

Computer Vision Systems Programming VO Programming Languages and Libraries

Christopher Pramerdorfer
Computer Vision Lab, Vienna University of Technology

Topics

Characteristics of Computer Vision (CV) programming

► Implications on language choice

Which language is the best?

Overview of popular languages and libraries

- Matlab
- Python
- ► C++

Suggestions on language selection

Characteristics of CV Programming Image Processing

We often start with Image Processing (IP)

- Resampling, normalization, color conversion
- Feature extraction

Involves operations on arrays / matrices

Many IP operations are local and sequential

► Favors languages with fast random access to pixels

Characteristics of CV Programming Many IP Operations are Local and Sequential

Resampling is independent for each pixel Involves some form of local interpolation

Characteristics of CV Programming Many IP Operations are Local and Sequential

Local neighborhood operators such as linear filtering:

$$f'(x,y) = \sum_{i,j} f(x+i,y+j) h(i,j)$$

Image from Prince 2012

Characteristics of CV Programming Numerical Computing

More generally, CV programming is all about numbers

Often, there are many of them

- ▶ BD stream: \sim 50 million/sec
- Large optimization problems (e.g. bundle adjustment) https://www.youtube.com/watch?v=HrgHFDPJHXo

Some languages are better at crunching numbers than others

► Faster, more memory-efficient

Characteristics of CV Programming

Does efficiency matter?

But does efficiency matter?

- ► Researchers often don't care
- Companies usually do
- Sometimes there are hard constraints (cars, space missions)

Image by Ryuzo Okada, Toshiba

Characteristics of CV Programming Does efficiency matter?

It depends

Design choices can have a bigger impact than language

- ► Use appropriate data structures
- ▶ Utilize multiple CPU cores, GPUs

Language bottlenecks can be avoided by switching language

▶ Implement parts in C, call from Matlab, Python

Choosing a Programming Language

In summary, efficiency is often of little concern in research

There are other factors

- ► Ease of development (language features, libraries, IDEs)
- OS and platform support
- License fees

mage from pixhawk.org

Choosing a Programming Language

There is no "best" language, it depends

- On the task at hand
- ► On the operating conditions

Let's take a look at some popular languages and libraries ...

Popular CV Programming Languages

Popular CV Programming Languages Matlab

Numerical computing environment
Commercial software (student licenses)
Widely used in academics
Used in many courses at TU Wien

Popular CV Programming Languages Matlab

Pros

- ► Easy to learn and use
- Many high-quality toolboxes

Cons

- ▶ Not as fast/efficient from scratch as C++
- Commercial licenses are expensive
- Less suitable for general-purpose programming

Popular CV Programming Languages Python

General-purpose programming language

Free and open source

No IP/CV functionality by default

But great open-source libraries

Image from python.org

Popular CV Programming Languages Python

Pros

- Easy to learn and use
- Extensive standard library
- ► Free and open source

Cons

- Not as integrated as Matlab
- ▶ Not as fast/efficient from scratch as C++

Popular CV Programming Languages Python – NumPy

Fundamental numerical computing library

Arrays and matrices

Linear algebra

Matrix decompositions

Fourier analysis

Popular CV Programming Languages Python – SciPy

Family of scientific computing packages

Optimization

Image processing

Statistics & density estimation

Popular CV Programming Languages

Python - scikit-image

Image processing library

Image transforms

Image filtering

Feature extraction

Segmentation

Image from scikit-image.org

Popular CV Programming Languages

Python - scikit-learn

Comprehensive machine learning library

Classification

Regression

Clustering

Dimensionality reduction

Popular CV Programming Languages Python – matplotlib

Graph plotting library

Surface, wireframe, scatter, bar plots

Matlab-like syntax

Image from matplotlib.org

Popular CV Programming Languages C++

General-purpose programming language Focus on performance and efficiency No IP/CV functionality by default But great open-source libraries

Popular CV Programming Languages C++

Pros

- ► Fast and memory-efficient
- ► Free and open source

Cons

- ► Harder to learn and master
- Slower and less convenient to code

Popular CV Programming Languages C++ - OpenCV

Comprehensive IP/CV library

Designed for real-time applications

Matrices and linear algebra
Image transforms and filtering
Feature extraction and matching
Stereo, structure from motion
Machine learning

Popular CV Programming Languages

C++ - Shark, Caffe

Machine learning libraries

Optimization

Regression

Classification

Dimensionality reduction

Deep learning

Popular CV Programming Languages C++ - MathGL

Graph plotting library

Surface, wireframe, scatter, bar plots

Popular CV Programming Languages Remarks

Comparable functionality

- ▶ There are libraries for most CV tasks in all these languages
- ▶ This applies to other languages as well

Many libraries have language bindings

Python and Matlab bindings for OpenCV

Task is to load, blur, show, and save an image


```
img = imread('image.png'); % read
kernel = fspecial('gaussian', [5 5]); % blur
blur = imfilter(img, kernel); % blur
imshow(blur); % show
imwrite(blur, 'blur.png'); % save
```

Python with scikit-image

```
img = skimage.io.imread('image.png') # read
blur = skimage.filter.gaussian_filter(img, sigma=1.7) # blur
skimage.io.imshow(blur) # show
skimage.io.show() # show
skimage.io.imsave('blur.png', blur) # save
```

Code Comparison C++ with OpenCV

```
cv::Mat img = cv::imread("image.png"); // read
cv::Mat blur; // blur
cv::GaussianBlur(img, blur, cv::Size(5, 5), 0); // blur
cv::imshow("blur", blur); // show
cv::waitKey(0); // show
cv::imwrite("blur.png", blur); // save
```

Similar programming effort in the example case

For many larger CV tasks

- ► Matlab requires least effort
- Closely followed by Python
- ▶ Not so closely followed by C++

Language Comparison

In summary, the discussed languages

- ▶ Differ in terms of execution speed and memory-efficiency
- ▶ Provide comparable CV programming functionality via libraries
- ▶ Differ in ease of development, licensing fees

So, to conclude

- ► There is **no best CV language**
- Different tasks favor different languages

Suggestions on Language Selection

Know the strengths and weaknesses of different languages

Be proficient in more than one language

▶ Allows you to select appropriate language for task at hand

Learn C++

- ▶ Modern C++ is not a bad language if used correctly
- Some real-time applications require its speed and efficiency
- Many companies use it

Bibliography

Prince, S.J.D. (2012). **Computer Vision: Models Learning and Inference**. Cambridge University Press.

