الوحدة التعليمية: الدارات الكهربائية في التيار المستمر الوضعية التعليمية: مقحل ثنائي القطب

نشاط: نريد التحكم في مصباح 220v بواسطة عنصر كهربائي اسمه "مقحل ثنائي القطب" transistor bipolaire انجز التركيب التالي على برنامج multisim.

- اغلق القاطعة A. ماذا تلاحظ؟

نلاحظ عند غلق القاطعة A تو هج المصباح

- كم عروة للتركيب؟

للتركيب عروتين، عروة يسري فيها تيار ضعيف (دارة التحكم) وعروة يسري فيها تيار معتبر (دارة الاستطاعة)

- تسمية اقطاب المقحل الجامع Collecteur الباعث Emetteur القاعدة Base

- اعطي تفسير منطقي للتركيب.

حالة القاطعة مفتوحة : لا يوجد تيار يمر عبر القاعدة B هذا يمنع مرور التيار من الجامع C الى الباعث E (دارة مفتوحة) فلا يتوهج المصباح.

حالة القاطعة مغلوقة: يعبر القاعدة B تيار ضعيف يجعل المقحل عبوري (التيار يعبر من الجامع الى الباعث) (دارة مغلقة) فيتو هج المصباح.

تكوين مقحل ثنائي القطب : المقحل عنصر كهربائي يصنع من مادة سليسيوم او االجرمانيوم يتكون من 3 طبقات منشطة اجابيا و سلبيا حسب نوع المقحل

إما منطقتين من نوع N تفصل بينهما منطقة من نوع P و هو المقحل NPN.

إما منطقتين من نوع P تفصل بينهما منطقة من نوع N و هو المقحل PNP.

ملاحظة: المقحل الأكثر استعمالا هو مقحل NPN

مفعول المقحل: يمر تيار القاعدة I_B الى الباعث E ويؤدي مرور هذا التيار الى جذب تيار I_C معتبر من الجامع E الى الباعث

 $I_{E}=I_{B}+I_{C}$ العلاقة بين التيارات في المقحل هي

 $I_{
m C}=eta.I_{
m B}$: ولدينا العلاقة بين التيار $I_{
m B}$ و التيار $I_{
m C}$ التيار ولدينا العلاقة بين التيار

β: معامل تضخيم التيار (حسب خصائص المقحل)

خصائص (ميزات) المقحل ثنائى القطب:

 I_{B} , I_{C} , V_{CE} , V_{BE} الأربعة المقدير الأربعة المنوات المنطب المقحل هي مجموعة المنوات المقطب المقحل I_{B} , I_{C} , I_{C}

 $R_B>>R_C$ تحدان التيار في القاعدة والجامع حيث R_C , R_B مقادير الدخول هي I_B , V_{BE} ومقادير الدخول

- مثل التيارات والتوترات على التركيب

- ميزة الدخول:

هي المنحنى V_{CE} عندما يكون V_{CE} ثابتا

- ميزة الخروج:

هي المنحنى $I_{\rm B}$ غندما يكون $I_{\rm C}=f(V_{\rm CE})$ ثابتا.

- ميزة تحويل التيار:

هي المنحنى $V_{\rm CE}$ عندما يكون $V_{\rm CE}$ ثابتا

 $\frac{\Delta I_C}{\Delta I_B}=\beta$ هو ميله هو I_C و I_B هذه الميزة هي مستقيم يمر من المبدأ يمثل التناسب بين

منحنيات ميزات المقحل:

- مستقيم الدخول:

$$E_1 - R_B . I_B - V_{BE} = 0 \Rightarrow I_B = \frac{E_1}{R_B} - \frac{1}{R_B} V_{BE}$$
 : بتطبيق قانون العروات في عروة الدخول (1) نجد

- مستقيم الحمولة السكونى:

$$E_2 - R_C . I_C - V_{CE} = 0 \Rightarrow I_C = \frac{E_2}{R_C} - \frac{1}{R_C} V_{CE}$$
: نجد : (2) نجد عروة الخروج بتطبيق قانون العروات في عروة الخروج الخروج بتطبيق قانون العروات في عروة الخروج الخروج

 $(V_{CE0},I_{C0},V_{BE0},I_{B0})$ إحداثياتها P_1 , P_2 , P_3 بالنقاط بالنقاط و التشغيل و ممثلة بالنقاط و المحاوية بالمحاوية بالمح

- حالات تشغيل المقحل:

نميز ثلاث في حالات تشغيل للمقحل:

- التشغيل في الحصر (الانسداد) (BLOCAGE):

. V_{CE} = E_2 و I_B و في الخروج I_{C}

- التشغيل في النقل (التضخيم) (AMPLIFICATION):

. $I_{\rm C} = \beta I_{\rm B}$ في هذه الحالة المقحل يعمل في المنطقة الخطية الموضحة في الشكل حيث

- التشغيل في التشبع (SATURATION):

 $(V_{CE}=V_{CEsat}=0$ وفي الخروج $I_{C}=I_{Csat}$ في هذه الحالة I_{C} ثابت مهما كان التيار I_{C}

ملاحظة: حالتي الحصر والانسداد نسميهما حالتي التبديل بحيث يعمل المقحل كمبدلة، ويستعمل في الدارات المنطقية

تمارين : رقم 01 و 03 صفحة 38

