复变函数与积分变换考试样题

20xx~20xx 学年第 x 学期

班级______姓名______考试科目_复变函数与积分变换____ <u>A卷</u> 闭卷

近级
一、单选题(共10题,每题3分)
1 、下列哪个复数是 $-1 + \sqrt{3}i$ 的三次方根()
A, $\sqrt[6]{2}(\cos\left(-\frac{4\pi}{9}\right) + i\sin\left(-\frac{4\pi}{9}\right))$ B, $\sqrt[3]{2}(\cos\left(-\frac{2\pi}{9}\right) + i\sin\left(-\frac{2\pi}{9}\right))$
$C_{s} \sqrt[3]{2} \left(\cos\left(\frac{5\pi}{9}\right) + i\sin\left(\frac{5\pi}{9}\right)\right) \qquad D_{s} \sqrt[3]{2} \left(\cos\left(\frac{8\pi}{9}\right) + i\sin\left(\frac{8\pi}{9}\right)\right)$
2、函数 $Ln(z)$ 在以下哪个点不连续() A 、 $z=i$ B 、 $z=-2i$ C 、 $z=-3$ D 、 $z=4$
3、关于复曲线 $Re(z^2) = 1$ 的形状描述,以下说法正确的是() A、抛物线 B、直线 C、椭圆 D、双曲线
4、以下哪个区域是有界的() $A \setminus Im(z) > 0$ $B \setminus z-1 > 4$ $C \setminus 0 < Re(z) < 1$ $D \setminus 2 < z < 3$
5、函数 $f(z) = x^3 + i y^3$ 在下面哪个点可导() A、 $1+i$ B、 $1+2i$ C、 $1+3i$ D、 $1+4i$
6、以下哪个函数是多值函数 ()
A, $Re(z)$ B, e^{iz} C, \overline{z}^2 D, $Arg(z)$
7、以下哪个函数的积分 $\int_C f(z)dz$ 与路径 C 无关()
$A \cdot f(z) = z ^2$ $B \cdot f(z) = \sin(e^z)$ $C \cdot f(z) = \arg(z)$ $D \cdot f(z) = Im(z)$
8、以下哪个级数是绝对收敛的()
$A, \Sigma_{n=1}^{\infty} \frac{(6+5i)^n}{8^n} \qquad B, \Sigma_{n=1}^{\infty} \frac{i^n}{n} \qquad C, \Sigma_{n=1}^{\infty} \frac{(2+i)^n}{2^n} \qquad D, \Sigma_{n=1}^{\infty} \frac{\cos(in)}{2^n}$
9、 $z = 0$ 是函数 $\frac{1}{z^2(e^z-1)}$ 的奇点,其类型是()
A、1 级极点 B、2 级极点 C、3 级极点 D、本性奇点

复变函数与积分变换考试样题

20xx~20xx 学年第 x 学期

班级	考试科目_	复变函数与积分变换	<u>A 卷</u>	<u>闭卷</u>
----	-------	-----------	------------	-----------

10、以 T 为周期的函数 $f(t) = \begin{cases} 0, & -\frac{T}{2} \le t < 0 \\ 2, & 0 \le t < \frac{T}{2}, \end{cases}$ c_n 为 f(t) 的离散频谱,那么下面结

论正确的是(

A,
$$c_0 = 0$$

A,
$$c_0 = 0$$
 B, $c_1 = -\frac{2i}{\pi}$ C, $c_2 = -\frac{i}{\pi}$ D, $c_3 = 0$

$$C \cdot c_2 = -\frac{i}{\pi}$$

D,
$$c_3 = 0$$

- 二、填空题(共10题,每题3分)
- 1、复数 $z = (1 + i)^2$,其绝对值 $|z| = ______$
- 2、已知 $f(z) = x^2 y^2 + i \ 2xy$, 计算函数值 $f(\sqrt{3} i)$ 并化简为 "x + iy" 的形式
- 3、将复数 $\left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)^{999}$ 计算化简为 "x + iy" 的形式_____
- \mathcal{A} 已知 $z = \frac{1}{2}i$,计算 $2\sin(z)\cos(z)$ 并化简为 "x + iy"的形式_____
- 5、已知函数 f(z) = z Re(z), 计算导数值 $f'(0) = ___$
- 6、已知复曲线 C: z(t) = 1 t + i t, $t \in [0,1]$, 计算积分 $\int_{C} \overline{z} dz$ 并化简为 "x + iy" 的 形式
- 7、计算积分 $\oint_{|z|=2} \frac{\sin(z)}{\left(z-\frac{\pi}{2}\right)^3} dz$ 并化简为 "x+iy" 的形式_____
- 8、计算幂级数 $\Sigma_{n=0}^{\infty}(1+i)^nz^n$ 的收敛半径_____
- 9 函数 $f(z) = \frac{1}{z^2(z-i)}$ 在圆环 1 < |z-i| < ∞ 上可以展成洛朗级数

 $\Sigma_{n=-\infty}^{+} c_n (z-i)^n$,试求出负幂项 $\frac{1}{(z-i)^5}$ 的系数 $c_{-5} =$ _____

- (0)已知非周期函数 $f(t)=\left\{egin{aligned} e^{-eta t} & t>0 \ 0 & ext{其他} \end{aligned}
 ight., F(\omega) 是 <math>f(t)$ 的傅里叶变换且 eta>0,计算
- F(2) 的值并化简为 "x + iy" 的形式

复变函数与积分变换考试样题

20xx~20xx 学年第 x 学期

班级	姓名	考试科目	复变函数与积分变换	A 卷	闭卷

三、计算题(共4题,每题10分)

1、将复数 $\left(\sqrt{3}-i\right)^{1+2i}$ 计算化简为 " $r(\cos(\theta)+i\sin(\theta))$ "的形式。

已知调和函数 $v = \frac{y}{x^2 + y^2}$,试用偏积分法求函数 u(x, y) 使得 f(z) = u(x, y) + iv(x, y)

为解析函数。

3、计算复积分 $\oint_C \frac{e^z}{(z^2+1)(z-i)^2} dz$ 并将结果化简为"x+iy"的形式,其中闭曲线 C:

|z| **=** 2,方向为正向。

其中初值条件为: $\begin{cases} y(0) = y'(0) = 0 \\ x(0) = x'(0) = 0 \end{cases}$