

# 数字图像处理与机器视觉 实验报告

| 作业名称   |    | HW2                   |  |
|--------|----|-----------------------|--|
| 姓      | 名  | 杨逍宇                   |  |
| 学      | 号。 | 3220105453            |  |
| 电子邮箱   |    | 3220105453@zju.edu.cn |  |
| 联系电话 _ |    | 13518290755           |  |
| 导      | 师  | 蔡声泽/曹雨齐/姜伟            |  |



2025年3月24日

# 1 已实现的功能简述及运行简要说明

### 1.1 已实现的功能简述:

- (1). ft.cpp,filter.cpp 分别实现了要求中的图像 A, B 的处理和自行选择图像进行空间域和频域的滤波。
- (2). 运行相关的可执行文件,会显示中间运行过程中的图像,并将中间过程文件保存在 assets 文件夹中。

#### 项目目录树如下:



# 2 开发与运行环境

本实验使用的软件和工具如下:

• 开发环境: Visual Studio Code on Ubuntu22.04

• 编程语言: C++

• 库: OpenCV 4.7.0

• 构建工具: CMake

# 3 算法基本思路

### 3.1 傅里叶变换与频域处理

### (1). 傅里叶变换实现:

$$F(u,v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi(\frac{ux}{M} + \frac{vy}{N})}$$
 (1)

- 图像边界扩展至最优 DFT 尺寸:  $M=2^{\lceil \log_2(H) \rceil}$
- 构建复数矩阵: complexImg = Re + jIm
- 频移操作:  $\mathcal{F}^{-1}(F(u,v)(-1)^{x+y})$

#### (2). 频域特征分析:

- 幅度谱计算:  $|F(u,v)| = \sqrt{\operatorname{Re}^2 + \operatorname{Im}^2}$
- 相位谱计算:  $\phi(u,v) = \arctan(\text{Im/Re})$
- 对数变换增强显示:  $\log(1 + |F(u, v)|)$

### (3). 频域混合重建:

$$f_{AB} = \mathcal{F}^{-1}\{|F_A| \cdot e^{j\phi_B}\}\tag{2}$$

- 极坐标形式合成频谱:  $F_{mix} = \text{mag}_A \cdot (\cos \phi_B + j \sin \phi_B)$
- 逆变换后截取实部并进行归一化

#### (4). 频域滤波器设计:

- 高斯低通:  $H_{GLPF}(u,v) = e^{-D^2(u,v)/(2D_0^2)}$
- 理想高通:  $H_{IHPF}(u,v) = \begin{cases} 0 & D(u,v) \leq D_0 \\ 1 & D(u,v) > D_0 \end{cases}$
- 频域卷积定理实现:  $G(u,v) = F(u,v) \cdot H(u,v)$

# 3.2 空域/频域滤波对比

### • 计算复杂度:

- 空域高斯滤波:  $O(MNk^2)$  (k 为核尺寸)
- 频域滤波:  $O(MN \log MN)$

### • 特性对比:

| 特性   | 空域高斯 | 频域高斯 |
|------|------|------|
| 边界处理 | 截断效应 | 周期延拓 |
| 精度控制 | 离散近似 | 连续函数 |
| 并行优化 | 局部计算 | 全局变换 |

# 4 实验结果及分析

# 4.1 傅里叶变换频谱分析



(a) 图像 A 幅频特性



(b) 图像 B 幅频特性

Figure 1: 傅里叶幅频可视化



(a) 图像 A 相频特性



(b) 图像 B 相频特性

Figure 2: 傅里叶相频可视化

# 分析结论:

• 相频信息主导图像结构特征(混合结果 B 相频的图像呈现 B 的结构轮廓)







(b) B 幅频 +A 相频

Figure 3: 频谱混合重构效果对比

• 幅频信息决定图像明暗对比(混合结果 A 幅频的图像保持 A 的亮度分布)

# 4.2 滤波器分析

# 4.2.1 空域滤波与频域滤波对比分析



(a) 空域低通(高斯模糊)



(b) 频域低通(高斯滤波)



(c) 空域高通(拉普拉斯)



(d) 频域高通 (理想滤波)

Figure 4: 图像 A 滤波效果对比 (D0=30, 高斯核 15x15)

# 关键分析结论:

| 特性   | 空域低通      | 频域低通             | 理论依据         |
|------|-----------|------------------|--------------|
| 计算速度 | 快 (O(nm)) | 慢 (O(nm log nm)) | 空域卷积 vs 频域乘法 |
| 边缘过渡 | 平滑渐变      | 自然过渡             | 高斯核连续性       |
| 振铃效应 | 无         | 无                | 高斯函数无限支撑     |

Table 1: 低通滤波器性能对比

| 特性   | 空域高通     | 频域高通 | 理论依据     |
|------|----------|------|----------|
| 边缘增强 | 显著(二阶微分) | 锐利   | 拉普拉斯算子特性 |
| 噪声敏感 | 高度敏感     | 中度敏感 | 高频放大特性   |
| 振铃效应 | 无        | 明显   | 理想截止不连续  |

Table 2: 高通滤波器性能对比

#### 4.2.2 频域滤波特性深入分析

#### 理想高通滤波的振铃效应数学解释:

$$h(x,y) = \delta(x,y) - \frac{J_1(\pi D_0 r)}{\pi r} \quad (r = \sqrt{x^2 + y^2})$$
 (3)

其中  $J_1$  为一阶贝塞尔函数,其振荡特性导致空间域的振铃现象(图4d中建筑物边缘的波纹)

#### 多图像滤波一致性验证:



(a) 原始图像 B



(b) 低通结果



(c) 高通结果

Figure 5: 图像 B 频域滤波效果(验证算法普适性)

#### Listing 1: 关键滤波参数配置

### 参数影响规律:

空域高斯: σ↑⇒ 模糊程度↑

频域高斯: D0↓⇒ 保留细节↓

理想高通: D0↑⇒ 边缘厚度↓

# 5 结论与心得体会

- 掌握了频域处理的核心原理: 相频决定结构, 幅频决定对比
- 验证了频域滤波相较于空域滤波的优势(精确频率控制)与不足(计算复杂度高)
- 通过混合实验深入理解了傅里叶变换的相位-幅度的物理意义
- 对比了不同滤波器的特性, 为实际应用场景选择合适滤波器提供了理论依据