The s-Block Elements and their Compounds (Group I & II)

SINGLE CORRECT CHOICE TYPE QUESTIONS

1. In the following reaction, which of the following compounds crystallize out first?

$$2Na_2CrO_4 + H_2SO_4 \rightarrow Na_2SO_4 + Na_2Cr_2O_7 + H_2O$$

- (A) Na,Cr,O,
- (B) H,O
- (C) Na₂SO₄
- (D) Na2Cr2O2 and Na2SO4 equally
- Choose the correct order of lattice enthalpy in the following.
 - (A) LiF > NaCl > NaF > LiCl
 - (B) LiF > LiCl > NaF > NaCl
 - (C) LiF > NaF > NaCl > LiCl
 - (D) LiCl > LiF > NaF > NaCl
- Match the ions in Column I with their ionic radius (in Å) given in Column II and select the correct code.

Colun	ın I		C	olumn II	
(P) Mg ²⁺			(1) 1.37	
(Q) K ⁺		(2) 1			
(R) Li ⁺		(3) 0.76			
(S) Ca2+		(4) 0.72			
Code:					
	P	Q	R	S	
(A)	2	1	3	4	
(B)	1	2	3	4	

1 2

3

4. Identify the correct order.

(C)

(D)

- (A) CsCl < RbCl < KCl < NaCl < LiCl: Solubility in water
- (B) CsCl < RbCl < KCl < NaCl < LiCl: Melting point
- (C) CsCl > RbCl > KCl > NaCl > LiCl: % Ionic character
- (D) CsCl > RbCl > KCl > NaCl > LiCl: Lattice energy

- Aqueous solution of Na₂SO₄ is crystallized out above and below 32 °C. The respective products are
 - (A) Na₂SO₄ and Na₂SO₄ · 10H₂O
 - (B) Na,SO4 · 10H,O and Na,SO4
 - (C) Na₂SO₄ and Na₂SO₄
 - (D) Na₂SO₄ · 10H₂O and Na₂SO₄ · 10H₂O
- 6. Which of the following compounds does not have similarity in structure with the other three compounds?
 - (A) FeSO₄·7H₂O
 - (B) Na₂CO₃·7H₂O
 - (C) MgSO₄·7H₂O
 - (D) ZnSO₄·7H₂O
- The melting point of an eutectic mixture of Na₂CO₃ + K₂CO₃ is
 - (A) higher than that of Na₂CO₃.
 - (B) higher than that of K₂CO₃.
 - (C) lower than that of both Na₂CO₃ and K₂CO₃.
 - (D) lower than that K₂CO₃ only.
- 8. Which of the following statements is not correct?
 - (A) Common salt absorbs water because it is hygroscopic.
 - (B) Common salt is used to clear snow on the road.
 - (C) Anhydrous MgCl₂ can be prepared by heating a double salt of it, i.e. MgCl₂ · NH₄Cl · 6H₂O.
 - (D) CaSO₄ and BaSO₄ are reacted with coke to produce CaS and BaS respectively.
- 9. KOH is preferably used to absorb CO2 because
 - (A) KOH is more soluble than NaOH in water.
 - (B) KOH is a stronger base than NaOH.
 - (C) KHCO₃ is soluble in water and NaHCO₃ is insoluble in water.
 - (D) KOH is cheaper than NaOH.
- 10. Ozonized oxygen is passed through dry powdered KOH. Which option is not correct regarding the product obtained in the above process?

- (A) It is an orange coloured solid.
- (B) It is paramagnetic in nature.
- (C) It is used in submarines for oxygenating the air.
- (D) It is also prepared by passing O₂ in blue solution of K in liquid NH₃
- 11. A + H₂O → NaOH

$$A \xrightarrow{400^{\circ}C} B \xrightarrow{H_2O} NaOH + O_2$$

B is used for oxygenating in submarines. A and B are respectively:

- (A) Na2O2 and Na2O
- (B) Na2O and Na2O2
- (C) Na2O2 and O2
- (D) Na2O and O2
- 12. Electrolysis of KH produces H,
 - (A) at the cathode.
 - (B) at the anode.
 - (C) either at the cathode or at the anode.
 - (D) Cannot be predicted.
- 13. Which of the following is the most soluble in water?
 - (A) CsClO₄
 - (B) NaClO₄
 - (C) KClO₄
 - (D) LiClO₄
- 14. Which of the following statements is correct?
 - (A) NaHCO₃ and KHCO₃ have similar crystal structure.
 - (B) Li,CO, decomposes to give Li,O and CO,.
 - (C) Li2CO3 is soluble in water.
 - (D) All are correct.
- 15. If Na⁺ ion is larger than Mg²⁺ and S²⁻ ion is larger than Cl⁻ ion, which of the following will be least soluble in water?

- (A) NaCl
- (B) Na₂S
- (C) MgCl,
- (D) MgS
- 16. In which of following cases is the value of x maximum?
 - (A) CaSO₄ · xH₂O
 - (B) BaSO₄ · xH₂O
 - (C) MgSO₄ · xH₂O
 - (D) All have the same value of x.
- Among LiCl, RbCl, BeCl₂, MgCl₂, the compounds with greatest and least ionic character respectively
 - (A) LiCl and RbCl
 - (B) RbCl and BeCl2
 - (C) RbCl and MgCl₂
 - (D) MgCl₂ and BeCl₂
- 18. Which of the following properties show a reverse trend of radius on moving from Mg to Ba within the group?
 - (A) Density
 - (B) Solubility of sulphate
 - (C) Solubility of oxalate
 - (D) Basicity of M(OH)₂
- 19. Compound M on heating leaves no residue and N₂ is also not obtained. Aqueous solution of M reacts with alkali and all the gases are evolved. The resulting solution is treated with Al in alkaline medium to liberate a gas that produces a deep blue solution with Ni(NO₃), solution. M is
 - (A) NH₄NO,
 - (B) NH₄NO₂
 - (C) NH₄Cl
 - (D) NH₄Br

MULTIPLE CORRECT CHOICE TYPE QUESTIONS

- 1. MgO can be used as refractory material because
 - (A) it has a very high melting point.
 - (B) it has a very low vapour pressure.
 - (C) it is a very good conductor of heat.
 - (D) it is chemically inert.
- The temporary hardness of water is caused by which of the following compound(s).
 - (A) CaCl₂
 - (B) Mg(HCO₃)₂
 - (C) Ca(HCO₃)₂
 - (D) MgSO₄
- 3. When KO2 reacts with water, the products are
 - (A) KOH (B) H₂O₂
 - (C) K₂O₂
 - (D) O,

- KO₃ or Na₂O₂ is used in submarines or space capsules because
 - (A) it absorbs CO2.
 - (B) it releases O₂.
 - (C) it produces corresponding carbonate on reaction with CO₂.
 - (D) None of these.
- 5. Na,O can be prepared by
 - (A) $Na_2O_2 + CO \rightarrow$
 - (B) Na + NaNO₃ →
 - (C) Na + NaNO₂ →
 (D) Na₂O₂ + Na →
- 6. Which of the following properties are in the increasing order from top to bottom for metal ions in Group 1?
 - (A) Ionic radius
 - (B) Hydrated radius
 - (C) Ionic mobility
 - (D) Hydration number

- 7. Which of the following hydrides are electron deficient?
 - (A) BeH,
 - (B) CaH₂
 - (C) AlH₃
 - (D) KH
- 8. In which of the following cases, does N₂ evolve as a gaseous product?
 - (A) KNO₃ reacts with K on heating.
 - (B) Na2O2 reacts with NH3.
 - (C) NH3 reacts with bleaching powder.
 - (D) None of these.

- Which of the following elements liberate H₂ on reaction with NaOH?
 - (A) Be
 - (B) Al
 - (C) B
 - (D) None of these.
- 10. Which of the following statements are correct regarding the diagonal relationship between Al and Be?
 - (A) BeO and Al2O3 are amphoteric in nature.
 - (B) Carbides of both produce the same gas on hydrolysis.
 - (C) Both can form complexes.
 - (D) Hydrides of both the elements are covalent in nature.

*COMPREHENSION TYPE QUESTIONS

Passage 1: For Questions 1-3

Hard water contains dissolved salts such as magnesium and calcium chlorides, bicarbonates, or sulphates. There are two kinds of hardness of water, i.e. temporary hardness and permanent hardness.

- 1. Temporary hardness can be removed by
 - (A) boiling hard water.
 - (B) adding slaked lime.
 - (C) adding dil. H,SO,
 - (D) adding milk of magnesia.
- When Graham's salt (calgon) is used for removal of permanent hardness of water, Ca²⁺ and Mg²⁺ are sequestered in the form of
 - (A) precipitate.
 - (B) solution.
 - (C) colloidal solution.
 - (D) sedimentation.
- 3. Permanent hardness of water can be removed by
 - (A) distillation.
 - (B) passing it through ion-exchange resins.
 - (C) adding various phosphates.
 - (D) adding Na₂CO₃ solution.

Passage 2: For Questions 4-6

Several alkali metals and alkaline earth metals when dissolved in NH_3 produce a bright blue solution.

- 4. This bright blue solution is due to
 - (A) solvated metal ion.
 - (B) solvated electron.
 - (C) high extent of hydration.
 - (D) All of these.
- 5. The characteristic(s) of the resulting solution is/are:
 - (A) It acts as a very good fuel.

- (B) It acts as a very good reducing agent.
- (C) It acts as a very good oxidizing agent.
- (D) It shows attraction towards magnetic field.
- 6. On addition of more metal to this solution which of the following characteristics get changed?
 - (A) Electrical conductivity.
 - (B) Colour.
 - (C) Magnetic behaviour.
 - (D) None of these.

Passage 3: For Questions 7-9

$$E+D \uparrow \leftarrow \stackrel{H_2O}{\longleftarrow} (B) \leftarrow \stackrel{P}{\longleftarrow} Ca \stackrel{N_2}{\longrightarrow} (A) \stackrel{H_2O}{\longrightarrow} C \uparrow + E$$

- 7. Which of the following characteristics are mainly different for gases C and D?
 - (A) Colour
 - (B) Smell
 - (C) Burning characteristics in air
 - (D) Hybridization
- When gas C is passed through bleaching powder suspension, another gas F comes out, which can also be obtained by
 - (A) heating NH₄NO₃.
 - (B) heating NH₄NO₂.
 - (C) heating (NH₄)₂CrO₇.
 - (D) heating Ba(N₃)₂.
- Gas D catches fire automatically when it comes in contact with the air and this is due to
 - (A) presence of PH₃.
 - (B) presence of O₂.
 - (C) presence of P₂H₄.
 - (D) presence of H₂.

ASSERTION-REASONING TYPE QUESTIONS

In the following set of questions, a Statement I is given and a corresponding Statement II is given below it. Mark the correct answer as:

- (A) If both Statement I and Statement II are true and Statement II is the correct explanation of Statement I.
- (B) If both Statement I and Statement II are true but Statement II is not the correct explanation for Statement I.
- (C) If Statement I is true but Statement II is false.
- (D) If Statement I is false but Statement II is true.
- 1. Statement I: Be is amphoteric in nature.

Statement II: The ionization energy of Be is the highest among the alkaline earth metals.

 Statement I: For purification of CO₂ by Girbotol process ethanol amine is chosen for absorption of CO₂, not NaOH or KOH.

Statement II: Ethanol amine absorbs CO_2 at 30-60 °C while it releases CO_2 at 100-150 °C.

 Statement I: BeH₂(s) and CaH₂(s) have the same structure.

Statement II: Be and Ca are both alkaline earth metal

 Statement I: CaCl₂ is formed as a by-product in the Solvay process for Na₂CO₃ preparation.

Statement II: During the recovery of NH₃, CaCl₂ is obtained when Ca(OH)₂ is used to react with NH₄Cl.

 Statement I: Na₂CO₃ solution is strongly alkaline in nature. Statement II: Hydrolysis of CO₂²⁻ ions produces undissociated H₂CO₃ and OH⁻ ions in solution.

 Statement I: The hydration energy of Be²⁺ is much higher as compared to that of Li⁺.

Statement II: First ionization energy of Be is greater than that of Li.

 Statement I: BaSO₄ is used in diagnosing stomach or duodenal ulcers.

Statement II: BaSO₄ is insoluble in water and in several acids and is opaque to X-rays.

 Statement I: When an electron is added to Na⁺ ion, the size of the ion decreases.

Statement II: In the process of $Na^+ \rightarrow Na$, the interelectric repulsion increases.

 Statement I: Na and K on reaction with H₂O, catch fire.

Statement II: The reaction is highly exothermic, as a result of which the remaining solid metal melts and local heating is so high that the released H₂ catches fire.

10. Statement I: NaOH + NH₄ - salt → NH₃ ↑ +Na⁺ +H₂O

Statement II: H*+ OH⁻→ H₂O; it is the strong acid-strong base reaction which releases more energy and shifts towards greater stability.

 Statement I: Superoxides are stronger oxidizing agents than peroxides.

Statement II: Superoxides accept electrons in the same energy level, i.e. π^* orbital while peroxides accept electrons in the higher energy σ_{2n}^* orbital.

INTEGER ANSWER TYPE QUESTIONS

The	answer	to	each	of	the	following	questions	is	a	non-
nega	ative into	ege	er.							

- 1. The number of rings formed in [Ca(EDTA)]²⁻ is
- The total number of electrons in one molecule of Mg.C. is
- Among the following the number of pairs of compounds, for which the thermal stability order is correct is
 - (a) BeCO₃ > SrCO₃
 - (b) MgO >BaO
 - (c) Li₂CO₃ < Cs₂CO₃
 - (d) CaSO₄ < BaSO₄
 - (e) Li₂N > Na₂N
 - (f) LiClO₄ < KClO₄

 Among the following compounds, the number of compounds which do not produce acidic or basic solutions when dissolved in water is ______.

NaCl, BeCl₂, BaCl₂, Li₂O, MgO, CaH₂, CaSO₄

- Cl₂ gas is passed through a compound A and produces bleaching powder. The number of protons in A is ______.
- The ratio of the number of water of crystallization in gypsum and that in plaster of Paris is ______.
- Among the following elements, the number of elements that release H₂ on reaction with NaOH is

Be, Al, B, Mg, Ca, Zn, Sn

8. The number of bicarbonates that do not exist in solid form among the following is _____.

LiHCO3, NaHCO3, Ca(HCO3)2, KHCO3,

NH4HCO3, Ba(HCO3)2 Mg(HCO3)2

- 9. The number of planes of symmetry in $[BeH_4]^{2-}$ is
- 10. What is the number of ions among the following for which hydrated ion has higher ionic mobility than Be²⁺(aq)?

 The percentage water loss when gypsum is heated to get plaster of Paris is ______.

MATRIX-MATCH TYPE QUESTIONS

In each of the following questions, statements are given in two columns, which have to be matched. The statements in Column I are labelled as **(A)**, **(B)**, **(C)** and **(D)**, while those in Column II are labelled as **(P)**, **(Q)**, **(R)**, **(S)** and **(T)**. Any given statement in Column I can have correct matching with *one or more* statements in Column II.

1. Match the chemical properties with the compounds.

Column I	Column II
(A) Ca	(P) Produces H₂ on reaction with H₂O.
(B) CaH ₂	(Q) Produces Ca(OH) ₂ on reaction with H ₂ O.
(C) CaO	(R) The compound is ionic.
(D) CaC ₂	(S) Can absorb N₂ under hot conditions.

2. Match the compounds with their characteristics.

	•
Column I	Column II
(A) BeCO ₃	(P) Least soluble in water.
(B) MgCO ₃	(Q) Least thermally stable.
(C) CaCO ₃	(R) Produces MO + CO ₂ on heating with the help of bunsen burner.
	 (S) Produces basic oxides on thermal decomposition.

3. Match the compounds with the properties.

Column I	Col	Column II		
(A) CaSO ₄ · 2H ₂ O	(P)	Stored under kerosene.		
(B) LiI	(Q)	Most covalent alkali metal halide.		
(C) Na	(R)	Insoluble in water.		
(D) KF	(S)	Soluble in water without any reaction with water.		

4. Match the compounds with their uses/properties.

Column I	Column II
(A) NaCO ₃ · 10H ₂ O	(P) Dessicating agent.
(B) CaCl ₂ (anhydride)	(Q) Used for preparing freezing mixture.
(C) CaSO ₄ (anhydride)	(R) Washing soda.
(D) NaCl	(S) Dead burnt.
	(T) Soluble in water.

ANSWERS

Single Correct Choice Type Questions

- 1. (C) 5. (A)
- 9. (C)
- 13. (D)
- 17. (B)

- 2. (B)
- 6. (B)
- 10. (D)
- 14. (B)
- 18. (B)

- 3. (D) 4. (C)
- 7. (C) 8. (A)
- 11. (B) **12.** (B)
- 15. (D) 16. (C)
- 19. (A)

Multiple Correct Choice Type Questions

- **1.** (A), (B), (C), (D) **3.** (A), (B), (D)
- 5. (B), (C), (D)
- 7. (A), (C)
- 9. (A), (B), (C)

- 2. (B), (C)
- 4. (A), (B)
- 6. (A), (C)
- 8. (A), (B), (C)
- **10.** (A), (B), (C), (D)

Comprehension Type Questions

- 1. (A), (B)
- **3.** (A), (B), (C), (D)
- **5.** (B), (D)
- **7.** (B), (C), (D)
- 9. (C)

- **2.** (B)
- 4. (B)
- 6. (A),(B),(C)
- 8. (B), (C), (D)

Assertion-Reasoning Type Questions

- 1. (B)
- 4. (A)
- 7. (A)
- 10. (A)

- 2. (A)
- 5. (A)
- 8. (D)
- 11. (A)

- 3. (D)
- 6. (B)
- 9. (A)

Integer Answer Type Questions

- 1. 5
- 4. 3
- 7. 5
- 10. 4

- **2.** 42
- 38
- 8. 4
- 11. 75

- **3.** 5
- 6. 4
- 9. 6

Matrix-Match Type Questions

- 1. (A) →(P), (Q), (S)
 - $(B) \rightarrow (P), (Q), (R)$
 - $(C) \rightarrow (Q), (R)$
 - $(D) \rightarrow (Q), (R), (S)$
- 2. (A) → (Q), (R)
 - $(B) \rightarrow (R), (S)$
 - $(C) \rightarrow (P), (S)$

- (A) → (R)
 - $(B) \rightarrow (Q), (S)$
 - (C) →(P)
 - (D) →(S)
- **4.** (A) → (R), (T)
 - $(B) \rightarrow (P), (T)$
 - $(C) \rightarrow (S)$
 - $(D) \rightarrow (Q), (T)$