Quatrième composition de mathématiques

Corrigé

Suites qui piétinent

Partie I – Généralités sur Δ

1. On considère l'application

$$\Delta: \left\{ \begin{array}{l} E \longrightarrow E \\ u \longmapsto \Delta u \end{array} \right..$$

Montrer que Δ est un endomorphisme de E.

Soient $u, v \in E$ et soit $\lambda \in \mathbb{R}$. Montrons que

$$\Delta(u + \lambda v) = \Delta(u) + \lambda \Delta(v).$$

Soit $n \in \mathbb{N}^*$. On a

$$\Delta(u + \lambda v)_n = u_{n+1} + \lambda v_{n+1} - (u_n + \lambda v_n)$$
$$= u_{n+1} - u_n + \lambda(v_{n+1} - v_n)$$
$$= \Delta(u)_{n+1} + \lambda \Delta(v)_n.$$

Ainsi, $\Delta(u + \lambda v) = \Delta(u) + \lambda \Delta(v)$ donc Δ est un endomorphisme de E.

2. (a) Montrer que Δ est surjectif.

Soit $v \in E$. Cherchons un antécédent de v par l'endormorphisme Δ . Considérons la suite u définie sur \mathbb{N}^* par :

$$\begin{cases} u_1 := 0 \\ u_n := \sum_{k=1}^{n-1} v_k \quad \text{si } n \geqslant 2. \end{cases}$$

Alors $u \in E$ et $u_2 - u_1 = v_1$ et pour tout $n \geqslant 2$,

$$u_{n+1} - u_n = \sum_{k=1}^{n} v_k - \sum_{k=1}^{n-1} v_k = v_n.$$

Ainsi, pour tout $n \in \mathbb{N}^*$, $\Delta(u)_n = v_n$ donc $\Delta(u) = v$, ce qui montre que

 Δ est surjectif.

(b) L'application Δ est-elle injective?

Notons u la suite constante égale à 2 et v la suite constante égale à 3. Alors, $\Delta(u)$ et $\Delta(v)$ sont égales à la suite nulle, alors que u et v diffèrent :

 Δ n'est pas injective.

Partie II – Étude d'un exemple

Pour $p \in \mathbb{N}$, on note B(p) l'élément de E défini par

$$\forall n \in \mathbb{N}^*, \ B(p)_n = \binom{n}{p}.$$

On fixe $p \in \mathbb{N}^*$.

3. (a) Calculer $B(p)_p$.

On a
$$B(p)_p = \begin{pmatrix} p \\ p \end{pmatrix} = 1$$
.

(b) Calculer $B(p)_1$.

On a
$$B(p)_1 = \begin{pmatrix} 1 \\ p \end{pmatrix} = \begin{cases} 1 & \text{si } p = 1, \\ 0 & \text{sinon.} \end{cases}$$

4. (a) (i) Montrer que

$$\forall n \geqslant p+1, \ \binom{n}{p} \geqslant n.$$

- Si p = 1, alors pour tout $n \ge 2$, $\binom{n}{1} = n \ge n$.
- Pour $p \ge 2$ et $n \ge p+1$, on a

$$\binom{n}{p} = \frac{n!}{p!(n-p)!} = \frac{n(n-1)\dots(n-p+1)}{p!}$$
$$= n \times \underbrace{\frac{n-1}{p}}_{\geqslant 1} \times \dots \times \underbrace{\frac{n-p+1}{2}}_{\geqslant 1} \geqslant n.$$

Ainsi, $\forall p \in \mathbb{N}^*, \forall n \geqslant p+1, \ \binom{n}{p} \geqslant n.$

(ii) En déduire la limite de la suite B(p).

Comme $n \xrightarrow[n \to +\infty]{} +\infty$, d'après l'inégalité précédente et par théorème de comparaison, on obtient

$$B(p)_n \underset{n \to +\infty}{\longrightarrow} +\infty.$$

(b) Donner un équivalent simple de $(B(p)_n)_n$ quand $n \to +\infty$.

On a

$$\binom{n}{p} = \frac{n!}{p!(n-p)!} = \frac{n(n-1)\dots(n-(p-1))}{p!}$$

De plus, on a pour tout $k \in [0, p-1]$,

$$n-k \underset{n\to+\infty}{\sim} n.$$

L'entier p est fixé : on fait le produit de ces p équivalents. On obtient :

$$\boxed{\binom{n}{p} \sim \frac{n^p}{p!}} \text{ quand } n \to +\infty.$$

5. Donner une expression simple de la suite $\Delta(B(p+1))$.

Soit $n \in \mathbb{N}^*$. D'après la relation de Pascal, on a

$$\Delta \left(\mathbf{B}(p+1) \right)_n = \mathbf{B}(p+1)_{n+1} - \mathbf{B}(p+1)_n = \binom{n+1}{p+1} - \binom{n}{p+1} = \binom{n}{p} = \mathbf{B}(p)_n.$$

Ainsi,

$$\Delta \left(B(p+1) \right) = B(p).$$

Partie III – Les itérés de Δ et un exemple

Pour $u \in E$, on note Tu la suite définie par : $\forall n \geq 1$, $(Tu)_n = u_{n+1}$.

- **6.** Soit $u \in E$.
 - (a) Soit $n \in \mathbb{N}^*$. Donner une expression du terme d'indice n de $\Delta^2 u$.

On a $(\Delta u)_n = u_{n+1} - u_n$, donc

$$(\Delta^2 u)_n = (u_{n+2} - u_{n+1}) - (u_{n+1} - u_n) = u_{n+2} - 2u_{n+1} + u_n.$$

On remarque que $\Delta^2 = T^2 - 2T + \mathrm{Id}_E$.

(b) Exprimer l'endomorphisme Δ à l'aide de T et Id_E .

On a
$$\Delta = T - \mathrm{Id}_E$$
.

(c) En déduire que pour tout $p \in \mathbb{N}$, on a

$$\forall n \in \mathbb{N}, \ (\Delta^p u)_n = \sum_{k=0}^p (-1)^{p-k} \binom{p}{k} u_{n+k} \ .$$

Soit $p \in \mathbb{N}$. Les endormorphismes T et Id_E commutent donc d'après la formule du binôme de Newton, on a :

$$(\Delta^p) = \sum_{k=0}^p \binom{p}{k} T^k (-\operatorname{Id}_E)^{p-k}$$
$$= \sum_{k=0}^p (-1)^{p-k} \binom{p}{k} T^k.$$

Ainsi,

$$\boxed{\forall n \in \mathbb{N}, \ (\Delta^p u)_n = \sum_{k=0}^p (-1)^{p-k} \binom{p}{k} (T^k u)_n = \sum_{k=0}^p (-1)^{p-k} \binom{p}{k} u_{n+k}}.$$

7. Soit $\alpha \in \mathbb{R}$. On note a la suite géométrique $a := (\alpha^n)_{n \in \mathbb{N}^*}$. Soit $p \in \mathbb{N}$. Déterminer la suite $\Delta^p(a)$.

Soit $n \in \mathbb{N}^*$. D'après la formule précédente,

$$(\Delta^{p}(a))_{n} = \sum_{k=0}^{p} (-1)^{p-k} \binom{p}{k} a_{n+k}$$

$$= \sum_{k=0}^{p} (-1)^{p-k} \binom{p}{k} \alpha^{n+k}$$

$$= \alpha^{n} \sum_{k=0}^{p} \binom{p}{k} \alpha^{k} (-1)^{p-k}$$

$$= \alpha^{n} (\alpha - 1)^{p}.$$

Ainsi, $\left[\forall n \in \mathbb{N}^*, \ \left(\Delta^p(a) \right)_n = (\alpha - 1)^p \alpha^n \right]$ c'est-à-dire

$$\Delta^p(a) = (\alpha - 1)^p a.$$

Partie IV – Piétinement : généralités et exemples

- 8. Montrer que E_p est un sous-espace vectoriel de E.
 - On a bien $E_p \subset E$ et E est un \mathbb{R} -espace vectoriel.
 - La suite nulle appartient à E_p .
 - Il reste à montrer que $\underline{E_p}$ est stable par combinaison linéaire. Soient $u, v \in E$ et soit $\lambda \in \mathbb{R}$. Soit $n \in \mathbb{N}^*$. On a

$$(u + \lambda v)_{n+1} - (u + \lambda v)_n = u_{n+1} - u_n + \lambda (v_{n+1} - v_n) \longrightarrow 0,$$

donc $u + \lambda v \in E_p$.

Ainsi, E_p est un sous-espace vectoriel de E.

9. Soit $(u_n)_n \in E$. A-t-on

$$(u_n)_{n\in\mathbb{N}^*}$$
 piétine $\Longrightarrow (|u_n|)_{n\in\mathbb{N}^*}$ piétine?

La réponse est oui.

En effet, pour $n \in \mathbb{N}^*$, d'après l'inégalité triangulaire renversée, on a

$$||u_{n+1}| - |u_n|| \le |u_{n+1} - u_n|.$$

Donc, si $\Delta u \longrightarrow 0$, on a bien $|u_{n+1}| - |u_n| \longrightarrow 0$.

10. Montrer que $(\ln(n))_{n\in\mathbb{N}^*}$ piétine.

Soit $n \in \mathbb{N}^*$. On a:

$$\ln(n+1) - \ln(n) = \ln\left(1 + \frac{1}{n}\right) \underset{n \to +\infty}{\longrightarrow} 0$$

par continuité de ln en 1. Donc, $(\ln(n))_{n\in\mathbb{N}^*}$ piétine.

- 11. Soit $u \in E$.
 - (a) Montrer que

u converge $\implies u$ piétine.

Supposons que u converge. Soit donc $\ell \in \mathbb{R}$ tel que $u_n \longrightarrow \ell$.

- Par extraction, on a $u_{n+1} \longrightarrow \ell$.
- Par opérations sur les limites, on a donc $u_{n+1} u_n \longrightarrow \ell \ell = 0$.
- Donc, u piétine.

On a donc montré l'implication u converge $\implies u$ piétine.

(b) La réciproque est-elle vraie?

On a vu à la question 10. que la suite $(\ln n)_n$ piétine. Pourtant, elle diverge vers $+\infty$. Donc, l'implication réciproque est donc fausse.

On pouvait aussi penser à la suite $(\sqrt{n})_n$ ou à la suite harmonique...

12. (a) Montrer que $(\sqrt{n})_n$ piétine.

Soit $n \in \mathbb{N}^*$. En utilisant la quantité conjuguée, on a

$$\sqrt{n+1} - \sqrt{n} = \frac{1}{\sqrt{n+1} + \sqrt{n}} \longrightarrow 0.$$

Ainsi, $\sqrt{(\sqrt{n})_n}$ piétine.

- (b) Soit a > 0.
 - (i) Soit $(\varepsilon_n)_n \in \mathbb{R}^{\mathbb{N}^*}$ telle que $\varepsilon_n \longrightarrow 0$. Montrer que

$$(1+\varepsilon_n)^a - 1 \sim a\,\varepsilon_n.$$

Considérons la fonction

$$f: \begin{cases}]-1, +\infty[\longrightarrow \mathbb{R} \\ x \longmapsto (1+x)^a \end{cases}.$$

La fonction f est dérivable et si x > -1, on a $f'(x) = a(1+x)^{a-1}$.

Ainsi,

$$\lim_{x \to 0} \frac{(1+x)^a - 1}{x} = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = f'(0) = a.$$

Soit $(\varepsilon_n)_n \in \mathbb{R}^{\mathbb{N}^*}$ telle que $\varepsilon_n \longrightarrow 0$. Par composition de limites, on a alors

$$\lim_{n \to +\infty} \frac{(1 + \varepsilon_n)^a - 1}{\varepsilon_n} = a.$$

Comme $a \neq 0$, on a donc

$$\frac{(1+\varepsilon_n)^a-1}{\varepsilon_n}\sim a,$$

puis

$$(1+\varepsilon_n)^a - 1 \sim a\varepsilon_n.$$

(ii) Montrer que

$$(n^a)_{n \in \mathbb{N}^*}$$
 piétine $\iff a < 1$.

Soit $n \in \mathbb{N}^*$. On a

$$(n+1)^a - n^a = n^a \left[\left(1 + \frac{1}{n} \right)^a - 1 \right] \sim n^a \times a \times \frac{1}{n},$$

d'après la question précédente. Ainsi, on a

$$(n+1)^a - n^a \sim an^{a-1}.$$

Donc, on a $(n+1)^a - n^a \longrightarrow 0 \iff a-1 < 0$. On en déduit que

$$(n^a)_{n \in \mathbb{N}^*} \text{ piétine} \iff a < 1.$$

(c) Montrer que $(\sqrt[n]{n})_{n\in\mathbb{N}^*}$ piétine.

Montrons que $(\sqrt[n]{n})_{n\in\mathbb{N}^*}$ converge.

Soit $n \in \mathbb{N}^*$. On met $\sqrt[n]{n}$ sous forme exponentielle :

$$\sqrt[n]{n} = n^{1/n} = e^{\frac{\ln(n)}{n}}.$$

Par croissance comparée, on a $\frac{\ln(n)}{n} \longrightarrow 0$ et par continuité de la fonction exponentielle en 0, on a $e^{\frac{\ln(n)}{n}} \longrightarrow e^0 = 1$. Ainsi,

$$\sqrt[n]{n} \longrightarrow 1.$$

Donc, d'après la question **11.**(a), on a $(\sqrt[n]{n})_{n\in\mathbb{N}^*}$ piétine.

13. (a) Montrer que la suite $\left(\frac{n}{\ln(n)}\right)_{n\geqslant 2}$ piétine.

Soit $n \ge 2$. On a

$$\begin{split} \frac{n+1}{\ln(n+1)} - \frac{n}{\ln(n)} &= n \, \frac{\ln(n) - \ln(n+1)}{\ln(n+1) \ln(n)} + \frac{1}{\ln(n+1)} \\ &= -n \, \frac{\ln\left(\frac{n+1}{n}\right)}{\ln(n+1) \ln(n)} + \frac{1}{\ln(n+1)} \\ &= -\frac{n \ln\left(1 + \frac{1}{n}\right)}{\ln(n+1) \ln(n)} + \frac{1}{\ln(n+1)}. \end{split}$$

Or,

$$\frac{n\ln\left(1+\frac{1}{n}\right)}{\ln(n+1)\ln(n)} \sim \frac{1}{\ln(n)\ln(n+1)},$$

et les équivalents conservent la limite, donc $\frac{n \ln(1+\frac{1}{n})}{\ln(n) \ln(n+1)} \longrightarrow 0$.

Comme, par ailleurs $\frac{1}{\ln(n+1)} \longrightarrow 0$, on a

$$\frac{n+1}{\ln(n+1)} - \frac{n}{\ln(n)} \longrightarrow 0,$$

et donc la suite $\left(\frac{n}{\ln(n)}\right)_{n\geqslant 2}$ piétine.

(b) Soit $a \in (0, 1[$.

Entre les deux suites $(n^a)_{n\geqslant 1}$ et $\left(\frac{n}{\ln(n)}\right)_{n\geqslant 2}$ laquelle est négligeable devant l'autre?

Soient $a \in [0, 1[$ et $n \ge 2.$

Comme 1-a>0, on a $n^a\times\frac{\ln(n)}{n}=\frac{\ln(n)}{n^{1-a}}\longrightarrow 0$, par croissance comparée.

Ainsi,
$$n^a = o\left(\frac{n}{\ln(n)}\right)$$
. Donc

la suite
$$(n^a)_{n\geqslant 1}$$
 est négligeable devant $\left(\frac{n}{\ln(n)}\right)_{n\geqslant 2}$.

- (c) Soit a > 1.
 - (i) Déterminer un équivalent simple de $\frac{n}{\ln^a(n+1)} \frac{n}{\ln^a(n)}$

Soit $n \geqslant 2$. On a

$$\begin{split} \frac{n}{\ln^a(n+1)} - \frac{n}{\ln^a(n)} &= n \left(\frac{1}{\ln^a(n+1)} - \frac{1}{\ln^a(n)} \right) \\ &= n \left(\frac{\ln^a(n) - \ln^a(n+1)}{\ln^a(n+1) \ln^a(n)} \right) \\ &= \frac{n}{\ln^a(n+1)} \left[1 - \left(\frac{\ln(n+1)}{\ln(n)} \right)^a \right] \\ &= \frac{n}{\ln^a(n+1)} \left[1 - \left(\frac{\ln(n) + \ln(1 + \frac{1}{n})}{\ln(n)} \right)^a \right] \\ &= \frac{n}{\ln^a(n+1)} \left[1 - \left(1 + \frac{\ln(1 + \frac{1}{n})}{\ln(n)} \right)^a \right] \\ &\sim \frac{n}{\ln^a(n+1)} \times (-a) \frac{\ln(1 + \frac{1}{n})}{\ln(n)} \qquad \text{d'après } \mathbf{12.} \text{(b) (i)} \\ &\sim \frac{-an}{\ln^a(n+1)} \times \frac{\frac{1}{n}}{\ln(n)} \\ &\sim \frac{-a}{\ln^{a+1}(n)}. \end{split}$$

Ainsi, on a

$$\frac{n}{\ln^a(n+1)} - \frac{n}{\ln^a(n)} \sim \frac{-a}{\ln^{a+1}(n)}.$$

(ii) La suite
$$\left(\frac{n}{\ln^a(n)}\right)_{n\geq 2}$$
 piétine-t-elle?

Soit
$$n \in \mathbb{N}^*$$
.

$$\frac{n+1}{\ln^a(n+1)} - \frac{n}{\ln^a(n)} = \frac{1}{\ln^a(n+1)} + \left(\frac{n}{\ln^a(n+1)} - \frac{n}{\ln^a(n)}\right).$$

Or, la suite $\left(\frac{-a}{\ln^{a+1}(n)}\right)_n$ converge vers 0 donc d'après l'équivalent précédent, la suite $\left(\frac{n}{\ln^a(n+1)} - \frac{n}{\ln^a(n)}\right)_n$ converge vers 0.

De plus, la suite $\left(\frac{1}{\ln^a(n+1)}\right)_n$ tend également vers 0. Ainsi,

la suite
$$\left(\frac{n}{\ln^a(n)}\right)_{n\geqslant 2}$$
 piétine.

- **14.** Soit $(u_n)_n \in E$ telle que $\begin{cases} \forall n \in \mathbb{N}^*, \ u_n \in \mathbb{R}_+^* \\ u_n \longrightarrow +\infty \\ (u_n)_n \text{ piétine.} \end{cases}$
 - (a) Montrer que $\left(\sqrt{u_n}\right)_{n\in\mathbb{N}^*}$ piétine.

Soit $n \in \mathbb{N}^*$. Par quantité conjuguée, on a

$$\sqrt{u_{n+1}} - \sqrt{u_n} = \frac{u_{n+1} - u_n}{\sqrt{u_{n+1}} + \sqrt{u_n}}.$$

Or, par hypothèse, u piétine donc $u_{n+1}-u_n \longrightarrow 0$ et par ailleurs $\sqrt{u_{n+1}}+\sqrt{u_n} \longrightarrow +\infty$. Ainsi, $\sqrt{u_{n+1}}-\sqrt{u_n} \longrightarrow 0$ et donc

$$\left(\sqrt{u_n}\right)_{n\in\mathbb{N}^*}$$
 piétine.

(b) Montrer que $(\ln(u_n))_{n\in\mathbb{N}^*}$ piétine.

Soit $n \in \mathbb{N}^*$. On écrit

$$\ln(u_{n+1}) - \ln(u_n) = \ln\left(\frac{u_{n+1}}{u_n}\right)$$
$$= \ln\left(\frac{(u_{n+1} - u_n) + u_n}{u_n}\right)$$
$$= \ln\left(\frac{u_{n+1} - u_n}{u_n} + 1\right).$$

Or, (u_n) piétine et $u_n \longrightarrow +\infty$ donc $\frac{u_{n+1} - u_n}{u_n} \longrightarrow 0$. Par continuité de ln en 1, on en déduit que $\ln(u_{n+1}) - \ln(u_n) \longrightarrow 0$ et que donc $\left[\left(\ln(u_n)\right)_{n \in \mathbb{N}^*}$ piétine.

- **15.** Soit $u \in E$.
 - (a) Montrer en exhibant un contre-exemple que l'implication

$$u$$
 piétine $\implies u_{n+1} \sim u_n$

est fausse en général.

Considérons la suite $(u_n)_{n\in\mathbb{N}^*}$ définie pour tout $n\in\mathbb{N}^*$ par $u_n:=\frac{1}{2^n}$.

- Elle converge donc elle piétine.
- Par contre, pour $n \in \mathbb{N}^*$, on a $\frac{u_{n+1}}{u_n} = \frac{1}{2}$ donc

 $(u_{n+1})_n$ et $(u_n)_n$ ne sont pas équivalentes.

(b) Montrer que

$$\begin{cases} u \text{ piétine} \\ u_n \longrightarrow +\infty \end{cases} \implies u_{n+1} \sim u_n.$$

Supposons que u piétine et diverge vers $+\infty$.

Alors à partir d'un certain rang, disons $N_0 \in \mathbb{N}$, on a $u_n > 0$. Ainsi, pour tout $n \ge N_0$,

$$\frac{u_{n+1}}{u_n} = \frac{u_{n+1} - u_n}{u_n} + 1 \longrightarrow 0.$$

Ainsi, $\underline{u_{n+1} \sim u_n}$, ce qui prouve l'implication.

16. Soient $u, v \in E$ telles que $u_n \sim v_n$. A-t-on

$$u$$
 piétine $\Longrightarrow v$ piétine?

Considérons les suites u et v définies pour tout $n \in \mathbb{N}^*$ par :

$$u_n := \sqrt{n}$$
 et $v_n := \sqrt{n} + (-1)^n$.

- Alors $\underline{u_n \sim v_n}$.
- De plus, pour tout $n \in \mathbb{N}^*$,

$$v_{n+1} - v_n = \sqrt{n+1} - \sqrt{n} + 2 \times (-1)^{n+1}$$
$$= \frac{1}{\sqrt{n+1} + \sqrt{n}} + 2 \times (-1)^{n+1},$$

donc la suite $(v_{n+1} - v_n)_n$ diverge donc v ne piétine pas.

• En revanche, on a montré à la question 12.(a) que u piétine.

Ainsi, sous l'hypothèse $u_n \sim v_n$, l'implication u piétine $\implies v$ piétine est donc fausse.

Partie V - Vitesse de divergence des suites qui piétinent

17. Théorème de Cesàro. Soient $(u_n)_n \in \mathbb{R}^{\mathbb{N}^*}$ et $\ell \in \mathbb{R}$. On note, pour $n \in \mathbb{N}^*$,

$$S_n := \sum_{k=1}^n u_k.$$

- (a) On suppose que $u_n \longrightarrow 0$.
 - (i) Soit $\varepsilon > 0$.

Montrer qu'il existe $N_0 \in \mathbb{N}^*$ tel que

$$\forall n \geqslant N_0, \quad \frac{\left|\sum_{k=1}^n u_k\right|}{n} \leqslant \frac{\sum_{k=1}^{N_0 - 1} |u_k|}{n} + \frac{\varepsilon}{2}.$$

On a $u \longrightarrow 0$ et $\frac{\varepsilon}{2} > 0$. Donc par définition, il existe $N_0 \in \mathbb{N}^*$ tel que

$$\forall n \in \mathbb{N}^*, \quad n \geqslant N_0 \implies |u_n| \leqslant \frac{\varepsilon}{2}.$$

Fixons un tel N_0 . Soit $n \in \mathbb{N}$ tel que $n \ge N_0$. On a

$$\frac{1}{n} \left| \sum_{k=1}^{n} u_k \right| \leq \frac{1}{n} \sum_{k=1}^{n} |u_k| \quad \text{par inégalité triangulaire,}$$

$$\leq \frac{1}{n} \sum_{k=1}^{N_0 - 1} |u_k| + \frac{1}{n} \sum_{k=N_0}^{n} |u_k| \quad \text{par relation de Chasles,}$$

$$\leq \frac{1}{n} \sum_{k=1}^{N_0 - 1} |u_k| + \frac{1}{n} \sum_{k=N_0}^{n} \frac{\varepsilon}{2} \quad \text{par le choix de } N_0$$

$$\leq \frac{1}{n} \sum_{k=1}^{N_0 - 1} |u_k| + \frac{n - N_0 + 1}{n} \frac{\varepsilon}{2}$$

$$\leq \frac{1}{n} \sum_{k=1}^{N_0 - 1} |u_k| + \frac{\varepsilon}{2} \quad \text{car } \frac{n - N_0 + 1}{n} \leq 1.$$

(ii) En déduire que $\left(\frac{S_n}{n}\right)_{n\in\mathbb{N}^*}\longrightarrow 0.$

L'entier N_0 étant fixé, le réel $\sum_{k=1}^{N_0-1} |u_k|$ est indépendant de n. Ainsi $\frac{1}{n} \sum_{k=1}^{N_0-1} |u_k| \longrightarrow 0$. Donc par définition, il existe $N_1 \in \mathbb{N}^*$ tel que

$$\forall n \in \mathbb{N}^*, \quad n \geqslant N_1 \implies \frac{1}{n} \sum_{k=1}^{N_0 - 1} |u_k| \leqslant \frac{\varepsilon}{2}.$$

Posons $N_2 := \max(N_0, N_1)$. Soit $n \in \mathbb{N}^*$ tel que $n \geqslant N_2$. On a

$$\left|\frac{S_n}{n}\right| \leqslant \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

On vient donc de montrer que, quel que soit $\varepsilon > 0$, il existe $N_2 \in \mathbb{N}^*$ tel que

$$\forall n \in \mathbb{N}^*, \quad n \geqslant N_2 \implies \left| \frac{S_n}{n} \right| \leqslant \varepsilon,$$

ce qui est la définition de $\frac{S_n}{n} \longrightarrow 0$.

(b) En utilisant la question précédente, montrer le théorème de Cesàro :

$$u_n \longrightarrow \ell \implies \frac{S_n}{n} \longrightarrow \ell.$$

Supposons $u_n \longrightarrow \ell$. On a donc $u_n - \ell \longrightarrow 0$. Soit $n \in \mathbb{N}^*$. On a

$$\frac{S_n}{n} - \ell = \frac{1}{n} \sum_{k=1}^n u_k - \frac{1}{n} \sum_{k=1}^n \ell = \frac{1}{n} \sum_{k=1}^n (u_k - \ell).$$

En appliquant le résultat de la question précédente à la suite $(u_n - \ell)_{n \in \mathbb{N}^*}$, on obtient $\frac{S_n}{n} - \ell \longrightarrow 0$, c'est-à-dire $\boxed{\frac{S_n}{n} \longrightarrow \ell}$.

- **18.** Soit $u \in E$.
 - (a) En utilisant le théorème de Cesàro, montrer que u piétine $\implies u_n = \mathrm{o}(n)$.

Supposons que u piétine. On a donc $\Delta u \longrightarrow 0$. En appliquant le théorème de Cesàro à Δu , on obtient

$$\frac{1}{n}\sum_{k=1}^{n}\Delta u_{k}\longrightarrow 0.$$

Or, par simplification télescopique, on a, pour $n \in \mathbb{N}^*$,

$$\sum_{k=1}^{n} \Delta u_k = \sum_{k=1}^{n} (u_{k+1} - u_k) = u_{n+1} - u_1.$$

Ainsi, pour $n \ge 2$, on a

$$\frac{u_n}{n} = \frac{1}{n} \left(\sum_{k=1}^{n-1} \Delta u_k + u_1 \right) = \frac{n-1}{n} \times \frac{1}{n-1} \sum_{k=1}^{n-1} \Delta u_k + \frac{u_1}{n}.$$

Or $\frac{n-1}{n} \longrightarrow 1$, $\frac{1}{n-1} \sum_{k=1}^{n-1} \Delta u_k \longrightarrow 0$ et $\frac{u_1}{n} \longrightarrow 0$ donc par opérations sur les limites, $\frac{u_n}{n} \longrightarrow 0$, c'est-à-dire $u_n = o(n)$.

(b) A-t-on l'implication $u_n = o(n) \implies u$ piétine?

Considérons la suite u définie par $\forall n \in \mathbb{N}^*, u_n = (-1)^n$.

- La suite u étant bornée, on a $u_n = o(n)$.
- De plus, pour tout $n \in \mathbb{N}^*$, on a $(\Delta u)_n = u_{n+1} u_n = -2(-1)^n$. Ainsi, Δu diverge donc ne tend pas vers 0, donc u ne piétine pas.

L'implication est donc fausse.

Partie VI – Une condition de piétinement dans le cas borné

Dans cette partie, u est un élément de E.

19. Montrer que

$$u$$
 bornée $\Longrightarrow \Delta u$ bornée.

Supposons u bornée. Soit donc $M \in \mathbb{R}_+$ tel que $\forall n \in \mathbb{N}^*, |u_n| \leq M$. Soit $n \in \mathbb{N}^*$. On a, par inégalité triangulaire,

$$|(\Delta u)_n| = |u_{n+1} - u_n| \le |u_{n+1}| + |u_n| \le 2M.$$

On en déduit que Δu est bornée.

- **20.** Soit C > 0.
 - (a) Soient $a, b \in \mathbb{N}^*$ tels que a < b. On suppose que

$$\forall n \in [a, b], \ u_{n+1} - u_n \geqslant C.$$

Montrer que

$$u_{b+1} - u_a \geqslant (b - a + 1)C$$
.

Par simplification télescopique, on a

$$u_{b+1} - u_a = \sum_{k=a}^{b} (u_{k+1} - u_k) \geqslant \sum_{k=a}^{b} C = (b - a + 1)C.$$

(b) On suppose que

$$\forall \ell \in \mathbb{N}^*, \exists n_0 \in \mathbb{N} : \forall n \in [n_0, n_0 + \ell], \ u_{n+1} - u_n \geqslant C.$$

Montrer que u ne peut pas être bornée.

Supposons, par l'absurde, que u est bornée. Soit donc $M \in \mathbb{R}_+$ tel que

$$\forall n \in \mathbb{N}^*, |u_n| \leqslant M.$$

Soit ℓ un entier naturel tel que $(\ell+1)C > 2M$ (par exemple, $\ell := \left\lfloor \frac{2M}{C} \right\rfloor$). Grâce à hypothèse, soit $n_0 \in \mathbb{N}$ tel que $\forall n \in [n_0, n_0 + \ell]$, $u_{n+1} - u_n \geqslant C$. D'après la question précédente, on a alors

$$u_{n_0+\ell+1} - u_{n_0} \geqslant (\ell+1)C > 2M.$$

Or, on a par ailleurs

$$|u_{n_0+\ell+1} - u_{n_0}| \le |u_{n_0+\ell+1}| + |u_{n_0}| \le 2M.$$

C'est absurde. On en déduit que u n'est pas bornée.

21. Soit $v \in E$.

Dans cette question, on suppose que $\forall n \in \mathbb{N}, v_n \geq 0$.

On suppose que $v \to 0$ et $\Delta v \to 0$.

- (a) Écrire sous forme d'expression quantifiée l'assertion $v \to 0$.
 - On écrit d'abord la définition de $v \longrightarrow 0$:

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}^*, \forall n \in \mathbb{N}^*, n \geqslant n_0 \implies |v_n| \leqslant \varepsilon,$$

puis la négation de celle-ci :

$$\exists \varepsilon_0 > 0, \ \forall n_0 \in \mathbb{N}^*, \ \exists n \in \mathbb{N}^*, \ n \geqslant n_0 \ \text{et} \ |v_n| > \varepsilon_0.$$

• On pouvait aussi écrire :

$$\exists \varepsilon_0 > 0, \ \forall n_0 \in \mathbb{N}^*, \ \exists n \geqslant n_0, \ |v_n| > \varepsilon_0.$$

(b) Montrer que

$$\exists \varepsilon_0 > 0: \ \forall N \in \mathbb{N}^*, \exists n_0 \in \mathbb{N}^*: \left(v_{n_0} \geqslant \varepsilon_0 \ \text{et} \ \forall n \geqslant n_0, \ |v_{n+1} - v_n| \leqslant \frac{\varepsilon_0}{N}\right).$$

On a supposé $v \to 0$ et v positive donc, d'après la question précédente, il existe un réel $\varepsilon_0 > 0$, que l'on fixe, tel que

$$\forall n_1 \in \mathbb{N}^*, \ \exists n \in \mathbb{N}^*, \ n \geqslant n_1 \ \text{et} \ v_n > \varepsilon_0.$$
 (*)

Soit $N \in \mathbb{N}^*$. On a $\Delta v \longrightarrow 0$, c'est-à-dire $v_{n+1} - v_n \longrightarrow 0$. Comme on a $\frac{\varepsilon_0}{N} > 0$, par définiton, il existe $n_2 \in \mathbb{N}^*$ tel que

$$\forall n \in \mathbb{N}^*, \quad n \geqslant n_2 \implies |v_{n+1} - v_n| \leqslant \frac{\varepsilon_0}{N}.$$

Pour cet entier n_2 , on peut trouver, d'après (*), un entier $n_0 \in \mathbb{N}^*$ tel que $n_0 \geqslant n_2$ et $v_{n_0} \geqslant \varepsilon_0$. Par conséquent, tout entier $n \geqslant n_0$ vérifie $n \geqslant n_2$ donc $|v_{n+1} - v_n| \leqslant \frac{\varepsilon_0}{N}$. On a donc montré

$$\exists \varepsilon_0 > 0, \ \forall N \in \mathbb{N}^*, \exists n_0 \in \mathbb{N}^*, \ \left(v_{n_0} \geqslant \varepsilon_0 \ \text{ et } \ \forall n \geqslant n_0, \ |v_{n+1} - v_n| \leqslant \frac{\varepsilon_0}{N}\right).$$

(c) On fixe un tel $\varepsilon_0 > 0$.

Montrer que

$$\forall \ell \in \mathbb{N}^*, \exists n_0 \in \mathbb{N}^* : \forall n \in [n_0, n_0 + \ell], \ v_n \geqslant \frac{\varepsilon_0}{2}.$$

Soit $\ell \in \mathbb{N}^*$. Soit $N \in \mathbb{N}^*$ tel que $N \geqslant 2\ell$.

D'après la question précédente, il existe $n_0 \in \mathbb{N}^*$ tel que $v_{n_0} \geqslant \varepsilon_0$ et

$$\forall n \geqslant n_0, \ |v_{n+1} - v_n| \leqslant \frac{\varepsilon_0}{N}$$

Soit $k \in [0, \ell]$. On a alors

$$|v_{n_0+k} - v_{n_0}| = \left| \sum_{j=n_0}^{n_0+k-1} (v_{j+1} - v_j) \right|$$
 par simplification télescopique,
$$\leq \sum_{j=n_0}^{n_0+k-1} |v_{j+1} - v_j|$$
 par inégalité triangulaire,
$$\leq \sum_{j=n_0}^{n_0+k-1} \frac{\varepsilon_0}{N}$$
 car $j \geq n_0$
$$\leq \frac{k}{N} \varepsilon_0$$

$$\leq \frac{\varepsilon_0}{2}$$
 car $k \leq \ell \leq \frac{N}{2}$.

On a donc, pour $k \in [0, \ell]$, $v_{n_0+k} \geqslant v_{n_0} - \frac{\varepsilon_0}{2} \geqslant \varepsilon_0 - \frac{\varepsilon_0}{2} = \frac{\varepsilon_0}{2}$.

On a donc montré:

$$\forall \ell \in \mathbb{N}^*, \exists n_0 \in \mathbb{N}^*, \ \forall n \in [n_0, n_0 + \ell], \ v_n \geqslant \frac{\varepsilon_0}{2}.$$

22. (a) On suppose que $\Delta^2 u \longrightarrow 0$ et $\Delta u \not\longrightarrow 0$. Montrer que u n'est pas bornée.

Supposons $\Delta^2 u \longrightarrow 0$ et $\Delta u \not\longrightarrow 0$.

En procédant comme dans la question **21.**(b), avec $v = \Delta u$, on montre qu'il existe $\varepsilon_0 > 0$ tel que

$$\forall N \in \mathbb{N}^*, \ \exists n_0 \in \mathbb{N}^*, \ \left(\left| (\Delta u)_{n_0} \right| \geqslant \varepsilon_0 \ \text{ et } \ \forall n \geqslant n_0, \ \left| (\Delta u)_{n+1} - (\Delta u)_n \right| \leqslant \frac{\varepsilon_0}{N} \right).$$

Puis, pour un tel ε_0 , on montre, comme dans la question **21.**(c), selon le signe du $(\Delta u)_{n_0}$ trouvé,

$$\forall \ell \in \mathbb{N}^*, \exists n_0 \in \mathbb{N}^*, \ \forall n \in [n_0, n_0 + \ell], \ (\Delta u)_n \geqslant \frac{\varepsilon_0}{2}$$

ou

$$\forall \ell \in \mathbb{N}^*, \exists n_0 \in \mathbb{N}^*, \ \forall n \in [n_0, n_0 + \ell], \ (\Delta u)_n \leqslant -\frac{\varepsilon_0}{2}.$$

- Dans le premier cas, le résultat de la question 20. (b) permet de conclure immédiatement : la suite u n'est pas bornée.
- Dans le deuxième cas, on applique le résultat de la question **20.** (b) à la suite -u, on obtient ainsi que -u n'est pas bornée, donc la suite u n'est pas bornée.
- (b) On suppose u bornée. Montrer que

$$\Delta^2 u \longrightarrow 0 \implies \Delta u \longrightarrow 0.$$

On suppose u bornée. Donc, par contraposition du résultat de la question précédente, on a $\Delta^2 u \longrightarrow 0$ ou $\Delta u \longrightarrow 0$. Par conséquent, si l'on suppose $\Delta^2 u \longrightarrow 0$, on a nécessairement $\Delta u \longrightarrow 0$. Ainsi, sous l'hypothèse u bornée, on a

$$\boxed{\Delta^2 u \longrightarrow 0 \implies \Delta u \longrightarrow 0.}$$

- 23. On suppose u bornée. Montrer que les assertions suivantes sont équivalentes :
 - (i) $\Delta u \longrightarrow 0$
 - (ii) $\forall p \in \mathbb{N}^*, \ \Delta^p u \longrightarrow 0$
 - (iii) $\exists p \in \mathbb{N}^* : \Delta^p u \longrightarrow 0.$

Pour montrer que les trois assertions sont équivalentes, nous allons montrer les implications $(i) \implies (ii), (ii) \implies (iii)$ et $(iii) \implies (i)$.

• Montrons $(i) \implies (ii)$.

Soit v une suite telle que $v \longrightarrow 0$. On a alors $v_{n+1} - v_n \longrightarrow 0 - 0 = 0$, c'est-à-dire $\Delta v \longrightarrow 0$. Ainsi, on obtient par récurrence (immédiate) que si $\Delta u \longrightarrow 0$ alors $\forall p \in \mathbb{N}^*, \ \Delta^p u \longrightarrow 0$.

- L'implication $(ii) \implies (iii)$ est immédiate (car \mathbb{N}^* n'est pas vide...)
- Montrons $(iii) \implies (i)$.

Supposons $\exists p \in \mathbb{N}^*, \Delta^p u \longrightarrow 0$. Ainsi l'ensemble $\{p \in \mathbb{N}^* \mid \Delta^p u \longrightarrow 0\}$ est une partie non vide de \mathbb{N} donc possède un plus petit élément. Notons $p_0 \in \mathbb{N}^*$ ce minimum et supposons $p_0 \geqslant 2$.

On a montré à la question **19.** que si une suite v est bornée alors Δv est bornée. Ayant supposé que la suite u est bornée, on obtient ainsi par récurrence (immédiate) que pour tout $k \in \mathbb{N}$, $\Delta^k u$ est bornée. En particulier Δ^{p_0-2} est bornée. De plus, on a $\Delta^{p_0} u \longrightarrow 0$. On déduit alors de la question **22.**(b) apppliquée à la suite Δ^{p_0-2} que $\Delta^{p_0-1} u \longrightarrow 0$, ce qui contredit la minimalité de p_0 . On en déduit que $p_0 = 1$, c'est-à-dire $\Delta u \longrightarrow 0$.