ax[ax[ax[g, ax = plt. subplots(1,3, figsize = (20, 20)) [0].imshow(cv.cvtColor(hexnut_template, cv.CoLoR_RGB2BGR)) [1].imshow(cv.cvtColor(squarenut_template, cv.CoLoR_RGB2BGR)) [2].imshow(cv.cvtColor(conveyor_f100, cv.CoLoR_RGB2BGR)) t.show()
40 · 60 · 80 ·	800
gra gra	ay_hexnut_template = cv.cvtColor(hexnut_template,cv.COLOR_RGB2GRAY) ay_squarenut_template = cv.cvtColor(squarenut_template,cv.COLOR_RGB2GRAY) ay_conveyor_f100 = cv.cvtColor(conveyor_f100, cv.COLOR_RGB2GRAY)
ax[ax[ax[<pre>g, ax = plt. subplots(1,3, figsize = (20, 20)) [0].imshow(cv.cvtColor(gray_hexnut_template, cv.COLOR_RGB2BGR)) [1].imshow(cv.cvtColor(gray_squarenut_template, cv.COLOR_RGB2BGR)) [2].imshow(cv.cvtColor(gray_conveyor_f100, cv.COLOR_RGB2BGR)) t.show()</pre>
40 · 60 · 80 · 100 ·	80 - 1000 - 1000 - 1000 1250 1500 1750
ots for	<pre>t = [gray_hexnut_template, gray_squarenut_template, gray_conveyor_f100] t_name = ["GRAY_HEXNUT_TEMPLATE", "GRAY_SQUARENUT_TEMPLATE", "GRAY_CONVEYOR_F100"] su_im = [] r k in range(len(lst)): th, bw = cv.threshold(lst[k],0,255,cv.THRESH_BINARY_INV+cv.THRESH_OTSU) otsu_im.append(bw) print('Treshold value - ',lst_name[k],'- ' "{}".format(th)) g, ax = plt. subplots(1,3, figsize = (20, 20)) [0].imshow(cv.cvtColor(otsu_im[0], cv.COLOR_BGR2RGB))</pre>
ax[plt Tres	
40 · 60 · 80 · 100 · (03)	60 - 600 - 600 - 800 - 1000 - 1000 - 1000 1250 1500 1750 - 1000 1250 1500 1750
ima ker for	<pre>ages = [] rnel = np.ones((3,3),np.uint8) r i in otsu_im: closing = cv.morphologyEx(i, cv.MORPH_CLOSE, kernel) images.append(closing) g, ax = plt. subplots(1,3, figsize = (20, 20)) [0].imshow(cv.cvtColor(images[0], cv.COLOR_RGB2BGR)) [1].imshow(cv.cvtColor(images[1], cv.COLOR_RGB2BGR)) [2].imshow(cv.cvtColor(images[2], cv.COLOR_RGB2BGR)) t.show()</pre>
20 - 40 - 60 - 80 -	- 40 - 200 - 400 - 400 - 600 -
(04)	0 20 40 60 80 100 0 20 40 60 80 100 t_name = ["GRAY_HEXNUT_TEMPLATE", "GRAY_SQUARENUT_TEMPLATE", "GRAY_CONVEYOR_F100"] r k in range(len(images)): print('\n\n'+1st_name[k], '\n') im = images[k]
	<pre>retval, labels, stats, centroides = cv.connectedComponentsWithStats(im, 4, cv.CV_32S) print('Number of connected components =',retval, '\n') for i in range(1, retval): area = stats[i, cv.CC_STAT_AREA] if i == 0: text = "examining component {}/{} (background)".format(i + 1, retval) else: text = "examining component {}/{}".format(i + 1, retval, '\n')</pre>
	<pre>print("[INFO] {}".format(text)) colormapped = cv.applyColorMap((labels/np.amax(labels)*255).astype("uint8"),cv.COLORMAP_PARULA) x = stats[i, cv.CC_STAT_LEFT] y = stats[i, cv.CC_STAT_TOP] w = stats[i, cv.CC_STAT_WIDTH] h = stats[i, cv.CC_STAT_HEIGHT] (C1, C2) = centroides[i] print("\n[Statistics - Left] {}".format(x)) print("[Statistics - Top] {}".format(y)) print("[Statistics - Width] {}".format(w))</pre>
	<pre>print("[Statistics - Height] {}".format(h)) print("[Statistics - Centroid] {}".format((C1, C2))) Z=720 f=8 for i,s in enumerate(stats): if i!=0: print('\nItem',i,', area in pixels=',s[4]) print('Item',i,', area in mm^2=',s[4])* print('Item',i,', area in mm^2=',s[4]*(2.2e-3)**2*(Z*Z)/(f*f)) print('\n') fig, ax = plt. subplots(1,2, figsize = (20, 20)) ax[0].imshow(cv.cvtColor(im, cv.COLOR_BGR2RGB)) ax[0].axis('off') ax[1].imshow(cv.cvtColor(colormapped, cv.COLOR_BGR2RGB))</pre>
Numb [INF [Sta [Sta [Sta	ax[1].axis('off') plt.show() Y_HEXNUT_TEMPLATE ber of connected components = 2 Fo] examining component 2/2 atistics - Left] 10 atistics - Top] 16 atistics - Width] 101 atistics - Height] 88 atistics - Height] 88 atistics - Centroid] (50,83375634517766, 59,2356175072927)
Iter	atistics - Centroid] (59.83375634517766, 59.22356175972927) m 1 , area in pixels= 4728 m 1 , area in mm^2= 185.356512
Numb	Y_SQUARENUT_TEMPLATE ber of connected components = 2 FO] examining component 2/2
[Sta [Sta [Sta [Sta	atistics - Left] 24 atistics - Top] 24 atistics - Width] 72 atistics - Height] 72 atistics - Centroid] (59.196777192438795, 59.196777192438795) m 1 , area in pixels= 3227 m 1 , area in mm^2= 126.51130800000001
CDAN	
Numb	Y_CONVEYOR_F100 ber of connected components = 5 FO] examining component 2/5 FO] examining component 3/5 FO] examining component 4/5 FO] examining component 5/5 atistics - Left] 650 atistics - Top] 550
[Sta [Sta Iter Iter Iter Iter	atistics - Width] 101 atistics - Height] 101 atistics - Centroid] (700.0, 600.0) m 1 , area in pixels= 4636 m 1 , area in mm^2= 181.74974400000002 m 2 , area in pixels= 3087 m 2 , area in mm^2= 121.022748 m 3 , area in pixels= 3087 m 3 , area in mm^2= 121.022748
Iter	m 4 , area in pixels= 3144 m 4 , area in mm^2= 123.2573760000001
(05)	
col nam a =	<pre>int = [] lours = [(255,0,0), (0,255,0), (0,0,255), (255,255,0), (255,0,255)] mes = [hexnut_template, squarenut_template, conveyor_f100] = 0 g, ax = plt. subplots(3,2, figsize = (20, 20)) r i in range(len(names)): img = names[i] g = cv.cvtColor(img, cv.Color_BGR2GRAY) contours, hierarchy = cv.findContours(images[i], cv.RETR_EXTERNAL, cv.CHAIN_APPROX_NONE) cont.append(contours)</pre>
	<pre>img_contours = np.zeros(img.shape,np.uint8) for j in range(len(contours)): if (hierarchy[0,j,3] == -1): cv.drawContours(img_contours, contours, j, colours[a%4], thickness=3, lineType=cv.LINE_AA) a+=1 ax[i][0].imshow(cv.cvtColor(g, cv.COLOR_RGB2BGR)) ax[i][1].imshow(cv.cvtColor(img_contours, cv.COLOR_RGB2BGR))</pre>
	20 - 20 - 40 - 40 - 60 - 80 - 80 - 10
	0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
	60 - 80 - 100 - 0 20 40 60 80 100
200 400 600	400 -
(06) - cv. cap f = fra	Detecting Objects on a Synthetic Conveyor InamedWindow('Conveyor', cv.WINDOW_NORMAL) p = cv.VideoCapture(r"E:\#####ACCA folders\acca 4 th sem\Fundamentals of Image Processing and Machine Vision\Assignment 03\conveyor.mp4") ame = []
	<pre>ile cap.isOpened(): ret, frame = cap.read() if not ret: print("Can't receive frame (stream end?). Exiting.") break f += 1 text = 'Frame:' + str(f) cv.putText(frame,text , (100, 100), cv.FONT_HERSHEY_COMPLEX, 1, (0,250,0), 1, cv.LINE_AA) cv.imshow('Conveyor', frame) if cv.waitKey(1) == ord('q'): break</pre>
Can (07)	p.release() .destroyAllWindows() 't receive frame (stream end?). Exiting. 1 = cont[0][0] nveyor_f100 = names[2] unt = 0 r i in cont[2]: ret = cv.matchShapes(cn1, i, 1, 0.0)
pri fiç ax. plt	<pre>r i in cont[2]: ret = cv.matchShapes(cn1, i, 1, 0.0) if ret<0.001: count += 1 x, y, w, h = cv.boundingRect(i) cv.rectangle(conveyor_f100, (x,y), (x+w,y+h), (0,0,255), 2) int("Matching Elements = ", count) g, ax = plt. subplots(figsize = (20,20)) .imshow(cv.cvtColor(conveyor_f100, cv.COLOR_BGR2RGB)) t.show() ching Elements = 1</pre>
200	
400 600	
800 1000	
f = fra n =	
n2 cou cou fra sha	= 0 = 0 unt = 0 unt_hex = 0 unt_square = 0 ame_array = [] ape = (1080, 1920, 3) t = cv.VideoWriter(r"E:\#####ACCA folders\acca 4 th sem\Fundamentals of Image Processing and Machine Vision\Assignment 03\conveyor_result_190663R.mp4",cv.VideoWriter_fource ile cap.isOpened(): ret, frame = cap.read() if not ret: print("Can't receive frame (stream end?). Exiting.") break
	<pre>break f += 1 text = 'Frame:' + str(f) cv.putText(frame,text , (100, 100), cv.FONT_HERSHEY_COMPLEX, 1, (0,200,0), 1, cv.LINE_AA) gray_frame = cv.cvtColor(frame, cv.COLOR_BGR2GRAY) th, bw = cv.threshold(gray_frame, 0, 255, cv.THRESH_BINARY_INV+cv.THRESH_OTSU) kernel = np.ones((3,3),np.uint8) closing = cv.morphologyEx(bw, cv.MORPH_CLOSE, kernel) contours, hierarchy = cv.findContours(closing, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_NONE)</pre>
	<pre>pn = n pn1 = n1 pn2 = n2 n = 0 n1 = 0 n2 = 0 for cnt in contours: area = cv.contourArea(cnt) ret1 = cv.matchShapes(cont[0][0], cnt, 1, 0.0) ret2 = cv.matchShapes(cont[1][0], cnt, 1, 0.0) if ret1 <= 0.001 and area > 4000: (x, y, w, h) = cv.boundingRect(cnt)</pre>
	<pre>cv.putText(frame,text, (1380, 100), cv.FONT_HERSHEY_COMPLEX, 1, (150, 200, 0), 1, cv.LINE_AA) cv.imshow('Conveyor', frame) if cv.waitKey(1) == ord('q'): break out.write(frame) p.release()</pre>
out cv.	t.release() .destroyAllWindows() 't receive frame (stream end?). Exiting.

Name - Wanshika W.A.R.

EN2550: Assignment 03 on Object Counting on a Conveyor Belt

Index - 190663R

import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt