GOVERNMENT POLYTECHNIC, NAGPUR.

(An Autonomous Institute of Govt. of Maharashtra)

COURSE CURRICULUM

PROGRAMME : DIPLOMA IN CM/IT

LEVEL NAME : PROFESIONAL COURSES

COURSE CODE : CM404E^{\$}

COURSE TITLE : OPERATING SYSTEMS

PREREQUISITE : NIL

TEACHING SCHEME: TH: 03; TU: 00; PR: 02(CLOCK HRs.)

TOTAL CREDITS : 04 (1 TH/TU CREDIT =1 CLOCK HR., 1 PR CREDIT = 2 CLOCK HR.)

TH. TEE : 03 HRs

PR. TEE : 02 HRs (External)

PT. : 01 HR

***** RATIONALE:

The course provides the students with an understanding of the basic concepts of operating system and its working. Operating Systems are very essential components of the Computers. It is the interface between the user and the computer system. It is the first piece of software to run on a computer system when it is booted. Its job is to co-ordinate and provides services for the execution of application software. This is core technology subject and the knowledge of which is absolutely essential for Computer Engineers .It familiarizes the students with the concepts and functions of operating system. This subject provides knowledge to develop systems using advanced operating system concepts.

COURSE OUTCOMES:

After completing this course students will be able to-

- 1 Implement the functions of operating systems and the system calls.
- 2 Apply techniques of memory management and file system management.
- 3 Analyse various algorithms based on CPU scheduling, memory management and deadlock.
- 4 Execute the algorithms for Schedulers, Inter-process communications.
- 5 Perform Memory Management techniques.
- 6 Implement the file system and security concerns.

COURSE DETAILS:

A. THEORY:

Units	Specific Learning Outcomes (Cognitive Domain)	Topics and subtopics	Hrs.
1. Introduction to Operating System	 Define various terms related to Operating system State the organization and architecture of OS List various operations of OS and describe their working. List types of system calls Compare various operating systems. 	 1.1 Introduction to Operating System - Organization, Architecture, Operations 1.2 Process, Memory, Storage Management 1.3 Special-Purpose Systems, Computing Environments, Open-Source Operating Systems. 1.4 System Calls, Types of System Calls 1.5 System Programs, Operating-System Structure 	6
2. Process Management	 Describe process scheduling. State various operations on processes. Define Inter process Communication Define thread. Compare multithreading and it's various models. Calculate average waiting time. Evaluate the scheduling algorithms 	2.1 Process Concept, Process Scheduling, Operations on Processes 2.2 Inter process Communication 2.3 Threads, multithreading model 2.4 Basic Concepts, Scheduling Criteria. Scheduling Algorithms, Algorithm evaluation	9
3. Process Synchronizat ion	 Define Race condition Define Semaphore. Describe Critical-Section Problem. State the solution for Critical-Section Problem State various problems of synchronization 	 3.1 The Critical-Section Problem 3.2 Peterson's Solution, Synchronization	6
4. Deadlocks	 Define related terms. Identify deadlocks. Describe resource allocation graph. Find safe state. State provision for recovery from deadlock. 	 4.1 System Model, Deadlock Characterization 4.2 Methods for Handling Deadlocks 4.3 Deadlock Prevention, Deadlock Avoidance 4.4 Deadlock Detection, Recovery from Deadlock 	8
5. Memory Management	 Define related terms . Describe swapping. Describe Paging, Paging table. 	5.1 Main Memory: Background , Swapping5.2 Contiguous Memory Allocation5.3 Paging, Structure of the Page	10

		2/23b	Total Hrs.	48
			Network Threats	
		11—60	6.5 Security: The Security Problem, Program Threats, System and	
			Access Matrix, Access Control	
		1/	6.4 Access Matrix, Implementation of	
		6/10	of Protection	
			Principles of Protection, Domain	
			6.3 Protection: Goals of Protection,	
			Management	
			Methods, Free-Space	
			Implementation, Allocation	
		problem.	Implementation, Directory	
	6.	Describe security	System Structure, File-System	
		access control	6.2 File-System Implementation: File-	
	5.	Compare access matrix,	Protection	
		protection.	Mounting, File Sharing,	
Security	4.	List various goals of	Disk Structure, File-System	
Security	3.	Describe File system	Access Methods, Directory and	
System and	2.	Describe related terms.	Concept,	0)
6. File	1.	Define related terms	6.1 File-System Interface: File	09
			5.6 Memory Mapped Files	
	6.	Describe thrashing	frames, Trashing.	
		memory problem.	Page Replacement. Allocation of	
		policy for solving virtual	Demand Paging, Copy on Write,	
	5.	Apply Page replacement	5.5 Virtual Memory: Background,	
		on segment table.	5.4 Segmentation	
	4.	State various operations	Table	

B. LIST OF PRACTICALS/LABORATORY EXPERIENCES/ASSIGNMENTS:

Practic als	Specific Learning Outcomes (Psychomotor Domain)	Units	Hrs.
1.	Execute the Disk Operating System (DOS) commands		2
2.	Install and configure Windows 9x, Windows NT, Windows 2000 & Windows XP Operating Systems.	Introduction to	4
3.	Execute the LINUX Commands - man, apropos, clear, ls, mkdir, cd, rmdir, pwd, rm, touch, mv, tr, wc, sort, grep, wall, write, who, chmod, useradd, usermod, kill, ssh, ftp, telnet	Operating System	2
4.	Develop, debug and Execute a C program to simulate the FCFS CPU scheduling algorithms to find turnaround time and waiting time.		2
5.	Develop, debug and Execute a C program to simulate the SJF CPU scheduling algorithms to find turnaround time and waiting time.	D	2
6.	Develop, debug and Execute a C program to simulate the Round Robin CPU scheduling algorithms to find turnaround time and waiting time.	Process Management	2
7.	Develop, debug and Execute a C program to simulate the priority CPU scheduling algorithms to find turnaround time and waiting time.		2
8.	Develop, debug and Execute a C program to simulate producer-consumer problem using semaphores.	Process Synchronization	4
9.	Develop, debug and Executea C program to simulate FIFO page replacement algorithms		2
10.	Develop, debug and Execute a C program to simulate LRU page replacement algorithms		2
11.	Develop, debug and Execute a C program to simulate Optimal page replacement algorithms	Memory	2
12.	Develop, debug and Executea C program to simulate LFU page replacement algorithms	Management	2
13.	Develop, debug and Execute a C program to simulate the following contiguous memory allocation techniques a) Worst-fit b) Best-fit c) First-fit		2
		Skill Assessment	2
		Total Hrs	32

❖ SPECIFICATION TABLE FOR THEORY PAPER:

Unit	Units	Levels from C	ognition Proces	ss Dimension	
No.		R	U	A	Total Marks
1.	Introduction to Operating System	04(02)	04(00)	00(00)	08(02)
2.	Process Management	06(02)	04(04)	06(04)	16(<mark>10</mark>)
3.	Process Synchronization	02(00)	06(04)	00(00)	08(04)
4.	Deadlocks	02(00)	04(04)	06(00)	12(04)
5.	Memory Management	02(04)	08(00)	06(06)	16(<mark>10</mark>)
6.	File System and Security	02(06)	04(04)	04(00)	10(10)
	Total	18(14)	30(16)	22 (10)	70 (40)

R – Remember

U – Understand A – Analyze / Apply

* QUESTION PAPER PROFILE FOR THEORY PAPER:

Q.		Bit 1	1		Bit 2	2		Bit 3	3	100	Bit 4	4		Bit 5	5		Bit (6	ontion
No	T	L	M	T	L	M	T	L	M	Т	L	M	Т	L	M	T	L	M	option
01	2	R	2	3	R	2	4	R	2	5	R	2	6	R	2	1	R	2	5/7
UI	2	R	2				2	1/2	-		-								5/ <mark>7</mark>
02	1	U	4	6	A	4	2	U	4	3	U	4	4	U	4				3/5
03	2	R	4	4	U	4	6	U	4	2	A	4	5	R	4				3/5
04	5	U	4	5	U	4	1	R	4	2	U	4	6	U	4				3/5
05	2	A	6	4	A	6	5	A	6										2/3
06	3	U	6	5	A	6	6	R	6										2/3

T= Unit/Topic Number

L= Level of Question

M= Marks

R-Remember

U-Understand

A-Analyze/ Apply

***** ASSESSMENT AND EVALUATION SCHEME:

	V	What	To Whom	Frequency	Max Marks	Min Marks	Evidence Collected	Course Outcomes
ory	CA (Continuous Assessment)	Progressive Test (PT)	Students	Two PT (average of two tests will be computed)	20		Test Answer Sheets	1, 2, 3
Direct Assessment Theory	Cont Asses	Assignments	Stuc	Continuous	10		Assignment Book / Sheet	1, 2, 3
Direct Asse	TEE (Term End Examination)	End Exam	Students	End Of the Course	70	28	Theory Answer Sheets	1, 2, 3
				Total	100	40		
	essment)	Skill Assessment		Continuous	20		Rubrics & Assessment Sheets	4,5,6
Direct Assessment Practical	CA (Continuous Assessment)	Journal Writing	Students	Continuous	05		Journal	4,5,6
sessme	(Cor			TOTAL	25	10		
Direct As	TEE (Term End Examination)	End Exam	Students	End Of the Course	50	20	Rubrics & Practical Answer Sheets	4,5,6
ssessment		Student Feedback on course		After First Progressive Test	Stud	lent Feedba	ack Form	1 2 2 456
Indirect Assessment	End Of Course		Students	End Of The Course	Questionnaires			1, 2, 3, 4,5,6

SCHEME OF PRACTICAL EVALUATION:

S.N.	Description	Max. Marks
1	Drawing flow chart	10
2	Writing program	10
3	Debug the program	10
4	Execution of program	10
5	Viva voce	10
	TOTAL	50

***** MAPPING COURSE OUTCOMES WITH PROGRAM OUTCOMES:

1. Computer Engineering:-

Course		Program Outcomes (POs)									PSOs		
Outcomes	1	2	3	4	5	6	7	8	9	10	1	2	
1	-	3	6	14	E	X	7	-	-	3	-	-	
2	-	3	4	3	-	-	(5)		-	3	3	1	
3	-	3) [-	3	7PA	-	40	3	3	3	-	-	
4	-	3	2	3	F	-	15	3	3	3	3	-	
5	-	3	2	3	-	1	5	3	3	3	3	-	
6	-	3	2	3	1	J	_	3	3	3	-	-	

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

2. Information Technology:-

2. Mor matter Teemotogy.												
Course		Program Outcomes (POs)								PSOs		
Outcomes	1	2	3	4	5	6	7	8	9	10	1	2
1	-	3	-	-	-	-	-	-	-	3	-	-
2	-	3	-	3	-	-	-		-	3	-	-
3	-	3	-	3	-	-	-	3	3	3	-	-
4	-	3	2	3	-	-	-	3	3	3	-	2
5	-	3	2	3	-	-	-	3	3	3	-	2
6	-	3	2	3	1	-	-	3	3	3	-	2

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

***** REFERENCE & TEXT BOOKS:

S.N.	Title	Author, Publisher, Edition and Year Of publication	ISBN Number
	Operating System Concepts	Abraham, Silberschatz, Greg	13: 9788126520510
1.		Gagne, Peter B. Galvin, Wiley India,	
		9 th Edition, 2012	
2.	Operating Systems: Internals	William Stallings. Pearson	13:9780133805918
۷.	and Design Principles	8 th Edition, 2014	
	Operating System	Achyut Godbole, Atul Kahate, Tata	13:9780070702035
3.		McGraw Hill Education,3rd Edition,	
		2005	
4.	Operating System Concepts	EktaWalia, Khanna Publishers, 2 nd	13:9789380016658
٠+.		Edition, 2015	

& E-REFERENCES:

http://nptel.ac.in/courses/106108101/, accessed on 21st August 2016
https://onlinecourses.nptel.ac.in/noc16_cs10, accessed on 21st August 2016
https://www.youtube.com/watch?v=MaA0vFKt-ew, accessed on 21st August 2016

❖ LIST OF MAJOR EQUIPMENTS/INSTRUMENTS WITH SPECIFICATIONNIL

❖ LIST OF EXPERTS & TEACHERS WHO CONTRIBUTED FOR THIS CURRICULUM:

S.N.	Name	Designation	Institute / Industry
1.	Dr. Mrs. A R Mahajan	Head, Information	Government Polytechnic,
1.	- 2	Technology	Nagpur.
2	Mr. S.P. Lambhade	Head of Computer	Government Polytechnic,
2		Engineering	Nagpur.
3.	Shri R L Meshram	Lecturer in Information	Government Polytechnic,
3.		Technology	Nagpur.
4	Shri L D Vilhekar	Lecturer in Information	Government Polytechnic,
4		Technology	Nagpur.
5	Shri. Atul Upadhyay	CEO	Vista Computers, Ram
3			Nagar, Nagpur
6	Shri. N. V. Chaudhari	Asst. Professor (CSE)	DBACEO, Wanadongri,
0			Nagpur
7	Shri. Manoj Jethawa	HOD Computer Science	ShriDattaMeghe Polytechnic,
/			Nagpur

(Member Secretary PBOS)	(Chairman PBOS)