Contents

1	Osservazioni			1
	1.1	Cose		1
		1.1.1	Quest'affare che ha il prodotto per B	1
		1.1.2	Guadagno L di roba, che ha il prodotto per C	2
		1.1.3	Fine	2
2	2 Seconda parte dell'esercitazione			3

Osservazioni 1

La retroazine e il coso dello stato possono essere progettate indipendentemente si sceglie il guadagno H in modo da garantire la specifica 2 progettare il guadagno L\ dell'osservatore, garantire che l'errore dell'osservatore faccia boh in modo che applicare la retroazione sullo stato stimato sia equivalente ad applicarla sullo stato sticazzi

1.1Cose

Prima di tutto bisogna assicurarci che il problema sia ben posto, e che quindi

 $\exists F: A-BF$ asintoticamente stabile \iff il sistema è stabilizzabile

quindi tutti gli autovalori controllabili hanno Re ≥ 0 gli autovalori non\ controllabili sono le radici di $\phi_h(s)$

 $\exists L: A-BF$ asintoticamente stabile \iff tutti gli autovalori non osservabili hanno Re < 0

devo fare
$$(sI-A)^{-1}$$
, poi $\phi_c(s)$, poi $\phi_n c(s) = \frac{\phi(s)}{\phi_{nc}(s)}$ poi poi $\phi_o(s)$, poi $\phi_o(s) = \phi(s) = \phi(s) = (no)(s)$ entrambe le condizioni tutti autovalori controllabili con Re... e tutti

autovalori\ osservabili con Re...

Quest'affare che ha il prodotto per B

bla bla sappiamo che

$$(sI - A)^{-1} = \frac{1}{\phi(s)} Adj(sI - A) = \frac{1}{(s+1)(s-1)} Adj$$
 roba

vediamo se qualche di questi autovalori si perde nella moltiplicazione per B (perdendo di controllabilità) o nella motliplicazione per C (perdendo di osservabilità) (credo)

Il sistema è completamente controllabile, quindi è stabilizzabile, quinid $\exists F:A-BF$ asintoticamente stabile

andiamo a vedere com'è fatta sta matrice, roba\

1.1.2 Guadagno L di roba, che ha il prodotto per C

come autovalori osservabili ho solo quelli che stanno al denominatore di

$$C(sI-A)^{-1}$$

abbiamo che gli autovalori non osservabili, stavolta esistono, non completamente\ osservabile, ma gli autovalori non osservabili hanno Re < 0, quindi la te non osservabile è stabile, quindi nessun problema

Mi raccomando l'ordine durante il prodotto di vettori e matrici e sticazzi con numeri\ all'interno di essi disposti in un certo modo, mi raccomando

$$det(sI - A + LC) = roba$$

abbiamo visto che la dinamica dell'errore\

$$\dot{\epsilon} = (A - LC)\epsilon$$

che risolvi con qualche cazzo di esponenziale di matrice del cazzo, cazzo

1.1.3 Fine

Ho progettato in modo indipendente e figamente ortogonale e strutturato F ed L del\ sistema

Poi abbiamo bla bla bla

$$G_y$$

y = robaroba

gli esercizi fa ste domande ma bisogna sapere perchè, sapere perchè devo soddisfare ste condizioni, perchè il guadagno in ciclo chiuso deve essere unitario, perchè roba deve fare roba...

è importante anche sapere perchè si fa qualcosa, se sapete fare la procedura ma non sapete perchè si fa allora non è interessante (e posso sostituirvi con una scimmia ammaestrata), allora sapere com'è fatto il regolatore, le varie strutture di controllo, guadagni del cazzo, quello che si è visto a lezione

all'orale può fare domande su un po' tutto\

Gli esami sono in presenza a meno di motivi ticolari\

2 Seconda te dell'esercitazione