

Automated design of fMRI paradigms

Felipe Meneguzzi, Katherine Bianchini Esper

⊠ felipe.meneguzzi@pucrs.br, Katherine.Esper@edu.pucrs.br

Motivation

Paradigm

• Activities performed or stimuli received by the subject during a study to evoke a brain activation in certain brain areas.

Key Challenge: design paradigms from scratch for neuroimage studies and presurgical planning.

Presurgical Planning

- Localization of important cortical and subcortical areas at risk of injury during the surgical removal of brain lesions;
- Important to avoid permanent damage to neurological function;
- Preoperative counseling:
- Brain tumor, vascular lesions, intractable epilepsy, and other resectable lesions.

A PDDL+ Formalization of fMRI

Key Goal, fMRI activation model in PDDL+ (:action ST_Pseudo :parameters (?t - timing) :precondition (and (instructions) (paradigm_words) :effect (and (increase (intensity_IOG) 10) (increase (intensity_MOG) 10) (increase (intensity_CUN) 10) (increase (intensity_ACC) 10) (increase (intensity_MFG) 10) (increase (intensity_INS) 10) increase (intensity_SPL) 10) (increase (total ?t) 5) (finish_experiment) (not (rest))

- Applications of the model:
- Neuroscience research design

Formalization: Actions Instructions Baseline Rest Stimuli

Experiments

Automated Planning for Presurgical Planning

Experiment 1 - Left Inferior Frontal Gyrus Planner's Goal: intensity(LIFG) >= 100

Figure 2: Our paradigm planner

Conclusions and Perspectives

- We developed a specific application in PDDL+ to planning neuroimaging paradigms
- aimed at solving the dual problem of effective paradigm design and scan cost minimization;
- Potentially useful tool for **Neuroscientific Research** and as a supporting resource for presurgical planning;
- Moving forward:
- General method to derive activation values (e.g. ML);
- Linearization of non-linear activation functions.

Code available at: https://bit.ly/fmri-pddl

1