Random Forest

Pritam Prakash Shete

Computer Division, BARC

Centre for Excellence in Basic Sciences

Topics

- Supervised learning
- Decision tree
- Random forest
- Advantages
- Disadvantages

Supervised Learning

- Training set $-\{(x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),...,(x^{(m)},y^{(m)})\}$
- Labeled dataset

Decision Tree

- Binary tree
- Recursively split dataset
- Root node
- Decision nodes
 - Split dataset
 - Select feature
 - Select split condition
- Pure leaf nodes
 - Class of dataset sample Classification tree
 - Value of dataset sample Regression tree

Decision Tree – Disadvantages

- Over-fitting
- Less accurate
- Solution Use random forest algorithm

Random Forest

- Subset of dataset
 - Bootstrapped dataset
- Subset of features
 - Bagging approach
 - Ensemble learning
 - Improve performance
- Number of decision trees
 - More number
 - Less over-fitting
 - Higher accuracy

Random Forest Algorithm

- 1. Create bootstrapped dataset
- 2. Select subset of features
 - Bagging approach
- 3. Create decision tree using selected features
- 4. Repeat Steps 1 to 3
 - Number of decision trees

Random Forest

Advantages

- Less over-fitting by using multiple trees
- More accurate as compared to single tree

Disadvantages

- Computationally expensive
- Less interpretable than decision tree

Questions?

Thank you