

Introduction to Machine Learning

Angel Mendieta

angel.mendieta@ucr.ac.cr

What is Machine Learning?

- Learns patterns from data
 - Makes predictions
- Improves with experience

Supervised Learning

Applications:

- Email spam detection
- Image classification
- Medical diagnosis
- Speech recognition

Linear Regression

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Loss (MSE):

0.15

Converged!

$$y = mx + b$$

Logistic Regression (Binary Classification)

K-Nearest Neighbors (k=5)

KNN: Effect of k on Decision Boundary

Support Vector Machine (SVM)

Support Vectors

Lie exactly on the margin

Key Property:

Only these points are needed to define the boundary

Maximum Margin

Best generalization to new data

Unsupervised Learning

Applications:

- Customer segmentation
- Anomaly detection
- Data compression
- Recommendation systems

K-Means Clustering

Dimensionality Reduction

Key Benefits:

- · Easier visualization
- Faster computation
- Remove noise & redundancy
- Preserve essential structure

Do we really need the HD picture to know what it is?

PCA: Principal Component Analysis

Original Features (5D):

- Length
- Height
- Weight
- Engine Size
- Fuel Efficiency (MPG)
 - Sedans
 - SUVs
 - Trucks

PC1: Size & Power (Length + Weight + Engine)

PC2: Efficiency

(Higher MPG)

Explained Variance by Component

