Question 3 Titanic

Python for Data Science - Perform Data Science on Titanic Dataset

- a)Load the Titanic dataset into one of the data structures (NumPy or Pandas).
- b)Display header rows and description of the loaded dataset.
- c) Remove unnecessary features (E.g. drop unwanted columns) from the dataset.
- d) Manipulate data by replacing empty column values with a default value.
- e) Perform the following visualizations on the loaded dataset:
- i) Passenger status (Survived/Died) against Passenger Class
- ii) Survival rate of male vs female
- iii) No of passengers in each age group

Click here to download dataset

```
In [13]: #numpy - Deals multi-dimensional arrays and matrices
    #seaborn - Deals with data visualization
    #matplotlib - Plotting; pyplot-interactive plotting
    #pandas - data structures and data analysis tools
    import seaborn as sns
    import matplotlib.pyplot as plt
    import pandas as pd
In [14]: #Import csv file into variable
titanic df = pd.read csv('titanictrain.csv')
```

```
In [14]: #Import csv file into variable
    titanic_df = pd.read_csv('titanictrain.csv')
    titanic_df.head()
    #Shows first 5 rows then tail() is obvious
#If we specify a number in argument that number of rows will be displayed
```

Out[14]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN
4												•
In [15]:	<pre>#Mapping the survived values 0->Died and 1->Survived titanic_df ['Survived'] = titanic_df ['Survived'].map({ 0: 'Died', 1: 'Survived' }) titanic_df.head(5)</pre>											

Out[15]:		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin
	0	1	Died	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN
	1	2	Survived	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85
	2	3	Survived	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN
	3	4	Survived	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123
	4	5	Died	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN

In [16]: #Deleting the uneccessary rows
 #axis=Whether to drop labels from the index (0 or 'index') or columns (1 or 'column
 #inplace=If False, return a copy. Otherwise, do operation inplace and return None.
 titanic_df.drop(['Parch','PassengerId','Name','Ticket'], axis=1, inplace=True)
 titanic_df.head(5)

Out[16]: **Survived Pclass** Sex Age SibSp Fare Cabin Embarked 0 Died 3 male 22.0 7.2500 NaN NaN Survived 1 female 38.0 1 71.2833 C85 C Survived 3 female 26.0 7.9250 NaN NaN Survived 1 female 35.0 1 53.1000 C123 NaN S Died 3 male 35.0 0 8.0500 NaN

4

```
In [17]: #second way without inplace
    titanic_df = titanic_df.drop(['SibSp','Fare'], axis=1)
    titanic_df.head(5)
```

```
Survived Pclass
                             Sex Age Cabin Embarked
Out[17]:
          0
                Died
                         3
                             male 22.0
                                         NaN
                                                    NaN
             Survived
                         1 female 38.0
                                          C85
                                                      C
                         3 female 26.0
          2
            Survived
                                         NaN
                                                   NaN
             Survived
                          1 female 35.0
                                         C123
                                                    NaN
          4
                Died
                              male 35.0
                                         NaN
                                                      S
In [18]: #mapping 1->Luxury Class , 2->Economy Class and 3->Lower Class
          titanic_df ['Pclass'] = titanic_df ['Pclass'].map({
              1: 'Luxury Class',
              2: 'Economy Class',
              3: 'Lower Class'
          })
          titanic_df.head(5)
             Survived
                                   Sex Age Cabin Embarked
Out[18]:
                          Pclass
          0
                Died Lower Class
                                  male 22.0
                                              NaN
                                                        NaN
             Survived Luxury Class female 38.0
                                              C85
                                                          C
          2 Survived Lower Class female 26.0
                                              NaN
                                                        NaN
             Survived Luxury Class female 35.0
                                              C123
                                                        NaN
                                                           S
                Died Lower Class
                                  male 35.0
                                              NaN
In [19]: #Replace NaN values in embarked with S
          titanic_df["Embarked"] = titanic_df["Embarked"].fillna("S")
          titanic_df.head(5)
Out[19]:
             Survived
                          Pclass
                                   Sex Age Cabin Embarked
                                                           S
          0
                Died Lower Class
                                  male 22.0
                                              NaN
             Survived Luxury Class female 38.0
                                                           C
                                              C85
          2 Survived Lower Class female 26.0
                                              NaN
                                                           S
             Survived Luxury Class female 35.0
                                                           S
                                              C123
                                                           S
          4
                Died Lower Class male 35.0
                                              NaN
          #Map Embarked accordingly
In [20]:
          titanic_df ['Embarked'] = titanic_df ['Embarked'].map({
              'C': 'Cherbourg',
              'Q':'Queenstown',
              'S': 'Southampton'
          })
          titanic df.head(5)
```

Out[20]:		Survived	Pclass	Sex	Age	Cabin	Embarked
	0	Died	Lower Class	male	22.0	NaN	Southampton
	1	Survived	Luxury Class	female	38.0	C85	Cherbourg
	2	Survived	Lower Class	female	26.0	NaN	Southampton
	3	Survived	Luxury Class	female	35.0	C123	Southampton
	4	Died	Lower Class	male	35.0	NaN	Southampton

Passenger status (Survived/Died) against Passenger Class

In [22]: #Plotting graph of Survived/Dead Against Passenger Gender
 #crosstab=This method is used to compute a simple cross-tabulation of two (or more)
 print(pd.crosstab(titanic_df['Sex'],titanic_df.Survived))
 ax=sns.countplot(x='Sex',hue='Survived',palette='Set2',data=titanic_df)
 ax.set(title='Gender based',xlabel='Sex',ylabel='Total')
 plt.show()

```
Survived Died Survived
Sex
female 81 233
male 468 109
```

Gender based


```
In [23]: #Mapping age categories using cut() from pandas and
#PLotting graph of Survived/Dead Against Passenger Age Category
interval = (0,18,35,60,120)
categories = ['Children','Teen','Adult','Old']
titanic_df["Age_categories"]=pd.cut(titanic_df.Age,interval,labels=categories)
ax = sns.countplot(x="Age_categories",data=titanic_df,hue='Survived',palette='Set3'
ax.set(xlabel='Age cats',ylabel='Total',title="age cats")
print(pd.crosstab(titanic_df['Age_categories'],titanic_df.Survived))
plt.show()
```

Survived	Died	Survived
Age_categories		
Children	69	70
Teen	221	137
Adult	117	78
Old	17	5

In [24]: #Plotting graph of Survived/Dead Against Embarked place
 ax = sns.countplot(x='Embarked',hue='Survived',palette='Set1',data=titanic_df)
 ax.set(title='Survival acording to Embarking Place')
 plt.show()

Survival acording to Embarking Place

