MIPS Reference Data

CORE INSTRUCTION SET

OPCODE

1

FOR- /FUNCT									
NAME, MNEMO		MAT	OPERATION (in Verilog)		(Hex)				
Add	add	R	R[rd] = R[rs] + R[rt]	(1)	$0/20_{hex}$				
Add Immediate	addi	I	R[rt] = R[rs] + SignExtImm	(1,2)	8_{hex}				
Add Imm. Unsigned	addiu	I	R[rt] = R[rs] + SignExtImm	(2)	9_{hex}				
Add Unsigned	addu	R	R[rd] = R[rs] + R[rt]		$0 / 21_{hex}$				
And	and	R	R[rd] = R[rs] & R[rt]		$0/24_{hex}$				
And Immediate	andi	I	R[rt] = R[rs] & ZeroExtImm	(3)	$C_{\rm hex}$				
Branch On Equal	beq	I	if(R[rs]==R[rt]) PC=PC+4+BranchAddr	(4)	$4_{\rm hex}$				
Branch On Not Equal	bne	Ι	if(R[rs]!=R[rt]) PC=PC+4+BranchAddr	(4)	$5_{\rm hex}$				
Jump	j	J	PC=JumpAddr	(5)	2_{hex}				
Jump And Link	jal	J	R[31]=PC+8;PC=JumpAddr	(5)	$3_{\rm hex}$				
Jump Register	jr	R	PC=R[rs]		$0 / 08_{hex}$				
Load Byte Unsigned	lbu	I	$R[rt]=\{24'b0,M[R[rs] + SignExtImm](7:0)\}$	(2)	$24_{_{hex}}$				
Load Halfword Unsigned	lhu	I	$R[rt]=\{16'b0,M[R[rs] + SignExtImm](15:0)\}$	(2)	25_{hex}				
Load Linked	11	I	R[rt] = M[R[rs] + SignExtImm]	(2,7)	30_{hex}				
Load Upper Imm.	lui	I	$R[rt] = \{imm, 16'b0\}$		f_{hex}				
Load Word	lw	I	R[rt] = M[R[rs] + SignExtImm]	(2)	23_{hex}				
Nor	nor	R	$R[rd] = \sim (R[rs] \mid R[rt])$		$0 / 27_{hex}$				
Or	or	R	$R[rd] = R[rs] \mid R[rt]$		$0/25_{\rm hex}$				
Or Immediate	ori	I	$R[rt] = R[rs] \mid ZeroExtImm$	(3)					
Set Less Than	s1t	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0		$0/2a_{hex}$				
Set Less Than Imm.	slti	I	R[rt] = (R[rs] < SignExtImm)? 1	:0(2)	a_{hex}				
Set Less Than Imm. Unsigned	sltiu	Ι	R[rt] = (R[rs] < SignExtImm) ? 1:0	(2,6)					
Set Less Than Unsig.	sltu	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0	(6)	0 / 2b _{hex}				
Shift Left Logical	sll	R	$R[rd] = R[rt] \ll shamt$		$0 / 00_{hex}$				
Shift Right Logical	srl	R	R[rd] = R[rt] >>> shamt		0 / 02 _{hex}				
Store Byte	sb	I	M[R[rs]+SignExtImm](7:0) = R[rt](7:0)	(2)	28_{hex}				
Store Conditional	sc	I	M[R[rs]+SignExtImm] = R[rt]; R[rt] = (atomic) ? 1 : 0	(2,7)	38_{hex}				
Store Halfword	sh	I	M[R[rs]+SignExtImm](15:0) = R[rt](15:0)	(2)	29_{hex}				
Store Word	sw	I	M[R[rs] + SignExtImm] = R[rt]	(2)	nex				
Subtract	sub	R	R[rd] = R[rs] - R[rt]	(1)	$0/22_{hex}$				
Subtract Unsigned	subu	R	R[rd] = R[rs] - R[rt]		0 / 23 _{hex}				
(1) May cause overflow exception (2) SignExtImm = { 16{immediate[15]}, immediate } (3) ZeroExtImm = { 16{lb'0}, immediate }									

- (4) BranchAddr = { 14{immediate[15]}, immediate, 2'b0 } (5) JumpAddr = { PC+4[31:28], address, 2'b0 } (6) Operands considered unsigned numbers (vs. 2's comp.) (7) Atomic test&set pair; R[rt] = 1 if pair atomic, 0 if not atomic

BASIC INSTRUCTION FORMATS

R	opcoo	de	r	s		rt		rd	shamt	funct	
	31	26	25	21	20	16	15	11	10 6	5	0
I	opcode		r	s		rt			immediate	ę	
	31	26	25	21	20	16	15				0
J	opcode					address					
	31	26	25								0

ARITHMETIC CORE INSTRUCTION SET

AKITHWEITC COR	TE INS	IKU	CHON SEI	OLCODE
			_	/FMT/FT
		OR-		/ FUNCT
NAME, MNEMO	NIC 1	MAT		(Hex)
Branch On FP True	bc1t	FΙ	if(FPcond)PC=PC+4+BranchAddr (4)	11/8/1/
Branch On FP False	bc1f	FΙ	if(! FPcond)PC=PC+4+BranchAddr (4)	11/8/0/
Divide	div	R	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt]	0//-1a
Divide Unsigned	divu	R	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt] (6)	0///1b
FP Add Single	add.s	FR	F[fd] = F[fs] + F[ft]	11/10//0
FP Add	add.d	ED	${F[fd],F[fd+l]} = {F[fs],F[fs+l]} +$	11/11//0
Double	auu.u		$\{F[ft],F[ft+l]\}$	11/11/ /0
FP Compare Single	c.x.s*	FR	FPcond = (F[fs] op F[ft])?1:0	11/10// <i>y</i>
FP Compare	c.x.d*	FR	$FPcond = (\{F[fs], F[fs+l]\} op$	11/11//y
Double	C.x.a	ΓK	$\{F[ft],F[ft+l]\})?1:0$	11/11/ //
			==, <, or <=) (y is 32, 3c, or 3e)	
FP Divide Single	div.s	FR	F[fd] = F[fs] / F[ft]	11/10//3
FP Divide	div.d	FR	${F[fd],F[fd+l]} = {F[fs],F[fs+l]}/$	11/11//3
Double			${F[ft],F[ft+l]}$	11/10/ /2
FP Multiply Single	mul.s	FR	F[fd] = F[fs] * F[ft]	11/10//2
FP Multiply	mul.d	FR	${F[fd],F[fd+l]} = {F[fs],F[fs+l]} *$	11/11//2
Double			${F[ft],F[ft+l]}$	11/10/ /1
FP Subtract Single	sub.s	FR	F[fd]=F[fs] - F[ft]	11/10//1
FP Subtract	sub.d	FR	${F[fd],F[fd+l]} = {F[fs],F[fs+l]} -$	11/11//1
Double			$\{F[ft],F[ft+l]\}$	21////
Load FP Single	lwc1	Ι	F[rt] = M[R[rs] + SignExtImm] (2)	31//
Load FP	ldc1	Ι	$F[rt] = M[R[rs] + SignExtImm]; \qquad (2)$	35//
Double		_	F[rt+l]=M[R[rs]+SignExtImm+4]	0/ / /10
Move From Hi	mfhi	R	R[rd] = Hi	0///10
Move From Lo	mflo	R	R[rd] = Lo	0 ///12
Move From Control		R	R[rd] = CR[rs]	10/0//0
Multiply	mult	R	$\{Hi,Lo\} = R[rs] * R[rt]$	0///18
Multiply Unsigned	multu	R	$\{Hi,Lo\} = R[rs] * R[rt] $ (6)	
Shift Right Arith.	sra	R	R[rd] = R[rt] >> shamt	0///3
Store FP Single	swc1	Ι	M[R[rs]+SignExtImm] = F[rt] (2)	39//
Store FP	sdcl	I	M[R[rs]+SignExtImm] = F[rt]; (2)	3d//
Double	BUCI	1	M[R[rs]+SignExtImm+4] = F[rt+1]	- Ca, , ,

OPCODE

FLOATING-POINT INSTRUCTION FORMATS

FR	opcode	fmt	ft	fs	fd	funct
	31 26	25 21	20 16	15 11	10 6	5 0
FI	opcode	fmt	ft		immediate	2
	31 26	25 21	20 16	15		0

PSEUDOINSTRUCTION SET

MNEMONIC	OPERATION
blt	if(R[rs] < R[rt]) PC = Label
bgt	if(R[rs]>R[rt]) PC = Label
ble	$if(R[rs] \le R[rt]) PC = Label$
l bge	if(R[rs]>=R[rt]) PC = Label
li	R[rd] = immediate
move	R[rd] = R[rs]
	blt bgt ble l bge li

REGISTER NAME, NUMBER, USE, CALL CONVENTION

NAME	NUMBER	USE	PRESERVED ACROSS A CALL?
\$zero	0	The Constant Value 0	N.A.
\$at	1	Assembler Temporary	No
\$v0-\$v1	2-3	Values for Function Results and Expression Evaluation	No
\$a0-\$a3	4-7	Arguments	No
\$t0-\$t7	8-15	Temporaries	No
\$s0-\$s7	16-23	Saved Temporaries	Yes
\$t8-\$t9	24-25	Temporaries	No
\$k0-\$kl	26-27	Reserved for OS Kernel	No
\$gp	28	Global Pointer	Yes
\$sp	29	Stack Pointer	Yes
\$fp	30	Frame Pointer	Yes
\$ra	31	Return Address	Yes

орсог	FS. BAS	E CONVER	SION. A	SCII 9	SYMB	OLS		3	
		(2) MIPS				ASCII	D	Hexa-	ASCII
opcode	funct	funct	Binary	Deci-		Char-	Deci-	_	Char-
(31:26)	(5:0)	(5:0)	,	mal	mal	acter	mal	mal	acter
(1)	sll	add. f	00 0000	0	0	NUL	64	40	@
	-	sub.f	00 0001		1	SOH	65	41	A
j	srl	mul.f	00 0010		2	STX	66	42	B
jal	sra	div.f	00 0011		3	ETX	67	43	С
beq bne	sllv	sqrt.f	00 0100		4	EOT	68	44	D
blez	srlv	abs.f	00 0101 00 0110		5 6	ENQ ACK	69 70	45 46	E F
bgtz	srav	mov.f $neg.f$	00 0110	_	7	BEL	71	47	G
addi	jr	neg,	00 1000		8	BS	72	48	H
addiu	jalr		00 1000		9	HT	73	49	I
siti	movz		00 1001		a	LF	74	4a	j
sltiu	movn		00 1011		b	VT	75	4b	K
andi	syscall	round.w.f	00 1100		С	FF	76	4c	L
ori	break	trunc.w.f	00 1101	13	d	CR	77	4d	M
xori		ceil.w.f	00 1110		e	SO	78	4e	N
lui	sync	floor.w.f	00 1111	15	f	SI	79	4f	0
(2)	mfhi		01 0000		10	DLE	80	50	P
(2)	mthi mflo	C	01 0001		11	DC1	81	51	Q
	mflo mtlo	movz.f	01 0010		12	DC2	82	52 53	R
	IIICIO	movn.f	01 0011		13	DC3	83	53	S
			01 0100		14	DC4	84	54	T
			01 0101 01 0110		15 16	NAK SYN	85 86	55 56	U V
			01 0111		17	ETB	87	57	w
	mult		01 1000		18	CAN	88	58	X
	multu		01 1001		19	EM	89	59	Y
	div		01 1010	26	la	SUB	90	5a	Z
	divu		01 1011	27	lb	ESC	91	5b	[
			01 1100		lc	FS	92	5c	\
			01 1101		1d	GS	93	5d]
			01 1110		le 1£	RS	94	5e	^
lb	add		01 1111		1f	US	95	5f	
1h	addu	cvt.s.f	10 0000 10 0001		20 21	Space !	96 97	60 61	
lwl	sub	cvt.d.f	10 0001		22	;	98	62	a b
lw	subu		100011	35	23	#	99	63	c
lbu	and	cvt.w.f	10 0100		24	\$	100	64	d
lhu	or	,	10 0101	37	25	%	101	65	e
lwr	xor		10 0110		26	&	102	66	f
	nor		10 0111		27		103	67	g
sb			10 1000		28	(104	68	h
sh swl	slt		10 1001		29) *	105	69	i
SWI	sltu		10 1010 10 1011	42 43	2a 2b	+	106 107	6a 6b	j k
			10 1100		2c		108	6c	1
			10 1101		2d	,	109	6d	m
swr			10 1110		2e		110	6e	n
cache			10 1111	47	2 <i>f</i>	/	111	6 <i>f</i>	0
11	tge	c.f.f	11 0000		30	0	112	70	P
lwcl	tgeu	c.un.f	11 0001		31	1	113	71	q
lwc2 pref	tlt tltu	c.eq.f	11 0010		32	2	114	72 73	r
PTCT		c.ueq.f	11 0011		33	3	115	73	S
idc1	teq	c.olt.f	11 0100		34 35	4	116	74 75	t
ldc2	tne	c.ult.f c.ole.f	11 0101 11 0110		35 36	5 6	117 118	75 76	u v
		c.ule.f	11 0111		37	7	119	77	w W
sc		c.sf.f	11 1000		38	8	120	78	
swc1		c.si.j c.ngle.f	11 1000		39	9	121	78 79	x y
swc2		c.seq.f	11 1001		3a	:	122	7a	z
		c.ngl.f	11 1011		3b	;	123	7b	{
		c.lt.f	11 1100		3c	<	124	7c	\Box
~~~		, ,	11 1101	<b>61</b>	2.1		1105	- 1	n

c.ngt.f (1) opcode) 31:26) == 0

c.nge.f

c.le.f

sdcl

sdc2

11 1101 61

11 1110 62

11 11111 63

## **IEEE 754 FLOATING-POINT STANDARD**

 $(-1)^S \times (1 + Fraction) \times 2^{(Exponent - Bias)}$ where Single Precision Bias = 127, Double Precision Bias = 1023

# **IEEE Single Precision and Double Precision Formats:**

Exponent	Fraction	Object						
0	0	± 0						
0	$\neq 0$	± Denorm						
1 to MAX - 1	anything	± F1. Pt. Num.						
MAX	0	± ∞						
MAX	<b>≠</b> 0	NaN						
S.P. MAX = 255, D.P. MAX = 2047								





#### **DATA ALIGNMENT**

Double Word										
	Wo	ord			Wo	ord				
Half	word	Half	word	Halfword Halfwor			word			
Byte	Byte Byte		Byte	Byte	Byte	Byte	Byte			
0	1	2 :	3 4	5	6		7			

Value of three least significant bits of byte address (Big Endian)

# **EXCEPTION CONTROL REGISTERS: CAUSE AND STATUS**



BD = Branch Delay, UM = User Mode, EL = Exception Level, IE = Interrupt Enable

# **EXCEPTION CODES**

•	CLITIC	/14 00	DLJ			
	Number	Name	Cause of Exception	Number	r Name	Cause of Exception
	0	Int	Interrupt (hardware)	9	Вр	Breakpoint Exception
	4	AdEL	Address Error Exception (load or instruction fetch)	10	RI	Reserved Instruction Exception
	5	AdES	Address Error Exception (store)	11	CpU	Coprocessor Unimplemented
	6	IBE	Bus Error on Instruction Fetch	12	Ov	Arithmetic Overflow Exception
	7	DBE	Bus Error on Load or Store	13	Tr	Trap
	8	Sys	Syscall Exception	15	FPE	Floating Point Exception

# **SIZE PREFIXES**

SIZE	PREFIX	SYMBOL	SIZE	PREFIX	SYMBOL	SIZE	PREFIX	SYMBOL	SIZE	PREFIX
1000¹	Kilo-	K	210	Kibi-	Ki	1000°	Exa-	Е	260	Exbi-
1000 ²	Mega-	M	220	Mebi-	Mi	1000 ⁷	Zetta-	Z	270	Zebi-
$1000^{3}$	Giga-	G	230	Gibi-	Gi	1000 ⁸	Yotta-	Y	280	Yobi-
1000 ⁴	Tera-	Т	240	Tebi-	Ti	1000°	Ronna-	R	290	Robi-
1000 ⁵	Peta-	P	250	Pebi-	Pi	100010	Quecca-	Q	2100	Quebi-

SYMBOL

Zi

Yi

Ri

Qi

3e

125

126

⁽²⁾ opcode(31:26) ==  $17_{\text{ten}}$  ( $11_{\text{hex}}$ ); if fmt(25:21)== $16_{\text{ten}}$  ( $10_{\text{hex}}$ ) f = s (single); if fmt(25:21)== $17_{\text{ten}}$  ( $11_{\text{hex}}$ ) f = d (double)