1T01832 - F.E.(SEM II)(ALL BRANCHES) (Rev - 2019 'C' Scheme) / 29711 - Engineering Mathematics - II

DATE: 28/06/2022 QP CODE: 95371

University of Mumbai

Program: First Year (All Branches) Engineering

Curriculum Scheme: Rev2019
Examination: FE Semester II

Course Code: _FEC201 Course Name: Engineering Mathematics II

Time: 2 hour 30 minutes Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry TWO marks (20 Marks)
1.	Particular Integral of DE $(D^3 + 3D^2 - 4)y = e^x$ is
Option	$xe^{x}/9$
A:	
Option	$xe^x/2$
B:	
Option	$-xe^x/9$
C:	
Option	$xe^x/6$
D:	
2.	The solution of the differential equation
	The solution of the differential equation $ \left(x + \frac{e^x}{y}\right) dx - \frac{e^x}{y^2} dy = 0 $ is $ \frac{x^2}{2} + \frac{e^x}{y} = c $
Option	$\frac{x^2}{-1} = c$
ASS	
Option	$\frac{x^2}{3} + \frac{e^x}{y} = c$
Book	(O) X X Y X D' X Y X X X X X X X X X X X X X X X X X
Option	$\frac{x^3}{2} + \frac{e^x}{y} = c$
C:	
Option	$\frac{x^2}{x^2} + \frac{xe^x}{x} = c$
D. D.	
	The value of $\int_0^\infty x^5 e^{-x^2} dx$ is
Option	
A. S.	
Option	
SSB: 75	
Option	1/2
20C:00	(SS)

Option	π
D:	
4.	The value of I = $\int_0^1 \int_x^{\sqrt{x}} (x^2 + y^2) dy dx$ is
Option A:	$\frac{3}{35}$
Option B:	$\frac{3}{15}$
Option C:	$\frac{1}{35}$
Option D:	$\frac{3}{5}$
_	
5.	The value of $\int_0^{\pi/2} \int_0^{a\cos\theta} \int_0^{r/\cos\theta} dz \ dr \ d\theta$ is
Option	
A:	
Option B:	$\frac{a^2}{8}$
Option	$\frac{a^3}{3}$
C:	4 4 4 4 4 4 4 4 A 4 A 6 A 7 A 6 A 6 A 6 A 6 A 6 A 6 A 6 A 6
Option	$\frac{a^2}{a}$
D:	
6	
6.	The Integrating Factor of DE $(x^2 e^x - my)dx + mx dy = 0$ is given by
Option	$\frac{1}{y^2}$
A:	
Option	$\frac{1}{x^2}$
B:	
Option C:	$\overline{y^2}$
Option	$\sqrt{\frac{1}{x^2}}$
\$ D: 5 7 7	ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
90 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
2222	Find the complementary function of $\frac{d^4y}{dx^4} + \frac{5 d^2y}{dx^2} + 4 = x \sin x$
Option	$y = C_1 \cos x + C_2 \sin x + C_3 \cos 3x + C_4 \sin 3x$
8 A: 3	
Option	$y = C_1 \cos x + C_2 \sin x + C_3 \cos 2x + C_4 \sin 2x$
B: 000	\$35°5°

Option C:	$y = C_1 \cos xi + C_2 \sin xi + C_3 \cos 2xi + C_4 \sin 2xi$
Option D:	$y = (C_1 + C_2 x) \cos x + (C_3 + C_4 x) \sin 2x$
	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
8.	Changing the order of integration in double integral $\int_0^2 \int_0^{4-x^2} f(x,y) dy dx$ leads to $\int_a^b \int_c^d f(x,y) dx dy$ then value of 'd' is
Option A:	4-y
Option B:	2-y
Option C:	$\sqrt{4-y}$
Option D:	0
9.	The length of the straight line $y = 2x + 5$ from $x = 1$ to $x = 3$ is given by
Option A:	$\sqrt{5}$ units
Option B:	$3\sqrt{5}$ units
Option C:	$4\sqrt{5}$ units
Option D:	$2\sqrt{5}$ units
ER TOO	
10.	Evaluate: $\int_0^{\log 2} \int_0^x \int_0^{x-y} e^{x+y+z} dz dy dx$
Option A:	$2\log 2 - \frac{5}{4}$
Option B:	$2\log 2 + \frac{5}{8}$
Option C:	$\log 2 - \frac{5}{4}$
Option D:	$2\log 2 - \frac{1}{4}$

Q2.	Solve any Four out of Six (5 marks each)				
	(20 Marks)				
Α	Solve the DE $(2xy \cos x^2 - 2xy + 1) dx + (\sin x^2 - x^2) dy = 0$				
В	Solve $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = \sin(e^x)$				
С	Prove that $\int_0^\infty \frac{1-\cos ax}{x} e^{-x} dx = \frac{1}{2} \log(1+a^2), \text{ assuming the}$				
	validity of differentiation under the integral sign.				
D	Change the order of integration and evaluate				
	$\int_0^1 \int_{-\sqrt{y}}^{-y^2} xy \ dx \ dy$				
Е	Evaluate $\int \int \int z \ dz \ dy \ dx$, over the tetrahedron bounded by $x = \int \int \int z \ dz \ dy \ dx$				
	$0, y = 0, z = 0 \text{ and } \frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1.$				
F	Find the length of the cardioid $r=a(1-\cos\theta)$ lying outside the circle $r=a\cos\theta$.				

Q3.	Solve any Four out of Six (20 Marks)	each
А	Solve $\tan y \frac{dy}{dx} + \tan x = \cos y \cdot \cos^3 x$	
В	Solve the DE $(D^2 - 2D + 1)y = x^2 e^{3x}$, where	$D \equiv \frac{d}{dx}$
С	Evaluate $\int_0^\infty x^2 5^{-4x^2} dx$	****
D	Evaluate the integral $I = \int \int xy (x + y) dx dy$ bounded by the curves $y = x^2 \& y = x$.	over the region
E	Evaluate $\iiint dxdydz$ over the solid of the parabo $4z$ cut off by the plane $z = 4$	$loid x^2 + y^2 =$
27 F 01 0	Find the area common to $r = a(1 + \cos \theta) \& r = a(1 + \cos \theta)$	$= a(1 - \cos \theta)$

Q4.	Solve any Four out of Six (20 Marks)	5 mark	5 marks each		
À	Solve $xy - \frac{dy}{dx} = y^3 e^{-x^2}$				
B	Solve $\frac{d^2y}{dx^2} - y = x \sin x + \cos x$				
	Change the order of $\int_0^1 \int_x^{\sqrt{2-x^2}} \frac{x}{\sqrt{x^2+y^2}} dy dx$	integration	and	evaluate	
D	Evaluate $\int_0^\infty \frac{x^2}{(1+x^6)^{5/2}} dx$				
S CE	Change to polar co-ordinates ar	nd evaluate $\int_0^1 \int$	$\int_{0}^{x} x + y$	dydx	

F Solve: $\frac{d^2y}{dx^2} - y = \frac{2}{1+e^x}$, using method of variation of parameters