02141 Computer Science Modeling Solutions to Selected Exercises from Formal Methods Appetizer, Chapter 4

Exercise 4.11 Solution: A correct analysis assignment A' is the following:

Note that $\mathbf{A}'(q_{\blacktriangleleft}) = \emptyset$ since \mathbf{y} has sign 0 in all abstract memories of q_5 and division by zero is assumed to be undefined. The analysis assignment is correct (Definition 4.6) with respect to the initial memory $\mathsf{Mem}_{\triangleright} = \{\sigma\}$ and semantics \mathcal{S} (see e.g. Definition 2.17) where $\sigma(\mathbf{x}) = \sigma(\mathbf{y}) = \sigma(\mathbf{i}) = 0$, $\sigma(\mathbf{n}) > 0$, and in which the values of the elements in \mathbf{A} are negative, because:

- 1. The abstract memory $\eta(\sigma)$ of the initial memory σ is in $\mathbf{A}'(q_{\triangleright})$.
- 2. For each of the edges $(q_1, q_2), (q_2, q_3), (q_3, q_{\triangleright})$ the analysis assignments of the source nodes are all empty. Hence Definition 4.6 is vacuously true for those edges.
- 3. For the edge e from q_{\triangleright} to q_1 correctness is satisfied since $\mathcal{S}[\![\mathsf{action}(e)]\!]\sigma$ is undefined for any σ such that its abstraction is in $\mathbf{A}'(q_{\triangleright})$. Hence the analysis assignment is vacuously correct for the source node of this edge as well.
- 4. For the edge e from q_{\triangleright} to q_5 only the abstract states of $\mathbf{A}'(q_{\triangleright})$ in which \mathbf{i} has sign + will occur in $\mathbf{A}'(q_5)$, since \mathbf{n} has sign + in every abstract memory of $\mathbf{A}'(q_{\triangleright})$.
- 5. For the edge e from q_5 to q_{\blacktriangleleft} the sign of y is 0 in all abstract memories of the source node. Hence $\mathcal{S}[[action(e)]]\sigma$ is undefined for any memory σ whose abstraction is in $\mathbf{A}'(q_5)$. Hence the analysis assignment is vacuously correct for q_{\blacktriangleleft} as well.

- 6. $\mathbf{A}'(q_4) = \mathbf{A}'(q_{\triangleright})$ since $\mathcal{S}[[action(e)]]\sigma = \sigma$ on the only incoming edge e of q_4 from q_{\triangleright} to q_4 , for any σ whose abstraction is in q_{\triangleright} .
- 7. The edge from q_4 to q_{\triangleright} increments \mathbf{i} . Hence $\mathbf{A}'(q_{\triangleright})$ contains the abstract memories of $\mathbf{A}'(q_4)$ in which the sign of \mathbf{i} has been changed to +.