Neural Networks image recognition - MultiLayer Perceptron

Use both MLNN for the following problem.

- 1. Add random noise (see below on size parameter on np. random. normal (https://numpy.org/doc/stable/reference/random/generated/numpy.random.normal.html)) to the images in training and testing. *Make sure each image gets a different noise feature added to it. Inspect by printing out several images. Note the size parameter should match the data. *
- 2. Compare the accuracy of train and val after N epochs for MLNN with and without noise.
- 3. Vary the amount of noise by changing the scale parameter in np. random. normal by a factor. Use .1, .5, 1.0, 2.0, 4.0 for the scale and keep track of the accuracy for training and validation and plot these results.

np. random. normal

Parameters

loc

Mean ("centre") of the distribution.

scale

Standard deviation (spread or "width") of the distribution. Must be non-negative.

size

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are drawn. If size is None (default), a single value is returned if loc and scale are both scalars. Otherwise, np.broadcast(loc, scale).size samples are drawn.

Neural Networks - Image Recognition

In [2]:

```
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.optimizers import RMSprop
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend
```

Multi Layer Neural Network

Trains a simple deep NN on the MNIST dataset. Gets to 98.40% test accuracy after 20 epochs (there is *a lot* of margin for parameter tuning).

In [3]:

```
# the data, shuffled and split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()

x_train = x_train.reshape(60000, 784)
x_test = x_test.reshape(10000, 784)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
```

60000 train samples 10000 test samples

In [4]:

```
batch size = 128
num classes = 10
epochs = 20
# convert class vectors to binary class matrices
y train = keras.utils.to categorical(y train, num classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
model = Sequential()
model.add(Dense(512, activation='relu', input shape=(784,)))
model. add (Dropout (0. 2))
model. add (Dense (512, activation='relu'))
model. add (Dropout (0. 2))
model. add(Dense(10, activation='softmax'))
model.summary()
model. compile (loss='categorical crossentropy',
              optimizer=RMSprop(),
              metrics=['accuracy'])
history = model.fit(x_train, y_train,
                    batch size=batch size,
                     epochs=epochs,
                    verbose=1,
                    validation data=(x test, y test))
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
```

1. Add random noise (see below on size parameter on np. random. normal
(https://numpy.org/doc/stable/reference/random/generated/numpy.random.normal.html">normal
(https://numpy.org/doc/stable/reference/random/generated/numpy.random.normal.html
np. random. normal
np. random. normal
np. random. normal
normal
np. random. normal
np. rand

In [31]:

```
import numpy as np

(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.reshape(60000, 784)
x_test = x_test.reshape(10000, 784)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')

# add noise
noise = np.random.normal(0, 1, (60000, 784))
x_train_noise = x_train + noise

noise = np.random.normal(0, 1, (10000, 784))
x_test_noise = x_test + noise

x_train /= 255
x_test /= 255
x_train_noise /= 255
x_test_noise /= 255
x_test_noise /= 255
```

In [32]:

```
# Compare images before and after adding noise
print(f"x_train[0]:\n{x_train[0]}")
print(f"x_train_noise[0]:\n{x_train_noise[0]}")
print(f"x_test[0]:\n{x_test_[0]}")
print(f"x_test_noise[0]:\n{x_test_noise[0]}")
```

x_trair	n[0]:				
[0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
^	^	$^{\wedge}$	^	^	^

In [26]:

```
import matplotlib.pyplot as plt
%matplotlib inline
```

In [33]:

plt.imshow(x_train[2].reshape(28, 28))

Out[33]:

<matplotlib.image.AxesImage at 0x7f42f89e72d0>

In [34]:

plt.imshow(x_train_noise[2].reshape(28, 28))

Out[34]:

<matplotlib.image.AxesImage at 0x7f42f89b6e90>

2. Compare the accuracy of train and val after N epochs for MLNN with and without noise.

In [36]:

```
# with same parameters
batch\_size = 128
num classes = 10
epochs = 20
# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
model = Sequential()
model.add(Dense(512, activation='relu', input_shape=(784,)))
model. add (Dropout (0. 2))
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.2))
model. add (Dense (10, activation='softmax'))
model.summary()
model.compile(loss='categorical_crossentropy',
              optimizer=RMSprop(),
              metrics=['accuracy'])
history = model.fit(x_train_noise, y_train,
                    batch size=batch size,
                    epochs=epochs,
                    verbose=1,
                    validation data=(x test noise, y test))
score_noise = model.evaluate(x_test_noise, y_test, verbose=0)
print('Test loss with adding noise:', score_noise[0])
print('Test accuracy with adding noise:', score_noise[1])
print('Test loss:', score[0])
print('Test accuracy:', score[1])
```

Model: "sequential_4"

Layer (type)	Output Shape	Param #
dense_12 (Dense)	(None, 512)	401920
dropout_8 (Dropout)	(None, 512)	0
dense_13 (Dense)	(None, 512)	262656
dropout_9 (Dropout)	(None, 512)	0
dense_14 (Dense)	(None, 10)	5130

Total params: 669,706 Trainable params: 669,706 Non-trainable params: 0

```
Epoch 1/20
469/469 [=======] - 10s 20ms/step - loss: 0.2448 - accuracy: 0.9248 - val_loss: 0.1014 - val_accuracy: 0.9670
Epoch 2/20
469/469 [======] - 9s 20ms/step - loss: 0.1003 - accuracy:
```

```
0.9700 - val loss: 0.0985 - val accuracy: 0.9697
Epoch 3/20
469/469 [============] - 9s 20ms/step - loss: 0.0746 - accuracy:
0.9774 - val loss: 0.0960 - val accuracy: 0.9708
Epoch 4/20
469/469 [============] - 9s 20ms/step - loss: 0.0595 - accuracy:
0.9818 - val_loss: 0.0847 - val_accuracy: 0.9772
Epoch 5/20
0.9854 - val loss: 0.0728 - val accuracy: 0.9808
Epoch 6/20
                     =======] - 9s 20ms/step - loss: 0.0423 - accuracy:
469/469 [==========
0.9872 - val_loss: 0.0749 - val_accuracy: 0.9816
Epoch 7/20
469/469 [===========] - 9s 20ms/step - loss: 0.0380 - accuracy:
0.9888 - val loss: 0.0740 - val accuracy: 0.9830
Epoch 8/20
0.9905 - val loss: 0.0795 - val accuracy: 0.9825
Epoch 9/20
0.9914 - val_loss: 0.0837 - val_accuracy: 0.9838
Epoch 10/20
469/469 [=============] - 9s 20ms/step - 1oss: 0.0262 - accuracy:
0.9920 - val loss: 0.1004 - val accuracy: 0.9815
Epoch 11/20
469/469 [=============] - 9s 20ms/step - loss: 0.0279 - accuracy:
0.9921 - val loss: 0.0851 - val accuracy: 0.9832
Epoch 12/20
469/469 [============] - 9s 20ms/step - loss: 0.0234 - accuracy:
0.9934 - val_loss: 0.0938 - val_accuracy: 0.9827
Epoch 13/20
469/469 [===========] - 9s 20ms/step - loss: 0.0224 - accuracy:
0.9939 - val loss: 0.0911 - val accuracy: 0.9839
Epoch 14/20
0.9942 - val_loss: 0.0945 - val_accuracy: 0.9846
469/469 [============] - 9s 20ms/step - loss: 0.0208 - accuracy:
0.9941 - val_loss: 0.1121 - val_accuracy: 0.9837
Epoch 16/20
0.9945 - val_loss: 0.0988 - val_accuracy: 0.9848
Epoch 17/20
469/469 [===========] - 9s 20ms/step - loss: 0.0197 - accuracy:
0.9950 - val_loss: 0.1079 - val_accuracy: 0.9840
Epoch 18/20
469/469 [===========] - 9s 20ms/step - loss: 0.0171 - accuracy:
0.9953 - val_loss: 0.1150 - val_accuracy: 0.9844
Epoch 19/20
469/469 [=======] - 10s 22ms/step - loss: 0.0178 - accuracy:
0.9955 - val loss: 0.1219 - val_accuracy: 0.9838
Epoch 20/20
469/469 [===========] - 9s 20ms/step - loss: 0.0164 - accuracy:
0.9957 - val_loss: 0.1267 - val_accuracy: 0.9837
Test loss with adding noise: 0.12669143080711365
Test accuracy with adding noise: 0.9836999773979187
Test loss: 0.12676534056663513
Test accuracy: 0.9828000068664551
```

3. Vary the amount of noise by changing the scale parameter in np. random. normal by a factor. Use .1, .5, 1.0, 2.0, 4.0 for the scale and keep track of the accuracy for training and validation and plot these results.

In [42]:

```
scales = [0.1, 0.5, 1.0, 2.0, 4.0]
train_scores = [[0] for _ in range(len(scales))]
validation_scores = [[0] for _ in range(len(scales))]
for i in range(len(scales)):
    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    x_{train} = x_{train.reshape} (60000, 784)
    x_{test} = x_{test}. reshape (10000, 784)
    x_train = x_train.astype('float32')
    x_test = x_test.astype('float32')
    # add noise
    noise = np. random. normal(0, scales[i], (60000, 784))
    x_train_noise = x_train + noise
    noise = np. random. normal(0, scales[i], (10000, 784))
    x \text{ test noise} = x \text{ test} + \text{noise}
    x train /= 255
    x_{test} /= 255
    x_train_noise /= 255
    x test noise /= 255
    # build model
    batch size = 128
    num classes = 10
    epochs = 20
    # convert class vectors to binary class matrices
    y_train = keras.utils.to_categorical(y_train, num_classes)
    y_test = keras.utils.to_categorical(y_test, num_classes)
    model = Sequential()
    model.add(Dense(512, activation='relu', input_shape=(784,)))
    model. add (Dropout (0.2))
    model. add (Dense (512, activation='relu'))
    model. add (Dropout (0. 2))
    model. add(Dense(10, activation='softmax'))
    model. summary()
    model.compile(loss='categorical crossentropy',
                optimizer=RMSprop(),
                metrics=['accuracy'])
    history = model.fit(x_train_noise, y_train,
                         batch size=batch size,
                         epochs=epochs,
                         verbose=1,
                         validation_data=(x_test_noise, y_test))
    train scores[i] = history.history['accuracy']
    validation scores[i] = history.history['val accuracy']
    score noise = model.evaluate(x test noise, y test, verbose=0)
    print('Test loss with adding noise:', score_noise[0])
    print('Test accuracy with adding noise:', score noise[1])
Model: "sequential_6"
```

Layer (type) Output Shape Param #

dense_18 (Dense)	(None,	512)	401920
dropout_12 (Dropout)	(None,	512)	0
dense_19 (Dense)	(None,	512)	262656
dropout_13 (Dropout)	(None,	512)	0
dense_20 (Dense)	(None,	10)	5130

Total params: 669,706 Trainable params: 669,706 Non-trainable params: 0

In [47]:

train_scores[0]

Out[47]:

- [0.9235333204269409,
- 0.9687166810035706,
- 0.9776166677474976,
- 0.9819166660308838,
- 0.9849500060081482,
- 0.9868166446685791,
- 0.9888499975204468,
- 0.9897500276565552,
- 0.9907000064849854,
- 0.9908833503723145,
- 0.9924666881561279,
- 0. 9925833344459534,
- 0.9929999709129333,
- 0.9940666556358337,
- 0.9938666820526123,
- 0.9945166707038879,
- 0.9944666624069214,
- 0.9947666525840759,
- 0.9956499934196472,
- 0. 9955000281333923]

```
In [53]:
```

```
# plot result
colors = ['#5EC2C2', '#324B4B', '#95B1B0', '#E2A589', '#A97157']
for i in range(len(train_scores)):
    score = train_scores[i]
    plt.plot(list(range(1, len(score)+1)), score, color=colors[i], label=f"scale={scales[i]}")
plt. legend()
plt. xlabel("epoch")
plt. xticks(list(range(1, len(score)+1)))
plt. ylabel("accuracy")
plt. title("training accuracy")
plt. show()
```



```
In [54]:
```

```
# plot result
colors = ['#5EC2C2', '#324B4B', '#95B1B0', '#E2A589', '#A97157']
for i in range(len(validation_scores)):
    score = validation_scores[i]
    plt.plot(list(range(1, len(score)+1)), score, color=colors[i], label=f"scale={scales[i]}")
plt.legend()
plt.xlabel("epoch")
plt.ylabel("accuracy")
plt.xticks(list(range(1, len(score)+1)))
plt.title("validation accuracy")
plt.show()
```

