Today's Topics: Review Lecture

- Conditions for successful interpretation of refraction data
- Successful processing and interpretation of reflection data

Successful Interpretation of Refraction Data

• What kind of data is most useful?

• Under what conditions would we see the plot on the right? e.g

- 1) Must have $v_1 < v_2 < v_3$...
- 2) Must have enough receivers whose distance from source is larger than x_{cross}

What else?

• Layers must be thicker than...

$$h > \frac{\lambda}{4}$$

- What happens if the an interface is dipping?
- Is a single shot sufficient?
- What should you do?

- What happens if the an interface is dipping?
- Is a single shot sufficient?
- What should you do?

• So this requires **TWO** shots to be able to interpret

- Depth estimates
 - "Slant" depths can be obtained through the intercept times
 - True depths can be estimated using dip-angle (see GPG)

• Travel time in down-dip direction
$$t_2 = rac{x \sin(heta + \gamma)}{v_1} + rac{2z \cos heta}{v_1} = rac{x}{v_{2d}} + t_i$$

Travel time in up-dip direction

$$t_2'=rac{x\sin(heta-\gamma)}{v_1}+rac{2z'\cos heta}{v_1}=rac{x}{v_{2u}}+t_i'$$

 How would you determine if additional layer or lateral velocity change?

 Seismograms could be same in either case

- Examine seismogram from shifted common shot gather
- If layer
 - → Horizontal shift

- If lateral change
 - → Vertical shift

Successful Processing and Interpretation of Reflection Data

Reflection Survey

- Collected a bunch of data. How should I organize it?
- Then what?

Examining CMP Gathers

 What if adjacent CMP gathers results in same parabolic feature? What if adjacent CMP gathers results in parabolic feature that shifts?

Examining CMP Gathers

 What if adjacent CMP gathers results in same parabolic feature?

 What if adjacent CMP gathers results in parabolic feature that shifts?

Remove point reflector feature from all CMP gathers **except** the one(s) with midpoint over the point reflector.

Normal Move Out Correction and Stack

• For each common mid point gather and for each reflective event.

→ apply NMO correction

$$\triangle t = t - t_0$$

- → Verify by summing energy
- → Stack all the traces

Interpolate Stacks for 2d or 3d Section

CSG = common shot gather CMP = common midpoint gather

Migration: Bow-tie features

- What causes bow-tie features?
- Why is this?
- What can we do?

Migration: Bow-tie features

End of Seismology

Unit Activities

- Labs: (Seismic I)
 - Monday, September 30th
 - Tuesday, October 1st
- Labs: (Seismic II)
 - Monday, October 7th
 - Tuesday, October 8th
- TBL:
 - Monday, October 7th
- Quiz:
 - Monday, October 7th