## Semestrální zkouška ISS, 1. opravný termín, 23.1.2018, skupina B

**Příklad 1** Na obrázku je periodický signál se spojitým časem (posunutá cosinusovka) s kruhovou frekvencí  $\omega_1 = 2\pi$  rad/s. Napište indexy a hodnoty všech nenulových koeficientů Fourierovy řady  $c_k$ .





**Příklad 2** Fourierova řada reálného periodického signálu se spojitým časem má nenulové koeficienty  $c_1 = 5e^{j\frac{\pi}{8}}$ ,  $c_3 = 2e^{-j\frac{\pi}{7}}$ . Napište indexy a hodnoty chybějících nenulových koeficientů, nebo "nechybí žádné".

$$C_{-1} = C_1^* = 5 e^{-j\frac{8}{8}}$$
 $C_{-3} = C_3^* = 2 e^{+j\frac{8}{7}}$ 

**Příklad 3** Pro signál se spojitým časem x(t), který má tvar obdélníka, vychází argumentová část spektrální funkce následovně:

 $\arg X(j\omega) = \begin{cases} +\pi & \text{pro intervaly } [1000\pi, 2000\pi], [3000\pi, 4000\pi], \dots \\ -\pi & \text{pro intervaly } [-1000\pi, -2000\pi], [-3000\pi, -4000\pi], \dots \\ 0 & \text{jinde} \end{cases}$ 

Nakreslete argumentovou část spektrální funkce signálu y(t), který je oproti x(t) o 1 ms zpožděný: y(t) = x(t - 0.001).

Viz A

**Příklad 4** Vypočtěte a nakreslete spektrální funkci (modul i argument) posunutého Diracova impulsu:  $x(t) = \delta(t+1)$ 

$$\chi(j\omega) = 2^{j\omega}$$



**Příklad 5** Nakreslete výsledek konvoluce dvou signálů se spojitým časem:  $y(t) = x_1(t) \star x_2(t)$ .

 $x_1(t) = \begin{cases} 1 & \text{pro } 0 \le t \le 1\\ 0 & \text{jinde} \end{cases}$ 

a 
$$x_2(t) = \begin{cases} 1 & \text{pro } 0 \le t \le 1.5 \\ 0 & \text{jinde} \end{cases}$$

1 1,5 2 2,5

1 xx(t)

**Příklad 6** Vzorkování probíhá se vzorkovací frekvencí  $F_s = 32 \text{ kHz}$ . Nakreslete frekvenční charakteristiku ideálního anti-aliasingového filtru. Frekvenční osa může být pro jednoduchost v Hz.



**Příklad 7** Přenosová funkce systému se spojitým časem je:  $H(s) = \frac{1}{s+1}$ . Nakreslete přibližný průběh modulu frekvenční charakteristiky tohoto systému  $|H(j\omega)|$  pro kladné frekvence  $\omega$ . Přesně určete hodnoty modulu pro  $\omega = 0$  rad/s a pro  $\omega = \infty$  rad/s.

Via A

Příklad 8 Přenosová funkce systému se spojitým časem je:  $H(s) = \frac{1}{s^2 + 2s + 1.25}$ .

Určete póly a rozhodněte, zda je systém stabilní.  $S_{1/2} = \frac{-2 \pm \sqrt{2^2 - 5}}{2} = \frac{-2 \pm \sqrt{2^2 - 5}}{2}$ 

**Příklad 9** Diskrétní signál x[n] má pouze tři nenulové hodnoty: x[-1] = 1, x[0] = 2 a x[1] = 1. Vypočtěte jeho Fourierovu transformaci s diskrétním časem (DTFT) a nakreslete ji v intervalu normovaných kruhových frekvencí  $0...4\pi$  rad. Vzhledem k tomu, že je signál sudý, vyjde DTFT reálná, nemusíte ji proto dělit na modul a argument.

viz A

**Příklad 10** Signál s diskrétním časem je dán jako  $x[n] = \cos(\pi n)$ . Napište nebo nakreslete, jak bude tento signál vypadat po vynásobení okénkovou funkcí  $R_4[n]$ .

viz A

**Příklad 11** Vypočtěte kruhovou konvoluci dvou signálů s diskrétním časem o délce N=5:

| n                       | 0 | 1 | 2 | 3  | 4 |
|-------------------------|---|---|---|----|---|
| $x_1[n]$                | 4 | 0 | 1 | 0  | 1 |
| $x_2[n]$                | 1 | 1 | 0 | 3  | 1 |
| $x_1[n] \otimes x_2[n]$ | 8 | 5 | 4 | 14 | 5 |

Příklad 12 V libovolném programovacím jazyce (kromě Matlab, Octave, atd), napište úsek kódu pro výpočet modulu k-tého koeficientu Diskrétní Fourierovy transformace (DFT) |X[k]| reálného signálu x[n]. Proměnná N obsahuje počet vzorků a vstupní vzorky jsou uloženy v poli x. Je povoleno využít pouze funkce  $\sin$ ,  $\cos$  a  $\operatorname{sqrt}$ ; programovací jazyk neumí komplexní čísla, práci s nimi musíte naprogramovat sami.

Viz A

**Příklad 13** Koeficienty Diskrétní Fourierovy Transformace (DFT) reálného signálu x[n] o délce N=16 jsou X[k]. Koeficienty signálu y[n] jsou dány jako  $Y[k]=X[k]e^{-j2\pi\frac{3}{16}k}$ . Napište matematicky nebo slovně vztah mezi signály x[n] a y[n].

VizA

**Příklad 14** Výstupní vzorek y[n] číslicového filtru je vypočítán jako aritmetický průměr současného a čtyř předcházejících vzorků na vstupu: x[n-4], x[n-3], x[n-2], x[n-1], x[n]. Nakreslete schéma tohoto filtru.

Viz A

**Příklad 15** Modul frekvenční charakteristiky  $|H(e^{j\omega})|$  čistě FIR filtru 6-řádu (v čitateli jsou tedy koeficienty  $b_0 \dots b_6$ ) je na obrázku. Nakreslete v z-rovině přibližně pozice nulových bodů filtru. Nezapomeňte, že pokud jsou nulové body komplexní, musí být v komplexně sdružených párech.



viz A

**Příklad 16** Přenosová funkce číslicového filtru je  $H(z) = \frac{1}{1-0.707z^{-1}}$ . Určete modul a argument frekvenční charakteristiky tohoto filtru  $H(e^{j\omega})$  na normované kruhové frekvenci  $\omega = \frac{\pi}{4}$  rad.

Pomůcka:  $\sqrt{2} = 1.414$ ,  $\frac{1}{\sqrt{2}} = 0.707$ 

Viz A

 $\mathbf{P\check{r}\acute{t}klad}$ 17 Napište matici (masku) 2D filtru o velikosti  $3\times3$  pro zvýraznění šikmých (zleva nahoře doprava dolů) hran v obrázku.

who t 1

**Příklad 18** Pixely obrázku o rozměrech  $100 \times 100$  mají hodnoty 0 (černá) až 1 (bílá). Napište, zda bude koeficient X[0,0] jeho 2D diskrétní Fourierovy transformace (2D-DFT) reálný nebo komplexní a v jakém intervalu bude jeho hodnota.

viz A

**Příklad 19** V tabulce jsou hodnoty vzorku n=7 náhodného signálu pro  $\Omega=10$  realizací:

|   | ω                 | 1     | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   |
|---|-------------------|-------|------|------|------|------|------|------|------|------|------|
| Ī | $\xi_{\omega}[7]$ | -0.34 | 2.03 | 1.72 | 0.93 | 1.71 | 0.79 | 0.87 | 2.48 | 2.42 | 2.41 |

Provedte souborový odhad distribuční funkce F(x,7) a nakreslete ji.

viz A

**Příklad 20** Na obrázku je signál o délce N=200 vzorků ovlivněný šumem. Odhadněte zadaný autokorelační koeficient. Použijte standardní vychýlený odhad:  $\hat{R}_{vych}[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n]x[n+k]$ .



 $R[50] = \dots \dots$