TEHNICI DE OPTIMIZARE

- Istoric
- Dificultăți de abordare şi/sau rezolvare
- Planul de învățământ (= 10 săptămâni)

ANTON BĂTĂTORESCU

TEHNICI DE OPTIMIZARE

CURS = 2 ORE / SĂPTĂMÂNĂ

SEMINAR = 1 ORĂ / SĂPTĂMÂNĂ

FORMA DE EXAMINARE: examen! (scris)

- 2 subjecte de teorie:
 - enunțuri cu demonstrații;
 - enunțuri descriptive.
- 1 exercițiu de seminar (cu subpuncte)

Conținutul cursului:

- Modele de optimizare liniară şi programe software.
- > Algoritmul simplex primal şi algoritmul simplex dual.
- > Interpretarea economică a valorilor şi soluțiilor.
- Metode de partiţionare şi relaxare.
- Metode pentru probleme de optimizare neliniară.

Bibliografie

- A. Ştefănescu, C. Zidăroiu, "Cercetări Operaționale", Ed. Did. şi Pedagogică, Bucureşti, 1981.
- H. Karloff, "Linear Programming", Progress in Theoretical Computer Science, Birkhäuser, 1991, Berlin.
- A. Bătătorescu, "Metode de optimizare liniară", Ed. Universității din Bucureşti, 2003.
- V. Preda, M. Bad, "Culegere de probleme de cercetări operaționale", Tipografia Universității din Bucureşti, 1978.
- http://www.ilog.com/
- www.maximalsoftware.com

Exemplu – optimizare neliniară

$$f: \mathbb{R} \to \mathbb{R}$$
 $f(x) = (x+2)(x-1)(x-3)(x-5) = x^4 - 7x^3 + 5x^2 + 31x - 30$

$$f:[0, 5.6] \to \mathbb{R}$$
 $f(x) = x^4 - 7x^3 + 5x^2 + 31x - 30$

Exemplu – optimizare liniară

Să se determine:

$$optim\{2x+3y\}$$
, unde $optim = \min \vee \max$

Cu îndeplinirea condițiilor:

$$x + y \ge 4$$

$$-8x + 2y \le 3$$

$$5x - 3y \le 15$$

$$-x + 2y \le 10$$

$$2x + y \le 16$$

Rezolvare grafică

Notații și câteva definiții

Vom nota cu $A \in \mathbb{R}^{n \times n}$ o matrice cu m linii şi n coloane:

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} = (a_{ij})_{\substack{1 \le i \le m \\ 1 \le j \le n}}$$

$$\text{unde, } a_{ij} \in \mathbb{R}, \quad 1 \le i \le m, 1 \le j \le n,$$

Transpusa matricei A o vom nota $A^f \in \mathbb{R}^{k \times m}$.

Mulțimea matricelor de aceeași dimensiune formează un spațiu vectorial peste corpul numerelor reale.

$$A,B \in \mathbb{R}^{n \times n}, \alpha \in \mathbb{R} \implies A+B = \left(a_{ij} + b_{ij}\right)_{\substack{1 \le i \le m \\ 1 \le j \le n}}, \quad \alpha B = \left(\alpha b_{ij}\right)_{\substack{1 \le i \le m \\ 1 \le j \le n}}$$

Produsul matricelor: $A \in \mathbb{R}^{n \times k}$, $B \in \mathbb{R}^{k \times n}$ este matricea:

$$A \cdot B = C \in \mathbb{R}^{n \times n}, \quad c_{ij} = \sum_{l=1}^{k} a_{il} b_{lj}, \ 1 \le i \le m, \ 1 \le j \le n.$$

Determinantul unei matrice pătratice $A \in \mathbb{R}^{n \times n}$ este numărul

$$\det A = \sum_{\sigma \in S_n} \mathcal{E}(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma(n)}$$

Dacă $\det A \neq 0$, matricea A se numește nesingulară, iar în acest caz, există o unică matrice A^{-1} numită matrice inversă:

$$A \cdot A^{-1} = A^{-1} \cdot A = \mathbf{I}_{n} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} \in \mathbf{R}^{n \times n}$$

Un vector coloana $v \in \mathbb{R}^n$ este considerat ca fiind o matrice $v \in \mathbb{R}^n$, iar transpusa acesteia este un vector linie.

$$v = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} = (v_1, v_2, \dots, v_n)^{\mathsf{f}}, \quad v^{\mathsf{f}} = (v_1, v_2, \dots, v_n)$$

Produsul scalar a doi vectori $x, y \in \mathbb{R}^t$, $x^f \cdot y = \sum_{i=1}^n x_i y_i = y^f \cdot x$. Definim relațiile:

$$x = y \iff x_i = y_i \text{ pentru orice } i = \overline{1, n},$$

 $x \le y \iff x_i \le y_i \text{ pentru orice } i = \overline{1, n} \iff y - x \in \mathbb{R}^n$

În particular, $x \ge 0 \in \mathbb{R}^n \iff x_i \ge 0, \forall i = \overline{1, n}$.

Sisteme de ecuații liniare

Fie: $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$ şi considerăm sistemul de ecuații liniare:

$$A \cdot x = b \iff \begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots & \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

unde $x \in \mathbb{R}^{k}$ reprezintă vectorul necunoscutelor.

Notăm:
$$A_i = (a_{i1}, a_{i2}, \dots, a_{in})$$
 linia "i" a matricei A;
$$A^j = (a_{1j}, a_{2j}, \dots, a_{mj})^{\text{f}} \text{ coloana "j" a matricei } A.$$

$$A \cdot x = b \iff A_i \cdot x = b_i, \quad i = \overline{1, m} \iff \sum_{j=1}^n A^j x_j = b.$$

- Teorema Kronecker-Capelli : $rang(A) = rang(A : b) = r \le min\{m, n\}$
- Ecuații principale, respectiv variabile principale.
- Ecuații secundare, respectiv variabile secundare.
- Prin eliminarea ecuațiilor secundare, considerăm: $rang(A) = m \le n$.
- Pentru m = n, avem soluția unică: $x = A^{-1} \cdot b$.
- Pentru m < n, avem o infinitate de soluții.

Există m coloane liniar independente ale matricei A, care formează o matrice de bază: $B = (A^{s_1}A^{s_2}...A^{s_m})$.

Restul coloanelor formează matricea R.

Partiționarea matricei: A = (B : R).

Notăm mulțimea de indici corespunzătoare coloanelor lui $\,B\,$ cu

$$\mathsf{B} = \{s_1, s_2, ..., s_m\},\,$$

iar mulțimea de indici corespunzătoare coloanelor lui R cu

$$\mathsf{R} = \big\{1, 2, ..., n\big\} \setminus \mathsf{B}.$$

Partiționarea variabilei
$$x \in \mathbb{R}^{t}$$
, $x = \begin{pmatrix} x_{B} \\ x_{R} \end{pmatrix}$, în care,

$$x_{\mathrm{B}} = (x_i)_{i \in \mathrm{B}} = (x_{s_1}, x_{s_2}, ..., x_{s_m})^{\mathrm{f}} \in \mathbb{R}^n$$
 variabile de bază (principale)

$$x_{\mathsf{R}} = (x_j)_{j \in \mathsf{R}} \in \mathbf{R}^{n-m}$$
 variabile secundare

$$A \cdot x = b \iff B \cdot x_{\mathsf{B}} + R \cdot x_{\mathsf{R}} = b \iff x_{\mathsf{B}} = B^{-1} \cdot b - B^{-1} \cdot R \cdot x_{\mathsf{R}}$$

Vectorul $v \in \mathbb{R}^{n}$ se numeşte soluție a sistemului dacă $A \cdot v = b$.

O soluție a sistemului este numită <u>soluție de bază</u>, dacă componentele ei diferite de zero corespund unor coloane liniar independente ale matricei A.

Pentru orice bază B, se poate obține o soluție de bază:

$$v = \begin{pmatrix} v_{\mathsf{B}} \\ v_{\mathsf{R}} \end{pmatrix} = \begin{pmatrix} \begin{bmatrix} B^{-1} \cdot b \end{bmatrix}_{\mathsf{B}} \\ \mathbf{0}_{\mathsf{R}} \end{pmatrix}$$

Deoarece rang(A) = m, cel mult m componente ale unei soluții de bază pot fi nenule. Dacă soluția de bază are exact m componente nenule, ea se numește **nedegenerată**; în caz contrar ea este **degenerată**.

Probleme de optimizare liniară

O problemă de optimizare constă din minimizarea sau maximizarea unei anumite funcții - numită <u>funcție obiectiv</u> - în prezența unor restricții care trebuie satisfăcute.

Este suficient să studiem doar probleme de minimizare, deoarece

$$\inf \left\{ f(x) \mid x \in \mathsf{P} \right\} = -\sup \left\{ -f(x) \mid x \in \mathsf{P} \right\}$$

Fie $\alpha \in \mathbb{R}^{k}$ şi $\beta \in \mathbb{R}$

Tipuri de restricții în raport cu felul problemei de optimizare:

Forma generală:

Conține toate tipurile de restricții și variabile care pot apărea.

$$\inf \left\{ c_1^{f} \cdot x_1 + c_2^{f} \cdot x_2 + c_3^{f} \cdot x_3 \right\}$$

în raport cu

$$\begin{cases} A_{11} \cdot x_1 + A_{12} \cdot x_2 + A_{13} \cdot x_3 \ge b_1 & \text{concordante} \\ A_{21} \cdot x_1 + A_{22} \cdot x_2 + A_{23} \cdot x_3 = b_2 & \text{egalitate} \\ A_{31} \cdot x_1 + A_{32} \cdot x_2 + A_{33} \cdot x_3 \le b_3 & \text{neconcordante} \\ x_1 \ge \mathbf{0} & x_3 \le \mathbf{0} \end{cases}$$

Datele problemei: $A_{ij} \in \mathbb{R}^{n_i \times n_j}$, $b_i \in \mathbb{R}^{n_i}$, $c_j \in \mathbb{R}^{n_j}$, $1 \le i \le 3$, $1 \le j \le 3$.

Necunoscutele problemei sunt grupate în trei variabile vectoriale:

$$x_1$$
 - are componente nenegative; $x_j \in \mathbb{R}^{y_j}, 1 \le j \le 3,$ x_2 - oarecare; x_3 - are componente nepozitive.

Forma standard:

Conține restricții egalitate și variabile nenegative.

$$\inf \left\{ c^{\mathsf{f}} \cdot x \mid A \cdot x = b, \, x \ge 0 \right\}$$

Datele problemei: $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$, $c \in \mathbb{R}^n$.

Forma canonică:

Conține restricții concordante și variabile nenegative.

$$\inf \left\{ c^{\mathsf{f}} \cdot x \mid A \cdot x \ge b, \, x \ge 0 \right\}$$

Datele problemei: $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$, $c \in \mathbb{R}^n$.

Forma mixtă:

Conține restricții concordante și egalitate, și variabile nenegative.

$$\inf \left\{ c^{\mathsf{f}} \cdot x \middle| \begin{array}{l} A_1 \cdot x \ge b_1 \\ A_2 \cdot x = b_2 \end{array} \right., \quad x \ge 0 \right\}$$

Datele problemei: $\begin{cases} A_1 \in \mathbf{R}^{n_1 \times n}, & b_1 \in \mathbf{R}^{n_1} \\ A_2 \in \mathbf{R}^{n_2 \times n}, & b_2 \in \mathbf{R}^{n_2} \end{cases}, \quad c \in \mathbf{R}^n.$

Formele problemelor de programare liniară sunt echivalente!

Alegerea formei → în funcție de necesități:

- > forma standard pentru algoritmi;
- forma canonica pentru dualitate.

Transformări echivalente:

- Sensul unei inegalități se schimbă prin înmulțire cu 1.
- Transformarea unei inegalități într-o ecuație:

$$\begin{cases} \alpha^{\mathsf{f}} \cdot x \leq \beta & \Leftrightarrow & \alpha^{\mathsf{f}} \cdot x + y = \beta \\ \alpha^{\mathsf{f}} \cdot x \geq \beta & \Leftrightarrow & \alpha^{\mathsf{f}} \cdot x - y = \beta \end{cases}, \quad y \geq 0$$

y se numeşte variabilă ecart (slack variable).

Transformarea unei ecuații în inegalități:

$$\alpha^{\mathsf{f}} \cdot x = \beta \iff \begin{cases} \alpha^{\mathsf{f}} \cdot x \leq \beta \\ \alpha^{\mathsf{f}} \cdot x \geq \beta \end{cases}$$

- O variabilă nepozitivă $x \le 0 \iff x' = -x \ge 0$.
- O variabilă oarecare $x \in \mathbb{R} \iff x = x^+ x^-,$ unde $x^+ \ge 0, x^- \ge 0.$

Teorema fundamentală a programări liniare

Considerăm problema de programare liniară în forma standard:

$$\inf\left\{c^{\mathsf{f}} \cdot x \mid A \cdot x = b, \ x \ge \mathbf{0}\right\} \tag{P}$$

Fără a restrânge generalitatea, presupunem: rang(A) = m < n.

Vectorul $v \in \mathbb{R}^n$ se va numi soluție admisibilă a problemei (P), dacă $A \cdot v = b, \ v \ge 0$.

O soluție admisibilă $v \in \mathbb{R}^t$ este o soluție optimă a problemei (P), dacă oricare ar fi soluția admisibilă y, ave $mv \le c^f \cdot y$.

Teoremă:

- 1. Dacă problema (P) are o soluție admisibilă, atunci ea are și o soluție admisibilă de bază.
- Dacă problema (P) are o soluție optimă, atunci ea are şi o soluție optimă de bază.

Demonstrație.

Fie $v \in \mathbb{R}$ o soluție admisibilă a problemei (P).

Considerăm
$$v = (v_1, v_2, ..., v_k, 0, ..., 0)^f$$
, $v_i > 0$, $i = \overline{1, k}$.

- $k = 0 \implies v = 0$ este evident o soluție de bază.
- \triangleright $k \ge 1$. Dacă $\{A^1, A^2, ..., A^k\}$ sunt liniar independente, atunci ν este o soluție admisibilă de bază.

Dacă $\{A^1, A^2, ..., A^k\}$ sunt liniar dependente, $\exists y_i \in \mathbb{R}, i = \overline{1, k}, \sum_{i=1}^k |y_i| > 0$, astfel încât: $\sum_{i=1}^k A^i y_i = \mathbf{0}$.

Considerăm: $y \in \mathbb{R}^{k}$, $y = (y_1, y_2, ..., y_k, 0, ..., 0)^{f}$. Rezultă: $y \neq \mathbf{0}$, şi $A \cdot y = \mathbf{0}$

Definim vectorul: $x(\lambda) = v + \lambda y$, $\lambda \in \mathbb{R}$

Avem: $A \cdot x(\lambda) = A \cdot (v + \lambda y) = A \cdot v + \lambda A \cdot y = A \cdot v = b$,

deci, $x(\lambda)$ este o soluție a sistemului $A \cdot x = b$ pentru orice $\lambda \in \mathbb{R}$

Decarece
$$x_i(\lambda) = 0$$
, $i = k+1, n$, avem:

$$x(\lambda) \ge \mathbf{0} \iff x_i(\lambda) = v_i + \lambda y_i \ge 0, \text{ pentru } i = \overline{1, k}.$$

$$\lambda \ge \frac{-v_i}{y_i} \text{ dacă } y_i > 0, \qquad \lambda \le \frac{-v_i}{y_i} \text{ dacă } y_i < 0.$$

$$\lambda' = \left\{ \max_{1 \le i \le k} \left\{ \frac{-v_i}{y_i} \middle| y_i > 0 \right\} \right. \text{ dacă există } y_i > 0,$$

$$-\infty \qquad \text{ dacă nu există } y_i > 0,$$

$$\lambda' = \begin{cases} \max_{1 \le i \le k} \left\{ \frac{-v_i}{y_i} \mid y_i > 0 \right\} \\ -\infty \end{cases}$$

$$\lambda'' = \begin{cases} \min_{1 \le i \le k} \left\{ \frac{-v_i}{y_i} \middle| y_i < 0 \right\} & \text{dacă există} \ y_i < 0, \\ +\infty & \text{dacă nu există} \ y_i < 0, \end{cases}$$

deci, $\forall \lambda \in [\lambda', \lambda''] \Rightarrow x(\lambda) \ge 0$, adică <u>este soluție admisibilă</u>.

Observație: cel puțin una dintre valorile λ', λ'' este finită!

Pentru $\lambda_0 = \text{finit}\{\lambda', \lambda''\} \implies \exists i_0, 1 \le i_0 \le k, \text{ astfel încât } v_{i_0} + \lambda_0 y_{i_0} = 0.$

Deci, vectorul $x(\lambda_0)$ este o soluție <u>admisibilă</u> a problemei (P) și are cel mult (k-1) componente nenule.

Fie $\overline{v} \in \mathbb{R}^i$ o soluție optimă a problemei (P) cu $\overline{v}_i > 0$, $i = \overline{1, k}$.

Raționăm analog ca în cazul precedent: ...

Dacă $\{A^1, A^2, ..., A^k\}$ sunt liniar dependente, există un interval astfel încât $\forall \lambda \in [\lambda', \lambda''] \Rightarrow x(\lambda) = \overline{v} + \lambda y$ este soluție admisibilă.

Din relația: $c^f \cdot \overline{v} \le c^f \cdot x(\lambda) = c^f \cdot \overline{v} + \lambda c^f \cdot y$

rezultă: $\forall \lambda \in [\lambda', \lambda'']$ avem $\lambda c^{f} \cdot y \ge 0$.

Observație: Deoarece $\lambda' < 0$, $\lambda'' > 0 \implies c^f \cdot y = 0$.

În caz contrar, luând $\lambda = -sign\{c^f \cdot y\} \Rightarrow \lambda c^f \cdot y < 0$,

Deci, c $\dot{x}(\lambda) = c^{f} \cdot \overline{v}$, adică, $\forall \lambda \in [\lambda', \lambda''], x(\lambda)$ este optimă.

Pentru $\lambda_0 = \text{finit}\{\lambda', \lambda''\} \implies \exists i_0, 1 \le i_0 \le k, \text{ astfel încât } \overline{v}_{i_0} + \lambda_0 y_{i_0} = 0.$

Deci, vectorul $x(\lambda_0)$ este o soluție <u>optimă</u> a problemei (P) și are cel mult (k-1) componente nenule.

În general, mulțimea soluțiilor admisibile a problemei (P) este infinită, spre deosebire de cea a soluțiilor admisibile de bază, care are cel mult C_n^m elemente. Importanța teoremei fundamentale a programării liniare constă în aceea că, pentru determinarea unei soluții optime, dacă ea există, căutarea este redusă de la o mulțime infinită, la una finită, fiind suficientă investigarea doar a soluțiilor de bază.

Teoremele algoritmului simplex

Considerăm problema de programare liniară în forma standard:

$$\inf \left\{ c^{\mathsf{f}} \cdot x \mid A \cdot x = b, \ x \ge \mathbf{0} \right\} \tag{P}$$

unde $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$, $c \in \mathbb{R}^n$, rang(A) = m < n.

Considerăm matricea de bază $B = (A^{s_1}A^{s_2}...A^{s_m})$.

Partiționăm matricea A 🛘 🖽 🖫 🖟 și obținem:

$$A \cdot x = b \iff x_{\mathsf{B}} = B^{-1} \cdot b - B^{-1} \cdot R \cdot x_{\mathsf{R}} = \overline{x} - \sum_{j \in \mathsf{R}} Y^{j} x_{j}$$

unde am notat: $\overline{x} = B^{-1} \cdot b \in \mathbb{R}^n$ şi $Y^j = B^{-1} \cdot A^j$, $1 \le j \le n$.

Poziția indicelui $s_i \in B = \{s_1, s_2, ..., s_m\}$ o notăm $loc(s_i) = i$.

Pe componente, sistemul se scrie:

$$x_{s_i} = \overline{x}_i - \sum_{j \in \mathbb{R}} y_{ij} x_j, \quad s_i \in \mathbb{B}, \ i = loc(s_i).$$

În raport cu baza
$$B$$
, soluția de bază este: $x = \begin{pmatrix} x_B \\ x_R \end{pmatrix} = \begin{pmatrix} \overline{x} \\ \mathbf{0} \end{pmatrix} = \begin{pmatrix} B^{-1}b \\ \mathbf{0} \end{pmatrix}$

Matricea de bază B se numește **primal admisibilă**, dacă $B^{-1} \cdot b \ge \mathbf{0}$.

Funcția obiectiv se poate exprima astfel:

ia objectiv se poate exprima astfel:
$$z = c^{\mathsf{f}} \cdot x = c^{\mathsf{f}}_{\mathsf{B}} \cdot x_{\mathsf{B}} + c^{\mathsf{f}}_{\mathsf{R}} \cdot x_{\mathsf{R}} = c^{\mathsf{f}}_{\mathsf{B}} \cdot \left(\overline{x} - \sum_{j \in \mathsf{R}} Y^{j} x_{j} \right) + c^{\mathsf{f}}_{\mathsf{R}} \cdot x_{\mathsf{R}} = c^{\mathsf{f}}_{\mathsf{B}} \cdot \left(\overline{x} - \sum_{j \in \mathsf{R}} \left(c^{\mathsf{f}}_{\mathsf{B}} \cdot Y^{j} - c_{j} \right) x_{j} = \overline{z} - \sum_{j \in \mathsf{R}} \left(z_{j} - c_{j} \right) x_{j}$$

unde am notat: $\overline{z} = c_{\mathsf{B}}^{\mathsf{f}} \cdot \overline{x}, \ z_{i} = c_{\mathsf{B}}^{\mathsf{f}} \cdot Y^{j}, 1 \leq j \leq n.$

Teoremă (optim): Fie B o bază primal admisibilă. Dacă $(z_i - c_i) \le 0$, pentru orice $j \in \mathbb{R}$, atunci baza B este optimă.

Demonstrație. Pentru orice soluție admisibilă *v* ∈ **R** avem:

$$z = c^{\mathsf{f}} \cdot v = \overline{z} - \sum_{j \in \mathsf{R}} (z_j - c_j) v_j \ge \overline{z}.$$

Teoremele algoritmului simplex

Considerăm problema de programare liniară în forma standard:

$$\inf \left\{ c^{\mathsf{f}} \cdot x \mid A \cdot x = b, \ x \ge \mathbf{0} \right\} \tag{P}$$

unde $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$, $c \in \mathbb{R}^n$, rang(A) = m < n.

Considerăm matricea de bază $B = (A^{s_1}A^{s_2}...A^{s_m})$.

Partiționăm matricea A 🛘 🗀 🖺 🖟 Şi obținem:

$$A \cdot x = b \iff x_{\mathsf{B}} = B^{-1} \cdot b - B^{-1} \cdot R \cdot x_{\mathsf{R}} = \overline{x} - \sum_{j \in \mathsf{R}} Y^{j} x_{j}$$

unde am notat: $\overline{x} = B^{-1} \cdot b \in \mathbb{R}^n$ și $Y^j = B^{-1} \cdot A^j$, $1 \le j \le n$.

Poziția indicelui $s_i \in B = \{s_1, s_2, ..., s_m\}$ o notăm $loc_B(s_i) = i$.

Pe componente, sistemul se scrie:

$$x_{s_i} = \overline{x}_i - \sum_{j \in \mathbb{R}} y_{ij} x_j, \quad s_i \in \mathbb{B}, \ i = loc_{\mathbb{B}}(s_i).$$

Soluția de bază corespunzătoare lui
$$B: x = \begin{pmatrix} x_B \\ x_R \end{pmatrix} = \begin{pmatrix} \overline{x} \\ \mathbf{0} \end{pmatrix} = \begin{pmatrix} B^{-1}b \\ \mathbf{0} \end{pmatrix}$$

Matricea de bază B se numește **primal admisibilă**, dacă $B^{-1} \cdot b \ge \mathbf{0}$.

Funcția obiectiv se poate exprima astfel:

ia objectiv se poate exprima astřel:
$$z = c^{\mathsf{f}} \cdot x = c^{\mathsf{f}}_{\mathsf{B}} \cdot x_{\mathsf{B}} + c^{\mathsf{f}}_{\mathsf{R}} \cdot x_{\mathsf{R}} = c^{\mathsf{f}}_{\mathsf{B}} \cdot \left(\overline{x} - \sum_{j \in \mathsf{R}} Y^{j} x_{j} \right) + c^{\mathsf{f}}_{\mathsf{R}} \cdot x_{\mathsf{R}} = c^{\mathsf{f}}_{\mathsf{B}} \cdot \left(\overline{x} - \sum_{j \in \mathsf{R}} \left(c^{\mathsf{f}}_{\mathsf{B}} \cdot Y^{j} - c_{j} \right) x_{j} = \overline{z} - \sum_{j \in \mathsf{R}} \left(z_{j} - c_{j} \right) x_{j}$$

unde am notat: $\overline{z} = c_{\mathsf{B}}^{\mathsf{f}} \cdot \overline{x}, \ z_{i} = c_{\mathsf{B}}^{\mathsf{f}} \cdot Y^{j}, 1 \leq j \leq n.$

Teoremă (optim): Fie B o bază primal admisibilă. Dacă $(z_i - c_i) \le 0$, pentru orice $j \in \mathbb{R}$, atunci baza B este optimă.

Demonstrație. Pentru orice soluție admisibilă $v \in \mathbb{R}$ avem:

$$z = c^{\mathsf{f}} \cdot v = \overline{z} - \sum_{j \in \mathsf{R}} (z_j - c_j) v_j \ge \overline{z}.$$

Teoremă (optim infinit): Fie B o bază primal admisibilă. Dacă există un indice $k \in \mathbb{R}$, astfel încât $(z_k - c_k) > 0$, şi $Y^k = B^{-1} \cdot A^k \leq \mathbf{0}$, atunci problema (P) are optimul (-)infinit.

<u>Demonstrație.</u> Fie $\lambda \in \mathbb{R}$, $\lambda \ge 0$. Definim vectorul:

$$x(\lambda) = \begin{pmatrix} x_{\mathsf{B}}(\lambda) = \overline{x} - \lambda Y^{k} \\ x_{\mathsf{R}}(\lambda) = \lambda e^{loc_{\mathsf{R}}(k)} \end{pmatrix}, \quad \text{unde} \quad e^{loc_{\mathsf{R}}(k)} \in \mathbf{R}^{n-m}$$
este vector unitar.

Se verifică fără dificultate că: $x(\lambda) \ge 0$,

$$A \cdot x(\lambda) = B \cdot x_{\mathsf{B}}(\lambda) + R \cdot x_{\mathsf{R}}(\lambda) = b - \lambda A^{k} + \lambda A^{k} = b.$$

Rezultă, $\forall \lambda \geq 0$, $x(\lambda)$ este soluție admisibilă pentru (P).

Funcția obiectiv este:
$$c^{\text{f}} \cdot x(\lambda) = c_{\text{B}}^{\text{f}} \cdot x_{\text{B}}(\lambda) + c_{\text{R}}^{\text{f}} \cdot x_{\text{R}}(\lambda) =$$

$$= c_{\text{B}}^{\text{f}} \cdot (\overline{x} - \lambda Y^{k}) + \lambda c_{k} = \overline{z} - \lambda (z_{k} - c_{k})$$

Deoarece
$$(z_k - c_k) > 0$$
, rezultă: $\lim_{\lambda \to \infty} c^f \cdot x(\lambda) = -\infty$.

Observație.

În condițiile Teoremei de optim infinit, baza B definește o soluție nenulă $\{Aax$ sist θ mului 0nogen

$$v \in \mathbb{R}^{t}, \quad v = \begin{pmatrix} v_{\mathsf{B}} = -Y^{k} \\ v_{\mathsf{R}} = e^{loc_{\mathsf{R}}(k)} \end{pmatrix}$$

Acest vector reprezintă o direcție (rază) de-a lungul căreia soluțiile admisibile

$$x(\lambda) = \begin{pmatrix} \overline{x}_{B} \\ \mathbf{0}_{R} \end{pmatrix} + \lambda v \quad \text{sunt nemărginite.}$$

Vectorul v se mai numește *direcția spre* (–) *infinit*, și împreună cu soluția de bază, pentru $\lambda \in [0, \infty)$, descrie o muchie nemărginită a domeniului de admisibilitate.

Lema (substituției): Fie $B = (A^{s_1}A^{s_2}\cdots A^{s_m}) \in \mathbb{R}^{n \times m}$ nesingulară şi vectorul $A^k \in \mathbb{R}^n$, $k \notin B = \{s_1, s_2, ..., s_m\}$. Considerăm matricea:

$$\widehat{B} = \left(A^{s_1} \cdots A^{s_{r-1}} A^k A^{s_{r+1}} \cdots A^{s_m}\right).$$

Notăm vectorul $Y^k = B^{-1}A^k = (y_{1k}, y_{2k}, ..., y_{mk})^f$.

Au loc următoarele afirmații:

$$\rightarrow$$
 det $B \neq 0 \iff y_{rk} \neq 0$, unde $r = loc_B(s_r)$.

> Pentru
$$y_{rk} \neq 0$$
, avem: $B^{-1} = E_r(\eta) \cdot B^{-1}$

unde
$$\eta = \left(\frac{-y_{1k}}{y_{rk}}, \dots, \frac{-y_{r-1,k}}{y_{rk}}, \frac{1}{y_{rk}}, \frac{-y_{r+1,k}}{y_{rk}}, \dots, \frac{-y_{mk}}{y_{rk}}\right)^{\mathsf{f}}$$

$$E_r(\eta) = \left(e^1 \cdots e^{r-1} \eta e^{r+1} \cdots e^m\right) = \begin{pmatrix} \ddots & \vdots & \vdots & \\ & \ddots & 1 & \cdots & \frac{-y_{ik}}{y_{rk}} & \cdots \\ & \vdots & \ddots & \vdots & \\ & \cdots & 0 & \cdots & \frac{1}{y_{rk}} & \cdots \\ & \vdots & \ddots & \vdots & \\ & \cdots & 0 & \cdots & \frac{1}{y_{rk}} & \cdots \\ & \vdots & \ddots & \vdots & \\ & \vdots & \vdots & \ddots & \\ \end{pmatrix},$$

Demonstrație. Din notația $Y^k = B^{-1}A^k$ rezultă: $A^k = B \cdot Y^k = \sum_{i=1}^m A^{s_i} y_{jk}$

Fie det $B \neq 0$.

Prin absurd, $y_{rk} = 0 \Rightarrow$ coloanele lui \hat{B} liniar dependente. Contradicție! Fie acum $y_{rk} \neq 0$.

Prin absurd, $\det B = 0 \implies$ are coloanele liniar dependente. Deci, există

$$\lambda_j \in \mathbb{R}, \ \sum_{j=1}^m \left| \lambda_j \right| > 0, \ \text{astfel încât} \ \sum_{j=1, \ j \neq r}^m A^{s_j} \lambda_j + A^k \lambda_r = 0.$$

Avem: $\lambda_r \neq 0$. În caz contrar obținem $\det B = 0$. Contradicție!

Înlocuind pe A^k şi regrupând termenii, obținem:

$$\sum_{j=1, j\neq r}^{m} A^{s_j} \left(\lambda_j + y_{jk} \lambda_r \right) + A^{s_r} y_{rk} \lambda_r = \mathbf{0},$$

adică o combinație liniară de coloane ale matricei B care este egală cu zero și deci toți coeficienții trebuie să fie nuli. Dar, $y_{rk}\lambda_r \neq 0$. Contradicție!

Coloanele lui B şi B coincid pentru $j \neq r$. Avem deci,

$$A^{s_j} = \hat{B} \cdot e^j$$
, $j \neq r$.

Deoarece $y_{rk} \neq 0$, din relația $A^k = \sum_{j=1}^m A^{s_j} y_{jk}$ rezultă:

$$A^{s_r} = \sum_{j=1, j \neq r}^m A^{s_j} \left(\frac{-y_{jk}}{y_{rk}} \right) + A^k \frac{1}{y_{rk}} = \hat{B} \cdot \eta$$

Prin urmare, putem scrie:

$$B = \mathcal{B} \cdot E_r(\eta) \iff \mathcal{B}^{-1} = E_r(\eta) \cdot B^{-1}.$$

Teoremă (schimbarea bazei): Fie $B = (A^{s_1}A^{s_2}\cdots A^{s_m})$ o bază primal admisibilă. Presupunem că există $k \in \mathbb{R}$, astfel încât $(z_k - c_k) > 0$ şi vectorul $Y^k = B^{-1} \cdot A^k$ are cel puțin un element pozitiv. Dacă alegem indicele $s_r \in \mathbb{B}$, $loc_{\mathbb{B}}(s_r) = r$, astfel încât

$$\frac{\overline{x}_r}{y_{rk}} = \min_{1 \le i \le m} \left\{ \frac{\overline{x}_i}{y_{ik}} \mid y_{ik} > 0 \right\},\,$$

atunci, matricea $\mathcal{B} = \left(A^{s_1} \cdots A^{s_{r-1}} A^k A^{s_{r+1}} \cdots A^{s_m}\right)$ este o bază primal admisibilă, pentru care $\tilde{z} = c_{\mathsf{B}}^{\mathsf{f}} \cdot \mathcal{B}^{-1} \cdot b \leq c_{\mathsf{B}}^{\mathsf{f}} \cdot \mathcal{B}^{-1} \cdot b = \overline{z}$.

Demonstrație. Evident, $y_{rk} > 0$. Din Lema substituției rezultă că \hat{B} este o matrice nesingulară.

Trebuie arătat că $\hat{B}^{-1} \cdot b \ge 0$.

$$\mathbf{B}^{-1} \cdot b = E_r(\eta) \cdot B^{-1} \cdot b = E_r(\eta) \cdot \overline{x} =$$

$$= \begin{pmatrix}
\vdots & \vdots & \vdots \\
\vdots & 1 & \cdots & \frac{-y_{ik}}{y_{rk}} & \cdots \\
\vdots & \vdots & \ddots & \vdots \\
\vdots & 0 & \cdots & \frac{1}{y_{rk}} & \cdots \\
\vdots & \vdots & \ddots & \vdots \\
\vdots & \vdots \vdots & \vdots & \vdots \\$$

Evident,
$$\frac{\overline{x}_r}{y_{rk}} \ge 0$$
. Dacă $y_{ik} < 0$, $\Rightarrow \overline{x}_i - y_{ik} \frac{\overline{x}_r}{y_{rk}} \ge 0$. Dacă $y_{ik} > 0$, $\Rightarrow \overline{x}_i - y_{ik} \frac{\overline{x}_r}{y_{rk}} \ge 0$. Dacă $y_{ik} > 0$, $\Rightarrow \overline{x}_i - y_{ik} \frac{\overline{x}_r}{y_{rk}} = \underbrace{y_{ik}}_{>0} \underbrace{\left(\frac{\overline{x}_i}{y_{rk}} - \frac{\overline{x}_r}{y_{rk}}\right)}_{>0} \ge 0$.

Dacă
$$y_{ik} > 0$$
, $\Rightarrow \overline{x}_i - y_{ik} \frac{\overline{x}_r}{y_{rk}} = \underbrace{y_{ik}}_{>0} \underbrace{\left(\frac{\overline{x}_i}{x_i} - \frac{\overline{x}_r}{x_r}\right)}_{>0} \ge 0$

Ținând seama că pentru $k \in \mathbf{B}$ avem $loc_{\mathbf{R}}(k) = r$, obținem:

$$\tilde{z} = c_{\mathsf{B}}^{\mathsf{f}} \cdot \tilde{B}^{-1} \cdot b = c_{\mathsf{B}}^{\mathsf{f}} \cdot E_{r}(\eta) \cdot B^{-1} \cdot b = c_{\mathsf{B}}^{\mathsf{f}} \cdot E_{r}(\eta) \cdot \overline{x} =$$

$$=\left(\cdots,c_{s_{i}},\cdots,c_{k},\cdots\right)\cdot\left(\begin{array}{cccc} \ddots & \vdots & & \vdots & \\ \cdots & 1 & \cdots & \frac{-y_{ik}}{y_{rk}} & \cdots \\ \vdots & \ddots & \vdots & & \\ \cdots & 0 & \cdots & \frac{1}{y_{rk}} & \cdots \\ \vdots & & \vdots & \ddots \end{array}\right)\cdot\overline{x}=$$

$$= \left(\cdots, c_{s_i}, \cdots, \sum_{i \neq r} \frac{-c_{s_i} y_{ik}}{y_{rk}} + \frac{c_k}{y_{rk}}, \cdots\right) \cdot \overline{x} =$$

$$= \sum_{i \neq r} c_{s_i} \overline{x}_i - \left(\sum_{i \neq r} c_{s_i} y_{ik} - c_k\right) \frac{\overline{x}_r}{y_{rk}} + c_{s_r} \overline{x}_r - c_{s_r} y_{rk} \frac{\overline{x}_r}{y_{rk}} =$$

$$=\sum_{\substack{t=1\\\overline{z}}}^{m} c_{s_i} \overline{x}_i - \left(\sum_{\substack{t=1\\z_k}}^{m} c_{s_i} y_{ik} - c_k\right) \frac{\overline{x}_r}{y_{rk}} = \overline{z} - \left(\sum_{\substack{t=1\\z_k}}^{m} c_{s_i} \overline{x}_r\right) \underbrace{\overline{x}_r}_{y_{rk}} \le \overline{z}.$$

Pașii algoritmului simplex

- Pasul 0. Se determină (dacă există?!) o bază primal admisibilă B şi se calculează B-1.
- Pasul 1. Se calculează $\overline{x} = B^{-1} \cdot b$, $\overline{z} = c_{\mathsf{B}}^{\mathsf{f}} \cdot \overline{x}$, $Y = B^{-1} \cdot A$, $z^{\mathsf{f}} c^{\mathsf{f}} = c_{\mathsf{B}}^{\mathsf{f}} \cdot Y c^{\mathsf{f}}$.
- Pasul 2. (test de optimalitate) Dacă $z-c \le 0$, atunci s-a obținut valoarea optimă \overline{z} , şi soluția optimă de bază $x_{\rm B} = \overline{x}$, $x_{\rm R} = 0$. STOP.
- Pasul 3. (test de optim infinit) Dacă $\exists k \in \mathbb{R}$ pentru care $z_k c_k > 0$ şi $Y^k \leq \mathbf{0}$, atunci problema are optim (-)infinit. STOP.
- Pasul 4. (schimbarea bazei) Se alege $k \in \mathbb{R}$ cu $z_k c_k > 0$ şi de determină $s_r \in \mathbb{B}$, $loc(s_r) = r$, astfel încât $\frac{\overline{x_r}}{y_{rk}} = \min_{1 \le i \le m} \left\{ \frac{\overline{x_i}}{y_{ik}} \mid y_{ik} > 0 \right\}.$

Se formează matricea $\mathcal{B} = B \setminus A^{s_r} \cup A^k$, se calculează inversa $\mathcal{B}^{-1} = E_r(\eta) \cdot B^{-1}$ și se revine la Pasul 1.

Formule pentru schimbarea bazei

Fiecare iterație a algoritmului simplex este caracterizată de inversa bazei primal admisibile B^{-1} .

$$\overline{x} = B^{-1} \cdot b; \quad u^{f} = c_{B}^{f} \cdot B^{-1};$$

$$\overline{z} = c_{B}^{f} \cdot \overline{x} = c_{B}^{f} \cdot B^{-1} \cdot b = u^{f} \cdot b;$$

$$Y = B^{-1} \cdot A;$$

$$z^{f} - c^{f} = c_{B}^{f} \cdot Y - c^{f} = u^{f} \cdot A - c^{f}$$

Componentele vectorului u se numesc multiplicatori simplex.

Componentele lui z-c se numesc costuri reduse.

Recalcularea elementelor din algoritmul simplex în urma schimbării unei baze se face cu ajutorul Lemei substituției. (Sunt cunoscuți indicii s_r și k, precum și vectorul Y^k .)

Valoarea nouă ← Formulă de calcul cu valori vechi

Valorile pentru noua inversă a matricei de bază:

Notăm:
$$B^{-1} = \left(\beta_{ij}\right)_{\substack{1 \le i \le m \\ 1 \le j \le m}} B^{-1} = \left(\tilde{\beta}_{ij}\right)_{\substack{1 \le i \le m \\ 1 \le j \le m}}$$

Avem:

$$\hat{\boldsymbol{B}}^{-1} = \boldsymbol{E}_r(\boldsymbol{\eta}) \cdot \boldsymbol{B}^{-1},$$

de unde rezultă:

$$\tilde{\beta}_{ij} = \beta_{ij} - \frac{\beta_{rj} y_{ik}}{y_{rk}} \text{ pentru } i = \overline{1, m}, i \neq r, j = \overline{1, m};$$

$$\tilde{\beta}_{rj} = \frac{\beta_{rj}}{y_{rk}} \text{ pentru } j = \overline{1, m}.$$

Valorile soluției de bază:

$$\widetilde{x} = \widetilde{B}^{-1} \cdot b = E_{r}(\eta) \cdot B^{-1} \cdot b = E_{r}(\eta) \cdot \overline{x} =$$

$$\begin{pmatrix}
\ddots & \vdots & & \vdots \\
\ddots & 1 & \cdots & \frac{-y_{ik}}{y_{rk}} & \cdots \\
\vdots & \vdots & \ddots & \vdots \\
\vdots & \overline{x_{i}} & \frac{y_{ik}}{y_{rk}} \overline{x_{r}} \\
\vdots & \vdots & \ddots & \vdots \\
\vdots & \overline{x_{r}} & \frac{\overline{x_{r}}}{y_{rk}} \\
\vdots & \vdots & \ddots & \vdots
\end{pmatrix}$$

$$= \begin{pmatrix}
\vdots & \vdots & \vdots & \vdots \\
\overline{x_{i}} - \frac{y_{ik}}{y_{rk}} \overline{x_{r}} \\
\vdots & \vdots & \vdots \\
\overline{x_{r}} & \vdots & \ddots & \vdots
\end{pmatrix}$$

$$\tilde{x}_i = \overline{x}_i - \frac{y_{ik}}{y_{rk}} \overline{x}_r$$
 pentru $i \neq r$;
 $\tilde{x}_r = \frac{\overline{x}_r}{y_{rk}}$ unde $r = loc(k)$ pentru $k \in \mathbb{B}$.

Valorile pentru multiplicatorii simplex:

$$\tilde{u}^{\mathsf{f}} = c_{\mathsf{B}}^{\mathsf{f}} \cdot \tilde{\boldsymbol{B}}^{-1} = (\cdots, c_{s_i}, \cdots, c_k, \cdots) \cdot E_r(\eta) \cdot \boldsymbol{B}^{-1}$$

Componenta j:

$$\tilde{u}_{j} = \left(\cdots, c_{s_{i}}, \cdots, \sum_{i \neq r} \frac{-c_{s_{i}} y_{ik}}{y_{rk}} + \frac{c_{k}}{y_{rk}}, \cdots\right) \cdot \left(\begin{array}{c} \vdots \\ \beta_{ij} \\ \vdots \\ \beta_{rj} \\ \vdots \end{array}\right) = 0$$

$$= \sum_{i \neq r} c_{s_i} \beta_{ij} - \left(\sum_{i \neq r} c_{s_i} y_{ik} - c_k \right) \frac{\beta_{rj}}{y_{rk}} + c_{s_r} \beta_{rj} - c_{s_r} \beta_{rj} \frac{y_{rk}}{y_{rk}}$$

$$\tilde{u}_j = u_j - (z_k - c_k) \frac{\beta_{rj}}{y_{rk}}, \quad 1 \le j \le m.$$

Pentru matricea $\hat{Y} = \hat{B}^{-1} \cdot A$, coloana \hat{Y}^{j} , $j = \overline{1, n}$ este:

$$\tilde{Y}^{j} = \mathcal{B}^{-1} \cdot A^{j} = E_{r}(\eta) \cdot \mathcal{B}^{-1} \cdot A^{j} = E_{r}(\eta) \cdot Y^{j} = \begin{pmatrix} \vdots \\ y_{ij} - \frac{y_{ik}}{y_{rk}} y_{rj} \\ \vdots \\ \frac{y_{rj}}{y_{rk}} \\ \vdots \end{pmatrix}$$

$$\tilde{y}_{ij} = y_{ij} - \frac{y_{ik}}{y_{rk}} y_{rj} \text{ pentru } i = \overline{1, m}, i \neq r;$$

$$\tilde{y}_{rj} = \frac{y_{rj}}{y_{rk}}$$

Valoarea funcției obiectiv:

$$\tilde{z} = c_{\mathsf{B}}^{\mathsf{f}} \cdot \tilde{\boldsymbol{B}}^{-1} \cdot \boldsymbol{b} = \tilde{\boldsymbol{u}}^{\mathsf{f}} \cdot \boldsymbol{b} = \sum_{j=1}^{m} \tilde{\boldsymbol{u}}_{j} \boldsymbol{b}_{j}$$

$$\tilde{z} = \sum_{j=1}^{m} \left(u_j - (z_k - c_k) \frac{\beta_{rj}}{y_{rk}} \right) b_j = \sum_{j=1}^{m} u_j b_j - \frac{(z_k - c_k)}{y_{rk}} \sum_{j=1}^{m} \beta_{rj} b_j$$

$$\tilde{z} = \overline{z} - \frac{(z_k - c_k)}{y_{rk}} \overline{x}_r$$

Valoarea costurilor reduse:

$$\begin{split} \tilde{z}_{j} - c_{j} &= c_{\mathsf{B}}^{\mathsf{f}} \cdot \tilde{B}^{-1} \cdot A^{j} - c_{j} = \tilde{u}^{\mathsf{f}} \cdot A^{j} - c_{j} = \\ &= \sum_{i=1}^{m} \tilde{u}_{i} a_{ij} - c_{j} = \sum_{i=1}^{m} \left(u_{i} - (z_{k} - c_{k}) \frac{\beta_{ri}}{y_{rk}} \right) a_{ij} - c_{j} = \\ &= \left(\sum_{i=1}^{m} u_{i} a_{ij} - c_{j} \right) - \frac{(z_{k} - c_{k})}{y_{rk}} \sum_{i=1}^{m} \beta_{ri} a_{ij} \end{split}$$

$$\tilde{z}_j - c_j = (z_j - c_j) - \frac{(z_k - c_k) y_{rj}}{y_{rk}}, \quad 1 \le j \le n.$$

Organizarea calculelor

Tabloul simplex standard

$$\overline{z} = \sum_{i=1}^{m} c_{s_i} \overline{x}_i$$

$$z_{j} - c_{j} = \sum_{i=1}^{m} c_{s_{i}} y_{ij} - c_{j}$$

Tabloul simplex revizuit

$$x_{\mathsf{B}}$$
 x_{B} x_{B}

<u>св</u>	V.B.			x_k
C_{S_i}	x_{s_i}	x_i	$arDelta_{ij}$	y_{ik}
C_{S_r}	x_{s_r}	x_r		y_{rk}
		_ Z	u_j	$z_k \square c_k$

$$\overline{z} = \sum_{i=1}^{m} c_{s_i} \overline{x}_i$$

$$u_j = \sum_{i=1}^{m} c_{s_i} \beta_{ij}$$

$$z_k - c_k = u^f \cdot A^k - c_k > 0$$

$$Y^k = B^{-1} \cdot A^k$$

Regula dreptunghiului

Elementul $y_{rk} \neq 0$, se numeşte pivot. Restul elementelor le redenumim t_{ii} .

Linia pivotului se împarte la pivot:

$$\tilde{t}_{rj} = \frac{t_{rj}}{y_{rk}}, \quad \forall \ j = \overline{0, n}.$$

Coloana pivotului devine un vector unitar:

$$\tilde{t}_{rk} = 1$$
 şi $\tilde{t}_{ik} = 0$, $\forall i = 1, m+1, i \neq r$

Restul elementelor din tablou, se calculează după regula dreptunghiului:

$$\widetilde{t}_{ij} = t_{ij} - \frac{t_{rj} t_{ik}}{y_{rk}}, \quad
\begin{cases}
\forall i = \overline{1, m+1}, i \neq r, \\
\forall j = \overline{0, n}, j \neq k.
\end{cases}$$

Determinarea unei baze primal admisibile

Considerăm problema de programare liniară în forma standard:

$$\inf\left\{ c^{\mathsf{f}} \cdot x \mid A \cdot x = b, \ x \ge \mathbf{0} \right\} \tag{P}$$

unde $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$, $b \ge 0$, $c \in \mathbb{R}^n$.

Acestei probleme îi asociem problema artificială:

$$\min\left\{\mathbf{e}^{\mathsf{f}}\cdot x^{a} \mid A\cdot x + \mathbf{I}_{m}\cdot x^{a} = b, \ x \geq \mathbf{0}, \ x^{a} \geq \mathbf{0}\right\}$$
 (P_a)

unde
$$\mathbf{e} = (1,...,1)^{f} \in \mathbb{R}^{n}, \quad x^{a} = (x_{n+1}, x_{n+2},..., x_{n+m})^{f} \in \mathbb{R}^{n},$$

iar I_m este matricea unitate de ordinul m.

Proprietăți ale problemei (Pa):

- ightharpoonup matricea restricțiilor: $(A : \mathbf{I}_m) \in \mathbf{R}^{m \times (n+m)}$, $rang(A : \mathbf{I}_m) = m < n+m$;
- $ightharpoonup \mathbf{I}_m$ este o bază primal admisibilă: $\mathbf{I}_m^{-1} \cdot b = b \ge \mathbf{0}$;
- ightharpoonup are o soluție optimă finită: $x^a \ge \mathbf{0} \implies \overline{z}_a = \mathbf{e}^{\mathsf{f}} \cdot x^a = \sum_{i=1}^m x_{n+i} \ge 0$.

Concluzie: (P_a) se poate rezolva cu algoritmul simplex.

Fie B baza optimă a problemei (Pa) iar B mulțimea indicilor de bază.

<u>Teoremă.</u> Dacă valoarea minimă a problemei (P_a), $\overline{z}_a > 0$, atunci problema inițială (P) nu are soluție.

<u>Demonstrație.</u> Prin absurd, dacă (P) are o soluție admisibilă, conform TFPL are și o soluție admisibilă de bază.

Fie B_* baza corespunzătoare. Ea este formată doar din coloane ale matricei A!

Avem: $B_*^{-1} \cdot b \ge 0$, deci B_* este bază primal admisibilă şi pentru (P_a), iar variabilele x^a sunt secundare!

Deci, (P_a) are o soluție admisibilă (de bază), pentru care,

$$x^a = 0 \implies e^f \cdot x^a = 0 < \overline{z}_a \rightarrow \text{valoarea optimă. Contradicție.}$$

<u>Teoremă.</u> Dacă $B \cap \{n+1,...,n+m\} = \emptyset$, atunci $\overline{z}_a = 0$ şi B este o bază primal admisibilă a problemei inițiale (P).

Demonstrație. Evident, B este formată doar din coloane a matricei A.

Teoremă. Dacă valoarea minimă a lui (P_a) este $\overline{z}_a = 0$ și există $n + i_0 \in B$, pentru Care = 0, $\forall j = \overline{1, n}$, $i_0 = loc_B(n + i_0)$, at the $(A) \leq m - 1$

şi restricția i_0 din (P) este o combinație liniară de celelalte restricții.

Demonstrație. Notăm:
$$B^{-1} = (\beta_{ij})_{\substack{1 \le i \le m \\ 1 \le j \le m}}$$
 și $Y = (y_{ij}) = B^{-1} \cdot A$.

$$\text{Din ipoteză,} \quad 0 = y_{i_0 j} = \sum_{k=1}^m \! \beta_{i_0 k} a_{k j} = \sum_{k=1, \ k \neq i_0}^m \! \beta_{i_0 k} a_{k j} + \beta_{i_0 i_0} a_{i_0 j} \ , \ \forall \ j = \overline{1, n} \, .$$

Deoarece B conține vectorul e^{i_0} , în B^{-1} vom avea $\beta_{i_0i_0}=1$.

$$\text{Deci,} \quad a_{i_0 j} = -\sum_{k=1, \ k \neq i_0}^m \beta_{i_0 k} a_{k j}, \ \forall \ j = \overline{1, n} \ , \quad \Longleftrightarrow \quad A_{i_0} = -\sum_{k=1, \ k \neq i_0}^m \beta_{i_0 k} A_k \ ,$$

adică, linia A_{i_0} este combinație liniară de celelalte linii. Deci, $rang(A) \le m-1$.

Sistemul fiind compatibil, rezultă și
$$b_{i_0} = -\sum_{k=1,\ k \neq i_0}^m m{\beta}_{i_0 k} b_k$$
 .

Teoremă. Dacă valoarea minimă a lui (P_a) este $\overline{z}_a = 0$ şi există $n + i_0 \in B$, pentru care $i_0 = loc_B(n + i_0)$, $\exists k \in \{1, ..., n\}$, $y_{i_0 k} \neq 0$, atunci, se poate efectua o schimbare de bază prin care vectorul unitar e^{i_0} din B să fie înlocuit de coloana A^k .

Demonstrație. Din Lema substituției, $y_{i_0 k} \neq 0 \implies \det(B) \neq 0$.

În plus, din formulele de schimbare a bazei, deoarece

$$\overline{x}_{i_0} = 0 \implies \begin{cases} \tilde{x}_i = \overline{x}_i, \forall i = \overline{1, m} \iff \tilde{B}^{-1} \cdot b = B^{-1} \cdot b \ge \mathbf{0}, \\ \tilde{z} = \overline{z}. \end{cases}$$

<u>Observație.</u> Dacă $\overline{z}_a = 0$, toate variabilele artificiale au valoarea zero! inclusiv cele care au mai rămas în bază.

Variabilele artificiale din bază care au valoarea zero, pot fi:

eliminate împreună cu restricția asociată.

sau

înlocuite cu o variabilă a problemei date.

Metoda celor două faze

Exemple

Degenerare și ciclare

Metoda perturbării (A. Charnes, 1952)

$$\inf \left\{ c^{\mathsf{f}} \cdot x \,\middle|\, A \cdot x = b(\varepsilon), \, x \ge \mathbf{0} \right\} \quad \text{cu} \quad b(\varepsilon) = b + \sum_{j=1}^{n} \varepsilon^{j} A^{j}, \quad \varepsilon > 0.$$

Propoziția 1. Fie $B = (A^1, ..., A^m)$ o bază primal admisibilă. Atunci există $\varepsilon^B > 0$ astfel încât $\overline{x}(\varepsilon) = B^{-1} \cdot b(\varepsilon) > 0$, $\forall \varepsilon \in (0, \varepsilon^B)$.

<u>Demonstrație.</u> Avem $\overline{x}(\varepsilon) = \overline{x} + \sum_{j=1}^{n} Y^{j} \varepsilon^{j}$, unde $(Y^{1},...,Y^{m}) = I_{m}$.

Pe componente, pentru
$$i = \overline{1, m}$$
, $\overline{x}_i(\varepsilon) = \overline{x}_i + \varepsilon^i \left(1 + \sum_{j=m+1}^n y_{ij} \varepsilon^{j-i}\right)$.

Rezultă, $\exists \varepsilon_i > 0$, suficient de mic, pentru care $\overline{x}_i(\varepsilon_i) > 0$.

Luăm
$$\varepsilon^B = \min\{\varepsilon_1, ..., \varepsilon_m\}$$
. Rezultă, $\forall \varepsilon \in (0, \varepsilon^B), \overline{x}(\varepsilon) > 0$.

Observație. Dacă în algoritmul simplex alegerea indicelui r nu este unică, după efectuarea iterației se obține o soluție de bază degenerată.

Propoziția 2. Fie B primal admisibilă în condițiile Teoremei de schimbare a bazei și $\overline{x}(\mathcal{E}) > 0$, $\forall \mathcal{E} \in (0, \mathcal{E}^B)$. Atunci, $\exists \mathcal{E}' > 0$ astfel încât criteriul de ieşire din bază este îndeplinit pentru un singur indice r, $\forall \mathcal{E} \in (0, \mathcal{E}')$:

$$\frac{\overline{x}_r(\varepsilon)}{y_{rk}} = \min_{1 \le i \le m} \left\{ \frac{\overline{x}_i(\varepsilon)}{y_{ik}} \middle| y_{ik} > 0 \right\}.$$

Demonstrație. Trebuie ca

adică,
$$\left(\frac{\overline{x}_{s}}{y_{sk}} - \frac{\overline{x}_{t}}{y_{tk}}\right) + \sum_{j=1}^{n} \left(\frac{y_{sj}}{y_{sk}} - \frac{y_{tj}}{y_{tk}}\right) \mathcal{E}_{st}^{j} \neq 0$$
. Dacă $\left(\frac{\overline{x}_{s}}{y_{sk}} - \frac{\overline{x}_{t}}{y_{tk}}\right) = 0$,

$$\Rightarrow \exists p, 1 \le p \le n, \quad \left(\frac{y_{sp}}{y_{sk}} - \frac{y_{tp}}{y_{tk}}\right) \ne 0. \quad \text{Altfel}, \quad \det B = 0!$$

Luăm
$$\varepsilon' = \min \{ \varepsilon_{st} > 0 \mid s \neq t, y_{sk} > 0, y_{tk} > 0 \}.$$

Dualitate în optimizarea liniară

Să se distribuie marfa din depozite la beneficiari, în aşa fel încât, costul total de transport să fie minim.

Dacă notăm
$$x_{ii}$$
, $i = 1, 2, j = 1, 2, 3,$

cantitatea de marfă transportată de la depozitul D*i* către beneficiarul B*j*, modelul matematic este:

$$\min \left\{ 5x_{11} + 2x_{12} + 3x_{13} + 3x_{21} + 4x_{22} + 2x_{23} \right\}$$

$$-x_{11} - x_{12} - x_{13} \ge -13$$

$$-x_{21} - x_{22} - x_{23} \ge -17$$

$$x_{11} + x_{21} \ge 12$$

$$x_{12} + x_{22} \ge 8$$

$$x_{13} + x_{23} \ge 10$$

$$x_{ij} \ge 0, \ i = 1, 2, \ j = 1, 2, 3.$$

Să se stabilească costurile de cumpărare şi vânzare a mărfii în aşa fel încât să se obțină un beneficiu maxim.

Condiție: diferența dintre prețul de vânzare și cel de cumpărare să nu depășească costul unitar de transport de la depozitul Di la beneficiarul Bj.

$$\max \left\{ -13u_1 - 17u_2 + 12v_1 + 8v_2 + 10v_3 \right\}$$

$$v_1 - u_1 \le 5$$

$$v_2 - u_1 \le 2$$

$$v_3 - u_1 \le 3$$

$$v_1 - u_2 \le 3$$

$$v_2 - u_2 \le 4$$

$$v_3 - u_2 \le 2$$

$$u_i \ge 0, \ i = 1, 2, \ v_i \ge 0, \ j = 1, 2, 3.$$

$$\inf \left\{ c_1^{f} \cdot x_1 + c_2^{f} \cdot x_2 + c_3^{f} \cdot x_3 \right\}$$

$$A_{11} \cdot x_1 + A_{12} \cdot x_2 + A_{13} \cdot x_3 \ge b_1$$

$$A_{21} \cdot x_1 + A_{22} \cdot x_2 + A_{23} \cdot x_3 = b_2$$

$$A_{31} \cdot x_1 + A_{32} \cdot x_2 + A_{33} \cdot x_3 \le b_3$$

$$x_1 \ge \mathbf{0}$$

$$x_3 \le \mathbf{0}$$
(P)

Problema duală:

$$\sup \left\{ b_1^{\mathsf{f}} \cdot u_1 + b_2^{\mathsf{f}} \cdot u_2 + b_3^{\mathsf{f}} \cdot u_3 \right\}$$

$$A_{11}^{f} \cdot u_{1} + A_{21}^{f} \cdot u_{2} + A_{31}^{f} \cdot u_{3} \leq c_{1}$$

$$A_{12}^{f} \cdot u_{1} + A_{22}^{f} \cdot u_{2} + A_{32}^{f} \cdot u_{3} = c_{2}$$

$$A_{13}^{f} \cdot u_{1} + A_{23}^{f} \cdot u_{2} + A_{33}^{f} \cdot u_{3} \geq c_{3}$$

$$u_{1} \geq \mathbf{0}$$

$$u_{3} \leq \mathbf{0}$$
(D)

Reguli de asociere a problemelor duale

Unei probleme de minimizare îi corespunde o problemă de maximizare, şi reciproc.

Problema primală:

$$\inf \left\{ c_1^{f} \cdot x_1 + c_2^{f} \cdot x_2 + c_3^{f} \cdot x_3 \right\}$$

în raport cu

$$A_{11} \cdot x_1 + A_{12} \cdot x_2 + A_{13} \cdot x_3 \ge b_1$$

$$A_{21} \cdot x_1 + A_{22} \cdot x_2 + A_{23} \cdot x_3 = b_2$$

$$A_{31} \cdot x_1 + A_{32} \cdot x_2 + A_{33} \cdot x_3 \le b_3$$

$$x_1 \ge \mathbf{0}$$

$$x_3 \le \mathbf{0}$$
(P)

Problema duală:

$$\sup \left\{ b_{1}^{f} \cdot u_{1} + b_{2}^{f} \cdot u_{2} + b_{3}^{f} \cdot u_{3} \right\}$$

$$A_{11}^{f} \cdot u_{1} + A_{21}^{f} \cdot u_{2} + A_{31}^{f} \cdot u_{3} \leq c_{1}$$

$$A_{12}^{f} \cdot u_{1} + A_{22}^{f} \cdot u_{2} + A_{32}^{f} \cdot u_{3} = c_{2}$$

$$A_{13}^{f} \cdot u_{1} + A_{23}^{f} \cdot u_{2} + A_{33}^{f} \cdot u_{3} \geq c_{3}$$

$$u_{1} \geq \mathbf{0}$$

$$u_{3} \leq \mathbf{0}$$
(D)

Reguli de asociere a problemelor duale

- Unei probleme de minimizare îi corespunde o problemă de maximizare, şi reciproc.
- Coeficienții din funcția obiectiv a unei probleme devin coeficienții termenului liber în cealaltă problemă, și reciproc.

Problema primală:

$$\inf \left\{ c_1^{f} \cdot x_1 + c_2^{f} \cdot x_2 + c_3^{f} \cdot x_3 \right\}$$

în raport cu

$$A_{11} \cdot x_{1} + A_{12} \cdot x_{2} + A_{13} \cdot x_{3} \ge b_{1}$$

$$A_{21} \cdot x_{1} + A_{22} \cdot x_{2} + A_{23} \cdot x_{3} = b_{2}$$

$$A_{31} \cdot x_{1} + A_{32} \cdot x_{2} + A_{33} \cdot x_{3} \le b_{3}$$

$$x_{1} \ge \mathbf{0}$$

$$x_{3} \le \mathbf{0}$$
(P)

Problema duală:

$$\sup \left\{ b_1^{\mathsf{f}} \cdot u_1 + b_2^{\mathsf{f}} \cdot u_2 + b_3^{\mathsf{f}} \cdot u_3 \right\}$$

$$A_{11}^{f} \cdot u_{1} + A_{21}^{f} \cdot u_{2} + A_{31}^{f} \cdot u_{3} \leq c_{1}$$

$$A_{12}^{f} \cdot u_{1} + A_{22}^{f} \cdot u_{2} + A_{32}^{f} \cdot u_{3} = c_{2}$$

$$A_{13}^{f} \cdot u_{1} + A_{23}^{f} \cdot u_{2} + A_{33}^{f} \cdot u_{3} \geq c_{3}$$

$$u_{1} \geq \mathbf{0}$$

$$u_{3} \leq \mathbf{0}$$
(D)

Reguli de asociere a problemelor duale

- Unei probleme de minimizare îi corespunde o problemă de maximizare, şi reciproc.
- Coeficienții din funcția obiectiv a unei probleme devin coeficienții termenului liber în cealaltă problemă, şi reciproc.
- Matricea restricțiilor dintr-o problemă este matricea transpusă din cealaltă problemă, şi reciproc.

$$\inf \left\{ c_1^{f} \cdot x_1 + c_2^{f} \cdot x_2 + c_3^{f} \cdot x_3 \right\}$$

$$\begin{vmatrix}
A_{11} \cdot x_1 + A_{12} \cdot x_2 + A_{13} \cdot \\
A_{21} \cdot x_1 + A_{22} \cdot x_2 + A_{23} \cdot \\
A_{31} \cdot x_1 + A_{32} \cdot x_2 + A_{33} \cdot \\
x_1 \ge \mathbf{0}
\end{vmatrix} x_3 \ge b_1$$

$$x_3 \ge b_1$$

$$x_3 = b_2$$

$$x_3 \le b_3$$

$$x_1 \ge \mathbf{0}$$

Problema duală:

$$\sup \left\{ b_1^{\mathsf{f}} \cdot u_1 + b_2^{\mathsf{f}} \cdot u_2 + b_3^{\mathsf{f}} \cdot u_3 \right\}$$

Reguli de asociere a problemelor duale

- Unei probleme de minimizare îi corespunde o problemă de maximizare, şi reciproc.
- Coeficienții din funcția obiectiv a unei probleme devin coeficienții termenului liber în cealaltă problemă, și reciproc.
- Matricea restricţiilor dintr-o problemă este matricea transpusă din cealaltă problemă, şi reciproc.
- Fiecărei restricții dintr-o problemă îi corespunde o variabilă în cealaltă problemă, și reciproc.

Relatia de asociere este următoarea:

- unei <u>restricţii concordante</u> îi corespunde o <u>variabilă nenegativă</u> (≥0), şi reciproc;
- unei <u>restricții egalitate</u> îi corespunde o <u>variabilă oarecare</u> (fără condiții de semn), şi reciproc;
- unei <u>restricții neconcordante</u> îi corespunde o <u>variabilă nepozitivă</u> (≤ 0) , şi reciproc.

$$\inf \left\{ c_1^{f} \cdot x_1 + c_2^{f} \cdot x_2 + c_3^{f} \cdot x_3 \right\}$$

$$\begin{vmatrix}
A_{11} \cdot x_1 + A_{12} \cdot x_2 + A_{13} \cdot x_3 \ge b_1 \\
A_{21} \cdot x_1 + A_{22} \cdot x_2 + A_{23} \cdot x_3 = b_2 \\
A_{31} \cdot x_1 + A_{32} \cdot x_2 + A_{33} \cdot x_3 \le b_3 \\
x_1 \ge \mathbf{0} \qquad x_3 \le \mathbf{0}
\end{vmatrix}$$
(P)

Problema duală:

$$\sup \left\{ b_1^{\mathsf{f}} \left[u_1 \right] + b_2^{\mathsf{f}} \cdot u_2 + b_3^{\mathsf{f}} \cdot u_3 \right\}$$

$$A_{11}^{f} u_{1} + A_{21}^{f} \cdot u_{2} + A_{31}^{f} \cdot u_{3} \leq c_{1}$$

$$A_{12}^{f} u_{1} + A_{22}^{f} \cdot u_{2} + A_{32}^{f} \cdot u_{3} = c_{2}$$

$$A_{13}^{f} u_{1} + A_{23}^{f} \cdot u_{2} + A_{33}^{f} \cdot u_{3} \geq c_{3}$$

$$u_{1} \geq \mathbf{0}$$

$$u_{3} \leq \mathbf{0}$$

$$(D)$$

$$\inf \left\{ c_1^{f} \cdot x_1 + c_2^{f} \cdot x_2 + c_3^{f} \cdot x_3 \right\}$$

$$\begin{array}{c}
A_{11} \cdot x_1 + A_{12} \cdot x_2 + A_{13} \cdot x_3 \ge b_1 \\
A_{21} \cdot x_1 + A_{22} \cdot x_2 + A_{23} \cdot x_3 = b_2 \\
A_{31} \cdot x_1 + A_{32} \cdot x_2 + A_{33} \cdot x_3 \le b_3 \\
x_1 \ge \mathbf{0} \qquad \qquad x_3 \le \mathbf{0}
\end{array}$$

Problema duală:

$$\sup \left\{ b_1^{\mathsf{f}} \cdot u_1 + b_2^{\mathsf{f}} \cdot u_2 + b_3^{\mathsf{f}} \cdot u_3 \right\}$$

$$A_{11}^{f} \cdot u_{1} + A_{21}^{f} \cdot u_{2} + A_{31}^{f} \cdot u_{3} \leq c_{1}$$

$$A_{12}^{f} \cdot u_{1} + A_{22}^{f} \cdot u_{2} + A_{32}^{f} \cdot u_{3} = c_{2}$$

$$A_{13}^{f} \cdot u_{1} + A_{23}^{f} \cdot u_{2} + A_{33}^{f} \cdot u_{3} \geq c_{3}$$

$$u_{1} \geq \mathbf{0}$$

$$(D)$$

$$u_{2} \leq \mathbf{0}$$

$$\inf \left\{ c_1^{f} \cdot x_1 + c_2^{f} \cdot x_2 + c_3^{f} \cdot x_3 \right\}$$

$$\begin{vmatrix}
A_{11} \cdot x_1 + A_{12} \cdot x_2 + A_{13} \cdot x_3 \ge b_1 \\
A_{21} \cdot x_1 + A_{22} \cdot x_2 + A_{23} \cdot x_3 = b_2
\end{vmatrix}$$

$$\begin{vmatrix}
A_{31} \cdot x_1 + A_{32} \cdot x_2 + A_{33} \cdot x_3 \le b_3 \\
x_1 \ge \mathbf{0}
\end{vmatrix}$$

$$\begin{vmatrix}
A_{31} \cdot x_1 + A_{32} \cdot x_2 + A_{33} \cdot x_3 \le b_3 \\
x_1 \ge \mathbf{0}
\end{vmatrix}$$

Problema duală:

$$\sup \left\{ b_1^{\mathsf{f}} \cdot u_1 + b_2^{\mathsf{f}} \cdot u_2 + b_3^{\mathsf{f}} \cdot u_3 \right\}$$

$$A_{11}^{f} \cdot u_{1} + A_{21}^{f} \cdot u_{2} + A_{31}^{f} \cdot u_{3} \le c_{1}$$

$$A_{12}^{f} \cdot u_{1} + A_{22}^{f} \cdot u_{2} + A_{32}^{f} \cdot u_{3} = c_{2}$$

$$A_{13}^{f} \cdot u_{1} + A_{23}^{f} \cdot u_{2} + A_{33}^{f} \cdot u_{3} \ge c_{3}$$

$$u_{1} \ge \mathbf{0}$$

$$u_{3} \le \mathbf{0}$$

$$(D)$$

$$\inf \left\{ c_1^{f} \cdot x_1 + c_2^{f} \cdot x_2 + c_3^{f} \cdot x_3 \right\}$$

$$A_{11} \cdot x_{1} + A_{12} \cdot x_{2} + A_{13} \cdot x_{3} \ge b_{1}$$

$$A_{21} \cdot x_{1} + A_{22} \cdot x_{2} + A_{23} \cdot x_{3} = b_{2}$$

$$A_{31} \cdot x_{1} + A_{32} \cdot x_{2} + A_{33} \cdot x_{3} \le b_{3}$$

$$x_{1} \ge \mathbf{0}$$

$$x_{3} \le \mathbf{0}$$

$$(P)$$

Problema duală:

$$\sup \left\{ b_1^{\mathsf{f}} \cdot u_1 + b_2^{\mathsf{f}} \cdot u_2 + b_3^{\mathsf{f}} \cdot u_3 \right\}$$

$$\begin{vmatrix}
A_{11}^{f} \cdot u_{1} + A_{21}^{f} \cdot u_{2} + A_{31}^{f} \cdot u_{3} \leq c_{1} \\
A_{12}^{f} \cdot u_{1} + A_{22}^{f} \cdot u_{2} + A_{32}^{f} \cdot u_{3} = c_{2} \\
A_{13}^{f} \cdot u_{1} + A_{23}^{f} \cdot u_{2} + A_{33}^{f} \cdot u_{3} \geq c_{3} \\
u_{1} \geq \mathbf{0} \qquad u_{3} \leq \mathbf{0}
\end{vmatrix}$$

$$\inf\left\{c_1^{\mathsf{f}}\cdot x_1 + c_2^{\mathsf{f}}\cdot x_2 + c_3^{\mathsf{f}}\cdot x_3\right\}$$

în raport cu

$$A_{11} \cdot x_{1} + A_{12} \cdot x_{2} + A_{13} \cdot x_{3} \ge b_{1}$$

$$A_{21} \cdot x_{1} + A_{22} \cdot x_{2} + A_{23} \cdot x_{3} = b_{2}$$

$$A_{31} \cdot x_{1} + A_{32} \cdot x_{2} + A_{33} \cdot x_{3} \le b_{3}$$

$$x_{1} \ge \mathbf{0}$$

$$x_{3} \le \mathbf{0}$$
(P)

Problema duală:

$$\sup \left\{ b_1^{\mathsf{f}} \cdot u_1 + b_2^{\mathsf{f}} \cdot u_2 + b_3^{\mathsf{f}} \cdot u_3 \right\}$$

în raport cu

$$A_{11}^{f} \cdot u_{1} + A_{21}^{f} \cdot u_{2} + A_{31}^{f} \cdot u_{3} \leq c_{1}$$

$$A_{12}^{f} \cdot u_{1} + A_{22}^{f} \cdot u_{2} + A_{32}^{f} \cdot u_{3} = c_{2}$$

$$A_{13}^{f} \cdot u_{1} + A_{23}^{f} \cdot u_{2} + A_{33}^{f} \cdot u_{3} \geq c_{3}$$

$$u_{1} \geq \mathbf{0}$$

$$u_{3} \leq \mathbf{0}$$
(D)

$$\inf \left\{ c_1^{\mathsf{f}} \cdot x_1 + c_2^{\mathsf{f}} \cdot x_2 + c_3^{\mathsf{f}} \left[\cdot x_3 \right] \right\}$$

în raport cu

$$A_{11} \cdot x_{1} + A_{12} \cdot x_{2} + A_{13} \cdot x_{3} \ge b_{1}$$

$$A_{21} \cdot x_{1} + A_{22} \cdot x_{2} + A_{23} \cdot x_{3} = b_{2}$$

$$A_{31} \cdot x_{1} + A_{32} \cdot x_{2} + A_{33} \cdot x_{3} \le b_{3}$$

$$x_{1} \ge \mathbf{0}$$

$$x_{3} \le \mathbf{0}$$
(P)

Problema duală:

$$\sup \left\{ b_1^{\mathsf{f}} \cdot u_1 + b_2^{\mathsf{f}} \cdot u_2 + b_3^{\mathsf{f}} \cdot u_3 \right\}$$

în raport cu

$$A_{11}^{f} \cdot u_{1} + A_{21}^{f} \cdot u_{2} + A_{31}^{f} \cdot u_{3} \leq c_{1}$$

$$A_{12}^{f} \cdot u_{1} + A_{22}^{f} \cdot u_{2} + A_{32}^{f} \cdot u_{3} = c_{2}$$

$$A_{13}^{f} \cdot u_{1} + A_{23}^{f} \cdot u_{2} + A_{33}^{f} \cdot u_{3} \geq c_{3}$$

$$u_{1} \geq \mathbf{0}$$

$$u_{3} \leq \mathbf{0}$$
(D)

primala în formă standard: $\inf \{ c^f \cdot x \mid A \cdot x = b, x \ge \mathbf{0} \}$

problema duală: $\sup \{ b^f \cdot u \mid A^f \cdot u \le c \}$

primala în formă canonică: $\inf \{ c^f \cdot x \mid A \cdot x \ge b, x \ge 0 \}$

problema duală: $\sup \left\{ b^{\mathsf{f}} \cdot u \mid A^{\mathsf{f}} \cdot u \leq c, \ u \geq \mathbf{0} \right\}$

 $\inf\left\{ c^{\mathsf{f}} \cdot x \right\}$

primala în formă mixtă: { în raprt cu:

$$\begin{bmatrix} A_1 \cdot x \ge b_1 \\ A_2 \cdot x = b_2 \end{bmatrix}, \ x \ge \mathbf{0}$$

 $\sup \left\{ b_1^{\mathsf{f}} \cdot u_1 + b_2^{\mathsf{f}} \cdot u_2 \right\}$

problema duală: { în raprt cu:

$$\begin{vmatrix} A_1^{\mathsf{f}} \cdot u_1 + A_2^{\mathsf{f}} \cdot u_2 \le c, \\ u_1 \ge \mathbf{0} \end{vmatrix}$$

Teoreme de dualitate

Fie $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$, $c \in \mathbb{R}^n$ şi definim domeniile de admisibilitate:

$$\mathsf{P} = \left\{ x \in \mathbb{R}^n \mid A \cdot x \ge b, \ x \ge \mathbf{0} \right\}, \qquad \mathsf{D} = \left\{ u \in \mathbb{R}^n \mid A^\mathsf{f} \cdot u \le c, \ u \ge \mathbf{0} \right\}$$

Considerăm perechea de probleme (canonice) duale:

$$\inf \left\{ c^{f} \cdot x \mid x \in P \right\} \qquad (P)$$

$$\sup \left\{ b^{f} \cdot u \mid u \in D \right\} \qquad (D)$$

Teoremă (dualitate slabă). Dacă domeniile de admisibilitate $P \neq \emptyset$, $D \neq \emptyset$, atunci $\forall x \in P$, $\forall u \in D$, are loc relația: $c^f \cdot x \geq b^f \cdot u$.

Demonstrație. Pentru $\forall x \in P, \forall u \in D,$ avem:

$$\begin{vmatrix} A \cdot x - b \ge \mathbf{0} \\ u \ge \mathbf{0} \end{vmatrix} \implies u^{\mathsf{f}} \cdot A \cdot x \ge u^{\mathsf{f}} \cdot b, \qquad \begin{vmatrix} x \ge \mathbf{0} \\ A^{\mathsf{f}} \cdot u - c \le \mathbf{0} \end{vmatrix} \implies x^{\mathsf{f}} \cdot A^{\mathsf{f}} \cdot u \le x^{\mathsf{f}} \cdot c.$$

Prin urmare, $c^f \cdot x \ge x^f \cdot A^f \cdot u = u^f \cdot A \cdot x \ge b^f \cdot u$.

<u>Teoremă (dualitate tare).</u> Dacă domeniile de admisibilitate $P \neq \emptyset$, $D \neq \emptyset$, $\exists \overline{x} \in P$, $\exists \overline{u} \in D$, astfel încât $c^f \cdot \overline{x} = b^f \cdot \overline{u}$, atunci, \overline{x} este soluție optimă pentru (P) și \overline{u} este soluție optimă pentru (D).

<u>Demonstrație.</u> Presupunem prin absurd că \overline{x} nu este optimă pentru (P). Atunci, $\exists x_0 \in \mathsf{P}$ astfel încât $c^\mathsf{f} \cdot x_0 < c^\mathsf{f} \cdot \overline{x} = b^\mathsf{f} \cdot \overline{u}$. Contradicție!

Teorema (fundamentală a dualității). Fiind dată perechea de probleme duale (P) şi (D) doar una din următoarele afirmații are loc:

- a) $P \neq \emptyset$ şi $D \neq \emptyset$. În cazul acesta $\exists \tilde{x} \in P$ şi $\exists \tilde{u} \in D$, soluții optime pentru (P), respectiv (D), astfel încât $c^f \cdot \tilde{x} = b^f \cdot \tilde{u}$.
- b) $P = \emptyset$ si $D = \emptyset$.
- c) $P \neq \emptyset$ şi $D = \emptyset$ sau $P = \emptyset$ şi $D \neq \emptyset$. În cazul acesta problema care are soluții admisibile are optimul infinit.

Demonstrație. Considerăm matricea pătratică de ordinul n+m+1:

$$S = \begin{pmatrix} \mathbf{0}_n & -A^{\mathsf{f}} & c \\ A & \mathbf{0}_m & -b \\ -c^{\mathsf{f}} & b^{\mathsf{f}} & 0 \end{pmatrix}$$

Deoarece $S = -S^f$, putem aplica consecința <u>Lemei Farkas-Minkowski</u>:

există $\overline{z} \in \mathbb{R}^{n+m+1}$, $\overline{z} \ge 0$, astfel încât $S \cdot \overline{z} \ge 0$ şi $S \cdot \overline{z} + \overline{z} > 0$.

Notăm: $\overline{z} = (\overline{x}, \overline{u}, r)^f$, unde $\overline{x} \in \mathbb{R}^n$, $\overline{u} \in \mathbb{R}^n$, $r \in \mathbb{R}$

Avem:

$$\overline{x} \geq \mathbf{0}$$
,

$$\overline{u} \geq 0$$
,

$$-A^{\mathsf{f}} \cdot \overline{u} + cr \ge \mathbf{0},\tag{1}$$

$$A \cdot \overline{x} - br \ge \mathbf{0},\tag{2}$$

$$-c^{\mathsf{f}} \cdot \overline{x} + b^{\mathsf{f}} \cdot \overline{u} \ge 0, \tag{3}$$

$$\overline{x} - A^{\mathsf{f}} \cdot \overline{u} + cr > \mathbf{0},\tag{4}$$

$$A \cdot \overline{x} + \overline{u} - br > 0, \tag{5}$$

$$-c^{\mathsf{f}} \cdot \overline{x} + b^{\mathsf{f}} \cdot \overline{u} + r > 0. \tag{6}$$

Cazul
$$r > 0$$
. Definim: $\tilde{x} = \frac{\overline{x}}{r}$ şi $\tilde{u} = \frac{\overline{u}}{r}$

Evident, $\tilde{x} \ge 0$ şi $\tilde{u} \ge 0$. Împărțind relațiile (1) şi (2) la r, obținem:

$$A \cdot \tilde{x} \ge b$$
 şi $A^{f} \cdot \tilde{u} \le c$.

Deci, $\tilde{x} \in P$ şi $\tilde{u} \in D$, adică, $P \neq \emptyset$ şi $D \neq \emptyset$.

Din dualitatea slabă
$$\Rightarrow$$
 $c^{\mathsf{f}} \cdot \tilde{x} \geq b^{\mathsf{f}} \cdot \tilde{u}$ \Rightarrow $c^{\mathsf{f}} \cdot \tilde{x} \leq b^{\mathsf{f}} \cdot \tilde{u}$ \Rightarrow $c^{\mathsf{f}} \cdot \tilde{x} \leq b^{\mathsf{f}} \cdot \tilde{u}$ \Rightarrow $c^{\mathsf{f}} \cdot \tilde{x} \leq b^{\mathsf{f}} \cdot \tilde{u}$

Din dualitatea tare rezultă \tilde{x} şi \tilde{u} optime pentru (P), respectiv (D).

Cazul r = 0. Nu putem avea $P \neq \emptyset$ şi $D \neq \emptyset$.

Prin absurd, dacă există $x_0 \in P$ şi $u_0 \in D$, avem:

 $\frac{A \cdot x_0 - b \ge \mathbf{0}}{\overline{u} \ge \mathbf{0}} \implies \overline{u}^{\mathsf{f}} \cdot b \le \underbrace{\overline{u}^{\mathsf{f}} \cdot A \cdot x_0}_{\le 0 \text{ din } (1)} \le 0,$

$$\frac{\overline{x} \ge \mathbf{0}}{A^{\mathsf{f}} \cdot u_0 - c \le \mathbf{0}} \Rightarrow \overline{x}^{\mathsf{f}} \cdot c \ge \overline{x}^{\mathsf{f}} \mathbf{2} \mathbf{3} \cdot u_0 \ge 0,$$

deci, $\overline{x}^{f} \cdot c \geq 0 \geq \overline{u}^{f} \cdot b$. Contradicție! cu (6)

$$P = \emptyset \quad \text{i} \quad D = \emptyset.$$
 Rezultă:
$$P \neq \emptyset \quad \text{i} \quad D = \emptyset \quad \text{au} \quad P = \emptyset \quad \text{i} \quad D \neq \emptyset.$$

Presupunem, spre exemplu, că există $x_0 \in P$.

Definim vectorul
$$x(\lambda) = x_0 + \lambda \overline{x}, \quad \lambda \in \mathbb{R}, \ \lambda \ge 0.$$

Avem evident $x(\lambda) \ge 0$ şi

$$A \cdot x(\lambda) = A \cdot x_0 + \lambda \underbrace{A \cdot \overline{x}}_{\geq 0 \text{ din } (2)} \geq A \cdot x_0 \geq b.$$

Deci, $\forall \lambda \in \mathbb{R}, \lambda \geq 0, \Rightarrow x(\lambda) \in \mathbb{P}$.

Decarece
$$c^{f} \cdot \overline{x} < b^{f} \cdot \overline{u} \leq x_{0}^{f} \cdot \underline{A}^{f} \cdot \overline{u} \leq 0$$
,

rezultă,
$$\lim_{\lambda \to \infty} c^{\mathsf{f}} \cdot x(\lambda) = \lim_{\lambda \to \infty} \left(c^{\mathsf{f}} \cdot x_0 + \lambda \underbrace{c^{\mathsf{f}} \cdot \overline{x}}_{<0} \right) = -\infty.$$

Teoremă (tare a ecarturilor complemetare). Dacă $P \neq \emptyset$, $D \neq \emptyset$, atunci, pentru (P) şi (D) există soluțiile optime \tilde{x} , respectiv \tilde{u} , astfel încât $(A \cdot \tilde{x} - b) + \tilde{u} > \mathbf{0}$, $(c - A^{f} \cdot \tilde{u}) + \tilde{x} > \mathbf{0}$.

Demonstrație. Rezultă din (4) și (5) pentru cazul r > 0.

Teoremă (slabă a ecarturilor complemetare). Fie $x \in P \neq \emptyset$, $u \in D \neq \emptyset$.

Atunci, x este soluție optimă pentru (P) $u \text{ este soluție optimă pentru (D)} \qquad \begin{cases} u^{\mathsf{f}} \cdot (A \cdot x - b) = 0, \\ x^{\mathsf{f}} \cdot (c - A^{\mathsf{f}} \cdot u) = 0. \end{cases}$

Demonstrație. Din TFD a) rezultă: $c^f \cdot x - b^f \cdot u = 0$. Deci, $c^f \cdot x - b^f \cdot u + u^f \cdot A \cdot x - x^f \cdot A^f \cdot u = \underbrace{u^f \cdot (A \cdot x - b)}_{\geq 0} + \underbrace{x^f \cdot (c - A^f \cdot u)}_{\geq 0} = 0$.

Adunăm membru cu membru relațiile din enunț și obținem: $c^f \cdot x = b^f \cdot u$.

Din teorema de dualitate tare rezultă ca soluțiile sunt optime.

Algoritmul simplex dual

Considerăm problema de programare liniară în forma standard:

$$\inf \left\{ c^{\mathsf{f}} \cdot x \mid A \cdot x = b, \ x \ge \mathbf{0} \right\} \tag{P}$$

și duala ei,

$$\sup\left\{b^{f} \cdot u \mid A^{f} \cdot u \leq c\right\} \tag{D}$$

 $A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^n, c \in \mathbb{R}^n, rang(A) = m < n.$ unde

Fie B o <u>bază optimă</u> a problemei (P). Avem:

$$\overline{x} = B^{-1} \cdot b \ge \mathbf{0}$$
 (primal-admisibilitatea lui *B*)

$$c_{\mathsf{B}}^{\mathsf{f}} B^{-1} \cdot A \leq c^{\mathsf{f}} \qquad \text{(condiția de optimalitate a lui } B)$$

Notăm:
$$\overline{u}^f = c_B^f B^{-1}$$
 \longrightarrow $\overline{u}^f \cdot A \le c^f$ \overline{u} admisibil pentru (D)

$$\overline{u}^{\mathsf{f}} \cdot A \leq c^{\mathsf{f}}$$

În plus,
$$\overline{z} = \underline{c_{\mathsf{B}}^{\mathsf{f}} \cdot \overline{x}} = c_{\mathsf{B}}^{\mathsf{f}} \cdot B^{-1} \cdot b = \overline{u}^{\mathsf{f}} \cdot b$$
.

 \overline{u} optim pentru (D). (teorema de dualitate tare)

Matricea de bază B se numește <u>dual admisibilă</u>, dacă

$$c_{\mathsf{B}}^{\mathsf{f}} \cdot B^{-1} \cdot A \le c^{\mathsf{f}}$$

Teoremă (optim): Dacă baza B este **primal** şi **dual admisibilă**, atunci ea este **optimă** pentru problemele (P) şi (D).

Algoritmul simplex primal:

Algoritmul simplex dual:

Teoremă (domeniu vid). Fie B o bază dual admisibilă. Dacă există o componentă $\overline{x}_i < 0$, pentru care $y_{ij} \ge 0$, $\forall j = \overline{1,n}$, atunci problema (P) nu are soluție.

Demonstrație. Notăm $\overline{u}^f = c_B^f \cdot B^{-1}$ şi B_i^{-1} linia i a lui B^{-1} .

Definim vectorul: $u^{f}(\lambda) = \overline{u}^{f} - \lambda B_{i}^{-1}, \quad \lambda \in \mathbb{R}, \lambda \geq 0.$

Pentru orice j = 1, n, avem:

$$u^{\mathsf{f}}(\lambda) \cdot A^{j} = \overline{u}^{\mathsf{f}} \cdot A^{j} - \lambda B_{i}^{-1} \cdot A^{j} = z_{j} - \lambda y_{ij} \leq z_{j} \leq c_{j}$$

$$z_{j} = \overline{u}^{\mathsf{f}} \cdot A^{j} - \lambda B_{i}^{-1} \cdot A^{j} = z_{j} - \lambda y_{ij} \leq z_{j} \leq c_{j}$$

$$z_{j} \leq z_{j} \leq c_{j}$$
B dual admis.

deci, $\forall \lambda \ge 0$, $u(\lambda)$ este o soluție admisibilă pentru problema (D).

Valoarea funcției obiectiv este: $u^{f}(\lambda) \cdot b = \overline{u}^{f} \cdot b - \lambda B_{i}^{-1} \cdot b = \overline{z} - \lambda \overline{x}_{i}$

$$\lim_{\lambda \to \infty} u^{\mathsf{f}} (\lambda) \cdot b = \overline{z} + \lim_{\lambda \to \infty} (-\lambda \overline{x_i}) = +\infty.$$

Problema (D) are optimul $+\infty$ şi din T.F.D. rezultă că (P) nu are soluție.

Teoremă (schimbarea bazei): Fie $B = (A^{s_1}A^{s_2}\cdots A^{s_m})$ o bază dual admisibilă şi componenta $\overline{x}_r < 0$, pentru care există $j \in \mathbb{R}$ cu $y_{rj} < 0$. Dacă alegem indicele $k \in \mathbb{R}$ astfel încât

$$\frac{z_k - c_k}{y_{rk}} = \min_{j \in \mathbb{R}} \left\{ \left. \frac{z_j - c_j}{y_{rj}} \right| y_{rj} < 0 \right. \right\}$$

atunci, matricea $\hat{B} = \left(A^{s_1} \cdots A^{s_{r-1}} A^k A^{s_{r+1}} \cdots A^{s_m}\right)$ este o bază dual admisibilă, pentru care $\tilde{z} = c_{\mathsf{B}}^{\mathsf{f}} \cdot B^{-1} \cdot b \geq c_{\mathsf{B}}^{\mathsf{f}} \cdot B^{-1} \cdot b = \overline{z}$.

Demonstrație. Evident, $y_{rk} < 0$. Din Lema substituției rezultă că B este o matrice nesingulară.

Trebuie arătat că
$$\forall j = \overline{1,n}, \Rightarrow \tilde{z}_j - c_j = c_{\mathsf{B}}^{\mathsf{f}} \cdot \tilde{\boldsymbol{B}}^{-1} \cdot A^j - c_j \leq 0.$$

Din formulele de schimbare a bazei avem:

$$\tilde{z}_j - c_j = \left(z_j - c_j\right) - \frac{\left(z_k - c_k\right)y_{rj}}{y_{rk}}.$$

B fiind dual admisibilă, rezultă: $(z_j - c_j) \le 0$, $\forall j = \overline{1, n}$.

Dacă $y_{rj} \ge 0$, evident $\tilde{z}_j - c_j \le 0$.

Dacă
$$y_{rj} < 0$$
, avem: $\tilde{z}_j - c_j = \underbrace{y_{rj}}_{<0} \left(\underbrace{\frac{z_j - c_j}{y_{rj}} - \frac{z_k - c_k}{y_{rk}}}_{>0} \right) \le 0$.

Deci, B este dual admisibilă.

Din formula de schimbare a valorii funcției obiectiv obținem:

$$\tilde{z} = \overline{z} - \frac{\left(z_k - c_k\right)}{y_{rk}} \overline{x}_r \ge \overline{z}.$$

Paşii algoritmului simplex dual

- Pasul 0. Se determină (dacă există?!) o bază dual admisibilă B şi se calculează B^{-1} .
- Pasul 1. Se calculează $\overline{x} = B^{-1} \cdot b$, $\overline{z} = c_B^f \cdot \overline{x}$, $Y = B^{-1} \cdot A$, $z^f c^f = c_B^f \cdot Y c^f \le \mathbf{0}^f$.
- Pasul 2. (test de optimalitate) Dacă $\overline{x} \ge 0$, atunci s-a obținut valoarea optimă \overline{z} , şi soluția optimă de bază $x_B = \overline{x}$, $x_R = 0$. STOP.
- Pasul 3. (test domeniu vid) Dacă $\exists \overline{x}_i < 0$ pentru care $y_{ij} \ge 0, \forall j = 1, n$, atunci problema (P) nu are soluție. STOP.
- Pasul 4. (schimbarea bazei) Dacă $\overline{x}_r < 0$ şi $\exists j \in \mathbb{R}$ cu $y_{rj} < 0$, se determină $k \in \mathbb{R}$ astfel încât $\frac{z_k c_k}{y_{rk}} = \min_{j \in \mathbb{R}} \left\{ \frac{z_j c_j}{y_{rj}} \, \middle| \, y_{rj} < 0 \right\}.$

Se formează $B = B \setminus A^{s_r} \cup A^k$, se calculează inversa $B^{-1} = E_r(\eta) \cdot B^{-1}$ şi se revine la Pasul 1.

Tabloul simplex standard

$$x_{\mathsf{B}}$$
 x $Y \square B^{\square 1} \square A$ $z^{\square} \square c^{\square}$

$$\overline{z} = \sum_{i=1}^{m} c_{s_i} \overline{x}_i$$

$$z_{j} - c_{j} = \sum_{i=1}^{m} c_{s_{i}} y_{ij} - c_{j}$$

Algoritmul simplex adaptat pentru problema de transport

$$\min \sum_{i=1}^m \sum_{i=1}^n c_{ij} x_{ij}$$

lelul matematic:
$$\min \sum_{i=1}^m \sum_{j=1}^n c_{ij} x_{ij}$$
 Costul total
$$\begin{cases} \sum_{j=1}^n x_{ij} \leq a_i \,, & i=\overline{1,m} \,, \\ \sum_{j=1}^m x_{ij} \geq b_j \,, & j=\overline{1,n} \,, \end{cases}$$
 Cantitatea disponibilă (oferta)
$$\sum_{i=1}^m x_{ij} \geq b_j \,, & j=\overline{1,n} \,, \end{cases}$$
 Cantitatea solicitată (cererea)
$$x_{ij} \geq 0 \,, & i=\overline{1,m} \,, & j=\overline{1,n} \,. \end{cases}$$
 diția naturală de existență a unei soluții admisibile este:
$$\underbrace{\text{Oferta}} \geq \underbrace{\text{Cererea}}$$

$$x_{ij} \ge 0$$
, $i = \overline{1,m}$, $j = \overline{1,n}$

Condiția naturală de existență a unei soluții admisibile este:

$$\sum_{i=1}^{m} a_i \ge \sum_{i=1}^{m} \sum_{j=1}^{n} x_{ij} = \sum_{j=1}^{n} \left(\sum_{i=1}^{m} x_{ij} \right) \ge \sum_{j=1}^{n} b_j$$

Forma standard a problemei de transport: $\min \sum_{i=1}^{m} \sum_{i=1}^{n} c_{ij} x_{ij}$

$$\min \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$

$$\sum_{j=1}^n x_{ij} = a_i \,, \quad i = \overline{1,m} \,,$$
 în raport cu
$$\sum_{j=1}^m x_{ij} = b_j \,, \quad j = \overline{1,n} \,,$$

$$x_{ij} \ge 0 \,, \quad i = \overline{1,m} \,, \quad j = \overline{1,n} \,.$$
 (PT)

Teoremă. (PT) are o soluție admisibilă dacă și numai dacă

$$a_i \ge 0, i = \overline{1, m}; \quad b_j \ge 0, j = \overline{1, n}; \quad \sum_{i=1}^m a_i = \sum_{j=1}^n b_j.$$

Demonstrație. Rezultă imediat:

Rezulta imediat:
$$x_{ij} \ge 0, \quad i = \overline{1, m}, \quad j = \overline{1, n}, \quad \Rightarrow \quad \sum x_{ij} \ge 0$$

$$\sum_{i=1}^{m} a_i = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} x_{ij}\right) = \sum_{j=1}^{n} \left(\sum_{i=1}^{m} x_{ij}\right) = \sum_{j=1}^{n} b_j.$$

$$= a_i \qquad = b_i$$

Notăm
$$S = \sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j = \sum_{i=1}^{m} \sum_{j=1}^{n} x_{ij} \ge 0.$$

Dacă
$$S = 0 \implies a_i = b_j = 0 \implies x_{ij} = 0, \forall i, j.$$

Dacă S>0 este suficient să luăm $x_{ij}=\frac{a_ib_j}{\varsigma}\geq 0, \quad i=\overline{1,m}, \quad j=\overline{1,n}.$

$$\sum_{i=1}^{m} x_{ij} = \sum_{i=1}^{m} \frac{a_i b_j}{S} = \frac{b_j}{S} \sum_{i=1}^{m} a_i = b_j, \quad j = \overline{1, n}.$$

$$\sum_{j=1}^{n} x_{ij} = \sum_{j=1}^{n} \frac{a_i b_j}{S} = \frac{a_i}{S} \sum_{j=1}^{n} b_j = a_i, \ i = \overline{1, m}.$$

Observație. Putem considera mereu $c_{ij} \ge 0$, i = 1, m, j = 1, n.

$$\sum_{i=1}^{m} \sum_{j=1}^{n} \left(c_{ij} + \lambda\right) x_{ij} = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} + \lambda \sum_{i=1}^{m} \sum_{j=1}^{n} x_{ij} = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} + \lambda S$$

$$\geq 0$$

$$\sum_{\substack{1 \leq i \leq m \\ 1 \leq i \leq n}} \sum_{j=1}^{n} c_{ij} x_{ij} \geq 0$$

$$= \text{constantă}$$

$$\text{(PT) are optim finit !}$$

(PT) are optim finit!

Structura matricei restricțiilor:

					13
					17
					11
					19
7	18	9	16	10	

x_{11}					13
					17
					11
					19
7	18	9	16	10	

7					6
					17
					11
					19
0	18	9	16	10	

7	<i>x</i> ₁₂				6
					17
					11
					19
0	18	9	16	10	

7	6				0
					17
					11
					19
0	12	9	16	10	

7	6				0
	<i>x</i> ₂₂				17
					11
					19
0	12	9	16	10	

7	6				0
	12				5
					11
					19
0	0	9	16	10	

7	6				0
	12	<i>x</i> ₂₃			5
					11
					19
0	0	9	16	10	

7	6				0
	12	5			0
					11
					19
0	0	4	16	10	

7	6				0
	12	5			0
		<i>x</i> ₃₃			11
					19
0	0	4	16	10	

7	6				0
	12	5			0
		4			7
					19
0	0	0	16	10	

7	6				0
	12	5			0
		4	<i>x</i> ₃₄		7
					19
0	0	0	16	10	

7	6				0
	12	5			0
		4	7		0
					19
0	0	0	9	10	

7	6				0
	12	5			0
		4	7		0
			\mathcal{X}_{44}		19
0	0	0	9	10	

7	6				0
	12	5			0
		4	7		0
			9		10
0	0	0	0	10	

7	6				0
	12	5		4	0
		4	7		0
			9	<i>X</i> ₄₅	10
0	0	0	0	10	

7	6				0
	12	5			0
		4	7		0
			9	10	0
0	0	0	0	0	

7	6				13
	12	5			17
		4	7		11
			9	10	19
7	18	9	16	10	

Exemplu.

5	8	2	4	3
4	3	4	1	5
3	4	2	1	3
2	3	2	1	3

Matricea costurilor

					13
					17
					11
					19
7	18	9	16	10	

5	8	2	4	3
4	3	4	1	5
3	4	2	1	3
2	3	2	1	3

Matricea costurilor

17%					13
			<i>x</i> ₂₄		17
					11
					19
7	18	9	16	10	

5	8	2	4	3
4	3	4	1	5
3	4	2	1	3
2	3	2	1	3

Matricea costurilor

					13
			16		1
					11
					19
7	18	9	0	10	

5	8	2	4	3
4	3	4	1	5
3	4	2	1	3
2	3	2	1	3

Matricea costurilor

17		<i>x</i> ₁₃			13
			16		1
					11
					19
7	18	9	0	10	

5	8	2	4	3
4	3	4	1	5
3	4	2	1	3
2	3	2	1	3

Matricea costurilor

		9			4
			16		1
					11
					19
7	18	0	0	10	

5	8	2	4	3
4	3	4	1	5
3	4	2	1	3
2	3	2	1	3

Matricea costurilor

		9			4
			16		1
					11
x_{41}					19
7	18	0	0	10	

5	8	2	4	3
4	3	4	1	5
3	4	2	1	3
2	3	2	1	3

Matricea costurilor

		9			4
			16		1
					11
7					12
0	18	0	0	10	

5	8	2	4	3
4	3	4	1	5
3	4	2	1	3
2	3	2	1	3

Matricea costurilor

		9		<i>x</i> ₁₅	4
			16		1
6.3					11
7					12
0	18	0	0	10	

5	8	2	4	3
4	3	4	1	5
3	4	2	1	3
2	3	2	1	3

Matricea costurilor

		9		4	0
			16		1
					11
7					12
0	18	0	0	6	

5	8	2	4	3
4	3	4	1	5
3	4	2	1	3
2	3	2	1	3

Matricea costurilor

		9		4	0
	<i>x</i> ₂₂		16		1
					11
7					12
0	18	0	0	6	

5	8	2	4	3
4	3	4	1	5
3	4	2	1	3
2	3	2	1	3

Matricea costurilor

		9		4	0
	1		16		0
					11
7					12
0	17	0	0	6	

5	8	2	4	3
4	3	4	1	5
3	4	2	1	3
2	3	2	1	3

Matricea costurilor

		9		4	0
	1		16		0
				<i>x</i> ₃₅	11
7					12
0	17	0	0	6	

5	8	2	4	3
4	3	4	1	5
3	4	2	1	3
2	3	2	1	3

Matricea costurilor

		9		4	0
	1		16		0
				6	5
7					12
0	17	0	0	0	

5	8	2	4	3
4	3	4	1	5
3	4	2	1	3
2	3	2	1	3

Matricea costurilor

7/1		9		4	0
	1		16		0
1575				6	5
7	<i>x</i> ₄₂				12
0	17	0	0	0	

5	8	2	4	3
4	3	4	1	5
3	4	2	1	3
2	3	2	1	3

Matricea costurilor

		9		4	0
	1		16		0
				6	5
7	12				0
0	5	0	0	0	

nu

5	8	2	4	3
4	3	4	1	5
3	4	2	1	3
2	3	2	1	3

Matricea costurilor

		9		4	0
	1		16		0
	<i>x</i> ₃₂			6	5
7	12				0
0	5	0	0	0	

5	8	2	4	3
4	3	4	1	5
3	4	2	1	3
2	3	2	1	3

Matricea costurilor

		9		4	0
	1		16		0
	5			6	0
7	12				0
0	0	0	0	0	

5	8	2	4	3
4	3	4	1	5
3	4	2	1	3
2	3	2	1	3

Matricea costurilor

		9		4	13
	1		16		17
673	5			6	11
7	12				19
7	18	9	16	10	

7	6				13
	12	5			17
		4	7		11
			9	10	19
7	18	9	16	10	

Metoda colţului de N - V.

Costul total = 193

 5
 8
 2
 4
 3

 4
 3
 4
 1
 5

 3
 4
 2
 1
 3

 2
 3
 2
 1
 3

Metoda costului minim. Costul total = 137

 9
 4
 13

 1
 16
 17

 5
 6
 11

 7
 12
 19

 7
 18
 9
 16
 10

Matricea costurilor

Soluții inițiale de bază

7	6				13
	12	5			17
		4	7		11
			9	10	19
7	18	9	16	10	

Metoda colţului de N - V. Costul total = 193

 5
 8
 2
 4
 3

 4
 3
 4
 1
 5

 3
 4
 2
 1
 3

 2
 3
 2
 1
 3

Este soluția optimă?

 9
 4
 13

 1
 16
 17

 5
 6
 11

 7
 12
 19

 7
 18
 9
 16
 10

Matricea costurilor

		3		10	13
	6		11	9.1	17
		6	5		11
7	12				19
7	18	9	16	10	

5	8	2	4	3
4	3	4	1	5
3	4	2	1	3
•	2	2	1	2

Matricea costurilor

O soluţie mai bună. Costul total = 132

Metoda costului minim. Costul total = 137

		9		4	13
	1		16		17
67.5	5			6	11
7	12				19
7	18	9	16	10	

Testul de optimalitate

Forma standard a problemei de transport:

$$\min \sum_{i=1}^m \sum_{j=1}^n c_{ij} x_{ij}$$

$$\sum_{j=1}^n x_{ij} = a_i, \quad i = \overline{1,m},$$

$$\sum_{j=1}^m x_{ij} = b_j, \quad j = \overline{1,n},$$

$$x_{ij} \ge 0, \quad i = \overline{1,m}, \quad j = \overline{1,n}.$$
 (PT)

Condiția de existență a soluției:

$$a_i \ge 0, i = \overline{1, m}; \quad b_j \ge 0, j = \overline{1, n}; \quad \sum_{i=1}^m a_i = \sum_{j=1}^n b_j.$$

Structura datelor în problema de transport:

Fie B o bază optimă şi \overline{x}_{ij} , $(i,j) \in \mathsf{B}$ soluția optimă de bază a problemei (PT).

Avem:
$$z_{ij} - c_{ij} \le 0$$
, $\forall (i, j)$, $1 \le i \le m, 1 \le j \le n$.

În particular, pentru $\forall (i, j) \in B$, $z_{ij} - c_{ij} = 0$.

$$\text{Dar, } z_{ij} = c_{\text{B}}^{\text{f}} \cdot B^{-1} \cdot A_{\text{o}}^{(ij)} = \left(\overline{u}^{\text{f}}, \overline{v}^{\text{f}}\right) \cdot A_{\text{o}}^{(ij)} = \overline{u}_{i} + \overline{v}_{j} \text{, unde } A_{\text{o}}^{(ij)} \in \mathbf{R}^{n+n-1}.$$

Rezultă,
$$\begin{cases} \overline{u}_i + \overline{v}_j = c_{ij}, & \forall (i, j) \in \mathsf{B}, \\ \overline{u}_i + \overline{v}_j \le c_{ij}, & \forall (i, j) \notin \mathsf{B}. \end{cases}$$

Dacă \overline{x}_{ij} , $(i,j) \in \mathsf{B}$ este o soluție optimă de bază, atunci $(\overline{u}_i, \overline{v}_j)$, $(i,j) \in \mathsf{B}$ va fi soluția optimă a dualei problemei (PT).

Teorema slabă a ecarturilor complementare: Fie soluțiile admisibile

$$x_{ij}$$
, respectiv (u_i, v_j) , $1 \le i \le m, 1 \le j \le n$, pentru (PT) şi (DT).

Acestea sunt optime, dacă și numai dacă,

$$\begin{aligned} u_i \cdot \left(\sum_{j=1}^n x_{ij} - a_i\right) &= 0, \quad i = \overline{1,m} \;, \\ v_j \cdot \left(\sum_{i=1}^m x_{ij} - b_j\right) &= 0, \quad j = \overline{1,n} \;, \end{aligned} \quad \begin{array}{l} \text{Condiții evident satisfăcute !} \\ x_{ij} \cdot \left(u_i + v_j - c_{ij}\right) &= 0, \quad i = \overline{1,m} \;, \end{aligned} \quad \begin{array}{l} \text{Condiții evident satisfacute pentru} \\ \text{satisfacute pentru} \\ \overline{x_{ij}} &= 0, \quad \forall \; (i,j) \notin \mathsf{B} \;. \end{aligned}$$

Dacă soluția admisibilă de bază este: $\overline{x}_{ij} > 0$, $\forall (i,j) \in \mathsf{B}$, pentru ca aceasta să fie optimă, trebuie ca: $u_i + v_j - c_{ij} = 0$, $\forall (i,j) \in \mathsf{B}$.

<u>Problemă:</u> Cum putem identifica existența unei soluții admisibile a problemei duale (DT) care să verifice condiția de optimalitate?

Considerăm sistemul: $u_i + v_j = c_{ij}, \forall (i, j) \in B$.

Acesta are card(B) = m + n - 1 ecuații şi m + n variabile.

Rangul matricei acestui sistem este m + n - 1, deci sistemul este compatibil nedeterminat.

Rezolvarea sistemului: se dă unei variabile u_i sau v_j o valoare arbitrară, iar restul variabilelor se calculează succesiv din ecuațiile respective.

Fie \overline{u}_i , $i = \overline{1,m}$, \overline{v}_j , $j = \overline{1,n}$, soluția obținută.

Dacă $\overline{u}_i + \overline{v}_j \le c_{ij}$, $\forall (i, j) \notin B$, soluția este dual admisibilă.

Teorema ecarturilor complementare $\Longrightarrow \overline{x}_{ij}, \ (i,j) \in \mathsf{B}$, soluție de bază optimă pentru problema (PT).

Dacă $\exists (r,k) \notin B$, $\overline{u}_r + \overline{v}_k - c_{rk} = z_{rk} - c_{rk} > 0$, soluția de bază \overline{x}_{ij} , $(i,j) \in B$, $\underline{\mathbf{nu}}$ îndeplineşte condiția de optimalitate pentru problema (PT).

Schimbarea soluției de bază

Fie $(r,k) \notin B$, $u_r + v_k > c_{rk}$. Se introduce în bază variabila $\overline{x}_{rk} = x \ge 0$.

Schimbarea bazei conform algoritmului simplex:

Criteriul de ieşire din bază:
$$\frac{\overline{x}_{st}}{y_{(st)(rk)}} = \min_{(ij) \in \mathbb{B}} \left\{ \frac{\overline{x}_{ij}}{y_{(ij)(rk)}} \middle| y_{(ij)(rk)} > 0 \right\}$$

Recalcularea valorilor corespunzătoare noii baze: $B = B \setminus (s,t) \cup (r,k)$

$$\begin{cases} \tilde{x}_{ij} = \overline{x}_{ij} - \frac{y_{(ij)(rk)}}{y_{(st)(rk)}} \overline{x}_{st}, & \forall (i, j) \in \mathsf{B} \setminus (s, t), \\ \tilde{x}_{rk} = \frac{\overline{x}_{st}}{y_{(st)(rk)}} = x \ge 0. \end{cases}$$

Care sunt valorile componentelor vectorului $Y^{(rk)} = B^{-1} \cdot A_0^{(rk)}$?

Considerăm două selecții de câte p indici distincți:

$$i_1, i_2, \dots, i_p \in \{1, 2, \dots, m\}, \qquad j_1, j_2, \dots, j_p \in \{1, 2, \dots, n\}.$$

Definiție. Mulțimea perechilor $(i_1, j_1), (i_1, j_2), (i_2, j_2), \dots, (i_p, j_p), (i_p, j_1)$ se numește <u>ciclu</u>.

Observație: orice ciclu are un număr par de elemente = 2p.

<u>Propoziție.</u> Dacă mulțimea indicilor (i,j) a unor coloane $A^{(ij)}$ din matricea restricțiilor a problemei (PT) formează un ciclu, atunci aceste coloane sunt <u>liniar dependente</u>.

Demonstrație. Notăm vectorul unitar: $e^i \in \mathbb{R}^{n+n}$. $\Rightarrow A^{(ij)} = e^i + e^{m+j} \in \mathbb{R}^{n+n}$

$$A^{(i_{1}j_{1})} - A^{(i_{1}j_{2})} + A^{(i_{2}j_{2})} - A^{(i_{2}j_{3})} + \dots + A^{(i_{p}j_{p})} - A^{(i_{p}j_{1})} =$$

$$e^{j_{1}'} + e^{j_{2}'} + e^{j_{2}'} - e^{j_{2}'} - e^{j_{2}'} - e^{j_{2}'} - e^{j_{2}'} + e^{j_{2}'} + e^{j_{2}'} - e^{j_{2}'} - e^{j_{2}'} - e^{j_{2}'} + e^{j_{2}'} = 0.$$

Corolar. Mulțimea indicilor de bază B nu conține cicluri.

Propoziție. Pentru orice pereche $(r,k) \notin B$, există un ciclu unic format din această pereche și elemente din B.

Determinarea elementelor lui $Y^{(rk)} = B^{-1} \cdot A_0^{(rk)}$.

Avem:
$$A_{o}^{(rk)} = B \cdot Y^{(rk)} = \sum_{(ij) \in \mathbb{B}} y_{(ij)(rk)} A_{o}^{(ij)}$$
 Combinație liniară (unică) cu vectorii $A^{(ij)}$ din bază.

Dar există şi un ciclu unic:
$$\mathbf{C} = \left\{ \underbrace{(r,k)}_{\emptyset}, \underbrace{(r,j_1)}_{(i_1,j_1)}, \underbrace{(i_1,j_1)}_{(i_1,j_1)}, \dots, \underbrace{(i_p,j_p)}_{(i_p,k)}, \underbrace{(i_p,k)}_{\emptyset} \right\}$$

pentru care
$$A^{(rk)} = A^{(rj_1)} - A^{(i_1j_1)} + A^{(i_1j_2)} - \dots - A^{(i_pj_p)} + A^{(i_pk)}$$
.

Rezultă:
$$y_{(ij)(rk)} = \begin{cases} 1 & \text{pentru} & (i,j) \in \mathbb{C} \text{ de ordin impar} \\ -1 & \text{pentru} & (i,j) \in \mathbb{C} \text{ de ordin par} \\ 0 & \text{pentru} & (i,j) \notin \mathbb{C} \end{cases}$$

Criteriul de ieşire din bază:

adică,

$$\overline{x}_{st} = \min \{ \overline{x}_{ij} \mid (i, j) \in \mathbb{C} \text{ de ordin impar } \}$$

Perechea de indici (s,t) va părăsi baza B.

Formulele de schimbare a soluției de bază:

$$(= +1, -1, 0)$$

$$\begin{cases} \tilde{x}_{ij} = \overline{x}_{ij} & \frac{y_{(ij)(rk)}}{x_{st}}, \quad \forall (i, j) \in B \setminus (s, t), \\ \tilde{x}_{rk} = \frac{\overline{x}_{st}}{y_{(st)(rk)}} = x \ge 0. \end{cases} = +1$$

Exemplu

$$\mathsf{B} = \{(1,3), (1,5), (2,2), (2,4), (3,2), (3,5), (4,1), (4,2)\}$$

5	8	2	4	3
4	3	4	1	5
3	4	2	1	3
2	3	2	1	3

Matricea costurilor

Metoda costului minim. Costul total = 137

$$\mathsf{B} = \{(1,3), (1,5), (2,2), (2,4), (3,2), (3,5), (4,1), (4,2)\}$$

Valoare inițială: $v_2 = 0$.

$u_i^{v_j}$		0			
	5	8	2	4	3
	4	3 .	4	1	5
	3	4	2	1	3
	2	3	2	1	3

		9		4	13
	1		16		17
6.3	5			6	11
7	12				19
7	18	9	16	10	

$$\mathsf{B} = \{(1,3), (1,5), (2,2), (2,4), (3,2), (3,5), (4,1), (4,2)\}$$

Valoare inițială: $v_2 = 0$.

u_i v_j		0			
	5	8	2	4	3
3 _	4	3	4	1	5
	3	4	2	1	3
	2	3	2	1	3

		9		4	13
	1		16		17
6.3	5			6	11
7	12				19
7	18	9	16	10	

$$\mathsf{B} = \{(1,3), (1,5), (2,2), (2,4), (3,2), (3,5), (4,1), (4,2)\}$$

Valoare inițială: $v_2 = 0$.

u_i v_j		0			
	5	8	2	4	3
3	4	3	4	1	5
4 _	3	4	2	1	3
	2	3 🔻	2	1	3

Matricea costurilor

		9		4	13
	1		16		17
675	5			6	11
7	12				19
7	18	9	16	10	

$$\mathsf{B} = \{(1,3), (1,5), (2,2), (2,4), (3,2), (3,5), (4,1), (4,2)\}$$

Valoare inițială: $v_2 = 0$.

u_i v_j		0			
	5	8	2	4	3
3	4	3	4	1	5
4	3	4	2	1	3
3 _	2	3	2	1	3

Matricea costurilor

		9		4	13
	1	1	16		17
6/3	5			6	11
7	12				19
7	18	9	16	10	

$$\mathsf{B} = \{(1,3), (1,5), (2,2), (2,4), (3,2), (3,5), (4,1), (4,2)\}$$

Valoare inițială: $v_2 = 0$.

u_i v_j		0			
	5	8	2	4	3
3 _	4	3	4	1	5
4	3	4	2	1	3
3	2	3	2	1	3

		9		4	13
	1		16		17
	5			6	11
7	12				19
7	18	9	16	10	

$$\mathsf{B} = \{(1,3), (1,5), (2,2), (2,4), (3,2), (3,5), (4,1), (4,2)\}$$

Valoare inițială: $v_2 = 0$.

u_i v_j		0		-2	
	5	8	2	4	3
3 _	4	3	4	1	5
4	3	4	2	1	3
3	2	3	2	1	3

		9		4	13
	1		16		17
6/3	5			6	11
7	12				19
7	18	9	16	10	

$$\mathsf{B} = \{(1,3), (1,5), (2,2), (2,4), (3,2), (3,5), (4,1), (4,2)\}$$

Valoare inițială: $v_2 = 0$.

u_i v_j		0		-2	-1
	5	8	2	4	3
3	4	3	4	1	5
4 _	3	4	2	1	3
3	2	3	2	1	3

		9		4	13
	1		16		17
6/3	5			6	11
7	12				19
7	18	9	16	10	

$$\mathsf{B} = \{(1,3), (1,5), (2,2), (2,4), (3,2), (3,5), (4,1), (4,2)\}$$

Valoare inițială: $v_2 = 0$.

u_i v_j	-1	0		-2	-1
	5	8	2	4	3
3	4	3	4	1	5
4	3	4	2	1	3
3 _	2	3	2	1	3

		9		4	13
	1		16		17
6/3	5			6	11
7	12				19
7	18	9	16	10	

$$\mathsf{B} = \{(1,3), (1,5), (2,2), (2,4), (3,2), (3,5), (4,1), (4,2)\}$$

Valoare inițială: $v_2 = 0$.

u_i v_j	-1	0		-2	-1
4 _	5	8	2	4	3
3	4	3	4	1	5
4	3	4	2	1	3
3	2	3	2	1	3

		9		4	13
	1		16		17
6/3	5			6	11
7	12				19
7	18	9	16	10	

$$\mathsf{B} = \{(1,3), (1,5), (2,2), (2,4), (3,2), (3,5), (4,1), (4,2)\}$$

Valoare inițială: $v_2 = 0$.

u_i v_j	-1	0	-2	-2	-1
4 _	5	8	2	4	3
3	4	3	4	1	5
4	3	4	2	1	3
3	2	3	2	1	3

		9		4	13
	1		16		17
6/3	5			6	11
7	12				19
7	18	9	16	10	

$$\mathsf{B} = \{(1,3), (1,5), (2,2), (2,4), (3,2), (3,5), (4,1), (4,2)\}$$

Valoare inițială: $v_2 = 0$.

u_i v_j	-1	0	-2	-2	-1
4	5	8	2	4	3
2	4	3	4	1	5
4	3	4	2	1	3
2	2	3	2	1	3

		9		4	13
	1		16		17
6/3	5			6	11
7	12				19
7	18	9	16	10	

$$\mathsf{B} = \{(1,3), (1,5), (2,2), (2,4), (3,2), (3,5), (4,1), (4,2)\}$$

Test de optimalitate: $u_i + v_j \le c_{ij}$ pentru $(i, j) \notin B$?

u_i v_j	-1	0	-2	-2	-1
4	5	8	2	4	3
3	4	3	4	1	5
4	3	4	2	1	3
3	2	3	2	1	3

		9		4	13
	1		16		17
	5			6	11
7	12				19
7	18	9	16	10	

$$\mathsf{B} = \{(1,3), (1,5), (2,2), (2,4), (3,2), (3,5), (4,1), (4,2)\}$$

Test de optimalitate: $u_i + v_j \le c_{ij}$ pentru $(i, j) \notin B$?

$$u_3 + v_4 > c_{34}$$
 (3,4) $\notin B$!

u_i v_j	-1	0	-2	-2	-1
4	5	8	2	4	3
3	4	3	4	1	5
4	3	4	2	1	3
3	2	3	2	1	3

		9		4	13
	1		16		17
673	5			6	11
7	12				19
7	18	9	16	10	

$$\mathsf{B} = \{(1,3), (1,5), (2,2), (2,4), (3,2), (3,5), (4,1), (4,2)\}$$

Determinarea unui ciclu. $C = \{(3,4)\}$

u_i v_j	-1	0	-2	-2	-1
4	5	8	2	4	3
3	4	3	4	1	5
4	3	4	2	1	3
3	2	3	2	1	3

Matricea costurilor

		9 🖊		4	13
	1		16		17
6.3	5		+x _	6,	11
7	12				19
7	18	9	16	10	

$$\mathsf{B} = \{(1,3), (1,5), (2,2), (2,4), (3,2), (3,5), (4,1), (4,2)\}$$

Determinarea unui ciclu. $C = \{(3,4),(3,2)\}$

u_i v_j	-1	0	-2	-2	-1
4	5	8	2	4	3
3	4	3	4	1	5
4	3	4	2	1	3
3	2	3	2	1	3

7		9		4	13
	1		16		17
673	5-x		<u>+x</u>	6	11
7	12				19
7	18	9	16	10	

$$\mathsf{B} = \{(1,3), (1,5), (2,2), (2,4), (3,2), (3,5), (4,1), (4,2)\}$$

Determinarea unui ciclu. $C = \{(3,4), (3,2), (2,2)\}$

u_i v_j	-1	0	-2	-2	-1
4	5	8	2	4	3
3	4	3	4	1	5
4	3	4	2	1	3
3	2	3	2	1	3

		9		4	13
	1+ <i>x</i>		16		17
	5- <i>x</i>		<u>+x</u>	6	11
7	12				19
7	18	9	16	10	

$$\mathsf{B} = \{(1,3), (1,5), (2,2), (2,4), (3,2), (3,5), (4,1), (4,2)\}$$

Determinarea unui ciclu. $C = \{(3,4),(3,2),(2,2),(2,4)\}$

u_i v_j	-1	0	-2	-2	-1
4	5	8	2	4	3
3	4	3	4	1	5
4	3	4	2	1	3
3	2	3	2	1	3

Matricea costurilor

		9		4	13
	1+ <i>x</i>	1000	16- <i>x</i>		17
673	5-x		<u>+x</u>	6	11
7	12				19
7	18	9	16	10	

$$\mathsf{B} = \{(1,3), (1,5), (2,2), (2,4), (3,2), (3,5), (4,1), (4,2)\}$$

Determinarea unui ciclu. $C = \{(3,4), (3,2), (2,2), (2,4)\}$

$$x = \min \{ 5, 16 \} = 5$$

u_i v_j	-1	0	-2	-2	-1
4	5	8	2	4	3
3	4	3	4	1	5
4	3	4	2	1	3
3	2	3	2	1	3

17		9		4	13
	1+x		16- <i>x</i>		17
673	5		+x	6	11
7	12				19
7	18	9	16	10	

$$\mathsf{B} = \{(1,3), (1,5), (2,2), (2,4), (3,4), (3,5), (4,1), (4,2)\}$$

Valoare inițială: $u_1 = 0$.

u_i v_j	2	3	2	1	3
0	5	8	2	4	3
0	4	3	4	1	5
0	3	4	2	1	3
0	2	3	2	1	3

		9		4	13
	6		11		17
6.3			5	6	11
7	12				19
7	18	9	16	10	

$$\mathsf{B} = \{(1,3), (1,5), (2,2), (2,4), (3,4), (3,5), (4,1), (4,2)\}$$

Test de optimalitate: $u_i + v_j \le c_{ij}$ pentru $(i, j) \notin B$?

u_i v_j	2	3	2	1	3
0	5	8	2	4	3
0	4	3	4	1	5
0	3	4	2	1	3
0	2	3	2	1	3

		9		4	13
	6		11		17
6.3			5	6	11
7	12				19
7	18	9	16	10	

$$\mathsf{B} = \{(1,3), (1,5), (2,2), (2,4), (3,4), (3,5), (4,1), (4,2)\}$$

Test de optimalitate: $u_i + v_j \le c_{ij}$ pentru $(i, j) \notin B$?

Soluție optimă. Valoarea optimă = 137 + 5(1 - 4 + 3 - 1) = 132

u_i v_j	2	3	2	1	3
0	5	8	2	4	3
0	4	+3	4	-1	5
0	3	-4	2	+1	3
0	2	3	2	1	3

		9		4	13
	6		11		17
6.3			5	6	11
7	12				19
7	18	9	16	10	

$$\mathsf{B} = \{(1,3), (1,5), (2,2), (2,4), (3,4), (3,5), (4,1), (4,2)\}$$

Condiție:
$$u_i + v_j = c_{ij}$$
 pentru $(i, j) \notin B$. De exemplu, $(4,3) \notin B$. $C = \{(4,3)\}$

u_i v_j	2	3	2	1	3
0	5	8	2	4	3
0	4	3	4	1	5
0	3	4	2	1	3
0	2	3	2	1	3

		9		4	13
	6		11		17
6.3			5	6	11
7	12	+x			19
7	18	9	16	10	

$$\mathsf{B} = \{(1,3), (1,5), (2,2), (2,4), (3,4), (3,5), (4,1), (4,2)\}$$

Condiție:
$$u_i + v_j = c_{ij}$$
 pentru $(i, j) \notin B$. De exemplu, $(4,3) \notin B$. $C = \{(4,3), (1,3)\}$

u_i v_j	2	3	2	1	3
0	5	8	2	4	3
0	4	3	4	1	5
0	3	4	2	1	3
0	2	3	2	1	3

		9- x		4	13
	6		11		17
6.3			5	6	11
7	12	+x			19
7	18	9	16	10	

$$\mathsf{B} = \{(1,3), (1,5), (2,2), (2,4), (3,4), (3,5), (4,1), (4,2)\}$$

Condiție:
$$u_i + v_j = c_{ij}$$
 pentru $(i, j) \notin B$. De exemplu, $(4,3) \notin B$. $C = \{(4,3), (1,3), (1,5)\}$

u_i v_j	2	3	2	1	3
0	5	8	2	4	3
0	4	3	4	1	5
0	3	4	2	1	3
0	2	3	2	1	3

		9- <i>x</i>		<u>4+x</u>	13
	6		11		17
67.5			5	6	11
7	12	+x			19
7	18	9	16	10	

$$\mathsf{B} = \{(1,3), (1,5), (2,2), (2,4), (3,4), (3,5), (4,1), (4,2)\}$$

Condiție: $u_i + v_j = c_{ij}$ pentru $(i, j) \notin B$. De exemplu, $(4,3) \notin B$.

$$C = \{(4,3),(1,3),(1,5),(3,5)\}$$

u_i v_j	2	3	2	1	3
0	5	8	2	4	3
0	4	3	4	1	5
0	3	4	2	1	3
0	2	3	2	1	3

Matricea costurilor

			9- x		4+x	13
		6		11		17
				5	6- x	11
,	7	12	+x			19
	7	18	9	16	10	

$$\mathsf{B} = \{(1,3), (1,5), (2,2), (2,4), (3,4), (3,5), (4,1), (4,2)\}$$

Condiție:
$$u_i + v_j = c_{ij}$$
 pentru $(i, j) \notin B$. De exemplu, $(4,3) \notin B$. $C = \{(4,3), (1,3), (1,5), (3,5), (3,4)\}$

u_i v_j	2	3	2	1	3
0	5	8	2	4	3
0	4	3	4	1	5
0	3	4	2	1	3
0	2	3	2	1	3

			9- x		4+ x	13
Ī		6		11		17
	1			5+ x	6- x	11
	7	12	+x			19
	7	18	9	16	10	

$$\mathsf{B} = \{(1,3), (1,5), (2,2), (2,4), (3,4), (3,5), (4,1), (4,2)\}$$

Condiție: $u_i + v_j = c_{ij}$ pentru $(i, j) \notin B$. De exemplu, $(4,3) \notin B$.

$$C = \{(4,3),(1,3),(1,5),(3,5),(3,4),(2,4)\}$$

u_i v_j	2	3	2	1	3
0	5	8	2	4	3
0	4	3	4	1	5
0	3	4	2	1	3
0	2	3	2	1	3

		9- x		4+ x	13
	6		11- x		17
10.75			5+x	6- <i>x</i>	11
7	12	+x			19
7	18	9	16	10	

$$\mathsf{B} = \{(1,3), (1,5), (2,2), (2,4), (3,4), (3,5), (4,1), (4,2)\}$$

Condiție: $u_i + v_j = c_{ij}$ pentru $(i, j) \notin B$. De exemplu, $(4,3) \notin B$.

$$C = \{(4,3),(1,3),(1,5),(3,5),(3,4),(2,4),(2,2)\}$$

u_i v_j	2	3	2	1	3
0	5	8	2	4	3
0	4	3	4	1	5
0	3	4	2	1	3
0	2	3	2	1	3

Matricea costurilor

		9- x		4+ x	13
	6+ x		11- <i>x</i>		17
			5+x	6- x	11
7	12	+x			19
7	18	9	16	10	

$$\mathsf{B} = \{(1,3), (1,5), (2,2), (2,4), (3,4), (3,5), (4,1), (4,2)\}$$

Condiție: $u_i + v_j = c_{ij}$ pentru $(i, j) \notin B$. De exemplu, $(4,3) \notin B$.

$$C = \{(4,3),(1,3),(1,5),(3,5),(3,4),(2,4),(2,2),(4,2)\}$$

u_i v_j	2	3	2	1	3
0	5	8	2	4	3
0	4	3	4	1	5
0	3	4	2	1	3
0	2	3	2	1	3

Matricea costurilor

		9- <i>x</i>		<u>4+x</u>	13
	6+ <i>x</i>		11-x		17
			5+ x	6- x	11
7	12- x •	+x			19
7	18	9	16	10	

$$\mathsf{B} = \{(1,3), (1,5), (2,2), (2,4), (3,4), (3,4), (3,5), (4,1), (4,2)\}$$

Condiție: $u_i + v_j = c_{ij}$ pentru $(i, j) \notin B$. De exemplu, $(4,3) \notin B$.

$$C = \{(4,3),(1,3),(1,5),(3,5),(3,4),(2,4),(2,2),(4,2)\}$$

$$x = \min \{ 9, 6, 11, 12 \} = 6$$

u_i v_j	2	3	2	1	3
0	5	8	2	4	3
0	4	3	4	1	5
0	3	4	2	1	3
0	2	3	2	1	3

		9- <i>x</i>		4+ x	13
	6+ x		11-x		17
			5+x	600	11
7	12- x	<u>+x</u> ,			19
7	18	9	16	10	

$$\mathsf{B} = \{(1,3), (1,5), (2,2), (2,4), (3,4), (4,3), (4,1), (4,2)\}$$

Test de optimalitate: $u_i + v_j \le c_{ij}$ pentru $(i, j) \notin B$?

Soluție optimă. Valoarea optimă = 132 + 6(2-2+3-3+1-1+3-3) = 132

u_i v_j	2	3	2	1	3
0	5	8	- 2	4	+ 3
0	4	+3	4	-1	5
0	3	4	2	+1	-3
0	2	-3	+ 2	1	3

Matricea costurilor

		3		10	13
	12		5		17
633			11		11
7	6	6		T	19
7	18	9	16	10	

Programare liniară în numere întregi

Considerăm problema:

$$\inf \left\{ c^{\mathsf{f}} \cdot x \mid A \cdot x = b, x \in \mathbb{R}^{\mathsf{g}}, \ x_k \in \mathbb{Z}, k \in \mathbb{K} \subseteq \{1, 2, \dots, n\} \right\} \tag{P*}$$

unde: $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$, $c \in \mathbb{R}^n$, rang(A) = m < n.

$$\emptyset \neq K \emptyset \{1, 2, ..., n\}$$
 Problemă de programare liniară mixtă

$$K = \{1, 2, ..., n\}$$
 Problemă de programare liniară
în numere întregi

Notații:
$$\begin{cases} \mathsf{P}_0 = \left\{ x \in \mathbb{R}^k \mid A \cdot x = b, \, x \ge \mathbf{0} \right\} \\ \mathsf{P}^* = \left\{ x \in \mathsf{P}_0 \mid x_k \in \mathbb{Z}, \, k \in \mathsf{K} \right\} \end{cases}$$

Evident,
$$P_0 \supset P^*$$

Putem considera problemele:

(P₀)
$$\inf \{c^f \cdot x \mid x \in P_0\}$$
 \Longrightarrow Se rezolvă cu algoritmul simplex.

(P*)
$$\inf \{c^f \cdot x \mid x \in P^*\}$$
 Trebuie elaborată o metodă!

Propoziție. Fie $\overline{x} \in P_0$ soluția optimă a lui (P_0) . Dacă $\overline{x} \in P^*$, atunci \overline{x} este soluție optimă și pentru problema (P^*) .

Demonstraţie. $P_0 \supset P^*$ Avem: $c^{\mathsf{f}} \cdot \overline{x} = \inf \left\{ c^{\mathsf{f}} \cdot x \mid x \in \mathsf{P}_0 \right\} \le \inf \left\{ c^{\mathsf{f}} \cdot x \mid x \in \mathsf{P}^* \right\} \le c^{\mathsf{f}} \cdot \overline{x}$ Pe de altă parte, $\overline{x} \in P^*$ Rezultă, $c^f \cdot \overline{x} = \inf \{ c^f \cdot x \mid x \in P^* \}.$ Soluția optimă. Stop Algoritm: metoda planelor de secțiune. da Determin Rezolv (P_i) $P_{i+1} = P_i \cap (\alpha_i)$ $\overline{x} \notin P_{i+1}$ $c^{\mathsf{f}} \cdot \overline{x} = \inf_{x \in \mathsf{P}_i} c^{\mathsf{f}} \cdot x$ $\overline{x} \in P^*$ nu $i \leftarrow i + 1$

Observație:
$$P_0 \supset P_1 \supset \cdots \supset P_i \supset P_{i+1} \supset \cdots \supset P^*$$
.

Determinarea planelor de secțiune (Gomory).

Considerăm problema (P*) în care $K = \{1, 2, ..., n\}$.

Fie B o bază optimă pentru (P_i) şi presupunem că $\exists s_k \in B, x_{s_k} \notin Z$

Avem:
$$x_{s_k} = \overline{x}_k - \sum_{j \in \mathbb{R}} y_{kj} x_j$$

Introducem notațiile: $\overline{x}_k = [\overline{x}_k] + f_{k0}$ unde $0 < f_{k0} < 1$,

$$y_{kj} = [y_{kj}] + f_{kj}$$
 unde $0 \le f_{kj} < 1$.

Rezultă,
$$x_{s_k} - \left[\overline{x}_k\right] + \sum_{j \in \mathbb{R}} \left[y_{kj}\right] x_j = f_{k0} - \sum_{j \in \mathbb{R}} f_{kj} x_j \leq 0 < 1.$$
 Dar, $\forall x \in \mathbb{P}^* \longrightarrow \in \mathbb{Z}$ $\longrightarrow \in \mathbb{Z}$ în plus, avem:
$$\sum_{j \in \mathbb{R}} f_{kj} x_j \geq 0 \quad \& \quad f_{k0} \in (0,1)$$

Se adaugă restricția:
$$\sum_{j \in \mathbb{R}} \left(-f_{kj} \right) x_j \le -f_{k0}.$$

Observație. Soluția de bază corespunzătoare lui \overline{x} nu verifică restricția adăugată. Într-adevăr,

$$x = \begin{pmatrix} x_{\mathsf{B}} \\ x_{\mathsf{R}} \end{pmatrix} = \begin{pmatrix} \overline{x} \\ \mathbf{0} \end{pmatrix} \implies \sum_{j \in \mathsf{R}} \left(-f_{kj} \right) x_j = 0 \le -f_{k0} < 0. \quad \text{Contradicție!}$$

Prin urmare, putem defini:

$$\mathsf{P}_{i+1} = \mathsf{P}_i \cap (\alpha_i) = \left\{ x \in \mathsf{P}_i \, \middle| \, \sum_{j \in \mathsf{R}} \left(-f_{kj} \right) x_j + y_{(i+1)} = -f_{k0}, \ y_{(i+1)} \ge 0 \right\}$$

Algoritmul se termină într-un număr finit de paşi:

Există o soluție optimă ∈ **Z**

Nu există soluții în ∈ **Z**

Implementare.

Fie $B_{(i)}$ o bază optimă pentru (P_i) . Pentru (P_{i+1}) considerăm matricea:

$$B_{(i+1)} = \begin{pmatrix} B_{(i)} & \mathbf{0} \\ \mathbf{0}^{\mathsf{f}} & 1 \end{pmatrix} \qquad \Longrightarrow \qquad B_{(i+1)}^{-1} = \begin{pmatrix} B_{(i)}^{-1} & \mathbf{0} \\ \mathbf{0}^{\mathsf{f}} & 1 \end{pmatrix}$$

Matricea $B_{(i+1)}$ este dual admisibilă pentru (P_{i+1}) :

$$\overline{x}_{(i+1)} = B_{(i+1)}^{-1} \cdot b_{(i+1)} = \begin{pmatrix} B_{(i)}^{-1} & \mathbf{0} \\ \mathbf{0}^{\mathsf{f}} & 1 \end{pmatrix} \cdot \begin{pmatrix} b_{(i)} \\ -f_{k0} \end{pmatrix} = \begin{pmatrix} B_{(i)}^{-1} \cdot b_{(i)} \\ -f_{k0} \end{pmatrix} = \begin{pmatrix} \overline{x}_{(i)} \\ -f_{k0} \end{pmatrix} \not \geq \mathbf{0}$$

$$Y_{(i+1)}^{j} = B_{(i+1)}^{-1} A_{(i+1)}^{j} = \begin{pmatrix} B_{(i)}^{-1} & \mathbf{0} \\ \mathbf{0}^{\mathsf{f}} & 1 \end{pmatrix} \begin{pmatrix} A_{(i)}^{j} \\ -f_{kj} \end{pmatrix} = \begin{pmatrix} Y_{(i)}^{j} \\ -f_{kj} \end{pmatrix}$$

$$z_{j}^{(i+1)} - c_{j} = c_{\mathsf{B}_{(i+1)}}^{\mathsf{f}} Y_{(i+1)}^{j} - c_{j} = \begin{pmatrix} c_{\mathsf{B}_{(i)}}^{\mathsf{f}}, \mathbf{0} \end{pmatrix} \begin{pmatrix} Y_{(i)}^{j} \\ -f_{k0} \end{pmatrix} - c_{j} = z_{j}^{(i)} - c_{j} \leq \mathbf{0}$$

$$\overline{z}^{(i+1)} = c_{\mathsf{B}_{(i+1)}}^{\mathsf{f}} \overline{x}^{(i+1)} = \begin{pmatrix} c_{\mathsf{B}_{(i)}}^{\mathsf{f}}, \mathbf{0} \end{pmatrix} \begin{pmatrix} \overline{x}^{(i)} \\ -f_{k0} \end{pmatrix} = \overline{z}^{(i)}$$

Tabloul simplex:

	_ X	x_j	x_p	y <u>□</u> i 1□
\mathcal{X}_{S_i}	\mathcal{L}_{i}	${\cal Y}_{ij}$	${\cal Y}_{ip}$	0
\mathcal{X}_{S_k}	$\Box x_k \Box f_{k0}$	$\exists y_{kj} \Box f_{kj}$	$\Box y_{kp} \Box f_{kp}$	0
		0		
У <u>Ф</u> 10	$\Box f_{k0}$	$\Box f_{kj}$	$\Box f_{kp}$	1
	_ Z	$z_j \square c_j$	$z_p \ \square \ c_p$	0

$$\min\left\{-2x_{1}-x_{2}\right\}$$

$$\begin{cases} -x_{1} + x_{2} \leq 1 \\ x_{1} + x_{2} \leq 3 \\ 2x_{1} \leq 5 \end{cases} x_{1}, x_{2} \in \mathbf{Z}_{+}$$

Rezolvare grafică:

Rezolvarea cu algoritmul ciclic al lui Gomory:

	_ X	x_1	x_2	x_3	x_4	x_5	У
x_3	3	0	0	1	1	1	0
x_2	1 2	0	1	0	1	<u> </u>	0
x_1	<u>5</u> 2	1	0	0	0	1 2	0
у	<u> </u>	0	0	0	0	1 2	1
	<u> </u>	0	0	0	1	<u> </u>	0

	_ X	x_1	x_2	x_3	x_4	<i>x</i> ₅	у
x_3	2 1 2 1 1 5	0	0	1	1	0	1/2
x_2	1	0	1	0	1	0	1
x_1	2	1	0	0	0	0	1
У	1	0	0	0	0	1	1 2
	1 5	0	0	0		0	1

Principiul de descompunere Dantzig-Wolfe

Problemele de programare liniară de dimensiuni mari au o structură specială a restricțiilor, matricea coeficienților având o formă "bloc-unghiulară":

$$egin{pmatrix} A_1 & A_2 & \cdots & A_k \ D_1 & & & & \ & D_2 & & & & \ & & \ddots & & \ & & & D_k \end{pmatrix}$$

unde
$$A_i \in \mathbb{R}^{n_0 \times n_i}$$
, $D_i \in \mathbb{R}^{n_i \times n_i}$, $1 \le i \le k$.

Rezolvarea în două etape: «

- 1. Rezolv k subprobleme independente.
- 2. Rezolv un program principal.

Problema inițială

Rezultate preliminare

Definiție. Fie $X \subset \mathbb{R}^*$ o mulțime convexă. Mulțimea punctelor extreme $Ext(X) = \{ x \in X \mid \forall a, b \in X \setminus \{x\}, x \neq \lambda a + (1-\lambda)b, \lambda \in [0,1] \}$

Observatie. Orice soluție admisibilă de bază a unei probleme de programare liniară este un punct extrem al domeniului de admisibilitate.

<u>Definiție.</u> Fie $M \subset \mathbb{R}$ o mulțime oarecare. Acoperirea convexă Co(M) a lui M este cea mai mică mulțime convexă ce conține pe M.

Teoremă. Fie $X \subset \mathbb{R}^*$ o mulțime convexă și compactă. Atunci $Co\left(Ext\left(X\right)\right) = X$.

Corolar. Fie mulţimea $X = \left\{x \in \mathbb{R}^t \mid A \cdot x = b, \ x \geq \mathbf{0}\right\}$ nevidă şi mărginită şi $Ext(X) = \left\{x^i, \ 1 \leq i \leq r\right\}$. Atunci, orice element $x \in X$ poate fi scris sub forma: $x = \sum_{i=1}^r \lambda_i x^i, \quad \lambda_i \geq 0, \quad \sum_{i=1}^r \lambda_i = 1.$

Principiul de descompunere

Considerăm problema

inf
$$c^{\mathsf{f}} \cdot x$$

$$\begin{cases} A \cdot x = b_0 & (m_0 \text{ restricții}) \\ D \cdot x = b & (m \text{ restricții}) \\ x \ge \mathbf{0} \end{cases}$$

Presupunem poliedrul convex $S = \{x \in \mathbb{R} \mid D \cdot x = b, x \ge 0\}$ mărginit şi

$$Ext(S) = \{ x^j, 1 \le j \le r \}.$$

$$x = \sum_{i=1}^{r} \lambda_i x^i, \quad \lambda_i \ge 0, \quad \sum_{i=1}^{r} \lambda_i = 0$$

Prin urmare, $\forall x \in S$, $\Longrightarrow x = \sum_{i=1}^r \lambda_i x^i$, $\lambda_i \ge 0$, $\sum_{i=1}^r \lambda_i = 1$. Reformulăm problema inițială: $\inf \left\{ c^f \cdot x \mid x \in S \ \& \ A \cdot x = b_0 \right\}$

$$\gamma_{j} = c^{f} \cdot x^{j} \\
\alpha^{j} = A \cdot x^{j}$$

Comentarii pro și contra:

$$\inf \sum_{j=1}^{r} \gamma_{j} \lambda_{j} \begin{cases} \sum_{j=1}^{r} \alpha^{j} \lambda_{j} = b_{0} \\ \sum_{j=1}^{r} \lambda_{j} = 1, \quad \lambda_{j} \geq 0, \ 1 \leq j \leq r \end{cases}$$

Avem doar $m_0 + 1$ restricții!

Numărul de variabile/coloane: r = card(Ext(S)).

Cum se poate obține o bază *B* primal admisibilă pentru programul principal ?

Printr-o procedură de fază 1 aplicată mulțimii $S = \{x \in \mathbb{R} \mid D \cdot x = b, x \geq 0\}$ determinându-se apoi $l \geq m_0 + 1$ puncte extreme.

Notăm: $u^f = \gamma_B^f \cdot B^{-1}$. Baza B va fi optimă dacă

$$u^{\mathsf{f}} \cdot \begin{pmatrix} \alpha^{\mathsf{s}} \\ 1 \end{pmatrix} - \gamma_{\mathsf{s}} = \max_{1 \leq j \leq r} \left\{ u^{\mathsf{f}} \cdot \begin{pmatrix} \alpha^{j} \\ 1 \end{pmatrix} - \gamma_{j} \right\} \leq 0.$$

Partiționăm vectorul $u^f = (u_0^f, u_1), u_0 \in \mathbb{R}^{n_0}, u_1 \in \mathbb{R}$

$$u^{\mathsf{f}} \cdot \begin{pmatrix} \alpha^{j} \\ 1 \end{pmatrix} - \gamma_{j} = \left(u_{0}^{\mathsf{f}}, u_{1}\right) \cdot \begin{pmatrix} A \cdot x^{j} \\ 1 \end{pmatrix} - c^{\mathsf{f}} \cdot x^{j} = \left(u_{0}^{\mathsf{f}} \cdot A - c^{\mathsf{f}}\right) \cdot x^{j} + u_{1}$$

Determinarea maximului revine la rezolvarea problemei:

$$\max_{1 \leq j \leq r} \left\{ u^{\mathsf{f}} \cdot \begin{pmatrix} \alpha^{j} \\ 1 \end{pmatrix} - \gamma_{j} \right\} = \max_{x^{j} \in Ext(S)} \left\{ \left(u_{0}^{\mathsf{f}} \cdot A - c^{\mathsf{f}} \right) \cdot x^{j} \right\} + u_{1}$$

$$= \max_{x \in \mathbf{R}^{t}} \left\{ \left(u_{0}^{\mathsf{f}} \cdot A - c^{\mathsf{f}} \right) \cdot x \mid D \cdot x = b, x \geq \mathbf{0} \right\} + u_{1} = \Delta$$
Subproblema pentru testul de optimalitate

Fie x^s soluția optimă de bază a subproblemei (punct extrem optim!).

Dacă $\Delta \le 0$, baza B este optimă pentru programul principal, cu soluția optimă:

Dacă $\Delta > 0$, coloana care intră în bază este: $\begin{pmatrix} \alpha^s \\ 1 \end{pmatrix} = \begin{pmatrix} A \cdot x^s \\ 1 \end{pmatrix}$, având coeficientul de cost: $\gamma_s = c^f \cdot x^s$.

Efectuând operația de schimbare a bazei în programul principal, se obține o nouă bază primal admisibilă și calculele se reiau cu testul de optimalitate.

Acest procedeu devine atractiv dacă se aplică la

probleme bloc-unghiulare:

$$\inf \left\{ c_1^{\mathsf{f}} \cdot \mathbf{x}_1 + c_2^{\mathsf{f}} \cdot \mathbf{x}_2 + \cdots + c_k^{\mathsf{f}} \cdot \mathbf{x}_k \right\}$$

$$\begin{bmatrix} A_1 \cdot \mathbf{x}_1 + A_2 \cdot \mathbf{x}_2 + \cdots + A_k \cdot \mathbf{x}_k & = b_0 \\ D_1 \cdot \mathbf{x}_1 & = b_1 \\ D_2 \cdot \mathbf{x}_2 & = b_2 \\ \vdots & \vdots \\ D_k \cdot \mathbf{x}_k & = b_k \end{bmatrix}$$

$$\mathbf{x}_i \ge \mathbf{0}, \ i = \overline{1, k}, \ k > 0$$

$$\mathbf{x}_i \ge \mathbf{0}, \ i = 1, k, \ k > 0$$

$$A_i \in \mathbb{R}^{n_0 \times n_i}, D_i \in \mathbb{R}^{n_i \times n_i}, c_i \in \mathbb{R}^{n_i}, b_i \in \mathbb{R}^{n_i}.$$

Subproblema pentru testul de optimalitate:

$$\max \left\{ \sum_{i=1}^{k} \left(u_0^{\mathsf{f}} \cdot A_i - c_i^{\mathsf{f}} \right) \cdot \mathbf{x}_i \mid D_i \cdot \mathbf{x}_i = b_i, \ \mathbf{x}_i \ge \mathbf{0}, \ i = \overline{1, k} \right\}$$

Funcția obiectiv fiind aditivă iar restricțiile independente, subproblema este echivalentă cu rezolvarea următoarelor k subprobleme independente:

$$\max_{\mathbf{x}_i \in \mathbf{R}^{v_i}} \left\{ \left(u_0^{\mathsf{f}} \cdot A_i - c_i^{\mathsf{f}} \right) \cdot \mathbf{x}_i \mid D_i \cdot \mathbf{x}_i = b_i, \ \mathbf{x}_i \ge \mathbf{0} \right\}, \qquad i = \overline{1, k}.$$

Algoritmul de descompunere Dantzig-Wolfe.

- 1. Se determină o bază primal admisibilă B pentru programul principal şi multiplicatorii simplex $u^f = (u_0^f, u_1)$ corespunzători.
- 2. Se rezolvă subproblemele independente şi se obțin soluțiile $\overline{\mathbf{x}}_i(u_0)$, i = 1, k.
- 1. Se calculează $\Delta = \sum_{i=1}^{k} \left(u_0^{\mathsf{f}} \cdot A_i c_i^{\mathsf{f}} \right) \cdot \overline{\mathbf{x}}_i \left(u_0 \right) + u_1$

1. Dacă $\Delta \leq 0$, soluția optimă pentru problema inițială este

$$\tilde{x} = \sum_{i \in B} \lambda_i x^i$$

unde xi sunt punctele extreme ale mulțimii

$$S = \left\{ x \in \mathbb{R}^{\frac{k}{n_i}} \middle| \begin{pmatrix} D_1 & & \\ & \ddots & \\ & & D_k \end{pmatrix} \cdot x = \begin{pmatrix} b_1 \\ \vdots \\ b_k \end{pmatrix} \right\}$$

1. Dacă $\Delta > 0$, se formează coloana

$$\begin{pmatrix} \alpha^{s} \\ 1 \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^{k} A_{i} \overline{\mathbf{x}}_{i} (u_{0}) \\ 1 \end{pmatrix}$$

care va fi introdusă în noua bază. Se calculează multiplicatorii simplex corespunzători și se revine la pasul 2.

Programul principal restrâns

Schimbarea bazei curente a programului principal prin introducerea unei variabile noi λ pentru care $u_0^{\rm f} \cdot \alpha + u_1 - \gamma > 0$, se poate face rezolvând problema:

$$\inf \left\{ \sum_{i=1}^{m_0+1} \gamma_i \lambda_i + \gamma \lambda \right\}$$

$$\left\{ \sum_{i=1}^{m_0+1} \alpha^i \lambda_i + \alpha \lambda = b_0$$

$$\sum_{i=1}^{m_0+1} \lambda_i + \lambda = 1$$

$$\lambda_i \ge 0, \ i = \overline{1, m_0 + 1}, \ \lambda \ge 0$$