Perceptron

Linear Threshold Algorithm

General Perceptron

Linear threshold unit (LTU)

$$f(a) = a$$
 (identity function)

$$f(a) = 1/(1 + exp(-a))$$

Classifying points – illustration of LTU "wiggle room"

From Duda and Hart, 1973

Perceptron Algorithm

(output sign($\mathbf{w} \cdot \mathbf{x}$), so f(a) step function)

- Keeps weights w_i , one per feature
- "Online algorithm", initially **w** = (0,...,0)
- Repeat (until consistent with data):
 get next training example i: (x_i,y_i)
 if (w•x_i) y_i≤ 0 then mistake:
 w gets w+ η_i y_i x_i

Perceptron Class Exercise:

Assume η_i always 1

<i>X</i> ₁	X ₂	y
1	3	+1
2	3	-1
-3	1	+1
1	-1	-1

 $(gap \approx 2/15)$

Perceptron as stochastic gradient descent

Perceptron criteria: if y_i ≠ sign(w•x_i) then minimize "badness" of mistake on example i:

$$-y_i (\mathbf{w} \cdot \mathbf{x_i})$$

Differentiate wrt w_i gives gradient component:

$$-y_i X_{i,j}$$

Negative gradient, y_i x_{i,} is direction of steepest descent, add y_i x_{i,j} to w_j (for each j) or equivalently add vector y_i x_i to w

Perceptron Convergence

- For arbitrary data it converges if
 η_i values go to 0 (as i goes to ∞)
 sum of η_i values goes to ∞
 sum of (η_i)² values finite
 (e.g. η_i = 1 / i ; Robbins-Monro alg.):
- If data linearly separable with "gap" when instances normalized to length 1 then converges within (1/gap)² mistakes (other slides)

Perceptron notes

- Can run in batch mode delay updates until completed pass through data
- Voted perceptron idea
- Multiclass (1-vs-all): learn a w_y for each class, predict with y maximizing w_y•x
- Learns discriminative classifier directly (no probability)