第九章 中间代码优化

1. 给出从多元式划分基本块的方法。

(答案)

基本块开始标志的四元式有: then, else, while, label, call, proc, func, prog, body.

其中 prog 四元式是程序的第一个基本块的开始. ifend, whileend, do, goto, procend, funcend 都是基本块的结束。式(=:, A, -, X) 其中,如果 X 是一个引用型变量的话,则该四元式为一个基本块的结束标志。

(关闭)

2. 给出流程图(以基本块为结点)的一种表示方法。

(答案)

(1)条件语句:if E then S1 else S2 对应的程序流图:

B1:(E的中间代码)(t为结果)

(JUMP0,t,L1)

B2:(S1 的中间代码)

(JUMP,L2)

B3:(LABLE,L1)

(S1 的中间代码)

B4:(LABLE,L2)

(后续语句的目标代码)

(2)while 语句:while E do S 对应的程序流图:

B1:(LABLE,L1)

(E的中间代码)(t为结果)

(JUMP0,t,L2)

B2:(S 的语句部分)

(JUMP,L1)

B3:(LABLE,L2) (后续语句的目标代码) while 语句: B1 B2 В3 (3)for 语句:for i:=E1 to E2 do S B1:(E1 的中间代码)(t 为结果) (:=,t,i)B2:(LABLE,L1) (E2 的中间代码)(j 为结果) (LE,i,j,t)(JUMP0,t,L2) B3:(S 的中间代码) (+,i,1,t1)(:=,t1,i)(JUMP,L1) B4:(LABLE,L2) (后续语句的目标代码) for 语句: B1 B2 B3 B4

3.	设有i	吾右	亙
J.	以口,	$\Pi \cap J$	ノ、

i := 2

j:=i*(i+1);

k := 2*(i+j)

试写出优化前和优化后的多元式代码。其中变量均为一般整形变量。

(答案)

(=:, 2, -, i)	154	(=:, 2, -, i)
$(i+, i, 1, T_1)$		
(i^*, i, T_1, T_2)		
(=:,T ₂ , -, j)	优化后→	(=:, 6, -, j)
$(i+, i, j, T_3)$		No.
$(i^*, T_3, 2, T_4)$	E	-
(=:,T ₄ , -, k)		(=:,16, -, k)

<u>(关闭)</u>

4. 设有语句列

a[i][j+1]:=a[i][j]+a[i][a[i][i]]

a[i][j]:=a[i][j+1]

其中变量均为一般变量,且有如下变量说明:

var i,j: integer;

a:array [0..5] of array[0..10] fo integer;

写出优化前和优化后的多元式代码。

优化前代码		优化后代码
(1)(*,i,11,t1)		(1)(*,i,11,t1)
(2)([],a,t1,t2)		(2)([],a,t1,t2)
(3)([],t2,j,t3)	a[i,j]	(3)([],t2,j,t3)
(4)(*,i,11,t4)		
(5)([],a,t4,t5)		
(6)[],t5,j,t6)	a[i,j]	
(7)(*,i,11,t7)		

(8)([],a,t7,t8)		
(9)([],t8,t6,t9)	a[i,a[i,j]]	(4)([],t2,t3,t9)
(10)(*,i,11,t10)		
(11)([],a,t10,t11)		
(12)(+,j,1,t12)		(5)(+,j,1,t12)
(13)([],t11,t12,t13)		(6)([],t2,t12,t13)
(14)(+,t3,t9,t14)	a[i,j+1]	(7)(+,t3,t9,t14)
(15)(:=,t14,t13)		(8)(:=,t14,t13)
(16)(*,i,11,t15)		
(17)([],a,t15,t16)		
(18)(+,j,1,t17)		
(19)([],t16,t17,t18)	a[i,j+1]	
(20)(*,i,11,t19)		
(21)([],a,t19,t20)		
(22)([],t20,j,t21)	a[i,j]	
(23)(:=,t18,t21)		(9)(:=,t13,t3)

<u>(关闭)</u>

5. 设有下面语句列,写出优化前和优化后的多元式代码。其中变量为3题中的变量。

a[i][j] := a[i][j]+1;

i := j;

a[i][j] := a[i][j] + a[i][j];

(i-, i, 1, T ₁)		
	1 1	100
(i*, T ₁ , 10, T ₂)		
([], a, T ₂ , T ₃)	1.3	<u> </u>
(i-, j, 1, T ₄)		
(i*, T ₄ , 1, T ₅)	102	
([], T ₃ , T ₅ , T ₆)		
(i-, i, 10, T ₁)		/C 10 T \
(i*, T ₇ , 1, T ₈)		([], a, 10, T ₁)
([], a, T ₈ , T ₉)	1/2-2	([], T ₁ , 5, T ₂)
(i-, j, 1, T ₁₀)	J. N. J. I	(i+, T ₂ , 1, T ₃)
$(i^*, T_{10}, 1, T_{11})$	优化后→	(=:,T ₃ , −, T ₂)
([], T ₉ , T ₁₁ , T ₁₂)		(=:,6, -, i)
$(i+, T_{12}, 1, T_{13})$		([], a, 50, T ₃)
$(=:,T_{13},-,T_6)$		([], T ₃ , 5, T ₄)
(≕, j, ⁻, i)		(į+, T ₄ , T ₄ , T ₅)
(i-, i, 10, T ₁₄)		$(=:,T_5,-,T_4)$
(i*, T ₁₄ , 1, T ₁₅)		
([], a, T ₁₅ , T ₁₆)		
	<u> </u>	
(i-, j, 1, T ₁₇)	100	
G* T 1 T \		
(i*, T ₁₇ , 1, T ₁₈)		
$(1, T_{17}, T_{1}, T_{18})$ $([], T_{16}, T_{18}, T_{19})$		
$([], T_{16}, T_{18}, T_{19})$		
([], T ₁₆ , T ₁₈ , T ₁₉) (i-, i, 1, T ₂₀)		
([], T ₁₆ , T ₁₈ , T ₁₉) (i-, i, 1, T ₂₀) (i*, T ₂₀ , 10, T ₂₁)		
([], T ₁₆ , T ₁₈ , T ₁₉) (i-, i, 1, T ₂₀) (i*, T ₂₀ , 10, T ₂₁) ([], a, T ₂₁ , T ₂₂)		
([], T ₁₆ , T ₁₈ , T ₁₉) (i-, i, 1, T ₂₀) (i*, T ₂₀ , 10, T ₂₁) ([], a, T ₂₁ , T ₂₂) (i-, j, 1, T ₂₃)		
$([], T_{16}, T_{18}, T_{19})$ $(i-, i, 1, T_{20})$ $(i^*, T_{20}, 10, T_{21})$ $([], a, T_{21}, T_{22})$ $(i-, j, 1, T_{23})$ $(i^*, T_{23}, 1, T_{24})$		
([], T ₁₆ , T ₁₈ , T ₁₉) (i-, i, 1, T ₂₀) (i*, T ₂₀ , 10, T ₂₁) ([], a, T ₂₁ , T ₂₂) (i-, j, 1, T ₂₃) (i*, T ₂₃ , 1, T ₂₄) ([], T ₂₂ , T ₂₄ , T ₂₅)		
$([], T_{16}, T_{18}, T_{19})$ $(i^-, i, 1, T_{20})$ $(i^*, T_{20}, 10, T_{21})$ $([], a, T_{21}, T_{22})$ $(i^-, j, 1, T_{23})$ $(i^*, T_{23}, 1, T_{24})$ $([], T_{22}, T_{24}, T_{25})$ $(i^-, i, 1, T_{26})$		
$([], T_{16}, T_{18}, T_{19})$ $(i-, i, 1, T_{20})$ $(i^*, T_{20}, 10, T_{21})$ $([], a, T_{21}, T_{22})$ $(i-, j, 1, T_{23})$ $(i^*, T_{23}, 1, T_{24})$ $([], T_{22}, T_{24}, T_{25})$ $(i-, i, 1, T_{26})$ $(i^*, T_{26}, 10, T_{27})$		
$([], T_{16}, T_{18}, T_{19})$ $(i^-, i, 1, T_{20})$ $(i^*, T_{20}, 10, T_{21})$ $([], a, T_{21}, T_{22})$ $(i^-, j, 1, T_{23})$ $(i^*, T_{23}, 1, T_{24})$ $([], T_{22}, T_{24}, T_{25})$ $(i^-, i, 1, T_{26})$ $(i^*, T_{26}, 10, T_{27})$ $([], a, T_{27}, T_{28})$		
$([], T_{16}, T_{18}, T_{19})$ $(i-, i, 1, T_{20})$ $(i^*, T_{20}, 10, T_{21})$ $([], a, T_{21}, T_{22})$ $(i-, j, 1, T_{23})$ $(i^*, T_{23}, 1, T_{24})$ $([], T_{22}, T_{24}, T_{25})$ $(i-, i, 1, T_{26})$ $(i^*, T_{26}, 10, T_{27})$ $([], a, T_{27}, T_{28})$ $(i-, j, 1, T_{29})$		
$ \begin{split} &([], T_{16}, T_{18}, T_{19}) \\ &(i^-, i, 1, T_{20}) \\ &(i^*, T_{20}, 10, T_{21}) \\ &([], a, T_{21}, T_{22}) \\ &(i^-, j, 1, T_{23}) \\ &(i^*, T_{23}, 1, T_{24}) \\ &([], T_{22}, T_{24}, T_{25}) \\ &(i^-, i, 1, T_{26}) \\ &(i^*, T_{26}, 10, T_{27}) \\ &([], a, T_{27}, T_{28}) \\ &(i^-, j, 1, T_{29}) \\ &(i^*, T_{20}, 1, T_{30}) \end{split} $		

<u>(关闭)</u>

6. 对 5 题写出用值编码的优化过程。

(答案)

	中间代码	a	i	j	11	t1	t2a	t2v	t3a	t3v	1	映像码	UE	优化后代码
0	(*,i,11,t1)		1		2	3						(1,2,3)	0	(*,i,11,t1)
1	([],a,t1,t2*)	4					5	5				(4,3,5)	0,1	([],a,t1,t2*)
2	([],t2*,j,t3*)			6					7	7		(5,6,7)	0,1,2	([],t2*,j,t3*)
3	(*,i,11,t4)											(1,2,3)	0,1,2	R1
4	([],a,t4,t5*)											(4,3,5)	0,1,2	R2
5	([],t5*,j,t6*)											(5,6,7)	0,1,2	R3
6	(+,t6*,1,t7)										8	(7,8,9)	0,1,2,6	(+,t3*,1,t7)
7	(:=,t7,t3*)									9				(:=,t7,t3*)
8	(:=,j,i)		2											(:=,j,i)
9	(*,i,11,t8)											(2,2,10)		(*,i,11,t8)
10	([],a,t8,t9*)											(4,10,11)		([],a,t8,t9*)
11	([],t9*,j,t10*)											(11,2,12)		([],t9*,j,t10*)
12	(*,i,11,t11)											(2,2,10)		R8
13	([],a,t11,t12*)											(4,10,11)		R9
14	([],t12*,j,t13*)											(11,2,12)		R10
15	(*,i,11,t14)											(2,2,10)		R8
16	([],a,t14,t15*)											(4,10,11)		R9
17	([],t15*,j,t16*)											(11,2,12)		R10
18	(*,i,11,t17)											(2,2,10)		R8
19	([],a,t17,t18*)											(4,10,11)		R9
20	([],t18*,j,t19*)											(11,2,12)		R10
21	(+,t16*,t19*,t20)											(12,12,13)		(+,t10*,t10*,
22	(:=,t20,t13*)													(:=,t20,t10*)

<u>(关闭)</u>

7. 设有语句列:

$$u := X * u + X * u;$$

w := X * u + X * u * w;

且其中 X 为整形引用形参, 其他为一般整形变量。写出优化前和优化后的多元式代码。

(i*, X, u, T ₁)		.50
(i*, X, u, T ₂)		(i*, X, u, T ₁)
(i+, T ₁ , T ₂ , T ₃)	10	(i+, T ₁ , T ₁ , T ₂)
$(=:,T_3,-,u)$		$(=:,T_2,-,u)$
(i*, X, u, T ₄)	优化后→	(i*, X, u, T ₃)
(i*, X, u, T ₅)		(i*, T ₃ , w, T ₄)
(i*, T ₅ , w, T ₆)		(i*, T ₃ , T ₄ , T ₅)
(i*, T ₄ , T ₆ , T ₇)		(=:, T ₅ , -, w)
$(=:,T_7,-,w)$		张 鱼

(关闭)

8. 设有下列循环语句,其中变量均为一般变量。写出外提后的多元式代码。
for i:=1 to n do
begin
u:=x*y;
m:=u*u;
s:=s+m*m

<u>(答案)</u>

end

(*,x,y,t1) (*,t1,t1,t2) (*,t2,t2,t3) (+,s,t3,t4) (:=,1,i) (LABEL,L1) (LE,i,n,t5) (JUMP0,t5,L2) (:=,t1,u) (:=,t2,m) (:+,t4,s) (+,i,1,t6) (:=,t6,i)

(JUMP,L1) (LABLE,L2)

```
9. 设有下面数组相乘循环,写出子表达式节省和循环优化后的多元式代码。
for i: = 1 to 10 do
    for j: = 1 to 10 do
    begin
        A[i][j]:=0;
    for k:=1 to 10 do
        A[i][j]:=A[i][j]+B[i][k]*C[k][j]
```

(答案)

end

```
(=:, l, -, i)
(while, -, -, -)
(<=, i, 10, T<sub>1</sub>)
(DO, T<sub>1</sub> -, -)
(i, j, l, T_i)
(i^*, T_1, 10, T_1)
([], A, T, T_i)
                             //A[j]
([], B, T, T_i)
                             //B[j]
(=:,l,\neg,j)
(while, -, -, -)
(<=, j, 10, T_0)
(DO, T, -, -)
(i_{7}, j, l, T_{1})
(i^*, T_1, 1, T_2)
                             //A[i][j]
([], T_a, T_b, T_b)
(=:,0, -, T<sub>0</sub>)
(=:,l, ¬, k)
(while, -, -, -)
(<=, k, 10, T_{10})
(DO, T<sub>10</sub>, ¬, ¬)
(i_{-},k,l,T_{||})
(i^*, T_{11}, 1, T_{12})
([],T_{\scriptscriptstyle 1},T_{\scriptscriptstyle 1},T_{\scriptscriptstyle 1}) \quad /\!/B[i][k]
(i^*, T_{11}, 10, T_{14})
([], C, T_{14}, T_{13})
                               //C[k]
([],T_{15},T_{8},T_{16})
                               //C [k] [j]
(i^*\!,T_{13},T_{14},T_{17})
(i+,T_0,T_1,T_1)
(=:,T_{13},-,T_{0})
(i^+,k,1,T_{\rm P})
(while, -, -, -)
(i+, j, l, T_{2i})
(while, -, -, -)
(i+, i, 1, T_2)
(while, -, -, -)
```

10. 实现一个具体的常表达式节省算法。

```
ConsNode=RECORD
        id:string;
        val:INTEGER;
        next: \ConsNode
     END
ConsList=RECORD
        length:INTEGER;
        Head:↑ConsNode
     END
Tuple = RECORD
        case kind:char of
        ASSIG:(val,id1);
        OP:
               (oper1,oper2,result:int)
    END
curList: †ConsList;
curList=NULL;
while(基本块未结束)
  read(tuple);
  newtuple=translate(tuple);
  if (newtuple.kind=OP)
  { if (IsConst(newtuple.oper1)&&IsConst(newtuple.oper2))
       {num=compute(OP,newtuple.oper1,newtuple.oper2);
       insert(curList,result,num); }
     else{output(newtuple);}
  }
  else
  { if (IsConst(newtuple.val)
      {insert(curList,newtuple,id1,newtuple.val);
    else{delete(curList,newtuple.id1);output(newtuple);}
  }
```

答案 司入編码表 TCL(Temporary Coding List)		
答案 司入編码表 TCL(Temporary Coding List)		
答案) 引入编码表 TCL(Temporary Coding List) TCL 单元为(临时变量 编码) 引入等价表 PAIR (临时变量 编码) PAIR 单元为 若 <ti,tj>在 PAIR 表中,则所有 Ti 的出现可以用 Tj 替换. 可用四元式表 UsabelQD 在本基本块中已经扫描过并且没有节省的可用四元式 步骤:</ti,tj>		
引入编码表 TCL(Temporary Coding List) TCL 单元为 (临时变量 编码) 引入等价表 PAIR (临时变量 编码) PAIR 单元为 若 <ti,tj>在 PAIR 表中,则所有 Ti 的出现可以用 Tj 替换. 可用四元式表 UsabelQD 在本基本块中已经扫描过并且没有节省的可用四元式 步骤: Ⅰ. 进入基本块、清空 PAIR, UsabelQD, TCL. Ⅱ. 扫描每一个四元式. Ⅲ. 设当前四元式为 Dj(ω, A, B, Tj) ①替换 A, B, 设替换后为(ω, A1, B1, Tj) ②若 A1,B1 是分量的第一次出现、将(A1,NewCode)、(B1,NewCode)填入 TCL; 若不是第一次出现、用偏码设则元式为 (ω, Code(A1),Code(B1), Tj).到 UsabelQD 中找是否有相似的. ③者找到 Di (ω, Code(A11),Code(B11), Ti)相似, Tj 填到 TCL表, 其偏号 Code(Tj)和 Code(Ti)填入 PAIR表。若没找到 Di, Tj 偏码填入 TCL、当前四元式送入 UsabelQD. ④(=:, A, -, B) B 是非间接变量、将 B 偏码改成 A 的偏码、删除可用四元式表中所有与 B 相关的四元式.</ti,tj>	实现一个具体的子表达式节省算法。	
TCL 单元为 (临时变量 编码) 引入等价表 PAIR (临时变量 编码) PAIR 单元为 若 <ti,tj>在 PAIR 表中,则所有 Ti 的出现可以用 Tj 替换. 可用四元式表 UsabelQD 在本基本块中已经扫描过并且没有节省的可用四元式 步骤: Ⅰ. 进入基本块, 清空 PAIR, UsabelQD, TCL. Ⅱ. 扫描每一个四元式. Ⅲ. 设当前四元式为 Dj(ω, A, B, Tj) ①替换 A, B, 设替换后为(ω, A1, B1, Tj) ②若 A1,B1 是分量的第一次出现, 将(A1,NewCode), (B1,NewCode)填入 TCL; 若不是第一次出现, 用偏码设四元式为 (ω, Code(A1),Code(B1), Tj).到 UsabelQD 中找是否有相似的. ③若找到 Di (ω, Code(A1),Code(B1l), Ti)相似, Tj 填到 TCL表, 其偏号 Code(Tj)和 Code(Ti)填入 PAIR 表. 若没找到 Di, Tj 偏码填入 TCL, 当前四元式送入 UsabelQD. ④(=:, A, -, B) B 是非间接变量,将 B 偏码改成 A 的偏码,删除可用四元式表中所有与 B 相关的四元式.</ti,tj>	<u>案)</u>	
引入等价表 PAIR (临时变量 编码) PAIR 单元为 若 <ti,tj>在 PAIR 表中,则所有 Ti 的出现可以用 Tj 替换. 可用四元式表 UsabelQD 在本基本块中已经扫描过并且没有节省的可用四元式 步骤:</ti,tj>	入编码表 TCL(Temporary Coding List)	
(临时变量 编码) PAIR 单元为 若 <ti,tj>在 PAIR 表中,则所有 Ti 的出现可以用 Tj 替换. 可用四元式表 UsabelQD 在本基本块中已经扫描过并且没有节省的可用四元式 步骤:</ti,tj>		
可用四元式表 UsabelQD 在本基本块中已经扫描过并且没有节省的可用四元式 步骤:		
 在本基本块中已经扫描过并且没有节省的可用四元式 步骤: 进入基本块、清空 PAIR, UsabelQD, TCL. 扫描每一个四元式。 设当前四元式为 Dj(ω, A, B, Tj) 查持 A, B, 设替换后为(ω, A1, B1, Tj) ②若 A1,B1 是分量的第一次出现,将(A1,NewCode),(B1,NewCode)填入 TCL;若不是第一次出现,用偏码设四元式为 (ω, Code(A1),Code(B1), Tj).到 UsabelQD 中找是否有相似的. ③若找到 Di (ω, Code(A11),Code(B11), Ti)相似, Tj 填到 TCL表,其偏号 Code(Tj)和 Code(Ti)填入 PAIR 表. 若没找到 Di, Tj 偏码填入 TCL,当前四元式送入 UsabelQD. ④(=:, A, -, B) B 是非间接变量,将 B 偏码改成 A 的偏码,删除可用四元式表中所有与 B 相关的四元式. 		
步骤:		
I. 进入基本块,清空 PAIR, UsabelQD, TCL. II. 扫描每一个四元式. III. 设当前四元式为 Dj(ω, A, B, Tj) ①替换 A, B, 设替换后为(ω, A1, B1, Tj) ②若 A1,B1 是分量的第一次出现,将(A1,NewCode),(B1,NewCode)填入 TCL;若不是第一次出现,用偏码设四元式为 (ω, Code(A1),Code(B1), Tj).到 UsabelQD 中找是否有相似的. ③若找到 Di (ω, Code(A11),Code(B11), Ti)相似, Tj 填到 TCL 表,其偏号 Code(Tj)和 Code(Ti)填入 PAIR 表. 若没找到 Di, Tj 偏码填入 TCL,当前四元式送入 UsabelQD. ④(=:, A, -, B) B 是非间接变量,将 B 偏码改成 A 的偏码,删除可用四元式表中所有与 B 相关的四元式.		
(XM)	I. 扫描每一个四元式. II. 设当前四元式为 Dj(ω, A, B, Tj) ①替换 A, B, 设替换后为(ω, A1, B1, Tj) ②若 A1,B1 是分量的第一次出现,将(A1,NewCode),(B1,NewCode)填入 TCL;若不是第一次出现四元式为 (ω, Code(A1),Code(B1), Tj).到 UsabelQD 中找是否有相似的. ③若找到 Di (ω, Code(A11),Code(B11), Ti)相似, Tj 填到 TCL表,其偏号ode(Tj)和 Code(Ti)填入 PAIR表。若没找到 Di, Tj 偏码填入 TCL,当前四元式送入 UsabelQD.	
12. 实现一个具体的循环不变式的循环外提算法。	<u>案)</u>	
12. 实现一个具体的循环不变式的循环外提算法。	Ē)	
(无)	(关闭)	
(答案)	<u>(</u> 美闭)	

- 13. 试说明形如 X: = Expr 的语句对于各种优化的影响,其中 X 是引用型形参变量。实际对过程调用也有一样的
 - (1) 对常表达式优化的影响?
 - (2) 对公共表达式优化的影响?
 - (3) 循环不变表达式外提优化的影响?
 - (5) 对归纳表达式优化的影响?

(答案)

- (1) 什么也不做.结束当前基本块.
- (2) 若有下面的语言, A 为全局变量, X 是引用型形参变量, 且初值为 A.

B:=2*A;

X := Expr;

C:=2*A;

则不可以对表达式 2*A 进行外提, 因为 X 初始值为 A.则 B=2A, 而当 X:=Expr 时, A 也变为 Expr,而不是 A C:=2*Expr, 故 B, C 不相等, 即不能进行公共表达式外提.

(3). 考虑下面情况, A 为全局变量, X 是引用型形参变量, 且初值为 A

对于下面语句序列

i:=0.

while (i<A) do

Begin X:=o;

i:=i+1;

end

则 X:=o;语句改变了 A 的值为 0, 因此, X:=o 不能外提; 因为若 A>0 则循环可以进入一次, 而若外提了, 则不循环了.

(4). 考虑下面情况, A 为全局变量, X 是引用型形参变量, 且初值为 A

对于下面语句序列

FOR i:=1 TO 10 DO

BEGIN S:=A*i + B;

X:=2A:

END;

则不能进行归纳表达式优化.

(关闭)

14. 假设不把上述语句作为基本块的结束,而且不进行别名分析,那么基本块为单位的常表达式和公共表达式优进行(即应做哪些修改)。

(答案)

常表达式优化:每遇见上述语句时把常量登记表的非临时变量写成赋值代码,并清除,临时变量保存; 公共表达式优化也类似,遇见上述语句时,清除可用表达式中含非临时变量为分量的表达式.

<u>(关闭)</u>

15. 假设在循环内有对引用变量的赋值或过程调用,而且没有进行别名分析,那么最差的一种方案是对这种循环表达式外提优化;但我们可以利用 FOR 循环变量在内循环中不改变值的事实对内层循环进行外提优化。

(答案)

若引用型变量有一个仅关于循环变量的赋值,则可能进行外提;设置一个表 LINK,若只受制于循环变量就将这个 LINK 中,以后若引用型变量的赋值右部都为常量或出自 LINK 则可以外提。

