AACCATCATG GTGATCACCT ACTTTCTAAC TATCAAGTCA                                                           | 780          |
|    | CTCCAGAAAG AAGCTACTTT GTGTGTAAGT GATCTTGGCA CACGGGCCAA ATTAGCTTCT                                                           | 840          |
| 5  | TTCAGCTTCC TCCCTCAGAG TTCTTTGTCT TCAGAAAAGC TCTTCCAGCG GTCGATCCAT                                                           | 900          |
|    | AGGGAGCCAG GGTCCTACAC AGGCAGGAGG ACTATGCAGT CCATCAGCAA TGAGCAAAAG                                                           | 960          |
|    | GCATGCAAGG TGCTGGGCAT CGTCTTCTTC CTGTTTGTGG TGATGTGGTG CCCTTTCTTC                                                           | 1020         |
|    | ATCACAAACA TCATGGCCGT CATCTGCAAA GAGTCCTGCA ATGAGGATGT CATTGGGGCC                                                           | 1080         |
|    | CTGCTCAATG TGTTTGTTTG GATCGGTTAT CTCTCTTCAG CAGTCAACCC ACTAGTCTAC                                                           | 1140         |
| 10 | ACACTGTTCA ACAAGACCTA TAGGTCAGCC TTTTCACGGT ATATTCAGTG TCAGTACAAG                                                           | 1200         |
|    | GAAAACAAAA AACCATTGCA GTTAATTTTA GTGAACACAA TACCGGCTTT GGCCTACAAG                                                           | 1260         |
|    | TCTAGCCAAC TTCAAATGGG ACAAAAAAA AATTCAAAGC AAGATGCCAA GACAACAGAT                                                            | 1320         |
|    | AATGACTGCT CAATGGTTGC TCTAGGAAAG CAGTATTCTG AAGAGGCTTC TAAAGACAAT                                                           | 1380         |
|    | AGCGACGGAG TGAATGAAAA GGTGAGCTGT GTGTGA                                                                                     | 1416         |
| 15 | (123) INFORMATION FOR SEQ ID NO:122:                                                                                        |              |
| 20 | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 471 amino acids (B) TYPE: amino acid (C) STRANDEDMESS: (D) TOPOLOGY: not relevant |              |
|    | (ii) MOLECULE TYPE: protein                                                                                                 |              |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:122:                                                                                   |              |
|    | Met Asp Ile Leu Cys Glu Glu Asn Thr Ser Leu Ser Ser Thr Thr Ass 1 $$ 5 $$ 10 $$ 15                                          | n            |
| 25 | Ser Leu Met Gln Leu Asn Asp Asp Asn Arg Leu Tyr Ser Asn Asp Pho<br>20 25 30                                                 | 3            |
|    | As n Ser Gly Glu Ala As n Thr Ser Asp Ala Phe As n Trp Thr Val As $35 \hspace{1cm} 40 \hspace{1cm} 45$                      | <sup>2</sup> |
| 30 | Ser Glu Asn Arg Thr Asn Leu Ser Cys Glu Gly Cys Leu Ser Pro Set 50 55 60                                                    | r            |
|    | Cys Leu Ser Leu Leu His Leu Gln Glu Lys Asn Trp Ser Ala Leu Leu<br>65 70 75 80                                              | ı            |

|    | Thr        | Ala        | Val        | Val        | 85         | Ile        | Leu        | Thr        | Ile        | 90         | Gly        | ' Asn      | Ile        | Leu        | Val        | Ile        |
|----|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    | Met        | Ala        | Val        | Ser<br>100 | Leu        | Glu        | Lys        | Lys        | Leu<br>105 | Glr        | Asn        | Ala        | Thr        | Asn<br>110 |            | Phe        |
| 5  | Leu        | Met        | Ser<br>115 | Leu        | Ala        | Ile        | Ala        | Asp<br>120 | Met        | Leu        | Leu        | Gly        | Phe<br>125 |            | Val        | Met        |
|    | Pro        | Val<br>130 | Ser        | Met        | Leu        | Thr        | 11e<br>135 | Leu        | Tyr        | Gly        | Tyr        | Arg<br>140 | Trp        | Pro        | Leu        | Pro        |
| 10 | Ser<br>145 | Lys        | Leu        | Cys        | Ala        | Val<br>150 | Trp        | Ile        | Tyr        | Leu        | Asp<br>155 |            | Leu        | Phe        | Ser        | Thr<br>160 |
|    | Ala        | Ser        | Ile        | Met        | His<br>165 | Leu        | Cys        | Ala        | Ile        | Ser<br>170 | Leu        | Asp        | Arg        | Tyr        | Val<br>175 | Ala        |
|    | Ile        | Gln        | Asn        | Pro<br>180 | Ile        | His        | His        | Ser        | Arg<br>185 | Phe        | Asn        | Ser        | Arg        | Thr<br>190 | Lys        | Ala        |
| 15 | Phe        | Leu        | Lys<br>195 | Ile        | Ile        | Ala        | Val        | Trp<br>200 | Thr        | Ile        | Ser        | Val        | Gly<br>205 | Ile        | Ser        | Met        |
|    | Pro        | Ile<br>210 | Pro        | Val        | Phe        | Gly        | Leu<br>215 | Gln        | Asp        | Asp        | Ser        | Lys<br>220 | Val        | Phe        | Lys        | Glu        |
| 20 | 225        |            |            |            |            | 230        | Asp        |            |            |            | 235        |            |            |            |            | 240        |
|    |            |            |            |            | 245        |            | Leu        |            |            | 250        |            |            |            |            | 255        |            |
|    |            |            |            | 260        |            |            | Lys        |            | 265        |            |            |            |            | 270        |            |            |
| 25 | Gly        |            | 275        |            |            |            |            | 280        |            |            |            |            | 285        |            |            |            |
|    | Leu        | 290        |            |            |            |            | 295        |            |            |            |            | 300        |            |            |            | -          |
| 30 | 305        |            |            |            |            | 310        | Thr        |            |            |            | 315        |            |            |            |            | 320        |
|    | Ala        |            |            |            | 325        |            |            |            |            | 330        |            |            |            |            | 335        | _          |
|    | Cys        |            |            | 340        |            |            |            |            | 345        |            |            |            |            | 350        |            |            |
| 35 | Cys        |            | 355        |            |            |            |            | 360        |            |            |            |            | 365        |            | _          |            |
|    | Gly        | Tyr        | Leu        | Ser        | Ser        | Ala        | Val        | Asn        | Pro        | Leu        | Val        | Tyr        | Thr        | Leu        | Phe        | Asn        |

|    |          |             |                                     |                         |                        |                       |                     |            | ,          |            |            |            |            |            |            |            |    |
|----|----------|-------------|-------------------------------------|-------------------------|------------------------|-----------------------|---------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|----|
|    |          | 37          | 0                                   |                         |                        |                       | 375                 |            |            |            |            | 380        |            |            |            |            |    |
|    | L:       | ys Th<br>35 | r Tyr                               | Arg                     | Ser                    | Ala<br>390            | Phe                 | Ser        | Arg        | Tyr        | Ile<br>395 | Gln        | Cys        | Gln        | Tyr        | Lys<br>400 |    |
| 5  | G:       | Lu As       | n Lys                               | Lys                     | Pro<br>405             | Leu                   | Gln                 | Leu        | Ile        | Leu<br>410 | Val        | Asn        | Thr        | Ile        | Pro<br>415 | Ala        |    |
|    | Le       | eu Al       | a Tyr                               | Lys<br>420              | Ser                    | Ser                   | Gln                 | Leu        | Gln<br>425 | Met        | Gly        | Gln        | Lys        | Lys<br>430 | Asn        | Ser        |    |
|    | Ly       | /s Gl       | n Asp<br>435                        | Ala                     | Lys                    | Thr                   | Thr                 | Asp<br>440 | Asn        | Asp        | Сув        | Ser        | Met<br>445 | Val        | Ala        | Leu        |    |
| 10 | G]       | y Ly<br>45  | s Gln                               | Tyr                     | Ser                    | Glu                   | Glu<br>455          | Ala        | Ser        | Lys        | Asp        | Asn<br>460 | Ser        | Asp        | Gly        | Val        |    |
|    | As<br>46 |             | ı Lys                               | Val                     | Ser                    | Cys<br>470            | Val                 |            |            |            |            |            |            |            |            |            |    |
|    | (124) I  | NFOR        | ATIO                                | N FOE                   | R SEÇ                  | O ID                  | NO:1                | .23:       |            |            |            |            |            |            |            |            |    |
| 15 | (        | ()<br>()    | EQUENCA) LEI<br>B) TYI<br>C) STI    | NGTH:<br>PE: r<br>RANDE | : 27<br>nucle<br>EDNES | base<br>ic a<br>SS: s | pai<br>cid<br>ingl  | rs         |            |            |            |            |            |            |            |            |    |
| 20 | (        | ii) ?       | OLEC                                | JLE T                   | TYPE:                  | DNA                   | (ge                 | nomi       | .c)        |            |            |            |            |            |            |            |    |
|    | (        | xi) s       | SEQUE                               | ICE I                   | ESCF                   | IPTI                  | ON:                 | SEQ        | ID N       | 10:12      | 3:         |            |            |            |            |            |    |
|    | GACCTCG  | AGG :       | TGCT                                | TAAGA                   | CTG                    | AAGO                  | ;                   |            |            |            |            |            |            |            |            | :          | 27 |
|    | (125) I  | NFORM       | MITA                                | I FOR                   | SEÇ                    | ID.                   | NO:1                | 24:        |            |            |            |            |            |            |            |            |    |
| 25 | (        | ()<br>(E    | QUENC<br>L) LEN<br>B) TYI<br>C) STF | NGTH:<br>PE: n          | 27<br>ucle<br>DNES     | base<br>ic a<br>S: s  | pai<br>cid<br>ingl  | rs         |            |            |            |            |            |            |            |            |    |
|    | (        | ii) N       | OLECT                               | ILE T                   | YPE:                   | DNA                   | (ge                 | nomi       | c)         |            |            |            |            |            |            |            |    |
| 30 | (        | xi) S       | EQUEN                               | ICE D                   | ESCR                   | IPTI                  | ON:                 | SEQ        | ID N       | 0:12       | 4:         |            |            |            |            |            |    |
|    | ATTTCTA  | GAC A       | TATGT                               | AGCT                    | TGT                    | ACCG                  | ÷                   |            |            |            |            |            |            |            |            | 1          | 27 |
|    | (126) I  | NFORM       | ATION                               | FOR                     | SEQ                    | ID                    | NO:1                | 25:        |            |            |            |            |            |            |            |            |    |
| 35 | (        | (E<br>(C    | QUENC<br>) LEN<br>) TYP<br>) STR    | GTH:<br>E: n            | 137<br>ucle<br>DNES    | 7 ba<br>ic a<br>S: s  | se p<br>cid<br>ingl | airs       |            |            |            |            |            |            |            |            |    |

| (ii) MOLECULE TYPE: DNA (genomic | (ii) | MOLECULE | TYPE: | DNA | (genomic |
|----------------------------------|------|----------|-------|-----|----------|
|----------------------------------|------|----------|-------|-----|----------|

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:125:

ATGGTGAACC TGAGGAATGC GGTGCATTCA TTCCTTGTGC ACCTAATTGG CCTATTGGTT 60 TGGCAATGTG ATATTTCTGT GAGCCCAGTA GCAGCTATAG TAACTGACAT TTTCAATACC 120 5 TCCGATGGTG GACGCTTCAA ATTCCCAGAC GGGGTACAAA ACTGGCCAGC ACTTTCAATC 180 GTCATCATAA TAATCATGAC AATAGGTGGC AACATCCTTG TGATCATGGC AGTAAGCATG 240 GAAAAGAAAC TGCACAATGC CACCAATTAC TTCTTAATGT CCCTAGCCAT TGCTGATATG 300 CTAGTGGGAC TACTTGTCAT GCCCCTGTCT CTCCTGGCAA TCCTTTATGA TTATGTCTGG 360 CCACTACCTA GATATTTGTG CCCCGTCTGG ATTTCTTTAG ATGTTTTATT TTCAACAGCG 420 10 TCCATCATGC ACCTCTGCGC TATATCGCTG GATCGGTATG TAGCAATACG TAATCCTATT 480 GAGCATAGCC GTTTCAATTC GCGGACTAAG GCCATCATGA AGATTGCTAT TGTTTGGGCA 540 ATTTCTATAG GTGTATCAGT TCCTATCCCT GTGATTGGAC TGAGGGACGA AGAAAAGGTG 600 TTCGTGAACA ACACGACGTG CGTGCTCAAC GACCCAAATT TCGTTCTTAT TGGGTCCTTC 660 GTAGCTTTCT TCATACCGCT GACGATTATG GTGATTACGT ATTGCCTGAC CATCTACGTT 720 15 CTGCGCCGAC AAGCTTTGAT GTTACTGCAC GGCCACACCG AGGAACCGCC TGGACTAAGT 780 CTGGATTTCC TGAAGTGCTG CAAGAGGAAT ACGGCCGAGG AAGAGAACTC TGCAAACCCT 840 AACCAAGACC AGAACGCACG CCGAAGAAAG AAGAAGGAGA GACGTCCTAG GGGCACCATG 900 CAGGCTATCA ACAATGAAAG AAAAGCTTCG AAAGTCCTTG GGATTGTTTT CTTTGTGTTT 960 CTGATCATGT GGTGCCCATT TTTCATTACC AATATTCTGT CTGTTCTTTG TGAGAAGTCC 1020 20 tgtaaccaaa agctcatgga aaagcttctg aatgtgtttg tttggattgg ctatgtttgt TCAGGAATCA ATCCTCTGGT GTATACTCTG TTCAACAAAA TTTACCGAAG GGCATTCTCC 1140 AACTATTTGC GTTGCAATTA TAAGGTAGAG AAAAAGCCTC CTGTCAGGCA GATTCCAAGA 1200 GTTGCCGCCA CTGCTTTGTC TGGGAGGGAG CTTAATGTTA ACATTTATCG GCATACCAAT 1260 GAACCGGTGA TCGAGAAAGC CAGTGACAAT GAGCCCGGTA TAGAGATGCA AGTTGAGAAT 1320 25 TTAGAGTTAC CAGTAAATCC CTCCAGTGTG GTTAGCGAAA GGATTAGCAG TGTGTGA 1377

- (127) INFORMATION FOR SEQ ID NO:126: (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 458 amino acids
  - (B) TYPE: amino acid

(C) STRANDEDNESS:

(D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: protein

35

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:126: 5 Met Val Asn Leu Arg Asn Ala Val His Ser Phe Leu Val His Leu Ile 10 Gly Leu Leu Val Trp Gln Cys Asp Ile Ser Val Ser Pro Val Ala Ala 20 25 Ile Val Thr Asp Ile Phe Asn Thr Ser Asp Gly Gly Arg Phe Lys Phe 10 Pro Asp Gly Val Gln Asn Trp Pro Ala Leu Ser Ile Val Ile Ile Ile 55 Ile Met Thr Ile Gly Gly Asn Ile Leu Val Ile Met Ala Val Ser Met 15 Glu Lys Lys Leu His Asn Ala Thr Asn Tyr Phe Leu Met Ser Leu Ala 9.0 Ile Ala Asp Met Leu Val Gly Leu Leu Val Met Pro Leu Ser Leu Leu 100 105 Ala Ile Leu Tyr Asp Tyr Val Trp Pro Leu Pro Arg Tyr Leu Cys Pro 20 120 Val Trp Ile Ser Leu Asp Val Leu Phe Ser Thr Ala Ser Ile Met His 135 Leu Cys Ala Ile Ser Leu Asp Arg Tyr Val Ala Ile Arg Asn Pro Ile 145 25 Glu His Ser Arg Phe Asn Ser Arg Thr Lys Ala Ile Met Lys Ile Ala 170 Ile Val Trp Ala Ile Ser Ile Gly Val Ser Val Pro Ile Pro Val Ile 180 185 Gly Leu Arg Asp Glu Glu Lys Val Phe Val Asn Asn Thr Thr Cys Val 30 Leu Asn Asp Pro Asn Phe Val Leu Ile Gly Ser Phe Val Ala Phe Phe 215 Ile Pro Leu Thr Ile Met Val Ile Thr Tyr Cys Leu Thr Ile Tyr Val 225

Leu Arg Arg Gln Ala Leu Met Leu Leu His Gly His Thr Glu Glu Pro

250

|    | Pro        | Gly        | Leu               | Ser<br>260           | Leu        | Asp                  | Phe                | Leu        | Lys<br>265 | Cys        | Cys        | Lys        | Arg        | Asn<br>270 |            | Ala        | ì  |
|----|------------|------------|-------------------|----------------------|------------|----------------------|--------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|----|
|    | Glu        | Glu        | Glu<br>275        | Asn                  | Ser        | Ala                  | Asn                | Pro<br>280 | Asn        | Gln        | Asp        | Gln        | Asn<br>285 | Ala        | Arg        | Arg        | ī  |
| 5  | Arg        | Lys<br>290 | Lys               | Lys                  | Glu        | Arg                  | Arg<br>295         | Pro        | Arg        | Gly        | Thr        | Met<br>300 | Gln        | Ala        | Ile        | Asr        | ı  |
|    | Asn<br>305 | Glu        | Arg               | Lys                  | Ala        | Ser<br>310           | Lys                | Val        | Leu        | Gly        | Ile<br>315 | Val        | Phe        | Phe        | Val        | Phe<br>320 |    |
| 10 | Leu        | Ile        | Met               | Trp                  | Cys<br>325 | Pro                  | Phe                |            | Ile        | Thr<br>330 | Asn        | Ile        | Leu        | Ser        | Val<br>335 | Leu        |    |
|    | Cys        | Glu        | Lys               | Ser<br>340           | Cys        | Asn                  | Gln                | Lys        | Leu<br>345 | Met        | Glu        | Lys        | Leu        | Leu<br>350 | Asn        | Val        |    |
|    | Phe        | Val        | Trp<br>355        | Ile                  | Gly        | Tyr                  | Val                | Cys<br>360 | Ser        | Gly        | Ile        | Asn        | Pro<br>365 | Leu        | Val        | Tyr        |    |
| 15 | Thr        | Leu<br>370 | Phe               | Asn                  | Lys        | Ile                  | Tyr<br>375         | Arg        | Arg        | Ala        | Phe        | Ser<br>380 | Asn        | Tyr        | Leu        | Arg        |    |
|    | Cys<br>385 | Asn        | Tyr               | Lys                  | Val        | Glu<br>390           | Lys                | Lys        | Pro        | Pro        | Val<br>395 | Arg        | Gln        | Ile        | Pro        | Arg<br>400 |    |
| 20 | Val        | Ala        | Ala               | Thr                  | Ala<br>405 | Leu                  | Ser                | Gly        | Arg        | Glu<br>410 | Leu        | Asn        | Val        | Asn        | Ile<br>415 | Tyr        |    |
|    | Arg        | His        | Thr               | Asn<br>420           | Glu        | Pro                  | Val                | Ile        | Glu<br>425 | Lys        | Ala        | Ser        | Asp        | Asn<br>430 | Glu        | Pro        |    |
|    | Gly        | Ile        | Glu<br>435        | Met                  | Gln        | Val                  | Glu                | Asn<br>440 | Leu        | Glu        | Leu        |            | Val<br>445 | Asn        | Pro        | Ser        |    |
| 25 | Ser        | Val<br>450 | Val               | Ser                  | Glu        | Arg                  | Ile<br>455         | Ser        | Ser        | Val        |            |            |            |            |            |            |    |
|    | (128) INI  | ORMA       | TION              | FOR                  | SEC        | ID                   | NO:1               | 27:        |            |            |            |            |            |            |            |            |    |
| 30 | (i)        | (B)        | LEN<br>TYP<br>STR | GTH:<br>E: n<br>ANDE | 30<br>ucle | base<br>ic a<br>S: s | pai<br>cid<br>ingl | rs         |            |            |            |            |            |            |            |            |    |
|    |            | .) MO      |                   |                      |            |                      |                    |            |            |            |            |            |            |            |            |            |    |
|    |            | .) SE      |                   |                      |            |                      |                    | SEQ        | ID N       | 0:12       | 7:         |            |            |            |            |            |    |
| 35 | GGTAAGCTT  |            |                   |                      |            |                      |                    |            |            |            |            |            |            |            |            |            | 30 |
|    | (129) INF  | ORMA       | TION              | FOR                  | SEQ        | ID                   | NO:1               | 28:        |            |            |            |            |            |            |            |            |    |

| 5  | 147        | (A) LENGTH:<br>(B) TYPE: n<br>(C) STRANDE<br>(D) TOPOLOG           | ucleic acid<br>DNESS: sing              | irs        |            |            |     |
|----|------------|--------------------------------------------------------------------|-----------------------------------------|------------|------------|------------|-----|
|    | (ii)       | MOLECULE T                                                         | YPE: DNA (g                             | enomic)    |            |            |     |
|    | (xi)       | SEQUENCE D                                                         | ESCRIPTION:                             | SEQ ID NO: | 128:       |            |     |
|    | TCCGAATTCT | CTGTAGACAC                                                         | AAGGCTTTGG                              |            |            |            | 30  |
|    | (130) INFO | RMATION FOR                                                        | SEQ ID NO:                              | 129:       |            |            |     |
| 10 | (i)        | SEQUENCE CH.  (A) LENGTH:  (B) TYPE: n:  (C) STRANDE!  (D) TOPOLOG | 1068 base<br>ucleic acid<br>DNESS: sing | pairs      |            |            |     |
| 15 | (ii)       | MOLECULE T                                                         | YPE: DNA (g                             | enomic)    |            |            |     |
|    | (xi)       | SEQUENCE DI                                                        | ESCRIPTION:                             | SEQ ID NO: | 129:       |            |     |
|    | ATGGATCAGT | TCCCTGAATC                                                         | AGTGACAGAA                              | AACTTTGAGT | ACGATGATTT | GGCTGAGGCC | 60  |
|    | TGTTATATTG | GGGACATCGT                                                         | GGTCTTTGGG                              | ACTGTGTTCC | TGTCCATATT | CTACTCCGTC | 120 |
|    | ATCTTTGCCA | TTGGCCTGGT                                                         | GGGAAATTTG                              | TTGGTAGTGT | TTGCCCTCAC | CAACAGCAAG | 180 |
| 20 | AAGCCCAAGA | GTGTCACCGA                                                         | CATTTACCTC                              | CTGAACCTGG | CCTTGTCTGA | TCTGCTGTTT | 240 |
|    | GTAGCCACTT | TGCCCTTCTG                                                         | GACTCACTAT                              | TTGATAAATG | AAAAGGGCCT | CCACAATGCC | 300 |
|    | ATGTGCAAAT | TCACTACCGC                                                         | CTTCTTCTTC                              | ATCGGCTTTT | TTGGAAGCAT | ATTCTTCATC | 360 |
|    | ACCGTCATCA | GCATTGATAG                                                         | GTACCTGGCC                              | ATCGTCCTGG | CCGCCAACTC | CATGAACAAC | 420 |
|    | CGGACCGTGC | AGCATGGCGT                                                         | CACCATCAGC                              | CTAGGCGTCT | GGGCAGCAGC | CATTTTGGTG | 480 |
| 25 | GCAGCACCCC | AGTTCATGTT                                                         | CACAAAGCAG                              | AAAGAAAATG | AATGCCTTGG | TGACTACCCC | 540 |
|    | GAGGTCCTCC | AGGAAATCTG                                                         | GCCCGTGCTC                              | CGCAATGTGG | AAACAAATTT | TCTTGGCTTC | 600 |
|    | CTACTCCCCC | TGCTCATTAT                                                         | GAGTTATTGC                              | TACTTCAGAA | TCATCCAGAC | GCTGTTTTCC | 660 |
|    | TGCAAGAACC | ACAAGAAAGC                                                         | CAAAGCCATT                              | AAACTGATCC | TTCTGGTGGT | CATCGTGTTT | 720 |
|    | TTCCTCTTCT | GGACACCCTA                                                         | CAACGTTATG                              | ATTTTCCTGG | AGACGCTTAA | GCTCTATGAC | 780 |
| 30 | TTCTTTCCCA | GTTGTGACAT                                                         | GAGGAAGGAT                              | CTGAGGCTGG | CCCTCAGTGT | GACTGAGACG | 840 |
|    | GTTGCATTTA | GCCATTGTTG                                                         | CCTGAATCCT                              | CTCATCTATG | CATTTGCTGG | GGAGAAGTTC | 900 |
|    | AGAAGATACC | TTTACCACCT                                                         | GTATGGGAAA                              | TGCCTGGCTG | TCCTGTGTGG | GCGCTCAGTC | 960 |

| CACGTTG    | ATT 1        | rcrcc                         | TCAT                        | 'C TG                       | AATC                       | ACAA              | AGG          | AGCA       | GGC        | ATGG       | AAGI       | GT T       | CTGA       | GCAG       | C 1020     |
|------------|--------------|-------------------------------|-----------------------------|-----------------------------|----------------------------|-------------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|
| AATTTTA    | CTT A        | CCAC                          | ACGA                        | G TG                        | ATGG                       | AGAT              | GCA          | TTGC       | TCC        | TTCI       | CTGA       |            |            |            | 1068       |
| (131) I    | NFORM        | MATIC                         | N FC                        | R SE                        | Q ID                       | NO:               | 130:         |            |            |            |            |            |            |            |            |
|            | (E           | LE<br>3) TY<br>1) ST<br>1) TO | NGTH<br>PE:<br>RAND<br>POLO | : 35<br>amin<br>EDNE<br>GY: | 5 am<br>o ac<br>SS:<br>not | ino<br>id<br>rele | acid<br>vant | s          |            |            |            |            |            |            |            |
| (          | xi) S        | EQUE                          | NCE                         | DESC                        | RIPT                       | ION:              | SEQ          | ID         | NO:1       | 30:        |            |            |            |            |            |
| Me<br>1    | t Asp        | Gln                           | Phe                         | Pro<br>5                    | Glu                        | Ser               | Val          | Thr        | Glu<br>10  | Asn        | Phe        | Glu        | Tyr        | Asp<br>15  | Asp        |
| Le         | u Ala        | Glu                           | Ala<br>20                   | Cys                         | Tyr                        | Ile               | Gly          | Asp<br>25  | Ile        | Val        | Val        | Phe        | Gly<br>30  | Thr        | Val        |
| Pho        | e Leu        | Ser<br>35                     | Ile                         | Phe                         | Tyr                        | Ser               | Val<br>40    | Ile        | Phe        | Ala        | Ile        | Gly<br>45  | Leu        | Val        | Gly        |
| Ası        | n Leu<br>50  | Leu                           | Val                         | Val                         | Phe                        | Ala<br>55         | Leu          | Thr        | Asn        | Ser        | Lys<br>60  | Lys        | Pro        | Lys        | Ser        |
| Va:<br>65  | l Thr        | Asp                           | Ile                         | Tyr                         | Leu<br>70                  | Leu               | Asn          | Leu        | Ala        | Leu<br>75  | Ser        | Asp        | Leu        | Leu        | Phe<br>80  |
| Va:        | l Ala        | Thr                           | Leu                         | Pro<br>85                   | Phe                        | Trp               | Thr          | His        | Tyr<br>90  | Leu        | Ile        | Asn        | Glu        | Lys<br>95  | Gly        |
| Let        | ı His        | Asn                           | Ala<br>100                  | Met                         | Cys                        | Lys               | Phe          | Thr<br>105 | Thr        | Ala        | Phe        | Phe        | Phe<br>110 | Ile        | Gly        |
| Phe        | Phe          | Gly<br>115                    | Ser                         | Ile                         | Phe                        | Phe               | Ile<br>120   | Thr        | Val        | Ile        | Ser        | Ile<br>125 | Asp        | Arg        | Tyr        |
| Let        | 1 Ala<br>130 | Ile                           | Val                         | Leu                         | Ala                        | Ala<br>135        | Asn          | Ser        | Met        | Asn        | Asn<br>140 | Arg        | Thr        | Val        | Gln        |
| His<br>145 | Gly          | Val                           | Thr                         | Ile                         | Ser<br>150                 | Leu               | Gly          | Val        | Trp        | Ala<br>155 | Ala        | Ala        | Ile        | Leu        | Val<br>160 |
| Ala        | Ala          | Pro                           | Gln                         | Phe<br>165                  | Met                        | Phe               | Thr          | Lys        | Gln<br>170 | Lys        | Glu        | Asn        | Glu        | Cys<br>175 | Leu        |
| GlΣ        | / Asp        | Tyr                           | Pro<br>180                  | Glu                         | Val                        | Leu               | Gln          | Glu<br>185 | Ile        | Trp        | Pro        | Val        | Leu<br>190 | Arg        | Asn        |
| Val        | Glu          | Thr<br>195                    | Asn                         | Phe                         | Leu                        | Gly               | Phe<br>200   | Leu        | Leu        | Pro        | Leu        | Leu<br>205 | Ile        | Met        | Ser        |

|    | Tyr        | Cys<br>210 | Tyr        | Phe                  | Arg        | Ile          | Ile<br>215 | Gln        | Thr        | Leu        | ₽he        | Ser<br>220 | Cys        | Lys        | Asn        | His        |    |
|----|------------|------------|------------|----------------------|------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|----|
|    | Lys<br>225 | Lys        | Ala        | Lys                  | Ala        | Ile<br>230   | Lys        | Leu        | Ile        | Leu        | Leu<br>235 | Val.       | Val        | Ile        | Val        | Phe<br>240 |    |
| 5  | Phe        | Leu        | Phe        | Trp                  | Thr<br>245 | Pro          | Tyr        | Asn        | Val        | Met<br>250 | Ile        | Phe        | Leu        | Glu        | Thr<br>255 | Leu        |    |
|    | Lys        | Leu        | Tyr        | Asp<br>260           | Phe        | Phe          | Pro        | Ser        | Cys<br>265 | Asp        | Met        | Arg        | Lys        | Asp<br>270 | Leu        | Arg        |    |
| 10 | Leu        | Ala        | Leu<br>275 | Ser                  | Val        | Thr          | Glu        | Thr<br>280 | Val        | Ala        | Phe        | Ser        | His<br>285 | Cys        | Cys        | Leu        |    |
|    | Asn        | Pro<br>290 | Leu        | Ile                  | Tyr        | Ala          | Phe<br>295 | Ala        | Gly        | Glu        | Lys        | Phe        | Arg        | Arg        | Tyr        | Leu        |    |
|    | Tyr<br>305 | His        | Leu        | Tyr                  | Gly        | Lys<br>310   | Cys        | Leu        | Ala        | Val        | Leu<br>315 | Cys        | Gly        | Arg        | Ser        | Val        |    |
| 15 | His        | Val        | Asp        | Phe                  | Ser<br>325 | Ser          | Ser        | Glu        | Ser        | Gln<br>330 | Arg        | Ser        | Arg        | His        | Gly<br>335 | Ser        |    |
|    | Val        | Leu        | Ser        | Ser<br>340           | Asn        | Phe          | Thr        | Tyr        | His<br>345 | Thr        | Ser        | Asp        | Gly        | Asp<br>350 | Ala        | Leu        |    |
| 20 | Leu        | Leu        | Leu<br>355 |                      |            |              |            |            |            |            |            |            |            |            |            |            |    |
|    | (132) INE  | ORMA       | TION       | FOF                  | SEC        | ID           | NO:3       | 31:        |            |            |            |            |            |            |            |            |    |
|    | (i)        | SEC        | UENC       | E CH                 | IARAC      | TERI         | STIC       | s:         |            |            |            |            |            |            |            |            |    |
|    |            |            |            | GTH:<br>E: n         |            |              |            | rs         |            |            |            |            |            |            |            |            |    |
| 25 |            |            |            | POLOG                |            |              |            | .e         |            |            |            |            |            |            |            |            |    |
|    | (ii        | .) MC      | LECU       | LE I                 | YPE:       | DNA          | (ge        | nomi       | .c)        |            |            |            |            |            |            |            |    |
|    | (xi        | .) SE      | QUEN       | CE D                 | ESCR       | IPTI         | : 40       | SEQ        | ID N       | io:13      | 1:         |            |            |            |            |            |    |
|    | GATCTCCAG  | T AG       | GCAT       | 'AAGT                | GGA        | CAAT         | TCT        | GG         |            |            |            |            |            |            |            |            | 32 |
| 30 | (133) INF  | ORMA       | TION       | FOR                  | SEC        | ID           | NO:1       | 32:        |            |            |            |            |            |            |            |            |    |
|    | (i)        | (B)        | LEN        | E CH<br>GTH:<br>E: n | 30<br>ucle | base<br>ic a | pai<br>cid | rs         |            |            |            |            |            |            |            |            |    |
| 35 |            |            |            | OLOG                 |            |              |            |            |            |            |            |            |            |            |            |            |    |
|    | (ii        | ) MO       | LECU       | LE T                 | YPE:       | DNA          | . (ge      | nomi       | c)         |            |            |            |            |            |            |            |    |
|    | (xi        | ) SE       | QUEN       | CE D                 | ESCR       | IPTI         | ON:        | SEQ        | ID N       | 0:13       | 2:         |            |            |            |            |            |    |

|    | CTCCTTCGGT CCTCCTATCG TTGTCAGAAG                                                                                             | 30 |
|----|------------------------------------------------------------------------------------------------------------------------------|----|
|    | (134) INFORMATION FOR SEQ ID NO:133:                                                                                         |    |
| 5  | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDENNESS: single (D) TOPOLOGY: linear |    |
|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                            |    |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:133:                                                                                    |    |
| 10 | AGAAGGCCAA GATCGCGCGG CTGGCCCTCA                                                                                             | 30 |
|    | (135) INFORMATION FOR SEQ ID NO:134:                                                                                         |    |
| 15 | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRAMDENNESS: single (D) TOPOLOGY: linear |    |
|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                            |    |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:134:                                                                                    |    |
|    | CGGCGCCACC GCACGAAAAA GCTCATCTTC                                                                                             | 30 |
| 20 | (136) INFORMATION FOR SEQ ID NO:135:                                                                                         |    |
| 25 | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDENNESS: single (D) TOPOLOGY: linear |    |
|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                            |    |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:135:                                                                                    |    |
|    | GCCAAGAAGC GGGTGAAGTT CCTGGTGGTG GCA                                                                                         | 33 |
|    | (137) INFORMATION FOR SEQ ID NO:136:                                                                                         |    |
| 30 | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDMESS: single (D) TOPOLOGY: linear |    |
| 35 | (ii) MOLECULE TYPE: DNA (genomic)                                                                                            |    |

|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:136:                                                                                     |    |
|----|-------------------------------------------------------------------------------------------------------------------------------|----|
|    | CAGGCGGAAG GTGAAAGTCC TGGTCCTCGT                                                                                              | 30 |
|    | (138) INFORMATION FOR SEQ ID NO:137:                                                                                          |    |
| 5  | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear  |    |
|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                             |    |
| 10 | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:137:                                                                                     |    |
|    | CGGCGCCTGC GGGCCAAGCG GCTGGTGGTG GTG                                                                                          | 33 |
|    | (139) INFORMATION FOR SEQ ID NO:138:                                                                                          |    |
| 15 | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear  |    |
|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                             |    |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:138:                                                                                     |    |
| 20 | CCAAGCACAA AGCCAAGAAA GTGACCATCA C                                                                                            | 31 |
|    | (140) INFORMATION FOR SEQ ID NO:139:                                                                                          |    |
| 25 | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDENDENSS: single (D) TOPOLOGY: linear |    |
|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                             |    |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:139:                                                                                     |    |
|    | GCGCCGGCGC ACCAAATGCT TGCTGGTGGT                                                                                              | 30 |
| 30 | (141) INFORMATION FOR SEQ ID NO:140:                                                                                          |    |
| 35 | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 41 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear  |    |

|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                            |    |
|----|------------------------------------------------------------------------------------------------------------------------------|----|
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:140:                                                                                    |    |
|    | CAAAAAGCTG AAGAAATCTA AGAAGATCAT CTTTATTGTC G                                                                                | 41 |
|    | (142) INFORMATION FOR SEQ ID NO:141:                                                                                         |    |
| 5  | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDENESS: single (D) TOPOLOGY: linear  |    |
| 10 | (ii) MOLECULE TYPE: DNA (genomic)                                                                                            |    |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:141:                                                                                    |    |
|    | CAAGACCAAG GCAAAACGCA TGATCGCCAT                                                                                             | 30 |
|    | (143) INFORMATION FOR SEQ ID NO:142:                                                                                         |    |
| 15 | (i) SEQUENCE CHARACTERISTICS: (A) LEMGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDENDESS: single (D) TOPOLOGY: linear |    |
|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                            |    |
| 20 | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:142:                                                                                    |    |
|    | GTCAAGGAGA AGTCCAAAAG GATCATCATC                                                                                             | 30 |
|    | (144) INFORMATION FOR SEQ ID NO:143:                                                                                         |    |
| 25 | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear |    |
|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                            |    |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:143:                                                                                    |    |
| 30 | CGCCGCGTGC GGGCCAAGCA GCTCCTGCTC                                                                                             | 30 |
|    | (145) INFORMATION FOR SEQ ID NO:144:                                                                                         |    |
| 35 | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDERNESS: single (D) TOROLOGY: linear |    |

|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                            |    |
|----|------------------------------------------------------------------------------------------------------------------------------|----|
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:144:                                                                                    |    |
|    | CCTGATAAGC GCTATAAAAT GGTCCTGTTT CGA                                                                                         | 33 |
|    | (146) INFORMATION FOR SEQ ID NO:145:                                                                                         |    |
| 5  | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear |    |
| 10 | (ii) MOLECULE TYPE: DNA (genomic)                                                                                            |    |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:145:                                                                                    |    |
|    | GAAAGACAAA AGAGAGTCAA GAGGATGTCT TTATTG                                                                                      | 36 |
|    | (147) INFORMATION FOR SEQ ID NO:146:                                                                                         |    |
| 15 | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDMESS: single (D) TOPOLOGY: linear |    |
|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                            |    |
| 20 | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:146:                                                                                    |    |
|    | CGGAGAAAGA GGGTGAAACG CACAGCCATC GCC                                                                                         | 33 |
|    | (148) INFORMATION FOR SEQ ID NO:147:                                                                                         |    |
| 25 | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 hase pairs (B) TYPE: nucleic acid (C) STRANDEDMESS: single (D) TOPOLOGY: linear |    |
|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                            |    |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:147:                                                                                    |    |
| 30 | AAGCTTCAGC GGGCCAAGGC ACTGGTCACC                                                                                             | 30 |
|    | (149) INFORMATION FOR SEQ ID NO:148:                                                                                         |    |
| 35 | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear |    |

|    |       | (ii) MOLECULE TYPE: DNA (genomic)                                                                                            |    |
|----|-------|------------------------------------------------------------------------------------------------------------------------------|----|
|    |       | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:148:                                                                                    |    |
|    | CAGCG | GCAGA AGGCAAAAAG GGTGGCCATC                                                                                                  | 30 |
|    | (150) | INFORMATION FOR SEQ ID NO:149:                                                                                               |    |
| 5  |       | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDENNES: single (D) TOPOLOGY: linear  |    |
| 10 |       | (ii) MOLECULE TYPE: DNA (genomic)                                                                                            |    |
|    |       | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:149:                                                                                    |    |
|    | CGGCA | GAAGG CGAAGCGCAT GATCCTCGCG                                                                                                  | 30 |
|    | (151) | INFORMATION FOR SEQ ID NO:150:                                                                                               |    |
| 15 |       | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDENDES: single (D) TOPOLOGY: linear  |    |
|    |       | (ii) MOLECULE TYPE: DNA (genomic)                                                                                            |    |
| 20 |       | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:150:                                                                                    |    |
|    | GAGCG | CAACA AGGCCAAAAA GGTGATCATC                                                                                                  | 30 |
|    | (152) | INFORMATION FOR SEQ ID NO:151:                                                                                               |    |
| 25 |       | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 base pairs (B) TYPE: nucleic acid (C) STRANDENNESS: single (D) TOPOLOGY: linear |    |
|    |       | (ii) MOLECULE TYPE: DNA (genomic)                                                                                            |    |
|    |       | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:151:                                                                                    |    |
| 30 | GGTGT | AAACA AAAAGGCTAA AAACACAATT ATTCTTATT                                                                                        | 39 |
|    | (153) | INFORMATION FOR SEQ ID NO:152:                                                                                               |    |
| 35 |       | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDENDESS: single (D) TOPOLOGY: linear |    |

109

|    | 105                                                                                                                          |    |
|----|------------------------------------------------------------------------------------------------------------------------------|----|
|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                            |    |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:152:                                                                                    |    |
|    | GAGAGCCAGC TCAAGAGCAC CGTGGTG                                                                                                | 27 |
|    | (154) INFORMATION FOR SEQ ID NO:153:                                                                                         |    |
| 5  | (i) SEQUENCE CHARACTERISTICS: (A) LEWGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDENNESS: single (D) TOPOLOGY: linear |    |
| 10 | (ii) MOLECULE TYPE: DNA (genomic)                                                                                            |    |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:153:                                                                                    |    |
|    | CCACAAGCAA ACCAAGAAAA TGCTGGCTGT                                                                                             | 30 |
|    | (155) INFORMATION FOR SEQ ID NO:154:                                                                                         |    |
| 15 | (i) SEQUENCE CHARACTERISTICS: (A) LEMOTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear |    |
|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                            |    |
| 20 | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:154:                                                                                    |    |
|    | CATCAAGTGT ATCATGTGCC AAGTACGCCC                                                                                             | 30 |
|    | (156) INFORMATION FOR SEQ ID NO:155:                                                                                         |    |
| 25 | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear |    |
|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                            |    |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:155:                                                                                    |    |
| 30 | CTAGAGAGTC AGATGAAGTG TACAGTAGTG GCAC                                                                                        | 34 |
|    | (157) INFORMATION FOR SEQ ID NO:156:                                                                                         |    |
| 35 | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear |    |

|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                            |    |
|----|------------------------------------------------------------------------------------------------------------------------------|----|
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:156:                                                                                    |    |
|    | CGGACAAAAG TGAAAACTAA AAAGATGTTC CTCATT                                                                                      | 36 |
|    | (158) INFORMATION FOR SEQ ID NO:157:                                                                                         |    |
| 5  | (i) SEQUENCE CHARACTERISTICS: (A) LEMGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDENNESS: single (D) TOPOLOGY: linear |    |
| 10 | (ii) MOLECULE TYPE: DNA (genomic)                                                                                            |    |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:157:                                                                                    |    |
|    | GCTGAGGTTC GCAATAAACT AACCATGTTT GTG                                                                                         | 33 |
|    | (159) INFORMATION FOR SEQ ID NO:158:                                                                                         |    |
| 15 | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDMESS: single (D) TOPOLOGY: linear |    |
|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                            |    |
| 20 | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:158:                                                                                    |    |
|    | GGGAGGCCGA GCTGAAAGCC ACCCTGCTC                                                                                              | 29 |
|    | (160) INFORMATION FOR SEQ ID NO:159:                                                                                         |    |
| 25 | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDMESS: single (D) TOPOLOGY: linear |    |
|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                            |    |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:159:                                                                                    |    |
| 30 | CAAGATCAAG AGAGCCAAAA CCTTCATCAT G                                                                                           | 31 |
|    | (161) INFORMATION FOR SEQ ID NO:160:                                                                                         |    |
| 35 | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear |    |

|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                              |     |
|----|--------------------------------------------------------------------------------------------------------------------------------|-----|
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:160:                                                                                      |     |
|    | CCGGAGACAA GTGAAGAAGA TGCTGTTTGT C                                                                                             | 31  |
|    | (162) INFORMATION FOR SEQ ID NO:161:                                                                                           |     |
| 5  | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANEDNIESS: single (D) TOPOLOGY: linear   |     |
| 10 | (ii) MOLECULE TYPE: DNA (genomic)                                                                                              |     |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:161:                                                                                      |     |
|    | GCAAGGACCA GATCAAGCGG CTGGTGCTCA                                                                                               | 30  |
|    | (163) INFORMATION FOR SEQ ID NO:162:                                                                                           |     |
| 15 | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 base pairs (B) TYPE: nucleic acid (C) STRANDENDESS: single (D) TOPOLOGY: linear   |     |
|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                              |     |
| 20 | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:162:                                                                                      |     |
|    | CAAGAAAGCC AAAGCCAAGA AACTGATCCT TCTG                                                                                          | 34  |
|    | (164) INFORMATION FOR SEQ ID NO:163:                                                                                           |     |
| 25 | (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1068 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear |     |
|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                              |     |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:163:                                                                                      |     |
| 30 | ATGGAAGATT TGGAGGAAAC ATTATTTGAA GAATTTGAAA ACTATTCCTA TGACCTAGAC                                                              | 60  |
|    | TATTACTCTC TGGAGTCTGA TTTGGAGGAG AAAGTCCAGC TGGGAGTTGT TCACTGGGTC                                                              | 120 |
|    | TCCCTGGTGT TATATTGTTT GGCTTTTGTT CTGGGAATTC CAGGAAATGC CATCGTCATT                                                              | 180 |
|    | TGGTTCACGG GGCTCAAGTG GAAGAAGACA GTCACCACTC TGTGGTTCCT CAATCTAGCC                                                              | 240 |
|    | ATTGCGGATT TCATTTTCT TCTCTTTCTG CCCCTGTACA TCTCCTATGT GGCCATGAAT                                                               | 300 |

| VO 00/22129 | PCT/US99/2393 |
|-------------|---------------|
|             |               |

|    | TTCCACTO                                                                                                                    | GC C      | CTT       | GGCA      | T CI     | GGC1      | GTGC      | AAA       | GCCF      | ATT       | CCTI      | CACT      | GC C      | CAGI      | TGAA      | VC.       | 360 |
|----|-----------------------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----|
|    | ATGTTTGC                                                                                                                    | CA G      | TGTT      | TTTT      | T CC     | TGAC      | AGTG      | ATC       | AGCC      | TGG       | ACCA      | CTAT      | 'AT C     | CACT      | TGAT      | C.        | 420 |
|    | CATCCTGT                                                                                                                    | CT I      | ATCI      | CATC      | g go     | ATC       | AACC      | CTC       | AAGA      | ACT       | CTCT      | GATI      | GT C      | ATTA      | TATI      | 'C        | 480 |
|    | ATCTGGCT                                                                                                                    | TT T      | 'GGC'I    | TCTC      | T AF     | TTGG      | CGGT      | CCI       | GCCC      | TGT       | ACTT      | CCGG      | GA C      | ACTG      | TGGA      | G         | 540 |
| 5  | TTCAATAA                                                                                                                    | TC A      | TACI      | CTTT      | G CI     | ATA       | CAAT      | TTT       | CAGA      | AGC       | ATGA      | TCCT      | GA C      | CTCA      | CTTT      | 'G        | 600 |
|    | ATCAGGCA                                                                                                                    | CC A      | TGTI      | CTGA      | TT       | GGGI      | GAAA      | TTT       | ATCA      | TTG       | GCTA      | TCTC      | TT C      | CCTT      | TGCT      | 'A        | 660 |
|    | ACAATGAG                                                                                                                    | TA T      | TTGC      | TACT      | r GT     | GTCI      | CATC      | TTC       | AAGG      | TGA       | AGAA      | GCGA      | AC A      | GTCC      | TGAT      | C         | 720 |
|    | TCCAGTAG                                                                                                                    | GC A      | TAAG      | TGGA      | C AA     | TTCT      | GGTT      | GTG       | GTTG      | TGG       | CCTT      | TGTG      | GT T      | TGCT      | GGAC      | т         | 780 |
|    | CCTTATCA                                                                                                                    | CC T      | GTTT      | 'AGCA'    | г тт     | GGGA      | GCTC      | ACC       | ATTC      | ACC       | ACAA      | TAGC      | TA T      | TCCC      | ACCA      | T         | 840 |
| 10 | GTGATGCA                                                                                                                    | .GG C     | TGGA      | ATCC      | C CC     | TCTC      | CACT      | GGT       | TTGG      | CAT       | TCCT      | CAAT      | AG T      | TGCT      | TGAA      | C         | 900 |
|    | CCCATCCT                                                                                                                    | TT A      | TGTC      | CTAA'     | TA       | GTAA      | GAAG      | TTC       | CAAG      | CTC       | GCTT      | CCGG      | TC C      | TCAG      | TTGC      | Т         | 960 |
|    | GAGATACT                                                                                                                    | CA A      | GTAC      | ACAC'     | r GT     | GGGA      | AGTC      | AGC       | TGTT      | CTG       | GCAC.     | AGTG      | AG T      | GAAC      | AGCT      | C 1       | 020 |
|    | AGGAACTC                                                                                                                    | AG A      | AACC      | AAGAI     | TC       | TGTG      | TCTC      | CTG       | GAAA      | CAG       | CTCA      | ATAA      |           |           |           | 1         | 068 |
|    | (165) IN                                                                                                                    | FORM      | ATIO      | N FOR     | SE SE    | Q ID      | NO:       | 164:      |           |           |           |           |           |           |           |           |     |
| 15 | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 355 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: not relevant |           |           |           |          |           |           |           |           |           |           |           |           |           |           |           |     |
| 20 | (i                                                                                                                          | i) M      | OLEC      | ULE 7     | YPE      | : pr      | otei      | n         |           |           |           |           |           |           |           |           |     |
|    | (х                                                                                                                          | i) S      | EQUE:     | NCE I     | ESC      | RIPT      | ION:      | SEQ       | ID )      | NO:1      | 54:       |           |           |           |           |           |     |
|    | Met<br>1                                                                                                                    | Glu       | Asp       | Leu       | Glu<br>5 | Glu       | Thr       | Leu       | Phe       | Glu<br>10 | Glu       | Phe       | Glu       | Asn       | Tyr<br>15 | Ser       |     |
| 25 | Tyr                                                                                                                         | Asp       | Leu       | Asp<br>20 | Tyr      | Tyr       | Ser       | Leu       | Glu<br>25 | Ser       | Asp       | Leu       | Glu       | Glu<br>30 | Lys       | Val       |     |
|    | Gln                                                                                                                         | Leu       | Gly<br>35 | Val       | Val      | His       | Trp       | Val<br>40 | Ser       | Leu       | Val       | Leu       | Tyr<br>45 | Cys       | Leu       | Ala       |     |
|    | Phe                                                                                                                         | Val<br>50 | Leu       | Gly       | Ile      | Pro       | Gly<br>55 | Asn       | Ala       | Ile       | Val       | Ile<br>60 | Trp       | Phe       | Thr       | Gly       |     |
| 30 | Leu<br>65                                                                                                                   | Lys       | Trp       | Lys       | Lys      | Thr<br>70 | Val       | Thr       | Thr       | Leu       | Trp<br>75 | ₽he       | Leu       | Asn       | Leu       | Ala<br>80 |     |
|    | Ile                                                                                                                         | Ala       | Asp       | Phe       | Ile      | Phe       | Leu       | Leu       |           | Leu       | Pro       | Leu       | Tyr       | Ile       | Ser       | Tyr       |     |

PCT/US99/23938 WO 00/22129

|    | Trall      | פות        | Wet        | hen        | Dhe        | Hic        | Trn        | Pro        | Phe        | Glv        | Tle        | Trn        | Len        | Cva        | T.Ve       | Ala        |
|----|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    | vai        | ALU        | rice       | 100        | 2110       |            | 112        |            | 105        | 017        |            |            | Lou        | 110        | 11,0       | 7120       |
|    | Asn        | Ser        | Phe<br>115 | Thr        | Ala        | Gln        | Leu        | Asn<br>120 | Met        | Phe        | Ala        | Ser        | Val<br>125 | Phe        | Phe        | Leu        |
| 5  | Thr        | Val<br>130 | Ile        | Ser        | Leu        | Asp        | His<br>135 | Tyr        | Ile        | His        | Leu        | Ile<br>140 | His        | Pro        | Val        | Leu        |
|    | Ser<br>145 | His        | Arg        | His        | Arg        | Thr<br>150 | Leu        | Lys        | Asn        | Ser        | Leu<br>155 | Ile        | Val        | Ile        | Ile        | Phe<br>160 |
| 10 | Ile        | Trp        | Leu        | Leu        | Ala<br>165 | Ser        | Leu        | Ile        | Gly        | Gly<br>170 | Pro        | Ala        | Leu        | Tyr        | Phe<br>175 | Arg        |
|    | Asp        | Thr        | Val        | Glu<br>180 | Phe        | Asn        | Asn        | His        | Thr<br>185 | Leu        | Cys        | Tyr        | Asn        | Asn<br>190 | Phe        | Gln        |
|    | Lys        | His        | Asp<br>195 | Pro        | Asp        | Leu        | Thr        | Leu<br>200 | Ile        | Arg        | His        | His        | Val<br>205 | Leu        | Thr        | Trp        |
| 15 | Val        | Lys<br>210 | Phe        | Ile        | Ile        | Gly        | Tyr<br>215 | Leu        | Phe        | Pro        | Leu        | Leu<br>220 | Thr        | Met        | Ser        | Ile        |
|    | Cys<br>225 | Tyr        | Leu        | Сув        | Leu        | Ile<br>230 | Phe        | Lys        | Val        | Lys        | Lys<br>235 | Arg        | Thr        | Val        | Leu        | 11e<br>240 |
| 20 | Ser        | Ser        | Arg        | His        | Lys<br>245 | Trp        | Thr        | Ile        | Leu        | Val<br>250 | Val        | Val        | Val        | Ala        | Phe<br>255 | Val        |
|    | Val        | Cys        | Trp        | Thr<br>260 | Pro        | Tyr        | His        | Leu        | Phe<br>265 | Ser        | Ile        | Trp        | Glu        | Leu<br>270 | Thr        | Ile        |
|    | His        | His        | Asn<br>275 | Ser        | Tyr        | Ser        | His        | His<br>280 | Val        | Met        | Gln        | Ala        | Gly<br>285 | Ile        | Pro        | Leu        |
| 25 | Ser        | Thr<br>290 | Gly        | Leu        | Ala        | Phe        | Leu<br>295 | Asn        | Ser        | Cys        | Leu        | Asn<br>300 | Pro        | Ile        | Leu        | Tyr        |
|    | Val<br>305 | Leu        | Ile        | Ser        | Lys        | Lys<br>310 | Phe        | Gln        | Ala        | Arg        | Phe<br>315 | Arg        | Ser        | Ser        | Val        | Ala<br>320 |
| 30 | Glu        | Ile        | Leu        | Lys        | Tyr<br>325 | Thr        | Leu        | Trp        | Glu        | Val<br>330 | Ser        | Cys        | Ser        | Gly        | Thr<br>335 | Val        |
|    | Ser        | Glu        | Gln        | Leu<br>340 | Arg        | Asn        | Ser        | Glu        | Thr<br>345 | Lys        | Asn        | Leu        | Cys        | Leu<br>350 | Leu        | Glu        |
|    | Thr        | Ala        | Gln<br>355 |            |            |            |            |            |            |            |            |            |            |            |            |            |
| 35 | (166) IN   | FORM       | ATIO       | N FO       | R SE       | Q ID       | NO:        | 165:       |            |            |            |            |            |            |            |            |

- - (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1089 base pairs

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:165:

ATGGGCAACC ACACGTGGGA GGGCTGCCAC GTGGACTCGC GCGTGGACCA CCTCTTTCCG 60 CCATCCCTCT ACATCTTTGT CATCGGCGTG GGGCTGCCCA CCAACTGCCT GGCTCTGTGG GCGGCCTACC GCCAGGTGCA ACAGCGCAAC GAGCTGGGCG TCTACCTGAT GAACCTCAGC 180 ATCGCCGACC TGCTGTACAT CTGCACGCTG CCGCTGTGGG TGGACTACTT CCTGCACCAC 240 10 GACAACTGGA TCCACGGCCC CGGGTCCTGC AAGCTCTTTG GGTTCATCTT CTACACCAAT 300 ATCTACATCA GCATCGCCTT CCTGTGCTGC ATCTCGGTGG ACCGCTACCT GGCTGTGGCC 360 CACCCACTCC GCTTCGCCCG CCTGCGCCGC GTCAAGACCG CCGTGGCCGT GAGCTCCGTG 420 GTCTGGGCCA CGGAGCTGGG CGCCAACTCG GCGCCCCTGT TCCATGACGA GCTCTTCCGA 480 GACCGCTACA ACCACACCTT CTGCTTTGAG AAGTTCCCCA TGGAAGGCTG GGTGGCCTGG 540 ATGAACCTCT ATCGGGTGTT CGTGGGCTTC CTCTTCCCGT GGGCGCTCAT GCTGCTGTCG 600 TACCGGGGCA TCCTGCGGGC CGTGCGGGGC AGCGTGTCCA CCGAGCGCCA GGAGAAGGCC 660 AAGATCGCGC GGCTGGCCCT CAGCCTCATC GCCATCGTGC TGGTCTGCTT TGCGCCCTAT 720 CACGTGCTCT TGCTGTCCCG CAGCGCCATC TACCTGGGCC GCCCCTGGGA CTGCGGCTTC 780 GAGGAGCGCG TCTTTTCTGC ATACCACAGC TCACTGGCTT TCACCAGCCT CAACTGTGTG 840 20 GCGGACCCCA TCCTCTACTG CCTGGTCAAC GAGGGCGCCC GCAGCGATGT GGCCAAGGCC 900 CTGCACAACC TGCTCCGCTT TCTGGCCAGC GACAAGCCCC AGGAGATGGC CAATGCCTCG 960 CTCACCCTGG AGACCCCACT CACCTCCAAG AGGAACAGCA CAGCCAAAGC CATGACTGGC 1020 AGCTGGGCGG CCACTCCGCC TTCCCAGGGG GACCAGGTGC AGCTGAAGAT GCTGCCGCCA 1080 GCACAATGA 1089

- 25 (167) INFORMATION FOR SEQ ID NO:166:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 362 amino acids
    - (B) TYPE: amino acid

- (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein

|    | (x:        | i) SI      | EQUE       | ICE I      | DESCI      | RIPT:      | ION:       | SEQ        | ID 1       | NO:1       | 66:        |            |            |            |            |            |
|----|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    | Met<br>1   | Gly        | Asn        | His        | Thr<br>5   | Trp        | Glu        | Gly        | Cys        | His<br>10  | Val        | Asp        | Ser        | Arg        | Val<br>15  | Asp        |
| 5  | His        | Leu        | Phe        | Pro<br>20  | Pro        | Ser        | Leu        | Tyr        | Ile<br>25  | Phe        | Val        | Ile        | Gly        | Val<br>30  | Gly        | Leu        |
|    | Pro        | Thr        | Asn<br>35  | Cys        | Leu        | Ala        | Leu        | Trp<br>40  | Ala        | Ala        | Tyr        | Arg        | Gln<br>45  | Val        | Gln        | Gln        |
|    | Arg        | Asn<br>50  | Glu        | Leu        | Gly        | Val        | Tyr<br>55  |            | Met        | Asn        | Leu        | Ser<br>60  | Ile        | Ala        | Asp        | Leu        |
| 10 | Leu<br>65  | Tyr        | Ile        | Cys        | Thr        | Leu<br>70  | Pro        | Leu        | Trp        | Val        | Asp<br>75  | Tyr        | Phe        | Leu        | His        | His<br>80  |
|    | Asp        | Asn        | Trp        | Ile        | His<br>85  | Gly        | Pro        | Gly        | Ser        | Cys<br>90  | Lys        | Leu        | Phe        | Gly        | Phe<br>95  | Ile        |
| 15 | Phe        | Tyr        | Thr        | Asn<br>100 | Ile        | Tyr        | Ile        | Ser        | Ile<br>105 | Ala        | Phe        | Leu        | Cys        | Cys<br>110 | Ile        | Ser        |
|    | Val        | Asp        | Arg<br>115 | Tyr        | Leu        | Ala        | Val        | Ala<br>120 | His        | Pro        | Leu        | Arg        | Phe<br>125 | Ala        | Arg        | Leu        |
|    | Arg        | Arg<br>130 | Val        | Lys        | Thr        | Ala        | Val<br>135 | Ala        | Val        | Ser        | Ser        | Val<br>140 | Val        | Trp        | Ala        | Thr        |
| 20 | Glu<br>145 | Leu        | Gly        | Ala        | Asn        | Ser<br>150 | Ala        | Pro        | Leu        | Phe        | His<br>155 | Asp        | Glu        | Leu        | Phe        | Arg<br>160 |
|    | Asp        | Arg        | Tyr        | Asn        | His<br>165 | Thr        | Phe        | Cys        | Phe        | Glu<br>170 | Lys        | Phe        | Pro        | Met        | Glu<br>175 | Gly        |
| 25 | Trp        | Val        | Ala        | Trp<br>180 | Met        | Asn        | Leu        | Tyr        | Arg<br>185 | Val        | Phe        | Val        | Gly        | Phe<br>190 | Leu        | Phe        |
|    | Pro        | Trp        | Ala<br>195 | Leu        | Met        | Leu        | Leu        | Ser<br>200 | Tyr        | Arg        | Gly        | Ile        | Leu<br>205 | Arg        | Ala        | Val        |
|    | Arg        | Gly<br>210 | Ser        | Val        | Ser        | Thr        | Glu<br>215 | Arg        | Gln        | Glu        | Lys        | Ala<br>220 | Lys        | Ile        | Ala        | Arg        |
| 30 | Leu<br>225 | Ala        | Leu        | Ser        | Leu        | Ile<br>230 | Ala        | Ile        | Val        | Leu        | Val<br>235 | Cys        | Phe        | Ala        | Pro        | Tyr<br>240 |
|    | His        | Val        | Leu        | Leu        | Leu<br>245 | Ser        | Arg        | Ser        | Ala        | Ile<br>250 | Tyr        | Leu        | Gly        | Arg        | Pro<br>255 | Trp        |
| 35 | Asp        | Cys        | Gly        | Phe<br>260 | Glu        | Glu        | Arg        | Val        | Phe<br>265 | Ser        | Ala        | Tyr        | His        | Ser<br>270 | Ser        | Leu        |
|    | Ala        | Phe        | Thr        | Ser        | Leu        | Asn        | Cys        | Val        | Ala        | Asp        | Pro        | Ile        | Leu        | Tyr        | Cys        | Leu        |

|    |            |                                              |                           |              |                         |                     | 1          | 16         |            |            |            |      |            |            |            |    |
|----|------------|----------------------------------------------|---------------------------|--------------|-------------------------|---------------------|------------|------------|------------|------------|------------|------|------------|------------|------------|----|
|    |            | 27                                           | 280                       |              |                         |                     |            | 285        |            |            |            |      |            |            |            |    |
|    | Val        | Asn Gl<br>290                                | u Gly                     | Ala          | Arg                     | Ser<br>295          | Asp        | Val        | Ala        | Lys        | Ala<br>300 | Leu  | His        | Asn        | Leu        |    |
| 5  | Leu<br>305 | Arg Ph                                       | e Leu                     | Ala          | Ser<br>310              | Asp                 | Lys        | Pro        | Gln        | Glu<br>315 | Met        | Ala  | Asn        | Ala        | Ser<br>320 |    |
|    | Leu        | Thr Le                                       | u Glu                     | Thr<br>325   | Pro                     | Leu                 | Thr        | Ser        | Lys<br>330 | Arg        | Asn        | Ser  | Thr        | Ala<br>335 | Lys        |    |
|    | Ala        | Met Th                                       | r Gly<br>340              | Ser          | Trp                     | Ala                 | Ala        | Thr<br>345 | Pro        | Pro        | Ser        | Gln  | Gly<br>350 | Asp        | Gln        |    |
| 10 | Val        | Gln Le<br>35                                 |                           | Met          | Leu                     | Pro                 | Pro<br>360 | Ala        | Gln        |            |            |      |            |            |            |    |
|    | (168) INF  | ORMATI                                       | ON FOR                    | R SEÇ        | ) ID                    | NO:1                | 167:       |            |            |            |            |      |            |            |            |    |
| 15 | (i)        | SEQUE<br>(A) Li<br>(B) T<br>(C) S'<br>(D) To | ENGTH:<br>PE: r<br>PRANDE | 100<br>nucle | 02 ba<br>eic a<br>88: s | se p<br>cid<br>ingl | airs       | 3          |            |            |            |      |            |            |            |    |
|    | (ii)       | MOLE                                         | CULE T                    | YPE:         | DNA                     | (ge                 | nomi       | .c)        |            |            |            |      |            |            |            |    |
|    | (xi)       | SEQUI                                        | ENCE I                    | ESCF         | IPTI                    | ON:                 | SEQ        | ID N       | 0:16       | 7:         |            |      |            |            |            |    |
| 20 | ATGGAGTCCT | r cagg                                       | CAACCC                    | AGA          | GAGC                    | ACC                 | ACCT       | TTTI       | TT A       | CTAT       | GACC       | T TC | AGAG       | CCAG       |            | 60 |
|    | CCGTGTGAGA | A ACCAC                                      | GCCTG                     | GGI          | CTTT                    | GCT                 | ACCC       | TCGC       | CA C       | CACT       | GTCC       | T GT | ACTG       | CCTG       | 1          | 20 |
|    | GTGTTTCTCC | TCAGG                                        | CTAGI                     | ' GGG        | CAAC                    | AGC                 | CTGG       | TCCT       | GT G       | GGTC       | CTGG       | T GA | AGTA       | TGAG       | 1          | 80 |
|    | AGCCTGGAGT | CCCTC                                        | ACCAA                     | CAT          | CTTC                    | ATC                 | CTCA       | ACCT       | GT G       | CCTC       | TCAG       | A CC | TGGT       | GTTC       | 2          | 40 |
|    | GCCTGCTTGT | TGCCI                                        | GTGTG                     | GAT          | CTCC                    | CCA                 | TACC       | ACTG       | GG G       | CTGG       | GTGC       | T GG | gaga       | CTTC       | 3          | 00 |
| 25 | CTCTGCAAAC | TCCTC                                        | TATAA                     | GAT          | CTTC                    | TCC                 | ATCA       | GCCT       | CT A       | CAGC.      | AGCA       | T CT | TCTT       | CCTG       | 3          | 60 |
|    | ACCATCATGA | CCATO                                        | CACCG                     | CTA          | CCTG                    | TCG                 | GTAG       | TGAG       | cc c       | CCTC       | TCCA       | c cc | TGCG       | CGTC       | 4:         | 20 |
|    | CCCACCCTCC | GCTGC                                        | CGGGT                     | GCT          | GGTG                    | ACC .               | ATGG       | CTGT       | GT G       | GTA        | GCCA       | g CA | TCCT       | GTCC       | 41         | 80 |
|    | TCCATCCTCG | ACACO                                        | ATCTT                     | CCA          | CAAG                    | GTG                 | CTTT       | CTTC       | GG G       | CTGT       | GATT.      | A TT | CCGA       | ACTC       | 5          | 40 |
|    | ACGTGGTACC | TCACC                                        | TCCGT                     | CTA          | CCAG                    | CAC .               | AACC       | TCTT       | CT T       | CCTG       | CTGT       | c cc | TGGG       | GATT       | 60         | 00 |
| 30 | ATCCTGTTCT | GCTAC                                        | GTGGA                     | GAT          | CCTC                    | AGG .               | ACCC'      | TGTT       | CC G       | CTCA       | CGCT       | C CA | AGCG       | gcgc       | 66         | 50 |
|    | CACCGCACGA | AAAAG                                        | CTCAT                     | CTT          | CGCC                    | ATC (               | GTGG'      | TGGC       | CT A       | CTTC       | CTCA       | G CT | GGGG'      | rccc       | 72         | 20 |
|    | TACAACTTCA | CCCTG                                        | TTTCT                     | GCA          | GACG                    | CTG :               | TTTC       | GGAC       | CC A       | SATC       | ATCC       | G GA | GCTG       | CGAG       | 78         | 30 |

| GCCAAACA   | GC A       | GCTA              | GAAT.                          | A CG                             | CCCT                      | GCTC                | ATC           | TGCC       | GCA .      | ACCT       | CGCC       | TT C       | TCCC       | ACTG       | C 8        | 40 |
|------------|------------|-------------------|--------------------------------|----------------------------------|---------------------------|---------------------|---------------|------------|------------|------------|------------|------------|------------|------------|------------|----|
| TGCTTTAA   | CC CC      | GTG               | CTCT                           | A TG                             | TCTT                      | CGTG                | GGG           | GTCA       | AGT '      | TCCG       | CACA       | CA C       | CTGA       | AACA       | г 9        | 00 |
| GTTCTCCG   | GC A       | TTC               | TGGT                           | T CT                             | GCCG                      | GCTG                | CAG           | GCAC       | CCA        | GCCC.      | AGCC       | TC G       | ATCC       | CCCA       | C 9        | 60 |
| TCCCCTGG'  | rg co      | CTTC              | GCCT.                          | A TG                             | AGGG                      | CGCC                | TCC           | TTCT       | ACT        | GΑ         |            |            |            |            | 10         | 02 |
| (169) IN   | FORM       | ATIO              | N FOI                          | R SE                             | Q ID                      | NO:                 | 168:          |            |            |            |            |            |            |            |            |    |
|            | (B)        | LEI<br>TY:<br>STI | NGTH<br>PE: &<br>RANDI<br>POLO | : 33:<br>amino<br>EDNE:<br>3Y: 1 | am:<br>ac:<br>ss:<br>not: | ino a<br>id<br>rele | acid:<br>vant | S          |            |            |            |            |            |            |            |    |
|            | L) SI      |                   |                                |                                  | -                         |                     |               | T OT       | √O - 1 :   | S Q +      |            |            |            |            |            |    |
|            |            |                   |                                |                                  |                           |                     | -             |            |            |            | Dho        | Dho        | Tyr        |            |            |    |
| 1          | GIU        | Ser               | Ser                            | 5                                | ASII                      | FIO                 | Giu           | Set        | 10         | 1111       | PILE       | Pile       | IŅI        | 15         | Asp        |    |
| Leu        | Gln        | Ser               | Gln<br>20                      | Pro                              | Cys                       | Glu                 | Asn           | Gln<br>25  | Ala        | Trp        | Val        | Phe        | Ala<br>30  | Thr        | Leu        |    |
| Ala        | Thr        | Thr<br>35         | Val                            | Leu                              | Tyr                       | Cys                 | Leu<br>40     | Val        | Phe        | Leu        | Leu        | Ser<br>45  | Leu        | Val        | Gly        |    |
| Asn        | Ser<br>50  | Leu               | Val                            | Leu                              | Trp                       | Val<br>55           | Leu           | Val        | Lys        | Tyr        | Glu<br>60  | Ser        | Leu        | Glu        | Ser        |    |
| Leu<br>65  | Thr        | Asn               | Ile                            | Phe                              | Ile<br>70                 | Leu                 | Asn           | Leu        | Cys        | Leu<br>75  | Ser        | Asp        | Leu        | Val        | Phe<br>80  |    |
| Ala        | Cys        | Leu               | Leu                            | Pro<br>85                        | Val                       | Trp                 | Ile           | Ser        | Pro<br>90  | Tyr        | His        | Trp        | Gly        | Trp<br>95  | Val        |    |
| Leu        | Gly        | Asp               | Phe<br>100                     | Leu                              | Cys                       | Lys                 | Leu           | Leu<br>105 | Asn        | Met        | Ile        | Phe        | Ser<br>110 | Ile        | Ser        |    |
| Leu        | Tyr        | Ser<br>115        | Ser                            | Ile                              | Phe                       | Phe                 | Leu<br>120    | Thr        | Ile        | Met        | Thr        | Ile<br>125 | His        | Arg        | Tyr        |    |
| Leu        | Ser<br>130 | Val               | Val                            | Ser                              | Pro                       | Leu<br>135          | Ser           | Thr        | Leu        | Arg        | Val<br>140 | Pro        | Thr        | Leu        | Arg        |    |
| Cys<br>145 | Arg        | Val               | Leu                            | Val                              | Thr<br>150                | Met                 | Ala           | Val        | Trp        | Val<br>155 | Ala        | Ser        | Ile        | Leu        | Ser<br>160 |    |
| Ser        | Ile        | Leu               | Asp                            | Thr<br>165                       | Ile                       | Phe                 | His           | Lys        | Val<br>170 | Leu        | Ser        | Ser        | Gly        | Cys<br>175 | Asp        |    |
| Tyr        | Ser        | Glu               | Leu<br>180                     | Thr                              | Trp                       | Tyr                 | Leu           | Thr<br>185 | Ser        | Val        | Tyr        | Gln        | His<br>190 | Asn        | Leu        |    |

|    | Phe        | Phe               | Leu<br>195 | Leu                                     | Ser         | Leu                     | Gly                    | Ile<br>200 | Ile        | Leu        | Phe        | Cys        | Tyr<br>205 | Val        | Glu        | Ile        |     |
|----|------------|-------------------|------------|-----------------------------------------|-------------|-------------------------|------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----|
|    | Leu        | Arg<br>210        | Thr        | Leu                                     | Phe         | Arg                     | Ser<br>215             | Arg        | Ser        | Lys        | Arg        | Arg<br>220 | His        | Arg        | Thr        | Lys        |     |
| 5  | Lys<br>225 | Leu               | Ile        | Phe                                     | Ala         | Ile<br>230              | Val                    | Val        | Ala        | Tyr        | Phe<br>235 | Leu        | Ser        | Trp        | Gly        | Pro<br>240 |     |
|    | Tyr        | Asn               | Phe        | Thr                                     | Leu<br>245  | Phe                     | Leu                    | Gln        | Thr        | Leu<br>250 | Phe        | Arg        | Thr        | Gln        | Ile<br>255 | Ile        |     |
| 10 | Arg        | Ser               | Cys        | Glu<br>260                              | Ala         | Lys                     | Gln                    | Gln        | Leu<br>265 | Glu        | Tyr        | Ala        | Leu        | Leu<br>270 | Ile        | Cys        |     |
|    | Arg        | Asn               | Leu<br>275 | Ala                                     | Phe         | Ser                     | His                    | Cys<br>280 | Cys        | Phe        | Asn        | Pro        | Val<br>285 | Leu        | Tyr        | Val        |     |
|    | Phe        | Val<br>290        | Gly        | Val                                     | Lys         | Phe                     | Arg<br>295             | Thr        | His        | Leu        | Lys        | His<br>300 | Val        | Leu        | Arg        | Gln        |     |
| 15 | Phe<br>305 | Trp               | Phe        | Cys                                     | Arg         | Leu<br>310              | Gln                    | Ala        | Pro        | Ser        | Pro<br>315 | Ala        | Ser        | Ile        | Pro        | His<br>320 |     |
|    | Ser        | Pro               | Gly        | Ala                                     | Phe<br>325  | Ala                     | Tyr                    | Glu        | Gly        | Ala<br>330 | Ser        | Phe        | Tyr        |            |            |            |     |
|    | (170) IN   | FORM              | ATIO       | 1 FOI                                   | SEC         | ID                      | No:                    | L69:       |            |            |            |            |            |            |            |            |     |
| 20 | (i)        | (A)<br>(B)<br>(C) | LEI<br>TYI | CE CE<br>NGTH<br>PE: 1<br>RANDI<br>POLO | 98°<br>ucle | 7 bas<br>eic a<br>88: s | se pa<br>acid<br>sing: | airs       |            |            |            |            |            |            |            |            |     |
| 25 | (i:        | i) M              | DLEC       | JLE :                                   | YPE         | : DN                    | a (ge                  | enom:      | ic)        |            |            |            |            |            |            |            |     |
|    | (x:        | i) SI             | EQUE       | ICE I                                   | ESCI        | RIPT:                   | ON:                    | SEQ        | ID 1       | 10:16      | 9:         |            |            |            |            |            |     |
|    | ATGGACAA   | CG C              | CTCG'      | TTCT                                    | GG/         | AGCC                    | CTGG                   | CCC        | 3CCA/      | ACG (      | CATC       | GGCC       | CC G       | GACC       | CGGC       | 3          | 6   |
|    | CTGAGCTG   | CT C              | CAAC       | CGT                                     | GA          | CTCT                    | egcg                   | CCG        | TGC        | CGG (      | GCC        | SCTG       | GC GC      | STGG       | TGT        | A :        | 120 |
|    | CCAGTTGT   | CT A              | CGCG       | GTGA:                                   | CT          | 3CGC(                   | CGTG                   | GGT        | CTGG       | CGG (      | CAA        | CTCCC      | GC CC      | GTGC'      | rgta       | 2 :        | 18  |
| 30 | GTGTTGCT   | GC G              | ggcg       | cccc                                    | CA!         | rgaac                   | GACC                   | GTC        | ACCAI      | ACC :      | FGTT       | CATC       | CT C       | AACC       | rggc       | 2 2        | 24  |
|    | ATCGCCGA   | CG A              | GCTC"      | rtca(                                   | G GC        | rggT                    | GCTG                   | ccc        | ATCAJ      | ACA :      | rcgc       | CGAC"      | rr co      | CTGC       | rgcg       | 3 3        | 30  |
|    | CAGTGGCC   | CT T              | CGGG       | GAGC'                                   | CA'         | rgtg                    | CAAG                   | CTC        | ATCG:      | rgg (      | TAT        | CGAC       | CA G       | TACA       | ACAC       | 2 3        | 36  |
|    | TTCTCCAG   | CC T              | CTAC       | TTCC'                                   | CA          | CCGT                    | CATG                   | AGC        | GCCG/      | ACC (      | CTA        | CCTG       | GT G       | GTGT'      | rggc       | C 4        | 12  |
|    | ACTGCGGA   | GT C              | GCGC(      | CGGG'                                   | r gg        | CCGG                    | CCGC                   | ACC"       | FACA       | GCG (      | CCGC       | 3CGC(      | GC G       | GTGA       | CCT        | 3 4        | 18  |

| WO 00/22129 | PCT/US99/239 |
|-------------|--------------|
|             |              |

|    | GCCGTGTG  | GG G             | GATO                             | GTCA                                               | C AC                            | TCGT                          | CGTG                | CTG          | CCCT       | TCG       | CAGT      | CTTC      | GC C       | CGGC       | TAGA      | C         | 540 |
|----|-----------|------------------|----------------------------------|----------------------------------------------------|---------------------------------|-------------------------------|---------------------|--------------|------------|-----------|-----------|-----------|------------|------------|-----------|-----------|-----|
|    | GACGAGCA  | GG G             | ccgg                             | CGCC                                               | A GT                            | GCGT                          | GCTA                | GTC          | TTTC       | CGC       | AGCC      | CGAG      | GC C       | TTCT       | GGTG      | G         | 600 |
|    | CGCGCGAG  | CC G             | CCTC                             | TACA                                               | C GC                            | TCGT                          | GCTG                | GGC          | TTCG       | CCA       | TCCC      | CGTG      | TC C       | ACCA       | TCTG      | Г         | 660 |
|    | GTCCTCTA  | TA C             | CACC                             | CTGC'                                              | r gr                            | GCCG                          | GCTG                | CAT          | GCCA'      | TGC       | GGCT      | GGAC.     | AG C       | CACG       | CCAA      | G         | 720 |
| 5  | GCCCTGGA  | GC G             | CGCC.                            | AAGA                                               | A GC                            | GGGT                          | GAAG                | TTC          | CTGG       | TGG       | TGGC.     | AATC      | CT G       | GCGG       | TGTG      | C         | 780 |
|    | CTCCTCTG  | CT G             | GACG                             | CCCT                                               | A CC                            | ACCT                          | GAGC                | ACC          | GTGG'      | TGG       | CGCT      | CACC      | AC C       | GACC       | TCCC      | G         | 840 |
|    | CAGACGCC  | GC T             | GGTC                             | ATCG                                               | TA                              | rctc                          | CTAC                | TTC          | ATCA       | CCA       | GCCT      | GACG      | TA C       | GCCA       | ACAG      | 2         | 900 |
|    | TGCCTCAA  | cc c             | CTTC                             | CTCT                                               | A CG                            | CCTT                          | CCTG                | GAC          | GCCA       | GCT       | TCCG      | CAGG.     | AA C       | CTCC       | GCCA      | G         | 960 |
|    | CTGATAAC  | TT G             | CCGC                             | GCGGG                                              | AG                              | CCTG                          | A                   |              |            |           |           |           |            |            |           |           | 987 |
| 10 | (171) IN  | FORM             | ATIO                             | N FOR                                              | R SE                            | QID                           | NO:                 | 170:         |            |           |           |           |            |            |           |           |     |
| 15 |           | (A<br>(B)<br>(C) | ) LEI<br>) TYI<br>) STI<br>) TOI | CE CH<br>NGTH:<br>PE: &<br>RANDI<br>POLOC<br>ULE T | : 32;<br>amin<br>EDNE:<br>FY: 1 | 8 am:<br>o ac:<br>SS:<br>not: | ino a<br>id<br>rele | acid<br>vant | s          |           |           |           |            |            |           |           |     |
|    | (x.       | i) SI            | EQUEI                            | NCE I                                              | DESCI                           | RIPT:                         | ION:                | SEQ          | ID I       | NO:1      | 70:       |           |            |            |           |           |     |
|    | Met<br>1  | Asp              | Asn                              | Ala                                                | Ser<br>5                        | Phe                           | Ser                 | Glu          | Pro        | Trp       | Pro       | Ala       | Asn        | Ala        | ser<br>15 | Gly       |     |
| 20 | Pro       | Asp              | Pro                              | Ala<br>20                                          | Leu                             | Ser                           | Cys                 | Ser          | Asn<br>25  | Ala       | Ser       | Thr       | Leu        | Ala<br>30  | Pro       | Leu       |     |
|    | Pro       | Ala              | Pro<br>35                        | Leu                                                | Ala                             | Val                           | Ala                 | Val<br>40    | Pro        | Val       | Val       | Tyr       | Ala<br>45  | Val        | Ile       | Сув       |     |
| 25 | Ala       | Val<br>50        | Gly                              | Leu                                                | Ala                             | Gly                           | Asn<br>55           | Ser          | Ala        | Val       | Leu       | Tyr<br>60 | Val        | Leu        | Leu       | Arg       |     |
|    | Ala<br>65 | Pro              | Arg                              | Met                                                | Lys                             | Thr<br>70                     | Val                 | Thr          | Asn        | Leu       | Phe<br>75 | Ile       | Leu        | Asn        | Leu       | Ala<br>80 |     |
|    | Ile       | Ala              | Asp                              | Glu                                                | Leu<br>85                       | Phe                           | Thr                 | Leu          | Val        | Leu<br>90 | Pro       | Ile       | Asn        | Ile        | Ala<br>95 | Asp       |     |
| 30 | Phe       | Leu              | Leu                              | Arg<br>100                                         | Gln                             | Trp                           | Pro                 | Phe          | Gly<br>105 | Glu       | Leu       | Met       | Cys        | Lys<br>110 | Leu       | Ile       |     |
|    | Val       | Ala              | Ile<br>115                       | Asp                                                | Gln                             | Tyr                           | Asn                 | Thr<br>120   | Phe        | ser       | Ser       | Leu       | Tyr<br>125 | Phe        | Leu       | Thr       |     |
|    | Val       | Met              | Ser                              | Ala                                                | Asp                             | Ara                           | Tvr                 | Leu          | Va1        | Val       | Len       | Ala       | Thr        | Δla        | Glu       | Ser       |     |

120

|    |            | 130               |            |              |             |                      | 135        |            |            |            |            | 140        |            |            |            |            |
|----|------------|-------------------|------------|--------------|-------------|----------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    | Arg<br>145 | Arg               | Val        | Ala          | Gly         | Arg<br>150           | Thr        | Tyr        | Ser        | Ala        | Ala<br>155 | Arg        | Ala        | Val        | Ser        | Leu<br>160 |
| 5  | Ala        | Val               | Trp        | Gly          | Ile<br>165  | Val                  | Thr        | Leu        | Val        | Val<br>170 | Leu        | Pro        | Phe        | Ala        | Val        | Phe        |
|    | Ala        | Arg               | Leu        | Asp<br>180   | Asp         | Glu                  | Gln        | Gly        | Arg<br>185 | Arg        | Gln        | Cys        | Val        | Leu<br>190 | Val        | Phe        |
|    | Pro        | Gln               | Pro<br>195 | Glu          | Ala         | Phe                  | Trp        | Trp<br>200 | Arg        | Ala        | Ser        | Arg        | Leu<br>205 | Tyr        | Thr        | Leu        |
| 10 | Val        | Leu<br>210        | Gly        | Phe          | Ala         | Ile                  | Pro<br>215 | Val        | Ser        | Thr        | Ile        | Cys<br>220 | Val        | Leu        | Tyr        | Thr        |
|    | Thr<br>225 | Leu               | Leu        | Cys          | Arg         | Leu<br>230           | His        | Ala        | Met        | Arg        | Leu<br>235 | Asp        | Ser        | His        | Ala        | Lys<br>240 |
| 15 | Ala        | Leu               | Glu        | Arg          | Ala<br>245  | Lys                  | Lys        | Arg        | Val        | Lys<br>250 | Phe        | Leu        | Val        | Val        | Ala<br>255 | Ile        |
|    | Leu        | Ala               | Val        | Cys<br>260   | Leu         | Leu                  | Cys        | Trp        | Thr<br>265 | Pro        | Tyr        | His        | Leu        | Ser<br>270 | Thr        | Val        |
|    | Val        | Ala               | Leu<br>275 | Thr          | Thr         | Asp                  | Leu        | Pro<br>280 | Gln        | Thr        | Pro        | Leu        | Val<br>285 | Ile        | Ala        | Ile        |
| 20 | Ser        | Tyr<br>290        | Phe        | Ile          | Thr         | Ser                  | Leu<br>295 | Thr        | Tyr        | Ala        | Asn        | Ser<br>300 | Cys        | Leu        | Asn        | Pro        |
|    | Phe<br>305 | Leu               | Tyr        | Ala          | Phe         | Leu<br>310           | Asp        | Ala        | Ser        | Phe        | Arg<br>315 | Arg        | Asn        | Leu        | Arg        | Gln<br>320 |
| 25 | Leu        | Ile               | Thr        | Cys          | Arg<br>325  | Ala                  | Ala        | Ala        |            |            |            |            |            |            |            |            |
|    | (172) INF  | ORMA              | TION       | FOF          | SEC         | ID                   | NO:1       | 71:        |            |            |            |            |            |            |            |            |
| 30 | (i)        | (A)<br>(B)<br>(C) | LEN<br>TYP | GTH:<br>E: n | 100<br>ucle | 2 ba<br>ic a<br>S: s | ingl       | airs       |            |            |            |            |            |            |            |            |
|    | (ii        | ) MC              | LECU       | LE T         | YPE:        | DNA                  | (ge        | nomi       | c)         |            |            |            |            |            |            |            |
|    | (xi        | ) SE              | QUEN       | CE D         | ESCR        | IPTI                 | ON:        | SEQ        | ID N       | 0:17       | 1:         |            |            |            |            |            |
|    | ATGCAGGCC  | G CT              | GGGC       | ACCC         | AGA         | GCCC                 | CTT        | GACA       | GCAG       | GG G       | CTCC       | TTCT       | c cc       | TCCC       | CACG       | 60         |
| 35 | ATGGGTGCC  | A AC              | GTCT       | CTCA         | GGA         | CAAT                 | 'GGC       | ACTG       | GCCA       | CA A       | TGCC       | ACCT       | T CT       | CCGA       | GCCA       | 120        |
|    | CTGCCGTTC  | C TC              | TATG       | TGCT         | CCT         | GCCC                 | GCC        | GTGT       | ACTC       | CG G       | GATC       | TGTG       | C TG       | TGGG       | GCTG       | 180        |

|    | ACTGGCAACA CGGCCGTCAT CCTTGTAATC CTAAGGGCGC CCAAGATGAA GACGGTGACC 240                                                         |
|----|-------------------------------------------------------------------------------------------------------------------------------|
|    | AACGTGTTCA TCCTGAACCT GGCCGTCGCC GACGGGCTCT TCACGCTGGT ACTGCCTGTC 300                                                         |
|    | AACATCGCGG AGCACCTGCT GCAGTACTGG CCCTTCGGGG AGCTGCTCTG CAAGCTGGTG 363                                                         |
|    | CTGGCCGTCG ACCACTACAA CATCTTCTCC AGCATCTACT TCCTAGCCGT GATGAGCGTG 420                                                         |
| 5  | GACCGATACC TGGTGGTGCT GGCCACCGTG AGGTCCCGCC ACATGCCCTG GCGCACCTAC 480                                                         |
|    | CGGGGGGCGA AGGTCGCCAG CCTGTGTGTC TGGCTGGGCG TCACGGTCCT GGTTCTGCCC $\ 540$                                                     |
|    | TTCTTCTCTT TCGCTGGCGT CTACAGCAAC GAGCTGCAGG TCCCAAGCTG TGGGCTGAGC 600                                                         |
|    | TTCCCGTGGC CCGAGCAGGT CTGGTTCAAG GCCAGCCGTG TCTACACGTT GGTCCTGGGC 660                                                         |
|    | TTCGTGCTGC CCGTGTGCAC CATCTGTGTG CTCTACACAG ACCTCCTGCG CAGGCTGCGG 720                                                         |
| 10 | GCCGTGCGGC TCCGCTCTGG AGCCAAGGCT CTAGGCAAGG CCAGGCGGAA GGTGAAAGTC 780                                                         |
|    | CTGGTCCTCG TCGTGCTGGC CGTGTGCCTC CTCTGCTGGA CGCCCTTCCA CCTGGCCTCT 840                                                         |
|    | GTCGTGGCCC TGACCACGGA CCTGCCCCAG ACCCCACTGG TCATCAGTAT GTCCTACGTC 900                                                         |
|    | ATCACCAGCC TCACGTACGC CAACTCGTGC CTGAACCCCT TCCTCTACGC CTTTCTAGAT 960                                                         |
|    | GACAACTTCC GGAAGAACTT CCGCAGCATA TTGCGGTGCT GA 1002                                                                           |
| 15 | (173) INFORMATION FOR SEQ ID NO:172:                                                                                          |
| 20 | (i) SEQUENCE CHARACTERISTICS:  (A) LENOTH: 333 amino acids (B) TYPE: amino acid (C) STRANDEDNESS:  (D) TOPOLOGY: not relevant |
|    | (ii) MOLECULE TYPE: protein                                                                                                   |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:172:                                                                                     |
|    |                                                                                                                               |
|    | Met Gln Ala Ala Gly His Pro Glu Pro Leu Asp Ser Arg Gly Ser Phe<br>1 5 10 15                                                  |
| 25 | Ser Leu Pro Thr Met Gly Ala Asn Val Ser Gln Asp Asn Gly Thr Gly $$20$$                                                        |
|    | His Asn Ala Thr Phe Ser Glu Pro Leu Pro Phe Leu Tyr Val Leu Leu $$35$$ $$40$$ $$45$$                                          |
| 30 | Pro Ala Val Tyr Ser Gly Ile Cys Ala Val Gly Leu Thr Gly Asn Thr $50 \\ 0000000000000000000000000000000000$                    |
|    | Ala Val Ile Leu Val Ile Leu Arg Ala Pro Lys Met Lys Thr Val Thr<br>65 70 75 80                                                |

|    | As        | n Va       | l Phe        | Ile        | Leu<br>85  | Asn        | Leu        | Ala        | Val        | Ala<br>90  | Asp        | Gly        | Leu        | Phe        | Thr<br>95  | Leu        |
|----|-----------|------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    | Va        | l Le       | ı Pro        | Val<br>100 |            | Ile        | Ala        | Glu        | His<br>105 |            | Leu        | Gln        | Tyr        | Trp        |            | Phe        |
| 5  | G1        | y Glı      | 1 Leu<br>115 | Leu        | Сув        | Lys        | Leu        | Val<br>120 | Leu        | Ala        | Val        | Asp        | His<br>125 | Tyr        | Asn        | Ile        |
|    | Ph        | e Ser      | ser          | Ile        | Tyr        | Phe        | Leu<br>135 | Ala        | Val        | Met        | Ser        | Val<br>140 | Asp        | Arg        | Tyr        | Leu        |
| 10 | 14        | 5          | L Leu        |            |            | 150        |            |            |            |            | 155        |            | _          |            |            | 160        |
|    |           |            | / Ala        |            | 165        |            |            |            |            | 170        |            |            |            |            | 175        |            |
|    | Le        | u Va]      | . Leu        | Pro<br>180 | Phe        | Phe        | Ser        | Phe        | Ala<br>185 | Gly        | Val        | Tyr        | Ser        | Asn<br>190 | Glu        | Leu        |
| 15 | G1        | n Val      | Pro<br>195   | Ser        | Cys        | Gly        | Leu        | Ser<br>200 | Phe        | Pro        | Trp        | Pro        | Glu<br>205 | Gln        | Val        | Trp        |
|    |           | 210        |              |            |            |            | 215        |            |            |            |            | 220        |            |            |            |            |
| 20 | Va<br>22  | 1 Cys<br>5 | Thr          | Ile        | Cys        | Val<br>230 | Leu        | Tyr        | Thr        | Asp        | Leu<br>235 | Leu        | Arg        | Arg        | Leu        | Arg<br>240 |
|    | Al:       | a Val      | Arg          | Leu        | Arg<br>245 | Ser        | Gly        | Ala        | Lys        | Ala<br>250 | Leu        | Gly        | Lys        | Ala        | Arg<br>255 | Arg        |
|    | Ly        | s Val      | Lys          | Val<br>260 | Leu        | Val        | Leu        | Val        | Val<br>265 | Leu        | Ala        | Val        | Cys        | Leu<br>270 | Leu        | Cys        |
| 25 | Trj       | 7 Thr      | Pro<br>275   | Phe        | His        | Leu        | Ala        | Ser<br>280 | Val        | Val        | Ala        | Leu        | Thr<br>285 | Thr        | Asp        | Leu        |
|    | Pro       | 290        | Thr          | Pro        | Leu        | Val        | Ile<br>295 | Ser        | Met        | Ser        | Tyr        | Val<br>300 | Ile        | Thr        | Ser        | Leu        |
| 30 | Th:<br>30 | Tyr        | Ala          | Asn        | Ser        | Cys<br>310 | Leu        | Asn        | Pro        | Phe        | Leu<br>315 | Tyr        | Ala        | Phe        | Leu        | Asp<br>320 |
|    | Ası       | Asn        | Phe          | Arg        | Lys<br>325 | Asn        | Phe        | Arg        | Ser        | Ile<br>330 | Leu        | Arg        | Cys        |            |            |            |
|    | (174) II  | JFORM      | ATION        | FOR        | SEÇ        | ) ID       | NO:1       | 73:        |            |            |            |            |            |            |            |            |

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1107 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

1107

|    | (xi)       | SEQUENCE D | ESCRIPTION: | SEQ ID NO: | 173:       |            |      |
|----|------------|------------|-------------|------------|------------|------------|------|
|    | ATGGTCCTTG | AGGTGAGTGA | CCACCAAGTG  | CTAAATGACG | CCGAGGTTGC | CGCCCTCCTG | 60   |
|    | GAGAACTTCA | GCTCTTCCTA | TGACTATGGA  | GAAAACGAGA | GTGACTCGTG | CTGTACCTCC | 120  |
| 5  | CCGCCCTGCC | CACAGGACTT | CAGCCTGAAC  | TTCGACCGGG | CCTTCCTGCC | AGCCCTCTAC | 180  |
|    | AGCCTCCTCT | TTCTGCTGGG | GCTGCTGGGC  | AACGGCGCGG | TGGCAGCCGT | GCTGCTGAGC | 240  |
|    | CGGCGGACAG | CCCTGAGCAG | CACCGACACC  | TTCCTGCTCC | ACCTAGCTGT | AGCAGACACG | 300  |
|    | CTGCTGGTGC | TGACACTGCC | GCTCTGGGCA  | GTGGACGCTG | CCGTCCAGTG | GGTCTTTGGC | 360  |
|    | TCTGGCCTCT | GCAAAGTGGC | AGGTGCCCTC  | TTCAACATCA | ACTTCTACGC | AGGAGCCCTC | 420  |
| 10 | CTGCTGGCCT | GCATCAGCTT | TGACCGCTAC  | CTGAACATAG | TTCATGCCAC | CCAGCTCTAC | 480  |
|    | CGCCGGGGGC | CCCCGGCCCG | CGTGACCCTC  | ACCTGCCTGG | CTGTCTGGGG | GCTCTGCCTG | 540  |
|    | CTTTTCGCCC | TCCCAGACTT | CATCTTCCTG  | TCGGCCCACC | ACGACGAGCG | CCTCAACGCC | 600  |
|    | ACCCACTGCC | AATACAACTT | CCCACAGGTG  | GGCCGCACGG | CTCTGCGGGT | GCTGCAGCTG | 660  |
|    | GTGGCTGGCT | TTCTGCTGCC | CCTGCTGGTC  | ATGGCCTACT | GCTATGCCCA | CATCCTGGCC | 720  |
| 15 | GTGCTGCTGG | TTTCCAGGGG | CCAGCGGCGC  | CTGCGGGCCA | AGCGGCTGGT | GGTGGTGGTC | 780  |
|    | GTGGTGGCCT | TTGCCCTCTG | CTGGACCCCC  | TATCACCTGG | TGGTGCTGGT | GGACATCCTC | 840  |
|    | ATGGACCTGG | GCGCTTTGGC | CCGCAACTGT  | GGCCGAGAAA | GCAGGGTAGA | CGTGGCCAAG | 900  |
|    | TCGGTCACCT | CAGGCCTGGG | CTACATGCAC  | TGCTGCCTCA | ACCCGCTGCT | CTATGCCTTT | 960  |
|    | GTAGGGGTCA | AGTTCCGGGA | GCGGATGTGG  | ATGCTGCTCT | TGCGCCTGGG | CTGCCCCAAC | 1020 |
| 20 | CAGAGAGGGC | TCCAGAGGCA | GCCATCGTCT  | TCCCGCCGGG | ATTCATCCTG | GTCTGAGACC | 1080 |
|    | TCAGAGGCCT | CCTACTCGGG | CTTGTGA     |            |            |            | 1107 |

(175) INFORMATION FOR SEQ ID NO:174:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 368 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS:
  - (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:174:

|    | Met<br>1   | Val        | Leu        | Glu        | Val<br>5   | Ser        | Asp        | His        | Gln        | Val        | Leu        | Asn        | . Asp      | Ala        | Glu<br>15  | Val        |
|----|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    | Ala        | Ala        | Leu        | Leu<br>20  | Glu        | Asn        | Phe        | Ser        | Ser<br>25  | Ser        | Tyr        | Asp        | Tyr        | Gly<br>30  | Glu        | Asn        |
| 5  | Glu        | Ser        | Asp<br>35  | Ser        | Cys        | Cys        | Thr        | Ser<br>40  | Pro        | Pro        | Cys        | Pro        | Gln<br>45  | Asp        | Phe        | Ser        |
|    | Leu        | Asn<br>50  | Phe        | Asp        | Arg        | Ala        | Phe<br>55  | Leu        | Pro        | Ala        | Leu        | Tyr<br>60  | Ser        | Leu        | Leu        | Phe        |
| 10 | Leu<br>65  | Leu        | Gly        | Leu        | Leu        | Gly<br>70  | Asn        | Gly        | Ala        | Val        | Ala<br>75  | Ala        | Val        | Leu        | Leu        | Ser<br>80  |
|    | Arg        | Arg        | Thr        | Ala        | Leu<br>85  | Ser        | Ser        | Thr        | Asp        | Thr<br>90  | Phe        | Leu        | Leu        | His        | Leu<br>95  | Ala        |
|    | Val        | Ala        | Asp        | Thr<br>100 | Leu        | Leu        | Val        | Leu        | Thr<br>105 | Leu        | Pro        | Leu        | Trp        | Ala<br>110 | Val        | Asp        |
| 15 | Ala        | Ala        | Val<br>115 | Gln        | Trp        | Val        | Phe        | Gly<br>120 | Ser        | Gly        | Leu        | Cys        | Lys<br>125 | Val        | Ala        | Gly        |
|    | Ala        | Leu<br>130 | Phe        | Asn        | Ile        | Asn        | Phe<br>135 | Tyr        | Ala        | Gly        | Ala        | Leu<br>140 | Leu        | Leu        | Ala        | Cys        |
| 20 | Ile<br>145 | Ser        | Phe        | Asp        | Arg        | Tyr<br>150 | Leu        | Asn        | Ile        | Val        | His<br>155 | Ala        | Thr        | Gln        | Leu        | Tyr<br>160 |
|    | Arg        | Arg        | Gly        | Pro        | Pro<br>165 | Ala        | Arg        | Val        | Thr        | Leu<br>170 | Thr        | Cys        | Leu        | Ala        | Val<br>175 | Trp        |
|    | Gly        | Leu        | Cys        | Leu<br>180 | Leu        | Phe        | Ala        | Leu        | Pro<br>185 | Asp        | Phe        | Ile        | Phe        | Leu<br>190 | Ser        | Ala        |
| 25 | His        | His        | Asp<br>195 | Glu        | Arg        | Leu        | Asn        | Ala<br>200 | Thr        | His        | Cys        | Gln        | Tyr<br>205 | Asn        | Phe        | Pro        |
|    | Gln        | Val<br>210 | Gly        | Arg        | Thr        | Ala        | Leu<br>215 | Arg        | Val        | Leu        | Gln        | Leu<br>220 | Val        | Ala        | Gly        | Phe        |
| 30 | Leu<br>225 | Leu        | Pro        | Leu        | Leu        | Val<br>230 | Met        | Ala        | Tyr        | Cys        | Tyr<br>235 | Ala        | His        | Ile        | Leu        | Ala<br>240 |
|    | Val        | Leu        | Leu        | Val        | Ser<br>245 | Arg        | Gly        | Gln        |            | Arg<br>250 | Leu        | Arg        | Ala        |            | Arg<br>255 | Leu        |
|    | Val        | Val        | Val        | Val<br>260 | Val        | Val        | Ala        | Phe        | Ala<br>265 | Leu        | Cys        | Trp        | Thr        | Pro<br>270 | Tyr        | His        |
| 35 | Leu        | Val        | Val<br>275 | Leu        | Val        | Asp        | Ile        | Leu<br>280 | Met        | Asp        | Leu        | Gly        | Ala<br>285 | Leu        | Ala        | Arg        |
|    | Asn        | Cys        | Gly        | Arg        | Glu        | Ser        | Arg        | Val        | Asp        | Val        | Ala        | Lys        | Ser        | Val        | Thr        | Ser        |

| 290                      |                                                                              | 295                                        |                   | 300               |           |                |
|--------------------------|------------------------------------------------------------------------------|--------------------------------------------|-------------------|-------------------|-----------|----------------|
| Gly Leu<br>305           | Gly Tyr Met                                                                  | His Cys                                    | Cys Leu A         | sn Pro Leu<br>315 | Leu Tyr   | Ala Phe<br>320 |
| Val Gly                  | Val Lys Phe<br>325                                                           | Arg Glu i                                  |                   | rp Met Leu<br>30  |           | Arg Leu<br>335 |
| Gly Cys                  | Pro Asn Gln<br>340                                                           | Arg Gly 1                                  | Leu Gln A<br>345  | rg Gln Pro        | Ser Ser   | Ser Arg        |
| Arg Asp                  | Ser Ser Trp<br>355                                                           |                                            | Thr Ser G<br>360  | lu Ala Ser        | Tyr Ser   | Gly Leu        |
| (176) INFORM             | ATION FOR SEQ                                                                | ID NO:17                                   | 75:               |                   |           |                |
| (A)<br>(B)<br>(C)<br>(D) | QUENCE CHARAC<br>LENGTH: 107-<br>TYPE: nucle<br>STRANDEDNES:<br>TOPOLOGY: 1: | 4 base pa<br>ic acid<br>S: single<br>inear | airs              |                   |           |                |
| (ii) MC                  | DLECULE TYPE:                                                                | DNA (ger                                   | nomic)            |                   |           |                |
| (xi) SE                  | QUENCE DESCR                                                                 | IPTION: S                                  | SEQ ID NO         | 175:              |           |                |
| ATGGCTGATG AC            | CTATGGCTC TGA                                                                | ATCCACA I                                  | CTTCCATG          | AAGACTACG         | T TAACTTO | CAAC 60        |
| TTCACTGACT TO            | TACTGTGA GAA                                                                 | AAACAAT G                                  | TCAGGCAG          | TTGCGAGCC.        | A TTTCCTC | CCA 120        |
| CCCTTGTACT GG            | CTCGTGTT CAT                                                                 | CGTGGGT G                                  | CCTTGGGC          | ACAGTCTTG         | TATCCTI   | GTC 180        |
| TACTGGTACT GC            | ACAAGAGT GAAG                                                                | GACCATG A                                  | ACCGACATG         | TCCTTTTGA         | A TTTGGC  | ATT 240        |
| GCTGACCTCC TC            | TTTCTTGT CAC                                                                 | CTTCCC T                                   | TCTGGGCC          | TTGCTGCTG         | C TGACCAG | TGG 300        |
| AAGTTCCAGA CC            | TTCATGTG CAAC                                                                | GTGGTC A                                   | ACAGCATG          | ACAAGATGA         | A CTTCTAC | AGC 360        |
| TGTGTGTTGC TG            | ATCATGTG CAT                                                                 | AGCGTG G                                   | acaggtac <i>i</i> | TTGCCATTG         | CCAGGCC   | ATG 420        |
| AGAGCACATA CT            | TGGAGGGA GAAF                                                                | AGGCTT T                                   | TGTACAGC          | AAATGGTTT         | G CTTTACC | ATC 480        |
| TGGGTATTGG CA            | GCTGCTCT CTGC                                                                | ATCCCA G                                   | AAATCTTAT         | ACAGCCAAA         | r caaggag | GAA 540        |
| TCCGGCATTG CT            | ATCTGCAC CATC                                                                | GTTTAC C                                   | CTAGCGATO         | AGAGCACCA         | A ACTGAAG | TCA 600        |
| GCTGTCTTGA CC            | CTGAAGGT CATI                                                                | CTGGGG T                                   | TCTTCCTTC         | CCTTCGTGG         | CATGGCT   | TGC 660        |
| TGCTATACCA TC            | ATCATTCA CACC                                                                | CTGATA C                                   | AAGCCAAGA         | AGTCTTCCA:        | GCACAAA   | GCC 720        |
| AAGAAAGTGA CC            | ATCACTGT CCTG                                                                | ACCGTC T                                   | TTGTCTTG1         | CTCAGTTTCC        | CTACAAC   | TGC 780        |
| ATTTTGTTGG TG            | CAGACCAT TGAC                                                                | GCCTAT G                                   | CCATGTTCA         | TCTCCAACTO        | FGCCGTT   | TCC 840        |

|    | ACCAACAT   | TTG A      | CATC                         | TGCT                        | T CC                        | AGGT                       | CACC              | CAG          | ACCA       | TCG        | CCTI       | CTTC       | CA C       | AGTI       | GCCI       | 'G         | 900 |
|----|------------|------------|------------------------------|-----------------------------|-----------------------------|----------------------------|-------------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|-----|
|    | AACCCTGT   | TTC I      | CTAT                         | GTTI                        | T TG                        | TGGG                       | TGAG              | AGA          | TTCC       | GCC        | GGGA       | TCTC       | GT C       | AAAA       | CCCI       | 'G         | 960 |
|    | AAGAACTI   | GG G       | TTGC                         | ATCA                        | .G CC                       | AGGC                       | CCAG              | TGG          | GTTT       | CAT        | TTAC       | AAGG       | AG A       | GAGG       | GAAG       | C 1        | 020 |
|    | TTGAAGCT   | GT C       | GTCT                         | ATGT                        | T GC                        | TGGA                       | GACA              | ACC          | TCAG       | GAG        | CACT       | CTCC       | CT C       | TGA        |            | 1          | 074 |
| 5  | (177) IN   | IFORM      | ATIO                         | N FO                        | R SE                        | Q ID                       | NO:               | 176:         |            |            |            |            |            |            |            |            |     |
| 10 |            | (B         | ) LE<br>) TY<br>) ST<br>) TO | NGTH<br>PE:<br>RAND<br>POLO | : 35<br>amin<br>EDNE<br>GY: | 7 am<br>o ac<br>SS:<br>not | ino<br>id<br>rele | acid<br>vant | s          |            |            |            |            |            |            |            |     |
|    | (x         | i) S       | EQUE                         | NCE                         | DESC                        | RIPT                       | ION:              | SEQ          | ID         | NO:1       | 76:        |            |            |            |            |            |     |
|    | Met<br>1   | Ala        | Asp                          | Asp                         | Tyr<br>5                    | Gly                        | Ser               | Glu          | Ser        | Thr<br>10  | Ser        | Ser        | Met        | Glu        | Asp<br>15  | Tyr        |     |
| 5  | Val        | Asn        | Phe                          | Asn<br>20                   | Phe                         | Thr                        | Asp               | Phe          | Tyr<br>25  | Cys        | Glu        | Lys        | Asn        | Asn<br>30  | Val        | Arg        |     |
|    | Gln        | Phe        | Ala<br>35                    | Ser                         | His                         | Phe                        | Leu               | Pro<br>40    | Pro        | Leu        | Tyr        | Trp        | Leu<br>45  | Val        | Phe        | Ile        |     |
| 0  | Val        | Gly<br>50  | Ala                          | Leu                         | Gly                         | Asn                        | Ser<br>55         | Leu          | Val        | Ile        | Leu        | Val<br>60  | Tyr        | Trp        | Tyr        | Cys        |     |
|    | Thr<br>65  | Arg        | Val                          | Lys                         | Thr                         | Met<br>70                  | Thr               | Asp          | Met        | Phe        | Leu<br>75  | Leu        | Asn        | Leu        | Ala        | Ile<br>80  |     |
|    | Ala        | Asp        | Leu                          | Leu                         | Phe<br>85                   | Leu                        | Val               | Thr          | Leu        | Pro<br>90  | Phe        | Trp        | Ala        | Ile        | Ala<br>95  | Ala        |     |
| 5  | Ala        | Asp        | Gln                          | Trp<br>100                  | Lys                         | Phe                        | Gln               | Thr          | Phe<br>105 | Met        | Cys        | Lys        | Val        | Val<br>110 | Asn        | Ser        |     |
|    | Met        | Tyr        | Lys<br>115                   | Met                         | Asn                         | Phe                        | Tyr               | Ser<br>120   | Сув        | Val        | Leu        | Leu        | Ile<br>125 | Met        | Cys        | Ile        |     |
| 0  | Ser        | Val<br>130 | Asp                          | Arg                         | Tyr                         | Ile                        | Ala<br>135        | Ile          | Ala        | Gln        | Ala        | Met<br>140 | Arg        | Ala        | His        | Thr        |     |
|    | Trp<br>145 | Arg        | Glu                          | Lys                         | Arg                         | Leu<br>150                 | Leu               | Tyr          | Ser        | Lys        | Met<br>155 | Val        | Cys        | Phe        | Thr        | Ile<br>160 |     |
|    | Trp        | Val        | Leu                          | Ala                         | Ala<br>165                  | Ala                        | Leu               | Cys          | Ile        | Pro<br>170 | Glu        | Ile        | Leu        | Tyr        | Ser<br>175 | Gln        |     |
| 5  | Ile        | Lys        | Glu                          | Glu<br>180                  | Ser                         | Gly                        | Ile               | Ala          | Ile<br>185 | Cys        | Thr        | Met        | Val        | Tyr<br>190 | Pro        | Ser        |     |

|    | Asp        | Glu               | Ser               | Thr                  | Lys                 | Leu                   | Lys                 | Ser<br>200 | Ala        | Val        | Leu        | Thr        | Leu<br>205 | Lys        | Val        | Ile        |
|----|------------|-------------------|-------------------|----------------------|---------------------|-----------------------|---------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    | Leu        | Gly<br>210        | Phe               | Phe                  | Leu                 | Pro                   | Phe<br>215          | Val        | Val        | Met        | Ala        | Cys<br>220 | Cys        | Tyr        | Thr        | Ile        |
| 5  | 11e<br>225 | Ile               | His               | Thr                  | Leu                 | Ile<br>230            | Gln                 | Ala        | Lys        | Lys        | Ser<br>235 | Ser        | Lys        | His        | Lys        | Ala<br>240 |
|    | Lys        | Lys               | Val               | Thr                  | Ile<br>245          | Thr                   | Val                 | Leu        | Thr        | Val<br>250 | Phe        | Val        | Leu        | Ser        | Gln<br>255 | Phe        |
| 10 | Pro        | Tyr               | Asn               | Cys<br>260           | Ile                 | Leu                   | Leu                 | Val        | Gln<br>265 | Thr        | Ile        | Asp        | Ala        | Tyr<br>270 | Ala        | Met        |
|    | Phe        | Ile               | Ser<br>275        | Asn                  | Cys                 | Ala                   | Val                 | Ser<br>280 | Thr        | Asn        | Ile        | Asp        | Ile<br>285 | Cys        | Phe        | Gln        |
|    | Val        | Thr<br>290        | Gln               | Thr                  | Ile                 | Ala                   | Phe<br>295          | Phe        | His        | Ser        | Cys        | Leu<br>300 | Asn        | Pro        | Val        | Leu        |
| 15 | Tyr<br>305 | Val               | Phe               | Val                  | Gly                 | Glu<br>310            | Arg                 | Phe        | Arg        | Arg        | Asp<br>315 | Leu        | Val        | Lys        | Thr        | Leu<br>320 |
|    | Lys        | Asn               | Leu               | Gly                  | Cys<br>325          | Ile                   | Ser                 | Gln        | Ala        | Gln<br>330 | Trp        | Val        | Ser        | Phe        | Thr<br>335 | Arg        |
| 20 | Arg        | Glu               | Gly               | Ser<br>340           | Leu                 | Lys                   | Leu                 | Ser        | Ser<br>345 | Met        | Leu        | Leu        | Glu        | Thr<br>350 | Thr        | Ser        |
|    | Gly        | Ala               | Leu<br>355        | Ser                  | Leu                 |                       |                     |            |            |            |            |            |            |            |            |            |
|    | (178) INF  | FORMA             | MOITA             | FOF                  | SEC                 | ID                    | NO:1                | .77:       |            |            |            |            |            |            |            |            |
| 25 | (i)        | (A)<br>(B)<br>(C) | LEN<br>TYI<br>STF | GTH:<br>E: r<br>ANDE | 111<br>ucle<br>DNES | .0 ba<br>ic a<br>S: s | se p<br>cid<br>ingl | airs       | 3          |            |            |            |            |            |            |            |
|    | (ii        | .) MC             | LECU              | LE I                 | YPE:                | DNA                   | (ge                 | nomi       | .c)        |            |            |            |            |            |            |            |
| 30 | (xi        | .) SE             | QUEN              | ICE D                | ESCR                | IPTI                  | ON:                 | SEQ        | ID N       | 0:17       | 7:         |            |            |            |            |            |
|    | ATGGCCTCA  | T CG              | ACCA              | CTCG                 | GGG                 | cccc                  | AGG                 | GTTI       | CTGA       | CT I       | TTTA       | TCTG       | G GC       | TGCC       | GCCG       | 60         |
|    | GCGGTCACA  | A CI              | CCCG              | CCAA                 | CCA                 | GAGC                  | GCA                 | GAGG       | CCTC       | GG C       | :GGGC      | AACG       | G GI       | CGGI       | GGCI       | 120        |
|    | GGCGCGGAC  |                   |                   |                      |                     |                       |                     |            |            |            |            |            |            |            |            |            |
| 25 | GGGCTGATC  |                   |                   |                      |                     |                       |                     |            |            |            |            |            |            |            |            |            |
| 35 | CTGGTGCTG  | G TG              | ATCC              | CGCG                 | GGT                 | GCCG                  | CGG                 | CTGC       | ACAA       | CG T       | GACG       | AACT       | T CC       | TCAT       | 'CGGC      | 300        |

|    | AACCTGGCCT TGTCCGACGT GCTCATGTGC ACCGCCTGCG TGCCGCTCAC GCTGGCCTAT 36                                                        | 0 |
|----|-----------------------------------------------------------------------------------------------------------------------------|---|
|    | GCCTTCGAGC CACGCGGCTG GGTGTTCGGC GGCGGCCTGT GCCACCTGGT CTTCTTCCTG 42                                                        | 0 |
|    | CAGCCGGTCA CCGTCTATGT GTCGGTGTTC ACGCTCACCA CCATCGCAGT GGACCGCTAC 48                                                        | 0 |
|    | GTCGTGCTGG TGCACCCGCT GAGGCGCGCA TCTCGCTGCG CCTCAGCCTA CGCTGTGCTG 54                                                        | 0 |
| 5  | GCCATCTGGG CGCTGTCCGC GGTGCTGGCG CTGCCGCCCG CCGTGCACAC CTATCACGTG 60                                                        | 0 |
|    | GAGCTCAAGC CGCACGACGT GCGCCTCTGC GAGGAGTTCT GGGGCTCCCA GGAGCGCCAG 66                                                        | 0 |
|    | CGCCAGCTCT ACGCCTGGGG GCTGCTGCTG GTCACCTACC TGCTCCCTCT GCTGGTCATC 72                                                        | 0 |
|    | CTCCTGTCTT ACGTCCGGGT GTCAGTGAAG CTCCGCAACC GCGTGGTGCC GGGCTGCGTG 78                                                        | 0 |
|    | ACCCAGAGCC AGGCCGACTG GGACCGCGCT CGGCGCCGGC GCACCAAATG CTTGCTGGTG 84                                                        | 0 |
| 10 | GTGGTCGTGG TGGTGTTCGC CGTCTGCTGG CTGCCGCTGC ACGTCTTCAA CCTGCTGCGG 900                                                       | 0 |
|    | GACCTCGACC CCCACGCCAT CGACCCTTAC GCCTTTGGGC TGGTGCAGCT GCTCTGCCAC 96                                                        | 0 |
|    | TGGCTCGCCA TGAGTTCGGC CTGCTACAAC CCCTTCATCT ACGCCTGGCT GCACGACAGC 102                                                       | 0 |
|    | TTCCGCGAGG AGCTGCGCAA ACTGTTGGTC GCTTGGCCCC GCAAGATAGC CCCCCATGGC 108                                                       | 0 |
|    | CAGAATATGA CCGTCAGCGT GGTCATCTGA 1111                                                                                       | ٥ |
| 15 | (179) INFORMATION FOR SEQ ID NO:178:                                                                                        |   |
| 20 | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 369 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: not relevant |   |
|    | (ii) MOLECULE TYPE: protein                                                                                                 |   |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:178:                                                                                   |   |
|    | Met $\lambda$ la Ser Ser Thr Thr $\lambda$ rg Gly Pro $\lambda$ rg Val Ser $\lambda$ sp Leu Phe Ser 1 5 10 15               |   |
| 25 | Gly Leu Pro Pro Ala Val Thr Thr Pro Ala Asn Gln Ser Ala Glu Ala 20 25 30                                                    |   |
|    | Ser Ala Gly Asn Gly Ser Val Ala Gly Ala Asp Ala Pro Ala Val Thr<br>35 40 45                                                 |   |
| 30 | Pro Phe Gln Ser Leu Gln Leu Val His Gln Leu Lys Gly Leu Ile Val $50 \ \ 55 \ \ 60$                                          |   |
|    | Leu Leu Tyr Ser Val Val Val Val Gly Leu Val Gly Asn Cys Leu<br>65 70 75 80                                                  |   |

|    |            |            |            |            |            |            |            |            | 2)         |            |            |            |            |            |            |            |
|----|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    | Leu        | Val        | Leu        | Val        | 11e<br>85  | : Ala      | Arg        | Val        | Pro        | Arg<br>90  | Leu        | His        | Asn        | Val        | Thr<br>95  | Asn        |
|    | Phe        | Lev        | Ile        | Gly<br>100 | Asn        | Leu        | Ala        | . Leu      | Ser<br>105 | Asp        | Val        | Leu        | Met        | Cys<br>110 |            | Ala        |
| 5  | Cys        | Val        | Pro<br>115 | Leu        | Thr        | Leu        | Ala        | Tyr<br>120 | Ala        | Phe        | Glu        | Pro        | Arg<br>125 |            | Trp        | Val        |
|    | Phe        | Gly<br>130 | Gly        | Gly        | Leu        | Cys        | His<br>135 | Leu        | Val        | Phe        | Phe        | Leu<br>140 | Gln        | Pro        | Val        | Thr        |
| 10 | Val<br>145 | Tyr        | Val        | Ser        | Val        | Phe<br>150 | Thr        | Leu        | Thr        | Thr        | Ile<br>155 | Ala        | Val        | Asp        | Arg        | Tyr<br>160 |
|    |            |            | Leu        |            | 165        |            |            |            |            | 170        |            |            |            |            | 175        |            |
|    | Tyr        | Ala        | Val        | Leu<br>180 | Ala        | Ile        | Trp        | Ala        | Leu<br>185 | Ser        | Ala        | Val        | Leu        | Ala<br>190 | Leu        | Pro        |
| 15 | Pro        | Ala        | Val<br>195 | His        | Thr        | Tyr        | His        | Val<br>200 | Glu        | Leu        | Lys        | Pro        | His<br>205 | Asp        | Val        | Arg        |
|    |            | 210        | Glu        |            |            |            | 215        |            |            |            |            | 220        |            |            |            | •          |
| 20 | 225        |            | Gly        |            |            | 230        |            |            |            |            | 235        |            |            |            |            | 240        |
|    |            |            | Ser        |            | 245        |            |            |            |            | 250        |            |            |            | _          | 255        |            |
|    |            |            | Cys        | 260        |            |            |            |            | 265        |            |            |            |            | 270        |            | _          |
| 25 | Arg        |            | 275        |            |            |            |            | 280        |            |            |            |            | 285        |            |            |            |
|    | Cys        | 290        |            |            |            |            | 295        |            |            |            |            | 300        |            |            |            |            |
| 30 | His<br>305 | Ala        | Ile        | Asp        | Pro        | Tyr<br>310 | Ala        | Phe        | Gly        | Leu        | Val<br>315 | Gln        | Leu        | Leu        | Cys        | His<br>320 |
|    | Trp        | Leu        | Ala        | Met        | Ser<br>325 | Ser        | Ala        | Cys        | Tyr        | Asn<br>330 | Pro        | Phe        | Ile        |            | Ala<br>335 | Trp        |
|    | Leu        | His        | Asp        | Ser<br>340 | Phe        | Arg        | Glu        |            | Leu<br>345 | Arg        | Lys        | Leu        |            | Val<br>350 | Ala        | Trp        |
| 35 | Pro        | Arg        | Lys<br>355 | Ile        | Ala        | Pro        |            | Gly<br>360 | Gln        | Asn        | Met        |            | Val<br>365 | Ser        | Val        | Val        |
|    | Ile        |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |

(180) INFORMATION FOR SEQ ID NO:179:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1083 base pairs

5

(B) TYPE: nucleic acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:179:

| 10 | ATGGACCCAG | AAGAAACTTC | AGTTTATTTG | GATTATTACT | ATGCTACGAG | CCCAAACTCT | 60   |
|----|------------|------------|------------|------------|------------|------------|------|
|    | GACATCAGGG | AGACCCACTC | CCATGTTCCT | TACACCTCTG | TCTTCCTTCC | AGTCTTTTAC | 120  |
|    | ACAGCTGTGT | TCCTGACTGG | AGTGCTGGGG | AACCTTGTTC | TCATGGGAGC | GTTGCATTTC | 180  |
|    | AAACCCGGCA | GCCGAAGACT | GATCGACATC | TTTATCATCA | ATCTGGCTGC | CTCTGACTTC | 240  |
|    | ATTTTTCTTG | TCACATTGCC | TCTCTGGGTG | GATAAAGAAG | CATCTCTAGG | ACTGTGGAGG | 300  |
| 15 | ACGGGCTCCT | TCCTGTGCAA | AGGGAGCTCC | TACATGATCT | CCGTCAATAT | GCACTGCAGT | 360  |
|    | GTCCTCCTGC | TCACTTGCAT | GAGTGTTGAC | CGCTACCTGG | CCATTGTGTG | GCCAGTCGTA | 420  |
|    | TCCAGGAAAT | TCAGAAGGAC | AGACTGTGCA | TATGTAGTCT | GTGCCAGCAT | CTGGTTTATC | 480  |
|    | TCCTGCCTGC | TGGGGTTGCC | TACTCTTCTG | TCCAGGGAGC | TCACGCTGAT | TGATGATAAG | 540  |
|    | CCATACTGTG | CAGAGAAAAA | GGCAACTCCA | ATTAAACTCA | TATGGTCCCT | GGTGGCCTTA | 600  |
| 20 | ATTTTCACCT | TTTTTGTCCC | TTTGTTGAGC | ATTGTGACCT | GCTACTGTTG | CATTGCAAGG | 660  |
|    | AAGCTGTGTG | CCCATTACCA | GCAATCAGGA | AAGCACAACA | AAAAGCTGAA | GAAATCTAAG | 720  |
|    | AAGATCATCT | TTATTGTCGT | GGCAGCCTTT | CTTGTCTCCT | GGCTGCCCTT | CAATACTTTC | 780  |
|    | AAGTTCCTGG | CCATTGTCTC | TGGGTTGCGG | CAAGAACACT | ATTTACCCTC | AGCTATTCTT | 840  |
|    | CAGCTTGGTA | TGGAGGTGAG | TGGACCCTTG | GCATTTGCCA | ACAGCTGTGT | CAACCCTTTC | 900  |
| 25 | ATTTACTATA | TCTTCGACAG | CTACATCCGC | CGGGCCATTG | TCCACTGCTT | GTGCCCTTGC | 960  |
|    | CTGAAAAACT | ATGACTTTGG | GAGTAGCACT | GAGACATCAG | ATAGTCACCT | CACTAAGGCT | 1020 |
|    | CTCTCCACCT | TCATTCATGC | AGAAGATTTT | GCCAGGAGGA | GGAAGAGGTC | TGTGTCACTC | 1080 |
|    | TAA        |            |            |            |            |            | 1083 |

(181) INFORMATION FOR SEQ ID NO:180:

30 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 360 amino acids

131

| (B) | TYPE: | amino | acid |
|-----|-------|-------|------|
|     |       |       |      |

- (C) STRANDEDNESS: (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein

15

25

35

5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:180:

Met Asp Pro Glu Glu Thr Ser Val Tyr Leu Asp Tyr Tyr Tyr Ala Thr

Ser Pro Asn Ser Asp Ile Arg Glu Thr His Ser His Val Pro Tyr Thr \$20\$

10 Ser Val Phe Leu Pro Val Phe Tyr Thr Ala Val Phe Leu Thr Gly Val 35 40 45

Arg Arg Leu Ile Asp Ile Phe Ile Ile Asn Leu Ala Ala Ser Asp Phe 65  $\phantom{-}70\phantom{0}$  75  $\phantom{-}80\phantom{0}$ 

Ile Phe Leu Val Thr Leu Pro Leu Trp Val Asp Lys Glu Ala Ser Leu 85 90 95

Gly Leu Trp Arg Thr Gly Ser Phe Leu Cys Lys Gly Ser Ser Tyr Met 100 105 110

20 Ile Ser Val Asn Met His Cys Ser Val Leu Leu Leu Thr Cys Met Ser 115 120 125

> Val Asp Arg Tyr Leu Ala Ile Val Trp Pro Val Val Ser Arg Lys Phe 130 135 140

Arg Arg Thr Asp Cys Ala Tyr Val Val Cys Ala Ser Ile Trp Phe Ile 145 150 150

Ser Cys Leu Leu Gly Leu Pro Thr Leu Leu Ser Arg Glu Leu Thr Leu 165 \$170\$

Ile Asp Asp Lys Pro Tyr Cys Ala Glu Lys Lys Ala Thr Pro Ile Lys 180 185 190

30 Leu Ile Trp Ser Leu Val Ala Leu Ile Phe Thr Phe Phe Val Pro Leu
195 200 205

Leu Ser Ile Val Thr Cys Tyr Cys Cys Ile Ala Arg Lys Leu Cys Ala 210 215 220

His Tyr Gln Gln Ser Gly Lys His Asn Lys Lys Leu Lys Lys Ser Lys 225 230 235 240

Lys Ile Ile Phe Ile Val Val Ala Ala Phe Leu Val Ser Trp Leu Pro \$245\$

|    | Phe        | Asn        | Thr        | Phe<br>260 | Lys        | Phe        | Leu        | Ala        | Ile<br>265 | Val        | ser        | Gly        | Leu        | Arg<br>270 | Gln        | Glu        |     |
|----|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----|
|    | His        | Tyr        | Leu<br>275 | Pro        | Ser        | Ala        | Ile        | Leu<br>280 | Gln        | Leu        | Gly        | Met        | Glu<br>285 | Val        | Ser        | Gly        |     |
| 5  | Pro        | Leu<br>290 | Ala        | Phe        | Ala        | Asn        | Ser<br>295 | Cys        | Val        | Asn        | Pro        | Phe<br>300 | Ile        | Tyr        | Tyr        | Ile        |     |
|    | Phe<br>305 | Asp        | Ser        | Tyr        | Ile        | Arg<br>310 | Arg        | Ala        | Ile        | Val        | His<br>315 | Cys        | Leu        | Cys        | Pro        | Cys<br>320 |     |
| 10 | Leu        | Lys        | Asn        | Tyr        | Asp<br>325 | Phe        | Gly        | Ser        | Ser        | Thr<br>330 | Glu        | Thr        | Ser        | Asp        | Ser<br>335 | His        |     |
|    | Leu        | Thr        | Lys        | Ala<br>340 | Leu        | Ser        | Thr        | Phe        | Ile<br>345 | His        | Ala        | Glu        | Asp        | Phe<br>350 | Ala        | Arg        |     |
|    | Arg        | Arg        | Lys<br>355 | Arg        | Ser        | Val        | Ser        | Leu<br>360 |            |            |            |            |            |            |            |            |     |
| 15 | (182) INE  | ORM        | TION       | I FOR      | SEC        | ID.        | NO:1       | 181:       |            |            |            |            |            |            |            |            |     |
|    | (i)        | SEC        | OUENO      | CE CH      | IARAC      | TER        | ESTIC      | ZS :       |            |            |            |            |            |            |            |            |     |
|    |            | (A)        | LEN        | IGTH:      | 102        | 0 ba       | ase p      |            | 3          |            |            |            |            |            |            |            |     |
|    |            |            |            | PE: n      |            |            |            | Le         |            |            |            |            |            |            |            |            |     |
| 20 |            | (D)        | TOI        | POLOG      | Y: ]       | inea       | ar         |            |            |            |            |            |            |            |            |            |     |
|    | (11        | .) MC      | LECU       | JLE T      | YPE:       | DNA        | (ge        | enomi      | c)         |            |            |            |            |            |            |            |     |
|    | ix)        | ) SE       | EQUEN      | ICE I      | ESCF       | IPT        | ON:        | SEQ        | ID 1       | 10:18      | 31:        |            |            |            |            |            |     |
|    | ATGAATGG   | C T        | GAAG       | TGGC       | TCC        | cccz       | AGGT       | CTG        | TCA        | CCA A      | CTTC       | TCCC       | T GO       | CCAC       | GGC        |            | 60  |
|    | GAGCAATGT  | G GC       | CAGG       | BAGAC      | GCC        | ACTO       | EGAG       | AACA       | TGC        | rgr :      | CGCC       | TCCI       | T CI       | ACCI       | TCTC       | 3          | .20 |
| 25 | GATTTTATO  | C TO       | GCTT       | TAGT       | TGG        | CAAT       | TACC       | CTGG       | CTC        | rgt (      | GCTI       | TTCA       | T CC       | GAGA       | CCAC       | 1          | .80 |
|    | AAGTCCGGG  | A CO       | cccc       | CCAA       | CGI        | GTT        | CTG        | ATGO       | ATC        | rgg d      | CGT        | GCCG       | A CI       | TGT        | GTG        | : 2        | 4.0 |
|    | GTGCTGGT   | C TO       | CCCA       | CCCG       | CCI        | GGT        | TAC        | CACT       | TCTC       | TG (       | GAAC       | CACI       | G GC       | CATI       | TGGG       | 3          | 00  |
|    | GAAATCGC2  | T GC       | CGTC       | TCAC       | cgc        | CTT        | CTC        | TTCT       | ACCI       | rca z      | CATO       | TACC       | C CA       | GCAT       | CTAC       | 3          | 60  |
|    | TTCCTCACC  | T GO       | CATCA      | GCGC       | CGA        | CCGT       | TTC        | CTGG       | CCAT       | TTG T      | GCAC       | CCGG       | T CA       | AGTO       | CCTC       | 4          | 20  |
| 30 | AAGCTCCGC  | 'A GO      | CCCC       | TCTA       | CGC        | ACAC       | CTG        | GCCI       | GTG        | CT I       | CCTC       | TGGG       | T GG       | TGGT       | GGCT       | 4          | 80  |
|    | GTGGCCATG  | G CC       | CCGC       | TGCT       | GGT        | GAG        | CCA        | CAGA       | CCG1       | rgc A      | GACC       | AACC       | A CA       | CGGT       | GGT        |            | 40  |
|    | TGCCTGCAG  | C TO       | TACC       | GGGA       | GAA        | GGC        | CTCC       | CACC       | ATG        | cc 1       | GGT        | TCCC       | T GG       | CAGI       | GGCC       | : 6        | 00  |
|    | TTCACCTTC  | c co       | TTCA       | TCAC       | CAC        | GGT        | CACC       | TGCT       | ACCI       | rgc 1      | 'GATO      | ATCC       | G CA       | GCCT       | GCGG       | 6          | 60  |

CAGGGCCTGC GTGTGGAGAA GCGCCTCAAG ACCAAGGCAA AACGCATGAT CGCCATAGTG 720 CTGGCCATCT TCCTGGTCTG CTTCGTGCCC TACCACGTCA ACCGCTCCGT CTACGTGCTG 780 CACTACCGCA GCCATGGGGC CTCCTGCGCC ACCCAGCGCA TCCTGGCCCT GGCAAACCGC 840 ATCACCTCCT GCCTCACCAG CCTCAACGGG GCACTCGACC CCATCATGTA TTTCTTCGTG 900 GCTGAGAAGT TCCGCCACGC CCTGTGCAAC TTGCTCTGTG GCAAAAGGCT CAAGGGCCCG 960 CCCCCCAGCT TCGAAGGGAA AACCAACGAG AGCTCGCTGA GTGCCAAGTC AGAGCTGTGA 1020 (183) INFORMATION FOR SEQ ID NO:182: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 339 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: not relevant (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:182: Met Asn Gly Leu Glu Val Ala Pro Pro Gly Leu Ile Thr Asn Phe Ser Leu Ala Thr Ala Glu Gln Cys Gly Gln Glu Thr Pro Leu Glu Asn Met Leu Phe Ala Ser Phe Tyr Leu Leu Asp Phe Ile Leu Ala Leu Val Gly 35 40 Asn Thr Leu Ala Leu Trp Leu Phe Ile Arg Asp His Lys Ser Gly Thr Pro Ala Asn Val Phe Leu Met His Leu Ala Val Ala Asp Leu Ser Cys 70 Val Leu Val Leu Pro Thr Arg Leu Val Tyr His Phe Ser Gly Asn His Trp Pro Phe Gly Glu Ile Ala Cys Arg Leu Thr Gly Phe Leu Phe Tyr 105 Leu Asn Met Tyr Ala Ser Ile Tyr Phe Leu Thr Cys Ile Ser Ala Asp 115 120 Arg Phe Leu Ala Ile Val His Pro Val Lys Ser Leu Lys Leu Arg Arg 135 Pro Leu Tyr Ala His Leu Ala Cys Ala Phe Leu Trp Val Val Val Ala 145 150 155 160 Val Ala Met Ala Pro Leu Leu Val Ser Pro Gln Thr Val Gln Thr Asn

10

15

20

25

30

|    | 165        |                   |                           |                      |                     |                     |                     |            |            | 170        |            |            |            |            | 175        |            |
|----|------------|-------------------|---------------------------|----------------------|---------------------|---------------------|---------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    | His        | Thr               | Val                       | Val<br>180           | Cys                 | Leu                 | Gln                 | Leu        | Tyr<br>185 |            | Glu        | Lys        | Ala        | Ser        | His        | His        |
| 5  | Ala        | Leu               | Val<br>195                | Ser                  | Leu                 | Ala                 | Val                 | Ala<br>200 | Phe        | Thr        | Phe        | Pro        | Phe<br>205 | Ile        | Thr        | Thr        |
|    | Val        | Thr<br>210        | Cys                       | Tyr                  | Leu                 | Leu                 | Ile<br>215          | Ile        | Arg        | Ser        | Leu        | Arg<br>220 | Gln        | Gly        | Leu        | Arg        |
|    | Val<br>225 | Glu               | Lys                       | Arg                  | Leu                 | Lys<br>230          | Thr                 | Lys        | Ala        | Lys        | Arg<br>235 | Met        | Ile        | Ala        | Ile        | Val<br>240 |
| 10 | Leu        | Ala               | Ile                       | Phe                  | Leu<br>245          | Val                 | Cys                 | Phe        | Val        | Pro<br>250 | Tyr        | His        | Val        | Asn        | Arg<br>255 | Ser        |
|    | Val        | Tyr               | Val                       | Leu<br>260           | His                 | Tyr                 | Arg                 | Ser        | His<br>265 | Gly        | Ala        | Ser        | Cys        | Ala<br>270 | Thr        | Gln        |
| 15 | Arg        | Ile               | Leu<br>275                | Ala                  | Leu                 | Ala                 | Asn                 | Arg<br>280 | Ile        | Thr        | Ser        | Cys        | Leu<br>285 | Thr        | Ser        | Leu        |
|    | Asn        | Gly<br>290        | Ala                       | Leu                  | Asp                 | Pro                 | Ile<br>295          | Met        | Tyr        | Phe        | Phe        | Val<br>300 | Ala        | Glu        | Lys        | Phe        |
|    | Arg<br>305 | His               | Ala                       | Leu                  | Cys                 | Asn<br>310          | Leu                 | Leu        | Cys        | Gly        | Lys<br>315 | Arg        | Leu        | Lys        | Gly        | Pro<br>320 |
| 20 | Pro        | Pro               | Ser                       | Phe                  | Glu<br>325          | Gly                 | Lys                 | Thr        | Asn        | Glu<br>330 | Ser        | Ser        | Leu        | Ser        | Ala<br>335 | Lys        |
|    | Ser        | Glu               | Leu                       |                      |                     |                     |                     |            |            |            |            |            |            |            |            |            |
|    | (183) INE  | ORM               | TION                      | FOF                  | SEÇ                 | ID                  | NO:1                | .83:       |            |            |            |            |            |            |            |            |
| 25 | (i)        | (A)<br>(B)<br>(C) | UENC<br>LEN<br>TYP<br>STR | GTH:<br>E: n<br>ANDE | 996<br>ucle<br>DNES | bas<br>ic a<br>S: s | e pa<br>cid<br>ingl | irs        |            |            |            |            |            |            |            |            |
| 30 | (ii        | .) MC             | LECU                      | LE I                 | YPE:                | DNA                 | (ge                 | nomi       | .c)        |            |            |            |            |            |            |            |
|    | (xi        | .) SE             | QUEN                      | CE D                 | ESCR                | IPTI                | ON:                 | SEQ        | ID N       | 0:18       | 3:         |            |            |            |            |            |
|    | ATGATCACC  | C TG              | AACA                      | ATCA                 | AGA                 | TCAA                | CCT                 | GTCC       | CTTT       | TA A       | .CAGC      | TCAC       | A TC       | CAGA       | TGAA       | 60         |
|    | TACAAAATT  | G CA              | .GCCC                     | TTGT                 | CTT                 | CTAT                | AGC                 | TGTA       | TCTT       | CA T       | AATT       | GGAT       | T AT       | TTGT       | TAAC       | 120        |
|    | ATCACTGCA  | T TA              | TGGG                      | TTTT                 | CAG                 | TTGT                | ACC                 | ACCA       | AGAA       | ga g       | AACC       | ACGG       | T AA       | CCAT       | CTAT       | 180        |
| 35 | ATGATGAAT  | G TG              | GCAT                      | TAGT                 | GGA                 | CTTG                | ATA                 | TTTA       | TAAT       | GA C       | TTTA       | CCCT       | T TC       | GAAT       | GTTT       | 240        |

|    | TATTATG   | CAA A          | AGAI                 | GAAT                                      | g gc      | CATI              | TGGA        | GAG       | TACT      | TCT       | GCCA      | GATI      | CT I      | GGAG      | CTCT      | rc.       | 300 |
|----|-----------|----------------|----------------------|-------------------------------------------|-----------|-------------------|-------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----|
|    | ACAGTGT   | TTT I          | CCCF                 | AGCA                                      | T TG      | CTTI              | 'ATGG       | CTI       | CTTG      | CCT       | TTAT      | TAGT      | GC I      | GACA      | GATA      | C         | 360 |
|    | ATGGCCA'  | rtg 1          | ACAG                 | CCGA                                      | A GI      | ACGC              | CAAA        | GAA       | .CTTA     | AAA       | ACAC      | GTGC      | AA P      | GCCG      | TGCT      | 'G        | 420 |
|    | GCGTGTG   | rgg G          | AGTO                 | TGGA                                      | r aa      | TGAC              | CCTG        | ACC       | ACGA      | .CCA      | cccc      | TCTG      | CT A      | CTGC      | TCTA      | т         | 480 |
| 5  | AAAGACC   | CAG A          | TAAA                 | GACT                                      | C CA      | CTCC              | CGCC        | ACC       | TGCC      | TCA       | AGAT      | TTCT      | GA C      | ATCA      | TCTA      | T         | 540 |
|    | CTAAAAG   | CTG I          | 'GAAC                | GTGC                                      | r ga      | ACCT              | CACT        | CGA       | CTGA      | CAT       | TTTT      | TTTC      | TT G      | ATTC      | CTTT      | G         | 600 |
|    | TTCATCA'  | rga I          | TGGG                 | TGCT                                      | A CT      | TGGT              | CATT        | ATT       | CATA      | ATC       | TCCT      | TCAC      | GG C      | 'AGGA     | CGTC      | Т         | 660 |
|    | AAGCTGAA  | AAC C          | CAAA                 | GTCA                                      | A GG      | AGAA              | GTCC        | AAA       | AGGA      | TCA       | TCAT      | CACG      | CT G      | CTGG      | TGCA      | G         | 720 |
|    | GTGCTCG7  | CT G           | CTTT                 | ATGC                                      | CT        | TCCA              | CATC        | TGT       | TTCG      | CTT       | TCCT      | GATG      | CT G      | GGAA      | .CGGG     | G         | 780 |
| 10 | GAGAATAG  | STT A          | CAAT                 | CCCT                                      | G GG      | GAGC              | CTTT        | ACC       | ACCT      | TCC       | TCAT      | GAAC      | CT C      | AGCA      | CGTG      | Т         | 840 |
|    | CTGGATGT  | GA T           | TCTC                 | TACT                                      | A CA      | TCGT              | TTCA        | AAA       | CAAT'     | TTC       | AGGC'     | TCGA      | GT C      | ATTA      | GTGT      | С         | 900 |
|    | ATGCTATA  | CC G           | TAAT                 | TACC                                      | TC.       | gaag              | CATG        | CGC.      | AGAA.     | AAA       | GTTT      | CCGA      | TC T      | GGTA      | GTCT.     | A         | 960 |
|    | AGGTCACT  | 'AA G          | CAAT                 | ATAAA                                     | CA        | GTGA              | AATG        | TTA       | TGA       |           |           |           |           |           |           |           | 996 |
|    | (185) IN  | IFORM          | ATIO                 | N FOR                                     | SB        | Q ID              | NO:         | 184:      |           |           |           |           |           |           |           |           |     |
| 15 | (i        | (A<br>(B<br>(C | ) LE<br>) TY<br>) ST | CE CH<br>NGTH:<br>PE: &<br>RANDE<br>POLOG | 33<br>min | lam<br>oac<br>SS: | ino :<br>id | acid      | s         |           |           |           |           |           |           |           |     |
| 20 | (i        | i) M           | OLEC                 | ULE T                                     | YPE       | : pr              | otei        | n         |           |           |           |           |           |           |           |           |     |
|    | (x        | i) s           | EQUE:                | NCE I                                     | ESC       | RIPT              | ION:        | SEQ       | ID 1      | NO:1      | 34:       |           |           |           |           |           |     |
|    | Met<br>1  | Ile            | Thr                  | Leu                                       | Asn<br>5  | Asn               | Gln         | Asp       | Gln       | Pro<br>10 | Val       | Pro       | Phe       | Asn       | Ser<br>15 | Ser       |     |
| 25 | His       | Pro            | Asp                  | Glu<br>20                                 | Tyr       | Lys               | Ile         | Ala       | Ala<br>25 | Leu       | Val       | Phe       | Tyr       | Ser<br>30 | Cys       | Ile       |     |
|    | Phe       | Ile            | Ile<br>35            | Gly                                       | Leu       | Phe               | Val         | Asn<br>40 | Ile       | Thr       | Ala       | Leu       | Trp<br>45 | Val       | Phe       | Ser       |     |
|    | Cys       | Thr<br>50      | Thr                  | Lys                                       | Lys       | Arg               | Thr<br>55   | Thr       | Val       | Thr       | Ile       | Tyr<br>60 | Met       | Met       | Asn       | Val       |     |
| 30 | Ala<br>65 | Leu            | Val                  | Asp                                       | Leu       | Ile<br>70         | Phe         | Ile       | Met       | Thr       | Leu<br>75 | Pro       | Phe       | Arg       | Met       | Phe<br>80 |     |
|    | Tyr       | Tyr            | Ala                  | Lys                                       | Asp<br>85 | Glu               | Trp         | Pro       | Phe       | Gly<br>90 | Glu       | Tyr       | Phe       | Cys       | Gln<br>95 | Ile       |     |

|    |       | Leu        | Gly        | Ala        | Leu<br>100   | Thr                     | Val                     | Phe                  | Tyr        | Pro<br>105 | Ser        | Ile        | Ala        | Leu        | Trp        | Leu        | Leu        |
|----|-------|------------|------------|------------|--------------|-------------------------|-------------------------|----------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    |       | Ala        | Phe        | Ile<br>115 | Ser          | Ala                     | Asp                     | Arg                  | Tyr<br>120 | Met        | Ala        | Ile        | Val        | Gln<br>125 | Pro        | Lys        | Tyr        |
| 5  |       | Ala        | Lys<br>130 | Glu        | Leu          | Lys                     | Asn                     | Thr<br>135           | Cys        | Lys        | Ala        | Val        | Leu<br>140 | Ala        | Cys        | Val        | Gly        |
|    |       | Val<br>145 | Trp        | Ile        | Met          | Thr                     | Leu<br>150              | Thr                  | Thr        | Thr        | Thr        | Pro<br>155 | Leu        | Leu        | Leu        | Leu        | Tyr<br>160 |
| 10 |       | Lys        | Asp        | Pro        | Asp          | Lys<br>165              | Asp                     | Ser                  | Thr        | Pro        | Ala<br>170 | Thr        | Cys        | Leu        | Lys        | Ile<br>175 | Ser        |
|    |       | Asp        | Ile        | Ile        | Tyr<br>180   | Leu                     | Lys                     | Ala                  | Val        | Asn<br>185 | Val        | Leu        | Asn        | Leu        | Thr<br>190 | Arg        | Leu        |
|    |       | Thr        | Phe        | Phe<br>195 | Phe          | Leu                     | Ile                     | Pro                  | Leu<br>200 | Phe        | Ile        | Met        | Ile        | Gly<br>205 | Cys        | Tyr        | Leu        |
| 15 |       | Val        | Ile<br>210 | Ile        | His          | Asn                     | Leu                     | Leu<br>215           | His        | Gly        | Arg        | Thr        | Ser<br>220 | Lys        | Leu        | Lys        | Pro        |
|    |       | Lys<br>225 | Val        | Lys        | Glu          | Lys                     | Ser<br>230              | Lys                  | Arg        | Ile        | Ile        | Ile<br>235 | Thr        | Leu        | Leu        | Val        | Gln<br>240 |
| 20 |       | Val        | Leu        | Val        | Cys          | Phe<br>245              | Met                     | Pro                  | Phe        | His        | Ile<br>250 | Cys        | Phe        | Ala        | Phe        | Leu<br>255 | Met        |
|    |       | Leu        | Gly        | Thr        | Gly<br>260   | Glu                     | Asn                     | Ser                  | Tyr        | Asn<br>265 | Pro        | Trp        | Gly        | Ala        | Phe<br>270 | Thr        | Thr        |
|    |       | Phe        | Leu        | Met<br>275 | Asn          | Leu                     | Ser                     | Thr                  | Cys<br>280 | Leu        | Asp        | Val        | Ile        | Leu<br>285 | Tyr        | Tyr        | Ile        |
| 25 |       | Val        | Ser<br>290 | Lys        | Gln          | Phe                     | Gln                     | Ala<br>295           | Arg        | Val        | Ile        | Ser        | Val<br>300 | Met        | Leu        | Tyr        | Arg        |
|    |       | Asn<br>305 | Tyr        | Leu        | Arg          | Ser                     | Met<br>310              | Arg                  | Arg        | Lys        | Ser        | Phe<br>315 | Arg        | Ser        | Gly        | Ser        | Leu<br>320 |
| 30 |       | Arg        | Ser        | Leu        | Ser          | Asn<br>325              | Ile                     | Asn                  | Ser        | Glu        | Met<br>330 | Leu        |            |            |            |            |            |
|    | (186) | INE        | ORMA       | TION       | FOI          | SEC                     | ID                      | NO:                  | 85:        |            |            |            |            |            |            |            |            |
| 35 |       | (i)        | (B)        | LEN        | GTH:<br>E: r | : 107<br>nucle<br>EDNES | 77 ba<br>eic a<br>SS: s | se p<br>cid<br>singl | airs       | 3          |            |            |            |            |            |            |            |
|    |       | (i:        | i) MC      | LECU       | LE T         | TYPE:                   | DN                      | 4 (ge                | nomi       | ic)        |            |            |            |            |            |            |            |

137

| (xi) | SEQUENCE | DESCRIPTION: | SEQ | ID | NO:185: |
|------|----------|--------------|-----|----|---------|
|      |          |              |     |    |         |

|    | ATGCCCTCTG | TGTCTCCAGC | GGGGCCCTCG | GCCGGGGCAG | TCCCCAATGC | CACCGCAGTG | 6 (  |
|----|------------|------------|------------|------------|------------|------------|------|
|    | ACAACAGTGC | GGACCAATGC | CAGCGGGCTG | GAGGTGCCCC | TGTTCCACCT | GTTTGCCCGG | 120  |
|    | CTGGACGAGG | AGCTGCATGG | CACCTTCCCA | GGCCTGTGCG | TGGCGCTGAT | GGCGGTGCAC | 180  |
| 5  | GGAGCCATCT | TCCTGGCAGG | GCTGGTGCTC | AACGGGCTGG | CGCTGTACGT | CTTCTGCTGC | 240  |
|    | CGCACCCGGG | CCAAGACACC | CTCAGTCATC | TACACCATCA | ACCTGGTGGT | GACCGATCTA | 300  |
|    | CTGGTAGGGC | TGTCCCTGCC | CACGCGCTTC | GCTGTGTACT | ACGGCGCCAG | GGGCTGCCTG | 360  |
|    | CGCTGTGCCT | TCCCGCACGT | CCTCGGTTAC | TTCCTCAACA | TGCACTGCTC | CATCCTCTTC | 420  |
|    | CTCACCTGCA | TCTGCGTGGA | CCGCTACCTG | GCCATCGTGC | GGCCCGAAGG | CTCCCGCCGC | 480  |
| 10 | TGCCGCCAGC | CTGCCTGTGC | CAGGGCCGTG | TGCGCCTTCG | TGTGGCTGGC | CGCCGGTGCC | 540  |
|    | GTCACCCTGT | CGGTGCTGGG | CGTGACAGGC | AGCCGGCCCT | GCTGCCGTGT | CTTTGCGCTG | 600  |
|    | ACTGTCCTGG | AGTTCCTGCT | GCCCCTGCTG | GTCATCAGCG | TGTTTACCGG | CCGCATCATG | 660  |
|    | TGTGCACTGT | CGCGGCCGGG | TCTGCTCCAC | CAGGGTCGCC | AGCGCCGCGT | GCGGGCCAAG | 720  |
|    | CAGCTCCTGC | TCACGGTGCT | CATCATCTTT | CTCGTCTGCT | TCACGCCCTT | CCACGCCCGC | 780  |
| 15 | CAAGTGGCCG | TGGCGCTGTG | GCCCGACATG | CCACACCACA | CGAGCCTCGT | GGTCTACCAC | 840  |
|    | GTGGCCGTGA | CCCTCAGCAG | CCTCAACAGC | TGCATGGACC | CCATCGTCTA | CTGCTTCGTC | 900  |
|    | ACCAGTGGCT | TCCAGGCCAC | CGTCCGAGGC | CTCTTCGGCC | AGCACGGAGA | GCGTGAGCCC | 960  |
|    | AGCAGCGGTG | ACGTGGTCAG | CATGCACAGG | AGCTCCAAGG | GCTCAGGCCG | TCATCACATC | 1020 |
|    | CTCAGTGCCG | GCCCTCACGC | CCTCACCCAG | GCCCTGGCTA | ATGGGCCCGA | GGCTTAG    | 1077 |
| 20 | (          |            |            |            |            |            |      |

20 (187) INFORMATION FOR SEQ ID NO:186:

25

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 358 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS:
  - (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:186:

Met Pro Ser Val Ser Pro Ala Gly Pro Ser Ala Gly Ala Val Pro Asn 1 5 10 15

|    | Pro        | Leu        | Phe<br>35  | His        | Leu        | Phe        | Ala        | Arg<br>40  | Leu        | Asp        | Glu        | Glu        | Leu<br>45  | His        | Gly        | Thr        |
|----|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    | Phe        | Pro<br>50  | Gly        | Leu        | Cys        | Val        | Ala<br>55  | Leu        | Met        | Ala        | Val        | His<br>60  | Gly        | Ala        | Ile        | Phe        |
| 5  | Leu<br>65  | Ala        | Gly        | Leu        | Val        | Leu<br>70  | Asn        | Gly        | Leu        | Ala        | Leu<br>75  | Tyr        | Val        | Phe        | Cys        | Cys<br>80  |
|    | Arg        | Thr        | Arg        | Ala        | Lys<br>85  | Thr        | Pro        | Ser        | Val        | Ile<br>90  | Tyr        | Thr        | Ile        | Asn        | Leu<br>95  | Val        |
| 10 | Val        | Thr        | Asp        | Leu<br>100 | Leu        | Val        | Gly        | Leu        | Ser<br>105 | Leu        | Pro        | Thr        | Arg        | Phe<br>110 | Ala        | Val        |
|    | Tyr        | Tyr        | Gly<br>115 |            | Arg        | Gly        | Cys        | Leu<br>120 | Arg        | Cys        | Ala        | Phe        | Pro<br>125 | His        | Val        | Leu        |
|    | Gly        | Tyr<br>130 | Phe        | Leu        | Asn        | Met        | His<br>135 |            | Ser        | Ile        | Leu        | Phe<br>140 | Leu        | Thr        | Cys        | Ile        |
| 15 | Cys<br>145 | Val        | Asp        | Arg        | Tyr        | Leu<br>150 | Ala        | Ile        | Val        | Arg        | Pro<br>155 | Glu        | Gly        | Ser        | Arg        | Ala<br>160 |
|    | Cys        | Arg        | Gln        | Pro        | Ala<br>165 | Cys        | Ala        | Arg        | Ala        | Val<br>170 | Cys        | Ala        | Phe        | Val        | Trp<br>175 | Leu        |
| 20 | Ala        | Ala        | Gly        | Ala<br>180 | Val        | Thr        | Leu        | Ser        | Val<br>185 | Leu        | Gly        | Val        | Thr        | Gly<br>190 | Ser        | Arg        |
|    | Pro        | Cys        | Cys<br>195 | Arg        | Val        | Phe        | Ala        | Leu<br>200 | Thr        | Val        | Leu        | Glu        | Phe<br>205 | Leu        | Leu        | Pro        |
|    | Leu        | Leu<br>210 | Val        | Ile        | Ser        | Val        | Phe<br>215 | Thr        | Gly        | Arg        | Ile        | Met<br>220 | Сув        | Ala        | Leu        | Ser        |
| 25 | Arg<br>225 | Pro        | Gly        | Leu        | Leu        | His<br>230 | Gln        | Gly        | Arg        | Gln        | Arg<br>235 | Arg        | Val        | Arg        | Ala        | Lys<br>240 |
|    | Gln        | Leu        | Leu        | Leu        | Thr<br>245 | Val        | Leu        | Ile        | Ile        | Phe<br>250 | Leu        | Val        | Cys        | Phe        | Thr<br>255 | Pro        |
| 30 | Phe        | His        | Ala        | Arg<br>260 | Gln        | Val        | Ala        | Val        | Ala<br>265 | Leu        | Trp        | Pro        | Asp        | Met<br>270 | Pro        | His        |
|    | His        | Thr        | Ser<br>275 | Leu        | Val        | Val        | Tyr        | His<br>280 | Val        | Ala        | Val        |            | Leu<br>285 | Ser        | Ser        | Leu        |
|    | Asn        | Ser<br>290 | Cys        | Met        | Asp        | Pro        | Ile<br>295 | Val        | Tyr        | Cys        | Phe        | Val<br>300 | Thr        | Ser        | Gly        | Phe        |
| 35 | Gln<br>305 | Ala        | Thr        | Val        | Arg        | Gly<br>310 | Leu        | Phe        | Gly        | Gln        | His<br>315 | Gly        | Glu        | Arg        | Glu        | Pro<br>320 |
|    | Ser        | Ser        | Gly        | Asp        | Val        | Val        | Ser        | Met        | His        | Arg        | Ser        | Ser        | Lys        | Gly        | Ser        | Gly        |

139

10

25

325 330 335 Arg His His Ile Leu Ser Ala Gly Pro His Ala Leu Thr Gln Ala Leu 340 345 350 Ala Asn Gly Pro Glu Ala 355 (188) INFORMATION FOR SEQ ID NO:187: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1050 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (xi) SEQUENCE DESCRIPTION: SEO ID NO:187: ATGAACTCCA CCTTGGATGG TAATCAGAGC AGCCACCCTT TTTGCCTCTT GGCATTTGGC 60 TATTTGGAAA CTGTCAATTT TTGCCTTTTG GAAGTATTGA TTATTGTCTT TCTAACTGTA 120 TTGATTATTT CTGGCAACAT CATTGTGATT TTTGTATTTC ACTGTGCACC TTTGTTGAAC 180 CATCACACTA CAAGTTATTT TATCCAGACT ATGGCATATG CTGACCTTTT TGTTGGGGTG 240 AGCTGCGTGG TCCCTTCTTT ATCACTCCTC CATCACCCCC TTCCAGTAGA GGAGTCCTTG 300 ACTTGCCAGA TATTTGGTTT TGTAGTATCA GTTCTGAAGA GCGTCTCCAT GGCTTCTCTG 360 20 GCCTGTATCA GCATTGATAG ATACATTGCC ATTACTAAAC CTTTAACCTA TAATACTCTG 420 GTTACACCCT GGAGACTACG CCTGTGTATT TTCCTGATTT GGCTATACTC GACCCTGGTC 480 TTCCTGCCTT CCTTTTTCCA CTGGGGCAAA CCTGGATATC ATGGAGATGT GTTTCAGTGG 540 TGTGCGGAGT CCTGGCACAC CGACTCCTAC TTCACCCTGT TCATCGTGAT GATGTTATAT 600 GCCCCAGCAG CCCTTATTGT CTGCTTCACC TATTTCAACA TCTTCCGCAT CTGCCAACAG 660 CACACAAAGG ATATCAGCGA AAGGCAAGCC CGCTTCAGCA GCCAGAGTGG GGAGACTGGG 720 GAAGTGCAGG CCTGTCCTGA TAAGCGCTAT AAAATGGTCC TGTTTCGAAT CACTAGTGTA 780 TTTTACATCC TCTGGTTGCC ATATATCATC TACTTCTTGT TGGAAAGCTC CACTGGCCAC 840 AGCAACCGCT TCGCATCCTT CTTGACCACC TGGCTTGCTA TTAGTAACAG TTTCTGCAAC 900 TGTGTAATTT ATAGTCTCTC CAACAGTGTA TTCCAAAGAG GACTAAAGCG CCTCTCAGGG 960 GCTATGTGTA CTTCTTGTGC AAGTCAGACT ACAGCCAACG ACCCTTACAC AGTTAGAAGC 1020 AAAGGCCCTC TTAATGGATG TCATATCTGA 1050

|    | (189) INFORMATION FOR SEQ ID NO:188:                                                                                                                    |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| 5  | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 349 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: not relevant (ii) MOLECULE TYPE: protein |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
|    |                                                                                                                                                         | (ii        | L) MC      | LECT       | JLE 1      | YPE:       | pro        | teir       | ı          |            |            |            |            |            |            |            |            |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:188: Met Asn Ser Thr Leu Asp Gly Asn Gln Ser Ser His Pro Phe Cys                                                   |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| 10 |                                                                                                                                                         | Met<br>1   | Asn        | Ser        | Thr        | Leu<br>5   | Asp        | Gly        | Asn        | Gln        | Ser<br>10  | Ser        | His        | Pro        | Phe        | Cys<br>15  | Leu        |
|    |                                                                                                                                                         | Leu        | Ala        | Phe        | Gly<br>20  | Tyr        | Leu        | Glu        | Thr        | Val<br>25  | Asn        | Phe        | Cys        | Leu        | Leu<br>30  | Glu        | Val        |
|    |                                                                                                                                                         | Leu        | Ile        | Ile<br>35  | Val        | Phe        | Leu        | Thr        | Val<br>40  | Leu        | Ile        | Ile        | Ser        | Gly<br>45  | Asn        | Ile        | Ile        |
| 15 |                                                                                                                                                         | Val        | Ile<br>50  | Phe        | Val        | Phe        | His        | Cys<br>55  | Ala        | Pro        | Leu        | Leu        | Asn<br>60  | His        | His        | Thr        | Thr        |
|    |                                                                                                                                                         | Ser<br>65  | Tyr        | Phe        | Ile        | Gln        | Thr<br>70  | Met        | Ala        | Tyr        | Ala        | Asp<br>75  | Leu        | Phe        | Val        | Gly        | Val<br>80  |
| 20 |                                                                                                                                                         | Ser        | Сув        | Val        | Val        | Pro<br>85  | Ser        | Leu        | Ser        | Leu        | Leu<br>90  | His        | His        | Pro        | Leu        | Pro<br>95  | Val        |
|    |                                                                                                                                                         | Glu        | Glu        | Ser        | Leu<br>100 | Thr        | Cys        | Gln        | Ile        | Phe<br>105 | Gly        | Phe        | Val        | Val        | Ser<br>110 | Val        | Leu        |
|    |                                                                                                                                                         | Lys        | Ser        | Val<br>115 | Ser        | Met        | Ala        | Ser        | Leu<br>120 | Ala        | Cys        | Ile        | Ser        | Ile<br>125 | Asp        | Arg        | Tyr        |
| 25 |                                                                                                                                                         | Ile        | Ala<br>130 | Ile        | Thr        | Lys        | Pro        | Leu<br>135 | Thr        | Tyr        | Asn        | Thr        | Leu<br>140 | Val        | Thr        | Pro        | Trp        |
|    |                                                                                                                                                         | Arg<br>145 | Leu        | Arg        | Leu        | Cys        | Ile<br>150 | Phe        | Leu        | Ile        | Trp        | Leu<br>155 | Tyr        | Ser        | Thr        | Leu        | Val<br>160 |
| 30 |                                                                                                                                                         | Phe        | Leu        | Pro        | Ser        | Phe<br>165 | Phe        | His        | Trp        | Gly        | Lys<br>170 | Pro        | Gly        | Tyr        | His        | Gly<br>175 | Asp        |
|    |                                                                                                                                                         | Val        | Phe        | Gln        | Trp<br>180 | Cys        | Ala        | Glu        | Ser        | Trp<br>185 | His        | Thr        | Asp        | Ser        | Tyr<br>190 | Phe        | Thr        |
|    |                                                                                                                                                         | Leu        | Phe        | Ile<br>195 | Val        | Met        | Met        | Leu        | Tyr<br>200 | Ala        | Pro        | Ala        | Ala        | Leu<br>205 | Ile        | Val        | Cys        |
| 35 |                                                                                                                                                         | Phe        | Thr<br>210 | Tyr        | Phe        | Asn        | Ile        | Phe<br>215 | Arg        | Ile        | Cys        | Gln        | Gln<br>220 | His        | Thr        | Lys        | Asp        |

| Ile Ser Glu Arg Gln Ala Arg Phe Ser Ser Gln Ser Gly Glu Thr Gly |            |            |                   |                                |                     |                      |                     |            |            |            |            |            |            |            |            |            |    |
|-----------------------------------------------------------------|------------|------------|-------------------|--------------------------------|---------------------|----------------------|---------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|----|
|                                                                 | Ile<br>225 | Ser        | Glu               | Arg                            | Gln                 | Ala<br>230           | Arg                 | Phe        | Ser        | Ser        | Gln<br>235 | Ser        | Gly        | Glu        | Thr        | Gly<br>240 |    |
|                                                                 | Glu        | Val        | Gln               | Ala                            | Cys<br>245          | Pro                  | Asp                 | Lys        | Arg        | Tyr<br>250 | Lys        | Met        | Val        | Leu        | Phe<br>255 | Arg        |    |
| 5                                                               | Ile        | Thr        | Ser               | Val<br>260                     | Phe                 | Tyr                  | Ile                 | Leu        | Trp<br>265 | Leu        | Pro        | Tyr        | Ile        | Ile<br>270 | Tyr        | Phe        |    |
|                                                                 | Leu        | Leu        | Glu<br>275        | Ser                            | Ser                 | Thr                  | Gly                 | His<br>280 | Ser        | Asn        | Arg        | Phe        | Ala<br>285 | Ser        | Phe        | Leu        |    |
| 10                                                              | Thr        | Thr<br>290 | Trp               | Leu                            | Ala                 | Ile                  | Ser<br>295          | Asn        | Ser        | Phe        | Сув        | Asn<br>300 | Cys        | Val        | Ile        | Tyr        |    |
|                                                                 | Ser<br>305 | Leu        | Ser               | Asn                            | Ser                 | Val<br>310           | Phe                 | Gln        | Arg        | Gly        | Leu<br>315 | Lys        | Arg        | Leu        | Ser        | Gly<br>320 |    |
|                                                                 | Ala        | Met        | Cys               | Thr                            | Ser<br>325          | Cys                  | Ala                 | Ser        | Gln        | Thr<br>330 | Thr        | Ala        | Asn        | Asp        | Pro<br>335 | Tyr        |    |
| 15                                                              | Thr        | Val        | Arg               | Ser<br>340                     | Lys                 | Gly                  | Pro                 | Leu        | Asn<br>345 | Gly        | Cys        | His        | Ile        |            |            |            |    |
|                                                                 | (190) IN   | FORMA      | TION              | FOF                            | SEC                 | ID                   | NO:1                | .89:       |            |            |            |            |            |            |            |            |    |
| 20                                                              | (i)        | (B)        | LEN<br>TYP<br>STR | E CH<br>IGTH:<br>PE: n<br>ANDE | 130<br>ucle<br>DNES | 2 ba<br>ic a<br>S: s | se p<br>cid<br>ingl | airs       |            |            |            |            |            |            |            |            |    |
|                                                                 | (ii        | .) мо      | LECU              | LE I                           | YPE:                | DNA                  | (ge                 | nomi       | c)         |            |            |            |            |            |            |            |    |
|                                                                 | (xi        | .) SE      | QUEN              | CE D                           | ESCR                | IPTI                 | ON:                 | SEQ        | ID N       | 0:18       | 9:         |            |            |            |            |            |    |
| 25                                                              | ATGTGTTTT  | T CT       | CCCA              | TTCT                           | GGA                 | AATC                 | AAC                 | ATGC       | AGTC       | TG A       | ATCT       | AACA       | т та       | CAGT       | GCGA       | . 6        | 60 |
|                                                                 | GATGACATT  | G AT       | GACA              | TCAA                           | CAC                 | CAAT                 | ATG                 | TACC       | AACC       | AC T       | ATCA       | TATC       | C GT       | TAAG       | CTTT       | 12         | 20 |
|                                                                 | CAAGTGTCT  | C TC       | ACCG              | GATT                           | TCT                 | TATG                 | TTA                 | GAAA       | TTGT       | GT T       | GGGA       | CTTG       | G CA       | GCAA       | CCTC       | 18         | 30 |
|                                                                 | ACTGTATTG  | g TA       | CTTT.             | ACTG                           | CAT                 | gaaa                 | TCC .               | AACT       | TAAT       | CA A       | CTCT       | GTCA       | G TA       | ACAT       | TATT       | 24         | 10 |
|                                                                 | ACAATGAAT  | C TT       | CATG              | TACT                           | TGA'                | TGTA                 | ATA .               | ATTT       | GTGT       | GG G       | ATGT.      | ATTC       | C TC       | TAAC       | TATA       | 30         | 00 |
| 0                                                               | GTTATCCTT  | C TG       | CTTT              | CACT                           | GGA                 | GAGT.                | AAC .               | ACTG       | СТСТ       | CA T       | TTGC'      | TGTT:      | r cc       | ATGA       | GCT        | 36         | 50 |
|                                                                 | TGTGTATCT  | T TT       | GCAA              | GTGT                           | CTC                 | AACA                 | GCA .               | ATCA       | ACGT       | тт т       | IGCT.      | ATCA       | C TT       | TGGA       | CAGA       | 42         | 20 |
|                                                                 | TATGACATC  | T CT       | GTAA              | AACC                           | TGC                 | AAAC                 | CGA .               | ATTC       | TGAC.      | AA T       | GGC:       | AGAG       | TG         | PAAT       | STTA       | 48         | 30 |
|                                                                 | ATGATATCC  | A TT       | rgga'             | TTTT                           | TTC                 | TTTT                 | TTC '               | rctt'      | TCCT       | GA T       | rcct.      | PTTA:      | TG.        | AGGT       | TAAA       | 54         | 10 |
|                                                                 | TTTTTCAGT  | C TT       | CAAA              | GTGG                           | AAA                 | FACC'                | TGG (               | AAAE       | ACAA       | GA C       | ACTT:      | TATO       | TG:        | rcag:      | FACA       | 60         | 0  |
|                                                                 |            |            |                   |                                |                     |                      |                     |            |            |            |            |            |            |            |            |            |    |

142

|    | AATGAATA  | CT A      | CACT  | BAACT     | GG(   | TAAE  | TAT       | TAT   | CACC      | rgt      | TAGT  | ACAG      | AT C  | CCAA!     | PATTO | 660       |
|----|-----------|-----------|-------|-----------|-------|-------|-----------|-------|-----------|----------|-------|-----------|-------|-----------|-------|-----------|
|    | TTTTTCAC  | rg T      | rgta  | TAAT      | GT.   | FAAT  | CACA      | TAC   | ACCA      | AAA      | TACT  | rcago     | GC T  | CTTA      | ATAT  | r 720     |
|    | CGAATAGG  | CA C      | AAGA' | TTTT      | : AA  | CAGG  | GCAG      | AAG   | AAGA      | AAG      | CAAG  | AAAG      | AA A  | AAGA      | CAAT: | 780       |
|    | TCTCTAAC  | CA C      | ACAA  | CATG      | GG    | CTAC  | AGAC      | ATG:  | CAC       | AAA      | GCAG' | rggTo     | GG G  | AGAA      | ATGT  | A 840     |
| 5  | GTCTTTGG  | rg T      | AAGA  | ACTTO     | ' AG' | TTTC: | IGTA      | ATA   | ATTG      | CCC      | rccg  | 3CGA      | GC T  | GTGA      | AACG  | 900       |
|    | CACCGTGA  | AC G      | ACGA  | JAAAE     | AC    | AAAA  | BAGA      | GTC   | AAGA      | GA       | TGTC: | TTTA:     | rt G  | ATTA:     | rttc: | 960       |
|    | ACATTTCT  | rc T      | CTGC  | rggac     | AC    | CAAT  | FTCT      | GTT:  | TAA       | ATA      | CCAC  | CATT      | T A   | rgtt:     | raggo | 1020      |
|    | CCAAGTGA  | CC T      | TTA   | STAAR     | AT:   | FAAGA | ATTG      | TGT   | TTTT:     | rag      | TCAT  | GCT:      | ra To | GAAGE     | CAAC  | 1080      |
|    | ATATTTCA  | ee e      | rcta: | TATA      | TG    | CATT  | CACT      | AGAG  | CAAA      | TAF      | TTCA  | AAAGO     | T C   | FTGA      | AAAG: | Γ 1140    |
| 10 | AAAATGAA  | AA A      | GCGA  | TTGT      | TT    | CTATA | AGTA      | GAAG  | GCTG      | ATC      | CCCT  | GCT1      | AA T  | AATG      | TGT?  | 1200      |
|    | ATACACAA  | CT C      | rtgg  | ATAGA     | TC    | CCAA  | AAGA      | AAC   | LAAA!     | AAA      | TTAC  | CTTTC     | A A   | SATAE     | STGA  | 1260      |
|    | ATAAGAGA  | AA AA     | ACGT: | TAGT      | GC(   | CTCAC | GTT       | GTC   | ACAG      | ACT      | AG    |           |       |           |       | 1302      |
|    | (191) IN  | FORM      | ATIO  | v FOF     | SE    | Q ID  | NO:       | 190:  |           |          |       |           |       |           |       |           |
|    | (i        |           |       | CE CE     |       |       |           |       |           |          |       |           |       |           |       |           |
| 15 |           |           |       | NGTH:     |       |       |           | acida | 3         |          |       |           |       |           |       |           |
|    |           |           |       | RANDI     |       |       | rele      | vant  |           |          |       |           |       |           |       |           |
|    | (i:       | i) Mo     | OLEC  | JLE T     | YPE   | : pro | oteir     | n     |           |          |       |           |       |           |       |           |
| 20 | (x:       | i) S1     | EQUE  | NCE I     | ESC   | RIPT  | ION:      | SEQ   | ID I      | NO:1     | 90:   |           |       |           |       |           |
|    | Met       | Cys       | Phe   | Ser       | Pro   | Ile   | Leu       | Glu   | Ile       | Asn      | Met   | Gln       | Ser   | Glu       | Ser   | Asn       |
|    | 1         | -         |       |           | 5     |       |           |       |           | 10       |       |           |       |           | 15    |           |
|    | Ile       | Thr       | Val   | Arg<br>20 | Asp   | Asp   | Ile       | Asp   | Asp<br>25 | Ile      | Asn   | Thr       | Asn   | Met<br>30 | Tyr   | Gln       |
| 25 | Pro       | Leu       | Ser   | Tvr       | Pro   | Leu   | Ser       | Phe   | Gln       | Val      | ser   | Leu       | Thr   | Glv       | Phe   | Leu       |
|    |           |           | 35    | -,-       |       |       |           | 40    |           |          |       |           | 45    | ,         |       |           |
|    | Met       | Leu<br>50 | Glu   | Ile       | Val   | Leu   | Gly<br>55 | Leu   | Gly       | Ser      | Asn   | Leu<br>60 | Thr   | Val       | Leu   | Val       |
| 30 | Leu<br>65 | Tyr       | Сув   | Met       | Lys   | Ser   | Asn       | Leu   | Ile       | Asn      | Ser   | Val       | Ser   | Asn       | Ile   | Ile<br>80 |
| 20 |           | Mot       | 7.05  | T 01:     | ui -  |       | T.0::     | Zar   | 1707      | т1-      | Ile   | Cres      | Tro 3 | a1        | Ove   |           |
|    | ınr       | met       | ASI   | теп       | 85    | Val   | ren       | мыр   | val       | 90<br>90 | тте   | cys       | val   | GIĀ       | 95    | 116       |
|    | Pro       | Leu       | Thr   | Ile       | Val   | Ile   | Leu       | Leu   | Leu       | Ser      | Leu   | Glu       | Ser   | Asn       | Thr   | Ala       |

|    |                    | 100                | 105                       | 110                            |
|----|--------------------|--------------------|---------------------------|--------------------------------|
|    | Leu Ile Cys<br>115 | Cys Phe His        | Glu Ala Cys Val Se<br>120 | er Phe Ala Ser Val Ser<br>125  |
| 5  | Thr Ala Ile<br>130 | Asn Val Phe        | Ala Ile Thr Leu As<br>135 | pp Arg Tyr Asp Ile Ser<br>140  |
|    | Val Lys Pro<br>145 | Ala Asn Arg<br>150 | Ile Leu Thr Met Gl        | y Arg Ala Val Met Leu<br>5 160 |
|    | Met Ile Ser        | Ile Trp Ile<br>165 | Phe Ser Phe Phe Se        | er Phe Leu Ile Pro Phe<br>175  |
| 10 | Ile Glu Val        | Asn Phe Phe<br>180 | Ser Leu Gln Ser Gl<br>185 | y Asn Thr Trp Glu Asn<br>190   |
|    | Lys Thr Leu<br>195 | Leu Cys Val        | Ser Thr Asn Glu Ty<br>200 | r Tyr Thr Glu Leu Gly<br>205   |
| 15 | Met Tyr Tyr<br>210 |                    | Val Gln Ile Pro Il<br>215 | e Phe Phe Phe Thr Val<br>220   |
|    | Val Val Met<br>225 | Leu Ile Thr<br>230 | Tyr Thr Lys Ile Le        | u Gln Ala Leu Asn Ile<br>5 240 |
|    | Arg Ile Gly        | Thr Arg Phe<br>245 | Ser Thr Gly Gln Ly<br>250 | s Lys Lys Ala Arg Lys<br>255   |
| 20 | Lys Lys Thr        | Ile Ser Leu<br>260 | Thr Thr Gln His Gl<br>265 | u Ala Thr Asp Met Ser<br>270   |
|    | Gln Ser Ser<br>275 | Gly Gly Arg        | Asn Val Val Phe Gl<br>280 | y Val Arg Thr Ser Val<br>285   |
| 25 | Ser Val Ile<br>290 |                    | Arg Arg Ala Val Ly<br>295 | s Arg His Arg Glu Arg<br>300   |
|    | Arg Glu Arg<br>305 | Gln Lys Arg<br>310 | Val Lys Arg Met Se<br>31  | r Leu Leu Ile Ile Ser<br>5 320 |
|    | Thr Phe Leu        | Leu Cys Trp<br>325 | Thr Pro Ile Ser Va<br>330 | l Leu Asn Thr Thr Ile<br>335   |
| 30 | Leu Cys Leu        | Gly Pro Ser<br>340 | Asp Leu Leu Val Ly<br>345 | s Leu Arg Leu Cys Phe<br>350   |
|    | Leu Val Met<br>355 | Ala Tyr Gly        | Thr Thr Ile Phe Hi<br>360 | s Pro Leu Leu Tyr Ala<br>365   |
| 35 | Phe Thr Arg<br>370 |                    | Gln Lys Val Leu Ly<br>375 | s Ser Lys Met Lys Lys<br>380   |
|    | Arg Val Val<br>385 | Ser Ile Val<br>390 | Glu Ala Asp Pro Le<br>39  | u Pro Asn Asn Ala Val<br>5 400 |

144

Ile His Asn Ser Trp Ile Asp Pro Lys Arg Asn Lys Lys Ile Thr Phe  $405 \ \ \, 410 \ \ \, 415$ 

Glu Asp Ser Glu Ile Arg Glu Lys Arg Leu Val Pro Gln Val Val Thr 420 425 430

5 Asp

- (192) INFORMATION FOR SEQ ID NO:191:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 1209 base pairs
- 10 (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: DNA (genomic)
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:191:
- 15 ATGTTGTGTC CTTCCAAGAC AGATGGCTCA GGGCACTCTG GTAGGATTCA CCAGGAAACT 60 CATGGAGAG GGAAAAGGGA CAAGATTAGC AACAGTGAAG GGAGGGAGAA TGGTGGGAGA 120 GGATTCCAGA TGAACGGTGG GTCGCTGGAG GCTGAGCATG CCAGCAGGAT GTCAGTTCTC 180 AGAGCAAAGC CCATGTCAAA CAGCCAACGC TTGCTCCTTC TGTCCCCAGG ATCACCTCCT 240 CGCACGGGGA GCATCTCCTA CATCAACATC ATCATGCCTT CGGTGTTCGG CACCATCTGC 300 20 CTCCTGGGCA TCATCGGGAA CTCCACGGTC ATCTTCGCGG TCGTGAAGAA GTCCAAGCTG 360 CACTGGTGCA ACAACGTCCC CGACATCTTC ATCATCAACC TCTCGGTAGT AGATCTCCTC 420 TTTCTCCTGG GCATGCCCTT CATGATCCAC CAGCTCATGG GCAATGGGGT GTGGCACTTT 480 GGGGAGACCA TGTGCACCCT CATCACGGCC ATGGATGCCA ATAGTCAGTT CACCAGCACC 540 TACATCCTGA CCGCCATGGC CATTGACCGC TACCTGGCCA CTGTCCACCC CATCTCTTCC 600 25 ACGAAGTTCC GGAAGCCCTC TGTGGCCACC CTGGTGATCT GCCTCCTGTG GGCCCTCTCC 660 TTCATCAGCA TCACCCCTGT GTGGCTGTAT GCCAGACTCA TCCCCTTCCC AGGAGGTGCA 720 GTGGGCTGCG GCATACGCCT GCCCAACCCA GACACTGACC TCTACTGGTT CACCCTGTAC 780 CAGTTTTCC TGGCCTTTGC CCTGCCTTTT GTGGTCATCA CAGCCGCATA CGTGAGGATC 840 CTGCAGCGCA TGACGTCCTC AGTGGCCCCC GCCTCCCAGC GCAGCATCCG GCTGCGGACA 900 30 ANGROGOTGA ANGGORGAGO CATCGCOATO TGTCTGGTCT TCTTTGTGTG CTGGGCACCC 960 TACTATGTGC TACAGCTGAC CCAGTTGTCC ATCAGCCGCC CGACCCTCAC CTTTGTCTAC 1020

TTATACAATG CGGCCATCAG CTTGGGCTAT GCCAACAGCT GCCTCAACCC CTTTGTGTAC 1080

| ATCGTGCTCT GTGAGACGTT CCGCAAACGC TTGGTCCTGT CGGTGAAGCC TGCAGCCCAG 114                                                                                   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|--|--|--|
| GGGCAGCTTC GCGCTGTCAG CAACGCTCAG ACGGCTGACG AGGAGAGGAC AGAAAGCAAA 120                                                                                   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| GGCACCTCA 120                                                                                                                                           |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| (193) INFORMATION FOR SEQ ID NO:192:                                                                                                                    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| (i) SEQUENCE CHARACTERISTICS: (A) LEWGTH: 402 amino acids (B) TYPE: amino acid (C) STRANDENNESS: (D) TOPOLOGY: not relevant (ii) MOLECULE TYPE: protein |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:192:                                                                                                               |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Met Leu Cys Pro Ser Lys Thr Asp Gly Ser Gly His Ser Gly Arg Ile 1 $$10$                                                                                 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| His Gln Glu Thr His Gly Glu Gly Lys Arg Asp Lys Ile Ser Asn Ser $20 \\ 25 \\ 30$                                                                        |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Glu Gly Arg Glu Asn Gly Gly Arg Gly Phe Gln Met Asn Gly Gly Ser $$35$$                                                                                  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Leu Glu Ala Glu His Ala Ser Arg Met Ser Val Leu Arg Ala Lys Pro<br>50 60                                                                                |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Met Ser Asn Ser Gln Arg Leu Leu Leu Leu Ser Pro Gly Ser Pro Pro<br>75 80                                                                                |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Arg Thr Gly Ser Ile Ser Tyr Ile Asn Ile Ile Met Pro Ser Val Phe<br>85 90                                                                                |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Gly Thr Ile Cys Leu Leu Gly Ile Ile Gly Asn Ser Thr Val Ile Phe 100 105 110                                                                             |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Ala Val Val Lys Lys Ser Lys Leu His Trp Cys Asn Asn Val Pro Asp<br>115 120 125                                                                          |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Ile Phe Ile Ile Asn Leu Ser Val Val Asp Leu Leu Phe Leu Leu Gly<br>130 135 140                                                                          |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Met Pro Phe Met Ile His Gln Leu Met Gly Asn Gly Val Trp His Phe<br>145 150 155 160                                                                      |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Gly Glu Thr Met Cys Thr Leu Ile Thr Ala Met Asp Ala Asn Ser Gln<br>165 170 175                                                                          |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Phe Thr Ser Thr Tyr Ile Leu Thr Ala Met Ala Ile Asp Arg Tyr Leu<br>180 185 190                                                                          |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Ala Thr Val His Pro Ile Ser Ser Thr Lys Phe Arg Lys Pro Ser Val                                                                                         |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

146

|    |            |            | 195                       |                         |             |                      |                     | 200        |            |            |            |            | 205        |            |            |            |    |
|----|------------|------------|---------------------------|-------------------------|-------------|----------------------|---------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|----|
|    | Ala        | Thr<br>210 | Leu                       | Val                     | Ile         | Cys                  | Leu<br>215          | Leu        | Trp        | Ala        | Leu        | Ser<br>220 | Phe        | Ile        | Ser        | Ile        |    |
| 5  | Thr<br>225 | Pro        | Val                       | Trp                     | Leu         | Tyr<br>230           | Ala                 | Arg        | Leu        | Ile        | Pro<br>235 | Phe        | Pro        | Gly        | Gly        | Ala<br>240 |    |
|    | Val        | Gly        | Cys                       | Gly                     | Ile<br>245  | Arg                  | Leu                 | Pro        | Asn        | Pro<br>250 | Asp        | Thr        | Asp        | Leu        | Tyr<br>255 | Trp        |    |
|    | Phe        | Thr        | Leu                       | Tyr<br>260              | Gln         | Phe                  | Phe                 | Leu        | Ala<br>265 | Phe        | Ala        | Leu        | Pro        | Phe<br>270 | Val        | Val        |    |
| 10 | Ile        | Thr        | Ala<br>275                | Ala                     | Tyr         | Val                  | Arg                 | Ile<br>280 | Leu        | Gln        | Arg        | Met        | Thr<br>285 | Ser        | Ser        | Val        |    |
|    | Ala        | Pro<br>290 | Ala                       | Ser                     | Gln         | Arg                  | Ser<br>295          | Ile        | Arg        | Leu        | Arg        | Thr<br>300 | Lys        | Arg        | Val        | Lys        |    |
| 15 | Arg<br>305 | Thr        | Ala                       | Ile                     | Ala         | Ile<br>310           | Cys                 | Leu        | Val        | Phe        | Phe<br>315 | Val        | Cys        | Trp        | Ala        | Pro<br>320 |    |
|    | Tyr        | Tyr        | Val                       | Leu                     | Gln<br>325  | Leu                  | Thr                 | Gln        | Leu        | Ser<br>330 | Ile        | Ser        | Arg        | Pro        | Thr<br>335 | Leu        |    |
|    | Thr        | Phe        | Val                       | Tyr<br>340              | Leu         | Tyr                  | Asn                 | Ala        | Ala<br>345 | Ile        | Ser        | Leu        | Gly        | Tyr<br>350 | Ala        | Asn        |    |
| 20 | Ser        | Cys        | Leu<br>355                | Asn                     | Pro         | Phe                  | Val                 | Tyr<br>360 | Ile        | Val        | Leu        | Cya        | Glu<br>365 | Thr        | Phe        | Arg        |    |
|    | Lys        | Arg<br>370 | Leu                       | Val                     | Leu         | Ser                  | Val<br>375          | Lys        | Pro        | Ala        | Ala        | Gln<br>380 | Gly        | Gln        | Leu        | Arg        |    |
| 25 | Ala<br>385 | Val        | Ser                       | Asn                     | Ala         | Gln<br>390           | Thr                 | Ala        | Asp        | Glu        | Glu<br>395 | Arg        | Thr        | Glu        | Ser        | Lys<br>400 |    |
|    | Gly        | Thr        |                           |                         |             |                      |                     |            |            |            |            |            |            |            |            |            |    |
|    | (194) INE  | ORMA       | TION                      | FOF                     | SEÇ         | ID                   | NO:1                | 93:        |            |            |            |            |            |            |            |            |    |
| 30 | (i)        | (B)        | UENC<br>LEN<br>TYF<br>STR | IGTH:<br>PE: r<br>RANDE | 112<br>ucle | 8 ba<br>ic a<br>S: s | se p<br>cid<br>ingl | airs       |            |            |            |            |            |            |            |            |    |
|    | (ii        | .) MC      | LECU                      | ILE T                   | YPE:        | DNA                  | (ge                 | nomi       | .c)        |            |            |            |            |            |            |            |    |
| 35 | (xi        | .) SE      | QUEN                      | ICE I                   | ESCR        | IPTI                 | ON:                 | SEQ        | ID N       | 0:19       | 3:         |            |            |            |            |            |    |
|    | ATGGATGT   | A CI       | TCCC                      | AAGC                    | CCG         | GGGC                 | GTG                 | GGCC       | TGGA       | GA I       | GTAC       | CCAG       | G CA       | cccc       | GCAC       | :          | 60 |

GCTGCGGCCC CCAACACCAC CTCCCCCGAG CTCAACCTGT CCCACCCGCT CCTGGGCACC 120

| WO 00/22129 | PCT/US99/23938 |
|-------------|----------------|
|             |                |

|    | GCCCTGGCCA  | ATGGGACAGG                                                 | TGAGCTCTCG                       | GAGCACCAGC | AGTACGTGAT | CGGCCTGTTC | 180  |
|----|-------------|------------------------------------------------------------|----------------------------------|------------|------------|------------|------|
|    | CTCTCGTGCC  | TCTACACCAT                                                 | CTTCCTCTTC                       | CCCATCGGCT | TTGTGGGCAA | CATCCTGATC | 240  |
|    | CTGGTGGTGA  | ACATCAGCTT                                                 | CCGCGAGAAG                       | ATGACCATCC | CCGACCTGTA | CTTCATCAAC | 300  |
|    | CTGGCGGTGG  | CGGACCTCAT                                                 | CCTGGTGGCC                       | GACTCCCTCA | TTGAGGTGTT | CAACCTGCAC | 360  |
| 5  | GAGCGGTACT  | ACGACATCGC                                                 | CGTCCTGTGC                       | ACCTTCATGT | CGCTCTTCCT | GCAGGTCAAC | 420  |
|    | ATGTACAGCA  | GCGTCTTCTT                                                 | CCTCACCTGG                       | ATGAGCTTCG | ACCGCTACAT | CGCCCTGGCC | 480  |
|    | AGGGCCATGC  | GCTGCAGCCT                                                 | GTTCCGCACC                       | AAGCACCACG | CCCGGCTGAG | CTGTGGCCTC | 540  |
|    | ATCTGGATGG  | CATCCGTGTC                                                 | AGCCACGCTG                       | GTGCCCTTCA | CCGCCGTGCA | CCTGCAGCAC | 600  |
|    | ACCGACGAGG  | CCTGCTTCTG                                                 | TTTCGCGGAT                       | GTCCGGGAGG | TGCAGTGGCT | CGAGGTCACG | 660  |
| 10 | CTGGGCTTCA  | TCGTGCCCTT                                                 | CGCCATCATC                       | GGCCTGTGCT | ACTCCCTCAT | TGTCCGGGTG | 720  |
|    | CTGGTCAGGG  | CGCACCGGCA                                                 | CCGTGGGCTG                       | CGGCCCCGGC | GGCAGAAGGC | GAAACGCATG | 780  |
|    | ATCCTCGCGG  | TGGTGCTGGT                                                 | CTTCTTCGTC                       | TGCTGGCTGC | CGGAGAACGT | CTTCATCAGC | 840  |
|    | GTGCACCTCC  | TGCAGCGGAC                                                 | GCAGCCTGGG                       | GCCGCTCCCT | GCAAGCAGTC | TTTCCGCCAT | 900  |
|    | GCCCACCCCC  | TCACGGGCCA                                                 | CATTGTCAAC                       | CTCGCCGCCT | TCTCCAACAG | CTGCCTAAAC | 960  |
| 15 | CCCCTCATCT  | ACAGCTTTCT                                                 | CGGGGAGACC                       | TTCAGGGACA | AGCTGAGGCT | GTACATTGAG | 1020 |
|    | CAGAAAACAA  | ATTTGCCGGC                                                 | CCTGAACCGC                       | TTCTGTCACG | CTGCCCTGAA | GGCCGTCATT | 1080 |
|    | CCAGACAGCA  | CCGAGCAGTC                                                 | GGATGTGAGG                       | TTCAGCAGTG | CCGTGTGA   |            | 1128 |
|    | (195) INFOR | MATION FOR                                                 | SEQ ID NO:1                      | .94:       |            |            |      |
| 20 | (           | EQUENCE CHA A) LENGTH: B) TYPE: am C) STRANDED D) TOPOLOGY | 375 amino a<br>ino acid<br>NESS: | cids       |            |            |      |
|    |             |                                                            |                                  |            |            |            |      |

- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:194:

Met Asp Val Thr Ser Gln Ala Arg Gly Val Gly Leu Glu Met Tyr Pro 

Gly Thr Ala His Ala Ala Ala Pro Asn Thr Thr Ser Pro Glu Leu Asn

Leu Ser His Pro Leu Leu Gly Thr Ala Leu Ala Asn Gly Thr Gly Glu 

|    | Leu        | Ser<br>50  | Glu        | His        | Gln        | Gln        | Tyr<br>55  | Val        | Ile        | Gly        | Leu        | Phe<br>60  | Leu        | Ser        | Сув        | Leu        |
|----|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    | Tyr<br>65  | Thr        | Ile        | Phe        | Leu        | Phe<br>70  | Pro        | Ile        | Gly        | Phe        | Val<br>75  | Gly        | Asn        | Ile        | Leu        | Ile<br>80  |
| 5  | Leu        | Val        | Val        | Asn        | Ile<br>85  | Ser        | Phe        | Arg        | Glu        | Lys<br>90  | Met        | Thr        | Ile        | Pro        | Asp<br>95  | Leu        |
|    | Tyr        | Phe        | Ile        | Asn<br>100 | Leu        | Ala        | Val        | Ala        | Asp<br>105 | Leu        | Ile        | Leu        | Val        | Ala<br>110 | Asp        | Ser        |
| 10 | Leu        | Ile        | Glu<br>115 | Val        | Phe        | Asn        |            | His<br>120 | Glu        | Arg        | Tyr        | Tyr        | Asp<br>125 | Ile        | Ala        | Val        |
|    | Leu        | Cys<br>130 | Thr        | Phe        | Met        | Ser        | Leu<br>135 | Phe        | Leu        | Gln        | Val        | Asn<br>140 | Met        | Tyr        | Ser        | Ser        |
|    | Val<br>145 | Phe        | Phe        | Leu        | Thr        | Trp<br>150 | Met        | Ser        | Phe        | Asp        | Arg<br>155 | Tyr        | Ile        | Ala        | Leu        | Ala<br>160 |
| 15 | Arg        | Ala        | Met        | Arg        | Cys<br>165 | Ser        | Leu        | Phe        | Arg        | Thr<br>170 | Lys        | His        | His        | Ala        | Arg<br>175 | Leu        |
|    | Ser        | Cys        | Gly        | Leu<br>180 | Ile        | Trp        | Met        | Ala        | Ser<br>185 | Val        | Ser        | Ala        | Thr        | Leu<br>190 | Val        | Pro        |
| 20 | Phe        | Thr        | Ala<br>195 | Val        | His        | Leu        | Gln        | His<br>200 | Thr        | Asp        | Glu        | Ala        | Cys<br>205 | Phe        | Cys        | Phe        |
|    | Ala        | Asp<br>210 | Val        | Arg        | Glu        | Val        | Gln<br>215 | Trp        | Leu        | Glu        | Val        | Thr<br>220 | Leu        | Gly        | Phe        | Ile        |
|    | Val<br>225 | Pro        | Phe        | Ala        | Ile        | 11e<br>230 | Gly        | Leu        | Cys        | Tyr        | Ser<br>235 | Leu        | Ile        | Val        | Arg        | Val<br>240 |
| 25 | Leu        | Val        | Arg        | Ala        | His<br>245 |            | His        | Arg        | Gly        | Leu<br>250 | Arg        | Pro        | Arg        | Arg        | Gln<br>255 | Lys        |
|    | Ala        | Lys        | Arg        | Met<br>260 |            | Leu        | Ala        | Val        | Val<br>265 |            | Val        | Phe        | Phe        | Val<br>270 | Cys        | Trp        |
| 30 | Leu        | Pro        | Glu<br>275 | Asn        | Val        | Phe        | Ile        | Ser<br>280 | Val        | His        | Leu        | Leu        | Gln<br>285 | Arg        | Thr        | Gln        |
|    | Pro        | Gly<br>290 |            | Ala        | Pro        | Cys        | Lys<br>295 |            | Ser        | Phe        | Arg        | His<br>300 | Ala        | His        | Pro        | Leu        |
|    | Thr<br>305 | Gly        | His        | Ile        | Val        | Asn<br>310 |            | Ala        | Ala        | Phe        | Ser<br>315 |            | Ser        | Cys        | Leu        | Asn<br>320 |
| 35 | Pro        | Leu        | Ile        | Tyr        | Ser<br>325 |            | Leu        | Gly        | Glu        | Thr<br>330 |            | Arg        | Asp        | Lys        | Leu<br>335 | Arg        |
|    | Leu        | Tyr        | Ile        | Glu        | Gln        | Lys        | Thr        | Asn        | Leu        | Pro        | Ala        | Leu        | Asn        | Arg        | Phe        | Cys        |

345

350

149

His Ala Ala Leu Lys Ala Val Ile Pro Asp Ser Thr Glu Gln Ser Asp 355 360 365

Val Arg Phe Ser Ser Ala Val 5 370 375

10

30

(196) INFORMATION FOR SEO ID NO:195:

340

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 960 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: DNA (genomic)
  - (xi) SEQUENCE DESCRIPTION: SEO ID NO:195:
- ATGCCATTCC CAAACTGCTC AGCCCCCAGC ACTGTGGTGG CCACAGCTGT GGGTGTCTTG 60 CTGGGGCTGG AGTGTGGGCT GGGTCTGCTG GGCAACGCGG TGGCGCTGTG GACCTTCCTG 120 TTCCGGGTCA GGGTGTGGAA GCCGTACGCT GTCTACCTGC TCAACCTGGC CCTGGCTGAC 180 CTGCTGTTGG CTGCGTGCCT GCCTTTCCTG GCCGCCTTCT ACCTGAGCCT CCAGGCTTGG 240 CATCTGGGCC GTGTGGGCTG CTGGGCCCTG CGCTTCCTGC TGGACCTCAG CCGCAGCGTG 300 GGGATGGCCT TCCTGGCCGC CGTGGCTTTG GACCGGTACC TCCGTGTGGT CCACCCTCGG 360 CTTAAGGTCA ACCTGCTGTC TCCTCAGGCG GCCCTGGGGG TCTCGGGCCT CGTCTGGCTC 420 CTGATGGTCG CCCTCACCTG CCCGGGCTTG CTCATCTCTG AGGCCGCCCA GAACTCCACC 480 AGGTGCCACA GTTTCTACTC CAGGGCAGAC GGCTCCTTCA GCATCATCTG GCAGGAAGCA 540 CTCTCCTGCC TTCAGTTTGT CCTCCCCTTT GGCCTCATCG TGTTCTGCAA TGCAGGCATC 600 ATCAGGGCTC TCCAGAAAAG ACTCCGGGAG CCTGAGAAAC AGCCCAAGCT TCAGCGGGCC 660 25 AAGGCACTGG TCACCTTGGT GGTGGTGCTG TTTGCTCTGT GCTTTCTGCC CTGCTTCCTG 720 GCCAGAGTCC TGATGCACAT CTTCCAGAAT CTGGGGAGCT GCAGGGCCCT TTGTGCAGTG 780 GCTCATACCT CGGATGTCAC GGGCAGCCTC ACCTACCTGC ACAGTGTCGT CAACCCCGTG 840 GTATACTGCT TCTCCAGCCC CACCTTCAGG AGCTCCTATC GGAGGGTCTT CCACACCCTC 900 CGAGGCAAAG GGCAGGCAGC AGAGCCCCCA GATTTCAACC CCAGAGACTC CTATTCCTGA 960

(197) INFORMATION FOR SEC ID NO:196:

(i) SEQUENCE CHARACTERISTICS:

150

(A) LENGTH: 319 amino acids

- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant
- 5 (ii) MOLECULE TYPE: protein

10

20

30

(xi) SEQUENCE DESCRIPTION: SEO ID NO:196:

Met Pro Phe Pro Asn Cys Ser Ala Pro Ser Thr Val Val Ala Thr Ala

Val Gly Val Leu Leu Gly Leu Glu Cys Gly Leu Gly Leu Leu Gly Asn 20 25 30

Ala Val Ala Leu Trp Thr Phe Leu Phe Arg Val Arg Val Trp Lys Pro  $35 \hspace{1cm} 40 \hspace{1cm} 45$ 

Tyr Ala Val Tyr Leu Leu Asn Leu Ala Leu Ala Asp Leu Leu Leu Ala 50 60

Ala Cys Leu Pro Phe Leu Ala Ala Phe Tyr Leu Ser Leu Gln Ala Trp
65 70 75 80

His Leu Gly Arg Val Gly Cys Trp Ala Leu Arg Phe Leu Leu Asp Leu 85 90 95

Ser Arg Ser Val Gly Met Ala Phe Leu Ala Ala Val Ala Leu Asp Arg 100 105 110

Tyr Leu Arg Val Val His Pro Arg Leu Lys Val Asn Leu Leu Ser Pro \$115\$

Gln Ala Ala Leu Gly Val Ser Gly Leu Val Trp Leu Leu Met Val Ala 130 135

25 Leu Thr Cys Pro Gly Leu Leu Ile Ser Glu Ala Ala Gln Asn Ser Thr 145 150 155 160

> Arg Cys His Ser Phe Tyr Ser Arg Ala Asp Gly Ser Phe Ser Ile Ile 165 170 175

> Trp Gln Glu Ala Leu Ser Cys Leu Gln Phe Val Leu Pro Phe Gly Leu 180 185 190

Ile Val Phe Cys Asn Ala Gly Ile Ile Arg Ala Leu Gln Lys Arg Leu 195 200 205

Arg Glu Pro Glu Lys Gln Pro Lys Leu Gln Arg Ala Lys Ala Leu Val 210 215 220

Ala Arg Val Leu Met His Ile Phe Gln Asn Leu Gly Ser Cys Arg Ala

35 Thr Leu Val Val Val Leu Phe Ala Leu Cys Phe Leu Pro Cys Phe Leu 225 230 235 240

|     |              |                                                       | 245                            |                            | 25            | 0                |              | 255            |     |
|-----|--------------|-------------------------------------------------------|--------------------------------|----------------------------|---------------|------------------|--------------|----------------|-----|
|     | Leu C        | ys Ala Val<br>260                                     | Ala His                        | Thr Se                     | Asp Va<br>265 | l Thr Gl         | y Ser        | Leu Thr<br>270 | Tyr |
| 5   | Leu H        | is Ser Val<br>275                                     | Val Asn                        | Pro Vai                    | l Val Ty      | r Cys Ph         | e Ser<br>285 | Ser Pro        | Thr |
|     | Phe A        | rg Ser Ser<br>90                                      | Tyr Arg                        | Arg Val                    | Phe Hi        | s Thr Le         |              | Gly Lys        | Gly |
|     | Gln A<br>305 | la Ala Glu                                            | Pro Pro                        | Asp Phe                    | Asn Pr        | o Arg Asj<br>315 | Ser          | Tyr Ser        |     |
| 10  | (198) INFO   | RMATION FO                                            | R SEQ ID                       | NO:197                     |               |                  |              |                |     |
| 15  |              | SEQUENCE C (A) LENGTH (B) TYPE: (C) STRAND (D) TOPOLO | : 1143 b<br>nucleic<br>EDNESS: | ase pain<br>acid<br>single | °s            |                  |              |                |     |
|     | (ii)         | MOLECULE                                              | TYPE: DN                       | A (genon                   | nic)          |                  |              |                |     |
|     | (xi)         | SEQUENCE :                                            | DESCRIPT                       | ION: SEQ                   | ID NO:        | 197:             |              |                |     |
|     | ATGGAGGAAG   | GTGGTGATT                                             | r TGACAA                       | CTAC TAT                   | GGGGCAG       | ACAACCAC         | TC TG        | AGTGTGAG       | 60  |
|     | TACACAGACT   | GGAAATCCT                                             | GGGGGC                         | CCTC ATO                   | CCTGCCA       | TCTACATO         | TT GG        | TCTTCCTC       | 120 |
| 20  | CTGGGCACCA   | CGGGAAACG                                             | G TCTGGT                       | GCTC TGG                   | ACCGTGT       | TTCGGAG          | AG CC        | GGGAGAAG       | 180 |
|     | AGGCGCTCAG   | CTGATATCT                                             | CATTGC                         | TAGC CTG                   | GCGGTGG       | CTGACCTG         | AC CT        | TCGTGGTG       | 240 |
|     | ACGCTGCCCC   | TGTGGGCTA                                             | CTACAC                         | TAC CGG                    | GACTATG       | ACTGGCCC         | TT TG        | GGACCTTC       | 300 |
|     | TTCTGCAAGC   | TCAGCAGCT                                             | CCTCAT                         | CTTC GTC                   | AACATGT       | ACGCCAGC         | GT CT        | TCTGCCTC       | 360 |
|     | ACCGGCCTCA   | GCTTCGACC                                             | G CTACCTO                      | GCC ATC                    | GTGAGGC       | CAGTGGCC         | AA TG        | CTCGGCTG       | 420 |
| 2.5 | AGGCTGCGGG   | TCAGCGGGG                                             | CGTGGC                         | CACG GCA                   | GTTCTTT       | GGGTGCTG         | GC CG        | CCCTCCTG       | 480 |
|     | GCCATGCCTG   | TCATGGTGT                                             | ACGCACO                        | CACC GGG                   | GACTTGG       | AGAACACC         | AC TA        | AGGTGCAG       | 540 |
|     | TGCTACATGG   | ACTACTCCA                                             | GGTGGC                         | CACT GTG                   | AGCTCAG       | AGTGGGCC         | TG GG        | AGGTGGGC       | 600 |
|     | CTTGGGGTCT   | CGTCCACCAC                                            | CGTGGG                         | TTT GTG                    | GTGCCCT       | TCACCATO         | AT GC        | IGACCTGT       | 660 |
|     | TACTTCTTCA   | TCGCCCAAA                                             | CATCGCT                        | rggc cac                   | TTCCGCA       | AGGAACGC         | AT CG        | AGGGCCTG       | 720 |
| 0   | CGGAAGCGGC   | GCCGGCTTA                                             | GAGCATO                        | CATC GTG                   | GTGCTGG       | TGGTGACC         | TT TG        | CCTGTGC        | 780 |
|     | TGGATGCCCT   | ACCACCTGG                                             | GAAGACO                        | SCTG TAC                   | ATGCTGG       | GCAGCCTG         | CT GC        | ACTGGCCC       | 840 |
|     | mamas ammma  |                                                       |                                |                            |               |                  |              |                |     |

| AACAGCTO                                                                                                                                                                                          | GCC 1      | CAAC       | CCCI       | T CC       | TCTA       | TGCC       | TTT        | TTCG       | ACC        | CCCG       | CTTC       | CG (       | CCAGG      | CCTG       | C 960      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| ACCTCCAT                                                                                                                                                                                          | rgc 1      | CTGC       | TGTG       | G CC       | AGAG       | CAGG       | TGC        | GCAG       | GCA        | CCTC       | CCAC       | AG (       | CAGCA      | GTGG       | G 1020     |
| GAGAAGTO                                                                                                                                                                                          | CAG C      | CAGO       | TACI       | 'C TI      | 'CGGG      | GCAC       | AGC        | CAGG       | GGC        | CCGG       | CCCC       | AA (       | CATCG      | GCAA       | G 1080     |
| GGTGGAGA                                                                                                                                                                                          | AAC A      | GATG       | CACG       | A GA       | AATC       | CATC       | ccc        | TACA       | GCC        | AGGA       | GACC       | CT 1       | rgtgg      | TTGA       | C 1140     |
| TAG                                                                                                                                                                                               |            |            |            |            |            |            |            |            |            |            |            |            |            |            | 1143       |
| (199) IN                                                                                                                                                                                          | FORM       | ATIO       | N FO       | R SE       | QID        | No:        | 198:       |            |            |            |            |            |            |            |            |
| (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 380 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: not relevant (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:198: |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| (x                                                                                                                                                                                                | i) s       | EQUE       | NCE        | DESC       | RIPT       | ION:       | SEQ        | ID :       | NO:1       | 98:        |            |            |            |            |            |
| Met<br>1                                                                                                                                                                                          | Glu        | Glu        | Gly        | Gly<br>5   | Asp        | Phe        | Asp        | Asn        | Tyr<br>10  | Tyr        | Gly        | Ala        | Asp        | Asn<br>15  | Gln        |
| Ser                                                                                                                                                                                               | Glu        | Cys        | Glu<br>20  | Tyr        | Thr        | Asp        | Trp        | Lys<br>25  | Ser        | Ser        | Gly        | Ala        | Leu<br>30  | Ile        | Pro        |
| Ala                                                                                                                                                                                               | Ile        | Tyr<br>35  | Met        | Leu        | Val        | Phe        | Leu<br>40  | Leu        | Gly        | Thr        | Thr        | Gly<br>45  | Asn        | Gly        | Leu        |
| Val                                                                                                                                                                                               | Leu<br>50  | Trp        | Thr        | Val        | Phe        | Arg<br>55  | Ser        | Ser        | Arg        | Glu        | Lys<br>60  | Arg        | Arg        | Ser        | Ala        |
| Asp<br>65                                                                                                                                                                                         | Ile        | Phe        | Ile        | Ala        | Ser<br>70  | Leu        | Ala        | Val        | Ala        | Asp<br>75  | Leu        | Thr        | Phe        | Val        | Val<br>80  |
| Thr                                                                                                                                                                                               | Leu        | Pro        | Leu        | Trp<br>85  | Ala        | Thr        | Tyr        | Thr        | Tyr<br>90  | Arg        | Asp        | Tyr        | Asp        | Trp<br>95  | Pro        |
| Phe                                                                                                                                                                                               | Gly        | Thr        | Phe<br>100 | Phe        | Cys        | Lys        | Leu        | Ser<br>105 | Ser        | Tyr        | Leu        | Ile        | Phe<br>110 | Val        | Asn        |
| Met                                                                                                                                                                                               | Tyr        | Ala<br>115 | Ser        | Val        | Phe        | Cys        | Leu<br>120 | Thr        | Gly        | Leu        | Ser        | Phe<br>125 | Asp        | Arg        | Tyr        |
| Leu                                                                                                                                                                                               | Ala<br>130 | Ile        | Val        | Arg        | Pro        | Val<br>135 | Ala        | Asn        | Ala        | Arg        | Leu<br>140 | Arg        | Leu        | Arg        | Val        |
| Ser<br>145                                                                                                                                                                                        | Gly        | Ala        | Val        | Ala        | Thr<br>150 | Ala        | Val        | Leu        | Trp        | Val<br>155 | Leu        | Ala        | Ala        |            | Leu<br>160 |
| Ala                                                                                                                                                                                               | Met        | Pro        | Val        | Met<br>165 | Val        | Leu        | Arg        | Thr        | Thr<br>170 | Gly        | Asp        | Leu        | Glu        | Asn<br>175 | Thr        |

|    | Thr        | Lys        | Val               | Gln<br>180                   | Cys         | Tyr                 | Met                 | Asp        | Tyr<br>185 | Ser        | Met        | Val        | Ala        | Thr        | Val        | Ser        |
|----|------------|------------|-------------------|------------------------------|-------------|---------------------|---------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    | Ser        | Glu        | Trp<br>195        | Ala                          | Trp         | Glu                 | Val                 | Gly<br>200 | Leu        | Gly        | Val        | Ser        | Ser<br>205 | Thr        | Thr        | Val        |
| 5  | Gly        | Phe<br>210 | Val               | Val                          | Pro         | Phe                 | Thr<br>215          |            | Met        | Leu        | Thr        | Cys<br>220 | Tyr        | Phe        | Phe        | Ile        |
|    | Ala<br>225 | Gln        | Thr               | Ile                          | Ala         | Gly<br>230          | His                 | Phe        | Arg        | Lys        | Glu<br>235 | Arg        | Ile        | Glu        | Gly        | Leu<br>240 |
| 10 | Arg        | Lys        | Arg               | Arg                          | Arg<br>245  | Leu                 | Lys                 | Ser        | Ile        | Ile<br>250 | Val        | Val        | Leu        | Val        | Val<br>255 | Thr        |
|    | Phe        | Ala        | Leu               | Cys<br>260                   | Trp         | Met                 | Pro                 | Tyr        | His<br>265 | Leu        | Val        | Lys        | Thr        | Leu<br>270 | Tyr        | Met        |
|    | Leu        | Gly        | Ser<br>275        | Leu                          | Leu         | His                 | Trp                 | Pro<br>280 | Cys        | Asp        | Phe        | Asp        | Leu<br>285 | Phe        | Leu        | Met        |
| 15 | Asn        | Ile<br>290 | Phe               | Pro                          | Tyr         | Cys                 | Thr<br>295          | Cys        | Ile        | Ser        | Tyr        | Val<br>300 | Asn        | Ser        | Cys        | Leu        |
|    | Asn<br>305 | Pro        | Phe               | Leu                          | Tyr         | Ala<br>310          | Phe                 | Phe        | Asp        | Pro        | Arg<br>315 | Phe        | Arg        | Gln        | Ala        | Cys<br>320 |
| 20 | Thr        | Ser        | Met               | Leu                          | Cys<br>325  | Cys                 | Gly                 | Gln        | Ser        | Arg<br>330 | Cys        | Ala        | Gly        | Thr        | Ser<br>335 | His        |
|    | Ser        | Ser        | Ser               | Gly<br>340                   | Glu         | Lys                 | Ser                 | Ala        | Ser<br>345 | Tyr        | Ser        | Ser        | Gly        | His<br>350 | Ser        | Gln        |
|    | Gly        | Pro        | Gly<br>355        | Pro                          | Asn         | Met                 | Gly                 | Lys<br>360 | Gly        | Gly        | Glu        | Gln        | Met<br>365 | His        | Glu        | Lys        |
| 25 | Ser        | Ile<br>370 | Pro               | Tyr                          | ser         | Gln                 | Glu<br>375          | Thr        | Leu        | Val        | Val        | Asp<br>380 |            |            |            |            |
|    | (200) INE  | FORMA      | TION              | FOR                          | SEC         | ID                  | NO:1                | .99:       |            |            |            |            |            |            |            |            |
| 30 | (i)        | (B)        | LEN<br>TYP<br>STR | E CH<br>GTH:<br>E: n<br>ANDE | 111<br>ucle | 9 ba<br>ica<br>S: s | se p<br>cid<br>ingl | airs       |            |            |            |            |            |            |            |            |
|    | (ii        | ) MC       | LECU              | LE T                         | YPE:        | DNA                 | (ge                 | nomi       | c)         |            |            |            |            |            |            |            |
|    | (xi        | .) SE      | QUEN              | CE D                         | ESCR        | IPTI                | ON:                 | SEQ        | ID N       | 0:19       | 9:         |            |            |            |            |            |
| 35 | ATGAACTAC  | cc cc      | CTAA              | CGCT                         | GGA         | AATG                | GAC                 | CTCG       | AGAA       | CC T       | GGAG       | GACC       | T GI       | TCTG       | GGAA       | 60         |
|    | CTGGACAGA  | T TG       | GACA              | ACTA                         | TAA         | CGAC                | ACC                 | TCCC       | TGGT       | GG A       | AAAT       | CATC       | T CT       | GCCC       | TGCC       | 120        |

|    | ACAGAGGGTC CCCTCATGGC CTCCTTCAAG GCCGTGTTCG TGCCCGTGGC CTACAGCCTC                                                            | 180 |
|----|------------------------------------------------------------------------------------------------------------------------------|-----|
|    | ATCTTCCTCC TGGGCGTGAT CGGCAACGTC CTGGTGCTGG TGATCCTGGA GCGGCACCGG                                                            | 240 |
|    | CAGACACGCA GTTCCACGGA GACCTTCCTG TTCCACCTGG CCGTGGCCGA CCTCCTGCTG                                                            | 300 |
|    | GTCTTCATCT TGCCCTTTGC CGTGGCCGAG GGCTCTGTGG GCTGGGTCCT GGGGACCTTC                                                            | 360 |
| 5  | CTCTGCAAAA CTGTGATTGC CCTGCACAAA GTCAACTTCT ACTGCAGCAG CCTGCTCCTG                                                            | 420 |
|    | GCCTGCATCG CCGTGGACCG CTACCTGGCC ATTGTCCACG CCGTCCATGC CTACCGCCAC                                                            | 480 |
|    | CGCCGCCTCC TCTCCATCCA CATCACCTGT GGGACCATCT GGCTGGTGGG CTTCCTCCTT                                                            | 540 |
|    | GCCTTGCCAG AGATTCTCTT CGCCAAAGTC AGCCAAGGCC ATCACAACAA CTCCCTGCCA                                                            | 600 |
|    | CGTTGCACCT TCTCCCAAGA GAACCAAGCA GAAACGCATG CCTGGTTCAC CTCCCGATTC                                                            | 660 |
| 10 | CTCTACCATG TGGCGGGATT CCTGCTGCCC ATGCTGGTGA TGGGCTGGTG CTACGTGGGG                                                            | 720 |
|    | GTAGTGCACA GGTTGCGCCA GGCCCAGCGG CGCCCTCAGC GGCAGAAGGC AAAAAGGGTG                                                            | 780 |
|    | GCCATCCTGG TGACAAGCAT CTTCTTCCTC TGCTGGTCAC CCTACCACAT CGTCATCTTC                                                            | 340 |
|    | CTGGACACCC TGGCGAGGCT GAAGGCCGTG GACAATACCT GCAAGCTGAA TGGCTCTCTC                                                            | 900 |
|    | CCCGTGGCCA TCACCATGTG TGAGTTCCTG GGCCTGGCCC ACTGCTGCCT CAACCCCATG                                                            | 960 |
| 15 | CTCTACACTT TCGCCGGCGT GAAGTTCCGC AGTGACCTGT CGCGGCTCCT GACCAAGCTG 10                                                         | 020 |
|    | GGCTGTACCG GCCCTGCCTC CCTGTGCCAG CTCTTCCCTA GCTGGCGCAG GAGCAGTCTC 10                                                         | 080 |
|    | TCTGAGTCAG AGAATGCCAC CTCTCTCACC ACGTTCTAG                                                                                   | L19 |
|    | (201) INFORMATION FOR SEQ ID NO:200:                                                                                         |     |
| 20 | (i) SEQUENCE CHARACTERISTICS:  (A) LENOTH: 372 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: not relevant |     |
|    | (ii) MOLECULE TYPE: protein                                                                                                  |     |
| 25 | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:200:                                                                                    |     |
|    | Met Asn Tyr Pro Leu Thr Leu Glu Met Asp Leu Glu Asn Leu Glu Asp 1 5 10 15                                                    |     |
|    | Leu Phe Trp Glu Leu Asp Arg Leu Asp Asn Tyr Asn Asp Thr Ser Leu $20 \hspace{1cm} 25 \hspace{1cm} 30$                         |     |
| 30 | Val Glu Asn His Leu Cys Pro Ala Thr Glu Gly Pro Leu Met Ala Ser $35 \hspace{1cm} 40 \hspace{1cm} 45$                         |     |

Phe Lys Ala Val Phe Val Pro Val Ala Tyr Ser Leu Ile Phe Leu Leu

|    |            | 50         |            |            |            |            | 55         |            |            |            |            | 60         |            |            |            |            |
|----|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    | Gly<br>65  | Val        | Ile        | Gly        | Asn        | Val<br>70  | Leu        | Val        | Leu        | Val        | Ile<br>75  | Leu        | Glu        | Arg        | His        | Arg<br>80  |
| 5  | Gln        | Thr        | Arg        | Ser        | Ser<br>85  | Thr        | Glu        | Thr        | Phe        | Leu<br>90  | Phe        | His        | Leu        | Ala        | Val<br>95  | Ala        |
|    | Asp        | Leu        | Leu        | Leu<br>100 | Val        | Phe        | Ile        | Leu        | Pro<br>105 |            | Ala        | Val        | Ala        | Glu<br>110 |            | Ser        |
|    | Val        | Gly        | Trp<br>115 | Val        | Leu        | Gly        | Thr        | Phe<br>120 |            | Cys        | Lys        | Thr        | Val<br>125 | Ile        | Ala        | Leu        |
| 10 | His        | Lys<br>130 | Val        | Asn        | Phe        | Tyr        | Cys<br>135 | Ser        | Ser        | Leu        | Leu        | Leu<br>140 | Ala        | Cys        | Ile        | Ala        |
|    | Val<br>145 | Asp        | Arg        | Tyr        | Leu        | Ala<br>150 | Ile        | Val        | His        | Ala        | Val<br>155 | His        | Ala        | Tyr        | Arg        | His<br>160 |
| 15 | Arg        | Arg        | Leu        | Leu        | Ser<br>165 | Ile        | His        | Ile        | Thr        | Cys<br>170 | Gly        | Thr        | Ile        | Trp        | Leu<br>175 | Val        |
|    | Gly        | Phe        | Leu        | Leu<br>180 | Ala        | Leu        | Pro        | Glu        | Ile<br>185 | Leu        | Phe        | Ala        | Lys        | Val<br>190 | Ser        | Gln        |
|    | Gly        | His        | His<br>195 | Asn        | Asn        | Ser        | Leu        | Pro<br>200 | Arg        | Cys        | Thr        | Phe        | Ser<br>205 | Gln        | Glu        | Asn        |
| 20 | Gln        | Ala<br>210 | Glu        | Thr        | His        | Ala        | Trp<br>215 | Phe        | Thr        | Ser        | Arg        | Phe<br>220 | Leu        | Tyr        | His        | Val        |
|    | Ala<br>225 | Gly        | Phe        | Leu        | Leu        | Pro<br>230 | Met        | Leu        | Val        | Met        | Gly<br>235 | Trp        | Cys        | Tyr        | Val        | Gly<br>240 |
| 25 | Val        | Val        | His        | Arg        | Leu<br>245 | Arg        | Gln        | Ala        | Gln        | Arg<br>250 | Arg        | Pro        | Gln        | Arg        | Gln<br>255 | Lys        |
|    | Ala        | Lys        | Arg        | Val<br>260 | Ala        | Ile        | Leu        | Val        | Thr<br>265 | Ser        | Ile        | Phe        | Phe        | Leu<br>270 | Cys        | Trp        |
|    | Ser        | Pro        | Tyr<br>275 | His        | Ile        | Val        | Ile        | Phe<br>280 | Leu        | Asp        | Thr        | Leu        | Ala<br>285 | Arg        | Leu        | Lys        |
| 30 | Ala        | Val<br>290 | Asp        | Asn        | Thr        | Cys        | Lys<br>295 | Leu        | Asn        | Gly        | Ser        | Leu<br>300 | Pro        | Val        | Ala        | Ile        |
|    | Thr<br>305 | Met        | Суз        | Glu        |            | Leu<br>310 | Gly        | Leu        | Ala        |            | Cys<br>315 | Cys        | Leu        | Asn        |            | Met<br>320 |
| 35 | Leu        | Tyr        | Thr        | Phe        | Ala<br>325 | Gly        | Val        | Lys        | Phe        | Arg<br>330 | Ser        | Asp        | Leu        |            | Arg<br>335 | Leu        |
|    | Leu        | Thr        | Lys        | Leu<br>340 | Gly        | Cys        | Thr        | Gly        | Pro<br>345 | Ala        | Ser        | Leu        |            | Gln<br>350 | Leu        | Phe        |

156

Pro Ser Trp Arg Arg Ser Ser Leu Ser Glu Ser Glu Asn Ala Thr Ser 355 360 365

Leu Thr Thr Phe

- 5 (202) INFORMATION FOR SEQ ID NO:201:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 1128 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single
- 10 (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: DNA (genomic)
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:201:

ATGGATGTGA CTTCCCAAGC CCGGGGCGTG GGCCTGGAGA TGTACCCAGG CACCGCGCAG 60 CCTGCGGCCC CCAACACCAC CTCCCCCGAG CTCAACCTGT CCCACCCGCT CCTGGGCACC 120 15 GCCCTGGCCA ATGGGACAGG TGAGCTCTCG GAGCACCAGC AGTACGTGAT CGGCCTGTTC 180 CTCTCGTGCC TCTACACCAT CTTCCTCTTC CCCATCGGCT TTGTGGGCAA CATCCTGATC 240 CTGGTGGTGA ACATCAGCTT CCGCGAGAAG ATGACCATCC CCGACCTGTA CTTCATCAAC 300 CTGGCGGTGG CGGACCTCAT CCTGGTGGCC GACTCCCTCA TTGAGGTGTT CAACCTGCAC 360 GAGCGGTACT ACGACATCGC CGTCCTGTGC ACCTTCATGT CGCTCTTCCT GCAGGTCAAC 420 20 ATGTACAGCA GCGTCTTCTT CCTCACCTGG ATGAGCTTCG ACCGCTACAT CGCCCTGGCC 480 AGGGCCATGC GCTGCAGCCT GTTCCGCACC AAGCACCACG CCCGGCTGAG CTGTGGCCTC 540 ATCTGGATGG CATCCGTGTC AGCCACGCTG GTGCCCTTCA CCGCCGTGCA CCTGCAGCAC 600 ACCGACGAGG CCTGCTTCTG TTTCGCGGAT GTCCGGGAGG TGCAGTGGCT CGAGGTCACG 660 CTGGGCTTCA TCGTGCCCTT CGCCATCATC GGCCTGTGCT ACTCCCTCAT TGTCCGGGTG 720 25 CTGGTCAGGG CGCACCGGCA CCGTGGGCTG CGGCCCCGGC GGCAGAAGGC GAAGCGCATG 780 840 GTGCACCTCC TGCAGCGGAC GCAGCCTGGG GCCGCTCCCT GCAAGCAGTC TTTCCGCCAT 900 GCCCACCCC TCACGGGCCA CATTGTCAAC CTCACCGCCT TCTCCAACAG CTGCCTAAAC 960 CCCCTCATCT ACAGCTTTCT CGGGGAGACC TTCAGGGACA AGCTGAGGCT GTACATTGAG CAGAAAACAA ATTTGCCGGC CCTGAACCGC TTCTGTCACG CTGCCCTGAA GGCCGTCATT 1080 CCAGACAGCA CCGAGCAGTC GGATGTGAGG TTCAGCAGTG CCGTGTAG 1128

|    | (203) IN                                                        | FORM           | ATIO                 | n fo                | R SE                 | Q ID                | NO:                       | 202:       |            |            |            |            |            |            |            |            |
|----|-----------------------------------------------------------------|----------------|----------------------|---------------------|----------------------|---------------------|---------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| 5  | (á.                                                             | (A<br>(B<br>(C | ) LE<br>) TY<br>) ST | NGTH<br>PE:<br>RAND | : 37<br>amin<br>EDNE | 5 am<br>5 ac<br>88: | ISTI<br>ino<br>id<br>rele | acid       | s          |            |            |            |            |            |            |            |
|    | (i:                                                             | i) M           | OLEC                 | ULE                 | TYPE                 | : pr                | otei:                     | n          |            |            |            |            |            |            |            |            |
|    | (x:                                                             | i) S           | EQUE                 | NCE :               | DESC                 | RIPT                | ION:                      | SEQ        | ID:        | NO:2       | 02:        |            |            |            |            |            |
| 10 | Met<br>1                                                        | Asp            | Val                  | Thr                 | Ser<br>5             | Gln                 | Ala                       | Arg        | Gly        | Val<br>10  | Gly        | Leu        | Glu        | Met        | Tyr<br>15  | Pro        |
|    | Gly                                                             | Thr            | Ala                  | Gln<br>20           | Pro                  | Ala                 | Ala                       | Pro        | Asn<br>25  | Thr        | Thr        | Ser        | Pro        | Glu<br>30  | Leu        | Asn        |
|    | Leu Ser His Pro Leu Leu Gly Thr Ala Leu Ala Asn Gly Thr Gly Glu |                |                      |                     |                      |                     |                           |            |            |            |            |            |            |            |            | Glu        |
| 15 | Leu                                                             | Ser<br>50      | Glu                  | His                 | Gln                  | Gln                 | Tyr<br>55                 | Val        | Ile        | Gly        | Leu        | Phe        | Leu        | Ser        | Сув        | Leu        |
|    | Tyr<br>65                                                       | Thr            | Ile                  | Phe                 | Leu                  | Phe<br>70           | Pro                       | Ile        | Gly        | Phe        | Val<br>75  | Gly        | Asn        | Ile        | Leu        | Ile<br>80  |
| 20 | Leu                                                             | Val            | Val                  | Asn                 | Ile<br>85            | Ser                 | Phe                       | Arg        | Glu        | Lys<br>90  | Met        | Thr        | Ile        | Pro        | Asp<br>95  | Leu        |
|    | Tyr                                                             | Phe            | Ile                  | Asn<br>100          | Leu                  | Ala                 | Val                       | Ala        | Asp<br>105 | Leu        | Ile        | Leu        | Val        | Ala<br>110 | Asp        | Ser        |
|    | Leu                                                             | Ile            | Glu<br>115           | Val                 | Phe                  | Asn                 | Leu                       | His<br>120 | Glu        | Arg        | Tyr        | Tyr        | Asp<br>125 | Ile        | Ala        | Val        |
| 25 | Leu                                                             | Cys<br>130     | Thr                  | Phe                 | Met                  | Ser                 | Leu<br>135                | Phe        | Leu        | Gln        | Val        | Asn<br>140 | Met        | Tyr        | Ser        | Ser        |
|    | Val<br>145                                                      | Phe            | Phe                  | Leu                 | Thr                  | Trp<br>150          | Met                       | Ser        | Phe        | qaA        | Arg<br>155 | Tyr        | Ile        | Ala        | Leu        | Ala<br>160 |
| 30 | Arg                                                             | Ala            | Met                  | Arg                 | Cys<br>165           | Ser                 | Leu                       | Phe        | Arg        | Thr<br>170 | Lys        | His        | His        | Ala        | Arg<br>175 | Leu        |
|    | Ser                                                             | Cys            | Gly                  | Leu<br>180          | Ile                  | Trp                 | Met                       | Ala        | Ser<br>185 | Val        | Ser        | Ala        | Thr        | Leu<br>190 | Val        | Pro        |
|    | Phe                                                             | Thr            | Ala<br>195           | Val                 | His                  | Leu                 | Gln                       | His<br>200 | Thr        | Asp        | Glu        | Ala        | Cys<br>205 | Phe        | Cys        | Phe        |
| 35 | Ala                                                             | Asp<br>210     | Val                  | Arg                 | Glu                  | Val                 | Gln<br>215                | Trp        | Leu        | Glu        | Val        | Thr<br>220 | Leu        | Gly        | Phe        | Ile        |
|    | Val                                                             | Pro            | Phe                  | Ala                 | Ile                  | Ile                 | Gly                       | Leu        | Cys        | Tyr        | Ser        | Leu        | Ile        | Val        | Arg        | Val        |

|    | 225        |            |            |                                          |                | 230                     |                        |            |            |            | 235        |            |            |            |            | 240        |     |
|----|------------|------------|------------|------------------------------------------|----------------|-------------------------|------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----|
|    | Leu        | Val        | Arg        | Ala                                      | His<br>245     | Arg                     | His                    | Arg        | Gly        | Leu<br>250 | Arg        | Pro        | Arg        | Arg        | Gln<br>255 | Lys        |     |
| 5  | Ala        | Lys        | Arg        | Met<br>260                               | Ile            | Leu                     | Ala                    | Val        | Val<br>265 | Leu        | Val        | Phe        | Phe        | Val<br>270 | Cys        | Trp        |     |
|    | Leu        | Pro        | Glu<br>275 | Asn                                      | Val            | Phe                     | Ile                    | Ser<br>280 | Val        | His        | Leu        | Leu        | Gln<br>285 | Arg        | Thr        | Gln        |     |
|    | Pro        | Gly<br>290 | Ala        | Ala                                      | Pro            | Cys                     | Lys<br>295             | Gln        | Ser        | Phe        | Arg        | His<br>300 | Ala        | His        | Pro        | Leu        |     |
| 10 | Thr<br>305 | Gly        | His        | Ile                                      | Val            | Asn<br>310              | Leu                    | Thr        | Ala        | Phe        | Ser<br>315 | Asn        | Ser        | Cys        | Leu        | Asn<br>320 |     |
|    | Pro        | Leu        | Ile        | Tyr                                      | Ser<br>325     | Phe                     | Leu                    | Gly        | Glu        | Thr<br>330 | Phe        | Arg        | Asp        | Lys        | Leu<br>335 | Arg        |     |
| 15 | Leu        | Tyr        | Ile        | Glu<br>340                               | Gln            | Lys                     | Thr                    | Asn        | Leu<br>345 | Pro        | Ala        | Leu        | Asn        | Arg<br>350 | Phe        | Cys        |     |
|    | His        | Ala        | Ala<br>355 | Leu                                      | Lys            | Ala                     | Val                    | Ile<br>360 | Pro        | Asp        | Ser        | Thr        | Glu<br>365 | Gln        | Ser        | Asp        |     |
|    | Val        | Arg<br>370 | Phe        | Ser                                      | Ser            | Ala                     | Val<br>375             |            |            |            |            |            |            |            |            |            |     |
| 20 | (204) IN   | FORM       | ATIO       | N FOI                                    | SE             | Q ID                    | NO:2                   | 203:       |            |            |            |            |            |            |            |            |     |
| 25 | (i         | (B         | LEI<br>TYI | CE CE<br>NGTH:<br>PE: 1<br>RANDI<br>POLO | : 11:<br>nucle | 37 ba<br>eic a<br>SS: s | ase p<br>acid<br>sing: | pair       | 3          |            |            |            |            |            |            |            |     |
| 20 | 12         |            |            |                                          |                |                         |                        |            | 1          |            |            |            |            |            |            |            |     |
|    |            | i) M       |            |                                          |                |                         | _                      |            |            | 70.0       |            |            |            |            |            |            |     |
|    | ATGGACCT   | i) S       |            |                                          |                |                         |                        |            |            |            |            | a Comme    | -m -c:     | mmm        |            |            | 60  |
|    | GTATGCCT   |            |            |                                          |                |                         |                        |            |            |            |            |            |            |            |            |            | 120 |
| 30 | TACACTTT   |            |            |                                          |                |                         |                        |            |            |            |            |            |            |            |            |            | 180 |
| 30 | CTCCCTAT   |            |            |                                          |                |                         |                        |            |            |            |            |            |            |            |            |            | 240 |
|    | TTGACCTA   |            |            |                                          |                |                         |                        |            |            |            |            |            |            |            |            |            | 300 |
|    | GCGGTGGC   |            |            |                                          |                |                         |                        |            |            |            |            |            |            |            |            |            | 360 |
|    | TCCTGGGT   |            |            |                                          |                |                         |                        |            |            |            |            |            |            |            |            |            | 420 |
|    |            |            |            |                                          |                |                         |                        |            |            |            |            |            |            |            |            |            |     |

|    | TTCAGTGG  | CA TO     | GCTC      | TACI      | TCT       | TTG  | CATC      | AGC       | TTG       | ACC (     | CTA       | CGTGC     | C C       | ATCG:     | CCA       | 480       |
|----|-----------|-----------|-----------|-----------|-----------|------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|    | GCTGTCTC  | AG C      | CAC       | GCCA      | ccc       | TGC  | cccc      | GTC       | TTCT      | CA '      | rcago     | CAAGO     | T G       | CCT       | TGT       | 540       |
|    | GGCATCTG  | SA TA     | ACTA      | CCAC      | AGT       | GCT  | CTCC      | ATC       | CAG       | GC '      | CCT       | TAC       | G TO      | ACC:      | CCA       | 600       |
|    | AGGAGCAG  | CA G      | rgago     | CAAGO     | GAT       | GCG  | ATGC      | TCT       | CTCAT     | CA (      | CAGAC     | CATO      | T G       | SAGG      | CTT       | 660       |
| 5  | ATCACCATO | CC AC     | GTG       | CCCA      | GAT       | GGT  | SATC      | GGCT      | TTC       | rgg '     | rccc      | CTG       | T G       | ECCA!     | rgag0     | 720       |
|    | TTCTGTTA  | CC T      | rgtc:     | TCAT      | ccc       | CAC  | CCTG      | CTC       | CAGG      | CAC (     | CAA       | TTTC      | A G       | CGCA      | CAA       | 780       |
|    | GCCAAAAA  | G T       | BATC      | TCGC      | TGT       | GGT  | GTG       | GTCT      | TCAT      | 'AG       | rctto     | CCAGO     | T G       | CCT       | CAA       | 840       |
|    | GGGGTGGT  | CC TO     | GCC(      | CAGAC     | GG1       | rggc | CAAC      | TTC       | AACAT     | rca (     | CCAG      | FAGC      | C C       | rgtg:     | AGCT      | 900       |
|    | AGTAAGCA  | AC TO     | CAAC      | ATCGC     | CT        | CGA  | CGTC      | ACC'      | TACAC     | CC '      | rggc      | CTGCC     | T C       | CGCT      | CTG       | 960       |
| 10 | GTCAACCC  | TT TO     | CTTG:     | racgo     | CT        | CAT  | CGGC      | GTC#      | AGT       | rcc (     | GCAAC     | CGATO     | T C       | TCA/      | GCT       | 1020      |
|    | TTCAAGGA  | C TO      | ggc'      | rgcci     | CAC       | CCA  | GAG       | CAG       | CTCC      | GC 2      | AGTGG     | TCT       | rc c      | rgrc      | GCA       | 1080      |
|    | ATCCGGCG  | CT C      | CTCC      | ATGAG     | TGT       | rgga | GCC       | GAG       | ACCA      | CCA       | CCAC      | CTTCI     | rc co     | CCATA     | AG        | 1137      |
|    | (205) IN  | ORM       | TIO       | 1 FOR     | SEÇ       | ] ID | NO:2      | 204:      |           |           |           |           |           |           |           |           |
| 15 | (i)       |           |           | CE CH     |           |      |           |           |           |           |           |           |           |           |           |           |
| 13 |           | (B)       | TY        | PE: a     | mino      | ac:  |           | aciui     | ,         |           |           |           |           |           |           |           |
|    |           |           |           | POLOG     |           |      | relev     | vant      |           |           |           |           |           |           |           |           |
|    | (i:       | i) Mo     | DLECT     | JLE T     | YPE       | pro  | oteir     | n         |           |           |           |           |           |           |           |           |
| 20 | (x:       | i) Si     | EQUE      | ICE I     | ESCI      | RIPT | ION:      | SEQ       | ID i      | 10:2      | 04:       |           |           |           |           |           |
|    | Met<br>1  | Asp       | Leu       | Gly       | Lys<br>5  | Pro  | Met       | Lys       | Ser       | Val<br>10 | Leu       | Val       | Val       | Ala       | Leu<br>15 | Leu       |
|    | Val       | Ile       | Phe       | Gln<br>20 | Val       | Cys  | Leu       | Cys       | Gln<br>25 | Asp       | Glu       | Val       | Thr       | Asp<br>30 | Asp       | Tyr       |
| 25 | Ile       | Gly       | Asp<br>35 | Asn       | Thr       | Thr  | Val       | Asp<br>40 | Tyr       | Thr       | Leu       | Phe       | Glu<br>45 | Ser       | Leu       | Cys       |
|    | Ser       | Lys<br>50 | Lys       | Asp       | Val       | Arg  | Asn<br>55 | Phe       | Lys       | Ala       | Trp       | Phe<br>60 | Leu       | Pro       | Ile       | Met       |
| 30 | Tyr<br>65 | Ser       | Ile       | Ile       | Cys       | Phe  | Val       | Gly       | Leu       | Leu       | Gly<br>75 | Asn       | Gly       | Leu       | Val       | Val<br>80 |
|    | Leu       | Thr       | Tyr       | Ile       | Tyr<br>85 | Phe  | Lys       | Arg       | Leu       | Lys<br>90 | Thr       | Met       | Thr       | Asp       | Thr<br>95 | Tyr       |
|    | Leu       | Leu       | Asn       | Leu       | Ala       | Val  | Ala       | Asp       | Ile       | Leu       | Phe       | Leu       | Leu       | Thr       | Leu       | Pro       |

160

|    |            |            |            | 100        |            |            |            |            |            |            |            |            |            |            |            |            |
|----|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    |            |            |            | 100        |            |            |            |            | 105        |            |            |            |            | 110        |            |            |
|    | Phe        | Trp        | Ala<br>115 |            | Ser        | Ala        | Ala        | Lys<br>120 | Ser        | Trp        | Val        | Phe        | Gly<br>125 | Val        | His        | Phe        |
| 5  | Cys        | Lys<br>130 | Leu        | Ile        | Phe        | Ala        | Ile<br>135 | Tyr        | Lys        | Met        | Ser        | Phe<br>140 | Phe        | Ser        | Gly        | Met        |
|    | Leu<br>145 | Leu        | Leu        | Leu        | Cys        | 11e<br>150 | Ser        | Ile        | Asp        | Arg        | Tyr<br>155 | Val        | Ala        | Ile        | Val        | Gln<br>160 |
|    | Ala        | Val        | Ser        | Ala        | His<br>165 | Arg        | His        | Arg        | Ala        | Arg<br>170 | Val        | Leu        | Leu        | Ile        | Ser<br>175 | Lys        |
| 10 | Leu        | Ser        | Cys        | Val<br>180 | Gly        | Ile        | Trp        | Ile        | Leu<br>185 | Ala        | Thr        | Val        | Leu        | Ser        | Ile        | Pro        |
|    | Glu        | Leu        | Leu<br>195 |            | Ser        | Asp        | Leu        | Gln<br>200 | Arg        | Ser        | Ser        | Ser        | Glu<br>205 | Gln        | Ala        | Met        |
| 15 | Arg        | Cys<br>210 | Ser        | Leu        | Ile        | Thr        | Glu<br>215 | His        | Val        | Glu        | Ala        | Phe<br>220 | Ile        | Thr        | Ile        | Gln        |
|    | Val<br>225 | Ala        | Gln        | Met        | Val        | Ile<br>230 | Gly        | Phe        | Leu        | Val        | Pro<br>235 | Leu        | Leu        | Ala        | Met        | Ser<br>240 |
|    | Phe        | Сув        | Tyr        | Leu        | Val<br>245 | Ile        | Ile        | Arg        | Thr        | Leu<br>250 | Leu        | Gln        | Ala        | Arg        | Asn<br>255 | Phe        |
| 20 | Glu        | Arg        | Asn        | Lys<br>260 | Ala        | Lys        | Lys        | Val        | Ile<br>265 | Ile        | Ala        | Val        | Val        | Val<br>270 | Val        | Phe        |
|    | Ile        | Val        | Phe<br>275 | Gln        | Leu        | Pro        | Tyr        | Asn<br>280 | Gly        | Val        | Val        | Leu        | Ala<br>285 | Gln        | Thr        | Val        |
| 25 | Ala        | Asn<br>290 | Phe        | Asn        | Ile        | Thr        | Ser<br>295 | Ser        | Thr        | Cys        | Glu        | Leu<br>300 | Ser        | Lys        | Gln        | Leu        |
|    | Asn<br>305 | Ile        | Ala        | Tyr        | Asp        | Val<br>310 | Thr        | Tyr        | Ser        | Leu        | Ala<br>315 | Сув        | Val        | Arg        | Cys        | Cys<br>320 |
|    | Val        | Asn        | Pro        | Phe        | Leu<br>325 | Tyr        | Ala        | Phe        | Ile        | Gly<br>330 | Val        | Lys        | Phe        | Arg        | Asn<br>335 | Asp        |
| 30 | Leu        | Phe        | Lys        | Leu<br>340 | Phe        | Lys        | Asp        | Leu        | Gly<br>345 | Cys        | Leu        | Ser        | Gln        | Glu<br>350 | Gln        | Leu        |
|    | Arg        | Gln        | Trp<br>355 | Ser        | Ser        | Cys        | Arg        | His<br>360 | Ile        | Arg        | Arg        | Ser        | Ser<br>365 | Met        | Ser        | Val        |
| 35 | Glu        | Ala<br>370 | Glu        | Thr        | Thr        | Thr        | Thr<br>375 | Phe        | Ser        | Pro        |            |            |            |            |            |            |
|    | (00C) TYT  |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |

(206) INFORMATION FOR SEQ ID NO:205:

161

| (i) | SEQ | JENCE | CHA | RACTI | ERIST: | ICS:  |
|-----|-----|-------|-----|-------|--------|-------|
|     | (A) | LENGT | н:  | 1086  | base   | pairs |
|     | (B) | TYPE: | m   | cleic | acie   | 3     |

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

5

30

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEO ID NO:205:

ATGGATATAC AAATGGCAAA CAATTTTACT CCGCCCTCTG CAACTCCTCA GGGAAATGAC 60 TGTGACCTCT ATGCACATCA CAGCACGGCC AGGATAGTAA TGCCTCTGCA TTACAGCCTC 120 10 gtcttcatca ttgggctcgt gggaaactta ctagccttgg tcgtcattgt tcaaaacagg 180 AAAAAAATCA ACTCTACCAC CCTCTATTCA ACAAATTTGG TGATTTCTGA TATACTTTTT 240 ACCACGGCTT TGCCTACACG AATAGCCTAC TATGCAATGG GCTTTGACTG GAGAATCGGA 300 GATGCCTTGT GTAGGATAAC TGCGCTAGTG TTTTACATCA ACACATATGC AGGTGTGAAC 360 TTTATGACCT GCCTGAGTAT TGACCGCTTC ATTGCTGTGG TGCACCCTCT ACGCTACAAC 420 15 AAGATAAAAA GGATTGAACA TGCAAAAGGC GTGTGCATAT TTGTCTGGAT TCTAGTATTT GCTCAGACAC TCCCACTCCT CATCAACCCT ATGTCAAAGC AGGAGGCTGA AAGGATTACA 540 TGCATGGAGT ATCCAAACTT TGAAGAAACT AAATCTCTTC CCTGGATTCT GCTTGGGGCA 600 TGTTTCATAG GATATGTACT TCCACTTATA ATCATTCTCA TCTGCTATTC TCAGATCTGC 660 TGCAAACTCT TCAGAACTGC CAAACAAAAC CCACTCACTG AGAAATCTGG TGTAAACAAA 720 20 AAGGCTAAAA ACACAATTAT TCTTATTATT GTTGTGTTTG TTCTCTGTTT CACACCTTAC 780 CATGTTGCAA TTATTCAACA TATGATTAAG AAGCTTCGTT TCTCTAATTT CCTGGAATGT 840 AGCCAAAGAC ATTCGTTCCA GATTTCTCTG CACTTTACAG TATGCCTGAT GAACTTCAAT 900 TGCTGCATGG ACCCTTTTAT CTACTTCTTT GCATGTAAAG GGTATAAGAG AAAGGTTATG 960 AGGATGCTGA AACGGCAAGT CAGTGTATCG ATTTCTAGTG CTGTGAAGTC AGCCCCTGAA 1020 25 GAAAATTCAC GTGAAATGAC AGAAACGCAG ATGATGATAC ATTCCAAGTC TTCAAATGGA 1080 AAGTGA 1086

- (207) INFORMATION FOR SEQ ID NO:206:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 361 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS:
    - (D) TOPOLOGY: not relevant

|    | (ii) M         | OLECULE        | TYPE:      | pro        | teir       | 1          |            |            |            |            |            |            |            |            |
|----|----------------|----------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    | (xi) S         | EQUENCE        | DESC       | RIPTI      | ON:        | SEQ        | ID N       | NO:20      | 6:         |            |            |            |            |            |
|    | Met Asp<br>1   | Ile Gln        | Met<br>5   | Ala        | Asn        | Asn        | Phe        | Thr<br>10  | Pro        | Pro        | Ser        | Ala        | Thr<br>15  | Pro        |
| 5  | Gln Gly        | Asn Asp<br>20  | Cys        | Asp        | Leu        | Tyr        | Ala<br>25  | His        | His        | Ser        | Thr        | Ala<br>30  | Arg        | Ile        |
|    | Val Met        | Pro Leu<br>35  | His        | Tyr        | Ser        | Leu<br>40  | Val        | Phe        | Ile        | Ile        | Gly<br>45  | Leu        | Val        | Gly        |
| 10 | Asn Leu<br>50  | Leu Ala        | Leu        | Val        | Val<br>55  | Ile        | Val        | Gln        | Asn        | Arg<br>60  | Lys        | Lys        | Ile        | Asn        |
|    | Ser Thr<br>65  | Thr Leu        | Tyr        | Ser<br>70  | Thr        | Asn        | Leu        | Val        | Ile<br>75  | Ser        | Asp        | Ile        | Leu        | Phe<br>80  |
|    | Thr Thr        | Ala Leu        | Pro<br>85  | Thr        | Arg        | Ile        | Ala        | Tyr<br>90  | Tyr        | Ala        | Met        | Gly        | Phe<br>95  | Asp        |
| 15 | Trp Arg        | Ile Gly        |            | Ala        | Leu        | Cys        | Arg<br>105 | Ile        | Thr        | Ala        | Leu        | Val<br>110 | Phe        | Tyr        |
|    | Ile Asn        | Thr Tyr        | Ala        | Gly        | Val        | Asn<br>120 | Phe        | Met        | Thr        | Cys        | Leu<br>125 | Ser        | Ile        | qaA        |
| 20 | Arg Phe        | Ile Ala        | Val        | Val        | His<br>135 | Pro        | Leu        | Arg        | Tyr        | Asn<br>140 | Lys        | Ile        | Lys        | Arg        |
|    | Ile Glu<br>145 | His Ala        | Lys        | Gly<br>150 | Val        | Cys        | Ile        | Phe        | Val<br>155 | Trp        | Ile        | Leu        | Val        | Phe<br>160 |
|    | Ala Gln        | Thr Lev        | Pro<br>165 | Leu        | Leu        | Ile        | Asn        | Pro<br>170 | Met        | Ser        | Lys        | Gln        | Glu<br>175 | Ala        |
| 25 | Glu Arg        | Ile Thr        |            | Met        | Glu        | Tyr        | Pro<br>185 | Asn        | Phe        | Glu        | Glu        | Thr<br>190 | Lys        | Ser        |
|    | Leu Pro        | Trp Ile        | Leu        | Leu        | Gly        | Ala<br>200 | Cys        | Phe        | Ile        | Gly        | Tyr<br>205 | Val        | Leu        | Pro        |
| 30 | Leu Ile<br>210 | : Ile Ile      | Leu        | Ile        | Cys<br>215 | Tyr        | Ser        | Gln        | Ile        | Cys<br>220 | Cys        | Lys        | Leu        | Phe        |
|    | Arg Thr<br>225 | Ala Lys        | Gln        | Asn<br>230 | Pro        | Leu        | Thr        | Glu        | Lys<br>235 | Ser        | Gly        | Val        | Asn        | Lys<br>240 |
|    | Lys Ala        | Lys Asr        | Thr<br>245 | Ile        | Ile        | Leu        | Ile        | Ile<br>250 | Val        | Val        | Phe        | Val        | Leu<br>255 | Cys        |
| 35 | Phe Thi        | Pro Tyr<br>260 |            | Val        | Ala        | Ile        | Ile<br>265 |            | His        | Met        | Ile        | Lys<br>270 | Lys        | Leu        |

|    | Arg        | Phe        | Ser<br>275 | Asn        | Phe          | Leu        | Glu          | Cys<br>280 | Ser        | Gln        | Arg        | His        | Ser<br>285 | Phe        | Gln        | Ile        |     |
|----|------------|------------|------------|------------|--------------|------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----|
|    | Ser        | Leu<br>290 | His        | Phe        | Thr          | Val        | Сув<br>295   | Leu        | Met        | Asn        | Phe        | Asn<br>300 | Сув        | Cys        | Met        | Asp        |     |
| 5  | Pro<br>305 | Phe        | Ile        | Tyr        | Phe          | Phe<br>310 | Ala          | Cys        | Lys        | Gly        | Tyr<br>315 | Lys        | Arg        | Lys        | Val        | Met<br>320 |     |
|    | Arg        | Met        | Leu        | Lys        | Arg<br>325   | Gln        | Val          | Ser        | Val        | Ser<br>330 | Ile        | Ser        | Ser        | Ala        | Val<br>335 | Lys        |     |
| 10 | Ser        | Ala        | Pro        | Glu<br>340 | Glu          | Asn        | Ser          | Arg        | Glu<br>345 | Met        | Thr        | Glu        | Thr        | Gln<br>350 | Met        | Met        |     |
|    | Ile        |            | Ser<br>355 | Lys        | Ser          | Ser        | Asn          | Gly<br>360 | Lys        |            |            |            |            |            |            |            |     |
|    | (208) INF  | ORMA       | TION       | FOR        | SEC          | DI O       | NO:2         | 207:       |            |            |            |            |            |            |            |            |     |
| 15 | (i)        |            |            | E CH       |              |            |              |            | 3          |            |            |            |            |            |            |            |     |
|    |            | (B)<br>(C) | TYF        | E: n       | ucle<br>DNES | ic a       | cid<br>singl |            |            |            |            |            |            |            |            |            |     |
|    | /44        |            |            |            |              |            |              |            |            |            |            |            |            |            |            |            |     |
| 20 |            |            |            | LET        |              |            | _            |            |            |            |            |            |            |            |            |            |     |
| 20 |            |            |            | CE D       |              |            |              |            |            |            |            |            |            |            |            |            |     |
|    | ATGCGGTGG  | C TG       | TGGC       | CCCT       | GGC          | TGTC       | TCT          | CTTG       | CTGT       | 'GA T      | TTTG       | GCTG       | T GG       | GGCI       | AAGC       |            | 60  |
|    | AGGGTCTCTC | G GG       | GGTG       | cccc       | CCI          | GCAC       | CTG          | GGCA       | GGCA       | CA G       | AGCC       | GAGA       | .c cc      | AGGA       | GCAG       | 3          | .20 |
|    | CAGAGCCGA' | r cc.      | AAGA       | .GGGG      | CAC          | CGAG       | GAT          | GAGG       | AGGC       | CA A       | .GGGC      | GTGC       | A GC       | AGTA       | TGTG       | . 3        | 18  |
|    | CCTGAGGAG  | r gg       | GCGG       | AGTA       | ccc          | CCGG       | CCC          | ATTC       | ACCC       | TG C       | TGGC       | CTGC       | A GC       | CAAC       | CAAG       | 2          | 240 |
| 25 | CCCTTGGTG  | G CC       | ACCA       | GCCC       | TAA          | cccc       | GAC          | AAGG       | ATGG       | igg g      | CACC       | CCAG       | A CA       | GTGG       | GCAG       | - 3        | 300 |
|    | GAACTGAGG  | G GC       | AATC       | TGAC       | AGG          | GGCA       | CCA          | GGGC       | AGAG       | GC I       | ACAG       | ATCC       | A GA       | ACCC       | CCTG       | 3          | 360 |
|    | TATCCGGTG  | A CC       | gaga       | GCTC       | CTA          | CAGT       | GCC          | TATG       | CCAT       | CA T       | GCTT       | CTGG       | C GC       | TGGT       | GGTG       | 4          | 120 |
|    | TTTGCGGTG  | G GC       | ATTG       | TGGG       | CAA          | CCTG       | TCG          | GTCA       | TGTG       | CA T       | CGTG       | TGGC       | A CA       | GCTA       | CTAC       | 4          | 180 |
|    | CTGAAGAGC  | G CC       | TGGA       | ACTC       | CAT          | CCTT       | GCC          | AGCC       | TGGC       | CC T       | CTGG       | GATT       | т тс       | TGGT       | CCTC       | 5          | 40  |
| 30 | TTTTTCTGC  | TC         | CCTA       | TTGT       | CAT          | CTTC       | AAC          | GAGA       | TCAC       | CA A       | GCAG       | AGGC       | T AC       | TGGG       | TGAC       | 6          | 00  |
|    | GTTTCTTGT  | GTO        | 3CCG       | TGCC       | CTT          | CATG       | GAG          | GTCT       | CCTC       | TC T       | GGGA       | GTCA       | C GA       | CTTT       | CAGC       | 6          | 60  |
|    | CTCTGTGCCC | TGO        | GGCA       | TTGA       | CCG          | CTTC       | CAC          | GTGG       | CCAC       | CA G       | CACC       | CTGC       | C CA       | AGGT       | GAGG       | 7          | 20  |
|    | CCCATCGAGO | GG.        | rgcc,      | AATC       | CAT          | CCTG       | GCC          | AAGT       | TGGC       | TG T       | CATC       | TGGG       | T GG       | GCTC       | CATG       | 7          | 80  |
|    |            |            |            |            |              |            |              |            |            |            |            |            |            |            |            |            |     |

164

|    | ACGCTG    | CTG       | rgcci                | rgagc                                     | T CC             | TGCT                | GTG       | CAC       | CTG       | CAC       | AGG       | AGCC1     | GC (      | CCCC      | CCAT      | 'G        | 840 |
|----|-----------|-----------|----------------------|-------------------------------------------|------------------|---------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----|
|    | GGCACC    | TGG A     | ACTCA                | ATGCA                                     | T CF             | TGAA                | ACCC      | TCF       | GCCF      | GCC       | TGCC      | CGAC      | TC (      | CTGI      | ATTC      | 'A        | 900 |
|    | CTGGTG    | TGA (     | CCTAC                | CAGA                                      | A CC             | cccc                | CATG      | TGG       | TGGT      | ACT       | TTGG      | CTGC      | TA (      | CTTCT     | GCCI      | 'G        | 960 |
|    | CCCATC    | CTCT :    | CACA                 | AGTCA                                     | C CI             | GCCA                | GCTG      | GTG       | ACAT      | 'GGC      | GGGT      | GCGA      | .GG (     | CCCTC     | CAGG      | G 1       | 020 |
| 5  | AGGAAGT   | CAG A     | AGTGC                | AGGG                                      | C CF             | GCAA                | GCAC      | GAG       | CAGI      | GTG       | AGAG      | CCAG      | CT (      | CAAGA     | GCAC      | C 1       | 080 |
|    | GTGGTG    | GCC 1     | rgaco                | GTGG                                      | r ci             | ACGC                | CTTC      | TGC       | ACCC      | TCC       | CAGA      | GAAC      | GT (      | CTGCA     | ACAT      | C 1       | 140 |
|    | GTGGTGC   | CCT I     | CCTC                 | TCCA                                      | C CG             | AGCT                | GACC      | CGC       | CAGA      | .ccc      | TGGA      | CCTC      | CT (      | eggcc     | TCAT      | C 1:      | 200 |
|    | AACCAGI   | TCT (     | CACC                 | TTCT                                      | r ca             | AGGG                | CGCC      | ATC       | ACCC      | CAG       | TGCT      | GCTC      | CT 1      | TGCA      | TCTG      | C 1:      | 260 |
|    | AGGCCGC   | TGG G     | CCAG                 | GCCT.                                     | r cc             | TGGA                | CTGC      | TGC       | TGCT      | GCT       | GCTG      | CTGT      | GA G      | GAGT      | GCGG      | C 1       | 320 |
| 10 | GGGGCTI   | CGG A     | GGCC                 | TCTG                                      | TG               | CCAA                | TGGG      | TCG       | GACA      | ACA       | AGCT      | CAAG      | AC (      | GAGG      | TGTC      | C 1       | 80  |
|    | TCTTCCA   | TCT A     | CTTC                 | CACA                                      | A GC             | CCAG                | GGAG      | TCA       | CCCC      | CAC       | TCCT      | GCCC      | CT G      | GGCA      | CACC      | T 14      | 40  |
|    | TGCTGA    |           |                      |                                           |                  |                     |           |           |           |           |           |           |           |           |           | 14        | 46  |
|    | (209) I   | NFORM     | ATIO                 | N FOI                                     | SE               | Q ID                | NO:       | 208:      |           |           |           |           |           |           |           |           |     |
| 15 | (         | (B        | ) LE<br>) TY<br>) ST | CE CF<br>NGTH:<br>PE: &<br>RANDE<br>POLOG | 48<br>min<br>DNE | 1 am<br>o ac<br>SS: | ino :     | acid      | s         |           |           |           |           |           |           |           |     |
|    | (         | ii) M     | OLEC                 | ULE T                                     | YPE              | : pr                | otei      | n         |           |           |           |           |           |           |           |           |     |
| 20 | (         | xi) S     | EQUE                 | NCE I                                     | ESC:             | RIPT                | ION:      | SEQ       | ID 1      | NO:2      | 08:       |           |           |           |           |           |     |
|    | Me<br>1   | t Arg     | Trp                  | Leu                                       | Trp<br>5         | Pro                 | Leu       | Ala       | Val       | Ser<br>10 | Leu       | Ala       | Val       | Ile       | Leu<br>15 | Ala       |     |
|    | Va        | l Gly     | Leu                  | Ser<br>20                                 | Arg              | Val                 | Ser       | Gly       | Gly<br>25 | Ala       | Pro       | Leu       | His       | Leu<br>30 | Gly       | Arg       |     |
| 25 | Hi        | s Arg     | Ala<br>35            | Glu                                       | Thr              | Gln                 | Glu       | Gln<br>40 | Gln       | Ser       | Arg       | Ser       | Lys<br>45 | Arg       | Gly       | Thr       |     |
|    | G1:       | Asp<br>50 | Glu                  | Glu                                       | Ala              | Lys                 | Gly<br>55 | Val       | Gln       | Gln       | Tyr       | Val<br>60 | Pro       | Glu       | Glu       | Trp       |     |
| 30 | A1:<br>65 | a Glu     | Tyr                  | Pro                                       | Arg              | Pro<br>70           | Ile       | His       | Pro       | Ala       | Gly<br>75 | Leu       | Gln       | Pro       | Thr       | Lys<br>80 |     |
|    | Pre       | ) Leu     | Val                  | Ala                                       | Thr<br>85        | Ser                 | Pro       | Asn       | Pro       | Asp<br>90 | Lys       | Asp       | Gly       | Gly       | Thr<br>95 | Pro       |     |

Asp Ser Gly Gln Glu Leu Arg Gly Asn Leu Thr Gly Ala Pro Gly Gln

|    |            |            |            | 100        |            |            |            |            | 105        |            |            |            |            | 110        |            |            |
|----|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    | Arg        | Leu        | Gln<br>115 | Ile        | Gln        | Asn        | Pro        | Leu<br>120 |            | Pro        | Val        | Thr        | Glu<br>125 |            | Ser        | Tyr        |
| 5  | Ser        | Ala<br>130 | Tyr        | Ala        | Ile        | Met        | Leu<br>135 | Leu        | Ala        | Leu        | Val        | Val<br>140 |            | Ala        | Val        | Gly        |
|    | Ile<br>145 | Val        | Gly        | Asn        | Leu        | Ser<br>150 | Val        | Met        | Cys        | Ile        | Val<br>155 |            | His        | Ser        | Tyr        | Tyr<br>160 |
|    | Leu        | Lys        | Ser        | Ala        | Trp<br>165 | Asn        | Ser        | Ile        | Leu        | Ala<br>170 |            | Leu        | Ala        | Leu        | Trp<br>175 | Asp        |
| 10 | Phe        | Leu        | Val        | Leu<br>180 | Phe        | Phe        | Cys        | Leu        | Pro<br>185 | Ile        | Val        | Ile        | Phe        | Asn<br>190 | Glu        | Ile        |
|    | Thr        | Lys        | Gln<br>195 | Arg        | Leu        | Leu        | Gly        | Asp<br>200 | Val        | Ser        | Cys        | Arg        | Ala<br>205 | Val        | Pro        | Phe        |
| 15 | Met        | Glu<br>210 | Val        | Ser        | Ser        | Leu        | Gly<br>215 | Val        | Thr        | Thr        | Phe        | Ser<br>220 | Leu        | Cys        | Ala        | Leu        |
|    | Gly<br>225 | Ile        | Asp        | Arg        | Phe        | His<br>230 | Val        | Ala        | Thr        | Ser        | Thr<br>235 | Leu        | Pro        | Lys        | Val        | Arg<br>240 |
|    | Pro        | Ile        | Glu        | Arg        | Cys<br>245 | Gln        | Ser        | Ile        | Leu        | Ala<br>250 | Lys        | Leu        | Ala        | Val        | Ile<br>255 | Trp        |
| 20 | Val        | Gly        | Ser        | Met<br>260 | Thr        | Leu        | Ala        | Val        | Pro<br>265 | Glu        | Leu        | Leu        | Leu        | Trp<br>270 | Gln        | Leu        |
|    | Ala        | Gln        | Glu<br>275 | Pro        | Ala        | Pro        | Thr        | Met<br>280 | Gly        | Thr        | Leu        | Asp        | Ser<br>285 | Сув        | Ile        | Met        |
| 25 | Lys        | Pro<br>290 | Ser        | Ala        | Ser        | Leu        | Pro<br>295 | Glu        | Ser        | Leu        | Tyr        | Ser<br>300 | Leu        | Val        | Met        | Thr        |
|    | Tyr<br>305 | Gln        | Asn        | Ala        | Arg        | Met<br>310 | Trp        | Trp        | Tyr        | Phe        | Gly<br>315 | Cys        | Tyr        | Phe        | Cys        | Leu<br>320 |
|    | Pro        | Ile        | Leu        | Phe        | Thr<br>325 | Val        | Thr        | Cys        | Gln        | Leu<br>330 | Val        | Thr        | Trp        | Arg        | Val<br>335 | Arg        |
| 30 | Gly        | Pro        | Pro        | Gly<br>340 | Arg        | Lys        | Ser        |            | Cys<br>345 | Arg        | Ala        | Ser        | Lys        | His<br>350 | Glu        | Gln        |
|    | Cys        | Glu        | Ser<br>355 | Gln        | Leu        | Lys        | Ser        | Thr<br>360 | Val        | Val        | Gly        | Leu        | Thr<br>365 | Val        | Val        | Tyr        |
| 35 | Ala        | Phe<br>370 | Cys        | Thr        | Leu        | Pro        | Glu<br>375 | Asn        | Val        | Cys        | Asn        | Ile<br>380 | Val        | Val        | Ala        | Tyr        |
|    | Leu<br>385 | Ser        | Thr        | Glu        | Leu        | Thr<br>390 | Arg        | Gln        | Thr        | Leu        | Asp<br>395 | Leu        | Leu        | Gly        | Leu        | Ile<br>400 |

|    | Asn        | Gln        | Phe        | Ser                     | Thr<br>405  | Phe        | Phe        | Lys        | Gly        | Ala<br>410 | Ile        | Thr        | Pro        | Val        | Leu<br>415 | Leu        |     |
|----|------------|------------|------------|-------------------------|-------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----|
|    | Leu        | Cys        | Ile        | Cys<br>420              | Arg         | Pro        | Leu        | Gly        | Gln<br>425 | Ala        | Phe        | Leu        | Asp        | Cys<br>430 | Cys        | Cys        |     |
| 5  | Cys        | Cys        | Cys<br>435 | Cys                     | Glu         | Glu        | Cys        | Gly<br>440 | Gly        | Ala        | Ser        | Glu        | Ala<br>445 | Ser        | Ala        | Ala        |     |
|    | Asn        | Gly<br>450 | Ser        | Asp                     | Asn         | Lys        | Leu<br>455 | Lys        | Thr        | Glu        | Val        | Ser<br>460 | Ser        | Ser        | Ile        | Tyr        |     |
| 10 | Phe<br>465 | His        | Lys        | Pro                     | Arg         | Glu<br>470 | Ser        | Pro        | Pro        | Leu        | Leu<br>475 | Pro        | Leu        | Gly        | Thr        | Pro<br>480 |     |
|    | Cys        |            |            |                         |             |            |            |            |            |            |            |            |            |            |            |            |     |
|    | (210) INF  | ORM        | MOIT       | I FOR                   | SEÇ         | 2 ID       | No:2       | 09:        |            |            |            |            |            |            |            |            |     |
| 15 | (i)        | (A)        | LEN        | CE CH<br>NGTH:<br>PE: D | 110<br>ucle | 1 ba       | se p       | airs       |            |            |            |            |            |            |            |            |     |
|    |            |            |            | OLOG                    |             |            |            |            |            |            |            |            |            |            |            |            |     |
|    | (ii        | ) MC       | LECU       | LE T                    | YPE:        | DNA        | (ge        | nomi       | .c)        |            |            |            |            |            |            |            |     |
| 20 | (xi        | ) SE       | QUEN       | ICE D                   | ESCR        | IPTI       | ON:        | SEQ        | ID N       | 10:20      | 9:         |            |            |            |            |            |     |
|    | ATGTGGAAC  | G CG       | ACGC       | CCAG                    | CGA         | AGAG       | CCG        | GGGI       | TCAA       | CC T       | CACA       | CTGG       | c co       | ACCI       | GGAC       | !          | 60  |
|    | TGGGATGCT  | T CC       | cccc       | GCAA                    | CGA         | CTCG       | CTG        | GGCG       | ACGA       | GC I       | GCTG       | CAGC       | T CI       | TCCC       | CGCG       | 1          | 120 |
|    | CCGCTGCTG  | G CG       | GGCG       | TCAC                    | AGC         | CACC       | TGC        | GTGG       | CACI       | 'CT I      | CGTG       | GTGG       | G TA       | TCGC       | TGGC       | 1          | 180 |
|    | AACCTGCTC  | A CC       | ATGC       | TGGT                    | GGT         | GTCG       | CGC        | TTCC       | GCGA       | GC I       | GCGC       | ACCA       | C CA       | CCAA       | CCTC       | 2          | 240 |
| 25 | TACCTGTCC  | A GC       | ATGG       | CCTT                    | CTC         | CGAT       | 'CTG       | CTCA       | TCTT       | CC I       | CTGC       | ATGC       | C CC       | TGGA       | CCTC       | 3          | 300 |
|    | GTTCGCCTC  | T GG       | CAGT       | ACCG                    | GCC         | CTGG       | AAC        | TTCG       | GCGA       | CC I       | CCTC       | TGCA       | A AC       | TCTT       | CCAA       | . 3        | 860 |
|    | TTCGTCAGT  | G AG       | AGCT       | GCAC                    | CTA         | CGCC       | ACG        | GTGC       | TCAC       | CA T       | CACA       | GCGC       | T GA       | GCGT       | CGAG       | 4          | 20  |
|    | CGCTACTTC  | G CC       | ATCT       | GCTT                    | ccc         | ACTC       | CGG        | GCCA       | AGGT       | GG I       | GGTC       | ACCA       | A GG       | GGCG       | GGTG       | 4          | 80  |
|    | AAGCTGGTC  | A TC       | TTCG       | TCAT                    | CTG         | GGCC       | GTG        | GCCT       | TCTG       | CA G       | CGCC       | GGGC       | C CA       | TCTT       | CGTG       | 5          | 40  |
| 30 | CTAGTCGGG  | G TG       | GAGC       | ACGA                    | GAA         | CGGC       | ACC        | GACC       | CTTG       | GG A       | CACC       | AACG       | A GT       | GCCG       | cccc       | 6          | 00  |
|    | ACCGAGTTT  | G CG       | GTGC       | GCTC                    | TGG         | ACTG       | CTC        | ACGG       | TCAT       | GG T       | GTGG       | GTGT       | C CA       | GCAT       | CTTC       | 6          | 60  |
|    | TTCTTCCTT  | C CT       | GTCT       | TCTG                    | TCT         | CACG       | GTC        | CTCT       | ACAG       | TC T       | CATC       | GGCA       | G GA       | AGCT       | GTGG       | 7          | 20  |
|    | CGGAGGAGG  | C GC       | GGCG       | ATGC                    | TGT         | CGTG       | GGT        | GCCT       | CGCT       | CA G       | GGAC       | CAGA       | A CC       | ACAA       | GCAA       | 7          | 80  |

| ACCAAGAAA  | A TG       | CTGC                              | GCTG7                                    | AG7                             | rggto                                                | TTT                  | GCC                | TCAT       | rcc '     | rctgo      | CTGG       | CT C       | CCCT       | CCA       | 840        |
|------------|------------|-----------------------------------|------------------------------------------|---------------------------------|------------------------------------------------------|----------------------|--------------------|------------|-----------|------------|------------|------------|------------|-----------|------------|
| GTAGGGCGA  | T AT       | TTAT                              | TTTT                                     | CAF                             | ATC                                                  | TTT                  | GAGO               | CTG        | CT (      | CTT        | GAG!       | T TA       | GCTC/      | GAT       | 900        |
| AGCCAGTAC  | T GC       | AAC                               | TCGT                                     | GTO                             | CTT                                                  | GTC                  | CTCT               | TCT        | ACC '     | rcag:      | rgcto      | ec c       | ATCA       | ACCC      | 960        |
| ATTCTGTAC  | 'A AC      | ATC                               | TGT                                      | CAF                             | AGAAC                                                | FTAC                 | CGGC               | TGGG       | CAG '     | TGTT       | CAGA       | T T        | CTGGG      | ATT       | 1020       |
| GAACCCTTC  | T CC       | CAG                               | GAAA                                     | GCT                             | rctcc                                                | CACT                 | CTG                | AAGA       | ATG :     | AAAG:      | TCTC       | CG G       | GCCT       | GAC!      | 1080       |
| GAATCTAGI  | TT A       | AAT                               | CATO                                     | a a                             |                                                      |                      |                    |            |           |            |            |            |            |           | 1101       |
| (211) INF  | ORMA       | TION                              | I FOR                                    | SEÇ                             | Q ID                                                 | NO:2                 | 210:               |            |           |            |            |            |            |           |            |
| (ii        | (B)        | LEM<br>TYI<br>STI<br>TOI<br>OLECU | GTH:<br>PE: &<br>RANDE<br>POLOC<br>JLE T | : 366<br>mino<br>EDNES<br>EY: 1 | ami<br>aci<br>aci<br>aci<br>aci<br>aci<br>aci<br>aci | ino a<br>id<br>relev | acids<br>vant<br>1 |            | IO:2      | 10:        |            |            |            |           |            |
| Met        | Trp        | Asn                               | Ala                                      | Thr                             | Pro                                                  | Ser                  | Glu                | Glu        | Pro       | Gly        | Phe        | Asn        | Leu        | Thr       | Leu        |
| 1          |            |                                   |                                          | 5                               |                                                      |                      |                    |            | 10        |            |            |            |            | 15        |            |
| Ala        | Asp        | Leu                               | Asp<br>20                                | Trp                             | Asp                                                  | Ala                  | Ser                | Pro<br>25  | Gly       | Asn        | Asp        | Ser        | Leu<br>30  | Gly       | Asp        |
| Glu        | Leu        | Leu<br>35                         | Gln                                      | Leu                             | Phe                                                  | Pro                  | Ala<br>40          | Pro        | Leu       | Leu        | Ala        | Gly<br>45  | Val        | Thr       | Ala        |
| Thr        | Cys<br>50  | Val                               | Ala                                      | Leu                             | Phe                                                  | Val<br>55            | Val                | Gly        | Ile       | Ala        | Gly<br>60  | Asn        | Leu        | Leu       | Thr        |
| Met<br>65  | Leu        | Val                               | Val                                      | Ser                             | Arg<br>70                                            | Phe                  | Arg                | Glu        | Leu       | Arg<br>75  | Thr        | Thr        | Thr        | Asn       | Leu<br>80  |
| Tyr        | Leu        | Ser                               | Ser                                      | Met<br>85                       | Ala                                                  | Phe                  | Ser                | Asp        | Leu<br>90 | Leu        | Ile        | Phe        | Leu        | Сув<br>95 | Met        |
| Pro        | Leu        | Asp                               | Leu<br>100                               | Val                             | Arg                                                  | Leu                  | Trp                | Gln<br>105 | Tyr       | Arg        | Pro        | Trp        | Asn<br>110 | Phe       | Gly        |
| Asp        | Leu        | Leu<br>115                        | Cys                                      | Lys                             | Leu                                                  | Phe                  | Gln<br>120         | Phe        | Val       | Ser        | Glu        | Ser<br>125 | Cys        | Thr       | Tyr        |
| Ala        | Thr<br>130 | Val                               | Leu                                      | Thr                             | Ile                                                  | Thr<br>135           | Ala                | Leu        | Ser       | Val        | Glu<br>140 | Arg        | Tyr        | Phe       | Ala        |
| Ile<br>145 | Cys        | Phe                               | Pro                                      | Leu                             | Arg<br>150                                           | Ala                  | Lys                | Val        | Val       | Val<br>155 | Thr        | Lys        | Gly        | Arg       | Val<br>160 |
| Lys        | Leu        | Val                               | Ile                                      | Phe                             | Val                                                  | Ile                  | Trp                | Ala        | Val       | Ala        | Phe        | Cys        | Ser        | Ala       | Gly        |

|    |            |                   |                            |                         | 165         |                         |                      |            |            | 170        |            |            |            |            | 175        |            |     |
|----|------------|-------------------|----------------------------|-------------------------|-------------|-------------------------|----------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----|
|    | Pro        | Ile               | Phe                        | Val<br>180              | Leu         | Val                     | Gly                  | Val        | Glu<br>185 | His        | Glu        | Asn        | Gly        | Thr        | Asp        | Pro        |     |
| 5  | Trp        | Asp               | Thr<br>195                 | Asn                     | Glu         | Cys                     | Arg                  | Pro<br>200 | Thr        | Glu        | Phe        | Ala        | Val<br>205 | Arg        | Ser        | Gly        |     |
|    | Leu        | Leu<br>210        | Thr                        | Val                     | Met         | Val                     | Trp<br>215           | Val        | Ser        | Ser        | Ile        | Phe<br>220 | Phe        | Phe        | Leu        | Pro        |     |
|    | Val<br>225 | Phe               | Cys                        | Leu                     | Thr         | Val<br>230              | Leu                  | Tyr        | Ser        | Leu        | Ile<br>235 | Gly        | Arg        | Lys        | Leu        | Trp<br>240 |     |
| 10 | Arg        | Arg               | Arg                        | Arg                     | Gly<br>245  | Asp                     | Ala                  | Val        | Val        | Gly<br>250 | Ala        | Ser        | Leu        | Arg        | Asp<br>255 | Gln        |     |
|    | Asn        | His               | Lys                        | Gln<br>260              | Thr         | Lys                     | Lys                  | Met        | Leu<br>265 | Ala        | Val        | Val        | Val        | Phe<br>270 | Ala        | Phe        |     |
| 15 | Ile        | Leu               | Cys<br>275                 | Trp                     | Leu         | Pro                     | Phe                  | His<br>280 | Val        | Gly        | Arg        | Tyr        | Leu<br>285 | Phe        | Ser        | Lys        |     |
|    | Ser        | Phe<br>290        | Glu                        | Pro                     | Gly         | Ser                     | Leu<br>295           | Glu        | Ile        | Ala        | Gln        | Ile<br>300 | Ser        | Gln        | Tyr        | Cys        |     |
|    | Asn<br>305 | Leu               | Val                        | Ser                     | Phe         | Val<br>310              | Leu                  | Phe        | Tyr        | Leu        | Ser<br>315 | Ala        | Ala        | Ile        | Asn        | Pro<br>320 |     |
| 20 | Ile        | Leu               | Tyr                        | Asn                     | Ile<br>325  | Met                     | Ser                  | Lys        | Lys        | Tyr<br>330 | Arg        | Val        | Ala        | Val        | Phe        | Arg        |     |
|    | Leu        | Leu               | Gly                        | Phe<br>340              | Glu         | Pro                     | Phe                  | Ser        | Gln<br>345 | Arg        | Lys        | Leu        | Ser        | Thr<br>350 | Leu        | Lys        |     |
| 25 | Asp        | Glu               | Ser<br>355                 | Ser                     | Arg         | Ala                     | Trp                  | Thr<br>360 | Glu        | Ser        | Ser        | Ile        | Asn<br>365 | Thr        |            |            |     |
|    | (212) IN   | FORM              | MIOITA                     | 1 FOF                   | SEC         | Q ID                    | NO:2                 | 11:        |            |            |            |            |            |            |            |            |     |
| 30 | (i)        | (A)<br>(B)<br>(C) | QUENC<br>LEN<br>TYI<br>STI | NGTH:<br>PE: r<br>RANDE | 184<br>ucle | 12 ba<br>eic a<br>SS: s | se p<br>cid<br>singl | airs       | 3          |            |            |            |            |            |            |            |     |
|    | (i.i       | L) MC             | OLECU                      | JLE T                   | YPE:        | DNA                     | (ge                  | nomi       | .c)        |            |            |            |            |            |            |            |     |
|    | (x:        | l) SI             | EQUE                       | ICE I                   | ESCF        | RIPTI                   | ON:                  | SEQ        | ID N       | 10:21      | .1:        |            |            |            |            |            |     |
|    | ATGCGAGC   | ec co             | GGCC                       | CGCI                    | TCI         | rcgco                   | CGC                  | ATGI       | CGC        | GC I       | ACTO       | CTTC       | T GO       | TACT       | GCT        | :          | 60  |
| 35 | AAGGTGTC   | rg co             | CTCTT                      | CTGC                    | CCI         | rcggg                   | GTC                  | GCCC       | CTGC       | GT (       | CAGA       | AACG       | A AA       | CTT        | TCT        | 3 1        | .20 |
|    | GGGGAGAG   | T GI              | rgcac                      | CTAC                    | AGT         | GATO                    | CAG                  | CGCC       | :GCGG      | CA G       | GGAC       | GCCI       | 'G GG      | GACC       | GGG        | . 1        | 80  |

|    | AATTCTGCAA | GAGACGIICI | GCGAGCCCGA | GCACCCAGGG | MGGAGCAGGG | GGCAGCGITI | 240  |
|----|------------|------------|------------|------------|------------|------------|------|
|    | CTTGCGGGAC | CCTCCTGGGA | CCTGCCGGCG | GCCCGGGCC  | GTGACCCGGC | TGCAGGCAGA | 300  |
|    | GGGGCGGAGG | CGTCGGCAGC | CGGACCCCCG | GGACCTCCAA | CCAGGCCACC | TGGCCCCTGG | 360  |
|    | AGGTGGAAAG | GTGCTCGGGG | TCAGGAGCCT | TCTGAAACTT | TGGGGAGAGG | GAACCCCACG | 420  |
| 5  | GCCCTCCAGC | TCTTCCTTCA | GATCTCAGAG | GAGGAAGAGA | AGGGTCCCAG | AGGCGCTGGC | 480  |
|    | ATTTCCGGGC | GTAGCCAGGA | GCAGAGTGTG | AAGACAGTCC | CCGGAGCCAG | CGATCTTTTT | 540  |
|    | TACTGGCCAA | GGAGAGCCGG | GAAACTCCAG | GGTTCCCACC | ACAAGCCCCT | GTCCAAGACG | 600  |
|    | GCCAATGGAC | TGGCGGGGCA | CGAAGGGTGG | ACAATTGCAC | TCCCGGGCCG | GGCGCTGGCC | 660  |
|    | CAGAATGGAT | CCTTGGGTGA | AGGAATCCAT | GAGCCTGGGG | GTCCCCGCCG | GGGAAACAGC | 720  |
| 10 | ACGAACCGGC | GTGTGAGACT | GAAGAACCCC | TTCTACCCGC | TGACCCAGGA | GTCCTATGGA | 780  |
|    | GCCTACGCGG | TCATGTGTCT | GTCCGTGGTG | ATCTTCGGGA | CCGGCATCAT | TGGCAACCTG | 840  |
|    | GCGGTGATGT | GCATCGTGTG | CCACAACTAC | TACATGCGGA | GCATCTCCAA | CTCCCTCTTG | 900  |
|    | GCCAACCTGG | CCTTCTGGGA | CTTTCTCATC | ATCTTCTTCT | GCCTTCCGCT | GGTCATCTTC | 960  |
|    | CACGAGCTGA | CCAAGAAGTG | GCTGCTGGAG | GACTTCTCCT | GCAAGATCGT | GCCCTATATA | 1020 |
| 15 | GAGGTCGCCT | CTCTGGGAGT | CACCACTTTC | ACCTTATGTG | CTCTGTGCAT | AGACCGCTTC | 1080 |
|    | CGTGCTGCCA | CCAACGTACA | GATGTACTAC | GAAATGATCG | AAAATTGTTC | CTCAACAACT | 1140 |
|    | GCCAAACTTG | CTGTTATATG | GGTGGGAGCT | CTATTGTTAG | CACTTCCAGA | AGTTGTTCTC | 1200 |
|    | CGCCAGCTGA | GCAAGGAGGA | TTTGGGGTTT | AGTGGCCGAG | CTCCGGCAGA | AAGGTGCATT | 1260 |
|    | ATTAAGATCT | CTCCTGATTT | ACCAGACACC | ATCTATGTTC | TAGCCCTCAC | CTACGACAGT | 1320 |
| 20 | GCGAGACTGT | GGTGGTATTT | TGGCTGTTAC | TTTTGTTTGC | CCACGCTTTT | CACCATCACC | 1380 |
|    | TGCTCTCTAG | TGACTGCGAG | GAAAATCCGC | AAAGCAGAGA | AAGCCTGTAC | CCGAGGGAAT | 1440 |
|    | AAACGGCAGA | TTCAACTAGA | GAGTCAGATG | AAGTGTACAG | TAGTGGCACT | GACCATTTTA | 1500 |
|    | TATGGATTTT | GCATTATTCC | TGAAAATATC | TGCAACATTG | TTACTGCCTA | CATGGCTACA | 1560 |
|    | GGGGTTTCAC | AGCAGACAAT | GGACCTCCTT | AATATCATCA | GCCAGTTCCT | TTTGTTCTTT | 1620 |
| 25 | AAGTCCTGTG | TCACCCCAGT | CCTCCTTTTC | TGTCTCTGCA | AACCCTTCAG | TCGGGCCTTC | 1680 |
|    | ATGGAGTGCT | GCTGCTGTTG | CTGTGAGGAA | TGCATTCAGA | AGTCTTCAAC | GGTGACCAGT | 1740 |
|    | GATGACAATG | ACAACGAGTA | CACCACGGAA | CTCGAACTCT | CGCCTTTCAG | TACCATACGC | 1800 |
|    | CGTGAAATGT | CCACTTTTGC | TTCTGTCGGA | ACTCATTGCT | GA         |            | 1842 |

1

|    | (213) INF                                                                   | ORMA         | TION              | I FOI         | R SE                 | QID                 | NO:        | 212:       |            |            |            |            |            |            |            |            |
|----|-----------------------------------------------------------------------------|--------------|-------------------|---------------|----------------------|---------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| 5  | (i)                                                                         | (B)          | LEN<br>TYP<br>STR | IGTH<br>PE: 8 | : 61<br>amin<br>EDNE | 3 am<br>5 ac<br>SS: | ino .      | acid       | s          |            |            |            |            |            |            |            |
|    | (ii                                                                         | .) MOI       | LECU              | LE :          | TYPE                 | : pr                | otei       | n          |            |            |            |            |            |            |            |            |
|    |                                                                             | .) SE(       |                   |               |                      |                     |            | -          |            |            |            |            |            |            |            |            |
| 10 | Met<br>1                                                                    | Arg A        | Ala               | Pro           | Gly<br>5             | Ala                 | Leu        | Leu        | Ala        | Arg<br>10  | Met        | Ser        | Arg        | Leu        | Leu<br>15  | Leu        |
|    | Leu                                                                         | Leu l        |                   | Leu<br>20     | Lys                  | Val                 | Ser        | Ala        | Ser<br>25  | Ser        | Ala        | Leu        | Gly        | Val<br>30  | Ala        | Pro        |
|    | Ala Ser Arg Asn Glu Thr Cys Leu Gly Glu Ser Cys Ala Pro Thr Val<br>35 40 45 |              |                   |               |                      |                     |            |            |            |            |            |            |            |            |            | Val        |
| 15 | Ile                                                                         | Gln #        | Arg               | Arg           | Gly                  | Arg                 | Asp<br>55  | Ala        | Trp        | Gly        | Pro        | Gly<br>60  | Asn        | Ser        | Ala        | Arg        |
|    | Asp<br>65                                                                   | Val I        | Leu .             | Arg           | Ala                  | Arg<br>70           | Ala        | Pro        | Arg        | Glu        | Glu<br>75  | Gln        | Gly        | Ala        | Ala        | Phe<br>80  |
| 20 | Leu                                                                         | Ala C        | ly                | Pro           | Ser<br>85            | Trp                 | Asp        | Leu        | Pro        | Ala<br>90  | Ala        | Pro        | Gly        | Arg        | Asp<br>95  | Pro        |
|    | Ala                                                                         | Ala G        |                   | Arg<br>100    | Gly                  | Ala                 | Glu        | Ala        | Ser<br>105 | Ala        | Ala        | Gly        | Pro        | Pro<br>110 | Gly        | Pro        |
|    | Pro                                                                         | Thr A        | Arg<br>L15        | Pro           | Pro                  | Gly                 | Pro        | Trp<br>120 | Arg        | Trp        | Lys        | Gly        | Ala<br>125 | Arg        | Gly        | Gln        |
| 25 | Glu                                                                         | Pro 8        | Ger (             | Glu           | Thr                  | Leu                 | Gly<br>135 | Arg        | Gly        | Asn        | Pro        | Thr<br>140 | Ala        | Leu        | Gln        | Leu        |
|    | Phe :                                                                       | Leu G        | 3ln               | Ile           | Ser                  | Glu<br>150          | Glu        | Glu        | Glu        | Lys        | Gly<br>155 | Pro        | Arg        | Gly        | Ala        | Gly<br>160 |
| 30 | Ile                                                                         | Ser G        | Sly i             | Arg           | Ser<br>165           | Gln                 | Glu        | Gln        | Ser        | Val<br>170 | Lys        | Thr        | Val        | Pro        | Gly<br>175 | Ala        |
|    | Ser :                                                                       | Asp I        |                   | Phe<br>180    | Tyr                  | Trp                 | Pro        | Arg        | Arg<br>185 | Ala        | Gly        | Lys        | Leu        | Gln<br>190 | Gly        | Ser        |
|    | His I                                                                       | His L        | ys 1              | Pro           | Leu                  | Ser                 | Lys        | Thr<br>200 | Ala        | Asn        | Gly        | Leu        | Ala<br>205 | Gly        | His        | Glu        |
| 35 | Gly                                                                         | Trp T<br>210 | hr :              | Ile           | Ala                  | Leu                 | Pro<br>215 | Gly        | Arg        | Ala        | Leu        | Ala<br>220 | Gln        | Asn        | Gly        | Ser        |
|    | Leu                                                                         | Gly G        | ilu (             | Gly           | Ile                  | His                 | Glu        | Pro        | Gly        | Gly        | Pro        | Arg        | Arg        | Gly        | Asn        | Ser        |

|    | 225        |            |            |            |            | 230        |            |            |            |            | 235        |            |            |            |            | 240        |
|----|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    | Thr        | Asn        | Arg        | Arg        | Val<br>245 | Arg        | Leu        | Lys        | Asn        | Pro<br>250 | Phe        | Tyr        | Pro        | Leu        | Thr<br>255 | Gln        |
| 5  | Glu        | Ser        | Tyr        | Gly<br>260 | Ala        | Tyr        | Ala        | Val        | Met<br>265 | Cys        | Leu        | Ser        | Val        | Val<br>270 | Ile        | Phe        |
|    | Gly        | Thr        | Gly<br>275 | Ile        | Ile        | Gly        | Asn        | Leu<br>280 | Ala        | Val        | Met        | Cys        | Ile<br>285 | Val        | Сув        | His        |
|    | Asn        | Tyr<br>290 | Tyr        | Met        | Arg        | Ser        | Ile<br>295 | ser        | Asn        | Ser        | Leu        | Leu<br>300 | Ala        | Asn        | Leu        | Ala        |
| 10 | Phe<br>305 | Trp        | Asp        | Phe        | Leu        | Ile<br>310 | Ile        | Phe        | Phe        | Сув        | Leu<br>315 | Pro        | Leu        | Val        | Ile        | Phe<br>320 |
|    | His        | Glu        | Leu        | Thr        | Lys<br>325 | Lys        | Trp        | Leu        | Leu        | Glu<br>330 | Asp        | Phe        | Ser        | Сув        | Lys<br>335 | Ile        |
| 15 | Val        | Pro        | Tyr        | Ile<br>340 | Glu        | Val        | Ala        | Ser        | Leu<br>345 | Gly        | Val        | Thr        | Thr        | Phe<br>350 | Thr        | Leu        |
|    | Суз        | Ala        | Leu<br>355 | Сув        | Ile        | Asp        | Arg        | Phe<br>360 | Arg        | Ala        | Ala        | Thr        | Asn<br>365 | Val        | Gln        | Met        |
|    | Tyr        | Tyr<br>370 | Glu        | Met        | Ile        | Glu        | Asn<br>375 | Cys        | Ser        | Ser        | Thr        | Thr<br>380 | Ala        | Lys        | Leu        | Ala        |
| 20 | Val<br>385 | Ile        | Trp        | Val        | Gly        | Ala<br>390 | Leu        | Leu        | Leu        | Ala        | Leu<br>395 | Pro        | Glu        | Val        | Val        | Leu<br>400 |
|    | Arg        | Gln        | Leu        | Ser        | Lys<br>405 | Glu        | Asp        | Leu        | Gly        | Phe<br>410 | Ser        | Gly        | Arg        | Ala        | Pro<br>415 | Ala        |
| 25 | Glu        | Arg        | Сув        | Ile<br>420 | Ile        | Lys        | Ile        | Ser        | Pro<br>425 | Asp        | Leu        | Pro        | Asp        | Thr<br>430 | Ile        | Tyr        |
|    | Val        | Leu        | Ala<br>435 | Leu        | Thr        | Tyr        | Asp        | Ser<br>440 | Ala        | Arg        | Leu        | Trp        | Trp<br>445 | Tyr        | Phe        | Gly        |
|    | Cys        | Tyr<br>450 | Phe        | Cys        | Leu        | Pro        | Thr<br>455 | Leu        | Phe        | Thr        | Ile        | Thr<br>460 | Cys        | Ser        | Leu        | Val        |
| 30 | Thr<br>465 | Ala        | Arg        | Lys        | Ile        | Arg<br>470 | Lys        | Ala        | Glu        | Lys        | Ala<br>475 | Cys        | Thr        | Arg        | Gly        | Asn<br>480 |
|    | Lys        | Arg        | Gln        | Ile        | Gln<br>485 | Leu        | Glu        | Ser        | Gln        | Met<br>490 | Lys        | Cys        | Thr        | Val        | Val<br>495 | Ala        |
| 35 | Leu        | Thr        | Ile        | Leu<br>500 | Tyr        | Gly        | Phe        | Сув        | Ile<br>505 | Ile        | Pro        | Glu        | Asn        | Ile<br>510 | Cys        | Asn        |
|    | Ile        | Val        | Thr<br>515 | Ala        | Tyr        | Met        | Ala        | Thr<br>520 | Gly        | Val        | Ser        | Gln        | Gln<br>525 | Thr        | Met        | Asp        |

|    | Leu        | Leu<br>530        | Asn               | Ile                              | Ile         | Ser                  | Gln<br>535           | Phe        | Leu        | Leu        | Phe        | Phe<br>540 | Lys        | ser        | Cys        | Val        |
|----|------------|-------------------|-------------------|----------------------------------|-------------|----------------------|----------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    | Thr<br>545 | Pro               | Val               | Leu                              | Leu         | Phe<br>550           | Cys                  | Leu        | Cys        | Lys        | Pro<br>555 | Phe        | Ser        | Arg        | Ala        | Phe<br>560 |
| 5  | Met        | Glu               | Cys               | Cys                              | Cys<br>565  | Cys                  | Сув                  | Cys        | Glu        | Glu<br>570 | Cys        | Ile        | Gln        | Lys        | Ser<br>575 | Ser        |
|    | Thr        | Val               | Thr               | Ser<br>580                       | qaA         | Asp                  | Asn                  | Asp        | Asn<br>585 | Glu        | Tyr        | Thr        | Thr        | Glu<br>590 | Leu        | Glu        |
| 10 | Leu        | Ser               | Pro<br>595        | Phe                              | Ser         | Thr                  | Ile                  | Arg<br>600 | Arg        | Glu        | Met        | Ser        | Thr<br>605 | Phe        | Ala        | Ser        |
|    | Val        | Gly<br>610        | Thr               | His                              | Cys         |                      |                      |            |            |            |            |            |            |            |            |            |
|    | (214) INF  | ORMA              | TION              | 1 FOF                            | SEÇ         | ID.                  | NO:2                 | 13:        |            |            |            |            |            |            |            |            |
| 15 | (i)        | (A)<br>(B)<br>(C) | LEN<br>TYP<br>STR | CE CF<br>IGTH:<br>PE: r<br>RANDE | 124<br>ucle | 8 ba<br>ic a<br>S: s | se p<br>cid<br>singl | airs       | 3          |            |            |            |            |            |            |            |
|    | (ii        | .) MC             | LECU              | LE T                             | YPE:        | DNA                  | (ge                  | nomi       | .c)        |            |            |            |            |            |            |            |
| 20 | (xi        | .) SE             | QUEN              | ICE E                            | ESCF        | IPTI                 | ON:                  | SEQ        | ID N       | 0:21       | 3:         |            |            |            |            |            |
|    | ATGGTTTTT  | G CT              | CACA              | GAAT                             | ' GGA       | TAAC                 | AGC                  | AAGC       | CACA       | TT T       | GATT       | ATTC       | C TA       | CACT       | TCTG       | 60         |
|    | GTGCCCCTC  | C AA              | AACC              | GCAG                             | CTG         | CACT                 | GAA                  | ACAG       | CCAC       | AC C       | TCTG       | CCAA       | .G CC      | AATA       | CCTG       | 120        |
|    | ATGGAATTA  | A GT              | GAGG              | AGCA                             | CAG         | TTGG                 | ATG                  | AGCA       | ACCA       | AA C       | AGAC       | CTTC       | A CT       | ATGT       | GCTG       | 180        |
|    | AAACCCGGG  | G AA              | GTGG              | CCAC                             | AGC         | CAGC                 | ATC                  | TTCT       | TTGG       | GA T       | TCTG       | TGGT       | T GT       | TTTC       | TATC       | 240        |
| 25 | TTCGGCAAT  | T CC              | CTGG              | TTTG                             | TTT         | GGTC                 | ATC                  | CATA       | .GGAG      | TA G       | GAGG       | ACTC       | A GT       | CTAC       | CACC       | 300        |
|    | AACTACTTT  | G TG              | GTCT              | CCAT                             | GGC         | ATGT                 | GCT                  | GACC       | TTCT       | CA T       | CAGC       | GTTG       | C CA       | GCAC       | GCCT       | 360        |
|    | TTCGTCCTG  | C TC              | CAGT              | TCAC                             | CAC         | TGGA                 | AGG                  | TGGA       | .CGCT      | GG G       | TAGT       | GCAA       | C GT       | GCAA       | GGTT       | 420        |
|    | GTGCGATAT  | T TT              | CAAT              | ATCT                             | CAC         | TCCA                 | GGT                  | GTCC       | AGAT       | CT A       | CGTT       | CTCC       | T CT       | CCAT       | CTGC       | 480        |
|    | ATAGACCGG  | т тс              | TACA              | CCAT                             | CGT         | CTAT                 | CCT                  | CTGA       | GCTT       | CA A       | GGTG       | TCCA       | G AG       | AAAA       | AGCC       | 540        |
| 30 | AAGAAAATG. | A TT              | GCGG              | CATC                             | GTG         | GATC                 | TTT                  | GATG       | CAGG       | CT T       | TGTG       | ACCC       | C TG       | TGCT       | CTTT       | 600        |
|    | TTCTATGGC  | T CC              | AACT              | GGGA                             | CAG         | TCAT                 | TGT                  | AACT.      | ATTT       | CC T       | cccc       | TCCT       | C TT       | GGGA       | AGGC       | 660        |
|    | ACTGCCTAC. | A CT              | GTCA              | TCCA                             | CTT         | CTTG                 | GTG                  | GGCT       | TTGT       | GA T       | TCCA       | TCTG       | T CC       | TCAT       | AATT       | 720        |
|    | TTATTTTAC  | C AA              | AAGG              | TCAT                             | AAA         | ATAT                 | ATT                  | TGGA       | GAAT.      | AG G       | CACA       | GATG       | G CC       | GAAC       | GGTG       | 780        |

|    | AGGAGGACAA TGAACATTGT CCCTCGGACA AAAGTGAAAA CTAAAAAGAT GTTCCTCATT 8                                                         | 40 |
|----|-----------------------------------------------------------------------------------------------------------------------------|----|
|    | TTAAATCTGT TGTTTTTGCT CTCCTGGCTG CCTTTTCATG TAGCTCAGCT ATGGCACCCC 9                                                         | 00 |
|    | CATGAACAAG ACTATAAGAA AAGTTCCCTT GTTTTCACAG CTATCACATG GATATCCTTT                                                           | 60 |
|    | AGTTCTTCAG CCTCTAAACC TACTCTGTAT TCAATTTATA ATGCCAATTT TCGGAGAGGG 10                                                        | 20 |
| 5  | ATGAAAGAGA CTTTTGCAT GTCCTCTATG AAATGTTACC GAAGCAATGC CTATACTATC 10                                                         | 80 |
|    | ACAACAAGTT CAAGGATGGC CAAAAAAAAC TACGTTGGCA TTTCAGAAAT CCCTTCCATG 11                                                        | 40 |
|    | GCCAAAACTA TTACCAAAGA CTCGATCTAT GACTCATTTG ACAGAGAAGC CAAGGAAAAA 12                                                        | 00 |
|    | AAGCTTGCTT GGCCCATTAA CTCAAATCCA CCAAATACTT TTGTCTAA 12                                                                     | 48 |
|    | (215) INFORMATION FOR SEQ ID NO:214:                                                                                        |    |
| 10 | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 415 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: not relevant |    |
| 15 | (ii) MOLECULE TYPE: protein                                                                                                 |    |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:214:                                                                                   |    |
|    | Met Val Phe Ala His Arg Met Asp Asn Ser Lys Pro His Leu Ile Ile 1 $$\rm 10^{\circ}$                                         |    |
| 20 | Pro Thr Leu Leu Val Pro Leu Gln Asn Arg Ser Cys Thr Glu Thr Ala $20 \\ 25 \\ 30$                                            |    |
|    | Thr Pro Leu Pro Ser Gln Tyr Leu Met Glu Leu Ser Glu Glu His Ser $$40$$                                                      |    |
|    | Trp Met Ser Asn Gln Thr Asp Leu His Tyr Val Leu Lys Pro Gly Glu $50 \\$                                                     |    |
| 25 | Val Ala Thr Ala Ser Ile Phe Phe Gly Ile Leu Trp Leu Phe Ser Ile $65  70  75  80 $                                           |    |
|    | Phe Gly Asn Ser Leu Val Cys Leu Val Ile His Arg Ser Arg Arg Thr<br>85 90 95                                                 |    |
| 30 | Gln Ser Thr Thr Asn Tyr Phe Val Val Ser Met Ala Cys Ala Asp Leu<br>100 105 110                                              |    |
|    | Leu lle Ser Val Ala Ser Thr Pro Phe Val Leu Leu Gln Phe Thr Thr<br>115 120 125                                              |    |
|    | Gly Arg Trp Thr Leu Gly Ser Ala Thr Cys Lys Val Val Arg Tyr Phe<br>130 135 140                                              |    |

174

|    |            |            |            |            |            |            |            | •          | ′ ′        |            |            |            |            |            |            |            |
|----|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    | Gln<br>145 | Tyr        | Leu        | Thr        | Pro        | Gly<br>150 | Val        | Gln        | Ile        | Tyr        | Val<br>155 |            | Leu        | Ser        | Ile        | Cys<br>160 |
|    | Ile        | Asp        | Arg        | Phe        | Tyr<br>165 | Thr        | Ile        | Val        | Tyr        | Pro<br>170 | Leu        | Ser        | Phe        | Lys        | Val<br>175 |            |
| 5  | Arg        | Glu        | Lys        | Ala<br>180 |            | Lys        | Met        | Ile        | Ala<br>185 | Ala        | Ser        | Trp        | Ile        | Phe<br>190 |            | Ala        |
|    | Gly        | Phe        | Val<br>195 | Thr        | Pro        | Val        | Leu        | Phe<br>200 |            | Tyr        | Gly        | Ser        | Asn<br>205 |            | Asp        | Ser        |
| 10 | His        | Cys<br>210 | Asn        | Tyr        | Phe        | Leu        | Pro<br>215 | Ser        | Ser        | Trp        | Glu        | Gly<br>220 | Thr        | Ala        | Tyr        | Thr        |
|    | Val<br>225 | Ile        | His        | Phe        | Leu        | Val<br>230 | Gly        | Phe        | Val        | Ile        | Pro<br>235 | Ser        | Val        | Leu        | Ile        | Ile<br>240 |
|    | Leu        | Phe        | Tyr        | Gln        | Lys<br>245 | Val        | Ile        | Lys        | Tyr        | Ile<br>250 | Trp        | Arg        | Ile        | Gly        | Thr<br>255 | Asp        |
| 15 | Gly        | Arg        | Thr        | Val<br>260 | Arg        | Arg        | Thr        | Met        | Asn<br>265 | Ile        | Val        | Pro        | Arg        | Thr<br>270 | Lys        | Val        |
|    | Lys        | Thr        | Lys<br>275 | Lys        | Met        | Phe        | Leu        | Ile<br>280 | Leu        | Asn        | Leu        | Leu        | Phe<br>285 | Leu        | Leu        | Ser        |
| 20 | Trp        | Leu<br>290 | Pro        | Phe        | His        | Val        | Ala<br>295 | Gln        | Leu        | Trp        | His        | Pro<br>300 | His        | Glu        | Gln        | Asp        |
|    | Tyr<br>305 | Lys        | Lys        | Ser        | Ser        | Leu<br>310 | Val        | Phe        | Thr        | Ala        | Ile<br>315 | Thr        | Trp        | Ile        | Ser        | Phe<br>320 |
|    | Ser        | Ser        | Ser        | Ala        | Ser<br>325 | Lys        | Pro        | Thr        | Leu        | Tyr<br>330 | Ser        | Ile        | Tyr        | Asn        | Ala<br>335 | Asn        |
| 25 | Phe        | Arg        | Arg        | Gly<br>340 | Met        | Lys        | Glu        | Thr        | Phe<br>345 | Cys        | Met        | Ser        | Ser        | Met<br>350 | Lys        | Cys        |
|    | Tyr        | Arg        | Ser<br>355 | Asn        | Ala        | Tyr        | Thr        | Ile<br>360 | Thr        | Thr        | Ser        | Ser        | Arg<br>365 | Met        | Ala        | Lys        |
| 30 | Lys        | Asn<br>370 | Tyr        | Val        | Gly        | Ile        | Ser<br>375 | Glu        | Ile        | Pro        | Ser        | Met<br>380 | Ala        | Lys        | Thr        | Ile        |
|    | Thr<br>385 | Lys        | Asp        | Ser        |            | Tyr<br>390 | Asp        | Ser        | Phe        |            | Arg<br>395 | Glu        | Ala        | Lys        | Glu        | Lys<br>400 |
|    | Lys        | Leu        | Ala        | Trp        | Pro<br>405 | Ile        | Asn        | Ser        | Asn        | Pro<br>410 | Pro        | Asn        | Thr        | Phe        | Val<br>415 |            |
| 35 | (216) INF  | ORMA       | TION       | FOR        | SEO        | TD         | พดงว       | 15.        |            |            |            |            |            |            |            |            |

35 (216) INFORMATION FOR SEQ ID NO:215:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1842 base pairs

175

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:215:

ATGGGGCCCA CCCTAGCGGT TCCCACCCC TATGGCTGTA TTGGCTGTAA GCTACCCCAG CCAGAATACC CACCGGCTCT AATCATCTTT ATGTTCTGCG CGATGGTTAT CACCATCGTT 120 GTAGACCTAA TCGGCAACTC CATGGTCATT TTGGCTGTGA CGAAGAACAA GAAGCTCCGG 180 AATTCTGGCA ACATCTTCGT GGTCAGTCTC TCTGTGGCCG ATATGCTGGT GGCCATCTAC 240 CCATACCCTT TGATGCTGCA TGCCATGTCC ATTGGGGGCT GGGATCTGAG CCAGTTACAG 300 TGCCAGATGG TCGGGTTCAT CACAGGGCTG AGTGTGGTCG GCTCCATCTT CAACATCGTG 360 GCAATCGCTA TCAACCGTTA CTGCTACATC TGCCACAGCC TCCAGTACGA ACGGATCTTC 420 AGTGTGCGCA ATACCTGCAT CTACCTGGTC ATCACCTGGA TCATGACCGT CCTGGCTGTC 480 CTGCCCAACA TGTACATTGG CACCATCGAG TACGATCCTC GCACCTACAC CTGCATCTTC 540 15 AACTATCTGA ACAACCCTGT CTTCACTGTT ACCATCGTCT GCATCCACTT CGTCCTCCCT 600 CTCCTCATCG TGGGTTTCTG CTACGTGAGG ATCTGGACCA AAGTGCTGGC GGCCCGTGAC 660 CCTGCAGGGC AGAATCCTGA CAACCAACTT GCTGAGGTTC GCAATAAACT AACCATGTTT 720 GTGATCTTCC TCCTCTTTGC AGTGTGCTGG TGCCCTATCA ACGTGCTCAC TGTCTTGGTG 700 GCTGTCAGTC CGAAGGAGAT GGCAGGCAAG ATCCCCAACT GGCTTTATCT TGCAGCCTAC 840 TTCATAGCCT ACTTCAACAG CTGCCTCAAC GCTGTGATCT ACGGGCTCCT CAATGAGAAT 900 TTCCGAAGAG AATACTGGAC CATCTTCCAT GCTATCCGGC ACCCTATCAT ATTCTTCTCT 960 GGCCTCATCA GTGATATTCG TGAGATGCAG GAGGCCCGTA CCCTGGCCCG CGCCCGTGCC 1020 CATGCTCGCG ACCAAGCTCG TGAACAAGAC CGTGCCCATG CCTGTCCTGC TGTGGAGGAA 1080 ACCCCGATGA ATGTCCGGAA TGTTCCATTA CCTGCTGATG CTGCAGCTGG CCACCCCGAC CGTGCCTCTG GCCACCCTAA GCCCCATTCC AGATCCTCCT CTGCCTATCG CAAATCTGCC TCTACCCACC ACAAGTCTGT CTTTAGCCAC TCCAAGGCTG CCTCTGGTCA CCTCAAGCCT 1260 GTCTCTGGCC ACTCCAAGCC TGCCTCTGGT CACCCCAAGT CTGCCACTGT CTACCCTAAG 1320 CCTGCCTCTG TCCATTTCAA GGCTGACTCT GTCCATTTCA AGGGTGACTC TCTCCATTTC 1380 AAGCCTGACT CTGTTCATTT CAAGCCTGCT TCCAGCAACC CCAAGCCCAT CACTGGCCAC 1440

| CATGTCTC   | TG C                 | TGGC                         | AGCC                                   | A CI                                | CCAR                               | GTCT                       | GCC               | TTCA       | ATG       | CTGC       | CACC       | AG C       | CACC       | CTAA      | A 1       | 500  |
|------------|----------------------|------------------------------|----------------------------------------|-------------------------------------|------------------------------------|----------------------------|-------------------|------------|-----------|------------|------------|------------|------------|-----------|-----------|------|
| CCCATCAA   | GC C                 | AGCT                         | ACCA                                   | .G CC                               | ATGC                               | TGAG                       | ccc               | ACCA       | CTG       | CTGA       | CTAT       | CC C       | AAGC       | CTGC      | C 1       | .560 |
| ACTACCAG   | CC A                 | .ccci                        | AAGC                                   | C CG                                | CTGC                               | TGCT                       | ' GAC             | AACC       | CTG       | AGCT       | CTCT       | GC C       | TCCC       | ATTG      | C 1       | .€20 |
| CCCGAGAT   | cc c                 | TGCC                         | ATTG                                   | c cc                                | ACCC                               | TGTG                       | TCT               | GACG       | ACA       | GTGA       | CCTC       | CC I       | GAGT       | cggc      | C 1       | 680  |
| TCTAGCCC   | TG C                 | CGCT                         | GGGC                                   | C CA                                | CCAA                               | GCCT                       | GCT               | GCCA       | GCC       | AGCT       | GGAG       | TC I       | GACA       | .CCAT     | C 1       | 740  |
| GCTGACCT   | TC C                 | TGAC                         | CCTA                                   | C TG                                | TAGT                               | CACT                       | ACC               | AGTA       | CCA       | ATGA       | TTAC       | CA T       | GATG       | TCGT      | G 1       | 800  |
| GTTGTTGA   | TG T                 | TGAA                         | GATG                                   | A TC                                | CTGA                               | TGAA                       | ATG               | GCTG       | TGT       | GA         |            |            |            |           | 1         | 842  |
| (217) IN   | FORM                 | ATIO                         | N FO                                   | R SE                                | Q ID                               | NO:                        | 216:              |            |           |            |            |            |            |           |           |      |
| (i:        | (A<br>(B<br>(C<br>(D | ) LE<br>) TY<br>) ST<br>) TO | CE C<br>NGTH<br>PE: .<br>RAND:<br>POLO | : 61<br>amin<br>EDNE<br>GY:<br>FYPE | 3 am<br>o ac<br>SS:<br>not<br>: pr | ino<br>id<br>rele<br>otei: | acid<br>vant<br>n |            |           |            |            |            |            |           |           |      |
|            |                      |                              | NCE I                                  |                                     |                                    |                            |                   |            |           |            |            |            |            |           |           |      |
| Met<br>1   | Gly                  | Pro                          | Thr                                    | Leu<br>5                            | Ala                                | Val                        | Pro               | Thr        | Pro<br>10 | Tyr        | Gly        | Cys        | Ile        | Gly<br>15 | Cys       |      |
| Lys        | Leu                  | Pro                          | Gln<br>20                              | Pro                                 | Glu                                | Tyr                        | Pro               | Pro<br>25  | Ala       | Leu        | Ile        | Ile        | Phe<br>30  | Met       | Phe       |      |
| Cys        | Ala                  | Met<br>35                    | Val                                    | Ile                                 | Thr                                | Ile                        | Val<br>40         | Val        | Asp       | Leu        | Ile        | Gly<br>45  | Asn        | Ser       | Met       |      |
| Val        | Ile<br>50            | Leu                          | Ala                                    | Val                                 | Thr                                | Lys<br>55                  | Asn               | Lys        | Lys       | Leu        | Arg<br>60  | Asn        | Ser        | Gly       | Asn       |      |
| Ile<br>65  | Phe                  | Val                          | Val                                    | Ser                                 | Leu<br>70                          | Ser                        | Val               | Ala        | Asp       | Met<br>75  | Leu        | Val        | Ala        | Ile       | Tyr<br>80 |      |
| Pro        | Tyr                  | Pro                          | Leu                                    | Met<br>85                           | Leu                                | His                        | Ala               | Met        | Ser<br>90 | Ile        | Gly        | Gly        | Trp        | Asp<br>95 | Leu       |      |
| Ser        | Gln                  | Leu                          | Gln<br>100                             | Cys                                 | Gln                                | Met                        | Val               | Gly<br>105 | Phe       | Ile        | Thr        | Gly        | Leu<br>110 | Ser       | Val       |      |
| Val        | Gly                  | Ser<br>115                   | 1le                                    | Phe                                 | Asn                                | Ile                        | Val<br>120        | Ala        | Ile       | Ala        | Ile        | Asn<br>125 | Arg        | Tyr       | Cys       |      |
| Tyr        | Ile<br>130           | Cys                          | His                                    | Ser                                 | Leu                                | Gln<br>135                 | Tyr               | Glu        | Arg       | Ile        | Phe<br>140 | Ser        | Val        | Arg       | Asn       |      |
| Thr<br>145 | Сув                  | Ile                          | Tyr                                    | Leu                                 | Val<br>150                         | Ile                        | Thr               | Trp        | Ile       | Met<br>155 | Thr        | Val        | Leu        | Ala       | Val       |      |

|    | Leu        | Pro        | Asn        | Met        | Tyr<br>165 | Ile        | Gly        | Thr        | Ile        | Glu<br>170 |            | Asp        | Pro        | Arg        | Thr        |            |
|----|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    | Thr        | Cys        | Ile        | Phe<br>180 |            | Tyr        | Leu        | Asn        | Asn<br>185 |            | Val        | Phe        | Thr        | Val<br>190 |            | Ile        |
| 5  | Val        | Cys        | Ile<br>195 |            | Phe        | Val        | Leu        | Pro<br>200 |            | Leu        | Ile        | Val        | Gly<br>205 | Phe        | Cys        | Tyr        |
|    | Val        | Arg<br>210 | Ile        | Trp        | Thr        | Lys        | Val<br>215 | Leu        | Ala        | Ala        | Arg        | Asp<br>220 | Pro        | Ala        | Gly        | Gln        |
| 10 | Asn<br>225 | Pro        | Asp        | Asn        | Gln        | Leu<br>230 |            | Glu        | Val        | Arg        | Asn<br>235 | Lys        | Leu        | Thr        | Met        | Phe<br>240 |
|    | Val        | Ile        | Phe        | Leu        | Leu<br>245 | Phe        | Ala        | Val        | Cys        | Trp<br>250 | Cys        | Pro        | Ile        | Asn        | Val<br>255 | Leu        |
|    | Thr        | Val        | Leu        | Val<br>260 | Ala        | Val        | Ser        | Pro        | Lys<br>265 | Glu        | Met        | Ala        | Gly        | Lys<br>270 | Ile        | Pro        |
| 15 | Asn        | Trp        | Leu<br>275 | Tyr        | Leu        | Ala        | Ala        | Tyr<br>280 | Phe        | Ile        | Ala        | Tyr        | Phe<br>285 | Asn        | Ser        | Cys        |
|    | Leu        | Asn<br>290 | Ala        | Val        | Ile        | Tyr        | Gly<br>295 | Leu        | Leu        | Asn        | Glu        | Asn<br>300 | Phe        | Arg        | Arg        | Glu        |
| 20 | Tyr<br>305 | Trp        | Thr        | Ile        | Phe        | His<br>310 | Ala        | Met        | Arg        | His        | Pro<br>315 | Ile        | Ile        | Phe        | Phe        | Ser<br>320 |
|    | Gly        | Leu        | Ile        | Ser        | Asp<br>325 | Ile        | Arg        | Glu        | Met        | Gln<br>330 | Glu        | Ala        | Arg        | Thr        | Leu<br>335 | Ala        |
|    | Arg        | Ala        | Arg        | Ala<br>340 | His        | Ala        | Arg        | Asp        | Gln<br>345 | Ala        | Arg        | Glu        | Gln        | Asp<br>350 | Arg        | Ala        |
| 25 |            | Ala        | 355        |            |            |            |            | 360        |            |            |            |            | 365        | _          |            |            |
|    | Pro        | Leu<br>370 | Pro        | Gly        | Asp        | Ala        | Ala<br>375 | Ala        | Gly        | His        | Pro        | Asp<br>380 | Arg        | Ala        | Ser        | Gly        |
| 30 | His<br>385 | Pro        | Lys        | Pro        | His        | Ser<br>390 | Arg        | Ser        | Ser        | Ser        | Ala<br>395 | Tyr        | Arg        | Lys        | Ser        | Ala<br>400 |
|    |            | Thr        |            |            | 405        |            |            |            |            | 410        |            |            |            |            | 415        | -          |
|    | His        | Leu        | Lys        | Pro<br>420 | Val        | Ser        | Gly        | His        | Ser<br>425 | Lys        | Pro        | Ala        |            | Gly<br>430 | His        | Pro        |
| 35 | Lys        | Ser        | Ala<br>435 | Thr        | Val        | Tyr        |            | Lys<br>440 | Pro        | Ala        | Ser        | Val        | His<br>445 | Phe        | Lys        | Ala        |
|    | Asp        | Ser        | Val        | His        | Phe        | Lys        | Gly        | Asp        | Ser        | Val        | His        | Phe        | Lys        | Pro        | Asp        | Ser        |

|    |            | 450        |                   |                                           |                     |                      | 455                 |            |            |            |            | 460        |            |            |            |            |
|----|------------|------------|-------------------|-------------------------------------------|---------------------|----------------------|---------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    | Val<br>465 | His        | Phe               | Lys                                       | Pro                 | Ala<br>470           | Ser                 | Ser        | Asn        | Pro        | Lys<br>475 | Pro        | Ile        | Thr        | Gly        | His<br>480 |
| 5  | His        | Val        | Ser               | Ala                                       | Gly<br>485          | Ser                  | His                 | Ser        | Lys        | Ser<br>490 | Ala        | Phe        | Asn        | Ala        | Ala<br>495 | Thr        |
|    | Ser        | His        | Pro               | Lys<br>500                                | Pro                 | Ile                  | Lys                 | Pro        | Ala<br>505 | Thr        | Ser        | His        | Ala        | Glu<br>510 | Pro        | Thr        |
|    | Thr        | Ala        | Asp<br>515        | Tyr                                       | Pro                 | Lys                  | Pro                 | Ala<br>520 | Thr        | Thr        | Ser        | His        | Pro<br>525 | Lys        | Pro        | Ala        |
| 10 | Ala        | Ala<br>530 | Asp               | Asn                                       | Pro                 | Glu                  | Leu<br>535          | Ser        | Ala        | Ser        | His        | Cys<br>540 | Pro        | Glu        | Ile        | Pro        |
|    | Ala<br>545 | Ile        | Ala               | His                                       | Pro                 | Val<br>550           | Ser                 | Asp        | Asp        | Ser        | Asp<br>555 | Leu        | Pro        | Glu        | Ser        | Ala<br>560 |
| 15 | Ser        | Ser        | Pro               | Ala                                       | Ala<br>565          | Gly                  | Pro                 | Thr        | Lys        | Pro<br>570 | Ala        | Ala        | Ser        | Gln        | Leu<br>575 | Glu        |
|    | Ser        | Asp        | Thr               | Ile<br>580                                | Ala                 | Asp                  | Leu                 | Pro        | Asp<br>585 | Pro        | Thr        | Val        | Val        | Thr        | Thr        | Ser        |
|    | Thr        | Asn        | Asp<br>595        | Tyr                                       | His                 | Asp                  | Val                 | Val        | Val        | Val        | Asp        |            | Glu<br>605 | Asp        | Asp        | Pro        |
| 20 | Asp        | Glu<br>610 | Met               | Ala                                       | Val                 |                      |                     |            |            |            |            |            |            |            |            |            |
|    | (218) IN   | FORM       | MOITA             | V FOR                                     | SEC                 | ID                   | NO:2                | 17:        |            |            |            |            |            |            |            |            |
| 25 | (i)        | (B)        | LEN<br>TYP<br>STR | CE CH<br>IGTH:<br>PE: n<br>RANDE<br>POLOG | 185<br>ucle<br>DNES | 4 ba<br>ic a<br>S: s | se p<br>cid<br>ingl | airs       |            |            |            |            |            |            |            |            |
|    | (ii        | L) MC      | LECU              | LE T                                      | YPE:                | DNA                  | (ge                 | nomi       | c)         |            |            |            |            |            |            |            |
|    | (xi        | L) SE      | QUEN              | ICE D                                     | ESCR                | IPTI                 | ON:                 | SEQ        | ID N       | 0:21       | 7:         |            |            |            |            |            |
| 0  | ATGGGGCCC  | A CC       | CTAG              | CGGT                                      | TCC                 | CACC                 | ccc                 | TATG       | GCTG       | TA T       | TGGC       | TGTA       | A GC       | TACC       | CCAG       | 60         |
|    | CCAGAATAC  |            |                   |                                           |                     |                      |                     |            |            |            |            |            |            |            |            |            |
|    | GTAGACCTA  |            |                   |                                           |                     |                      |                     |            |            |            |            |            |            |            |            |            |
|    | AATTCTGGC  |            |                   |                                           |                     |                      |                     |            |            |            |            |            |            |            |            |            |
| _  | CCATACCCT  |            |                   |                                           |                     |                      |                     |            |            |            |            |            |            |            |            |            |
| 5  | TGCCAGATG  | G TC       | GGGT              | TCAT                                      | CAC                 | AGGG                 | CTG                 | AGTG       | TGGT       | CG G       | CTCC       | ATCT       | T CA       | ACAT       | CGTG       | 360        |

179

|    | GCAATCGCTA | TCAACCGTTA | CTGCTACATC | TGCCACAGCC | TCCAGTACGA | ACGGATCTTC | 420  |
|----|------------|------------|------------|------------|------------|------------|------|
|    | AGTGTGCGCA | ATACCTGCAT | CTACCTGGTC | ATCACCTGGA | TCATGACCGT | CCTGGCTGTC | 480  |
|    | CTGCCCAACA | TGTACATTGG | CACCATCGAG | TACGATCCTC | GCACCTACAC | CTGCATCTTC | 540  |
|    | AACTATCTGA | ACAACCCTGT | CTTCACTGTT | ACCATCGTCT | GCATCCACTT | CGTCCTCCCT | 600  |
| 5  | CTCCTCATCG | TGGGTTTCTG | CTACGTGAGG | ATCTGGACCA | AAGTGCTGGC | GGCCCGTGAC | 660  |
|    | CCTGCAGGGC | AGAATCCTGA | CAACCAACTT | GCTGAGGTTC | GCAATAAACT | AACCATGTTT | 720  |
|    | GTGATCTTCC | TCCTCTTTGC | AGTGTGCTGG | TGCCCTATCA | ACGTGCTCAC | TGTCTTGGTG | 780  |
|    | GCTGTCAGTC | CGAAGGAGAT | GGCAGGCAAG | ATCCCCAACT | GGCTTTATCT | TGCAGCCTAC | 840  |
|    | TTCATAGCCT | ACTTCAACAG | CTGCCTCAAC | GCTGTGATCT | ACGGGCTCCT | CAATGAGAAT | 900  |
| 10 | TTCCGAAGAG | AATACTGGAC | CATCTTCCAT | GCTATGCGGC | ACCCTATCAT | ATTCTTCTCT | 960  |
|    | GGCCTCATCA | GTGATATTCG | TGAGATGCAG | GAGGCCCGTA | CCCTGGCCCG | CGCCCGTGCC | 1020 |
|    | CATGCTCGCG | ACCAAGCTCG | TGAACAAGAC | CGTGCCCATG | CCTGTCCTGC | TGTGGAGGAA | 1080 |
|    | ACCCCGATGA | ATGTCCGGAA | TGTTCCATTA | CCTGGTGATG | CTGCAGCTGG | CCACCCCGAC | 1140 |
|    | CGTGCCTCTG | GCCACCCTAA | GCCCCATTCC | AGATCCTCCT | CTGCCTATCG | CAAATCTGCC | 1200 |
| 15 | TCTACCCACC | ACAAGTCTGT | CTTTAGCCAC | TCCAAGGCTG | CCTCTGGTCA | CCTCAAGCCT | 1260 |
|    | GTCTCTGGCC | ACTCCAAGCC | TGCCTCTGGT | CACCCCAAGT | CTGCCACTGT | CTACCCTAAG | 1320 |
|    | CCTGCCTCTG | TCCATTTCAA | GGCTGACTCT | GTCCATTTCA | AGGGTGACTC | TGTCCATTTC | 1380 |
|    | AAGCCTGACT | CTGTTCATTT | CAAGCCTGCT | TCCAGCAACC | CCAAGCCCAT | CACTGGCCAC | 1440 |
|    | CATGTCTCTG | CTGGCAGCCA | CTCCAAGTCT | GCCTTCAGTG | CTGCCACCAG | CCACCCTAAA | 1500 |
| 20 | CCCACCACTG | GCCACATCAA | GCCAGCTACC | AGCCATGCTG | AGCCCACCAC | TGCTGACTAT | 1560 |
|    | CCCAAGCCTG | CCACTACCAG | CCACCCTAAG | CCCACTGCTG | CTGACAACCC | TGAGCTCTCT | 1620 |
|    | GCCTCCCATT | GCCCCGAGAT | CCCTGCCATT | GCCCACCCTG | TGTCTGACGA | CAGTGACCTC | 1680 |
|    | CCTGAGTCGG | CCTCTAGCCC | TGCCGCTGGG | CCCACCAAGC | CTGCTGCCAG | CCAGCTGGAG | 1740 |
|    | TCTGACACCA | TCGCTGACCT | TCCTGACCCT | actgtagtca | CTACCAGTAC | CAATGATTAC | 1800 |
| 25 | CATGATGTCG | TGGTTGTTGA | TGTTGAAGAT | GATCCTGATG | AAATGGCTGT | GTGA       | 1854 |

(219) INFORMATION FOR SEQ ID NO:218:

<sup>(</sup>i) SEQUENCE CHARACTERISTICS:

<sup>(</sup>A) LENGTH: 617 amino acids

<sup>(</sup>B) TYPE: amino acid

180

(C) STRANDEDNESS:

(D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: protein

20

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:218:

5 Met Gly Pro Thr Leu Ala Val Pro Thr Pro Tyr Gly Cys Ile Gly Cys 1 5 10 15

Lys Leu Pro Gln Pro Glu Tyr Pro Pro Ala Leu Ile Ile Phe Met Phe  $20 \hspace{1cm} 25 \hspace{1cm} 30$ 

Cys Ala Met Val Ile Thr Ile Val Val Asp Leu Ile Gly Asn Ser Met  $10 \hspace{1cm} 35 \hspace{1cm} 40 \hspace{1cm} 45$ 

Val Ile Leu Ala Val Thr Lys Asn Lys Lys Leu Arg Asn Ser Gly Asn 50 60

Ile Phe Val Val Ser Leu Ser Val Ala Asp Met Leu Val Ala Ile Tyr 65  $\phantom{-}70\phantom{0}$  70  $\phantom{-}75\phantom{0}$ 

Pro Tyr Pro Leu Met Leu His Ala Met Ser Ile Gly Gly Trp Asp Leu 85 90 95

Ser Gln Leu Gln Cys Gln Met Val Gly Phe Ile Thr Gly Leu Ser Val

Val Gly Ser Ile Phe Asn Ile Val Ala Ile Ala Ile Asn Arg Tyr Cys 115 120 125

Tyr Ile Cys His Ser Leu Gln Tyr Glu Arg Ile Phe Ser Val Arg Asn 130 135 140

Thr Cys Ile Tyr Leu Val Ile Thr Trp Ile Met Thr Val Leu Ala Val 145 \$150\$

25 Leu Pro Asn Met Tyr Ile Gly Thr Ile Glu Tyr Asp Pro Arg Thr Tyr 165 170 175

Thr Cys Ile Phe Asn Tyr Leu Asn Asn Pro Val Phe Thr Val Thr Ile 180 185 190

Val Cys Ile His Phe Val Leu Pro Leu Leu Ile Val Gly Phe Cys Tyr

Asn Pro Asp Asn Gln Leu Ala Glu Val Arg Asn Lys Leu Thr Met Phe 225 230 235 240

35 Val Ile Phe Leu Leu Phe Ala Val Cys Trp Cys Pro Ile Asn Val Leu 245 250 255

|    | Thr Val        | Leu Val        |              | al Ser        | Pro        | Lys<br>265 | Glu        | Met        | Ala        | Gly        | Lys<br>270 | Ile        | Pro        |
|----|----------------|----------------|--------------|---------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    | Asn Trp        | Leu Tyr<br>275 | Leu A        | la Ala        | Tyr<br>280 | Phe        | Ile        | Ala        | Tyr        | Phe<br>285 | Asn        | Ser        | Cys        |
| 5  | Leu Asn<br>290 | Ala Val        | Ile T        | yr Gly<br>295 | Leu        | Leu        | Asn        | Glu        | Asn<br>300 | Phe        | Arg        | Arg        | Glu        |
|    | Tyr Trp<br>305 | Thr Ile        |              | is Ala<br>10  | Met        | Arg        | His        | Pro<br>315 | Ile        | Ile        | Phe        | Phe        | Ser<br>320 |
| 10 | Gly Leu        | Ile Ser        | Asp I<br>325 | le Arg        |            | Met        | Gln<br>330 | Glu        | Ala        | Arg        | Thr        | Leu<br>335 | Ala        |
|    | Arg Ala        | Arg Ala        |              | la Arg        | Asp        | Gln<br>345 | Ala        | Arg        | Glu        | Gln        | Asp<br>350 | Arg        | Ala        |
|    | His Ala        | Cys Pro<br>355 | Ala V        | al Glu        | Glu<br>360 | Thr        | Pro        | Met        | Asn        | Val<br>365 | Arg        | Asn        | Val        |
| 15 | Pro Leu<br>370 | Pro Gly        | Asp A        | la Ala<br>375 | Ala        | Gly        | His        | Pro        | Asp<br>380 | Arg        | Ala        | Ser        | Gly        |
|    | His Pro        | Lys Pro        |              | er Arg<br>90  | Ser        | Ser        | Ser        | Ala<br>395 | Tyr        | Arg        | Lys        | Ser        | Ala<br>400 |
| 20 | Ser Thr        | His His        | Lys S<br>405 | er Val        | Phe        | Ser        | His<br>410 | Ser        | Lys        | Ala        | Ala        | Ser<br>415 | Gly        |
|    | His Leu        | Lys Pro        |              | er Gly        | His        | Ser<br>425 | Lys        | Pro        | Ala        | Ser        | Gly<br>430 | His        | Pro        |
|    | Lys Ser        | Ala Thr<br>435 | Val T        | yr Pro        | Lys<br>440 | Pro        | Ala        | Ser        | Val        | His<br>445 | Phe        | Lys        | Ala        |
| 25 | Asp Ser<br>450 | Val His        | Phe L        | ys Gly<br>455 | Asp        | Ser        | Val        | His        | Phe<br>460 | Lys        | Pro        | Asp        | Ser        |
|    | Val His<br>465 | Phe Lys        |              | la Ser<br>70  | Ser        | Asn        | Pro        | Lys<br>475 | Pro        | Ile        | Thr        | Gly        | His<br>480 |
| 30 | His Val        | Ser Ala        | Gly S<br>485 | er His        | Ser        | Lys        | Ser<br>490 | Ala        | Phe        | Ser        | Ala        | Ala<br>495 | Thr        |
|    | Ser His        | Pro Lys        |              | hr Thr        | Gly        | His<br>505 | Ile        | Lys        | Pro        | Ala        | Thr<br>510 | Ser        | His        |
|    | Ala Glu        | Pro Thr<br>515 | Thr A        | la Asp        | Tyr<br>520 | Pro        | Lys        | Pro        | Ala        | Thr<br>525 | Thr        | Ser        | His        |
| 35 | Pro Lys<br>530 | Pro Thr        | Ala A        | la Asp<br>535 | Asn        | Pro        | Glu        | Leu        | Ser<br>540 | Ala        | Ser        | His        | Cys        |
|    | Pro Glu        | Ile Pro        | Ala I        | le Ala        | His        | Pro        | Val        | Ser        | Asp        | Asp        | Ser        | Asp        | Leu        |

182

|    |            |                                                     |                            |                            |                        | -          |            |            |       |      |            |            |            |     |     |
|----|------------|-----------------------------------------------------|----------------------------|----------------------------|------------------------|------------|------------|------------|-------|------|------------|------------|------------|-----|-----|
|    | 545        |                                                     |                            | 550                        |                        |            |            |            | 555   |      |            |            |            | 560 |     |
|    | Pro (      | Glu Ser                                             | Ala Se<br>56               |                            | Pro                    | Ala        | Ala        | Gly<br>570 | Pro   | Thr  | Lys        | Pro        | Ala<br>575 | Ala |     |
| 5  | Ser (      | 3ln Leu                                             | Glu Se<br>580              | r Asp                      | Thr                    | Ile        | Ala<br>585 | Asp        | Leu   | Pro  | Asp        | Pro<br>590 | Thr        | Val |     |
|    | Val 7      | Thr Thr<br>595                                      | Ser Th                     | r Asn                      | Asp                    | Tyr<br>600 | His        | Asp        | Val   | Val  | Val<br>605 | Val        | Asp        | Val |     |
|    |            | Asp Asp<br>510                                      | Pro As                     | p Glu                      | Met<br>615             | Ala        | Val        |            |       |      |            |            |            |     |     |
| 10 | (220) INFO | ORMATION                                            | FOR S                      | EQ ID                      | NO:2                   | 219:       |            |            |       |      |            |            |            |     |     |
| 15 | (i)        | SEQUENC<br>(A) LEN<br>(B) TYP<br>(C) STR<br>(D) TOP | GTH: 1<br>E: nuc<br>ANDEDN | 548 ba<br>Leic a<br>ESS: s | ase p<br>acid<br>singl | pairs      | ;          |            |       |      |            |            |            |     |     |
|    | (ii)       | MOLECU                                              | LE TYP                     | E: DN                      | A (ge                  | enomi      | .c)        |            |       |      |            |            |            |     |     |
|    | (xi)       | SEQUEN                                              | CE DES                     | RIPT                       | ON:                    | SEQ        | ID N       | 10:21      | 19:   |      |            |            |            |     |     |
|    | ATGGGACATA | ACGGGA                                              | GCTG G                     | ATCTC                      | rcca                   | AATG       | CCAG       | ICG I      | AGCCG | CACA | A CO       | CGTC       | CGGC       | :   | 6   |
|    | GCCGAGGCTG | CGGGTG                                              | TGAA C                     | CGCAG                      | GCG                    | CTCG       | GGGA       | GT I       | cggc  | GAGG | C GC       | AGCI       | GTAC       | : 1 | 12  |
| 20 | CGCCAGTTCA | CCACCA                                              | CCGT G                     | AGGT                       | GTC                    | ATCI       | TCAT       | 'AG G      | CTCG  | CTGC | T Co       | GAAA       | CTTC       | . 1 | 1.8 |
|    | ATGGTGTTAT | GGTCAA                                              | CTTG C                     | GCACA                      | ACC                    | GTGT       | TCAA       | AT C       | TGTC  | ACCA | A CA       | GGTT       | CATT       | 2   | 40  |
|    | AAAAACCTGG | CCTGCT                                              | CGGG G                     | ATTTGT                     | GCC                    | AGCC       | TGGT       | CT G       | TGTG  | CCCI | T CC       | ACAT       | CATO       | : 3 | 800 |
|    | CTCAGCACCA | GTCCTC                                              | ACTG T                     | GCTGC                      | TGG                    | ATCT       | ACAC       | CA I       | GCTC  | TTCT | G CA       | AGGI       | CGTC       | 3   | 66  |
|    | AAATTTTTGC | ACAAAG                                              | TATT C                     | GCTCT                      | GTG                    | ACCA       | TCCT       | CA G       | CTTC  | CCTG | C TA       | TTGC       | TTTG       | 4   | 20  |
| 25 | GACAGGTACT | ACTCAG                                              | TCCT C                     | ATCC                       | CTG                    | GAGA       | .GGAA      | AA T       | ATCT  | GATG | C CA       | AGTC       | CCGI       | 4   | 80  |
|    | GAACTGGTGA | TGTACA                                              | TCTG GO                    | CCCAT                      | GCA                    | GTGG       | TGGC       | CA G       | TGTC  | CCTG | T GT       | TTGC       | AGTA       | . 5 | 4 ( |
|    | ACCAATGTGG | CTGACA'                                             | ICTA TO                    | CCACC                      | TCC                    | ACCT       | GCAC       | GG A       | AGTC  | TGGA | G CA       | ACTC       | CTTG       | 6   | 00  |
|    | GGCCACCTGG | TGTACG'                                             | TTCT GO                    | TGTAT                      | AAC                    | ATCA       | CCAC       | GG I       | CATT  | GTGC | C TG       | TGGT       | GGTG       | 6   | 60  |
|    | GTGTTCCTCT | TCTTGA'                                             | TACT GA                    | TCCGA                      | CGG                    | GCCC       | TGAG       | TG C       | CAGC  | CAGA | A GA       | AGAA       | GGTC       | 7   | 20  |
| 30 | ATCATAGCAG | CGCTCC                                              | GGAC CO                    | CACAG                      | AAC                    | ACCA       | TCTC       | TA T       | TCCC  | TATG | C CT       | CCCA       | gcgg       | 7   | 8 ( |
|    | GAGGCCGAGC | TGAAAG                                              | CCAC CC                    | TGCTC                      | TCC                    | ATGG       | TGAT       | GG T       | CTTC  | ATCT | T GT       | GTAG       | CGTG       | 8   | 4 ( |
|    | CCCTATGCCA | CCCTGG                                              | rcgt ct                    | ACCAG                      | ACT                    | GTGC       | TCAA       | TG T       | CCCT  | GACA | C TT       | CCGT       | CTTC       | 9   | 00  |

|    | TTGCTGCT  | CA C      | TGCT      | GTTT       | G G       | TGCC  | CAAA      | GTC       | TCCC      | TGC       | TGGC | AAAC | cc r | rgtto     | TCTT      | T         | 960  |
|----|-----------|-----------|-----------|------------|-----------|-------|-----------|-----------|-----------|-----------|------|------|------|-----------|-----------|-----------|------|
|    | CTTACTGT  | GA A      | CAAA      | TCTG       | T C       | GCAA  | GTGC      | TTG       | ATAC      | GGA       | CCCI | GGTG | CA I | ACTAC     | CACCA     | C :       | 1020 |
|    | CGGTACAG  | TC G      | CCGI      | AATG       | T GO      | TCAG  | TACA      | GGG       | AGTO      | GCA       | TGGC | TGAG | GC C | AGCC      | TGGA      | A.        | 1080 |
|    | CCCAGCAT  | 'AC G     | CTCG      | GGTA       | G CC      | AGCI  | CCTG      | GAG       | ATGT      | TCC       | ACAT | TGGG | CA C | CAGO      | AGAI      | 'C :      | 1140 |
| 5  | TTTAAGCC  | CA C      | AGAG      | GATG       | A GO      | BAAGA | GAGT      | GAG       | GCCA      | AGT       | ACAT | TGGC | TC Z | GCTG      | ACTI      | 'C :      | 1200 |
|    | CAGGCCAA  | GG A      | GATA      | ATTTA      | G CA      | CCTG  | CCTG      | GAG       | GGAG      | AGC       | AGGG | GCCA | CA G | TTTG      | CGCC      | c :       | 1260 |
|    | TCTGCCCC  | AC C      | CCTG      | AGCA       | C AG      | TGGA  | CTCT      | GTA       | TCCC      | AGG       | TGGC | ACCG | GC A | GCCC      | CTGT      | G :       | 1320 |
|    | GAACCTGA  | AA C      | ATTC      | CCTG.      | A TA      | AGTA  | TTCC      | CTG       | CAGI      | TTG       | GCTT | TGGG | CC I | TTTG      | AGTT      | G :       | 1380 |
|    | CCTCCTCA  | GT G      | GCTC      | TCAG.      | A GA      | .cccg | AAAC      | AGC       | AAGA      | AGC       | GGCT | GCTT | cc c | CCCT      | TGGG      | C 1       | 1440 |
| 10 | AACACCCC  | AG A      | AGAG      | CTGA       | r cc      | AGAC  | AAAG      | GTG       | CCCA      | AGG       | TAGG | CAGG | GT G | GAGC      | GGAA      | G I       | 1500 |
|    | ATGAGCAG  | AA A      | CAAT      | AAAG"      | r ga      | GCAT  | TTTT      | CCA       | AAGG      | TGG       | ATTC | CTAG |      |           |           | 1         | 1548 |
|    | (221) IN  | FORM      | ATIO      | N FOI      | R SE      | Q ID  | NO:       | 220:      |           |           |      |      |      |           |           |           |      |
|    | (i        |           |           | CE CI      |           |       |           |           | e         |           |      |      |      |           |           |           |      |
| 15 |           | (B        | ) TY      | PE: a      | amin      | o ac  |           |           |           |           |      |      |      |           |           |           |      |
|    |           |           |           | POLO       |           |       | rele      | vant      |           |           |      |      |      |           |           |           |      |
|    | (i        | i) M      | OLEC      | ULE :      | TYPE      | : pr  | otei      | n         |           |           |      |      |      |           |           |           |      |
|    | (x        | i) s      | EQUE      | NCE I      | DESC      | RIPT  | ION:      | SEQ       | ID :      | NO:2      | 20:  |      |      |           |           |           |      |
| 20 | Met<br>1  | Gly       | His       | Asn        | Gly<br>5  | Ser   | Trp       | Ile       | Ser       | Pro<br>10 | Asn  | Ala  | Ser  | Glu       | Pro<br>15 | His       |      |
|    | Asn       | Ala       | Ser       | Gly<br>20  | Ala       | Glu   | Ala       | Ala       | Gly<br>25 | Val       | Asn  | Arg  | Ser  | Ala<br>30 | Leu       | Gly       |      |
| 25 | Glu       | Phe       | Gly<br>35 | Glu        | Ala       | Gln   | Leu       | Tyr<br>40 | Arg       | Gln       | Phe  | Thr  | Thr  | Thr       | Val       | Gln       |      |
|    | Val       | Val<br>50 | Ile       | Phe        | Ile       | Gly   | Ser<br>55 | Leu       | Leu       | Gly       | Asn  | Phe  | Met  | Val       | Leu       | Trp       |      |
|    | Ser<br>65 | Thr       | Cys       | Arg        | Thr       | Thr   | Val       | Phe       | Lys       | Ser       | Val  | Thr  | Asn  | Arg       | Phe       | Ile<br>80 |      |
| 30 | Lys       | Asn       | Leu       | Ala        | Cys<br>85 | Ser   | Gly       | Ile       | Cys       | Ala<br>90 | Ser  | Leu  | Val  | Сув       | Val<br>95 | Pro       |      |
|    | Phe       | Asp       | Ile       | Ile<br>100 | Leu       | Ser   |           |           | Pro       |           | Cys  | Cys  | Trp  | Trp       | Ile       | Tyr       |      |

|    | Thr        | Met        | Leu<br>115 | Phe        | Cys        | Lys        | Val        | Val<br>120 |            | Phe        | Leu        | His        | Lys<br>125 |            | Phe        | Cys        |
|----|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    | Ser        | Val<br>130 | Thr        | Ile        | Leu        | Ser        | Phe<br>135 | Pro        | Ala        | Ile        | Ala        | Leu<br>140 |            | Arg        | Tyr        | Tyr        |
| 5  | Ser<br>145 | Val        | Leu        | Tyr        | Pro        | Leu<br>150 | Glu        | Arg        | Lys        | Ile        | Ser<br>155 |            | Ala        | Lys        | Ser        | Arg<br>160 |
|    | Glu        | Leu        | Val        | Met        | Tyr<br>165 | Ile        | Trp        | Ala        | His        | Ala<br>170 |            | Val        | Ala        | Ser        | Val        |            |
| 10 | Val        | Phe        | Ala        | Val<br>180 | Thr        | Asn        | Val        | Ala        | Asp<br>185 |            | Tyr        | Ala        | Thr        | Ser<br>190 |            | Cys        |
|    | Thr        | Glu        | Val<br>195 | Trp        | Ser        | Asn        | Ser        | Leu<br>200 | Gly        | His        | Leu        | Val        | Tyr<br>205 | Val        | Leu        | Val        |
|    | Tyr        | Asn<br>210 | Ile        | Thr        | Thr        | Val        | Ile<br>215 | Val        | Pro        | Val        | Val        | Val<br>220 | Val        | Phe        | Leu        | Phe        |
| 15 | Leu<br>225 | Ile        | Leu        | Ile        | Arg        | Arg<br>230 | Ala        | Leu        | Ser        | Ala        | Ser<br>235 | Gln        | Lys        | Lys        | Lys        | Val<br>240 |
|    | Ile        | Ile        | Ala        | Ala        | Leu<br>245 | Arg        | Thr        | Pro        | Gln        | Asn<br>250 | Thr        | Ile        | Ser        | Ile        | Pro<br>255 | Tyr        |
| 20 | Ala        | Ser        | Gln        | Arg<br>260 | Glu        | Ala        | Glu        | Leu        | Lys<br>265 | Ala        | Thr        | Leu        | Leu        | Ser<br>270 | Met        | Val        |
|    | Met        | Val        | Phe<br>275 | Ile        | Leu        | Cys        | Ser        | Val<br>280 | Pro        | Tyr        | Ala        | Thr        | Leu<br>285 | Val        | Val        | Tyr        |
|    | Gln        | Thr<br>290 | Val        | Leu        | Asn        | Val        | Pro<br>295 | Asp        | Thr        | Ser        | Val        | Phe<br>300 | Leu        | Leu        | Leu        | Thr        |
| 25 | Ala<br>305 | Val        | Trp        | Leu        | Pro        | Lys<br>310 | Val        | Ser        | Leu        | Leu        | Ala<br>315 | Asn        | Pro        | Val        | Leu        | Phe<br>320 |
|    | Leu        | Thr        | Val        | Asn        | Lys<br>325 | Ser        | Val        | Arg        | Lys        | Cys<br>330 | Leu        | Ile        | Gly        | Thr        | Leu<br>335 | Val        |
| 30 | Gln        | Leu        | His        | His<br>340 | Arg        | Tyr        | Ser        | Arg        | Arg<br>345 | Asn        | Val        | Val        | Ser        | Thr<br>350 | Gly        | Ser        |
|    | Gly        | Met        | Ala<br>355 | Glu        | Ala        | Ser        | Leu        | Glu<br>360 | Pro        | Ser        | Ile        | Arg        | Ser<br>365 | Gly        | Ser        | Gln        |
|    | Leu        | Leu<br>370 | Glu        | Met        | Phe        | His        | Ile<br>375 | Gly        | Gln        | Gln        | Gln        | Ile<br>380 | Phe        | Lys        | Pro        | Thr        |
| 35 | Glu<br>385 | Asp        | Glu        | Glu        | Glu        | Ser<br>390 | Glu        | Ala        | Lys        | Tyr        | Ile<br>395 | Gly        | Ser        | Ala        | Asp        | Phe<br>400 |
|    | Gln        | Ala        | Lys        | Glu        | Ile        | Phe        | Ser        | Thr        | Cys        | Leu        | Glu        | Gly        | Glu        | Gln        | Gly        | Pro        |

|    |            |                   |                           |                       | 405         |                      |                     |            |            | 410        |            |            |            |            | 415        |            |    |
|----|------------|-------------------|---------------------------|-----------------------|-------------|----------------------|---------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|----|
|    | Gln        | Phe               | Ala                       | Pro                   | Ser         | Ala                  | Pro                 | Pro        |            | Ser        | Thr        | Val        | Asp        |            | Val        | Ser        |    |
|    |            |                   |                           | 420                   |             |                      |                     |            | 425        |            |            |            |            | 430        |            |            |    |
| 5  | GIN        | vai               | Ala<br>435                | Pro                   | АТА         | Ala                  | Pro                 | Val<br>440 | GIu        | Pro        | Glu        | Thr        | Phe<br>445 | Pro        | Asp        | Lys        |    |
|    | Tyr        | Ser<br>450        | Leu                       | Gln                   | Phe         | Gly                  | Phe<br>455          | Gly        | Pro        | Phe        | Glu        | Leu<br>460 | Pro        | Pro        | Gln        | Trp        |    |
|    | Leu<br>465 | Ser               | Glu                       | Thr                   | Arg         | Asn<br>470           | Ser                 | Lys        | Lys        | Arg        | Leu<br>475 | Leu        | Pro        | Pro        | Leu        | Gly<br>480 |    |
| 10 | Asn        | Thr               | Pro                       | Glu                   | Glu<br>485  | Leu                  | Ile                 | Gln        | Thr        | Lys<br>490 | Val        | Pro        | Lys        | Val        | Gly<br>495 | Arg        |    |
|    | Val        | Glu               | Arg                       | 500                   | Met         | Ser                  | Arg                 | Asn        | Asn<br>505 | Lys        | Val        | Ser        | Ile        | Phe<br>510 | Pro        | Lys        |    |
| 15 | Val        | Asp               | Ser<br>515                |                       |             |                      |                     |            |            |            |            |            |            |            |            |            |    |
|    | (222) INE  | ORM               | ATION                     | 1 FOR                 | SEÇ         | ] ID                 | NO:2                | 21:        |            |            |            |            |            |            |            |            |    |
| 20 | (i)        | (A)<br>(B)<br>(C) | UENC<br>LEM<br>TYL<br>STF | GTH:<br>E: r<br>RANDE | 116<br>ucle | 4 ba<br>ic a<br>S: s | se p<br>cid<br>ingl | airs       | ;          |            |            |            |            |            |            |            |    |
|    | (ii        | ) MC              | DLECT                     | JLE I                 | YPE:        | DNA                  | (ge                 | nomi       | .c)        |            |            |            |            |            |            |            |    |
|    | (xi        | ) SE              | EQUEN                     | ICE I                 | ESCR        | IPTI                 | ON:                 | SEQ        | ID N       | 10:22      | 1:         |            |            |            |            |            |    |
|    | ATGAATCGG  | C AC              | CATO                      | TGCA                  | GGA         | TCAC                 | TTT                 | CTGG       | PAAA       | 'AG I      | CAAG       | AAGA       | A CI       | GCTG       | TGTG       |            | 60 |
| 25 | TTCCGAGAT  | G AC              | TTCA                      | TTGC                  | CAA         | GGTG                 | TTG                 | CCGC       | CGGI       | GT I       | 'GGGG      | CTGG       | A GI       | TTAT       | CTTI       | 1          | 20 |
|    | GGGCTTCTG  | G GC              | CAATO                     | GCCI                  | TGC         | CCTG                 | TGG                 | ATTI       | TCTG       | TT I       | CCAC       | CTCA       | A GT       | CCTG       | GAAA       | 1          | 80 |
|    | TCCAGCCGG  | A TI              | TTCC                      | TGTI                  | CAA         | CCTG                 | GCA                 | GTAG       | CTGA       | CT I       | TCTA       | CTGA       | T CA       | TCTG       | CCTG       | 2          | 40 |
|    | CCGTTCGTG  | A TG              | GACI                      | ACTA                  | TGI         | GCGG                 | CGT                 | TCAG       | ACTG       | GA A       | GTTI       | GGGG       | A CA       | TCCC       | TTGC       | 3          | 00 |
|    | CGGCTGGTG  | C TC              | TTCA                      | TGTT                  | TGC         | CATG                 | AAC                 | CGCC       | AGGG       | CA G       | CATC       | ATCT       | T CC       | TCAC       | GGTG       | 3          | 60 |
| 30 | GTGGCGGTA  | G AC              | AGGT                      | ATTT                  | CCG         | GGTG                 | GTC                 | CATC       | CCCA       | CC A       | .CGCC      | CTGA       | A CA       | AGAT       | CTCC       | 4          | 20 |
|    | AATTGGACA  | G CA              | GCCA                      | TCAT                  | CTC         | TTGC                 | CTT                 | CTGT       | GGGG       | CA I       | CACT       | GTTG       | G CC       | TAAC       | AGTC       | 4          | 80 |
|    | CACCTCCTG  | A AG              | AAGA                      | AGTT                  | GCT         | GATC                 | CAG                 | AATG       | GCCC       | TG C       | AAAT       | GTGT       | G CA       | TCAG       | CTTC       | 5          | 40 |
|    | AGCATCTGC  | C AT              | ACCT                      | TCCG                  | GTG         | GCAC                 | GAA                 | GCTA       | TGTT       | CC I       | CCTG       | GAGT       | т сс       | TCCT       | GCCC       | 6          | 00 |

|    | CTGGGCAT  | CA T           | CCT                          | TTCT                                | G CI                        | CAG                        | CAG               | TA           | ATCI       | GGA       | GCCI      | GCGC      | GCA (     | GAGAC      | CAAA      | G         | 660  |
|----|-----------|----------------|------------------------------|-------------------------------------|-----------------------------|----------------------------|-------------------|--------------|------------|-----------|-----------|-----------|-----------|------------|-----------|-----------|------|
|    | GACCGGC   | TG (           | CAAG                         | ATCA                                | A GA                        | GAGO                       | CAA               | ACC          | TTC        | TCA       | TGGT      | GGT       | GC (      | CATCO      | TCTT      | T         | 720  |
|    | GTCATCTG  | CT 1           | CCTI                         | CCCA                                | G CG                        | TGGT                       | TGT               | CGG          | ATCC       | GCA       | TCTI      | CTG       | CT (      | CCTGC      | ACAC      | T         | 780  |
|    | TCGGGCAC  | GC A           | GAAT                         | TGTG                                | A AG                        | TGT                        | CCGC              | TCG          | GTGG       | ACC       | TGGC      | GTTC      | TT :      | FATCA      | CTCI      | C.        | 840  |
| 5  | AGCTTCAC  | CT A           | CATO                         | AACA                                | G CA                        | TGCT                       | 'GGAC             | ccc          | GTGG       | TGT       | ACTA      | CTTC      | TC (      | CAGCC      | CATO      | !C        | 900  |
|    | TTTCCCAA  | CT I           | CTTC                         | TCCA                                | C TI                        | TGAT                       | CAAC              | CGC          | TGCC       | TCC       | AGAG      | GAAG      | AT (      | BACAG      | GTGA      | .G        | 960  |
|    | CCAGATAA  | TA A           | .CCGC                        | AGCA                                | C GA                        | GCGT                       | CGAG              | CTC          | ACAG       | GGG       | ACCC      | CAAC      | AA A      | ACCA       | GAGG      | C 1       | .020 |
|    | GCTCCAGA  | .GG C          | GTTA                         | ATGG                                | C CA                        | ACTO                       | CGGT              | GAG          | CCAT       | GGA       | GCCC      | CTCT      | TA 7      | CTGG       | GCCC      | A 1       | 080  |
|    | ACCTCAAA  | TA A           | CCAT                         | TCCA                                | A GA                        | AGGG                       | ACAT              | TGT          | CACC       | AAG       | AACC      | AGCA      | TC T      | CTGG       | AGAA      | A 1       | 140  |
| 10 | CAGTTGGG  | CT G           | TTGC                         | ATCG                                | A GT                        | AA                         |                   |              |            |           |           |           |           |            |           | 1         | 164  |
|    | (223) IN  | FORM           | ATIO                         | N FO                                | R SE                        | Q ID                       | NO:               | 222:         |            |           |           |           |           |            |           |           |      |
| 15 |           | (A<br>(B<br>(C | ) LE<br>) TY<br>) ST<br>) TO | CE C<br>NGTH<br>PE:<br>RAND<br>POLO | : 38<br>amin<br>EDNE<br>GY: | 7 am<br>o ac<br>SS:<br>not | ino<br>id<br>rele | acid<br>vant | S          |           |           |           |           |            |           |           |      |
|    | (x        | i) S           | EQUE                         | NCE I                               | DESC                        | RIPT                       | ION:              | SEQ          | ID:        | NO:2      | 22:       |           |           |            |           |           |      |
| 20 | Met<br>1  | Asn            | Arg                          | His                                 | His<br>5                    | Leu                        | Gln               | Asp          | His        | Phe<br>10 | Leu       | Glu       | Ile       | Asp        | Lys<br>15 | Lys       |      |
|    | Asn       | Cys            | Cys                          | Val<br>20                           | Phe                         | Arg                        | Asp               | Asp          | Phe<br>25  | Ile       | Ala       | Lys       | Val       | Leu<br>30  | Pro       | Pro       |      |
|    | Val       | Leu            | Gly<br>35                    | Leu                                 | Glu                         | Phe                        | Ile               | Phe<br>40    | Gly        | Leu       | Leu       | Gly       | Asn<br>45 | Gly        | Leu       | Ala       |      |
| 25 | Leu       | Trp<br>50      | Ile                          | Phe                                 | Cys                         | Phe                        | His<br>55         | Leu          | Lys        | Ser       | Trp       | Lys<br>60 | Ser       | Ser        | Arg       | Ile       |      |
|    | Phe<br>65 | Leu            | Phe                          | Asn                                 | Leu                         | Ala<br>70                  | Val               | Ala          | Asp        | Phe       | Leu<br>75 | Leu       | Ile       | Ile        | Cys       | Leu<br>80 |      |
| 30 | Pro       | Phe            | Val                          | Met                                 | Asp<br>85                   | Tyr                        | Tyr               | Val          | Arg        | Arg<br>90 | Ser       | Asp       | Trp       | Lys        | Phe<br>95 | Gly       |      |
|    | Asp       | Ile            | Pro                          | Cys<br>100                          | Arg                         | Leu                        | Val               | Leu          | Phe<br>105 | Met       | Phe       | Ala       | Met       | Asn<br>110 | Arg       | Gln       |      |
|    | Gly       | Ser            | Ile<br>115                   | Ile                                 | Phe                         | Leu                        | Thr               | Val          | Val        | Ala       | Val       | Asp       | Arg       | Tyr        | Phe       | Arg       |      |

|    | Val        | Val        | His        | Pro        | His        | His        | Ala<br>135 | Leu        | Asn        | Lys        | Ile        | Ser<br>140 | Asn        | Trp        | Thr        | Ala        |
|----|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    | Ala<br>145 | Ile        | Ile        | Ser        | Cys        | Leu<br>150 | Leu        | Trp        | Gly        | Ile        | Thr<br>155 | Val        | Gly        | Leu        | Thr        | Val<br>160 |
| 5  | His        | Leu        | Leu        | Lys        | Lys<br>165 | Lys        | Leu        | Leu        | Ile        | Gln<br>170 | Asn        | Gly        | Pro        | Ala        | Asn<br>175 | Val        |
|    | Cys        | Ile        | Ser        | Phe<br>180 | Ser        | Ile        | Cys        | His        | Thr<br>185 | Phe        | Arg        | Trp        | His        | Glu<br>190 | Ala        | Met        |
| 10 | Phe        | Leu        | Leu<br>195 | Glu        | Phe        | Leu        | Leu        | Pro<br>200 | Leu        | Gly        | Ile        | Ile        | Leu<br>205 | Phe        | Суз        | Ser        |
|    | Ala        | Arg<br>210 | Ile        | Ile        | Trp        | Ser        | Leu<br>215 | Arg        | Gln        | Arg        | Gln        | Met<br>220 | qaA        | Arg        | His        | Ala        |
|    | Lys<br>225 | Ile        | Lys        | Arg        | Ala        | Lys<br>230 | Thr        | Phe        | Ile        | Met        | Val<br>235 | Val        | Ala        | Ile        | Val        | Phe<br>240 |
| 15 | Val        | Ile        | Суз        | Phe        | Leu<br>245 | Pro        | Ser        | Val        | Val        | Val<br>250 | Arg        | Ile        | Arg        | Ile        | Phe<br>255 | Trp        |
|    | Leu        | Leu        | His        | Thr<br>260 | Ser        | Gly        | Thr        | Gln        | Asn<br>265 | Cys        | Glu        | Val        | Tyr        | Arg<br>270 | Ser        | Val        |
| 20 | Asp        | Leu        | Ala<br>275 | Phe        | Phe        | Ile        | Thr        | Leu<br>280 | Ser        | Phe        | Thr        | Tyr        | Met<br>285 | Asn        | Ser        | Met        |
|    | Leu        | Asp<br>290 | Pro        | Val        | Val        | Tyr        | Tyr<br>295 | Phe        | Ser        | Ser        | Pro        | Ser<br>300 | Phe        | Pro        | Asn        | Phe        |
|    | Phe<br>305 | Ser        | Thr        | Leu        | Ile        | Asn<br>310 | Arg        | Cys        | Leu        | Gln        | Arg<br>315 | Lys        | Met        | Thr        | Gly        | Glu<br>320 |
| 25 | Pro        | Asp        | Asn        | Asn        | Arg<br>325 | Ser        | Thr        | Ser        | Val        | Glu<br>330 | Leu        | Thr        | Gly        | Asp        | Pro<br>335 | Asn        |
|    | Lys        | Thr        | Arg        | Gly<br>340 | Ala        | Pro        | Glu        | Ala        | Leu<br>345 | Met        | Ala        | Asn        | Ser        | Gly<br>350 | Glu        | Pro        |
| 30 | Trp        | Ser        | Pro<br>355 | Ser        | Tyr        | Leu        | Gly        | Pro<br>360 | Thr        | Ser        | Asn        | Asn        | His<br>365 | Ser        | Lys        | Lys        |
|    | Gly        | His<br>370 | Cys        | His        | Gln        | Glu        | Pro<br>375 | Ala        | Ser        | Leu        | Glu        | Lys<br>380 | Gln        | Leu        | Gly        | Сув        |
|    | Cys<br>385 | Ile        | Glu        |            |            |            |            |            |            |            |            |            |            |            |            |            |
| 35 | (224) IN   | FORMA      | MOIT       | FOF        | SEC        | ) ID       | NO:2       | 23:        |            |            |            |            |            |            |            |            |

- - (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1212 base pairs

188

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single
(D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: DNA (genomic)

5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:223:

ATGGCTTGCA ATGGCAGTGC GGCCAGGGGG CACTTTGACC CTGAGGACTT GAACCTGACT 60 GACGAGGCAC TGAGACTCAA GTACCTGGGG CCCCAGCAGA CAGAGCTGTT CATGCCCATC 120 TGTGCCACAT ACCTGCTGAT CTTCGTGGTG GGCGCTGTGG GCAATGGGCT GACCTGTCTG 180 GTCATCCTGC GCCACAAGGC CATGCGCACG CCTACCAACT ACTACCTCTT CAGCCTGGCC 240 10 GTGTCGGACC TGCTGGTGCT GCTGGTGGGC CTGCCCCTGG AGCTCTATGA GATGTGGCAC 300 AACTACCCCT TCCTGCTGGG CGTTGGTGGC TGCTATTTCC GCACGCTACT GTTTGAGATG GTCTGCCTGG CCTCAGTGCT CAACGTCACT GCCCTGAGCG TGGAACGCTA TGTGGCCGTG 420 GTGCACCCAC TCCAGGCCAG GTCCATGGTG ACGCGGGCCC ATGTGCGCCG AGTGCTTGGG 480 GCCGTCTGGG GTCTTGCCAT GCTCTGCTCC CTGCCCAACA CCAGCCTGCA CGGCATCCGG 540 15 CAGCTGCACG TGCCCTGCCG GGGCCCAGTG CCAGACTCAG CTGTTTGCAT GCTGGTCCGC 600 CCACGGGCCC TCTACAACAT GGTAGTGCAG ACCACCGCGC TCCTCTTCTT CTGCCTGCCC 660 ATGGCCATCA TGAGCGTGCT CTACCTGCTC ATTGGGCTGC GACTGCGGCG GGAGAGGCTG 720 CTGCTCATGC AGGAGGCCAA GGGCAGGGGC TCTGCAGCAG CCAGGTCCAG ATACACCTGC 780 AGGCTCCAGC AGCACGATCG GGGCCGGAGA CAAGTGAAGA ACATGCTGTT TGTCCTGGTC 840 20 GTGGTGTTTG GCATCTGCTG GGCCCCGTTC CACGCCGACC GCGTCATGTG GAGCGTCGTG 900 TCACAGTGGA CAGATGGCCT GCACCTGGCC TTCCAGCACG TGCACGTCAT CTCCGGCATC 960 TTCTTCTACC TGGGCTCGGC GGCCAACCCC GTGCTCTATA GCCTCATGTC CAGCCGCTTC 1020 CGAGAGACCT TCCAGGAGGC CCTGTGCCTC GGGGCCTGCT GCCATCGCCT CAGACCCCGC 1080 CACAGCTCCC ACAGCCTCAG CAGGATGACC ACAGGCAGCA CCCTGTGTGA TGTGGGCTCC 1140 25 CTGGGCAGCT GGGTCCACCC CCTGGCTGGG AACGATGGCC CAGAGGCGCA GCAAGAGACC 1200

1212

(225) INFORMATION FOR SEQ ID NO:224:

GATCCATCCT GA

30

(i) SECUENCE CHARACTERISTICS:

(A) LENGTH: 403 amino acids

(B) TYPE: amino acid

189

(C) STRANDEDNESS:

(D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: protein

10

30

(xi) SEQUENCE DESCRIPTION: SEO TD NO:224:

5 Met Ala Cys Asn Gly Ser Ala Ala Arg Gly His Phe Asp Pro Glu Asp 1 5 10 15

Leu Asn Leu Thr Asp Glu Ala Leu Arg Leu Lys Tyr Leu Gly Pro Gln \$20\$

Gln Thr Glu Leu Phe Met Pro Ile Cys Ala Thr Tyr Leu Leu Ile Phe 35 40 45

Val Gly Ala Val Gly Asn Gly Leu Thr Cys Leu Val Ile Leu Arg 50  $\,$  55  $\,$  60  $\,$ 

His Lys Ala Met Arg Thr Pro Thr Asn Tyr Tyr Leu Phe Ser Leu Ala 65 70 75 80

Val Ser Asp Leu Leu Val Leu Leu Val Gly Leu Pro Leu Glu Leu Tyr 85 90 95

Glu Met Trp His Asn Tyr Pro Phe Leu Leu Gly Val Gly Gly Cys Tyr 100 105 110

Phe Arg Thr Leu Leu Phe Glu Met Val Cys Leu Ala Ser Val Leu Asn  $20 \\ 115 \\ 120 \\ 125$ 

Val Thr Ala Leu Ser Val Glu Arg Tyr Val Ala Val Val His Pro Leu 130 135 140

Gln Ala Arg Ser Met Val Thr Arg Ala His Val Arg Arg Val Leu Gly 145 \$150\$

25 Ala Val Trp Gly Leu Ala Met Leu Cys Ser Leu Pro Asn Thr Ser Leu 165 170 175

His Gly Ile Arg Gln Leu His Val Pro Cys Arg Gly Pro Val Pro Asp 180 185 190

Ser Ala Val Cys Met Leu Val Arg Pro Arg Ala Leu Tyr Asn Met Val 195 200 205

Val Gln Thr Thr Ala Leu Leu Phe Phe Cys Leu Pro Met Ala Ile Met 210 \$215\$

Ser Val Leu Tyr Leu Leu Ile Gly Leu Arg Leu Arg Glu Arg Leu 225 \$230\$

35 Leu Leu Met Gln Glu Ala Lys Gly Arg Gly Ser Ala Ala Ala Arg Ser 245 250 255

|    |            |                          |                   |                      |                     |                       |                     | -          |            |            |            |            |            |            |            |            |    |
|----|------------|--------------------------|-------------------|----------------------|---------------------|-----------------------|---------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|----|
|    | Arg        | Tyr                      | Thr               | Cys<br>260           | Arg                 | Leu                   | Gln                 | Gln        | His<br>265 | Asp        | Arg        | Gly        | Arg        | Arg<br>270 | Gln        | Val        |    |
|    | Lys        | Lys                      | Met<br>275        | Leu                  | Phe                 | Val                   | Leu                 | Val<br>280 | Val        | Val        | Phe        | Gly        | Ile<br>285 | Cys        | Trp        | Ala        |    |
| 5  | Pro        | Phe<br>290               | His               | Ala                  | Asp                 | Arg                   | Val<br>295          | Met        | Trp        | Ser        | Val        | Val        | Ser        | Gln        | Trp        | Thr        |    |
|    | Asp<br>305 | Gly                      | Leu               | His                  | Leu                 | Ala<br>310            | Phe                 | Gln        | His        | Val        | His<br>315 | Val        | Ile        | Ser        | Gly        | Ile<br>320 |    |
| 10 | Phe        | Phe                      | Tyr               | Leu                  | Gly<br>325          | Ser                   | Ala                 | Ala        | Asn        | Pro<br>330 | Val        | Leu        | Tyr        | Ser        | Leu<br>335 | Met        |    |
|    | Ser        | Ser                      | Arg               | Phe<br>340           | Arg                 | Glu                   | Thr                 | Phe        | Gln<br>345 | Glu        | Ala        | Leu        | Cys        | Leu<br>350 | Gly        | Ala        |    |
|    | Cys        | Cys                      | His<br>355        | Arg                  | Leu                 | Arg                   | Pro                 | Arg<br>360 | His        | Ser        | Ser        | His        | Ser<br>365 | Leu        | Ser        | Arg        |    |
| 15 | Met        | Thr<br>370               | Thr               | Gly                  | Ser                 | Thr                   | Leu<br>375          | Cys        | Asp        | Val        | Gly        | Ser<br>380 | Leu        | Gly        | Ser        | Trp        |    |
|    | Val<br>385 | His                      | Pro               | Leu                  | Ala                 | Gly<br>390            | Asn                 | Asp        | Gly        | Pro        | Glu<br>395 | Ala        | Gln        | Gln        | Glu        | Thr<br>400 |    |
| 20 | Asp        | Pro                      | Ser               |                      |                     |                       |                     |            |            |            |            |            |            |            |            |            |    |
|    | (226) INE  | ORM                      | TION              | FOF                  | SEÇ                 | ID                    | NO:2                | 225:       |            |            |            |            |            |            |            |            |    |
| 25 |            | (A)<br>(B)<br>(C)<br>(D) | LEN<br>TYP<br>STR | GTH:<br>E: r<br>ANDE | 109<br>ucle<br>DNES | eic a<br>S: s<br>inea | se p<br>cid<br>ingl | airs<br>.e |            |            |            |            |            |            |            |            |    |
|    | (ii        | .) MC                    | LECU              | LE T                 | YPE:                | DNA                   | (ge                 | nomi       | .c)        |            |            |            |            |            |            |            |    |
|    | ix)        | ) SE                     | QUEN              | ICE I                | ESCR                | IPTI                  | ON:                 | SEQ        | ID N       | 0:22       | 5:         |            |            |            |            |            |    |
|    | ATGGGGAAC  |                          |                   |                      |                     |                       |                     |            |            |            |            |            |            |            |            |            | 60 |
| 30 | CAGACGCTG  |                          |                   |                      |                     |                       |                     |            |            |            |            |            |            |            |            |            | 20 |
|    | CTGTCCCTC  |                          |                   |                      |                     |                       |                     |            |            |            |            |            |            |            |            |            | 80 |
|    | TGCAACCTG  |                          |                   |                      |                     |                       |                     |            |            |            |            |            |            |            |            |            | 40 |
|    | GTGCTGCAG  |                          |                   |                      |                     |                       |                     |            |            |            |            |            |            |            |            |            | 00 |
|    | CTGTACGAG  |                          |                   |                      |                     |                       |                     |            |            |            |            |            |            |            |            |            | 60 |
| 35 | CTGGCTGTG  | G CC                     | CATC              | CCTT                 | CCG                 | CTTC                  | CAC                 | CAGT       | TCCG       | GA C       | CCTG       | AAGG       | C GG       | CCGT       | CGGC       | 4          | 20 |

|    | GTCAGCGT  | GG T                 | CATC                             | TGGG                                      | CA               | AGGA                        | GCTG                | CTG           | ACCA      | GCA       | TCTA      | CTTC      | CT G      | ATGC | ACGA      | G 4       | 80 |
|----|-----------|----------------------|----------------------------------|-------------------------------------------|------------------|-----------------------------|---------------------|---------------|-----------|-----------|-----------|-----------|-----------|------|-----------|-----------|----|
|    | GAGGTCAT  | CG A                 | GGAC                             | GAGA                                      | A CC             | AGCA                        | CCGC                | GTG           | TGCT      | TTG       | AGCA      | CTAC      | cc c      | ATCC | AGGC      | A 5       | 40 |
|    | TGGCAGCG  | cc c                 | CATC.                            | AACT                                      | CT               | ACCG                        | CTTC                | CTG           | GTGG      | GCT       | TCCT      | CTTC      | cc c      | ATCT | GCCT      | G 6       | 00 |
|    | CTGCTGGC  | GT C                 | CTAC                             | CAGG                                      | CA               | TCCT                        | GCGC                | GCC           | GTGC      | GCC       | GGAG      | CCAC      | GG C      | ACCC | AGAA      | G 6       | 60 |
| 5  | AGCCGCAA  | GG A                 | CCAG.                            | ATCA                                      | 4 GC             | GGCT                        | GGTG                | CTC.          | AGCA      | CCG       | TGGT      | CATC      | TT C      | CTGG | CCTG      | C 7       | 20 |
|    | TTCCTGCC  | CT A                 | CCAC                             | GTGT:                                     | GC               | TGCT                        | GGTG                | CGC.          | AGCG      | TCT       | GGGA      | GGCC      | AG C      | TGCG | ACTT      | C 7       | 80 |
|    | GCCAAGGG  | CG T                 | TTTC                             | AACGO                                     | CT               | ACCA                        | CTTC                | TCC           | CTCC      | TGC       | TCAC      | CAGC      | TT C      | AACT | GCGT      | C 8       | 40 |
|    | GCCGACCC  | CG T                 | GCTC'                            | TACTO                                     | CT               | TCGT                        | CAGC                | GAG.          | ACCA      | CCC       | ACCG      | GGAC      | CT G      | GCCC | GCCT      | C 9       | 00 |
|    | CGCGGGGC  | CT G                 | CCTG                             | GCCT                                      | cc               | TCAC                        | CTGC                | TCC.          | AGGA      | CCG       | GCCG      | GGCC.     | AG G      | GAGG | CCTA      | C 9       | 60 |
| 10 | CCGCTGGG  | TG C                 | cccc                             | GAGGG                                     | CT               | CCGG                        | GAAA                | AGC           | 3GGG      | ccc       | AGGG'     | TGAG      | ga g      | CCCG | AGCT      | 3 10      | 20 |
|    | TTGACCAA  | GC T                 | CCAC                             | CCGGC                                     | CT               | TCCA                        | GACC                | CCT           | AACT      | CGC       | CAGG      | STCG      | GG C      | GGGT | rccc      | 2 10      | 80 |
|    | ACGGGCAG  | GT T                 | GGCC'                            | TAG                                       |                  |                             |                     |               |           |           |           |           |           |      |           | 10        | 98 |
|    | (227) IN  | FORM                 | ATIO                             | N FOR                                     | SE               | QID                         | NO:                 | 226:          |           |           |           |           |           |      |           |           |    |
| 15 |           | (A<br>(B<br>(C<br>(D | ) LET<br>) TYI<br>) STI<br>) TOI | CE CH<br>NGTH:<br>PE: a<br>RANDE<br>POLOG | 36<br>min<br>DNE | 5 am<br>5 ac<br>SS:<br>not: | ino a<br>id<br>rele | acid:<br>vant | S         |           |           |           |           |      |           |           |    |
|    |           |                      |                                  | JLE T                                     |                  | -                           |                     |               |           |           |           |           |           |      |           |           |    |
| 20 |           |                      |                                  | NCE I                                     |                  |                             |                     |               |           |           |           |           |           |      |           |           |    |
|    | Met<br>1  | Gly                  | Asn                              | Ile                                       | Thr<br>5         | Ala                         | Asp                 | Asn           | Ser       | Ser<br>10 | Met       | Ser       | Cys       | Thr  | Ile<br>15 | Asp       |    |
|    | His       | Thr                  | Ile                              | His<br>20                                 | Gln              | Thr                         | Leu                 | Ala           | Pro<br>25 | Val       | Val       | Tyr       | Val       | Thr  | Val       | Leu       |    |
| 25 | Val       | Val                  | Gly<br>35                        | Phe                                       | Pro              | Ala                         | Asn                 | Cys<br>40     | Leu       | Ser       | Leu       | Tyr       | Phe<br>45 | Gly  | Tyr       | Leu       |    |
|    | Gln       | Ile<br>50            | Lys                              | Ala                                       | Arg              | Asn                         | Glu<br>55           | Leu           | Gly       | Val       | Tyr       | Leu<br>60 | Cys       | Asn  | Leu       | Thr       |    |
| 30 | Val<br>65 | Ala                  | Asp                              | Leu                                       | Phe              | Tyr<br>70                   | Ile                 | Сув           | Ser       | Leu       | Pro<br>75 | Phe       | Trp       | Leu  | Gln       | Tyr<br>80 |    |
|    | Val       | Leu                  | Gln                              | His                                       | Asp<br>85        | Asn                         | Trp                 | Ser           | His       | Gly<br>90 | Asp       | Leu       | Ser       | Cys  | Gln<br>95 | Val       |    |
|    | Сув       | Gly                  | Ile                              | Leu                                       | Leu              | Tyr                         | Glu                 | Asn           | Ile       | Tyr       | Ile       | Ser       | Val       | Gly  | Phe       | Leu       |    |

192

|    |            |            |            | 100        |            |            |            |            | 105        |            |            |            |            | 110        |            |            |
|----|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    | Cys        | Cys        | Ile<br>115 | Ser        | Val        | Asp        | Arg        | Tyr<br>120 | Leu        | Ala        | Val        | Ala        | His<br>125 | Pro        | Phe        | Arg        |
| 5  | Phe        | His<br>130 | Gln        | Phe        | Arg        | Thr        | Leu<br>135 | Lys        | Ala        | Ala        | Val        | Gly<br>140 | Val        | Ser        | Val        | Val        |
|    | Ile<br>145 | Trp        | Ala        | Lys        | Glu        | Leu<br>150 | Leu        | Thr        | Ser        | Ile        | Tyr<br>155 | Phe        | Leu        | Met        | His        | Glu<br>160 |
|    | Glu        | Val        | Ile        | Glu        | Asp<br>165 | Glu        | Asn        | Gln        | His        | Arg<br>170 | Val        | Cys        | Phe        | Glu        | His<br>175 | Tyr        |
| 10 | Pro        | Ile        | Gln        | Ala<br>180 | Trp        | Gln        | Arg        | Ala        | Ile<br>185 | Asn        | Tyr        | Tyr        | Arg        | Phe<br>190 | Leu        | Val        |
|    | Gly        | Phe        | Leu<br>195 | Phe        | Pro        | Ile        | Сув        | Leu<br>200 | Leu        | Leu        | Ala        | Ser        | Tyr<br>205 | Gln        | Gly        | Ile        |
| 15 | Leu        | Arg<br>210 | Ala        | Val        | Arg        | Arg        | Ser<br>215 | His        | Gly        | Thr        | Gln        | Lys<br>220 | Ser        | Arg        | Lys        | Asp        |
|    | Gln<br>225 | Ile        | Lys        | Arg        | Leu        | Val<br>230 | Leu        | Ser        | Thr        | Val        | Val<br>235 | Ile        | Phe        | Leu        | Ala        | Cys<br>240 |
|    | Phe        | Leu        | Pro        | Tyr        | His<br>245 | Val        | Leu        | Leu        | Leu        | Val<br>250 | Arg        | Ser        | Val        | Trp        | Glu<br>255 | Ala        |
| 20 | Ser        | Cys        | Asp        | Phe<br>260 | Ala        | Lys        | Gly        | Val        | Phe<br>265 | Asn        | Ala        | Tyr        | His        | Phe<br>270 | Ser        | Leu        |
|    | Leu        | Leu        | Thr<br>275 | Ser        | Phe        | Asn        | Cys        | Val<br>280 | Ala        | Asp        | Pro        | Val        | Leu<br>285 | Tyr        | Cys        | Phe        |
| 25 | Val        | Ser<br>290 | Glu        | Thr        | Thr        | His        | Arg<br>295 | Asp        | Leu        | Ala        | Arg        | Leu<br>300 | Arg        | Gly        | Ala        | Cys        |
|    | Leu<br>305 | Ala        | Phe        | Leu        | Thr        | Cys<br>310 | Ser        | Arg        | Thr        | Gly        | Arg<br>315 | Ala        | Arg        | Glu        | Ala        | Tyr<br>320 |
|    | Pro        | Leu        | Gly        | Ala        | Pro<br>325 | Glu        | Ala        | Ser        | Gly        | Lys<br>330 | Ser        | Gly        | Ala        | Gln        | Gly<br>335 | Glu        |
| 30 | Glu        | Pro        | Glu        | Leu<br>340 | Leu        | Thr        | Lys        | Leu        | His<br>345 | Pro        | Ala        | Phe        | Gln        | Thr<br>350 | Pro        | Asn        |
|    | Ser        | Pro        | Gly<br>355 | Ser        | Gly        | Gly        | Phe        | Pro<br>360 | Thr        | Gly        | Arg        | Leu        | Ala<br>365 |            |            |            |
|    | (228) IN   | FORMA      | TION       | FOF        | SEC        | ) ID       | NO:2       | 27:        |            |            |            |            |            |            |            |            |
| 35 | (i)        | SEC        | QUENC      | E CF       | IARAC      | TER        | STIC       | S:         |            |            |            |            |            |            |            |            |

(A) LENGTH: 1416 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: single (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 227:

ATGGATATTC TTTGTGAAGA AAATACTTCT TTGAGCTCAA CTACGAACTC CCTAATGCAA 60 TTAAATGATG ACAACAGGCT CTACAGTAAT GACTTTAACT CCGGAGAAGC TAACACTTCT 120 GATGCATTTA ACTGGACAGT CGACTCTGAA AATCGAACCA ACCTTTCCTG TGAAGGGTGC 180 CTCTCACCGT CGTGTCTCTC CTTACTTCAT CTCCAGGAAA AAAACTGGTC TGCTTTACTG 240 ACAGCCGTAG TGATTATTCT AACTATTGCT GGAAACATAC TCGTCATCAT GGCAGTGTCC 300 CTAGAGAAAA AGCTGCAGAA TGCCACCAAC TATTTCCTGA TGTCACTTGC CATAGCTGAT 360 ATGCTGCTGG GTTTCCTTGT CATGCCCGTG TCCATGTTAA CCATCCTGTA TGGGTACCGG 420 TGGCCTCTGC CGAGCAAGCT TTGTGCAGTC TGGATTTACC TGGACGTGCT CTTCTCCACG 480 GCCTCCATCA TGCACCTCTG CGCCATCTCG CTGGACCGCT ACGTCGCCAT CCAGAATCCC 540 ATCCACCACA GCCGCTTCAA CTCCAGAACT AAGGCATTTC TGAAAATCAT TGCTGTTTGG 600 15 ACCATATCAG TAGGTATATC CATGCCAATA CCAGTCTTTG GGCTACAGGA CGATTCGAAG 660 GTCTTTAAGG AGGGGAGTTG CTTACTCGCC GATGATAACT TTGTCCTGAT CGGCTCTTTT 720 GTGTCATTTT TCATTCCCTT AACCATCATG GTGATCACCT ACTTTCTAAC TATCAAGTCA 780 CTCCAGAAAG AAGCTACTTT GTGTGTAAGT GATCTTGGCA CACGGGCCAA ATTAGCTTCT 840 TTCAGCTTCC TCCCTCAGAG TTCTTTGTCT TCAGAAAAGC TCTTCCAGCG GTCGATCCAT 900 20 AGGGAGCCAG GGTCCTACAC AGGCAGGAGG ACTATGCAGT CCATCAGCAA TGAGCAAAAG 960 GCAAAGAAGG TGCTGGGCAT CGTCTTCTTC CTGTTTGTGG TGATGTGGTG CCCTTTCTTC ATCACAAACA TCATGGCCGT CATCTGCAAA GAGTCCTGCA ATGAGGATGT CATTGGGGCC 1080 CTGCTCAATG TGTTTGTTTG GATCGGTTAT CTCTCTTCAG CAGTCAACCC ACTAGTCTAC ACACTGTTCA ACAAGACCTA TAGGTCAGCC TTTTCACGGT ATATTCAGTG TCAGTACAAG 1200 GAAAACAAAA AACCATTGCA GTTAATTTTA GTGAACACAA TACCGGCTTT GGCCTACAAG TCTAGCCAAC TTCAAATGGG ACAAAAAAA AATTCAAAGC AAGATGCCAA GACAACAGAT 1320 AATGACTGCT CAATGGTTGC TCTAGGAAAG CAGTATTCTG AAGAGGCTTC TAAAGACAAT 1380 AGCGACGGAG TGAATGAAAA GGTGAGCTGT GTGTGA 1416

(229) INFORMATION FOR SEQ ID NO:228:

| 5  |   |            | (A<br>(B<br>(C<br>(D | ) LE<br>) TY<br>) ST<br>) TO | NGTH<br>PE:<br>RAND<br>POLO | : 47<br>amin<br>EDNE<br>GY: | not        | ino<br>id<br>rele | acid<br>vant | s          |           |            |            |           |            |           |            |
|----|---|------------|----------------------|------------------------------|-----------------------------|-----------------------------|------------|-------------------|--------------|------------|-----------|------------|------------|-----------|------------|-----------|------------|
|    |   |            |                      |                              |                             |                             | : pr       |                   |              |            |           |            |            |           |            |           |            |
|    |   | (x         | i) S                 | EQUE:                        | NCE :                       | DESC                        | RIPT       | ION:              | SEQ          | 1D :       | NO:2      | 28:        |            |           |            |           |            |
| 10 | 1 | Met        | Asp                  | Ile                          | Leu<br>5                    | Cys                         | Glu        | Glu               |              | Thr        | Ser       | Leu        | Ser        |           | Thr        | Thr       | Asn        |
|    |   | Ser        |                      | Met<br>20                    | Gln                         | Leu                         | Asn        |                   |              |            | Arg       | Leu        |            | Ser<br>30 | Asn        | Asp       | Phe        |
|    |   | Asn        | Ser                  | Gly<br>35                    | Glu                         | Ala                         | Asn        | Thr               | Ser<br>40    | Asp        | Ala       | Phe        | Asn        | Trp<br>45 | Thr        | Val       | Asp        |
| 15 |   | Ser        | Glu<br>50            | Asn                          | Arg                         | Thr                         | Asn        | Leu<br>55         | Ser          | Cys        | Glu       | Gly        | Cys<br>60  | Leu       | Ser        | Pro       | Ser        |
|    |   | Суз<br>65  | Leu                  | Ser                          | Leu                         | Leu                         | His<br>70  | Leu               | Gln          | Glu        | Lys       | Asn<br>75  | Trp        | Ser       | Ala        | Leu       | Leu<br>80  |
| 20 |   | Thr        | Ala                  | Val                          | Val                         | Ile<br>85                   | Ile        | Leu               | Thr          | Ile        | Ala<br>90 | Gly        | Asn        | Ile       | Leu        | Val<br>95 | 1le        |
|    |   | Met        | Ala                  | Val                          | Ser<br>100                  | Leu                         | Glu        | Lys               | Lys          | Leu<br>105 | Gln       | Asn        | Ala        | Thr       | Asn<br>110 | Tyr       | Phe        |
|    |   |            |                      | 115                          |                             |                             | Ile        |                   | 120          |            |           |            |            | 125       |            |           |            |
| 25 |   | Pro        | Val<br>130           | Ser                          | Met                         | Leu                         | Thr        | Ile<br>135        | Leu          | Tyr        | Gly       | Tyr        | Arg<br>140 | Trp       | Pro        | Leu       | Pro        |
|    |   | 145        |                      |                              |                             |                             | Val<br>150 |                   |              |            |           | 155        |            |           |            |           | 160        |
| 30 |   |            |                      |                              |                             | 165                         | Leu        |                   |              |            | 170       |            |            |           |            | 175       |            |
|    |   |            |                      |                              | 180                         |                             | His        |                   |              | 185        |           |            |            |           | 190        |           |            |
|    |   |            |                      | 195                          |                             |                             | Ala        |                   | 200          |            |           |            |            | 205       |            |           |            |
| 35 |   | Pro        | 210                  |                              |                             |                             |            | 215               |              |            |           |            | 220        |           |            |           |            |
|    |   | Gly<br>225 | Ser                  | Cys                          | Leu                         | Leu                         | Ala<br>230 | Asp               | Asp          | Asn        | Phe       | Val<br>235 | Leu        | 1le       | Gly        | Ser       | Phe<br>240 |

|    | Val        | Ser               | Phe               | Phe          | Ile<br>245          | Pro                  | Leu                 | Thr        | Ile        | Met<br>250 | Val        | Ile        | Thr        | Tyr        | Phe<br>255 | Leu        |
|----|------------|-------------------|-------------------|--------------|---------------------|----------------------|---------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    | Thr        | Ile               | Lys               | Ser<br>260   | Leu                 | Gln                  | Lys                 | Glu        | Ala<br>265 | Thr        | Leu        | Cys        | Val        | Ser<br>270 | Asp        | Leu        |
| 5  | Gly        | Thr               | Arg<br>275        | Ala          | Lys                 | Leu                  | Ala                 | Ser<br>280 | Phe        | Ser        | Phe        | Leu        | Pro<br>285 | Gln        | Ser        | Ser        |
|    | Leu        | Ser<br>290        | Ser               | Glu          | Lys                 | Leu                  | Phe<br>295          | Gln        | Arg        | Ser        | Ile        | His<br>300 | Arg        | Glu        | Pro        | Gly        |
| 10 | Ser<br>305 | Tyr               | Thr               | Gly          | Arg                 | Arg<br>310           | Thr                 | Met        | Gln        | Ser        | Ile<br>315 | Ser        | Asn        | Glu        | Gln        | Lys<br>320 |
|    | Ala        | Lys               | Lys               | Val          | Leu<br>325          | Gly                  | Ile                 | Val        | Phe        | Phe<br>330 | Leu        | Phe        | Val        | Val        | Met<br>335 | Trp        |
|    | Cys        | Pro               | Phe               | Phe<br>340   | Ile                 | Thr                  | Asn                 | Ile        | Met<br>345 | Ala        | Val        | Ile        | Cys        | Lys<br>350 | Glu        | Ser        |
| 15 | Cys        | Asn               | Glu<br>355        | Asp          | Val                 | Ile                  | Gly                 | Ala<br>360 | Leu        | Leu        | Asn        | Val        | Phe<br>365 | Val        | Trp        | Ile        |
|    | Gly        | Tyr<br>370        | Leu               | Ser          | Ser                 | Ala                  | Val<br>375          | Asn        | Pro        | Leu        | Val        | Tyr<br>380 | Thr        | Leu        | Phe        | Asn        |
| 20 | Lys<br>385 | Thr               | Tyr               | Arg          | Ser                 | Ala<br>390           | Phe                 | Ser        | Arg        | Tyr        | Ile<br>395 | Gln        | Cys        | Gln        | Tyr        | Lys<br>400 |
|    | Glu        | Asn               | Lys               | Lys          | Pro<br>405          | Leu                  | Gln                 | Leu        | Ile        | Leu<br>410 | Val        | Asn        | Thr        | Ile        | Pro<br>415 | Ala        |
|    | Leu        | Ala               | Tyr               | Lys<br>420   | Ser                 | Ser                  | Gln                 |            | Gln<br>425 | Met        | Gly        | Gln        | Lys        | Lys<br>430 | Asn        | Ser        |
| 25 |            | Gln               | 435               |              |                     |                      |                     | 440        |            |            |            |            | 445        |            |            |            |
|    | Gly        | Lys<br>450        | Gln               | Tyr          | Ser                 | Glu                  | Glu<br>455          | Ala        | Ser        | Lys        |            | Asn<br>460 | Ser        | Asp        | Gly        | Val        |
| 30 | Asn<br>465 | Glu               | Lys               | Val          | Ser                 | Cys<br>470           | Val                 |            |            |            |            |            |            |            |            |            |
|    | (230) INI  | FORMA             |                   |              |                     |                      |                     |            |            |            |            |            |            |            |            |            |
| 35 | (1)        | (A)<br>(B)<br>(C) | LEN<br>TYF<br>STR | GTH:<br>E: n | 137<br>ucle<br>DNES | 7 ba<br>ic a<br>S: s | se p<br>cid<br>ingl | airs       |            |            |            |            |            |            |            |            |
|    | (ii        | L) MC             | LECU              | LE I         | YPE:                | DNA                  | (ge                 | nomi       | c)         |            |            |            |            |            |            |            |

|  | DESCRIPTION - |  |  |
|--|---------------|--|--|

|   | ATGGTGAACC | TGAGGAATGC | GGTGCATTCA | TTCCTTGTGC | ACCTAATTGG | CCTATTGGTT | 60   |
|---|------------|------------|------------|------------|------------|------------|------|
|   | TGGCAATGTG | ATATTTCTGT | GAGCCCAGTA | GCAGCTATAG | TAACTGACAT | TTTCAATACC | 120  |
|   | TCCGATGGTG | GACGCTTCAA | ATTCCCAGAC | GGGGTACAAA | ACTGGCCAGC | ACTTTCAATC | 180  |
| 5 | GTCATCATAA | TAATCATGAC | AATAGGTGGC | AACATCCTTG | TGATCATGGC | AGTAAGCATG | 240  |
|   | GAAAAGAAAC | TGCACAATGC | CACCAATTAC | TTCTTAATGT | CCCTAGCCAT | TGCTGATATG | 300  |
|   | CTAGTGGGAC | TACTTGTCAT | GCCCCTGTCT | CTCCTGGCAA | TCCTTTATGA | TTATGTCTGG | 360  |
|   | CCACTACCTA | GATATTTGTG | CCCCGTCTGG | ATTTCTTTAG | ATGTTTTATT | TTCAACAGCG | 420  |
|   | TCCATCATGC | ACCTCTGCGC | TATATCGCTG | GATCGGTATG | TAGCAATACG | TAATCCTATT | 480  |
| 0 | GAGCATAGCC | GTTTCAATTC | GCGGACTAAG | GCCATCATGA | AGATTGCTAT | TGTTTGGGCA | 540  |
|   | ATTTCTATAG | GTGTATCAGT | TCCTATCCCT | GTGATTGGAC | TGAGGGACGA | AGAAAAGGTG | 600  |
|   | TTCGTGAACA | ACACGACGTG | CGTGCTCAAC | GACCCAAATT | TCGTTCTTAT | TGGGTCCTTC | 660  |
|   | GTAGCTTTCT | TCATACCGCT | GACGATTATG | GTGATTACGT | ATTGCCTGAC | CATCTACGTT | 720  |
|   | CTGCGCCGAC | AAGCTTTGAT | GTTACTGCAC | GGCCACACCG | AGGAACCGCC | TGGACTAAGT | 780  |
| 5 | CTGGATTTCC | TGAAGTGCTG | CAAGAGGAAT | ACGGCCGAGG | AAGAGAACTC | TGCAAACCCT | 840  |
|   | AACCAAGACC | AGAACGCACG | CCGAAGAAAG | AAGAAGGAGA | GACGTCCTAG | GGGCACCATG | 900  |
|   | CAGGCTATCA | ACAATGAAAG | AAAAGCTAAG | AAAGTCCTTG | GGATTGTTTT | CTTTGTGTTT | 960  |
|   | CTGATCATGT | GGTGCCCATT | TTTCATTACC | AATATTCTGT | CTGTTCTTTG | TGAGAAGTCC | 1020 |
|   | TGTAACCAAA | AGCTCATGGA | AAAGCTTCTG | AATGTGTTTG | TTTGGATTGG | CTATGTTTGT | 1080 |
| 0 | TCAGGAATCA | ATCCTCTGGT | GTATACTCTG | TTCAACAAAA | TTTACCGAAG | GGCATTCTCC | 1140 |
|   | AACTATTTGC | GTTGCAATTA | TAAGGTAGAG | AAAAAGCCTC | CTGTCAGGCA | GATTCCAAGA | 1200 |
|   | GTTGCCGCCA | CTGCTTTGTC | TGGGAGGGAG | CTTAATGTTA | ACATTTATCG | GCATACCAAT | 1260 |
|   | GAACCGGTGA | TCGAGAAAGC | CAGTGACAAT | GAGCCCGGTA | TAGAGATGCA | AGTTGAGAAT | 1320 |
|   | TTAGAGTTAC | CAGTAAATCC | CTCCAGTGTG | GTTAGCGAAA | GGATTAGCAG | TGTGTGA    | 1377 |
|   |            |            |            |            |            |            |      |

<sup>25 (231)</sup> INFORMATION FOR SEQ ID NO:230:

<sup>(</sup>i) SEQUENCE CHARACTERISTICS:

<sup>(</sup>A) LENGTH: 458 amino acids

<sup>(</sup>B) TYPE: amino acid

<sup>(</sup>C) STRANDEDNESS:

197

| (D) | TOPOLOGY: | not | relevant |
|-----|-----------|-----|----------|
|-----|-----------|-----|----------|

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:230:

Met Val Asn Leu Arg Asn Ala Val His Ser Phe Leu Val His Leu Ile 5 10 Gly Leu Leu Val Trp Gln Cys Asp Ile Ser Val Ser Pro Val Ala Ala Ile Val Thr Asp Ile Phe Asn Thr Ser Asp Gly Gly Arg Phe Lys Phe 40 10 Pro Asp Gly Val Gln Asn Trp Pro Ala Leu Ser Ile Val Ile Ile Ile Ile Met Thr Ile Gly Gly Asn Ile Leu Val Ile Met Ala Val Ser Met 75 Glu Lys Lys Leu His Asn Ala Thr Asn Tyr Phe Leu Met Ser Leu Ala 15 90 Ile Ala Asp Met Leu Val Gly Leu Leu Val Met Pro Leu Ser Leu Leu Ala Ile Leu Tyr Asp Tyr Val Trp Pro Leu Pro Arg Tyr Leu Cys Pro 120 20 Val Trp Ile Ser Leu Asp Val Leu Phe Ser Thr Ala Ser Ile Met His 130 135 Leu Cys Ala Ile Ser Leu Asp Arg Tyr Val Ala Ile Arg Asn Pro Ile 155 Glu His Ser Arg Phe Asn Ser Arg Thr Lys Ala Ile Met Lys Ile Ala 25 170 Ile Val Trp Ala Ile Ser Ile Gly Val Ser Val Pro Ile Pro Val Ile 180 185 Gly Leu Arg Asp Glu Glu Lys Val Phe Val Asn Asn Thr Thr Cys Val 200 30 Leu Asn Asp Pro Asn Phe Val Leu Ile Gly Ser Phe Val Ala Phe Phe 210 215 Ile Pro Leu Thr Ile Met Val Ile Thr Tyr Cys Leu Thr Ile Tyr Val

230

245

35

Leu Arg Arg Gln Ala Leu Met Leu Leu His Gly His Thr Glu Glu Pro

250 Pro Gly Leu Ser Leu Asp Phe Leu Lys Cys Cys Lys Arg Asn Thr Ala

|    |            |                   |                            | 260                    |              |                      |                        |            | 265        |            |            |            |            | 270        |            |            |     |
|----|------------|-------------------|----------------------------|------------------------|--------------|----------------------|------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----|
|    | Glu        | Glu               | Glu<br>275                 | Asn                    | Ser          | Ala                  | Asn                    | Pro<br>280 | Asn        | Gln        | Asp        | Gln        | Asn<br>285 | Ala        | Arg        | Arg        |     |
| 5  | Arg        | Lys<br>290        |                            | Lys                    | Glu          | Arg                  | Arg<br>295             | Pro        | Arg        | Gly        | Thr        | Met<br>300 | Gln        | Ala        | Ile        | Asn        |     |
|    | Asn<br>305 | Glu               | Arg                        | Lys                    | Ala          | Lys<br>310           |                        | Val        | Leu        | Gly        | Ile<br>315 | Val        | Phe        | Phe        | Val        | Phe<br>320 |     |
|    | Leu        | Ile               | Met                        | Trp                    | Cys<br>325   | Pro                  | Phe                    | Phe        | Ile        | Thr<br>330 | Asn        | Ile        | Leu        | Ser        | Val<br>335 | Leu        |     |
| 10 | Cys        | Glu               | Lys                        | Ser<br>340             | Cys          | Asn                  | Gln                    | Lys        | Leu<br>345 | Met        | Glu        | Lys        | Leu        | Leu<br>350 | Asn        | Val        |     |
|    | Phe        | Val               | Trp<br>355                 | Ile                    | Gly          | Tyr                  | Val                    | Cys<br>360 | Ser        | Gly        | Ile        | Asn        | Pro<br>365 | Leu        | Val        | Tyr        |     |
| 15 | Thr        | Leu<br>370        | Phe                        | Asn                    | Lys          | Ile                  | Tyr<br>375             | Arg        | Arg        | Ala        | Phe        | Ser<br>380 | Asn        | Tyr        | Leu        | Arg        |     |
|    | Cys<br>385 | Asn               | Tyr                        | Lys                    | Val          | Glu<br>390           | Lys                    | Lys        | Pro        | Pro        | Val<br>395 | Arg        | Gln        | Ile        | Pro        | Arg<br>400 |     |
|    | Val        | Ala               | Ala                        | Thr                    | Ala<br>405   | Leu                  | Ser                    | Gly        | Arg        | Glu<br>410 | Leu        | Asn        | Val        | Asn        | Ile<br>415 | Tyr        |     |
| 20 | Arg        | His               | Thr                        | Asn<br>420             | Glu          | Pro                  | Val                    | Ile        | Glu<br>425 | Lys        | Ala        | Ser        | Asp        | Asn<br>430 | Glu        | Pro        |     |
|    | Gly        | Ile               | Glu<br>435                 | Met                    | Gln          | Val                  | Glu                    | Asn<br>440 | Leu        | Glu        | Leu        | Pro        | Val<br>445 | Asn        | Pro        | Ser        |     |
| 25 | Ser        | Val<br>450        | Val                        | Ser                    | Glu          | Arg                  | Ile<br>455             | Ser        | Ser        | Val        |            |            |            |            |            |            |     |
|    | (232) IN   | PORM              | TIOI                       | v FOF                  | SEÇ          | ID.                  | NO:2                   | 31:        |            |            |            |            |            |            |            |            |     |
| 30 | (i)        | (A)<br>(B)<br>(C) | QUENC<br>LEI<br>TYI<br>STI | GTH:<br>PE: r<br>RANDE | 106<br>nucle | 8 ba<br>ic a<br>S: s | ase p<br>acid<br>singl | airs       | ;          |            |            |            |            |            |            |            |     |
|    | (i:        | i.) Mo            | DLECT                      | JLE 7                  | YPE:         | DNA                  | ı (ge                  | nomi       | .c)        |            |            |            |            |            |            |            |     |
|    | (x         | i) si             | QUE                        | CE I                   | ESCF         | RIPTI                | ON:                    | SEQ        | ID N       | 0:23       | 1:         |            |            |            |            |            |     |
|    | ATGGATCA   | T TO              | CCT                        | BAATO                  | AGT          | GAC                  | AGAA                   | AACI       | TTGA       | GT A       | CGAT       | GATI       | T GO       | CTG        | AGGCC      | :          | 60  |
| 35 | TGTTATAT   | rg go             | GAC                        | ATCGI                  | GGI          | CTTI                 | rggg                   | ACTO       | TGTI       | CC I       | GTCC       | TATA       | T CI       | ACTO       | CGTC       | 2 1        | 120 |
|    | ATCTTTGC   | A T               | rggco                      | TGGT                   | GGG          | CAAA                 | TTG                    | TTG        | TAGI       | GT I       | TGCC       | CTCA       | C C        | ACAC       | CAAC       | ; 1        | 180 |

|    | AAGCCCAAGA | GTGTCAC                          | CCGA CA             | TTACCTC       | CTGAAC       | CTGG        | CCTT  | TCTG      | A T       | CTGC      | rgtt:     | 240   |
|----|------------|----------------------------------|---------------------|---------------|--------------|-------------|-------|-----------|-----------|-----------|-----------|-------|
|    | GTAGCCACTT | TGCCCTT                          | CTG GA              | CTCACTAT      | TTGATA       | AATG        | AAAA  | GGCC      | T C       | CACA      | ATGC      | 300   |
|    | ATGTGCAAAT | TCACTAC                          | CCGC CT             | CTTCTTC       | ATCGGC       | TTTT        | TTGG  | AGCA      | T A       | TTCT:     | CAT       | 360   |
|    | ACCGTCATCA | GCATTGA                          | ATAG GT             | ACCTGGCC      | ATCGTC       | CTGG        | CCGCC | AACT      | C C       | ATGA      | ACAA      | 420   |
| 5  | CGGACCGTGC | AGCATGG                          | ECGT CA             | CCATCAGC      | CTAGGC       | STCT        | GGGC  | GCAG      | C C       | ATTT:     | rggto     | 3 480 |
|    | GCAGCACCCC | AGTTCAT                          | FGTT CA             | CAAAGCAG      | AAAGAA       | AATG        | AATGO | CTTG      | G T       | GACT      | ACCC      | 540   |
|    | GAGGTCCTCC | AGGAAAT                          | CTG GC              | CCGTGCTC      | CGCAAT       | GTGG        | AAACA | AATT      | т т       | CTTGG     | CTT       | 600   |
|    | CTACTCCCCC | TGCTCAT                          | TAT GA              | STTATTGC      | TACTTC       | AGAA        | TCATO | CAGA      | .C G      | CTGT:     | TTTC      | 660   |
|    | TGCAAGAACC | ACAAGAA                          | AAGC CAA            | AAGCCAAG      | AAACTG.      | ATCC        | TTCTC | GTGG      | T C       | ATCG:     | FGTT      | 720   |
| 0  | TTCCTCTTCT | GGACACC                          | CTA CA              | ACGTTATG      | ATTTTC       | CTGG .      | AGACG | CTTA      | A G       | CTCT      | ATGAC     | 780   |
|    | TTCTTTCCCA | GTTGTGA                          | ACAT GAG            | GAAGGAT       | CTGAGG       | CTGG        | CCCTC | AGTG      | T G       | ACTG      | AGACO     | 840   |
|    | GTTGCATTTA | GCCATTG                          | TTG CC              | GAATCCT       | CTCATC       | TATG        | CATTI | GCTG      | g go      | BAGA      | GTT       | 900   |
|    | AGAAGATACC | TTTACCA                          | ACCT GT             | TGGGAAA       | TGCCTG       | GCTG        | TCCTG | TGTG      | G G       | CGCT      | CAGTO     | 960   |
|    | CACGTTGATT | TCTCCTC                          | CATC TG             | ATCACAA       | AGGAGC.      | AGGC .      | ATGGA | AGTG      | т т       | CTGAC     | CAGO      | 1020  |
| 5  | AATTTTACTT | ACCACAC                          | GAG TG              | ATGGAGAT      | GCATTG       | CTCC        | TTCTC | TGA       |           |           |           | 1068  |
|    | (233) INFO | RMATION                          | FOR SEC             | ID NO:        | 232:         |             |       |           |           |           |           |       |
| 20 |            | (A) LENG<br>(B) TYPE<br>(C) STRA | TH: 35!<br>E: amino |               | acids        |             |       |           |           |           |           |       |
|    | (ii)       | MOLECUL                          | E TYPE              | protein       | n            |             |       |           |           |           |           |       |
|    | (xi)       | SEQUENC                          | CE DESCI            | RIPTION:      | SEQ ID       | NO:2        | 32:   |           |           |           |           |       |
| 25 | Met As     | sp Gln P                         | he Pro              | Glu Ser       | Val Th       | r Glu<br>10 | Asn   | Phe       | Glu       | Tyr       | Asp<br>15 | Asp   |
|    | Leu Al     |                                  | Ala Cys<br>20       | Tyr Ile       | Gly As<br>25 | o Ile       | Val   | Val       | Phe       | Gly<br>30 | Thr       | Val   |
|    | Phe Le     | eu Ser I<br>35                   | Ile Phe             | Tyr Ser       | Val Il       | e Phe       | Ala   |           | Gly<br>45 | Leu       | Val       | Gly   |
| 0  | Asn Le     |                                  | /al Val             | Phe Ala<br>55 | Leu Th       | r Asn       | Ser   | Lys<br>60 | Lys       | Pro       | Lys       | Ser   |
|    | Val Th     | nr Asp I                         | le Tyr              | Leu Leu       | Asn Le       | ı Ala       | Leu   | Ser       | Asp       | Leu       | Leu       | Phe   |

|    | 65            |              |              |            | 70         |            |            |            |            | 75         |            |            |            |            | 80         |
|----|---------------|--------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    | Val A         | a Thr        | Leu          | Pro<br>85  | Phe        | Trp        | Thr        | His        | Tyr<br>90  | Leu        | Ile        | Asn        | Glu        | Lys<br>95  | Gly        |
| 5  | Leu H         | s Asn        | Ala<br>100   | Met        | Cys        | Lys        | Phe        | Thr<br>105 | Thr        | Ala        | Phe        | Phe        | Phe<br>110 |            | Gly        |
|    | Phe Pl        | e Gly<br>115 | Ser          | Ile        | Phe        | Phe        | Ile<br>120 |            | Val        | Ile        | Ser        | Ile<br>125 | Asp        | Arg        | Tyr        |
|    | Leu Al        | a Ile<br>0   | Val          | Leu        | Ala        | Ala<br>135 | Asn        | Ser        | Met        | Asn        | Asn<br>140 | Arg        | Thr        | Val        | Gln        |
| 10 | His Gl<br>145 | y Val        | Thr          | Ile        | Ser<br>150 | Leu        | Gly        | Val        | Trp        | Ala<br>155 | Ala        | Ala        | Ile        | Leu        | Val<br>160 |
|    | Ala Al        | a Pro        | Gln          | Phe<br>165 | Met        | Phe        | Thr        | Lys        | Gln<br>170 | Lys        | Glu        | Asn        | Glu        | Cys<br>175 | Leu        |
| 15 | Gly As        | p Tyr        | Pro<br>180   | Glu        | Val        | Leu        | Gln        | Glu<br>185 | Ile        | Trp        | Pro        | Val        | Leu<br>190 | Arg        | Asn        |
|    | Val Gl        | u Thr<br>195 | Asn          | Phe        | Leu        | Gly        | Phe<br>200 | Leu        | Leu        | Pro        | Leu        | Leu<br>205 | Ile        | Met        | Ser        |
|    | Tyr Cy<br>21  | s Tyr<br>0   | Phe          | Arg        | Ile        | Ile<br>215 | Gln        | Thr        | Leu        | Phe        | Ser<br>220 | Cys        | Lys        | Asn        | His        |
| 20 | Lys Ly<br>225 | s Ala        | Lys          | Ala        | Lys<br>230 | Lys        | Leu        | Ile        | Leu        | Leu<br>235 | Val        | Val        | Ile        | Val        | Phe<br>240 |
|    | Phe Le        | u Phe        |              | Thr<br>245 | Pro        | Tyr        | Asn        | Val        | Met<br>250 | Ile        | Phe        | Leu        | Glu        | Thr<br>255 | Leu        |
| 25 | Lys Le        | u Tyr        | Asp<br>260   | Phe        | Phe        | Pro        | Ser        | Cys<br>265 | Asp        | Met        | Arg        | Lys        | Asp<br>270 | Leu        | Arg        |
|    | Leu Al        | a Leu<br>275 | Ser          | Val        | Thr        | Glu        | Thr<br>280 | Val        | Ala        | Phe        | Ser        | His<br>285 | Cys        | Cys        | Leu        |
|    | Asn Pr<br>29  | o Leu<br>O   | Ile          | Tyr        |            | Phe<br>295 | Ala        | Gly        | Glu        | Lys        | Phe<br>300 | Arg        | Arg        | Tyr        | Leu        |
| 30 | Tyr Hi<br>305 | s Leu        | Tyr          | Gly        | Lys<br>310 | Cys        | Leu        | Ala        | Val        | Leu<br>315 | Cys        | Gly        | Arg        | Ser        | Val<br>320 |
|    | His Va        | l Asp        | Phe          | Ser<br>325 | Ser        | Ser        | Glu        | Ser        | Gln<br>330 | Arg        | Ser        | Arg        | His        | Gly<br>335 | Ser        |
| 35 | Val Le        | ı Ser        | Ser .<br>340 | Asn        | Phe        | Thr        | Tyr        | His<br>345 | Thr        | Ser        | qaA        |            | Asp<br>350 | Ala        | Leu        |
|    | Leu Le        | 1 Leu<br>355 |              |            |            |            |            |            |            |            |            |            |            |            |            |

|    | (234)  | INFORMATION FOR SEQ ID NO:233:                                                                                                                                 |    |
|----|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 5  |        | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear                                   |    |
|    |        | (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                              |    |
|    |        | (iv) ANTI-SENSE: NO                                                                                                                                            |    |
|    |        | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:233:                                                                                                                      |    |
| 10 | GGCTT  | AAGAG CATCATCGTG GTGCTGGTG                                                                                                                                     | 29 |
|    | (235)  | INFORMATION FOR SEQ ID NO:234:                                                                                                                                 |    |
| 15 |        | (i) SEQUENCE CHARACTERISTICS: (A) LEMGTH: 34 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear                                   |    |
|    |        | (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                              |    |
|    |        | (iv) ANTI-SENSE: YES                                                                                                                                           |    |
|    |        | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:234:                                                                                                                      |    |
| 20 | GTCACC | PACCA GCACCACGAT GATGCTCTTA AGCC                                                                                                                               | 34 |
|    | (236)  | INFORMATION FOR SEQ ID NO:235:                                                                                                                                 |    |
| 25 |        | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TyPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear                                   |    |
|    |        | (ii) MOLECULE TYPE: DNA (genomic) (xi) SEQUENCE DESCRIPTION: SEQ ID NO:235:                                                                                    |    |
|    | CAAAGA | AAGT ACTGGGCATC GTCTTCTTCC T                                                                                                                                   | 31 |
| 30 | (237)  | INFORMATION FOR SEQ ID NO:236:                                                                                                                                 |    |
| 35 |        | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) |    |
|    |        |                                                                                                                                                                |    |

202

|    | 202                                                                                                                          |    |
|----|------------------------------------------------------------------------------------------------------------------------------|----|
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:236:                                                                                    |    |
|    | TGCTCTAGAT TCCAGATAGG TGAAAACTTG                                                                                             | 30 |
|    | (238) INFORMATION FOR SEQ ID NO.237:                                                                                         |    |
| 5  | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 50 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear |    |
|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                            |    |
| 10 | (iv) ANTI-SENSE: NO                                                                                                          |    |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:237:                                                                                    |    |
|    | CTAGGGGCAC CATGCAGGCT ATCAACAATG AAAGAAAAGC TAAGAAAGTC                                                                       | 50 |
|    | (239) INFORMATION FOR SEQ ID NO:238:                                                                                         |    |
| 15 | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 50 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear |    |
|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                            |    |
| 20 | (iv) ANTI-SENSE: YES                                                                                                         |    |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:238:                                                                                    |    |
|    | CAAGGACTTT CTTAGCTTTT CTTTCATTGT TGATAGCCTG CATGGTGCCC                                                                       | 50 |
|    | (240) INFORMATION FOR SEQ ID NO:239:                                                                                         |    |
| 25 | (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 base pairs (B) TYPE: nucleic acid (C) STRANDENNESS: single (D) TOPOLOGY: linear |    |
|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                            |    |
| 0  | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:239:                                                                                    |    |
|    | CGGCGGCAGA AGGCGAAACG CATGATCCTC GCGGT                                                                                       | 35 |
|    | (241) INFORMATION FOR SEQ ID NO:240:                                                                                         |    |
| 5  | (i) SEQUENCE CHARACTERISTICS: (A) LEMGTH: 35 base pairs (B) TYPE: mucleic acid                                               |    |

|    | (C) STRANDEDNESS: single (D) TOPOLOGY: linear                                                                                |     |
|----|------------------------------------------------------------------------------------------------------------------------------|-----|
|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                            |     |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:240:                                                                                    |     |
| 5  | ACCGCGAGGA TCATGCGTTT CGCCTTCTGC CGCCG                                                                                       | 3 5 |
|    | (242) INFORMATION FOR SEQ ID NO:241:                                                                                         |     |
| 10 | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDERINES: single (D) TOPOLOGY: linear |     |
|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                            |     |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:241:                                                                                    |     |
|    | GAGACATATT ATCTGCCACG GAGG                                                                                                   | 24  |
| 15 | (243) INFORMATION FOR SEQ ID NO:242:                                                                                         |     |
| 20 | (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDENDESS: single (D) TOPOLOGY: linear |     |
|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                            |     |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:242:                                                                                    |     |
|    | TTGGCATAGA AACCGGACCC AAGG                                                                                                   | 24  |
|    | (244) INFORMATION FOR SEQ ID NO:243:                                                                                         |     |
| 25 | (i) SEQUENCE CHARACTERISTICS: (A) LEMGTH: 28 base pairs (B) TYPE: nucleic acid (C) STRANDENDESS: single (D) TOPOLOGY: linear |     |
| 0  | (ii) MOLECULE TYPE: DNA (genomic)                                                                                            |     |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:243:                                                                                    |     |
|    | TAAGAATTCC ATAAAAATTA TGGAATGG                                                                                               | 28  |
|    | (245) INFORMATION FOR SEQ ID NO:244:                                                                                         |     |
|    | (i) SEQUENCE CHARACTERISTICS:                                                                                                |     |

204

(A) LENGTH: 30 base pairs (B) TYPE: nucleic acid

|    | (D) TOPOLOGY: linear                                                                                                           |     |
|----|--------------------------------------------------------------------------------------------------------------------------------|-----|
| 5  | (ii) MOLECULE TYPE: DNA (genomic)                                                                                              |     |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:244:                                                                                      |     |
|    | CCAGGATCCA GCTGAAGTCT TCCATCATTC                                                                                               | 30  |
|    | (246) INFORMATION FOR SEQ ID NO:245:                                                                                           |     |
| 10 | (i) SEQUENCE CHARACTERISTICS: (A) LENSTH: 1071 base pairs (B) TYPE: nucleic acid (C) STRANDEDMESS: single (D) TOPOLOGY: linear |     |
|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                              |     |
| 15 | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:245:                                                                                      |     |
|    | ATGAATGGGG TCTCGGAGGG GACCAGAGGC TGCAGTGACA GGCAACCTGG GGTCCTGACA                                                              | 60  |
|    | CGTGATCGCT CTTGTTCCAG GAAGATGAAC TCTTCCGGAT GCCTGTCTGA GGAGGTGGGG                                                              | 120 |
|    | TCCCTCCGCC CACTGACTGT GGTTATCCTG TCTGCGTCCA TTGTCGTCGG AGTGCTGGGC                                                              | 180 |
|    | AATGGGCTGG TGCTGTGGAT GACTGTCTTC CGTATGGCAC GCACGGTCTC CACCGTCTGC                                                              | 240 |
| 20 | TTCTTCCACC TGGCCCTTGC CGATTTCATG CTCTCACTGT CTCTGCCCAT TGCCATGTAC                                                              | 300 |
|    | TATATTGTCT CCAGGCAGTG GCTCCTCGGA GAGTGGGCCT GCAAACTCTA CATCACCTTT                                                              | 360 |
|    | GTGTTCCTCA GCTACTTTGC CAGTAACTGC CTCCTTGTCT TCATCTCTGT GGACCGTTGC                                                              | 420 |
|    | ATCTCTGTCC TCTACCCCGT CTGGGCCCTG AACCACCGCA CTGTGCAGCG GGCGAGCTGG                                                              | 480 |
|    | CTGGCCTTTG GGGTGTGGCT CCTGGCCGCC GCCTTGTGCT CTGCGCACCT GAAATTCCGG                                                              | 540 |
| 25 | ACAACCAGAA AATGGAATGG CTGTACGCAC TGCTACTTGG CGTTCAACTC TGACAATGAG                                                              | 600 |
|    | ACTGCCCAGA TTTGGATTGA AGGGGTCGTG GAGGGACACA TTATAGGGAC CATTGGCCAC                                                              | 660 |
|    | TTCCTGCTGG GCTTCCTGGG GCCCTTAGCA ATCATAGGCA CCTGCGCCCCA CCTCATCCGG                                                             | 720 |
|    | GCCAAGCTCT TGCGGGAGGG CTGGGTCCAT GCCAACCGGC CCGCGAGGCT GCTGCTGGTG                                                              | 780 |
|    | CTGGTGAGCG CTTTCTTAT CTTCTGGTCC CCGTTTAACG TGGTGCTGTT GGTCCATCTG                                                               | 840 |
| 30 | TGGCGACGGG TGATGCTCAA GGAAATCTAC CACCCCGGA TGCTGCTCAT CCTCCAGGCT                                                               | 900 |
|    | AGCTTTGCCT TGGGCTGTGT CAACAGCAGC CTCAACCCCT TCCTCTACGT CTTCGTTGGC                                                              | 960 |

|    | AGAGATTTCC AAGAAAAGTT TTTCCAGTCT TTGACTTCTG CCCTGGCGAG GGCGTTTGGA 1020                                                      |  |  |  |  |  |  |  |  |  |  |  |  |
|----|-----------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|--|
|    | GAGGAGGAGT TTCTGTCATC CTGTCCCCGT GGCAACGCCC CCCGGGAATG A 1071                                                               |  |  |  |  |  |  |  |  |  |  |  |  |
|    | (247) INFORMATION FOR SEQ ID NO:246:                                                                                        |  |  |  |  |  |  |  |  |  |  |  |  |
| 5  | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 356 amino acids (B) TYPE: amino acid (C) STRANDEDMESS: (D) TOPOLOGY: not relevant |  |  |  |  |  |  |  |  |  |  |  |  |
|    | (ii) MOLECULE TYPE: protein                                                                                                 |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:246:                                                                                   |  |  |  |  |  |  |  |  |  |  |  |  |
|    | Met Asn Gly Val Ser Glu Gly Thr Arg Gly Cys Ser Asp Arg Gln Pro $1 \\ 5 \\ 10 \\ 15$                                        |  |  |  |  |  |  |  |  |  |  |  |  |
|    | Gly Val Leu Thr Arg Asp Arg Ser Cys Ser Arg Lys Met Asn Ser Ser 20 25 30                                                    |  |  |  |  |  |  |  |  |  |  |  |  |
| 15 | Gly Cys Leu Ser Glu Glu Val Gly Ser Leu Arg Pro Leu Thr Val Val 35 40 45                                                    |  |  |  |  |  |  |  |  |  |  |  |  |
|    | Ile Leu Ser Ala Ser Ile Val Val Gly Val Leu Gly Asn Gly Leu Val<br>50 60                                                    |  |  |  |  |  |  |  |  |  |  |  |  |
| 20 | Leu Trp Met Thr Val Phe Arg Met Ala Arg Thr Val Ser Thr Val Cys<br>65 70 75 80                                              |  |  |  |  |  |  |  |  |  |  |  |  |
|    | Phe Phe His Leu Ala Leu Ala Asp Phe Met Leu Ser Leu Ser Leu Pro<br>85 90 95                                                 |  |  |  |  |  |  |  |  |  |  |  |  |
|    | Ile Ala Met Tyr Tyr Ile Val Ser Arg Gln Trp Leu Leu Gly Glu Trp<br>100 105 110                                              |  |  |  |  |  |  |  |  |  |  |  |  |
| 25 | Ala Cys Lys Leu Tyr Ile Thr Phe Val Phe Leu Ser Tyr Phe Ala Ser<br>115 125                                                  |  |  |  |  |  |  |  |  |  |  |  |  |
|    | Asn Cys Leu Leu Val Phe Ile Ser Val Asp Arg Cys Ile Ser Val Leu<br>130 140                                                  |  |  |  |  |  |  |  |  |  |  |  |  |
| 30 | Tyr Pro Val Trp Ala Leu Asn His Arg Thr Val Gln Arg Ala Ser Trp<br>145 150 155 160                                          |  |  |  |  |  |  |  |  |  |  |  |  |
|    | Leu Ala Phe Gly Val Trp Leu Leu Ala Ala Ala Leu Cys Ser Ala His<br>175 175                                                  |  |  |  |  |  |  |  |  |  |  |  |  |
|    | Leu Lys Phe Arg Thr Thr Arg Lys Trp Asn Gly Cys Thr His Cys Tyr<br>180 190                                                  |  |  |  |  |  |  |  |  |  |  |  |  |
| 35 | Leu Ala Phe Asn Ser Asp Asn Glu Thr Ala Gln Ile Trp Ile Glu Gly<br>195 200 205                                              |  |  |  |  |  |  |  |  |  |  |  |  |

|    | Val                                                                                                                                                                | Val<br>210        | Glu               | Gly                           | His        | Ile                  | Ile<br>215         | Gly        | Thr        | Ile        | Gly        | His<br>220 | Phe        | Leu        | Leu        | Gly        |    |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|-------------------------------|------------|----------------------|--------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|----|
|    | Phe<br>225                                                                                                                                                         | Leu               | Gly               | Pro                           | Leu        | Ala<br>230           | Ile                | Ile        | Gly        | Thr        | Cys<br>235 | Ala        | His        | Leu        | Ile        | Arg<br>240 |    |
| 5  | Ala                                                                                                                                                                | Lys               | Leu               | Leu                           | Arg<br>245 | Glu                  | Gly                | Trp        | Val        | His<br>250 | Ala        | Asn        | Arg        | Pro        | Ala<br>255 | Arg        |    |
|    | Leu                                                                                                                                                                | Leu               | Leu               | Val<br>260                    | Leu        | Val                  | Ser                | Ala        | Phe<br>265 | Phe        | Ile        | Phe        | Trp        | Ser<br>270 | Pro        | Phe        |    |
| 10 | Asn                                                                                                                                                                | Val               | Val<br>275        | Leu                           | Leu        | Val                  | His                | Leu<br>280 | Trp        | Arg        | Arg        | Val        | Met<br>285 | Leu        | Lys        | Glu        |    |
|    | Ile                                                                                                                                                                | Tyr<br>290        | His               | Pro                           | Arg        | Met                  | Leu<br>295         | Leu        | Ile        | Leu        | Gln        | Ala<br>300 | Ser        | Phe        | Ala        | Leu        |    |
|    | 305                                                                                                                                                                |                   |                   |                               |            | 310                  |                    |            |            |            | 315        |            | Val        |            |            | 320        |    |
| 15 |                                                                                                                                                                    |                   |                   |                               | 325        |                      |                    |            |            | 330        |            |            | Ser        |            | 335        |            |    |
|    | Arg                                                                                                                                                                | Ala               | Phe               | Gly<br>340                    | Glu        | Glu                  | Glu                | Phe        | Leu<br>345 | Ser        | Ser        | Cys        | Pro        | Arg<br>350 | Gly        | Asn        |    |
| 20 | Ala                                                                                                                                                                | Pro               | Arg<br>355        | Glu                           |            |                      |                    |            |            |            |            |            |            |            |            |            |    |
| 25 | (248) INFORMATION FOR SEQ ID NO:247:  (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TTPE: nucleic acid (C) STRANDENDESS: single (D) TOPOLOGY: linear |                   |                   |                               |            |                      |                    |            |            |            |            |            |            |            |            |            |    |
|    | (1:                                                                                                                                                                | L) MO             | DLECT             | LE T                          | YPE:       | DNA                  | (ge                | nomi       | c)         |            |            |            |            |            |            |            |    |
|    | GCAGAATTO                                                                                                                                                          |                   |                   | CE I                          |            |                      |                    | -          | ID N       | 10:24      | 7:         |            |            |            |            |            | 32 |
| 30 | (249) IN                                                                                                                                                           | FORM              | TION              | FOR                           | SEÇ        | ID                   | NO:2               | 48:        |            |            |            |            |            |            |            |            |    |
| 35 | (i)                                                                                                                                                                | (A)<br>(B)<br>(C) | LEN<br>TYI<br>STI | E CH<br>IGTH:<br>E: r<br>ANDE | 30<br>ucle | base<br>ic a<br>S: s | pai<br>cid<br>ingl | rs         |            |            |            |            |            |            |            |            |    |
|    |                                                                                                                                                                    |                   |                   | LE T                          |            |                      |                    |            |            |            |            |            |            |            |            |            |    |

207

|    | GCTGGATCCC CCGAGCAGTG GCGTTACTTC                                                                                              | 30  |  |  |  |  |  |  |  |  |  |  |  |  |
|----|-------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|--|--|--|--|--|--|--|--|--|
|    | (250) INFORMATION FOR SEQ ID NO:249:                                                                                          |     |  |  |  |  |  |  |  |  |  |  |  |  |
| 5  | (i) SEQUENCE CHARACTERISTICS: (A) LENSTH: 903 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear |     |  |  |  |  |  |  |  |  |  |  |  |  |
|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                             |     |  |  |  |  |  |  |  |  |  |  |  |  |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:249:                                                                                     |     |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 | ATGGACCTGC CCCCGCAGCT CTCCTTCGGC CTCTATGTGG CCGCCTTTGC GCTGGGCTTC                                                             | 60  |  |  |  |  |  |  |  |  |  |  |  |  |
|    | CCGCTCAACG TCCTGGCCAT CCGAGGCGCG ACGGCCCACG CCCGGCTCCG TCTCACCCCT                                                             | 120 |  |  |  |  |  |  |  |  |  |  |  |  |
|    | AGCCTGGTCT ACGCCCTGAA CCTGGGCTGC TCCGACCTGC TGCTGACAGT CTCTCTGCCC                                                             | 180 |  |  |  |  |  |  |  |  |  |  |  |  |
|    | CTGAAGGCGG TGGAGGCGCT AGCCTCCGGG GCCTGGCCTC TGCCGGCCTC GCTGTGCCCC                                                             | 240 |  |  |  |  |  |  |  |  |  |  |  |  |
|    | GTCTTCGCGG TGGCCCACTT CTTCCCACTC TATGCCGGCG GGGGCTTCCT GGCCGCCCTG                                                             | 300 |  |  |  |  |  |  |  |  |  |  |  |  |
| 15 | AGTGCAGGCC GCTACCTGGG AGCAGCCTTC CCCTTGGGCT ACCAAGCCTT CCGGAGGCCG                                                             | 360 |  |  |  |  |  |  |  |  |  |  |  |  |
|    | TGCTATTCCT GGGGGGTGTG CGCGGCCATC TGGGCCCTCG TCCTGTGTCA CCTGGGTCTG                                                             | 420 |  |  |  |  |  |  |  |  |  |  |  |  |
|    | GTCTTTGGGT TGGAGGCTCC AGGAGGCTGG CTGGACCACA GCAACACCTC CCTGGGCATC                                                             | 480 |  |  |  |  |  |  |  |  |  |  |  |  |
|    | AACACACCGG TCAACGGCTC TCCGGTCTGC CTGGAGGCCT GGGACCCGGC CTCTGCCGGC                                                             | 540 |  |  |  |  |  |  |  |  |  |  |  |  |
|    | CCGGCCCGCT TCAGCCTCTC TCTCCTGCTC TTTTTTCTGC CCTTGGCCAT CACAGCCTTC                                                             | 600 |  |  |  |  |  |  |  |  |  |  |  |  |
| 20 | TGCTACGTGG GCTGCCTCCG GGCACTGGCC CGCTCCGGCC TGACGCACAG GCGGAAGCTG                                                             | 660 |  |  |  |  |  |  |  |  |  |  |  |  |
|    | CGGGCCGCCT GGGTGGCCGG CGGGGCCCTC CTCACGCTGC TGCTCTGCGT AGGACCCTAC                                                             | 720 |  |  |  |  |  |  |  |  |  |  |  |  |
|    | AACGCCTCCA ACGTGGCCAG CTTCCTGTAC CCCAATCTAG GAGGCTCCTG GCGGAAGCTG                                                             | 780 |  |  |  |  |  |  |  |  |  |  |  |  |
|    | ${\tt GGGCTCATCA} \ {\tt CGGGTGCCTG} \ {\tt GAGTGTGGTG} \ {\tt CTTAATCCGC} \ {\tt TGGTGACCGG} \ {\tt TTACTTGGGA}$             | 840 |  |  |  |  |  |  |  |  |  |  |  |  |
|    | AGGGGTCCTG GCCTGAAGAC AGTGTGTGCG GCAAGAACGC AAGGGGGCAA GTCCCAGAAG                                                             | 900 |  |  |  |  |  |  |  |  |  |  |  |  |
| 25 | TAA                                                                                                                           | 903 |  |  |  |  |  |  |  |  |  |  |  |  |
|    | (251) INFORMATION FOR SEQ ID NO:250:                                                                                          |     |  |  |  |  |  |  |  |  |  |  |  |  |
|    | (i) SEQUENCE CHARACTERISTICS:                                                                                                 |     |  |  |  |  |  |  |  |  |  |  |  |  |

(A) LENGTH: 300 amino acids (B) TYPE: amino acid

(C) STRANDEDNESS: (D) TOPOLOGY: not relevant

| (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:250: |               |               |            |            |            |            |            |            |            |            |            |            |            |            |            |
|-----------------------------------------------------------------------|---------------|---------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|                                                                       | Met A         | sp Leu        | . Pro      | Pro<br>5   | Gln        | Leu        | Ser        | Phe        | Gly<br>10  | Leu        | Tyr        | Val        | Ala        | Ala<br>15  | Phe        |
| 5                                                                     | Ala L         | eu Gly        | Phe<br>20  | Pro        | Leu        | Asn        | Val        | Leu<br>25  | Ala        | Ile        | Arg        | Gly        | Ala<br>30  | Thr        | Ala        |
|                                                                       | His A         | la Arg<br>35  | Leu        | Arg        | Leu        | Thr        | Pro<br>40  | Ser        | Leu        | Val        | Tyr        | Ala<br>45  | Leu        | Asn        | Leu        |
| 10                                                                    | Gly C         | ys Ser<br>O   | Asp        | Leu        | Leu        | Leu<br>55  | Thr        | Val        | Ser        | Leu        | Pro<br>60  | Leu        | Lys        | Ala        | Val        |
|                                                                       | Glu A         | la Leu        | Ala        | Ser        | Gly<br>70  | Ala        | Trp        | Pro        | Leu        | Pro<br>75  | Ala        | Ser        | Leu        | Cys        | Pro<br>80  |
|                                                                       | Val Pi        | ne Ala        | Val        | Ala<br>85  | His        | Phe        | Phe        | Pro        | Leu<br>90  | Tyr        | Ala        | Gly        | Gly        | Gly<br>95  | Phe        |
| 15                                                                    | Leu A         | la Ala        | Leu<br>100 | Ser        | Ala        | Gly        | Arg        | Tyr<br>105 | Leu        | Gly        | Ala        | Ala        | Phe<br>110 | Pro        | Leu        |
|                                                                       | Gly Ty        | /r Gln<br>115 | Ala        | Phe        | Arg        | Arg        | Pro<br>120 | Суз        | Tyr        | Ser        | Trp        | Gly<br>125 | Val        | Cys        | Ala        |
| 20                                                                    | Ala II        | le Trp        | Ala        | Leu        | Val        | Leu<br>135 | Cys        | His        | Leu        | Gly        | Leu<br>140 | Val        | Phe        | Gly        | Leu        |
|                                                                       | Glu Al<br>145 | la Pro        | Gly        | Gly        | Trp<br>150 | Leu        | Asp        | His        | Ser        | Asn<br>155 | Thr        | Ser        | Leu        | Gly        | Ile<br>160 |
|                                                                       | Asn Th        | nr Pro        | Val        | Asn<br>165 | Gly        | Ser        | Pro        | Val        | Cys<br>170 | Leu        | Glu        | Ala        | Trp        | Asp<br>175 | Pro        |
| 25                                                                    | Ala Se        | r Ala         | Gly<br>180 | Pro        | Ala        | Arg        | Phe        | Ser<br>185 | Leu        | Ser        | Leu        | Leu        | Leu<br>190 | Phe        | Phe        |
|                                                                       | Leu Pr        | 0 Leu<br>195  | Ala        | Ile        | Thr        | Ala        | Phe<br>200 | Cys        | Tyr        | Val        | Gly        | Cys<br>205 | Leu        | Arg        | Ala        |
| 30                                                                    | Leu Al<br>21  | a Arg         | Ser        | Gly        | Leu        | Thr<br>215 | His        | Arg        | Arg        | Lys        | Leu<br>220 | Arg        | Ala        | Ala        | Trp        |
|                                                                       | Val Al<br>225 | a Gly         | Gly        | Ala        | Leu<br>230 | Leu        | Thr        | Leu        | Leu        | Leu<br>235 | Cys        | Val        | Gly        | Pro        | Tyr<br>240 |
|                                                                       | Asn Al        | a Ser         | Asn        | Val<br>245 | Ala        | Ser        | Phe        | Leu        | Tyr<br>250 | Pro        | Asn        | Leu        | Gly        | Gly<br>255 | Ser        |
| 35                                                                    | Trp Ar        | g Lys         | Leu<br>260 | Gly        | Leu        | Ile        | Thr        | Gly<br>265 | Ala        | Trp        | Ser        | Val        | Val<br>270 | Leu        | Asn        |
|                                                                       | Pro Le        | u Val         | Thr        | Gly        | Tyr        | Leu        | Gly        | Arg        | Gly        | Pro        | Gly        | Leu        | Lys        | Thr        | Val        |

|    | 275 280 285                                                                                                                   |     |
|----|-------------------------------------------------------------------------------------------------------------------------------|-----|
|    | Cys Ala Ala Arg Thr Gln Gly Gly Lys Ser Gln Lys<br>290 295 300                                                                |     |
|    | (252) INFORMATION FOR SEQ ID NO:251:                                                                                          |     |
| 5  | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear  |     |
| 10 | (ii) MOLECULE TYPE: DNA (genomic)                                                                                             |     |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:251:                                                                                     |     |
|    | CTCAAGCTTA CTCTCTCA CCAGTGGCCA C                                                                                              | 31  |
|    | (253) INFORMATION FOR SEQ ID NO:252:                                                                                          |     |
| 15 | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear  |     |
|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                             |     |
| 20 | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:252:                                                                                     |     |
|    | CCCTCCTCCC CCGGAGGACC TAGC                                                                                                    | 24  |
|    | (254) INFORMATION FOR SEQ ID NO:253:                                                                                          |     |
| :5 | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1041 base pairs (B) TYPE: nucleic acid (C) STRANDENESS: single (D) TOPOLOGY: linear |     |
|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                             |     |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:253:                                                                                     |     |
| 0  | ATGGATACAG GCCCCGACCA GTCCTACTTC TCCGGCAATC ACTGGTTCGT CTTCTCGGTG                                                             | 60  |
|    | TACCTTCTCA CTTTCCTGGT GGGGCTCCCC CTCAACCTGC TGGCCCTGGT GGTCTTCGTG                                                             | 120 |
|    | GGCAAGCTGC AGCGCCGCCC GGTGGCCGTG GACGTGCTCC TGCTCAACCT GACCGCCTCG                                                             | 180 |
|    | GACCTGCTCC TGCTGCTGTT CCTGCCTTTC CGCATGGTGG AGGCAGCCAA TGGCATGCAC                                                             | 240 |
|    | TGGCCCCTGC CCTTCATCCT CTGCCCACTC TCTGGATTCA TCTTCTTCAC CACCATCTAT                                                             | 300 |

|    | CTCACCGC                                                                                                                    | CC I      | CTT       | CTGG      | C AC     | CTGT      | GAGC      | ATT       | GAAC      | GCT       | TCCI      | 'GAGT     | GT G      | GCCC      | ACCC | 'A        | 360 |
|----|-----------------------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------|-----------|-----|
|    | CTGTGGTA                                                                                                                    | CA A      | GACC      | CGGC      | C GZ     | AGGCI     | 'GGGG     | CAG       | GCAG      | GTC       | TGGI      | GAGT      | GT G      | GCCI      | GCTG | G         | 420 |
|    | CTGTTGGC                                                                                                                    | CT C      | TGCT      | CACT      | G CA     | GCGT      | GGTC      | TAC       | GTCA      | TAG       | AATT      | CTCA      | GG G      | GACA      | TCTC | 'C        | 480 |
|    | CACAGCCA                                                                                                                    | GG G      | CACC      | AATG      | G GF     | CCTG      | CTAC      | CTG       | GAGI      | TCC       | GGAA      | .GGAC     | CA G      | CTAG      | CCAT | c         | 540 |
| 5  | CTCCTGCC                                                                                                                    | CG T      | GCGG      | CTGG.     | A GA     | TGGC      | TGTG      | GTC       | CTCI      | TTG       | TGGT      | CCCG      | CT G      | ATCA      | TCAC | C         | 600 |
|    | AGCTACTG                                                                                                                    | CT A      | CAGC      | CGCC      | r gg     | TGTG      | GATC      | CTC       | GGCA      | .GAG      | GGGG      | CAGC      | CA C      | cgcc      | GGCA | G         | 660 |
|    | AGGAGGGT                                                                                                                    | gg o      | GGGG      | CTGT      | r gg     | CGGC      | CACG      | CTG       | CTCA      | ACT       | TCCT      | TGTC      | TG C      | TTTG      | GGCC | C         | 720 |
|    | TACAACGT                                                                                                                    | GT C      | CCAT      | GTCG      | r gg     | GCTA      | TATC      | TGC       | GGTG      | AAA       | GCCC      | GGCA      | TG G      | AGGA      | TCTA | C         | 780 |
|    | GTGACGCT                                                                                                                    | rc t      | CAGC      | ACCC'     | r ga     | ACTC      | CTGT      | GTC       | GACC      | CCT       | TTGT      | CTAC      | TA C      | TTCT      | CCTC | C         | 840 |
| 10 | TCCGGGTTC                                                                                                                   | CC A      | AGCC      | GACT'     | гтс      | ATGA      | GCTG      | CTG       | AGGA      | GGT       | TGTG      | TGGG      | CT C      | TGGG      | GCCA | G         | 900 |
|    | TGGCAGCA                                                                                                                    | GG A      | GAGC      | AGCA:     | r GG     | AGCT      | GAAG      | GAG       | CAGA      | AGG       | GAGG      | GGAG      | ga g      | CAGA      | GAGC | G         | 960 |
|    | GACCGACC                                                                                                                    | AG C      | rgaa      | AGAA      | GA       | CCAG      | TGAA      | CAC       | TCAC      | AGG       | GCTG      | TGGA      | AC T      | GGTG      | GCCA | G 1       | 020 |
|    | GTGGCCTGT                                                                                                                   | rg c      | rgaa      | AGCT      | G        |           |           |           |           |           |           |           |           |           |      | 1         | 041 |
|    | (255) INE                                                                                                                   | PORM      | ATIO      | N FOE     | SE       | Q ID      | NO:       | 254:      |           |           |           |           |           |           |      |           |     |
| 15 | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 346 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: not relevant |           |           |           |          |           |           |           |           |           |           |           |           |           |      |           |     |
| 20 | (ii                                                                                                                         | L) MO     | DLEC      | ULE 1     | YPE      | : pr      | oteir     | 1         |           |           |           |           |           |           |      |           |     |
|    | (xi                                                                                                                         | i) SI     | QUE       | NCE I     | ESC      | RIPT      | ION:      | SEQ       | ID 1      | NO:2      | 54:       |           |           |           |      |           |     |
|    | Met<br>1                                                                                                                    | Asp       | Thr       | Gly       | Pro<br>5 | Asp       | Gln       | Ser       | Tyr       | Phe<br>10 | Ser       | Gly       | Asn       | His       | Trp  | Phe       |     |
| 25 | Val                                                                                                                         | Phe       | Ser       | Val<br>20 | Tyr      | Leu       | Leu       | Thr       | Phe<br>25 | Leu       | Val       | Gly       | Leu       | Pro<br>30 | Leu  | Asn       |     |
|    | Leu                                                                                                                         | Leu       | Ala<br>35 | Leu       | Val      | Val       | Phe       | Val<br>40 | Gly       | Lys       | Leu       | Gln       | Arg<br>45 | Arg       | Pro  | Val       |     |
|    | Ala                                                                                                                         | Val<br>50 | Asp       | Val       | Leu      | Leu       | Leu<br>55 | Asn       | Leu       | Thr       | Ala       | Ser<br>60 | Asp       | Leu       | Leu  | Leu       |     |
| 30 | Leu<br>65                                                                                                                   | Leu       | Phe       | Leu       | Pro      | Phe<br>70 | Arg       | Met       | Val       | Glu       | Ala<br>75 | Ala       | Asn       | Gly       | Met  | His<br>80 |     |
|    | m                                                                                                                           | D         |           | _         | m1       | - 1       |           | _         | _         | _         | _         | Gly       |           |           |      |           |     |

|    | Thr        | Thr        | Ile               | Tyr<br>100                   | Leu                | Thr                  | Ala                | Leu        | Phe<br>105 |            | Ala        | Ala        | Val        | Ser<br>110 |            | Glu        |
|----|------------|------------|-------------------|------------------------------|--------------------|----------------------|--------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    | Arg        | Phe        | Leu<br>115        | Ser                          | Val                | Ala                  | His                | Pro<br>120 | Leu        | Trp        | Tyr        | Lys        | Thr<br>125 |            | Pro        | Arg        |
| 5  | Leu        | Gly<br>130 | Gln               | Ala                          | Gly                | Leu                  | Val<br>135         | Ser        | Val        | Ala        | Сув        | Trp<br>140 |            | Leu        | Ala        | Ser        |
|    | Ala<br>145 | His        | Cys               | Ser                          | Val                | Val<br>150           | Tyr                | Val        | Ile        | Glu        | Phe<br>155 | Ser        | Gly        | Asp        | Ile        | Ser<br>160 |
| 10 | His        | Ser        | Gln               | Gly                          | Thr<br>165         | Asn                  | Gly                | Thr        | Cys        | Tyr<br>170 | Leu        | Glu        | Phe        | Arg        | Lys<br>175 | Asp        |
|    | Gln        | Leu        | Ala               | Ile<br>180                   | Leu                | Leu                  | Pro                | Val        | Arg<br>185 | Leu        | Glu        | Met        | Ala        | Val<br>190 | Val        | Leu        |
|    | Phe        | Val        | Val<br>195        | Pro                          | Leu                | Ile                  | Ile                | Thr<br>200 | Ser        | Tyr        | Суз        | Tyr        | Ser<br>205 | Arg        | Leu        | Val        |
| 15 | Trp        | Ile<br>210 | Leu               | Gly                          | Arg                | Gly                  | Gly<br>215         | Ser        | His        | Arg        | Arg        | Gln<br>220 | Arg        | Arg        | Val        | Ala        |
|    | Gly<br>225 | Leu        | Leu               | Ala                          | Ala                | Thr<br>230           | Leu                | Leu        | Asn        | Phe        | Leu<br>235 | Val        | Cys        | Phe        | Gly        | Pro<br>240 |
| 20 | Tyr        | Asn        | Val               | Ser                          | His<br>245         | Val                  | Val                | Gly        | Tyr        | Ile<br>250 | Cys        | Gly        | Glu        | Ser        | Pro<br>255 | Ala        |
|    | Trp        | Arg        | Ile               | Tyr<br>260                   | Val                | Thr                  | Leu                | Leu        | Ser<br>265 | Thr        | Leu        | Asn        | Ser        | Cys<br>270 | Val        | Asp        |
|    | Pro        | Phe        | Val<br>275        | Tyr                          | Tyr                | Phe                  | Ser                | Ser<br>280 | Ser        | Gly        | Phe        | Gln        | Ala<br>285 | Asp        | Phe        | His        |
| 25 | Glu        | Leu<br>290 | Leu               | Arg                          | Arg                | Leu                  | Суз<br>295         | Gly        | Leu        | Trp        | Gly        | Gln<br>300 | Trp        | Gln        | Gln        | Glu        |
|    | Ser<br>305 | Ser        | Met               | Glu                          |                    | Lys<br>310           | Glu                | Gln        | Lys        | Gly        | Gly<br>315 | Glu        | Glu        | Gln        | Arg        | Ala<br>320 |
| 30 | Asp        | Arg        | Pro               | Ala                          | Glu<br>325         | Arg                  | Lys                | Thr        |            | Glu<br>330 | His        | Ser        | Gln        | Gly        | Сув<br>335 | Gly        |
|    | Thr        | Gly        |                   | Gln<br>340                   | Val                | Ala                  | Сув                |            | Glu<br>345 | Ser        |            |            |            |            |            |            |
|    | (256) INE  | ORMA       | TION              | FOR                          | SEQ                | ID                   | NO:2               | 55:        |            |            |            |            |            |            |            |            |
| 35 | (i)        | (B)        | LEN<br>TYP<br>STR | E CH<br>GTH:<br>E: n<br>ANDE | 31<br>ucle<br>DNES | base<br>ic a<br>S: s | pai<br>cid<br>ingl | rs         |            |            |            |            |            |            |            |            |

|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                                      |     |
|----|----------------------------------------------------------------------------------------------------------------------------------------|-----|
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:255:                                                                                              |     |
|    | TTTAAGCTTC CCCTCCAGGA TGCTGCCGGA C                                                                                                     | 3   |
|    | (257) INFORMATION FOR SEQ ID NO:256:                                                                                                   |     |
| 5  | (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 31 base pairs  (B) TYPE: nucleic acid  (C) STRANDENDESS: single  (D) TOPOLOGY: not relevant |     |
| 10 | (ii) MOLECULE TYPE: DNA (genomic)                                                                                                      |     |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:256:                                                                                              |     |
|    | GGCGAATTCT GAAGGTCCAG GGAAACTGCT A                                                                                                     | 3:  |
|    | (258) INFORMATION FOR SEQ ID NO:257:                                                                                                   |     |
| 15 | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 993 base pairs (B) TYPE: nucleic acid (C) STRANDEDENESS: single (D) TOPOLOGY: linear         |     |
|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                                      |     |
| 20 | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:257:                                                                                              |     |
|    | ATGCTGCCGG ACTGGAAGAG CTCCTTGATC CTCATGGCTT ACATCATCAT CTTCCTCACT                                                                      | 6(  |
|    | GGCCTCCCTG CCAACCTCCT GGCCCTGCGG GCCTTTGTGG GGCGGATCCG CCAGCCCCAG                                                                      | 120 |
|    | CCTGCACCTG TGCACATCCT CCTGCTGAGC CTGACGCTGG CCGACCTCCT CCTGCTGCTG                                                                      | 180 |
|    | CTGCTGCCCT TCAAGATCAT CGAGGCTGCG TCGAACTTCC GCTGGTACCT GCCCAAGGTC                                                                      | 240 |
| 25 | GTCTGCGCCC TCACGAGTTT TGGCTTCTAC AGCAGCATCT ACTGCAGCAC GTGGCTCCTG                                                                      | 300 |
|    | GCGGGCATCA GCATCGAGCG CTACCTGGGA GTGGCTTTCC CCGTGCAGTA CAAGCTCTCC                                                                      | 360 |
|    | CGCCGGCCTC TGTATGGAGT GATTGCAGCT CTGGTGGCCT GGGTTATGTC CTTTGGTCAC                                                                      | 420 |
|    | TGCACCATCG TGATCATCGT TCAATACTTG AACACGACTG AGCAGGTCAG AAGTGGCAAT                                                                      | 480 |
|    | GAAATTACCT GCTACGAGAA CTTCACCGAT AACCAGTTGG ACGTGGTGCT GCCCGTGCGG                                                                      | 540 |
| 30 | CTGGAGCTGT GCCTGGTGCT CTTCTTCATC CCCATGGCAG TCACCATCTT CTGCTACTGG                                                                      | 600 |
|    | CGTTTTGTGT GGATCATGCT CTCCCAGCCC CTTGTGGGGG CCCAGAGGCG GCGCCGAGCC                                                                      | 660 |
|    | GTGGGGCTGG CTGTGGTGAC GCTGCTCAAT TTCCTGGTGT GCTTCGGACC TTACAACGTG                                                                      | 720 |

|    | TCCCACCTGG TGGGGTATCA CCAGAGAAAA AGCCCCTGGT GGCGGTCAAT AGCCGTGGTG                                                                                       | 780 |  |  |  |  |  |  |  |  |  |  |  |  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|--|--|--|--|--|--|--|--|--|
|    | TTCAGTTCAC TCAACGCCAG TCTGGACCCC CTGCTCTTCT ATTTCTCTTC TTCAGTGGTG                                                                                       | 840 |  |  |  |  |  |  |  |  |  |  |  |  |
|    | CGCAGGGCAT TTGGGAGAGG GCTGCAGGTG CTGCGGAATC AGGGCTCCTC CCTGTTGGGA                                                                                       | 900 |  |  |  |  |  |  |  |  |  |  |  |  |
|    | CGCAGAGGCA AAGACACAGC AGAGGGGACA AATGAGGACA GGGGTGTGGG TCAAGGAGAA                                                                                       | 960 |  |  |  |  |  |  |  |  |  |  |  |  |
| 5  | GGGATGCCAA GTTCGGACTT CACTACAGAG TAG                                                                                                                    | 993 |  |  |  |  |  |  |  |  |  |  |  |  |
|    | (259) INFORMATION FOR SEQ ID NO:258:                                                                                                                    |     |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 362 amino acids (B) TTPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: not relevant (ii) MOLECULE TYPE: protein |     |  |  |  |  |  |  |  |  |  |  |  |  |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:258:                                                                                                               |     |  |  |  |  |  |  |  |  |  |  |  |  |
| 15 | Met Leu Pro Asp Trp Lys Ser Ser Leu Ile Leu Met Ala Tyr Ile Ile<br>1 5 15                                                                               |     |  |  |  |  |  |  |  |  |  |  |  |  |
|    | Ile Phe Leu Thr Gly Leu Pro Ala Asn Leu Leu Ala Leu Arg Ala Phe $$20$$                                                                                  |     |  |  |  |  |  |  |  |  |  |  |  |  |
|    | Val Gly Arg Ile Arg Gln Pro Gln Pro Ala Pro Val His Ile Leu Leu<br>35 40 45                                                                             |     |  |  |  |  |  |  |  |  |  |  |  |  |
| 20 | Leu Ser Leu Thr Leu Ala Asp Leu Leu Leu Leu Leu Leu Leu Pro Phe 50 60                                                                                   |     |  |  |  |  |  |  |  |  |  |  |  |  |
|    | Lys Ile Ile Glu Ala Ala Ser Asn Phe Arg Trp Tyr Leu Pro Lys Val $^{75}$ $^{80}$                                                                         |     |  |  |  |  |  |  |  |  |  |  |  |  |
| 25 | Val Cys Ala Leu Thr Ser Phe Gly Phe Tyr Ser Ser Ile Tyr Cys Ser<br>85 90 95                                                                             |     |  |  |  |  |  |  |  |  |  |  |  |  |
|    | Thr Trp Leu Leu Ala Gly Ile Ser Ile Glu Arg Tyr Leu Gly Val Ala<br>100 105 110                                                                          |     |  |  |  |  |  |  |  |  |  |  |  |  |
|    | Phe Pro Val Gln Tyr Lys Leu Ser Arg Arg Pro Leu Tyr Gly Val Ile<br>115 120 125                                                                          |     |  |  |  |  |  |  |  |  |  |  |  |  |
| 30 | Ala Ala Leu Val Ala Trp Val Met Ser Phe Gly His Cys Thr Ile Val<br>130 140                                                                              |     |  |  |  |  |  |  |  |  |  |  |  |  |
|    | Ile Ile Val Gln Tyr Leu Asn Thr Thr Glu Gln Val Arg Ser Gly Asn<br>145 150 155 160                                                                      |     |  |  |  |  |  |  |  |  |  |  |  |  |
| 35 | Glu Ile Thr Cys Tyr Glu Asn Phe Thr Asp Asn Gln Leu Asp Val Val 165 170 175                                                                             |     |  |  |  |  |  |  |  |  |  |  |  |  |

|    |       | Leu        | Pro               | Val               | Arg<br>180                           | Leu                | Glu                  | Leu                | Cys        | Leu<br>185 | Val        | Leu        | Phe        | Phe        | Ile<br>190 | Pro        | Met        |     |
|----|-------|------------|-------------------|-------------------|--------------------------------------|--------------------|----------------------|--------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----|
|    |       | Ala        | Val               | Thr<br>195        | Ile                                  | Phe                | Сув                  | Tyr                | Trp<br>200 | Arg        | Phe        | Val        | Trp        | Ile<br>205 | Met        | Leu        | Ser        |     |
| 5  |       | Gln        | Pro<br>210        | Leu               | Val                                  | Gly                | Ala                  | Gln<br>215         | Arg        | Arg        | Arg        | Arg        | Ala<br>220 | Val        | Gly        | Leu        | Ala        |     |
|    |       | Val<br>225 | Val               | Thr               | Leu                                  | Leu                | Asn<br>230           | Phe                | Leu        | Val        | Cys        | Phe<br>235 | Gly        | Pro        | Tyr        | Asn        | Val<br>240 |     |
| 10 |       | Ser        | His               | Leu               | Val                                  | Gly<br>245         | Tyr                  | His                | Gln        | Arg        | Lys<br>250 | Ser        | Pro        | Trp        | Trp        | Arg<br>255 | Ser        |     |
|    |       | Ile        | Ala               | Val               | Val<br>260                           | Phe                | Ser                  | Ser                | Leu        | Asn<br>265 | Ala        | Ser        | Leu        | Asp        | Pro<br>270 | Leu        | Leu        |     |
|    |       | Phe        | Tyr               | Phe<br>275        | Ser                                  | Ser                | Ser                  | Val                | Val<br>280 | Arg        | Arg        | Ala        | Phe        | Gly<br>285 | Arg        | Gly        | Leu        |     |
| 15 |       | Gln        | Val<br>290        | Leu               | Arg                                  | Asn                | Gln                  | Gly<br>295         | Ser        | Ser        | Leu        | Leu        | Gly<br>300 | Arg        | Arg        | Gly        | Lys        |     |
|    |       | Asp<br>305 | Thr               | Ala               | Glu                                  | Gly                | Thr<br>310           | Asn                | Glu        | Asp        | Arg        | Gly<br>315 | Val        | Gly        | Gln        | Gly        | Glu<br>320 |     |
| 20 |       | Gly        | Met               | Pro               | Ser                                  | Ser<br>325         | Asp                  | Phe                | Thr        | Thr        | Glu<br>330 |            |            |            |            |            |            |     |
|    | (260) | INF        | ORM               | TION              | FOF                                  | SEC                | ID                   | NO:2               | 59:        |            |            |            |            |            |            |            |            |     |
| 25 |       | (i)        | (A)<br>(B)<br>(C) | LEN<br>TYP<br>STR | E CH<br>GTH:<br>E: n                 | 30<br>ucle<br>DNES | base<br>ic a<br>S: s | pai<br>cid<br>ingl | .rs        |            |            |            |            |            |            |            |            |     |
|    |       | (ii        | .) MC             | LECU              | LE T                                 | YPE:               | DNA                  | (ge                | nomi       | c)         |            |            |            |            |            |            |            |     |
|    |       | (xi        | .) SE             | QUEN              | CE D                                 | ESCR               | IPTI                 | ON:                | SEQ        | ID N       | O:25       | 9:         |            |            |            |            |            |     |
|    | CCCAA | GCTT       | C GG              | GCAC              | CATG                                 | GAC                | ACCI                 | ccc                |            |            |            |            |            |            |            |            |            | 3 ( |
| 30 | (261) | INF        | ORMA              | TION              | FOR                                  | SEQ                | ID                   | NO:2               | 60:        |            |            |            |            |            |            |            |            |     |
| 35 |       | (i)        | (A)<br>(B)<br>(C) | LEN<br>TYP<br>STR | E CH<br>GTH:<br>E: n<br>ANDE<br>OLOG | 30<br>ucle<br>DNES | base<br>ic a<br>S: s | pai<br>cid<br>ingl | rs         |            |            |            |            |            |            |            |            |     |
|    |       | (ii        | ) MO              | LECU              | LE T                                 | YPE:               | DNA                  | . (ge              | nomi       | c)         |            |            |            |            |            |            |            |     |
|    |       | (xi        | ) SE              | QUEN              | CE D                                 | ESCR               | IPTI                 | ON:                | SEQ        | ID N       | 0:26       | 0:         |            |            |            |            |            |     |

|    | ACAGGATCCA AATGCACAGC ACTGGTAAGC                                                                                                 | 30  |
|----|----------------------------------------------------------------------------------------------------------------------------------|-----|
|    | (262) INFORMATION FOR SEQ ID NO:261:                                                                                             |     |
| 5  | (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 25 base pairs  (B) TYPE: nucleic acid  (C) STRANDENINES: single  (D) TOPOLOGY: linear |     |
|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                                |     |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:261:                                                                                        |     |
| 10 | CTATAACTGG GTTACATGGT TTAAC                                                                                                      | 25  |
|    | (263) INFORMATION FOR SEQ ID NO:262:                                                                                             |     |
| 15 | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear     |     |
|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                                |     |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:262:                                                                                        |     |
|    | TTTGAATTCA CATATTAATT AGAGACATGG                                                                                                 | 30  |
| 20 | (264) INFORMATION FOR SEQ ID NO:263:                                                                                             |     |
| 25 | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2724 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear   |     |
|    | (ii) MOLECULE TYPE: DNA (genomic)                                                                                                |     |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:263;                                                                                        |     |
|    | ATGGACACCT CCCGGCTCGG TGTGCTCCTG TCCTTGCCTG TGCTGCTGCA GCTGGCGACC                                                                | 60  |
|    | GGGGCAGCT CTCCCAGGTC TGGTGTGTTG CTGAGGGGCT GCCCCACACA CTGTCATTGC                                                                 | 120 |
| 30 | GAGCCCGACG GCAGGATGTT GCTCAGGGTG GACTGCTCCG ACCTGGGGCT CTCGGAGCTG                                                                | 180 |
|    | CCTTCCAACC TCAGCGTCTT CACCTCCTAC CTAGACCTCA GTATGAACAA CATCAGTCAG                                                                | 240 |
|    | CTGCTCCCGA ATCCCCTGCC CAGTCTCCGC TTCCTGGAGG AGTTACGTCT TGCGGGAAAC                                                                | 300 |
|    | GCTCTGACAT ACATTCCCAA GGGAGCATTC ACTGGCCTTT ACAGTCTTAA AGTTCTTATG                                                                | 360 |

|    | CTGCAGAATA | ATCAGCTAAG | ACACGTACCC | ACAGAAGCTC | TGCAGAATTT | GCGAAGCCTT | 420  |
|----|------------|------------|------------|------------|------------|------------|------|
|    | CAATCCCTGC | GTCTGGATGC | TAACCACATC | AGCTATGTGC | CCCCAAGCT  | TTTCAGTGGC | 480  |
|    | CTGCATTCCC | TGAGGCACCT | GTGGCTGGAT | GACAATGCGT | TAACAGAAA1 | CCCCGTCCAG | 540  |
|    | GCTTTTAGAA | GTTTATCGGC | ATTGCAAGCC | ATGACCTTGG | CCCTGAACAA | AATACACCAC | 600  |
| 5  | ATACCAGACT | ATGCCTTTGG | AAACCTCTCC | AGCTTGGTAG | TTCTACATCT | CCATAACAAT | 660  |
|    | AGAATCCACT | CCCTGGGAAA | GAAATGCTTT | GATGGGCTCC | ACAGCCTAGA | GACTTTAGAT | 720  |
|    | TTAAATTACA | ATAACCTTGA | TGAATTCCCC | ACTGCAATTA | GGACACTCTC | CAACCTTAAA | 780  |
|    | GAACTAGGAT | TTCATAGCAA | CAATATCAGG | TCGATACCTG | AGAAAGCATT | TGTAGGCAAC | 840  |
|    | CCTTCTCTTA | TTACAATACA | TTTCTATGAC | AATCCCATCC | AATTTGTTGG | GAGATCTGCT | 900  |
| 10 | TTTCAACATT | TACCTGAACT | AAGAACACTG | ACTCTGAATG | GTGCCTCACA | AATAACTGAA | 960  |
|    | TTTCCTGATT | TAACTGGAAC | TGCAAACCTG | GAGAGTCTGA | CTTTAACTGG | AGCACAGATC | 1020 |
|    | TCATCTCTTC | CTCAAACCGT | CTGCAATCAG | TTACCTAATC | TCCAAGTGCT | AGATCTGTCT | 1080 |
|    | TACAACCTAT | TAGAAGATTT | ACCCAGTTTT | TCAGTCTGCC | AAAAGCTTCA | GAAAATTGAC | 1140 |
|    | CTAAGACATA | ATGAAATCTA | CGAAATTAAA | GTTGACACTT | TCCAGCAGTT | GCTTAGCCTC | 1200 |
| 15 | CGATCGCTGA | ATTTGGCTTG | GAACAAAATT | GCTATTATTC | ACCCCAATGC | ATTTTCCACT | 1260 |
|    | TTGCCATCCC | TAATAAAGCT | GGACCTATCG | TCCAACCTCC | TGTCGTCTTT | TCCTATAACT | 1320 |
|    | GGGTTACATG | GTTTAACTCA | CTTAAAATTA | ACAGGAAATC | ATGCCTTACA | GAGCTTGATA | 1380 |
|    | TCATCTGAAA | ACTTTCCAGA | ACTCAAGGTT | ATAGAAATGC | CTTATGCTTA | CCAGTGCTGT | 1440 |
|    | GCATTTGGAG | TGTGTGAGAA | TGCCTATAAG | ATTTCTAATC | AATGGAATAA | AGGTGACAAC | 1500 |
| 20 | AGCAGTATGG | ACGACCTTCA | TAAGAAAGAT | GCTGGAATGT | TTCAGGCTCA | AGATGAACGT | 1560 |
|    | GACCTTGAAG | ATTTCCTGCT | TGACTTTGAG | GAAGACCTGA | AAGCCCTTCA | TTCAGTGCAG | 1620 |
|    | TGTTCACCTT | CCCCAGGCCC | CTTCAAACCC | TGTGAACACC | TGCTTGATGG | CTGGCTGATC | 1680 |
|    | AGAATTGGAG | TGTGGACCAT | AGCAGTTCTG | GCACTTACTT | GTAATGCTTT | GGTGACTTCA | 1740 |
|    | ACAGTTTTCA | GATCCCCTCT | GTACATTTCC | CCCATTAAAC | TGTTAATTGG | GGTCATCGCA | 1800 |
| 25 | GCAGTGAACA | TGCTCACGGG | AGTCTCCAGT | GCCGTGCTGG | CTGGTGTGGA | TGCGTTCACT | 1860 |
|    | TTTGGCAGCT | TTGCACGACA | TGGTGCCTGG | TGGGAGAATG | GGGTTGGTTG | CCATGTCATT | 1920 |
|    | GGTTTTTTGT | CCATTTTTGC | TTCAGAATCA | TCTGTTTTCC | TGCTTACTCT | GGCAGCCCTG | 1980 |
|    | GAGCGTGGGT | TCTCTGTGAA | ATATTCTGCA | AAATTTGAAA | CGAAAGCTCC | ATTTTCTAGC | 2040 |

|    | CTGA  | AAGT      | 'AA I                | CATI                             | TTGC                      | T CI                          | GTGC                       | CCTC      | CTG          | GCCI      | TGA       | CCA       | GGCC      | GC 1      | AGTTO     | CCCI      | .G :      | 2100 |
|----|-------|-----------|----------------------|----------------------------------|---------------------------|-------------------------------|----------------------------|-----------|--------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------|
|    | CTGG  | GTGG      | CA G                 | CAAG                             | TATO                      | G CC                          | CCTC                       | CCCI      | CTC          | TGCC      | CTGC      | CTT       | GCCI      | TT 1      | rggg      | AGCC      | :C :      | 2160 |
|    | AGCA  | CCAT      | GG G                 | CTAC                             | ATGG                      | T CG                          | CTCI                       | CATC      | TTG          | CTCA      | ATT       | CCCT      | TTGC      | TT (      | CTC       | TGAT      | G :       | 2220 |
|    | ACCA! | TTGC      | CT A                 | CACC                             | AAGC                      | T CI                          | ACTG                       | CAAT      | TTG          | GACA      | AGG       | GAG       | CCTC      | GA (      | SAATA     | TTTG      | iG :      | 2280 |
| 5  | GACT  | GCTC      | та т                 | GGTA                             | AAAC                      | A CA                          | TTGC                       | CCTG      | TTG          | CTCI      | TCA       | CCAF      | CTGC      | AT C      | CTAP      | ACTG      | ic :      | 2340 |
|    | CCTG  | rggc      | TT T                 | CTTG                             | TCCT                      | T CI                          | CCTC                       | TTTA      | ATA          | AACC      | TTA       | CATT      | TATO      | AG 1      | CCTG      | AAGT      | Α :       | 2400 |
|    | ATTA  | AGTT      | та т                 | CCTT                             | CTGG                      | T GG                          | TAGT                       | CCCA      | CTT          | CCTG      | CAT       | GTCI      | CAAT      | cc c      | CTTC      | TCTA      | C 2       | 2460 |
|    | ATCT  | rgtt      | CA A                 | TCCT                             | CACT                      | T TA                          | AGGA                       | GGAT      | CTG          | GTGA      | GCC       | TGAG      | AAAG      | CA A      | ACCI      | ACGT      | C 2       | 520  |
|    | TGGA  | CAAG.     | AT C                 | AAAA                             | CACC                      | C AA                          | GCTT                       | GATG      | TCA          | ATTA      | ACT       | CTGA      | TGAT      | GT C      | GAAA      | AACA      | .G 2      | 580  |
| 10 | TCCT  | GTGA      | CT C                 | AACT                             | CAAG                      | C CT                          | TGGT                       | AACC      | TTT          | ACCA      | GCT       | CCAG      | CATC      | AC I      | TATG      | ACCT      | G 2       | 640  |
|    | CCTCC | CAG'      | TT C                 | CGTG                             | CCAT                      | C AC                          | CAGC                       | TTAT      | CCA          | GTGA      | CTG       | AGAG      | CTGC      | CA I      | CTTT      | CCTC      | т 2       | 700  |
|    | GTGGC | CATT      | rg T                 | CCCA                             | TGTC                      | T CT                          | AA                         |           |              |           |           |           |           |           |           |           | 2         | 724  |
|    | (265) | IN        | FORM                 | ATIO:                            | N FO                      | R SE                          | Q ID                       | No:       | 264:         |           |           |           |           |           |           |           |           |      |
| 15 |       |           | (A<br>(B<br>(C<br>(D | ) LEI<br>) TY:<br>) ST:<br>) TO: | NGTH<br>PE: RANDI<br>POLO | : 90<br>amin<br>EDNE<br>GY: : | 7 am<br>o ac<br>SS:<br>not | rele      | acid<br>vant | s         |           |           |           |           |           |           |           |      |
| •  |       |           |                      |                                  |                           |                               | -                          | otei      |              |           |           |           |           |           |           |           |           |      |
| 20 |       |           |                      |                                  |                           |                               |                            | ION:      |              |           |           |           |           |           |           |           |           |      |
|    |       | Met<br>1  | Asp                  | Thr                              | Ser                       | Arg<br>5                      | Leu                        | Gly       | Val          | Leu       | Leu<br>10 | Ser       | Leu       | Pro       | Val       | Leu<br>15 | Leu       |      |
|    |       | Gln       | Leu                  | Ala                              | Thr<br>20                 | Gly                           | Gly                        | Ser       | Ser          | Pro<br>25 | Arg       | Ser       | Gly       | Val       | Leu<br>30 | Leu       | Arg       |      |
| 25 |       | Gly       | Cys                  | Pro<br>35                        | Thr                       | His                           | Cys                        | His       | Cys<br>40    | Glu       | Pro       | Asp       | Gly       | Arg<br>45 | Met       | Leu       | Leu       |      |
|    |       | Arg       | Val<br>50            | Asp                              | Cys                       | Ser                           | Asp                        | Leu<br>55 | Gly          | Leu       | Ser       | Glu       | Leu<br>60 | Pro       | Ser       | Asn       | Leu       |      |
| 30 |       | Ser<br>65 | Val                  | Phe                              | Thr                       | Ser                           | Tyr<br>70                  | Leu       | Asp          | Leu       | Ser       | Met<br>75 | Asn       | Asn       | Ile       | Ser       | Gln<br>80 |      |
|    |       | Leu       | Leu                  | Pro                              | Asn                       | Pro<br>85                     | Leu                        | Pro       | Ser          | Leu       | Arg<br>90 | Phe       | Leu       | Glu       | Glu       | Leu<br>95 | Arg       |      |
|    |       | Leu       | Ala                  | Gly                              | Asn                       | Ala                           | Leu                        | Thr       | Tyr          | Ile       | Pro       | Lys       | Gly       | Ala       | Phe       | Thr       | Gly       |      |

|    |                    | 100                |                      | 105                          | 110                |
|----|--------------------|--------------------|----------------------|------------------------------|--------------------|
|    | Leu Tyr Se         | r Leu Lys \<br>5   | Val Leu Met<br>120   | Leu Gln Asn Asn Gln<br>125   | Leu Arg His        |
| 5  | Val Pro Th         | r Glu Ala 1        | Leu Gln Asn<br>135   | Leu Arg Ser Leu Gln<br>140   | Ser Leu Arg        |
|    | Leu Asp Al<br>145  | a Asn His 1        | Ile Ser Tyr<br>150   | Val Pro Pro Ser Cys<br>155   | Phe Ser Gly<br>160 |
|    | Leu His Se         | r Leu Arg F<br>165 | His Leu Trp          | Leu Asp Asp Asn Ala<br>170   | Leu Thr Glu<br>175 |
| 10 | Ile Pro Va         | l Gln Ala I<br>180 | Phe Arg Ser          | Leu Ser Ala Leu Gln .<br>185 | Ala Met Thr<br>190 |
|    | Leu Ala Le         | Asn Lys I          | Ile His His<br>200   | Ile Pro Asp Tyr Ala<br>205   | Phe Gly Asn        |
| 15 | Leu Ser Se<br>210  | Leu Val V          | Val Leu His :<br>215 | Leu His Asn Asn Arg          | Ile His Ser        |
|    | Leu Gly Lys<br>225 | Lys Cys P          | Phe Asp Gly 1<br>230 | Leu His Ser Leu Glu '<br>235 | Thr Leu Asp<br>240 |
|    | Leu Asn Ty         | Asn Asn L<br>245   | Leu Asp Glu 1        | Phe Pro Thr Ala Ile :<br>250 | Arg Thr Leu<br>255 |
| 20 | Ser Asn Le         | Lys Glu L<br>260   |                      | His Ser Asn Asn Ile 2<br>265 | Arg Ser Ile<br>270 |
|    | Pro Glu Lys<br>275 | Ala Phe V          | al Gly Asn 1<br>280  | Pro Ser Leu Ile Thr :<br>285 | Tle His Phe        |
| 25 | Tyr Asp Asr<br>290 | Pro Ile G          | Sln Phe Val (<br>295 | Gly Arg Ser Ala Phe (        | 3ln His Leu        |
|    | Pro Glu Leu<br>305 | Arg Thr L          | eu Thr Leu 1<br>310  | Asn Gly Ala Ser Gln 1<br>315 | Tle Thr Glu<br>320 |
|    | Phe Pro Asp        | Leu Thr G<br>325   | Sly Thr Ala A        | Asn Leu Glu Ser Leu 1<br>330 | Thr Leu Thr<br>335 |
| 30 | Gly Ala Glr        | Ile Ser S          |                      | Gln Thr Val Cys Asn 6<br>345 | Gln Leu Pro<br>850 |
|    | Asn Leu Gln<br>355 | Val Leu A          | sp Leu Ser 1<br>360  | Tyr Asn Leu Leu Glu A<br>365 | sp Leu Pro         |
| 35 | Ser Phe Ser<br>370 | Val Cys G          | ln Lys Leu G<br>375  | Sln Lys Ile Asp Leu A<br>380 | urg His Asn        |
|    | Glu Ile Tyr<br>385 | Glu Ile L          | ys Val Asp T<br>90   | Thr Phe Gln Gln Leu I<br>395 | eu Ser Leu<br>400  |

|    | Arg        | Ser        | Leu        | Asn        | Leu<br>405 | Ala        | Trp        | Asn        | Lys        | Ile<br>410 |            | Ile        | Ile        | His        | Pro        | Asn        |
|----|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    | Ala        | Phe        | Ser        | Thr<br>420 | Leu        | Pro        | Ser        | Leu        | Ile<br>425 |            | Leu        | Asp        | Leu        | Ser<br>430 |            | Asn        |
| 5  | Leu        | Leu        | Ser<br>435 | Ser        | Phe        | Pro        | Ile        | Thr<br>440 | Gly        | Leu        | His        | Gly        | Leu<br>445 |            | His        | Leu        |
|    | Lys        | Leu<br>450 | Thr        | Gly        | Asn        | His        | Ala<br>455 | Leu        | Gln        | Ser        | Leu        | Ile<br>460 | Ser        | Ser        | Glu        | Asn        |
| 10 | Phe<br>465 | Pro        | Glu        | Leu        | Lys        | Val<br>470 | Ile        | Glu        | Met        | Pro        | Tyr<br>475 | Ala        | Tyr        | Gln        | Cys        | Cys<br>480 |
|    | Ala        | Phe        | Gly        | Val        | Cys<br>485 | Glu        | Asn        | Ala        | Tyr        | Lys<br>490 |            | Ser        | Asn        | Gln        | Trp<br>495 | Asn        |
|    | Lys        | Gly        | Asp        | Asn<br>500 | Ser        | Ser        | Met        | Asp        | Asp<br>505 | Leu        | His        | Lys        | Lys        | Asp<br>510 | Ala        | Gly        |
| 15 | Met        | Phe        | Gln<br>515 | Ala        | Gln        | Asp        | Glu        | Arg<br>520 | Asp        | Leu        | Glu        | Asp        | Phe<br>525 | Leu        | Leu        | Asp        |
|    | Phe        | Glu<br>530 | Glu        | Asp        | Leu        | Lys        | Ala<br>535 | Leu        | His        | Ser        | Val        | Gln<br>540 | Cys        | Ser        | Pro        | Ser        |
| 20 | Pro<br>545 | Gly        | Pro        | Phe        | Lys        | Pro<br>550 | Cys        | Glu        | His        | Leu        | Leu<br>555 | Asp        | Gly        | Trp        | Leu        | Ile<br>560 |
|    | Arg        | Ile        | Gly        | Val        | Trp<br>565 | Thr        | Ile        | Ala        | Val        | Leu<br>570 | Ala        | Leu        | Thr        | Cys        | Asn<br>575 | Ala        |
|    | Leu        | Val        | Thr        | Ser<br>580 | Thr        | Val        | Phe        | Arg        | Ser<br>585 | Pro        | Leu        | Tyr        | Ile        | Ser<br>590 | Pro        | Ile        |
| 25 | Lys        | Leu        | Leu<br>595 | Ile        | Gly        | Val        | Ile        | Ala<br>600 | Ala        | Val        | Asn        | Met        | Leu<br>605 | Thr        | Gly        | Val        |
|    | Ser        | Ser<br>610 | Ala        | Val        | Leu        | Ala        | Gly<br>615 | Val        | Asp        | Ala        | Phe        | Thr<br>620 | Phe        | Gly        | Ser        | Phe        |
| 30 | Ala<br>625 | Arg        | His        | Gly        | Ala        | Trp<br>630 | Trp        | Glu        | Asn        | Gly        | Val<br>635 | Gly        | Cys        | His        | Val        | Ile<br>640 |
|    | Gly        | Phe        | Leu        | Ser        | Ile<br>645 | Phe        | Ala        | Ser        | Glu        | Ser<br>650 | Ser        | Val        | Phe        | Leu        | Leu<br>655 | Thr        |
|    | Leu        | Ala        | Ala        | Leu<br>660 | Glu        | Arg        | Gly        | Phe        | Ser<br>665 | Val        | Lys        | Tyr        |            | Ala<br>670 | Lys        | Phe        |
| 35 | Glu        | Thr        | Lys<br>675 | Ala        | Pro        | Phe        | Ser        | Ser<br>680 | Leu        | Lys        | Val        |            | Ile<br>685 | Leu        | Leu        | Сув        |
|    | Ala        | Leu        | Leu        | Ala        | Leu        | Thr        | Met        | Ala        | Ala        | Val        | Pro        | Leu        | Leu        | Gly        | Gly        | Ser        |

|    |            | 690               |                   |                      |                                    |                      | 695                |            |            |            |            | 700        |            |            |            |            |
|----|------------|-------------------|-------------------|----------------------|------------------------------------|----------------------|--------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    | Lys<br>705 | Tyr               | Gly               | Ala                  | Ser                                | Pro<br>710           | Leu                | Cys        | Leu        | Pro        | Leu<br>715 | Pro        | Phe        | Gly        | Glu        | Pro<br>720 |
| 5  | Ser        | Thr               | Met               | Gly                  | Tyr<br>725                         | Met                  | Val                | Ala        | Leu        | Ile<br>730 | Leu        | Leu        | Asn        | Ser        | Leu<br>735 | Cys        |
|    | Phe        | Leu               | Met               | Met<br>740           | Thr                                | Ile                  | Ala                | Tyr        | Thr<br>745 | Lys        | Leu        | Tyr        | Cys        | Asn<br>750 | Leu        | Asp        |
|    | Lys        | Gly               | Asp<br>755        | Leu                  | Glu                                | Asn                  | Ile                | Trp<br>760 | Asp        | Cys        | Ser        | Met        | Val<br>765 | Lys        | His        | Ile        |
| 10 | Ala        | Leu<br>770        | Leu               | Leu                  | Phe                                | Thr                  | Asn<br>775         | Cys        | Ile        | Leu        | Asn        | Cys<br>780 | Pro        | Val        | Ala        | Phe        |
|    | Leu<br>785 | Ser               | Phe               | Ser                  | Ser                                | Leu<br>790           | Ile                | Asn        | Leu        | Thr        | Phe<br>795 | Ile        | Ser        | Pro        | Glu        | Val<br>800 |
| 15 | Ile        | Lys               | Phe               | Ile                  | Leu<br>805                         | Leu                  | Val                | Val        | Val        | Pro<br>810 | Leu        | Pro        | Ala        | Cys        | Leu<br>815 | Asn        |
|    | Pro        | Leu               | Leu               | Tyr<br>820           | Ile                                | Leu                  | Phe                | Asn        | Pro<br>825 | His        | Phe        | Lys        | Glu        | Asp<br>830 | Leu        | Val        |
|    | Ser        | Leu               | Arg<br>835        | Lys                  | Gln                                | Thr                  | Tyr                | Val<br>840 | Trp        | Thr        | Arg        | Ser        | Lys<br>845 | His        | Pro        | Ser        |
| 20 | Leu        | Met<br>850        | Ser               | Ile                  | Asn                                | Ser                  | Asp<br>855         | Asp        | Val        | Glu        | Lys        | Gln<br>860 | Ser        | Cys        | Asp        | Ser        |
|    | Thr<br>865 | Gln               | Ala               | Leu                  | Val                                | Thr<br>870           | Phe                | Thr        | Ser        | Ser        | Ser<br>875 | Ile        | Thr        | Tyr        |            | Leu<br>880 |
| 25 | Pro        | Pro               | Ser               | Ser                  | Val<br>885                         | Pro                  | Ser                | Pro        | Ala        | Tyr<br>890 | Pro        | Val        | Thr        |            | Ser<br>895 | Cys        |
|    | His        | Leu               | Ser               | ser<br>900           | Val                                | Ala                  | Phe                | Val        | Pro<br>905 | Cys        | Leu        |            |            |            |            |            |
|    | (266) INF  | ORMA              | TION              | FOR                  | SEC                                | ID                   | NO:2               | 65:        |            |            |            |            |            |            |            |            |
| 30 | (i)        | (A)<br>(B)<br>(C) | LEN<br>TYP<br>STR | GTH:<br>E: n<br>ANDE | ARAC<br>30<br>ucle<br>DNES<br>Y: 1 | base<br>ic a<br>S: s | pai<br>cid<br>ingl | rs         |            |            |            |            |            |            |            |            |
|    | (ii        | ) MO              | LECU              | LE T                 | YPE:                               | DNA                  | (ge                | nomi       | c)         |            |            |            |            |            |            |            |
| 35 | (xi        | ) SE              | QUEN              | CE D                 | ESCR                               | IPTI                 | ON:                | SEQ        | ID N       | 0:26       | 5:         |            |            |            |            |            |

|    | (267)  | INFORMATION FOR SEQ ID NO:266:                                                                                                 |    |
|----|--------|--------------------------------------------------------------------------------------------------------------------------------|----|
| 5  |        | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear   |    |
|    |        | (ii) MOLECULE TYPE: DNA (genomic) (xi) SEQUENCE DESCRIPTION: SEQ ID NO:266:                                                    |    |
|    | CAGAG  | BAGGG TGAAGGGGCT GTTGGCG                                                                                                       | 27 |
| 10 | (268)  | INFORMATION FOR SEQ ID NO:267:                                                                                                 |    |
| 15 |        | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear   |    |
|    |        | (ii) MOLECULE TYPE: DNA (genomic)                                                                                              |    |
|    |        | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:267:                                                                                      |    |
|    | GGCGG  | CGCCG AGCCAAGGGG CTGGCTGTGG                                                                                                    | 30 |
|    | (269)  | INFORMATION FOR SEQ ID NO:268:                                                                                                 |    |
| 20 |        | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDENNESS: single (D) TOPOLOGY: linear   |    |
| 25 |        | (ii) MOLECULE TYPE: DNA (genomic)                                                                                              |    |
|    |        | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:268:                                                                                      |    |
|    | GGGACT | GCTC TATGAAAAAA CACATTGCCC TG                                                                                                  | 32 |
|    | (270)  | INFORMATION FOR SEQ ID NO:269:                                                                                                 |    |
| 30 |        | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1071 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear |    |
|    |        | (ii) MOLECULE TYPE: DNA (genomic)                                                                                              |    |
| 35 |        | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:269:                                                                                      |    |
|    | ATGAAT | GGGG TCTCGGAGGG GACCAGAGGC TGCAGTGACA GGCAACCTGG GGTCCTGACA                                                                    | 60 |

|    | CGTGATCGCT CTTGTTCCAG GAAGATGAAC TCTTCCGGAT GCCTGTCTGA GGAGGTGGGG                                                           | 120  |
|----|-----------------------------------------------------------------------------------------------------------------------------|------|
|    | TCCCTCCGCC CACTGACTGT GGTTATCCTG TCTGCGTCCA TTGTCGTCGG AGTGCTGGGC                                                           | 180  |
|    | ARTGGGCTGG TGCTGTGGAT GACTGTCTTC CGTATGGCAC GCACGGTCTC CACCGTCTGC                                                           | 240  |
|    | TTCTTCCACC TGGCCCTTGC CGATTTCATG CTCTCACTGT CTCTGCCCAT TGCCATGTAC                                                           | 300  |
| 5  | TATATTGTCT CCAGGCAGTG GCTCCTCGGA GAGTGGGCCT GCAAACTCTA CATCACCTTT                                                           | 360  |
|    | GTGTTCCTCA GCTACTTTGC CAGTAACTGC CTCCTTGTCT TCATCTCTGT GGACCGTTGC                                                           | 420  |
|    | ATCTCTGTCC TCTACCCCGT CTGGGCCCTG AACCACCGCA CTGTGCAGCG GGCGAGCTGG                                                           | 480  |
|    | CTGGCCTTTG GGGTGTGGCT CCTGGCCGCC GCCTTGTGCT CTGCGCACCT GAAATTCCGG                                                           | 540  |
|    | ACAACCAGAA AATGGAATGG CTGTACGCAC TGCTACTTGG CGTTCAACTC TGACAATGAG                                                           | 600  |
| 10 | ACTGCCCAGA TTTGGATTGA AGGGGTCGTG GAGGGACACA TTATAGGGAC CATTGGCCAC                                                           | 660  |
|    | TTCCTGCTGG GCTTCCTGGG GCCCTTAGCA ATCATAGGCA CCTGCGCCCA CCTCATCCGG                                                           | 720  |
|    | GCCAAGCTCT TGCGGGAGGG CTGGGTCCAT GCCAACCGGC CCAAGAGGCT GCTGCTGGTG                                                           | 780  |
|    | CTGGTGAGCG CTTTCTTTAT CTTCTGGTCC CCGTTTAACG TGGTGCTGTT GGTCCATCTG                                                           | 840  |
|    | TGGCGACGGG TGATGCTCAA GGAAATCTAC CACCCCCGGA TGCTGCTCAT CCTCCAGGCT                                                           | 900  |
| 15 | AGCTTTGCCT TGGGCTGTGT CAACAGCAGC CTCAACCCCT TCCTCTACGT CTTCGTTGGC                                                           | 960  |
|    | AGAGATTTCC AAGAAAAGTT TTTCCAGTCT TTGACTTCTG CCCTGGCGAG GGCGTTTGGA                                                           | 1020 |
|    | GAGGAGGAGT TTCTGTCATC CTGTCCCCGT GGCAACGCCC CCCGGGAATG A                                                                    | 1071 |
|    | (271) INFORMATION FOR SEQ ID NO:270:                                                                                        |      |
| 20 | (i) SEQUENCE CHARACTERISTICS: (a) LENGTH: 356 amino acids (B) TYPE: amino acid (C) STRANDEDMESS: (D) TOPOLOGY: not relevant |      |
|    | (ii) MOLECULE TYPE: protein                                                                                                 |      |
| 25 | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:270:                                                                                   |      |
|    | Met Asn Gly Val Ser Glu Gly Thr Arg Gly Cys Ser Asp Arg Gln Pr $_{\rm 1}$                                                   | Þ    |
|    | Gly Val Leu Thr Arg Asp Arg Ser Cys Ser Arg Lys Met Asn Ser Se $20$ $25$ $30$                                               | r    |
| 30 | Gly Cys Leu Ser Glu Glu Val Gly Ser Leu Arg Pro Leu Thr Val Va $^{35}$                                                      | 1    |

|    | Ile        | Leu<br>50  | Ser        | Ala        | Ser        | Ile        | Val<br>55  | Val        | Gly        | Val        | Leu        | Gly<br>60  | Asn        | Gly        | Leu        | Val        |
|----|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    | Leu<br>65  | Trp        | Met        | Thr        | Val        | Phe<br>70  | Arg        | Met        | Ala        | Arg        | Thr<br>75  | Val        | Ser        | Thr        | Val        | Cys<br>80  |
| 5  | Phe        | Phe        | His        | Leu        | Ala<br>85  | Leu        | Ala        | Asp        | Phe        | Met<br>90  | Leu        | Ser        | Leu        | Ser        | Leu<br>95  | Pro        |
|    | Ile        | Ala        | Met        | Tyr<br>100 | Tyr        | Ile        | Val        | Ser        | Arg<br>105 |            | Trp        | Leu        | Leu        | Gly<br>110 |            | Trp        |
| 10 | Ala        | Cys        | Lys<br>115 | Leu        | Tyr        | Ile        | Thr        | Phe<br>120 |            | Phe        | Leu        | Ser        | Tyr<br>125 | Phe        | Ala        | Ser        |
|    | Asn        | Cys<br>130 | Leu        | Leu        | Val        | Phe        | Ile<br>135 | Ser        | Val        | Asp        | Arg        | Cys<br>140 | Ile        | Ser        | Val        | Leu        |
|    | Tyr<br>145 | Pro        | Val        | Trp        | Ala        | Leu<br>150 | Asn        | His        | Arg        | Thr        | Val<br>155 | Gln        | Arg        | Ala        | Ser        | Trp        |
| 15 | Leu        | Ala        | Phe        | Gly        | Val<br>165 | Trp        | Leu        | Leu        | Ala        | Ala<br>170 | Ala        | Leu        | Cys        | Ser        | Ala<br>175 | His        |
|    | Leu        | Lys        | Phe        | Arg<br>180 | Thr        | Thr        | Arg        | Lys        | Trp<br>185 | Asn        | Gly        | Cys        | Thr        | His<br>190 | Cys        | Tyr        |
| 20 | Leu        | Ala        | Phe<br>195 | Asn        | Ser        | Asp        | Asn        | Glu<br>200 | Thr        | Ala        | Gln        | Ile        | Trp<br>205 | Ile        | Glu        | Gly        |
|    | Val        | Val<br>210 | Glu        | Gly        | His        | Ile        | Ile<br>215 | Gly        | Thr        | Ile        | Gly        | His<br>220 | Phe        | Leu        | Leu        | Gly        |
|    | Phe<br>225 | Leu        | Gly        | Pro        | Leu        | Ala<br>230 | Ile        | Ile        | Gly        | Thr        | Cys<br>235 | Ala        | His        | Leu        | Ile        | Arg<br>240 |
| 25 | Ala        | Lys        | Leu        | Leu        | Arg<br>245 | Glu        | Gly        | Trp        | Val        | His<br>250 | Ala        | Asn        | Arg        | Pro        | Lys<br>255 | Arg        |
|    | Leu        | Leu        | Leu        | Val<br>260 | Leu        | Val        | Ser        | Ala        | Phe<br>265 | Phe        | Ile        | Phe        | Trp        | Ser<br>270 | Pro        | Phe        |
| 30 | Asn        | Val        | Val<br>275 | Leu        | Leu        | Val        |            | Leu<br>280 | Trp        | Arg        | Arg        | Val        | Met<br>285 | Leu        | Lys        | Glu        |
|    | Ile        | Tyr<br>290 | His        | Pro        | Arg        | Met        | Leu<br>295 | Leu        | Ile        | Leu        |            | Ala<br>300 | Ser        | Phe        | Ala        | Leu        |
|    | Gly<br>305 | Cys        | Val        | Asn        | Ser        | Ser<br>310 | Leu        | Asn        | Pro        |            | Leu<br>315 | Tyr        | Val        | Phe        | Val        | Gly<br>320 |
| 35 | Arg        | Asp        | Phe        | Gln        | Glu<br>325 | Lys        | Phe        | Phe        | Gln        | Ser<br>330 | Leu        | Thr        | Ser        | Ala        | Leu<br>335 | Ala        |
|    | Arg        | Ala        | Phe        | Gly        | Glu        | Glu        | Glu        | Phe        | Leu        | Ser        | Ser        | Cys        | Pro        | Arg        | Gly        | Asn        |

|    |            |                                                                         |                                      | 224        |            |            |     |
|----|------------|-------------------------------------------------------------------------|--------------------------------------|------------|------------|------------|-----|
|    |            | 340                                                                     |                                      | 345        |            | 350        |     |
|    | Ala P      | ro Arg Glu<br>355                                                       |                                      |            |            |            |     |
|    | (272) INFO | RMATION FOR                                                             | SEQ ID NO:                           | 271:       |            |            |     |
| 5  | (i)        | SEQUENCE CH<br>(A) LENGTH:<br>(B) TYPE: n<br>(C) STRANDE<br>(D) TOPOLOG | 903 base pucleic acid<br>DNESS: sing | airs       |            |            |     |
| 10 | (ii)       | MOLECULE T                                                              | YPE: DNA (g                          | enomic)    |            |            |     |
|    | (xi)       | SEQUENCE D                                                              | ESCRIPTION:                          | SEQ ID NO: | 271:       |            |     |
|    | ATGGACCTGC | CCCCGCAGCT                                                              | CTCCTTCGGC                           | CTCTATGTGG | CCGCCTTTGC | GCTGGGCTTC | 60  |
|    | CCGCTCAACG | TCCTGGCCAT                                                              | CCGAGGCGCG                           | ACGGCCCACG | CCCGGCTCCG | TCTCACCCCT | 120 |
| 15 | AGCCTGGTCT | ACGCCCTGAA                                                              | CCTGGGCTGC                           | TCCGACCTGC | TGCTGACAGT | CTCTCTGCCC | 180 |
|    | CTGAAGGCGG | TGGAGGCGCT                                                              | AGCCTCCGGG                           | GCCTGGCCTC | TGCCGGCCTC | GCTGTGCCCC | 240 |
|    | GTCTTCGCGG | TGGCCCACTT                                                              | CTTCCCACTC                           | TATGCCGGCG | GGGGCTTCCT | GGCCGCCCTG | 300 |
|    | AGTGCAGGCC | GCTACCTGGG                                                              | AGCAGCCTTC                           | CCCTTGGGCT | ACCAAGCCTT | CCGGAGGCCG | 360 |
|    | TGCTATTCCT | GGGGGTGTG                                                               | CGCGGCCATC                           | TGGGCCCTCG | TCCTGTGTCA | CCTGGGTCTG | 420 |
| 20 | GTCTTTGGGT | TGGAGGCTCC                                                              | AGGAGGCTGG                           | CTGGACCACA | GCAACACCTC | CCTGGGCATC | 480 |
|    | AACACACCGG | TCAACGGCTC                                                              | TCCGGTCTGC                           | CTGGAGGCCT | GGGACCCGGC | CTCTGCCGGC | 540 |
|    | CCGGCCCGCT | TCAGCCTCTC                                                              | TCTCCTGCTC                           | TTTTTTCTGC | CCTTGGCCAT | CACAGCCTTC | 600 |
|    | TGCTACGTGG | GCTGCCTCCG                                                              | GGCACTGGCC                           | CGCTCCGGCC | TGACGCACAG | GCGGAAGCTG | 660 |
|    | CGGGCCAAAT | GGGTGGCCGG                                                              | CGGGGCCCTC                           | CTCACGCTGC | TGCTCTGCGT | AGGACCCTAC | 720 |
| 25 | AACGCCTCCA | ACGTGGCCAG                                                              | CTTCCTGTAC                           | CCCAATCTAG | GAGGCTCCTG | GCGGAAGCTG | 780 |
|    | GGGCTCATCA | CGGGTGCCTG                                                              | GAGTGTGGTG                           | CTTAATCCGC | TGGTGACCGG | TTACTTGGGA | 840 |
|    | AGGGGTCCTG | GCCTGAAGAC                                                              | AGTGTGTGCG                           | GCAAGAACGC | AAGGGGGCAA | GTCCCAGAAG | 900 |

903

(273) INFORMATION FOR SEQ ID NO:272:

TAA

30

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 300 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS:

225

#### (D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:272: Met Asp Leu Pro Pro Gln Leu Ser Phe Gly Leu Tyr Val Ala Ala Phe 5 Ala Leu Gly Phe Pro Leu Asn Val Leu Ala Ile Arg Gly Ala Thr Ala His Ala Arg Leu Arg Leu Thr Pro Ser Leu Val Tyr Ala Leu Asn Leu 10 Gly Cys Ser Asp Leu Leu Leu Thr Val Ser Leu Pro Leu Lys Ala Val Glu Ala Leu Ala Ser Gly Ala Trp Pro Leu Pro Ala Ser Leu Cys Pro Val Phe Ala Val Ala His Phe Phe Pro Leu Tyr Ala Gly Gly Phe 15 Leu Ala Ala Leu Ser Ala Gly Arg Tyr Leu Gly Ala Ala Phe Pro Leu Gly Tyr Gln Ala Phe Arg Arg Pro Cys Tyr Ser Trp Gly Val Cys Ala 115 120 20 Ala Ile Trp Ala Leu Val Leu Cys His Leu Gly Leu Val Phe Gly Leu Glu Ala Pro Gly Gly Trp Leu Asp His Ser Asn Thr Ser Leu Gly Ile 150 155 Asn Thr Pro Val Asn Gly Ser Pro Val Cys Leu Glu Ala Trp Asp Pro 25 Ala Ser Ala Gly Pro Ala Arg Phe Ser Leu Ser Leu Leu Leu Phe Phe Leu Pro Leu Ala Ile Thr Ala Phe Cys Tyr Val Gly Cys Leu Arg Ala 195 200 30 Leu Ala Arg Ser Gly Leu Thr His Arg Arg Lys Leu Arg Ala Lys Trp Val Ala Gly Gly Ala Leu Leu Thr Leu Leu Leu Cys Val Gly Pro Tyr 235 Asn Ala Ser Asn Val Ala Ser Phe Leu Tyr Pro Asn Leu Gly Gly Ser 35 245 Trp Arg Lys Leu Gly Leu Ile Thr Gly Ala Trp Ser Val Val Leu Asn

265

270

1041

226

GTGGCCTGTG CTGAAAGCTA G

Pro Leu Val Thr Gly Tyr Leu Gly Arg Gly Pro Gly Leu Lys Thr Val 280 Cys Ala Ala Arg Thr Gln Gly Gly Lys Ser Gln Lys (274) INFORMATION FOR SEQ ID NO:273: (i) SEOUENCE CHARACTERISTICS: (A) LENGTH: 1041 base pairs (B) TYPE: nucleic acid 10 (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (xi) SEQUENCE DESCRIPTION: SEQ ID NO:273: ATGGATACAG GCCCCGACCA GTCCTACTTC TCCGGCAATC ACTGGTTCGT CTTCTCGGTG 60 15 TACCTTCTCA CTTTCCTGGT GGGGCTCCCC CTCAACCTGC TGGCCCTGGT GGTCTTCGTG 120 GGCAAGCTGC AGCGCCGCCC GGTGGCCGTG GACGTGCTCC TGCTCAACCT GACCGCCTCG 180 GACCTGCTCC TGCTGCTGTT CCTGCCTTTC CGCATGGTGG AGGCAGCCAA TGGCATGCAC 240 TGGCCCCTGC CCTTCATCCT CTGCCCACTC TCTGGATTCA TCTTCTTCAC CACCATCTAT 300 CTCACCGCCC TCTTCCTGGC AGCTGTGAGC ATTGAACGCT TCCTGAGTGT GGCCCACCCA 360 20 CTGTGGTACA AGACCCGGCC GAGGCTGGGG CAGGCAGGTC TGGTGAGTGT GGCCTGCTGG 420 CTGTTGGCCT CTGCTCACTG CAGCGTGGTC TACGTCATAG AATTCTCAGG GGACATCTCC 480 CACAGCCAGG GCACCAATGG GACCTGCTAC CTGGAGTTCC GGAAGGACCA GCTAGCCATC 540 CTCCTGCCCG TGCGGCTGGA GATGGCTGTG GTCCTCTTTG TGGTCCCGCT GATCATCACC 600 AGCTACTGCT ACAGCCGCCT GGTGTGGATC CTCGGCAGAG GGGGCAGCCA CCGCCGGCAG 660 25 AGGAGGGTGA AGGGGCTGTT GGCGGCCACG CTGCTCAACT TCCTTGTCTG CTTTGGGCCC 720 TACAACGTGT CCCATGTCGT GGGCTATATC TGCGGTGAAA GCCCGGCATG GAGGATCTAC 780 GTGACGCTTC TCAGCACCCT GAACTCCTGT GTCGACCCCT TTGTCTACTA CTTCTCCTCC 840 TCCGGGTTCC AAGCCGACTT TCATGAGCTG CTGAGGAGGT TGTGTGGGCT CTGGGGCCAG 900 TGGCAGCAGG AGAGCAGCAT GGAGCTGAAG GAGCAGAAGG GAGGGGAGGA GCAGAGAGCG 960 30 GACCGACCAG CTGAAAGAAA GACCAGTGAA CACTCACAGG GCTGTGGAAC TGGTGGCCAG 1020

|    | (275) IN   | FORM        | ATIO                | N FO                | R SE                 | Q ID                | NO:        | 274:       |            |            |            |            |            |            |            |            |
|----|------------|-------------|---------------------|---------------------|----------------------|---------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| 5  | (i         | (B          | QUEN ) LE ) TY ) ST | NGTH<br>PE:<br>RAND | : 34<br>amin<br>EDNE | 6 am<br>o ac<br>SS: | ino<br>id  | acid       |            |            |            |            |            |            |            |            |
|    |            | i) M        |                     |                     |                      | -                   |            |            |            |            |            |            |            |            |            |            |
|    |            | i) S<br>Asp |                     |                     |                      |                     |            |            |            |            |            | Clv        | D.com      | TT         | m          | Dh-        |
| 10 | 1          | пор         | ****                | O. y                | 5                    | кор                 | GIII       | Ser        | TYL        | 10         | ser        | GIY        | ASI        | HIS        | 15<br>15   | Pne        |
|    | Val        | Phe         | Ser                 | Val<br>20           | Tyr                  | Leu                 | Leu        | Thr        | Phe<br>25  | Leu        | Val        | Gly        | Leu        | Pro<br>30  | Leu        | Asn        |
|    | Leu        | Leu         | Ala<br>35           | Leu                 | Val                  | Val                 | Phe        | Val<br>40  | Gly        | Lys        | Leu        | Gln        | Arg<br>45  | Arg        | Pro        | Val        |
| 15 | Ala        | Val<br>50   | Asp                 | Val                 | Leu                  | Leu                 | Leu<br>55  | Asn        | Leu        | Thr        | Ala        | Ser<br>60  | Asp        | Leu        | Leu        | Leu        |
|    | Leu<br>65  | Leu         | Phe                 | Leu                 | Pro                  | Phe                 | Arg        | Met        | Val        | Glu        | Ala<br>75  | Ala        | Asn        | Gly        | Met        | His<br>80  |
| 20 | Trp        | Pro         | Leu                 | Pro                 | Phe<br>85            | Ile                 | Leu        | Cys        | Pro        | Leu<br>90  | Ser        | Gly        | Phe        | Ile        | Phe<br>95  | Phe        |
|    | Thr        | Thr         | Ile                 | Tyr<br>100          | Leu                  | Thr                 | Ala        | Leu        | Phe<br>105 | Leu        | Ala        | Ala        | Val        | Ser        | Ile        | Glu        |
|    | Arg        | Phe         | Leu<br>115          | Ser                 | Val                  | Ala                 | His        | Pro<br>120 | Leu        | Trp        | Tyr        | Lys        | Thr<br>125 | Arg        | Pro        | Arg        |
| 25 | Leu        | Gly<br>130  | Gln                 | Ala                 | Gly                  | Leu                 | Val<br>135 | Ser        | Val        | Ala        | Cys        | Trp<br>140 | Leu        | Leu        | Ala        | Ser        |
|    | Ala<br>145 | His         | Суз                 | Ser                 | Val                  | Val<br>150          | Tyr        | Val        | Ile        | Glu        | Phe<br>155 | Ser        | Gly        | Asp        | Ile        | Ser<br>160 |
| 30 | His        | Ser         | Gln                 | Gly                 | Thr<br>165           | Asn                 | Gly        | Thr        | Сув        | Tyr<br>170 | Leu        | Glu        | Phe        | Arg        | Lys<br>175 | Asp        |
|    | Gln        | Leu         | Ala                 | Ile<br>180          | Leu                  | Leu                 | Pro        | Val        | Arg<br>185 | Leu        | Glu        | Met        | Ala        | Val<br>190 | Val        | Leu        |
|    | Phe        | Val         | Val<br>195          | Pro                 | Leu                  | Ile                 | Ile        | Thr<br>200 | Ser        | Tyr        | Cys        | Tyr        | Ser<br>205 | Arg        | Leu        | Val        |
| 35 | Trp        | Ile<br>210  | Leu                 | Gly                 | Arg                  | Gly                 | Gly<br>215 | Ser        | His        | Arg        | Arg        | Gln<br>220 | Arg        | Arg        | Val        | Lys        |
|    | Gly        | Leu         | Leu                 | Ala                 | Ala                  | Thr                 | Leu        | Leu        | Asn        | Phe        | Leu        | Val        | Cys        | Phe        | Gly        | Pro        |

|    | 225        |                          |            |                                           |                      | 230                             |                              |            |            |            | 235        |            |            |            |            | 240        |     |
|----|------------|--------------------------|------------|-------------------------------------------|----------------------|---------------------------------|------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----|
|    | Tyr        | Asn                      | Val        | Ser                                       | His<br>245           | Val                             | Val                          | Gly        | Tyr        | Ile<br>250 | Cys        | Gly        | Glu        | Ser        | Pro<br>255 | Ala        |     |
| 5  | Trp        | Arg                      | Ile        | Tyr<br>260                                | Val                  | Thr                             | Leu                          | Leu        | Ser<br>265 | Thr        | Leu        | Asn        | Ser        | Cys<br>270 | Val        | Asp        |     |
|    | Pro        | Phe                      | Val<br>275 | Tyr                                       | Tyr                  | Phe                             | Ser                          | Ser<br>280 | Ser        | Gly        | Phe        | Gln        | Ala<br>285 | Asp        | Phe        | His        |     |
|    | Glu        | Leu<br>290               | Leu        | Arg                                       | Arg                  | Leu                             | Суs<br>295                   | Gly        | Leu        | Trp        | Gly        | Gln<br>300 | Trp        | Gln        | Gln        | Glu        |     |
| 10 | Ser<br>305 | Ser                      | Met        | Glu                                       | Leu                  | Lys<br>310                      | Glu                          | Gln        | Lys        | Gly        | Gly<br>315 | Glu        | Glu        | Gln        | Arg        | Ala<br>320 |     |
|    | Asp        | Arg                      | Pro        | Ala                                       | Glu<br>325           | Arg                             | Lys                          | Thr        | Ser        | Glu<br>330 | His        | Ser        | Gln        | Gly        | Cys<br>335 | Gly        |     |
| 15 | Thr        | Gly                      | Gly        | Gln<br>340                                | Val                  | Ala                             | Сув                          | Ala        | Glu<br>345 | Ser        |            |            |            |            |            |            |     |
|    | (276) INF  | ORMA                     | TOITE      | I FOR                                     | SEÇ                  | O ID                            | No:2                         | 275:       |            |            |            |            |            |            |            |            |     |
| 20 |            | (A)<br>(B)<br>(C)<br>(D) | TYI<br>STI | CE CH<br>NGTH:<br>PE: 1<br>RANDE<br>POLOG | 993<br>nucle<br>DNES | B bas<br>eic a<br>BS: s<br>inea | se pa<br>acid<br>sing]<br>ar | irs<br>.e  | c)         |            |            |            |            |            |            |            |     |
|    |            |                          |            | ICE I                                     |                      |                                 | -                            |            |            | in - 21    | 75.        |            |            |            |            |            |     |
|    | ATGCTGCCG  |                          | -          |                                           |                      |                                 |                              | -          |            |            |            | ATCA       | T CI       | TCCT       | CACT       | ,          | 60  |
| 25 | GGCCTCCCT  | g co                     | CAACO      | TCC                                       | GGC                  | CCTG                            | CGG                          | GCCI       | TTGT       | eg c       | GCGC       | ATCO       | G CC       | AGCC       | CCAG       |            | .20 |
|    | CCTGCACCT  | G TO                     | CAC        | TCCT                                      | CCI                  | GCT                             | AGC                          | CTG        | CGCT       | GG (       | CCGAC      | CTCC       | T CC       | TGCT       | GCTG       | 1          | .80 |
|    | CTGCTGCCC  | T TO                     | CAAGA      | ATCAT                                     | CGF                  | GGCI                            | rgcg                         | TCGI       | ACTI       | cc o       | CTG        | TACC       | T GO       | CCAA       | GGTC       | : 2        | 40  |
|    | GTCTGCGCC  | C TO                     | CACGA      | GTT                                       | TGC                  | CTTC                            | CTAC                         | AGC        | GCAT       | CT F       | CTG        | AGCA       | C GI       | GGCT       | CCTG       | 3          | 00  |
|    | GCGGGCATC  | A GC                     | CATC       | BAGCO                                     | CTA                  | CCTC                            | GGA                          | GTGG       | CTT        | cc c       | CCGTC      | CAGI       | A CA       | AGCI       | CTCC       | : 3        | 60  |
| 30 | CGCCGGCCT  | 'C TG                    | TAT        | GAGI                                      | ' GA'                | TGC                             | AGCT                         | CTGG       | TGG        | CT C       | GGTT       | ATGT       | C CI       | TTGG       | TCAC       | 4          | 20  |
|    | TGCACCATC  | G To                     | ATC        | ATCGI                                     | TCA                  | ATAC                            | CTTG                         | AACA       | CGAC       | TG I       | GCAC       | GTCA       | G A        | GTGG       | CAAT       | ' 4        | 80  |
|    | GAAATTACC  | T GC                     | TACG       | BAGA                                      | CTI                  | CACC                            | GAT                          | AACC       | AGTI       | GG I       | CGT        | GTGC       | T GC       | CCGI       | 'GCGG      | 5          | 40  |
|    | CTGGAGCTG  | T GC                     | CTG        | TGCT                                      | CTI                  | CTTC                            | CATC                         | CCC        | TGGC       | AG I       | CAC        | ATCI       | T CI       | GCTA       | CTGG       | 6          | 00  |

|    | CGTTTTG    | TGT (      | GAT                              | CATGO                       | CT CI                       | CCCF                       | GCC               | CTI          | GTGC       | GGG       | CCCI       | AGAGO      | GCG (      | CGCC       | GAGO      | CC         | 660 |
|----|------------|------------|----------------------------------|-----------------------------|-----------------------------|----------------------------|-------------------|--------------|------------|-----------|------------|------------|------------|------------|-----------|------------|-----|
|    | AAGGGGC'   | TGG (      | CTGT                             | GTGA                        | C GC                        | TGCI                       | CAAT              | TTC          | CTG        | TGT       | GCT        | rcggr      | CC 1       | TAC        | ACGI      | 'G         | 720 |
|    | TCCCACC    | TGG 7      | rgggg                            | TATO                        | A CC                        | AGAG                       | AAA               | AGC          | CCCI       | GGT       | GGC        | GTC        | AT A       | GCCG       | TGGT      | G.         | 780 |
|    | TTCAGTT    | CAC :      | CAAC                             | GCCA                        | G TO                        | TGGA                       | cccc              | CTG          | CTCT       | TCT       | ATTI       | CTCI       | TC T       | TCAC       | TGGT      | rg.        | 840 |
| 5  | CGCAGGG    | CAT 1      | TGGG                             | AGAG                        | G GC                        | TGCA                       | GGT               | CTG          | CGGA       | ATC       | AGGG       | CTCC       | TC C       | CTGT       | TGGG      | A          | 900 |
|    | CGCAGAG    | GCA A      | AGAC                             | ACAG                        | C AG                        | AGGG                       | GACA              | AAT          | GAGG       | ACA       | GGGG       | TGTG       | GG I       | 'CAAG      | GAGA      | A          | 960 |
|    | GGGATGC    | CAA C      | TTCG                             | GACT                        | T CA                        | CTAC                       | AGAG              | TAG          |            |           |            |            |            |            |           |            | 993 |
|    | (277) II   | NFORM      | MATIC                            | N FO                        | R SE                        | Q ID                       | NO:               | 276:         |            |           |            |            |            |            |           |            |     |
| 10 |            | (E         | A) LE<br>B) TY<br>C) ST<br>D) TO | NGTH<br>PE:<br>RAND<br>POLO | : 33<br>amin<br>EDNE<br>GY: | 0 am<br>o ac<br>SS:<br>not | ino<br>id<br>rele | acid<br>vant | s          |           |            |            |            |            |           |            |     |
| 15 | ()         | ci) S      | EQUE                             | NCE :                       | DESC                        | RIPT                       | ION:              | SEQ          | ID         | NO:2      | 76:        |            |            |            |           |            |     |
|    | Met<br>1   | Leu        | Pro                              | Asp                         | Trp<br>5                    | Lys                        | Ser               | Ser          | Leu        | Ile<br>10 | Leu        | Met        | Ala        | Tyr        | Ile<br>15 | Ile        |     |
|    | Ile        | Phe        | Leu                              | Thr<br>20                   | Gly                         | Leu                        | Pro               | Ala          | Asn<br>25  | Leu       | Leu        | Ala        | Leu        | Arg<br>30  | Ala       | Phe        |     |
| 20 | Val        | Gly        | Arg<br>35                        | Ile                         | Arg                         | Gln                        | Pro               | Gln<br>40    | Pro        | Ala       | Pro        | Val        | His<br>45  | Ile        | Leu       | Leu        |     |
|    | Leu        | Ser<br>50  | Leu                              | Thr                         | Leu                         | Ala                        | Asp<br>55         | Leu          | Leu        | Leu       | Leu        | Leu<br>60  | Leu        | Leu        | Pro       | Phe        |     |
| 25 | Lys<br>65  | Ile        | Ile                              | Glu                         | Ala                         | Ala<br>70                  | Ser               | Asn          | Phe        | Arg       | Trp<br>75  | Tyr        | Leu        | Pro        | Lys       | Val<br>80  |     |
|    | Val        | Cys        | Ala                              | Leu                         | Thr<br>85                   | Ser                        | Phe               | Gly          | Phe        | Tyr<br>90 | Ser        | Ser        | Ile        | Tyr        | Сув<br>95 | Ser        |     |
|    | Thr        | Trp        | Leu                              | Leu<br>100                  | Ala                         | Gly                        | Ile               | Ser          | Ile<br>105 | Glu       | Arg        | Tyr        | Leu        | Gly<br>110 | Val       | Ala        |     |
| 30 | Phe        | Pro        | Val<br>115                       | Gln                         | Tyr                         | Lys                        | Leu               | Ser<br>120   | Arg        | Arg       | Pro        | Leu        | Tyr<br>125 | Gly        | Val       | Ile        |     |
|    | Ala        | Ala<br>130 | Leu                              | Val                         | Ala                         | Trp                        | Val<br>135        | Met          | Ser        | Phe       | Gly        | His<br>140 | Сув        | Thr        | Ile       | Val        |     |
| 35 | Ile<br>145 | Ile        | Val                              | Gln                         | Tyr                         | Leu<br>150                 | Asn               | Thr          | Thr        | Glu       | Gln<br>155 | Val        | Arg        | Ser        | Gly       | Asn<br>160 |     |

|    | Glu        | Ile               | Thr               | Cys                                       | Tyr<br>165          | Glu                  | Asn                 | Phe           | Thr        | Asp<br>170 |            | Gln        | Leu        | Asp        | Val<br>175 | Val        |
|----|------------|-------------------|-------------------|-------------------------------------------|---------------------|----------------------|---------------------|---------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    | Leu        | Pro               | Val               | Arg<br>180                                | Leu                 | Glu                  | Leu                 | Cys           | Leu<br>185 |            | Leu        | Phe        | Phe        | Ile<br>190 | Pro        | Met        |
| 5  | Ala        | Val               | Thr<br>195        | Ile                                       | Phe                 | Cys                  | Tyr                 | Trp<br>200    | Arg        | Phe        | Val        | Trp        | Ile<br>205 | Met        | Leu        | Ser        |
|    | Gln        | Pro<br>210        | Leu               | Val                                       | Gly                 | Ala                  | Gln<br>215          | Arg           | Arg        | Arg        | Arg        | Ala<br>220 | Lys        | Gly        | Leu        | Ala        |
| 10 | Val<br>225 | Val               | Thr               | Leu                                       | Leu                 | Asn<br>230           | Phe                 | Leu           | Val        | Сув        | Phe<br>235 | Gly        | Pro        | Tyr        | Asn        | Val<br>240 |
|    | Ser        | His               | Leu               | Val                                       | Gly<br>245          | Tyr                  | His                 | Gln           | Arg        | Lys<br>250 | Ser        | Pro        | Trp        | Trp        | Arg<br>255 | Ser        |
|    | Ile        | Ala               | Val               | Val<br>260                                | Phe                 | Ser                  | Ser                 | Leu           | Asn<br>265 | Ala        | Ser        | Leu        | Asp        | Pro<br>270 | Leu        | Leu        |
| 15 | Phe        | Tyr               | Phe<br>275        | Ser                                       | Ser                 | Ser                  | Val                 | Val<br>280    | Arg        | Arg        | Ala        | Phe        | Gly<br>285 | Arg        | Gly        | Leu        |
|    | Gln        | Val<br>290        | Leu               | Arg                                       | Asn                 | Gln                  | Gly<br>295          | Ser           | Ser        | Leu        |            | Gly<br>300 | Arg        | Arg        | Gly        | Lys        |
| 20 | Asp<br>305 | Thr               | Ala               | Glu                                       | Gly                 | Thr<br>310           | Asn                 | Glu           | Asp        | Arg        | Gly<br>315 | Val        | Gly        | Gln        | Gly        | Glu<br>320 |
|    | Gly        | Met               | Pro               | Ser                                       | Ser<br>325          | Asp                  | Phe                 | Thr           |            | Glu<br>330 |            |            |            |            |            |            |
|    | (278) INE  | ORM               | TION              | FOR                                       | SEC                 | ID                   | NO:2                | 77:           |            |            |            |            |            |            |            |            |
| 25 | (i)        | (A)<br>(B)<br>(C) | LEN<br>TYP<br>STR | CE CH<br>IGTH:<br>PE: D<br>RANDE<br>POLOG | 272<br>ucle<br>DNES | 4 ba<br>ic a<br>S: s | se p<br>cid<br>ingl | airs          |            |            |            |            |            |            |            |            |
|    | (ii        | .) MC             | LECU              | LE T                                      | YPE:                | DNA                  | (ge                 | nomi          | c)         |            |            |            |            |            |            |            |
| 30 | (xi        | .) SE             | QUEN              | CE D                                      | ESCR                | IPTI                 | ON:                 | SEQ           | ID N       | 0:27       | 7:         |            |            |            |            |            |
|    | ATGGACACC  | T CC              | CGGC              | TCGG                                      | TGT                 | GCTC                 | CTG                 | TCCT          | TGCC       | TG T       | GCTG       | CTGC       | A GC       | TGGC       | GACC       | 60         |
|    | GGGGGCAGC  | т ст              | CCCA              | GGTC                                      | TGG                 | TGTG                 | TTG                 | CTGA          | GGGG       | CT G       | CCCC       | ACAC       | A CT       | GTCA       | TTGC       | 120        |
|    | GAGCCCGAC  | G GC              | AGGA              | TGTT                                      | GCT                 | CAGG                 | GTG                 | GACT          | GCTC       | CG A       | CCTG       | GGGC       | т ст       | CGGA       | GCTG       | 180        |
|    | CCTTCCAAC  | C TC              | AGCG              | TCTT                                      | CAC                 | CTCC                 | TAC                 | CTAG.         | ACCT       | CA G       | TATG       | AACA       | A CA       | TCAG       | TCAG       | 240        |
| 35 | CTGCTCCCG  | A AT              | cccc              | TGCC                                      | CAG                 | TCTC                 | CGC                 | T <b>TC</b> C | TGGA       | GG A       | GTTA       | CGTC       | T TG       | CGGG.      | AAAC       | 300        |

|    | GCTCTGACAT | ACATTCCCAA | GGGAGCATTC | ACTGGCCTTT | ACAGTCTTAA | AGTTCTTATG | 360  |
|----|------------|------------|------------|------------|------------|------------|------|
|    | CTGCAGAATA | ATCAGCTAAG | ACACGTACCC | ACAGAAGCTC | TGCAGAATTI | GCGAAGCCTT | 420  |
|    | CAATCCCTGC | GTCTGGATGC | TAACCACATO | AGCTATGTGC | CCCCAAGCTG | TTTCAGTGGC | 430  |
|    | CTGCATTCCC | TGAGGCACCT | GTGGCTGGAT | GACAATGCGT | TAACAGAAAT | CCCCGTCCAG | 540  |
| 5  | GCTTTTAGAA | GTTTATCGGC | ATTGCAAGCC | ATGACCTTGG | CCCTGAACAA | AATACACCAC | 600  |
|    | ATACCAGACT | ATGCCTTTGG | AAACCTCTCC | AGCTTGGTAG | TTCTACATCT | CCATAACAAT | 660  |
|    | AGAATCCACT | CCCTGGGAAA | GAAATGCTTT | GATGGGCTCC | ACAGCCTAGA | GACTTTAGAT | 720  |
|    | TTAAATTACA | ATAACCTTGA | TGAATTCCCC | ACTGCAATTA | GGACACTCTC | CAACCTTAAA | 780  |
|    | GAACTAGGAT | TTCATAGCAA | CAATATCAGG | TCGATACCTG | AGAAAGCATT | TGTAGGCAAC | 840  |
| 10 | CCTTCTCTTA | TTACAATACA | TTTCTATGAC | AATCCCATCC | AATTTGTTGG | GAGATCTGCT | 900  |
|    | TTTCAACATT | TACCTGAACT | AAGAACACTG | ACTCTGAATG | GTGCCTCACA | AATAACTGAA | 960  |
|    | TTTCCTGATT | TAACTGGAAC | TGCAAACCTG | GAGAGTCTGA | CTTTAACTGG | AGCACAGATC | 1020 |
|    | TCATCTCTTC | CTCAAACCGT | CTGCAATCAG | TTACCTAATC | TCCAAGTGCT | AGATCTGTCT | 1080 |
|    | TACAACCTAT | TAGAAGATTT | ACCCAGTTTT | TCAGTCTGCC | AAAAGCTTCA | GAAAATTGAC | 1140 |
| 15 | CTAAGACATA | ATGAAATCTA | CGAAATTAAA | GTTGACACTT | TCCAGCAGTT | GCTTAGCCTC | 1200 |
|    | CGATCGCTGA | ATTTGGCTTG | GAACAAAATT | GCTATTATTC | ACCCCAATGC | ATTTTCCACT | 1260 |
|    | TTGCCATCCC | TAATAAAGCT | GGACCTATCG | TCCAACCTCC | TGTCGTCTTT | TCCTATAACT | 1320 |
|    | GGGTTACATG | GTTTAACTCA | CTTAAAATTA | ACAGGAAATC | ATGCCTTACA | GAGCTTGATA | 1380 |
|    | TCATCTGAAA | ACTTTCCAGA | ACTCAAGGTT | ATAGAAATGC | CTTATGCTTA | CCAGTGCTGT | 1440 |
| 20 | GCATTTGGAG | TGTGTGAGAA | TGCCTATAAG | ATTTCTAATC | AATGGAATAA | AGGTGACAAC | 1500 |
|    | AGCAGTATGG | ACGACCTTCA | TAAGAAAGAT | GCTGGAATGT | TTCAGGCTCA | AGATGAACGT | 1560 |
|    | GACCTTGAAG | ATTTCCTGCT | TGACTTTGAG | GAAGACCTGA | AAGCCCTTCA | TTCAGTGCAG | 1620 |
|    | TGTTCACCTT | CCCCAGGCCC | CTTCAAACCC | TGTGAACACC | TGCTTGATGG | CTGGCTGATC | 1680 |
|    | AGAATTGGAG | TGTGGACCAT | AGCAGTTCTG | GCACTTACTT | GTAATGCTTT | GGTGACTTCA | 1740 |
| 25 | ACAGTTTTCA | GATCCCCTCT | GTACATTTCC | CCCATTAAAC | TGTTAATTGG | GGTCATCGCA | 1800 |
|    | GCAGTGAACA | TGCTCACGGG | AGTCTCCAGT | GCCGTGCTGG | CTGGTGTGGA | TGCGTTCACT | 1860 |
|    | TTTGGCAGCT | TTGCACGACA | TGGTGCCTGG | TGGGAGAATG | GGGTTGGTTG | CCATGTCATT | 1920 |
|    | GGTTTTTTGT | CCATTTTTGC | TTCAGAATCA | TCTGTTTTCC | TGCTTACTCT | GGCAGCCCTG | 1980 |

|    | GAGCGTGGGT TCTCTGTGAA ATATTCTGCA AAATTTGAAA CGAAAGCTCC ATTTTCTAGC 2                                                         | 2040 |
|----|-----------------------------------------------------------------------------------------------------------------------------|------|
|    | CTGAAAGTAA TCATTTTGCT CTGTGCCCTG CTGGCCTTGA CCATGGCCGC AGTTCCCCTG 2                                                         | 100  |
|    | CTGGGTGGCA GCAAGTATGG CGCCTCCCCT CTCTGCCTGC CTTTGCCTTT TGGGGAGCCC 2                                                         | 160  |
|    | AGCACCATGG GCTACATGGT CGCTCTCATC TTGCTCAATT CCCTTTGCTT CCTCATGATG 2                                                         | 220  |
| 5  | ACCATTGCCT ACACCAAGCT CTACTGCAAT TTGGACAAGG GAGACCTGGA GAATATTTGG 2                                                         | 280  |
|    | GACTGCTCTA TGAAAAAACA CATTGCCCTG TTGCTCTTCA CCAACTGCAT CCTAAACTGC 2                                                         | 340  |
|    | CCTGTGGCTT TCTTGTCCTT CTCCTCTTTA ATAAACCTTA CATTTATCAG TCCTGAAGTA 2                                                         | 400  |
|    | ATTAAGTTTA TCCTTCTGGT GGTAGTCCCA CTTCCTGCAT GTCTCAATCC CCTTCTCTAC 2                                                         | 460  |
|    | ATCTTGTTCA ATCCTCACTT TAAGGAGGAT CTGGTGAGCC TGAGAAAGCA AACCTACGTC 2                                                         | 520  |
| 10 | TGGACAAGAT CAAAACACCC AAGCTTGATG TCAATTAACT CTGATGATGT CGAAAAACAG 2                                                         | 580  |
|    | TCCTGTGACT CAACTCAAGC CTTGGTAACC TTTACCAGCT CCAGCATCAC TTATGACCTG 2                                                         | 640  |
|    | CCTCCCAGTT CCGTGCCATC ACCAGCTTAT CCAGTGACTG AGAGCTGCCA TCTTTCCTCT 2                                                         | 700  |
|    | GTGGCATTTG TCCCATGTCT CTAA 2                                                                                                | 724  |
|    | (279) INFORMATION FOR SEQ ID NO:278:                                                                                        |      |
| 15 | (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 907 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: not relevant |      |
| 20 | (ii) MOLECULE TYPE: protein                                                                                                 |      |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:278:                                                                                   |      |
|    | Met Asp Thr Ser Arg Leu Gly Val Leu Leu Ser Leu Pro Val Leu Leu 1 5 10 15                                                   |      |
| 25 | Gln Leu Ala Thr Gly Gly Ser Ser Pro Arg Ser Gly Val Leu Leu Arg<br>20 25 30                                                 |      |
|    | Gly Cys Pro Thr His Cys His Cys Glu Pro Asp Gly Arg Met Leu Leu $35 \hspace{1cm} 40 \hspace{1cm} 45$                        |      |
|    | Arg Val Asp Cys Ser Asp Leu Gly Leu Ser Glu Leu Pro Ser Asn Leu<br>50 60                                                    |      |
| 30 | Ser Val Phe Thr Ser Tyr Leu Asp Leu Ser Met Asn Asn Ile Ser Gln 65 $70$ $75$ 80                                             |      |
|    | Leu Leu Pro Asn Pro Leu Pro Ser Leu Arg Phe Leu Glu Glu Leu Arg                                                             |      |

|    | Leu | Ala        | Gly        | Asn<br>100 |            | Leu | Thr        | Tyr        | Ile<br>105 |            | Lys | Gly        | Ala        | Phe |            | Gly        |
|----|-----|------------|------------|------------|------------|-----|------------|------------|------------|------------|-----|------------|------------|-----|------------|------------|
|    | Leu | Tyr        | Ser<br>115 | Leu        | Lys        | Val | Leu        | Met<br>120 |            | Gln        | Asn | Asn        | Gln<br>125 | Leu | Arg        | His        |
| 5  | Val | Pro<br>130 | Thr        | Glu        | Ala        | Leu | Gln<br>135 | Asn        | Leu        | Arg        | Ser | Leu<br>140 | Gln        | Ser | Leu        | Arg        |
|    | 145 |            |            |            |            | 150 |            |            |            |            | 155 |            |            |     |            | Gly<br>160 |
| 10 | Leu | His        | Ser        | Leu        | Arg<br>165 |     | Leu        | Trp        | Leu        | Asp<br>170 | Asp | Asn        | Ala        | Leu | Thr<br>175 | Glu        |
|    |     | Pro        |            | 180        |            |     |            |            | 185        |            |     |            |            | 190 |            |            |
|    |     | Ala        | 195        |            |            |     |            | 200        |            |            |     |            | 205        |     |            |            |
| 15 |     | Ser<br>210 |            |            |            |     | 215        |            |            |            |     | 220        |            |     |            |            |
|    | 225 | Gly        |            |            |            | 230 |            |            |            |            | 235 |            |            |     |            | 240        |
| 20 |     | Asn        |            |            | 245        |     |            |            |            | 250        |     |            |            | _   | 255        |            |
|    |     | Asn        |            | 260        |            |     |            |            | 265        |            |     |            |            | 270 |            |            |
|    |     | Glu        | 275        |            |            |     |            | 280        |            |            |     |            | 285        |     |            |            |
| 25 |     | Asp<br>290 |            |            |            |     | 295        |            |            |            |     | 300        |            |     |            |            |
|    | 305 | Glu        |            |            |            | 310 |            |            |            |            | 315 |            |            |     |            | 320        |
| 30 |     | Pro        |            |            | 325        |     |            |            |            | 330        |     |            |            |     | 335        |            |
|    |     | Ala        |            | 340        |            |     |            |            | 345        |            |     |            |            | 350 |            |            |
|    |     | Leu        | 355        |            |            |     |            | 360        |            |            |     |            | 365        |     |            |            |
| 35 |     | Phe<br>370 |            |            |            |     | 375        |            |            |            |     | 380        |            |     |            |            |
|    | Glu | Ile        | Tyr        | Glu        | Ile        | Lys | Val        | Asp        | Thr        | Phe        | Gln | Gln        | Leu        | Leu | Ser        | Leu        |

|    | 385                        | 390                       | 395 4                               | 00 |
|----|----------------------------|---------------------------|-------------------------------------|----|
|    | Arg Ser Leu Asn Leu<br>405 |                           | le Ala Ile Ile His Pro As           | sn |
| 5  | Ala Phe Ser Thr Leu<br>420 | Pro Ser Leu Ile L<br>425  | ys Leu Asp Leu Ser Ser As<br>430    | sn |
|    | Leu Leu Ser Ser Phe<br>435 | Pro Ile Thr Gly L<br>440  | eu His Gly Leu Thr His Le<br>445    | eu |
|    | Lys Leu Thr Gly Asn<br>450 | His Ala Leu Gln S<br>455  | er Leu Ile Ser Ser Glu As<br>460    | sn |
| 10 | Phe Pro Glu Leu Lys<br>465 | Val Ile Glu Met P<br>470  | ro Tyr Ala Tyr Gln Cys Cy<br>475 48 |    |
|    | Ala Phe Gly Val Cys<br>485 |                           | ys Ile Ser Asn Gln Trp As<br>90 495 | sn |
| 15 | Lys Gly Asp Asn Ser<br>500 | Ser Met Asp Asp Le<br>505 | eu His Lys Lys Asp Ala Gl<br>510    | у  |
|    | Met Phe Gln Ala Gln<br>515 | Asp Glu Arg Asp Le<br>520 | eu Glu Asp Phe Leu Leu As<br>525    | p  |
|    | Phe Glu Glu Asp Leu<br>530 | Lys Ala Leu His Se<br>535 | er Val Gln Cys Ser Pro Se<br>540    | r  |
| 20 | Pro Gly Pro Phe Lys<br>545 | Pro Cys Glu His Le<br>550 | eu Leu Asp Gly Trp Leu Il<br>555 56 |    |
|    | Arg Ile Gly Val Trp<br>565 |                           | eu Ala Leu Thr Cys Asn Al<br>70 575 | a  |
| 25 | Leu Val Thr Ser Thr<br>580 | Val Phe Arg Ser Pi<br>585 | ro Leu Tyr Ile Ser Pro Il<br>590    | е  |
|    | Lys Leu Leu Ile Gly<br>595 | Val Ile Ala Ala Va<br>600 | al Asn Met Leu Thr Gly Va<br>605    | 1  |
|    | Ser Ser Ala Val Leu<br>610 | Ala Gly Val Asp Al<br>615 | la Phe Thr Phe Gly Ser Ph<br>620    | e  |
| 30 | Ala Arg His Gly Ala<br>625 | Trp Trp Glu Asn Gl<br>630 | ly Val Gly Cys His Val Il<br>635 64 |    |
|    | Gly Phe Leu Ser Ile<br>645 | Phe Ala Ser Glu Se        | er Ser Val Phe Leu Leu Th<br>655    | r  |
| 35 | Leu Ala Ala Leu Glu<br>660 | Arg Gly Phe Ser Va<br>665 | al Lys Tyr Ser Ala Lys Ph<br>670    | е  |
|    | Glu Thr Lys Ala Pro<br>675 | Phe Ser Ser Leu Ly<br>680 | ys Val Ile Ile Leu Leu Cy.<br>685   | s  |

235

|    | Ala        | Leu<br>690 |            | Ala        | Leu        | Thr        | Met<br>695 | Ala        | Ala        | Val        | Pro        | Leu<br>700 | Leu        | Gly        | Gly        | Ser        |
|----|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    | Lys<br>705 | Tyr        | Gly        | Ala        | Ser        | Pro<br>710 | Leu        | Cys        | Leu        | Pro        | Leu<br>715 | Pro        | Phe        | Gly        | Glu        | Pro<br>720 |
| 5  | Ser        | Thr        | Met        | Gly        | Tyr<br>725 | Met        | Val        | Ala        | Leu        | Ile<br>730 | Leu        | Leu        | Asn        | Ser        | Leu<br>735 | Cys        |
|    | Phe        | Leu        | Met        | Met<br>740 | Thr        | Ile        | Ala        | Tyr        | Thr<br>745 | Lys        | Leu        | Tyr        | Cys        | Asn<br>750 | Leu        | Asp        |
| 10 | Lys        | Gly        | Asp<br>755 | Leu        | Glu        | Asn        | Ile        | Trp<br>760 | Asp        | Cys        | Ser        | Met        | Lys<br>765 | Lys        | His        | Ile        |
|    | Ala        | Leu<br>770 | Leu        | Leu        | Phe        | Thr        | Asn<br>775 | Cys        | Ile        | Leu        | Asn        | Cys<br>780 | Pro        | Val        | Ala        | Phe        |
|    | Leu<br>785 | Ser        | Phe        | Ser        | Ser        | Leu<br>790 | Ile        | Asn        | Leu        | Thr        | Phe<br>795 | Ile        | Ser        | Pro        | Glu        | Val<br>800 |
| 15 | Ile        | Lys        | Phe        | Ile        | Leu<br>805 | Leu        | Val        | Val        | Val        | Pro<br>810 | Leu        | Pro        | Ala        | Cys        | Leu<br>815 | Asn        |
|    | Pro        | Leu        | Leu        | Tyr<br>820 | Ile        | Leu        | Phe        | Asn        | Pro<br>825 | His        | Phe        | Lys        | Glu        | Asp<br>830 | Leu        | Val        |
| 20 | Ser        | Leu        | Arg<br>835 | Lys        | Gln        | Thr        | Tyr        | Val<br>840 | Trp        | Thr        | Arg        | Ser        | Lys<br>845 | His        | Pro        | Ser        |
|    | Leu        | Met<br>850 | Ser        | Ile        | Asn        | Ser        | Asp<br>855 | Asp        | Val        | Glu        | Lys        | Gln<br>860 | Ser        | Cys        | Asp        | Ser        |
|    | Thr<br>865 | Gln        | Ala        | Leu        | Val        | Thr<br>870 | Phe        | Thr        | Ser        | Ser        | Ser<br>875 | Ile        | Thr        | Tyr        | Asp        | Leu<br>880 |
| 25 | Pro        | Pro        | Ser        | Ser        | Val<br>885 | Pro        | Ser        | Pro        | Ala        | Tyr<br>890 | Pro        | Val        | Thr        | Glu        | Ser<br>895 | Cys        |
|    | His        | Leu        | Ser        | Ser<br>900 | Val        | Ala        | Phe        | Val        | Pro<br>905 | Cys        | Leu        |            |            |            |            |            |
|    | (280) IN   | ORMA       | TION       | FOF        | SEC        | ) ID       | NO:2       | 79:        |            |            |            |            |            |            |            |            |
| 30 | (i)        | SEC        | UENC       |            |            |            |            |            |            |            |            |            |            |            |            |            |
|    |            | (B)        | TYP        | E: r       | ucle       | ic a       | cid        |            |            |            |            |            |            |            |            |            |
|    |            |            | TOP        |            |            |            |            | e          |            |            |            |            |            |            |            |            |
| 35 | (ii        | .) MC      | LECU       | LE I       | YPE:       | DNA        | (ge        | nomi       | c)         |            |            |            |            |            |            |            |
|    | (xi        | .) SE      | QUEN       | CE I       | ESCR       | IPTI       | ON:        | SEQ        | ID N       | 0:27       | 9:         |            |            |            |            |            |

32

CATGCCAACC GGCCCGCGAG GCTGCTGCTG GT

236

| (281) | INFORMATION | FOR | SEO | ID | NO:280: |
|-------|-------------|-----|-----|----|---------|
|       |             |     |     |    |         |

5

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 32 base pairs

(B) TYPE: nucleic acid (C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:280:

ACCAGCAGCA GCCTCGCGGG CCGGTTGGCA TG

|                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                 | PCT/US 99                                                                                                                                                                                                                                                         | 9/23938                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A. CLASS<br>IPC 7                                                                                                                   | FIGATION OF SUBJECT MATTER C12N15/12 C07K14/72 G01N33.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | /50 G01N33/                                                                                                                                                                                     | <sup>′</sup> 566                                                                                                                                                                                                                                                  |                                                                                                                                                                                                         |
| According                                                                                                                           | to Internetional Patent Classification (IPC) or to both national classi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | fication and IPC                                                                                                                                                                                |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                         |
|                                                                                                                                     | SEARCHED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                         |
| IPC /                                                                                                                               | ocumentation seerched (classification system followed by classific C12N C07K G01N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                         |
| Documenta                                                                                                                           | tion searched other than minimum documentation to the extent tha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | t such documents are incli                                                                                                                                                                      | uded in the fields s                                                                                                                                                                                                                                              | earched                                                                                                                                                                                                 |
| Electronic o                                                                                                                        | ialab base consulted during the international search (name of data t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | base and, where practical                                                                                                                                                                       | , search terma use                                                                                                                                                                                                                                                | <b>3</b> )                                                                                                                                                                                              |
| C. DOCUM                                                                                                                            | ENTS CONSIDERED TO BE RELEVANT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                         |
| Category *                                                                                                                          | Citation of document, with indication, where appropriate, of the r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | elevent passages                                                                                                                                                                                |                                                                                                                                                                                                                                                                   | Relevant to claim No.                                                                                                                                                                                   |
| x                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RGIC<br>ITUTIONS                                                                                                                                                                                |                                                                                                                                                                                                                                                                   | 1,2,<br>4-13,<br>15-33,<br>35-37,41                                                                                                                                                                     |
|                                                                                                                                     | er documents are listed in the continuation of box C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | X Palent family m                                                                                                                                                                               | nembers are listed                                                                                                                                                                                                                                                | n annex.                                                                                                                                                                                                |
| "A" documer conside "E" earlier do filing da "L" documer which is critation "O" documer other m"P" documer later the Date of the as | In defining the general side of the art which is not med to be of painties melevaries used to be of painties melevaries between the published on or after the international for twick may throw doubte on prontry claim(s) or or twick may throw doubte on prontry claim(s) or or other special reason (as specially or twinning to an oral discourse, use, ambittion or sense of the prontry | "Y" document of particul cannot be consider document is combinents, such combinents, such combinents, auch combinents, auch combinents art.  "&" document member of the particular of the part. | not in conflict with it<br>the principle or the<br>er relevance; the cli<br>ad novel or cannot<br>step when the doc<br>er relevance; the cli<br>ad to involve an inv<br>ed with one or moi<br>action being obviou<br>if the seme patent for<br>international sear | the application but<br>ory underlying the<br>aimed invention<br>to considered to<br>unment is taken alone<br>aimed invention<br>either such docu-<br>e other such docu-<br>to a person skilled<br>amily |
|                                                                                                                                     | March 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 09/03/20                                                                                                                                                                                        | 00                                                                                                                                                                                                                                                                |                                                                                                                                                                                                         |
|                                                                                                                                     | European Patent Office, P.B. 5818 Patentiaan 2<br>NL – 2280 HV Rijswijk<br>Tell. (+31–70) 340–2040, Tx. 31 851 epo nl,<br>Fax: (+31–70) 340–3016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Authorized officer  Mand1, B                                                                                                                                                                    |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                         |

Int. Ional Application No PCT/US 99/23938

| Relevant to claim No                  |
|---------------------------------------|
| 1,2,<br>4-13,<br>15-33,<br>35-37,41   |
| 1,2,4,<br>9-13,<br>20-32,<br>35-37,41 |
| 1,2,<br>4-13,<br>15-33,<br>35-37,41   |
| 1.2.<br>4-13.<br>15-33.<br>35-37.41   |
|                                       |

. urnational application No.

PCT/US 99/23938

| Box i                                                                                                                                    | Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)                                                                                                                                                                                      |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons: |                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| 1.                                                                                                                                       | Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:                                                                                                                                                                              |  |  |  |  |  |
| -                                                                                                                                        | Cisime Nos: 34, 38–40, 42, 43 because they relate to parts of the international Application that do not comply with the prescribed requirements to such an extent that on mealingful international Seaton can be carried out, specifically:  See FURTHER INFORMATION sheet PCT/ISA/210 |  |  |  |  |  |
|                                                                                                                                          | Chams Nos  Chams Nos  because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).                                                                                                                                          |  |  |  |  |  |
| Box II                                                                                                                                   | Observations where unity of Invention is lacking (Continuation of Item 2 of first sheet)                                                                                                                                                                                               |  |  |  |  |  |
| This Inter                                                                                                                               | mational Searching Authority found multiple inventions in this international application, as follows:                                                                                                                                                                                  |  |  |  |  |  |
| 1                                                                                                                                        | As all required additional search fees were timely paid by the applicant, this international Search Report covers all searchable claims.                                                                                                                                               |  |  |  |  |  |
| 2 🗌                                                                                                                                      | As all searchable claims could be searched without effort justifying an additional tee, this Authority did not invite payment<br>of any additional fee.                                                                                                                                |  |  |  |  |  |
| з. 🗌 🖔                                                                                                                                   | As only some of the required additional search less were timely paid by the applicant, this international Search Report<br>covers only \$1066 claims for which less were paid, specifically claims Nos.:                                                                               |  |  |  |  |  |
| 4 h                                                                                                                                      | No required additional search fees were timely paid by the applicant. Consequently, this international Search Report is settleded to the invention first membored in the claims; it is covered by claims Noc.:                                                                         |  |  |  |  |  |
| Remark o                                                                                                                                 | The additional search fees were accompanied by the applicant's protest.  No protest accompanied the payment of additional search fees.                                                                                                                                                 |  |  |  |  |  |

International Application No. PCT/IS 99 //3938

## FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I 2

Claims Nos.: 34,38-40,42,43

Claims 34, 38-40, 42 and 43 Perfer to compounds with an agonistic effect on a GPCR without giving a true technical characterization. Moreover, no such specific compounds are defined in the application. In consequence, the scope of said claims is ambiguous and vague, and their subject-matter is not sufficiently disclosed and supported (Art. 5 and 6 PCT). No search can be carried out for such purely speculative claims whose wording is, in fact, a mere recitation of the results to be achieved.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a Preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

Information on patent family members

Intc. ional Application No PCT/IIS 99/23938

| Patent document<br>cited in search report |   | Publication date | Patent family<br>member(s) |                                                  | Publication date                                     |
|-------------------------------------------|---|------------------|----------------------------|--------------------------------------------------|------------------------------------------------------|
| WO 9721731                                | A | 19-06-1997       | US<br>AU<br>CA<br>EP       | 5750353 A<br>1334397 A<br>2239293 A<br>0869975 A | 12-05-1998<br>03-07-1997<br>19-06-1997<br>14-10-1998 |
| WO 9838217                                | Α | 03-09-1998       | AU                         | 6343998 A                                        | 18-09-1998                                           |