Bayesian networks

Overview

Directed Acyclic Graphs

2 Directed Graphical Models

3 Independence and Markov Properties

Graph Terminology

G = (V, E) directed graph. V vertices. E edges (ordered pairs of vertices)

X, Y adjacent if $X \rightarrow Y$ edge. Y child of X. X parent of Y.

 $X \to \cdots \to Y$ directed path. Y descendant of X. X ancestor of Y.

 $X \leftarrow \cdots \rightarrow Y$ undirected path (ignore direction of arrows).

 $X \to Y \leftarrow Z$ collider. $X \to Y \to Z$, $X \leftarrow Y \leftarrow Z$, $X \leftarrow Y \to Z$ non-colliders.

 $X \to \cdots \to X$ cycle. $\mathcal G$ directed acyclic graph if no cycles.

Directed Graphs with Cycles

 $\{1,2,3,4\}$ and $\{3,4,5\}$ are cycles. $\{3,4,6\}$ is not a cycle.

Directed Acyclic Graphs (DAG)

Directed Graphical Models

A directed graphical model or Bayesian network consists of a multivariate random variable $\mathbf{X} = (X_1, \dots, X_n)$ and a corresponding graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, where

- $V = \{1, ..., n\}$, where the variable X_i is represented by node i,
- $(i,j) \in \mathcal{E}$ is denoted by an arrow connecting i to j,
- the probability mass (density) function of X satisfies the factorization property.

Factorization

We denote the parents of node i by Pa(i).

A probability mass function P(X = x) satisfies the factorization property with respect to a DAG if

$$P(\mathbf{X} = \mathbf{x}) = \prod_{i=1}^{n} P(X_i = x_i \mid \mathsf{Pa}(i)). \tag{1}$$

Example

A Set of Tables for Each Node

Each node X_i has a conditional probability distribution $P(X_i | Parents(X_i))$ that quantifies the effect of the parents on the node

The parameters are the probabilities in these conditional probability tables (CPTs)

В	D	P(D B)
false	false	0.02
false	true	0.98
true	false	0.05
true	true	0.95

Using a Bayesian Network Example

Using the network in the example, suppose you want to calculate:

$$P(A = true, B = true, C = true, D = true)$$

= $P(A = true) * P(B = true | A = true) *$
 $P(C = true | B = true) P(D = true | B = true)$
= $(0.4)*(0.3)*(0.1)*(0.95)$

Examples

EXAMPLES

Smoking

Example

Hidden Markov Model

Naïve Bayes

Example

Gaussian Mixtures

Phylogenetic Models

Examples

When N is large, the joint distribution is difficult to analyze. A directed graphical model helps us to factorize the model so that analysis can be done more efficiently.

$$P(\mathbf{Z} = \mathbf{z}, \theta = \mathbf{x}) = P(\theta = \mathbf{x}) \prod_{i=1}^{N} P(Z_i = z_i \mid \theta = \mathbf{x}). \tag{2}$$

Bayesian Networks March 5, 2019 13 / 23

Directed Gaussian Graphical Model

Parametrize the model using structural equation modelling (SEM).

Bayesian Networks

Directed Gaussian Graphical Model

Let K be the matrix of the left hand side of the previous expression, and let A = (A, B, C, D) be the multivariate random variable. Then the graphical model in the previous slide implies that KA is the standard normal distribution $\mathcal{N}(\mathbf{0}, \mathbf{I})$, which further implies that

$$\mathbf{A} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{K}^{-1} \left(\mathbf{K}^{-1}\right)^{T}\right).$$
 (3)

15/23

Bayesian Networks March 5, 2019

The Half Way Point

5 Minutes Break

Local Markov Property

We say that a distribution \mathbb{P} satisfies the local Markov property with respect to \mathcal{G} if for all variables W,

$$W \perp \widetilde{W} \mid \pi_W$$

where π_W are the parents of W, and \widetilde{W} are the variables which are neither parents nor descendants of W.

17 / 23

Bayesian Networks March 5, 2019

D-Separation

Consider the following undirected path from X to Z:

$$X - Y_1 - Y_2 - \dots - Y_n - Z.$$

Co Co

Let W be some subset of vertices that do not contain X or Z.

Think of each intermediate vertex as a gate, and ${\it W}$ a set of keys.

- 1. Collider gates are usually closed; all other gates are usually open.
- 2. If a collider or one of its descendants is in W, then that gate is opened.
- If a non-collider is in W, then that gate is closed.

If all the gates are open, we say that X and Z are d-connected given W. If we cannot find any such path, then X and Z are d-separated given W. Sets S and T are d-separated given W if it is true for all $X \in S$, $Z \in T$.

Bayesian Networks

D-Separation

EXAMPLES

Three layer DAG

X and Y are d-separated (given the empty set);

X and Y are d-connected given $\{S_1, S_2\}$;

X and Y are d-separated given $\{S_1, S_2, V\}$.

Global Markov Property

We say that a distribution $\mathbb P$ satisfies the global Markov property with respect to $\mathcal G$ if

$$S \perp T \mid W$$

for all disjoint subsets S, T, W such that S and T are d-separated given W.

Bayesian Networks

Hammersley-Clifford Theorem

The following are equivalent:

- 1. \mathbb{P} satisfies the **factorization property** with respect to \mathcal{G} .
- 2. \mathbb{P} satisfies the local Markov property with respect to \mathcal{G} .
- 3. \mathbb{P} satisfies the global Markov property with respect to \mathcal{G} .

Explaining Away

EXPLAINING AWAY

Why does conditioning on a collider lead to dependence?

If you don't know your friend is late:

$$\mathbb{P}(Aliens|Watch) = \mathbb{P}(Aliens)$$

If you now know your friend is late:

$$\mathbb{P}(Aliens|Watch, Late) < \mathbb{P}(Aliens|Late)$$

Aliens ∡ Watch | Late

Knowing his broken watch made him late explains away the possibility that he is late because he was abducted by aliens.

(ロ) (個) (目) (目) (目) (の)

Advantages of Bayesian Network Representations

Conditional Independence relations can be read of the underlying DAG.

Can describe causal relationships between variables.

Can handle incomplete data or latent variables.