

Ex. 05 - Comparações Múltiplas II

Exercício 01. Simule alguns tratamentos para um experimento na sua área de atuação no delineamento inteiramente causalizado e construa um grupo de contrastes ortogonais de interesse.

Exercício 02. Para os seus dados do exercício da aula de DIC, faça um teste de comparações múltiplas que seja o mais indicado e interprete os resultados.

EXERCÍCIO 01

▼ DADOS DO EXPERIMENTO

- Áreas de atuação:
 - 1. Genética Quantitativa;
 - 2. Melhoramento de Plantas;
 - 3. Hortaliças;
- Título do experimento:
 - o Uso de radiação gama na obtenção de mutantes de alho
- Hipóteses testadas:
 - o H0: O desenvolvimento vegetativo de plantas de alho não é afetado pela mutagênese;
 - o Ha: O desenvolvimento vegetativo de plantas de alho são afetados em, pelo menos, um dos tratamentos mutantes;
- Objetivos:
 - o Verificar o potencial uso de mutagênese por radiação gama sobre dentes de alho na obtenção de novas cultivares.
- Fatores e níveis:
 - o Combinação entre cultivares e doses;
 - μ_1 → Testemunha cultivar A (não mutante);
 - µ₂ → Testemunha cultivar B (não mutante);
 - μ_3 → Cultivar A Dose de radiação 1;
 - μ_4 → Cultivar A Dose de radiação 2;
 - μ_5 → Cultivar B Dose de radiação 1;
 - μ_6 → Cultivar B Dose de radiação 2;
- Variáveis resposta:
 - o Altura de planta;
 - Número de dentes por bulbo;
 - Peso do bulbo;

lacktriangledown Construção de contrastes

Grupos de contrastes possíveis seriam:

a.
$$Y_1 = (2\mu_1 + 2\mu_2) - (\mu_3 + \mu_4 + \mu_5 + \mu_6)$$

b.
$$Y_2 = \mu_1 - \mu_2$$

c.
$$Y_3 = (\mu_3 + \mu_4) - (\mu_5 + \mu_6)$$

d.
$$Y_4 = \mu_3 - \mu_4$$

e.
$$Y_5 = \mu_5 - \mu_6$$

Isolando os termos em forma de tabela, teríamos:

Contraste	μ1	μ2	μ3	μ4	μ5	μ6
Y_1	2	2	-1	-1	-1	-1
Y_2	1	-1	0	0	0	0

Contraste	μ1	μ2	μ3	μ4	μ5	μ6
Y_3	0	0	1	1	-1	-1
Y_4	0	0	1	-1	0	0
Y_5	0	0	0	0	1	-1

▼ TESTE DE ORTOGONALIDADE

Tabela com teste de ortogonalidade obtida por meio da análise da igualdade:

$$\sum_{i=1}^{l} rac{a_i b_i}{J_i} = rac{(a_{\mu 1} imes b_{\mu 1}) + (a_{\mu 2} imes b_{\mu 2}) + (a_{\mu 3} imes b_{\mu 3}) + (a_{\mu 4} imes b_{\mu 4}) + (a_{\mu 5} imes b_{\mu 5}) + (a_{\mu 6} imes b_{\mu 6})}{x} = \cdots = 0$$

X	Y_1	Y_2	Y_3	Y_4	Y_5
Y_1	-	-	-	-	-
Y_2	2-2+0+0+0+0 = 0	-	-	-	-
Y_3	0+0-1-1+1+1 = 0	0+0+0+0+0+0 = 0	-	-	-
Y_4	0+0-1+1-1+1 = 0	0+0+0+0+0+0 = 0	0+0+1-1+0+0 = 0	-	-
Y_5	0+0+0+0-1+1 = 0	0+0+0+0+0+0 = 0	0+0+0+0-1+1 = 0	0+0+0+0+0+0 = 0	-

■ CONCLUSÕES

- ∴ Os contrastes criados são ortogonais e permitem contrastar:
 - → Materiais mutantes X Testemunhas
 - → Testemunha A contra Testemunha B
 - → Mutante A contra Mutante B
 - $\rightarrow\,$ Dose de mutagênese no mutante A
 - $\rightarrow\,$ Dose de mutagênese no mutante B

EXERCÍCIO 02

Os dados utilizados nesse exercício já foram introduzidos na atividade 03 - Experimentos em delineamentos inteiramente casualizados. Portanto, para compreender com mais profundidade a origem deles e como o experimento foi realizado, verifique-a.

- Teste de comparações múltiplas escolhido Teste de Tukey;
- Probabilidade de erro: 0.05;
- Pacote utilizado: ExpDes.pt
- ANOVA + Tukey | Análise de variância e teste de comparações múltiplas

```
library(ExpDes.pt)
with(DICpotato,
     dic(Genotype, nTub, hvar = "levene", quali = T, mcomp = "tukey", sigF = 0.05, sigT = 0.05))
```

• Resultado:

```
Quadro da analise de variancia
        GL SQ QM Fc Pr>Fc
Tratamento 5 2580.2 516.04 5.4482 0.00059559
Residuo 42 3978.1 94.72
        47 6558.3
Total
CV = 26.08 \%
Teste de normalidade dos residuos ( Shapiro-Wilk )
Valor-p: 0.8740641
De acordo com o teste de Shapiro-Wilk a 5% de significancia, os residuos podem ser considerados norm
```

```
Teste de homogeneidade de variancia
valor-p: 0.09697168
De acordo com o teste de levene a 5% de significancia, as variancias podem ser consideradas homogene
Teste de Tukey
Grupos Tratamentos Medias
      Asterix 47.25
                 45
ab
      St57
     St91 38.875
St467 35.5
abc
abc
bc
       St346
                  30.625
       St614
                  26.625
```

O pacote <u>ExpDes.pt</u> trás um argumento para a função que analisa experimentos em delineamentos inteiramente casualizados (dic), chamada "mcomp". Esse argumento permite escolher dentre inúmeros métodos de comparação desenvolvidos para o pacote. Logo, abaixo são apresentados alguns resultados de acordo com os testes disponíveis.

Tratamento	Média	Tukey	Duncan	LSD
Asterix	47,25	a	a	a
St57	45,00	ab	ab	ab
St91	38,87	abc	abc	abc
St467	35,50	abc	bcd	bcd
St346	30,62	bc	cd	cd
St614	26,62	с	d	d

Como é possível observar na tabela acima, há diferenças entre os testes de comparação múltiplas disponíveis no pacote. Essas diferenças ocorrem diante da sensibilidade de cada método e, é possível perceber que o Tukey, dentre os 3 apresentados, se demonstra menos sensível as diferenças, apresentando apenas 3 classes/grupos (a, b e c).

III CONCLUSÕES

- Avaliação dos testes de comparação múltiplas:
 - Pelo **teste Tukey**, é possível inferir que, em relação ao número de tubérculos produzidos:
 - Asterix é superior aos genótipos St346 e St614.
 - Asterix, St57, St91 e St467 não se diferem estatisticamente a 5% de probabilidade de erro.
 - St614 é o genótipo com pior desempenho e difere, estatisticamente a 5% de probabilidade de erro, de Asterix.
 - Pelo teste Duncan, é possível inferir que, em relação ao número de tubérculos produzidos:
 - Asterix é superior aos genótipos St467, St346 e St614.
 - \blacksquare Asterix, St57 e St91 não se diferem estatisticamente a 5% de probabilidade de erro.
 - St614 é o genótipo com pior desempenho e difere, estatisticamente a 5% de probabilidade de erro, de Asterix, St57 e St91.
 - Pelo teste LSD, é possível inferir que, em relação ao número de tubérculos produzidos:
 - Asterix é superior aos genótipos St467, St346 e St614.
 - Asterix, St57 e St91 não se diferem estatisticamente a 5% de probabilidade de erro.
 - St614 é o genótipo com pior desempenho e difere, estatisticamente a 5% de probabilidade de erro, de Asterix, St57 e St91.
- \therefore O teste Tukey se demonstrou menos sensível as diferenças para o conjunto de dados analisados.