n-sided Hyperbolic Squares

Mark Andrew Gerads: Nazgand@Gmail.Com

June 12, 2023

Abstract

The goal of this paper is to analyze the properties (such as edge length, incircle radius, circumcircle radius) of an n-sided hyperbolic square, meaning a regular polygon with n right angles. These polygons can tile the hyperbolic plane, which looks nice plotted with the Cartesian Hyperbolic Plane Metric.

Calculations

Let the Gaussian curvature of the plane be -1.

The regular polygon with n right angles can be partitioned into 2n right triangles with angles $\frac{\pi}{n}, \frac{\pi}{2}, \frac{\pi}{4}$. The radius of the circumcircle is $\operatorname{arcosh}\left(\cot\left(\frac{\pi}{n}\right)\cot\left(\frac{\pi}{4}\right)\right) = \operatorname{arcosh}\left(\cot\left(\frac{\pi}{n}\right)\right)$.

The length of an edge is $2 \operatorname{arcosh} \left(\frac{\cos \left(\frac{\pi}{n} \right)}{\sin \left(\frac{\pi}{4} \right)} \right)$.

The length of the perimeter is $2n \operatorname{arcosh} \left(\frac{\cos \left(\frac{\pi}{n} \right)}{\sin \left(\frac{\pi}{4} \right)} \right)$.

The area is $2n \left(\pi - \frac{\pi}{n} - \frac{\pi}{2} - \frac{\pi}{4} \right) = 2\pi n \left(\frac{1}{4} - \frac{1}{n} \right) = \frac{n\pi}{2} - 2\pi$.

It should be noted that as $n \to \infty$, the edge length approaches $2 \operatorname{arcosh} \left(\sqrt{2} \right) \approx 1.76274717403908605046521864995958461806$, are both the incircle and circumstrials are horsewelds, and above which any edge length is allowed. where both the incircle and circumcircle are horocycles, and above which any edge length is allowed.

n	radius of circumcircle
5	0.842482081462007459111380941149711215310
6	1.14621583478058884390039365567400771581
7	1.36005184973956765038539610902535387417
8	1.52857091948099816127245618479367339329
9	1.66893379511935191412136015769839107377
10	1.78982041007171516740591260177484529866
11	1.89630753915117229883786713543359764353
12	1.99165239104943682406899667528592695415
13	2.07808427065529112824674264723998571714
14	2.15720370625423547470560897610422250689
15	2.23020294245828385075785639634686399084

n	radius of incircle
5	0.626869662906177814144463376211936401478
6	0.881373587019543025232609324979792309028
7	1.07040486155894418433137235164029245455
8	1.22422622383903789500265495681793457016
9	1.35504851879687183155393515348937116243
10	1.46935174436818527325584431736164761679
11	1.57108858003724067935632301765558416239
12	1.66288589105862107565248503907940605953
13	1.74659470452044937381132825499312321725
14	1.82357635695908839705212496034624551058
15	1.89486539086573102025718355160194478600

n	length of an edge
5	1.06127506190503565203301891621357348581
6	1.31695789692481670862504634730796844403
7	1.44907472267758633503217314325772678247
8	1.52857091948099816127245618479367339329
9	1.58069813785651414369050575393040896418
10	1.61692166751188651380348666582235462921
11	1.64319223747457343054577404285923637279
12	1.66288589105862107565248503907940605953
13	1.67804671290710848454907520339943861187
14	1.68997616809339866171304910723600185759
15	1.69953703096172053759430146589327334224